

DAN: Deep Attention Neural Network for News Recommendation

Qiannan Zhu, Xiaofei Zhou, Zengliang Song, Jianlong Tan, Guo Li

¹Institute of Information Engineering, Chinese Academy of Sciences ²University of Chinese Academy of Sciences

Observation

Recommendation System

Problem & Motivation

- ignore the news profile
- ignore the influence of sequential information of a user's clicked news

Proposal: DAN

A deep attention neural network DAN that consists of three components including PCNN, ANN, ARNN

Results

3.91% on F1 and 2.64% on AUC improvement on evaluation metrices

Contents

- Backgrounds
- Proposal
- Experiments
- Conclusion

Recommendation System

Task

> Given a list of reading history, recommend candidate items for users.

Items user have watched

Items user may also watched

Recommendation System

Collaborative Filtering (CF) based Methods

predicts a personalized rankingover a set of items for each individual user with the similarities among the users and items

Content based Methods

consider the actual content or attributes of the items for making recommendations

Recommendation System

Hybrid Methods

recommend items through a hybrid recommender system that usually combines several different recommender algorithms

Deep Learning Based Models

modeling complex user-item (i.e., news) interactions, and capturing the dynamic properties of news and users

Related Works

Methodologies

- Autoencoders (Sheng, Kawale, and Fu. 2015)
- > CDAE (Wu et al. 2016)
- DMF (Xue et al. 2017)
- > DSSM (Huang et al. 2013)
- SCENE (Li et al. 2011)
- DeepWide (Cheng et al. 2016),
- DeepFM (Guo et al. 2017),
- DeepJoNN (Zhang, Liu, and Gulla 2018)
- DKN(HongweiWang2018)

Issues

Issues of existing models

- have the cold start problem when being exposed to the sparsity of user-item interactions
- have difficulties in reflecting a user's interests in real time
- > ignore the news profile
- > can not consider the influence of sequential information of a user's clicked news

DAN

➤ DAN uses three components for capturing the dynamic of news and user's interest, and recommend news to users.

PCNN Component

> Input: profile embedding C and title embedding T

$$\mathbf{C} = [\mathbf{e}_1, f(\mathbf{g}_1), \mathbf{e}_2, f(\mathbf{g}_2)...\mathbf{e}_m, f(\mathbf{g}_m)]^T \quad \mathbf{T} = [\mathbf{w}_1, \mathbf{w}_2, ...\mathbf{w}_n]^T$$

> Two Parallel CNN

- (1) Convolution layer $\mathbf{m} = f(\mathbf{Z} \odot \mathbf{c} + b)$
- (2) Pooling layer $\mathbf{p} = maxpooling(\mathbf{m})$
- (3) Representation layer

$$r(\mathbf{Z}) = [vec(\mathbf{p}^1); vec(\mathbf{p}^2); ...vec(\mathbf{p}^v)]$$

> Output: news feature representation

$$\mathbf{I} = [r(\mathbf{T}); r(\mathbf{C})]$$

Figure 2

ANN Component

- ➤ Input: clicked news representations and candidate news representation $\{I_1, I_2, ..., I_{t-1}\}$ and I_t
- > Attention Mechaism

$$\mathbf{u}_{j} = tanh(\mathbf{W}_{w}\mathbf{I}_{j} + \mathbf{b}_{w})$$

$$\mathbf{u}_{t} = tanh(\mathbf{W}_{t}\mathbf{I}_{t} + \mathbf{b}_{t})$$

$$\alpha_{j,t} = \frac{exp(\mathbf{v}^{T}(\mathbf{u}_{t} + \mathbf{u}_{j}))}{\sum_{j} exp(\mathbf{v}^{T}(\mathbf{u}_{t} + \mathbf{u}_{j}))}$$

$$\mathbf{s}_{t} = \sum_{j} \alpha_{j,t}\mathbf{I}_{j}$$

Output: user's current representation

$$\mathbf{s}_t = \sum_j \alpha_{j,t} \mathbf{I}_j$$

ARNN Component

Input: clicked news representations

$$\{\mathbf{I}_1, \mathbf{I}_2, ..., \mathbf{I}_{t-1}\}$$

- Attention mechanism on RNN
 - (1) In j-th step, get the j-th hidden state

$$\mathbf{h}_j = LSTM(\mathbf{h}_{j-1}, \mathbf{I}_j)$$

- (2) feed the first j hidden states into ANN, and get the j-th sequencial information \mathbf{S}_j
- (3) get the entire sequential information

$$\mathbf{S} = [\mathbf{s}_2 \, \mathbf{s}_3 \, ... \mathbf{s}_{t-1}]$$

> Output: user's history sequential feature representation $f(\mathbf{S}) = cnn(\mathbf{S})$

Training

input sample
$$X = (\{x_1, x_2, ..., x_{t-1}\}, x_t, y)$$

- $\succ x_j$ is the j-th news clicked by users, x_t is the candidate news
- y = 1 for positive input sample y = 0 for the negative sample
- each input sample has the respective estimated probabilities $P \in [0, 1]$ of the user clicking the news x_t

$$L_r = -\{\sum_{X \in \Delta^+} y \log P + \sum_{X \in \Delta^-} (1 - y) \log(1 - P)\}$$
 (3)

where Δ^+ and Δ^- are the positive sample set and negative sample set.

Experiments

Data sets

Adressa is an event-based news dataset that includes anonumized users with their clicked news articles

- Adressa-1week: from 1 January to 7 January 2017
- Adreesa-10week: from 1 January to 31 March 2017

Table 1: Statistics of the dataset.

Number	Adressa-Iweek	Adressa-10week	
#users	640,503	3,614,911	
#news	20,428	81,018	
#events	3,101,991	35,244,078	
#entity	160,559	417,572	
#entity-type	19	19	
#average words per title	6.57	6.64	
#average entities per news	27.7	26.5	
#average entity-types per news	12.6	12.5	

Experiments

Result and analysis

Table 2: Comparison of different models.

Model	Adressa-1week		Adressa-10week		
	F1	AUC	F1	AUC	
LibFM(-)	63.93	61.79	55.75	53.83	
LibFM	70.69	69.53	64.44	61.41	
DSSM(-)	69.36	68.25	62.24	60.74	
DSSM	74.78	72.71	69.11	67.57	
DeepWide(-)	67.39	64.83	59.98	57.98	
DeepWide	73.94	71.07	67.87	66.80	
DeepFM(-)	66.09	64.83	58.47	57.03	
DeepFM	72.47	70.33	64.71	63.60	
DMF	63.43	61.49	55.43	53.47	
DKN(-)	75.38	73.45	68.57	60.57	
DKN	79.97	77.24	70.39	67.53	
DAN	82.32	80.18	73.58	70.17	

(-) represents that removing the profile embedding from input matrix

Experiments

Discussion on different DAN variants

Table 3: Comparison among DAN variants.

Model	Adressa-1week		Adressa-10week	
Wiodei	F1	AUC	F1	AUC
DAN without entity and entity-type	76.01	72.51	69.37	58.19
DAN with entity-type	77.21	74.49	70.76	65.42
DAN with entity	80.46	78.64	71.93	67.63
DAN with entity and entity-type	82.32	80.18	73.58	70.17
DAN without mapping	78.06	75.36	67.13	65.49
DAN with linear mapping	80.17	77.24	70.57	67.81
DAN with no-linear mapping	82.32	80.18	73.58	70.17
DAN without attention	78.13	75.44	70.23	68.76
DAN with attention	82.32	80.18	73.58	70.17
DAN with mul	72.46	68.54	60.39	58.73
DAN with sum	80.17	78.29	69.98	67.04
DAN with vec	79.91	77.74	69.46	66.29
DAN with cnn	82.32	80.18	73.58	70.17
DAN without ARNN	81.59	77.27	71.25	69.61
DAN with ARNN	82.32	80.18	73.58	70.17

Summary

Conclusion

- ➤ DAN considers the user's history sequential information and user's current interest together to determine whether the user clicks on the candidate news.
- ➤ DAN devises three components including news representation extractor PCNN, sequential information extractor ARNN and user interest extractor ANN.
- > DAV significantly and consistently has considerable improvement over baselines, and achieves state-of-the-art performance

Thanks

THANKS Q&A