What controls mixing in lakes?

Keith Arora-Williams April 29, 2016

<u>Outline</u>

```
Motivation (1 slide)
Approach (2 slides)
Data Sources & Types (1 slide)
Initial Results (5 slides)
Next Steps (1 slide)
```

Motivating Question

- Bastviken, D., et al. Freshwater methane emissions offset the continental carbon sink. Science (2011) 331, 50.
- Bogard, M.J., et al. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun. (2014)
- Itoh, M. et al. Effect of interannual variation in winter vertical mixing on CH4 dynamics in a subtropical reservoir. **Journal of Geophysical Research: Biogeosciences** (2015)

How to address this question?

Step 1: Get Input Data

Name	Туре	Interval	Source	Input File Name
Inflow Volume	Discharge	15 min	USGS	inflows.csv
Outflow Volume ^(A)	Discharge	15 min	USGS	outflows.csv
Inflow Salinity ^(B)	Spec. conductance	10 min	USGS	inflows.csv
Inflow Temperature ^(B)	-	10 min	USGS	inflows.csv
Shortwave Radiation	Irradiance	~12 hr	CERES	met.csv
Longwave Radiation	Irradiance	~12 hr	CERES	met.csv
Cloud Cover ^(C)	Fraction	~12 hr	LAADS	met.csv
Air Temperature ^(D)	-	~12 hr	CERES	met.csv
Relative Humidity ^(E)	-	~12 hr	CERES	met.csv
WindSpeed	Speed	24 hr	GHCN	met.csv
Rainfall ^(F)	Length	24 hr	GHCN	met.csv
Snowfall	Length	24 hr	GHCN	met.csv

Step 2: Write Configuration Files

Step 3: Area - Depth Relations

Step 4: Access & Examine Data

- General Tasks
 - Unit Conversions
- CERES-specific
 - Unpack netCDF / '.nc' files
 - Converting Julian days into Calendar Days
 - Filter by position in space
 - Examine distribution in time

Step 5: Deal with missing data

```
NaN Values read into GCHN data (<class 'pandas.core.frame.DataFrame'>)
precip
wind speed
t max
min
snow fall
              3609
snow depth
dtype: int64
Total measurements per variable: 5480
NaN Values read into CERES data (<class 'pandas.core.frame.DataFrame'>)
temp
windU
windV
humidity
              9329
cloud frac
LW rad
                74
SW rad
dtype: int64
Total measurements per variable: 13252
```

- Autocorrelation on:
 - Time-Scale Aggregations
 - o Raw Data
- Z-scores: easy for plotting, easy for interpreting

```
Autocorrelation peaks
season i
        temp max autocorr @ 1 = 0.38
        windU max autocorr @ 1 = 0.05
        windV max autocorr @ 1 = 0.06
        humidity max autocorr @ 1 = -0.02
        cloud frac max autocorr @ 1 = -0.04
        LW rad max autocorr @ 1 = -0.42
        SW rad max autocorr @ 1 = 0.59
day i
        temp max autocorr @ 1 = -0.10
        windU max autocorr @ 1 = -0.00
        windV max autocorr @ 1 = -0.02
        humidity max autocorr @ 1 = -0.02
        cloud frac max autocorr @ 86 = 0.00
        LW rad max autocorr @ 1 = -0.00
        SW rad max autocorr @ 2 = -0.08
vear i
        temp max autocorr @ 1 = -0.98
        windU max autocorr @ 1 = -0.55
        windV max autocorr @ 1 = -0.53
        humidity max autocorr @ 1 = -0.05
        cloud frac max autocorr @ 1 = -0.46
        LW rad max autocorr @ 1 = -0.89
        SW rad max autocorr @ 1 = -0.47
week i
        temp max autocorr @ 1 = -0.10
        windU max autocorr @ 1 = -0.02
        windV max autocorr @ 1 = -0.05
        humidity max autocorr @ 1 = -0.07
        cloud frac max autocorr @ 1 = -0.01
        LW rad max autocorr @ 2 = -0.03
        SW rad max autocorr @ 1 = -0.13
month i
        temp max autocorr @ 1 = -0.13
        windU max autocorr @ 1 = -0.09
        windV max autocorr @ 1 = -0.12
        humidity max autocorr @ 1 = -0.18
        cloud frac max autocorr @ 3 = -0.02
        LW rad max autocorr @ 5 = -0.08
        SW rad max autocorr @ 1 = -0.17
```


-2

More Steps

- Read in USGS Water Data & write out CSVs (Pandas)
- Run model (Joblib / subprocess)
- Determine Kling-Gupta Efficiency based on comparison with known water temperature distribution
- Use Hornberger-Spear-Young method to determine sensitivity between behavioural & non-behavioural simulations.

