Lecture 9 - Matrix algebra

ling

Determinants

Determinants

Result: an invertible matrix **A** has $det(\mathbf{A}) \neq 0$

Laplace Expansion

$$det(\mathbf{A}) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} M_{i,j}$$

Procedure:

- Find sub-matrices \mathbf{A}_{ij}
 - \mathbf{A}_{ij} sub-matrix is obtained with deleting row i and column j
- Find Minor M_{ij}
 - $M_{ij} = det(\mathbf{A}_{ij})$
- Find Cofactors C_{ii}
 - $C_{ii} = (-1)^{i+j} M_{ii}$
- Find $C_{ij}a_{ij}$ in any column and row
 - Tip: find the column/row with most $a_{ij} = 0$

ling

Inverse

Inverse

Inverse

Square matrix ${\bf A}$ has an inverse ${\bf A}^{-1}$ if and only if ${\bf A}{\bf A}^{-1}={\bf A}^{-1}{\bf A}={\bf I}$

Note:

- The concept of fraction $\frac{1}{a}$ does not exist in linear algebra.
- Inverse only exist for square matrices
- Since the definition is 'if and only if', meaning it is a two way relationship.
 - **1** If we know **A** is invertible, we know that \mathbf{A}^{-1} exist.
 - ② If we can find a matrix $\bf B$ such that $\bf A \bf B = \bf B \bf A = \bf I$ then matrix $\bf A$ is invertible with inverse $\bf A^{-1} = \bf B$

Subsection 1

Finding inverse

Finding inverse

- Using Gauss-Jordon elimination
 - Form augmented matrix [A|I]
 - **②** Find RREF [I|A⁻¹]
- Using adjoint matrices
 - **1** Find adjoint matrix $adj(\mathbf{A}) = \mathbf{C}^T$

Solving system of linear equations

Solving system of linear equations

To solve: $\mathbf{A}\mathbf{x} = \mathbf{b}$

- Using inverse
 - $\bullet \quad \mathsf{G-J:} \ [\mathbf{A}|\mathbf{b}] \Rightarrow [\mathbf{I}|\mathbf{A}^{-1}\mathbf{b}]$
 - 2 Pre-multiply inverse: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$
- 2 Cramer's Rule
- $\bullet \ x_i = \frac{|\mathbf{A}_i|}{|\mathbf{A}|}$
- ullet where $\dot{\mathbf{A}}_{i}$ is the matrix \mathbf{A} with ith column vector replaced by \mathbf{b}

Eigenvalues and Eigenvector

Eigenvalues and Eigenvector

Eigenvalues and Eigenvector

 λ is called eigenvalues of **A** when the following relationship holds for $\mathbf{v}
eq \mathbf{0}$

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

- Multiplying **A** to **v** only scale **v** by a factor of λ
- To find λ , **v**
 - **1** To find λ : solve $det(\mathbf{A} \lambda \mathbf{I}) = 0$
 - 2 To find **v**: solve $(\mathbf{A} \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$
 - Use RREF to find $[\mathbf{A} \lambda \mathbf{I} | \mathbf{0}]$
 - Eigenvector is not unique (infinite solutions)

Eigenvalues properties (among a long list)

- **1** Product of $\lambda = det(\mathbf{A})$
- ② If the hessian matrix has all non-negative λ , the multi-variable function is convex