Sistemas Operacionais

Othon Oliveira

Fatec - Faculdade de Informática - PE

28 de março de 2016

Gerenciamento de Memória

2 Troca de Processos

Monitores – Starvation

Como usar recursos

Como usar recursos

Nenhum computador tem memória infinita,

Como usar recursos

- Nenhum computador tem memória infinita,
- 2 A memória é volátil (todas?)

Como usar recursos

- Nenhum computador tem memória infinita,
- A memória é volátil (todas?)
- Memórias têm custo elevado (?)

Hirarquia de memória

Hirarquia de memória

A maioria dos computadores utiliza uma espécia de hierarquia.

Hirarquia de memória

A maioria dos computadores utiliza uma espécia de hierarquia.

 Uma pequena quantidade de memória cache, volátil, muito rápida e de custo elevado;

Hirarquia de memória

A maioria dos computadores utiliza uma espécia de hierarquia.

- Uma pequena quantidade de memória cache, volátil, muito rápida e de custo elevado;
- Uma grande quantidade de memória (RAM), volátil, de velocidade e custo médio;

Hirarquia de memória

A maioria dos computadores utiliza uma espécia de hierarquia.

- Uma pequena quantidade de memória cache, volátil, muito rápida e de custo elevado;
- Uma grande quantidade de memória (RAM), volátil, de velocidade e custo médio;
- Uma memória secundária, não volátil, com dezenas de centenas de gibabytes, com velocidade e custos baixos.

Hirarquia de memória

A maioria dos computadores utiliza uma espécia de hierarquia.

- Uma pequena quantidade de memória cache, volátil, muito rápida e de custo elevado;
- Uma grande quantidade de memória (RAM), volátil, de velocidade e custo médio;
- Uma memória secundária, não volátil, com dezenas de centenas de gibabytes, com velocidade e custos baixos.

Cabe aos Sistemas Operacionais coordenarem a utilização dessas memórias.

Classes de sistemas gerenciadores

Classes de sistemas gerenciadores

Sistemas que, durante a execução, levam e trazem processos entre a memória principal e o disco: troca de processos e paginação, e

Classes de sistemas gerenciadores

Sistemas que, durante a execução, levam e trazem processos entre a memória principal e o disco: troca de processos e paginação, e Sistemas mais simples, que não fazem essa tecnologia, Estudaremos os mais simples primeiro.

Classes de sistemas gerenciadores

Sistemas que, durante a execução, levam e trazem processos entre a memória principal e o disco: troca de processos e paginação, e Sistemas mais simples, que não fazem essa tecnologia, Estudaremos os mais simples primeiro.

O sistema de troca e paginação em suma são artifícios criados devido à insuficiência de memória principal para armazenar simultaneamente todos os programas.

Monoprogramação

Sem troca de processos ou paginação

Monoprogramação

Sem troca de processos ou paginação

Quanto se utiliza um sistema mais simples de gerenciamento, a memória é compartilhada entre o programa e o sistema operacional. O sistema operacional pode estar na base (RAM) ou no topo (ROM). Qual desse exemplos é usado em sistemas embarcados?

Monoprogramação

Sem troca de processos ou paginação

Quanto se utiliza um sistema mais simples de gerenciamento, a memória é compartilhada entre o programa e o sistema operacional. O sistema operacional pode estar na base (RAM) ou no topo (ROM). Qual desse exemplos é usado em sistemas embarcados?

Multiprogramação

Multiplos processos a executar simultaneamente

A maioria dos sistemas modernos permite que múltiplos processos estejam em execução simultaneamente, o que significa que quando um processo está bloqueado – por exemplo, para esperar que uma E/S seja finalizada – outro processo poderá usar a CPU.

Multiprogramação

Multiplos processos a executar simultaneamente

A maioria dos sistemas modernos permite que múltiplos processos estejam em execução simultaneamente, o que significa que quando um processo está bloqueado — por exemplo, para esperar que uma E/S seja finalizada — outro processo poderá usar a CPU. Assim a Multiprogramação aumenta a utilização da CPU. Servidores de rede sempre possuem a capacidade de execução de múltiplos processos.

Multiprogramação

Multiplos processos a executar simultaneamente

A maioria dos sistemas modernos permite que múltiplos processos estejam em execução simultaneamente, o que significa que quando um processo está bloqueado – por exemplo, para esperar que uma E/S seja finalizada – outro processo poderá usar a CPU. Assim a Multiprogramação aumenta a utilização da CPU. Servidores de rede sempre possuem a capacidade de execução de múltiplos processos.

Particionamento

A maneira mais simples de Multiprogramação é o Particionamento da Memória em n partições (de tamanhos diferentes ?)

Dois modelos de Multiprogramação

Partições fixas de memória separadas com filas para cada partição e com fila única de entrada.

```
Mutiplas filas
```

Dois modelos de Multiprogramação

Partições fixas de memória separadas com filas para cada partição e com fila única de entrada.

A Multiprogramação pode melhorar a utilização da CPU.

Modelagem Multiprogramação

Modelagem Multiprogramação

De modo genérico se um processo permanece em execução 20% do tempo em memória, com cinco processos em tese a CPU ficaria ocupara todo o tempo. Esse processo é otimista. Na realidade um modelo probabilístico. Se um processo gasta p de seu tempo, com p processos estaria ociosa p^n .

Modelagem Multiprogramação

De modo genérico se um processo permanece em execução 20% do tempo em memória, com cinco processos em tese a CPU ficaria ocupara todo o tempo. Esse processo é otimista. Na realidade um modelo probabilístico. Se um processo gasta p de seu tempo, com p processos estaria ociosa p^n .

Grau de Multiprogramação

Utilização da $CPU = 1 - p^n$

Os métodos gerais de gerenciamento de memória

Swapping

Consiste em trazer totalmente cada processo para a memória, executá-lo durante certo tempo e então devolvê-lo ao disco.

Os métodos gerais de gerenciamento de memória

Swapping

Consiste em trazer totalmente cada processo para a memória, executá-lo durante certo tempo e então devolvê-lo ao disco.

Memória vitual

A outra estratégia é denomindada **memória virtual** permite que processos sejam executados mesmo que estejam parcialmente carregados na memória principal.

Os métodos gerais de gerenciamento de memória

Swapping

Consiste em trazer totalmente cada processo para a memória, executá-lo durante certo tempo e então devolvê-lo ao disco.

Memória vitual

A outra estratégia é denomindada **memória virtual** permite que processos sejam executados mesmo que estejam parcialmente carregados na memória principal.

Veremos as duas estratégias !!

A medida que os processo entram e saem a região sombreada (não utilizada) cresce ou descresce

A medida que os processo entram e saem a região sombreada (não utilizada) cresce ou descresce

```
Alocação de memória
```

A medida que os processo entram e saem a região sombreada (não utilizada) cresce ou descresce

Os processos crescem a medida que são execatados, provavelmente será uma boa ideia alocar memória extra (heap) sempre que se fizer a tranferência de um processo para a memória ou a movimentação dele na memória!!

Os processos crescem a medida que são execatados, provavelmente será uma boa ideia alocar memória extra (heap) sempre que se fizer a tranferência de um processo para a memória ou a movimentação dele na memória!!

Alocação de memória

Os processos crescem a medida que são execatados, provavelmente será uma boa ideia alocar memória extra (heap) sempre que se fizer a tranferência de um processo para a memória ou a movimentação dele na memória!!

