Beadandó program

Hermite-interpoláció

Adottak az x_0 x_1 x_2 ... x_n alappontok $(x_i \neq x_j, \text{ ha } i \neq j)$ és az f_{00} f_{10} f_{20} ... f_{n0} f_{01} f_{11} f_{21} ... f_{n1} f_{02} f_{12} f_{22} ... f_{n2} \vdots f_{0,m_0-1} f_{1,m_1-1} f_{2,m_2-1} ... f_{n,m_n-1} értékek

Olyan minimális fokszámú H(x) polinomot keresünk, melyre

$$H^{(j)}(x_i) = f_{ij}, \qquad i = 0, 1, \dots, n, \quad j = 0, \dots, m_i - 1.$$

Az x_i pontban tehát m_i darab illeszkedési feltétel adott $(m_i \ge 1)$, a feltételek száma pontonként eltérő lehet. Jelölje M az összes illeszkedési feltétel számát:

$$M = \sum_{i=0}^{n} m_i,$$

ekkor a polinom legfeljebb (M-1)-edfokú lesz.

A programnak a H(x) polinom helyettesítési értékeit kell meghatároznia megadott y_1, \ldots, y_m helyeken osztott differenciák és az általánosított Horneralgoritmus segítségével. Az output egységesítése érdekében az alappontok sorrendjét ne változtassuk meg!

Input: A beolvasás a standard inputról történik. Az input első sora a megoldandó feladatok számát tartalmazza $(N, \text{ ahol } N \leq 1000)$, az ezt követő sorokban az egyes feladatokra vonatkozó input adatok találhatóak a következő módon:

$$n \ M$$
 $x_0 \ m_0 \ f_{00} \ f_{01} \dots \ f_{0,m_0-1}$
 $x_1 \ m_1 \ f_{10} \ f_{11} \dots \ f_{1,m_1-1}$
 \dots
 $x_n \ m_n \ f_{n0} \ f_{n1} \dots \ f_{n,m_n-1}$
 m
 $y_1 \ y_2 \dots \ y_m$

tehát az egyes alappontokat az ott adott illeszkedési feltételek száma követi (ami < 8), majd az adott pontban előírt értékek, a legvégén pedig a kiszámítandó helyettesítési értékek száma, ill. az y_1, \ldots, y_m értékek állnak. Az alappontok száma legfeljebb 32 (azaz n < 32).

Output: N részből áll, az i-edik részben az i-edik feladatra vonatkozó output-tal. Az egyes részekben két sor szerepeljen: az elsőben az osztott differenciatáblázat x_0 -ból induló élén álló osztott differenciák, a másodikban a polinom helyettesítési értékei az y_1, \ldots, y_m helyeken.

 \mbox{Az} output-ban a lebegőpontos számok 8 tizedesjegy pontossággal legyenek kiírva.