

(11) **EP 0 786 519 A2**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 30.07.1997 Bulletin 1997/31

- (51) Int CI 6: C12N 15/00
- (21) Application number: 97100117.7
- (22) Date of filing: 07.01.1997
- (84) Designated Contracting States:
 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
 NL PT SE
 Designated Extension States.
 AL LT LV RO SI
- (30) Priority. 05.01.1996 US 9861
- (71) Applicant HUMAN GENOME SCIENCES, INC. Rockville, MD 20850-3338 (US)
- (72) Inventors:
 - Kunsch, Charles A.
 Gaithersburg, Maryland 20882 (US)

- Choi, Gil H.
 Rockville, Maryland 20850 (US)
- Barash, Steven C.
 Rockville, Maryland 20850 (US)
- Dillon, Patrick J. Gaithersburg, Maryland 20879 (US)
- Fannon, Michael R.
 Silver Spring, Maryland 20906 (US)
- Rosen, Craig A. Laytonsville, Maryland 20882 (US)
- (74) Representative VOSSIUS & PARTNER Postfach 86 07 67 81634 München (DE)
- (54) Staphylococcus aureus polynucleotides and sequences
- (57) The present invention provides polynucleotide sequences of the genome of *Staphylococcus aureus*, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynu-

cleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

Description

The present invention relates to the field of molecular biology. In particular, it relates to among other things nucleotide sequences of *Staphylococcus aureus*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others

The genus *Staphylococcus* includes at least 20 distinct species. (For a review see Novick, R. P., The *Staphylococcus* as a Molecular Genetic System. Chapter 1, pgs. 1-37 in MOLECULAR BIOLOGY OF THE *STAPHYLOCOCCI*, R. Novick, Ed., VCH Publishers, New York (1990)). Species differ from one another by 80% or more, by hybridization kinetics, whereas strains within a species are at least 90% identical by the same measure.

The species Staphylococcus aureus, a gram-positive, facultatively aerobic, clump-forming cocci, is among the most important etiological agents of bacterial infection in humans, as discussed briefly below

Human Health and S. Aureus

15

25

Staphylococcus aureus is a ubiquitous pathogen. (See, for instance. Mims et al., MEDICAL MICROBIOLOGY. Mosby-Year Book Europe Limited, London. UK (1993)). It is an etiological agent of a variety of conditions, ranging in severity from mild to fatal. A few of the more common conditions caused by *S. aureus* infection are burns, cellulitis, eyelid infections, food poisoning, joint infections, neonatal conjunctivitis osteomyelitis, skin infections, surgical wound infection, scalded skin syndrome and toxic shock syndrome, some of which are described further below

Burns

Burn wounds generally are sterile initially. However, they generally compromise physical and immune barriers to infection, cause loss of fluid and electrolytes and result in local or general physiological dysfunction. After cooling, contact with viable bacteria results in mixed colonization at the injury site. Infection may be restricted to the non-viable debris on the burn surface ("eschar"), it may progress into full skin infection and invade viable tissue below the eschar and it may reach below the skin, enter the lymphatic and blood circulation and develop into septicaemia. *S. aureus* is among the most important pathogens typically found in burn wound infections. It can destroy granulation tissue and produce severe septicaemia.

Cellulitis

Cellulitis, an acute infection of the skin that expands from a typically superficial origin to spread below the cutaneous layer, most commonly is caused by *S. aureus* in conjunction with *S. pyrogenes*. Cellulitis can lead to systemic infection. In fact, cellulitis can be one aspect of synergistic bacterial gangrene. This condition typically is caused by a mixture of *S. aureus* and microaerophilic *streptococci*. It causes necrosis and treatment is limited to excision of the necrotic tissue. The condition often is fatal.

40 Eyelid infections

S. aureus is the cause of styes and of sticky eye* in neonates, among other eye infections. Typically such infections are limited to the surface of the eye, and may occasionally penetrate the surface with more severe consequences.

45 Food poisoning

50

55

Some strains of *S. aureus* produce one or more of five serologically distinct, heat and acid stable enterotoxins that are not destroyed by digestive process of the stomach and small intestine (enterotoxins A-E). Ingestion of the toxin, in sufficient quantities, typically results in severe vomiting, but not diarrhoea. The effect does not require viable bacteria. Although the toxins are known, their mechanism of action is not understood

Joint infections

S aureus infects bone joints causing diseases such osteomyelitis

Osteomyelitis

S aureus is the most common causative agent of haematogenous osteomyelitis. The disease tends to occur in

children and adolescents more than adults and it is associated with non-penetrating injuries to bones. Infection typically occurs in the long end of growing bone, hence its occurrence in physically immature populations. Most often, infection is localized in the vicinity of sprouting capillary loops adjacent to epiphysial growth plates in the end of long, growing hones.

Skin infections

S aureus is the most common pathogen of such minor skin infections as abscesses and boils. Such infections often are resolved by normal host response mechanisms, but they also can develop into severe internal infections. Recurrent infections of the hasal passages plague hasal carriers of *S* aureus.

Surgical Wound Infections

Surgical wounds often penetrate far into the body. Infection of such wound thus poses a grave risk to the patient S. aureus is the most important causative agent of infections in surgical wounds. S. aureus is unusually adept at invading surgical wounds: sutured wounds can be infected by far fewer S. aureus cells then are necessary to cause infection in normal skin. Invasion of surgical wound can lead to severe S. aureus septicaemia. Invasion of the blood stream by S. aureus can lead to seeding and infection of internal organs, particularly heart valves and bone, causing systemic diseases, such as endocarditis and osteomyelitis.

Scalded Skin Syndrome

20

35

40

45

S. aureus is responsible for "scalded skin syndrome" (also called toxic epidermal necrosis. Ritter's disease and Lyell's disease) This diseases occurs in older children, typically in outbreaks caused by flowering of S. aureus strains produce extoliation(also called scalded skin syndrome toxin). Although the bacteria initially may infect only a minor lesion, the toxin destroys intercellular connections, spreads epidermal layers and allows the infection to penetrate the outer layer of the skin, producing the desquamation that typifies the diseases. Shedding of the outer layer of skin generally reveals normal skin below, but fluid lost in the process can produce severe injury in young children if it is not treated properly.

Toxic Shock Syndrome

Toxic shock syndrome is caused by strains of *S. aureus* that produce the so-called toxic shock syndrome toxin. The disease can be caused by *S. aureus* infection at any site, but it is too often erroneously viewed exclusively as a disease solely of women who use tampons. The disease involves toxaemia and septicaemia, and can be fatal.

Necosomial Infections

In the 1984 National Nocosomial Infection Surveillance Study (*NNIS*) S. aureus was the most prevalent agent of surgical wound infections in many hospital services, including medicine, surgery, obstetrics, pediatrics and newborns.

Resistance to drugs of S. aureus strains

Prior to the introduction of penicillin the prognosis for patients seriously infected with *S. aureus* was unfavorable. Following the introduction of penicillin in the early 1940s even the worst *S. aureus* infections generally could be treated successfully. The emergence of penicillin-resistant strains of *S. aureus* did not take long, however. Most strains of *S. aureus* encountered in hospital infections today do not respond to penicillin, although, fortunately, this is not the case for *S. aureus* encountered in community infections.

It is well known now that penicillin-resistant strains of *S. aureus* produce a lactamase which converts penicillin to pencillinoic acid, and thereby destroys antibiotic activity. Furthermore, the lactamase gene often is propagated episomally, typically on a plasmid, and often is only one of several genes on an episomal element that, together, confermultidrug resistance.

Methicillins, introduced in the 1960s largely overcame the problem of penicillin resistance in *S. aureus*. These compounds conserve the portions of penicillin responsible for antibiotic activity and modify or alter other portions that make penicillin a good substrate for inactivating lactamases. However, methicillin resistance has emerged in *S. aureus*, along with resistance to many other antibiotics effective against this organism, including aminoglycosides, tetracycline chloramphenicol, macrolides and lincosamides. In fact, methicillin-resistant strains of *S. aureus* generally are multiply drug resistant.

The molecular genetics of most types of drug resistance in *S. aureus* has been elucidated (See Lyon *et al., Microbiology Reviews* <u>51</u> 88-134 (1987)). Generally, resistance is mediated by plasmids, as noted above regarding penicillin resistance, however, several stable forms of drug resistance have been observed that apparently involve integration of a resistance element into the *S. aureus* genome itself.

Thus far each new antibiotic gives rise to resistance strains, stains emerge that are resistance to multiple drugs and increasingly persistent forms of resistance begin to emerge. Drug resistance of *S. aureus* infections already poses significant treatment difficulties, which are likely to get much worse unless new therapeutic agents are developed

Molecular Genetics of Staphylococcus Aureus

10

Despite its importance in, among other things, human disease, relatively little is known about the genome of this organism

Most genetic studies of *S. aureus* have been carried out using the the strain NCTC8325, which contains prophages psi11 psi12 and psi13, and the UV-cured derivative of this strain. 8325-4 (also referred to as RN450), which is free of the prophages

These studies revealed that the *S. aureus* genome. like that of other *staphylococci*, consists of one circular covalently closed, double-stranded DNA and a collection of so-called variable accessory genetic elements, such as prophages, plasmids, transposons and the like.

Physical characterization of the genome has not been carried out in any detail. Pattee *et al.* published a low resolution and incomplete genetic and physical map of the chromosome of *S. aureus* strain NCTC 8325. (Pattee *et al.* Genetic and Physical Mapping of Chromosome of *Staphylococcus aureus* NCTC 8325. Chapter 11. pgs. 163-169 in. MOLECULAR BIOLOGY OF THE *STAPHYLOCOCCI*, R.P. Novick, Ed., VCH Publishers, New York, (1990) The genetic map largely was produced by mapping insertions of Tn551 and Tn4001, which, respectively, confer erythromycin and gentamicin resistance, and by analysis of Smal-digested DNA by Pulsed Field Gel Electrophoresis ("PFGE").

The map was of low resolution; even estimating the physical size of the genome was difficult, according to the investigators. The size of the largest Small chromosome fragment, for instance, was too large for accurate sizing by PFGE. To estimate its size, additional restriction sites had to be introduced into the chromosome using a transposon containing a Small recognition sequence.

In sum, most physical characteristics and almost all of the genes of *Staphylococcus aureus* are unknown. Among the few genes that have been identified, most have not been physically mapped or characterized in detail. Only a very few genes of this organism have been sequenced. (See, for instance Thornsberry, J., *Antimicrobial Chemotherapy* 21 Suppl C: 9-16 (1988), current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. aureus* such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by S aureus infection involves the programmed expression of S. aureus genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of S aureus genes and genomic organization would dramatically improve understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of S, aureus would provide reagents for, among other things, detecting, characterizing and controlling S aureus infections. There is a need therefore to characterize the genome of S, aureus and for polynucleotides and sequences of this organism.

The present invention is based on the sequencing of fragments of the *Staphylococcus aureus* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS: 1-5.191.

The present invention provides the nucleotide sequence of several thousand contigs of the *Staphylococcus aureus* genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof. In a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS 1-5,191.

The present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99%, identical to the nucleotide sequences of SEQ ID NOS:1-5.191

The nucleotide sequence of SEQ ID NOS 1-5,191, a representative fragment thereof, or a nucleotide sequence which is at least 95%, preferably 99% and most preferably 99%, identical to the nucleotide sequence of SEQ ID NOS 1-5,191 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape, optical storage media such as CD-ROM, electrical storage media such as RAM and ROM, and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems particularly computer-based systems which contain the sequence

information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Staphylococcus aureus* genome.

Another embodiment of the present invention is directed to fragments, preferably isolated fragments, of the *Sta-phylococcus* aureus genome having particular structural or functional attributes. Such fragments of the *Staphylococcus* aureus genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs," fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression modulating fragments or EMFs." and fragments which can be used to diagnose the presence of *Staphylococcus aureus* in a sample, hereinafter referred to as diagnostic fragments or "DFs."

Each of the ORFs in fragments of the *Staphylococcus aureus* genome disclosed in Tables 1-3, and the EMFs found 5" to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity

10

20

30

The present invention further includes recombinant constructs comprising one or more fragments of the *Staphylococcus aureus* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Staphylococcus aureus* has been inserted

The present invention further provides host cells containing any of the isolated fragments of the *Staphylococcus* aureus genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to polypeptides and proteins, preferably isolated polypeptides and proteins, encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention can from cells which have been altered to express them.

The invention further provides polypeptides, preferably isolated polypeptides, comprising *Staphylococcus aureus* epitopes and vaccine compositions comprising such polypeptides. Also provided are methods for vacciniating an individual against *Staphylococcus aureus* infection.

The invention further provides methods of obtaining homologs of the fragments of the *Staphylococcus aureus* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the above-described antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the Dfs or antigens of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises. (a) a first container comprising one of the antibodies, antigens, or one of the DFs of the present invention, and (b) one or more other containers comprising one or more of the following wash reagents, reagents capable of detecting presence of bound antibodies, antigens or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of, (a)contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b)determining whether the agent binds to said protein.

The present genomic sequences of *Staphylococcus aureus* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Staphylococcus aureus* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Staphylococcus aureus* researchers and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes

has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Staphylococcus aureus genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files. largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press. Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. The program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Staphylococcus aureus relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR*) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading frames (ORFs) is accomplished by processing contigs with zorf. The ORFs are searched against S. aureus sequences from Genbank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul et al., J. Mol. Biol. 215, 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3.

The present invention is based on the sequencing of fragments of the *Staphylococcus aureus* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS.1-5,191. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

25

40

45

In addition to the aforementioned *Staphylococcus aureus* polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-5,191, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-5,191" refers to any portion of the SEQ ID NOS:1-5,191 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Staphylococcus aureus* open reading frames (ORFs"), expression modulating fragment (EMFs") and fragments which can be used to diagnose the presence of *Staphylococcus aureus* in sample ("DFs"). A non-limiting identification of preferred representative fragments is provided in Tables 1-3.

As discussed in detail below, the information provided in SEQ ID NOS:1-5,191 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of *Staphylococcus aureus* proteins.

While the presently disclosed sequences of SEQ ID NOS.1-5,191 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS.1-5,191. However, once the present invention is made available (*i.e.*, once the information in SEQ ID NOS.1-5,191 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS.1-5,191 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

Even if all of the very rare sequencing errors in SEQ ID NOS:1-5.191 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS 1-5.191.

As discussed elsewhere hererin, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining

libraries and for sequencing are provided below, for instance. A wide variety of *Staphylococcus aureus* strains that can be used to prepare *S aureus* genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC").

The nucleotide sequences of the genomes from different strains of *Staphylococcus aureus* differ somewhat. However, the nucleotide sequences of the genomes of all *Staphylococcus aureus* strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-5.191. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99 9% identical to the nucleotide sequences of SEQ ID NOS 1-5,191, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

Methods for determining whether a nucleotide sequence is at least 95% at least 99% or at least 99.9% identical to the nucleotide sequences of SEQID NOS:1-5,191 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* 85, 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

50

55

The nucleotide sequences provided in SEQ ID NOS.1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS.1-5,191 may be "provided" in a variety of mediums to facilitate use thereof. As used herein Oprovided" refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention, *i.e.*, a nucleotide sequence provided in SEQ ID NOS.1-5.191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-5,191. Such a manufacture provides a large portion of the *Staphylococcus aureus* genome and parts thereof (e.g., a *Staphylococcus aureus* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using means not directly applicable to examining the *Staphylococcus aureus* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2. Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS 1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99 % identical to a sequence of SEQ ID NOS:1-5,191 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes

The examples which follow demonstrate how software which implements the BLAST (Altschul *et al.*, J. Mol. Biol 215.403410 (1990)) and BLAZE (Brutlag *et al.*, Comp. Chem. 17.203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the *Staphylococcus aureus* genome which contain homology to ORFs or proteins from both *Staphylococcus aureus* and from other organisms. Among the ORFs discussed

herein are protein encoding fragments of the *Staphylococcus* aureus genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Staphylococcus aureus* genome.

5

25

30

35

As used herein. "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein. "search means" refers to one or more programs which are implemented on the computer- based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL). BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to promoter sequences, hairpin structures and inducible expression elements (protein binding sequences)

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Staphylococcus aureus* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the *Staphylococcus aureus* genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul *et al.*, *J. Mol. Biol.* 215: 403-410 (1990), was used to identify open reading frames within the *Staphylococcus aureus* genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, at removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108 any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for

accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

BIOCHEMICAL EMBODIMENTS

30

Other embodiments of the present invention are directed to fragments of the *Staphylococcus aureus* genome, preferably to isolated fragments. The fragments of the *Staphylococcus aureus* genome of the present invention include, but are not limited to fragments which encode peptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Staphylococcus aureus* in a sample, hereinafter diagnostic fragments (DFs)

As used herein an "isolated nucleic acid molecule" or an "isolated fragment of the *Staphylococcus aureus* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS.1-5,191, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above

A variety of purification means can be used to generated the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size

In one embodiment, Staphylococcus aureus DNA can be mechanically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate an Staphylococcus aureus library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS: 1-5,191. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library of Staphylococcus aureus genomic DNA. Thus, given the availability of SEQ ID NOS:1-5,191, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-5,191 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

Tables 1, 2 and 3 list ORFs in the *Staphylococcus aureus* genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive or more selective lists

Table 1 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that are at least 80 amino acids long and over a continuous region of at least 50 bases which are 95% or more identical (by BLAST analysis) to an *S. aureus* nucleotide sequence available through Genbank in November 1996.

Table 2 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through Genbank by September 1996.

Table 3 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through Genbank by September 1996.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the reading frame, taking the first 5' nucleotide of the contig as the start of the +1 frame; the fourth column indicates the first nucleotide of the ORF, counting from the 5' end of the contig strand, and the fifth column indicates the length of each ORF in nucleotides.

In Tables 1 and 2, column six, lists the Reference" for the closest matching sequence available through Genbank These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the numericlature are available from the National Center for Biotechnology Information. Column seven in Tables 1 and 2 provides the gene name" of the matching sequence; column eight provides the BLAST identity" score from the comparison of the ORF and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair" identified by the BLAST identity analysis.

In Table 3, the last column, column six, indicates the length of each ORF in amino acid residues

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions

1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (*i.e.*, possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list per cent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the per cent identity" of the highest scoring segment pair" in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Staphylococcus aureus* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

As used herein, an "expression modulating fragment." EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

15

40

45

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF, EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

EMF sequences can be identified within the contigs of the *Staphylococcus aureus* genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the *Staphylococcus aureus* genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below.

A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Staphylococcus aureus* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Staphylococcus aureus* genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQID NOS.1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably 99% and most preferably 99.9% identical to SEQID NOS.1-5.191, with a sequence from another isolate of the same species

Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the nucleic acid sequences mentioned above. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated

Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (*i.e.*, sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of *Staphylococcus aureus* origin isolated by using part or all of the fragments in question as a probe or primer

Each of the ORFs of the Staphylococcus aureus genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particular Staphylococcus aureus. Especially preferred in this regard are ORF such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Staphylococcus aureus. Also particularly preferred are ORFs that can be used to distinguish between strains of Sta-

phylococcus aureus, particularly those that distinguish medically important strain, such as drug-resistant strains

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example. Lee et al., Nucl. Acids Res. 6: 3073 (1979). Cooney et al., Science 241: 456 (1988): and Dervan et al., Science 251: 1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56: 560 (1991) and OLIGODEOXYNUCLE-OTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION. CRC Press. Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising one or more fragments of the *Staphylococcus aureus* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Staphylococcus aureus* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript. PsiX174, pBluescript SK and KS (+ and -), pNH8a, pNH16a. pNH18a, pNH46a (available from Stratagene): pTrc99A, pKK223-3. pKK233-3, pDR540. pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG (available from Stratagene) pSVK3. pBPV, pMSG, pSVL (available from Pharmacia)

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI. lacZ, T3, T7, gpt, lambda PR, and tro. Eukaryotic promoters include CMV immediate early. HSV thyrnidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

30

35

40

45

The present invention further provides host cells containing any one of the isolated fragments of the *Staphylococcus* aureus genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. *et al.*, BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the *Staphylococcus aureus* genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (eg, an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs depicted in Tables 2 and 3 which encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography. HPLC, size-exclusion chromatography, ion-exchange chromatography, and immu-

no-affinity chromatography.

25

40

45

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include but are not limited to eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and SI9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications, polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Staphylococcus aureus* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

"Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancers and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokary-otic or eukaryotic. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook *et al.*, MOLECULAR CLONING:A LABORATORY MANUAL, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, eg, the ampicillin resistance gene of $E.\ coli$ and $S.\ cerevisiae\ TRP1$ gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), alpha-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of Staphylococcus aureus, E. coli, B. subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus. Others

may, also be employed as a matter of choice

15

40

45

50

As a representative but non-limiting example useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell* 23: 175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO. HeLa and BHK cell lines

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

An additional aspect of the invention includes Staphylococcus aureus polypeptides which are useful as immunodiagnostic antigens and/or immunoprotective vaccines, collectively "immunologically useful polypeptides". Such immunologically useful polypeptides may be selected from the ORFs disclosed herein based on techniques well known in the art and described elsewhere herein. The inventors have used the following criteria to select several immunologically useful polypeptides.

As is known in the art, an amino terminal type I signal sequence directs a nascent protein across the plasma and outer membranes to the exterior of the bacterial cell. Such outermembrane polypeptides are expected to be immunologically useful. According to Izard, J. W. et al., Mol. Microbiol. 13, 765-773; (1994), polypeptides containing type I signal sequences contain the following physical attributes: The length of the type I signal sequence is approximately 15 to 25 primarily hydrophobic amino acid residues with a net positive charge in the extreme amino terminus; the central region of the signal sequence must adopt an alpha-helical conformation in a hydrophobic environment; and the region surrounding the actual site of cleavage is ideally six residues long, with small side-chain amino acids in the -1 and -3 positions.

Also known in the art is the type IV signal sequence which is an example of the several types of functional signal sequences which exist in addition to the type I signal sequence detailed above. Although functionally related the type IV signal sequence possesses a unique set of biochemical and physical attributes (Strom, M. S. and Lory, S., J. Bacteriol. 174, 7345-7351; 1992)). These are typically six to eight amino acids with a net basic charge followed by an additional sixteen to thirty primarily hydrophobic residues. The cleavage site of a type IV signal sequence is typically after the initial six to eight amino acids at the extreme amino terminus. In addition, all type IV signal sequences contain a phenylalanine residue at the +1 site relative to the cleavage site.

Studies of the cleavage sites of twenty-six bacterial lipoprotein precursors has allowed the definition of a consensus amino acid sequence for lipoprotein cleavage. Nearly three-fourths of the bacterial lipoprotein precursors examined contained the sequence L-(A,S)-(G,A)-C at positions -3 to +1, relative to the point of cleavage (Hayashi, S, and Wu, H, C, Lipoproteins in bacteria, J Bioenerg, Biomembr. 22, 451-471; 1990).

It well known that most anchored proteins found on the surface of gram-positive bacteria possess a highly conserved carboxy terminal sequence. More than tifty such proteins from organisms such as *S. pyogenes*, *S. mutans*, *E. faecalis*, *S. pneumoniae*, and others have been identified based on their extracellular location and carboxy terminal amino acid sequence (Fischetti, V. A. Gram-positive commensal bacteria deliver antigens to elicit mucosal and systemic immunity. ASM News 62, 405410; 1996). The conserved region is comprised of six charged amino acids at the extreme carboxy terminus coupled to 15-20 hydrophobic amino acids presumed to function as a transmembrane domain. Immediately adjacent to the transmembrane domain is a six amino acid sequence conserved in nearly all proteins ex-

amined. The amino acid sequence of this region is L-P-X-T-G-X, where X is any amino acid

Amino acid sequence similarities to proteins of known function by BLAST enables the assignment of putative functions to novel amino acid sequences and allows for the selection of proteins thought to function outside the cell wall. Such proteins are well known in the art and include "lipoprotein", "periplasmic", or "antigen"

An algorithm for selecting antigenic and immunogenic *Staphylococcus aureus* polypeptides including the foregoing criteria was developed by the present inventors. Use of the algorithm by the inventors to select immunologically useful *Staphylococcus aureus* polypeptides resulted in the selection of several ORFs which are predicted to be outermembrane-associated proteins. These proteins are identified in Table 4, below, and shown in the Sequence Listing as SEQ ID NOS 5,192 to 5,255. Thus the amino acid sequence of each of several antigenic *Staphylococcus aureus* polypeptides listed in Table 4 can be determined, for example, by locating the amino acid sequence of the ORF in the Sequence Listing. Likewise the polynucleotide sequence encoding each ORF can be found by locating the corresponding polynucleotide SEQ ID in Tables 1, 2, or 3, and finding the corresponding nucleotide sequence in the sequence listing

As will be appreciated by those of ordinary skill in the art, although a polypeptide representing an entire ORF may be the closest approximation to a protein found *in vivo*, it is not always technically practical to express a complete ORF *in vitro*. It may be very challenging to express and purify a highly hydrophobic protein by common laboratory methods. As a result, the immunologically useful polypeptides described herein as SEQ ID NOS 5.192-5,255 may have been modified slightly to simplify the production of recombinant protein, and are the preferred embodiments. In general, nucleotide sequences which encode highly hydrophobic domains, such as those found at the amino terminal signal sequence, are excluded for enhanced *in vitro* expression of the polypeptides. Furthermore, any highly hydrophobic amino acid sequences occurring at the carboxy terminus are also excluded. Such truncated polypeptides include for example the mature forms of the polypeptides expected to exist in nature.

Those of ordinary skill in the art can identify soluble portions the polypeptide identified in Table 4, and in the case of truncated polypeptides sequences shown as SEQ ID NOS:5,192-5,255, may obtain the complete predicted amino acid sequence of each polypeptide by translating the corresponding polynucleotides sequences of the corresponding ORF listed in Tables 1,2 and 3 and found in the sequence listing.

25

35

Accordingly, polypeptides comprising the complete amino acid of an immunologically useful polypeptide selected from the group of polypeptides encoded by the ORFs identified in Table 4, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto, and most preferably at least 99% identical thereto form an embodiment of the invention; in addition polypeptides comprising an amino acid sequence selected from the group of amino acid sequences shown in the sequence listing as SEQ ID NOS.5,191-5.255, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto and most preferably at least 99% identical thereto, form an embodiment of the invention. Polynucleotides encoding the foregoing polypeptides also form part of the present invention.

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention, particularly those epitope-bearing portions (antigenic regions) identified in Table 4. The epitope-bearing portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998- 4002 (1983).

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G., Shinnick, T. M., Green, N. and Learner, R. A. (1983) "Antibodies that react with predetermined sites on proteins", Science, 219 660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. See, for instance. Wilson et al., Cell 37:767-778 (1984) at 777.

Antigenic epitope-bearing peptides and polypeptides of the invention preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. Non-limiting examples of antigenic polypeptides or peptides that can be used to generate S, aureus specific antibodies include: a polypeptide comprising peptides shown in Table 4 below. These polypeptide fragments have been determined to bear antigenic epitopes of indicated S, aureus proteins by the analysis of the Jameson-Wolf antigenic index, a representative sample of which is shown in Figure 3.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means. See, e.g., Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides:

specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82. 5131-5135. this "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4.631.211 to Houghten et al. (1986). Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82.910-914, and Bittle, F. J. et al., J. Gen. Virol. 66.2347-2354 (1985).

Immunogenic epitope-bearing peptides of the invention. i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. See, for instance. Geysen et al., supra. Further still, U.S. Patent No. 5,194.392 to Geysen (1990) describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433.092 to Geysen (1989) describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480.971 to Houghten, R. A. et al. (1996) on Perialkylated Oligopeptide Mixtures discloses linear C1-C7-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a perialkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by those methods.

Table 4 lists immunologically useful polypeptides identified by an algorithm which locates novel *Staphylococcus* aureus outermembrane proteins as is described above. Also listed are epitopes or "antigenic regions" of each of the identified polypeptides. The antigenic regions, or epitopes, are delineated by two numbers x-y, where x is the number of the first amino acid in the open reading frame included within the epitope and y is the number of the last amino acid in the open reading frame included within the epitope. For example, the first epitope in ORF 168-6 is comprised of amino acids 36 to 45 of SEQ ID NO.5,192, as is described in Table 4. The inventors have identified several epitopes for each of the antigenic polypeptides identified in Table 4. Accordingly, forming part of the present invention are polypeptides comprising an amino acid sequence of one or more antigenic regions identified in Table 4. The invention further provides polynucleotides encoding such polypeptides

20

40

15

55

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

The invention further provides methods of obtaining homologs from other strains of *Staphylococcus aureus*, of the fragments of the *Staphylococcus aureus* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of *Staphylococcus aureus* is defined as a homolog of a fragment of the *Staphylococcus aureus* fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the *Staphylococcus aureus* genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which prossess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS 1-5.191 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99 % identical to a sequence of SEQ ID NOS 1-5.191 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis *et al.*, PCR PROTOCOLS, Academic Press. San Diego, CA (1990))

When using primers derived from SEQ ID NOS:1-5.191 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-5.191, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50°s formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75°s homologous to the primer will be amplified. By employing lower stringency

conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS 1-5,191, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS.1-5,191, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacterias which are closely related to *Staphylococcus aureus*.

ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the polypeptide. Such identifications permit one skilled in the art to use the *Staphylococcus aureus* ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., Macmillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES. Tramper *et al.*, Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

10

15

20

30

40

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Staphylococcus aureus* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-5.191.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al., Symbiosis 21: 79 (1986) and Voragen et al. in BIOCATALYSTS IN AGRICULTURAL BIOTECHNOLOGY, Whitaker et al., Eds., American Chemical Society Symposium Series 389: 93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of *Staphylococcus aureus*. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA), KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger *et al.*, *Biotechnology* <u>6(A)</u>. Rhine *et al.*, Eds. Verlag Press, Weinheim, Germany (1984)

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance. Hartmeir et al., Biotechnology Letters 1: 21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds. Academic Press. New York (1985). In addition to industrial applications, GOD has found applications in medicine for

quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu *et al.*, *Biochem et Biophysica Acta* 872, 83 (1986), for instance

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger *et al.*, Biotechnology. The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland. Massachusetts (1990)). Today, the use of glucose-produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40 307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman et al., Acid Proteases Structure Function and Biology, Tang. J., ed. Plenum Press, New York (1977) and Godfrey et al., Industrial Enzymes, MacMillan Publishers. Surrey. UK (1983) and Hepner et al., Report Industrial Enzymes by 1990. Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae *et al.*, Philosophical Transactions of the Chiral Society of London 310 227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other hand, has been described in detail by Bud *et al.*, Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology* 136 479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination. A variety of commercially important enzymes have previously been isolated from members of *Staphylococcus aureus*. These include Sau3A and Sau96I.

45 2. Generation of Antibodies

25

35

50

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., MONOCLONAL ANTIBODY TECHNOLOGY: LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY. Elsevier Science Publishers. Amsterdam. The Netherlands (1984). St. Groth et al., J. Immunol. Methods 35 1-21 (1980). Kohler and Milstein. Nature 256: 495-497 (1975)). the trioma technique, the human B- cell hybridoma technique (Kozbor et al., Immunology Today).

4: 72 (1983), pgs. 77-96 of Cole et al., in MONOCLONAL ANTIBODIES AND CANCER THERAPY. Alan R. Liss. Inc. (1985)).

Any animal (mouse, rabbit. etc.) which is known to produce antibodies can be immunized with the pseudogene polypeptide. Methods for immunization are well known in the art. Such methods include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection

The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

For monoclonal antibodies spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175: 109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell. A. M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).

Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labelling are well-known in the art. for example see Sternberger et al., J. Histochem Cytochem 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308 (1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J. W. J. Immunol. Meth. 13:215 (1976))

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays to identify cells or tissues in which a fragment of the *Staphylococcus aureus* genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England. Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press. N. Y (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs, antigens or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies, or one or more of the DFs, or one or more antigens of the present invention and assaying for binding of the DFs, antigens or antibodies to components within the test sample.

Conditions for incubating a DF, antigen or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the Dfs, antigens or antibodies of the present invention. Examples of such assays can be found in Chard. T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers. Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982). Vol. 2 (1983), Vol. 3 (1985); Tijssen, P. Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry; PCT publication WO95/32291, and Molecular Biology, Elsevier Science Publishers. Amsterdam. The Netherlands (1985), all of which are hereby incorporated herein by reference.

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based

on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive in close confinement, one or more containers which comprises (a) a first container comprising one of the Dfs, antigens or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following wash reagents reagents capable of detecting presence of a bound DF, antigen or antibody

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody, antigen or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed Dfs, antigens and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4. Screening Assay for Binding Agents

20

30

35

45

50

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Staphylococcus aureus* fragment and contigs herein described

in general, such methods comprise steps of

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the Staphylococcus aureus genome; and
- (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby *et al.*, Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak *et al.*, Biochemistry 28.9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251: 1360 (1991)) or to the mRNA itself (antisense - Okano J. Neurochem. 56:560 (1991). Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press. Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated

to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical Compositions and Vaccines

5

30

45

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of *Staphylococcus aureus*, or another related organism, *in vivo* or *in vitro*. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth or pathogenicity of *Staphylococcus aureus* or a related organism. *In vivo* or *in vitro*," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth or pathogenicity by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of vaccines derived from membrane associated polypeptides are well known in the art. The inventors have identified particularly preferred immunogenic Staphylococcus aureus polypeptides for use as vaccines. Such immunogenic polypeptides are described above and summarized in Table 4, below.

As used herein, a "related organism" is a broad term which refers to any organism whose growth or pathogenicity can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule. etc. Moieties capable of mediating such effects are disclosed in among other sources. REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age-weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can

be measured at the same time. The composition of the present invention can be administered concurrently with prior to or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s) serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in admixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins *e. g.*, human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980)

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds

6. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

55

40

45

25

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2, 231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P_0 , that any given base in a sequence of size L. in nucleotides, is not sequenced after a certain amount, in, in nucleotides, of random sequence has been determined can be calculated by the equation $P_0 = e^{-m}$, where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m±1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P_0 = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore is equivilent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17.000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{-m}$, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman. Genomics 2, 231 (1988)

2. Random Library Construction

25

20

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end *Staphylococcus aureus* DNA was prepared by phenol extraction. A mixture containing 600 ug DNA in 3.3 ml of 300 mM sodium acetate. 10 mM Tris-HCl. 1 mM Na-EDTA. 30% glycerol was sonicated for 1 min. at 0°C in a Branson Model 450 Sonicator at the lowest energy setting using a 3 mm probe. The sonicated DNA was ethanol precipitated and redissolved in 500 ul TE buffer

To create blunt-ends, a 100 ul aliquot of the resuspended DNA was digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 ul BAL31 buffer. The digested DNA was phenol-extracted, ethanol-precipitated, redissolved in 100 ul TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size was excised from the gel, and the LGT agarose was melted and the resulting solution was extracted with phenol to separate the agarose from the DNA DNA was ethanol precipitated and redissolved in 20 ul of TE buffer for ligation to vector.

A two-step ligation procedure was used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contained 2 ug of DNA fragments, 2 ug pUC18 DNA (Pharmacia) cut with Smal and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and was incubated at 14°C for 4 hr. The ligation mixture then was phenol extracted and ethanol precipitated, and the precipitated DNA was dissolved in 20 ul TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder were visualized by ethidium bromide-staining and UV illumination and identified by size as insert (i). vector (v). v+i. v+2i, v+3i, etc. The portion of the gel containing v+i DNA was excised and the v+i DNA was recovered and resuspended into 20 ul TE. The v+i DNA then was blunt-ended by T4 polymerase treatment for 5 min. at 37° C in a reaction mixture (50 ul) containing the v+i linears, 500 uM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+i linears were dissolved in 20 ul TE. The final ligation to produce circles was carried out in a 50 ul reaction containing 5 ul of v+i linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture was stored at -20°C

This two-stage procedure resulted in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%)

Since deviation from randomness can arise from propagation the DNA in the host. *E coli* host cells deficient in all recombination and restriction functions (A. Greener, Strategies 3 (1) 5 (1990)) were used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells were plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells

Plating was carried out as follows: A 100 ul aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) was thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 ul aliquot of 1.42 M beta-

mercaptoethanol was added to the aliquot of cells to a final concentration of 25 mM. Cells were incubated on ice for 10 min. A 1 ul aliquot of the final ligation was added to the cells and incubated on ice for 30 min. The cells were heat pulsed for 30 sec. at 42° C and placed back on ice for 2 min. The outgrowth period in liquid culture was eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture was plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar. 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%). 1 ml MgCl₂ (1 M), and 1 ml MgSO₄/100 ml SOB agar. The 15 ml top layer was poured just prior to plating Our titer was approximately 100 colonies/10 ul aliquot of transformation.

All colonies were picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products would be deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

15

20

30

35

55

High quality double stranded DNA plasmid templates were prepared using an alkaline lysis method developed in collaboration with 5Prime → 3Prime Inc. (Boulder, CO). Plasmid preparation was performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Average template concentration was determined by running 25% of the samples on an agarose gel. DNA concentrations were not adjusted.

Templates were also prepared from a *Staphylococcus aureus* lambda genomic library. An unamplified library was constructed in Lambda DASH II vector (Stratagene). *Staphylococcus aureus* DNA (> 100 kb) was partially digested in a reaction mixture (200 ul) containing 50 ug DNA, 1X Sau3Al buffer. 20 units Sau3Al for 6 min. at 23 C. The digested DNA was phenol-extracted and centrifuges over a 10- 40% sucroce gradient. Fractions containing genomic DNA of 15-25 kb were recovered by precipitation. One ul of fragments was used with 1 ul of DASHII vector (Stratagene) in the recommended ligation reaction. One ul of the ligation mixture was used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract Phage were plated directly without amplification from the packaging mixture (after dilution with 500 ul of recommended SM buffer and chloroform treatment). Yield was about 2.5x10⁹ pfu/ul.

An amplified library was prepared from the primary packaging mixture according to the manufactureer's protocol. The amplified library is stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x109 pfu/ml.

Mini-liquid lysates (0.1ul) are prepared from randomly selected plaques and template is prepared by long range PCR. Samples are PCR amplitied using modified T3 and T7 primers, and Elongase Supermix (LTI).

Sequencing reactions are carried out on plasmid templates using a combination of two workstations (BIOMEK 1000 and Hamilton Microlab 2200) and the Perkin-Elmer 9600 thermocycler with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. Modified T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are on a combination of AB 373 DNA Sequencers and ABI 377 DNA sequencers. All of the dye terminator sequencing reactions are analyzed using the 2X 9 hour module on the AB 377. Dye primer reactions are analyzed on a combination of ABI 373 and ABI 377 DNA sequencers. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. The average usable read length is 485 bp for M13-21 sequences. 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

4. Protocol for Automated Cycle Sequencing

The sequencing was carried out using Hamilton Microstation 2200, Perkin Elmer 9600 thermocyclers, ABI 373 and ABI 377 Automated DNA Sequencers. The Hamilton combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates were combined in the wells of a 96-well thermocycling plate and transferred to the Perkin Elmer 9600 thermocycler. Thirty consecutive cycles of linear amplification (i.e. one primer synthesis) steps were performed including denaturation, annealing of primer and template, and extension, i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols were used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer was labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 or 377 DNA Sequencer for electrophoresis, detection, and base-

calling. ABI currently supplies premixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR-generated templates with both dye-primers and dye-terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

Thirty-two reactions were loaded per ABI 373 Sequencer each day and 96 samples can be loaded on an ABI 377 per day. Electrophoresis was run overnight (ABI 373) or for 2 1/2 hours (ABI 377) following the manufacturer's protocols. Following electrophoresis and fluorescence detection: the ABI 373 or ABI 377 performs automatic lane tracking and base-calling. The lane-tracking was confirmed visually. Each sequence electropherogram (or fluorescence lane trace) was inspected visually and assessed for quality. Trailing sequences of low quality were removed and the sequence itself was loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence was removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 or ABI 377 were around 400 bp and depend mostly on the quality of the template used for the sequencing reaction.

INFORMATICS

5

15

20

30

50

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance. Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press. Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow whereever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was enployed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 104 fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164: 765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain ranged of base pairs (definable for each clone based on the known clone size range for a given library)

3. Identifying Genes

The predicted coding regions of the *Staphylococcus aureus* genome were initially defined with the program zorf, which finds ORFs of a minimum length. The predicted coding region sequences were used in searches against a database of all *Staphylococcus aureus* nucleotide sequences from GenBank (release 92.0), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and and compared to a non-redundant database of known proteins generated by combining the Swiss-prot. PIR and GenPept databases. ORFs of at least 80 amino acids that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases.

ORFs of at least 120 amino acids that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

5

15

30

45

55

1. Production of an Antibody to a Staphylococcus aureus Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli.* or can by chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler. G. and Milstein, C.. Nature 256 495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall. E.. Meth. Enzymol. 70.419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis. L. et al. Basic Methods in Molecular Biology Elsevier. New York. Section 21-2 (1989)

3. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than other and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigenadministered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33 988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in:Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0, 1 to 0, 2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in:Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, they are useful in various animal models of Staphylococcal disease known to those of skill in the art as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunothereapeutic reagent

3. Preparation of PCR Primers and Amplification of DNA

Various fragments of the *Staphylococcus aureus* genome, such as those of Tables 1-3 and SEQ ID NOS:1-5.191 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately.

mately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow

4. Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the *Staphylococcus aureus* genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California). Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield *et al.*, U.S. Patent No. 5.082,767, incorporated herein by this reference

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the *Staphylococcus aureus* genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene) using Bgll and Sall restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems, pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The *Staphylococcus aureus* DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the *Staphylococcus aureus* DNA and containing restriction endonuclease sequences for Pstl incorporated into the 5' primer and Bglll at the 5' end of the corresponding *Staphylococcus aureus* DNA 3' primer, taking care to ensure that the *Staphylococcus aureus* DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with Pstl, blunt ended with an exonuclease, digested with Bglll, purified and liquated to pXT1, now containing a poly A addition sequence and digested Bglll.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Staphylococcus aureus* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Staphylococcus aureus* DNA.

Alternativly and if antibody production is not possible, the *Staphylococcus aureus* DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the *Staphylococcus aureus* DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis *et al.*, cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene. Life Technologies, Inc., or Promega, Polypeptides of the invention also may be produced using *in vitro* translation systems such as *in vitro* ExpressTM Translation Kit (Stratagene).

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference

50

20

25

35

40

45

55

aureus - Coding regions containing known sequences

•		+				1			
Contig	9 CRF	Start	Stop (nt)	match acession	match gene name	percent	length	OMF nt length	
-	-	1419	1.257	cmb x17301 SAUD	S. aureus DNA for hid gang and for part of agr gene	100	663	663	•
-	- 2	1 3273	2452	emb x52543 SAAG	S. aureus agrk, agrB and hld genes	66	608	822	•
-	- 5	6418	5651	db D1(711 STAH	Staphylococcus aureus HSP10 and HSP60 genes	86	223	168	• -
5	-	1 807	1 439	emb x72700 SAPV	S.auraus games for S and F components of Penton-Valentine leucocidins	18	216	369	• •
	-	1 5031	13571	emb x72700 SAPV	emb X72700 SAPV S.eureus genes for S and F components of Panton-Valentins leucocidins	95	424	1461	• •
01		86	904	gb L25288	Stabhylococcus aureus gyrass-like protein alpha and beta subunit (grlA and grlB) genes, complete cds	88	715	619	
9		5302	6246	45 13 13	Stabhylococcus aureus prolipoprotein diacyiglyceryl transferase (igt) gene, complete cds	9	251	945	
		6249	7091	db U35773	Stanbylococcus aureus prolipoprotein diacyiqlyceryl transferase (igt) gene, complete cds	66	943	843	
9		7384	7584		Stabbylococcus aureus prolipoprotein diacyiglyceryl transferase (igt) gens, complete cds	66	342	201	
50		266 -	549	100617 901	Staphylococcus arreus DNA sequence encoding three ORFs, complete cds; prophege phi-11 sequence homology, 5' flank	100	643	£.	
30		110:	841	1915 19300	Stabhylococus aureus DAA sequence encoding three ORFs, complete cds; prophage phi-li sequence homology, 5' flank	2	137	17.1	
02		2010	1798	0p T 0p	Stabhylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-11 sequence homology, 5: flank	100	110	213	
70	-	5300	3825	8b H'6714	Staphylococcus aureus peptidoglycan hydrolese gene, complete cds	100	948	1476	
70	-	4788	4262	[gb1::7474]	Staphylococcus aureus peptidoglycan hydrolase gene, complete cds	100	906	507	
1 26	-	7	148	[gb U41072]	Staphylococcus sursus isoleucyl-tRNA synthetese (iles) gene, partial cds	100	126	7	
78	7	8	557	gb U41072	Staphylococcur aureus isoleucyl-tRNA synthetase (iles) gene, partial cds	66	430	474	
1 26	-	1 763	3531	emb X74219 SAIL	S.aureus gene for isoleucyl-tRNA synthetase	66	2769	2769	
29	-	1261	1 4392	ap neees	Staphylococcus aureus DNA fragment with class II promoter activity	100	117	3132	
31	=======================================	114977	13463	emb x73889 SAPI	S. aureus genes Pl and P2	66	1351	1515	- :
- -	115	114241	133855	emb 473889 SAP1	S aureus genes P1 and P2	98	258	387	- :
38	117	14284	113112	, [9b]M12715	S. aureus geh gene encoding lipsse (glycerol ester hydrolase)	100	372	1173	
36	61	13434	155:8	gb P.2715	S aureus geh gene encoding lipase (glycerol ester hydrolase)	100	2085	2085	· :

TARIE

aureus - Coding regions containing known sequences

Contig TORF	ONF GI	Start (nt)	Stop (nt)	match	matth gene name	percent	HSP nt	ORF nt Length
			1271	00/073374	istaphylucoccus answertype 8 capsulo genes, cap8A, cap8B, cup8C, cep8D, cap8B,	ec or	1209	1709
9		1720	2235	gb U73374	Staphylococus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, c	96	576	576
9		1 2259	3182	gb U73374	Staphylococcus aureus type B capsule genes, cap8A, cap8B, cap8C, cap8D, cap8F,	6	926	924
9	·	2716	4 4 9 8	qb (U73374	Stabhylococus mureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F,	• — — — — • • • • • • • • • • • • • • •	1203	1326
\$	• 	4536	5720	45 073374	Stabhylococus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8B, cap8E, cap8F, c	80	1185	1185
9	<u></u>	6455	6120	gb U73374	Staphylococus aureus type 8 capsule genes, cap8A, cap8B, cap8C, c	66	278	336
* *	-	~	955	[gb] L25893]	Staphylococcus aureus rech gene, complete cds	66	954	956
0\$	_	4465	2924	emb x85029 SAAH	S. aureus AhpC gene	1000	88	1542
05	-	4108	3515	emb x85029 SAAH	S.aureus AhpC gene	36	240	594
- 54	_	5074	3392	emb X62992 SAFN	emb K62992 SAFN S.auraua fnbB gene for fibronectin binding protein B	001	1668	1683
- 54	-	4865	4122	mmb X62992 SAFN	S. aureus fnbB gene for fibronectin binding protein B) 66	720	344
- 24	~	5056	4562	emb K62992 SAFN	S. aureus fabb gene for fibronectin binding protein B	100	163	495
-	<u>۔</u>	111386	6300	ab Jo4151	S aureus fibronectin-binding protein (fnbA) mRNA, complete cds	1001	3087	3087
88		1 1743	2819	emb x47104 sADN	S.aureus mdr. pup4 and taqD genes (SG511-55 isolate)	1 68	6.3	101
- 58	-	2658	3280	emb x91786 SAPB	S. aureus abcA, pbp4, and tagD genes	66	423	423
BS		9009	1049	emb x91786 SAPB	S. aureus abcA. pbp4. and tagD genes	- 66	1305	1305
8 5	• 	5677	5378	95 329478	Staphylococcus aureus ABC L:ansporter-like protein AbcA (abcA) gene, partial cds	100	300	100
95	-	9805	6840,	0, em. X91786 SAPB	S. aureus abch, pbp4, and tag0 genes	66	1755	1755
2		80 80 80	445	ap .t21824	S.aureus agr gene encoding an accessory gene regulator protein, complete	100	4	ŧ
1 72	~	2457	1453	[emb X52543 SAAG	emb x52543 SAAG S aureus agrA, agrB and hld genes	- 56	673	1005

Contig	ORF	Start	Stop (nt)	match	match gene name	percent	HSP nc length	ORF :: length
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		157	1917	emb x64172 SARP	S.aureus rpiL, orf202, rpoB/rif) and rpoC genes for ribosomal protein L7/Ll2, hypothetical protein ORF202, DNA-directed RNA polymerase beta 4 beta' chains	6	2396	3561
82	7	4027	7677	emb X89233 SARP	S. aureus DNA for rpoC gene	66	1716	3651
8 3 5		7745	89068	98020 969	Staphylococcus aureus ribosomal protein S12 (TPSL) gene, complete cds, ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds	100	320	324
		8103	8579	ab U20869	Staphylococcus aureus ribosomal protein S12 (rpst.) gene, complete cds, ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds	100	477	4.7
82		8618	12.00	gb U20869	Staphylococus aureus ribosomal protein S12 (rpst.) gene, complete cds, ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds	100	154	204
.		6	191	gb U73374	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8D, cap8E, cap8F, cap8F, cap8H,	80	797	174
.	~	189	68	ob u73374	Stabhylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F,	*	\$0.	307
		2 2 2	1660	db U3374	Staphylococcus aureus type R capsule genes, cap8A, cap8A, cap8A, cap8B,	66	174	774
		1584	3503	gb U73374	Staphylococus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, c	œ •	1920	1920
.		1394	4521	95,0733741	Stabhylococus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8F, cap8H, cap8L, cap8H, c	97	1128	**
 v v	9	4519	5643	[gb: 073374]	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F,	97	1125	1125
96	~	1245	3896	emb 218852 SACF	S.aureus gene for clumping factor	63	099	2652
76	~	625	887	[gb;041072]	Staphylococcus aureus isoleucyi-tRMA synthetase (iles) gene, partial cds	9.1	89	258
=		<u>-</u>	452	gb.L41499 	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes, complete cds	100	450	450
111	~	526	1041	gt L41499	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin [atl] genes, complete cds	6	516	516
117	~-	1278	1958	gb M83994	Staphylococcus aureus prolipoprotein signal peptidase (1sp) gene, complete	100	19	681

5. aureus - Coding regions containing known sequences

Contig ORF ID ID	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt
		3787	4254	db) D30690 STAN	Staphylococcus aureus genes (or ONF)7; HSP20, HSP10, HSP40, ORF)5, complete	56	467	468
000	- - -	2597	3640	emb X13290 SATN	Stabylococcus arreus multi-resistance plasmid pski DNA containing transposon Th4003	- C	956	1044
130	- >	1 3813	4265	omb 216422 SADI	S. aureus dirB gene for dihydrofolate reductase	98	416	653
130	9	4309	5172	emb 216422 5ADI	emb 216422 SAD1 S.aureus dfrB gene for dihydrofolate reductase	98	, 109	864
136	-	5296	6207	emb x71437 SAGY	S.aureus genes gyrB, gyrA and recF (partial)	.6	8.8	912
961	- 5	111680	8987	dbj p10489 STAG	dbs D10489 STAC Staphylococcus aureus genes for DNA gyrase A and B, complete cds	100	2694	2694
136	9 -	112686	10940	dbj J10489 STAG	dbj J10489 STAG Staphylococcus aureus genes for DNA gyrase A and B. complete cds	66	1947	1947
136	- 1	112592	:1765		reck cluster: dnaktreplisome assembly protein. gyrutuwA gyrase heta subunit (Staphylococcus aureus, Y8886, Genomic, 5 genes, 3573 ntl	э́.	822	828
143	- 3	1 4171	1 2867	196(036379)	Staphylococcus sureus S-adenosylmethionine synthetase gene, complete cds	66	1305	1305
143		1 3100	• • • • • • • • • • • • • • • • • • •	gb L42943	Staphy ococcus arreus (Clone Kin50) phosphoenolpyruvate carboxykinase (pckA) gene, complete cds	100	1170	1182
140		1 4254	4718	96 051133	Stabhylococus aireus phosphoenolpyruvate carboxykinase (pcka) gene.	100	677	465
1	5	6977	7261		stabhylococcus arreus o-succinylbenzolc acid coa ligase (mene), and o-succinylbenzolc acid synthetase (menc) genes, complete cds	100	75	285
<u> </u>	01	9464	1910	gb (\(\beta\)\)	Stabhylococcus aureus o-succinylbenzoic acid CoA ligase (mens), and o-succinylbenzoic acid synthetase (menc) genes. complete cds	100	1104	1104
- -	=_	111232	9748	96 05132	Stabbylococcus aureus o-succinylberzoic acid CoA ligase (mene), and o-succinylbenzoic acid synthetase (menc) genes, complete cds	100	1485	1485
143	==	110739	10320		Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o-succinylbenzoic acid synthetese (menc) genes, complete cds	100	332	420
152	<u></u>	2454	3437	emb X58434 SAPD	S arreas public, public and public genes for pyruvate decarboxylase, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenese	66	305	984
152		1 3513	4820	emb X58434 SAPD	S aureus pdnB, pdnC and pdhD genes for pyruvate decarboxylase, dihydrollpoamide acetyltransferase and dihydrollpoamide dehydrogenese	50 50	1308	1308
152		4818	6230	emb x58434 SAPD	S. aureus pdhB. pdhC and pdhD genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	66	1413	1413
153		387	1526	550762 42	recf cluster: dnak-replisome assembly protein. gyrB-DNA gyrsse beta subunit [Staphylococcus aureus, YB886, Genomic, 5 genes, 1573 nt]	66	1140	1140
153	~ - -	1877	2152		recf cluster: dnak-replisome assembly proteingyrB=DNA gyrasm beta subunit (Staphylococcus aureum, YB886, Genomic, 5 genes, 1573 nt)	001	276	276

S. aureus - Coding regions containing known sequences

Contig ORF	108F	Start	Stop	match	match gene name	percent	HSP nt length	ORF nt tength
153	- 	2143	2289	qb \$77055	reck cluster, diaArreplisome assembly proteingyrBsDNA gyrase beta subunit (Staphylococcus aureus, YB686, Genomic, 5 genes, 1573 ntl	- 66	E:1	147
154	110	110792	9314	gb 1006451	Staphylococcus aureus proline permease homolog (putP) gene, complete cds	16	154	1479
154	=	9935	1 9615	db 1006451	Staphylococcus aureus proline permease homolog (put?) gene, complete cds	66	229	321
154	112	9943 (1016	110167	dp 006451	Staphylococcus aureus proline permesse homolog (put?) gene, complete cds		. 23	225
154	52	110089 (1150	11501	gb U06451	Staphylococcus aureus proline permease homolog (put?) gene, complete cds	66	1326	1413
159	7	2195 (121	1212	dbj b28879 STAP	Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	100	1,1	984
161		2596	2270	gb H83994	Staphylococcus aureus prolipoprotein signal peptidase (isp) gene, complete cds	9.5	203	327
1 162	-	1 1406	705	195/10212211	Staphylococnus aureus hyaluronate lyase (hysA) gene. complete cds	001	707	702
163		1263	1772	100,000,000	Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) gene, complete	96	127	510
1 164		4774	1 9117	dbj D86727 D867	Staphylococcus sursus DNA for DNA polymersse III, complete cds	56	3470	1364
168		7448	6447	de u21636 	Stabhylococcus aureus cmp-binding-(actor 1 (cbf1) and ORF X genes, complete cds	001	1002	1002
168	6	9538	7961	96)021636	Stabhylococcus aureus cmp-binding-factor 1 (cbf1) and ONF X genes, comp.ete.	66	1158	1578
173	-	9240	7801	db J03479	S.auceus entyme III-lac (lacF), entyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	001	2440	1440
671		111252	9522	gb J03479	S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galectosidese (lacG) genes, complete cds	66	1731	1221
113	a	8285	R704	dp 103479	financeus enzyme III-lac (lacF), enzyme II-lac (lacE), and pilospho-beta- galactosidase (lacG) genes, complete cds	001	420	420
173	<u></u> -	110168	9839	gb J03479	S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genus, complete cds	100	330	330
173	;	111815 (1082	110829	emt X14827 SALA	Staphylococcus aureus land and land genes	1001	987	7867
173	===	12721	111774	emb X14827 SALA	Staphylococcus aureus lacC and lacD genes	100	876	876
173	112	12838	112305	gb H64724	S.aureus tagatose 6-phosphate isomerase gene, complete cds	100	534	534
173	77	13243	112773 ,	96/1132103/	Staphylococcus arreus lac repressor (lacR) gene, complete cds end lacA repressor (lacA) partial cds	001	471	T.E.#
173	; ; ;	114633 1386	13866	96/132103/	Staphylococcus aureus lac repressor (lacR) gene, complete cds and lacA repressor (lacA); partial cds	100	768	768

S. aureus - Coding regions cont...ing known sequences

Contro ORG	ORE	Start (nt)	:-	######################################	986	percent	isP nt length	OMF nt length	• •
178			655	19610529611	Staphylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes. complete cds	000	115	654	:
86.1	~	7,201	1482	gb U52961 	Staphylococcus aurous holin-like protein LrgA (lrgA) and LrgB (lrgB) genes.	100	720	720	
178		2361	1909	gb 052961 	Staphylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes. complete cds	001	453	453	•
A C 1		1551	1853	gb U52961 	Staphylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes, complete cds	100	303	100	
*6.1		3541	5775	9b 1.42945	Staphylococcus arreus lytS and lytR genes, complete cds	- 66	765	\$97.	
178	٠	3294	3025	[9b] L42945]	Staphylococcus aureus lytS and lytR genes, complete cds	66	270	270	• –
. 81	_	1114	290	95 1163177	S aureus signa factor (plac) gene, complete cds	66	667	525	-
182	_	· -	1	emb x61307 SASP	emb X61307 SASP Staphylococcul aureus spa gene for protein A	96	7.62	339	-
182	-	069	2112	96/101/96	S aureus spe gene coding for protein A, complete cad	1 6	1332	1623	: -
182	-	5861	4251	emb X61307 SASP	emb X61307 SASP Staphylococcus aureus spa gene for protein A	1 66	119	1611	
SE 1			824	1626180196	Staphylococcus aureus chorismate synthase (arcC) and nucleoside diphosphate kinase (ndk) genes, complete cds, dehydroaulnate synthase (arcB) and geranylgeranyl pyrophosphate synthatase homolog (gerCC) genes, partial cds	0	132	922	
191	- ·	1	1 2760	emb X17679 SACO	emb X17679 SACO Staphylococcus auraus coa gene for coaquiase	66	1920	1920	-
161	-	1 2967	016	emb X16457 SAST Staphylococcus	Staphylococcus aureus gene for staphylocoagulase	1 66	177	771	
161	· ·	5768	9950	emb X16457 SAST	Staphylococcus aureus gene for staphylocosquisse	66	250	1203	
196		1741	872	gb L36472	Stabhylococcus aureus lysyl-thWA sythetase gene, complete cds, transfer RNA (tRNA) genes, 55 ribosomal RNA (55 rRNA) gene, 155 ribosomal RNA (165 rRNA) gene, 235 ribosomal RNA (235 rRNA) gene	66	870	870	
H6.	_	16AH	2011	emt. X93205 SAPT	S.aureus ptsH and ptsI genes	66	324	324	
KC -		2002	2310	X9.3205 SAPT	S. aurous ptell and ptel gones	1 6	304	300	
202	-	163	1305	emb x97985 SA12	S.aureus orfs 1, 2, 3 & 4	- 66	1143	1143	
202	~	1 1303	2175	emb X73889 SAP1	S. aureus genes P1 and P2	1 76	7	873	:
210	<u>-</u>	3114	1558	dbj D17366 STAA	dbj D17366 STAA Staphylococcus aureus atl yene for autolysin, complete cds and other ORFs	66	1552	1557	
210		2939	2232	gb L41499 	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (a:1) genes, complete cds	66	48.8	904	
7 .	=_	7429	0777	db3 D86240 D862	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB,	96	157	342	•

1 C	,		
15			
20	1)		
25			
30	1		
35			
10			
1 5			

50

55

S auceus - Coding regions containing known sequences

Contig	Contig ONF	Start (nt)	Stop (nt)	a a t C h	natch gene name	percent	HSP nt length	ORF nt length
1 216	_	398	1318	emb X727C0 SAPV	S. aureus genes for S and F components of Panton-Valentine leucocidins	- 88 -	265	921
219	~	1810	1073	dbj b30690 STAN	staphylococcus aureus genes for ORF37, HSP20; HSP70; HSP40; ORF35, complete	100	0.0	138
219	·	2979	2035		Stuphylococcus aureus gomes for OHF37; HSP20; HSP40; ORF35, complete	66	365	945
219		4359	3196	db) b30690 STAN	Staphylococcus aureus genes for ORF37, HSP23, HSP10, HSP40, ORF35, complete cds	56	1)64	.164
· [: 	7044	9,15,	NATE 0900EU Udb	Staphylococcus aurius genes for OHF37; HSC20; HSC40, USF40; ORF35, complete cds	ec 67	1869	1969
219	9	6557	5883	db; D30690 STAN	Staphylococcus auraus genes for OHF37, MSP20, HSP70, MSP40; ORF35, complete cds	66	۲، ۹	675
219		6801	6334	dbj n30690 5TAN	Staphylococcus auraus genes for OFF37; HSP20; HSP70; HSP40; OKF35, complete cds	ec 6	4 6 R	4 65
221		110816	110034	gb 1.19298	Staphylococcus aures phosphatidylimositol-specific phospholipase C (plc) gene, complete cds	6	,	18.
223	· -	2855	1506	 au 073374 	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8E,	-	102	1350
1 234	-	1 2	1357	[emb[x97985]SA12	S.aureus orfs 1.2,3 & 4	cos	176	1356
234	-	1694	2485	[emb(x97985 SA12	S.auraus orfs 1,2,3 & 4	001	792	792
1 234	-	1 2648	3148	emb x97945 SA12	S aureus orfs 1,2,3 6 4	66	105	105
1 234	-	1 3120	4604	emb x97985 SA12	S.auraus orfs 1,2,3 & 4	66	1305	1485
236	-	1 3826	5322	gp U48826	Staphylococcus aureus elastin binding protein (ebpS) gene, complete cds	96	648	1497
248	-	2 -	1 403	emblx62288 SAPE	S.aureus DNA for penicillin-binding protein 2	001	103	402
7 4 8			832	qb 1,25426	Stabhylococcus aureus penicillin-binding protein 2 (pbp2) gene, complete cds	66	465	465
253	7	1 1539	1093	gb U46541	Staphylococcus aureus sarA gene, complete cds	96	447	447
254	- 7	1 150	1835	sp 0520631	Staphylococcus aureus scdA gene, complete cds	*	142	1686
254	-	1 1973	2728	[gb]0570631	Staphylococcus aureus scdA gane, complete cds	66	1 756	756
1 260	-	~ -	1 1900	[0b]M90693[Staphylococcus aureus glycerol ester hydrolasse (11r.) gene. complete cds	66	1213	1699
1 265			942	db	staphylococcus aureus gane for a participant in homogeneous expression of high-level methicillin resistance, complete cds	2	146	942

percent HSP nt OHF ut 1dent length	a expression of 99 213 213	# expression of 98 69 654	101 102 98	59, Genomic, 1087 100 110 , 525	59. Genomic, 1087 100 952 987	on (pcrA) gene, 98 94 168	on (pcrA) gene, 100 712 753	on (pcrA) gene. 99 979 999	on (pcrA) gene, 98 187 213	-anzyme genes, 99 338 456	C (hlgA, hlgB, 99 867 867	C (high, high, 100 975 975	and C (high, high. 99 79) 795	and other ORFs 99 1343 1353	98 1314 1314) gene and 74 351 852	nase (ddh) gene, 98 996 996	100 100	98 259 300
patch gene name	Staphylococcus aurous gene for a participant in homogeneous expression of high-level methicillin resistance, complete cds	Staphylococcus aureus gene for a participant in homogeneous expression high-level methicilin resistance, complete cds	dbs D14711 STAM Staphylococcus sureus HSP10 and HSP60 genes	hemB porphobilinogen synthase (Staphylococcus aureus, SA1959, Genomic, 1087 nt)	hemb-porphobilinogen synthase (Staphylococcus aureus, SA1959, nt)	Staphylococcus aureus helicase required for TIA1 replication (pcrA) gene complete cds	Staphylococcus aureus helicase required (or T181 replication (pcrA) genecomplete cds	Staphylococcus aureus helicase required (or TIS) replication complete cds	Samply lococcus nureus helicase required for Tisi replication (perA) gene complete eds	S. aureus SaulAi-restriction-enzyme and SaulAi-modification-enzyme genes complete cds	Staphylococcus sureus gamma-hemolysin components A. B and hglC) genue, complete cds	Staphylococcus aureus gamma-hemolysin components A. B and hglCl genes, complete cds	Staphylococcus aureus gamma-hemolysin components A. B and hglC) genes, complete cds	Staphylococcus aureus atl gene for autolysin, complete cds and	Staphylococcus sureus lyts and lyth genes, complete cds	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORP, complete cds	Staphylococcus sureus D-specific D-2-hydroxyacid dehydrogenase (ddh) gene complete cds	Staphylococcus aureus V8 serine protesse gene	Saureus leuf-P83 gene for F component of leucocidin R
acession	duj[021131 STAS	dbj(021131 STAS	dbj D14711 STAH	gb]f:72488	gb s72488,	др н63176	gb H63176;	gb H63176		gb H32470	4p ro1025.		96 101055	db; D17366 STAA	gb L42945			emb Y00356 SASP	emb X64389 SALE
Stop	476	1765	1018	525	1502	1,00	1034	2026	2202	1661	868	2383	3161	1155	2111	0.87	1003	7, 47	368
Start	999	2418	2		516		282	1028	0661	1536	~	1409	2367	7012	2628	610%	1998		687
ORF I:D	2				7		~	2	-			~		-	-			-	-
Cont ig	265	265	266	282	282	284	2.R.4	284	244	289	101	101	303	305	311	312	323	326	338

S aureus - Coding regions concaining Anown sequences

Contag UNF	ONF	Start	Stop	acession	Takeh gene neme	percent	HSP nt length	ORF nt length
342	7	672	1754	ob t06462	Staphylococcus aureus SA4 Fts2 (fts2) gene, complete cds	C01	1176	1176
344	~	1 517	1248	emb V01281 SANU	S.aureus mAMA for nuclease	86	132	732
349	-	1 457	230	qb H20393	S.aureus banteriophage phi-11 attachment site (attB)	96	172	228
1 353		1016	516	gb HH3994 	Stephylococcus aureus prolipoprotein signal peptidase (lap) gene, complete	100	187	105
153		1582	1046	0 D MB 3 9 9 4	Stephylococcus aureus prolipoprotein signal peptidase (1sp) gens, complete	66	537	168
356	-		674	19505031	Staphylococcus aureus MHC class II analog gene, complete cds	75	671	672
361			903	gb :.19298 	Staphylococcus aures phosphatidylinositol apecific phospholipase C (plc) gene, complete cds	86	747	106
361		1103	1507		Staphylococcus aures phosphatidylinosital-specific phosphalipase C (plc) gene, complete cds	6	. 9	405
(1)			1148	emb x62288 SAPE	S. aureus DWA for penicillin-binding protein 2	66	1146	:146
389	-	1904	1248	emb x62282 SATS	S.aureus target site DMA for IS431 insertion	1 66	349	657
004	-	-	- ×	emi.[x61716 SAHL	emi.[xc1716 SAIL S.aureus hib gene encoding sphingomyelinase	66	3.89	540
004	~	1693	1187	emb X13404 SAHL	emb Xi3404 SAHL Staphylococcus aureus hlb gene for beta-hemolysin	66	178	507
6 0		1810	1049	gb 576213 	asp23-aikaline shock protein 23 (methicillin resistant) (Staphylococcus aureus, 912, Genomic, 1360 nt)	6	163	762
 		~	217	gb ::41499	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes, complete cds	100	216	216
418	- ·	854	639	duj C17366 STAA	Staphylococcus aureus atl gene for autolysin, complete cds and other ORFs	100	188	216
ξ 	~	1262	2509	gb L43098 	Transposon In5404 and insertion sequences IS1181 and IS1182 (from Staphylococcus aureus) DNA	66	1248	1248
77	_	~ -	125	gb K02985	S.aureus (strain RN450) transposon Tn554 insertion site	96	200	334
427	-	986	70	dbj 028879 STAP	db.][C28879 STAP Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	100	432	432
427	~	1829	1122	db) C28879 STAP	Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	100	151	708
435		2	80 B	db) E86240 D862	Stabily lococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes, complete cus	100	556	807
53	~	A32	666	div.	Stabbylococcus aureus yene for unkown function and dit operon ditA. ditB.	100	462	691
436		1341	685	emb x17688 SAFE	emb x17688 SAFE S aureus factor essential for expression of methicillin resistance (femA) gene, complete cds, and trpA gene, 3' end	L 6	559	. C.

3. auteus - Coding regions containing known sequences

Contig ID	DH.F.	Start (nt)	Stop (nt)	acession ,	match gene name	percent ident	NSP of length	ORF nt Length	
9(+		2403	1657	cmb N17688 SAFE	Staureus factor essential for expression of methicillin resistance (femA) gene, complete cds, and trpA gene, 3' end	100	294	646	
3	-	347	1300	cmb x72700 SAPV S.aureus genes	S. aureus genes for S and F components of Panton-Valentine leucocidins	*	204	926	• •
₹		1906	2178		Staphylococrus aureus gamma-hemolysin components A. B and C (high. high. hgl.)	90	187	273	
4.		167	1078	96 019770	Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) gene, complete	100	51.	912	
+		1176	1784		Stabhylococcus aureus pyrrolidone carboxyl peptidase (pcp) gene, complete	96	597	509	•
154		7309	1 4319	emb 218852 SACF	S.aureus gene for clumping factor	25	653	2991	
672	-	7896	5479	gb[L25288	Stabhylococcus arrays gyrase-like protein siphs and beta subunit (griA and griB) genes, complete cds	56	2418	2418	
472	·	B120	6792	gb L25288	Stabhylococcus aureus gytase-like protein siphs and beta subunit (griA and griB) genes, complete cds	66	1328	1329	
475	7	995	688	emb X52543 SAAG	S. aureus agrk, agrk and hid genes	001	92	324	•
1 0C		1 1922	1560	em 3 X64172 SARP	Is wareus rplL, orf202, rpo8(rif) and ipoc genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 beta chains	001	250	363	· •
189	5	1244	1534	emb x64172 SARP	S aureus rpli, orf202, rpoB(riff and rpnC genes for ribosomal protein 17/Li2, hypothetical protein ORF202, DNA directed RNA polymerase beta 6 heta: chains	100	224	291	
4.8.7		1368	1188	gb n83994	Staphylococcus aureus prolipoprotein signal peptidasa (lsp) gene, complete cds	86	12	707	
489		1 2737	1370	gb U21221	Staphylococcus aureus hyaluronate lyase (hysk) gene, complete cds	66	1368	1368	
503	7	1135	653	gb M83994{	Staphylococcus aureus prolipoprotein aignal peptidase (lap) gene, complete	001	80t	T #	
115	12	1613	2242	95 514017	istaphylococcus aurens methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	2	123	070	• •
511	4	3122	2700	qb S76213	ssp2:salkaline shock protein 23 (methicillin resistant) Staphylococcus aureus, 912, Gunomic, 1360 nt]	96	423	, c.	•
520	- 2	158	1297	emb x72014 SAFI	S. aureus fib gene for librinogen-binding protein	66	240	540	
520	1	1436	1801	emt/ x72013 SAFI	emb/x72013 SAFI (S aureus fib gene for librinogen-binding protein	66	122	106	
526	-	1 2150	1 1092	db D17366 STAA	Staphylococcus auraus atl gene for autolysin, complete cds and other ORFs	66	641	1059	
1				*************	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				,

percent MSP of OKF of adent length	99 260 906	99 866 1773	432	91 1185 1184	000	100 75 795	99 905 1313	196	96 316 99	1 100 189 192	24	77.6 & 15	96 122 201	99 306 315	98 2588 2814	
match yene name	Staphylococcus aureus DNA sequence encoding three ORFs. complete cds; prophage phi:11 sequence homology. 5. flack	Staphylococcus auteus DNA sequence encoding three ORFs. complete cds: prophage phi-11 sequence homology, 5. flank	Staphylococcus aureus chorramete synthase (arot) and nucleoside diphosphate kinase (ndk) genes, complete cds, duhydroaumate synthase (aroB) and geranylgeranyl pyrophosphate synthatase homolog (gerct) genes, partial cds	Staphy]ococcus aureus chorismate synthase (aroc) and nucleoside diphosphate kinase (ndk) genus, complete cds, dohydroaunate synthase (aroB) and geranylgeranyl pyrophosphate synthetase homolog (gurCC) genes, partial cds	Staphylococcus aureus chorismate synthase (arot) and nucleoside diphosphate kinase (ndk) genes, complete cds, dehydroeumate synthase (arob) and innylgetenyl pyrophosphate synthatese homolog (genct) genes, partie) cds	Staphylococcus aureus dehydroquinate synthase (arob) gene, 3, end cds; 3- phosphoshlkimate-1-carboxyvinyltransferase (arob) gene, complete cds; ORF3, complete cds	Staphylococcus aureus dehydroquinate synthase (arch) gene, 3' end cds; 3- phosphoshikimate-1-carboxyvinyltransforase (arch) gene, complete cds; OFF3, complete cds	Staphylococcus aureus dehydrogulaste synthase (arcB) gene, 3' end cds; 3-phosphoshikimate-1-carboxyvinyltransferase (arcA) gene, complete cds; CRF), complete cds	S.aureus (bb270) glnA and glnR genes	S.aureus (bb270) glnA and glnR genes	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F,	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8D, cap8B, cap8E, cap8E, cap8E, cap8H,	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8H,	Staphylococcus aureus hyaluronate lyaso (hysk) gene, complete cds	ems 218852,SACF S.aureus gene for clumping factor	***************************************
natch	gb L19300{ 	95,119300	gb 1979	6781EU 46	96/011979	gb L05004	gb L05004	dp L05004	emb x76490 SAGL	emb X76490 SAGL	95/073374	gb U73374	96 073374	[gb;021221]	emo 218852,SACF	
Stop (nt)	963	2870	434	2395	2801	3484	4792	5380	3.8	527	365	1252	1374	705	4288	1 1 1 1
Start (nt)	86.2	1098		1221	2409	2690	34.82	4790	_	136	52	2175	1574	1019	1475	
ORF 1	~		. -				5	9	-	7		~		7 7		
Contig	528	528	530	530	530	530	010	530	539	539	554	554	554	584	587	11111

Contag	Contag ORF	Start	Stop (nt)	Batch	match gene hand	percent 1dent	HSP nt	ORF nt length	
605		2	745	2980	Staphylococcus and on gene for unkown function and dlt operon dltA, ditB, ditC and dltb genes,complete cds	866	338	744	
609	-	1 1628	918		S. aureus (bb270) ginA and ginR genes	1 001	561	619	
173		1280	642	94(932103	Stabibylococcus arrans led repressor (lack) gene, complete cds and lack repressor (lack), partial cds	66	639	66.0	
626		1 2508	1255	gb H63176	Stabily ococcus arreus helicase required for TiBl replication (pcrA) gene, complete cds	001	225,	1254	
626	~_	3315	2284	gb H63176	Stabily Stabily Stability Stability	66	838	1032	
629		6661	1001	emb, X17688 SAFE	S aureus factor essential for expression of methicillin resistance (fend) gene, complete cds, and trpA gene, 3' end	66	066	666	
629		1407	1195	emb X17688 SAFE	S.aureus factor essential for expression of methicillin resistance (lend) gene, complete cds, and trpA gene. 3' end	86	194	213	
Ŝ	- 7	1 5126	3228	emb[218852 SACF	S. auteus gene for clumping factor	82	687	1899	
632			551	emb 230588 SAST	S.aureus (RN4220) genes for potential ABC transporter and potential membrane spanning protein	66	549	549	-
3		529	1323	emb 230588 SAST	S. aureus (RM4220) genes for potential ABC transporter and potential membrane spanishing protein	66	195	201	
159		6061	1070	95 119300	Staphylocorus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-11 sequence homology. 5' flank	66	478	0 4	•
657	7	1800	1105	95 114017	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	8	456	969	•
662	-	908	456	emb x13404 SAHL	Staphylococcus aureus hib gene for beta-hemolysin	100	369	453	
662	7	230	475	emb x13404 SAHL	Staphylococcus aureus hib gene for beta-hemolysin	100	246	246	•
662	-	97.	1399	enulx13404 SAHL	hylococcus aureus hlb gene	6	653	654	•
6.82	_	956	4.80	gb n63177	S aureus signa factor (plac) gene, complete cds	100	136	617	•
6.85		11182	592	000590116	Staphylococcus aureus type-I signal peptidase SpsA (spsA) gene, and type-I signal peptidase SpsB (spsB) gene. complete cds	86	 3	165	
6.85	~	1716	1153	1000590146	Staphylococcus aureus type-I signal peptidase SpsA (apsA) gene, and type-I signal peptidase SpsB (spsB) gene, complete cds	96	564	₹95	
۲69	-		527	19511631771	S. aureus signa (actor (plac) gene, complete cds	100	195	\$25	• —
6.69	~	485	784	gb #63177	S.aureus sigma (actor (plac) gene, complete cds	.6	780	300	

200
250
E OUX
CONCAINING
Tec sons
7
000
;
20.5
-

	:					Derrent	HSP of	ORU DE	
Contin	- OBF	Start	Stop Curl	natch acession	ration gene name	ident	length	length	
710		1.5	503	 dbj p86240 p862	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB.	66	217	68.7	
		2.6	205		Staphylococcus aurous norAll99 gene (which mediates active efflux of fluoroquinstones), complete cds	- 6	140	261	
17.		1736	7611	cb; u83951 STAL	Staphylococcus aureus DNA for LukH component, LukF-PV like component, complete cds	ec	\$22	540	
1 752	-	-	636	emb Y00356 SASP	Staphylococcus aureus V8 serine protesse gene	66	618	636	
152	-	1 588	986	emb Y00356 SASP	emb Y00356 SASP Staphylococcus aureus V8 serine protesse gene	66	340	369	
756	-	1 1308	1 709	emb x01645 SATO	emi X01645 SATO Staphylococcus aureus (Wood 46) gene for alpha-toxin	86	567	009	
771	-	1 1582	056	emb 249245 5A42	S. sursus partial sod gene for superoxide dismutase	66	429	6.33	
780	-	11111	557	gb U20503	Staphylococcus aureus MMC class II snalog gane, complete cds	98	850	555	- •
1 784	-	1.33	1 687	95 063529	Staphylococcus aureus novel antigen gene. complete cds	66	568	615	_ •
197	-	1 182	254	[db] [D14711 STAH	db. D14711 STAH Staphylococcus aureus HSP10 and HSP60 genes	86	363	363	
R6T		532	302	emb x58434 SAPD	S. aureus pdhb. pdhC and pdhb genes for pyruvate decarboxylase. dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	9.8	961	231	
923			1 467	gb S77055	reck cluster: dnakarreplisome assembly proteingyrB=DNA gyrsse beta subunit (Staphylococcus aureus, YB886. Genomic, 5 genes, 3573 ntl	66	156	465	
		348	175	gb L25288	Staphylococcus aureus gyrase-like protein alpha and bota subunit (grl) and grib) gones, complete cds	66	174	174	
* * * * * * * * * * * * * * * * * * *		94.	318	gb L25288	Staphylococcus aureus gyrase-like protein alpha and beta subunit (grlA and grlB) genes, complete cds	001	151	159	
H 6 6		792	1 397	emb X64172 SARP	S.auraus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein OFF202, DNA-directed RNA polymerase beta L beta' chains	56	395	396	
1 883	-	-	2.85	MATS 6110601 (db)	S. sureus nork gene	66	161	285	- •
4 4 4	-	909	334	emb x52543 SAAG	S. aureus agrA, agrB and hld genes	96	265	273	•
	- 2	1 716	525	emb \\S2543 SAAG S.aureus agrA,	S.aureus agrA, agrB and hid genes	100	195	195	
912	2 -	517	6.81	emb 230588 SAST	S. aureus (RN4/20) genes for potential ABC transporter and potential membrane spanning protein	66	163	165	
216	-	1 2	1 265	qb H64724	S aureus tagatose 6-phosphate isomerase gene. complete cds	66	247	264	•
616		238	396	gb H64724	S. aureus tagatose 6-phosphate isomerase gane, complete cds	95	147	159	
916	-	2426	1215	emt x93205 SAPT	emt x93205 SAPT S. aureus ptsH and ptsI genes	8	1212	1212	

S. auteus - Codeer regions contaming known sequences

Contra ORF	10 10	htart (nc)	Stop	a atch	metch gene name	percent	USP nt length	ORF nt length
1 967	-		=======================================	NAT2 , 9110901, (cib.)	S. aureus nork gene	1 66	\$61	411
166	-	672	1337	emb X52543;SAAG	S. sursets agrA, agrB and hld genes	- 66	336	336
0001		1117	8 4 5	1210017 96	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	e	190	273
1001		498	265	dbj D86240 D862	Stabbylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes, complete cds	6	234	234
0101	-	-	285	[gb]U21221]	Staphylococcus aureus hyaluronate lyase (hysk) gens, complete cds	66	224	285
1046	-	959	330	emb X7270C(SAPV S. aureus genes	S. aureus genes for S and F components of Panton-Valentine laurecidins	8.5	205	327
1060	. 	, 680 , 680	286	[emb X58434 SAPD	S. aureus pubb. pubc and pubb genes for pyruvate decarboxylase, dibydrolipoamide aretyltransferase and dibydrolipoamide debydrogenase	66	180	195
1073	-	1 :176	589	qb K02985	S. sureus (strain RM450) transposon Th554 insertion site	001	131	589
1 1079			230	du_j D86240 D862 	stabby lococcus aureus give for unkown function and dit operon ditA, ditB, ditC and ditD genes, complete cds	66	228	228
1079	7	218	787	db; D86240 D862	Stabhylococus arreus gene for unkown function and dlt operon ditA, ditB, ditC and dltD genes,complete cds	100	267	267
1 1073		460	645	dh3 ph6240 ph62	Stathylocorcus arrens gone for unknum function and dit operon ditA, ditB,	001	186	186
7601		289	*	emb X58434 SAPD	S.aureus pdhB. pdhC and pdhD genes for pyruvate decarboxylese, dihydrolipoamide acetyltransferese and dihydrolipoamide delydrogenese	6	124	144
1143	-	-	25	[q12]M63177]	S.auraus sigma factor (plac) gena, completa eds	66	243	34)
1 1157	-	~ -	901	amb 248003 SADN	S.aureus gene for DNA polymerase III	7.6	127	\$61
11189	-	1 7 20	1 361	10012140311	norA-NorA (ISP194) Staphylococcus aureus, NCTC 8325, Insertion, 1820 nt]	66	090	360
1190		7	283	90 821854	S. aureus agr gane encoding an accessory gene regulator protein, complete	100	787	787
0611	~	7211	88.	cmh x52543 SAAG	S. aureus agrA, agrB and hld genes	100	240	240
1225	-	~	[91	ent: X17679 SACO	Staphylococcus aureus cos gene for coagulase	66	124	162
1243	-	~	529	db; D86240 D862	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes,complete cds	66	495	528
1 1244	-	-	7 012	gb S74031	norA=HorA (1SP791) Staphylococcus auraus, NCTC 8325, Insortion, 1820 nt]	100	017	710
1000	-	\$	472	emb x76490:5AGL	S aureus (t)b276) glnA and glnR genes	66	299	+ 32

5. Aureus - Joding regions containing knows sequences

:	:	:			• -		; ;		- :	- :	:	· ·	· ·			· ·		:	
ORF nt length	90	174	672	321	192	0 8 1	345	405	707	402	153	349	180	396	291	369	786	237	17.1
HSP nt length	772	139	672	321	192	180	345	403	207	131	153	389	358	272	250	347	8.2	178	120
percent	*	86	86	66	86	001	- 66	007	66	- 66	6.6	66	100	r.e	86	•	187	88	·•
match gene name	S. Aureus rplu, orf202, rpoBirif) and rpoC genes for ribosomal protein L7/L12, hypothetics; protein ORF202, DNA-directed RNA polymerase beta L beta thains	Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	Staphylococcus sureus gene for unkown function and dit operon dita, ditB, ditC and ditD genes, complete cds	Stabhylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8F, cap8E,	Staphylococcus aureus alpha-hemolysin gene, 3' end	[S. aureus factor essential for expression of methicillin resistance (fema) gene. complete cds. and trpA gene, 1' end	Staphylococcus aureus novel antigen gene, complete cds	Staphylococcus aureus gene for unkown function and dit operon dita, dits, dits,	S. sursets signs (actor (plac) gene, complete cds	Staphylococcus surous DNA (ragment with class II promoter activity	S acreus (accor exsential for expression of methicillin resistance (fema) gene, complete cds, and trpA gene, J' end	Stabhylococcus aureus penicillin-binding protein 2 (pbp2) gene, complete cds	Stabhylococcus aureus genes for OKF37; HSP20; HSP20; HSP40, OKF35, complete	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o-succinylbenzoic acid synthetase (menc) genes, complete cds	Staphylococcus aureus chorismate synthase (aroc) and nucleoside diphosphate kinase (ndk) genos, complete cds, dehydroauinate synthase (aroB) and geranylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partial cds	Staphylococcus aureus coa gene for coagulase	Staphylococus aureus methiciliin-resistant ATCC 33952 clone RANV30 165-235 rRNA spacer region	Staphylococcus aureus genes for ORF37; HSP20. HSP70, HSP40. ORF35, complete	Staphylococcus aureus genes for OMF37; HSP20; HSP30; HSP40, OMF33, complete
mat ch acession	emb x64172 SARP	db) [D28879 STAP	db.j D#6240 D#62	95 073374	9р[н90536]	emb X17684 SAFE	68509n q5	db. D86240 D862	ob H63177	195 066641	outh X17688 SAFE	gb 1,25426	db; D30690 STAN		96 331979	emb X17679 SACO	190/1111/19	dhj b30690 STAN	db3 b3 0 69 0 STAN
Stop	326	175	675	324	192	181	346	402	208	402	951	00+	966	9.66	328	464	1784	238	281
Start (FL)	œ.	2	1346	***	-	7	~		=	-	E DC	7	778		813	832	2170	474	451
Contig ORF 10 10		-		-	-		-		-	-	=					-			~
ontig	5101	1519	1663	1971	1857	1921	1957	1988	2100	2199	1837	2891	2950	2971	2978	2985	3006	3008	3006

S aureus - Coding regions containing known sequences

Contrig	ORF	Start (nt)	Stop (nt)	match acession	march gene neme	percent	HSP Dengel	ORF nt length
1 3011	-	1 793	398	emb x62992 SAFN	S aureus inbB gene for libronectin binding protein B	6	12	396
1019		7	235	1956.034791	S.aureus enzyme liliac (lace), enzyme liliac (lace), and phospho-beta- galactosidase (lacG) genes, complete cds	9.7	234	234
1 3023	-	18 -	233	[gb] U06451	Staphylococcus aureus proline parmesse honolog (putp) gene, complete cds	6	100	153
1 3029		06	287		Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcks) gene.	100	135	866.
6000		8	791	661131	Staphylococus aureus phosphoenolpyruvate carboxykinase (pcka) gene, complete cds	- F e	\$1.1	147
3639		07	327	gb[us1133	Staphylococus aureus phosphoenolpyruvate carboxykinase (pcka) gene. complete cds	7.	183	258
3056			215	emb X64172 SARP	S aureus rplL, orf202, rpoBirifi and rpoc genes for ribosomal protein L7/LL2, hypothetical protein ORF202, DNA-directed NNA polymerase bets 6 beta' chains	6	213	213
8500			7 9 2	db] D30690 STAN	Staphylococcus sureus genes (or ORF17, HSP20, HSP10, HSP40, ORF15, complete	86	234	261
1 3073	-	77	784	dp 006451	Staphylococcus aureus proline permesse homolog (putP) gene, complete cds	66	229	25A
3074		7	397	emb X54172 SARP	S. nureus rplL, orf202, rpoBfriff and rpoC gones for ribosomal protein 17/L12, hypothetical protein ORF202, D:A-directed RtA polymerase beta L beta' chains	*	057	306
3088	-	-	239	dbj D86727 D867	Staphylococcus aureus DNA for DWA polymerase III, complete cds	56	215	.62
3037	-	- 55	744	cmb 218003 5AEE	S.auinus gene for DHA polymerase 1:1	- 6	160	102
3102		1 307	155	100 103479	S.aureus enzyme III.lac (lacF), enzyme II.lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	6	142	151
1312		268	3.08	emb x58434 SAPD	S.aureus pdhB. pdhC and pdhD genes for pyruvate decarboxylase, dihydroliposmide scetyltransferase and dihydroliposmide dehydrogenase	100	60 80	17:
1 3125		1 463	((2)	cmb x89233 SARP	S. aurans DNA for rpoC gene	86	192	23:
1 3133	-	2	271	emb 218852 SACF	S. auraus gene for clumping factor	96	154	174
3160	_	1 420	211	db3 010489 STAC	db] 010489 STAC Staphylococcus aureus genes for CMA gyrase A and B, complete cds	68	197	210
3176			8.7.	emb > 58434 SAPO	S aureus pdhB, pdhC and pdhB genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	96	16	376
3192		430	211	qb 303479	S. auraus entyme III-lac (lacF), entyme II-lac (lacE), and phospho beta- qualactosidase (lacG) genes, complete cds	80	27	210
1 3210	-		91	gb 176714	Staphylococcus aureus peptidoglycan hydrolase gene, complete cds	96	141	:

5 aureus - Coding regions containing known sequences

Cont ig	10	Start (nt)	Stop (nt)	netch acession	שמכני קפחפ חמיני	percent	less of length	Okf nt length
3232		2106	1 1282	1961	Stabbylococcus aureus methicillin-resistance protein (mecR) gene and unknown OHF, complete cds	7.1	257	872
3538	<u> </u>	-	134	cmh x89233 SARP	S aureus DNA for thoC gene	5	9.1	161
3543	<u>-</u>	1 392	634	gb Lt1530	Staphylococcus aureus trensfer N/A sequence with two rRNAs	66	102	243
3555	-	637	320	emb 218852 5ACF	S. aureus gene for clumping factor	66	307	910
3559	_	_	182	emt X17679 SAGO	Staphylococcus aureus coa gene for coagulase	100	16.	180
1559	2	35	5.0		Staphylococcus annum cos gene for cosquisse	. es	174	2:9
1563		278	·		Stably lococcus aureus prolig: Protein diacylglyceryl transferase (1gt) gene, complete cds	001	96	=======================================
1563		527	1 363	676567 46	Stabhylococus aureus prolipoprotein diac, 131yceryl transferase (1gt) gene, complete cds	6	152	165
3566	-		422	emb X16457 SAST	Staphylococcus aureus gene for staphylocosquiase	86	175	420
3588		~	262	2p L43098	Transposon In9404 and insertion sequences [S]181 and [S]182 (from Staby)ococcus aureus) DNA	66	253	261
16.57	-		051	[cb]0034791	S aurous cutyme (Iff-lac (lacF), cutyme (I-jac (lacF), and phospibo-beta-galactosidase (lacG) genes, complete cds	66	145	Yet
3600	-	758	381	emb 218852 SACF	emb 238852 SACF 5.aureus gene for clumping factor	72	346	178
3602	<u>-</u>	788	1 396	emb 218852 SACF	emb 218852 SACF S.aureus gene for clumping factor	86	319	151
7656	<u>-</u>	(101	#23 —	emb 218852 SACF	emb 218852 SACF 5.aureus gene for clumping factor	ec .	403	929
36.82		^	536	0.ab X64172 SARP	S. aureus rplL. orf202, rpoB(rif) and rpoC genes (or ribusomal protein L7/Ll2, hypothetical protein ORP202, DNA-directed RNA polymerase beta 6 beta' chains	00:	231	234
3682	~	224	\$ \$	emb x64172 SARP	S. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DMA-directed RNA polymerase bata & Leta' chains	100	112	152
1691	_	1.58	423	amb x62992 SAFN	S. aureus finbs gone for fibronactin binding protein B	100	229	336
201	-	1 593	154	gh 111530	Staphylococcus sureus transfer RHA sequence with two rRAAs	- 6	æ	2.40
37.25	-	924	463	amb;218852 SACF	S. aureus gane for clumping factor	7.1	367	462
3761		608	05	ab L1401.	Staphylococcus aureus methicillin-resistance protein (mecR) gone and unknown ORF, complete cds	S	ויו	360
3767			402	emt x64172 SARP	S.aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RUA polymerase beta 6 beta' chains	8	187	402
					TABLE 1			

aurous - Cedany regions containing known sequences

Contag ORF	OKF 110	Start [nc]	Stop (nt)	match	match gene name	per cent ident	HSF nt length	ORF ot Length
27.1		~	7 6	emb x64172 SARP	S.aureus rpli, of 202, roughtift and rpoc genss for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RMA polymerass beta & beta, chains	100	227	285
3786	-	1 456	1 229	dbj p10489 STAG	Staphylococcus aureus genes for DNA gyrase A and B. complete cds	1 001	204	228
1786	~	512	366	db; D10489 STAG	db] D10489 STAG Staphylococcus aureum genes for DNA gyrase A and B. complete cds	36	171	171
3798	-		251	[emb x17679]SACO	emb X17679 SACO Staphylococcus aureus coa gene for coagulase	66	249 ,	249
1 1813	-	193	1 398	[9b[304151]	S. aureus fibronectin-binding protein (InbA) mANA, complete cds	86	396	366
3819	-	184	405	emb X68425 SA23	S.aureus gene for 235 rRMA	66	191	219
3844	-	516	897	gb U48826	Staphylococcus aureus elastin binding protein (ebpS) gene, complete cds	70	204	\$ 65
3845		-	381	emb x58434 SAPD	S. aureus publs, pothe and publo genes for syruvate decarboxylase, dibydroliposmide acetyltransferase and dibydroliposmide dobydrogenase	*	35.6	
3856	- 	798	000	ub 1.14017 	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	76	192	366
1 3859	-	1049	1 573	emb[218852 SACF	Saureus gene for clumping factor	88	347	LL*
18.71	: - : -	059	(2r	dp H76734	Staphylococcus aureus peptidoglycan hydrolase gene, complete cus	001 1	299)24
3696	-	7	253	(db) D10489 STAG	Staphylococcus aureus genes for DMA gyrase A and B. complete cds	1001	217	757
7416	; 	572	288		S. aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	6	209	285
1878	<u>-</u>	-	23.7	einls X58434 SAPD	is aureus publa, public and public genes for pyruvate docarboxylase, dilbydrollpoamide acceptionses and uthydrollpoamide debydrogenese	3	\$5	â
3888	-		1.73	eml1 X16457 SAST	Staphylococcus aureus gene for staphylocoagulase	86	1.7.1	171
1 3693	-		183	emb x89233 SARP	S.aureus DNA for rpoC gene	001	170	18)
3493	~	181	755	emb[X89233 SARF	S. aureus DAA for rpoC gene	86	66	177
660			485	amb X64172 SARP	Is aureus rplL, orf202, rpoBirit! and rpoc genes for ribasomal protein L7/U12, hypothetical protein ORF202, DNA-directed RNA polymerase beta & leta' chains	6	\$	•
1 3835	_	H 16	420	1911-00-1491	S. aureus (ibronectin-binding protein (InbA) mRNA, complete cds	66	411	, ti
3905		æ	239	gb L05004	Staphylococcus aurous dehydroquinate synthase (arob) gene, 3' end cds; 3- phosphoshikimate-1-carboxyvinyltransferase (aroA) gene, complete cds; ORF1, complete cds	001	651	192
1905	~	98.	400	95/1.05004	Staphylococcus aureus dehydroquinate synthase (arob) gene, 3' end cds; 3- phosphoshikimate-1-carboxyvinyltransferase (aroA) yene, complete cds; ORF), complete cds	6	80	213

S. aureus - Coding regions containing known sequences

Contig ORF	<u> </u>	Start	Stop	acessien	match gene name	percent ident	HSP nt length	ORF nt length	
3910	: 		359	emb X58434 SAPD	Is acress pdhB, pdhC and pdhB genes for pyruvate decarboxylase. dihydrollposmide acetyltransferase and dihydrollposmide delydrogenase	66	278	357	•
3915			330	96 14017	Stanyly lococcus aureus methicillin-resistance protein (macR) gene and unknown ORF, complete cds	25	175	000	•
1 3964		169	7	emb[248003 SADN	emb[24800] SAEN S. aureus gane for DNA polymerasa 111	1000	295	345	•
4007	-	661	060	emb x16457 SAST	emb!x16457 SAST Staphylococcus aureus gene for staphylocoagulase	86	163	192	: -
4036		_	176	dbj 010489 STAG	dbj U16489 STAG Staphylococcus aureus genes for DNA gyrase A and B. complete cds	66	339	369	• —
4046		1 692	£ .	emb 218852 5ACF	S.aureus gene for clumping factor	64	221	345	
0901	_	-	375	emb 218852 SACF	S. auraus gane for clumping factor	96	271	375	• -
19061		1 860	5	emb 248003 SADN	emb 248003 SACN S. aureus gene for DNA polymerase 111	66	627	674	• -
4062	- 	909	304	gb L14017	Stably/coccus arress methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	75	861	303	•
404		88	4 02		Stabby ococcus aureus methicillin-resistant ATC 33952 clone RMN42 165-235 rMM spacer region	35	127	\$46	•
4 C		~	100	qb 1.43098	Transposon Told04 and nerrition sequences IS1181 and IS1182 (from Staphylococrus aireus) DiA	66	227	300	•
4093		~	۲۲۲	cmb X58434 SAPD	S.aureus pdhb. pdhC and holb genes for pyruvate decarboxylase. dibydrolipoamide acetyltransferase and dibydrolipoamide debydrogenase	66	276	276	·
1 4097	-	-	402	emb 218852 SACF	S.aureus gene for clumping factor	74	101	407	·
9		7	4 02	95,105004[Staphylococcus aureus delydroquinate synthase (aroh) gene, 3' end cds; 3- phiosphoshikimate-1-carboxyvinyltransferase (aroh) gene, complete cds; ORF), complete cds	e.c	157	3.81	•
41.35		340	107	gb U7.174	Strinbylococcus aureus type B capsule genes, cap8A, cap8E,	001		162	
4149	-	1 35	247	[151]004151]	S.aureus fibronectin-binding protein (InbA) mANA, complete cds	1 66	200	213	• —
4151	<u>-</u>	629	366	45 114017	Staphylococcus aureus methicillin-resistance protein (mecR) gene and urknown ORF, complete cds	60	150	264	•
+ 15 4		154	986	emb X64172 SARP	S.auraus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DHA-directed RMA polymerase beta is beta chains	66	297	155	•
4179	-	-	294	emb x64172 5ARP	S.aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202. DNA-directed RNA polymerase beta is beta. Chains	60	240	294	
1 1 1 1					***************************************				٠

sa manbas
known
Containing
regions
- Seding
2001.10
. 5

Contig ONF		Siart (nt)	Stop (ni.)	natch	match yene name	percent	HSP of	OPF nt Length
1203 1	-	_	25.5	emt (89233 SARP	S. aureus DNA for took gene	66	239	255
4206 1	-	; — ·	303	emb 218852 SACF	S.aureus gene for clumping (actor	100	236	101
4206	-	195	344	erb 218852 SACF	S.avreus gene for clumping factor	- 66	6.5	150
4208		801	314	emb() 58434 SAPD	S.aureus pdhB. pdhC and child genes for pyruvate decarboxylase, dihydrollposmide acetyltransferase and dihydrollposmide dehydrogenase	6	9,	207
4216	9	959	330	emb X58434 SAPD	S. surees pdhB. pdhC and pdhD yenes for pyruvate decarboxylase. dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	5	126	327
4226	-	1 165	298	[gb[ti1530]	Staphylococcus aureus transfer RNA sequence with two rRNAs	97	132	297
4260		216		45 011784	Stanbylococcus sureus methicillin-resistant ATCC 33852 clone RRNVEO 165-235 rRNA specer region	69		168
4272		355	179	[emt.]248003 SADN	S.aureus gene for DNA polymerase III	100	164	121
4276		-	177	emin X16457 SAST	Staphylococcus aureus gene for staphylocosquisse	1 66 1	150	174
77.20			270	G#1 X64172 SARP	S.aureus (plt., orf202, rpoB(r)f) and rpoC genes for ribosomal procesin L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 beta: chains	66	592	270
£ 382		169	۲۲ ر	emb X64172 SARP	S.aureus rpll., orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta i beta chains	65	282	315
1627		379	191	emb X64172 SARP	S. sureus rplL. orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta is beta chains	66	183	189
4295	-		329	eml. X16457 SAST	Staphylococcus aureus gene for staphylocosquisse	96	144	121
4313	-	435	280	1961111530	Staphylococcus aureus transfer RNA sequence with two rRNAs	1001	1 76	156
4315			185	62+600 q¢	S aureus enzyme III-lac (lack), enzyme II-lac (lack), and phospho-beta- nalactosidase (lack) genes, complete eds	001	158	E
4315		101	910	gb J03479 	S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	86	1 27	210
1327			294	gb 1.43098	fransposen 115404 and insertion sequences 151181 and 151182 (from Staphylococcus aureus) DRA	B	294	767
1 096		109	617	016200 96	Staphylococcus aureus ATCC 25923 165 rRNA gene, partial sequence	1 001	116	2.85
79 🗘			146	emb X64172 SARP	S aureus rplL, orf202, rpoBirif) and rpoc genes for ribosomal protein 1.77L12, hypothetical protein ORF202, DMA-directed RNA polymerase beta 6 beta chains	5	0 7 1	-
43.AR	-	167	310	emb x62992 SAFN	S Aureus inbB gene for libronectin binding protein B	ا در ا	- 611	•

50 (111111
A CALLES
COLUMN TO SECOND
20000
F 01. 70.
2

Cont;g	110	Start	Stop	match acession	Tatch gene name	percent ident	NSP nt length	ORF nt length
707		7	G .	emb x62992 SAFN	S. aureus fnbB gene for fibronectin binding protein 8	66	243	312
4421	-	36	187	dbj D12572 STA2	Staphylococcus aureus rrnA gene for 215 ribosomal RNA	100	112	246
4426	-	2	293	emb 218852 SACF	S.aureus gene for clumping factor	- SB -	185	162
428		493	2	emb x64172 SARP	Is aureus rplL. or (202. rpuB(rif.) and rpoC genes for ribosome) protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase bets a beta cheins	100	139	246
1462			271	emb x64172 SARP	S. sureus rplb. orf202, rpoBfrifl and rpoC genes for ribusomel protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta i beta' chains	66	270	270
4466	-	-	1 240	emb Z:8852 SACF	S aureus gene for clumping factor	66	233	2.10
4469		-	312		S.aurens enzyme III-lec (lacf), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	66	265	313
4485			763	gb L43098	Transposon Th3404 and insertion sequences IS1181 and IS1182 (from Staphylococcus aureus) DNA	86	259	797
4492		: :	400	gb[HB6227	Staphylococcus aureus DNA gyrase B subunit (gyrB) RecF homologue (recF) and DNA gyrase A subunit (gyrA) gene, complete cds	\$ \$	70.1	751
4197	-	515	269	emb	S. Jureus guna for clumping factor	66	213	267
4529		~	172	eab x64172 SARP	S aureus rpli, orf202, rpoBirit! and rpoC genes for ribosomal protein L7/L12. hypothetica: protein ORF202, DNA-directed RNA polymerase beta 4 beta' chains	001	151	171
4547	-	-	1 300	enb x62992 SAFN	S. aureus inbB gene for fibronectin binding protein B	001	157	300
4554	-	310	160	emb 218852 SACF	S. aureus gene for clumping factor	70	126	159
4565	-	6	1 227	en.b 218852 SACF	S auraus gene for clumping factor	8	213	219
4569	-	62	222	emb 218852 SACF	S aureus gene for clumping factor	86	127	144
4608	<u>-</u> -	22	216	emb x58434 SAPD	[5] our easy polity, and polity genes for pyruvate decarboxylase, dihydrollipoamide aretyltransferase and dlhydrollipoamide dehydrogenase.	93	168	195
191	-	797	234	emb 218852 SACF	S aureus gene for clumping factor	98	169	231
4623	-	105	1 302	[gb J04151]	S auraus fibronectin-binding protein (fubA) mRNA, complete cds	66	152	198
4632		18	206	qb,J03479	S.aureus eniyme [II-lec (lacf), enzyme [I-lac (lacf), and phospho-beta- qalectosidase (lacG) genes, complete cds	86	183	189
9097	-	-	1 222	emb 218852 SACF	S aureus gane for clumping factor	80	100	222
16.87					AND	x	156	165

S. bureus - Coding regions containing known sequences match match game name	_
S. aureus - Coding regions containing known sequences match acession ()	I CINACIATORESCON RECONSTRUCTION OF CONTROL CO
· · ·	_
Scop (nt) 158	_
Contig (ORF Stare Scop 1D ID (nt) (nt) 6895 1 113 158 4703 1 15	
Contig U4F St 1D I1D In In In In In In In I	_
Contig 1D 1D 1695	

S. aurmis - Putative coding regions of novel proteins similar to known proteins

Contig	10 d T	Start (nt)	Stop (nt)	match	mayor gene name	Ein	1 rdent	length (nt)
20	9	5089	4679	191(511839	OMF1 (Staphylococcus bacterlophage phi 11)	100	100	111
149	-	2032	1577	pir [849703]8497	int gene activator RinA - tacteriophage phi 11	100	1001	456
6 7 1	5	2109	1912	191,166161	Bacteriophage phi-11 int gene activator (Staphylococcus accerlophage phi	100	100	198
149	2	558	607	191;166159	integrase (int) (Staphylacoccus bacterlophage phi 11)	1001	100	150
398	-	1 1372	107	91 166159	integrase (int) [Staphylococcus bacterlophage phi :1]	001	66	999
398	7	7.83	1001	01 455128	exclaionase (xis) (Staphylococcus bacterlophage pht 13]	100	100	219
503	-	1914	1744	91 1204912	H. influentse predicted coding region H10660 (Heemophilus influentse)	100	1,1	101
849	-	~ _	797	191 1373002	polyprotain (Bean common momaic virus)	100	97	198
•		1 277	077	41 143359	process synthesis institution factor 2 (infB) [Bacillus subtilis] g1[49319 ip2 gene product (Bacillus subtilis)	100	8.2	138
2860	-	12	308	01(862933	protein kinsse C inhibitor-1 (Nomo sapiene)	100	2	288
2800	-	428	216	[91]1354211	PET112-11ke protein (Bacillus subtilis)	100	100	213
4168	2	152	398	91 1354211	PET112-11ke protein (Macillus subtilist	100	100	174
166	- 1	2	1 247	gi 426473	nusG gene product (Staphylococcus carnosus)	9.6	95	746
1 207	-	1 1272	1463	91 460259	enolase (Bacillus subtilis)	97	90	192
	-	292	H50	191 581638	1.11 protein (Staphylacov cur. cornound	7.6	5	959
366	-	36.	215		Bacteriophage phi-il int gene activator (Staphylococcus acteriophage phi 11	16	95	771
089	-	718	936	91 426473	nusG gene product [Staphylococcus carnosus]	66	97	219
HCSA	: <u>-</u>		77.	191 1319950	large subunit of NAMI-dependent glutamate synthese (Plectonesa baryanus)	66	19	141
1 157	-	120	510	91 1022726	[unknown [Staphylococcus hemolyticus]	96	88	198
1 205	3	116470	116147	[91]1165302	[Si0 [Bacillus subtilis]	96	16	324
1 3919	-	#	100	1911971784	Cip-like ATP-dependent protesse binding subunit (Bos taurus)	96	. e	354
600	-	00.6	1.417	gi'1022726	unknown (Staphylococcus haemolyticus)	96	98	7.7
1 4168	=	1 708	355	91,1354211	PET112-11ke protein (Bacillus subtilis).	96	98	354
4207		312	1157	91 (602031	similar to trimethylamine DH [Mycoplasma capricolum] pir S49950 S49950 probable trimethylamine dehydrogenase (EC .5.99.7) - Mycoplasma capricolum (SQC3) (fragment)	6	9	156

S, aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	ORF	Starc (nt)	Stop	match	match gene hame	E .	Licent	length (nt)
4227	~	152	1551	91 871784	(Cip-like ATP-dependent protesse binding subunit (Bos taurus)	96	9.1	190
4416	-	570	286	191 (1022)26	unknown (Staphylococcus haemolyticus)	96	*	285
22	-	858	430	Jgi 511070	UreG (Staphylococcus mylosus)	S		429
~	_	1 4362	4036	191 581787	urease gamma subunic (Staphylococcus xylosus)	\$6	66	32)
62		8794	9116	pir JG0008 JG00	ribosomal protein S7 - Bacillus stearothermophilus	\$6	83,	321
154		9280	7838	91 1354211	PET112-like protein (Bacillus subtilis)	\$6	85	7
186	_	2798	2055	91,1514656	serine O-acatyltransferase (Staphylocuccus xylusus)	3.6	82	744
507	-	907	•	91 142462	ribosoms1 protein S11 (Bacillus subtilis)	3.5	£9.	193
205		\$017	1 (793	91/142459	initiation factor 1 (Bacillus subtilis)	3.6	*	225
502		11365	16601	91 1044974	ribosomal protein LI4 (Bacillus subtilis)	9.5	66	3.15
259	<u>.</u>	7288	999	sp P47995 YSEA_	HYPOTHETICAL PROTEIN IN SECA 5 REGION (ORFI) (FRAGMENT).	9.6	98	645
305		295	1097	91 40186	homologous to E. coll ribosomal protein L27 (Bacillus subtills) i 143592 L27 ribosomal protein (Bacillus subtills) ir C21895 C21895 ribosomal protein L27 - Bacillus subtills p Pu5657 RL27_BACSU 50S RIGOSOMAL FROTEIN L27 (BL34). i e0175 L24 gene prod	\$	50	1000
016	-	678	1523	91 1177684	chorignate mutase (Staphylococcus xylogus)	9.5	92	945
ž	<u>-</u>	~	163	pir C48396 C483	ribosomal protein L34 - Bacillus stearothermophilus	9.6	06	162
4185	~	125	7.7	91 1276841	glutamate synthase (GOCAT) [Porphyra purpurea]	9.8	9.8	153
22	7	1028	123	911511069	UreF [Staphylococcus xylosus]	*		306
2.2	~	5046	3310	ai 410516	urease alpha subunit (Staphylococcus xylosus)	9.6	88	7671
0	-	818	1372	91 666116	[glucose kinase [Staphylococcus xylosus]	ž	.60	8 \$\$
20\$	=	110012	9536	Q1 1044978	ribosomal protein 58 (Bacillus subtilis	34	7.8	477
326	-	1378	2542	91 557492	dihydroxymapthoic acid (DHNA) synthetase (Bacillus subtilis) gi l43186 dihydroxymapthoic acid (DHNA) synthetase (Bacillus ubtilis)	*	8.5	637
-	_	737	955	91/467386	thiophen and furan oxidation (Bacillus subtills)	ĭ	11	219
426		1 2260	1623	gi 1263908	putative (Staphylococcus epidermidis	*	-6	60
534	-	~	355	191/633650	entyme II(mannitol) (Staphylococcus carnosus]	*	8	154
1017	-		229	91 149435	[putarive [Lactococcus lactis]	7	۲,	228
1 3098	-	330	184	9: 413952	ips-28d gene product (Bacillus subtilis	2	80	1.67
					#		111111111	

 aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop (nt)	match	Hatch gene name	E 1 8	1 ident	length (nt)	
3232	-	0.59	316		unknown (Staphylococcus haemolyticus)	76	7	3.5	
42	5 -	2089	1 2259	pir B48395 B483	ribosomal protein L33 - Bacillus stearothermophilus	93	18	171	
101	~	1745	1383	91 155345	argenic efflux pump protein [Plasmid pSX267]	66	2.8	363	_
205	2	12221	111865	ED P14577 RL16_	SOS RIBOSONAL PROTEIN LIS.	9.3	â	363	
259	-	8291	5673	911499335	sech protein (Staphylococcus carnosus)	9.3	95 34	2619	
275	-	1 2226	1111	1911633650	enzyme II (mannitol) Staphylococcus cernosus	93	9	1113	
=	9 -	6207	5773	91 1022726	unknown [Staphylococcus haemolyticus]	6	19	435	
167	-	152	622	191 46912	ribosomal protein [13] (Staphylococcus carnosus)	93		171	
1 607	•	1674	2033	191 1022726	unknown (Staphylococcus haemolyticus	•	83	360	*
1 653	-	1 973	887	191 580890	translation initiation factor 173 (AA 1-172) [Bacillus tearothermophilus]	93	11	989	
1864	-		134	[01]306553	ribosmal protein small subunit [Homo sapiens]	6	6	192	
7862	-	82	300	1911143390	carbamyl phosphate synthetase (Bacillus subtills)	93	98.2	273	
3232	7	1 907	965	gi 1022725	unknown [Staphylococcus hasholyticus]	8	**	312	
1926	2	1 794	129	gi 1022725	unknown Staphylococcus haemolyticus	r o	80 80	174	
91		-	374	91 142781	puterive cytoplesmic protein puterive (Bacillus subtilis) ep p17954 UVEB_BACSU EXCINUCLEASE ABC SUBUNIT B (DINA PROTEIN) FRACHENT)	92	88	572	
11	-	\$165	6124	191 1136430	[KIAA0185 protein [Homo septens]	9.2	9	210	
95	119	26483 27391	188721	91 467401	unknown [Becilius subtilis]	9.2	90	606	- *
69	9	5882	6130	1911530200	[trophoblestin [Ovis sries]	9.5	23	249	
15	-	2568	2038	gi 1022725	unknown (Staphy)ococcus heemolyticus	9.5	80	531	
171	-	1 2760	2362	q1 517475	D-amino acid transaminase (Staphylococcus hasmolyticus)	9.2	98	966	•
205	122	7495	6962	91 49189	secY gene product [Staphylococcus carnosus]	9.2	85	534	
205	6=	110812	110255	gi 1044976	ribosomal protein L5 (Bacillus subtilis)	9.5	82	858	- •
219	-	076	1357	[9, 1303812	(YqeV (Bectilus subtilis)	92	88	154	_ •
7	-	1575	\$081	91 1405474	(cspC protein (Bacillus cereus)	6	982	231	•
669	-	1 20	1961	[gi] 413939	ipe-75d gene product (Bacillus subtilis)	9.5	18	342	•
1343	-	2	091	pir A45434 A454	pir A45414 A454 ribosomal protein L19 - Bacillus stearothermophilus	92	8	159	_ •

known proteins
ç
similar
proteins
novel
ĵ
regions
coding
Putative
1
aureus

Contig	086	Start (nt)	Stop (nt)	match	match gene name	E .	ident	length (nt)
B261	1 1	524	264	gi;407908	Ellacr (Staphylococcus xylosus)	92	90	261
157R	7	917	386	91 1339950	large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	76	86.	133
3585	-	179	1 324	1911/133950	large subunit of NADH-dependent glutemate synthese [Plectoneme boryanum]	9.5	6	321
1640	-	-	402	91 1022726	[unknown [Staphylococcus hasmolyticus]	9.5	6	199
2962		=	178	91 450688	hadw gene of Ecopril gene product (Eschericha coli pir 538437 3adm protein - Escherichia coli pir 509629 509629 hypothetical protein A - Escherichia coli (SUB 40-520)	26	9.	165
977	-	358	182	191 1022725	unknown Staphy]ococcus heemolyticus	9.2	82	177
6249	-	462	232	91 1022726	unknown (Staphylococcus haemolyticus)	9.2	0	231
4626	-		1 224	91 1022725	unknown Staphylococcus haemolyticus	9.5	80	222
~	-	1 1980	4531	61 535349	Codw Becillus subcills	16	*	552
2.8	-	- 2	11126	101 1001 16	hypothetical protein (Synechocyatis ap.)	9.1	7.8	1125
09	-	1354	1071	(91)1226043	orf2 downstream of glucose kinsse (Staphylococcus xylosus)	16	980	348
101	-	1989	1036	(oi 150728	ersenic efflux pump protein (Plesmid p1258)	16	90	954
187	- 2	1 412	1194	01 142559	ATP synthese alpha subunit (Bacillus megaterium)	16	61 1	783
1 205	2	111579	111296	(91)40149	S17 protein (AA 1-87) [Dacillus subtilie]	9.1	63	282
707		1 9 1 8	10262	91 1072418	gicA gene product (Staphylococcus carnosus)	16	£	2079
1 306	- 5	1 3885	2326	01 143012	GMP synthecess (Bacillus subtilis)	9.1	1 78	1560
306	-	5319	3826	91 467399	[IMP dehydrogenese [Bacillus subtilis]	9.1	66	1494
310	-	2194	1 3207	91 1177685	[ccpA gene product [Staphylococcus xylosus]	16		1014
343	-	2974	1 3150	gi 949974	sucrose repressor (Staphylococcus xylosus)	16	1 62	177
480	-	1606	1 3042	91 433991	ATP synthese subunit beta (Bacillus subtilis)	91	82	1637
536		2026	1290	91/143366	ademylosuccinate lyase (PUR-B) (Bacillus subtilis) pir C19126 WZBSDS ademylosuccinate lyase (EC 4.3.2.2) - Bacillus ubtilis	16	6 .	747
\$\$2		• • • •	615	91 297874	fructose-bisphosphare aldolsse Staphylococcus carnosus pir A49943 A49943 fructose-bisphosphare aldolsse (EC 4.1.2.13) - taphylococcus carnosus (strain TH300)	91	62	\$\$0
637	<u>-</u>		1536	[0.[143597	[CTP synthetese [Bacillus subtilis]	9.1	66	1536
859	-	12	1 359	191 385178	unknown (Recillus subtilis)	16	9	339

aureus - Putative coding regions of novel proteins similar to known proteins

Cont ig	ORF 10	Start	Stop (nt)	match acession	match gene name	E .	1dent	length (nt.)
1327	-	91.19	530	91 496558	ortx (Bacillus subtilis)	6	11	761
2515	==	466	275	91 511070	UreG [Staphylococcus xylosus]	 	- 58	192
2594	-	2	202	91 146824	beta-cystathionase Escherichia coli	-	1 27	102
3764	-	847	425	(91)1022725	unknown [Staphylococcus heemolyticus]	16	78	423
4011	-	127	495	191 1022726	unknown (Staphylococcus haemolyticus)		- 61	369
1227	=	-	177	91 296464	ATPase [Lectococcus lactis]	16	99	177
\$			1033	gi 520401	catalese [Haemophiles influentes]	0.6	98	219
3	- e	11/1	4607	191 580899	OppF gene product (Bacillus subtilis)	90	7	89.1
129	-	1 5317	4001	gi 1146206	glutamate delydrogenase (Bacillus subtilis	06	76	1317
164	= ==	16628	[169]]	sp[P05766 RS15_	105 RIBOSOMAL PROTEIN S15 (BS18).	06	7.	306
171	2	2983	1 2819	1911517475	D-amino acid transaminase [Staphylococcus haemolyticus]	06	90	165
205	-	4497	3550	91 142463	NNA polymerase alpha-core-subunit (Bacillus subtilis)	0.6	96	948
205	9	4748	6110	91 1044989	[ribosomal protein SI3 (Bacillus subtilis]	06	1.8	913
205	130	7.65	9099	gi 49189	sect gene product (Staphylococcus cernosus)	0.6	1.9	762
205	=	6645	6472	91 49189	sect gene product (Staphylococcus carnosus)	06	7.8	174
205	12.7	11697	13345	91 746157	Ribosomal Protein 519 (Bacillus subtilis)	06	79	348
205	17	15858	115496	191 1165303	[L] (Bacillus subtilis)	06	166	163
9.60	-	1023	1 5773	Q i 1161380	IcaA [Staphylococcus epidermidis]	06 1	7.8	1251
299		3378	1 3947	191 467440	'phosphoribosylpyrophosphate synthetsse (Bacillus subtills) gi[40218 PRPP synthetsse (AA 1-317) (Bacillus subtills)	06	96	570
320	- 2	1025	1 1717	91 312 643	carbamoyi-phosphate synthase (glutamins-hydrolysing) (Bacillus aldolyticus)	06	7.5	693
330	-	1581	1 1769	1911986963	beta-tubulin Sporidiobolus pararoseus	06	0.6	189
369	- -	1 954	523	pir 534762 5347	L-serine dehydratase beta chain - Cloatridium sp.	06	1,1	432
557	-	-	188	91 1511589	[M. Jannaschii predicted coding region MJ1624 (Methanococcus Jannaschii)	06	•	186
799	~_	667	1200	91 143786	tryptophanyl-tRNA synthetase (EC 6.1.1.2) [Bacillus subtilis] pir/JTG481[YMDS tryptophan-tRNA ligase (EC 6.1.1.2) - Becillus ubtills	06		514
71,7	-	-	1961	gi 143065	hubst (Bacillus stearothermophilus)	06	197	261
365	-				Contract to the second	6	-	195

S. aureus - Putative coding regions of novel professes somblar to botto professes

Cont.19 UHF .10 110	ONF	Start	Stop	match .	match gene name		1 ident	length (nt)
1001		986	565	1911143366	adenylosuccinate lysse (FUR-B) (Bacillus aubtliis) pir[C29326 WZBSDS adenylosuccinate lysse (EC 4.3.2.2) - Becillus ubtillis	06	7.	061
1054	<u>-</u>	678	331	91 1033122	ORF [729 Escherichia coll]	06	. 05	5
1156	-	117	1 707	9111477776	ClpP [Bacillus subtilis]	06	Ce	591
1180	-	1 408	205	91 1377831	unknown (Bacillus subtilis)	- 96	•	204
1253			†	91 40046	phosphoglucose isomerase A (AA 1-449) [Bacillus stearothermophilus] it[S15916[NUBSSA glucose-6-phosphate isomerase (EC 5.3.1.9) A - cillus stearothermophilus	06		~ 9
2951			269	91/144816	formyltetrahydrotolate synthatass (FTHFS) (ttg start codon) (EC .3.4.3) [Morella thermoscetics]	06	9,	267
3140	-	1 327	166	91 1070014		0.6	52	162
4594	-		1 233	91 871784	[Clp-like ATP-dependent protesse binding subunit (Bos teurus)	1 06 1	9,	231
7.8	-	1 1028	1750	191 467327	unknown (Bacillus subtilis)	68	25	177
11.2	-	2	505	[91]153741	ATP-bluding protein [Streptococcus mutans]	60	۲۲	504
E11	-	120	398	91 1303804	YqeQ (Bacillus subtills)	68	۶۲	279
12.	-	3545	13757	1911460257	triose phosphate isomerase [Bacillus subtilis]	60	7	213
164	112	11667	112755	01 39954	1F2 (am 1-741) (Bacillus stearothermophilus)	68	0	1089
205	Ξ	7875	1 7405	101 (216338	ONF for L15 ribosomel protein (Bacillus subtilis)	. B	96	11.4
505	<u>~</u>	116152	115823	91 1165303	L) [Becillus subtilis]	68	0.00	011
270	-	1 2407	1 2207	pir C41902 C419	pir calgo2 C419 arsenate reductase (EC 1) - Staphylococcus xylosus plasmid pSX267	68	ē	102
395	-	1 157	672	191 520574	glutamate racemase (Staphylococcus haemolyticus)	69	08	516
763	-	-	839	191 396259	protesse (Staphylococcus epidermidis)	- 68	۲۲	637
210	<u>-</u>		=	91 40046	phosphoglucose isomerese A (AA 1-449) [Bacillus scenothermophilus] In[515956]NUBSSA glucose-6-phosphate isomerase (EC 5.3.1.9) A - cillus scenothermophilus	£	*	₹
615	-	2124	1210	19111303812	YqeV (Bacillus subtilis)	•	74	516
841	-		341	91 [1165303	(L) (Bacillus subtilis)	- 68	80	324
1111	-	152	2	g1 47146	thermonuclease (Staphylococcus intermedius)	- 68	70	162
1875	-	2	1 256	91 1205108	ATP-dependent protesse binding subunit (Haemophilus influenzee)	89	82	552
2963		-				-	8	157

S. aureus .. Putative coding regions of novel proteins similar to known proteins

Cont. ig ID	ORF	Start (nt)	Stop	match accesion	match gene name	E .	, ident	Jengich (uc)
3020	-	06 1	362	911239988	hypothetica; protein [Bacillus subtilis]	6.00	99	273
3565	-	7	00	91 1256635	dihydroxy-acid dehydratasa [Bacillus subtilis]	- 88	7.5	199
3586	-	105	314	01 580832	ATP synthese subunit gamma (Bacillus subtilis)	68	9.5	210
3629	-	194	199	911009366	Respiratory nitrate reductore (Bacillus subtilis)		90.	396
3688	-	~ -	00+	91 1146206	glutamate dehydrogenase (Bacillus subtilis)	5.5	75 E	399
3699	-	164	1 199		large subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	68	2.5	396
010	-	424	216	191 1009366	Respiratory nitrate reductase (Bacillus subtills)	60	17	213
1177	-	473	100	101/149426	putative (Lactococcus lactis)	68	76	171
4436	-	109	1 302	1022728	unknown (Staphylococcus hasmolyticus)	60	0.6	000
4635	-	1320	162	191 1022725	unknown (Staphylococcus haemolycicus)	- 68	1.0	159
2	- 2	1330	2676	191 520754	putative (Bacillus subtilis)	88	76	1347
7	-	308	# 48 # 48	sp P42321 cATA_	CATALASE (EC 11 1.6	9.9	96	381
3	- 5	6383	1 4722	91 474177	alpha-D-1, 4-glucosidase (Staphylococcus xylosus)	88	08	1668
5.6	917	18018	118617	91 4674:1	recombination protein [Bacillus subtilis]	2	רר	009
0.9	: _	1 376	843	91 666116	glucose kinase (Staphylococcus xylosus)	e: 89	٠,	468
7.0	~ _	1583	1245	91 44095	replication initiator protein (Listeria monocytogenes)	88	3,6	334
82	=	111514	112719	Pir A60663 A606	translation elongation factor Tu - Bacillus subtills	ec ec	79	1206
103	-	4179	1610	1911167181	sering/threoning kinase receptor (Brassica napus)	88	"	213
=	-	1 7732	8232	191 1022726	unknown (Staphylococcus hasmolyticus)	88	72	501
118	- 2	1 308	1 2011	91 1303804	YqeQ (Bacillus subtilis)	BB	1.1	1,704
7	-	657	1136	91 1405446	transketolese Bacillus subtilis	88	7.2	480
148	-	1 5871	6116	191 1118002	dihydropteroate synthase (Staphylococcus haemolyticus)	88	7.8	246
165	:	1428	2231	191 (4005)	phenylalanyl-cRNA synthetass alpha aubunit (Bacillus subtilia) ir[511730 YFDSA phenylalaninstRNA ligass (EC 6.1.).20) alpha ain - Bacillus subtilis	æ	0	40 oc
205	128	115027	114185	191 1165306	L2 (Becilius subtilis)		8.2	843
225	-	1569 898	868	19111303840	YqfS (Bacıilus subtilis)	88	9.2	672
			1 1 1 1 1 1 1)			,,,	1074

	•							
Contin ORF	ORF	Start (nt)	Stop	metch acession	match gene name	eis •	1 ident	Length (nt)
339		2060	1566	91 1118002	dihydropteroate synthase (Staphylococcus haemolyticus)	ec ec	73	495
Ç	-	4325	1 2928	g1 558559	pyrimidine nucleoside phosphorylase (Bacilius subrills)	88	13	1398
532			617	91,143797	yajyi-trna symthetase (Beclilus etemochiemophilus) sp[P1931 59V_BACST VALYL-TRNA SYMTHETASE (EC 6.1.1.9) VALINE-TRNA LIGASE) (VALRS).		7.8	417
\$		2504	2968	91,153049	mainited-specific enzyme-III [Stephylococcus carnous] pir]/Q0088 phosphoricaniferase system enzyme-III [C. 7.1 69], mannited-specific, factor III - Scaphylococcus carnous ap Pira76 Pirka_STACA PIS SYSTEM, HANNITOL-SPECIFIC IIA COMPONENT EIIA-HTD.	60	8,	594
705	7	584	399	191 710018	nitrite reductese (nirB) [Bacillus subtilis	38	70	186
1000	-	1.824	1309	9:(1022726	unknown Staphylococcus haemolyticus	88	9.8	516
1299	-	587	324	91/401786	[pliosphomannomutase (Mycoplasma pirum]	ec,	\$\$	264
1341		170	00+	191139963	ribosomal procein L20 (AA 1-119) (Bacillus stesrothermophilus) ir 505348 R58520 ribosomal protein L20 - Bacillus esrothermophilus	œ •	95	231
1 1386	-	7	214	pir 847154 8471	pir 847154 8471 signal recugnition particle 54K chain homolog Ffh - Bacillus subtilis	ec	71	174
1386	-	183	533	[pii [047154 8471	pir [017154 8471 signal recognition particle 54x chain homolog Ffh - Bacillus subtilis	8	7.3	150
2949	-	1 704	199	[91[535350	Codx Bactilus subtalis	60	٠ در	306
2984	-	s -	169	19:1218277	[O-scotylserine(thiol) lysse [Spinacia oleracea]	80	٥٠	\$ 91
1 3035	-	-	138	91 493083	dihydroxyacetone kinase (Citrobacter freundii)	Œ	63	R.C.
1 3089	-	-	1.52	qi 606055	ORF_1746 (Escherichia coli)	E 60	ec .	150
1 1917		7.18 T	 	91 143378 	pyruvate decarboxylase (E-1) beta subunit (Bacillus subtilis) gi 1377816 pyruvate decarboxylase E-1 beta subunit Bacillus ubtilis)	90 60	7.	# O #
6617	-	6.80	27	91 1405454	aconitase (hacillus subtilis)	80	88	986
4201	-	134	369	91 515938	glucamate synthese (ferradoxin) [Synachocyatia sp. pir 546957 546957 glucamate synthese (ferradoxin) (EC 1.4.7.1) - ynachocyatia sp.	90	*	166
4274			336	91 515938	glucamere synthsse (ferredoxin) (Synachocystis sp.) pir S46957 446957 glucamete synthsse (ferredoxin) (EC 1.4.7.1) - ynechocystis sp.	æ	.	336
430A 1	-	1 794	1 399	dx 1146206	[glutamate dehydrogenase [Bacillus subtilis]	£	17.	961
7	-	6570	0009	191 535350	(Codx (Bacillus subtilis)	6	7.0	1431
22		1829	6482	[01]1064791	[function umknowm (Bacillus subtills]	8.7	99	300

proteins
o known
similar t
. Putative coding regions of novel proceins similar to known proteins
novel
ö
regions
coding
Putative
aureus -
٠,

	1584					•	
		2480	91 142992	glycerol kinase (glpk) (EC 2.7.1.30) [Bacillus subtilis) pir B45848[8458] glycerol kinase (EC 2.7.1.30) - Bacillus subtilis sp[P18157]GLPK_BACSU GLYCEROL KINASE (EC 2.7.1.30) (ATP:GLYCEROL - PHOSPHOTRANSFERASE) (GLYCEROKINASE) (GLYCEROKINASE)	30	77	~ 30
	8813	9100	a1 467433	unknown (Becillus subtilis)	8.7	62	288
: :	4265	2988	91 556886	serine hydroxymethyltransferase (Bacillus subtilis) pir S49363 S49363 serine hydroxymethyltransferase - Becillus ubtilis	8.7	1	1278
:	1 4457	1 4032		Unknown (Bactilus subtilis)	69	99	977
348 - 5	13741	4559		unknown (Bacillus subtills)	69	1 02	819
164 13	112710 13810	13810	91 39954	IF2 (am 1-741) [Bacillus steerothermophilus]		72	1101
177 2	1104	1 2126	91 467385	[unknown (Bacillus subtilis]	68	1 87	1023
199 1	1 1982	1158	91 143527	tron-sulfur protein (Bacillus subtilis)	8.7	1 77	825
199 2	14717	1 2933	pir A27763 A277	pir(A27763 A277 succinate dehydrogenase (EC 1.3.99.1) flavoprotein - Bacillus subtilis	L 8	0.00	1785
205 23	111782	111543	91 1044972	[ribosomal protein 6.29 [Bacillus subtilis]	۲ 9	7.8	240
205 25	113275 12607	12607	91 1165109	(S) (Bacillus subtilis)	78	1.5	699
222 1	1 2033	1 1107	91 1177249	rec233 gene product (Bacillus subtilis)	. ₩	100	927
236 3	1635	1333	91,1146198	[ferredoxin (Bacillus subtilis]	6.	08	303
246 5	2585	1 2292	191,407373	ribosomal protein S18 (Bacillus subtills)	181		294
260 2	4189	3422	91 1161382	IcaC [Staphylococcus epidermidis]	9.7	22	768
320 3	1696	1 2391	gi 312443	carbamoyl-phosphate synthase (glutamine-hydrolysing) [Bacillus aldolyticus]	187	08	969
380 4	1165	1 1383	91 142570	ATP synthase c subunit (Bacillus (irmus)	187	0.00	219
7 - 717	006	1073	91 467386	thiophen and furan oxidation (Bacillus subtlifs)	197	1.1.	174
425 2	1003	1 794	911046166	pilin repressor (Mycoplasma genitalium)	20 -	69	210
148	1 1255	1 722	91 405134	scetate kinase [Bacillus subtilis]	87	75	534
1 080	-	1717	[gi 142559	ATP synthace alpha subunit (Bacillus megaterium)	87	66	71;
481 1	~ -	1 352	sp Q06797 kL1_B	\$2 Q06797 KL1_B 505 RIBOSOHAL PROTFIN LI (BL1).	P P P	72	151
677 2	359	955	pi 460911	[fructose-bisphosphate aldolase (Bacillus subtilis)	87	1 84	597
617 779	1 934	1 1284	91 460911	[fructose-bisphosphate aldolase [Bacillus subtilis]	. 87	84	151
876 1	- 3	1 452	191 1146247	asparaginyl-tRNA synthetese [Bacillus subtilis]	18	62	450

S. aureus - Putative coding regions of novel proteins similar to known proteins

Cont to	- E	Start (nt)	Stop (nt)	match Boession	match gene name			(nt)
1376	-	426	214	91,1065555	F46H6.4 gene product [Caenorhabditis elegans]	87	7.5	213
2206		: ~	374	91 215098	excisionsse (Bacteriophage 154s)	7 20 2	7.7	372
2938	-	•	290	191/508979	OTP-binding protean (Bacillus subtilis)	87	69	288
3081	7	176	308	dt 467399	IMP dwhydrogenese (Becillus subtills)	-	72	183
35.35	-	7	100	91 1405454	aconitase (Bacillus subcilis)	6.	90	399
4238		\$47	275	191 603769	HutU protein, procenase (Bacillus subtilis)	.	1.7	273
-		110427	1 8736	143 603769	Hutt protein, urocenese (Bacillus subtilis)	98	7.2	1692
22	9	1 4190	13738	191 410515	uresse beta subunit (Staphylococcus xylosus)	98	2.5	453
*	~	2480	1572	91 289287	UDP-glucose pyrophosphorylase (Bacilius subtilis)	9	01.	606
124		2336	1713	9: 556887	uracil phosphoribosyltransferase [Bacillus subtilis] pir 549364 549364 uracil phosphoribosyltransferase - Becillus ubtilis	98	•	7.0
	12	1349	3448	[91]467458	cell division protein Dacillus subtilis	9	7.5	2100
1.48	-	3638	1 3859	91 467460	unknown (Becilius subtilis)	9	7.3	222
152	-	1340	2086	01 1377835	pyruvate decarboxylase E-1 alpha subunit (Bacillus subtilis)	98	75	747
164	118	118 17367	119467	91 1184680	polymucleotide phosphorylase (Bacillus subtilis	98	27	2121
180	2	554	11159	91 143467	ribosomal protein S4 [Bacillus subtilis]	98	0.00	909
205		7366	1 2592	[91]142464	ribosomal protein 317 [Bacillus subtalis]	9.6	77	275
205	92	13364	112990	40107	[ribosomal protein L22 Bacillus stearothermophilus] ir \$10612 \$10612 ribosomal protein L22 - Bacillus earothermophilus	98	27	\$1.5
246		1 3463	3140	gi 467375	ribosomal protein S6 (Bacullus subtilis)	96	7.0	324
299		1196	1540	çi 39656	spowG gene product [Bacillus megaterium]	90	0,	345
599		3884	4345	91 467440	phosphoribosylpyrophosphate synthetase [Bacillus subtilis] gi[40218 PRPP synthetase (AA 1-317) (Bacillus subtilis)	98	84.	462
304		2170	2523	91:666983	[putative ATP binding subunit (Bacillus subtilis]	986	65	354
110	2	1487	1678	91 1177684	chorismate mutass Staphylococcus xylosus	986	11	192
337	2	2086	3408	51 487434	isocitrate dehydrogenase [Bacillus subtilis]	986	18	1320
3.19	7	1489	1 1109	191 1118003	dihydroneopterin aldolase (Staphylococcus heemolyticus)	980	12	186
358		2124	3440	91(1146219	[28.2% of identity to the Escherichia coli GTP-binding protein Era; putative [Bacillus subtilis]	98	1 23	7161
			1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·			

S aureus - Putetive coding regions of novel proteins similar to known proteins

Contig	0.8F	Start	Stop	metch	match game name		1 dent	length (nt)	
¥0.	7 -	1 1015	2058	91 1303817	YqfA (Uacailus subtilis)	9	9.	1064	
5.81	- 5	1 661	452	191 40056	phop gane product (Bacillus subtills)	98	1.7	210	
642	~	338	1075	01 1176399	EpiF (Staphylococcus epidermidis)	98	72	738	
07.1	-	622	347	1911143328	phoP protein (put.); putative (Sacillus subtilis)	99	69	276	
865	-	1777	A90	91 1146247	asparaginyl-tRNA synthetase (Bacillus subtilis)	9	X	E	
898	-	1 963	611	191 1002911	transmembrane protein Saccharomyces cerevisiae	98	6.9	171	
106	-	-	1 162	(01)1303912	Vqhw (Bacıllus subtilis)	9	12	162	
989	-	35	- 633	(91 (1303993	YqkL (Bacillus subtilis)	98	3.6	668	
1 1212	= =	296	150	91 414014	ipa-90d gene product (Bacillus subtilis)	e.	70	147	
1323	<u>-</u>		89	140041	pyruvate dehydrogenase (lippamide) [Bacillus stearcthermophlius] ir[S10798 DEBSPP pyruvate dehydrogenase (lippamide) (EC 1.2.4.1) pha chain - Bacillus stearcthermophlius	90	25	147	
3085	~	540	310	gi 1354211	PET112-like protein (Bacilus subtilis)	98	986	231	
1 4 H	-	-	22H	191296464	ATPase [Lacrococous lactis]	9	(9	2.7A	
4187		476	240	91 1022726	unknown Staphylococcus hasmolyticus	989	ני	237	
4583	-	1 372	187	91 (1022725	unknown (Staphylococcus haemolyticus)	96	6 L	186	
1 25	-	4287	5039	9111502421]-ketoacy]-acyl carrier protein reductase [Bacillus subtilis]	88	9	753	
96	21	130627	29395	19.11.408507	pyrimidine nucleoside transport protein (Bacillus subtilis)	S.	6.9	2.2	
89	7	1 332	1192	gi 467376	unknown [Bacillus subtilis]	98	7.	198	
		086	1707	91 142992	glycerol kinase (glpk) [EC 2.7.1.30] [Bacillus subtilia] pir [B45668 B45868 glycerol kinase [EC 2.7.1.30] - Bacillus subtilis sp[P18157] [GLPK_BACSU GLYCEROL FINASE [EC 2.7.1.30] (ATP:GLYCEROL -PHOSPHOTRAMSFERASE) (GLYCEROKINASE) (GK).	85	22	69 21 30 30 30 30 30 30 30 30 30 30 30 30 30	
106	-	1 1505	3490	9. 1143766	(thrsv) (EC 6.1.1.3) [Bacilius subtilis]	88	7.	1986	
128		1183	2202	91 311924	glycerladehydo-1-phosphate dehydrogenase (Clostridium pasteurianum) pir S34254 S34254 glyceraldehyde-3-phosphate dehydrogenase (EC .2.1.12) - Clostridium pasteurianum	\$	5	10\$0	
129	-	9919	5252	191 1064807	ORTHININE AMIMOTRANSFERASE (Bacillus subtilis)	88	6.2	1215	
138	-	3475	5673	91 1072419	gleß gene product (Staphylococcus carnosus)	85	7,	2199	
189	-	~	169	[g1] 467385	unknown [Bacillus subtilis]	\$6	99	168	

${ t TABLE}$ 2

S. aureus - Putative coding regions of noval proteins similar to known proteins

205 15 R624 A106 205 120 10928 10596 211 4 4877 3159 241 9 B013 B783 243 2 5894 3186 302 1 140 475 302 1 140 475 302 1 1251 853 448 2 1992 1339 747 1 1251 853 163 1 1208 606 1163 1 1208 606 1163 1 1208 606 1208 1 1208 606 1208 1 1208 606 1208 1 1208 606 1208 1 1208 606 1208 1 1208 606 1309 1 1208 606 1301 1 1208 201 1924 1 1487 251 275 277 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278		91 1044981 Pr A02819 R565 91 48980 91 1003520 91 140311 91 40173	ribosomal protein SS (macillus subtilis) ribosomal protein L24 - Bacillus stearothermophilus lech gene product (macillus subtilis)	80 80	75	
100 100		RSBS	ribosomal protein L24 - Bacillus stearothermophilus	85		;
6 6490 61 4 4 4477 11 2 5494 11 1 140 41 1 140 41 1 1251 83 6 6082 81 6 6082 81 7 1992 11 7 1992 11 7 1993 44 7 1994 11 7 1994 41 7 1995 44 7 1995 44 7 1995 12 7 1995 12		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	sech gene product (Bacillus subtilis)		12.	333
4 4477 11 2 5494 11 1 140 41 1 140 41 1 1545 29 1 1591 86 1 1206 66 2 159 46 3 1 1206 66 4 1 1206 66 4 1 1206 66 4 1 1206 66 5 1 1206 66 6 1 1206 66 7 1 1206 66 7 1 1206 66 7 1 1206 66 8 1 1206 66 9 1 1206 66 1 1 1206 66 1 1 1206 66 1 1 1206 66 1 1 1 1206 66 1 1 1 1 1 1 1 1 1 1		1 1002520		28	99	390
9 8013 87 1 1 1 1 1 1 1 1 1 1	: : : : : : : : : : : : : : : : : : : :	1 40173	MucS [Bacillus subtilis]	985	0,	1719
2	: : : : : : :	1 1405454	ipa-87r gene product (Bacillus subtilis)	88	7.2	11.6
6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		1 40173	sconitase (Bacillus subtilis)		7.3	2709
1 5445 23 2445			homolog of E coli ribosomal protein L21 (Bacillus aubtilis) ir[S18439[S18439 Ribosomal protein L21 - Bacillus aubtilis p[P26908[RL21_BACSU 50S RIBOSOMAL PROTEIN L21 (8L20).		22	336
6 60A2 1 1251 1 1251 1 1208 1 1208 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	91/442360	CipC adenosine triphosphatese (Bacillus subtilis)	95	69	2478
2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	91 871784	Cip-like ATP-dependent protesse binding subunit (Bos taurus)	85	89	2115
1 1251 2 159 2 159 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		91 405134	acetate kinase (Bacilius subtilis)	58	- 89	654
2 1 1 1 1 1 1 1 2 5 9 5 1 2 5 9 5 1 5 9 5 9 5 1 5 9 5 9 5 9 5 9 5 9		gi 1373157	orf-X; hypothetical protein. Method: conceptual translation supplied by author (Bacillus subrilis)	£	רי	399
1 1 1206 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	91 541768	hemin permease (Yersinia enterocolitica)	- 58	5.5	309
487 687 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	pir 847154 8471	signal recognition particle 54K chain homolog Fith - Becillus subtilis	88	110	603
1 734		91/301155	diaminopimalare decarboxylase (Bacillus mathanolicus) sp[P41023 DCDA_BACHT oliaminopimalare DECARBOXYLASE)	\$	62	404
1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	!	91/215098	excisionase [Dacterlophage 154a]	88	6.7	237
1 295		91/1041099	Pyruvate Kinase (Bacillus licheniformis)	9.5	1.7	787
1 595 2		91/42370	pyruvate formate-lyase (AA 1-760) (Escherichia coll) it/S01788/S01788 formate C-acetyltransferase (EC 2.3.1.54) - cherichia coll	9.5	7	273
	-	91 63568	limb deformity protein (Gallus gallus)	188	88	297
3778 1 630 316	91	91,391840	bata-subunit of HDT [Pseudomonas fragi)	9.	67	315
1 1815 1 1 1 187	•	91 1204472	type I restriction enzyme ECOR124/3 I M protein (Haemophilus influenzae)		> 26	187
4042 1 386		91 10178	formate acetylitansferase [Chlamydomonas reinhardtli) 1r 524997 524997 formate C-acetylitansferase [EC 2.3.1.54) - lamydomonas reinhardtli	\$ 8	70	384
1 4053 1 1 35 340		91 1204672	type I restriction enzyme ECOR114/3 I M protein (Meemophilus influenzae)	8.5	\$6	306
4108 1 2 191		Q1 1072418	glcA gene product [Staphy]ococcus carnosus]	8.8	6.1	180
4300 1 575 330		911151932	(ructose enzyme II (Ahodobacter capsulatus)	88	65	246

S. aureus - Pututive codiny regions of novel proteins similar to known proteins

Contag OHF 1D 1D	100 I	Start	Stop (nt)	match	match gene name	# F 1 #	1 ident	lengti.
4392	-	627	1355	91 1022725	unknown (Staphylococcus hasmolyticus)	9.5	74	(72
4408	-	1 2	235	Ui P71784	Clp-like ATP-dependent protesse binding subunit (Bos taurus)	8.5	62	7.7
430	-	578	1 291	9111009366	Respiratory nitrate reductase (Bacillus subtulis)	8.5	89	368
4555			253	450688	hadM gene of Ecopril gene product (Escherichia coll) pir 53843) 53843 hadM protein - Escherichia coll pir 509629 509629 hypothetical protein A - Escherichia coll 1508 40-520	\$6	25	252
4611	-	187	242	91 1256635	[dlhydroxy-ecid dehydratese (Becilius subtills]	88	69	240
-	100	190011 01	16501	gtt 469H2	fost gene product (Staphylococcus epideraidis)		. .	155
2	1 2	1348	1172	191 142450	ahrC protein (Bacillus subtilis)	=	95	177
16	-	1 1803	4652	91 1277198	[DNA repair protein [Deinococcua radiodurans]	*	63	2850
22		1535	1128	Q1 511069	Uref Istaphylococcus xylosus!	76	ET	#0 #
2	-	\$ \$0\$	5306	191/603320	Yei082p (Saccharomyces cerevisiae)	9	79	797
3	=	111597	111145	91 1303948	Yqiw (Bacillus subtilis]	4	89	(5)
5	===	F.5571	00.731	(4) [142613	Interched chain alpha-kero seld dehydrogenass E2 (Dacillus subtilis) gill100944 6fm88 (Sacillus subtilis)	Z	17.	0671
0,	 -	21(1	982	91 46647	OMF (repE) (Staphylococcus aureus)	9	89	151
	-	2512	1164	01 142993	glycerol-J-phosphate dehydrogenase (glpD) (EC 1.1.99.5) (Bacillus ubtills)	œ	7.6	1904
T		42.4	9609	91 467427	methionyl-tRMA synthetase (Bacillus subtilis)	ď	99	17.1
100	-	9501	8680	91/1340126	ORF1 (Staphylococrus aureus)	9	78	822
	_	1934	3208	19111237019	Srb (Bacillus subtilis	8	99	1275
8 7	•	1 4720	5670	91 467462	cysteine synthetase A (Bacillus subtliss)	8 0	69	156
152		7000	2456	[4. [141377	pyruvate decarboxylase (E-1) alpha subunit [Bacillus subtliss] pir[Bl6718 DEBSPA pyruvate dehydrogenase (lipoamido) (EC 1.2.4.1) lpha chain - Bacillus subtilis	£	0	
. 69	_	3634	3861	qi 1001342	hypothetical protein (Symechocystis ap. 1	80	99	228
171	-	2992	1 2657	gi 517475	Demino acid transaminose (Staphylococcus haemolyticus)	ď	7.1	356
186	9 -	6941	6216	gi 467475	unknown (Dacillus subtilis)	89	0,2	126
205	_	1 6261	1 5692	191 216340	ORF for adenylate kinase (Becillus subtilis)	7	1,	570
324	-	416		0 3 0 0 0 0 1 1 1				;

363

246

H - +8 **3**

|67 kDa Nyosin-crossreactive streptococcal antigen (Streptococcus yogenes)

1 375 | 3:1517205

767 | 1 | 3376 | 4022 | 1 | 2

| 169 | [q:|1146206 | glutamate dehydrogenase (Bacillus subtilis| | J12 | [q:|151912 | fructose enzyme II [Rhodobecter cepsulatus| | J51 | [q:|1072418 | glcA gene [roduct | Stabhylococcus carnoaus|

50

55

aureus - Putative coding regions of novel proteins similar to known proteins

Contro	108F	State	Stop	match	match gene name	E s	1 idant	length (nt)
157	-	36	388	191 1303790	Yqel (Bacillus subtilis)	80	6.5	162
282		1526	2836 2836	91(143040	giutamate-1-semialdehyde 2 i mainotranifarase (Becillus aubtilis) pir b42728 p42728 giutamate-1-semialdehyde 2,1-aminomutase (EC .4.3.8) - Bacillus subtilis	6 0	*	1161
1 307	- 2	#CIC	2959	91/1070014	protein-dependent (Bacillus subtilis)	98	62	1 081
320	-	1 2343	4229	91 143390	carbamy] phosphate synthetase (Bacillus subtills)	89	7.0	1967
372	-	-	296	191 1022725	unknown (Staphylococcus haemolyticus)	e c	7.0	294
413	7 -	1 2201	1341	91 1256146	YbbQ (Bacillus subtilis)	80	6.5	19 R
439	-		392	01 1046173	osmotically inducible protein (Mycoplasma genitalium)	Ē	53	390
		1 1362	2270	91 40211	[threoning synthase (thrC) (AA 1-352) [Bacillus aubtilis] Ir A25364 A25364 threoning synthase (EC 4.2.99.2) - Becillus biilis	a	9	605
1 487	-		567	91 1144531	Integrin-like protein alpha Intlp (Candida albicana)	-	9	297
161	~	624	\$06	pir S08564 R3BS	Iribosomal protein S9 - Bacillus stearothermophlius	-	69	282
167	-	A16	((0)	pir S08564 R3RS	ribosomal protein S9 - Bacillus stearothermophilus	34	۲۲	198
* * * * * * * * * * * * * * * * * * *	. <u>-</u>	: -	141	(m) (43123)	uracil permease Bacillus caldolytirus	*	74	1 681
728	-	1 2701	1748	01 912445	[DNA polymerase [Bacillus caldotenax]	*	89	954
769 1	-		1 257	41 1510953	cobalamin blosynthesis protein N [Methanococcus jannaschil]	80	*	555
954	-	308	156	91 1405454	aconitaco (Bacillus subtilis)	84	2.5	5
957			395	s: 143402 	recombination protein (ttg start codon) [Bacillus subtilis] gi 1303923 RecN [Bacillus subtilis]	80	æ ,	161
57.6	-		452	[9: 885934	(ClpB (Synechococcus sp.)		01	1 05+
1585	-		1 257	1-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	liquendopeptidase F [Lactococcus lactis]	96	56	1 552
2954	-		1 323	91 603769	HutU protein, urocanase [Bacillus subtilis]	*8	13	321
2996		650	348	9 i 18178	formate acetyltransferase Chlamydomonas reinhardtill 1x 524997 524997 formate C-acetyltransferase (EC 2.3.1.54) - lamydomonas reinhardtil	# B	\$	303

TABLE 2

aureus - Putative coding regions of novel proteins similar to known proteins

Cont. 6 10	OKI.	St.	Stop (nt)	match acossion	match gene name	E 1	1 dent	length vot)	•
183	-	-	308	91 603769	(ButU protein, urocenase (Bacillus subtills)	80	127	306	
4726		; ; ; ; ;	23.4	91 146208	<pre>gutamace synthase large subunit (EC 2.6.1.53) [Eacherichia coli] pir[A29617]A29617 glutamate synthase (NADPH) (EC 1.4.1.13) large hain - [Escherichia coli</pre>	*	2	0 20	
22	-	1 2043	1576	19.1393297	urease accessory protein (Bacillus sp.)	. 69	99	468	- •
53	Ξ	114722	113745	[91]142612	branched chain alpha-keto acid dehydrogenase El-bata Bacillus ubtilis	683	99	978	
	. <u> </u>	75111	112872	91 143132	lactate debydrogensee (AC 1. 1.27) Bacillus caldolyticus pir[B29704 b49704 L-lactate debydrogensee (EC 1.1 1/27) - Bacillus aldolyticus	2	9	984	
99	-	1 3119	1 2274	91 1303894	YqhM [Bacillus subtills]	a	3	80	
99	-	6118	4643	191 1212730	Yqhk [Bacillus subtilis]	£ 6	89	1476	
0,4	-	1864	1523	91 44095	replication initiator protein [Listeris monocytogenes]	69	6.6	342	
0.6		1 377	1429	 gi 155571	alcohol dehydrogenase I (adhA) [EC 1.1.1.] [Zymowons mobilis] pir[a]5260[a]5260 alcohol dehydrogenase (EC 1.1.1) I - Zymomonas obilis	£	0,	105.	
96	~	1 108	1 2162	1911506381	[phospho-beta-glucosidase (Bacillus subtilis)	8	0,	1455	
131	-	89	1 694	91 467391	initiation protein of replicaton (Bacillus subtills)	6)	(,	627	
0 7 1	-	1 3209	1 2742	91 634107	kdp8 [Escherichia coli]	83	65	89	_ :
142	-	1 3468	1 2989	91/2121/16	lumarine synthase (b-subunit) (Recullus amyloliquefaciens)	6	69	089	
191	==	6749	9699	191 903307	ORF75 Bacillus subtilis	3	3	94.	
164	-	9880	111070	91 49316	ORF2 gane product (Bacillus subtilie)	83	99	1191	- :
164	=	114148	14546	91 580902	ORF6 gene product (Bacillus subtilis)	- 63	0.9	199	
170	-	3144	1 2467	0 + S20844	orf4 [Bacillus subtilis]	- 83	79	FL9	
186		2029	0,01	Q1 289284	cysteiny; -tRNA synthetase Bacilius subtilius	. 83	22	099	
205	114	1 1822	1 7607	o1 216337	ORF for L30 ribosomal protein (Bacillus subtilis)	69	24	216	
1 237	9 -	1 3643	4540	O1 1510488	[imidazoleglycerol-phosphate synthase (cyclase) [Methanococcus jannaschii]	. 83	09	ASA	
301		586	638	151 467419	unknown (Bacillus subtills)	l 83	65	348	
1 302	-	1421	2743		CTP-binding protein [Bacillus subtilis]	1 83	89	1323	
122	-	1 3933	1.786	101 39844	fumarase (citG) (as 1-462) (Becillus subtilis)	. 83	99	363	
1 367	-	~ -	152	131 1039479	ORFU [Lactococcus lactis]		35	351	r
					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				ı

5. aureus - Putative coding regions of novel proteins similar to known proteins

1	Contig	ORF	Start	Stop (nt)	match	match years nome	E 18	/ ident	length int)
1 135 134 1314 1314135 piritation diphylogogous (EC 14.13) listellius streacchemophilasi 55 65 65 65 65 65 65 6	387	-	_	662	91 806281	DAMA polymerase 1 (Bacillus steerothermophilus)	60	0	099
153 173 174 1741535 particle dehydrogenes RC 14 11 machinum 15	527	7 -	916	1566	91 396259	protease Staphylococcus epidermidis	18	L9	651
1 2 655 61153065 General Control Con	533		355	179	9. 142455	#tmeroth 1.4.1.1)	2	99	7.1
1 2 659 [61] [52053 541 [51] [52055 541 [52055 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 541 [52055 [52055 541 [52055 [52055 541 [52055 5	536		1617	1438	9, 1143366	(PUR-B)	- C	۲,9	0 8 1
1 120 126	652	-	- 2	829	91 520753	DNA topolsomerase ((Bacillus subtilis)	69	72	858
1 120 126 911004807 ORTHINNING ANNINOTRANSFERASE [Bacillus subtilis]	P/L	~	700	1961	91/1522665	M. Jannaschil predicted coding region NJECL28 (Methanococcus Jannaschii)		5.8	162
1 19 191 1	R97	<u>-</u>	120	1 296	9111064807	ORTHININE AMINOTRANSFERASE (Bacillus subtilis)	÷	7.6	171
1 296 130 91 143786 Cryptophanyl-tRNA syntherase (EC 6.1.1.2) [Section ubtilis 69 69 69 69 69 69 69 6	1213	-	_	1691	91 289288	lexA (Bacillus subtilis]	£8	6.7	687
1 7.11 166	2529		296	1 150	91 143786	(EC 6.1.1.2) [Bacillus subtilis] TRNA ligase (EC 6.1.1.2) - Bacillus	8	6,	147
1 7.16 166	2973	_	649	326	[91]1109687	ProZ Becillus subtilis	60	200	324
2 45 105 91 92062 hypothetical yeast protein I Mycoplasma capticolum pri[548578 83 59 11 11 12 10 11 11	6001	<u>-</u>	# 17 —	166	1411482532	ORF_0294 (Eschenichia coll)	ê	\$9	163
1 67 309 grill35197 Chievedoxin reductive [Euhacterium acidaminophilum] 81 81 81 84 82 82 82 83 84 84 85 85 85 85 85 85	3035	~	 \$\$	305	91 950062		£	65	761
1 540 271 91 19726 Elumping factor Staphylococcus aureus; 1 444 223 91 197226 Iunkhown Staphylococcus memorical 1 444 223 91 91 92 225 93 94 94 94 94 94 94 94	1 3506	-	- 69	1 309	[91]1353197	thioredoxin reductase [Eubacterium acidaminophilum]	É	14	
1 444 223 [91 1022126 Unkhown Staphylococcus carnosus 1 97 261 [91 1022126 Unseloz protein Staphylococcus carnosus 1 97 261 [91 1021419 91 2894 Uvseloz protein Staphylococcus pneumonise 97 295 1191 91 151854 Uvseloz protein Streptococcus pneumonise 92 70 70 70 70 70 70 70 7	1454	-	540	172	1911397526	(clumping factor (Staphylococcus aureus)	£	#1	276
1 97 261 [91 1072419 9] CB gene product [Staphylococcus carroaus] 79 261 91 153854 Uvs402 protein [Streptococcus pneumoniae] 82 67 82 83 84 84 87 84 87 84 87 84 87 84 87 84 87 87	C1\$1		444	223	91 1022726	unknown Staphylococcus heemolyticus	83	7.	222
2 1995 1191 [91 153854 Uve#02 protein Streptococcus pneumoniae) 82 67 82 83 84 87 84 87 84 87 84 87 84 87 84 87 84 87 84 87 84 87 84 87 84 87 84 87 84 87 84 87 84 87 84 87 84 87 87	1654	- -	66	261	[91 1072419	gles gene product (Staphylococcus carnosus)	93	7.9	165
3 1193 1798 git 151854	9	~ -	295	1181	191 153854	uvs402 protein [Streptococcus pneumonise]	82	67	6.89
12 9644 8724 (i)	16	_	1193	1798	191 153854	uvs402 protein Streptococcus pneumoniae)	88	70	909
4 988 2019 91 841192		27	9644	8724	c 1204400	N-ecety)neuraminate lyase (Heemophilus influenzae)	œ.	80	42)
6 2550 3489 91,143637 sporulation protein Bacillus subtliis 69 69 11 12270 13925 91 9431 91 92 69 91 92 92 93 93 94 94 94 94 94 94	42	-	986	5019	191 841192	catalase [Bacteroides fragilis]	9.5	7.0	1032
	- 51	-	2590	3489	[91,143607	sporulation protein Bacillus subtilis	28	6.9	006
15 17673 18014 gri467410 lunknown Bactilus subtilis)	*	Ξ.	112270	13925	91 39431	oligo-1,6-glucosidase (Bacillus cereus)	8.2	60	1656
2 881 3313 gift43148 transfer RNA-Leu synthetasa (Bacillus subtilis)	26		117673	118014	91 467410	unknown Bacillus subtilis	87	99	342
	19	7 :	881	1 3313	911143148	- :	8.	07	2433

8
ot•!
br
Nou:
2
1 4 7
1 1 1
8
00
ı bı
900
٥
Suo
601
1ng
pos
r.i.v.
Put.
-
 aureus - Putative coding regions of novel proteins similar to known proteins
1
L)

Cont 19	ORF	Stert (nt)	Stop (nt)	DALCH BOOKSION	Take Chi gene name	E i	1 Ident	Jenath (at)
2		9162	11318	77.74.82.40	elongation (actor G (AA 1-93)) (Thermus aquaticus thermophilus) it/sis928 EFTWG translation elongation fector G - Thermus aquaticus p[p1353 EFG_THETH ELONGATION FACTOR G (EF-G).	93	2 0	2157
-	7	5470	3260	91 143369	phosphoribosylformyl glycinamidine synthetese II (PUR-Q) [Bacillus ubtills)	82	99	1122
102	9 -	3662	5380	91 1256635	dihydroxy-scid dehydratase (Bacillus subtilis)	9.2	65	19161
1117	: - -	3242	1 3493	pir A47154 A471	lorfi 5' of Fin - Bacillus subtalis	882	5.	252
128	9 -	1 4377	5933	91/460258	phosphoglycerate mutase (Bacillus subtilis)	82	99	1557
671		1229	2182	491 403373	payce-copinospinosyl diester phosphodiesterase [Bacillus aubtilis] pir[5]7251 537251 glycerophosphoryl diester phosphodiesterase - acillus subtilis	28	Cg .	95.
170	-	2	1441	191 1377831	unknown Becilius subtilis	82	67	040
561	1-		1094	91 467386	thiophen and furan oxidation (Bacillus subtilis)	82	65	1092
184	-	1 3572	-	911153566	ORF (19X protein) (Enterococcus fascalis)	82	- 65	9 9
• K	-	4455 4225	1 4225	oi 1001878	Capt protein (Listeria monocytogenes)	85	1,6	231
206	=-	121166	120707	gi 473916	lipopeptide antibiotics iturin A (Bacillus subrills) ap P39144 LP14 BACSU LIPOPEPTIDE ANTINESIS PROTEIN.	B 2	05	099
1 221	-	1 805	1722	gi 517205	67 kDs Hyosin-crossreactive streptococcel antigen (Streptococcus yogenes)	82	63	91.6
1 233		3866	1651	41 439619	Salmonella typhimurium S200 Insertion sequence from SARA17, artial. , gone product (Salmonella typhimurium)	8.2	69	216
760		5207	1 4296	 gi 1161381	Icam (Staphylococcus epidermidis)	9.5	19	912
	-	1864	1 2855	91 143397	quinol oxidase (Bacillus subtilis)	8 2	67	2010
120		# 820 	7945	9. [14298]	ORFS: This ORF includes a region (as23-103) containing a potential ronsulphur centra homologous to a region of Rhodospirillum ruhrum nd Chromatium vinosum: putative (Bacillum stearothermophilus) pir[PQ0239]RQ0239 hypothetical protein 5 (gldA 1: region) -	8 2	3	576
- 20	-	1 1055	1342	191 436574	ribosomal protein Li (Bacillus subtilis)	1 82	1,	288
078	- 2	1 262	618	0:11303793	Yget (Bacillus subtilis)	1 82	65	157
404	-	1 3053	4034	91/1303821	YqfE (Bacillus subtilis)	9.5	6.9	972
405	-	4440	1 3073	c1 1303913	Yqhx (Bacillus subtriis)	82	67	1368
436		4096	2864	91 149521	tryptophan synthase beta aubunit [factococcus lactis] pir[S35129]S35129 tryptophan synthase (EC 4.2.1.20) beta chain - actococcus lactis subap. lactis	8 2	·	123

S. auraus - Putative coding regions of novel proteins similar to known proteins

Contig	IORF	Start Int)	Stop (at)	match	match gene name	E	* ident	length (nt)
	-	3394	1 2573	1911142952	glyceraldeh,de-1-phosphate dehydrogenase (Bacillus tearothermuphilus)	82	- 63	622
***	12	10415	111227	9x 1204354	spore germination and vegetative growth protein (Heemophilus influenzae)	82	67	813
446	-		161	91 143387	aspartate transcarbanylase (Bacillus subtilis)	82	99	189
+62		1007	1210	91 142 521	deoxyribodipyrimidine photolyme [Bacillum subtilis] pir[A37192]A37192 uvrB protein - Bacillum subtilim mp[P1495][UVRC_BACSU EXCINUCLEASE ABC SUBUNIT C	88 5		* 007
537	-	1 1560	784	[q1 R53767	UDP-N-scetylqlucosamine 1-carboxyvinylkransfersse (Bacillus ubtilis)	8.2		177
680	~	1 407	1 700	91 426472	sack gane product (Staphylococcus carnosus)	82	6.9	294
724	~	565	1 386	91116373	phosphorthosyl aminoimidazole carboxy formyl ormyltransferase/inosine monophosphete cyclohydrolese (PUR-H(J)) Bacillus aubtilisi	9.3	69	180
196	-	1 422	213	91/467458	cell division protein (Bacillus subtilis)	92	35	210
878	-	564	283	qi 1064787	function unknown [Bacillus subtilis!	82	6.9	282
858		27.1	1176	1911143043	uroporphyrinogen decarboxylase (Becillus subtlils) pir B47045 B47045 uroporphyrinogen decarboxylase (EC 4.1.1.37) - acillus subtlils	2	11,	7001
1 A95			593	19111027507	ATP binding protein (Borrelia burgdorferi)	8.2	7.2	597
606	-	01 -	660	911143795	transfer RNA-Tyr cynthetass [Bacillus subtilis]	82	0.9	1 060
196	-	- 1	1 306	gi 577647	gamma-hamolysin Staphylococcus aureus]	82	69	106
11192		1 307	1 155	1911146974	NHJ-dependent NAD synthetase (Escherichia coll)	.	1,	151
1317	-	67	57.	1911407908	Ellace (Staphylococcus xylosus)	62	12	122
1341			150	91 39962	ribosomal procesn L35 (AA 1-66) [Recillus stearothermophilus] ir S05347 R5BS35 ribosomal protein L35 - Bacillus earothermophilus	93	89	1 50 1
2990	7		670	91/534855	ATPRES SUBMIT EPSILON CIAIN (C. 3.6.1.34).	98	Ç	219
3024	-	\$	224	91 467402	unknown (Bacillus subtilis		3	081
3045	-	1 276	139	91 467335	ribosomal protein L9 (Bacillus subtilis	182	0.9	138
1 3045	- 2	1 554	400	61 467335	ribonomal protein 1.9 (Bacillus subtilis)	#2	#2	651
1 3091	-	474	238	ut 499335	sech protein [Staphylococcus carnosus]	9.2	78	237
, otte		419	710	01 546918	orfy 3' of comk [Bacillus subtilis, E26, Peptide Partial, 140 as] pic/Salal2[543612 hypothetical protein Y - Bacillus subtilis ap[P40398]YHXD_BACSU HYPOTHETICAL PROTEIN IN COHK 3'RECION (ORFY) FRAGMENT).	25	3	203

TABLE 2

auraus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	OKF	Start	Stop	metch acession	march gene name		1 tdent	length (nt)
4332			676	91 42086	Initiate reducess alpha subunit (Escherichia coll) p1903/52[NARG_ECOLI RESPIRATORY NITRATE REDUCTASE 1 ALPHA CHAIN (EC 7.99.4). (SUB 2-1247)	9.5	. 25	316
22	_	1 3275	2574	141 1199573	span (Sphingomonas ap.)		79	702
7	-	6.38	1321	191 466778	lysine specific permesse (Escherichia coli)	18	65	318
80	\$	1507	1 4350	qi 1045937	H. genitelium predicted coding region NG246 [Mycoplasme genitalium]	10	62	300
3	-	1578	6782	pir S16649 S166 dciAC protein	dciAC protein - Bacillus subtilis	16	1 \$\$	7001
	~	354	1494	196[0[1]16]	YqjJ (Becillus subtilis)	160	69	1611
1 53	e .	9419	1767	91 1146930	6-phosphogluconate dehydrogenese (Escherichie coli)	10	99	1449
2	6	10757	61101	191011111111111111111111111111111111111	permasse Bacillus subtilis	100	65	619
_ ·	=	113360	1:1786	91 143015	glucomate kinese (Bacillus subtilis)	7 8	9	1575
	-	11383	1:3366	[pir A25805 A258	L-lactate dehydrogenase (EC 1.1.1.27) - Bacillus subtilis	91	1 12	618
	7	2708	1 2217	96 [1222302	NifU-related protein [Maemophilus influenzee]	1.8	**	492
97	-	745	374	1911414017	lipa-93d gene product (Bacillus subtilis)	1 20	1 04 1	372
103	•	6438	4.861	1911971342	Initrate reductase beta subunit [Bacillus subtilis sp[P42176 NAML_BACSU NITRATE REDUCTASE BETA CHAIN (EC 1.7.99.4).		9	1578
1 120	12	10845	12338	91 1524392	CDsA Becilius subtilis	90 1		1494
128		9/9(1413	[9.[143319	triose phosphate (somerase (Becillus megaterium)	. E	79	7.16
181	_	10308	9280	0 299163	alanine dehydrogenese (Secillus subtilis)	1 m3	. 89	1029
	<u>د</u>	60AR	5471	9: 439619	[Salmonella typhimurium 15300 insertion sequence from SARAI7, artial.], gene product [Salmonella typhimurium]	e	61	819
169	<u>-</u>	:	R25	91 697795	105 ribosomal procein (Pediococcus acidilactici) ap P49668 RS2_PEDAC 305 RIBOSOMAL PROTEIN S2		9	783
230		450	226	gi 1125826 	short region of weak similarity to tyroning-protein kinnse receptors in a [thronectin type III-like domain (Caenorhabditis elegans)	100	54	225
233	<u>~</u>	1 2000	7.62	ui 467404	unknown [Becillus subtilis]	8.1		67A
241	~	3081	2149	gi 16510	succinateCoA ligase (GDP-forming) [Arabidopsis thaliana; ir[530379 530579] succinateCoA ligase (GDP-forming) (EC 6.2.1.4) pha chain - Arabidopsis thaliana (fragment)	T e	6,9	618
256	 -		1961	pir S09411 S094	spoiliE protein - Bacillus subtilis	18	3	186
259	_	1 3752	2691	Sp P28367 RF2_B	SP P28367 RF2_B PROBABLE PEPTINE CHAIN RELEASE FACTOR 2 (RF-2) (FRAGHENT).	6	69	1062

aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	10AF	Stert (nt)	Stop (nt)	acession	match gene name	E	- ident	length (at)
275	- 2	1728	3581	E 726480	[L-glutamine-D-fructose-6-phosphate amidotransferase [Bacillus ubtilis]	- 18	9	1854
285	-	1466	735	qi 1204844	H. influenzae predicted coding region HIOS94 (Heemophilus influenzae)	- -	6.	132
296	-	66	1406	qi 467328	adenylosuccinate synthetese (Becillus subtilis)	18	6.7	1308
302	6	5590	5889	91147485	quea Escherichia coli	18	7	300
317	7	1137	1376	igi 154961	resolvase (Transposon Tn917	28	Ş	240
	7	1034	1342	191 405955	yeeD Escherichie coli]	30	09	109
360	~	1404	1742	19111204570	asparty1-tRNA synthetase (Haemophlius influenzas)		6.7	1068
364	5	1529	5706	91 1204652	methyleted-DNAprotein-cysteine methyltransferase (Maemophilus influenzae)	18	(9	546
37.2	~	1707	1135	91 467416	unknown (Becilius subtilis)	81	65	573
392	-	3	603	pir S09411 S094	pir 509411 5094 spoil E protein Bacillus subtilis	81	65	561
101	6	5252	6154	1911606745	Dex (Bacillus subtilis)	- 18 - 1	6.5	903
426		1727	1119	91 (3945)	[Manganese superoxide dismitsse [Becillus caldotenex] [r[522053][52205] superoxide dismutase (EC 1.15.1.1) (Mn) - Becillus idotenex	6	99	609
0 W P		1,565	2 H R 9		liypotherical protein II (ompil 3' region) - Selmonelle typhimurium (fragment)	æ	5.7	237
625	1	1105	0.02	191 1262360	protein kinase PknB [Hycobacterium leprae]		9.6	996
754	7	\$05	1064	191 1303902	Yqhu Bacillus subtilis]	ī.	17	\$61
HA2	-	9.8	430	91 1405446	transketolase (Bacillus subtilis]	ī.	£ 9	345
953	-	1 798	007	gi 1205429	dipeptide transport ATP-binding protein (Haemophilus influentae)	18	5.7	661
961		252	707	91 487686	symergohymenotropic toxin [Staphylococus intermedius] pir Se4944 S44944 symergohymenotropic toxin - Staphylococus ntermedius	.	7.2	150
1035	-		1 189	gi 1046138	M. genitalium predicted coding region MG423 (Mycoplasma genitalium)		5	189
1280		670	659	91/559164	halicase [Autographa californica nuclear polyhedrosis virus] sp p24307 V143_NPVAC HELICASE.		Ç	222
3371		8.9	241	gi 1322245	mevalonate pyrophosphate decarboxylase [Rattus norvegicus]	18	62	174
3715	-	1 475	1 239	[91 537137	ORF_(198 (Escherichia coli)	18	5.8	237
3908		2	325	gi 439619	[Salmonella typhimurium IS300 insertion sequence (from SARA17, artial.). gene product (Salmonella typhimurium)		89	324
1940	-	-		1.41.006.464		=	69	199

proteins	
o known	
similar t	
proteins	
nove	
ò	
regions of nove	
coding reg	
Putative	
٠	
AUT 9115	
17	

Contag ORF	F Start (nt)	Stop	match	, mplich gene name	E :	10001	length (nt.)
		318	gi,1224069	amidase (Moraxella catarrhalis)	1.6	89	318
-	 ru	110	91 603768		3	æ.	168
; 		324	191403373	qlycerophosphosyl disstar phosphodisterss [Sectilus subtilis] pir[537251 53725 qlycerophosphosyl disstar phosphodissterss - acillus subtilis	-	82	324
; -	1 627	1 322	911216677	indolepyruvate ducarboxylase [Enterobecter cloaces] pir [5160.2] [5160.3] indolepyruvate decarboxylase (EC 4.1.1) - nterobacter cloaces	6	27	306
-	61	228	93 460689	TVG [Thermoactinomyces vulgaris]	18	59	210
! _		306	91 1524193	unknown Mycohacterium tuberculosis	 «	6.7	276
-		341	1911143015	gluconate kinase (Bacillus subtilis)	6	99	139
-	(65:)	R47	91 1064786	function unknown [Secillus subtilis]	08	62	747
:	 	116 -	91/559164	helicase Autographa californica nuclear polyhedrosis vixus sp p24307 v143_nPVAC HELICASE.	0	0	234
	11159	! –	gi 1109684	Prov (Becillus subtilis)	0.0	63	1290
-	4032	(67)	91 1109687	Proz [Bacillus subtilis]	08	\$\$	707
-	A 10266	1 9502	q1 563952	gluconate permesse (Bacillus licheniformis)	08	6.2	765
122	112 8852	7545	91 854655	Na/H antiporter system Bacillus alcalophilus	90	62	1308
<u>: Ξ</u>	114 8087	8683	(17688 19)	ORF (Nomo septens)	08	6.9	7.65
==	116 13781	114122	01 305002	ORF_f356 (Escherichia coll)	08	9	342
=	113 11495	110296	0111303995	YAKN [Bectilus subtilis]	00	99	1200
-	9 6336	0617	U1 46742B	[unknown [Bactillus subtilis]	90	69	795
2 = =	0 7294	(185	91 467430	[unknown [Bacillus subtilis]	80	\$	240
==	1 7820	-	gi 467431	nigh level kasgamycin resistance [Bacillus subtilis]	0.6	61	816
170	116 114154	114813	gi 580675	ipe-57d gene product [Bacillus subtilis]	0	٠,	099
1=	115 14294	==	91 1072361	pyruvate-formate-lyase Clostridium pasteurlanum}	0	69	2343
-	1 1448	1 726	di 506699	CapC [Staphylococcus aureus]	0 %	88	(27
-	2 2179	1468	191,506698	Caps (Staphylococcus aureus)	0	59	732
-	1721	2870	19111146242	aspertate 1-decerboxylass (Bacillus subtilis)	0.	6 1	403

aureus - Putative coding regions of novel proteins similar to known proteins

Contig 1D	108F	Start (nt)	Stop (nt)	metch	, match gene name	ه. ج	1 ident	length (nt)
11.1	-	1 2102	2842	91 467385	unknown [Bacillus subtilis]	80	10	141
184	9	6124	2165	[91 [161953	[85-kDa surface antigen [Trypanosoma cruzi]	80	9.	213
186	-	5368	2.86	91 289282	glutamyl-tRNA synthetase [Bacillus subtilis]	09	. 59	1494
205	130	96151	115140	01 40103	ribosomal protein L4 (Bacillus stearothermophilus	0	9	657
1 207	-	1 1 40	5161	91 (460259	enolase (Bacillus subtilis)	0	64	1176
211		1078	1590	1610191	ONFX7 Bacillus subtilis)	0	19	\$13
235	~_	1962	2255	91/143797	VALYL-TRAM SYNTHERASE (BECIllus stearOthermophilus) sp[P11931 SYV_BACST VALYL-TRAM SYNTHETASE (EC 6.1.1.9) VALINETRAM LIGASE) (VALMS).	0	Š	7.67
239			1263	91/143000	proton guttamate symport protein [Bacillus stearothermophilus] pir 526247 526247 glutamate/aspartate transport protein - Bacillus tearothermophilus	0	65	1263
272	- 5	1 2724	1 2461	191 709993	hypothetical protein [Bacillus subtilis]	0.6	*	264
1 301	-	1446	1111	91 467418	unknown (Bacillus subtills)	90	5.0	336
010	-	1 5697	4501	9111177686	scuC gene product (Staphylococcus xylosus)	08	6.1	1197
310	-	1 5258	1006	91 348053	acatyl-CoA synthetess [Bacillus subtilis]	980	67	1749
310	,	7410	1 9113	91 1103865	formyl-tetrahydrofolate synthetase Streptococcus mutane	0.6	67	1704
1 325		1111	1389	91 310325	outer capsid protein (Rotavirus sp.)	980	40	2.16
1 337	-	1 1268	979	91 537049	ORF_0470 (Escherichia coli)	0 6	- 55	(6)
174	~	676	1228	91 1405448	YneF {Bacillus subtilis}	980	0 2	300
375	~	1 3062	1000	91 467448	unknown (Bacillus subtilis)	90	6.8	270
80	_	267	5.83	91 1064791	function umknown [Bacillus subtills]	90	65	321
*			659	91 304976	inacches PSO0017: ATP_GTP_A and PS00101: EFACTOR_GTP: similar to longation factor G, TetH/TetO tetracycline-resistance proteins Escherichia colii	06	5	1691
456	-	625	1263	ci 1146183	putative (Bacillus subtilis]	90	\$ 65	619
1.15	_	-	959	191 288269	beta-fructofuranosidase (Staphylococcus xylosus)	Oæ .	9)	654
244	~	1449	2240	191 529754	spec (Streptococcus pyogenes)	90	20	192
622	-	1623	167	gi 1483545	unknown (Mycobacterium tuberculosis	80	6.5	249
916	-	-	1257	[91 1064793	[function unknowm (Bacillus subtilis]	90	99	1257
739	-	101	838	gi 666983	[putative ATP binding subunit [Bacillus subtilis]	80	19	732

5. aureus - Putative coding regions of novel proteins similar to known proteins

Contin	ORF	Scart (nt)	Stop	match	natch gene name	-	Lident	length (nt)
1 745	7	501	414	91/1511600	coentyme PQQ synthesis protein III [Methanococcus jannaschii]	080	3	168
822	-	1 17	619	91 410141	OMFXI7 [Bacillus subtulis]	080	99	663
627	~	991	836	1 11205301	leukotoxin secretion ATP-binding protein (Meemophilus influenzae)	0.0	24	156
1044	-	-	149		vp2 [Narburg virus]	980	88	147
1220	~	1 571	1 413	pir A61072 EPSG	pir A61072 EPSG gallidermin precursor - Staphylococcus gallinerum	080	2	159
6152	-	3, 1	275	91 147556	(dp) (Bacherichia coli)	0,	\$	701
1 2947		503	279	191 1184680	polymucleoride phosphorylase (Bacillus subtilis)	08	79	225
1 3120	-	2	226	1911517205	67 kDa Myosin-crossreactive streptococcal antigen (Streptococcus yogenes)	80	99	225
3191		294		 gi 151259	HMG-CCA reductase (EC 1.1.1.88) Pseudomonas mevalonii pirik44756 A44756 hydroxymmethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	0	59	147
1560	- 2	1 285	434	[91]217130	photosystem 1 core protein B (Symechococcus vulcanus)	90	7.0	150
3655	-		346	91 415855	deoxyribose aldolase (Hycoplasma hominis)	D 60	3.6	000
3658	7	324	584	gx 551531	2-nitropropane dioxygenase (Williopsis saturnus)	0.00	3	261
1 3769	-	198	400	191 1339950	large subunit of NAUH-dependent glutamate synthase [Plectonema boryanum]	080	99	399
1781	-	69.5	368	Qi 166412	NADH-glutamate synthase (Medicago sativa)	080	62	345
39.88	-		1 287	gi 1204696	fructose-permease IIBC component (Msemophilus influentae)	080	69	240
4030	-	1.72	287	gi 1009366	Respiratory nitrate reductase [Bacillus subtilis]	0.8	09	285
1 4092	-	247	1 275	91/1370207	orf6 [Lectobacillus sake]	0	69	273
4133	-	089	1 342	191 39956		08	59	908
4231	-	692	348	41 289287	UDP-glucome pyrophosphorylame (Bacillus subtilis)	0.0	- 65	345
4265	<u>-</u>	595	299	91 603768	Hutz protein, imidazolone-5-propionate hydrolase (Bacillus subtilis) gi 603768 Hutz protein, imidazolone-5-propionate hydrolase Bacillus subtilis)	O		297
1 4504	-	49R	1 250	0: 1339950	large subunit of MADH-dependent glutamete synthase [Plectonema boryanum]	90	6.R	249
7	- 6	5998	6798	9 535351	Cody (Bacillus cubtilis)	62	6.1	108
		8295	7051	41 603768	Hulf protein, imidazolome-5-propionate hydrolase (Bacillus subtills) gi[601768 Hulf protein, imidazolome-5-propionate hydrolase Bacillus subtills]	•	•	1245
25		1 5273	5515	pir A36728 A367	5515 pir Aj6728 Aj67 acyl carrier protein - Rhizobium mellloti	67	65	243

proteins
D Know
2
simil
aureus - Putative coding regions of novel proteins similar to known proteins
nove]
٥
regions
coding
utative
,
500 III 6
'n

Contig	086 10	Start (nt)	Stop (nt)	match		E .	• sdent	length (nc)	
1 59	- 7	1173	1424	ai 147923	threonine dehydratame 2 (EC 4 2.1.16) [Escharichia coli]	- 62	2.5	252	
09			204	01 666115	oril uparream of glucose kinase (Staphylococcus xylosus) pir 552351 552351 hypothetical protein 1 - Staphylococcus xylosus	79	0,	707	
1.81	-	1 3002	1590	91 466862	ppsl; 81696_C2_189 [Mycobacterium leprae]	96	7	1413	
88		1 7023	6505		phosphoribosyl eminoimidazole cerboxylase I (PUR.E) (Secillus ubtilite)	79	0	519	
	9	2660	4554	0. 144906	product homologous to E.coli thioredoxin reductase. J.Biol.Chem. 1988) 263:9015-9019, and to F52a protein of alkyl hydroperoxide eductase from S.typhimurium: J.Biol.Chem. (1990) 265:10515-10540; pen reading frame A [Cloatridium pasteurianum]	79	35	1107	
102	=	7489	8571	91 143093	ketol-acid raductoisometame (macillus subtilis) sp P1753 ILUC_BACSU KETOL- Acid REDUCTOISOMERASE (EC 1.1.1.86) ACETOHYDROXY-ACID ISOHEROREDUCTASE) (ALPHA-KETO-BETA-HYDROXYLACIL EDUCTOISOMERASE).	66	3	1083	
201	=	06111	112563	91 149428	putative [Lactococrus lactis]	66	65	1374	
127	-	1 7792	9372	[gi]458688	PriC/RF3 Dichalobacter nodosus	67	\$ 80	1581	
- 13	-	1 2540	1983	191 506697	CapA Staphylococcus aureus	66	55	558	
-	~	1644	1156	gi 1498296	peptide methionine sulfoxido reductase (Streptococcus pnaumoniae)	64	47	687	
=	~	529	1098	91 467 457	hypoxanthine-guanine phosphoribosyltransferase [Bacillus subtilis] gil467457 hypoxanthine-guanine phosphoribosyltransferase [Bacillus ubtilis]	6	\$	072	
150	-	965	165	91 755602	unknown (Bacilius subtilis)	64	6.1	375	
1.76		1019	587	91 297874	[fructose-bisphosphate aldolase (Staphylococcus carnosus) pri/44943 A49943 fructose-bisphosphate aldolase (EC 4.1.2.13) - taphylococcus carnosus (etrain TM300)	6,	\$9	3	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7584	6874	 d1 1314298 	ORFS; putative Sms procein; similar to Sms proceins from Masmophilus influentes and Escherichia coli [Listeria monocytogenes]	6.	•	111	
1 205	91	HAR7	8498	q1 1044980	ribosomal procein LIR (Bacillus subtilis)	64	70	390	_
1 2 2 1	-		519	01 1303994	YqkM [Bacillus subtilis]	62 1	62	519	
57	~	1 4183	2801	q1 488430	alcohol dehydrogenase 2 (Entamoeba histolytica)	7.9	09	1381	_
243		1 8915	7896	g1 580883	ipa-88d gene product (Bacillus subtilis)	79	09	10201	_
279	-	1276	4329	Qi 413930	spe-6d gene product (Becillus subtilis)	62	59	609	_
300	-	11 -	1393	91 403372	glycerol 3-phosphace permease (Bacillus subtilis	64	62	1383	
100		2930	1935	51 950062	hypothetical yeast protein 1 (Mycoplasma capricolum) pir \$48578 \$48578 hypothetical protein - Mycoplasma capricolum SGC) (frequent)	6.2	0.9	966	
					1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、				

S oureus - futative coding regions of novel proteins similar to known proteins

Contig ORF :D ID	108F	Start (nt:	Stop (nt)	match acession	, matich gene name	E 1 0	1 dent	langth (nt)
352	9 -	110106	8896	91 216854	P47K (Pagudomonas chlororaphis)	1 62	59	1221
412	=	11153	578	Qi 143177	putative [Bacillus subtilis]	1 61	- 15	576
481	-	621	11124	21 786163	Ribosomal Protein L10 (Bacillus subtills)	79	99	*0 \$
516	-	702	1 352	060509 16	Nisf [Lactococcus lactis]	79	8.7	151
\$28		2457	1426	91143371	(phosphorthosy) aninolatidatole synthetase (PUR-H) (Bacillus aubtilis) pir H19316 AlbSCL phosphorthosyl (ormylglycinamidine cyclo-ligase EC 6.3.3.1) - Becillus subtilis	67	5	1032
538	-	3448	1 2825	19111370207	orf6 [Lectobacillus make]	1 67	6.7	624
5.70	-	~ -	421	[91] 476360	arginine permease substrate-binding subunit (Listeria monocytogenes)	66	19	420
645	- e	2663	3241	1911153898	transport protein (Salmonelia typhimurium)	62	62	678
6.8.3	-	25.	1 374	gi 1064795	function unknown [Bacillus subtilis]	9.	62	300
41¢	-	1 4700	1987	[gi 1407784	orf-1; novel antigen (Staphylococcus sureus)	6.	62	*1.
2929	-	-	(i)	19111524397	glycine betaine transporter OpuD (Bacillus subtilis)	1 62	61	986
2937	-	1357	1 202	[pir 552915 5529	initrate reductase alpha chain - Bacillus subtilis (fragment)	64	88	156
2940	-	1 768	188	1.111149429	putative Lactococcus lactis	96	2,	384
2946	-	015	286	91 143267	2-oxoglutarate dehydrogenase (odhA; EC 1.2.4.2) (Bacillus subtills)	62	61	285
2999	-	-	1 212	1911710020	nitrite reductase (nirs) (Bacillus subtilis)	66	65	210
3022	-	514	22.	dx 450686	1-phosphoglycerate kinase [Thermotoga maritima]	64	61	183
3064	-	-	715	g1 1204436	pyruvate formate-lyase [Heemophilus influenzae]	79	09	716
1083	-	1 2	1 220	[91]1149662	hypD gene product (Clostridium perfringens)	96	98	219
3126	-	101	411	19. [1339950	large subunit of NADH-dependent glutamete synthase (Plectonema boryanum)	7.9	\$\$	162
33.81	-	1 607	1 326	19111339950	large subunit of NADH-dependent glutamete synthase (Plectonema boryanum)	96	59	282
3345	-	-	476	01 871784	[Cip-like ATP-dependent protease binding subunit (Bos taurus)	79	69	474
3718	-	536	270	pir C36889 C368	leuB protein, inactive - Lactococcus lactis subsp. lactis (strain [L1403)	66	17	267
3724	-	159	107	191 1009366	Respiratory nitrate reductase (Becillus subtilis)	67	64	243
3836	-	609	312	21 1524193	unknown (Mycobacterium tuberculosis)	79	99	762
3941	-	7	765	(91/415855	deoxyribose aldolase (Mycoplasma hominis)	79	\$	ccc
F	-		=	91 143015	gluconete kinase (Becillus subtilis]	96	6	939
	-							

EP 0 786 519 A2

otains
r to known pr
us - Putative coding regions of novel proteins similar to known proteins
d lavor jo suc
e coding regio
eus - Putative
S. aur

5

Contig	J JORF	Stert (nt)	Stop (nt)	match acession	match gene name	E .	1 Ident	length (nc.)
1 4501	-	904	607	[91]1022726	unknown (Staphylococous haemolyticus)	96	99	198
1 4612	-	7	1 238	91 460689	TVG [Thermosctinomyces volgaris]	7.9	89 V1	78.2
7	-	-	- F	91 520753	DNA topoisomerase [[Bacillus subtilis]	80 L	9	1212
		2266	1220	91/216151	DNA polymerase (gene L; tig start codon) (Becceriophage SP02) gil579197 SP02 DNA polymerase (as 1.648) (Bacteriophage SP02) pir/A21498 DJBPS2 DNA- directed DNA polymerase (EC 2.7.7.7) - phage P02	80	5,	1047
6	-	1340	1089	gi 1064787	[function unknown (Bacillus subtilis)	92	5.7	252
32	- c	(808)	1 7702	91 146974	MH3-dependent MAD synthetase [Escherichia coll]	7.8	63	006
36	-	1 2941	3138	1911290503	glutamate permease (Escherichia coli)	78	53	198
3		117684	116221	91/1103941	Yqiv facillus subtilis	7.8	5.8	1204
52	127	114 10520	12067	91 1072418	gicA gene product (Staphylococcus carnosus)	78	6.5	1548
3	-	R679	5812	91/1212729	YqhJ (Bacillus subtilis)	8.	63	987
	-	670+	4376	21 466612	nika (Escherichia coli)	18	1,	348
16	6	10058	110942	91 467380	stage 0 sporultion (Bacillus subtills)	78	05	9.85
102	12	8574	10130	911149426	purative Lactocorcus actis	78	61	1557
112	9	1 3540	4463	91/854234	cymC gene product (Klebsiella oxytoca)	78	56	924
134	-	1898	1 1061	91 405622	unknown (Bacillus subtilis)	7.8	09	A2A
061	-	1 1805	2260	91 1256536	[putative [Becillus subtilis]	78	71	450
-	-	1 251	וונ	91 168060	lang [faericells nidulans]	92	88	375
166	-	1 7125	6163	gi 451216	Hannosephosphate Isomerase (Streptococcus mutans)	7.8	(9)	696
186	-	1 1586	295	91 289284	cysteinyl-tRNA synthetase [Bacillus subtills]	7.8	63	792
561	-	1 2749	2315	19111353874	unknown (Rhodobacter capsulatus)	78	88	435
66		4279	3623	91 143525	succinate dehydrogenase cycochrome b-558 aubunit (Bacillus aubtilis) pir[A1984][DEBSSC succinate dehydrogenase (EC 1.3.99.1) cytochrome 558 - Bacillus subtilis	78	25	65.
199		7209	5557	91 142521	decxyribodipyrimidine photolysse Bacillus subtilis pir all92 all192 uvrs protein - Bacillus subtilis sp pi4951 UVRC_BACSU EXCINUCLEASE ABC SUBUNIT C.	78	3	1653
222		3831	3523	011139596		78		309
					1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、			

Contag ORF	10 PF	Start (nt)	Stop (nt.)	setch scession	Jatch gene name	E	1 ident	length (nt)	
567	-	1865	2149	91,467439	remperature sensitive cell division (Bacillus subtilis)	9.	7	582	
321	<u> </u>	1734	7315	dr 142979	ORF) is homologous to an ORP downstream of the sport gene of E.coll; AF1 (Secillus stearothermophilus)	9.	55	420	
352	-	3714	7767	191 349050	actin 1 (Pheumocystia ceriniii)	78	42	231	
352		7592	1 6093	91 903587	NACH Gehydrogenase subunit 5 [Becillus subtills] sp[P1975] NDHF BACSU NACH OEHYDROGENASE SUBUNIT 5 (EC 1.6.5.3) NACH-UBIQUINONE OXIDOREDUCTASE CHAIN 5).	78	8	1500	
376	-	~ 1	583	[91[551693	dethiablatin synthese (Beallus spheericus)	18	3.4	582	
424	-	1595	1768	191 1524117	alpha-acetolactate decarboxylase [Lactococcus lactis]	7.8	89	114	
05.	-	1,914	988	[91]1030068	NADIP]H oxidorrductage, isoflavone reductase homologue [Solanum tuberosum]	7.8		6.76	
5.5.R	-	1 762	562	91 1511588	[bi[unctional protein [Methanococcus Janneschil]	7.8	0.9	107	
07.9	-	11152	1589	91 1122759	unknown (Becillus subtilis)	9,	3	438	
714	-	- 64	1 732	91 143460	17 kd minor sigma (actor (rpof, sig8; ttg start codon) (Bacillus ubtills)	78	52	649	
¥1,¥	-	-) SGB	[91]1377833	unknown Bactllus subtilis]	78	. 59	306	
981	-	1361	692	91 143802	GerC2 Bacillus subtilis	BC	9	069	
346	- 2	978	727	191 296947	uridine kinase (Escherichia coli)	96	79	252	
1045	-		ī 0 3	91 1407784	orf-1; novel antigen (Staphylococcus aureus)	18	19	399	
1163	7	H3:	1 1 116	gi 410117	diaminopimulate decarboxylase (Bacillus subtilis)	78	24	183	
2191	-	1 794	399	51 215098	excisionase (Bacteriophage 154a)	78	65	966	
2933	-	~ _	181	g1 1204436	pyruvate formate-lyase (Haemophilus Influenzae)	18	33 ا	180	
1041	-	6:1 -	717	1911624612	Git. (Escherichia coli)	18	53	189	
35#1	-	105	100	401/163186	[3-ketoacy1-coA thiolase [Saccharomyces cerevisies]	78	- \$5	767	
3709	-		230	01 460689	TVG [Thermoactinomyces vulgaria]	97	8.5	228	
3974	-	528	1 265	9: 558839	unknown (Becillus subtilis)	10	99	264	
3980	-		104	gi 39956	[1101c (Bacillus subtilis]	96	62	199	
1 9509	-	1 647	354	gi 1256635	dihydroxy-acid dehydratase [Bacillus subtilis]	1 78	- 55	294	
=	-	630	316	pir 509372 5093	hypothetical protein - Trypanosome brucei	78	29	315	
4185	-	-	6.11	94 1339950	large subunit of NADH-dependent glutamate synthage (Plectoneme boryanum)	18	8.8	771	

S. aureus - Putative coding regions of novel proteins similar to known proteins

•				*				
Contig ORF 10 10	ON.	Start	Stop (nt)	acession	mptch gene neme	E	1000	(nt)
4235	-	559	627	91 558839	unknown (Becillus subtilis)	78	0.9	327
452		2	302	91 603768	Hut! protein, imidatolone-5-propionate hydrolase (Bacillus subtills) qi 601768 Hut! protein, imidazolona-5-propionate hydrolase Bacillus subtills)	•	3	0
4368	-	612	1 307	191 1353678	heavy-metal transporting P-type ATPese [Proteus mirebilis]	7.8	\$	306
1940	-	428	1 216	91 1276841	glutamate synthase (GOGAT) (Porphyra purpures)	78	36 . 1	213
1 4530	-	1 474	238	19956		9.	9	237
	~	2969	1 2073	gi 1109684	Prov (Bacillus subtilis)	1.4	\$6	697
12	- 2	2426	1965	91 467335	ribosomal protein L9 (Secillus subtilis)	7.2	35	462
1 27	-		388	91 1212728	Yohi (Bacillus subtilis]	11	3	367
60	7	065	1252	191 40054	phenylalanyl-tawa synthetese beta subunit (AA 1-804) [Bacillus btilis]	1 44	09	663
2		2704	2931	91 606241	105 ribosomal subunit protein S14 [Escherichia colii] sp P02370 RS14_ECOLI 105 RIBOSOWAL PROTEIN S14. (SUB 2-101)	۲۲	65	22B
	=	65	16622	Q1 29779A	mitochondrial formate dehydrogenase precuraor (Solanum tuberosum) pir JQ22/2 JQ22/2 formate dehydrogenase (EC 1.2.1.2) procursor, itochondrial - potato		×	1164
001	-	4562	1 4002	9111340128	[ORF] (Staphylococcus aureus]	7.7	7 5	561
1 102	•	1 5378	1 5713	91 1311482	[acetolactate synthass (Thermus aquaticus)	7.7	5.7	336
601	-	1 4742	5383	191/10637	Unknown (Bacillus subtilis]	۲۲	99	642
117	-	2	1228	91/1237015	ORF4 (Bacillus subcilis	7.7	. 5	1221
124	2	1 1123	7688	91 405819	thysidins kinsse (Secilius subtilies)	۲۲	63	636
141	-	1146	985	91 849027	hypothetical 15.9-kDe protein (Bacillus subtilis)	רר	37	162
152	2_	7354	1983	911205583	spermidine/putrescine transport ATP-binding protein (Haemophilus	۲,	55	009
691	~	1004	1 1282	gi 473625	elongation factor EP-Ts' (Escherichia coli)	7.7	5.8	279
181	~	380	1147	91 216314	esterase Bacillus stearothermophilus	7.7	09	168
681	- 1	3296	3868	01 853809	(ORF) (Clostridium perfringens)	7.7	8	573
193	-	1 132	1 290	qi 130378B	[YqeH [Bacillus subtilis]	7.	24	159
195	-	8740	8 1.4	91 1499620	M. jannaschil predicted coding region MJ0798 [Mathanococcus jannaschil]	7.7	-	127
502	-	8428	5204	91/216340	long for adenylate kinese (Becillus subtilis)	7.7	91	225

TABLE 2

ontig ORF	ON F	Start (nt)	Stop (nt)	match	netch gene name	E .	1 ident	length (nt)
:	29	29 14795	114502	91/786155	Ribosomal Protein L23 [Bacillus subtilis]	1 11	62	767
211	~	1308	2084	91 410132	ONFX8 (Bacillus subtilis)	1	47	171
217	- 5	3478	1 4416	101 496254	tibronectin/fibrinogen-binding protein (Streptococcus pyogenes)	7.2	\$	939
232	-	1 26.7	966	91 1407784	or (-1, novel antigen (Staphylococcus sureus)	רר	57	132
233	- ~	1819	1346	91 467408	[unknown (Becilius subtilis]		61,	474
243		2661	2299	[91 516155	unconventional myosin Sus scrofa	11	32	363
299	[-	¥9	694	91 467436	unknown (Bacillus subtilis)	1 77	3	702
100		1468	1283	91 950071	ATP-bind, pyrimidine kinase (Nycoplasma capricolum) pir See605 Se8605 hypothatical protein - Mycoplasma capricolum SCC1) (fragment)	7	83	186
302	- 2	2741	1126	1911508980	pheb (Bacillus subtilis)	1,4	57	144
302		3635	1 4863	[91]147783	ruvg protein [Escherichie coll]	رد ا	09	1029
or or	5	1 5402	4197	91 1070015	[protein-dependent [Becillus subtilis]	ι ι ι	9	909
212		66	1391	 gi 143165 	malic_enzyme_(EC_1.1.1.38) Bacillus_stearothermophilus pir(A)3307 DEBSXS malata_debydronenage_oxaloacetate_decarboxylating) (EC_1.1.1.38) = bacillus_tearothermophilus	۲,	62	1293
225	~	1541	1 2443	q1 1399855	carboxyltransferase beta subunit [Symechococcus PCC7942]	۲۲ ا	5.8	803
121	5	9995	9651	01 39844	fumarase (citC) (sa 1-462) Bacillus subtilis	۲۲	65	1071
5	=	Ç .	1 568	9111154634	(YmaB (Dacillus pubtilis)	1,6	1.5	ij.
365	-	~	1021	92 143374	phosphoribosyl glycinamide synthetase (PUR-D: grg start codon) Bacillus subtilis)		62	0201
374	1	-	1 708	91 1405446	[transketolase (Bacillus subtilis]	77	7.9	802
385	-	11128	1 565	91 533099	endonuclesse III [Bacillus subtilis]	77 H	63	564
392	~	294	0 + 61	91 556014	UDP-N-acetyl maramate-alanine ligame (Becillum subtilis) spjmt0778 MURC_BACSU UDP-N-acetyLummanatealamine Ligame (EC .3.2.8) (UDP-N- ACETYLHUMANATEALAMINE LIGAMENT)	77	\$9	1347
405	5	4019	1 3570	91 1303912	Yqhw (Bacillus subtilis]	7.4	79	510
487	-	1302	1 1472	1911432427	ORF1 gene product (Acinetobacter calcoaceticus)	17	8	171
-	1 1 1							

aureus Putative coding regions of novel proteins similar to known proteins	
ureus - Putative coding regions of novel proteins similar to kn	prote
ureus - Putative coding regions of novel proteins Elmilar to	E C
ureus Putative coding regions of novel	
ureus Putative coding regions of novel	141 LM14
ureus Putative coding regions of novi	proteins
ureus Putative coding regions	nove
ureus Putative coding reg	j
ureus Putative	regions
oreus Pu	coding
	Putative
	- 2

Contrg ORF	ORF	Start	Stop (nt)	match Acession	, metch gene name	E is	1 tdent	lengt}-
523	~	1542	1351	91(1)87979	144% identity over 302 residues with hypotherical protein from Synechocystis sp. acression D64006.CD, expression induced by environmental strass, some similarity to glycosyl transferases, two potential membrane spanning helicas [Bacillus subtil	7.4	œ.	237
536	~	983	612	91/143366	adenylosuccinate lyase (PUR-B) (Bacillus subtilis) pir[C3913b k285DS adenylosuccinate lyase (EC 4.3.2.2) - Bacillus ubtilis		19	1,2
548	1 2	139	872	gx 143387	aspertate transcarbamylase (Bacillus subtilis)		7,95	\$1.5
597		~	481	904198	hypothetical protein [Bacillus subtilis]	7.1		387
633	-	1747	911	911387577	ORFIA [Bacillus subtilis]	רר	3	405
642	-	58	360	gi 46971	epiP gene product (Staphylococcus epidermidis)	۲۲	19	276
659	-	125	1219	gi 1072381	qlutamy -aminopaptidase Lactococcus lactis	רר	62	1095
670		1587	1820	91 1122760	unknown (Bacillus subtiliz	۲۲	. 85	214
1 789	-	~	391	gi 1377623	aminopeptidase Bacillus subtilis	ננ	\$	390
1 815	-	01	573	91/1303861	YqgN (Bacillus subtilis)	7.1	49	564
. -	_	-	5.5	91 1.01844	II. Influenzae predicted coding region 110594 (Haemophilus influenzae)	ι.	55	725
1 1043	: _	: -	188	91 460828	B969 Saccharomyces ceravisiee	7.1	99	186
1942	:	\$1.	109	19:1:60047	p00/acidic basic repeat antigen (Plasacdium (alciparum) pir A29232 A29232 101K malaria antigen precursor - Plasacdium alciparum (atrain Camp)	רר	8.	207
1 2559	-	-	171	91 1499034	M jannaschii predicted coding region MJ0255 [Methanococcus Jannaschii]	7.7		171
1 2933	7	-		42370	loyruvate formate lyase (AA 1-760) (Escherichia coli) ir SO1788 SO1788 formate C-acetyltransferase (EC 2.3.1.54) - cherichia coli	ננ	7	159
7366	-	95	1 292	91 1524397	glycine betaine transporter OpuD (Bacillus subtilis)	7.7	- \$	237
29762		6 14	309	91 40003	oxoglutarate dehydrogenase (MADP+) Bacillus subtilis p P23129 oDO]_BACSU 2-0XOGLUTARATE DEHYDROCENASE E1 COMPONENT (EC 2 4.2) (ALPHA- KETOGLUTARATE DEHYDROGENASE).	7.7	09	306
2979	7 -	87.9	400	91/1204354	spore germination and vegetative growth protein [Naemophilus influenzae]	11	61	279
2988		.09	ردر درد	9: 438465	Probble operon with orff Possible alternative initiation codon, ases [2151-2155. Howelogy with acetyltransferass.; putative Bacillus subtilis]	5.5	\$5	\$2\$
0667	-		167	491 142562	AFF synthsee epsilon subunit (Bacillus megaterium) pir B20599 PMBSEM H- transporting AFP synthase (EC 3.6.1.34) psilon chain - Bacillus megaterium	7.7	63	165
1 3032	-	-	389	91 488430	[alcohol dehydrogenase 2 [Entamoeba histolytica]	7.7	95	387
1057	-	-	195	91 468764	mock game product (Rhizobium mellioti)	77	05	195

proteins
to known pre
s similar
is - Putative coding regions of nevel proteins si
ncvel
70
regions
coding
Putative
1
aureus
S

Contig	ORF	Start (nt)	Stop (nt)	match	mgtch gane name	E .	1 ident	length (nt)
4008		726	00+	91 603768		64	52	327
8707	-	1 703	386	91 216278	gramicidin S synthetase 1 (Bacillus brevis)	7.1	55	318
i i		•	368	pir 552915 8529	nitrate reductase alphe chain Bacillus subtilis (fragment)	11	6.1	366
4115	-	-	348	91 517205	67 kDa Myosin-crosoreactive streptococcal antigen (Streptococcus yogenes)	7.1	65	368
i		290	782	[g1]1322245	nevalonate pyrophosphate decarboxylase (Rattus norvegicus)	۲۲	09	294
1 4613	~	*67	756	191 508979		7.7	``	168
4668	-	1 361	182	pir S52915 S529	pir 552915 5529 nitrate reductase alpha chain - Bacilius subtilis (fragment)	77	61	1 081
52	-	7	1627	gi 1150620	linsA (Streptococcus pneumonise)	76	5.8	1626
3.8		1488	2537	ptr a43577 a435	regulatory protein pfoR - Clostridium perfringens	76	57	1050
52	-	1 2962	4041	191111101061	dioxygenese (Hethylobacterium extorquene)	76	62	1080
95 1	120	120 127389	27955	1911467402	unknown [Becillus subtilis]	76	56	1 567
52	=======================================	112046	(12219	9111206040	weak similarity to keratin (Casnorhabditis elegans)	76	0+	124
16	- 2	1062	1 2261	91 475715	aretyl comisyme A acetyltransferase (thiolase) [Clostridium cetobutylicum]	76	57	1200
46	- 2	6.16	1626	gi 467422	unknown (Beclilus subtitis)	7,6	62	1907
9.8	-	2965	3228	101 897793	y98 gene product (Padiococcus acidilactici)	96	1 52	764
86	-	5922	6326	191 467427	methionyl-tRNA synthetase (Bacillus subtilis)	3,6	75	\$0\$
0		1322	1885	91 [216151	CMA polymerase (gene L; ttg start codon) [Bacteriophage SP02] gi 579197 SP02 CMA polymerase (aa 1-648) [Bacteriophage SP02] pir A21498 DuBPS2 DMA-i directed DNA polymerase (EC 2 7.7.7) - phage P02	36	3	264
124		- 80.04	7055	91 853776	peptide chain release factor 1 [Bacillus subtilis] pir [855437] [855437] peptide chain release factor 1 - Bacillus ubtilis	9,		0 40 1
797	-	2832	3311	gi 1204976	proly -tRNA synthetass (Haemophilus influentae)	3,6	cs 1	480
168	7	2617	1841	gi 1177253	putetive ATP-binding protein of ABC-type [Bacillus subtilis]	2,6	5.8	דרר
1 189	~	163	888	Q1 467384	unknown [Becilius subtilis]	92	3	726
235		2253	1 3518	191 142936		9.	~	1266
236	-	335	925	gi:1146197	[putative (Bacillus subtilis]	92	*	168
7.62	-	5323	5541	gi 1279261	[F13G].6 [Caenorhabditis elegans]	16	47	219

S anreas - Patelive coding regions of novel proteins similar to known proteins

1	Contag ORF	ORF	Start (nt)	Stop (nt)	match	. match gene name	E .	1 Ident	length (nt)
1 101 1134 911866312 partitive semblems permiss absolute abbillius abbillius 1018	1 263	- 5	1 5490	1585	191 1510348	[dihydrodipicolinate synthase [Mathanoco cue Jannaschil]	92	•	906
4 541 4624 91 143312 6 Shboophol-Itructokinase (959 great codon EC 27.1.11) [Macillus 1.8.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	701		1001	1794	91 666982	putetive membrane spanning subunit (Bacillus subtilis) pir 552382 552382 protable membrane spanning protein - Bacillus ubtilie	76	09	***
1 2 1016 911405566 yeef Excharichia coli	312		3611	4624		6-phospho-1-fructokinsse (gtg start codon; EC 2.7.1.11) Bacillus tearothermophilus)	9,	5.6	1014
1 672 1907 [6] [1] [6] [7] [6] [6] [7]	3.5		~	1 1036	gi 405956	yeeE [Escherichia coll]	96	, 65	1035
1 672 1907 Gill146215 19.01 identity to the Excherichia coli SI ribosomal protein; putative 1 1 222 Gill27084 Gill146215 19.01 identity to the Excherichia coli 1 222 Gill27084 Gill146215 19.01 identity to che control of the coli of the co	347	-	607	1071	91 396304	scetylornithine descetylese [Escherichia colii	96	7.5	1293
1 1 222 01 57004 aliternate gene name mpt; CG Site No. 497 [Exemericina coll	358		672	1907	01 1146215	19.0% identity to the Eacherichia coli SI ribosomal protein; putative (Bacillus subtilis)	36	2,8	3123
4 4311 4458 G 140364	176			222	91 537084	alternate gene name mgt; CG Site No. 497 [Escherichia coli] pir S56468 S56468 mgtA protein - Escherichia coli	76	61	222
1 2 107 4422 91 1301833 [Vafor (Bactillus subtilis) 1 2 107 991 186025 [ORF YKLO27v (Saccharomycas cerevisiae] 1 213 995 [91 13044 AlaT (Bacillus subtilis) 1 1054 557 [91 1002520 [MutS (Bactillus subtilis) 1 1054 540 [91 1002520 [MutS (Bactillus subtilis) 1 1054 540 [91 1002520 [MutS (Bactillus subtilis) 1 1054 101 1002520 [MutS (Bactillus subtilis) 1 1055 1050 [91 1000500 [MutS (Bactillus subtilis) 1 1056 [91 100500 [MutS (Bactillus subtilis) 1 1056 [91 1000500 [MutS (Bactillus subtilis) 1 1056 [91 100500 [MutS (976	-	1 4331	1 4858	91 143268	dihydroliposmide transsuccinylase (odh8, EC 2.3.1.61) [Bacillus ubtilis]	9,	61	528
1 2 107 gi 186025 ORF YKLO27V [Saccharomyces cerevisies] 1 4156 2844 qi [405464 Alaf [Bacillus subtilis] 1 1054 557 gi [805320 Huus [Bacillus subtilis] 1 1054 557 gi [805320 Huus [Bacillus subtilis] 1 1054 557 gi [805320 Huus [Bacillus subtilis] 1 1054 1055 1	404	-	1 4022	1 4492	191/1303823	[YqfG [Becillus subtilis]	97	90	421
1 1556 2454	41.	-	7	307	gi 186025	ONF YKL027w [Saccharomyces cerevisiae]	94	55	306
1 1014 557	412	=======================================	4356	2854	4111405464	Aler Decilius subtilis	9'	1 57	1503
1 1054 557 91 1000520 MutS Bacillus aubtilis	546		273	995	91 153821	straptococcal pyrogenic exotoxin type C (speC) precursor Streptococcus pyogenes]	92	36	723
1 16 735 91 885934 CIPB Synethococcus sp 16 1735 91 885934	598	-	1054	1 557	91 1002520		9,	13	498
2 175 796	165	-	1.6	250	gi 885934	Cips (Synechococcus sp]	9,	7	720
2 547 230 91 310613 Major capaid protein (Numan cytomegalovirus) 1 452 226 1302 91 904199 Nypothetical protein (Bacillus subtilis) 1 452 228 91 404199 Nypothetical protein (Bacillus subtilis) 1 24 206 91 142443 ADENYLOSUCCINATE SYNTHETASE (BC 6.3.4.4) IMP-ASPARATE LIGASE) 1 1156 580 91 1511333 H. jannaschii predicted coding region HJ1322 (Hethanococcus jannaschii) 1 486 244 91 467154 No definition line found (Mycobaccerium leprae) 1 529 266 91 1303984 YQKG (Bacillus subtilis) 1 1 1 1 1 1 1 1 1	209	~	271	R67	Qi 1486422	OppD homologue (Rhizoblum sp.)	96	1 52	624
1 2568 1302 91 004199	619	-	- + -	1 290	[91]330613	aajor capsid protein (Human cytomegalovirus)	92	47	258
1 452 228 Gi[40177 Spoof game product [Becillus subtilia] 1 24 206 Gi[10177 Spoof game product [Becillus subtilia] sp[P29726[PURA_BACSU 1 24 206 Gi[151133] M. Jannaschii predicted coding region HJ1322 [Hethanococcus jannaschii] 1 1158 580 Gi[151133] M. Jannaschii predicted coding region HJ1322 [Hethanococcus jannaschii] 1 529 266 Gi[1301984 YqqG [Bacillus subtilis] 1 161 182 Gi[1506706 CapJ [Staphylococcus aureus] 1 187 Gi[150898 Eransport protein [Salmonella typhimurium]	099	-	2568	1 3302	1	hypothetical protein [Becilius subtilis]	9, 1	\$5	312
1 24 206 01 142443 Addmylosuccinate synthetase [Bacillus subtilis] sp 229726 PUBA_BACSU ADENYLOSUCCINATE SYNTHETASE (EC 6.3.4.41 IMP-ASPARTATE LIGASE). ADENYLOSUCCINATE SYNTHETASE (EC 6.3.4.41 IMP-ASPARTATE LIGASE). 1 115.8 580 01 1511333 M. jannaschii predicted coding region MJ122 (Methanococcus jannaschii) 1 1 1 1 1 1 1 1 1	677	-	452	1 228	gi 40177	spoOF gene product (Bacillus subtilis	1 76	88	1 225
1 1156 580 gill511333 M. jannachii predicted coding region MJ322 [Methanococcus jannaschii] 1 486 244 gill67154 No definition line found [Mycobacterium leprae] 1 529 266 gill303984 YqMG [Bacilius subtilis] 1 529 266 gill506706 Capu (Staphylococcus aureus] 1 361 182 gill506706 Capu (Staphylococcus aureus] 1 1 1 1 1 1 1 1 1	962		24	1 206	91/162443	admylosuccinate synthetase [Becillus subtilis] sp P29726 PURA_BACSU ADENYLOSUCCINATE SYNTHETASE (EC 6.3.4.4) IMP-ASPARTATE LIGASE).	76	67	183
1 486 244	97A	-	1158	1 580	[911511333	M. jannaschii predicted coding region MJ132 (Methanococcus jannaschii)	76	98	1 579
1 529 266 91 1303984 YqkG (Backlius subtilis) 1 161 182 91 506706 Capu (Staphylococcus aureus) 1 1 1 387 (gi 153898 Eransport protein (Salmonella typhimurium)	166	-	486	244	1911467154	No definition line found (Mycobacterium leprae)	3,6	38	1 243
1 161 182	1563	: -	529	266	91 1303984	YqkG (Bacillus subtilis)	1 76	52	264
1 1 187 G1 153898 transport protein (Salmonella typhimurium)	2184	-	1 361	182	gi 506706	CapJ (Staphylococcus aureus]	٠, ا	987	180
	1 2572	•	-	1387	51 153898	transport protein (Salmonella typhimurium)	76	59	367

S aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	980	Start	Stop (nt)	a strch a cess ton	part h gene name	E I S	1 LJont	length (nt)
1 2942	-	29	00+	191 710020	nitrite (eductase (nir8) [Bacillus subtilis]	7.6	65	372
1 2957 1	-	1 776	316	[91]1511251	hypothetical protein (SP:P42404) (Mathanococcus Sannaschil)	16	-	162
2980 1	-	554	279	91 1405464	AlsT (Bacillus subtilis)	3,6	53	276
3015	-	649	326	91 408115	ornithine acetyltransferase (Bacilius subtilis)	76	- 19	324
3124	-	=	174	lg1 882705	ORF_0401 [Escherichia coli]	76	, 69	162
6416			161	1011168477	ferredoxin-dependent glutamate synthase (Zea mays) pir[Al8596 Al8596 glutamate synthase (ferredoxin) (EC 1.4.7.1) - aire	76	\$3	159
37.89	-	~ -	379	939956		7.6	55	178
1 1892	-	-	314	 ai 1510398	ferripyochelin binding protein Methanococcus sannaschii	76	- 55	312
3928	-	1 798	007	91(143016	persess [Bacillus subtilis	96	- 65	194
4159	-	757	386	sp P80544 MRSP_	HETHICILLIN-RESISTANT SURFACE PROTEIN (FRAGMENTS)	9,	99	372
+504	-	1.1.1	101	91 296464	ATPase (Lectoroccus lantis)	9,4	95	315
#6F+	-	767	548	94 987255	Nenkas disease gene (Homo sapiens)	9(5	246
4506	-	~	113	91/216746	D-lactate dehydrogenase [Lactobacillus plantarum]	9,	.	312
4546		1 417	247	91 1339950	large subunit of NADH-dependent glutamate synthase (Plectonems boryanum)	16	13	231
4596	-	676	161	gi 560027	cellulose synthase [Acetobacter xylinum]	91.	02	681
-	-	5257	1137	01 82532	ORF_0294 [Escherichia coli]	۶۲ ا	5	921
•	=	1 164	952	91140960	OfCase [Escherichia coli]	7.5	95	789
1 12	-	5888	3944	91 467336	unknown (Becilius subtilis)	25	۲۷	1992
1 23	#.T	1R 18272	117310	qi 1296433	O acetylserine sulfhydrylase B (Alcaliganes eutrophus)	۶۲		963
1 25	-	1 2356	1393	[91 1502419	Plax [Bacillus subtilis]	25	95	1038
96	-	5365	1 6037	91 1256517	unknown Schlioseccheiomyces pombe	\$2	45	67.6
9	=	113 (11186	12058	91 44972	nitrate transporter (Symechococcus ap.]	3.2	46	6.78
51		3474	1,3677	91 113607	sporulation protein (Bacillus subtilis)	27	19	102
3	9	16850	16590	16590 41 143402	recombination protein (tig start codon) (Bacillus subtills) gi[1303923 RecN Bacillus subtills]	25		192
24	-	3572	1 2568	9111204847	ornithing carbamoyltransferase [Haemophilus influenzee]	56	61	1005

roteins
known
5
Simila
aureus - Putative coding regions of novel proteins similar to known proteins
novel
o ç
region
cod:ng
Putative
Spains
^

3 462.8 1910 5 55.8 48.8 1 2140 3590 5 1240 3590 6 6084 6896 7 111 5.252 7 111 5.252 7 111 7.252 7 111 7 1 1139 8 1107 1107 1107 8 1202 1107 1107 9 1240 1122 123	Acession (E	1 Jent	lengt). (nt)
5 5588 4478 6826 1310 13240 1350	gi 143368 phos	phosphoribosylformyl glycinamidine synthetase I (PUR-L; gtg start odon) [Bacillus subtilis]	75	63	669
1 1340 3350 135		phosphoribosyl aminoidazole succincerboxamide synthetass (PUR-C; to start codon) (84cillus subtills)	75	\$	1114
5 2340 3590	gi 303916 YqiA	Yqia (Bacillus subtilis)	75	53	906
6 6084 6896 2 1844 1503 1727 1748 1727	gi 1064813 homo	homologous to sp:PHOR_BACSU (Bacillus subtilis)	75	36.	1251
1 1748 1503 1 1748 1727 1 11266 10649 5 2050 4221 1 283 143 1 283 143 1 204 1139 1 2024 1107 2 159 369 3 6900 5620 3 6900 5620 4 5900 5620 5 159 369 7 1240 1122	61 1064810 func	function unknown (Bacillus subtilis)	1.87	61 1	813
1 144 3727 1 141 3422 142 142 143	91 1001824 hypo	hypothetical protein (Synechocystlm ap.)	1 5'		344
1 11266 10649 5 2050 4221 1139 143 1139 1139	91 1147593 puta	putative ppGpp synthotase (Streptomyces coelicolor)	75	\$\$	1940
1	gr 1177251 c1wD	CIND gona product (bacillus subtilis)	7.5	1 52	900
1 283 143	gi 1524394 ORF-	ORF-2 upstream of gbsAB operon [Bacillus subtilis]	1.67	25	618
1 283 143 1 81 1139 2 4480 5903 2 4480 3185 4 3619 5995 1 2024 1107 1 2024 1107 1 2024 1107 1 2020 5620 2 650 5620 2 650 5620 3 6900 5620 2 591 1714 2 518 1714	01 1154632 NrdE	NrdE (Bacillus subtilis)	75	*	2172
1 81 1139 1299	91 405622 Lunkin	unknown (Bacillus subtilis)	75	98	Ξ
8 \$760 \$901	01 143316	ignpl gana products (Racillus megaterium)	75	£	1059
2 4480 3185 110 5419 5798 110 11	gi 1256654 54.8 Ba	54.8% identity with Neissoria gonorrhoese regulatory protein Filb; putative [Bacillus aubtilis]	5.	7	14:
10 5439 5798	g1 467403 sery	seryl-tRNA synthetase (Bacillus subtilis)	1.5	24	1296
1 2024 1107 110	od/ul 201195	hypothetical protein [Synechocystis sp.]	75		360
1 2024 1107 110 95.9 9.74 1 1 1 1 1 1 1 1 1	gi 755153 ATP-	ATP-binding protein (Baciliue subtilis)	75	52	A25
10 9529 9374 4 2605 4596	gi 143037 porp	porphobilinogen desminase (Bacillus subtilis)	75	58	916
4 2605 4596 5 4596 5 1 2 1 2 1 2 1 2 1 2 1 2 2	st. P25745 YCFn_ HYPO	HYPOTHETICAL PROTEIN IN PURB 5'REGION (ORF-15) (FRAGMENT).	75	09	156
3 6900 5620 2 159 389 1 29 847 2 516 1714 1 2240 1122	91 14244C ATP-	ATP-dependent nuclease (Bacillus subtilis)	1.5	95	1992
2 (59 389 129 122	a. 1256135 YbbR	YbbF (Becilius subtilis)	7.5	53	1281
2 516 1714 1 2240 1122	g1 1052800 unkn	unknown (Schizosaccharomyces pombe)	1.81	- 85	ล
2 51A 1714 1 2240 1122	gi 1205958 bran	branched chain as transport system II carrier protein (Haemophilus		Q	813
1 2240 1122	gi 971337 nitr	nitrice extrusion protein (Bacillus subtilis)	. 25	53	1611
	q: 1002521 HULL	Mutt (Becilius subtilis)	75	75	6111
233 3 31314 1859 01 46740	g1 467405 unkn	unknown (Bacillus subtilis)	- 22	6.5	546

Cont.19 ORF	08F	St art	Stop (nt)	acession	match dens name	# 1 s	1 ident	length (or)
1 269	-	325	164	9111211246	methyl coenzyme H reductase system, component A2 [Hethanococcus jannaschil]	75	05	16.2
1 292	-	1 1389	113	9111511604	M. jannaschii predicted coding region MJ1651 (Methanococcus jannaschii)	35	9	#10
304	-	6771	2261	97,1202328	surfactin (Haemophilus influentae)	۲۶	\$\$	6
312	-	2417	3387	91 285621	undefined open reading frame [Bacillus steerothermophilus]	7.5	62	951
312	- 5	1 4622	6403	16111041107	Pyruvate Kinase (Bacillus psychrophilus)	7.5	57,	1782
1 319	==	353	1 877	01 1212728	Yqhi (Becillus subtilis)	2.5	2	525
120	-	4321	1 5031	191010101	OMP decarboxylase (Lactococcus lactis)	7.5	3.5	111
320	9	1 5010	\$642	91/143394	OMP-PRPP transferase (Bacillus subtilis	۲۶	0.9	613
777	-	1519	2048	[91] 487433	citrate synthase II (Bacillus subtills)	۲,	9.6	570
394	~_	699	1271	gi 304976	matches \$500017. APP_CTP_A and P500101: EFACTOR_CTP. similar to longstion factor G. TetH/TetO tetracycline-resistance proteins Escherichia coif!	\$2	3	(n.)
423	-	1 127	678	1911183839	unknown (Pseudomonas seruginosa)	7.5	65	777
:	7	1 1603	1929	[gi 149211	acatolactata synthase (Klebsiella pneumoniae)	۶۲	63	121
97.	: ~ : -	176	1540	gi 312441	dihydroorotase Daciilus caldolyticus	25	62	1365
4.86	-	767	249	lg1 1149682	potf gene product (Clostridium perfringens)	7.5	\$\$	246
146	-		194	91 143582	spoili£A protein [Bacillus subtilis]	25	65	792
40H	-	R24	1504	gi 143328	phoP protein (put.); putetive Bacillus subtilis	52	47	6.81
6	~	1061	162	91(1387979	44% identity over 302 residues with hypothetical protain from Symechocystis sp. accession D64006_CD; expression induced by environmental stress; some similarity to glycosyl transfereses; two potential membrane-spanning helices (Becilius subtil	25	15	264
268		641	+53	ptr JC4110 JC41	triacy/glycerol lipase (EC 3.1.1.3) 2 - Mycoplasma mycoides subsp. mycoides [ISC3]	2.5	80	189
613	~	1 430	233	gi 330993	tegument protein (Saimiriine herpesvirus 2)	۶۲	\$2	198
621	-	-	525	91 529754	spec (Streptococcus pyogenes)	۶۷)	43	\$28
1 642	-	1 1809	2474	91 1176401	EpiG (Staphylococcus epidermidia)	۶۲	21	909
646	~	1 454	657	191172442	ribonuclease P [Saccharomyces cerevisies]	75	17	502
657	==		347	91 882541	OUF_0236 [Eschorichia coli]	27	47	345
750	-	1662	832	91,46971	epip gene product (Staphylococcus epidermidis)	56	57	631

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2		match gene name YqhT Bacillus aubtilis multidrug resistance protein (Hemophilus influence) lesh protein, inactive Lactococcus lactis aubap, lactis (strain IL140) lesh protein Azorhizobium caulinodans MFRA protein Azorhizobium caulinodans MFRA protein Azorhizobium caulinodans MRA protein Azorhizobium caulinodans MRA protein Machilus subtilis L-glucamine-Defractore-E-phosphate anidotransferase Bacillus aubtilis larginnase Bacillus caldovelox Lympothetical protein Symachocystis ap. Lympothetical protein Machilus subtilis pit AZORS/01A7650 COUTAMARE N-ACETULUSUTAME RC 2 3 1.33 ORNITHINE ACETULIAANSFERAES ORNITHINE MACHILUSUTAME TYTHIA EXCTILIAANSFERAES ORNITHINE MACHILUSUTAME EXCTILIAANSFERAES ORNITHINE MACHINIS Probable amino acid activating domain - icrocystis aeruginose (fagment) Exepiratory nitrate reductase Bacillus aubtilis Exepiratory nitrate reductase Bacillus aubtilis Exippopolymanical albuvitame Uludo) Exippopolymanical albuvitame Uludo) Exippopolymanical albuvitame Uludo) Exippopolymanical albuvitame Uludo Uludo Uludo Uludo Uludo Exippopolymanical albuvitame Uludo Uludo Uludo Uludo Ulu	match matc	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Scart (ar) 1		
255	·	7.5	[D-lectate dehydrogenase [Lactoback]]us plantarum]	10;1216746	259	2	-	4005
•	59	٤		p11 D16AB9 D36B	6/1	- 1		1957
	89	75	ATP synthase subunit beta (Bacillus subtilis)	91 43391	100	æ :		1160
	5.8	15	Respiratory nitrate reductase (Bacillus subtills)	gi 1009366	210	919		3880
7	999	75	edenine_phosphoribosyl-transferase [Escherichia_coli]	91 145294	365	139	~ -	3139
-	2	27	paptide synthetase module [Hicrocystis seruginose] pir_S49111 549111 probable amino acid activating domain - icrocystis seruginose (fragment) (SUB 144-528)	91 899317	212	\$		51112
~ ;	57 }	7.5	Pyruvate Kinese (Bacillus psychrophilus)	91 1041097	180	-	- :	3105
7	\$	1.5	pyruvate formate-lysse activating enzyme (Haemophilus influenzae)	91 1204435	1 387	07.0		3010
7	5.4	1.5	Muth. [Bacillus subtilis]	gi 1002521	00	19.8		1529
_	5.7	75		91 1205488	163	324	-	1500
-	ę	27	-~ :	91 304135	137	172		126A
_	2	\$7	alkaline phosphatase regulatory protein (Bacillus subtills) pir A27650 A27650 regulatory protein phoR = Bacillus subtills sp P2J345 PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (EC 2.7.3)	91 143331	374	219	~	1109
-	1 69	1.5	[L-glutamine-D-fructose-6-phosphate amidotransferase [Bacillus ubtilis]	911726480	232	3.84	-	1059
~	8.5	7.5	hypothetical protein (Symechocystis sp.)	91 1001373	252	37	~	971
-	- 05	7.5	srginase (Bacilius caldovelox)	91 1276985	329	493	-	940
•	09	3.5	Rho Factor (Bacillus subtilis	911143434	260	1117	_ _	
-	. •	1.5	NFRA protein (Azorhizobium caulinodans)	91 509411	160	318	-	900
-	5.5	7.5	[gap] gene products [Bacillus megaterium]	91 143316	180	-	_	19.3
7	63	75	- Lactococcus lactis subsp. lactis	pir B36889 B368	1 4.82	961	- -	375
-	51	75	multidrug resistance protein (Haemophilus influentae)	91 1205145	393	563	7	163
	52	75	YqhT [Bacillus subtilis]	411303901	481	~		754
lengt (nt)	* adont	E .	match gene name	match acession	Stop (nt)	Start (nt)	ID OR	Contig ID

 aureus - l'utative noding regions of novel proteins similar to known proteins
Known
Ç
similar
proteins
nove
jo
regions
coding
5
Futat
) (n
Suc ous
Š

2	<u>c</u>	110 (ut)	(nt)	matc); acession	match gene name	E .	·	(ut)
1117	-	-	339	qi (49435	[puretive [Lectococcus lactis]	75	55	939
4136		602	303	Q1 450688	Issum gene of Ecopril gene product [Escherichia coll) pir S18437 S18437 hadm protein - Escherichia coll pir S09629 S09629 hypothetical protein A - Escherichia coll (SUB 40-520)	-	95	000
414	-	668	336	191148972	nitrate transporter (Symechogogous sp.)	\$2	61	133
4237		664	374	1911133950	large subunit of NADH dependent glutamate synthase (Plectonema boryanum)	- 27	. \$5	291
4306	~		318	91 294260	major surface glycoprotein [Pneumocystis carinii]	- 2	6.9	246
1343	-	1.115	950	91 1204652	nethylated-DNA - protein - cysteine methyltrans(erase (Haemophilus influenzas)	1.5	5.2	15.1
1552	-	620	1 312	gi 296464	ATPase [Lactococcus lactis]	75	5.5	109
96	-	9715	6126	[91]443793	Nupc Escherichia colu	74	20	151
		6910	6221	g1 1239988	hypothetical protein [Bacillus subtilis]	7.6	\$\$	069
5.6	-	07701	112221	19111000451	Trep (Bacillus subtilis)	- **	57	1652
1.9	7	2266	1622	191141015	aspartate tRNA ligase (Escherichie colii	74	52	645
99	-	1 5063	4848	191 1212729	[YqhJ (Bacillus subtilis]	7.	47	216
	==	14334	114897	91 1510631	endoglucanase (Methanococcus jannaschii)	*.	52	564
102		112561	111136	191,149429	[putative [Lactococcus lactis]	74	67	676
102	=	13121	114419	91 149435		74	75	1299
104		4873	3902	91 39478	ATP binding protein of transport ATPasse (Becillus (Irmus) II SI5466 S15466 ATP-binding protein - Becillus (Irmus p P25946 YATR_BACFI HYPOTHETICAL ATP-BINDING THAMSPURT PROTEIN.	7	65	51.6
116	5	1 8574	1 7091	191 1205430	[dipeptide transport system permesse protein (Haemophilus influenzae]	1.4	6	1482
120		4342	4803	gi 146970 	ribonucleoside triphosphate reductase [Escherichia coli pir a47331 a47331 anserobic ribonucleotide reductase - Escherichia oli	74	58	462
121		1965	1859	9111107528	ttg start [Campylobacter coli]	1 1	15	621
128	-	2320	11881	91 143318	[phosphoglycerate kinase [Bacillus megaterium]	74	5.7	1212
130	-	1 5237	1672	191 1256653	DitA-binding protein (Bacillus subtilis	74	0.9	\$55
136	-	6745	5150	0 - 91 143076	histidase (Secilius subtilis)	1 74	8.5	1596
145	-	- 664	1368	191 40773	devA gane product (Anabaena sp.)		\$	105
								, , ,

aureus Putative coding regions of novel proteins similar to known proteins

5

Cont.19 10	081	Start	Stop (nt)	match	patch dane name	E .	, ident	(nt)
164	110	111064	111375	911580900	ORF3 gane product [Bacillus subtilis]	1 1	52	312
271	~	3109	1 2624	Qi 642656	unknown (Rhizoblum meliloti)	1,4	•	₽ ₩₽
175	-	1 6064	5612	01 854656	Na/H entiporter system ORF2 [Bacillus alcelophilus]	1 7.	97	453
195		11346	110339	19111204430	hypothetical protein (SP:P25745) [Haemophilus influenzae]	7.	\$\$	1008
205	117	9619	9029	01 1044979	ribosomal protein L6 (Bacillus subtills)	~	. 79	561
236		5574	6710	191,1146207	putative (Becillus subtilis)	74	63	1117
241	-	1 4521	1334	191 694121	malate thiokinase (Methylobacterium extorquens)	*	5.2	1188
246		3305	2799		single strand DNA binding protein (Bacillus subtilis)	7.4	79	205
249	-	16091	1 5313	19111524397	glycine betaine transporter Opu3 (Bacillus subtilis)	74	55	66.01
261	7	4389	1800	91 809542	CbrB protein Erwinia chrysanthemi	7	42	906
278	•	5714	1 4665		ATP-binding protein (Haemophilus influenzae)	7.4	*	1050
309	-	1 1220	999	91 1205579	hypothetical protein (GB:U14003_302) [Haamophilus influenzae]	7	53	\$55
36	~	1473	1 862	911143398	quinol oxiduse [bacillus subtills]	74	5.5	612
320			1065	91 143389	oputeminase of carbamyl phosphate synthetase (Bacillus subtilis) (EC priesses) priesses (ES) opytimidine-repressible, small hain - Bacillus subtilis (EC 6.3.5.5), pyrimidine-repressible, small hain - Bacillus subtilis	,	9	1065
140	-	3.82	11128	gi 534857	ATPage subunit a (Bacillus stearothermophilus)	7	2.0	141
405	7	1742	1101	191 1303915		*	59	432
	-	1 2503	1 3270	91 473902	alpha-acetolactate synthase [bectococcus lactis]	74	95	1996
452	-	-	1 942	91 413982	ipa-58r gene product (Bacillus subtilis)	3.4	52	942
194	-	-	1193	01 558494	homoserine dehydrogenase (Bacilius subtilis)	4,	51	1191
194	~-	1174	1407	dx 40211	[threonine synthase (thc) (AA 1-352) [Bacillus subtilis] ir A25364 A25364 threonine synthase (EC 4.2.99.2) - Bacillus btilis	*	26	234
462		1 402	134	[91 142 520	thioredoxin [Bacillus subtilis]	7.4	62	133
478	-	574	1 320	[0, [1499005	glycyl-tRNA synthetase (Methanococcus)annaschii)	14	52	255
501	2	98.	1 1740	1911217040	acid glycoprotein (Streptococcus pyogenes)	7.	58	1002
551		4083	2791	91,143040	glucamate-1-semialdehyde 2.1-eminotransferase [Becilius subtilis] pir[D42728[D42728 glutamate-1-semialdehyde 2.1-eminomutese [EC .4.3.8] - Becillus subtilis	7.4	22	1293

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop (nt)	match	match gene name	Eis	/ Ident	length (nt)
573	 	-	1 477	9111006605	hypothatical protein (Symechocystis sp.)	74	38	477
965	~	1780	1298	91130383	YogF [Bacillus subtilis]	74	55	483
8 1 9	7	2924	1758	gi(1146237	21.41 of identity to trans-acting transcription factor of Secharomyces cerevisies, 25% of identity to sucrose synthese of Zea mays; putative [Becillus subtilis]		55	1167
659	- 2	1269	1595	91 1072380	ORF3 (Lactococcus Lactis)	14	62	127
724		676	881	Ux 143374	phosphoribosyl glycinamide synthetase (PUR-D, grg start codon) Bacillus subtliss	74	8 %	186
3.5	1 2	109	1209	191 (151813	ORF1; putative (Streptococcus parasanguis)	74	\$0	909
1 836	-	2	1 259	191 143458	ORF V (Bacillus subtilis)	74	7.4	#50
686	7	1 443	724	91 1303994	Yqkm (Bacillus subtille)	*	4	282
1106	1	-	492	gi 16970	epiD gene product (Staphylococcus epidermidis)	74	3.4	192
1135	- 2	1 373	1 528	91 413948	ipa-24d gene product (Bacillus subtilis)	74		156
1234	-	1 412	455	91 495245	recJ gene product (Fryunia chrysanthemi)	14.	36	366
1 2586	-	7	238	91 1149701	sbcc gene product (Clostridium perfringens)	74	6.5	237
1 2959	- 1	1 798	00	91 1405454	aconitase (Bacillus subtilis)	7.	9	399
7967	-	1 650	1 363	g1 4506R6	J-phosphoglycerate kinese [Thermotoga maritima]	74	æ.	2##
2983	1 -	-	191	gi 1303893	Yqht (Bacillus subtilis)	74	26	189
3018		2	223	91;143040	qlucemate-1-semialdehyde 2.1-mainotransferase [Bactilus subtilis] pir D42728 D42728 glutamate-1-semialdehyde 2.1-aminomutase (EC .4.3.8) - Bacillus subtilis	7	\$6	222
3038	-	015	256	pir \$\$2915 \$529	initrate reductase alpha chain - Bacillus subtilis (fragment)	74	5	255
1 3062	-	374	189	91,1107528	ttg start Campylobacter col1	* L	5.1	186
4035	-	1 184	360	91 1022725	unknown (Staphylococcus haemulyticus)	14	79	177
4045	-	1 607	1 305	gi 1510977	M. jannaschii predicted coding region MJ0938 (Methanococcus jannaschii)	74	41	303
4283	-	1.71	304	gi 520844	orf4 (Bacillus subtilis)	*	5.8	168
6777	-	_	221	91 580910	peptide-synthetase ORF1 [Bacillus subtills]	- ; - ;	5.4	219
4587	-	458	231	91 1370207	orf6 (Lactobacillus sake)	7	59	228

5. aureus - Putative coding regions of novel proteins similar to known proteins

Contag ORF	ORF	Start (nt)	Stop (nt)	match	match gene name	E (8	1 ldent	length (nt)
4603		29	214	92 146208	glutamate synthase large subunit (EC 2 6.1.53) (Escherichia coli) pir/a29617[A29617 glutamate synthase (NADPH) (EC 1.4.1.13) large hain - Escherichia coli	7.	09	1 B 6
1 4670	-	1 366	184	91.1256135	YbbF (Becillus subtilis)	7.	5	(#I
~	110	1 7953	7162	94:143727	putecive (Secillus subtilis)		77	761
=	~	2454	2761	91 166338	dihydroorotate dehydrogenase (Agrocybe segerite)	7.3	3,	1083
-		2024	1020	91/143373	phosphoribosyl aminoimidazole carboxy formyl ormyltransfersse/inosine monophosphate cyclohydrolase (PUR-H(J)) Bacillus subtilis	23	2	\$00.
		5426	4635	01/1468939	maso-2, -butanadio dehydrogenase D-acetoin forming) (Klebsiella pneumonise	23	899	792
1 23	117	117379	16360	94 297060	ornithine cyclodeaminase (Rhizobium mellioti)	ני	7.5	0701
1 29	- 2	1 692	[1273	91/467442	stage V sporulation (Bacillus subtills)	7.7	25	582
16 -	- 5	6467	4614	91/414000	tps-76d gene product (Bacillus subtills)	6,4	55	1554
1 37	; = -	8658	7402	gi .429259	[papT gene product [Bacillus subtilis]	3 د	65	1257
1 37	-	1738	7562	91,168367	alpha-isopropylmalate isomerase (put.); putative [Rhizomucor ircinelloides]	در ا	25	177
		1 3931	4896	911405885	yein [Escherichia coli]	8.7	88	946
7	•	5041	4238	91 540895	unknown (Bacillus subtilis)	13	63	# O #
-	Ξ	13167	B306	191142009	moulb gune product Escherichia coli)	7.3	0.5	240
\$	-	2439	0801	91 1109685	Prow Bacillus subtilis	د ر ا		64 2
2	=	114036	113794	101 413931	Lps-7d gene product (Bacillus subtills)	3 در ا	19	243
59	-	1430	1 2248	01 147923	[threonine dehydratase 2 (EC 4.2.1.16) [Escherichia coli]	(ر ا		R 19
59	-	1456	06.7	191 677944	Appr (Becillus subtilis)	ני	96	729
0	~	2,00	1 860	91 580932	murD genm product (Bacillus subtilis)	173	53	516
102	2	10124	111179	Q1 580891	3-isopropylmalate denydrogenase (AA 1 - 365) [Bacillus subtilis] pir[A26522]A26522 3-isopropylmalate dehydrogenase (EC 1 1.1.85) - acillus subtilis	در <u>ا</u>	55	1056
109	~	3493	2600	19111510849	M. jannaschii predicted coding region MJ0775 (Methanccoccus jannaschii)	٤٢	0.0	46.8
120	-	4782	\$275	91 146970	Inbonucleoside triphosphate reductase (Escherichia coli) pir a47331 a47331 anaerobic ribonucleotide reductase - Escherichia oli	در	\$6	51.6
1 120	-	5726	6223	[gi]1204333	anserobic ribonucleoside-triphosphate reductase [Haemophilus influenzae]	7.3	6.2	498

i aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	IORF ID	Start	Stop	match	' 'hattph gene name	E in	1 Ident	length (nt)
77.	- 5	4151	4363	191 87 1048	[HPSN2 - heavy chain potential motor protein [Gierdie intestinelis]	7.3	7	213
97	9	5952	4324	1911634107	kdpB [Escherichia coli]	(ر	65	1629
142		1 7040	1 59.19	gi 410125	rib; gene product [Nacillus subtilis]	ני	1 57	1122
6		9981	7171	411460892	heparin binding protein-44, HBP-44 (mice, Peptide, 360 as) pir JX0281 JX0281 heparin-binding protein-44 precursor - mouse gi 220434 ONF (Hum musculus) (SUB 2-360)	5	83	150
158	-	-	1431	u1 882504	ORF [550 [Eacherichia coli]	(ر	57	1631
174	9 -	5352	4525	93 1146240	ketopentoste hydroxymethyltrensferese Bacillus subtilis	در ا	. 55	A 28
175	±	5537	5178	9: 854657	[Na/H antiporter system ORF3 [Bacillus alcalophilus]	7.3	95	360
186	- 5	659	5493	467477	unknown (Bacillus subtilis	67	4 8	1101
249	9	6283	6272	[91 1524397	glycine betaine transporter Opub (Bacillus subtilis)	13	9.6	555
265	-	1873	2280	Q1 39848	[U] [Bacillus subtilis]	3 در	;	\$ 0\$
270	-	976	1 582	q1 7R0461	220 kDa polyprotein (African swine fever virus)	67	5.3	255
#1 Z	-	4283	1 3618	ді 120н965	hypotherical 23.3 kd protein (Escherichia coli)	ני	69	999
279	-	4984	1 3593	[g1 1185288	[isochorismate synthase [Bacillus subtilis]	6.7	- S	1392
291	-	1207	1575	gi 1511440	glutaminefructose-6-phosphate transaminase (Methanococcus jannaschil)	7.3	6 3	369
229	- 2	735	1166	gi 467437	unknown (Bacillus subtilis	13	8.8	432
299	- 5	2050	3234	gi 467439	[temperature sensitive cell division [Bacillus subtills]	در ا	53	1185
755	-	1237	726	1911536655	ORF YBR244W [Saccharomyces cerevisies]	13	ţ	210
336	7	1827	1036	191 790943	urea amidolysse (Bacillus subtilis)	13	. 5:	792
2.4	-	1389	1874	91 1405451	YneJ (Bacillus subtilis)	67	\$5	987
433	-	1916	2554	91 473902	alpha-acetolactate synthase (Lactococcus lactis)	33	20	639
808	~	1795	1028	Q1 467483	unknown (Bacillus subtilis)	13	26	768
513		1709	918	gi 1146220	NAD+ dependent glycerol-l-phosphate dehydrogenase (Bacillus subtilis)	13	5.6	792
533	~	239	. כני	, 91 1510605	hypothetical protein (SP P42297) [Methanococcus jannaschii]	13	4	467
246	7	1148	2815	19:141748	hadM protein (AA 1-520) [Escherichia coli]	7.3	52	1668
\$49	7	762	382	19111314847	CinA (Bacillus subtilis]	٤٦	5.7	383
567	-	1346	678	[gi]410137	ORFX13 (Bacillus subtilis)	3 ا	2.0	672
					10. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		1	

EP 0 786 519 A2

proteins
o known
imilar t
- Putative coding regions of novel proteins similar to known proteins
novel pr
ions of
oding reg
CALLVE CO
aureus - Put
S. aure

Cont.19	04 E	Start	Stop (nt)	match	Racch gene name	E 13	, ident	(nt)
716	- 2	654	11112	91 (125662)	exodeoxyribonuclesse (Bacillus subtilis)	£ ۲	9.6	657
71.1	-		7.29	ui 142010	Shows 70.2% similarity and 48.6% identity to the EnvH protein of almonella typkimurium (Anabaena sp.)	ני	2	675
274		-	209	91 409286	DarU (Bacillus subtilis)	(۲	52	707
1 182	-	_	403		(gap) gene products (Becillus negaterium)	13	. 56	403
149		451	1 762	91 1063246	low homology to P14 protein of Heamophilus influentar and 14.2 kDa protein of Escherichia coli (Bacillus subtilis)	3 د ۲	\$6	312
960	==	· _	116	191/853754	ABC transporter (Bacilius subtilis)	در	88	606
908		1209	6+6	gi 143786	typicohanyl-ERNA synthetase (EC 6 1.1.2) [Bacillus subtilis] pir JT0481 YMSS typtophanFRNA ligase (EC 6.1.1.2) - Bacillus ubtilis	('	215	261
616	~	4839	1 3097	91 41748	hsdw protein (Am 1-520) [Escherichie coli]	173	52	1743
633		1 798	00+	906988 15	argininounccinate synthetese [Streptomyces clavuligerus] pir[557659]597659 argininosuccinate synthese (EC 6.3.4.5) - treptomyces clavuligerus	13	- 59	399
857	-		290	gi 348052	acatoin utilination protein [Bacillus subtilis]	۲۵	05	288
1009		061	398	91 40100	rodC (tag1) polypeptide (AA)-746) [Bacillus subtliss] if S06049 S06049 rodC procein - Bacillus subtlis p P13485 TAGF_BACSU TECHOIC ACID BIOSYNTHESIS PROTEIN F.	ני		193
101			213	q1 529357	No definition line found (Genorhabditis elegans) sp/P46975(STT)_CAREL OLIGOSACCHARYL TRANSFERASE STT) SUBUNIT OHOLOG.	73	\$	513
1101	-		1 491	1911142706	comol gone product (bacillus subtillu)	2	7	(E 7
1174	-	1 395	1 204	gi 11149513	alphala subunit of laminin 5 (Homo septens)	2	0.9	192
2,117	-	559	329	1911173817	'ORF' [Escherichia coli]	73	57	327
11.87	-	-	1 209	191 580870	ipa-17d qoxA gene product [Bacillus subtilis]	2.	25	207
1206		72	245	1911144816	formylterrahydrofolete synthetese (FTHFS) (ttg start codon) (EC .3.4.3) [Hoorells thermoscetics]	2		174
1454	-	423	1 243	91 121 125	unknown (Schizosaccharomyces pombe)	7.3	53	183
1469	-	517	1 260	191 130787	YqeG Becillus subtilis	2	- 55	1258
1761	-	374	189	\$616 101,	Hst26As gene product (Drosophile simulans)	ر ر	34	186
1849	-	1 467	1 243	91 162307	DNA topolsomerase II (Trypanosoma cruzi)	۲,	09	225
2055	-	- 2	007	[gi 559381	P47K protein (Rhodococcus erythropolis)	در	34	199
2556	-	- 2	1 244	91 145925	[fec8 [Escherichia coli]	23	1 62	243

1 146 135 91 1184680 pr 1 165 132 91 113986 pr 1 1 1 1 1 1 1 1 1	Contig 10RF	ORF	Start (nt)	Stop	- Arch - Arch - Archardon - Ar	match gene name	E .	l ident	length (nt)
1 146 175 94 141997 94 1 156 175 94 141997 94 152866 94 175866 94 175866 94 175866 94 175866 94 175866 94 175866 94 175866 94 175866 94 175876 94 94 175876 94 94 175876 94 94 175876 94 94 175876 94 94 175876 94 94 175877 94 94 175877 94 94 175877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 176877 94 94 94 94 94 94 94	2947	~	549	00+	91 1184680	polymucleotide phosphorylase (Bacillus subtilis)	7.3	51	0\$1
1 655 129 94 113931 640 1 185 134 641 13866 10 114,9521 9 11 12068 11 1206 120	2956	_	746	375	(1,13397)	quinol oxidese (Bacillus subtilis)		88	372
1 185 194 01 123866 0 1 1 1 1 1 1 1 1 1	7.000	-	655	329	160[11]16]	acetolectate synthese (Decilius subtilis]	٤٢	55	327
1 796 437 91 14/3521 94 1 1 1 1 1 1 1 1 1	31115		3.85	194	91 323866	overlapping out-of-phase procein [Eggplant mosaic virus] sp ppolise v70x_ERNY 70 KD PROTEIN.	2	53	192
1 798 400 91 450688 11 1 2 181 91 126746 10 1 475 239 91 126746 10 1 475 239 91 1263931 10 1 1 1 1 1 1 1 1	3603	-	700	527	Qi 14.9521	glutaryl-CoA dehydrogenase precuraor (Mus musculus)		07	174
1 640 159 91 1521193 91 1521193 91 1521199 5114 91 1521199 5114 91 1521199 5114 91 1521199 91 1521199 91 1521199 91 1521199 91 1521199 91 1521199 91 1521199 91 1521199 91 1521199 91 152119 91 152119 91 152119 91 152119 91 152119 91 152119 91 152119 91 152119 91 152119 91 152119 91 91 91 91 91 91 91	3743		798	007	Qi 450688	hisch gene of Ecopiri gene product (Escherichia colii pir 538437 538437 hidh protein - Escherichia coli pir 509629 509629 hypothetical protein A - Escherichia coli (SUB 40-520)	(۲	\$	660
1 2 181 91 216746 PD 1 1 1 1 1 1 1 1 1	1752	-	9 9	956	gi 1524193	unknown Mycobecterium tuberculosis	13	65	282
1 475 239		-	~	191	gi 216746	D-lactere dehydrogeness [Lactobacillus planterum]	3 د ر	9	08.
2 570 143 94 528991 1 1 2 316 94 528991 1 1 1 1 1 1 1 1 1	3914		475	239	pir S13490 S134	Hydroxymethylgluteryl-CoA synthese (EC 4.1.3.5) - Chicken (fregment)	7.3	2.3	237
1 2 316 94 40003 90 1 1 1 1 1 1 1 1 1		~	570	96	191 528991	unknown (Bacillus subtilis)	73	3.6	228
1 115 165 gf 1449551 1 572 378 gf 528991 1 2 193 gf 528991 2 903 1973 gf 1216267 2 19094 17877 y 662031 2 11895 12953 gf 141968 2 11895 12953 gf 141968 3 11895 12953 gf 141968 7 6248 7117 gf 63499	1069			9	91 40003	oxoglutarate dehydrogenase (NADP.) (Bacillus subtilis) p[P23129]0D01_BACSU 2-0XOGLUTARATE DEHYDROGENASE EI COHFONENT (EC 2.4.2) (ALFIIA- KETUGLUTARATE DEHYDROGENASE).	5	~~~	416
	4165	-	715	365	91 1439521	glutary1-CoA dehydrogenase precursor Mus musculus	(ر	48	151
	4126			111	91 409660	decayriboss-phosphate aldolase (Beclilus subtilis pir/549455 549455 decayriboss-phosphate aldolase (EC 4.1.2.4) - acillus subtilis	5	09	(71
1 2 193 91 436797 1 3 263 91 136267 122 19094 17877	4202		572	378	191 528991	lunknown (Bectilus subtilis)	۲,	#.	195
1 3 263	7.6			193	1911436797	N-acyl-L-amino acid amidohydrolass [Dacillus steerothermophilus) sp 27112 AMA_BACST N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC . 5 1.14) (AMINOACYLASE)	2.7	7	192
2 903 1973 91 1144196	4193	-	-	1 263	91 216267	OPF2 Becillus megaterium	6,7	\$	261
22 19094 17877 c 662031 23 18114 19162	35	~	903	(761)	01 1146196	[phosphoglycerate dehydrogenase [Bacillus subtiiis]	72		101
		2	119094	17877	c 602031	o trimethylamine DH (Mycoplasma ca trimethylamine dehydrogenase (EC (regment)	27		12.1
		= ==	18134	19162		ips-44d gene product Bacillus subtilis	27		1029
7 6248 7117 91 62499	=	611		12953	· 1	unknown (Bacillus subtilis)	21	6.	1059
1 7 1 6563 5691 Q1(1205399)	=	-	6248	7117		[pyruvate synthese [Helobacterium halobium]	72	-	0.18
	\$0	-	6563	1 5691	91 1205399	proton glutemate symport protein [Heamophilus influenzas]	7.5	53	(70

10	
15	
20	
25	
30	
35	
40	
45	

55

-	
ć	٥
è	
6	
Š	
3	č
3	,
,	
3	
į	į
•	•
į	
-	
- 3	
į	
1	
- 1	
	٠
ī	
- 1	١
	•
•	
	;
	٠
•	
	•

V sim (V ident length (nt)	1 25 1263	72 47 447	72 46 1176	1 72 43 606	ctilis] 72 59 855	1 72 50 968	restum PS3 pir A45111 A45111 72 56 1593 . acterium PS-3	(Salmonella typhimurium) 72 53 2598 nerama (EC 2.7.7.7) III lpha chain	1 72 54 939	1 72 44 285	us clone OTU6] 72 55 228	1 72 40	se (EC 2.5.1.10) - Dacillus	1 72 62 327	emophilus influenzael 72 49 2409	-	1 22 50 1	mophilus influentee) 72 60 471	anogaster] pir(557245) [57245] 72 6) 24) roaophile elenogaster] (5UB 46-	4) 72 54 789	protein (Bacillus subtilis) 72	1 72 52 1266	22 46 1338
match gene name	YQJE (Becilles subtilis)	unknown (Bacillus subtilis)	pfos/R (Treponema pallidum)	hypothetical protein [Bacillus subtilis]	glycerol uptake facilitator (Bacillus subtilis)	unknown Bacillus subtilis	alaning carrier protein [thermophilic becomium P53] pir a83111 A63111 a13111 a13111	polymerase III polymerase subunit (dnaE) [Salmonalla typhimurium) pir A45915 A45915 DMA-directed DNA polymerase (EC 2.7.7.7) III Jpha chain - Salmonalla typhimurium	transkatolsse (Bacillus subcilis)	secy (Escherichia coli)	DNA polymerase [Unidentified phycodnavirus clone OTU4]		[farnasyl diphosohate synthase [Becillus stearothermophilus] pir JX0257 JX0257 geranyltranstransferase (EC 2.5.1.10) - Dacillus tearothermophilus	Also (Seccheromyces cerevisies)	virulence associated protein homolog (Maemophilus influentae)	hypothetical protein (Synachocystis sp.)	ORTHINIA ANIMOTAANSPERASE [BECIllus scottlis	hypothetical protein (GB:X73124_53) [Haemophilus influenzee]	insulin receptor homolog (Drosophila melanogaster) piris57245 557245 insulin receptor homolog - fruit f.y (Drosophila elenogaster) (SUB 46- 2146)	sucrose repressor (Staphylococcus xylocus)	homologous to SwissProt:YIDA_ECOLI hypothatical	OMF_0470 (Escherichia coli)	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
match acession	di 1303956	1911467471	10111354775	91 904198	gi 142997	[91 467435	01/217144	91 153952	91 1405446	91 606234	91 1304472	91 1205620	91 391610	192 133630	91 1205110	011001110	91 1064807	91 1204666	91 (68151)	191,949974	g1 1408493	91 537049	
Stop (nt)	9259	29995	4123	4982	926	10258	1593	2600	1978	2535	5245	210	1320	328	3553	1279	115869	932	\$22	067	765	1485	
Start (nt)	10521	29549	5298	1771	7	171.6	-	5197	1040	2819	5472	-	2207	7	1145	1923	14646	73	764	2	1526	220	
OR C	6 1	[2]	-			12			-		- 22	-		-		- 2	=	~	~	-	-	-	
Cont 19 10	5.3	5.6	69	69		8.6	127	131	101	149	149	154	155	180	184	195	206	209	215	224	233	240	

S aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	- seession	ndadich gene name	E (9	1 ident	length (nt.)
259	-	2108	1245	gi 1340128	ORF1 (Staphylococcus aureus)	7.2	59	864
304	- 2	587	1094	[91[1205330	glutemine-binding periplesmic protein [Hemophilus influenzee]	2.2	\$2	810
100	011	5326	\$608	191 1070015	protein-dependent (Bacillus subtilis]	7.2	5.3	288
315	-	517	1 260	191 143399	[quino] exidase [Bacillus subtills]	72	\$\$	258
316	=======================================	9622	9308	ui 1204465	hypothetical protein (SP:P27857) [Haemophilus influenzae]	12	, 3	315
1337	-	926	1609	gi 487433	citrate symthase II (Bacillus subtilis)	2.7	\$\$	684
364	-	112538	10493	qi 1510643	ferrous iron transport protein & [Methanococcus jannaschil]	2,	53	2046
604	7	340	1263	91 1402944	orfRM1 gene product (Bacillus subtlits)	72	6,7	924
‡		7,112	1590	91 [312379	highly conserved among subscients (Clostridium sestebutylicum) pir 534312 534312 hypothetical protein V - Clostridium cetobutylicum	72	=	584
453	-	1 2654	1 2505	pir 500601 BXSA	antibacterial protein 3 - Staphylococcus haemolyticus	72	٥٧	150
097	-	2	625	91 1016162	ABC transporter subunit (Cyanophora paradoxa)	7.2	22	179
5		3253	1628	91 666014	The polymorphysm (RFLP) of this game is associated with usceptibility to essential hypertension. The SA game product has light homology to acetyl-CoA synthetass (Homo sapiens)	2.t	9	1626
084	-	1 3047	3466	21 433992	ATP synthese subunit epsilon (Becillus subtilis)	12	53	420
502	-	1 1086	586	[91]310859	ORF2 (Synechococcus ap.)	7.1	05	501
1 519	-	. 81	1184	191 1303704	YrkE (Bacillus subtilis	7.7	\$5	1104
655	-	- n	746	191 1107 530	ceub gene product Cempylobacter coli	7.7	3.6	344
575	-	1 1142	573	91 1303866	Yqgs (Becillus subtilis)	13	2.6	570
179	-	~ -	- 592	19.11204497	protein-export membrane protein [Naemophilus influentee]	12	7	166
679	-	295	1251	19.1563258	virulence-associated protein E (Dichelobacter nodosus)	7.2	52	/56
687		295	1 957	91 1146214	44% identical amino acids with the Escharichia coll amba supress; putative [Bacillus subtilis]	21	2	663
637	-		1 435	91 1146183	[putative Bacillus subtilis]	27	24	0.5
868	-	150	788	91 1377842	unknown [Becilius subtilis]	21	\$\$	619
922	-	130	1 432	gi 1088269	unknown protein (Azotobacter vinelandii)	7.2	5.8	303
941	-	2	238	91 153929	NADPH-sulfite reducatase flavoprotein component (Salmonella yphimurium)	7.2	6,	723.7
980	-	940	123	91 853767	UDP-N-acetylglucosamine 1-carboxyvinyltransferase (Bacillus ubtilis)	5.7	50	420

10	
15	oteins
20	lar to known pr
25	al proteins simi
30	regions of nove
35	aureus - Putative coding regions of novel proteins similar to known proteins
40	- snsing .5
45	

55

1 181 213 G1 144735 Property 1 127 365 G1 1205458 Property 1 1 1 1 1 1 1 1 1	Stop match match gene name (nt) acession	sim 1 ident	nt length (nt)	
1 127 365 GI 1205558 H 1 1 3 401 GI 1304499 H 1 1 1 1 1 1 1 1 1	1	72 4		17: 1
1 727 365 94 134409 1 1 3 401 92 1303950 1 1 1 1 1 1 1 1 1	gi 1205458 hypothetical protein (CB:D26562_47) (Haemophilus influenzae)	72 6	63	198
1 3 401 91 1303950 1 569 399 94 149713 1 1 1 1 1 1 1 1 1	:			363
1 369 399 91 149713 1 1 1 1 1 1 1 1 1	q1 1303950 Yq1Y Bacillus subtilis	32 5	. sd –	399
1 3 155 9 1212229 1 278 141 91 413968 1 278 141 91 413968 1 22 91 1509409 1 22 91 1509409 1 22 91 1509409 2 22 91 1509409 3 2435 91 1509366 3 2435 91 12309 4 2435 91 1246574 5 2898 1488 91 149629 6 2435 91 1209893 7 7 7 7 7 7 7 7 7 7		22 52		171
1 167 185 91 665999 1 1 288 141 91 413968 1 1 287 91 515938 1 1 222 91 515938 1 1 222 91 5150409 1 1 222 91 1500409 1 1 222 91 1500409 1 1 222 91 1500409 1 1 222 91 1200409 1 2 2435 91 12009366 2 2435 91 1246574 2 2435 91 1246574 2 2406 91 120989 2 2406 91 120988 2 2406 91 227645 2 2 2 2 2 2 2 2 2		72	1 94	153
1 278 141 g1 413968	-	2 21	55	3
1 3 287 91 515938 1 26 367 93 1408501 1 1 222 93 1408501 1 1 222 93 1500409 1 1 222 93 1500409 1 1 3 347 93 1009366 1 1 1 1 1 1 1 1 1	-	72 4	45 -	801
1 26 367 91,1408501 1 1 1 222 91,1509409 1 721 342 91,1509409 1 721 342 91,1509409 2 911 1200 91,150309 2 1248 2435 91,1244574 2 898 1488 91,149629 3 1220 12462 91,1203681 3 1246 4431 pir 509411 5094 4431 pir 509411 5094		72 5	5.2	285
1 1 222 91 1500409 1 3 347 91 109956 1 3 347 91 1009366 1 3 347 91 1009366 2 13350 10859 91 1512309 2 1246 2435 91 1244574 2 8998 1488 91 149629 3 1346 4431 916 509411 50941 4 15770 1466 91 142611	:	72		342
1 721 362 91 3956 1 1 2 1 347 91 1009366 1 1 1200 1/1 13005 1/1 13005 1/1 13005 1/1 13005 1/1 13005 1/1 1/	gi 1500409 M. jannaschii predicted coding region MJ1519 (Methanococcus jannaschii)	12	38	222
1 3 347 91 1003366 2 311 1200 91 537095 2 1246 2435 91 1246574 2 898 1488 91 1246574 3 3192 2806 91 1303983 3 1246 4431 1445 509411 5094	[72	57	360
2 111 1200 131095 2 1246 2435 124534 2 1246 2435 114534 3 1392 2606 149529 3 1392 2606 11001983 3 1246 4431		, , ,	- 33	345
15 11350 10859 gi 512109	: 6	-		2 .
2 1246 2435 gi 246574		71	1 / 1	767
2 898 1488 91 149629 1 1 567 91 1303983 3 3192 2806 91 1203681 18 12250 12462 93 827645 3 1246 4431 pir 509411 5094 14 15770 14760 91 142613	•	112	52	1188
1	i			591
3 3192 2806 gi 1209681 18 12250 12462 91 927645 3 1246 4431 pir 509411 5094 14 15770 14760 91 142613	(pill303983 [YqkF (Bacillus subtilis]	7.1	59	567
1.6 1.2250 1.2462 91 927645	i -		- 05	387
3 1246 4431 pir 509411 5094	2	7.1	50	213
14 15770 14760 91 142611	11 pir 509411 5094 spoillE protein - Bacillus subtilis	11	- 64	3186
**************************************	1	112	5.8	1011
_	5 gl 143014 gnt_repressor [Bacillus subtilis]	71	99	637

5. Aureus - Putative coding regions of novel proteins stailar to known proteins

Cont 19	01 10 10 10	Start (nt)	Stop	Patch Acession	חבולר שפחם חבתם	E .	1 ident	length (nc)
52		1 7152	2860	91 508175	EIIC domain of PTS-dependent Gat transport and phosphorylation Eacherichia	1.	æ	1293
52	81	13897	14334	91 1063247	high homology to (lavohomoprotein (Meamoglobin-like protein) of Alcaligenes eutrophus and Saccheromyces cerevisiee (Becillus subtilie)	17	9,6	95
62	911	9831	110955	191 1303926	YqiG (Becillus subtilis)	1,	- 24	1125
1 70	112	1 8505	9968	1911147198	phnE protein (Escherichia coll)	7.1		794
98	- 5	1 2394	1 2089	Q1 904205	hypothetical protein [Bacillus subtilis]	11	21	306
96	1 7	1 7601	8269	191 709991	hypothetical protein (Bacillus subtilis)	11	6	6.9
001	9	1 4822	1 5931	01 1060848	Opine debydrogenase [Arthrobacter sp.]	7.1	- 45	1110
101	-	1 1062	532	91 143089	lep protein (Bacillus subtilis)	1,1	17	531
109	118	115312	115695	191,413985	ipa-61d gene product (Becillus subtilis	1,1	57	384
113	-	1 630	316	gi 663254	probable protein kinase (Saccharomyces ceravisiae)	11	57	318
117	-	8659	5603	91 143156	nembrane bound protein (Bacillus subtilis)	7.1	0.	966
100	- 7	1 3067	1 1723	19111303913	Yqhx (Bacilius subtilis)	71	53	1365
149	617	6135	1 5895	g1 529650	Geor (Bacteriophage SPP1)	7.1	- 51	461
154	-	1 3635	1 3087	1911425488	repressor protein (Streptococcus sobrinus)	17	42	549
1.64	==	[11354	111649	191141318	CRF4 gene product [hacillus subtilis]	1,4	7	36
169	-	1936	1 2745	[91[1403403	unknown (Mycobacterium tuberculosis	7.	95	810
193	7	1 272	11334	91(1103788	YqeH (Bacillus subtilis	7:	6)	6963
1 205	-	1143	895	61 1215694	Glng (Mycoplasma pneumoniae)	;,	46	678
1 233	-	1849	2022	191 633732	ORFI (Campylobacter jejuni)	17	20	174
237	-	4501	5169	911149384	HisiE (Lactococcus lactis)	7.1	*	699
272	-	1 2848	£722	191/70993	hypothatical protein (Bacillus subtilis)	1.6	8.	9,5
274	~	618	96	91 143035	NAD(P)H:glutemyl-trensfer RNA reductase [Bacillus subtilis] pir a3522[A35252 5-aminolevulinate synthase (EC 2.3.1.37) - acillus subtilis		2	879
276	-	3349	2720	gi 303562	ORF210 (Escherichia coli)	71	80	•30
1 287	-	136	099	191 110634	20 kDe protein Streptococcus gordon11	7.1	53	525
288	9	1 3322	1772	gi 1256625	putative [Bacillus subtilis	17	47	\$52
					\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			

S. sureus - Putative coding regions of novel proteins similar to known proteins

Contig	9 ORF	Start (nt)	Stop (nt)	match	madch gene name	E 1	1 ident	length (nt)
1001	-	1 3492	2461	191 467417	similar to lysine decarboxylese [Sacillus subtills]	1.1	5.	1032
306	-	6607	5222	01/1256618	transport protein (Bacillus subtilis)	1.1	9,6	1386
700	-	1536	925	gi 632683	orfC (Mycoplasma capricolum)	11	53	612
010	-	5793	1 5146	91 348052	acetoin utilization protein (Bacillus subcilis)	1.1	51	9
322	-	7	1303	101(1101819	hypothetical protein (Symechocyetis sp. 1	1.1	, . 9 7	1302
1 333	-	14131	3895	1911,67473	unknown (Becillus subtilis	7.1	5.7	177
1 350	- 2	1 548	923	191,551879	ORF 1 [Lactococcus lactis]	7.1	5.5	378
272	-	1860	1700	91 467447	unknown (Becillus subtilis	1,7	5.	1212
340	-	1 1560	1 2102	91 142557	ATP synthase b subunit (Secullus megaterium)	1 1 4	6	543
**	-	1 251	1 617	91.580904	homologous to E coli rmpA (Sacillus subtilis)	7.1	63	387
424	-	1 335	1354	91 581305	L-lactata dehydrogenasa (Lactobacillus plantarum)	11	57	1020
967		1076	3270	pir PN0501 PN05	(prosphoribosylanthranilate isomerase (EC 5.3.1.24) - Bacillus subtilits (fragment)	1,	9	£73
1 482	-	-	1280	191 410142	OMFX18 (Bacillus subtilis)	11	6	1278
525		2272	7	191 143370	phosphoribosylpyrophosphace amidotranaferase (PUR-F: EC 2.4.2.14) Bacillus subtilis	1	90	429
625	-	66.72	1 2047	191 606150	ONF_[109 (Escherichia coli)	ור	:	(4)
563		1 22	696	19111237015	ORF4 (Bacillus subtilis)	1.7	53	948
185	-	905	1 255	9111301730	725G3.2 (Ceenorhabditis elegans)	1,4	-	252
612	-	1 1068	913	996(51)15)	[fimbrise 2 [Salmonella typhimurium]	7.1	\$5	156
613	-	-	1 654	191 (466778	lysine specific permesse (Escharichia coli)	7.1	05	654
819	-	1243	623	91 1166238	poly(A) polymerese (Becillus subtilis	7.1	5.2	621
630	-	1170	1 586	91 1486243	unknown (Bacillus subtilis)	7.1	53	585
69	-	11126	- 641	1911289260	comE ONF1 (Bacillus subtilis)	1,1	51	486
7 69		149	427	91 12971	MADH dehydrogenase aubunit V (AA 1-605) (Gallus gallus) ir S10197 S10197 NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain - chicken mitochondrion (SQC1)	1,	4.7	279
715	-	1 169	1777	191 1103830	YqfL (Bacillus subtills)	7.1	53	609
746	7	1 1473	0.6	911377843	unknown (Bacillus subtilis]	7.1	52	\$04
					· · · · · · · · · · · · · · · · · · ·			

aureus - Putative coding regions of novel proteans samilar to known proteins

Contrig	ORF	Stert (nt)	Stop (nt)	match	жаст деле ламе	e 10	* ident	length (nt)	
748	-	1417	802	91 1405459	Ynes (Bacillus subtilis)	7.1	6.7	9()	•
753	-	1018	524	91 1510389	H. jannaschii predicted coding region MJ0296 [Methanococcus jannaschii]	7.1	\$	495	- •
761	-		1 215		pentatunctional entyme (Pneumocyatia carinii)	1,	•	213	
783		1 1203	607	91 536655	ORF YBR244W [Saccharomyces cerevisies]	7.1	25	105	
004	-	1292	1 987	gi 1204326	tRNA delta(2)-isopentenylpyrophosphate transferese (Haemophilus influentae)	1,1	`0	306	
908	-	116	1 286		cbiN gene product (Methanobacterium thermosutotrophicum)	7.1	20	171	
931	-	67.6	488	91(893358	PgeA (Becilius subtilis)	1,1	95	98	
1041	-	7	262	91 1408507	pyrimidine nucleoside transport protein [Bacillus subtilis]	11	S	261	
0.01	-] 2	271		hypothetical protein (Bacillus subtilis)	11	9	171	
1176		52	365	91 151259	HHG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir A44756 A44756 hydroxymethyglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	1,	5	109	
1181	-	366	184	191 46971	epiP gene product (Staphylococcus epidermidis)	7.1	05	183	
1281	-		1 290	191 153016	ORF 419 protein (Staphylococcus aureus)	7.1	80	288	
1148	-	456	1 229	01 602683	orfC [Hycoplasma capricolum]	4.	8	228	1
2002	-	1 756	976	Q1 1008177	ORF YJLD46w (Saccharomyces cerevisiee)	7.1	87	378	
1 2119	-	2	1 217	01 1046088	arginyl-thus synthetase (Mycoplasma genitalium)	17	05	216	
2418	-	-	320	gi 1499771	M. jannaschil predicted coding region MJ0936 [Hethanococcus jannaschil]	7.7	1 57	318	
2961	-	2	187	[gi]312443	carbamoy, -phosphate synthase (glutamine-hydrolyming) [Bacillus aldolyticus]	1,7	57	186	
2999	-	1.67	306	gi 710020	nitrite reductese (nirB) [Bacillus subtilis]	1,	-	240	
3033	-	- 2	787	[91]1262335	Ymak [Bacillus subtilis]	7.7	57	183	
3584	-		338	91 401716	beta-isopropylmalate dehydrogenase [Neurospora crasse]	7.7	55	976	
3715	- 7	743	1 399	gi 563952	gluconate permease (Bacillus licheniformis)	۲۲ ا	65	345	- 1
3785	-	1 770	1 387	gi 47382	acyl-CoA-dehydrogenese Streptomyces purpurascens	12	5.7	384	
3875	-	541	1 272	qi 1001541	hypothetical protein (Synechocystis sp.	11.	188	270	
4135		1 637	320	95 142695		1,0	52		•
4249	-	63	239	91 1205363	deoxyribose aldolase [Heamophilus influentee]	11	63	7.1	
4508	-	530	1 267	91/1197667	vitellogenin (Anolis pulchellus)	2	9	264	

S. aureus - Putalive coding regions of novel proteins similar to known proteins

Contig ORF	IORE	Start (nt)	Stop (nt)	match	metch gene neme	E .	* ident	length (nt)
•	-	1237	12721	91 1321788	arginine ornithine antiporter (Clostridium perfringens)	- 01	75	1485
-	===	6572	7486	91 216854	P47K [Pseudomonas chlororaphis]	0.0	;	918
122	-	2890	1891	U1 467330	replicative DNA helicase Bacillus subtilis	104	6	1410
1.5	-	1756	893	[91 451216	Mannosephosphate Isomerase (Streptococcus mutans)	101	9	999
1.5		7,21	1050	gi 476092	unknown [Bacillus subtilis]	100	,05	328
1 17	~	2132	1350	gi 145402	choline dehydrogenese (Escherichia coli)	70	52	187
2			925	91 149516	lanthramilate synthase alpha subunit (Lectococcus lactis) pir. 535124 535 535124 535124 535124 535124 53512	0.	05	924
1 25	-	5580	6251	01 1389549	ORF3 Bacillus subtilis	96	52	612
	; • •	6071	7423	1911303875	Yqhs (Secillus subtilis)	101	15	1353
36	~	656	1594	[91]500755	methyl purine glycosylase (Mus musculus)	0,0		919
38		1067	5860	gil1408507	[pyrimidine nuclecaide transport protein (Bacillus subtilis)	1 01	*	096
7	- e	5312	5965	91 1006620	hypothetical protein (Synachocyatis sp.)	1 07	67	6.7k
9	0:1	0568	110020	91 1403126	crcD gene product [Alcaligenes sutrophus]	1 07	\$	1701
52	- 2	1272	1900	91 1486247	unknown [Bacillus subtilis	70	53	828
52		8707	9591	91 244501	steress II-carboxylesterase (EC 3.1.1.1) (Pseudomonas fluorescens, eptido, 218 as)	0,	20	609
95		8460	1 9962	Qi 1339951	[small subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	1 04	\$1	1503
1 62	-	8+	1 290	91 142702	A competence protein 2 (Bacillus subtilis)	70	47	243
9 -		1080	1 541	91 1204377	molybdopterin biosynthesis protein [Memophilus influenzee]	70	Ç	240
0, 1	- \$	5139	3595	91 1204834	[2',3'-cyclic-nucleotide 2'-phosphodiesterase (Haemophilus influenzas)	70	41	1545
16	-	1977	5466	91 886471	[methionine synthese [Catheranthus roseus]	0,	\$6	2328
96	5	8754	1 7255	pir B39096 B390	alkaline phosphatase (EC 3.1.3.1) III precursor - Bacillus subtilis	0,	24	1500
110	~	767	1300	91 145294	adenine phosphoribosyl-transferase [Escherichia coll]	70	51	534
1 116	-	1 7026	9161	[91]143607	sporulation protein (Bacillus subtilis)	7.0	05	186
121	-	6401	6969	91 1107528	ttg start [Campylobacter coli]	70	45	588
131		6842	7936	91 1150454	prolidase PapO [Lactobacillus delbrusckii}	70	87	1095

S aureus - Putative coding regions of movel proteins similar to known proteins

Contrg	ORF 10	Start (nt)	Stop	match acession	match gene name	Eis 1	1 tdent	length (nt)
1135		5	2 8 5	91(311309	purative mentrane-bound protein with four times replitation of ro-Ser-Ale at the N-terminus; function unknown [Alcaligenes utropius]	0,0	6	1 4 8 8
138	-	418	714	1911904181	hypothetical protein (Sacillus subtilis)	0,0	9	297
1 164	-	9344	1 9874	9119315	CRF1 gene product (Bacillus subtilis)	0.0	-	531
164	91	115626	116618	91 1205212	hypothetical protein (CB:D1048)_18) (Haemophilus influenzas)	1 02	. 08	993
205		2735	1803	91/1215695	[paptide transport system protein Sap? homolog; Sap? homolog (Nycoplasma pneumoniae)	70	.	608
1 209	-	016	1386	gi 1204665	hypothetical protein (CB:X73124_26) [Hacmophilus influenzas]	100	90	~ ~
246	-	340	1756	gi 215098	[excisionase (Bacteriophage 154a]	0.0	9	417
263		7876	6749	91 142540	aspartokinase II [Bacillus sp.]	0,	51	1128
268	-	1 3212	4117	191 1340128	ORF1 (Staphylococcus aureus)	0 ر	05	906
200	9	1 3201	1 3627	gi 147782	ruvA protein (gtg start) (Escherichia coli)	7.0	9	627
302	110	SR79	1051		pir C18530 C185 queuine tRMA-ribosyltransferase (EC 2.4.2.29) - Escherichia cult	٥٢	5.5	1173
313	-	2520	1414	91 1205934	aminopeptidase a/f [Haemophilus influentae]	0.0	2	1107
355	-	978	699	19111070013	protein-dependent Bacillus subtilis	7.0	89	291
107	-	1255	629	191 733147	[GunF [Kanthomonas campestrie]	7.0	7	779
707	011	067.4	(126	gi 1204752	high effinity ribose transport protein (Hacmophilus influenzae)	7.0	22	504
449	-		1243	Qi 619724	[HgtE [Bacillus firmus]	01.	3	1247
()2		637	320	91 727145	open reading frame; putative [Bacillus amyloliquefacions] pir B29091 B29091 hypothetical protein [bglA region] - Bacillus myloliquefacions (fragment)	0,0	3	33.8
480	- 5	727	1608	91 142560	ATP synthase gamma subunit (Bacillus megaterium)	7.0	*	882
524	-	~ -	100	91 602292	[RCH2 protein (Brassica napus)	0,4	6.5	306
525	-	1 623	1	91 143372	phosphoribosyl glycinamide formyltransferase (PUR-N) (Bacillus ubtilis)	0,0	52	1 .
595	-	1 3625	2552	01 881434	ORFP (Bacillus subtilis]	7.0	51	1074
1 607	-	629	1284	91 1511524	hypothetical protein (SP:P37802) [Methanococcus jannaschil]	70	05	959
633	-	1 1383	100	[91,431231	uracil permesse (Bacilius caldolyticus)	7.0	53	681
646	7	1683	1309	911467340	unknown (Bacillus subtilis)	0,0	\$	375
1 663	-	630	417	9111303873	Y 7	0،	0 + 1	4 14
			41111141	**************************************	· · · · · · · · · · · · · · · · · · ·			

TARLE

309

171

345

285

- 12

70

EIIC domain of PTS-dependent Get transport and phosphorylation Escharichia

|transmembrane protein [Lactococcus lactis]

7 -

2504 - 1

30

1 | 564

1061

37 | 333 | | V sim | V ident | length 5 Ç : 50 ç 9, 30 ... 43, Ş 0 70 10 70 7.0 0,0 0, 70 104 7.0 0, 20 100 20 0 NADM dehydrogensse (ndhF) [Vicia faba] pppp11776 PBPA_ PENICILLIN-BINDING PROTEIN 1A (PBP+1A) (PENICILLIN-DINDING PROTEIN A). [22.4% identity with Escherichia coli DNA-damage inducible protein ... putative [Becillus subrilis] +1,... ; aureus - Putative coding regions of novel proteins similar to known proteins | 6P| P33940| YOJH_ | HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION. DHA binding protein (probale) (Bacillus subtilis) ATP-dependent helicaso (Haemophilus influentae) |pir|523416|5234 |epiB protein - Stephylococcus epidermidia hypothatical pritain [Symechocyatis ap] [hypothetical protein [Synechocystis sp.] [hypothetical protein [Bacillus subtilis] hypothetical protein (Synechocystis sp.) endothelin-A receptor [Homo sapiens] |FemA protein [Staphylococcus aureus] ABC transporter (Bacillus subtilis) ORF 3; putative [Bacillus subtilis] |spec |Streptococcus pyogenes| |putative [Becillus subtilis] CinA [Bacillus subtilis] match gene name match scession 91 11146243 91 1001827 91 1146181 9191001918 91 1001 644 91 | 153015 19111204636 191 1334847 91 | 853754 91 219630 91 | 467364 1917 112441 91 | 529755 91 | 145165 101 | 552971 166604 | 16 1379 235 348 405 904 543 346 572 1335 310 317 903 2 1585 1161 | 1 7.3 232 451 9 <u>.</u> 250 1 1 535 1220 | 1 | 468 195 1 1 9001 1574 1 1640 1 1055 | 1 1537 | 2 1093 | 1 1279 1 109 988 108 865

207

315 \$ 7.0 168

77

585

5

10

15

20

25

30

35

40

45

50

55

TABLE 2

chromosome condensation protein (Caenorhabditis elegans)

ATP binding protein (Phormidium laminosum)

[01 | 1154891

399 399

131 | 529385

1 | 599

|glutamate synthase |ferredoxin| |Synethocystis sp.| pir|S46957|S46957 | glutamate synthase |ferredoxin| (EC 1.4.7.1) - ynethocystis sp.

unknown (Nycobacterium tuberculosis)

91 | 1340096

~

_

3128

91 | 515938

4 8 B

3218

00

198

70

S. auraus - Putative coding regions of novel proteins similar to known proteins

Cont 1g	ORP	Start	Stop	metch	match gene name	 ia	14601	(nt)
: _	-	706	398	911208965	hypothetical 23.3 kd protean [Escherichia coli]	1 02	47	500
1929	-	-	107	91 149435	purative [Lactococcus lactis]	0,	6,	999
**0*		565	374	q1 602031	aimilar to trimethylamine DH (Mycoplasma capticolum) pir[549950[549950 probable trimethylamine dehydrogename [EC 5.99.7] - Hycoplasma capticolum [SGC3) (fragment)	0,	ĝ	222
4329		558	280	1339951	small subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	- 0,	.69	279
4422	-	576	1 289	gi 296464	Afrasa [Lactococcus lactis]	- 02	57	288
4647	-	1961	007	91 166412	NADH-glutemete synthase [Wedicago sativa]	20	65	162
91		1757	1 9031	[91]1499620	M. jannaschii predicted coding region MJ0798 (Methanococcus jannaschii)	69	7	1461
16		9080	110033	19111353197	thioredoxin reductase (Eubacterium acideminophilum)	69	54	954
0.0	-	1452	127	gi 1204910	hypothetical protein (GB:U14003_302) [Haemophilus influentse]	69	52	726
38	-	1023	1298	191 407773	deva gene product (Anabaena sp.)	1 69 1	7	276
:		5987	689	91 1205920	molybdate uptake system hydrophilic membrane-bound protein (Heemophilus	69	\$	609
62	=======================================	9104	9475	91 385178	unknown (Becilius subtilis)	69	=	572
99	-	1 2402	2803	91 1303893		69	15	402
3	15	114124	13627	gi 149647	ORFZ [Listeria monocytogenes]	69	11	K 6 9
	=	14053	14382	91 305002	ORF_1356 [Escherichia coli]	69	49	010
67	61	115130	15807	gi 1109684	Prov [Bacilius subtilis]	69	45	67.R
7.8	-	1447	2124	qi 1256633	putative (Sacillus subtilis)	69	5.3	678
7.8	-	4513	257.6	01 1103958	YqjG [Bacillus subtills]	69	3.2	987
95	-	1 4521	G -	pir E29326 E293	pir E29326 E293 hypothetical protein (pur operon) - Bacillus subtills	69	32	600
9.6	9	1 3253	1 2654	gi "73332	orfC Dacillus subtilis	69	0.5	009
9.6		96	710	91 78646A	[4A]1 antigen, sperm toil membrane antigen-putative sucrose-specific hosphotransferase enzyme II homolog [mice, testis, Peptide Partial, 72 es]	69		615
100	- 7	6023	1 7426	19111205355	Na+/II+ antiporter [Haemophilus influenzaw]	69	98	1404
102	~	2678	1650	91 561690	staloglycoprotesse (Pasteurells heemolytics)	69	~	1029
103		112241	1 4537	gi 1009366	Respiratory nitrate reductase (Bacillus subtills)	6.9	*	3705
						69	5.1	1 2436

Cont 19 ORF	08f	Start	Stop	SERECT	match gene name	E :3	1 ident	Jenqth (nt)
112	====	8708	10168	91 154111	haxosephosphate transport protein (Salmonella typhimurium) pir[04]853[04]853 haxose phosphate transport mystem protein uhpT - almonella typhimurium	gr. Vg	51	1461
211	116	116644	17414	91 1204435	pyruvate formate-lyase activating enzyme (Haemophilus influenzae)	69	0.5	177
13	7		953	1911290509	old Emcharichia coli)	69	5	921
7.1	7	7881	1058	pic A42771 A427	pic A42771 A427 reticulocyte-binding protein 1 - Plasmodium vivex	69	39,	0 6 7
121	•	4309	5310	01 1154633	Nrdf (Bacillus subtilis)	5	5.3	1002
125	7	267	1 854	gi 413931	ipa-7d gene product (Bacillus subtilis)	69	3	588
149	127	10666	110400	pir 528089 5280	pir 528089 5280 hypothetical protein A - yeast (Zygosaccharomyces bisporus) plasmid pSB)	6.9	66	267
161	1 1	1 1598	1	qi 1205538	hypothetical protein (GB:U14003_302) [Haemophilus influenzae]	69	47	786
165	-	2222	1 4633	191 40054	phenylalanyl-tRNA synthetase bete subunit (AA 1-804) (Sacillus btilis)	-	52	24:2
169	1	1 1210	1 1761	1911296031	elongation factor Ts (Spirulina platensis)	6.9	\$\$	552
175	112	9898	8339	1911732682	Fine protein [Escherichia coli]	6.	6.9	348
190	~	484	1671	sp(P17731 HISB_	HISTIDINOL-PHOSPHATE ANIMOTRANSFERASE (EC 2.6.1.9) (IMIDAZOLE ACETOL-PHOSPHATE TRANSAMINASE).	69	8E	1186
206	-	1888	1 2777	91 41750	hadR protein (AA 1-1033) [Escherichia coll.)	69	64	2775
206	-	1 6038	9625	91 11256135	[Ybhr [Bacillus subtilis]	69	##	243
243	-	969	01	911405456	Yne! (Bacillias subtilla)	69	Ģ	= -
302		4820	1 5776	gi 1001768	[hypothetical protein (Synechocystis sp.]	69	4.4	1857
324	7	7384	1 3893	91 1256798	[pyruvate carboxylase [Rhizobium etli]	69	1 53	1 3492
351	-	2098	1808	91 1491664	TO4H1.4 Ceenorhabditis elegans	69	30	162
369	1	1 2075	2305	1011336458	ORF [Balaenoptera acutozostrata]	69	19	162
392	-	6661	2424	191 556015	ORF: [Becilius subtilis]	69	45	426
010	-	- 8	911	91 155611	phosphoglyceromutase (2ymomonas mobilis)	69	- 58	(69)
421	-	1 2085	1129	01 1276985	arginese [Bacillus celdovelox]	69		957
**	8 -	6713	1 7741	91 1221782	puring synthesis repressor (Haemophilus influentee)	69	0.0	1029
\$	-	1 828	415	91 1122758	unknown (Bacillus subtilis)	69	1 57	-

TABLE 2

5	;	l ungth	1 360	201	- 567	147	897	1 198	112	1 667	432	336	561	942	1 1206	255	7 797	1 267	477	1 504	1 657	213	868	222	399	1 (1)
·		- referrit	39	39	67	22	9.7	\$	•	99	7	80	\$	55	45	\$	=	42	- 53	21	56	87	7	36	•	9.
10		E	69	69	69	69	69	69	69	69	69	69 –	69	69	69	69	6.0	69	69	69	69	69	69	69	6.9	69
15	to known proteins	6 6 6 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8	1	melanogaster HST101-2 protein (P:R:SJ4154) Ceenorhebdicie					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Laucyl-RNA synthetase (cytoplasmic) [Saccharomycea cerevisiae] [1370340 ORF YPL160w (Saccharomycea cerevisiae]		us (anneschil)	elegans CDNA s elegans!		3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			H. influenzae predicted coding region Hill91 (Haemophilus influenzae)	(Mathemococcus januaschii)		[•1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
20	imilar to knowr	, 1 1 1 1 2 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • •	ein (PIR:S3415		[Pisum sativum]						subt[11s]	ccharomyces ce		subunit (Methanococcus janneschil)	C. elegans CDNA yk3489.5; coded for by C. elegans C Similar to guanglate kinase (Cacnorlankiitis elegansi	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	Haemophilus influenzael	virilis	11191 (Haemophi			alpha chain [Hasmophilus influenzae]	erraneij	1
25	vel proteins si	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ; ; ; ;	HST101-2 prot	ophage Tuc 2009	n (hsp17.9) [P	irmus]	lus subtilis!	egans)	Cerevisiae]	1	ase (Bacillus subtilis)	roplasmic) [Sa	ubtilis]	ystem S subuni	NA yk34a9.5. o nylate kinase	manton sp.1	s subtilis	factor (Haemoph	in (Drosophila	ding region Hi	oding region M	richia coli]	chain (Haumoph	latopsis medite	perculosis)
30	regions of no	name.	4 (Synechococcus sp.)	D. melanogaster	repressor protein (Bacteriophage Tuc2009)	17.9 kDs heat shock protein (hspl7.9)	DNA photolyase [Bacillus firmus]	ipa-6d gene product [Bacillus subtilis]	[Caenorhabditis elegans]	ONF YBR275c (Seccharomyces cersvisias)	unknowm (Bacillus subtilis)	Respiratory nitrate reductase	sucyl-tRMA synthetase (cytoplasmic) [S ONF YPL160w (Seccharomyces cerevisiae]	ase (Sacillus subtilis)	restriction modification system S	coded for by C. elegans cDNA ykl4s9.5; ykl449.1; Similar to quanylate kinasu	sech gene product (Antichannion sp.)	protein-dependent [Secullus subtilis]	transcription elongation	trithorax protein (Drosophila virilis)	se predicted co	jannaschil predicted coding region MJ0568	glutemate permease [Escherichia coli]	Ë	peptide-synthetess (Amycolatopsis mediterrans)	unknown [Mycobacterium tuberculosis]
35	- Putetive coding regions of novel proteins similar	detch gene name	URF 4 (Synec	similar to D	repressor pr	17.9 KD# D#	DNA photoly	lipa-6d gene	W08D2.3 Cae	OHF YBR275c	unknown (Bac	Respiratory	Leucyl-tRNA ORF YPL160	ferrochelatase	restriction	coded for by yk34a9.3;	secA gene pi	protein-dep	transcription	predicted to	H. influenz	N. jennasch	glutamate p	DNA polymerese	peptide-sym	unknown (My
40	S. Aureus -	acession	91 49224	91/726427	gi 509672	gi 169101	gi :42783	191 (413930	191 1236103	191 536715	91 467327	191 1009367	 q1 3508 	91 143044	1510268	91 1255371	194 288998	di 1070014	1911:205569	191 859254	91 1205434	91 1510646	191 (20050)	91,1204987	Qi 1483199	101 1524193
45		Stop	; –	2823	094	253	1901	2114	313	312	1 433	338	586	1013	1368	1 387	1005	1 269	1 478	1 506	659	1 460	100	1 223	000	335
45		Start (nt)	1730	3023	26	107	597	2476	~	590	864		1 392	2, 1	2573	- - -	745	\$15	954	6001	1315	248		***	2	1 667
		ORF		5	-	-	7	-	-	2	1 7	=======================================	2	[-		7	-	-	-	-	-	-	-	-	-
50		001 19	1	\$20	531	5.89	594	604	(0)	607	734	7.59	761	802	816	A3A	15.0	867	968	666	1127	1138	292R	3090	3817	1833

Contig	ID	Start (nt)	Stop	match	r natich Gene name	E .	1 1dent	length (nt)
4079		747	00	91 546918	orfy 3' of comk (Bacilius subtilis, E26, Peptide Pertial, 140 as] pir[543612[543612 hypothetical protein Y · Bacilius subtilis sp[P40398]YHXD_BACSU HYPOTHETICAL PROTEIN IN COHK 3'REGION (ORFY) FRACHENT]	69	3	æ •
4115	- 5	215	007	(91 517205	67 kDa Myosin crossreactive etreptococcal antigen (Streptococcus yogenes)	69	9.5	98
4139	-	-	1333	1911:208451	hypothetical protein (Symechocystis sp.)	69	36	333
4258		457	230	91/496158	restriction-modification enzyme subunit MI [Mycoplasma pulmonis] pir[549195]549195 s4019 fadMI protein - Mycoplasma pulmonis (5003)	5	;	228
	: : <u>-</u>	. —	374	01 413967	ipe-43d gene product (Bacillus subtilis]	69	3	285
			293	91 396296	similar to phosphotransferage system ensyme II [Escherichia coil] sp 892672 PTMC_ECOLI PTS SYSTEM, FRUCTOSE-LIKE-2 IIC COMPONENT PHOSPHOTRANSFERASE ENZYME II, C COMPONENT).	6	‡	291
	: <u>-</u>	2302	1193	q1 1109685	Prow [Bacillus subtilis]	6.9	9	1110
	-	2592	1 2074	u1 807973	unknown (Seccharomydea cerevisiae	1 69	5,	\$19
; . _		6328	8772	91 290642	ATPase [Enterococcus hirae]	89	8	2445
•		1115	750	141 606342	ORF. 0622, reading frame open lar upstream of start; possible rameshift.	5	ž	9 4
9.	: •	6886	8415	gi 155276	aldehyde dehydrogenase (Vibrio choleree)	89	3	1530
; ; ;	=	1 3643	3404	91 285608	241k polyprotein (Apple stem groowing virus)	89	.	240
. -	-	1 3536	4132	91 1045937	H. genitalium predicted coding region MG246 (Mycoplasma genitalium)	89	ñ	165
53	01	111671	110685	94 1303952	YqjA (Bacillus subtilis]	8.9	4.	186
37	6	7346	1 8155	91 147198	phnE protein [Escherichia coll]	99	0	910
66	-	1899	7 3966	[91 145173	[15 kDa protein [Escherichia coli]	89	;	1068
108		2187	1150	91 38722	precursor (sa -20 to 381) (Acinetobacter calcoaceticus) ir A29277 A29277 aidose i-epimerase (EC 5.1.3.3) - Acinetobacter Icoaceticus	£	5	1034
1112	· <u>~</u>	2666	1 1622	91/153724	MalC (Streptococcus pneumoniae)	89	5.5	650
116	1 7	7865	8638	91 143608	aporulation protein (Bacillus subtilis)	89	8	174
11.8	-	2484	3698	91/1303805	YqeR (Bacillus subtilis	89	\$	1215
120		1424	1594	sp P38036 CYSJ_	SULPTIE REDUCTASE (NADPH) FLAVOPROTEIN ALPHA-COMPONENT (EC 1.8.1.2) (SIR PP)	89	\$\$	171
129	-	-	1011	91 396307	argininosuccinate lysse (Escherichia coli)	8 0 9 0	0 .	1011

•	9		5	S. aurenus .	Putative coding regions of novel proteins similar to known proteins	ord level pro	ceins similar to	Known proteins	5	0	;	
Control	1000	Start	Stop (nt)	aatch acession	match gene name		· · · · · · · · · · · · · · · · · · ·	1	·	E 10	* ademi	length
132		1867	2739	91 1:6267	ORF2 (Bacillus megaterium)	egaterium)				80.9	8	873
134	7	848	1012	91 147545	DNA xecombinese [Escherichia	Escherichia coli			-	68	- 05	165
141	~	372	919	91 872116	sti (stress induc	sti (stress inducible protein) (Glycine max)	lycine max)			- 6	36	243
149	, ,	2454	2260	91 145774	hsp70 protein (dnaK gene) (Escherichia coli	ak gene) (Escher	ichia coli)			6.8	48	1 561
155	~	1776	1534	91 216583	ORFI (Escherichie	r col:)				6.8	36	243
158	-	1826	3289	sp. P33940 YOJH_	HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION	NED PROTEIN IN E	CO-ALKB INTERGE	IIC REGION	-	8.9	- -	1464
169	9	2749	3318	91 : 1403402	unknown (Hycobaci	unknown (Mycobacterium tuberculosis)	11.81			99	46	1 025
;	100	9158	7365	9i 1072395	phak gene product	phaA gene product [Rhizobium meliloti	1011)			6.8	\$ 1.5	1 1794
188	7	4184	5434	01 1173843	3-ketoacyl-ACP s;	3-ketoacyl-ACP synthase II (Vibrio herveyi)	o harveyil			89	- ·	1251
189	-	506	1665	91 467383	DNA binding prote	DNA binding protein (probable) (Bacillus subtilis)	secilics subtili		_	8.9	- 55	657
206	- 2	7683	6009	91/1256138	Ybbi Bacillus subtilis	ubtilie]			_	1 89	69	975
206			12176	01 452687	pyruvate decerbo.	pyruvata decarboxylasa [Saccharomyces	nyces cerevisiae		_	9 9	- 87	1752
212	=	3421	3648	101 1369941	cl gene product	cl gene product (Becteriophege 81)			_	9	7 60	228
2:4	· -	5457	6482	101 1420467	ORF YOR196c (Saccharomyces	Charomyces cerevistae	18180	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	89	45	1026
711	-	2507	3088	91 149381	HisH (Lactococcus lactis)	s lactis)			1	89	90	5.82
243	- 5	5540	4542	qx 1235684	mevalonate pyrop	mevalonate pyrophosphate decarboxylade (Saccharomydes cerevisiae)	kylase (Saccharo	ayees cerevisias		Ro	1 4	1 666
262			164	150974	4-oxalocrotonate	4-oxalocrotonate tautomerase [Pseudomonas putida	eudomonas putida			6.8	42	162
262		1984	1118	gi 1147744	PSR (Enterococcus hirae)	s hirae]				89	69	967
276		1702	3139	sp P30750 ABC_E	-	ATP-BINDING PROTEIN ABC (FRAGMENT)	. (1		1	8.9	50	564
306	9	6345	5725	91 1256617	Adenine phosphor	adenine phosphoribosyltransferase (Bacillus	Bacillus subtilis	1118]	_	6.8	53	621
333		4599	1 3850	gi 467473	unknown (Becilius subtilis)	s subtilis]				8.9	45	150
365	9	5017	4838	91 1130643	12283.3 Caenorh	[Caenorhabditis slegans]		1		6.8	- \$	180
376	7 -	549	1646	91 1277026	DAPA aminotrans!	DAPA aminotransferase (Bacillus subtillis	subtilis]	1	_	8.9	2	1094
405		1741	872	01 1303917	YqiB Bacillus subtilis	ubtilis]			_	8.9	47	H.10
907	2	853	539	01/1511513	ABC transporter, probable	probable ATP-binding	•ubunit	(Mathanococcus jar	jannaschii]	6.8	*	315
426		3558	1866	91 624632	GltL [Escherichia coli]	a coli)				1 89	- 84	168
8.7		108	329	01 146923	nitrogenase redu	nitrogenase reductas: [Escherichia coli	is coli)		-	1 89	43	222

TABLE 2

55

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	0 0 PF	Start (nt)	Stop (nt)	march acession	match dene name	£ .	1 ident	Jength (nt)
4	-	476	240	gi 535810	hippuricese Campylobacter jejuni	6.8	42	237
?	7	818	1015	91/1204742	H. Influenzee predicted coding region HI0491 (Haemophilus influenzee)	89	9	498
3		4447	3779	1911504660	decoyyribose-phosphate addolase (Bacillus subtilis) pir[549453]549455 decoyyribose-phosphate addolase (EC 4.1.2.4) - acillus subtilis	9	\$5	699
94		340	2	91/571345	7 P B B C P F F F F F F F F F F F F F F F F F F	69		945
989	. 2	1 1876	1046	1911147328	transport protein (Escherichia coli)	99	-	150
1 517	-	1764	1 2084	gi -523809	orf2 (Bacteriophage A2)	89	99	321
572	-	7	152	sp P19237 Y05L_	HYPOTHETICAL 6.8 KD PROTEIN IN NRDC-TK INTERGENIC RECION.	89		075
646	-	1 914	657	91 413982	ips-58r gene product [Bacillus subtilis]	89	52	456
659	-	1668	1 1901	193 1107541	[C]]D9.8 [Caenorhabditis elegans]	89	36	234
1 R64	-	0151	1716	191 145774	hap70 protein (dnaK gene) [Escherichia culi	89	=	107
920	-	1 860	432	01/11/10416	hypothetical protein (SP. P)1466! [Methanococcus jannaschii]	69	75	629
756	-	9601	1 611	1911633456	reductase (Leishmania major)	89	99	486
970	-	16 -	+03	191 1354775	ptos/R [Treponema pallidum]	89	97	112
10:4	-	1064	- 534	101 (4) 0117	(diaminopimelate decarboxylase (Bacilius subtilis)	#9	47	173
6201		22.8	1 216		Plasmodium (electorum mRNA for asparagine itch antigun (close 1701) Plasmodium falciparum	9	=	112
1058	_	692	348	Q1 581649	epiC gene product Staphylococcus epidermidis	9	91	345
1096	-	599	1 465	1911143434	Rho Factor [Bacillus subtilis]	89	•	201
1308	-	- 5	169	91 1 69939	group B oligopeptidase. PepB Streptococcus agalactiae	69	05	669
1679	-		1 238	1911.17205	67 kDa Myosin-crossreactive streptococcal antigen (Streptococcus yogenes)	8.9	3	237
1 2039	_	-	383	gr 153898	[transport protein [Salmonelle typhimurium]	89	51	181
1 2077	-		1 326	pir c33496 c334	pir(C33496 C334 hisC homolog - Bacillus subtilis	99	47	324
2112		1 613	374	gi 64884	lamin LII (Xenopus laevis)		05	240
1 2273	-	1.93	398	91 581648	epiB gene product (Staphylococcus epidermidim)	6.8	55	396
2948			385	91 2 1 6 8 6 9	branched-chain amino acid transport carrier Pasudomonas aeruginosa pir A38534 A38534 branched-chain amino acid transport protein braz Pseudomonas aeruginosa	•	;	384

Contag 1D	10 MF.	Start (nt)	Stop (nt)	match	match gene name	E : S	1 ident	length (nt)
2955	-	768	00.	01 204179	hypothetical protein [Becilius subtilia	sc 9	6.9	369
2981		572	288		GPP-binding protein (Bacilius subtilis)	- 69	8	285
3014	1 1	\$84	294	10111524394		89		291
3082		336	691	Qi 1204696	[fructose-permeasm 118C compunent [Haemophilus influenzae]	. —	3	168
3108		103	258	[91 217855	heat-shock protein (Arabidopsis thaliana)	69	, 9	156
3639		919	190	191 11510490	Interace transport permesse protein (Methanococcus jannaschill	-	-	654
3657	-	1	330	[9:[155369	PTS enzyme-11 fructose [Xanthomonas campestris]	89	9	330
3.82.3		780	391	10 603768	Hut1 procein, imidatolone-5-propionate hydrolase (Bacillus subtills) p 603768 Hut1 protein, imidatolone-5-propionate hydrolasu Bacillus subtills	æ.	2	390
1982		2	775	91 149435	[putative [Lectococcus lactis]	99	1 41	276
4051		-	342	91 450588	hadw gene of Ecopril gene product [Escharichia coli] pir[5]8437 5]8417 hadw protein - Escharichia coli pir[509629 509629 hypothetical protein A - Escharichia coli (SUB 40-520)	9	~	7.
4089	-	1 12	1 209	gi 1353678	heavy-metal transporting P-type ATPase [Proteus mirabilis]	- 69	- 43	861
141	-	47	187	91 603769	HutU protein, urocanase (Bacillus subtilis)	-	\$\$	141
4148		2	352	91 450688	hadwigene of Ecopril gene product (Escherichia coll) pir [SJ8437 SJ8437 hadwingene of Ecopril gene product (Escherichia colli pir SO9629 SO9629 Mynothetical protuin A - Escherichia colli (SUB 40-520)	æ 9	15	151
4173	-		382	gi 1041097	Pyruvate Kinase (Bacillus psychrophilus)	89	9.7	181
41.82	-	498	1 250	91 413968	ipa-44d gene product (Bacillus subtilis)	89	1 05	249
4362		8 + 1	318	91 450688	hadw gene of Ecopril gene product (Eacherichia coli) pir S18417 S18417 hadw protein - Eacherichia coli pir S08629 S09629 hypotherical protein A - Eacherichia coli (SUB 46-520)	9	7	171
	=======================================	9493	8300	0i(103727	putstive [Bacillus subtilis	67	94	1194
=======================================	===	110318	1 9833	91 216746	D-lactate dehydrogenase (Lectobecillus plantarum)	67	=	987
32	-	1560	1 1155	di 1098557	renal sodium/dicarboxylate cotransporter (Homo sapiens)	6.7	9 1	9651
32		4945	4145	gi is10720	prephenate dehydratase (Methanococcus jannaachii)	1 69	- 13	108
36	<u></u>	5350	4268	91/, 46216	45% identity with the product of the ORF6 gene from the Erwinia herbicola cerotenoid biosynthesia cluster; putative (Bacillus subtilits)	5	95	1983
:							•	:

Contag ORF	- 10 mg/	Scart (nc)	Stop	match eression	match gene name		1 I dent	length (nt)
8		3943	18978	161906 10		6	25	4539
3,6	112	13923	114678	01 1000453	Trem [Bacillus subcilis]	. 67	9	156
62	ec	5092	4757	101 1113949	orf3 [Bacilius, C-125, alkali-sansitive mutant 18224, Peptide Mutant, 112 as)	6.	\$	916
62	110	1570	6338	911654655	Na/H anciporter system [Bacilius elcalophilus]	. 67	5	1233
66	=	2119	1321	gi 1204349	hypothetical protein (GE:GE:D90212_3) [Haemophilus influentee]	6.7	1 05 1	1203
102	-	5695	1716	[91 149432	putative (Lactococcus lactis)	67	19	1482
103	13	14549 14049	14049	gi 1408497	LP9D gene product (Bacillus subtilis)	67	87	105
1 109	115	114821 13982	113982	413976	ips-52r gene product [Bacillus subtilis]	67	6.	840
109	711	114811	15194	91 413983	Ipa-59d gene product [Bacillus subtilis]	67	59	384
121	-	6171	1 2153	01 1262335	[Ymax [Bacillus subtilis]	. 67	54	-
122	-	-	1149	gi 143047	ORFB [Becilius subtilis]	. 9	3.5	1149
124	-	0907	1 3518	gi 556885	Unknown (Bacillus subtilis	67	47	543
131	-	4884	1 3589	191 1046081	hypothetical protein (GB:D26185_10) (Hycopleame genitalium)	63	30	966
140	-	2899	1 2297	1911146549	kdpC Escherichia colil	.9	45	603
142	-	5.109	4198	19111212775	[GTP cyclohydrolase II [Bacillus amyloliquefactens]	4	53	7171
147	5 -	2913	1 2374	19111303709	YrkJ [Bacillus subtalis]	- 67	3	240
152		6341	1 6673	[0: 1377841	unknown [84cillus subtilis]	67	æ	133
1 161	-	1 2720	1 3763	gi 496319	Sphx (Symechococcus sp.)	67	T 0 1	1044
163	9	1989	1 3428	gi 595681	[2-oxoglutarate/malate translocator (Spinacia oleracea)	67	47	1440
193	-	1351	1626	191/1511101	shikimate 5-dehydrogenase [Methanococcus jannaschli]	67	-	276
200	~	1 917	1 2179	gi 142439	ATP-dependent nuclease [Bacillus subtilis]	67	48	1263
1 206	100	112445	112801	sp P37347 YECD_	HYPOTHETICAL 21.8 KD PROTEIN IN ASPS 5'REGION.	67	47	155
206	=	113047	114632	gi 732813	branched-chain amino acid carrier [Lactobacillus delbrueckii]	. 67	46	1386
208	- 2	1311	608	91 1033037	100 kDa heat shock protein (Hsp100) (Leishmanla major]	67	1 36	513
238	-	1 1039	1 2052	qi 809542	CbrB protein Erwinia chrysanthamil	67	42	1014

S aureus - Putative coding regions of novel proteins similar to known proteins

Cont 19 10	10kF	Start Int)	Stop (nt)	match	match gene name	E .	1 ident	Jength (nt.)
246	1 2	176	1 367	q1 215098	excisionase (Sacteriophage 154a)	1 69	1 11	192
276	2	1 2260	1412	91(303560	ORF271 [Escherichia coli]	67	- 05	849
297	9	1 2223	3056	91 142784	Ctak protein (Bacillus (irmus)	1 69 1	- 94	934
307	-	5220	4186	[91[1070013	protein-dependent (Becillus subtilis)	67	3	1035
316	-	36	1028	911161061	dioxygenase (Methylobacterium extorquens)	67	25	666
324	1	5650	0.000	91.1469784	putative cell division protein (tsW (Enterococcus hirse)	67	6,	621
336	-	524	1 264	(91,173122	ures amidolyase [Saccharomyces Cerevisies]	62	\$	7
31.0	-	1 108	1394	STHAS[rsuoralda]	UPTRIONSESTER MISTIDYL-THNA SYNTHETASK (EC 6.1.3.21) (HISTIDINE-THNA LIGASK) (HISKS).	62	\$	(¥7.1
364		4890	13592	91/151259	HHG-COA reductase (EC 1.1.1 88) [Pseudomonas mevalonii] pre[A44756]A44156 [hydroxymethy;glutary]-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	67	\$	1299
365	-	1 2940	2113	01 1296823	orf2 gene product [Lactobacillus helveticus]	67		879
367	1 2	1325	918	gi 1039479	ORFU (Lactococcus lactis)		•	166
395	-	999	1221	gi 1204516	hypothetical protein (GB:U00014_4) [Hasmophilus influenzae]	- 67	5.5	909
415	=	1 :800	1 901	gi 382579	ICG Site No. 29739 (Escherichia coli)	67	46	006
419	-	1799	1 903	91/520752	[putative (Bacillus subtilis]	67	89	R97
474			964	Di AM6906	argininosuccinate synthetase (Streptomyces clavuligerus) prz 557659 Szgininosuccinata synthase (EC 6 3.4.5) - treptomyces clavuligarus	•	5	7.0%
48 5		1921	1 2226	gi 143434	Rho Factor [Racillus subtilis]	67	7	306
596	-	1728	1 865	91:1303853	YqgF Bacillus subtilis	67	-	9 9
700	-	CC+	1 218	91 1204628	hypothetical protein (SP:P21498) [Haemophilus influenzae]	67		216
908	7	1 249	647	91 677947	AppC [Bacillus subtilis]	67	5.1	399
A28	~	340	006	191/77761	lirrA (Symechococcus sp.)	67	- 76	561
833	-	1 1407	916	g1 142996	regulatory protein [Bacillus subtilis]	67	19	492
A56	-	1555	611	91 780224	2K970.2 (Caenorhabditis elegans)	69	3.0	777
K 68 K	=	1614	850	91 (37315	TTG start codon [Bacilius licheniformis]	67	40	765
1034	-	1130	765	[61]1205113	hypothetical protein (GB:L19201_15) (Haemophilus influenzae)	67	\$	594
1062	-	1 636	1 319	gx 1303850	YqgC (Bacillus subtilis	67		318
							3	7.50

EP 0 786 519 A2

S. aureus - Putalive coding regions of novel proteins similar to known proteins

QI .	3	(14)	(10)	Acession	בפרני מפופ יופיים	 E •	1 dent	length (nt)
1358	-		293	19111001369	hypothetical protein (Synechocystis sp. I	1 69	-	291
2181	-		302	91,11510416	[hypothetical protein (SP.Pli466) [Methanococcus jannaschii]	1 69		300
2000	-		1 507	91 517205	67 kDa Myosin-crossresctive streptococcal antigen (Streptococcus yogenes)	67	95	507
3066	-	797	ž	91 30861	GTG start codon (Lactococcus lactis)	67		231
1 3087	_	\$	1251	91 1205366	oligopeptide transport ATP-binding protein (Massophilus influenzas)	67	77	204
1010	-	~	356	01 1531541	uroporphyrinogen III methyltrensferase [2em mays]	6.3		255
3598		728	193	91 151259	HMG-CGA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir[A44756[A44756] hydroxymethylglutary]-CGA reductase (EC 1.1.1.88) Pseudomonas ap.	5		336
3765	7	584	366	91/557489	menD (Bacillus subtilis)	67	\$	219
3788	-	1658	396	pir \$52915 \$529	interate reductase alpha chain - Bacillus subtilis (fragment)	67	45	261
1 3883	<u>-</u>	~	1 265	1911704397	cystathioning beta-lyses (Arabidopsis thelians)	67	9	797
3926	-	~	360	(0) (1463199	[peptide-synthetese (Amycolatopsis mediterranel]	1 19	*	339
417	-	92	396	191 1205337	ribonuclectide transport ATP-binding protein [Haemophilus influenzae]	67	•	315
~	-	1 3075	3989	01 535348	Codv [Bacillus subtilis]	99	42	× 16
2.	•	1 2273	1 2542	101 46491	SmtB (Synechococcue PCC7942)	99	7.5	270
=	_	(KON)	1 7826	Ui 292046	[מתרכנות [المست فروانية]	99	7	7.7
. a :	0 .	1 9034	9258	91/1204545	mercury scavenger protein (Haemophilus influenzae)	99	\$	225
7	9	1 6347	5253	998342	unducible nitric oxide synthese [Gallus gallus]	99	-	1095
-	<u>=</u>	9888	10124	191 1510751	molybdenum cofector blosynthesis mosh protein [Methenococcus jannaschii]	99	9	1269
.	~	1276	2868	91 150209	ORF 1 (Mycuplesma mycoides)	1 99	0	1593
88	.	1 7178	8428	1921665999	hypothetical protein (Bacilius subtilis)	99	-	1251
62	_	5143	4370	gi 1072398	pheD gene product [Rhizobium meliloti]	99	0,	174
	<u>-</u>	11693	10998	099608 161	decxyribose-phosphate aldolase [Bacillus subtliis] pir 649455 849455 decxyribose-phosphate aldolase (EC 4.1.2.4) - acillus subtliis	99	\$\$	969
90	-	-	1305	gi 142440	ATP-dependent nuclease (Bacillus subtilis)	99	2	1305
6	۰.	9236	8205	1911704397	cystathionine beta-lyase (Arabidopsis theliana)	99	Ç	1032
1 102	~	3810	13265	91 1204323	hypothetical protein (SP:Pl1805) (Hasmophilus influentes)	99	7	546

EP 0 786 519 A2

aureus - Putative codiny regions of novel proteins similar to known proteins

ta tage ta	<u>\$</u> =	Start	St op (nt)	match acession	Magain name	e s	* 1 deat	Leonth List J
103		3418	22.72	91 971344	Initrate reductase game subunit [Bacillus subtilis] sp[P4217] NARI_BACSU NITATE REDUCTASE GAMA CHAIN (EC 1.7.99.4). g1[1009169 Respiratory nitrate reductase [Bacillus subtilis] [SUB -160]	۵	æ	68
601		4243	4674	q1 170886	glucosamina-6-phosphate deaminase (Candida albitena) pir/A46652 A46652 glucosamina-6-phosphate isomerawe (EC 5.3 1.10) - east (Candida albitena)	99	\$\$	÷
112	11	16+71	117713	pi 1323179	ORF YGRIIIW (Saccharomyces cerevisiae)	99	0.0	222
116	~	4667	2637	91 1491813	gamma-glutamyltranspeptidase (Bacillus subtilis	99	\$	2031
150	5	1 1189	1 2989	91 1146224	[putative (Bacillus subtilis)	99	00	201
172	<u></u>	3264	3662	91/755152	highly hydrophobic integral membrane protein [Bacillus subcills] sp P42951 TAGG_BACSU TEICHOIC ACID THANSLOCATION PERMEASE PROTEIN ACG.	99	;	33
174	5	4592	1 3723	[91]1146241	pantothenate synthetase [Bacillus subtilis]	99	3	8 70
175	-	3209	2880	191 642 655	unknown [Rhizobium maliloti]	99	29	330
1.75	==	8743	1994	91 854655	Na/H antiporter system Bacillus alcalophilus	99	£\$	750
06: 1	- 5	6.07	1572	gi 451072	di-tripeptide transporter [Lactococrus lactis]	99	•	1353
195	115	(13919	(11713	191 1322411	unknown (Mycobacterium tuberculosis	9	42	207
1 217	-	2822	1 2595	91 1143542	alternative stop codon [Rettus norvegicus]	9,	36	228
233	-	333	6135	91 1458327	[FORF] 4 gene product [Caenorhabditis elegans]	99	4	666
×	-	=	1041	[94]809541	ChrA protuln (Erwinia chrysanthuml)	3 ;	2	P404
7.	-	1 2102	1 1053	191 1153067	[peptidoglycan hydrolass [Staphylococcus aureus]	•	7,	1050
261	-	1178	1 648	gi 1510859	H. jannaschil predicted coding region MJ0790 (Methanococcus jannaschii)	99	•	105
263	-	1 1731	£762	gi 1205865	Latrahydrodipicolinate N-succinyltransferese [Haemophilus influenzae]	9	-	159
272	6	6548	5484	91 882101	high attinity nickel transporter Alcaliganes eutrophus sp p23516 Hioxu_Alceu High-affinity nickel transport	9		1065
376	-	2805	2104	gi 1208965	hypothetical 23.3 kd protein [Escherichia coll]	99	4,	202
278	- 5	2830	1784	91 1488662	[phosphatase-associated protein (Bacillus subtilis]	9	48	1047
278	-	1 3830	2952	gi 303560	ORF271 (Escherichia coli)	99	\$	879
279		3894	2218	gi 1185289 	[2-succinyl-6-hydroxy-2.4-cyclohexadiene-l- carboxylate synthase [Bacillus subtilis]	9	=	7.97
288	-	2535	2275	 01 1256625	putative (Bacillus subtilis)	99	42	1 261
292	-	1111	9 6 2	1511604	W. jannaschii predicted coding region MJ1651 (Methanococcus jannaschii)	99	30	192

Cunting [040] 10 [10	<u> </u>	St.act (nt)	Stop (nt)	match acession	watch gene name	E	1 ident	Jength	
294	-	11116	589	191 216314	esterase (Bacillus stearothermophilus)	99	45	858	
297	-	2913	1978	191994794	Cytochrome a stsembly facto (Bacillus subtilis) sp P24009 COXX BACSU PROBABLE CYTOCHROHE C OXIDASE ASSEMBLY FACTOR.	99	\$	936	
316	-	2053	2682	01 1107839	alginate lysse Pseudomonas aeruginosa	99	0.	630	
338	-	2460	2302		biotin synthetese (Bacillus sphaericus)	90	59	159	
339		1214	235	91 167468	7, 8-dihydro-6-hydroxymethylpterin-pyrophosphokinese (Becillus ubtilis)	99	52	087	
363	-		863	91581649	epiC gane product (Staphylococcus epidermidis)	99	47	196	
366	1 2	232	(8)	91,1103505	unknown (Schizosaccheronyces pombe)	99	53	1 252	
36.7	-	2468	1845	sp P20692 TYRA_	PREPHENATE DEHYDROCENASE (EC 1.3.1.12) (PDH).	99	\$0	624	
372	-	2150	1599	91 467416	unknown (Bacillus subtilis)	9	38	552	
178	-	212	1009	[91 147309	purine nucleoside phosphorylass [Escherichis coli]	9	9.0	96/	
101			1 462	qi 388263	p-sainobenzoic acid synthase (Streptomyces griseus) pir JN0531 JN0531 p- aminobenzoic acid synthase - Streptomyces riseus	9	\$	÷	
707		1 4826	\$254	91 606744	cycidine deaminase (Bacillus subtilis)	99	5.1	429	
£	- 7	1738	1103	91 1460081	unknown (Mycobacterium tuberculosis)	99	3	969	
420	<u>-</u>	~	1541	91 1046024	Na+ ATPase subunit J [Mycoplasma genitalium]	99	6+	240	
433	: :	-	888	[91]1500008	 H. jannaschil prodicted coding region MJ1154 (Muthenoucoccus jannaschill) 	\$	Q.,	HZH	
7	1 7	6295	5299	191 852076	NrgA (Bacillus subtilis]	99	9.	180	
•		3405	2413	91/153047	lygostaphin (ttg start codon) (Staphylococcus simulans) pir A25881 A25881 lysostaphin precursor - Staphylococcus simulans sp P10547 LSTP_STASI LYSOSTAPHIN PRECURSOR (EC 3.5.1, -).	99	15	166	
\$61	-	956	0 9 7	91 1204905	DNA-1-methyladenine glycosidese I [Haemophilus influenzae]	99	\$	77	
\$62	-	1066	1183	91 1046082	M. genitalium predicted coding region MG372 [Hycoplasma genitalium]	99	52	318	
376	<u>-</u>	=	724	gi 305014	ORF_0234 (Escherichia coli)	99	3	714	
577	-	0611	1 903	91 1001353	hypothetical protein (Synechocystis sp.)	99	52	288	
584	-	7	12.	sp P24204 YEBA_	HYPOTHETICAL 46.7 KD PROTEIN IN HSBB-RUVB INTERGENIC REGION (ORFU).	99	48	010	
592	-	0171	106	91928839	ORF266; putative [Lactococcus lactis phage BK5-T]	99	22	205	
601	-	1433	720	91/1488695	novel antigen; orf-2 (Staphylococcus sureus)	99	\$5	714	

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop (nt)	match	match gene name		1 Ident	length (nt)
619		894	845	91/746573	smiler to H. musculus transport system membrane protein. Mramp PRR:440739) and S. cerevisiee SHF1 protein (PIR:A45154) Caenorhabditis slegans)	99	\$	378
1 706	-	1 561	1 355	91 804808	unknown protein (Rattus norvegicus)	99	46	207
234		673	512	91 1519085	phosphaidy/choline binding immunoglobulin heavy chain igh variable region	9,	9	162
740	-	<u> </u>	716	911209272	argininosuccinate-lysss (Campylobacter jejuni	9	1	315
796		310	747	91 435296	sakaline phosphatase like protein [Lectococcus lactis] pir [S39339 [S39339] alkaline phosphatase-like protein - Lectococcus actis	9	:	4 3.8
R52	-	338	171	91 536955	[CG Site No. 361 (Escherichia coll.)	99	£	891
886	-	-	156	91 289272	[errichrome-binding protein [Becilius subtilis]	99	7	156
688	-	1 462	1 232	91 833061	HCMVUL77 (AA 1-642) (Human cytomegalovirus)	99	99	231
893	-	7	247	191119008	putative (Helicobacter pylori)	99	45	546
006	-	1425	23	91 580842	FD (Bacillus subcilis)	99		(69
906	- 2	1 2300	1473	91 790945	aryl-slcohol dehydrogenese (Bacillus subtilis]	99	3	828
1967	<u>-</u>	66	549	191 410117	diaminopimelate decarboxylase (Becillus subtilis)	99		174
0.50	-	1100	552	91 48713	orf145 [Staphy]ococcus auraus	99	35	685
955	~	68	1.75	91 1204390	uridine kinase (uridine monophosphukinase) (Maemophilus influenzae)	99	20	387
1 3 4 1	7	1 1308	666	191 457146	rhoptry protein [Plasmodium yoelii]	Ē	H.	
986	-	35	315	191 305002	ORF_f156 (Escherichia coli)	99	31	162
1 1057	-		203	gi 1303853	YqgP (Bacillus subtilis)	99	0	201
1 :087	-	-	294	191 575913	unknown Saccharomyces cerevisiae	99	53	1 294
1105	-	-	164	91 1045799	methylgalactoside permease ATP-binding protein [Mycoplasma genitalium]	99	9 7	231
1128	-		574	191 1001493	hypothetical protein (Synechocystis sp.)	99	9	673
1150	-	867	1 250	91 1499034	И. jannaschii predicted coding region MJ0255 (Methanococcus jannaachii)	99	0,	249
1190	~	707	1 453	01 215908	DNA polymerase (943) (bacteriophage 74)	99	9	255
1208	-	1123	1 587	(01/1256653	DNA-binding procein (Becillus subrills)	99	23	753
1342	-	-	1 402	[91]1208474	hypothetical protein (Symechocystis sp.)	99		402
1761	-	583	398	Qi 215611	tell fiber protein [Bacterlophage T3]	9	. 30	192

Cont 19 ID	ORF 11D	Start	Stop (nt)	BACCh	mattah gene name	978	• ident	length (nt)
1983	-	669	251	[gi]1045935	INNA helicase II (Mycoplasma genitalium)	99	0.	249
2103	7	176	400	gi 929798	precursor for the major mercioite surface antigens [Plasmodium alciparum]	99	•	577
2341		678	188	[91]1256623	[exodeoxyribonuclease (Becillus subtilis)	99	96	186
2458		325	164	91/1019410	unknown (Schizosaccharomyces pombel	. ,		162
2505	_	868	235	19111510394	putative transcriptional regulator (Nethanococcus januaschii)	99	39.	234
2525	-	558	280	19111000695	Cytotoxin L (Clostridium sordelliii)	99	44	2 79
2935		_	275	1911765073	autolysin (Staphylococcus auraus)	9.9		273
3005	-	114	305	gi 1205784	heterocyst maturation protein (Haemophilus influenzae)	99	46	192
3048	-	0.8	1277	[91]1303813	YORK (Becilius)	99	. 2	198
3071	-	-	189	91 1070014	protein-dependent (Bacillus subrills)	99	41	189
1001		* 0 *	225	91 984212	unknown Schizosaccharomyces pombe	99		140
0600	7	280	386	[91(1204987	DNA polymerase III, alphe chain (Masmophilus influenzas)	99	87	195
HIGH	-	~	187	91 1009366	Respiratory natrate reductase (Bacillus subtilis)	99	6.	387
1739	-	966	00	gi 1109684	Prov [Bacillus subtilis]	99	- (8	661
9611	- :	707	202	191 853760	acyl-CoA dehydrogenase Bacillus subtilis	99	1 09	201
<u>.</u>	_			1411 563952	gluconate permease (Bacillus licheniformis	4	46	249
4:40		-	350	91 151259	[HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonix] prr[A44/36]A44/36] hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	99	3	148
4604	-		234	pic A26713 8HHC	hemocyanin subunit : 1 - Atlantic horseshoe crab	99	99	228
.	-	8845	9750	91 145646	cynR Escherichia coll	- 59	35	906
٠	2	2708	3565	91 887824	ORF_0310 [Escherichia col1]	9 9	1 4	858
2		1993	866	911143402	recombination process (tog start codon) (Bacillus subtilis) 0:[1301923 RecN [Bacillus subtilis]	59	77	966
15	-	249.1	3524	91 1403126	crcD gene product [Alcaligenes eutrophus]	1 59	38	1032
1.6	~ [1908	1372	gi 349187	acyltransferase (Saccharomyces cerevisiae)	1 59	1 05	537
ដ		1467	2492	911149518	phosphoribosyl anthranilate transferase [Lactococcus lactis] ptr 535126 535126 anthranilate phosphoribosyltransferase (EC .4.2.18) - Lactococcus lactis subsp. lactis	\$	22	1026
25	-	3374 4312	1	19111502420	malonyl-CoA:Acyl Carrier protein transacylase (Bacillus mubrills)	65		919
1 1 1 1 1 1				111111111111111111 1	1 · 27 17 18 9 1 1 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

EP 0 786 519 A2

S. aureum - Putative coding regions of novel proteins similar to known proteins

gr	0 CK	Start (nt)	Stop (nt)	match	match gene name		* 1dent	length (nt)
27	7	1 390	929	gi 1212729	Yqh\ Becillus subtilis	\$9	45	237
17.	112	111040	110387	gi 509245	[D-hydroxyisocaproste dahydrogenase [Lactobacillus delbrueckii]	\$9	;	654
96	134	119172	19528	q1 547;	H-protein [Flaveria cronquistii]	9	7	357
:	2 -	064	1746	91 405882	yelk Escherichia coll]	\$9	9	756
;	113	9386	8832	91 1205905	molybdenum cofactor blosynthesis protein [Hewmophilus influences]	6.5	50	525
\$		6635	1 7588	gi 493074	AppA protein (Salmonella typhimurium)	65	9	954
2	7	1 5R0	1503	91 580897	OppB gene product (Bacillus subtilis)	69	45	924
52	-	225	953	91/1205518	NAD(P)II-flavin oxidoreductase [Haemophilus influenzas]	6.5	Ş	729
	-	6881	1058	pir A44459 A444	Lroponin T beta InT-5 - rebbit	59	7	282
1 67	-	1 7421	8272	191 143607	sporulation protein (Bacillus subtilis)	65	42	852
ει	-	9777	5155	qi 1204896	[lysophospholipese L2 [Neemophilus Influenzae]	. 65	37	930
74	-	1 954	1	gi 1204844	H. Influenzae predicted coding region HIO594 (Haemophilus influenzae)	• • •	05	471
	-	2 -	757	91 1046082	H. genitalium predicted coding region MG372 (Mycoplasma genitalium)	6	46	156
17.	- 5	1 795	1433	91 [1222116	permesse [Heamophilus influencee]	65	37	619
	-	4728	3454	gi 1001708	hypothetical protein (Synechocystis sp.)	9	\$	1275
16	-	8548	1 8357	91 1339263	cystathionina beta-lyase (Emericella nidulans)	. 65	90	192
86	-	1 1 608	1988	gi 467423	unknowm (Bacillus subtilis)	- 65	e .	186
96	-	-1 2250	2987	gi 467424	unknown [Bacillus subtilis]	- 65	45	738
102		2598	2119	91 1511532	N-terminal acetyltrans(erase complex, subunit ARDI Nethanococcus		60	6 H 3
1 102	-	1 3647	1 2862	gi 1204637	[H. influenzae predicted coding region H10388 (Haemophilus Influenzae)	65	32	786
103		10851	9841	91 142695	S.adenoeyl-L-methionine:uroporphyrinogen 111 methyltransfarase Bacillus segatarius	S	-	1011
101	102	110 10439	110119	191 710021	nitrice reductese (nirD) (Bacillus subtilis)	- 65	16	121
106		1 262	1140	qi 39881	ORF 311 (AA 1-311) (Bacillus subtilis)	9 -	7	679
109	- 5	6061	4268	d1 1204399	glucosamine-6-phosphate desminase protein [Haemophilus influentee]	9 -	-	360
109	110	7165	8595	01 536955	CG Site No. 361 (Escherichie coiil	- 65	41	1431
	11100							

1.0 1.0	Cont.ig ORF	OK1	Start	Stop	match	match gene name	F13	* rdent	length (nt)
1 1.00 10 10 10 10 10 10	110	-	3688	3915	Ui 407881	stringent response-like protein (Streptococcus equisimilia) pir(5)9975 (5)9975 stringent response-like protein - Streptococcus quisimilia	\$	\$	es ca ca
1 1 2 202 9 113135 Frankerinthan bactwater prices 15 202 20 20 20 20 20 20	110	\$	3882	4295	91:407680	ORF (Streptococcus equisimilis	5.9	50	7.7
1	116	9	4231	4380	01 1139574	orf2 Streptomyces griseus	59	95	150
1 1 2 207 G	115	110	9218	8640	91 1204571	influenzae predicted coding	9	5.5	573
1 1 1 1 1 1 1 1 1 1	112	- 7	112049	111288	1911710496	transcriptional activator protein (Bacillus brevis)	65	32	762
	125	-	1 2	1 202	91/1151158	repeat organellar protein [Plasmodium chabaudi]	6.5	39	201
1 19.11 17.55 911 10.64.839	126	=	-	422	91 37589	precursor (Homo sapiens)	6.5	9 \$	420
8 7343 7004 gi[120513]	1	Ξ	1001	12658	gi 1064809	homologous to spillTRA_ECOLI (uacillus subtilis	59	7	9767
1 1342 7441 91 1166225 purativo Baccillus subcilis 1 1442 7441 91 1166225 purativo Baccillus subcilis 1 1442 7441 91 1166225 purativo Baccillus subcilis 1 1442 7442 91 1151943 purativo Baccillus subcilis 1 1558 1944 91 1151943 purativo Baccillus subcilis 1 1958 1478 91 1151943 purativo Baccillus subcilis 1 1959 1478 91 1151943 purativo Baccillus subcilis 1 1950 1478 91 1151943 purativo Baccillus subcilis 1 1952 1951 91 120954 5	143		1 2543	7004	gi 216513	[mutator mut] (AT-GC transversion) [Escherichia coli]	\$9	95	540
4 1442 2441 91 1146225 Dutativo [Bacillus subcills] 1 1 1 1 1 1 1 1 1	145		1 3587	3838	91 1209768	[DO2_orf569 [Hycoplasma pneumoniae]	6.5	2,1	252
13854 1948 97 148104	150	-	3442	2841	gi 1146225	putative Becillus subtilis	65		779
6 1195 4178 Galiliana ORF3; purative (Rhodocacter capaulatus) 65 44 4782 4785 47	166		3858	1948	9: 148304	bera-1, 4-N-4Ceryluniamoylhydrolase Enterococcus hirae pir A42296 A42296 lysosyme 2 (EC 3-2-1) precursor - Enterococcus irae (ATCC 9790)	65	05	1161
1 109.9 8104 91 148220 Allanyl-tRNA synthetasa (Escherichia coli) 65 44 22 41 149220 Allanyl-tRNA synthetasa (Escherichia coli) 65 33 44 45 45 44 45 45 4	8.8.	:	3195	4178	gi 151943	ORF3; putative (Rhodobacter capsulatus)	65	9 9	984
1 10999 1812 41 145220 Allamyl-(RNA monthletame [Escherichia cull] 65 44 24 24 24 24 24 24 2	1.83	-	4282	47.45	191158812	OHE IV (AA 1-449) (Figwort mosaic virual	£ 	7	
1 10399 BID4	56.1	. <u>.</u>	0066	5.272	1011145220	abunyl-tana synthetese (Escherichia culti	59	3 .	1637
16 16896 18191 Gritchine acetyltransferae Bacillus subtilis 65 50 10 4 1844 1815 Grill205974 Srguanylate kinase (Haemophilus influentae) 65 41 5 5 5 5 751 Grill205974 Srguanylate kinase (Haemophilus influentae) 65 40 10 4 5265 3751 Grill205974 Front intern - dacillus subtilis pir/S06048 S06048 65 40 10 5 5 5 5 5 5 5 5 5	195	-	66501	8104	191 882711	>	59	38	2496
4 1244 1215 91 1205974	206	16	96891	18191	19:1468115	ornithing acetyltransferase (Bacillus subtilis)	99	2	1296
4 5265 3751 91 580920 Fodb (graA) polyveptide (AA 1-673) [Dactilus subtilist pir[506048 506048 65 40 1	111	-	3844	1 3215	gi 1205974	5. guanylate kinase (Haemophilus influentes)	9	7	630
5 2127 3709	220	÷	5265	1275	191 580920	rodb (gram) polyveptide (AA 1-673) [Bacillus subtilis] pir S06048 S06048 probable rodb pinceth - bacillus subtilis sp P13464 TAGE:BACSU PROBABLE POLY(GLYCEROL-PHOSPHATE) LPHA-GLUCCSYLTHANSFERASE (EC 2-4 1.52) [TECHO!C ACID BIOSYNFHESIS HOTTIN E).	\$	•	\$151
1 1902 2513	736	- 2	רבונ	1 3709	193 1146200	DNA or KNA helicase, DA-dependent ATPase (Becillus subtilis)	99	4	13.83
4 4968 4195	237	-	1 1902	1 2513	911149379	Hisbd [Lactococcus lactis]	65	9	612
1 1278 940 Gritz04989 Inypothetical protein GB.U00022_9) [Heemophilus influenzee] 65 40 5 4780 3794 G-1145927 [feco [Escherichia coli)]	17.6	7	8967	1 4195	19111205308	[tlbonucleass HII (EC 31264) (RNASE HII) (Haemophilus influenzae]	59	c s	377
5 4780 3794 9.1145927 [tecD [Escherichia coli]]	252	-	1278	, –	[01]1204989	hypothetical protein (GB. U00022_9) (Haemophilue influenzael	69	? ::	610
	197	-	4780	3794	1941145927	[tecD [Escherichia coli]	59	; -:	186

2 2286 2 2286 2 2286 3 4020 5 4020 1 1 490 1 1 187 1 1 187 1 1 193 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contig JORF 10 10	ORF 1.0	Start	Stop	match	match gene nume	E	1 ident	length (nt)
1 12 12 12 12 12 12 12	7.14	=	: 2	1 27H	1911496558	orfX [Bacillus subtilis]	• • •	7	276
2 2246 1399 gil 14691 Nacetylglucosanine transport process in Estruction coil pring299919000000000000000000000000000000000	301	~	9.8.2	818	1911 57418	unknown (Bacillus subtilis)		\$	16.8
1 19 19 19 19 19 19 19	107	-	3586	2864	141,970014		65	0	723
5 4100 1170	335	7	1 22 H 6	1399	9 146913		5 9		
1 190 2800 Gill41264 IMMODITATION CONTINUES Lighting blocks 1911	13A		07(+	1 3170	191 1277029	biotin synthase (Racillus subtilis	1 59	6.	156
4 2781 2311 91 1050340	. (10	-	1490	2800	91113264	membrane-associated protein (Bacillus subtilis	6.5		1361
1 128 699 91 140128	3.14	-	19.2	12531	19:11050540	[tMA-glutamine synthetase [Lupinus luteus]	59	76	231
1 138 699 91 1300128 ONFI Staphylococcus acreus 1 1 5/6 91 140131 PIRABINE PROSPHERASE PROFITED STATES SERSON PROTEIN HOR (EC. 2.73.75) PIRABINE PROSPHERASE SYMINESIS SERSON PROTEIN HOR (EC. 2.73.75) PAGE PA	358	-	3421	3621	91/1146220	[NAD: dependent glycerol-3-phosphate dehydrogenses (Bacillus subtilis)	1 59		201
1 1576	364	-	738	669	[gx [1340128	(OMF) (Staphylococcus aureus)	6.5	51	462
3 3666 4346 911 420468	515		-	5 76	4014143331	alkaline phospharase regulatory protein [Bacillus subtilis] prt[A27550 A27650 regulatory protein phoR - Bacillus subtilis sp P23555 PHOR_BACSU ALKALINE PHOSPIATASE SYNIESIS SENSOR PROTEIN HOR (EC 2.7.3).	\$	0	مرک ا
1 187 483 91 1420465 Obf YOR195w (Saccharonyces cerevisiae) 65 2 272 R.18 (41 143496 (40 45) protein (Nacillus subhilis) 65 3 1472 865 91 1204756 (100-times linemophilus influenzee) 65 4 1531 91 498192 (1045942 1975yl-tRNA synthetase Hyyoplasaa genitaliua) 65 5 1472 865 91 1045942 (100-times earuginosa) 65 6 4312 5637 91 413662 (100-times earuginosa) 65 7 1432 5637 91 413662 (100-times earuginosa) 65 8 11 12 430 (41 1565) (100-times earuginosa) (100-times earuginosa) 65 9 1 1 1 1 1 1 1 1 1	379	-	3666	4346	91 143268	dihydrolipoamide transsuccinylame (odhB; EC 2.3.1.61) [Bacillus ubtilis]	65	20	189
2 122 1848 Gri 143498	428	-	187	483	9411420465	ORF YOR195w (Saccharomyces cerevisine)	99	4 5	297
1 9280 10215 91 204756 Fibohinase Hademophilus influenzee 65 124 1531 91 599999 Haddenophilus influenzee 65 124 1531 91 599999 Haddenophilus influence aeruginose 65 125	. H. T	-	212	R.38	[ci 143498	degS procein (Daci)lus subtitis)	1 59	#	795
2 1241 1331	4.	= .	9280	110215	91 1204756	ribokinase Haemophilus influenzae	59	47	976
2 1452 865	449	-	1241	1531	191/599848	Na/H antiporter humolog Lactococcus lactis	6.5		291
1 1032 517	478	~ -	1452	865	191 1045942	glycyl-tRNA synthetess (Mycoplasma genitalium)	6.5	66	5.08
6 4312 5637 91 415662 UDP-N-acetylglucosamine i-carboxyvinyl transferese (Acinetobacter 65 100-N-acetylglucosamine i-carboxyvinyl transferese (Acinetobacter 65 100 10	66.	-	1032	517	01 1498192	putative (Pseudomonas aeruginosa]	6.5	0	516
1 2 430 43 146531 Prinsnembranc Printein (AdpD) [Escherichia coli] 65 65 65 65 65 65 65 6	0.89	9	4312	5637	91 (415662	UDP-N-acetylqlucosamine i-carboxyvinyl transferase (Acinetobacter alcoaceticus)	\$		9761
1 54 972 99.1603456 reductore [Loishmania major] 65 1 914 459 91 1518853 OafA (Salmonella typhimurium] 65 2 1509 883 91 19399 Open reading (Tame Upstream glnE Escherichia coll) ir 537754 537754 65 2 506 270 91 10961 RAP-2 Plasmodium falciparum 65	784	-	-	430	[41] 146551		59	7	624
1 914 459 91 5518853 OafA (Saimonella typhimurium) 65	499	-	54	932	191 (603456	reductase (Leisimania major	5.9	53	6 6 7
2 1509 883 GI 49399 Open reading frame upstream ginE Escherichia coli) ir 537754 537754 65	505		3.6	459	191 1518853	OafA Salmonella typhimurium	9.5	3.9	÷5.
2 506 270 gi 10961 RAP-2 Plasmodium falciparum] 65	571	~	1509	983	g1 49399 	open reading frame upstream ginE (Escherichia coli) ir 537754 537754 hypothetical process XE (ginE 5' region) - cherichia coli	\$9	7	627
	611	7		1 270	[91] 10961	[RAP-2 [Plesmodium falciparum]	1 59	0.7	237

s aureus . Putative coding regions of nevel protains similar to known proteins

Contro ORF	ONF	Start (nt)	Stop (nt)	match	march gene name	E s	r ident	Jength Int)
705	-	564	283	91 710020	nitrite reductase (nirB) (Bacillus subtilis)	-	5.2	287
112	-	-	1 177	gi 289272	ferrichrome-binding protein (Bacillus subtilis)	. 4	37	177
71.2	2	1 196	1 354		ferrichrome-binding protein (Bacillus subtilis)	6.5	-	651
743	-	1 2	631		ATP binding protein (Streptococcus gordonii)	- ·	\$	019
149	~	193	611	91 67374	single strand DNA binding protein (Bacillus subtilis)	- ·	24.	187
1 162	-	1698	850	1911160399	multidrug resistance protein (Plasmodium falciparum)	6.5	œ	849
1 788	-		315	911129096	unknown protein (Bacillus sp.)	6.5	- 50	331
1 850	-	-	408	91/1006604	hypothetical protein (Synechocystis sp.)	59	3.	409
1 908	-	-	4.44	911199546	2362 Saccharomycew cerevisiae	- 59	9	-
925	-	-	1.74	9111256653	(Min-binding protein (Bacillus subtilis)	\$3		174
. 1631		5.6	232	gi 238657	AppCarytochrome d oxidase, subunit i homolog [Escherichia culi, K12, eptide, 514 ea]	\$	¢,	201
1 1037	==	717	1 262	Oi 1491813	gamma-glutamyltranspeptidase (Bacillus Subtilis)	65	9	153
1053	. –	114	5.1	g1 642655	unknown (Rhizobium meliloti)	9 9	7	9/1
11149	. <u>-</u>	6611	152	fgi 1162980	ribulosa-5-phosphate J-spimerase [Spinacia Jeracea]	6.5	40 7	8
1 1214	-		1 495	911205959	lactam utilization protein [Haemophilus influenzae]	•	÷	387
9271		9/7	236	pir 535493 5354	sate specific DNA-methyltranaforase Stel (EC 2.1.1 -) - Streptonocous	59	2	102
1 1276	2	900	1 577	91 473794	ORF' [Escherichia coli]	6,5	7.	324
1 2057	-	272	138	91 633699	Trsh (Versinia enterocolitica)	6.5	2.1	135
1 252 1	-	336	691	n: 1045789	hypothetical protein (GB:U1400),76) (Mycoplasma genitalium)	6.5	7	168
2974	-	290	1 297	ht 152052	enantiomerase selective amidase (Rhodococcus mp.)	65	\$	244
100		300	154		pril 191024 3010 hypothetical 30x protein (bmP140 S' region) - fruit fly (Drosophila melanoguster)	5	<u>-</u>	15.
3069	-		2.78	9067911116	product humologius to E.coli thioredoxin reductase: J.Biol.Chem. 1988) 263:9015-9019, and to F52a protein of alkyl hydroperoxide eductase from 5 typhimurium: J.Biol Chem. (1990) 265:10535-10540, pen reading frame A [Clostridium pasteurianum]	\$	9 9	276
3146	-	2.82	142	91 49315	ORF! gene product (Bacillus subtalis)	65	47	141
1 3170	-	679	= =	9111507711	indolepyruvate decarboxylase (Erwinia herbicola)	6.5	-	339

aureus - Putative coding regions of novel proteins similar to known proteins

Contro	Contrg ORF ID IID	Start	Stop	match	match gene nama	E :: 5	1 Ident	length (nt)
1546			303	01 45068B 	hadw gene of Ecopril gene product [Escherichia coli] pir 538437 538437 hadw protein - Escherichia coli pir 509629 509629 hypothetical protein A = Escherichia coli (508-40-520)	39	7	100
3782	-	7	328	91 166412	[NADH-glutamate synthese (Wedicego sativa]	\$	4	327
3990	-	374	189	91 1009366	[Respiratory nitrate reductase (Bacillus subtilis]	\$9		186
4032	-	613	1 308	19111323127	ORP YGROB7c (Saccharomyces cerevisiae)	6.5	05	306
4278		1,26	364	91 1197667	[vitellogenin (Anolis pulchellus]	6.5	4.2	163
61	-	4259	5518	91 145727	deaD [Escherichia coli]	4	Ş	1260
61	-	1 7639	6926	gi 1016232	ycf27 gene product Cyanophora paradoxa	4	97	712
20	· -	1 7053	6454	[gi 765073	autolymin Staphylococcus aureus)	79	47	009
16	=======================================	112706	111537	91 (414009	1pa-85d gane product (Bacillus subtilis)	•	1 5.	1170
	-	2388	4364	91 1204696	[fructose-permease IIBC component [Haemophilus influenzae]	79	1 47	1 661
36	-	1781	1 3013	91 290503	glutamatw permease (Escherichia coli)	9	0	1143
1 37	-	4065	4409	91 39815	orf 2 gene profict (Bacillus subtilis)	99	90	345
	6	7852	1 8760	91 1230585	nucleotide sugar epimerase (Vibrio cholerae 0139)	64	5.3	606
-		1540	6681	gi 1303961	[YqjJ (Bacıllus subtilis]	•	20	360
95	9	4793	1 3855	91 457514	[gltC [Bucillus subtilis]	64		919
95	24	30003	130247	91/470331	similar to zanc fingers (Caenorhabditis elegans)	ð.	-	246
62	-	2759	1 2421	[91]642655	unknown [Rhizobium meliluti]	9	28	339
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	9	7178	6027	[gi 457702	5-aminoimidazole ribonucleoride-carboxilase [Pichia methanolica] pir 5)9112 539112 phosphoribosylaminoimidazole carboxylase (EC .1.1.21) =	4		1152
96	6 1	9251	110030	91/1511513	ABC transporter, probable ATP-binding subunit (Nethanococcus jannaschill	4	78	0.87
100	-	- 1	009	[61]:65073	autolysin (Staphylococcus aureus)	64	44	000
106	- 5	3868	4854	91 166778	lysine specific permesso [Escherichia coli]	9	46	987
123	- 2	938	554	91 467484	unknown (Bacillus subtilis)	6.4	~ •	285
127		1 7514	7810	1971-110061	serotype-specific antigen African horse sickness virus pir 527H91 527H91 capsid protein VP2 - African horse sickness virus	20 24	200	762
161	1,	7134	6721	19111511160	[H. jannaschii predicted coding region MJ1163 (Methanococcus jannaschii)	9	9	414

EP 0 786 519 A2

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

55

aureus - Putative coding regions of novel proteins similar to known proteins

Contag ORF ID ID	1.0 P.F.	Start	Stop (nt)	match acession	match gene name	E 74	* 1 dent	length (nt.:
142	5	541.5	4417	191 1113517	riboflavin synthase alpha submnit (Actinobacillus pleuropneumoniae)	F 9	77	689
7	-	1 709	356	pir A32950 A329	pir [A32950[A329 [probable reductase protein - Leishmania major	99	\$2	354
67:	01	13555	3295	91 398151	major surface antigen MSG2 (Pneumocystis carinii)	•9	•	261
154	-	1334	1 2307	91/984587	Dinp [Escherichia coli]	9	- 05	87.80
161		1 3855	4880	1911903304	ORF72 [Bacillus subtilis]	3	רנ	1026
:65	-	2 -	167	g1,467483	unknown [Bacillus subtilis]	3	80	159
175	9	6355	9: 25	91 1072398	pheD gene product (Rhizobium mellioti)	- -	42	1512
188		2042	1 2500	91 1001961	HHC class II analog (Staphylococcus aureus)	- 64	\$	\$ \$
195	=	13667	113446	91 396380	No definition line found (Escherichia coli)	79	4.7	222
206	;	116429	16938	gi 304134	aryC (Bacillus stearothermophilus)	79	69	\$10
215	-	095	1 282	gi 142359	ORF 6 (Arctobacter vinelandii)	3	39	279
2.53	- 1	7818	6928	91 414014	ipa-90d gane product [Bacillus subtilis]	-	6.8	168
258	7	1330	845	gx 664754	PI7 [Listeria monocytogenes]	20	38	486
259	7	1 462	1 232	qi 1499663	H. jannaschii predicted coding region MJ0837 (Methanococcus jannaschii)	-	52	231
263	9	6565	5567	91 142828	aspartate sentaldebyde debydrogenase (Bectilus subtilis) sp[004797]PHAS_BACSU ASPARTATE-SEHIALDEHYDE DEHYDROGENASE (EC. 2.1.11) (ASA DEHYDROGENASE).	•	4. EC	666
27.1	-		1163	gi 467091	hflX; B12335_C2_202 (Mycobacterium leprae)	3	4	1161
280	-	671	1450	91/1301839	YqfR (Bacillus subtilis)	9	6	1278
293	-	2532	1267	94 147345	primosomal protein n' [Escherichia coli]	49	45	7.266
295	~	742		91 459266	Potential membrane spanning protein (Stabhylococcus hominis) pir S42912 S42912 potential membrane spanning protein - taphylococcus hominis	3	65	747
301	5	1625	1446	gi 580835	[lysine decarboxylase [Bacillus subtilis]	99	35	180
\$115	•	5064	3949	91111396	quinol oxidasa (Bacillus subtilis)	- 64	4.5	1116
321	-	1264	635	91/710496	transcriptional activator protein [Bacillus brevis]	79		9630
333	5	4520	4239	91 1314295	ORF2: putative 19 kDa protein [Listeria monocytogenes]	64	43	282
342	-	-	549	91 142940	ftsA (Bacillus subtilis)	4	H	549
151				0.000		74	•	333

10	
15	
20	
25	
30	
35	
40	
45	

55

5. aureus - Putacive coding regions of novel proteins similar to known proteins

Contig	IORF	Start (nt)	Stop (nt)	match accepton	match gene name	E	י ולפחר	length (nt)	
676	~	1 827	13658	pit 525295 A328	oxoglutarate dehydrogenase (lipoamide) (EC l. 2.4.2) - Bacillus subtilis	3	62	2832	
40	9	4429	4839	pir A36933 A369	diacylglycerol kinase homolog - Streptococcus mutans	9	35	411	
1 407	-	2020	11133	191 969026	OrfX [Sacillus subtilis]	3	\$	888	
1 425	-	1109	1 591	gi 1146177	phosphotransferase system glucose-specific enzyme II (Bacillus subtilis)	9	*	615	
3		4082	4798	91 147309	purine nucleoside phosphorylase [Escherichia coli]	64	51,	717	
1 450		1 1035	1 1604	gi c06376	ORF_ol62 [Escherichia coli]	3	36	570	
1 470	- 5	1680	6107	91 1369948	host interacting protein (Bacteriophage Bl)	79	45	4428	
20 80 10 10 10 10 10 10 10 10 10 10 10 10 10		1161	1471	9111205582	spermiding/putrescing transport system permease protein [Heemophilus] influences]	9	3.5	4	
1 497	-	1 2217	1159	sp 936929 FHU_E	FHU PROTEIN.	*9	38	6501	
1 501	-		410	91/142450	entC protein (Becillus subtilis)	79	3.8	1 800	
514	-		1 290	gi 1204496	 H. influentae predicted coding region H10238 (Heemophilus influentae) 	*9	34	2.88	
1 551	-	1162	1 3323	gi 1204511	bacterioferritin comignatory protein [Heemophilus influenzee]	79	;	162	
1 603	4	759	956	91,1755823	HADH dehydrogenase F (Streptogyna americana)	•	35	1 861	
(59	~	076	746	1911.213234	dicarboxylic amino acids Dip5p permease [Saccharomyces cerevisiee]	3	=	195	
660		1801	1 2257	5p P46133 YDAH_	HYPOTHETICAL PROTEIN IN OGT 5 REGION (FRAGHENT).	*	5.6	245	
569	-	=	205	191 1001383	hypothetical protein (Symechocystis sp.)	*	3	492	
702	-		1752	gi 142865	DMA primase (Bacillus subtilis)	9	46	150	
826	-	-	926	911971336	arginyl tRNA synthetase [Bacillus subtilis	5.5	20	939	
638	- -	1831	1 917	91 1354775	pfos/R (Treponeme pallidum)	**	Ţ	915	
99	2-	675	946	91 39833	cyclomaltodextrin glucanotransferase (Bacillus etestothermophilus) i 19835 cyclomaltodextrin glucanotransferase (Bacillus estothermophilus)	3	47	270	
8.87		~	677	qi 153002	enterotoxin type E precursor (Staphylococcus auraus) pir A28179 A28179 enterotoxin E precursor - Staphylococcus auraus sp[P12993 ETXE_STAAU ENTEROTOXIN TYPE E PRECURSOR (SEE).	9	46	675	
8 2 6 	~	1172	563	91 311976	[ibrinogen-binding protein [Stephylococcus auraus] pir[534270 534270] [ibrinogen-binding protein - Staphylococcus uraus	9	÷	01 7	
1049	~	008	909	[gi 1049115	Pap60 (Bacillus subtilis)	•	4.2	195	
1 1067	~	666	1 748	gi 1151072	HhdA precursor (Reemophilus ducreyi)	3	80	252	

TABLE 2

S aureus - Putative coding regions of novel proteins similar to known proteins

Contag	ORF	Start	Stop	match acession	match gene name	mis .	* ident	length (nt)
1 1120	; -	05	202	qi 142439	ATP-dependent nucleass (Bacillus subtilis)	64	0.0	153
1125		12.	776	91 581648	epiB gene product (Staphylococcus epidermidis)	3	-	375
1688	-	402	214	pir A01365 TVRS	(transforming protein K-ras - mouse	9 9	42	189
1 2472	<u>:</u> -	2	358	91 487282	Ne+ -ATPase subunit J [Enterococcus hirae]	79	36	357
2989	-	520	356	gi 304134	ergC (Becillus staerothermophilus)	64	205	165
1 3013	-	00.9	1 352	1011551699	cytochrome oxidase subunit [bacillus firmus	- 79	51	2.19
3034	-	546	274	91/1204349	hypochecical protein (GB:GB:D90212_3) [Haemophilus influenzae]	79	05	273
1 3197	-	613	308	91 2009366	Respiratory nitrate reductase (Bacillus subtilis)	49	90	306
1 3303	-	06	362	Qi 1107839	alginate lyase (Pseudomonas aeruginosa)	- 94	~	3.13
3852	- 2	82	288	91/216746	D-lactate dehydrogenase (Lectobacillus plantarum)	•	42	207
3,868	-		312	91 149435	[putative [Lactococcus lactis]	.	ec	312
3918	-	099	331	91 (5532	acetyl-CoA acyltransferase (Varrowia lipolytical	79	9.0	330
4000	-	1112	378	91 94688	(unknown (Saccharomyces cerevisiae)	4	44	367
6007	-	- B	368	91 39372	[graß gene product [Bacillus brevis]	3	;	288
4166	<u>-</u>	~	349	91 149435	[putative [Lactococcus lactis]	79	9+	348
4366	_	~	1 307	91 (216267	ORF2 (Dacillus megaterium)	9	₹	300
4457	: -	~	00.	gi 1197667	vitellogenin (Anolis pulchellus)	3	Ç	399
12	2	6621	2438	91 438228	OAP C (Staphylococcus aureus)	63	20	004
77	_	1195	5423	91(1369943	al gene product (Bactericphage Bl)	و	7	7 E -
58			061	107/07/10	expressed at the end of exponential growyh under conditions in which he enzymes of the TCA cycle are repressed (Bacillus subtilis) gi[46744] expressed at the end of exponential growyh under ondtions in which the enzymes of the TCA cycle are repressed Bacil	£	4	061
17	9 .	6329	1 5712	1911496943	ORF (Sacchatonyces cerevisiae)	1 (9	47	618
3	123	14669	15019	pir A04446 QQEC	hypothetical protein F-92 - Escherichia coil	- C9	36	351
— В В	۰	4403	6250	gi 43498	pyruvate synthase [Halobacterium halobium]	(3	42	1848
50	~	3869	4738	91 413967	lipa-43d gene product (Bacillus subtilis)	6)	3	078
23	9	6764	5742	91 474176	regulator protein (Staphylococcus xylosus)	63	69	1023

CCIL 19 ORF 1D 1.3		Start	Scop	ratch acession	maidh gene name	e :	t ident	l tengrh
9	114	15880	17607	[91 167409	DRA polymerase III subunit (Bacillus subtilis)	5	9	172H
57	= = :	1 7945	7376	191 537036	ORF_0158 [Escherichia coli]	63	36	573
6.2		2479	2314	[91] (42656	Unknown (Rhizobium meliloti)	63	7.7	366
70	. co	6562	1 7353	91 1399821	PhoC (Rhizobium meliloti	63	90	792
7.5		223	1 927	191 149376	[HisG [Lactococcus lactis]	63	42	705
¥.	- 5	4912	4 03	191;413950	Ipa-26d gene product [Bacillus subtilis	63	7	510
9.1	- 2	9006	17220	91 466997	[macH2, B2126_C1_157 [Mycobacterium leprae]	63	. 🕏	1857
16		10566	9448	91 1204344	(cystathionine gamma-synthase (Haemophilus influenzae)	63	45	6111
120	-	21	1508	gi 882657	sulfite reductase (NADPH) [lavoprotein bela subunit (Escherichia oli)	63	46	1484
120	4	2722	4125	91 665994	[hypothetical protein [Bacillus subtilis]	[F	34	1404
127		1 6064	1366	91 (40162	murE gene product Racillus subtilis]	69	7 7	1503
149	•	2321 2106	2106	91 148503	dnaK Erysipelothrix rhusiopathiae	F9 -	40	216
6	56	10445	10170	0 1 4 8 3 0	OMF 2, has similarity to DNA polymerase (Saccharomyces Kluyveri) r[515961 515961 hyputhetical protein 2 - yeast (Saccharomyces yveri) plasmid pSKL	6	42	27.6
164	~	507	1298	gi 145476	CDP-diglyceride synthetese [Escherichia coli]	63	7	767.
991		ניטויני	¥90#	[44]151932	[Huctose enzyme II [Rhedebacter cappar]atus]	-	41	47.1
169	4	1704	1886	gi 152886	elongation factor 7s (tsf) (Spiroplasma citti)	69	48	183
168	<u>.</u>	3145	1 2951	(91)1334547	GIY COI 114 grp IB protein (Podospora anserina)	- 69	4	195
195		11767 12804	112804	191,606100	ORF 0335 (Escherichia coli)	3	0.	1018
201	~	607	2283	gi 433534 	arginyl=RNA synthetase Corynabacterium glutamicum pir A49916 A49936 arginine =tRNA ligase EC 6.1.1.19) - orynabacterium glutamicum	63	4 6	1677
206	9 1	15893	16489	1911580826	N-acetyl-glutamate-gamma-semialdehyde dehydrogenase [Racillus ubtills]	69	57	765
220	· ·	1769	1 5766	91 216334	sech protein (Bacillus subtilis)	63	42	2004
221	-	2	1 907	1911677945	AppA (Bacillus subtilis)	6	4	8
722	_	344	1708	19111510558	cobyric acid synthase (Methanoroccus jannaschii)	69	46	765
261	7	8 04	1070	191 486511	ORF YKROS4c (Saccharomyces cerevisiae)	63	4.5	267
269	7	1606	1960	1911148221	[DNA-dependent ATPase, DIA helicase [Escherichia coli] pir JS0137 BVECRQ	- 63	4.2	1647

5. aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	LORF	Start	Stop (nt)	match acession	match gene neme	E15 /	I ident	Jength (nt)
238		7417	6176	91 099273	cystathionine gamma-synthase Mycobacterium leptee sp P46807 NETB_MYCLE CYSTATHIONINE GAMMA-SYNTHASE (EC 4.2.99.9) 0-SUCCINTLHONGERINE (THIOL)- LYASE)	63		1242
287	7	738	1733	91 405133	putative [Bacillus subtilis]	100	86	966
295	-	1 2	748	gi 1239983	hypothetical protein (Bacillus subtilis)	69	7	747
328		2148	3134	g1 45302	carrier process (AA : - 437) (Pseudomonas aeroginosa) sr[511497 511497 branched-chain amino acid ti. sport protein braß - eudomonas aeruginosa	69	36	9.87
1 362	-	1 1526	1216	sp +35136 SERA_	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1 1.95) (PUDH).	63	**	411
404	-	1 326	1001	21 1303816	YqeZ (Becillus subtilis)	63		726
405	-	1 2101	1715	91 1303914	YqhY (Bactilus subtilis	٥	4.2	3.87
406		451	1 227	91,142152	sulfate permesse (gtg start codon) [Symechococcus PCC6101] pir[A3030][GRYCS7 sulfate transport protein - Symechococcus sp. PCC 7942)	63	7	235
415	~	1048	2718	gr 1205402	transport ATP-binding protein (Haemophilus influentae)	63	=	1671
426		3575	2679	91 393268	29-kilobalton protein (Streptococcus pnamoniae) sp P42362 P29K_STRPN 29 KD HEMBRANE PROTEIN IN PSAA 5 'RECION ORFI].	63	39	697
\$05	-	1347	2195	191 1418999	orf4 [Lectobacillus sake]	63 -	0.7	618
507	-	7	574	91 546917	comk Bacillus subtilis, E26, Peptide, 192 as	63	35	573
295	-	1.46	1084	91/43985	inifs-like gene (Lactobacillus delbrueckii)	Ş	\$	ofe
675	-	427	215	9i 1510994	betine aminotransferase [Nethanococcus jannaschii]	63	5.5	51.5
686	-	6 1	230	91/517356	Initrate reductage (NADH) (Lotus japonicus)		52	228
101	-		392	91 881940	NorQ protein Paracoccus denitrificans	6.	5	060
120	-	2 -	007	91 47168	open reading frame (Streptomyces lividans)	63	35	399
611	-	125	1.897	01/1261932	unknown (Mycobacterium tuberculosis	63	41	285
907	_	77	1321	gi 349445	UAF1 (Lactococcus lactis)	63	2.7	300
276	-	194	399	91/1511235	[H. Jannaschii predicted coding region HJ1232 [Methanococcus jannaschii]	· • •	1.2	196
1085	-	1154	619	gi 1204277	[hypothetical protein (GB:U00019_14) [Haemophilus influenzue]	63	38	537
1094	-		542	911790943	ures amidolysse (Bacillus subtilis)	63	39	540
1108	-		482	pir 549892 5498	regulation protein - Bacillus subtilis	63	4	4.60
CITI	: -	11233	617	1011493017	endocarditis specific antigen [Enterococcus faccalis]	-	4.5	615

tains
ord
known
3
similar
aureus - Putative coding regions of novel proteins similar to known proteins
novel
٥ţ
regions
coding
Putative
1
รกลากห
Ġ

Contig ORF 1D 1D	ORF	Start (nt)	Stop (nt)	match	inaudice gene name	F 5 1	1 sdent	length (nt)
1300	-		569	sp P33940 YOJH_	HYPOTHETICAL SA. 3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION.	63	94	(69)
1325	-	-	204	91 928989	[p100 protein [Borrelia burgdorferi]	63	0.8	707
1814	-	3	245	(0) (1303914	YqhY (Bacillus subtilis)	63	*	243
2021	-	867	1 250	pir C33496 C334 hisc homolog	hisc homolog - Bacullus subtilis	63	9	249
2325		2	193	91 436132	product is similar to ThpA of transposon Th554 from Staphylococcus ureus [Clostridium butyricum]	3	9	192
2335	-	-	1 195	d1 1184298	[flagellar HS-ring protein [Borralia burgdorferi]	6.9	-	195
2406	-	1 (51	1 227	91 1041785	rhoptry protein [Plasmodium yoelii]	3	33	225
2967		136	1 360	Q1 312403	carbamoyl-phosphate synthase (glutamine-hydrolysing) [Bacillus aldolyticus]	63	5.2	325
:	-	-	1 402	gi 1407784	orf-1; novel antigen (Staphylococcus auraus)	63	20	405
2987	-	1 583	293	91 1224069	amidese [Morexella caterrhalis	63	36	291
2994	-	1 266	- r.s	91 836546	phosphoribosylformimino-praic ketoisomerase Rhodobecter pheetoides	6.3	5.1	132
30.43	-	1 4.10	1 252	n. 1480237	phenylacetaldehyde dehydrogenase Escherichia coli	63	0	169
1678	-	609	1 400	91 1487982	intrinsic membrane protein (Nycoplasma hominis)	63	36	210
9000	; -		712	91 439126	glutamate synthase (NADPH) (Azospirillum brasilense) pir [A49916 A49916] glutamate synthase (NADPH) (EC 1.4.1.13) - zospirillum brasilense	63	£	216
1625	-	386	198	40.1023071	OHE GO, partainou Thacher lephane the O	3		767
3658	; -	. –	661	19111303697	YrkA (Bacillus subtalis)	6.3	ì	996
3659	-	-	395	911256135	Ybbr (Bacillus subtalis)	63	9	393
3783		720	361	91 1256902	Pyruvate decarboxylase isozyme 2 (Swiss Prot. accession number P16467) (Saccharomyces cerevisiae)	63	76	360
1900	-	338	171	sp 210537 A4YB_	BETA-AMYLASE (EC 3.2.1.2) (1,4-ALPHA-D-GLUCAN HALTOHYDROLASE).	63	•	168
4309	-	-	176	pir A37967 A379	neural cell adhesion molecule Mg-CAM precursor - chicken	63	52	174
4367	-	-	195	19111121932	Perép gene product (Pichla pastoris)	63	30	195
4432	- 		315	gx 151259 	HMG-COA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir A44756 A44756 hydroxymethylgluteryl-CoA reductase (EC.1.1.1.88) Pseudomonas 5:)	5	5.1	11.2
4.468	-	9	308	191 296464	ATPase [Lactococcus lactis]	63	96	303
=		1411	00 0	gi1153675	tagatose 6-P kinase (Streptococcus mutans)	6.2	*	066
3 5	- 6	5985	6218	191 1490521	[HISH] (Homo saptens)	62	ŝ	234
					《 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			

S. aureus - Putative coding regions of novel proteins similar to known proteins

Lonely Lonely LD	0 NET	Scarc (nc)	Ctop	natch	match gene name	E 55 3	t sdept	l tength
	-	~	721	91 1107531	reuE gane product Campylobacter coli!	62		064
	- 15	110912 11158	111589	91 1222058	H influentae predicted coding region HIN1279 [Haemophilus influentae]	62	R.	81.4
E .	2.5	19526	120329	91 695280	ORF2 (Alcaligenes eutrophus)	62	41	908
- 57	7	2523	1780	91 171234	orfl [Haemophilus influentae]	6.2	ζ.	***
53	6	6646	6350	91 508174	Elib domain of PTS-dependent Gat transport and phosphorylation Escherichia	3	15	29.7
885		7	559	91/755152	highly hydrophobic integral membrane protein [Bacillus subt: : s] sp[P42953][AGG_BACSU TEICHOIC ACID TRANSLOCATION PERMEASE PROTEIN AGG.	62	34	558
5	2	A250	9014	gi 470683	Shows similarity with ATP-binding proteins from other ABC-transport perons, Swiss Prot Accession Numbers P24137, 108007, P04285, P24136 Escherichia coli)	59		دی د
69	ec -	8315	7494	gi 46816	ACTVA 4 gene product (Streptomyces coelicolor)	62	7	822
80	-	1793	1320	qi 39993	UDP-N-acetylmuramoylalanineD-glutamate ligase (Bacillus subtilis)	62	63	474
F 47	~	1034	9205	191 217191	S'-nucleotidase precursor (Vibrio parahaemolyticus)	62	1.8	2172
00:	~	150\$	9089	gi 1511047	phosphoglycerate dehydrogenase (Hethanococcus jannaschii)	62	4.5	696
102			520	9) 153655	mismatch repair protein (Streptoroccus pneumoniae) pir(C28667 C28667 DAA	3	7	\$13
112	7	466	1068	191 [153741	ATP-binding protein (Streptococcus mutans)	G	3.5	603
114	۲ ا	6855	1362	91 1204866	L-fucose operon activator (Haemophilus influenzae)	62	*	70K
91: -	-	6823	5633	91 677947	AppC (Bacillus subtilis)	62	37	1611
	do	6855	6003	727259110	product similar to E.coli PRFA2 protein [Becillus subtills] pir[555438 555438 ywkE protein - Bacillus subtills sp[P45873]HEHK_BACSU POSSIBLE PROTOPORPHYRINGEN OXIDASE (EC. 3.3).	29	2	852
80:	7	\$2	554	91 467456	unknown [Becillus subtilis	62	30	531
749	50	1 7 5 9 1	67.25	19: 11205807	replicative DNA helicase (Haemophilus influenzae)	6.2	7	867
9	-	1303		191 40067	X gene product (bacillus sphaericus)	79	7.5	151
164	511	14673	115632	191 12219	PJS gene product (AA 1 - 314) [Eschorichia coli]	62	3.8	096
165	~	1166	1447	91 403936	phenylalanyl-tRith synthetase alpha subunit (Gly294 variant) unidentified cloning vector)	62	#	282
991	- 2	2084	5089	91 308861	GTG start codon (Lactococcus lactis	62	7	3000
171	-	1325	614	[91] 1046053	hypothetical protein (SP:912049) [Hycoplasma genitalium]	62	-	6.12

5, auteus - Putative coding regions of novel proteins similar to known proteins

Contag ORF	08.F	Start (nt)	Stop (nt)	match acession	matcht gane name	# 1 8 1 H	* ident	int)
G		2521	1310	91/143045	hemy (Bacillus subtilis)	62	1 5	1212
200	-		956	gi 142439	ATP-dependent nuclease (Bacillus subtilis)	62	7.7	954
762	- 2 -	935	9961	91 41695	hisC protein (Escherichia coli)	62	3	1032
261		4008	1 2605	91 143121	ORF A; putative [Bacillus firmus]	62	42	1404
299		7,44	617	91 467431	expressed at the end of exponential growyh under conditions in which he enzymes of the TCA cycle are repressed (Bacillus subtilis) gildeTell expressed at the end of exponential growyh under ondtions in which the entymes of the TCA cycle are repressed Bacil	29	4	2.5
304	9	5018	9181	1911153015	FemA protein Staphylococcus aureus	62	43	1200
324		7	262	91 142717	cytochrome aa3 controlling protein (Bacillus subtilis) prr A33960 A3960 cta protein - Bacillus subtilis sp P12946 CTAA_BACSU CYTOCHROME AA3 CONTROLLING PROTEIN.	62	2	261
325	- 5 -	569	1 1207	91 581088	methionyl-thus formyltransferase [Escherichia coli]	62	39	616
332	•	4894	1631	41 1499960	uridine 5'-monophosphate synthase (Nethanococcus jannaschiz)	62	36	264
155	-	2	3.70	[91]145925	[fec8 (Escherichia co)1)	62	32	369
365	=	6628	6804	gi 413943	ipa-19d gene product [Bacillus subtilis]	62	75	177
369	~	: _	1 1626	pir A43577 A435	pir A43577 A435 requiatory protein pfoR - Clostridium perfringens	62	- 4	1119
07.6	_	-	264	191140665	Inderglucosidese (Clockindium thermocellum)	62	1.7.	1
415			9/11	9111205401	transport ATP-binding protein [Haemophilus influenzae]	62	35	497
429	-	1578	790	911:046024	Na+ ATPasa subunit J (Mycoplasma genicalium)	62	P 07	947
÷	~	704	1369	91 501510	Inodulation gene; integral membrane protein; homology to Rhizobium eguminoserum nodi (Rhizobium loti)	69	32	999
477	-	751	1869	pir A18440 A484	ring-infected erythrocyte surface antigen 2, RESA-2 - Plasmodium (alciparum	62	7	6111
4.8 5	-	241	1707	91 17934	betaine aldehyd dehydrogenasa (Beta vulgaris)	62	45	1467
:	_	141	1311	91 149445	ORF1 [Lactococcus lactis]	62		171
494	7	1134	£161	1911166835	ribulose bispliosphate carboxylase/oxygenase activase (Arabidopsia haliana)	62	37	180
518	-	193	982	Kgi 153491	O-methyltransferase (Streptomyces glaucescens)	62	39	069
		369	2522	191 1480429	putative transcriptional regulator (Bacillus stearothermophilus)	62	35	2154
551	9	4371	4820	91 511113	ferric uptake regulation protein (Campylobacter jejuni)	62	1,71	0\$7
\$7.6	-	-		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			-	

aurous - Putative coding tagions of novel proteins similar to known proteins

Contag CRF	CAF	Start (nt)	Stop (nt)	acession	ישיבר לין משפה פאשה שהפה ישיבר לין באים יישיבר לין באים באים באים יישיבר לין באים באים באים באים באים באים באים באים	E	1 ident	lenotin (nt)
065	, 	**	1711	91140367	ORFC Clostridium acetobutylicum	63	37	2
655	- -	1 396	R30	91 147 195	[phnB protein [Escherichia coli]	62	4	415
959	-	2	478	191 1205451	cell division inhibitor (Heemophilus influentae)	62	36	411
9.79	-	769	748	91 1511613	methyl coensyme H reductase system, component A2 (Methanococcus jannaschill	62	36	345
189	-	493	248	g1 49272	Asparaginase (Bacillus licheniformis)	62		917
001	~	267	944	91 1205822	hypothetical protein (GB:X75627_4) [Naemophilus influenzae]	62	0.	678
840	~	1715	1 1041	91 1045865	M. genitalium predicted coding region MGIRI (Mycoplasma genitalium)	62	36	675
. A64	; -	868	1491	gi 1144332	deoxyuridine nucleotidohydrolase (Homo sapiens)	62	3.8	\$65
916	-	36	00+	91 413931	ipa-7d gene product (Decillus subtilis)	62	45	366
101	-	-	177	9111510649	aspartokinase I (Methanococcus jannaschii)	62	0.7	17.
1084	-	61	609	91 (488011	Agx-1 antigen human, infertile patient, testis, Peptide, 505 as]	62	39	165
		~ 	503	91 581261	OMF homologous to E.coli metB (Herpetosiphon aurantiscus) pir \$14030 \$14030 Hypothetical protein - Herpetosiphon aurantiscus (rayment)	6.2		201
1 1217	: -	(9)	233	911460025	OMF2, putative [Streptococcus pneumoniau]	9	£	711
1533	-	644	÷	91 413968	lipa-44d gene product (Bacillus subtilis)	6.2	- C.	233
1537	-	-	1257	91 1510641	alany -tRNA synthetase Methanocuccus jannaschil]	62	2 3	255
(HC (<u>-</u>	_	1 161	191 485956	MING Grine product [Protous mirabilis]	63	45	÷ :
2386	-	~ -	245	oi 285708	nontoxic component (Clostridium botulinum)	62	·	243
2484	-	1331	167	91 142092	[DNA-repair protein (reck) [Anabaena variabilis]	62	35	165
2490	- -	867	00 \$	91 581648	epiB gene product Staphylococcus epidermidis	62	42	660
1016	-	ء م	000	[91]/10022	uroparphyrinogen 111 (Nacillus subtilis)	62	5.1	297
3116	-	-	213	Qi 466883	nifS; B1496_C2_193 [Mycobacterium leprae]	6.2	=	213
1 3297	-	623	<u>-</u>	1911475715	acetyl coenzyme A acetyltransferase (thiolase) (Clostridium cetobutylicum)	62	42	-17
1609		ī.	276	gi 1408561 e	homologous to N-acyl-L-amino acid amidohydrolass of Bacillus stearothermophilus Bacillus subtilis	62	8	246
1665		584	402	Qi 151259 	HMG-CoA reductase (EC 1.1.1 88) Pseudomonas mevalonii) pir A44756 A44756 Aydroxymethyigiutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas ap.	3	0	683
ננרנ		<u> </u>	1 374	191 1353197	[thioredoxin reductase [Eubacterium acidaminophilum]	62	42	372
					. *************************************			

S. aureus - Putative coding regions of novel proteins similar to known proteins

	-							
4 1 1			1237	91 153675	tagatose 6-P kinase (Streptococcus mutans)	62	\$	233
	<u> </u>	263	143	91 330705	homologue to gene 30 (as 1-59), putative [Bovine herpesvirus 4]	62	~	141
•	12	רגר	1 365	91 41748	hadw protein (AA 1-520) [Escherichie coli)	62	\$	363
(303	-	7 -	1003	9111303813	Yqew (Bacillus subtilis)	62	\$	303
0867	-	1 530	1 267	91 1235684	nevalonate pyrophosphate decarboxylase [Saccharomyces cerevisies]	62	55,	264
1494	=	2	1 256	qi 510692	enterotoxin H [Staphylococcus eureus]	62		255
4598	-	=	223	191763513	ORF4: putative (Streptomyces violaceoruber)	6.2	\$	189
1 4624	-	-	222	gi 41748	hedy protein (AA 1-520) (Escherichia coli)	62	-	222
	- 2	4239	2160	[91]928831	ORF95; putative [Lactococcus lactis phage BK5-T]	61	36	151
	1	120	162	pir Ciiis6 Ciii	prothymosin alpha homolog (clone 32) - human (fragment)	- 19		64.7
16	Ξ	16001	8(611)	10111205391	hypothetical protein (SP:P3]995) (Haemophilus influenzae)	7	7	948
32		(8:	. A01	[41]:066504	rxo-bata 1,3 glucanase Cachliobolus carbonum	19	50	\$19
. .	: : <u> </u>	616	1107	191 11510864	glutamine transport ATP-binding protein Q (Mothanococcus Jannaschill)	1.9	1.4	492
45	-	3082	4038	91 1109686	Prox (Bacillus subtilis]	19	\$	957
Œ 7	8	7118	7504	91 498839	ONE2 [Clostridium perfringens]	61	33	187
7	- 6	1 4605	0.53	191 384269	traC [Plasmid pAD1]	19	4.2	996
09	•	1689	2243	91 (1205893	[hypothetical protein (GB:U00011_3) [Heemophilus influenzee]	1.9	32	\$55
		1 5559	5122	931854656	Na/H antiporter system OHF2 (Bacillus alcalophilus)	61	8.0	434
	5	600	5646	gi 466612	nika Escherichia coll	19	3.6	1317
7.4	~	2400	1504	91 1204846	carbamate Kinase Huemophilus influenxee	61	ğ	A97
S 80 -	-	2198	1011	gi 1498756	amidophosphoribosyltransferase PurF (Rhizobium etil)	6.1	41	8601
. R6	-	5661	1582	91 1499931	[H. jannaschli predicted coding region MJ1083 (Methanococcus jannaschii)	61	-	7(7
. ,	-		649	9111518679	orf (Bacillus subtilis	61	7	\$76
66	7	2454	0661	, 9: 413958	[lps-14d gene product (Dacillus subtilis)	61	97	465
124		6223	5123	91,556881	Similar to Saccharomyces cerevisiae SUAS protein (Becillus subtilis) pir S49358 S49358 pc-29d protein - Bacillus subtilis ap P19153 YMLC_BACSU HYPOTHETICAL 37.0 KD PROTEIN IN SPOIIR-GLVC NTERCENIC REGION.	19	4	1011
125	-	1668	2531	01 1491643	ORFA gene product (Chloroflexus surantlacus)	1.9	ę	199

S. aureus - Putative coding regions of novel proteins similar to known proleins

\$ \$1m \$ 1dent length	61 43 624	61 40 543	9232 61 35 822	19	80.71	61 49 1299	19 19 19 19 19 19 19 19 19 19 19 19 19 1	29 189	61 41 888	1989	6.00	61 40 357	61 40 697	61 41 369	61 36 207	90 00 1 NA5	61 43 972	61 39 1344	199	61 43 423	61 38 249	61 47 411	61 41 723
hatch gene name	hypothetical protein 1 - Enterococcus faecalis plasmid pAM-beta-1 [fragment]	deoxyvridine nucleotidohydrolase (Homo sapiens)	piol/Acidic basic repeat antigen (Plasmodium falciparum) pir/A29222/A29222 101X melaria antigen precursor - Plasmodium alciparum (strain Cemp)	MIT protein, member of the HIT-family (Methenococcus januaschii)	similar to Spove Bacillus subtilis	glutaryl 7-ACA acylass pracursor (Bacillus laterosporus)	bart (Bacillus subtilis)	eukaryotic initiation factor 2 beta (elf-2 beta) foryctologus uniculus	ORF for methionine amino peptidase (Bacillus subtilis)	CbrC protein [Erwinia chrysanthemi]	ORF_f579 [Fscherichia coli]	clivD protein (Agrobacterium tumefaciens)	glvr-1 protein (Mycobacterium leprae)	ORFAl [Clostridium acetobutylicum]	hypothetical protein (GP:M87049_57) [Haemophilus influenzae]	bota-N-acetylbacosaminidase (Stroptococcus pneumoniae) pir(A56390[A56390] mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2 1.96) precursor - treptococcus pneumoniae	cysteine synthetase A (Bacillus subtilis)	Na. and Cl. dependent gamma-sminobutryic acid transporter [Heemophilus influenzae]	polyA polymerase (Bacillus subtilis)	cell wall enzyme nterococcus faecalis]	FBP3 (Petunia hybrida)	similar to beta-glucoside transport protein [Escharichia coli] sp[P]1451 PTIB_ECOLI PTS SYSTEM, ARBUTIN-LIKE IIB COMPONENT PHOSPHOTRANSFERASE ENZYME II, B COMPONENT) (EC 2.7 1.69)	hypothetical protein (Symechocystis sp.)
agession	 P1 r P00259 P002	91 (1144132	91 160047	ar 1499694	[467416	91 216374	91 409286	91 415861	91 216341	191 909543	191 537233	191 142226	gi 699379	91 40364	91 1204848	161 744897	91 467462	91 1205919	19:1755607	901368108	91 454265	91 290531	191 1001 805
Stop (nt)	627	3075	6982	2361	7948	2340	1117	061	5048	1 3047	+ 69	1034	12627	3051	4827	\$ # 2 2 # 2	2601	8535	366	1496	334	• 69	1190
Start (nt)	1250	3617	0698	1915	9675	1 1042	5034	~	4161	1959	~	678	1523	3419	4621		8003	9878	-	1918	. A6	1104	1912
10 KF.		· _	2		6	-	-	_	,	-	-	~	-	~	-			01	-	~	-		~
Cont. 19	132	671	149	168	171	174	190	216	227	238	247	747	2\$7	268	275	7.7	278	278	283	288	291	318	330

FABLE 2

55

_		length (nt.)	489	960	612	1 69 (225	1281	276	621	655	159	273	21.5	1233	297	A2A	813	258	~	200	312	273	1 (12	288	867	246	
5		1 ident	45	3	36	100	7.00	٠,	\$\$?	4.7) 2 [2	7.1	9.	32	39	38	0	9	26	32	34		5.5	-	
10		E .	19	19	19	0 1	19	- 19	19	3	19		19	9	3	9	1.9	19	1.9		61	61	61	19	19	19	61	
15	teins					a iscoideum)				cter					rotein	14								in iscoideun)				
20	illar to known pro					was Dictyoatellu	138]			sterase (Acinetobs			fluenzeel		demage inducible p	se (Bacillus subtilis ter phosphodiesterass		1108)						nase (Dictyostellu	oplasma genitalium			
25	proteins sin		18]		-	osphate 3-kin	abditis elega	ge LL-H)		ne amidotrana	epres)	(FRAGMENT)	emophilus ir		18 colf DNA-c	sphodiesteral sphoryl diest		earothermophi	s subtilis)	hage HX97]		ns.)	(E	osphate 3-kir	103_297) [Myce	us aureus)		
30	- Putative coding regions of noval proteins similar to known proteins	nane	DnaD protein [Bacillus subtilis	YquF (Bacillus subtilis)	otomyces coelicolor	phosphatidylinositol-4,5-diphosphate J-kinasa (Dictyostellum iscoldeum)	gene product (Caenorhabditis elegans)	putative (Bacteriophage LL-H)	cillus subtilis]	anthranilate synthase glutamine amidotransferase (Acinetobacter alcoacaticus)	5 [Mycobacterium leptem	SURVIVAL PROTEIN SURE HONOLOG (FRAGMENT	immunity repressor protein [Heemophilus influentee	Hap (Vibrio parahaemolyticus)	22.44 identity with Escherichia coli DNA-damage inducible protein; putative (Bacillus subtilis)	dycerophosphoryl dieser phosphodiastersse (Becillus subtilis) ptr[537251 537251 glycerophosphoryl diester phosphodiesterss subtilis	ORF_f470 [Escherichia coli]	DNA polymerase I (Bacillus stearothermophilus)	protein (Bacillus subtilis)	portal protein gp] [Bacteriophage HX97]	[Bacillus subtitis]	Clibs.8 (Caenorhabditis elegans)	(Mycoplasma genitalium)	phosphatidylinositol-4,5-diphosphate l-kinase (Dictyostelium iscoideum)	lyypothetical protein (GB:GI400)_297) [Mycoplasma genitalium]	clumping factor (Staphylococcus	ORF 1 (Lactococcus lactis)	
35	itative coding	match gene	DnaD proteir	YquF [Bacil]	AbsA2 (Streptomyces	phosphatidy	C5387.5 gene	ORF360, pute	unknown (Bacillus	anthranilate s	B2235_C2_195	SURVIVAL PRO	immunity reg	Himp (Vibrio	22.4% identity with putative (Bacillus	glycerophos pir S37251 subtilis	ORF_f470 (E	DNA polymer	hypothetical	portal prote	putative B	C33D9.8 (C#	unknown (My	phosphatidy	hypothetica	clumping tac	ORF 1 [Lact	
40	od - sosuns is	match	91.533098	41,1303853	101 1293660	91 733522	91 1123120	q\	91 467484	91/141800	91 467090	sp P36686 SURE_	9111221602	91/507738	95 11146243	91/403373	91 537181	91 806281	266606116	91,609310	[91]143213	91 1107541	91 406397	911733522	911045964	91 397526	91(1/9373	
15		Stop (nt)	1025	399	1421	792	960	רפנר	67.2	1296	857	803	1422	157	1235	1101	629	816	318	1567	24.2	170	276	318	290	808	248	
45		Start (nt)	1513	194	01.8	1580	784	7,09	55.4	1916	1171	961	1691	÷.	2467	805	1 9591	1628	19	2313	1.801	6 5	548	9	577	7		
		0.87	7	-		-	~	8	-			~	<u>-</u>	-			-	-	-	~	_ _	-	-	-	-	7	-	
50		Conc1g	385	426	80	\$3	494	470	\$08	\$55	\$69	5.85	592	603	699	675	.00	728	R21	856	923	1124	1492	1602	2500	2968	3076	

TABLE 2

EP 0 786 519 A2

. – –	(c.nt.1g OFF 1D 110	10FF	Start (nt)	Stop (nt)	match acession	וניונין לפום נישום	E .	/ ident	length	
:		9	3426	3728	91 410748		9	. ₹	300	
	1	114	11035	(101)	19. [1217651	carbonyl reductase (NADPII) (Rattus norvegicus)	0.9	28	723	
<u>: </u>	91	112	11917	112930	(g1)1001453	hypothetical protein (Synechocystis sp.)	0	, ,	1014	
<u>: </u>	2		3.6	469	91 388109	regulatory protein [Enterococcus faccalis]	•	-	- P - P	
: —	:	12	10414	9834	91/13/16656	Orfl (Nacillus subtilis)	9	0,	9.81	
· —	19	-	4364	4522	91 4872	ORF 4 [Saccharomyces kluyveri]	0,	47	159	
÷ —	7	-	2047	1025	gi 142822	D-alanine racemase cds (Bacillus subtilis)	0,9	5	1023	
	2	-	2474	1 3607	gi 468046	para-nitrobenzy esterase (Bacillus subtills)	09	2	1134	
•	3	10	6756	6924	gi 414234	thir Escherichia coli	0.9	55	1014	
	Ş	01	8876	₽206	19:1343949	(var1 (40.0) Saccharomyces ceravisiae)	0,9	7	201	
	95	=	27842	26430	91 468764	mocR gens product (Rhizobium meliloti)	9	- 54	1413	
	09	~	273	1 388	ai 1303864	[YqqQ (Bacillus subtilis]	9		216	
• —		~	157	1619	91 467124	ureD, B229_C3_234 [Mycelacterium leprae]	60	Ç	1263	
	69	_	787	195	oi 1518853	OsfA (Salmonella typhimurium	6.0	36	1 665	
	e z	_	-	1188	91 1480429	putative transcriptions regulator [Bacillus stearothermophilus]	0,9	00	1188	
	9.2	9	4735	1 3881	01 349227	transmembrane protein [Escherichia coli]	09		855	
•	9.2		9665	(163)	91 466613	nikB [Escherichia coli]	90	86	1074	
-	7.6	_	949	9()	91 1510925	coenzyme F420-reducing hydrogenase, beta subunit (Methanococcus jannaschii)	909	1 27	414	
• -	96	-	7.166	# · · ·	51777.116	Jacobsony protein (Carmebucterium piscirola)	909	e.	213	
	e 6	9	13212	6901	91 467425	unxnown (Becillus subtilis)	09	Ç	858	
•	102	<u>°</u>	7158	7430	qf 143092	demotalactate synthmsw small subunit (Bacillus subtilis)	09	37	273	
	601	Ē	1 9127	110515	19:11255259	o-succinylbenzoic acid (058) CoA ligase (Staphylococcus aureus)	9	2.8	1389	
	601	=	10499	111656	91 141954	beta-ketothiolase [Alcaligenes eutrophus]	90	7	1158	
	. 19	~	1 4630	3134	9111524280	unknown (Mycobacterium tuberculosis)	0.9	- 45	1497	

LARIE 2

S. aureus - futative coding regions of novel proteins similar to known proteins

Contrg OKF	JOKE 1D	Start (nt)	Stop	match scession	march gene name	E 3	dent	Length (nt)	
121	-	1 6957	1646	191:1107529	ceuC gene product Campylobacter coli	09	35	069	
140	-	1 7704	6013	91/146547	kdpA [Escherichia coli)	0.9	45	1692	
145	-		703	91 1460077	unknown (Mycobarterium tuberculosis)	- 09	23	102	
150	-	1 2809	2216	91 1146230	putative (Bacillus subtilis)	0	0	394	
157	~	1389	1961	91 1303975	Yqjx (Becillus subtilis	0,9	30,	474	_ -
158	- 2	1 5125	1 4769	9111449288	[unknown [Mycobecterium tuberculosis]	0.9	36	357	·
159	-	1 811	1 257	91 580932	[murD gens product (Bacillus subtilis]	9	\$	255	
160	=	1 1 5 9	11187	91 1204532	hypothetical protein (GB:L19201_29) (Haemophilus influenzae)	9	7	1029	
161	=	A249	1866	1496003	ORF) PepY; putative diggendopeptidass based on homology with Lactococcus lactis PepY (CenBank Accession Number 232522) [Caldicellulosiruptor saccharolyticus]	9	~	J# (
172	-	1331	2110	91 485280	28.2 kDa protein (Straptococcus pneumoniae)	0.9		780	•
671	2	4042	1 2460	Q1 1524397	[glycine betaine transporter OpuD [Bacillus subtilis]	0.9	#	162)	
173	-	1 5463	4953	[91]1100737	NADP depandent loukotreine bf 12-hydroxydehydrogenase (Sus scrofe)	09	:	1011	
198	-		566	q1 413943	ips-19d gene product (Bacillus subtilis)	0.9	3	166	
102	-	1991	(75)	sp P37028 YADT_	HYPOTHETICAL 29 4 KD PROTEIN IN HEML-PFS INTERGENIC REGION PRECURSOR.	0.9	3.7	933	•
(£)	-	, 3269	1 24:5	 	[D9319.34p; CAI: 0.14 [Saccharomycas cerevisiae]	0,4	Ţ	81,8	
206	-	112234	112515	sp P37347 YECO_	HYPOTHETICAL 21.8 KD PROTEIN IN ASPS 5'REGION	03	-	282	
1 212	-	1213	1410	101 332711	hemagglutinin-neuraminidase fusion protein Human parainfluenza irus 3)	09	34	861	- •
7 7	-	- 65	1 1153	ui 1204366	hypothetical protein (GB U14003_130) [Haemophilus influentee]	9	36	1089	
1 237	-	2 –	1 937	91 149377	HisD (Lactacoccus lactis)	99	0.	936	- •
243	9	9695	4998	91 1046160	hypothetical protein (GB 000021_5) [Mycoplesma genitalium]	09	۲۱	669	
1 260	-	5919	6485	ui 431950	similar to a B. subtilis gene (GB. BACHEHEHY_S) (Clostridium asteurianum)	09	35	567	•
1 264	-	1 2432	1218	91 397526	clumping factor (Staphylococcus aureus]	09	5.3	1215	_ •
1 267	-	-	1409	gi 148316	NaH-antiporter protein (Enterococcus hires)	09	۲2 ا	1407	
275		3804	4595	pir F36889 F368	leuD 3'-region hypothetical protein - Lactococcus lactis subsp. lactis (strain 1L1403)	09	٤ :	292	
291		860	1198	911208489	coded for by C. elegans CDNA ykl30el2.5; contains C2H2-type zinc fingers [Caenorhabditis elegans]	9	3	\$1.5	
					·		1		-

	length (nr)	246	867	5.83	525	53:	267	151	162	324	219	324	489	1162	1326		465	726	1053	486	624	528	462	1 252	150
5	• Adent	36	7	<i>5</i> ,	17	7	 	37	35	36	31	11)6	34	7,	.	Q	0.	42	\$	£	42	33	4	7.8
10	E	0.9	9	9	0.9	0.9	9	09	0.9	09	09	09	09	09	09	9	9	09	09	9	09	09	09	09	09
51.	* * * * * * * * * * * * * * * * * * *			ort system	of luented)	[1]	JQ1145 OYBYK									INAIINE phosphatase regulatory protein (Becillus subtilis) pir/A2569(A27650 regulatory protein phoR - Bacillus subtilis sp/P23545/PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PHOTEIN HOR (EC 2.3.3).	nnaachii]			influencee)					serine hydroxymethyltransfersse (serine methylase) (Haemophilus influenzae)
05 52 00 00 Futative coding regions of novel proteins similar to known proteins	7			component, branched amino acid transport system	collein V production protein (pur regulan) (Mesmophilus influenzee)	single-stranded DNA specific exonuclesse [Escherichis coll]	adenylyl cyclass gene product (Saccharomyces kluyveri) r[J0]145 0VBYK adenylate cyclass (EC 4 6 1.1) - yeast ccharomyces kluyveri)	_	revisies]			Cerevisies)		deum		alkaline phosphatase regulatory protein (Becillus aubtilis) pir [A27650]A27650 regulatory protein phoR - Bacillus subtilis ap [P21545]PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PR 2.7.3).	cobalt transport ATP-binding protein O [Methanococcus jannaschii]			H. Influenzae predicted coding region H10882 (Haemophilus influenzae)			bicyclomycin resistance protein [Haemophilus influentee]		methylase) [Haem
25 proteine	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	us subtilis?	illus subtilis!	nent, branched	ein (pur regulo	fic exonucless	duct (Saccharon 6 1.1) - yeast	cillus subtills	accharomyces co	GOCCUS BUTTOUS	IN (ORF 1901)	- yeast (Saccharomyces cerevisiae)	[8]	chain [Dictyostellum discoldeum]	us jannaschill	Hatory protein platory	ling protein 0	aeruginosa]	illa pertussis!	oding region H	as hydrophila)		rotein [Haemopl	8)	ferese (serine
30 mio16a a 60	D E O C	protein-dependent (Bacillus subtilis)	ipa-28d gene product (Bacillus subtilis)	membrane-associated compounds internated	production prot	stranded DNA speci	denylyl cyclase gene product [3 adenylate cyclase (EC 4 6 1.1)	Glucarate debydratasa (Bacillus subtilis)	glycogen phosphorylase (Saccharomyces cerevisiae)	unknown protein (Stephylococcus sureus	HYPOTHETICAL 226 KD PROTEIN (ORF 1901)		unknown (Bacillus subtilis)		NADH oxidase (Methanococcus	ohomphatase regulasion PHOR_BACSU ALK	Insport ATP-bind	putative [Pseudomonas as:	tex gene product [Bordetells pertussis]	zae predicted o	adenylyl cyclase (Aeromonas hydrophila)	fecB (Escherichia coli)	in resistance	unknown (Bacillus subtilis)	droxymethyltran
35 35	match gene	protein-de	ipa-28d ge	membrane-	colicin V	single-str	adenylyl c	Glucarate	glycogen p	unknown pr	HYPOTHETIC	integrin)	unknown le	myosin heavy	NADH oxid	alkaline p pir A2765 sp P23545	cobalt tr	putative	Itex gene p	H. Influer	adenylyl o	fecB (Esc)	bicyclomyc	unknown (E	serine hy
40 S aurece - Fu	metch	91 1070014	q1 413952	91 1204484	94 1205449	91 PR7842	91 1057	94 709999	91.499700	91 1196899	Bp P12222 YCF1_	pir s30782 s307 integrin homolog	91 467407	91 167835	[91]1510732	91 14333	(01)1511103	pi 1498192	91 1477402	91 1205129	ai 1212755	191 145925	191 1205483	gi 1486242	91 1205136
	Stop (nt)	3176	5823	7.84	4363	532	362	4 16	163	1237	3620	945	909	982	3563	1043	465	726	1054	489	624	530	465	1122	4 25
4 5	Start (nt)	3421	4957	2996	4887	1062	90	9,9	2	716	3838	622	86.7	752	2238		-	-	7	974		_	926	1,18	574
	108F	9			- 5	-	 	-	-	-		~	-	-	-		-	-	-	-	-	-	-	7	~ ;
50	Contig	1 307	316	328	332	1357	275	197	60+	\$	4 2	470	200	503	\$05	523	543	545	556	578	594	000	620	000	645
					_			_	_	_	_		-												•

TABLE 2

55

EP 0 786 519 A2

reins
o known pro
similar to
al proteins
von to anov
coding regi
aureus - Putativa coding regions of novel proteins similar to known protein
S. Aureus

Cont.19 ORF 1D 1D	08F 10	Start (nt)	Stop	match	match gene name	E 19	• Ident	Jength (nt.)
6.84	-	1082	843	[gi]120553B	hypothetical protein (GB:U14003_302) (Haemoph;lus influenzas)	0.9	67	740
186	-	1 967	485	91 1402944	orfRH1 gene product [Bacillus subtilis]	0.9	9+	48)
344	-	588	346	[91 790943	ures emidolysee [Becillus subtilis]	0,9	0	7
851	17		326	91 159661	GMP reductase (Ascaris lumbricoides)	09	7	726
971	-	1746	874	di 1001493	hypothetical protein (Symechocystis ap.)	909	39,	673
964		1558	839	91 604926	NABH dehydrogenase, subunit 5 (Schitophyllum communs) sp (P50168 NUSH_SCHCO NABH-UBIQUINONE OXIDOREDUCTASE CHAIN 5 (EC .6.5.3).	9	5.	120
R06	~	448	1.53	91,662880	novel hemolytic factor (Bacillus cereus)	9	1.	306
979	-	2	595	g1 1429255	putative; orfl [Bacillus subtilis]	0.9	30	294
1078		. 699 . ———	203	191 581055	Inner membrane copper tolerance protein [Escherichia coli] 91 871029 disulphide isomerase like protein [Escherichia coli] pir 547295 547295 inner membrane copper tolerance protein - scherichia coli	09	Q	1 6 A
1112	-	1150	620	01 407885	ORF3 [Streptomyces griseus]	0	•	531
11.15	-	484	275	91/11/1407	Upsity Saccharomyces cerevisiae	09	36	2:0
1146	-	1 17	562	Qi 1239981	hypothetical protein (Bacillus subtilis)	09	97	246
1291	-	1 716	360	pir 557530 5575		09	30	357
1332	-	336	169	91 1222056	aminotransferase [Haemophilus influentes]	0.9	7	168
1429	-	-	146	gi 1205619	[ferritin like protein (Haemophilus influenzae)	09	39	*
1722		570	286	qi>240052	dibydroflavonol-4-reductase, DFR [Hordeum vulgare:barley, cv. Gula, eptide.	9	3.6	285
2350	-	385	1 200	91497626	ORF 1 [Plasmid pAQ1]	0.9	0.7	186
2936	-	519	310	191 508981	prephenate dehydratase (Bacillus subtills)	0.9	4	210
3027	-	1 568	302	197,1146199	putative (Bacillus subtills)	0.9	3,	267
3084	-	1 20	1 208	ui 1407784	orf-1; novel antiqen (Staphylococcus sureus)	0.9	15	28.5
3155	-		326	91 1046097	cytadherence-accessory protein (Mycoplasma genitalium)	0,9	7	225
3603		368	186	91 510108	altochondrial long-chain enoyl-CoA hydratase/1-hydroxycyl-CoA shydrogenese alpha-subunit (Rattus norvegicus)	9	3	183
3665		4 8 6	244	91 151259	HHG-CoA reductase (EC 1.1.1.88) (Pesudomonas mevalonii) pir A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	09	7	243
1347	-			• = = = = = = = = =		•	=	:

EP 0 786 519 A2

5	
10	
15	
20	
25	
30	
35	
40	
45	

50

55

S aureus - Putative coding regions of novel proteins similar to known proteins

Contig loaf	1086	Start (nt)		match .cession	match gene name	e i e	1 ident	length (nt)
1 3912 1	-	-	335	91 1488695	novel antigen; orf-2 (Staphylococcus aureus)	0.9	-	111
1 4072	-	-	272	911405879	yeiH (Escherichia coli)	0,	3	270
4134		510	352	1911,80656	chemoraceptor protein [Rhizobium leguminosarum bv. viciae] gl/780656 chemoraceptor protein [Rhizobium leguminosarum bv. iciae]	3	28	159
4207	~	677	403	911602031	similar to trimethylamine DH (Hycoplasma capticolum) pir 54956 54996 probable trimethylamine dehydrogensse (EC 5.99.7) - Hycoplasma capricolum (SGC3) (fragment)	0	=	276
4243		127	324	gi 899317	peptide synthetese module [Hicrocystis seruginosa] pir[5/9]11 549]11 probable amino acid activating domain - Icrocystis seruginosa (fragment) (SUB 144-528)	9	7	
4110	: -	624	313	91 308980	phob Pacillus subtilis	9	2.8	212
4145		343	173	9010181018	mitochondrial long-chain encyl-CoA hydratase/3-hydroxycyl-CoA shydrogenass alpha-subunit [Rattus norvegicus]	9	~	17.1
4382	-	1 498	1 280	gi 47382	acyl-CoA-dehydrogenase Streptomyces purpurascens	0.9	- 84	219
4434		3	223	91(510108	nitochondrial long-chain enoyl-CoA hydratass/)-hydroxycyl-CoA shydrogenass alpha-subunit (Rattus norvegicus)	09	\$	171
7	-	4518	1323	91/426446	Vipa protein (Salmonella typhi)	89	39	966
	7	1 707	1483	pir S48604 S486	hypothetical protein - Mycoplasma capricolum (SGC3) (fragment)	89		ררר
133	-	4651	5853	191 6721	F5982.3 (Ceenorhabditis elegans)	- 65		1203
11		1328	6620	qi 142.833	ORF2 (Dacillus subtilis)	65	- 21	9.10
		121 16784	16593	911912576	BiP (Phaeodactylum tricornutum)	65	9	761
52	_	1 2648	2349	91 536972	ORF_090a (Escherichia coli)	65	*	300
2	112	14181	113402	121 483940	transcription regulator (Bacillus subtilis)	65	7.6	080
57	-	4397	3339	91(508176	Cat-1-P-DM, NAD dependent (Escherichia coli)		0,	1059
999	-	986	495	191 1303901	YqhT (Bacillus subtilis	8	34	492
		6552	1160	91 912461	nikC Escherichia coli)	59	37	606
70	-	5383	6366	Qi 1399822	PhoD precursor (Rhizoblum meliloti)	59	9	98€
			1469	fg1 971345	JUNKOWM, similar to E.coli cardiolipin synthase (Becillus subtilis) sp P45860 TMIE_BACSU HYPOTHETICAL 58.2 PROTEIN IN NARI-ACDA NTERGENIC REGION.	65	66	657
	110	110 14329	115534	91 490328	LORF P unidentified	- 65	7	1206

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig ID	10 01	Start	Stop (nt)	j match acession			• ident	length (nt.)
89	~	1 :602	958	91 642801	unknown (Seccharomyces cerevisiae)	8.0	1 21	519
96	-	4940	1 5473	9111333802	[protein of unknown function (Rhodobacter capsulatus]	65		Š
9.8	-	2	1 820	91 467421	similar to B. subtilis DnaH (Bacillus subtilis)	65	<u> </u>	613
119	=	1 166	1557	91 143122	ORF B; putative (Bacillus (irmus)	65	36	1392
120	110	6214	6756	91 15354	ORF 55.9 (Bactariophaga T4)	- 65	39 ' [5
130	911	112476	133510	q1 1086575	BatA (Rhitobium meliloti)	59	3	1035
123	-	386	1 195	B1 984737	catalase (Campylobacter jajuni)	59		: 42
100		370	\$	191 1256634	[25.8t identity over 120 as with the Synenococcus sp. MpeV protein; putacive [Becillus subtilis]	\$		276
=======================================	-	\$278	5712	01 1510655	hypothetical protein (SP:P42297) [Methanococcus Jannaschii]	59	3.9	\$
164	-		503	gi 1001342	hypothetical protein (Symechocystis sp.)	- 65	7	507
164	_	1 1529	2821	91 1205165	hypothetical protein (SP:P37764) (Haamophilus influenzae)	65	3.5	1293
164	13	119643	121376	191 1001381	hγηοιhetical protein Symechocystis sp.]	- 65	-	1734
173		727)	11/1	91 1184121	auxin-induced protein (Vigna radiata)	- 65	- 05	101
179	7	1 2218	1688	91 143036	unidentified gene product Bacillus subtilis	59	C.C.	153
195	112	13669	111503	91/762778	NifS gene product (Anabaena azoliae)	- 65	7	1167
201	- 2	1 4702	0.95	91 1510240	[hemin permease [Methanococcus jannaschii]	- 65	32	696
201	-	1 5719	6315	91 1511456	N. jannaschii predicted coding ragion MJ1437 [Methanococcus jannaschii]	5.9	ž	597
209	-	1 102	197	gi 1204666	hypothetical protein (GB:X73124_53) (Haemophilus influenzae)	59	-	360
214	-	1 1050	1 2234	191 551531	2-nitropropane dioxygenese (Williopsis seturnus)	- 88	36	1185
7.7	- 5	1 3291	4135	19111303709	YrkJ (Bacillus subtilis]	89)2	843
21.7	-	1886	2167	91/220489	dfp (CG Site No. 18430) [Escherichia coll]	65	÷	1215
71.5		1 307R	1 37.85	gi 149382	HisA [Lactococcus lactis]	65	3.8	708
251	-	376	096	91/1303791	אקרט (Bacillus subtilis)	. 65	34	585
2.R.6	-	1621	- 817	(91)146551	transmembrane protein (kdpD) (Escherichia coli)	59	31	910
316	2	4976	3860	91 405879	yeiH (Escherichia coli)	- 65	32	1119
370	-	009	761	1911303794	Yesh (Backliss)	59	35	162

5	
10	
15	
20	
25	
30	
35	
40	
45	

55

aurous - Intative coding regions of novel proteins similar to known protoins

Contag ORF	- OKF	! —.	Stop	metch	match game name		1 1dunt	length
a :	a !	(20)	(uc)				1	
1 392	<u>-</u>	6001	905	[91]:47513	orf3 Haemophilus influentae	65	7	705
391	-	1620	1273	91 152901	ORF 3 (Spirochaeta aurantia)	. 65	1 '6	348
90)	-	2805	1705	gi 709992	hypothetical protein (Bacillus subtilis)	59	34	1101
, 26		3802	3245	91 1204610	iron(III) dicitrate transport ATP-binding protein PECE [Heemophilus influenzae]	ę,	96	55.08
429	-	1 1513	1148	g1 1064809	homologous to sp:HTRA_ECOLI (Racillus subtilis)	65	~ ~	366
09+	- 7	1708	1001	91 466882	pps1; B1496_C2_189 [Mycobacterium lepres]	59		594
199	; -	2212	3135	91 1498295	homomerine kinase homolog [Streptococcus pneumonise]	89	37	924
1 473	-	2929	1607	Qi 147989	trigger factor (Escherichia coli)	. 59	0	1323
0 4 7	ac -	5862	6110	91 1205311	188 - hydroxymyristol acyl cerrier protein dehydrase [Hemophilus influenzae]	\$	9	249
1 521	-	-	1354	pir A25620 A256	pir A25620 A256 staphylocoagulass - Staphylococcus aureus (fragment)	- 59	32	1341
53.4		2994	4073	91 153746		53	90	1080
1 515	-	-	954	01 1469939	group B oligopeptidase PepB (Straptococcus agalacties)	5.9	e c	956
1 551 - 13	-	2836	3186	01 1204511	bacterioferritin comigratory protein (Heemophilus influenzee)	89	\$\$	351
672	1 2	449	940	91 386681	ORF YALO22 (Saccharomyces cerevisiae)	59	36	492
650		5	748	91, 396400		59	oc .	*
664	-	995	582	91 1262748	LukF-PV like component Staphylococcus aureus	88	33	282
0.09	-	-	655	01 1122758	unknown [Becillus subtilis]	88	6 2	183
674	-	1 543	929	1911293033	Integrase (Bacteriophage phi-LC3)		9.	187
758	-	1 349	176	91/1500472	M. Jannaschii predicted coding region MJ1577 (Methanococcus Jannaschii)	59		174
166	~	2270	1461	gi;522150	bromoperoxidase BPG-A1 Streptomyces aureofactens sp P13912 sPAL_STRAU NON-HARM BROMOPEROXIDASE BPG-A1 (EC 1.11.1) BROMIDE PEROXIDASE) (BPG1). (SUB 2-275)	59	4	R 10
828	-	1 2191	1097	191 397526	clumping factor (Staphylococcus aureus) ,	65	42	1095
1052	~	1 1094	123	94 289262	comE ORF3 (Bacillus subtilis)	65	36	372
1152	-	1 373	198	9111276668	ORF138 gene product (Porphyra purpurea)	65		186

J	
10	
15	
20	
25	
30	
35	
40	
45	
50	

S. aureus - Putative coding regions of novel proteins similar to known proteins

ė	5		
1	0		
1	5		
2	0		
2	5		
3	0		
3	5		
1	0		
#	5		
5	0		

S aureus - Putative coding regions of novel proteins similar to known proteins

Contig	103F	Start	Scop	metch	. ושקלכף לפנום נוסעום	E i s	Lident	Jength inti
1 67	=	113 12017 11229	11229	91 1228083	[NADH dehydrogenase subunit 2 (Chorthippus parallelus)	28	=	7.89
96 1		1 8208	9167	1911709992	hypothetical protein (Bacillus subtilis)	28	42	C96
101	~	2065	1364	91 806327	Escherichia coli htpA gene for A protein similar to yeast PRE16 and RE22 (Escherichia coli)	eo .	7.0	702
1 2		4519	5613	91/155588	glucose-fructose oxidoreductase [2ymomonas mobilis] pir A42289 A42289 glucose-fructose oxidoreductase (EC 1.1) recursor - 2ymomonas mobilis	8.8	`e°	1095
=	9	7114	6503	g1 1377843	unknown (Decillus subtilis)	5.8	9.0	39 66
	~-	1 2261	1395	pir A45605 A456	nature-parabite-infected erythrocyte surface antigen HESA - Plasmodium	& &		36.7
=======================================	-	1717	950	9111370261	unknown Mycobacterium tuburculosis	58	16	7.74
154	•	6015		91 1209277	[pCTHom] gene product [Chlamydia trachomatia]	5.8	4	1389
154	1.6	114281	113541	91 146613	DNA ligase (EC 6.5.1.2) (Escherichia coli)	5.8	39	74.1
155		1 2269	1892	7181303937	YqiB (Bacillus subtilis]	85	7	378
-	-	1056	633		hypothetical protein (Bacillus subtilis)	SR	26	528
189	-	1533	6941	91[467383	DNA binding protein (probable) (Bacillus subtilis)	5.8	52	23.7
1 201	-	1 2669	1 3307	91 1511453	endonuclesse III (Methanococcus jannaschii)	88	*	639
204	-	2	1 238	91/1276729	phycobilisome linker polypeptide Porphyra purpureal	88	29	1237
220	Ξ	114575	13058	91 197526	clumping factor (Staphylococcus aureus)	8.8	15	8151
2	-	1 1629	1474	19111002520	HutS [Bactllus subtilis]	88	\$	156
		1 4201	3497	91 1463023	[No definition line found (Caenorhabditis elegans)	58	39	105
1 243	=	9303	10082	94 537207	OMF_(277 (Escharichia coli)	\$ 8	32	084
1 257	-	1 331	110	gi 1340128	ORFI (Staphylococcus aureus)	58	3	813
302	-	094	100	gi 40174	ONF X [Bacillus subtilis]	2.0	34	342
1 307	=	9 4 6 9 M	1 6127	9111303842	Yift (Bacillus subtills)	8.8	30	R58
321	2	1914	1 2747	91 1239996	hypothetical protein (Bacillus subtilis)	88		834
342	-	2724	1 3497	91 454838	ORF 6; putative (Pseudoronas deruginosa)	8.5	17	774
348	-	-	663	91 457478	unknown [Bacillus subcilis	58	3.6	(99)
401	~	384	609	1911143407	pera-aminobenzoic acid synthasa, component i (pab) [Bacillus ubtilis]	25	53	222
	: : : :							

Cont 19	ORF ID	Start (nt)	Stop	match acession	match gene name	8 ; S	1 ideat	length (nt)	
437	- -	125	1554	10111303866	Yags [Bacillus subrilis]	85	36	1230	
445	_	105	1442	qi 581583	protein A (Staphylococcus aureus)	8	24	8664	
453	2	189	596	qi 1009455	unknown (Schitosaccheromyces pombe)	\$	34	177	
453	\$	2748	2047	91/537214	yjjG gene product (Escherichia coli)	5.8	0.7	702	
479	~	11.7	3	91 1256621	16.7% of identity in 165 as to a Thermophilic bacterium hypothetical protein 6; putative [Bacillus subtilis]	90	36	714	
06		606	545	91 580920	rodn (graa) polypeptide (A. 1-673) [Bacillus subtilis) pir[S06048]S06048 probable rodn protein - Bacillus subtilis sp[P13484[TAGE_BACSU PROBABLE POLY(GLYCERGL-PHOSPHATE) LPHA-GLUCOSYL1XANSFERASE (EC 2.4.1.32) (TECHOIC ACID BIOSYNTHESIS ROTEIN E).		9	363	
517	-	-	1164	sr P47264 Y018_	HYPOTHETICAL HELICASE MG018.	28	30	1164	
517	-	4182	4544	91 453422	orfile gene product (Mycoplasma hominis)	88.5	29	163	
\$		2802	4019	91 886052	restriction modification system S abbunt (Spiroplasma citti) gi 886052 restriction modification system S aubunit (Spiroplasma itri)		37	1218	
\$62		1	179	91 43831	nifS protein (AM 1-400) [Klebsiells pneumoniae]	80	34	((1	
009	~	1147	1156	91 1183839	unknown (Pseudia nina aeruginosa)	80		192	
1 604	7	1231	1001	91 1001353	hypothetical protein (Synechocystis sp.)			231	
619	-	-	504	91 903748	[integral membrane protein [Homo sepiens]		;	\$0\$	
529	_	2	364	91 1208474	hypothetical protein (Synechocystis sp.)	*	\$	163	
635	-	1492	2.55	91/1510995	transaldolase (Methanococcus jannaschii)	2.8	4 1	138	
645	- 		9 4 6	91 677882		•		9	
645	_	906	1556	91 1239999	hypothetical protein (Bacillus subtilis)	8.8	7	159	
665	-	171	532	9111204262	hypothetical protein (GB:L10128_61) [Haemophilus influentae]	88	3.9	240	
674		635	327	gi 498817	ORF8; homologous to small subunit of phage terminases [Bacillus ubtilis]	e.	39	600	
675	-	1312	908	gi 42181	osmC gone product (Escherichia coli)	8.5	28	507	
745	-	618	330	91 1205432	coentyme PQO synthesis protein III (pqqIII) (Haemophilus influentsee)	5.8	32	309	
199	~	242	1174	gi 1204669	collaganase [Haamophilus influenzae]	5.8	36	606	
008	~	1096	* 119	91 171963	[RNA isopenteny] transferase (Seccharomyces cerevisiae) sp P07884 HOD5_YEAST TRNA ISOPENTENYLTRANSFERASE (EC 2.5.1.8) ISOPENTENYL- DIPHOSPHATE: TRNA ISOPENTENYLTRANSFERASE) (IPP RANSFERASE) (IPPT).	85	12	483	
1111111									

Contrg	0 K	Start	Si op (nt)	match	match gene name	E o	• ident	length (nt)
85.4	-	11108	509	91 466778	lygine specific permesse (Escherichia coli)	88	*	\$04
RAS	-	1 481	1 242	91 861199	[protoporphyrin IX Mg-chelatase subunit precursor [Nordeum vulgare]	885	. 66	240
169	[-	-	527	191 1293660	AbsA2 Streptomycem coelicolor	8.5	116	528
942	-	1 931	1 467	g1 405567	tram Plasmid psk41]	58	30	597
1002	-	952	521	91 577649	preLUXM Staphylococcus aureus	88 <	_ `*`	432
1438			261	91 581558	ISOLEUCYL TRNA SYNTHATARE (STADNY) OCOCCUS ALTRUB) SP P41168 SYLE_STAAU ISOLEUCYL-TRNA SYNTHETARE, HUPTROCIN RESISTANT EC 6.1.1.5) (ISOLEUCINE-TRNA LIGASE) (ILERS) (HUPIROCIN RESISTANCE ROTEIN).	88	0,	261
1442	-	~	463	91 971394	similar to Acc No. 026185 (Escherichia colil	58	7	462
1873	-	1 480	1 241	fgi 1339951	small subunit of NADH dependent glutamate synthase [Plectonema boryanum]	5,	£.	240
1876			158	91/529216	No definition line found (Genorhabditis elegans) sp[46503]YLX7_CAEEL HYPOTHETICAL 7.3 KO PROTEIN F23F12.7 IN HROMOSOME !!!.	88	2	156
1989	-	108	10 +	gi 140545B	YneR Bacillus subtilis	85	29	294
2109	-	7	10	19111001801	hypothetical protein Synechocystis sp.}	\$8	16	999
2473		288	145	191 510140	[ligoendopeptidase F [Lactococcus lactis]	58	38	744
2523	<u> </u>	452	228	91 644873	catabolic dehydroquinate dehydratase (Acinetobacter calcoaceticus)	5.8	١٠ ١	225
1041		~	1211	gi 1205367	oligopeptide transporr ATP-binding protein (Haemophilus influenzae)	88	66	210
3094	-		263	91 118528A	isochorismate synthase (Bacillus subtilis)	£,	. B.C.	261
3706	-		1383	91 456614	mevalonate kinase (Arabidopsis theliana)	88	8	381
3454	-	-	707	qi 808869	human gcp372 Homo sapiens	88	32	405
40A2		51	224	91 508551	ribulose 1,5 bisphosphate carboxylase large subunit -methyltransferase [Pisum sativum]	2. 8.	32	174
4278			206	91 180189	cereballar-degeneration-related antigen (CDR14) (Nowo sapiens) gl 182737 cereballar degeneration-associated protein (Homo sapiens) pir A29770 A29770 cereballar degeneration-related protein - human	80 9 0	37	204
19	1 7	7818	1 2363	gil1001516	hypothetical protein (Symechocystis sp.	57	33	456
2	==	6996	8872	990909116	ORF_[256 [Escherichia coli]	57	29	792
	-	1 4801	1 2402	q1 153146	ORF3 Streptomyces comiicolor	- 57	33	2400
	1	14 11611	110796	91 144859	ORF B (Clostridum perfringens)	57	31	816
9	=	112063	13046	91 1001319	[hypothetical protein (Symechocystis sp.)	57	25	86

5 aureus - Putative coding regions of novel proteins similar to known proteins

5

Contig	I DHF	Start (nt)	Stop	match	match gene name	£ .	1 ident	length inti
51	-	1111	1187	pic 833856 8338	pic B33856 B338 hypothetical 80K protein - Bacillus aphaericus	5.7	3.8	725
1 54	=	-	453	191 (684950	staphylococcal accassory regulator A (Staphylococcus aureus)	57	31	453
25	==	-	239	19111000470	C2787.7 [Caenorhabditis elegans]	5.	~	237
76	- 5	3855	3061	911113607	sporulation protein [Bacillus subtilis]	57	3.5	267
96		900+	4773	91 144297	scetyl esterate (XynC) [Caldocellum saccharolyticum] pir 377202 337202 acetylesterate (EC 1.1.1.6) (XynC) - Celdocellum accharolyticum	57	, , ,	996
1 107	_	1480	2076	gi 460955	TagE [Vibrio cholerae]	5.	4.2	597
109	-	1 5340	(1883)	Qi 1438846	[Unknown [Bacillus subtilis]	57	17	594
112	-	6679	1077	19111486250	unknown (Bacillus subcilis)	57	2	1023
		6384	410A	01 871456	putative alpha subunit of (ormate dehydrogenesse Nethanobacterium hermoautotrophicum)	\$	r.f	2277
126	~ -	1 430	1053	gi 288301	ORF2 gene product [Bacillus megaterium]	5.7	٥,	624
<u> </u>	- >	1653	1 6277	9111511160	[M. Jannaschii predicted coding region MJ1163 (Methanococcus jannaschii)	5.7	36	76:
	-	2668	1022	19111303912	Yqhw (Becillus subtilis)	5.	0.8	468
61	-	1 3383	2784	91 1221884	(ureal) amidolyase (Haemophilus influentse)	57	37	009
- 1	-	1 2164	1694	91 467469	unknowm {Bacilius subtilis]	57	11	14
091	i -,	1 1291	1060	911558604	chitin synthase 2 (Neurospore crassa)	57	88	234
163	-	1 56.87	4764	Q1 145580	rarD gene product [Escherichia coli]	57	8.0	126
168	9	4336	5325	91 39782	[13kDa lipoprotein (Bacillus subtilis)	1 57	32	066
170	_	1 3297	3455	191 603404	Yer164p [Saccharomyces cerevisiae]	5.	37	159
1 221	-	9708	6089	gi 1136221	carboxypeptidase [Sulfolobus solfatericus]	57	32	1218
22#		1348	1791	91 288969	fibronecin binding protein (Streptococcus dysgalactiae) pir 533850 533850 fibronecin-binding protein - Streptococcus ysgalactiae	52	32	:
1 263	-	4411	3686	9111185002	dibydrodipicolinate reductase (Pseudomonas syringae pv. tabaci)	57	42	726
1 276	-	194	1 255	91 396380	No definition line found [Escherichia coli!	5.7	40	240
1 283	~	1 335	1326	[gi[773349	BirA protein (Becillus subtilis)	5.7	32	066
1 297	-	694	1 236	91 1334820	reading frame V [Cauliflower mosaic virus]	57	46	234
142	-	1993	2805	oi 1204431	liypothetical (cotein (SP:PJ)644) [Haemophilus influentaes]	5.7	35	813
1 1 1 1 1								

1000	Cout to TORE	of Start	t Stop	metch scension	match gene name	E e	- ident	tength
375	1		÷-	116	cell division protein (Bacillus subtilis)	5.3	76	402
7	-	3286	110+	1	[alpha-acetolectate decarboxylase [Lactococcus lactis]	5.2	- 0,	1976
0,00	-	1 903	11145	gi R04819	protein serine/threonine kinase (Toxoplasma gondil)	57	000	243
187	\$ - 2	1611 8	6271	gi 507323	ORF1 Dacillus stearothermophilus]	7.6	28	. (((
498		1 274	1 852	qi 1334549	NADH-ubiquinone oxidoreductase subunit 4L (Podospora anserina)	57	74.	\$79
\$03	3 - 1	1 343	671	91 1502283	organic cation transporter OCT2 [Rattus norvegicus]	57	30	171
505	5 2	2 1619	1 1284	91 466884	Bi496_C2_194 (Mycobacterium lepree)	57	0.	336
\$13		2 1182	1 2549	191 1303707	YTXH Bacillus subtilis]	5.	7.5	1368
525	2 2	2 3234	1 1945	19111064809	homelogous to sp:HTRA_ECOLI (Bacillus subtilis	ر د د	96	1790
538	:	2 909	1415	qi 153179	phosphorincthyrcin n-acetyltransferase [Streptomyces coelicolor] pir_JM0246 JM0246 JM024 JM0246 JM024 JM024 JM0246 JM024 JM024 JM024 JM024 JM024 JM024 JM024 JM024 JM0	۲۶	0	205
547	7	1 968	1 486	91 467340	unknown [Bacillus subtilis]	52	0.5	193
599	6	1 1062	2 532	sp P20692 TYRA_	FHEPHENATE DEHYDROJEHASE (EC 1.3.1.12) (PDH).	57	7	531
620	0 2	2 157	512	91 1107894	unknown {Schizosaccharomyces pombel	57	3.8	186
1 672	-	2 1600	0 11130	911173028	thioredoxin II (Saccharomyces cerevisiae)	57	39	-
	Ī	2 162	1111	9 1 2 6 2 3 6 6	hypothetical protein (Mycobacterium leprae)	52	7	153
	680 t		204	91/143544	RAA polymerase aigma-30 factor (Bacullus subtilis) pir A28625 A28625 transcription initiation factor signs H - acillus subtilis	2	0.0	204
-	1 069		629	101 466520	[pock [Selmonella cyphimurium]	57	29	627
969	-	1 - 2	\$	gi 413972	ipa-48r gene product (Bacillus subtilis)	57		432
704	_	1 1 36	1 638	di 1699931	M. jannaschil predicted coding region MJ1083 (Methanococcus jannaschiil	57	3.6	603
_	132 1	1 2316	6 1621	1 41 141 18999	orf4 [Lactobacillus sake]	1 57	1 37	969
7	746 1	1 451	1 227	93 392973	Rub3 Apiysia californica	57	43	427
	750	1 20	99	91 43979	Corvetus small cryptic plasmid gene for rep protein [Lactobacillus rvatus]	5.5	\$	441
-	1 1	1 - 2	295	gi 1303827	Yqfl Bacillus subtilis	57	12	294
: -	1049	1 901	455	91 1510108	ORF-1 Agrobacterium tumefectana)	57	35	453
1_	1117 1	1 1387	7 695	91 896286	[NH] terminus uncertain [Leishwania tarantolae]	52	28	693
1								

FABLE 2

10	
15	
20	
25	
30	
35	
40	
45	

55

Contrg ORF	108 F	Start (nt)	Stop (nt)	match	mptch gene name	E 1 8	1 Ident	lengti- (nt.)
1136	-	2	322	91 1303853	YqqF (Bacillus subtilis)	57	36	321
1144	~	1033	611	[qi 310083	voltage-activated calcium channel alpha-1 subunit (Rattus orvegicus)	5.7	40	423
1172	-	1472	738	91 1511146	gion M	5.7	7.88	21.5
1500	-	746	558	Si 142780	putative membrane protein; putative (Bacillus subtilis)	52	35	189
1676	-	689	199	191 313777	uracil permease (Escherichia coli)	۲۶ -		26:
1 2481	-	~	400	01 1237015	ONF4 [Bacillus subtills]	۲۶	23	399
1009			330	qi :204540	lisochorismate synthase [Haemophilus influonise]	۶۶ ا	- 6c	8.2.2
3122	-	360	181	91 882472	ORF_0464 (Escherichta coll	5.	0,	180
1 3560	-	7	361	91,153490	tetracenomycin C resistance and export protein (Streptomyces laucescens)	52	37	360
3850	·	H 56	5 34	911155588	glucose-fructose oxidoreductase [Zymomomas mobilis] pir.A42289[A42289] glucose-fructose oxidoreductase (EC L.L) recursor - Zymomomas mobilis	2	9	623
1660		704	354	gi 413953	issa-29d gene product (Bacilius subtilis)	5.7	1 36	35.
1 3993		-	384	 qi 151259 	HMG-CoA reductase (EC 1.1.188) [Pseudomonas mevalonii] pir A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.188) Pseudomonas sp.	2	67	38.4
1 4365	-	193	398	JV0037 RUEC	Initrate reductase (EC i.7.99.4) alpha chain - Escherichia coli	5.7	-	396
4100	-	965	300	lgi (1086633	T06C10.5 gene product (Caenorhabditis elegans)	7.5	-	257
4163	-	152	287	[91 21 51 2	potatin (Solanum tuborosum)	3	1 50	28%
1 4267	~ _	631	335	91 1000165	Spoiling (Bacilius subtilis)	- 57		782
4358	-		302	91/298032	EF [Streptococcus suis]	- 57	32	300
4389	2	108	290	91 405894	1-phosphofructokinase (Escherichia coli)	1 57	1 37	183
1 4399	-		232	94/1483603	Pristinamycin I synthese I (Streptomyces pristinaespiralis)	57	35	23:
1877	-	572	288	91 405879	yeiH Escherichia coli	7.5	- -	285
4486		512	25.2	91 515938	jolutamate synthase (ferredoxin) (Synechocyatis sp.; pir S46957 S46957 glutamate synthase (ferredoxin) (EC 1.4.7.1) - ynechocyatis sp.	52	≎	255
4510	-	481	242	191,1205301	leukotoxin secretion ATP-binding protein (Haemophilus influenzae)	- s7	9	240
4617	-	468	756	(91 1511222	restriction modification enzyme, subunit MI (Methanococous jannaschii)	- 57	\$5	213
-	=	112201	11524	91 149204	histidine utilization repressor G (Klebsiella aerogenes) pir [A36730] A36730] hus g protein - Klebsiella pneumoniae (fragmunt) sp P19452] HUTO_KLEAE FORHIMINOGLUTAMASE (EC 3 5.3.8) FORMIMINOGLUTAMATE HYDROLASE) (HISTIDINE UTILIZATION PROTEIN G) FRAGMENT).	\$	16	6.78

 ${\sf TABLE}$?

S. aureus - Putative coding regions of novel proteins similar to known proteins

Cent 19 10	08F	Start (nt)	Stop	acession	match gene name	E S	1 ident	length (nt)	
~	•	4248		[91]132222	[RACH] [Homo saptens]	95	- 64	930	
**	;	121119	122264	191/1480705	liposte-protein ligase (Mycoplasma capricolum)	95	-	1086	
7		1981	2421	91 490320	[Y gene product [unidentified]	9.5		195	
. 3	115	10101	10606	19111205099	hypothetical protein (GB.L19201_1) [Hamophilus influenzae]	26	60	\$0	
8	•	4820	5161	[g1 209931	[fiber protein (Muman adenovirus type 5]	26	. 87	342	
\$		2076	2972	91 623476	transcriptional activator (Providencia stuartii) sp P43463 AARP_PROST TRANSCRIPTIONAL ACTIVATOR AARP.	96	30	697	
6.7	•	5656	6594	91 466613	nikB [Escherichie coli]	9.5	32	616	
ď.		2364	1810	g1 482922 	process with homology to pail repressor of 8 subtills (Lactobacillus elbrucckii)	999	66	\$55	
9,6	-	203	616	91 145594	CAMP receptor protein (crp) (Escherichia coli)	95	35	111	
601	121	118250	17846	gx 1204367	hypothetical protein (GB:U14003_278) [Haemophilus influentse]	26	1 22	405	
112		1195	6678	91155588	glicose-fructose oxidoreductase [27momonas mobilis] prr A42289 A42289 glucose-fructose oxidoreductase (LC 1.1) recursor - Zymomonas mobilis	99		1068	
13.1	· -	6404	0015	191 619724	MgrE [Bacillus firmus]	95	Cr	1305	
<u>.</u>	~	65	212	91 413948	lipa-24d gane product (Bacillus subtills)	95		168	
	-	H 23	1521	91 580868	ipa-22r gene product (Bacillus subtilis]	95	7	669	
9	~	740	3	91 104 6009	M. genitalium predicted coding region MG309 (Mycoplasma genitalium)	95	7	767	
5		1639	1067	91 945380	terminase small subunit (Dacteriophage LL-II)	95	35	573	
. . .	-	7	223	1911143947	[glucamine synthetese Bacteroides tragilis]	95	07	222	
991	~	6745	6449	91,405792	ORFIS4 Pseudomonas putida	98	7 7 7	297	
187	-	31	393	191 (311237	H(+)-transporting ATP synthase (Zea mays)	36	000	363	
06.7	-	~	٤٢٤	191 1109686	Prox (Bacillus subtilis	95	- 22	∠ τε	
161	s c	11538	9943	191 581070	acyl coentyme A synthetase (Escherichia coli)	\$	\$0	1596	
195	- -	1291	647	91 1510242	collagenase Wethanococcus jannaschil;	96	34	645	
230	_	1 2323	2072	491140363	heat shock protein (Clostridium acetobutylicum)	\$6	1 60 1	252	
238	~	3383	2,77L	91,1477533	sarA Staphylococcus aureus	95	1 1 1	191	
2 70	~	1 813	1712	91 765073	autolysin (Staphylococcus aureus)	95	17	006	
	1 1 1 1 1 1				***************************************				

5. aureus - Putative coding ragions of novel proteins similar to known proteins

Contag OPF 1D 1D	100	Start (nt)	Stop (nt)	- Autch	match gane name	E (E)	1 ider.t	Jength (nt)
250	-	3221	1632	1911547513	or(3 [Memophilus influenzae]	95	Ž	1590
297	-	11140	£7£1	91 1511556	W. jannaschil predicted coding region MJ1561 [Methanococcus jannaschil]	95	Q	234
321	~	1 2947	6611	19111001801	hypothetical protein (Synechocystia sp.)	9 \$	7.	1149
159	2	6721	149	191146336	nolf gene product (Rhizobium meliloti)	96	56	619
יינינ		1 360	1823	gi 145304	[L-ribulokinasa (Escherichia coli)	95	39	1464
191	- -	1762	1 2409	19111061634	hypothetical protein (Synechocystis sp)	98	*	8+3
402	-	380	761	91 1438904	5-HT4L receptor (Homo sapiens)	98	8	189
416	-	2480	2109	91 1408486	HS74A gene product [Bacillus subtilis]	98	16	372
~	_	1.756	2334	191 142471	scatolactate decarboxylase (Bacillus subtilis)	95	32	615
1 457	-	1907	1017	91 1205194	[formamidopyrimidine-DNA glycosylase [Haemophilus influenzae]	95	36	16.6
1 45A	~	2423	1812	191115466	terminase Wacterlophage SPP1)	98	17	(612
204	7 -	1 2152	1283	91 1142681	Lpp38 (Pasteurella haemolytice)	95	38	870
=		-	1284	491 217049	brnQ protein (Salmonella Lyphimurium)	95	3.1	1284
109		1094	1001	911467109	rim; 10S mibosomal protein Si8 alanine acetyltransferase; 229_Cl_170 (Mycobacterium lepras)	995	3	109
099	-	1 3547	1 3774	91 1229:06	[ZK930.1 [Caenorhabditis elegans]	3,	0.0	228
707	-	35	400	1911151929	NADPII-sulfite reducatess flavoprotein component (Salmonella yphimurium)	36	*	100
1 709	~	11145	1095	ui 1510801	hydrogenase accessory protein (Methanococcus Jannaschiil	36	38	162
118	-	-	495	91413948	ipa-24d gene product (Bacillus subtilis)	56	35	495
77.	-		(167)	91 928836	repressor protein [Lactococcus lactis phage BK5-T]	95	35	165
790	-	1 776	1 399	[91]1511513	ABC transporter, probable ATP-binding subunit [Methanococcus jannaschii]	9.5		876
245	-	-	1 407	91 1205382	cell division protein [Haemophilus influenzae	9.6	34	40\$
a	-	61 -1	930	91 1222161	permesse (Haemol'Nilus influentae	95	28	912
A55			515	91 1256621	[26.7% of identity in 165 ea to a Thermophilic bacterium hypothetical protein 6; putative (Bacilius subtilis)	5	ź	513
896	-	~	990	gi 547513	ort3 (Hasmophilus influenzas)	95 1	37	465
6.79	-	1 1049	28.	191 886022	Mexx (Pasudomonas seruginosa)	95	1.	318
1303	-	\$	223	[91]184251	HHG-1 (Homo saplens)	2.6	34	719
					11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			

${ t TABLE}$ 2

S Aureus - Putative coding regions of novel proteins similar to known proteins

Cont.19	ORF	Start (nt)	Stop (nt)	match acession	match gene name	E 14	1 Ident	length (
1976		452	237	91 9606	ysine-rith aspartic acid-rich protein [Plasmodium chabaudi] 	3 6	2	216	
2161	-	~ -	00+	191 1237015	ORP4 (Bacillus subtilis)	26	27	399	
2958	-	362	183	91 466685	No definition line found (Escherichia coli)	56	3.6	180	
2979	-	421	1 212	gx 1204354	spore germination and vegetative growth protein (Haemophilus influenzae)	56	- 00	210	
2994	- :	52.6	9:1	91 836646	phosphoribosylforminino praic Ketoisomerase [Rhodobacter phaeroides]	\$6	59	201	
3026	-	(11)	328	gi 143306	penicilito V amidase (Bacillus sphaericus)	96	0.0	150	
3189	-	289	146	191 1166604	Similar to aldehyda dehydrogenase [Caenorhabditis elegans]	36	٠,	-	
0.67.6	-	1 63	10+	191/1129145	acetyl-CoA C-acyltrans(erase Manglfera indica)	999	\$	666	
4054	- 2	1 720	361	91 1205355	Na+/H+ antiporter [Naemophilus influenzae]	3.6	- 10	360	
4145	==	.	324	91 726095	long-chain acyl-CoA dehydrogenase [Nus musculus]	90	36	124	
4200		\$05	1 254	91 155588	glucose-fructose oxidoreducrase [Zymomonas mobils] pir A42289[A42289] glucose-fructose oxidoreducrase (EC 1.1) recursor - Zymomonas mobilis	35	9	252	
1 4273	-	1 675	355	gi 308861	GTG start codon [Lactococcus lactis]	95		321	
-		4095	3436	91 5341	[Putative of YCLM8c, len. 32 (Secharomyces cerevisiae] r[553591[55359] hypothetical protein - yeast (Saccharomyces evisiae)	\$	52	0 9 9	
=======================================	21	1 9377	450SF	91 216773	haloscetate dehalogenase H-1 (Moraxella sp.)	5.5) 2	R73	
21	-		4534	491 467337	unknown (Bectilius subtilis]	5.5	56	007	
61 1	5 -	5404	5844	pi 1001719	hypothetical protain (Synechocystis ap.)	\$\$	75	441	
2	Ξ	114087	112339	191 474190	lucA gene product (Escherichia coli)	35	30	1749	
1 32	-	5368	6888	191 1340096	unknown Mycobacterium tuberculosis	55	1,	1521	_
*		1 2569	1808	191 1303968	YqjQ (Bacillus subtilis)	\$\$	96	762	
*	- 5	1 3960	1 3412	91 1303962	YqjK (Bacillus subtills)	\$	33	549	
) 36	-	1291	647	911606045	[ORF_oll8 [Escherichia coli]	\$		649	
36	•	6220	5243	[91]1001341	hypothetical protein (Synechocystis sp.)	55	, (978	_
	2	1 3054	13821	fgi 1001819	hypothetical protein (Synechocystis sp.)		21	768	
\$		2065	1127	91 403373	glycerophosphoryl diester phosphodiesterase [Bacillus subtilis] pir. 537251 537251 glycerophosphoryl diester phosphodiesterase - aclilus subtilis	\$	96	65.6	
	111111								

S aureus - Putative coding regions of novel proteans similar to known proteins

	10 10	Start	Stop (nt)	match scession	mattdh,gene name	E 1	1 I I I dent	Length (nt)
C9	=======================================	9968	9868	41 153053	norAll99 protein (Staphylococcus aureus)	\$5	23	009
15	-	881	1 1273	01 1698	L-histidinol. NAD. oxidoreductase (EC 1.1.1.23) (sa 1-434) scherichia coli)	\$.	£	193
A 2	-	15387	114194		carboxypeptidase [Sulfolobus solfataricus]	55	35	1194
8.7	-	1 3517	1 (917	91,1064812	[unction unknown (Bactilus subtilis]	55	56	1401
**************************************	~	1112	1636	91 882463	protein-N(pi)-phosphoh;stidine-sugar phosphotransferase [Escherichia oli]	\$8	, 51	\$97
92.	-	127	516	gi 1377832	unknown [Becilius subtilis]	5.5	36	060
100	- 5	1 836	2035	4911370274	zeaxanthin epoxidase Nicotiana plumbaginifolia	55	36	1200
100	-	1 \$107	4658	191 396660	unknown open reading frame [Buchnera aphidicola]	\$\$	5.5	680
104	-	1 4266	2986	10111499866	H. jannaschii predicted coding region MJ1024 (Methanococcus jannaschii)	\$\$	ī.	1281
114		2616	1834	191 1511367	formate dehydrogenase, alpha subunit (Methanococcus Sannaschii)	\$\$	53	783
7	-	1 1805	1476	191 1100787	unkom (Saccheromyces cerevisiae)	\$\$	3.5	330
165	- 5	6212	80SS	g1 1045884	[H. genitalium predicted coding region MG199 [Hycoplasma genitalium]	\$\$	72	205
1.19	 -	1 2205	1.2576	gi 142569	ATP synthese a subunit (Bacillus firmus)	\$\$	35	372
161	9	9136	1 6857	191 559411	B0272.3 (Caenorhabditia elegans)	\$\$	66	2260
194	-	1 364	909	gi 1145768	K7 kinesin-like protein [Dictyostellum discoldeum]	5.5	7	273
309	-	1 1335	1 1676	[91]473357	this gene product Schizosaccheromyces pumbel	88	35	342
211	- 7	1693	1145	1911410130	ORFX6 [Bacillus subtilis]	\$\$	17	549
213	-	644	1 1372	91 633692	Trak Versinia entercolitica!	55	7	129
214	-	4144	5481		hypothetical protein (Symechocystis sp)	\$\$	30	1338
221	- 1	111473	1 9197	191,466520	pocH Selmonelle typhimurium	- 55	12	1 2277
â	-	1 5908	1 4817	gi 1237063	unknown (Nycobacterium tuberculosis)	\$\$	38	1092
236	-	1375	1 2340	91 1146199	putetive (Bacillus subtilis)	55	32	796
243	~	1 380	1885	191 459907	mercuric reductame (Plasmid pl258)	- \$\$	29	1506
258	-	1 786	1 394	ai 455006	orfe (Rhodococcus fascians)	\$5) 36	193
281	-	126	938	91 1408493	homologous to SwissProt:YIDA_ECOLT hypothetical protein (Secullus subtilis)	\$5	35	L I M 1
316	-	1323	1 2102	91 1486447	Luxx homologue (Rhizobium sp.)	55	30	087
326	- 5	1 2968	1 2744	[gi 1296824	proline iminopeptidase [Lactobacillus helveticus]	25	36	\$22

S aureus - Putative coding regions of novel proteins similar to known proteins

Cont.19 ORF 10	ONF 10	Start (nt)	Stop	match cession	יה לנלון, ספרה החסת	# : ·	1 Ident	length (nt)	
150	- 2	1 2322	1429	91 1204820	hydrogen peroxide-inducible activator (Hasmophilus influenzae)	\$ \$	2.8	894	
1 353	· -	1 2197	2412	gi 1272475	chitin synthase (Emericella nidulans)	\$\$	30	216	
087	<u>-</u>	*	379	91 142554	ATP synthese i subunit (Bacillus megaterium)	\$\$	١ - ١	366	
3.83	-	462	232	gi 789272	[ferrichrome-binding protein [Bacillus subtilis]	88	36	231	
386	-	-	9.08	qi 1510251	DMA helicase, putative [Nethanococcus jannaschiii]	\$\$	` 0r	916	
014	- 7	1208	1881	91 1205144	multidrug resistance protein (Haemophilus influenzae)	55	2.3	89	
483	~	114	- 833	gi <13934	lips-10r gene product (Bacillus subtilis)	\$\$	56	423	
529	-	1 1777	- 1633	91 606150	ORF_[109 [Escherichia coll]	\$5		345	
1 555	-	1 1088	l SRS	91 (143407	para-aminobenzone acid synthase, component I (pab) (Bacillus ubtills)	\$\$	2.8	\$04	
1 565		402	202	91 1223961	[CDP-tyvelose epimerase (Yersinia pseudotuberculosis]	\$\$	‡	102	
SA2		751	452	Qi :256643	[20.2k identity with NADH dehydrogeness of the Leishmania major aitochondrion; putative (Bacillus subtilis)	\$\$	36	300	
645		2260	2057	91 210824	fusion protein F (Bovine respiratory syncytial virus) pir J01481 VGM28A (usion glycoprotein procursor - bovine espiratory syncytial virus (strain A51908)	× ×	\$	7 07	
672	7	1 957	1 2216	191 11511333	H. jannaschil predicted coding region MJ1322 [Methanococcus jannaschil]	5.5	36	1260	
067	_	955	429	1911537007	OKF_[1379 Escherichia coli]	\$\$	o,	677	
7.67	-	11859	945	96(5)6963	UG Site No. 18166 [Escharichia coli]	\$\$	3.0	\$1.6	
742	~	1 228	572	91304160	product unknown Bacillus subtilis	55	38	345	
813	~	1771	903	91 1136289	histidine kinase A (Dictyostelium discoldeum)	\$5	59	309	
A19	_	582	1355	91 558073	[polymorphic antigen (Plesmodium falciparum]	\$5	22	228	
832	~	1152	724	(91/40367	ORFC (Clostridium acetobutylicum)	\$\$	32	429	
0	_	769	386	[gi[1205875	[pseudouridylate synthase I [Haemophilus influences]	55	. 62	384	
1 1021 1	-	23	625	gi 48563	beta-lactamase [Yersinia enterocolitica]	55	38	٥٥،	
1026	<u>-</u>	09	511	141147804	Opp C (AA1-301) (Salmonella typhimurium)	\$	76	927	
1525	-		292	91 1477533	sarA Staphylococcus aureus	\$5	67	787	
1814 2	•	1 224	985	91 1046078	[H. genitalium predicted coding region MG369 [Mycoplasma genitalium]	\$	38	762	
3254 1	-	1 427	1 254	91/413968	tpa-44d gene product [Bacillus subtilis]	55	30	174	

 ${\sf TABLE}$ 2

5. aureus - Putative coding regions of novel proteins similar to known proteins

Contrg	08F	Start (nt)	Stop (nt)	acession	יולונין קפחם המשפ	E	• sdent	length (nt)	
3695	-	686	345	[gi 216773	haloacetate dehalogenase H-1 (Moraxella sp.)	55	32	342	
1721	-	7	1 312	q1 42029	ORFI gene product [Escherichia coli]	\$\$	31	312	
1799	-		1 272	91 42029	ORF1 gene product (Escherichia coli)	5.5	3.8	270	
3889	-	22	- 63	gi 1129145	ecetyl-CoA C-acyltransferase (Mangifera Indica)	5.5	\$\$	402	
3916	-	2	1 385	1911529754	apeC [Streptococcue pyogenes]	- 88	38	384	
3945	-	-	198	qi 476252	phase I flagellin (Salmonella enterica)	\$\$	36	195	
+014	-	488	1 246	91 42029	JONET gene product (Escherichia coli)	\$\$	38	243	
4184		7	1 343	91 1524267	unknown [Mycobecterium tuberculosis]	5.5	28	745	
4284	-	14	1 208	91 1100774	lerredoxin-dependent glutamate synthase Synechocyatis sp.	\$\$	3,6	195	
4657		644	178	91 180189	cerebellar-degeneration-related antigen (CDB34) (Homo sapiens) gi 182737 cerebellar degeneration-associated protein (Homo sapiens) pir a29770 a29770 cerebellar degeneration-related protein - human	\$\$	B E	267	
4514	-	~	244	191(21673	haloacetate dehalogenase N-1 (Moraxella sp.)	55	3	7.9	
4539	-	432	1.217	91 1129145	acetyl-CoA C-acyltransferase [Mangifers indics]	55	3	216	
4606		9:7	210	g1 386120	myosin alpha heavy chain (S2 subfragment) [rabbits, masseter, eptide Portial, 234 an]	\$5	27	20.3	
	-	534	1 4932	191536069	ORF VBL047c (Saccharomyces cerevisiae)	75	2,3	417	
1 13		1 7166	6165	9111205504	homoserine acetyltransferase (Haemophilus Influenzae)	54	96	1000	
	116	117086	115326	gi 474192	ucC gene product [Escherichia coli]	9.6	10	1761	
		2	979	91 48054	small subunit of soluble hydrogenase (AA 1-184) [Symechococcus sp.] ir S06919 HOYCSS soluble hydrogenase (EC 1.12) small chain - inchococcus sp. (PCC 4716)	5	96	B. C.	
	=	9437	1 8667	1911537207	ORF_[277 [Escherichia coli]	54	38	171	
78	112	8165	8332	19111160967	[palmitoyl-protein thioesterase [Homo sapiens]	24	37	168	
9	<u>- 15</u>	113025	13804	gi 438473	protein is hydrophobic, with homology to E. coli ProM. putative Becillus subtilis!	3	23	780	
95	1.2	1 203	1 736	↓gi 1256139	Ybb. Becillus subtilis	54	3.4	534	- 7
1 57	3	111117	110179	95 1151248	inosine-uridine preferring nucleosids hydroless (Crithidis fesciculate)	54	32	666	
99	- 2	915	11133	91 (133578)	Cap [Drosophila melanugaster]	54	29	619	
06	110	8116	9646	91 1399823	PhoE (Rhizobium meliloti)	24	7	531	

7	0		
,	5		
2	0		
?	5		
3	0		
3	5		
1	0		
4	5		
5	0		

5

Contig ID	10RF	Start (nt)	Stop	match	Tractit gene name	E 1	1 ident	length (nt)	
7.0	1.5	(12556	111801	sp P02983 TCR_S	sp P02981 TCR_S TETAACYCLINE RESISTANCE PROTEIN.	25	5 6 2	756	
63	- 5	1 4915	\$2706	gi 1064811	[function unknown (Bacillus subtilis]	24	37	792	
9.5	4	3005	2289	91 1205366	oligopeptide transport ATP-binding protein (Masmophilus influenzae)	>5		111	-
103	- 5	1 2596	1556	91 710495	protein kinase (Bacillus bravis)	3.4	[[[]	1041	•
105	2	3585	2002	Qi 143727	[putacive (Becillus subtilis]	24	,00	1491	. — .
112		2137	1 27 1 2	91(153724	HalC Stroptococcus pneumoniae		7	396	
127		1720	2493	91 144297	scetyl atterase (XymC) (Caldocellum saccharolyticum pir[BJ7202 BJ7202 acetylesterase (EC 3 1.1.6) (XymC) - Caldocellum accharolyticum	24	3	174	•
13.8	-	0091	3306	191 42473	pyruvete oxidase [Escherichia coli]	24	36	1001	
152	- 5	525	2711	91 1377834	[unknown [Bacillus subtilis]	₹5	23	648	
191	-	1 4831	5469	911903305	[ORF]3 [Bacillus subcilis]	3.5	2.0	619	
161	=======================================	1 6694	1257	91 1511039	[phosphate transport system regulatory protein [Methanococcus Jannaschil]	54	32	558	
191	2	1 1263	4543	191 1204976	(proly1-tRNA synthetaso (Haemophilus influenzae)	*	7	1281	
P9 1	120	ì	22243	gi 143582	spoilifA protein (Bacillus subtilis]	3.	75	642	
12.1		56.83	1 4250	91 436965	(malh) gene products (Bacillus stearothermophilus) pir [543914 543914 hypothetical protein 1 - Bacillus tearothermophilus	3	7.5	101	
206		119208	119720	01 1240016	RO9E10.3 (Caenorhabditis elegans)	75	38	\$13	
218	~	:	1905	91 467378	unknown [Bacillus subtilis]	3.	36	919	
220	-	1322	99	[91]1353761	myosin II heavy chain (Naegleria Cowleri)	Š	22	099	
220	=	12655	113059	pir S00485 S004	gene 11-1 protein precursor - Plasmodium (alciparum (fragments)	\$. 35	405	
121	-	1 2030	3709	01 1303813	Yqem (Bacillus subtilis)	35	_ *	1680	
272		5055	4219	91 62964	arylamine N-acetyltransferase (AA 1-290) (Gallus gallus ir S06652{XYCHY3 arylamine N-acetyltransferase (EC 2.3.3.5) (clone NAT-3) - chicken	¥	Ĉ	837	
316		14141	104	91 682769	(#ccE gene product (Escherichia coli)	24	=	561	
316	011	1 6994	8742	g1 413951	[ipa-27d gene product (Bacillus subtilis]	24	28	1749	
338	-	1 3377	2214	91 490328	[LORF F [unidentified]	\$	87	1.64	
=	-	3201	3614	191111959	myosin-like protein Saccharomyces cerevisiae	3,5	25	414	
					***************************************		*********		

S aureus Putative coding regions of novel protesus similar to known proteins

Contig	ORF.	Start (nt)	Stop (nt)	match acession	match gane name	E .	1 tdent	Length (nt.)	
346		1820	912	91 396400	similar to aukaryotic Na-/H+ exchangers (Eschartchia coli) spip3703 Vace_Ecoli HYDTHETICAL 60.5 KD PROTEIN IN SOXR-ACS NTERGENIC HEGION (0549).	*		606	
348	-	1 623	1321	1911537109	ORF_[14]e (Escherichia coli)	34	34	627	
1 378	1 2	1 1007	1 1942	ap P02983 TCR_S	TETRACYCLINE RESISTANCE PROTEIN	* S		936	
¥07	9 -	1 4351	1 5301	91 474190	iuch gene product [Escherichia coli]	7	79'	951	
3	-	7934	8884	91 216267	ONF2 [Bacillus megaterium]	*		921	
1 463	~	1 2717	2229	191 104160	product_unknown (Bacillus subtilis	ž	- 05	4.89	
505	~	1 1696	1133	91/1205015	hypothetical protein (SP:P10120) [Haemophilus influenzee]	3	38	564	- •
505	9	1 6262	1 5357	gi/ 1500558	2-hydroxyhepta-2,4-diene-1,7-dioata isomerase (Methanococcus jannaschii)	75	7	906	- •
250		2736	1522	91 40100	rodc (tag)) polypaptide (AA 1-746) Bacillus subtilis] ir 506049 506049 rodc protein - Bacillus subtilis p Pil465 TAGP_BACSU TECHOIC ACID BIOSYNTHESIS PROTEIN F.	ž	35	1215	
188	- 20	socr I	4279	191 150197	unknown (Corynebacterium glutamicum)	35	7	978	- •
55A	- 5	1 1356	956	gi 485090	No definition line found (Caenorhabditis elegans)	\$4	32	399	
1 580	-	16 -	936.	91 331906	(used envelope glycoprotein precursor (Friend spleen focus-forming irus)	54	- 65	846	
(0)	_	1 554	137	gi 1323423	ORF YGR2344 Saccharomyces cerevisiae	90	36	204	
617	-	2 –	249	93 219959	ornithine transcarbamylase (Homo saplens)	\$	0	225	- •
632	-	1097	08+1	[91 1303873	Yqq2 Becillus subtilis	54	25	384	
623			404	g1;1063250	low homology to P20 protein of Bacillus lichiniformis and bleomycin acetyltransferase of Streptomyces verticillus (Bacillus subtilis)	5		402	
6 8 9		1547	1011	qi 552446	NADII dehydrogenase subunit 4 [Apis mellifera ligustica] pir 552968;552968 NADH dehydrogenase chain 4 - honeybee itochondrion (SGC4)	\$	00	537	•
25.	7	9#9	=======================================	1911987096	sensory protein kinase (Streptomyces hygroscopicus)	25	7 7 7	155	-
956	-	-	249	[pir 530782 5307	pir 510782 5307 integrin homolog - yeast (Saccharomyces cerevisiae)	**	24	249	- •
876	~	11137	1 859		ORF YNL091w Seccharomyces cerevisiae	54	1 33	279	
3	-	-	1 281	191 1001108	hypothetical protein (Symechocystis sp.)	> >	1	279	•
7450	-		1 228	91 1045057	ch-TOG (Homo sapiens)	*	76	228	
2934		-	1 387	1911580870	ips-17d goxA gene product [Bacillus subtilis]	*	96	787	- •
2970		499	1 251	sp P]734F YECE_	HYPOTHETICAL PROTEIN IN ASPS 5'REGION (FRAGMENT).	*	42	249	

Contag 1D	10RF 11D	Start (nt)	Stop (nt)	match acession	מסקרון ספרה ווספה	E 18 .	• ident	length (nt)
3002	-	-	1 309	91 44627	The protein [Lactococcus lactis]	\$4	2	309
3561	<u>-</u>	6	464	91 1151259	HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir A44736 A44736 hydroxymathylulutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	3	\$	4.56
3572		22	10+	191 450698	hadw game of Ecopril game product (Eacherichia colii pir 538437 538437 hadw protein - Escherichia coli pir 509629 509629 hypothetical protein A - Eacherichia coli (SUB 40-520)	3	36	330
3829	-	866.	1 400	911322245	mevalonate pyrophosphate decarboxylase [Rattus norvegicus]	\$4	29	399
1909	<u>-</u>	-	273	gi 29865	CENP-E (Homo sepiene)	75	30	273
3921			209	 pir 524325 5243	glucan 1.4-beta-glucosidose (EC 3.2.1.74) - Pacudomonas fluorescens subsp.	ž.	36	207
4438	-	999	1 285	gi 1196657	unknown protein (Mycoplasma pneumoniae)	*	000	282
4459	17		272	gi 1046081	hypothetical protein (GB:D26185_10! (Mycoplasma genitalium)	4.0	38	270
4564	-	-	1 221	91 216267	OFF2 Bacillus megaterium	\$	38	219
23	112	112538	10685	91 474192	iucC gene product (Escherichia coli)	5.3	35	1854
23	==	14841	113579	91 42029	ORF1 gene product (Escherichia coli)	53	32	1263
7.7	_	0 7 7 7	3940	19111369947	c2 gene product (Bacterlophage Bl]	53	36	501
26	-	1 3838	4618	91 1486247	unknown (Bectllus subtilis)	53	37	108
*	9	1 2856	3998	91/405880	yeil (Escherichia coll)	5.3	40	1143
38	110	1 9380	7806	91 1399954	thyroid sodium/iodide symporter NIS (Rettus norvegicus)	53	62	1575
95	077	112324	112100	pir A54592 A545	pir A54592 A545 110k actin film: associated protein - chicken	53	32	225
57		5047	4583	p1 r A00341 DEZP	pir[A00141 DEZP blcohol dehydrogenase (EC 1 1 1 1) - fission yeast (Schizosaccharomyces pombs)	S	39	\$
57	7.	110515	9932	91 480429	[putative transcriptional regulator (Bacillus steerothermophilus)	3	00	1584
67	112	9696	110218	gi 1511555	quinolone resistance norA protein protein [Methanococcus januaschii]	5.3	31	123
69		1 3125	2382		stabinogalactan-protein. AGP (Micotiana alata, cell-suspension culture filtrate, Peptide, 461 aa)	53	30	**
79	-	7	1101	91 1523802	glucerise (Anabaena variabilis)	23	32	1029
80	-	1 673	338	91 52428	ATPase 3 [Plasmodium falciparum]	2.5	36	336
80	-	0161	2524	[91] \17034	ORF_o488 Eacherichia coli)	53	25	615
ec et	- 2	2467	3262	gi 537034	ORF_o488 [Escherichia coli]	53	29	816
1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	***************************************			

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

S eureus - Putative coding regions of novel proteins similar to known proteins

Contig	0.0	Start (nt;	Stop (nt)	netch	Nakçh gene name	و <u>.</u>	• i dent	length (nt)
92	- ·	1 5870	1 5505	199598	amphotropic murine retrovirus receptor (Rattus norvegicus)	53		366
***	<u>.</u>	4417	3239	91/173038	tropomyosin (TPM1) (Saccharomyces cerevisiae)	53	25	6611
66	-	4207	5433	Sp P28246 BCR_E	BICYCLOMYCIN RESISTANCE PROTEIN (SULPONAMIDE RESISTANCE PROTEIN).	S	30	1227
120	_	1639	2362	91 576655	ORF1 (Vibrio anguillarum)		3.5	624
120	=	1 7257	1 8897	91 1524397	glycine betaine transporter OpuD (Bacillus subtilis)	3	- , ((1641
127	•	6893	5895	91/1256630	putative (Macillus subtilis)	S	32	1209
147	~	1 255	1 \$57	91 581648	epin gene product (Staphylococcus epidermidis)	33	•	1 (0)
		4705	4256	91 151004	Imacoldy regulatory protein AlgR [Pseudomonas aeruginosa] ptr[Al2802 Al2802 regulatory protein algR - Pseudomonas aeruginosa sp P26175 ALGR_PSEAE Positive ALGINATE BlosyNTHESIS REGULATORY ROTEIN.	53	32	450
171	- 1	1 5717	5421	01 1510669	hypothetical protein (GP:D64044_18) (Methanococcus jannaschii)	53	7	297
161		113087	6	91 298085	acetoacetate decarboxylase [Clostridium acetobutylicum] pir B49346 B49346 butytate="acetoacetese CoA-transferame (EC .8.3.9) amail chain - Clostridium acetobutylicum sp P33752 CTFA_CLOAB BUTYRATE-ACETOACETATE COA- TRANSFERASE SUBUNIT (EC 2.8.3.9) (COAT A)	53	<u>-</u>	1605
1 203	-	3763	4326	91 143456	rpoE protein (ttg start codon) (Bacillus subtilis)	53	57	264
506		1,8204	18971	q1 304136	ACETYLGUTEmete kinase [Bacillus stearchermophlus] sp[007905]ARGE_BACST ACETYLGUTAMATE KINASE (EC 2.7.2.8) (NAG INASE) (ACK) (N-ACETYL-L-CLUTAMATE 5-PHOSPHOTRANSFERASE).	2	36	768
1 212	===	14021	4271	141 9878	protein kinaye (Plasmodium falciparum)	S	2.4	201
231	- 2	1 1580	1350	gi 537506	paramyosin (Dirofilaria immitts	S	<u>*</u>	102
272	-	1 2719	3249	pic A33141 A331	pic A33141 A331 hypothetical protein (gtfD 3' region) - Streptococcus mutens	53	*	531
308	_	1 927	2576	191 606292	ORF_0696 (Escherichia coll)	53	<u>.</u>	0591
320		5645	S884	91 160596		2	2	240
1 327	-	1 218	106 -	91 854601	unknown (Schizosaccharomyces pombe)	53	31	684
14.	-	1 212	1 2500	gi 633732	ORF1 (Campylobacter jejuni)	53	3.	2289
1 351	-	1 763	1 383	sp P31675 YABH_	HYPOTHETICAL 42.7 KD PROTEIN IN THPA-LEUD INTERGENIC REGION (ORFID4).	53	32	381
Ş		1 5087	1 4731	gi 1001961	MHC class II analog (Staphylococcus auraus)	53	30	357
\$	~_	1240	0 86	pir A60328 A603		\$	27	261

	Contig JORF ID ID	Start	Stop (nt)	match 4cession	Bergh gene name	E 7	1 Ident	length Intl
0.7	-	1123	1761	91 516826	rat GCP360 (Rattus rattus)	93) 00	639
4.83	-	432	217	91 1480429	putative transcriptional regulator (Bacillus stearnthermophilus)	53		216
245		516	1259	91 46547	ONF 1 (AA 1 - 121) (1 is 2nd base in codon) (Staphylococcus sureus) ir S15765 S15765 hypothetical protein 1 (hlb 5' region) - aphylococcus aureus (fragment)	3	9	***
558	110	7568	13754	[g1]15140	res gene [Bacteriophaga Pl]	53	32,	204
609	~	611	620	1911507738	Hmp (Vibrio pershesmolyticus)	53	56	282
69	! 	1669	941	91 153123	toxic shock syndrome toxin-1 precursor (Staphylococcus aureus) pir a24606 xCSAS1 toxic shnck syndrome toxin-1 precursor - taphylococcus aureus	2	80	729
766	-	~	673	[gx]687600	orfA2; orfA2 forms an operon with orfA1 (Listeria monocytogenes)	53	4)	672
1 781	: :	1 667	335	gi 1204551	pilin biogenesis protein [Haemophilus influenzae]	5.3	26	333
1 801	==	-	545	Q1 1279400	SapA protein (Escherichia coli)	53	25	543
1 803	-	2	910	91 695278	lipass-like anzyme (Alcaligenes eutrophus)	5.3	30	505
872	-	11177	590	91/298032	EF [Streptococcus suis]	53	30	888
910	-	2	701	91 1044936	unknown (Schizosaccharosyces posbe)	5.3	29	183
963		794	399	911:90508	similar to unidentified ORF near 47 minutes [Escherichia coli] ep plid36 YICK_ECOLI HYPOTHETICAL 43.5 KD PROTEIN IN SELC-NLPA NTENGENIC REGION.	53	0	966
886		1004	204	01 142441	ORF 3, putative (Bacillus subtalis)	48	28	501
1064	-		Ş	91 305080	myosin heavy chain (Entamosba histolytica)	53	26	432
1366	-		452	911308852	transmembrane protein (Lactococcus lactis)	53	33	054
1758	-	792	197	91/1001774	hypothetical protein (Synachocyatis ap.)	53	30	966
1897	-	-	447	91 1303949	Yqix [Bacdilus subtilis	S	27	447
2381		198	000	91/1146243	[22.4] identity with Escherichia coli DNA-damage inducible protein: putative [Bacillus subtilis]	53	<u> </u>	990
1 3537			127	90 450688	hadw gene of Ecopril gene product (Escherichia coli) pir 538437 538437 hadw protein - Escherichia coli pir 509629 509629 hypothetical protein A - Escherichia coli (SUB 40-520)	53	35	720
13747	-	11)	1997	91 1477486	transpossse (Burkholderia cepacia	53	53	261
111	•	3049	3441	41 868224	No definition line found (Caenorhabditis elegans)	52	33	193

TABLE 2

auraus - Putative coding regions of novel proteins simplar to known proteins	
known	
5	
simılar	
proteins	
novel	
jo	
regions	
coding	
Putative	
1	
Aureus	
S	

Contig	ORF	Start (nt)	Stop (nt.)	Batch	match gene name		1 ident	length (nt)
15	- 5	2205	2369	gt 215966	[64] protein (gig start codon) (Bacteriophage 74)	\$2	~	165
19	-	2429	3808	101 1205379	UOP-murnac-pentapeptide synthetase Naemophilus influenzae	52	110	1180
7		6920	3462	91 579124	predicted 86.4kd protein; 52kd observed (Hycobacteriophage 15) pir(530971 530971 game 26 protein - Mycobacterium phage L5 ap qo5233 vG26_BPML5 MINOR TAIL PROTEIN GP26. (SUB 2-837)	52	26	3459
3.7	- 5	3015	1935	91 1500543	P115 protein Mathanococcus Jannaschii	5.2	25,	921
3.8	=	8795	6076	gi 46851	glucose kinase (Struptomyces coelicolor)	7.5	29	606
	116	110617	111066	gi 42012	moaE gene product (Escherichia coli)	22	36	450
9+	-	: :	521	91 1040957	NAOH dehydrogenase subunit 6 (Anopheles trinkee)	5.5	25	615
15 1	011	15531	6280	91 388269	trac (Plasmid pADI:	3	3.2	150
\$		3968	2826	01 181949	endothalial differentiation protein (edg-1) (Homo sapiens) pir[AJSJ00[AJSJ00 G protein-coupled receptor edg-1 - human sp[P21453]EDGI_HUMAN PROBABLE G PROTEIN-COUPLED RECEPTOR EDG-1.	2	23	1143
	- 5	4850	6714	gi 304153	sorbitol dehydrogenase (Bacillus subtilis)	52	27	678
62	- 5	3364	2870	01 1072399	[phas gene product (Rhizobium meluloti]	52	2.5	495
62	9	4445	3651	qi 46485	NADH dehydrogenase (Symechococcus PCC7942)	5.5	27	261
1 67	7	111355	112962	01 1511365	glutamate synthase (NADPH), subunit alpha [Methanococcus jannaschii]	52	30	1608
69	121	116935	18158	9111204393	hypothetical protein (SP-P11122) (Hasmophilus influenzae)	22	25	1224
0,		2185	1997	1911727	[cytopleamic dynain heavy chain [Dictypatellum discoldeum] r.a44357 a44357 dynain heavy chain, cytosolic - slime mold ctypatellum discoldeum)	52	36	189
96	01	110005	10664	01 1408485	B65G gene product (Bacillus subtilis)	52	26	099
103	- 5	3986	1381	91 1009 168	Kespiratory nitrate reductase (Bacillus subtilis)	52	42	636
601	-	4102	1 3350	Q1 699274	labE gene product (Mycobacterium leprae)	52	39	153
601	119	15732	17300	91 1526981	amino acid permease Yeef like protein (Salmonella typhimurium)	52	30	1569
121	-	1412	981	di 732931	unknown (Saccharomyces cerevisiae	2.5	32	432
125	-	1 865	1 1680	91 1296975	pur game product [Porphyromonas gingivalis]	52	38	816
130	~	659	1807	qi 1256634	[25.8% identity over 120 as with the Synenococcus ap. MpeV protein; putative [Recillus subtilis]	\$2	36	1149
149	-	1164	. 583	gi:1225943	PBGX terminere [Bacilius subtilis]	5.2	33	582
149	7.	4687	4415	01 1510368	H. jannaschii predicted coding region KJ0272 (Methanococcus jannaschii)	5.2	35	1 273

Cont 19	Contag ORF	Start (nt)	Stop (nt)	metch	חבלל קפחפ חפתפ	e ie	1 ident	length (nt)
1 167	-	2:6	1001	91 146025	cell division protein (Escherichia coli)	52		786
ec		1 120	1256	91(474915	ort 337; translated orf similarity to 5W: BCR_ECOLI bicyclomycin esistence protein of Escherichia coli (Coxiella burnetii) pir[54420]{544207 hypothetical protein 337 - Coxiella burnetii (SUB -338)	3.2	50	7611
195	6	9161	09.48	91 3028	initochondrial outer membrane 72K protein [Neurospora crassa] r[a]6682 a]6682 22K mitochondrial outer membrane protein - rospora crassa	\$2	25	\$ 05
1 200	-	2065	2607	91 142439	ATP-dependent nuclease (Bacillus subtilis)	52	35	543
1 203	-	2776	3684	1303698	BitD [Becillus aubtilis]	52	25	606
1 227		5250	5651	91 305080	myosin heavy chain (Entamoeba histolytica)	52	24	402
1 242	-	177	1424	191 1060877	Enry (Escherichia coll)	52	32	14041
249	5	4526	4753	pir c37222 c372	cytochrome P450 1A1, hepatic - dog (fragment)	52	23	228
1 255	-	1 2107	1055	91/143290	penicillin-binding protein [Secillus subtilis]	52	28	1051
276	- 7	1 3963	3664	91 1001610	hypothetical protein (Symechocystis ap	\$2	1 01	1 000
1 276		4456	4055	91 416235	orf L3 [Mycoplasma capricolum]	52	26	1 704
289	1 2	1856	1449	191 150900	GTP phosphohydrolase [Proteus vulgaris]	5.2	-	804
325		-	279	91 1204874	polypeptide deformylase (formylmethionins deformylase) [Haemophilus] influenzee]	52	E.	279
140		2017	1010	91 :215695	peptide transport system protein SapF homolog. SapF homolog (Mycoplasma preumoniae)	5.5	5	1001
27.1	-	340	1878	91 467446	similar to SpovB (Bacillus subtilis)	52	2.8	1539
424	-	1 4104	3262	101 1478239	unknown (Mycobacterium tuberculosis)	52	7.	843
064	-	-	575	pir A42606 A426	pir A42606 A426 orth 5 to ort405 - Saccharopolyspora arythrees (fragment)	52	28	573
4	7	4728	1 3712	Di 1408494	homologous to penicillin acylase (Bacillus subtilis)	52	-: -:	1017
465		1802	506	44 11 43 33 3	alkaline phosphatase regulatory protein (Bacillus subtilis) pir A27650 A27650 regulatory protein phoR - Bacillus subtilis sp P23545 PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (EC	\$2	36	006
69+	<u></u>	4705	4169	1911755152	highly hydrophobic integral membrane protein [Bacillus aubtilis] ap P42953 TAGG_BACSU TEICHOIC ACID TRANSLOCATION PENHENSE PROTEIN AGG.	52	32	537
495	-	1262	633	94 1204607	transcription activator (Haemophilus influenzae)	52	5.2	630
505	- 7	\$009	5762	91 142440	ATP-dependent nuclesse (Recillus subtilis)	52	88	243

S, auteus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Stort	Stop (nt)	match	makdh gene name		• Ident	length (nt)
517		1162	1614	91 166162	Bacteriophage phi-11 int gene activator (Staphylococcus acteriophage phi	52	3.5	453
1 543	- 2	444	1295	911215693	putative orf; GT9_orf434 [Mycoplesma pneumoniae]	52	25	852
985	-	-	336	91;581648	epis gene product (Staphylococcus spidermidis)	5.2	97	3.00
17.3	-	878	426	91,1279769	FdhC (Methanobacterium thermoformicicum)	52	700	423
1120	7	100	000	91 142439	ATP-dependent nuclease (Bacilius subtilis)	25	35	23.
1614	-	169	1347	[91 289262		- 25	- 28	345
7495		-	324	94 216151	DNA polymerase (unit Ltg start codon) [Bacteriophage SP02] gi 579197 SP02 DNA polymerase (as 1-648) [Bacteriophage SP02] pir A21498 DJBPS2 DNA- directed DNA polymerase (EC 2.7.7.7) ~ phage P02	\$2	Z	324
2931	-	995	285	91'1256136	YbbG (Bacillus subtilis)	5.2	30	282
2943	-	517	320	01 41713	hisa ONF (AA 1-245) [Escherichie coli)	5.2	35	258
2993	-	588	295	01 298032	EF (Streptococcus suis)	5.2	34	294
3667	-	612	1 307	91 849025	hypothatical 64.7-kDa protein (Bacillus subtilis)	5.2	36	306
3944	-	478	1 260	0111218040	BAA Bacillus licheniformis]	5.2	36	219
3954	- 2	613	1347	91 854064	[UB7 [Human herpesvirus 6]	5.2	05	267
3986		0.6	-	91(1205919	Na* and Cl- dependent gamma-aminobutryic acid transporter [Haemophilus influenses]	52	<u> </u>	312
4002			389	91 40003	pagglutarate dehydrogensee (NADP+) (Becillus subtilis) p P23129 0D01_BACGU	52	42	287
4020	-	-	546	91 159388	ornithine decerboxylase [Leishmania donovani]	52	4.7	249
8607	-	\$5	1 220	191 409795	No definition line found (Escherichia coli)	52	32	219
4248	-	-	1 212	191 965077	Adrép (Saccharonyces cerevisias)	\$2	07	210
7	-		575	91 895747	putative cel operon regulator (Bacillus subtilis)	51	1 2R	573
21	-	1 2479	1 3276	91 1510962	indola-1-glycerol phosphate synthase [Methanococcus jannaschii]	51	32	964
22	-	1 5301	9965	91/1303933	YqiN Bacillus subcilis	5.1	25	999
7	-	9161	1283	9111519460	Srp1 (Schizosaccherumyces pumbe)	5.1		234
*		111042	11130\$	19, [42011	moaD gene product [Escherichia coli]	22	35	264
15	= =	6453	6731	91 495471	vacuolating toxin Helicobacter pylori	22	37	279

Contig C	ORF St	Start (nt)	Stop (nt)	match	natch gene name	E 18	1 ident	lengch (nt)
52	; ——	2537	2995	 qi 1256652 	25% identity to the E.coli regulatory protein MprA, putative [Bacilius subtilia]	2	32	4.59
52	01	7331	6843	[91 508173	EIIA domain of PTS-dependent Gat transport and phosphorylation Escherichia coll		32	689
65	-	1 67	11111	01 299163	alanine dehydrogenase (Bacillus subtilis)	51	33	1083
1 69	120 15	18791	16576		M. jannaschii predicted coding region MJ0918 [Methanococcus jannaschii]	15	24	786
69	2 1	1559	1218		unknown (Becilius subtilis)	15	34	342
; –	-	-	1196	91 298032	EF (Streptococcus suis)	51	32	1194
78	2 3	749	176	01 1161242	proliferating cell nuclear antigen (Styela clava)	51	3.8	174
99	-	1357	4040	gi 642795	TFIID subunit TAFII55 (Homo sepiens)		23	684
109		2852	1428	911580920	rodb (graa) polypeptide (Aa 1-673) [Bectlius subtilis] pir S06048 S06048 probable rodb protein - Bectlius subtilis sp P13484 TAGE_BACSU PROBABLE POLY(GLYCEROL-PHOSPHATE) LPHA-GLUCOSYLTRANSFERASE (EC 2.4.1.52) (TECHOIC ACID BIOSYNTHESIS ROTEIN E).	2	۲2	1425
109	9 - 6	1 6009	6693	gi 1204815	hypothetical protein (SP: P32662) [Haemophilus influenzae]	5.1	23	687
112		1066	2352	pir s05330 s053	maltose-binding protein precursor - Enterobacter aerogenes	- 51	42	1287
112	113 114	14432	112855	1911405857	(yeh) (Eschetichia coli)	75	62	1578
114	6	9725	1969	gi 435098	orfi (Mycoplesma capricolum)	15	01	65/
==			917	9411431110	JOHN YDLONDA (Saccharomycos coraviatas)	-		715
127	10 1	9647	110477	9111204314	H influentae predicted coding region HI0056 [Haemophilus influentae]	51	7.8	100
152	9 6	6814	7356	gi 431929	Huni regulatory protein (Mycoplasma sp.)	5.1	3.8	543
154	2 5	575	1153	91 1237044	unknown (Mycobacterium tuberculosis)	- 21) 36	678
154		6587	5634	1911409286	bacilius subtilis	2	27	956
17.1	9 - 6	6943	6236	91 1205484	hypothetical protein (SP:P33918) (Haemophilus influenzae)	15	32	10R
184	-	-	1 291	gi 466886	B1496_C3_206 (Mycobacterium leprae)	15	13	291
212	s	1501	2139	pir A45605 A456	mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium	3	23	639
228	2 7	707	1378	91 4204	nuclear protein (Drosophila melanogaster)	- 51	1 27	672
236	e - e -	7.61.8	7481	91 49272	Aspecaginase (Bacillus licheni(ormis)	16 -	7.	657
					1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、	•		

Contag ORF	ORF	Start	Stop	match	hakçi gene name		• ident	length (nt)	
257	-	3540	3373		H. influenzae predicted coding region H10126 [Haamophilus influenzae]	51	757	168	
258		1,829	1609	91 160299	glutamic acid-rich protein [Pleamodium felcipatum] pir A5534 A5631 glutamic acid-rich protein precursor - Pleamodium alciparum	12	<u></u>	789	
265	\$	2419	1881	91 580841	[F] [Bacillus subrilis]	51	32	1173	•
298	7	518	7.48	91 136162	SCPB Streptococcus agalacties	51	34	231	
316	6	5817	1 7049	191 413953	ipa-29d gene product (Bacillus subtilis	1.6	1 60	1233	•
: : : -	~	3775	1 205 /	19111209012	mutS Thermus aquaticus thermuphilue	5.1	3.6	1719	
364	-	3816	1 4991	91 528991	unknown (Bacıllus subtilis)	1.6	32	1176	
9		448	684	101/2819	remisferese (GALIO) (AA 1 - 687) (Kluyveromyces lectis) r[501407]XUWG UDP91ucose 4-mplmerase (EC 5 1 3.2) - yeast uyveromyces marktanus var. lactis)	15	24	152	
495	1 2	1353	7,111	101 297861	[protease G [Erwinia chrysanthemi]	51	=	117	
\$68	-	2287	1718	91 1513317	serine rich protein (Entamoeba histolytica)	5.1	- - - -	\$ 7.0	
905	: 	840	421	91 455320	cii protein Bacteriophage P4			420	
009		1474	983	191 587532	orf, len: 201, CAT: 0.16 (Saccharomyces cerevisias) pir S48818 S48818 hypothetical protein - yeast (Saccharomyces erevisias)	5.1	00	492	
1 607	0	664	934	91 1511524	hypothetical protein (SP:P37002) (Methanococcus januaschii)	5.1	0	456	
989	. 2	127	009	91 493017	endocarditis specific antigen (Enterococcus faecalis)	51	30	474	
726	-		230	91 1353851	unknown (Prochlorococcus marinus)	5.1	5	19H	
861	-	176	652	91 410145	dehydroquinste dehydratass [bacillus subtilis]	5.1	34	477	
H69		782	393	91 40100	rodC (teg3) polypeptide (AA)-746) Recillus subtilis) ir S06049 S06049 rodC protein - Bacillus subtilis p P13485 TAGF_BACSU TECHOIC ACID B108VNTHESIS PROTEIN F.	2	23	066	
(001	-	642	322	91 1279707	hypothetical phosphoglycerate mutase (Sacchatomyces cerevisiae)	\$1	19	121	
1 1046	2	998	624	gi 510257	glycosyltransferase Escherichia coli	51	29	243	
1467	-	1 702	352	191(1511175	[M. Jannaschi: predicted coding region MJ1177 (Methanococcus jannaschii)	5.1	32	351	
2558	-	1 457	230	sp P10582 DPOM_	DNA POLYMERASE (EC 2.7.7.7) (S-1 DNA ORF 3).	51	26	228	
3003	-	677	1 399	91 809543	[ChrC protein [Erwinte chrysanthem!]	51	27	181	
3604	-	-	1 399	pix JC4210 JC42]]-hydroxyacyi-CoA dehydrogenase (EC 1.1.1.35) - mouse	15	37	399	i
5676	-	7	316	91,145906	acyl-CoA synthetase (Escherichia coll)	5.1	1 (6	315	- 7

S aureus . Putative coding regions of novel proteins similar to known proteins

Contig ORF	98.01	Start (nt)	Stop (nt)	acession	match gene name	E	1 Ident	length (nt)
1971	-	1 2	274	01 1061351	semaphorin III (amily homolog [Momo sapiens]	- 16	37	273
1 3995	-	9+	1 336	01 216346	surfactin synthetase (Bacillus subtilis)	51	38	291
4193	; 	612	307	101 42749	ribosomal protein Li2 (AA 1-179) [Escherichia coli] Ir[S04776 XXECPL paptide N-acetyltransferase timL (EC 2.3.1) - cherichia coli	ري 	25	306
4539	-	1 367	185	91 1408494	homologous to penicillin acylase (Bacillus subtilis)	51	9	183
4562		27	239	91,1458280	roded for by C. tlegans cDNA cm01e7, Similar to hydroxymethylglutaryl-CoA synthase (Camorhabditis elegans)	15	35	204
		3576	4859	191 559160	GRAIL score: null; cap site and late promoter motifs present patream; putative (Autographa californica nuclear polyhedrosis irus)	0,5	3	1284
=	1 7	4044	5105	91 1146207	putative (Bacillus subtills)	250	35	1177
111	=	10509	9676	gi 1208451	hypothetical protein (Symachocyatis sp.)	80	13	1014
61		2034	1 1018	91 413966	ipa-42d gene product (Bacillus subtilis)	05 1	29	1011
1 20	=	1 8586	8407	91/1323159	ORF YGR103W (Saccharomyces cetevisiae)	0\$	2.8	081
24	-	5408	4824	q1 496280	structural protein [Bacteriophage Tuc2009]	05	6.7	585
*	-	1976	65/7	19111303966	(4q)o (Bacillus subtilis)	95	36	B 8 3 4
e	<u>~</u> _	22865 	23440	9111072179		05	32	576
- 47	7	1 1705	1 2976	[91]153015	FemA protein (Staphylococcus aureus)	05	29	1272
	==	15290	13441	qi 606096	OMF. [167; end overlaps end of 0100 by 14 bases: start overlaps f174, there starts possible [Escherichla coll]	20	= :	545
52	-	1 2135	1011	gi 640922	[xylite] dehydrogenase [unidentified hemisscomycete]	05	28	6501
88	-	628	1 1761	gi 143725	[putative (Bacillus subtilis)	05	29	1134
	•	4393	3884	91 1072179	Similar to dihydioflavonol -4-reductase (maize, petunia, tomato) [Caenorhabditis elegans]	20	32	510
89	-	3700	3356	91 127658	ORF174 gene product (Porphyra purpurea)	05	25	145
141	-		1 239	Q1 476024	carbamoy1 phosphate synthetase 11 (Plasmodium falciparum)	05	33	237
151	-	186	626	91 1403441	unknown (Mycobacterium tuberculosis)	05	35	1641
166	1,	11065	9623	1911895747	putative cel operon regulator (Bacillus subtilis)	8.0	32	140
1 201	9	5284	9605	dr 160229	circumsporozuita protein (Plasmodium reichenowi)	90	3	189
1 206	122	30784	129555	g 1052754	[Larp integral membrane protein [Lactococcus lactis]	50	24	1230

Contig	ORF	Start int)	Stop (nt)	metch	match gene name		1 ident	l length (nt)
211	•	1523	1927	[91 410131	OMFX7 (Bacillus subtilis)	05	53	\$0 7
2:4	-	2411	3295	sp P37348 YECE_	HYPOTHETICAL PROTEIN IN ASPS 5'REGION (FRAGMENT).	05	37	9885
228	-	5068	4406	gi 313580	envelope protein (Human immunodeficiency virus type 1 pir(535835 535835 envelope protein - human immunodeficiency virus ype 1 (fragment) (6UB 1-	05	35	. 99
272	- 5	1 3048	1 1723	gi 1408485	B65G gene product (Bacillus subtilis)	- 50	22 ,	1326
273	7	1616	7R6	1011 384386	[phosphoglycerate mutase (Saccharomyces carevistae)	0\$	28	613
3.2B	2	1.057	1 1605	gi 148896	lipoprotein Haemophilus influenzae	20	56	106
332	-	2469	1 3802	ui 1526547	CNA polymerase family X (Thermus aquations)	05	7.2	1668
342	- 5	1 3473	1861	1911456562	[G-box binding factor (Dictyostellum discoldeum]	- 50	35	459
352	: -	1478	741	gi 288301	CRF2 gene product [Bacillus megaterium]	05	29	867
10H		6626	1 5523	191111665	ORF2136 Marchantia polymorphal	0,	27	22.5
074	-	059	1 1825	1911757842	UDP-sugar hydrolase (Escherichia coli)	- 50	or I	1176
464	-	-	1 591	91 487282	[Na+ -ATPase subunit J (Enterococcus hirae)	20	53	165
714	7	1418	1 A64	gi 551875	[BgIR Lactococcus lactis]	05	23	\$ \$ \$ \$
520	-	1 23	1 541	gi 567036	CapE (Staphylococcus aureus)	0\$	72	\$13
529			410	91 1256652	25% identity to the E.coli regulatory protein MprA: putative (Bacilius subtilis)	20		405
534		7726	6909	911295671	structed as a weak suppressor of a mutant of the subunit Ac40 of DMA ependant RNA polymerase I and III (Saccheromyces cerevisiae)		*	16cH
647	:	2990	1497	91 405568	Traf protein shares sequence similarity with a family of opoisomerases [Plasmid pSK41]	20	ء ء ء	1494
664	-	1133	1 711	gi 410007	seukocidin F component (Staphylococcus aureus: MRSA No. 4, Peptide, 23 es	20	32	423
678	-	-	627	91 2 8032	EF [Streptococcus suis]	05	29	627
755			11711	91,150572	cytochrome cl precursor [EC 1.10.2.2] [Paracoccus denitriticans gl 45465 cytochrome cl (AA 1-450) [Paracoccus denitrificans] pir C29413 C29413 ubiquinolcytochrome-cl reductase (EC 1.10.2.2) ytochrome-cl precursor Paracoccus denitrificans-sp P13627 CY1	20		225
827	-	1363	683	91 142020	heterocyst differentiation protein (Anabaena sp.)	05	17	- 6H1
892	-	-	1752	gi .408485	B65G gene product Bacillus subrilis	05	1 27	750
		1						

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

s aureus - Putative coding regions of novel proteins similar to known proteins

Courting ORF 10 110	10kF	Start (nt)	Stop (nt)	match	match gene name	S	• ident	tut)
9.13	-	524	1 760	91 1205451	cell division inhibitor [Haemophilus influenzae]	50	12	217
973	-	474	1 236	91 386947	orfl gene product (Seccharomyces cerevisiae)	5.0	0.	681
1009	===	653	429	191 (153727	H protein igroup is streptococcus!	0\$	28	225
1027	-	115	1 257	[91]4:3934	ipa 10r gene product (Bacillus subtilis)	\$0	25	255
1153	7 -	556	326	9191113676	nccA (Alcaligenes xylosoxydens)	8.0	36	2.51
1222	-	1 798	400	91 1408485	[865G gene product (Bacillus subtilis]	20	21	399
1350		692	1 399	191 289272	[ferrichrome-binding protein [Bacillus subtilis]	05	32	294
2945	-	366	184	191171704	hexaprenyl pyrophosphate synthetase (COQ1) (Saccharomyces erevisiae)	. 80	34	183
2968	~	1604	804	91,197526	clumping factor (Staphylococcus aureus)	- 05		109
2998	- 2	1 657	765	91 495696	F54E7.3 gene product (Caenorhabditis elegans)	05	0	797
3046	-	200	200	pir S13819 S138	(acyl carriur protein - Anabaena variabilis (fragment)	05	32	201
3063	; <u>-</u>	547	275	Qi 174190	[iucA gene product (Escherichia coli)	05	29	172
3174	-		146	91 151900	alcohol dehydrogenase (Rhodobacter sphaeroides	05	11	144
3792	-	625	1014	gi 1001423	hypothetical protein [Symechocystis sp. }	05	- 51	312
3400			262	gi 144733	NAD-dependent beta hydroxybutyryl coenzyme A dehydrogenase Clostridium acetobutylicum	000	28	261
3946	. <u>-</u>	373	1.88	91 576765	cytochrome b [Myrmecia pilosula]	05	# :	2 .
3984	: -	1 578	291	sp P37348 YECE_	HYPUTHETICAL PROTEIN IN ASPS 5'REGION (FRAGMENT).	05	37	288
37	110	8250	7885	gi 1204367	hypothetical protein (CB:U1400)_278! (Haemophilus influenzae)	60	0.0	366
46	116	16 13802	14848	101 466860	acd; B1308_F1_34 [Mycobacterium leprae]	6.	7.7	1047
5.9	- 5	1 2267	1 3601	ti 606304	ORF_o462 (Escherichia coli	\$	27	1135
112	118	18 17884	118615	91 559502	ND4 protein (AA 1 - 409) [Caunuthabditis elegans]	67	25	132
138	6	1 69 1	1 7902	qi{303953	esterase Acinetobacter calcoaceticus	64	29	930
217	9	10401	5136	g1 496254	fibronectin/fibrinogen-binding protein (Streptococcus pyogenes)	64	3.1	138
220	112	11803	112657	 q1 397526	clumping factor (Staphylococcus aureus)	6.	31	888
228	-	1842	1 2492	pir 523692 5236	pir 523.692 5236 hyputhetical protein 9 - Plasmodium falciparum	63	24	651
268	-	1 5016	1 2614	[gx 143047	ORYB [Bacillus subtilis]	6+	56	2403
					19.10.10.10.10.10.10.10.10.10.10.10.10.10.			

TABLE 2

S. aureus - Pulative coding regions of novel proteins similar to known proteins

10	2	(nt)	inc.	match acession	naich gene name	E G	1 dent	iength (nt)
1,42	7 7	1164	1373	91,1001257	hypothetical protein (Synechocystis sp.)	6.5	- 80	210
300		4340	1 3180	01 1510796	Inyputhetical protein (GP.X91006.2) (Methanococcus jannaschii)	6	2.6	1161
381	· :	2281	1142	 91 396301 	matches PS00041. Bacterial regulatory proteins, araC family ignature [Escherichia coli]	6	58	1140
466	-		1 947	19111303863		4.4	76	945
999		976	161	91 633112	CRF1 Streptococcus sobrinus	6.7	29	189
6.10	-	103	1014	91 1122758	unknown (Bactiltus subtilis	÷	32	612
406	-	1433	\$60	1911143830	xpaC (Bacillus subtilis	- 67	29	633
H)1	-	. 943	1 473	191;401786	phosphomannomutase [Mycoplasma pirum]	Ç	29	• 11
1052	-	1 422	1 213		YORN (Bacillus subtilis)	\$	53	210
1800		342	172	di 216300	peptidoglycan synthesis enzyme (Bacillus subtilis) sp P17585 MURG_BACSU HURG PROTEIN UPD-N-ACETYLGLUCOSAMINEN-ACETYLMUKAMYL- PENTAPETIDE! PYROPHOSPHORYL-UNDECAPRENDL N-ACETYLGLUCOSAMINE RANSFERASE).	6.	28	<u> </u>
2430	-	7	1 376	sp P27434 YFGA_	HYPOTHETICAL 36.2 KD PROTEIN IN NDK-GCPE INTERGENIC REGION.	- 64	56	375
3096	-	542		1911516360	surfactin synthetase (Bacillus subtilis)	6,	25	270
32	-	1778	1 3100	(91,1217963	hepatocyte nuclear factor 4 gamma [HNF4gamma] [Homo sepiens]	8	36	672
# F	-	-	609	1911.205790	H influenzae predicted coding region H11555 [Haemophilus influenzae]	1 89 1	8 6	609
45	9 -	1205	6427	9111524267	unknown (Mycobecterium tuberculosis)	<u> </u>	0.1	140.7
65	=	16346	96011	91,1197336	Imp3 protein (Mycoplesma hominis	1 68	2.8	14751
19	-		809	91/1511555	quinolone resistance norA protein protein [Methanococcus jannaschil]	- 48	30	909
1.9	-	3311	3646	91 1303893	Yqht Bacillus subtilis	B\$	29	336
*		30	415	911671708	suis) humolog; similar to Drosophila melanogaster suppressor of able (su(s)) protein, Swiss-Prot Accession Number P22293 irrosophila virilis)	8 0	25	318
121	-	1131	019	911314584	unknown Sphingomonas S88	4.	29	522
136	-	2014	1280	9111205968	IH. influenzae predicted coding region H1.738 (Haemophilus influenzae)	E	2.3	735
171	01	8220	1 9557	91 1208454	hypothetical protein (Symechocystis sp.)	•	34	1338
175		3625	181	1911396400	similar to eukaryotic Na+/H+ exchangers [Escherichia cc.ii) sp[p12703]xyce_ecoli hypothetical 60.5 kD protein in soxn-acs ntergenic REGION (0549)	œ	2.9	1812
194				10111510493	M (anneath) predicted coding region MJ0419 (Methanococcus Januaschii)		2.5	384

EP 0 786 519 A2

5	
10	
15	
20	
25	
.30	
35	
40	
45	

50

55

aureus · Putative coding regions of novel proteins similar to known proteins

. teat	10 1	Start (nt)	Stop	match	שפרכים מפשה נופשה	E i s	N i clent	length (nt)
197	-	106	- 425	191 1045714	spermidine/putrescine transport ATP-binding protein [Mycoplasma genitalium]	30	25	984
203	-	- - 	9,60	q1 940288 	protein localized in the nucleoli of pea nuclei; OKF; putative Plaum sativum!	æ	2.9	396
204	-	1363	869	91 529202	No definition line found [Caenorhabdatis elegans]	80	25	999
206	20	134815	27760	91 511490	gramicidin S synthetese 2 [Bacillus brevis]		27	7056
212	-	7	166	91 295899	nucleolin Xenopus laevis	9	, 9	165
1 223	01	112652	111426	91 46073	SecY protein [Lactococcus lactis]	8	7.	1221
243		0549	1 5491	91 1184118	mevalonate kinase (Methanobacterium thermosuctotrophicum)	9	or I	096
797	· -	5434	1 3308	191 101 5903	ORF YJR151c (Saccharomyces cerevisiae)		36	2127
:	-	1512	368	911142863	replication initiation protein (Bacillus subtilis) pir 826580 826580 replication initiation protein - Bacillus ubtilis	\$	52	\$91
444	-	3898	1 5298	91 145836	putative (Escherichia coli)	48	5.4	1401
484		388	1110	gi 146551	[transmembrane protein (kdpD) [Escherichia coli]	87	91	723
542	-	1 1425	1 2000	pxt 528969 5289	N-carbamoylsarcosine amidohydrolase (EC 3.5.1.59) - Arthrobacter sp.	#	2.1	\$7.5
995			1019	41 153490	tetracenomychii C iusistanice and export protein (Streptomyces lauceacens)	ŧ	74	101
119	-		orz 1	911103507	unknown (Schizosaccharomyces pomba)	4	38	739
624	=	1.1255	999	93 (344859	ONF B (Clostradium perfringens)	æ	56	:65
- 846	. <u>-</u>	10.	508	91/537506	paramyosin (Dirofilaria lamitis)	ī	, ,	105
0701	-		950	191 1499476	Inagiresium and cobalt transport protein (Methanococcus januaschil)	48	01	H + 5
1 1227	<u>-</u>	. - 	174	911493730	lipoxygenese (Pisum setivum)	0	£ .	174
1266			405	qi 862452 	ORF_221; elegrate name yggA, orf5 of X14436 (Escherichia coli) gi 41425 ORF_6 (AA 1-197) Escherichia coli) (SUB 15-211)	7	*	;
1 2071	-	100	1 381	91 1408486	HS74A gene product (Bacillus subtilis)	80	25	327
2398	= =	. . • • • • • • • • • • • • • • • • • • •	1 233	19111500401	reverse gyrase (Methanococcus jannaschii)	æ	0	231
24.25	<u>-</u>	476	246	pxr H48563 H485	Gl protein - fowlpox virus (strain HP444) (fragment)	80	0	182
2432	_	- 446	1 225	[gi[1353703	Trio (Noro sapiens)	6		222
2453	2453 1	≯ 6Ł	966	91 142850	division initiation protein (Bacillus subtilis)	8	29	960
2998	-	69)	236	01 577569	Pegy (Lactobacillus delbrusckii)	=	1.	234
				1 5 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1	M ())())())())())())())())())())())())())			

Contra	08.5	Start (nt)	Stop	match	match gene name	E G	• ident	Length (nt)	
3042	-	1.4	280	945219		8	35	267	
3686	-	1 1	405	91 145836	(putative (Escherichia coli)	85	25	405	
4027	7	492	100	pir \$51177 \$511	(trans-activator protein - Equine infectious anemia virus	8	32	192	
-	- 2	3641	2232	91 1303989	Yaki (Bacillus subtilis)	4	74	1410	
7.	-	665	1084	911540383	PC4-1 gene product (Bradysta hyglda)	7	86.	4 X	
	01	7524	6925	19111409223	esterase (Acmetobacter Iwoffii)	47	56	009	
7	- 5	961	1884	91 1403455	unknown (Mycobacterium tuberculosis)	Ç	27	1689	
=	132	116118	115108	91/1511555	quinolone resistance norA protein protein (Nethanococcus jannaschii)	Ç	7.0	1011	• -
69		7 1 4 1	6710	91 (438466	Possible operon with orid Hydrophilic, no homologue in the atabase; putative [Bacillus subtilis]	.	, c4	3	
£	7	5055	4279	011466882	pusl; 81496_C2_189 Hycobacterium leprae	4,	₹	7 4 4	
120	21)	1 9135	1 8863	gi 927340	D9509.27p; CAI: 0.12 [Saccharomyces cerevisiae]	47	86	5 . 7	
142	-	2022	1174	91 486143	ORF YKL094w (Saccharomyces cerevisiae)	.	32	944	
168	-	2178	1 1093	911117254	hypothetical EcsB protein [Bacillus subtilis]	47	6.5	1046	• -
7.7	-	1884	943	01+142822	O-elanine racement cds Bacillus subtilis	5	3	776	
279		1109	\$61	41 51 6608	2 predicted membrane helicas, homology with B. subtills men Orfl Rowland et. al. unpublished Accession number M74183), approximately 1 minutes on updated Rudd map; putative (Escherichia coli) sp[P17355[YFBB_ECOLI HYPUTHETICAL 26 7 KD PROTEIN IN MEND-MENB	;	<u>.</u>	\$ 4.0 *	·
1 345	1 2	2620	1676	91/1204835	hippuricase (Maemophilus influentae)	Ç	2.8	945	
1,49	- 5	152	00	91 456562	G-box binding factor [Dictyostellum discoldeum]	47	3.2	249	
	<u>-</u>		831	91 1420856	myo-inositol transporter (Schirosaccharomyces pombe)	47	19	1831	
1 404	_	2002	27.73	91 1255425	[CllC8.2 gene product [Caenorhabditis elegans]	•	7.	707	
529	· ·	2145	3107	91 1303973	Yqjv (Bacillus subtilis]	L	29	963	· — •
595	~	1 2321	1257	gi 142824	processing protesse (Bacillus subtilis)	-	2.8	1065	
		962	483	91 243353	ORF 5' of ECRF) (herpesvirus saimiri HVS, host-squirrel monkey, eptide, 407 1-a4]	4	£	480	
692	-	1115	633	91 150756	40 kDa protein [Plasmid pJM1]	۲,	2.5	519	
765		1634	618	gi 1256621 	26 7% of identity in 165 as to a Thermophilic bacterium hypothetical protein 6, putative (Bacillus subtilis)	£. 9	¥.7	91 9	· ·

Contra ORF ID ID	untig URE 1D TD	Start	Stop (nt)	match acession	matth gene name	- mis /	• ident	length (int.)
825		211	1 1023	g1 397526	clumping factor (Staphylococcus aureus)	47	32	
116	-		615	px 558073	[polymorphic antigen (Plasmodium falciparum]	-	5.67	613
9201		-	153	7557311 10	Aspartate aminotransferase Bacillus circulans		: - : :	75.3
1351	-	1 793	398	1911755153	(ATP-binding protein (Bacillus subtilis)	47	20	396
4192	-		1 293	1911145836	[putative [Eschetichta coli]	47		291
· -		40.0	4361	911305080	myosin heavy chain Entamoeba histolytica	9+	30	348
=	•	1.61.2	13058	91,603639	[Yel040p Sacchatomyces cerevisiae]	9 4	28	282
9	=	10518	110300	gi;1246901	ATP-dependent (MA ligase (Candida albicans)	4	1 82	213
: 3	-	1941	0.67	911298032	[EF [Streptococcus suis]	46	35	0469
132	· •	5028	1 4093	19111511057	hypothetical protein SP:P45869 (Methanococcus Jannaschii)	-	57	976
170	-	4719	1 3652	pir S\$1910 S\$19	G4 protein - Sauroleishmenia tarentolae	9	26	1069
161	_	9543	8284	gi 1041334	[F\$405.7 (Caenorhabditis elegans)	9 9	1 57	1260
	-		966	191,1204449	dihydroliposmide acetyltransterase (Haemophilus influenzae)	1 9		965
264			6.6	41 180189	cerebellar degeneration-related antigen (CRR34) (Homo sepiens) g1[162737] cerebellar degeneration-associated protein [Homo sepiens] pir[A29770[A29770 cerebellar degeneration-related protein - human	9	5 6 7 7	5
273	-	485	285	1911607573	envelope glycoprotein C2V3 region (Human immunudeficiency virus type	9	: 52	707
350	-		563	194 517052	ORF [286 [Escherichia coli]	46	35	561
ij	-	-, - — .	798	19411211884	(urea?) amidolyssu (Heumophilus influenzas)	1 97		
C T	-	1876	2490		proton antiporter efflux pump (Mycobacterium smeqmatis)	99	24	613
4 32	<u>-</u>	2663	1455	91 1197634	orf4: putative transporter: Method: conceptual translation supplied by author (Mycubacterium smegnatis)		77	6071
£.	-	5117	11211	91 115470	portal protein Bacteriophage SPPI	9.	90	:209
517	5	24.17	4192	gi 1523812	orf5 (Bacteriophage A2)	3	23	917
	_	1512	1285	1911215635	pack (Bacteriophage P1)	9	30	22.8
587	~	649	1242	91,537148	ORF_(181 (Escherichia coli)	9	59	\$65
1218		747	1 391	91 1205456	single-stranded-DNA-specific exonuclease (Haemophllus influenzae)	46	00	357
:					· • • • • • • • • • • • • • • • • • • •			

1 10 10 10 10 10 10 10	Cont 19 10	101	Start	Stop	match icassion	maich gene name	E .	1 tdent	length (at)
1 1673 198 191 1914-040 1974-1097 1974-1049 1974-1	2 F 4 5			403	91 450688	hadM gene of Ecopril gene product (Escherichia coli) pir S38437 S38437 hadM protein - Escherichia coli pir S09629 S09629 hypothetical protein A - Escherichia coli (SUB 40-520)	•	3	403
16 11099 11004 Upi Colone Opt Colone December Dece	4176	-	[673	338	91 351460	FIM-C gene product Xenopus laevis	46		336
11.019 12004 101 1020 101 1020	11		1 4813	1 5922	191 606064	ORF_1408 (Escherichia coli)	\$	24	1110
17.18 74.07 91 1004413		- 116	111699	112004	ui 452192	type 2) (Homo	45	24	908
14.182 13.55 591 1001.007	: : 20	: ~ : -	17.48	1 2407	9411064813	homologous to sp:PHOK_BACSU Bactilus subtilis	\$	77	
14.14 11.11 19.11.204349	:03	112		113385	9111001307	[hypothetical protein (Synechocystis sp.]	45	22	862
4 448 1461	.13	17	(14791	119811	(91 (1204389	H influences predicted confing region HIO131 [Haemorbilus influences]	4.5	23	186
6 6179 4465 Un 218637 Papticary Stream Authority California Califor	: 45	· -	4483	3461	1911220578	open reading frame (Mus musculus)	45	20	1023
1 60 716 [91 10220056 Journamic acid-rich protein Plasmodium falciparum pir 25314 154514 1	170		6329	5967	U1 238657	AppCacytochiume d oxideme, subunit I homolog (Escherichie coll, KI2, eptide, 514 aa)	\$	27	1365
1 60 716 91 160239 91 160239 91 160239 91 160239 91 160239 91 160239 91 160239 91 1602300 91 91 91 91 91 91 91	206	· ~	5230	4346	1011;222056	[aminotransferase [Heemophilus influenzae]	\$	27	8885
1 2 1015 94 1255425 [4358-2 gene product (Genochabditis elegans)	877		· •	716	[91(160299	glutamic acid-rich protein [Plasmodium falciparum] pir A54514 A54514 Glutamic acid-rich protein precursor - Plasmodium alciparum	\$	23	657
1 914 459 91 881140	268		-	\$101	91 1255425	C31CB 2 gane product (Caenorhabditis elegans)	45	23	101
1 914 459	7.7	- 2	1 4339	3128	911581140	[NADH dehydrogenase (Escherichia coli]	45	30	1212
1 3 221 91[71225	3.12	-	914	659	141 870966	[F47A4.2 [Caenorhabditis elegans]	45	50	456
1 2 982 91 151134	344	-	n -	1 221	(91/171225	kinesin-related protein [Saccharomyces cerevisiae]	\$	97	219
1 2 992 911 131134 H jannaschii predicted coding region MJ121 Nethanococcus jannaschii 45 1 115 851 91 666180 OMF_2110 (Escharichia coli) 45 1 115 851 91 1726426 Similar to procein tinhases and C. elegans proteins F37C12.8 and 37C12.5 45 1 3 473 91 156400 L-yon heavy chain lassy chain Be - Caenorhabditis elegans 45 1 2 376 91 441155 Irananission-blocking target antigen (Plesmodium falciperum) 45 1 4 285 91 1276705 OMF287 gene product (Porphyra purpurea) 45 1 42 374 91 976025 HraA (Escherichia coli)	-		1501	1073	911142863	replication initiation protein (Bacillus subtilis) pir B26580 B26580 replication initiation protein - Bacillus ubtilis	5	27.	£. \$
3 1115 851 gq1 606180 OMF_2110 (Eschwitchia coli) 379 A46 gq1 726426 Similar to protein kinases and C. elegans proteins F37C12.8 and 37C12.5 45 (Cannorhabditis elegans) 45 47) 47	672	-	- 2	1 982	91,1511334	:	\$	22	1 8 5
1 1 47	163	-	1 1315	821	91/606180	[ORF_f110 (Escharichia coli)	.		495
1 3 473 91 156400 yosin heavy chain 1802yme unc-54) (Caenorhabditis elegans 45 91 180400 pir A91958 MMKM myosin heavy chain B - Caenorhabditis elegans 45 17 17 17 17 18 18 18 18	98.6		976	H 46	91 726426		\$	00	# 9 *
1 2 376 91 44155 Itanamission blocking target antigen (Plasmodium falciparum) 45 1 4 285 91 1276705 OMF287 gans product (Porphyra purpurea) 45 1 42 374 91 976025 HraA (Escherichia coli) 45 45 45 46 47 48 49 49 48 49 49 49 49	8 4 6			473	91 156400	wyosin heavy chain (isozyme unc-54) (Caenorhabditis elegens) pir A91958 MWKW myosin heavy chain B - Caenorhabditis elegans sp P02566 MYSB_CAEEL MYOSIN HEAVY CHAIN B (MHC B).	\$	s _N	4
1 4 285	1158	-	2	376	911441155	rensmission blocking target antigen (Plasmodium falciparum)	\$	35	375
1 42 374 g1 976025 HraA [Escherichia colii] 45	2551	-	-	1 285	91 1276705	ORF287 gene product (Porphyra purpurem)		2.8	282
	3967	-	1 42	374	q1 976025	HraA [Escherichia coli]	+	28	333

V sim V ident length (nt.)	44 22 1086	44 28 375	44 21 1416	44 30 210	44 26 1173	44 31 1440	44 519	44 32 951	44 28 612	43 27 609	43 21 1464	43 22 1992	43 21 666	1 43 21 2733	43 29 480	43 23 576	42 18 1269	42 31 678	42 21 1242	1 42 25 480	42 30 573	42 23 1053	42 24 1212
match gene name	(unknown (Bacillus subtilis)	thioredoxin II (Sactharomyces cerevistae)	tetracenomycin C resistance and export protein (Stieptomyces laucescens)	hypothetical protein (GB.U00022_9) (Naemophilus influenzae)	carboxypoptidase Sulfolobus solfatarious	orfl gene product [Lactobacillus helveticus]	Low homology to P20 protein of Barillus lichiniformis and bleomycln acetyltransferase of Streptomyces verticillus [Bacillus subrills]	FIH-C.1 gene product (Xenopus laevis)	high molecular weight neurofilament (Rattus norvegicus)	molybdoprerin-quanine dinucleotide blosynthesis protein A Methanococcus januaschii	tetracenomycin C resistance and export protein (Streptomyces laucescens)	[lipase [Staphylococcus epidermidis]	unknown (Mycobacterium tuberculosis)	clumping factor (Staphylococcus aureus)	sporozoite surface protein 2 - Plasmodium yoelii (fraqment)	SULFIDE DEHYDROCENASE (FLAVOCYTOCHROME C) FLAVOPROTEIN CHAIN PRECURSOR (EC	selected as a week suppressor of a mutant of the subunit AC40 of DNA selected as a week suppressor of a mutant (Saccharomyces cerevisiae)	ORF2 [Trypanosoma brucel]	ORFI gene product (Eacherichia coli)	ORF1; putative [Bacillus firmus]	ORF 2 (AM 1-203) [Bacillus thuringiensis]	yeef [Escherichia coli]	rodD (gtaA) polypeptide (AA 1 673) [Bacillus subtilis] pir S06048 S06048 probable rodD protein
match acession	91 467378	91,173028	gi 153490	91 1204989	91 1136221	911.296822	gi 063250	gi 951460	91 205680	gi x511614	91153490	91 153022	9111419051	91 397526	pir A60540 A605	sp 006530 DHSU_	01 295671 	91 501027	91 42029	91 142790		[gi.]405957	91 580920
Stop (5846	6843	2195	1122	2093	3524	1833	4892	613	11611	5128	1527	681	12134	2303	3122	13321	1001	4550	1 1036	1 3525	11115	1223
Start	6931	6475	7032	1331	3265	4963	\$181	3942	1224	10011	3665	5536	1346	9402	2782	2547	12051	1768	1673	1515	1 4097	1 2167	2434
	-	-	; -	7	~	-		4	-	×		011		-	-		1 2	~	-	-		-	
Contig OMF ID	-:		-	<u>:</u> -	<u> </u>	<u>:</u> —	-	•	•	:	; -	: -	; –	• -	; -	;	·	1 -	1	1	•		!

looded for by C. elegans cDNA yk3/g1.5; coded for by C. elegans CDNA | yk5c9.5; cuded for by C. elegans cDNA ykla9.5; alternatively spliced form of F52c9.8b [Caenorhabditis elegans]

21 | 1055055

305

197

518

2395

91 | 1255425

503

1 1 1003

191 | 535260

10636

112

[C33G8.2 gene product [Caenorhabditis elegans]

STARP antigen (Plasmodium reichenowi)

501 4530 1095

37 | 36 |

35

circumaporozoite protein (Plaamodium falciparum) sp|P05691|CSP_PLAFL | CIRCUMSPOROZOITE PROTEIN (CS) (FRAGMENT).

ONF YJR151c (Saccharomyces cerevisiae)

2507

1949

91 298032

8019 1098

3550

911552195

[EF [Streptococcus suis]

36

978 1011 474 492 . . H 762 19 1 3.6 18 30 5 5 99 17 7 **;** ; **; Q** 10 lasparagine-rich antigen Pfai5-2 [Plasmodium falciparum] pir|527826|527826 - asparagine-rich antigen Pfai5-2 - Plasmodium alciparum (fragment) |spermidine/spermine Ni-acetyltransferase |Nus saxicola| pir|S43430|S43430 | spermidine/spermine Ni-acetyltransferase - spiny ouse (Nus saxicola) orf4; putative transporter: Method conceptual translation supplied by 15 [protein tyrosine phosphatase [Dictyostelium discoldeum] c. aureus - Putative coding regions of novel proteins similar to known 20 observed 35 2Kd protein (Nycobacteriophage 15) orf4 gene product [Methanosarcina barkeri] |pir|S42251|S422 |hypothetical protein 5 - fowlpox virus 25 |rhoptry protein [Plasmodium yoelii] author (Mycobacterium amegmatis) |TrsA (Yersinia enterocolitica) [YqeD [Bacillus subrilis] 30 |piriJH0148|JH01 |nucleolin - ret match gene name 35 ACESSION 41,1303784 41 | 1197634 |gi|1022910 911.124957 911552184 91 457146 met ch 905601116 91 633692 [5873] 40 1103 1739 2000 114075 3127 3386 Contig ONF | Start | Stop 10 | 10 | 10t) | int) 475 395 402 88 45 1263 212 | 6 | 2150 685 | 3 | 2359 1 787 1375 112 | 14797 1 2625 7 -<u>-</u> 1132 | 1 4 50 : 562 934 213 408

55

5	

1	0	

20	

0	c

S. aureus - Putative coding regions of novel proteins not similar to known proteins

3	0	

35

Stop Int I	26	2278	10.12	2585	1091	1771	4550	6422	8547	1982	9	12	5	6284	1271	4942	4862	1650	0835	917	7764	8230	8603	0470	339	5485	6643
rart nt)	-	712	-	11 6708	25.39	1532	. — :	7939	8711	2359	349	5144	2968	6472	0954	5352	4596	1895	1263 1	1093	9125	8571	9201	12158 1	674	6138	7617
	-		-	=		- -	-	-	112	_		-	- 6	- 01	176 -1	-	-	_	2	~ ~	- 2	100	77	2	- -	•	
600 t 19		i 🕶	1	i		~		~	5	٠	-	11	=	=	=	13	12		16	18	20	20	20	20	23	2	:

S. auxaus - Putative coding regions of novel proteins not similar to known proteins

	1889	12830	4185	5241	402	94.9	524	300	1368	- 10	7		10087	1.6	301	197	2	96	9	8989	116371	20804	121264	627	707	428	7134
Start (nt)	7651	12618	4556	5642	1824	\$0\$	177	2454	765	1952	8591	9738	16701	1315	5226		1424	915B	1585	6425	28	120253	20722	1	909	196	3636
	_	115	•	9	~			-	~		01		112	~	-	=	77	-	~	11	120	126	(2)	-	-	-	
Const to	2	23	7.4	7.7	25	17	7.	=	77	77	7.7	32	32	1	36		36	٠(.					39	07	\$	

10

1	5		

20	

25	١	C	

S. aureus . Putative coding regions of novel proteins not similar to known proteins

3	0	

_	_	

4	0

45

50

4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						·					• •			. – .			• – •		· — ·			• –	• —			• - •	•	
4 4 19 108 5.48 4 4 114 105 9.7 4 4 115 9.8 4 4 115 9.8 4 4 115 9.8 6 6 8 6 117 15 0.9 2 6 117 15 0.9 2 6 117 15 0.	JE	263	129	536	3994	6297	l .	976	5	9.79	9776	962	1316	370	2245	287	319	5	56	9	1.0	228		18712	3521	5822	8553	1509
	35	2484	0587	3724	3596	6575	6165	0449	5032	80		3	621	80	520	2	20.	7	592	1052		1551	1970	2606	3694	5436	8885	1366
	e co	- 5	17	120	121	-	-	112 11	117 11	-	-	-	i	<u>-</u>	~	-	-	-	-		_	_	-	-	•	-	-	-
	170	4.	2	7	7	45	4.6	46	9	4	80		i vo				is	;		L VO	•			1		5.7	88	65

10	
15	croteins
20	Party of Tellsmis
25	el protesos not
30	autis - Putative coding regions of novel moterns not similar to known croteins
35	- Putative codin
40	S S

	3670	3570	4563	8378	116403	1521	1 5757	336	1781	1 2610	3904	6955	326	6615	8645	1192	1228	1791	603	1 8653	8781	1232	9366	7761	161	8781	
3026	0000	3770		:	10401		5440	-	006	1774	2591	7110	7.8	6761	8935	1590		1411	~	1 8300	6968	1426	9167	1620		5942	
	-		i		=	į		-	- -	7	<u> </u>	6 0	- -		=		- 5		-	<u>.</u>	0.7		30	-	-		
9 65		65	23		59	29	29	5	67	6.7	67	67	89	7.0	0٢	7.1	7.9	97	3	8.8	85	92		8 0	88	8.0	
1 65	-	- [-	÷	i				-	-	_	_		: :	:				_			-	_			

10	
15	
20	

Stop (nt)	3141	928	1467
Start (nt)	3938	449	958
10		2	-
	91	92	93

art Stop	38 314	9 928	58 1467	38 602	332	45 1813	3 219	01	72 452	14 478	971 95	97 4368	96 2035	769	7121 6	35 69	33 2655	122	09 13	81 542	25 , 365		11226		1760	64 93	
	9 - 39	-	3 19	95 6	1 66	3 24	1 25	1 106	-	05 7	97	94 4	3 24	1 2	2 69	1 12	32	-	12	01	-	3 1162	611	0 (174	7	1 87	
Contrig lo	_		~	9.5	76	16	-	96	66			~	103	104	_	105	105	1.3	90	0	2	109		109	011	114 11	

aureus - Putative coding regions of novel proteins not similar to known proteins

5							•																						
10																													
15	m proceins																												
20	autious - Putative coding regions of novel proteins not similar to known proteins																												
25	proteins no	Stop ((nt)	1462	9.86	10156	1320	3869		269	818	1196	1395	6438	1695	667	258	1 627	152	6463	1032	1513	2743	2368	7586	6502	0 7 9	511	1350	1 2540
	of novel	Start (nt)	6273		10313	1000	4270	9290	417	1080	2648	1 4084	6773	517	~	\$12	1124		6009	2060	2019	2387	1 1360	9830	7290	1227	~	502	3673
30	egions	ORF	-	80	6	-	9	=	7	-		- 2	9	~	-	~		_	-	- -	~	\$	7	-	-			-	-
	oding re	. Contig	116	116	917	120	120	120	121	126	127	127	131	132	134	135	138	138	138	140	0 1	071	142	77	3	=	146	146	146
35	a - Putative C	· ·	· —	• —	· — ·	• — •	• — •	•	•	•	• —	• –	• —	• •	•	• — •			• — •	(. —	• —	. —	• —	• —	• ·	• -	•	· — •
40	rein e S																									•,	•		
45																													
50																													

_	
5	

1	0	

15	
----	--

:	>	í	3	

25	

3	0	
	•	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

35	

1	1
7	U

45

50

·	- -	; —	<u>-</u>	- -	- –	: -	<u>-</u>	• -	· -	: -	•	· -	:	: -	•	•		:	· -	<u>.</u> –		; –		•	· -	•	: -
Stop (nt)	3071	339	3615	3785	4145	4610	\$049	5491	7054	8521	9106	1686	1587	1508	8689	12147	12803	593	2232	1064	808	1808	42.19	1540	4717	\$638	074
Scart	2874	-	3956	4036	4507	4807	5495	96578	7416	9216	9681	1 67901	2303	1795	9859	12704	13531	315	1183	1471	452	876	4653	48 03	4.896	5817	1604
98.																											
GT Jubo,	971	147								149			150		154		154	156	151	158			[9]		191		
	٠ –	• –	• –	• –	•	•	•	• –	•	•	• -	•	•		•	•	•	•	•	•	• –	•	•	• –	-	•	• –

5	

1	0	

20	
20	

3	0	

35	

		_
1	7	1

Cont.	27	Sta (nt	
163		2796	. ~
163	-	2952	2647
163	-	905	5132
191	-	13.	1147
166		5213	4854
168	-	2500	2868
168	2	3595	4158
170		2517	. ~
171	~		
171	17	: = .	111125
172	-	_	278
172	~	:	1149
173	-	1289	1 708
173	'n	1000	\$113
374	~	<u>.</u> — :	1105
175	_	1 2552	2890
175	~	<u>. </u>	2000
173	_	.	•
182		- :	6
18	~	6043	5702
188	- 5	1210	1755
168	-	1 2647	
189	•	• •	3039
190	_	1998	2564
		<u>.</u>	15.3
-	7	950	6.9
!			

proteins																											
S. Auteus - Futacive ciding regions of novel proteins not similar to known proteins																											
oroterns not s	Stop (nt)	112363	426	1932	1 9097	1891	625	1466	7815	113636	23960	817	1167	1436	4075	105	570	3.38	5669	1 69 1	1 596	657	2156	1369	2922	7208	8661
f novel p	:	. 1	٠ ;			1016 1	-	18.	-	113947 [1]	28208 (2	170		_	_	· — -	-	4064	_	_	-	178		1821	<u>.</u> .	8275	-
itons o	:	:	-		\$	~	-	~	9	;	21 2	~		•	: :	-	:	9	-	-	-	-		7		<u> </u>	-
uding reg	Couting JOHF td ID			Se	195	198	201	203	206	;	306	212	212	212		213	214	214	214	214	712	218	218	220	220	220	220
is - Eutacive c			-			• —	• —																				
S. AUROL																									•		

5							•																					
10																												
15	m proteins																									÷		
20	 aureus - Putative coding regions of novel proteins not similar to known proteins 																											
25	l proteins no	<u></u>	1 2613	110757	629	1459	1961	487	975	2121	2345	8946	1 6367	2677	3526	3762	625	1391	808	4334	1363	576	647	1962	1256	215	1733	3712
30	ns of nove		4 3095	111428	-	-	1476	~	-	1855	\$ 1 2052	-	9 5591	5 2503	6 2846	7 3944	2 609	2 1975	2 1417	5 4495	2 1677	-	1 1291	2 3035	2 1614	1 69	4 738	3 3906
	ding regio	5	-	221 9	-	226 2	226 3	227 1		227	-	-	 -	<u> </u>	228	_	-	236	-		242	243 1	-	-	-	246	-	
35	: - Putative co	·	: –	. —	. –	•	· —	-	÷ —	: —	÷ —	-	•	•	•	-	• —	•	· ·	• = -		• —	•	•	• —	•		
40	S. aureus																										:	
45																												
50																												

1	0	

1	5	
---	---	--

J	į,		

25	

3	0	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

35	

Stop (nt)	95	: =	3227	4580	7606	3681		\$	5107	1.0	4700	3	1439	067	6035	1901	55	3448	\$127	36	1950	2276	105	1932	2	0	2
: E	-	~	170	9061	9618	1214		5252	1739	1323	5140	462	1200	1691	6469	1746	224	3299	4849	551	1756			. ~	332	•	1606
100			. ~	<u>:</u> _ :	<u>.</u>		~		<u>.</u>		<u>.</u>	: _ :	:	: _ ;	:	<u>:</u>	:	2	~	7	2	\$	-	~	~	<u>.</u>	-
Cont 19	· Ř	~1	C.	260	261	192	. ~	264	264	267	268	272	272	272	272	276	278	278	278	7	~		289			76	•

_	_	

25	

3	0	

,	35	

proteins	
known p	
٥	
ami lar	
بو د	
5	
stive coding regions of novel protesins not similar to known	
1000	
70	
1 89 1 0018	
coding	
Putative	
•	
Surrus	
S	

Stop		- 2	1 59*	205		· 🖎	194	454	4257	339	3995	654	599	1 ~	=		41	165	: =	3458	5217	614	6794	543	1112	1 (67	699
	28	2220		2	380	2794	_	,	16	1 7.9	45	-	1120	(79	~	01	98	758	~	4570	5645	6319	1 1450	827	165	1117	936
<u>§</u> 5:	-	~	7	-	~	_		-	5			-	i ~	-	7		~				9	_		~	~		-
	295	. ~	. ~	. ~	in	301	704	. ~	: ~	! ~		, –		; ~	313	7.7	316	316	317	317	321	321	321	322	326	326	328
	• -	•	• -	• —	•	•	•	•	• –	• –		• -	•	•	٠-	•	• –	• –	•	• —	• –	• —	. –	• —	• —	• —	. – .

						•																				
proteins																										
actions - Putative coding regions of novel proteins not similar to known proteins																										
protesns not	Stop	3276	719	1212	1833	789	1623	2204	5138	3128	433 –	\$26	1356	281	3192	3944	4558	2889	76R	592	1598	1765	1 9651	8404	9247	9854
of novel		3452	-	-	_	-		-	1267	-	: -	-	1658	-	476	- :	_	-	1532	221	1410	2178	-	1961	; –	11011
ions.	1	. n	-	~	-	~	_	_	-	-	-	~	~	-	~	رب -	9	\$	-	~	2	7		-		
oding reg	1 2 0.	328	129	129	129	330	130	200	332	133	3.15	13.7	3.0	341	141	 	341	344	345	346	350	352	352	352	352	352
· Putative o	•				. – ,				•	-	•	•														
S actous																										:

5							•			
10										
15	n proteins									
20	 aureus - Putative coding regions of novel proteins not similar to known proteins 									
25	vel proteins not	t Stop	1808	110714	1 (161	0600	6239	1 1719	1085	767
30	ou jo suot še z S u	Cquig ORF Start Stop 1D (nt)	364 2 2158 1808	364 8 10974 10714	365 2 1612 1313	365 5 4680 4090	365 7 4980 6239	366 3 520 1719	367 3 906 1085	368 1 748 494
35	- Putative codis	b y			-	-				
40	97 00 00 00 00 00 00 00 00 00 00 00 00 00									
45										

ا ع کر	1	0		0600	223		1085	*		60	. 2	47.	1549	99	197	901	=	8 9 8	47	591	.5	5569	2672	1423	1890	489	320
	-	-			- :	- :			-		-	_		-		- 2	-			-			~		- ·	-	-
	<u>.</u> _ :	1103	-	9 :	_ :	22		,	~	=	_	~	=	151	ŝ.	==	=	-	9	-	55		~	: - :	~		. 0
٠.		_			_	_		_	_	_	_	_	. ~	~	_	:		_									
1. P		364	965	365	365	366	167	996	375	380	389	390	390	391	395	966	398	399	10	405	0	804	80.		0.	3	917

1	0	

r	

20	

_

35	

0.2	Contig	ONF	Start (nt)	Stop Int)
, •	416		878	847
,	416	_	2195	1590
	417	-	0	9.1
	114	~	1 161	616
	420	7	788	513
	-	-	756	(19)
	431	~	958	1407
	+32	~	446	1084
	÷	-	-	417
í			1 2311	2033
		-	1 942	515
		7	2089	1235
	077	-	-	450
	442	7	1269	0266
i	443	1	1 1873	1520
	ij	-	~	969
1	**	_	6761	9969
	+ \$1		076	
1	453	- 5	968	9(9
	453	-		4786
	3	<u>^</u>	4718	4512
		=	1 1937	1679
	455	-	70	612
	\$\$\$	~	625	018
	459	_	265	687
	462	-	~ _	1 247
	777			

_	
5	

1	o	

20	

9	E	
2	0	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

3	0

35	
-	

	_
4	υ

45

50

	<u>.</u> –	-				-			-	-	_	-	-				-	-	• !		• –	<u>-</u>	-	7		- :	-
1 2 5	349	250	ı ñı	337	370	538	69(80		1 2	•	10	1.267		208	1 233	1 426	180	174	211	359	675	1 520	124	157	346	15
Start (nt)	7	. ~	1488	2386	3464	۲	. 20	: =	2	8175	0	و ا	; ?	. ~	1764	2066	4016		613	1795	715	127	2	96+	1149	069	4566
ORF		; - ;	-	-	-	_	-		-	10	-	~ ~	-	-	-	-	~	2	-	-	-	-	-	7	-	-	~
Contig	(67	468	697	1 697	1 69	470	470	470	470	470	471	1.64	476	477	477	677	087	. =	987		=	765	667	167	502	504	505
	<u>:</u> _	<u> </u>	-	<u>:</u> _	-	_	<u>.</u> –		<u>:</u> –	: —	-	<u>:</u> —	- -	: –	<u>.</u> –	. –	. –	. –	<u>:</u> –	: –	: —	• –	: –	. –	: —	:	·

5							•																						
10																													
15	n proteins																												
20	aureus - Patative coding regions of movel proteins not similar to known proteins																												
25	protesns nat	Stop	1232	147	612	2511	2360	16991	498	315	1104	5534	156	:	2880	3121	1 1676	999	1001	433	432	1272	- 462	1129	704	1154	1458	1821	2020
	of novel	Start 1		-		_ ·	_ ·	13908	-	<u>:</u> -	1679		-	1 1362	1 2203	-	_	966	1495	68	916	_	1 1012	2145	~	1357	1760	2105	2166
30	regions	ONF IID	~	~	-	-	-		-	-	~	- 1	-	-	-	- 2	•	_	~	<u>-</u>	~	~	- 5	_	7	-	-	-	9
	նոմ հոց	Contra	115	1 512	\$15	715	520	520	527	828	825	530	536	538	538	528	5.38	240	240	- \$	541	542	545	551	1 555	858	1 558	558	858
35	e - Potative																												
40	S. Nutro																									~	•		
45																													
50																													

۹	
_	

1	0	

1	5	
,		

0	n	

25	

25	
JJ	

					÷, -, -,	•		<u> </u>	• -	-	- 0				372	-	_				. —	-			•
s - 	2636 2322	-	3986 3453	1 92	1706 1485	1 - 80	46	-	163 453	1 477	1784 1200	6 886		2 5		1,62 1				817 1122	069 18	1593 1435	8 169	1011 1469	322 768
			-		-			-	~	_ 	~	-	_	_	~	-	_	~	_ ·	~	_	_	_ 	~	-
6 Q Q	55	558	558	260	565	571	11.5	517	211	579	579	583	. 2	587	88.	£ .	065	592	593	593	295	965	209	109	909

5							•																						
10																													
15	n proteins																												
20	aureus - Putative coding regions of novel proteins not similar to known proteins																												
25	el proteins not	Stop	005	0 0 0	491	1 347	2549	210	452	4000	657	368	1063	1661	1081	261	114	***	Ξ.	1847	608	1758	2321	2488	1 1045	109	1 872	961	304
30	tions of nove	ORF Start	1 3	1 991	2 736	1 1 36	4 2046	1 1 67	1 901	1 1 4789	1 1 1448	1 1 189	2 1929	(2(2) 2)	1 227	1 510	7 1377	110	3 1615	4 2260	1	4 1534	502 9	7 2940	1 2	77 1	2 576	1 1 1725	2 89
	coding reg	Contig ORF	612	616				627	628	631		636			6.38	619	:	179	:	642	643	645	645		648		099	661	1
35	s - Pulative																												
40	S. auteut																									•			
4 5																													
50																													

10	
15	
20	
25	
30	
	•

Stop	(00)		: 3		338	584	13.7	1906	835	1077	-	6) 2	177	=	908	167	637	570	383	829	Ξ.	172	1 47		214	182
Start	(nc)	_	-	213		-		1589	1236	1382	_						• -	2	763	1656	1498	2		130	~	- (
ORF	2		-		-	~	-	2	_	~	-	- 7	- -	-	-	-		_	-	-	~	-	-	-	-	-
Cont ig	e.	667	999		673	674		619	. 689	68.8		969	301	709	111	51	716	721	722	1	72	727	729			736

oteins
Ē
, Del
2
10.
8 14
101
. 6103
Ď.
novel
10 1
regions
sureus - Putative coding regions of novel proteins not similar to known proteins
2
Putat
9
anted
S

Stop (nt)	780	9	7.4	452	522	918	00	7	405	12		9	2	1.0	224	260		989		: : :		6	. ~	1		61+1	7.40-
Start (nt)	11.48	282			6	Š	(99	1033	_	7	8501	1735	1790	9	-	- 51	304	-	219	1222	1774	38	714	487	1529	1748	100
	-	2	_	_	• - •	~	-	- 2		-	_	; -				-				_	; –	_		-	- 5	. ~	-
5-1			7	75	755	-	,	26	76	76	11		Œ		; -	199	93	805		810	: 3	812		66	819	819	

	_
1	0

^	\sim	

2	5	

3	0	

S. Jureus - Putative coding regions of novel proteins not similar to known proteins

3	0	

?	5	

45

50

	-			-	-	-	: -		-		· -	-		_	; - ·	_	- 1		-		-	; — ·	- 1		; :	_	; -
Stop (nt)	255	800	291	298	196	601	457	6.9	359	256	2	715	œ.	5.88	٠.	294	1020	200		563			398	544	1.88	1 290	
Start (nt)	905	9	578	594	320	491		303	51				9.79			*	199	1 7	1567	_	389	1 (4	193	852	373		
10.0		7	;			í	-	i	i		-	~	9	-	-	-		-		7	-	1	-	-	-	-	
	828	829	830	632	835	840	845	850	853	960	864	999		870	873	875	673	8.8	879			890	905	906	913	913	

5	

1	0

2	0	

2	5	

30	

3	5

~ C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		386 1	808	1 00	00*	400	∞	528	616	\$	1242	1 056	270	. ~	143		162	346	909	302	170	161		211	
art –	و ا	169	126	157	-	2	2	-	052	2	220	649	1702	. – .	-			-	069	0	_		918		~	
108F	-	~	-	-		-	-	-	-	-	:	7	-	1		-	_	-	-		-	-	-	1	7	
ō ·	915		921	927	928	929	932	934	936	937	945	945	946	. •	•	955	960	963	965	9	966		\$1.6	976	616	

5	
10	
15	m proceins
20	aureus. Futative coding regions of novel proteins not similar to known proteins
25	ovel proteins not
30	ing regions of n
35	- Putative codi
40	Sherine 5
45	

55

	•	-	-	: -		-	-	-	<u>-</u>		_	- :			- :	!	; -	;	-	i	1	:	;	į	<u>. </u>	-	: -
Stop (35)	5.7	525		3.	<u> </u>	\$:	-	-	29	7			999	• •	5	159		257	÷ .	-	3	5	405	₽	384	-
Sta	-	-	20	55	624	~	288	120	2	53		673	3.5	7.3		: =	-	704	1233	~	~	76	5	1 0	58		246
ORF 1.D	!			1 -	۱ ـ		-	-	1		~	-		t .	7	i	1	-	~	-	-	7	-	-	-	-	-
5 -	8		1 00	1004	101	1015		6101	. 0	1024		1030	103	1040	2043		104	1051	1051	063	1069			1077	1081	106	

-	
0	

1	0	

	5	

2	0

>	2	,

3	0

3	5

40	

~-	•	· - ·	•	;	· —	• —	• - ·	. – ;	•	· -	• -	· :	. –	: - ;	; -	<u>,</u> – ·	· - ·	<u>, </u>	<u>;</u> —	, — ·	<u>;</u> — ·	•	•	; —
tob ut)	7.4		•	: :		151	194	580	422	268	792	342		176	225		153	818		186		1 240	567	978
Start (nt)	7	474	•	5		203	385			~	22	0	3,60	609	446		-	_	-	¥1	427	61	108	2
GI	-	-	-	-	7	-	_	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	7	
Contro	1088	9601	1096	0011	1100	11011	1102	1107		2		1129	2.1		7	1147	1153	~	1159	1161	1	1111	1171	1183

5

1	0	

15	
----	--

2	0	

2	4	
_	_	

aurius - Putative coding regions of novel proteins not similar to known proteins

-	_
J	Э.

4	0

50	

45

;	_	- ;	_	_	-	-							1	_	4		-		_			-	-	-	-	-	; -
Stop (nt)	464	- - -	~	175	<u>.</u>	22	595	9	185	1	5,0	193	402	2		. 0		÷		256	÷	398		399	\$	3	100
Start (nt)	5.8	105		~	520	~	7	-	367		8		-	-	710	~	-	202	331	~	295	721	869	194		283	-
ORF		~		-	7	-				~	:	_	;	!		. ~		-	-	-	-	-	-	-	-	-	<u> </u> -
10	2	33	_	2	1247	1.7.2.1	8	1295	1306	1314	1316	12	1370	1,171	27	1378	35	3	3	145	5	=	1 =	15	: :	1534	1546

5	

1	0	
	~	

2	0	

25	
25	

3	o	

3	0

•	
J	

ı	1)

Stup (nt)	· - ·			-	-	_		. – ·	i 1	<u>. </u>					-	-	-		-	· - •	- :		-	. –
-	:	350	563	679	2	2	714	200	286	379	00	=	6	167	1 263	999	- 28	-	<u> </u>	1 367	- 1	16	5	3.5
v, –	905	, ~	7		_	: 2	625			~	ı r	215	52	12.	523	! _ :	564	218	<u>ا</u> ـ ا	1 732	~ (0	1 622	
<u> </u>	-	: _ :	-	~	_	-	-		~	-		~	7			-			-	-	-	_	١	<u>-</u>
7. 2.01	547	1583		602	1629	665	09/1	762		1895	193	197	ı ~	205	2150	2157		21.75	2212	2338		2322	2352	2355

į	5	
`		

	Contig	180	Start (nt)	Stop (nt)
• -	3046		367	165
•-	3049	_	553	:-
•	. 0	-		3.4
•	3052		504	1 253
• –	3065	-		1.57
• –	1070	-	1357	190
•	3075	1-	0,7	222
		-	-	285
			120	162
	1043	-		0\$2]
	3100	-	52	1 237
		=	÷	298
	8111	-	344	174
	3123	-	~	- 145
	1127	-	-	147
		-	316	169
	3142	_	388	1 203
	3144	-	1664	1 386
	3151	-	7.66	7
	3155	~	202	384
	3168		7	- -
	3205	-	1 288	145
	3282	-	-	150
	1303	- 5	239	00
	1711	~	1 213	666
	3558	-	~	148

10						
15	n proteins					
20	S. aureus - Intative couling regions of novel proteins not similar to known proteins					
25	vel proteins not	t Stop	1 185	278	314	1 253
30	g regions of nov	Contig ORF Start Stop 10 (nt)	3046 1 367 185	3049 1 553 278	3050 1 3 314	1 3052 1 504 253
35	- Putative codin		000	08	00	000 -
40	S. aureus					
4 5						

Stop (nt)	185		716	253		1 061	222	285	162	250	23.7	298	174		147	169	0			· •	176	165	1.5	000		148	401	
Start (nt)	367	553		204	~	157	40	_	320	=	52	62	7	7	-	336	388	199		202	13			239	211		36	
08. 01	-	1	7	7	-		-	-	-	-	-	-	-	_	-	-	-	_	-	~		- -	_	~	~	7	~	
Cont 19	3046	3049	1	3052	3065	3070	3075		1	3093		3103	3118	3.1	3127	3138	· ^	314	1151	3155	3168	2 :	12	3303	5	. ~ .	i Si i	
				•		-	•	•	•			. –			•													
																								•				

5	

1	0	

15

d	٠.	_	

35	

•				
	Cont 19		Start (nt)	Stop
• –		-		
•		-	757	
•		-	~	
•	3618	~	; 🖺	. 0
	3622	-	,	358
. –	5	- 2	فتنا	
• -	3642	-	9.6	. ~
• -	3649	-	781	398
• –	3651	-	1 🗪	: =
• -		-	167	i in
• –	. ~	-		402
• —	1 0	-	619	-
•	3704	-		, 0
	1 -	-		و ا
• –	9		510	ı vi
•		-		
• —	3794	-	266	135
. –	37	- 5	667	
• -	3796	7	638	375
. –		-		
• –	380	-	453	
• —	360	-	42	389
•	3815	-	798	000
•	3827	-		2
•	3842	-	781	392
• •		-	671	399
-	1855	-		7.7

_	
5	

ont lg	98 01 01	Start (nt)	5 - 1
3857	-	7	235
9	<u>-</u>	290	167
3865	-		
	-	~	£71
389	7		00
3898	- 5	1 22	
921	~	: _	342
3927	-		375
3930	-	<u>.</u>	23
3946	_	: _ :	
3951	~	•	
3965	-	¦	7 7
	-	795	ç
39A1	•		
3996	-	•	3.26
4001	_	167	296
4003	-	0.6	335
4018	;	7	259
4018	7	1.86	10.
4031	-	-	345
4043	<u>-</u>	,	7
4084	_		ž .
			-
	-		324
; 🕶	~	187	390
4073	.		
	-	-	

5								•																						
10																														
15	oteins																													
	known pr																													
20	ler to																													
	not sim																											•		
25	 eureus - Putative coding regions of novel proteins not similar to known proteins 		(nt)	1 359	368	297	306	286	139	132	230	1.	1331	415	381	206	254	256	348	356	296	174	323	334	144	304	163	319	105	186
	f novel	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	-	-	_	-	-	1 740	-	-	-		97		 	:	-	_	-	-	-	-	_	7	1 303	- :	_	_
30	0 \$110		:	_		-		-	-	;		_	-	-	<u>-</u>	-	-	-	-	_	_	-	-	~		-	-	-	-	-
	ing regi		011 01	_	. –	1017	4105	101	. – ·	1719	-	4127	-	-	4146	-	-	4224	4239	4242	-	(25)		4258		-	1	4289	- :	_
35	poo mar		<u> </u>	_	_	!	_	-	<u>:</u>	_	_	-	-	_	-	_	-	<u> </u>	!_!	_	_	_		_			-	-	_ :	_
	- Putet																													
40	***********																													
	vi																													
15																														
45																														
50																														

10	
15	
20	
25	
30	
35	;
40	

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	271		121	215	398	230	364	398	280	111	328	249	908	326	268	311	11.	399	364	148	289	151	314	Stop (nt)
50.44 50.00 50		- 🛊 -	-	 -	-	-	-	-	- ;	-		-	- [-	-	-	-	-		- ;	-	_	
		- -	<u>- i</u>	-	_	-	-	~	<u>-</u>	-	-	-	- :	-	-	:-	-	- ; -	-			-	~ ;	;
	4478		1,1	5	24	ee	7	4	4411	4406	4 03	102	- :	=		; –	ì	- !	-;-	2 2	=	9	_ ;	5

5	

1	0	

|--|

9	٥,	n	

	٠	>	¢	c	
١	4		•	,	

-	

4	0

Contig ORF Start Stop (mt) (mt)
100 Start 100
8-14-14-14-14-14-14-14-14-14-14-14-14-14-

Table 4

۲	ORF	SEQ ID NO	BLAST	Antigenic	Regions		
5			HOMOLOG	Region 1	Region 2	Region 3	Region 4
) .	168_6	5192	lipoprotein	36-45	84-103	152-161	176-185
-	238_1	5193	chrA	21-39	48-58	84-95	232-249
-	51_2	5194	OppB gene product (B. sub	20-36	70-79	100-112	121-131
1	278_3	5195	lipoprotein 1	20-29	59-73	85-97	162-171
10	276_2	5196	lipoprotein	21-33	65-74	177-186	211-220
-	45_4	5197	ProX	28-37	59-69	85-100	120-129
-	315_8	5198	hypothetical protein	45-54	88-97	182-192	243-253
į-	154_15	5199	unknown	31-40	48-58	79-88	95-104
1-	228_3	5200	unknown	25-38	40-52	64-74	80-89
15	228_6	5201	unknown	29-41	89-101	128-143	173-184
}-	50_1	5202	unknown	21-33	52-61	168-182	197-206
1	112_7	5203	iron-binding periplasmic	21-31	58-67	92-101	111-120
1-	442_1	5204	unknown	30-39	91-100	122-137	182-192
-	66_2	5205	unknown	50-59	104-116	127-136	167-182
- -	304_2	5206	Q-binding periplasmic	19-28	48-57	75-84	103-116
20	44_1	5207	hypothetical protein	27-36	86-95	129-138	192-201
į	161_4	5208	SphX	27-44	149-161	166-175	201-210
į.	46_5	5209	cmpC (permease)	21-33	61-70	83-92	100-109
!	942_1	5210	traH [Plasmid pSK41]	83-92	109-118	127-142	
}	5_4	5211	ORF (S. aureus)	12-22	87-96	111-120	151-160
25	20_4	5212	peptidoglycan hydrolase (S.	24-34	129-138	141-150	161-171
-	328_2	5213	lipoprotein (H. flu)	81-90	123-133	290-299	
1	520_2	5214	fibronectin binding protein	44-54	63-79	81-90	95-110
- 1	771_1	5215	emm1 gene product (S. pyc	30-39	65-82	96-106	112-121
ľ	999_1	5216	predicted trithorax prot. (D	7-16	120-129	157-166	
30	853_1	5217	ORF2136 (Marchantia polyr	43-52	88-97	102-111	
	287_1	5218	psaA homolog	13-22	28-44	72-82	114-124
]	288_2	5219	cell wall enzyme	14-23	89-98		
ľ	596_2	5220	penicillin binding protein 2b	40-49	59-68	<u> 76-87</u>	106-115
ľ	217_5	5221	fibronectin/fibrinogen bindii	28-37	40-49	62-71	93-111
35	217_6	5222	fibronectin/fibrinogen bp	10-19	31-40	54-62	73-92
	528_3	5223	myosin cross reactive prote	4-13	29-47	60-73	90-99
Ì	171_11		EF	20-31	91-110	<u> </u>	
	63_4	5225	penicillin binding protein 2b	12-21	59-68	95-104	
ľ	353_2	5226		46-55	62-71		<u> </u>
	743_1	5227	29 kDa protein in fimA regi-	23-32	68-79	94-103	175-184
40	342_4	5228	Twitching motility	10-19	48-60	83-92	111-121
	69_3	5229	arabinogalactan protein	97-106	132-141	158-167	180-189
	70_6	5230	nodulin	36-45	48-57	137-160	179-188
1	129_2	5231	glycerol diester phosphodie	8-17_	41-50	. 55-74	97-106
į	58_5	5232	PBP (S. aureus)	26-35	70-79	117-126	152-161
45	188_3	5233	MHC class II analog (S. aure		94-103	115-124	136-145
	236_6	5234	histidine kinase domain (Dic	24-33	52-67	81-94	106-121
İ	310_8	5235	clumping factor (S. aureus)	59-71	77-86	93-102	118-127
ļ	601_1	5236	novel antigen/ORF2 (S. aui	45-54	91-104	108-117	186-195
l	544_3	5237	ORF YJR151c (S. cerevisae)	76-90	101-111	131-140	154-164
50	662_1	5238	MHC class II analog (S. aure	22-32	71-80	89-98	114-122
l	87_7	5239	5' nucleotidase precursor ('	29-45	62-71	105-114	125-137
	120_1	5240	B65G gene product (B. sub	102-111			
l l	·						

Table 4

ſ	ORF		Antigenic	Regions	(cont)		
5		Region 5	Region 6	Region 7	Region 8	Region 9	Region 10
	168_6	244-272	303-315				
	238_1	260-269	291-301	308-317	· · · · · · · · · · · · · · · · · · ·		
	51_2	140-152	188-208	211-220	256-266	273-283	
10	278_3	198-209					
,,,	276_2	255-268			1		
	45_4	177-199	221-230	234-243	268-279	284-293	304-313
	316_8				<u>i</u>		
į	154_15	148-157	177-187_	202-211			
15	228_3	101-119	139-154	166-181			
	228_6		i 				<u></u>
	50_1						<u>:</u>
	112_7	136-149	197-211	218-229	253-273		<u> </u>
	442_1	199-210	247-257	264-277	287-309		·
20	66_2						
	304_2	178-187	250-259				
	44_1						
	161_4	121 141	162 176	206 215	242 252	264 272	285-294
	46_5	131-141	162-176	206-215	243-252	264-273	203-234
25	942_1	100 205	230-239	246-264	301-318	340-354	378-387
	5_4	189-205 202-212	217-234	260-275	314-336	366-373	380-391
	20_4 328_2	202-212	217-234		314-330	300-37 3	300 331
	520_2 520_2	<u> </u>					
30	771 1	145-154		-	 		
30	999_1	173137					!
	853_1				 		;
	287_1	154-164					
	288_2					i	
35	596_2	121-130					
	217_5	244-253	259-268	288-297	302-311		
	217_6	144-158	174-183	188-197	207-216	226-242	:
	528_3				<u> </u>	;	
	171_11			: 	ļ		<u> </u>
40	63_4	!			<u> </u>		
	353_2	i 					<u>.</u>
	743_1	197-207					
	342_4				<u> </u>	-	
	69_3	195-211				250 271	300 414
45	70_6	206-215	263-272	291-301	331-340	358-371	390-414
	129_2	117-127	141-157	168-183	202-211	222-231	261-270
	58_5	184-203	260-269	275-299	330-344	372-381	424-433
	188_3			107.100	244.261	260 270	200 217
50	236_6	138-147	163-172	187-198	244-261	268-278 204-213	216-227
	310_8	131-140	144-153	177-186	190-199	204-213	- 210-221
	601_1	208-218	104 102	224 225	274 207	227 226	252 261
	544_3	170-179	184-193	224-235	274-287	327-336	352-361
	662_1						
55	87_7	···			 		
	120_1				1		

Table 4

	ORF		Antigenic	Regions	(cont)		
5		Region 11	Region 12	Region 13	Region 14	Region 15	Region 16
1	168_6	l		i			
İ	238_1			ii			
1	51_2						
	278_3						
10	276_2						
İ	45_4	ŀ			:		
İ	316_8						
İ	154_15	i				1	
	228_3						1
15	228_6	<u> </u>			1		
	50_1	<u>-</u>			1	ī	1
İ	112_7		· · · · · · · · · · · · · · · · · ·		-	÷ ·	
	442_1	<u>!</u>					.
	66_2				 	-	
20	304_2	 	·		+	-	
!					- 		· -
İ	44_1	 		<u> </u>	 		
	161_4	706 716	. <u></u>	<u> </u>	- 		
	46_5	306-315	·· 			-;	
25	942_1					1	
l	5_4	393-407	416-426	456-465		<u>'</u>	
ļ	20_4	396-405	410-419	461-481		<u> </u>	
	328_2						
į.	520_2	<u> </u>				<u> </u>	
30	771_1					·	
ŀ	999_1						
l	853_1				ļ		
	287_1				1		i
ĺ	288_2	1			1	:	
35	596_2	i					ļ
	217_5						
ŀ		l			1		!
	528_3						
	171_11			l			
40	63_4				1		
ľ	353_2						
ľ	743-1	1			-	-	
ŀ	342_4			-			
	69_3	<u> </u>		 			
45		453-471	506-515	 			
1	70_6		506-515	1			
	129_2	296-315		!	-i		
1	58_5	,		ł	·		
	188_3	250 277	410 422	420 420	442 457	A67 A76	190 403
50	236_6	358-377	410-423	428-439	442-457	467-476	480-493
ļ	310_8	238-251	256-275	281-290	296-310	314-333	338-347
1	601_1	!		·	<u> </u>		
ļ	544_3	<u></u>		<u> </u>	j		:
	662_1				<u></u>		
55	87_7			:			
1	120_1				· · · · · · · · · · · · · · · · · · ·		

Table 4

ſ	ORF		Antigenic	Regions	(cont)			
5		Region 17	Region 18	Region 19	Region 20	Region 21	Region 2	2
	168_6	1						
	238_1							
	51_2					· · · · · · · · · · · · · · · · · · ·		
	278_3	:			·			
10	276_2			:		1	:	
	45_4						: !	
į	316_8							_
	154_15			i	:		1	
15	228_3				:		<u> </u>	
,3	228_6						<u> </u>	_
	50_1						1	
	112_7	1			:			
	442_1	1						
20	66_2	1			1			
20	304_2							
l	44_1				T		1	
	161_4						Ì	
	46_5	1]		İ	ļ	
25	942_1				:			
	5_4	T		!			1	
Ì	20_4	i				1	1	
1	328_2				1	!		
	520_2	1				1		
30	771_1	ī						
	999_1			i		· · · · · · · · · · · · · · · · · · ·	·, · · · · · · · · · · · · · · · · · ·	
ļ	853_1					1		
	287_1					1		
	288_2	1						
35	596_2	i		İ		1		
	217_5	†		1		1		
	217_6	·		ļ				
	528_3			1				
İ	171_11	:		1	1	į.		
40	63_4	1						
1	353_2]				i i		
	743_1					i		
	342_4	1						
	69_3			Ī				
45	70_6							
	129_2							
	58_5							
	188_3							
1	236_6			F				
50	310_8	357-366	370-379	429-438	443-452	478-487	\$\$1-560	
}	601_1		-	:	·- ·- · · · · · · · · · · · · · · · · ·			
1	544_3	. <u> </u>						
ĺ	662_1							
	87_7		·					
55	120_1		·	•				
:	120_1							

Table 4

5	ORF	:	Antigenic	Regions	(cont)		
3		Region 23	Region 24	Region 25	Region 26	Region 27	Region 28
	168_6	1			;		
	238_1						
	51_2				•		
10	278_3						
, 0					,		
	45_4	1					
	316_8	:			1		
		1					!
15	228_3	:					
,,,	228_6	ī				1	
		1				1	
		1				1	
	442_1		,			!	- 1
20	66_2	 					
20	304_2	!]	
		1					i -
	161_4			· · · · · · · · · · · · · · · · · ·		1	-1
	46_5				!	-	
25	942_1	1			1		i
23	5_1				İ		
	20_4	!				ī	1
	328_2	Ī	:			1	
	520_2	<u> </u>				i	
30	771_1	i					
30		1			Ī		
	853_1	1					i — i — i
	287_1	1					
	288_2		· · · · · · · · · · · · · · · · · · ·				
35	596_2						1
	217_5	1			1		· · · · · · · · · · · · · · · · · · ·
	217_6				:		!
	528_3	:			i		
	171_11						
40		:	i			1	
	353_2			-		†	
	743_1						
	342_4						
	69_3						
45	70_6	·					
	129_2						
	58_5						
	188_3						
	236_6						1.
50	310_8	622-632	670-685	708-718	823-836	858-867	877-886
	601_1						
	544_3			· 			
	662_1			· · · · · · · · · · · · · · · · · · ·			
	87_7						
55	120_1						

Table 4

_	ORF	Antigenic	Regions	(cont)
5		Region 29	Region 30	
į.	168_6_			·
	238_1			1
	51_2			·
10	278_3			
	276_2	· 		
,	45_4			·
	316_8			
	154_15	· · · · · · · · · · · · · · · · · · ·		
15	228_3			į
	228_6			<u> </u>
	50_1			<u></u>
	112_7	·		·
	442_1			<u>!</u>
20	66_2			<u> </u>
	304_2			·
:	44_1			
	161_4		<u> </u>	
	46_5			·
25	942_1			
	5_4			
	20_4		 	·
	328_2			
	520_2			
30	<u> 771_1 :</u>			
	999_1			
	853_1			
<u> </u>	287_1			
	288_2		· - ·	·
35	<u> 596_2</u>			
	217_5			!
	217_6			. <u> -</u>
	528_3		!	···
	171_11			!
40	63_4		<u> </u>	·
ļ	353_2		! 	ļ
	743_1			<u> </u>
	342_4		<u> </u>	1
45	69_3			
**	70_6		·	<u> </u>
į	129_2			· • · · · · · · · · · · · · · · · · · ·
	58_5		·	
	188_3			·
50	236_6			<u> </u>
Į	310_8	· · · · · · · · · · · · · · · · · · ·		:
	601_1			
	544_3	·		
l	662_1			
55	877			
Į	120_1			

Lable 4

_	ORF	BLAST	Antigenic	Regions	,	
5		HOMOLOG	Region 1	Region 2	Region 3	Region 4
	46_1 5241	aldehyde dehydrogenase	8-17	36-52	83-96	112-121
	63_4 5242	glycerol ester hydrolase (P.	9 26	57-73	93-107	123-133
	174_6 524	43 ketopantoate hydroxymeth	71-80	203-212	242-254	265-274
	206_16 5244	ornithine acetyltransferase	1-10	34-43	54-63	194-210
0	267_1 5245	NaH-antiporter protein (E. I	120-129	332-347	398-408	
	322_1 5246	acriflavin resistance protein	58-75	153-164	203-231	264-284
	415_2 5247	transport ATP-binding prote	108-126	218-227	298-308	315-334
	214_3 5248	2-nitropropane dioxygenase	123-136	216-233	283-292	297-306
	587_3 5249	clumping factor	5-14	43-54	59-68	76-95
5	685_1 5250	signal peptidase	59-68	72-81	86-95	99-108
	54_3 5251	fibronectin binding protein !	23-32	37-46	50-5 9	89-98
	54_4 5252	fibronectin binding protein I	43-52	66-75	95-104	147-156
	54_5 5253	fibronectin binding protein I	49-60	81-90		
	54_6 5254	fibronectin binding protein I	55-71	82-97	139-158	175-186
9	328 1 5255	lipoprotein (H. flu)	11-20	61-70	96-105	,

Table 4

9	>	٤	Ξ	
_		-	,	

ORF		Antigenic	Regions	(cont)		
	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10
46_1	215-242	333-352	376-385	416-432	471-487	
63_4	145-154	191-202	212-223	245-265	274-283	291-300
174_6						
206_16	239-259	275-284			<u> </u>	·
267_1				<u> </u>	<u> </u>	1
322_1	298-319	350-359		.l	<u></u>	
415_2	344-353	371-380	395-404	456-465	486-495	518-527
214_3	318-337	365-375		<u> </u>		<u> </u>
587_3	106-115	142-151	156-166	173-182	186-198	204-213
685_1	113-122	130-145				ļ
54_3	128-138	185-194	217-226	251-260	1268-277	295-305
54_4	175-188	191-200	203-212	220-229		
54_5						İ
54_6	220-230	287-304	317-326	344-353	364-373	378-387
328_1	Ī		l	1		1

Table 4

-	ORF		Antigenic	Regions	(cont)		
		Region 11	Region 12	Region 13	Region 14	Region 15	Region 17
	46_1						
	63_4	306-315	319-328	366-376	395-420	453-462	467-476
	174_6	!					
	206_16				i	<u></u>	
	267_1		i			- -	<u> </u>
	322_1	!			Ĭ	! ·~.	
	415_2	539-555				1	
	214_3				<u> </u>		<u>i</u>
i	587_3	217-226	278-287	318-327	332-342	351-360	377-386
	685_1						.!
ł	54_3	316-325	329-345	355-372	387-396	416-425	438-448
	54_4					·	
	54_5					L	1
	54_6	396-407_	427-436	514-531	541-550	569-578	612-622
	328_1	1				1	1

Table 4

ORF	1	Antigenic	Regions	(cont)		
	Region 18	Region 19	Region 20	Region 21	Region 22	Region 23
46_1						
63_4	485-500	513-525		<u> </u>		
174_6				<u> </u>		
206_16			:	<u> </u>		
267_1		:	L	1		
322_1	(
415_2				i		
214_3			!	.L	<u> </u>	
587_3	396-405	1426-442	459-470	485-494	505-514	531-562
685_1		İ				·
54_3	455-462	472-491	517-536			i
54_4			ļ			
54_5		·	L			
54_6	639-648	673-681	703-715	723-732	749-760	772-788
328_1			1	<u> </u>		i

Table 4

_	ORF		Antigenic	Regions	(cont)		
5		Region 24	Region 25	Region 26	Region 27	Region 28	Region 29
	46_1						
	63_4					:	.,
	174_6						
10	206_16						
10	267_1		:	1	·	.1	:
	322_1				ļ	. <u>.</u>	. : .
	415_2			1			
	214_3			:		<u> </u>	
15	587_3_	567-578	584-601	607-840	844-854	858-870	877-886
, 3	685_1		1	İ			
	54_3			: 			1
	54_4			i			
	54_5			i !			.i
20	54_6	793-802	811-826	834-848	866-876	893-903	907-918
	328_1					1	<u>!</u>

Table 4

>	į	5		
١	1	1		

ORF	Antigenic	Regions	(cont)
	Region 30	Region 31	
46_1			
63_4			······································
174_6			
206_16		· · · · · · · · · · · · · · · · · · ·	
267_1		· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
322_1			
415_2			
214_3			
587_3	889-911	927-936	
685_1			
54_3			
54_4			1
54_5			
54 6	925-944	951-997	

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	 (i) APPLICANT: (A) NAME: Human Genome Sciences, Inc. (B) STREET: 9410 Key West Avenue (C) CITY: Rockville (D) STATE: Maryland (E) COUNTRY: US (F) POSTAL CODE: 20850
20	(ii) TITLE OF INVENTION: Staphylococcus aureus Poly- nucleotides and Sequences
	(iii) NUMBER OF SEQUENCES: 5255
25	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4 Mb storage (B) COMPUTER: HP Vectra 486/33 (C) OPERATING SYSTEM: MSDOS version 6.2 (D) SOFTWARE: ASCII Text
30	<pre>(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE:</pre>
35	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 60/009,861 (B) FILING DATE: 05-JAN-1996</pre>
40	
	(2) INFORMATION FOR SEQ ID NO:1:
45	
50	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5895 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

10	(X1)	SEQUENCE DES	SCRIPTION:	SEQ ID NO:	1:		
10	TCCATTATGA	AGTCACAAGT	ACTATAAGCT	GCGATGTTAC	CAATGTTTTT	TAAAATCCCA	60
	GTAATAAAAT	СААААААТАА	GTTAAATAAT	GTATTCATTT	TAAGTCCTCC	TTAATAAAGa	120
15	aaataGGTAA	TAATGTAATA	GCTTCTATTA	TGATGCCTAA	TTGAATGAAT	TGGGCAAATG	180
	GCTCTTTGAT	GATAAGTGTG	ATAATGAAAA	GGGTTAAACT	AACAATAATC	GCATAATATT	240
	TTTTTCGTTT	AATAAGTCGC	ACAGGAATGG	GCTTCTTTTT	AGTTGCTGCA	GGAGCATATA	300
20	CTGAGATTAC	ACCTAAAGAA	ATAACTGTTA	AAATAATCAT	AATTAAAAAG	TTAATATGAA	360
	AATTTACTAT	TACTAAAGGT	AAAAGTATAA	ATAGTATAAT	ACTTTCTACA	TAACACCAAA	420
	AAGAAGAAGG	TGCATGTGCa	CCATGTGCAT	GECTTCTTAT	TAAATAAAAT	GTTAAATTCG	480
25	TAATTAACGT	AAACAGAAAA	ATGTTTAAAA	TATAGGCAAT	AGTATACATA	ACAATTAATT	540
	TACCTATATT	TTTAGCTAAG	ACCTGCATCC	CTAATCGTAC	TTGCAAAAAT	TGAATATGAT	600
30	CTAAGTTATT	TCTCTTTTGA	AGATACGTGG	CAAACTGGTC	AATTTTATTA	TCAAAATAAT	660
	TCAATTTTAC	ACCACTCTCC	TCACTGTCAT	TATACGATTT	AGTACAATCT	TTTATCATTA	720
	TATTGCCTAA	CTGTAGGAAA	TAAATACTTA	ACTGTTAAAT	GTAATTTGTA	TTTAATATTT	780
35	TAACATAAAA	AAATTTACAG	TTAAGAATAA	AAAACGACTA	GTTAAGAAAA	ATTGGAAAAT	840
	AAATGCTTTT	AGCATGTTTT	AATATAACTA	GATCACAGAG	ATGTGATGGA	AAATAGTTGA	900
	TGAGTTGTTT	AATTTTAAGA	ATTTTTATCT	TAATTAAGGA	AGGAGTGATT	TCAATGGCAC	960
40	AAGATATCAT	TTCAACAATC	GGTGACTTAG	TAAAATGGAT	TATCGACACA	GTGAACAAAT	1020
	TCACTAAAAA	ATAAGATGAA	TAATTAATTA	CTTTCATTGT	AAATTTGTTA	TCTTCGTATA	1080
45	GTACTAAAAG	TATGAGTTAT	TAAGCCATCC	CAACTTAATA	ACCATGTAAA	ATTAGCAAGT	1140
	GAGTAACATT	TGCTAGTAGA	GTTAGTTTCC	TTGGACTCAG	TGCTATGTAT	TTTTCTTAAT	1200
	TATCATTACA	GATAATTATT	TCTAGCATGT	AAGCTATCGT	AAACAACATC	GATTTATCAT	1260
50	TATTTGATAA	ATAAAATTT	TTTCATAATT	AATAACATCC	CCAAAAATAG	ATTGAAAAAA	1320
	TAACTGTAAA	ACATTCCCTT	AATAATAAGT	ATGGTCGTGA	GCCCTCCCA	AGCTCGCGGC	1380
	CTTTTTTGTA	ATGAAGAAGG	GATGAGTTAA	TCATCATTAT	GAGACCCGCC	GTTAAAATAT	1440
cc							

	TCATTTGCAA	AGGGCGAAAT	GGGTTCTTAC	TGAGTTATCT	ATTATAAAAA	AATAAACATA	1560
	GACTTATGAA	AAATCTCTCA	TAAATCTATG	TTTAGTCATG	aCATGTGTTA	AATATTATTT	1620
5	CGGGCGCTTC	TTATTTATAC	AAATCTAATT	TAATACTTTT	AAATACAGGT	ATATTTTCgC	1680
	GTTGCTGTTC	TACTTCATTT	AAGTTTAAAT	CTACAGTCAA	AATATCTGCG	GATTCATTTA	1740
10	ATTCTCCAAC	TAAATCTCCA	TTTGGGTTTA	TAACTATCGA	ATGACCAGCA	TATTCTGTGT	1800
, 0	TACCATCGAA	TCCAGTGCTA	TTAGTTCCAA	TGACAAACAT	ATTATTTTCA	ATTGCACGTG	1860
	CCTTTAGTAA	TGAATGCCAA	TGTTGAAGAC	GTGACATAGG	CCATTGCGCC	ACATAAAATG	1920
15	CAATTTTAGC	ACCACTACGA	GCAGGATATC	TTAATAATTC	TGGAAAACGT	AAATCATAAC	1980
	AGATAAGTTG	GGTCACATAA	GTACCGTCAG	ACAATTGAAA	GGGTTCAGCT	ACGTATTCGC	2040
	CAGCGGTTAA	AAATTCATGC	TCTCTTAACA	TAGGAACTAA	ATGAACTTTG	TCGTATTCaT	2100
20	TAATCAGCTG	GCCACTTTTA	TTCACACTAA	AAGCTGTATT	AAATATTTGA	TTGTTTCTAA	2160
	TGTTAGAAAC	TGACCCAGCT	ACGATATCGA	CTTTATATTT	TTCAGCTAAA	TGTTTAATAA	2220
0.5	ATGAAAAACT	TTGTCCTAGA	TTATTATCTG	CTTTTTCATT	TAAATGCTCT	AAATCATAGC	2280
25	CATTATTCCA	CATTTCAGGT	AAAACGACTA	CATCTACTTC	AGCATTCATA	TTTTTTCGA	2340
	ACCATTGCGT	TATTTGAGTT	TCATTTTTAG	AACTATCTCC	AAAAACAATC	GGTAATTGAT	2400
<i>30</i>	AAATTTGGAC	TTTCATAACA	TCACATCCTT	GATAGATCTT	ATATATAACT	TACTAAAAGT	2460
	TATGTTGAAA	CGCAAAAAAC	GAGCACAAGA	CATAAAATCA	AAGTCCTAGG	CTCTACAAAG	2520
	TTATATTGAC	AGTAGTTGAT	GGGGCCCCAA	CATAGAGAAA	TTGGAACACC	AATTTCTACA	2580
35	GACAATGCAA	GTTGGGGTGG	GCTCTAACAT	AAAGAAATAC	TTTTTCTTTA	GAAATTAGTA	2640
	TTTCTTATAC	ATGAGTTTTA	CTCATGTATT	CCTATTCTTA	AGTGCACATT	AGCAGCGGCT	270 0
	AATGTGTAAG	AACTACTACA	TAATGAATAA	CTAATGATTC	TTTATCATTT	CTGTCCCATT	2760
40	CCTAACAATA	TATTGATTAT	TTTTTTTTTA	CGAAACGATC	TTCCACTGGA	TTAAATGTTT	2820
	TTTCGCCAGC	AGCTTCACGA	ATATCACCAA	ATGGCATTTG	AGCAATAAGT	TTCCAACTTT	2880
4 5	TAGGAATATT	AAATTCATTT	GAAGTCATCT	CATCAACAAG	TGGATTATAG	TGTTGTAATG	2940
	AAGCACCTAT	GCCTTTAGTA	GCTAATGCAG	TCCAAATTGC	AAATTGATGC	ATGGCATTTG	3000
	TTTGAGTTGA	CCATATTGCA	AAATTATCAT	AGTAGTTTGG	CATTIGTTCT	TGTAAACCAC	3060
50	TTACAACATC	TTGATCTTCA	TAAAACAAAA	TTGTACCGTA	TGAATGTTTG	AAGTTATCAA	3120
	TTTTTTGTTC	AGTTGGCTCG	AAATCACGAT	TCTCTCCCAT	GACTTCTTTT	AAAATTGCTT	3180
	TTGTGTTATC	ССААААТТТА	TTATTGTTGT	CATTTAACAA	GAGAACAATT	CTAGTTGATT	3240
55							

	CATCGCTAAT	TGATATCGAA	TCTTTCAAAT	TATATATIGA	ACGTCTTTCT	TCCATTGCAT	3360
	TGTCAAAAGT	CATTGCTTTT	TTATCTTTTT	TAAATAAGCC	CATAATTATT	GCTCCTTCTT	3420
5	TAGTAAAGAA	TACTTAATAG	ACTAAGTATA	AAATTTATAC	TCGTACTTGT	AAAGCAATAT	3480
	TTACGAAAAT	TTCAAGAATA	TTAATATTCA	TTTTCAAATT	ССАААТАТАА	ATGCATTTTC	3540
10	AACGCATATT	TATTATACTT	AGATTAATAC	TTACATGAAA	AAGGGAGGTG	TCTCGTGAAA	3500
70	TGTCATATCA	TTGGTTTAAG	AAAATGTTAC	TTTCAACAAG	TATTTTAATT	TTAAGTAGTA	3660
	GTAGTTTAGG	GCTTGCAACG	CACACAGTTG	AAGCAAAGGA	TAACTTAAAT	GGAGAAAAAC	3720
15	CAACTACTAA	TTTGAATCAT	AATATAACTT	CACCATCAGT	AAATAGTGAA	ATGAATAATA	3780
	ATGAGACTGG	GACACCTCAC	GAATCAAATC	AAACGGGTAA	TGAAGGAACA	GGTTCGAATA	3840
	GTCGTGATGC	TAATCCTGAT	TCGAATAATG	TGAAGCCAGA	CTCAAACAAC	CAAAACCCAA	3900
20	GTACAGATTC	AAAACCAGAC	CCAAATAACC	AAAACTCAAG	TCCGAATCCT	AAACCAGATC	3960
	CAGATAACCC	GAAACCAAAA	CCGGATCCAA	AACCAGACCC	AGATAAACCA	AAGCCAAATC	4020
25	CGGATCCAAA	ACCAGATCCA	GATAACCCGA	AACCAAATCC	AGATCCAAAA	CCAGACCCAG	4080
25	ATAAACCAAA	GCCAAATCCG	GATCCAAAAC	CAGATCCAGA	TAAACCAAAG	CCAAATCCGA	4140
	ATCCAAAACC	AGACCCTAAT	AAGCCAAATC	CTAACCCGTC	ACCAGATCCC	GATCAACCTG	4200
30	GGGATTCCAA	TCATTCTGGT	GGCTCGAAAA	ATGGGGGGAC	ATGGAACCCA	AATGCTTCAG	4260
	ATGGATCTAA	TCAAGGTCAA	TGGCAACCAA	ATGGGAATCA	AGGAAACTCA	CAAAATCCTA	4320
	CTGGTAATGA	TTTTGTATCC	CAACGATTTT	TAGCCTTGGC	AAATGGGGCT	TACAAGTATA	4380
35	ATCCGTATAT	TTTAAATCAA	ATTAATAAGT	TGGGCAAAGA	TTATGGAGAA	GTTACTGATG	4440
	AAGACATTTA	TAATATTATT	CGAAAACAAa	ATTTCAGCGG	AAATGCATAT	TTAAATGGAT	4500
	TACAÃCAGCA	ATCGAATTAC	TTTAGATTCC	aATATTTCAA	TCCATTGAAA	TCAGAAAGGT	4560
40	ACTATCGTAA	TTTAGATGAA	CAAGTACTCG	CATTAATTAC	TGGTGAAATT	GGATCAATGC	4620
	CAGATTTGAA	AAAGCCCGAA	GATAAGCCGG	ATTCAAAACA	ACGCTCATTT	GAACCGCATG	4680
45	AAAAAGACGA	TTTTACAGTA	GTTAAAAAAC	AAGAAGATAA	TAAGAAAAGT	GCGTCAACTG	4740
	CATATAGTAA	AAGTTGGCTA	GCAATTGTAT	GTTCTATGAT	GGTGGTATTT	TCAATCATGC	4800
	TATTCTTATT	TGTAAAGCGA	AATAAAAAGA	ААААТАААА	CGAATCACAG	CGACGATAAT	4860
50	CCGTGTGTGA	TTCGTTTTTT	TTATTATGGA	ATAAAAATGT	GATATATAAA	ATTCGCTTGT	4920
	TCCGTGGCTT	TTTTCAAAGC	CTCAGGATTA	AGTAATTGGA	ATATAACGAC	AAATCCGTTT	4980
	TGTAACATAT	GGATAATAAT	TGGAACAGCA	AGCCGTTTTG	TCCAAACATA	TGCTAATGAA	5040
55							

AATATTAATG	AACTTACTGT	TGTAGCAATA	ATAAATGCCA	CGATACGATT	ACCTTTAATC	5160
GCATTAAATA	ATTCTCCAAA	GATTACTTTT	CTGAATACAT	ATTCTTCTAA	TAAAGGACCA	5220
ATAATAGATA	CAAAGAAGAT	AAATATAGGT	ATTTTTCGAG	CAATAATAAT	TAGCTTTTCT	5280
GTATTAGGAC	TTACTTGTTG	TCCACCATAA	ATTTGCGTTA	ATACAATGCT	CACTACCATT	5340
TGATAAATCA	TTACCAATGC	AAATCCAAGC	AATGCCCATG	GAATGATATA	TTTTTTAGGT	5400
TCTTTAACTT	СТААТТСТАА	TTTTGTTGGA	TTTTTAATTT	TTAAATTAAT	TAAAATAATC	5460
GTCGTGGCGG	CGATTAAAAA	TAGAACAAGT	TGTATGTAAA	TGACTGCTTT	AGTCAGTTCT	5520
ATGCCACTAT	ATTGTACAAA	TGGTAATTTT	TTTACAATGA	GAAGCGGTAA	AAATTGAGAC	5580
AATATATAAA	TAATAACAGT	TAGCAATGAT	GCCCATAATC	tTGTCATAAT	TTTCCTCCAA	5640
ATATTTGTTT	ATAATTTATT	TTATCGTAAA	TAACTTGAAG	TTACAAAACT	TAATTAAAAG	5700
GTTATGACTT	GAAATTTTGA	CCAAATTTGA	TTATTATAAA	TGTATGTTAG	CACTCTTTAA	5760
TGTTAAGTGC	TAAACTTTAG	GTTTTTTAAG	GAGGAACAAT	CATGCTAAAA	CCAATTGGAA	5820
ATCGTGTGAT	TATTGAGAAA	AAAGAACAAG	AACAAACAAC	TAAAAGTGGn	ATTGTTTAAC	5880
TGATAGTGCT	AAAGA					5895
	GCATTAAATA ATAATAGATA GTATTAGGAC TGATAAATCA TCTTTAACTT GTCGTGGCGG ATGCCACTAT AATATATAAA ATATTTGTTT GTTATGACTT TGTTAAGTGC ATCGTGTGGC	GCATTAAATA ATTCTCCAAA ATAATAGATA CAAAGAAGAT GTATTAGGAC TTACTTGTTG TGATAAATCA TTACCAATGC TCTTTAACTT CTAATTCTAA GTCGTGGCGG CGATTAAAAA ATGCCACTAT ATTGTACAAA AATATATAAA TAATAACAGT ATATTTGTTT ATAATTTATT GTTATGACTT GAAATTTTGA	GCATTAAATA ATTCTCCAAA GATTACTTTT ATAATAGATA CAAAGAAGAT AAATATAGGT GTATTAGGAC TTACTTGTTG TCCACCATAA TGATAAATCA TTACCAATGC AAATCCAAGC TCTTTAACTT CTAATTCTAA TTTTGTTGGA GTCGTGGCGG CGATTAAAAA TAGAACAAGT ATGCCACTAT ATTGTACAAA TGGTAATTTT AATATATAAA TAATAACAGT TAGCAATGAT ATATTTGTTT ATAATTTATT TTATCGTAAA GTTATGACTT GAAATTTTGA CCAAATTTGA TGTTAAGTGC TAAACTTTAG GTTTTTAAG ATCGTGTGAT TATTGAGAAA AAAGAACAAG	GCATTAAATA ATTCTCCAAA GATTACTTTT CTGAATACAT ATAATAGATA CAAAGAAGAT AAATATAGGT ATTTTTCGAG GTATTAGGAC TTACTTGTTG TCCACCATAA ATTTGCGTTA TGATAAATCA TTACCAATGC AAATCCAAGC AATGCCCATG TCTTTAACTT CTAATTCTAA TTTTGTTGGA TTTTTAATTT GTCGTGGCGG CGATTAAAAA TAGAACAAGT TGTATGTAAA ATGCCACTAT ATTGTACAAA TGGTAATTTT TTTACAATGA AATATATAAA TAATAACAGT TAGCAATGAT GCCCATAATC ATATTTGTTT ATAATTTATT TTATCGTAAA TAACTTGAAG GTTATGACTT GAAATTTTGA CCAAATTTGA TTATTATAAA TGTTAAGTGC TAAACTTTAG GTTTTTTAAG GAGGAACAAT ATCGTGTGAT TATTGAGAAA AAAGAACAAG AACAAACAAC	GCATTAAATA ATTCTCCAAA GATTACTTT CTGAATACAT ATTCTTCTAA ATAATAGATA CAAAGAAGAT AAATATAGGT ATTTTTCGAG CAATAATAAT GTATTAGGAC TTACTTGTTG TCCACCATAA ATTGCGTTA ATACAATGCT TGATAAATCA TTACCAATGC AAATCCAAGC AATGCCCATG GAATGATATA TCTTTAACTT CTAATTCTAA TTTTGTTGGA TTTTTAATTT TTAAATTAAT GTCGTGGCGG CGATTAAAAA TAGAACAAGT TGTATGTAAA TGACTGCTTT ATGCCACTAT ATTGTACAAA TGGTAATTTT TTTACAATGA GAAGCGGTAA AATATATAAA TAATAACAGT TAGCAATGAT GCCCATAATC LTGTCATAAT ATATTTGTTT ATAATTTATT TTATCGTAAA TAACTTGAAG TTACAAAACT GTTATGACTT GAAATTTTGA CCAAATTTGA TTATTATAAA TGTATGTTAG TGTTAAGTGC TAAACTTTAG GTTTTTTAAG GAGGAACAAT CATGCTAAAA ATCGTTGTGAT TATTGAGAAA AAAGAACAAG AACAAACAAC TAAAAGTGGR	AATATTAATG AACTTACTGT TGTAGCAATA ATAAATGCCA CGATACGATT ACCTTTAATC GCATTAAATA ATTCTCCAAA GATTACTTT CTGAATACAT ATTCTTCTAA TAAAGGACCA ATAATAGATA CAAAGAAGAT AAATATAGGT ATTTTCGAG CAATAATAAT TAGCTTTTCT GTATTAGGAC TTACTTGTTG TCCACCATAA ATTTGCGTTA ATACAATGCT CACTACCATT TGATAAATCA TTACCAATGC AAATCCAAGC AATGCCCATG GAATGATATA TTTTTTAGGT TCTTTAACTT CTAATTCTAA TTTTGTTGGA TTTTTAATTT TTAAATTAAT TAAAATAATC GTCGTGGCGG CGATTAAAAA TAGAACAAGT TGTATGTAAA TGACTGCTTT AGTCAGTTCT ATGCCACTAT ATTGTACAAA TGGTAATTTT TTTACAATGA GAAGCGGTAA AAATTGAGAC AATATATAAA TAATAACAGT TAGCAATGAT GCCCATAATC LTGTCATAAT TTTCCTCCAA ATATTTGTTT ATAATTTATT TTATCGTAAA TAACCTTGAAG TTACAAAACT TAATTAAAAG GTTATGACTT GAAATTTTGA CCAAATTTGA TTATTATAAA TGTATGTTAG CACTCTTTAA TGTTAAGTGC TAAACTTTAG GTTTTTTAAG GAGGAACAAT CATGCTAAAA CCAATTGGAA ATCGTGTGAT TATTGAGAAA AAAGAACAAG AACAAACAAC TAAAAGTGGA ATTGTTTAAC TGATAGTGCT AAAGA

(2) INFORMATION FOR SEQ ID NO: 2:

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6796 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35

40

5

10

15

20

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

TTTGAAAAAA CAAGGTACGA TTGGTTTAAT AACATATATG AGAACCGATT CTACACGTAT 60 TTCaGATACT GCCAAAGTTG AAGCAAAACA GTATATAACT GATAAATACG GTGAATCTTA 120 CACTTCTAAA CGTAAAGCAT CAGGGAAACA AGGTGACCAA GATGCCCATG AGGCTATTAG 180 ACCTTCAAGT ACTATGCGTA CGCCAGATGA TATGAAGTCA TTTTTGACGA AAGACCAATA 240 CCGATTATAC AAATTAATTT GGGAACGATT TGTTGCTAGT CAAATGGCTC CAGCAATACT 300 TGATACAGTC TCATTAGACA TAACACAAGG TGACATTAAA TTTAGAGCGA ATGGTCAAAC 360 AATCAAGTTT AAAGGATTTA TGACACTTTA TGTAGAAACT AAAGATGATA GTGATAGCGA 420 AAAGGAAAAT AAACTGCCTA AATTAGAGCA AGGTGATAAA GTCACAGCAA CTCAAATTGA 480 ACCAGCTCAA CACTATACAC AACCACCTCC AAGATATACT GAGGCGAGAT TAGTAAAAAC 540

	AAAGCGTAAC	TATGTCAAAT	TAGAAAGTAA	GCGTTTTGTT	CCTACTGAGT	TGGGAGAAAT	660
_	AGTTCATGAA	CAAGTGAAAG	AATACTTCCC	AGAGATTATT	GATGTGGAAT	TCACAGTGAA	720
5	TATGGAAACG	TTACTTGATA	AGATTGCAGA	AGGCGACATT	ACATGGAGGA	AAGTAATCGA	780
	CGGTTTCTTT	AGTAGCTTTA	AACAAGATGT	TGAACGTGCT	GAAGAAGAGA	TGGAAAAGAT	840
10	TGAAATCAAA	GATGAGCCAG	CCGGTGAAGA	CTGTGAAATT	TGTGGTTCTC	CTATGGTTAT	900
	AAAAATGGGA	CGCTATGGTA	AGTTCATGGC	TTGCTCAAAC	TTCCCGGATT	GTCGTAATAC	960
	AAAAGCGATA	GTTAAGTCTA	TTGGTGTTAA	ATGTCCAAAA	TGTAATGaTG	GTGACGTCGT	1020
15	AGAAAGAAAA	TCTAAAAAGA	ATCGTGTCTT	TTATGGATGT	TCGAAATATC	CTGAATGCGA	1080
	CTTTATCTCT	TGGGATAAGC	CGATTGGAAG	AGATTGTCCA	AAATGTAACC	AATATCTTGT	1140
	TGAAAATAAA	AAAGGCAAGA	CAACACAAGT	AATATGTTCA	AATTGCGATT	ATAAAGAGGC	1200
20	AGCGCAGAAA	TAATATTTT	ATTTCCTAGA	TACATTTTAA	GATTGTTAAA	TAGAATCATT	1260
	AGTGAATCTT	ATTTTAAAGA	TAGTAAAGGA	ТТААТСТААА	TAAGTGCGGA	TAATATAAAC	1320
25	ATAACAACAT	AATTAAmAGA	CATAAATGAC	aATAAAAGGA	GTATAGAAAT	GACTCAAACT	1380
	GTAAATGTAA	TAGGTGCTGG	TCTTGCCGGT	TCAGAAGCGG	CATATCAATT	AGCTGAAAGA	1440
	GGAATTAAAG	TTAATCTAAT	AGAGATGAGA	CCTGTTAAAC	AAACACCAGC	GCACCATACT	1500
30	GATAAATTTG	CGGAACTTGT	ATGTTCCAAT	TCATTACGCG	GAAATGCTTT	AACTAATGGT	1560
	GTGGGTGTTT	TAAAAGAAGA	aatgagaaga	TTGAATTCTA	TAATTATTGA	AGCGGCTGAT	1620
	AAGGCACGAG	TTCCAGCTGG	TGGTGCATTA	GCAGTTGATA	GACACGATTT	TTCAGGTTAT	1680
35	ATTACTGAAA	CACTTAAAAA	TCATGAAAAT	ATCACAGTTA	TTAATGAAGA	AATTAATGCC	1740
	ATTCCAGATG	GATACACAAT	TATCGCAACA	GGACCACTTA	CTACAGAAAC	CCTTGCGCAA	1800
40	GAAATAGTGG	ACATTACTGG	TAAAGATCAA	CTTTATTTCT	ATGATGCGGC	TGCTCCAATT	1860
	ATTGAAAAAG	AATCTATTGA	TATGGATAAA	GTTTACTTAA	AGTCCCGTTA	TGATAAAGGT	1920
	GAAGCTGCAT	ATTTAAACTG	TCCTATGACT	GAGGATGAAT	TTAATCGCTT	TTATGATGCA	1980
45	GTATTAGAAG	CTGAAGTTGC	GCCTGTAAAT	TCATTTGAAA	AAGAAAAATA	TTTCGAGGGT	2040
	TGTATGCCTT	TTGAAGTAAT	GGCAGAACGC	GGACGCAAGA	CATTACTATT	TGGACCAATG	2100
	AAACCAGTAG	GATTAGAAGA	TCCAAAGACT	GGGAAACGTC	CTTATGCGGT	GGTTCAATTA	2160
50	AGACAAGATG	ACGCTGCTGG	TACACTCTAC	AATATTGTTG	GCTTCCAAAC	GCATTTAAAA	2220
	TGGGGAGCTC	AAAAAGAAGT	CATTAAATTA	ATTCCAGGCT	TAGAAAATGT	TGATATTGTT	2280
55	AGATATGGTG	TGATGCATAG	AAATACCTTC	ATTAATTCAC	CGGACGTATT	AAACGAGAAA	2340
-							

	TATGTAGAAA	GCGCAGCTAG	CGGCTTAGTT	GCAGGTATCA	ATCTTGCGCA	TAAAATATTA	2460
-	GGCAAGGGTG	AGGTAGTATT	TCCGAGAGAA	ACAATGATTG	GAAGTATGGC	TTACTATATT	2520
5	TCTCATGCTA	AAAACAATAA	GAATTTCCAA	CCTATGAATG	CTAACTTCGG	GTTATTACCA	2580
	TCTTTAGAAA	CTAGAATTAA	AGATAAAAAA	GAACGCTATG	AAGCACAAGC	TAATAGAGCT	2640
10	TTGGATTACT	TAGAAAATTT	САААААААСТ	ттаталалта	GTTAGAAAGA	CTAGATATGC	2700
	TATTCATTCT	TAAGTCATCA	ACGAGTAAGT	AATGACTTTC	TAAATGGAAA	ATACTTATCC	2760
	TAGTCTTTTT	AATTTTGGAA	TTGTTACGTA	TTTCTGACAA	TTTAGAATTC	GCATTCAAAA	2820
15	AATATCTAAA	TAAATAACAC	GCAATAAGTT	GATTGATGTA	ACATGTAAGA	GAATGTTTTA	2880
	AATAAACTTT	ATTTAAAAGG	CAATGAAATA	ATAAATGGCA	AGGCTATTAA	TAAAGACTTT	2940
	TAGTAATTAA	TTTAAAAAAG	AGGTATTCTA	ATTAACAGGT	TTTCCGATTA	GTTACAATTA	3000
20	TTTAATTCTC	AAAAGATTTA	GAATTGATTA	TCAAATTACT	GTAAGCCCTT	TGCTGTATAT	3060
	GCTACAATTC	TTATTGATGG	AGGGTAAATG	TATTGAATCA	TATTCAAGAT	GCGTTTTTAA	3120
25	ATACATTGAA	AGTTGAACGG	AATTTTTCGG	AACACACATT	GAAATCATAT	CAAGATGACT	3180
	TAATTCAGTT	TAATCAATTT	TTAGAACAAG	AACATTTAGA	GTTGAATACT	TTTGAATACA	3240
	GAGATGCTAG	AAATTATTTG	AGCTATTTAT	ATTCAAATCA	TTTGAAAAGA	ACATCTGTTT	3300
30	CTCGTAAAAT	CTCAACGTTA	AGAACTTTCT	ATGAATATTG	GATGACGCTT	GATGAGAACA	3360
	TTATTAATCC	ATTTGTTCAA	TTAGTACATC	CGAAAAAAGA	AAAATATCTT	CCGCAATTCT	3420
	TTTACGAAGA	AGAAATGGAA	GCGTTATTCA	AAACTGTAGA	AGAGGACACT	TCAAAAAATT	3480
35	TACGGGATCG	AGTTATTCTT	GAATTGTTGT	ATGCTACAGG	CATCCGTGTT	TCGGAATTAG	3540
	TAAATATTAA	AAAACAAGAT	ATAGATTTTT	ACGCGAATGG	TGTTACCGTA	TTAGGAAAAG	3600
40	GGAGCAAAGA	GCGCTTTGTA	CCGTTTGGTG	CTTATTGTAG	ACAAAGCATC	GAAAATTATT	3660
	TAGAACATTT	CAAACCAATT	CAGTCATGCA	ATCATGATTT	TCTTATTGTA	AATATGAAGG	3720
	GTGAAGCAAT	CACTGAACGC	GGTGTACGAT	ATGTTTTAAA	TGATATTGTT	AAACGAACAG	3780
4 5	CAGGCGTAAG	TGaGATTCAT	CCCCACAAGC	TCAGACATAC	ATTTGCAACG	CATTTATTGA	3840
	ATCAAGGTGC	AGACCTAAGA	ACAGTACAAT	CGTTATTAGG	TCATGTTAAT	TTGTCAACAA	3900
	CTGGTAAATA	TACACACGTA	TCTAACCAAC	AATTAAGAAA	AGTGTATCTA	AATGCACATC	3960
50	CTCGAGCGAA	AAAGGAGAAT	GAAACATGAG	TAATACAACA	TTACATGCAA	CAACAATTTA	4020
	TGCTGTAAGA	CATAATGGGA	AAGCAGCTAT	GGCTGGAGAT	GGGCAAGTAA	CGCTTGGTCA	4080
55	ACAAGTCATC	ATGAAACAAA	CGGCAAGAAA	AGTGCGACGT	TTATATGAAG	GTAAAGTGTT	4140

	ATTACAACAG	TTTAGTGGTA	ACTTAGAAAG	AGCTGCTGTT	GAATTGGCAC	AAGAATGGCG	4260
_	AGGCGATAAA	CAATTACGTC	AATTAGAAGC	TATGCTAATT	GTAATGGATA	AAGATGCTAT	4320
5	TTTAGTTGTC	AGTGGAACTG	GCGAAGTTAT	TGCTCCAGAT	GATGACCTTA	TCGCTATTGG	4380
	ATCAGGAGGC	AACTACGCAT	TAAGCGCAGG	ACGTGCATTG	AAACGCCATG	CATCGCATTT	4440
10	GTCTGCTGAA	GAAATGGCAT	ATGAGAGCTT	GAAAGTAGCG	GCTGATATTT	GTGTCTTTAC	4500
	CAACGATAAT	ATTGTTGTCG	AAACACTATA	ATAATCAGAG	CACGATAAAT	AATTACGAGC	4560
	AATTAATTTT	AGTTAAAAGA	CGGAGGAATG	AAATTAATGG	ATACAGCTGG	AATAAGATTA	4620
15	ACTCCAAAAG	AAATCGTATC	TAAATTAAAT	GAATACATCG	TTGGACAAAA	TGATGCTAAA	4680
	CGTAAAGTGG	CAATTGCCCT	ACGTAATCGA	TACAGAAGAA	GTTTATTAGA	TGAGGAATCA	4740
	AAGCAAGAAA	TTTCACCTAA	AAATATTTTG	ATGATTGGAC	CAACCGGCGT	TGGTAAAACT	4800
20	GAAATTGCAA	GAAGAATGGC	CAAAGTTGTC	GGCGCGCCAT	TTATAAAAGT	AGAAGCTACT	4860
	AAATTTACTG	AGGTAGGTTA	TGTAGGACGA	GATGTTGAAA	GTATGGTTAG	AGATCTTGTT	4920
25	GATGTTTCAG	TAAGATTAGT	CAAGGCGCAG	AAAAAATCAT	TGGTACAAGA	TGAAGCAACA	4980
	GCTAAGGCCA	ATGAAAAACT	TGTTAAGTTA	TTAGTTCCAA	GTATGAAAAA	GAAAGCGTCT	5040
	CAAACGAATA	ATCCTTTAGA	GTCACTTTTC	GGAGGTGCAA	TTCCAAATTT	CGGACAAAAT	5100
30	AACGAAGATG	AAGAAGAACC	ACCTACTGAG	GAAATTAAAA	CAAAACGTTC	TGAAATTAAG	5160
	AGACAGCTAG	AAGAAGGCAA	ACTTGAAAAA	GAAAAGGTAA	GAATTAAAGT	CGAACAAGAT	5220
	CCTGGTGCTT	TAGGTATGCT	AGGTACAAAT	CAAAATCAGC	AAATGCAAGA	GATGATGAAT	5280
35	CAATTAATGC	CTAAAAAGAA	AGTTGAGCGA	GAAGTTGCTG	TTGAGACGGC	AAGGAAAATC	5340
	TTAGCTGATA	GTTATGCGGA	TGAACTAATT	GATCAAGAAA	GCGCTAACCA	AGAAGCGCTT	5400
40	GAATTAGCAG	AACAAATGGG	TATCATCTTT	ATAGATGAAA	TCGACAAAGT	TGCGACGAAT	5460
	AATCATAATA	GTGGTCAAGA	TGTCTCAAGA	CAAGGTGTTC	AAAGAGATAT	TTTACCTATA	5520
	CTTGAAGGTA	GCGTTATTCA	AACCAAATAT	GGTACTGTGA	ATACTGAACA	TATGCTGTTT	5580
45	ATAGGTGCTG	GAGCTTTCCA	TGTATCTAAG	CCGAGTGACT	TGATACCAGA	ATTGCAAGGT	5640
	CGTTTTCCGA	TTAGAGTTGA	ACTTGATAGT	TTATCGGTAG	AAGATTTTGT	AAGAATTTTG	5700
	ACAGAACCAA	AATTGTCATT	AATTAAACAA	TATGAAGCAT	TGCTTCAAAC	AGAAGAAGTT	5760
50	ACTGTAAACT	TTACCGATGA	AGCAATTACT	CGCTTAGCTG	AGATTGCTTA	TCAAGTAAAT	5820
	CAAGATACAG	ACAACATTGG	TGCACGTCGA	CTTCATACAA	TTTTAGAAAA	GATGCTAGAA	5880
55	GATTTATCAT	TCGAAGCACC	AAGTATGCCG	AATGCAGTTG	TAGATATTAC	CCCACAATAT	5940

	AAATATACAA AAGGAGAAAA ATTCATGAGC TTATTATCTA AAACGAGAGA GTTAAACACG	6060
	TTACTTCAAA AACACAAAGG TATTGCGGTT GATTTTAAAG ATGTAGCACA AACGATTAGT	6120
5	AGCGTAACTG TAACAAATGT ATTTATTGTA TCGCGTCGAG GTAAAATTTT AGGATCGAGT	6180
	CTAAATGAAT TATTAAAAAG TCAAAGAATT ATTCAAATGT TGGAAGAAAG ACATATTCCA	6240
10	AGTGAATATA CAGAACGATT AATGGAAGTT AAACAAACAG AATCAAATAT TGATATCGAC	6300
	AATGTATTAA CAGTATTCCC ACCTGAAAAC AGAGAATTAT TCATAGATAG TCGTACAACT	6360
	ATCTTCCCAA TTTTAGGTGG AGGGGAAAGA TTAGGTACAT TAGTACTTGG TChAGTACAT	6420
15	GATGATTTTA ATGAAAATGA TTTGGTACTA GGTGAATATG CTGCTACAGT TATTGGTATG	6480
	GAAATCTTAC GTGAGAAGCA TAGTGAAGTA GAAANAGAAG CGCGCGATAA AGCTGCTATT	6540
	ACAATGGCAA TTAATTCATT ATCTTATTCT GAAAAAGAAG CGATTGAACA TATCTTTGAA	6600
20	GAACTTGGCG GTACGGAAGG CCTATTAATC GCATCAAAAG TTGCAGATAG AGTTGGTATT	6660
	ACTAGATCTG TAATTGTAAA TGCACTACGT AAATTAGAAA GTGCTGGTGT AATTGAATCA	6720
25	CGTTCTTTAG GAATGAAAGG TACTTTCATT AAAGTTAAAA AAGAAAAATT CTTAGATGAA	6780
	TTAGAAAAA GTAAAT	6796
	(2) INFORMATION FOR SEQ ID NO: 3:	
3 0	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2073 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
1 0	ATCCTAAAAT ThAAAATTAT CACGCCTTTT GAACAGCTTT GTAACCATCt GGACGATCAT	60
70	kAAATTCCaA TGTAAATCCT GGTTTAAAGT TGATCTTTAA CCTTATTTAA AYCACCAATT	120
	GTACGTATAT TATGTTGTTT AGCAAAATCA CGTTTTACAG CTAAAGCATA CGTATTGTTA	180
45	TACTTCATTG GTTTTAACAT AGTCATTTGA TATTTCTTTT CAAGACTTTG CTTAGCTTGT	240
	TCATAAACTT TTTTCTCTTC TTTTGACTTC AATGGTTCTT TTGTTAATTC ACCTAAAACT	300
	GTTCCAGTAA ATTCTAAATA CCCATCTATA TCGTCAGATT TTAAAGCATT AAATAAAAAT	360
50	GCTGTTTTGC CCATACCATC TTTCACTTCT ACAGTATTTT TGGTCTCTTC TTCTATTAAA	420
	ATTITATACA TATTTGTAAT AATCGATGGC TCGGAGCCAA GCTTTCCAGC TAACGTAATT	480
55	TTATCACCTT TTTGTGCAAA CATAGGAATA GCGATAGCCA GTATAATAAT CATCACTATA	540

	TCAAATATAA	TTGCCAATAA	GGCTGCTGGA	ATTGCACCTA	ATAATATCAA	CGATGCATTG	660
	TTACGGTCTA	TACCTAATAA	AATTAAATCT	CCTAGTCCGC	CTGCACCAAT	TAATGCTGCT	720
5	AGTGTTGCTG	TACCTATAAT	TAATACCATA	GCCGTTCTTA	CACCAGCCAT	TATAACAGGC	780
	ATTGCTATCG	GAAGTTCGAC	TTTAGTTAAA	CGTCTAAATG	GTTTCATACC	TATACCTTTA	840
. 0	GCCGCTTCAA	TGAGTGATGG	ATCAACTTCT	TTAATTCCAG	TATACGTATT	CCTTAAAATT	900
10	GGTAACAACG	CATACACTAC	AAGTGCAATA	ATTGCTGGCA	CACGACCGAT	ACCAAATAAA	960
	GGAATCATTA	AACCTAATAA	TGCCAACGAT	GGTATGGTTT	GAAGAATTGC	CGCAATATTC	1020
15	ATTACGATTT	CAGATATCGT	TTTAGTCTTC	GTTAATAAAA	TACCTAATGG	TACCGCAATA	1080
	GCAGTTGCAA	TCAATAATGC	GATAAATGAT	ATTTGAATAT	GTTCTATCAT	TGTCGAAAAG	1140
	AGTTGCCCCT	TACGTTCACT	CAATATGTCg	AAAAAGTTAG	TCATGTTGAG	CTACCTCCTT	1200
20	TTTCTGGGAC	AAATATTTGA	AGATATCTTT	CCTATCAATA	ACATATTGAC	CTACGCTATC	1260
	TTCTTGCATG	ACAATGACAC	GCTCGCTCTC	TGATAAAAGT	TGATACAATA	CTTCAATTGG	1320
0.5	TTGATTGTCA	TAAACAATTG	GATAAGCGCT	CATAGATGTA	ACCTCATCGA	TTGGTTTCAT	1380
25	AATATCCAAG	TCACGGATAA	TTGCGTTCTC	TTCAACACAT	GGCGCATCAT	CTTCTAAATG	1440
	ACTACCCATA	AATTGTTTAA	CAAATTCACT	TTGAGGATTA	TTTTTAAATC	CTTCTGGTGT	1500
30	GTCAATTTGT	TCAATATGCC	CTTCATTCAA	AAGACAAATC	TTATCACCAA	GTTTCATCGC	1560
	CTCTTGAATA	TCATGTGTAA	CAAATATGAT	TGTCTTCTTA	ATTTTAGTTT	GTAATTCAAT	1620
	TAAATCATCT	TGAAGTTTTT	CTCGGCTGAT	TGGGTCTAAT	GCACTAAACG	GTTCATCCAT	1680
35	TAAAATAACT	GGTGGATCAG	CTGCTAACGC	ACGTATAACT	CCTACACGTT	GTCGTTGCCC	1740
	CCCTGACAAT	TCATCAGGTT	TTCTGTTTTT	ATATTTTTCA	GGTTCTAATC	CAACCATTTC	1800
	AAGTAATTCA	TCTACTCTTT	TATCTATATC	TTTTTCTTTC	CACTITTTCA	TTTGTGGCAC	1860
40	TTGTGCAALA	TTTTCTTTGa	wTGTCaTATG	TGGGAATAAT	GCAATCTGCT	GCAATACGTA	1920
	TCCAATATCC	CAACKCATTT	CGTATACTGG	ATAATCACTT	ATTGGTTTAT	СТТТААААТА	1980
45	AATATAACCT	TCACTTAAGT	GAATGAGTCG	ATTAATCATT	TTTAATGTCG	TAGTTTTTCC	2040
	ACAACCTGAA	GGTCCAATTA	GCACAAAAAA	TTC			2073

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 13321 base pairs

- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

	ACTATTCTAG	CTTCATCAGT	TATCATATAT	TCTTTGAAAC	ACTTGTAAGA	AAATATAATG	60
5	AGTATTTACT	ACATAATGAT	ATTTCAAATT	AGAAAAAAGG	AAGTTATGAT	TTAATGGCCT	120
	TGAGCCTATC	ATAACTTCCT	TTTATCATTT	TATTGTTGTG	TTGATGTTTC	GATAACGTGG	180
	TACATCTTAT	CAAACATCAA	TTCGAAACCA	TGCACCATGG	CATCATGATA	TTCTTTTTTC	240
10	TTTTGCTTGT	ATTCTAAATT	AGTAAATCGT	CTTTCTTTTT	CAACTAATGA	ACGATAATAA	300
	AATAGCATTT	GGGTGCCACC	TGTTTCACGT	TCAAAAAATT	CTACCTCAAT	GACATCTTGC	360
15	GTTTCACTTA	GTCCAGGCAT	ACCGATAGTC	ATCTTAACGT	ATTCATCCAT	AACTAAAGAT	420
	TCATAAATGC	CTTCAATCAC	ATTTACTTTG	CCATTACGTT	GTTGATCTAC	AATACGATAT	480
	TTACCGCCTT	CTTTAACGTC	CGCTTCAATC	TCTTTATTCG	TTCTGGCTGA	TGTCATAAAC	540
20	CATTGTTTCA	ACAAATCTTT	CTTTGTCCAA	GCTTCGTATA	CTAACTCTGG	AGAAAATTTA	600
	TAAAGCTTTT	CAATTTCAAC	TTCGACATGT	TCATTCTCTA	CATTAAATTT	TGCCACTGTT	660
	GTCCACCCAC	TTTCGCTCTT	ACTTTTATTT	TAACGTATTT	TTGCTCAGTT	CCAAACATAG	720
25	ATGATCATCA	TTTTTAAAAG	ATTAGCGTTA	TACGGTGAGT	ACAACATGAT	CTGTTAATAT	780
	AACAAGCCAC	CTTACTTGGC	TACATCGATA	TATTGTTAAG	CATTAATGTT	TCATTTCTTG	840
30	ACTAGTGTTC	TTTTTTAGCT	TTGGAAAATT	AAATAAAATC	GCAATAAGTC	CGCATACACC	900
	TAATAATATA	GGATAAATGC	TGTATGGGAA	TAACATTAAC	GGTGAAATAC	CAGCTACACC	960
	AGCCGCTGaA	ATGACTTGCG	GGCTATATGG	TAATAAACCT	TGGAAGCAGC	СТССАААТАТ	1020
35	ATCAAGAATA	CTTGCTGATT	TCCTTGAATC	TACATCATAT	TCATCTGCAA	TATTTTAGC	1030
	TAAAGGACCT	GACATAATAA	TAGAGATGGT	GTTGTTTGCC	GTGGCAATAT	CTGCGACACT	1140
	тассаласта	GCAATTCCTA	ATTCTGCGCC	ACGCTTTGAT	TTCACTTTAG	AGCGAACAAA	1200
40	TTGCAACAAC	CATTCAATAC	CACCATTGTG	TTGAATAATA	CCGACTAAAC	CACCAATTAG	1260
	CAACGCAATC	ATAGCAATAT	CTTCCATGCT	TATAATACCT	TTGGACACTG	CATCTAGTAG	1320
45	CCCCATCCAA	CCGAATGAAC	CATCTATGAG	ACCAATGATT	CCGGCTAATA	ATGTTCCGCC	1380
	AATCAATACG	ATAATGACAT	TTACACCTAA	TAATGCTAAT	ACCAATACTA	AGATATACGG	1440
	TACAACTTTA	ATTAGATTAT	AATCATAGTE	TTTAGCATGA	TTTAAAGAAA	TGCCATTCGT	1500
50	TAAGAAATAC	AGAATAATAA	TCGTTAAAAT	AGCACCTGGC	AATACAATTT	TAAAGTTTAC	1560
	TCTGAATTTA	TCTTTCATTT	TCGTATGTTG	TGTTCTAACC	GCAGCAATTG	TTGTATCTGA	1620
	AATCATTGAT	AGATTATCGC	CGAACATTGC	ACCTCCAACA	ACTGTAGCCa	tTGctAGCGC	1680

	TCCTACAGAC	GTCCCCATAG	ATATAGAAAC	AAACATACAA	ATCACAAACA	ATCCTACAAT	1800
	AATTAAATTT	TCTGGGATTA	ATGATAGTCC	TAAATTAACT	GTCGACTTTA	CGCCACCCAT	1860
5	TTTTTCAGCT	GTATTTGAAA	ATGCACCTGC	ТААААТАААА	ATCAACATCA	TTAAAACAAT	1920
	GTTTGAATGG	CCTGCACCTT	TCGTGAAGAC	CTCAACTTTT	TTAGCAAATG	ATTCTTTTCG	1980
10	ATTCATTAAT	AACGCCACAA	TTACCGTTAT	CGTAATTGCA	ACATTTAATG	GCATTGAAGT	2040
	AAAATCACCT	GTGATAATAC	CTACGCCTAA	AAACAACGCC	ACAAATAATA	ACAAGGGGAA	2100
	TAATGCCCAA	GCATTGCTCT	TTTTATGTAC	TICCATCCTT	TTTACCTGCT	TTCCAATTAA	2160
15	AAATACCTCT	TTCTCACAAA	CGATGAAGAA	AGAGGTTTTC	ATGTGCTTTA	CCTGCTTATC	2220
	TTCAAACCAT	TACGGTTACT	GGAATTGGCA	CATTCGAGAT	GTTGCCGAGG	CTTCATAGGG	2280
	CCAGTCCCTC	CACCTCTCTA	GATAAGTGAT	GCTTATTTAC	GTTTACGTTA	CAAGATAATC	2340
20	CTTAGTACGT	CAATCATAAA	TTAATCAGGA	GTCGTATAAT	ATTTTTCATA	AACAATCATT	2400
	GCTACTGTAA	TAATAATCAA	AACAATAATG	CTAATAACAA	GTAAAAGCCA	CCATTTAAGC	2460
25	ATTAATGCAA	TAAAAATGAA	CACGATAGAC	ACACTTACTA	ATATTAATGA	TATGACTTTA	2520
	AATTGCTGAA	CACGTTGCTT	GGAGATGACT	TTCAACTGTT	TGTTTGATAG	ACGCGTATTT	2580
	TTTATACTGA	TTCCCAGTAT	ATTTTCTAAT	ATTTGAACCA	ATACGATACT	TATTGCAAAT	2640
30	ATAATAATTG	GTAAAACATC	ATAGCTCCCT	ATAGTTAATG	TATAAATTAC	AAATCCAATG	2700
	TAAAGTAACC	CTGAGACAAA	GGATAAAAAG	TATGCGACGT	ATTTGTTAAA	CTTAATGATA	2760
	TGCTTTTTAA	CGTTTTGATG	TGTAAACCAT	ACATTCGAAA	CGATCGCAAC	TGCTACAAAT	2820
35	AATGTGAATA	СТАТАТАТАА	TGGTAATTTT	TGTTCAGGAA	AAACAGTCGC	TATTCCAAAA	2880
	GCTAATGCTA	AAATCAAAAA	TAATATAGCT	CTAGATACTA	TTAATGCCAT	AATAACAACC	2940
40	CCTTŢGTTTA	ATATCGAGTT	TGCAAATTTA	CGTTTATCAG	CGTTTCTATG	ATCAGTACTT	3000
	CTACGGGTAG	CGTTTCTATG	TAATTTACAT	CATCTTAACA	TATAAATACT	TCGCTATTTA	3060
	ATTGAAAACA	TATCCTATTA	TTCTTTGTCC	GTTCTGACGT	TTAATATCTA	GCCTTAGGCA	3120
45	TTTCACTTGT	TAATGAATTT	AACTTTCTTC	CACTAACCGT	CCCTAAACCC	AATCCCGCAA	3180
	CAGTTTTTAA	CTTTTTCGTT	GTTGTCCTGA	CATCCTCATT	AAGAAAGTTT	ATTCTGCTTA	3240
	AAACTTATAA	TCCACACCCT	GAGCAAACGC	TCCTTATGAC	AGAGTATTAA	AATAAGCCGA	3300
50	TAAAGATACA	CACCTTTACC	GACTATTTAA	AATACACTTC	ACCAATTCAT	TTTAATTTAA	3360
	TGGATTGAAG	TAACTAAATT	AATATTATGT	TGTTCAATTA	AAAGCTTCAT	ACAAACCTAA	3420
55	TCTATTTGCA	CTCCACCGCT	AACACCGAAC	ACTTGTCCGG	TTGTATAACT	TGATTCTTCT	3480

	GTTTTTTGAC	CAAATGTTGG	GATTTTACTT	TGAGGTTGTC	CACCAGAAAT	TTGTAATGGT	3600
	GACCAGAATG	GACCAGGCGC	TACACAGTTC	ACTCTAATTC	CTTTTGGTCC	TAATTCTTCT	3660
5	GAAAAACTTT	TAGTTAATGA	AATAATTGCT	GCTTTTGAAG	CGGCATAATC	ATGAAGAATA	3720
	GGACTAGGAT	TATAACCTTG	TACAGATGAT	GTCGTTGTAA	TTGACGCACC	CGGTTTTAAA	3780
	TATTCCAATG	CTTTTTGAAC	TGTCCAAAAT	AGCGGATAGA	CATTCGTTTC	AAATGTTTCT	3840
10	GTAAATGCCT	CAGTTGTAAA	TCCATGAATA	TCATCATGAT	ACTGTTGATG	TCCAGCAACT	3900
	AAAGTAACAT	TATCTAAGCC	ACCTAATTGT	TGATATGCTT	GTTCAACAAG	GTCATAGTTG	3960
15	AACTGTTCAT	CTCTTATATC	ACCAGGAATT	AACACTGCCT	TTTGACCACT	TTCTTCAATC	4020
	ACTTGGCGTA	CTTCTTGTGC	ATCTTGTTCT	TCACTCGGAA	GATAGTTAAT	CGCTACATCT	4080
	GCACCTTCTT	TAGCATACGC	AATTGCTGCT	GCACGCCCTA	TTGCTGAGTC	ACCACCTGTG	4140
20	ACTAATATTT	TATAGCCTTG	TAAGCGTTGA	TGACCTTGGT	AAGACGTTTC	GCCACAATCG	4200
	GGTGCTGGCG	TCATTTCAGA	TTGTAAACCC	GGTACCTCTT	GTTCTTGTTT	TTCATAATCC	4260
	GTTGTTTTAA	ATTTTGTTCT	AGGATCTTGA	GCTGCCATTT	TTTTACATCT	CCTTATTCGC	4320
25	TTAATGGTTA	TTATTTACCC	AATCTTCCTA	GGAACTTAAT	CATGATTACA	CTAAAAATTA	4380
	CTTTCTTCTT	татаааааса	AGCTCGAATT	ATTCATGCAA	TAGTCTCTTT	ACAAATTCAA	4440
30	CAAAATACTC	AGGTACTTTT	TCCAGAATCC	TTTCATCCGG	TTTATATTGA	GGATGATGTA	4500
	AATCATATTC	ACTATGAGAA	CCAATTAACG	CAAATACACT	TGGAAAATGT	TGACTATAAC	4560
	CTGAAAAATC	TTCTCCAATC	GTAAGCGGCT	GTTCCATCAT	TCCCACCTTA	TATCCAACAT	4620
35	GTTGGGCTAC	TGCAATTGCT	TTATGCGTCA	ATGCCTCATC	ATTCATCACA	GCGCCAGGTA	4680
	AATGCGTATA	ATTTAAATTA	ATTTTCATAT	TATATGCTTG	AGCCAATCCG	TCCGCAATAT	4740
	CTTGTAATCG	TGTTTCTACA	AGCTTTCGTA	CCACAGGATC	AAAACTACGC	ACTGTGCCTT	4800
40	GTACATACGC	ATGATCAGCA	ATGACATTCC	AAGTATTACC	ACATGATATT	TGTCCAATTG	4860
	TTACTACCGC	TTCATCAAAC	GCAGATAGAT	TTCTACTAAC	TATGGATTGA	ATACTATTAA	4920
45	TCAATTGCGC	CAACACAATA	ACTGGATCGT	TGCATTGTTC	TGGcTTTGCA	GCATGACCAC	4980
	CCACGCCTTT	AATATGAAAC	TCAAAACGAT	CTACTGCTGA	TGTAATTGCC	CCTGTTTTGA	5040
	TTGCAAATGT	ACCTACCGAA	CGCGATGGGT	CATTATGAAA	ACCCAATACT	GCTTGTACAT	5100
50	CTTTTAATGC	ATGTGTTTCA	ATAATTTTAA	AAGCGCCATG	TCCTAGTTCT	TCTGCTGATT	5160
	GAAAAATGAA	TTTAACACGC	CCAGTAAGAG	TGCCCTCAAT	TTCTTTTAAT	TTTACAGCTG	5220
	TAGCCAAAAT	ACTAGCCATG	TGAATATCAT	GACCACACGC	ATGCATAACA	CCTTCATTTT	5280

	CAGCTATACA	ACTCAGACCT	TGTCCCACTT	CAGCAACAAG	CCCAGTCGCA	AGTGGTAAGT	5400
_	CTAATATTCT	AATATGATGT	TCTGTTAAAA	TATCTTTAAT	TTTTTGTGTA	GTCTTAAATT	5460
5	CTTTATCGGA	TAGTTCTGGA	AATTGATGAA	AATACCTTCT	CCAGGTAACA	GCTTGATCTT	5520
	TTAATCCCAT	CGGTCATTCC	CCTTCCTTAA	GTCAATGATA	TGTTGTCTAC	CCTACGATGA	5580
10	TCATCTTTGA	CTATTAAACG	ATGATTTCAC	AACAATGTAC	TCTTGTTAAT	TGCTTTCGTT	5640
	AATGATAGAC	AGTTGTTTAA	TAATATCGTA	ACACTGTTGT	CAAACTATTC	TAACTTTTAT	5700
	AATTGAGACT	CTATACAAAA	ACGTGTTCTC	GAATATACTT	GTTTTTACAA	ACCACAAAAA	5760
15	GCTCTAAACA	TTAGTTTAAA	CCAATGCTTA	GAGCTTTCTA	ATTATTTTAT	GCTTTAAAAG	5820
	ATACTGTGTT	ATCTACGATG	ACCTTACCGT	CTTTAATAAC	TTTTTCTGCG	TGATTGATAC	5880
	CAAAATGATA	TGGAATATAT	TCATGATTTG	GTGCATCCCA	AATTACTAAA	TTAGCCTTAT	5940
20	CACCTGTGTT	AATTGTACCC	GCGTTAATGT	CTATTGCTTT	AGCAGCATTG	ACCGTAACAG	6000
	CATTCCAAAC	TTCATTAGGT	GATAGCTTTA	ATTTCAAGGC	TGCAATCGCC	ATAACAAGTT	6060
25	GTAAGTTGTT	TGTGACACTA	CTACCAGGGT	TATAATCAGT	TGCTAATGCA	ATCGCACCGT	6120
	TATTGTCAAG	CATGCCTCTT	GCATCTGCAT	AATCTTCTTT	ACCTAAATAG	AACGTCGTTG	6180
	CAGGTAAGAG	GACAGCTACA	GTATCACTAT	TTCGCAACTT	TTCTTTTCCT	TTATCACTAG	6240
30	AAGCTACTAA	GTGGTCTGCT	GATATTGCTT	GTTCATCAAT	TGCTAATTCC	AGTCCGCCTA	6300
	ACGGATCAAT	TTCATCCGCA	TGTATTTTCA	CTTTAAAACC	TGCTTCTTTG	GCTTTTTGCA	6360
	TATAATGTTG	CGATTGTTCT	ATTGTAAATA	CACCTGTTTC	ACAGAAAATA	TCCGCAAAGT	6420
35	CTGCATATTG	TTTTACTTCC	GGAAGTAACG	CAATCATTTC	TTCTAAAAAT	GCCTCATTTG	6480
	AACTTGCCTC	TTTAGGTACA	GCATGAGGCC	CTAGGAAAGT	ATGTTTCATG	TCTAAATCAT	6540
40	ATTŢĊTCAGC	TAAACGATTA	GACACTTTCA	ATTGCTTCAG	TTCATTTTCT	CTATCTAATC	6600
	CATAACCACT	CTTACTTTCA	ACTGCAAGCA	CGCCGTGTTT	AATCATAGTA	AGCAAATCAT	6660
	GCTCTGCTTT	TTTAAACAAG	TCATCTTCGG	ATGTTTCTCT	AGTAGCATTA	ACGGTAGATA	6720
45	ATATGCCACC	ACCCATTTCT	AATATTTCAA	GGTAAGACTT	ACCTTGACGT	TTTAATGACA	6780
	TCTCATGTTC	TCGAGATCCA	CCAAATGTTA	AATGGGTATG	TGCATCTACT	AATGCTGGGG	6840
	ACACTACCTT	CCCACTAGCA	TCAATCGTCT	CAGTCGCATC	GTAGTCATCT	GTATGTGTTC	6900
50	CAGCATATAC	AATTTTGCCA	TCTTTAATGA	CAACTGTACC	ATTTTTCACA	ACATTTAATT	6960
	CATCTAATTC	CTTACCCTTC	AAAGGTTTAT	CTGTTGATCT	CGGTAAAATT	AATTCTGCTA	7020
55	TATGATTAAT	TATTAAATCA	TTCATTACTT	ATCACCTGCT	TTATCAATCA	TTGGAATATG	7080

	AACACCCATA	CCTGGGTCAG	TCGTCAATAC	ACGTTCCAAT	CTTCTTTCAG	CACGCTCTGA	7200
	TCCATCTGCT	ACAACAACCA	TACCCGCATG	AAGTGAATAT	CCCATGCCAA	CACCGCCACC	7260
5	GTGATGGAAT	GAAATCCATG	AACCACCTGC	AGCTGTGTTA	ATGAGTGCAT	TCAATACAGC	7320
	CCAATCACCA	ACCGCGTCAC	TACCATCTTT	CATACTTTCT	GTTTCACGGT	TAGGACTAGC	7380
10	AACTGAACCA	GCATCTAAAT	GGTCTCGTCC	AATAACAATT	GGTGCTGAAA	TTTCACCGTC	7440
	ACGTACAAGA	CGATTTAAAG	CTAAGCCCAT	TTTCGCTCTT	TCTCCATAGC	CTAACCAAGC	7500
	AATACGTGAT	GGTAGTCCTT	GATATGAAAT	TTTTTCTTCA	GCTAAATCAA	GCCATCTTAA	7560
15	TAACTTTTCA	TTTTCTGGGA	AAAGTTTGCG	CATTTCTTCA	TCCGCACGCT	CGATATCTTT	7620
	TGGATCACCA	CTCAACGCAG	CAAAGCGGAA	TGGCCCTTTA	CCTTCACAGA	ATAATGGTCT	7680
	AATGTAAGCT	GGTACAAAGC	CTGGGAAGTC	AAAAGCATTT	TTCACTCCGT	TATTGAAGGC	7740
20	TACTTGACGA	ATATTGTTAC	CATAATCAAA	TGCTACAGCG	CCACGTTTTT	GGAATTCAAG	7800
	CATTAATTCA	ACATGCTTTG	CCATTGAAGC	TTGTGACAGT	TCAACATATT	TTTTCGGATC	7860
25	TTTTTCACGC	AATACTTTCG	CTTCTTCTAC	AGAGTATCCT	TGTGGCACAT	ATCCATTTAG	7920
23	CGGATCATGT	GCACTTGTTT	GGTCAGTAAT	AATGTCAATT	TTAAATCCTT	TTTCTAGAAT	7980
	CGCTTGATGG	ATGTCTACAG	CATTTCCAAC	TAACCCGATT	GATAATCCTT	CTCCACGTTC	8040
30	TTTCGCCTCT	TCTGCTAATT	TTAATGCTTC	ATCTAAATCA	GCTGTTTTAA	CATCACAGTA	8100
	TTTCGTATCA	ATTCGCTTAT	CAACACGTGT	TTCATCAACA	TCCACGCAAA	TTGCTACCCC	8160
	ATGATTCATA	GTAATTGCTA	ACGGTTGCGC	ACCACCCATA	CCACCTAAAC	CTGCTGTCAG	8220
35	TGTAACAGTG	CCTGCTAAAT	CTCCATTAAA	GTGTTGATTA	CCTAGCTCGG	CAAATGTCTC	8280
	ATAAGTACCT	TGCACAATAC	CTTGAGAACC	AATATATATC	CAACTACCGG	CTGTCATCTG	8340
40	TCCATACATG	ATTAAACCTT	TTTTATCTAA	TTCATTAAAA	TGATCCCAGT	TTGCCCATTC	8400
40	AGGCACTAAT	ACTGAATTTG	AAATTAATAC	ACGTGGCGCT	TCTTCATGTG	TTTTAAATAC	8460
	AGCAACTGGC	TTTCCTGATT	GTACTAACAT	TGTCTCATCT	GATTCTAATT	CTCGTAACGT	8520
45	TTTCTCTATT	GCTTCAAAAG	CTTCCCAATT	ACGTGCTGCT	TTTCCAATAC	CACCATAAAC	8580
	AACTAAATCT	TCTGGTCTTT	CAGCAACTTC	TGGGTCTAAA	TTGTTGTATA	ACATTCTAAG	8640
	TACTGCTTCT	TGTTCCCAAC	CTTTACACTC	AATACTCAAA	CCTTTTTTTG	CTTGAATTTT	8700
50	TCTCATAAAA	TTCGCTCCTG	TTCTTTTAAG	AAGTTAATTC	CACTAAATTT	AAAACGCTTA	8760
	CATTATTATC	TTCAATATTC	ATTATAGTAT	GTTAAAATAT	AGCCAACAAA	TATAAATAAA	8820
	CTAATTATCC	ATAGCTTGAA	TCTATAAATA	AAAGGAGCAA	AACACATGAA	AATTATTCAG	0888

	CATATTAGCC	AGCCATCTTT	AACTGCTACG	ATTAAAAAAA	TGGAAGCAGA	TTTAGGTTAT	9000
5	GACTTATTTA	CACGTTCAAC	AAAAGACATC	AAGATTACCG	AAAAAGGAAT	ACAGTTTTAT	9060
J	CGTTATGCGA	GCGAATTAGT	TCAACAATAT	CGATCCACGA	TGGAAAAAAT	GTATGATTTA	9120
	AGCGTTACAT	CAGAACCAAG	GATAAAAATT	GGGACTCTTG	AATCTACGAA	TCAATGGATT	9180
10	GCGAATTTAA	TTCGAAAGCA	CCATTCCGAC	TACCCTGAAC	AGCAATATCG	TTTATATGAA	9240
	ATACATGATA	AACATCAATC	TATAGAGCAA	TTACTGAATT	TTAATATTCA	TTTAGCTATA	9300
	ACAAATGAAA	AAATAACCCA	CGAAGATATA	AGATCCATTC	CTTTATATGA	GGAATCTTAC	9360
15	ATTTTATTAG	CACCCAAGGA	AACATTTAAA	AATCAAAATT	GGGTAGATGT	TGAAAATTTG	9420
	CCACTCATAT	TACCAAACAA	AAATTCTCAA	GTGCGCAAAC	ACTTAGATGA	CTATTTTAAT	9480
	AGAAGAAATA	TTCGTCCAAA	TGTCGTTGTA	GAAACAGATC	GATTCGAATC	AGCAGTTGGA	9540
20	TTTGTTCATC	TCGGCTTAGG	TTACGCTATC	ATTCCGAGAT	TTTATTACCA	ATCATTTCAC	9600
	ACGTCTAATT	TAGAATATAA	AAAAATTCGT	CCAAACTTAG	GCCGAAAAAT	TTATATCAAT	9660
25	TACCATAAAA	AACGCAAACA	CTCCGAACAA	GTACATACAT	TCGTACAACA	ATGCCAAGAT	9720
	TATTTATATG	GACTTTTAGA	GGCTCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9780
	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9840
30	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9900
	CTCAGTCAAC	TGTATACCTT	TTTCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9960
	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGTGCCTCT	TATGTAGTTG	10020
35	CGTAGTCAaC	TGTaTACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	10080
	CGCAGATCAT	CGTATAAAAA	TTAATGACGT	CATTTCAAAA	ATCGATACAA	AAATAATTTA	10140
40	TTATĂAAAAT	TCTAAGAAAG	AAGTGAAGCA	GATGTTAAAA	TCTATTAATC	ATATATGCTT	10200
	TTCAGTCAGA	AATTTAAACG	ATTCAATACA	TTTTTATAGA	GATATTTTAC	TTGGGAAATT	10260
	GCTATTGACT	GGTAAAAAAA	CTGCTTATTT	TGAGCTTGCA	GGCCTATGGA	TTGCTTTAAA	10320
45	TGAAGAAAAA	GATATACCAC	GTAATGAAAT	TCACTTTTCA	TATACACATA	TAGCTTTCAC	10380
	TATAGATGAC	AGCGAATTTA	AATATTGGCA	TCAGAGGTTA	AAAGATAATA	ACGTGAATAT	10440
	TTTAGAAGGA	AGAGTTAGAG	ATATTAGAGA	TAGACAATCA	ATTTACTTTA	CCGACCCTGA	10500
50	TGGTCATAAG	CTAGAATTAC	ATACTGGCAC	ACTTGAGAAC	AGATTAAATT	ATTATAAAGA	10560
	GGCTAAACCA	CATATGACAT	TTTACAAATA	AGGTGTCATT	ATAAAAAGGC	CTCTTGAACT	10620
55	CCGTTAAAAT	TTTAATTAAT	TATTATATAA	TAAGAGAACT	TTTCAAACAA	TACAGTTGTT	10680

	TTACTGCAAT	TATTTTCAA	ATATATCAAC	GTTAATATAA	CTTCTATTAA	GAAATACTCA	10800
	CATTCTGCCC	TGCAATGCAA	ATCTCGTCAC	ATATAAATAT	TTTTAATTAT	TTAAAAAAT	10860
5	GATGCACTAA	ATTAGCAACG	AGCTTAGCAG	TTCTATTGTC	AGCGTCATAT	GTTGGATTCA	10920
	TCTCAGCAAT	ACTAACTGAA	GACACCTTAT	CACTTGGAAT	AATACGTTTT	GCTAATTCAA	10980
10	GAACAGTATG	TGGATACAAA	CCTAACACTG	CCGGCGCACT	TACCCCAGGC	GCAAACGCAC	11040
	TATCAATGAC	ATCCATACAA	ATCGTAAACA	TAATGACATC	ATGTTCATGT	ACAAAACGTT	11100
	CAATCATATC	TTTAATTGTT	GGTGATACGT	GACTCAATAA	TTCATCIGCA	AAGACATAAT	11160
15	CAATCTTTTT	CTCTTTAGCA	таатсааата	AACTTTGCGT	ATTACCACCT	TGAGCAATAC	11220
	CAAGCACTAA	ATAATCTGTG	TTTTCATCTT	CTTCTAAAAT	TTGTCTAAAG	CTCGTTCCAG	11280
	ATGTAGATTG	TTGTTCAGCA	CGTGTATCAA	AATGCGCATC	AATATTTATC	ACACCAATAG	11340
20	ATTGTGTTGG	ATAGACTTTA	CGTGTTGCTA	AATATTGAGC	ATACGCAATA	TCATGTCCAC	11400
	CACCTAATAA	AAATGTTTGT	CTATGATTAG	CAATTGACTT	CGCTGCAAGC	ATAGCAAATT	11460
25	CTTTTTGAGT	ATCAATTAAT	TCCTCATGAT	CATGATAAAC	ATTTCCGTAA	TCGACTAAAG	11520
23	TTCACATTGA	TTCAAATCCG	GCAAACCTGC	AAATGCTTGT	TTAATCGCAT	CTGGTCCTTC	11580
	TTTTGCACCA	ATGCGCCCCT	TGTTTAAAGC	AACACCTTTG	TCAACAGCAT	AGCCTAATAT	11640
30	ACCGACCCCT	GATGGCATAC	TACTCTTTTC	CAGCTTAGAC	AAATCTTCAA	ATGTTACTGT	11700
	TTGAAAATGT	CTAAATTTTT	TCGGGTCTGT	TTCACTATCT	AACCTTCCAG	TCCATAAATT	11760
	TGGTTCACCT	TGCTTGTACA	CAGCATTTCC	CCCTCTTATT	TATGTGGCTT	ATTAACAATT	11820
35	AAAGTATAAC	GTATAGGAAA	TTTTGAATTC	AATTCATAGT	TAAATCCGTA	TCTTAAAAAT	11880
	ACTTATCTAC	ATTACTTTTA	CCCCTATTTT	CTATGTAATA	ACGAATACTT	AGCTGATTTA	11940
	TGTŢĀĀTĀĀĀ	ATACGTCAAG	ACTATTACAT	TTTCATTAAT	ATTGACATAG	ACAATTTATC	12000
40	TCTCGGCTTG	TAATATGTAT	AATTGTTACT	AAAAGATATT	TTGCTTGTTA	CCTAATGGAG	12060
	GTTACATATA	ATGAAGAACA	ATAAAATTTC	TGGTTTTCAA	TGGGCAATGA	CGATTTTCGT	12120
45	CTTCTTTGTC	ATTACAATGG	CGTTATCCAT	TATGCTCAGA	GATTTCCAGT	CTATAATTGG	12180
	TGTCAAACAC	TTTATATTTG	AAGTTACAGA	TCTAGCACCA	TTAATTGCTG	CAATCATTTG	12240
	TATACTCGTT	TTCAAATATA	AAAAGGTCCA	ACTTGCAGGT	TTAAAATTCT	CAATCAGCCT	12300
50	GAAAGTAATT	GAACGTCTAT	TGCTAGCTTT	AATTTTACCT	TTAATTATTC	TAATTATTGG	12360
	TATGTACAGC	TTTAATACAT	TTGCAGATAG	CTTTATTTTA	TTACAATCAA	CAGGCTTATC	12420
	AGTACCTATT	ACACACATTC	TGATTGGACA	TATTCTGATG	GCGTTCGTAG	TAGAATTCGG	12480
55							

	TGTTGTTGGT	TTGATGTATT	CAGTTTTCTC	AGCAAATACA	ACTTATGGTA	CAGAATTTGC	12600
	TGCTTATAAC	TTCCTTTATA	CATTCTCATT	CTCTATGATT	CTTGGTGAAT	TAATTAGAGC	12660
5	GACTAAAGGA	CGTACAATTT	ATATTGCAAC	GACATTCCAT	GCTTCAATGA	CATTCGGACT	12720
	TATTTTCTTG	TTTAGCGAAG	AAATCGGCGA	TCTATTTTCA	ATCAAAGTCA	TCGCCATTTC	12780
10	AACAGCAATC	GTTGCAGTAG	GATACATTGG	TTTAAGCTTA	ATTATCCGAG	GTATTGCATA	12840
	TTTAACAACA	AGACGAAACC	TTGAAGAACT	TGAGCCTAAT	AATTATTTAG	ACCATGTCAA	12900
	TGACGATGAA	GAAACTAATC	ATACTGAGGC	TGAAAAATCT	TCTTCAAATA	TTAAAGATGC	12960
15	TGAAAAAACA	GGTGTAGCTA	CTGCATCAAC	GGTTGGTGTT	GCTAAAAATG	ATACTGAAAA	13020
	TACAGTGGCT	GACGAACCAA	GCATTCATGA	AGGTACTGAA	AAAACAGAAC	CTCAACATCA	13080
	CATAGGTAAT	CAAACTGAAT	CTAATCATGA	TGAAGATCAt	GACATCACTT	CGGAGTCAGT	13140
20	AGAATCAGCm	GaATCAGTTA	AACAAGCACC	ACmAAGTGAC	gATTTaACAA	ACGATTCAAA	13200
	TGAAGATGAA	ATAGAGCAAT	CATTANAAGA	ACCTGCGACT	TATAAAGAAG	ACAGACGTnC	13260
?5	ATCAGTTGTA	ATTGATGCAG	AAAAACATAT	CGAAAAAGCT	GAAGAnCAAT	CTTCAGATAA	13320
	A						13321

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8549 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

40

45

50

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

ATGTGTTGTA AACTTTTATG TTGAAAAAGC TACTTATCTC AATGAAAACA AGTAGCATTT 60 AATAAATTAA TTAGTATACA GCTAGTTTTT CTAATTGTTC TTTAACTTGA ATTAAGTTTG 120 ACCGTATTAG AGAGGCAGAT TGATCCATCG TTTGAATTGC TTGTCCTTCA TTTTCGTTCA 180 AGCCATTACA AACAACTTCA AACTGTTGTG CCATTTGATC AAGACGCGCA TGAGCTTGTG 240 TGTTTAAAAT AAACATATCG TCATAATGTG ATGGCGAATA GATAATTCGT CGTTGTATAC 300 AAACGTATAA AAACCTTGTC ATATCAACGG TTTTGGCATT TTTAAACCTC TGTGTTTTCC 360 ACGCATGTTT GCCCTTATTT AAATAATTTG CCCTTTTTTC GCCCCGAAAA AAAAACACAA 420 AAAAATAACC ACACTCCTAA ATTAATAGGT GGTGTGGTTT TGTTGATTGT AGGGGTATAA 480 AAATAACCGC ATTATTAAAG ATACGGTTAC TCTGTTATCT GTAAATATAA TAGTAGTTTA 540

	AAACAGGACT	CCACATAAAA	ATCAACTCCT	TTATATACCA	TAATGATACT	ATATTTTCTA	660
	GTTTATTTCA	ATTTTTCAGT	TTTTAAAAAT	GAGTTTCTGT	TTTTATTTAT	ACGCTTTTCT	720
5	GTTTTCTTTT	TAAATTTTAT	CTTTTTGTTA	TTCCATTCAT	TGTAAAATTC	TATTAAATTA	780
	ACATAAAATT	TTTCATGCCC	TATTTTATTT	GTTGATGAGA	TATCAATGTA	AAGACTCAAT	840
10	ATTGTTTTTA	AATAGATTTG	ATGCAACGAC	TGATAAACCG	TATTACTATC	TGCTATGTTA	900
	TTGGTAAAAT	GCATAGAAAA	ATATTCTAAT	TTATTCATGC	AATATATATG	GGTTTCATTA	960
	TACTTCTTAA	TGAGTGTATT	TATACCTTGC	AATACGTCAT	TACTTTTAAT	AACAATTTCT	1020
15	TTTTCACCTG	TCGAAAAAGT	CCACTGTTTA	TCTCCTATAT	TTTCTTTAAT	TGTTTTCTTG	1080
	TTGTCAAATT	CTAAAATTAT	AGCCCGTAAA	CACTCTTCTT	TATAATTCTC	GTTCTTGAAA	1140
	GTACGAAGCA	AAATTTTTAT	AAATTCGGTA	TTGGTGACTT	TTTTATAAGT	GTGATATTTT	1200
20	GCAATCTCTT	TATCAGTAAA	GACTGTTCTT	AGTTCGTGAT	TATCAAAACT	TAAATTCATC	1260
	TTATTCTCTA	ATTCATTAAT	TTTATCTTGC	AAACCAACAT	TTTCTAAAAT	TTTCTTGTTT	1320
25	ATCTCCCCTA	TATCAAAACT	CCTTTTCGAA	ATTAATTTTG	AAAACTCGTC	TGCCATTTCA	1380
	ACAGCCTTTT	CTTTCCTTTT	ATACCTTTTG	TTAAATTTAT	GAACCACCGT	TGCAGCATAA	1440
	TACGATATCC	CACCAGATAA	AATAGATGaT	ATTATCGGTA	TGTATATATC	ACCTTTCATA	1500
30	TTTCCACCTC	TTTTAACACA	ATTAAGTATT	ATGATACACA	ACTTGCGCAA	AAAGATGTAG	1560
	ACAGAACATA	ATGGCGAACA	AAAACAACCA	CCCAGTAACT	AGTATGGGTG	GCGTAGACTA	1620
	TAACAACTCT	ATGTTATCAA	GATATATGTA	TCGAGTGATG	GCAAGGAAGA	AGTCTCCTGC	1680
35	GGGACCAACA	GTCAGATATA	TGGCCTCTGC	CGGGCTATAT	AGTTCACTCC	TACTATATAA	1740
	AAGTAAGTAT	AACATAAAAA	GCACCCCGTA	AACTGTTATA	CGGGAATGCT	AAAGTCATAT	1800
40	ATACTACGGG	GAGTAGTATG	AAAACTATGC	TCTCTATCGT	AAGAAAAAAC	ACCCAGTGAC	1860
	ATGCTTGGGT	GAACAAGGAT	AGATGTAAAT	AGTTGATGCA	TGTGTACACA	TCATAACAAA	1920
	AAACTAGCCC	GAAGCTAGCT	ATAACATAAA	AAAATAGGCA	AGTACCGAAG	TACCTGCCAG	1980
45	TTACGCACAT	TTAAATCTTG	AGAGTAATGT	TAAAAAGTGT	ATAGGAATAT	TAACATCCAT	2040
	CCAAATAGTT	ATTTAATAAC	TGTAAGATTC	CCTATAATTA	ATGTAGCaAA	ATTTTTATTC	2100
	TAAGTAAATA	CTAAATCGTG	CTAAACTTAC	CAAAACTACT	TATTCTATTA	CCTGCCTTGT	2160
50	CTACCTCTCC	TGTCGCTATA	TAACGACGTT	GTCCACTATT	AGCAATATAA	GTAATCCATC	2220
	TATAGCCATT	GATGCAATAT	GCGCCGTCAT	ATTTAATTGT	TGCGTTATTA	GGTAATACAC	2280
55	CTGTAATTCT	TGAATTAGTT	GAATAGCCGT	CCCTTACGTT	ATTACCTTTA	ACATTGGCAA	2340

	CTGGCACTGG	TGGATTTTTT	TGGTTTTTAG	CTGATGTTTT	AACATTACCA	GCTACCAAAC	2460
	CACCTATAGG	CTTACCATGA	ATCGCACCGG	CTATTAATTT	AGAATACAAG	TCATAGTTTT	2520
5	TCTTAATCCA	ATCCATATCA	TTTTTATTAG	TAATAAAACC	TAATTCAGAT	AAACGATAGT	2580
	TTATATTTAT	TTCTGCTGAT	ACATTAACGT	TTAGTAAATC	ATTACGAGGT	GTTACACCTC	2640
10	TTATTTGTCC	TAAGTTATTT	TTAATAACAT	CTTGTATACT	TTTATCAATA	GTATCTGCAT	2700
	TGAATTGACT	TGAAATAATA	ACATGCCCAC	CACTTGCACT	TTCTCCTGCT	GCGTCTAAAT	2760
	GAATCTCTAG	AACAATGTCA	TACCCATGTG	ATTTAACCCA	ATATAAGCCA	TAATCTTTAT	2820
15	TATTTCCTAC	ATTAACACCG	TAAGCAGTAT	CTTGATACAT	ATCTTGTGAT	TGACTTGAGC	2880
	CACCATATAA	TGCAACTTCG	TGACCTGCAT	GTCTTAAATA	CTTAGCGATA	TTTGGTGTTA	2940
	TATATTTACG	GATAAAATCA	CGTTCATTTG	TTCCGTTTCC	GACTGCTCCA	GGATCGTTAT	3000
20	AACCATGACC	GGCTACAAGC	ATAATTTTTT	TAGGTTTAAT	TACTGCTTGC	TTTTTGGCAG	3060
	TTGCTTGCTT	AATAACGCTT	TTAGCTTTAT	CTCCAACACT	TACTTTATCT	GGGAAATTTA	3120
25	ATCTAATAAA	ATACATTGGG	TCATCGTAAT	AATGAACATG	TCTTGTAACG	GTTTCGGGAC	3180
	CCCAACCAGG	TTGCGCAACG	CCATTTGTCC	AACCTTTACC	ATTCCAATTT	TGGCCAAACG	3240
	ATGTGAAAGT	GTTTAGATTA	GCGCTCTCAA	CAATTTCAAC	ATGTCCaGct	CCGCCACCAT	3300
30	ACTTTGACGG	GAAAACGACA	ATGTCCAACT	TTTGCGGTAA	AAAGCTATCA	TAGTTTTTAA	3360
	TTATTTGCCC	GTATTTTTCA	ATCCTTGCTT	TATTATCAAA	TGGAATATTA	TAAGCGTATA	3420
	AACCTTGTAA	CcTTTCGCCT	GTTGCTATCA	TAAAAAACAT	ATTTGCGTAA	TCGTAACACT	3480
35	GAAATCCATA	AAACAAATCA	GGATTGAACT	GCTTCCCTAA	TGAATTATCA	AACCATTTTT	3540
	CTGCTTGGTT	TTTTGTTATC	AACATTGGTC	AACACCTACC	CTAAATCATT	TGTGTCGTTC	3600
40	ATATTCGTAG	GTGTCATTAC	TTCTTTAATT	GGCGCTTGCC	CTGTTGCTTT	TCTATACTTG	3660
40	TTTTCAGCTT	TATATTTCTT	TAGCTTTTGA	TTTGCCCATT	TACCTTCTTG	AGATGTTGGA	3720
	TTATCTTTAT	ATGTAGTATA	TAAAGCAACA	ACTGTTAAGA	TAATCGATGA	AACACTTTCT	3780
45	TCATCTACTG	GTATCGGACT	TATACCTTTA	TTCGCTAAAA	ACTGATTGAC	TAATGCTAAG	3840
	ATCAATACGA	TGTATCTTGT	TATTACTTTT	GCATCCATTT	GTTTGCTCCT	TTTATCCAAA	3900
	ATAAAAAGCC	AGTGCCGAAG	CACTGACTCT	TAACTATTAC	TTACACTTAC	TAAACCAGAA	3960
50	ACACGACCAA	AAGCTATATC	CTAAAATTCC	CTTAAGCATG	GTAATCACCT	CCTTTAAATG	4020
	CCAAAAATAG	TTTTTAACAA	GGCTATAACA	AATGTACTTA	GAATCGTCCC	TATTAATCCT	4080
55	AGAATCCACA	TCTTGATGTC	TCTAATATTT	TTAGCATTTT	TCTCTTTATT	TTTTTCATCT	4140
55							

	TGCGTTCTCA	GACTGTCTTC	TATTCTGTCG	AATTITTCAA	ACATAGTCTT	ATCATTTTCT	4260
	TCTAATCGCG	TTAAACGCCA	ATCTTGTTCG	TGTCGTTTGG	TAAATCCAAA	CATTACACCA	4320
5	CCCACTTTAT	TCAAATTAAA	AAGCCATAAG	ATTATAACCT	ATGACTCTAG	ATTTTCTGGA	4380
	TACTTTTCTC	CTGTAATAAT	TGCATATTCC	TCTTTATCTA	TAACTTCCAT	ATCTACATAC	4440
10	CACGCTATAT	CTTCTTTACT	ATATTCTTTC	AATTGATACC	ATGTTTTAAT	ATCTTCGAAT	4500
	GTTGGTGAAA	TTAATTTAAG	CATTTTCAGT	CTCTCCTTTA	ACCTCTTCTA	ATTTTTTATT	4560
	AAGTGTCACA	AGTTGTTTTG	CCATTAGTGC	ATTTTGCTTA	TTAACTTGCA	TCGATAACTT	4620
15	TGTACTTTGA	ACAACTTGTT	TCTGCATACT	AGCAACCATT	TTTCGTAAGA	TGTCATCAGA	4680
	AGCGACTGTG	TTTTGTTCTT	CACTGTCAAT	CTGTTGATGC	AAGTCATCTT	TTTCTTCTGA	4740
	ATAATCTTCG	TTAAAAACTA	TTTCCCCATT	TGAATATTTA	AAGGCTTTAG	GTCTAAAAAC	4800
20	TTGAGAGAAA	TTTTCTGGTA	AATTTTCAAT	ATCAATACCT	TCTTCAAAGC	CACCAATGAT	4860
	AGCGTATGAA	ATTATCTCAT	TACGCTTGTT	AACTAATATT	TGCATTATTT	TCTCACTCCT	4920
25	ATAATTTTGT	TAATTGTCCC	TCTATTTGCG	TTCGCACCAG	AGCCTCTTTG	ACTTCCTAAG	4980
	TCGAAATAGA	CATCGTTTGA	TATAGTTAAA	GATGTACGAC	TAGATTTAGT	TAATCCAAAC	5040
	TCATAAACAC	CTCCACCATT	TCCATCACCA	TCTGGAAGAT	TTGAGGGATT	CAATGAAATC	5100
30	TTTCCTCCTC	CAAAAGGACT	GCCAAACTCT	GTAAAGTCAC	CACCTGGAAA	AGTCCCATAA	5160
	AAAATTAATA	AAATAAATTG	GTCTAAACTC	TCATTTAAGT	ACAATGTAGA	GCCCACACCA	5220
	TTTGCTGTTC	CATCAAAAAT	AACCGAATAC	CTTTTATTAA	ACTTGTCATC	TGCGTATAAT	5280
35	TTAGCGTTAC	TTTCGGCCAT	ATTAGCTTTT	GATTGGGCAC	TTTGAACAGT	TTCAAAAGGT	5340
	GTATTGTAAT	CATTAATAGC	TAATTCTGAC	CACTCAGACC	ATGAACCCGC	TTCTTTTCTT	5400
40	TTAACAAATA	CTTTATTTGT	ACCGTTCGGT	CGATAAGTCA	TACGCTTGTA	ATCTGAAGTT	5 4 60
	ACTACTAAAT	ATTCGACAGT	ACCGTTAGTA	CTAACACCTC	TTGGATAATT	TATAGCTTGC	5520
	GAAACATAAA	TAAATTGGGT	TGAATCACCT	ATTCTTTGTT	CTGGATTATT	AAAATCAAAT	5580
45	CCAGTAATCT	GCATTATCTT	ACCATCATCT	TTAGTAATCT	TAGCTTTTTG	CCAATTTGAA	5640
	GTAGAACCAC	TTGTGACTAA	ACCACCACTA	TTCACTGACT	GCTTGAAGGC	TTCATGTTTC	5700
	TCATCCATAT	ATCGCTTTTG	CTCATCGAAT	GTTCTTGAAT	ATGCTTGCGC	TTTATTTTCC	5760
50	AAATCAGATA	TATGGCTATT	AGCAAGTTGC	TTTAATTCAT	CTATACTTGA	AGATTTTGCT	5820
	ATTTGAATAT	CTGATAGACC	TTTTTCTTTA	GCTTTTTCAA	TCAGACTCGC	ATAATCTTCA	5880
55	CCATTTTTTA	TAGCCTCGTC	CATTGCTTTC	GCACGATCCA	TAATAGTTTT	TTCTAATTCC	5940

	TCAACGTTAA	ATGTGATAGT	TCTCTCGACA	ACTACCACGT	CTGAATTACC	TAATTCTGCA	6060
	ACCGAAACTT	GAGCTTGATA	ACTTCCATCT	CGTTTAATTA	CATCATTAGG	TAATTGAAAT	6120
5	TTTAAAATAC	CTTTAAATGG	ATCTAATATT	TCTAGTGGAG	CAACTACCAT	GACTCCTTTA	6180
	CCTCGAATCG	CTATTCGTGC	kTTGATATTT	tCTTCACTCA	ATAATAACGG	TTGATTATTT	6240
10	TTAGTGATAT	TAAAAAGAAG	AACAGAAGAA	TCACTCTCTC	CTGTTCTAAA	AGTTATATCT	630C
	AGATTTGAAA	TATTTCCATA	ATGCGCTGTG	TTTTCTAAAT	TTATAGCTAC	AGATTTCTCT	6360
	AAATTACTCA	TTAACTTATA	ATTCTCCCTT	CGTGTAAAGT	CCATGGCCCT	GAACTIGTTT	6420
15	TACTATCATA	ATTTTTCAAT	AGTATCTCAG	CAGATGCTGT	AACACTATTA	CGAACTAGCC	6480
	TATGAACAAA	GCCACCTGTG	TTTGAAGCTT	СТАСАТАТАА	GTTCCAACCA	GCTACCCCTT	6540
	TACGTTCAGT	TGGAAAATCT	GTAAAACGTT	TTGTATCATC	CGTAGTTAAA	TAAAACGACA	6600
20	TGCCTACTAT	GTTAATATCT	GACATTTTTG	TGATGAATGA	AGGTACTCTC	TCCCATTTAC	6660
	CACTATITTT	AGGCACATAA	TTCCAGTCCG	AAATGTCTCC	AGTTCTTCCA	GAAAGCACCC	6720
, c	TTTCAAAAGT	CATCATATTC	CTTGCATAAC	TATTACGCGT	CAATATCTGA	ATTACATCAC	6780
25	CGCCAGTTTG	TGGTGGCTTA	ACTTCCAAGA	ACCAACCTGC	ATCACGCCAT	TCTCTTGGTA	6840
	ATGGGAAATC	ATCGATTTGA	ACTGTATGAT	CAGTGTATAA	ATAGTAAAGA	CCTGGCTCTG	6900
30	TTAACATCCC	AAGATTCTTA	AGTTTATCAG	GCCTCATTGG	TAAAGGTTTA	ACTCTACCAC	6960
	CTGTGTCACT	Catgataaaa	GGAACGCCTC	TTGAGTGAAG	TATTTCTAAA	ATACCTCTTT	7020
	GCCCAATCAT	GAAAATACGA	TGTGTTCTAT	TTCCaTCACC	ACCGACAGTA	ACACCTAGCA	7080
35	TCAAAGCTTT	TTTACCACTA	TCTTTGTCAT	AGTATATTTG	CAAACCTTtC	TgCTTCCGCA	7140
	AATTCGCCAG	GAAATGAATC	tAgTGTTCCA	CCATAGTCAG	CATTAACCTG	ATACGCTTCT	7200
	TCTCCTGTTT	CTAAATCGAA	AGCCGTTAAA	TAGTTTCTAT	TATTTGGATT	ACTGTCTCCT	7260
10	GTATACCAAT	ACAAGTATTT	TTCATCAAAA	GTCACACCCT	GCATTGGTTG	GGTTTCGTTT	7320
	GTTAGTCTCA	TAGGGATACT	GATTTTATGC	AAAACTTTAT	CAATATTTTT	ATCAACATCG	7380
15	TCTAAACTTC	TTATCTCTAT	ATAAnTCATT	GAGTTTTCAA	GTTCCCACTG	ACTTCTAGGT	7440
	CTCTCaATTC	TGTATAGAAT	TTTATTTTCT	TTTTCATTTA	TGACAGGGGT	GATGTAGGGT	7500
	TTTTCTGGGT	GTCCTGTAAA	TACATCTTGC	ATACCATACT	TGCCATAGCT	AATTTCCACA	7560
50	TTAGGCGTAT	ACTTGAAACG	AACTAATGTA	TTCTCATTAT	TACCATTTAA	GATAAAACTA	7620
	TAAATCCATA	ACTCATCATC	AATATATCTA	TAACCGTTAT	GTGTACCATG	ACCCCCACCT	7680
	ACAATCAATG	AGCTGTCTAT	AAATTGACCA	TTAGGTCTTA	GACGACTTAG	CATATAGCCA	7740

	ATTACTGCAT	TTGTAAgAGG	TGCAAGTTCT	GTCACAAATA	AAAATTCTTG	CTTATCAGGT	7860
	TCAAAACGAT	ACTCGATATC	AAGAATTTCT	TGTTTGGTCT	TATTTAATTC	TCTTATAGTT	7920
5	TCCTCTTTAT	TAATTTGAGT	TTTGGTTTCC	CAATCGTCTA	AATGTICTTT	TAATGTGTCA	7980
	AAGGTTTCGC	CGTTTACATT	AACTCGAGCT	TGAACAATCT	CATTAGCACT	GTTATTACGT	8040
0	GGTGCCACAA	CAAGTGCGTT	AATTTGACTT	TGTAAAGATT	TGTTTACTGC	TGCTTGCGAT	8100
	CTACCATTAT	AATAAATTTG	CTCAGCGAAG	TGTTGAATTG	TTTTAGCTYT	CTGATGCAAC	8160
	TTAAACTCTG	TTGTCAAGCC	AAGCGCAAAT	TGCTCTATTC	TTTGTAAGTT	TTGTATTTCC	8220
5	TTAGCTCTAT	AATCTCGACC	TGCTAAAGCT	CCCAAATCCT	TTATTAAATA	CAAATTTTCC	8280
	ATAATGCACC	TTCCTTTCTA	ATAAAATAGC	ACTGTACCAA	GTTTCCCACT	ATCGTCAACT	8340
	GTTATTTTCC	ACAATTTACC	GTTTGGGGAT	TTCTGTACAA	TGCTATTTTG	AATAATTgcC	8400
0	TGctTCGCCT	ATTTTTAAAT	TATCTAATTT	ATTTKTATCA	TTTACCGAAA	TGATACCGTC	8460
	TTGAGGCAAT	CCATCAATAn	CACTACTGCC	TGCATAAGGT	ATCCCATTTA	TAGCTTTCCA	8520
5	ATGTGTAGCT	GGAAAGTACT	GTTTATCGT				8549
	(2) INFORMA	ATION FOR SE	Q ID NO: 6:	:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3601 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

35

40

45

50

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

AGGCGTGTAG	TGACTTACGG	nTAGGAAACT	ATGTATCCGA	ATGATTTATT	GAGACCAAAA	60
AGGCATTAAA	GTCCATTGAA	ATATCnGGTA	GCGmGTTGGT	ACgTGGACGT	GGGGCCCTA	120
GATGTATGAG	TCAACCATTA	TTCAGAGAGG	ACATTTAACG	TAATAAATTA	TAGAmACGAG	180
GGTGAAAATA	ATGACAGAAA	TTCAAAAACC	GTATGATTTA	AAAGGCAGAT	CATTATTAAA	240
AGAAAGTGAT	TTTACCAAAG	CAGAATTCGA	AGGACTTATT	GATTTTGCAA	TTACATTAAA	300
AGAGTATAAG	AAAAACGGTA	TTAAGCATCA	CTACTTATCT	GGAAAAAATA	TTGCACTACT	360
ATTCGAAAAG	AATTCGACGA	GAACGCGTGC	TGCGTTTACA	GTTGCGTCTA	TTGATTTAGG	420
TGCGCATCCA	GAATTTTTAG	GAAAAAATGA	TATTCAATTA	GGCAAAAAAG	AATCTGTAGA	480
GGATACTGCG	AAAGTATTAG	GTAGAATGTT	CGATGGTATT	GAATTCCGTG	GTTTTTCACA	540
ACAAGCTGTT	GAAGATTTAG	CGAAGTTCTC	TGGTGTACCG	GTGTGGAATG	GATTAACAGA	600

	TCTAGAAGGA	ATAAACTTAA	CTTACGTTGG	AGATGGACGT	AATAATATTG	CGCATTCATT	720
	AATGGTAGCA	GGTGCTATGT	TAGGTGTTAA	TGTAAGAATT	TGTACACCTA	AATCATTAAA	780
5	TCCAAAAGAG	GCATATGTTG	ATATTGCAAA	rGAAAAaGCG	AGTCAaTATG	GTGGTyCAGT	840
	CATGATTACG	GATAATATTG	CAGArcCAGT	TGAAAaTwCm	GATGCTATAT	AT mCAGATGT	900
10	TTGGGTATCG	ATGGGTGAAG	AAAGTGAATT	TGAACAcGTA	TTAATTTATT	AAAAGACTAT	960
	CAAGTGAATC	AACAGATGTT	TGATTTAACA	GGTAAAGATT	CAACGATATT	CTTACATTGT	1020
	TTACCAGCAT	TCCATGATAC	AAATACACTT	TATGGACAAG	AAATTTATGA	AAAATATGGA	1080
15	TTAGCTGAAA	TGGAAGTTAC	AGACCAAATC	TTTAGAAGTG	AACATTCAAA	AGTGTTTGAT	1140
	CAAGCTGAAA	ATAGAATGCA	TACAATTAAG	GCAGTAATGG	CAGCAACATT	GGGGAGTTAA	1200
	TCACTAAATG	GAACGATATG	AATATGATGT	GTCTGATGAT	ATAAGTGTCA	TGTACAGACA	1260
20	CCTCATATTG	GTATTAAAGG	AGAAATGAAT	ATGAACGAAT	CAGGAGATAA	CAAACTCAGT	1320
	AAATCTTCTT	TAATTGGACT	AGTTATAGGA	TCCATGATTG	GTGGCGGTGC	GTTCAATATA	1380
25	ATGTCTGATA	TGGGCGGTAA	AGCCGGTGGA	TTAGCCATTA	TTATTGGTTG	GATTATTACA	1440
25	GCTATAGGAA	TGATTTCATT	AGCGTTCGTA	TTTCAAAATT	TAACCAATGA	ACGGCCGGAG	1500
	CTAGACGGTG	GTATTTATAG	TTATGmTCAA	GCAGGATTTG	GCGATTTTGT	AGGATTTATC	1560
30	AGTGmTTGGG	GATATTGGTT	CTCAGCGTTT	TTAGGCAATG	TTGCCTATGC	AACACTATTG	1620
	ATGTCAGCAG	TAGGTAACTT	TTTCCCGATT	TTTAAAGGAG	GCAACACATT	ACCAAGTGTT	1680
	ATTGTCGCCT	CGTTACTACT	CTGGGGTGTC	CATTTCTTGA	TTTTAAAAGG	CGTTGAAACA	1740
35	GCAGCATTTA	TCAATAGTAT	TGTTACTGTT	GCAAAGTTAA	TACCGATTTT	ACTTGTAATC	1800
	ATATGCATGA	TAATTGCATT	CAATTTTGAC	ACTTTTAAAA	CAGGCTTTTT	CAGTATGACG	1860
40	TCAGAGGGTG	TATTGCCATT	TAGTTGGGCG	AGCACAATGA	GCCaaGTtAA	AAGTACGrTG	1920
40	CTAGTGACAG	TTTGGGTGTT	TATCGGTATC	GAAGGTGCAG	TAATTTTTTC	TAGTAGAGCT	1980
	naaaatgaga	AAGATGTAGG	TAGTGCCACG	GTTATAGGAC	TTATATCAGT	TTTAATTATC	2040
45	TATYTCTTAT	TAACTGTATT	AGCTCAAGGC	GTGATTTTGC	AAAATCATAT	TTCGCAATTA	2100
	GATTCGCCAA	GTATGGCACA	GGTGCTTGCA	ACTATTGTAG	GTGGTTGGGG	ATCTACACTT	2160
	GTAAATATTG	GTTTAATTAT	TTCGGTACTA	GGTGCATGGT	TAGGATGGAC	ACTGCTTGCT	2220
50	GGTGAATTAC	CTTTCATTGT	TGCAAAAGAT	GGATTATTTC	CAAAATGGTT	TGCTAAAGAA	2280
	AATAAAAATG	GAGCACCTGT	AAATGCACTG	CTTATTACCA	ATATATTAGT	ACAATTATTT	2340
	TTAATAAGTA	TGCTATTTAC	ACAGAGTGCG	TATCAATTTG	CATTTTCACT	AGCATCAAGT	2400

	CGACAGCAAG	CAACTACTAA	ACAATGGACG	ATTGGTATCA	TAGCCTCAAT	TTATGCTATA	2520
5	TGGCTTATAT	ATGCAGCAGG	TATCAATTAC	TTATTATTGA	CGATGTTACT	TTATATTCCA	2580
5	GCTCTTCTTG	TTTATACAAT	CGKTCmAAAG	rATWATCAGa	CACGTTTGAT	TAAATCAGrC	2640
	TATATTCtTT	TTATGATTAT	tATCGTACTT	GCAGTTATCG	GGTTAATTAA	GTTATTGATG	2700
0	GGAACGATAA	ATGTTTTTTA	AAAGGAGCGA	CAAAAATATG	AAAGAGAAAA	TTGTCATTGC	2760
	ATTAGGCGGT	AATGCGATAC	AGACAACAGA	AGCAACAGCT	GAAGCACAAC	AAACAGCTAT	2820
	TAGATGTGCG	ATGCAAAACC	TTAAACCTTT	ATTTGATTCA	CCAGCGCGTA	TTGTCATTTC	2880
15	ACATGGTAAT	GGTCCACAAA	TTGGAAGTTT	ATTAATCCAA	CAAGCTAAAT	CGAACAGTGA	2940
	CACAACGCCG	GCAATGCCAT	TGGATACTTG	TGGTGCAATG	TCACAGGGTA	TGATAGGCTA	3000
	TTGGTTGGAA	ACTGAAATCA	ATCGCATTTT	AACTGAAATG	AATAGTGATA	GAACTGTAGG	3060
20	CACAATCGTT	ACACGTGTGG	AAGTAGATAA	AGATGATCCA	CGATTTGATa	ACCCAACTAA	3120
	Accaattggt	CCTTTTTATA	CGAAAGAAGA	AGTTGAAGAA	TTACAAAAAG	AACAGCCAGA	3180
25	CTCAGTCTTT	aAAGAAGATG	CAGGACGTGG	TTATAGAAAA	GTAGTTGcGT	CACCACTACC	3240
	TCAATCTATA	CTAGAACACC	AGTTAATTCG	AACTTTAGCA	GACGGTAAAA	ATATTGTCAT	3300
	TGCATGCGGT	GGTGGCGGTA	TTCCAGTTAT	AAAAAAAGAA	AATACCTATG	AAGGTGTTGA	3360
30	AGCGGTTATA	GATAAAGATT	TTGCTAGTGA	GAAATTAGCA	ACGCTGATTG	AAGCAGATAC	3420
	CTTAATGATT	CTTACGAATG	TAGAAAATGT	ATTTATTAAC	TTTAATGAAC	CTAATCAACA	3480
	ACAAATCGAT	GATATTGATG	TAGCAACACT	GAAAAAAtAC	GCGGCACAAG	GTAAGTTTGT	3540
35	GGAAGGATCG	tGTTGCCAAA	AATAGAAGCT	GCGtACgtTT	GTTGAaAGtG	GGG&AACCAA	3600
	A						3601
10	(2) INFORM	ATION FOR SE	EQ ID NO: 7	:			
15		EQUENCE CHAM (A) LENGTH: (B) TYPE: nu (C) STRANDEM (D) TOPOLOGY	573 base pa icleic acid DNESS: doub	airs			
	(xi)	SEQUENCE DES	SCRIPTION:	SEQ ID NO:	7 :		
50	CGACACTATT	AAATGAATTA	GAGCACAATC	TAACAAATCA	AATTCATTTT	TCAAAAGATG	60

AACGACTCAC ACATATCGCT TTAAAGTTAT TCGAAACAAC CGATCCTGTT TCAACAAAGC

AACTTGCGCA AGATGTTAAT GTTTCGCGTC GGACAATTGC AGATGATATT AAAATGATTC

55

120

	TTATTGGTGA GGAAGATCAT TATCGTAAAG CGTATGCACA CTTTATACAT CAATATATGA	300
	AACAAGCTGC ACCTTTTATA GAGGCGGATA TCTTTAATTC AGAATCAATC GCATTGGTTC	360
5	GCCGTGCCAT TATTAAGACA TTAAATAGTG AAAATTATCA TTTAGTTCAG TCGGCTATCG	420
	ATGGCTTAAT CTATCATATA CTCATTGCCA TTCAGCGTTT AAATGAAAAT TTTTCGTTCG	480
	ATATACCTAT CAATGAAATT GATAAATGGC GACATACTAA TCAGTATGCn ATTGCTTCAA	54 0
10	AAATGATAGA AAACTTAGAA CGCAGTGTAA TGT	573
	(2) INFORMATION FOR SEQ ID NO: 8:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1221 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
25	TTGATATTTA TAACGTTATA TTTTAATAGT TCACCTGGAT TATTAAATAA ATAGTCCGCC	60
23	AAATTTTCTT TTTCTTTATC AATCTGATKG TAATTAACAC TTTCGACTTC TGTAGGAATT	120
	CTAATGTCAA CAGAAGCATT GATATAAGCT TGATGTTGCA TGCAATCACA CTCCTAATCC	180
30	TTCATmTmAA ACGGAGAAGT AAACCCGTCA CTATTCAAAT TCAATCCTTT TGCCCAATCA	240
	ACAGGCTTAT TCATGATAGT TTCGATTTCC TTAAGTCCAT TTGAACCTCT AGGTATTTCT	300
	ACAATTACTT CATCATGGAC ATGGCCAACT ATTTTAAAAC CTAATGCTTC AAGCCTTGCT	360
35	ATAGAAATCG CAAGTAAATC CCTTGCAGTT GCTTGAACAA TATTCTCGAC TAACTTCCCA	420
	CCATACGTTT TTAACTTTGA CCATTTACGG TTAAGATCTA ACCCCATAAA TTCAACAACT	480
10	TGACTACCCC AACTATTTTC ACCAACTAAA GCTTTTGGAT AAGCTAAAGC TCTTCCACTA	540
40	GGCAGTTCAA TCATTAGAAA ACCTTTTTTC ATATAAAATC TAAGTCCATG TGTATGATGC	600
	GTCTTTCGGG ATTTTACAGT ATTAATTGCA GCCTCTTGGC AAGCCTTCCA AAAATTAACT	660
45	ATGTTAGGAT TTGCGTTACG CCAACTATCA ACTAAACCTT GTAACTCGTT TTCTTCAATG	720
	CCCATTTCCA ATGCACCCAT TGCTTTTAAA GCTCCAGCGC CACCTTGATA GCCTAAAGCT	780
	AATTCGGACA CTTTTCCTTT TTGTCTGAGA GGGTCGCCTT TAGTTATGCT TTCTACCGGT	840
50	ACATTAAACA TTTGAGAAGC CGATGCTTCA TATATCTTTC CGTGTGTGTT GAATACATCT	900
	AAACGCCATT GTTCTTTTGC ATACCATGCT ATGACTCTTG CCTCTATTGC AGAAAAATCA	960
55	CTTACTGCTA GTTCATTACC TTCTTCAGCA GTAAATGTCG TCCTAACTAA TTGACTTAAT	1020

	AGATCTCTTG CTATTTCTAA TTCAGTATCT GAAATATAAT GCTTTGTTAA ATTCTGAAGT	1140
	TGTACACCTC TACCTGCCCA TCTTCCAGTA CCGGCACCGT AAAATTGAAA CAGACCTCTT	1200
5	ACCCGTTCAT CACTGCACAT C	1221
	(2) INFORMATION FOR SEQ ID NO: 9:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1090 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	TTTTGTTTGG TATGAGGTAG CAATGACGAC GTGTCATTGG TGGAGATTGT AAAAATACAT	60
20	AATAAAAAGA AGCGGCAATG TATACCGCTC CTTTTTTATA CTACATACCG ATTTTCAACC	120
	ATCTCTTTCT ACTTAGTAAT AAGACAATAG TATTAACTAT AAATAGAAGA ACGAAGAATG	180
25	ATACTATATT TATAATTTCA GTAGGACACA TAAATGTTGA CTCGTTATTC AATATTTTTT	240
	CTACGGCACG ATACATCGTA TTGCTCGCCT CAAATGGAGC AACGATACCA AATATATTTT	300
	TATTAATGGC AACTAAGATG ACTGAACCAA TCCAATATAC AATGCTGATA CCTAAGCTGA	360
30	TTAAAATGTT AGGTGAAACC ATACTAATCG TTCCAACAAC TAAGATATAT TGTAAGATAA	420
	CGAGTGAAAA TAAGATTATT AATAGTAAGT AATGTGAGAA ATCCGAATAT ATAATTGAAA	480
	TAATAGTGAT ACTTAGAATT ATGAACACTA AACATTCAAA AAATAACACT GCTACCTTTT	540
35	TATAGAAGAA GGTAAAGATA TTATCGCCAA TCAATTTATA AAACAGGATA TTTTTATTCG	600
	AATACTCTTT ATTAATAAAA TATGCAATAA CAAATGAAAA TAGTAAGAAC CCTAATTGCG	660
	TTGCAACAGT ATATGAACTG AAGAAAAACT GGCTATAGCT TAAACTTTTA ACTTTGTCTA	720
40	TACCTATTGG TAAAAAATAC CCAAGTAAGA AAAGGAATGT GAATAGCACA ACAAGCGTGT	780
	AAATAATTTT ATTGGAAATA CTTTTTTTAA ATTCTAATTT CAAAGTGGAC ACCTCAATTA	840
4 5	TAAATTAATG TAATCATTTA TGACTTCTTC TTTTGATTGG TACTCTTCTA TTTGAAGGTC	900
	TTTAAAAATA AAGTATTTAC CCGGCAAAGC ACTTAAATCG GATAAATTAT GTGTAATATT	960
	GATAATAGTT TTAGTTTGAT GGCTTTGAAT AAAAATCATTT AAAAAATTCAT AAATTTCATT	1020
50	AACTGTTTTC TTGTCTAAAG CGTTTGTAAC TTCATCTAAT ATGATTAAAT CATGATCTTC	1080
	CAATAAGAAA	1090
	(2) INFORMATION FOR SEQ ID NO: 10:	

(A) LENGTH: 904 base pairs (B) TYPE: nucleic acid

5	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
10	TTAGGACTAT TTTATCATAT TCATTTAAAT TACGGCTAAA AATTTTAAAA ACGGGGATTA	60
	ATATATGGAA TTAAGCTATG AAAGTTAATT GATACTTGCA TTTTACGCTG ATTTATATAA	120
	GAATAACTAT TGTATAGTTT TAAAAACGAA CGTACGTTTG CAGGAGGCGA AATCATTGGC	180
15	AATGAATAAA CAAAATAATT ATTCAGATGA TTCAATACAG GTTTTAGAGG GGTTAGAAGC	240
	AGTTCGTAAA AGACCTGGTA TGTATATTGG ATCAACTGAT AAACGGGGAT TACATCATCT	300
20	AGTATATGAA ATTGTCGATA ACTCCGTCGA TGAAGTATTG AATGGTTACG GTAACGAAAT	360
	AGATGTAACA ATTAATAAAG ATGGTAGTAT TTCTATAGAA GATAATGGAC GTGGTATGCC	420
	AACAGGTATA CATAAATCAG GTAAACCGAC AGTCGAAGTT ATCTTTACTG TTTTACATGC	480
25	AGGAGGTAAA TTTGGACAAG GCGGCTATAA AACTTCAGGT GGTCTTCACG GTGTTGGTGC	540
	TTCAGTTGTA AATGCATTGA GTGAATGGCT TGAAGTTGAA ATCCATCGAG ATGGTAATAT	600
	ATATCATCAA AGTTTTAAAA ACGGTGGTTC GCCATCTTCT GGTTTAGTGA AAAAAGGTAA	660
30	AACTAAGAAA ACAGGTACCA AAGTAACATT TAAACCTGAT GACACAATTT TTAAAGCATC	720
	TACATCATTT AATTITGATG TITTAAGTGA ACGACTACAA GAGTCTGCGT TCTTATTGAA	780
35	AAATTTAAAA ATAACGCTTA ATGATTTACG CnwGGGTAAA GAGCGTCAAG AGCATTACCA	840
	TTATGAAGAA GGGAtCaAAG rGTTgTTAGT atGTCCAaTG ArGGAAAAGA AGTTTTGCCT	900
	GACG	904
40	(2) INFORMATION FOR SEQ ID NO: 11:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11271 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
50	GATTTCTAAA TCAAGATCTG TTTTACGATA ACCATTCAAA CCTTGACGTT CATCTTCTTC	60
	AGGTTGATTT TGTTGCTGTG TGTCTTTGTT GTCAGAAGTC GCTACTGTTT TTTTATTATC	120
55	TGTTTCTTTA GTCATAACAA ACGCCTCCGT TATAAAACGC TATATTTAAT GATATGTGAT	180

	TTAATAAGAC	GATTCAGCAA	GTTTTAAAGT	ATTATTTGAC	TATGTTGGAT	TAGGCATCTA	300
	GTCCTATAAT	ATCACTGACA	TTGTCAAAAT	GATGATCTTT	TAAGTAACGT	GCGATGCCTT	360
5	TGTTCATTTT	CTTAGTTAAA	CCTGGGCCTT	CAATAACAAG	TGATGAATAA	ATTTGAATAA	420
	GTGACGCACC	GTGACGCATC	ATTTTGATTG	CATCTTCAGT	ACTGAATACG	CCGCCTGTAC	480
10	CTATAATTAA	AAATTCACCA	TTTGTTTGCT	GATAAgCATa	CTTAATCAAT	TTTAAATTAC	540
	GTTCAAATAA	TGGACGACCA	CTCAAACCGC	CTTCTTCGAC	TTTATTAGCA	GAAGTTAAAC	600
	CATCTCGTTG	TCGCGTTGTG	TTTGCTAAGA	TGATACCGTC	AAATGTCTCA	GTAATCGCTG	660
15	GTAATAGTGC	TTTTAAGCCA	TCGAAATCCA	TATCAGACGT	TAGTTTTAAA	TAAATTGGCA	720
	CTGTTACATC	ATGTTGTTTT	TTAAATGCTG	TTAAAGCTTG	GCATAACATT	GAAAATTCAT	780
	CTTTATCATG	GAAGTTTTGA	AGATTTTCAG	TATTTGGAGA	ACTGATGTTG	ACTGTGAAAA	840
20	ATGAAACGTC	GTGTTTAAAC	GTATCAATAA	CCTTTATATA	ATCTTGATAA	CGCGCTTCAT	900
	AAGGTGTCAT	TTTATTCACA	CCAACATTGA	TACCAACAGG	TACTTGATAA	GCATTTTTAC	960
	GCAAATGACT	TAGTGCTTTG	TTCATACCAA	TATTATTGAA	GCCCATTCGA	TTTATCAAGG	1020
25	CGTCATCTTC	TAATAATCTA	AACATGCGTG	GTTGAGGGTT	ACCCGGTTGA	GGTTTAGGTG	1080
	TGATACCACC	TAATTCTAAA	GCACCGAATC	CAAGGTGTTC	CAATGCTTTT	GGTACTTCGC	1140
3 <i>0</i>	AAGATTTGTC	GAAACCAGCT	GCTAAgCCAA	TTGGATTGTC	GTACGTATTA	CCTTGTATCG	1200
	TTTGTGATAA	CGTTGGATTC	TTATAAGTAA	ATAGTTTATC	GACGACTGGG	AATAAAACCG	1260
	GaAACTTTTG	TaACGTTTTT	AATGCATCGA	TAGTTAGTCC	GTGTGCTTTT	TCGGGTTCGA	1320
35	TTTTGAATAA	GAAAGGTTTA	ATTAATTTGT	ACATGAGTAT	GCTCCTATTT	CATTATATTT	1380
	GAGGCTTACT	ATCCTCAACT	TAATATATGT	GAAATATATT	CTTTTAATAG	ACTAGCATTT	1440
	CCATĂCATAA	TTTCCTAGTT	AAAACTAAAA	AGTTTTGAAA	ATTGACGCAA	gtttgaataa	1500
10	CGTTTTTAAG	ATTAAATCAT	CCTAATTAGG	CAATATTATA	GTATAAAGTA	AGTAGATTGG	1560
	AAGGTGTTTG	TATGAATGAA	CAATGGTTAG	AGCATTTACC	TTTAAAAGAT	ATTAAAGAGA	1620
15	TTTCACCAGT	GAGTGGTGGT	GATGTAAACG	AAGCATATCG	AGTCGAAACA	GATACGGATA	1680
.5	CATTTTTCTT	ACTTGTCCAA	CGTGGACGTA	AAGAATCATT	TTATGCTGCA	GAAATTGCAG	1740
	GTTTAAATGA	ATTTGAACGT	GCAGGTATCA	CGGCACCTAG	AGTAATTGCA	AGTGGCGAGG	1800
50	TTAACGGTGA	TGCGTATTTA	GTGATGACGT	ATTTAGAAGA	AGGGGCTTCA	GGGAGTCAAC	1860
	GCCAATTAGG	GCAACTCGTA	GCTCAATTAC	ACAGTCAGCA	ACAAGAAGAA	GGCAAATTTG	1920
	GCTTCTCATT	ACCTTATGAA	GGTGGCGATA	TTTCTTTTGA	TAATCATTGG	CAAGACGATT	1980

	GGCTATGGGA	TGCCAACGAT	ATCAAAGTAT	ATGACAAAGT	GCGACGTCAA	ATTGTGGCGG	2100
	AATTAGAAAA	GCATCAAAGT	AAACCGTCTT	TATTACATGG	TGACCTATGG	GGTGGTAATT	2160
5	ATATGTTCTT	ACAAGATGGT	CGTCCGGCGT	TATTTGATCC	AGCGCCATTA	TATGGTGACA	2223
	GAGAATTCGA	TATCGGTATT	ACAACGGTAT	TTGGTGGTTT	TACGAGCGAA	TTTTATGATG	2283
10	CGTATAATAA	ACATTATCCA	CTCGCAAAAG	GTGCATCCTA	TAGACTTGAA	TTTTATCGTT	2340
	TATATTTATT	GATGGTCCAT	TTATTGAAAT	TTGGTGAGAT	GTACCGTGAT	AGTGTTGCGC	2400
	ATTCTATGGA	TAAGATTTTA	CAAGATACAA	CAAGTTAGTT	AAGACGTTAG	ATTGAGATAA	2460
15	ATAGATAATA	TGCACAGATA	TTTTTACAAT	GAGAAGCGAT	ACAGCTGCCT	CAATAAAAAT	2520
	ATTTGTGCGT	TTTTATTGTT	GGAAAATAAA	ATTTTAATCG	CTATTGTTAA	TTTCTGTAAT	2580
	GTAAAACAAG	GTTGAGTTAC	AATAAAAGTG	ATTTTATAAC	TTTTTGTTCA	ATAAAATTCT	2640
20	AGGAATGATA	CATATTTATT	GATACAATAA	TTTTGAATAT	AATCATAAAA	CAATATTTAA	2700
	GTATAATTGA	ATGTTTGAAT	ATCATATATT	GATACAGTTT	CTAATAATTT	TAAAATAATT	2760
26	TAAATGGAGA	GAGGTGTAAA	TGATGAGTAC	AGTTCAAAGT	GATATTTTTA	AGACCAATAG	2820
25	TGCATCATCA	TCTATTAAAA	GCGCTGTTGA	AACATGTAAT	AATGTGTCGA	AACCGGATAA	2880
	AGATGAAAGT	ACAACAGTAA	GTGGAAATAA	TAATGCTCAT	AGTGTGATAG	ATGATTTGAT	2940
30	GAGTAAGAAT	CAATCTGTTG	CTGAAGCAAT	ACGAACTGCG	AGCGATAATA	TACAAAAAGT	3000
	TGGTGAGGCT	TTTGACCAAA	CTGACGTAAT	GATTGGTAAT	GAAATTGGTA	AAAATTAAAA	3060
	CGTGGTGAAA	TGATGTCGAA	TAAACTGGAT	GAAATCAATA	AAATAATCAC	AGCGAAACAT	3120
35	GAGCAAATGG	ATGACTTATA	TGATGAAAAG	CGAGAGGTTA	AAGCATTGAT	AGATGAAAGT	3190
	GATGCGCTTA	ATCATTCGAT	AGATCAATTA	TATCAACATT	TAGGTGAGCG	TTATTATAGT	3240
	AGCAATATGG	CTAGTCGTAT	GGAACAGTTC	CGCGATGAAT	TTCATTTTGC	GAAACGACGT	3300
10	TCAACGGAAG	CGTTATACGA	GCAGCAACAG	CAAATTCAAC	ATGGCATTCG	TAAAGTGGAA	3360
	GAAGAGATGA	TTGACTTGGA	AATGCGAAGG	AATGTTGAAA	TTGAGACGGT	GACAAAGGAG	3420
15	GAAAATAAAT	GGAAACAATA	GGAAGCATTA	TTTATTTAAA	AGAAGGTTCG	CAAAAGTTAA	3480
-	TGATTATTAA	TAGAGGmCCA	aTTGTAGAAA	TTGAAAATCA	AAAGTATATG	TTTGACTATT	3540
	CTGCATGTAA	ATATCCGATT	GGTGTTGTAG	AAGATGAAAT	TTATTATTTT	AACGAGGAAA	3600
50	ATATAGATTC	AGTTATTTTT	AAAGGTTATT	CTGATCAAGA	TGAGGTTAGA	TTTCAAGAGT	3660
	TGTTTGAAAA	TATGAAACAA	AATTTGGATA	GTGAAATACA	ACGTGGAGAA	GTTACACAAC	3720
	AATAAAGAAA	TACTTTTTCT	TTATTGGGGT	GGGACGACGA	AATAAATTT	GTAAAAATAT	3780

	ATGTCATTCA	TAATCATTTG	AACTAAACGT	AGCAGCCTTA	AATTTTAAAA	AAAGACACAT	3900
	ACCAACTTCC	GAAATGTAGA	TGAATTCTCT	ACAATAACGG	AAGTTTTTCT	TTTAATATTG	3960
5	AAATTTCTCA	AGGATAGGTC	TATACTTTAT	AAATCGTAAT	TATTACGATT	TATAATCAAA	4020
	AACAATAACT	TGAAATAGAT	CATTGAGGGA	GTGTTAATAT	GCAACATCAT	AAAGTGGCTA	4080
10	TTATcGGTGC	CGGTGCTGCA	GGTATAGGTA	TGGCCATTAC	CTTAAAAGAT	TTCGGTATAA	4140
	CAGATGTCAT	TATTTTAGAA	AAAGGAACAG	TAGGACATTC	ATTTAAACAT	TGGCCGAAAT	4200
	CGACCCGTAC	GATCACGCCA	TCATTTACGT	CTAATGGATT	TGGCATGCCT	GATATGAATG	4260
15	CAATTTCCAT	GGATACTTCA	CCAGCATTTA	CATTTAATGA	AGAACATATT	TCCGGAGAAA	4320
	CATATGCTGA	ATATTTACAA	GTGGTTGCCA	ACCATTACGA	GCTGAATATC	TTTGAAAATA	4380
	CAGTTGTCAC	AAATATATCT	GTAGATGATG	CATATTATAC	GATTGCAACG	ACAACAGAGA	4440
20	TATATCACGC	GGATTATATC	TTTGTCGCAA	CAGGTGATTA	TAATTTCCCT	AAAAAgCCAT	4 500
	TTAAATATGG	TATTCATTAT	AGTGAAATTG	AAGACTTTGA	TAACTTTAAT	AAGGGGCaAT	4560
	ATGTGGTTAT	CGGAGGTAAT	GAAAGTGGCT	TTGATGCTGC	ATATCAACTT	GCAAAAAATG	4620
25	GCTCTGACAT	CGCACTTTAT	ACTAGCACAA	CCGGTTTAAA	TGATCCGGAT	GCTGATCCTA	4680
	GTGTTAGATT	GTCACCTTAT	ACACGTCAGC	GACTAGGTAA	TGTCATTAAG	CAAGGTGCTC	4740
30	GCATCGAAAT	GAATGTACAT	TATACAGTTA	AAGATATTGA	TTTTAACAAT	GGACAGTATC	4800
	ATATCAGTTT	TGATAGCGGA	CAAAGTGTGC	TTACACCTCA	TGAACCAATA	CTAGCAACTG	4860
	GCTTTGATGC	AACAAAAAT	CCAATCGTTC	AACAATTATT	TGTGACAACA	AATCAAGATA	4920
35	TTAAATTAAC	AACACATGAT	GAATCGACAC	GTTATCCGAA	TATTTTTATG	ATTGGTGCAA	4980
	CAGTTGAAAA	TGATAATGCC	AAATTATGCT	ATATCTATAA	ATTTAGAGCG	CGATTTGCAG	5040
	TACTTGCACA	TCTTTTAACA	CAGCGGGAAG	GCTTACCAGC	TAAACAAGAT	GTCATTGAAA	5100
10	ATTATCAAAA	AAATCAAATG	TATTTAGATG	ATTATTCATG	TTGTGAAGTG	TCATGCACAT	5160
	GTTAGAAGTG	AAATATGATA	TGAGAACTGG	GCATTATACG	CCCATACCTA	ATGAACCTCA	5220
1 5	TTATTTGGTT	ATTAGTCATG	CGGATAAACT	TACCGCAACA	GAAAAAGCGA	AATTAAGATT	5280
•3	ATTAATCATA	AAACAGAAAT	TAGATATTTC	ATTGGCAGAA	AGTGTAGTTT	CTTcGCCTAT	5340
	AGCGAGTGAA	CATGTGATAG	AACAATTGAC	ACTATTTCAA	CATGAGCGAC	GACATTTAAG	5400
50	ACCTAAAATA	AGTGCGACAT	TTTTAGCCTG	GTTGTTGATA	TTTTTAATGT	TTGCATTGCC	5460
	AATCGGTATC	GCTTATCAAT	TTTCAGATTG	GTTTCAAAAT	CAGTATGTGT	CAGCATGGAT	5520
	AGAATATTTA	ACTCAAACAA	CATTGCTCAA	TCACGATATA	TTACAGCATA	TATTATTTGG	5580

	ATTGATTAGT	TTATCAACTG	CTATAATTGA	TCAAACAGGA	CTCAAATCAT	GGATGATATG	5700
	GGCAATTGAA	CCGTCAATGT	TATGGATAGG	ATTACAAGGT	AATGATATCG	TGCCACTATT	5760
5	AGAAGGGTTT	GGATGTAATG	CAGCAGCTAT	TTCACAAGCA	GCACACCAAT	GCCATACCTG	5820
	CACGAAGACA	CAGTGTATGA	GTTTAATAAG	CTTTGGTAGT	TCTTGTAGTT	ATCAAATAGG	5880
10	TGCGACATTA	TCTATTTTTA	GTGTAGCTGG	AAAGTCATGG	CTATTTATGC	CGTACTTAAT	5940
	ATTAGTACTT	TTAGGTGGCA	TCTTACATAA	AGGATATGGT	TGAAAAAGAA	TGATCAACAA	6000
	CTTAGCGTTC	CGCTACCTTA	TGATAGGCAA	TTACATATGC	CAAATATACG	TCAAATGTTG	6060
15	CTACAAATGT	GGCAAAATAT	ACAAATGTTT	ATCGTTCAAG	CGCTACCTAT	TTTTATCACA	6120
	ATCTGTCTTA	TTGTTAGTAT	TTTATCACTA	ACGCCAATTT	TGAATGTTTT	ATCACAAATA	6180
	TTTACACCTA	TATTATCGTT	ATTAGGCATC	TCGTCAGAAT	TGTCACCAGG	GATTTTATTT	6240
20	TCAATGATTC	GAAAAGACGG	CATGCTCTTG	TTTAATTTGC	ATCAGGGCGC	CTTATTACAA	6300
	GGAATGACAG	CAACACAGTT	ACTACTACTT	GTGTTTTTTA	GTTCAACATT	TACAGCGTGC	6360
o <i>E</i>	TCGGTCACAA	TGACGATGCT	TTTGAAACAT	TTAGGTGGTC	AGTCAGCACT	TTAATTAAAA	6420
25	GGAAAGCAAA	TGGTGACATC	ATTGTCTTTA	GTTATTGGTG	TAGGCATCAT	TGTTAAAATA	6480
	GTAATGCTGA	TTATTTAAAA	AAAATGAACT	ATAACTGAAT	ATAGAGTCAT	GTCAGTCAAT	6540
30	AGGAGATCTA	TCTTGGAATA	TGCTATTCAT	ATGAAGTATA	AGAGGAGAGT	CGCAGATGAA	6600
	AATAGTTATT	ATAGGTGGGT	TTTTAGGTGG	CGGTAAAACG	ACTGTCTTAA	ATCATTTGCT	6660
	CGCTGAATCA	TTAAAGGAAT	CGCTGAAACC	AGCAGTCATC	ATGAATGAAT	TTGGGAAAAT	6720
35	GAGTGTTGAT	GGTGCCTTAG	TATCTGAAGA	CATACCTTTA	AGTGAACTGA	CAGAGGGGTG	6780
	TATCTGTTGT	GCAATGAAAG	CAGATGTATC	AGAACAGTTA	CATCAATTAT	ATTTAAAAGA	6840
	GCAACCAGAC	ATTGTATTTA	TTGAATGTAG	TGGGATTGCA	GAACCGGTCT	CTGTCTTAGA	6900
40	TGCTTGTTTA	ACGCCTATTT	TAGCTCCGTT	TACAACAATT	ACACATATGA	TTGGTGTAAT	6960
	AGACGCAAGC	ATGTATAAAC	ACATTAAATC	ATTCCCTAAA	GACATCCAAG	GCTTATTTTA	7020
1 5	TGAGCAATTA	GCATATTGTT	CTGTCTTATT	TGTTAATAAA	ATAGATTCAG	CAGATGTTGA	7080
	AACAACGAGC	AAACTATTGA	AAGATTTAGA	AGTTATTAAC	CCAGAGGCCG	ATATACAAGT	7140
	CGGTATGCAT	GGCAGCGTCA	CTTTGCCAAT	ATCAGTTAGA	CAAATGACAG	CAACTTCTGA	7200
50	CAATAAACAT	AAGTCTTTAC	ATCAAATGAT	TAATCATCAA	TTTGTGCAAT	CACCAGTCAA	7260
	ATGTACTAAA	GCAGAGTTTA	TAAAACGTTT	AGCATGCCTT	CCGTCTCATA	TTTATAGGTT	7320
	GAAAGGGTTTT	ATGACATTTG	AAGACACCGC	ACATACGTAT	СТСАТТСААТ	TTACACAAGG	7380

	CGGAAAGGGT	ATTTCAAAAG	AAGACTATCA	ATGTTTGGAA	CAGTAGTGTT	TTCAGTGGAA	7500
	GAGAATGGTT	AACATGCCTT	CATGTATAAT	AACGAGTTGA	TTTGAACGTT	TAAGCGTAAA	7560
5	TAAAAATAAG	CTTGGTCAGC	CATCAAATAT	AATTTGAAAA	CTGTCCAAGC	TGTTTTATTA	7620
	GAGAACAATC	AATTAACCCC	ACATATTTAA	TAATACATCA	GCAAAGCCTT	CAGGTTTTTG	7680
10	AATATAACCT	AAGTGACCGC	CTGGAATATC	TACAATAGGT	ATGCCAGTTT	CTTTATTTAT	7740
	ATAAAAGTTA	ACATCTTGTG	GGAAGGAGCC	TCTAGAATCT	GTCCCATTTA	GTAGGGTGAT	7800
	TTTATCGCTG	TATTTTGTGA	AATCATCCAA	AGTAATATCT	GAATGCGTAT	ATTGTCTAAT	7860
15	TTCAAATTCT	GACCAGAACA	TCGTACGTTT	GTACTGTTCT	ATACGTCCTT	CTTCAGTATC	7920
	AGCAGGTTGA	GACATCATTT	TTGCATCAAT	TGGTGCGATA	TTTAATGTTT	CGCCAAATGT	7980
	TTTCATGCCT	TTTTCTAAGC	CTTCTGTTAA	AATTTGATGC	ACAATGTCAT	CATTTTTATC	8040
20	TTTCCAATAA	GTACTGTCTG	GTAAAAATGT	ATTAATTGGT	GGTTCGTGAA	ATGCAATCTT	8100
	TTTAACGACT	TCAGGGTAAT	CTTTTAACAC	ATGCATCGCA	ACGATTGAAC	CTGAACTTGA	8160
	ACCTAATATA	TAGACAGGTT	CATCACTTAA	TGACTTTGCA	AGTTCGGCAA	TGTCCTGTGC	8220
?5	GTCGCGTTTG	ACACGATAAT	CACTGTCAGG	GTTTGAAGCG	GAATCAGGGA	GTGGTTCAGT	8280
	TAACTCGCTT	TCTCCATAAT	CACGACGATC	AACGGCTACA	ACAGTAAAAT	GGTCTTTTAA	8340
3 <i>0</i>	CTGTTCTGCA	AGAGGCAGAA	AAATGTCTCC	GGTACCGTTT	GCACCAGGAA	TAAAGATGAG	8400
,0	CACGGGTCCT	TGTCCGACTT	GGTGGTATCG	TAATTTAGCG	CCTTGTAATT	CTAAAGTTTC	8460
	CATATTCAAT	GACCTCCATT	TGTTAATTGT	TAGGTGATAA	ACCTAATAAT	TTAGCACCAT	8520
35	TTGTATAACT	TATTTTCTCT	TTTTCTTCAT	CTGTTAAACC	CAGTTCATCT	AAAAATACAC	8580
	CTAATTTTTC	AGGCTCAATA	TATGGATAAT	CAGCAGCATA	AAGAATTCTA	TCAATACCTA	8640
	CTTCTTTCTT	GACTAAATCA	AACTGTGGCT	TCGTTAACAT	GCCACTCGGT	GTGATATAAA	8700
10	AATTATTTTT	AAAGTAATAG	CTTACAGGGT	GGTTCAAATG	TTCAGCGAAT	AAAGCTTCAT	8760
	CCATACGTTC	TAAGAAGAAT	GGGATAAACT	CACCCCAATG	TCCAATAATC	ATATTTAACT	8820
	TTGGATAACG	атсааааата	CCAGATAATA	CTAGATGTAT	TGTATGAATG	CCGACATCAA	8880
15	TGTGCCAACC	АТААССАААА	CAAGCAAATG	TTGCCGCAGT	TACTTCAGGA	TAATTTCCTT	8940
	TATAGTATGA	TTGATAAATG	TCACTGTTAA	CTGGCGCGGG	ATGTAGATAA	ATCGGTACGT	9000
50	CTAAATTTTC	AGCTGTTTTG	AAAATAATGT	CATATTTGTC	TTGATCAAGA	AAACCATCTT	9060
	GTGCACGTCC	CATAATGAGC	GCACCTTTGA	ATCCTAAATC	ATTGATGCAA	CGTTCGAATT	9120
	CTCGCGCTGC	GGCTTCAGGC	TCATTGATAG	GTAAAGTTGC	AAAGCCTACA	AAGCGATTGG	9180

	TCTGACCAAC	CAAATTTGAA	GGAGAACCAT	TTCCATAAGA	TAAGACTTGA	ATTTGAACGT	9300
	CTTGATTATT	CATAAATTGG	ATACGTTCAT	CATGATGTGA	TAATTCGTCG	GCATTTGTAA	9360
5	AACCTGTCTT	TTTTTCAAGG	CCTTCTAACA	TTACTTTCAT	CGGTACACCT	TTAGGATCTG	9420
	CTGATATCGC	ATTCATCGTT	TCTTTTTGAA	TATCTTCAAT	GACATAATGT	TCTTCAAACG	9480
10	TAATACTTTT	CATTTACTTC	GCCTCCATAT	TGTATTGCAT	GTTTATTGCA	TCTATTGCAG	9540
	AAGCATTTTT	TATATACCTC	TAATTTCAAT	GTTTGTAACA	TAAAATTGAT	CTACCAAGGC	9600
	ATCTCTCCAT	CGCCATTAAT	AAATGTACCT	GTTGGGCCAT	CTGCACCAAT	CGTTGCTAAT	9660
15	TGAATGATTG	GCTTGATTCC	TTCAGAAACG	TGTTTGGAAT	TATTACTAAA	ATCACCAACT	9720
	AAATCAGTAT	TTGTAGCGCC	TGGATCAGCA	GCATTGATTT	GCATGTTAGG	TAATCCTTTA	9780
	GCGTATTGTA	GCGTTAGCAT	TGTTACTGCC	GATTTAGACG	AACAATAAGC	TAATGAATTC	9840
20	ACTTTAGATT	CAGCTGTTTC	GGGGTTTGTA	ACCATTCCAA	ATGAACCTAA	ACCACTTGAT	9900
	ACGTTGACGA	CAACAGGTTG	TTCAGATTTT	TCTAAGAGAG	GGACGAATGT	ATTCATCATT	9960
05	CGTACGATAC	CGAATACATT	CGTTTGATAT	ACTTCTTCAA	CGTCACGAGG	TGTCAATTTG	10020
25	GAAGGTGCTG	AAAATTGACC	AGATATACCT	GCATTGTTAA	TGAGGATATC	AAGACGGCCT	10080
	TCTTTTTCAG	CAATCATGTT	ATAAGCATTT	TTGACTGAGT	AGTCACTTGT	AACATCTAAT	10140
30	TGTACATAAT	GAACACCTAA	TTTTTGTGAT	GCTTGTTGTC	CTCTTACATC	ATTCCGAGAA	10200
	CCTATATAAA	CTTTGTAACC	CAATGCTTTA	AGTGCCTCTG	CACTTGCATA	GCCTAACCCT	10260
	TTATTGCCTC	CTGTGATTAA	CACAATTTTA	GTCATTACGT	CCCACCTCAT	CTAAATAAAT	10320
35	GTTTAATAAA	TAATTTCTGT	ACGCTTCAAT	TGAAATATGG	CGATGCTCTA	TTTGGAAGGC	10380
	AAATACACTA	GTTGATAATG	ATTGCAACAG	CATATCTGTT	TTGAAtTCGT	GTAAGTGTCG	10440
	TCATÉGCTTT	TAAATAAGTC	АТААТАААА	TCAAATAATT	CTTGATAAAA	TGCGCTTTGG	10500
40	TAAAAACGTA	ATTTATTGTT	GCCTGCTTCA	ATACATTGCA	GTAGTGCCTT	ATTATCGATT	10560
	TTAAATTGTA	AAAGATAATC	TAACGACACT	TGCATAACCT	CATAATTAGA	ATGATAGTCA	10620
45	TCTTTAATTT	GCTTAAAATG	AGTGATAAAA	ATATCAAGGT	CTCTTTGTAT	GACGTAGTAG	10680
	CATAAATCGC	TTTTATCTTT	GAAATGTCGA	TACAATGTCC	CCATACCGAT	ACCTAGTTCT	10740
	TTAGCAATAC	GATTCATACT	AATGTTTTCA	ACGCCTTCTT	CATCAAAAAG	TTTGTGCGCT	10800
50	ATTTCTTCAA	TTCGTTGCCT	ATTCTCTTTT	GCATCTTTTC	GCATGATTAC	ACCTACTTAA	10860
	AATTCTCTAA	AATTGACAAA	CGGATAACTC	TCCGTTTATT	ATAAAACGTG	TTAAGAAAGT	10920
	TAGCAATGAA	TTTGCAATAA	СТАТТАААТА	TCATAAAAGA	AAAGAGTGTT	GATAATGTCT	10980

ACCTTATCGG	TTCAAATGAT	TGCTGAAAAA	CTGAATGTCA	CTACAGAAGA	TGTGGAAAAA	11100
GTATTAGCTA	TGACAGCGCC	ACTAGGCATT	TTTAGTCATC	AATTACAACG	ATTTATTCAT	11160
TTAGTATGGG	ATGTCAGAGA	TGTAATAAAC	GACAATATTA	AAGGAAATGG	ACAAACACCA	11220
GAACCATATA	CGTATTTAAA	AGGTGAAAAA	GAGGACTATT	GGTTTTTAAG	А	11271
(2) INFORMA	ATION FOR SE	EQ ID NO: 12	2 :			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6261 base pairs
 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

60	TTATTGTACG	ATCTTAATGA	CAATTTTATC	AAAAACCGTA	AGAACAAAAT	CAACCCGTTC
120	TTTATTATAT	TATCGGTAAA	GCATAATCGA	ATCTGCATGT	TTTACATCAT	GAAAAACTTT
180	AGCAATGATA	TACGTTGCTT	GTTGGACCGT	AACTGTGCCT	AATGTAACTT	TGTTTCATAA
240	ATCGTCATCA	AACCACCATC	TGTGGCTCGA	ATCATTCGTT	CACCGTTTTC	ATTTCAATTT
300	GATATCGGCA	AGAATGCAAC	TCACGGTATA	ATAGTAATCA	CGCCACGGTT	TCTTCATCGC
360	ATCTTGTCGT	TTGGACGTTT	TCACTCATCA	TTCACGAATA	TCGAACCAGA	TCTTGCTCAA
420	TTCACGGGCT	GACATTTTAA	GCGATAACTG	CTGACTTAAT	CACGAGATAA	TGTTCAACAC
480	GGACGCACGT	GTCTGTTATC	ACTTCCTGTT	GATTTCAGAA	ATGTACGAGA	AATGCTTTTA
540	GCCATGTTCT	TCATGTCTAA	TCAATCACAA	CTGTAAGTAG	CTTGAATCAA	GAACCACTAC
600	TGTATCATCA	GAATACCCGG	TCATTAATTC	AGAACGTAAA	GACGACATTT	TGCTTTAATC
660	CCAATCTTCC	TAAAACGACT	ACCGCTATAG	TAATTTACCT	TCGTACGTGA	ATAAÂAATCT
720	ACAAATCATA	TTCCAGAACT	GAGTCAACAT	TAAGCGGTTT	TACCCGTTCT	TCAGTCATAG
780	ATACATATCT	TACCAACTGT	AGCGAGAAAA	ACCCATCTCT	ACTGATCAGC	CGTGTGGCTA
840	TACAGATGGA	CAGTCTTACC	AGTGCGAACG	TGCAATATTA	CAACTITITG	TCATGCGTTG
900	GTCTAAATCT	CTGTCATTTG	TTGAACCCTG	ATCATTTCGG	GGATAATTAA	CGCGCTGCAA
960	TTCAGCTGTT	GATCAAGCTC	CCACTATTTT	TGGTGTTTGA	TAGGTATACC	CGATATCCTG
1020	ACGAGAAGAT	CATCGCTTTC	TCTTTAAAGC	GTCTCGAATG	GTCCTAAGAC	TCATACACTT
1080	AAGTTCATCA	CATCTAGTTC	CTTAAAATCG	TTCTGCATCA	AAATTCGACG	GATAGCTCTA
1140	TAATGCATGC	ATCTACGTTT	GTTTGAATCA	ACTATCTGCA	CATTGGCAAT	TTATATCCAT

	TCTGCAAGAT	ATTGCGGGCC	ACCCGCTTCA	TTCAACGTAC	CTTCCGTCGA	TAATTGATCC	1260
5	ATCAATGTTA	CAACATCAAT	TTCTTTATTA	TCTTCATTTA	AGTGCATCAT	TGCACGGAAA	1320
	ATATGTTGAT	GGGCACCCCT	ATAAAACGAC	TCAGGAAGCA	AAACTTCCTG	AGTAGTATTA	1380
	ATCAATTCTG	GATCTATAAT	AATTGAACCT	AAGACAGACT	GTTCAGCTTC	ATTGTTATGC	1440
10	GGCATTTGAT	TTTGCTCATA	CATTCTATCC	ATGAATGGTT	ACACCTCTTA	TTTCAATCCA	1500
	ACTTTATTGT	TCAACTGTGT	GTACGCGAAT	TGTACCTTCA	ACTTCTTTAT	CTAATTTAAC	1560
	AGGTACATTC	GTATATCCTA	GGGAATGAAT	TCCATTTGGT	AAATCCATTT	TACGTTTATC	1620
15	AATTTTAATA	TCATGTTGTG	CTTTTAGTGC	TTCGGCAATT	TGTTTTGTAC	TTACTGACCC	1680
	AAACAATTTA	CCACCTTCAC	CAGTTTTTGC	TGaTACTTCA	ACTTCAATGT	TTGATAACGT	1740
	TTCTTTTAAT	GCTTTAgCAT	CTTCAATTTC	TTGTTGGCGT	TCTTGTTTTG	CACGTTTTTT	1800
20	CTGTAACTCT	AATTGTTTAA	GGTTACCTGG	TGTTGCTTCT	ACAGCATAAT	TCTTTTTCAA	1860
	TAAGAAGTTA	TTTGCATAAC	CTACTGGTAC	TTCTTTAACT	TCACCTTTTT	TACCTTTACC	1920
	TTTACCTTTA	ACATCTTGTG	TAAAAATTAC	TTTCATGCAT	CTTCACTCCT	ACTTAATTGT	1980
25	TCTGTAATTG	CTTGTTGTAA	TTGTGCTATC	GCCTCTTCGA	CTGTCACACC	TTTAAGTTGT	2040
	GTTGCCGCAT	TGGTTAAATG	TCCACCGCCA	CCAAGTGCTT	CCATTGTTAA	CTGGACATTT	2100
30	ACTGAACCGA	GTGAACGCGC	AGATATACCA	ATCAGATTAT	CTTCACGTCT	CGCAACAACA	2160
	TATGATGCTT	CAATACCTTC	TAAACTTAAC	AGTTCATCTG	CTGCTTGTGC	AACTGTTACT	2220
	GGATGATAAA	TTTTATCGTC	TGAACCATGC	GCAATGGCTA	TGCCATTATC	TTCAACTTTT	2280
35	ACAGTTCGAA	TTAATTCAGA	TCGATTAATG	TAAGTATCCA	CATCATCTTT	TAAGAAATGT	2340
	TGCGTTAAAA	TCGTATCTGC	ACCATGTGCA	CGTAAATAAC	TCGCTGCATC	GAATGTTCTT	2400
10	GATCCTGTTC	GTAATGTAAA	GTTTCTTGTA	TCTACAATAA	TACCTGCATA	CATCACTGTT	2460
	GATTCAAGAC	GTGTTAAACG	TTGTTCTGTT	GGTTGATATT	CCAGTAACTC	TGTTACCAAT	2520
	TCAGCTGTCG	AACTTGCGTA	TGGTTCCATA	TATATCAACA	ATGGATTAGA	GATGAAGCTT	2580
1 5	TCACCACGTC	TATGATGATC	GATAACAACT	TTACGGTTTG	CTTTATTTAA	GACATTTTCA	2640
	TCTAAAACCA	GTTCCGGTTT	ATGCGTATCA	ACAATCACTA	CGGTTGTCTT	AGATGTCATC	2700
	ATATCCCAAG	CATCATCTGA	TGTAATAAAT	CGCTCTCTTA	ACTCTGGCTT	TTTATCTATT	2760
50	TCGTTCATCA	CGCGTCGTAA	TGTTGGATCA	ATGTCAGTCT	CATTTAATAC	GATGTATGCT	2820
	TCTAAATTAT	TCATCATTGC	AAATCTAGAC	ACACCGATTG	CTGCACCAAT	TGCATCTAAG	2880
	TCAGGACGTT	TATGTCCCAT	GATAATGACT	TTGTCACCCT	CTGCAAGGAT	ATCTTTTAAC	2940

	CCATAGAAAC	GCACATTACC	ATTAATACTT	TTAATTGCAA	CTTGGTCGCC	ACCGCGTCCT	3060
5	AATGCTAAGT	CTAGGCCTGA	TTGTGATAAT	TCACCTAAGT	CGATTAAATT	TTCAGTACCT	3120
	TCACCAACAC	CGATACTTAA	TGTTAATTGG	GCACGATAAC	CAACACTTTT	TTCACGTAAT	3180
	TGACTCAAGA	TATCAAATTT	AGATTCTTCT	AAGTCAGCTA	ATATTTTTTG	ATTTAAATAG	3240
10	GCTACGAATT	GATCGGAACT	GTATCTTTTG	AAAAATATAT	TATACTCAGT	TGCCCATCGA	3300
	CTAATGACAC	GCGTTACCAT	TGAGTTGATT	TCCGAACGCT	GCGTATCATT	CATATTTTGC	3360
15	GTAATCTCAT	CGTAGTTATC	TAAAAATAAT	GTCGCAATGA	TTGGTTTAGA	ATTTTCATAT	3420
	AGTTCATTTG	TTTGTACTTG	TTCAGTTATA	TCAAAGAAAT	AGAGGCAGTG	ATCATTCTCA	3480
	GAATAACGTA	CTTGGAAATG	ATACTGATTA	TATTCTATTT	CAACGGATTT	CACTCTATCT	3540
	AATTGCTTTA	AAATGTTTGG	AAATACTTCA	TTTACAGATT	CAGAAATGAC	ATTCGCTTCC	3600
20	ATATGATCTG	TCATAAATTG	GTTAACCCAT	TCGATGTGAT	CATTTTCATC	TAAAACAATG	3660
	ATACCAATTG	GTAAATGTTT	GATTGCTTTA	TTATTTGTTG	TTGAAATTTG	AGCACTCAAA	3720
	CCATCTACAT	AACTATCCAT	TTTCATTAAA	GCTTGTCTGA	ATAAAATGAT	GCTAACAATA	3780
25	ATCATCACGA	CAAGAACGAT	AGATGCAATT	AGTGCTATAA	GACTATTAAA	GATAAACCAT	3840
	ACACCCATTA	AAACAATTGC	TGTGATGATC	ATGATGACAA	ATGGTATTAG	TAAAGCTTTC	3900
30	TTAGTGGACT	GCCGATTCAT	TATTCCACCT	CTATTCACTT	TTTAGAATTA	TTTTTCATGA	3960
	TTCGCTTCAA	ATTCAAACTT	AAATCGATAA	CACCAAGTAG	TCCTACAATA	TGTGTCGTAG	4020
	GTGTCAGTAT	TGTACCGATA	ACCAATAGTA	AAATCGTTAC	TGCATTCGGC	AAACCTTTCG	4080
35	CTTTACCAAA	GAAATGAATA	ACACTTAAAC	CTTGAATATA	CATTACTAAT	GATAACACAA	4140
	GTTGGAAGTT	TAAAAGAATG	CTCTGGAACA	CACTCGGTTG	ACCTGTAAAT	AATAAACATA	4200
	TGAŢAACAAT	AATGTATATC	CATAATAAAA	TACCGCTCAT	TTGCCACGCG	AAAAGTGGCT	4260
40	TAAATACAGG	TGTAGCGATT	TTAAATTTTC	GTAAAATCGG	AAATGTAACG	ATTAAGTTAA	4320
	TTAAGACGAT	TAAAAATGTA	ATGATAATGA	TGAAACCTGG	TAATTGAACG	GTCGCTTGTC	4380
4 5	TAAACCCTTC	TTCTAATATT	TGGGTCATAT	TCGCATCGGC	ACCGCTCATC	GTAATCGCTT	4440
	CATGTAATGT	TTGCTTGAAA	GGTTTTACTA	TGCTCGCTGA	TGGTGGAATC	CTTCCGAATG	4500
	TTTGTAGTAA	CATAAAAGCG	ATTAATGAAA	TTnArcTCAT	CGCTACTGTT	GTTACGTATA	4560
50	ATATTCTTTC	TTTAGACGTT	CTTTCTTTGA	GCAATTGACC	AATAATTAAA	CTTGCAATTA	4620
-	AGACTAATAT	GATGGCACTT	AAAACGAAAG	TATTACCTAA	AACAGTTGTT	ATAATTACTG	4680
	TAATAAGTGC	ACTAATCCCG	AAAGATTGTA	TIGATTTATT	CCATAAAACG	ATACCTGGTA	4740

	CAAATACCAA	CGCAATCGTT	GCAATTATTG	TTGCTTTAGG	TTGTATTTTT	GAAAACACAT	4860
	AAGCCACTCC	CATATTTTTA	ACTATAGCTA	TTATTTTAAC	CTCTTTAATG	AAAATTAACA	4920
5	ATTTATAGAT	TGTATGCTTC	TATTTCATTT	AATTGAATAA	TAACTTTCAT	GTTTTATAAG	4980
	TAATTAACAT	ACTCATTTGA	ATCGCTTTTG	TGTGCTTTCA	TTTTCAACAT	GATTATTTAA	5040
10	TCCCACTACA	TAGCAATCAA	GCTTGATTTA	GATTTACAAT	ACATTTCCAC	TCTCATGTAC	5100
10	TCTAGATGTT	TTTGAATATG	ATAACTGTGA	TTTAGTGGCT	TCATTCTTTG	AAAATATATA	5160
	TTATTACTTA	CGCTTAAAAT	GCTTTAAATT	TAAGAAATGA	TATAAGTTAG	GTGCCCAGGT	5220
15	ACTAAAGTTT	AGTAGGAATC	CATCATGCCC	AACATTATCA	GGCACGAAGA	AATGACGATG	5280
	ATATTTAAAA	CGTTCACCTA	ATGCACGAAC	TTGATCATCC	GGATATAGCA	AATCATCTAT	5340
	GAACCCCATC	GTTAACACTT	TTGTTTCTAA	AAAATTTTTA	ACATGCGTTA	CGTCTGTGCG	5400
20	ACCTCGGTCA	ATGTTGTGAC	TATCCAATAC	ATCTAGCAGT	GTCAGATAAC	AATTCAAATC	5460
	AAAATGTTCT	TTAAATTTAT	TACCTTGATG	TTGTTGGTAT	GCGACTACTT	CATCCGGCGT	5520
	AAAACGTTCA	TCATAACTTT	TTGATGATCG	ATATGTCAAA	AAACCTAATT	GGCGTGCAAT	5580
25	ACTTAGACCT	TCCTTACCAC	CAAGATGAAT	GGCTTGCCTT	GCAATTTCAT	TGAAAGCTCT	5640
	ACTATAAGAT	GATGTTCGAC	TTGTTGCAGC	AAGGATAATG	GCTTTATCTA	CTTCAAACTG	5700
30	TTGATTGTAG	AGTAGTTCCA	TTGCTTGCAT	ACCTCCAAGA	CTTCCCCCTA	TTAAAATATT	5760
	AATCTTATCA	TAACCAAGGG	CTTGTATACC	TCGTTCATTC	GCTCTGACTA	TATCTCTTAA	5820
	TGTTAATTTT	TTAGGAAAAT	GAGGGTCGTT	TAAAGGTGAA	CTTGAACCGA	AAGGACTACC	5880
35	AATAACATCA	AATGTTAAAA	ATTGATAATC	GTGAATGGGT	ATATATCCCC	CATCAATAAT	5940
	TTCTCGCCAC	CAACCCGGAT	AATCATCTGT	TCCATATGTT	AAATGATTGC	CAGTTAATGC	6000
	ATGAÇAAACT	ACAACTAATG	GTTGTCCATG	ATAACCGACA	TGCTCATATC	TCAAACGCAA	6060
40	GTnATCTATG	ACTTCCCCAG	ATTCTGTAAT	AAATTCCCCT	AAATTTAAAG	TATCTACTGT	6120
	GTAATTTGTC	ATTGTTCTTT	CCTCCTTAAA	CAAAAAAACT	TCTCACCCTA	TTGAAAAGTA	6180
	AGAAGTCTTT	ATACTTATCA	TTCGAGTAAC	TCGTTGGTTT	TAGCACCGTG	CTATAAAGTC	6240
45	GGTTGCTGAA	GTATCACAGG	G				6261

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1222 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

	(xi)	SEQUENCE DES	SCRIPTION: 5	SEQ ID NO: 3	13:		
	ATGCGATTAA	CTCTGGAAAT	ATCTTTTCCA	TATTTACGTn	TTAAATTATT	CAGCAAATTC	60
5	ATACGAGATT	CATACTCGTT	yAACACTTGT	TCGTCGAATT	CTGTATTAGC	CATTTCATCA	120
	TATAACTCAT	GTTTTGCATC	TTCTAAAATG	TAGTAAAATT	GATCAATATC	TTCTTTTAAT	180
	TTGTCATATT	TGTTTGGAAC	TATATCGTTT	ATTGTTAACA	AATGGTTGCT	TAGTTCATAT	240
10	AAACGATCAG	TGATAGCATT	TTCATCCGTT	AATGTCATAT	ATGCGTTATT	AAGCGCTAAG	300
	CTTAATTTTT	CAGAGTTTTG	AATGCGTTTA	ATATCTATTT	CAAGTTGCTC	TATTTCGCCT	360
15	TCTTTTAGAT	GTGCTTCAGA	CAATTCTTCT	AATTGGAATT	TCATTAAATC	TAAACGCTGT	420
	AGCAATGCTT	GGTCTGCTGA	TTCTAAATCT	TCTAACTCTT	GCTTTTTGGC	TTTATAATTT	480
	TGAAAAGTTT	GGTGATATTT	ATCCAACAAA	TCTTGATAAC	GTGATTCTGC	GTAATTATCC	540
20	AATAATGTTA	AATGGTATTT	TTGTTTCAAC	AAAGACTGCG	TTTCATGTTG	GCCATGAATA	600
	TCTAATAATT	CTTGCATAAC	TTTTCGTAAA	TCTTGTAAAG	TAACTGTTTG	ATTATTAATT	660
	TTACAAAGAC	TTTTACCAGA	GCTGAAAATT	TCCCGTTTAA	СТААТАААА	ATCTTCATCT	720
25	ACATCAATAT	CCATATTTTT	CAATATATGT	ATAGCATCTT	TACTCTCGTC	AATATCAAAT	780
	ATACCTTCGA	TGACAGCCTT	TTTTTCACCA	TGTCTTACAA	AATCAGATGA	AGCTCTCATT	840
30	CCAATTAATT	GTCCAATTGC	ATCTATAATA	ATTGACTTAC	CTGAACCCGT	TTCACCACTT	900
	AAAACAGTTA	AACCATCAGA	AAATTGAATT	TCTAATTCTT	CAATAATAGC	AAATTGCTTG	960
	ATTGATAAGG	TTTGTAACAT	AAACTCATCG	CATCCTTATA	ACAAATTGAA	AATTCTTGAC	1020
35	TTGATTTCAT	CACTTGCCTC	TTTGCTTCGA	CAAATAATTA	AACAAGTATC	ATCACCACAA	1080
	ATTGTGCCTA	GTACTTCTTC	CCAATTGATT	TGGTCTAATA	TAGCTCCAAT	AGATTGTGCA	1140
	TTACEAGGTA	TGTTTTTAGA	ACAAGTAAAT	TATCAGTACC	ATCTATATTA	ACAAAGGAAT	1200
10	CCATTAAATA	ACGTCCCAAT	TT				1222
	(2) INFORM	ATION FOR SE	EQ ID NO: 14	1:			
4 5		EQUENCE CHAP (A) LENGTH: (B) TYPE: nu (C) STRANDE	1021 base pacid	pairs			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

(D) TOPOLOGY: linear

TTTGTTATTA TTACnTnAAA TAATTGCATT ACTTTTTACT GATGGTACAA CTTTCCATCC 60

	TTCTTTTGGC	ACGACATAAT	TGTCTTTATC	TTGAACTAAA	TATCCGCCAG	ATACTGAAAC	180
	AAACTCTTCT	TCGTTACTGT	CTATAGTCAT	ATCAATTTCT	AATAATCTTA	CATTCTTCTT	240
5	TTGTTTTAAA	ATATCTAATG	CTTCATCTGT	AAATTTTGGT	GCAATAATGA	CTTCCAAAAA	300
	GATACTATGC	AATTGCTCTG	CTAACTCAGG	TGTTACAGCT	CGGTTTAATG	CAACAATTCC	360
10	ACCAAATATT	GATTGACTAT	CCGCTTCATA	CGCATGTTGA	AATGCTTGTT	CTATCGTGTC	420
10	ACCGATACCA	ACACCACATG	GATTCATGTG	TTTAACCGCA	ACTGTAGCAG	GTGTATCAAA	480
	CTTTTTAACT	AAAGCTAGTG	TAGCATCTGC	ATCTTTAATA	TTGTTATAGC	TTAATTGTTT	540
15	CCCATGTAAT	TGTTTAGCGC	CTGCAATCGT	GTGCTTAGCA	TTCGAAGTTC	TCACAAAATA	600
	CGCTGATTGT	TGTGGATTTT	CTCCATATCT	TAAAGTTTCT	TTATCCCCTT	TAAAGAAACG	660
	TACAATCGCT	TCATCATATT	CTGCAGTATG	CTCAAAAACT	TTAATCATTA	ATGATTGTCT	720
20	ATATGACTCA	TCTAACGAAT	CGTTTCTTAA	TCGCGTCAAT	ACTTCTTGAT	AATCTGCCGG	780
	ATGTACAATT	GTTGTTACAT	GTTTATAGTT	TTTAGCTGCA	GCACGTAACA	TTGTTGGACC	840
	ACCAATATCA	ATATTTTCAA	TTGCTTCGTC	CATCGTCACA	TCAGGGTTTG	CAACAGTTTG	900
25	TTGGAATGGA	TATAAATTAA	CTACTACCAT	ATCAATTAAA	TCTATATGTT	GTTCTGATAA	960
	TTCATTTAAA	TGCTGCGGTT	TATTTCGATC	AGCTAAAATG	CCACCATGAA	CAGCCGGATG	1020
30	T						1021
	(2) INFORMA	TION FOR SE	Q ID NO: 15	5 :			
35	(. ()	A) LENGTH: B) TYPE: nu	NESS: doubl	pairs			
	-						
40	(xi) S	EQUENCE DES	CRIPTION: S	SEQ ID NO: 1	.5:		
	TCATTCACTC	CTAAATTGTT	ATTACACTAT	TACACaTAGC	TAATCATCAA	TGTGAAATCA	60
	CCTTCAAAGA	CACTATCCAA	ATCTTCAGAA	GTCAAAATAA	AGTTTGTACC	AGTAGTCAGT	120
45	TTGAAAATTT	CACCATCGAC	AATCATTTGC	CCTTCGCCTT	CCAACACTGT	AACTAAACAG	180
	AACTCTCTAG (GCTTCATATA	ATTTAACGTG	CCAGAAATTT	CCCATTTAAC	CAATGTAAAG	240
50	AAATCATTCG /	ATACAATGTG	TGTACACTTA	TGGTTTTCAA	TAATTTCGCT	TTCAGGCAAA	300
	ATATTAGGTA	ATGGTGCATT	GTACTGAATA	ACGTCTAAAG	CTTTTTCAAT	ATTTAACGGT	360

255

CTATCATTAT ATTGATTATC TTGACGATTG AAATCATAAA GTCTATATGT AATGTCTGAC

55

	ATAAAAtAGa	ATTCYCCAGG	kTTTACtTTA	AtatATCyAA	gTAtCGaCtC	tATCGTTCCG	540
	TGTTGAACAT	GATTCGCAAC	TTCTTCTCTA	GACTCTGCTA	ATGTCCCLAT	AACTATTTCT	600
5	GCATCTTCTT	CTGCATCTAT	AATATACCAA	CATTCAGATT	TGCCATATTG	CCCgTTTTCA	660
	TGCTCATAAG	CATAAGAATT	ATCAGGGTGC	ACATGAATAG	AAAGTGATTC	TCTTGCATCC	720
10	ACTATTTTAG	TTAGAAGCGG	AAAATCTTTG	CTTGGGAAAT	CACCAAACAA	TTCACGATGT	780
.0	TCTGACCAAA	TACGGTCTAA	TGTTTGACCT	TGATATGGTC	CATTAATAAT	CTCGCTCGTA	840
	CCATTTGGAT	GTGCTGACAC	ACACCAACAT	TCCCCCAGTT	GTATCATTGT	CTAATTGATA	900
15	TCCAAACTCA	CTTAGACGTT	GACCGCCCCA	TAATTTTGTT	TTTAAAATTG	GTTGTAAAAA	960
	TAATGGCATT	GTTGCACCTC	CATTGTGATT	AAGTAAGCAA	TAGAACTCTG	ATGTTGTTGT	1020
	TCCATTATAT	TTTGATTTTG	TTCTCATTTA	CATCGTATTA	TTAACTTCCA	CATTTCAAAT	1080
20	TAACTATTAG	TGATTGTACC	ATATTTACTA	ACATTGCAGT	ACTGCCAATT	AAAAGnGCTT	1140
	CACTTAAATT	TACAGTACTT	TAACATTTTC	AAAAATTTAT	AGCATAGAGA	TTATATCTCT	1200
	CTTACATTTG	TACATATTTC	CCTTTAAATT	TACTCGCCCA	TTATACCAAT	TAATAAACAA	1260
25	CTTTAATAGT	TGTGCCATAC	ATTGTTCAAA	TTCTTTGTAA	AACGCATAGA	CAATACGTAC	1320
	TTATTCATAC	TTATAATTCA	TCATTTTCAA	AAAATAACGA	GTTACGAAAA	AGTAACCCGC	1380
30	TTCAAATCAT	ATTTACTATC	CTTATTAATC	CGTTTCATTT	TCAAATTGAG	TTAAAGCATC	1440
	TTTAATGTCC	TGATCACCAC	TAATAATTTG	AAACTCTTGG	TGATTAAAAT	GATTGGATGT	1500
	GACAATTTCT	TTTAATACTG	TCGCAACATC	TTCTCTAGGA	ATTTCACCTT	TACCATCAAA	1560
35	ATATTGTGCA	GCTTCTATCT	TTCCAGATCC	TGCTGCATTT	GTAAGTGCCC	CTGGATGTAA	1620
	AATTGTATAA	TTCAAACCTG	nAACGTCTTA	AATAGTCATC	AGCGTAATGT	TTAGCTATTG	1680
	TATATGGCTT	TAAATCACCG	CTATCATCAA	AAGCCTGACG	TCTCGAATCA	TATGTTGAAA	1740
40	CCATGACATA	GTGTTTAATA	TTGGCCTCTT	TACTCGCAAT	CATTGATTTA	ACAGCACCAT	1800
	CTAAATCGAC	AATAATTGTT	TTATCTGCAC	CCGTGTTCCC	TCCAGAACCT	ACTGAAAAGA	1860
	TAACTTTATC	GAATGGTTTA	AACGTCTCAG	TTAAAGTCTC	TATTGAATCA	TTTTCAACAT	1920
45	CAACAAGAAT	TGCTTTCATA	CCTTGTGATT	TTAACGCATT	AAGTTGATCT	GATTGCCTAA	1980
	CACCAGCAGT	AAATGGTACA	TTTTCTTTTG	CTAATTGTTG	CACTAGTAAC	GAACCTACAC	2040
50	CGCCATTAGC	ACCTATAACC	AAAATATTCA	TTTACAACAC	TCTCCTATKT	ATTATTCTCT	2100
	ATGCCATACC	ACTTTATGAG	ATATGTAAAA	CTTGTTACAA	CTATAAAAAT	CAATTGACAT	2160
	A CTA CTCCCA	ACCTATTA A A	שרא א תא תא דוב	AACAAATATT	CATATGAAAG	CATTCTCATA	2220

	tCaAGGCATT	AGCGATTACA	ATCGAATACG	TATCATGGAA	TTGTTATCAG	TCAGCGAAGC	2340
	AAGTGTTGGT	CACATTECAC	ATCAATTGAA	TTTATCTCAA	TCAAATGTCT	CGCACCAATT	2400
5	AAAATTACTT	AAAAGTGTGC	ATCTTGTGAA	AGCAAAACGA	CAAGGCCAAT	CAATGATTTA	2460
	TTCATTAGAT	GACATCCACG	TAGCAACTAT	GTTAAAGCAA	GCCATACATC	ACGCGAATCA	2520
10	TCCTAAAGAA	AGTGGGTTAT	AATATGTCTC	ATTCACATCA	TCATCATGAC	CATATGCATA	2580
	GTCATGTAAC	TACAAATAAT	AAGAAAGTAT	TGTTTATATC	GTTTTTAATA	ATCGGTCTAT	2640
	ATATGTTTAT	CGAAATCATC	GGCGGTCTCC	TTGCTAACAG	CTTGGCATTA	CTATCTGACG	2700
15	GTATCCATAT	GTTTAGCGAC	ACATTCTCAT	TAGGTGTTGC	ACTTGTCGCA	TTTATTTATG	2760
	CTGAAAAGAA	TGCCACAACT	ACAAAAACAT	TTGGTTATAA	ACGTTTCGAA	GTACTCGCAG	2820
	CGTTATTTAA	CGGTGTAACG	CTTTTTGTAA	TAAGTATTTT	GATTGTTTTT	GAAGCGATTA	2880
20	AACGTTTCTT	TGTTCCTTCT	GAAGTTCAAT	CAAAAGAAAT	GTTAATCATT	AGTATTATCG	2940
	GTTTAATTGT	CAATATCGTT	GTTGCATTCT	TTATGTTTAA	AGGCGGCGAC	ACTTCACACA	3000
	ATTTAAATAT	GCGTGGTGCT	TTTCTACATG	TTATCGGAGA	CTTATTAGGT	TCAGTTGGCG	3060
25	CCATTACTGC	AGCTARTTTA	ATTTGGGCAT	TTGGATGGAC	AATCGCCGAT	CCTATCGCAA	3120
	GTATTTTAGT	TTCCGTTATT	ATTTTAAAAA	GTGCTTGGGG	TATCACAAAA	TCTTCAATTA	3180
30	ACATTTTAAT	GGaAGGCACA	CCAAGTGATG	TTGATATAGA	TGAAGTTATA	ACTACTATTA	3240
	AAAAGGATTC	ACGAATACAA	AGTGTGCATG	ATTGCCATGT	TTGGACAATT	TCAAATGATA	3300
	TGAATGCATT	GAGTTGTCAT	GTTGTTGTAG	ACCATACATT	GACAATGAAA	GAATGTGAAT	3360
35	TATTATTAGA	AAaCATTGAG	CATGATTTAT	TACATTTAAA	TATTCACCAT	ATGACTATTC	3420
	AATTAGAAAC	GCCTAATCAC	AAACATGATG	AATCGATTAT	ATGTTCAGGA	ACACATAGTC	3480
	ATTCĀCATAA	CCATCATGCT	CATCATCACG	CGCATGTACA	TTAATAATTT	TAACCTACTG	3540
40	CCATTGCATC	GATTAAACTT	TTCAATGGCA	GTAGGTTTTT	TATGTCTTTA	TGGCGACTTG	3600
	TTTGGTCTTT	GATGATGCAA	TGTTTATTAA	CAAATTTTCA	ACTATTATTT	CTTACATTAG	3660
	TCATATTTTT	GACAATTTAC	TATTATAATT	CTCTAACTTT	AGTCACTTTA	ATTAATTTTT	3720
45	ATTAGATATT	AATATGAAAA	TAACGTGTTT	TTTGTTATT			3759

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13086 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

	TAATTATCGC	GCATAACAAA	ACATTAGCAG	GACAATTATA	TAGTGAGTTT	AAAGAATTTT	60
5	TTCCTGAAAA	CAGGGTGGAA	TACTTTGTAA	GTEACTATGA	TTATTATCAn	CCAGAGGCAT	120
	ACGTACCGTC	TACTGACACT	TTTATTGAAA	nAGATGCCTC	AATCAnTGAT	GAAATTGATC	180
	AACTACGACA	TTCTGCTACA	AGTGCATTAT	TTGAACGCGA	TGATGTAATT	ATTATTGCTA	240
10	GTGTAAGTTG	TATATATGGT	TTAGGTAATC	CTGAAGAATA	TAAAGATTTA	GTAGTAAGTG	300
	TTCGAGTTGG	TATGGAAATG	GATAGAAGTG	AATTACTTAG	AAAACTTGTc	AGATGTGCAA	360
15	TATACACGAA	ATGACATCGA	TTTcCAACGA	GGAACGTTTC	GAGTGCGTGG	TGATGTAGTG	420
	GAAATATTCC	CAGCCTCTAA	AGAAGAACTT	TGTATAAGGG	TTGAGTTTTT	CGGCGATGAG	480
	ATTGACCGTA	TCCGAGAAGT	TAACTACCTA	ACAGGTGAAG	TGTTGAAAGA	AAGAGAACAT	540
20	TTTGCGATAT	TCCCAGCTTC	TCACTTCGTA	ACACGTGAAG	AAAAGTTGAA	AGTTGCGATT	600
	GAACGTATTG	AAAAAGAATT	GGAAGAACGA	TTGAAAGAAT	TACGAGATGA	GAATAAATTA	660
	CTAGAAGCGC	AAAGGTTAGA	ACAGCGTACC	AACTATGATT	TAGAAATGAT	GCGAGAGATG	720
25	GGATTCTGTT	CAGGAATTGA	AAACTATTCC	GTACATTTAA	CTTTGCGACC	ACTGGGTTCG	780
	ACACCATATA	CTTTATTGGA	TTACTTTGGC	GATGATTGGT	TAGTAATGAT	TGATGAATCA	840
	CATGTGACAT	TACCGCAAGT	TCGAGGCATG	TATAACGGAG	ACAGAGCGCG	TAAACAAGTT	900
30	TTGGTGGATC	ATGGGTTTAG	ATTACCGAGT	GCATTAGATA	ACCGTCCACT	TAAATTTGAA	960
	GAATTTGAAG	mAAAGACAAA	ACAACTTGTG	TATGTATCTG	CAACGCCTGG	ACCATACGAA	1020
	ATTGAACATA	CGGATAAGAT	GGTTGAACAA	ATTATTCGTC	CTACTGGTTT	ACTGGATCCT	1080
35	AAGATTGAGG	TTAGACCTAC	TGAAAATCAA	ATTGACGATT	TATTAAGTGA	AATTCAAACA	1140
	AGAGTgAGCG	TAATGAACGC	GTACTTGTTA	CAACGCTCAC	TAAAAAGATG	AGTGAAGATT	1200
40	a ACCACATAC	ATGAAAGAaG	CGGGTATTAA	aGTtAATTAT	CTGCATTCAG	AAATCAAGAC	1260
	ATTAGAACGA	ATTGAAATAA	TTAGAGACTT	ACGAATGGGT	ACATATGATG	TTATCGTAGG	1320
	TATTAATTTA	TTAAGAGAGG	GTATTGATAT	ACCAGAAGTT	TCTCTAGTTG	TCATATTAGA	1380
45	TGCAGATAAA	GAAGGGTTTT	TACGTTCTAA	CCGCTCATTA	ATTCAAaCAA	TAGGTAGAgC	1440
	TGCGCGTAAC	GATAAaGGTG	AAGTCATTAT	GTATGCCGAT	AAAATGACTG	ATTCGATGAA	1500
	GTATGCAATT	GATGAGACAC	AACGTCGTCG	AGAAATACAG	ATGAAACATA	ATGAAAAACA	1560
50	TGGTATTACA	CCTAAAACAA	ттаатааааа	AATACATGAT	TTAATTAGTG	CTACTGTTGA	1620
	AAATGACGAA	AATAATGACA	AAGCACAAAC	TGTGATACCT	AAGAAGATGA	CGAAAAAAGA	1680

	TTTCGAGAAA	GCTACAGAAT	TAAGAGATAT	GTTATTTGAA	TTAAAAGCAG	AAGGGTGACA	1800
	AGTAAATGAA	AGAACCATCC	ATAGTAGTAA	AAGGTGCTCG	TGCGCATAAC	TTGAAAGATA	1860
5	TTGATATCGA	ACTACCTAAA	Aataaattaa	TTGTTATGAC	AGGTTTATCT	GGGTCAGGTA	1920
	AATCGTCATT	AGCATTCGAT	ACTATATATG	CTGAAGGACA	ACGACGTTAT	GTTGAATCAT	1980
	TAAGTGCCTA	TGCGCGTCAA	TTTTTAGGCC	AAATGGACAA	ACCAGATGTT	GATACAATTG	2040
10	AAGGATTATC	GCCAGCAATT	TCAATAGATC	AAAAAACAAC	AAGTAAAAAT	CCAAGATCAA	2100
	CTGTAGCAAC	AGTAACAGAA	ATATATGATT	ATATACGTTT	GTTATATGCA	CGTGTTGGTA	2160
15	AACCTTACTG	TCCAAATCAC	AATATAGAAA	TTGAATCGCA	AACAGTACAA	CAAATGGTTG	2220
-	ACCGCATTAT	GGAATTAGAG	GCACGTACAA	AGATTCAATT	ATTAGCACCT	GTCATCGCTC	2280
	ATCGTAAAGG	TAGTCATGAA	AAGCTAATCG	AAGATATTGG	TAAAAAAGGT	TATGTACGTT	2340
20	TAAGAATCGA	TGGCGAAATT	GTTGATGTAA	ATGATGTACC	TACTTTAGAT	AAGAACAAGA	2400
	ATCATACAAT	AGAAGTTGTT	GTAGACCGAT	TAGTTGTTAA	AGATGGAATT	GAAACACGAC	2460
	TAGCTGACTC	TATAGAAACT	GCCTTAGAGC	TTTCAGAAGG	ACAATTAACA	GTCGATGTCA	2520
25	TTGACGGGGA	AGACCTTAAG	TTTTCAGAAA	GCCATGCTTG	TCCTATATGT	GGATTTTCAA	2580
	TCGGAGAGTT	AGAACCAAGA	ATGTTTAGCT	TTAACAGTCC	TTTTGGTGCT	TGTCCGACAT	2640
	GTGATGGCTT	AGGCCAAAAG	TTAACAGTCG	ATGTAGACTT	GGTTGTTCCC	GACAAAGATA	2700
30	AGACGCTAAA	CGAAGGTGCA	ATAGAACCTT	GGATACCGAC	GAGTTCTGAT	TTTTATCCAA	2760
	CATTGTTAAA	ACGTGTTTGT	GAAGTTTATA	AAATCAATAT	GGATAAACCT	TTTAAAAAGT	2820
	TAACAGAACG	TCAACGTGAT	ATTTTATTGT	ATGGTTCTGG	TGACAAAGAA	ATTGAATTTA	2880
35	CATTTACACA	ACGTCAAGGT	GGTACTAGAA	AACGAACAAT	GGTTTTCGAG	GGTGTAGTTC	2940
	CTAATATAAG	TAGACGATTC	CATGAATCTC	CTTCAGAATA	TACACGTGAA	ATGATGAGTA	3000
1 0	AATATATGAC	TGAACTACCT	TGCGAAACTT	GTCATGGAAA	GCGATTGAGT	CGTGAAGCkT	3060
	TATCTGTTTA	TGTAGGTGGT	TTAAATATTG	GTGAAGTAGT	CGAATATTCA	ATCAGTCAAG	3120
	CGCTGAACTA	TTATAAAAAC	ATTGATTTGT	CAGAACAAGA	TCAAGCGATT	GCAAATCAAA	3180
15	TATTGAAAGA	AATTATTTCC	CGACTCACTT	TTTTAAATAA	TGTGGGACTT	GAATATTTAA	3240
	CGTTAAACAG	AGCTTCAGGT	ACACTTTCAG	GTGGTGAAGC	ACAACGTATT	CGATTAGCAA	3300
	CGCAAATTGG	GTCGCGTTTG	ACTGGTGTCT	TATATGTATT	AGATGAGCCA	TCAATTGGAC	3360
50	TGCATCAAAG	AGATAATGAT	CGATTAATTA	ATACACTTAA	AGAAATGAGA	GATTTAGGAA	3420
	A.T.A. OPPOPER A.D.	moma.ommoa.a.	C1 CC1 TC1 TC	MAN CAN MODO	maaaaaaaa		

	AGGTAATGAA	AGATAAAAA	TCATTAACAG	GACAATACTT	GAGTGGTAAG	AAACGTATTG	3600
	AAGTACCTGA	ATATCGCAGA	CCGGCTTCAG	ATCGTAAAAT	TTCTATACGT	GGAGCTAGAA	3660
5	GCAACAATCT	TAAAGGGGTT	GATGTGGACA	TACCACTATC	AATCATGACG	GTTGTTACAG	3720
	GTGTATCAGG	TTCTGGTAAA	AGCTCATTAG	TAAATGAAGT	ATTATACAAA	TCATTAGCTC	3780
	AAAAAATTAA	TAAATCTAAA	GTAAAGCCAG	GATTGTACGA	TAAGATTGAA	GGTATTGATC	3840
10	AACTTGATAA	AATTATTGAT	ATTGATCAAT	CACCAATAGG	TAGAACGCCA	CGCTCTAATC	3900
	CAGCAACATA	TACTGGTGTG	TTTGATGATA	TACGTGATGT	GTTTGCGCAA	ACAAATGAAG	3960
15	CTAAAATTCG	AGGATATCAA	AAAGGGCGTT	TTAGTTTTAA	TGTAAAAGGT	GGACGCTGTG	4020
	AAgcTTGTAA	AGGTGACGGT	AAAATTATTA	TTGAAATGCA	TTTTTTACCT	GATGTTTATG	4080
	TTCCTTGTGA	AGTGTGTGAT	GGTAAACGAT	ATAATCGTGA	GACACTAGAG	GTTACTTACA	4140
20	AAGGTAAAAA	TATTGCTGAC	ATTTTAGAAA	TGACTGTTGA	AGAAGCAACA	CAATTTTTTG	4200
	AAAATATTCC	TAAGATTAAG	CGCAAGTTAC	AAACACTAGT	TGATGTTGGT	CTTGGATACG	4260
	TCACATTAGG	TCAACAAGCT	ACAACGTTAT	CAGGTGGTGA	GGCTCAACGT	GTGAaACTTG	4320
25	CATCTGAACT	TCATAAACGT	TCAACTGGTA	AATCTATTTA	TATCCTAGAT	GAACCGACAA	4380
	CAGGGTTACA	TGTTGACGAT	ATTAGTAGAT	TATTAAAAGT	ATTAAACCGA	TTAGTTGAAA	4440
	ATGGTGATAC	TGTTGTAATT	ATTGAACATA	ACCTAGATGT	TATCAAAACA	GCAGACTATA	4500
30	TTATAGACTT	AGGTCCTGAA	GGTGGTAGTG	GCGGTGGTAC	TATTGTTGCG	ACTGGCACAC	4560
	CCGAAGATAT	TGCTCAGACA	AAGTCATCAT	ATACAGGAAA	GTATTTAAAA	GAAGTACTTG	4620
	AACGAGATAA	ACAAAATACT	GAAGATAAAT	AAGATTAAAA	GAAGTGAAGG	ATGTTATAAA	4680
35	TTTATCCTTC	GCTTCTTTTT	ATTAATTTAG	TAATGAATAG	TAGAAAGAAA	AGATGCGTAA	4740
	AAAGÃATTAT	GTTAAGATAG	GGTCAATCTA	GAGTAGTTAA	ACATAAATCG	AACTGGGAGT	4800
10	GGGACAGAAA	TGATAAAGAA	TCACTAATGA	TTTATTATGT	AGTGGTTCTT	TGTCATTAGC	4860
	CACAGCTATT	GTGTACTTAA	AAATAGGaat	GCaTgAGTGC	AACTCATGCA	TAAGaAATAC	4920
	TAATTTCTAA	AGAAAAAGTA	TTTCTTTATG	TTGGGGCCCC	GCCAACTTGC	ATTGTTTGTA	4980
1 5	GAATTTCTTT	TCGAAATTCT	TTATGTTGGG	GCCCCGCCAA	CTTGCATTGT	TTGTAGAATT	5040
	TCTTTTCGAA	ATTCTTTATG	TTGGGGCCCC	GCCAACTAAT	TCCAATATAT	CATTGTAGAG	5100
	CTTAGGTCAT	TGATTTTTGG	CTCGGACTTT	TATGGCGATA	TGAACCATGT	AAATTAAGCA	5160
50	AGCAATAAAT	TAATGATTGA	TATTGACTTG	ТААААТААТА	ACAATAATGA	ACAATTAATA	5220
	ت لا بل للملايات لا بلتيك	CTTTTTC N N TC	TACATTCCTC	ייייייי איז איז איז איז איז איז איז איז	CATATCATAA	CARCACATOT	E 200

	ACATTAAAGT	TAGATTTAAT	CGCTGGTGAA	GAAGGACTAT	CGAAGCCAAT	TAAAAATGCT	5400
	GATATATCAA	GACCGGGCTT	AGAGATGGCA	GGTTATTTTT	CACATTATGC	GTCAGATAGA	5460
5	ATACAACTAT	TAGGAACAAC	GGAACTATCG	TTTTACAATT	TATTACCAGA	TAAGGATCGC	5520
	GCAGGTCGTA	TGCGTAAACT	ATGCAGACCA	GAAACGCCTG	CAATTATTGT	GACACGTGGA	5580
	TTGCAGCCAC	CAGAAGAATT	AGTTGAAGCT	GCAAAAGAAT	TAAATACCCC	ACTTATAGTT	5640
10	GCTAAAGATG	CGACTACAAG	TTTAATGAGT	CGCTTAACAA	CGTTTTTAGA	GCATGCACTT	5700
	GCAAAGACGA	CATCTTTACA	TGGTGTTTTA	GTAGATGTTT	ACGGTGTTGG	TGTACTAATT	5760
15	ACCGGTGATT	CAGGAATAGG	TAAAAGTGAG	ACTGCGTTGG	AATTAGTTAA	ACGTGGGCAT	5820
, ,	AGATTAGTAG	CAGATGATAA	TGTAGAAATA	CGTCAAATTA	ATAAAGATGA	ACTAATAGGG	5880
	AAACCACCAA	AGTTAATAGA	ACATCTATTA	GAAATACGTG	GACTAGGTAT	TATCAATGTT	5940
20	ATGACTTTAT	TTGGCGCGGG	TTCAATATTA	ACTGAAAAAC	GAATTAGATT	AAATATTAAT	6000
	TTGGAAAACT	GGAACAAGCA	AAAGTTATAT	GACCGCGTAG	GTCTTAATGA	AGAGACGCTA	6060
	AGTATTTTAG	ATACTGAAAT	CACTAAAAAA	ACAATACCTG	TAAGACCTGG	TAGAAATGTT	6120
25	GCGGTAATTA	TTGAGGTCGC	TGCAATGAAC	TATCGATTAA	ATATCATGGG	CATTAACACG	6180
	GCCGAAGAAT	TTAGTGAAAG	ATTAAATGAA	GAAATTATCA	AGAACAGTCA	TAAGAGTGAG	6240
	GAGTAGGTTG	AATGGGTATT	GTATTTAACT	ATATAGATCC	TGTGGCATTT	AACTTAGGAC	6300
30	CACTGAGTGT	ACGATGGTAT	GGAATTATCA	TTGCTGTCGG	AATATTACTT	GGTTACTTTG	6360
	TTgCACAACG	TGCACTAGTT	AAAGCAGGAT	TACATAAAGA	TACTTTAGTA	GATATTATTT	6420
	TTTATAGTGC	ACTATTTGGA	TTTATCGCGG	CACGAATCTA	TTTTGTGATT	TTCCAATGGC	6480
35	CATATTACGC	GGAAAATCCA	agtgaaatta	TTAAAATATG	GCATGGTGGA	ATAGCAATAC	6540
	ATGGTGGTTT	AATAGGTGGC	TTTATTGCTG	GTGTTATTGT	ATGTAAAGTG	AATTTAA	6600
1 0	ACCCATTTCA	AATTGGTGAT	ATCGTTGCGC	CAAGTATAAT	TTTAGCGCAA	GGAATTGGAC	6660
	GCTGGGGTAA	CTTTATGAAT	CACGAGGCAC	ATGGTGGATC	GGTGTCACGC	GCTTTTTTAG	6720
	AACAATTACA	TTTGCCTAAT	TTTATAATAG	AAAATATGTA	TATTAACGGC	CAATATTATC	6780
15	ATCCAACATT	CTTATATGAA	TCCATTTGGG	ATGTCGCTGG	ATTTATTATC	TTAGTTAATA	6840
	TTCGTAAACA	TTTAAAATTA	GGAGAAACAT	TCTTTTTATA	TTTAACTTGG	TATTCAATTG	6900
	GTCGATTCTT	TATAGAAGGA	TTACGTACAG	ATAGCTTAAT	GCTCACAAGT	AATATTAGAG	6960
50	TTGCACAAIT	AGTATCAATT	CTTTTAATTT	TAATAAGTAT	AAGTTTAATT	GTATATAGAA	7020
	GGATTAAGTA	TAATCCACCG	TTGTATAGCA	AAGTTGGGGC	GCTTCCATGG	CCAACAAAAA	7080

	TTATGGCGTG	TATACCGTCT	TGTTAAATTT	TCGAAAGTTT	TTAAGAATGT	AATTATCATT	7200
	GAATTTTCGA	AATTTATTCC	AAGTATGGTA	CTGAAAAGAC	АТАТАТАТАА	ACAACTTTTA	7260
5	AATATTAATA	TCGGTAATCA	ATCGTCGATA	GCTTATAAAG	TAATGTTAGA	TATTTTTAC	7320
	CCAGAACTGA	TTACGATTGG	TAGTAACAGT	GTTATTGGTT	ACAATGTAAC	AATTTTGACG	7380
	CATGAAGCAT	TAGTTGATGA	ATTTCGTTAT	GGACCAGTGA	CGATAGGATC	TAACACTTTG	7440
10	ATTGGTGCAA	ATGCTACCAT	TTTACCCGGT	ATAACGATTG	GTGACAATGT	AAAAGTTGCA	7500
	GCTGGTACGG	TTGTTTCAAA	AGATATACCG	GATAATGGAT	TTGCATATGG	CAACCCTATG	7560
15	TATATAAAAA	TGATTAGGAG	GTGACAATTT	TATGGCGCAA	AAGAATAATA	ATGTAATTCC	7620
	AATGACTTTT	GATGATGCAT	TTTATCGTAA	AATGGCTAAA	CAGAAGTTTA	AACAAAGAGA	7680
	ATATAAACGA	GCTGCTGAAT	ACTTTGAAAA	AGTGTTAGAA	TTGTCACCTG	ATGATCTGGA	7740
20	AATTCAAATT	GATTATGCAC	AATGTCTAGT	GCAACTTGGT	ATTGCTAAAA	AAGCAGAACA	7800
	TTTATTTTAT	GACAATATTA	TTTATAATAG	GCATCTAGAA	GATAGCTTTT	ATGAATTGAG	7860
	TCAGCTCAAC	ATTGAAGTTA	ACGAACCAAA	CAAGGCATTC	TTGTTTGGTA	TTAATTATGT	7920
25	TATTGTTAGC	GACGACCAAG	ATTATAGAGA	TGAATTAGAT	CAAATGTTTG	ATGTGAAATA	7980
	TCAAAGTGAA	GAACAAATTG	AACTTGAAGC	TCAATTGTTT	GTAGTTCAAA	TACTATTCCA	8040
	ATATCTTTTT	TCTCAAGGTC	GATTAAAAGA	TGCAAAGAAT	TATGTCTTAC	ATCAACCACA	8100
30	AGAAGTTCAA	GATCATCGTG	TAGTACGTAA	TTTATTGGCA	ATGTGTTATT	TATATCTCGG	8160
	TGAATATGAT	ACgGCTAAAG	CATTGTACGA	aGCACtATTA	CAAGAGGATA	GTACaGATAT	8220
	ATATGCATTA	TGCCATTATA	CTTTGCTACT	TTATAACACT	AAGGAAAATG	AACAATATCA	8280
35	AAAATATTTA	AAAATATTAA	ACAAAGTTGT	ACCTATGAAT	GACGATGAAA	GTTTTAAATT	8340
	AGGTATTGTA	TTAAGTTATT	TAAAGCAGTA	TCGTGCATCA	CAACAATTGT	TGTACCCTTT	8400
10	ATATAAAAAA	GGGAAATTTT	TATCAATTCA	AATGTACAAT	GCTTTAGCAT	ATAATTATTA	8460
	TTATTTAGGT	GAAGAAGACG	AAAGTCATTA	CTACTGGGAT	AAATTGAAGC	AAATTTCTAA	8520
	AGTGGAAATT	GGACATGCGC	CTTGGGTAAT	TGAAAATAGC	AAAGAAGTTT	TTGACCAACA	8580
15	TATTTTGCCA	TTACTTCAAA	GTGATGACAG	TCATTATCGT	TTATATGGTA	TTTTTTTATT	8640
	GGATCAATTA	AATGGTAAAG	AAATTGTGAT	GACGGAAAGT	ATTTGGCAGG	TTTTGGAAAA	8700
	TCTAAATAAT	TATGAGAAAT	TGTATTTAAC	GTATTTAGTT	CAAGGTTTAA	CGCTCAATAA	8760
50	ATTAGACTTC	ATTCATCGCG	GCTTATTAAC	GCTTTACCAT	AATGAATTAT	TTGTAAGTGA	8820
	AAATGATGTA	ATGGTTGCAT	CCATTAATCA	ACCTCAACTC	እ ተ እ አጥጥር ረጥር	33335CT3C3	2020

	TCGAAACGTT	ACAAAGAAGC	AAATTACAAC	ATGGTTAGGC	ATAACACAAT	ATAAACTGAA	9000
	CAAAATGATT	GAATTTCTCT	TGAGCATATA	GATTTATGAA	AAGTTAGATT	TATTATATAA	9060
5	TGCGCATAAT	GATTAATAAT	GAGGAGGCGT	TAATAAAATG	ACTGAAATAG	ATTTTGATAT	9120
	AGCAATTATC	GGTGCAGGTC	CAGCTGGTAT	GACTGCTGCA	GTATACGCAT	CACGTGCTAA	918
	TTTAAAAAACA	GTTATGATTG	AAAGAGGTAT	TCCAGGCGGT	CAAATGGCTA	ATACAGAAGA	9240
0	AGTAGAGAAC	TTCCCTGGTT	TCGAAATGAT	TACAGGTCCA	GATTTATCTA	CAAAAATGTT	9300
	TGAACACGCT	AAAAAGTTTG	GTGCAGTTTA	TCAATATGGA	GATATTAAAT	CTGTAGAAGA	9360
5	TAAAGGCGAA	TATAAAGTGA	TTAACTTTGG	TAATAAAGAA	TTAACAGCGA	AAGCGGTTAT	9420
3	TATTGCTACA	GGTGCAGAAT	ACAAGAAAAT	TGGTGTTCCG	GGTGAACAAG	AACTTGGTGG	9480
	ACGCGGTGTA	AGTTATTGTG	CAGTATGTGA	TGGTGCATTC	TTTAAAAATA	AACGCCTATT	9540
20	CGTTATCGGT	GGTGGTGATT	CAGCAGTAGA	AGAGGGAACA	TTCTTAACTA	AATTTGCTGA	9600
	CAAAGTAACA	ATCGTTCACC	GTCGTGATGA	GTTACGTGCA	CAGCGTATTT	TACAAGATAG	9660
	AGCATTCAAA	AATGATAAAA	TCGACTTTAT	TTGGAGTCAT	ACTTTGAAAT	CAATTAATGA	9720
5	AAAAGACGGC	AAAGTGGGTT	CTGTGACATT	AACGTCTACA	AAAGATGGTT	CAGAAGAAAC	9780
	ACACGAGGCT	GATGGTGTAT	TCATCTATAT	TGGTATGAAA	CCATTAACAG	CGCCATTTAA	9840
	AGACTTAGGT	ATTACAAATG	ATGTTGGTTA	TATTGTAACA	AAAGATGATA	TGACAACATC	9900
80	AGTACCAGGT	ATTTTTGCAG	CAGGAGATGT	TCGCGACAAA	GGTTTACGCC	AAATTGTCAC	9960
	TGCTACTGGC	GATGGTAGTA	TTGCAGCGCA	AAGTGCAGCG	GAATATATTG	AACATTTAAA	10020
	CGATCAAGCT	TAATTCGAAG	TCGAATTAAG	ATGTTGAGCT	GTAAATTATT	TGGATATTTA	10080
85	TTTTAATAGT	GTCATCACAG	CGTTAAAATA	ATGTCTTACT	TTTAAATTAA	AGCAAATTAT	10140
	ATAGAAACT	AGAACTTAGT	ACGTATCATT	TGTGCGTTTC	AATGAGTTCT	AGTTTTTTTA	10200
10	TATGTTATAT	TAAACTTATA	ACTTTATGGG	AGTGGGACAG	AAATGATAAA	GAGCCACTAA	10260
	TGATTTATTA	TGTAGTGGTT	CTTAAACATT	AGCCACAGCT	AATGTGTACT	TAAAAATAGG	10320
	AATACATGAG	TAAAACTCAT	GCATAAGAAA	TACTAATTTC	TATAGAAAAA	GTATTACTTT	10380
15	ATCGTTGTCC	CACCCCAACT	TGCACATTAT	TGTAAGCTGA	CTTTCCGCCA	GCTTCTGTGT	10440
	TGGGGCCCCG	CCAACTTGCA	CATTATTGTA	AGCTGACTTT	TCGTCAgCTT	CTGTGTTGGG	10500
	GCCCCGCCAA	CTTGCACATT	ATTGTAAGCT	GACTTTTCGT	CAGCTTCTGT	GTTGGGGCCC	10560
0	CGCCAACTTG	CATTGTCTGT	AGAAATTGGG	AATCCAATTT	CTCTATGTTG	GGGCCCACAC	10620
	CCCNACTCCC	a mmaramama	CAATTCTTT	TO CARATURO	CTCTCTTCCC	CCCCACACCC	10690

	ACTCGCATTG	CCTGTAGAAT	TTCTTTTCGA	AATTCTCTGT	GTTGGGGCCC	CTGACTAGAG	10800
	TTGAAAAAAG	CTTGTTGCAA	GCGCATTTTC	ATTCAGTCAA	CTACTAGCAA	TATAATATTA	10860
5	TAGACCCTAG	GACATTGATT	TATGTCCCAA	GCTCCTTTTA	AATGATGTAT	ATTTTTAGAA	10920
	ATTTAATCTA	GACATAGTTG	GAAATAAATA	TAAAACATCG	TTGCTTAATT	TTGTCATAGA	10930
	ACATTTAAAT	TAACATCATG	AAATTCGTTT	TGGCGGTGAA	AAAATAATGG	ATAATAATGA	11040
10	AAAAGAAAAA	AGTAAAAGTG	AACTATTAGT	TGTAACAGGT	TTATCTGGCG	CAGGTAAATC	11100
	TTTGGTTATT	CAATGTTTAG	AAGACATGGG	ATATTTTTGT	GTAGATAATC	TACCACCAGT	11160
15	GTTATTGCCT	AAATTTGTAG	AGTTGATGGA	ACAAGGAAAT	CCATCCTTAA	GAAAAGTGGC	11220
	AATTGCAATT	GATTTAAGAG	GTAAGGAACT	ATTTAATTCA	TTAGTTGCAG	TAGTGGATAA	11280
	AGTCAAAAGT	GAAAGTGACG	TCATCATTGA	TGTTATGTTT	TTAGAAGCAA	GTACTGAAAA	11340
20	ATTAATTTCA	AGATATAAGG	AAACGCGTCG	TGCACATCCT	TTGATGGAAC	AAGGTAAAAG	11400
	ATCGTTAATC	AATGCAATTA	ATGATGAGCG	AGAGCATTTG	TCTCAAATTA	GAAGTATAGC	11460
	TAATTTTGTT	ATAGATACTA	CAAAGTTATC	ACCTAAAGAA	TTAAAAGAAC	GCATTCGTCG	11520
25	ATACTATGAA	GATGAAGAGT	TTGAAACTTT	TACAATTAAT	GTCACAAGTT	TCGGTTTTAA	11580
	ACATGGGATT	CAGATGGATG	CAGATTTAGT	ATTTGATGTA	CGATTTTTAC	CAAATCCATA	11640
	TTATGTAGTA	GATTTAAGAC	CTTTAACAGG	ATTAGATAAA	GACGTTTATA	ATTATGTTAT	11700
30	GAAATGGAAA	GAGACGGAGA	TTTTCTTTGA	AAAATTAACT	GATTTGTTAG	ATTTTATGAT	11760
	ACCCGGGTAT	AAAAAAGAAG	GGAAATCTCA	ATTAGTAATT	GCCATCGGTT	GTACGGGTGG	11820
35	ACAACATCGA	TCTGTAGCAT	TAGCAGAACG	ACTAGGTAAT	TATCTAAATG	AAGTATTTGA	11880
33	ATATAATGTT	TATGTGCATC	ATAGGGACGC	ACATATTGAA	AGTGGCGAGA	AAAAATGAGA	11940
	CAAATAAAAG	TTGTACTTAT	CGGTGGTGGC	ACTGGCTTAT	CAGTTATGGC	TAGGGGATTA	12000
40	AGAGAATTCC	CAATTGATAT	TACGGCGATT	GTAACAGTTG	CTGATAATGG	TGGGAGTACA	12060
	GGGAAAATCa	GAGATGAAAT	GGATATACCA	GCACCAGGAG	ACATCAGAAA	TGTGATTGCA	12120
	GCTTTAAGTG	ATTCTGAGTC	AGTTTTAAGC	CAACTTTTTC	AGTATCGCTT	TGAAGAAAAT	12180
45	CAAATTAGCG	GTCACTCATT	AGGTAATTTA	TTAATCGCAG	GTATGACTAA	TATTACGAAT	12240
	GATTTCGGAC	ATGCCATTAA	AGCATTAAGT	AAAATTTTAA	ATATTAAAGG	TAGAGTCATT	12300
	CCATCTACAA	ATACAAGTGT	GCAATTAAAT	GCTGTTATGG	AAGATGGAGA	AATTGTTTTT	12360
50	GGAGAAACAA	ATATTCCTAA	AAAACATAAA	AAAATTGATC	GTGTGTTTTT	AGAACCTAAC	12420
	GATGTGCAAC	CAATGGAAGA	AGCAATCGAT	GCTTTAAGGG	AAGCAGATTT	AATCGTTCTT	12480

	GCGTTAATTC	ATTCTGATGC	GCCTAAGCTA	TATGTTTCTA	ATGTGATGAC	GCAACCTGGG	12600
	GAAACAGATG	GTTATAGCGT	GAAAGATYAT	ATCGATGCGA	TTCATAGACA	AGCTGGACAA	12660
5	CCGTTTATTG	ATTATGTCAT	TTGTAGTACA	CAAACTTTCA	ATGCTCAAGT	TTTGAAAAAA	12720
	TATGAAGAAA	AACATTCTAA	ACCAGTTGAA	GTTAATAAGG	CTGAACTTGA	AAAAGAAAGC	12780
	ATAAATGTAA	AAACATCTTC	AAATTTAGTT	GAAATTTCTG	AAAATCATTT	AGTAAGACAT	12840
10	AATACTAAAG	TGTTATCGAC	AATGATTTAT	GACATAGCTT	TAGAATTAAT	TAGTACTATT	12900
	CCTTTCGTAC	CAAGTGATAA	ACGTNAATAA	TATAGAACGT	AATCATATTA	TGATATGATA	12960
15	ATAGAGCTGT	GAAAAAAATG	AAnATAGACA	GTGGTTCTAA	GGTGAATCAT	GTTTTAAATA	13020
	AGAAAGGAAT	GACTGTACGA	TGAGCTTTGC	ATCAGAAATG	AAAAATGAAT	TAACTAGAAT	13080
	AGACGT						13086
20	(2) INFORMA	ATION FOR SE	EQ ID NO: 17	7:			
	(i) SE	QUENCE CHAR	RACTERISTICS	S:			

- (A) LENGTH: 1350 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

CATTAGTCAT GAAAATAGCC GACAACTTCA TCTGTGAAAT CACCGGCCTT TTATTTTAGC 60 TAACTTTATT TCTGATTTTA CGATTTTAAT TGATCATACA GAGAAAGTGA TCTTTTTACA 120 ATTTCTAAAA ACTCATGATC TATATTGGAC ATTTGATGAA AATAAGACAA AATGTTTTCT 180 GTTAGCTTCT CTTGTTTTGG GAATGAATCA TCTTCTTTAA TCCAAATCGC TAATTCGCCT 240 AATGGTGTTT TATCATCTTT AAATGTTTGT ATATATTCGT AAAAGCTCAT AGTATTCCTT 300 CTCTCAATTT ACTTATATAA ATCCTACCAC GAAAGCTTTC AAGAAAACAC AATTAAATGT 360 CTATTTAGTG AACTTTTAA GGTTGTGCAC TCTTTTAATG TCTGCCAATT AGGTCAATTA 420 ATCATCACAA TGTACAATTA ACTCTATTTT CAGTTCATAT ACTCACACAC CGTTTTTGAA 480 CAACACATTA ACTTCTCATT TAGATAAAAC GCAAAAAAGC CTGGCACCAA TACAATAGAT 540 GCCAGACTAA GAGTCTACTA TATAAATTTA TITAGCGTAT GGTTTTACTT CGATTGCACC 600 TTCATTTTCA TCATGAACAC CATGCTTATA ATAATCAATA TATTGTGGCT CTAAAGGCTT 660 TCTGCCACGT ATAATGTCTG CTGCTTTTTC AGCTAACATT AAAACAGGTG CGTGTATATT 720 GCCATTTGTC GTACGTGGCA TAGCTGATGC ATCAACTACA CGTAAATTTT CCATACCGTG 780

55

50

30

35

40

	ACTACAAGAT GGGTGTAATG CTGTTTCACC ATCTCTACGA A	CCCAATCAA	GAATTTCTTC	900
	GTCTGTTTGC ACTTCTGGTC CTGGTGAAAT TTCTCCACCA T	TGAATGGAT	CCATTGCTTT	960
5	TTGAGATAAG ATATTTCTTG CTACACGAAT TGCTTCTACC C	CATTCTTTTT	TATCTTCTTC	1020
	TGTTGATAAA TAATTAAAGC GGATACTTGG TTTTTCGAAT G	GATCTTTAG	ATTTGATTTT	1080
10	CAAGCTACCA CGAGAGTTTG AATACATTGG TCCTACGTGA AG	CTTGATAAC	CATGTGCGAC	1140
, 0	CGCTGCCTTT TGACCATCAT ATCTTACAGC TATTGGTAAG A	AATGGAACA	TTAAGTTAGG	1200
	ATAALCAACT TCGTTATTTG AACGTACAAA TCCGCCACCT TC	CAAAATGGT	TAGATGCTGC :	1260
15	TGCACCTGTA CGTGTGAAAA TCCATTGTAA ACCAATAAAT GC	GCATGCGCT	TGALATCTAA	1320
	GCTTGGCtGt AATGATACAG GTTCCTTACA		:	1350
	(2) INFORMATION FOR SEQ ID NO: 18:			
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1376 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 			
?5				
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18	l:		
	TAATGCTATT GGCAACACCA TATATGAAAn CTCCAAACGA TO	CCTAAACCG	ACTATAGATT	60
30	CACCAAATTT NACAATCCAT GAATAAAGTA GTGGCCATAA GA	BAATAACAAT	ATGACAACTA	120
	AAAATGTACA GTAAAATGCA GTCATAATTG GAACTAGACG T	TTACCACTA	AAAAATGATA	180
35	ATGCTAATGG TAATTCTGTT TCACTAAACT TATTGTATGC A	TAAGCTGCT	ATTAAACCTA	240
	TTACAATACC AACAAAGACA TTGCCATTAT TCATCTTTTC A	AAAGCTGAA	TTTATTTCCG	300
	Argetteat tectaataaa geegetaatt teattegtea ta	AATACAACT	GTAACTAAAA	360
10	AATATCCTAA CGTrGCTGCA rGCGsGACTG CACCATCATT T	TTCTTTGCC	ATTCCTATAG	420
	CTACACCAAT TGCAAATAAA ATACCTAATT GCTCTAAAAT CO	GTAGTACCT	ACCGTAGTAA	480
	AGAACATTGC GATTTTCGGC GTCGCATGAA GTGCATTTAA CC	GTATTACCA	ATTCCGGCAA	540
1 5	TAATTGCTGC AGCCGGTAAA ATGGCAACTG GTAACATTAA CC	GAACGCCCT	AAATTTTGGA	600
	AAAATTTATA CATTGAATGT CATCCTTCTT AAAATAATGT AG	GAAATATAA	AGATTACTAA	660
	TGTAACTAGA ATAACTACTT CGATACTCCG TTATAGTCAC C	TAGGCTTAC	TAACCAGCTA	720
50	TATTTCTACC TCAAGTTATT TTATAAACTT TTTACAATTT C	ATGCAATTC	TTGTTGTAAC	780
	TTTGCTGTTC GTGTTTCAAT CTCTTTTGTA ATATAATCGA TA	ACGCTCGTT	TCGTTTTAAA	840

	AAAGACCGTG AATCTTAGTA GGACCAACAT AAGCAACAGG TAATATTGGT GACTTACTTA	960
	ACATTGCAAT TGTTGAAGCA CCaCGTTTCA AAGGTGCACC TTCTTGCGAT GTGCGAGAAC	1020
5	CTGTTGGGAA GATACCAACT GTCTTATTAT CTTTCAACAA ATTGATTGGG CGTTTTAAAG	1080
	TACTAGGTCC TGGATTTTCA CGATCTACAG GAAATGCATT TAAAGACGTT AAAAATTTAC	1140
	CAATCCATTT ATTITTGAAT AATTCTTTTT TAGCCATATA ATGAATTTGA TTAGGATATA	1200
10	ATGCCATACC TAGCATAATG ACTTCGTTAT AACTTTCATG CGTACAAGTT ACGACATATT	1260
	TACTATCCTT AGGAATATTA TCTTTACCGA TTACGTATAA TGATTTTGAC ATTTTAACTA	1320
15	AAATGAAATT CAAAATCTTA CTAATCACTG AATACATTGT GCCACCTACT TAACTT	1376
	(2) INFORMATION FOR SEQ ID NO: 19:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7363 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
	TTGTCATACC AATATTTTGT AAAATATGGA ACACAAGTAA AGTGACGAAA CCAACGATAA	60
	AGATTTTGTT AAATTGATCT TCAATTTTCG CAGCTAATCT TATTAGATGG AAGATTAAAA	120
30	ATAAAAATAT TAAGATCAAT ATGACAGAAC CGATAAAGCC AAGTTCCTCT CCAATCACTG	180
	AAAAGATAAA GTCAGTATGA TTTTCAGGTA TATAAACTTC ACCGTGATTG TATCCTTTAC	240
	CTAGTAACTG TCCAGAACCG ATAGCTTTAA GTGATTCAGT TAAATGATAG CCATCACCAC	300
35	TACTATATGT ATAGGGGTCA AGCCATGAAT TGATTCGTCC CATTTGATAC AGTTGGACAC	360
	CTAATAAATT TTCAATTAAT GCGGGTGCAT ATAGAATACC TAAAATGACT GTCATTGCAC	420
40	CAACAATACC TGTAATAAAG ATAGGTGCTA AGATACGCCA TGTTATACCA CTTACTAACA	480
70	TCACACCTGC AATAATAGCA GCTAATACTA ATGTAGTTCC TAGGTCATTT TGCAGTAATA	540

TTAAAATACT TGGTACTAAC GAGACACCAA TAATTTTGAA AAATAATAAC AAATCACTTT

GGAATGATTT ATTGAATGTG AATTGATTAT GTCTAGAAAC GACACGCGCT AATGCTAAAA

TTAAAATAAT TTTCATGAAT TCAGATGGCT GAATACTGAT AGGGCCAAAC GTGTACCAAC

TTTTGGCACC ATTGATAATA GGTGTAATAG GTGACTCAGG AATAACGAGC AAGCCTATTA

ATAATAGACA GATTAAGAAA TACAATAAAT ATGTATAATG TTTAATCTTT TTAGGTGAAA

TAAACATGAT GATACCTGCA AAAATTGCAC CTAAAATGTA ATAAAAAATT TGTCTGATAC

600

660

720

780

840

900

55

45

	TTGCTAAAAC	AGCTATAGTG	GCTACTAATA	CCCAGTCTAC	TTTGCGAAnC	aATGCTTATC	1020
	CGGCTGTTGA	CGAGATGAAT	AATTCATTGC	AAACTCCTTT	TATACTCACT	AATGTTTATA	1080
5	TCAATTITAC	ATGACTTTTT	AAAAATTAGC	TAGAATATCA	CAGTGATATC	AGCTATAGAT	1140
	TTCAATTTGA	ATTAGGAATA	AAATAGAAGG	GAATATTGTT	CTGATTATAA	ATGAATCAAC	1200
	ATAGATACAG	ACACATAAGT	CCTCGTTTTT	AAAATGCAAA	ATAGCATTAA	AATGTGATAC	1260
10	TATTAAGATT	CAAAGATGCG	AATAAATCAA	TTAACAATAG	GACYAAATCA	ATATTAATTT	1320
	ATATTAAGGT	AGCAAACCCT	GATATATCAT	TGGAGGAAAA	CGAAATGACA	AAAGAAAATA	1380
15	TTTGTATCGT	TTTTGGAGGG	AAAAGTGCAG	AACACGAAGT	ATCGATTCTG	ACAGCACAAA	1440
	ATGTATTAAA	TGCAATAGAT	AAAGACAAAT	ATCATGTTGA	TATCATTTAT	ATTACCAATG	1500
	ATGGTGATTG	GAGAAAGCAA	AATAATATTA	CAGCTGAAAT	TAAATCTACT	GATGAGCTTC	1560
20	ATTTAGAAAA	TGGAGAGGCG	CTTGAGATTT	CACAGCTATT	GAAAGAAAGT	AGTTCAGGAC	1620
	AACCATACGA	TGCAGTATTC	CCATTATTAC	ATGGTCCTAA	TGGTGAAGAT	GGCACGATTC	1680
	AAGGGCTTTT	TGAAGTTTTG	GATGTACCAT	ATGTAGGAAA	TGGTGTATTG	TCAGCTGCAA	1740
25	GTTCTATGGA	CAAACTTGTA	ATGAAACAAT	TATTTGAACA	TCGAGGGTTA	CCACAGTTAC	1800
	CTTATATTAG	TTTCTTACGT	TCTGAATATG	AAAAATATGA	ACATAACATT	TTAAAATTAG	1860
	TAAATGATAA	ATTAAATTAC	CCAGTCTTTG	TTAAACCTGC	TAACTTAGGG	TCAAGTGTAG	1920
30	GTATCAGTAA	ATGTAATAAT	GAAGCGGAAC	TTAAAGAAGG	TATTAAAGAA	GCATTCCAAT	1980
	TTGACCGTAA	GCTTGTTATA	GAACAAGGCG	TTAACGCACG	TGAAATTGAA	GTAGCAGTTT	2040
25	TAGGAAATGA	CTATCCTGAA	GCGACATGGC	CAGGTGAAGT	CGTAAAAGAT	GTCGCGTTTT	2100
35	ACGATTACAA	ATCAAAATAT	AAAGATGGTA	AGGTTCAATT	ACAAATTCCA	GCTGACTTAG	2160
	ACGAÁGATGT	TCAATTAACG	CTTAGAAATA	TGGCATTAGA	GGCATTCAAA	GCGACAGATT	2220
40	GTTCTGGTTT	AGTCCGTGCT	GATTTCTTTG	TAACAGAAGA	CAACCAAATA	TATATTAATG	2280
	AAACAAATGC	AATGCCTGGA	TTTACGGCTT	TCAGTATGTA	TCCAAAGTTA	TGGGAAAATA	2340
	TGGGCTTATC	TTATCCAGAA	TTGATTACAA	AACTTATCGA	GCTTGCTAAA	GAACGTCACC	2400
1 5	AGGATAAACA	GAAAAATAAA	TACAAAATTG	ACTAACTGAG	GTTGTTATTA	TGATTAATGT	2460
	TACATTAAAG	CAAATTCAAT	CATGGATTCC	TTGTGAAATT	GAAGATCAAT	TTTTAAATCA	2520
	AGAGATAAAT	GGAGTCACAA	TTGATTCACG	AGCAATTTCT	AAAAATATGT	TATTTATACC	2580
50	ATTTAAAGGT	GAAAATGTTG	ACGGTCATCG	CTTTGTCTCT	AAAGCATTAC	AAGATGGTGC	2640
	TOCOCOTOCT	מ מ מיין איין איין איין	CACCCACACC	TATA CATCAA	NATIONA ACCC	CCCCTT A TTT A TT	2700

	AAACCCTAAA	GTAATTGCCG	TCACAGGGTC	TAATGGTAAA	ACAACGACTA	AAGATATGAT	2820
	TGAAAGTGTA	TTGCATACCG	AATTTAAAGT	TAAGAAAACG	CAAGGTAATT	ACAATAATGA	2880
5	AATTGGTTTA	CCTTTAACTA	TTTTGGAATT	AGATAATGAT	ACTGAAATAT	CAATATTGGA	2940
	GATGGGGATG	TCAGGTTTCC	ATGAAATTGA	ATTTCTGTCA	AACCTCGCTC	AACCAGATAT	3000
4.0	TGCAGTTATA	ACTAATATTG	GTGAGTCACA	TATGCAAGAT	TTAGGTTCGC	GCGAGGGGAT	3060
10	TGCTAAAGCT	AAATCTGAAA	TTACAATAGG	TCTAAAAGAT	AATGGTACGT	TTATATATGA	3120
	TGGCGATGAA	CCATTATTGA	AACCACATGT	TAAAGAAGTT	GAAAATGCAA	AATGTATTAG	3180
15	TATTGGTGTT	GCTACTGATA	ATGCATTAGT	TIGITCIGIT	GATGATAGAG	ATACTACAGG	3240
	TATTTCATTT	ACGATTAATA	ATAAAGAACA	TTACGATCTG	CCAATATTAG	GAAAGCATAA	3300
	TATGAAAAAT	GCGACGATTG	CCATTGCGGT	TGGTCATGAA	TTAGGTTTGA	CATATAACAC	3360
20	AATCTATCAA	AATTTAAAAA	ATGTCAGCTT	AACTGGTATG	CGTATGGAAC	AACATACATT	3420
	AGAAAATGAT	ATTACTGTGA	TAAATGATGC	CTATAATGCA	AGTCCTACAA	GTATGAGAGC	3480
	AGCTATTGAT	ACACTGAGTA	CTTTGACAGG	GCGTCGCATT	CTAATTTTAG	GAGATGTTTT	3540
25	AGAATTAGGT	GAAAATAGCA	AAGAAATGCA	TATCGGTGTA	GGTAATTATT	TAGAAGAAAA	3600
	GCATATAGAT	GTGTTGTATA	CGTTTGGTAA	TGAAGCGAAG	TATATTTATG	ATTCGGGCCA	3660
	GCAACATGTC	GAAAAAGCAC	AACACTTCAA	TTCTAAAGAC	GATATGATAG	AAGTTTTAAT	3720
30	AAACGATTTA	AAAGCGCATG	ACCGTGTATT	AGTTAAAGGA	TCACGTGGTA	TGAAATTAGA	3780
	AGAAGTGGTA	AATGCTTTAA	TTTCATAGAG	ATTAGTCGAG	GGACCTTTTA	CTTATAAAA	3840
	TGATTTGAAT	TAATACTAAA	AGATTACAAA	GAAGAGGTGG	TTTTGTGTGT	AAATACAAAA	3900
35	TTGCCTTTTT	CTTTTTATGT	TAAATCTATA	AATTTGAAAC	TAAATCAAGG	TTAATTCTAT	3960
	GTACÃCACTT	TATATAGGAA	GTAGTTTGAA	TGTTTATATA	ATGTTTTACA	AAAAGATGTA	4020
1 0	GTATTATAAT	GTCTAATTTC	ACATGTGTTT	CAGTAAAATT	TGTTGTGGAA	TGTTAACGAT	4080
	ATACGTATTT	TATAAAAaAT	TTTTTTATAAT	GATTATTCGA	ATGATGCGTA	ACGCTTACAT	4140
	CTTATCTAAT	GCTAGCTTTT	TGACAAAAAT	ATGACAATCA	ATTAATGTGA	TTCTAATAAA	4200
15	TATTCGCAAA	TTGCTTTATT	GCGATTAAAT	TTTTTTGGTG	GTACTATATA	GAAGTTGATG	4260
	AAATATTAAT	GAACTTATAT	GCAAAAGTAT	ATTGAGAAAT	AAACAGGTAA	AAAGGAGAAT	4320
	TATTTTGCAA	AATTTTAAAG	AACTAGGGAT	TTCGGATAAT	ACGGTTCAGT	CACTTGAATC	4380
50	AATGGGATTT	AAAGAGCCGA	CACCTATCCA	AAAAGACAGT	ATCCCTTATG	CGTTACAAGG	4440
	אמייית איים איים	CTTGGGCAAG	CTCABACCGG	TACAGGTAAA	ACAGGAGCAT	TOGGTATTOO	4500

	AGAATTGGCA	ATGCAGGTAG	CTGAACAATT	AAGAGAATTT	AGCCGTGGAC	AAGGTGTCCA	4620
	AGTTGTTACT	GTATTCGGTG	GTATGCCTAT	CGAACGCCAA	ATTAAAGCCT	TGAAAAAAGG	4680
5	CCCACAAATC	GTAGTCGGAA	CACCTGGGCG	TGTTATCGAC	CATTTAAATC	GTCGCACATT	4740
	AAAAACGGAC	GGAATTCATA	CTTTGATTTT	AGATGAAGCT	GATGAAATGA	TGAATATGGG	4800
40	ATTCATCGAT	GATATGAGAT	TTATTATGGA	TAAAATTCCA	GCAGTACAAC	GTCAAACAAT	4860
10	GTTGTTCTCA	GCTACAATGC	CTAAAGCAAT	CCAAGCTTTA	GTACAACAAT	TTATGAAATC	4920
	ACCAAAAATC	ATTAAGACAA	TGAATAATGA	AATGTCTGAT	CCACAAATCG	AAGAATTCTA	4980
15	TACAATTGTT	AAAGAATTAG	AGAAATTTGA	TACATTTACA	AATTTCCTAG	ATGTTCATCA	5040
	ACCTGAATTA	GCAATCGTAT	TCGGACGTAC	AAAACGTCGT	GTTGATGAAT	TAACAAGTGC	5100
	TTTGATTTCT	AAAGGATATA	AAGCTGAAGG	TTTACATGGT	GATATTACAC	AA GCG AAA Cg	5160
20	TTt AGAAGTA	TTanAGAAAT	TTAAAAATGA	CCAAATTAAT	ATTTTAGTCG	CTACTGATGT	5220
	AGCAGCAAGA	GGACTAGATA	TTTCTGGTGT	GAGTCATGTT	TATAACTTTG	ATATACCTCA	5280
	AGATACTGAA	AGCTATACAC	ACCGTATTGG	TCGTACGGGT	CGTGCTGGTA	AAGAAGGTAT	5340
25	CGCTGTAACG	TTTGTTAATC	CAATCGAAAT	GGATTATATC	AGACAAATTG	AAGATGCAAA	5400
	CGGTAGAAAA	ATGAGTGCAY	TCGTCCACCA	CATCGTAAAG	AAGTACTTCA	AGCACGTGAA	5460
	GATGACATCA	AAGAAAAGT	TGAAAACTGG	ATGTCTAAAG	AGTCAGAATC	ACGCTTGAAA	5520
30	CGCATTTCTA	CAGAGTTGTT	AAATGAATAT	AACGATGTTG	ATTTAGTTGC	TGCACTTTTA	5580
	CAAGAGTTAG	TAGAAGCAAA	CGATGAAGTT	GAAGTTCAAT	TAACTTTTGA	AAAACCATTA	5640
	TCTCGCAAAG	GCCGTAACGG	TAAACCAAGT	GGTTCTCGTA	ACAGAAATAG	TAAGCGTGGT	5700
35	AATCCTAAAT	TTGACAGTAA	GAGTAAACGT	TCAAAAGGAT	ACTCAAGTAA	GAAGAAAAGT	5760
	ACAÃAAAAAT	TCGACCGTAA	AGAGAAGAGC	AGCGGTGGAA	GCAGACCTAT	GAAAGGTCGC	5820
10	ACATTTGCTG	ACCATCAAAA	ATAATTTATA	GATTAAGAGC	TTAAAGATGT	AATGTCTTGA	5880
	GCTCTTTTTT	GTTTTCAATA	ATTGATTCTC	TGTAGATATC	aAAGTaCTAA	CGTTTTAAAG	5940
	GTTAAATATT	TAATTGGATT	GAGATCTGTA	TGCGGTTATA	TCaTTCTGTG	TAAATATGGT	6000
15	TCTCCACCAA	ATGTGGTGAG	TATATAATTT	AAAGAACTAT	TTTTAAATTA	AGAATAATCG	6060
	AACATAAATA	AACTTTATGA	AATTTCAGTA	TCATGTTCTT	ATAAAAAACA	ATAGGGCTTT	6120
	TTGctGACGC	TAGTGCGCGA	ТАААТААТАА	GTTGAATATA	AAAAAGATCA	CTGCCAATCA	6180
50	TTCGTTTAAT	GGCAGCGATC	TTTTTTATTT	AATTATTTCT	CTTTCCACTG	CAACATTTGA	6240
				m.c.mm.m.c.c.m			

	CCATATATTC	GTTTTAATAT	CATCTCATAA	GTGAGTACTT	TTCCTTTATG	ATTTGACAAT	6420
	AGTTCTAACA	AGCTAAATTC	ATTTGGCGTC	AAATGTACCT	CCTGATTATT	AATAACAACA	6480
5	GATTTGGAGC	CAAAGTCGAT	GCTTAGCAAA	CCGTTAGTAA	ATACAATGTT	AGTTTCTTGA	6540
	TGTGACTTAG	CGATTCTCTC	GATGACTCGT	ATTCGTGCCC	GAAGCTCATC	AACATTAAAA	6600
0	GGTTTAGTCA	TATAGTCATT	CGCACCGTTA	TCTAAAGCTT	GAATAATTGT	TTGTTCTTCT	6660
v	TGTCTTGCAC	TTATTACAAT	GATAGGAATG	TCAGTATGTT	GCCTGATTTC	TGAAATCAAA	6720
	CATAATCCAT	CTTTATCTGG	TAAACCTAAA	TCTAATAAAA	TGACATCTGG	TTTATCAATT	6780
5	TGAATTTTAA	AGTGTGCTTG	TGTGGCATTG	TCGGCTGTAG	TTACATTGTA	ATAATCTAAA	6840
	GTTAATGCAA	CATCAAGTAA	ATGTGTGATT	GCGTGATCAT	CTTCAATTAT	CAATATTTTA	6900
	GATTGCATTA	TACGTCTCCT	TCGTTAAAGT	CTGTATATAT	ATTGAAATAG	AATATACTGC	6960
0	CGTGTGGTTG	GTTCGGTTTA	TATTGTAAGT	TTGATTGATG	TTTGTGTAGG	ATAGTCTGTA	7020
	СТАААТАТАА	GCCTAGTCCC	ATGCTTTCTT	TTTGGTTATC	TTTAAAATAT	TTATTTGATC	7080
	CTGTGTAAAA	AGGCTCGAAT	ATCTTTTGTt	GTTCTTCTAA	ACTAATTCCA	GGTCCTTCGT	7140
5	CTATAACGGC	AAATTCGATT	TGTTCATAGC	TAGCATAACG	AATAGATAAA	TTGATTTTGG	7200
	TGTCAGTAGA	AGTGTGTTTA	ACTGCATTTT	CAATCAAATT	GAAt AAAgCT	TGTAAAATCA	7260
	ACTTACTGTC	AATGTGTATA	AACtGTAAAT	TTACTGAGGA	TGATACAGTT	ATACGCTTTT	7320
0	TTAAATGGCG	ACGTTCTAAA	ATACATATCG	ATTTCTTATA	CTA		7363
	(2) INFORMA	ATION FOR SE	Q ID NO: 20) :			
5	(EQUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDEL	10470 base cleic acid NESS: doubl	pairs			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

60	CGATTAAAAT	AACGATTTCn	GTAATTGTTT	TACTTCTATT	ATAACCACAA	TTAACAATCG
120	CTGACTCATC	GTCTACACTA	CAATATTGTT	CGACTTGTTA	GTCTGGTACT	CATCTAAATC
180	CTGTTAACGT	TTTAATACTG	TTTGCGTACA	TTGATAAATC	GCGCCTGCAT	AACTACATGT
240	TGGCAAATGT	CCATGACAAA	TATTTGTGGC	TATCTATTAG	AAATCGTCTG	ACGACCTTTT
300	CTGTATCTCC	TATCGACCTT	AAATGTGCCA	AGTATTTAGC	TTTTTAGTAA	TGGTACATCA
360	СТТСТССТТТ	GCATCATAAT	AATTAATAAT	ATCCTCCAGG	TCTGGTGAAA	ACGTABATGA

	ATTTGCAGTA	TCTCCAATCA	CTACAGTATT	AAAGCCTGCA	TTCTCTAATG	CCTCTTTAGG	480
	GCTTGAATAT	TCTATATCTT	CAAATTCGTT	TGCTAGAATA	ATTGCTACTT	TTTTAGTCAT	540
5	TGAAAATCAC	CTTTCTATAT	ATCATTGATA	TAATTACTAT	AGACAAGTAA	ATCAGTGATT	600
	AAACATACAA	GATATAAAAA	ATATTAAGCG	ACTGTCGCGA	TATCTAACCC	TAACACATCT	660
	TATGTGGCAT	TTACTTAGAT	ACTAATTTAA	CCTTTTCTTC	AAGCTGATCT	AACAATCCAA	720
0	TCCATTCATC	TATATCTTCA	ACACGTACTT	CATCAGGATT	TACATGATCG	ATATCCTCAA	780
	TAAACTTATT	TAAACGCGCT	TTTATCTGTT	CGATTGTTTG	CTGTTCATTC	ATAAAAAGTT	840
5	AACTCCTTTT	ATTTTGTTTT	CTTTTTCATT	ATTATCCTAA	CAGAAATTGC	GTTAAAGCGA	900
	TATAATCTTA	GCTATATTTA	TGACATTCAA	ATTATTTTGA	CTTTTAAAAA	TCCCCTTTTC	960
	AATTAACTAA	AATTAAGAGA	TAATTTGTTA	CGAGTGATAA	TACGAaGkGG	TaTCATACCG	1020
0	ATATGAACCA	AATAGAAAGA	AGGAAGTTTA	AGACGATGAA	TAGCGTCAAA	TTGAAGCAAC	1080
	CTGTTAGCAT	TTACAATGAT	CCATGGGAAG	TGAAATTTAT	ATACATTTAA	ATTTCATGAG	1140
	ACAATAAACG	TTGATTTAAT	GCGTTTTTTT	GCCTTTTTTA	TTTTCCTTAT	TTTTTCTGTT	1200
25	TTACAACAAA	ATGGTATCAA	AAATGGTATC	ATTTGTAGTT	ATTTTAGCTT	CACATATTAA	1260
	AACAACCACA	CTCCTAAATT	AATAGGTGGT	GTGGTTTTGT	TGGTTGTGTG	GGGATAAAA	1320
	TAACCGCATC	AGTTAAGATG	CGGTTATCTA	GCAAGGGCCA	CGTATTTATA	AATACGTTTA	1380
80	GAATCTCTTC	GGCAACTTTG	CTATAGACAG	TCTATGCTGT	TACTAAATTA	TACCACCACA	1440
	CAAACCTACT	CCCATTCAGG	AACACAGAGC	TTTGTCGCTC	GTCAGCAACG	TCATATGAAT	1500
	TCTCAGTTCA	TGTTGTGGTG	ACACTTTAAA	CGGTCTGTGC	CAGTAGCGAC	CGAGTCATTT	1560
35	CAAGAATGAC	CATTTCACAT	TTATATTATA	ACACTTGTCG	TGCGTAACTG	TATAGTTTTT	1620
	CAGTTGTATT	TAAAGTTAAG	TTATCTACTT	CGCGCTTTCC	TTGCCTTAAT	TGTGAAATTA	1680
10	CATATTGCGC	TACGCCAGTT	TGTTTGTGAA	TTTGGTAACC	TGTTATATCA	CTTTTGATCA	1740
	ATTCAATTAT	TTTTAATTTA	TAATCACTCA	TATTATCTAC	GTCCATTCTT	TTTATCTAAA	1800
	CAATAAAAAT	GTGTCTTTCT	CCCGATAAAT	AATAACAATG	GTAGGCTTAA	TAAAAACAAT	1860
5	ATTAAATACA	TTTGTTCTGT	CATAATTGAA	AACCTCCAAA	TAATATTATA	TTATATAAGT	1920
	GTAAGGAGGA	GCCATCAGGC	TCCAAGCATA	ATGTTAATCT	TTGTTGTTTG	GCTTTCGGTC	1980
	TAGGTAGCCG	AGATGCCaTT	CTCTAAGTTG	TTTTAACACT	TCTGGAATTA	TCAGTACTGC	2040
0	CAATACTTGA	TGTTCTAGAA	GTGTTTTTAT	TATGTCTAGC	ATGAGGCTTT	TCACCTCCTT	2100
	3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C	TOTA ACTORT	CNACTRACCT	ACAAATATAA	OTT A CT A CT TO A B A	CAAATCTTTA	2160

	GTTATCTACA	TITAAATCTT	GAGAGAAATG	TTAAAAAGTT	CTAGTAAAAT	AATAGCACAT	2280
	TTTATCTTTA	AATGTAAATA	GAAAGCAGGT	ATGTAACGCA	CCTGCTTAAA	TAGaCATGAC	2340
5	TATGTCATTC	TAACTGATTT	CTCCCCATAA	GTCACCTAAT	ATCTGATTAG	GTGGGGCAGA	2400
	ACCATTCCAT	GTTCTAATAG	GCAAGTAATA	ACGTTGCCCC	TCCCATGTAT	ATCCTACCCA	2460
	AACATGACCA	TCTTGTAACA	TCACTTCTGT	ATAATCACAA	TACCCACCAG	GTTGGAACTG	2520
10	ATAACCCACT	GGACAAGATA	AGAATGGCCC	CACTTTTCTT	ACTGTGATTG	GTTGATTGCC	2580
	GTTTGTGAAT	CTAGCACTTT	CTTCCATGTA	GTAAGTACCA	TATTTATTAC	GTTTCCATGC	2640
15	ACTTGCAACT	GGTTTAACTG	TATTACTTGA	AGCGCTTGAC	TCATTAGAGA	CAGTGGCAAC	2700
	CGGTATTTTA	CCATCCATGT	ACGCCCTAAT	CTGCTTGATA	AAGTAGTCTT	TAAGTTGCAA	2760
	CCGCTTGTCT	TCTGGCAATA	GACCGCGAGT	TACTGGGTCA	AAACCAGTGT	GTAAAACCGA	2820
20	ACTTCTATGA	GGGCATGATG	TTGAAGTAAA	TTCATTGTGC	AATCTGATTG	TATTTCTGTT	2880
	TGCTGGTAAT	CCCCATTTTT	TCAACAATCT	AGCGCATTCT	TGGAAAGTTG	CCTGTTCATT	2940
	TTTTAAGAAT	GTCGCGTTAT	CTGCGCCCAT	TGATTGACAT	ACTTCAATAC	CGTAATAATA	3000
?5	TTTATTACCT	ATTTGATTAG	CGGTATGCCA	ACCTACTTGT	GATTCATCTA	AGGCTTGCCA	3060
	AACTGTGTTG	CCTGATACGT	AACTATGCGC	AATGCCCGCT	TCTAATCTTG	ATAAAGGTGC	3120
	ATTTACTAAT	CCGTTACGAT	ATGCTTCAGC	AGTCGCCCCT	TTGCTCCCTG	CGTCGTTGTG	3180
30	TATAACTATA	CCTTTAGGGT	TACTACCACG	CTTAGGTAGG	TCATAACCTT	TAACCACATC	324
	TTTGATGATT	TTAAGTTCTA	CTGCTTTAGG	TTGTGGCTTA	GCTGTTTCTT	TTTTAGGTGC	3300
25	TTGTGTAGGA	GATTGAACTG	ATCGTGGCGC	TGTCTCACTT	TTAAAATTCG	GACGGATAAA	3360
35	CCACATAGGG	AAATCATAAG	CATGTTGTCG	TCTTGTAACT	TTTTCCCAAC	CCCAGCCGGG	3420
	TTGTTCGATT	CCGTCAGTCC	AGCCACCGCC	TAGCCAATTC	TGCTCATATA	CAATGATGTA	3480
10	ATCTAAAGTT	GCTTCAATTA	CCCATGCAAC	GTGACCATAT	CCAGCACCGT	AGTTGCTACC	3540
	GAATACCACC	ATGTCGCCAG	GTTGTGCTAA	GAAGTCCGGT	GTATTTTGGT	ATACAGTAGC	360
	TAATCCGTCG	AAGTTGTTAG	CGAACGGAAT	ATCTTTTGCA	CCTAAACCTT	TTAGAAGTAA	3666
15	TCCAAACAAA	ACTTTCCAAC	CAGCATTGGC	ATAATCAAAG	CATTGAAATC	CATACCATAA	372
	GTCCACATTG	AATTGTTTTC	CCTCAGAAGT	TTTCAACCAC	TCTATAAACT	CATTTTTAGT	378
	TAATTTTGCT	TGCATTGTCG	CCACCTCCAT	GATGATACTC	ATTCACATCA	AAGCCAACAT	384
50	CGTTAGAGGC	GTCTGTGAAA	GGTTGTGATG	TATCATATTC	TTTTGGTGcT	TTCGCGCTTA	390
	• **	maaa.coc	mammama s ma	NOTICE A COM	* * CANAL CURROR	m Catart Catartartain	305

	TTGGGTCAGT	AATAACGCCA	ATACCTGTAA	GTAACGTGAG	GATAGCGCCT	ATAATTGCGC	4080
	TAGCTTGATT	TAATTGAGTA	GATAAATCTA	ATCCGAATAA	ATCCGTGACT	TGCTTGATAA	4140
5	ATAGCAACAA	TGCTCCAACT	AAACCAGTTA	GTACTGCTTT	GTTTTTGAAT	CTCAATTTCC	4200
	AGTTAATATC	CATTTGTTTG	CTCCTTTTAT	CCAAAATAAA	AAAACGACTA	AAAATTAGTC	4260
	GTTTAAAATT	ATTCAATGGT	CAATGTCGGA	GATCCTGAAT	AAACATCACT	TATAGTGACG	4320
10	TACAACATCC	CTGAAGGATT	ACTAAAGTTG	ATATTTTTAC	TTGCAACTCC	GCTATTGACT	4380
	CCTGATATTC	CTAAATCACT	TGACCCTAAA	TTAGTTTGCG	AAATCCTCAT	TATACCGCTA	4440
15	CGTACATTTT	CTATTGTCAC	CTGATAACTT	TTATTGGGTT	CAACTCCATT	TATTGTCCAT	4500
	TTTGCTGTTG	ATTCTTCTAT	GCTATCCGGA	TATTTATTTT	TAGGTAAGGG	TTTTATTACA	4560
	AAAGATGAAG	GCTTTTTCCA	TACTTGGATA	TTTCCAGCAT	ATACTTTTGT	ATATTCTTCA	4620
20	CCTTCGTAAA	TAAACTTCTT	TACATTTTTA	AAATTACCTT	CCATAAAAAT	CACCCTTTAA	4680
	TTAAATATAA	CGTATTCGGG	TCTTTTTGAT	ATATATAGTT	ATATTCATTT	TCTGTTCCTG	4740
	TCCAAATTTT	AACCGTCGGT	TGAGATGCGC	TTTTTAGTTG	ATATAAATTA	TCCGCTTGTT	4800
25	GTTTAGTAAA	AGCTTGAGAT	GACAAAACAT	ACCGCTCGTC	ATGATTATGA	TTTTTTGGAG	4860
	CATATAAATC	ATTTAGTGTT	TGTTTGAATT	CCTCAAAATC	TTCTGTATTA	ACTTTTGAGC	4920
	CAATCTGTTG	CAATACACTT	TCTGAAATAG	AGTTGTTTTG	TATTGCTTCT	GCTAATTCTC	4980
30	TTAATGTGTT	CATAGATTCA	GGCGCGCTAT	CAACTAGTTC	AGCAATTTTT	GTATCCGTAT	5040
	ACGTTTTAGA	GTCGTTGAGA	GTTGTATCTT	TGATTTTTC	AACTTCTTGC	AATTTATTTT	5100
	CTAACCCTTC	AACATTTGCG	ATATTGATTT	TGTCCAATAA	CTCAGGTTCT	GCTTTGATAT	5160
35	CTGTATCTTT	ACCATCAATT	TGCCACATTT	TAGTGTCAGG	ATTGATTGAT	ACTACAGTAC	5220
	CGTTTTTACC	GGGTGCGCCT	TGTTCTCCTT	TTTTACCTGC	TTCACCTTTT	GCTCCAGGTT	5280
40	GTCCCGGTTC	ACCTTTATCA	CCTTTCGCAC	CTTTAAATCT	ACTTTCATTC	TTTTCGATGT	5340
	AAGAAATGAC	ATCTTTATCT	ATTTTCTCTT	TAAAGTCTTT	GCTCAATAAA	TCTGTCGCGT	5400
	TATCTTTTAA	AATTCTCGTA	ATAGCATCAT	CTACCAATTT	AACATCGATT	TCTTTTGCTA	5460
4 5	CAGCAGATTC	AATACCACTA	TCAACGATAT	TGAAAGAAAA	GTTTGCGACA	TGTATTTTTT	5520
	CTTCTTCTTT	CTCTAAAAAC	AGCTTACAGC	GAACATAACC	AGCGTGTTTG	ATAACCTTTT	5580
	TAGGTATCTT	GTAGGTAAGG	AAACCTTTTA	CAACATCGTC	GATAATAAGG	GGCTCATTTT	5640
50	TGAATATAGA	GCCATCTTCC	ATAAACAAAT	GTAATCTAGG	TGTTAAGCCA	TGTGCTTTTA	5700
	GATCGATACG	ACCTTGTTTG	TCATTGATAC	CTATTCTTAT	AGATGCTGTA	TTTTCATCTT	5760

	CAACATCTTT	TATTTTGTAC	ATTTACACAC	CTCTTTATTT	ATATTTATCC	CTTGTGAAGT	5880
	AGATACCTTT	TAAGCCGATT	TGTTTATATA	ACTTAGCGAT	TGTACTTGCT	TGATGTTGGC	5940
5	ACCACTCTAT	AGCAGTAGCG	TATTGGTGGG	TAGCTGGATT	CTTAGGATTC	CATCTAATTC	6000
	GGTACAATGT	GTTTTGACCT	TTATTGATGT	AATCCTTTCT	TACGAAGCTA	GCACCGCCCA	6060
10	TGATTGCTTT	TGCTGGAGAT	GTCCAACCTT	TATTCCTTGC	AAACGTCATT	GCGTAGTTAG	6120
	GATTGTTGTC	GTAAGCGCCA	ATGCCGAAGT	AGTTGTATAC	TCCATCTTTT	CCGTTAGCGA	6180
	AGTTACTTGT	TCCATATCCA	CTTTCTAAGA	AAGCATGCGC	GATTAAATAA	ATTTCATTAA	6240
15	TGTTGTGCTT	TTTACAAGCT	TCTGCGAACG	CTTTACCTTG	ATTATTCAAT	GTTCCCTTAC	6300
	CTTTAAGTAT	CTTATTAAGT	GCGCTAACTG	AAACACCTTG	ATACTTGCCT	AAATTAAGCA	6360
	TTTGGTAGCA	TTGTGTGTTA	CTTTCCCATA	TACGCTTTAC	ATTCATTGCT	GAACTCGTTT	6420
20	GTGCTCGTGT	AGCGTTAscC	AACCCCAAGC	ATTAGATTTT	TTCGGGTTAC	CTCTTGCCAT	6480
	TTGTTTATCC	AGTGCTTGTT	TGAATGTATA	AGGACTCGTT	TCTGTTATGA	TCTGCGGTTG	6540
	TTTAGATGCC	GAACCATTGT	TGGCTGTTGG	TGACGAGTCT	CTTACATTAG	CTATATCAGC	6600
25	GTTTTTATTA	TCTACCATAA	CTTTTATTCT	AGATTTTGTT	ACTGTTGGCT	TAGTTATAGA	6660
	ATTTAATAAT	TTTTCTCTGT	TTTTAAATAT	ATTAAGTAAT	GCCTTTTCTA	ATGCTTCGTA	6720
	TTTATCTTTA	GGAGGAACAC	CGTTGTCAAT	CATATTCCAA	TTAACATGTT	CCAACATTGA	6780
30	ACGCCAAATG	CTGTCGTCTA	CTTTTAAATT	TTCAATACTT	AGAGGTATCT	CATATTTGGC	6840
	CATCATATCT	ACAGCTACAA	CCATTGCGTG	AATCTCATTA	AAAATAAATT	CATTTTTACT	6900
25	CGCACTATAA	TCTTCACATA	CGTCTATAAC	TATATAATCA	GGTTCATTAG	GAACTTCAAA	6960
35	TACAGCTCTT	CTAGGTGCCC	AAATATTATG	TCTATCAACA	TAAAAGTGGG	GATATTCTAC	7020
	ATCCTGTTTG	TATTTCTTCC	TACTGTTATA	TAAACTTTCT	ACCGAGCTCA	TCGTTTGTGC	7080
10	GTTTCTAATC	ATTATTCCTT	TAGGTTTTTC	GAGTCGTCGA	TTACCTTCTA	CTATAAAGTG	7140
	ATAAATATAT	TCTGGATAAT	TAACCTCTTG	GCTAGAAATA	GTGTACTTTA	TAGTTGTTAC	7200
	ATCTTTCCAA	ATTGGAACTT	TTTTATTATT	TTTTTCGTTA	TCATCACTAT	CATCTTCTGG	7260
4 5	TTTAGGTGCC	GGTGTAGTTT	TGTCTGGATG	ATATGGTGGT	CTAACAAAAT	ATTTAACCCC	7320
	TCCACCTGGT	CCATCATGAT	AAGAGTGTTT	AATTTTATAA	GGTGGACTTC	CTGTTGCGTT	7380
	ATTTGTATAC	CAGTTTTGAT	CTACGCCATA	CCAATAGTCT	TTTGTGCATG	GTCCCACTAC	7440
50	AATGTTTACA	TGTCCTGCCC	AACCACCAGT	CCAAACACCC	CAGTCGCCTG	GTTGTGGTAC	7500
	AAAATCTTTT	GTATTTCTAA	TTATCTTGAA	ATCTCTACCT	CTATAATTGG	ATTTTTGAGC	7560

	TAAATCCCAG	CATTGTGCTC	CCATTCCAGA	ACCAGGTACA	TCAATAGCTA	TTTTGTTTTT	7680
	AGCGATATAT	AACGCCCATT	CAACCACTTC	ACTAGCTGTG	GGCTTTCTAT	TTTTCGGATT	7740
5	AGGTAATCCC	ATGTATGCAC	CTCATTTCAA	TCAAAATAAA	AAGCCAGTGC	CGAAGCACTG	7800
	ACTCTTAACT	GTTATTTACA	TTTACCAAAC	CAGAAGCACG	CCCAGAAGCT	ATATCCTAAA	7860
	ATCCCTTTAA	GCATGGTAAT	CACCTCCTTT	AAATACCAAA	AACAGTTCTT	AGTAAAGCTA	7920
10	TGACAATCGT	ACTGAAGATA	GTCCCTATCA	AACCTAGAAT	CCACATTTTT	ATGTCTCTAA	7980
	TATTCTTGGC	ATTCTTTTCT	TTATTCTTTT	CATCTTCTAC	CTTGTCGCGC	TTTAATTCTT	8040
15	CAAAATTTCT	ATCTAATTTG	TCATAAATCT	TTTCTTGCGC	TCTAAGACTA	TCTTCTATTC	8100
15	TGTCGAATTT	TTCAAACATA	GTCTTATCAT	TTTCTTCTAA	TCGCGTTAAA	CGCCAATCTT	8160
	GTTCATGTCG	TTTGGTAAAT	CCAAACATTA	TGCCACCCAC	TTTATTCAAA	TTAAAAAGCC	8220
20	ACAAGCATTA	CACCTGTGAC	TTTTCATCTT	TTGTTTCTGG	ATATTTTCT	CCAGTGATTA	8280
	AAGCGTATTC	TTCTTTATCG	ATTAAACCCT	TGTCTACGTA	CCACTTAATT	TGCTCGTTTT	8340
	TATAGTAACC	CCAAACATAA	AAAGTTTTAA	TGTCTTTAAA	AGTTGGATAA	ATCATCTTCA	8400
25	TTATTTAAAC	GTCCCCCTCA	GTACTTGTTT	TGTTAGTTTT	CAGTTCAGTC	AACTGTTGTG	8460
	TTAACATAGC	GTTTTGTTGA	GCTAATTCCA	TTGTTAATAC	GTTTACTTGT	GCCACCTGCA	8520
	TTTGCATACT	CGCAACCATT	CCGCGAAGTT	CCTCATCACT	TAAATCTGAC	GCACTTTGTT	8580
30	GGTTTGATGC	ATTCGGTACG	TCTTCTTTTT	CGAAATTGCT	ATTGTATTTA	ATTTCGCCGT	8640
	TAGTGAAAAC	AAACTTTCTA	GGTTCGAACT	CTTCTTTAAA	TTTAATAGGC	ACATTGTTAT	8700
	CATCTACATC	TAAACTATTG	CGTAAACCGC	CAGTATTAAC	GAATCCGATA	ACTTCGTTTT	8760
35	TATCGTTTAC	TGTGATTTTC	ATTATTTCCA	CCCCATAATT	TTAGTTATAG	TAACTTTGTT	8820
	GGCATTCGCT	CCAGAACCTG	ATGTTTTACC	TAAATCAAAG	TACACATCGT	TATCTATTCT	8880
	TAAAGTAGTG	CTACTTGTTT	TGGATAGTAA	GCACTCATAA	ATACCGCCAC	CGTTGCCGTC	8940
40	TGAGTCAACT	ACATTCGCTT	TACTCAATTG	AATCGCGTTA	GGTAATGCGG	TTAGTCCGAA	9000
	TCCCTCAATA	ACGCCACCTG	GATAAGTTCC	ACTTACCAAC	AAAATAGAAT	AGTTTGTGTA	9060
45	CGGTTCAGTT	AGATTGATTG	TTGTACCTAC	ACCATTTGCG	CCACCGTCGA	ACAATACCGT	9120
	TGATTTATGT	TCATTAGGAA	CTGTCCACTG	TTGCTCAAGT	CTGCCGTTTG	TGATTGATCG	9180
	TGTGTAAATC	TTTTTAGAGT	TATAAGGTGT	GAAGTTAAAT	AGCTTGTTTG	TATCATCTTT	9240
50	AACGAATACC	GATAAATAAC	CCTCATAACT	TTCAACGCTA	CCTGGTAAAT	CCGGCACTCT	9300
	TGTTGCATAG	TAATTACCAG	CAGTTAAATA	TCCCAAATCG	CCTTGCGCAT	TATTTAAGTT	9360

	GAATTTATCA	TCTACATACT	GCTTAGCTTG	ATTTAAAGCG	TTGTTAGACG	TTTCTTCAAC	9480
	AAATTGCTTA	GTTAAGTTTC	CATCATTCTT	TTTATAAAAC	GGGTACCATG	TGCCGTAGAT	9540
5	TTTGTATTTT	GTGTACTCAT	CGTTTGAATC	GTCTGGGTAC	CATGTTGCAC	GAGCAGTATT	9600
	ATTATCAACA	ACATAAACAA	CTAACACACC	AGATTTGCTT	GATGTATAAG	TTGATTCATC	9660
10	GAACGAAGAA	CCGTCATCAA	CACCATCTTG	TCCAGGCTTC	TCTAACGTGC	CTATATCCGT	9720
, 0	CTTTTCTGGC	GCATCTGTTG	CATTAGTAAT	ATGAATAATC	CTAGATGTGT	TAACTGCGCT	9780
	TAAAACGCTA	TCTATGGACT	GCTCATACGA	TTCAATTGCT	TTACCGTAAT	CATCTGTAAG	9840
15	TTTAGACTTT	TGCCAATTCG	TTGTTGAATT	ACCTTTAACA	AGGTCAGCGC	CATTGATTTG	9900
	TTGTTCAACT	TCGTTAACAC	GTTCAAAAAT	CGCTTGCTCT	TTTTCAACTA	TTTTATCGAA	9960
	TTCAGCTGTA	ACAGCTTGTG	TTGCACTAGT	TTGCGTCGCA	GTAATAGCTT	GTATAGCTTC	10020
20	GTTTTGCTTG	ATTTCGATTT	GTTGAATGCC	TTTTGTCGCA	CTATCATTCA	CTTTTGCTAT	10080
	TAACGTTTGT	GTATCAGCCA	TATTTTGCTT	TAATTGGTTA	AAATCTTTAC	CGACAGCTTC	10140
	GATAGTATCT	TGAATAGATT	TGATATAAAC	AAGCTTTGTT	ATACCATCAA	ACCCACTAAC	10200
25	TAAATCATTT	TCAATATTGA	AGCTAAATTG	ACGTTCAACA	ACAACATTAT	TACTCCCGTT	10260
	TTGTGTAAAG	AATGCCTGAG	CATGCACCTT	GCCTGAATGT	TTTAAAAATT	CATTCGGTAT	10320
	CACATACTGC	AAACGCCCAT	TAATTGCGTC	TACTATCGTT	AATTCGTCTG	AAATATAAGC	10380
30	GCCTCTATCT	ACGTTATAAT	CATCGGTTTT	TAAnaCGATA	GATGTTTTAA	CATGTTCAGA	10440
	ACTTATAGAT	AAGGGTCTGT	TATnCTTAGT				10470
	(2) INFORM	ATION FOR SE	Q ID NO: 21	.:			
35	(i) SE	EQUENCE CHAF	ACTERISTICS	3:			
	_	(A) LENGTH: (B) TYPE: nu	•	airs			
		(C) STRANDEL		.e			
10	((D) TOPOLOGY	: linear				
	(x1) S	SEQUENCE DES	SCRIPTION: S	SEQ ID NO: 2	?1:		

ATCAGATCTT GAGAATCGAG TTATTAAGTC TATCGAAGAC TTAACTAAAA TCCAACCATT

CATGCCTACA CAAGATTTTG ATTTTAAAAC TAAAGAAATT CAATCAAACA TTTCTGAAGA

AAGATTTATC GAAATGATTC AGTATTTCAA AGAGAAAATA ACAGAAGGGG ATATGTTCCA

TTCGTTTCAA CTGTATCAAA ATTTAAAACG ACAAAACCCA AGTCCATATA TGTATTATCT

AGTTGTGCCA TCAAGAATTT ACAAATATGC GCATCATGCT AGTCAGCATT TAAATCAACT

120

180

240

300

55

	TCAAATTGTA	ACAACTAATC	CTATTGCAGG	TACGATTCAA	CGTGGTGAGA	CGACACAAAT	420
	AGATAATGAG	AATATGAAAC	AACTACTTAA	TGATCCAAAA	GAATGCAGCG	AACATCGTAT	480
5	GCTAGTTGAT	TTAGGACGTA	ATGATATTCA	TAGAGTAAGT	AAAATCGGTA	CCTCAAAAAT	540
	TACTAAATTA	ATGGTTATTG	AAAAATATGA	ACATGTTATG	CATATCGTAA	GTGAAGTCAC	600
	AGGTAAAATA	AATCAAAATT	TATCGCCAAT	GACAGTTATT	GCGAATTTAT	TACCAACAGG	660
10	TACCGTTTCA	GGTGCACCAA	AATTACGTGC	AATTGAAAGA	ATATATGAAC	AATATCCACA	720
	TAAACGGGGC	GTTTATAGTG	GTGGTGTTGG	ATACATAAAT	TGTAATCATA	ACTTAGATTT	780
15	TGCATTAGCA	ATTCGAACGA	TGATGATAGA	TGAGCAGTAT	ATCAACGTAG	AAGCTGGTTG	840
	TGGCGTTGTA	TATGATTCTA	TTCCTGAAAA	AGAACTGAAT	GAAACGAAAT	TGAAAGCTAA	900
	AAGCTTATTG	GAGGTGAGCC	CATGATCTTA	GTTGTAGATA	ATTATGATTC	CTTTACATAT	960
20	AACCTAGTGG	ATATTGTTGC	TCAACATACT	GACGTCATTG	TTCAATACCC	TGATGATGAT	1020
	AATGTGCTGA	ATCAATCGGT	GGACGCTGTT	ATTATATCTC	CTGGTCCAGG	GCATCCATTA	1080
	GACGATCAAC	AGTTAATGAA	AATCATATCA	ACCTATCAAC	ACAAACCCAT	TTTAGGTATT	1140
25	TGTTTAGGGG	CTCAGGCACT	GACTTGTTAC	TACGGTGGAG	AAGTCATTAA	AGGCGACAAG	1200
	GTTATGCACG	GCAAAGTTGA	TACACTAAAG	GTTATATCGC	ATCATCAACA	TCTGTTATAT	1260
	CAAGATATAC	CAGAACAGTT	TTCAATTATG	AGATATCATT	CATTAATAAG	TAACCCTGAC	1320
30	AATTTTCCAG	AAGAATTGAA	AATTACTGGA	CGTACCAAAG	ATTGTATACA	GTCATTCGAG	1380
	CATAAAGAAA	GACCGCATTA	TGGTATTCAG	TACCATCCTG	AATCATTTGC	TACAGACTAT	1440
	GGTGTCAAAA	TAATTACAAA	TTTCATTAAT	CTAGTGAAGG	AAGGATGAAA	ACCATGACAT	1500
35	TACTAACAAG	AATAAAAACT	GAAACTATAT	TACTTGAAAG	CGACATTAAA	GAGCTAATCG	1560
	ATATÁCTTAT	TTCTCCTAGT	ATTGGAACTG	ATATTAAATA	TGAATTACTT	AGTTCCTATT	1620
••	CGGAGCGAGA	AATCCAACAA	CAAGAATTAA	CATATATTGT	ACGTAGCTTA	ATTAATACAA	1680
‡O	TGTATCCACA	TCAACCATGT	TATGAAGGGG	CTATGTGTGT	GTGCGGCACA	GGTGGTGACA	1740
	AGTCAAATAG	TTTCAACATT	TCAACGACTG	TTGCTTTTGT	TGTAGCAAGT	GCTGGCGTAA	1800
1 5	AAGTTATAAA	ACATGGtAAT	AAAAGTATTA	CCTCaAATTC	aGGTAGTACG	GATTTGTTAA	1860
	ATCAAATGAA	CATACAAaCA	ACAACTGTTG	ATGATACACC	TAACCAATTA	AATGAnAAAG	1920
	ACCTTGTATT	CATTGGTGCA	aCTGAATCAT	ATCCAATCAT	GAAGTATATG	CAACCAGTTA	1980
50	GAAAAATGAT	TGGAAAGCCT	ACAATATTAA	ACCTTGTGGG	TCCATTAATT	AATCCATATC	2040
	ACTTAACGTA	TCAAATGGTA	GGCGTCTTTG	ATCCTACAAA	GTTAAAGTTA	GTTGCTAAAA	2:00

	AAGCAACACT	ATCTGGTGAT	AATTTGATAT	ATGAATTGAC	TGAAGATGGA	GAAATCAAAA	2220
	ATTACACATT	AAATGCGACT	GATTATGGTT	TGAAACATGC	GCCGAATAGT	GATTTTAAAG	2280
5	GCGGTTCACC	TGAAGAAAAT	TTAGCAATCT	CCCTTAATAT	CTTGAATGGT	AAAGATCAGT	2340
	CAAGTCGACG	TGATGTTGTC	TTACTAAATG	CGGGTTTAAG	CCTTTATGTT	GCAGAGAAAr	2400
	TGGATACCAT	CGCAGAAGGC	ATAGAACTTG	CAACTACATT	GATTGATAAT	GGTGAAGCAT	2460
10	TGGAAAAATA	CCATCAAATG	AGAGGTGAAT	AATATGACGA	TTTTATCAGA	AATTGTTAAA	2520
	TATAAACAGT	CACTTTTACA	AAATGGCTAT	TATCAAGACA	AACTTAATAC	CTTGAAAAGT	2580
15	GTGAAGATTC	AGAATAAAAA	ATCTTTTATA	AACGCAATTG	AGAAAGAACC	AAAGCTAGCA	2640
	ATTATTGCAG	AAATTAAATC	GAAGAGTCCT	ACAGTTAATG	ACTTACCTGA	ACGAGATTTA	2700
	TCGCAACAAA	TCTCAGATTA	TGACCAATAT	GGTGCAAATG	CCGTGTCCAT	TTTAACTGAT	2760
20	GAAAAGTACT	TTGGTGGTAG	TTTTGAAAGA	TTACAAGCAT	TGACGACAAA	AACAACATTA	2820
	CCCGTATTAT	GCAAAGACTT	TATTATAGAC	CCGCTTCAAA	TTGATGTTGC	TAAACAAGCT	2880
	GGTGCATCTA	TGATTTTATT	GATCGTTAAC	ATCTTATCTG	ATAAACAATT	GAAAGATTTA	2940
25	TATAACTACG	CTATATCGCA	AAATCTAGAA	GTGTTAGTTG	AAGTACATGA	TCGCCATGAA	3000
	TTAGAACGTG	CCTATAAGGT	TAATGCTAAA	TTGATTGGTG	TAAATAACAG	GGACTTAAAA	3060
	CGATTTGTTA	CAAATGTGGA	ACATACAAAT	ACTATTTTAG	AAAATAAAA	AACAAATCAT	3120
30	TATTATATTT	CTGAAAGTGG	TATTCACGAT	GCATCTGATG	TAAGAAAAAT	CTTGCATAGT	3180
	GGTATCGATG	GCTTACTAAT	AGGTGAGGCG	CTTATGCGTT	GTGACAATCT	ATCTGAATTT	3240
	TTACCACAAC	TGAAAATGCA	AAAGGTGAAG	TCATGATGAA	ATTGAAATTT	TGTGGCTTTA	3300
35	CATCAATAAA	GGATGTTACA	GCGGCCAGTC	AATTACCTAT	TGATGCGATA	GGTTTCATCC	3360
	ATTATGAAAA	AAGTAAAAGG	CATCAAACAA	TTACCCAAAT	AAAAAAGTTA	GCGTCTGCTG	3420
10	TTCCAAATCA	TATCGATAAA	GTATGTGTCA	TGGTAAATCC	TGATTTAACA	ACAATTGAAC	3480
40	ACGTATTAAG	CAATACGTCA	ATTAACACAA	TACAGTTACA	CgGCACAGAA	TCTATTGATT	3540
	TTATACAGGA	AATTAAAAAG	AAATATTCAA	GCATTAAAAT	CACTAAAGCT	TTAGCTGCaG	3600
45	ATGGAAAACm	TWATCCCAAA	caTtAAtnAA	tnTTAgGGGG	TCCGTGG		3647

(2) INFORMATION FOR SEQ ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5966 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

	CCACCTTGAC	CACCTTTACG	TGGAATCTTT	TCmCCTkGAG	CAACaTCGaT	AATaTATATT	60
5	GAAAgTCAAC	AAGTTCTGGA	CTAAATGTTG	CTGCTAAGTT	ATCGCCACCA	GATTCTATGA	120
	AAATTAGTTC	TATATCGTCA	TGACGTTCTA	ATAATTCGTC	TATTGCTGCA	AAGTTCATAG	180
10	ATGCATCTTC	ACGAATCGCA	GTATGAGGAC	ATCCACCAGT	TTCAACACCA	ATGATACGAC	240
70	TTTCAGGTAG	AACTCCTGAA	TTTACTAATA	TCTTTTCGTC	TTCTTTTGTA	TATATATCAT	300
	TTGTAATAAC	GCCGATACTC	ATTTCTTTTG	AAAGACGTTT	TACAACTTTT	TCAATTAATT	360
15	GTGTTTTACC	TGCACCTACA	GGACCACCAA	TACCAATTTT	AATCGGATTT	GCCACAATTA	420
	TAACCTCCTA	TGATATGAAA	tTCTAACATT	GaCGTTCTCA	TGCGCCATTT	GATTTAGTTC	480
	TAAACCAGGC	GCTGTCATGC	CAAAATCTGC	TTCTTTTAAT	TCGAAAATCT	GCTTTCTTGT	540
20	TCCTTCTATA	TAAGGAATCA	TGTGAGTAAC	TATCTTTTGA	CCAGCAGTTT	GTCCAAGTGG	600
	AATAGCACGA	ACAGCATTTT	GAGTTAAACT	TGAAACATTT	TGATATAAAT	AGTAATCAAT	660
	AATCGTTTCA	ATATCTACAC	CTAAATGATG	GCCTAGCATA	GTAAAACAAA	TAGCTGGATT	720
25	TNACTTTGCT	TTCTTATCTT	GCATTTGTTG	ATGATACCAA	GCAATCCATG	GGCTATTATA	780
	AAGTTCTAAA	GCCAATTTAA	CCATGCGAGT	CCCCATTTGT	kTTGCACCAA	CACGTGTTTC	840
30	TTTAGGTAAG	TTTTGrACAr	ACATCAGTTT	ATCTATGTGT	AATACTTTTT	GTGTATCATC	900
	ATTTTCCAAT	GCATCATAAA	CTAaACGCAT	GGCTAAACCA	TCAGAATAGG	TAAGTTGCTC	960
	TTGTAAAAAC	ATTTTTAACC	AAGCAATAAA	AGTATGATCG	TCATGAATTA	TATTTCGTTG	1020
35	AATATATGTT	TCAAGACCAA	ATGAATGACT	GAAAGCACCT	GTTGGAAACT	GTGAATCACA	1080
	GAACTGAAAT	AATCTTAAGT	GTGTATGATC	AATCATGAGA	ATGCCCTATA	TGTCTGAAAG	1140
	CCTTATTAAC	TTTACGGTCT	TCTCGAACAT	ATGGGATGCC	TAAACTTTTT	AATAAATCTT	1200
10	CAACTAAATA	ATCATATTGT	ACTAGCATTT	CAGTCTCTGT	AAATTGTGCT	GGCAAATGAC	1260
	GATTTCCTAA	TTGATGGGCT	ATATCTCCCA	TTTCTTGCAA	TGTTCTTGGT	TGAATCACTA	1320
45	AAAGATCTTC	TGAATTAACA	TCCACAATAA	TCATATTATG	GTCATCTGCG	TATAAAATAT	1380
43	CTCCATATTG	TAAGTCAATA	GGTTGTTTTA	AACGAATGCC	TATTTCAGTG	CCATGGTCTG	1440
	TAACGACTCT	TTGAATACGT	TTAACAAGAT	CTGAATTTTC	AAGGTATACT	TTTTCGACGT	1500
50	GCTTTTGTTT	TTCTGAATTT	GACAAATTGG	CAATATTGCC	TTGGATTTCT	TCAACAATCA	1560
	TTCTATGTTC	CTCCTAGAAT	AAGAAGTATC	TTTGAGTTAA	TGGTAACTCA	GTTGCTGCAT	1620
	TACTTGTAAT	TTTTTCTCCA	TCTACATATA	CTTCATATGT	TTGTGGATCA	ACGTCTAATT	1680

280

	GACGCACCAT	GCGTTTTAAA	TTTAATGCAC	GATTGATACC	ATTTTCATAA	GCAGTTTTAG	1800
	ACACGAATGT	CATTGACGTA	CTTGTAAGGT	TTCCGCCGTA	TTGACCATAC	ATTTTACGGT	1860
5	ACTTCATCGG	TTCAGATGTA	GGTATAGAAC	CATTTGCATC	GCCATTTACG	GCAGAGTTAA	1920
	TTAATCCGCC	CTTTACAACT	AATTCAGGTT	TAACCCCAAA	GAAAATTGGG	TCCCATAAGA	1930
10	CAATGTCAGC	TAGTTTGCCC	GGCTCGATAG	ATCCTACATA	TTCAGAAATA	CCATGTGTAA	2040
	TTGCTGGGTT	AATTGTATAT	TTAGCGATAT	AACGTTTGAT	GCGATTATTA	TCATTATGTT	2100
	CAAAATCACC	ATCTAAAGGA	CCACGTTGTT	CTTTCATGCG	ATGTGCTACT	TGCCATGTTC	2160
15	GTGTAATTAC	TTCACCTACA	CGGCCCATTG	CTTGTGAATC	GGAACTAATC	ATACTGAATA	2220
	CACCCATATC	TTGCAGAACA	TCTTCTGCTG	CAATCGTTTC	TTTACGAATA	CGTGAATCTG	2280
	CGAATGCGAT	ATCTTCAGGA	ATAGCCGCAT	TTAAATGGTG	AGTAATCATT	ACCATATCTA	2340
20	AATGTTCATC	TACAGTATTA	TGTGTATAAG	GCAAAGTTGG	ATTTGTAGAT	GAAGGTAAAA	2400
	TATTTGAAAA	TGCAGCGGAT	TTAATTAAAT	CAGGCGCATG	ACCGCCACCA	GCACCTTCAG	2460
25	TATGGTACAT	ATGAAGTACA	CGGTCTTTAA	CAGCAGCCAT	TGTGTCTTCC	ATAAATCCTG	2520
23	CTTCATTTAA	AGTATCTGCA	TGTAATGCAA	TTTGAACATC	AAATTCATCA	GCAACATCTA	2580
	ATGCATGACT	CAAAGCAGAT	GGTGTTGCAC	CCCAGTCTTC	ATGTACTTTT	AATCCAATTG	2640
30	CTCCGGCATT	GATTTGTTCA	ATGAGTGCAG	TTGGATTTGT	TGCTTGTCCT	TTACCTGTAA	2700
	AACCGACATT	AATCGGTAAA	CcTTCGGCAG	CTTCTAACAT	TCTATGAATA	TGCCATGGAC	2760
	CTGGAGTTAC	AGTTGTTGCT	TTAGAACCTT	CTGAAGCACC	AGTACCACCA	CCAATATGAG	2820
35	TCGTAATACC	ACTTTCTAAT	GCGACCTCTG	CTTGTTCAGG	ATTAATAAAA	TGAACATGAG	2880
	TATCAATACC	ACCAGCAGTG	ACGATTTTAC	CTTCAGCGGC	AATGATATCT	GTTGTTGAAC	2940
	CTATÃATAAT	GTCGACATTA	TCCATTATAT	CTGGGTTGCC	GGCATTACCT	ATGGCGAAAA	3000
40	TATAACCATT	TTTAATGCCT	ATATCAGCTT	TAACCACTTT	ATCGTAATCG	ATAATAACGG	3060
	CATTAGAAAT	GACAAGGTCT	GCAACGTTCA	CGTCATCACG	TGTTACACGA	GGATTTTGCG	3120
45	CCATACCGTC	TCTAATAGAT	TTACCACCAC	CAAAAGTAGC	TTCTTCACCA	TAAACCGCAT	3180
	AGTCTTTTTC	TATTTGAGCA	AATAGATTCG	TATCACCTAA	ACGAATGGAA	TCTCCAACAG	3240
	TTGGACCGTA	TAAGCTCGTA	TATTGATTTT	GCGTCATTTT	AAAGCTCATG	ATCTTTTTCC	3300
50	TCCTTTTTTA	TTCACGTTTT	CAGCACCGTT	ATCTCCGAAT	ACACCTGCAT	ATTCATCATT	3360
	TTCATCAGTT	GGGCGATAGA	CACGTGACTC	ATCGATAGGA	CCATTGACCA	TACCACGAAA	3420
	ACCAAAAATT	TTACGTTTGC	CAGCATATTC	AACTAATTGA	ACTICTTTTT	TATCCCCAGG	3480

	TTCGAAATCT	AATGCTGCAT	TTGCTTCATA	AAAATGAAAA	TGTGAGCCCA	CTTGAATTGG	3600
	TCGATCTCCT	GTATTTTCAA	CTTCGATAAC	TGTTTCAGGA	TGATGGTTAT	TAATTTCAAC	3660
5	CTCTGTACTT	TTTGTAATAA	TTTCTCCTGG	TATCATTTGA	ствестестт	TAAACAATAG	3720
	GGTGATGTAC	TGTGATTAAC	TTAGTACCAT	CGGGGAACGT	AGCCTCGATT	TCGATATCTG	3780
10	TAATCATGTG	TTCGACACCA	TCCATGACAT	CTTCTTTGTT	TAGAATTTGT	CTACCATAAC	3840
	TCATTAACTC	TGCAACGGTC	TTACCATCGC	GTGCACCTTC	TAATAATTCA	TCGCTGATTA	3900
	AAGCTAATGC	CTCAGGATGA	TTTAGTTTCA	AACCACGTGC	TTTACGACGA	CGTGCAACTT	3960
15	CCGCCGCCAC	TACAATCATT	AATTTGTCTT	GCTCTCGTTG	TGTAAAATGC	AAATTAAAAC	4020
	CCCCAATTTC	ATATTAGATA	CaATTTACAA	AATTTATATT	AATCCTAATT	GTTGTGATAA	4080
	ACAAGTAATA	TACAAAGTTC	AATGTGTAAT	TAGAAAATTA	TATTTTTAGC	ATATCCGATA	4140
20	TTGAAGCAAA	CAATCTAATC	GAAAACAAAT	AGTGGAATAT	ATTTATGTAA	AAACCAAAAT	4200
	AGTTTTTAAT	ATAACTTTTC	ATAGAATAGT	AGTATATTAA	TGAGTAATGA	TTCAAAGGAA	4260
25	AGGTGAAAGA	TTTGAAGATA	ATAGATGTGC	TTTTGAAAAA	TATATCTCAG	GTTGTGTTAA	4320
20	TTAGTAATAA	ATGGACAGGA	TTATTTATCT	TAATAGGATT	ATTTGTAGCC	GATTGGACAA	4380
	TTGGATTAGC	GGCTATTGTA	GGTAGCATCA	TCGCCTATAC	TTTTGCGCGT	TTTATAAATT	4440
30	ATAGTGAGGC	AGAGATTAAT	GATGGGTTAG	CTGGATTTAA	TCCAGTGCTA	ACTGCCATTG	4500
	CGTTAACAAT	CTTTTTAGAT	AAGTCAGGAT	TAGATATTGT	TATAACAATG	ATAGCAACTT	4560
	TATTAACGTT	ACCAGTTGCT	GCTGCAGTGA	CAGAAGTTTT	AAGACCATAT	AAAGTTCCGA	4620
35	TGCTGACGAT	GCCTTTTGTC	ATTGTGACTT	GGTTTACAAT	TTTACTTTCA	GGACAGGTTA	4680
	AATTTGTAGA	TACATCGTTA	AAGTTAATGC	CTCAAAACAT	TGAAACGGTT	AATTTTAGCA	4740
40	ACAATGATAG	AATaCATTTC	ATTCAGTCAT	TATTTGAAGG	ATTCAGTCAA	GTATTTATCG	4800
40	AAGCGAGTGT	AATTGGTGGC	GTATGTATTT	TAATCGGCAT	ATTGATAGCA	TCAAGAAAAG	4860
	CAACACTCTT	AGCTGTTATA	GCTAGTTTGT	TAAGCTTTAT	CATTGTAGCT	CTATTAGGTG	4920
45	GTAATTATGA	TGATATTAAT	CAGGGATTAT	TCGGTTATAA	CTTTGTATTA	ATGGCAATCG	4980
	CACTAGGATA	TACATTTAAA	ACAGCGATTA	ACCCTTATAT	TTCGACTTTT	TTAGGTGTGT	5040
	TATTAACAGT	AGTGGTGCAA	CTAGGTACAA	CAACATTGCT	TGAACCGTTT	GGCTTACCTG	5100
50	CATTAACATT	GCCATTTATT	ATCGTGACAT	GGATTTTATT	ATTTGCTGGT	ATTAAACATG	5160
	ACAAAGTAGA	TGCTTGATAG	TTAAATCAAA	CCTAATATTG	TTTGAATATC	ACCTTAAACT	5220
	ATACAGCGAA	TTGTATAGTT	TAAGGTGTAT	TTTTATGGAT	AAAATTAAGT	GCATACTTAA	5280

	GTGTTAAACT AGGAATAAAT AATTTATATT GTGTGTTGTG TGGGGTGACT AATATGAATG	5400
	ATATGGATAA TTCCTTTTTA ATAACAACGG AAATTCAAAG AAAATGGATT GAAAAATTCA	5460
5	AAGTAATTAG AGATACATTT AAGGCTAAAG CTGAATATAA TGATCAACAT AGCCAATTTC	5520
	CATATAAAAA TATTGAATGG TTAATTAAAG AAGGTTATGG AAAATTAACG TTACCAAAAG	5580
. 0	CATATGGTGG TGAAGGTGCG ACCATAGAAG ACATGGTTAT TTTGCAATCA TTTTTAGGCG	5640
0	AACTTGATGG TGCCACAGCA TTATCTATTG GTTGGCATGT GAGTGTCGTA GGACAAATTT	5700
	ATGAACAGAA ATTATGGTCT CAAGATATGT TGGAGCAATT TGCTGTTGAA ATTAATAATG	5760
5	GTGCATTAGT TAATAGAGCA GTTAGTGAAG CTGAAATGGG TAGTCCAACA AGAGGGGGAA	5820
	GACCAAGTAC ACATGCTGTT AAAGCTGATG ATGGGTATAT TTTAAATGGT GTGAAGACAT	5880
	ATACATCAAT GAGTAAAGCA CTAACACATA TTATTGTTGC TGCTTATATA GAAGAATTAG	5940
20	AAAGTGTTGG TTTTTTCTTA GTAGAC	5966
	(2) INFORMATION FOR SEQ ID NO: 23:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17310 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
	CTGTGTCATC GCGAAATAGT TAGGGTCATT CATTAATCCT TTTGAACGTA TTTCATCAAA	60

30

35

ATATAACAAT TTCATTAGTA AAGGGGACTT GTTCAAACCA GCTATAATAC AAAATAGACC 120 TATAGTCACA CTGCTTATAA TATAAGAGGT AACGATCACT TTTTTGCTAT TACCTAACTT 180 AAAGATGATC ATCCCTAAAT AGAAATAAAT GACTACAAAT GCATATTTAA CTGTAGATGC 240 AAGAACTTCC TTAACCGTAA TAAATATCAA ATCATCAAAA AATAGCAAAC AArGCGTAAT 300 AATCATACGA TATGTATACA AAATAATGAM AAACTGTMAA AAATGATTTG CCTTTAATAA 360 ATGGTTAGCG AAAAACAGTA AATAAACTAA TATTAGTAAT GTGATAAAGT CAGCTATAGA 420 AACATTCACA CCGGCAATAA CCGAAGATTG CTGAATAAAA ACCGCTAAAC CGATAAGTAA 480 CAATGTTAGT AATTTACTAT TGTGTTGATT TTCCATTATA AACGTCTTCC ACTTCTTTAA 540 TCATTTCTC CTCAGTAAAA CATTCTAAAT AACGTTTTCT AGATTGATTA CTCATTTTGA 600 TGTAATCACT GTCTATTAAA TATTTTTCCA GGACTTTAGC AATAGTTTCG GGTTGGTTGT 660 TCATCATACA TATACCATTA TCAGCTACTA ATTCTGAAAT ACCGCCAACA TGACTGGCTA 720

55

50

	TAAAATT	AAACGTATCG	TATTGTGATA	ATAAATGACT	CGCATTAATG	ACATTGCCCA	840
	AAAATGTGAC	ATCATTTTCT	AACCCAGCTT	GTACAACTTG	TTGCTGACAA	TCATTTAATG	900
5	TAGGTCCATC	GCCTATAAAT	GTAAAATGCG	CATGATTACT	GTTATGTAAT	TTCAATATCT	960
	CTATTGCCGC	GATTAGATTT	TGTGGCAATT	TTGGATAAGC	AAATCTTGCA	ATCATAACAA	1020
10	ATTGATGCTT	TGTCGGGGCA	TTAATCTGTA	AATCTTGTTT	ATTAGGCAAC	ATTCCAACTA	1080
	CTTCGCCAAT	ATTGTTATGT	GATTGGCTTT	TTAGCGTTTG	CTTAACAGCG	GGAACATCTG	1140
	CAATACCATT	ATGTATTGTG	GTTAATTTCA	ATCGATTAAA	TCGATATTTT	AACGCTAACT	1200
15	GTTTATCGAA	ATCTGAAACA	CAAATAATGC	TATCTGTAAT	AAGTGACATT	AATTTTTCGA	1260
	TAACTAAATA	TAGAAATTTT	TTAGCTGGTT	TAACACCCTC	TGTAAAAGCC	CATCCATGTG	1320
	CAGTAAAAAC	TATACGTGTG	TCTTTCGATT	TCGAAATGAa	CTtCGCAATT	CGTCcGACCG	1380
20	TtCCAGCTTT	GGAAGAATGT	AAATGGATAA	CATCAGGTTT	AATTTTCGAG	AATAACTGTG	1440
	CTAACACTTT	GACAGCTAAA	ATATCTTGTT	TAAAGTCAAT	TGGACCTACT	AAATGTTCGA	1500
25	TAATAATTAC	ATTAACTCTT	GCATCTAGTT	GTTCAATCAT	TGGTCCATGA	TTGCCTACAA	1560
	TGACATAAAC	ATCATTGTGT	ACGCAAAAAT	GGTTGGCGAG	TTGAATGAGA	TGTGTTTGTG	1620
	CACCACCATT	GTCTGCTTTA	GTAATACAAT	ATATAATTTT	CAACTGTTAC	AAACCCCTTT	1680
30	AATGCTATAC	TTTCAATTTC	TTAACATGGC	TATCTCATCA	GATGAATAGT	ATTTATAGCC	1740
	ATGCAAATCA	ATGATGGCAC	ATATTTCTTA	ATGCCATTTG	ATACTGTCTC	AAGGGATTCC	1800
	TCGTTATACT	GTAACAATTG	GTCACAATCT	TTAAAATATA	ACTTTTATTT	GAACTTATTA	1860
35	AGTAAATTAA	GACTACCTTG	AGCCTTCCCC	TGTAATAACA	ACCATCAATG	TTCTAATTGA	1920
	TATATATAGT	TCCATCATTA	AACTACCTTT	ATGTATATAT	TTCATGTCAT	ATTTCAGTTT	1980
	TTGTTGCGGT	GTTAAGTCAT	ATCCACCTTG	AATTTGCGCA	AGTCCTGTTA	ACCCTGGTGT	2040
10	AACAAGACAT	CTTTGCTCGA	AACCTATCAC	TTCTGAACTA	AATAATTCTA	CAAATTCCGG	2100
	ACGTTCCGGG	CGTGGTCCAA	TAAAACTCAT	TTCCCCTTTA	ACAACATTAA	TTAGTTGTGG	2160
1 5	TAATTCATCA	ATGCGTGTTT	TACGAATAAA	CTTCCCGACA	TTTGTTATAC	GATCATCATC	2220
	TTTATCAGCC	CATTGCGCAC	CGTTTTTCTC	TGCGTTTTTG	CACATCGAAC	GTAATTTGTA	2280
	TATTTTAATT	AATTTACCCA	TCTTCCCAAC	TCTAACCTGA	CTATAAATAG	GGTTTCCTGG	2340
50	CGAATCTATG	ACGATAGCAA	TGGCGAATAT	AACCATAATC	GGTAAAGTTA	AAAATAATAA	2400
	AACAATGCTT	AAAATTAAGT	CAATCGCACG	TTTAATTGGG	TAATAGCTTT	TTCTCACTTC	2460
	TTCTAGTTTG	TCTAATTTTC	TTTGATAGGC	ATAACCCTTA	TTATTATGGA	CAGCTTCAAT	2520

	AATTAAAGTA	ATCCTTTAAA	CCTGTTTCTA	CTGTATATTT	AGGAACAAAT	CCTAATGCCT	2640
	TTAAGTTAGA	AATATCTGCA	TAAGAATGCT	TAATATCTCC	TTTTCGTGCT	TCTTTAAATT	2700
5	CATGCTCGAC	TGATTTTCCA	TATAATTCAC	CAATAATACG	ATAAACCTCT	AATAAATTAG	2760
	TAAAAGTGCC	TGTACCAATG	TTATAACCGT	GTCCAATTGC	ATCTTTGTGT	TCCATAATTA	2820
10	AGCGTACAGA	TTGAACAACA	TCATATACAT	ATACAAAATC	TCTAGTTTGC	AGTCCGTCAC	2880
	CAAAAAATGT	AAATGGCTTG	TTATGCTCAA	ATGAATCGAA	CATCTTTGAA	ATCACACCTG	2940
	AATATTGTGA	CTTAGGATCC	TGTCTTGGCC	CAAATACATT	ATTTAAAAAA	ACAACCGCTG	3000
15	TTGGTATGTT	ATATAACGAA	CAATAATTTA	ATGTCGTCCG	TTCGCCGTAA	TATTTATCTA	3060
	TTGCATATGG	TGATAATGGT	AAGATTAATG	ATTGATCACT	TTTAGGCAAA	TCAGGAAGAT	3120
	CACCATAAAC	AGCTGCTGAC	GAAGCAAAGA	TAAAACGTTT	TATATGATTA	TTATATTTTT	3180
20	TAATGATTTC	TAACAATCTT	AATGTTGCTA	CGACGTTTAT	TTCTTGAGAT	AAGATAGGTT	3240
	TCTCAACCGA	CTCAGCAACA	CTAACTAATG	CTGCTAAATG	AATAACATAA	TCAAATTGAT	3300
25	ATGTCTTCAT	GATTTGTTCA	ACTGCATCAT	ATTCACGAAT	ATCTAATTCA	AACACATGAT	3360
	CGTCAGCCAA	ACTTTTAATA	TTTTCTCGTT	TACCTGTTCT	ATAGTTATCT	AGAACATAAA	3420
	CATCATAATC	TTGTTGTAAA	TCATCTACTA	AATGCGACCC	AATAAAACCA	GCCCCACCAG	3480
30	TTATCAAAAC	TCTTTCCAAA	TCTTCCACCT	CATTTATACA	TTAAAAATAT	ATCATAAAAA	3540
	CATAAAGTAT	TGTAAGCTTT	TTATCGATAT	TTTTTTTTTA	TAAAAATAAA	ATGAGATAAC	3600
	TTTGTGAATT	TTTATTGAGA	TAAATTAGAT	AGTGGTGTTT	TTGTGATGTT	TTATAATATC	3660
35	TTGGGTGTGT	TAATACTAAT	AATGCTTTCA	ACTGATGCAT	TAGACTGTGA	CATCATAACT	3720
	CACTTAAGAA	CTTCGCTTAT	TAATTITCTA	CCAATACACT	CCCTTCTAAG	TGCACTAAAA	3780
10	AATÇETTACT	GCTAAGTGAT	TAAACTTAAC	AATAAGGATT	TATTTATCAT	TAGTGGATGA	3840
40	TTATTAACGG	AATCTCATAC	CACCATCTAC	AATAATTGTT	TGTCCAGTAA	TGTAATCAGA	3900
	GTCTTTACCA	GCTAAGAAGC	TCACTACATT	TGAAACATCT	TCTGGTTGAG	AAACTCTGCC	3960
45	CAAAGCAATC	TGACTTGTAA	ATTGTTCCCA	ACCCCATGCT	TCAGGTTTAC	CTGCTTCTTC	4020
	GGCTGTTGCC	ACTGCGATAC	TTTCCATCAT	TGGTGTTTGA	ACGATACCAG	GTGCGAATGC	4080
	ATTCACAGTA	ATACCTTCAG	ACGCTAAATC	TTGTGCGGCT	ACTTGTGTTA	AACCTCGCAC	4140
50	TGCGAATTTT	GTACTGCAAT	ATAAAGACAA	GCCTGGGTTA	CCCTCAACGC	CTGCTTGAGA	4200
	TGTTGCATTG	ATAATTTTAC	CGCCATGATT	GAATTTTTTA	AATTGTTCAT	GTGCGGCTTG	4260
	AATACCCCAT	AGCACACCTG	CAACGTTCAC	GCCATATACT	GTTTTAAACT	GTTCTTCAGT	4320

	GCCAAATTGC	GCGGCAGTTT	GTCTTAcTGC	GTTAAATACA	TCATCACGGT	TTGATACATC	4440
	TGCTTTGATA	GCAATAGCTT	TTGTACCATC	ACTTGATAAT	TTAAGTGCAG	CTGCTTTTGC	4500
5	CCCTTCTTCA	TTGAAATCAA	CAACTGCTAC	TTTGAAACCA	TCTTCCACTA	AACGTTCTGC	4560
	AATTTTAAAA	CCAATCCCTT	GTGcTCCGCC	AGTTACTAAT	GCTACTTTGT	TGTTTGTCAT	4620
10	AAAGATCACT	CCTCAAATTT	CTTTCCTTTA	ATTACATTTT	ACTCCTCTTC	ATTTGAATAG	4680
	TACAACAAAG	GTAGCTCCAT	TTAACAAAAT	ATTCAGATAT	TTAAGGTATA	GTTAAACGCA	4740
	CTACCATTAG	TGATTGGCAA	TGCGTTTAAA	TGTCGTTTTA	AAAGTTCTTA	TGTTGAATAT	4800
15	TATTTTTTTA	AGTCTCTCGA	TTAGTTTGTC	ATCAATCTTT	TTTCGAGACA	TGGTCTTTTG	4860
	ATTCAATAGG	CGGTTCCGTG	TTATCACTGA	CAACTTTAGT	TGTAGCTTCA	TCTTTATGTA	4920
	TTTCTTCGTT	AAATCCTTCA	AGGTTTTTAG	TCGTGGGATT	TTTAACCTCA	GGATGTTCCA	4980
20	TCATGTCTTG	ACTATCAAGT	TCCTTTTTAC	ACGTGTCTTT	ATGTGATGCT	TGATTTGCGT	5040
	TCCCTTTACT	TTTTTGAATA	GTGGTAGTAT	CTGCTGCAGC	TACTAATTTT	TTTCTACCTA	5100
25	AAATAGATAT	GGCTGAAACA	AACCAGAGTA	TTGCAGATAC	AAAGTTGCAT	AATACTAAAG	5160
23	CGATAATAGC	CAATACAATT	AATATGACAC	CTTTTGAAAT	CCTTTCTTTA	AATAAGTCAG	5220
	ATGCCAATAC	GATGACAGGT	ACGATTGAAA	GTATAATTAC	AAATATAGAA	ATTATTGCCG	5280
30	ATATAACTAT	TGTTACTATT	AAATAATCAG	CTCTGCTACC	TGATAATAAA	TAGAAAAGGC	5340
	CGAAAATTAG	TCCATAGCAA	ATTACAAACC	CACATAAAGT	TATAGCCATG	AGTACTATAT	5400
	AAGCTATTTG	AAAATATAAA	CCTATCTTTA	TGAATGATTT	TTCTACATTT	TTTTCCATGT	5460
35	CTATTCCCCA	TTTATTTAAA	ATTTATACTT	TACCTTAAAT	ATTCTCTTTA	TTCTTTAGTG	5520
	ATTTTATCTT	TAGATTCAAA	TTGATTCTCT	GTACTTTCAA	TATCAACTTT	TTCATTTTCG	5580
	TCTGTCGATT	CATCTTTTGA	GTATTTATTC	CAAATCAGCA	AAATACCACC	AATCAGCCAT	5640
40	AAAATTGACG	AAAGGAAATT	ATATAAACAC	AGTGCAATAA	TAGCATAAAC	AATAAAAAGT	5700
	GCACCTCCGA	TTACAGAGTA	ACTTTCCATA	TAAATCGCAG	TAAAGATGGT	TGGTAAAACA	5760
45	GTGAAAAGAG	CCAATATTAA	TCCTAATAAA	AAAATTGTTT	CGTAATCAGA	TCCTCCAGCA	5820
	ATATTAATAG	ATATCATCCT	AACAAAAACG	ACACTAAAAT	ATATTTGAGC	TACGATGCCT	5880
	ATCCAAATTG	CTATTTTTCC	TATAATTGAG	CTCATACTCA	TTCCCCATTT	TTAAAATT	5940
50	TATACTTTAC	CTTAATATAC	CTTATTTTAT	TTAATTTTTA	TATGCAAAAT	ACAAAAATGG	6000
	AGAACTTCAA	TATTTATAAA	ATATCAAAAG	TTCTCCACAC	TATATTGTTT	TATTATATTT	6060
	TCGCTATCAA	TACGCTAAAT	CATCATATTT	CCCTCAACAT	CACAGTAAAA	CTATTGCTCC	6120

	TTCCAATTGC	GCAGTTGTTC	AACATCATCA	TCTTGTTTAA	GTAATGCCAG	TGGTACTTGA	6240
	AGATTAAGAC	ATCGTCCTGA	AATATTAAAG	CGTGTCACAC	CTGCTGGCAC	AGTTTCCCCT	6300
5	TTATGAACAA	CCGCTTCAAT	TTCCTTATAA	CTCAATGGCT	GATACTTCAT	GAGTACATCT	6360
	TGTTGAGAAA	GACAAGGATA	TGTACCTTGT	GCAATTCTCT	CTACAGAACA	ACAACCACTA	6420
10	TAACTTGCGA	CAACCTTTTC	CCATACTTGA	AAATGTGCTT	CGCCTAAATC	TTTTGTATAC	6480
	AAATATIGTT	CTGTATCACC	ATGACACATT	GTAATAAATG	GCGCTTCTTG	TCTTGTCTCA	6540
	GTAGTCCATG	GCAAGCGATG	TTCTTGTTGT	AACGTTTCCC	ACCACACACC	AAATGGAACT	6600
15	TTATGTTGCC	ATGTACTAAT	TGAATATTGT	GTTTCATGGA	TTTCTTGCAC	TGGAACTTTC	6660
	TTACATCCTA	ACGCTTTCAA	ACTTGTATAC	CGATGCACAC	CATCTATAAC	CATATATCTA	6720
	CCATGTTGCA	TCGCTGTCAC	TAAAATAGGA	TGACGTATAA	AATCATCTGC	TTCAATACTA	6780
20	CTTTTCGTTT	TTTCCAATCT	TAAAGGTTCG	AATGTTTCGT	GAAGATCAAT	CTTATCTACT	6840
	GGTACCAATT	TTAAATGTTC	ATGAATATGA	TTCAATAGTT	ATTCATCCTC	CTTTGTTTGT	6900
05	GTTAAATAAA	TAAATTCAGG	ATGTGGATGG	CTTAAGAAAT	CGTGATGTGA	AATAGACCAT	6960
25	CCGTATGCAC	CTGCATATTT	GAAAACAATA	ACGTCGCCTG	TACTGATTGC	GTCTATCTGT	7020
	ACTTCTCTAG	CAAAGACATC	TTTCGGTGTA	CATAATTGAC	CGACTAACGT	TGTGTCCTGT	7080
30	CTCGAAATTG	AAACTTTTTC	AAATGAATAT	GGATTGTCCT	TATAGCGATA	AATGTCAAAA	7140
	GGATGGTTAT	GTTGCCAAGA	TACCGGCAGT	CTAAATTGTT	GCGTACCTCC	TCTTAATATG	7200
	GCATACCAAG	CACCATGTAC	TTTCTTAATG	TCTAGCACTT	CTGTCACATA	GTAACCAATA	7260
35	TGTGCCACAA	TAAAGCGCCC	ACATTCAAAG	TTCAATGTCA	CATCTTCCAT	TTCTTGCTCA	7320
	ACGATAAGTG	TTTTAAAACG	TTCTACAAAA	TTATCCCATT	CAAATTGGTT	AGTTAAATCT	7380
	GCATAGTTAA	CGCCTATGCC	ACCACCAAGA	TTGATATGTT	TGAGTGGAAA	TCGATGTTTT	7440
40	TCAGACCATG	CCTTTGCTTT	TTTAAAATAA	AGTTTCACTA	CATCGACATG	TAAATTCGAG	7500
	TCTAAATTGT	TAGAAATAGA	ATGAAAATGA	AATCCATCTA	GATGAATCTT	TGGCATTGCG	7560
45	AGCGCAgcTT	CAATGACATC	ATCAACTTCG	TCTTCAGAAA	TACCAAATTG	TGTTGGGCGT	7620
	CCTGCCATAT	GCAACGTTGC	ATTGGGAAAT	GGTCCTGCTA	AATTAACACG	CAATAAAATG	7680
	TGTTGTGTCT	TATCTTCATC	TTCTAAGATG	GCATTTAGCC	GTTGTAATTC	ATGCATACTT	7740
50	TCAACATGAA	TACGCTGAAC	ACCTTCACTT	ACTGCATATC	TTAGTTCCTC	GTCTGTCTTA	7800
	CCAGGGCCAC	CAAAAATAAT	ATGATTTGCT	GGTTTAAAAG	CAAGACCTTT	TGCTATTTCA	7860
	CCTTGAGATG	CAACTTCGAA	TCCTTCAACA	TACTGACTAA	TTGTATCTAG	GATTTTTCGT	7920

	TGTTGCAAAT	GATGTTCCAG	TCCGACTAAA	TCATAGATAT	AATGACAAAC	TGGATGAGAT	8040
5	TGTGCTTTTA	ATTGTTCAAT	AACAGGTTGA	ACTATACGCA	TTAGCCTTCA	TCCCCTTTCT	8100
	GTTTAGACGT	CGCTAGAGAT	GCACTTAAAT	GGCGATATAT	TTTTCCGCGA	TCATCACCTA	8160
	AAATAAATGT	TTGTACACCT	TGTGCCTGCC	ATTTTGCAAT	ATCTTCATCT	TCACGTGGTA	8220
10	ATGCACAAAA	ATGTTTACCA	TGTGCATTCA	CAACTTCAAA	AATATGTTGA	ACATGTGATG	8280
	TTACTTGATC	ATCACGCGTT	TGCCATGGTA	TGCCAAGTGA	CTGCGATAAA	TCTGCGGCAC	8340
	CTTCGACTAT	CATGTCTAAA	CCTTCGACTT	GTGCTATATC	GTCAATGGCC	ATAACCCCTT	8400
15	CAACATCTTC	TATCATGGCA	ATCACCATAA	TATGCTCATT	AGCCATCTCC	ATTGCATCAA	8460
	GTAATGGTGT	ACGTCCAAAT	CTTGCCATGC	GACCACCATT	CAAACTTCTT	AATCCTTGCG	8520
	GGTAATAACG	ACTTAATTTC	ACAATATGCT	CAACTGTCTC	ACGATCTTTA	ACGTGTGGCA	8580
20	CAATAATACC	TCTCGCACCC	ATATCCAACA	CTTTAATGAT	ATCTCTATCT	ATCACTGCAG	8640
	TGACACGTAC	AATTGGTATA	ATATGCGCTG	CTTCAGCTGC	ACGAATTAAA	TGCGCTAGTG	8700
25	TCTCATCATT	AATCGCCACG	TGTTCTGTAT	CAATCACAAC	AAAGTCATAC	CCGCTTGCTG	8760
	CGATAACCTC	GATCATCAAT	GGGTCCGGTA	TAGAATTAAA	AATGCCATAA	ACTGAATCAC	8820
	CATTGTTTAA	TCTATGTTTC	AGAGATAGTT	GTTGCATCAT	TGATACCTCC	TACACCTAAT	8880
30	GGATTTGTAA	CATGATGAAT	TCTTAACTCG	GAGTCACTTA	ATAATCGACG	TGTCGTTAAC	8940
	TITTCAACTT	GAATCGTAGG	TTCAAACAAA	TCGAAATGTT	GATAGTTATT	CAACTCTGGA	9000
	AATGCTTCTT	GATACGCCTC	GATGATGCCT	TTAACCCATT	GCCATTGCAG	CTCCTCATCG	9060
35	ATACCATATT	GCTTTTCAAT	AAATAAGATG	ATTTCGGCGA	TATTAATAAA	GAAAATGCA	9120
	TCATGTAAAA	AGTCGCGTAC	TAAACGTTCG	TCATCTGTTT	CAATAAATGA	ATTACTATTC	9180
	ACTTTTTTAT	GTGCTTCTGG	CATTGGCTTT	AATGTCAGGT	GTGAAGCAGC	TTCACTTAAA	9240
10	TGctCACGCT	TAAAACGAAC	ACCATCATGG	AAATCTTTTA	AGGCAATACG	TGTAGGCCAA	9300
	CCATTTTCAT	GAATGAGCAT	CATATTTTGT	GCATGCGATT	CAAAGGCAAT	ACCGTGATAA	9360
4 5	TAAAGCATAT	GAATCATTGG	ACGAATCGCT	ACAGCTAAAA	ATTGCTTTGT	CCAAGCTTCA	9420
	GAACCATATT	GTTTAATCCA	ATTTTCAATG	AATGGTACAC	CATCCTTATC	ACTTGCATAA	9480
	AGTGCATTAA	ATGGTATCGC	ATCCTCTTCA	TCGATTAACA	TATGATATAT	ATTTTCACGC	9540
50	CATATAACAC	CTAACGCACC	ATAAACTTGA	GTTTGTTTAT	AAGGCGAAAG	TTGTGTATTT	9600
	AAATAAGACT	GTCCTAAGAC	TTCCCCTAGA	AAAACTGTCT	TTAATTCATC	TTTTAAATAC	9660
	ATATCTTGTT	GCTGTATCTG	CTTTAACCAA	TCCGTAATTT	GCGCTGCATT	TTCAATTGTA	9720

	TATTTTGTCG	TGTCTATTGG	CGACATCGTA	CGAATCGATT	GTTGAGGGTG	ATATAGCTCA	9840
	TCACTTTCCC	CTAACCATAG	TACTGTGCCA	TTAAGCCTTT	CTTCAGCCAA	ATCAACTTGG	9900
ŝ	ATGACATGTT	CAAACTGCCA	TGGGTGTACA	GGTATCATCT	CAACATCATT	TACATGTTTG	9960
	CCAGATGCTT	CAATTTGCTG	TACAAAATGT	TCATAAGTCT	TATCGCCAAC	TTGTTGACGT	10020
	AACATTTCGT	TAACTACAAC	ATTTCTTGAT	ACCGTCGTTT	CTACTITATC	TTTGTCGATA	10080
10	GCTAACCACT	GCAGTTTAAC	GTTTGGTACA	AAATCAGGAC	CAAATTTCAA	ATTATCACTC	10140
	AACGTAAATC	CTAAACGTGA	TTTGTAACTT	GGATGATACT	GATGCCCTTC	CATCGCATAA	10200
15	AATTCATAGT	CGTTAAATGT	CTCAGGTGTT	GCTGGTGGGT	TTGATTCTCG	ATACTGCATA	10260
	CTTTGCGTAT	CTTTTAATTC	TGTCTGTAAT	AACTCGACAA	TAAATTGTTC	TAGCTTTTCA	10320
	TCATTTTTAG	GAAATGTAAA	TACAACCTCT	CTCAATAATT	GTGTATAGTC	TGTTGTTGTA	10380
20	TCTGCCTCAT	CTCCTACGAC	ACGCTCAATT	GGTGATGTGA	TACGTATACG	ATCAAAGCTA	10440
	TGTGTCTTTT	CAGCAGTAAA	ACGATACTCT	GAATCATGTC	CTTCTATTGT	AAAATGACCG	10500
	ACACCGTCTT	GATATGACGC	TTTATACACA	ACAATATTCT	CATAAATAAG	TGATGATACC	10560
25	AGTTGGTGCA	TCACTCTAGT	CTTTACACGA	TTAAGAATTG	TTTGATTCAC	AATACGATAC	10620
	CTCCTTGTTA	TGACAAATTG	GATTTGGTAT	ATGTGTATAA	ATAGGGTTTG	CACCACAATC	10680
30	ATTCAATTTA	CTCATCAAAT	TCGCTTTAGC	CGcAATGGTC	GGCGTTTGAT	ATAAATCTTC	10740
	TACACAGTCA	ACAAATACTG	CGTTATTCGC	GTATTCTTTT	TTCCAAGTCA	TAAGACGATG	10800
	CGCTACAAGT	TGCCATAACA	CAACTTCATT	TCTAGTCGCT	TTACCAATAG	TTGATACTAA	10860
35	ATGTCCTAAG	TGATTTACTA	CAACGTAATA	TTTAAGACGA	TGCCATGCTT	CATCATGTGC	10920
	ATATACAACA	GGGCTTGATG	CTGCCACAAC	ATTTGGCACA	AGCTGTTTTT	CAGTAGCAAT	10980
	CGTTCTAGAT	AGACAAATGC	CTTCAAGATC	TCTGACAAAG	CATACGTCGG	GTATGCCATC	11040
40	TTTTAATTCA	ATTAATGTAT	TTTGTACATG	TGCTTCTAGA	CTAATGCCTG	TGTTACTAAA	11100
	CAGCTTTAAT	ATCGGCAATA	ATGTACGATT	CAAATAACAT	TCAAGCCATG	CTTCTGGTGC	11160
4 5	TAAACCACTT	TGCTCAATCA	CTTGTGATAA	CTTAGACATC	GGTGAATCAG	GCATCGTTTC	11220
43	AAATAATGAC	GCCAATACAT	GAATATCTTT	ATCAGCATGG	TAATTCGGTA	TCCCTTCACG	11280
	AACAATCATG	GCACTATTTG	TTAATAAATC	CATTTCAGGT	TCAACTGTTT	GCCCTAATGG	11340
50	ATTCGGTAAC	AATGCACGAT	ATCCTTCTTC	AAACATCAAT	TTAAAATGGG	GTGTTTCAAC	11400
	CTCATCTTTG	ACTGATGCGA	TAACTTGCGC	GGCATCAATT	GTCCGTTCAA	TCTGTTCAAG	11460
	GTCATTCGTA	CGTATAAAAT	TAGTGATTTT	AACGTGTATC	GGTAATTTTA	AATAAATGTT	11520

	GCCAAGGTCT	TTTATTAAAC	CTTGTTCACT	ATATTGCATA	TACTGTGGAT	GCTGTCGCAA	11640
	CACATTGATT	TGATAAGGAT	GTGTTGGTAA	TAAAATAAAA	TCTTTGGGTA	TCTCTGATAT	11700
5	ATCTATGTCT	GCTAATTGAT	ACAACACTTT	CTCAACCTGA	TCTTCTTTAC	CTTCTACATA	11760
	GCGCGTGAGC	AGAACATCTT	GATGCACAGC	TAAATAATGC	AATTGGAATG	ATGTATGACA	11820
10	TTCGGGTGCA	TATTTCTCTA	AATCTGCTTC	TGAAAACCCA	CTTGCACTCT	TAGGAGTCGG	11880
,0	ATGAAATGGA	TGACCTAAGT	ATAAAGATTG	TTCTGAAACG	ATATAACGAT	CCTCTACGTA	11940
	GTCTATTGTG	TTACTTTGCA	AATAACGTGC	CGTGCGATGA	ATGCTATTAT	CGATGTCAGA	12000
15	CATAATTTGC	GCCATATGTT	GTTGCACTGC	CGTTTGATTA	TCTGCACTTT	GAGCCATATG	12060
	TTGCAAAATA	CGCGCAATTG	CTTCTTTATA	AGTTGTTATT	TTTTTACTTT	TTCCATCGAT	12120
	AAGCCATACC	TCTGGATGAT	ACATATGATG	CCCCATCGCA	GACCAATAGC	GAAATTCACC	12180
20	CGTTAAAGTT	TCGAGCTCTG	ATAATTGTAT	AGACCATTGA	TGATTTTGAG	GTGGTACTTG	12240
	ATATAAATTT	TCTTCTCTAA	AATATTCATT	TAAAATGCGT	TCGATAGCCG	CATACGCTGC	12300
	ATGTTGTATT	AATTCTTTAT	TTTGCACTTT	TTTGTTTCAA	CTCCCATAAT	TTCATTAATG	12360
25	TGTGATCGTT	GATTTGATTA	GTGATGGTTG	AACAAATTAA	AAATAAACTA	CTTACTGCAA	12420
	ATACTACGCC	CATAACGATA	AACGTAGTAG	CTGGTGTAGT	ATAACTTGTA	ATGGCAGCGC	12480
30	cACTaAGACT	GCCAATAATT	TGACCAACAA	CTAACATACT	GTTCGTCGTT	CCAACAAATG	12540
	TGCCTTTAAG	TTGTTGATGA	CACGCATTCA	CGACAACAAA	CATGACACTT	TGAATCAATG	12600
	CACTATATGT	TAATCCTTGA	AGTATTCTTG	CAGCCATTAA	AAACTCTATA	TTCGTCGCTA	12660
35	AACCTTGCAG	TATCGCACTA	CAACCACATG	CAATCGTGGC	AAATATATAT	ACTGATTTAA	12720
	CATATGATTT	ATCATTAAAG	CGTCCCCATA	AAGGCGCGCT	TAATATCGAA	GCCGTCCAAA	12780
	ATGCGGACTG	TAAAAATCCA	ATCACACTAC	GGTCATCTAT	CGCTGTATGA	TTCACTGATG	12840
40	AAGCAAGTGG	TGATAATGCA	GTTAGCATGC	CATACATAGC	AAAGTTTGCT	AAAACGCCAA	12900
	CGATAATAAA	TCGACATGTT	TGTTGTGTGC	ATAATAGACA	TTGAAATGAA	CGGCGAATAC	12960
45	CTTTATTAAT	ATTTGGTGTT	TGTGATTTTG	GCATATGTGT	CGTTTCAATC	AATTTTAATG	13020
	CACCGAAAAT	ACAGACAATA	AAAGTAATAA	CGGCAATACT	CATCAGTAAC	GCACTAAAAC	13080
	CTAATATCGA	AGCTGTAACA	CCGCCAATTA	ATGGCCCCAC	AAGAGACCCT	GCGCTGACTG	13140
50	AACTTTGCAG	TCTTCCTAAT	ACCTTTCCAC	GATCTTCAGC	TGGCGCCTCT	GCACTCGCAA	13200
	ACGCACTTGA	TGCATCAACA	ACACCACCAA	ATAGTCCCTG	CAATAACCTC	ACAAGTACAA	13260
	ACTGTAATGG	TGTCGTACAC	AATGCCATTA	AAAATAAGCA	TACCGCCAAA	CCAAGTAACG	13320

	CTATCATCGT	CGTTACAGCT	GGAGCAGCAA	TCGCTATACC	ACTCCACAAC	TGTATTTCTA	13440
5	CGACTGATAG	ATTTTGTAGT	GATGCCATAT	AAATTGGCAA	TAATGGCACA	AGTACTGTCA	13500
	GTCCAGCAAT	CGCTATAAAC	TGACTGAGCC	ATAAAATGCG	AAAGTTACTG	CGCCATATAG	13560
	ACTGATTAAT	CATATGTCAC	CATTGGATTT	GGTACGGTAG	TTAAACCTGA	AGGCATACTA	13620
10	CCTCCACCAC	TATCACGTTG	ATATAGCAAT	GGTAATAAAA	TTTGTTTGAA	TGGCCACGTC	13680
	TGTTTATCAA	ATAAAATGTG	TCTGACAGCT	AGCTGATCAG	TTGTAACCCA	GGAAATAGTT	13740
	GCCACTTCAT	TTTTTAAAAT	TTGTTTTAAC	AACGACATAA	GTTCATGCTC	ACTTACACCA	13800
15	AATAAATCTT	GAATTGCATC	AATAATGGCA	TATAGATTTA	CCGATACAGC	TAATGTTTGA	13860
	AAATAAGCAA	AGAATGTTTC	CAAATCCTCA	TTAATTAGCG	TATTAGGTGT	ATCTTCTCTG	13920
20	ACGACATACT	TCGGCAATGA	AAGCTGATGT	GCTGTTAGCC	ATGGTTTATA	AATTCTGACA	13980
20	GTATCATGAT	CACGTAACAC	GCATTTTTGT	ACACGTCCAT	CTTCAAATGA	CAACAATATA	14040
	TTTTGACCAT	GCAACTCTGG	TAATGCGCCG	TATTGCATAA	ATGATAGTGT	TACCTTTAAA	14100
25	AAGACTTGCG	CGATATCTTC	AAATAACGTC	ATGACATCAT	TTTTAGAAAT	ATTATCTTTT	14160
	CCACAAATCA	TTTGATATAA	AGTGCGATCA	TTTGCCGCGA	GTGCTGCCAT	TGACACTAGC	14220
	TGTTGCGTAT	CATTTTTGGC	TAGCACTTCG	GGATACTTTC	TTAGCTGAAC	AGTTAGATGA	14280
30	CCTAATTGAT	CTTTGAAAAT	ATCATTATCT	TGACCCATAT	ATGACCACCA	AGCTGTTTCA	14340
	TCACAAACCA	TGACATACTT	AGCTAGTGCT	TCATCTTTTT	CTATAAGCTG	ACGTAATAAT	14400
	TGTTCTGCTT	GTTCTCCGTT	TTTCATGTAA	CGCGTAGGCG	TTAGCCTTAA	TGCGCCTAAT	14460
35	GACTGCATTG	CAAATGGTAC	TTTGACATGG	TTATACGGTG	CGCCAATATC	AATTAATGAA	14520
	CGCATACTTG	AAGACGACAG	ATAATCTCCA	AATTTTAACG	GTAATAGTAC	AACCAACTTT	14580
40	TCACTAATCT	CTTTCGCAAA	GACGTTCGGC	AGAATATGCT	GATATTGCCA	AGGATGTACC	14640
	GGAAATAGTA	CATAGTCATC	TATTGATAAC	CCTTGATCAT	TTAACATGTC	TGTCGCTTGT	14700
	TCTTTTATAG	GTACTGTCAA	ATTTTCTAAT	TCATCGATAT	TTGCAGTATC	GCCATGAATC	14760
45	ATATGTGTCT	TTTTAACTGC	TGCAACCATT	AAAGGAAATG	ATTGATTTAA	TTCAGCTTGA	14820
	TACACTTGAT	AATCCGCTTC	TCTTAATCCT	CTTTTTTCTT	TAGCTAATGG	ATGAAATGGA	14880
	CGATCTTTTA	AACTTGCAAA	CTGCTCTGAC	ATCACAAAAG	GATGTGACGC	TAAATCTAAT	14940
50	TCTGATAATT	GTTTAGCAAG	CTGTGTGGCA	GCAGTAGTCA	GTCCTTCTTC	AACGCGAGCC	15000
	ACTTCCCATT	CATGACTTAG	ATCACAATTC	ATATTAGCAA	TTGTTTGCCA	AAATTCAGCT	15060
55	GCCGTTAAAG	GTTGCTTAGA	CACCCTTCCC	TCTATCGTAA	TTGGTTGTGA	ACTTTCGTAA	15120
55							

	TATATCAAAA	GCGTTTGTCC	GTTTTCTTTA	GTAATCTCAC	TATTCGATAC	AATTCCGGCT	15240
	ATATCTTCAA	ATAATAATGC	ATCAACTAAA	TCTCTTAATA	TTATCGCTTG	TGCTGTATTG	15300
5	ACTGCTGTAT	GATTCTGCAA	TGTTCAGACA	CCTCGCATTC	TTAATATAGG	TTCAATGTTG	15360
	TCCCAATATT	TTGTTGTTGT	GCCTGTTGAT	AAATAAAATA	AGCACTTGAA	ATATCTTCGA	15420
10	TAGCCATACC	CATCGGATTA	AGTAATATGA	TCTCATCATC	GTCTTCACGT	CCTGGTATGT	15480
	CACCTGTCAC	AAGTTGTCCT	AGTTCAGCAT	GAAGAGCTTC	TTTGCTGAAT	TTACCTTCTA	15540
	ACACCAATTG	GTTAATAGTT	TTCTTTTCTC	GATTACATTG	TGACCAGTCA	TCTACTACGA	15600
15	CTTTGTCAGC	TTTAATAAAG	ACTTCTTTAT	GCACATCCAT	GATAGAAATG	TTGCTAATAA	15660
	ATGCACCCTT	TTGTAACCAA	TCATATTCAA	TGTATGGTTG	ATCCGTTACG	GTACATGTAA	15720
	TGACTACTTC	ACCATTTGAT	ACTGCTTCTT	TAGCATTTTC	TGTCGCAATA	AAATTAATTT	15780
20	CCGGACGCTG	TTGTTGCCAT	CTATCAACAA	AGCGTGCACA	TGCTTCAGAG	AATTGATCGT	15840
	AAACAAACAC	GCGTTCAATA	TGATCGAATT	GCTCTAACAT	ACTTTGTAAT	TGCTTGTCTC	15900
25	CGATTAGCCC	GCATCCAATG	ATTGTTAAGT	CTTTAAATCC	TTTTTTAGCC	AAATGCTTTG	15960
	CTGCAATCAC	TGAAACTGCT	GCAGTACGCA	TACTACTAAT	TAAACTTGCT	TCCATAACTG	16020
	CAATTGGATA	ATTCGTTTCT	GGATCATTCA	AAATAATGAC	GCCACTTGCA	CGCTCCATAT	16080
30	TACGTTTCGA	TGGATTGTCG	TGCTTACTAC	CTATCCACTT	AATACCTGAA	ATTGCGTGTT	16140
	CACCACCGAT	ATGACTTGGC	ATTGCAATAA	TTCGATCTGC	GATGTGTCCA	TTTTCAGGAT	16200
	CCtGTCTTAA	ATACGGCTTA	AGCGGTTGTA	CAAAATCATT	GTGCGCATGG	GCTGTTAATG	16260
35	CTTCTGTTAA	TGCGTCCACA	TAAACTTGTG	AATGATTACC	TCCCGCTTGT	TCAATATCTG	16320
	ATCTATTTAA	ATACAACATC	TCTCTatTCa	TTCTGaTTTA	ACTCCTTGTC	TTGATTTCAT	16380
40	TTTTTCTAAC	CATGTATCTG	AATAAACTAA	ATCTAAGTAA	CGATCGCCTC	GATCTGGTAA	16440
40	AATCGTGACA	ATTGTTGCAC	CTTCTTCAAT	TGACGTTATC	AACTGCTCAA	TCGCTGCAAT	16500
	AATCGAACCT	GTTGAACCTC	CGGCAAATAT	GCCTTCATAA	TCAATCAGTT	TTCGACAGCC	16560
45	CAAAGCAGAT	TGATAATCAT	CTACATGGAT	CACTTGATTA	ATTTCTGATC	TATTCAATAT	16620
	TTCGGGTACA	CGACTAGCAC	CGATACCAGG	TAATTCTCTA	TTAATAGGTT	TGTCACCAAA	16680
	AATGACTGAC	CCTTTCGCAT	CAACAGCAAC	AATTTGTGCG	TTTGGATGCA	CTTCTTTTAT	16740
50	TTTTCTACTC	ATACCCATAA	TGCTACCTGT	CGTGCTGACT	GGCGCGACAA	AATAATCTAT	16800
	AGGTTGCTTA	ATTGTTTCAA	CAATCTCTGT	GCCTGCACCA	TGATAATGGG	ATTGCCAATT	16860
	TAACTCATTC	GCATATTGAT	TAATCCAATA	TGCATCGTCA	ATAGTGGCTA	ACAGTTCTTG	16920

	TACATTGGCA CCATAACTTT TAATAATTTT CAAATTTGTT GGTGATATTT TAGGATCAAC	17040
	AACACACGTG AGTTTTAATC CCTTGATTTT AGCTATCATT GCCAACGCAA TGCCTAAATT	17100
5	ACCAGAAGTA CTTTCAATTA AATGTGTATT CTCAGTGATT AAACCATGTT TAATACCATG	17160
	TTCAATGATG TACTTGGCAG GTCGATCTTT CATGCTGCCT CCAGGATTCA TATACTCTAA	17220
10	CTTTGCAAAC ACTTCATGTT TCGGAAATAG TTGATGAAGT TGAACCATAG GTGTTTGCCC	17280
	TACAGAATCT AACAATGAAT CGTGCACATG	17310
	(2) INFORMATION FOR SEQ ID NO: 24:	
15 20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5423 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
25	ATACTAGTAA GCGCATCGGT TATTGACATC GAATTCAACT TTAACAGTTT TCATGTTCGG	60
	TGATGTTTCa ATAGAATGTG TGTGTTGTAC TTGCGCATTT ATATTTCCAC CTAAATTACT	120
	TAAGTTTCCT GTAATACTAG AAATGTCAGG TGCGTTTAAT GTAGGTTGAA ATGCATCAAC	180
30	TACTTTATCT GCAACATTAG AAACATTACG GATAACTTTA CTTGAATGAT TATCTATACC	240
	TTTAACGAAA CCTAACATTG AATACATACC AACATCCATG AATTCACGTG AAGGTGAGTG	300
	AATACCTAGC GCTCTTTTGG CTGCATTTAA AGCACCTTTT GCTACACTAG CTGCTTTTTC	360
35	AGCTAAGTCT CTAGCCATAT TACCAATACC TCTCATCAAA CCACGGATCA TATCAGCACC	420
	TGCTGATACA AAGTCATCCA CAAAGCTTTT AACTTTATTT ACTGCATTTG TCATACCTTG	480
	ACTAACTTTG TTTACAACAT TAACGAATCC TTGAACAACT CTATTAACAA rGTTAATTAG	540
40	CGTACLTGTL ATAGTAGATA CCCATHGCAT ACCTTTAGTG ACMATGAAGT TCCAAGCTTG	600
	AGACATTTTG TCTGATATAG TTGAAACAAC TTGTGTGAAT ATGCTTACAA CTTTATTCCA	660
45	AATTGTCGTT AATATACCAG ATAAGAAACT CCAAATCGTA TTCCATATAT TAGAAATAAA	720
	ACTCCATGCC GCTTGTAACG CAGTAGATAT AGCTGTAGTG ATAGCGTTCC AAACCTTAGT	780
	TGCCACAGTA ACTATAGTGT TCCACAACGT TTGTAAGAAC GTCCAAATAG CGTTCCAAAT	840

293

900

960

1020

50 TGTTATTGCG ATAGTCATAA TTGTGGTAAA CACTGTAGTT ATTACAGTGA CTAACAAATT

55

CCAAATCGTA GTAGCGATTG TAATTATCGT ATTCCAGATT GTACTTAAGA ACGTCCAAAT

AGCTGTCCAT ATCGTCATAA CTATTGTCAT TATCGTCGTG AAAACAGTTG TAATGATTGT

	ATAAGCGACT	ATTTGATTCC	AAACAATCAT	TATAAAATTG	TAAACATTCG	ATACTGCTGT	1140
	AGTGATAGCT	GTTAAAATAG	CATTCCATAC	AACCGAAGCT	ACAGCTTTTA	ATACATTCCA	1200
5	AACATTAACC	ATAAACGTTT	TTATCGCATT	CCAAGCATTT	ATAATAAAGT	TTCTGAATCC	1260
	TTCATTTTTA	TTCCACAATA	AAACGAATAT	AGCTATTAAT	GCAGCAATTA	CACCAATTAC	1320
10	TATTGTTATT	GGACCGCCTA	AAATACCAAA	CACAGTTACT	AGTCCTGTGA	TAGCATTTCT	1380
	AATTAATCCA	ATCTTACCGA	ATAACAATTG	GAATATAACT	GATATAATTT	TTAATGGTCC	1440
	TTTTAATAAC	ATGAACGCAC	CTTTTAAAAT	TGTTAATCCC	GCTCTTAATA	AACCGAACTT	1500
15	ACTTACTAAT	GCAATGTTTC	TACCTATTAA	TCCGCCACCC	ATAAAGTTAG	ATACAGCAAG	1560
	AATAATCGGT	ATTAAAAATC	TAAATGCACC	AACTAAAGTT	ATAATGACAC	CAACTAATTG	1620
	TGCTGTAGCT	GGATGCGCCT	CAAACAAGTT	AGCTATCCAA	CCAGTTATTG	CAACTGCAAC	1680
20	GCGTAATACT	GCACTAGCTA	TAGGAGCCAT	TGCTGTTGCG	AATGCArmTA	ATCCTCTTGC	1740
	GATGTTTCCA	ATCAATTGCA	TTATTAGTGG	TCCATTTGTT	TGTATATAAC	TGACAAAGTC	1800
25	TTTAAACCCT	TGAGATTGTC	CTACTTGTTC	AGACCATTCC	CTAAACTTAG	CTGTCATTTG	1860
-0	TTCAAGAGAT	TGGAATATGC	CAGTTGATGA	TCCGCTGAAT	GCATTCATCA	AATTGTTAAT	1920
	TCCAACGAAA	ACATTTTTGA	AAATATTACC	AATGATAGGT	AAGTTTGTTT	TTGTGTATTC	1980
30	AATAAAACGA	GTTATCGAAT	TTTCTCCAGC	TGCACTATTA	GCCCAGTTAG	AGAAAGATTG	2040
	ACCTAATCTA	TCCAACCAAT	CAGCCGACCA	TTGAAACAGT	GGTGCTAATT	GCGTGAATAC	2100
	ATTGACTAAT	CCGTCACCAA	AACCACCTGC	AGCACTTAAT	AGCTTGTTAA	ATACCGAAAC	2160
35	ACCCGTTGTA	TTCATCATAT	TAAAGAATCT	TGAAGCTACA	CTGCTATTTT	CAGCCCATTT	2220
	AAGCACGCTT	TGAGACGCTT	CTTCCATTCC	TCTTGAAATA	CCACTAAAAA	ACGGTTGTAA	2280
	GCTCTGCATT	GCAGTTTTAA	CAGTATTTAA	ACCATTTGCA	AGAGTTGTGA	AGATAGCGGA	2340
10	TTGATTTTGC	TTTATAATAT	CAGTCCATGC	TGACTTTACG	CCATCTAACG	CTTTTTTGTA	2400
	TTCGTTTGTT	GCTGAGCTAG	CTTGTAAAGT	GCCATCATTA	AGCATCTTTA	TAGCGCTGAT	2460
1 5	AGCCATTGCG	CCAAACGCTA	CAAATCCTGC	TCCCGCTATT	GCTACGGCAC	CACCTAAAGC	2520
	AAGTACACCA	CCAGTTAACA	CTTTGATAGC	GTTTAATAGC	GCAAATACTA	CAGGTACTAC	2580
	GCTCGCTATT	ACAGGTATTA	AGATACTAAA	AGATGATGTA	AGTAATCCAC	CAACCATATT	2640
50	AGAACCTACA	GTACCGAACA	CACGGAACAT	ATTAGCTAAA	TTCCCCATCT	GTCTTTGAAA	2700
	ATTGTCATTT	GCTTTTATTA	TGTAGGCATA	AGCTTTCTTT	AAACCATTAG	TATCGACATC	2760
	TACCTTTGTT	GTTTTTTTGT	TCGGCAATGC	GTCTAATGAT	TTTTTAAACG	CATAAATAGT	2820

	AAGTTCTTCT	TTAGTACGTT	TGATTTTAGA	GTTAGCAACA	CCATTGTCCA	CGTCTATAAT	2940
	AGCTTTGGCT	TTAGACCTAT	TTAATGCTTC	GAGACTAGCT	TTAGATACTT	TTAACACTCG	3000
5	ATTGAATTTA	CTGTTATCTG	CATTGACGTC	AATATTGACA	CGTTTCTTTT	CTAATTCTGA	3060
	TAATTTAGCT	TCTGTTTCAG	CGATATCTTT	AATCAACTTT	TGTTTTTGCA	ACTTAACTTC	3120
10	TGGTGTAACT	TCTTTAGAGT	TTAGTTTGTC	TAGTTCAAAA	TTCGATTCTA	GTACCTTTTG	3180
, 0	TTGTAAATCT	TGTATACTAG	CATCTAATTT	AGCTTTTACA	TTTTTGTTAC	TAAAGGCATC	3240
	TAAAGACTTT	TTAGCAACTT	TGATAGTTTT	TTGTAAATTT	TTATCGTTAG	CGTTTAATTC	3300
15	AACATCTTTA	GTTTGATCTG	CTACTCGTTT	AAATCTTTGC	ACAGACTTAA	CCGCACTATC	3360
	AATTTGCCTT	TTGAATTTGG	CTACACTAGC	TTCAATAGTC	GCTTTAATTT	TATATTCCGT	3420
	CACATTAACA	сстстстттс	TATTGCTTAT	TAAATTCTGC	TATAACTTTA	AAGAATTCAT	3480
20	TATTTTGTGG	TTCGTATTCA	TCACGTTCGC	TACTAAATCT	TATATCTTTA	CCTTCGTTAA	3540
	GCCGTTGGAT	ATTTTCTTCA	TAAGGCAATA	CGTCGTTTGC	ATTGTTAAAA	ACATATTCCT	3600
	CTTTAGGTTT	ATTTTCTGTC	CCAACATTTT	TAGTAGCTGC	AGCATCACGA	ATAGCAAACG	3660
25	CAAGTTTGTA	ACGTTCGAAT	TCTTGGGTTA	GCATTTCATA	CTCTTTCGCA	TACATTCGAT	3720
	AGTTATATTC	TGTTAATGTC	ATTTGCTCAA	TAACGTTCAA	ATCTGTAATA	CCAAGTGTTG	3780
30	ACATACAAGT	TATAACGATT	CTGTCGTAAG	TTATTAGGCT	TCCGCTGGTT	TTTCTTCCGT	3840
	TTCCACTACT	TCGACTAGGT	TTCGGGTCAT	AGGTCGCTTT	CCCAACTCCG	TTAAAATATC	3900
	CGAACCGAAT	TCTTCTAGTC	CGATATTTTC	TGCGATTTCA	TCTAATGCTT	CATCAATGTT	3960
35	ATTAATAGTA	ATTGCTTGTT	TTTTTAAGTG	AGATGTAGCT	GCGATTAAAA	CTTCGCCAAT	4020
	CACAACCGGA	TTTCCACTTT	CTAAACCTAC	AGGCAACATT	GATACACCTT	GACCGATAGA	4080
	AGCTTGTTCA	ACTTTTAAAC	CTAATCGGTT	ATCGATTTCT	CTTAAAAATT	TAAAACCAAA	4140
40	ACTTAATTCT	AATGACTTTC	CGTTAATTTC	TACATTCATA	ACTTAAAATC	TCCATTCATA	4200
	ATTAATTTAA	ACAAAATAAA	margcttaac	GCCCTATTTT	TATACCTCTC	TTGGTGCAAC	4260
45	CGGTGGTGAA	TCTACTTTAG	GTTGTGGAAT	TGCTGTTAAA	TCTTCGCCAG	TTAATGCATC	4320
	TGCTTTTGTA	GTGTCGTGGA	ATCTGTATCC	AGTCGCCTTA	AGTTTCTTTG	TTACAGCCTC	4380
	AGGTAGTGTT	GCAAATCCAC	GTTGGAAACG	ACCATTCACT	CCATATTCAT	ATTCATATTC	4440
50	ATCAATACCG	TTAGCTTCTG	CTTTTAATTC	AAATTTATTG	TGGAAACCTT	GGAAATATTT	4500
	CGCTTTAAAT	TTAGCGGAAT	CCCCATTTTT	GCCTGGTATT	CTACTTTCAA	CTTCCCAAGC	4560
	TTCATACAAT	ACGCGATCTA	CAACTGCATC	TTCAATTTCA	TCTGCAAAAT	CGTCACCATA	4620

	GTCCATTGTA TCCTCTGTAT CTGTATCAGC TTCATGTGAT AAGCCGTATT CAGTTAAAAA	4740
	AAGCATTTTA GTAGCATCTA CTTTTTCGCC AGCTTTTCTA AATAAAATAA	4800
5	ACTATTTTC ATATTTGCCA TTCAATATTC CTCCGTTTTT TAAAATGTTT TGTAAGATAT	4860
	CGTTACTGAT GTGTGTAGCA ATTCTTGATT GGTAGTATCA TCAACTAACT GTGTGATGTT	4920
10	AGTATCTTCT TCTTCAAAGT CATAATCGTT TGTTTTAACG CTAGGTGTTA AATCATCAAT	4980
	ACATCTTTTA ACAAGTCCGT CATGATGTCC TAAATCATCG CTTACACTCC AAATATCAAT	5040
	AACTAAATTC GTATCGCCAG AATAACTATC AAACGTGTAC TTACTTCTAT TTGACTCCGG	5100
15	CATTTTTATT ACAAAAAAA GATACGGAAT CTCTTGTTGC ATCTCTTTAC GAGAAATAAC	5160
	AGGGAATCCA TATCCTTGTA GCGTTTCATA CGCTTTATTA TAAAGTTGTA AGTTCGGTGT	5220
	CATGCTTTTA TCTCCTATTC AAACAACGCT TTCAATTCTT CTACAGTTGA TTTCCTAATC	5280
20	ACTTCGTATA CCGGCCACAT AAAAGGTTCA GCCTCCATGT ATCGAGTACC AAATTCTAAG	5340
	AAACCACTAT AAGCTGCGTG CGATGTGATA GTGTATTGCA AATCGCCAGT TTTTTTATAT	5400
?5	CTGATATTGC GTGATaAATT ACC	5423
:5	(2) INFORMATION FOR SEQ ID NO: 25:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6251 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
	AAACGCAGAT GTTCAATTAG AACCAGTCTA TCGTATTAAG GAAGGTATTA AACAAAAGCA	60
	AATACGAGAC CAAATTAGAC AAGCGTTAAA TGATGTGACA ATTCATGAAT GGTTAACTGA	120
10	TGAACTAAGA GAAAAATATA AATTAGAGAC CTTGGACTTT ACTTTGAACA CATTACATCA	180
	TCCTAAAAGT AAAGAGGATT TATTACGTGC TCGTAGAACC TATGCATTTA CTGAACTGTT	240
15	TTTATTCGAA TTACGTATGC AATGGCTAAA TAGATTAGAA AAGTCATCTG ACGAAGCAAT	300
	TGAAATTGAT TATGACATAG ACCAAGTTAA ATCATTTATT GATCGTTTAC CTTTTGAACT	360
	AACTGAAGCA CAGAAATCCA GTGTTAATGA AATTTTTAGA GATTTAAAAG CACCAATACG	420
50	TATGCATCGA TTACTTCAAG GTGATGTAGG TTCAGGAAAA ACAGTAGTTG CTGCAATTTG	480

296

TATGTATGCG TTAAAAACTG CTGGTTATCA ATCAGCATTG ATGGTACCAA CTGAAATTTT

AGCAGAGCAA CATGCTGAAA GTTTAATGGC TTTATTTGGA GATTCTATGA ACGTTGCATT

55

540

	TACGATTGAT	TGTTTAATTG	GAACCCATGC	TTTGATTCAA	GATGATGTGA	TTTTCCATAA	720
	TGTTGGTTTA	GTAATTACAG	ATGAACAACA	TCGATTTGGT	GTGAATCAAC	GCCAGCTTTT	780
5	AAGAGAAAAA	GGTGCAATGA	CGAATGTGTT	ATTTATGACA	GCAACGCCGA	TACCAAGAAC	840
	ACTAGCAATA	TCAGTTTTTG	GTGAGATGGA	TGTGTCTTCA	ATTAAACAAT	TACCAAAAGG	900
10	TCGTAAACCT	ATCATTACTA	CTTGGGCAAA	GCATGAGCAA	TACGATAAAG	TTTTGATGCA	960
	AATGACCTCA	GAGTTGAAAA	AAGGTCGTCA	AGCATATGTC	ATTTGCCCGC	TAATAGAAAG	1020
	TTCTGAGCAT	CTCGAAGATG	TTCAAAATGT	TGTCGCATTG	TACGAGTCTT	TACAACAGTA	1080
15	TTATGGTGTT	TCCCGTGTAG	GGTTATTGCA	TGGTAAGTTA	TCTGCCGATG	AAAAGATGA	1140
	GGTCATGCAA	AAGTTTAGTA	ATCATGAGAT	AAATGTTTTA	GTTTCTACTA	CTGTTGTTGA	1200
	AGTAGGTGTT	AATGTACCGA	ATGCAACTTT	TATGATGATT	TATGATGCGG	ATCGCTTTGG	1260
20	ATTATCAACT	TTACATCAGT	TACGCGGTCG	TGTAGGTAGA	AGTGACCAGC	AAAGTTACTG	1320
	TGTTTTAATT	GCATCCCCTA	AAACAGAAAC	AGGAATTGAA	AGAATGACAA	TTATGACACA	1380
25	AACAACGGAT	GGATTTGAAT	TGAGTGAACG	AGACTTAGAA	ATGCGTGGTC	CTGGAGATTT	1440
?5	CTTTGGTGTT	AAACAAAGTG	GaTTGCCAGA	TTTCTTAGTT	GCCAATTTAG	TTGAAGATTA	1500
	TCGTATGTTA	GAAGTTGCTC	GTGATGAAGC	AGCTGAACTT	ATTCAATCTG	GCGTATTCTT	1560
30	TGAAAATACG	TATCAACATT	TACGTCATTT	TGTTGAAGAA	AATTTATTAC	ATCGTAGTTT	1620
	TGACTAATTG	CCATGCTGAT	TTGTCAATTT	GAGTGCAACa	CTTCGTTAAT	TGAGTGATAT	1680
	GACACTTGAA	CTATTTAAAT	GTAAAGTGGT	ATTTTAACAA	TTTATAAATT	TTCGACTAAA	1740
35	TAATAGCTAA	ATATTACAGT	TATTTGTTGA	GTCGGTTAAA	TAGAAAGTGT	TATGATATGT	1800
	GAGGAATGTT	TAAGACTAGG	TACTAAAAA	TGAGGGGTGA	GACGTTGAAA	CTAAAGAAAG	1860
	ATAÃACGTAG	AGAAGCAATC	AGACAACAAA	TTGATAGCAA	TCCCTTCATC	ACAGACCATG	1920
10	AACTAAGCGA	CTTATTTCAA	GTGAGTATAC	AAACAATTCG	TTtAGaTCGC	ACTTATTTAA	1980
	ACATACCAGA	ATTAAGGAAG	CGTATTAAAT	TAGTTGCTGA	AAAGAATTAT	GACCAAATAA	2040
15	GTTCTATTGA	AGAACAAGAA	TTTATTGGTG	ATTTGATTCA	AGTCAATCCa	AATGTTAAAG	2100
	CGCAATCAAT	TTTAGATATT	ACATCGGATT	CTGTTTTTCA	TAAAACTGGA	ATTGCGCGTG	2160
	GTCATGTGCT	GTTTGCTCAG	GCAAATTCGT	TATGTGTTGC	GCTAATTAAG	CAACCAACAG	2220
50	TTTTAACTCA	TGAGAGTAGC	ATTCAATTTA	TTGAAAAAGT	AAAATTAAAT	GATACGGTAA	2280
	GAGCAGAAGC	ACGAGTTGTA	AATCAAACTG	CAAAACATTA	TTACGTCGAA	GTAAAGTCAT	2340
	ATGTTAAACA	TACATTAGTT	TTCAAAGGAA	ATTTTAAAAT	GTTTTATGAT	AAGCGAGGAT	2400

	TTAGAAGCCG	TACAAAAGGC	TGTTGAAGAC	TTTAAAGATC	TAGAAATTAT	ACTTTTCGGT	2520
	GACGAAAAAA	AGTATAATCT	GAACCATGAA	CGAATCGAAT	TTAGACATTG	TTCTGAAAAG	2580
5	ATTGAAATGG	AAGATGAGCC	TGTTAGAGCG	ATTAAACGTA	AAAAAGATAG	CTCAATGGTA	2640
	AAAATGGCTG	AAGCTGTGAA	ATCTGGTGAA	GCAGATGGAT	GTGTGTCAGC	AGGTAATACT	2700
10	GGTGCTTTAA	TGTCAGCTGG	TTTATTCATT	GTTGGACGTA	TTAAAGGTGT	AGCTAGACCG	2760
	GCTTIAGTAG	TAACATTGCC	AACGATTGAT	GGAAAAGGTT	TTGTCTTTTT	AGACGTTGGT	2820
	GCAAATGCTG	ATGCTAAACC	TGAACACTTA	TTACAGTATG	CGCAACTAGG	GGATATTTAT	2880
15	GCTCAAAAAA	TTAGAGGTAT	TGATAATCCG	AAAATCTCAT	TATTAAATAT	AGGAACCGAG	2940
	CCAGCTAAAG	GTAATAGTTT	AACGAAAAA	TCATATGAGT	TATTAAATCA	TGATCATTCA	3000
	TTGAATTTTG	TTGGGAATAT	TGAAGCGAAG	ACATTAATGG	ATGGCGATAC	AGATGTTGTA	3060
20	GTTACCGATG	GCTATACTGG	GAACATGGTC	CTTAAAAATT	TAGAAGGTAC	TGCAAAATCA	3120
	ATCGGTAAAA	TGTTAAAAGA	TACGATTATG	AGTAGTACTA	AAAATAAATT	AGCAGGTGCA	3180
25	ATATTGAAGA	AAGATTTAGC	TGAATTCGCT	AAAAAGATGG	ATTACTCAGA	ATACGGTGGT	3240
23	TCCGTATTAT	TAGGATTGGA	AGGTACTGTA	GTTAAAGCAC	ACGGTAGTTC	AAATGCTAAA	3300
	GCTTTTTATT	CTGCAATTAG	ACAAGCGAAA	ATCGCAGGAG	AACAAAATAT	TGTACAAACA	3360
30	ATGAAAGAGA	CTGTAGGTGA	AtCAAATGaG	Taaaacagca	ATTATTTTTC	CGGGACAAGG	3420
	TGCCCAAAAA	GTTGGTATGG	CGCAAGATTT	GTTTAACAAC	AATGATCAAG	CAACTGAAAT	3480
	TTTAACTTCA	GCAGCGAACA	CATTAGACTT	TGATATTTTA	GAGACAATGT	TTACTGATGA	3540
35	AGAAGGTAAA	TTGGGTGAAA	CTGAAAACAC	ACAACCAGCT	TTaTTGaCGC	aTAGTTCGGC	3600
	ATTATTAGCA	GCGCTAAAAA	ATTTGAATCC	TGATTTTACT	ATGGGGCATA	GTTTAGGTGA	3660
	ATATTCAAGT	TTAGTTGCAG	CTGACGTATT	ATCATTTGAA	GATGCAGTTA	AAATTGTTAG	3720
40	AAAACGTGGT	CAATTAATGG	CGCAAGCATT	TCCTACTGGT	GTAGGAAGCA	TGGCTGCAGT	3780
	ATTGGGATTA	GATTTTGATA	AAGTCGATGA	AATTTGTAAG	TCATTATCAT	CTGATGACAA	3840
4 5	AATAATTGAA	CCAGCAAACA	TTAATTGCCC	AGGTCAAATT	GTTGTTTCAG	GTCACAAAGC	3900
	TTTAATTGAT	GAGCTAGTAG	AAAAAGGTAA	ATCATTAGGT	GCAAAACGTG	TCATGCCTTT	3960
	AGCAGTATCT	GGACCATTCC	ATTCATCGCT	AATGAAAGTG	ATTGAAGAAG	ATTTTTCAAG	4020
50	TTACATTAAT	CAATTTGAAT	GGCGTGATGC	TAAGTTTCCT	GTAGTTCAAA	ATGTAAATGC	4080
	GCAAGGTGAA	ACTGACAAAG	AAGTAATTAA	ATCTAATATG	GTCAAGCAAT	TATATTCACC	4140
	AGTACAATTC	ATTAACTCAA	CAGAATGGCT	AATAGACCAA	GGTGTTGATC	ATTTTATTGA	4200

	AACATCAATT	CAAACTTTAG	AAGATGTGAA	AGGATGGAAT	GAAAATGACT	AAGAGTGCTT	4320
	TAGTAACAGG	TGCATCAAGA	GGAATTGGAC	GTAGTATTGC	GTTACAATTA	GCAGAAGAAG	4380
5	GATATAATGT	AGCAGTAAAC	TATGCAGGCA	GCAAAGAGAA	AGCTGAAGCA	GTAGTCGAAG	4440
	AAATCAAAGC	TAAAGGTGTT	GACAGTTTTG	CGATTCAAGC	AAATGTTGCC	GATGCTGATG	4500
10	AAGTTAAAGC	AATGATTAAA	GAAGTAGTTA	GCCAATTTGG	TTCTTTAGAT	GTTTTAGTAA	4560
,0	ATAATGCAGG	TATTACTCGC	GATAATTTAT	TAATGCGTAT	GAAAGAACAA	GAGTGGGATG	4620
	ATGTTATTGA	CACAAACTTA	AAAGGTGTAT	TTAACTGTAT	CCAAAAAGCA	ACACCACAAA	4680
15	TGTTAAGACA	ACGTAGTGGT	GCTATCATCA	ATTTATCAAG	TGTTGTTGGA	GCAGTAGGTA	4740
	ATCCGGGACA	AGCAAACTAT	GTTGCAACAA	AAGCAGGTGT	TATTGGTTTA	ACTAAATCTG	4800
	CGGCGCGTGA	ATTAGCATCT	CGTGGTATCA	CTGTAAATGC	AGTTGCACCT	GGTTTTATTG	4860
20	TTTCTGATAT	GACAGATGCT	TTAAGTGATG	AGCTTAAAGA	ACAAATGTTG	ACTCAAATTC	4920
	CGTTAGCACG	TTTTGGTCAA	GACACAGATA	TTGCTAATAC	AGTAGCGTTC	TTAGCATCAG	4980
	ACAAAGCAAA	ATATATTACA	GGTCAAACAA	TCCATGTAAA	TGGTGGAATG	TACATGTAAT	5040
25	ATATTTGAGC	TAAAGCTCAT	TGACGCAGTG	GTTGACTGGT	CATCCAATGG	AGAATTGTCT	5100
	GACCTAGTCA	ACTTTGCGGG	GGAAATTCTA	AGCAACCTAG	ATAAGGTTCC	AGAATTTCTC	5160
30	CCTAAGAAAC	ACTAATCAAT	aAATTGWTAA	GTGTTTCTAA	AATTTCTACT	TGTTTTTAG	5220
	AATTTAAAAT	GGGAAAATAT	AGTAGTCTAT	GTATAGGCAT	TTTTAAAGGA	GGTGAATCGA	5280
	CGTGGAAAAT	TTCGATAAAG	TAAAAGATAT	CATCGTTGAC	CgTTTAGGTG	TAGACGCTGA	5340
35	TAAAGTAACT	GAAGATGCAT	CTTTCAAAGA	TGATTTAGGC	GCTGACTCAC	TTGATATCGC	5400
	TGAATTAGTA	ATGGAATTAG	AAGACGAGTT	TGGTACTGAA	ATTCCTGATG	AAGAnGCTGA	5 4 60
	AAAAATCAAC	ACTGTTGGTG	ATGCTGTTAA	ATTTATTAAC	AGTCTTGAAA	ААТААТАААТ	5520
40	CTTACATCTG	GGTCGTCAGT	ATTGTCGACT	CAGTTTTTTT	CTTTAATTAT	CAATAGTTTT	5580
	AACGTAAAAT	TAAAGATGAT	TCAAGAGCAA	CACATAAAGG	AGATAAAATA	ATGTCTAAAC	5640
45	AAAAGAAAAG	TGAGATAGTT	AATCGTTTTA	GAAAGCGCTT	TGATACTAAA	ATGACAGAGT	5700
	TAGGCTTTAC	TTATCAAAAT	ATTGATTTAT	ACCAACAAGC	ATTTTCGCAT	TCGAGTTTTA	5760
	TTAATGATTT	TAATATGAAT	CGTTTAGACC	ATAATGAGCG	TTTAGAGTTT	TTGGGTGATG	5820
50	CGGTATTAGA	ATTGACGGTT	TCACGATATT	TATTTGATAa	ACATCCCAAC	TTGCCAGAAG	5880
	GGAATTTAAC	AAAAATGCGT	GCCaCTATTG	TATGTGAGCC	CtCACTkGTA	ATATTTGCGA	5940
	ATAAAATTGG	ATTGAACGAA	ATGATTTTAC	TTGGTAAAGG	TGAAGAGAAA	ACAGGGGGAC	6000

	ATCAAGGACT AGATATAGTT TGGAAATTTG CTGAGAAAGT CATTTTCCCA CATGTAGAAC	6120
	AAAATGAGTT ATTAGGCGTG GTAGATTTTA AAACACAATT CCAAGAATAT GTGCACCAGC	6180
5	AAAATAAAGG TGATGTAACC TATAATTTAA TAAAAGAAGA GGGACCGGCA CATCATCGTC	6240
	TATTCACTTC A	6251
10	(2) INFORMATION FOR SEQ ID NO: 26:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4920 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(wi) CROUPINGS DESCRIPTION, CEO. ID. NO. 26.	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	60
	ACCTACTGAA GTTGCTAATT TTTTGGAGCA ACTAAGCACT GAAATTGAAC GTCTTAAAGA	60
	AGATAAAAA CAACTTGAAA AAGTAATCGA AGAGAGAGAT ACTAATATTA AGTCTTATCA	120
25	AGACGTGGCA TCAATCTGTA AGTGATGCTT TGATACAAGC TCAAAAAGCT GGTGAAGAAA	180
	CTAAGCAAGC TGCAGAGAAA CAAGCTGAAG CGATTATAGC TAAGGCAGAA GCGCAAgcTA	240
	ATCAAATGGT TGGTGACGCG GTAGAAAAAG CACGCCGTTT AGCATTCCAG ACTGAAGATA	300
30	TGAAACGTCA ATCAAAAGTA TTTAGATCGC GTTTCCGTAT GTTAGTTGAA GCGCAATTAG	360
	ACTTATTAAA AAACGAAGAT TGGGATTACT TGTTGAATTA TGATTTAGAC GCTGAACAAG	420
	TGACGCTTGA AAATATTCAT CATTTGCATG AAAATGATTT AAAGCCAGAT GAAGTTGCAG	480
35	CAAATGCACA AAATAATGCA TCAAATACAC CAGACAATAA TCAACAATCC AATGATTCAG	540
	AAACAACTAA GAAGTAAGAA TTAAATAAAG ACAGACGCGT AATATACATT TAACTTTTCA	600
	CAGÇGAATTA GGTAATGGTG AGAGCCTAGT AAAAGCATGT ATGTTATATC ACTGGCTTTT	660
40	TAATATTTAA ATAATGTAAT GAGAGAACTC TAAGTTGAGT TAATAAGGGT GGTACCGCGA	720
	GCAATCGTCC CTTTTAATTT AACTTAGAGT TTTTTAAATT TTTAAGGAGT GAAAAAAATG	780
45	GATTACAAAG AAACGTTATT AATGCCTAAA ACAGATTTCC CAATGCGAGG TGGTTTACCA	840
43	AACAAGGAAC CGCAAATTCA AGAAAAATGG GATGCAGAAG ATCAATACCA TAAAGCGTTA	900
	GAAAAAATA AAGGTAACGA AACATTCATT TTACATGATG GCCCACCATA CGCGAATGGT	960
50	AACTTACATA TGGGACATGC CTTGAACAAA ATTTTAAAAG ACTTTATTGT ACGTTATAAA	1020
	ACTATGCAAG GGTTCTATGC ACCATACGTA CCAGGTTGGG ATACACATGG TTTACCAATT	1080
	GAACAAGCAT TAACGAAAAA AGGTGTTGAC CGAAAGAAAA TGTCAACAGC TGAATTCCGT	1140

	TTAGGTGTTC	GTGGTGACTT	TAATGATCCA	TATATTACAT	TAAAACCTGA	ATACGAAGCT	1260
	GCACAAATTC	GTATTTTTGG	AGAAATGGCA	GATAAAGGTT	TAATTTATAA	AGGTAAAAAG	1320
5	CCAGTTTATT	GGTCTCCTTC	AAGTGAGTCT	TCATTAGCAG	AAGCAGAAAT	TGAATATCAC	1380
	GATAAACGTT	CAGCATCAAT	TTACGTTGCA	TTTGACGTTA	AAGATGACAA	AGGTGTCGTT	1440
10	GATGCAGATG	CTAAATTTAT	TATCTGGACA	ACAACGCCAT	GGACAATTCC	ATCAAATGTT	1500
	GCGATTACCG	TTCATCCTGA	ATTAAAATAT	GGTCAATACA	ATGTAAATGG	CGAAAAATAT	1560
	ATTATTGCAG	AAGCCTTGTC	TGACGCTGTA	GCAGAAGCAC	TGGaTTGGGA	TAAAGCATCA	1620
15	ATCAAATTAG	AAAAAGAATA	CACAGGTAAA	GAATTAGAGT	ATGTTGTAGC	ACAACATCCA	1680
	TTCTTAGACA	GAGAATCGTT	AGTGATTAAT	GGTGATCATG	TTACTACAGA	TGCTGGTACA	1740
	GGTTGTGTAC	ATACAGCACC	AGGTCACGGG	GAAGATGACT	ATATTGTTGG	TCAAAAATAT	1800
20	GAATTGCCAG	TAATTAGTCC	AATCGATGAT	AAAGGTGTAT	TTACTGAAGA	AGGCGGCCAA	1860
	TTTGAAGGGA	TGTTCTATGA	TAAAGCTAAT	AAAGCCGTTA	CTGATTTATT	AACAGAAAAA	1920
25	GGTGCACTAT	TAAAATTAGA	CTTTATTACA	CATAGCTATC	CACACGACTG	GAGAACAAAA	1980
25	AAACCTGTAA	TCTTCCGTGC	TACACCACAA	TGGTTTGCCT	CAATCAGTAA	AGTAAGACAA	2040
	GATATTTTAG	ATGCAATCGA	AAATACAAAC	TTCAAAGTAA	ATTGGGGTAA	AACACGTATT	2100
30	TACAATATGG	TTCGTGACCG	TGGCGAATGG	GTTATTTCTC	GTCAACGTGT	GTGGGGTGTA	2160
	CCGTTACCAG	TATTTTATGC	TGAAAATGGC	GAAATTATCA	TGACGAAAGA	AACAGTGAAT	2220
	CATGTTGCTG	ATTTATTTGC	AGAACACGGT	TCAAATATTT	GGTTTGAAAG	AGAAGCGAAA	2280
35	GACTTACTAC	CAGAAGGATT	TACACATCCA	GGCAGCCCTA	ACGGTACATT	TACTAAAGAA	2340
	ACAGACATTA	TGGACGTTTG	GTTTGATTCT	GGTTCATCAC	ACCGTGGCGT	GTTGGAAACA	2400
	AGACCGGAAT	TAAGTTTCCC	AGCGGATATG	TATTTAGAAG	GTAGTGACCA	ATATCGTGGT	2460
40	TGGTTCAACT	CTTCTATCAC	AACTTCAGTT	GCTACAAGAG	GAGTATCACC	TTATAAATTC	2520
	TTACTTTCTC	ATGGTTTTGT	TATGGACGGT	GAAGGTAAGA	AAATGAGTAA	ATCTTTAGGT	2580
45	AATGTGATTG	TACCTGACCA	AGTGGTTAAA	CAAAAAGGTG	CTGATATTGC	GAGACTTTGG	2640
	GTAAGTAGTA	CGGACTATTT	AGCTGATGTT	AGAATTTCTG	ATGAAATTTT	AAAACAAACA	2700
	TCTGATGTTT	ATCGTAAAAT	CAGAAATACA	TTAAGATTTA	TGTTAGGTAA	CATTAACGAT	2760
50	TTCAATCCTG	ACACAGATAG	CATTCCTGAA	TCAGAGTTAT	TAGAAGTGGA	TCGTTACTTG	2820
	CTAAATCGTT	TACGTGAATT	TACTGCAAGT	ACGATTAACA	ACTATGAAAA	CTTTGACTAC	2880
	TTAAATATTT	ATCAAGAAGT	TCAAAACTTT	ATCAATGTTG	AGTTAAGTAA	TTTCTATTTG	2940

	CAAACAGTGT	TATATCAAAT	TTTAGTTGAT	ATGACGAAGT	TGTTAGCACC	AATCTTAGTG	3060
5	CATACAGCTG	AAGAAGTTTG	GTCTCATACA	CCACATGTTA	AAGAAGAAAG	TGTTCACTTA	3120
3	GCAGACATGC	CTAAAGTTGT	AGAAGTAGAT	CAAGCTTTAT	TGGATAAATG	GCGTACATTT	3180
	ATGAATTTAC	GTGATGATGT	GAACCGTGCA	TTAGAAACTG	CTCGTAATGA	AAAAGTTATT	3240
10	GGTAAATCAT	TAGAAGCTAA	AGTTACGATT	GCTAGTAACG	ATAAATTTAA	TGCATCTGAA	3300
	TTCTTAACTT	CATTTGATGC	ATTACATCAA	TTATTTATCG	TGTCACAAGT	TAAAGTTGTA	3360
	GATAAGTTAG	ACGATCAGGC	AACAGCTTAT	GAACATGGTG	ATATTGTCAT	CGAACATGCA	3420
15	GATGGTGAAA	AATGTGAAAG	ATGTTGGAAC	TATTCAGAGG	ATCTTGGTGC	TGTTGATGAA	3480
	TTGACGCATC	TATGTCCACG	ATGCCAACAA	GTTGTAAAAT	CACTTGTATA	ATTGAAATTG	3540
	TATAAAGTAC	TCATACAGAT	GATATAAATT	AAAGCTCTCT	TCATAATCAT	GTTGTAGTTT	3600
20	TTGTTGACAT	GATGAAGAGA	GTTTTTTTGT	GAATAAAAAA	ATGACCAAGT	TACCGGTCAT	3660
	ATATGTAAAA	AATGTGCGAT	TTACTAAAAT	TTATTAAAAA	CAGGAATGGT	ACAAATTCTC	3720
25	TGAGGCATAT	AAATGCGTTA	TAGTTGCTAT	TCTCAATTAT	GTTCGCGATA	ATTTTAAGTA	3780
	AAAGTAAGCA	CAGATATTGA	ATTTGATAGG	AGTTAATTGA	ATGTATCATA	ACAGTAACGC	3840
	AAACTTTGTC	AATGGTATCA	CTTTAAATGT	GAGAGATAAG	AATGAATTAA	AGCCATTTTA	3900
30	TGAGGACATA	TTAGGATTAA	ATATTATAAA	TGAGACATTA	ACATCGATAC	AATATGAAGT	3960
	AGGTCAAAAT	AATCATGTCA	TTACACTTGT	TGAATTACAA	AATGGACGTG	AACCTTTAAT	4020
	GTCCGAAGCG	GGACTGTTTC	ATATCGCAAT	TAAACTACCT	CAAATTAGTG	ATTTAGCTAA	4080
35	TTTACTAATT	CATTTAAGCG	AATATGATAT	TCCAGTTAAC	GGAGGTATAC	AGCCTGCTTC	4140
	GTTATCATTA	TTTTTTGAAG	ACCCGGAAGG	AAACGGTTTT	AAATTTTATG	TTGATAAAGA	4200
40	CGAĄGCGCAA	TGGACGAGGC	AAAATAATTT	AGTAAAAATT	GATATTAGAC	CATTAAATGT	4260
	ACCGAGATTA	GTGAGTCATG	CAACAAAATT	GTTATGGTTA	GGTATTCCAG	ATGACGCTAT	4320
	TATAGGTGCA	TTGCATATTA	AGACAATTCA	TTTATCAGAG	GTAAAAGAGT	ACTACCTCGA	4380
45	TTATTTTGGA	TTAGAGCAAT	CGGCATATAT	GGATGATTAT	TCAATATTTT	TAGCATCGAA	4440
	TGGCTATTAT	CAACATTTGG	CCATGAATGA	TTGGGTATCA	GCAACGAAAC	GTGTAGAAAA	4500
	TTTTGATACG	TATGGATTAG	CAATTGTTGA	CTTTCATTAT	CCTGAAACAA	CACATTTAAA	4560
50	TTTACAAGGT	CCGGATGGTA	TCTATTATCG	CTTTAATCAT	ATCGAAGTTG	AAGATTAGTA	4620
	TATACTTTGA	ATGGACGAAC	CATATAATGA	ATCGTTTTTA	ATGATCTTTT	TATACAAGTT	4680
	ATGAAGGAGG	CTGGGACATT	AAGTTCTTAG	GCAATGTAAA	AAGCTGATTT	CTATTAATTA	4740

	TTTTCCTTAT ATTAATTGCC ATTAATACAA AACCTAGCTC TCGTTTAACT TTATTTATTC	4860
	CTCGAACTGA CATTCGNGTG AACTCAAAAT NGCCTACTTN CTTAAATTAC CAATATCTAT	4920
5	(2) INFORMATION FOR SEQ ID NO: 27:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 626 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
	TGGATTGCCA TTACATGGAC AAGATTTAAC TGAATCAATT ACACCATATG AAGGTGGTAT	60
	CGCTTTTGCA AGTAAACCAT TAATTGATGC TGATTTTATT GGTAAATCTG TATTAAAAGA	120
20	TCAAAAAGAA AATGGTGCAC CAAGAAGAAC AGTGGGATTA GAATTACTTG AAAAAGGAAT	180
	TGCAAGAACT GGTTATGAAG TTATGGATTT AGATGGAAAT ATTATTGGAG AAGTAACTTC	240
25	AGGAACACAG TCTCCATCAT CAGGAAAATC AATTGCACTT GCAATGATAA AAAGAGATGA	300
25	GTTTGAAATG GGTAGAGAGT TGCTTGTTCA AGTTCGTAAG CGTCAATTAA AAGCGAAAAT	360
	TGTTAAGAAA AATCAAATTG ATAAATAATT AAAAAGGGGT GTGCATTGTG AGTCATCGTT	420
30	ATATACCTTT AACTGAAAAA GACAAGCAAG AAATGTTACA AACAATTGGT GCAAAATCTA	480
	TAGGAGAATT ATTCGGTGAT GTACCAAGTG ACATTTTATT AAATAGAGAT TTAAATATTG	540
	CTGAAGGCGA ACGGAGAACA ACGTTACTTA GAAGATTNAA TCGCATTGCA AGCAAGAGTA	600
35	TCACTAGAGG AACGCGTACA TCGTTT	626
	(2) INFORMATION FOR SEQ ID NO: 28:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1126 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
4 5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
	nggaagtggt gtatatattt gtaatgagtg tattgaatta tgctcagaaa tcgtcgaaga	60
50	AGAATTAGCT CAAAACACTT CTGAAGCGAT GACAGAATTA CCTACTCCTA AAGAAATTAT	120
	GGATCATTTA AACGAATATG TTATTGGTCA AGAAAAAGCT AAAAAATCTT TAGCTGTAGC	180
	TGTTTATAAC CACTATAAGC GTATTCAACA ATTAGGACCA AAAGAAGATG ATGTTGAATT	240
55		

	AACCTTAGCC AAGACGTTGA ATGTACCATT TGCAATTGCA GATGCGACAA GIIIAACIGA	360
_	AGCTGGTTAT GTAGGCGATG ATGTTGAAAA TATCTTGTTG AGATTAATTC AAGCAGCTGA	420
5	CTTTGACATT GATAAAGCCG AAAAAGGTAT TATTTATGTA GATGAAATTG ATAAAATTGC	480
	ACGTAAATCT GAAAACACAT CTATAACACG TGACGTTTCA GGTGAAGGTG TTCAACAAGC	540
10	ATTGCTTAAA ATCTTAGAAG GTACGACTGC AAGTGTTCCG CCACAAGGTG GACGCAAACA	600
	TCCAAACCAA GAAATGATTC AAATTGATAC AACAAATATC TTATTTATTC TTGGTGGTGC	660
	CTTTGATGGT ATTGAAGAAG TGATTAAGCG CCGTCTTGGT GAAAAAGTTA TTGGTTTCTC	720
15	AAGCAATGAA GCTGATAAAT ATGACGAACA AGCATTATTA GCACAAATTC GCCCAGAAGA	780
	TTTGCAAGCC TATGGTTTGA TTCCTGAATT TATCGGACGT GTGCCAATTG TAGCTAATTT	840
	AGAAACATTA GATGTAACTG CGTTGAAAAA CATCTTAACG CAACCTAAAA ATGCACTTGT	900
20	GAAACAATAT ACTAAAATGC TGGAATTAGA TGATGTGGAT TTAGAGTTCA CTGAAGAAGC	960
	TTTATCAGCA ATTAGTGAAA AAGCAATTGA AAGAAAAACA GGTGCGCGTG GTTTACGTTC	1020
25	AATCATAGAA GAATCGTTAA TCGATATTAT GTTTGATGTG CCTTCTAACG AAAATGTAAC	1080
	GAAGGTAGTT ATTACAGCAC AAACMATTAA TGrAGAACTG AACCAG	1126
	(2) INFORMATION FOR SEQ ID NO: 29:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4392 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
	ATTGACTTCT TAGCAATNAA TATGAGTGAA GAACGTACTG TTGAAGTACC AGTTCAATTA	60
40	GTTGGTGAAG CAGTAGGCGC TAAAGAAGGC GGCGTAGTTG AACAACCATT ATTCAACTTA	120
	GAAGTAACTG CTACTCCAGA CAATATTCCA GAAGCAATCG AAGTAGACAT TACTGAATTA	180
45	AACATTAACG ACAGCTTAAC TGTTGCTGAT GTTAAAGTAA CTGGCGACTT CAAAATCGAA	240
	AACGATTCAG CTGAATCAGT AGTAACAGTA GTTGCTCCAA CTGAAGAACC AACTGAAGAA	300
	GAAATCGAAG CTATGGAAGG CGAACAACAA ACTGAAGAAC CAGAAGTTGT TGGCGAAAGC	360
50	AAAGAAGACG AAGAAAAAC TGAAGAGTAA TTTTAATCTG TTACATTAAA GTTTTTATAC	420
	TTTGTTTAAC AAGCACTGTG CTTATTTTAA TATAAGCATG GTGCTTTTTG TGTTATTATA	480
	AAGCTTAATT AAACTTTATT ACTTTGTACT AAAGTTTAAT TAATTTTAGT GAGTAAAAGA	540
55		

	CTTACTAAGC	TAAAGAATAA	TGATAATTGA	TGGCAATGGC	GGAAAATGGA	TGTTGTCATT	660
	ATAATAATAA	ATGAAACAAT	TATGTTGGAG	GTAAACACGC	ATGAAATGTA	TTGTAGGTCT	720
5	AGGTAATATA	GGTAAACGTT	TTGAACTTAC	AAGACATAAT	ATCGGCTTTG	AAGTCGTTGA	780
	TTATATTTTA	GAGAAAAATA	ATTTTTCATT	AGATAAACAA	AAGTTTAAAG	GTGCATATAC	840
10	AATTGAACGA	ATGAACGGCG	ATAAAGTGTT	ATTTATCGAA	CCAATGACAA	TGATGAATTT	900
	GTCAGGTGAA	GCaGTTGCAC	CGATTATGGA	TTATTACAAT	GTTAATCCAG	AAGATTTAAT	960
	TGTCTTATAT	GATGATTTAG	ATTTAGAACA	AGGACAAGTT	CGCTTAAGAC	AAAAAGGAAG	1020
15	TGCGGGCGGT	CACAATGGTA	TGAAATCAAT	TATTAAAATG	CTTGGTACAG	ACCAATTTAA	1080
	ACGTATTCGT	ATTGGTGTGG	GAAGACCAAC	GAATGGTATG	ACGGTACCTG	ATTATGTTTT	1140
	ACAACGCTTT	TCAAATGATG	AAATGGTAAC	GATGGAAAAA	GTTATCGAAC	ACGCAGCACG	1200
20	CGCAATTGAA	AAGTTTGTTG	AAACATCACG	ATTTGACCAT	GTTATGAATG	AATTTAATGG	1260
	TGAAGTGAAA	TAATGACAAT	ATTGACAACG	CTTATAAAAG	AAGATAATCA	TTTTCAAGAC	1320
25	CTTAATCAGG	TATTTGGACA	AGCAAACACA	CTAGTAACTG	GTCTTTCCCC	GTCAGCTAAA	1380
2.0	GTGACGATGA	TTGCTGAAAA	ATATGCACAA	AGTAATCAAC	AGTTATTATT	AATTACCAAT	1440
	AATTTATACC	AAGCAGATAA	ATTAGAAACA	GATTTACTTC	AATTTATAGA	TGCTGAAGAA	1500
30	TTGTATAAGT	ATCCTGTGCA	AGATATTATG	ACCGAAGAGT	TTTCAACACA	AAGCCCTCAA	1560
	CTGATGAGTG	AACGTATTAG	AACTTTAACT	GCGTTAGCTC	AAGGTAAGAA	AGGGTTATTT	1620
	ATCGTTCCTT	TAAATGGTTT	GAAAAAGTGG	TTAACTCCTG	TTGAAATGTG	GCAAAATCAC	1680
35	CAAATGACAT	TGCGTGTTGG	TGAGGATATC	GATGTGGACC	AATTTCTTAA	CAAATTAGTT	1740
	AATATGGGGT	ACAAACGGGA	ATCCGTGGTA	TCGCATATTG	GTGAATTCTC	ATTGCGAGGA	1800
	GGTÄTTATCG	ATATCTTTCC	GCTAATTGGG	GAACCAATCA	GAATTGAGCT	ATTTGATACC	1860
40	GAAATTGATT	CTATTCGGGA	TTTTGATGTT	GAAACGCAGC	GTTCCAAAGA	TAATGTTGAA	1920
	GAAGTCGATA	TCACAACTGC	AAGTGATTAT	ATCATTACTG	AAGAAGTGAT	CAGCCATCTT	1980
45	AAAGAAGAGT	TAAAAACTGC	ATATGAAAAT	ACAAGACCCA	AAATAGATAA	ATCAGTGCGC	2040
	AATGATTTGA	AAGAAACGTA	TGAAAGCTTT	AAATTATTCG	AAAGTACATA	CTTTGATCAT	2100
	CAAATACTAC	GTCGCTTAGT	AGCGTTTATG	TATGAAACAC	CTTCGACAAT	TATTGAGTAT	2160
50	TTCCAAAAAG	ATGCAATCAT	TGCAGTTGAT	GAATTTAATC	GTATTAAAGA	AACTGAAGAA	2220
	AGTTTAACAG	TAGAGTCTGA	TTCGTTTATT	AGCAATATTA	TTGAAAGTGG	TAATGGATTT	2280
	ATAGGACAAA	GTTTTATAAA	ATATGATGAT	TTTGAAACAT	TGATTGAAGG	CTATCCTGTC	2340

	TCATGTAAAC	CTGTCCAACA	ATTTTATGGG	CAATATGACA	TTATGCGTTC	TGAATTTCAA	2460
	CGATATGTTA	ATCAAAACTA	TCATATCGTG	GTTTTGGTCG	AAACCGAAAC	TAAAGTTGAA	2520
5	CGTATGCAAG	CGATGTTAAG	TGAAAtGCAT	ATTCCATCAA	TAACAAAATT	GCATCGCTCA	2580
	ATGTCATCGG	GGCAAGCAGT	GATTATTGAA	GGCAGTTTAT	CTGAAGGATT	TGAACTACCT	2640
10	GATATGGGAT	TAGTTGTCAT	TACTGAGCGT	GAGCTTTTTA	AATCAAAACA	GAAAAAGCAA	2700
	CGAAAACGTA	CGAAAGCTAT	CTCAAATGCT	GAAAAAATTA	AGTCTTACCA	AGATTTAAAT	2760
	GTGGGAGATT	ATATTGTTCA	TGTGCATCAT	GGTGTTGGTA	GATATTTAGG	TGTTGAGACG	2820
15	CTCGAAGTGG	GGCAAACGCA	TCGTGATTAT	ATTAAATTGC	AATATAAAGG	TACGGATCAA	2880
	CTATTTGTTC	CAGTAGATCA	AATGGATCAA	GTTCAAAAAT	ATGTAGCTTC	GGAAGATAAG	2940
	ACGCCAAAAT	TAAATAAACT	CGGTGGCAGT	GAATGGAAAA	AAACAAAAGC	TAAAGTTCAA	3000
20	CAAAGTGTTG	AAGATATTGC	TGAAGAGTTG	ATTGATTTAT	ATAAAGAAAG	AGAAATGGCA	3060
	GAAGGTTATC	AATATGGGGA	AGACACAGCT	GAGCAAACAA	CATTTGAATT	AGATTTTCCA	3120
25	TATGAACTTA	CGCCTGACCA	AGCTAAATCT	ATCGATGAAA	TTAAAGATGA	CATGCAAAAA	3180
23	TCGCGTCCAA	TGGATCGCTT	GCTATGTGGT	GATGTTGGTT	ATGGTAAAAC	TGAAGTTGCA	3240
	GTGAGAGCAG	CATTCAAAGC	TGTAATGGAA	GGAAAGCAGG	TTGCATTTTT	AGTTCCTACA	3300
30	ACTATTTTAG	CTCAGCAACA	TTATGAGACG	TTAATTGAGC	GTATGCAAGA	TTTTCCTGTT	3360
	GAAATTCAAT	TAATGAGTCG	TTTTAGAACG	CCTAAAGAGA	TAAAACAAAC	TAAGGAAGGA	3420
	CTTAAAACTG	GATTTGTTGA	CATAGTTGTT	GGTACACACA	AATTACTTAG	TAAAGATATA	3480
35	CAGTATAAAG	ATTTAGGGCT	GTTGATTGTA	GATGAAGAAC	AACGATTTGG	TGTACGCCAT	3540
	AAAGAGCGTA	TTAAAACATT	AAAACATAAT	GTAGATGTAC	TAACATTGAC	TGCAACCCCA	3600
	ATAGCTAGAA	CATTGCATAT	GAGTATGCTA	GGTGTGCGGG	ATTTGTCAGT	GATTGAAACG	3660
40	CCGCCAGAAA	ATCGTTTCCC	AGTTCAAACA	TATGTATTAG	AACAGAACAT	GAGTTTTATC	3720
	AAAGAAGCTT	TAGAAAGAGA	ACTATCCCGT	GATGGCCAAG	TGTTTTATCT	TTATAATAAA	3780
45	GTGCAATCCA	TTTATGaAAA	ACGAGAACAA	CTCCAGATGT	TAATGCCAGA	TGCTAACATT	3840
	GCAGTTGCTC	ATGGACAAAT	GACAGAGCGC	GATTTAGAAG	AAACGATGTT	AAGTTTTATC	3900
	AATAATgaat	ATGATATTTT	AGTAACGACG	ACGATTATTG	AAACAGGTGT	CGATGTCCCA	3960
50	AATGCAAATA	CTTTGATCAT	TGAAGATGCA	GATCGCTTTG	GATTGAGTCA	GTTGTATCAA	4020
	TTAAGAGGTC	GTGTTGGTCG	TTCAAGTCGT	ATTGGTTATG	CATACTTCTT	ACATCCAGCA	4080
	AATAAGGTAC	TAACTGAGAC	TGCAGAAGAT	CGATTACAAG	CGATTAAAGA	ATTTACGGAG	4140

	TTAGGTAAAC AACAGCACGG CTTTATTGAT ACAGTTGGAT TTGATTTGTA CAGTCAAATG	4260
	TTAGAAGAAG CTGTAAATGA AAAACGTGGT ATTAAGGAAC CAGAATCTGA GGTGCCAGAA	4320
5	GTCGAAGTTG ATTTAAACTT GGATGCATAT TTGCCAACAG AATATATTGC AAATGAACAA	4380
	GCTAAAATTG AA	4392
10	(2) INFORMATION FOR SEQ ID NO: 30:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 729 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
20	TTTCTTTTGA ATCTATATCG AGGTGGTTGG TAGGTTCATC TAAAATAAGT ACATTGTCAC	60
	GTTGCAACAT AAGTAGTGCT AGTTGTAAAC GTGCTTTTTC ACCACCAGAT AAATCATTAA	120
25	TTATCTTTTT AACATCGTCT TGTACAAATA AGAAACGTCC AAGAACTGCT CGAATATCTT	180
25	TTTCATTCAT TAACGGATAT TGATCCCACA CATAATCTAA AATCGTTTTA CTAGATTTAA	240
	ATTCTGCTTG CTTTTGATCA TAATAACCAA TTTGTAAATT TGCGCCGAAA GTAATATCGC	300
30	CATTAAGCGC TTTTTGTTGA TTAGCAATAG TTTTAATTAA GGTCGATTTT CCAATACCAT	360
	TTGGCCCAAT GATTGCTATA TGATCGCCTT TAGAGACCTC TATACTCATA GGTTTGGTAA	420
	TTGCAGTTTG ATAACCGATT TCTAAATTTT TTACATGCAT GACGTCATTA CCTGTATTCC	480
35	GGTCAAAGCC AAATTGAATA TTTGCACTTT TGGCATCTAA CATTGGTTTA TCAATGCGTT	540
	CCATTTTTC TAAAATCTTA CGTCTACTTT TTGCCATTCC ACTTGTTGAA GCACGGGTAA	600
	TATTTTCTC AACAAAAGTT TCTAATCGTT TTATTTCTGC TTGTTGACTT TCATATTCTT	660
40	GCATTCGTTT TTGATAATAT AAATCCCGTT GCTGTATAAA TTCCTCGTAA TTACCAACAT	720
	AGCGTTTGA	729
45	(2) INFORMATION FOR SEQ ID NO: 31: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13856 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

	TGATGTTTCG	ATACATTTGT	TGCACCTTGT	GGATATACTT	TAAAGGTTGT	GTCGTATGTT	120
	TCCTTACTAT	CTTTAGCTTC	AGATTCCTGT	GATTCAACCG	TTTTATATTT	TTCAAGTGCA	180
5	TGTCCTTCAA	TATCAACTCG	TGGAATAATG	CGATTCAACC	ATGCTGGTAA	ATACCACGAA	240
	CCTTTtCCAA	ACAATTTCGt	TAATGCAGGA	ATTAACATCA	TECTGACTAC	GAAGGCATCA	300
10	AAGAGTACAC	CAAACGCTAA	TGCCATACCC	ATTGATTTAA	TCATGACATC	TTCTTGGAAT	360
, 0	ACAAACGCAA	AGAAGACACT	AAACATAATT	AATGCAGCTG	CTACAATAAC	AGGACCGCTT	420
	TCTTTCAATC	CTACTTTGAT	AGAATAATCA	TTATCCCCTG	TTTTACTATm	yyCTTCATGr	480
15	ATTCGCGACA	TAAGGAAGAC	TTCATAATCC	ATCGCTAATC	CAAATAAGAT	ACCTATAGTA	540
	ATAACCGGTA	AAAATGCTAG	CATTGGTCCT	GTCGTTTCAA	TACCAAACAG	ACCTTTCATA	600
	AAACCATCTT	GCATTACTAA	TGTTGTAAAT	CCTAATGTTG	CCATTAATGA	CAAGACGAAT	660
20	CCTAAAACTG	CTTTTAATGG	TATTAGAATT	GAACGGAAGA	CAATCATTAA	TAAGAAAAAT	720
	GCTAATACAA	CAATGACTGA	GGCAAATAAA	GGTATCGCCT	CATTTAACTT	TTTAGACATA	780
	TCAATATTAA	TGACACTTTG	TCCCGAAATC	TCCGTTTTGA	ACCCATATTT	ATCTTGTGCA	840
?5	TCTTTATGAT	AATCTCGTAA	ATCATGCACT	AAATCATTTG	TACTCTCTGC	ATTAGGCCCT	900
	TGCTTAGGTA	TCACGACCAT	CAAAGCGTAA	TCATTATCTT	TACTCATTTG	TGGTGGCGTA	960
30	ACGATATCTA	CATTTTTCTT	ATCTTTAATA	TCTTTATATA	CAGACTGTAA	ATCTTGTTGT	1020
	AATCCTTGTG	GATCATCCTT	TTTATCTTTC	ACATTTATCA	ACATCGGTAT	TTGGCCATTA	1080
	AATCCTTCAC	CAAATTTATC	CGAGATAATA	TCGTAAGCTT	TTTTCTGTGT	AGAATCTGCT	1140
35	GGTTTAACAC	CGTCATCTGG	AATACCAAGT	CGCATATGAC	TAACTGGTAT	TGCAGCTGCT	1200
	ACTAATATGA	TTAAACCTAG	TAATACTGCC	GCAAGTGCAT	TTCCTGTAAT	AAATTTAGAC	1260
	CATGGCGTAT	CAATATCTTT	TTTGAATTTA	GACTGTAATT	TATTCACTTT	AATGCGTTtA	1320
10	TGGAAAATGC	TTATTAATGC	AGGTAATAAA	GTTAAAGCGC	TAAGTACTGC	AAAAACAACA	1380
	CTAATTGCCG	AAGCAAATCC	CATTACCGCT	AAGAAGTCAA	TGCCTACTAA	TGATAAACCA	1440
15	CATACTGCAA	TTACAACTGT	TACACCAGCA	AAAACAACTG	CACTACCTGC	TGTTCCTATT	1500
	GCAAGACCAA	TGCCTTTAAT	GTAATCTGTT	TCAGTTTTCA	TAACTTGTCG	ATATCTGAAT	1560
	аааатааата	ATGCATAATC	GATACCAACT	GCTAGTCCAA	TCATTACGGC	TAATGTCAGT	1620
50	GTGACATTTG	GTATATCGAA	TGCATAAGTT	AACAAACTGA	TAATACCTAC	ACCAGAGGCT	1680
	AGACCAATCA	ATGCACTTAT	AATTGGTAAT	CCTGCAGCAA	TGACTGAACC	GAATGTGATT	1740
	AACAGTACAA	CAAATGCAAC	AATAATACCA	ACTAGTTCAG	AATTACCGCC	TACTTCTGTA	1800

	AAATGACTTT	TAACATTATC	TCTAGAGCCA	TCTTTTAAAG	ATGTTTGACT	AACGTCATAT	1920
	GTGATATCTG	CAAATGCAGT	TGTTTTATCT	TTACTAATTT	GCTTATTTTC	ATAAGGATCT	1980
5	GATATTTTAT	CAATGTGCTT	GTCATCTTTT	TTAATATCAT	CTAACGTTTT	CTTAATATCT	2040
	TTAGTAATGT	TCGGTTGCAC	AATACCATCA	TCTTTAGTCG	TCTTAAAGAC	AACACGTATT	2100
10	TGTGCCTTTT	CACTATCTTG	ATTAAAATGT	TTTTCAATCT	TTTTATTCGT	ATCTAACGAC	2150
	TCTAATCCTG	TCATTTTAAT	ATCATTGTCA	AATTTCGGTG	CATTTGTAGC	AAGTGGTATC	2220
	AATATTGCAG	CTACAATCAC	TATCCATGCA	ATGACCGCGG	ACCATTTATG	TTTTGCGATG	2280
15	AATGTCCCCA	TCTTATATAA	AAATTTTGCC	AAAGTATATT	GCCTCCTTTT	AAAATCAACG	2340
	TTATAGTTTA	AATATACAGT	GTAGATTATT	GTTCGATTAT	AGTATCTATC	CCCGACCTCT	2400
	TAAAGAATCA	ATTGGAAAAT	TTTGTATATT	AAACTACACA	CAAAGGAGAA	ATGTAGATGA	2460
20	AAGAGACTGA	TTTACGAGTT	ATAAAGACAA	AAAAAGCATT	GTCGAGTAGC	TTGCTACAAT	2520
	TGTTAGAACA	GCAATTATTC	CAAACGATTA	CTGTCAATCA	AATTTGCGAC	AACGCACTCG	2580
25	TACACCGTAC	AACATTTTAT	AAACATTTTT	ATGATAAATA	TGATCTTCTA	GAGTACTTGT	2640
25	TCAATCAATT	GACTAAAGAC	TACTTTGCTA	GAGATATCAG	TGACCGTCTT	AATCATCCAT	2700
	TCCAAACGAT	GAGTGATACG	ATTAATAATA	AAGAGGATTT	GAGAGAAATC	GCAGAATTCC	2760
30	AAGAAGAAGA	CGCTGAATTT	AATAAAGTAT	TAAAAAATGT	CTGCATTAAA	ATTATGCATA	2820
	ACGATATCAA	AAATAATAGA	GACCGTATCG	ATATTGACAG	CGACATCCCA	GATAATCTCA	2880
	TATTTTATAT	TTATGACTCG	TTGATTGAAG	GTTTTATACA	TTGGATAAAA	GATGAAAAA	2940
35	TTGATTGGCC	TGGCGAAGAT	ATTGATAACA	TTTTCCATAG	ATTAATCAAT	ATTAAGATTA	3000
	AATAGTAGAT	GAGAAACTCA	TGAGCGTTAC	CAACATTCAT	AATAAAAACG	ATAGTGKACA	3060
	CGTTÄATGAA	TTCGTGTACT	ACTATCGTTT	TTTATTTTTA	TCGTGCTTAT	CGCTATTAAA	3120
10	ACAACTGATA	CACAACACAT	AAACTATGAA	GAAAAAAATA	AATCCGCTAT	CTAAATGACT	3180
	TTGACTCAGT	TGTTTAAATG	ACCAAATTGC	TAATACAATT	CCCATTATTA	TTGAAATAAC	3240
1 5	GTATCTCACA	TTCTTATACC	TATAATCCTT	TTCTAAAAAT	ATGGTTGCTA	TTACTTAATT	3300
	TTTAAAGTTA	TAAATAAAA	GAGCCAACCG	CAATGGATGG	CCCTTGTTCA	TTATGAAGCA	3360
	TTAGAACATT	TCTGAAACAA	CCTTTTGTTC	TAAGAAGTGT	AATAAGTAGT	CTGGACTACC	3420
50	TGTTTTAGCG	TCCGTACCTG	ACATTTTGAA	ACCACCAAAT	GGATGGTATC	CAACAACTGC	3480
	TGAAGTACAG	CCTCTGTTAA	GGTATAAATT	GCCTACATCA	AATTCGTTTA	CCGCTTTAAT	354
	CCAATGCTCG	CGATTATTTG	TAATCACTGC	ACCAGTTAAA	CCGTAATCTG	TATCATTTGC	3600

	TTCTTCTTGC	ATGATTCTAT	CTTTAGATTT	AAGTCCTGAA	ATGATTGTTG	GTTCTACAAA	3720
	GTAACCTTTT	GAATCATCAG	TGCCGCCACC	TTGTTCTAAT	TTACCTTCTT	CTTTACCAAT	3780
5	CTCAATATAA	TTTTTAATCT	TATCAAATTG	TTTTTTATTA	ATAACTGGGC	CCATATACGT	3840
	ATTGTCTACA	GTATTGCCCA	ACGTTAATTC	TTTTGTTAAT	TTGATTGATT	TCTCTAATAC	3900
10	TTCGTCATAA	ACGTCTTTAT	GCACAATTGC	ACGTGAACAT	GCTGAACATT	TTTGACCAGA	3960
. •	AAAACCAAAT	GCTGACGTTA	CAATAGCTTC	TGCTGCCATA	TCTGTATCAA	TATTTTCATC	4020
	AACTACAATG	GCATCTTTAC	CACCCATTTC	AGCGATAACA	CGTTTCAAGA	AGTTTTGACC	4080
15	TTCTTGAACA	ACGGCACTAC	GTTCATAAAT	TCTAGTACCT	GTCGCACGTG	ATCCTGTAAA	4140
	TGTAACGAAA	TGCGTATCTT	TATGATCAAC	TAAGTAATCA	CCAATTTCTT	TCGGATCACC	4200
	AGGAACAAAG	TTAACTACGC	CTTTTGGTAA	TCCTGCTTCT	TCTAAAATTT	CCATTAATTT	4260
20	ATAAGCGATA	TAAGGTGTAT	CCTCAGCAGG	TTTCAATAAC	ACTGTATTAC	CTGCCACAAC	4320
	TGGTGCTAAA	GTTGTACCAG	CCATAATCGC	AAACGGGAAG	TTCCACGGCG	GAATTGTAAC	4380
05	ACCTGTACCA	ATTGATTTAT	AGAAATATTT	ATTGTGTTCA	CCTTCACGAT	CAAGTACTGG	4440
25	CTTACCTTGA	GCCAAGTCCA	TCATTGAACG	TGCATAGTAT	TCAATAAAAT	CAATACCTTC	4500
	AGCTGCATCA	CCAACTGCTT	CATCCCATGG	CTTACCTGCT	TCATAAACCA	TAATTGCTGC	4560
30	AATTTCCGCT	TTTCGACGAC	GAATAATTGC	CGAAACACGT	AACATAAGCT	CTGCACGATC	4620
	ATTTGCTGAC	CATGTTTTCC	AAGATTTATA	AGCTTCGTTT	GCTGCTTTAA	ACGCATCTTC	4680
	AACATCTTGT	TTTGTTGCCT	TTGATGCATT	TGCAATCACT	TGTGATGTGT	CTGCAGGATT	4740
35	GATTGATTTA	ATTTTGTCAT	CTTTGAAAAT	CTTCTCTCCA	TTAATCACTA	ATGGTATGTC	4800
	TTGACCTAAT	TCTTTTTCCA	CGTCTTTCAA	TGCTTTCTTA	AACATATCCA	CATTTTCTTG	4860
	GACTGAAAAA	TCGTAACCAG	GTTCATTTTT	AAATTCTACT	ACCATGTACA	CTTACCCCCT	4920
40	ATAAATTTTG	AAAGTGGTTT	AACCCTTTGA	TTTAATGATA	TAACATCATT	TAAACTCATT	4980
	TTACTATGAT	TAAGGTTAGT	TTTGCAATCG	CTTTCATTTT	TATGTTTTAT	CACTTATTCT	5040
45	CAAGTATTTT	GAAATTGATT	GGTTACTTTT	TAAAATTTAT	ATGGGTCGCA	ACTGCTACTT	5100
	TATCGTTTCG	TCATTTAATG	TTTCGGATGG	TAGGTCATTA	TCAATTTTAC	GAACGACTTT	5160
	ACAAGGGTTT	CCAACCGCTA	AGCTGTGTGG	CGGAATATCT	TTAGTGACAA	CACTACCAGC	5220
50	ACCAATCACA	CTGCCTTCTC	CAATCGTCAC	CCCTGGTAAC	ACGGCTACAT	GACCGCCAAA	5280
	CCAAGTATTA	CTGCCAATAT	GAATGGGTCC	GGCTTTTTCA	AAACCTTCAT	TTCTATGATG	5340
	GAAATTAAGT	GGATGTGTCG	CTGTGTAGAA	TCCACAATTA	GGTCCTATAA	AAACATTATC	5400

	TCCTAGTTTA	ACGTTCCAAC	CATAATCTGT	ATCAAAAGGA	ATCGAAATAC	TTACATTGTC	5520
_	TGTTGTTGTT	TGAAATAATT	GATCAATTAA	TTCCTTTCTT	TTATTTGTAG	CACTCGGTCT	5580
5	TGTATGATTT	AATTCAAAGC	AAATATCTTT	CGCTCGTGCA	CGTTCATTGA	TTAAGTATTG	5640
	ATCAAAGTTT	GCATCGTACC	ATTTTTCTGC	TAACATTTTT	TCTTTTTCAG	TCATTACACC	5700
10	TTTCAACTCC	TAATAACTTA	TTTACTTGTT	TAAAAGTTAA	TCAAATAAAC	CTTCGCCTAT	5760
	GCAACTAATA	CGCTATAACA	TTATGAAATC	ATGACCTTAT	CACCCTTATC	TATACAATTC	5820
	TCGCATCAAA	TACTGCTAAA	GTAGTAGATA	AATTCAATAC	TACAGACGCA	TTCATTTTTT	5880
15	AATCTATTAA	CGTACAATGT	GAGTAAGAGA	AATATAAAGG	AGTATGATAG	CGATGAGAAT	5940
	ATTAATTACA	GGCACAGTTG	CTATCTTAAT	CATTCTAGGT	TTGGTCAAAA	CGATACAAGA	6000
	TTACGAAATG	ACAAACGACA	CGAGTCGTcA	GTTGTCAGAC	AACAAAGATG	ATGATAAAGT	6060
20	CATCCATCTT	AATAATTTTA	AAAATTTACA	TGCGAAAGAA	TTTAACCCAT	CTGATTTCTT	6120
	TTAAGTCACC	TAAGAATTGC	AAATCCAGAA	GTCATTTAAG	TTTTACCTTT	CATTCATACA	6180
25	TCCTTTAATA	TTAATTACGA	CTTCTTTTAT	ATAGATGCTA	AGTAGAGAGA	TTGTTGTGCA	6240
23	ATGTTTGCAC	GGCAATCTCT	CTTTTTCTTT	TTAAAATTGG	TAAAAGTAAA	ACGCAACGAT	6300
	TGACTTATAT	ACCTATAGGG	GGTACATTAG	ACGTGTAACA	ATGAATCACA	GGGAGGCAAT	6360
30	AATGTGGCTA	ATACGAAAAA	AACAACATTA	GATATCACTG	GTATGACTTG	TGCCGCATGT	6420
	TCAAATCGTA	TCGAAAAGAA	ACTGAATAAA	CTTGATGACG	TTAATGCCCA	AGTGAATTTA	6480
	ACTACAGAGA	AAGCAACTGT	TGAGTATAAC	CCTGATCAAC	ATGATGTCCA	AGAATTTATT	6540
35	AATACGATTC	AACATTTAGG	TTACGGTGTC	GCTGTAGAAA	CTGTCGAATT	AGACATTACA	6600
	GGTATGACTT	GTGCTGCATG	CTCAAGCCGT	ATTGAAAAAG	TGTTAAATAA	AATGGACGGC	6660
	GTTCAAAATG	CAACGGTCAA	TTTAACAACA	GAGCAAGCTA	AAGTTGACTA	TTATCCTGAA	6720
40	GAAACAGATG	CTGATAAACT	TGTCACTCGC	ATTCAAAAAT	TAGGTTATGA	CGCGTCTATT	6780
	AAAGATAACA	ATAAAGATCA	AACGTCACGC	AAAGCTGAAG	CGCTACAACA	TAAATTGATT	6840
45	AAGCTTATCA	TATCAGCAGT	ATTATCTTTA	CCACTATTAA	TGTTAATGTT	TGTACATCTT	6900
	TTCAATATGC	ATATACCAGC	ACTATTTACG	AATCCATGGT	TCCAATTTAT	TTTAGCTACA	6960
	CCTGTACAAT	TTATTATTGG	ATGGCAATTT	TATGTAGGTG	СТТАТААААА	CTTAAGAAAT	7020
50	GGTGGCGCCA	ATATGGATGT	ACTTGTTGCT	GTTGGTACAA	GTGCAGCATA	TTTTTACAGT	7080
	ATTTATGAAA	TGGTTCGTTG	GCTAAATGGC	TCAACAACGC	AACCGCATTT	ATACTTTGAA	7140
	ACAAGCGCCG	TACTAATTAC	СТТААТСТТА	TTCGGTAAGT	ATTTAGAAGC	TAGAGCGAAG	7200
55							

	TTAAAAGATG	GTAATGAAGT	GATGATTCCT	CTAAATGAAG	TACATGTTGG	AGATACACTT	7320
	ATCGTTAAAC	CAGGTGAAAA	GATACCTGTT	GATGGCAAAA	TTATTAAAGG	TATGACTGCC	7380
5	ATCGACGAAT	CTATGTTAAC	AGGTGAATCT	ATCCCTGTTG	AGAAGAATGT	TGATGATACT	7440
	GTAATTGGTT	CAACGATGAA	CAAAAACGGT	ACTATTACTA	TGACAGCAAC	AAAAGTTGGC	7500
10	GGGGACACTG	CGTTGGCAAA	TATTATTAAA	GTTGTCGAAG	AAGCTCAAAG	TTCTAAAGCG	7560
	CCGATTCAAC	GATTGGCAGA	TATTATTTCT	GGTTATTTCG	TTCCTATCGT	TGTTGGTATC	7620
	GCACTATTAA	CATTTATCGT	GTGGATTACT	TTAGTTACAC	CAGGTACATT	TGAACCTGCA	7680
15	CTTGTTGCGA	GTATTTCCGT	TCTCGTCATT	GCTTGTCCAT	GCGCATTGGG	ACTTGCTACA	7740
	CCAACTTCTA	TTATGGTAGG	TACTGGTCGC	GCTGCTGaAA	ATGGTATTTT	ATTTAAAGGT	7800
	GGCGAGTTTG	TTGAACGCAC	ACATCAAATT	GATACCATCG	TTTTAGATAA	GACGGGTACC	7860
20	ATTACAAATG	GTCGTCCAGT	CGTGACAGAT	TATCATGGTG	ACAATCAAAC	GCTACAACTA	7920
	CTTGCTACTG	CTGAAAAAGA	TTCTGAACAC	CCATTGGCAG	AAGCCATTGT	CAATTATGCA	7980
_	AAAGAAAAGC	AATTAATATT	AACTGAGACA	ACAACATTTA	AAGCAGTACC	TGGCCATGGT	8040
?5	ATTGAAGCAA	CGATTGATCA	TCACCATATA	TTGGTTGGTA	ACCGTAAATT	AATGGCTGAC	8100
	AATGATATTA	GCTTGCCTAA	GCATATTTCT	GATGATTTAA	CACATTATGA	ACGAGATGGT	8160
30	AAAACTGCTA	TGCTCATTGC	TGTTAATTAT	TCATTAACTG	GTATCATCGC	AGTGGCAGAT	8220
	ACTGTCAAAG	ATCATGCCAA	AGATGCTATA	AAACAATTGC	ATGATATGGG	CATTGAAGTT	8280
	GCCATGTTAA	CTGGCGATAA	TAAAAACACT	GCTCAAGCCA	TTGCAAAACA	AGTAGGCATA	8340
35	GATACTGTTA	TTGCAGATAT	TTTACCAGAA	GAAAAAGCTG	CACAAATTGC	GAAACTACAG	8400
	CAACAAGGTA	AGAAGGTTGC	GATGGTTGGT	GACGGTGTAA	ATGATGCACC	TGCATTAGTT	8460
	AAAGCTGATA	TCGGTATCGC	CATTGGTACA	GGTACAGAAG	TTGCCATTGA	AGCAGCTGAT	8520
10	ATTACTATTC	TTGGTGGCGA	CTTGATGCTT	ATTCCTAAAG	CCATTTATGC	AAGTAAAGCA	8580
	ACCATTCGTA	ATATTCGTCA	AAATCTATTT	TGGGCATTCG	GCTATAATAT	TGCCGGTATC	8640
15	CCTATAGCTG	CATTGGGCTT	ACTTGCGCCA	TGGGTTGCTG	GTGCTGCAAT	GGCACTAAGT	8700
	TCAGTAAGTG	TTGTCACAAA	CGCACTTAGA	TTGAAAAAGA	TGCGATTAGA	ACCACGCCGT	8760
	AAAGATGCCT	AGATTCCTTA	ATAATGAAGG	ATTCGTTGGT	GATTCTGAGA	TAGGCTAGTG	8820
50	ATTGGCTCTA	TAATGTCGCG	GTTTAyaGTt	GGATCTTCGC	TCCAACTGCA	TATATAGTNA	8880
	CACTTTTCGC	TTGGCGAATT	AGTGTATCTT	ACCTAATAGC	TCCGCCTATT	AGGTTCCATC	8940
	ATTATTATAA	ATAATAAGTA	CACTACGGtT	TACAGTTGGA	TCTTCGCTCC	AACTGCATAA	9000

	GAAATTTTAA	ATGTTGAAGG	TATGAGCTGT	GGTCACTGCA	AAAGTGCTGT	TGAATCTGCA	9120
	TTAAATAATA	TTGACGGTGT	CACTTCAGCT	GACGTTAACC	TTGAAAATGG	TCAAGTAAGT	9180
5	GTTCAATATG	ATGACAGTAA	AGTTGCTGTA	TCTCAAATGA	AAGACGCAAT	TGAAGATCAA	9240
	GGTTACGATG	TCGTTTAATT	AGGCAATATT	CAACGTCATC	AACACCAAAT	TAAAAAATCG	9300
0	AACTGATGAG	AATCCCAACA	ATCCAAATTA	TCTCATCAGT	TCGATTTTTA	ATTTACTCGT	9360
	AACCTAGTAT	CTCCAGTCTG	CAATACATCT	AATGTTGCAT	CTAATGCATC	GACAATTAGA	9420
	TTTTTAACTG	CAGCTTCAGT	ATAAAACGCA	ATATGTGGTG	TTAATATGAC	ATCTTCCCTG	9480
15	TCAATCAACG	ATTCTAACAA	TGGATCGTTC	AGTGTTTTGC	CCCTTTGATC	ACTTGGGAAA	9540
	AGTTTGCGTT	CAAATTCATA	CGTATCAAGT	GCTGCACCTT	TAATCACACC	ATTGTCTAAT	9600
	GCGTCTAATA	ACGCCTTAGT	ATCTACTAAA	GAACCTCTCG	CACAATTGAC	AAATACTGCG	9660
20	CCCTTTTTAA	AATGTTTAAA	TAATTCAGCA	TTAAATAGAT	AATGATTATA	TTTCGTTGCA	9720
	GGTACATGTA	ATGTCACGAT	ATCAGCACCT	TCAACCGCTT	CCTCAATCGT	ATCTTTGTAA	9780
25	TCGACATACG	TTGCAATTTT	AGCATTAGGA	AACGGt CGTA	TGCGACCACA	TCACTTTGAT	9840
25	AACCATTGGC	AAATATATCG	GCTACTACAC	GGCCAATTCG	ACCTGTACCA	ATAACAGCTA	9900
	CTTTTAAATC	TTTAATGGAT	TTCGATAAAA	TAGTAGGTTC	CCATCTAAAA	TCATGCTCCC	9960
30	GCACTTTCGT	TTGAATTTGA	TTAAAATGAC	GAACCACATT	AATAGCCTGG	TTCACAGCAA	10020
	ACTCCGCAAT	TGAATTCGGA	GAGTATGACG	GCACATTTGA	CACAATAAAG	TTATACTTGT	10080
	TTGCTAACTC	CAAATCATAT	GTATCAAATC	CAGCACTACG	TTGTGCGATT	TGTTTAATAC	10140
35	CTAGTTCATT	TAATCGTTTA	TAAACATGCT	CTGATAATGG	TATTTGTTGT	GATAGCGATA	10200
	AGCCATCATA	ACCAGCGACA	CCTTCAACAT	TGTCATCAGT	TAATGCTTCT	TTAGTAATAT	10260
	CTACCTCAAC	ATGATGTTTC	TCTGCCCACG	CCTTGATATA	AGGCATATCT	TCATCACGTA	10320
10	CACTCATGAT	TTTAATTTTT	GTCATTTTAA	CATCACCCTT	AACTTTATTA	TTCATATAAA	10380
	TATGCTAGTT	CTGTTAATCT	TATTGCAGCT	TCGTCTAATT	TCTGGTCATC	TAACGCCAAT	10440
15	GAAATTCTCA	CATAACGATT	ACCATTCTCT	CCAAATGGTT	TCCCTGGAGC	AACAAGTATT	10500
	GACTTCTCTT	GCACTAAAAA	TTGCTCAAAT	TGCTCGCTGT	CATAACCAGG	CGGTGTTTCC	10560
	AACCATACAT	ATATGCCACC	TTTAGCATGA	ACAAATGGCA	AATCAGCTTT	TGCAAGCATG	10620
50	GCTTCGAATC	GGTCACGACG	TGTTTTAAAT	ACATTGCTTT	GTTCTTCTAA	AAAATCATCA	10680
	TAATGATTCA	AAGCATATAT	TGCGGCATCT	TGTAATGCAC	CAAACATCCC	AGCATTTGTG	10740
	TGCGTTTGGT	ACTTTTTCAA	AGCTTGAATC	ATATCTTTAT	TACCAACTGC	AAAACCGACT	10800

	CCATTTTCCG	AAGCAAGTAT	ACTAGGATTT	TTAGCGTCGA	AACCGAAAGC	ACCATAAGCA	10920
	AAATCATGCA	CGATTTTAGT	GTCTGTACCT	TTAAATTTAG	CTATCGCTTC	ATCAAAAACT	10980
5	TCTTTCGTAG	CTGTCGATCC	AGTTGGATTA	TTTGGATACG	TTAAATAAAT	GAGTTTTGTT	11040
	TTATCTATTA	TTTGTGAATC	AACTTTGGAC	CAATCTGGCA	AATAATGTGG	CGGTTCTAAA	11100
10	TTAAGCGGGA	CTGGCTTGCC	ATCAGCTAAA	AGTACACCTG	CTAAATAATC	CGTGTAGCCT	11160
	GGATCAGGTA	GTAATACATA	GTCTCCTGGA	TTGATAACAC	ATGTTGGTAC	TGCCACTAAT	11220
	CCATTTTTTG	TACCATATAA	AATGCATACT	TCATCTTCTT	TATCTAACGT	CACATTATAT	11280
15	TGTCTTTGAT	AAAAATCTAC	AATAGCTTGC	TTGAACGCTT	CTTTACCATG	AAAAGCACCA	11340
	TATTTTTGAT	TTTCAGGAAT	AGTTAGTGCT	TTTTGAAAAT	GATCAATAAT	ACCTTGTGGC	11400
	GTGGGCCCAT	CAGGGATTCC	AACTGCCATA	TTAATTAATG	GCAATGGTCC	ATGTTCGATT	11460
20	TTACGTCCCA	TCGTTTTCCC	GAAATAACTA	TCAGGGATAT	TTGCTAATTT	GTTAGAGATC	11520
	ATCAAATTCC	TCCTCTATCA	TTAAACATAG	CCTGGGCGAC	TATCATAATC	CTAACAACTT	11580
	GTATCACTCT	CATTTAGATG	GTTACAATGA	CATCGCCATT	CACCGTTATG	TTCAACAGAA	11640
25	CTTATGACAC	ACGTTGTATT	GAATGAATTT	ATTTTCATTT	TAGGTAGGTA	TAATATTATT	11700
	GTCAATATTA	GGAATTTTCA	GATTAATATG	CACTCAATCG	TTATGATTTA	ACTGTCATGC	11760
30	ATATCCGCAT	GCGCAACCAG	TTAGATATGC	TTATATAAAG	TATAACGCCC	ATCAAGGTAC	11820
	GTATTCAAAC	GTGAACCTTA	ACAGGCGTCA	TTCATTGTTA	AATAAAACTT	CTTAAGCACA	11880
	TACTTATTTC	ACTATGCCTT	TTACGTTCCC	CTTATACTTT	TCTCACATCT	TTCTCTTAGA	11940
35	CTACTCCCTT	ATACGCCCCG	CTCAATATCT	TTAATCATTT	CATCTACAGT	TATTTTCGCA	12000
	CTCGTTAAGA	CAATAGGAAC	GCCTGCACCT	GGATGCGTAC	TTGCACCTGC	AAATATAAA	12060
	TCTTTATAAT	CTCGCGATAC	ATTTTGTGGA	CGATAATAAT	TACTTTGCGC	TAAAGTTGGC	12120
40	ATTAAACCGA	ATGCCGAACC	AAATTTCGCA	TGATACGTTT	GCTCAAAATC	ATTTGGCGTA	12180
	AAGATTGTTT	CTGAAACAAT	ATGCGATTTT	ATATCTTCAA	ATACTTCAAT	CGTTGCTAAT	12240
45	TTACGATAAA	TAATTTCCTT	TATTTGTTGC	GTCAAAGCTT	CATCTGACCA	ATCGATTCCG	12300
	CTACCTGTTT	TAAGTTCCGG	CGTCGGCATT	AGCACATAAA	TACCAGTTTT	GCCTTCTGGC	12360
	GCAAGTGATT	TATCAGCGAC	CGCTGGTACA	TACACATAAA	TAGAAGGATC	ATATGATAAA	12420
50	CGTCCCTCAA	ATATTTCTTC	AATATTGCCT	CTAAAGTCAT	CTGAAAAAAT	AACATTATGA	12480
	AGTCTCACTT	GATCTGTCAC	ATCAATATCT	ATACCGATAT	ACATTAAAAA	TGCTGAACAA	12540
	GAGTAATCTA	AGTCTGCAAT	TTTATGTGGT	GGATACTTTT	TAATAGGTGC	AAAATCTGGC	12600

	ATGTCACCAT	TCACTTTTAT	CGCATCGGCC	CGTTTGAATT	TAGGATCAAT	AATAATTTGC	12720
	TCAATTTCAG	CATTTAGTTC	AATATTAACG	CCTAAGTCTT	TATTTAATTG	CGCTAGCCCT	12780
5	TGAGCCATGC	CATACATACC	GCCTTTAATA	AAATGCACAC	CAAACATCAT	TTCAATCATA	12840
	GGAATAATTG	AATATAGTGA	CGGCCTCGT	TTTGGATCAA	TTCCTATGTA	TAACGTTTGA	12900
10	AACGCTAAAA	GCTTTTGTAT	CTTTTCGTTA	TCAATATAAT	GTTCAATTAG	CTGATCTGCA	12960
	TGATTTAACG	TTTTTAACTT	AGCACCTTGC	ACAAGTGACG	TCATATTATA	AAAGTCACTC	13020
	GGTTTGCGAT	ACGTTCTTTC	TAAGAAATAG	CGACGTGCAA	TTTCATATIT	TTTATAAACA	13080
15	TCCGTTAAAA	AGGACATAAA	ACCATGCGTT	GAACCAGGTT	CTATACTTIC	TAGCATTTGC	13140
	TGTAATTCAG	CTAAATCTGT	AGGCACCGTT	ATACGATCAT	CGTGGTCAAA	ATACACATCG	13200
	TAAATATAAC	GTAATTGTCT	CAATTCAATA	TAATCTTCAT	AATTTTTACC	ACACGCTGTA	13260
20	AAAACATCTT	TATAAACATC	TGGCATCATG	ACAATTGTGG	GACCCATATC	AAATGTAAAG	13320
	CCGTCTTTCT	TTAATTGATT	CATACGCCCG	CCTACATTAT	TATTTTTTC	AAATATCGTC	13380
25	ACTTCATGAC	CTTGAGAAGC	AATACGGGCT	GCCGCTGCTA	ATCCTGTGAC	ACCTGCACCA	13440
25	ATTACTGCAA	TCTTCATTAT	TCAACCACCT	ATATTCTATG	ATATTTACTA	TTTATTTCAT	13500
	GAAACAACTT	TGCCTTTTTC	CTCTTATCCA	CAAAAACACG	TTCATGTAAT	GTATAGTTAG	13560
30	CCTGTCTCAC	TTCGTCCAGT	ATTTCAATAT	ATATACGTGC	TGCTAATTCT	ATGATTGGTT	13620
	GTGCTTCAAT	ACTAAATACT	TTGATTTGAT	CCATAACATC	TTGAAAATCT	TTTTCTGCGA	13680
	TAGCTGCATA	ATATTCCCAT	AAGTCAATAT	AATGATTATT	AACACCATTT	TGGTACACTT	13740
35	CAGCAATATC	AACTTCATAT	TGCTTTAATC	GTTGCTTACT	AAAATATATC	CGTTCATTGT	13800
	CAAAATCTTC	ACCGACATCT	CTTAATATAT	TAAnGGGATC	CTCTAGAGTC	GACCTG	13856
	(2) ÎNFORM	ATION FOR SE	EQ ID NO: 32	2 :			
40		(A) LENGTH: (B) TYPE: nu	NESS: doub	pairs			

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

ATATATAAAT ATAGATTAAG TATATAGATT AATCAACTTT TTTGGAAGAG CAAATCACGC 60 AATCAACAAA TAATATAAGA AGTTTTTGCG ATAGTTTTAA AATAGCTGTA ATAGAATACT 120 AAATGTGACA AACTTAGAAC TAATATCAAG TGTTGATGTT TTGAATATAA AAATGCTAAT

	ATAATTGGTT	AATATATGAG	TAATTAGAAA	ATAGACAAAG	GATGACGATT	TATGTATATC	300
	AATATGAAAG	ATTATGGGTT	AACAGGCATA	AACAAAACTA	AAGATACTCG	AGCAATACAA	360
5	CGTGCGTTAA	ATCGTGGAAG	ATGTAAACCA	ACGACAGTTT	ATATACCGAA	AGGGACGTAT	420
	GATATTTGCA	AACCATTAAC	GATATATGGC	AATACAACAC	TTTTGTTAGA	TAATGAAACT	480
10	ATTTTACGCC	GATGTCATTC	TGGTCCTTTA	TTAAAAAATG	GTCGTCGCTT	TGGTTTTTaT	540
, 0	CGTGGTTATA	ATGGACACAG	TCATATTCAT	ATTAAAGGCG	GCAAGTTTGA	TATGAATGGT	600
	GTATCGTATC	CTTATAACAA	TACAGCTATG	TGCATTGGGC	ATGCTGAAGA	TATTCAATTA	660
15	ATAGGTGTGA	CCATTAAGAA	TGTAGTGAGT	GGTCATGCAA	TIGATGCTTG	TGGGATTAAC	720
	GGACTCTATA	TTAAAAGCTG	TTCATTTGAA	GGATTCATAG	ACTATAGTGG	CGAACCTTTT	780
	ATTCTGAAGC	AATACAATTA	GACATTCAAG	TACCTGGTGC	TTTTCCAAAA	TTCGGAACgA	840
20	CAGATGGTAC	GATAACGAAA	AATGTCATTA	TCGAAGATTG	TTATTTTGGA	CCTTCAGAAT	900
	TGCCCGAAAT	GGGAAGTTGG	AATCGTGCTA	TTGGCTCACA	TGCAAGTAGA	CATAATCGAT	960
	ACTATGAGAA	TATTCATATT	AGAAATAATA	TATTTGAAGA	TATACAAGGT	TATGCATTAA	1020
25	CTCCCTTGaA	GTATAAAGAT	GCTTTCATTA	TTAATAATAA	GTTTATTAAC	TGTGaGGGTG	1080
	GCATTAGATA	TTTAGGAGTT	AGAGATGGTA	AAAATGCAGC	AGATGTGaTG	ACAGGaAAAG	1140
30	ACTTAGGTTC	CCAAGCAGGC	ATAAATATGA	ATATAATTGG	AAATGAATTT	AAAGGATCAA	1200
	TGTCTAAAGA	TGCGATACAT	GTACGTAATT	ATAATAATGT	TAAACATAAA	GATGTATTAA	1260
	TCGTTGGGAA	TACATTCAAT	AATTCGACTC	AATCAATTCA	TTTAGAAGAT	ATTGATACAG	1320
35	TGTTTTTAAG	TCCTGTTGAA	GCGGGTATTC	AAGTTACTAC	AATCAATGTA	GATGAAATAA	1380
	AAAAGTAAAA	AGTTTCGCAT	GACATTAGGA	TTAAGAATAG	TAGATAATTT	TTGAAAGCGC	1440
	ATTEATAAAA	CGGTATAAAT	ATGCTATAAT	AAACCCAATT	ATCTGATAAA	AGGGGTATTT	1500
40	TGACGGTAAT	GATAATACAA	GATAGACAAC	TTTCTATACT	CTAATATAGT	GAGTTGAAGT	1560
	AGCTTGTCAT	AATCATCATG	AGGGGGAAAT	TTATGGCTTA	TTTCAATCAA	CATCAATCAA	1620
45	TGATATCGAA	AAGGTATTTA	ACATTCTTTT	CAAAATCAAA	GAAAAAGAAA	CCGTTTAGTG	1680
,5	CGGGACAACT	TATTGGACTA	ATATTAGGTC	CATTACTTTT	CCTATTAACA	TTATTATTCT	1740
	TTCATCCACA	AGACTTACCT	TGGAAAGGCG	TCTATGTTTT	AGCGATTACT	TTATGGATTG	1800
50	CGACTTGGTG	GATTACTGAA	GCAATTCCTA	TTGCAGCAAC	GAGCTTATTA	CCAATTGTGT	1860
	TATTACCATT	AGGTCATATA	CTTACACCAG	AACAAGTATC	ATCCGAATAT	GGCAATGATA	1920
	TTATCTTTTT	GTTTTTAGGT	GGATTTATTT	TGGCAATTGC	AATGGAAAGA	TGGAATTTAC	1980

	TTGGATTCAT	GGTGGCAACA	GGATTCTTAT	CTATGTTTGT	ATCGAACACT	GCAGCTGTAA	2100
	TGATTATGAT	TCCGATTGGT	TTAGCAATTA	TTAAGGAAGC	ACATGATTTA	CAAGAAGCCA	2160
5	ATACGAATCA	AACAAGTATT	CAAAAGTTTG	AAAAATCTCT	AGTTTTAGCA	ATTGGCTATG	2220
	CAGGTACGAT	TGGTGGCTTG	GGTACATTAA	TCGGAACCCC	GCCATTAATT	ATTTTAAAAG	2280
10	GACAATACAT	GCAACATTTT	GGACATGAAA	TTAGTTTTGC	TAAATGGATG	ATTGTAGGGA	2340
10	TTCCAACGGT	CATTGTTTTG	TTAGGTATTA	CTTGGCTCTA	TTTAAGATAT	GTTGCGTTTA	2400
	GACATGATTT	GAAATATTTa	CCTGGTGGTC	AGACGTTAAT	TAAACAAAAG	TTAGACGAGC	2460
15	TTGGCAAAAT	GAAGTATGAA	GAAAAGGTAG	TACAAACTAT	CTTTGTACTT	GCTAGCTTAT	2520
	TATGGATTAC	AAGAGAGTTT	CTTCTGAAAA	AATGGGAAGT	TACGTCATCT	GTTGCAGATG	2580
	GTACGATTGC	TATTTTTATA	TCAATATTAT	TATTTATTAT	TCCAGCTAAA	AATACTGAAA	2640
20	AACATCGCCG	TATCATTGAC	TGGGAAGTTG	CAAAAGAGCT	CCCTTGGGGT	GTATTAATTT	2700
	TATTTGGTGG	CGGTTTAGCA	TTAGCGAAAG	GTATTTCTGA	AAGTGGTTTA	GCAAAATGGT	2760
	TAGGCGAACA	GTTGAAATCA	TTAAATGGTG	TTAGTCCGAT	TCTTATTGTA	ATTGTCATAA	2820
25	CAATCTTTGT	CTTATTTTTA	ACTGAAGTGA	CATCTAATAC	TGCAACTGCA	ACGATGATTT	2880
	TACCGATTTT	AGCAACGTTG	TCTGTTGCTG	TTGGAGTGCA	TCCATTACTA	CTTATGGCAC	2940
30	CTGCAGCTAT	GGCGGCTAAC	TGTGCATACA	TGTTACCAGT	AGGGACACCA	CCGAATGCAA	3000
	TTATCTTTGG	TTCTGGTAAA	ATATCTATCA	AACAAATGGC	ATCAGTAGGA	TTCTGGGTAA	3060
	ACTTAATCAG	TGCAATAATT	ATTATTTTAG	TCGTGTATTA	TGTAATGCCT	ATAGTTTTAG	3120
35	GTATTGATAT	AAATCAACCA	CTGCCATTGA	AATAGTAATT	GCAGATTAGA	ACGAAAAATA	3180
	AAAGGTTACA	TTAGCAATTG	CTTGGACGAG	TGGTAACGAA	ACGTATACCG	CAGCATCGTG	3240
	TAASAACAAT	ACAAACAAAA	GAAAGTCAAC	CAAGGATGGA	TTCCTATTTT	AATCCTTGGT	3300
40	TGACTCTTTA	TTTTATTTAA	ATTGTAGAAC	CTAGAAAATA	AAGTTTAATT	AAAAGCACCA	3360
	ATCATTTCTA	CTTTGAAATC	TAAGGTTTCT	AAAATAGCAA	TGACTTTCTT	TATATCGGTT	3420
45	GTAATTGCAG	AATCAGCCTG	AACGAAAAAT	CGATACATAC	CTAATTGTGT	TTTTAAAGGA	3480
45	CGAGACTCAA	TCCAGGATAA	ATTAATATTA	AACAAAGCAA	ATGTATTAAG	CACACTTGCT	3540
	AACAACCCAG	GTTTATCATG	CATTGGTGTA	ATTAAAAAACA	TCAATGATGT	CGCATTTTGA	3600
50	TCAAATTGCT	GCTGATTTTT	ТАТААСТААА	AAACGTGTCA	CGTTATGTGG	ATAGTCTTCA	3660
	ATATGTGTAT	CAATAGGTGT	AAAACCATAA	GctTCGCCAC	TACCTAAAGG	TGCAATTGCT	3720
	GCAACGCCAT	TTTCAATTTT	AGTCAAACTT	TGAATTGTAC	TGTCGACATA	ATCATAGTCA	3780

	TTTTTAATAT	CAGAAATGGA	ATCTGTTCCA	TTACCATATA	ATGCAAAGTT	AATATCTAAA	3900
	CGTATTTCAC	CGTGTGCAAA	GACATCTTGC	TGTGCAAGTG	CATCTGCCAC	AATGTTGATT	3960
5	GTTCCTTCTA	TAGAATTTTC	AATAGGGACA	ACACCAATCG	ATGTGTCATC	ATCTGCAACT	4020
	GCCTTGATGA	CTTCAAATAA	ATTTGACTTT	GGTTGAAAAG	TTGCTTCATT	TTCAGAAAAA	4080
10	TACTGACGAC	AAGCCAAATA	TGAAAATGTA	CCTTTAGGGC	СТАААТААТА	TAATTGCATA	4140
	TGCTACACCT	CTACTAACTT	AATGATGGAA	AGGGCACTGG	TTAGCATTTG	ATTCTTTCTT	4200
	TTTATAGAAA	AAGTTTGGAT	CTTTTACTGT	ATTGTCATAT	CCGTGATGAT	AATTTGACGT	4260
15	CAATGTTGGA	GATAATGGCG	GTGCTAGCCA	AGACCATTTT	CCGGTAACTT	GACGACCTTG	4320
	TTGTGCTTCG	TTACGTTCGA	ATAGTTCGAA	TTGCTTTGCA	GCGGTCAAAT	GATCGACAAT	4380
	TGATACGCCT	TCTTTTTTAA	AGGAATGATA	CACAGCATAG	TTCAATTCAA	CAAGTGCTCG	4440
20	ATCTTTATTA	AATGAATTAT	TTTTAAGTGT	ATCAAATTCA	AACGCATCTG	CAACTTTTTC	4500
	TAGTAAATTG	TAACGGTAAT	CATCAATAAA	GTTACGTACG	CCAATTTCAG	TTACCATATA	4560
20	CCAACCGTTA	AAGGGTGCAG	TTGGATATAC	AATGCCACCG	ATTTTTAAGT	CCATATTGGA	4620
25	AATGATAGGG	ACTGCATACC	ATTTTAAGTT	CAATTTTCTT	AATTTTGGAT	AATGATTATG	4680
	TTCAATAGGT	ACTTCTTTAA	TTAATGAAGT	AGGATATTCG	TAAAATTTAA	CTGACTCATT	4740
30	AGGTAATTGG	TAAATCAGTG	GTAACACGTC	AAAATTAGTA	CCTTTTCCTT	TCCAACCTAA	4800
	GTGATTTGCT	AAGCGTGTAA	CTTCTTTTTC	AGCAGGATCA	CCACAATTGT	CATAGCCAGC	4860
	ATAGCGAATT	AATTGATTGT	TGAAAATTTT	AGGTCCATCC	TTTGGAGCAT	ATATAGTAAT	4920
35	ATACGGCTTT	AATTTACCTT	CATTTGTAGC	CTGTGTAATA	TGATAAGTAA	TTGATGATAA	4980
	GAACGATGCT	TCGTCAGTAA	CATCTCTTGC	ATCAATGACA	TTTAACGAAT	CCCAAAATAA	5040
	ACGACCAATG	CAACGATTTG	AATTACGCCA	AGCCATTTTA	GCACCATAAA	TAAGTTCTTC	5100
10	TTCTGTATGT	GTATATGTCC	CAGTTTCTTT	TATTTCTAGT	TCAATGTCAT	GTAAACGTTT	5160
	ATTGATAATT	TGCGTTTCAT	AATGACACTC	TTTATACATG	TTTTCTATGA	AAGCTTGAGC	5220
‡ 5	CTCTTTAAAT	AACATTAACA	ACACCTCGCT	TTATATTATA	GTCTACATTA	TTAAAATACT	5280
	CTTAAAAATT	ATGTATATGT	CATTAAATTG	TTGGTTGATT	TTAATTAAAA	GTATGGAAAT	5340
	TAAGGGGCTC	TTATGTATAT	AAAAAAATGA	ATTATGATAA	AATGTAAGAA	AATATTTAGG	5400
50	TCGATTGGAG	AGATACAAGT	GTACCAATTA	GAAGACGACA	GTTTAATGTT	ACATAATGAC	5460
	TTATATCAAA	TAAATATGGC	TGAAAGTTAT	TGGAATGATA	ATATTCATGA	AAAAATGGCT	5520
	GTATTTGATT	TGTATTTTAG	AAAAATGCCA	TTTAATAGTG	GCTATGCTGT	TTTTAATGGT	5580

	TTAAAGTCTA	TTGGCTACAA	GGATGATITC	TTATCATATT	TAAAAGATTT	AAAATTCACA	5700
-	GGCAGCATCC	GTTCGATGCA	AGAAGGCGAA	TTATGCTTTG	GTAACGAACC	ATTGTTACGC	5760
5	GTAGAAGCAC	CATTGATTCA	AGCGCAATTA	ATAGAAACAA	TTTTATTAAA	CATTGTAAAT	5820
	TTCCATACAT	TAATTACAAC	AAAGGCTAGC	AGAATTCGTC	AAATTGCATC	AAATGATAAA	5880
10	TTAATGGAGT	TTGGTACACG	TCGTGCGCAA	GAAATTGATG	CAGCATTGTG	GGGCGCTAGA	5940
	GCTGCTTACA	TCGGGGGCTT	TGATTCTACA	AGTAATGTTA	GGGCGGGGAA	ATTATTTGGT	6000
	ATACCTGTGT	CTGGTACACA	TGCACATGCA	TTTGTCCAAA	CTTATGGAGA	CGAATATGTT	6060
15	GCCTTCAAAA	AATATGCTGA	AAGACATAAA	AATTGTGTGT	TCCTAGTAGA	TACATTCCAT	6120
	ACTITAAAAT	CTGGCGTGCC	AAATGCAATA	AAAGTTGCAA	AAGAATTAGG	TGACAAAATT	6180
	AACTTTGTAG	GTATTCGATT	AGATTCTGGA	GATATCGCTT	ATTTATCTAA	AGAGGCAAGA	6240
20	CGTATGCTTG	ATGAAGCAGG	ATTTACTGAA	ACTAAAATTA	TCGCGTCTAA	TGATTTGGAT	6300
	GAAGAAACGA	TTACGAGTTT	GAAAGCACAA	GGTGCAAAAG	TAGATTCTTG	GGGCGTTGGT	6360
25	ACAAAGCTGA	TTACAGGATA	CGATCAACCA	GCATTAGGTG	CAGTATATAA	ACTTGTAGCT	6420
	ATTGAAAATG	AAGATGGTTC	ATATAGTGAT	CGTATTAAAT	TATCAAATAA	CGCTGAAAAG	6480
	GTTACGACGC	CAGGTAAGAA	AAATGTATAT	CGCATTATAA	ACAAGAAAAC	AGGTAAGGCA	6540
30	GAAGGCGATT	ATATTACTTT	GGAAAATGAA	AATCCATACG	ATGAACAACC	TTTAAAATTA	6600
	TTCCATCCAG	TGCATACTTA	TAAAATGAAA	TTTATAAAAT	CTTTCGAAGC	CATTGATTTG	6660
	CATCATAATA	TTTATGAAAA	TGGTAAATTA	GTATATCAAA	TGCCAACAGA	AGATGAATCA	6720
35	CGTGAATATT	TAGCACTAGG	ATTACAATCT	ATTTGGGATG	AAAATAAGCG	TTTCCTGAAT	6780
	CCACAAGAAT	ATCCAGTCGA	TTTAAGCAAG	GCATGTTGGG	ATAATAAACA	TAAACGTATT	6840
	TTTGAAGTTG	CGGAACACGT	TAAGGAGATG	GAAGAAGATA	ATGAGTAAAT	TACAAGACGT	6900
10	TATTGTACAA	GAAATGAAAG	TGAAAAAGCG	TATCGATAGT	GCTGAAGAAA	TTATGGAATT	6960
	AAAGCAATTT	ATAAAAAATT	ATGTACAATC	ACATTCATTT	ATAAAATCTT	TAGTGTTAGG	7020
1 5	TATTTCAGGA	GGACAGGATT	CTACATTAGT	TGGAAAACTA	GTACAAATGT	CTGTTAACGA	7080
	ATTACGTGAA	GAAGGCATTG	ATTGTACGTT	TATTGCAGTT	AAATTACCTT	ATGGAGTTCA	7140
	AAAAGATGCT	GATGAAGTTG	AGCAAGCTTT	GCGATTCATT	GAACCAGATG	AAATAGTAAC	7200
50	AGTCAATATT	AAGCCTGCAG	TTGATCAAAG	TGTGCAATCA	TTAAAAGAAG	CCGGTATTGT	7260
	TCTTACAGAT	TTCCAAAAAG	GAAATGAAAA	AGCGCGTGAA	CGTATGAAAG	TACAATTTTC	7320
	AATTGCTTCA	AACCGACAAG	GTATTGTAGT	AGGAACAGAT	CATTCAGCTG	AAAATATAAC	7380

	TAAACGACAA	GGTCGTCAAT	TATTAGCGTA	TCTTGGTGCG	CCAAAGGAAT	TATATGAAAA	7500
	AACGCCAACT	GCTGATTTAG	AAGATGATAA	ACCACAGCTT	CCAGATGAAG	ATGCATTAGG	7560
5	TGTAACTTAT	GAGGCGATTG	ATAATTATTT	AGAAGGTAAG	CCAGTTACGC	CAGAAGAACA	7620
	AAAAGTAATT	GAAAATCATT	ATATACGAAA	TGCACACAAA	CGTGAACTTG	CATATACAAG	7680
10	ATACACGTGG	CCAAAATCCT	AATTTAATTT	TTTCTTCTAA	CGTGTGACTT	AAATTAAATA	7740
	TGAGTTAGAA	TTAATAACAT	TAAACCACAT	TCAGCTAGAC	TACTTCAGTG	TATAAATTGA	7800
	AAGTGTATGA	ACTAAAGTAA	GTATGTTCAT	TTGAGAATAA	ATTTTTATTT	ATGACAAATT	7860
15	CGCTATTTAT	TTATGAGAGT	TTTCGTACTA	TATTATATTA	ATATGCATTC	ATTAAGGTTA	7920
	GGTTGAAGCA	GTTTGGTATT	TAAAGTGTAA	TTGAAAGAGA	GTGGGGCGCC	TTATGTCATT	7980
	CGTAACAGAA	AATCCATGGT	TAATGGTACT	AACTATATTT	ATCATTAACG	TTTGTTATGT	8040
20	AACGTTTTTA	ACGATGCGAA	CAATTTTAAC	GTTGAAAGGT	TATCGTTATA	TTGCTGCATC	8100
	AGTTAGTTTT	TTAGAAGTAT	TAGTTTATAT	CGTTGGTTTA	GGTTTGGTTA	TGTCTAATTT	8160
	AGACCATATT	CAAAATATTA	TTGCCTACGC	ATTTGGTTTT	TCAATAGGTA	TCATTGTTGG	8220
25	TATGAAAATA	GAAGAAAAC	TGGCATTAGG	TTATACAGTT	GTAAATGTAA	CTTCAGCAGA	8280
	ATATGAGTTA	GATTTACCGA	ATGAACTTCG	AAATTTAGGA	TATGGCGTTA	CGCACTATGC	8340
30	TGCGTTTGGT	AGAGATGGTA	GTCGTATGGT	GATGCAAATT	TTAACACCAA	GAAAATATGA	8400
	ACGTAAATTG	ATGGATACGA	TAAAAATTT	AGATCCGAAA	GCATTTATCA	TTGCGTATGA	8460
	ACCTCGAAAC	ATACATGGTG	GATTCTGGAC	TAAAGGCATT	CGTCGTAGAA	AGCTTAAAGA	8520
35	TTATGAACCA	GAAGAACTGG	AAaGTGTAGT	AGAaCATGAA	aTTCmAAGTA	AaTGAGAaTG	8580
	AAmCAATtGC	TGATTGTTTG	TCACGAATGA	A AtGC AA GGG	TATATGCCGG	TAAAACGTAT	8640
	TGAAAACCC	GTGTTTCAAG	AGCAAAAAGA	TGGCACGGTT	GAAGTATCAC	ATCAAGAAAT	8700
10	CGTTTTTGTA	GGTAAGAAAA	TCCAATAACA	TAATCCAATT	TAAATAAAGA	CTATTTGAAG	8760
	AGGAAAGGCT	ATTCAAAGTT	TGAGTAATTT	TACTTTGAAT	AGCCTATTTG	TTTATACATG	8820
1 5	CAAGATGCTC	GATCCATATT	GTATGAGAAA	CCCCCAGCAA	GCTATATAAA	GCATATGC TG	8880
•5	GGGGTTCTTA	ATATTTTAAA	AATTATTGTT	AGATTATATA	TATCGTCGCT	TTTTCTAAAA	8940
	CAATCTCATC	GCATGAAATT	TTTTCTTCCT	AGAGACCTTT	AATAAGATTA	ATAGTTTACT	9000
50	TAATCATATC	TAGATAGTCT	TATGACTTAT	GCTTAATGAA	AGTCATTCTA	GGAGAAGTTC	9060
	CCAAAGCTTC	TGTGTTCATA	ATTGTTAGTA	GTATTTTATT	ATCATTTGGT	ATAAATATTT	9120
	CAATAACAAT	TGAGCTATTA	TTTTTATTAT	ATAATGTGAG	TTGTTTGTGT	TCTGTATTTA	9180

CATTTAAATC	TTGAGGATGC	CATTCTCCCT	CAATAATATT	AAGATAATAC	TTAGCCTCTG	9300
AATTACATTT	GAATTTATCA	ATACTAAATA	ATTCAATTTG	TTCCATAATA	TTATTTACCT	9360
TTCTAAAATA	CAAATTTTAA	TAACCATAAA	TAGATGAATA	CCATCGATAA	TGGTCGCCAT	9420
TGGATACTGG	AATAACATTG	TTTTTAGCAT	CTTGAGTCAT	AAAACCATTA	TCCCATGGAT	9480
TCCATATAAT	TATAACCTCT	TGTCCATTAT	CTAATTTAGC	GTTCCCAACA	ACTGCCATGG	9540
CATGCCCTGC	GTGCATACCA	TTTCTTGATT	CTACTCTACT	ACCTAAAACA	GCAATTCCTT	9600
TATTATTTTT	AGTAAGATTG	TCAACTTCAT	TATATGTAGT	CATTCTATTA	AGAAGTTGTG	9660
GACTTCTTCC	CTGAGTTTGT	ССААААТААА	TCATCTCTCT	TGGCGTTAAA	CCAGTAAATT	9720
GGAATCGTTG	TCCTTGTAAG	TTTGGGTGTA	AAAATCTCAT	CACAGCTTCT	GCATGATATT	9780
TGTTAGTATT	ATAAGTCGCA	TTTAGTAATT	CAGACATCGT	ATAGCCTGCA	CACCAACCAT	9840
TGTTACCTTG	AGTTTCTCTT	ATCTTGAAAT	TCTCAAGTTT	ATTTATATAT	TGsTCGTTGT	9900
AAGTATAATT	ATTACTTTTA	AATTGACTAG	TTGGCATAGT	GACAGAAGCT	TTTTGCTTTA	9960
GTTGCGTTAC	ATTATTGCCA	GTAGGTATAC	TCTCAGTCTT	TnTnAACTnT	nTATCTTCTA	10020
GACGTGGTGT	TTTTAGTACT	AGTTTAGCTT	TATGATTTTG	AGTACCACAT	AGTAACCTTT	10080
TGAGTTGT						10088

(2) INFORMATION FOR SEQ ID NO: 33:

30

5

10

15

20

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7563 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

35

40

45

[(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

CGGAAACGNA CCCNATGCGT ATGCTTGACG TGCCAAAATT AAATACGAAG TTCATAGCTT 60 TGAGGTACCA GAAGAACATT TATCTGGTCA AGAAGTCGCA GNACTCATAC AAGCAAATGT 120 TAAAACAGTA TTTAAAACGC TTGTTCTAGA AAATACAAAA CATGAACATT TTGTATTTGT 180 TATCCCAGTA AGTGAAACTT TAGATATGAA AAAGGCAGCT GCTTTGGTTG GAGAGAAGAA 240 ATTGCAGCTT ATGCCTTTAG ATAATTTGAA AAATGTAACG GGATACATTC GTGGTGGGTG 300 TTCGCCTGTT GGTATGAAAA CATTGTTTCC AACAGTCGTT GACAAATCGT GTGAAAATTA 360 TAGTCATATC AGTGTGAGTG GTGGGCTTCG AACAATGCAA ATCACAATAG CTGTTGAGGA 420 TTTGATTACA ATAACTAAAG GCAAAATTGG AGCAGTTATC CATGAATGAT TAATAACAAC 480

55

	TGCCACACTC	CTTTTTGATT	GAATTAGCAT	TTTACGATCA	TAAACAGTCA	TTATAATTGA	600
	GTATTTGAAC	ATAAAAATGT	AATTTTATCG	TAACAATTTG	AGTGTTTGTG	ATTGTTTTTG	660
5	GTAATTTATG	ATTGAAAAGT	GAAAGCGTAC	TCATTATAAT	ACAAAGTGAG	ATGGGGTGAT	720
	GATGATAATT	ACTGaAAAAA	GACACGAGTT	AATATTAGAA	GAACTTTCGC	ACAAAGATTT	780
10	TTTGACTTTA	CAAGAATTAA	TAGATCGAAC	TGGTTGCAGT	GCTTCAACAA	TACGArGAGA	840
10	TTTATCTAAA	CTACAACAAT	TAGGGAAATT	GCAACGTGTG	CATGGTGGTG	CAATGTTAAA	900
	AGAAAATCGT	ATGGTTGAGG	CGAATTTAAC	TGAAAAATTA	GCAACGAATC	TTGATGAAAA	960
15	GAAAATGATT	GCTAAAATAG	CAGCTAATCA	AATCAACGAT	AATGAATGCT	TATTTATCGA	1020
	TGCTGGTTCA	TCTACATTGG	AGCTAATTAA	ATATATTCAA	GCGAAAGATA	TCATTGTGGT	1080
	AACCAATGGT	TTAACACATG	TAGAAGCTTT	ACTTAAAAAA	GGTATTAAAA	CAATTATGCT	1140
20	AGGTGGTCAA	GTTAAAGAAA	ATACACTTGC	TACGATTGGT	TCTAGTGCTA	TGGAGATATT	1200
	AAGACGATAT	TGTTTCGATA	AAGCTTTTAT	CGGGATGAAT	GGATTAGATA	TTGAACTTGG	1260
	ATTAACTACT	CCCGATGAGC	AAGAGGCATT	AGTTAAACAA	ACAGCAATGT	CATTAGCCAA	1320
25	TCAATCATTT	GTACTTATAG	ATCATTCTAA	GTTTAATAAA	GTATATTTTG	CTCGTGTACC	1380
	TTTGCTAGAA	AGTACGACAA	TCATCACATC	TGAAAAAGCA	TTAAATCAAG	AATCGTTAAA	1440
30	AGAATACCAA	CAAAAGTATC	ACTTTATAGG	AGGGACTTTA	TGATTTATAC	AGTGACTTTC	1500
	AATCCTTCAA	TTGACTATGT	CATTTTTACG	AATGATTTTA	AAATTGATGG	TTTGAACAGA	1560
	GCAACAGCAA	CATATAAATT	CGCTGGGGGG	AAAGGTATTA	ATGTCTCGCG	CGTCTTAAAG	1620
35	ACATTGGATG	TTGAGTCAAC	TGCCTTGGGA	TTTGCAGGTG	GATTTCCTGG	GAAATTCATT	1680
	ATAGATACAT	TAAATAACAG	TGCAATTCAA	TCGAATTTTA	TTGAAGTTGA	TGAAGATACA	1740
	CGTATTAATG	TGAAATTAAA	AACAGGACAA	GAAACAGAAA	TCAATGCACC	GGGTCCTCAT	1800
‡ 0	ATAACGTCAA	CACAATTTGA	ACAACTGTTA	CAACAAATTA	AAAATACAAC	AAGCGAAGAT	1860
	ATAGTTATTG	TTGCTGGAAG	TGTACCAAGT	AGTATTCCAA	GCGATGCGTA	TGCGCAAATT	1920
	GCACAAATTA	CAGCACAGAC	AGGTGCTAAA	TTAGTAGTCG	ACGCTGAAAA	AGAATTGGCT	1980
45	GAAAgCGTTT	TACCATATCA	TCCACTATTT	ATTAAACCTA	ATAAAGATGA	ATTAGAAGTG	2040
	ATGTTTAATA	CAACAGTGAA	CTCAGACACA	GATGTTATTA	AATATGGTCG	TTTGTTAGTT	2100
50	GATAAAGGTG	CGCAATCTGT	TATTGTCTCG	CTTGGCGGTG	ATGGTGCTAT	TTATATTGAT	2160
	AAAGAAATCA	GTATTAAAGC	AGTTAATCCA	CAAGGGAAAG	TGGTTAATAC	AGTTGGCTCT	2220
	GGTGATAGTA	CAGTTGCAGG	САТССТСССТ	GGAATTGCTT	CACCTTTAAC	GATTGAAAAA	2280

	CGGGACGCTA	TAGAAAAAAT	AAAATCACAA	GTTACGATTA	GCGTACTTGA	TGGGGAGTGA	2400
	AAATAATGAG	AGTAACAGAG	TTATTAACAA	AAGATACAAT	AGCAATGGAT	TTAATGGCAA	2460
5	ATGACAAAAA	TGGTGTTATT	GATGAGTTAG	TAAATCAATT	AGACAAAGCA	GGTAAATTAA	2520
	GTGATGTCGC	GTCATTTAAG	GAAGCGATTC	ACAATCGAGA	ATCACAAAGT	ACAACTGGTA	2580
	TCGGCGAAGG	TATTGCCATT	CCACATGCCA	AAGTGGCCGC	AGTTAAGTCA	CCAGCTATTG	2640
10	CGTTTGGTAA	ATCTAAAGCA	GGCGTAGATT	ATCAAAGTTT	GGATATGCAA	CCAGCACACT	2700
	TATTCTTTAT	GATTGcAGcG	CCAGAAGGTG	GCGCCCAAAC	ACATCTAGAT	GCTTTAGCTA	2760
15	AGTTGTCTGG	TATTTTAATG	GATGAAAATG	TACGTGAGAA	ATTATTACAT	GCTTCATCAC	2820
	CTGAAGAAGT	ACTAGCGATC	ATAGATGAGG	CTGATGATGA	AGTGACAAAA	GAAGAAGAGG	2880
	CAGAAGCTGA	AGCACAACAA	GTTGCAACTG	CAGAACAATC	ATCTAAACAA	TCTAATGAGC	2940
20	CATATGTGTT	AGCAGTAACT	GCTTGTCCAA	CAGGTATTGC	ACACACATAT	ATGGCACGTG	3000
	ATGCATTGAA	AAAGCAAGCG	GATAAAATGG	GTATTAAAAT	TAAAGTAGAA	ACGAATGGTT	3060
	CAAGCGGCAT	TAAAAACCAT	TTAACTGAAC	AAGATATTGA	AAATGCAACA	GGTATCATTG	3120
25	TTGCTGCTGA	TGTTCATGTT	GAGACGGATC	GCTTCGATGG	TAAAAATGTC	GTAGAAGTAC	3180
	CAGTAGCAGA	TGGTATTAAA	CGCCCAGAAG	AATTAATTAA	TAAAGCATTA	GATACAAGTC	3240
20	GTAAACCTTT	TGTTGCCCGT	GATGGTCAAA	GAAAAGGTAA	CTCAAATGAC	AGTCAAGAAA	3300
30	AATTAAGCCC	AGGTAAAGCA	TTCTATAAAC	ACTTAATGAA	CGGTGTTTCT	AACATGTTGC	3360
	CACTTGTAAT	ATCTGGTGGT	ATTTTAATGG	CAATTGTATT	TTTATTTGGA	GCAAATTCAT	3420
35	TTAATCCAAA	AAGCTCAGAG	TACAATGCGT	TTGCAGAGCA	GCTTTGGAAC	ATTGGTAGTA	3480
	AAAGTGCATT	CGCGTTAATC	ATTCCAATTT	TATCTGGATT	CATTGCACGT	AGTATTGCGG	3540
	ATAAACCTGG	TTTCGCTTCA	GGTCTTGTAG	GTGGTATGTT	AGCAATTTCA	GGTGGTTCAG	3600
10	GATTTATTGG	TGGTATTATT	GCAGGTTTCT	TAGCAGGTTA	CTTAACACAA	GGTGTTAAAG	3660
	CCATGACACG	TAAGTTACCA	CAAGCATTAG	AGGGATTAAA	GCCAACATTA	ATTTATCCAC	3720
	TATTAACAGT	GACGGCTACA	GGCTTATTGA	TGATTTATGC	CTTTAATCCA	CCAGCATCTT	3780
15	GGTTAAATCA	TTTGTTATTA	GATGGATTAA	ACAATTTATC	AGGTTCTAAT	ATTGTATTAT	3840
	TAGGTTTAGT	TATTGGCGCT	ATGATGGCGA	TTGATATGGG	CGGTCCATTC	AACAAAGCGG	3900
50	CATATGTTTT	TGCAACAGGT	GCGTTGATTG	AAGGTAATGC	AGCACCAATT	ACAGCTGCAA	3960
-	TGATTGGTGG	TATGATTCCA	CCGTTAGCAA	TTGCGACAGC	GATGTTAATT	TTTAGACGTA	4020
	************	NCANCANCOT.	CCTTCAATTA	тесета в ств	тстсатесст	አ ጥርጥር አጥጥጥ	4080

	TGATTGGTTC	AGGTATAGGT	GGCGCAATTG	CTTTAGGCTT	AGGTTCACGA	ATTACTGCGC	4200
	CACATGGTGG	TATTATTGTA	ATTGTTGGTA	CTGATGGTGC	ACACTTACTT	CAAACTCTTA	4260
5	TTGCACTTCT	AGTTGGCACA	TTAGTTTCAG	CATTAATTTA	CGGTTTAATC	AAACCAAAGT	4320
	TAACTGAAAC	AGAAATCGAA	GCTTCAAAAT	CAATGGACGA	GTAGTTTTAA	TGATGTAAAA	4380
10	TGATTGTTAG	CAAAGAGCTT	CATATTAAGT	TGTATGTTCA	ATGAATATAT	GTTAGTTTTA	4440
, 0	TATATCGTGT	TAACGGTAGC	TTATACAAAG	CTGTAAAAAC	ACTTTCTATT	AATTCAGTTT	4500
	TTATGAATTG	ATATGAAAGT	GTTTTTATTT	TTAGATAAAT	GAATGAAGAA	ATAGACACCA	4560
15	CAAATGTATA	GACTTTTTTA	ATATTTTGCA	AAAAGTTATG	CCAAACGAAG	CAGATATAGT	4620
	AAAATATGAG	TGTCTTAAAG	TGAAAATTTA	TAAATAAAGA	AGGGTTTATA	CGTGTCAGAA	4680
	TTAATTATAT	ATAACGGCAA	AGTTTATACT	GAAGATGGCA	AAATCGATAA	TGGTTACATT	4740
20	CATGTGAAAG	ATGGACAGAT	TGTTGCAATT	GGAGAAGTGG	ATGATAAAGC	AGCAATTGAT	4800
	AATGATACGA	CAAATAAAAT	TCAAGTGATT	GATGCTAAAG	GTCATCATGT	ATTACCAGGT	4860
	TTTATTGATA	TACATATTCA	TGGTGGTTAT	GGTCAAGATG	CAATGGATGG	GTCATACGAT	4920
25	GGCTTAAAAT	ATCTATCCGA	AAATTTGTTG	TCTGAAGGGA	CGACATCATA	CTTGGCCACT	4980
	ACAATGACGC	AATCGACTGA	TAAAATAGAT	AATGCACTTA	CAAATATTGC	TAAATATGAA	5040
3 0	GCGGAgCAAG	ATGTTCACAA	TGCAGCGGAA	ATTGTAGGTA	TACATTTAGA	AGGACCATTT	5100
	ATATCTGAAA	ATAAAGTTGG	TGCTCAACAT	CCGCAATACG	TTGTACGCCC	ATTTATCGAT	5160
	AAAATTAAAC	ATTTTCAAGA	GACTGCTAAC	GGATTAATAA	AGATTATGAC	GTTTGCACCT	5220
35	GAAATTGAAG	GTGCAAAAGA	AGCGCTTGAA	ACGTATAAAG	ATGACATTAT	TTTTTCAATT	5280
	GGTCATACAG	TAGCAACATA	CGAAGAAGCA	GTTGAAGCTG	TTGAGCGAGG	AGCTAAACAT	5340
	GTCACGCATT	TATATAATGC	AGCGACGCCA	TTCCAACATA	GAGAACCAGG	TGTTTTTGGA	5400
40	GCAGCATGGT	TGAATGATGC	TCTACATACC	GAAATGATTG	TTGATGGCAC	TCATTCTCAT	5460
	CCGGCATCGG	TTGCAATTGC	TTACCGTATG	AAAGGTAATG	AACGTTTTTA	TTTAATTACC	5520
	GATGCAATGC	GTGCAAAAGG	TATGCCTGAA	GGAGAATATG	ATTTGGGTGG	ACAAAAAGTA	5580
45	ACTGTTCAAT	CGCAACAAGC	ACGTCTTGCA	AATGGTGCGC	TTGCTGGTAG	TATTTTAAAA	5640
	ATGAATCATG	GGTTACGTAA	CTTAATATCA	TTTACAGGTG	ATACATTAGA	TCATTTATGG	5700
50	CGAGTAACAA	GTTTAAATCA	AGCCATTGCA	TTAGGTATCG	ATGATAGAAA	AGGTAGTATT	5760
	AAAGTAAATA	AGGATGCAGA	TCTTGTTATT	CTAGATGATG	ATATGAATGT	AAAATCTACA	5820
	ATAAAACAAG	GCAAGGTTCA	CACATTTAGC	TAATAAATAA	TCATAATTAA	ATGTATGCAA	5880

	TTTTCTGGGG	GTGTCTAAAT	GGGAAGGCGA	TAACATGTAG	TTGTAATTTA	AGTCATAGTG	5000
	ATAAATTTGA	ATGCGTGTTA	CCCATGAGTG	ACACATATAA	CATGGAGGTG	AATCCCTAGA	6060
5	AATAGGGAAT	TAATTGGAAA	CTTCGACCAT	AATTAGTTTG	ATTATATTTA	TTCTATTAAT	6120
	TGCATTAACC	ACTGTATTTG	TTGGTTCAGA	ATTTGCATTA	GTAAAAATTA	GAGCAACAAG	6186
10	AATTGAACAG	CTAGCAGATG	AAGGAAATAA	ACCTGCTAAA	ATAGTAAAAA	AGATGATTGC	6246
10	TAATCTAGAT	TATTATCTTT	CTGCTTGTCA	GTTAGGTATA	ACAGTAACAT	CTTTAGGGTT	6300
	AGGTTGGCTT	GGTGAACCAA	CGTTTGAAAA	GCTATTACAC	CCAATATTIG	AAGCAATCAA	6360
15	TTTACCAACT	GCATTAACGA	CGACGATTTC	GTTTGCAGTG	TCATTTATAA	TCGTTACGTA	6420
	TTTGCATGTA	GTACTTGGTG	AATTAGCGCC	TAAATCTATA	GCTATTCAAC	ATACTGAAAA	6480
	GCTTGCTTTA	GTATATGCAA	GACCATTGTT	CTATTTCGGT	AACATTATGA	AACCATTGAT	6540
20	TTGGCTGATG	AATGGTTCTG	CACGTGTTAT	TATTAGAATG	TTTGGTGTAA	ATCCTGATGC	6600
	CCAAACTGAT	GCAATGTCAG	AAGAAGAAAT	CAAAATTATT	ATTAACAATA	GTTATAATGG	6660
	TGGAGAAATC	AACCAAACTG	AATTGGCATA	TATGCAAAAT	ATCTTTTCAT	TCGATGAAAG	6720
25	ACATGCAAAA	GATATAATGG	TACCTAGAAC	TCAAATGATT	ACACTAAATG	AACCTTTTAA	6780
	TGTAGACGAA	TTACTAGAAA	CAATAAAAGA	ACATCAATTT	ACGCGTTATC	CAATTACTGA	6840
30	TGATGGTGAT	AAAGACCACA	TTAAAGGATT	TATTAACGTC	AAAGAATTTT	TAACTGAATA	6900
	CGCTTCTGGA	AAAACGATTA	AAATAGCAAA	CTATATACAT	GAGTTGCCAA	TGATTTCAGA	6960
	GACAACACGT	ATCAGTGATG	CATTAATTAG	AATGCAACGT	GAACATGTAC	ATATGAGTCT	7020
35	TATTATAGAT	GAATATGGTG	GAACGGCAGG	TATTTTAACG	ATGGAAGATA	TTTTAGAAGA	7080
	AATCGTTGGA	GAAATTCGTG	ATGAATTTGA	TGATGATGAA	GTGAATGATA	TCGTTAAAAT	7140
	TGATAATAAG	ACATTCCAAG	TAAATGGCAG	AGTACTATTG	GATGATTTAA	CTGAAGAGTT	7200
40	CGGTATAGAA	TTTGATGACT	CTGAGGATAT	TGATACGATA	GGTGGATGGT	TACAATCTCG	7260
	TAATACCAAT	TTACAAAAAG	ATGATTACGT	GGATACAACT	TATGATCGCT	GGGTTGTTTC	7320
	AGAAATCGAT	AACCACCAAA	TTATTTGGGT	GATATTAAAC	TATGAATTTA	ATGAAGCGAG	7380
45	ACCTACTATC	GGACAGTCTG	ATGAAGATGA	AAAATCAGAA	TAGATATTAA	TATATAAACC	7440
	AACTAAGAAT	GATTTAATTC	ATTTTTGGTT	GGTTATTTTT	TTGACTAAAA	TTAAnGAAAA	7500
50	GTGAAAATAG	TATTGGAACT	CAATATCTTT	AATGATTTAA	TGAATAAnTT	TTATTGAAAG	7560
•	CGA						7563

(2) INFORMATION FOR SEQ ID NO: 34:

(A) LENGTH: 3492 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

10	TTATATCAAC	TTCATGGCGG	AACCATTGAT	GACCCATTAG	ACGAAACAAT	AAGCGCATTT	60
	satgaattga	AACAAGAAGG	AATTATACGT	GCTTACGGTA	TTTCTTCTAT	TCGCCCAAAT	120
	GTAATTGATT	ATTATTTAAA	ACATAGTCAA	ATCGAAACGA	TAATGTCTCA	ATTCAATTTG	180
15	ATTGATAATC	GTCCAGAATC	ATTATTAGAT	GCAATTCACA	ACAATGATGT	TAAAGTATTG	240
	GCAAGAGGAC	CTGTGTCTAA	AGGATTATTA	ACTTCAAACA	GTGTTAATGT	GCTCGACAAT	300
	AAATTTAAAG	ATGGTATTTT	TGATTATTCT	CATGATGAAT	TGGGTGAAAC	AATAGCCTCT	360
20	ATTAAAGAAA	TTGAAAGTAA	TTTATCTGCA	TTGACATTTA	GTTATTTAAC	ATCACATGAC	420
	GTGCTTGGTT	CCATCATTGT	AGGTGCAAGT	AGCGTCGACC	AATTAAAAGA	AAATATTGAA	480
25	AACTATCATA	CTAAAGTTAG	TTTAGATCAG	ATTAAAACAG	CAAGAGCTCG	TGTAAAGGAT	540
	TTGGAATATA	CCAATCATTT	AGTGTAGAAG	TCATTTTCAG	TAATAAAAAC	AGCAGCATGA	600
	GGCGTTTCAT	TATAAAAATG	CCTTACTGCT	GTTGTTTATG	TACAATTCGC	TATAATTTAT	660
30	GATTATGATT	ACTCACTTAT	GATAGAAATT	AAAGCGTTGT	CCTCACGCAT	CAGTATTTAG	720
	TAATTTCGCC	TTGCGGCATT	GCCTTAAGCA	AACTTCTGCC	ACTTCATCTC	TTAATAATTT	780
	TATTAAAACA	TCTTTCTATA	TTTCACTTCG	CATGTTGATT	CATCATTATT	AGTTATTATT	840
35	TGTACACCCA	GCACATTTCC	TTGCAACACA	AGTAGTTTGA	ATTTTTCACA	AGTATAATAT	900
	AATGTACCGT	CTGAAATTTG	GTCTACAGAA	ATATCGCCTA	AAATATCCAG	CACTGTAAAT	960
	TCTTCAAATA	CTGATAGTTG	TTCCGCATAT	CGTACACAAA	GTCTTACCAC	ACTCTCCGAT	1020
40	TGACAGTTCA	TTGCCATCCC	ACCTATTTAT	GCTTTATTTT	TAAATAATTT	AGGGAAACAT	1080
	CGTTCAAAAA	ATCTAGGCGC	AATTTGATAC	ATTTTCAACG	CATGATGCAT	CCATTTAGGC	1140
4 5	CGATTAATTT	CCAATTGTTT	TGTTTTAATG	CCATAAATGA	TATCTTCTGC	AAGCTGATTA	1200
	GCATCAAGCA	TAATTTCCCC	CATCTTTTTA	gCATACTTCA	TTGATGGGTC	GGCTTTTTGA	1260
	TGAAAAGGTG	TATCAATCGG	GCCAACATTA	ACTGTCATGA	TATGTAAGTT	TGGTGACTCT	1320
50	AGTCTTAAAG	CATTCATTAA	TGCATAAAAC	CCTGCTTTCG	ATGCCCCATA	ATGTGCAGCA	1380
	TTTGCTTGTG	TGGAAAATGC	AGCTTGACTT	GAAATACCTA	CAATATGTGC	GTTAGATGTT	1440
	AAATATGGTC	TCAACACAGT	ATATAAAACA	TTAAAACTAA	TTAAATTAAG	CTGATACGTT	1500

	TAAATGAATC	CATCGAATGA	TGTATTGTCT	TCAAATIGCA	GTGCCTGTAT	CGACTTCAAA	1620
	TCATTTAAGT	CACAAGGAAT	AACATTTATA	GTTTTCCCCA	ATTCCTGTTC	AAAGATTCTA	1680
5	GTTGCTTTAT	CAACATCACG	CACCAACAAC	GTTACATGCA	CTTTATTTTC	TAGTAACTTT	1740
	CGGACAATCG	ATAAACCTAA	ACCACTCGTA	CCACCAGTCA	CTATAAAATG	TTGTCCTTTC	1800
10	ATCAATTAAC	CTTCCTTTTC	AATTATATAG	AATGCAATTT	ATCAACTTTA	CATAATTGAG	1860
	ACAAGTTGAT	TATCTTTCCT	AATATATATA	CAATAATAAG	AAAATATAAC	ATACAAATCA	1920
	AAAACTAAAG	GGATGTGaCG	TTAATGrAAC	TCGTATTTTA	TGGAGCTGGT	AATATGGCAC	1980
15	AAGCTATATT	TACAGGrATT	ATTAACTCMA	GCAACTTAGA	TGCCAATGAT	ATATATTTAA	2040
	САААТАААТС	TAATGAACAA	GCTTTAAAAG	CATTCGCTGA	AAAACTAGGT	GTTAACTATA	2100
	GTTATGAtGA	TGCGACATTA	TTAAAAGATG	CAGAYTATGT	ATTTTTAGGT	ACCAAACCAC	2160
20	ATGACTTTGA	TGCTCTAGCA	ACACGCATCA	AACCACATAT	TACAAAAGwC	AATTGCTTCA	2220
	TTTCAATTAT	GGCAGGTATT	CCGATTGATT	ATATTAAACA	ACAATTAGAA	TGCCAAAATC	2280
	CaGTTGCTAG	AATTATGCCA	AACACAAATG	CGCAAGTTGG	ACACTCTGTT	ACTGGCATTA	2340
?5	GTTTTTCAAA	CAACTTTGAC	ССТАААТСТА	AAGATGAAAT	TAACGATTTA	GTTAAAGCAT	2400
	TTGGTTCTGT	AATTGAAGTA	TCAGAAGATC	ATTTACATCA	AGTAACAGCT	ATCACCGGAA	2460
30	GCGGCCCAGC	ATTTTTATAT	CATGTATTCG	AGCAATATGT	TAAAGCTGGT	aCsAAACTTG	2520
, o	GTCTAGAAAA	AGAACAAGTT	GAAGAATCTA	TACGCAACCT	TATTATAGGT	ACAAGTAAGA	2580
	TGATTGAACG	TTCAGAt TTG	AGCATGGCTC	AATTAAGAAA	AAATATTACC	TCTAAAGGTG	2640
35	GTACGACACA	AGCTGGCCTT	GATACATTGT	CACAATATGA	TTTAGTATCT	ATTTCGAAG	2700
	ATTGTCTAAA	CGCTGCCGTC	GACCGTAGTA	TTGAACTTTC	TAATATAGAA	GACCAATAAA	2760
	AACAĀACCCG	CCAACACATG	TATGCATCAT	CGCAAGCACT	GTGTTTGACG	GGTTATTTTT	2820
10	ATAATTTATT	GTTATTTGGC	AAGCATTGTT	TATTACTTTG	TCATTAGATT	TTAAAACTAT	2880
	CAAAATCTTT	TACAAAATTA	AAATTAGGTG	TATCTTCATT	TTGTATCAAT	GTTTGATAAA	2940
	TTTCATTTAT	ATCTTCTGTA	TTATAGCGAT	TGCTCAAATG	TGTAATCAAC	GTACGTTTAA	3000
15	CATTGGCTTC	TTTTATCAAT	GCAAATACGT	CTTCAATATG	GCTATGATGA	TAATTGTTGG	3060
	CTAAATGCTT	TTCACCATCT	ATATAGGTCG	CTTCATGTAC	CATCACATCA	GCATCTCTAG	3120
	AAATCACACG	TTCATTAGAA	CATGGTTTTG	TATCACCAAA	AATTGCTACA	ACTGGACCCT	3180
50	GTTTGGACTC	АССТСТАААА	TCTTTTGATT	GATAAACTTG	ACCATTATGT	TCAAATGTAT	3240
	CATCAGATTT	יים בייירידינ <i>ם</i>	татттассас	СТССТТСААС	ACCAATCTTT	тттаассстт	3300

	CATGATTAAG TAAATGCGCC TCTACAGTAA AACCATCCAT GATGATATGT CAGATGATCA	3420
	TCGATTTCAA TATATGLAAT TGGATAGTTT AAATGTGACT CTGATAAATT CATAGACATT	3480
5	TCCACATATG CT	3492
	(2) INFORMATION FOR SEQ ID NO: 35:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1973 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
	ATCTAGCGGT ACAAGCGTCT TGGAGGCTAG TATGTTGAAC ATTGTAAACC CTGAAGATCA	60
20	CTTCGTTGTC ATTGTTTCAG GTGCCTTTGG TAACCGATTT AAACAAATTG CACAAACTTA	120
	TTACAAAAAT GTGCATATTT ATGACGTAAC ATGGGGAGAA GCTGTAGATG TCAAAGATTT	180
	CATCAATTTC CTTTCAACTT TAAATGTTGA AGTTAAAGCA GTATTTAGTC AATATTGCGA	240
25	AACATCTACG ACAGTGCTAC ACCCTATTCA CGAGTTAGGA AATGCCATTA ATCAATTTAA	300
	TAGTAATATT TATTTTGTAG TTGACGGCGT AAGTLGCATT GGTGCTGTTG ATGTTGACAT	360
	TAACAAAGAT AAAATTGATG TACTTGTTTC TGGTAGTCAA AAAGCAATTA TGTTACCTCC	420
30	AGGATTAGCT TTTGTAGCTT ATAGCCACCG TGCAAAAGAA CATTTCAAAG AAGTAACTAC	480
	GCCAAAATTT TATCTAGACT TAAATAAATA CATTTCGTCA CAAGCTGACA ATTCTACACC	540
35	GTTCACACCA AATGTGTCTT TATTTAGAGG TGTAAATGCA TACGTTGAAA CCGTAAAAGC	600
	AGAAGGTTTC AATCACGTAA TAGCACGACA CTATGCAATT AGAAATGCAT TAAGAAGCGC	650
	CTTAAAAGCA TTAGATTTAA CTTTATTAGT CAATGATAAA GATGCATCTC CAACGGTTAC	720
10	AGCATTCAAA CCTAATACAA ATGATGAAGT GAAAATAATC MAAGATGAAC TTAAAAATmG	780
	CTTTAAAATA ACAATTGCng GTGGTCAAGG CCATCTTAAA GGTCAAATTT TNAGAATTGG	840
	TCATATGGGG AAAATTAGTC CTTTCGATAT TTTATCGGTA GTATCTGCTT TAGAAATTAT	900
1 5	TITAACTGAA CACCGTAAAG TTAACTATAT CGGTAAAGGT ATATCAAAAT ATATGGAGGT	960
	TATTCATGAA GCAATTTAAT GTACTCGTTG CAGATCCCAT ATCAAAAGAT GGTATCAAAG	1020
	CATTATTAGA TCACGAACAA TTCAATGTAG ATATTCAAAC TGGCTTGTCC GAAGAAGCAT	1080
50	TAATCAAAAT TATACCTTCA TACCATGCTT TAATCGTTCG TAGTCAAACT ACGGTTACTG	1140

55

AAAATATCAT AAATGCTGCT GATTCTTTAA AAGTAATCGC ACGCGCCGGT GTTGGTGTAG 1200

	GTAATACGAT TICAGCTACT GAACATACAC TGGCAATGTT ATTATCAATG GCACGAAATA	1320
	TTCCGCAAGC ACACCAATCA CTTACAAATA AAGAATGGAA TCGAAATGCA TTTAAAGGTA	1380
5	CTGAGCTTTA TCATAAAACA TTAGGTGTCA TTGGTGCTGG TAGAATTGGT TTAGGTGTTG	1440
	CTAAACGTGC GCAAAGTTTC GGAATGAAAA TACTAGCTTT TGACCCTTAC TTAACGGATG	1500
10	AAAAAGCAAA ATCTTTAAGC ATTACGAAGG CAACAGTTGA TGAGATTGCC CAACATTCTG	1560
, 0	ATTTCGTTAC ATTACATACA CCACTAACAC CTAAAACAAA AGGCTTAATT AATGCTGTCT	1620
	TTTTTGCCAA AGCAAAACCT AGTTTGCAAA TAATCAATGT GGCACGTGGT GGTATTATTG	1680
15	ATGAAAAGGC GCTAATAAAA GCATTAGACG AAGGACAAAT TAGTCGGGCA GCTATCGATG	1740
	TGTTTGAACA TGAACCTGCA ACTGACTCGC CTCTTGTTGC ACATGATAAA ATTATTGTTA	1800
	CACCTCATTT GGGTGCTTCA ACAGTCGAAG CTCAAGAAAA AGTGGCAATT TCTGTTTCAA	1860
20	ATGAAATCAT CGAAATTTTA ATTGATGGTA CTGTAACGCA TGCAGTGAAT GCACCTAAAA	1920
	TGGACTTAAG CAATATAGAT GATACTGTAA AATCATTCAT CAATTTAAGC CAA	1973
	(2) INFORMATION FOR SEQ ID NO: 36:	
25	(2) INFORMATION FOR SEQ ID NO: 36:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25 30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	60 120
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36: GGTGTTTCAG ATGTCACTGG TTGATTTTTA ATTGTAGACG GGTATTTTGG GCTTTCGCCA	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36: GGTGTTTCAG ATGTCACTGG TTGATTTTTA ATTGTAGACG GGTATTTTGG GCTTTCGCCA TATTTATTTG CCGGCTTACT GTCAAAGCAT AGGAATACTA TCATAACAAT TGTTAGGCCT	120
30 35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36: GGTGTTTCAG ATGTCACTGG TTGATTTTTA ATTGTAGACG GGTATTTTGG GCTTTCGCCA TATTTATTTG CCGGCTTACT GTCAAAGCAT AGGAATACTA TCATAACAAT TGTTAGGCCT AAATAAACAA AATAAAGAAG TACTAACAAA ATATTAAGAC CCATCGGCAT TAATGTAAAA	120 180
30 35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36: GGTGTTTCAG ATGTCACTGG TTGATTTTTA ATTGTAGACG GGTATTTTGG GCTTTCGCCA TATTTATTTG CCGGCTTACT GTCAAAGCAT AGGAATACTA TCATAACAAT TGTTAGGCCT AAATAAACAA AATAAAGAAG TACTAACAAA ATATTAAGAC CCATCGGCAT TAATGTAAAA TCACTGTCAT AATAACTATC GATAATCTGT AATACTATAT AAAATATAAT ACTGAATACT	120 180 240
30 35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36: GGTGTTTCAG ATGTCACTGG TTGATTTTTA ATTGTAGACG GGTATTTTGG GCTTTCGCCA TATTTATTTG CCGGCTTACT GTCAAAGCAT AGGAATACTA TCATAACAAT TGTTAGGCCT AAATAAACAA AATAAAGAAG TACTAACAAA ATATTAAGAC CCATCGGCAT TAATGTAAAA TCACTGTCAT AATAACTATC GATAATCTGT AATACTATAT AAAATATAAT ACTGAATACT GTCATAATCA TTGGAAATAA CATTGTTCTT GATATATCGT GAAATCTTCG AACGCACAAC	120 180 240 300 360
30 35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36: GGTGTTTCAG ATGTCACTGG TTGATTTTTA ATTGTAGACG GGTATTTTGG GCTTTCGCCA TATTTATTTG CCGGCTTACT GTCAAAGCAT AGGAATACTA TCATAACAAT TGTTAGGCCT AAAT&AACAA AATAAAGAAG TACTAACAAA ATATTAAGAC CCATCGGCAT TAATGTAAAA TCACTGTCAT AATAACTATC GATAATCTGT AATACTATAT AAAATATAAT ACTGAATACT GTCATAATCA TTGGAAATAA CATTGTTCTT GATATATCGT GAAATCTTCG AACGCACAAC GCTAAATTTG GAATAAACGT TGCCAAACTA TAGACAAAAG TATACACAGA TGTAAGGATA	120 180 240 300 360
30 35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36: GGTGTTTCAG ATGTCACTGG TTGATTTTTA ATTGTAGACG GGTATTTTGG GCTTTCGCCA TATTTATTTG CCGGCTTACT GTCAAAGCAT AGGAATACTA TCATAACAAT TGTTAGGCCT AAAT&AACAA AATAAAGAAG TACTAACAAA ATATTAAGAC CCATCGGCAT TAATGTAAAA TCACTGTCAT AATAACTATC GATAATCTGT AATACTATAT AAAATATAAT ACTGAATACT GTCATAATCA TTGGAAATAA CATTGTTCTT GATATATCGT GAAATCTTCG AACGCACAAC GCTAAATTTG GAATAAACGT TGCCAAACTA TAGACAAAAG TATACACAGA TGTAAGGATA ATCATCAATA TACTCATAAC TATTAATGTT TCGTTATCCG CCGCTATAGA AATAAAGAAT	120 180 240 300 360 420

329

TCGTTAATCA TATTTATATT TTTAATTATT GTTACCGTTA TAATTTACAA GATTCATTAT 660

	GTAAAATGAA	AACCCGCTAC	AAGTACACAT	CTATATGGAG	ACTCATTTGA	AAGTCAACGC	780
	TTCGTTAACT	АТАСТААААА	TATGTCATAC	TGCAATGTTC	ACGTTTAAAA	GAGTCTCAAT	840
5	CTATGCAAAT	AAAATATTCC	ATAACAAAGT	ATATACTTTA	CATTTTTATA	ATTCTTAACA	900
	ATACTATTTT	ATCAAACATT	TACCACAATA	AAAATATCTT	TTTCATTTTT	ATTTAAATTA	960
10	ATCATATAAT	TGCGAGGAGA	ATATTATGGA	TTTCGTTAAT	AATGATACAA	GACAAATTGC	1020
	TAAAAACTTA	TTAGGTGTCA	AAGTGATTTA	TCAGGATACC	ACTCAAACGT	ATACAGGCTA	1080
	CATCGTGGAA	ACGGAAGCTT	ACTTAGGTTT	GAATGATCGT	GCGGCTCATG	GCTATGGCGG	1140
15	TAAAATAACA	CCTAAAGTCA	CGTCATTATA	TAAACGTGGT	GGTACAATTT	ATGCACATGT	1200
	CATGCATACG	CATTTACTCA	TTAATTTTGT	AACAAAATCT	GAAGGTATAC	CTGAAGGCGT	1260
	ACTTATCCGC	GCAATTGAAC	CAGAAGAAGG	TTTATCCGCT	ATGTTCCGTA	ACAGAGGTAA	1320
20	GAAAGGCTAC	GAGGTAACGA	ATGGCCCAGG	AAAATGGACT	AAGGCATTTA	ACATTCCACG	1380
	GGCTATCGAT	GGCGCTACGT	TAAATGACTG	TAGATTGTCT	ATTGATACTA	AGAATCGTAA	1440
	ATATCCTAAA	GATATTATTG	CTAGTCCACG	AATCGGTATT	CCAAATAAAG	GTGATTGGAC	1500
25	ACATAAATCT	TTACGTTACA	CAGTGAAAGG	TAATCCATTT	GTGTCTCGCA	TGCGTAAATC	1560
	AGATTGTATG	TTTCCCGAAG	ATACTTGGAA	ATAAATGCCA	TCTTTCATTG	ATTACTATCA	1620
30	TGAAAATGAA	ATCTATCTCC	TTATAAGTCA	ATCAATCGTG	CCGTCAACAT	GCGGATGGGT	1680
30	TGATTGTTTT	TCTTTGTATC	CATCATATTT	TTTGATTCAT	CTCCTCTTAT	TGAACTTGTT	1740
	CTTAATTATA	AAATATAACA	ATAGAATTAT	TTATAATTAT	TAAATTTAGA	TGCATTAATA	1800
35	TTATTGATAT	TATTTTCAAA	AACTAGAAAT	ATTGATTTGT	TGCATGTATA	ATGTTAAAAG	1860
	CGCCCTTTTA	TAACGCTTAC	ATATAAAAGC	TTATTTAGGG	AGAGGGATAT	TCAACAAGGG	1920
	GGATTTGAAA	ATGATAGAAC	TTAATGCAAT	TACAACATTA	TGTTTAGCTT	GTATCCTTTA	1980
10	TTTACTTGGT	AAGGCTATCG	TTAATCACGT	TAATTTTTTA	AAACGTATTT	GTATACCAGC	2040
	ACCAGTGATT	GGCGGCTTAA	TCTTTGCTAT	TTTAGTTGCG	GCTTTGGATT	CATTTGGCAT	2100
	GGTTAAGATT	AAATTAGATG	CTTCATTCAT	TCAAGATTTC	TTCATGTTAG	CATTCTTTAC	2160
15	GACAATCGGT	CTTGGTGCAT	CATTGAAATT	ATTTAAATTA	GGTGGCAAAG	TCTTGCTATT	2220
	ATACTTTATG	TTTTGTGCTA	TCATTTCAGT	CATTCAAAAC	ATAGTTGGTG	TATCACTAGC	2280
	AAAAGTATTA	AATATTAAAC	CTTTGTTAGG	ATTAACAGCA	GGTTCCATGT	CTATGGAAGG	2340
50	CGGTCATGGT	AATGCTGCTG	CTTATGGTAA	GACAATTCAA	GATTTAGGTA	TTGATTCGGC	2400
	ACTGACAGCC	COTTOTTCCAC	Curce y Curum	AGGTCTTGTA	תיייוייים איניפים	TTATCCCTCC	2460

	ATTTAAAGAT	TATAGCCAAG	TAGCATATAA	CGAACATITA	CATAGTAAAT	TTAATGCCAC	2580
-	TGAAGTATTC	TTCATTCAAT	TTACAATCGT	TGTATTCTGT	ATGGCAGTTG	GAAGTTATTT	2640
5	CAGTCATTTG	TTTACAGCTC	AAACAGGGAT	TAATGTTCCA	ATTTACGTTG	GCTCATTATT	2700
	TGTAGCTGTT	ATTGTCCGAA	ATATCTCTGA	AAGTTTTAAT	TTTAATATTG	TAGATTTAAA	2760
10	AATTACTAAT	CAAATTGGCG	ATGTCGCATT	AGGTATTTTC	TTATCTCTTG	CGCTAATGAG	2820
	CATTCAATTA	ATCGAAATTT	ATAAACTTGC	TATACCTCTT	ATTATTATCG	TTTTAGTTCA	2880
	AGTTGTCGTT	ATGATTTTAT	TTGCTGTTTT	AATTTTATTT	AGAGGTTTAG	GAAAAGATTA	2940
15	TGATGCTGCA	GTAATGGTAG	GTGGTTTTAT	CGGTCATGGG	CTTGGTGCAc	GCCAAATGCC	3000
	ATGGCAAATT	TAGATGTTAT	TACTAAAAAA	TATGGAAACT	CACCTAAAGC	ATATTTAGTT	3060
	GTACCTATTG	TTGGTGCATT	CTTAATCGAT	TTAATTGGTG	TTATAGTCAT	TATGGGATTC	3120
20	ATACAATGGT	TTAGTTAAAC	ACCAAACTCA	TAAATAAAAG	AGGAGGCCTT	CGCCTCcTcT	3180
	TTTATTTATC	CTCGATGTAT	ATTCAAGTTA	CGTTGTTCTA	TCCATGACAA	TATTTCCGGA	3240
	CTAAATACGA	TTTGTTTTTG	TGTTAAGTCG	TCAATATTTT	TAGCATCTAA	CATCGTCATT	3300
25	ATTGATTICA	TGTGTTCAAT	AAATGATTCT	ACATAAGCTA	CTGTATGTGC	AATGCCATTA	3360
	TTTTCAACTT	GATTTAAAAA	CGGACGTGAC	ATACCAGTTG	CCTTTGCACC	AAGTGCTAAA	3420
30	CTTTTAATTG	CATCGAGTGG	TGTACGTAAA	CCACCACTCG	CGAAAACTGA	AATTTCGCTT	3480
	TGATAAGCCG	TTGTTTCAAG	TAATGACTCA	ACTGTAGACT	GTCCCCATGA	TGATAAGTAA	3540
	TCCATATCTT	TATTTGCACG	ACGTTCATTT	TCAATATCTA	CAAAGTTAGT	ACCACCTTTG	3600
35	CCACTAACAT	CGACATACTT	GACGCCTATT	TGTTGTAAGT	CATGCATTAA	TTCTTTGCTC	3660
	ATACCAAATC	CAACTTCTTT	TATAATGACT	GGAACAGACA	CTCGTGATAC	AATCGACGCT	3720
	ATATTATCTA	ACCAAGTCAC	AAATTCACGA	TTCCCTTCAG	GCATAACTAA	TTCTTGAGGA	3780
40	GAATTAACAT	GGATTTGTAA	CGCTTGTGCC	TCAAGTAATT	CAACTGCTTC	CAAAGCCTTT	3840
	TCTACTGGTA	CGTCCGCACC	AACATTGCTA	AAAATCATGC	CTTCAGGATT	CATTTTTCGC	3900
	GCAATCGTAA	ACGTCTCAGC	CATGCGTGGA	TTTCTCAATG	CCGCATGTGT	TGATCCAACT	3960
45	GCCATCGCTA	AGCCAGTTTC	TCTTGCAACT	ACAGCTAGCT	TTTCATTGAT	GTTTTTCGTC	4020
	CACTCGCTAC	CACCCGTCAT	TGCATTAATA	TAAACCGGAT	ATGCCATCGT	TAAGTCAGGC	4080
50	GTCTGTGATG	TCAAATCGAT	ATCATTTACA	TTAATTGATG	GGATAGAATG	ATGCACAAAA	4140
	CGCATCTTAT	CAAAATCTGA	ATGCATTGCG	TCAGATTGGG	CCATTGCTAT	TTCAACATGT	4200
	TCZ TTTTTTC	TCTGTTCTCT	ттсьвььтсь	СТСАТСАТТА	A A COTTA COTT	THE CHENTER	4260

	ATTACAGCTA	AGCAAATATA	ATATCCATAA	TGTAAATGTA	ATGCCGGCAT	ATTTACAAAG	4380
-	TTCATACCAT	AAATCCCAGC	TATGAATGTT	AACGGTGAAA	ATATAACTGA	TACTAATGTC	4440
5	AGTACTTGCA	TAATACTATT	CATTCTAAAT	GACGTGTATG	ACTCAAAATT	TTCTCGTATT	4 500
	TCGTTTGTCA	TTTCTTGAGC	AGTACGAATG	ATATTACGTT	GCTTAATCAA	GTGGTCATCG	4560
10	ATATGTTGAA	TGTATAGCGA	ATGTTTATTA	TCTATAATCA	AATCACCATT	TTGTTTCATT	4620
	GTATCAATTA	GCTCTTGCAT	AGGAAACAGT	ACACGTTTTA	CTTTAATCAA	ATCCGAACGT	4680
	AACTTAAAGA	CACTATCCAT	GACCATTTTA	TTAAAGCGAT	CATCTACATG	GCGGTCTTCA	4740
15	AAATGATAAA	CACTATCTTC	AAGTGCATAT	ACAAAGTTGA	AATATTTATC	AACCATCATA	4800
	TCTAAAATTA	ATATGACGAC	ATCTGCACAA	TCTAATTCTG	CATCTAATGT	ATTCATATAC	4860
	TTATAGACTA	CTTTATTTAA	TGATTCCAAC	GTTTGATGAT	GATATGTTAC	TAATACATTG	4920
20	TCTTGTATAA	AAATATTTAG	TGCTATTGGT	GAATAGTTTG	ACCCCATAAT	ACTATGGAAT	4980
	ACTAAGTATT	GATAATCTTT	ATAAGATTTA	TATTTAGCTC	GTGGCATACC	GTTAATTGCA	5040
	TCATCCACTT	CTAAATCATT	AAAATTAAAA	TGTGCTTTAA	ACCATTCATT	TTCTTGTTCA	5100
25	TTCGGTTCAT	CAAAATCATA	CCAAACAATA	GTCGCATCTT	TTGGTATCTC	TTTGATATCA	5160
	TCAACTACTT	TAAACGGTTC	ATATGTAGTT	TGATACCGTA	TCTTTAAAGC	CATCGATACT	5220
3 <i>0</i>	CCCCCTAAAT	AACGAATTCT	CTATTATTTT	ATCATGAATT	AAATAACGTG	TATGTCTTAA	5280
	TTTATTTTAG	TATGATAGTC	ACTAAGGAGA	TGGTTATTAT	CAAACAACTT	TTTACACATA	5340
	CTCAAACCGT	AACATCTGAA	TTCATTGACC	ATAACAATCA	TATGCATGAT	GCAAATTATA	5400
35	ATATCATTTT	TAGTGACGTC	GTGAATCGTT	TTAATTACAG	CCACGGTCTT	TCTTTAAAAG	5460
	AACGCGAAAA	TTTAGCATAT	ACGCTATTTA	CACTAGAAGA	ACATACGACA	TACCTCTCAG	5520
	AATTGTCTCT	TGGCGATGTA	TTTACTGTTA	CTTTATATAT	TTATGATTAC	GATTATAAGC	5580
10	GGTTGCATTT	ATTTTTAACA	TTAACTAAAG	AAGATGGTAC	ACTAGCATCA	ACAAATGAAG	5640
	TAATGATGAT	GGGAATTAAT	CAGCACACAC	GTCGTTCTGA	TGCTTTTCCT	GAATCATTTT	5700
	CAACACAAAT	AGCACACTAT	TATAAAAATC	AATCAACTAT	CACTTGGCCT	GAACAATTAG	5760
15	GACATAAAAT	AGCAATTCCA	CACAAAGGAG	CATTAAAATG	ACAGATGCAT	TACAACAAAA	5820
	GATTCATATC	GAATTACTAG	ATTTATTAGA	TGATGTTAAG	TTTGAATTAA	CAGAATTAAA	5880
50	TGCACAAAAA	GGGTTATACA	TTAACGGACC	AGCAAATCAG	CTACTTAAGC	GTGGCGTGCA	5940
	TATGGCTTAT	GTTCAAGGAC	AAAAGCAAGC	CATCGATAAT	ATTATGACTA	TTGTGGAACA	6000
	ACACCTTGAA	AGATCAACAT	TTCCTAGAAC	ATTATCATAA	ΤΑΑΑΑΤ	GAGGTTGCTC	6060

	ATAATTTTTT	AGATCAATTT	TATCAAATTA	AAGGGCAATA	CTTTATCATC	ACACATATCA	6180
	ATACACTTAT	TGGTGATTTT	CACTCAGAAG	CTCATTAACA	ATTAGTCTAT	ATAACCCTTG	6240
5	CTATATTTTC	AAAAACAAAA	CCCAATTACG	TTTTCATGTC	AAATATCATC	TTGCATGAAA	6300
	TCGTAACTGG	GTCATTTATA	TGTTATTAGT	TATTTTGTGT	TACATCCTCA	TCTATCGATT	6360
10	TGGCAATTTG	TTTAATAGCT	TTATGTGATT	GTCTAATTGG	ATAAATTGGA	AAATCATGTA	6420
	CCATCTTAGG	ATAATCATAA	AACTCAATGT	ATTGATGATG	TTGCAACATC	ATTTGTTCAA	6480
	ATAGCTTCAT	ATCAGGATGT	GTCATTTCAC	GTCCACCACC	AAACATATAA	ACTGGTGGCA	6540
15	ATCCTTCTAT	TGTGCCATTA	ATTGGCGATA	TGCGCTTATC	TGTTAATGGT	AGGCCATTCG	6600
	CCCATTTTTT	CATAATCTCA	TTGACACCAA	ACTGACTTAG	aACCGCATCT	TGTTCGATTA	6660
	AGGCGTCCGA	AATATCTTTA	TTAGATAGTG	TTGCATCTAA	AATTGGTGAG	ATTAAATACA	6720
20	ATTTATTCGG	TAATGGCTGT	TGATTAkCTA	AAAGAGATTG	TACAAAGGAT	AATGCCAGTG	6780
	CACCACCTGA	ACCATCACCC	ATGACTACGA	CATTTTGATG	TCCTACTTCA	GATACTAATT	6840
	Gatcataaac	ACGTTGTATC	GCTTGGnAAA	GTATCGTCaA	TATGNAAACT	CTGGTGTCTT	6900
25	TGGATAGATA	GGCAGTACAA	CCTCATATAA	TGtACTTAAA	GTGATTTTAT	CCCAACAATC	6960
	TCCAATGGAA	CGGTGATGGT	TGTAGTGCAT	TGAATCCACC	GTGAATATAT	AAAATTTTCT	7020
30	TATCAATTTG	ATGTCTGAAA	TTAAAGCGAA	AGACTTGCAT	ATCATCTAAT	GACAATTTTT	7080
	CTAAATTTGC	TTTAACATTT	AATGTTGAAG	GCTGCTTATG	TTTTTTTCTA	TTTTCAATTT	7140
	CTCTTTTATA	AAAAAATCTT	TCAACATCTT	GATCATTTTT	AAACATAATC	GAGCGATTGT	7200
35	GAAGCAAATA	TTTATTGACA	ACGCTATTCA	TAACACGGTT	TCTAATCAAT	GTCTTAACCT	7260
	ACCTTTATAT	ATTTTATGTA	TCCAATGATK	GTCTATCCCC	TACATTCTTT	GCCAAAAAA	7320
	GTATATAATG	TAGAAGATAT	TTTCTTTTTC	ACTTTCAAAT	TTAAGACTAC	AATTGAACAG	7380
40	TGATTTTTCA	TCATTATAAC	AGACAACTAG	ACATATTGAT	AAGTAAAGAA	AAGAACTTTA	7440
	TACGGAGGTA	CCTTGCATGA	CAAATCCAAA	TCAACGATTA	GAACCATTTG	ATGAGACATT	7500
	TCAACAACCG	AATATTCATC	GTGGTAAGCG	ATATGGTAAG	AAAAAACGTT	CATTGGTAAG	7560
4 5	CATGATTATT	CAAATCATTG	TTGTWATATT	AACCACCATC	GCTGGAATAC	AGCATGGTGG	7620
	(2) INFORMA	TION DOD CE	O TO MO. 37	1 _			

(2) INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9834 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

	GTCATTACCG	amTTTCtTAG	Aatcatttaa	AGATGATAAA	TATACAAACG	TTGGTAATTT	60
5	AAAAGAAGTG	AATTTTGATA	AAATTGCTGC	GACGAAACCC	GAAGTAATCT	TTATCTCTGG	120
	ACGTACAGCT	AATCAAAAGA	ATTTAGATGA	ATTCAAAAAA	GCTGCACCTA	AAGCGAAAAT	180
	TGTTTATGTT	GGTGCAGATG	AAAAGAACTT	AATTGGTTCA	ATGAAACAAA	ACACTGAAAA	240
10	TATCGGAAAA	ATTTACGATA	AAGAAGATAA	AGCTAAAGAA	TTAAATAAAG	ATTTAGATAA	300
	CAAAATTGCT	TCAATGAAAG	ATAAAACGAA	AAACTTCAAT	AAAACTGTTA	TGTATTTACT	360
15	AGTTAACGAA	GGTGAATTAT	CAACATTTGG	ACCTAAAGGT	CGTTTTGGTG	GATTAGTTTA	420
	CGATACATTA	GGATTCAATG	CAGTTGATAA	AAAAGTAAGT	AATAGCAATC	ATGGACAAAA	480
	TGTTTCTAAC	GAATATGTTA	ATAAAGAAAA	TCCAGATGTT	ATTTTAGCGA	TGGATAGAGG	540
20	TCAAGCGATA	AGTGGTAAAT	CAACTGCGAA	ACAAGCATTA	AATAATCCTG	TATTAAAAAA	600
	TGTTAAAGCA	ATTAAAGAAG	ACAAAGTATA	TAATTTAGAT	CCTAAATTAT	GGTACTTTGC	660
	AGCTGGATCA	ACTACAACTA	CAATTAAACA	AATTGAGGAA	CTTGATAAAG	TTGTAAAATA	720
25	ATTTTAAAAG	AGGGGAACAA	TGGTTAAAGG	TCTTAATCAT	TGCTCCCCTC	TTTTCTTTAA	780
	AAAAGGAAAT	CTGGGACGTC	AATCAATGTC	CTAGACTCTA	AAATGTTCTG	TTGTCAGTCG	840
	TTGGTTGAAT	GAACATGTAC	TTGTAACAAG	TTCATTTCAA	TACTAGTGGG	CTCCAAACAT	900
30	AGAGAAATTT	GATTTTCAAT	TTCTACTGAC	AATGCAAGTT	GGCGGGGCCC	AAACATAGAG	960
	AATTTCAAAA	AGGAATTCTA	CAGAAGTGGT	GCTTTATCAT	GTCTGACCCA	CTCCCTATAA	1020
35	TGTTTTGACT	ATGTTGTTTA	AATTTCAAAA	TAAATATGAT	AGTGATATTT	ACAGCGATTG	1080
33	TTAAACCGAG	ATTGGCAATT	TGGACAACGC	TCTACCATCA	TATATTCATT	GATTGTTAAT	1140
	TCGTGTTTGC	ATACACCGCA	TAAGATTGCT	TTTTCGTTAA	ATGAAGGCTC	AGACCAACGC	1200
40	TTAATGGCGT	GCTTTTCAAA	CTCATTATGG	CACTTATAGC	ATGGATAGTA	TTTATTACAA	1260
	CATTTAAATT	TAATAGCAAT	AATATCTTCT	TCGGTAAAAT	AATGGCGACA	scgTGTTTCA	1320
	GTATCGATTA	ATGAACCATA	AACTTTAGGC	ATAGACAAAG	CTCCTTAACT	TACGATTCCT	1380
45	TTGGATGTTC	ACCAATAATG	CGAACTTCAC	GATTTAATTC	AATGCCAAAT	TTTTCTTTGA	1440
	CGGTCTTTTG	TACATAATGA	ATAAGGTTTT	CATAATCTGT	AGCAGTTCCA	TTGTCTACAT	1500
	TTACCATAAA	ACCAGCGTGT	TTGGTTGAAA	CTTCAACGCC	GCCAATACGG	TGACCTTGCA	1560
50	AATTAGAATC	TTGTATCAAT	TTACCTGCAA	AATGACCAGG	CGGTCTTTGG	AATACACTAC	1620
	CACATGAAGG	ATACTCTAAA	GGTTGTTTAG	ATTCTCTACG	TTCTGTTAAA	TCATCCATTT	1680

	AGTGTTCTTT	TTGAATAATG	CTATTACGAT	AATCTAACTC	TAATTCTTTT	GTTGTAAGTT	1800
	TAATTAACGA	GCCTTGTTCG	TTTACGCAAA	GCGCATAGTC	TATACAATCT	TTAACTTCGC	1860
5	CACCATAAGC	GCCAGCATTC	ATATACACTG	CACCACCAAT	TGAACCTGGA	ATACCACATG	1920
	CAAATTCAAG	GCCAGTAAGT	GCGTAATCAC	GAGCAACACG	TGAGACATCA	ATAATTGCAG	1980
	CGCCGCTACC	GGCTATTATC	GCATCATCAG	ATACTTCGAT	ATGATCTAGT	GATAATAAAC	2040
10	TAATTACAAT	ACCGCGAATA	CCACCTTCAC	GGATAATAAT	ATTTGAGCCA	TTTCCTAAAT	2100
	ATGTAACAGG	AATCTCATTT	TGaTAGGCAT	ATTTAACAAC	TGCTTGTACT	TCTTCATTTT	2160
15	TAGTAGGGGT	AATGTAAAAG	TCGGCATTAC	CACCTGTTTT	AGTATAAGTG	TATCGTTTTA	2220
, 0	AAGGTTCATC	AACTTTAATT	TTTTCATTTG	GGATAAGTTG	TTGTAAAGCT	TGATAGATGT	2280
	CTTTATTTAT	CACTTCTCAG	TACATCCTTT	CTCATGTCTT	TAATATCATA	TAGTATTATA	2340
20	CCAATTTTAA	AATTCATTTG	CGAAAATTGA	AAAGAAAGTA	TTAGAATTAG	TATAATTATA	2400
	AAATACGGCA	TTATTGTCGT	TATAAGTATT	TTTTACATAG	TTTTTCAAAG	TATTGTTGCT	2460
	TTTGCATCTC	ATATTGTCTA	ATTGTTAAGC	TATGTTGCAA	TATTTGGTGT	TTTTTTGTAT	2520
25	TGAATTGCAA	AGCAATATCA	TCATTAGTTG	ATAAGAGGTA	ATCAAGTGCA	AGATAAGATT	2580
	CAAATGTTTG	GGTATTCATT	TGAATGATAT	GTAGACGCAC	CTGTTGTTTT	AGTTCATGAA	2640
	AATTGTTAAA	CTTCGCCATC	ATAACTTTCT	TAGTATATTT	ATGATGCAAA	CGATAAAACC	2700
30	CTACATAATT	TAAGCGTTTT	TCATCTAAGG	ATGTAATATC	ATGCAAATTT	TCTACACCTA	2760
	CTAAAATATC	TAAAATTGGC	TCTGTTGAAT	ATTTAAAATG	aTGctACCGC	CAATATGTTT	2820
35	TGTATATTTT	ACTGGGCTGT	CTAAGAGGTT	GAATAATAAT	GATTCAATTT	CAGTGTATTG	2880
33	TGATTGAAAA	CAATTAGTTA	AATCACTATT	AATGAATGGT	TGAACATTTG	AATACATGAT	2940
	AAAÇTcCTTT	GATATTGAAA	ATTAATTTAA	TCACGATAAA	GTCTGGAATA	CTATAACATA	3000
10	ATTCATTTTC	ATAATAAACA	TGTTTTTGTA	TAATGAATCT	GTTAAGGAGT	GCAATCATGA	3060
	AAAAAATTGT	TATTATCGCT	GTTTTAGCGA	TTTTATTTGT	AGTAATAAGT	GCTTGTGGTA	3120
	ATAAAGAAAA	AGAGGCACAA	CATCAATTTA	CTAAGCAATT	TAAAGATGTT	GAGCAAAAAC	3180
1 5	AAAAAGAATT	ACAACATGTC	ATGGATAATA	TACATTTGAA	AGAAATTGAT	CATCTAAGTA	3240
	AAACTGATAC	AACTGATAAA	AATAGTAAAG	AATTTAAGGC	ACTACAAGAA	GATGTTAAAA	3300
	ACCATCTCAT	ACCTAAATTT	GAAGCATATT	ATAAGTCAGC	AAAAAATTTG	CCTGATGATA	3360
50	CAATGAAAGT	TAAGAAATTA	AAAAAAGAAT	ATATGACGCT	TGCAAATGAG	AAGAAGGATG	3420
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m> mam> > max	N TOWN TON NO.	MN MN N CC N N C	2400

	AATTAGCTGA	TAATAAAAGT	GAAGCAACTA	ATCTTACGAC	AAAATTAGAA	CATAATAATA	3600
	AAGCGTTAAG	AGATACTGCG	AAGAAGAACC	TAGATGATAG	TAAAGAAAAT	GAAGTAAAAG	3660
5	GCGCGATTAA	AAATCACATT	ATGCCAATGA	TTGAAAAGCA	AATTACCGAT	ATTAACCAAA	3720
	CTAATATTAG	TGATAAGCAT	GTTAATAATG	CAAGGAAAAA	CGCAATAGAA	ATGTATTACA	3780
	GTCTGCAGAA	CTATTATAAT	ACACGTATTG	AAACAATAAA	GGTTAGTGAG	AAGTTATCAm	3840
10	AAGTCGATGT	AGATAAGTTG	CCGAAAAAGG	GTATAGATAT	AACTCACGGC	GATAAAGCCT	3900
	TTGAAAAAA	GCTTGAAAAA	TTAGAAGAAA	AATAACTATA	ATCATTTTTC	AAAGTTAAAA	3960
15	ATTTTGAATT	TATGGTTAAC	ATGTCAACTT	ACTATGTGTA	TAATGGTAAA	CATTGATATT	4020
	AACTATATGT	ATAAAAATGT	CACGCAGATG	CTATTTAAAT	GTGATAAATA	TTTTTAGAGG	4080
	TGAATAGAGT	GGCTATAAAG	CTAAGTTCAA	TTGACCAATT	TGAACAGGTT	ATTGAGGAAA	4140
20	ATAAATATGT	TTTTGTATTA	AAACATAGTG	AAACTTGTCC	AATATCGGCA	AATGCGTACG	4200
	ATCAATTTAA	TAAATTTTTA	TATGAACGCG	ATATGGACGG	TTATTATTTG	ATTGTCCAAC	4260
	AAGAACGCGA	TTTGTCAGAT	TATATTGCTA	AAAAAACGAA	CGTTAAACAT	GAATCACCTC	4320
25	AAGCATTTTA	TTTTGTAAAT	GGTGAAATGG	TTTGGAATCG	AGACCACGGT	GATATCAATG	4380
	TGTCGTCATT	AGCACAAGCA	GAAGAATAAT	GAAACTATAG	GGTTGGAACA	TTTTGCCTTA	4440
	CACTACTAGA	CGTGAATAGC	ACAACTTAAA	TTCGTGTGAA	TCAGAGTAGT	TTGGCTATAA	4500
30	TGATGTTCTG	ACCTTTTATT	TTATGTCACC	TTTAGAAGCA	GTTAAGTTAG	TACTTTTTTA	4560
	CAAACATATG	TATAATATAT	TCGAGTATTT	TTATTGAAAa	tATTTTGGAA	AACGACGAAT	4620
35	CCAATAAGAA	AATTTAAACA	TGATTTGTAA	GTTAGTTTAA	TAGGAAATAT	ATGCTAAACC	4680
	AAAAGAAGCA	TATTGTTATT	TACTGGAATA	ATTAATAATC	ATGTCATGTT	AAATGTTAGC	4740
	ATATAATCAC	GAGATAAAAT	CTAAAATTTA	AGATTAATCT	TTTATGAATA	AAAAACGTAT	4800
10	CACAACAAAT	AATAAAGTAA	GGTGGTCAAG	GTTATGAAAG	TATTAGTAGC	CATGGATGAG	4860
	TTTCATGGAA	TTATTTCAAG	TTATCAAGCT	AATAGATATG	TTGAAGAGGC	AGTTGCAAGC	4920
	CAAATTGAAA	CTGCAGATGT	AGTTCAAGTA	CCATTGTTTA	ATGGAAGACA	TGAATTATTA	4980
<b>1</b> 5	GATTCTGTAT	TTTTATGGcm	ATCTGGGcaA	AAGTATCGTA	TACCAGTACA	TGATGCAGAT	5040
	ATGAATGAAG	TTGAAGGTGT	TTACGGACAA	ACTGATACAG	GGATGACCGT	TATCGAGGGG	5100
	AATTTATTTT	TAAAAGGTAA	AAAACCAATT	GTTGAACGAA	CAAGTTATGG	TTTAGGAGAA	5160
50	ATGATTAAAC	ATGCATTAGA	TAACGACGCA	AAACATGTTG	TAATTTCACT	AGGTGGGATT	5220
	CATACTTTC	ATCCTCCTCC	в сствтсттв	CAACCATTAC	CTCCTCAATT	CT NTC NTC NC	E 2 0 0

	GATATGTCGA	ACTTACACCC	TAAAATGGAA	ACAGCAAGAA	TTCAAGTAAT	GTCGGATTTT	<b>54</b> 00
	TCAAGTCGAT	TATATGGTAA	GCAAAGTGAA	ATCATGCAAA	CTTATGATGC	GCATCAGTTG	5460
5	AATCATAATC	AAGCAGCAGA	AATCGATAAT	TTAATTTGGT	ATTTTAGTGA	GTTATTTAAA	5520
	AGTGAATTGA	AAATTGCAAT	TGGTCCAGTT	GAACGTGGTG	GTGCTGGTGG	TGGAATTGCA	5580
	GCAGTCTTGA	ATGGACTGTA	TCAAGCTGAA	ATATTAACCA	GTCATGCATT	AGTAGACCAA	5640
10	CTAACACATT	TAGAAAATTT	AGTTGAACAA	GCGGATTTAA	TTATTTTTGG	AGAAGGATTA	5700
	AATGAAAATG	ATCAGTTGCT	AGAAACGACA	ACATTGCGTA	TTGCAGAACT	TTGTCATAAA	5760
15	CATCAAAAGG	TTGCCATTGC	AATTTGTGCA	ACTGCTGAAA	AGTTTGATTT	ATTTGAATCA	5820
	CAAGGGGTTA	CAGCAATGTT	TAATACATTT	ATCGATATGC	CAGAAACTTA	TACTGACTTT	5880
	AAAATGGGtT	ACAAATTAGG	CATTATACGG	TTCAGTCTTT	AAAACTGTTG	AAAACACATT	5940
20	TTAATGTTGA	GGTTTAGTAA	AGAAGGACTA	AATTGGTGAT	GCTGTCATGA	TGGTTAATAA	6000
	CATTTATGAT	GGTTAGCAAA	ACGAATTAGA	AGATCGAAAG	TATACGTAAA	AAATATGAAA	6060
	AATCACGCTA	TCATTGCACT	GAATGTTAGC	GTGATTTTTA	TATATTAATT	AAGCCTGAGT	6120
25	TGAACTAGTA	TATAATCGTT	GGTTTTTAGT	GATTTTCAGC	GATATCTTCT	ACAATTCCAA	6180
	TGATTACTTG	TACTGCTTTT	TCCaTAACAT	CAATGGATGC	aTATTCATAT	GGGCCGTGGA	6240
	AGTTACCGCA	ACCTGTAAAG	ATGTTTGGAG	TTGGTAACCC	CATAAATGAC	AATTGTGAAC	6300
30	CATCTGTACC	ACCGCGAATA	GGTTCAGTGT	TTGCTGGAAT	ATCTAATTTG	GCAAAGACAC	6360
	GTTTAGGTAT	ATCAATAATA	TGAGGCAATG	GTAATATTTT	TTCTGCCATA	TTGAAATATT	6420
35	GATCCGATAT	ATCAACTTTA	ACTGGATAAT	TTTCAAAATG	GGCATTGATA	TCGTCACGTA	6480
33	TTTCTAAAAT	ACGTTTCTTA	CGCAATTCGA	ATTGTTTTTT	ATCATGATCA	CGAATAATGT	6540
	ATTGCAAAGT	TGCTTTTTCA	ACAGTTCCTT	CAAAGTTCAT	TAAGTGATAA	AAGCCTTCGT	6600
40	ATCCTTCTGT	TCGCTCCGGA	ACTTCACTAT	CAGGTAGCAA	ACTATCGAAT	TGTTCACCTA	6660
	AACGTATTGC	GTTTACCATT	GCATTTTTAG	CTGAACCAGG	ATGAACATTT	ACACCGTGGC	6720
	ATGTAATAAC	CGCTTCAGCA	GCGTTAAAGC	TTTCATATTG	TAATTCTCCA	TATTGACTAC	6780
45	CATCCATAGT	ATAAGCAAAA	TCAGCATTGA	AGCGGTCAAC	ATCAAATTTA	TGTGGACCAC	6840
	GACCGATTTC	TTCGTCTGGT	GTAAATCCAA	TGCGAATGGT	ACCATGTTTA	ATTTCTGGAT	6900
	GTTCTTGTAA	ATAACAAATA	GCTTCCATAA	TTTCCACAAT	ACCCGCTTTA	TCGTCTGCAC	6960
50	CTAGTAACGA	TGTACCATCA	GTTACCATTA	ATGTATGACC	AACTAAACTG	TTAAGTTCTG	7020
	GAAATACTTT	AGGATCTAAG	ACACGTTTAG	TATTGCCTAG	TTTGTATGGC	TTACCATCAT	7080

	GCGCCAAAAA	TCCAACTGTT	GGGACGTCGA	CATCGATGTT	ACTITCTAAT	GTAGCAAATA	7200
	AGTAGCCATT	TTCATCTAAA	TCAGTTGGCA	ATCCTAATTG	TTGTAATTCT	TTTTCTAATA	7260
5	AATGTAACAA	ATCCCATTGC	TTTTCAGTTG	AAGGTGTTGT	TGTAGATTTT	GGATCAGATT	7320
	GCGTATCAAT	TGTCGTATAT	CTTGTTAATC	TATCTATCAA	TTGGTTCTTC	ATTATATTCG	7380
	ACCCCTTAAA	CTCTATTATT	CATGTTGTAA	GATTTTTTAT	ATGTCTTACC	TTTGATTTTA	7440
10	CCATACAGTT	GTTTGATACG	TGTGTATAGG	TAATATAGAA	TTTCAGAAAC	TAATATACCG	7500
	AAAGCAATCG	CACCTGAAAT	CAGTGTAcTT	CTAAAAATGT	ATTTACAGCA	CTTGTATAAT	7560
15	CATTTGATAC	TAAAAAACGA	GTCGCTTGAT	AAGCTGCACC	ACCAGGTACT	AATGGTATAA	7620
	TGCCTGGCAC	TATGAATATA	ATTACCGGTC	GTTTATATCT	GCGACTCATA	GTATGACTCA	7680
	TTAAGCCTAA	AATTAAGCTT	CCCAAAAATG	AAGCGCCAAC	TTTTCCAAAC	TCTAAATCTA	7740
20	CCGTTAATIG	GTAAATCGTC	CATGCAATGG	CACCCACAAA	TCCACATGCT	ACTAAGAGGC	7800
	GTTTGGGTGC	ATTGAAAATG	ATAGAGAAAA	GTACTGTTGA	TATAAAGCTG	ATTGTAAAAT	7860
	GAAATAAATA	AAATAGCATG	CTTTAACAGT	CCTTCCTTAA	ATGATTAATA	AAACGATTGC	7920
25	GACACCAGCA	CCGATTGCGA	ATGCTGTTAA	TGCAGCTTCA	ACACCGCGAG	ACATACCTGC	7980
	AAGTAATTCA	CCCGCTAATA	AATCTCGAAT	GGCATTGGTA	ATTAATATAC	CAGGGACAAG	8040
	TGGCATGACA	CTGGCTATAG	TAATGATATC	TTGATTGGTT	GCAATGCCTA	ATTTAGTAAA	8100
30	TGTGGCTGCA	ATGGATATGA	CCACAGCGGC	TGCAACAAAC	TCTGAGAAAA	ATTTAATTTG	8160
	TATATAGCGT	tGCACAAAGC	TGAATGTTAA	AAATGCGGAT	CCGCCAGCAA	TGACTGCAAT	8220
35	CCAACAATCT	GATGCGACAC	CACCAAACAT	AAATAGGAAG	AAGCCACATG	CAATGGCAGC	8280
33	TGCAAAGAAA	TTCGTTAAAA	AAGAATATTG	TAATGATGCA	TGCTGTAAAT	GAATAAATTC	8340
	AGATTTAGCT	TCATCAATTG	TGAGTTCTTT	ATTTGATATT	TTACGTGAAA	GACTATTCGT	8400
40	TAAAGCGATT	TTCTCTAAAT	CTGTTGTACG	CTCTTGTACA	CGAATTAATC	TTGTACTTGT	8460
	TCGATCGTTT	AATGAAAAA	TAATTGCAGT	TGAACTGACA	AAACTATATG	TATTATGAAG	8520
	ACCATAACTA	TGTGCGATAC	GGTTCATTGT	ATCTTCAACT	CGATATGTTT	CAGCACCTGA	8580
<b>4</b> 5	TTCaAGTAAA	ATTCTACCTG	CAATTAATAC	AACATCAATC	ACTTTGTTTT	CATCTATAAT	8640
	TGTGATTGAA	TCTGGCATAT	CAATTCACCT	CCAATGATAT	GTGTTATTTA	TTTGAACAAT	8700
	TGaAGTTTAC	AACTTGTTGT	TACAACTTTC	AATAGTGAGA	CTTTGTGTTA	GTATGATGAA	8760
50	CTTGTATGGT	TCAAATTTAA	ATAAGAAAAA	CTGTTAATCT	TTGCTATTAT	ACTATGATTT	8820
	AATAATAGCA	AAGGATTAAC	AGTTTTGTCG	TTGTTATAAA	TTGATAATAG	GGTTAAACAT	8880

	TTTACGCTGT GATTTTGGAT CGTCATCTGT TAAATAACCA ACACCGATAG ACACTGACAA	9000
	TTTAATAACT TCTTTGTTTG GTAAATGGAA TGATGATTTT TCAACACCCG AACGAATATT	9060
5	TTCAGCTAAT TTAACACTTT GATCAAGTGA ATAATTGTGA ATGACAACTG AGAACTCTTC	9120
	GCCACCATTT CTAAAAATTT TAAATTGATT CGGCACATAG TTTTTAAGTA ATTGAGACAT	9180
	TTGTTTTAAT ACAGCATCAC CTGATTTGTG TGAGTAGGTA TCATTGACAT CTTTAAATCC	9240
10	ATCGATATCG ATTAATAATA ATGCGATACT TTGATGTTCT TTTTCAGCTT TTCGTGAAAT	9300
	TTCATTTAAA TGTCTATCAA ATTCTTTTAC ATTACCTAAG CCTGTTAAGT AATCATATTT	9360
15	ATCTTCGTTT TCATAACGAT TTACGAGTGA GAAGAAATGC CAAATATCGA CAAATGTTAT	9420
7.5	CGCTGAAGCT AAAGTGATAA TTAATGAAAT TGGTATTAAA ATGATAACTT CCGATAGTGT	9480
	GTAAATAGGA CTCACTAACG CGACACCAAA TAAAATGATT ATTGTAACAA CATTAAGTAT	9540
20	TAATAATGAT AGCACATCAT TTTGTTTTAA AAATGGTCCA ATAGCACTTG TTACTGCAGC	9600
	AATAACAATC AACGTAACAC CGTACATAAT CGAGTTGTTA AATACTACAA TTTCAACAAT	9660
	TGCTACAATT ACTGTGGCAG ATAATGTATA GACCATATTT GTAAATCTAC CTAAAAACAA	9720
25	TAAAGGAACG AATGTTAAGT GAATTAAATA ATCTTCACGA TAAGGGATAG GGTAGACAGA	9780
	TAATAATAAT GATACGATTG TCATTAAAAC AGTGACATAA GCCTTAGAAA AAAC	9834
	(2) INFORMATION FOR SEQ ID NO: 38:	
30 35	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 23439 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: double</li> <li>(D) TOPOLOGY: linear</li> </ul>	
	C(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
10	TCTCAATCAG ATGAAAAATT GCATATCGTA GGTTTTACAG AAAGTGCAAA ATATAATGCG	60
40	TCATCAGTCA TTTTCACGAA TGACGCTACC ATTGCCAAGA TCAATCCTAG ATTGACTGGA	120
	GATAAAATTA ATGCAGTTGT TGTACGTGAT ACAAATTGGA AAGACAAAAA ATTAAACCAA	180
<b>1</b> 5	GAGCTTGAAG CGGTAAGTAT TAATGACTTT ATTGAAAATT TACCAGGTTA TAAACCACAG	240
	AACTTAACAT TAAACTTTAT GATTTCATTC TTATTTGTCA TTTCAGCTAC AGTTATAGGC	300
	ATTTTCCTAT ATGTCATGAC ATTACAAAAG ACGAGTTTAT TTGGCATATT AAAAGCTCAA	360
50	GGATTTACGA ATGGCTATTT GGCGAATGTG GTAATTTCGC AGACGGTCAT ATTAGCACTA	420

55

480

TTTGGTACGG CATTTGGCTT ACTGTTAACA GGCGTTACAG GTGCATTTTT ACCTGATGCA

	TCTGTATTAG	GAAGTTTATT	CTCCATTTTA	ACAATTAGAA	AAATAGATCC	GTTAAAGGCG	600
	ATTGGGTAGG	AGGTGTAGCA	AATGTTGAAA	TTTGAAAATG	TAACAAAGTC	ATTTAAAGAT	660
5	GGGAATCGTA	ACATTGAAGC	GGTTAAAGAT	ACAAATTTTG	AGATAAATAA	AGGTGATATT	720
	ATAGCATTGG	TTGGACCTTC	TGGCTCTGGT	AAAAGTACAT	TTCTAACTAT	GGCAGGTGCT	780
	TTACAAACAC	CGACATCTGG	GCACATTTTA	ATCAATAACC	AAGATATTAC	GACAATGAAG	840
10	CAAAAAGCAT	TGGCAAAAGT	TAGAATGTCT	GAAATAGGTT	TTATTTTACA	AGCTACAAAC	900
	CTTGTACCAT	TTTTAACGGT	AAAGCAACAA	TTTACATTAT	TGAAAAAGAA	AAATAAGAAT	960
15	GTTATGTCTA	ATGAAGACTA	TCAGCAACTT	ATGTCACAAT	TAGGTCTAAC	TTCATTGCTT	1020
	AATAAGTTAC	CTTCAGAAAT	TTCAGGTGGT	CAGAAACAAC	GTGTGGCGAT	AgCaAAGCGT	1080
	TATATACGAA	TCCGTCGATT	ATTTTAGCGG	ATGAACCTAC	CGCGGCGTTA	GATACTGAAA	1140
20	ATGCGATTGA	AGTCATTAAA	ATTCTACGTG	ATCAAGCCAA	ACAAAGAAAG	AAAGCATGTA	1200
	TTATTGTTAC	ACATGATGAA	CGACTTAAAG	CATATTGTGA	TCGTTCATAT	CATATGAAAG	1260
	ATGGCGTCCT	TAATCTTGAA	AATGAAACAG	TAGAATAGTT	TTATTAAGCC	GGTACATCAT	1320
25	GTGCCGGTAT	TTTTATGTTT	ATGTATTATT	TGAATAAACT	TTCACATTCA	ATTAATAATA	1380
	ATTATTATCG	AAAATCAGAA	ATATTCCGTG	AAATATAATA	TTTTTTGTAG	TAAAATGGCC	1440
	TCTAAGTATT	CAATATTTAA	ATATGGGGAT	TGAATATAAA	ATTATCGTAA	TGGGGGTCAA	1500
30	TGGTTATGGA	TTTATTGATA	GGTACTTTAT	TTTTATTTTT	GGTCTTAGTG	ATTTTTACAT	1560
	TATTTACATA	TAAAGCGCCT	AATGGTATGC	GTGCCATGGG	AGCATTAGCT	AATGCAGCAA	1620
	TCGCAACATT	TTTAGTGGAA	GCATTTAATA	AATATGTTGG	TGGCGAAGTA	TTCGGTATTA	1680
35	AATTTTTAGA	AGAGCTAGGA	GACGCTGCGG	GAGGTCTAGG	TGGTGTCGCT	GCCGCTGGAT	1740
	TAACAGCATT	AGCTATCGGT	GTGTCACCAG	TATATGCATT	AGTTATAGCA	GCCGCGTGCG	1800
10	GTGGTATGGA	TTTATTACCA	GGTTTCTTTG	CGGGTTATAT	GATTGGATAT	GTGATGAAAT	1860
	ATACAGAGAA	ATATGTGCCG	GATGGTGTCG	ACTTAATTGG	ATCGATTGTC	ATCTTAGCGC	1920
	CATTAGCTCG	TCTTATTGCA	GTATTATTAA	CGCCAGTAGT	GAATAGTACA	TTGATTCGAA	1980
15	TTGGTGATAT	TATCCAAAGT	AGTACGAATA	CGAATCCAAT	TATCATGGGT	ATCATTTTAG	2040
	GTGGTATTAT	TACGGTTGTC	GGCACAGCGC	CATTGAGTTC	AATGGCATTG	ACAGCATTAT	2100
	TAGGTTTAAC	GGGTGTACCT	ATGGCTATTG	GTGCCATGGC	AGCATTTAGT	TCGGCATTTA	2160
50	TGAATGGGAC	GCTATTCCAT	CGCTTAAAAT	TAGGTGATCG	TAAGTCTACG	ATTGCAGTAA	2220
	CTATTCA & CC	TTTTATCACAA	~~~~~ <del>~~~~</del>	TATCACCCAA	TOOR APPROOR	N CO CO N CO N CO CO N	2202

	ATGCGACAGG	TACAGCTACA	CCGATTGCAG	GATTTTTAGT	TATGTTTGGA	TTTAATCATC	2400
	CGACGACAAT	TGTGATTTAT	GGTGTAGTAA	TGGCGATTGT	AGGTGCGCTT	GCAGGTTATC	2460
5	TTGGTTCAAT	TGTATTTAAA	AAATATCCAA	TTGTTACTAA	GCAAGACATG	ATTAATCGAG	2520
	GTGCAGTAGA	CGCATAGCAT	CATCATATTG	AATAGTAAAA	ACAAATAAAA	CATAGTAACG	2580
	TGATTCAGTC	GATGTAACAG	TCGATAATGA	GTCACGTTTT	TTTATAGAAA	AATACAAGAC	2640
10	ATAAAAATGT	CATAATTTAT	TGTCGACAAA	TATCATACTG	TATAAACATT	TATCATTTTC	2700
	TCAAGTACCT	TTTACACGAT	GGAATGAACT	TACTTTTTAC	GAAATTATGC	GTATTTTATA	2760
	AACAAATATC	ATTGATATAA	CGGTAAATGT	AAGCGTTTAC	AACAGAAATA	ACAGCATGCT	2820
15	ACGATATTTT	TGTAAATTCA	CTGATTCAAG	TATTTTAAGT	CAATATGAGG	AGGGATGTTA	2880
	TGAGCGATTC	TGAGAAAGAA	AAAAATTTTA	GAATTAAAGA	TAATCCGTTT	ATTTCACAAC	2940
20	GTGAACTTGC	TGAGGCAATT	GGATTATCTA	GACCCAGCGT	AGCAAACATT	ATTTCAGGAT	3000
	TAATACAAAA	GGAATATGTT	ATGGGAAAGG	CATATGTTTT	AAATGAAGAT	TATCCTATTG	3060
	TTTGTATTGG	CGCAGCGAAT	GTAGATCGTA	AGTTTTATGT	GCATAAAAAT	TTAGTTGCAG	3120
25	AAACATCAAA	TCCTGTAACG	TCAACACGCT	CTATTGGTGG	CGTAgCAAGA	AATATTGCTG	3180
	AGAACTTAGG	TAGGCTTGGC	GAAACGGTCG	CTTTTTTATC	TGCTAGTGGA	CAAGATAGTG	3240
	AATGGGAAAT	GATTAAACGA	TTGTCCACAC	CATTTATGAA	TTTGGATCAT	GTTCAACAAT	3300
30	TTGAAAATGC	GAGTACAGGT	TCATATACAG	CTTTAATTAG	TAAAGAAGGC	GACATGACAT	3360
	ATGGCTTaGC	AGATATGGAA	GTGTTTGACT	ACATTACGCC	TGAATTTTTA	ATTAAGCGTT	3420
	CACACTTATT	GAAAAAGGCT	AAGTGCATTA	TTGTAGATTT	GAATTTAGGC	AAAGAGGCAT	3480
35	TAAACTTCTT	ATGTGCCTAT	ACCACGAAAC	ATCAAATCAA	ATTAGTTATC	ACCACGGTTT	3540
	CTTCCCCAAA	AATGAAAAAT	ATGCCTGATT	CATTACATGC	TATTGATTGG	ATTATCACGA	3600
10	ATAAAGATGA	AACAGAAACA	TACTTAAATT	TAAAAATAGA	ATCTACTGAT	GATTTAAAAA	3660
40	TAGCTGCTAA	ACGCTGGAAT	GATTTAGGTG	TTAAAAATGT	TATTGTGACA	AATGGCGTGA	3720
	AAGAACTCAT	TTATCGAAGT	GGTGAGGAAG	AAATCATTAA	GTCAGTTATG	CCATCAAATA	3780
45	GTGTGAAAGA	TGTTACAGGT	GCAGGCGATT	CATTCTGTGC	TGCAGTAGTG	TATAGCTGGT	3840
	TAAATGGGAT	GTCTACTGAA	GATATATTAA	TTGCTGGTAT	GGTTAACGCA	AAGAAAACGA	3900
	TAGAAACGAA	ATATACAGTT	AGGCAAAACC	TAGATCAACA	GCAACTTTAT	CACGATATGG	3960
50	AGGATTATAA	AAATGGCAAA	TTTACAAAAG	TATATTGAGT	ATTCTCGAGA	AGTTCAGCAA	4020
	GCACGGGAGA	ACAATCAACC	GATTGTAGCA	TTAGAATCAA	CAATTATTTC	GCATGGTATG	4080

	GCCATTCCAG	CAACCATAGC	CATTATAGAT	GGCAAAATTA	AAATTGGTTT	AGAAAGCGAA	4200
	GATTTAGAAA	TACTGGCAAC	TAGTAAAGAC	GTTGCTAAAG	TATCTAGAAG	GGATTTAGCA	4260
5	GAAGTTATTG	CGATGAAGTG	TGTTGGTGCT	ACTACTGTAG	CGACGACGAT	GATATGTGCT	4320
	GCAATGGCTG	GTATTCAATT	TTTTGTTACA	GGAGGTATTG	GGGGCGTCCA	TAAAGGTGCA	4380
	GAACATACGA	TGGACATTTC	AGCAGACTTA	GAAGAACTGT	СТААААСААА	TGTCACTGTT	4440
10	ATCTGTGCAG	GTGCCAAATC	AATTTTAGAC	TTACCTAAGA	CGATGGAGTA	TTTAGAAACA	4500
	AAAGGCGTTC	CAGTTATTGG	ATATCAAACG	AATGAATTGC	CAGCATTCTT	CACTCGCGAA	4560
15	AGCGGTGTTA	AGTTAACAAG	TTCGGTTGAA	ACGCCAGAAC	GACTTGCTGA	CATTCATTTA	4620
	ACAAAACAGC	AGTTAAATCT	TGAAGGTGGC	ATTGTTGTTG	CTAATCCAAT	TCCATATGAG	4680
	CATGCCTTAT	CAAAAGCATA	TATTGAGGCA	ATCATAAATG	AAGCTGTTGT	TGAAGCGGAA	4740
20	AATCAAGGTA	TTAAAGGTAA	GGACGCCACA	CCGTTCTTGT	TAGGGAAAAT	TGTAGAAAA	4800
	ACGAATGGTA	AAAGTTTAGC	AGCAAATATA	AAACTTGTTG	AAAACAATGC	GGCGTTGGGT	4860
	GCTAAAATTG	CTGTCGCTGT	TAATAAATTA	TTGTAGGTGA	TGATACATGA	ATATTTTATT	4920
25	CGCTATCACA	GGGATAGCAT	TTGCACTATT	TGTTGCGTTT	TTATTCAGTT	TTGATCGTAA	4980
	AAAAATAGAC	TTCAAAAAGA	CGTTAATAAT	GATATTTATT	CAAGTGTTGA	TCGTGTTATT	5040
	TATGATGAAC	ACAACGATTG	GTTTGACAAT	TTTAACTGCA	CTAGGTTCAT	TTTTTGAAGG	5100
30	GCTAATAAAT	ATTAGTAAAG	CAGGCATAAA	TTTTGTTTTT	GGAGATATAC	AAAATAAAA	5160
	TGGCTTTACG	TTCTTTTTAA	ACGTATTACT	GCCATTAGTT	TTTATTTCTG	TATTAATAGG	5220
35	CATCTTTAAT	TATATTAAGG	TATTACCATT	TATTATCAAA	TATGTAGGTA	TCGCTATTAA	5280
33	TAAAATAACT	AGAATGGGGC	GCTTAGAAAG	TTATTTTGCT	ATTTCAACAG	CAATGTTTGG	5340
	GCAACCAGAA	GTATATTTAA	CAATAAAAGA	TATTATTCCA	AGATTATCTA	GAGCGAAATT	5400
‡O	ATATACAATT	GCGACGTCTG	GTATGAGTGC	TGTTAGTATG	GCAATGCTAG	GTTCATATAT	5460
	GCAGATGATT	GAACCCAAGT	TCGTAGTTAC	AGCAGTAATG	TTAAATATTT	TTAGTGCGCT	5520
	TATCATCGCC	AGTGTAATCA	ATCCCTATAA	ATCTGATGAT	ACTGATGTTG	AAATTGATAA	5580
<b>4</b> 5	CTTAACGAAA	TCCACAGAAA	CTAAAACATT	GAATGGAAAA	ACAGGAAAAC	CTAAGAAAGT	5640
	TGCCTTTTTC	CAAATGATTG	GTGATAGTGC	GATGGATGGG	TTTAAAATCG	CTGTTGTAGT	5700
	AGCCGTAATG	TTGTTAGCAT	TTATTTCATT	AATGGAAGCA	ATTAATATCA	TGTTTGGTAG	5760
50	TGTTGGTTTG	AACTTTAAAC	AGCTTATTGG	CTATGTGTTT	GCACCAATCG	CATTCTTAAT	5820
	GGGGATTCCA	TGGAGCGAAC	тсттссьсст	ርርርጥርጥጥጥ አ	TOCOCO A CTTA A	A TIME A A TIME A CLA	5000

	CAAGGTATCA	TTTCAGTTTA	CTTAGTAAGC	TTCGCTAATT	TTGGTACGGT	TGGTATCATC	6000
	GTAGGTTCAA	TTAAAGGCAT	TAGTGATAAA	CAAGGAGAAA	AAGTTGCATC	CTTTGCAATG	6060
5	AGGTTGCTAC	TTGGTTCAAC	TCTAGCTTCA	ATCATTTCAG	GATCAATCAT	TGGCTTAGTA	6120
	TTGTAAATGA	ATCGAAGTAC	СТАААТТААА	TTCATGGCAA	AGCTAAACCC	CGTCACCAAG	6180
10	TTGGCGCAAC	AGCGcATgcA	TAACTTAGTG	ACGGGGTTTT	ATCATAACAA	TCTACTTTTT	6240
, 0	CGTAGCCGTT	TTTGAAATGT	ATGTTGATGG	TTTATCTTTT	TCAAAAATTG	TTAATCCCGT	6300
	TATATCTTTT	TTATGTTTTG	AAGGGACAAT	GAAGCTAAGT	ATATAAGCAA	AGACAAAAGC	6360
15	AACTGTAAAT	GAAATGGTAG	ATACATAGAA	AGGTGAGTTA	CCTTTGCCAA	CACCATTATA	6420
	GACATAAGCA	AAGATGATAC	CCAATATTAA	TCCACAAATA	ACACCGAATG	TATTCGTACG	6480
	TTTAGTGAAA	ATACCAACTG	CAAATACACC	AGCCAATGGA	ACGCCGAATA	ATCCAGTCAC	6540
20	AAACAAGAAT	AAATCCCATA	AGTCATTTGA	ATTAGAAGCA	ATTAAGTATA	GTGACATTCC	6600
	AAAACCGAAA	ATACCTGCAA	TGATAATAAT	GAAACGTGCA	AAGTTAACTT	CGTGTCGCTC	6660
	GCTACCTTTT	CCGAAGAAGC	GTTGCTTAAT	GTCGATTGAA	ATACAAGCAG	ATATAGAATT	6720
25	TAAACTAGAT	GAAATGGTAG	ACTGTGCAGC	GGCGAAAATG	GCTGCAATAA	GTAATCCTGC	6780
	TACAAATGGT	GGCATCTCAG	TCAAAATGAA	ATATGGCACT	ACAGATGATG	TATTGAAGCC	6840
20	TTTTGGTAAA	ACAGCTTCAT	GTGTATAAAA	TGAATACAGC	ATTGTACCCA	TACCATAAAA	6900
30	TAAGGGTGCT	GAAATTAAAG	CTAGGATACC	ATTTGTCCAT	AACGATTTAT	TTGTTTCTTT	6960
	TAAACTATCA	GAAGCTTGAT	AACGCTGCAC	GACGTCTTGA	CTCGCTGTGT	ATTGATACAA	7020
35	GTTGTTGAAA	ATATTTCCTA	GGAAAATAAT	TGGAATGGCA	GCTGCCGCAG	TATTTAGTTT	7080
	CCAATTGTCT	GCACTAATTA	ATTTTTTGTG	CTCAATCGCA	TCTGCAAAGA	CAGTGCCGAA	7140
	ACCGČCTTTA	ATGTTCACAA	CACCTAGAAT	AATAATAACT	AAAGCGCCGC	СТААТААААТ	7200
10	GACGCCTTGA	ATGAAATCAC	TCCAAACCAC	ACCTTCGAAA	CCACCTAAAA	ATGTATATAA	7260
	AATACATAGT	AAACCAACGA	GTGATGCAAC	GATATAAGGG	TTCATGTCTG	ATACAGATGT	7320
	GATTGCTAAT	GTTGGTAAGT	AGATAACAAT	TGCAACACGC	CCTAAATGGT	AAACGACAAA	7380
<b>4</b> 5	TAATAATGAG	CCAATGACAC	GTATGCTAGG	GCCAAATCTA	GCTTCTAAAT	ATTCATATGC	7440
	AGATGTTACC	TTTAACTTTT	TAAAGAAAGG	GACATAGAAA	TAAATAAGTA	ATGGAATAAT	7500
	TGCGACGATA	GCAATGTTAC	CAGCGATATA	TGACCAATCT	GTTAAAAATG	CTTTCTCTGG	7560
50	TGTCGACATA	AATGTAATCG	CACTTAACGT	AGTAGCATAA	ATTGAAAAGC	CAACTACCCA	7620
	AGATGGCAAG	CGACCACTTG	CCCTABAGAA	ACTATTCCTA	CTTTCCCTCC	CCCCCTTCCT	7600

	TGTGCCAAAT	CCAACTTCTT	TCATGGGCAA	CATCCCCTTT	ACAATGTATT	GATTCTTTGA	7800
	TGTCTATAAA	TCGTATTTTG	CAATGAGTTG	ATCTAATGTT	TGTCGATGTG	CTTCGTTAAA	7860
5	AGGTTTGAAA	GGTCTTTTCG	GTAATCCTGC	ATCAATGCCA	CGATGACGTA	ATATTTCTTT	7920
	CAATGTTGGA	TAAATCCCCA	TTGATAACAC	TGTTTCGATA	ATGTCGTTTG	AATCATGTTG	7980
	CAGTTGGTAA	GCTTCTTGAA	TTTGACCTTG	TCGTGCTAAG	TCGAAGATTT	TTCTTGCACG	8040
10	GCGACCATTA	ACGTTATATG	TAGAACCAAT	TGCACCATCT	ACGCCAGAAA	TCGTAGCTTG	8100
	AACTAACATT	TCATCAAAGC	CAGATAAGAT	TAATTTGTCT	GGGAATGCTT	TTCTAATACG	8160
15	TTCGAGTAGG	AAGAAGTTTG	GCGCTGTATA	TTTAACACCA	ACAATTTTT	CATGATTAAA	8220
, ,	TAGCTCGCTG	AATTGTTCAA	TAGAAATATT	CACACCTGTT	AAATCTGGTA	TTGCATAAAT	8280
	AATCATATTG	TTCTGAGTTG	CTTCGATAAT	ATCGAAATAG	TAATCTCTAA	TTTCTTCAAA	8340
20	AGTAAATGGA	TAGTAGAATG	GTGTTACGGC	AGAAAGTGCA	TCATAACCGA	GTTCTGTGGC	8400
	ATATTTTCCA	AGTTCAATGG	CTTCATTTAA	ATCTAACGAA	CCTACTTGAG	CAATCAATTT	8460
	CACTTTATCC	CCAACTGCCT	CTTTGGCAAC	CTTGAAAACT	TGCTTCTTCT	GCTCTGTATT	8520
25	TAATAAAAAG	TTTTCGCCTG	AGCTACCATT	TACATAAAGA	CCGTCTAATT	CTTCAGTTTC	8580
	AATGGCATTT	TGAGCAATTT	GTTTAAGTCC	TTGTTCATTT	ACTTGACCAT	TTTCATCAAA	8640
	AGGAACGAGT	AACGCTGCAT	ATAAACCTTT	TAAATCTTTG	TTCATTATGA	AGTCCCTCCA	8700
30	AAAATCATTT	GATAATATAG	TTTACAGCTA	TAATTGTAAA	CGCTATCATA	AAATGTAACA	8760
	ATATCTTTTT	GAAAATTGTA	GTCATATTTA	TGTATAATTA	ATGAAAATGT	TTTTCAAAAT	8820
	CAATAGAAAT	GGAGTGAGTA	AGGTGTATTA	CATCGCAATC	GATATTGGAG	GCACTCAAAT	8880
35	TAAATCGGCA	GTTATTGATA	AGCAATTGAA	TATGTTTGAC	TATCAACAAA	TATCAACGCC	8940
	GGACAACAAA	AGTGAGCTTA	TTACTGACAA	AGTATATGAG	ATTGTAACAG	GATATATGAA	9000
10	GCAATATCAG	TTGATCCAAC	CTGTCATAGG	TATTTCATCA	GCAGGCGTTG	TTGATGAACA	9060
	AAAAGGCGAA	ATTGTATACG	CAGGGCCAAC	CATTCCGAAT	TATAAAGGTA	CTAATTTTAA	9120
	GCGATTATTA	AAATCACTGT	CTCCTTATGT	CAAAGTAAAA	AATGATGTAA	ACGCTGCATT	9180
15	ACTAGGCGAA	TTGAAATTAC	ATCAATATCA	AGCAGAACGG	ATCTTTTGTA	TGACGCTTGG	9240
	TACAGGCATT	GGGGGTGCGT	ACAAGAATAA	TCAAGGTCAT	ATTGATAATG	GTGAGCTTCA	9300
	TAAGGCAAAT	GAAGTTGGGT	ATTTATTGTA	TCGTCCAACT	GAAAATACAA	CGTTTGAGCA	9360
50	ACGTGCTGCA	ACGAGTGCAT	TGAAAAAGCG	CATGATTGCC	GGAGGATTTA	CGAGAAGCAC	9420
	ACATGTGCCA	GTATTGTTTG	AAGCAGCTGA	AGAAGGTGAT	GATATTGCAA	AACAAATATT	9480

	AGGGCTTATA	TTAATTGGGG	GCGGTATATC	TGAACAAGGA	GATAATCTCA	TTAAATATAT	9600
	CGAGCCGAAA	GTTGCACACT	ATTTACCAAA	AGACTATGTT	TATGCACCAA	TACAAACGAC	9660
5	TAAGAGTAAA	AATGATGCAG	CATTATATGG	CTGTTTGCAA	TGATAGTTGA	AAGAAGGAGT	9720
	CATTCTAAAA	TAGAATTTGA	AACCGTTACG	AGAGATGAGA	GCTGTTGTTA	GTTCCACACA	9780
10	TCACACTCTA	TCTAGGACCA	ATCTAAACTA	TATCAACCAA	CAGTGTGCCA	CGGGCAAATT	9840
	AAATTGAAGA	AGCTGAGATA	TTAAAATTTT	AGAAAATGTA	AAAAAATATT	TGGTATTGAA	9900
	ATTAAAAAAG	CACCTAGCAA	CTCGTTGGGA	CAATCACGAT	GATTGTCTAC	AGTTGCAGGT	9960
15	GGATTTGAAT	ATACTACTAG	TTATTTGTTG	TCTAGGATAA	TAGATTTAGT	ATGTTGATAA	10020
	GTTTGACTCA	GATTCGTATT	TTCTAATAAA	TGATAACTCA	CGATATCGAT	TAAAAAGAGT	10080
	GTCGCAATTT	GTGTGTTGAT	AAATTGATGG	TCGGTATTAC	GCGATTGATC	CGTTGTTAAA	10140
20	AGTACTAAAT	CTGCACAATC	TGTAAGTTTA	CTACCTTCAA	AATTTGTGAT	GGCAACGACA	10200
	TATGCACCAT	GAGATTTGGC	GACTTCCGCT	GCAGAAATTA	ATTCCGAAGT	ATTACCACTA	10260
	TTTGACATAG	CAATAAACAT	ATCCGAATGA	GATAGTAGGG	ATGCCGATAT	TTTCATTAAA	10320
25	TGTGAATCGG	TAGTAACATT	ACCTTTTAGC	CCCATACGAA	TCATACGATA	ATAAAATTCA	10380
	GTCGCTGATA	AACCAGAGCT	ACCTAGTCCA	GCAAAGAGTA	TATGTCGACT	TGATTGAAGT	10440
	TTGTCGATAA	AGGTTTGGAT	AATGTCGTTA	TCAATAAATT	CACCAGTTTG	TTGAATGATT	10500
30	TGTTGATGAT	ATTTATGAAT	TCTTTGAATA	ATTGGGCTAT	TTTCAATAAC	TGTCTCTGTC	10560
	ATTTCTTGTT	GAATATTAAA	TTTTAAATCT	TGGAAATTCT	CATAATCCAG	CTTATGACTA	10620
35	AAGCGTGTCA	TCGTTGCTGG	TGATGTACCA	ATCGCATGGG	CTAAGGAGTT	AATCGTTGAA	10680
,,	AAGGCATCGC	TATAACCATT	TTGTCTTATA	TAATTGACGA	TGCGTTTATC	AGTTTTTGTA	10740
	AATAAATGTT	GATAACGTTG	AACACGATTC	TCAAATTTCA	TTGTGTCACC	CCTTCATCTT	10800
10	AATGATTACT	ATTATATATG	AAAAATATTT	TCAAGATAGT	AAAAAGCATT	GATAAAAATT	10860
	ATCTTAATGA	TATATTGTAA	ATGACTTTAC	GTGAAAAAAC	GACTTATGGA	GTGAGGAATA	10920
	ATGTTACCAC	ATGGATTAAT	AGTATCTTGT	CAGGCACTAC	CAGATGAACC	ATTGCATTCA	10980
<b>‡</b> 5	TCTTTTATTA	TGTCGAAAAT	GGCATTAGCT	GCGTATGAAG	GTGGTGCTGT	TGGTATTCGC	11040
	GCAAATACTA	AGGAAGACAT	TTTAGCAATT	AAAGAAACGG	TAGATTTACC	AGTTATTGGC	11100
	ATTGTGAAAC	GTGACTATGA	TCACTCAGAT	GTTTTCATTA	CTGCAACGTC	AAAAGAAGTT	11160
50	GATGAACTGA	TAGAAAGCCA	ATGTGAAGTC	ATTGCATTGG	ATGCAACGTT	ACAGCAACGT	11220
	CCCAAACAAA	CCTTACACCA	A TTACTATCA	ጥልጥል <b>ጥጥ</b> ል ር እ እ	CACATCCACC	CAACCTTCAA	11290

	TATATTGGC	A CGACGTTACA	TGGCTATACT	AGTTATACGO	: AAGGACAATT	ACTTTATCAA	11400
	AATGACTTCC	AAATTTTTAAA	AGATGTACTA	A CAAAGTGTTG	ATGCAAAAGT	TATTGCGGAA	11460
5	GGTAATGTCA	TTACACCGGA	. TATGTATAA	A CGTGTGATGG	ACTTAGGCGI	TCATTGTTCA	11520
	GTCGTTGGT	GTGCGATAAC	ACGACCAAAA	GAAATTACGA	AACGTTTTGT	TCAAATTATG	11580
10	GAAGATTAAA	TGATAACGAT	AAAAAAACGA	GATGACCATC	ATTAATTAAA	GGCACCTAAT	11640
70	TATCTTAGGT	' GGCTGAATGA	ATGTAATGGG	TTCATCTCGT	TTTGTTTGTT	TATGATAGTG	11700
	ATTTTATTT	CAACTTTATC	CAAAAATAAG	TAAAGCGACG	GGGATGGTGA	TTAATAGCGA	11760
15	CAACGCCACG	CGTAAAAACC	AAATGATGAT	GAGTTTCCAG	ACAGGTATTT	TAATTTCAGT	11820
	TGCTAGTATA	CATGGCACTA	ATGCTGAGAA	AAAGATAATG	GCTGATACGC	TTACTACACC	11880
	GACGACAAAT	TTAGTACTCA	TTGCAGCTTT	AGTTACTAAC	AAAGATGGTA	GAAACATCTC	11940
20	TACAATAGAA	AckCTGACGC	TTTTGCTAGT	AAAGCCTGAT	CAGCAATTGG	GAAAATATAA	12000
	ATAAATGGAT	AGAAGATATA	GCCAAGCCAA	TCAATGAATG	GTGTATAGTT	CGCTACAATC	12060
	AGTCCTAAAA	AACCAATCGA	TAATATAGAA	GGTAAAATAC	CAACAGTCAT	TTCTAAACCG	12120
25	TCTTTCAAAT	TGTCCCAAAC	GTTCTTCACG	AGAGATGGTG	TTAATGCATT	TTGTTTCATC	12180
	GCCTCTGCAT	ATGCAGTTTT	CAGTCTGCTT	CCTTCAATAG	CAACTTCTTG	TTCTCCTTCT	12240
	TGTCCGTTAT	AATATTCTGT	TGATTCATTG	CTGATTGGCG	GTAGCCATGC	AGTAATTGCA	12300
30	GTCACGACAA	ATGTGATGAC	TAAAGTTATC	CAAAAGTATA	AATTCCAATG	CGGCATTAAT	12360
	CCTAAAGTTT	TAGCAACGAT	AATCATAAAA	GTTGCTGAAA	CTGTTGAAAA	GCCAGTCGCA	12420
	ATAATCGTGG	CTTCTCGTTT	GTTGTACATC	CCTTGCTTAT	AGACACGATT	AGTAATCAAT	12480
35	AATCCTAAGG	AATAACTGCC	GACAAACGAA	GCCACTGCAT	CGACAGCGGA	TTTTCCTGGT	12540
	GTTTTAAAAA	TAGGTCTCAT	AATAGGCTCC	ATATAAACAC	CGACAAATTC	TAATAAGCCA	12600
40	TAGCCCACTA	ATAAAGAAAG	cGcAATTGCA	CCTACTGGAA	TTAAGATACT	TAATGGCATC	12660
.•	ATTAATTTT	CAAACAAAAA	CGGACCATAG	TTAGCTTTAA	ATAGTATTGA	TGGACCGATT	12720
	TTAAATACAT	ACATTATACC	GATCATTGCA	CCTGCAACTT	TAAATAATGT	AATGACCAAG	12780
45	TTTGTGATTG	AAGTCATAAA	AGTACGTCTC	ACTATTGGTA	ACGCTGTACC	AATTAAAATC	12840
	ATAATCAGTG	CAACATAGGG	CATAAGTGGA	CCTATGATTG	AGCGAATGGC	TAGATGAACA	12900
	TGATCGACGA	AAATAGTGTT	GTTACCATTA	ATCGTAAAAG	GAATAAAGAA	ACATAGTATG	12960
50	CCCACTAAAC	TATAGACAAA	AAAACGCCAT	GCACTTGGTT	GTTGTGCATT	AGAATGATAT	13020
	TGATTCATTA	AAGCAACCCC	TTTGTTTAAA	TGAATACACA	AAACTGTATG	ATGCATCTTC	13080

	ATAGTTTGAA	TTATTTTCAT	ACCAATACA	A ATTAACTAA	T TATATATAGA	TTGAAACTAT	13200
	ATTACTTAAT	` AAAATATTTA	TCTTAAATG	TGTTGTGTT	G ATTCAACACC	ACAACTAAAA	13260
5	GTGTTTATAA	ATTATTTGGA	AATACACATA	A TTTGTAAAT	G ATTAGTATCG	ATTTAATATC	13320
	GTATTATTAA	ATTTTTATTA	ATTTTGTAG	CTTAATCMA	A AAATAATATA	TGTCATGTTA	13380
10	TATTGAAGGT	GCAGTTGTTT	TTCATTCTC	AGAGGGGGT	C AAAAAAATAC	TTTTGAGGTG	13440
10	ATTATATGTT	AAGAGGACAA	GAAGAAAGA	AGTATAGTA	TAGAAAGTAT	TCAATAGGCG	13500
	TGGTGTCAGT	GTTAGCGGCT	ACAATGTTTC	TTGTGTCATO	C ACATGAAGCA	CAAGCCTCGG	13560
15	AAAAAACATC	AACTAATGCA	GCGGCACAAA	AAGAAACACT	AAATCAACCG	GGAGAACAAG	13620
	GGAATGCGAT	AACGTCACAT	CAAATGCAGT	CAGGAAAGCA	ATTAGACGAT	ATGCATAAAG	13680
	AGAATGGTAA	AAGTGGAACA	GTGACAGAAG	GTAAAGATAC	GCTTCAATCA	TCGAAGCATC	13740
20	AATCAACACA	AAATAGTAAA	ACAATCAGAA	CGCAAAATGA	TAATCAAGTA	AAGCAAGATT	13800
	CTGAACGACA	AGGTTCTAAA	CAGTCACACC	AAAATAATGO	GACTAATAAT	ACTGAACGTC	13860
	AAAATGATCA	GGTTCAAAAT	ACCCATCATG	CTGAACGTAA	TGGATCACAA	TCGACAACGT	13920
25	CACAATCGAA	TGATGTTGAT	AAATCACAAC	CATCCATTCC	GGCACAAAAG	GTAATACCCA	13980
	ATCATGATAA	AGCAGCACCA	ACTTCAACTA	CACCCCCGTC	TAATGATAAA	ACTGCACCTA	14040
	AATCAACAAA	AGCACAAGAT	GCAACCACGG	ACAAACATCC	AAATCAACAA	GATACACATC	14100
30	AACCTGCGCA	TCAAATCATA	GATGCAAAGC	AAGATGATAC	TGTTCGCCAA	AGTGAACAGA	14160
	AACCACAAGT	TGGCGATTTA	AGTAAACATA	TCGATGGTCA	AAATTCCCCA	GAGAAACCGA	14220
	CAGATAAAAA	TACTGATaAT	AAACAACTAA	TCAAAGATGC	GCTTCAAGCG	CCTAAAACAC	14280
35	GTTCGACTAC	AAATGCAGCA	GCAGATGCTA	AAAAGGTTCG	ACCACTTAAA	GCGAATCAAG	14340
	TACAACCACT	TAACAAATAT	CCAGTTGTTT	TTGTACATGG	ATTTTTAGGA	TTAGTAGGCG	14400
40	ATAATGCACC	TGCTTTATAT	CCAAATTATT	GGGGTGGAAA	TAAATTTAAA	GTTATCGAAG	14460
	AATTGAGAAA	GCAAGGCTAT	AATGTACATC	AAGCAAGTGT	AAGTGCATTT	GGTAGTAACT	14520
	ATGATCGCGC '	TGTAGAACTT	TATTATTACA	TTAAAGGTGG	TCGCGTAGAT	TATGGCGCAG	14580
45	CACATGCAGC 1	TAAATACGGA	CATGAGCGCT	ATGGTAAGAC	TTATAAAGGA	ATCATGCCTA	14640
	ATTGGGAACC	TGGTAAAAAG	GTACATCTTG	TAGGGCATAG	TATGGGTGGT	CAAACAATTC	14700
	GTTTAATGGA A	AGAGTTTTTA .	AGAAATGGTA	ACAAAGAAGA	AATTGCCTAT	CATAAAGCGC	14760
50	ATGGTGGAGA A	AATATCACCA	TTATTCACTG	GTGGTCATAA	CAATATGGTT	GCATCAATCA	14820
	CAACATTAGC A	AACACCACAT A	AATGGTTCAC	AAGCAGCTGA	TAAGTTTGGA .	AATACAGAAG	14880

	ATTTAGGATT	AACGCAATGG	GGCTTTAAAC	AATTACCAAA	TGAGAGTTAC	ATTGACTATA	15000
	TAAAACGCGT	TAGTAAAAGC	AAAATTTGGA	CATCAGACGA	CAATGCTGCC	TATGATTTAA	15060
5	CGTTAGATGG	CTCTGCAAAA	TTGAACAACA	TGACAAGTAT	GAATCCTAAT	ATTACGTATA	15120
	CGACTTATAC	AGGTGTATCA	TCTCATACTG	GTCCATTAGG	TTATGAAAAT	CCTGATTTAG	15180
	GTACATTTTT	CTTAATGGCT	ACAACGAGTA	GAATTATTGG	TCATGATGCA	AGAGAAGAAT	15240
10	GGCGTAAAAA	TGATGGTGTC	GTACCAGTGA	TTTCGTCATT	ACATCCGTCC	AATCAACCAT	15300
	TTGTTAATGT	TACGAATGAT	GAACCTGCCA	CACGCAGAGG	TATCTGGCAA	GTTAAACCAA	15360
15	TCATACAAGG	ATGGGATCAT	GTCGATTTTA	TCGGTGTGGA	CTTCCTGGAT	TTCAAACGTA	15420
	AAGGTGCAGA	ACTTGCCAAC	TTCTATACAG	GTATTATAAA	TGACTTGTTG	CGTGTTGAAG	15480
	CGACTGAAAG	TAAAGGAACA	CAATTGAAAG	CAAGTTAAAT	TCATCTTCTG	AATTTAATAT	15540
20	GCTATGTAAA	TCGTGCTGTT	ATCATGGCAC	ATCAGATATA	AGTAGCATCA	CAGTGTTGAA	15600
	TTTAAAAATA	GTAAAGTGAA	ATAAAGCGCC	TGTCTCATTA	GCGAAAACTA	AAGGGACAGG	15660
	CGTATCTGTT	TATGAGCTTA	ATAAATTGTA	TGAATAATAT	GGTTGATCGA	ATAACTGTTT	15720
25	ATCATGATGA	TAAATTGAGT	TTTTTAAAAT	AATGATATAT	TACATCATTG	TTATAGCGTT	15780
	TAAGAAATCA	ACAACTTTAC	GATAAATAGT	GATTGCTTCG	TCATTAGGTC	TACGATCAAA	15840
	ATCATGCTCG	TTTTTATTCA	CGCGTTCAAA	TGTTGAATGT	GGAACATGAT	TCATGATATG	15900
30	TTCGCTTTCC	TCAACGGGAA	CATCATAATC	GCCATTACAA	TGCGCAATGA	AAACAGGTGG	15960
	AAGTGTTTTA	AGTTCATCTG	GTGCAATATT	ATATTTTGAA	TTAGTATAAT	CAGCAATGTT	16020
35	AATCATATTT	ATCCATTTAC	CTGTGCCACG	TGCATAAACG	TAGATTAAAA	AACGTTGTGC	16080
33	GATTTGATCT	TGAACAACCG	GTGTTGGTGA	AGTGAGTTGT	GCAATCATTG	TTTCGTTTAC	16140
	GCTTTGAGCT	ATTTTTGCGT	AATAACTATT	AGTTGTTTTA	AAAGGTTCAG	TGTTGATGCG	16200
40	ACTATAACCA	TAAAAATCAA	TAACACCATC	AATATCTCTG	TCTCGTGCAA	TTAATAGACT	16260
	TAAATATGCA	CCTGATGATC	TGCCAAAGGT	AAAAATAGGG	CAATTAGAAT	ATTGTGATTG	16320
	AATCGCATCG	<b>AATGA</b> tGCgn	AGNACATCCT	CAATAATGCA	ATCGAGACTT	ACTTCTGGTA	16380
45	ATAAACGATA	ACTTAGTTGA	ATTAAATCGT	AATGTTCCGT	AAgATATCGA	TATACTGTGG	16440
	GGATAAATCG	TTAGCTTTAC	CGAACATTAA	TCCACCACCG	TGGATGTAGA	CAATAGCGCC	16500
	TTTTGTTGGT	TGATTTTTTG	CTTTAATAAT	TGTGTAAGGT	AATGCAAATG	CATCTTTAGT	16560
50	AATTACTTTA	TCTTTAATTT	CAGTCACGAT	TTAATAGGCT	CCTTATTTTT	GATATTGATG	16620
	TCATTATAAC	ACTGTCTTAA	ATTTCCATGA	AAAATAGTCT	TAAGACGATG	AGTCATGATA	16680

	CATCATTTTA	ACAATATCTT	TAAAAGCAGC	ATGTGGAATG	GCTAAATCTT	CTAAATCTGC	16800
	CATAGAAAAT	TCAAGATTGA	TATCATGTGG	TCGCTGTTCA	GCAAGTTTAT	GCACAAAGTC	16860
5	AGGTTCTGTG	ACAAAAGGCG	AAGACATGCC	GACCATATCT	GCATGTTGTA	AAGCATCTAA	16920
	AGCAGACTCT	GGAGAATTAA	TCCCGCCACT	TGCAATTAAA	GGGATACGAC	CTGCTAAATG	16980
10	TTCATAGACA	ATTTGGTTAA	CTGGTCGACC	GAAATGATCA	CCTGGTGTAC	GAGACGTATT	17040
	TTGATAAATA	TGTCGACCCC	AGCTAGCGAT	TGCTAAGTAT	TGGATGTTTG	AAACGTCCAT	17100
	GACCCAATTG	ATTAATTGGT	TGAACTCGTC	AATGGTATAT	CCTAAATCAC	TGCCTCTGGT	17160
15	TTCTTCTGGC	GTTGCTCGAA	ATCCTAAAAT	AAAATTGTCA	GGTGCTTCTT	TATCAATCAC	17220
	TTCTTGTACC	GCACGCATAA	CTTCTAAACA	TAATCTTGCA	CGATTTTTTA	ATGAGTCGGC	17280
	ACCGTAATGG	TCTGTACGTT	TATTCGAAAA	AGTTGAGAAA	AATGTTTGAA	TCAGCAAACG	17340
20	TTGTGCAATC	GAAATTTCCA	CACCATCAAA	ACCTGCTTTA	ATCGCGCGTA	ATGTAGCATC	17400
	GCGATACTGC	TGAATGATGC	TATTGATTTT	CTCATGAGAC	ATGGCGATAA	CATCGTGTTC	17460
	AATCGGTGAA	TGCAATGTCA	TAGGGCTTGG	TCCATACACC	TTTCCAAAAT	TTAAAATGGC	17520
25	TTGATTTGAA	AAACGACCAG	CATGCGCTAg	CTGGATAATA	GCGAGGCTAC	CATGTTGTTT	17580
	CATCGTAGAT	GCCATGTTAG	TTAATCCAGG	GATACAAGCA	TCATGATCAA	TATTAAAGCC	17640
	ATATTCAAAC	AATTGACCAT	AAGGTTCAAT	GTAAGCAGCG	CCGGTGACTT	GCATTCCAGC	17700
30	TGAATTAGAG	CGACGTGCAG	CATAAGCCAA	GTCTTCTTTT	GTAATATAGC	CTTCTTTTGT	17760
	TGATGTGTTT	ACGGTCATTG	GTGATAATAC	AAAGCGATTC	GAAATTTTGA	TGCCATTAGG	17820
35	TAAGTGGATT	GATTGTAAAA	GTGGTTTGTA	TCGGTACATA	CTATGATTCC	TTTTCTATTC	17880
	AATATTGTTT	TCAAAGTACC	ATGGAAAGAA	TGAATAATCA	ATGATGAACA	GTCTTGATAG	17940
	AATAGAATTG	GTACATGGAA	AGTATTTTTA	AAATTAAACT	AATGAATGGC	ATTTGTAGGT	18000
10	CTGAAAATAT	GAATATGAAA	AAGAAAATA	AAGGCGAAAA	GATATAAAAG	TTAATTGAAA	18060
	AACGTTATCA	TATACGTGGG	TATATGAAGA	GGGAATGGTA	TTAAGAACGC	TAAAATGTTA	18120
	TGTCGGTTTG	ACATGACAGG	ATAAGTTTGG	AGATGACGGA	TTGGTTAAAT	TAAGCGTATT	18180
15	AGACTATGCC	TTAATAGATG	AAGGTAAGGA	TGCACAAAAG	GCATTGCAAG	ATTCAGTGAC	18240
	ACTTGCAAAA	TTAGCAGATC	GACTTGGCTT	TAAGCGAATT	TGGTTTACGG	AACATCATAA	18300
	TGTACCAGCG	TTTGCGTGTA	GTAGTCCAGA	ACTTTTGATG	ATGCATACAT	TGGCGCAGAC	18360
50	AAATCACATA	CGAGTTGGCT	CTGGTGGTGT	GATGCTGCCG	CACTATCGAC	CTTATAAAAT	18420
	TO CTC NO CNT	TENTRACIA A TOTA	THOROUGH COUNTY	እጥ <u>አ</u> ምድር አአካጥ		TACCTATTCC	10400

	TAGTTACGAT	GAATCGATTT	CGTTATTACG	TGATTATCTT	ACAATAAAGG	ATAAACCAAG	18600
	TGCGCATACG	TTAGGTGTCC	AACCACACAT	TGATCATTTT	CCAGAAATGT	GGTTATTAAG	18660
5	TAGTAGCGCA	ACATCTGCCA	AAATAGCTGC	CGAACTAGGT	ATAGGGCTTT	CTGTTGGAAC	18720
	ATTTTTGCTA	CCAGATATAA	ATGCGATACA	TACAGCGAAG	GATAACATTG	ATATTTACAA	18780
	AAAACATTTC	CAAGCATCAA	CGATTAAAAT	GGACGCAAAG	GTGATGGCAT	CTGTATTTGT	18840
10	CATTGTAGCT	GATAACGAAG	CGGAAGTAGC	AGCATTACAA	CATGCCTTAG	ATGTTTGGTT	18900
	ATTAGGTAAA	TTACAATTTG	CAGAATTTGA	AGATTTTCCT	TCAGTAGACA	CAGCACAAAA	18960
15	GTATAAGCTT	AATGATCGAG	ACAAAGAGAT	GATTCAAGCA	CATCAAGCAC	GCATCATTGC	19020
, 5	AGGTACACAA	GAAAAGGTTA	AAGCACAATT	AGATGATTTC	ATTGCTACGT	TTGAAGTTGA	19080
	TGAGGTGTTA	GTAGCACCGC	TTATTCCAGG	TATTGAACAG	CGTTGTAAAA	CATTAAAATT	19140
20	ACTCGCGGAA	ATTTATTTGT	AGCATTTTAA	ATAGAAGAGA	AAGGATGAAG	ATAAGATGAA	19200
	AAAGTTAGCC	AATTATTTAT	GGGTAGAAAA	AGTAGGAGAT	TTGTATGTGT	TTAGTATGAC	19260
	ACCTGAATTG	CAAGATGATA	TTGGGACAGT	AGGTTATGTT	GAATTCGTAA	GTCCAGATGA	19320
25	AGTTAAAGTG	GATGATGAAA	TTGTGAGTAT	CGAAGCATCG	AAAACGGTCA	TTGATGTGCA	19380
	AACGCCATTG	TCAGGAACGA	TTATTGAGCG	AAATACAAAA	GCGGAAGAAG	AACCGACAAT	19440
	TTTAAACTCT	GAAAAACCAG	AAGAAAATTG	GTTGTTCAAA	TTGGATGATG	TCGATAAAGA	19500
30	AGCATTCCTA	GCATTACCGG	AGGCTTAAAT	GGAAACGTTA	AAATCAAATA	AAGCGAGACT	19560
	TGAATATTTA	ATCAATGATA	TGCATCGAGA	GAGAAATGAC	AATGACGTAT	TGGTAATGCC	19620
	ATCTTCATTT	GAAGATTTGT	GGGAATTATA	TCGAGGCTTA	GCAAATGTCA	GACCGGCATT	19680
35	ACCTGTAAGT	GATGAATATT	TAGCTGTACA	AGATGCTATG	TTAAGTGATT	TGAATCGTCA	19740
	ACATGTTACG	GATTTGAAGG	ATTTGAAGCC	GATAAAAGGT	GACAATATCT	TTGTTTGGCA	19800
10	AGGTGATATC	ACGACGTTAA	AAATCGATGC	TATTGTTAAT	GCTGCAAATA	GTCGTTTTCT	19860
, -	AGGATGTATG	CAAGCTAATC	ATGACTGCAT	TGATAATATT	ATTCATACAA	AAGCGGGTGT	19920
	TCAAGTTCGA	CTTGATTGTG	CAGAGATCAT	TCGACAACAA	GGGCGCAATG	AAGGTGTAGG	19980
<b>1</b> 5	TAAAGCCAAA	ATAACACGTG	GATATAATTT	GCCAGCAAAG	TATATAATTC	ATACGGTTGG	20040
	TCCGCAAATA	CGTCGATTGC	CTGTTTCAAA	GATGAATCAG	GACTTGTTAG	CTAAATGTTA	20100
	TCTTAGCTGT	CTTAAATTGG	CTGATCAACA	TAGTTTAAAT	CATGTCGCTT	TTTGCTGTAT	20160
50	ATCTACAGGT	GTATTTGCTT	TTCCTCAAGA	TGAAGCAGCA	GAAATTGCTG	TTCGAACAGT	20220
	AGAAAGCTAT	CTCAAAGAAA	CAAATTCAAC	ATTGAAAGTC	GTGTTCAATG	TATTTACAGA	20280

	CAATGTCTCT	GTTAATGGAT	GACAAGACAA	AGCAGGCTGA	AGTATTGCGT	ACTGCGATTG	20400
	ATGAAGCAGA	TGCGATAGTG	ATTGGAATTG	GTGCAGGCAT	GTCTGCATCT	GACGGATTTA	20460
5	CATATGTAGG	AGAGCGTTTT	ACGGAAAATT	TCCCAGATTT	TATTGAAAAA	TATCGCTTCT	20520
	TTGATATGTT	GCAAGCGAGT	TTACATCCTT	ATGGCAGTTG	GCAAGAGTAT	TGGGCATTTG	20580
	AGAGTCGTTT	TATTACATTA	AACTATTTAG	ATCAACCTGT	AGGTCAGTCT	TACCTCGCTT	20640
10	TAAAATCCTT	GGTGGAAGGT	AAACAGTACC	ACATTATAAC	TACGAATGCA	GATAATGCTT	20700
	TCGATGTAGC	TGATTATGAT	ATGACTCATG	TATTTCATAT	ACAAGGGGAG	TATATACTGC	20760
15	AACAGTGTAG	cTCAGCATTG	TCATGCTCAA	ACGTATCGCA	ATGATGATTT	AATTCGTAAA	20820
	ATGGTTGTTG	CGCAACAAGA	TATGCTTATA	CCTTGGGAGA	TGATTCCAAG	ATGTCCAAAA	20880
	TGTGATGCCC	CAATGGAAGT	GAATAAACGT	AAAGCGGAAG	TTGGGATGGT	TGAAGATGCT	20940
20	GAATTTCATG	CGCAACTACA	TCGTTATAAT	GCTTTTCTAG	AGCAACATCA	AGATGATAAA	21000
	GTGTTGTATT	TGGAAATTGG	AATTGGTTAT	ACTACACCAC	AATTTGTGAA	GCATCCTTTT	21060
	CAGCGTATGA	CACGTAAAAA	TGAAAATGCC	CTTTATATGA	CGATGAATAA	AAAGGCATAT	21120
25	CGCATTCCGA	ATTCAATTCA	AGAACGTACC	ATACATTTAA	CTGAGGATAT	CTCAACATTG	21180
	ATTACAGCAG	CACTCCGGAA	CGACAGCACA	ACGAAAAATA	ACAACATTGG	AGAGACAGAA	21240
	GATGTACTTA	ATAGAACCGA	TTAGAAATGG	AGAATATATT	ACTGATGGTG	CGATTGCACT	21300
30	CGCTATGCAA	GTTTATGTTA	ACCAGCATAT	CTTTTTAGAT	GAAGATATTT	TATTCCCTTA	21360
	TTATTGTGAT	CCAAAAGTGG	AAATTGGACG	TTTTCAAAAT	ACTGCTATAG	AAGTGAATCA	21420
	AGATTATATA	GATAAACACA	GTATTCAAGT	AGTTCGCCGA	GATACTGGTG	GTGGCGCTGT	21480
35	GTATGTTGAT	AAAGGTGCCG	TTAATATGTG	TTGTATTTTA	GAACAAGACA	CTTCAATTTA	21540
	TGGTĞATTTT	CAACGATTTT	ATCAACCAGC	TATAAAGGCG	TTGCATACAT	TAGGTGCAAC	21600
10	AGATGTGGTA	CAAAGCGGTA	GAAATGATTT	AACATTGAAT	GGTAAAAAAG	TGTCAGGCGC	21660
	CGCAATGACA	TTAATGAATA	ATCGTATTTA	TGGCGGTTAT	TCGCTATTAC	TTGATGTTAA	21720
	TTATGAAGCA	ATGGATAAAG	TGTTAAAGCC	TAATCGCAAA	AAGATTGCAT	CGAAAGGGAT	21780
15	TAAATCTGTG	CGCGCACGTG	TTGGTCATCT	TAGAGAAGCA	CTGGATGAAA	AGTATCGTGA	21840
	TATAACCATT	GAAGAATTTA	AAAATTTAAT	GGTGACGCAG	ATTTTGGGAA	TCGATGACAT	21900
	TAAAGAGGCG	AAACGATATG	AATTAACGGA	TGCAGATTGG	GAAGCGATTG	ATGAATTAGC	21960
50	TGATAAAAAG	TATAAAAATT	GGGATTGGAA	TTATGGCAAG	TCACCCAAAT	ATGAATACAA	22020
	maca samas s		CACCTACCCT	3 C 3 C 3 T 3 3 C 3	N TOTAL COLOR	*****	22000

	AGAAGCATTA	CAAGGAACAA	AAATGACAAG	AGAAGATTTA	ACGCATCAGT	TAAAGCAATT	22200
	AGACATCGTT	TATTATTTTG	GCAATGTTAC	GGTAGAAGCA	TTAGTGGATA	TGATTTTAAG	22260
5	TTAATATTGT	TATTTTATGT	ATGCTGAATC	ATTGGAAGTG	TTTGCTTGCT	CTTGAAAAGG	22320
	TGACAATAGT	GTTTGGTGAA	GGTTGAACAT	ATGAGTGGAA	ATTATTGCCT	TTAACTATTC	22380
10	AAAGTATGAT	ATATATATGG	TTTTTGTTTC	TAAATGATTG	GGTATTTGAA	AATAGATGAG	22440
10	TTTAATATTT	TAAGGAATAT	AATGATGTTT	ACTTTTATAA	TTCATATAGA	ATATTAAGCA	22500
	ATATAAGTCT	GTTGATATAT	ACAAAATATA	ATGACTGCTA	TAATGAGTAA	TCAATAGACA	22560
15	CAAAGAGGAG	ATTATGTGAT	GAATAATAAA	GTATTAGTAA	CCGGTGGTAC	AGGGTTTGTT	22620
	GGCATGCGAA	TTATTTCACG	ATTATTAGAA	CAAGGTTATG	ACGTACAAAC	GACGATACGT	22680
	GATTTAAGTA	AAGCTGATAA	AGTAATTAAA	ACAATGCAAG	ACAATGGCAT	TTCCACAGAG	22740
20	CGATTAATGT	TTGTCGAAGC	GGATTTATCA	CAAGATGAAC	ATTGGGATGA	AGCAATGAAA	22800
	GATTGCAAGT	ATGTCTTGAG	TGTAGCATCT	CCGGTGTTTT	TCGGTAAAAC	AGACGATGCA	22860
	GAAGTGATGG	CGAaCTGCAA	TTGAAGGTAT	ACAACGTATT	TTAAGAGCTG	CAGAACATGC	22920
25	GGGTGTTAAA	CGTGTGGTAA	TGACTGCAAA	CTTTGGTGCA	GTTGGTTTTA	GTAATAAAGA	22980
	TAAAAATTCA	ATCACAAATG	AAAGTCATTG	GACAAATGAA	GATGAACCAG	GCTTATCAGT	23040
	ATATGAAAAA	TCAAAATTGT	TAGCTGAAAA	GGCAGCGTGG	GATTTTGTTG	AGAATGAAAA	23100
30	TACAACAGTA	GAATTTGCCA	CAATCAATCC	AGTTGCAATT	TTTGGGCCAT	CATTAGATGC	23160
	ACACGTTTCA	GGAAGCTTTC	ATTTATTAGA	AAATTTATTG	AATGGTTCAA	TGAAACGTGT	23220
35	ACCGCAAATT	CCGTTAAATG	TTGTTGATGT	GAGAGACGTA	GCTGAACTGC	ACATTTTGGC	23280
35	AATGACAAAT	GAACAAGCTA	ATGGCAAGCG	ATTTATTGCG	ACGGCTGATG	GACMAATTWA	23340
	tTTGTTGGGA	ATTGcCAAAt	TAATTAAAGA	AAAGGGCCTG	GAAATAGCTC	CAAAAGTTCC	23400
40	TACTAAAAAA	TTACCCAGCT	TTATTTTGAG	CnAnGnGCC			23439
	(2) INFORMA	ATION FOR SE	O ID NO: 39	):			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4522 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39: 50 CCCTTTGAGA GTATATCATC TAGTCAAATT ATGCCTGTCA TTAGAGCGAC TAGCTTTGAT 60

	TATTATGCAG	TCGATTTAGG	GAAATCATAT	CGTCTAATTG	ACGAAAGCAT	GTTAGAGGAT	180
	TTGAAGTTAA	CTGAACAACA	AATAAGAGAA	ATGTCTCTGT	TTAATGTTAG	AAAATTGTCA	240
5	AATTCATATA	CGACTGATGA	AGTAAAAGGT	AATATTTTTT	ATTTTATTAA	CTCAAATGAC	300
	GGGTATGATG	CAAGTAGGAT	ACTAAATACT	GCATTTTTAA	ATGAAATTGA	GGCACAATGT	360
	CAAGGCGAAA	TGCTCGTAGC	AGTGCCACAC	CAAGATGTGT	TAATTATTGC	AGATATACGC	420
10	AATAAAACAG	GATATGATGT	GATGGCACAT	TTAACAATGG	AATTTTTCAC	TAAAGGTCTA	490
	GTTCCAATTA	CATCATTATC	CTTTGGATAT	AAACAGGGTC	ATCTTGAACC	GATATTTATT	540
15	TTAGGTAAAA	ATAATAAACA	AAAAAGAGAT	CCAAACGTGA	TTCAGCGTTT	AGAAGCAAAT	600
, 0	CGTCGTAAAT	TTAATAAAGA	TAAATAGAAA	TAATTGGATA	AGGAGTTTTG	TCATAATGAA	660
	TTTATTTTAC	AATCCTAAAT	ATGTAGGAGA	TGTCGCATTT	TTACAAATTG	AACCAGTTGA	720
20	AGGTGAATTA	AACTACAATA	AAAAAGGTAA	TGTTGTTGAA	ATTACtAATG	AAGGTAATGT	780
	TGTAGGTTAT	AATATTTTTG	AAATTTCAAA	AGATATAACA	ATTGAAGAAA	AAGGTCATAT	840
	TAAATTAACT	GATGAACTTG	TAAATGTATT	CCAAAAGCGT	ATTTCAGAAG	CTGGTTTTGA	900
25	TTATAAATTA	AATGCTGATC	TATCACCGAA	ATTTGTAGTT	GGCTACGTTG	AAACTAAAGA	960
	CAAACATCCT	GATGCAGATA	AATTAAGTGT	ACTAAATGTA	AACGTTGGAA	ATGACACATT	1020
	ACAAATTGTA	TGTGGCGCGC	CTAACGTTGA	AGCTGGACAG	AAAGTTGTTG	TTGCTAAAGT	1080
30	AGGTGCAGTG	ATGCCTAGCG	GTATGGTAAT	TAAAGATGCT	GAATTACGTG	GTGTTGCCTC	1140
	AAGCGGTATG	ATTTGTTCAA	TGAAAGAATT	GAATTTACCT	AATGCACCTG	AAGAAAAAGG	1200
	TATTATGGTA	TTAAATGACA	GCTATGAAAT	TGGACAAGCA	TTtTTTGAAT	AATTAAGGAA	1260
35	GGTAGTGAAA	ATATGAGCTG	GTTTGATAAA	TTATTCGGCG	AAGATAATGA	TTCAAATGAT	1320
	GACTTGATTC	ATAGAAAGAA	AAAAAGACGT	CAAGAATCAC	AAAATATAGA	TrACGATCAT	1380
10	GACTCATTAC	TGCCTCAAAA	TAATGATATT	TATAGTCGTC	CGAGGGGAAA	ATTCCGTTTT	1440
•0	CCTATGAGCG	TAGCTTATGA	AAATGAAAAT	GTTGAACAAT	CTGCAGATAC	TATTTCAGAT	1500
	GAAAAAGAAC	AATACCATCG	AGACTATCGC	AAACAAAGCC	ACGATTCTCG	TTCACAAAAA	1560
<b>4</b> 5	CGACATCGCC	GTAGAAGAAA	TCAAACAACT	GAAGAACAAA	ATTATAGTGA	ACAACGTGGG	1620
	AATTCTAAAA	TATCACAGCA	AAGTATAAAA	TATAAAGATC	ATTCACATTA	CCATACGAAT	1680
	AAGCCAGGTA	CATATGTTTC	TGCAATTAAT	GGTATTGAGA	AGGAAACGCA	CAAGCCAAAA	1740
50	ACACATAATA	TGTATTCTAA	TAATACAAAT	CATCGTGCTA	AAGATTCAAC	TCCAGATTAT	1800
	CACAAAGAAA	GTTTCAAGAC	TTCAGAGGTA	CCGTCAGCTA	TTTTTGGCAC	AATGAAACCT	1860

	AAACAAAAAT	ATGATAAATA	TGTAGCTAAG	ACGCAAACGT	CTCAAAATAA	ACAATTAGAA	1980
	CAAGAAAAAC	AAAATGATAG	TGTTGTCAAA	CAAGGAACTG	CATCTAAATC	ATCTGATGAA	2540
5	AATGTATCAT	CAACAACAAA	ATCAATGCCT	AATTATTCAA	AAGTTGATAA	TACTATCAAA	2100
	ATTGAAAATA	TTTATGCTTC	ACAAATTGTT	GAAGAAATTA	GACGTGAACG	AGAACGTAAA	2160
	GTGCTTCAAA	AGCGTCGATT	TAAAAAAGCG	TTGCAACAAA	AGCGTGAAGA	ACATAAAAAC	2220
10	GAAGAGCAAG	ATGCAATACA	ACGTGCAATT	GATGAAATGT	ATGCTAAACA	AGcGGAACgC	2280
	TATGTTGGTG	ATAGTTCATT	AAATGATGAT	AGTGACTTAA	CAGATAATAG	TACAGATGCT	2340
	AGTCAGCTTC	ATACAAATGG	CATAGAGAAT	GAAACTGTAT	CAAATGATGA	AAATAAACAA	2400
15	GCGTCAATAC	AAAATGAAGA	CACTAATGAC	ACTCATGTAG	ATGAAAGTCC	ATACAATTAT	2460
	GAGGAAGTTA	GTTTGAaTCA	AGTATCGACA	ACAAAACAAT	TGTCAGATGA	TGAAGTTACG	2520
20	GTTTCGAATG	TAACGTCTCA	ACATCAATCA	GCACTACAAC	ATAACGTTGA	AGTAAATGAT	2580
. •	AAAGATGAAC	TAAAAAATCA	ATCCAGATTA	ATTGCTGATT	CAGAAGAAGA	TGGAGCAACG	2640
	aATAAAGAAG	AATATTCAGk	AAGTCAAATC	GATGATGCAG	AATTTTATGA	ATTAAATGAT	2700
?5	ACAGAAGTAG	ATGAGGATAC	TACTTCAAAT	ATCGAAGATA	ATACCAATAG	AAACGCGTCT	2760
	GAAATGCATG	TAGACGCTCC	TAAAACGCAA	GAGTACGCAG	TAACTGAATC	TCAAGTAAAT	2820
	AATATCGATA	AAACGGTTGA	TAATGAAATT	GAATTAGCAC	CGCGTCATAA	AAAAGATGAC	2880
30	CAAACAAACT	TAAGTGTCAA	CTCATTGAAA	ACGAATGATG	TGAATGATAA	TCATGTTGTG	2940
	GAAGATTCAA	GCATGAATGA	AATAGAAAAG	AATAACGCAG	AAATTACAGA	AAATGTGCAA	3000
	AACGAAGCAG	CTGAAAGTGA	ACAAAATGTC	GAAGAGAAAA	CTATTGAAAA	CGTAAATCCA	3060
35	AAGAAACAGA	CTGAAAAGGT	TTCAACTTTA	AGTAAAAGAC	CATTTAATGT	TGTCATGACG	3120
	CCATCTGATA	AAAAGCGTAT	GATGGATCGT	AAAAAGCATT	CAAAAGTCAA	TGTGCCTGAA	3180
	TTAAAGCCTG	TACAAAGTAA	GCAAGCTGTG	AGTGAAAGAA	TGCCTGCGAG	TCAAGCCACA	3240
10	CCATCATCAA	GATCTGATTC	ACAAGAGTCA	AATACAAATG	CATATAAAAC	AAATAATATG	3300
	ACATCAAACA	ATGTTGaGAA	CAATCAACTT	ATTGGTCATG	CAGAAACAGA	AAATGATTAT	3360
15	CAAAATGCAC	AACAATATTC	AGAGCAGAAA	CCTTCTGTTG	aTTCAACTCA	AACGGAAATA	3420
,3	TTTGAAGAAA	GTCAAGATGA	TAATCAATTG	GAAAATGAGC	AAGTTGATCA	ATCAACTTCG	3480
	TCTTCAGTTT	CAGAAGTAAG	CGACATAACT	GAAGAAAGCG	AAGAAACAAC	ACATCCAAAC	3540
50	AATACTAGTG	GACAACAAGA	TAATGATGAT	CAACAAAAAG	ATTTACAGTC	ATCATTTTCA	3600
	AATAAAAATG	AAGATACAGC	TAATGAAAAT	AGACCTCGGA	CGAACCAACA	AGATGTTGCA	3660

	CCAAGTGTTT CATTACTAGA AGAACCACAA GTTATTGAGT CGGACGAGGA CTGGATTACA	3780
	GATAAAAAGA AAGAACTGAA TGACGCATTA TTTTACTTTA ATGTACCTGC AGAAGTACAA	3840
5	GATGTAACTG AAGGTCCAAG TGTTACAAGA TTTGAATTAT CAGTTGAAAA AGGTGTTAAA	3900
	GTTTCAAGAA TTACGGCATT ACAAGATGAC ATTAAAATGG CATTGGCAGC GAAAGATATT	3960
	CGTATAGAAG CGCCTATTCC AGGAACTAGT CGTGTTGGTA TTGAAGTTCC GAACCAAAAT	4020
10	CCAACGACAG TCAACTTACG TTCTATTATT GAATCTCCAA GTTTTAAAAA TGCTGAATCT	4080
	AAATTAACAG TTGCGATGGG GTATAGAATT AATAATGAAC CATTACTTAT GGATATTGCT	4140
	AAAACGCCAC ACGCACTAAT TGCAGGTGCA ACTGGATCAG GGAAATCAGT TTGTATCAAT	4200
15	AGTATTITGA TGTCTTTACT ATATAAAAAT CATCCTGAGG AATTAAGATT ATTACTTATC	4260
	GATCCAAAAA TGGTTGAATT AGCTCCTTAT AATGGTTTGC CACATTTAGT TGCACCGGTA	4320
20	ATTACAGATG TCAAAGCAGC TACACAGAGT TTAAAATGGG CCGTAGAAGA AATGGAACGA	4380
20	CGTTATAAGT TATTTGCACA TTACCCATGT ACGTANTATA ACAGCATTTA ACNAAAAAGC	4440
	CCCATATGAT GAAAGAATGn CAAAAATTGT CATTGTAATT GATGAGTTGG CTGATTTAAT	4500
25	GATGATGGTC CGCAAGAAGT TG	4522
	(2) INFORMATION FOR SEQ ID NO: 40:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 751 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
	TCAAGTTTAC GGATACGTAT ATATTTTGCA TGACATTTAG TGCAATAATA TTCATAATTT	60
	GCCCGTTGTT GATAGCTTTC AATGCTGTTA CAAAATCTAG GCGCTCCAAC CTGTTGGCTC	120
40	AATTCCTTTTA A AATTCCTTCATC TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOT	

AATCGTTTAA AATCTTGATC TTTATGTTGA TAACCTTTAC CAGCAATATG CAAGTGATAA 180 TGACACAATT CGTGCAGTAT AATTTTTACA ACAGCATCTT CTCCATAATG CTCATATTGT 240 TTTGGATTAA TTTCAATATC ATGGGACTTT AAAAGATAAC GTCCGCCTGT TGTACGTAAC 300 CTTTTATTAA AATATGCACA ATGTCGAAAC GTACGTCCAA ATTTTTCTTC CGAAAGATTC 360 TCAACCATTC GCTGAAGTTT GTCATTATTC ATGTGGATCA ATCATCGTTA ATGATACTTT 420 GTCTTTATTT TTGTCAATAC TGTAAATCCA AACGTCAACG ATATCACCAA CACTGACAAT 480 ATCCATTGGA TTTTTTACGA ACTTCTTAGA AAGTTTCGAA ACATGGACAA GTCCATCTTG 540

55

45

	THICAPTECT TETTETAAAT CTTCAATTGA TAGCACATCG GATTTAAGGA TTGGTGTTTC	660
	AAACTCGTCC CTTGGATCTC GATTAGGTGC GTTCAAGGAT TTAATAATAT CCTCTAATGT	720
5	AGGTACACCG ACTTGTAATT CAATCGCCAG T	751
	(2) INFORMATION FOR SEQ ID NO: 41:	
10	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1076 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
	TCTCCAGCTT TAACTTGATC TGGCACTTTA ACAATTGTCT GATCCATACA TACGCGACCA	60
20	ATAACTTCGC ATTGATGACC ATTTACATTT ACAAAGCTAC CTTGCATTAT GCGTAAATGG	120
	CCATCTGCAT ATCCAATAGG TAACAATGCT ATTGTAGTTG GGTCAGTAGC TGTATAAGTT	180
	GCACCATAAC TTACAGACTC ACCCGCTTGT AGCGTCTTTG TTTGAACTAC ATTAGCAATT	240
25	AATTGCACAC TIGGTITAAG GTGTACTTTA ACTTTTTGCT GTACATACTC TGATGGATAA	300
	TATCCATAAA GGGAAATTCC TGGTCTTATT GCATTACAGA ATTGGCAATC CATTAATAGA	360
	GAGCCTGCTG AGTTCTGACA ATGTATATAT TCAGGTTTAA TTGCTTCATT GACCATATCT	420
30	TTAAAACGTT GATATTGTTC AGTTGTCATA TCTCCTGGTT CGTCAGCACA GGCAAAGTGT	480
	GTAAACACGC CTTCAAATAC AAGTTGCTCA TATTGTTGAA TGATTTCAAT CACTTCTTGA	540
	TACGTTTTAG TATCTTTAAT ACCTAAACGT CCCATTCCTG TATCTAATTT AATGTGCAAC	600
35	CATAACTITT TCTCTTGCTC ACCAGAAATG TTTTTAATTG CTTCTTTCAA CCACTGTTTA	660
	GACGGAACCG TTAAGGCAAC TCGGTGTTGT ATCGCTTTAT CAATATCTTT AGCTGGTAAC	720
	ACACCTAAGA CTAAAATTTT AGCAGTAATC CCATGCATTC TAAGTTCTAT CGCTTCATCT	780
40	AACGTTGCTA CAGCAAAAAA TGTGGCGCCA TTTTCCATTA AATGACGTGC TACTTTAACA	840
	CTACCTAGTC CATAGGCATT GGCTTTAACG ACAGCCATCA CTGTTTTATT TGGATGCAAT	900
<b>4</b> 5	GTACTGAATA CTTTGAAATT TGATGCAACA GCGTTTAAAT CTACATTCAT ATACGCAGAT	960
.5	CTATAATATT TATCCGACAT ATTACTTCCT CCTGTAATTC CCACACGTTT TAAAACTAGA	1020
	TCTTAATTAT CATTGTATAA CAAATTTAAA ATGCTGACTT TTCTAAAACA ACTTGG	1076
50	(2) INFORMATION FOR SEQ ID NO: 42:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2930 base pairs	

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
	TGACCACAAT GCCCAATACA ACCATCCCAT GGTAAAGCCA AGAGATGAGT CAATAAAGCG	60
10	TGTTGAATAA GAGCTGAATG AACCTGATAC TGGATAAAAT GTTGCCAACT CTCCAATTGA	120
. 0	TGACATTAAG AAATATAGCA TGACACCAAT AACAAGATAA GCGAGTATAG CGCCTCCAGG	180
	ACCAGCTTGA GAAATGATAT TACCAGTAGC TACAAATAGA CCAGTCCCAA TTGCACCACC	240
15	TATAGCAATC ATGGAAATGT GTCTTGAGTT AAGACTACGG TTCATTTTAT TATCTTCCAT	300
	ATTTAGTCTC CCATCTATTT AAATATACCC ATTATTGTAA GCTTTTTAAG TGTACTATTC	360
	AATAACTATT TAGTACTGTA AAGCGAAAAA ATTAAAATTT TCTGATTTTT TAATCATCTT	420
20	GAGCATGTTT AATTGTAATT TTGATGGGGT TAAATTATAA TATGTATTAA ATTATAATTA	480
	Thataaattg tggagggatg actatgtcac aacaagacaa aaagttaact ggtgtttttg	540
	GGCATCCAGT ATCAGACCGA GAAAATAGTA TGACAGCAGG GCCTAGGGGA CCTCTTITAA	600
25	TGCAAGATAT TTACTTTTTA GAGCAAATGT CTCAATTTGA TAGAGAAGTA ATACCAGAAC	660
	GTCGAATGCA TGCCAAAGGT TCTGGTGCAT TTGGGACATT TACTGTAACT AAAGATATAA	720
	CAAAATATAC GAATGCTAAA ALATTCTCTG AAATAGGTAA GCAAACCGAA ATGTTTGCCC	780
30	GTTTCTCTAC TGTAGCAGGA GAACGTGGTG CTGCTGATGC GGACGTGACA TTCGAGGATT	840
	TGCGTTAAAG TTCTACACTG AAGAAGGGAA CTGGGATTTA GTAGGGAATA ACACACCaGT	900
35	ATTCTTCTTT AGAGATCCAA AGTTATTTGT TAGTTTAAAT CGTGCGGTGA AACGAGATCC	960
55	TAGAACAAAT ATGAGAGATG CACAAAATAA CTGGGATTTC TGGaCGGGTt TCCAGAAGCA	1020
	TTGCACCAAG TAACGATCTT AATGTCAGAT AGAGGGATTC CTAAAGATTT ACGTCATATG	1080
40	CATGGGTTCG GTTCTCACAC ATACTCTATG TATAATGATT CTGGTGAACG TGTTTGGGTT	1140
	AAATTCCATT TTAGAACGCA ACAAGGTATT GAAAACTTAA CTGATGAAGA AGCTGCTGAA	1200
	ATTATAGCTA CAGATCGTGA TTCATCTCAA CGCGATTTAT TCGAAGCCAT TGAAAAAGGT	1260
45	GATTATCCAA AATGGACAAT GTATATTCAA GTAATGACTG AGGAACAAGC TAAAAACCAT	1320
	AAAGATAATC CATTTGATTT AACAAAAGTA TGGTATCACG ATGAGTATCC TCTAATTGAA	1380
	GITGGAGAGT TTGAATTAAA TAGAAATCCA GATAATTACT TTATGGATGT TGAACAAGCT	1440
50	GCGTTTGCAC CAACTAATAT TATTCCAGGA TTAGATTTTT CTCCAGACAA AATGCTGCAA	1500
	GGGCGTTTAT TCTCATATGG CGATGCGCAA AGATATCGAT TAGGAGTTAA TCATTGGCAG	1560

GGTCAAATGC GCGTAGTTGA CAATAACCAA GGTGGAGGAA CACATTATTA TCCAAATAAC 1680

	CATGGTAAAT TTGATTCTCA ACCTGAATAT AAAAAGCCAC CATTCCCAAC TGATGGATAC	1740
5	GGCTATGAAT ATAATCAACG TCAAGATGAT GATAATTATT TTGAACAACC AGGTAAATTG	1800
	TTTAGATTAC AATCAGAGGA CGCTAAAGAA AGAATTTTTA CAAATACAGC AAATGCAATG	1860
	GAAGGCGTAA CGGATGATGT TAAACGACGT CATATTCGTC ATTGTTACAA AGCTGACCCA	1920
10	GAATATGGTA AAGGTGTTGC AAAAGCATTA GGTATTGATA TAAATTCTAT TGATCTTGAA	1980
	ACTGAAAATG ATGAAACATA CGAAAACTTT GAAAAATAAA TTTGATATGT AGTTTCTATA	2040
	TTGCGTAGTT GAGCAGTTTA TGATATCATA ATAAATCGTA AAGATTCCTA ACAAGAGAGG	2100
15	GTGTTTAACG TGCGCGTAAA CGTAACATTA GCATGCACAG AATGTGGCGA TCGTAACTAT	2160
	ATCACTACTA AAAATAAACG TAATAATCCT GAGCGTATTG AAATGAAAAA ATATTGCCCA	2220
	AGATTAAACA AATATACGTT ACATCGTGAA ACTAAGTAAT TCTTATCATT CAAATACGAC	2280
20	GATTTGAAAA TAAAGCGGGC TTACCTATTA TATTGGGGAG CTCGCTTTTT TATGAAATTT	2340
	TTGTGAAGAG TGATTAATGG ATTGAGTTTC ATCGGTAGAA CAATATATGA TTATATTAGT	2400
25	TGTTACTTTA TTAAAATTTG AGAATATTTA TAGAAGGAAA TAGATTACTG ATTTTATAAA	2460
20	GTCACTTTGT TAGCGAATGC TTGAAAGAGT ATTTAATATA GTAGAATTTA AAATTTCAAA	2520
	GCGGAATTTA ATAAGTACGA AGTAGTTCTG GGTATGTTTT ATAAATGTTC GATAATACAC	2580
30	TTTAATCTTA AATATGATGG TTTAGAAAAT GATTTAACAA AGAAATGAAA CTTTACTGTT	2640
	GAATTATGTG AGGATTGTGT TATTATATAA ATCGTAATAA TTACGATTTG ATAAAAAGTG	2700
	AGGTAACTAT ATATGGCTAA GAAATCTAAA ATAGCAAAAG AGAGAAAAAG AGAAGAGTTA	2760
35	GTAAATAAAT ATTACGAATT ACGTAAAGAG TTAAAAGCAA AAGGTGATTA CGAAGCGTTA	2820
	AGAAAATTAC CAAGAGATTC ATCACCTACA CGTTTAACTA GAAGATGTAA AGTAACTGGA	2880
	AGACCTAGAG GTGTATTACG TAAATTTGAA ATGTCTCGTA TTGCGTTTAG	2930
40	(2) INFORMATION FOR SEQ ID NO: 43:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3606 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

CTTCTTGCCA TGGCTCTCTT TATTTAAAAA TGCTTCCAAC TTGTCCATTT GATTGTTTCT 60

55

	AAAAAATTT	CTAATTTTAC	AAATGCTTTT	GCGTTCTTAC	AAAAAATGCA	TTTGACTATT	180
	ATTATAATAA	GCGTATAATT	GTCGCATATT	ATTTTTTGTA	TTTTTGGCAA	TAACGAAGGA	240
5	GTATTTATGA	ATAAAGACAA	GCAATTGCAC	AACGACAAAA	TCAATCTATC	CCAATTAGTC	300
	TTATTAGGGT	TAGGCTCTTT	AATAGGATCT	GGTTGGCTAT	TTGGTGCGTG	GGAAGCATCA	360
	TCAATAGCTG	GACCAGCAGC	AATCATATCA	TGGGTTCTTG	GATTCCTAGT	CATTGGAACC	420
10	ATTGCCTATA	ACTACATTGA	AATCGGCACA	ATGTTTCCTC	AATCAGGTGG	CATGAGTAAC	480
	TATGCCCAGT	ATACACATGG	CTCATTATTA	GGCTTTATTG	CTGCTTGGGC	GAATTGGGTG	540
	TCTTTGGTGA	CAATAATACC	TATCGAAGCT	GTGTCAGCTG	TTCAATATAT	GAGTTCTTGG	600
15	CCGTGGCATT	GGGCGAAACC	AATGAGATAT	TTAATGGAAA	ATGGCTCTAT	TAGCACATAC	660
	GGATTGCTAG	CTGTATATCT	CATCATTGTT	ATTTTTTCAT	TATTAAACTA	TTGGTCCGTA	720
	AAACTTTTAA	CATCATTTAC	GAGTTTAATT	TCTGTATTTA	AATTAGGCGT	ACCCATGTTA	780
20	ACCATCATCA	TGTTGATGCT	ATCAGGATTC	GACACTTCAA	ATTACGGCCA	TTCGGCAAGC	840
	ACATTTATGC	CTTACGGAAG	TGCACCGATT	TTTGCTGCAA	CAACAGCATC	AGGGATTATT	900
25	TTTTCATTCA	ATTCATTCCA	GACAATTATT	AATATGGGTT	CAGAAATTAA	AAATCCTGAA	960
20	AAAAATATCG	CAAGAGGCAT	CGCTATCTCA	CTGTCAATCA	GTGCAGTGTT	GTACATCATT	1020
	TTACAAAGTA	CGTTTATCAC	TTCTATGCCT	CAATCAATGT	TACAACATAG	TGGATGGAAT	1080
30	GGCATCAACT	TCAATTCACC	ATTTGCTGAT	TTAGCTATCT	TATTAGGAAT	TAATTGGCTC	1140
	GCAATTTTAC	TATACATTGA	AGCTTTTGTA	TCACCATTCG	GTACTGGCGT	GTCATTTGTC	1200
	GCCGTTACAG	GTCGAGTTTT	ACGAGCAATG	GAGAAAAATG	GACATATCCC	TAAATTTCTT	1260
35	GGGAAGATGA	ATGAAAAATA	TCATATCCCA	CGTGTAGCAA	TCATCTTTAA	TGCCATCATT	1320
	AGTATGATTA	TGGTTACATT	ATTTAGAGAT	TGGGGTACGC	TAGCAGCAGT	TATTTCTACT	1380
	GCAACTTTAG	TAGCCTATTT	AACTGGCCCA	ACGACAGTGA	TTGCATTAAG	AAAAATGGGA	1440
40	CCAACAATGA	CTCGTCCATT	TAGAGCAAAA	ATTTTAAAAG	TAATGGCACC	ATTATCATTT	1500
	GTATTAGCTT	CATTAGCTAT	ATATTGGGCA	ATGTGGCCAA	CAACGGCTGA	AGTTATTTTA	1560
	ATCATTATAC	TTGGATTACC	AATCTACTTC	TTCTATGAAT	ATCGTATGAA	TTGGCGTAAT	1620
45	ACAAAGAAAC	AAATTGGTGG	TAGCTTATGG	ATTATTGTAT	ATTTAATCGT	GCTATCAATA	1680
	CTGTCATTTA	TAGGAAGCAA	AGAATTTAAA	GGCTTAAATA	TGATTCACTA	TCCATTTGAC	1740
	TTTATCGTTA	TTATTATTGT	GGCACTTATC	TTCTATTACA	TCGGTACAAC	GAGTTCATTT	1800
50	GAAAGCGTCT	ATTTCCGTCG	CGCAACACGA	ATCAATACGA	AGATGCGTGA	GTCACTAAAT	1860

	CACACACATT	AACCAACCAT	TGATTTCAAC	ATCTTGGTTG	GTTTTTTATT	TTGAAAATCG	1980
	GTTATAAATA	ACTAACATAA	CAAGATGATG	ATCAGGCTGG	GACATAAATC	AATGTTCTAT	2040
5	GCTCTACGAA	gTTATATTGG	CAGTAGTTGA	CTGAACGAAA	ATGCGCTTGT	AACAAGCTTT	2100
	TTTCGATTCT	AGTCAGGGGC	CCCAACACAC	AGAATTTCGA	AAAGAAATTC	TACAGGCAAT	2160
	GCAAGTTGGG	GTGGGACGAC	GATAAAGAAA	TACTTTTTCT	ATAGAAATTA	GTATYCCTTA	2220
10	TGCATGAGTT	TTACTCATGT	ATTCATATTT	TTAAGTACAC	ATTAGCTGTG	GCTAATGTAT	2280
	AAGAACCACT	ACATAATAAA	TCATTTGTGG	CTCTTTATCA	TTTCTGTCCC	ACTCCCGTAG	2340
	AAGTACATCA	TATAATGCTG	AAAATGGTTT	GAGTTAAAAC	AGATATCAAG	CTCGTCTGAT	2400
15	TCAGTCACAA	AATTGTCTTG	TTATACTTGT	CACCTATCAT	CTATAGACCG	TGGTATGATT	2460
	AAATTGGGGA	TGATAAAGGA	GGTTAATAAA	TATGAAGATT	AATACTACAG	GTGGTCAAAT	2520
	TCATGGTATT	ACACAAGATG	GTTTAGATAT	CTTCTTAGGC	ATTCCTTATG	CAGAACCACC	2580
20	AGTTCATGAC	AATCGCTTTA	AACATTCTAC	GTTAAAAACA	CAATGGTCAG	AGCCAATTGA	2640
	TGCAACTGAA	ATACAACCCA	TCCCACCGCA	ACCAGACAAC	AAATTAGAAG	ATTTTTTCTC	2700
25	CTCACAATCT	ACAACTTTTA	CTGAACATGA	AGACTGTTTA	TATCTAAATA	TTTGGAAACA	2760
20	ACATAATGAT	CAGACGAAGA	AACCTGTCAT	CATTTATTTT	TATGGTGGTA	GTTTTGAAAA	2820
	TGGTCATGGT	ACAGCCGAAC	TCTATCAACC	GGCACATTTA	GTACAAAATA	ACGACATTAT	2880
30	CGTTATTACA	TGCAATTATC	GTTTAGGCGC	ATTAGGATAT	TTAGACTGGT	CATATTTTAA	2940
	TAAAGATTTT	CATTCCAATA	ATGGCCTTTC	AGATCAAATC	AATGTCATAA	AATGGGTGCA	3000
	TCAATTTATT	GAATCCTTCG	GTGGCGACGC	TAATAACATT	ACTTTAATGG	GTCAGTCTGC	3060
35	AGGCAGTATG	AGCATTTTGA	CTTTACTTAA	AATACCTGAC	ATTGAGCCAT	ACTTCCATAA	3120
	AGTÇGTTCTA	CTAAGTGGCG	CACTACGATT	AGACACCCTT	GAGAGTGCAC	GCAATAAAGC	3180
	ACAACATITC	CAAAAAATGA	TGCTCGATTA	TTTAGATACA	GATGATGTTA	CATCATTATC	3240
40	GACAAATGAT	ATTCTTATGC	TGATGGCGAA	gcTAAAACAA	TCTCGAGGAC	CTTCTAAAGG	3300
	GCTTGATTTA	ATATATGCGC	CTATTAAAAC	AGATTATATA	CAAAATAATT	ATCCAACAAC	3360
	GAAACCAATT	TTTGCATGTT	ATACAAAAGA	TGAAGGCGAT	ATTTATATTA	CTAGTGAACA	3420
45	GAAAAAATTA	TCGCCGCAAC	GCTTTATCGA	CATTATGGAA	TTAAATGATA	TTCCTTTAAA	3480
	ATACGAAGAT	GTTCAGACGG	CGAAGCAACA	ATCTTTAGCG	ATTACACATT	GTTATTTCaA	3540
	ACAGCCGATG	aAGCAATTTT	TACMACMACT	CAATATACMA	GATTCCAACC	GCACCAACTA	3600
50	TGGCTT						3606

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15109 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

10	GAAATTAAAA	AAGCAATTGG	nACAAGATGC	AACAGTGTCA	TTGTTTGATG	AATTTGATAA	60
						ATCAAGCATT	120
							120
15						GGGCTGAAGT	180
	GAAACAAGAA	GAAATTGAAA	AATATGCTGG	TGATTACATT	GTGAGTACAA	GTGAAGGTAA	240
	ACCTACACCA	GGATACGAAT	CAACAAACAT	GTGGaAGAAT	TTGAAAGCTA	CTAAAGAAGG	300
	ACATATTGTT	AAAGTTGATG	CTGGTACATA	CTGGTACAAC	GATCCTTATA	CATTAGATTT	360
20	CATGCGTAAA	GATTTAAAAG	Amaaattaat	TAAAGCTGCA	AAATAATTCA	GCTATATAAG	420
	TTAGTGAAAT	GAGAGTCTGA	AACATATCAA	TCTTTTGATA	TTGTATTAGG	CTCTTATTTT	480
05	TATAGCTAGA	AAGTTAGATA	TTTGTATTTT	TTTAAATAAT	AAGTGCCGTT	GTTATCGTTC	540
25	AATTTAATTA	ATGATAGATT	AGTATTATTA	TAGCTAAAGT	AGTATACCTG	AGAAAATAGC	600
	TCAATGTATC	TCTTTATTAA	TAAGTTATAT	CATAATTATT	TTAGTGCATA	CTTTATGGAA	660
30	GGGATATCAG	GGAATGGCTT	TCAATTAAAG	AAGAGGTTTA	AAAGGATTAC	AACAGAATGT	720
00	TATGATTTTG	TAGAAAGATA	TATAACAACG	ТТТТАТАААА	ACATAATATT	GTTAATGGAA	780
	AATGAAATGT	AAGGGGGATT	TCGAGTGACT	AAGAAAGTTT	ATTTTAACCA	CGATGGTGGT	840
35	GTAGATGATT	TAGTATCTCT	ATTTTTATTA	TTACAAATGG	AAAACGTTCA	ATTGATAGGG	900
	GTCAGTACAA	TTGGTGCTGA	TTGTTATTTA	GAGCCATCTT	TGAGCGCATC	AGTAAAAATT	960
	ATTAATCGTT	TTTCAAATGA	AGATATTCAA	GTTGCGCCAT	<b>CATATGAA</b> CG	AGGAAAAAAT	1020
40	CCATTTCCTA	AAGAATGGCG	TATGCATGCC	TTTTTTATGG	ACGCATTGCC	AATTTTAAAT	1080
	GAGCCAGTCA	AACATGTTGC	TTCAAATGTG	AGCGACAAAG	AAGCCTTTGA	AGACATTATT	1140
	CAAACTTTAA	AGAGACAATC	AGAAAAAGTA	ACATTATTAT	TTACAGGCCC	GCTTACAGAT	1200
45	TTAGCAAAAG	CACTACAAAA	AGATTCATCT	ATCGTTCAGT	ATATAGAAAA	ATTAGTTTGG	1260
	ATGGGTGGCA	CCTTTTTACC	AAAAGGAAAT	GTTGAAGAAC	CTGAGCATGA	TGGTTCTGCA	1320
	GAATGGAATG	CATATTGGGA	TCCAGAAGCG	GTTAAAATTG	TTTTTGATAG	CGATATAGAG	1380
50				CAAGTACCGC			1440

55

	GTACCACCAT	TAACACACTT	TATAACAAAT	TCTACTTACT	TTTTATGGGA	TGTTTTAACG	1560
	ACTGCTTATA	TTGGTAACAA	GGACTTGGTT	CATTCAATTG	AGAAAAAGT	CGATGTAATA	1620
5	AGTTATGGAC	CAAGTCAAGG	TAAGACATTT	GAGTGTAAAG	ATGGGCGCAA	AATTAATGTC	1680
	ATAAATCATG	TAGATAACAA	CGCATTTTT	GATTATATAA	CTGCACTTGC	TAAAAAAGTA	1740
	AATTAACAGC	TGTGTAGAAT	AATTAAGGTT	TTAATTTATA	TAGAACAACT	TATTGTAAAC	1800
10	TTTTCATTTC	TTAAAGTTTA	CAATGGTGCT	ATAATAATGG	TCATGAAATA	CGAAAGGAAG	1860
	TAAAAAATGA	CAACAAAACA	GTTAGTATAT	ACAGCTTTAA	TGACAGCGAT	TATCGCTATT	1920
	TTAGGATTGG	TACCGGTAAT	TCCACTACCA	TTTTCTTCAG	TACCAATTGT	ACTTCAAAAC	1980
15	ATTGGTATTT	TCTTAGCAGG	TGCGATTTTA	GGACGTAAAT	ATGGCACATT	AAGTGTTATC	2040
	GTCTTTTTAT	TATTAGTAGT	TGCTGGCTTG	CCATTGTTAT	CAGGTGGTCG	CGGTGGCATC	2100
20	GGTGTATTCG	CAGGTCCTTC	AGCAGGGTTT	TTACTATTAT	ATCCAGTTGT	AGCATTCATG	2160
20	ATTGGGGCGA	TTCGAGATAG	ATTCATCAAT	GAAATTAATT	TCTGGATTTT	ATTCGTTGGT	2220
	ATTTTAGTTT	TTGGTGTTAT	AGCATTAGAT	GTTATTGGTA	CATTGATTAT	GGGCATGATT	2280
25	ATTAACATAC	CATTTACGAA	AGCTATTTCA	ATTTCATTAG	CTTATTTGCC	TGGTGATATA	2340
25	TTAAAAGCAA	TTGTAGCAAG	TTTGATTGGT	ACAGCTTTAC	TTAATCACTC	GCAGTTTCGT	2400
	CAAATTATGG	GAATAAAATA	ATCATATTTA	AGATAGTAAA	GTAATTGAAT	AAGTTGCTTT	2460
30	GAAATTTATA	AAAGTGAAAG	GAGTAGGTGT	CAATGGCTAG	TATAAGTATG	TCAGATATAT	2520
	ATTGTAACGG	CACTATATTT	GAAAATGACG	ACGAGCAGTT	GATTTATTTA	ACGCCTTCTT	2580
	TTCCACAACG	ATACACAAGT	AACACATGGA	TATATAAAAA	GACGCCTACC	CAAGAGCGAT	2640
35	GGCTGAAAGA	CTTAGAACGT	CAACATCAAT	TACATACAAA	TCAAGGTTCA	AATCATTATG	2700
	CGTTTAGTTT	CCCGGAAAAT	GAACAACTTG	ATAATCATTG	GATGGCTATG	TTTAAAGATA	2760
	TGAATTTTGA	ACTAGGTATT	ATGGAATTGT	ATGCCATAGA	AAGTGATGCG	CTTGCCAATT	2820
40	TGCCGCGTAA	CTCTGACGTT	GAAATTGCCA	TCGTTGACGA	GTCGCATATA	GATGCCTATT	2880
	TAAAAGTTGC	ATATCAGTTT	AGTTTGCCAT	TTGGAAAAGA	CTATGCAGAT	GCACATGAAG	2940
	AAATGGTAAG	GGAACATTAT	CAAAAAGATG	TGATTAAACG	CTTAGTAGCT	TATTTAAATA	3000
45	ATGAACCTAT	TGGCGTTGTA	GATGTCATTG	AAAGTGAAAA	TTACATTGAA	TTAGATGGAT	3060
	TTGGTGTATT	AGAACAATTT	CGGCACCAAG	GAATTGGATC	TACAATTCAA	TCGTTGATAG	3120
	GTGAATACGC	CATATCAAAA	AATCACAAAC	CAATCATATT	AGTTGCAGAT	GGTGAAGATA	3180
50	CAGCAAAAGA	TATGTATGCA	AAGCAAGGTT	ATGTCTATCA	ATCGTTTTGT	TATCAAATAT	3240

	TAAGCTGGTT	TCGAGTAGAA	ATCAACTTAC	TGCTTTTTAA	ATTGTTTTGA	GCTACTTATA	<b>3</b> 360
	СТТАТАААА	TAGTGCGTTT	AAATTGTTGA	TTCATGTAGA	ATATCGTTCA	TTATGACACA	3420
5	CTATAATGAA	TATGTTATTG	TTCAGAATCA	ATGATACGTT	CTGGATGACT	GTATATATTA	3480
	AAGCCACCAT	TTCGAATAAA	TCCAACTGCC	GTAATATTTA	GGTCATTAGC	TAAGGTTACA	3540
10	GCAAGCGTTG	TCGGAGCTGA	TTTAGATAAA	ATGACGCCAA	CACCAATTTT	TGCGGCTTTA	3600
	ATTAAAATTT	CTGATGAAAT	ACGTCCACTA	AAAATTAATA	CTTTATCTCG	GACAGTAATA	3660
	TGTCGCTGAA	TACAAAATCC	ATATAATTTA	TCTAGAGCGT	TATGTCTACC	AATGTCTTGT	3720
15	CGATGTACAA	AAAATGTCAA	ACCATCGCTT	ATAGCAGCAT	TATGTAAGCC	ACCTGTTTCT	3780
	TGGTAAATAT	GACTTGCACT	TTGTAATCGA	GTCATCATGT	TAATAATTTG	CATTGGAGTT	3840
	AAAGTGATTT	TAGACATAGA	TGTTTTAGCG	ATAGCAGCAT	CATTTTGAAA	ATAAAACTCA	3900
20	CGACTCTTTC	CGCAACAAGA	TGCAATCATT	CGTTTTGTGG	AATATTGAAA	GCGATCGCCT	3960
	AAATCTTTAT	TAAGTTCAAC	ATGGGCAAAA	CCTTTACTAT	CATCAATCAG	TACAGATTTT	4020
	AATTCATCTC	GCTTTAAAAT	GGCACCTTCC	GAAGCCAGAA	ATCCAATGAC	TAACTCCTCA	4080
?5	AGGTTTGTTG	GACTGCATAT	AACAGTCGCA	AATTCTTCAC	CATTCACCAT	AATTGTAAGT	4140
	GGAAATTCTG	TCACATATTG	ATCTGTTGTA	TTGAATAATT	TTCCATCTTC	ATATCTAACA	4200
	ATTGGTTGAC	CTAAAGATAC	ATCTTTGTTC	ATTATCTAAC	CCCTTTAATT	AGCTTAAACT	4260
30	TTATTTTAAA	GCAATTTGCT	TAAAATTTTA	ACATATTTGC	TTAAGTTTGA	AATTTGATTG	4320
	ATAAAAATTA	ATAGCGAGCA	ATCTGTTTGA	TTTAAATTGA	ATTCGAGAAT	ATACATACTA	4380
35	GGGCATCAAT	TAATAAATAT	CAATCTTATG	CAAATTTGAC	AATTGTTTGA	ATCAATATAT	4440
	AAACAGGCAA	CGGTTCTTTT	CAAATATAAT	AGTAAGTGTA	TAATGAAAAT	GTAAATATTA	4500
	TTAAAAATGG	GGGTTCACTC	AATGAAATTG	AAACGTTTAT	TTGCTGTTGT	GATTGCAATG	4560
10	CTTTTAGTAT	TAGCTGGTTG	CTCTAATTCT	AACGATAATA	ATGAAAGTAA	AAAAGATGAC	4620
	GCAGACAATG	G'FAAGAAACA	AGAGATTCAA	GTTGCAGCGG	CAGCAAGTTT	AACAGATGTA	4680
	ACCAAGAAAT	TAGCTTCAGA	AKAAAATTTA	GAGCATAAAA	ATGCTGATAT	TAAATTTAAC	4740
15	TATGGTGGAT	CAGGGGCATT	AAGAAAACAA	ATTGAATCAG	GCGCACCTGT	TGACGTATTT	4800
	ATGTCTGCAA	ATACTAAAGA	TGTAGATGCA	TTAAAAGACA	AGAATAAAGC	GCATGATACA	4860
	TATAAATATG	CGAAAAATAG	TCTAGTATTA	ATTGGTGATA	AAGATTCAAA	TTACACTTCA	4920
50	GTAAAAGACT	TAAAAGACAA	TGATAAATTA	GCATTAGGTG	AAGTGAAAAC	TGTACCAGCA	4980
	GGAAAATATG	CGAAACAGTA	TTTAGATAAC	AATAACTTAT	TTAAAGAAGT	CGAAAGTAAA	5040

	CAAGGTTTT	G TGTATAAAAC	TGACTTATA	T AAACAAAATA	A AAAAAATTGA	TACTGTAAAA	5160
	GTAATTAAA	G AAGTAGAACT	TAAGAAGCC	ATCACATACO	AAGCTGGTGC	TACATCAGAT	5220
5	AGTAAATTA	G CAAAAGAGTG	GATGGAATTO	TTAAAATCAC	G ATAAAGCTAA	AGAAATACTA	5280
	AAAGAATAC	ACTTTGCAGO	ATAAGGAGTT	GTAATCCATC	CCTGACTTAA	CACCTTTTTG	5340
	GATATCAATA	CGAGTTGCTG	TAATCAGTAC	GATTATTGTA	ACGGTTTTAG	GTATTTTAT	5400
10	ATCTAAATGG	TTGTATCGTC	GTAAGGGTTC	GTGGGTTAAA	GTATTGGAAA	GTTTATTGAT	5460
	ATTACCTATT	GTTTTGCCGC	CAACGGTATT	AGGTTTTATT	CTATTAATCA	TCTTCTCGCC	5520
15	AAGAGGACCA	ATCGGTCAAT	TCTTTGCGAA	TGTACTACAT	TTACCTGTAG	TGTTCACTTT	5580
, 0	GACAGGTGCT	GTGATAGCAT	CTGTCATTGT	TAGTTTTCCA	CTAATGTATC	AACATACTGT	5640
	GCAAGGCTTC	AGAGGTATAG	ACACGAAAAT	GATTAATACA	GCTAGAACGA	TGGGAGCAAG	5700
20	TGAAACGAAA	ATTTTCCTCA	AATTAATTTT	ACCATTAGCT	AAACGCTCTA	TTTTAGCAGG	5760
	TATAATGATG	AGTTTTGCTC	GTGCATTAGG	TGAGTTTGGT	GCTACATTAA	TGGTTGCAGG	5820
	ATATATTCCA	AATAAAACGA	ATACACTACC	TTTAGAAATA	TACTTCTTAG	TGGAACAAGG	5880
25	TAGAGAAAAT	GAAGCGTGGT	TATGGGTATT	AGTGCTAGTC	GCATTCTCTA	TTGTGGTTAT	5940
	ATCTACAATT	AATTTATTGA	ATAAAGATAA	ATATAAGGAG	GTCGACTAGA	TGCTTAAAAT	6000
	CAATGTGAAA	TATCAATTAA	AGAACACTTT	AATTCGCATC	AATATAGATG	ATACTGAACC	6060
30	AAAAATTTAT	GCAGTTCGTG	GTCCATCTGG	CATTGGTAAA	ACTACTGTTT	TAAATATGAT	6120
	TGCCGGATTA	CGTAAAGCAG	ATGAAGCTAT	TATCGAAGTG	AATGGGCAAT	TACTTACTGA	6180
	TACGGCAAAA	AACGTGAATG	TTAAAATTCA	ACAACGACGT	ATTGGATATC	TGTTTCAAGA	6240
35	CTACCAATTG	TTTCCTAATA	TGACGGTCTA	TAAAAATATT	ACTTTTATGG	CTGAACCATC	6300
	TGAACACATC	GATCAATTAA	TTCAAACTTT	AAACATTGAT	CATTTGATGA	AACAATATCC	6360
40	TATGACATTG	TCAGGTGGAG	AGGCACAACG	TGTAGCACTT	GCACGTGCAC	TTAGCACrAA	6420
	ACCAGATTTA	ATTTTATTAG	ATGAACCTTT	TTCTAGTTTG	GATGATACTA	CAAAAGATGA	6480
	GAGTATTACA	TTAGTTAAAC	GTATTTTCAA	CGAATGGCAA	ATACCAATCA	TATTTGTGAC	6540
45	ACATTCAAAC	TATGAAGCAG	AACAAATGGC	TCATGAAATT	ATTACAATTG	GGTAATCATT	6600
	TATTTGCCAT	TAAAGAGTTT	AGAACGTATT	TAAAATTGTA	GAAGTGAATG	CTTCTATCAG	6660
	CATTTTAATG	ATGTTTTAAA	CTCTTTTTTA	GGGGCAGTTT	TTTTGAGAGA	CATTGACGCG	6720
50	CGTCATATAA	TGAAAGTAAT	GATAAAAAGA	AAGGATAACT	TAATGTGAGT	CAAGAACGTT	6780
	ATTCAAGGCA	AATTTTATTT .	AAACAAATAG	GTGAAATAGG	TCAAAGCAAA	АТАААТСААА	6840

	GAGCAGGCAT	TGCCAAACTA	ATCATTGTTG	ATAGAGATTA	TATTGAATTT	AGTAATTTAC	6960
	AAAGACAAAC	ATTGTTTACT	GAAGAAGATG	CTTTGAAAAT	GATGCCTAAG	GTGGTTGCAG	7020
5	CTAAAAAGCA	TTTGCTAGCG	TTACGTAGTG	ATGTTGATAT	TGATGATTAT	ATTGCCCATG	7080
	TGGATTATTA	TTTTTTGGAA	ACACATGGAC	AGGACGTTGA	CGTTATTATT	GATGCAACCG	7140
	ATAACTTTGA	AACACGACAA	CTGATTAATG	ATTTTGCATA	TAAATATCGT	ATACCTTGGA	7200
10	TTTATGGTGG	TGTTGTACAG	AGTACATATA	CAGAAGCTGC	ATTTATACCT	GGTAAAACAC	7260
	CTTGCTTTAA	CTGTTTGGTA	CCACAATTGC	CAGCATTAAA	TTTAACATGT	GATACAGTAG	7320
15	GGGTCATTCA	ACCTGCCGTG	ACGATGGCAA	CAAGTTTACA	ATTAAGAGAT	GCGATGAAAG	7380
	TATTAACGGA	ACAACCAATT	GACACAAAAA	TAACTTATGG	CGATATTTGG	GAAGGTAGTC	7440
	ATTATTCATT	TGGTTTCAGT	AAAATGCAAC	GTTCAGACTG	TACAACTTGT	GGAGATGTAC	7500
20	CAAGTTATCC	GTATTTAAAC	AAGAATGAAC	AACGTTATGC	AACATTGTGT	GGTAGAGACA	7560
	CTGTACAGTA	TGAAAATGCA	TCAATTACAC	ACGACATTCT	TGTTCAATTT	TTAAAACAAC	7620
	ATCAGTTAAA	TTATCGCAGT	AATTCGTATA	TGGTTATGTT	TGAATTTAAA	GGACACCGCA	7680
25	TTGTTGCTTT	TAAAGGTGGA	AGGTTTTTAA	TACATGGCAT	GACACGCACA	TCAGATGCCA	7740
	CACATCTAAT	GAATTTATTG	TTTGGATAAA	AAAAGATAAG	ACAAAAGGAG	TGTAATATTA	7800
	TGGGCGAACA	TCAAAACGTT	AAATTGAATC	GTACAGTTAA	AGCAGCCGTA	CTAACGGTAT	7860
30	CAGATACTAG	AGACTTTGAT	ACAGATAAAG	GTGGTCAATG	CGTGCGCCAA	CTATTACAAG	7920
	CAGATGACGT	TGAAGTGAGT	GACGCACATT	ATACAATTGT	GAAAGATGAA	AAAGTAGCCA	7980
35	TCACGACGCA	GGTGAAGAAG	TGGTTAGAAG	AAGATATTGA	TGTCATCATT	ACGACTGGTG	8040
33	GAACAGGTAT	TGCACAACGT	GATGTGACGA	TTGAAGCAGT	AAAACCACTT	TTAACTAAAG	8100
	AGATAGAAGG	CTTTGGGGAA	TTGTTTAGAT	ATTTGAGTTA	TGTTGAAGAT	GTTGGCACGC	8160
40	GTGCATTATT	GTCTCGTGCT	GTAGCAGGTA	CAGTTAATAA	TAAATTGATA	TTTTCGATTC	8220
	CAGGATCAAC	AGGCGCAGTT	AAATTAGCAT	TAGAAAAGCT	CATTAAACCA	GAATTAAATC	8280
	ATCTGATTCA	TGAGCTTACA	AAATAATTTA	TTGATTTGAT	TGGCGTTGAA	AATCTCCAGA	8340
45	TTTACCGCCA	GACTTGCTTT	CAAGGTAGGT	TTCGCCAATA	ATCATACCTT	TATCAACTGC	8400
	TTTCGTCATG	TCGTAAATGG	TTAAAGCCGT	TGCTGATGCA	GCGGTTAAAG	CTTCCATTTC	8460
	AACACCGGTT	TTGCCAGTTG	TAGAGACAGT	TGTTTGAATG	TTTAAAGTAT	AAAGGGGTGC	8520
50	ATTTGTTTCA	TCCCAGCTGA	AGTGAACATC	TATGCCAGTC	AATGGTAATG	GATGGCACAT	8580
	CGGAATAAGT	GTTGATGTAT	TTTTGGCAGC	CATAATACCA	GCGATTTGAG	CAGTGTTCAA	3640

	AATGCTTGAA	A TGAGCGACAG	CAGTTCTTT	TGTAATTTGT	TTGTCTGATA	CATCGACCAT	8760
	TTTGGCGTGG	CCTTGTTGAT	TAATATGAGI	AAACTCAGTC	ATTTTACCCC	TCCTAGTGCA	8820
5	TCTAGTATAT	CATGAAAAA	TAAAAGTTTI	GGAGATGATT	TTTAATGGTA	GTAGAAAAA	8830
	GAAACCCAAT	CCCAGTTAAA	GAAGCAATTO	AACGTATCGT	TAATCAGCAG	AGTTCAATGC	8940
10	CGGCAATTAC	GGTAGCACTT	GAAAAAAGTO	TAAATCATAT	CTTAGCAGAA	GATATTGTAG	9000
70	CTACTTATGA	TATACCAAGG	TTTGATAAAT	CACCTTATGA	TGGTTTTGCA	ATTCGCAGTG	9060
	TTGATTCACA	AGGGGCAAGT	GGTCAGAATC	GCATTGAGTT	TAAAGTGATT	GATCATATTG	9120
15	GTGCAGGTTC	AGTTTCTGAT	AAATTAGTTG	GGGATCACGA	AGCGGTGCGT	ATTATGACTG	9180
	GAGCACAAAT	ACCTAATGGC	GCAGATGCTG	TTGTTATGTT	TGAACAAACG	ATTGAACTAG	9240
	AAGATACATT	TACAATTCGT	AAACCATTTT	CAAAAAATGA	AAATATATCT	TTAAAAGGTG	9300
20	AAGAAACAAA	GACAGGCGAT	GTTGTTCTAA	AAAAAGGACA	AGTAATTAAT	CCAGGGGCTA	9360
	TCGCGGTCCT	TGCAACATAT	GGCTATGCAG	AGGTTAAAGT	TATTAAGCAA	CCGAGTGTCG	9420
	CTGTTATTGC	AACAGGAAGC	GAATTATTAG	ATGTTAATGA	TGTATTAGAA	GATGGGAAAA	9480
25	TTCGTAACTC	TAATGGCCCA	ATGATTCGTG	CCTTAGCAGA	AAAATTAGGT	CTTGAAGTTG	9540
	GTATTTACAA	AACACAAAAA	GATGATTTAG	ATAGTGGCAT	CCAAGTCGTT	AAAGAAGCTA	9600
	TGGAAAAACA	TGATATCGTT	ATTACAACGG	GCGGAGTTTC	TGTTGGAGAT	TTTGACTATT	9660
30	TACCTGAGAT	TTATAAGGCT	GTAAAGGCGG	AAGTGTTATT	TAATAAAGTA	GCAATGCGTC	9720
	CTGGTAGCGT	AACAACGGTT	GCATTTGTAG	ATGGaAAGTA	TTTGTTTGGa	TTATCTGGAA	9780
35	ATCCATCAGC	TTGTTTTACA	GGATTTGAAC	TATTTGTGAA	nCCAGCTGTT	AAACATATGT	9840
	GTGGCGCACT	AGAAGTCTTC	CCGCAAATAA	TTAAAGCAAC	ATTAATGGAA	GATTTTACCA	9900
	AGGCAAACCC	ATTCACACGA	TTTATACGTG	CTAAAGCAAC	GTTAACAAGT	GCTGGAGCTA	9960
40	CTGTAGTACC	TTCAGGATTC	AATAAATCAG	GTGCGGTTGT	AGCGATTGCA	CATGCTAACT	10020
	GTATGGTCAT	GTTACCAGGA	GGGTCACGTG	GTTTTAAAGC	GGGGCATACA	GTAGATATTA	10080
	TATTGACTGA	ATCTGACGCT	GCTGAAGAGG	AACTTCTTTT	ATGATTTTAC	AAATTGTAGG	10140
45	TTACAAAAAG	TCTGGTAAGA	CAACATTGAT	GAGGCATATT	GTCTCTTTCT	TAAAGTCACA	10200
	TGGTTATACA	GTTGCTACTA	TTAAACATCA	TGGGCATGGT	AAGGAAGATA	TTCAATTACA	10260
	GGATTCAGAC	GTCGATCACA	TGAAGCATTT	TGAAGCGGGG	GCAGATCAAA	GTATTGTACA	10320
50	AGGTTTTCAA	TATCAGCAAA	CTGTAACACG	TGTAGATAAT	CAAAATCTTA	CTCAAATTAT	10380
	TGAAAAATCT	GTTACAATTG	асассаатат	ССТАТТАСТТ	ር እ አርርርርጥጥ፣ አ	3 3 3 3 TC CTC 3	10440

	GAATGTTTGT	TATAGCATTA	ATGTAAGGGA	GCATGAAGAT	TTTACAGCAT	TTGAGCAATG	10560
	GTTATTAAAT	AAAATTAAAA	ATGATTGTGA	TACACAATTA	ACATAGAGGA	TTGAAATGAA	10620
5	TGAAACAATT	TGAAATCGTG	ACAGAACCGA	TACAAACAGA	ACAATATCGT	GAATTCACTA	10680
	TAAATGAATA	TCAAGGTGCA	GTAGTTGTTT	TTACCGGTCA	TGTTCGCGAA	TGGACTAAAG	10740
	GCGTCAAAAC	GGAATATTTA	GAATATGAAG	CGTATATTCC	AATGGCTGAA	AAGAAATTGG	10800
10	CACAAATTGG	AGATGAAATA	AATGAAAAAT	GGCCTGGAAC	GATAACGAGT	ATTGTTCATA	10860
	GAATAGGGCC	ATTACAAATT	TCAGATATCG	CTGTATTAAT	TGCGGTTTCT	TCACCGCATC	10920
15	GTAAAGATGC	CTATCGAGCA	AATGAATATG	CAATTGAGCG	TATAAAAGAA	ATTGTTCCGA	10980
15	TTTGGAAAAA	AGAAATTTGG	GAAGATGGTT	CAAAATGGCA	AGGGCATCAA	AAAGGGAATT	11040
	ATGAAGAAGC	AAAGAGGGAG	GAATAAGAGA	GATGAAGGTA	CTTTACTTCG	CAGAAATTAA	11100
20	AGATATATTA	CAAAAAGCAC	AGGAAGATAT	TGTGCTTGAA	CAAGCATTGA	CTGTACAACA	11160
	ATTTGAAGAT	TTATTGTTTG	AACGTTATCC	GCAAATCAAT	AATAAAAAGT	TTCAAGTTGC	11220
	TGTAAATGAG	GAATTTGTAC	AAAAATCGGA	TTTCATTCAA	CCTAATGATA	CTGTTGCATT	11280
25	AATTCCACCG	GTTAGTGGAG	GTTAAGGGAG	CATGAAAGCA	ATAATTCTTG	CAGGTGGTCA	11340
	TTCAGTGCGA	TTTGGTAAGC	CCAAAGCTTT	TGCGGAAGTG	AACGGTGAGA	CCTTTTATAG	11400
	TAGAGTAATT	AAGACATTAG	AATCAACAAA	TATGTTCAAT	GAAATTATTA	TTAGTACAAA	11460
30	TGCGCAATTG	GCAACGCAAT	TTAAATATCC	AAATGTTGTT	ATAGATGATG	AGAATCATAA	11520
	TGATAAAGGT	CCATTAGCAG	GAATTTATAC	AATCATGAAG	CAACATCCTG	AAGAAGAATT	11580
	GTTTTTTGTC	GTTTCTGTTG	ATACACCAAT	GATTACTGGT	AAAGCTGTAA	GCACGTTGTA	11640
35	TCAGTTTTTA	GTTTCTCATC	TTATTGAAAA	TCATTTAGAT	GTCGCAGCTT	TTAAAGAAGA	11700
	TGGACGTTTT	ATTCCAACAA	TTGCATTTTA	TAGTCCGAAT	GCATTAGGCG	СТАТААСТАА	11760
	AGCACTACAT	TCTGATAATT	ACAGTTTTAA	AAATGTATAT	CATGAATTAT	CAACGGATTA	11820
40	TTTGGATGTA	AGGGATGTAG	ATGCGCCCTC	ATATTGGTAC	AAAAATATAA	ATTATCAGCA	11880
	TGATTTGGAC	GCTTTAATTC	AAAAATTGTA	AGCTGTTAGG	AGGTCCACAA	ATGGTAGAAC	11940
45	AAATAAAAGA	TAAACTAGGA	CGTCCCATCC	GTGACTTACG	GTTATCTGTG	ACAGATCGGT	12000
	GTAACTTTAG	GTGTGATTAT	TGCATGCCTA	AAGAGGTATT	TGGAGATGAT	TTCGTATTTT	12060
	TACCTAAAAA	TGAACTTTTA	ACGTTTGATG	AAATGGCTAG	AATCGCTAAG	GTATATGCAG	12120
50	AATTAGGTGT	ааааааата	CGCATTACAG	GTGGAGAACC	ATTGATGCGA	CGGGATTTAG	12180
	ATGTACTTAT	AGCTAAATTA	AATCAAATCG	ATGGTATTGA	AGATATTGGT	TTGACTACAA	12240

	ATGTCAGTTT	GGATGCTATT	GATGATACGC	TATTTCAATC	AATCAATAAT	CGTAATATTA	12360
	AAGCGACTAC	GATTTTAGAA	CAAATTGATT	ACGCGACGTC	TATTGGTTTG	AATGTAAAAG	12420
5	TAAATGTTGT	TATACAAAAA	GGTATTAACG	ATGATCAAAT	CATACCAATG	CTTGAATATT	12480
	TTAAAGATAA	ACATATAGAG	ATTCGATTTA	TAGAATTTAT	GGATGTTGGT	AATGATAATG	12540
	GATGGGATTT	CAGTAAAGTT	GTAACTAAAG	ATGAAATGCT	TACAATGATA	GAGCAGCACT	12600
10	TTGAAATCGA	TCCTGTAGAA	CCAAAATATT	TTGGGGAAGT	AGCAAAATAT	TATCGCCATA	12660
	AGGATAATGG	TGTTCAATTT	GGTTTGATTA	CAAGTGTTTC	ACAATCATTT	TGTTCTACAT	12720
15	GTACACGCGC	AAGGCTGTCA	TCAGATGGGA	AGTTTTACGG	ATGTTTATTT	GCAACTGTCG	12780
	ATGGATTTAA	CGTTAAAGCG	TTTATTCGTT	CTGGCGTGAC	CGACGAAGAA	TTAAAAGAAC	12840
	AATTTAAAGC	TTTATGGCAA	ATAAGAGATG	ATCGATATTC	AGATGAGAGA	ACTGCTCAAA	12900
20	CAGTTGCCAA	TCGTCAACGT	AAAAAGATAA	ACATGAATTA	TATTGGTGGT	TAATGTGTAG	12960
	GGACCACTAC	ATATTAAATC	ATTAGAGATG	TTTTAATATT	TCTGTCTTAC	TCCCTAAAAT	13020
	ACAATATTAT	TTATTAAAGT	AAAAACGGTC	ATATCTATGC	CAGATTTAAT	AGAAATGATC	13080
25	GTTTTTAAAG	TTTTTACAAG	TTGGCGGGGC	CCCAACACAG	AAGCTGACAG	AAAGTCAGCT	13140
	TACAATAATG	TGCAAGTTGG	CGGGGCCCCA	ACATAGAGAA	TTTCAAAAAG	AAATTCTACA	13200
	GACAATGCAA	GTTGGGGAAC	GGGGCCCCAA	CACAGAAGGT	GACGAAAAGT	CAGCATACAA	13260
30	TAATGTGCAA	GTTGGCGGGG	CCCCAACATA	GAGAATTTCA	AAAGAAATTC	TACAGACAAT	13320
	GCAAGTTGGG	GATCAACGAA	ATAAATTTTA	TGAGAATATC	ATTTCTATCC	CACTCTTAAG	13380
	AATCACTACA	TAATAAATCT	TTAGTGGTTC	TTTAACATTG	ATGTCACACT	CCATGCCATT	13440
35	GAGTTGTAAT	ATATCTTTTT	TAGGTATAAA	TGTTGTCGAA	TAAACAACAA	GTTGTCCAAA	13500
	AGATATAAAT	CTAAACAAGA	TATAGCCAGC	TATAATTTAA	TTGTAATAGA	TAAAATGCTA	13560
40	AGTTTGATAT	АТААТАААТТ	TAAGTAATTG	ТАТААТААТА	TGAATTACAA	ACATCTAAGA	13620
40	AGAAACATAG	GAGGCATCAT	ATTATGAGTA	ATAAAGTTCA	ACGTTTTATA	GAAGCAGAAA	13680
	GGGAGTTAAG	TCAGTTAAAG	CACTGGTTAA	AAACAACACA	TAAGATTTCA	ATTGAAGAAT	13740
45	TTGTAGTCCT	TTTTAAAGTG	TATGAAGCTG	AAAAGATTAG	CGGTAAAGAA	TTGAGGGATm	13800
	CATTACATTT	TGAAATGCTA	TGGGATACAA	GTAAAATCGA	TGTGATTATC	CGTAAAaTCT	13860
	ATAAAAAAGA	GCTTATTTCT	AAATTGCGTT	CTGAAACGGA	TGAAAGACAA	GTATTCTATT	13920
50	TCTATAGTAC	TTCTCAAAAG	AAATTGTTAG	ATAAAATTAC	TAAAGAAATA	GAAGTGTTAA	13980
	CCCTTACAAA	ריים או או אירים אירים או אירים או אירים אירים אירים או אירים אירים או אירים אירים אירים אירים אירים אירים איר	- 3 3 3 3	CCA A TO COTO	mma.ma.m.	<b>****</b>	

	GTTCATGGCA TTTCTAGTTA CATGACGTCC ATGAATTAAG AAGTAAACAA GCATAGTAAT	14160
	GATTGCTAAA GCGGCCATAA AGCCGAAGAT TTCACTATAT GAAAACATAT GAGTAAATAA	14220
5	CCCAAGGAAT GATGGACCGA AGCCGACACC TGCATCTAGA CCAACGTAAA AAGTAGATGT	14280
	CGCGATACCA TATTTAATCG GGGGTGAGAC TTTTATCGCA ATAGATTGCA TTGCAGATGA	14340
10	TAAATTTCCA TACCCTAAAC CTAGGCAAGC ACCAGCAAGT AATATTAACC AGCTTTGATA	14400
10	GCTTGAAATT AAGCATACAA ATGAAAGGAA AAGCATGATA AATGCTGGGT AGACAATAAT	14460
	ATTTTCATTT TTATCATCCA TCAATCTACC AGCAATAGGT CTAGTAATTA ACGATGCTAT	14520
15	AGCATAGCAA ATAAAGAAAT AGCTTGCTGC AGTGACTAGG TGTCGCTCTA AAGCAAATGC	14580
,,	TTGTAAATAA GTTAGGATGG ACGCATAGGT AACGCCAATT AAAAGCATAA TTACAGCAAC	14640
	AGGAATGGCC TCTTTTGCAA TAAATTGATG AATACTAAAT CTTGGTTTAT CAATGACATT	14700
20	AGTTTCAGTT TTGTTATTTG TTACTTCGAA ATCAACTTTT ATAAATAATG AGATAATGAG	14760
	TCCGAGTATG CCTAATATGA CACAAATAAT AAACAGTAAG TCAATTGCGT ATTTTGTAAT	14820
	AAGTAACATG CCTAGAAATG GGCCAATCGC TGTACCTAAT ACTAAACTTA AGGAAAATAA	14880
25	ACTGATGCCT TCACTTTTC TATTAACAGG GGTAACGTAT GCCGCAATAG TACCTGTTGC	14940
	AGTTGTCACA ACTGCAGTTG CGATACCGTT TATGAGACGT ACAAAGATTA AAAAAGCTAA	15000
	AGATCCATCA ATAAAATAAA GTAATTGCGT GATAATTAAA GCAATTAAAC CAATAAATAA	15060
30	TAATCGTTTA GGTCCrATTT SATTTACAAA TTTACCTGTA GCAAATCGA	15109
	(2) INFORMATION FOR SEQ ID NO: 45:	
35	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 9072 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: double  (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
	GAGAGTCAAT GGCAAGAAGA ATATAAATAT TTGAGAGCGT TAATCTTTAA TGAAACAGAA	60
	TTAGAGGAAG CGTATAAATG GATGCATCCT TGTTACACGT TGAATAATAA AAATGTAGTA	120
45	CTTATCCATG GCTTCAAAAA TTATGTTGCA CTATTATTTC ATAAAGGTGC CATTTTGGAG	180
	GATAAATATC ATACACTCAT TCAACAGACT GAAAAGGTGC AAGCAGCTCG TCAGTTACGA	240
50	TTTGAAAATT TAACAGAGAT TCAAGCACGT ACCGAAGAAA TTAAATATTA TCTAGCCGAA	300
-	GCAATTAAAG CTGAAAAAGC TGGTAAAAAA GTTGAAATGA AGAAAACAGA GGAATATGTT	360

	AAATTAACGC CAGGCAGACA ACATCAATAT ATATATCATA TTGGACAAGC TAAACGCAGT	480
	GGAACAAGAC AAAAGCGTGT TGAAAAGTAT ATTAACCAAA TACTAGAAGG TAAAGGGATG	540
5	CATGATAAGT AATTAATGAG TAAAGCATAC CGGTTATACA ACAACATACA AGATGACACG	600
	AAACAACCAA TGGCTCATGC TGTTGGTTGT TTTTTTAGGT GTGTCTGTCA TGGGCAACAC	660
	TTTGACGTTG GAATTCCGTT ACAGGCTTGG GAGTAGAAAA TGTTAGCAAA AGGCAAGGGT	720
10	GTCTACAATG AATGATGAAG ATATTAAAAT ATAAGGATGA CTTTGTGAGT GGCGGATGGG	780
	CGGTTGTCCG TCTGTAACAA TGGATGCGTG TGCATTATTA CAAAAATTCG ACTTTTGTAA	840
15	TAATATTTCA CATTTTCGAC ACTTTTTTGC TATAAAACAA CCAATTGAGC GATAATAAAT	900
,,,	TCGCTTTTAA AAAATATGAG TTATCTATTT AGTTGCCAAA GATAAAATAA TAATGTTTAA	960
	TAACATCATA TAGAGTATGT TAGTTTTAAA TGTCGAATAT ACGAATGTGC AAACAAAGTA	1020
20	ATCGGTAGAA ATTCAACATA CATAGCGCCG TTTACTGTTA AGTATTCACA TTACAGATGA	1080
	AAAATATAAA ATTCTACATA ATCAAGACCA TGATGTGTAC TTGTTTAACT TATGACTCTA	1140
	TTTGTTTAAC AATTGCGATA ATGGTCTTTT TATTTTATGC GTATCATTCG TCATATTTTT	1200
25	TATGAGGAAG GAGAAATGAT TATGTTAAGT ATTAAGCATT TAACGAAAAT TTATTCTGGT	1260
	AATAAAAAGG CAGTAGATGA CATCTCTTTA GATATTCAAT CTGGGGAATT TATCGCATTT	1320
	ATTGGAACCA GTGGAAGTGG CAAAACGACT GCTTTAAGAA TGATAAACCG TATGATTGAA	1380
30	GCGACAGAAG GACAAATTGA AATTGATGGT AAAGATGTTC GGAGTATGAA TCCTGTCGAA	1440
	TTGCGTAGAA ATATTGGCTA TGTTATTCAA CAAATTGGCT TAATGCCTCA TATGACGATT	1500
	AAAGAGAATA TTGTGTTGGT ACCCAAATTG TTGAAATGGA CTAAAGAGGA AAAGGATAAA	1560
35	CGTGCAAAGG AATTAATTAA ACTTGTGGAT TTACCGGAGT CATTTTTAGA GCGTTATCCA	1620
	GCAGAACTAT CAGGTGGGCA ACAACAACGT ATCGGTGTTG TAAGAGCACT TGCGGCCGAA	1680
40	CAAGATATTA TTTTAATGGA TGAACCTTTT GGTGCATTGG ATCCTATTAC GAGAGATACG	1740
40	TTACAAGATT TAGTTAAAAC GTTACAACGA AAATTAGGCA AGACGTTTAT CTTTGTAACA	1800
	CATGATATGG ATGAAGCGAT TAAATTAGCA GACAAAATTT GTATTATGTC AGAAGGTAAG	1860
45	GTGGTGCAAT TTGATACGCC AGACAATATT TTAAGACATC CCGCAAATGA TTTTGTACGT	1920
	GATTTTATAG GACAAAATAG ACTGATTCAA GACCGTCCCA ATGACAAGAC TGTAGAAGGT	1980
	GTAATGATTA AACCAATCAC GATACAAGCA GAAGCAACAC TGAATGACGC CGTTCATATT	2040
50	ATGAGACAAA AACGTGTTGA TACTATTTTT GTAGTAGATA GTAATAACCA TTTACTAGGT	2100
	TTCTTAGACA ITGAAGATAT AAATCAGGGT ATACGTGGAC ACAAAAGTTT ACGAGACACC	2160

	AAAAATTTTA	GAAACGTTAG	GAATGTACCT	GTCGTAGATG	ATCAACAGCG	TTTAGTAGGA	2280
	CTGATTACGC	GTGCCAATGT	TGTTGATATT	GTATATGACA	CGATTTGGGG	CGATAGTGAG	2340
5	GATACAGTGC	AAACAGAACA	TGTGGGGGAA	GACACTGCGT	CCTCAAAAGT	GCATGAGCAA	2400
	CACACTACTA	ATGTCAAAGT	ACGTGACATA	GGAGATGATA	AATCATGATT	GAGTTCCTAC	2460
	ATGAACATGG	TGGACAGTTG	ATGTCGAAAA	CACTGGAACA	TTTCTATATT	TCTATAGTGG	2520
10	CATTATTACT	TGCCATCATT	GTTGCAGTAC	CTATAGGCAT	TTTATTATCA	AAAACAAAGC	2580
	GAACTGCCAA	TATTGTATTA	ACTGTGGCAG	GTGTCTTACA	AACTATTCCA	ACACTAGCTG	2640
15	TACTTGCTAT	TATGATACCG	ATTTTTGGTG	TTGGTAAAAC	GCCTGCAATT	GTAGCGCTAT	2700
13	TTATTTATGT	ATTATTACCT	ATTTTAAATA	ACACGGTACT	CGGTGTTCAA	AATATTGATA	2760
	GCAACATTAA	AGAAGCTGGA	AAAAGTATGG	GAATGACACA	ATTTCAATTG	ATGAAGGATG	2820
20	TTGAATTGCC	GTTAGCATTG	CCGCTTATCA	TTGGTGGCAT	TCGTTTGTCA	TCTGTGTATG	2880
	TAATTAGTTG	GGCTACACTT	GCAAGTTATG	TAGGTGCGGG	TGGATTAGGT	GATTTCATTT	2940
	TCAATGGTTT	AAATTTATAT	GATCCACTGA	TGATTGTAAC	TGCAACGGTA	CTCGTTACTG	3000
25	CACTAGCATT	AGGTGTTGAT	GCCTTATTAG	CTTTAGTTGA	AAAATGGGTA	GTTCCCAAAG	3060
	GCTTAAAAGT	ATCTGGATAA	TTAGGAGGCT	AAGATAATGA	AGAAAATTAA	ATATATACTT	3120
	GTCGTGTTTG	TCTTATCGCT	TACCGTATTA	TCTGGATGTA	GTTTGCCCGG	ACTAGGTAGT	3180
30	AAGAGCACGA	AAAATGATGT	CAAAATTACA	GCATTATCAA	CAAGCGAATC	GCAAATTATT	3240
	TCACATATGT	TACGGTTGTT	AATAGAGCAT	GATACACACG	GTAAGATAAA	GCCAACATTA	3300
	GTAAATAATT	TAGGGTCAAG	TACGATTCAA	CATAATGCCT	TAATTAATGG	GGATGCTAAT	3360
35	ATATCAGGTG	TTAGATATAA	TGGCACAGAT	TTAACGGGAG	CTTTGAAGGA	AGCACCAATT	3420
	AAAAATCCTA	AGAAAGCAAT	GATAGCAACA	CAACAAGGAT	TTAAAAAGAA	ATTTGATCAA	3480
**	ACGTTTTTTG	ATTCGTATGG	TTTTGCGAAT	ACGTATGCAT	TCATGGTAAC	GAAGGAAACC	3540
<del>1</del> 0	GCTAAAAAAT	ATCATTTAGA	GACAGTTTCA	GATTTAGCAA	AGCATAGTAA	AGATTTACGT	3600
	TTAGGTATGG	ATAGTTCATG	GATGAATCGT	AAAGGCGATG	GCTATGAAGG	ATTTAAAAAA	3660
15	GAGTATGGTT	TTGACTTTGG	TACAGTGAGA	CCAATGCAAA	TAGGTCTAGT	CTACGACGCA	3720
	TTAAACTCAG	AGAAGTTAGA	CGTTGCATTA	GGTTATTCTA	CAGATGGTCG	AATTGCGGCG	3780
	TATGATTTGA	AAGTACTTAA	AGATGATAAA	CAATTTTTCC	CACCTTATGC	TGCGAGTGCT	3840
50	GTTGCAACAA	ATGAATTATT	ACGGCAACAC	CCAGAACTTA	AAACGACGAT	TAATAAGTTG	3900
	ACAGGAAAGA	TTTCGACTTC	AGAGATGCAA	CGCTTGAATT	ATGAAGCGGA	TGGTAAAGGT	3960

	AAAGGTGGTC	ATAAGTAATG	GAAGGTAATT	TATTACAGCA	ATTATTCAAT	TATTATGTTA	4080
	CGAACTTTGG	TTATCTATGG	GATTTATTTT	TCAAACACTT	ATTAATGTCT	GTCTATGGTG	4140
5	TGCTGTTTGC	AgCTTTAATT	GGTATTCCAT	TGGGAATCTT	GCTTGCaAGA	TACACAAAAC	4200
	TTTCTGGATT	TGTAATTACA	ATTGCAAATA	TAATTCAAAC	AGTTCCAGTC	ATTGCAATGT	4260
	TAGCTATTTT	AATGTTAGTC	ATGGGCTTAG	GTTCAGAAAC	AGTAGTTTTA	ACAGTGTTTT	4320
10	TATATGCGTT	ACTTCCAATT	ATAAAAAACA	CTTATACTGG	TATAGCTAGT	GTTGATGCGA	4380
	ATATTAAGGA	TGCTGGCAAA	GGTATGGGAA	TGACACGCAA	TCAAGTGCTA	CGAATGATTG	4440
15	AATTACCGTT	ATCTGTTTCG	GTTATTATCG	GTGGCATTCG	TATTGCCTTG	GTTGTTGCGA	4500
	TAGGTGTTGT	TGCCGTTGGA	TCATTTATAG	GAGCACCTAC	GCTTGGTGAC	ATTGTGATTC	4560
	GTGGTACAAA	TGCGACGGAT	GGCACAACGT	TTATTTTAGC	AGGTGCGATT	CCGATTGCTA	4620
20	TCATTGCAAT	CGTCATTGAT	GTACTATTAA	GATTTTTAGA	AAAACGATTA	GACCCAACAA	4680
	CACGACATCG	TAAAAATCAA	TCTAATCATC	GGCCGCAAAG	TATTAATATG	TAATAGTAGA	4740
	AGATGTTTAT	AATTTAGCGA	TTTCGTTTCA	TGATTTATAA	AAAATGAGGC	TACTCAAGGA	4800
25	GCTCAAATAA	TCTTTGAGTA	GCCTTTTTAT	AGGTTGTGTT	TGTATGCGTT	TACACTAAAA	4860
	TAGCAATTAT	TATCATGAAA	GTTTTTGGAT	AAAAAGCGTT	AATTATTGTA	AAAATACTAA	4920
	AAAATGAGAT	GTTTTATTTA	TAATTTTCTG	CAAATTTATG	ATATTGTTTC	TTAATATATC	4980
30	ATATTAAAAA	TTTGTTTTTC	TTAAACATAG	GAGGCTTATC	TAATTCATGG	ACACATCAAA	5040
	ACAATTTAGA	GGTGACAACC	GATTGCTTTT	GGGTATCGTT	TTAGGGGTTA	TTACCTTTTG	5100
	GCTATTCGCG	CAGTCACTTG	TTAATCTTGT	TGTCCCATTA	CAATCAACAT	ATAGTAGTGA	5160
35	CGTTGGAACG	ATAAATATCG	CTGTTAGCTT	ATCTGCCTTA	TTTGCTGGTT	TGTTTATCGT	5220
	AGGTGCTGGT	GATGTTGCTG	ATAAATTTGG	TCGCGTCAAA	ATTACTTATG	TAGGATTGAT	5280
40	ATTAAATGTT	GTAGGTTCAT	TACTCATCAT	CATTACACCT	TTGCCAGCAT	TTTTAATTAT	5340
•0	AGGTAGAATA	ATTCAAGGTT	TGTCTGCAGC	ATGTATTATG	CCATCAACAC	TTGCTATTAT	5400
	TAACGAATAT	TATATTGGTA	CAAGAAGACA	ACGTGCCTTA	AGCTATTGGT	CTATTGGTTC	5460
<b>4</b> 5	TTGGGGTGGT	AGTGGTATTT	GTACGTTGTT	TGGTGGCTTA	ATGGCTACAT	ATATAGGTTG	5520
	GCGTTCAATA	TTTGTTGTTT	CAATTCTATT	AACATTATTA	GCAATGTACT	TAATCAAACA	5580
	TGCACCTGAG	ACTAAAGCAG	AACCAATCAA	AGGTATGAAA	GCAGAAGCTA	AAAAGTTTGA	5640
50	CGTTATTGGT	TTAGTCATTT	TAGTAGTGAC	GATGTTAAGT	TTAAATGTAA	TCATCACACA	5700
	GACGTCTCAT	TTTGGTTTAG	TTTCACCGTT	AATTCTAGGT	TTAATTGTTG	TGTTTATCTG	5760

	AAATTTTTAA	AATAGAGGAT	ACAGTGGTGC	AACTATTTCA	AACTTCTTAT	TAAATGGTGT	5880
	AGCAGGTGGT	GCACTTATCG	TTATTAACAC	GTATTATCAA	CAACAATTAG	GATTTAATTC	5940
5	TTCGCAAACG	GGTTATATTT	CATTAACGTA	TTTAATAACA	GTGTTGTCAA	TGATTCGTGT	6000
	AGGTGAAAAG	ATTTTATCTC	AACATGGTCC	GAAGCGCCCA	CTATTACTAG	GAAGTGGCTT	6060
	TACAGTGATT	GGGTTAATCT	TATTGTCGTT	AACATTTTTA	CCAGAAGTGT	GGTATATCAT	6120
10	ATCTAGTATA	GTTGGATATT	TATTGTTTGG	TACTGGTTTA	GGATTATATG	CTACACCATC	6180
	AACTGATACA	GCAGTTGCTA	GTGCGCCAGA	TGATAAGTCG	GGTGTTGCTT	CAGGTGTGTA	6240
	TAAAATGGCG	TCATCATTAG	GAAATGCATT	TGGAGTAGCA	GTATCTGGTA	CGGTTTATAC	6300
15	TGTGTTAGCA	GCTAATTTAA	ATTTGAACTT	AGGTGGTTTC	ACAGGTATGA	TGTTTAATGC	6360
	CTTGCTAGCA	ATTGTTGCAT	TTTTAGTCAT	TTTACTATTA	GTTCCTAAAA	ATCAAACGAA	6420
20	TTTGTAAAAC	TGAAATGAAA	GCAAGTTATT	ATGTAGGGAT	TTTAAAGGAA	ATTTTGTGAA	6480
	AGTAAGTTTA	TCATACACAC	TTAATGTTGC	GTATTGACGT	TTAATGTTAG	GTGTGTTCTT	6540
	TTATAGACGA	TAAAAGCTGT	GTGCATATTA	AGCGAATGAT	TTTCAAATTG	ACGCTAATAT	6600
25	GCGAAAGTAG	TATTTTTAAA	ATGAACAACA	ACGATGAAGA	GGGGTTTATA	GGATGAAAAT	6660
	TGCAATTGCT	GGATCGGGTG	CATTAGGTAG	TGGCTTTGGT	GCCAAACTAT	TTCAAGCAGG	6720
	ATATGATGTC	ACACTTATTG	ACGGATATAC	ATCTCATGTT	GAAGCGGTTA	AGCAACATGG	6780
30	ATTAAATATA	ACGATTAATG	GAGAGGCATT	CGAGTTAAAC	ATTCCGATGT	ATCATTTTAA	6840
	TGATCAACCG	GACGAAAGCA	TTTACGATGT	TGTCTTTCTA	TTTCCAAAGT	CTATGCAATT	6900
	AAAAGAAGTG	ATGGAAGATA	TGAAGCCACA	TATTGATAAT	GAAACGATCG	TCGTATGTAC	6960
35	GATGAATGGT	CTGAAGCATG	AAGAAGTCAT	TGCGCAGTAT	GTTGCTCAAT	CACAAATTGT	7020
	CAGAGGTGTT	ACGACTTGGA	CGGCAGGTCT	TGAAAGCCCT	GGACACAGTC	ATTTACTTGG	7080
	TAGTGGACCA	GTTGAAATAG	GTGAACTAGT	GGATGAAGGT	AAAGAAAATG	TTATAAAAGT	7140
10	TGCTGATTTA	CTTAACGAAG	CGGAATTGAA	TGGTGTCATT	AGTAAAGATT	TATACCAATC	7200
	GATTTGGAAA	AAGATTTGTG	TTAATGGTAC	GGCAAATGCA	TTAAGCACAG	TGTTGGAGTG	7260
<b>1</b> 5	TAATATGGCA	TCGCTGAATG	AAAGTAGTTA	TGCGAAGTGT	TTGATTTATA	AATTAACGCA	7320
•3	AGAAATAGTG	CATGTAGCGA	CGATTGATAA	TGTTCATTTA	AATGTTGATG	AAGTATTTGA	7380
	ATATTTAGTT	GATTTAAATG	AAaAAGTTGG	TGCGCATTAT	CCATCCATGT	ATCAAGATTT	7440
50	AATTGTTAAT	AATAGAAAAA	CTGAAATTGA	TTATATTAAT	GGCGCAGTTG	CAACATTAGG	7500
	TAAACAACGT	CaTATTGAAG	CGCCAGTCAA	TCGCTTTATT	ACTGATTTAA	TTCATACTAA	7560

	CAATCACGTG	ATATTACGGT	CATTATTAAG	ATTGAAATGT	AATAAATAAA	GAACAGCAGT	7680
	AAGGTACTTT	CAAATTGAAA	TGATCTTGGT	GCTGTTTTTC	TTGATTGATC	TTCGTCATAA	7740
5	TTCAGATTTG	TCATAGGCTA	CGACATACTA	TTAGTATTTA	CTAGACAGTT	TTTACGACGA	7800
	CACTTTGAAA	AATTTTGAGG	CAAATCATTT	GGAAGTCTCA	CGTGAATTTT	GTAAACTCAT	7860
	CAAGCAAGTA	ATTATATTAA	AAAGACAAAT	AGAGAAAAGG	TGTTTATAAT	GAGTAAAATT	7920
10	TTTGTAACTG	GTGCAACGGG	CCTTATTGGC	ATTAAATTAG	TTCAAAGACT	AAAAGAAGAG	7980
	GGGCATGAGG	TTGCTGGTTT	TACTACATCT	GAGAATGGTC	AACAAAAGCT	AGCTGCTGTT	8040
15	<b>AATGTAAAA</b> G	CATATATTGG	TGATATATTA	AAAGCTGATA	CTATTGATCA	AGCGTTAGCA	8100
	GATTTTAAAC	CAGAAATCAT	TATCAATCAA	ATTACGGATT	TAAAAAATGT	TGATATGGCA	8160
	GCAAATACGA	AAGTACGTAT	TGAAGGTTCT	AAAAACCTAA	TTGATGCGGC	GAAAAAGCAT	8220
20	GACGTTAAGA	AAGTAATTGC	CCAAAGTATT	GCCTTTATGT	ATGAACCTGG	CGAAGGATTA	8280
	GCAAATGAGG	AAACTTCACT	TGATTTTAAC	TCAACTGGCG	ATAGAAAAGT	AACGGTTGAT	8340
	GGTGTGGTTG	GTTTAGAAGA	AGAAACGGCT	CGTATGGATG	AATACGTTGT	TTTACGTTTT	8400
25	GGCTGGTTAT	ATGGCCCAGG	TACTTGGTAC	GGAAAAGATG	GCATGATTTA	TAATCAATTT	8460
	ATGGATGGTC	AAGTGACACT	TTCAGATGGC	GTAACATCAT	TTGTGCATCT	TGATGATGCA	8520
	GTTGAAACAT	CTATTCAAGC	TATTCATTTT	GAAAATGGTA	TCTATAATGT	AGCAGATGAT	8580
30	GCACCTGTTA	AAGGTTCTGA	ATTTGCAGAA	TGGTATAAAG	AACAACTTGG	TGTTGAACCA	8640
	AATATTGATA	TTCAACCTGC	GCAACCATTT	GAACGTGGCG	TAAGCAATGA	GAAGTTTAAA	8700
25	GCGCAAGGTG	GTACTCTGAT	TTATCAAACT	TGGAAAGATG	GCATGAATCC	AATTAAATAA	8760
35	TAATTTATCC	GTTTAATATA	CAAAGAATAA	AGACTTGGTC	GAATCGTGGA	TGATATATTA	8820
	TCAAACGCAC	GGCTCGAACA	AGTCTTTTTT	ATTATGTCTT	CGTTATCTTT	GTATGAAGGA	8880
40	ATAACAGAAT	TACAATTAAT	GTACTGAATA	ATGCAATTAA	TGTTGTGATT	AGTGCTAATT	8940
	TAATTTCTAT	TGGTAGCCAA	GTCAGTACAA	AAGACCAATT	ATTGCTACCG	AGAATGAGAT	9000
	ATGGTAATGC	ATATAATATG	AGCGCTAAAG	CGATACATAT	ACATAATGAT	AACCAACTCA	9060
<b>4</b> 5	ATACAGCAAT	CC					9072

(2) INFORMATION FOR SEQ ID NO: 46:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 16826 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: linear

55

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

	GTGGAACAGC	TGTAACTATA	TCATTTCTTT	CAACATTTAT	TGGGAAAATG	TTAGCTACAT	60
5	TTCTATATCC	GATTAATAAT	GTAGTACTT	CATATATnTC	TGTAAATGAA	AGTGACAATA	120
	TAAAGAAGCA	ATATTTGaAA	ACTAATCTAA	TTGCTATAGC	TGCCCTATGT	TTAGTCATGA	180
	TTATATGTTA	TCCAATTACA	ATAATTATTG	TCTCTTTACT	GTATAACATT	GATTCAAGTT	240
10	TATATTCGAA	GTTTATTATT	TTAGGTAATA	TAGGTGTTTT	ATTCAATGCA	GTGAGTATTA	300
	TGATCCAAAC	TTTAAATACA	AAACACGCAT	CAATAACATT	ACAAGCGAAT	TATATGACGC	360
15	TTCACACGAT	TACATTTATA	TTCATAACTA	TTTTAATGAC	AATTGCGTTT	GGTCTAAATG	420
75	GATTCTTTTG	GACAACGCTG	TTCAGCAACA	TTATTAAGTA	TGTGATTTTA	AATATTATAG	480
	GTTTAAAGTC	TAAATTCATT	AATAAAAAGG	ACGTCGATTA	GATGAGTGAA	AAAAAGATTT	540
20	TGATTTTATG	TCAGTATTTT	TATCCGGAAT	ATGTATCTTC	TGCGACGTTA	CCAACTCAAT	600
	TGGCGGAAGA	TTTAATTGCG	AATCACATTA	ATGTCGATGT	CATGTGTGGA	TGGCCATATG	660
	AATATAGTAA	TCATAAACAG	GTTTCTAAAA	CCGAGATGCA	TCGTGGTATT	CGCATTCGAC	720
25	GTCTCAAGTA	TTCGAGGTTT	ААТААСАААА	GTAAGGTTGG	AAGGATCATC	AATTTCTTTA	780
	GTTTATTTTC	AAAATTCGTG	ATTAATATAC	CTAAAATGTT	GAAATATGAT	CAGATTCTTG	840
	TTTACTCTAA	TCCACCAATC	TTGCCATTAA	TACCAGACGT	TTTACACAGA	CTGCTTAAGA	900
30	AAAAATATTC	TTTTGTGGTG	TATGATATAG	CACCTGATAA	TGCGATTAAG	ACAGGTGCAA	960
	CTCGTCCAGG	TAGCATGATT	GATAAGCTGA	TGCGTTACAT	TAATAGACAT	GTCTACAAGA	1020
	ATGCTGAAAA	TGTCATTGTC	CTTGGTACGG	AAATGAAAAA	CTACTTACTA	AATCATCAAA	1080
35	TTTCTAAAAA	TGCTGACAAT	ATCCATGTGA	TTCCTAACTG	GTATGACATG	CGTCAATTAC	1140
	AAGACAATCG	TATCTATAAT	GACACATTTA	AAGCTTACCG	TGAGCAATAC	GACAAAATTT	1200
	TATTGTATAG	CGGTAATATG	GGGCAGTTAC	AGGATATGGA	GACACTTATC	TCATTTTTAA	1260
40	AATTAAATAA	GGATCAGTCT	CAAACGTTAA	CAATACTTTG	TGGTCATGGT	AAGAAATTTG	1320
	CAGATGTCAA	AACGGCAATA	GaAGACCATC	GTATTGAAAA	TGTTAAAATG	TTTGAGTTTT	1380
45	TAACAGGTAC	AGACTATGCT	GACGTATTAA	AAATTGCGGA	TGTATGTATT	GCATCGCTGA	1440
	TTAAAGAAGG	CGTCGGTTTA	GGCGTGCCGA	GCAAGAATTA	TGGCTATCTT	GCAGCTAAGA	1500
	AAGCGTTGGT	ACTCATCATG	GATAAGCAAT	CTGATATCGT	TCAACATGTT	GAACAATATG	1560
50	ATGCGGGTAT	CCAAATTGAT	AATGGCGATG	CACATGCCAT	TTATAACTTC	ATCAACACTC	1620
	ACTCGAGTAA	GGAATTGCAC	GAGATGGGTG	AGCGCGCACA	TCAACTCTTT	ΔΔΔΩΑΤΛΑΑΤ	1690

	AAGCGATTAT	TCGATGTAGT	GAGTTCAATA	TATGGTTTAG	TAGTTTTAAG	TCCGATTCTG	1800
	TTAATTACAG	CATTACTAAT	TAAAATGGAa	TCACCTGGAC	CAGCCATTTT	CAAACAAAAA	1860
5	AGACCGACGA	TTAATAATGA	ATTGTTTAAT	ATTTATAAGT	TTAGATCAAT	GAAAATAGAC	1920
	ACACCTAATG	TTGCAACTGA	TTTAATGGAT	TCAACATCGT	АТАТААСААА	GACAGGGAAG	1980
	GTCATTCGTA	AGACCTCTAT	TGATGAATTG	CCACAATTAT	TGAATGTTTT	AAAAGGAGAA	2040
10	ATGTCAATTG	TAGGTCCTAG	ACCAGCGCTT	TATAATCAAT	ACGAATTAAT	CGAAAAACGT	2100
	ACAAAAGCGA	ACGTGCATAC	GATTAGACCA	GGTGTGACAG	GACTAGCTCA	AGTGATGGGG	2160
15	AGAGATGATA	TCACTGATGA	TCAAAAAGTA	GCGTATGATC	ATTATTACTT	AACACATCAA	2220
-	TCTATGATGC	TTGATATGTA	TATCATATAT	AAAACAATTA	AAAATATCGT	TACTTCAGAA	2280
	GGTGTGCATC	ACTAATGAGA	TTTATAAAAA	TAATTACAGG	CGTACATGGA	TATATCGGTA	2340
20	ATGCTTTAAA	AGATAAGCTT	ATTGAACAAG	GACATCAAGT	AGATCAAATT	AATGTTAGGA	2400
	ATCAATTATG	GAAGTCGACC	TCGTTCAAAG	ATTATGATGT	TTTAATTCAT	ACAGCAGCTT	2460
	TGGTTCACAA	CAATTCACCT	CAAGCAAGGC	TATCTGATTA	TATGCAAGTG	AATATGTTGC	2520
25	TGACGAAACA	ATTGGCACAA	AAGGCTAAAG	CTGAAGACGT	TAAACAATTT	ATTTTTATGA	2580
	GTACTATGGC	AGTTTATGGA	AAAGAAGGTC	ATGTTGGTAA	ATCAGATCAA	GTTGATACAC	2640
	AAACACCAAT	GAACCCTACG	ACCAACTATG	GTATTTCCAA	AAAGTTCGCT	GAACAAGCAT	2700
30	TACAAGAATT	GATTAGTGAT	TCGTTTAAAG	TAGCAATTGT	GAGACCACCA	ATGATTTATG	2760
	GTGCACATTG	CCCAGGAAAT	TTCCAACGGT	TAATGCAATT	GTCAAAGCGA	TTGCCAATCA	2820
	TTCCCAATAT	TAACAATCAG	CGCAGTGCAT	TATATATTAA	ACATCTGACA	GCATTTATTG	2880
35	ATCAATTAAT	ATCATTAGAA	GTGACAGGTG	TGTACCATCC	TCAAGATAGT	TTTTACTTTG	2940
	ATACATCGTC	AGTAATGTAT	GAAATACGTC	GCCAATCACA	TCGTAAAACG	GTATTGATCA	3000
10	ACATGCCTTC	AATGCTAAAT	AAGTATTTTA	ATAAGTTGTC	GGTCTTTAGA	AAATTATTCG	3060
10	GCAATTTAAT	ATACAGCAAT	ACGTTATATG	AAAATAATAA	TGCACTTGAA	ATTATTCCTG	3120
	GAAAAATGTC	ACTTGTTATT	GCGGACATCA	TGGATGAAAC	GACAACCAAA	GATAAGGCAT	3180
45	AAGTCATCTA	ТТАААТАААА	TCAACATACA	AATCGTTTTA	TTTGGAGGTT	ATAGTATGAA	3240
	GTTAACAGTA	GTTGGCTTAG	GTTATATTGG	TTTACCAACA	TCAATTATGT	TTGCAAAACA	3300
	TGGcGTCGAT	GTGCTTGGTG	TTGATATTAA	TCAGCAAACG	ATTGATAAGT	TACAAAGTGG	3360
50	TCAAATTAGT	ATTGAAGAAC	CTGGATTACA	AGAGGTTTAT	GAAGAGGTAC	TGTCATCGGG	3420
	AAAATTGAAG	GTATCTACAA	CGCCAGATGC	ATCTGATGTT	TTTATCATTG	CCGTTCCGAC	3480

	TAGTATTTTA	TCATTTTTAG	AAAAAGGAAA	TACCATTATT	GTAGAGTCGA	CAATTGCGCC	3600
	TAAAACGATG	GATGATTTTG	TAAAACCAGT	CATTGAAAAT	TTAGGGTTTA	CAATAGGTGA	3660
5	AGATATTTAT	TTAGTGCATT	GTCCAGAACG	TGTACTGCCA	GGAAAAATTT	TAGAAGAATT	3720
	AGTTCATAAC	AATCGTATCA	TTGGCGGTGT	GACTGAAGCT	TGTATTGAAG	CGGGTAAACG	3780
	TGTCTATCGC	ACATTCGTTC	AGGGAGAAAT	GATTGAAACA	GATGCACGTA	CTGCTGAAAT	3840
10	GAGTAAGCTA	ATGGAAAACA	CATATAGAGA	CGTGAACATT	GCTTTAGCTA	ATGAATTAAC	3900
	AAAAATTTGC	AATAACTTAA	ATATTAATGT	ATTAGATGTG	ATTGAAATGG	CAAACAAACA	3960
15	TCCGCGTGTT	AACATCCATC	AGCCTGGTCC	AGGTGTAGGC	GGTCATTGTT	TAGCTGTTGA	4020
	TCCGTACTTT	ATTATTGCTA	AAGACCCTGA	AAATGCAAAG	TTAATTCAAA	CTGGACGTGA	4080
	AATTAATAAT	TCAATGCCGG	CCTATGTTGT	TGATACAACG	AAGCAAATCA	TCAAAGTGTT	4140
20	GAGCGGGAAT	AAAGTCACAG	TATTTGGTTT	AACTTATAAA	GGTGATGTTG	ATGATATAAG	4200
	AGAATCACCA	GCATTTGATA	TTTATGAGCT	ATTAAATCAA	GAACCAGACA	TAGAAGTATG	4260
	TGCTTATGAT	CCACATGTTG	AATTAGATTT	TGTGGAACAT	GATATGTCAC	ATGCTGTCAA	4320
25	AGACGCATCG	CTAGTATTGA	TTTTAAGTGA	CCACTCAGAA	TTTAAAAATT	TATCGGACAG	4380
	TCATTTTGAT	AAAATGAAGC	ATAAAGTGAT	TTTTGATACA	AAAAATGTTG	TGAAATCATC	4440
	ATTTGAAGAT	GTATCGTATT	ATAATTATGG	CAATATATTT	AATTTTATCG	ACAAATAAAA	<b>4</b> 500
30	TGTGTCAAAC	TAGGGCATAC	ATGATTAAGG	AAAGATAAGC	TGTCATGTGT	TTGAACTTCA	4560
	GAGAGGATAA	TGTTATGAAA	AAAATTATGG	TTATTTTCGG	TACGAGACCC	GAAGCAATAA	4620
	AAATGGCACC	ATTAGTAAAA	GAAATTGATC	ATAATGGGAA	CTTTGAAGCG	AACATTGTGA	4680
35	TTACAGCACA	ACATAGAGAT	ATGTTAGATA	GTGTGTTAAG	TATATTTGAT	ATTCAAGCTG	4740
	ATCATGATTT	AAATATTATG	CAAGATCAAC	AAACATTAGC	AGGCCTTACG	GCGAATGCAC	4800
10	TTGCTAAACT	TGATAGCATC	ATTAATGAGG	AACAACCGGA	TATGATTTTA	GTACATGGTG	4860
, 0	ATACTACAAC	GACTTTTGTA	GGAAGTTTGG	CAGCATTTTA	TCATCAAATT	CCGGTCGGAC	4920
	ATGTAGAAGC	TGGACTTCGA	ACACATCAGA	AATACTCACC	ATTTCCTGAA	GAGTTAAATC	4980
<b>1</b> 5	GAGTCATGGT	AAGTAATATT	GCTGAATTGA	ATTTTGCGCC	AACAGTAATT	GCAGCTAAAA	5040
	ATTTACTTTT	TGAAAACAAA	GACAAAGAGC	GTATCTTTAT	TACTGGAAAT	ACAGTTATTG	5100
	ACGCATTGTC	AACAACAGTT	CAAAATGATT	TTGTTTCAAC	GATTATTAAT	AAACATAAAG	5160
50	GCAAGAAAGT	TGTTTTACTA	ACAGCGCATC	GTCGTGAAAA	TATTGGGGAA	CCGATGCATC	5220
	AGATTTTTAA	AGCAGTAAGA	GATTTGGCAG	ATGAATATAA	AGATGTTGTC	TTCATTTATC	5280

	GGATTGAATT	AATTGAGCCA	TTAGATGCGA	TTGAGTTCCA	TAATTTTACA	AATCAATCGT	5400
	ACCTCGTGCT	GACAGATTCT	GGTGGTATTC	AAGAGGAGGC	TCCTACATTT	GGAAAACCTG	5460
5	TGTTGGTATT	AAGGAATCAT	ACAGAGCGTC	CCGAAGGCGT	TGAGGCGGGA	ACATCGAGAG	5520
	TAATTGGCAC	AGATTATGAC	AATATTGTTC	GAAATGTGAA	ACAATTGATT	GAGGATGATG	5580
	AAGCGTATCA	ACGTATGAGT	CAAGCGAATA	ATCCATATGG	TGATGGACAA	GCATCACGAC	5640
10	GTATTTGTGA	AGCAATAGAA	TATTATTTTG	GATTGCGCAC	AGACAAGCCG	GATGAATTCG	5700
	TACCTTTACG	TCACAAATAA	TAAAAAACCC	CTAATCATGA	AGTTGGTTTA	GACAACCAGC	5760
15	GGTGACTAGG	GGTTTTTAAT	ATATTTATTT	TTGATAGTGG	TAGCCAATAT	CATATTTGAA	5820
, •	TACTTTATTT	GATAATATTG	GACTTTGCTG	TCCATCGTCA	TCACTTTTTA	AACGTACATT	5880
	TTTATGAGCT	TCTTTAAATA	CATCGGAATT	CAACCAATTA	TTAAAGCTAT	CTTCAGATTC	5940
20	CCAAATAGTT	AAGATTTTAA	CTTCGTCTGT	ATCCTCGGTA	TTTAATGTTT	TAGTGACAAA	6000
	CATTTGTTGG	AAGCCTTCAA	TAGTTTCAAT	ACCTTGTCTA	TTGTAAAAAC	GTTCAATCGT	6060
	TTCTTCCGCA	CTGCCTTTTT	GTAATTGTAA	TCTATTTTCT	GCCATAAACA	TGGGCAATCA	6120
25	CTCCTCTATT	TTATGATTTG	ATTTGGGTAA	TGTTTTTACA	AATGTAAAGA	GTACAGCGGT	6180
	TTGTATGATA	ACCATTATGA	TTAATCCTAC	ACGGACTGCA	AGAACATCCA	CCATATAAAT	6240
	TGAAAAACCT	ATTACAATGT	ATAAGCTAAT	TAAAATTTTA	ATTTTCTGTT	GTAGCGTGTA	6300
30	GCCTCGATGT	AAATAAAAGT	TTTCTACATA	TTCTTTATAA	ATTTTTTGAT	TAATAAGCCA	6360
	ATTGTAAAAG	CGATCTGAAC	TTCGAGCAAA	GCAAAAAACT	GCTACGAGTA	AAAAAGGGGT	6420
	CGTTGGCAGT	AAAGGTAATA	CGGCACCTGC	AATACCAAGC	GCTGTAAATA	TTAAGCCAAT	6480
35	GACGATTAAA	ATAAGTCGCA	TTGAAAAAAC	TCCATTCTAG	TACTAATGCG	CATGTAATAT	6540
	TGTTTTAGTA	ATATAACTCA	TGCTAAATAT	AATGTGTATG	ATAAGTGCAA	TGACTCAGTA	6600
<b>‡</b> 0	AAATGAAACG	ATGTTGAATT	ATCCTTGTCA	CATTAACGCA	TTTTAAGCGC	GACTTTCATA	6660
*0	ACAACCAAAC	TATTTAATGA	GAATTATTCT	CAAGTATTAT	AGTTATATTA	TGTGTTTTAT	6720
	TTTTGAAAAG	TGCAATATGT	TTTCGAAAAT	AAGATTATTT	TTATGTGCAA	AAACGACGCA	6780
15	AAAGTTTTAA	AAATGAGACT	TCTGTGAGCT	GATTATTTTA	TAAAATGTAA	ACGCTTACTA	6840
	TATAATGTGA	ATCATATCGT	TTAAAAGCAT	TATTAAATAT	GATGCTAAGA	GATTTATATT	6900
	ATAGCCAATA	AACAAAGGAG	AGATAATATG	GCAGTAAACG	TTCGAGATTA	TATTGCAGAG	6960
50	AATTATGGTT	TATTTATCAA	TGGGGAATTT	GTTAAAGGTA	GCAGTGACGA	AACAATCGAA	7020
	GTGACTAATC	CAGCAACTGG	AGAAACACTA	TCACATATTA	CAAGAGCAAA	AGATAAAGAT	7080

	TCAGAACGTG	CACAAATGTT	GCGTGATATT	GGTGATAAAT	TAATGGCACA	AAAAGATAAA	7200
	ATTGCAATGA	TTGAAACATT	AAATAATGGT	AAACCGATTC	GTGAGACAAC	AGCAATTGAT	7260
5	ATTCCATTTG	CTGCAAGACA	TTTCCATTAT	TTCGCAAGTG	TTATTGAAAC	AGAAGAAGGT	7320
	ACAGTGAATG	ATATCGATAA	AGACACAATG	AGTATCGTAC	GACATGAGCC	GATTGGCGTC	7380
	GTAGGTGCTG	TTGTTGCTTG	GAACTTCCCA	ATGCTATTAG	CTGCATGGAA	GATTGCGCCA	7440
10	gCCATTGCTG	CAGGTAATAC	AATTGTGATT	CAACCTTCGT	CTTCAACACC	ATTAAGTTTA	7500
	TTGGAAGTTG	CTAAAATTTT	CCAAGAGGTA	TTACCTAAAG	GTGTTGTCAA	TATACTAACG	7560
15	GGTAAAGGTT	CAGAATCAGG	TAATGCAATT	TTCAATCATG	ATGGTGTAGA	TAAATTATCA	7620
	TTTACGGGCT	CAACTGATGT	AGGTTATCAA	GTTGCCGAAG	CTGCAGCAAA	ACATCTAGTA	7680
	CCCGCTACAT	TAGAGCTTGG	TGGTAAAAGC	GCCAATATCA	TATTAGATGA	TGCTAATTTA	7740
20	GACCTTGCAG	TTGAAGGTAT	TCAGTTAGGT	ATTTTATTCA	ACCAAGGTGA	AGTATGTAGT	7800
	GCAGGTTCTC	GATTATTAGT	TCATGAAAAA	ATTTATGATC	AATTGGTGCC	ACGTTTACAA	7860
	GAGGCATTTT	CAAATATTAA	AGTTGGAAAT	CCACAAGATG	AAGCTACACA	AATGGGTAGT	7920
?5	CAAACTGGTA	AGGATCAATT	AGATAAAATT	CAATCATATA	TTGATGCAGC	AAAAGAATCA	7980
	GATGCACAAA	TTTTAGCAGG	CGGTCATCGC	TTAACTGAAA	ATGGATTAGA	TAAAGGGTTC	8040
	TTCTTTGAGC	CGACATTAAT	TGctGTGCCA	GACAATCATC	ACAAATTAGC	ACAAGAAGAA	8100
30	ATATTTGGAC	CAGTGTTAAC	AGTGATTAAA	GTGAAGGACG	ATCAAGAAGC	AATTGATATA	8160
	GCTAATGATT	CTGAGTATGG	TTTAGCAGGC	GGTGTATTTT	CTCAAAATAT	CACACGTGCA	8220
	TTAAATATTG	CTAAAGCTGT	ACGTACAGGA	CGTATTTGGA	TTAACACTTA	CAACCAAGTA	8280
35	CCAGAAGGCG	CACCATTTGG	TGGTTATAAA	AAATCAGGTA	TCGGTCGAGA	AACTTATAAA	8340
	GGTGCGTTAA	GTAACTATCA	ACAAGTTAAA	AATATTTATA	TTGATACAAG	CAATGCTTTA	8400
10	AAAGGTTTGT	ACTAGAATAA	ATATCGTTTC	TGAAGCGTGT	TTGTAGGTCA	GTCTAGCGGT	8460
	AAGTCTTAAC	ATTTAACGGC	GTTGTTTAGA	TTTTAAGCAA	AACAAAATAT	ATAGGAACAC	8520
	GTATCATGAT	ATTAGGATAT	AATGACTAAA	ATAATAGCAG	TAGGATGGTT	TTTAATTGCA	8580
15	AATCATCTTA	CTGCTGTTTT	TAATTATGCT	AATTTGCGAT	GCGGCTATTA	TAAGGACAGA	8640
	GTTGTTTATT	AATTATGGTG	ATTTAGAAAT	ATGAAGTTCA	ATATGCAAAG	TCATCGTTTG	8700
	TTTTAATATG	CGGAACAATC	ATTAAAGTTA	TTGCGATTTT	TTGAACTTAA	TGAAACTAAA	8760
50	CAATAAATTT	GAGATACTTT	TTTGTCATTT	TTATGTAACT	AACACAATAA	TCTCGTACAT	8320
	TATTAAAATT	TTCTATATGA	TAGGAATAAA	GCAAAGCGCG	AGTGTGCTGT	AAAAGTTTTC	8880

	GATGATGTAT	AAATCATGGT	TAATTACGGA	AGCATTAATA	TTAACCTGAG	AAGCTATAAA	9000
	GAATTATTTT	TAAAAGCGAC	AATATTAAAT	ACGACGCATT	TATTTAGGAG	TGGCAAACGT	9060
5	ATGAATGGGA	AAAAGGCGAA	TACGATAAAC	AGATACAAAT	ATTTTCATCA	TGTCAATCAT	9120
	CAAAAAATTC	AACAAAGTTC	TAAAAAGACG	CTGTGGGCAT	CACTAATCAT	CACATTGTTA	9180
	TTTACAGTGA	TTGAATTTGT	CGGAGGTTTA	GTATCTAATt	CATTGGCATT	ACTGTCAGAT	9240
10	TCATTTCATA	TGCTTAGTGA	TGTATTAGCA	CTTGGTTTAT	CTATGTTGGC	CATTTATTTT	9300
	GCAAGTAAAA	AGCCGACTGC	ACGATACACA	TTTGGATATT	TAAGATTTGA	GATATTAGCT	9360
15	GCATTTTTAA	ATGGTTTAGC	ATTAATTGTA	ATTTCAATCT	GGATTTTATA	TGAAGCTATT	9420
	GTACGTATTA	TTTATCCGCA	ACCAATTGAA	AGTGGCATTA	TGTTTATGAT	TGCTAGTATT	9480
	GGTTTACTCG	TCAATATTAT	TTTGACTGTT	ATCCTTGTAA	GGTCTTTAAA	ACAAGAAGAC	9540
20	AATATCAATA	TTCAAAGTGC	ATTATGGCAT	TTCATGGGAG	ACTTATTGAA	CTCTATTGGT	9600
	GTCATCGTTG	CAGTTGTATT	GATTTACTTT	ACAGGATGGC	GCATCATCGA	CCCAATCATT	9660
	AGTATTGTAA	TTTCACTCAT	CATTTTACGT	GGTGGTTATA	AAATTACGCG	TAATGCgTGG	9720
?5	ttaattttaa	TGGAAAGTGT	GCCTCAACAT	TTGGATACTG	ATCAAATTAT	GGCAGATATT	9780
	AAAAACATAG	ATGGCATATT	AGATGTACAT	GAATTTCATT	TGTGGAGTAT	TACAACAGAG	9840
	CATTATTCAT	TAAGTGCCCA	TGTTGTGTTA	GATAAAAAAT	ATGAGGGTGA	TGATTATCAA	9900
30	GCGATTGATC	AAGTATCATC	ATTGTTGAAA	GAAAAATATG	GCATTGCACA	TTCAACGTTG	9960
	CAAATTGAAA	ACTTGCAATT	GAATCCATTA	GATGAGCCAT	ACTTCGACAA	ATTAACATAA	10020
	ATAAAACATT	GTAGCGCCTA	AAACATTAAT	CTATGTCATA	GGCGCACGTT	TCGTTTTATA	10080
35	CTTATGTTGC	ATCATTTAAA	TGATTTTCGT	CAATTTCTTT	GATGCTATCT	ACATCTAACA	10140
	CGACĀTCTTT	AGGTTTCAAA	ATATGAATAT	GTTTTTCATC	ATTTGTATGT	AAAATGCGTT	10200
	CTATGATGTA	CCTTTGACCG	GCCATTGTTT	CTACAGCAAT	CTTTTTGTTT	CTAGCTAAAC	10260
10	TTGCTACGAC	AGATTCTTTA	TCCATAATGA	TAGCCCCCTA	TATATATGTT	TATTTACTTA	10320
	TACCCTAACA	TGATTTTTAT	ACTCTTTGAA	AATATATTTT	ACAGAATTTT	ATCTAAATAT	10380
15	TTAAAAAAAT	ATCTTAATAT	CCTTGTAATC	CGATAAGAAT	TATAGTAATA	TTTTTTCAAC	10440
.5	CATEGTTATA	GGAGGTCTTA	TTAATGACAT	TATTTTTATT	AGAAGCTAAC	AATCTTGATT	10500
	TTGCATCAAC	GAAAGAAGAA	CTAGAAGCAA	AGGCAGCATC	ACTATCTACG	AAGACAATTC	10560
50	CAACATTAAT	TGAAGTACAA	GCTACTGAAA	ATTTAACTCA	TGGTTATTTT	ATTGTGGAAG	10620
	CAAATGACGA	aGCAGAAGCT	AAACAATTTT	TAACAGAAGC	AGATATTAGT	ATTCAATTAG	10680

	TTGATTACCT	TGTAACTTGG	AACATTCCGG	AAGGCATTAC	GATGGATCAA	TATTTAGCAC	10800
	GTAAAAAGAA	AAATTCTGTT	CATTATGAAG	AAGTGCCAGA	AGTTGAATTT	AAACGCACAT	10860
5	ATGTATGTGA	AGATATGTCT	AAATGTATTT	GTTTATACAA	CGCACCTGAT	GAAGAAGCGG	10920
	TACGTCGCGC	GCGCAAAGCA	GTTGATACAC	CGATTGATGG	CATCGAAAAA	CTTTAATAAG	10980
10	ACAACAAGTT	GATGAGATAT	ATGTATATAG	GTTTGGCATG	GATTTCGATT	GCAGTTAATT	11040
10	AGAATAGCTC	AATGCTATAA	ATGTAAGTAG	TTGATATGAA	GAAACTAATG	AACTAAATGC	11100
	AAGTATTGTC	TAAAACAATC	ATTTTATTGA	AATTTAGTAG	AGCTGAAATT	AATATAACGT	11160
15	CGTTAATTGA	ATAACGCTTA	TGTTATAAGA	GCACTCATAC	CAAACCATAA	TCATCTATAG	11220
	ATATAACAAT	TCACGATATA	AGGGCTGTGT	TTGGCATAGC	CCTTTAGATA	TACACTTAAT	11280
	TCCTATTAAA	ATAGTAGGGA	TTAAAAGGGG	GCTTGTCATG	ATTAAAATTC	AACAATTACA	11340
20	ACATCACTTT	GGATCACATA	AAGTAATTCA	TAACTTTAAT	TTGGACATTA	GCAAGGGAGA	11400
	AATAGTCACT	TTCATAGGGA	AAAGTGGTTG	CGGAAAGTCT	ACTTTACTCA	ATATTATCGG	11460
	TGGATTTATT	CATCCATCGT	CTGGTCGTGT	CATTATTGAT	AACGAAATTA	AACAACAGCC	11520
25	ATCTCCAGAT	TGTTTAATGC	TATTTCAACA	TCATAATTTG	CTGCCATGGA	AAACGATTAA	11580
	TGACAACATT	AGGATTGGAT	TACAACAGAA	AATTAGTGAT	GAAGAGATTA	ACGCACAGCT	11640
	TAAATTAGTT	GATTTAGAAG	ACAGGGGAAA	GCATTTTCCC	GAGCAACTGT	CCGGGGGTAT	11700
30	GAAACAACGT	GTGGCACTAT	GTCGAGCGCA	TGTGCATAAG	CCTAACGTTA	TATTGATGGA	11760
	TGAGCCATTA	GGTGCATTAG	ATGCATTTAC	ACGTTATAAA	CTTCAGGATC	AACTAGTGCA	11820
	aCTAAAACAT	AAAACGCAAT	CAACTATTAT	TTTAGTGACG	CATGACATTG	ATGAAGCTAT	11880
35	TTATCTTTCC	GACCGCATTG	TTCTGTTAGG	TGAAGGGTGC	AATATTATTT	CTCAATATGA	11940
	AATTACAGCA	TCACATCCAC	GCAGTCGTAA	TGATAGCCAC	CTACTTAAGA	TTCGTAATGA	12000
40	AATTATGGAA	ACATTTGCAT	TGAATCATCA	TCAAGTTGAA	CCTGAATATT	ATTTATAAGG	12060
40	AGTGAGTGAC	GATGAAAAGG	TTAAGCATAA	TCGTCATCAT	TGGAATCTTT	ATAATTACAG	12120
	GATGTGATTG	GCAAAGGACG	TCTAAAGAAC	GGTCTAAAAA	TGCCCAAAAT	CAGCAAGTGA	12180
45	TTAAAATTGG	ATATTTGCCG	ATTACACATT	CAGCTAATTT	GATGATGACT	AAAAAATTAT	12240
	TATCACAATA	CAATCATCCG	AAATATAAAC	TAGAATTAGT	TAAATTCAAT	AATTGGCCAG	12300
	ATTTAATGGA	CGCATTAAAC	AGTGGTCGTA	TTGATGGTGC	ATCAACTTTA	ATAGAGCTAG	12360
50	CGATGAAATC	AAAACAGAAG	GGCTCAAATA	TAAAGGCTGT	GGCATTGGGC	CATCATGAAG	12420
	GCAATGTCAT	TATGGGACAA	AAAGGTATGC	ACTTAAATGA	ATTTAATAAT	AATGGCGATG	12480

	GTAAACAATT	AAAGATTAAA	CCGGGGCATT	TTAGCTATCA	TGAAATGTCG	CCAGCAGAAA	12600
	TGCCAGCCGC	ATTGAGTGAA	CACAGAATTA	CAGGGTATTC	TGTAGCCGAA	CCATTCGGTG	12660
5	CACTGGGTGA	AAAGTTAGGC	AAAGGTAAGA	CTTTGAAACA	TGGTGATGAC	GTTATACCTG	12720
	ATGCGTATTG	CTGTGTGCTA	GTACTGAGAG	GGGAATTGCT	TGATCAACAC	AAGGATGTAG	12780
	CGCAAgCATT	TGTACAAGAT	TATAAAAAGT	CTGGCTTTAA	AATGAATGAT	CGCAAGCAAA	12840
10	GTGTAGACAT	TATGACGCAT	CATTTTAAAC	AAAGTCGTGA	CGTTTTAACA	CAGTCAGCGG	12900
	CATGGACATC	CTATGGTGAT	TTAACAATTA	AGCCATCCGG	CTATCAAGAA	ATTACGACAT	12960
15	TGGTAAAACA	ACATCATTTG	TTTAATCCAC	CTGCATATGA	TGACTTTGTT	GAACCGTCAT	13020
	TGTATAAGGA	GGCATCGCGT	TCATGACACG	TCCCACAAAT	AACAAATTTA	TATTACCTAT	13080
	TATCACATTT	ATTATTTTCT	TAGGCATTTG	GGAAATGGTC	ATTATTATTG	GGCATTACCA	13140
20	ACCTGTATTG	TTACCGGGTC	CTGCTCTTGT	AGGAAAAAGT	ATATGGTCTT	TCATTGTTAC	13200
	TGGAGAAATT	TTCCAACATT	TAGCAATTAG	TTTATGGAGA	TTTGTAGCGG	GCTTTGTTGT	13260
	CGCATTGTTG	GTTGCTATTC	CATTGGGCTT	CTTGCTTGGA	AGGAATCGTT	GGCTATACAA	13320
25	CGCTATCGAA	CCGCTATTTC	AATTGATTAG	GCCGATATCT	CCGATAGCAT	GGGCACCATT	13380
	TGTTGTTCTA	TGGTTTGGTA	TTGGTAGTTT	GCCAGCGATT	GCGATTATTT	TTATCGCTGC	13440
	TTTTTTCCCA	ATTGTGTTCA	ATACTATTAA	AGGCGTTAGA	GACATTGAAC	CTCAATATTT	13500
30	AAAAATAGCA	GCAAATTTAA	ATTTAACTGG	GTGGTCATTG	TATCGCAATA	TATTATTTCC	13560
	CGGGGCATTT	AAACAAATCA	TGGCTGGGAT	ACATATGGCG	GTAGGAACAA	GTTGGATATT	13620
	TTTAGTTTCT	GGTGAAATGA	TTGGTGCACA	ATCGGGATTA	GGTTTTTTAA	TCGTTGATGC	13680
35	ACGAAATATG	TTGAACTTAG	AAGATGTTTT	AGCAGCAATA	TTCTTTATCG	GATTATTTGG	13740
	TITTATTATT	GATCGATTCA	TTAGTTATAT	TGAGCAGTTT	ATACTTAGAA	GATTTGGTGA	13800
	ATAÁGGAGAG	ATGATGATGA	CTTTAGAAAC	GCTTATCAAA	GAACAATTAG	ATCCTCATTT	13860
10	AGTAGAAGTT	GATGAAGGGA	CGTATTATCC	GAGAACATTT	ATTCAGCAAT	TATTTGTAGA	13920
	TGGTTATTTC	GGTGAGGCGG	CATTGAGAAA	AAATGCTGAA	GTAATCGAAG	CTGTATCGCA	13980
15	GTCTTGTTTG	ACAACAGGAT	TTTGTTTATG	GTGCCAATTA	GCTTTTTCAA	CGTATTTAGA	14040
•3	AAATGCCACG	CAGCCACATT	TAAATAATGA	CTTACAACAG	CAATTGTTAT	CTGGAGAAAT	14100
	ATTAGGTGCT	ACCGGATTGT	CTAATCCGAT	GAAGTCATTT	AATGATTTAG	AAAAGTTGAA	14160
50	CCTTGAACAC	ACTTATGTTG	ATGGACAATT	GGTTGTCAGT	GGACGTATGC	CAGCTGTAAG	14220
	maammaaa	C	N m m m m m m m m m m m m m m m m m m m	O NORTH CON N N	G. T. G. S. T. C. S. T.	CACADOA ADD	14000

	TTTAGGAGTC	AACGGGTCAG	CAACGTATCA	AATCACATTG	AATCAAGTCG	TAGTGCCACA	14400
	ATCACAAATT	ATCACGCATG	ATGCGAAGCA	GTTTGCGGCA	ACTATTCGCC	CGCAATTTAT	14460
5	TGCTTACCAA	ATTCCAATAG	GATTAGGCTC	AATTAAAAGT	TCTTTAGAGT	TAATTGATGC	14520
	ATTTTCAAAT	GTGCAAAACG	GAATAAATCA	ATATTTAGAG	TATGATGTTG	AAGCTTTTAA	14580
	AAAACGTTAT	CGTCAACTTA	GAGAGGAATA	TTATGCAATA	TTAGATGACG	GTAACTTAAC	14640
10	TTCACATTTA	AATGAATTAA	TATCATTGAA	GAAGGACATC	GGCTATTTAT	TGTTAGATGT	14700
	AAATCAAGCT	TCTGTTGTCA	ATGGTGGTTC	TAGAGCGTAC	ACACCATATT	CGCCACAAGT	14760
15	TCGCAAGTTA	AAAGAAGGAT	TCTTCTTCGC	AGCATTGACA	CCGACATTAA	GACATTTAGG	14820
	TAAACTTGAA	GCAGAGTTGA	AGGGGTAAGT	GTGATAAGCT	GATTTTTTGT	TTAGATGCGT	14880
	TTGTTGAAAC	ATTTTTTAAA	ATAATATAAA	TCTTAGTTTA	TAAACATTTT	CTGTTAATTT	14940
20	GTTATATCCT	TTTAACTAGG	AAAATATACA	TTTCGTAATA	ATAATAATCG	TTATCATTGA	15000
	AAAAGTGTTA	ATAAGGTGTA	TAATGAAAAT	GTGAACAATT	AATGAACTTC	TTATTTTAAA	15060
	GAAGGTGAAT	ACTATAGATA	CGCATACTAA	AGAACAACAA	TTCTCGAATC	TAGTAAGATC	15120
25	TTATCGTAAA	GAATACGTGG	GTAAAGGACC	CAATAGTATT	CGAGTGTCGT	TTAAAGATAA	15180
	TTGGGCGATT	GCACATATGA	CAGGTGTTTT	GAGTAAAGTT	GAGAGTTTTT	ACCTAAACGA	15240
	CAAACGCAAT	GAATCGATGC	TCCATTATAC	ACGCACAGAG	AAGATTAAAC	AGATGTATAA	15300
30	AGAAATAGAT	GTAAATGAGA	TGGAAAGTCT	TGTAGGCGCT	AAGTTTGTAA	AATTATTTAC	15360
	AGATATTGAT	TTGAATGATG	ATGAAGTCAT	TTCAATATTT	GTTTTCGATA	AGTCAATAGA	15420
	ATAAGTGTTG	CTGGTGTAAG	GTACACGGTG	CTGTTTGCTA	ACTTCGCTTT	GAATTTAACA	15480
35	ATAATTCAAG	GGGGTGGTAT	GTCAAACGGT	GCCGTTTTTT	TGTCATATTT	TTAAAACAAG	15540
	CAACATGCAA	CACGTACTTT	AAGGAAGTCA	AAATTTATCA	TTTAGGAGAG	ATGGATATGA	15600
	AAATCGTAGC	ATTATTTCCA	GAAGCAGTAG	AAGGTCAAGA	AAATCAATTA	CTTAATACTA	15660
10	AAAAAGCATT	AGGATTAAAA	ACATTTTTAG	AGGAAAGAGG	ACATGAGTTC	ATTATATTAG	15720
	CAGATAATGG	TGAAGACTTA	GATAAACATT	TACCAGATAT	GGATGTGATT	ATTAGTGCGC	15780
15	CATTTTATCC	TGCATATATG	ACTCGTGAAC	GTATTGAAAA	AGCACCGAAC	TTGAAATTAG	15840
	CAATTACAGC	AGGTGTAGGA	TCTGACCATG	TAGATTTAGC	GGCAGCAAGT	GAACACAATA	15900
	TTGGTGTCGT	TGAAGTTACA	GGAAGTAATA	CAGTTAGTGT	GGCAGAACAT	GCGGTTATGG	15960
50	ATTTATTAAT	ACTTCTTAGA	AACTATGAAG	AAGGTCATCG	TCAATCAGTA	GAAGGTGAAT	16020
	GGAACTTGTC	TCAAGTAGGT	AATCATGCGC	ATGAATTACA	ACACAAAACA	ATTGGTATTT	16080

ATGAACTTGT TTCAACAAGT GATGCGATTA CAATTCATGC ACCATTAACA CCAGAAACTG  ATAACTTATT TGATAAAGAT GTTTTAAGTC GTATGAAAAA ACACAGTTAT TTAGTGAATA  CTGCACGTGG TAAAATTGTA AATCGCGATG CGTTAGTTGA AGCGTTAGCA TCCGAGCATT  TACAAGGATA TGCTGGTGAT GTTTGGTATC CACAACCLGC ACCTGCTGAT CATCCATGGA  GAACAATGCC TAGAAATGCT ATGACGGTTC ACTATTCAGG TATGACTTTA GAAGCACAAA  AACGTATTGA AGATGGAGTT AAAGATATTT TAGAGCGTTT CTTCAATCAT GAACCTTTCC  AAGATAAAGA TATTATTGTT GCAAGTGGTC GTATTGCTAG TAAAAAGTTAT ACAGCTAAAT  AGAATAAAGA TGCTGGGCTA GCGATTAACG CTTTCAATTT TATATAAATG AATCATATAA  GCACTACTGC TGTTGTAAAG ATGGCAGTAG TTTTTTTATG ATTACATCTA AGTATAGTCA  CGGCTATGTT AGGACAATGA TTTAACATTT ACGCACATAT GTGTTCACTT ACGCAATTAT  TGAAAAATAT CATTCATGTG GAAATC  (2) INFORMATION FOR SEQ ID NO: 47:  (i) SEQUENCE CHARACTERISTICS:							
ATAACTTATT TGATAAAGAT GTTTTAAGTC GTATGAAAAA ACACAGTTAT TTAGTGAATA  CTGCACGTGG TAAAATTGTA AATCGCGATG CGTTAGTTGA AGCGTTAGCA TCCGAGCATT  TACAAGGATA TGCTGGTGAT GTTTGGTATC CACAACCLGC ACCTGCTGAT CATCCATGGA  GAACAATGCC TAGAAATGCT ATGACGGTTC ACTATTCAGG TATGACTTTA GAAGCACAAA  AACGTATTGA AGATGGAGTT AAAGATATTT TAGAGCGTTT CTTCAATCAT GAACCTTTCC  AAGATAAAGA TATTATTGTT GCAAGTGGTC GTATTCCTAG TAAAAGTTAT ACAGCTAAAT  AGAATAAAGA TGCTGGGCTA GCGATTAACG CTTTCAATTT TATATAAATG AATCATATAA  GCACTACTGC TGTTGTAAAG ATGGCAGTAG TTTTTTTATG ATTACATCTA AGTATAGTCA  CGGCTATGTT AGGACAATGA TTTAACATTT ACGCACATAT GTGTTCACTT ACGCAATTAT  TGAAAAATAT CATTCATGTG GAAATC  (2) INFORMATION FOR SEQ ID NO: 47:  (i) SEQUENCE CHARACTERISTICS:	TACAACACTA	TGATCCAATC	AATCAACAAG	ACCATAAATT	GTCTAAATTT	GTAAGCTTTG	16200
CTGCACGTGG TAAAATTGTA AATCGCGATG CGTTAGTTGA AGCGTTAGCA TCCGAGCATT  TACAAGGATA TGCTGGTGAT GTTTGGTATC CACAACCLGC ACCTGCTGAT CATCCATGGA  GAACAATGCC TAGAAATGCT ATGACGGTTC ACTATTCAGG TATGACTTTA GAAGCACAAA  AACGTATTGA AGATGGAGTT AAAGATATTT TAGAGCGTTT CTTCAATCAT GAACCTTTCC  AAGATAAAGA TATTATTGTT GCAAGTGGTC GTATTGCTAG TAAAAGTTAT ACAGCTAAAT  AGAATAAGGA TGCTGGGCTA GCGATTAACG CTTTCAATTT TATATAAATG AATCATATAA  GCACTACTGC TGTTGTAAAG ATGGCAGTAG TTTTTTTATG ATTACATCTA AGTATAGTCA  CGGCTATGTT AGGACAATGA TTTAACATTT ACGCACATAT GTGTTCACTT ACGCAATTAT  TGANAAATNT CATTCATGTG GNAATC  (2) INFORMATION FOR SEQ ID NO: 47:  (1) SEQUENCE CHARACTERISTICS:	ATGAACTTGT	TTCAACAAGT	GATGCGATTA	CAATTCATGC	ACCATTAACA	CCAGAAACTG	16260
TACAAGGATA TGCTGGTGAT GTTTGGTATC CaCAACCtGC ACCTGCTGAT CAICCATGGA  GAACAATGCC TAGAAATGCT ATGACGGTTC ACTATTCAGG TATGACTTTA GAAGCACAAA  AACGTATTGA AGATGGAGTT AAAGATATTT TAGAGCGTTT CTTCAATCAT GAACCTTTCC  AAGATAAAGA TATTATTGTT GCAAGTGGTC GTATTGCTAG TAAAAAGTTAT ACAGCTAAAT  AGAATAAGGA TGCTGGGCTA GCGATTAACG CTTTCAATTT TATATAAATG AATCATATAA  GCACTACTGC TGTTGTAAAG ATGGCAGTAG TTTTTTTTATG ATTACATCTA AGTATAGTCA  CGGCTATGTT AGGACAATGA TTTAACATTT ACGCACATAT GTGTTCACTT ACGCAATTAT  TGAAAAATAT CATTCATGTG GAAATC  (2) INFORMATION FOR SEQ ID NO: 47:  (i) SEQUENCE CHARACTERISTICS:	ATAACTTATT	TGATAAAGAT	GTTTTAAGTC	GTATGAAAAA	ACACAGTTAT	TTAGTGAATA	16320
GAACAATGCC TAGAAATGCT ATGACGGTTC ACTATTCAGG TATGACTTTA GAAGCACAAA  AACGTATTGA AGATGGAGTT AAAGATATTT TAGAGCGTTT CTTCAATCAT GAACCTTTCC  AAGATAAAGA TATTATTGTT GCAAGTGGTC GTATTGCTAG TAAAAGTTAT ACAGCTAAAT  AGAATAAAGGA TGCTGGGCTA GCGATTAACG CTTTCAATTT TATATAAATG AATCATATAA  GCACTACTGC TGTTGTAAAG ATGGCAGTAG TTTTTTTTATG ATTACATCTA AGTATAGTCA  CGGCTATGTT AGGACAATGA TTTAACATTT ACGCACATAT GTGTTCACTT ACGCAATTAT  TGANAAATNT CATTCATGTG GNAATC  (2) INFORMATION FOR SEQ ID NO: 47:  (i) SEQUENCE CHARACTERISTICS:	CTGCACGTGG	TAAAATTGTA	AATCGCGATG	CGTTAGTTGA	AGCGTTAgCA	TCCGAGCATT	16380
AACGTATTGA AGATGGAGTT AAAGATATTT TAGAGCGTTT CTTCAATCAT GAACCTTTCC  AAGATAAAGA TATTATTGTT GCAAGTGGTC GTATTGCTAG TAAAAGTTAT ACAGCTAAAT  AGAATAAGGA TGCTGGGCTA GCGATTAACG CTTTCAATTT TATATAAATG AATCATATAA  GCACTACTGC TGTTGTAAAG ATGGCAGTAG TTTTTTTTATG ATTACATCTA AGTATAGTCA  CGGCTATGTT AGGACAATGA TTTAACATTT ACGCACATAT GTGTTCACTT ACGCAATTAT  TGANAAATNT CATTCATGTG GNAATC  (2) INFORMATION FOR SEQ ID NO: 47:  (i) SEQUENCE CHARACTERISTICS:	TACAAGGATA	TGCTGGTGAT	GTTTGGTATC	CaCAACCtGC	ACCTGCTGAT	CATCCATGGA	16440
AAGATAAAGA TATTATTGTT GCAAGTGGTC GTATTGCTAG TAAAAGTTAT ACAGCTAAAT  AGAATAAGGA TGCTGGGCTA GCGATTAACG CTTTCAATTT TATATAAATG AATCATATAA  GCACTACTGC TGTTGTAAAG ATGGCAGTAG TTTTTTTATG ATTACATCTA AGTATAGTCA  CGGCTATGTT AGGACAATGA TTTAACATTT ACGCACATAT GTGTTCACTT ACGCAATTAT  TGANAAATNT CATTCATGTG GNAATC  (2) INFORMATION FOR SEQ ID NO: 47:  (i) SEQUENCE CHARACTERISTICS:	GAACAATGCC	TAGAAATGCT	ATGACGGTTC	ACTATTCAGG	TATGACTTTA	GAAGCACAAA	16500
AGAATAAGGA TGCTGGGCTA GCGATTAACG CTTTCAATTT TATATAAATG AATCATATAA  GCACTACTGC TGTTGTAAAG ATGGCAGTAG TTTTTTTATG ATTACATCTA AGTATAGTCA  CGGCTATGTT AGGACAATGA TTTAACATTT ACGCACATAT GTGTTCACTT ACGCAATTAT  TGANAAATNT CATTCATGTG GNAATC  (2) INFORMATION FOR SEQ ID NO: 47:  (i) SEQUENCE CHARACTERISTICS:	AACGTATTGA	AGATGGAGTT	AAAGATATTT	TAGAGCGTTT	CTTCAATCAT	GAACCTTTCC	16560
GCACTACTGC TGTTGTAAAG ATGGCAGTAG TTTTTTTATG ATTACATCTA AGTATAGTCA  CGGCTATGTT AGGACAATGA TTTAACATTT ACGCACATAT GTGTTCACTT ACGCAATTAT  TGANAAATNT CATTCATGTG GNAATC  (2) INFORMATION FOR SEQ ID NO: 47:  (i) SEQUENCE CHARACTERISTICS:	AAGATAAAGA	TATTATTGTT	GCAAGTGGTC	GTATTGCTAG	TAAAAGTTAT	ACAGCTAAAT	16620
CGGCTATGTT AGGACAATGA TTTAACATTT ACGCACATAT GTGTTCACTT ACGCAATTAT  TGANAAATNT CATTCATGTG GNAATC  (2) INFORMATION FOR SEQ ID NO: 47:  (i) SEQUENCE CHARACTERISTICS:	AGAATAAGGA	TGCTGGGCTA	GCGATTAACG	CTTTCAATTT	TATATAAATG	AATCATATAA	16680
TGANAAATHT CATTCATGTG GNAATC  (2) INFORMATION FOR SEQ ID NO: 47:  (i) SEQUENCE CHARACTERISTICS:	GCACTACTGC	TGTTGTAAAG	ATGGCAGTAG	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	ATTACATCTA	AGTATAGTCA	16740
(2) INFORMATION FOR SEQ ID NO: 47:  (i) SEQUENCE CHARACTERISTICS:	CGGCTATGTT	AGGACAATGA	TTTAACATTT	ACGCACATAT	GTGTTCACTT	ACGCAATTAT	16800
(i) SEQUENCE CHARACTERISTICS:	TGAnAAATnT	CATTCATGTG	GnAATC				16826
· · · · · · · · · · · · · · · · · · ·	(2) INFORM	ATION FOR SE	EQ ID NO: 4	7:			
(A) LENGTH: 4012 base pairs (B) TYPE: nucleic acid	, , , ,	(A) LENGTH:	4012 base p				

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

TTCAATGAGA GTAGTGGGCT GATGTTTAGC GATATCGCGT AAGATTAACC ATTGGCCATA ATATATTG TGTTTTCTA AAATCGGCTC GGCTAATTTT AAATAGGGGC GATATATTGT TATAAAACTA TTGAAAAATT CTTGTGATAG CATAGTGACA TCTCCTAAGA CAAAATAGTT AGCTTAGCTA MCCTTTTTAC AACAATAGTA ATTATAAAAC GGGAGCAATT AGAAATCAAT ATATAATTAT TAAGAGCAAA AATAATTATA CTTTGTTAAA ATAAGCGTAA TTACATGTAA ATAGGGGGAT ACTAATGATA TTGAAATTTG ATCACATCAT TCATTATATA GATCAGTTAG ATCGGTTTAG TTTTCCAGGA GATGTTATAA AATTACATTC AGGTGGGTAT CATCATAAAT ATGGAACATT CAATAAATTA GGTTATATCA ATGAAAATTA TATTGAGCTA CTAGATGTAG AAAATAATGA AAAGTTGAAA AAGATGGCAA AAACGATAGA MGGCGGAGTC GCTTTTGCTA CTCAAATTGT TCAAGAGAAG TATGAGCAAG GCTTTAAAAA TATTTGTTTG CGTACAAATG ATATAGAGGC AGTTAAAAAT AAACTACAAA GTGAGCAGGT TGAAGTAGTA GGGCCGATTC 

	ATCAGGATGA	TGATGAAATT	AAGCCACCAT	TTTTTATTCA	ATGGGAAGAA	AGTGATTCCA	780
	TGCGTACTAA	AAAATTGCAA	AAATATTTTC	AAAAACAATT	TTCAATTGAA	ACTGTTATTG	840
5	TGAAAAGTAA	AAACCGATCA	CAAACAGTAT	CGAATTGGTT	GAAATGGTTT	GATATGGACA	900
	TTGTAGAAGA	GAATGACCAT	TACACAGATT	TGATTTTAAA	AAATGATGAT	ATTTATTTTA	960
	GAATTGAAGA	TGGTAAAGTT	TCAAAATATC	ATTCGGTTAT	CATAAAAGAC	GCACAAGCAA	1020
10	CTTCACCATA	TTCAATTTTT	ATCAGAGGTG	CTATTTATCG	CTTTGAACCA	TTAGTATAAA	1080
	TATACGTAAG	TGCTATGAGC	GAGAATGCCC	ATATGAATAA	TGACAAGCAC	AATGGAAAGA	1140
	ATCGTTAATA	TATTATTTAA	TCGTGATGAC	ТТААТТАААА	TGAAAAAGAT	TGATAATATA	1200
15	AATGTGAAAA	AGATAAGTAT	AACCCGTAAA	CTAAAGTAAT	TCACGGTGAG	AGGTTGACTC	1260
	AATGTCATAA	TGATTGCAAC	GATGTTCATA	ATTATAAATA	GACTTAAAAT	AATTGTTCTC	1320
20	ATATCAAACA	CCTCATTGTT	AGATTATTGA	CATTATAACA	GGGGTAATTG	TATATGAACA	1380
20	TTAATGTGGT	TGCTTGAGGA	AAAATTTATT	CATTGAAGTC	AAGTTGGTTC	ATTTTAGAAA	1440
	TGAATATCGT	GTTAGATGAT	GAAAGTATAT	TGAAGTATAG	GTAACTAGTT	GAAAAGTATT	1500
25	AATTGTACGA	TAACATTAAA	TTTAACACGA	AACATAGATA	TAAAATGATT	CACAATTAAA	1560
	ATGGGTAAAT	TTGAACTTGC	TAAACTATTA	ATTGGAGCAT	GGACATTTCA	AAAATAAGAG	1620
	TTCAAATCTT	ACACAAGCTC	TGAATCGACA	CTATAAGATA	CAAACTGTAT	AATTAAAGGT	1680
30	ATTGTTAAAT	AGAAGGAGAT	ATCATAAATC	ATGGAAAAGA	TGCATATCAC	TAATCAGGAA	1740
	CATGACGCAT	TTGTTAAATC	CCACCCAAAT	GGAGATTTAT	TACAATTAAC	GAAATGGGCA	1800
	GAAACAAAGA	AATTAACTGG	ATGGTACGCG	CGAAGAATCG	CTGTAGGTCG	TGACGGTGAA	1860
35	GTTCAGGGTG	TTGCGCAGTT	ACTTTTTAAA	AAAGTACCTA	AATTACCTTA	TACGCTATGT	1920
	TATATTTCGC	GTGGTTTTGT	TGTTGATTAT	AGTAATAAAG	AAGCGTTAAA	TGCATTGTTA	1980
	GACAGTGCAA	AAGAAATTGC	TAAAGCTGAG	AAAGCGTATG	CAATTAAAAT	CGATCCTGAT	2040
40	GTTGAAGTTG	ATAAAGGTAC	AGATGCTTTG	CAAAATTTGA	AAGCGCTTGG	TTTTAAACAT	2100
	AAAGGATTTA	AAGAAGGTTT	ATCAAAAGAC	TACATCCAAC	CACGTATGAC	TATGATTACA	2160
	CCAATTGATA	AAAATGATGA	TGAGTTATTA	AATAGTTTTG	AACGCCGAAA	TCGTTCAAAA	2220
45	GTGCGCTTGG	CTTTAAAGCG	AGGTACGACA	GTAGAACGAT	CTGATAGAGA	AGGTTTAAAA	2280
	ACATTTGCTG	AGTTAATGAA	AATCACTGGG	GAACGCGATG	GCTTCTTAAC	GCGTGATATT	2340
50	AGTTACTTTG	AAAATATTTA	TGATGCGTTG	CATGAAGATG	GAGATGCTGA	ACTATTTTA	2400
50	GTAAAGTTGG	ATCCAAAAGA	AAATATAGCG	AAAGTAAATC	AAGAATTGAA	TGAACTTCAT	2460

	CAAAA.A.GA	TTAATGATGC	GCAAAATAAA	ATTGCTAAAA	ATGAAGATTT	AAAACGAGAC	2590
	CTAGAAGCTT	TAGAAAAGGA	ACATCCTGAA	GGTATTTATC	TTTCTGGTGC	ACTATTAATG	2640
5	TTTGCTGGCT	CAAAATCATA	TTACTTATAT	GGTGCGTCTT	CTAATGAATT	TAGAGATTIT	2700
	TTACCAAATC	ATCATATGCA	GTATACGATG	ATGAAGTATG	CACGTGAACA	TGGTGCAACA	2760
10	ACTTACGATT	TCGGTGGTAC	AGATAATGAT	CCAGATAAAG	ACTCAGAACA	TTATGGATTA	2320
	TGGGCATTTA	AAAAAGTGTG	GGGAACATAC	TTAAGTGAAA	AGATTGGTGA	ATTTGATTAT	2880
	GTATTGAATC	AGCCATTGTA	CCAATTAATT	GAGCAAGTTA	AACCGCGTTT	AACAAAAGCT	2940
15	AAAATTAAAA	TATCTCGTAA	ATTAAAACGA	AAATAGATTA	ACGACTGAAA	TCTGAACGCT	3000
	CATAAGACTG	TCATTTGCGT	TCAGATTTTT	TTACACAATA	TAGAATGGTT	GAGTAAAATA	3060
	TTTTTGAATA	TAGTGAAAGA	GGGGGAAGTA	CTGTGATAAA	AAAGCTATTA	CAATTTTCTT	3120
20	TAGGGAATAA	GTTTGCTATC	TTTTTAATGG	TTGTTTTAGT	TGTCTTGGGC	GGTGTATATG	3180
	CGAGTGCTAA	ATTGAAATTA	GAATTACTAC	CAAATGTACA	AAATCCAGTT	ATTTCAGTTA	3240
	CAACAACAAT	GCCGGGTGCA	ACGCCACAAA	GTACCCAAGA	TGAAATAAGT	AGTAAAATTG	3300
25	ACAATCAAGT	AAGATCATTG	GCATATGTGA	AAAATGTTAA	AACGCAATCC	ATACAAAATG	3360
	CTTCAATTGT	AACAGTTGAA	TATGAAAATA	ATACAGATAT	GGATAAAGCA	GAAGAACAGC	3420
	TTAAAAAAGA	AATCGATAAA	ATTAAATTTA	AAGATGAAGT	TGGTCAACCA	GAATTAAGAC	3480
30	GTAATTCGAT	GGATGCTTTT	CCGGTTTTAG	CATATTCATT	TTCAAATAAA	GAGAATGACT	3540
	TGAAAAAAGT	AACGAAAGTA	CTGAATGAAC	AATTAATACC	AAAATTGCAA	ACGGTAGATG	3600
	GTGTGCAAAA	TGCGCAATTA	AATGGGCAGA	CGAACCGTGA	AATCACCCTT	AAATTTAAGC	3660
35	AAAATGAACT	TGAAAAATAT	GGGTTGACTG	CTGATGATGT	AGAAAACTAT	CTAAAAACGG	3720
	CAACÁAGAAC	AACGCCACTT	GGATTGTTCC	AATTTGGTGA	TAAAGATAAT	CAATTGTTGT	3780
40	TGATGGTCAA	TATCAATCTG	TTGATGCTTT	TAAAAACATA	AATATTCCAT	TAACGTGGCA	3840
40	GGAGGACCAA	GGGCATCTCA	TCCCAAAGTG	ACCATAAACC	AAATTCAGCC	ATGTCAGACG	3900
	TTATCAGGCA	TCACCACAGC	AAATTCAAAG	CGTCAGCnCC	AATATATAGT	GGATGCCGCA	3960
45	nGAACTAGGG	GTTTAGCGnT	ATCAGTGGTG	TGGCGACTCT	ATTCTAAACG	AT	4012

(2) INFORMATION FOR SEQ ID NO: 48:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7778 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

	CAATATAGGT	CGCCGAGTTT	CAACTACATC	AACTGGTTCA	GTTACATTAG	ATAATGCGCT	60
5	AGGTGTAGGT	GGCTATCCTA	AAGGACGAAT	TATTGAAATT	TATGGTCCTG	AAAGTTCTGG	120
	TAAGACAACA	GTAGCGCTTC	ACGCTATTGC	TGAAGTACAA	AGTAATGGCG	GGGTGGCAGC	180
	ATTTATCGAT	GCTGAACATG	CTTTAGATCC	AGAATATGCT	CAAGCATTAG	GCGTAGATAT	240
10	CGATAATTTA	TATTTATCGC	AACCGGATCA	TGGTGAACAA	GGTCTTGAAA	TCGCCGAAGC	300
	ATTTGTTAGA	AGTGGTGCAG	TTGATATTGT	AGTTGTAGAC	TCAGTTGCTG	CTTTAACACC	360
15	TAAAGCTGAA	ATTGAAGGAG	AAATGGGAGA	CACTCACGTT	GGTTTACAAG	CTCGTTTAAT	420
	GTCACAAGCG	TTACGTAAAC	TTTCAGGTGC	TATTTCTAAA	TCAAATACAA	CTGCTATTTT	480
	CATCAACCAA	ATTCGTGAAA	AAGTTGGTGT	TATGTTCGGT	AATCCAGAGA	CTACACCAGG	540
20	TGGACGTGCA	TTAAAATTCT	ATAGTTCAGT	AAGACTAGAA	GTACGTCGTG	CAGAACAGCT	600
	TAAACAAGGA	CAAGAAATTG	TAGGTAATAG	AACTAAAATT	AAAGTCGTTA	AAAATAAAGT	660
	GGCACCACCA	TTTAGAGTAG	CTGAAGTTGA	TATTATGTAT	GGACAAGGTA	TTTCTAAAGA	720
25	GGGTGAACTT	ATTGATTTAG	GTGTTGAAAA	CGACATCGTT	GaTAAATCAG	GAGCATGGTA	780
	TTCTTACAAT	GGCGAACGAA	TGGGTCAAGG	TAAGGAAAAT	GTTAAAATGT	ACTTGAAAGA	840
	AAATCCACAA	ATTAAAGAAG	AAATTGATCG	TAAATTGAGA	GAAAAATTAG	GTATATCTGA	900
30	TGGTGATGTT	GAAGAAACAG	AAGATGCACC	AAAGTCATTA	TTTGACGAAG	AATAGTACAC	960
	AAATTTATAT	CTATAGTTAA	ACTTAGCAAA	TATCCTTATA	GGATTGATTG	AAAGTGATAT	1020
	TCATCTCATA	AAGCTAGAAT	AATATCTAAC	TTTATGGGAT	ACACTACAAA	TCGAGACTAT	1080
35	AAGGTTTTTT	ATTTATTTA	TTATTACATT	ATCAATAGTT	TTATAATCGA	GCTTCAAAAC	1140
	TTTAGAAAAT	AGTAGAAATA	GCATTCAATA	TAGTGCAAAA	GTGCAAATTG	ATAACTTGAC	1200
	ACTTATCTCC	TATAAACCGT	ACAATTAATT	TGTATGATTT	АТАТАТААТТ	TCATAAAGTC	1260
40	ATATTGAATT	TCATATAAAG	AGCAAACCCT	AGAAAAGGAG	GTGTTTGTGT	GAATTTATTA	1320
	AGCCTCCTAC	TCATTTTGCT	GGGGATCATT	CTAGGAGTTG	TTGGAGGGTA	TGTTGTTGCC	1380
	CGAAATTTGT	TGCTTCAAAA	GCAATCACAA	GCTAGACAAA	CTGCCGAAGA	TATTGTAAAT	1440
45	CAAGCACATA	AAGAAGCTGA	CAATATCAAA	AAAGAGAAAT	TACTTGAGGC	AAAAGAAGAA	1500
	AACCAAATCC	TAAGAGAACA	AACTGAAGCA	GAACTACGAG	AAAGACGTAG	CGAACTTCAA	1560
50	AGACAAGAAA	CCCGACTTCT	TCAAAAAGAA	GAAAACTTAG	AGCGCAAATC	TGATCTATTA	1620
	GATAAAAAAG	ATGAGATTTT	AGAGCAAAAA	GAATCAAAAA	TTGAAGAAAA	ACAACAACAA	1680

	CGCATCTCCG	GTCTCACTCA	AGAAGAAGCT	ATTAATGAGC	AACTTCAAAG	AGTAGAGGAA	1800
	GAACTGTCAC	AAGATATTGC	AGTACTTGTT	AAAGAAAAAG	AAAAAGAAGC	TAAAGAAAAA	1360
5	GTTGATAAAA	CAGCAAAAGA	ATTATTAGCT	ACAGCAGTAC	AAAGATTAGC	AGCAGATCAC	1920
	ACAAGTGAAT	CAACGGTATC	AGTAGTTAAC	TTACCTAATG	ATGAGATGAA	AGGTCGAATC	1980
10	ATTGGACGAG	AAGGACGAAA	CATCCGCACA	CTTGAAACTT	TAACTGGCAT	TGATTTAATT	2040
, ,	ATTGATGACA	CACCAGAAGC	GGTTATATTA	TCTGGTTTTG	ATCCAATAAG	AAGAGAAATT	2100
	GCTAGAACAG	CACTTGTTAA	CTTAGTATCT	GATGGACGTA	TTCATCCAGG	TAGAATTGAA	2160
15	GATATGGTCG	AAAAAGCTAG	AAAAGAAGTA	GACGATATTA	TTAGAGAAGC	AGGTGAACAA	2220
	GCTACATTTG	AAGTGAACGC	ACATAATATG	CATCCTGACT	TAGTAAAAAT	TGTAGGGCGT	2280
	TTAAACTATC	GTACGAGTTA	CGGTCAAAAT	GTACTTAAAC	ATTCAATTGA	AGTTGCGCAT	2340
20	CTTGCTAGTA	TGTTAGCTGC	TGAGCTAGGC	GAAGATGAGA	CATTAGCGAA	ACGAGCTGGA	2400
	CTTTTACATG	ATGTTGGTAA	AGCAATTGAT	CATGAAGTAG	AAGGTAGTCA	TGTTGAAATC	2460
	GGTGTAGAAT	TAGCGAAAAA	ATATGGTGAA	AATGAAACAG	TTATTAATGC	AATCCATTCT	2520
25	CATCATGGTG	ATGTTGAACC	TACATCTATT	ATATCTATCC	TTGTTGCTGC	TGCAGATGCA	2580
	TTGTCTGCGG	CTCGTCCAGG	TGCAAGAAAA	GAAACATTAG	AGAATTATAT	TCGTCGATTA	2640
	GAACGTTTAG	AAACGTTATC	AGAAAGTTAT	GATGGTGTAG	AAAAAGCATT	TGCGATTCAG	2700
30	GCAGGTAGAG	AAATCCGAGT	GATTGTATCT	CCTGAAGAAA	TTGATGATTT	AAAATCTTAT	2760
	CGATTGGCTA	GAGATATTAA	AAATCAGATT	GAAGATGAAT	TACAATATCC	TGGTCATATC	2820
	AAGGTGACAG	TTGTTCGAGA	GACTAGAGCA	GTAGAATATG	CGAAATAATT	TTTGTCTCCC	2880
35	TCACAAATTA	GTGAGGGAGC	TTTTTTAAGT	TGTAGTCTTA	AtCTAGTTAG	ACAGCACTTT	2940
	ATCGGTAATA	ACTATATTAA	ACAGTAGTTA	TTTGAAAGTA	AGACGGACCT	TATATTAAAT	3000
10	AAGAAGTTAT	TGCTTTTAAT	AAAAATGTTT	TAGGCTTCGT	AATTACTATA	TTTATATTAT	3060
40	GTAAACCTAT	AAAGATGATT	GGTTTTCTAT	CCAATAAAAA	AGAAGAGAAG	ATGTAACACA	3120
	TCTTCTCTTC	yGCAATATTA	ATTAGGATTT	ATTTCTAAGT	TGAGTTATTT	TAATTGTAAA	3180
<b>4</b> 5	TCTGTTTTCT	TTAATTCTTT	TATAACTTCT	GCAGTATCAT	AACAATTTGT	TGCAATTGTT	3240
	GAATATCTCT	CTGCTAAACG	ATATGCATTA	ATGTAAAGCT	TTAAACTTTC	TTTAGCTATA	3300
	TCCTCTGCAT	CTTCGAATTT	TGATGGGTTA	GACATAACCA	CTAATTCTGC	AAATTTTTCT	3360
50	GGATCAATAT	TAATAGACAT	GTATTTATTT	ACAACTCCTA	TTTATTTTGA	TGTCTTAATA	3420
	CTAACATATT	CAACTTTCA	~ A ~ A A A ~ ~ A A	тотототота	TR R TTC R R C R	3 3 5 5 T 3 5 TTTC	2400

	GGATGAACAA	AACATGAGAA	TAATGTTTAT	AGGGGATATC	GTAGGTAAAA	TTGGACGAGA	3600
	CGCAATTGAA	ACGTACATAC	CTCAACTGAA	GCAAAAGTAT	AAACCAACAG	TTACAATTGT	3660
5	AAATGCTGAA	AATGCAGCAC	ATGGTAAAGG	TTTGACTGAA	AAAATATATA	AACAATTACT	3720
	AAGAAATGGT	GTAGATTTCA	TGACTATGGG	TAATCACACA	TATGGTCAAC	GTGAAATTTA	3780
	TGATTTTATA	GATGAAGCAA	AACGACTAGT	AAGACCAGCG	AATTTTCCGG	ATGAAGCGCC	3340
10	GGGAATTGGT	ATGAGATTTA	TACAAATTAA	TGATATTAAA	CTTGCAGTTA	TTAATCTGCA	3900
	AGGAAGAGCG	TTTATGCCAG	ATATTGATGA	TCCTTTTAAA	AAGGCAGATC	AATTAGTCAA	3960
15	GGAAGCACAA	GAACAAACTC	CGTTTATATT	TGTTGATTTT	CATGCAGAAA	CAACTTCTGA	4020
	AAAGTATGCA	ATGGGATGGC	ATTTAGATGG	TAGASTAGCG	CTGTTGTTGG	AACGCATACA	4080
	CACATTCAAA	CAGCAGATGA	ACGTATTTTA	CCAAAGGGGA	CAGGGTATAT	AACGGATGTT	4140
20	GGTATGACAG	GTTTTTATGA	TGGCATTTTA	GGAATAAATA	AAACAGAGGT	AATTGAGCGT	4200
	TTTATCACTA	GTTTGCCACA	AAGACATGTT	GTTCCAAATG	AAGGTAGAAG	TGTATTATCT	4260
	GGTGTTGTTA	TTGATTTAGA	CAAAGAAGGT	AAAACAAAGC	ACATCGAACG	TATATTGATA	4320
?5	AATGATGACC	ATCCATTTTC	AACATTTTAA	AATTACGTAA	GTAAACATTC	GAATTGGACC	4380
	CTATCGTCCA	TTAGTATGAA	TTTAATATAG	TACCACTGTT	TACATAGTAA	ATCGGTGGTT	4440
	CTTTTTGTTA	TCATTTAATA	TGAAATATAT	CCATAGGAGG	CATATAACTA	TGAAACCACA	4500
B <i>0</i>	ATTATCGTGG	AAAGTTGGCG	GTCAACAAGG	CGAAGGTATT	GAATCAACTG	GGGAAATCTT	4560
	CGCTACGGCT	ATGAATAGAA	AAGGATATTA	TTTATATGGA	TATAGACATT	TTTCAAGTCG	4620
	TATCAAAGGT	GGACATACGA	ATAATAAAAT	TAGAGTTTCT	ACGACGCCTG	TTCATGCAAT	4680
35	TAGTGATGAT	TTAGATATTT	TGATTGCATT	TGACCAAGAA	ACAATTGATG	TTAACCATCA	4740
	TGAAATGAGA	GAAGACAGTA	TTATTTTATC	TGATGCCAAG	GCTAAACCTG	TGAAaCCAGA	4800
	AGGÁTGTCAT	GCACAGCTTA	TTGAATTACC	TTTTACAGCA	ACCGCTAAAG	AATTAGGTAC	4860
10	AGCATTAATG	AAAAACATGG	TTGCAATAGG	TGCTACTAGC	GCATTGATGA	ATTTGAATAC	4920
	AAATACATTT	GAAGAACTTA	TTACTAATAT	GTTTTCTAAA	AAAGGTGACA	AGGTAGTTGA	4980
15	AGTCAATATC	CAAGCATTAA	ACGAAGGTTA	TCAATTAATG	CAATCTCGCT	TACCTGAAAT	504
	CTACGGGGAC	TTTGAATTAG	AGTCAACAGA	TGCACTACCA	CATCTATATA	TGATTGGTAA	5100
	CGATGCCATT	GGATTAGGTG	CAATTGCTGC	AGGTTCACAA	TTTATGGCGG	CATATCCTAT	5160
50	TACACCTGCG	TCTGAAGTTA	TGGAATATAT	GATTGCCAAT	ATATCTAAAG	TAAACGGAGC	5220
	GGTTATTCAA	ACAGAAGATG	AAATTGCTGC	TGTAACTATG	GCTATTGGTG	CAAATTATGG	5280

	.GGATTATCT	GGTATGACTG	AAACGCCATT	AGTCATTATT	AATACCCAAC	GAGGTGGACC	5400
5	TTCTACTGGA	TTACCTACGA	AACAAGAACA	GTCAGATTTA	ATGCAAATGA	TTTATGGTAC	5460
5	ACATGGTGAT	ATTCCAAAAA	TTGTTGTAGC	ACCAACAGAT	GCAGAAGATG	CATTTTATTT	5520
	AACTATGGAA	GCATTTAATT	TAGCAGAACA	ATATCAATGC	CCTGTTATAG	TTCTAAGTGA	5580
10	TTTGCAATTA	TCTTTAGGTA	AACAAACTGT	TGAAAAATTA	GATTATAATC	GTATTGAAAT	5640
	TAAACGTGGT	GAAATCATTC	AATCTGATAT	TGAACGTGAA	GAAGATGATA	AAGGTTATTT	5700
	CAAGCGTTAT	GCGTtAACAT	CCGATGGTGT	TTCTCCTAGA	CCTATCCCCG	GTGTTAAAGG	5760
15	AGGTATTCAT	CATATAACTG	GTGTGGAaCa	CAATGAAGAA	GGTAAACCTA	GTGAATCTGC	5820
	GTCAAATAGA	СААСААСААА	TGGAAAAACG	AATGCGTAAA	ATTGAGCAGT	TACTAATTGA	5880
	ATCGCCAGTA	GAAGCTAACT	TACAACATGA	GGATGCAGAT	ATTCTTTATA	TCGGTTTTAT	5940
20	TTCTACAAAA	GGTGCAATTC	AAGAAGGTAG	TAACCGTTTG	AATCAACAAG	GCATAAAAGT	6000
	TAACACTATA	CAAATTAGAC	AATTGCATCC	ATTCCCAACA	AGCGTTATTC	AAGATGCAGT	60 <b>60</b>
25	TAATAAAGCG	AAGAAAGTCG	TTGTAGTGGA	GCACAATTAT	CAAGGACAAT	TGGCTAGTAT	6120
	TATAAAAATG	AATGTCAATA	TTCATGATAA	GATTGAAAAT	TATACAAAGT	ATGATGGGAC	6180
	ACCTTTCCTA	CCACATGAAA	TCGAAGAAAA	AGGCAAAATA	ATTGCTACTG	AAATAAAGGA	6240
30	GATGGTATAG	ATGGCGACAT	TTAAAGATTT	TAGAAATAAT	GTTAAGCCTA	ACTGGTGCCC	6300
	CGGATGTGGC	GATTTCTCAG	TACAAGCTGC	AATTCAAAAA	GCAGCCGCAA	ATATAGGGTT	6360
	AGAACCTGAA	GAAGTAGCTA	TCATCACCGG	TATAGGATGT	TCTGGCCGTC	TTTCAGGATA	6420
35	TATTAATTCT	TATGGCGTTC	ATTCTATTCA	CGGACGTGCA	TTACCTTTAG	CTCAAGGTGT	5480
	AAAAATGGCG	AATAAAGATT	TAACTGTTAT	TGCATCGGGA	GGAGATGGTG	ATGGTTATGC	6540
‡O	TATAGGTATG	GGGCATACAA	TCCATGCTTT	AAGAAGAAAT	ATGAACATGA	CGTATATAGT	6600
	CATGGATAAT	CAAATTTATG	GTTTGACAAA	GGGACAAACA	TCGCCGTCAT	CAGCAGTAGG	6660
	ATTTGTTACT	AAAACAACGC	CAAAAGGTAA	TATAGAAAAA	AATGTTGCGC	CTTTAGAATT	6720
<b>1</b> 5	AGTATTATCA	TCTGGTGCCA	CATTTGTAGC	CCAAGGTTTT	TCAAGCGATA	TTAAAGGATT	6780
	AACAAAACTA	ATTGAAGATG	CAATTAATCA	TGATGGATTT	TCATTCGTTA	ATGTCTTTTC	6840
	ACCATGTGTG	ACTTATAATA	AAATTAACAC	ATACGATTGG	TTTaAAGAAC	ATTTAACAAG	6900
50	TGTTGATGAC	ATTGAAAATT	ATGATTCTAC	AGATAAACAA	TTAGCGACTA	AAACTGTTAT	6960
	TGAACATGAA	TCTTTAGTAA	CTGGTATTGT	TTATCaAGAT	AAAGAAACAC	CATCATATGA	7020
	ATCLCAAATT	AAAGAGTTAG	ATGATmCACC	ACTTGCTAAA	AGAGATATCa	AAATTaCTGA	7080

	TGTATTTATA ACAGATCCAT TTATGCTACT CAGTTTTTTA CTATTACAAA AAATAAAGGA	7200
_	GTTTTTAAAA ATGAAAGACA CATTAATGAG TATACAAATA ATTCCTAAAA CACCAAACAA	7260
5	TGACAATGTT ATACCTTACG TAGACGAGGC GATTAAAATA ATTGACGAAT CTGGTTTGCA	7320
	TTTTAGAGTA GGTCCGTTAG AAACGACAGT ACAAGGAAAT ATGAATGAAT GTTTAATTTT	7390
10	AATACAATCA TTAAATGAAC GAATGGTGGA ACTTGAATGT CCAAGTATTA TTAGCCAAGT	7440
	TAAGTTTTAT CATGTGCCAG ATGGCATCAC TATTGAAACT TTAACTGAAA AATATGATGA	7500
	ATAACATTAA AAGTGAAGTA AACTGGATTT GAATTGGCTT GTTAGAGATG ACGTATAACT	7560
15	TTAACTGTTT TTGCACTTTA TAGTTAAATT TAATATAATT ATTAAATGAT ACGGGCAAAT	7620
	AGAAAGGATT TTGTAAAGTG AACGAAGAAC AAAGAAAAGC AAGTTCTGTA GATGTTTTAG	7680
	CTGAGAGAGA TAAGAAAGCA GAAAAAGATT ATAGTAAATA TTTTGAACAT GTTTATCAGC	7740
20	CGCCTAATTT AAAAGCAAGC GCAAAAAAAG AGGTnAAA	7778
	(2) INFORMATION FOR SEQ ID NO: 49:	
25	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 1128 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: double</li></ul>	
	(D) TOPOLOGY: linear	
30	(D) TOPOLOGY: linear	
30	(D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
30		60
<i>30 35</i>	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	60 120
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49: AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:  AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG  TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC	120
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:  AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG  TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC  ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT	120 180
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:  AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG  TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC  ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT  CGATGTTTTT ATTTATTCGG GATTGTTTGT TTGAATTGTT GTGCTAAATC TGGTCGATCT	120 180 240
35	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 49:  AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT CGATGTTTTT ATTTATTCGG GATTGTTTGT TTGAATTGTT GTGCTAAATC TGGTCGATCT GTCACAATCG TGTGTGCACC TTTTTGGTAT AAATCATTCA TCAGATTTAT ACTATTTACG	120 180 240 300
35 40	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 49:  AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT CGATGTTTTT ATTTATTCGG GATTGTTTGT TTGAATTGTT GTGCTAAATC TGGTCGATCT GTCACAATCG TGTGTGCACC TTTTTGGTAT AAATCATTCA TCAGATTTAT ACTATTTACG CCATAATAGC CTGGAATGAT ATTCATATCA TTTAACCATT TGATAAAACG AGATGAAGTC	120 180 240 300 360
35 40	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 49:  AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT CGATGTTTT ATTTATTCGG GATTGTTTGT TTGAATTGTT GTGCTAAATC TGGTCGATCT GTCACAATCG TGTGTGCACC TTTTTGGTAT AAATCATTCA TCAGATTTAT ACTATTTACG CCATAATAGC CTGGAATGAT ATTCATATCA TTTAACCATT TGATAAAACG AGATGAAGTC AAATCAATGC CTTTAAAATG AGTAGGCATT TGGAACGTTT GTGCTAATGG TTGGTAGTAC	120 180 240 300 360 420
35 40	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 49:  AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT CGATGTTTTT ATTTATTCGG GATTGTTTGT TTGAATTGTT GTGCTAAATC TGGTCGATCT GTCACAATCG TGTGTGCACC TTTTTGGTAT AAATCATTCA TCAGATTTAT ACTATTTACG CCATAATAGC CTGGAATGAT ATTCATATCA TTTAACCATT TGATAAAACG AGATGAAGTC AAATCAATGC CTTTAAAATG AGTAGGCATT TGGAACGTTT GTGCTAATGG TTGGTAGTAC CTACCACCTA ATAAATGATA TTTTAAAAAAT GCTTCTGTAA CTTCCTGTTG GCTAGCACCA	120 180 240 300 360 420 480
35 40 45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:  AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT CGATGTTTTT ATTTATTCGG GATTGTTTGT TTGAATTGTT GTGCTAAATC TGGTCGATCT GTCACAATCG TGTGTGCACC TTTTTGGTAT AAATCATTCA TCAGATTTAT ACTATTTACG CCATAATAGC CTGGAATGAT ATTCATATCA TTTAACCATT TGATAAAACG AGATGAAGTC AAATCAATGC CTTTAAAATG AGTAGGCATT TGGAACGTTT GTGCTAATGG TTGGTAGTAC CTACCACCTA ATAAATGATA TTTTAAAAAAT GCTTCTGTAA CTTCCTGTTG GCTAGCACCA ATTGCGACGG ATCCTTGTGC AATTTTATTA AAACGAACGA TTTGTTCTTT ATAAAAACTT	120 180 240 300 360 420 480 540

	AATGTATGGG CACTAACTTT TCCAGAGCCG TTCGTCGTTC TATCAACAGT TGCGTCATGA	840
	AAAACGATAA GCTGTTGATC TTTTGTGAGT CTCACATCTG TTTCAAAGCC ATCAACGCCT	900
5	AATTGTTTAG CATAGTCAAA TGCAAGTTGC GTTTGCTCTG GTCTTAAAGC CATACCACCG	960
	CGATGCGCAA ATATATATGG TGCATTGCCT TTGAAAAAAG CAGGGATGGT TTGCTTTTTA	1020
10	GTAATCACTT TATTTTATT GATCATTAAT AGACTACTTA AAAATCCAGC ACCGACTAGT	1080
	ACCGCATTTA AAATGTTTCT GTTTACnTTT TTCATAAAAA ATTCCTCC	1128
	(2) INFORMATION FOR SEQ ID NO: 50:	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 6252 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: double</li> <li>(D) TOPOLOGY: linear</li> </ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
25	CAAGCAAACA ATCGTCGATA AAATTGCTAA AATAATAAAA GTAATTCGAA CTTTCATCAT	60
20	GATCATCCTT TGTTTATAGA GTCAATATAA GTATGGAATA TGTTAGGTAT ATAGTCAAAT	120
	GCGTCAACTA ATGGGAATTT TGGCATAGAT AGAGAATTTA AGGCAATTAA AAAGGCATCA	180
30	AACAGTAATA TGCTGCTTGA TGCCCAAATG ATGACTTTAG CTAAATTGAT TAGTCACTTT	240
	TAAAGATAAA GAATTGTCAT GAATTAAAAC TCATGTAATG ATGTGTTACA TTTCGCAATG	300
	ATGGCTTTCA GTTATTTATC GATAACATCA CTCTTGATAC CTTTAGATTT TAAGAAATCT	360
35	TTAATTTTAT CTTGTTGCTT TTTATTAACA TCACCGGCAT ATTTTGTTGG CACGTCGACA	420
	ACATTGATTT TATTTTGCGG TTGATAGCTA AGCTTTTCAA TATCTTCATC AACATTGGCG	480
40	ATTGTACTAT TTAAAGCTTT GAAGTAATTC ATCATTAATT CAACGGGTTT CTTATATTCT	540
	TTAGGAATAT TGTTTTCAGT GACAAATTTC TTGAAATGCA AATCGTTTTT AACAGCTAAG	600
	TTAGATAAGT GGCTAAGTGT TTCTGCTTGT TTTTCAGTCA CTTTTGTTTG ACTGTCAATT	660
45	TGTTTATCTA GTTTATGTTG CATAATATAT TTGTTATCAA GTATATCGCT ATTTACAGAC	720
	AAATACTTTT CTATAGCTTG CTTCATCTCT GCATCACTAA TATCACTATT TTTCTTATCT	780
	GAGTTAAAGA TATCTTTTGT tTCTAATTTT TTAGCGCTTT TAGGTGCATG GATGCCAGTA	840
50	CTTGTATGAT GATCTTCGTT ATCAGATTGA TCGGACGCGC AACCTGTAAG AATTAATGTC	900
	GATGCTAAAA ATGTACTTAG TAGTAATCTC TTTTTCATAA TGTAATATAA CTCCTTAGTT	960
	TATOMISTA A TOTAL A A A A A A A A A A TOTAL TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TOTAL A TO	1020

	TCTATCAATA	ALGCATCATT	TIGGACGITG	TTAAGGA.AG	CITIAICIAI	AAATAACIGC	1140
_	ATAATTGGTT	GTACTAATTT	AGACGTAGGT	ATCGTACGTA	AAAGCATAAT	AATTTCGTTC	1200
5	ACATACTTTT	CTTTCTCAAT	ATCATTTTTC	ATATTGATTI	GTTTGCGAGA	GGTACATACT	1260
	TTAAGCATTA	TCGCACATCT	CGTTGTATAT	ATTAAGTTTA	TCATAACATG	ATTTTATGTC	1320
10	GGGATAAAAA	AATAACAGCA	TCTTAACAAA	TGTAAGATAC	TGTCAGTGAA	ATGAATGAAA	1380
	CTTTAGTTTC	TGATAATATA	GTCAAAGGCA	TTTAATGCTG	CATTTGCACC	AGCGCCCATT	1440
	GAAATGATAA	TITGTTTGTT	CTTCTGATCT	GTGACATCGC	CAGCAGCAAA	TATTCCAGGA	1500
15	ACATTCGTAT	TATTGTTACG	ATCAATCACA	ATTTCACCAC	GTTCGTTTAA	TTCAACAGCA	1560
	TCGTTTAACC	ATGATGTGTT	TGGAAGTAAA	CCAATTTGAA	CAAAGATACC	ATCTAAGTTA	1620
	AGTAGATGTT	CTTCGCCGGT	GTTCATGTCT	TCGTAACGTA	TACCTGTAAC	ATGGTCTTCT	1680
20	CCGACAACTT	CAGTAGTTTT	GGCATTTGTT	TTGATATCAA	CATTTGATAA	AGAACGTAAA	1740
	CGATCTTGTA	ACACGTTGTC	TGCTTTTAAT	TCGCTAGCGA	ATTCGAATAA	TGTAACATGA	1800
25	TTAACGATAC	CAGCAAGGTC	AATTGCTGCT	TCAACCCCAG	AGTTACCGCC	ACCGATAACT	1860
	GCTACGTCTT	TATTTTCAAA	TAGAGGTCCG	TCACAGTGAG	GGCAGAATGC	AACACCTTTA	1920
	TTAATCAATT	GCTCTTCACC	TGGAATGTTT	AGCTTACGCC	AACCTGCACC	AGTAGCAATA	1980
30	ATGACTGTTT	TACTTTCTAA	GACAGCACCG	TTTTCTAACG	TAACTTTAAT	TGCTTCGTCA	2040
	GTCTTTTCGA	TATCTGTAGC	ACGTATACCT	GTCATTGCAT	CAATGTCATA	TTGATCAATG	2100
	TGCGCTGCTA	AGTTAGAAGA	AAATTCAGAA	CCAGTTGTTT	CTTTAACAGT	AATGAAGTTC	2160
35	TCAATACCAG	CAGTATCATT	AACTTGGCCA	CCGATACGAT	CAGCAACTAT	ACCAGTACGT	2220
	AAACCTTTAC	GTGCTGTGTA	AATCGCTGCA	CTACCACTAG	CAGGACCACC	ACCAACGATT	2280
10	AAGÃCATCAT	AAGGTTCTTT	ATTTTCAAAC	TCAGATGCAT	CTGCCGTACT	GCCTAGTTTC	2340
	GAAAGAATAT	CTTGGATTGT	CATACGACCA	TTGCCAAATT	CTTCGCCATT	TAAAAAGACA	2400
	GCAGGGACTG	CCATGATGTT	TTCAGATTCT	TCACGGAACA	CTGCACCATC	AATCATAGAA	2460
15	TGCGTGATGT	TAGGGTTGAT	CACACTCATT	AAGTTAAGTG	CTTGAACGAC	ATCAGGACAT	2520
	TTTTGACACG	TTAAACTAAT	GAATGTTTCA	AAATGGAATG	AACCTTCTAA	TTTTTTAATT	2580
	TGGTCAATGA	TTGACTGTTT	TTCTTTAGGT	GCACGACCAC	TAACCTGTAA	AATTGCTAAA	2640
50	ACAAGTGAGT	TAAACTCGTG	ACCTAATGGA	ATACCTGCAA	ATGTTACACC	TGTTTCTTCG	2700
	CCAGGACGAT	TGACTGAGAA	ACTTGGTGTA	CGTTTTAAAG	ATTTTTCAGA	AAGAGATAGT	2760
	CTAGGTGACA	TATCAGTAAT	TTCTGTCAAC	AAATCTTTAA	GTTCTTTGGA	TTTATCATCT	2820

	TGTTGTTTTA	AATCAGCATT	' AAGCATGGTT	GTAATGCCTC	CTTAGATTTT	ACCTACTAAA	2940
5	TCTAAACCAG	GTTGCAATGT	TTTAGCGCCT	TCTTCCCATT	TAGCTGGGCA	TACTTCGCCA	3000
3	GGGTTTTTAC	GAACATATTG	AGCTGCTTTG	ATTTTGTGAG	CTAATGTACT	AGCGTCACGG	3060
	CCAATTCCGT	CAGCGTTAAT	TTCAGATGCT	TGTACAACAC	CGTCTGGGTC	GATAATGAAT	3120
10	GTACCACGTT	GAGCTAAACC	AGTAGCTTCA	TCTAATACAT	CAAAATTACG	AGTGATTGTT	3180
	TGTGATGGGT	CACCAATCAT	AGTGTAAGTG	ATTTTGCTAA	TTGCATCTGA	ATGGTCATGC	3240
	CATGCTTTGT	GTACGAAGTG	AGTATCAGTT	GATACTGAGA	ATACATTTAC	GCCTAATTTT	3300
15	TGTAATTCTT	CATATTGGTT	TTGTAAGTCT	TCTAATTCAG	TTGGACAAAC	GAATGAGAAG	3360
	TCAGCAGGAT	AGAAGCATAC	TACGCTCCAA	GAACCTTTTA	AATCTTCTTG	TGTAACTTCT	3420
20	TTAAATTGAT	CTTTTTTTGG	ATCGAAArCT	TGCGCTGTAA	ATGGTAAGAT	TTCTTTGTTA	3480
20	ATTAATGACA	TAAATATCTT	CCTCCTAAGA	ATTTAAGTAT	GAATTAGAAC	TATCAATTGA	3540
	TTGCGCTTAA	TTATAATAAT	TCTAATCTCT	TAGTTAGCAT	TATTACATTT	TGATCCAGAA	3600
25	TAGTCAACTG	GATAACTTTG	TAAAGTGAAT	GATTACTTTT	AAAATAAAGA	AAGATAATAT	3660
	AAAGTGCTTT	GATAATGGAT	TTTGTAGTTG	ATGATTTAAA	AGGTTGTGTC	TATATTTAAT	3720
	ATCTTGATTT	TAATGTAAAA	AATGTAAAAA	AAGAAGATTT	GTATTCTCAA	CTAAGTCAAC	3780
30	CTTATTGATA	ATGGTATGAG	AATATTTGTT	CGAGATGGAT	GAAGGTAATG	AGTGAGAAAC	3840
	TGGATTTTTA	AAGTATGAGA	CAATATTTTA	AAAAGTTCAA	TTATTAACTT	ATAAGCAAAT	3900
35	AATTGCTATA	AAAAAGTTTG	GACGTGTACA	ATTGCAATAT	GAAGATTTTA	AATTAATTGT	3960
33	AAAGTATCGA	GGAGTGGGTA	ACGTGTCAGA	ACATGTATAT	AATCTTGTGA	AAAAGCATCA	4020
	TTCTGTTAGA	AAATTTAAGA	ATAAACCTTT	AAGTGAAGAC	GTTGTTAAGA	AATTGGTAGA	4080
40	AGCTGGACAA	AGCGCTTCGA	CGTCAAGTTT	CCTGCAAGCA	TACTCAATTA	TTGGTATCGA	4140
	CGATGAGAAG	ATTAAAGAAA	ATTTACGAGA	AGTTTCTGGA	CAACCTTATG	TTGTAGAAAA	4200
	TGGCTATTTA	TTCGTCTTTG	TTATTGATTA	TTATCGTCAT	CATTTAGTTG	ATCAACATGC	4260
45	TGAAACTGAT	ATGGAAAATG	CATATGGTTC	AACGGAAGGT	TTGCTAGTAG	GTGCAATCGA	4320
	TGCAGCATTA	GTTGCCGAAA	ATATTGCGGT	AACTGCTGAA	GATATGGGGT	ATGGCATTGT	4380
	CTTTTTAGGA	TCATTAAGAA	ATGATGTTGA	ACGCGTTCGA	GAAATTTTAG	ACTTACCTGA	4440
50	CTATGTCTTC	CCGGTATTTG	GTATGGCAGT	AGGGGAACCC	GCAGATGACG	AAAATGGTGC	4500
	AGCCAAGCCA	CGCTTACCAT	TTGACCATGT	CTTCCATCAT	AATAAGTATC	ATGCTGATAA	4560
55	GGAAACACAG	TATGCACAAA	TGGCAGATTA	CGACCAGACA	ATCAGCGAGT	ACTATGATCA	4620

	CAAAGCAAGA	TTAGATATGT	TAGAACAATT	GCAAAAATCA	GGCTTAATAC	AGCGATAgCA	4740
	AGATACCAAA	ATAACCCGCC	CCCCTCTAGC	TTAAAATGAT	AAGTATAGCT	AGAGGGGGCG	4800
5	GGTATTTCTT	GCAATGAATT	AGTGTGAAGT	TAATGCAGCA	TTATCATTTG	AATCGAAAGT	4860
	ATCTTTATCC	CAATGTTTAG	TTAACTTGGC	GGTACCTGTA	CCAGCTAGCA	TTGAATCGTT	4920
10	CACGTTTAAT	GCTGTTCTAC	CCATGTCAAT	CAATGGTTCA	ACGGAGATGA	GCACGCCGGc	4980
	TAAAGCGACT	GGCAAGTTTA	ACGTTGACAA	CACCAATATG	GATGCAAATG	TAGCCCCGCC	5040
	ACCGACGCCA	GCAACGCCGA	ATGAACTAAT	AATCACGACA	GCGATTAACG	TTACAATAAA	5100
15	TTGTAAATCA	ATTTCTACAT	TAGCGACGGG	TGCGACCATA	ATTGCAAGCA	TGGCAGGGTA	5160
	AATGCCTGCA	CAACCATTTT	GTCCAATCGA	CAATCCAAAT	GTCGCAGCGA	AATTGGCAAT	5220
	ACCTTCTGGC	ACGCCTAGAC	GTCTTGTTTG	TGTTTGTACA	TTCAATGGTA	AGGCACCCGC	5280
20	GCTTGAGCGT	GATGTGAATG	CAAAGATTAA	TACTTCCAAA	GTCTTTTTAA	CATAGCGAAT	5340
	TGGGCTAATA	CCTAACAGGC	TTAAAATAAT	TAAGTGAATG	ATATACATCG	TAATTAATGC	5400
?5	AGCGTACGAT	GCGATTAAGA	ATTTTCCTAA	AGTCCAAATG	GCGCCAAAGT	CACTTGTCGA	5460
25	TAATGTGTTG	GCCATAATTG	CTAATACACC	GTATGGCGTT	AAACGTAAGA	CGAACGTCAC	5520
	AATCGCCATT	ACTAGTGAAT	AGATAGCGTC	AATCGCACGC	TTAAGCAATT	CACCATGATC	5580
30	AGGTTGTTTG	CGTnTACGCG	TAAATAAGCA	AATCCTATAA	ACGAAGCAAA	TATCACGACA	5640
	GCAATCGTGG	aAGTTGCACG	TTGTCCaGTG	AAATCTAAGA	ATGGATTTTT	AGGCAATAAT	5700
	TCCAAAATTT	GTTGTGGTAA	CGTATGTGCT	GTTAAATCTT	TCGCTTGTTT	AGCAATTTCG	5760
35	CTTCCACGTG	CTTGTTCAGC	GTTACCAAGG	TTAATTGTTG	ATGCATCTAA	ACCAAACACC	5820
	AAGGCATACA	CAACACCAAC	AATCGCAGCA	ATGGTGACAG	TGCCAATTAA	AAAGATAAAA	5880
	ATGAGACTAC	CAATTTTAGC	AAACTTTTCT	CCGATTTGAA	TTTTAGTGAA	TGCAGCTACA	5940
10	ATAGAAATGA	AAATTAAAGG	CATAACAATC	ATTTGCAACA	ATGCAACGTA	ACCTTGTCCG	6000
	ACAATGTTGA	ACCAGTCACT	TGTTGATGTA	ATAACATTCG	AATGTGTGCC	ATAAATAAGA	6060
15	TGCAATAACA	CACCGAATAC	TATACCAATC	CCTAAAGCTG	TAAACACACG	TTTCGCAAAA	6120
	GATATATGTT	TGCGAGCCAT	CATGTGCAAT	ATTACGATGA	AAATCACCAA	TACAATAATA	6180
	TTAATCAGTG	TAAGAAAAGC	ATTCATGAAC	GTCACTCCTT	AAATTTTTGA	ATATAATTCC	6240
50	GACTAGTATG	CT					6252

### (2) INFORMATION FOR SEQ ID NO: 51:

55

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 6730 base pairs

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

3	(xi)	SEQUENCE DE	SCRIPTION:	SEQ ID NO:	51:		
	ATCAAATCnC	AAAATATTTA	TTAATnAnAA	GGGGATTATC	CaTGTgAGAA	ACAAAGTAAT	60
10	GCTCTTTTTT	TACCTCTTGT	GGGTTGAAAA	aTGGATCATC	AGAGATAGAC	TTCTTCTTTT	120
	TCGAAGATGA	CATTTGATAC	TTTAATCTTC	TAAAACCATA	ACTTGTCGCA	TCAAAAATGC	180
	CTTCTTGTAC	AAGTAAAATC	AAAAATATGC	TAAAAAAAT	AATTAATGAA	ACATAAAACA	240
15	АТАТАТТТАА	ATATGTAATG	ATAGTATGGC	TATTAAAAAG	ССАТАТААТА	AACGTTAATA	300
	TTGGCGTTAT	TAGTGCCATT	CCAAGCCATT	TTTTCAACAT	TTGATCACTC	CCACTTATAG	360
20	AAAACTCTTA	CGCATAGTTT	ACATTAAAAT	CAGACATTGA	GGAATGATTT	TTTAATTTCT	420
20	TCAGCTTTAT	TGAAATTCTA	AAATCAATCA	TTCTTCATTA	GTTTAAAGCA	AAAAAATATT	480
	GATATATAGT	AAATATTGTA	TATATAATAT	TAGTTAAGAT	TTCaGAAAAT	TTTGAAGGGA	540
25	ATGGAAATTT	AGAAATCGGA	ATTTGTTAGA	GGAGGGGATT	AGATGGGGAA	ATATATTTTC	600
	AAACGATTTA	TTTATATGCT	TATTTCTTTA	TTTATTATTA	TTACAATTAC	ATTTTTCTTA	660
	ATGAAATTAA	TGCCAGGTTC	GCCATTTAAC	GATGCTAAAT	TAAATGCTGA	ACAAAAAGAA	720
30	ATTTTAAATG	AAAAATATGG	ATTAAATGAT	CCTGtAGCTA	CGCAGTATTT	ACATTATTTA	780
	AAAAATGTTG	TTACAGGCGA	TTTTGGTAAT	TCATTCCAGT	ATCATAATCA	ACCTGTGTGG	840
35	GATTTGATTA	AACCGAGACT	ACTACCTTCT	TTTGAAATGG	GTCTTACAGC	AATGTTCaTC	900
33	GGTGTGATAC	TGGGACTTAT	TTTAGGTGTT	GCAGCAGCTA	CTAAACAAAA	TTCTTGGGTT	960
	GACTATACAA	CTACAGTTAT	TTCAGTTATT	GCAGTATCTG	TACCATCTTT	TGTACTTGCT	1020
40	GTACTTTTAC	AATATGTATT	TGCAGTTAAA	TTAAGATGGT	TCCCAGTAGC	TGGATGGGAA	1080
	GGTTTTTCGA	CCGCGGTATT	ACCGTCACTT	GCATTATCTG	CAGCTGTTTT	AGCAACTGTC	1140
	GCCAGATACA	TAAGAGCAGA	GATGATAGAG	GTATTAAGTT	CAGACTATAT	TTTATTAGCG	1200
45	AGAGCTAAAG	GTAATTCGAC	AATGCGTGTA	CTTTTTGGAC	ATGCACTTAG	AAATGCTTTA	1260
	ATTCCAATTA	TTACAATTAT	CGTTCCCATG	TTAGCAAGTA	TTTTAACAGG	CACTTTAACA	1320
50	ATTGAAAATA	TTTTTGGAGT	TCCTGGATTA	GGGGATCAAT	TCGTACGTTC	AATTACAACA	1380
30	AATGATTTCT	CAGTAATCAT	GGCAATCACA	CTATTATTTA	GCACACTGTT	TATCGTTTCT	1440
	ATTTTTATTG	TAGATATITT	GTACGGTGTG	ATAGATCCAC	GAATTCGTGT	TCcAAGgAGG	1500
55	TAAAAAATAA	TGGCTGAAAA	TAAAAACAAT	TTGTCGATTA	ACGACGATCA	TTCTAATGCA	1560

	TGAATCAGGA	ACCTGAAATG	CAACGAGAAA	GCAAAAACTT	TIGGCAAGAT	GCTTGGGCTC	1580
5	AGTTAAAACG	AAATAAGTTA	GCTGTTGTCG	GTATGATAGG	TTTAATTATC	ATTGTAATAT	1740
5	TTGCTTTTAT	CGGTCCAGTT	ATAAATAAAC	ATGATTATGC	TGAACAAAAT	GTAGAACATA	1300
	GAAATCTTCC	GGCAAAAATA	CCTGTATTAG	ACAAAGTTCC	ATTTTTACCT	TTTGATGGTA	1860
10	AAGATGCAGA	TGGCAAGGAT	GCTTATAAAG	CAGCAAATGC	TAAAGAAAAT	TATTGGTTTG	1920
	GTACTGATCA	GTTGGGTCGA	GATTTATGGA	CAAGAACATG	GAAAGGTGCT	CAAATTTCAT	1980
	TGTTTATCGG	TGTTGTTGCA	GCGATGTTAG	ATATTTTTAT	TGGTGTTGTA	TATGGTGCGA	2040
15	TTTCTGGATT	CTTCGGTGGA	CGTGTCGATA	CGATTATGCA	ACGTATACTT	GAAGTCATAG	2100
	CATCTATTCC	GAATTTAATT	GTCGTAATTT	TATTTGTATT	AATTTTTGAA	CCATCCATTT	2160
	GGACAATTAT	ATTGGCTATG	TCTATCACAG	GCTGGTTAGG	CATGAGCAGA	GTTGTACGTG	2220
20	GAGAATTTTT	AAAATTAAAA	AATCAAGAGT	TTGTCATGGC	TTCGAAAACA	TTGGGGGCTT	2280
	CAAAATTCAA	ATTGATATTT	AAGCATATTT	TACCTAATAC	ATTAGGTGCT	ATCGTGGTTA	2340
25	CATCAATGTT	TACAGTACCT	AGTGCTATTT	TCTTCGAAGC	ATTTTTAAGT	TTCATTGGTA	2400
	TAGGTGTACC	CGCACCTCAA	ACATCGTTAG	GGTCATTAGT	AAATGATGGG	CGCGCAATGT	2460
	TATTAATTTA	TCCACATGAA	TTATTTATAC	CAGCAATGAT	TTTAAGTTTA	TTAATTCTAT	2520
30	TCTTTTACTT	ATTTAGTGAT	GGATTACGTG	ATGCATTTGA	TCCGAAAATG	CGTAAATAAA	2580
	AAGGGGGCAT	AGCATATGAC	TGAAAGAATA	TTAGAAGTAA	ATGATTTGCA	TGTTTCCTTT	2640
	GATATTACAG	CAGGGGAAGT	GCAGGCAGTG	AGAGGCGTAG	ATTTTTATTT	GAACAAAGGG	2700
35	GAAACATTGG	CAATTGTTGG	TGAATCAGGT	TCAGGTAAAT	CTGTAACAAC	AAAAGCAATT	2760
	ACAAAATTAT	TCCAAGGGGA	CACAGGAAGA	ATTAAAAAGG	GAGAAATTTT	ATTTTTAGGG	2820
40	GAAGÁTTTAG	CAAAAAAACC	TGAAAATGAG	TTGATTAAAT	TACGTGGCAA	AGATATTTCA	2880
40	ATGATCTTTC	AAGATCCAAT	GACATCTTTA	AACCCAACGA	TGCAAATTGG	TAAACAAGTC	2940
	ATGGAACCAT	TAATTAAGCA	CAAAAATTAT	AGTAAAGCAC	AAGCTAAAAA	GCGCGCATTG	3000
45	GAAATACTAA	ATCTTGTAGG	TTTACCAAAT	GCAGAAAAA	GATTTAAAGC	ATATCCTCAT	3060
	CAATTTTCAG	GTGGACAAAG	GCAAAGAATT	GTTATTGCAA	CCGCATTAGC	TTGTGAACCT	3120
	AAAGTGCTCA	TTGCTGATGA	ACCAACGACT	GCATTAGACG	TAACGATGCA	GGCACAAATT	3180
50	TTAGATTTAA	TGAAAGAACT	ACAACAAAAA	ATCGATACAG	CAATTATTTT	TATAACGCAT	3240
	GATTTAGGGG	TTGTTGCGAA	TATTGCTGAT	AGAGTGGCAG	TTATGTATGG	TGGTCAAATG	3300
	GTTGAAACAG	GAGATGTTAA	CGAAATATTT	TATGATCCAA	AGCATCCATA	TACATGGGGA	3360
55							

	GGAGCGCCAC	CTGATTTATT	ACACCCACCT	AAAGGTGATG	CATTTGCGAG	ACGTAGCAAT	3480
5	ATGCATTAGA	TATTGATTTT	AAAGTAGAAC	CACCGTGGTT	TAAAGTTTCA	CCGACACATT	3540
3	TTGTGAAATC	TTGGTTATTA	GACGCACGTG	CACCAAAAGT	TGAACTACCC	GAGCTGGTAA	3600
	AACAACGTAT	GAAACCGATG	CCTAATAATT	ATGAAAAACC	ACTCAAGGTA	GAAAGGGTGT	3660
10	CGTTCAATGA	AAAATGATGA	AGTGCTATTA	TCTATTAAAA	ATTTAAAGCA	ATATTTTAAC	3720
	GCAGGAAAGA	AAAACGAAGT	GgaGCGATTG	AAAATATTTC	GTTTGATATA	TACAAAGGGG	3780
	AAACATTAGG	TTTAGTAGGA	GAATCGGGGT	GTGGTAAATC	TACAACTGGT	AAATCAATTA	3840
15	TTAAACTTAA	TGATATTACA	AGTGGAGAAA	TTTTGTATGA	GGGTATTGAT	ATACAAAAGA	3900
	TTCGTAAACG	TAAAGATTTG	CTTAAATTTA	ATAAAAAGAT	ACAGATGATT	TTTCAAGACC	3960
	CATATGCGTC	TTTAAATCCT	AGGTTAAAAG	TAATGGATAT	AGTAGCTGAA	GGTATTGATA	4020
20	TCCATCATTT	AGCAACTGAT	AAGCGTGACC	GAAAAAAACG	TGTCTATGaT	TTACTTGaAA	4080
	CTGTTGGATT	AAGTAAAGAA	CATGCCAATC	GCTATCCTCA	TGAATTTTCA	GGTGGaCAAC	4140
25	GCCAACGTAT	TGGaATTGCC	CGTGCATTAG	CCGTTGaACC	AGAATTCATT	ATCGCGGACG	4200
	AACCAATATC	GGCATTGGAT	GTTTCAATCC	AAGCTCAAGT	AGTTAATTTA	TTATTAAAAT	4260
	TACAACGTGA	AAGAGGGATT	ACGTTCCTAT	TTATAGCTCA	TGATCTATCA	ATGGTGAAGT	4320
30	ATATTTCAGA	TCGTATTGCA	GTCATGCATT	TTGGGAAAAT	AGTTGAAATT	GGACCGGCAG	4380
	AAGAAATTTA	TCAAAATCCA	TTACACGATT	ATACTAAGTC	TTTATTATCA	GCCATTCCAC	4440
	AACCTGATCC	TGAATCAGAA	CGCAGTCGCA	AACGATTTAG	TTATATTGAT	GATGAAGCAA	4500
35	ATAATCATTT	AAGACAATTA	CATGAAATTA	GACCGAATCA	CTTTGTCTTT	AGTACTGAAG	4560
	AAGAAGCGGC	ACAACTACGA	GAAAATAAAT	TGGTGACACA	AAATTAAGGG	GAAGGGGGAA	4620
40	ATGCAATGAC	GAGAAAATTT	AGAACACTTA	TTTTAATTTT	GATTGCTACA	ATTGCATTAA	4680
	GTGGTTGTGC	TAATGACGAT	GGTATTTATT	CAGATAAAGG	TCAAGTATTC	AGAAAAATTT	4740
	TGTCATCAGA	CTTAACATCC	CTTGATACAT	CATTAATAAC	GGATGAAATA	TCTTCTGAAG	4800
45	TGAcTGCGCA	AACATTCGAA	GGTTTATACA	CATTAGGAAA	AGGTGACAAA	CCGGTGTTAG	4860
	GTGTTGCGAA	AGCTTTTCCT	GAAAAGAGTA	AAGATGGTAA	AACTTTAAAG	GTTAAATTAA	4920
	GAAGCGATGC	TAAATGGAGC	AATGGTGACA	AAGTGACTGC	ACAAGACTTT	GTTTATGCTT	4980
50	GGAGAAAAC	AGTTGACCCT	AAAACAGGTT	CTGAATTTGC	ATACATTATG	GGGGACATTA	5040
	AAAATGCGAG	TGATATTAGT	ACTGGTAAGA	AACCTGTAGA	GCAATTAGGT	ATCAAAGCAT	5100
	TAAATGATGA	AACATTACAA	ATTGAATTAG	AAAAGCCGGT	TCCATATATT	AATCAATTAT	5160

	ACGGTACGGC	AGCTGATAGA	GCGGTATACA	ATGGTCCaTT	TAAAGTTGAT	GATTGGAAAC	5280
5	AAGAAGATAA	AACCTTACTA	TCTAAAAATC	AGTATTATTG	GGATAAAAAG	AATGTAAAAT	5340
_	TAGATAAAGT	GAATTATAAA	GTTATTAAAG	ACTTACAAGC	CGGTGCATCA	TTGTATGATA	5400
	CTGAATCAGT	AGATGACGCA	TTTATTACTG	CAGATCAAGT	AAATAAATAT	AAAGACAACA	5460
10	AAGGATTAAA	CTTTGTGTTA	ACGACTGGGA	CATTTTTTGT	AAAAATGAAT	GAAAAACAAT	5520
	ATCCTGATTT	TAAAAACAAA	AATTTAAGAT	TGSTATCGCA	CAAGCAATAG	ATAAAAAAGG	5580
	ATACGTTGAT	TCAGTGAAAA	ACAATGGCTC	AATTCCTTCC	GATACACTAA	CAGCCAAAGG	5640
15	AATTGCGAAA	GCGCCTAATG	GCAAAGATTA	TGCGAGTACC	ATGAATTCGC	CTTTAAAATA	5700
	TAATCCTAAA	GAAGCAAGAG	CACACTGGGA	CAAAGCTAAA	AAAGAGTTAG	GTAAAAATGA	5760
20	AGTGACATTT	TCAATGAACA	CAGAAGATAC	ACCAGATGCA	AAAATATCTG	CTGAATATAT	5820
20	CAAATCGCAA	GTTGAGAAAA	ATTTACCAGG	AGTTACTTTG	AAAATTAAGC	AATTACCGTT	5880
	TAAACAAAGA	GTATCACTAG	AACTGAGTAA	CAATTTTGAA	GCATCACTTA	GTGGTTGGTC	5940
25	TGCAGATTAC	CCTGATCCTA	TGGCTTATTT	AGAAACAATG	ACCACAGGTA	GCGCACAAAA	6000
	TAATACAGAC	TGGGGTAATA	AAGAATATGA	TCAATTACTT	AAAGTAGCAA	GAACCAAATT	6060
	GGCACTTCAA	CCGAACGAAC	GATATGAAAA	CTTGAAAAAA	GCAGAAGAAA	TGTTCCTAGG	6120
30	AGATGCACCG	GTAGCACCAA	TTTATCAAAA	AGGTGTTGCA	CATTTAACAA	aTCCTCAAGT	6180
	AAAAGGATTA	ATTLACCATA	AATTTGGTCC	AAATAACTCA	CTTAAACATG	TATATATTGA	6240
	TAAATCGATA	GATAAAGAAA	CAGGTAAGAA	GAAAAAATAA	TATGCTTTGT	AAATTAGGCT	6300
35	GGAGACATAT	CTCCAGTCTT	TTTGTGTTGG	ATAAAAaCTT	TGGGAATAAA	AATTTAAAAT	6360
	AAGTCGTTTT	TTAAATTACT	GAAATTGATT	AAATGCATAA	ATAACTGAAT	АТТСТААААА	6420
10	TAAACTTGTA	ATAATTTTTT	CTATGAGTAA	ACTAAAAAGA	AAAAATTAGA	TTGAAAGTAG	6480
	GAGGCATATG	TATGGGGAAG	СТААТТАААТ	ATATTTCAAT	ACTTCTTATT	GTCGTTTTAG	6540
	TGTTGAGTGC	TTGCGGAAAA	AGCAGTAATA	AAGATGAAGG	AGTAAAAGAT	GCTACTAAAA	6600
<b>1</b> 5	CGGAAACCTC	AAAACATAAA	GGTGGTACCT	TAAATGTAGC	ATTAACAGCA	CCGCCAAGTG	6660
	GTGTTTATTC	TTCGTTATTA	AATAGTACAC	ATGCAGATTC	TGTAGTTGAG	GGATATTTTA	6720
	ACGAAAGCTT						6730

(2) INFORMATION FOR SEQ ID NO: 52:

50

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 6482 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

5	AATTTTTGTC	ATTATTAAAA	ACCTCGCTTT	TAAAAGATTG	AAAAGTAAAT	GAGTGAAATT	60
	AAAGATTATG	CACATTAAAA	TCACGCCACA	ATTTAATTGT	GAAAAATATC	ACAAATATAT	120
	TATAACACTA	AATTTCCCAA	AATTCAAAAG	TGTGTTTTAT	TGCAGAAAAC	TTATAACAyG	180
10	TGCACAAGTT	ATAGTGAATT	GCAAACGGAT	TACTTTAGTC	TTTTTAAAAC	ATGAAGTATA	240
	ATTTGTATAG	CAATAAATAT	AAAAATGGGA	GGCTATGTTC	AATGAGCAAT	ATGAATCAAA	300
	CAATTATGGA	TGCATTTCAT	TTCAGACATG	CGACTAAGCA	ATTCGATCCA	CAAAAGAAAG	360
15	TTTCGAAAGA	AGATTTTGAA	ACAATATTAG	AGTCAGGTAG	ATTGTCTCCA	AGTTCTCTTG	420
	GGTTAGAACC	TTGGAAGTTT	GTCGTGATTC	AAGATCAAGC	GTTACGTGAT	GAATTAAAAG	480
	CGCACAGTTG	GGGCGCAGCA	AAACAATTAG	ATACAGCGAG	CCATTTTGTG	CTAATTTTTG	540
20	CGCGTAAAAA	TGTAACGTCA	AGATCACCGT	ATGTACAACA	TATGTTAAGA	GATATTAAAA	600
	AATATGAGGC	ACAAACGATT	CCAGCTGTTG	AACAAAAATT	CGATGCATTC	CAAGCAGATT	660
25	TCCATATTTC	TGATAATGAT	CAAGCCTTGT	ATGACTGGTC	AAGTAAACAA	ACGTATATTG	720
	CATTAGGCAA	TATGATGACG	ACAGCCGCAT	TGTTAGGTAT	TGATTCATGT	CCGATGGAAG	780
	GTTTTAGTCT	GGATACAGTG	ACAGACATTT	TAGCAAATAA	AGGGATCTTA	GATACTGAGC	840
30	AATTTGGTTT	ATCAGTGATG	GTCGCATTTG	GCTACAGACA	ACAAGAGCCA	CCGAAAAATA	900
	AAACACGCCA	AGCTTATGAA	GATGTTATTG	AATGGGTTGG	ACCAAAAGAA	TAAATAGAAT	960
	ACCGTATGTC	TAAATATATA	AAATTAAAA	GTTAGCAATA	AAAAAGCCTG	CGATTACATA	1020
35	AATGAATCGC	AGGCTTTTGC	GTGAAAAAAT	TGTATTAATA	AAGTATGGAT	GATTATTTTT	1080
	CTGG&ACAAG	GTCAGTATTT	GAATGAACTG	TGATGTCAAA	CCCTTCTGGT	GCCGTAAATG	1140
40	TATGTGTTGA	GGCGTCGGGT	TGATAAATAT	CAACATGTGT	TAATCCATAA	CTTTGTGAAT	1200
40	TGTTTTGTCT	TGCTTGATTG	GATTGCCAAG	TATTAGCAGC	AATATGATGG	TGATAATGAT	1260
	TCGTTGACAT	AAATAGCGCA	CGTGGAAAAT	CAGACACATG	TTGGAATCCT	AATTGTTCAA	1320
45	TGTAACATTG	ATATGCTGCG	TCTAAATCAT	GTGTTTTTAA	ATGTAAGTGT	CCAATCATGC	1380
	CTTTTGCTGG	CATTCCTTGC	CAACCTTCAT	CAGTACGATG	TGTTAATAAG	GTTTGGCTAT	1440
	CAACTTCTAA	AGTATCCATT	TTAACTTTGC	CATTTTGCCA	TTCCCATGAA	GATGAAGGTC	1500
50	TATCGCGATA	GACTTCAATA	CCATTACCTT	CGGGGTCGTT	GAAATATAAA	GCTTCACTTA	1560
	CTAAATGATC	ACCAGCGCCG	ATGCCCATAT	TTTTTTGTGC	CACGAAATAT	AAGAAGTTAG	1620

	aAGTCTGACG	GCCGTCTTCT	AATAAATGTA	ACGTTAGAGT	ATGGCCACCA	GTCCCAACAG	1740
	ATAATACGGT	TGTATTATCG	TCAGAACTTT	TAACGGATAG	TCCTAAAATG	TTTTTGTAAA	1800
5	ATGTTGTCAT	TAAGTCTAAG	TCTCTTACGT	TCAGTACAAT	GTTTGTCACT	TGTGTTGCTG	1860
	TTTTATCGTG	AAATGCCATT	ATGCATCGCC	TCTTTTCTA	TTTTTCTATA	AGTTAGTATA	1920
10	AAAAGTATAC	CAGAAAAGAA	AATGAATTGA	TAGCATAAAG	TTTGAAATGC	AAAATAACTA	1980
	GTCGTTTTGC	AATTTTALAT	TGATGCGAAC	AAAAAAGCGA	TGGTACAGTT	GCACCATCGC	2040
	AAAATTTATT	TAACCAAGAT	ATACATCTTG	ATATGAATCT	TCTTTTTCTA	ACATATGTTT	2100
15	GGCAAATGAA	CATGAGGCAA	TAATTTTCAA	ATTATTTTCT	CGAGCGTGTT	CAACAACTGC	2160
	TTTAAGTAGT	TTTTTGCCAA	CACCTTGACC	ACCAAGTTCA	TCAGATACGC	CTGTATGATC	2220
	AATGTTAATT	TCATTATTAT	CCACAAAACG	GTATGTGATT	TCAGCTAAAG	CATTATTTTC	2230
20	ATCATCACCA	ATATAGAATT	TGTTCTCGCC	TTGTTTGATT	TCAAGGTTAC	TCATACATAT	2340
	CAACTCCTAT	CATGATTGAT	TATAGTATTT	CCCTATTCTA	TTTTAACTTA	AACGAAGTCA	2400
	AAGGTGCATG	ACAGTCATGT	GACGACATTG	CCACATCTAT	GTAGTCGTTT	TTATTAAGCA	2460
2 <b>5</b>	CAGTTTGAAA	TGAAGATGAA	AACACGTATC	TTGACATTAA	ATCTATTCAG	CTATATAATT	2520
	TATCTCGAAA	TCGAAATAAA	ATAAAAAAGT	TGGTGATCAT	ATGGATCGAA	CGAAACAATC	2580
30	TCTCAATGTT	TTTGTCGGAA	TGAATAGGGC	GTTAGACACA	TTAGAGCAAA	TTACAAAAGA	2640
	AGACGTAAAG	CGATATGGCT	TAAATATTAC	TGAATTTGCA	GTGCTCGAGT	TGCTTTATAA	2700
	TAAAGGTCCG	CAACCAATTC	AACGTATTAG	AGACCGCGTA	TTAATTGCAA	GTAGCAGCAT	2760
35	TTCATATGTT	GTAAGTCAAT	TAGAGGACAA	AGGTTGGATT	ACACGTGAAA	AGGATAAAGA	2820
	TGATAAACGT	GTATATATGG	CTTGTTTAAC	TGAAAAAGGT	CAAAGTCAAA	TGGCAGATAT	2880
	TTTÇCCTAAG	CATGCTGAGA	CATTAACAAA	AGCGTTTGAT	GTGTTAACAA	AGGATGAATT	2940
10	AACAATCTTA	CAACAAGCGT	TTAAGAAACT	AAGTGCACAA	TCTACAGAAG	TGTAAGGCGT	3000
	GCACTAAAAA	TTTACATTAA	AGTATCTCGA	TTTCGAGATA	AATGCACTAA	AAATATAAAG	3060
_	AGGGTATATA	AAATGATAAA	TAATCATGAA	TTACTAGGTA	TTCACCATGT	TACTGCAATG	3120
15	ACAGATGATG	CAGAACGTAA	TTATAAATTT	TTTACAGAAG	TACTAGGCAT	GCGTTTAGTT	3180
	AAAAAGACAG	TCAATCAAGA	TGATATTTAT	ACGTATCATA	CTTTTTTTGC	AGATGATGTA	3240
50	GGTTCGGCAG	GTACAGACAT	GACGTTCTTT	GATTTTCCAA	ATATTACAAA	AGGGCAGGCA	3300
	GGAACAAATT	CCATTACAAG	ACCGTCTTTT	AGAGTGCCTA	ACGATGACGC	ATTAACATAT	3360
	TATGAACAGC	GCTTTGATGA	GTTTGGTGTT	AAACACGAAG	GTATTCAAGA	ATTATTTCCT	3420

	TTAAATGAAG	GGGTAGCACC	TGGTGTACCT	TGGAAGAATG	GACCGGTTCC	AGTAGATAAA	3540
	GCGATTTATG	GATTAGGCCC	CATTGAAATT	AAAGTAAGTT	ATTTTGACGA	CTTTAAAAAT	3600
5	ATTTTAGAGA	CTGTTTACGG	TATGACAACT	ATTGCGCATG	AAGATAATGT	CGCATTACTT	3660
	GAAGTTGGCG	AAGGAGGCAA	TGGTGGCCAG	GTAATCTTAA	TAAAAGATGA	TAAAGGGCCa	3720
10	GCaGCACGTC	AAGGTTATGG	tGAGGTACAT	CATGTGTCAT	TTCGTGTGAA	AGATCATGAT	3780
10	GCAATAGAAG	CGTGGGCAAC	GAAATATAAA	GAGGTAGGTA	TTAATAACTC	AGGCATCGTT	3840
	AATCGTTTCT	ATTTTGAAGC	ATTATATGCA	CGTGTGGGGC	ATATTTTAAT	AGAAATTTCA	3900
15	ACAGATGGAC	CAGGATTTAT	GGAAGATGAA	CCTTATGAAA	CATTAGGCGA	AGGGTTATCC	3960
	TTACCACCAT	TTTTAGAAAA	TAAAAGAGAA	TATATTGAAT	CGGAAGTTAG	ACCTITTAAT	4020
	ACGAAGCGTC	AACATGGTTA	ATTGGAATGA	GGAGGATTTG	TGATGGAACA	TATTTTTAGA	4080
20	GAAGGACAAA	ATGGTGCGCC	AACACTAATA	TTATTGCATG	GTACAGGTGG	TGATGAGTTC	4140
	GATTTATTAC	CGTTAGGCGA	AgcATTGAAT	GAAAATTATC	ACTTGTTAAG	TATTAGAGGA	4200
	CAAGTTTCAG	AAAATGGGAT	GAACCGTTAT	TTCAAACGTC	TTGGTGAAGG	TGTTTATGAT	4260
25	GAAGAAGATT	TGGCATTTCG	TGGACAAGAA	TTGTTGACGT	TCATTAAAGA	AGCTGCTGaA	4320
	CGTTATGATT	TTGaTATTGA	AAAAGCAGTA	CTTGTTGGAT	TTTCAAATGG	ATCAAATATA	4380
30	GCGATTAACT	TAATGTTGCG	TTCAGAAGCA	CCATTTAAAA	AAGCATTGTT	ATATGCACCG	4440
00	TTATACCCAG	TTGAAGTAAC	GTCAACAAAG	GATTTATCAG	ATGTCAGTGT	GTTGCTTTCT	4500
	ATGGGGAAAC	ATGATCCAAT	TGTGCCATTA	GCTGCAAGTG	AACAAGTCAT	TAACTTGTTT	4560
35	AATACACGTG	GGGCACAAGT	CGAAGAAGTT	TGGGTGAAGG	GCCATGAAAT	TACAGAAACT	4620
	GGATTAACGG	CTGGTCAACA	AATACTTGGG	AAATAACAGT	TCTATTAAGA	AGCGGACAGA	4680
	TGGAÃAAGAT	TTTTACTTTT	CATCTGCCCG	CTTTTTTGAT	TTTGAAGTGC	TGTACTAAAT	4740
40	TTTACAATAG	TATAGATATT	TTAATCGATA	TGAGATTTGC	CGGTAATACG	CTTAATTAAA	4800
	CCTTTATAGA	GTACAGGTAT	GAGTAAGATG	AAACCGAACA	ATCCCATAAT	AGGGAATACT	4860
	TTTCCAATTA	ATGAAATGAa	ACCGATAAAT	GTACTAATAT	AAGTGATGAC	AGCCATTGTA	4920
45	ATAATAATGA	TGAAGTAACG	TCTGCTGAAT	GGAACGCTGA	AACGTGACGC	AAATGCATAC	4980
	ATTAATCCAA	CAACAGTATT	GTAGATGACA	AGTATCATAA	TGACAGACAT	AATAATACCA	5040
50	ATTGACGGAG	ACATTTGTGT	CGCTAATTTT	AATGTAGGTA	GATCTACGTG	TTTAATTTTA	5100
	TCGAATTGAG	AAATTAAACC	TAGATTAATC	ATCATGAGTA	AAAATGTAAT	GATTAAACCG	5160
	CCAATCAAGC	CCCCGTATAA	CGTTGAGTCA	CGATATTTAA	CTTTACTACC	CATCACTGAT	5220

	CCAGGTGATA	ATGATTTCTG	CTTATGAATC	TGAGCATCAT	TATTAGCGGC	AGTAAAATCA	5340
	AGATGACTTG	TTGTGAAATA	GTAGACCGCA	ATCATAATGA	CAATCGCAAT	TAAAAATGGG	5400
5	GTAACACCGC	CAAGCACAGC	AATTAAACGA	TCGAATTTTA	GAAACAGTGT	TGCTAAAATA	5460
	AAGGCGACTA	ATATGAGTGC	GCTCAGCCAA	TACGGTAAGT	TGAAACTTTG	ATGAATGGTT	5520
0	GACGCACCAC	CTGCAGTCAT	AATAATAGCT	AAAGACAACA	TAAACATTGT	TAAAATAATA	5580
	TCAAAACCTC	TTGCAATAGA	GGGGTATAAG	AAATAGTTAA	TTGAATCAGA	ATGATTTCTG	5640
	GACTTTAGAT	GATGACCTGT	ATGCATGACA	ACCATTCCAC	CTAAAGTAAT	CAATAGTCCT	5700
5	GTTACAATAA	TGCCTGAAAT	GCTATATGCG	CCATGACTTG	TGAAAAACTG	GAAAATTTCT	5760
	TGACCAGTAG	CAAAGCCGGC	ACCAACGACA	ACACCAACAA	AGGCAAATGC	CACAATAATG	5820
	GACTCTTTTA	AGATACGCAT	GATTTAAAAA	TGTCCCTTCG	TAATTTTAAG	TAATATAGAA	5880
20	AATGTAACAT	ACATGTTAAT	GAAAAATATA	GTACTAATAT	AGTATTTTGT	TAAATTGGAG	5940
	TAGAAGCGAG	GGTGTCGGTC	ATTTCATTAA	TTTATTAGTT	GATTTTGCAT	TTTTTTGCTG	6000
	TAAAGTTGTT	ATAATACAGT	TAACAGGAAT	TAGCATAGAT	ACACCAATCC	CCTCACTACT	6060
25	CGCAATAGTG	AGGGGATTTT	TTTCGGTGTA	GCTAGGTCGC	CTATTTATCA	TCGTGTTTGC	6120
	GTAgCaATGC	GTAAACACAG	TACCACTAAA	TAAGTGCACG	ATACATGCAT	CAAATGTCGT	6180
30	CTTTAGTCTA	AGTAACGATC	ATGCATTAAC	ATTTTCAAAA	TATCTATTTG	AGCTTGAAGA	6240
	TCTTTACCAA	TATTGGTATC	ACGAATCTTC	TTACGTTGTA	ATTCTTTATC	TACGACGCGC	6300
	TTTATAGAAA	GTTCATCGAT	ACCTTCGGAA	AGTATTTTTn	CTTTAGCGTT	AAATTGTTGG	6360
15	TGTGCAACGA	GTTGCATACC	GAATGAATTA	TACAATAGTG	TATAGCCTGC	AATGCCAGTn	6420
	GTTGACTGAT	AAGCTTTTGA	AAAGCCACCA	TCAATGACAA	GCATCTTTCC	ATCAGCCTTG	6480
	AT =						6482
10	(2) INFORM	ATION FOR SI	EQ ID NO: 5	3 :			
			RACTERISTICS				
15		(B) TYPE: nu		•			
9		(D) TOPOLOGY					

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

ATTTAAGGCG ATTGCTTGTG TATTTCTCTC TTTTGTAGGC AAACCTGCAC TCGTTCCAAA 60

AAATGTAACT TCCATATATG CCCCTCCTTT TCTTCAATTC ATTTTATCAT AAAATTTGTA 120

	AATTTTTCTA	ACTTTAACGT	AGACATAACT	ATATAAATTT	TGATAATTAC	GTTATACTTA	240
	TCATTAATAA	GTATCACATT	AAACATGATA	CATGAATCGA	TATTTCATTT	AAGACACTGC	300
5	ATACAGTCGA	GCATATTGTA	TGACCTACTG	AATGGATTAT	CTTATAATAA	TAAATCATAT	360
	ATCTAATTAA	GAATTGAGGT	TTTAATCTTG	AGTACTAAAA	ACAAACACAT	CCCATGTTTA	420
10	ATCACAATCT	TTGGTGCACT	GCGTGACTTA	AGCCATCGTA	AGTnGTTTCC	ATCAATATTC	480
	CATCTCTACC	AACAAGACAA	TTTAGATGAA	CATATTGCCA	TcATCgGTAT	TGGACGTCGT	540
	GACATkwnTA	ATGATGATTT	CCGTAATCAA	GTAAAATCAT	CAATTCAAAA	GCACGTAAAA	600
5	GATACAAACA	AAATTGACGC	GTTTATGGAA	CATGTCTTCT	ATCATAGACA	TGATGTTAGT	660
	AATGAAGAAA	GCTATCAAGA	ATTACTAGAT	TTTAGTAATG	AATTAGATAG	CCAATTTGAA	720
	TTAAAAGGTA	ATCGACTATT	CTATTTAGCA	ATGGCACCAC	AATTCTTTGG	CGTTATTTCT	780
20	GATTATCTAA	AATCTTCTGG	TCTTACTGAT	ACAAAAGGAT	TTAAACGCCT	TGTTATCGAA	840
	AAACCATTCG	GTAGTGATTT	AAAATCAGCC	GAAGCATTAA	ACAATCAAAT	TCGTAAATCA	900
	TTTAAAGAAG	AAGAAATTTA	TCGTATTGAC	CACTATTTAG	GAAAAGACAT	GGTTCAAAAT	960
25	ATCGAGGTAT	TACGTTTTGC	GAATGCGATG	TTTGAACCAT	TATGGAATAA	CAAATATATT	1020
	TCAAACATCC	AAGTTACATC	TTCTGAAATA	CTAGGTGTTG	AAGATCGTGG	TGGTTATTAT	1080
30	GAATCAAGTG	GCGCGCTAAA	AGATATGGTG	CAAAACCACA	TGTTACAAAT	GGTTGCATTA	1140
	TTAGCTATGG	AAGCACCTAT	TAGTTTAAAT	AGTGAAGATA	TCCGTGCTGA	GAAAGTAAAA	1200
	GTACTTAAAT	CACTGCGTCA	TTTCCAATCT	GAAGATGTTA	AAAAGAACTT	TGTTCGTGGT	1260
35	CAATATGGCG	AAGGCTATAT	CGATGGTAAA	CAAGTTAAAG	CATACCGTGA	TGAAGATCGC	1320
	GTTGCAGATG	ACTCTAACAC	ACCTACCTTT	GTTTCAGGTA	AATTAACAAT	TGATAACTTT	1380
	AGATGGGCTG	GTGTACCATT	CTATATTCGT	ACTGGTAAAC	GTATGAAATC	TAAAACAATT	1440
0	CAAGTTGTCG	TTGAATTTAA	AGAAGTACCA	ATGAACTTAT	ACTATGGAAA	CTGaTAAACT	1500
	GTTAGATTCA	AACCTATTAG	TAATCAATAT	CCAACCTAAT	GAAGGTGgTA	TCTTTLACAT	1560
	Ctaaatgcta	AGaAAAATAC	ACAAGGTATC	gAAACAGrAC	CTGt CCmATT	GtCTTACTCm	1620
15	ATGAGCGcTC	aAGaTAAAAT	Gaatactgta	GATGCATATG	AAAATCTATT	ATTTGATTGT	1680
	CTTAAAGGTG	ATGCCACTAA	CTTCACGCAC	TGGGAAGAAT	TAAaATCAAC	ATGGAAATTT	1740
10	GTTGATGCAA	TTCAAGATGA	ATGGAATATG	GTTGaTCCAG	AATTCCCTAA	CTATGAATCA	1800
	GGTACTAATG	GTCCATTAGA	AAGTGATTTA	CTACTTGCTC	GTGATGGTAA	CCATTGGTGG	1860
	GGACGATATT	CAATAATTGA	ATTAAAACGC	ACATGTTAAA	CAAAAATAAA	TGAGCGAATG	1920

	TATATTATGA	AATTATATTT	TACAATGCCC	AAAACTATTT	TAATAATCAT	TGAACAAATG	2040
	GGTGTATAAT	TTATAGAAAT	AATGTAGAAT	AAAAATAAAT	GATTGAATTA	ATTGGAGTGA	2100
5	AAGTTTTGGA	CGTTATCAAG	CAAATACAAC	AGGCAATTGT	TTATATTGAA	GATCGTTTAT	2160
	TAGAGCCTTT	CAATTTGCAA	GAATTAAGTG	ATTACGTTGG	TCTTTCGCCA	TACCATCTTG	2220
10	ATCAATCATT	TAAAATGATT	GTCGGCTTAT	CTCCAGAAGC	TTATGCACGC	GCGCGTAAAA	2280
70	TGACACTCGC	TGCAAATGAT	GTGATTAATG	GTGCTACACG	ACTTGTAGAT	ATCGCTAAAA	2340
	AATATCACTA	TGCAAATTCA	AATGATTTTG	CAAATGATTT	TAGTGATTTT	CACGGCGTAT	2400
15	CACCTATTCA	AGCCTCTACT	AAAAAAGATG	AATTACAAAT	TCAAGAGCGA	TTATATATCA	2460
	AATTATCAAC	TACTGAGAGA	GCACCTTATC	CATACAGATT	AGAAGAGACA	GATGATATTT	2520
	CATTGGTTGG	ATATGCACGA	TTTATAGACA	CTAAGTATTT	GTCACATCCT	TTTAATGTTC	2580
20	CGGATTTTTT	AGAAGACTTG	CTCATTGATG	GTAAAATTAA	AGAGTTACGA	CGATATAATG	2640
	ACGTTAGTCC	ATTTGAACTA	TTTGTTATTA	GTTGTCCTCT	TGAAAATGGT	TTAGAAATAT	2700
	TTGTAGGTGT	ACCAAGTGAA	CGTTATCCTG	CACACTTAGA	AAGTCGATTT	TTACCTGGCA	2760
25	AACATTGTGC	GAAATTCAAT	TTACAAGGTG	AAATTGATTA	TGCAACTAAT	GAAGCTTGGT	2820
	ACTATATTGA	ATCAAGTTTG	CAGTTAACAT	TGCCATATGA	ACGAAATGAT	TTATATGTTG	2880
30	AAGTGTACCC	TCTCGATATT	TCATTTAATG	ACCCATTCAC	TAAAATTCAG	CTTTGGATTC	2940
	CTGTTAAACA	GAGTCCTTAT	GACGAAGATT	AAATAATAAA	AAACAAAGAA	GCCCCCTAAT	3000
	ATATCTATAG	GTCTACAAAT	GGCCTTAGAT	TCTATTAGGG	GGCATATTAA	TATGTTAATT	3060
35	TAGTTCGATA	ACACATGCTT	CATATGGACG	TAACTGTTTT	AAATTAACTT	TGGCATCATA	3120
	ATTAAATAGC	TTTACTTCTC	CATGGCTTAA	ATCAAATGGT	ACAGTTAATT	CTGCTTCGTG	3180
	GTTAGTAAGA	TTACCTACAA	TAAGAACTTG	CTTTTCATTT	AATGTTCTCG	TGTACGCAAA	3240
40	AACTTGTGAA	TTTTCAGCAT	CTACTAAATC	AAATTGACCA	TATACGTATA	CATCATTAGA	3300
	CTTTCTTAAT	TGAATTAAAT	CTTTATAAAA	TTGTAATACT	GAATGCTCAT	CTTCTAATTG	3360
	TTGTGCAACA	TTGATAGTTT	TATAATTCGG	ATTCACTGGG	AACCACGGTT	CACCATTIGT	3420
45	AAATCCTCCA	TTTAACGTAT	CATCCCATTG	CATTGGTGTG	CGAGAATTAT	CTCGGTTCTC	3480
	ATCTTTATAT	TTCGCAAGTA	AAGCGTCTAC	ATCTCCACCT	TGAGCTTTCA	CTATTTGATA	3540
50	GTCATTTTTA	ACAGCAACAT	CGTTAAACGT	TTCAATACTT	TCAAATGGAT	AATTCGTCAT	3600
•	ACCAATTTCT	TGACCTTGAT	AAATGAATGG	CGTACCTTGT	TGCAAGAAAT	AAACAGCTGC	3660
	ATGACTTGTT	GCTGATTCAT	ACCAATACTT	GTCATCGTCA	CCCCACGTCG	ATACACGTCG	3720

	CCATCTATTT	AATACAGATT	TATACGAATT	TACATCAAAG	TGAGAATCAC	CACTATTCCA	3840
	CAGTCCCAAA	TGTTCAAATT	GGAATATCAT	ATTAAATTTA	CCATTTTCTT	CCCCGACCCA	3900
5	GTCATCAGCA	TCATCAGGGC	TTACACCATT	CGCTTCACCA	ACAGTCATAA	TGTCATACTT	3960
	ACTTAATGAG	CGATCTTTCA	TCTCTTGTAA	CCAAGTTTGT	ATACCTGGCT	GATTCATATC	4020
	TACATCAAAT	GCTGGGGCAT	ATGTTTTACC	CTCAGGTACA	GGTAAGTCAC	CCGCTTCAAA	4030
10	CGTCTTCTTA	ATATGCGTAA	TTGCATCTAC	TCTAAATCCA	TCAATGCCTT	TATCAAACCA	4140
	CCAGTTCATC	ATTTCAAATA	CAGCATCTCT	AACTTCCGGA	TTACCCCAAT	TCAAATCAGG	4200
15	TTGTTTTTTA	CTGAATAAAT	GGAAATAATA	TTGCTCAGTA	TTAGCATCAT	ATTCCCATGT	4260
	AGATCCATTA	AATATACTTT	CCCAGTTGTT	AGGTTCAGAG	CCATCTGGCT	TTGGATCTTG	4320
	CCAAATGTAC	CAATCACGTT	TGGGATTGTC	TTTACTAGAT	TTGGATTCTA	TAAACCAAGG	4380
20	ATGTTCATCA	GATGTATGAT	TTACAACTAA	ATCTAAAATA	AGCTTCATGC	CTCTATCATG	4440
	AACACCTTTT	AATAAACGAT	CAAAGTCTTC	CATCGTTCCA	AATTCATCCA	TAATCTCTTG	4500
	GTAGTCACTA	ATATCATAAC	CATTGTCATC	ATTAGGTGAT	TTAAACATTG	GACTGAGCCA	4560
25	AATGACATCG	ATACCGAAAT	CTTTTAAGTA	GTCCAATTTA	TCAATCATTC	CAGGTAAATC	4620
	CCCAATACCA	TCGTGATTAC	TATCATTAAA	ACTTCTTGGA	TATACTTGAT	ATGCTACTGC	4680
	TTCTTTCCAC	CATTGCTTAT	TCATTTTAAA	ACTCCTTTGC	TATCGCTGTG	TTGATTTTCT	4740
30	TATTTTTAAT	TCTGTATCTA	TAATGACGAG	TTCAATAACA	TCCTGTGCTT	TGTTTTTCAA	4800
	TATATTTAAA	ATTGCTGCAC	CAGCCTGTTG	ACCTAACATT	CGAGGCTTGA	TGTCAATACA	4860
35	GGTTTGTGGT	GGTGACGCAA	TTTCGGTTAA	ATAAGAATCA	TTGAACGTTG	CTGTCATTAC	4920
	ATCTTTCGGA	ATTTCAATAT	TAAGTTCATA	TAGGACACTT	AAAATCGCTA	AATGTAACAT	4980
	AGCĄTCTAAC	GAAATGATTG	CCTGTTTAAT	ATTTGGGTCC	TTCAAACGCG	TATGTAGATT	5040
40	TTGCATGTAA	TTAAAAATAA	CTTCTCTTTC	ATTACTAGTC	TCAATAATTT	GATAATTAAT	5100
	TTTATTTTGA	GAAGCTATCG	TTTCAAATCC	TTGAATTCTA	TCTTTTGAAA	CTTCAAAATT	5160
	$\tau$ CCTTTTTCT	GTAATAAATA	TTAATTCATC	TACACCTTGT	TCAATAACAT	GTCGTGTCAA	5220
45	ATTTTCAGAA	GCTAATATAT	TATCATTATC	TATATGTGTA	AATTGATGAT	CTATATCCGA	5280
	TGTAGGCTTA	CCAATCACAA	TAAATGGCAT	GCTTTCATCA	ATTAACATTT	GTTTAATCGG	5340
	ATCATTTTCT	TTTGAATAGA	GCAGTATAAA	CGCATCAACC	ATTCGTTGTT	TAATCATTTT	5400
50	ATAAACTTCA	TCCATTAAAT	CATTCATATT	ATTTGAGACT	GTCGTTTGTG	TACCATAGCC	5460
	ATGCTGGTTA	CACGTTTCAG	AAATTCCTAG	CAATACATTG	ATGTAGAATG	GATTCAGTCG	5520

	AGTTCTAGCA	GCGGTATTAG	GAAAATAATT	CAATTCTTCC	ATAACTTTCT	TCACTTTTGA	5640
	AATTGTCGCT	TCGCTAATAC	GTTGATTTCC	TTTTATAACT	CTTGAAACTG	TCGAAGGAGA	5700
5	AACACCGGCT	TTTAGTGCAA	CATCTTTAAT	CGTAACCATT	TAATCACCTC	CTGTTAATTT	5760
	CTGCATCGGA	AAACGCTTCC	AACCACTGTA	TAATACCAGT	TTAGTCACAC	TTTCTAAAAA	5820
10	AGTCAAAAGA	TTTGTGCAAA	CGATTGCATA	AAACGATAAA	AATAAAACCT	TCATACTGAA	5880
,,	ATTCAATCCG	AAAATCAATA	TAAAGGTTTG	TATAAATATT	AAAATCGATT	GTTTAGTCAC	5940
	TAACTGCAAA	ATAGTTACCT	TGGCCATCTT	GAAAATTAAA	TACACGTTGA	CCATTCATTT	6000
15	CTACTATATC	ATGCCCAGTT	AAACCTAAAT	CATTTAATTT	TGAGTATAAT	GCATCAAAGT	6060
	TTTTCTCTTT	AAACATTAAA	GATGGTGTTC	CTAGGTTCAC	TTCCGGGCTA	TGCTTTTCAA	6120
	TAAATTCTTT	TGCCATAATC	GTCAATGACG	TTTCAGCATC	TTTGGTAGGT	GATACTTCAA	6180
20	CTGCAACATA	GTCCTCAGCT	AACGGTGTTT	CACTTACAAC	AACAAATTCT	AAAGTTTCTG	6240
	TCCAAAATGC	TTTCGCTTTT	TCGACATCAT	CAACATATAA	CATAACTTGA	TTTAACTTTT	6300
	CCATAAAATA	GTACCTCTAT	TTCTCTATAG	TACATGCTAT	CATAACACAG	TAAATATTTT	6360
25	ATTACTTCAC	AAAATGCTTA	AAAATATGGC	GGGATGCTTT	TAAGGTCAAG	GATAATACTT	6420
	GTGTAATTTT	TTATAGGTTG	TAGCTACTCT	ATCACACTCT	CTTTTATATT	TATCAAAAGA	6480
30	TATAAAAAAG	GATAGTATCT	TTCAACTATC	CTTTAATCAA	TATTATTCTT	CAATCCATTG	6540
30	TGTATGGAAT	ACGCCTTCTT	TATCTTTTCT	TTCGTACGTA	TGAGCACCGA	AGTAGTCACG	6600
	TTGTGCTTGA	ATTAAGTTTG	CAGGTAAATC	AGCAGCACGG	TAACTATCAT	AGTAATTAAT	6660
35	ACTTGATGAG	AAACCAGGTG	TTGGTACACC	ATTTTGAACA	CCAGTTGCGA	CAACATCACG	6720
	TAACGCATCT	TGATATTCAG	TAACGATGTT	TTTAAAGTAA	GGATCTAGCA	ATAAGTTTTG	6780
	TAATCCTGGA	TTATTATCGT	AAGCATCTTT	GATCTTTTGT	AAGAATTGTG	CACGGATAAT	6840
40	GCAACCTTCT	CTCCAAATCA	TAGCTAAATC	ACCAAGTTTT	AAATTCCATT	CATTATCTTC	6900
	ACTTGCTTTA	CGCATTTGcG	CGAAACCTTG	TGCATAAGAA	CAAATTTTAC	TCATATATAA	6960
	TGCTTTACGA	ATTTTTTCTA	AAAAGTCTTT	CTTGTCACCA	TCAAATGATG	CTTTTGGACC	7020
45	ATTTAATTCT	TTAGAAGCAT	TTACGCGCTC	TTCTTTGaTT	GAAGAGATAA	AACGTGCAAA	7080
	TACAGATTCA	GTAATGATTG	TTAATGGAAT	ACCTAATTCT	AATGCGTTAA	TTGAAGTCCA	7140
E0	TTTTCCTGTA	CCTTTTTGaC	CTGCAGTATC	AAGAATTTTT	TCAACTAATG	CTTCTTTATT	7200
50	TTCATCTAAT	TTCATGAAAA	TATCACCAGT	GATTTCAATT	AAATAACTTT	CTAATTCACC	7260
	ACCATTCCAC	тстттсаасс	TTTCACCAAT	CTCTTCATCA	GACATGCCTA	ATAATTCTTT	7320

	CATTTTCACA	TAGTGTCCAG	CACCATTAGG	TCCAATATAA	GTAACACATG	AAGCACCGTC	7440
	TTTTGCCTTT	GCAGCAATTG	CATCAAGAAT	ATCTGCAACT	TTGTTATAAG	CTTCTTCTTG	7500
5	TCCACCCGGC	ATTAATGACG	GACCAGTTAA	CGCTCCAATT	TCACCACCAG	AAACGCCCAT	7560
5 TCC ACC 10 AAT 15 TTC TGA 20 CAT 25 AAC CAA 30 TGA 30 TGA ACA 31 TAA 42 AAC 45 TAC CAA 46 CTT 45 TAC CAA	ACCAATAAAG	TTGATTGCAC	TTTGTGywaa	TGCTTTATTA	CGTCTGATAG	TATCTTGATA	7620
	GTTTGTATTA	CCACCATCAA	TTAAAATATC	TCCATCATCT	AATAAAGGTA	ACAAACTATC	7680
10	AATCGTTGCG	TCCGTAGCTT	TACCTGCTTG	AACCATTAAT	AAAATTTTAC	GTGGTTTTTC	7740
	TAAAGAATTA	ACAAATTCTT	CCAATGAATA	CGTTGGATGA	ATATTTTTCC	CTTTTGATTC	7800
15	TTCAACCATT	AAATCAGTTT	TTTCACTTGA	GCGGTTAAAT	ACAGATACAC	TATATCCGCG	7860
-	TGATTCAATA	TTCCAAGCTA	GGTTTTTACC	CATAACGGCT	AAACCAATAA	CTCCAATTTG	7920
	TTGTGTCATA	TTACTTACCT	CACTTGTTGA	TTTTTCATTA	GTATTGTATC	ACAAAATAGA	7980
20	CATACACTAC	ACTAAATCAT	TTCGAATGTC	GCGCAACTAT	TTTGATTATT	TCTAACACTT	8040
	GACTTGCAAG	CAAGTTCAAT	GATTTAATCG	GCATTCTCTC	ATTTGTTGTA	TGGATTTTTT	8100
	CATAACCCAC	TCCTAAAATG	ACTGAAGGAA	TACCAAATGT	ATTAATAATA	CTGCCGTCTG	8160
25	AACCGCCACC	AGAAATAATT	GTATTTGCAG	ATAATCCTAA	ATTACGAGCA	CTTTCTTGTG	8220
	CAATTTTAAC	AACCGCTTCA	TTATCATTAA	TTTTAAATCC	TGGATAACTT	TGCTCCACTG	8280
	TAACTACTGC	TTTCCCACCT	AATTCTGATG	CAGTAGTTTC	AAACACATCA	GTCATATGTT	8340
30	TGACTTGTGT	TTTTATTCTT	TCTGGATCGT	GAGAACGTGC	CTCTGCTTCT	AAAATGACTT	8400
	CATCTGCAAC	AATATTCGTA	GCTGAACCGC	CATGAAACTT	ACCAATATTG	GCAGTAGTTA	8460
35	TTTCATCAAC	TTGTCCTAAT	TTCATTCGAC	TAATTGcTTT	CGCCGCAATA	TTAATAGCAC	8520
	TAACACCCTC	TTTTGGCGTA	CTTGCATGAG	CCGTTTTGCC	AAAAATTTTA	GCTGAAATTA	8580
	ACATTTGCGT	CGGTGCACCT	ACAACCGTAG	TACCGACATC	AGCACTTGCA	TCAATAGCAT	8640
40	AACCAAAGTC	CGCGTCCAAC	AACTCTGAAT	TTAATTCTTT	AGCACCAATT	AAACCTGATT	8700
	CTTCTCCAAC	AGTAATCACA	AATTGAATTT	GTCCATGTGG	GATTTGTTGT	TCCTTTATCA	8760
	CTTGCAAAAC	TTCAAGCATC	GCTGATAATC	CTGCTTTATC	ATCTGCACCT	AGAATAGTCG	8820
45	TACCATCAGA	GTATATGTAG	CCGTCATCTT	TTACAATTGG	CTTTACATTA	ATTGCGGGTA	8880
	CAACAGTATC	CATATGGCTC	GTCAAATATA	ATTTAGGTAC	TTCGCCTTCT	TCGATAGTAC	8940
	TATTCATTGT	ACACACTAGA	TTATTGGCAC	CTAATTTAGG	ATGTTTAGCC	GCTTCATCTT	9000
50	CTTTAACATC	TAACCCTAAT	GCTATGAATT	TTTCTTTTAA	AATAGGTTGG	ATTGTTGATT	9060
	CATTCCCTGT	CTCAGAATCG	ATTTGTACAA	GTTCAAAAAA	CGTATTAAGT	AATCTTTGCT	9120

	GATGAAATAA	AATGTTACAG	TAATTGACGT	TACACAGATT	TATCAGGTT	GTAAATTGTG	9240
	TCATATTATT	TTCAATTTAT	TATATATAAT	TATTGTAACT	CAAACTAAGC	TTTGTCAAAA	9300
5	ATATATTGAT	TGATTTTTCA	AAGATATCGT	ATAATGAGGA	AAATGACATA	AGCAAACTTA	9360
	CTCATGTTTT	TTATTATATT	CCTTTATGAT	GATTGCTAGT	TATATCGTCT	CAAGTTAAAA	9420
10	GTTTTATATC	TTATGTCGTA	ATTATTAATA	CAAAGGTTAT	TCATTTGGAG	GCACACAAAA	9480
70	TGCAAAATAA	AGTTTTAAGA	ATTATCATTA	TCGTTATGCT	TGTATCAGTT	GTATTAGCAT	9540
	TGTTATTAAC	GAGTATCATT	CCAATTTTAT	AAACTATATC	TCAACTACCT	ATACAAAATC	9600
15	ATACAATTAA	AAATCCATCC	ATTATAAACG	CATGTATTAA	TAAGTTATCG	TATTGCAACG	9660
	ATTACTTTCA	AACATGGGTC	ATACGGATGG	ATTATTTTTT	AAGCTACTTC	ACTATGCATT	9720
	TTCAATGAAC	CAAATTGCGA	TTTGATTTGT	AAATATTCTT	CTAATTCATT	TAATATTTGA	9780
20	ATAATACTTG	CTCTCGAGTT	AAGCGCTTTG	TGTGTTGTTG	GCAATGGCAG	TTCATCCAAT	9840
	TTCAAACGCG	TCTCATACAA	ATTGTGTAAA	CGCATTGCTG	TATAGTCATT	ACTATTCACA	9900
	TTTAGACCAA	TTTCTTTCAG	CAGTGACGCA	ACATCATTTA	AAAGCGGATC	TTTATGACAG	9960
25	ATACTTTCGA	TGAGCGGTTT	CATTCTCATT	AACAATTCCA	CTTGCTCTTC	TCGCATATCA	10020
	AAATAATGAT	AGTATGAATT	TTCGTTTCTA	ACAAAATGAT	TTTTAACATC	TCGGAACGCG	10080
	ATAGACTECG	CCTTTTTAAT	ATTTAAAAGT	AACACTTCAA	ATTCAATCGC	AATGGTATCT	10140
30	TCATATTTTT	CACAAATATA	ACTATATTTA	CTAAAAATAT	CAGCAATTTG	TTGCTCAATT	10200
	TTACATTTGT	ATTCGTCtAG	TTGTTTGTCT	AAACTTGGCA	TCATTAAATT	Cattgtaaat	10260
35	GCAATGCTTA	GTCCAATTAA	CAGTAATAAT	GTTTCATTAA	CAATTAAATG	TGCATCAATT	10320
	GATTTTGCAT	TAAAAACATG	AAGTAATATA	ACGCAACTCG	TAATGACACC	TTCTTGTACT	10380
	TTTAATACGA	CAGTTAATGG	TATAAATAAC	AATACGATAA	TACCGAGTAC	AATTGGACTC	10440
40	TGACCTAATA	AACTAAATAT	TGCTGAACCT	AAAAACAATA	CTAAAAAACA	TGATACTAAT	10500
	CTTGAAATAA	TCGCTTGTAG	CGAATGTACT	TTTGTATGTT	TAATACATAA	TACGACTAAT	10560
	ATGGCGCTTG	AAGCATAATT	ATCTAAACCT	AACAGCTTAC	TAATAATTAC	ACCTAAAGTC	10620
45	ATACCCACTG	CTGTTTTTAT	TGTTCTAAAT	CCAATCTTGT	AAGGATTTAA	CTTTAACATG	10680
	GGTTAGCGCC	TCTTATCTTT	CTTCACAATA	TTTATTGAAT	AATGTTTGTA	ATTGATTAAT	10740
	TACGTTCATC	ACATCATGAC	CTTCGATTTG	ATGTCTTTCA	ATCATTTCTG	TAATCTTTCC	10800
50	ATCTTTTACT	AATGCAAATG	ACGGACTTGA	AGGCGCATAA	CCTTCGAAGT	ATTCACGCGC	10860
	TCTTTGTGTC	GCTTCTTTAT	CTTGTCCAGC	AAATACTGTC	ACTAGACGAT	CAGGTAATAC	10920

	AGAATTGATC	ATAACTAGTG	TTGTACCATC	TTGTTTAAGA	ACTTTGTCAA	CATCTTCTGC	11040
		TGCTCATATC					11100
5							
	GTTCATGTAT	AAATCGAAAT	TCATGCCCAT	AAGTTCAATC	ACCTATCCCT	TIATATITAA	11160
	ACTALCCTCA	TTCTACTAAT	TAATAACATA	TTGTTCAATA	AACTAATCTG	AATCACACCT	11220
10	ATATTTAGAC	ACAATTTTAA	CAATATACCA	AACATTATTG	TGCTTAAAAT	CATGGTAACT	11280
	AATTTGTTCA	CATGTTTTCA	TTAATATGTT	TCAAGTATGA	TGTCTTATTT	TGACTTTACT	11340
	GCAAAAATGC	ATTCAACCAT	GTTGATTATT	GTTCTTTATC	TTTTTTGAAT	ATATTGCACA	11400
15	TATTTTAGTG	CCAAAAAATA	ATACATCCAT	CGACAAGAAC	AAGATAAAAC	AAGTTGTCGA	11460
	TAGATGCATC	TATGTTATCA	CTAATATATA	TTTGTATTTT	CTAAAGTATA	CTGTTCGATA	11520
	CGCTGTTTAA	TATGATTCAT	Aratttacct	GTTTGTAAAC	CATCTAAAAT	ACGATGATCA	11580
20	ATTGAAATAC	ATAAATTAAC	CATGTTACGA	ATTGCAATCA	TATCATTAAT	TACTACTGGC	11640
	TTTTTAACGA	TTGATTCTAC	TTGTAAAATC	GCTGCTTGTG	GATGATTTAT	AATACCCATT	11700
	GATGATACTG	AACCAAATGT	ACCAGTATTA	TTTACCGTAA	ATGTACCGCC	CTGCATATCT	11760
25	TCAGCTGTCA	ATTGCTTATT	ACGCGCTTTC	GTTGCTAAAG	TATTAATTTC	TCTAGCTATA	11820
	CCTTTGATTG	ACTITICGIC	TGCATGCTTA	ATCACAGGTA	CGTATAATTT	ATTTTCATCA	11880
30	GCAACAGCAA	TTGAAATATT	AATGTCTTTA	TGTAAGACAA	TTTCATTTCC	TTGCCAGCTA	11940
	CTATTTAATA	AAGGATATGC	TTTTAAAGCA	TCTGCTACAG	CTTTTACAAA	GAAAGCAAAG	12000
	AACGTTAGAT	TATATCCTTC	TTTATTTTTA	AAGCTGTTTT	TATAATGATT	TCTCGTATTC	12060
35	ACAAGATTTG	TAGCATCTAC	TTCAATCATC	ATCCATGCAT	GTGGAATCTC	TGTTACACTA	12120
	TTAACCATAT	TTTGCGCAAT	TGCTTTACGC	ACACCATTTA	CTGGTATTGT	GCTGTTTTCA	12180
	CTATTGTCTT	CAGATGATTG	GTTACTTGAT	GTATCTACTG	ATGTTGATTT	TGTTTGAACT	12240
40	TGTTTGTCAG	ATTGAGCTGT	GGTACCACCA	TTTTCAATAA	CTGACATTAT	ATCCTTCTTA	12300
	GTTACACGAC	CTTCAAATCC	ACTACCTACA	ACTTGTGATA	AATCAATGTC	ATGCTCTGAA	12360
	GCGAGTTTAA	ATACAACAGG	TGAAAAGCGA	CCATTATTAC	GTGGTTGATT	TTGTTTAGCA	12420
45	GTAGATGTCT	GTTCCACTGT	TGCACTAGCT	TTTTTAGTAG	ATTTCTGAGT	ATGCTCATCC	12480
	ACTTTTGCTT	GTATCTCTTC	AGTTGTTTCA	TTTGTCTTTT	CATCAGCAGT	TTCAATTTTA	12540
60	CAGATAATTG	TATCAATAGC	TACTGTCTGC	CCCGCTTCAA	CTAAAATTTC	TGTAATTGTT	12600
50	CCTGATATCG	TGGAAGGGAC	TTCAGCTGTC	ACTTTATCTG	TAATAACTTC	ACATAATGGT	12660
	TCATATTCAT	CAATATGATC	ACCAACAGAA	ACTAACCATT	GTTCAATGGT	GCCTTCATGA	12720

	AATTCACGCA	TTTTATTTAA	GATTTTTTCT	GGATTCATCA	TAATTTCATT	TTCTAATACA	12840
_	GGAGAAAATG	GCATAGATGG	TACALCTGGA	GCAGCTAAAC	GCATGATTGG	TGCATCTAAA	12900
5	TCGAACAAGC	AATGCTCTGC	AATAATCGCT	GACACTTCTG	ACATAATACT	ACCTTCTAAA	12960
	TTATCTTCAG	TTACAAGTAA	AACTTTACCT	GTATGTTTAG	CACGATCAAT	AATTGTTTCT	13020
10	TTATCTAATG	GATAAACAGT	TCGTAAATCA	ACGACTTCAA	CATTGATACC	GTCTGCAGCT	13080
,	AAAATATCCG	CTGCTTGTAA	ACAATAATTG	ACCATTAATC	САТААСАААА	TACTGTTAAA	13140
	TCTTCACCTT	CACGTTTCAC	ATCTGCTTTT	CCTAAAGGTA	CAGTGTAATA	TTCTTCTGGC	13200
15	ACTTCTTCCT	TTAAGAAACG	ATAAGCTTTT	TTATGCTCAA	AGTACAATAC	TGGATCATTT	13260
	GATTCGATAG	ATGATAATAA	AAGCCCTTTA	GCATCATACG	GTGTGGAAGG	AATAACAATT	13320
	GTTAAACCTG	GCGATGAAGC	AAATATACTT	TCAATACTTT	GTGAATGATA	TAGTCCTCCG	13380
20	TGAACACCGc	CACCAAATGG	TGCACGAATC	GTTAATGGGC	ATTGCCAATC	ATTATTTGAA	13440
	CGATAACGCA	TTTTCGCAGC	TTCACTAATA	ATTTGATTTG	TCGCAGGTAA	AATAAAATCT	13500
	GCAAATTGAA	TTTCTGCAAT	TGGTCTTTTA	CCTACCATAG	CTGCACCAAT	GGCAGTTCCA	13560
25	ACAATATTTG	ACTCAGCTAA	TGGCGTATCG	ATAACTCTGT	CTTCACCATA	TTTTTGTTGC	13620
	AGTCCTTGAG	TAGTACCAAA	TACGCCACCT	TTTCTACCAA	CATCTTCACC	AAGAATAAAC	13680
20	ACATCTTTAT	TTTGTTGTAA	TGCTAAGTCT	TGTGCCtGcG	TATCGCCTCT	AAATAAGATA	13740
30	ATTTAGCCAT	TAGTTAAGAC	TCCCTTCTTC	GTACACAAAT	GCATAGGCTT	CTTCGACACT	13800
	TGGATATGGC	GCGTCTTCAG	CAGCCTTTGT	CGCTTTATTG	ATGATGTCTT	TnATgTCCGC	13860
35	TTCTATTTCT	GCCAACCAAG	CATCATCGAT	AATGCCAGCT	GAAAGCAACT	CTTTTTTGAA	13920
	CTTTTCATTG	CAGTCTGCTT	TTTTAAGcGT	TTCACGCTCT	TCTTTCGTAC	GATATTGGTC	13980
	GTCATCATCT	GATGAATGAG	CTGTCATACG	ACTTGTTACT	GCTTCAATCA	AAGTTGAACC	14040
40	TTGÁCCAGAA	ATAGCTCGAT	CTCTTGCTTC	TTTCATCGCT	TTATACATTG	CTAATGGATC	14100
	ATTACCATCT	ACTTGTTCAC	CATGTATACC	GTAACCAAGT	GCTCTATCCG	ATAATTTTTC	14160
	AGCTGCGTAT	TGTAATGAAT	CAGGTACTGA	AATTGCATAT	TTATTATTTA	TAATGACACA	14220
45	TACAAAAGGA	AGTTTGTGTA	CACCCGCGAA	GTTTAAACCT	TCATGGAAGT	CACCTTGGTT	14280
	TGAGCTACCT	TCACCAACAG	TTGCTGTTGC	AATTTTCTTC	TTACCATCCA	TTTTTAAAGC	14340
	TAAAGCAGCA	CCAACAGCAT	GGGGTATTTG	AGTTGCTACC	GGTGAACTTT	GAGACAAAAT	14400
50	ATTCTTAGCT	СТАСТАСТАА	AGTGTGATGG	CATTTGTTTT	CCACCAGAGT	TAACATCGTC	14460
	TTTCTTTCCA	AACGCTGATA	AAAACGTATC	ATACGCTGAG	ата <i>с</i> ссатат	AAGTAACCAA	14520

	AATCTGAGTT	GCTTCTTGTC	CTTGACCACT	TACAACAAAT	GGAATTTTAC	CTGCACGGTT	14640
	CAATAACCAC	AGTCTTTCAT	CTATTTTTCT	ACCTAAATCC	ATCCATTTAT	ATATTACTTT	14700
5	TAGGTCTTCT	TCGCTAAGGC	CTAATGATTT	ATAATCAATC	ATGTTAAATC	CTCCTATTTA	14760
	TACGTGAATA	GCTCTACTTT	CTGCTTTCAA	TCCTAATTCC	ATCAACACTT	CAGAGATGGA	14820
10	AGGATGTGCG	TGTGTTGTTA	GTCCTAATTC	TAATGCCGAG	CCATTCATGA	ACTGTAACAG	14880
10	TGATGCCTCA	TTAATCAATT	CTGTTACATG	TGGACCAATC	ATATTAATAC	CCACAATTTC	14940
	TTCAGTTGAT	TGATCAATCA	CCATTTCGCT	ATACCCTTCG	TTTGTGTCAT	GGCTATCAAT	15000
15	CACTGCTTTA	CCAATTGCTT	TAAATGGTAC	TTTAAAACTT	TTAACTTTCA	TTCCCTCTGC	15060
	CTTTGCTTGT	TCAATGTTTA	AACCGATAGA	AGCAATTTCA	GGTTGTGAAT	AAATACACTT	15120
	AGGCATCATG	TTATAGTTTA	CTGGGATTGG	GTTCCCCTCA	AACATATGAT	CAACAGCCAC	15180
20	AACACCTTCT	TTTGATCCAA	CATGTGCCAA	TTGTAATTTT	CCTATACAAT	CACCAGCTGC	15240
	ATAAATATGT	TTATCTTCAG	TTTGTTGAAA	TTCGTTCGTT	AAAATATGTC	CTGATGTTGa	15300
	AAGTTTTATT	TTAGTGTTGT	TTAAACCAAT	ATCTGATGTG	TTAGGTTTTC	TACCAATCGA	15360
25	TAGCAACACT	TTATCTACTT	TAATTATGTC	TGAGGAAATT	TCAAACGTAA	CACCATCTTC	15420
	GTTAACATTT	ATATCATTTT	CAGAAAGTTT	TATTCCCTCA	TAGAATTTAA	CACCACGTGC	15480
	TGACAATGAT	TTTTTTAATA	GTTGTGAAGC	TTGTTTACTT	TCAGTTGGTA	AAATTCTTTC	15540
30	ACCTGCTTCT	ATAACTGTTA	CGTCAACACC	TAAATCTATC	ATCAATGATG	CAAATTCCAT	15600
	TCCGATAACA	CCACCACCAA	TAATACCAAT	ACTTGATGGT	AACGTCTTTA	ATGATAATAT	15660
35	ATCATCGCTA	GATAAAATTT	TATCATGATC	AAATGATAAG	AATGGCAACT	CTGCAGGCGA	15720
	AGAACCAGTT	GCAATTAATA	CAAATTGGTT	GGGTAATAAG	TCTGATTCAC	CATCTTCATA	15780
	TTCGACAGAA	ATTGTGCCAC	TTTGAGGTGA	AAATATAGAT	GTACCTAGAA	TACGTCCCGT	15840
40	GCCATTATAA	ATGTCAATGT	GATTGTGTTG	CATTAAATGC	TTTACACCTT	GATACATTTG	15900
	ATTAATAATG	TCTTCTTTTC	GTGCCAACAT	ATTTTCAAAA	TTAACATTAG	CATCTTTGAC	15960
	ATCAACGCCA	AACATTGCTG	CCTGTTTTAC	TGTTTGAAAT	ACTTCAGCAG	ATTTAAGCAG	16020
45	CGATTTAGTA	GGAATACAAC	CTTTATGGAG	ACAAGTACCT	CCTAATAGTT	GTCGTTCTAC	16080
	TATTGCCACT	TTTTTACCTA	ATTGAGACGC	ACGTATCGCA	GCAACATATC	CTGCAGTACC	16140
	TCCACCGAGA	ACGACTAAAT	CATATTGTTT	CTCTGACATG	TTCTTACTCC	TAACTAATGA	16200
50	TATATATCCA	TTGAAAATTT	ATTAATACAT	AGTTTTCATG	TCCATTAATT	ACCTATTTTA	16260
	CATGATTGTC	TATTTAGTTT	GAATGCACAT	AAATAAATCC	ATAAATGAGT	ATTCAACACA	16320

	TAAATCAGTA ACACTTGCAC CTGAAATCAT TCGTGCAATT TCATCTACTT TATCATCGCT	16440
5	AATTAACTCT TGAACTTGTG TTGTTGTACG ATCATCTTTT GATGATTTCG AAATTAATAA	16500
3	ATGATGGTCG CTCATCGATG CAACTTGTGG TAAGTGAGAG ATACAAATAA CTTGTATATA	16560
	TTCTGCTaTA TCTCGCATTT TCTCTGCCAT TT	16592
10	(2) INFORMATION FOR SEQ ID NO: 54:	
	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 13794 base pairs</li><li>(B) TYPE: nucleic acid</li></ul>	
15	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	
20	CCAATACAAC GTAAAAAGAT TGCTTGTGTT ATTAATGAGT TAGATAAAAT AATTAAAGGA	60
	TTTAATAAGG AAAGAGACTA CATAAAATAT CAATGGGCTC CAAAATATAG CAAAGAnTTT	120
	TTTATACTTT TTATGAACAT TATGTACTCA AAAGATTTTT TAAAATATCG ATTTAATTTA	180
25	ACATTTCTTG ATTTATCTAT CTTATATGTA ATATCATCTC GAAAAAATGA GATACTAAAT	240

35

30

40

45

55

50

TTAAAAGATT TGTTTGAAAG TATTAGATTT ATGTATCCTC AAATTGTTAG GTCAGTTAAT 300 AGATTAAATA ATAAAGGTAT GCTAATCAAA GAACGATCCC TTGCAGATGA AAGGATTGTG 360 TTAATCAAAA TAAATAAAAT ACAATATAAC ACTATTAAAA GCATATTCAC AGATACTTCC AAGATTCTCA AACCAAGAAA ATTTTTCTTT TAAATTTAAA CAGATTTACC TCTTGATAAA 480 540 ATAAATAAGC AATCATACTA CTTCTCAATT TAGTATAAAT AAAAATACAT AATTAACTTT CTTTTGTTT TATATTATTT CAATACCCTA CTATATATCA CAACACATAA ATTAAGCATG 600 ACACTCATTC AATTTAGTTC ACCATTTCGT GTTCCAATTT TACTGAGTAT CATGCTTTTA 660 ATGTTATAAA CCTAATGCTT TAATAAATCG TGTTAATTCT TCTCGCATAC TGTCATCTTT 720 CAATGCATAT TCTATGGTAG TTTTAACGAA GCCTAATTTT TCTCCAACGT CATAACGTTC 780 840 GCCTTCGAAG TCATATGCAT ACACTTGGTT ATCATTATTC ATACGTTCAA TCGCATCTGT TAACTGAATT TCGTTACCTG CGCCTTCTTT TTGCGTTTTT AAATAATCGA AAATTTCAGG 900 CGTTAATACA TAACGTCCCA TAATAGCTAG GTTTGATGGT GCCGTACCTT GTGCTGGCTT 960 TTCAACAAAC TTTTTCACTT CATACTGACG TCCGTTTTTA GTTAATGGGT CAATAATTCC 1020 ATAACGATGA GTATCTGCTT CCGGAACTTC TTGGACACCT ATAACTGAGT GCCCTGTTTC 1080 TTCATAAACG TCAATCAACT GTTTCACTGC TGGCACTTCA GATTCAACAA TATCGTCACC 1140

	TAAACCTTTT	TGTTCTTTCT	GCCTTACATA	AAAAATATTC	GCAAGTTCCG	TTGAATACTG	1260
	AACTTTCTCT	AGTAATTCAG	ATTTACCTTT	TTCTTTTAAC	ACCATTTCTA	ATTCTTTTTG	1320
5	ACTATCAAAA	TGATCTTCAA	TCGCGCGTTT	GTGGCGACCT	GTCACTATAA	TAATATCTTC	1380
	AATTCCAGCT	CTTGCAGCTT	CTTCAACGAT	ATATTGTATT	GTGGGTTTAT	CTAAGATAGG	1440
10	AAGCATTTCC	TTTGGCATCG	CTTTAGTTGC	TGGTAAAAAT	CTAGTCCCTA	AACCAGCAGC	1500
10	GGGAATGATT	GCCTTTTTTA	TTTTTTTCAA	AGTTAATGTG	CTCCTTTTCC	TAAGTATTAA	1560
	ATCTATGTAT	CAACGTCATT	TTAACACTAA	TTAGAACGCC	TTCATAGTGT	CATTGAGTAT	1620
15	GTAATTATTT	CTTGGGAAAT	TTGTTTTAAT	TTTAAAAAAAC	AGGCTTACTT	CATATAATTT	1680
	ATGAAATAAA	CCTGTCAATT	TTGGATTGAT	TATGCTTTGT	GATTCTTTTT	ATTTCTGCGT	1740
	AATAACGCTA	AACCTAAAAT	GCTAAATAAT	CCGCCGAACA	ACATGCCGTT	GTTTGTTGAT	1800
20	TCTTCTCCAC	CTGTTTCAGG	TAGTTCAGAT	TTCTTAGATT	GTGCTTTTTT	AGTTGGTACC	1860
	ACTGCTTTAA	CCTTTTCATT	GATTTCAATA	ACAGGTGTTA	CTACTITACC	TTGTTCCACT	1920
	GGTTTAGAAG	GTTTTTTAGG	TTCTTCTTTA	GCAGGTGGTA	TTGGTTTACC	AGGTTCAGTT	1980
25	GGTACCTCTG	GCGTTGGCGG	TGTTGGTGTT	TCCGGCTCGC	TTGGTACTTC	TGGTGTCGGT	2040
	GGTGTTGGTG	TTTCCGGCTC	GCTTGGTACT	TCTGGTGTCG	GTGGCGTTGG	TGGCACGATT	2100
	GGAGGTGTTG	TATCTTCTTC	AATCGTTTGT	TGACCTTCAT	TATGACCACT	TACTTGTGGA	2160
30	AGTGTATCTT	CTTCAAAGTC	AACACTATTG	TGTCCACCGA	ATTGATAATT	TGGTTTATCT	2220
	TTATTTGTAT	CTTCTTCAAT	AATTTCAGTG	TGCTTATTGA	ATCCGTGAAT	ATGTGGCACA	2280
35	CTGTCGAAGT	CGATATCAAT	GATATTACCA	CCTTGTTCAT	ACTTAGGTTT	GTCTTTCTCT	2340
	GTATCTTCTT	CGAATGATTG	GTTACCATTA	TTTTGACCAT	GAATTTGAGG	TACACTATCG	2400
	AAATCGATAT	CTACGATATT	GCCACCTTGT	TCATATTTCG	GTTTATCTTC	TTCTGTGTCT	2460
40	TCCTCAAATG	ACTGATTACC	GCTATTTTGG	CCACCTTCGT	AACCTAATTC	ACTCTTAATA	2520
	TCCACGTGGC	TATTTTCTTC	GATTTCTTCA	ATCACGCCAT	AATTACCGTG	ACCATTTTCA	2580
	GTTCCTAAAC	CAGAATGAGA	AATATGATGA	TTGTTTTCAG	TAATTTCCTC	GATTGGTCCT	2640
45	TGCGCTTGAC	CATGTTCTTC	AGGTAGTTCA	TCTACTAGTT	CAATCAGATT	ACTTTCAGTC	2700
	GTATATTCTT	TCGTATCTTC	AATTGTTGTA	TGATCGCTAA	CAGCACCAGT	TACAATACCT	2760
	TTTGTAGAAT	CTTCGTCAAA	TTCAACTAGG	TTAGACTCAG	TAGTAACCTG	ACCACCACCT	2820
50	GGGTTTGTAT	CTTCTTCATA	TTCAACAACA	TCAGCATGAT	GTTTTGAATT	TTCATGTGTC	2880
	GATTCTTCAA	AGTCTACATG	AATAGAATCT	TCTTCAGTTT	CAATGGTACC	TTCTGCATGA	2940

	TCTTCGATTG	TACCAGTCAA	TTCATGCTTC	TCCACTGGCG	GCTCTGATTI	AAATTCAAGT	3060
-	TCGATAGGAG	TACTATGTTC	TATAATAGGT	TCCTTTAGTT	TATCTTTGCC	GTCGCCTTGA	3120
5	GCGTTATTAG	AGTAAAATGC	AACGCCATTT	TTCCaAGTTA	AATTACTTGT	ATAATAATAG	3130
	TTATAATATC	CAAAAAGGTG	TGTTTGAAAT	TCTAAGTTGC	TAGCATTTGA	ATCATAATAC	3240
10	CCTTCATATT	TTATTACATA	ATTTTTACTT	TGGTCTAAAT	TATTAAAGTT	TAAAGAATAA	3300
	CCACCATTAG	TATCAAAATC	TAAACTCATA	TTATCAGTCA	CATCTTCAAA	TTTGCTGACA	3360
	TCATCAAGCT	TTGCATAnTn	AgctTTCAGC	TAAATCGTCT	GAACCAATGT	GTTTATATAC	3420
15	CTTAACTGTT	GGATTATTAA	CCCCTGGTTT	ATTTCCTTTA	GTTACTTGAC	CAGTTACTGT	3480
	CACAGAGCTT	AACGACTGGT	TGTTAGGTTT	CATGTACGCA	AAATGACTAA	ATTTCCCATC	3540
	TACTTTATTT	AAAGTATCAA	TTCGACCATT	AGCTGTTACT	CCCCAATTAT	CTCTAACTCC	3600
20	ACCTAAATAT	TGAATATTAA	ATATTTTGCT	AACCGTAGTC	TCACCCAATT	TAACTTCAAC	3660
	ATTTTGGTTA	CCTTTTTGCG	TCACTGTTGT	AGGATCAATA	AATAGATTTA	AAGATAATTC	3720
	AGCAGTTAAA	TCTTTCTTTT	CTTGTACATA	TTCTTTAAAC	GTATATCTAA	CTTTTCTTTC	3780
25	TCCAATTATT	TCTCCTGTCG	CCATAACTTG	ACCATCTGTA	CTTTTTATCT	CCGGAACTTT	3840
	ACGCAGTGTT	GAGATACCAT	GAGTTTCAAC	ATTATCGCTT	AATGTGAAAT	CAAAATAATC	3900
30	TCCCGCCTTA	ATTCCTTCTC	CAAATTTCCA	TTTATATTTC	AAGGTTACTC	TTTCTGCGTT	3960
	ATGAGGATTT	ACAACATTCG	TATCTTGTTT	ATGTCCTACA	ATTTCACTAC	CTTCTTCTAC	4020
	TTCCACTTTA	TTTGTTACAT	CTGTACCTGT	CGCTTTAGTT	TCTTCCACTA	CTTCTTTCTC	4030
35	TGCAACTGCT	GTAACGTCAt	TGatCTTTTC	ATTCTTGGTT	TAATTTCTGA	GACGTTACTT	4140
	GGTTGAGCTA	TGTCAACTTG	AGTTCCTGTA	GTTTCCTTAT	CAGCAACTTT	TTCCGATGGC	4200
	AAATCAACTC	GCGAAgTTTC	TACTTTTGGT	GCTTGCAcAG	TTTTCGGTGC	TTCTTCTGTT	4260
10	GTTACTTGTG	TTGATTGTGA	TGGTTGCTCA	GTTGATGTCG	CGCTGTATGA	TTGTGTTTCA	4320
	TCTATTGTAT	TAACGTTATT	TGTAGTTGTT	TGTGTTTCGC	TTGCTTTACT	TTCAGTAGCT	4380
	GAACTCCCAC	TTTCCTCTAC	TGTAGTATTG	TTTTGTTCCG	ATGCTGCAGC	TTCTTTTTCT	4440
<b>1</b> 5	TGTCCCATTC	CAACAACGAT	CATTGTTCCT	AAGAATACTG	AGGCCGCTCC	CAATTTGTGT	4500
	TTTCTTATGC	CGTATCTAAG	ATTGCTTTTC	ACTATAATAT	TCTCCCTTAA	ATGCAAAATT	4560
- 0	CATTTATTTT	таааастсаа	TAAATGCAAT	TCTATATTGT	TCGGTTTTTA	AAAGCAATGA	4620
50	AAAAAAGCGA	GTTAATAAAA	AGTTAAGATT	GTTGTTAACT	TTATGTATAA	TGAGTTTTTT	4680
	አምተአጥጥር ልል	ACTCACATAT	ΔΤΑΤΤΌΘΑΤΑ	CAAAGCTCTT	GAACACCTTG	ATATAACAGG	4740

	TACTAAACCA	TACATAATAA	TCGCCTGTAC	AATGCATCAT	TAACAAGTCA	CTGAAACGCC	4860
	TTTCATTGTA	TTAATAACGT	CACTATAATT	TTTATATCGT	TCGGTTTTTG	TTTGATTTTA	4920
5	ATGATTATTT	ATACAAAAAC	AGCCGTATTT	CAAGCCGACA	TTTTAAATTT	AACTAAATTT	4980
	GCATCTAGTT	AATAATTGCA	TTTATCAAAT	TTGTCTTATT	GATCCAATCT	AATTTGTACT	5040
10	CACAAACTAG	TTTAAAATTC	TAACTTTATC	TCTCAGTTCG	TTATCAATCA	TCAGACATAA	5100
,,,	ACCAATGAAG	CAATCAGAAA	ACACTCTAAT	TTTCTATTAG	AAATTTGATT	ТААТАТААА	5160
	AAACAGGCTT	ACTTCATATA	ATTTATGAAA	TAAACCCGTC	AATTTTTGTT	TAATTATGCT	5220
15	TTGTGATTCT	TTTTATTTCT	GCGTAATAAT	GCTAAACCTA	GAATGCTGAA	TAATCCGCCG	5280
	AACAACATAC	CTTTGTTTGT	TGATTCTTCT	CCACCTGTTT	CAGGTAGTTC	AGATTTCTTA	5340
	GATTGTGGTT	TTTTAGTTGG	TGCCACTGCT	TTAACCTTTT	CATTGATTTC	AATAACAGGT	5400
20	GTTACTACTT	TACCTTGTTC	CACTGGTTTA	GAAGGCTTTT	TAGGTTCTTC	TTTGGCAGGT	5460
	GGTACTGGTT	TACCAGGTTC	AGCTGGTACC	TCTGGTGTTG	GCGGTGTTGG	AGTTTCTGGC	5520
	TCACTCGGCA	CTTCTGGTGT	CGGTGGTGTT	GGTGTTTCCG	GCTCACTTGG	TACTTCTGGT	5580
25	GTTGGTGGCG	TTGGTGTTTC	CGGCTCACTT	GGTACTTCTG	GTGTCGGTGG	CGTTGGTGGC	5640
	ACGATTGGAG	GTGTTGTATC	TTCTTCAATC	GTTTGTTGAC	CTTCATTTTG	GCCGCTTACT	5700
20	TTTGGAAGTG	TATCTTCTTC	AAAGTCAACA	CTATTGTGTC	CACCGAATTG	ATAACTTGGT	5760
30	TTATCTTTAT	TTGTATCTTC	TTCAATAATT	TCAGTGTGCT	TATTGAATCC	GTGAATATGT	5820
	GGCACACTGT	CGAAGTCGAT	ATCAATGATG	TTACCGCCAT	GTTCATACTT	AGGTTTGTCT	5880
35	TTTTCTGTAT	CTTCCTCGAA	TGACTGATTA	CCTTTATTTT	GACCATGAAT	TTGAGGTACA	5940
	CTATCAAAAT	CGaTATCTAC	GATATTGCCA	CCTTGTTCAT	ATTTAGGTTT	GTCTTCTTCT	6000
	GTGTCTTCCT	CGAATGACTG	GTTACCGCTA	TTTTGGCCAC	CTTCATAACC	TAATTCACTC	6060
10	TTAATATCAA	CGTGGCTATT	TTCTTCGATT	TCTTCAATCA	CGTCATAATT	CCCGTGACCA	6120
	TTTTCAGTTC	CTAAACCAGA	ATGAGAAATA	TGATGATTGT	TTTTAGTAAT	TTCCTCGACT	6180
	GGTCCTTGTG	CTTGACCATG	CTCTTCAGGT	AATTCATCCA	CTAATTCAAT	CAGATTACTT	6240
15	tCAGTTGTAT	ATTCTTTCGT	ATCTTCAACT	GTTGTATGAT	CGCTCACtGC	GCCAGTTACA	6300
	ATACCTTTTG	TAGACTCTTC	GTCAAATTCA	ACTAAGTTAG	ACTCAGTAGT	AACCTGACCA	6360
	CCACCTGGGT	TTGTATCTTC	TTCATATTCA	ACAACATCAG	CGTGATGTTT	TGAATTTTCA	6420
50	TGTGTAGATT	CTTCAAAGTC	AATTGGATTT	GATTCCTCAG	AGGACTCAGT	GTATCCTCCA	6480
	N CCTC N CCTC	~ b ጥርርር ርሞስጥሮ	CACACCACTA	TOOTABTOOA	TATCANTACC	TONTONATOO	6540

	TGGTAATCAA	TGTCAAGAGT	TGATGAATCA	TATTCCTCTT	CAACAGTAGT	TACTAAATTC	6660
	TTATCATATT	GACCTGTAAG	AGTTTCTTTA	ATTGTATCTT	CTTTATATTC	AAATTTATTA	6720
5	TTTTGAATAA	TCGGACCATT	TTTCTCATTT	CCGTTCGCTT	TATTACTGTA	TAAAACTAAA	6730
	CCATTATCCC	AAGTTAAGGT	ATATCCTCTA	TCATAATAAT	ACTTATAAAG	TTGCTCTGGA	6840
10	TGTCCTACCA	TTTGTGTTCT	AAAATCAACT	TCATCAGTAC	CATTTAAATA	CTCTCCATCA	6900
10	TAGTGAACAA	CATAAGTTTT	ATCTAGATTT	TCTATATTCA	ATGAATAGCT	TCCATTATTT	6960
	TGTAAATTCA	AATTCCCACT	CATATTACTT	GTGACTTCTT	TAAATTTAGA	AGTATCTGTC	7020
15	GTATTTGCAT	ATACACTCTT	CGCTATGTCT	TCATTATTAC	CCAAGTATTC	AAATATCCTA	7080
	ACTITIGGTT	GATTTCCATT	CTGATTACTA	CCTTTCATTA	AAGTTCCAGT	AACAGTCACA	7140
	CTTGTCGTTT	TACCATTATT	AGGTTTAATA	AATGCAACAT	GCGAAAATCT	ATTATTCGCT	7200
20	TTATTAAATG	TCTCAATCGA	TCCATTTAAA	TTGGCATAAT	AATTCCCAAT	ACCATCTTTA	7260
	TATTTAACAT	CTAATTCCTT	TGAAGTTTGT	TCTTCATTTA	GTGTTGAAGT	TATAGTTTGA	7320
	TTTCCATTAG	TTTGTACAGT	TTTAGGATCA	АТАААТАААТ	TAATTTCTAG	TTCAGCCGTT	7380
25	ACATCAACCT	TATCTTCAAT	ATCATTTGTA	AATGTATATC	TAATCTTTCC	ACCTTCTAAA	7440
	ACTTCACCTG	TCGCCATTAC	GACTGAACCA	TTTTTAATTT	CTGGTACTTT	TCTAGCAGTT	7500
	GATACGCCAT	GCGTATTTAC	ATTATTTGAT	AAAGTAAAGT	CAAAGTAGTC	ACCTTGATGT	7560
30	AAACCATTCT	CAAATTTCAA	CTTATATTTT	AGTACCGCTC	GTTGTCCTGC	ATGAGGTTCT	7620
	ACTTTATTTG	TATTGTTATG	CCCCTCAATA	GAACCAATTT	CTACTGTAAC	TTTACTTGTT	7680
35	ACATCTGTAC	CCGTTTCCAC	TTTCGCGTTA	CTAGCTTCCT	TAGCTTCCGC	TACATCTGCT	7740
	GATCTTGTCA	CACGTGGCTT	ACTTTCTGAT	GCCGTTCTTG	GCTGTGCCAC	TTCAACTTGT	7800
	GTTTCTGCGA	CTTGATTTTG	TGTAGCCTTT	TTAGGTGTTA	AATCTACTTG	TCTTTGATCT	7860
40	CCGCTATTGT	CTTGAGATTG	TGTTGTTTCC	TTAACTTGAG	GTTTCGCTTC	TTCCTTAACT	7920
	ACCTCTTCTT	TAACTGTTTC	TATATTTGCT	GGTTGTGCAG	TTTGTGGTGC	TTGTACTGCT	7980
	TTTGGTGCTT	CTTCAGTTGT	TACTTGTGTT	GCGTTTGACG	GTTGTTCTGT	TACTGTTGCG	8040
45	TTATATGATT	GAGTTTCTTC	TATATGATTA	ACGTTAGTTG	CAGTTGTTTG	TGTTTCACTT	8100
	GTTTTATTAT	CAGTAGCTGA	ATTCCCATTT	TCTTCTACTG	TAGTTGTCTT	TTGTTCTGAT	8160
	GCTGCAGCTT	CTTTGTCTTG	TCCCATCCCA	ACAACGATCA	TTGTTCCTAA	GAATACTGAT	8220
50	GCTGCTCCCA	ATTTATGTTT	TCTAATGCCG	TACCTAAGAT	TGTTTTTCAC	TATAATATCT	8280
	CCCTTTAAAT	GCAAAATTCA	TTAATTTTTT	AAACTTAATA	AATGCAAGTC	TATATTGTTC	8340

	ATGTTAATTG	ATAATTITAT	TATTTGAAAT	ATACCTATAA	ATTGTATTCA	AGTCATCAGA	8460
	AACCCTTGTC	ACACAAGGCT	TGTATTTTT	ATACTTATTT	TTTAAATTAA	ATTCATCATT	8520
5	ATCTAATTTA	AAACAATATA	CTAAACGTTT	CATAATTATC	GCCTGTACAA	TACGCACAAA	8580
	AACATGTCTT	GAAACGCCTT	TCATTACTCT	AAAATACCCA	ATATACTTTT	TATATCGTTC	8640
	GGATTCTGAG	TATTTCAGAC	GATTTTCTGC	АТАААААТАА	ACGTGTTTCA	AGGCAATATA	8700
10	TTGCAATTAC	CTAAAAACAC	GTTTACTTAA	TATTTAGTTA	AACAAATAAG	CTAATGAATA	8760
	AAATGAAGAT	GATACCTGAA	ACGGAAATAA	TCGTTTCTAA	TAATGACCAT	GTTAAGAATG	8820
15	TTTCTTTTAC	AGTTAAACCA	AAATATTCTT	TAAACATCCA	AAATCCTGCG	TCATTTACAT	8880
	GAGACAAAAT	CACACTACCT	GCACCTATCG	CAAGTACAAC	TAATGCAACA	TTTACATCTG	8940
	ATGATTGTAA	TAATGGTAAG	ACAATACCTG	TAGTTGAAAT	CGCAGCTACT	GTAGCCGAAC	9000
20	CTAATGCGAT	ACGTAGCACA	GCTGCAACAA	TCCATGCTAG	TAAAATCGGA	GACATCTCTG	9060
	TACCTTCAAA	CATTTTAGCA	ATTGTATTTC	CGACACCGCC	GTCAATTAAT	ACTTGTTTAA	9120
	ATGTACCGCC	ACCGCCAATA	ATCAATAACA	TCATTCCGAT	TGGATAAATC	GCATTCGTCA	9180
25	CTGATTCCAT	AATATGATTC	ATCTTACGCT	TTCTCATTAA	TCCCATCGTA	ACGATTGCAA	9240
	ATAATACTGC	TATTAGCATG	GCTGTCCCTG	CTGTTCCTAT	CATATAAATG	ATAGATTCAA	9300
	ATAGATTTGT	AGGTTTGTCA	TGCCCAGTTA	CAAGTTGCGT	TATCGTAGAC	ACTAACATTA	9360
30	ATATGACTGG	TAATGTTGCT	GTTAATAAAC	TCATACCAAA	TCCTGGCATC	TCTTGATCCG	9420
	TAAATTCTTT	TTGTGCACCT	AACGCTGAAA	TATCGCCTTC	TCGTGTATAC	GCAGACGGAA	9480
35	TCATTTTTTG	TGCAcTTTGT	TAAATATAGG	CCCTGCAATG	AGTGTAACTG	GaATGGCAAT	9540
	AATCATACCA	TACAGTAATA	CATCTCCAAC	ATTTGCCTTT	AATTCTTTTG	CGATGACTAC	9600
	CGGTCCTGGA	TGTGGTGGTA	AAAAGCCATG	TGTCACTGAT	AAAGCTGTTA	CCATAGGTAG	9660
40	TCCTAGTTTT	AACACTGAAA	CATTTGCGCG	TTTTGCTACT	GTAAATACTA	ATGGAATCAG	9720
	TAAGACTAAA	CCTACTTCAA	AGAACAATGC	AATACCGACG	ATAAATGCTG	CAACAAGCAT	9780
	TGCCCATTGT	ACATGTTTTT	GACCAAATTT	TTGAATCAAC	GTGTCTGCGA	TTCGAGTTGC	9840
45	ACCACCACCA	TCAGCAAGCA	ATTTCCCAAG	TATGGCACCT	AAACCGAATA	TCAGTGCAAT	9900
	GTGGCCGAGC	GTACTGCCCA	TTCCTTTCTC	AATCGTCTCC	ATAATTTTAG	TCAATGGTAT	9960
	ACCTAGCATT	AACGCTGTAA	TCATCGATGT	GATAATTAAT	GAAATAAATG	TATTTAATTT	10020
50	AAACCCAATA	ATTAATACTA	ATAAAATAAC	GATACCTAAA	ACAACACTGA	TTAACGGCCA	10080
	TATTTCGTTA	AACATGACAT	TCCCCTCTTT	CTCTTTTCAA	TAGAATGTAA	CACCGTCGTC	10140

	GAGTGACGTA	TTTATTGTGT	TTTATTTTCA	GCGATATGTT	GGCGTTGAAA	ATCTGCAATT	10260
	TGTTCATAAT	TCTCTGTTAA	AGAACGACTT	AAATTGATAA	AAATGGATAC	GATCTCTTGG	10320
5	TAAACAGTGA	CATTTTCTTC	AATCGGCGTA	TGATTGTTTG	TGGCACCGAC	CATCGATGAA	10380
	ACGATTGAAA	AATCTTCAAT	GTCACCTACA	GCTTTAAGTC	CGAGCACGCA	GGCACCTAAG	10440
10	CATGAACTTT	CATAACTTTC	AGGAACCACT	AACTCTGTGT	CAAATATATC	TGACATCATT	10500
70	TGACGCCATA	CTTCACTTTT	CGCAAAACCA	CCTGTTGCTT	TTATCATCTT	AGGTGTTTCA	10560
	TTCATTACTT	CAATAAGCGC	AAGATAGACG	GTATACAAAT	TGTAAAGAAC	ACCTTCTAAT	10620
15	GCAGCGCGAA	TCATATGTTC	TTTTTTATGA	GATAAAGTTA	AACCGAAGAA	TGAACCTCTT	10680
	GCATTTGCGT	TCCAAAGCGG	CGCACGTTCT	CCTGCTAAAT	AGGGATGGAA	TATTAAACCA	10740
	TCTGCACCTG	GTTTAACACG	CTTTGCAATT	TGAGTTAAGA	CATCATAAGG	ATCAACACCG	10800
20	AGACGTTTCG	CAGTTTCGAC	TTCACTCGCT	AGCAACTCGT	CGCGCAACCA	TCTCAATACG	10860
	ACACCACCAT	TATTTACAGG	ACCTCCGATG	ACGTAGTGGT	CCTCTGTTAA	GACATAACAA	10920
	AATATTCTAC	CTTTGTAATC	AGTACGCGGT	TTATCTATCA	CAGTACGAAT	CGCCCCAGAT	10980
25	GTACCGATTG	TGACAGCAAC	TTCTCCTTTA	CCAACACTAT	TGACACCTAA	ATTAGAAAGG	11040
	ACCCCATCAC	TCGCACCAAT	AACAAACGGT	GTATCTTTAT	TAAGCCCCAT	TAATGTTGCA	11100
22	TAACGTTCTT	TCATACCTTT	CAtCACATAC	GTTGTTGGAA	CTAATTCCGG	CAACATTTCC	11160
30	TTGGAAATAC	CCAGCAGTTC	TAATGCCTCA	ACATCCCAAT	CTAATGTTTC	TAAATTAAAC	11220
	ATCCCTGTTG	CGGAAGCCAT	TGAATAATCA	ATGATATATG	TATCAAATAA	ATGATAGAAA	11280
35	ATGTATGTTT	TAATATCTGC	AAACTTAGCA	GTACGTTGAA	ATACATCTTG	CCATTCATGT	11340
	TTCATCCAAA	AAATCTTCGC	TAATGGCGAC	ATAGGATGAA	TCGGTGTGCC	TGTTCGCTGG	11400
	TAAÃTCGCAT	TGCCATCATG	CACTTCATTT	ATTACTGTTG	CATATTTTGC	AGCGCGGTTA	11460
40	TCTGCCCAAG	TAATATTATT	TGTTAATCTT	TGATGTTGCT	GATCCATCGC	AATCAAGCTA	11520
	TGCATTTGCG	CACTAAATGA	CACAAACTTA	ATGTCGTCTT	TATTAACTTT	GGATTCTCTC	11580
	ATAACATATT	TAATAGTCAT	TAGTACTGCA	TCAAATAATT	CATCTGGGTT	TTCTTCTGAG	11640
45	ACATCAACGT	TTGGTGTGTG	TAAATCATAG	CCTATTTGAT	GTTTCATGAT	AAAAGTTCCA	11700
	TTTTCATCAT	ATAAGACTGA	CTTGGTACTC	GTCGTTCCAA	TGTCGACACC	AATCATATAT	11760
	TTCATGATAA	ATCCTTCTTT	CTTTCATTTT	AATTCAACCA	AAATCCTTCA	ATATCTTTAC	11820
50	CAACATCGTC	GAAATTTAAA	TGAAACGCTT	CTTTCAAAAT	TTGACTGTCG	TATTGTTCCA	11880
	CTGCATCAAT	AAACACTTGA	TGATTATGAT	GTATGCGTTC	AAAATCTTGC	GGGTTCTGTT	11940

	AAAATGAGTT	TAAATATTGA	TGATTAGATG	CTTTGATTAA	TGTTTCATGA	AATTCAAAGT	12060
	CATGCTTCGT	AAATGATTCT	GCATCCTCAA	ATTTTACTGC	CACTTTCATC	ATTTCAAGTT	12120
5	GTTTCTTCAT	TTCTTTTACG	ATAGGTAGTC	GCTCTTGATT	TTTAACTCTT	GAAAATGCAA	12180
	ATGACTCTAA	CATCAGTCGC	AAATCATACA	TTTCTTTCTT	TTCTTGTTCC	CCAAACGGCA	12240
	ACACATGTGC	ACCCATTCTT	TCTAATTGGA	TGAGTTGATT	TTGTTGCAAT	AATTTAAATG	12300
10	CATCTCGAAT	TGGCGAACGA	CTCACATTAA	ATTGCTTTGC	CATTTGATTT	TCAGTGAGTA	12360
	ACGTACCTTC	AGCTATGTGA	CCATTCACAA	TGCCTAAGCG	TAATTCTGCC	GCGATACCTT	12420
15	CTCCAGTTGT	CATACCTTCC	AACCATTTCT	CTGGATATCC	ATACATCATC	AAAGTCACTC	12480
	CTTCATTACA	CGACATACTT	GTATACAAGT	ATGTTAATAT	AGTTATTATG	AGTTTGCAAG	12540
	CGCTTTCTTT	ACGAGCACTA	AAATAGTGAC	CACCCCTTTT	CGATTTAAAT	TTAAAGGAAA	12600
20	TGGTCACTAT	CACACGAATG	ATTTAATTGT	TATGTTGTAT	GTGGGATATT	TCTAATTGTT	12660
	CTGTACTCAT	ATGCGCTTTA	GGTACTTCAA	TGCAATAATG	CGTTTCATGA	CAGTTTGGAC	12720
	ATTCGAATCG	ACGTGTTGTC	GCTGTATGTT	TCGCTTTGAT	AACTGCCCAC	AAAGATGGTG	12780
25	AGAATATATG	CTGGCAGTTA	GGACATAAAT	AGGCAACCTT	TTGTTGGTAA	TAAAAAGTAA	12840
	CACCAATGCC	ATAACCAATC	ATAAATGGTA	AAGCAATTAA	AAACGGCCAT	TTATTTTTCA	12900
	TCAAAATTGC	ACTTATAATG	CTAGAATATT	GAATTATTCC	TATAATACCA	GCACTAATCC	12960
30	AAATGTTACG	ACGAATACTT	TTCATTTCAG	CTGATTTACT	CATGACATGC	TCTATGTCTT	13020
	TTAAGTGTGT	GATTGGAGAC	GTCGACGCTT	CATTTACGTA	ATATTGAACA	TTTTAATTT	13080
35	TGTTTAATAC	CGCTTGTTGC	TGTTTAACTT	GTTGGTTAAT	TTCTTGTTGT	TTCATAGTTA	13140
	GTAAAGTATT	GAGCGTCTTC	AAAGTACCTT	CACCTTTTAG	CAACATATCT	ATATCGCTTA	13200
	ACGCÁCAACC	TAAATCTTTA	AGCAATAAGA	TTAACTCTAA	TGTTTGTCGC	TGTTGTTCTG	13260
40	TATACACACG	ACGCTTTCCT	TCTGTAAATC	CTTGTGGTTT	CAAAATACCT	TTGCGATCAT	13320
	AATATTGAAT	CGTTCGTGTT	GTCACATTGC	ATAATTTTGC	GAGTTCTCCA	GTCGAATAGT	13380
	TAGACATAGA	TTCCACCTCC	TATAATTACC	ATAGTTGATG	ACCCGACGTC	ACGAGCAAGT	13440
45	ACAATTTCCA	CATTTTAAAG	AAATTTATTA	TACTAGGCGT	CTTATTTTTA	TGATTTCGTA	13500
	CCATGTTGAT	TTACAAACTC	ACTCAAACTA	AGTAACACAC	CTACTAAACA	TCTACTCTGT	13560
	TATTTCAGAA	TGAATTTGTT	GTAATTTATC	TTCAACTTCA	GTAATCTCTG	TCGCACATTC	13620
50	TTTCAGTAAA	TCTCGATACT	TTTCCGTCTC	TGCATTGTTT	TTATAACGTA	TTTTATGTTC	13680
	TAAACTTGcC	CACATATCCA	TACCTATCGT	TCTAATTTGA	ATTTCAACAG	GCAATACCTC	13740

#### (2) INFORMATION FOR SEQ ID NO: 55:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1059 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

15

20

25

30

35

40

45

5

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

60	TCCGCCCTTT	TTTCATTGTT	CAATTTTGAT	ATTTCTTTTT	AGGTAAATTC	GGATAAGTTC
120	TATATATGTT	CACTTTGCTT	TATTCCAAAT	CTGTTCCTCA	TTAGTTGCTT	TAAAATAAAG
180	CACGATATGA	GCCAACCTGG	TTCACACCTT	AAATGTCTTT	CCGCTGTATC	TCAAGCTCTT
240	GTTATCCTGA	CCACTCGTTC	TGGATATGTG	ATTTACTACA	AATAAGTGCC	CCGTGAAAGT
300	GCTATCTGTC	CTTTACGCGC	TTTAGGTATT	AAAGAATTGA	TCTTAGATCC	TACAGATATC
360	TCGTATAGCT	CATGCATTCG	GACCAAACGA	CAATTAGGCA	CTCCTTTTAA	ATGGTCATCA
420	TTATGACTCA	GCTAACTTCT	CAATCACATT	TTATAGTTTT	TATGCTTGCC	CTTCATTACT
480	TGCTCCTGTA	TAATTCCAGT	CGCAGTCTTC	GTATATTTTT	TTGTTCGTCT	TTGCTTTAAC
540	ACAAGTCAAA	TAACCCTCCC	TTGCCATCGT	TGTCTTTGGG	ATATTCAACT	ATGACATCAC
600	TTAACGGTGC	TGACCATTCT	TAAATCCTCA	TCGCCTTTGC	ACGTAAAACT	AGCTCTTTGG
660	GATACTGTGC	AGTTGAGGTG	TGCGAATGCT	CATTACCTAT	TATTTGATTG	TCTAGACATG
720	GCGCTGGTTG	TATGTGTAGT	AATGTCGCCG	CTATAATTTC	TCGATAAAAT	CGTAACCTGT
780	CGCTCATTAT	TTACTGATTA	TACTTTTCTG	CGTTCATATC	TCTTGCGCTT	CTTAACATTG
840	CGGATCACGT	CGAACCAGTA	TAAGTGACAT	CATTTGGTTA	ATTTCTTGAA	GCTTCACTCC
900	TCTTTCCTGT	ATCTTCTCTT	CATGGTCTTA	ATCATAAAGC	GTGGCGTTCC	GAATGTTTTT
960	TCTGATTTTT	TCGCTTTTTT	CGGTTCAAAA	TCGTTGGTAT	CTCTCACATT	TCATATTCCG
1020	TTCTGTAGAT	ATTCAACTTC	CTCTnCATAT	TTTnATtTGA	TTTCTTCATC	TCTCTCCCTT
1059			nCGCCGCGC	CAATAATTCA	TTCTTCCACA	nTTGAGTCCT

(2) INFORMATION FOR SEQ ID NO: 56:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 30246 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

55

	GAAGTAAAAG	AAGAATTAAA	TTTAACATTA	ACAATGGATG	AAATTGAATA	TGTCGGGACA	60
	ATTGTAGGTC	CTGCATATCC	ACAACAGGAT	ATGTTAACTG	AGTTAAATGG	ATTTCGCGCA	120
5	TTAACCAAAA	TCGATTGGGA	AAACGTAACT	ATCAATAATG	AAATTACGGA	TATACGCTGG	180
	ATTGATAAAG	ATAATGATGC	GTTGATTGCG	CCTGCTGTCA	AAGTTTGGAT	TGAAACTTAT	240
10	GGTGGTAAAC	ATGACAAATA	ATGACACCAT	CATGTTACGA	CATTATGTCC	CACAAGATTA	300
10	TTCGATGTTA	GAAGCTTTTC	AATTAAGTGA	AAGTGATTTG	AAGTTTGTTA	AAACGCCAGA	360
	GGAAAATATT	ACAGCTGCAA	TGTCTGATAA	TGAAAGGTAT	CCCATCGTTG	TAATGGATGG	420
15	CAGGCAATGT	GTGGCCTTTT	TTACATTACA	TCGTGGAAAA	GGGGTCGCAC	CATTTAGCGA	480
	TAACCAAGAT	GCAGTATTTT	TCAGGTCATT	TAGTGTTGAT	CAACGTTATC	GTAATAGAGG	540
	AATAGGTAAA	GTGGTAATGG	AAAAATTGGC	GTCATTTATC	ACTTCAACAT	TTCAGGATAT	600
20	TAATGAGATT	GTGTTAACGG	TTAATACTGA	CAATCCACAT	GCCATGGCAC	TTTATCGCCA	660
	ACAAGGATAT	CAATATATGG	GAGATAGTAT	GTTCGTCGGA	AGACCTGTTC	ATATTATGGC	720
	GTTAACTATA	АААТАААТТА	AATTTAAAAG	CATCTTTACT	CATCGTCGAC	CACAACAATT	780
25	AATGATGAAT	AAAGGTGCTT	TTTGTTATAG	ATCATCGGAC	AATTTACTAT	AGTAAAAAGC	840
	GACCTAGTGA	ACAATTGACA	TATATCCACA	GGTCGCTTAA	CTTAAGTTAT	ATTGCTAGTT	900
	GCGATTAATT	GATAGACTCA	TCATTTTTGC	GCTGTCGAGA	TGGTCTTTTT	ATTAAAAATG	960
30	CCGTAATCCA	AGCCGTAATC	GGAATACTGA	TTGCAACGGC	AATACCGCCT	AAAATAATAG	1020
	AAATAAATTC	TTGGGCAAAT	ATTITCGAGT	TTATAATATG	ACCAAATGAA	TATTTAAGTT	1080
35	TGAAAAACCA	ААТАААТААА	GCAAGTTGGC	CACCAAAAAA	GGCAAGGTAA	ATCGTGTTCG	1140
	CAGATGTCGC	TAAAATTTCT	CTACCAACAC	GCATGCCAGA	TTGGAATAAT	TCGTATTGCG	1200
	TAACGTTgGA	TTCACTTGAT	GCAATTCATA	AATGGGTGAA	CTAATGGTAA	TTGTTAAATC	1260
10	TATCACAGCT	GCAATAACAG	CAAGAATAAT	AGTGAACACC	ATAAATTGAA	CCATATCAAT	1320
	GCCAATATTC	ATTGAATACA	CATATGTTTC	ATCTTGTTGT	TCGGTTGaAA	AGCCTTGTAG	1380
	ATGACCGAAG	TAGACCGATA	AATAAATGAG	TGTAATCAAC	AATATTGTTG	TAACGATAgT	1440
15	GCtGgATAAA	TGCaGCTTGT	GTTTTAACAT	TGTAACTATT	GAGTACGAAT	AAATTACAAG	1500
	CGCCAATAAT	AATGCAGAAA	AAGAATGTGA	CGACATAAAT	CGGTACGCCA	AAAATAATCA	1560
	ATACAATACT	AATAATTAAA	ATAGCGAAAT	TTAAAAATAG	GGTTAAATAA	GAGATGAATC	1620
50	CCTTTTTACC	TCCGAAAATT	ATCATCAGAA	AGAGGAGCAA	TAACGCCAAT	ATAAATACAG	1680
	CATTCATTGT	TTCGCCCTCC	TTAATGTTTC	AAATATTTCC	ATAAACAATA	TTGTGATAGG	1740

	CATCGAAATA	GTATAAGTCA	CTGTATTGGC	ATTTTTTAAA	AAGATTAAAA	ACATAGGTAG	1860
	TGCACCGGAT	AAATATGAGA	ATAATAAGAT	GTTAGTCATT	GTTCCCATAA	TATCTTGGCC	1920
5	GATGTTTCGC	CCAGCAAGCG	CCCATCTCCT	CATTGAAATG	TGTGGCGTAC	GCTGTAAAAT	1980
	TTCATGCATA	CCACTAGCAA	TTGTAATTGC	AACATCCATA	ATAGCGCCAA	GTGAACCTAT	2040
	TAACACTGAG	GCTAGGAAGA	TATCTTTCGG	TGGTAATGAT	AAAAAGTTCA	TCGTTTCATA	2100
10	TTTAATGCCT	TTACCATCTG	TCATATATAT	GATTAATTCT	GTTAAACCTA	TACTCAAAAA	2160
	AGTTCCGATA	ATTGTACTGG	CTATGGTAAT	GAGTGTACGC	ATATGCCAGC	CTGTAACGAG	2220
15	CAATAAAGTG	AGTATTGTTG	AACAGATCAT	GGCAATGGTC	ATGAGTAAGA	TAAATTAAT	2280
13	ATTGCTATGT	TGAATATGAA	TGTAAATTGC	GATTAATATG	GCAATAGAAT	TCAAGATTAA	2340
	CGATAAAATC	GATTGCAGTC	CGACTTTGCG	ACCAACCAAT	AATACAGTTA	ATAAGAACAA	2400
20	ACCAGTGATG	ATAACCGTTA	AGGTATCACG	CTTCTTTTCT	ATAATATAAG	CATCACTCGG	2460
	CTTGTTAGAA	ATATGTAATA	ATACTTTTTC	GTGTGTGCGA	AATGCCTCAG	AATCTGCTTG	2520
	CGATTTGACG	TACTGATGAT	TAATCGTCGT	CGTTTCTCCA	GCAAATTGAC	CATTTAATAT	2580
25	TTTGACTTTT	AATTGATTTT	TATATTTAAT	ATCACGATTA	TTTTGTGCAT	CTTTTGTAGG	2640
	TGTCGAAGAA	ACATGTTTGA	CATCTATAAT	TTGACCAATT	GGTTTGTTGT	AAAAGTTCTC	2700
	ATTATTGAAT	GTAAATAAAA	TAGCACCAAT	GAATGCGATG	CAGAACAAAC	CTAAAATTAT	2760
30	ATTAAATGGC	TTTGTAAATA	AATTTCTATA	TTTCAAAAAC	AAAACCCCAA	TTCTATGAAT	2820
	GAATTAATAT	GGTGATTATA	CGCCCTTAAT	TTTTTATTTT	CAAAGATATT	ACTGCTAAGT	2880
	GTAAAACGAA	AATCATCATT	GATAGCATCG	AATTACTTAA	TGGAATGTAG	ACGTTTTAGT	2940
35	CATTAATTGC	TGAATAAGTG	TTAATAATAT	GCCAATATCA	CTCTTTGTAT	AAGGCTCCTT	300 <b>0</b>
	TGTAATAGCA	CATATCGTTC	TTTTTAATTC	AGTATGATCT	AATTTTATAT	CTATCCATGA	3060
40	TTTAGATTCT	GGTAAATGTA	TATTTTGTGA	TGAAATGATG	TAACCTTCTT	TTTGACGAAG	3120
40	GAGATACTGC	GCAAGTGGTT	GGCTACTGAT	TGTGTATACA	TCTGATTTAG	TAATCTTGCG	3180
	CAATTGTTTT	TTTACAGTTT	CGGCAAATGG	TGCCAAGCAA	TAAATATGAC	TATGCTCAAA	3240
<b>4</b> 5	CTGAATTAAT	GGTGGGTGTG	TCGCCATCGT	AATTGGATCG	TCTGAAGGCG	CATATAAATG	3300
	ATAGTGCTCT	TCGAATAAAG	GTAGCATATG	TAATTGTTTG	TGTTTACGTA	TTTCTGGTGT	3360
	AAGTTCCGTG	AAACCAATGT	CTATATTCCC	ATTTAATACG	CTATTTATAA	TTGTGTCATG	3420
50	TTCTAATAAG	CTCGGTATGA	CATGTGTATC	ATTTTGTAAA	TGAAACGTTT	GGATAAGTGG	3480
	TAGTAACATG	TGGGATACGT	CACTCTCATC	ATAGCCAATG	TAGATACTTT	TATTTTTAGT	3540

	TTCATTAAAT	AATAATTTCC	CTTCAGATGT	GAGCGTAATA	TTGCGTCCTT	GCTTTTTAAA	3660
	TAAAGACACA	TTAAGTTCTT	GTTCTAATAA	TGTAATITGA	CGGCTTATCG	CTGATTGAGC	3720
5	AATGTTTAGT	TCAAGTGCTG	TTTCGGAGAT	ATGTTCTCTT	TTAGCGACCT	CGATAAAATA	3730
	TCTTAATTGT	TTAATTTCCA	TAGCGATATA	GGCACCTCCA	AAAATGAGTG	TTTTGTAACT	3840
10	ATTATAGCAA	TATTATTGAT	AAATGTTCTA	TTTTTTAGAT	GAATATCTTC	TATTTTATAT	390 <b>0</b>
70	ATTGAACAGA	TAAATTTTTT	AGATTATAGT	AATTATCATT	AATAACTAAT	ATCAGAATAT	3960
	TCTAAAAAAG	GGGTGTGCAT	CATGCACAAT	GAGAAATTAA	TTAAAGGCTT	ATATGACTAT	4020
15	CGTGAGGAAC	ATGATGCGTG	TGGTATTGGT	TTTTATGCGA	ATATGGATAA	TAAAAGGTCT	4080
	CACGACATCA	TTGATAAATC	GCTTGAAATG	TTGCGACGCT	TAGATCACAG	GGGCGGGGTC	4140
	GGCGCAGATG	GCATCACTGG	TGATGGCGCA	GGTATTATGA	CTGAAATACC	TTTTGCATTT	4200
20	TTCAAACAAC	ATGTAACGGA	CTTTGATATC	CCAGGTGAAG	GTGAATATGC	CGTGGGGTTA	4260
	TTTTTTTCCA	AAGAACGCAT	TTTAGGTTCT	GAACATGAAG	TAGTTTTTAA	AAAATATTTT	4320
	GAAGGCGAAG	GGTTATCAAT	TCTTGGTTAT	CGTAATGTAC	CAGTTAATAA	AGATGCCATT	4380
25	GCTAAACATG	TAGCAGATAC	GATGCCAGTC	ATTCAACAAG	TGTTTATTGA	TATTAGGGAC	4440
	ATTGAAGATG	TTGAAAAGCG	TTTGTTTTTA	GCGAGAAAAC	AATTAGAGTT	CTATTCGACT	<b>4</b> 50 <b>0</b>
	CAGTGCGATT	TAGAATTGTA	TTTTACGAGC	TTATCACGCA	AAACAATTGT	ATATAAAGGT	4560
30	TGGTTACGAT	CAGACCAAAT	TAAAAAACTA	TATACAGATT	TATCGGATGA	TTTATATCAA	4620
	TCAAAGCTAG	GGTTAGTGCA	TTCGAGATTT	AGTACGAATA	CATTCCCGAG	TTGGAAAAGG	4680
a.r.	GCACATCCTA	ACCGTATGTT	AATGCATAAT	GGTGAGATTA	ACACGATTAA	AGGTAATGTA	4740
35	AACTGGATGC	GAGCACGCCA	ACATAAATTA	ATCGAAACAT	TATTTGGCGA	GGATCAACAT	4800
	AAAGTGTTTC	AAATTGTCGA	TGAGGATGGT	AGTGACTCTG	CCATTGTAGA	TAATGCGCTA	4860
10	GAGTTCTTAT	CGTTAGCCAT	GGAGCCAGAA	AAGGCAGCGA	TGTTACTCAT	ACCTGAACCT	4920
	TGGTTATATA	ATGAAGCGAA	TGATGCAAAT	GTACGTGCGT	TTTATGAATT	TTATAGTTAT	4980
	TTAATGGAAC	CGTGGGATGG	TCCTACAATG	ATTTCGTTCT	GTAACGGTGA	CAAACTTGGC	5040
<b>1</b> 5	GCGCTTACAG	ATAGAAATGG	ATTACGTCCA	GGTCGTTATA	CGATTACTAA	AGATAACTTT	5100
	ATTGTCTTTT	CATCTGAAGT	GGGTGTTGTG	GACGTACCTG	AAAGTAATGT	TGCTTTTAAA	5160
	GGTCAATTGA	ATCCTGGAAA	GTTATTGCTT	GTTGATTTTA	AACAGAATAA	AGTCATTGAA	5220
50	AATAATGATT	TAAAAGGTGC	GATTGCTGGA	GAATTACCAT	ATAAAGCGTG	GATTGATAAC	5280
	CATAAAGTTG	ACTTTGATTT	TGAAAATATA	CAATATCAAG	ATTCGCAATG	GAAAGATGAG	5340

	CAGGAACTTG	TAGAAGGTAA	GAAGGATCCT	ATCGGTGCAA	TGGGATATGA	TGCGCCAATT	5460
5	GCAGTGTTGA	ACGAGCGACC	AGAATCACTA	TTTAATTACT	TTAAACAGCT	GTTTGCACAA	5520
5	GTTACGAATC	CACCAATTGA	TGCGTATCGT	GAAAAAATCG	TAACGAGTGA	ACTTTCTTAT	5580
	TTAGGTGGCG	AAGGTAACTT	ACTAGCACCT	GACGAAACGG	TTTTAGATCG	TATTCAATTG	5640
10	AAAAGGCCGG	TATTGAATGA	ATCACACTTA	GCAGCGATTG	ATCAGGAACA	TTTTAAATTA	5700
	ACTTATTTAT	CAACGGTATA	TGAAGGGGAT	TTGGAAGATG	CGTTAGAAGC	ATTAGGCCGA	5760
	GAAGCAGTGA	ATGCTGTAAA	GCAAGGCGCT	CAAATTCTAG	TGTTAGATGA	TAGTGGATTA	5820
15	GTTGATAGCA	ATGGCTTTGC	AATGCCGATG	TTACTCGCAA	TAAGTCATGT	GCATCAATTA	5880
	CTTATTAAAG	CAGATTTACG	TATGTCTACA	AGTTTAGTCG	CTAAATCTGG	TGAGACACGA	5940
	GAAGTGCATC	ATGTTGCTTG	TTTACTCGCA	TATGGCGCGA	ATGCAATTGT	GCCATACCTA	6000
20	GCGCAACGTA	CAGTTGAACA	ACTGACATTG	ACAGAAGGGT	TACAAGGCAC	CGTTGTCGAT	6060
	AATGTTAAGA	CATATACGGA	TGTATTGTCA	GAAGGTGTCA	TTAAAGTAAT	GGCTAAGATG	6120
	GGAATTTCGA	CAGTGCAAAG	TTATCAAGGG	GCACAAATAT	TTGAAGCGAT	TGGCTTGTCT	6180
25	CATGATGTGA	TTGATCGTTA	TTTTACTGGG	ACACAGTCTA	AGTTATCTGG	TATTTCGATT	6240
	GATCAAATTG	ATGCTGAAAA	TAAAGCACGT	CAACAAAGTG	ATGATAATTA	TCTTGCATCA	6300
	GGTAGTACAT	TCCAATGGAG	ACAACAAGGT	CAACATCATG	CTTTTAATCC	GGAATCTATT	6360
30	TTCTTATTGC	AGCACGCATG	TAAAGAAAAT	GACTATGCGC	AATTTAAAGC	ATACTCTGAA	6420
	GCGGTGAACA	AAAATAGAAC	AGATCACATT	AGACATTTAC	TTGAATITAA	AGCATGTACA	6480
35	CCGATTGACA	TCGACCAAGT	TGAACCGGTA	AGTGACATTG	TCAAACGCTT	TAATACAGGG	6540
	GCGATGAGTT	ATGGATCGAT	TTCAGCGGAA	GCACATGAAA	CGTTAGCACA	AGCCATGAAC	6600
	CAATTAGGTG	GAAAGAGTAA	TAGTGGTGAA	GGTGGCGAAG	ATGCAAAACG	TTATGAAGTA	6660
40	CAAGTTGATG	GAAGCAACAA	AGTAAGTGCG	ATTAAACAAG	TTGCTTCTGG	GCGTTTTGGT	6720
	GTAACTAGTG	ATTATTTACA	ACATGCCAAA	GAAATTCAAA	TTAAAGTTGC	GCAAGGTGCA	6780
	AAGCCTGGTG	AAGGTGGTCA	ATTACCTGGT	ACTAAGGTAT	ATCCGTGGAT	TGCGAAGACA	6840
45	AGAGGGTCAA	CGCCAGGTAT	CGGTCTGATT	TCACCACCGC	CACATCATGA	TATTTATTCA	6900
	ATAGAAGATT	TAGCGCAACT	GATACATGAT	TTGAAAAATG	CGAATAAAGA	TGCAGATATC	6960
	GCGGTAAAAT	TAGTTTCGAA	AACAGGTGTT	GGTACCATTG	CATCTGGGGT	GGCAAAAGCA	7020
50	TTTGCAGATA	AAATTGTCAT	CAGTGGTTAC	GATGGTGGTA	CAGGGGCTTC	ACCCAAAACG	7080
	AGTATTCAGC	ATGCCGGTGT	TCCTTGGGAG	ATTGGTTTAG	CAGAAACACA	TCAAACATTA	7140

	AAAGATGTAG	CGTACGCATG	TGCGCTTGGA	GCGGAAGAAT	TTGGATTTGC	AACTGCACCA	7260
	TTAGTGGTGT	TGGGCTGTAT	TATGATGCGT	GTATGCCATA	AAGATACATG	TCCAGTAGGA	7320
5	GTTGCAACTC	AAAACAAAGA	TTTACGTGCT	TTATATAGAG	GTAAAGCACA	TCATGTTGTT	7380
	AATTTTATGC	ATTTTATTGC	ACAAGAATTA	AGAGAAATTT	TAGCATCTTT	AGGTTTGAAA	7440
	CGTGTAGAAG	ACTTAGTTGG	AAGAACTGAT	TTATTACAAC	GATCATCAAC	ATTAAAAGCG	7500
10	AATAGCAAAG	CGGCTAGTAT	TGATGTTGAA	AAACTGTTAT	GTCCTTTCGA	TGGGCCAAAC	7560
	ACAAAAGAAA	TTCAACAAAA	TCATAATCTT	GAGCATGGAT	TTGATTTAAC	TATATTTAAA	7620
15	GAAGTAACGA	AGCCATATAT	TGCTGAAGGG	CGTCGCTATA	CAGGTAGCTT	TACAGTAAAT	7680
	AATGAACAAC	GTGATGTAGG	GGTTATTACA	GGTAGTGAGA	TTTCGAAACA	ATATGGAGAA	7740
	GCAGGACTTC	CTGAAAATAC	AATTAATGTT	TATACGAATG	GTCATGCTGG	TCAAAGTCTT	7800
20	GCAGCATATG	CACCGAAAGG	CTTAATGATT	CATCATACTG	GAGATGCGAA	TGACTATGTT	7860
	GGTAAAGGAT	TATCTGGTGG	TACGGTCATT	GTCAAAGCAC	CTTTTGAAGA	ACGACAAAAT	7920
	GAAATTATTG	CTGGTAACGT	CTCATTCTAT	GGTGCGACAA	GTGGTAAGGC	ATTTATTAAC	7980
25	GGTAGTGCAG	GAGAAAGATT	CTGTATTAGA	AATAGTGGTG	TAGATGTTGT	CGTTGAAGGT	8040
	ATCGGCGACC	ATGGATTAGA	GTATATGACT	GGTGGACATG	TCATTAATTT	AGGTGATGTA	8100
	GGTAAGAACT	TCGGTCAAGG	TATGAGTGGT	GGTATTGCTT	ACGTTATCCC	GTCTGATGTA	8160
30	GAAGCTTTTG	TTGAAAATAA	TCAACTAGAT	ACGCTTTCGT	TTACAAAGAT	TAAACACCAA	8220
	GAAGAAAAAG	CATTCATTAA	GCAAATGCTG	GAAGAACATG	TGTCACACAC	GAATAGTACG	8280
	AGAGCGATTC	ATGTGTTAAA	ACATTTTGAT	CGCATTGAAG	ATGTCGTCGT	TAAAGTTATT	8340
35	CCTAAAGATT	ATCAATTAAT	GATGCAAAAA	ATTCATTTGC	ACAAATCATT	ACATGACAAT	8400
	GAAGÃTGAAG	CGATGTTAGC	TGCATTTTAC	GATGACAGTA	AAACAATCGA	TGCTAAACAT	8460
	AAACCAGCCG	TTGTGTATTA	AGGAAAGGGG	GAGATACGAT	GGGTGAATTT	AAAGGATTTA	8520
10	TGAAGTATGA	CAAACAGTAC	TTAGGTGAAT	TATCACTGGT	AGACCGTTTG	AAGCATCATA	8580
	AAGCATATCA	ACAACGATTT	ACTAAAGAAG	ATGCCTCTAT	CCAAGGTGCA	CGATGTATGG	8640
15	ATTGTGGAAC	GCCGTTTTGT	CAAACCGGAC	AACAGTATGG	TAGGGAAACA	ATAGGTTGTC	8700
	CAATTGGAAA	CTACATTCCT	GAATGGAACG	ACTTAGTGTA	TCATCAAGAT	TTTAAAACTG	8760
	CTTATGAACG	CTTAAGCGAA	ACAAATAACT	TTCCTGACTT	TACAGGGCGT	GTATGTCCTG	8820
50	CACCATGCGA	AAGTGCTTGT	GTGATGAAGA	TTAATAGAGA	ATCGATTGCG	ATTAAAGGTA	8880
	TTGAACGCAC	AATTATTGAT	GAAGCTTTTG	AAAATGGTTG	GGTAGCGCCG	AAAGTTCCGA	8940

	CTGAAGAACT	TAATCTACTA	GGATATCAAG	TAACTATTTA	TGAACGTGCT	AGAGAATCAG	9060
	GCGGTTTATT	AATGTATGGT	ATTCCGAATA	TGAAACTTGA	TAAAGATGTG	GTTCGACGTC	9120
5	GTATTAAGTT	AATGGAAGAA	GCGGGCATTA	CTTTCATTAA	TGGTGTTGAA	GTCGGTGTTG	9180
	ATATTGATAA	AGCAACGTTA	GAATCTGAGT	ATGATGCCAT	TATATTATGT	ACTGGTGCAC	9240
	AAAAAGGTAG	AGATTTACCT	TTAGAAGGAC	GCATGGGTGA	TGGTATACAT	TTCGCTATGG	9300
10	ATTATTTAAC	TGAACAAACG	CAGTTGTTAA	ATGGAGAAAT	TGATGATATA	ACAATAACTG	9360
	CAAAAGATAA	GAATGTCATT	ATCATTGGTG	CTGGTGATAC	AGGGCAGAC	TGTGTAGCGA	9420
15	CAGCATTAAG	AGAAAATTGT	AAATCGATTG	TTCAATTTAA	TAAATATACG	AAATTGCCAG	9480
13	AAGCAATTAC	ATTTACAGAA	AATGCATCAT	GGCCTTTAGC	AATGCCGGTG	TTTAAAATGG	9540
	ACTATGCGCA	CCAAGAGTAC	GAAGCTAAGT	TTGGTAAGGA	ACCACGTGCA	TATGGTGTTC	9600
20	AAACAATGCG	TTACGATGTT	GACGATAAAG	GACACATACG	TGGTTTGTAT	ACTCAAATTT	9660
	TAGAGCAAGG	CGAAAATGGT	ATGGTCATGA	AAGAAGGACC	TGAAAGATTT	TGGCCTGCTG	9720
	ACCTTGTATT	ATTATCAATC	GGCTTCGAAG	GTACAGAACC	AACAGTACCG	AATGCTTTTA	9780
25	ACATTAAAAC	GGATAGAAAT	CGAATCGTGG	CGGATGATAC	AAACTATCAA	ACTAATAATG	9840
	AAAAGGTATT	TGCTGCTGGA	GATGCTAGAC	GTGGTCAAAG	TTTAGTTGTA	TGGGCAATTA	9900
	AAGAAGGTAG	AGGCGTAGCG	AAAGCAGTAG	ATCAGTATTT	AGCTAGTAAA	GTTTGTGTAT	9960
30	AATCTTTGTA	TGGAAATGGT	GGTTACGTTG	ACGTTGTGAC	ATGCTGAATC	GAGTTTGAAA	10020
	AAATCTAGTA	TCTATCAACG	TCACATGCCA	TCTTTGTAAC	CTAAAAACAA	AGGTTTGTAA	10080
	GACAACAAAT	AGATTAATTA	TAAGTAGTGA	TTTTTTACAT	TCGTTTATAG	GTCAACTGTA	10140
35	GTGGAAGACA	ATGATTTGTG	GTAATCATGT	AATGCTTAAA	AACAATATTG	ACTTTTACAG	10200
	AACOTTCATA	TATGATAAAT	ATTGTGTTTA	GGAGGAATAC	CCAAGTCCGG	CTGAAGGGAT	10260
	CGGTCTTGAA	AACCGACAGG	GGCTTAACGG	CTCGCGGGGG	TTCGAATCCC	TCTTCCTCCG	10320
40	CCATCAATAT	TTATATTAAA	TTCTATATAT	AATGAAGGTA	AGTGCTCAAA	TTTTGAGTAT	10380
	TTACCTTTTT	TATTTGTCTT	TGAATGGCTC	GTAATTTTTG	ATAATAGAAA	TGATAAGGCA	10440
45	TTGAGATTGG	AAGGGCATTT	GGCTTGTGCA	ATATACATAG	CTAAATGTCT	TTTTTGTTTT	10500
43	GTGAAATATG	ATGGATGGCT	TGTGTGGACA	AGTTTGCTAT	TTATAGATAT	GCATTTTTCA	10560
	ATTTAGGAGT	TGGCCATGCA	TCTACACTTT	ATAATGGTGA	GAGCGTGGTG	AGGTATTGTT	10620
50	AATAACGCAA	TTGTAGCGAG	GAGTTATTGC	TACATATGTC	GTTATGGCTC	ATTGATTTTC	10680
	TGAAATGGCT	ACCCCAGATA	ATTGTGACAA	ААТАААААТА	TTTTGTTGAA	AGCCTTTACA	10740

	TAAAAAGAGA	AGATGTAAAA	GCCATCGTAA	CCGCTATTGG	GGGAAAAGAA	AATCTTGAAG	10860
	CTGCAACGCA	TTGTGTAACA	CGATTACGTT	TAGTGCTGAA	GGATGAAAGT	AAAGTTGATA	10920
5	AAGACGCATT	AAGTAATAAC	GCGTTGGTCA	AGGGGCAGTT	TAAAGCAGAC	CATCAATATC	10980
	AAATTGTCAT	TGGTCCAGGA	ACAGTCGATG	AAGTGTATAA	GCAGTITATT	GATGAAACAG	11040
	GTGCTCAAGA	AGCTTCGAAA	GATGAAGCGA	AACAAGCAGC	TGCACAAAAA	GGGAATCCAG	11100
10	TACAACGTTT	GATCAAATTG	TEGGGGGATA	TTTTTATACC	AATATTACCT	GCGATTGTGA	11160
	CAGCTGGTTT	GTTAATGGGA	ATCAATAATT	TACTTACAAT	GAAAGGTTTA	TTTGGTCCAA	11220
	AAGCACTTAT	TGAGATGTAT	CCACAAATTG	CTGATATTTC	AAACATCATT	AATGTGATTG	11280
15	CGAGTACGGC	ATTTATTTTC	TTACCAGCAT	TAATTGGTTG	GAGTAGTATG	CGTGTATTTG	11340
	GTGGTAGTCC	GATTCTAGGC	ATAGTCTTAG	GTTTGATTTT	AATGCATCCG	CAATTAGTAT	11400
20	CTCAGTATGA	TTTGGCAAAA	GGGAATATTC	CGACGTGGAA	CTTATTTGGC	TTAGAGATTA	11460
20	AGCAGTTGAA	TTACCAAGGT	CAAGTGTTGC	CAGTETTAAT	TGCAGCTTAC	GTTCTAGCTA	11520
	AAATTGAAAA	AGGATTAAAT	AAAGTCGTTC	ACGATTCGAT	AAAAATGTTG	GTCGTTGGAC	11580
25	CCGTAGCGCT	TTTAGTTACT	GGATTTTTAG	CATTTATTAT	CATTGGACCA	GTTGCGTTAT	11640
	TGaTTGGTAC	AGGTATTACA	TCTGGTGTTA	CATTTATATT	CCAACATGCA	GGATGGCTTG	11700
	GCGGAGCAAT	ATATGGATTG	TTATATGCAC	CACTTGTAAT	TACAGGACTA	CACCATATGT	11760
30	TTTTAGCAGT	AGATTTCCAA	TTGATGGGTA	GCAGCTTAGG	CGGTACGTAT	TTATGGCCAA	11820
	TTGTTGCGAT	TTCCAATATT	TGTCAGGGCT	CTGCAGCATT	TGGAGCATGG	TTTGTCTATA	11880
	AACGTCGTAA	AATGGTTAAA	GAAGAAGGCT	TGGCATTAAC	ATCTTGTATT	TCTGGTATGT	11940
35	TAGGTGTTAC	TGAACCAGCC	ATGTTCGGTG	TGAACTTACC	TCTGAAATAT	CCATTTATCG	12000
	CTGÇGATATC	AACGTCTTGT	GTATTGGGGG	CAATCGTTGG	TATGAATAAC	GTACTTGGAA	12060
	AAGTTGGTGT	TGGTGGCGTG	CCAGCATTCA	TTTCAATTCA	AAAAGAATTT	TGGCCAGTAT	12120
40	ATCTTATTGT	GACAGCTATT	GCTATTGTTG	TACCATGTAT	ACTAACAATT	GTGATGTCTC	12180
	ATTTTAGTAA	ACAAAAAGCG	AAAGAAATTG	TTGAAGATTA	ATAAAATAAA	AAAGGGCGT	12240
	TCGTTATTTG	GACGTCCTTT	ATTACGTTAT	AAGGTGGTAA	TTGTGTGTCG	AAAGAAATAG	12300
45	ATTGGAGAAA	ATCCGTTGTA	TATCAAATTT	ATCCTAAGTC	GTTTAATGAT	ACGACGGGGA	12360
	ATGGTATAGG	AGATATCAAT	GGAATTATAG	AAAAATTGGA	TTATATCAAG	TTATTGGGTG	12420
50	TTGATTATAT	TTGGTTAACA	CCAGTGTATG	AATCACCGAT	GAATGATAAT	GGCTATGATA	12480
-	TCAGCAATTA	TTTAGAAATC	aATGAAGACT	TTGGAACGAT	GGATGATTTT	Gaaaagttaa	12540

	CGACGGAGCA	TGAATGGTTT	AAAGAAGCCC	GTAAATCTAA	AGATAACCCy	TATAGAGATT	12660
	ATTACTTTTT	CAGATCATCT	GAAGACGGGC	CGCCAACAAA	TTGGCATTCT	AAATTCGGTG	12720
5	GTAATGCATG	GAAGTATGAT	TCTGAGACAG	ATGAATATTA	TTTACATTTA	TTTGATGTCA	12780
	GTCAAGCTGA	TTTAAATTGG	GATAATCCGG	AAGTACGTCA	ATCGTTATAT	CGCATAGTCA	12840
	ATCATTGGAT	AGACTTCGGC	GTTGATGGTT	TTCGATTTGA	TGTCATTAAC	TTAATTTCTA	12900
10	AAGGTGAATT	TAAGGACTCT	GACAAAATAG	GTAAAGAATT	TTATACGGAT	GGTCCTAGAG	12960
	TGCATGAGTT	TCTGCATGAA	TTAAATCGTC	AAACGTTTGG	TAACACTGAC	ATGATGACTA	13020
15	TAGGAGAAAT	GTCTTCGACG	ACGATTGAAA	ATTGTATTAA	GTATACACAA	CCAGAACGCC	13080
73	AAGAATTGAA	TAGTGTTTTT	AATTTTCATC	ATCTAAAGGT	TGATTATGTT	GATGGTGAAA	13140
	AGTGGACAAA	TGCGAgcTTG	nATTTTCATA	AGTTAAAGGA	AATTCTGATG	CAATGGCAAC	13200
20	GAGGTATTTA	TGACGGTGGC	GGATGGAACG	CGATTTTCTG	GTGTAATCAT	GATCAGCCAC	13260
	GGGTAGTGTC	TAGATTTGGT	GATGATACGT	CGGAAGAGAT	GAGGATACAA	AGTGCTAAAA	13320
	TGTTAGCTAT	CGCACTGCAT	ATGTTGCAAG	GGACGCCATA	TATTTACCAA	GGTGAAGAAA	13380
25	TTGGTATGAC	GGACCCACAT	TTTACATCAA	TAGCACAATA	TCGTGATGTT	GAATCGATTA	13440
	ATGCCTACCA	TCAGTTGTTA	AGTGAAGGGC	ATGCTGAAGC	GGATGTGTTA	GCGATTTTAG	13500
	GACAGAAGTC	ACGAGACAAT	TCGAGAACGC	CTATGCAATG	GAGTGATGAT	GTTAATGCTG	13560
30	GATTTACAGC	TGGTAAnCCT	TGGATTGATA	TTTCGGAAAA	TTATCATCAG	GTCAACGTTA	13620
	GACAAGCACT	TCAGAATAAA	GAGTCTATTT	TCTATACGTA	TCAAAAATTA	ATACAATTAA	13680
	GACATACGCA	TGATATTATT	ACGTATGGAG	ACATTGTGCC	ACGTTTTATG	GATCATGATC	13740
35	ATTTATTTGT	TTATGAACGT	CATTATAAGA	ATCAACAATG	GCTAGTAATT	GCGAATTTCT	13800
	CAGCATCGGC	TGTTGATTTG	CCAGAAGGAT	TGGCTAGAGA	AGGTTGTGTT	GTGATTCAAA	13860
	CAGGCACAGT	GGAAAATAAT	ACGATAAGCG	GGTTTGGTGC	AATTGTAATC	GAAACAAACG	13920
40	CGTAAAATAA	ATTGAGTGGA	TGCGTTTATA	TGGCGAAACA	AAAAAAGTTT	ATGAAGATTT	13980
	ATGAGGCGTT	GAAAGAAGAT	ATATTAAACG	GGCAGATTCA	ATATGGTGAA	CAAATTCCGT	14040
45	CTGAACATGA	TTTGGTGCAA	TTGTACCAGT	CATCTCGAGA	GACCGTGCGT	AAGGCATTAG	14100
,,,	ATTTGTTGGC	ATTAGACGGC	ATGATTCAAA	AGATTCATGG	TAAAGGGTCA	CTTGTCATTT	14160
	ATCAGGAGGT	TACAGAGTTT	CCATTTTCTG	AACTTGTTAG	TTTTAAAGAA	ATGCAAGAAG	14220
50	AAATGGGCGT	CGCATATTTA	ACTGAAGTTG	TTGTGAATGA	GGTTGTTGAA	GCGCATGAAG	14280
	TTCCAGAAGT	TCAACATGCT	TTAAACATCA	ATTCTAGTGA	ATCACTCATT	CATATTGTTA	14340

	TTGTTTCAGA	TATAGGTAAT	GATGTTGCGA	GTGATTCTAT	TTATGATTAT	TTGGAAAAGG	14460
	TATTAAATCT	TAATATTAGT	TATTCAAGTA	AGTCTATTAC	TTTTGAACCG	TTTGATGAAC	14520
5	AAGCATATCA	ATTGTTTGGT	GATGTATCGG	TGGCTTATTC	AGCAACAGTT	CGAAGTATTG	14580
	TGTATTTAGA	AAATACAATG	CCGTTTCAAT	ATAATATTTC	AAAACATCTT	GCAAATGAAT	14640
	TTAAATTTAA	TGACTTCTCA	AGACGTCGTA	TAAAGTAAAC	AATGATATAA	ATGATTTATA	14700
10	CTTGCAATTA	ACTATTAAAA	TATAGTAATA	TATATCTTGC	CGTGCTAGGT	GGGGAGGTAG	14760
	CGGTTCCCTG	TACTCGAAAT	CCGCTTTATG	CGAGGCTTAA	TTCCTTTGTT	GAGGCCGTAT	14820
	TTTTGCGAAG	TCTGCCCAAA	GCACGTAGTG	TTTGAAGATT	TCGGTCCTAT	GCAATATGAA	14880
15	CCCATGAACC	ATGTCAGGTC	CTGACGGAAG	CAGCATTAAG	TGGATCATCA	TATGTGCCGT	14940
	AGGGTAGCCG	AGATTTAGCT	AACGACTTTG	GTTACGTTCG	TGAATTACGT	TCGATGCTTA	15000
20	GGTGCACGGT	TTTTTATTTT	TTAAATATTA	AACCGATTAT	TAAGAGTTGA	AAATATATAA	15060
20	TTATAGAAGC	TACTTTCTTG	AAGACAATTC	AGCGTATTAT	ACGTGGAACA	TGTTTGTGGG	15120
	AAGTAGCTTT	TTTATATGTG	AAGTTTGATT	CAAGTGAACT	CGATGTGCAG	TTTGAATGAT	15180
25	TTTTGTGTCA	ATGAAAAGTA	AGAAGTTATA	ATTTGATGAT	AAAGAAATGA	TGGTGAAATG	15240
	AGGGGGAGTA	TCTTACAATA	GAATTATTAA	TGAGATACGT	TATGATTATT	GACAATCAAA	15300
	TGCCTACGGA	GGACATATGC	AAATATATTT	AAGTACTTTA	ACAGAGTTAG	ATTATGATAA	15360
30	ATCTTTAAAT	AGTATTGAAG	AAAGTTTTGA	TGATAATCCT	GAAACGAGTT	GGCAAGCACG	15420
	TGCGAAAGTA	AAACATTTAA	GAAAATCTCC	TTGCTATAAT	TTTGAATTAG	AAGTAATAGC	15480
	GAAAAATGAA	AATAACGATG	TCGTTGGACA	CGTTTTATTA	ATTGAAGTAG	AAATTAATAG	15540
35	TGATGATAAG	ACGTATTATG	GTTTGGCGAT	TGCCTCTTTA	TCAGTTCATC	CTGAATTACG	15600
	TGGACAAAAA	TTAGGTCGTG	GCTTGGTTCA	AGCAGTAGAA	GAGCGTGCCA	AAGCACAAGA	15660
	GTATAGTACG	GTTGTTGTAG	ACCATTGTTT	TGACTACTTT	GAAAAGTTGG	GTTATCAAAA	15720
40	TGCTGCTGAG	CATGACATTA	AATTAGAATC	TGGTGATGCA	CCGTTACTTG	TAAAATATTT	15780
	ATGGGATAAT	TTGACGGATG	CACCACACGG	AATCGTAAAA	TTTCCAGAAC	ATTTTTATTA	15840
	ATTGTTCAAT	TAAGAAGTAA	AGGTATTATC	ATGCTATAAT	GAGAGGTAAT	TGTTTATGGA	15900
45	GGTGCTAACT	TGAATTATCA	AGCCTTATAT	CGTATGTACA	GACCCCAAAG	TTTCGAGGAT	15960
	GTCGTCGGAC	AAGAACATGT	CACGAAGACA	TTGCGCAATG	CGATTTCGAA	AGAAAAACAG	16020
50	TCGCATGCTT	ATATTTTTAG	TGGTCCGAGA	GGTACGGGGA	AAACGAGTAT	TGCCAAAGTG	16080
20	TTTGcTAAAG	CAATCAACTG	TCTAAATAGC	ACTGATGGAG	AACCTTGTAA	TGAATGTCAT	16140

	AATAATGGCG	TTGATGAAAT	AAGAAATATT	AGAGACAAAG	TTAAATATGC	ACCAAGTGAA	16260
	TCGAAATATA	AAGTTTATAT	TATAGATGAG	GTGCACATGC	TAACAACAGG	TGCTTTTAAT	16320
5	GCCCTTTTAA	AGACGTTAGA	AGAACCTCCA	GCACACGCTA	TTTTTATATT	GGCAACGACA	16380
	GAACCACATA	AAATCCCTCC	AACAATCATT	TCTAGGGCAC	AACGTTTTGA	TTTTAAAGCA	15440
	ATTAGCCTAG	ATCAAATTGT	TGAACGTTTA	AAATTTGTAG	CAGATGCACA	ACAAATTGAA	16500
10	TGTGAAGATG	AAGCCTTGGC	ATTTAtcgCT	AAAGCGTCTG	AAGGGGGTAT	GCGTGATGCA	16560
	TTAAGTATTA	TGGATCAGGC	TATTGCATTT	GGTGATGGTA	CGTTAACATT	GCAAGATGCG	16620
15	TTGAATGTCA	CAGGTAGCGT	ACATGATGAA	GCGTTGGATC	ACTTGTTTGA	TGATATTGTA	16680
15	CAAGGTGACG	TACAAGCATC	ТТТТАААААА	TACCATCAGT	TTATAACAGA	AGGTAAAGAA	16740
	GTGAATCGCC	TAATAAATGa	TATGATTTAT	TTTGTCaGAG	ATACGATTAT	GAATAAAACA	16800
20	TCTGAGAAAG	ATACTGAGTA	TCGAGCACTG	ATGAACTTAG	AATTAGATAT	GTTATATCAA	16860
	ATGATTGATC	TTATTAATGA	TACATTAGTG	TCGATTCGTT	TTAGTGTGAA	TCAAAACGTT	16920
	CATTTTGAAG	TGTTGTTAGT	AAAATTAGCT	GAGCAGATTA	AGGGTCAACC	ACAAGTGATT	16980
25	GCGAATGTAG	CTGAACCAGC	ACAAATTGCT	TCATCGCCAA	ACACAGATGT	ATTGTTGCAA	17040
	CGTATGGAAC	AGTTAGAGCA	AGAACTAAAA	ACACTAAAAG	CACAAGGAGT	GAGTGTCGCT	17100
	CCTGTTCAAA	AATCTTCGAA	AAAGCCTGCG	AGAGGCATAC	АААААТСТАА	AAATGCATTT	17160
30	TCAATGCAAC	AAATTGCAAA	AGTGCTAGAT	AAAGCGAATA	AGGCAGATAT	CAAATTGTTG	17220
	AAAGATCATT	GGCAAGAAGT	GATTGATCAT	GCCAAAAATA	ATGATAAAAA	ATCACTCGTT	17280
	AGTITATTGC	AAAATTCGGA	ACCTGTGGCG	GCAAGTGAAG	ATCACGTACT	TGTGAAATTT	17340
35	GAGGAAGAGA	TCCATTGTGA	AATCGTCAAT	AAAGACGACG	AGAAACGTAG	TAGTATAGAA	17400
	AGTGTTGTAT	GTAATATCGT	таатааааас	GTTAAAGTTG	TTGGTGTACC	ATCAGATCAA	17460
	TGGCAAAGAG	TTCGAACGGA	ATATTTACAA	AATCGTAAAA	ACGAAGGCGA	TGATATGCCA	17520
10	AAGCAACAAG	CACAACAAAC	AGATATTGCT	CAAAAAGCAA	AAGATCTTTT	CGGTGAAGAA	17580
	ACTGTACATG	TGATAGATGA	AGAGTGATAC	ATGACAAGCG	ATATAATCGT	ATGTATAATG	17640
	AAAGAAACAT	CATTTTATTG	ATAAATATTT	ATTGATTTTC	AAGGAGGAAA	TGGAATATGC	17700
15	GCGGTGGCGG	AAACATGCAA	CAAATGATGA	AACAAATGCA	AAAAATGCAA	AAGAAAATGG	17760
	CTCAAGAACA	AGAAAAACTT	AAAGAAGAGC	GTATTGTAGG	AACAGCTGGC	GGTGGCATGG	17820
50	TTGCAGTTAC	TGTAACTGGT	CATAAAGAAG	TTGTCGACGT	TGAAATCAAA	GAAGAAGCTG	17880
50	TAGACCCAGA	CGATATTGAA	ATGCTACAAG	ACTTAGTGTT	AGCAGCTACT	AATGAAGCGA	17940

	TCCCTGGaAT	GTGATCATAG	ATGCATTATC	CAGAACCTAT	ATCAAAACTT	ATTGATAGCT	18060
	TTATGAAATT	GCCAGGCATT	GGTCCAAAGA	CAGCCCAACG	TCTGGCTTTT	CATACCTTAG	18120
5	ATATGAAAGA	AGACGATGTT	GTTCAGTTTG	CCAAAGCATT	AGTAGATGTT	AAGAGAGAAT	18180
	TAACATATTG	TAGCGTATGT	GGTCACATTA	CTGAAAATGA	TCCATGTTAT	ATTTGTGAAG	13240
	ATAAGCAAAG	AGATCGTTCA	GTTATTTGTG	TTGTGGAAGA	TGACAAAGAT	GTCATAGCTA	18300
10	TGGAAAAAAT	GAGAGAATAC	AAAGGTTTAT	ATCACGTTTT	ACATGGGTCT	ATTTCGCCTA	18360
	TGGATGGCAT	TGGACCAGAA	GATATTAATA	TTCCTTCATT	GATTGAACGC	TTGAAAAACG	18420
	ATGAAGTTAG	CGAATTAATC	TTAGCTATGA	ACCCGAACTT	AGAGGGGGAA	TCTACAGCCA	18480
15	TGTATATTTC	TAGATTAGTT	AAGCCTATAG	GTATCAAAGT	GACGAGATTA	GCACAAGGGT	18540
	TATCGGTAGG	TGGCGATTTA	GAGTATGCTG	ACGAAGTAAC	ATTATCTAAA	GCAATCGCAG	18600
20	GTAGAACAGA	AATGTAATKT	CTTCTATTAA	ACATTTTTGA	TTTTAATACT	ATAGTAAGAA	18660
20	AAGTCACAGT	GTAATCATTG	TGGCTTTTTT	TATGGTGTGG	TGTGATGTAC	TACTTTATTT	18720
	GCGGTGTGGC	GGTGGTATGG	TTTACCTAGT	TTTACTGAGG	GATGGGTAAT	CTTTAGGAAG	18780
25	CAAGCCGTTG	GTTGTGATTT	GTTACTTCTA	ATAGTAATGA	TGTGAATTGG	ATTATCGAAT	18840
	TAGATCTATG	GTTATGGTGT	GTTGGTGCTA	TTAATTTGAT	AAATGCGGTT	AATGACTATG	18900
	CAAATGAAAT	TCTTTTGTAA	TTGAAATGAT	AGATGCTGGC	TTAGTAAGTT	GTACTTCTTT	18960
30	GGTCTAAAGC	TTATTAAATC	AGCCTGTATA	GCGGTGTTTT	GAGAGATTAT	TTAAAACTTG	19020
	TAAATTTATT	TTTAATTTCT	GGTAAAAAAA	TAACGTTCTG	TTTTGCGTTT	TTTTTGATTG	19080
	ATATGGTTAG	AGAAAAATCT	GTTTCTTGTT	CTAAAAAACG	TACTATTTAT	AAGTGGGGAT	19140
35	TTTTTAAGTT	CGATTTTTAG	GATAAGGGCG	TTCAGTACAG	ATGACAAAGG	TGTAATTTTT	19200
	ACTGTTGTTA	AGCAGTTTGA	AAGCCTGTAT	AGTATTTATT	TGTTGAGGCA	AACAAAACAA	19260
	CTCAACTTAA	GAAATAACTT	GAATTACTAA	CGAAAATTAA	TTTTAAAAAG	TTATTGACTT	19320
40	AAATGTTAAT	AAAATGTATA	ATTAATTCTT	GTCGGTAAGA	AAAATGAACA	TTGAAAACTG	19380
	AATGACAATA	TGTCAACGTT	AATTCCAAAA	AACGTAACTA	TAAGTTACAA	ACATTATTTA	19440
	GTATTTATGA	GCTAATCAAA	CATCATAATT	TTTATGGAGA	GTTTGATCCT	GGCTCAGGAT	19500
45	GAACGCTGGC	GGCGTGCCTA	ATACATGCAA	GTCGAGCGAA	CGGACGAGAA	GCTTGCTTCT	19560
	CTGATGTTAG	CGGCGGACGG	GTGAGTAACA	CGTGGATAAC	CTACCTATAA	GACTGGGATA	19620
50	ACTTCGGGAA	ACCGRAGCTA	ATACCGGATA	ATATTTTGAA	CCGCATGGTT	CAAAAGTGAA	19680
50	AGACGGTCTT	GCTGTCACTT	ATAGATGGAT	CCGCGCTGCA	TTAGCTAGTT	GGTAAGGTAA	19740

	GAGACACGGT	CCAGACTCCT	ACGGGAGGCA	GCAGTAGGGA	ATCTTCCGCA	ATGGGCGAAA	19860
	gCtGaCGGAG	CAACGCCGCG	TGAGTGATGA	AGGTCTTCGG	ATCGTAAAAC	TCTGTTATTA	19920
5	GGGAAGAACA	TATGTGTAAG	TAACTGTGCA	CATCTTGACG	GTACCTAATC	AGAAAGCCAC	19980
	GGCTAACTAC	GTGCCAGCAG	CCGCGGTAAT	ACGTAGGTGG	CAAGCGTTAT	CCGGAATTAT	20040
	TGGGCGTAAA	GCGCGCGTAG	GCGGTTTTTT	AAGTCTGATG	TGAAAGCCCA	CGGCTCAACC	20100
10	GTGGAGGGTC	ATTGGAAACT	GGAAAACTTG	AGTGCAGAAG	AGGAAAGTGG	AATTCCATGT	20160
	GTAGCGGTGA	AATGCGCAGA	GATATGGAGG	AACACCAGTG	GCGAAGGCGA	CTTTCTGGTC	20220
	TGTAACTGAC	GCTGATGTGC	GAAAgCGTGG	GGATCAAACA	GGATTAGATA	CCCTGGTAGT	20280
15	CCACGCCGTA	AACGATGAGT	GCTAAGTGTT	AGGGGGTTTC	CGCCCCTTAG	TGCTGCAGCT	20340
	AACGCATTAA	GCACTCCGCC	TGGGGAGTAC	GACCGCAAGt	TGAAACTCAA	AGGAATTGAC	20400
20	GGGGACCCGC	ACAAGCGGTG	GAGCATGTGG	TTTAATTCGA	AGCAACGCGA	AGAACCTTAC	20460
20	CAAATCTTGA	CATCCTTTGA	CAACTCTAGA	GATAGAGCCT	TCCCCTTCGG	GGGACAAAGT	20520
	GACAGGTGGT	GCATGGTTGT	CGTCAGCTCG	TGTCGTGAGA	TGTTGGGTTA	AGTCCCGCAA	20580
25	CGAGCGCAAC	CCTTAAGCTT	AGTTGCCATC	ATTAAGTTGG	GCACTCTAAG	TTGACTGCCG	20640
	GTGACAAACC	GGAGGAAGGT	GGGGATGACG	TCAAATCATC	ATGCCCCTTA	TGATTTGGGC	20700
	TACACACGTG	CTACAATGGA	CAATACAAAG	GGCAGCGAAA	CCGCGAGGTC	AAGCAAATCC	20760
30	CATAAAGTTG	TTCTCAGTTC	GGATTGTAGT	CTGCAACTCG	ACTACATGAA	GCTGGAATCG	20820
	CTAGTAATCG	TAGATCAGCA	TGCTACGGTG	AATACGTTCC	CGGGTCTTGT	ACACACCGCC	20880
	CGTCACACCA	CGAGAGTTTG	TAACACCCGA	AGCCGGTGGA	GTAACCTTTT	AGGAGCTAGC	20940
35	CGTCGAAGGT	GGGACAAATG	ATTGGGGTGA	AGTCGTAACA	AGGTAGCCGT	ATCGGAAGGT	21000
	GCGGCTGGAT	CACCTCCTTT	CTAAGGATAT	ATTCGGAACA	TCTTCTTCAG	AAGATGCGGA	21060
	ATAACGTGAC	ATATTGTATT	CAGTTTTGAA	TGTTTATTTA	ACATTCAAAT	ATTITTTGGT	21120
40	TAAAGTGATA	TTGCTTATGA	AAATAAAGCA	GTATGCGAGC	GCTTGACTAA	AAAGAAATTG	21180
	TACATTGAAA	ACTAGATAAG	TAAGTAAAAT	ATAGATTTTA	CCAAGCAAAA	CCGAGTGAAT	21240
	AAAGAGTTTT	AAATAAGCTT	GAATTCATAA	GAAATAATCG	CTAGTGTTCG	AAAGAACACT	21300
45	CACAAGATTA	ATAACGCGTT	TAAATCTTTT	TATAAAAGAA	CGTAACTTCA	TGTTAACGTT	21360
	TGACTTATAA	AAATGGTGGA	AACATAGATT	AAGTTATTAA	GGGCGCACGG	TGGATGCCTT	21420
5.0	GGCACTAGAA	GCCGATGAAG	GACGTTACTA	ACGACGATAT	GCTTTGGGGA	GCTGTAAGTA	21480
50	AGCTTTGATC	CAGAGATTTC	CGAATGGGGA	AACCCAGCAT	GAGTTATGTC	ATGTTATCGA	21540

	GAGGAAGAGA	AAGAAAATTC	GATTCCCTTA	GTAGCGGCGA	GCGAAACGGG	AAGAGCCCAA	21660
	ACCAACAAGC	TTGCTTGTTG	GGGTTGTAGG	ACACTCTATA	CGGAGTTACA	AAGGACGACA	21720
5	TTAGACGAAT	CATCTGGAAA	GATGAATCAA	AGAAGGTAAT	AATCCTGTAG	TCGAAAATGT	21780
	TGTCTCTCTT	GAGTGGATCC	TGAGTACGAC	GGAGCACGTG	AAATTCCGTC	GGAATCTGGG	21840
	AGGACCATCT	CCTAAGGCTA	AATACTCTCT	AGTGACCGAT	AGTGAACCAG	TACCGTGAGG	21900
10	GAAAGGTGAA	AAGCACCCCG	GAAGGGGAGT	GAAATAGAAC	CTGAAACCGT	GTGCTTACAA	21960
	GTAGTCAGAG	CCCGTTAATG	GGTGATGGCG	TGCCTTTTGT	AGAATGAACC	GGCGAGTTAC	22020
	GATTTGATGC	AAGGTTAAGC	AGTAAATGTG	GAGCCGTAGC	GAAAGCGAGT	CTGAATAGGG	22080
15	CGTTTAGTAT	TTGGTCGTAG	ACCCGAAACC	AGGTGATCTA	CCCTTGGTCA	GGTTGAAGTT	22140
	CAGGTAACAC	TGAATGGAGG	ACCGAACCGA	CTTACGTTGA	AAAGTGAGCG	GATGAACTGA	22200
	GGGTAGCGGA	GAAATTCCAA	TCGAACCTGG	AGATAGCTGG	TTCTCTCCGA	AATAGCTTTA	22260
20	GGGCTAGCCT	CAAGTGATGA	TTATTGGAGG	TAGAGCACTG	TTTGGACGAG	GGGCCCCTCT	22320
	CGGGTTACCG	AATTCAGACA	AACTCCGAAT	GCCAATTAAT	TTAACTTGGG	AGTCAGAACA	22380
25	TGGGTGATAA	GGTCCGTGTT	CGAAAGGGAA	ACAGCCCAGA	CCACCAGCTA	AGGTCCCAAA	22440
20	ATATATGTTA	AGTGGAAAAG	GATGTGGCGT	TGCCCAGACA	ACTAGGATGT	TGGCTTAGAA	22500
	GCAGCCATCA	TTTAAAGAGT	GCGTAATAGC	TCACTAGTCG	AGTGACACTG	CGCCGAAAAT	22560
30	GTACCGGGGC	TAAACATATT	ACCGAAGCTG	TGGATTGTCC	TTTGGaCAAT	GGtAGGAGAG	22620
	CGTTCTAAGG	GCGTTGAAGC	ATGATCGTAA	GGACATGTGG	AGCGCTTAGA	AGTGAGAATG	22680
	CCGGTGTGAG	TAGCGAAAGA	CGGGTGAGAA	TCCCGTCCAC	CGATTGACTA	AGGTTTCCAG	22740
35	AGGAAGGCTC	GTCCGCTCTG	GGTTAGTCGG	GTCCTAAGCT	GAGGCCGACA	GCGTAGGCGA	22800
	TGGATAACAG	GTTGATATTC	CTGTACCACC	TATAATCGTT	TTAATCGATG	GGGGGACGCA	22860
	t.AGGATAGGC	GAAgcGTGcG	ATTGGATTGC	ACGTCTAAGC	AGTAAGGCTG	AGTATTAGGC	22920
40	AAATCCGGTA	CTCGTTAAGG	CTGAGCTGTG	ATGGGGAGAA	GACATTGTGT	CTTCGAGTCG	22980
	TTGATTTCAC	ACTGCCGAGA	AAAGCCTCTA	GATAGAAAAT	AGGTGCCCGT	ACCGCAAACC	23040
	GACACAGGTA	GTCAAGATGA	GAATTCTAAG	GTGAGCGAGC	GAACTCTCGT	TAAGGAACTC	23100
45	GGCAAAATGA	CCCCGTAACT	TCGGGAGAAG	GGGTGCTCTT	TAGGGTTAAC	GCCCAGAAGA	23160
	GCCGCAGTGA	ATAGGCCCAA	GCGACTGTTT	ATCAAAAACA	CAGGTCTCTG	CTAAACCGTA	23220
	AGGTGATGTA	TagGGcTGAC	GCCTGCCCGG	TGCTGGAAGG	TTAAGAGGAG	TGGTTAGCTT	23280
50	CTGCGAAgCT	ACGAATCGAA	GCCCCAGTAA	ACGGCGGCCG	таастатаас	GGTCCTAAGG	23340

	TGTCTCAACG	AGAGACTCGG	TGAAATCATA	GTACCTGTGA	AGATGCAGGT	TACCCGCGAC	23460
	AGGACGGAAA	GACCCCGTGG	AGCTTTACTG	TAGCCTGATA	TTGAAATTCG	GCACAGCTTG	23520
5	TACAGGATAG	GTAGGAGCCT	TTGAAACGTG	AGCGCTAGCT	TACGTGGAGG	CGCTGGTGGG	23580
	ATACTACCCT	AGCTGTGTTG	GCTTTCTAAC	CCGCACCACT	TATCGTGGTG	GGAGACAGTG	23640
	TCAGGCGGGC	AGTTTGACTG	GGGCGGTCGC	CTCCTAAAAG	GTAACGGAGG	CGCTCAAAGG	23700
10	TTCCCTCAGA	ATGGTTGGAA	ATCATTCATA	GAGTGTAAAG	GCATAAGGGA	GCTTGACTGC	23760
	GAGACCTACA	AGTCGAGCAG	GGTCGAAAGA	CGGACTTAGT	GATCCGGTGG	TTCCGCATGG	23820
15	AAGGGCCATC	GCTCAACGGA	TAAAAGCTAC	CCCGGGGATA	ACAGGCTTAT	CTCCCCCAAG	23880
15	AGTTCACATC	GACGGGGAGG	TTTGGCACCT	CGATGTCGGC	TCATCGCATC	CTGGGGCTGT	23940
	AGTCGGTCCC	AAGGGTTGGg	CTGTTCGCCC	ATTAAAGCGG	TACGCGAGCT	GGGTTCAGAA	24000
20	CGTCGTGAGA	CAGTTCGGTC	CCTATCCGTC	GTGGGCGTAG	GAAATTTGAG	AGGAGCTGTC	24060
	CTTAGTACGA	GAGGACCGGG	ATGGACATAC	CTCTGGTGTA	CCAGTTGTCG	TGCCAACGGC	24120
	ATAGCTGGGT	AGCTATGTGT	GGACGGGATA	AGTGCTGAAA	GCATCTAAGC	ATGAAGCCCC	24180
25	CCTCAAGATG	AGATTTCCCA	ACTTCGGTTA	TAAGATCCCT	CAAAGATGAT	GAGGTTAATA	24240
	GGTTCGAGGT	GGAAGCATGG	TGACATGTGG	AGCTGACGAA	TACTAATCGA	TCGAAGACTT	24300
	AATCAAAATA	AATGTTTTGC	GAAGCAAAAT	CACTTTTACT	TACTATCTAG	TTTTGAATGT	24360
30	ATAAATTACA	TTCATATGTC	TGGTGACTAT	AGCAAGGAGG	TCACACCTGT	TCCCATGCCG	24420
	AACACAGAAG	TTAAGCTCCT	TAGCGTCGAT	GGTAGTCGAA	CTTACGTTCC	GCTAGAGTAG	24480
	AACGTTGCCA	GGCAAAAAAT	GGATGCGATG	AGCCGCATTG	AGACCGCAAG	GTCTCTTTTT	24540
35	TTTATGTCTA	AAACGTCAAA	ATAAAAAGCA	AACACAAAGA	AAAATGGCTT	GGCGAAGTGA	24600
	AAACGTTTGA	ATCTGACGAA	ACGAGAAAAG	Arcgcaacga	GTTTAGTAGA	GCTAAATGAG	24660
	TAAGyGAGAG	CCGAAGTAGA	GGAAAGAAGC	AAGCGATTGT	CACAAGTCAA	GAAAGGTTCT	24720
40	TAGCGASGAT	GGTAGCCAAC	TTACGTTCCG	CTAGAGTAGA	ACTGGAAATG	ATAATTTAAT	24780
	AATGTACACT	TTCGATTGTC	TAAGTATGTA	CAACTTTAAT	TITGTGTTTA	TATAAATTTA	24840
	AAATGATATC	ATCGAAAACA	aaatattgta	TAAATAGAGA	AGAGCAGTAA	GACGGTATCT	24900
<b>4</b> 5	AATTGAAAAT	GATCTTACTG	CTCTTTTATA	TACTTTATTG	AAATACAAAA	AGGAAATTAA	24960
	TTATTATACA	ATAGACAAGC	TATTGCATAA	GTAACACTAA	CTTTTATCAA	AGAAGTGTTA	25020
50	CTTTATAATT	AATGATTTTA	TTAGAGCGTC	TACATGCGGT	TTTAAAGCAT	CATCGTCTAT	25080
50	ACCGCCAAAG	CCTAATATAA	ATTTAGGGGT	TTTCTTATAG	TCTTGATCAT	CATCAAAATT	25140

	TCCATTTTTT	ACTGTAATTG	TAAAATGCAT	ACCCGTTTCA	GCACCTTGAA	TATCAAGCTG	25260
	CTCTTTGTAA	GGTTTCAATC	TTTTTAAAAT	ATAGGTTAGT	TTTCTACGAT	AAATTCGTCT	25320
5	CATTTTATTT	AAATGCCTTT	CAAAACCACC	GGAAGATATA	AACGTTGCAA	TAAGGTTTTG	25380
	CATATGAACA	GGTACAGTGT	TGCCTTCAAT	GTGATTTTGA	GAATGATATT	TTTTCATTAT	25440
	AGAATAGGGT	AACACCATAT	ATGCAACTCG	ACAGCTAGGA	AAAATAGACT	TTGAAAATGT	25500
10	ACTGATATAA	ATCACTTTTT	CTCCTCTTGA	ATATAGACCT	TGAATTGCTG	GAATGGGTTT	25560
	GCCGAAATAT	CTAAACTCGG	AATCATAATC	ATCTTCTATA	ATAAATCGTT	CTTCTTTTTC	25620
_	TTGAGCCCAT	TGTATTAATT	GAGTTCGTTT	TTTTAAGTCC	ATCACATATC	CAGTTGGAAA	25680
15	TTGATGGGAA	GGCGTTATAT	ATACTATATT	TTTTTGTGAT	TTAATAACTT	CATCTACGTT	25740
	TATTCCATTA	TCTTCAACTT	CAATTTGTTC	ATATTCAACT	TGTTTTTTAT	CTAAAATATT	25800
20	TTTGATTGGT	GGATAACTAG	GTTTTTCGAT	AATAAATGTT	GAAGTATAAA	GTAAATCGAC	25860
20	TAATTGATTT	ACTAATTGTT	CGGTAGATGA	GCCAATTATA	ATTTGATTAG	GATCACAAAT	25920
	TACGCCACGA	TTAGTAAATA	AATAAAATGC	CAGTTGAAAC	CGCAAATGTA	ATTCTCCTTG	25980
25	AAAATGTCCT	CTACGTAATT	GATTTAAATG	ATTTGTATCA	TAAAGATCTT	TGGAATACTT	26040
	TCTGAAAAGT	TCTATAGGGA	AATGTTTCGT	ATCTATTTCA	TCCAAATTAA	AAGCATAATC	26100
	ATAAGCTTCA	TCACTCGCTT	TTGGTTTATA	TGAATCATCA	TCAAAAAGAG	AGGGGATAGG	26160
30	TTGATTGTTT	AAAATTGTTA	AAGATTCAAT	TTCGGACACA	AAATATCCAG	AGCGAGGTCT	26220
	TGAATAAATG	TAACCTTCGT	CTAATAGAAG	TTGATATGCA	TGCTCTACGG	TTGTTTGGCT	26280
	AATAGATAAA	TGTTTGCTTA	ATTGTCTTTT	AGAATAAAAT	TTATCGCCTT	CTTTAAATTG	26340
35	ACCTTCAATT	ATTIGTTTTT	TTAATTTTTC	ATAAAGTTGA	TGGTATAAAG	TGTTTTTCAA	26400
	TTTTATAACT	GACCTCCTAA	ATTTATCTTA	TTTTGTACCT	TTTTAAATAT	CAGTTTATAC	26460
	ATTACAATGT	ATTTAATCAA	CTTGAAAAGG	GGTTTTATGT	ATAATGAGTA	AAATTATTGG	26520
40	ATCAGACAGA	GTCAAAAGAG	GTATGGCTGA	AATGCAAAAA	GGCGGCGTTA	TTATGGATGT	26580
	CGTTAATGCT	GAGCAAGCAA	GAATTGCAGA	AGAAGCTGGC	GCGGTAgCAG	TTATGGCATT	26640
	AGAACGAGTA	CCTTCTGATA	TTAGAGCTGC	TGGTGGTGTT	GCACGTATGG	CAAACCCTAA	26700
45	AATTGTAGAA	GAAGTAATGA	ATGCTGTTTC	TATTCCAGTC	ATGGCTAAAG	CACGTATTGG	26760
	TCATATCACT	GAAGCAAGAG	TATTAGAGGC	GATGGGTGTT	GACTATATTG	ATGAATCAGA	26820
6.0	AGTGTTAACA	CCAGCAGATG	AGGAATATCA	CTTAAGAAAA	GATCAATTTA	CAGTACCATT	26880
50	TGTATGTGGA	TGTCGTAATT	TAGGTGAAgm	TGCGCGTAGA	ATTGGTGAAG	GTGCTGCTAT	26940

	ACAAGTTAAT	TCAGAAGTTA	GTCGATTGAC	TGTAATGAAT	GATGATGAGA	TTATGACTTT	2706
	TGCGAAAGAT	ATCGGTGCGC	CTTATGAAAT	TTTAAAACAA	ATTAAAGACA	ATGGTCGTTT	2712
5	ACCGGTAGTT	AACTTTGCAG	CTGGTGGCGT	TGCGACTCCT	CAAGATGCTG	CTTTAATGAT	2718
	GGAATTAGGT	GCTGACGGTG	TATTCGTTGG	ATCAGGTATT	TTTAAATCAG	AAGATCCAGA	2724
10	AAAATTTGCT	AAAGCAATTG	TTCAAGCAAC	AACACATTAC	CAAGACTATG	AACTAATTGG	2730
, 0	AAGATTAGCA	AGTGAACTTG	GCACTGCTAT	GAAAGGTTTA	GATATCAATC	AATTATCATT	2736
	AGAAGAACGT	ATGCAAGAGC	GTGGTTGGTA	AGATATGAAA	ATAGGTGTAT	TAGCATTACA	2742
15	AGGTGCAGTA	CGTGAACATA	TTAGACATAT	TGAATTAAGT	GGTCATGAAG	GTATTGCAGT	2748
	TAAAAAAGTT	GAACAATTAG	AAGAAATCGA	GGGCTTAATA	TTACCTGGTG	GCGAGTCTAC	2754
	AACGTTACGT	CGATTAATGA	ATTTATATGG	ATTTAAAGAG	GCTTTACAAA	ATTCAACTTT	2760
20	ACCTATGTTT	GGTACATGCG	CAGGATTAAT	AGTTCTAGCG	CAAGATATAG	TTGGTGAAGA	27660
	AGGATACCTT	AACAAGTTGA	ATATTACTGT	ACAACGAAAC	TCATTCGGTA	GACAAGTTGA	27720
	CAGCTTTGAA	ACAGAATTAG	ATATTAAAGG	TATCGCTACA	GATATTGAAG	GTGTCTTTAT	27780
25	AAGAGCCCCA	CATATTGAAA	AAGTAGGTCA	AGGCGTAGAT	ATCCTATGTA	AGGTTAATGA	27840
	GAAAATTGTA	GCTGTTCAGC	AAGGTAAATA	TTTAGGCGTA	TCATTCCATC	CTGAATTAAC	2790
20	AGATGACTAT	AGAGTAACTG	ATTACTTTAT	TAATCATATT	GTAAAaAAAG	CATAGCTTAA	27960
30	TGTATGCTAA	ATCAACGAAT	TATTGATATT	TATAGATTTG	TTGAGAAGAA	AATATCTCCT	28020
	TCAAACTTAG	CTTTGGAGGA	GTTATTTTTT	ATGTCAAAAT	TAAAAATGAT	AAAAAATAAA	28080
35	GCTATACATA	AGAAAAAAAC	CCTTCAAAGA	GACTGAGAAT	AGTCAAAATT	TTGAAGGGGT	28140
	TAATTCGATG	TTGATGTATT	TGTTAAATAA	AGAATCcAGC	GATTGCAGCT	GAAATGAAAG	28200
	ATACTAGTGT	tGCACCGAAT	AATAATTTCA	AACCAAAGCG	GGCAACTGTA	TCTCCTTTTT	28260
10	TGTCATTAAG	TGATTTAATC	GCACCTGAAA	TAATACCGAT	AGAGCTAAAG	TTAGCAAATG	28320
	ATACTAAGAA	TACAGATGTA	ACACCTTTTG	CGTGTTCAGA	TAAATCACTA	AGTTTACCAA	28380
	GTGCTTGCAT	TGCTACAAAT	TCGTTAGATA	ATAGTTTTGT	CGCCATAACT	GAACCGGCTT	28440
15	GAACTGCATC	TTGCCATGGC	ACACCGACTA	AGAATGCAAA	TGGTGCAAAG	ACAAAACCAA	28500
	TTAATGTTTG	GAAATCCCAA	GAAATAGCGC	CACCTGAAAC	TGTACTAAAG	ATATTGCTTA	28560
	CAATTCCATT	TAATAGAGCG	ATAATGGCAA	TGTATCCGAT	TAACATTGCG	CCTACAATGA	28620
50	CAGCTACTTT	AAATCCATCT	AAAATATATT	CTCCTAGCAT	TTCGAAGAAT	GATTGTTGTC	28680
	TTTCTTCAGT	TTCTTCAACT	AATAATTTGT	CATCTTCTTC	ATTAACTTTA	TAAGGGTTAA	28740

	TAGGTTCAAT	TAAGGTAAAG	TATGCACCGA	TAATTGAAGC	AGAAACAGTC	GACATTGCTG	28860
	AAGCTGTTAA	TGTGTATAAA	CGTTGCTTAG	GTATGTATGG	TAATTGTTTT	TTAATTGAAA	28920
5	TAAATACTTC	AGATTGTCCC	AAAATTGCTG	CAGCAACTGC	ATTGTATGAT	TCTAAACGTC	28980
	CCATACCATT	AATTTTAGAA	ATTAAGAATC	CTAAAACATT	AATGATTAAA	GGTAAAATCT	29040
. 0	TIGTGTATTG	AAGGATACCG	ATAATCGCTG	AAATAAATAC	GATAGGTAAT	AATACACTGA	29100
10	AGAAGAATGG	TGGTTGCTTA	GGATCGATAT	ATTGAATACC	ACCGAATACA	AAGTTAACAC	29160
	CATCTGCTGC	TTTTAATAAT	AAGTAGTTAA	AACCGTTTGA	AATACCACCA	ATAACCTTGA	29220
15	TTCCCATTGT	AGTTTTAAGC	AAGATAAATG	CAAAGATAAG	CTGAATTGCA	AGTAAAATTC	29280
	CTACATATTT	CCAGCGAATA	TTTTTCCTGT	CTGAGCTAAA	TAGAAACGCA	AGTGCTAAAA	29340
	AGAAGATAAT	TCCGATAATC	CCAATTAGAA	TATGCATATA	TTTCTCATTC	CTTTAGTTTT	29400
20	TTCTACaATc	TATCATACAA	TAAAATGGAA	GGGCTAACAT	CATAAATTTT	TGAAAATATA	29460
	AAAACAAATT	AATTGAAAAA	GGTCAAAATA	GGTCATATAA	TATAGTCAAA	GAAGGTCAAA	29520
	AAGGGGTGAT	ATACATGCAC	AATATGTCTG	ACATCATAGA	ACAATAaTCA	AACGTTTATT	29580
25	TGAAGAGTCG	AATGAAGATG	TCGTTGAAAT	TCAGAGAGCG	AATATCGCAC	AGCGTTTTGA	29640
	TTGCGTACCA	TCACAATTAA	ATTATGTAAT	CAAAACACGA	TTCACTAATG	AACATGGTTA	29700
	TGAAATCGAA	AGTAAACGTG	GTGGTGGTGG	TTACATCCGA	ATCACTAAAA	TTGAAAATAA	29760
30	AGATGCAACA	GGTTATATTA	ATCATTTGCT	TCAGCTGATT	GGACCTTCTA	TTTCTCAACA	29820
	ACAAGCTTAT	TATATTATTG	ATGGGCTTTT	AGATAAAATG	TTAATAAATG	AACGTGAAGC	29880
35	TAAAATGATT	CAAGCAGTTA	TTGATAGAGA	AACGCTATCA	ATGGATATGG	TTTCTAGAGA	29940
	TATTATTAGA	GCAAATATTT	TAAAACGTTT	GTTACCAGTT	ATAAATTATT	ACTAAATGAA	30000
	ATGAGGTGTT	GAAGTGCTTT	GTGAAAATTG	TCAACTTAAT	GAAGCGGAAT	TAAAAGTTAA	30060
40	AGTTACAAGT	AAAAATAAAA	CAGAAGAAAA	AATGGTGTGT	CAAACTTGTG	CTGAGGGGCA	30120
	CCATCCGTGG	AATCAAGCTA	ATGAACAACC	TGAaTATCAA	GAACATCAAG	ATAATTTCGA	30180
	AGAAGCATTT	GTTGTTAAGC	AAATTTTACA	ACATTTAGCT	ACGAAACATG	GAATTAATTT	30240
45	TCAAGA						30246

#### (2) INFORMATION FOR SEQ ID NO: 57:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14333 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

	TATTCCCCCA	TCGGTTTATT	AAATCGTCCA	TTTCAATACT	GTTTTTCCCC	AAGATGTCGA	60
5	TAAATCCATT	TCAAACGCTT	GGACGATATC	TTGCATCGTA	CATACATTAA	TTTCATGTCC	120
	TTTTAATAAT	GCTAACTTTT	CAACTATGTC	TGGGTACTTA	CGATATAAAT	CAACAACTTG	180
10	CTCAAAATCT	TTAGAGCCGC	TTCGACTACT	ACCAATCAAC	GTTAATCCTT	TTTCAAGTAC	240
	TAATCGTGTA	TTCACTTCCA	CGGGTAATTC	ACTTACGCCT	AACAAAGCAA	TACTGCCTTC	300
	TGGTGAAATA	TGTTCAACTA	TTTGTTGAAG	TGCAACTTGA	CTTCCTTTAC	CTCCAACACA	360
15	TTCAAATGCA	TGATCAATTT	TAAGATCATC	TGGTATTTGA	TTTACTGTAA	AGATGTCATC	420
	TACAAATGAA	AAATGACTTA	ATTTATAGTC	TGTCTTACCA	AATACATAAG	TTTTAGCTTC	480
	TGGGTACAAC	TTACGTAGCA	AAATAGCAGT	AATATAACCT	AAGTTACCAT	CACCCCAAAT	540
20	ACCAAAGCTG	GTTTTCAAAG	GTATAGATTT	ACGTTCAAAT	CGTTGTATAG	CATGATAACT	600
	TACTGACACT	AACTCTGTGT	ATGAAATCGT	ACTCAAATCA	ATGTCATTAG	GCAGCGGAAC	660
	GATACGATCA	TGTGCCATCA	CAACGTAGTC	TTGCATAAAA	CCATCATAAC	CACTAGATCT	720
?5	AAAATAACTA	GAGGCTAAGT	AATTCTCCGC	AATAATATGA	TGTTGCTCTG	TAGGTGTATT	780
	CGGTACCATT	ACTACTTTCG	TACCTTTTTC	AAATACCCCT	TTACTATCAA	ATACAACTTC	840
30	ACCAACAGCT	TCATGAACTA	ATGACATTGG	TAATTTTTTG	CGTAGTACAT	TTTCATCTCT	900
,,,	TCGACCTGTG	TAATACCTTT	GATCAGCTGC	ACAAATAGAC	AAGTATAAAG	GTCTTACGAT	960
	GACATGATTA	CCATAAATAT	CAACATTATT	ATATGTGACG	TCGAACTGTC	TCGGTGCAAC	1020
35	GAGTTGATAT	ACTTGATTAA	TCATCGGCAA	TATCACCTTG	AATAATGGCA	TTTGCTACTT	1080
	TTAAATCATA	CGGTGTTGTC	ACTTTAATGT	TGTATAGTTC	TCCaCGTACC	AATTTAACTG	1140
	CATGTCCAGA	TTCGACAATG	ATTTTACATG	CATCTGATAA	GATTTCTTTT	TGTTCACTAC	1200
10	TTAAGGCGCG	ATAACTATCT	TGTAATAATT	TAATATTAAA	TGATTGTGGT	GTTTGGCCTT	1260
	GATACATTTC	ATTCCTTACA	GGGATACTGT	GTATGTTCTG	TTTATCTTTA	GACATTACAA	1320
	TCGTATCAAT	TGCTTCAATG	ACTGTATCTA	CTGCACCATA	TTTTGCTGCT	ACTTCAATGT	1380
15	TCTCTTTAAT	AATACGTTGA	GTTAAAAATG	GTCTTACGGC	ATCATGAGTT	ACAATCACAT	1440
	CATCATTATT	AATTCCATTT	ACATTGCGAA	TATGGTCGAT	AATGTTCATA	ATTGTTTCAT	1500
- 0	TTCGATCCGT	ACCACCTGCA	ACTACTTTGA	CACGTTGATC	TGTAATGTTA	TATTTTTTA	1560
50	AAATATCCTG	TGTATGGGAA	ATCCACTGTG	CTGGCGTTGC	GATAATAATC	TCATTAAATT	1620
	CACTCACTAA	AATGAACTTC	TCAATTGTAT	GGATTAAAAT	CGGTTTATTA	TCAATATCTA	1680

	CTGCATAAAT	CATGTTGTCC	TCCATTCTGT	CATTACATCA	TTTCCATTTA	TACATTACTG	1800
	ACCTATGCCC	GCACATAAGC	CTAACCTATT	GCTCACTTGC	CTCTTTTATT	AATCCAAAGA	1360
5	TAGTTGTCAC	AATAGTGTGA	TAATTTTTTA	TAAAAATGTA	TTTTTGTAAC	TGACCATTCT	1920
	AAGTTGTTTT	GCCATGCAGT	TAATCATTAA	CTCTGACGAT	ATTAAATTGT	TAAAGGTATT	1980
10	AATGTTTACT	CTTTTTCAAA	TTCATTATTA	CTGCCATCAT	TTTACCATAT	АТТАТААТАА	2040
70	ATTTATCTTA	TTAAGTGGCT	GTACTTGATT	TTCACTTTAA	AAATTATCAA	ATATTGCCAT	2100
	CTCATTTTAA	GTATACAAAA	TGCAAAACAA	CCGATTCACA	AGCATATTTC	ACACAAGTAA	2160
15	ACCGGCTATT	TATCAACGTA	TATTCGAAGA	TGAATTATTT	CGATAGTATC	TATAGACCAG	2220
	ACGGCATTCG	CACTTTCATA	GCTATAACTA	TACCAGCGTT	TTCGTCCTCA	AAGGTGCATA	2280
	CTAATAAATC	GTAAACATGA	CTTTATCAAA	TCGTTCTTTC	TTGTTAACTA	ATTTATCAAA	2340
20	TGTCTCCGGG	CCTTTTTCTA	ACGGTAAAAA	ATGAGAAATA	ATAGGCTTTA	CATTAATATC	2400
	TTTCGTCTTC	ATATAATGTA	AGGTTGCCGT	CCACTCTTTG	CCCGGAAAAT	TACTGGACAA	2460
	ACAGTTCCAA	GAGCCACATA	CTGTCAACTC	GTTACGCAGA	ATTTTTTCAA	AATGAACGCG	2520
25	ATCAATCTCA	ATATCATCAT	ATGGTATTCC	GAGTAATACC	ACCTCGCCAC	CTTTTTTAGG	2580
	TAGCGTCAAT	ATTTGACCAA	TCGTAACTTT	AGCACCTGAT	GATTCTATAG	CTAAATCGAT	2640
20	TTGATTGGCG	TAATGATTTT	CGATGAATTT	CTCAAGATTT	TCTTCTTTTG	AATTGATTGT	2700
30	TTGATGTGCG	CCCAATGATG	TTGCAATATC	TAGTTTATGC	GCATCTATAT	CTATAGCGAT	2760
	GATATGTGCA	GCACCAAATA	TTCGTGCCCA	TTGAATAGCT	AACAAACCTA	TACTGCCACA	2820
35	CCCCATTACT	GCAACAGTCA	TACCAGGTTG	TATATTCGAT	TTATAAAACC	CATGCGCAAC	2880
	AACGGCTGAT	GGCTCAACCA	TTGCTGCTTC	AATGTAATCA	ACATTGTCTG	GAACCTTTAA	2940
	AACATTTTGC	GCTGGCAATT	TGACATATTC	CGCGAACGAT	CCAGGTTCAT	ATGAGCCAAT	3000
40	GACGAATAAC	TTTTCACATC	GTGCATATTC	ACCTTTTAAA	CAATACTCGC	ATTGATAACA	3060
	AGGTATTGCT	GGGCAACCTG	TCACITTGTC	GCCCACATTA	ACATGCGTAA	CATCACTTCC	3120
	AATGGCATCT	ACTACACCTG	AAAATTCATG	ACCAAATGGC	ATACCTTTAA	TGTATGGCCC	3180
45	CATTTTTTTG	TATCGTGACG	TGTCTGAACC	ACATATGCCA	GTCGCTCGTA	CTTTAATAAT	3240
	AACGTCATTC	GCACTTTCAA	TGACTGGCTT	TTCATTATCC	TCATACCGTA	AATCTTCCAC	3300
50	GCCATATAAT	TTCAATGCTT	TCACTTGTAA	ATCACCTCAA	ATTTGATTTA	ATTCACAACT	3360
50	TTTTTCTTTT	TAAAAATACC	TGTCGCAAAA	TAACCTGCAA	TGACAATGGA	ATTACTTACG	3420
	AGTAAATGTT	ССАТАТАААА	ATCACTGATT	татсттаата	GCCCAACCAT	A A A A CTTACC	3490

	TGCTTTAATA	CCTTCGCCGG	ATTTTAAATG	TTGATACGCC	TCGTCCCATT	TCGAAATATC	3600
	ATATATTTT	GTCACCAAAG	CTTCAGCATT	TACTAAACCA	TCCGCCATAA	GTTGCAATGA	3660
5	AGGTTCCCAA	TCTGCTGGCT	TTTGACTTCT	ACTACCAACA	ACTGTTATTT	CTTTTTGAAT	3720
	CACTTTTTCC	ATATCAAATG	GAATTTCAGC	ATCCTTAAAA	ATACCTATTT	GACTGTAGAA	3780
	ACCTTTTTTG	CGTAAAATAT	CCAAACCTTG	TCGTGCTGCT	GGAACTGCAC	CTGAACATTC	3840
10	AACAACAACA	TCTGCACCGT	AACCGTCTGT	AATTCCATTG	ATATACGTTT	TTAAGTCTGT	3900
	TTGTTGTAAA	TTGACTACAT	AATCCATGTG	CAATGCTTCT	GCTTTATCTA	ATCTGACTTT	3960
15	GTCATTGTCC	AATCCAGTTA	CCACAACAGT	TGCGCCTTTA	CTTTTTAACA	CTTGTGCTAC	4020
	AAGTAATCCG	ATTGGCCCAG	GTCCCATTAC	AACTGCTACA	TCGCCTGAAT	TGACTTGAAT	4080
	CTTAGAAACG	CCATGATGTG	CACATGCTAA	TGGTTCTGTC	ATAGCTGCAG	ACTGATACGA	4140
20	TATTCGTCTG	GAATATGATG	CAAACTTTCT	TCACGTGCAA	TGACATAATT	AGTAAATGCG	4200
	CCATCAACTT	GTGTTCCAAT	ACCTTTTCGA	TGGTTGCATA	AATTATAGTC	TTTTGATTTA	4260
	CAGTATTCAC	ACTCATTACA	AACATAGAAT	GTCGTTTCAG	aTGtGACACG	GTCACCAACT	4320
25	TTAAAATCTT	TAACGTCTGC	TCCAACTTCA	ACGATTTCAC	CAGAAAATTC	ATGACCTAAT	4380
	GTCACTGGAA	AATTAACTTT	ATAATGACCT	TCATAAGTAT	GAATATCTGT	GCCACAAATT	4440
	CCTGCATAAT	GTACTTTAAT	CTTTACTTTA	TCATCTAGCG	GTGTTGCAAC	TTCTTTATCA	4500
30	AGAAGTTCTA	AGTTGCCATG	TCCTTCTCTT	GTTTTTACTA	AAGCTTTCAC	CACAAACACC	4560
	TCGATTTTTA	ATTGAATAGA	CTAAATAGTT	TAAAGATAAG	ATAGTTAACG	ATATTACCAC	4620
35	CTTGATCAAT	ACTTGAAATT	TCAGATGAAC	CTTTTGGCAT	TTGTACATTC	GTACCTTTCG	4680
33	CCATATCTGT	GAAAATGGGT	GCTACGTCTG	TTGCAATATA	TAGTGAAATT	GCAATCATAA	4740
	TCGTACCCAC	AATGACAGAA	TGAATAATGT	TTCCTCTTGC	TGCACCAACA	ATAAACGCGA	4800
40	CAACAAATGG	TATCGTTGCT	AAGTCACCAA	AAGGTAGTAC	TTGGTTTCCT	GGTAAAATAA	4860
	CGGCTAATAA	AACAGTGATA	GGTACTAAAA	TTAATGCTGT	CGAAATAACT	GCTGGATGAC	4920
	CTAATGCTAC	AGCCGCATCC	AATCCAATAT	AAATTTCACG	TTCGCCAAAA	CGTTTATTTA	4980
45	GCCATGTTCT	TGCAGACTCT	GAAACTGGCA	TTAAACCTTC	CATTAAGATT	TTTACCATTC	5040
	TAGGCATTAA	TACCATTACT	GCAGCCATTG	ACATTCCTAA	ATTAATGATG	TCTCCAGGTT	5100
	TGTAACCTGC	TAACACACCA	ATACCTAAAC	СТААААТТАА	GCCGACAAAT	ATAGACTCTC	5160
50	CAAATGCGCC	AAAACGTTTT	TGAATTGTTT	CAGGATCAGC	ATCTAACTTA	TTCAGACCGG	5220
	CLVCLLdatac	TANCANTTA	ACTABCTARA	TACCTCCTCC	7T78C788777	OT NOT TO COTO	5380

	CTACTTTCAA	ACAGATAATT	TGGAAAATAA	CTGCTGCTAA	TAACGCTTGC	CAAATACTGC	5400
-	CTGATACGGC	ATAAACCATT	GCTGCTGTAA	ACGTATAATG	CCAAAAATTC	CAAATATCTA	5460
5	CATTCATCGT	CTTTGTCACT	TTAGTTACTA	GCAATACAAC	GTTAACTATG	ATTCCGAGTG	5520
	GAATAATAAA	TGCTGCGACA	GATGATGCCC	AAGCGATAGA	TGATGTTGCT	GGCCAACCTA	5580
10	CATCAATCAC	ATTCAGACTG	ACGCCTAAAT	TTTTAACCAT	CGCTTGTGCT	GCTGGCCCTA	5640
	AATTTTTAAC	TAATAAATCG	ATGACTAAGA	AAATCCCTAC	AAAAGCCACA	CCTATTGTTA	5700
	AACCAGACCT	AAATGCCGCT	CCAATTTTCT	GCCTAAAGAA	TAGGCCAAGC	AAGAATATGA	5760
15	CAACCGGTAA	AATAACAGTt	GCACCTAAAT	CTAAAAATCC	CCTTACAAAA	TCAGTGAAGT	5820
	AACTCATATT	TAAACCCTCC	CTGTTATATA	TGCATTGTCA	CGATACTTTC	CGATTGTGAT	5880
	TACATTTGAC	GTTACAGTCA	TTTCAACGAC	AACCCTTGCT	AAATTCGACT	GCAGTCCTTT	5940
20	TGAATTACAG	tCACTGCGTT	TCTATGTCAT	CAACAATCAT	TTGTCGTGAT	AGTCATTTAT	6000
	ATGCAATTTG	CATATATTAA	TATGTTATCG	ACCCACGTTA	CATATCAATT	CCGTTATTTT	6060
	TGTAACTCTG	TTAAGATTTG	TTGTTTTGTT	TCTTCAATAC	CAATACCAGT	TAAGAAATTA	6120
25	CGTGCGTTGA	TAACTGGGAA	TTTATATTCT	TTTTTTGTCA	TTGCAGTTGT	AACTAATAAA	6180
	TCTGCAGTGT	CTTCATAAGG	TCCAACTTCT	GTAATTTTGA	TTTGTTTAAT	ATCTACTTTA	6240
3 <b>0</b>	ATATTGTGTT	CCTTTGCCAT	TTCTTCAATT	GCATTATTTA	CTACTGTTGA	CGTTGCAATA	6300
	CCTGCACCAC	ACGCTACTAA	TACTTGTTTC	ATTTTCAATT	CCTCCAATTA	ATTTTTAGTT	6360
	ATATTCCAAA	TAATCATTGA	TTAGTGTTGC	TAAAATTGTT	TCATCTTTCG	TTCGTAGAAT	6420
35	CTGCTCCAAT	TTTTCTTCAC	TTTGAAAAAT	TTGCATCAAC	TGTTGTAACA	GCTTAAGTTG	6480
	ATCATCTACT	TTATCCATTG	CTAACATAAA	AACGATTTTC	ACTTCTGTCT	GTTGATCAAG	6540
	TGTTCCCATT	TCAATAAACG	GCACTTCTTT	TTCTAGAACA	GCCACACCTA	TCGTTCTATG	6600
10	GTTÄATATGT	TCGACATCTG	TATGCGGTAT	AGCGACCGAA	CATAGATGCG	TTGGTAAACC	6660
	AGTAGCAAAT	TCTTTTTCTC	TGTCGATGAC	TGCATCTTTA	AACGTTGACT	TCACGAACCC	6720
	ATTTTGAAAT	AACACATCTG	ACATTTGTGA	CAATACGGAT	TCTTTATCAG	TTGCCGACAA	6780
15	ATTGAGCATT	ATATTTTCTT	TATGCACTAA	TTGCTGTCCC	ATCCATTTTC	CCTCGCTTCT	6840
	TTATTTGAAT	AATTTTTTAA	AATCTCATTT	ACATCAGAAT	TTTTGCGACT	TTGTATGATG	6900
50	CGCTTAATTG	CGTCATTGTC	TTGCGCCACA	TCTCTCAATT	GTAGTAACGC	TCTTAAGTGT	6960
50	GTCACTTTAT	CAACAGCAGC	AATAGGTACA	ATAATATGGA	TTGCTGTGCC	ATCTGACATG	7020
	TATATTGGTT	СТТСТААТАТ	СААСАТАСТС	<b>ATTCCCTCTTTT</b>	татстасатс	CTTTTCAGAG	7080

	TGCATCTCAT	GAATATATTT	AATATCAATA	AAATGATTAG	CAACTAACAC	ATCACTTGCT	720 <b>0</b>
5	TTAGCAATAG	CTTCATCAAT	ATTTTCAACA	TGATGCATTC	TTTTCACGTG	CCTTGCCGGT	7260
5	ATCAAGTCAG	CTAAATCTAA	TGYCTWATTT	tGTGtGACaA	TCGATCCATT	AATGGTTGAA	7320
	ATTGAATTAT	AATTGGCAAT	AAAATCTTCT	AAACCATCAC	GTAGTCTGTA	ATGTCATTAA	7380
10	CTGTCGTTGT	GCGTTCAATT	AATGCCATTA	ACTTGTTTAT	TTCCTTATCA	ATGTCAGCCG	7440
	ATTCCTTATT	AATGTACTTC	ATCACTTCTT	TACGTAACTT	TCGTTGCTCA	TTTTCAGATA	7500
	AAGCTACTTT	TGTGATAAAT	AATTTTTTAT	GTGTTAGGAC	AAACATTGGT	GAAAAGACGA	7560
15	TGTCATAATC	TAATGTGTAA	TTTTCAAATG	TTCTAAGTGA	AATCGCATCT	AAGAAAATAA	7620
	TTTCTGGAAA	TAAGTTTCGC	AACTCGTATA	ACATCATTTG	TGATACTGAC	GTGCCTTGTG	7680
	TACACACGAT	AATAGCTTTT	ATCTTGCCAT	CGAAGTTTTC	ATCTTGACGT	CTCAAACTAC	7740
20	CTCCGAACAA	CATGGTTAAA	TATGCTATTT	CATTATCAGG	CAACGATTTT	CCGAAATATT	7800
	CAGTTAACGA	TTGACATGAT	TGTTTCACCA	TATGAAATAA	GGATTGATAA	TTTCCTTGTA	7860
	AAGGATTTAT	TAATTCATCA	CGATCCGTTA	AGTTATATTT	AATCCTATAA	AAAGCAGGCG	7920
25	TTAAATGTAA	CAAGAGTTGC	TGTGATAATT	TCTCCTTATC	TTCAATGTTA	ATAAAAGTGA	7980
	TTTGTTCAAA	ATGGTGAATC	ATTTGAGCGA	TGGCCATCGT	TAAATTCGAT	ATGCTATCTG	8040
3 <i>0</i>	ATTCTTGCAA	ATCAGTCCAT	TGCACACTTG	TTGAAAGTAA	GTGTAATGTC	AAATATAACT	8100
	TTTCCGCTTC	TGGCAAATCC	GGCTCATGTT	GCGTCATAAT	CTCCGTTGCT	TGATATTCTT	8160
	TCGTATCCCT	CAAATACTGA	TAATTAATAT	TTAATGGATT	CATCACATGA	CCACTTTGAA	8220
35	TTCGTCTACG	AATCACACAA	AGGACATAAG	GCAATGAACT	AAGTGATTTG	TCTATAAAGC	8280
	GACTCTTCAA	AAATTGTTCT	ACCTGTTTGA	TCTTGTCTTT	TTGATATGCG	ATATCTTCGA	8340
	ATGTTAAGTT	GAGCGCCTTT	AAAACTTCAC	TTTTAGTAAT	ATCATGATTC	AACCTTTGAT	8400
10	CAATCAACTT	AATGAAGAAA	CGGCGAACTT	CAAATTCATC	ACCAACAATT	TCATAACCAT	8460
	GTTTTCGAGA	ATACTTAAGT	GACAAACCAT	GATTTTCCAA	TTGCTCTTTC	ACATGATTTA	8520
	TATCGTGAAT	GACAGTATTT	TTACTGACTT	GTAAATCAAT	TGAAAAATGG	TTTAGAGACA	8580
15	TTGCGTTTTC	CTTACTAAAA	AGCATGAGCA	TTAAATAATA	ACGACGTGTT	TCTATGCTAA	8640
	AAATGACATT	GTTGCCGTTT	AACATTTGCT	GCTCCGATAC	ATCTCGCTTG	AATAACGTCA	8700
50	TGATTTCAGA	ACTTACAATA	AAATTTCCTT	GGCTTGTTCT	TTCAAGTTTT	GGATAACCCT	8760
50	CTTGTTCAAG	CCACAAATTG	ATTTTTTGAA	TGCGATATCC	TAGTTGTCTA	CGAGACAAAC	8820
	CAAATATCCA	ጥጥር እ እርጥጥርጥ	TTACCATCAA	<u> </u>	C3 3 T3 C3 3 TT	TOTOTONOTA	0000

	TCAATCGTCA	CACCGATGTA	CACACTTTGA	ACACATATTT	TCAAAATGAG	CATGTACATC	9000
	ATTGTGATGT	TTTAACAACA	TTTCAATTAT	ATCTATATTT	TTTGTGATTT	TAATCTTTTA	9060
5	AAATAAAGCA	ATTGAAATTT	TTGCATATAT	TTTTGTGTTT	TGTGTTTTTT	TGAAGCATTT	9120
	TTAACATACA	TATCTCAATC	ATTATCAAAT	TGTCATGACC	ATTGTAACCC	AATACAAAAA	9180
10	CCCTAAGGAC	GCTTATATCA	GGCGCCTTAG	GGTTAACTGT	ATCTATTTAA	TTAAGTATTA	9240
,0	TTATTCGTAT	GTACGTAACT	TATGGTCTAT	CAAGTTCCAC	ACTTCTTCAA	CATCAACTGC	9300
	TGTAGCAAAA	TAAGCATTGG	CAGGCTTACC	TGTAACATGA	TTTAAATCGA	CAGCCATAGT	9360
15	GCCATAAGTT	AGTGGACTTT	GATGTTCAAT	GTCGATATTA	ACGGGTACCA	TTGTAAACAA	9420
	TTCTGGTTGT	AACAAATACA	AAATTGTACA	AGCATCATGT	ATTGGACCAC	CATCCATATT	9480
	AAAGTGAGTC	TTGTATGTCT	TCTTAAAGAA	TTGCAATAAT	TCTACGACGA	ACTGTGCAAC	9540
20	AGGATTATTG	ATACTTTCAA	AGCGTTCAAT	CACGTGATCG	TCGGCTAAAA	CTTGATGTGT	9600
	TACATCTAAA	CCAAACACAT	TTATAGTAAT	CCCACTTTCA	AAAACACGCT	TCGCTGCTTC	9660
	AGCATCTACC	CAAATATTGA	ATTCTGCTGT	AGGCGTCCAA	TTTCCAAATG	TACCACCACC	9720
25	CATCAAAGTA	ATAGATTCAA	TATGCTCAGC	GATTCTTGGC	TCACGAATCA	ATGCCGTTGC	9780
	TACATTCGTA	AGAGGACCTG	TCGCTACAAT	TGTTACAGGT	GTATCACTCG	TCATCACTTT	9840
	GTTTATAATC	ACATCTGATG	CTGGCATTGC	AACTGCTTGA	CGTGATGGTG	TCGACGGTAG	9900
30	TTTCGGACCA	TCTAATCCAG	ATTCCCCATG	TATTTCAGAA	GCAAAGGCAG	CTGGTTTAAT	9960
	TAACGGCCTA	TCCGCACCTT	TCGCTACTGC	TATATCTTGG	CGTCCCATAA	TATCCAATAC	10020
35	GTTCAAGGCG	TTTGTCGTAT	TCTTGTCAAC	TGATTGATTA	CCTGCGACTG	TTGTTACAGC	10080
	TAATATCTCT	AGTGGACTGT	CAATTGCCCC	CGCTAAAATT	AATGCTATTG	CATCATCGTG	10140
	TCCTGGATCA	CAATCCATAA	TAATCTTTCT	TTTCATTTAT	ATATCCACCT	TTCTTAAGTT	10200
10	GTTATCGATA	GCTTATGTAT	ATTTATTTAT	GTGGTGAATC	ATGTTTATTT	TGAAAAATAG	10260
	TTTTAACTTT	CTCATATTTT	TGGATACAAA	CACTATTTAT	CTATTTTATG	GCTTATAAAT	10320
	TTATCCGATA	TGCCTTATCA	ACCTACCTCG	CTAAAAATAG	GATGTCTACA	TATCTATACC	10380
45	GACTTTTGTC	AACTCATTTT	CACAACAATA	TAAACAGCAA	TTTATATGAT	TGTTACATGA	10440
	TTCAAACAAT	TTTTATGAAA	AATATTTTCA	TACACAGAAT	ATATATTGAT	ATTAAATTTC	10500
	TCAAAAGCTA	TATTGAGAAT	AATTAGGAGG	GATGTTGATG	AAATCTTTAT	TTGAAAAAGC	10560
50	ACAGCAGTTC	GGCAAGTCCT	TTATGTTACC	TATCGCAATC	TTACCAGCTG	CAGGTCTATT	10620
	COMPACCE A TO	CCTCCTCCAT	## A C## A ##C#	3	NANCCATACC	ביים איידיידיים ביים	10690

	AAATTTACCG	GTCATCTTTG	CAATTGGTGT	CGCAATCGGA	TTATCTAGAA	GCGATAAAGG	10800
	TACTGCAGGT	'tTAGctGCGC	TGCTCGGTTT	CTTAATTATG	AACGCAACTA	TGAATGGCTT	10860
5	ATTAACTATC	ACGGGCACAT	TGGCAAAAGA	TCAGCTTGCA	CAAAATGGAC	AAGGCATGGT	10920
	GCTCGGTATA	CAAACGGTTG	AAACCGGTGT	TTTTGGCGGG	ATTATCACAG	GTATTATGAC	10980
10	CGCAATACTT	CACAACAAAT	ATCACAAAGT	GGTATTACCA	CCGTATTTAG	GTTTCTTTGG	11040
10	TGGCTCTAGA	TTTGTCCCTA	TTGTCACAGC	ATTTGCCGCA	ATCTTTTTAG	GTGTATTGAT	11100
	GTTTTTCATT	TGGCCAAGCA	TACAAGCCGG	CATTTATCAT	GTTGGTGGAT	TTGTAACGAA	11160
15	AACAGGTGCC	ATCGGTACTT	TTGTTTATGG	CTTCATCTTA	AGATTGTTAG	GTCCACTCGG	11220
	TTTACACCAT	ATTTTTTACT	TACCGTTTTG	GCAGACGGCA	CTTGGTGGTA	CTTTAGAAGT	11280
	CAAAGGGCAC	TTAGTTCAAG	GTACGCAGAA	CATCTTCTTT	GCTCAACTTG	GTGATCCAGA	11340
20	TGTGACGAAG	TATTATTCAG	GTGTGTCACG	CTTTATGTCA	GGCCGTTTTA	TTACGATGAT	11400
	GTTCGGCTTA	TGTGGTGCCG	CACTTGCAAT	TTATCACACA	GCTAAACCTG	AACATAAAAA	11460
	AGTTGTCGGC	GGTTTAATGT	TATCCGCTGC	ACTCACTTCA	TTTTTAACAG	GTATTACCGA	11520
25	ACCTTTAGAG	TTTAGTTTCT	TGTTTGTCGC	ACCTATTCTT	TATGTAATCC	ATGCCTTCTT	11580
	TGATGGATTA	GCATTTATGA	TGGCAGACAT	TTTCAACATT	ACAATTGGTC	AAACCTTCAG	11640
	TGGAGGCTTT	ATCGATTTCT	TACTCTTTGG	TGTGCTACAA	GGTAATAGTA	AAACAAACTA	11700
30	CCTATACGTC	ATACCTATTG	GAATTGTGTG	GTTCTGTTTG	TATTACATCG	TTTTCAGATT	11760
	CTTAATTACG	AAATTTAATT	TCAAAACACC	TGGTCGAGAA	GATAAAGCTG	CAGCACAACA	11820
35	AGTTGAGGCT	ACTGAAAGAG	CACAAACTAT	TGTTGCTGGT	TTGGGAGGCA	AAGATAACAT	11880
33	TGAAATCGTT	GACTGTTGTG	CAACGAGACT	ACGCGTCACA	CTTCATCAAA	ATGACAAAGT	11940
	CGATAAAGTA	TTACTCGAAA	GTACTGGTGC	CAAAGGTGTA	ATCCAGCAAG	GCACTGGTGT	12000
40	GCAAGTAATT	TATGGGCCTC	ACGTTACAGT	TATCAAAAAT	GAAATTGAAG	AATTGCTCGG	12060
	GGATTAAGAC	TAACCGAAAT	ATCAACAGAA	CTAATGGCAA	CGATGTACGA	AGTAAGAAGT	12120
	GACATCGTTG	CTTTTATTTT	TAATGTTACA	TTTGAAGCAT	TAAGTTCATC	ATGCACTGTA	12180
45	GTGAGCCCGC	AAATCGCCTC	TGCTAGACAA	TCATCTTAAT	GCTATGATTA	AAGCTTAAGT	12240
	GCCAGATTTG	AATTTAATTT	CAACAACGAC	TTTCACTACA	TTAAAAATAG	GGCCACTCGA	12300
	CACATATAGT	TGTATCAAAT	AGCCCTTTAT	ACAATTTTTT	GGGTAAGGTT	TTACAATTTT	12360
50	TGGGATGGTA	TAGATTTTAT	AAAAAGTTAT	TTAAGTTCTT	CTGCTTCAGC	CATAATATCT	12420
	TTTAATGTTT	TAGCTGAATG	TGCGAACTTG	CTTTGTTCTT	CCTCCTTTAA	ፕሬርር እጥጥተርጥ	12490

	TCCTCATATT	CGCCTTCTAA	TAATGCTGAT	ACAGTCAATA	CGGCATCTTC	ATTTCTGAAA	12600
_	ATCGCTTCAG	TAATTCTAGC	TAATCCCATT	GCAACACCAT	AATAAGTGGC	ACCTTTAGCT	12660
5	TGAATAATGT	CATATGCTGC	ATCACGTGTT	TGAACAAAA	TTTGTTCAAT	TTGCGCTTTG	12720
	CCCTCAGGAC	GTTGTTCAAG	TAATGTCTTC	AAAGGTTGAC	CCGCAATATT	AGCGTGTGAC	12780
10	CATACTGGTA	ATTCAGTGTC	ACCATGTTCA	CCAATAATTT	GAGCATCGAC	GCTACGTGGC	12840
	GCAACATCGn	AcgyTcGCTT	AACAATAATC	TAAAGCGTGC	AGAGTCTAAA	ATTGTACCAG	12900
	AACCTATAAC	ACGTTCTTTA	GGTAAACCAG	AGAATTTCCA	TGTTGCATAC	GCTAAAATAT	12960
15	CAACAGGATT	TGTAGCTACC	AAGAAAATAC	CATCAAATTT	TGATGCCATT	ACTTCACCAA	13020
	CAATTGATTT	GAATATTTTC	AAGTTTTTAG	ATACTAAATC	TAAACGTGTT	TCTCCAGGTT	13080
	TTTGTGCAGC	ACCAGCACAG	ATGACAACTA	GATCCGCATC	ATGACAATCA	CTGTATTCGC	13140
20	CAGCTTTCAC	ACGAACTGTT	GTTGGAGAAT	ATGGTGTGGC	ATGTTTTAAA	TCCATAACAT	13200
	CTCCTCGAAC	TTTTTCAGTG	TCTAAATCAA	TGATGACTAA	TTCATCAACA	ATGCTTTGGT	13260
	TCACTAATGA	AAATGCGTAG	CTTGAACCTA	CTGCACCATT	ACCTATTAAT	ACAACTTTGT	13320
25	TCCCTTTAAA	TTTGTTCATT	ACAAAAACTC	CCTTATGATT	AATTCACTAA	CATACATGTA	13380
	GCTTCAAATA	TGTTAGTTTA	ATGCTGCTTA	TTGACGATAC	AAAAGCAAAT	AAACATCTCT	13440
20	TTTATTTTCA	ACGCATAACT	TAAAAGGTCA	TGTGTCATCC	GCTTTTAAGT	TTGTGATTTA	13500
30	TTTCACATAT	AAAATGTAAC	ATGCATTAAG	TACTGGGTCA	ATATTAAATT	GTGATTTATT	13560
	TCACATTTTA	TTTTAATTTT	TACACCTTTT	TAATTTGTAT	mCGATTACAT	CTTAGATGTC	13620
35	TTTAGTCTTC	GTACTTCGCC	AGTGATTATT	TACACTTTCA	CATTTTTATT	ATCATGTTTA	13680
	CTTTTTTCTA	GGAAAACAAC	AATGTTTTTT	GAATTAGTCA	AATAAATGCG	CTCAATCGTC	13740
	GGTĢŦGCAAA	CAGACAATTG	TACACAATGC	TTATTGATAA	GTATTTAAAA	AATTAAAAAT	13800
40	GTCATACAAT	TATCAAATTT	GCCATTTTAT	TTATATITTC	TCAAACCAAT	TAATTGAATA	13860
	TCGAAATTTT	TAGTAGAATA	ATCAAAATAT	ACAGATTAAA	GGAGGAGTAT	CATGCTTACA	13920
	GAACAAGAGA	AAGACATTAT	CAAACAAACG	GTGCCTTTAC	TTAAAGAGAA	AGGGACAGAA	13980
45	ATTACGTCAA	TCTTTTATCC	AAAAATGTTT	AAAGCGCATC	CTGAACTTTT	AAACATGTTT	14040
	AATCAAACGA	ACCAAAAACG	AGGCATGCAA	TCTTCAGCAT	TAGCACAAGC	TGTAATGGCC	14100
	GCAGCGGTTA	ATATCGATAA	CTTAAGTGTT	ATTAAACCAG	TCATTATGCC	AGTCGCATAT	14160
50	AAACACTGCG	CACTACAAGT	TTATGCTGAA	CATTATCCAA	TTGTGGGGAA	AAATTTATTA	14220
	AAAGCCATTC	AAGACGTGAC	ACCATTAGAA	GAAAATGACC	CTCTCATTCA	ACCTTCCCCA	14280

#### (2) INFORMATION FOR SEQ ID NO: 58:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8779 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

GGTATTTTnG	GAnGGGTACC	TAAAGCAATT	CCGGCAAAGG	GTnAATCCAG	GTACCGAAAT	60
GGACTTCCCG	TTATCGATAA	TACCGACATA	TATTGTGACA	AGTAGATTTT	ATGGACATTT	120
AGGCTTACTT	TTACTTGTGA	TAATTGCATG	TATGTTTACT	GGTATTTALC	CaTCaATACA	180
TATCATTCAA	TTATTGATAT	ATGTACCGTT	TIGTTTTTTC	TTAACTGCCL	CGGTGACGTT	240
ATTAACATCA	ACACTCGGTG	TGTTAGTTAG	AGATACACAA	ATGTTAATGC	AAGCAATATT	300
AAGAATATTA	TTTTACTTTT	CACCAATTTT	GTGGCTACCA	AAGAACCATG	GTATCAGTGG	360
TTTAATTCAT	GAAATGATGA	AATATAATCC	AGTTTACTTT	ATTGCTGAAT	CATACCGTGC	420
AGCAATTTTA	TATCACGAAT	GGTATTTCAT	GGATCATTGG	AAATTAATGT	TATACAATTT	480
CGGTATTGTT	GCCATTTTCT	TTGCAATTGG	TGCGTACTTA	CACATGAAAT	ATAGAGATCA	540
ATTTGCAGAC	TTCTTGTAAT	ATATTTATAT	GACGAAACCC	CGCTAACCAT	TAATAAATGG	600
AAGTGGGGTT	CATTTTTGTT	TATAATTTAA	GTAAATAACA	TATTAAGTTG	GTGTATTATG	660
AACGTTTTAA	TAAAGAAATT	TTATCATTTG	GTAGTTCGAA	TACTTTCTAA	AATGATTACG	720
CCTCAAGTGA	TTGATAAACC	GCATATCGTA	TTTATGATGA	CTTTTCCAGA	AGATATTAAG	780
CCTATCATCA	AAGCATTAAA	TAATTCGTCG	TATCAGAAAA	CTGTTTTAAC	AACACCAAAA	840
CAAGCGCCTT	ATTTATCTGA	ACTTAGCGAC	GATGTTGATG	TGATAGAAAT	GACTAATCGA	900
ACATTGGTAA	AACAAATTAA	GGCTTTGAAA	AGCGCGCAGA	TGATTATTAT	CGATAATTAT	960
TACCTATTGC	TAGGTGGATA	TAATAAGACT	TCTAATCAAC	ACATTGTTCA	AACGTGGCAT	1020
GCAAGTGGTG	САТТАААААА	CTTTGGCTTA	ACAGATCATC	AAGTCGATGT	GTCTGACAAG	1080
GCAATGGTTC	AGCAGTACCG	TAAAGTTTAT	CAAGCGACGG	ATTTTTACTT	AGTGGGTTGT	1140
GAACAAATGT	CACAATGTTT	TAAACAGTCT	TTAGGTGCAA	CAGAAGAGCA	AATGCTGTAT	1200
TTTGGGCTTC	CGAGAATTAA	TAAATATTAC	ACAGCTGATA	GAGCAACGGT	TAAGGCAGAG	1260
TTAAAGGATA	AATATGGAAT	TACAAATAAG	TTGGTATTAT	ATGTACCAAC	ATATAGAGAA	1320
GATAAAGCAG	ATAATAGGGC	TATTGATAAA	GCTTATTTTG	AAAAATGTTT	ACCAGGATAT	1380

	ATCGACACGT	CTACATTAAT	GCTAATGTCA	GATATAATTA	TTAGCGACTA	TAGTTCGCTG	1500
	CCAATAGAAG	CTAGCTTGTT	AGATATTCCA	ACTATATTTT	ATGTGTATGA	TGAAGGAACA	1560
5	TATGATCAGG	TGAGAGGCCT	GAATCAATTT	TACAAAGCAA	TACCGGATAG	CTACAAAGTG	1620
	TATACTGAAG	AAGATTTAAT	AATGACGATA	CAAGAAAAAG	AACATCTATT	AAGTCCGTTA	1680
	TTTAAAGATT	GGCATAAGTA	TAATACTGAT	AAAAGTTTAC	ATCAGCTCAC	AGAATATATA	1740
10	GATAAGATGG	TGACAAAATG	AGGTTTACGA	TAATCATACC	TACATGTAAT	AATGAGGCAA	1800
	CAATTCGACA	ATTGTTAATA	TCTATTGAGA	GTAAAGAACA	CTATAGAATC	CTTTGTATTG	1860
15	ATGGTGGTTC	TACTGATCAA	ACAATTCCTA	TGATTGAACG	GTTACAAAGA	GAACTCAAGC	1920
	ATATTTCATT	AATACAATTA	CAAAATGCTT	CGATAGCTAC	GTGTATTAAT	AAAGGTTTGA	1980
	TGGATATCAA	AATGACAGAT	CCACATGATA	GTGACGCATT	TATGGTCATA	AAACCAACAT	2040
20	CAATCGTATT	GCCAGGTAAA	TTAGATAGGT	TAACTGCTGC	TTTCAAAAAT	AATGATAATA	2100
	TTGATATGGT	AATAGGGCAG	CGAGCTTACA	ATTACCATGG	TGAATGGAAA	TTGAAAAGTG	2160
	CTGATGAGTT	TATTAAAGAC	AATCGAATCG	TTACATTAAC	GGAACAACCA	GATTTGTTAT	2220
25	CAATGATGTC	TTTTGACGGA	AAGTTATTCA	GTGCTAAATT	TGCTGAATTA	CAGTGTGaCG	2280
	AAACTTTAGC	TAACaCATAC	AATCACGCAA	TACTTGTCAA	GGCGATGCAA	AAAGCTACGG	2340
	ATATACATTT	AGTTTCACAG	ATGATTGTCG	GAGATAACGA	TATAGATACA	CATGCTACAA	2400
30	GTAACGATGA	AGATTTTAAT	AGATATATCA	CAGAAATTAT	GAAAATAAGA	CAACGAGTCA	2460
	TGGAAATGTT	ACTATTACCT	GAACAAAGGC	TATTATATAG	TGATATGGTT	GATCGTATTT	2520
	TATTCAATAA	TTCATTAAAA	TATTATATGA	ACGAACACCC	AGCAGTAACG	CACACGACAA	2580
35	TTCAACTCGT	AAAAGACTAT	ATTATGTCTA	TGCAGCATTC	TGATTATGTA	TCGCAAAACA	2640
	TGTTTGACAT	TATAAATACA	GTTGAATTTA	TTGGTGAGAA	TTGGGATAGA	GAAATATACG	2700
10	AATTGTGGCG	ACAAACATTA	ATTCAAGTGG	GCATTAATAG	GCCGACTTAT	AAAAATTCT	2760
	TGATACAACT	TAAAGGGAGA	AAGTTTGCAC	ATCGAACAAA	ATCAATGTTA	AAACGATAAC	2820
	GTGTACATTG	ATGACCATAA	ACTGCAATCC	TATGATGTGA	CAATATGAGG	AGGATAACTT	2880
15	AATGAAACGT	GTAATAACAT	ATGGCACATA	TGACTTACTT	CACTATGGTC	ATATCGAATT	2940
	GCTTCGTCGT	GCAAGAGAGA	TGGGCGATTA	TTTAATAGTA	GCATTATCAA	CAGATGAATT	3000
	TAATCAAATT	AAACATAAAA	AATCTTATTA	TGATTATGAA	CAACGAAAAA	TGATGCTTGa	3060
50	ATCAATACGC	TATGTCGATT	TAGTCATTCC	AGAAAAGGGC	TGGGGACAAA	AAGAAGACGA	3120
	TOTOTANA	ምምምር አ <i>ሞር</i> ምልር	N-TO-TE-TE-TE-TE-TE-TE-TE	TATCCGACAT	CACTCCCAAC	GTGAATTCGA	3180

	TAAAATCAAA	CAAGAATTAT	ATGGTAAAGA	TGCTAAATAA	ATTATATAGA	ACTATCGATA	3300
	CTAAACGATA	AATTAACTTA	GGTTATTATA	AAATAAATAT	AAAACGGACA	AGTTTCGCAG	3360
5	CTTTATAATG	TGCAACTTGT	CCGTTTTTAG	TATGTTTTAT	TTTCTTTTTC	TAAATAAACG	3420
	ATTGATTATC	ATATGAACAA	TAAGTGCTAA	TCCAGCGACA	AGGCATGTAC	CACCAATGAT	3480
	AGTGAATAAT	GGATGTTCTT	CCCACATACT	TTTAGCAACA	GTATTTGCCT	TTTGAATAAT	3540
10	TGGCTGATGA	ACTTCTACAG	TTGGAGGTCC	ATAATCTTTA	TTAATAAATT	CTCTTGGATA	3600
	GTCCGCGTGT	ACTTTACCAT	CTTCGACTAC	AAGTTTATAA	TCTTTTTTAC	TAAAATCACT	3660
15	TGGTAAAACA	TCGTAAAGAT	CATTTTCAAC	ATAATATTTC	TTACCATTTA	TCCTTTGCTC	3720
15	ACCITTAGAC	AATATTTTTA	САТАТТТАТА	CTGATCAAAT	GAGCGTTCCA	TTAATGCATT	3780
	CCCCATCATA	TTACGTTGCT	TCTCGCCACC	AAGGTTTTTA	TAGTCTCCTG	CACCCATGAT	3840
20	AACTTGATTA	ATTCTAAATT	TACCTCGTTT	GGTAGTAATC	GTATGGTTGT	AATTTGCTGT	3900
	ATCACTTGAT	CCAGTTTTTA	AACCATCTGT	ACCCGGCAAA	CTCATTTTTG	CACCTTCCAA	3960
	TGAAAAGTTG	AATGTGTAAT	ACGTAACTGC	ATGCGTTGTT	GGTGCTAACT	GCTTTGTAAA	4020
25	GTCTAATATT	TTAGGTGTCT	CTTTAATCAC	GTGTAAATCT	AAAATGGCAT	AGTCTCTAGC	4080
	AGTCGTTACA	GTACGTTCTT	GGTCTTTATA	CTTTGTTGGT	GCAAATGTAC	GTAATCTTGA	4140
	ATTTTCAGCA	CCCGTTGGAT	TGACGAAATG	TGTATTTTTC	ATTCCGATAG	CTTTAGCTTT	4200
30	GTTATTCATT	AAATCAACGA	AATCGCTGGT	GTTTTTTGAA	ACCTTCTTAG	CTAAAATTAA	4260
	TGCCGCGGCA	TTACTAGAAT	TAGATACTGT	AATTTGTAAT	AGGTCTGCGA	TTGTCCATAC	4320
	TTGTCCAGGA	TATAGTTTCG	TATTACTCAA	CTCAGGTAGT	GTAGACATAA	TATATTCTTT	4380
35	GTTCGTCATT	GTGACTGTGT	CATCAAGTGA	AAGCTGCCCC	TTATTTACAG	CTTCCAATGT	4440
	TAAGTACATT	GTCATTAATT	TAGTCATAGA	CGCTGGAtTC	CACTTAGTAT	CGATATTGTA	4500
40	TTGATACAGT	AATTGTCCAG	TTTGACTTAC	ATTAACAGCA	CTCGTCGGTT	CGTATGCAGC	4560
40	CGACAAACCT	GCATAACCAT	ATTGATTTGC	TGCTTGTACA	GGGGTTACGT	CACTGTTAGT	4620
	AGCTTGTGCA	TATGGTGTCA	TAATACTTAA	TGTTAAACAT	AAAATGATGA	TAATAGATAT	4680
45	TAAATTTTTC	ATAAAGCGTT	AATCTTCCCT	TTTCCAATTC	TTAAATATTC	CCTAAAAGCA	4740
	ATGGTTATTC	CTACTTACGG	AAATCATTGC	TAATTCACTT	CACCTTAATT	AAATTGTTGA	4800
	AAATAAAGTT	TTCTGCAGTT	AATTTGAAAA	ATAATGCAAA	TATATTACGT	GTGTAGCTAA	4860
50	AGGTGTTATA	ATGTTTGTAC	GAAGAGCAAA	CTTACTCAAA	AGCGATTAAT	TTTCATGTTT	4920
	TAATATAAAG	ACTTTGAGAA	GTTATTACAA	AAAATGCAAT	AGAAATATTC	TATCATATAA	4980

	AAGTATATGA	TAGAAATGCA	TGTATCTATC	TAAATGAATT	AACTATAAAT	TTCAAACAGA	5100
	AGAGGTAAAA	CTATGAAACG	AGAAAATCCA	TTGTTTTTCT	TATTTAAAAA	ACTATCATGG	5160
5	CCAGTGGGTC	TTATCGTTGC	AGCTATCACT	ATTTCATCAC	TAGGGAGCTT	AAGTGGACTA	5220
	TTAGTGCCAC	TGTTTACTGG	ACGAATTGTA	GATAAATTTT	CCgTGAGCCA	TATCAATTGG	5280
	AATCLAATCG	CATTATTTGG	TGGTATCTTT	GTCATCAATG	CTTTATTAAG	CGGATTAGGT	5340
10	TTATATTTAT	TAAGTAAAAT	TGGTGAAAAG	ATTATTTATG	CGATACGCTC	AGTTTTATGG	5400
	GAGCATATCA	TACAATTAAA	AATGCCATTC	TTTGACAAAA	ATGAAAGTGG	TCAATTAATG	5460
15	AGTCGATTAA	CTGACGATAC	GAAAGTGATA	AATGAATTTA	TTTCACAAAA	GCTACCTMAC	5520
	TTATTACCAT	CAATCGTTAC	ATT AGTTGGG	TCACTAATCA	TGTTATTTAT	TTTAGATTGG	5580
	AAAATGACAT	TATTAACATT	TATAACGATA	CCGATATTCG	TTTTaATTAT	GATTCCTCTA	5640
20	GGTCGTATTA	TGCAAAAGAT	ATCGACAAGT	ACACAATCTG	AAATTGCAAA	CTTCAGTGGT	5700
	TTGTTAGGGC	GTGTCCTAAC	TGAAATGCGT	CTTGTTAAAA	TATCAAATAC	AGAGCGTCTT	5760
	GAATTAGATA	ATGCACATAA	AAATTTGAAT	GAAATATATA	AATTAGGTTT	AAAACAGGCT	5820
25	AAAATTGCGG	CAGTTGTACA	ACCAATTTCA	GGTATAGTTA	TGTTGCTAAC	AATTGCAATT	5880
	ATTTTAGGTT	TTGGTGCATT	AGAAATTGCG	ACTGGTGCAA	TCACTGCAGG	TACATTAATT	5940
	GCAATGATAT	TTTATGTTAT	TCAGTTATCT	ATGCCTTTAA	TCAATCTTTC	CACGTTAGTT	6000
30	ACAGATTATA	AAAAGGCAGT	CGGTGCAAGT	AGTAGAATAT	ACGAAATCAT	GCAAGAACCT	6060
	ATTGAACCGA	CAGAAGCTCT	TGAAGATTCT	GAAAATGTAT	TAATTGATGA	CGGTGTATTG	6120
25	TCATTTGAAC	ATGTAGACTT	TAAATATGAT	GTGAAGAAAA	TATTAGATGA	TGTGTCGTTC	6180
35	CAAATCCCAC	AAGGTCAAGT	GAGTGCTTTT	GTAGGCCCTT	CTGGGTCTGG	TAAAAGTACG	6240
	ATATTTAATC	TGATAGAACG	TATGTATGAA	ATTGAGTCAG	GTGATATTAA	ATATGGCCTT	6300
40	GAAAGTGTCT	ATGATATCCC	GTTATCTAAG	TGGCGACGCA	AAATTGGATA	TGTTATGCAA	6360
	TCAAATTCGA	TGATGAGTGG	TACAATTAGA	GACAATATTT	TATACGGAAT	TAATCGTCAT	6420
	GTTTCAGATG	AAGAACTTAT	TAATTATGCT	AAATTAGCGA	ACTGTCATGA	TTTTATCATG	6480
45	CAATTTGATG	AAGGATATGA	CACGCTTGTA	GGTGAACGAG	GATTGAAACT	GTCTGGCGGA	6540
	CAACGTCAAC	GTATTGATAT	TGCTAGAAGT	TTTGTTAAAA	ATCCTGATAT	TTTGTTACTT	6600
	GATGAAGCAA	CAGCTAATCT	CGATAGTGAA	AGTGAATTGA	AAATTCAAGA	AGCTTTAGAA	6660
50	ACATTGATGG	AAGGTAGAAC	AACGATTGTC	ATTGCGCATC	GTTTGTCTAC	AATTAAAAAA	6720
	GCCGGTCAAA	TTATATTCTT	AGACAAAGGA	CAGGTAACAG	GTAAAGGTAC	GCATTCAGAA	6780

	TTTTATATAT	ATAAGTAAGC	TTGGAGCAAA	TACACATATA	CCATCGAGGA	AATTAAAGTG	€900
	TGGCACATTG	ATGGATATAG	ATGTTAATAA	ATTGCTTCAA	GCTTTTGTCT	ATTTTAAATC	6960
5	ATTTGAGAAG	TTACGACATA	ATAATTCTTA	AATTAATGAA	ATCGATATTT	TAAGAAAAA	7020
	ATGCTCATGG	TATAATACAA	GTTATAAGCA	AACATACATA	TATTAAATAC	TGTAGCCACG	7080
	AGTCATAATT	CTTCATATTT	TACATAGCAA	TTTAACTGAT	TTTAGAGTCC	ACGGTACAGA	7140
10	AGTTTGATAT	TTCAATGTTT	CTAAATTTTT	AAAAAATTAA	ATCATAGGTG	GGTGCCAAAT	7200
	GTTTTTATTA	ATCAACATTA	TTGGTCTAAT	TGTATTTCTT	GGTATTGCGG	TATTATTTTC	7260
	AAGAGATCGC	AAAAATATCC	AATGGCAATC	AATTGGGATC	TTAGTTGTTT	TAAACCTGTT	7320
15	TTTAGCATGG	TTCTTTATTT	ATTTTGATTG	GGGTCAAAAA	GCAGTAAGAG	GAGCAGCCAA	7380
	TGGTATCGCT	TGGGTAGTTC	AGTCAGCGCA	TGCTGGTACA	GGTTTTGCAT	TTGCAAGTTT	7440
20	GACAAATGTT	AAAATGATGG	ATATGGCTGT	TGCAGCCTTA	TTCCCAATAT	TATTAATAGT	7500
	GCCATTATTT	GATATCTTAA	TGTACTTTAA	TATTTTACCG	AAAATTATTG	GAGGTATTGG	7560
	TTGGTTACTA	GCTAAAGTAA	CAAGACAACC	TAAATTCGAG	TCATTCTTTG	GGATAGAAAT	7620
25	GATGTTCTTA	GGAAATACTG	AAGCATTAGC	CGTATCAAGT	GAGCAACTAA	AACGTATGAA	7680
	TGAAATGCGT	GTATTAACAA	TCGCAATGAT	GTCAATGAGC	TCTGTATCGG	GAGCTATTGT	7740
	AGGTGCGTAT	GTACAAATGG	TACCAGGAGA	ACTGGTACTA	ACGGCAATTC	CACTAAATAT	7800
30	CGTTAACGCG	ATTATTGTGT	CATGCTTGTT	GAATCCAGTA	AGTGTTGAAG	AGAAAGAAGA	7860
	TATTATTTAC	AGTCTTAAAA	ACAATGAAGT	TGAACGTCAA	CCATTCTTCT	CATTCCTTGG	7920
	AGATTCTGTA	TTAGCAGCAG	GTAAATTAGT	ATTAATCATC	ATCGCATTTG	TTATTAGTTT	7980
35	TGTAGCGTTA	GCTGATCTAT	TTGATCGTTT	TATCAATTTG	ATTACAGGAT	TGATAGCAGG	8040
	ATGGATAGGC	ATAAAAGGTA	GTTTCGGTTT	AAACCAAATT	TTAGGTGTGT	TTATGTATCC	8100
10	ATTTGCGCTA	TTACTCGGTT	TACCTTATGA	TGAAGCGTGG	TTGGTAGCAC	AACAAATGGC	8160
••	TAAGAAAATT	GTTACAAATG	AATTTGTTGT	TATGGGTGAA	ATTTCTAAAG	ATATTGCATC	8220
	TTATACACCA	CACCATCGTG	CGGTTATTAC	AACATTCTTA	ATTTCATTTG	CAAACTTCTC	8280
<b>1</b> 5	AACGATTGGT	ATGATTATCG	GTACATTGAA	AGGCATTGTT	GATAAAAAGA	CATCAGACTT	8340
	TGTATCTAAA	TATGTACCTA	TGATGCTATT	ATCAGGTATC	CTAGTTTCAT	TATTAACAGC	8400
	AGCTTTCGTT	GGTTTATTTG	CATGGTAATA	TGTCGAAGAG	TGACTATGAT	AATACATTTT	8460
50	AACTAATAAA	TATGTCCAGG	CATGTCGTCT	ATTGATATAG	GTGAGATGCT	TGGACTTTTT	8520
	TATTATTGAT	ATAAAGGTAT	nTAAATATTT	TTAAAGTTAC	CGAAATTGAA	GCATTATAAA	8580

	GACAGTAAGG ACTAGGTACA GTCATAGTAC TTCGAGCAAA ATTTGTTTTG TTATTATAAA	8700
	CAACACAAAG GAGATAACTT CTCTAnTGAA GAAGTTAAAA ACATTATAGC AGACAATGAA	8760
5	ATGAAAGTAA ATTAAAAAT	8779
	(2) INFORMATION FOR SEQ ID NO: 59:	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 31096 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: double</li> <li>(D) TOPOLOGY: linear</li> </ul>	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
	GTTGCAGTAG TCAAAGAATT AAACAAGGTG AAGGCGTGTA GCTTGCACAC CCGAAAATGT	60
20	GCGTAAGTTA ACGGATGCAG GACATAAAGT AATTGTTGAA AAAAATGCTG GCATTGGTTC	120
	AGGATTTTCT AACGATATGT ATGAAAAAGA AGGCGCTAAG ATCGTAACTC ACGAACAAGC	180
	ATGGGAAGCT GATCTTGTTA TCAAAGTAAA AGAACCTCAT GAAAGCGAAT ATCAATATTT	240
25	CAAAAAGAAT CAAATTATCT GGGGATTTTT ACATCTAGCA TCTTCAAAAG AAATAGTAGA	300
	AAAAATGCAA GAAGTTGGTG TAACTGCGAT TAGTGGTGAA ACCATTATAA AAAATGGAAA	360
	AGCAGAATTA TTAGCGCCAA TGAGTGCTAT AGCAGGTCAA CGCTCAGCAA TTATGGGAGC	420
30	TTACTACTCT GAAGCACAAC ATGGTGGTCA AGGTACTTTA GTGACTGGTG TACATGAAAA	480
	TGTGGATATA CCTGGTAGTA CATATGTGAT TTTCGGTGGT GGAGTAGCAG CAACAAATGC	540
25	AGCAAATGTT GCCTTGGGAC TAAATGCTAA AGTAATCATT ATCGAGTTAA ACGATGACCG	600
35	CATTAAATAT CTTGAAGATA TGTATGCAGA AAAAGATGTC ACAGTAGTCA AATCAACACC	660
	AGAAAATTTA GCAGAACAAA TTAAGAAAGC AGATGTATTT ATTTCTACAA TTTTAATTTC	720
40	AGGTGCGAAA CCGCCAAAAT TGGTTACTCG TGAGATGGTT AAATCAATGA AAAAAGGTTC	780
	AGTATTAATC GATATAGCTA TTGACCAAGG TGGAACTATT GAAACAATTA GACCAACTAC	840
	AATTTCTGAT CCAGTGTATG AAGAAGAAGG TGTGATTCAT TATGGTGTAC CAAATCAACC	900
45	AGGAGCAGTC CCAAGAACTT CAACAATGGC ATTAGCACAA GGAAATATTG ATTATATATT	960
	AGAAATTTGT GACAAAGGCT TAGAACAAGC AATTAAAGAT AATGAAGCCT TAAGTACTGG	1020
	TGTAAACATT TACCAAGGAC AAGTGACAAA TCAAGGATTA GCTTCATCAC ATGACCTAGA	1080
50	TTATAAAGAA ATATTAAATG TTATCGAATA GATAGTAATT TAAATGAAAT TGAGTGAAAT	1140
	GAATATTTTA AATATAGCAT TATAGTTTGG ACTAAAAATT TACAAAACGG AAGGATGTAA	1200

	TCGAAGAAGC	TAAAGCAAGC	ATTAAACCAT	TTATTCGTCG	AACACCTCTA	ATTAAATCAA	1320
	TGTATTTAAG	CCAAAGTATA	ACTAAAGGGA	ATGTATTTCT	AAAATTAGAA	AATATGCAAT	1380
5	TCACAGGATC	TTTTAAATTT	AGAGGCGCTA	gCAATnAAAA	TTAATCACTT	AACAGATGAA	1440
	CAAAAAGAAA	AAGGCATTAT	CGCAGCATCT	GCTGGGgAAC	CATGCACAAG	GTGTTGCTTT	1500
	AACAGCTAAA	TTATTAGGCA	TTGATGCAAC	GATTGTAATG	CCTGAAACAG	CACCACAAGC	1560
10	GAAACAACAA	GCAACAAAAG	GCTATGGGGC	AAAGGTTATT	TTAAAAGGTA	AAAACTTTAA	1620
	CGAAACTAGA	CTTTATATGG	AAGAATTAGC	GAAAGAAAAT	GGCATGACAA	TCGTTCATCC	1680
15	ATATGACGAT	AAGTTTGTAA	TGGCAGGCCA	AGGAACAATT	GGTTTAGAAA	TTTTAGATGA	1740
13	TATTTGGAAT	GTGAATACAG	TCATCGTACC	AGTTGGCGGT	GGAGGATTAA	TTGCAGGTAT	1800
	TGCCACCGCA	TTAAAATCAT	TTAACCCTTC	AATTCATATT	ATCGGTGTTC	AATCTGAGAA	1860
20	TGTTCATGGT	ATGGCTGAGT	СТТТСТАТАА	GAGAGATTTA	ACTGAACATC	GAGTGGATAG	1920
	CACAATAGCA	GATGGTTGTG	ATGTAAAAGT	TCCTGGTGAA	CAAACATATG	AAGTAGTTAA	1980
	ACATTTAGTA	GATGAATTTA	TTCTTGTTAC	TGAAGAAGAA	ATTGAACATG	CTATGAAAGA	2040
25	TTTAATGCAG	CGTGCCAAAA	TTATTACTGA	AGGTGCAGGC	GCATTACCAA	CAGCTGCAAT	2100
	TTTAAGTGGA	AAAATAAACA	ATAAATGGCT	TGAAGATAAA	AATGTTGTTG	CATTAGTTTC	2160
	AGGCGGGAAT	GTTGACTTAA	CTAGAGTTTC	AGGTGTCATT	GAACATGGAC	TGAATATTGC	2220
30	AGATACAAGC	AAGGGTGTGG	TAGGTTAAAA	CATTTAATCT	TAAAAATGAG	GTGTAATTAT	2280
	GTCAAATGGT	AAAGAATTAC	AAAAAAATAT	AGGTTTCTTC	TCAGCGTTTG	CTATTGTTAT	2340
	GGGGACAGTT	ATTGGTTCAG	GAGTATTCTT	TAAAATATCA	AACGTAACAG	AAGTAACAGG	2400
35	AACAGCAGGA	ATGGCCTTGT	TTGTATGGTT	CCTAGGCGGC	ATCATTACCA	TTTGTGCGGG	2460
	GTTAÃCAGCA	GCAGAACTTG	CTGCTGCAAT	CCCTGAAACA	GGTGGCTTAA	CGAAGTATAT	2520
40	AGAATATACA	TACGGTGATT	TCTGGGGCTT	CCTATCAGGT	TGGGCGCAAT	CATTTATTTA	2580
,•	TTTTCCAGCT	AACGTAGCAG	CATTGTCTAT	CGTATTTGCG	ACACAGCTAA	TTAATTTATT	2640
	CCATTTATCT	ATAGGTTCGT	TAATACCAAT	AGCAATCGCA	TCTGCGTTAT	CTATTGTGTT	2700
45	GATAAATTTC	CTAGGTTCAA	AAGCAGGCGG	AATTTTACAA	TCAGTTACTT	TAGTAATTAA	2760
	ACTGATTCCA	ATCATCGTTA	TTGTAATTTT	TGGTATTTTT	CAATCTGGAG	ATATCACTTT	2820
	TTCATTAATT	CCAACTACAG	GTAATTCaGG	AAATGGCTTC	TTTACAGCAA	TTGGTAGTGG	2880
50	TTTATTAGCA	ACTATGTTTG	CATATGATGG	TTGGATTCAT	GTAGGAAATG	TTGCGGGGGA	2940
	ACTTAAAAAT	CCTAAACGCG	ATTTACCTTT	AGCGATTTCA	GTTGGTATCG	GTTGTATTAT	3000

	TGGTAATTTA	AATGCAGCTT	CAGATACATC	AAAAATATTA	TTTGGTGAAA	ATGGCGGTAA	3120
	GATTATTACA	ATCGGTATAT	TAATTTCTGT	TTATGGTACG	ATCAATGGCT	ATACTATGAC	3180
5	TGGTATGCGC	GTACCATATG	CAATGGCTGA	AAGAAAATTA	TTGCCATTTA	GCCATTTATT	3240
	CGCAAAATTA	ACAAAATCTG	GCGCACCATG	GTTTGGCGCA	ATTATACAAC	TTATAATCGC	3300
	TATCATCATG	ATGTCAATGG	GAGCATTTGA	TACAATTACA	AATATGTTAA	TCTTTGTTAT	3360
10	TTGGTTGTTC	TATTGTATGT	CATTTGTTGC	GGTAATAATT	TTAAGAAAAC	GTGAACCAAA	3420
	TATGGAACGA	CCATATAAAG	TACCGTTATA	TCCGATCATA	CCTTTAATTG	CTATTTTGGC	3480
15	AGGATCATTT	GTATTAATTA	ATACACTGTT	TACACAATTT	ATATTAGCAA	TCATTGGAAT	3540
	TCTAATAACA	GCACTTGGTA	TACCAGTTTA	TTACTATAAA	AAGAAACAAA	AAGCAGCATA	3600
	AGGTAAGATA	ACTAGCATTG	AGAATAAATG	GATGGACTAC	TAATAAATTT	AAAGTTTTAC	3660
20	ACATTAAAAT	CAAAAACCAT	TCAATTATTC	TATGGAACAG	ACAAATTTCT	GTTATGGAAT	3720
	TTGTCTGTTT	TTCAAAAGTA	TAGGGAGGCA	AATAGAGATG	GAAAAGCCGT	CAAGAGAGGC	3780
	ATTTGAAGGC	AATAATAAGT	TGTTAATAGG	AATTGTTCTA	AGTGTAATAA	CGTTTTGGCT	3840
25	ATTTGCACAA	TCATTGGTTA	ATGTTGTACC	AATACTTGAA	GATAGTTTCA	ATACAGATAT	3900
	TGGAACGGTT	AATATCGCCG	TTAGTATAAC	TGCTTTATTT	TCAGGAATGT	TTGTAGTAGG	3960
	AGCAGGTGGT	CTTGCTGATA	AATATGGCAG	AATTAAACTC	ACGAACATTG	GTATTATCTT	4020
30	AAATATATTA	GGTTCATTAT	TAATCATTAT	TTCAAATATT	CCTTTATTAC	TTATTATAGG	4080
	AAGATTAATT	CAAGGACTTT	CAGCAGCATG	TATTATGCCT	GCAACTTTGT	CTATTATTAA	4140
	GTCATATTAC	ATTGGGAAAG	ATAGACAACG	CGCTTTAAGT	TATTGGTCAA	TTGGCTCATG	4200
35	GGGCGGCTCT	GGTGTTTGTT	CATTTTTTGG	AGGTGCAGTT	GCAACGCTTT	TAGGTTGGCG	4260
	TTGGATTTTC	ATCCTATCAA	TTATAATTTC	ATTAATTGCA	CTGTTTCTTA	TTAAAGGCAC	4320
‡0	ACCTGAAACT	AAATCTAAAT	CGATTTCTCT	AAATAAATTT	GACATTAAAG	GTCTGGTTCT	4380
	TTTAGTCATT	ATGCTCCTCA	GTTTAAATAT	TTTAATTACT	AAAGGATCAG	AATTAGGTGT	4440
	AACCTCACTT	CTTTTTATTA	CTTTATTAGC	TATTGCAATT	GGATCTTTTA	GTTTATTTAT	4500
<b>1</b> 5	AGTTCTTGAA	AAGCGTGCTA	CAAATCCTTT	AATCGATTTT	AAATTATTTA	AAAATAAAGC	4560
	TTACACAGGT	GCAACAGCTT	CAAACTTTTT	GTTAAATGGT	GTTGCAGGAA	CATTAATAGT	4620
	AGCCAACACA	TTTGTTCAAA	GAGGTTTAGG	ATATTCTTCA	TTGCAAGCAG	GAAGTTTATC	4680
50	AATCACTTAT	TTAGTAATGG	TACTAATTAT	GATTCGTGTT	GGTGAAAAGT	TACTTCAAAC	4740
	A CTICCICA TCC	AACAAACCAA	ייייייע א ייייייער	3.3.C.3.C.C.3.C.T.T	CTT A TTCTCC	CACAATCTCT	4000

	ATTCTTTGGT	TTAGGACTAG	GGATATATGC	TACACCATCA	ACAGATACAG	CAATTGCAAA	4920
	TGCACCGTTA	GAAAAAGTAG	GCGTTGCTGC	AGGTATCTAT	AAAATGGCTT	CTGCATTAGG	4980
5	TGGAGCATTT	GGCGTCGCAT	TGAGTGGTGC	AGTATATGCA	ATCGTATCAA	ATATGaCAAA	5040
	CATTTATACA	GGTGCAATGa	TTGnCATTAT	GGTTaAATGC	AGGTATGGGa	ATATTATCAT	5100
	TCGTTATCAT	TTTGtTACTT	GTGCCTAAAC	mAAACGACAC	TCAATTATGA	TAATTGAGAA	5160
10	TTAAATTGAA	ATCATACAAG	TCGCTACAAT	ATTAAACAAA	AATATAAACC	GATTCTTATG	5220
	TGTCATTATT	TTAAATGAAC	ATAGGGATTG	GTTTTTTATT	ACTCTTTTAC	GCTACTTTAT	5280
15	TTATAATTAT	TATAAATTGT	CACAAATTCA	ATTTACCTTA	CAATATATTT	TGTGTTATTA	5340
	TATTCTGGAG	CATAAATAAA	TTGTTCAACA	CATAGTTGTA	ATGTGTTTCA	ATACTTTTTG	5400
	GATAGATTGC	GAAATTGTAT	TGAATCGTCA	TCGTTTTAAA	TTTTTAAATG	AGAATGGAAT	5460
20	GAGCATTACA	ATACACAAGC	AATCAAAAGT	AAATACATTC	ACAACACAAC	AGAGACATAA	5520
	CAACAAGATA	AGGAGTGAAC	AATAGCTGTG	AATTATCGTG	ATAAAATTCA	AAAGTTTAGT	5580
	ATTCGTAAAT	ATACAGTTGG	TACATTTTCA	ACTGTCATTG	CGACATTGGT	ATTTTTAGGA	5640
25	TTCAATACAT	CACAAGCACA	TGCTGCTGAA	ACAAATCAAC	CAGCAAGCGT	GGTTAAACAG	5700
	AAACAACAAA	GTAATAATGA	ACAGACTGAG	AATCGAGAAT	CTCAAGTACA	AAATTCTCAA	5760
	AATTCACAAA	ATGGTCAATC	ATTATCTGCT	ACTCATGAAA	ATGAGCAACC	AAATATTAGT	5820
30	CAAGCTAATT	TAGTAGATCA	AAAAGTAGCG	CAATCATCTA	CTACTAATGA	TGAACAACCA	5880
	GCATCTCAAA	ATGTAAATAC	AAAGAAAGAT	TCGGCAACGG	CTGCGACAAC	ACAACCAGAT	5940
35	AAAGAACAAA	GTAAGCATAA	ACAAAACGAA	AGTCAATCTG	СТААТААААА	TGGAAACGAC	6000
,,	AATAGAGCGG	CTCATGTAGA	AAATCATGAA	GCAAATGTAG	TAACAGCTTC	AGATTCATCT	6060
	GATAATGGTA	ACGTACAACA	TGACCGAAAT	GAATTACAAG	CGTTTTTTGA	TGCAAATTAT	6120
10	CATGATTATC	GCTTTATTGA	CCGTGAAAAT	GCAGATTCTG	GCACATTTAA	CTATGTAAAA	6180
	GGCATTTTTG	ATAAGATTAA	TACGTTATTA	GGCAGTAATG	ATCCAATAAA	CAATAAAGAC	6240
	TTGCAACTTG	CATACAAAGA	ATTGGAACAA	GCTGTTGCTT	TAATTCGTAC	AATGCCTCAA	6300
15	CGTCAACAGA	CTAGCCGACG	TTCAAATAGA	ATTCAAACGC	GTTCGGTTGA	GTCAAGAGCT	6360
	GCAGAGCCTA	GATCAGTATC	AGACTATCAA	AATGCAAATT	CATCATATTA	TGTTGAAAAT	6420
	GCTAATGATG	GTTCGGGCTA	TCCTGTTGGT	ACATATATCa	ATGCTTCTAG	TAAAGGGGCG	6480
50	CCATATAATT	TACCAACTAC	ACCATGGAAT	ACATTGAAGG	CCTCTGACTC	AAAGGAAATT	6540
		a. aaa a.		0000100110			

	GTAGGAAGAA	CTGACTTTGT	AACAGTTAAT	TCAGATGGAA	CAAATGTACA	ATGGAGTCAT	6720
	GGAGCAGGAG	CAGGTGCAAA	TAAACCACTT	CAACAAATGT	GGGAATATGG	AGTAAATGAT	6780
5	CCTCATCGTT	CACATGACTT	TAAAATAAGA	AATAGAAGTG	GCCAAGTAAT	ATATGACTGG	6840
	CCAACTGTCC	ATATTTATTC	TTTAGAAGAT	TTATCTAGAG	CGAGTGATTA	TTTTAGTGAA	6900
	GCTGGAGCGA	CACCTGCTAC	TAAAGCTTTT	GGTAGACAAA	ATTTTGAATA	TATTAATGGT	6960
10	CAAAAACCTG	CTGAATCACC	GGGTGTTCCT	AAAGTTTATA	CTTTCATCGG	TCAAGGTGAT	7020
	GCAAGTTATA	CAATTTCATT	TAAAACACAA	GGTCCAACTG	TTAATAAATT	GTACTATGCA	7080
	GCAGGTGGGC	GTGCTTTAGA	GTACAATCAA	TTATTTATGT	ACAGTCAACT	ATACGTCGAA	7140
15	TCAACGCAAG	ACCATCAACA	ACGTCTTAAT	GGTTTAAGAC	AAGTGGTTAA	TCGTACATAT	7200
	CGCATAGGTA	CAACTAAACG	TGTAGAAGTG	AGTCAAGGAA	ATGTACAAAC	GAAAAGGTA	7260
20	TTAGAAAGTA	CAAACCTAAA	TATAGATGAT	TTTGTTGATG	ATCCTTTAAG	TTATGTTAAG	7320
	ACGCCGAGTA	ATAAAGTGTT	AGGATTTTAT	TCGAATAATG	CAAATACTAA	TGCTTTTAGA	7380
	CCGGGTGGAG	CCCAACAATT	AAATGAATAT	CAATTAAGTC	AATTATTTAC	TGATCAAAAA	7440
25	TTACAAGAAG	CAGCAAGAAC	TAGAAACCCA	ATAAGATTAA	TGATTGGTTT	CGACTATCCT	7500
	GATGCTTATG	GTAATAGTGA	ACTTTAGTTC	CTGTTAACTT	AACGGTATTA	CCTGAAATCC	7560
	AACATAATAt	TaAATTCTTT	AAAAATGACG	ATACTCAAAA	TATTGCTGAA	AAACCATTTT	7620
30	CAAAACAAGC	TGGGCATCCA	GTTTTCTATG	TATATGCAGG	TAACCAAGGG	AATGCTTCCG	7680
	TGAATTTAGG	TGGTAGCGTA	ACATCTATTC	AACCATTACG	TATTAATTTA	ACAAGTAATG	7740
	AGAATTTTAC	AGATAAAGAT	TGGCAAATTA	CAGGTATTCC	GCGTACATTA	CACATTGAAA	7800
35	ACTCGACAAA	TAGACCTAAT	AATGCCAGAG	AACGCAATAT	TGAACTTGTT	GGTAACTTAT	7860
	TACCAGGGGA	TTACTTTGGA	ACGATACGTT	TTGGACGTAA	AGAACAATTA	TTCGAAATTC	7920
10	GTGTTAAACC	ACATACACCA	ACAATTACAA	CGACAGCTGA	GCAATTAAGA	GGTACAGCAT	7980
10	TACAAAAAGT	GCCTGTTAAT	ATTTCGGGAA	TACCGTTGGA	TCCATCGGCA	TTGGTTTATT	8040
	TAGTTGCACC	AACAAATCAA	ACTACGAATG	GTGGTAGTGA	GGCAGATCAA	ATACCATCTG	8100
<b>1</b> 5	GTTATACGAT	ACTTGCGACT	GGTACACCTG	ATGGGGTGCA	TAATACAATT	ACTATACGAC	8160
	CGCAAGATTA	TGTTGTATTC	ATACCACCTG	TAGGTAAACA	AATTAGAGCA	GTAGTTTATT	8220
	ATAATAAAGT	AGTTGCATCT	AATATGAGTA	ATGCTGTTAC	TATTTTGCCA	GATGACATTC	8280
50	CACCAACAAT	CAATAATCCT	GTTGGAATAA	ATGCCAAATA	CTATCGAGGC	GACGAAkCAA	8340
	CTTTACAATG	GGTGTCTCTG	ATAGACATTC	TGGTATAAAA	AATACAACTA	TTACGACATT	8400

	TACAGGTAGA	GTGAGTATGA	ATCAGGCATT	TAACAGTGAT	ATTACATTTA	AAGTGTCAGC	8520
	GACAGaCAAT	GTCAATAATA	CGACAAATGA	TAGTCAATCT	AAACATGTTT	CAATTCATGT	8580
5	AGGTAAAATT	AGTGAAGATG	CTCATCCGAT	TGTATTAGGA	AATACTGAGA	AAGTTGTAGT	8640
	AGTCAATCCG	ACTGCTGTAT	CTAATGATGA	AAAGCAAAGC	ATAATTACTG	CCTTTATGAA	8700
	TAAAAACCAA	AATATAAGAG	GATATTTAGC	ATCAACTGAT	CCAGTAACTG	TCGATAATAA	8760
10	TGGTAATGTC	ACATTACATT	ACCGTGATGG	CTCATCGACA	ACGCTTGATG	CTACAAATGT	8820
	GATGACATAC	GAACCAGTTG	TGAAACCTGA	ATACCAAACT	GTCAATGCTG	CTAAAACAGC	8880
15	AACGGTAACG	ATTGCTAAAG	GACAATCATT	TAGTATTGGT	GATATTAAAC	AATATTTTAC	8940
.5	TTTAAGTAAT	GGACAACCTA	TTCCAAGTGG	CACATTTACA	AATATTACAT	CTGATAGAAC	9000
	TATTCCAACT	GCACAAGAAG	TTAGTCAAAT	GAACGCAGGC	ACGCAGTTAT	ACCATATAAC	9060
20	TGCTACAAAT	GCGTATCATA	AAGATAGTGA	AGACTTCTAT	ATTAGTTTGA	AAATCATCGA	9120
	TGTGAAACAA	CCAGAAGGCG	ATCAACGTGT	ATATCGTACA	TCAACATATG	ATTTAACTAC	9180
	TGATGAAATC	TCAAAAGTAA	AACAAGCATT	TATTAATGCA	AATAGAGATG	TAATTACGCT	9240
?5	TGCCGAAGGT	GATATTTCAG	TTACAAATAC	ACCTAATGGT	GCTAATGTAA	GTACTATTAC	9300
	AGTAAATATT	AATAAAGGTC	GATTAACGAA	ATCATTCGCG	TCAAACCTAG	CTAATATGAA	9360
	TTTCTTGCGT	TGGGTTAATT	TCCCACAAGA	TTATACAGTG	ACATGGACGA	ATGCAAAAAT	9420
30	TGCAAACAGA	CCAACAGATG	GTGGTTTATC	ATGGTCTGAT	GACCATAAAT	CTTTAATTTA	9480
	TCGTTATGAT	GCTACATTAG	GTACTCAAAT	TACGACGAAT	GATATTTTAA	CAATGTTAAA	9540
	AGCAACAACT	ACAGTGCCTG	GATTGCGAAA	TAACATTACT	GGTAATGAAA	AATCACAAGC	9600
35	AGAAGCTGGC	GGAAGACCTA	ACTTTAGAAC	GACTGGTTAT	TCACAATCAA	ATGCGACAAC	9660
	TGATGGTCAA	CGTCAATTTA	CGTTGAATGG	TCAAGTGATT	CAAGTGTTAG	ACATCATCAA	9720
10	CCCTTCAAAC	GGTTATGGTG	GGCAACCTGT	TACAAATTCA	AATACTCGTG	CAAACCATAG	9780
	TAACTCAACT	GTTGTTAACG	TAAACGAACC	GGCAGCTAAT	GGTGcTGGCG	CATTTACAAT	9840
	TGACCACGTT	GTAAAAAGTA	ATTCTACACA	TAATGCAAGT	GATGCAGTTT	ATAAAGCACA	9900
15	GTTATACTTA	ACGCCATATG	GTCCAAAACA	ATATGTTGAA	CATTTAAATC	AAAATACAGG	9960
	AAATACTACT	GACGCTATTA	ACATTTATTT	TGTACCAAGT	GACTTAGTGA	ATCCAACAAT	10020
	TTCAGTAGGT	AATTACACTA	ATCATCAAGT	GTTCTCAGGT	GAAACATTTA	CAAATACTAT	10080
50	TACAGCGAAT	GATAACTTTG	GTGTGCAATC	TGTAACTGTA	CCAAATACAT	CACAAATTAC	10140
	AGGTACTGTT	GATAATAACC	ATCAACATGT	TTCTGCAACG	GCACCAAATG	TGACATCAGC	10200

	GTTCAATGTA	ACAGTGAAAC	CTTTGCGTGA	TAAATATCGA	GTTGGTACTT	CATCAACGGC	10320
	TGCTAATCCT	GTGAGAATTG	CCAATATTTC	GAATAATGCG	ACAGTATCAC	AAGCTGATCA	10380
5	AACGACAATT	ATTAATTCGT	TAACGTTTAC	TGAAACAGTA	CCAAATAGAA	GTTATGCAAG	10440
	AGCAAGTGCG	AATGAAATCA	CTAGTAAAAC	AGTTAGTAAT	GTCAGTCGTA	CTGGAAATAA	10500
	TGCCAATGTg	CACAGTAACT	GTTACTTATC	AAGATGGAAC	AACATCAACA	GTGACTGTAC	10560
10	CTGTAAAGCA	TGTCATTCCA	GAAATCGTTG	CACATTCGCA	TTACACTGTA	CAAGGCCAAG	10620
	ACTTCCCAGC	AGGTAATGGT	TCTAGTGCAT	CAGATTACTT	TAAGTTATCT	AATGGTAGTG	10680
15	ACATTGCAGA	TGCAACTATT	ACATGGGTAA	GTGGACAAGC	GCCAAATAAA	GATAATACAC	10740
, 5	GTATTGGTGA	AGATATAACT	GTAACTGCAC	ATATCTTAAT	TGATGGCGAA	ACAACGCCGA	10800
	TTACGAAAAC	AGCAACATAT	AAAGTAGTAA	GAACTGTACC	GAAACATGTC	TTTGAAACAG	10860
20	CCAGAGGTGT	TTTATACCCA	GGTGTTTCAG	ATATGTATGA	TGCGAAACAA	TATGTTAAGC	10920
	CAGTAAATAA	TTCTTGGTCG	ACAAATGCGC	AACATATGAA	TTTCCAATTT	GTTGGAACAT	10980
	ATGGTCCTAA	CAAAGATGTT	GTAGGCATAT	CTACTCGTCT	TATTAGAGTG	ACATATGATA	11040
25	ATAGACAAAC	AGAAGATTTA	ACTATTTTAT	CTAAAGTTAA	ACCTGACCCA	CCTAGAATTG	11100
	ACGCAAACTC	TGTGACATAT	AAAGCAGGTC	TTACAAACCA	AGAAATTAAA	GTTAATAACG	11160
	TATTAAATAA	CTCGTCAGTA	AAATTATITA	AAGCAGATAA	TACACCATTA	AATGTCACAA	11220
30	ATATTACTCA	TGGTAGCGGT	TTTAGTTCGG	TTGTGACAGT	AAGTGACGCG	TTACCAAATG	11280
	GCGGAATTAA	AGCAAAATCT	TCAATTTCAA	TGAACAATGT	GACGTATACG	ACGCAAGACG	11340
	AACATGGTCA	AGTTGTTACA	GTAACAAGAA	ATGAATCTGT	TGATTCAAAT	GACAGTGCAa	11400
35	CAGTAACAGT	GACACCACAA	TTACAAGCAA	CTACTGAAGG	CGCTGTATTT	ATTAAAGGTG	11460
	GCGACGGTTT	TGATTTCGGA	CACGTAGAAA	GATTTATTCA	AAACCCGCCA	CATGGGGCAA	11520
10	CGGTTGCATG	GCATGATAGT	CCAGATACAT	GGAAGAATAC	AGTCGGTAAC	ACTCATAAAA	11580
	CTGCGGTTGT	AACATTACCT	AATGGTCAAG	GTACGCGTAA	TGTTGAAGTT	CCAGTCAAAG	11640
	TTTATCCAGT	TGCTAATGCA	AAGGCGCCAT	CACGTGATGT	GAAAGGTCAA	AATTTGACTA	11700
45	ATGGAACGGA	TGCGATGAAC	TACATTACAT	TTGATCCAAA	TACAAACACA	AATGGTATCA	11760
	CTGCAGCATG	GGCAAATAGA	CAACAACCAA	ATAACCAACA	AGCAGGCGTG	CAACATTTAA	11820
	ATGTCGATGT	CACATATCCA	GGTATTTCAG	CTGCTAAACG	AGTTCCTGTT	ACTGTTAATG	11880
50	TATATCAATT	TGAATTCCCT	CAAACTACTT	ATACGACAAC	GGTTGGAGGC	ACTTTAGCAA	11940
	GTGGTACGCA	AGCATCAGGA	TATGCACATA	TGCAAAATGC	TACTGGTTTA	CCAACAGATG	12000

	TGAATAAACC	GAATGTGGCT	AAAGTCGTTA	ACGCAAAATA	TGACGTCATC	TATAACGGAC	12120
	ATACTTTTGC	AACATCTTTA	CCAGCGAAAT	TTGTAGTAAA	AGATGTGCAA	CCAGCGAAAC	12180
5	CAACTGTGAC	TGAAACAGCG	GCAGGAGCGA	TTACAATTGC	ACCTGGAGCA	AACCAAACAG	12240
	TGAATACACA	TGCCGGTAAC	GTAACGACAT	ACGCTGATAA	ATTAGTTATT	AAACGTAATG	12300
_	GTAACGTTGT	GACGACATTT	ACACGTCGCA	ATAATACGAG	TCCATGGGTG	AAAGAAGCAT	12360
10	CTGCAGCAAC	TGTAGCAGGT	ATTGCTGGAA	CTAATAATGG	TATTACTGTT	GCAGCAGGTA	12420
	CTTTCAACCC	TGCTGATACA	ATTCAAGTTG	TTGCAACGCA	AGGAAGCGGA	GAGACAGTGA	12480
15	GTGATGAGCA	ACGTAGTGAT	GATTTCACAG	TTGTCGCACC	ACAACCGAAC	CAAGCGACTA	12540
	CTAAGATTTG	GCAAAATGGT	CATATTGATA	TCACGCCTAA	TAATCCATCA	GGACATTTAA	12600
	TTAATCCAAC	TCAAGCAATG	GATATTGCTT	ACACTGAAAA	AGTGGGTAAT	GGTGCAGAAC	12660
20	ATAGTAAGAC	AATTAATGTT	GTTCGTGGTC	AAAATAATCA	ATGGACAATT	GCGAATAAGC	12720
	CTGACTATGT	AACGTTAGAT	GCACAAACTG	GTAAAGTGAC	GTTCAATGCC	AATACTATAA	12780
	AACCAAATTC	ATCAATCACA	ATTACTCCGA	AAGCAGGTAC	AGGTCACTCA	GTAAGTAGTA	12840
25	ATCCAAGTAC	ATTAACTGCA	CCGGCAGCTC	ATACTGTCAA	CACAACTGAA	ATTGTGAAAG	12900
	ATTATGGTTC	AAATGTAACA	GCAGCTGAAA	TTAACAATGC	AGTTCaAGTT	GCTAATAAAC	12960
	GTACTGCAAC	GATTAAAAAT	GGCACAGCAA	TGCCTACTAA	TTTAGCTGGT	GGTAGCACAA	13020
30	CGACGATTCC	TGTGACAGTA	ACTTACAATG	ATGGTAGTAC	TGAAGAAGTA	CAAGAGTCCA	13080
	TTTTCACAAA	AGCGGATAAA	CGTGAGTTAA	TCACAGCTAA	AAATCATTTA	GATGATCCAG	13140
35	TAAGCACTGA	AGGTAAAAAG	CCAGGTACAA	TTACGCAGTA	CAATAATGCA	ATGCATAATG	13200
33	CGCAACAACA	AATCAATACT	GCGAAAACAG	AAGCACAACA	AGTGATTAAT	AATGAGCGTG	13260
	CAAÇACCACA	ACAAGTTTCT	GACGCACTAA	CTAAAGTTCG	TGCAGCACAA	ACTAAGATTG	13320
10	ATCAAGCTAA	AGCATTACTT	CAAAATAAAG	AAGATAATAG	CCAATTAGTA	ACGTCTAAAA	13380
	ATAACTTACA	AAGTTCTGTG	AACCAAGTAC	CATCAACTGC	TGGTATGACG	CAACAAAGTA	13440
	TTGATAACTA	TAATGCGAAG	AAGCGTGAAG	CAGAAACTGA	AATAACTGCA	GCTCAACGTG	13500
15	TTATTGACAA	TGGCGATGCA	ACTGCACAAC	AAATTTCAGA	TGAAAAACAT	CGTGTCGATA	13560
	ACGCATTAAC	AGCATTAAAC	CAAGCGAAAC	ATGATTTAAC	TGCAGATACA	CATGCCTTAG	13620
	AGCAAGCAGT	GCAACAATTG	AATCGCACAG	GTACAACGAC	TGGTAAGAAG	CCGGCAAGTA	13630
50	TTACTGCTTA	CAATAATTCG	ATTCGTGCAC	TTCAAAGTGA	CTTAACAAGT	GCTAAAAATA	13740
	CCCCTAATCC	TATTATTCAA	******	CARGAGERGA	B C B B C T C C B B	TOTO COMPAN	12000

	CTGATAATAG	TGCTTTAAAA	ACTGCTAAGA	CGAAACTTGA	TGAAGAAATC	AATAAATCAG	13920
	TAACTACTGA	TGGTATGACA	CAATCATCAA	TCCAAGCATA	TGAAAATGCT	AAACGTGCGG	13980
5	GTCAAACAGA	ATCAACAAAT	GCACAAAATG	TTATTAACAA	TGGTGATGCG	ACTGACCAAC	14040
	AAATTGCCGC	AGAAAAAACA	AAAGTAGAAG	ааааататаа	TAGCTTAAAA	CAAGCAATTG	14100
	CTGGATTAAC	TCCAGACTTG	GCACCATTAC	AAACTGCAAA	AACTCAGTTG	CAAAATGATA	14160
10	TTGATCAGCC	AACGAGTACG	ACTGGTATGA	CAAGCGCATC	TATTGCAGCA	TTTAATGAAA	14220
	AACTTTCAGC	AGCTAGAACT	AAAATTCAAG	AAATTGATCG	TGTATTAGCC	TCACATCCAG	14280
15	ATGTTGCGAC	AATACGTCAA	AACGTGACAG	CAGCGAATGC	CGCTAAATCA	GCACTTGATC	14340
, 5	AAGCACGTAA	TGGCTTAACA	GTCGATAAAG	CGCCTTTAGA	AAATGCGAAA	AATCAACTAC	14400
	AACATAGTAT	TGACACGCAA	ACAAGTACAA	CTGGTATGAC	ACAAGACTCT	ATAAATGCAT	14460
20	ACAATGCGAA	GTTAACAGCT	GCACGTAATA	AGATTCAACA	AATCAATCAA	GTATTAGCAG	14520
	GTTCACCGAC	TGTAGAACAA	ATTAATACAA	ATACGTCTAC	AGCAAATCAA	GCTAAATCTG	14580
	ATTTAGATCA	TGCACGTCAA	GCTTTAACAC	CAGATAAAGC	GCCGCTTCAA	ACTGCGAAAA	14640
25	CGCAATTAGA	ACAAAGCATT	AATCAACCAA	CGGATACAAC	AGGTATGACG	ACCGCTTCGT	14700
	TAAATGCGTA	CAACCAAAAA	TTACAAGCAG	CGCGTCAAAA	GTTAACTGAA	ATTAATCAAG	14760
	TGTTGAATGG	CAACCCAACT	GTCCAAAATA	TCAATGATAA	AGTGACAGAG	GCAAACCAAG	14820
30	CTAAGGATCA	ATTAAATACA	GCACGTCAAG	GTTTAACATT	AGATAGACAG	CCAGCGTTAA	14880
	CAACATTACA	TGGTGCATCT	AACTTAAACC	AAGCACAACA	AAATAATTTC	ACGCAACAAA	14940
	TTAATGCTGC	TCAAAATcAT	GctGCGCTTG	AAACAATTAA	GTCTAACATT	ACGGCTTTAA	15000
35	ATACTGCGAT	GACGAAATTA	AAAGACAGTG	TTGCGGATAA	TAATACAATT	AAATCAGATC	15060
	AAAATTACAC	TGACGCAACA	CCAGCTAATA	AACAAGCGTA	TGATAATGCA	GTTAATGCGG	15120
40	CTAAAGGTGT	CATTGGAGAA	ACGACTAATC	CAACGATGGA	TGTTAACACA	GTGAACCAAA	15180
	AAGCAGCATC	TGTTAAATCG	ACGAAAGATG	CTTTAGATGG	TCAACAAAAC	TTACAACGTG	15240
	CGAAAACAGA	AGCAACAAAT	GCGATTACGC	ATGCAAGTGA	TTTAAACCAA	GCACAAAAGA	15300
45	ATGCATTAAC	ACAACAAGTG	AATAGTGCAC	AAAACGTGCA	AGCAGTAAAT	GATATTAAAC	15360
	AAACGACTCA	AAGCTTAAAT	ACTGCTATGA	CAGGTTTAAA	ACGTGGCGTT	GCTAATCATA	15420
	ACCAAGTCGT	ACAAAGTGAT	AATTATGTCA	ACGCAGATAC	TAATAAGAAA	AATGATTACA	15480
50	ACAATGCATA	CAACCATGCG	AATGACATTA	TTAATGGTAA	TGCACAACAT	CCAGTTATAA	15540
	CACCAAGTGA	TGTTAACAAT	GCTTTATCAA	ATGTCACAAG	TAAAGAACAT	GCATTGAATG	15600

	ATTTAAATAA	TGCACAACGT	CAAAACTTAC	AATCGCAAAT	TAATGGTGCG	CATCAAATTG	15720
	ATGCAGTTAA	TACAATTAAG	CAAAATGCAA	CAAACTTGAA	TAGTGCAATG	GGTAACTTAA	15780
5	GACAAGCTGT	TGCAGATAAA	GATCAAGTGA	AACGTACAGA	AGATTATGCG	GATGCAGATA	15840
	CAGCTAAACA	AAATGCATAT	AACAGTGCAG	TTTCAAGTGC	CGAAACAATC	ATTAATCAAA	15900
	CAACAAATCC	AACGATGTCT	GTTGATGATG	TTAATCGTGC	AACTTCAGCT	GTTACTTCTA	15960
10	ATAAAAATGC	ATTAAATGGT	TATGAAAAAT	TAGCACAATC	TAAAACAGAT	GCTGCAAGAG	16020
	CAATTGATGC	ATTACCACAT	TTAAATAATG	CACAAAAAGC	AGATGTTAAA	TCTAAAATTA	16080
15	ATGCTGCATC	AAATATTGCT	GGCGTAAATA	CTGTTAAACA	ACAAGGTACA	GATTTAAATA	16140
	CARCGATGGg	TAACTTGCAA	GGTGCAATCA	ATGATGAACA	AACGACGCTT	AATAGTCAAA	16200
	ACTATCAAGA	TGCGACACCT	AGTAAGAAAA	CAGCATACAC	AAATGCGGTA	CAAGCTGCGA	16260
20	AAGATATTTT	AAATAAATCA	AATGGTCAAA	ATAAAACGAA	AGATCAAGTT	ACTGAAGCGA	16320
	TGAATCAAGT	GAATTCTGCT	AAAAATAACT	TAGATGGTAC	GCGTTTATTA	GATCAAGCGA	16380
	nCAAaCAGCA	AAACAGCAGT	TAAATAATAT	GACGCATTTA	ACAACTGCAC	AAAAAACGAA	16440
25	TTTAACAAAC	CAAATTAATA	GTGGTACTAC	TGTCGCTGGT	GTTCAAACGG	TTCAATCAAA	16500
	TGCCAATACA	TTAGATCAAG	CCATGAATAC	GTTAAGACAA	AGTATTGCCA	ACAAAGATGC	16560
	GACTAAAGCA	AGTGAAGATT	ACGTAGATGC	TAATAATGAT	AAGCAAACAG	CATATAACAA	16620
30	CGCAGTAGCT	GCTGCTGAAA	CGATTATTAA	TGCTAATAGT	AATCCAGAAA	TGAATCCAAG	16680
	TACGATTACA	CAAAAAGCAG	AGCAAGTGAA	TAGTTCTAAA	ACGGCACTTA	ACGGTGATGA	16740
	AAACTTAGCT	GCTGCAAAAC	AAAATGCGAA	AACGTACTTA	AACACATTGA	CAAGTATTAC	16800
35	AGATGCTCAA	AAGAACAATT	TGATTAGTCA	AATTACTAGT	GCGACAAGAG	TGAGTGGTGT	16860
	TGATACTGTA	AAACAAAATG	CGCAACATCT	AGACCAAGCT	ATGGCTAGCT	TACAGAATGG	16920
10	TATTAACAAC	GAATCTCAAG	TGAAATCATC	TGAGAAATAT	CGTGATGCTG	ATACAAATAA	16980
	ACAACAAGAG	TATGATAATG	CTATTACTGC	AGCGAAAGCG	ATTTTAAATA	AATCGACAGG	17040
	TCCAAACACT	GCGCAAAATG	CAGTTGAAGC	AGCATTACAA	CGTGTTAATA	ATGCGAAAGA	17100
<b>1</b> 5	TGCATTGAAT	GGTGATGCAA	AATTAATTGC	AGCTCAAAAC	GCAGCGAAAC	AACATTTAGG	17160
	TACTTTAACG	CATATCACTA	CAGCTCAACG	TAATGATTTA	ACAAATCAAA	TTTCACAAGC	17220
	TACAAACTTA	GCTGGTGTTG	AATCTGTTAA	ACAAAATGCG	AATAGTTTAG	ATGGTGCTAT	17280
50	GGGTAACTTA	CAAACGGCTA	TCAACGATAA	GTCAGGAACA	TTAGCGAGCC	AAAACTTCTT	17340
	CCATCCTCAT	~~~~~~~~	CTAATCCATA	CAATCAACCT	CTATCACCAC	CCCNAACCAT	17400

	TGTTAATAAT	GCGAAACATG	CATTAAATGG	TACGCAAAAC	TTAAACAATG	CGAAACAAGC	17520
	AGCGATTACA	GCAATCAATG	GCGCATCTGA	TTTAAATCAA	AAACAAAAAG	ATGCATTAAA	17530
5	AGCACAAGCT	AATGGTGCTC	AACGCGTATC	TAATGCACAA	GATGTACAGC	ACAATGCGAC	17640
	TGAACTGAAC	ACGGCAATGG	GCACATTAAA	ACATGCCATC	GCAGATAAGA	CGAATACGTT	17700
	AGCAAGCAGT	AAATATGTTA	ATGCCGATAG	CACTAAACAA	AATGCTTACA	CAACTAAAGT	17760
10	TACCAATGCT	GAACATATTA	TTAGCGGTAC	GCCAACGGTT	GTTACGACAC	CTTCAGAAGT	17820
	AACAGCTGCA	GCTAATCAAG	TAAACAGCGC	GAAACAAGAA	TTAAATGGTG	ACGAAAGATT	17880
	ACGTGAAGCA	AAACAAAACG	CCAATACTGC	TATTGATGCA	TTAACACAAT	TAAATACACC	17940
15	TCAAAAAGCT	AAATTAAAAG	AACAAGTGGG	ACAAGCCAAT	AGATTAGAAG	ACGTACAAAC	18000
	TGTTCAAACA	AATGGACAAG	CATTGAACAA	TGCAATGAAA	GGCTTAAGAG	ATAGTATTGC	18060
20	TAACGAAACA	ACAGTCAAAA	CAAGTCAAAA	CTATACAGAC	GCAAGTCCGA	ATAACCAATC	18120
	AACATATAAT	AGCGCTGTGT	CAAATGCGAA	AGGTATCATT	AATCAAACTA	ACAATCCGAC	18180
	TATGGATACT	AGTGCGATTA	CCCAAGCTAC	AACACAAGTG	AATAATGCTA	AAAATGGTTT	18240
25	AAACGGTGCT	GAAAACTTAA	GAAATGCACA	AAACACTGCT	AAGCAAAACT	TAAATACATT	18300
	ATCACACTTA	ACAAATAACC	AAAAATCTGC	CATCTCATCA	CAAATTGATC	GTGCAGGTCA	18360
	TGTGAGTGAG	GTAACTGCTA	CTAAAAATGC	AGCAACTGAG	TTGAATACGC	AAATGGGTAA	18420
30	CTTGGAACAA	GCTATCCATG	ATCAAAACAC	AGTTAAACAA	AGTGTTAAAT	TTACTGATGC	18480
	AGATAAAGCT	AAACGTGATG	CGTATACAAA	TGCGGTAAGC	AGAGCTGAAG	CAATTCTGAA	18540
	TAAAACGCAA	GGTGCAAATA	CGTCTAAACA	AGATGTTGAA	GCGGCTATTC	AAAATGTTTC	18600
35	AAGTGCTAAA	AATGCATTGA	ATGGTGATCA	AAACGTTACA	AATGCGAAGA	ATGCAGCTAA	18660
	AAATGCATTA	AATAACTTAA	CGTCAATTAA	TAATGCACAA	AAACGTGACT	TAACAACTAA	18720
40	AATTGATCAA	GCAACAACTG	TAGCTGGTGT	TGAAGCTGTA	TCTAATACGA	GTACACAATT	18780
,•	GAALACAGCG	ATGGCTAACT	TGCAAAATGG	TATTAATGAT	AAAACAAATA	CACTAGCAAG	18840
	TGAAAACTAT	CATGATGCTG	ATTCAGATAA	GAAAACTGCT	TATACTCAAG	CCGTTACGAA	18900
45	CGCAGAAAAT	ATTTTAAATA	AAAATAGTGG	ATCAAATTTA	GACAAAACTG	CCGTTGAAAA	18960
	CGCGTTGTCA	CAAGTTGCTA	ATGCGAAAGG	TGCCCTAAAT	GGTAACCATA	ATTTAGAGCA	19020
	AGCTAAATCA	AATGCAAACA	СТАСТАТААА	CGGACTTCAA	CATTTAACAA	CTGCTCAAAA	19080
50	AGATAAATTG	AAACAACAAG	TGCAACAAGC	ACAAAATGTT	GCAGGTGTAG	ATACTGTTAA	19140
	ATCAAGTGCC	AACACATTAA	ATGGTGCTAT	GGGTACGTTA	AGAAATAGCA	TACAAGATAA	19200

	TAACAATGCT	GTTGATAGTG	CTAATGGTGT	CATTAATGCA	ACAAGCAATC	CAAATATGGA	19320
	TGCTAATGCA	ATTAACCAAA	TCGCTACACA	AGTGACATCA	ACGAAAAATG	CATTAGATGG	19380
5	TACACATAAT	TTAACGCAAG	CGAAACAAAC	AGCAACAAAT	GCCATCGATG	GTGCTACTAA	19440
	CTTAAATAAA	GCGCAAAAAG	ATGCGTTAAA	AGCACAAGTT	ACAAGTGCGC	AACGTGTTGC	19500
	AAATGTAACA	AGTATCCAAC	AAACTGCAAA	TGAACTTAAT	ACAGCTATGG	GTCAATTACA	19560
10	ACATGGTATT	GATGATGAAA	ATGCAACAAA	ACAAACTCAA	AAATATCGTG	ACGCTGAACA	19620
	AAGTAAGAAA	ACTGCTTATG	ATCAAGCTGT	AGCTGCTGCG	AAAGCAATTT	TAAATAAACA	19680
15	AACAGGTTCA	AATTCAGATA	AAGCAGCAGT	TGACCGTGCA	TTACAACAAG	TAACAAGTAC	19740
	GAAAGATGCA	TTGAATGGTG	ATGCAAAACT	GGCAGAAGCG	AAAGCGGCAG	CTAAACAAAA	19800
	CTTAGGCACT	TTAAACCATA	TTACGAATGC	ACAACGTACT	GACTTAGAAG	GCCAAATCAA	19860
20	TCAAGCGACG	ACTGTTGATG	GCGTTAATAC	TGTAAAAACA	AATGCCAATA	CATTAGACGG	19920
	CGCAATGAAT	AGCTTACAAG	GTTCAATCAA	TGATAAAGAT	GCGACATTAA	GAAATCAAAA	19980
	TTATCTTGAT	GCGGATGAAT	CAAAACGAAA	TGCATATACG	CAAGCTGTCA	CAGCGGCTGA	20040
25	AGGCATTTTA	AATAAACAAA	CTGGTGGTAA	CACATCTAAA	GCAGACGTTG	ATAATGCATT	20100
	AAATGCAGTT	ACAAGAGCGA	AAGcGgCTTT	AAATGGTGCT	GACAACTTAA	GAAATGCGAA	20160
	AACTTCAGCA	ACAAATACGA	TTGATGGTTT	ACCTAACTTA	ACACAATTAC	AAAAAGACAA	20220
30	CTTGAAGCAT	CAAGTTGAaC	AAGCGCAAAA	TGTAGCAGGT	GTAAATGGTG	TTAAAGATAA	20280
	AGGTAATACG	TTAAATACTG	CCATGGGTGC	ATTACGTACA	AGTATCCAAA	ATGATAATAC	20340
	GACGAAAACA	AGTCAAAATT	ATCTTGATGC	ATCTGACAGC	AACAAAAATA	ATTACAATAC	20400
35	TGCTGTAAAT	AATGCAAATG	GTGTTATTAA	TGCAACGAAC	AATCCAAATA	TGGATGCTAA	20460
	TGCGATTAAT	GGCATGGCAA	ATCAAGTCAA	TACAACAAAA	GCAGCGTTAA	ATGGTGCACA	20520
<b>‡</b> 0	AAACTTAGCT	CAAGCTAAAA	CAAATGCGAC	GAACACAATT	AACAACGCAC	ATGACTTAAA	20580
	CCAAAAACAA	AAAGATGCAT	TAAAAACACA	AGTTAACAAT	GCACAACGTG	TATCTGATGC	20640
	AAATAACGTT	CAACACACTG	CAACTGAATT	GAACAGTGCG	ATGACAGCAC	TTAAAGCAGC	20700
15	TATTGCTGAT	AAAGAAAGAA	CAAAAGCAAG	CGGTAATTAT	GTCAATGCTG	ATCAAGAAAA	20760
	ACGTCAAGCG	TATGATTCAA	AAGTGACTAA	CGCTGAAAAT	ATCATTAGTG	GTACACCGAA	20820
	TGCGACATTA	ACAGTCAATG	ACGTAAATAG	TGCGGCATCA	CAAGTCAATG	CGGCTAAAAC	20880
50	AGCATTAAAT	GGTGATAACA	ACTTACGTGT	AGCGAAAGAG	CATGCCAACA	ATACAATTGA	20940
	CCCCTTACCA	C	ATCCACAAAA	ACCA A A ATTA	****	mmaamaa	04000

	GAAAGGCTTA	AGAGATAGTA	TTGCGAATGA	AGCAACAATI	AAAGCAGGTC	AAAACTACAC	21120
	TGACGCAAGT	CCAAATAATO	GTAACGAGTA	CGACAGTGCA	GTTACTGCAG	CAAAAGCAAT	21180
5	CATTAATCAA	ACATCGAACC	CAACGATGGA	ACCAAATACT	TATTACGCAAG	TAACATCACA	21240
	AGTGACAACT	AAAGAACAGG	CATTAAATGG	TGCGCGAAAC	TTAGCTCAAG	CTAAGACAAC	21300
	TGCGAAAAAC	AACTTGAATA	ACTTAACATC	AATTAACAAT	GCACAAAAAG	ATGCGTTAAC	21360
10	GCGTAgcATT	GATGGTGCAA	CAACAGTAGC	TGGTGTAAAT	CAAGAAACTG	CAAAAGCAAC	21420
	AGAATTAAAT	AACGCAATGC	ATAGTTTACA	AAATGGTATC	AATGATGAGA	CACAAACAAA	21480
15	ACAAACTCAG	AAATACCTAG	ATGCAGAGCC	AAGTAAGAAA	TCAGCTTATG	ATCAAGCAGT	21540
	AAATGCAGCG	AAAGCAATTT	TAACAAAAGC	TAGTGGTCAA	AATGTAGACA	AAGCAGCAGT	21600
	TGAACAAGCA	TTGCAAAATG	TGAACAGTAC	GAAGACGGCG	TTGAACGGTG	ATGCGAAATT	21660
20	AAATGAAGCT	AAAGCAGCTG	CGAAACAAAC	GTTAGGTACA	TTAACACACA	TTAATAATGC	21720
	ACAACGTACA	GCGTTAGACA	ATGAAATTAC	ACAAGCAACA	AATGTTGAAG	GTGTTAATAC	21780
	AGTTAAAGCC	AAAGCGCAAC	AATTAGATGG	TGCTATGGGT	CAATTAGAAA	CATCAATTCG	21840
?5	TGATAAAGAC	ACGACGTTAC	AAAGTCAAAA	TTATCAAGAT	GCTGATGATG	CTAAACGAAC	21900
	TGCTTATTCT	CAAGCAGTAA	ATGCAGCAGC	AACTATTTTA	AATAAAACAg	CTGGCGGTAA	21960
	TACACCTAAA	GCAGATGTTG	AAAGAGCAAT	GCAAGCTGTT	ACACAAGCAA	ATACTGCATT	22020
30	AAACGGTATT	CAMAACTTAG	ATCGTGCGAA	ACArGCTGCT	AACACAGCGA	TTACAAATGC	22080
	TTCGGACTTA	AATACAAAAC	mAAAAGAAGC	ATTAAAAgCA	CAAGTAACAA	GTGCAGGACG	22140
	TGTATCTGCA	GCAAATGGTG	TTGAACATAC	TGCGACTGAA	TTAAATACTG	CGATGACAGC	22200
35	TTTAAAGCGT	GCCATTGCTG	ATAAAGCTGA	GACAAAAGCT	AGTGGTAACT	ATGTCAATGC	22260
	TGATGCGAAT	AAACGTCAAG	CATATGATGA	AAAAGTTACA	GCTGCCGAAA	ATATCGTTAG	22320
10	TGGTACACCA	ACACCAACGT	TAACACCAGC	AGATGTTACA	AATGCAGCAA	CGCAAGTAAC	22380
	GAATGCTAAG	ACGCAGTTAA	ACGGTAATCA	TAATTTAGAA	GTAGCGAAAC	AAAATGCTAA	22440
	CACTGCAATT	GATGGTTTAA	CTTCTTTAAA	TGGTCCGCAA	AAAGCAAAAC	TTAAAGAACA	22500
15	AGTGGGTCAA	GCGACGACGT	TGCCAAATGT	TCAAACTGTT	CGTGATAATG	CACAAACATT	22560
	AAACACTGCA	ATGAAAGGTC	TACGAGATAG	CATTGCGAAT	GAAGCAACGA	TTAAAGCAGG	22620
	TCAAAACTAC .	ACAGATGCAA	GTCAAAACAA	ACAAACTGAC	TACAACAGTG	CAGTCACTGC	22680
50	AGCAAAAGCA .	ATCATTGGTC	AAACAACTAG	TCCATCAATG	AATGCGCAAG	AAATTAATCA	22740
	AGCGAAAGAC	CAAGTGACAG	СТАЛАСААСА	ACCCTTA A A C	CCTCAACAAA	A COMPANDA DA NO	2222

	AGATGCAGTG	AAACGTCAAA	TCGAAGGTGC	AACGCATGTT	AATGAAGTAA	CACAAGCACA	22920
	AAATAATGCG	GATGCaTTAA	ATACAGCTAT	GACGAACTTG	AAAAATGGTA	TTCAAGATCA	22980
5	GAATACGATT	AAGCAAGGTG	TTAACTTCAC	TGATGCCGAC	GAAGCGAAAC	GTAATGCATA	23040
	TACAAATGCA	GTGACGCAAG	CTGAACAAAT	TTTAAATAAA	GCACAAGGTC	CAAATACTTC	23100
	AAAAGACGGT	GTCGAAACTG	CGTTAGAaAA	TGTACAACGT	GCTAAAAACG	AATTGAACGG	23160
10	TAATCAAAAT	GTTGCGAACG	CTAAGACAAC	TGCGAAAAAT	GCATTGAATA	ACCTAACATC	23220
	AATTAATAAT	GCACAAAAAG	AAGCATTGAA	ATCACAAATT	GAAGGTGCGA	CAACAGTTGC	23280
15	AGGTGTAAAT	CAAGTGTCTA	CAACGGCATC	TGAATTAAAT	ACAGCAATGA	GCAACTTACA	23340
	AAATGGTATT	AATGATGAAG	CAGCTACAAA	AGCAGCGCTT	AATGGTACTC	AAAACCTTGA	23400
	AAAAGCTAAA	CAACACGCAA	ATACAGCAAT	TGACGGTTTA	AGCCATTTAA	CAAATGCACA	23460
20	AAAAGAGGCA	TTAAAACAAT	TGGTACAACA	ATCGACTACT	GTTGCAGAAG	CACAAGGTAA	23520
	TGAGCAAAAA	GCAAACAATG	TTGATGCAGC	AATGGACAAA	TTACGTCAAA	GTATTGCAGA	23580
	TAATGCGACA	ACAAAACAAA	ACCAAAATTA	TACTGATGCA	AGTCAGAATA	AAAAGGATGC	23640
25	GTACAATAAT	GCTGTCACAA	CTGCACAAGG	TATTATTGAT	CAAACTACAA	GTCCAACTTT	23700
	AGATCCGACT	GTTATCAATC	AAGCTGCTGG	ACAAGTAAGC	ACAACTAAAA	ATGCATTAAA	23760
	TGGTAATGAA	AACCTAGAGG	CAGCGAAACA	ACAAGCGTCA	CAATCATTAG	GTTCATTAGA	23820
30	TAACTTAAAT	AATGCGCAAA	AACAAACAGT	TACTGATCAA	ATTAATGGCG	CGCATACTGT	23880
	TGATGAAGCA	AATCAAATTA	AGCAAAATGC	GCAAAACTTA	AATACAGCGA	TGGGTAACTT	23940
25	GAAACAAGCG	ATAGCTGACA	AAGATGCTAC	GAAAGCGACA	GTTAACTTCA	CTGATGCAGA	24000
35	TCAAGCAAAA	CAACAAGCAT	ATAACaCTGC	TGTTACAAAT	GCTGAAAATA	TCATTTCAAA	24060
	AGCTÂATGGC	GGCAATGCAA	CACAAGCTGA	AGTTGAACAA	GCAATCAAAC	AAGTTAATGC	24120
10	TGCAAAACAA	GCATTAAATG	GTAATGCCAA	CGTTCAACAT	GCAAAAGACG	AAGCAACAGC	24180
	TAATTAATTA	AGCTCTAATG	ACCTTAACCA	AGCACAAAAA	GACGCATTAA	AACAACAAGT	24240
	TCAAAATGCA	ACTACTGTAG	CTGGTGTAAA	CAATGTTAAA	CAAACAGCAC	AAGAGTTAAA	24300
15	CAATGCTATG	ACACAATTAA	AACAAGGCAT	TGCAGATAAA	GAACAAACAA	AAGCTGATGG	24360
	TAACTTTGTC	AATGCAGATC	CTGATAAGCA	AAATGCATAT	AATCAAGCAG	TAGCGAAAGC	24420
	TGAAGCATTA	ATTAGTGCLA	CGCCTGATGT	TGTCGTTACA	CCTAGCGAAA	TTACTGCAGC	24480
50	GTTAAATAAA	GTTACGCAAG	CTAAAAATGA	TTTAAATGGT	AATACAAACT	TAGCAACGGC	24540
	GAAACAAAAT	בדדר א אראדים	CTATTCATCA	7 TTCCC3 7 7 C	TT	GGG11 GGTG1	

	AGCGGCGACA	ACGCTTAATG	ACGCGATGAC	ACAATTGAAA	CAAGGTATTG	CGAATAAAGC	24720
	ACAAATTAAA	GGTAGCGAGA	ACTATCACGA	TGCTGATACT	GACAAGCAAA	CAGCATATGA	24780
5	TAATGCAGTA	ACAAAAGCAG	AAGAATTGTT	AAAACAAACA	ACAAATCCAA	CAATGGATCC	24840
	AAATACAATT	CAACAAGCAT	TAACTAAAGT	GAATGACACA	AATCAAGCAC	TTAACGGTAA	24900
	TCAAAAATTA	GCTGATGCCA	AACAAGATGC	TAAGACAACA	CTTGGTACAC	TAGATCATTT	24960
10	AAATGATGCT	CAAAAACAAG	CGCTAACAAC	TCAAGTTGAA	CAAGCACCAG	ATATTGCAAC	25020
	AGTTAATAAT	GTTAAGCAAA	ATGCTCAAAA	TCTGAATAAT	GCTATGACTA	ACTTAAACAA	25080
15	TGCATTACAA	GATAAAACTG	AGACATTAAA	TAGCATTAAC	TTTACTGATG	CAGATCAAGC	25140
15	TAAGAAAGAT	GCTTATACTA	ATGCGGTTTC	ACATGCAGAA	GGTATTTTAT	CTAAAGCAAA	25200
	TGGCAGCAAT	GCAAGTCAAA	CTGAAGTGGA	ACAAGCGATG	CAACGTGTGA	ACGAAGCGAA	25260
20	ACAAGCATTG	AATGGTAATG	ACAATGTACA	ACGTGCAAAA	GATGCAGCGA	AACAAGTGAT	25320
	TACAAATGCA	AATGATTTAA	ATCAAGCAAT	GACACAATTG	AAACAAGGTA	TTGCAGATAA	25380
	AGACCAAACT	AAAGCAAATG	GTAACTTTGT	CAATGCTGAT	ACTGATAAGC	AAAATGCTTA	25440
25	CAACAATGCG	GTAGCACATG	CTGAACAAAT	AATTAGTGGT	ACACCAAATG	CAAACGTGGA	25500
	TCCACAACAA	GTGGCTCAAG	CGTTACAACA	AGTGAATCAA	GCTAAGGGTG	ATTTAAACGG	25560
	TAACCATAAC	TTACAAGTTG	CTAAAGACAA	TGCAAATACA	GCCATTGATC	AGTTACCAAA	25620
30	CTTAAATCAA	CCACAAAAA	CAGCATTAAA	AGACCAAGTG	TCGCATGCAG	AACTTGTTAC	25680
	AGGTGTTAAT	GCTATTAAGC	AAAATGCTGA	TGCGTTAAAT	AATGCAATGG	GTACATTGAA	25740
	ACAACAAATT	CAAGCGAACA	GTCAAGTACC	ACAGTCAGTT	GACTTTACAC	AAGCGGATCA	25800
35	AGACAAACAA	CAAGCATATA	ACAATGCGGC	TAACCAAGCG	CAACAAATCG	CAAATGGCAT	25860
	ACCAÁCACCT	GTATTGACGC	CTGATACAGT	AACACAAGCA	GTGACAACTA	TGAATCAAGC	25920
40	GAAAGATGCA	TTAAACGGTG	ATGAAAAATT	AGCACAAGCG	AAACAAGAAG	CTTTAGCAAA	25980
40	TCTTGATACG	TTACGCGATT	TAAATCAACC	ACAACGTGAT	GCATTACGTA	ACCAAATCAA	26040
	TCAAGCACAA	GCGTTAGCTA	CAGTTGAACA	AACTAAACAA	AATGCACAAA	ATGTGAATAC	26100
45	aGCaATGAGT	AACTTGAAAC	aAGGTATTGC	aAACAAAGAT	ACTGTCAAAG	CAAGTGAGAA	26160
	CTATCATGAT	GCTGATGCCG	ATAAGCAAAC	AGCATATACA	AATGCAGTGT	CTCAAGCGGA	26220
	AGGTATTATC	AATCAAACGA	CAAATCCAAC	GCTTAACCCA	GATGAAATAA	CACGTGCATT	26280
50	AACTCAAGTG	ACTGATGCTA	AAAATGGCTT	AAACGGTGAA	GCTAAATTGG	CAACTGAAAA	26340
	GCAAAATGCT	AAAGATGCCG	тарстессат	CACCCATTTA	AACGATCCTC	****	26400

	AGCAACGAGC	CTAGATCAAG	CAATGGATCA	ATTATCACAA	GCTATTAATG	ATAAAGCTCA	26520
	AACATTAGCG	GACGGTAATT	ACTTAAATGC	AGATCCTGAC	AAACAAAATG	CGTATAAACA	26580
5	GGCAGTAGCA	AAAGCTGAAG	CATTATTGAA	TAAACAAAGT	GGTACTAATG	AAGTACAAGC	26640
	ACAAGTTGAA	AGCATCACTA	ATGAAGTGAA	CGCAGCGAAA	CAAGCATTAA	ATGGTAATGA	26700
	CAATTTGGCA	AATGCAAAAC	AACAAGCAAA	ACAACAATTG	GCGAACTTAA	CACACTTAAA	26760
10	TGATGCACAA	AAACAATCAT	TTGAAAGTCA	AATTACACAA	GCGCCACTTG	TTACAGATGT	26820
	CACTACGATT	AATCAAAAAG	CACAAACGTT	AGATCATGCG	ATGGAATTAT	TAAGAAATAG	26880
15	TGTTGCGGAT	AATCAAACGA	CATTAGCGTC	TGAAGATTAT	CATGATGCAA	CTGCGCAAAG	26940
	ACAAAATGAC	TATAACCAAG	CTGTAACAGC	TGCTAATAAT	ATAATTAATC	AAACTACATC	27000
	GCCTACGATG	AATCCAGATG	ATGTTAATGG	TGCAACGACA	CAAGTGAATA	ATACGAAAGT	27060
20	TGCATTAGAT	GGTGATGAAA	ACCTTGCAGC	AGCTAAACAA	CAAGCAAACA	ACAGACTTGA	27120
	TCAATTAGAT	CATTTGAATA	ATGCGCAAAA	GCAACAGTTA	CAATCACAAA	TTACGCAATC	27180
	ATCTGATATT	GCTGCAGTTA	ATGGTCACAA	ACAAACAGCA	GAATCTTTAA	ATACTGCGAT	27240
25	GGGTAACTTA	ATTAATGCGA	TTGCAGATCA	TCAAGCCGTT	GAACAACGTG	GTAACTTCAT	27300
	CAATGCTGAT	ACTGATAAAC	AAACTGCTTA	TAATACAGCG	GTAAATGAAG	CAGCAGCAAT	27360
	GATTAACAAA	CAAACTGGTC	AAAATGCGAA	CCAAACAGAA	GTAGAACAAG	CTATTACTAA	27420
30	AGTTCAAACA	ACACTTCAAG	CGTTAAATGG	AGACCATAAT	TTACAAGTTG	CTAAAACAAA	27480
	TGCGACGCAA	GCAATTGATG	CTTTAACAAG	CTTAAATGAT	CCTCAAAAAA	CAGCATTAAA	27540
	AGACCAAGTT	ACAGCTGCAA	CTTTAGTAAC	TGCAGTTCAT	CAAATTGAAC	AAAATGCGAA	27600
35	TACGCTTAAC	CAAGCAATGC	ATGGTTTAAG	ACAGAGCATT	CAAGATAACG	CAGCAACTAA	27660
	AGCAAATAGC	AAATATATCA	ACGAAGATCA	ACCAGAGCAA	CAAAACTATG	ATCAAGCTGT	27720
40	TCAÄGCCGCA	AATAATATTA	TCAATGAACA	AACTGCAACA	TTAGATAATA	ATGCGATTAA	27780
	TCAAGCAGCG	ACAACTGTGA	ATACAACGAA	AGCAGCATTA	CATGGTGATG	TGAAGTTACA	27840
	AAATGATAAA	GATCATGCTA	AGCAAACGGT	TAGTCAATTA	GCACATCTAA	ACAATGCACA	27900
45	AAAACATATG	GAAGATACGT	TAATTGATAG	TGAAACAACT	AGAACAGCAG	TTAAGCAAGA	27960
	TTTGACTGAA	GCACAAGCAT	TAGATCAACT	TATGGATGCA	TTACAACAAA	GTATTGCTGA	28020
	CAAAGATGCA	ACACGTGCGA	GCAGTGCATA	TGTCAATGCA	GAACCGAATA	AAAAACAATC	28080
50	CTATGATGAA	GCAGTTCAAA	ATGCTGAGTC	TATCATTGCA	GGATTAAATA	ATCCAACTAT	28140
	CAATAAAGGT	AATGTATCAA	GTGCGACTCA	AGCAGTAATA	TCATCTAAAA	ATGCATTAGA	28200

	TCAATTAACA	CCAGCTCAAC	AACAAGCGCT	AGAAAATCAA	ATTAATAATG	CAACAACTCG	29320
	TGATAAAGTG	GCTGAAATCA	TTGCACAAGC	GCAAgCATtA	AATGAAGCGA	TGAAAGCATT	28380
5	AAAAGAAAGT	ATTAAGGATC	AACCACAAAC	TGAAGCAAGT	AGTAAATTTA	TTAACGAGGA	28440
	TCAAGCGCAA	AAAGATGCTT	ATACGCAAGC	AGTACAACAC	GCGAAAGATT	TGATTAACAA	28500
	AACAACTGAT	CCTACATTAG	CTAAATCAAT	CATTGATCAA	GCGACACAGG	CAGTGACAGA	28560
10	TGCTAAAAAC	AATTTACATG	GTGATCAAAA	ACTAGCTCAA	GATAAGCAAC	GTGCAACAGA	28620
	AACGTTAAAT	AACTTGTCTA	ACTTGAATAC	ACCACAACGT	CAAGCACTTG	AAAATCAAAT	28680
15	TAATAATGCA	GCAACTCGTG	GCGAAGTAGC	ACAAAAATTA	ACTGAAGCAC	AAGCACTTAA	28740
,,,	CCAAGCAATG	GAAGCTTTAC	GTAATAGCAT	TCAAGATCAA	CAGCAAACGG	AAGCGGGTAG	28800
	CAAGTTTATC	AATGAAGATA	AaccacmAAA	AGTTGCTTAC	CAAGCAGCAG	TTCAAAATGC	28860
20	AAAAGATTTA	ATTAATCAAA	CTAACAATCC	AACGCTTGAT	AAAGCACAAG	TTGAACAATT	28920
	GACACAAGCT	GTTAACCAAG	CTAAAGATAA	CCTACACGGT	GATCAAAAAC	TTGCAGACGA	28980
	TAAACAACAT	GCGGTTACTG	ATTTAAATCA	ATTAAATGGT	TTGAATAATC	CGCAACGTCA	29040
25	AGCACTTGAA	AGCCAAATAA	ACAACGCAGC	AACTCGTGGC	GAAGTAGCAC	AAAAATTAGC	29100
	TGAAGCAAAA	GCGCTTGATC	AAGCAATGCA	AGCATTACGT	AATAGTATTC	AAGATCAACA	29160
	ACAAACAGAA	TCTGGTAGCA	AGTTTATCAA	TGAAGATAAA	CCGCAAAAAG	ATGCTTACCA	29220
30	AGCAGCAGTT	CAAAATGCAA	AAGATTTAAT	TAACCAAACA	GGTAATCCAA	CACTCGACAA	29280
	ATCACAAGTA	GAACAATTGA	CACAAGCAGT	AACAACTGCA	AAAGATAATC	TACATGGTGA	29340
	TCAAAAACTT	GCTCGTGATC	AACAACAAGC	AGTAACAACT	GTAAATGCAT	TGCCAAACTT	29400
35	AAATCATGCA	CAACAACAAG	CATTAACTGA	TGCTATAAAT	GCAGCGCCTA	CAAGAACAGA	29460
	GGTTGCACAA	CATGTTCAAA	CTGCTACTGA	ACTTGATCAC	GCGATGGAAA	CATTGAAAAA	29520
40	TAAAGTTGAT	CAAGTGAATA	CAGATAAGGC	TCAACCAAAT	TACACTGAAG	CGTCAACTGA	29580
	TAAAAAAGAA	GCAGTAGATC	AAGCGTTACA	AGCTGCAGAA	AGCATTACAG	ATCCAACTAA	29640
	TGGTTCAAAT	GCGAATAAAG	ACGCTGTAGA	CCAAGTATTA	ACTAAGCTTC	AAGAAAAGA	29700
45	AAATGAGTTA	AATGGTAATG	AGAGAGTCGC	TGAAGCTAAA	ACACAAGCGA	AACAAACTAT	29760
	TGACCAATTA	ACACATTTAA	ATGCTGATCA	AATTGCAACT	GCTAAACAAA	ACATTGATCA	29820
	AGCGACGAAA	CTTCAACCAA	TTGCTGAATT	AGTAGATCAA	GCAACGCAAT	TGAATCAATC	29880
50	TATGGATCAA	TTACAACAAG	CAGTTAATGA	ACATGCTAAC	GTTGAGCAAA	CTGTAGATTA	29940
	CACACAAGCA	GATTCAGATA	AACAAAATGC	TTATAAACAA	GCTATTGCTG	ATGCTGAAAA	30000

	TGCAAAACAA	GCATTAAATG	GTGATGAACG	TGTAGCACTT	GCTAAAACAA	ATGGTAAACA	30120
	TGACATCGAC	CAATTGAATG	CATTAAACAA	TGCTCAACAA	GATGGATTTA	AAGGTCGCAT	30180
5	CGATCAATCA	AACGATTTAA	ATCAAATCCA	ACAAATTGTA	GATGAGGCTA	AGGCACTTAA	30240
	TCGTGCAATG	GATCAATTGT	CACAAGAAAT	CACTGACAAT	GAAGGACGCA	CGAAAGGTAG	30300
	CACGAACTAT	GTCAATGCAG	ATACACAAGT	CAAACAAGTA	TATGATGAAA	CGGTTGATAA	30360
10	AGCGAAACAA	GCACTTGATA	AATCGACTGG	TCAAAACTTA	ACTGCAAAAC	AAGTTATCAA	30420
	ATTAAATGAT	GCAGTCACTG	CAGCTAAGAA	AGCATTAAAT	GGTGAAGAAA	GACTTAATAA	30480
15	TCGTAAAGCT	GAAGCATTAC	AAAGATTGGA	TCAATTAACA	CATCTAAACA	ATGCTCAAAG	30540
	ACAATTAGCA	ATCCAACAAA	TTAATAATGC	TGAAACGCTA	AATAAAGCAT	CTCGAGCAAT	30600
	TAATAGAGCA	ACTAAATTAG	ATAATGCAAT	GGGTTCAGTA	CAACAATATA	TTGACGAACA	30660
20	GCACCTTGGT	GTTATCAGCA	GCACAAATTA	CATCAATGCA	GATGACAATT	TGAAAGCAAA	30720
	TTATGATAAT	GCAATTGCGA	ATGCAGCACA	TGAGTTAGAT	AAAGTGCAAG	GTAATGCAAT	30780
	TGCaAAAGCT	GAAGCAGAGC	AATTGAAACA	AAATATTATC	GATGCTCAAA	ATGCATTAAA	30840
25	TGGAGACCAA	AACCTTGCAA	ATGCCAAAGA	TAAAGCAAAT	GCGTTTGTTA	ATTCGTTAAA	30900
	TGGATTAAAT	CAACAGCAAC	AAGATCTTGC	ACATAAAGCA	ATTAACAATG	CCGATACTGT	30960
	ATCAGATGTA	ACAGATATTG	TTAATAATCA	AATTGACTTA	AATGATGCAA	TGGAAACATT	31020
30	GAAACATTTA	GTTGACAATG	AAATTCCAAA	TGCAGAGCAA	ACTGTCAATT	ACCAAAACGC	31080
	TGACGATAAT	GCTAAA					31096

(2) INFORMATION FOR SEQ ID NO: 60:

35

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2243 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear

40

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

ATGACAGAAT GGGAGCGAGG ACTTAGAATG TTTCCTAAAT CAGGTTTATT AAATTTTGAG 60

TTAGCGATAG MAAATCGTTC ATTAAATGAT GATGAAAAAG CATTAAAATA TGTGCGTAAA 120

GCATTAAATG CAGACCCTAA AAATACAGAT TATATTAACT TAGAAAAAAGA GTTGACTAAA 180

TCAAATGAGT CGAAAAATAA ATAACTTTTA TGATGTACAA CAGTTATTGA AAAGTTACGG 240

ATTTCTAATA TATTTTAAAA ATCCAGAAGA TATGTACGAA ATGATTCAAC AGGAGATTTC 300

55

	TAATCAGAGA	AGGAATGAAC	AGAAATGACA	AAAATTATTT	TAGCAGCTGA	TGTAGGCGGG	420
	ACGACTTGTA	AATTAGGTAT	TTTCACACCT	GAATTAGAAC	AATTACATAA	ATGGTCTATT	480
5	CACACTGATA	CATCTGATAG	TACAGGATAT	ACACTTTTGA	AAGGAATTTA	TGATTCGTTT	540
	GTTGAAAAAG	TAAATGAAAA	TAATTATAAT	TTTTCAAATG	TACTTGGCGT	AGGTATTGGT	600
	GTACCAGGTC	CTGTTGACTT	TGAAAAAGGT	ACAGTAAATG	GAGCAGTAAA	CTTATATTGG	660
10	CCAGAAAAAG	TTAATGTACG	TGAGATTTTT	GAACAATTCG	TTGATTGTCC	AGTGTATGTA	720
	GATAATGATG	CTAACATAGC	TGCTTTAGGG	GaGAAACACA	AAGGTGCTGG	TGAAGGTGCC	780
15	GATGATGTTG	TTGCCATCAC	ACTTGGTACA	GGTCTAGGTG	GAGGAATTAT	TTCCAAATGG	840
	TGAAATCGTA	CATGGTCATA	ATGGCTCtGG	CGCAGAAATA	GGTCATTTTA	GAGCAGACTT	900
	CgATCAACGA	TTTaAATGTA	ATTGTGGTCG	TTCTGGATGT	ATTGAAACAG	TTGCTTCaGC	960
20	GACAGGCGTT	GTTAACTTAG	TTAACTTCtA	CTATCCGAAG	TTGACGTTTA	GATCTTCTAT	1020
	ATTAGAATTG	ATTAAAGAAA	ATAAGGTtAC	aGCAAAAGCT	GTTTTTGATG	CGGCAAAAGC	1080
	TGGTGACCAA	TTCTGTATTT	TCATTACTGA	AAAGGTTGCA	AACTATATTG	GATATTTATG	1140
25	TAGTATTATT	AGTGTTACAA	GTAATCCGAA	ATATATCGTT	CTAGGTGGAG	GAATGTCTAC	1200
	TGCAGGACCT	ATTTTAATTG	AAAATATTAA	AACAGAATAT	CATAATTTAA	CATTTGCACC	1260
	TGCTCAATTT	GAAACTGAAA	TTGTACAAGC	GAAATTAGGT	AATGATGCAG	GTATTACAGG	1320
30	AGCAGCAGGA	TTAATCAAGA	CCTATGTATT	AGATAAAGAG	GGGGTAAAAT	AATGGCTATT	1380
	GTTGATGTGG	TTGTTATTCC	AGTTGGAACG	GAAGGTCCGA	GTGTTAGTAA	ATATATTGCA	1440
	GATATTCAGA	AAAAACTTCA	AGAATATAAA	GCAATGGGTA	AAATTGATTT	TCAATTAACA	1500
35	CCAATGAATA	CTCTAATTGA	AGGTGAATTA	AGCGATGTAT	TAGAAGTTGT	GCAAGTGATA	1560
	CATGÃATTAC	CTTTTGATAA	AGGTTTAAGT	AGAGTTTGTA	CAAATATCCG	TATTGATGAC	1620
10	CGACGAGACA	AATCTAGAAA	AATGAATGAT	AAACTAACAT	CAGTACAAAA	ACATTTAGAA	1680
	AATAGTGGTG	AAAACCTATG	AGGATTTCAA	GCTTAACTTT	AGGCTTAGTT	GATACTAATA	1740
	CGTATTTCAT	CGAAAATGAC	AAAGCTGTTA	TTCTGATTGA	CCCTTCAGGT	GAAAGTGAAA	1800
15	AAATTATTAA	AAAATTAAAC	САААТАААТА	AACCGTTAAA	AGCTATTTTA	TTAACACATG	1860
	CACACTTTGA	TCATATCGGA	GCAGTCGATG	ATATAGTTGA	TCGATTCGAT	GTCCCGGTTT	192
	ATATGCATGA	AGCAGAGTTT	GATTTTCTAA	AAGATCCCGT	TAAAAATGGG	GCAGATAAAT	198
50	TTAAGCAATA	TGGATTACCA	ATTATTACAA	GTAAGGTAAC	TCCTGAAAAG	TTAAmCGAAG	204
	GTAGCACAGA	AATAGAAGGA	TTTAAGTTnT	nAyrTGTaCA	CACACCTGGA	CATTCACCAG	2100

	GAATCGGACG TACAGATTTA TATAAAGGTG ATTATGAAAC GCTAGTTGAT TCTATTCAAG	2220
	ATAAAATATT TGAATTAGAA GGC	2243
5	(2) INFORMATION FOR SEQ ID NO: 61:	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 8009 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: double</li> <li>(D) TOPOLOGY: linear</li> </ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
15	TTGGnATCAT tyAcgGTAAA AAGAATAAaG CAAGATTEAT TTCATTAGTA CTAATTTGTG	60
	CAATGTTTGC AATTTGTTGG GTTGCATATA TTCAATGGGA GTCTACAATC GCTTCATTTA	120
20	CACAATCTAT TAATATTTCa ATGGCACAAT ATAGTGTTTT ATGGACAATT AACGGAATAA	180
	TGATTTTAGT AGCACAACCA TTAATTAAAC CGATTCTCTA TCTGTTAAAA GGAAACTTAA	240
	AGAAGCAAAT GTTTGTCGGC ATCATCATTT TTATGTTGTC GTTCTTTGTC ACGAGTTTTG	300
25	CCGAAAACTT TACAATATTT GTTGTCGGTA TGATTATTTT AACTTTTGGA GAAATGTTTG	360
	TATGGCCAGC AGTTCCAACT ATAGCCAATC AGTTAGCGCC AGATGGTAAG CAAGGACAGT	420
	ACCAAGGIIT IGIGAATTCA GCTGCTACAG TAGGAAAAGC ATTTGGTCCA TTTCTTGGTG	480
30	GTGTATTAGT TGATGCGTTT AATATGCGCA TGATGTTTAT CGGTATGATG CTACTACTTG	540
	TATTIGCATI AATATTATTA ATGGTTTTCA AGGAGAATAA TACGCAACCT AAAAAAATAG	600
	ATGCATAATG AGTAAATAGA ATTAACGTTA TAGACTTGAA ATAAATGTCG TTATAACATA	660
35	ATATTAATTT GTATAATTTA ATTTCGTTTG GAGCTTTTCT ACAGAAAGCT AGTGATGCTG	720
	AGAGCTAGTG TTAAGGACTA AATGTAAATC GTATTAATTT TAAATTGAAT GAATGACATC	780
40	TCTTACTATT AAAATGAGTG CACAATTTTT GTGAAATAGG GTGGTAACGC GGCAAATGTC	840
40	GTCCCTATGT AAATAGAATA GTTAGAGGTG TCTTTTTTAT TGAATAGGAG GAAATGTGTT	900
	GAATTACAAC CACAATCAAA TTGAAAAGAA ATGGCAAGAC TATTGGGACG AAAATAAAAC	960
45	ATTTAAAACA AATGATAACT TAGGTCAAAA GAAATTTTAT GCTTTAGACA TGTTTCCATA	1020
	TCCATCAGGT GCTGGTTTAC ATGTTGGACA TCCTGAGGGC TATACAGCAA CAGATATCAT	1080
	TTCAAGATAT AAAAGAATGC AAGGATATAA TGTATTACAT CCGATGGGGT GGGATGCATT	1140
50	CGGATTACCA GCAGAGCAAT ATGCTTTAGA CACTGGCAAC GACCCACGTG AATTTACAAA	1200
	GAAAAATATC CAAACTTTTA AACGACAAAT TAAAGAATTA GGGTTCAGTT ATGATTGGGA	1260

	GTTATATAAC	AAAGGTTTAG	CATACGTTGA	TGAAGTTGCA	GTTAACTGGT	GTCCAGCATT	1380
	AGGCACTGTT	TTATCTAACG	AAGAAGTGAT	TGATGGTGTC	TCTGAACGTG	GTGGACATCC	1440
5	AGTTTATCGT	AAGCCGATGA	AACAATGGGT	ACTTAAAATC	ACAGAATATG	CAGATCAATT	1500
	ATTAGCAGAT	TTAGATGATT	TAGATTGGCC	TGAGTCTTTA	AAAGATATGC	AGCGCAATTG	1560
	GATTGGACGT	TCTGAAGGGG	CCAAAGTTTC	ATTTGATGTA	GATAATACGG	AAGGAAAAGT	1620
10	AGAAGTATTT	ACGACTAGAC	CAGATACAAT	CTATGGTGCA	TCATTCTTAG	TCTTAAGTCC	1680
	TGAACATGCA	TTAGTTAATT	CAATTACAAC	AGATGAATAT	AAAGAAAAAG	TAAAAGCTTA	1740
15	TCAAACAGAA	GCTTCTAAAA	AGTCAGATTT	AGAACGTACA	GATTTAGCAA	AAGATAAATC	1800
	AGGTGTATTT	ACTGGTGCAT	ATGCAACTAA	TCCTTTATCT	GGTGAAAAAG	TACAAATTTG	1860
	GATTGCTGAT	TATGTATTAT	CAACATATGG	TACTGGAGCA	ATTATGGCAG	TACCAGCGCA	1920
20	TGATGACAGA	GATTATGAAT	TTGCTAAAAA	GTTTGATTTG	CCAATCATTG	AAGTCATCGA	1980
	AGGTGGAAAT	GTTGAAGAAG	CAGCATACAC	TGGTGAAGGT	AAACATATTA	ATTCTGGTGA	2040
	ACTTGATGGT	TTAGAAAATG	AAGCGGCAAT	TACTAAAGCT	ATTCAATTAT	TAGAGCAAAA	2100
25	AGGTGCTGGC	GAAAAGAAAG	TTAATTACAA	ATTAAGAGAT	TGGTTATTCA	GTCGTCAGCG	2160
	TTATTGGGGC	GAACCAATTC	CTGTCATTCA	TTGGGAAGAT	GGAACAATGA	CAACTGTTCC	2220
	TGAAGAAGAG	CTACCATTGT	TGTTACCTGA	AACAGATGAA	ATCAAGCCAT	CAGGGACTGG	2280
30	TGAGTCTCCA	CTAGCTAATA	TTGATTCATT	TGTAAATGTT	GTAGATGAAA	AAACAGGTAT	2340
	GAAAGGACGT	CGTGAAACAA	ATACAATGCC	ACAATGGGCA	GGTAGTTGTT	GGTATTATTT	2400
25	ACGTTACATC	GATCCTAAAA	ATGAAAATAT	GTTAGCAGAT	CCTGAAAAAT	TAAAACATTG	2460
35	GTTACCTGTT	GATTTATATA	TCGGTGGAGT	AGAACATGCG	GTTCTTCACT	TATTATATGC	2520
	AAGATTTTGG	CATAAAGTCC	TTTATGATTT	GGCTATCGTA	CCTACTAAAG	AACCTTTCCA	2580
40	TTTATTAAAA	AACCAAGGTA	TGATTTTAGG	AGAAGGTAAT	GAGAAGATGA	GTAAATCTAA	2640
	AGGAAATGTA	ATCAATCCTG	ATGATATAGT	ACAGTCTCAT	GGTGCAGATA	CTTTGCGTCT	2700
	TTACGAAATG	TTTATGGGAC	CTTTAGATGC	TGCAATTGCA	TGGAGTGAAA	AAGGATTAGA	2760
45	TGGGTCTCGT	CGATTCTTAG	ATCGCGTATG	GCGTTTAATG	GTAAATGAAG	ATGGGACATT	2820
	GAGTTCAAAA	ATTGTAACTA	САААТААТАА	ATCTTTAGAT	AAAGTTTATA	ACCAAACTGT	2880
	TAAAAAGGTA	ACAGAAGACT	TTGAAACATT	AGGATTTAAT	ACTGCTATTA	GTCAATTAAT	2940
50	GGTATTTATT	AATGAGTGTT	ATAAAGTTGA	TGAAGTTTAT	AAACCTTACA	TTGAAGGCTT	3000
	CGTTAAAATG	TTAGCACCTA	TTGCACCACA	TATCGGTGAA	GAATTATGGT	CAAAATTAGG	3060

	TGATGAAGTA	GAAATCGTTG	TTCAAGTGAA	TGGTAAATTG	AGAGCTAAAA	TTAAAATTGC	3180
	TAAAGATACA	TCAAAAGAAG	AAATGCAAGA	AATTGCCTTA	TCTAATGACA	ATGTTAAAGC	3240
5	GAGTATTGAA	GGTAAAGACA	TCATGAAAGT	CATCGCTGTT	CCTCAAAAAT	TAGTCAATAT	3300
	TGTAGCTAAA	TAATGTTTTA	AGGAGGACTT	TGAAATGAAG	TCAATTACTA	CAGATGAATT	3360
	AAAAAATAAA	CTTTTAGAAT	CTAAACCAGT	TCAAATTGTT	GATGTTCGTA	CTGATGAAGA	3420
10	AACAGCAATG	GGATATATTC	CTAATGCAAA	GTTAATTCCA	ATGGATACCA	TTCCGGATAA	3480
	TTTAAATTCA	TTTAATAAAA	ATGAAATATA	TTATATTGTA	TGTGCTGGTG	GAGTTCGAAG	3540
15	CGCTAAAGTT	GTAGAATATT	TAGAGGCAAA	TGGCATTGAT	GCCGTAAATG	TCGAAGGCGG	3600
, 0	CATGCACGCA	TGGGGCGATG	AAGGTTTGGA	AATAAAAAGT	ATTTAAAGTA	GTGACATAAT	3660
	TAAAAATAAT	ATTACATTTG	TAATGACACC	AAGTAACGTT	TCGGTTGCTT	GGTGTTTTTT	3720
20	GGTATGAATT	ACTTTCTGTT	ACAAAACAAT	CTAAAGCGTT	CTTGTTATGT	TTTATTAAGA	3780
	TTTTAATTAC	AAAACGGAAA	CTAAATTGTA	ATAAAATAA	ACTTTATTTT	ATAAAATGAT	3840
	GATGATAAAA	TTGAGTGAAC	TTAAAATATT	GTACAAAATA	ATATAGCTAT	AAATATAATA	3900
25	TAGCTATAAA	TATAATATGA	GGGAGCGTAT	ATTTTTAGCA	TAATTCTTAA	CAACACAGCA	3960
	GAGAACAGAC	AACCAGGAGG	AAAATGAAAT	GAATTTGTTA	AAGAAAAATA	AATATAGTAT	4020
	TAGGAAGTAT	AAAGTAGGCA	TATTCTCTAC	TTTAATCGGA	ACAGTTTTAT	TACTTTCAAA	4080
30	CCCAAATGGT	GCACAAGCCT	TAACTACGGA	TAATAATGTA	CAAAGCGATA	CTAATCAAGC	4140
	AACACCTGTA	AATTCACAAG	ATAAAGATGT	TGCTAATAAT	AGAGGTTTAG	CAAATAGTGC	4200
	GCAGAATACA	CCTAATCAAT	CTGCAACAAC	CAATCAAGCA	ACGAATCAAG	CATTGGTTAA	4260
35	TCATAATAAT	GGTAGTATAG	TAAATCAAGC	TACGCCAACA	TCAGTGCAAT	CAAGTACGCC	4320
	TTCAGCACAA	AACAATAATC	ATACAGATGG	CAATACAACA	GCAACTGAGA	CAGTGTCAAA	4380
40	CGCTAATAAT	AATGATGTAG	TGTCGAATAA	TACCGCATTA	AATGTACCAA	СТААААСААА	4440
	TGAAAATGGT	TCAGGAGGAC	ATCTAACTTT	AAAGGAAATT	CAAGAAGATG	TTCGTCATTC	4500
	TTCAAATAAA	CCAGAGCTAG	TTGCAATTGC	TGAACCAGCA	TCTAATAGAC	CGAAAAAGAG	4560
45	AAGTAGACGT	GCGGCACCGG	CAGATCCTAA	TGCAACTCCA	GCAGATCCAG	CGGCTGCAGC	4620
	GGTAGGAAAC	GGTGGTGCAC	CAGTTGCAAT	TACAGCGCCA	TATACGCCAA	CAACTGATCC	4680
	TAATGCCAAT	AATGCAGGAC	AAAATGCACC	TAACGAAGTG	CTGTCATTTG	ATGACAATGG	4740
50	TATTAGACCA	AGTACCAACC	GTTCTGTGCC	AACAGTAAAC	GTTGTTAATA	ACTTGCCGGG	4800
	CTTCACACTA	ATCAATGGTG	GCAAAGTAGG	GGTGTTTAGT	CATGCAATGG	TAAGAACGAG	4860

	TCGTATACAT	GGAACTGATA	CGAATGACCA	TGGCGATTTT	AATGGTATCG	AGAAAGCATT	4980
	AACAGTAAAT	CCGAATTCTG	AATTAATCTT	TGAATTTAAT	ACAATGACTA	CTAAAAACGG	5040
5	TCAAGGCGCA	ACAAATGTTA	TTATCAAAAA	TGCTGATACT	AATGATACGA	TTGCTGAAAA	5100
	GACTGTTGAA	GGCGGTCCAA	CTTTGCGTTT	ATTTAAAGTA	CCTGATAATG	TGAGAAATCT	5160
	CAAAATTCAA	TTTGTACCTA	AAAATGACGC	AATAACAGAT	GCGCGTGGCA	TTTATCAACT	5220
10	AAAAGATGGT	TACAAATACT	ATAGCTTTGT	TGACTCTATC	GGACTTCATT	CTGGGTCACA	5280
	TGTTTTTGTT	GAAAGACGAA	CAATGGATCC	AACAGCAACA	AATAATAAAG	AGTTTACTGT	5340
15	AACAACATCA	TTAAAGAATA	ATGGTAATTC	TGGTGCTTCT	CTAGATACAA	ATGACTTTGT	5400
13	ATATCAAGTT	CAATTACCTG	AAGGTGTTGA	ATATGTGAAC	AATTCATTGA	CTAAAGATTT	5460
	TCCAAGTAAC	AATTCAGGCG	TTGATGTTAA	TGATATGAAT	GTTACATATG	ATGCAGCAAA	5520
20	TCGTGTGATA	ACAATTAAAA	GTACTGGAGG	AGGTACAGCA	AACTCTCCGG	CACGACTTAT	5580
	GCCTGATAAA	ATACTCGATT	TAAGATATAA	ATTACGTGTA	AATAATGTGC	CGACACCAAG	5640
	AACAGTAACA	TTTAACGAGA	CATTAACGTA	TAAAACATAT	ACACAAGATT	TCATTAATTC	5700
25	AGCTGCAGAA	AGTCATACTG	TAAGTACAAA	TCCATATACT	ATCGATATCA	TCATGAATAA	5760
	AGATGCATTA	CAAGCCGAAG	TTGACAGACG	TATTCAACAA	GCTGATTATA	CATTTGCGTC	5820
	ATTAGATATC	TTTAATGGTC	TGAAACGACG	CGCACAAACG	ATTTTAGATG	AAAATCGTAA	5880
30	CAATGTACCA	TTAAATAAAA	GAGTTTCTCA	AGCATATATT	GATTCATTAA	CTAATCAAAT	5940
	GCAACATACG	TTAATTCGAA	GTGTTGATGC	TGAAAATGCA	GTTAATAAAA	AAGTTGACCA	6000
	AATGGAAGAT	TTAGTTAATC	AAAATGATGA	ATTGACAGAT	GAAGAAAAAC	AAGCAGCAAT	6060
35	ACAAGTTATC	GAGGAACATA	AAAATGAAAT	AATTGGTAAT	ATTGGTGACC	AAACGACTGA	6120
	TGATGGCGTT	ACTAGAATCA	AAGATCAAGG	TATACAGACC	TTAAGTGGGG	ATACTGCAAC	6180
10	ACCGGTTGTT	AAACCAAATG	CTAAAAAAGC	AATACGTGAT	AAAGCAACGA	AACAAAGGGA	6240
***	AATTATCAAT	GCAACACCAG	ATGCTACTGA	AGACGAGATT	CAAGATGCAC	TAAATCAATT	6300
	AGCTACGGAT	GAAACAGATG	CTATTGATAA	TGTTACGAAT	GCTACTACAA	ATGCTGACGT	6360
15	TGAAACAGCT	AAAAATAATG	GCATCAATAC	TATTGGAGCA	GTTGTTCCTC	AAGTAACTCA	6420
	TAAAAAAGCT	GCAAGAGATG	CAATTAACCA	AGCAACAGCA	ACGAAAAGAC	AACAAATAAA	6480
	TAGTAATAGA	GAAGCAACTC	aggaagagaa	AAATGCAGCA	TTGAACGAAT	TAACTCAAGC	6540
50	AACCAACCAT	GCTTTAGAAC	AAATCAATCA	AGCAACAACA	AATGCTAATG	TTGATAACGC	6600
	CAAAGGAGAT	GGTCTAAATG	CCATTAATCC	AATTGCTCCT	GTAACTGTTG	TTAAGCAAGC	6660

	TGATGCGACT	CAAGAAGAAA	GACAAGCAGC	AATTGACAAA	GTGAATGCTG	CTGTAACTGC	6780
	AGCAAACACA	AACATTTTAA	ACGCTAATAC	CAATGCTGAT	GTTGAACAAG	TAAAGACAAA	6840
5	TGCGATTCAA	GGAATACAAG	CAATTACACC	AGCTACAAAA	GTAAAAACAG	ATGCAAAAAA	6900
	TGCCATCGAT	AAAAGTGCGG	AAACGCAACA	TAATACGATA	TTTAATAATA	ATGATGCGAC	6960
	GCTCGAAGAA	CAACAAGCAG	CACAACAATT	ACTTGATCAA	GCTGTAGCCA	CAGCGAAGCA	7020
10	AAATATTAAT	GCAGCAGATA	CGAATCAAGA	AGTTGCACAA	GCAAAAGATC	AGGGCACACA	7080
	AAATATAGTA	GTGATTCAAC	CGGCAACACA	AGTTAAAACG	GATACTCGCA	ATGTTGTAAA	7140
15	TGATAAAGCG	CGAGAGGCGA	TAACAAATAT	CAATGCTACA	ACTGGCGCGA	CTCGAGAAGA	7200
13	GAAACAAGAA	GCGATAAATC	GTGTCAATAC	ACTTAAAAAT	AGAGCATTAA	CTGATATTGG	7260
	TGTGACGTCT	ACTACTGCGA	TGGTCAATAG	TATTAGAGAC	GATGCAGTCA	ATCAAATCGG	7320
20	CGCAGTTCAA	CCGCATGTAA	CGAAGAAACA	AACTGCTACA	GGTGTATTAA	ATGATTTAGC	7380
	AACTGCTAAA	AAGCAAGAAA	TTAATCAAAA	CACAAATGCA	ACAACTGAAG	AAAAGCAAGT	7440
	GGCTTTAAAT	CAAGTGGATC	AAGAGTTAGC	AACGGCAATT	AATmATATAA	ATCAAGCTGA	7500
25	TACAAATGCG	GAAGTAGATC	AAGCGCAACA	ATTAGGTACA	AAAGCAATTA	ATGCGATTCA	7560
	GCCAAATATT	GTTAAAAAAC	CTGCAGCATT	AGCACAAATC	AATCAGCATT	ATAATGCTAA	7620
	ATTAGCTGAA	ATCAATGCTA	CACCAGATGC	AACGAATGAT	GAGAAAAATG	CTGCGATCAA	7680
30	TACTTTAAAT	CAAGACAGAC	AACAAGCTAT	TGAAAGTATT	AAACAAGCTA	ACACAAATGC	7740
	AGAAGTAGAC	CAAGCTGCGA	CAGTAGCAGA	GAATAATATC	GATGCTGTTC	AAGTTGATGT	7800
	AGTAAAAAA	CAAGCAGCGC	GAGATAAAAT	CACTGCTGAA	GTGGcGAacG	TATTGaAGCG	7860
35	GTTAAACAAA	CACCTAATGC	AACTGACGAA	GAAAAGCAGG	CTGCTGTTAA	TCAAATCCAA	7920
	TCAĄCTITAA	AGATTCAAGC	AATTTAATCC	AAATTTAATC	CAAAACCCAA	ACAAATGGAT	7980
40	TCAGGGTAGG	ACACCACTTA	CAAATCCAA				8009
	(a) INCORMA	TION FOR CE	O ID NO. C	١.			

(2) INFORMATION FOR SEQ ID NO: 62:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10953 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62: 50 ACCCACCCC TGGGGATANT TTACCTGGTG GGGCCTTCGA TTGCCTTTAG GTGAAACCAG 60

	AGATGAATGC	TAACCATATI	CATTCTGCTA	AAGATGGTCG	TGTTACTGCG	ACAGCTGAAA	180
	TTATTCATCG	AGGTAAGTCG	ACACATGTAT	GGGATATAAA	AATTAAGAAT	GACAAAGAAC	240
5	AATTAATTAC	AGTTATGCGT	GGTACAGTTG	CTATTAAACC	TTTAAAATAA	AAGAACTGCT	300
	AGCTGAAATG	TTATGAGATA	TTCATAACTA	CGGCTAGCAG	TTTTTTTATG	CGCTATATTG	360
	TTGTAGTTTT	AGAAATGCTT	GTTCAATGCG	TTCGGCAGCT	TTACGGCCAC	CCATAACATT	420
10	TCTACCAAAT	GGTCCTAATT	CTAAGTCTGC	AAAGCATCCT	GCGACAAATA	GATTTGGTAT	480
	CCATTCTAAT	TTTTCGGAAA	TAACAGGGTA	ATTACATTCG	TTGATAGGTG	CATCATAATT	540
15	TTGTATTAAT	TGCTTAATAA	GTGGTTGTGA	CATAAAATCT	TGTTCAAAAC	CAGTTGCAAC	600
75	CATAATCTGT	TGATATGGAA	CAGAATCATT	TTCAGTGTTA	ATTACACCAC	CACTAATTTG	660
	AGTGATAGGT	GTTTTATGCa	CATTTATACG	ACCATTTTTA	ATATGTTTTT	TAAGGCGTAA	720
20	GTACAGTTCG	TGAGGCATTG	ATCCTTTATG	ACGTTCGCGT	TGTACAATGG	CATTTCTTTC	780
	AGGCATGCTT	TTAGTACTTA	AAAATGAAGA	CATATTTTTC	GGACCTAACC	AACCAGGATC	840
	AGCATCAAAG	TCATGTATTT	CAATATCTTT	ATTTAGCCAT	AAATGAATCT	TTTTATCGTT	900
25	ATCATGATTT	AACAATTTAA	GTGCAAGATG	TGCAGCAGTa	ATGCCGCTAC	CAACGATATG	960
	ATCGGTCTTA	TCATATACTA	CTTGATCAAG	TTCTTTCTCG	AAGATATGAT	TTACATTCTG	1020
	TTTGTCTTTT	AAAATGTCAG	GCATAAACGG	AATATTTGTA	CTGCCTATTG	CAATAACGAC	1080
30	GCAATCTGTA	GTGATAATTT	GTCCATCTTC	TAACTTGATA	TGCCATTTGT	CTTCTTGTTT	1140
	ATCTAAAGTT	TGAACTAAAC	CTTGAACCAA	GCAATCCTCT	AATTGATATT	GTTTAGAAGC	1200
	ATGTGCAATA	TGATCCATAA	ACATTGTCAA	TTCAGGTCGT	TGATAAGGAC	CATAAAAAGC	1260
35	ATTTGTATAT	TGGTGCTGTT	TAGCGAATTG	TTTTAGATGG	AACGGTTGTG	GATGTACGTG	1320
	ATGTACAATC	GGTGATCTTA	AATAAGGCAT	TTCTATTCGA	TTTGTATATG	AGTTAAACCT	1380
40	TTGGCAAAAA	GTTTCGTGTG	GGTCAATGAT	TGTTAATCGG	TCTGTTGTTA	ATCCGCTTGA	1440
	TAATAGTTTT	TGTGCGATTG	CAGTTCCCTG	TATGCCACCG	CCGATAATTG	TCCAATGCAT	1500
	AATAAAACCT	CTCTCTTTTT	AAAACGTAAT	AGTTACGATT	TATAATTATT	ATTATCATAA	1560
45	TACATAACGA	CATGAAAGGC	AATTAAATTA	AAGAGATATA	TGTAGATAGG	GCGAATCTGT	1620
	AGTCAAAGAA	AAAATCATTG	AAAAAGAGGT	AACAATGTCA	AAAGAWAACA	GCAGTAAAAT	1680
	CATTCCTAAT	TTGGAATCAT	CTTACTGCTG	TTTGTTGTTG	ATTTATATTC	ATGATTTTGT	1740
50	TATATAATCT	ACAATTTTGT	GTCTTTTAAG	TCTTCCGAAA	TTTCATCGAC	TTTAGTCTTT	1800
	TTAGTATAAG	GCGTTTTAAT	ATTATATGCT	GCTTTCATAA	TCATATGACT	TGAAAGAGGA	1860

	GCAATAAAAT	ATAAAAACGT	ACCAAATAGT	AATGACATTG	CACCTAATGT	TGATGCTTTT	1980
	CCGGCAGCAT	GTGCACGTGA	ATATACATCT	TCAAGTCTCA	ATAATCCTAT	AGCTGCTAGG	2040
5	GCGCTAATTA	AAGCACCGAT	GATAACAAAG	ATAAGTGCAA	GACTAATCAG	TATGATTTTG	2100
	ATCATGTTCA	ATCACCTTAC	CTTTGTCCAT	AAATTTAGAG	AATACTGCAG	TACCTAAAAA	2160
	AGCTAATATA	CCAATCATCA	TAATAACGAC	AATCATGTAT	TTAATATTTA	ATAAAATACT	2220
10	GAATAATGCT	ATAACTGCCA	TTAATTGAAG	ACCAATCGCA	TCTAATGCGA	CAACACGATC	2280
	GGCAAGTGAT	GGGCCTAGCA	CAACGCGAAT	GAGCATAGCT	AACATAGAAA	TGACAACTAT	2340
15	GATTAATGCA	ATAACGATAA	TAACATTATG	ATTCATTATA	TTTCGCCCAC	CTCTCTTACA	2400
	ATTTTCTCTA	ATGATGTTTT	AATACTTTCT	ACTTCTTGCT	CTTTAGTTGA	AAAATCTATG	2460
	GCATGAATAT	AAATTTTTGT	ACGATCGTCA	CTTACACCAA	GCACTACAGT	ACCAGGTGTT	2520
20	AATGTAATTA	AATTAGACAG	CAAGACAATT	TGCCAATCTT	TTTTTAAATC	TGTGTGATAA	2580
	ACAAAGAATC	CTGGTTCATT	TTTAATCGAA	GGTTTAATAA	TAATTTTCAA	AACATCAAAA	2640
	TTAGCTTTAA	TCAGTTCGAT	TAAGAAAATA	ATAACTAATT	TAATAATACG	ATATAGCGTG	2700
25	ATGACATAAA	ATCTACCTGG	TAACACTCTG	TGTAAGAGGT	AAACAAGAAC	TAGGCCAAAG	2760
	ATGAAACCTA	ACACAAAGTT	ATTTGTTGTG	TAACTATTTG	TCACAAACAA	CCAAAACACT	2820
	GCGATAATAA	AGTTTAATAC	TAATTGTACA	GCCATGTTAT	TTACCTCCTA	ATACAGCTTT	2880
30	AACGTAGGTT	GATGGATTGT	AGAATGTTTC	TGCACCAGCT	TTTACCATTG	GATATAAGTA	2940
	ATCTGCTGAC	AATCCATATA	AAACAGTTAT	CACAACTGCA	ACGATTGCAA	TCGTAGTTAA	3000
a.r	ATATTTGACG	TCGACTTTGT	TATTAAGATC	ATATCCTTTT	GGTTGACCGA	AAAAGCCTTG	3060
35	TAGGAATATG	CGAATGACAG	AATATAATAC	GACTAAACTT	GATAATAAGA	CGATGACACC	3120
	ACTŢĀĀĀTĀĀ	AATCCTCTTT	CAAATGTTGA	TTGGACAATA	AAAAATTTTC	CATAAAAGCC	3180
40	ACTGAGTGGG	GGAATGCCAG	CTAAACTTAA	TGCTGCGATA	AAGAATGACC	AACCAAGTAC	3240
	AGGATATCGT	TTAATTAAGC	CACCAAATTG	TCTTAAATCA	GCAGTGCCTG	TAATTTTAAT	3300
	CATAATTCCG	ATAAGCAAGA	ATAATGCAAG	TTTTACTAAC	ATGTCGTGCA	ATGTATAGTA	3360
45	AATAGCCCCA	ATCATACCTG	ACTCTGTCAT	CATTGCAACG	CCGACTAAGA	TCACACCTAC	3420
	AGCAATCATG	ACATTGTATA	GGATGATTTT	TTTAATGTTG	GCATATGCAA	CAGCACCGAC	3480
	ACAACCAAAG	ATGATCGTTA	ATAGTGCTAA	GAATAAAATG	ACATAATGTG	AAAAGCTTAC	3540
50	ATTATCACTA	AAGAATAGGC	TCAATGTTCT	AGCGATTGCA	TAAACACCAA	CTTTTGTTAA	3600
	CAAAGCACCA	AAGAATGCAA	TGATTGGAAT	TGGTGGgCAT	AGTATGCACT	AGGTAACCAA	3660

	ATATTGACTA	AGCCACTGTC	ATGCGCTGAA	AGGTTAGCTA	ATTTATTGCT	TATATCTGCT	3780
	AGATTCAATG	TTCCTACTAC	TGAATATAAA	ATCGCTACAC	CCATTACGAA	GAAGGATGAC	3840
5	GATACAACGT	TAACAAGAAC	ATATTTTATT	GTTTCTTGTA	GTTGAATTTT	TGTAGAACCA	3900
	ATTACTAATA	AGAAATAAGA	TGACATTAAA	AATACTTCGA	AAAATACGAA	TAGGTTGAAA	3960
	ATGTCACCAG	TTGTGAATGC	ACCAATGATA	CCTATTAACA	TAAATAGTAC	TGAAAAATAA	4020
10	TAATAATATC	TTTCACGTTC	AATACCAATT	GTTTGGTATG	AATATAAAAT	CACAATAGCT	4080
	GTAATAATAA	TACTAGTAAT	TATTAGTAGG	GCACTGAATA	TGTCTAATAC	AAAGACAATA	4140
15	CTGTATGGTG	CTTTCCATGA	ACCTAGCTCT	ACGCGTATTG	GTCCATGTTT	AACAACATTT	4200
, 3	GCTAAATTGA	TAATTGCCGC	GACCAAGGTT	AATAATGTAC	CGCCTAGTGC	GACATAACGC	4260
	TTTATAATAG	GACGCTTTCC	AATAAAGACA	AGTAATATGG	CTGTAATTAC	TGGAATAACT	4320
20	AGCGTTAACA	CAAGCATATT	ACTTTCAATC	ATCTTCTGGA	ACTCCTTTCA	TACTCTCAAC	4380
	GTTATCTGTG	CCTAATTCTT	TATATGTTCT	AAATGCTAAT	ACTAAGAAAA	AGGCTGTTGT	4440
	CGCAAgGCGA	TAACGATTGC	TGTTAAAATA	AGTGCTTGCG	GGaTAGGaTC	AACATAGCTT	4500
25	TTTACGTTCG	CTTCATAAAT	TGGAACAGTA	CCATGTTTAA	GTCCGCCCAT	AGTTATTAAA	4560
	AATAAATTTG	CTGCATGTGT	TAATAGTGTA	GTTCCCATAA	CAATTCGTAT	CAGACTTTTA	4620
	GACAAAACGA	GATAGACACT	AATTGCTGTG	AGAATACCAC	TAACAAAAAT	CATAATAATT	4680
30	TCCACTATTC	GTTCTCTCCA	ATCGAAATAA	TAATTGTCAT	GACAGTACCA	ACTACTGCAC	4740
	ATAAAACACC	GAAATCAAAG	AATACTGCTG	TTGTCATATG	AACAGGTTCT	AATATAAATA	4800
	ACGGTATATC	AAATGTGACA	TGCGTAAAGA	AATTTTTGCC	TAAAAACCAA	CTTGCGATAG	4860
35	GCGTCGCAAT	ACAAAAAACT	AATCCGATAC	CTATCAAGAT	TTTAAAATCT	AATGGGAAAA	4920
	TTTŢĀCGCAT	TGTTTCTATA	TCAAATGCAA	TCGTAATGAT	AACAAGTGAA	CTTGCGAATA	4980
10	ATAATCCGCC	GACGAAACCG	CCACCAGGTG	TATAATGTCC	TGCTAAGAAA	AGTGAAAAAC	5040
	CAAAGACCAT	TACCATGAAA	AAGATAATAA	CTGCAGCAAA	TTGCAAAATT	AGATCATTTT	5100
	GTTGTCTATT	CATGATTTTT	CACCTCGTTA	CCTTGCGTTT	GACGCTTTTT	ACGTAATTTA	5160
<b>4</b> 5	ATCATTGTAT	ATACAGCTAA	TCCTGCGATA	CCAAGCACAG	ATGACTCGAA	TAAAGTATCC	5220
	ATACCACGGA	AATCAACAAG	TATGACGTTT	ACCATGTTTT	TACCGTGAGC	t <b>AAA</b> TCATAA	5280
	ACGTGCTCTT	GATAAAACTT	AGATATCGAT	TCAAAATGTC	TATTTCCGTA	TGCAATTAAA	5340
50	CCGATAATAA	TGACGGACAA	ACCAACACCA	CCAGCAATTA	AAGCATTAGT	AAGCTGGAAT	5400
	GAGCGCTTTT	CATTATAACG	ATTTAAATTT	GGTAAGTGGT	AGAAGCATAA	TAAGAACAAT	5460

	ATAAACAATA	CAGACACAGC	ATATCCAACT	GCACTTAACA	TAATGATGCT	AAATAATCTT	5580
	GATTTAGCGA	AAAGAATTAA	AAAGGCAGCA	CTTAATAATA	AAATTACGAT	ACAAACTTCG	5640
5	AAAATTCTAA	TCGGACTAAC	GTCTTTAAAA	TTAATGTTGA	AAGGTACTGA	GAATATAGTG	5700
	ACAAATGTTA	ATAAAATTAA	TGCACCAAAA	ATGATAACTA	AATTATTACG	TGAATAATCG	5760
	GTAACATAGC	TATTCGTCAT	CTTTTCAGAG	TAGTTTGGAA	TAACATTTGC	ACTTCTGTTG	5820
10	TACCAATAAT	TGAATGTTAG	TTTACCAGGT	TGTCGTTGCA	ACAATTTCAC	CCAATAACTA	5880
	AATGTCACAA	TTAGTAAGAT	ACCTAAAATA	TAAATCACTA	ATGTTGATAA	AAAGGCAGGC	5940
15	GTTAATCCAT	GGAACATATG	GAATTCAACA	TCATCAATTA	CCGTATGATT	AATCGAAGag	6000
	TnAGCTGGTT	CAATAATCGA	ATTAGTTAAA	ATGCCAGGGA	ATAAACCAAA	TACAATTACT	6060
	AATGTAGCTA	AAATAGCTGG	TGATAAAAGC	ATTAATATTG	ATACTTCGTG	TGCTTTTTTA	6120
20	GGTAATTGTT	CAGGTTTATA	TTGTCCGAAA	AATATATGCA	TTATAAATTT	AATTGAATAT	6180
	ACAAATGTGA	AGACACTGCC	CACTATACCA	ATGATTGGGA	ATAGGTAGCC	TAATGTATCA	6240
	ACACTGAATA	AATTTGCTTG	GCTTGCTGTA	AATGTTGTTT	CTAAAAATGA	TTCTTTTGAT	6300
25	AAGAAACCAT	TGAACGGTGG	TACACCAGCg	CATACTTAAT	GCTGTAATAA	CAGTGATTGT	6360
	AAATGAAATA	GGCATAATTG	TTAGTAAGCC	ACCTAATTTC	TTAACATCAC	GTGTACCAGT	6420
	AGAATGATCC	ACTGCACCTG	TAATCATAAA	TAGGGCACCT	TTAAATGTTG	CATGGTTGAT	6480
30	TAAATGGAAT	ATTGCAGCCG	TAAATGCAGC	AGCATATATT	TTGCTATCAT	CGCCTTGATA	6540
	GTGATAACTA	ATGGCACCGA	TTCCAAGCAT	CGCCATAATC	ATACCTAATT	GGGATACTGT	6600
35	TGAAAATGCC	AGTATACCTT	TCAAGTCTTG	TTGTTTTGTT	GCGTTTAGCG	AAgCCCAGAA	6660
35	TAATGTAATT	AAACCAACGA	GTGTGACAGT	CCATACCCAA	CCTTGCGATG	CTGCGAAGAT	6720
	TGGTGTCATT	CGAGCGATTA	AATATAACCC	TGCTTTAACC	ATTGTTGCTG	AATGAAGATA	6780
40	AGCACTGACT	GGTGTAGGTG	CTTCCATTGC	ATCTGGTAGC	CAAATATAAA	ATGGAAACTG	6840
	AGCAGATTTT	GTAAAAGCAC	CAATCATGAT	TAAAATCATC	GCAAAAATGA	AGAATGGGCT	6900
	ATTTTGAATT	TCAGAAGCAT	GTTGAATCAT	GTACTGAATG	CTAAATGATT	GTGTTGGTAT	6960
45	AGCGAGTAAG	ATGATACCAC	CTAATAATGA	TAGACCACCA	AATACTGTGA	TTATGAGCGA	7020
	TTTTTGAGCA	CCATATATAG	ATGCTTGTCG	TTCGCGCCAG	AATGAAATAA	GTAAAAAACT	7080
	AGAAAATGAC	GTTAGCTCCC	AGAATAAATA	TAGAATAATA	ACATTATCTG	AAAGTACGAC	7140
50	ACCTAACATT	GCACCCATAA	ATAGTAATAA	ATAACAATAA	AAATTCCCTA	GTTGTTCTGA	7200
	CTTACTTAAG	TAGCCGATTG	AATATAATAC	TACTAAACTG	CCGATTCCTG	AAATAAGCAA	7260

	CCAATTTAAG	GTTTTCATTA	CAGTATTACC	TGACATCGTC	GTTTTAATTA	ATGTAAGCAT	7380
	ATAAATAAAT	ATGACGATAG	GGACAGGTAA	TACGAACCAT	CCTAAATGTA	TACGTTTAAA	7440
5	AAATCTATAC	AGGATAGGAA	TAATGAGTGC	GAATATTAAC	GGTAATATCA	CCGCAATATG	7500
	TAACAAACTC	ACTATGTTGT	CCTCCTTTAA	AAAATATTTA	TGTTATTCAT	TATACATGAA	7560
	TGATATAGTT	CTGAAAAACG	TACACACTCC	TTGTTGTGCT	TTATTTTCAG	AaGTATTTAA	7620
10	ATAAGAAGAA	ACACGTCATT	TTTTATTTAA	AATTTTCTTT	GTATTGAAGT	GAATAATCTT	7680
	CTTTTAAGCG	TGCTAAACTA	GCTAAAGACA	TTTCAGCATG	TTTTGTTTGC	TGAGCTTTAA	7740
	GTTTAGTTTC	TAAATCTGTA	ATTGCTTGTT	GAAGTGAATC	TTCATAGCGC	AATACATCAA	7800
15	CATTGAAGTC	GCGTAATTGT	GAACGTTTCG	TATAGCGTTT	TTCAAAATGG	CTTAATGCTT	7860
	TGCGGTCATG	GAAAAATACA	CCTTCAGTTT	CAGTAGGGTT	ATGTAAATCA	CCTTGTTTCG	7920
20	GGTGTTTGAT	AACTTGTTCA	ACTTTAACAA	GGACATCGTC	TCCATTTTCT	TCAACAATCG	7980
	TGACACCATA	GCTACCTGTT	TTGTGTGAAA	ATCGATATAG	CTTCATGCTA	TTTTCCTCCC	8040
	TTAAAAGTAT	GTTAATATAT	ATGTATCATA	ACATGAATGG	AGAATATAAA	TGGCTAACTA	8100
25	TCCACAGTTA	AACAAAGAAG	TACAACAAGG	TGAAATCAAA	GTGGTTATGC	ACACAAATAA	8160
	AGGTGACATG	ACATTCAAAT	TATTTCCAAA	TATTGCACCA	AAAACAGTTG	AAAATTTTGT	8220
	GACACATGCA	AAAAATGGTT	ATTATGATGG	AATCACATTC	CACCGTGTCA	TTAATGACTT	8280
30	CATGATTCAA	GGTGGCGATC	CAACAGCTAC	TGGTATGGGT	GGCGAAAGTA	TTTATGGCGG	8340
	TGCTTTTGAA	GATGAATTTT	CATTAAATGC	ATTTAACTTA	TATGGCGCAT	TATCAATGGC	8400
	TAACTCAGGA	CCTAATACTA	ATGGTTCACA	ATTTTTCATT	GTTCAAATGA	AAGAAGTACC	8460
35	TCAAAATATG	TTAAGTCAAC	TTGCAGATGG	TGGCTGGCCT	CAACCAATCG	TTGATGCATA	8520
	TGGCGAAAAG	GGTGGTACAC	CATGGTTAGA	TCAAAAACAT	ACAGTATTCG	GTCAAATCAT	8580
40	TGATGGTGAA	aCTACATTAG	AAGATATTGC	AAATACAAAA	GTGGGACCAC	AAGATAAACC	8640
40	ACTTCATGAT	GTTGTAATTG	AATCTATTGA	TGTTGAAGAA	TAATATCTAA	ACATAATTAA	8700
	CTACCAACAT	TTTAAACTCG	GATAAAGCTA	ATTTATGAAT	GGATTAGTAT	ATATTCCAAC	8760
45	gaaaataaat	AAACTAATAT	GATGAGCAAT	CTCAATATAT	TTATCaAGAA	AGCACAGTTT	8820
	TTAAATAGAT	GTGTATTTTA	AAGATAATAG	TTGAGGTTGC	TTTTTATGTT	TTTACAGAGA	8880
	ATTGCTATTC	AAATAGTAAA	TAAATTGAAA	ACAAAGTAGC	TGGATATCAT	ATTGATTTAG	8940
50	ATAGGAATTT	GTTGCTAATT	TTATTTGTAA	ATCCAAGTTT	GTAGAATTCT	TATTCATTTA	9000
	TAAAATAATA	TTCGTATGAT	TTGATTTTTT	AATTAGTCCA	CCATTTCGAT	TTGTGCTATG	9060

	AACATATCAA	GGTGCGTGTA	CTGGTATTCA	ACCATACGGT	GCGTTTGTTG	AGACCCCTAA	9180
	TCATACTGAA	GGACTGATTC	ATATATCAGA	AATTATGGAT	GACTACGTTC	ATAATTTGAA	9240
5	GAAATTTCTA	TCAGAAGGCC	AAATTGTTAA	AGCTAAAATT	TTGTCTATAG	ATGATGAAGG	9300
	AAAGCTTAAT	CTATCATTAA	AGGATAATGA	TTACTTCAAA	AATTATGAGC	GTAAGAAGGA	9360
	AAAACAATCA	GTATTAGATG	AAATCAGAGA	AACAGAAAAA	TATGGGTTTC	AAACACTTAA	9420
10	AGAACGCTTA	CCAATCTGGA	TAAAACAGTC	AAAGCGAGCA	ATTCGAAACG	ACTAAAGGAA	9480
	CAGATAAATC	GTACCGAAAA	TCATACAAAG	GGTCTGAAAT	GAAAGTTTCT	TAGACTATAA	9540
15	AAGAGATTAG	TATCTATTAA	ATTTTATTAG	ATACTAATCT	CTTTTTGTCT	ACGATAACGT	9600
	AATATGaTTG	ATTCTATTTA	CACGTACAAA	TGGTTTAAGG	TGACATATCC	ATTATCTTTG	9660
	TTAGATAGAA	TCGTTGATTT	GCaATATTGT	ATGTGGATTT	GTTTTTTTTA	TTTATTTTAG	9720
20	AAATGAGAAC	TACAACTTAA	AGTATTAAAC	GAATTGCAAC	TATATAAACA	GATAATTGGA	9780
	GAATGAAAAA	ATTACATGTT	ATAGTCAACT	CAATAATTTT	AAGGAGGAAT	TAAGTAATGA	9840
	AAAGTAAATA	CGAACCATTG	TTTGATAAAG	TAGAATTACC	AAATGGAGTA	GAGTTGAGAA	9900
?5	ATCGATTTGT	GTTAGCCCCT	TTAACACATA	TTTCTTCAAA	TGATGATGGT	ACTATTTCAG	9960
	ATGTAGAACT	TCCTTATATT	GAAAAGCGTT	CACAAGATGT	TGGTATTACA	ATTAATGCTG	10020
	CGAGTAATGT	GAGTGATGTC	GGAAAAGCAT	TTCCAGGACA	GCCATCAATC	GCGCATGACA	10080
30	GTAATATTGA	AGGACTAAAA	CGATTAGCTA	CAGCAATGAA	GAAAAACGGT	GCCAAAGCAC	10140
	TCGTACAAAT	ACATCATGGC	GGTGCACAAG	CATTGCCTGA	ATTAACACCT	GATGGAGACG	10200
_	TCGTAGCACC	AAGTCCAATT	TCTTTAAAAA	GTTTTGGTCA	GAAACAAGAA	CATAGTGCTA	10260
35	GAGAAATGAC	GAATGAAGAG	ATTGAACAAG	CAATCAAGGA	TTTTGGTGAA	GCAACGCGAC	10320
	GTGCÄATTGA	AGCAGGGTTT	GATGGTGTTG	AAATACATGG	CGCGAATCAT	TACTTAATTC	10380
10	ATCAATTTGT	ATCACCATAC	TATAATAGAA	GAAATGATGT	ATGGGCAAAT	CAATATAAAT	10440
	TCCCGGTCGC	TGTGATTGAA	GAAGTACTTA	AAGCGAAAGA	AGCGTATGGC	AATAAAGACT	10500
	TTATAGTTGG	ATACAGATTA	TCTCCAGAGG	AAGCGGAGTC	TCCAGGAATC	ACAATGGAAA	10560
15	TTACAGAGGA	ACTCGTTAAT	AAAATTAGCC	ATATGCCAAT	CGACTATATT	CATGTTTCAA	10620
	TGATGGATAC	GCATGCAACG	ACACGTGAAG	GTAAATACGC	TGGACAAGAA	AGACTGCCTT	10680
	TAATTCACAA	ATGGATAAAT	GGTCGTATGC	CACTTATCGG	TATTGGTTCA	ATTTTCACAG	10740
50	CTGACGAAGC	TTTAGATGCA	GTTGAAAATG	TTGGTGTTGA	CTTAGTAGCC	ATTGGTAGAG	10800
	AGCTACTACT	GGATTATCAA	TTTGTTGAAA	AAATTAAAGA	TGGACGGGAA	GATGAAATTA	10860

	AATTTAATGA AGGGTTTTAT CCATTACCAC GTA	10953
	(2) INFORMATION FOR SEQ ID NO: 63:	
5	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 8155 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: double</li> <li>(D) TOPOLOGY: linear</li> </ul>	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
15	TTTGATANAA AACTGAATNA ATTAAATGTA TCGATTCAAC CTAATGAAGT GAATTTACAA	60
, ,	GTTAAAGTAG AGCCTTTTAG CAMAAAGGTT AAAGTAAATG TTAAACAGAA AGGTAGTTTA	120
	GCAGATGATA AAGAGTTAAG TTCGATTGAT TTAGAAGATA AAGAAATTGA AATCTTCGGT	180
20	AGTCGAGATG ACTTACAAAA TATAAGCGAA GTTGATGCAG AAGTAGATTT AGATGGTATT	240
	TCAGAATCAA CTGAAAAGAC TGTAAAAATC AATTTWCCAG AACATGTCAC TAAAGCACAA	300
	CCAAGTGAAA CGMAGGCTTA TATAAATGTA AAATAAATAG CTAAATTAAA GGAGAGTAAA	360
25	CAATGGGAAA ATATTTTGGT ACAGACGGAG TAAGAGGTGT CGCAAACCAA GAACTAACAC	420
	CTGAATTGGC ATTTAAATTA GGAAGATACG GTGGCTATGT TCTAGCACAT AATAAAGGTG	480
	AAAAACACCC ACGTGTACTT GTAGGTCGCG ATACTAGAGT TTCAGGTGAA ATGTTAGAAT	540
30	CAGCATTAAT AGCTGGTTTG ATTTCAATTG GTGCAGAAGT GATGCGATTA GGTATTATTT	600
	CAACACCAGG TGTTGCATAT TTAACACGCG ATATGGGTGC AGAGTTAGGT GTAATGATTT	660
	CAGCCTCTCA TAATCCAGTT GCAGATAATG GTATTAAATT CTTTGGATCA GATGGTTTTA	720
35	AACTATCAGA TGAACAAGAA AATGAAATTG AAGCATTATT GGATCAAGAA AACCCAGAAT	780
	TACCAAGACC AGTTGGCAAT GATATTGTAC ATTATTCAGA TTACTTTGAA GGGGCACAAA	840
<b>4</b> 0	AATATTTGAG CTATTTAAAA TCAACAGTAG ATGTTAACTT TGAAGGTTTG AAAATTGCTT	900
	TAGATGGTGC AAATGGTTCA ACATCATCAC TAGCGCCATT CTTATTTGGT GACTTAGAAG	960
	CAGATACTGA AACAATTGGA TGTAGTCCTG ATGGATATAA TATCAATGAG AAATGTGGCT	1020
45	CTACACATCC TGAAAAATTA GCTGAAAAAG TAGTTGAAAC TGAAAGTGAT TTTGGGTTAG	1080
	CATTTGACGG CGATGGAGAC AGAATCATAG CAGTAGATGA GAATGGTCAA ATCGTTGACG	1140
	GTGACCAAAT TATGTTTATT ATTGGTCAAG AAATGCATAA AAATCAAGAA TTGAATAATG	1200
50	ACATGATTGT TTCTACTGTT ATGAGTAATT TAGGTTTTTA CAAAGCGCTT GAACAAGAAG	1260

55

GAATTAAATC TAATAAAACT AAAGTTGGCG ACAGATATGT AGTAGAAGAA ATGCGTCGCG 1320

	CTGGTGATGG	TTTATTAACT	GGTATTCAAT	TAGCTTCTGT	AATAAAAATG	ACTGGTAAAT	1440
	CACTAAGTGA	ATTAGCTGGA	CAAATGAAAA	AATATCCACA	ATCATTAATT	AACGTACGCG	1500
5	TAACAGATAA	ATATCGTGTT	GAAGAAAATG	TTGACGTTAA	AGAAGTTATG	ACTAAAGTAG	1560
	AAGTAGAAAT	GAATGGAGAA	GGTCGAATTT	TAGTAAGACC	TTCTGGAACA	aACCATTAGT	1620
	TCGTGTCATG	GTTGAAGCAG	CAACTGATGA	AGATGCTGAA	aGATTTGCAC	AACAAATAGC	1680
10	TGATGTGGTT	CAAGATAAAA	TGGGATTAGA	TAAATAAATA	CTGTATTACA	AATGAGCCGA	1740
	TGCGTATGCA	nTcgtTTTTT	GTGTTTGTAG	AAATAATTTA	TAGTACAAAC	GTAAAATGAT	1800
15	ATAAACAAAA	TAAAAACAAA	GTAATCAATA	TGTAATATAA	AATACACTGG	TACTCAATAT	1860
	ATAATGATGA	TAAAATTAAT	TTTAATTAGA	TAGAGTTGCT	TTGTGTTTTT	AACGCAGATG	1920
	CTACTACTTA	TCTTAACAGT	TGATTAAGTG	AAATCATTTA	ACAGCGAGAA	TAATCAACCA	1980
20	GGAGGATGAC	TTAATGAATT	TATTCAGACA	ACAAAAATTT	AGTATCAGAA	AATTTAATGT	2040
	CGGTATTTTT	TCAGCTTTAA	TTGCCACTGT	TACTTTTATA	TCTACTAACC	CGACAACAGC	2100
	GTCTGCAGCA	GAGCAAAATC	AGCCTGCACA	AAATCAACCA	GCACAACCAG	CTGATGCCAA	2160
25	TACACAGCCT	AACGCAAATG	CTGGTGCTCA	AGCTAATCCT	ACAGCACAGC	CAGCTGCACC	2220
	TGCCAACCAA	GGACAACCAG	CAGTACAACC	AGCAAACCAA	GGTGGACAGG	CTAATCCAGC	2280
	AGGAGGAGCA	GCACAACCAA	ATACACAACC	AGCTGGACAA	GGTGATCAAG	CTGATCCGAA	2340
30	TAACGCTGCA	CAAGCACAAC	CTGGAAATCA	AGCAACACCG	GCAAACCAAG	CAGGTCAAGG	2400
	AAATAACCAA	GCAACACCTA	ATAATAATGC	AACACCGGCA	AATCAAACAC	AGCCAGCGAA	2460
	TGCTCCAGCA	GCAGCGCAAC	CAGCAGCACC	TGTAGCAGCA	AACGCACAAA	CTCAAGATCC	2520
35	AAATGCTAGC	AATACTGGTG	AAGGCAGTAT	TAATACGACA	TTAACATTTG	ATGATCCTGC	2580
	CATATCAACA	GATGAGAATA	GACAGGATCC	AACTGTAACT	GTTACAGATA	AAGTAAATGG	2640
10	TTATTCATTA	ATTAACAACG	GTAAGATTGG	TTTCGTTAAC	TCAGAATTAA	GACGAAGCGA	2700
	TATGTTTGAT	AAGAATAACC	СТСААААСТА	TCAAGCTAAA	GGAAACGTGG	CTGCATTAGG	2760
	TCGTGTGAAT	GCAAATGATT	CTACAGATCA	TGGTAACTTT	AACGGTATTT	CAAAAACTGT	2820
<b>4</b> 5	AAATGTAAAA	CCAGATTCAG	AATTAATTAT	TAACTTTACT	ACTATGCAAA	CGAATAGTAA	2880
	GCAAGGTGCA	ACAAATTTAG	TTATTAAAGA	TGCTAAGAAA	AATACTGAAT	TAGCAACTGT	2940
	AAATGTTGCT	AAGACTGGTA	CTGCACATTT	ATTTAAAGTA	CCAACTGATG	CTGATCGTTT	3000
50	AGATTTACAA	TTTATTCCTG	ACAATACAGC	AGTTGCTGAT	GCTTCAAGAA	TTACAACAAA	3060
	TAAAGATGGT	TATAAATACT	ATTCATTCAT	TGATAATGTA	GGTCTATTCT	CAGGATCACA	3120

	TAATACTGAA	. ATCGGTAACA	ATGGTAATTT	TGGTGCTTCA	TTAAAAGCAG	ATCAATTTAA	3240
	ATATGAAGTA	ACATTACCAC	AAGGTGTAAC	TTACGTTAAT	AATTCATTAA	CTACAACATT	3300
5	CCCTAATGGT	AATGAAGACA	GTACAGTATT	GAAAAATATG	ACTGTTAATT	ATGATCAAAA	3360
	TGCAAATAAA	GTTACATTTA	CAAGCCAAGG	TGTGACAACG	GCACGTGGTA	CACACACTAA	3420
	AGAAGTTTTA	TTCCCAGATA	AATCTTTAAA	ATTATCATAT	AAAGTTAATG	TTGCGAATAT	3480
10	CGATACACCT	AAAAATATTG	ATTTTAATGA	AAAATTAACA	TATCGTACTG	CTTCAGATGT	3540
	TGTAATTAAT	AATGCGCAAC	CAGAAGTaCA	CTAACTGCAG	ATCCATTTTC	AGTAGCGGTT	3600
1.5	GAAATGAACA	AAGATGCGTT	GCAACAACAA	GTAAACTCAC	AAGTTGATAA	TAGTCATTAC	3660
15	ACAACAGCAT	CAATTGCAGA	АТАСААТААА	CTTAAACAAC	AAGCAGATAC	TATTTTAAAT	3720
	GAAGATGCGA	ATCATGTTAA	AACTGCAAAT	CGTGCATCTC	AAGCGGATAT	TGATGGTTTA	3780
20	GTAACTAAAT	TACAAGCTGC	ATTAATTGAT	AATCAAGCAG	CAATTGCTGA	ATTAGATACT	3840
	AAAGCTCAAG	AAAAGGTTAC	AGCAGCACAA	CAAAGTAAAA	AAGTTACGCA	AGATGAAGTT	3900
	GCAGCACTTG	TAACTAAAAT	TAACAATGAT	AAAAATAATG	CAATCGCAGA	AATTAATAAA	3960
25	CAAACTACAG	CACAAGGTGT	CACAACTGAA	AAAGATAATG	GTATCGCAGT	GTTAGAACAA	4020
	GATGTGATTA	CACCAACAGT	TAAACCTCAA	GCGAAACAAG	ATATTATCCA	AGCAGTTACA	4080
	ACTCGTAAAC	AACAAATTAA	AAAGTCAAAT	GCATCATTAC	AAGATGAAAA	AGATGTAGCA	4140
30	AATGATAAAA	TTGGTAAAAT	TGAAACAAAG	GCAATTAAAG	ATATTGATGC	AGCAACAACA	4200
	AATGCACAAG	TAGAAGCCAT	ТААААСАААА	GCAATCAATG	ATATTAATCA	AACTACACCT	4260
	GCTACAACAG	CTAAAGCAGC	AGCTCTTGAA	GAATTTGACG	AAGTTGTTCA	AGCACAAATT	4320
35	GATCAAGCAC	CTTTAAATCC	TGATACAACA	AATGAAGAAG	TAGCGGAAgC	TATTGAACGT	4380
	ATTAATGCAG	CTAAAGTTTC	TGGTGTTAAA	GCAATTGAAG	CGACAACGAC	TGCACAAGAT	4440
10	TTAGAAAGAG	TTAAAAACGA	AGAAATCTCA	AAAATTGAAA	ATATTACTGA	CTCTACGCAA	4500
, 0	ACAAAAATGG	ATGCCTATAA	TGAAGTTAAA	CAAGCTGCAA	CAGCTAGAAA	AGCTCAAAAT	4560
	GCTACAGTTT	CAAATGCAAC	AAATGAAGAA	GTAGCAGAAG	CTGATGCAGC	AGTAGATGCA	4620
<b>1</b> 5	GCTCAAAAGC	AAGGTTTACA	TGACATCCAA	GTTGTTAAAT	CAAAACAGGA	AGTTGCTGAT	4680
	ACAAAATCAA	AAGTATTAGA	TAAAATCAAT	GCAATTCAAA	CACAAGCAAA	AGTTAAACCT	4740
	GCAGCTGATA	CGGAAGTAGA	AAACGCATAT	AATACACGTA	AACAAGAAAT	TCAAAATAGC	4800
50	AATGCTTCAA	CTACAGAAGA	AAAACAAGCT	GCATATACAG	AATTAGATAC	TAAAAAGCAA	4860
	GAAGCAAGAA	CAAATCTTGA	TGCTGCAAAT	ACAAACAGTG	ATGTAACAAC	AGCTAAAGAC	4920

	GCGGAAATCG	CTCAAAAAGC	AAGTGAACGT	AAAACAGCAA	TTGAAGCAAT	GAATGATTCG	5040
	ACTACTGAAG	AACAACAAGC	AGCGAAAGAC	AAAGTGGATC	AAGCAGTAGT	TACTGCAAAC	5100
5	GCTGATATAG	ATAATGCTGC	AGCAAACAAT	GATGTGGATA	ATGCAAAAAC	TACAAATGAA	5160
	GCTACAATCG	CAGCCATTAC	ACCTGATGCA	AATGTTAAAC	CAGCAGCAAA	ACAAGCAATT	5220
	GCAGATAAAG	TACAAGCTCA	AGAAACAGCA	ATTGATGGAA	ATAACGGCTC	AACAACTGAA	5280
10	GAAAAAGCAG	CTGCTAAACA	ACAAGTTCAA	ACTGAAAAA	CAACAGCTGA	TGCCGCAATA	5340
	GATGCAGCAC	ATACAAATGC	GGAAGTTGAA	GCGGCTAAAA	AAGCAGCAAT	TGCTAAAATT	5400
15	GAAGCGATTC	AGCCAGCAAC	AACAACTAAA	GATAATGCGA	AAGAAGCAAT	TGCTACGAAA	5460
,3	GCGAATGAAC	GTAAAACAGC	AATCGCTCAA	ACGCAAGACA	TTACTGCTGA	AGAAATTGCA	5520
	GCGGCTAATG	CGGACGTAGA	TAATGCTGTG	ACACAAGCAA	ATAGCAACAT	TGAAGCTGCT	5580
20	AATAGTCAAA	ATGATGTAGA	CCAAGCGAAA	ACGACAGGTG	AAAATAGTAT	TGATCAAGTA	5640
	ACACCAACAG	TTAATAAAA	AGCAACTGCA	CGTAATGAAA	TCACAGCAAT	TTTAAATAAC	5700
	AAATTGCAAG	<b>AGATTCAA</b> Gc	t.ACGCCAGAT	GCAACAGATG	AAGAAAAACA	AGCAGCTGAT	5760
25	GCTGAAGCAA	ATACTGAAAA	TGGTAAAGCA	AATCAAGCCA	TTTCAGCAGC	AACTACTAAC	5820
	GCACAAGTTG	ATGAAGCTAA	AGCAAATGCA	GAAGCAGCGA	TTAATGCGGT	AACACCAAAA	5880
	GTTGTGAAGA	AACAAGCGGC	TAAAGATGAA	ATTGATCAAT	TACAAGCAAC	GCAAACAAAT	5940
30	GTTATCAATA	ATGATCAGAA	CGCTACAACA	GAAGAAAAAG	AAGCAGCTAT	TCAACAATTA	6000
	GCAACAGCAG	TTACAGACGC	GAAAAATAAT	ATTACAGCTG	CAACTGATGA	TAATGGTGTA	6060
	GATCAGGCGA	AAGACGCTGG	AAAGAATTCA	ATTCAAAGCA	CGCAACCAGC	AACAGCGGTT	6120
35	AAATCAAATG	CTAAAAATGA	TGTTGATCAA	GCTGTGACAA	CTCAAAATCA	AGCAATTGAT	6180
	AATAÉAACTG	GTGCTACAAC	TGAAGAGAAA	AATGCAGCAA	AAGATTTAGT	TTTAAAAGCT	6240
40	AAAGAAAAAG	CGTATCAAGA	TATCTTAAAT	GCACAAACAA	CTAATGATGT	TACGCAAATT	6300
40	AAAGATCAAG	CAGTTGCTGA	TATTCAAGGT	ATTACTGCAG	ATACAACAAT	TAAAGATGTT	6360
	GCGAAAGATG	AATTAGCAAC	AAAAGCAAAC	GAACAAAAAG	CGCTTATTGC	ACAAACTGCA	6420
45	GATGCGACTA	CTGAAGAAAA	AGAACAAGCA	AATCAACAAG	TAGACGCACA	ATTAACACAA	6480
	GGTAATCAAA	ATATTGAAAA	TGCACAGTCA	ATCGATGATG	TAAACACTGC	AAAAGATAAT	6540
	GCAATTCAAG	CAATTGACCC	AATTCAAGCA	TCAACAGATG	TTAAAACGAA	TGCAAGAGCG	6600
50	GAATTGCTAA	CTGAAATGCA	ATAAAATAAA	ACTGAAATAC	TTAATAATAA	TGAGACTACT	6660
	AATGAAGAAA	AAGGTAACGA	TATTGGACCA	GTTAGAGCAG	CATATGAAGA	AGGTTTAAAT	6720

	AAAGTTCAAC	AACTTCATGC	AAATCCTGTT	AAGAAACCAG	CAGGTAAAAA	AGAATTAGAT	6840
	CAAGCTGCAG	CTGATAAGAA	AACACAAATA	GAACAAACAC	CAAATGCATC	ACAACAAGAA	6900
5	ATTAATGATG	CAAAACAAGA	AGTTGATACT	GAATTAAATC	AAGCGAAAAC	AAATGTCGAT	6960
	CAATCATCAA	CAAATGAATA	TGTTGATAAT	GCAGTTAAAG	AAGGAAAAGC	TAAAATTAAT	7020
	GCAGTTAAAA	CATTTAGTGA	GTACAAAAA	GATGCTTTAG	CTAAAATTGA	AGATGCATAT	7080
10	AATGCTAAAG	TAAACGAAGC	GGATAACTCT	AACGCATCGA	CTTCAAGTGA	AATTGCTGAA	7140
	GCGAAACAAA	AACTTGCTGA	АТТАЛАЛСАЛ	ACTGCGGATC	AAAATGTTAA	TCAAGCTACT	7200
	TCTAAAGATG	ACATTGAAGT	TCAAATTCAT	AATGACTTAG	ATAATATTAA	CGATTACACA	7260
15	ATTCCAACAG	GTAAAAAAGA	ATCAGCTACA	ACAGATTTAT	ATGCTTATGC	AGATCAGAAG	7320
	АААААТААТА	TTTCAGCTGA	CACTAATGCA	ACACAAGATG	AAAAGCAACA	AGCAATTAAG	7380
20	CAAGTTGACC	AAAATGTTCA	AACTGCATTA	GAAAGCATTA	ATAATGGTGT	GGATAATGGT	7440
20	GACGTTGATG	ATGCATTAAC	ACAAGGTAAA	GCAGCAATTG	ATGCTATTCA	AGTAGATGCT	7500
	ACTGTTAAAC	CTAAAGCGAA	CCAAGCTATT	GAAGTTAAAG	CAGAAGATAC	GAAAGAATCT	7560
25	ATTGATCAAA	GTGACCAGTT	AACTGCTGAA	GAAAAAACTG	AAGCATTAGC	AATGATTAAA	7620
	CAAATTACAG	ATCAAGCTAA	ACAAGGTATT	ACTGATGCAA	CAACAACTGC	TGAAGTTGAA	7680
	AAAGCGAAAg	cTCaAGGACT	TGAAGCATTT	GATAACATTC	AAATCGACTC	AACAGAAAAA	7740
30	CAAAAAGCTA	TCGAAGAATT	AGAAACTGCA	CTAGACCAGA	TTGAAGCAGG	TGTAAATGTC	7800
	AACGCTGATG	CTACAACTGA	AGAAAAAGAA	GCGTTTACGA	ATGCTTTAGA	AGACATTTTA	7860
	TCAAAAGCAA	CTGaAGATAT	TTCTGATCAA	ACTACAAATG	CAGAAATCGC	TACTGTCAAA	7920
35	AATAGTGCGC	TTGAACAACT	TAAAGCACAA	CGTATTAATC	CTGAAGTTAA	GAAAAATGCT	7980
	TTGGAAGCAA	TCAGAGAAGT	GGTTAACAAG	CAAATAGGAA	taattaaaaa	TGCAGATGCA	8040
	GATGCATCGG	CGGAAAGAnA	TTGCACGTAC	GGGATTTAGG	TAGATATTTT	GGACCGATTT	8100
40	GCTGGATAAA	TTTAGGGTnA	AACCCCAACC	AATGCCGAAG	TTGCCTGAAT	TACCA	8155

(2) INFORMATION FOR SEQ ID NO: 64:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1630 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:

	CTGTTTTATT	TGCAGCACCC	ATACTGGAAA	TCACTTTAAT	CCCTCGGTCA	AGACACTCTT	120
	TCATTAAGTG	TACTTTGTAC	ATTATTGTAT	CACTTGCATC	TACAAAATAA	TCTATATCGT	180
5	AGTTATCGAA	AATTTCTTCA	TATGTCTCTT	CTGTATAAAA	CATATGTAAG	GGCGTGACTT	240
	TACAATCTGG	ATTAATTAAT	TTAATACGTT	CTTCCATCAA	AGAAACTTTA	CTTTGTCCTA	300
	CCGTTGTAGT	TAAAGCGTGT	AATTGTCTGT	TTACATTTGT	AATATCAACA	TCATCTTTAT	360
10	CTATTAATAT	AATATGACCA	ATATTCGTTC	TTGCTAATGC	TTCAGCAGCA	AATGAACCAA	420
	CACCTCCAAC	GCCAAGTATG	ACAACAGTTT	GTTGCTTCAA	TAAATCTAAA	CCTTGTTGTC	480
	CAATCGCTAG	TTCATTTCTT	GAAAATTGAT	GTTTCATTAT	TTTACCTCTT	TCACTGATTT	540
15	ATACATAAGT	ACATAGTAAC	TTAAAATTTT	ATATTTAGCA	TTATCACTTT	GATTATTTTC	600
	CCAAAATTCA	ACGAGGAAAC	AAATTATTTA	CGCTATAAAA	CCCAACTAAT	TCTTTATTAA	660
20	AAACTTAAAG	AAACGCATAA	AAATACGCAA	GACAAAGTCT	TGCGTATCGA	TAGAGTCCGT	720
	ATTGCCGTAG	TTATAATAGC	TTGATCATTC	GGCCTGTTAT	ATACAGGTGG	GTGCCCTGTT	780
	TCTTGTTTTG	TACGTCCTTC	ATATAAGGCG	TGTACGCTGC	AAGAAAACCC	ATTGGGCTCC	840
25	CTTGATCAAA	GAGTGTTAGG	CCCAAATTAA	AAAGCAAACT	TACGAACAAC	TCAGATGACT	900
	ATCTTATGAT	GTTATATTAC	CACATAATTA	AAATTAATGA	AATTATAACA	AACCAAAGTT	960
	TATTGATTTT	TTAAAATTTA	GTGACGAATT	CGCAAAGAAA	GTTCTTCTAA	TTGTTTATCA	1020
30	GAAACTTCAC	TAGGCGCATT	CGTTAATAAA	CATGTAGCAG	ATGCTGTTTT	AGGGAATGCG	1080
	ATTGTATCTC	TCAAGTTTGT	TCTATTAGTC	AATAACATGA	CTAATCGGTC	tAATCCTAAT	1140
	GCAATACCGC	CATGTGGTGG	TGCACCATAT	TTAAATGCAT	CTAGTAAGAA	GCCGAACTGT	1200
35	TCCTgTGCTT	GTTCTTTAGT	AAATCCAAGA	ACTTCGAACA	TTTTTTCTTG	TAACTCACCA	1260
	TCATGAATTC	TGATTGAACC	GCCACCTAAT	TCATAACCAT	TTAATACTAT	GTCATAAGCA	1320
40	TTTGCCTCAG	CTTCtTCTGG	CGCAGTGCCA	AGCTTAGCAA	TATCAGCTTC	TTTTGGAGAT	1380
40	GTAAATGGAT	GATGTGCTGC	AACGTAACGT	TTCGCATCTT	CATCATATTC	TAATAATGGC	1440
	CAATCTGTCA	CCCATAAGAA	GTTTAATTTT	GTTTCATCGA	TTAAACCTAA	TTCTTTAGCT	1500
<b>4</b> 5	AATTTGACAC	GTAATGCACC	TAAACTTTGT	GCAACGACAT	TTGGTttGTC	TGCAACAAAC	1560
	ATTACTAAGT	CACCAGCTTC	AGCACCAGTT	AATGTAAGTA	ATGTTTCAAC	ATTTTCTGTT	1620
	cAAAGAAACG						1630

50 (2) INFORMATION FOR SEQ ID NO: 65:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 732 base pairs

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear							
5								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:							
	CAATTGGACA TCTTGTATGA AAAGGACAAC CTTGCGGCGG ATTACTTGGC GAAGGTAATT	60						
10	CTCCTTTTAA TATAATTCTA TTGTTATTAT GTTTATCAAT TTGTGGTATT GATGAAATCA	120						
	ACGCTTTTGT ATATGGATGT TTGGGATTTT CATAAATTTC TTTATCAGAT GCGATTTCAA	180						
	CTATATGACC TAAATACATA ACTCCAATGA CATCACTTAT ATGTTTTACT ACACTTAAAT	240						
15	CATGTGCGAT AAATAAATAG CTTAAGTTAA ATTGTTCTTG TAAATCTTTT AATAAATTCA	300						
	GTACTTGAGA TTGAACAGAT ACATCTAATG CACTTACAGG CTCATCAGCA ACAATTAAAC	360						
	TCGGACGCAA AGCCAATGCT CTTGCAATTC CCACTCTTTG TCTCTGTCCA CCTGAAAATT	420						
20	CATGTGCATA TTEATAATAT GCATCTTCAC TTAGGCCAAC ACATTTTAAT AAATATAGTA	480						
	CTTCTTTTT TATTTCTTCT TTTGGCAATT TTTTATAATT TAAAATAGGT TCTGAAATGA	540						
25	TATCTCCAAC CATTTGCATC GGATTCAATG ATGCATACGG ATCTTGAAAT ATCATCTGAT	600						
	ATTGTTGTCG TGATTTTCTG AGTTTTTTAC CTTGTAATCT TGTTATATCT TCACCATTAA	660						
	CAATTATTGA GCCTGAAGTT GCATCTTCAA GCCTGATAAT CACTTTACCT AACGTTGACT	720						
30	TACCACAACC CG	732						
	(2) INFORMATION FOR SEQ ID NO: 66:							
35	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 5838 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: double</li> <li>(D) TOPOLOGY: linear</li> </ul>							
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:							
	AATATATTCA TATGTTTCAT CAACAATATT AGCTGCTTTT TGAATTAAAG CAATTTCGTC	60						
45	AGCATCTTTG ACGTCTCTAA TTTTATCTAC AGTATTAGAA ATGCTTATTA ATGATATACG	120						
43	GCTTTTATTT AATTCAAGGT ATGTATCATA ACTTACATGA TGCCCCTCAA AACCTACATT	180						
	TTCAAAATTT TCTTGGTGTA GCAATTCTTT AATCTCACCA ATAATAGTAG ATTTACGATT	240						
50	AATAATTTCA TAATTTGGCG CCTGCTTAGT TGCTTGATCA ATATATCTAA AGTCTGTTAT	300						
	CAAATATTGT TTATCTTTAG ATATGATAAG TGCTCCACTG GTACCAGTAA AACCTGATAA	360						

488

420

ATATCTTCTA TTGTAATCCG AAAGAATGAT AATCGCATCT AAATGTTTTT GTTCTAAAAT

	CAACTTTATA	CATTAAAATA	ATATCATAAT	AAGGATAAAA	AATAATAGAT	ATTGATTTTA	540
	GGGAGATAGT	AATGAAAAAA	TTGGTTTCAA	TTGTTGGCGC	AACATTATTG	TTAGCTGGAT	600
5	GTGGATCACA	AAATTTAGCA	CCATTAGAAG	Anaaaacaac	AGATTTAAGA	GAAGATAATC	660
	ATCAACTCAA	ACTAGATATT	CAAGAACTTA	ATCAACAAAT	TAGTGATTCT	AAATCTAAAA	720
	TTAAAGGGCT	TGAAAAGGAT	AAAGAAAACA	GTAAAAAAAC	TGCATCTAAT	AATACGAAAA	780
10	TTAAATTGAT	GAATGTTACA	TCAACATACT	ACGACAAAGT	TGCTAAAGCT	TTGAAATCCT	840
	ATAACGATAT	TGAGAAAGAT	GTAAGTAAAA	ACAAAGGCGA	TAAGAATGTT	CAATCGAAAT	900
15	TAAATCAAAT	TTCTAATGAT	ATTCAAAGTG	CTCACACTTC	ATACAAAGAT	GCTATCGATG	960
	GTTTATCACT	TAGTGATGAT	GATAAAAAA	CGTCTAAAAA	TATCGATAAA	TTAAACTCTG	1020
	ATTTGAATCA	TGCATTTGAT	GATATTAAAA	ATGGCTATCA	AAATAAAGAT	AAAAAACAAC	1080
20	TTACAAAAGG	ACAACAAGCG	TTGTCAAAAT	TAAACTTAAA	TGCAAAATCA	TGATAGGAGT	1140
	CTTTTAATGC	GTAATATAAT	ATTTTATCTT	GTACTTATTA	TTGCTGCGAT	TGGATTAGTA	1200
	ATGAATCTAG	ATGCCTTTAT	TTTTTCAATC	GTCAGAATGT	TAATCAGCTT	TGcgTAaTAG	1260
25	CTGGTATTAT	TTATCTGATT	TATTATTTCT	TCATCTTAAC	TGAAGACCAA	CGCAAATATC	1320
	GCAAAGCAAT	GCgTrAaGTA	TAAAAGAAAT	CAAAGAAGAA	AATAGATAAA	AAAACGGAAG	1380
	CACTTGTAGG	TAAAATAGTC	TACGTGCTTC	CATTTTTTAT	TCTAAAAACT	ACTTTCTAAA	1440
30	CATCCATTCA	TCTGAACGAT	ATTTTTCAGT	TAATTCTTCC	ACTTCTGCCA	ATTGAGCTTC	1500
	TGTTAATTCA	AGTGGCTTTA	ATTCTATATT	TAAACCTTTC	TTAAAACCTT	TCTCGAAAGC	1560
35	TTCTTCCATT	TGACTAATAG	TAATGTGTTC	ATCTGAAATA	TCATTGATGG	CAACTGCTTT	1620
	TTCAACGAAT	GCCTCTTTCA	TTTTTAATTT	TAATCTTTCA	TTTTTATAAA	Traacatatc	1680
	AAAÇÃGTTCA	TCAATATCAA	TATCTTGTAA	AATCGAACCG	TGTTGGAGGA	TTACGCCCTT	1740
10	TTGTCTCGTT	TGAGCACTCC	CAGCAATCTT	ACGGCCTTCA	ACAACTAGCT	CATACCAACT	1800
	TGGTGCATCA	AAACACACTG	AACTTCGAGG	TTGTTTTAAT	TTTTGACGCT	CTTCAGGCGT	1860
	TTTAGGTACC	GCAAAATAAG	TATCAAATCC	TAAGTTTTTA	AATCCTTCTA	ATAATCCTTG	1920
15	TGAAATCACT	CTGTACGCTT	CTGTAACTGT	AGAAGGCATA	TTCGGATGCG	ATTCAGGCAC	1980
	AATCACACTG	TAAGTTAACT	CTTTATCATG	TAGCACCCCA	CGGCCACCAG	TTTGACGCCT	2040
	TACGAGACCA	AAACCTTTCT	CTTTAACCTT	ATCAATATCA	ATTTCTTTTT	GTAGCCTTTG	2100
50	GAAATACCCT	ATTGATAATG	TTGCAGGATT	CCATGTGTAA	AAACGTATAA	CTGGATCAAT	2160
	ттеасетета	CACACAAAAT	ттаатаассс	ттсатссатт	CCCATATTAT	A ATATCCCTC	2220

	AAATGTATAA	TATTTGATTC	GCTAATTAAT	CAATTTAACT	AAATGAATAA	TAATTGCAAT	2340
	TCTTTAGTGA	AATATTTTGA	TAATTTGACC	TAACAGTCTT	ATAATTATAT	TATCGTTTAA	2400
5	TTAGGGAGGA	TGCAAGATGA	GTGCTAGTTT	GTACATCGCA	ATAATTTTAG	TTATAGCAAT	2460
	TATTGCTTAT	ATGATTGTTC	AACAAATTCT	TAACAAGCGA	GCTGTTAAAG	AATTAGATCA	2520
	AAATGAATTC	CATAATGGGA	TTAGAAAAGC	TCAAGTCATC	GATGTTAGAG	AGAAAGTTGA	2580
10	CTATGACTAC	GGTCACATTA	ATGGGTCTCG	CAATATTCCT	ATGACAATGT	TCAGGCAACG	2640
	ATTCCAAGGA	TTAAGAAAAG	ATCAACCGGT	ATACTTATGT	GATGCCAATG	GGATTGCTAG	2700
15	CTATAGAGCC	GCTCGTATTT	TGAAAAAGAA	TGGATATACA	GATATCTATA	TGTTAAAAGG	2760
	CGGCTATAAA	AAATGGACTG	GAAAAATAAA	GTCTAAAAAA	TAGTTTTTGT	AAATTTAATA	2820
	TACGATTTAA	TAAAATCTGA	GTGTTAATTG	ATCATCAATA	ACAATACTCA	GATTTTAATT	2880
20	TTTTAACAAA	GTCTGTTACT	ATATTTCTCT	AGCTTCACTG	ATCATTAAAC	TTAGTTTCAG	2940
	CATAATAAAG	AAAGTTCAGC	TCATTTTCAA	TACGATTCAA	TTACCGCAAT	CTAAAAAATG	3000
	AAAAGACAAT	TTCTATGAAA	GAATAATACC	AAACCCTAAG	AGTTATTACT	TCGGTTTAGT	3060
25	TTTCTTGTTT	AAATAGAAAT	TGTCTTTTC	AATTGATTTT	GAAACCATTA	TCCTTAAATC	3120
	TTCATACAAA	GTTAGAATAA	TAATTCTCGG	AATATGTGTT	TAATACTTTA	TTTTTCCTGT	3180
	TTAAGATTTT	CAAACTTTAA	TATTGGTTTA	CGAGCAGCTG	TAGCTTCGTC	TAATCGATCA	3240
30	ATCACAGTTG	TATGTGGTGC	TTCTAGCacT	TTATCAGGAT	CATTTTTAGC	TTCTTCAGCA	3300
	ATACTAATTA	ATGTATCGAT	AAAATAATCA	AGTGTTTCTT	TAGACTCTGT	CTCAGTCGGT	3360
35	TCAATCATCA	TACCTTCTTC	AACATTTAAT	GGGAAGTATA	TTGTTGGTGG	ATGTACACCG	3420
	AAATCTAATA	ATCGCTTAGC	CATGTCTAAA	GTACGTACAC	CAAATTCTTT	TTGACGCACA	3480
	CCACTTAACA	CAAACTCGTG	TTTACAATAT	TGTTTATAAG	GTATTTCAAA	GTGTTTAGAT	3540
40	AAACGTGCTT	TAATATAATT	CGCATTAAGA	ACCGCTGCTT	CAGAAACCTC	TTTAAGTCCA	3600
	GTTGCTCCCA	TAGTTCGAAT	ATACGTATAA	GCTCTTAAGT	AAATACCAAA	GTTACCATAA	3660
	AATGGTTTTA	CACGTCCGAT	AGAATTTTTA	ATGTCATTAT	CATATTTAAA	TTTGTCGCCA	3720
45	TCTTTAATAA	CCATTGGCTT	TGGTAAGTAA	CTTGCTAGTT	CTTTTACTAC	ACCGACTGGA	3780
	CCTGAACCAG	GACCGCCACC	ACCATGTGGA	CCAGTAAATG	TTTTATGCAA	GTTTAAATGA	3840
	ACAGCATCAA	ATCCCATATC	TCCTGGGCGA	ACTTTGTCCA	TAATAGCGTT	TAAATTCGCA	3900
50	CCATCATAAT	ATAATAGACC	ACCAGCATTA	TGGACGATTT	CACGGATTTC	CATAATATTT	3960
	TTTTCGAAAA	TACCTAAAGT	GTTTGGATTA	GTTAACATAA	TAGCTGCTGT	ATTITCATTT	4020

	GATTTAAATC	CTGCAAATGa	AGCTGAGGCT	GGaTTCGTAC	CATGCGCAGA	ATCTGGCACA	4140
	ATGACTTCAT	CACGATGACC	TTCACCATTA	TTCTCATGGT	AAGCTTTAAA	TATCATCAAT	4200
5	GCAGTCCATT	CACCATGTGC	GCCAGCAGCT	GGTTGTAATG	TCACCTCATC	CATACCAGTA	4260
	ATTTCTTTTA	ATTCTTCTTG	CAAACTATAA	ATAATTTCTA	ATGAACCTTG	AACTTGATCT	4320
	TCATCTTGTA	ATGGATGTGA	TTCACTAAAT	CCTGGTATTC	TAGCAACCTT	TTCATTAATT	4380
10	TTAGGGTTAT	ACTTCATCGT	ACATGAACCC	AATGGATAAA	ATCCGTTGTC	TACACCGAAA	4440
	TTTTTATTTG	AAAGTTCAGT	ATAATGACGT	ACTAAGTCTA	GTTCAGCAAC	TTCAGGAAAC	4500
15	TCCGCTTTGT	TTTTACGAAT	AAATTTATCA	TCTAACAATG	ACTCAACAGA	ATTTGTTTTA	4560
, 5	ATATCACTTT	TTGGTAATGA	ATATGCATAT	CTGCCTTCAC	GAGATCTTTC	AAAAATTAAT	4620
	GGACTTGATT	TACTAGTCAT	TTAACTCACC	AGCCTTTTCT	ACAAATGTAT	CGATTTCATC	4680
20	TTTTGTTCTT	AATTCAGTTA	CAGCTATTAA	CATGTGATTT	TTAAAGTCGT	CTGAAACAAC	4740
	ACCTAAATCA	AAACCACCGA	TAATATTGTA	CTTCACTAAT	TCCTCGTTAA	CTTGTTGAAT	4800
	TGGTTTGTCA	AATTTGACTA	CAAACTCATT	GmnAAGnTGT	ACCATCTAAT	ACTTCAAAAC	4860
25	CTTTTTTAAT	AAATTGTTGT	TTAGCATAGT	TAGCATGTTC	TATATTTTGA	ACTGCAATAT	4920
	CATAGATACC	TTGTTTACCA	AGTGCTGACA	TTGCAATTGA	TGaCGcTAAA	GCATTTAATG	4980
	CTTGGTTAGA	ACAAATATTA	GATGTCGCTT	TATCGCGTCG	AATATGTTGT	TCACGTGCTT	5040
30	GTAATGTTAA	TACAAAGCCA	CGATTACCTT	CATCATCTTG	TGTTTGACCG	ACTAATCTAC	5100
	CTGGCACTTT	ACGCATTAAC	TTTTTCGTCG	TTGCAAAATA	TCCACAATGT	GGCCCACCGA	5160
25	ATTGAGCAGG	AATTCCGAAT	GGCTGAGTAT	CACCTACAAC	AATATCTGCA	CCAAATGAAC	5220
35	CTGGAGGTGT	AAGTAATCCC	AATGCTAATG	GATTTGCATA	TACGATAAAT	AATGCTTTTT	5280
	TATCTTCAAT	AAAGCTATGA	ATCTTTTCAA	GATCTTCAAT	TGAACCGTAA	AAGTTTGGAT	5340
10	ATTGTACTGC	AACAGCTGCT	GTTTCATCAT	CCACTGCTGC	TTCTAATTTT	TTCAAATCTG	5400
	TAACAGTGCC	ATCTAAATCG	ATTTCCACTA	CTTCGAATTC	CTTACGCGTC	TTAGCATAAG	5460
	TATGAAGTAC	TTGTAATGCT	TGATAATGTA	AACCTTTTGA	GACTACAATT	TTATTTTTCT	5520
<b>1</b> 5	TTGTTTGACT	AAATGCTAAG	ATACATGCTT	CAGCAAAGCT	AGTCATCCCA	TCATACATAG	5580
	AAGAATTTGC	TACATCCATA	TCTGTTAATT	CACAAATTAA	AGTTTGGAAC	TCAAAAATGG	5640
	CTTGTAATTC	ACCTTGAGAA	ATTTCCGGTT	GATATGGCGT	ATATGCTGTG	TAAAATTCTG	5700
50	ATCTTGAAAT	CATAGCATCC	ACAACTGATG	GCGCGTAATG	ATCATAAACA	CCAGCACCCA	5760
	FAAATCATCT	ATCCCTTTCT	TTACTCATAT	+ CTTCCTVCC	N N TYCCCC N TTT	T	5020

#### (2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18355 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

ATRATAAT	rg gctttgctaa	TAATTACTTC	CCTGAATTAC	aAGTATTAGC	AAACGAAATA	60
AAATCTGAT	TA TGGCTAGTTC	ATTAAAACAA	TGATATTTT	ATTTAAATTT	TTaAAGCTTT	120
GTACGAAA	TT GTACAAAGCT	TTTTTGGTGC	GTATTGTATG	GGCAACAACT	TGACGATGAA	180
AATCCGTTA	AC AGGATTGGTA	ATAGGAAATG	TTAGCGAAAG	ACAAGGGTAT	CCATTGTAGA	240
TTAACAAA	G GACGTTTCCA	CAAGTGTGGG	TTATTCTCAC	TAAAGCAATA	CGCAGAGACA	300
ACTTACGTA	A AATTTTGAAC	TGACTAGAAC	GGAACTTCTA	CTCAATTATT	GATAAAAATT	360
TTCAAAAAC	GA CTTGAATGTG	CTGAGAATAC	GAAGTTTATG	GAAGGATTAT	СААААТАТАА	420
ATGTGCATT	C ATTTACAACC	TTTATTGACA	ATGATTCTCA	ACTAATATAG	TATATAATCA	480
AATCGTAAT	A GTTACGATTT	GTTTTCTGCA	ACTTTTTTGA	AGTTTTAGTT	GAGGTGAAAA	540
CAATAAAAG	C ATCTAAGTGA	ATGTAGTTAA	CGGACAACTG	CATTCGCTTG	TAGAGCCACA	600
AGAAGCAAC	T TTAAATAAGG	TTTACGGTTG	CATTTTGATA	CAACAACCGA	TTACTAAGTC	660
ATGCTTTCC	A CTTTGCGGGT	TAGCATGACT	TACCTAATAG	ATAGAGCTAT	TAGGTTCAGC	720
TTCTAAAAA	A TTACAGTTTT	AGAGGAATAC	AGTTGcTTGc	tTCGCAACAA	CTGCATAAGA	780
GCCATGGTT	T TCGCTTTTGC	GAATTAGCAT	GACTTACCTA	CTAGATAGAG	CTATTAGGTT	840
CATCTTCTA	A AAAATTACAG	GTTTAGAGGA	ATACAGTTGT	TTGcTTCGCA	ACAACTGCAT	900
AAGAGCCTC	T AGTAATTAAA	ATTACAGAGG	CTCTAAAAAT	ACATCTAAAG	GAGTGTCGTA	960
TGAATCGGC	a ggttatagaa	TTTTCTAAGT	ATAATCCTTC	GGGGAATATG	ACGATACTTG	1020
TTCATTCAA	A ACATGATGCT	AGTGAATATG	CATCTATCGC	CAATCAGTTG	ATGGCCGCAA	1080
CACATGTAT	g ctgtgaacag	GTAGGCTTTA	TAGRATCAAC	ACAAAATGAT	GATGGTAATG	1140
ATTTTCACT	T AGTTATGAGC	GGTAATGAAT	TTTGCGGTAA	TGCGACGATG	TCATATATAC	1200
ATCATTTGC	A GGAAAGTCAT	TTGCTTAAAG	ACCAACAGTT	TAAGGTGAAG	GTGTCTGGCT	1260
GTTCGGATT	T AGTGCAATGC	GCAATTCATG	ATTGCCAATA	CTATGAAGTT	CAAATGCCAC	1320
AAGCCCATC	G TGTTGTGCCA	ACAACAATTA	ATATGGGTAA	TCATTCATGG	AAAGCAATAG	1380

	TTCAACATTT	GGTTGAAGCG	TTTGTGCGTG	AgcAACAATG	GAGTCACAAA	TATAAAACAG	1500
	TAGGTATGAT	GCTTTTTGAT	GAACAACGTC	AATTTTTACA	GCCATTAATC	TATATACCAG	1560
5	AAATTCAAAG	TTTAATTTGG	GAAAATAGCT	GTGGTTCTGG	TACAGCATCA	ATTGGGGTTT	1620
	TTAATAATTA	TCAACGTAAT	GACGCATGCA	AAGATTTTAC	AGTACATCAG	CCAGGGGGCA	1680
	GTATTTTAGT	GACATCAAAG	CGATGTCATC	AATTGGGATA	TCAAACTTCA	ATTAAAGGAC	1740
10	AGGTTACAAC	TGTAGCTACA	GGaAAAGCAT	ATATAGAATA	AGGAGCCTAC	AATGAATAAC	1800
	TTTAATAATG	AAATCAAATT	GATATTACAA	CAATATTTAG	AAAAGTTTGA	AGCGCATTAC	1860
1.5	GAGCGTGTAT	TACAAGACGA	TCAATATATC	GAAGCATTAG	AAACATTGAT	GGATGACTAT	1920
15	AGTGAATTTA	TTTTAAATCC	TATTTATGAA	CAACAATTTA	ATGCTTGGCG	TGACGTTGAA	1980
	GAAAAAGCAC	AATTAATAAA	ATCACTGCAA	TATATTACAG	CGCAGTGTGT	TAAACAAGTG	2040
2 <b>0</b>	GAAGTCATTA	GAGCGAGACG	TCTATTAGAC	GGACAGGCGT	CTACCACAGG	TTACTTTGAC	2100
	AATATAGAAC	ATTGTATTGA	TGAAGAGTTT	GGACAATGTA	GTATAGCTAG	CAATGACAAA	2160
	TTATTGTTAG	TTGGTTCAGG	TGCATATCCA	ATGACGTTAA	TTCAAGTAGC	AAAAGAAACA	2220
25	GGTGCTTCAG	TTATCGGTAT	TGATATTGAT	CCACAAGCCG	TTGACCTAGG	GCGCAGAATC	2280
	GTTAACGTCT	TAGCACCAAA	TGAAGATATA	ACAATTACGG	ATCAAAAGGT	ATCTGAACTT	2340
	AAAGATATCA	AAGATGTGAC	GCATATCATA	TTCAGCTCGA	CAATTCCTTT	AAAGTACAGC	2400
30	ATTTTAGAAG	AATTATATGA	TTTAACAAAT	GAAAATGTCG	TAGTTGCAAT	GCGCTTTGGT	2460
	GATGGCATCA	AAGCAATATT	TAATTATCCG	TCACAAGAAA	CAGCGGAAGA	TAAGTGGCAA	2520
	TGTGTGAATA	AACATATGAG	ACCACAGCAA	ATTTTTGATA	TAGCACTTTA	TAAAAAAGCA	2580
35	GCTATAAAGG	TAGGTATTAC	GGATGTCTAA	ATTATTAATG	ATAGGCACTG	GTCCgGTCGC	2640
	AATCCAATTA	GCGAATATTT	GCTATTTAAA	ATCAGATTAT	GAGATTGATA	TGGTTGGACG	2700
10	TGCCTCAACA	TCAGAAAAAT	CAAAACGCTT	ATATCAAGCG	TATAAAAAAG	AGAAACAATT	2760
	TGAAGTCAAA	ATACAAAACG	AGGCGCATCA	ACATCTGGAA	GGTAAGTTTG	AAATTAATCG	2820
	TTTGTATAAA	GATGTTAAAA	ACGTTAAGGG	TGAATACGAA	ACGGTTGTCA	TGGCATGCAC	2880
<b>4</b> 5	AGCAGATGCT	TATTATGACA	CACTACAGCA	ATTGTCGTTA	GAAACTTTGC	AAAGTGTCAA	2940
	ACATGTCATT	TTAATATCAC	CGACATTTGG	TTCGCAAATG	ATTGTCGAAC	AATTTATGTC	3000
	TAAATTTAAT	AAAGATATCG	AAGTGATTTC	ATTCTCAACT	TATCTTGGCG	ATACACGTAT	3060
50	TGTTGATAAA	GAAGCGCCTA	ATCATGTGTT	GACAACAGGT	gtaaaaaaga	AATTGTACAT	3120
	CCCATCCACA	CATTCAAACT	CARCARTOTO	TCAACCAATC	TOTOOTTOTAC	CTC N C C N N TT	2100

	TTATGTGCAC	CCACCACTAT	TTATGAATGA	CTTTTCATTG	AAAGCCATTT	TCGAAGGAAC	3300
	AGATGTACCG	GTTTATGTGT	ATAAGTTATT	TCCTGAAGGA	CCGATAACGA	TGACACTAAT	3360
5	CCGTGAAATG	CGTTTAATGT	GGAAGGAAAT	GATGGTTATT	TTACAAGCAT	TTAGAGTGCC	3420
	GTCAGTCAAC	CTGCTTCAAT	TTATGGTGAA	GGAAAATTAT	CCAGTACGTC	CTGAAACTTT	3480
	GGATGAAGGT	GATATTGAGC	ATTTCGAAAT	CTTGCCAGAT	ATCTTACAAG	AATATCTGCT	3540
10	TTATGTAAGA	TATACCGCAA	TCCTCATTGA	TCCATTTTCA	CAGCCAGACG	AAAACGGACA	3600
	TTACTTTGAT	TTTTCAGCTG	TACCATTTAA	GCAAGTCTAT	AAAAATGAAC	AGGATGTTGT	3660
15	TCAAATTCCA	AGAATGCCAA	GTGAAGATTA	TTACAGAACG	GCGATGATTC	AGCATATTGG	3720
	GAAAATGCTA	GGTATCAAAA	CGCCAATGAT	TGATCAGTTC	CTAACTCGCT	ATGAAGCAAG	3780
	TTGCCAGGCG	TACAAGGATA	TGCATCAAGA	TCAACACTTA	TCTTCTCAAT	TTAATACAAA	3840
20	TCTATTTGAA	GGAGATAAAG	CACTCGTCAC	AAAATTTTTG	GAAATCAATA	GAACGCTTTC	3900
	ATAATAAGGG	TTTGAAGTTT	TATAATAGAA	AAAAATTATT	GAATTATGTT	TGACATTTAC	3960
	АТАААААТАА	GCAAATAATT	GAGAAAAATA	ATCATTACGA	TTTGATTAAG	TAATGCAACT	4020
25	TATCAATTTA	GAAAGAGGAA	AAGCAAATGA	GAAAACTAAC	TAAAATGAGT	GCAATGTTAC	4080
	TTGCATCAGG	GCTAATTTTA	ACTGGTTGTG	GCGGTAATAA	AGGTTTAGAG	GAGAAAAAG	4140
	AAAACAAGCA	ATTAACGTAT	ACGACGGTTA	AAGATATCGG	TGATATGAAT	CCGCATGTTT	4200
30	ACGGTGGATC	AATGTCTGCT	GAAAGTATGA	TATACGAGCC	GCTTGTACGT	AACACGAAAG	4260
	ATGGTATTAA	GCCTTTACTA	GCTAAAAAGT	GGGATGTGTC	TGAAGATGGG	AAGACATACA	4320
35	CGTTCCATTT	GAGAGATGAC	GTTAAATTCC	ATGATGGTAC	GCCATTTGca	TGctGACGCA	4380
	GTTAAGAAAA	ATATTGACGC	Agttcaagaa	AACAAAAAAT	TGCATTCTTG	GTTAAAGATT	4440
	TCGĂCATTAA	TTGACAATGT	TAAAGTTAAA	GATAAGTACA	CGGTTGAATT	GAATTTGAAA	4500
<b>4</b> 0	GAAGCATATC	AACCTGCATT	GGCTGAATTA	GCGATGCCTC	GTCCATATGT	ATTTGTGTCT	4560
	CCAAAAGACT	TTaAAAACGG	TACAACAAAA	GATGGCGTTA	AAAAGTTCGA	TGGTACTGGT	4620
	CCATTTAAAT	TAGGTGAACA	CAAAAAAGAT	GAGTCTGCAG	ACTTTAACAA	AAATGATCAA	4680
<b>1</b> 5	TACTGGGGCG	AAAAGTCTAA	ACTTAACAAA	GTACAAGCAA	AAGTAATGCC	TGCTGGTGAA	4740
	ACAGCATTCC	TATCAATGAA	AAAAGGTGAA	ACGAACTTTG	CCTTCACAGA	TGATAGAGGT	4800
	ACAGATAGCT	TAGACAAAGA	CTCTTTAAAA	CAATTGAAAG	ATACAGGTGA	CTATCAAGTT	4860
50	AAGCGTAGTC	AACCTATGAA	TACGAAAATG	TTAGTTGTCA	ATTCTGGTAA	AAAAGATAAC	4920
	COTOTONOTO	ACAAAACACT	CACACAACC	A TOTAL COMPANIES	TO CONTAIN A CAC	A C A TIA A A A TITT	4000

	ACAGACATTA	ATTTCGATAT	GCCAACACGT	AAGTATGACC	TTAAAAAAGC	AGAATCATTA	5100
	TTAGATGAAG	CTGGTTGGAA	GAAAGGTAAA	GACAGCGATG	TTCGTCAAAA	AGATGGTAAA	5160
5	AACCTTGAAA	TGGCAATGTA	CTATGACAAA	GGTTCTTCAA	GTCAAAAAGA	ACAAGCAGAA	5220
	TACTTACAAG	CAGAATTTAA	GAAAATGGGT	ATTAAGTTAA	ACATCAATGG	CGAAACATCA	5280
	GATAAAATTG	CTGAACGTCG	TACTTCTGGT	GATTATGACT	TAATGTTCAA	CCAAACTTGG	5340
10	GGATTATTGT	ACGATCCACA	AAGTACTATT	GCAGCATTTA	AAGAGAAAAA	TGGTTATGAA	5400
	AGTGCAACAT	CAGGCATTGA	GAACAAAGAT	AAAATATACA	ACAGCATTGA	TGACGCATTT	5460
15	AAAATCCAAA	ACGGTAAAGA	GCGTTCAGAC	GCTTATAAAA	ACATTTTGAA	ACAAATTGAT	5520
, 0	GATGAAGGTA	TCTTTATCCC	TATTTCACAC	GGTAGTATGA	CAGTTGTTGC	ACCAAAAGAT	5580
	TTAGAAAAAG	TATCATTCAC	ACAATCACAG	TATGAATTAC	CATTCAATGA	AATGCAGTAT	5640
20	AAATAAAGGA	GCAATTAGAT	GTTCAAATTT	ATCTTAAAAC	GTATTGCGCT	CATGTTTCCA	5700
	TTGATGATTG	TAGTAAGTTT	TATGACATTT	CTATTGACGT	ATATTACAAA	TGAAAATCCA	5760
	GCTGTGACAA	TTTTACATGC	ACAAGGGACG	CCAAATGTAA	CACCAGAGTT	GATTGCAGAA	5820
25	ACGAATGAGA	AGTACGGTTT	CAATGATCCA	TTATTAATTC	AATATAAAAA	TTGGTTACTT	5880
	GAAGCGATGC	AATTTAATTT	TGGTACAAGC	TACATTACAG	GTGACCCAGT	TGCTGAACGT	5940
	ATTGGTCCAG	CATTTATGAA	TACATTGAAA	TTAACAATAA	TTTCAAGTGT	TATGGTGATG	6000
30	ATTACATCAA	TTATTTTAGG	TGTAGTTAGT	GCATTAAAAA	GAGGAAAGTT	CACTGATCGT	6060
	GCGATACGTT	CAGTGGCTTT	CTTTCTAACT	GCATTACCAT	CATATTGGAT	AGCTTCAATA	6120
	CTTATTATTT	ACGTTTCAGT	GAAGTTAAAC	ATATTGCCGA	CTTCTGGATT	AACAGGTCCA	6180
35	GAAAGTTACA	TATTGCCAGT	GATCGTTATT	ACGATTGCCT	ATGCTGGTAT	TTACTTTAGA	6240
	AATGTTAGAC	GCTCGATGGT	GGAACAATTA	AATGAAGATT	ATGTACTTTA	TTTAAGAGCA	6300
<b>‡</b> 0	AGCGGTGTGA	AATCTATCAC	ATTAATGTTG	CATGTGTTGC	GTAATGCTTT	ACAAGTTGCG	6360
	GTATCAATCT	TTTGTATGTC	TATACCAATG	ATAATGGGTG	GACTAGTTGT	TATCGAGTAT	6420
	ATCTTTGCAT	GGCCTGGACT	AGGTCAATTA	AGTTTAAAAG	CAATACTTGA	ACACGATTTT	6480
<b>4</b> 5	CCAGTCATTC	AAGCATATGT	ATTAATTGTA	GCGGTATTAT	TTATTGTATT	TAATACATTA	6540
	GCAGATATCA	TTAATGCGCT	ATTAAATCCA	AGATTAAGGG	aGGGCGCACG	ATGATAATTT	5500
	TAAAmCGATT	ATTmCArGwT	AAAGGTGCAG	TAATTGCTTT	AGGCATTATT	GTATTATATG	6660
50	TCTTTTTAGG	ATTAGCAGCA	CCACTTGTGA	CATTTTATGA	TCCTAACCAT	ATCGATACAG	6720
	ריים או איים או איים	TOTTOTATO	א כיווייויייוייירי א א כי	አ <i>ጥር</i> ምክር ምክር ረ	Th CTC & CC & T	TTACCTACAC	6790

	TATTTGTTTC	TGTACTTATT	GGATCTATTT	TAGGATTCTT	ATCAGGATAT	TTCCAAGGGT	6900
	TTGTTGACGC	CTTAATCATG	CGTGCGTGTG	ATGTTATGTT	GGCATTCCCA	AGTTATGTTG	6960
5	TAACGTTAGC	ATTAATTGCA	TTGTTTGGAA	TGGGTGCCGA	AAATATTATC	ATGGCATTTA	7020
	TTTTGACGCG	TTGGGCATGG	TTCTGTCGTG	TTATACGTAC	AAGTGTTATG	CAGTACACTG	7080
	CTTCTGACCA	TGTAAGATTT	GCTAAAACAA	TCGGTATGAA	TGATATGAAA	ATTATTCACA	7140
10	AACATATTAT	GCCATTAACA	TTAGCAGATA	TTGCTATCAT	CTCTAGTAGC	TCGATGTGTT	7200
	CAATGATCTT	GCAAATATCT	GGCTTTTCAT	TTTTAGGATT	AGGTGTCAAA	GCGCCTACTG	7260
15	CAGAGTGGGG	CATGATGCTT	AACGAaGCTA	GAAAAGTGAT	GTTTACACAT	CCTGAAATGA	7320
	TGTTTGCGCC	AGGTATTGCC	ATAGTGATTA	TAGTGATGGC	ATTTAACTTC	TTATCCGATG	7380
	CTTTACAAAT	TGCTATTGAT	CCCCGCATCT	CTTCTAAAGA	TAAACTTCGT	TCTGTGAAAA	7440
20	AAGGAGTGGT	GCAATCATGA	CATTGTTAAC	AGTTAAACAT	TTGACGATTA	CAGATACCTG	7500
	GACAGATCAA	CCACTCGTGA	GTGATGTGAA	TTTTACATTA	ACTAAGGGTG	AAaCTTTAGG	7560
	CGTTATTGGA	GAAAGTGGTA	GTGGTAAATC	AATCACTTGT	AAATCGATTA	TTGGTTTGAA	7620
25	TCCCGAACGA	CTCGGGGTGA	CAGGTGAAAT	TATCTTTGAT	GGTACAt CAA	TGTTGTCATT	7680
	ATCTGAATCG	CAATTGAAAA	AGTACCGTGG	TAAAGACATT	GCGATGGTCA	TGCAACAAGG	7740
	TAGTCGTGCC	TTTGACCCAT	CAACTACTGT	CGGTAAACAA	ATGTTTGAGA	CTATGAAAGT	7800
30	ACATACGTCA	ATGTCTACAC	AAGAAATTGA	AAAGACATTG	ATTGAATATA	TGGATTATTT	7860
	AAGTTTGAAA	GATCCTAAAC	GTATATTAAA	ATCATACCCT	TACATGTTAT	CAGGAGGAAT	7920
	GTTACAGCGA	TTGATGATTG	CTTTAGCGTT	<b>A</b> gcTTTg <b>AAA</b>	CCAAAGTTAA	TCATTGCTGA	7980
35	TGAGCCGACA	ACGGCTTTAG	ATACAATTAC	ACAATATGAT	GTACTGGAAG	CATTTATAGA	8040
	TATTAAAAAA	CACTTTGACT	GTGCGATGAT	TTTCATTTCA	CATGATTTAA	CGGTTATTAA	8100
40	CAAGATTGCA	GACCGTGTTG	TTGTGATGAA	AAATGGTCAG	CTTATTGAAC	AAGGGACACG	8160
	TGAATCAGTC	TTGCATCATC	CAGAACATGT	TTATACGArt	ATTKTATTAT	CAACGAAGAA	8220
	GAAGATTAAT	GATCATTTTA	AACATGTGAT	GAGGGGTGAT	GTACATGATT	AAAATTAAAG	8280
45	ATGTTGAAAA	GTCATATCAA	AGCGCACATG	TTTTTAAGCG	TCGTCGAACA	CCTATCGTGA	8340
	AAGGTGTGTC	ATTTGAGTGT	CCAATCGGTG	CGACGATTGC	GATTATCGGA	GAAAGTGGTA	8400
	GCGGTAAATC	GACGTTGAGT	CktATGATAT	TAGGTATTGA	GAAACCGGAT	AAAGGTTGTG	8460
50	TAACCTTAAA	TGATCAACCG	ATGCATAAGA	AGAAAGTGAG	ACGTCATCAA	ATTGGTGCTG	8520
	TATTTCAAGA	TTATACGTCA	TCATTACATC	CATTTCAGAC	TGTTAGAGAA	ATCTTATTTG	8580

	TGTTGGAAGA	AGTCGGTCTA	TCTAAGGCAT	ACATGGATAA	ATATCCTAAT	ATGTTATCAG	8700
	GTGGAGAGGC	GCAACGTGTT	GCGATTGCGC	GTGCAATATG	TATTAACCCT	AAATATATTT	8760
5	TGTTTGATGA	AGCCATTAGT	TCACTCGACA	TGTCAATTCA	AACACAAATA	TTAGATTTAT	8820
	TGATTCATTT	ACGTGAAACG	CGTCAGTTGA	GTTATATTTT	TATCACACAT	GATATTCAAG	8880
	CTGCCACGTA	TTTATGTGAT	CAATTAATTA	TTTTTAAAAA	CGGAAAAATA	GAAGAACAAA	8940
10	TTCCGACAAG	CGCATTGCAT	AAAAGTGACA	ATGCTTATAC	AAGAGAATTA	ATAGAAAAAC	9000
	AACTATCATT	CTAAGGAGTG	AGATAATGAA	AGGTGCAATG	GCTTGGCCCT	TTTTGAGATT	9060
15	АТАТАТАТТА	ACATTGATGT	TCTTTAGTGC	CAATGCAATC	TTAAACGTGT	TTATACCTTT	9120
	ACGAGGGCAT	GATTTAGGCG	CAACGAATAC	GGTTATCGGT	ATCGTTATGG	GGGCATACAT	9180
	GTTAACAGCA	ATGGTATTTC	GACCATGGGC	AGGACAAATT	ATTGCTCGTG	TCGGTCCCAT	9240
20	TAAAGTATTA	AGAATTATTT	TGATTATCAA	TGCCATAGCT	TTAATTATTT	ATGGTTTTAC	9300
	TGGCTTAGAA	GGTTATTTCG	TAGCACGTGT	TATGCAAGGT	GTGTGTACGG	CATTCTTTTC	9360
	TATGTCTTTA	CAGCTAGGTA	TTATTGATGC	ATTACCAGAG	GAACATCGTT	CTGAAGGTGT	9420
25	ATCATTGTAC	TCGCTATTTT	CAACGATTCC	AAACTTAATC	GGACCATTAG	TTGCCGTAGG	9480
	TATTTGGAAT	GCAAATAATA	TTTCACTATT	TGCAATTGTC	ATTATCTTTA	TCGCATTAAC	9540
	AACAACATTC	TTTGsTATCG	CGTGACCTTT	GCTGAACAGG	AACCCGATAC	GTCAGATAAG	9600
30	ATTGAAAAAA	TGCCGTTTAA	CGCTGTAACT	GTTTTTGCGC	AATTTTTCAA	AAATAAAGAG	9660
	TTGTTGAACA	GTGGTATTAT	CATGATTGTT	GCATCGATTG	TATTTGGTGC	AGTTAGTACA	9720
0.5	TITGTACCGT	TATACACAGT	GAGTTTAGGA	TTCGCGAATG	CGGGAATCTT	TTTGACAATA	9780
35	CAGGCCATCG	CAGTTGTTGC	GGCAAGATTT	TACTTAAGGA	AATACATTCC	GTCAGATGGT	9840
	ATGTGGCATC	CTAAATATAT	GGTATCTGTA	CTATCATTAT	TAGTAATCGC	GTCATTTGTA	9900
40	GTGGCATTTG	GTCCGCAAGT	AGGTGCAATT	ATTTTCTATG	GTAGTGCGAT	ATTAATAGGA	9960
	ATGACGCAAG	CAATGGTGTA	CCCAACATTA	ACATCATACT	TAAGCTTCGT	CTTACCAAAA	10020
	GTAGGTCGTA	ATATGTTGTT	AGGTTTATTT	ATTGCCTGTG	CAGACTTAGG	TATATCGTTA	10080
45	GGTGGCGCAT	TGATGGGACC	TATTTCCGAT	TTAGTAGGAT	TTAAATGGAT	GTATCTAATT	10140
	TGTGGTATGT	TAGTCATTGT	AATAATGATT	ATGAGTTTCT	TGAAAAAGCC	AACACCACGT	10200
	CCAGCGAGTA	GTCTTTAATG	AAGTGAATTA	AAGCATATTA	agttaatgaa	TATTTAAATT	10260
50	TTAAAAGGTA	TATTGaGCAT	GGCGATTCAT	GTGCTTCATG	CTAGGACATG	AAACATTCTA	10320
	TATCCCTCCT	TYTTTACAACC	አርአት አጥአጥርጥ	*****	CCCTTATAAC	لا تخلیشنشت لا ت	7.02.00

	TTACATGAAA	ATATGCAAAA	CGAGTATAAC	TGCTAATTGA	TAGAAATAGC	TCACCATAAA	10500
	ATTACGGTAT	GATTTTAAAT	ATAAGTAAGT	CGCACTACCT	GCTAGTATCA	ATGCTGGAAT	10560
5	GAATTCCCAC	CATGTATTAA	TGTATGGATA	GTAGAACAGA	GTTTCAAGGA	TAATGGACAA	10520
	TACTATTGTA	ATCTTTAAAG	GTATTAATCT	GCTTAATTCT	TGAATTAAAA	TATGACGGAA	10680
	AATAAGTTGA	CAAATCAAAG	TATTTAATAT	AATGGTTAAC	GAAAATATAG	CTATTAAACT	10740
10	GATGGAaCCA	TACCCTTTAA	TGAGCGGGTA	AATGTCAAAG	ACAGTAAAGG	AATCTACATT	10800
	TAGTGCGAAA	ATATTGAAAT	GATTTAAAAG	TAAAAAGAGT	ACGACACTTA	GTGTAAATGA	10860
15	TATAAGAATA	TGCCATTTAT	ATTTAGCACT	AGCAACGATT	TGCGAACGTA	TCATTGGAAT	10920
	AAACGCATCT	TCATGCATCA	GACGAAAAAT	AGCTAGTGAA	ATAATAACTG	CGAGTAAATA	10980
	GCTAATGTTC	ATTGAAATAG	GAAAAGAGAA	ACCCCACGGA	GCTTGTTGAG	TGAATACAGC	11040
20	TACTAACCCA	AAAGTTAAAA	AGACGATAAT	GATCGGCAAG	ATGTTAACCA	AAAATATGTA	11100
	AAGGAAAATA	AATCCAATAT	CACGTTTGAA	AAAACGCGAT	TGTTCGGTAG	CGTATTCTTC	11160
	TTCTATGTAA	TGTTTATTTG	TATTTGACAT	AGTATACCTC	TTAAATAGTT	GTATTATATA	11220
25	GATACTTTAG	CACATATTAC	TTTGTATTGT	ATGTTTTATA	CATTAAAATT	TAAAATGAAA	11280
	AACATATCAT	AAAATTGTTT	TATAAAATGA	AGCGCTTCCA	TTGTGTTTTG	TTTTGTAAGG	11340
	TGTATCATAA	ATATTGAATT	GAAATTTTGG	GGGGAGGTAT	TGTAATGACG	TTTCTTACAG	11400
30	TCATGCAATT	TATAGTTAAC	ATTATCGTTG	TAGGATTCAT	GCTTACGGTT	ATTGTTATCG	11460
	GGCTTATTTG	GTTAATTAAA	GATAAAAGAC	AATCACAACA	TAGTGTATTA	AGGAATTATC	11520
	CTTTACTAGC	ACGTATTAGA	TATATTTCAG	AAAAAATGGG	ACCGGAATTA	CGTCAGTATT	11580
35	TATTTTCTGG	GGATAATGAA	GGGAAACCTT	TTTCACGTAA	TGATTATAAA	AATATCGTTT	11640
	TGGCTGGAAA	ATATAACTCT	CGTATGACCA	GCTTCGGTAC	TACTAAAGAT	TATCAAGACG	11700
10	GCTTTTACAT	ACAGAACACA	ATGTTTCCGA	TGCAACGTAA	TGAGATTTCA	GTAGATAATA	11760
	CAACATTGTT	ATCAACATTC	ATTTATAAAA	TCGCGAATGA	GCGTTTATTT	AGTCGTGAAG	11820
	AATATCGTGT	GCCGACAAAG	ATTGATCCGT	ATTACTTAAG	TGATGACCAT	GCAATAAAAT	11880
<b>1</b> 5	TAGGTGAACA	TTTAAAACAT	CCATTTATTT	TAAAACGTAT	CGTAGGACAA	TCTGGTATGA	11940
	GTTATGGCGC	TTTAGGAAAA	AATGCCATTA	CAGCTTTATC	TAAAGGTCTA	GCTAAAGCGG	12000
	GCACTTGGAT	GAATACAGGT	GAAGGTGGCT	TATCAGAATA	TCATTTAAAA	GGTAATGGGG	12060
50	ATATCATTTT	CCAAATTGGT	CCCGGTTTAT	TTGGTGTTCG	TGATAAAGAA	GGTAATTTTA	12120
	GTGAAGGTTT	ATTTAAAGAG	GTTGCACAGT	TATCTAACGT	ACGCGCATTT	GAGCTGAAGT	12180

	TTGCTAAAAT	CCGAAATGTT	GAACCTTATA	AAACAATCAA	TTCACCTAAC	CGTTACGAAT	12300
	TTATTCATAA	TGCTGAAGAT	TTGATTCGTT	TCGTCGATCA	GTTGCAGCAA	TTAGGTCAAA	12360
5	AACCAGTAGG	ATTCAAAATT	GTAGTAAGCA	AAGTTTCAGA	AATTGAAACA	CTTGTACGTA	12420
	CGATGGTGGA	ACTAGATAAG	TATCCAAGCT	TTATTACGAT	TGATGGTGGT	GAAGGTGGTA	12480
10	CTGGTGCAAC	ATTCCAAGAA	TTACAAGATG	GTGTTGGCTT	ACCGCTATTT	ACAGCTCTAC	12540
70	CTATTGTGTC	TGGCATGTTA	GAAAAATATG	GTATTCGAGA	TAAAGTGAAA	TTGGCGGCAT	12600
	CTGGTAAGTT	AGTGACACCA	GATAAAATTG	CGATTCCACT	AGGTTTAGGT	GCAGATTTTG	12660
15	TAAATATCGC	ACGTGGGATG	ATGATTAGTG	TCGGTTGTAT	AATGAGTCAA	CAATGTCACA	12720
	TGAATACGTG	TCCTGTAGGT	GTTGCAACGA	CAGATGCGAA	GAAAGAAAAA	GCATTGATTG	12780
	TTGGAGAAAA	GCAATATCGT	GTCACAAACT	ATGTAACAAG	TTTGCATGAA	GGCTTATTCA	12840
20	ATATTGCAGC	AGCTGTTGGC	GTATCCAGTC	CTACAGAAAT	TACTGCTGAT	CATATTGTAT	12900
	ATCGAAAAGT	CGATGGTGAG	TTACAAACGA	TACATGATTA	TAAATTAAAA	CTCATTAGTT	12960
	AACTTAATTA	TTTCGGGAAA	TTGAAAGCAG	CGGATTTTAG	CGTTACTGCA	AATAATTTTA	13020
25	TATTAGTAGT	GGATGCTGGT	CACACAAGAA	CTTCAAATAT	TAAAGCCCTC	AGAATATGAA	13080
	TTAAGGTTTG	TAACCTTAGT	CTTATCTGAG	GGCATTTTTA	AGTTATAAAC	TATTTGTCGT	13140
	CCATTTTATC	TTTTTCTTTT	AAACCTCTGT	GCTTTAATTG	CTTTTCAAGT	TTTTCAAAAC	13200
30	TAATATCTTT	ATTTTCTTTA	GTCGAAACAC	CAAGACGTTT	ATTTAATTTT	TTCATGTCAA	13260
	CTTCTGTGTA	ATCTATGTCT	AAGTGYTCAA	TTGCTTTTTT	ATCTTTATAG	TCTACTTTGT	13320
35	ATTTTACGCC	TTTAAGGTCT	TTGAAAATAC	TTTCAGATTT	GGCGAATAAC	TTTTTGGCTT	13380
33	CGTCTTTATC	CATACCTAGA	TCGTCATATT	TAATTGTGTT	GATTGTAGAC	TGTTTTAAAA	13440
	CTTTATCATC	TTTATATGTG	ATAGAAGTTA	GTACATGTTT	ACCACTAACA	TCACCWTCAT	13500
40	ATGTTTTGGT	TTGTTCTTTA	CCACAAGCTG	ATAATGCAAT	GATACAAACT	AATGCTACTA	13560
	CAATTAATGA	ACATAATTTT	TTCAAAGTCA	GTCGCCTTCT	TTCGATATTT	GTATTATAAA	13620
	GAAATTATAA	CATTTACTAA	AAAATGATGT	TATTCAAAAA	TTTAAATTTT	GTCATTTTTT	13680
45	TTGAAGATAT	GAGTTTTTTT	AAGCGGATTC	CTCACAAAAT	тттааааата	TTTAAGCCTk	13740
	AAAATGATAA	AGCGKTAGGG	AACGTTTTTC	TGAAAGTTAG	TGATACAATA	GTTTTAAGTT	13800
	GAAATACAGG	AGGATGAATA	ACATGAATCA	GTCAGTCAAA	TTACTTAAAC	ATTTAACAGA	13860
50	TGTAAACGGC	ATTGCTGGTT	ATGAAATGCA	AGTTAAAGAA	GCAATGCGTa	ACTATATAGA	13920
	GCCTGTCAGT	GATCAAATTA	TTGAAGATAA	CTTGGGTGGC	ATTTTTGGAA	AGAAAAATGC	13980

	AACAAAGATT	GATAAACATG	GTTTTATTTC	ATTTACGCCA	kTgGTGGATG	GTGGAATCAA	14100
	GTCATGCTAT	CTCAAAAAGT	AACGATTACA	ACAGATTCGG	GCAAAGAAAT	TAGAGGTATC	14160
5	ATCGGTTCTA	AACCGCCACA	TGTCTTAACG	CCTGAAGAAC	GTAAAAAGCC	AATGGAAATC	14220
	AAAAATATGT	TTATAGATAT	TGGTGTTAGT	AGCAAGGAAG	AAGCTGAAGA	AGCTGGCGTT	14280
10	GAAGTAGGCA	ATATGGTTAC	GCCATATAGT	GAATTTGAAG	TGCTTGCAAA	TGATAAATAT	14340
, 0	TTAACTGCGA	ArCATTTGAT	AATCGCTATG	GCTGTGCATT	AGCTATTGAG	GTATTAAAAC	14400
	GTTTAAAAGA	TGAAAATATT	GGCATTAACT	TATACAGTGG	TGCCACAGTG	CAAGAAGAAG	14460
15	TTGGTTTGCG	TGGTGCGAAA	GTGGCAGCGA	ATACGATTAA	ACCAGACTTG	GCGATAgcTG	14520
	TCGATGTAGG	TATTGCTTAT	GATACCCCAG	GTATGTCAGG	TCAAACGAGC	GATAGTAAAC	14580
	TAGGCGGTGG	TCCAGTTGTC	ATTATGATGG	ATGCTACAAG	TATTGCTCAC	CAAGGTTTGC	14640
20	GAAAgcATaT	TAAAGATGTA	GCTAAGGAAC	ATAACATCGA	AGTACAATGG	GATACGACAC	14700
	CAGGTGGAGG	TACAGATGCG	GGAAGTATTC	ATGTCGCAAA	TGAAGGTATT	CCAACGATGA	14760
	CAATCGGTGT	TACGCTGCGA	TACATGCATT	CTAATGTTTC	AGTGCTCAAT	GTAGATGATT	14820
25	ATGAAAATTC	TATCCGTCTT	GTTACTGAAA	TTGTCCGTTC	ATTGAATGAT	GAAAGTTATA	14880
	AAAATATCAT	GTGGTAATCA	AATCCATAAA	TAATAAAGAA	TCCTTTTAAT	ATGGTAGGTT	14940
	GTTAAACAAT	TGTCTAATTT	TAATTCTTAG	TCATTAGACA	GTATCCATGT	TAATAGGATT	15000
30	TTTTGTTTTT	AATTTAAATG	CTGAAAATCA	ATTATGCCTA	AATTTTGATA	TTACAAGAAA	15060
	ATGATTTTTT	CTTAAATGTA	ATTGCACTAA	AAACCAAAAA	AACGGGAATA	ATATACCTGA	15120
35	TATATTACAT	GAGGAGCGGT	GCAAATGTTG	TTAGAAATTA	AAGATTTAGT	GTATAAAGCG	15180
	AGCGATAGAA	TCATACTAGA	TCATATCAGT	CTAAAAGTAG	ATAAAGGCGA	GAGTATTGCC	15240
	ATTATAGGTC	CATCAGGTAG	TGGTAAAAGT	ACATTTCAAA	AGCAAATATG	TAATTTGTTT	15300
40	AGTCCAACTA	GTGGAGAACT	TTATTTTAAA	GGTAAACCCT	ATAATGATTA	TGACCCGGAA	15360
	GAATTGCGTC	AACGAATCAG	TTATTTGATG	CAGCAAAGTG	ACTTGTTTGG	TGAAACGATT	15420
	GAAGATAACA	TGATATTCCC	ATCACTTGCA	CGTAATGATA	AATTTGATAG	AAAACGTGCA	15480
45	AAGCAATTAA	TTAAAGATGT	CGGTTTGGGA	CATTATCAAT	TAAGTTCGGA	AGTGGAAAAT	15540
	ATGTCGGGTG	GTGAGCGGCA	AAGAATTGCT	ATAGCGCGCC	AACTGATGTA	TACACCGGAT	15600
	ATTCTTTTAT	TAGATGAATC	GACCAGTGCA	TTAGACGTTA	ATAATAAAGA	AAAGATAGAA	15660
50	AATATCATTT	TTAAATTAGC	AGATCAAGGC	GTGGCAATTA	TGTGGATTAC	CCACAGCGAT	15720
	GACCAAAGTA	TOCOACACTT	TCAAAAGCCT	ስጥስ ክ ርስ ስም <b>ተ</b> ር	תייים איזים ביידים א	A A TOTAL COLLA A CO	15780