

## ANÁLISIS MATEMÁTICO II Examen final 12/12/2023

## Apellido y nombre:

Corrigió: Revisó:

| T1 | T2 | P1 | P2 | Р3 | P4 | Calificación |
|----|----|----|----|----|----|--------------|
|    |    |    |    |    |    |              |
|    |    |    |    |    |    |              |

Todas las respuestas deben ser justificadas adecuadamente para ser tenidas en cuenta. No resolver el examen en lápiz. Duración del examen: 2 horas

Condición de aprobación (6 puntos): tres ejercicios correctamente resueltos (uno de T1 o T2 y dos de P1, P2, P3 o P4).

- T1. a) Sea  $f: \mathbb{R}^2 \to \mathbb{R}$ . **Defina** derivada direccional de f en  $\mathbf{x}_0$  ¿De qué manera alternativa es posible calcular esta derivada si f es diferenciable en  $\mathbf{x}_0$ ?
  - b) ¿Qué puede decirse de la diferenciabilidad de una función  $f: \mathbb{R}^2 \to \mathbb{R}$  en  $\mathbf{x}_0$  si  $f'(\mathbf{x}_0, \check{v}) = a^3$ , para todo  $\check{v} = (a, b)$  tal que  $a^2 + b^2 = 1$ ?
- T2. Determine si las siguientes proposiciones son verdaderas o falsas. Justifique su respuesta.
  - a) La circulación del campo  $\vec{f}(x,y) = (\cos(x^2) + y^2, \sin(y^2) + 2xy)$  a lo largo de cualquier circunferencia de radio 4 es nula.
  - b) El volumen del cuerpo  $V: \left\{ \begin{array}{l} x^2+y^2+z^2 \leq 12, \\ x^2+y^2 \leq z, \end{array} \right.$  se puede calcular con la integral  $\int_0^{2\pi} \left[ \int_0^{\sqrt{12}} \left[ \int_{r^2}^{\sqrt{12}-r^2} r \, dz \right] dr \right] d\theta$
- P1. Sea  $f: \mathbb{R}^2 \to \mathbb{R}$  diferenciable tal que  $\frac{\partial f}{\partial \check{v}_1}(1,2) = -\frac{6}{5}$  y  $\frac{\partial f}{\partial \check{v}_2}(1,2) = \frac{1}{5}$ , donde  $\check{v}_1 = (3/5, 4/5)$  y  $\check{v}_2 = (-4/5, -3/5)$ . Halle, si existen, las direcciones de derivada direccional nula de f en  $\mathbf{x}_0 = (1,2)$ .
- P2. Sea S del porción del **plano tangente** a la superficie  $x^3 2xy + y^3 + z^3 2z = -1$  en  $\mathbf{x}_0 = (1, 1, 1)$ , que está contenida en el primer octante. Calcule el flujo de  $\vec{f}(x, y, z) = (x, 0, 0)$  a través de S. Indique claramente la orientación elegida para el cálculo.
- P3. Halle la función y=y(x) solución de  $y''+3y'-10y=12e^{-x}$  cuya recta tangente en  $(0,y_0)$  es y=5x+1.
- P4. Calcule el flujo de  $\vec{f}(x,y,z)=(x+\sin(y^2),\ z^3-y,\ z-5)$  a través de la superficie  $S:z=x^2+y^2$ ,  $z\leq 9$ , orientada con un campo de vectores normales con tercera componente positiva.