Ironing for Single-Parameter Optimal Revenue

Recap

Myerson's theory for single-parameter revenue maximization says:

Price-posting revenue curves in

- Value space:
- Quantile Space: where

Back to Quantile Space and Ironing

Claim 1. A distribution F is regular if and only if its corresponding revenue curve is concave.

Observe that $P'(q) = \varphi(v(q))$:

$$P'(q) = \frac{d}{dq} (q \cdot v(q)) = v(q) + qv'(q) = v - \frac{1 - F(v)}{f(v)} = \varphi(v(q)).$$

Thus $\Phi(q) = \int_0^q \varphi(\hat{q}) d\hat{q} = P(q)$.

To summarize: a distribution F is regular if and only if:

- its corresponding revenue curve in quantile space is concave.
- $\varphi(q)$ is strictly increasing.
- $f(v)\varphi(v)$ is strictly increasing. (Why?)

Definition 1. The *ironing procedure* for (non-monotone) virtual value function φ (in quantile space) is:

- (i) Define the cumulative virtual value function as
- (ii) Define ironed cumulative virtual value function
- (iii) Define the ironed virtual value function as

Summary: Take the concave hull of the revenue curve in quantile space. Its derivative forms the ironed virtual values. (The derivatives of the original curve are the original virtual values.)

Theorem 1. For any monotone allocation rule $y(\cdot)$ and any virtual value function $\varphi(\cdot)$, the expected virtual welfare of an agent is upper-bounded by her expected ironed virtual surplus, i.e.,

$$\mathbb{E}[\varphi(q)y(q)] \le \mathbb{E}[\bar{\varphi}(q)y(q)].$$

Furthermore, this inequality holds with equality if the allocation rule y satisfies y'(q) = 0 for all q where $\bar{\Phi}(q) > \Phi(q)$.

How do we modify this statement for value space?

Proof.

Figure 2: The bimodal agent's (ironed) revenue curve and virtual values in quantile space.

Claim 2. The expected revenue on the ironed revenue curve is attainable with a DSIC mechanism.

Example: How would you obtain the ironed revenue at \$5 instead of just R(5)?

Note: Recall that the expected revenue of *any mechanism*, not just a posted price, can be expressed by its virtual welfare. (We have now shown that you could decompose it into a distribution of posted prices and thus express the revenue that way, too, actually.)

What's the final mechanism?

For any ironed interval [a, b], examine $\bar{\varphi}(v)$ for $v \in [a, b]$. Draw conclusions about $\bar{\varphi}(v)$ and x(v). P(q(v)) is a straight line (linear) there, so $\bar{\varphi}(q(v))$ will be?

What does this imply for ironed-virtual-welfare-maximizing allocation in [a, b]?

Multiple Bidders

Imagine we have three bidders competing in a revenue-optimal auction for a single item. They are as follows:

- Bidder 1 is uniform. $F_1(v) = \frac{v-1}{H-1}$ on [1, H].
- Bidder 2 is exponential. $F_2(v) = 1 e^{-x}$ for $v \in (1, \infty)$.
- Bidder 3 is exponential. $F_3(v) = 1 e^{-2x}$ for $v \in (1, \infty)$.

What does the optimal mechanism look like?

Definition 2. A reserve price r is a minimum price below which no buyer may be allocated the item. There may also be personalized reserve prices r_i where if $v_i < r_i$ then v_i will not be allocated to. Bidders above their reserves participate in the auction.