

Dispositivos lógicos programables

- Alternativas:
 - La suma de términos productos.
 - 16R6 MMI (PAL).
 - · CoolRunner Xilinx (CPLD).
 - · MAX 7000 Altera (EPLD).
 - Tablas de lookup.
 - · Stratix Altera.
 - · Cyclone Altera.
 - · Sapartan Xilinx.
 - · Virtex Xilinx.
 - Lógica basada en multiplexores.
 - · ACT1, ACT2, ACT3 Actel

3

Programmable Logic Array (PAL)

- 1978 H. T. Chua and John Birkner de Monolithic Memories.
- De PROM a PAL.
- Basadas en sumas de términos producto.

Img: [COM]

Programmable Logic Array

- Se distribuye a lo largo del CI una línea de metal con los literales de todas las variables de entrada (directa y complementada).
- Mediante fusibles se pueden generar cualquier término producto (AND) de las variables de entrada.
- Para sintetizar la función deseada sólo resta sumar (OR) los téminos producto necesarios.

5

PAL con registros

 Se incorporan registros, ejemplo 16R8, para sintetizar circuitos secuenciales.

PAL 16R8

 Die photograph of the MMI PAL16R8

Img: [COM]

PAL, conclusiones

- Productos lógicos con un gran número de variables. Muy útil en la síntesis de funciones con gran fan-in.
- · A la compuerta OR llegan entre 6 y 8 términos producto.
- Es elevada el área que ocupa cada témino producto, que también involucra un gran número de fusibles.
- Frente a la antiguas soluciones PROM el empleo de PALs significa una reducción de 300.

Programación EEPROM

CoolRunner II

Hasta 56 términos producto.

Orex.

FF D/T, Latch o doble flanco.

Set y reset internos c globales.

Figure 3: CoolRunner-II CPLD Macrocell

Programación EEPROM MAX7000. Macrocelda similar a las anteriores pero con: - Expansores compartidos. - Expansores paralelo. Ejemplo Macrocelda EPLD No distribuye los literales por todo el integrado. Programación EEPROM MAX7000. Macrocelda similar a las anteriores pero con: - Expansores compartidos. - Expansores paralelo. Fig: [ALT]

Ejemplo MAX7000 Figure 6. Parallel Expanders Una OR puede tener hasta 20 términos producto (5 locales y 15 de celdas vecinas) Cada 5 términos se agrega un retardo to pexp. Si Sigurus 16 Stoned from PIA Expanders Figure 6. Parallel Expanders Una OR puede tener hasta 20 términos producto (5 locales y 15 de celdas vecinas) Figure 6. Parallel Expanders Figure

Elementos de síntesis lógica

Elementos de síntesis lógica:

- · Basadas en sumas de términos producto, caso de las PAL.
- Alternativa, ¿Qué bloques lógicos permiten implementar cualquier función lógica?
 - Tablas de búsqueda (LUT Look-up Table), caso de las FPGAs:
 - · Memoria.
 - · Multiplexor.
 - · Decodificador.

Síntesis lógica mediante LUTs • ¿Cuál es el número de entradas óptimo, 2, 3 4.. (K)? 2-LUT 3-LUT 4-LUT 7-LUT • Se miden los resultados de área y velocidad.

Se miden áreas y retardos según el número de entradas. Los resultados indican que normalmente se trabaje con LUTs de K=4 o 5.

Cualquier función de hasta 4 variables más una segunda función de hasta 4 variables no relacionadas con las anteriores. Cualquier función de 5 variables. Cualquier función de 4 variables junto con algunas funciones de 6 variables. Algunas funciones de hasta 9 variables. Figure t: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown) Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown) Figure 2: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)

FLEX10K, carry chain 2/2

FPF10K10-3

Ejemplo: multiplicador de 8 x 8

	<u>LI101300A-2</u>		LFT TORTO-5	
	Elementos lógicos	Mayor retardo	Elementos lógicos	Mayor retardo
	(LEs)	(ns)	(LEs)	(ns)
Sin cadena	161	56,9	161	57,4
Con acarreo	136	31,1	136	36,4

El empleo del acarreo encadenado puede

EPE815004-2

- mejorar la performance
- reducir el consumo de lógica
- los LEs se agrupan y permanecen juntos

Clear asincrónico. Preset asincrónico. Preset y clear asincrónico con clear. Carga asincrónica con preset. Carga asincrónica sin preset o clear. Fig: [ALT]

Modo normal. Modo aritmético. Figure 3-1 de la delimentation Figure 3-1 de la delimentation

Síntesis lógica mediante multiplexores

- Un único MUX 2:1 permite la síntesis de ocho posibles funciones no obvias de dos variables A y B, además de las obvias '1' y '0':
 - 'NOT A y NOT B (A'y B')
 - BUF A Y BUF B
 - A + By A .B
 - A . B' - A' . B
- El multiplexor y el negador son dispositivos fáciles de realizar con CMOS

Ref: [JAQ]

35

Síntesis lógica mediante multiplexores

 Mediante un multiplexor de 2:1 se puede implementar cualquiera de las siguientes funciones: A. B', A'. B

A0	A1	s	Función
0	0	0	0
В	0	Α	/AB
0	1	A	/A
A	0	В	A/B
0	1	В	/B
0	В	1	B (BUF)
0	В	A	AB
0	Α	1	A (BUF)
В	1	Α	A + B
1	1	1	1

Teorema de expansión de Shannon

Sirve para descomponer una función de muchas variables en partes más pequeñas.

$$F = f(A, B, C, ...) = A \cdot F(1, B, C, ...) + A' \cdot F(0, B, C, ...)$$

Ej:
$$F(A, B, C) = A' \cdot B + A \cdot B \cdot C' + A' \cdot B' \cdot C = A \cdot (B \cdot C') + A' \cdot (B + B' \cdot C)$$

Se puede seguir: F(1, B, C,...) = B f(1, 1, C,...) + B' f(1, 0, C,...)
$$y \ F(\ 0, B, C,...) = B \ f(\ 0, 1, C,...) + B' \ f(\ 0, 0, C,...)$$

etc.

7

Síntesis mediante ACT1

Ejemplo: con el conjunto de multiplexores de una *ACT*1:

 $F = A \cdot B + /B \cdot C + D$ Se selecciona B

F = B. (A + D) + /B. (C + D) = B . F2 + /B F1

que es un mul. de 2:1 con B como selección.

Fig: [SMI]

Expandiendo F1 y F2:

F2 = A + D = A . 1 + A' . DF1 = C + D = C . 1 + C' . D

Celda de síntesis de ACTEL ACT2

- ACT2 C-Module similar a ACT1 pero puede implementar funciones de 5 variables.
- S-Module le agrega un registro a la parte combinacional.

Virtex II Pro CLBs y Slice 1/9

- · CLBs organizados en arreglos.
 - Conectado a una matriz de ruteo.
- · Cada CLB 4 slices.
 - Agrupados en dos columnas.
 - Dos cadenas independientes de carry.
 - Una cadena de desplazamiento.

Figure 32: Virtex-II Pro CLB Element

Fig: [XIL]

Virtex II Pro CLBs y Slice 4/9

- Registros
 - Como ffd o latch.
- Reset y clear
 - Sin set ni reset.
 - Set sincrónico.
 - Reset sincrónico.
 - Set y reset sincrónico.
 - Set asincrónico (preset).
 - Reset asincrónico (clear).
 - Set y reset asincrónico (preset y clear).

