

Discrete Structures (Monsoon 2021)

Ashok Kumar Das

Associate Professor IEEE Senior Member

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad (IIIT Hyderabad)

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas
 https://sites.google.com/view/iitkgpakdas/

Countable Set

Definition

A set is said to be *countable*, if it is finite or denumerable.

- If a set A be cardinally equivalent to the set of natural numbers $N = \{1, 2, 3, ...\}$, A is called a denumerable (or enumerable) set.
- In other words, there exists a mapping f : N → A, which is one-one and onto, that is, there exists an one-one correspondence between N and A.
- Thus, A is coutable if there exists a bijection $f: N \to A$.

Theorem

The set of all integers is countable.

Proof.

Let Z be the set of all intergers, that is,

 $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ and N be the set of natural numbers.

Claim: There exists one-one correspondence between N and Z. Construct the mapping $f: N \to Z$ that is defined by

$$f(n) = \begin{cases} \frac{n}{2}, & \text{if } n \in N \text{ is even} \\ -\frac{n-1}{2}, & \text{if } n \in N \text{ is odd} \end{cases}$$

• To prove that f is one-one, let $n_1, n_2 \in N$ such that $f(n_1) = f(n_2)$. Case 1. n is even

Then,
$$f(n_1) = f(n_2)$$

 $\Rightarrow \frac{n_1}{2} = \frac{n_2}{2}$
 $\Rightarrow n_1 = n_2$.

Case 2. *n* is odd.

Then,
$$f(n_1) = f(n_2)$$

 $\Rightarrow -\frac{n_1-1}{2} = -\frac{n_2-1}{2}$
 $\Rightarrow 1 - n_1 = 1 - n_2$
 $\Rightarrow n_1 = n_2$

In both the cases, $f(n_1) = f(n_2) \Rightarrow n_1 = n_2$, for all $n_1, n_2 \in N$. Hence, f is one-one.

• To prove that f is onto, let $m \in Z$. Then, there exists $n \in N$ such that $m = f(n) = \frac{n}{2}$ when n is even and $m = f(n) = -\frac{n-1}{2}$ when n is odd.

Case 1. n is even.

 $n = 2m \in N$, where m is a positive integer, that is, m > 0

Case 2. *n* is odd.

1-n=2m or $n=1-2m\in N$, where m is a non-negative integer, that is, $m\leq 0$

Combing both the cases, *f* is onto.

Since f is both one-one and onto, f is bijective. As a result, Z is countable.

Theorem

The union of a countable collection of countable sets is again countable.

Proof. Consider the following two cases:

• Case 1. Let S_1, S_2, \ldots, S_k be a finite collection of countable sets, which are finite sets. Then, by the principle of inclusion-exclusion of sets,

$$|S_1 \cup S_2 \cup \cdots \cup S_k| \le |S_1| + |S_2| + \cdots + |S_k|$$

Thus, the union of S_1 S_2 , ..., S_k is countably finite.

- Case 2. Let $S_1, S_2, ..., S_k$ be a finite collection of countable sets, where each S_i is an infinite set.
 - * Let $S_i = \{s_{i1}, s_{i2}, s_{i3}, \ldots\}$. Then, construct the table as shown in figure.
 - * For union of S_1, S_2, \ldots, S_k , we traverse the elements of S_1, S_2, \ldots, S_k in column-wise which are finite. To check if an element is repeated or not, we can go back to check all the previous elements traverse.
 - * Again, this is done by checking a finite number of elements. Thus, the union is countably infinite.

Theorem

Every subset of a countable set is either finite or countable.

Theorem

Every infinite set has a countable subset.

Proof. Let *A* be an infinite set. Then, *A* is non-empty, so choose $a_1 \in A$.

Let $A_1 = A - \{a_1\}$. Since A is infinite, therefore $A_1 \neq \emptyset$.

Choose $a_2 \in A_1$ and let $A_2 = A - \{a_1, a_2\}$. Again, $A_2 \neq \emptyset$.

Choose $a_3 \in A_2$ and let $A_3 = A - \{a_1, a_2, a_3\}$.

Continuing in this way, we obtain a countably subset $\{a_1, a_2, a_3, \ldots\}$ of A.

Problem. The set of real numbers between 0 and 1 is not a countable set. Hence, the set of real numbers, *R*, is not also a countable set. **Proof [Proof by Contradiction].**

Part 1: If the real numbers between 0 and 1 were countable, they could be written as a succession:

$$x_1, x_2, x_3, x_4, \cdots, x_n, \cdots$$
 (1)

Let us express each x_n as a decimal. If we agree not to use recurring 9's, this can be done in only one way. Let us agree to this and write the decimals as:

$$x_1 = 0.a_1a_2a_3a_4 \cdots x_2 = 0.b_1b_2b_3b_4 \cdots x_3 = 0.c_1c_2c_3c_4 \cdots \cdots$$

where $a_i, b_i, c_i \in \{0, 1, 2, 3, \dots, 9\}$

Now, let us take the diagonal $a_1b_2c_3\cdots$ and form a decimal:

$$0.\alpha\beta\gamma\cdots$$

by defining

$$\alpha = \begin{cases} 1, & \text{if } a_1 \neq 1 \\ 2, & \text{if } a_1 = 1 \end{cases}$$

$$\beta = \begin{cases} 1, & \text{if } b_2 \neq 1 \\ 2, & \text{if } b_2 = 1 \end{cases}$$

$$\gamma = \begin{cases} 1, & \text{if } c_3 \neq 1 \\ 2, & \text{if } c_3 = 1 \end{cases}$$

and so on.

Then, $y=0.\alpha\beta\gamma\cdots$ (which contains no 9) denotes a real number between 0 and 1, and so must itself appear somewhere in the succession in (1), if this succession is to contain all the real numbers between 0 and 1.

But,

- $y \neq x_1$ as it differs from x_1 in the first place after the decimal point;
- y ≠ x₂ as it differs from x₂ in the second place after the decimal point;
- $y \neq x_3$ as it differs from x_3 in the third place after the decimal point; and so on.

Hence, $y \notin$ the succession (1) at all, but y is a real number between 0 and 1.

Thus, no succession x_1, x_2, x_3, \cdots can include all the real numbers between 0 and 1, i.e., the set of real numbers between 0 and 1 is not countable, that is, (0,1) is uncountable.

Part 2:

Let us consider any open interval (a, b), with b > a. Then, we can write $w = \frac{x-a}{b-a}$, a < x < b.

Thus, $0 < \tilde{w} < 1$. Since (0,1) is uncountable, (a,b) is not also countable.

Now, R = the set of real numbers can be expressed as

$$R=\bigcup_i(a_i,b_i)$$

where $(a_i, b_i) \subset R$.

Since (a_i, b_i) is not countable, R is not also countable.