MAC 414 – Linguagens Formais e Autômatos

2^{a} Lista de Exercícios (25/08/2011) – Entregar 13/09/2011

Obs.: Entregue para nota apenas os exercícios que estão pontuados. (Total de pontos: 10)

- 1. Determine uma expressão regular que descreva cada uma das linguagens abaixo sobre $\Sigma = \{0, 1\}$. Prove que a expressão encontrada realmente descreve a linguagem dada.
 - (a) $\{x \in \Sigma^* : |x| \le 3\}$
 - (b) $\{x \in \Sigma^* : |x| \ge 3\}$
 - (c) $\{x \in \Sigma^* : x \text{ começa e termina por } 0\}$
 - (d) $\{x \in \Sigma^* : 11 \text{ é um fator de } x\}$
 - (e) $\{x \in \Sigma^* : 01 \text{ é um sufixo de } x \text{ e } |x|_0 \le 3\}$
 - (f) $\{x \in \Sigma^* : |x|_1 \text{ \'e m\'ultiplo de } 3\}$
 - (g) (2 pontos) $\{x \in \Sigma^* : x \text{ contém exatamente uma ocorrência do fator } 11\}$
 - (h) (2 pontos) $\{x \in \Sigma^* : x \text{ não contém o fator } 110\}$
 - (i) (1 ponto) $\{x \in \Sigma^* : \text{toda posição impar de } x \text{ \'e um } 1\}$
 - (j) (1 ponto) $\{x \in \Sigma^* : x \text{ contém pelo menos dois 0s e no máximo um 1}\}$
 - (k) (2 pontos) $\{x \in \Sigma^* : \text{ o número de 1s entre cada par de ocorrências de 0 é par}\}$
- 2. Para cada uma das linguagens abaixo sobre $\Sigma = \{0, 1\}$, determine, se possível, uma expressão regular que a descreva. Se desconfiar que a linguagem não é regular, tente explicar porque.
 - (a) $\{x \in \Sigma^* : x \text{ n\~ao cont\'em o fator } 11\}$
 - (b) $\{0^n 1^n : n \ge 0\}$
 - (c) $\{x \in \Sigma^* : |x|_1 = 2|x|_0 + 1\}$
 - (d) $\{x \in \Sigma^* : x \text{ \'e a representação bin\'aria de um inteiro positivo par}\}$
 - (e) $\{x \in \Sigma^* : x \text{ \'e a representação bin\'aria de um inteiro positivo múltiplo de 3}\}$
 - (f) $\{x \in \Sigma^* : |x|_0 \text{ é par e } |x|_1 \text{ é impar}\}$
 - (g) $\{x \in \Sigma^* : x = yy^R, \text{ para algum } y \in \Sigma^*\}$
- 3. (2 pontos) Seja $\Sigma = \{a, b\}$. Mostre que a linguagem

$$L = \{x \in \Sigma^* : |x|_a = |x|_b\} \cup \Sigma^* \{aa, bb\} \Sigma^* .$$

é regular; ou seja, determine uma expressão regular α e prove que $L=L(\alpha)$.

- 4. Seja Σ um alfabeto arbitrário, e seja L uma linguagem sobre Σ .
 - (a) Prove que $Suf(L) = (Pref(L^R))^R$ e Fat(L) = Pref(Suf(L)).
 - (b) Prove que se L é regular, então $\operatorname{Pref}(L)$ também é, apresentando um método para produzir uma expressão regular para $\operatorname{Pref}(L)$, a partir de uma expressão regular para L.
 - (c) Prove que se L é regular, então $\mathrm{Suf}(L)$ e $\mathrm{Fat}(L)$ também são regulares (sem apresentar um método).