

Computer Security

Course overview

Hyoungshick Kim

Department of Software College of Software Sungkyunkwan University

Instructor – Hyoungshick Kim

Associate Professor in Department of Software, Sungkyunkwan University

- Education
 - ✓ Ph.D. in Computer Science, University of Cambridge
- Experiences
 - ✓ Professor, Sungkyunkwan University, Korea (2013 present)
 - ✓ Distinguished Visiting Scientist, CSIRO Data61, Australia, (2019-2020)
 - ✓ Postdoctoral Fellow, University of British Columbia, Canada (2012-2013)
 - ✓ Senior Engineer, Samsung Electronics (2004-2008)
- Research interests:
 - ✓ Security engineering, Usable security, Software security
- Office hours: Wednesdays 13-14 (hyoungshick via Skype)
- Email: hyoung@skku.edu

Please include [Security] in the subject of your e-mail

Homepage: http://seclab.skku.edu/

Lab members:

Academic staff: 2

PhD students: 7

MS students: 7

TA – Teaching Assistants

Jusop Choi

Eunsoo Kim

Office: 26315

Office: 26315

Course orientation

- 1. Intended audience
- 2. Aims
- 3. Textbook
- 4. Class schedule
- 5. Good security venue

Intended audience

- Undergraduate students who
 - want to know how a secure system is developed
 - want to get background in information security
 - might be interested in studying information security

Aims

- To give you a through understanding of information security technologies
 - Security policy (what should be protected)
 - Engineering (how we can obtain assurance that the protection provided is adequate)
 - Protection mechanisms (cryptography, software security, ...)
 - Attacks (malicious code, protocol failure ...)
- To help you doing a research about information security

Textbook

- Computer Security and the Internet: Tools and Jewels by Paul C. Van Oorschot: https://people.scs.carleton.ca/~paulv/toolsjewels.html
- Security Engineering (3rd ed.) by Ross Anderson: <u>http://www.cl.cam.ac.uk/~rja14/book.html</u>
- Handbook of Applied Cryptography by Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone: http://www.cacr.math.uwaterloo.ca/hac/
- Lecture Notes on Cryptography by Shafi Goldwasser and Mihir Bellare https://cseweb.ucsd.edu/~mihir/papers/gb.pdf
- Papers

Class schedule 1st

Week	Topic
1	Course overview & Introduction to computer security
2	Cryptography I
3	Cryptography II (HW #1: Breaking the Vigenere cipher)
4	Cryptography III
5	Cryptography IV
6	No lecture (Chuseok Holiday)
7	Security protocols I
8	Security protocols II (HW #2: Secure file delivery)

Class schedule 2nd

Week	Topic
9	Mid term
10	Software security I (HW #3: Threat modeling)
11	Software security II
12	Software security III (HW #4: Buffer overflow exploit)
13	Web security
14	Blockchain (HW #5: Paper review report)
15	Final term

Evaluation

- Research paper review (5%)
- Programming assignments (20%)
- Mid term (30%)
- Final term (30%)
- Attendance (5%)
- Online Discussion (10%)

Evaluation - Assignments

- 1 paper reading report (for top security research papers) in English (5%)
 - ✓ Best reports will be selected for presentation (with extra credit)
- 4 programming assignments (20%)

Assignments - Reading report

- Your reading report (at least 2 pages) should be organized as follows:
 - Title
 - Your name, student ID
 - Summary: summary should include
 - Motivation of the paper
 - Which problem the paper is trying to solve
 - Key ideas to solve the problem
 - How authors evaluate their solution
 - Strength of the paper
 - Weakness of the paper
 - Future work: not mentioned by the author

How to choose your paper

- You can choose a paper from the top-tier conferences (2017~2020)
 - General: IEEE S&P (Oakland), USENIX Security, ACM CCS, NDSS
 - (2nd General: ESORICS, Euro S&P, ACSAC, AsiaCCS)
 - Hardware: CHES
 - Usable Security: CHI, SOUPS
 - Security Economics: WEIS
 - Privacy: PETS
 - Financial Security: FC
 - Malware/Intrusion Detection: RAID, DIMVA
 - Cryptography: Crypto, Eurocrypt, Asiacrypt
 - Etc. (e.g., USENIX WOOT: offensive research)

You are encouraged to discuss with me for choosing your paper.

Prerequisite

 Some familiarity with C programming language

Plagiarism

- Discussion of course material and collaboration with other students is encouraged but each student must write/type and submit his/her own solution.
- Your codes (or documents) should never contain sections
 which are identical to the submission of another student, past
 or present.
 - Submissions will be analyzed using a static analysis tool when applicable.
- Violation of these policies can result in automatic failure of the course.

Example of Plagiarism

Please do not copy a code from the internet.

Late Submission Policy

- Assignments submitted after the due date/time are considered late.
- You can hand in projects late. But there's a cost associated.
 Each 24 hours (or part thereof) late will cost you 20%.
 - Thus, if you hand something in that would have been worth 7 on time,
 but it's 36 hours late, that means that you only get 7*0.8*0.8=4.48.

Questions?

