1. Série 1

Méthode pour calculer la force exercée par la barre sur q_0 .

Force sur q_0 par une tige chargée avec Q sur sa longueur, à distance x_0 (q_0, Q choisies > 0)

- écrire l'expression de la force selon un vecteur \vec{r} .
- ici, on sait que la force sur y va se compenser, donc on intègre la force selon \vec{x} pour trouver F_{tot} .

Attention, quand on intègre, il ne faut pas oublier de décomposer le vecteur \vec{r} selon les différentes composantes (qui seront dans le calcul de l'intégrale !) :

$$\vec{r} = \frac{D_1 \vec{e_r} + D_2 \vec{e_z}}{\sqrt{D_1^2 + D_2^2}}$$

2. Série 2

Exo 1 : On veut calculer la valeur du champ E engendré par une barre le long de l'axe x sur une droite parallèle. En fait on peut le calculer en un point (avec comme coordonnées x=L+d,y=0)! Ce sera la même valeur pour tous les points de la droite.

Exo 4 : placer le point O au centre du dipole pour calculer son moment cinétique.

Exo 6: utiliser Gauss pour calculer E!

3. Série 3

Exo 1 : effet de pointe

Exo 2 : pour trouver le potentiel électrique dans une sphère on fait $V(r)=\int_r^{+\infty} E dr$.

Exo 3 : poser le zéro de l'axe x au centre du côté :)