Middleware Architectures 1 Lecture 2: Service Architecture

doc. Ing. Tomáš Vitvar, Ph.D.

tomas@vitvar.com • @TomasVitvar • https://vitvar.com

Czech Technical University in Prague
Faculty of Information Technologies • Software and Web Engineering • https://vitvar.com/lectures

- Service Definition
- Integrating Applications
- Integration Patterns

Service Views

- Business view
 - A service realizes an effect that brings a business value to a service consumer
 - \rightarrow for example, to pay for and deliver a book
- Conceptual view
 - reusability, loose coupling, contracting, discoverability
- Logical view
 - service interface, description and implementation
 - RPC-style and resource-oriented
- Software architecture view
 - business service (also application service)
 - → external, exposed functionality of an application
 - middleware service
 - → internal/technical, supports processing of requests
- Technology architecture view
 - REST/RESTful, GraphQL
 - XML-RPC/SOAP, RMI, gRPC
 - WebSocket, WebRTC, SSE

Interface, Description and Implementation

• Terminology clarification

- service ~ service interface + service implementation
- REST/RESTful service ~ service interface that conforms to REST architectural style and HTTP protocol
- Microservice ~ a set of services that realize an app's capability
- Kubernetes service ~ a service that routes traffic to a set of pods

Service Interface

- Service interface components
 - Data
 - → Data model definition used by the service
 - → for example, input and output messages, representation of resources
 - Functions
 - → operations and input and output data used by operations
 - Process
 - → public process: how to consume the service's functionality
 - Technical
 - → security, usage aspects (SLA-Service Level Agreement)
 - \rightarrow other technical details such as IP addresses, ports, protocols, etc.

Public Process

- A state diagram
 - operation of a service defines a **state transition** between two states.

Service Characteristics

- Service Definition
- Integrating Applications
- Integration Patterns

Integration and Interoperability

• Integration

- A process of connecting applications so that they can exchange and share capabilities, that is information and functionalities.
- Includes methodological approaches as well as technologies

Interoperability

- Ability of two or more applications to understand each other
- Interoperability levels
 - \rightarrow *Data syntax/structure* and *semantics*
 - → Functions/Processes syntax and semantics
 - \rightarrow Technical aspects protocols, network addresses, etc.

Service Oriented Architecture

- SOA supports two core business strategies
 - Growing top-line revenue
 - → Enterprise reacts quickly to requirements from the market
 - → Business processes can be reconfigured rather than reimplemented
 - Improving bottom-line profit
 - → Saving development costs by resuing existing services
- Pre-integrated solutions
 - Out-of-the-box applications and integration solutions among them

One-to-One Service Integration

- Direct integration of applications
 - Multiple protocols problem, multiple vendor problem
 - Replication of integration functionalities such as interoperability solutions

Many-to-Many Service Integration

- Enterprise Service Bus central integration technology
 - Realizes so called Service Oriented Architecture (SOA)
 - Contains various integration components such as process server, mediators, messaging middleware, identity management, etc.

Integration Approaches Overview

Data-oriented Integration

• Third-party database access

- Application D accesses a database of application B directly by using SQL and a knowledge of database B structure and constraints
- In the past: monolithic and two-tier client/server architectures
- Today: ETL (Extract, Transform, Load) technologies

Problems

- App D must understand complex structures and constraints
 - → Data very complex, includes structure and integrity constraints
 - → Functions/processes hidden in integrity constraints
 - → Technical access mechanisms can vary

Service-oriented Integration

- Integration at the application layer
 - Application exposes services that other applications consume
 - Services hide implementation details but only define interfaces for integration

Problems

- Can become unmanageable if not properly designed
- Interoperability
 - → Data limited to input and output messages only
 - → Functions/processes limited to semantics of services
 - → Technical access mechanisms can vary

Integration and Types of Data

- Real-time data Web services
 - Service-oriented integration
 - online, realtime communication between a client and a service
 - Usually small data and small amount of service invocation in a process
- Bulk data ETL
 - Data-oriented integration
 - processing of large amount of data in batches
 - Sometimes required for reconciliation across apps
 - → when real-time integration fails and there is poor error handling
- SOA provides both Web service and ETL capabilities

Enterprise Service Bus

- ESB is a central intermediary in SOA
 - Types of services: shared and infrastructure
 - Types of processes: Technical and Business
- ESB Application
 - Application running on an application server
 - Exposes functionality via Web service interface
 - Allows to communicate with various messaging protocols
- Middlware Integration Patterns
 - Technical-level interoperability message broker
 - Location transparency
 - Dynamic routing
 - Session pooling
 - Message enrichment
 - Data transformation
 - Key mapping

- Service Definition
- Integrating Applications
- Integration Patterns
 - Synchronous and Asynchronous Integration
 - Microservices Architecture

Synchronous and Asynchronous Integration

Synchronous

- one socket, $|t_{reg} t_{res}|$ is small
- easy to implement and deploy, only standard firewall config
- only the server defines endpoint

Asynchronous

- request, response each has socket, client and server define endpoints
- $-|t_{reg}-t_{res}|$ can be large (hours, even days)
- harder to do across network elements (private/public networks issue)

Asynchronous via Intermediary

Intermediary

- A component that decouples a client-server communication
- It increases reliability and performance
 - → The server may not be available when a client sends a request
 - → There can be multiple servers that can handle the request

Further Concepts

- Message Queues (MQ) queue-based communication
- − Publish/Subscribe (P/S) − event-driven communication

Asynchronous via Polling

- Polling only clients open sockets
 - A client performs multiple request-response interactions
 - → The first interaction initiates a process on the server
 - → Subsequent interactions check for the processing status
 - → The last interaction retrieves the processing result
- Properties of environments
 - A server cannot open a socket with the client (network restrictions)
 - Typically on the Web (a client runs in a browser)

- Service Definition
- Integrating Applications
- Integration Patterns
 - Synchronous and Asynchronous Integration
 - Microservices Architecture

The Scale Cube

- Three-dimensional scalability model
 - X-Axis scaling requests across multiple instances
 - Y-Axis scaling decomposes an application into micro-services
 - Z-Axis scaling requests across "data partitioned" instances

- Emerging software architecture
 - monolithic vs. decoupled applications
 - applications as independenly deployable services

A monolithic application puts all its functionality into a single process...

A microservices architecture puts each element of functionality into a separate service...

... and scales by replicating the monolith on multiple servers

... and scales by distributing these services across servers, replicating as needed.

Major Characteristics

- Loosely coupled
 - Integrated using well-defined interfaces
- Technology-agnostic protocols
 - HTTP, they use REST architecture
- Independently deployable and easy to replace
 - A change in small part requires to redeploy only that part
- Organized around capabilities
 - such as accounting, billing, recommendation, etc.
- Impplemented using different technologies
 - polyglot programming languages, databases
- Owned by a small team