APPM 1350 Recitation, Fall 2021, Week 5, Sep 21

1

Use the limit definition to find the derivative of the following functions at the given points:

- a) $f(x) = \frac{1}{x}$ at x = 2.
- b) g(x) = |x 6| at x = 6.
- c) $g(x) = \sqrt{9-x}$ at any x.

 $\mathbf{2}$

Find the derivatives of the following functions:

- a) $f(x) = x^2 + \frac{4}{x^3}$
- b) $g(x) = A\cos(x) + B\sin(x) + C$ (A, B, and C are constants)
- c) $h(x) = \frac{\sqrt[10]{x}}{50} \frac{19}{\sqrt[4]{x}}$
- d) $y(x) = \frac{\sqrt{x} + x^2}{x}$

3

Suppose we a weight hanging from spring. The spring is bouncing up and its position relative to the ground at any time t is given by

$$p(t) = 2\sin(t) + 5.$$

- a) For any time t > 0, find the instantaneous velocity of the weight.
- b) At what times does the weight change directions?
- c) What is the maximum and minimum height of the weight

4

- a) Find the equation of the line that is tangent to the given function at the given point: $y = \sqrt{x} + 5\sin(x)$ at $(\pi, \sqrt{\pi})$.
- b) Find the equation of the line that is normal to $y = x \sqrt{x}$ at the point (4,2).
- c) Find the equation of the line tangent to the curve $y=x\sqrt{x}$ and parallel to the line -3x+y=1.

5

Prove that $\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$ using the limit definition of the derivative.