Equivalentie van DFA en 2-DFA

- definitie van 2-DFA
- een equivalentierelatie gebaseerd op een 2-DFA voor een L
- het is een MN(L)-relatie!

Snel opgeschreven op 20 november 2011 door Bart Demoen

Definitie van 2-DFA

Informeel: 2-DFA kan leeskop links en rechts bewegen ...

- $(Q, \Sigma, \delta, \vdash, \dashv, q_s, q_a, q_r)$
 - $-\vdash$ en \dashv niet in Σ (linkse en rechtse marker)
 - $-\delta: (Q \times (\Sigma \cup \{\vdash, \dashv\})) \to Q \times \{L, R\}$
 - $-\{q_s,q_a,q_r\}\subseteq Q$ (start, accept en reject toestand)
 - $\#\{q_s, q_a, q_r\} = 3$
- niet te links of te rechts lezen ...

$$- \forall p, \exists q : \delta(p, \vdash) = (q \times R) \text{ en } \forall p, \exists q : \delta(p, \dashv) = (q \times L)$$

• bij accept/reject: leeskop helemaal naar rechts

$$-\delta(q_a, \underline{\ }) = (p \times R) \text{ en } \delta(q_r, \underline{\ }) = (p \times R)$$

String s geaccepteerd door 2-DFA

- start 2-DFA in q_s op string $\vdash s \dashv$
- geaccepteerd als de 2-DFA in de situatie (q_a, \dashv) komt s behoort tot de taal van de 2-DFA
- verworpen als de 2-DFA in de situatie (q_r, \dashv) komt s behoort niet tot de taal van de 2-DFA
- anders ...
 - s behoort niet tot de taal van de 2-DFA
- 2-DFA mag in een lus gaan en is dus een beetje zoals een TM strings waarvoor de 2-DFA in een lus gaat behoren niet tot de taal bepaald door de 2-DFA

Overtuig jezelf ...

dat de *speciale* eisen niet *belangrijk* zijn (wat betekent dat juist in deze context ?)

maar ze zullen het ons wel iets gemakkelijker maken

Het plan

Gegeven een 2-DFA die taal L bepaalt:

- we definieren een equivalentierelatie \equiv op Σ^*
- we bewijzen dat \equiv een MN(L)-relatie is
- dat bewijst dat L regulier is

vanaf nu is de 2-DFA (en L) gegeven ...

Voorbereiding van \equiv - deel I

Voor een gegeven string s maken we een functie

$$T_s: (Q \cup \bullet) \to (Q \cup \bot)$$

- $T_s(\bullet)$ start 2-DFA op $\vdash s \dashv$ met leeskop op \vdash in q_s
 - de eerste keer dat de leeskop op \dashv komt, is de 2-DFA in toestand q, dan $T_s(\bullet) \triangleq q$
 - als er zo geen eerste keer is: $T_s(\bullet) \triangleq \bot$
- $T_s(p) \text{start 2-DFA op} \vdash s \dashv \text{met leeskop op symbool vlak voor} \dashv \text{in toestand } p$
 - de eerste keer dat de leeskop daarna op \dashv komt, is de 2-DFA in toestand q, dan $T_s(p) \triangleq q$
 - als er zo geen eerste keer is: $T_s(p) \triangleq \bot$

Voorbereiding van ≡: deel II

Wat betekent die T_s ?

- ullet volg de werking van de 2-DFA op een string van de vorm sw
- \bullet elke keer dat de leeskop van w naar s gaat en daar aankomt in toestand p
- dan: de eerste keer dat de leeskop daarna van s naar w gaat, komt ie daar toe in $T_s(p)$ tenzij dat nooit gebeurt
- plus een speciaal geval voor $T_s(\bullet)$ want dat is een overgang van s naar w waarvoor geen vorige overgang van w naar s was

 T_s bevat alle info die van s naar w kan vloeien

Interludium over T_s

ullet als je wil beslissen of string sw geaccepteerd wordt, dan heb je genoeg aan

 $-T_s$

-w

 $-\delta$

• maar s moet je niet kennen

Lees niet verder totdat je dat verstaat!

Hint: speel zelf voor 2-DFA en kijk wat je nodig hebt als die een overgang wil maken van w naar s

Voorbereiding van \equiv : deel III

hoeveel verschillende functies $(Q \cup \bullet) \to (Q \cup \bot)$ bestaan er ?

- stel #Q = k, dan $(k+1)^{(k+1)}$
- juiste aantal niet belangrijk, wel dat het eindig is!

Definitie van \equiv op Σ^*

- $s \equiv t \Leftrightarrow T_s = T_t$
- bewijs zelf dat dit een equivalentierelatie is
- de geïnduceerde partitie is eindig, want ...
- als we nu nog kunnen bewijzen dat
 - die partitie $\{L, \overline{L}\}$ verfijnt en
 - $dat \equiv rechts$ -congruent is ...

Dan is L regulier!

\equiv verfijnt $\{L, \overline{L}\}$: bewijs

Stel
$$T_s = T_t$$
 en $s \in L$

- de overgangen van s naar \dashv en die van t naar \dashv gebeuren in dezelfde toestanden en in dezelfde volgorde (waarom?)
- laatste overgang voor s is in toestand q_a
- \bullet dus ook voor t

dus ook $t \in L$

M.a.w.
$$T_s = T_t \Leftrightarrow (s \in L) \leftrightarrow (t \in L)$$

of

$$\equiv \text{verfijnt } \{L, \overline{L}\}$$

De Interludium slide voordien kan je ook helpen ...

\equiv is rechts-congruent: bewijs

Stel $s \equiv t$, dan $T_s = T_t$ (per definitie)

Neem een $a \in \Sigma$

- $T_{sa}(\bullet)$ $(T_{ta}(\bullet))$ krijg je door
 - stel $p = T_s(\bullet) \ (= T_t(\bullet))$
 - of: de 2-DFA komt de 1^{ste} keer met leeskop boven de a in p
 - $-T_s = T_t$ en de overgangen tussen s en a gebeuren in dezelfde volgorde als tussen t en a, dus $T_{sa}(\bullet) = T_{ta}(\bullet)$
- ullet start 2-DFA met leeskop onder a en in een willekeurige toestand p
 - leeskop gaat naar rechts ... $T_{sa}(p) = T_{ta}(p)$
 - of leeskop gaat naar links ... dus $T_{sa}(p) = T_{ta}(p)$

Besluit

- elke taal L die bepaald wordt door een 2-DFA is regulier
- elke taal L die bepaald wordt door een DFA wordt ook door een 2-DFA bepaald
- 2-DFA en DFA zijn even krachtig

Om over na te denken ...

- kan een 2-DFA voor een L kleiner zijn dan de minimale DFA?
- bestaat een minimalisatie-algoritme voor 2-DFA's ?
- hoe zit het met een transformatie van 2-DFA naar DFA?
- bestaan er ook 2-NFA's ? en welke eigenschappen hebben die ?
- is H_{2-DFA} herkenbaar, beslisbaar?

Geschiedenis

- probleem eerst bestudeerd (en opgelost) door M. Rabin en D. Scott (1959): ingewikkeld bewijs
- J. Shepherdson gaf al snel een eenvoudiger bewijs: het staat essentieel hierboven Rabin en Scott vinden het zelfs niet de moeite om hun eigen bewijs in detail te publiceren, maar verwijzen naar Shepherdson
- 1989: M. Vardi geeft een nog gemakkelijker bewijs ik vind het moeilijker :-(
- zie boek Automata and Computability van Dexter C. Kozen