# Firm Heterogeneity and Racial Labor Market Disparities

Caitlin Hegarty

Michigan

June 19, 2023

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE 1256260. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.





Employment share (B-W)





Employment share (B-W)





#### Employment share (B-W)





### Research question

- How does employer composition contribute to the excess volatility of the Black employment rate and through what channels?

### This paper

#### 1. Empirical: Employment transitions vary by race, firm size, and macro conditions

- Monthly household survey data
- Black workers have lower job-finding rates and higher separation rates at small firms
- Job-finding at large firms more cyclically sensitive for Black workers

### This paper

1. Empirical: Employment transitions vary by race, firm size, and macro conditions

#### 2. Model: Information frictions in labor market can generate both patterns

- Firms imperfectly observe worker productivity, varies by race and firm size
  - Information gap narrower at large firms  $\rightarrow$  hire more Black workers
  - Consistent with micro evidence (Miller & Schmutte, 2021)
- Slack labor market  $\rightarrow$  hiring lower  $\rightarrow$  affects Black workers more
- Information frictions can explain
  - Job-finding and separation gaps, bigger for small firms
  - Worse job-finding gap with slack labor market, stronger for large firms

#### Related literature

- Empirical patterns in the labor market
  - 1. Black employment is more sensitive to business cycle fluctuations

Couch & Fairlie (2010), Hoynes et al. (2012), Cainer et al. (2017), Aaronson et al. (2019), Forsythe & Wu (2021)

2. Black workers are more likely to work for large firms

Holzer (1998), Miller (2017), Miller & Schmutte (2021)

3. Employment growth at large firms is more cyclically sensitive

Moscarini & Postel-Vinay (2012), Haltiwanger et al. (2018), Moscarini & Postel-Vinay (2018)

- ⋆ First to study interactions in (1)-(3) both empirically and theoretically
- Labor market models with information frictions
  - 1. Firm heterogeneity

Baydur (2017)

2. Worker heterogeneity

Morgan & Várdy (2009), Jarosch & Pilossoph (2019)

★ Link worker disparities to firm heterogeneity and information frictions

### Outline

Introduction

**Empirical Evidence** 

Model

**Quantitative Analysis** 

# Survey of Income and Program Participation (SIPP)

#### Overview

- Rotating panel, HHs interviewed every 4 months for 3-4 years
- Four panels covering 1996-2011 with gaps
- Individuals self-identified as (non-Hispanic) white or Black
- 286k individuals across 4 panels
- Average 22 months per person
- Details on two jobs per interview period

#### Monthly labor force states

- Nonemployed
- Employed- match to job dates
  - Large firm (100+ emp. across establishments)
  - Small firm
  - Government
  - Self-employed

# Job-finding gap

$$f_{ijt} = \alpha_j + \alpha_j^B \text{Black}_i + \beta_j \text{High UR}_t + \beta_j^B \text{Black}_i \times \text{High UR}_t + \Gamma_j X_{it} + u_{ijt}$$

 $f_{ijt}$  job-finding indicator at firm type j

 $X_{it}$  age, age<sup>2</sup>, marital status, gender, education, geographic region, metro area size, length of spell (years), new entrant, calendar month

 $\beta_i^B$  job-finding gap in high UR months relative to other months

Cluster standard errors by time

# Unemployment rate higher → Black job-finding decreases by more

|                                                                  | (1)       | (2)   | (3)   |  |
|------------------------------------------------------------------|-----------|-------|-------|--|
|                                                                  | All       | Large | Small |  |
| Black                                                            | -0.76***  |       |       |  |
|                                                                  | (0.06)    |       |       |  |
| High UR                                                          | -0.62***  |       |       |  |
|                                                                  | (0.09)    |       |       |  |
| Black × High UR                                                  | -0.23**   |       |       |  |
|                                                                  | (0.09)    |       |       |  |
| N                                                                | 2,226,789 |       |       |  |
| $R^2$                                                            | 0.04      |       |       |  |
| Black mean                                                       | 2.65      |       |       |  |
| White mean                                                       | 2.39      |       |       |  |
| SE in parentheses clustered by time * p < 1 ** p < 05 *** p < 01 |           |       |       |  |

SE in parentheses clustered by time. \* p < .1, \*\* p < .05, \*\*\* p < .01 Units: percentage points. Sample aged 20 and older.

▶ Other employers

▶ Gender

▶ 25-65

▶ Continuous

▶ State UR

▶ Below trend

▶ Mechanical

# Cyclical job-finding response driven by large firms

| (1)       | (2)                                                                                        | (3)                                                                                                                                            |
|-----------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| All       | Large                                                                                      | Small                                                                                                                                          |
| -0.76***  | -0.07*                                                                                     |                                                                                                                                                |
| (0.06)    | (0.04)                                                                                     |                                                                                                                                                |
| -0.62***  | -0.26***                                                                                   |                                                                                                                                                |
| (0.09)    | (0.04)                                                                                     |                                                                                                                                                |
| -0.23**   | -0.24***                                                                                   |                                                                                                                                                |
| (0.09)    | (0.06)                                                                                     |                                                                                                                                                |
| 2,226,789 | 2,226,789                                                                                  |                                                                                                                                                |
| 0.04      | 0.02                                                                                       |                                                                                                                                                |
| 2.65      | 1.42                                                                                       |                                                                                                                                                |
| 2.39      | 1.03                                                                                       |                                                                                                                                                |
|           | -0.76***<br>(0.06)<br>-0.62***<br>(0.09)<br>-0.23**<br>(0.09)<br>2,226,789<br>0.04<br>2.65 | All Large -0.76*** -0.07* (0.06) (0.04) -0.62*** -0.26*** (0.09) (0.04) -0.23** -0.24*** (0.09) (0.06) 2,226,789 2,226,789 0.04 0.02 2.65 1.42 |

SE in parentheses clustered by time. \* p < .1, \*\* p < .05, \*\*\* p < .01 Units: percentage points. Sample aged 20 and older.

► Logit ► Other employers ► Gender ► 25-65 ► Continuous ► State UR ► Below trend ► Mechanical

# Cyclical job-finding response driven by large firms

|                       | (1)       | (2)       | (3)       |
|-----------------------|-----------|-----------|-----------|
|                       | All       | Large     | Small     |
| Black                 | -0.76***  | -0.07*    | -0.59***  |
|                       | (0.06)    | (0.04)    | (0.03)    |
| High UR               | -0.62***  | -0.26***  | -0.22***  |
|                       | (0.09)    | (0.04)    | (0.03)    |
| Black $	imes$ High UR | -0.23**   | -0.24***  | 0.04      |
|                       | (0.09)    | (0.06)    | (0.04)    |
| N                     | 2,226,789 | 2,226,789 | 2,226,789 |
| $R^2$                 | 0.04      | 0.02      | 0.02      |
| Black mean            | 2.65      | 1.42      | 0.74      |
| White mean            | 2.39      | 1.03      | 0.87      |

SE in parentheses clustered by time. \* p < .1, \*\* p < .05, \*\*\* p < .01 Units: percentage points. Sample aged 20 and older.

► Logit ► Other employers ► Gender ► 25-65 ► Continuous ► State UR ► Below trend ► Mechanical

# Separation gap

$$s_{it} = lpha_j + lpha_j^{\mathcal{B}}$$
Black $_i + eta_j^{\mathcal{B}}$ High UR $_t + eta_j^{\mathcal{B}}$ Black $_i imes$  High UR $_t + \Gamma X_{it} + u_{ijt}$ 

|                       | (1)       | (2)       | (3)     |
|-----------------------|-----------|-----------|---------|
|                       | All       | Large     | Small   |
| Black                 | 0.09***   | 0.18***   | 0.27*** |
|                       | (0.03)    | (0.05)    | (0.07)  |
| High UR               | 0.05      | 0.07      | 0.10*   |
|                       | (0.04)    | (0.05)    | (0.06)  |
| Black $	imes$ High UR | -0.08     | -0.11     | -0.21   |
|                       | (0.05)    | (0.08)    | (0.14)  |
| N                     | 3,701,235 | 3,701,235 |         |
| R2                    | 0.01      | 0.01      |         |
| Black mean            | 1.60      | 1.69      | 2.20    |
| White mean            | 1.30      | 1.27      | 1.79    |

SE in parentheses clustered by time. \* p < .1, \*\* p < .05, \*\*\* p < .01 Units: percentage points. Sample aged 20 and older.

► Logit ► Other employers

▶ Gender

▶ 25-65

Continuous

State UR

Below trend

▶ Separation reason

# Summary and roadmap

#### Key empirical patterns

- Black workers face especially lower job-finding rates and higher separation rates at small firms
- Job-finding at large firms decreases more for Black workers in slack labor market

#### Model

- Endogenous sorting through information frictions in hiring (e.g. Miller & Schmutte, 2021)
- Compare job-finding gaps across tight/slack labor market states
- Abstract from
  - Other sorting mechanisms (e.g. Miller, 2017)
  - Separations comparisons

### Outline

Introduction

**Empirical Evidence** 

Model

Quantitative Analysis

### **Environment**

#### **Agents**

- High and low productivity firms (i.e. large and small)
- Black and white workers

### **Technology**

- Decreasing returns to scale
- Random search with uncertain worker productivity
- Wages via bargaining





#### Matching

- Firm posts v vacancies at cost  $c_v(z)$
- Matches with  $vq(\theta)$  workers
- Random sample of nonemployed population
- Potential hire draws unobservable match quality



### Hiring

- Match quality = probability worker is productive
- Exogenous distribution F
- Observed with noisy signal
- Noise varies with race and firm size

$$x \equiv \rho_{gz}s + (1-\rho_{gz})\mathbb{E}[s]$$





### Hiring

- Match quality = probability worker is productive
- Exogenous distribution F
- Observed with noisy signal
- Noise varies with race and firm size

$$x \equiv \rho_{gz}s + (1 - \rho_{gz})\mathbb{E}[s]$$





#### **Production**

- Wages are paid to all workers
- New hire productivity is revealed at production
- Only productive workers contribute to output
- Nonemployed worker receives b



### Separation

- Unproductive hires separate
- Exogenous share  $\delta$  productive workers separate
- Separated workers cannot apply to jobs next period

Firm chooses vacancies v, hiring standards  $x_B^*$ ,  $x_W^*$ , and productive employment  $n_B'$ ,  $n_W'$ 

Firm chooses vacancies v, hiring standards  $x_B^*$ ,  $x_W^*$ , and productive employment  $n_B'$ ,  $n_W'$ 

$$J_{t}(\textit{n}_{\textit{B}}, \textit{n}_{\textit{W}}, \textit{z}) = \max_{\textit{v} \geq 0, \textit{n}'_{\textit{g}}, \textit{x}^*_{\textit{g}}} - c_{\textit{v}}(\textit{z}) \textit{v} + a_{t} \textit{z} (\textit{n}'_{\textit{B}} + \textit{n}'_{\textit{W}})^{\alpha} - \sum_{\textit{g}} \underbrace{(1 - \delta) \textit{n}_{\textit{g}} \textit{w}^{\textit{n}} (\textit{n}'_{\textit{B}} + \textit{n}'_{\textit{W}}, \textit{g}, \textit{z})}_{\text{incumbent wages}} - \sum_{\textit{g}} \underbrace{u_{\textit{gt}}}_{\textit{U}_{\textit{t}}} q(\theta_{\textit{t}}) \textit{v} (1 - F(\textit{x}^*_{\textit{g}} | \textit{p}_{\textit{gz}})) \textit{w}^{\textit{h}} (\textit{x}^*_{\textit{g}}, \textit{n}'_{\textit{B}} + \textit{n}'_{\textit{W}}, \textit{g}, \textit{z}) + \beta \mathbb{E}_{\textit{t}} J_{\textit{t+1}} (\textit{n}'_{\textit{B}}, \textit{n}'_{\textit{W}}, \textit{z})}_{\text{new hire wages}}$$

s.t.

$$n_g' = (1 - \delta)n_g + \underbrace{\frac{u_{gt}}{u_t}q(\theta_t)v}_{\text{matches}}\underbrace{(1 - F(x_g^*|p_{gz}))}_{\text{hire share}}\underbrace{\mathbb{E}[x|x > x_g^*, p_{gz}]}_{\text{probability productive}}$$

$$\underline{x}(p_{gz}) \leq x_g^* \leq \bar{x}(p_{gz})$$

x is probability worker is productive, conditional on signal

Firm chooses vacancies v, hiring standards  $x_B^*$ ,  $x_W^*$ , and productive employment  $n_B'$ ,  $n_W'$ 

$$J_{t}(n_{B}, n_{W}, z) = \max_{v \geq 0, n'_{g}, x_{g}^{*}} -c_{v}(z)v + a_{t}z(n'_{B} + n'_{W})^{\alpha} - \sum_{g} \underbrace{(1 - \delta)n_{g}w^{n}(n'_{B} + n'_{W}, g, z)}_{\text{incumbent wages}}$$

$$- \sum_{g} \underbrace{\frac{u_{gt}}{u_{t}}q(\theta_{t})v(1 - F(x_{g}^{*}|p_{gz}))w^{h}(x_{g}^{*}, n'_{B} + n'_{W}, g, z)}_{\text{new hire wages}} + \beta \mathbb{E}_{t}J_{t+1}(n'_{B}, n'_{W}, z)$$

s.t.

$$n_g' = (1 - \delta)n_g + \underbrace{\frac{u_{gt}}{u_t}q(\theta_t)v}_{\text{matches}}\underbrace{(1 - F(x_g^*|p_{gz}))}_{\text{hire share}}\underbrace{\mathbb{E}[x|x > x_g^*, p_{gz}]}_{\text{probability productive}}$$

$$\underline{x}(p_{gz}) \leq x_g^* \leq \bar{x}(p_{gz})$$

x is probability worker is productive, conditional on signal

Firm chooses vacancies v, hiring standards  $x_B^*$ ,  $x_W^*$ , and productive employment  $n_B'$ ,  $n_W'$ 

$$J_{t}(n_{B}, n_{W}, z) = \max_{v \geq 0, n'_{g}, x^{*}_{g}} -c_{v}(z)v + a_{t}z(n'_{B} + n'_{W})^{\alpha} - \sum_{g} \underbrace{(1 - \delta)n_{g}w^{n}(n'_{B} + n'_{W}, g, z)}_{\text{incumbent wages}} - \sum_{g} \underbrace{u_{gt}}_{u_{t}} q(\theta_{t})v(1 - F(x^{*}_{g}|p_{gz}))w^{h}(x^{*}_{g}, n'_{B} + n'_{W}, g, z) + \beta \mathbb{E}_{t}J_{t+1}(n'_{B}, n'_{W}, z)$$
new hire wages

s.t.

$$n_g' = (1 - \delta)n_g + \underbrace{\frac{u_{gt}}{u_t}q(\theta_t)v}_{\text{matches}}\underbrace{(1 - F(x_g^*|p_{gz}))}_{\text{hire share}}\underbrace{\mathbb{E}[x|x > x_g^*, p_{gz}]}_{\text{probability productive}}$$

$$\underline{x}(p_{gz}) \leq x_g^* \leq \bar{x}(p_{gz})$$

x is probability worker is productive, conditional on signal

Firm chooses vacancies v, hiring standards  $x_B^*$ ,  $x_W^*$ , and productive employment  $n_B'$ ,  $n_W'$ 

$$\begin{split} J_t(n_B,n_W,z) &= \max_{v \geq 0, n_g', x_g^*} -c_v(z)v + a_t z (n_B' + n_W')^\alpha - \sum_g \underbrace{(1-\delta)n_g w^n(n_B' + n_W',g,z)}_{\text{incumbent wages}} \\ &- \sum_g \underbrace{\frac{u_{gt}}{u_t} q(\theta_t) v (1-F(x_g^*|p_{gz})) w^h(x_g^*,n_B' + n_W',g,z)}_{\text{new hire wages}} + \beta \mathbb{E}_t J_{t+1}(n_B',n_W',z) \end{split}$$

s.t.

$$n_g' = (1 - \delta)n_g + \underbrace{\frac{u_{gt}}{u_t}q(\theta_t)v}_{\text{matches}}\underbrace{(1 - F(x_g^*|p_{gz}))}_{\text{hire share}}\underbrace{\mathbb{E}[x|x > x_g^*, p_{gz}]}_{\text{probability productive}}$$
 $x(p_{gz}) \le x_g^* \le \bar{x}(p_{gz})$ 

x is probability worker is productive, conditional on signal

▶ Details

Firm chooses vacancies v, hiring standards  $x_B^*$ ,  $x_W^*$ , and productive employment  $n_B'$ ,  $n_W'$ 

$$\begin{split} J_t(\textit{n}_\textit{B},\textit{n}_\textit{W},\textit{z}) &= \max_{\textit{v} \geq 0,\textit{n}_\textit{g}',\textit{x}_g^*} - \textit{c}_\textit{v}(\textit{z})\textit{v} + \textit{a}_t\textit{z}(\textit{n}_\textit{B}' + \textit{n}_\textit{W}')^\alpha - \sum_g \underbrace{(1-\delta)\textit{n}_g\textit{w}^\textit{n}(\textit{n}_\textit{B}' + \textit{n}_\textit{W}',\textit{g},\textit{z})}_{\text{incumbent wages}} \\ &- \sum_g \underbrace{\frac{\textit{u}_{gt}}{\textit{u}_t}\textit{q}(\theta_t)\textit{v}(1-\textit{F}(\textit{x}_g^*|\textit{p}_{gz}))\textit{w}^\textit{h}(\textit{x}_g^*,\textit{n}_\textit{B}' + \textit{n}_\textit{W}',\textit{g},\textit{z})}_{\text{new hire wages}} + \beta \mathbb{E}_t\textit{J}_{t+1}(\textit{n}_\textit{B}',\textit{n}_\textit{W}',\textit{z}) \end{split}$$

s.t.

$$n_g' = (1 - \delta)n_g + \underbrace{\frac{u_{gt}}{u_t}q(\theta_t)v}_{\text{matches}}\underbrace{(1 - F(x_g^*|p_{gz}))}_{\text{hire share}}\underbrace{\mathbb{E}[x|x > x_g^*, p_{gz}]}_{\text{probability productive}}$$
 $x(p_{gz}) \leq x_g^* \leq \bar{x}(p_{gz})$ 

x is probability worker is productive, conditional on signal

▶ Details

# Firm problem solution

1. How many workers to hire?

$$\underbrace{\mathsf{current} + \mathsf{future} \ \mathsf{wages} + \mathsf{MC} \ \mathsf{hiring}}_{\mathsf{MC}} = \underbrace{\mathsf{MPL} + \mathsf{future} \ \mathsf{savings} \ \mathsf{on} \ \mathsf{hiring}}_{\mathsf{MB}}$$

- 2. Hiring strategy
  - Vacancies vs selectivity
  - Minimize cost of hiring

### Tradeoff between vacancies and selectivity

$$\underbrace{\Delta n}_{\text{productive hires}} = \underbrace{vq(\theta)}_{\text{matches}} \underbrace{(1 - F(x^*|p))}_{\text{hired share}} \underbrace{\mathbb{E}[x|x > x^*, p]}_{\text{probability productive}}$$

### More selective $\implies$ more vacancies



# More selective ⇒ fewer unproductive hires



# Optimal hiring threshold where MC = MB



# Worker problem

Productive worker

New hire

Nonemployed

#### Worker problem

Productive worker

$$V_t^n(g, z) = w_t^n(n', z, g) + \beta \mathbb{E}_t \left[ V_{t+1}^u(g) + \underbrace{(1 - \delta)}_{\text{prob. employed}} \underbrace{(V_{t+1}^n(g, z) - V_{t+1}^u(g))}_{\text{employment surplus}} \right]$$

New hire

Nonemployed

▶ Bargaining rule

#### Worker problem

Productive worker

$$V_t^n(g,z) = w_t^n(n',z,g) + \beta \mathbb{E}_t \left[ V_{t+1}^u(g) + \underbrace{(1-\delta)}_{\text{prob. employed}} \underbrace{(V_{t+1}^n(g,z) - V_{t+1}^u(g))}_{\text{employment surplus}} \right]$$

New hire

$$V_t^h(g,z) = w_t^h(x_g^*,n',z,g) + \beta \mathbb{E}_t \left[ V_{t+1}^u(g) + \underbrace{(1-\delta)\mathbb{E}[x|x>x_g^*,\rho_{gz}]}_{\text{prob. employed}} \underbrace{(V_{t+1}^n(g,z)-V_{t+1}^u(g))}_{\text{employment surplus}} \right]$$

Nonemployed

#### Worker problem

#### Productive worker

$$V_t^n(g,z) = w_t^n(n',z,g) + \beta \mathbb{E}_t \left[ V_{t+1}^u(g) + \underbrace{(1-\delta)}_{\text{prob. employed}} \underbrace{(V_{t+1}^n(g,z) - V_{t+1}^u(g))}_{\text{employment surplus}} \right]$$

New hire

$$V_t^h(g,z) = w_t^h(x_g^*,n',z,g) + \beta \mathbb{E}_t \left[ V_{t+1}^u(g) + \underbrace{(1-\delta)\mathbb{E}[x|x>x_g^*,\rho_{gz}]}_{\text{prob. employed}} \underbrace{(V_{t+1}^n(g,z)-V_{t+1}^u(g))}_{\text{employment surplus}} \right]$$

#### Nonemployed

$$V^u_t(g) = b + \beta \mathbb{E}_t V^u_{t+1}(g) + \beta \mathbb{E}_t \left[ \sum_{z} \underbrace{\theta_{t+1} q(\theta_{t+1}) \frac{v^*(z)}{V}}_{\text{prob match at } z} \underbrace{(1 - F(x^*_g | p_{gz}))}_{\text{prob hired}} \underbrace{(V^h_{t+1}(g, z) - V^u_{t+1}(g))}_{\text{new hire surplus}} \right]$$

value of search:= $\Omega_t(g)$ 

## Racial differences in signal precision



## Selectivity determines hiring gap





▶ Low productivity

▶ Threshold rule

## Endogenous wages attenuate hiring gap





▶ Low productivity

▶ Threshold rule

#### Outline

Introduction

**Empirical Evidence** 

Model

**Quantitative Analysis** 

### Calibration

| Parameter                 | Meaning               | Value | Moment                   |  |  |  |
|---------------------------|-----------------------|-------|--------------------------|--|--|--|
| Scale param               | eters                 |       |                          |  |  |  |
| $\mu$                     | Number firms/worker   | 0.007 | Market tightness         |  |  |  |
| b                         | Flow value unemp      | 0.998 | Normalize outside option |  |  |  |
| $\phi$                    | Bargaining power      | 0.259 | Ratio w to avg. prod     |  |  |  |
| $\gamma$                  | Match quality shape   | 3.28  | Large firm share hired   |  |  |  |
| Estimated p               | Estimated parameters  |       |                          |  |  |  |
| $\delta$                  | Exog. separation      | 0.012 | Avg. separation          |  |  |  |
| $c_{\nu}(L)$              | Vacancy cost          | 0.001 | Job-finding rate, large  |  |  |  |
| $c_{\nu}(S)$              | Vacancy cost          | 0.060 | Job-finding rate, small  |  |  |  |
| $\frac{z(L)}{z(S)}$       | Relative productivity | 4.158 | Large empl. share        |  |  |  |
| $\Delta_{\mathcal{D}}(L)$ | Signal gap, large     | 0.121 | Black share empl, large  |  |  |  |
| $\Delta_{p}(S)$           | Signal gap, small     | 0.598 | Black share empl, small  |  |  |  |

<sup>▶</sup> Fixed parameters

# Model fit

| (a) Targeted            |            | (b) Untargeted        |       |       |
|-------------------------|------------|-----------------------|-------|-------|
| Moment                  | Data/Model | Moment                | Data  | Model |
| Separation rate         | 1.47       | Separation rate       |       |       |
| <b>Employment share</b> |            | Large                 | 1.43  | 1.28  |
| Large                   | 64.10      | Small                 | 1.56  | 1.82  |
| Job-finding rate        |            | Job-finding gap (B-W) |       |       |
| Large                   | 1.34       | Large                 | -0.21 | -0.07 |
| Small                   | 1.06       | Small                 | -0.70 | -0.26 |
| Black share             |            | Separation gap (B-W)  |       |       |
| Large                   | 13.68      | Large                 | 0.18  | 0.11  |
| Small                   | 8.97       | Small                 | 0.28  | 0.70  |
| Hired share matches*    |            | Hired share matches*  |       |       |
| Large                   | 5.02       | Small                 | 10.04 | 31.63 |
|                         |            |                       |       |       |

## Model fit

| (a) Targeted            |            | (b) Untargeted        |       |       |
|-------------------------|------------|-----------------------|-------|-------|
| Moment                  | Data/Model | Moment                | Data  | Model |
| Separation rate         | 1.47       | Separation rate       |       |       |
| <b>Employment share</b> |            | Large                 | 1.43  | 1.28  |
| Large                   | 64.10      | Small                 | 1.56  | 1.82  |
| Job-finding rate        |            | Job-finding gap (B-W) |       |       |
| Large                   | 1.34       | Large                 | -0.21 | -0.07 |
| Small                   | 1.06       | Small                 | -0.70 | -0.26 |
| Black share             |            | Separation gap (B-W)  |       |       |
| Large                   | 13.68      | Large                 | 0.18  | 0.11  |
| Small                   | 8.97       | Small                 | 0.28  | 0.70  |
| Hired share matches*    |            | Hired share matches*  |       |       |
| Large                   | 5.02       | Small                 | 10.04 | 31.63 |

#### Counterfactual exercise

- Calibrate model in high-productivity steady state
- Permanent, negative productivity shock (e.g. Great Recession)
- Compare steady states
- Magnitude of shock to match white job-finding difference in data
- Untargeted moments
  - Job-finding difference at large vs. small firms
  - Black job-finding difference

## Change in job finding for white workers matches by construction

Steady state comparison of job-finding rates

|                        | Data     | Model |
|------------------------|----------|-------|
| White job finding rate | -0.87    | -0.87 |
| Large                  | -0.49    | -0.46 |
| Small                  | -0.39    | -0.41 |
|                        |          |       |
| Job finding gap        | -0.28    | -0.30 |
| Large                  | -0.28    | -0.25 |
| Small                  | 0.01     | -0.05 |
| Units: percentage      | e noints |       |

<sup>▶</sup> Empirical counterpart

## Composition of change fits well

Steady state comparison of job-finding rates

| , , , , , , , , , , , , , , , , , , , | ,        |       |
|---------------------------------------|----------|-------|
|                                       | Data     | Model |
| White job finding rate                | -0.87    | -0.87 |
| Large                                 | -0.49    | -0.46 |
| Small                                 | -0.39    | -0.41 |
|                                       |          |       |
| Job finding gap                       | -0.28    | -0.30 |
| Large                                 | -0.28    | -0.25 |
| Small                                 | 0.01     | -0.05 |
| Units: percentage                     | a nointe |       |

<sup>▶</sup> Empirical counterpart

## Model overshoots change in job-finding gap

Steady state comparison of job-finding rates

| · · · · · · · · · · · · · · · · · · · | ,      |       |
|---------------------------------------|--------|-------|
|                                       | Data   | Model |
| White job finding rate                | -0.87  | -0.87 |
| Large                                 | -0.49  | -0.46 |
| Small                                 | -0.39  | -0.41 |
|                                       |        |       |
| Job finding gap                       | -0.28  | -0.30 |
| Large                                 | -0.28  | -0.25 |
| Small                                 | 0.01   | -0.05 |
| Units: percentage                     | noints |       |

<sup>▶</sup> Empirical counterpart

## Gap is coming from large firms

Steady state comparison of job-finding rates

| , , , , , , , , , , , , , , , , , , , | ,        |       |
|---------------------------------------|----------|-------|
|                                       | Data     | Model |
| White job finding rate                | -0.87    | -0.87 |
| Large                                 | -0.49    | -0.46 |
| Small                                 | -0.39    | -0.41 |
|                                       |          |       |
| Job finding gap                       | -0.28    | -0.30 |
| Large                                 | -0.28    | -0.25 |
| Small                                 | 0.01     | -0.05 |
| Units: percentag                      | o noints |       |

<sup>▶</sup> Empirical counterpart

## Selectivity determines hiring gap





# Firm optimization determines selectivity

$$\frac{c_{v}}{q(\theta)} = \sum_{g} \frac{u_{gt}}{u_{t}} (1 - F(x_{g}^{*}|p_{gz})) \left( \mu_{gt} \mathbb{E} \left[ x | x > x_{g}^{*}, p_{gz} \right] - w^{h}(x_{g}^{*}, n', g, z) \right)$$





▶ Job-finding gap

▶ Quant version

# Direct effect: Market tightness ↓, firms more selective

$$\frac{c_{v}}{q(\theta)} = \sum_{g} \frac{u_{gt}}{u_{t}} (1 - F(x_{g}^{*}|p_{gz})) \left( \mu_{gt} \mathbb{E} \left[ x | x > x_{g}^{*}, p_{gz} \right] - w^{h}(x_{g}^{*}, n', g, z) \right)$$





▶ Job-finding gap

Ouant version

## Indirect effect: Wage gap narrows





▶ Job-finding gap

▶ Quant version

Quant version

## Large respond more if wage effect > selectivity effect





▶ Job-finding gap

Ouant version

#### Conclusion

- Firm differences important for racial employment dynamics
- Vary over business cycle
- Differences in information exacerbate disparities
- Future research
  - Stabilization policies
  - How to address structural frictions?

Thank you!

Aaronson, Stephanie R., Wascher, William L., Daly, Mary C., & Wilcox, David W. 2019. Okun revisited: Who benefits most from a strong economy? Brookings Papers on Economic Activity, 2019(Spring), 333-404.

Axtell, Robert L. 2001. Zipf Distribution of U.S. Firm Sizes. Science, 293(5536), 1818-1820.

Baydur, Ismail. 2017. Worker Selection, Hiring, and Vacancies. American Economic Journal: Macroeconomics, 9(1), 88-127.

Cajner, Tomaz, Radler, Tyler, Ratner, David, & Vidangos, Ivan. 2017. Racial Gaps in Labor Market Outcomes in the Last Four Decades and over the Business Cycle. Finance and Economics Discussion Series. 2017-071.

Couch, Kenneth A, & Fairlie, Robert. 2010. Last Hired, First Fired? Black-White Unemployment and the Business Cycle. Demography, 47(1), 227–247.

Forsythe, Eliza, & Wu, Jhih-Chian. 2021. Explaining Demographic Heterogeneity in Cyclical Unemployment. Labour Economics, 69, 101955.

Haltiwanger, John C., Hyatt, Henry R., Kahn, Lisa B., & McEntarfer, Erika. 2018. Cyclical Job Ladders by Firm Size and Firm Wage. American Economic Journal: Macroeconomics, 10(2), 52–85.

Holzer, Harry J. 1998. Why Do Small Establishments Hire Fewer Blacks Than Large Ones? The Journal of Human Resources, 33(4), 896-914.

Hoynes, Hilary, Miller, Douglas L., & Schaller, Jessamyn. 2012 (jun). Who suffers during recessions? Pages 27-48 of: Journal of Economic Perspectives, vol. 26.

Jarosch, Gregor, & Pilossoph, Laura. 2019. Statistical discrimination and duration dependence in the job finding rate. Review of Economic Studies, 86(4), 1631–1665.

Lang, Kevin, & Lehmann, Jee-Yeon K. 2012. Racial Discrimination in the Labor Market: Theory and Empirics. Journal of Economic Literature, 50(4), 959-1006.

Miller, Conrad. 2017. The Persistent Effect of Temporary Affirmative Action. American Economic Journal: Applied Economics, 9(3), 152-190.

Miller, Conrad, & Schmutte, Ian M. 2021. The Dynamics of Referral Hiring and Racial Inequality: Evidence from Brazil.

Morgan, John, & Várdy, Felix. 2009. Diversity in the workplace. American Economic Review, 99(1), 472-485.

Moscarini, Giuseppe, & Postel-Vinay, Fabien. 2012. The Contribution of Large and Small Employers to Job Creation in Times of High and Low Unemployment. American Economic Review, 102(6), 2509–2539.

Moscarini, Giuseppe, & Postel-Vinay, Fabien. 2018. The Cyclical Job Ladder. The Annual Review of Economics, 10, 165–188.

Petrongolo, Barbara, & Pissarides, Christopher A. 2001. Looking into the Black Box: A Survey of the Matching Function. Journal of Economic Literature, 39(2), 390-431.

## Employment-to-population ratio relative to white, logs



## Employment-to-population ratio relative to white





▶ Main

## Black workers are more likely to be employed by large firms





## Gap for Hispanic workers explained by characteristics





## Black workers are more likely to be employed by large firms



Source: ASEC supplement to the CPS Conditional estimates control for age and education by gender, industry, occupation, state, metro area size

## Why do Black workers sort to larger firms?

#### **Empirical** evidence

- 1. Affirmative action policies (Miller (2017))
  - Firms with at least 100 employees must report composition of workforce by occupation to EEOC each year
  - Also federal contractors with at least 50 employees
  - Anecdotally, large firms more likely to be audited
- 2. Referral hiring (Miller & Schmutte (2021))
  - Referral hires are more important for small businesses
  - Workers tend to refer candidates of their own race
  - More white-owned small businesses leads to more white employees at small businesses
- 3. Other explanations?

# Cyclical job-finding (logit)

|                       | (1)       | (2)       | (3)      | (4)        | (5)      |
|-----------------------|-----------|-----------|----------|------------|----------|
|                       | All       | Large     | Small    | Government | Self     |
| Black                 | -0.27***  | -0.10***  | -0.62*** | 0.06       | -0.62*** |
|                       | (0.02)    | (0.03)    | (0.03)   | (0.06)     | (0.10)   |
| High UR               | -0.28***  | -0.27***  | -0.28*** | -0.13**    | -0.34*** |
|                       | (0.05)    | (0.05)    | (0.05)   | (0.06)     | (0.07)   |
| Black $	imes$ High UR | -0.08**   | -0.12**   | 0.01     | -0.17      | 0.13     |
|                       | (0.04)    | (0.05)    | (0.05)   | (0.11)     | (0.17)   |
| N                     | 2,226,789 | 2,226,789 |          |            |          |
| Pseudo R2             | 0.21      | 0.17      |          |            |          |
| Black mean            | 2.65      | 1.42      | 0.74     | 0.28       | 0.09     |
| White mean            | 2.39      | 1.03      | 0.87     | 0.26       | 0.13     |

SE in parentheses clustered by time. \* p < .1, \*\* p < .05, \*\*\* p < .01

<sup>▶</sup> Main ▶ From other employment

## Transitions into large firm employment

|                | (1)            | (2)           | (3)           | (4)                | (5)          |
|----------------|----------------|---------------|---------------|--------------------|--------------|
|                | $Nonemp_{t-1}$ | $Large_{t-1}$ | $Small_{t-1}$ | $Government_{t-1}$ | $Self_{t-1}$ |
| $Large_t$      |                |               |               |                    |              |
| Black          | -0.0419*       | 0.0000        | 0.1819**      | 0.1329             | 0.1636       |
|                | (0.0247)       | (.)           | (0.0796)      | (0.1590)           | (0.1518)     |
| UR             | -0.1301***     | 0.0000        | -0.1933***    | -0.1872**          | -0.1104**    |
|                | (0.0121)       | (.)           | (0.0347)      | (0.0804)           | (0.0541)     |
| Black 	imes UR | -0.0639**      | 0.0000        | 0.1430        | 0.0824             | -0.4476*     |
|                | (0.0288)       | (.)           | (0.1040)      | (0.1481)           | (0.2504)     |
| N              | 2,542,427      | 1,857,269     | 1,046,868     | 687,843            | 482,692      |

<sup>\*</sup> *p* < .1, \*\* *p* < .05, \*\*\* *p* < .01

## Transitions into small firm employment

|                    | (1)            | (2)           | (3)           | (4)                 | (5)          |
|--------------------|----------------|---------------|---------------|---------------------|--------------|
|                    | $Nonemp_{t-1}$ | $Large_{t-1}$ | $Small_{t-1}$ | Government $_{t-1}$ | $Self_{t-1}$ |
| Small <sub>t</sub> |                |               |               |                     |              |
| Black              | -0.5722***     | -0.4759***    | 0.0000        | -0.5501**           | -0.3377*     |
|                    | (0.0306)       | (0.0815)      | (.)           | (0.2244)            | (0.1728)     |
| UR                 | -0.1055***     | -0.2193***    | 0.0000        | -0.1805**           | -0.0781      |
|                    | (0.0130)       | (0.0384)      | (.)           | (0.0825)            | (0.0483)     |
| $Black \times UR$  | 0.0095         | 0.0386        | 0.0000        | -0.5627*            | 0.4871***    |
|                    | (0.0362)       | (0.1104)      | (.)           | (0.3234)            | (0.1585)     |
| N                  | 2,542,427      | 1,857,269     | 1,046,868     | 687,843             | 482,692      |

# Cyclical job-finding, all employers

|                       | (1)       | (2)       | (3)       | (4)        | (5)       |
|-----------------------|-----------|-----------|-----------|------------|-----------|
|                       | All       | Large     | Small     | Government | Self      |
| Black                 | -0.76***  | -0.07*    | -0.59***  | 0.01       | -0.08***  |
|                       | (0.06)    | (0.04)    | (0.03)    | (0.02)     | (0.01)    |
| High UR               | -0.62***  | -0.26***  | -0.22***  | -0.04***   | -0.04***  |
|                       | (0.09)    | (0.04)    | (0.03)    | (0.01)     | (0.01)    |
| Black $	imes$ High UR | -0.23**   | -0.24***  | 0.04      | -0.03      | 0.02      |
|                       | (0.09)    | (0.06)    | (0.04)    | (0.03)     | (0.02)    |
| N                     | 2,226,789 | 2,226,789 | 2,226,789 | 2,226,789  | 2,226,789 |
| R2                    | 0.04      | 0.02      | 0.02      | 0.01       | 0.00      |
| Black mean            | 2.65      | 1.42      | 0.74      | 0.28       | 0.09      |
| White mean            | 2.39      | 1.03      | 0.87      | 0.26       | 0.13      |

<sup>\*</sup> p < .1, \*\* p < .05, \*\*\* p < .01

## Cyclical job-finding, 25-65

|                          | (1)       | (2)       | (3)       | (4)        | (5)       |
|--------------------------|-----------|-----------|-----------|------------|-----------|
|                          | All       | Large     | Small     | Government | Self      |
| Black                    | -0.88***  | -0.17***  | -0.64***  | 0.08***    | -0.11***  |
|                          | (80.0)    | (0.05)    | (0.04)    | (0.02)     | (0.02)    |
| High UR                  | -0.85***  | -0.35***  | -0.30***  | -0.05**    | -0.07***  |
|                          | (0.13)    | (0.06)    | (0.05)    | (0.02)     | (0.02)    |
| $Black \times High \ UR$ | -0.11     | -0.14*    | 0.06      | -0.06      | 0.03      |
|                          | (0.13)    | (80.0)    | (0.06)    | (0.05)     | (0.02)    |
| N                        | 1,088,709 | 1,088,709 | 1,088,709 | 1,088,709  | 1,088,709 |
| R2                       | 0.03      | 0.02      | 0.01      | 0.01       | 0.00      |
| Black mean               |           |           |           |            |           |
| White mean               |           |           |           |            |           |

Standard errors in parentheses

\* 
$$p < .1$$
, \*\*  $p < .05$ , \*\*\*  $p < .01$ 

▶ Main ▶ Men ▶ Women

## Cyclical job-finding, 25-65 men

|                       | (1)      | (2)      | (3)      | (4)        | (5)      |
|-----------------------|----------|----------|----------|------------|----------|
|                       | All      | Large    | Small    | Government | Self     |
| Black                 | -1.48*** | -0.46*** | -0.89*** | 0.05       | -0.16*** |
|                       | (0.14)   | (0.09)   | (80.0)   | (0.03)     | (0.03)   |
| High UR               | -1.15*** | -0.51*** | -0.41*** | -0.03      | -0.11*** |
|                       | (0.17)   | (80.0)   | (80.0)   | (0.03)     | (0.03)   |
| Black $	imes$ High UR | 0.07     | 0.09     | 0.03     | -0.09*     | 0.05     |
|                       | (0.20)   | (0.13)   | (0.11)   | (0.05)     | (0.05)   |
| N                     | 381,568  | 381,568  | 381,568  | 381,568    | 381,568  |
| R2                    | 0.04     | 0.02     | 0.02     | 0.00       | 0.00     |
| Black mean            |          |          |          |            |          |
| White mean            |          |          |          |            |          |

<sup>\*</sup> *p* < .1, \*\* *p* < .05, \*\*\* *p* < .01

## Cyclical job-finding, 25-65 women

|                       | (1)      | (2)      | (3)      | (4)        | (5)      |
|-----------------------|----------|----------|----------|------------|----------|
|                       | All      | Large    | Small    | Government | Self     |
| Black                 | -0.42*** | 0.07     | -0.45*** | 0.09***    | -0.07*** |
|                       | (0.09)   | (0.07)   | (0.04)   | (0.03)     | (0.02)   |
| High UR               | -0.69*** | -0.25*** | -0.25*** | -0.06**    | -0.05*** |
|                       | (0.11)   | (0.05)   | (0.04)   | (0.03)     | (0.01)   |
| Black $	imes$ High UR | -0.17    | -0.26*** | 0.11     | -0.05      | 0.02     |
|                       | (0.15)   | (0.09)   | (0.07)   | (0.06)     | (0.03)   |
| N                     | 707,141  | 707,141  | 707,141  | 707,141    | 707,141  |
| R2                    | 0.03     | 0.01     | 0.01     | 0.01       | 0.00     |
| Black mean            |          |          |          |            |          |
| White mean            |          |          |          |            |          |

<sup>\*</sup> *p* < .1, \*\* *p* < .05, \*\*\* *p* < .01

## Cyclical job-finding, men

|                       | (1)      | (2)      | (3)      | (4)        | (5)      |
|-----------------------|----------|----------|----------|------------|----------|
|                       | All      | Large    | Small    | Government | Self     |
| Black                 | -1.30*** | -0.33*** | -0.84*** | -0.00      | -0.11*** |
|                       | (0.09)   | (0.06)   | (0.05)   | (0.02)     | (0.02)   |
| High UR               | -0.77*** | -0.33*** | -0.28*** | -0.02      | -0.06*** |
|                       | (0.11)   | (0.05)   | (0.05)   | (0.02)     | (0.01)   |
| Black $	imes$ High UR | -0.10    | -0.11    | 0.04     | -0.04      | 0.03     |
|                       | (0.14)   | (0.10)   | (0.07)   | (0.04)     | (0.03)   |
| N                     | 837,928  | 837,928  | 837,928  | 837,928    | 837,928  |
| R2                    | 0.05     | 0.02     | 0.02     | 0.00       | 0.00     |
| Black mean            | 2.81     | 1.45     | 0.85     | 0.23       | 0.12     |
| White mean            | 3.01     | 1.31     | 1.17     | 0.23       | 0.17     |

Standard errors in parentheses

▶ Main

<sup>\*</sup> p < .1, \*\* p < .05, \*\*\* p < .01

## Cyclical job-finding, women

|                       | (1)       | (2)       | (3)       | (4)        | (5)       |
|-----------------------|-----------|-----------|-----------|------------|-----------|
|                       | All       | Large     | Small     | Government | Self      |
| Black                 | -0.36***  | 0.12**    | -0.41***  | 0.01       | -0.06***  |
|                       | (0.07)    | (0.05)    | (0.03)    | (0.02)     | (0.01)    |
| High UR               | -0.53***  | -0.21***  | -0.18***  | -0.05***   | -0.03***  |
|                       | (0.07)    | (0.03)    | (0.03)    | (0.02)     | (0.01)    |
| Black $	imes$ High UR | -0.29***  | -0.31***  | 0.05      | -0.03      | 0.02      |
|                       | (0.10)    | (0.07)    | (0.04)    | (0.03)     | (0.02)    |
| N                     | 1,388,861 | 1,388,861 | 1,388,861 | 1,388,861  | 1,388,861 |
| R2                    | 0.04      | 0.02      | 0.01      | 0.01       | 0.00      |
| Black mean            | 2.53      | 1.40      | 0.66      | 0.31       | 0.07      |
| White mean            | 2.01      | 0.85      | 0.68      | 0.27       | 0.10      |

Standard errors in parentheses

▶ Main

<sup>\*</sup> p < .1, \*\* p < .05, \*\*\* p < .01

## Cyclical job-finding, continuous gap

|                      | (1)       | (2)       | (3)       | (4)        | (5)       |
|----------------------|-----------|-----------|-----------|------------|-----------|
|                      | All       | Large     | Small     | Government | Self      |
| Black                | -0.82***  | -0.14***  | -0.58***  | -0.00      | -0.07***  |
|                      | (0.05)    | (0.03)    | (0.03)    | (0.01)     | (0.01)    |
| UR gap               | -0.17***  | -0.07***  | -0.06***  | -0.01***   | -0.01***  |
|                      | (0.02)    | (0.01)    | (0.01)    | (0.00)     | (0.00)    |
| Black $	imes$ UR gap | -0.05***  | -0.06***  | 0.01      | -0.01      | 0.01*     |
|                      | (0.02)    | (0.01)    | (0.01)    | (0.01)     | (0.00)    |
| N                    | 2,226,789 | 2,226,789 | 2,226,789 | 2,226,789  | 2,226,789 |
| R2                   | 0.04      | 0.02      | 0.02      | 0.01       | 0.00      |
| Black mean           | 2.65      | 1.42      | 0.74      | 0.28       | 0.09      |
| White mean           | 2.39      | 1.03      | 0.87      | 0.26       | 0.13      |

<sup>\*</sup> *p* < .1, \*\* *p* < .05, \*\*\* *p* < .01

## Cyclical job-finding, state UR

|                           | (1)       | (2)       | (3)       | (4)        | (5)       |
|---------------------------|-----------|-----------|-----------|------------|-----------|
|                           | All       | Large     | Small     | Government | Self      |
| Black                     | -0.79***  | -0.13***  | -0.57***  | 0.00       | -0.07***  |
|                           | (0.05)    | (0.03)    | (0.03)    | (0.01)     | (0.01)    |
| State UR                  | -0.15***  | -0.07***  | -0.05***  | -0.01***   | -0.01***  |
|                           | (0.01)    | (0.01)    | (0.01)    | (0.00)     | (0.00)    |
| $Black \times State \ UR$ | -0.05***  | -0.05***  | 0.00      | -0.01      | 0.01**    |
|                           | (0.02)    | (0.01)    | (0.01)    | (0.01)     | (O.OO)    |
| N                         | 2,226,789 | 2,226,789 | 2,226,789 | 2,226,789  | 2,226,789 |
| R2                        | 0.04      | 0.02      | 0.02      | 0.01       | 0.00      |
| Black mean                | 2.65      | 1.42      | 0.74      | 0.28       | 0.09      |
| White mean                | 2.39      | 1.03      | 0.87      | 0.26       | 0.13      |

<sup>\*</sup> p < .1, \*\* p < .05, \*\*\* p < .01

## Cyclical job-finding, UR below trend

|                    | (1)       | (2)       | (3)       | (4)        | (5)       |
|--------------------|-----------|-----------|-----------|------------|-----------|
|                    | All       | Large     | Small     | Government | Self      |
| Black              | -0.85***  | -0.19***  | -0.56***  | -0.01      | -0.06***  |
|                    | (0.06)    | (0.04)    | (0.03)    | (0.02)     | (0.01)    |
| Hot                | 0.36***   | 0.14***   | 0.13***   | 0.03***    | 0.02**    |
|                    | (0.09)    | (0.04)    | (0.03)    | (0.01)     | (0.01)    |
| $Black \times Hot$ | 0.01      | 0.08      | -0.05     | 0.02       | -0.03*    |
|                    | (0.09)    | (0.06)    | (0.04)    | (0.03)     | (0.02)    |
| N                  | 2,226,789 | 2,226,789 | 2,226,789 | 2,226,789  | 2,226,789 |
| R2                 | 0.04      | 0.02      | 0.02      | 0.01       | 0.00      |
| Black mean         | 2.65      | 1.42      | 0.74      | 0.28       | 0.09      |
| White mean         | 2.39      | 1.03      | 0.87      | 0.26       | 0.13      |

<sup>\*</sup> p < .1, \*\* p < .05, \*\*\* p < .01

## Cyclical large-firm job-finding, interactions

|                       | (1)       | (2)       | (3)         | (4)       |
|-----------------------|-----------|-----------|-------------|-----------|
| Black                 | -0.07*    | -0.07*    | -0.13***    | -0.14***  |
|                       | (0.04)    | (0.04)    | (0.04)      | (0.04)    |
| Black $	imes$ High UR | -0.24***  | -0.24***  | -0.09       | -0.06     |
|                       | (0.06)    | (0.07)    | (0.06)      | (0.06)    |
| N                     | 2,226,789 | 2,226,789 | 2,226,789   | 2,226,789 |
| R2                    | 0.02      | 0.02      | 0.02        | 0.02      |
| Black mean            | 1.42      | 1.42      | 1.42        | 1.42      |
| White mean            | 1.03      | 1.03      | 1.03        | 1.03      |
| Interactions          |           | Education | Highest sig | All       |

Standard errors in parentheses

▶ Main ▶ Small

<sup>\*</sup> p < .1, \*\* p < .05, \*\*\* p < .01

## Cyclical small-firm job-finding, interactions

|                       | (1)       | (2)       | (3)         | (4)       |
|-----------------------|-----------|-----------|-------------|-----------|
| Black                 | -0.59***  | -0.59***  | -0.63***    | -0.65***  |
|                       | (0.03)    | (0.03)    | (0.03)      | (0.04)    |
| Black $	imes$ High UR | 0.04      | 0.03      | 0.15***     | 0.20***   |
|                       | (0.04)    | (0.04)    | (0.04)      | (0.05)    |
| N                     | 2,226,789 | 2,226,789 | 2,226,789   | 2,226,789 |
| R2                    | 0.02      | 0.02      | 0.02        | 0.02      |
| Black mean            | 0.74      | 0.74      | 0.74        | 0.74      |
| White mean            | 0.87      | 0.87      | 0.87        | 0.87      |
| Interactions          |           | Education | Highest sig | All       |

Standard errors in parentheses

▶ Main ▶ Large

<sup>\*</sup> p < .1, \*\* p < .05, \*\*\* p < .01

# Simple counterfactual

|                       | All     | Large   | Small   | Government | Self     |
|-----------------------|---------|---------|---------|------------|----------|
| High UR               | -0.62   | -0.26   | -0.22   | -0.039     | -0.041   |
|                       | (0.086) | (0.038) | (0.032) | (0.014)    | (0.0084) |
| Black $	imes$ High UR | -0.23   | -0.24   | 0.035   | -0.034     | 0.022    |
|                       | (0.092) | (0.064) | (0.039) | (0.028)    | (0.016)  |
| Redistribute High UR  | -0.03   | -0.07   | 0.05    | -0.03      | 0.02     |
|                       |         |         |         |            |          |
| Outcome mean          |         |         |         |            |          |
| Black                 | 2.65    | 1.42    | 0.74    | 0.28       | 0.09     |
| White                 | 2.39    | 1.03    | 0.87    | 0.26       | 0.13     |

# Simple counterfactual

|                        | All     | Large   | Small                                   | Government | Self     |
|------------------------|---------|---------|-----------------------------------------|------------|----------|
| High UR                | -0.62   | -0.26   | -0.22                                   | -0.039     | -0.041   |
|                        | (0.086) | (0.038) | (0.032)                                 | (0.014)    | (0.0084) |
|                        |         |         |                                         |            |          |
| Black $	imes$ High UR  | -0.23   | -0.24   | 0.035                                   | -0.034     | 0.022    |
| _                      | (0.092) | (0.064) | (0.039)                                 | (0.028)    | (0.016)  |
|                        |         |         |                                         |            |          |
| Redistribute High UR   | -0.03   | -0.07   | 0.05                                    | -0.03      | 0.02     |
|                        |         |         |                                         |            |          |
| Redistribute High UR   | -0.23   | -0.18   | -0.01                                   | -0.05      | 0.01     |
| +Black $	imes$ High UR |         |         |                                         |            |          |
| Outcome mean           |         |         |                                         |            |          |
| Black                  | 2.65    | 1.42    | 0.74                                    | 0.28       | 0.09     |
| White                  | 2.39    | 1.03    | 0.87                                    | 0.26       | 0.13     |
| Outcome mean<br>Black  |         |         | • • • • • • • • • • • • • • • • • • • • | 0.20       | 0.0.     |

### Cyclical large-firm separations, interactions

|                       | (1)       | (2)       | (3)         | (4)       |
|-----------------------|-----------|-----------|-------------|-----------|
| Black                 | 0.18***   | 0.18***   | 0.18***     | 0.17***   |
|                       | (0.05)    | (0.05)    | (0.05)      | (0.05)    |
| Black $	imes$ High UR | -0.11     | -0.14*    | -0.12       | -0.10     |
|                       | (80.0)    | (80.0)    | (0.07)      | (80.0)    |
| N                     | 3,701,235 | 3,701,235 | 3,701,235   | 3,701,235 |
| R2                    | 0.01      | 0.01      | 0.01        | 0.01      |
| Black mean            | 1.69      | 1.69      | 1.69        | 1.69      |
| White mean            | 1.27      | 1.27      | 1.27        | 1.27      |
| Interactions          |           | Education | Highest sig | All       |

Standard errors in parentheses

▶ Main ▶ Small

<sup>\*</sup> p < .1, \*\* p < .05, \*\*\* p < .01

### Cyclical small-firm separations, interactions

|                       | (1)       | (2)       | (3)         | (4)       |
|-----------------------|-----------|-----------|-------------|-----------|
| Black                 | 0.27***   | 0.28***   | 0.28***     | 0.27***   |
|                       | (0.07)    | (0.07)    | (0.07)      | (0.07)    |
| Black $	imes$ High UR | -0.21     | -0.22     | -0.30**     | -0.25*    |
|                       | (0.14)    | (0.14)    | (0.14)      | (0.14)    |
| N                     | 3,701,235 | 3,701,235 | 3,701,235   | 3,701,235 |
| R2                    | 0.01      | 0.01      | 0.01        | 0.01      |
| Black mean            | 2.20      | 2.20      | 2.20        | 2.20      |
| White mean            | 1.79      | 1.79      | 1.79        | 1.79      |
| Interactions          |           | Education | Highest sig | All       |

Standard errors in parentheses

▶ Main ▶ Large

<sup>\*</sup> p < .1, \*\* p < .05, \*\*\* p < .01

### Cyclical separations

|                       | (1)       | (2)       | (3)       | (4)        | (5)       |
|-----------------------|-----------|-----------|-----------|------------|-----------|
|                       | All       | Large     | Small     | Government | Self      |
| Black                 | 0.09***   | 0.18***   | 0.27***   | -0.30***   | 0.01      |
|                       | (0.03)    | (0.05)    | (0.07)    | (0.04)     | (0.07)    |
| High UR               | 0.05      | 0.07      | 0.10*     | 0.07       | -0.01     |
|                       | (0.04)    | (0.05)    | (0.06)    | (80.0)     | (0.04)    |
| Black $	imes$ High UR | -0.08     | -0.11     | -0.21     | 0.05       | 0.29**    |
|                       | (0.05)    | (80.0)    | (0.14)    | (0.09)     | (0.15)    |
| N                     | 3,701,235 | 3,701,235 | 3,701,235 | 3,701,235  | 3,701,235 |
| R2                    | 0.01      | 0.01      | 0.01      | 0.01       | 0.01      |
| Black mean            | 1.60      | 1.69      | 2.20      | 0.82       | 0.82      |
| White mean            | 1.30      | 1.27      | 1.79      | 0.96       | 0.47      |

SE in parentheses clustered by time. \* p < .1, \*\* p < .05, \*\*\* p < .01 Units: percentage points. Sample aged 20 and older.

## Cyclical separations (logit)

|                          | (1)       | (2)       | (3)       | (4)        | (5)       |
|--------------------------|-----------|-----------|-----------|------------|-----------|
|                          | All       | Large     | Small     | Government | Self      |
| Black                    | 0.07***   | 0.12***   | 0.12***   | -0.31***   | 0.23**    |
|                          | (0.02)    | (0.03)    | (0.03)    | (0.05)     | (0.09)    |
| High UR                  | 0.05      | 0.06      | 0.07*     | 0.08       | -0.06     |
|                          | (0.03)    | (0.04)    | (0.04)    | (0.09)     | (0.06)    |
| $Black \times High \ UR$ | -0.05     | -0.07     | -0.11     | 0.10       | 0.37**    |
|                          | (0.03)    | (0.05)    | (0.07)    | (0.10)     | (0.17)    |
| N                        | 3,701,235 | 3,701,235 | 3,701,235 | 3,701,235  | 3,701,235 |
| Pseudo R2                | 0.07      | 0.07      | 0.07      | 0.07       | 0.07      |
| Black mean               | 1.60      | 1.69      | 2.20      | 0.82       | 0.82      |
| White mean               | 1.30      | 1.27      | 1.79      | 0.96       | 0.47      |

SE in parentheses clustered by time. \* p < .1, \*\* p < .05, \*\*\* p < .01

### Cyclical separations, 25-65

|                       | (1)       | (2)       | (3)       | (4)        | (5)       |
|-----------------------|-----------|-----------|-----------|------------|-----------|
|                       | All       | Large     | Small     | Government | Self      |
| Black                 | 0.05*     | 0.12***   | 0.25***   | -0.26***   | 0.00      |
|                       | (0.03)    | (0.04)    | (0.07)    | (0.04)     | (0.07)    |
| High UR               | 0.05      | 0.07      | 0.12*     | 0.02       | -0.01     |
|                       | (0.04)    | (0.04)    | (0.06)    | (0.07)     | (0.04)    |
| Black $	imes$ High UR | -0.05     | -0.07     | -0.18     | 0.06       | 0.29*     |
|                       | (0.05)    | (0.07)    | (0.13)    | (80.0)     | (0.15)    |
| N                     | 3,246,761 | 3,246,761 | 3,246,761 | 3,246,761  | 3,246,761 |
| R2                    | 0.01      | 0.01      | 0.01      | 0.01       | 0.01      |
| Black mean            |           |           |           |            |           |
| White mean            |           |           |           |            |           |

Standard errors in parentheses

\* 
$$p < .1$$
, \*\*  $p < .05$ , \*\*\*  $p < .01$ 

▶ Men → Women

### Cyclical separations, 25-65 men

|                       | (1)       | (2)       | (3)       | (4)        | (5)       |
|-----------------------|-----------|-----------|-----------|------------|-----------|
|                       | All       | Large     | Small     | Government | Self      |
| Black                 | 0.05      | 0.04      | 0.29***   | -0.19***   | -0.01     |
|                       | (0.04)    | (0.06)    | (0.11)    | (0.06)     | (80.0)    |
| High UR               | 0.13***   | 0.11**    | 0.30***   | 0.09       | 0.02      |
|                       | (0.04)    | (0.05)    | (0.09)    | (0.06)     | (0.03)    |
| Black $	imes$ High UR | 0.01      | 0.09      | -0.24     | 0.09       | 0.28      |
|                       | (80.0)    | (0.10)    | (0.21)    | (0.13)     | (0.17)    |
| N                     | 1,664,569 | 1,664,569 | 1,664,569 | 1,664,569  | 1,664,569 |
| R2                    | 0.01      | 0.01      | 0.01      | 0.01       | 0.01      |
| Black mean            |           |           |           |            |           |
| White mean            |           |           |           |            |           |

### Cyclical separations, 25-65 women

|                          | (1)       | (2)       | (3)       | (4)        | (5)       |
|--------------------------|-----------|-----------|-----------|------------|-----------|
|                          | All       | Large     | Small     | Government | Self      |
| Black                    | 0.02      | 0.16***   | 0.18**    | -0.32***   | 0.06      |
|                          | (0.03)    | (0.05)    | (0.09)    | (0.06)     | (0.12)    |
| High UR                  | -0.04     | 0.02      | -0.07     | -0.04      | -0.06     |
|                          | (0.03)    | (0.05)    | (0.06)    | (0.09)     | (0.07)    |
| $Black \times High \ UR$ | -0.07     | -0.18*    | -0.08     | 0.07       | 0.29      |
|                          | (0.06)    | (0.10)    | (0.17)    | (0.12)     | (0.27)    |
| N                        | 1,582,192 | 1,582,192 | 1,582,192 | 1,582,192  | 1,582,192 |
| R2                       | 0.01      | 0.01      | 0.01      | 0.01       | 0.01      |
| Black mean               |           |           |           |            |           |
| White mean               |           |           |           |            |           |

<sup>\*</sup> p < .1, \*\* p < .05, \*\*\* p < .01

### Cyclical separations, men

|                       | (1)       | (2)       | (3)       | (4)        | (5)       |
|-----------------------|-----------|-----------|-----------|------------|-----------|
|                       | All       | Large     | Small     | Government | Self      |
| Black                 | 0.08*     | 0.06      | 0.31***   | -0.28***   | -0.02     |
|                       | (0.04)    | (0.06)    | (0.10)    | (0.06)     | (80.0)    |
| High UR               | 0.14***   | 0.12**    | 0.28***   | 0.17***    | 0.03      |
|                       | (0.05)    | (0.06)    | (0.09)    | (0.07)     | (0.04)    |
| Black $	imes$ High UR | 0.01      | 0.12      | -0.25     | 0.07       | 0.28*     |
|                       | (0.07)    | (0.10)    | (0.22)    | (0.13)     | (0.16)    |
| N                     | 1,900,483 | 1,900,483 | 1,900,483 | 1,900,483  | 1,900,483 |
| R2                    | 0.01      | 0.01      | 0.01      | 0.01       | 0.01      |
| Black mean            | 1.52      | 1.55      | 2.19      | 0.71       | 0.65      |
| White mean            | 1.17      | 1.14      | 1.75      | 0.79       | 0.35      |

<sup>\*</sup> *p* < .1, \*\* *p* < .05, \*\*\* *p* < .01

## Cyclical separations, women

|                          | (1)       | (2)       | (3)       | (4)        | (5)       |
|--------------------------|-----------|-----------|-----------|------------|-----------|
|                          | All       | Large     | Small     | Government | Self      |
| Black                    | 0.08**    | 0.25***   | 0.21**    | -0.33***   | 0.07      |
|                          | (0.04)    | (0.06)    | (0.09)    | (0.06)     | (0.13)    |
| High UR                  | -0.04     | 0.02      | -0.08     | -0.02      | -0.09     |
|                          | (0.04)    | (0.05)    | (0.06)    | (0.10)     | (0.06)    |
| $Black \times High \ UR$ | -0.13*    | -0.28***  | -0.13     | 0.07       | 0.31      |
|                          | (0.07)    | (0.11)    | (0.16)    | (0.12)     | (0.26)    |
| N                        | 1,800,752 | 1,800,752 | 1,800,752 | 1,800,752  | 1,800,752 |
| R2                       | 0.01      | 0.01      | 0.01      | 0.01       | 0.01      |
| Black mean               | 1.66      | 1.81      | 2.20      | 0.88       | 1.09      |
| White mean               | 1.44      | 1.42      | 1.83      | 1.09       | 0.70      |

<sup>\*</sup> *p* < .1, \*\* *p* < .05, \*\*\* *p* < .01

## Cyclical separations, continuous gap

|                      | (1)       | (2)       | (3)       | (4)        | (5)       |
|----------------------|-----------|-----------|-----------|------------|-----------|
|                      | All       | Large     | Small     | Government | Self      |
| Black                | 0.07***   | 0.14***   | 0.21***   | -0.29***   | 0.10      |
|                      | (0.02)    | (0.04)    | (0.06)    | (0.04)     | (0.06)    |
| UR gap               | 0.02**    | 0.02*     | 0.03**    | 0.03       | 0.00      |
|                      | (0.01)    | (0.01)    | (0.01)    | (0.02)     | (0.01)    |
| Black $	imes$ UR gap | -0.02     | -0.03*    | -0.04     | 0.01       | 0.08**    |
|                      | (0.01)    | (0.02)    | (0.03)    | (0.02)     | (0.03)    |
| N                    | 3,701,235 | 3,701,235 | 3,701,235 | 3,701,235  | 3,701,235 |
| R2                   | 0.01      | 0.01      | 0.01      | 0.01       | 0.01      |
| Black mean           | 1.60      | 1.69      | 2.20      | 0.82       | 0.82      |
| White mean           | 1.30      | 1.27      | 1.79      | 0.96       | 0.47      |

<sup>\*</sup> *p* < .1, \*\* *p* < .05, \*\*\* *p* < .01

### Cyclical separations, state UR

|                        | (1)       | (2)       | (3)       | (4)        | (5)       |
|------------------------|-----------|-----------|-----------|------------|-----------|
|                        | All       | Large     | Small     | Government | Self      |
| Black                  | 0.07***   | 0.14***   | 0.21***   | -0.29***   | 0.09      |
|                        | (0.02)    | (0.04)    | (0.06)    | (0.04)     | (0.06)    |
| State UR               | 0.03***   | 0.02***   | 0.05***   | 0.03*      | -0.01     |
|                        | (0.01)    | (0.01)    | (0.01)    | (0.02)     | (0.01)    |
| Black $	imes$ State UR | -0.01     | -0.02     | -0.04     | 0.00       | 0.06**    |
|                        | (0.01)    | (0.02)    | (0.03)    | (0.02)     | (0.03)    |
| N                      | 3,701,235 | 3,701,235 | 3,701,235 | 3,701,235  | 3,701,235 |
| R2                     | 0.01      | 0.01      | 0.01      | 0.01       | 0.01      |
| Black mean             | 1.60      | 1.69      | 2.20      | 0.82       | 0.82      |
| White mean             | 1.30      | 1.27      | 1.79      | 0.96       | 0.47      |

<sup>\*</sup> p < .1, \*\* p < .05, \*\*\* p < .01

## Cyclical separations, UR below trend

|                    | (1)       | (2)       | (3)       | (4)        | (5)       |
|--------------------|-----------|-----------|-----------|------------|-----------|
|                    | All       | Large     | Small     | Government | Self      |
| Black              | 0.07**    | 0.15***   | 0.14*     | -0.25***   | 0.26***   |
|                    | (0.04)    | (0.05)    | (80.0)    | (0.06)     | (0.09)    |
| Hot                | -0.10***  | -0.11***  | -0.12**   | -0.07      | -0.06     |
|                    | (0.03)    | (0.04)    | (0.05)    | (0.07)     | (0.04)    |
| $Black \times Hot$ | -0.01     | -0.01     | 0.16      | -0.09      | -0.37***  |
|                    | (0.05)    | (0.07)    | (0.12)    | (80.0)     | (0.12)    |
| N                  | 3,701,235 | 3,701,235 | 3,701,235 | 3,701,235  | 3,701,235 |
| R2                 | 0.01      | 0.01      | 0.01      | 0.01       | 0.01      |
| Black mean         | 1.60      | 1.69      | 2.20      | 0.82       | 0.82      |
| White mean         | 1.30      | 1.27      | 1.79      | 0.96       | 0.47      |

Standard errors in parentheses

▶ Main

<sup>\*</sup> p < .1, \*\* p < .05, \*\*\* p < .01

### Cyclical separations by type

|                    | (1            | )             | (2            | 2)            |
|--------------------|---------------|---------------|---------------|---------------|
|                    | Voluntary     |               | Involu        | ıntary        |
|                    | Large $	imes$ | Small $	imes$ | Large $	imes$ | Small $	imes$ |
| Intercept          | -0.07         |               | -0.04         |               |
|                    | (80.0)        |               | (0.06)        |               |
| Black              | -0.48***      | -0.71***      | 0.37***       | 0.56***       |
|                    | (0.12)        | (0.18)        | (0.09)        | (0.16)        |
| HighUR             | -0.82***      | -0.99***      | 0.63***       | 0.92***       |
|                    | (0.07)        | (0.10)        | (0.06)        | (0.09)        |
| Black 	imes HighUR | -0.26         | -0.08         | -0.06         | -0.06         |
|                    | (0.17)        | (0.28)        | (0.16)        | (0.30)        |
| N                  | 1,556,118     |               | 1,556,118     |               |
| R2                 | 0.02          |               | 0.01          |               |
| Black mean         | 2.31          |               | 1.93          |               |
| White mean         | 2.41          |               | 1.48          |               |

SE in parentheses clustered by time. \* p < .1, \*\* p < .05, \*\*\* p < .01Units: percentage points. Sample aged 20 and older.

### Largest decrease coming from large firms

$$\Delta_{B-W} \frac{\partial e_t}{\partial \varepsilon_t} = \sum_{j} \Delta_{B-W} \left( (1 - e_{t-1}) \frac{\partial \lambda_t^{Nj}}{\partial \varepsilon_t} - s_{jt-1} e_{t-1} \frac{\partial \lambda_t^{jN}}{\partial \varepsilon_t} \right)$$

### Contributions to aggregate elasticity gap

|       | Total | Inflow | rs (N→E) | Outflov | ws (E→N) |
|-------|-------|--------|----------|---------|----------|
|       |       | Weight | Response | Weight  | Response |
| Large | -1.57 | -0.40  | -2.44    | -0.04   | 1.31     |
| Small | 0.87  | -0.34  | 0.35     | 0.10    | 0.77     |
| Govt  | -0.69 | -0.07  | -0.44    | -0.02   | -0.15    |
| Self  | 0.09  | -0.06  | 0.33     | -0.01   | -0.17    |
| Total | -1.29 | -0.93  | -2.23    | -0.04   | 1.91     |

Units: basis points in response to a 1ppt increase in unemployment rate above mean

### Decomposition

$$\begin{split} \Delta_{B-W} \frac{\partial e_{t}}{\partial \varepsilon_{t}} &= \sum_{j} \Delta_{B-W} \left( (1 - e_{gt-1}) \frac{\partial \lambda_{gt}^{Nj}}{\partial \varepsilon_{t}} - s_{gt-1}^{j} e_{gt-1} \frac{\partial \lambda_{gt}^{Nj}}{\partial \varepsilon_{t}} \right) \\ &= \sum_{j} \Delta_{B-W} (1 - e_{gt-1}) \times \frac{\partial \lambda_{Wt}^{Nj}}{\partial \varepsilon_{t}} + (1 - e_{Bt-1}) \times \Delta_{B-W} \frac{\partial \lambda_{gt}^{Nj}}{\partial \varepsilon_{t}} \\ &+ \Delta_{B-W} s_{gt-1}^{j} e_{gt-1} \times \frac{\partial \lambda_{Wt}^{NN}}{\partial \varepsilon_{t}} + s_{Bt-1}^{j} e_{Bt-1} \times \Delta_{B-W} \frac{\partial \lambda_{gt}^{NN}}{\partial \varepsilon_{t}} \end{split}$$

▶ Main

### Equilibrium

#### 1. Firms maximize profits

- Choose vacancies and hiring standards ⇒ employment/output
- Pay wages
- ▶ Value function

#### 2. Workers accept jobs

- Black workers face lower probability of entering employment  $\implies$  lower utility from being non-employed
- ▶ Value function

#### 3. Wages

- Bargained
- Differences in utility of nonemployment  $\implies$  racial wage gap
- ▶ Bargaining rule

### **Details**

Let F(x) be exogenous distribution of match quality (productivity)

 $x^*$  posterior belief about productivity conditional on signal and signal quality (p)

$$(1-p)\mathbb{E}[x] \le x^* \le p + (1-p)\mathbb{E}[x]$$

Posterior distribution

$$F(x^*|p) = F\left(\frac{x^* - (1-p)\mathbb{E}[x]}{p}\right)$$

Conditional expectation

$$\mathbb{E}[x|x > x^*, p] = \frac{\int_{x^*}^{1} x dF(x|p)}{1 - F(x^*|p)}$$

## Wage bargaining

- Bargain over firm surplus after vacancy costs
- 4 types of workers: productive  $\{n_B, n_W\}$ , new hires  $\{h_B, h_W\}$

### Bargaining rule:

$$\begin{split} \phi D_{t,n_g} &= (1 - \phi) (V_t^e(g,z) - V_t^u(g)) \\ \phi D_{t,h_g} &= (1 - \phi) (V_t^h(g,z) - V_t^u(g)) \end{split}$$

 $\phi$  : worker bargaining power

 $D_t$ : firm value function excluding vacancy costs

### Wage solution

$$w^{n}(n',z,g) = \underbrace{\frac{\alpha\phi}{1-\phi+\alpha\phi}a_{t}zn'^{\alpha-1}}_{\text{share of marginal product}} + \underbrace{\frac{(1-\phi)(b+\Omega_{t}(g))}{\text{compensation outside option}}}_{\text{compensation outside option}}$$

$$w^{h}(x_{g},n',z,g) = \underbrace{\mathbb{E}[x|x>x_{g},p_{gz}]}_{\text{productivity}} \underbrace{\left(\frac{\alpha\phi}{1-\phi+\alpha\phi}a_{t}zn'^{\alpha-1}\right)}_{\text{share of marginal product}} + \underbrace{\frac{(1-\phi)(b+\Omega_{t}(g))}{(1-\phi)(b+\Omega_{t}(g))}}_{\text{compensation outside option}}$$

- $\Omega_t(g)$  : nonemployed worker's value of search
- Lower prob of being hired  $ightarrow \Omega_t( extbf{ extit{B}}) < \Omega_t( extbf{ extit{W}})$
- Extensive research on Black-white earnings gap, Lang & Lehmann (2012)

Bargaining rule

▶ Firm intuition

▶ Threshold rule

Worker problem

▶ No discrimination

### Wages without discrimination

Assume firm cannot observe group of worker when bargaining

$$w^{n}(n',z) = \underbrace{\frac{\alpha\phi}{1-\phi+\alpha\phi}a_{t}zn'^{\alpha-1}}_{\text{share of marginal product}} + \underbrace{(1-\phi)\left(b+\sum_{g}\frac{n_{g}}{n}\Omega_{t}(g)\right)}_{\text{compensation outside option}}$$

$$w^{h}(x_{g},n',z) = \underbrace{\mathbb{E}[x|x>x_{g},p_{gz}]}_{\text{productivity}} \underbrace{\left(\frac{\alpha\phi}{1-\phi+\alpha\phi}a_{t}zn'^{\alpha-1}\right)}_{\text{share of marginal product}} + \underbrace{(1-\phi)\left(b+\sum_{g}\frac{h_{g}}{h}\Omega_{t}(g)\right)}_{\text{sompostation outside option}}$$

- $\Omega_t(g)$ : nonemployed worker's value of search
- Firm's problem is the same as case where they observe worker group
- But GE effects are smaller  $\to \Omega_t(B) \Omega_t(W)$  smaller in absolute value

compensation outside option

Bargaining rule Wage solution

## Relative hiring selectivity

### Marginal cost = marginal benefit

$$\underbrace{\frac{(1-\phi)(b+\Omega_t(g))}{x_g^*}}_{\text{marg. hire compensation}} + \underbrace{\frac{\beta(1-\delta)\mathbb{E}_t\left[(1-\phi)(b+\Omega_{t+1}(g))\right]}_{\text{marg. incumbent compensation }t+1}$$

$$= \underbrace{\frac{\alpha(1-\phi)}{1-\phi+\alpha\phi}a_tz(n')^{\alpha-1}}_{\text{MPL net wages}} + \underbrace{\beta(1-\delta)\mathbb{E}_t\left[\frac{(1-\phi)(b+\Omega_{t+1}(g))}{x_g^{*'}}\right]}_{\text{marg. hire compensation }t+1}$$

Relationship between hiring thresholds,  $x_B^*$  and  $x_W^*$ , is a function of relative outside options,  $\Omega_t(B)$  and  $\Omega_t(W)$ , and parameters

▶ Threshold intuition

## Relative hiring selectivity

### Marginal cost = marginal benefit

$$\underbrace{\frac{(1-\phi)(b+\Omega_t(g))}{x_g^*}}_{\text{marg. hire compensation}} + \underbrace{\beta(1-\delta)\mathbb{E}_t\left[(1-\phi)(b+\Omega_{t+1}(g))\right]}_{\text{marg. incumbent compensation }t+1$$

$$= \underbrace{\frac{\alpha(1-\phi)}{1-\phi+\alpha\phi}a_tz(n')^{\alpha-1}}_{\text{MPL net wages}} + \underbrace{\beta(1-\delta)\mathbb{E}_t\left[\frac{(1-\phi)(b+\Omega_{t+1}(g))}{x_g^{*'}}\right]}_{\text{marg. hire compensation }t+1$$

Relationship between hiring thresholds,  $x_B^*$  and  $x_W^*$ , is a function of relative outside options,  $\Omega_t(B)$  and  $\Omega_t(W)$ , and parameters

Wage solution

▶ Threshold intuition

### Endogenous wages attenuate hiring gap



▶ Threshold intuition

▶ Wage solution

### Equilibrium definition

A recursive competitive equilibrium for this economy is a list of functions:

- value function for firms,  $J(n_B, n_W, z)$
- decision rules for vacancies and hiring standards, v(z), x(z, g)
- value functions for workers,  $V^e(z, g)$ ,  $V^h(z, g)$ , and  $V^u(g)$
- wage functions,  $w^n(n', z, g)$  and  $w^h(x_g, n', z, g)$
- worker outside option functions  $\Omega(g)$

#### and

- market tightness  $\theta$
- a stationary distribution of employment across firms  $\Gamma(z)$
- a stationary distribution of minority workers in unemployment and each employer type  $\lambda(u), \lambda(z)$

#### such that...

<sup>▶</sup> Optimization

### Equilibrium definition (continued)

- 1. Firm optimization: Given  $\theta$ ,  $\lambda(u)$ ,  $\Omega(g)$ ,  $w^n(n', z, g)$ ,  $w^h(x_g, n', z, g)$ , the set of decision rules v(z), x(z,g) solve the firm problem
- 2. Worker optimization: Given  $\theta$ ,  $\Gamma(z)$ ,  $w^n(n',z,g)$ ,  $w^h(x_g,n',z,g)$ , and v(z), x(z,g), worker value functions  $V^e(z,g)$ ,  $V^h(z,g)$ , and  $V^u(g)$  solve the worker problem and  $\Omega(g)$  is consistent with value functions
- 3. Wage bargaining:  $w^n(n', z, g)$ ,  $w^h(x_q, n', z, g)$  solve the bargaining problem
- 4. Consistency: The stationary distribution of employment  $\Gamma(z)$  is consistent with firm optimization
- 5. Market clearing: The labor market clears and the distribution of minority workers across unemployment and employer types,  $\lambda(u)$ ,  $\lambda(z)$  is consistent with firm optimization

<sup>▶</sup> Optimization

### Optimal hiring threshold where MC = MB



▶ Main

# Firm heterogeneity in hiring strategy



### **Great Recession**



▶ Main

# Fixed parameters

| Parameter | Meaning                   | Value | Source                         |
|-----------|---------------------------|-------|--------------------------------|
| β         | Discount factor           | 0.996 | Quarterly interest rate 0.012  |
| α         | Production curvature      | 0.677 | Baydur (2017)                  |
| $\psi$    | Matching elasticity       | 0.6   | Petrongolo & Pissarides (2001) |
| v         | Share of large firms      | 0.02  | Axtell (2001)                  |
| а         | Aggregate productivity    | 4.2   | Relative sizes                 |
| $\pi$     | Minority share population | 0.133 | SIPP                           |
| ζ         | Matching scale            | .342  | Avg. hired share 0.08          |
| $p_W$     | Majority signal quality   | 0.99  | Normalization                  |

<sup>▶</sup> Calibration

## Functional form assumptions

Match quality distribution

$$F(x) = x^{1/(\gamma - 1)}$$

Matching function

$$q(\theta) = \zeta \theta^{-\psi}$$

## Identification: Signal gap, small



<sup>▶</sup> Calibration

#### Identification: Signal gap, large



## Identification: Exogenous separation rate



## Identification: Relative productivity, large



#### Identification: Marginal vacancy cost, large



## Identification: Marginal vacancy cost, small



#### Change in selectivity with aggregate productivity



#### Hiring gap across firms



▶ Main

# **Empirical counterpart**

|                       | (1)         | (2)         | (3)    | (4)    | (5)         | (6)    |
|-----------------------|-------------|-------------|--------|--------|-------------|--------|
|                       | Large       | Small       | Large  | Small  | Large share | Empl   |
|                       | Job-finding | Job-finding | Sep    | Sep    | of empl     |        |
| Conditional gaps:     |             |             |        |        |             |        |
| Black                 | -0.21       | -0.70       | 0.18   | 0.28   | 10.26       | -6.22  |
|                       | (0.04)      | (0.03)      | (0.04) | (0.08) | (0.44)      | (0.35) |
| High UR               | -0.49       | -0.39       | 0.07   | 0.11   | 0.92        | -2.77  |
|                       | (0.02)      | (0.02)      | (0.02) | (0.04) | (0.27)      | (0.17) |
| Black $	imes$ High UR | -0.28       | 0.01        | -0.11  | -0.20  | -0.29       | -0.99  |
| · ·                   | (0.06)      | (0.04)      | (0.07) | (0.14) | (0.69)      | (0.53) |
|                       |             |             |        |        |             |        |
| Reference group mean  |             |             |        |        |             |        |
| White, Low UR         | 1.37        | 1.17        | 1.40   | 1.53   | 62.86       | 57.35  |
|                       | (0.02)      | (0.01)      | (0.01) | (0.02) | (0.15)      | (0.15) |

▶ Main

# **Empirical counterpart**

|                          | (1)         | (2)         | (3)    | (4)    | (5)         | (6)    |
|--------------------------|-------------|-------------|--------|--------|-------------|--------|
|                          | Large       | Small       | Large  | Small  | Large share | Empl   |
|                          | Job-finding | Job-finding | Sep    | Sep    | of empl     |        |
| Conditional gaps:        |             |             |        |        |             |        |
| Black                    | -0.21       | -0.70       | 0.18   | 0.28   | 10.26       | -6.22  |
|                          | (0.04)      | (0.03)      | (0.04) | (80.0) | (0.44)      | (0.35) |
| High UR                  | -0.49       | -0.39       | 0.07   | 0.11   | 0.92        | -2.77  |
|                          | (0.02)      | (0.02)      | (0.02) | (0.04) | (0.27)      | (0.17) |
| $Black \times High \ UR$ | -0.28       | 0.01        | -0.11  | -0.20  | -0.29       | -0.99  |
|                          | (0.06)      | (0.04)      | (0.07) | (0.14) | (0.69)      | (0.53) |
| Reference group mean     |             |             |        |        |             |        |
| White, Low UR            | 1.37        | 1.17        | 1.40   | 1.53   | 62.86       | 57.35  |
|                          | (0.02)      | (0.01)      | (0.01) | (0.02) | (0.15)      | (0.15) |

<sup>▶</sup> Main

## Job-finding gap components

|               | Total gap | Matching rate | Vacancy share | Hiring gap |
|---------------|-----------|---------------|---------------|------------|
| Large firm    |           |               |               |            |
| High <i>a</i> | -0.07     | 0.30          | 0.888         | -0.25      |
| Low a         | -0.31     | 0.23          | 0.894         | -1.54      |
| Small firm    |           |               |               |            |
| High <i>a</i> | -0.26     | 0.30          | 0.132         | -7.74      |
| Low a         | -0.31     | 0.23          | 0.127         | -12.88     |