Corrigé CCP math I PSI 2003

PARTIE I

Question I.1 L'application $t \mapsto \mu(t) \cos t$ est continue sur \mathbb{R} donc par le théorème fondamental de l'intégration G est de classe C^1 sur \mathbb{R} , avec $G'(x) = \mu(x) \cos x$. De même pour H, avec $H'(x) = \mu(x) \sin x$. On en déduit

$$F'(x) = \sin x \, \mu(x) \cos x + \cos x \int_0^x \mu(t) \, \cos t \, dt + \sin x \int_0^x \mu(t) \sin t \, dt - \cos x \, \mu(x) \sin(x)$$
$$= \cos x \int_0^x \mu(t) \cos t \, dt + \sin x \int_0^x \mu(t) \sin t \, dt.$$

D'où F(0) = 0 et F'(0) = 0.

Question I.2

G et H étant de classe \mathcal{C}^1 , on en déduit que F' est de classe \mathcal{C}^1 et donc que F est de classe \mathcal{C}^2 . De plus,

$$F''(x) = -\sin x G(x) + \cos^2 x \,\mu(x) + \cos x H(x) + \sin^2(x)\mu(x) = -F(x) + \mu(x).$$

Donc

$$F''(x) + F(x) = \mu(x).$$

Question I.3

F vérifie le problème de Cauchy linéaire

$$y'' + y = \mu$$
, $y(0) = 0$, $y'(0) = 0$,

et d'après le cours il y a unicité de la solution de ce problème donc $F = \varphi$.

Remarque : l'égalité $\varphi(x) = \sin x \int_0^x \mu(t) dt - \cos x \int_0^x \mu(t) dt$ s'obtient aussi en appliquant la méthode de variation des constantes pour résoudre (E_μ) .

Question I.4

- **I.4.1** En dérivant : $G'(x+2\pi) G'(x) = \mu(x+2\pi)\cos(x+2\pi) \mu(x)\cos x = 0$ car μ est 2π -périodique. De même $H'(x+2\pi) H'(x) = 0$.
- **I.4.2** La fonction $x \mapsto G(x+2\pi) G(x)$ est donc constante, égale à sa valeur en $x=2\pi$, soit :

$$G(x + 2\pi) - G(x) = G(2\pi).$$

De même, $H(x + 2\pi) - H(x) = H(2\pi)$.

I.4.3

$$\varphi(x + 2\pi) - \varphi(x) = F(x + \pi) - F(x) = (G(x + 2\pi) - G(x))\sin x - (H(x + 2\pi) - H(x))\cos x$$
$$= G(2\pi)\sin x - H(2\pi)\cos x.$$

- **I.4.4** La famille (cos, sin) étant libre, F est 2π -périodique si et seulement si $G(2\pi) = H(2\pi) = 0$.
- **I.4.5** Avec $\mu = \sin$ on a $G(2\pi) = \int_0^{2\pi} \sin t \cos t \, dt = 0$ et $H(2\pi) = \int_0^{2\pi} \sin^2 t \, dt = \pi \neq 0$ donc φ_{\sin} n'est pas 2π -périodique. Même conclusion pour φ_{\cos} car alors $G(2\pi) = \pi \neq 0$.
- **I.4.6** Pour $\mu = \sin$ et pour tout entier n on a

$$\varphi(2n\pi) = F(2n\pi) = 0 \times 0 - \cos(2n\pi) \times n\pi = -n\pi$$

donc φ_{\sin} n'est pas bornée.

Pour $\mu = \cos$ et pour tout entier n on a

$$G\left(2n\pi + \frac{\pi}{2}\right) = \frac{1}{2} \int_0^{2n\pi + \frac{\pi}{2}} (1 + \cos 2t) dt = n\pi$$

d'où

$$\varphi\left(2n\pi + \frac{\pi}{2}\right) = F\left(2n\pi + \frac{\pi}{2}\right) = n\pi$$

donc φ_{\cos} n'est pas bornée.

Autre méthode : on peut aussi calculer

$$\varphi_{\sin}(x) = \frac{1}{2}\sin x - \frac{x}{2}\cos x$$

et

$$\varphi_{\cos}(x) = \frac{1}{2}x\sin x.$$

I.4.7 Pour $\mu = |\sin|$

$$G(2\pi) = \int_0^{2\pi} |\sin t| \cos t \, dt = \int_0^{\pi} \sin t \cos t \, dt - \int_{\pi}^{2\pi} \sin t \cos t \, dt,$$

et en faisant $t = \pi + u$ dans la deuxième intégrale cela donne $G(2\pi) = 0$. On obtient par le même procédé $H(2\pi) = 0$, ce qui établit que φ est 2π -périodique.

I.4.8 φ étant de classe \mathcal{C}^2 et 2π -périodique, les applications φ , φ' et φ'' sont continues et 2π -périodiques donc bornées : en effet on a alors $\varphi(\mathbb{R}) = \varphi([0, 2\pi])$ qui est donc une partie compacte de \mathbb{R} et de même pour φ' et φ'' .

PARTIE II

Question II.1 $t \mapsto e^{-t}|\sin t|$ est continue sur \mathbb{R}^+ et $\forall t \in \mathbb{R}^+$, $0 \leqslant e^{-t}|\sin t| \leqslant e^{-t}$ ce qui montre que $t \mapsto e^{-t}|\sin t|$ est intégrable sur \mathbb{R}^+ puisque $t \mapsto e^{-t}$ l'est.

Question II.2

II.2.1
$$v_0 = \int_0^{\pi} e^{-t} |\sin t| dt = \mathfrak{Im} \left(\int_0^{\pi} e^{(-1+i)t} dt \right) = \mathfrak{Im} \left[\frac{e^{(-1+i)t}}{-1+i} \right]_0^{\pi} = \mathfrak{Im} \left[\frac{-1-i}{2} (-e^{-\pi} - 1) \right]$$
ce qui donne : $v_0 = \frac{e^{-\pi} + 1}{2}$.

II.2.2 Avec le changement de variable $t = n\pi + u$ on obtient :

$$v_n = \int_0^{\pi} e^{-n\pi - u} |\sin u| \, du = e^{-n\pi} v_0 = (e^{-\pi})^n v_0.$$

II.2.3 $\sum_{n\geqslant 0}v_n$ est donc une série géométrique de raison $\rho=e^{-\pi}\in]-1,1[$ donc convergente. De plus sa somme est égale à

$$\frac{v_0}{1-\rho} = \frac{e^{-\pi} + 1}{2(1 - e^{-\pi})} = \frac{1}{2} \coth \frac{\pi}{2}.$$

II.2.4 La fonction $t \mapsto e^{-t} |\sin t|$ étant intégrable sur \mathbb{R}^+ on a

$$\int_0^{+\infty} e^{-t} |\sin t| \, \mathrm{d}t = \lim_{X \to +\infty} \int_0^X e^{-t} |\sin t| \, \mathrm{d}t = \lim_{n \to +\infty} \int_0^{n\pi} e^{-t} |\sin t| \, \mathrm{d}t = \sum_{n=0}^{+\infty} v_n.$$

Question II.3

II.3.1 Nous avons vu que φ était bornée sur \mathbb{R}^+ . Posons $M = \sup_{\mathbb{R}^+} |\varphi|$. Alors

$$\forall t \in \mathbb{R}^+, |e^{-t}\varphi(t)| \leqslant Me^{-t}.$$

Donc l'application $t \mapsto e^{-t}\varphi(t)$ est continue et majorée en module par une fonction intégrable sur \mathbb{R}^+ ce qui prouve qu'elle est intégrable sur \mathbb{R}^+ . De même pour les deux autres.

II.3.2 Soit $X \in \mathbb{R}^+$. On a :

$$\begin{split} \int_0^X \varphi(t) e^{-t} \, \mathrm{d}t &= [-e^{-t} \varphi(t)]_0^X + \int_0^X \varphi'(t) e^{-t} \, \mathrm{d}t \\ &= -\varphi(X) e^{-X} + [-e^{-t} \varphi'(t)]_0^X + \int_0^X \varphi''(t) e^{-t} \, \mathrm{d}t \\ &= -\varphi(X) e^{-X} - \varphi'(X) e^{-X} + \int_0^X \varphi''(t) e^{-t} \, \mathrm{d}t. \end{split}$$

On a utilisé le fait que $\varphi(0) = \varphi'(0) = 0$.

En faisant tendre X vers $+\infty$ on obtient $: \int_0^{+\infty} \varphi(t)e^{-t} dt = \int_0^{+\infty} \varphi''(t)e^{-t} dt$. Or $\varphi(t) + \varphi''(t) = \mu(t)$ donc $\varphi(t)e^{-t} + \varphi''(t)e^{-t} = \mu(t)e^{-t}$ ce qui donne

$$2\int_0^{+\infty} \varphi(t)e^{-t} dt = \int_0^{+\infty} \mu(t)e^{-t} dt$$

et donc

$$\int_0^{+\infty} \varphi(t)e^{-t} dt = \frac{1}{4} \frac{1 + e^{-\pi}}{1 - e^{-\pi}}.$$

PARTIE III

Question III.1

- III.1.1 μ est 2π -périodique, continue et \mathcal{C}^1 par morceaux sur \mathbb{R} donc le théorème de convergence normale s'applique et la suite des sommes partielles de la série de Fourier de μ converge uniformément sur \mathbb{R} vers μ .
- III.1.2 De même pour φ puisque φ est 2π -périodique et de classe \mathcal{C}^2 sur \mathbb{R} .

Question III.2

III.2.1 μ étant paire on a pour tout n entier naturel $b_n(\mu) = 0$ et

$$a_n(\mu) = \frac{2}{\pi} \int_0^{\pi} \mu(t) \cos(nt) dt$$
$$= \frac{2}{\pi} \int_0^{\pi} \sin t \cos(nt) dt$$
$$= \frac{1}{\pi} \int_0^{\pi} (\sin(n+1)t - \sin(n-1)t) dt.$$

On distingue: $a_1(\mu) = \frac{1}{\pi} \int_0^{\pi} \sin(2t) dt = 0$ et,

$$\sin n \neq 1 \qquad a_n(\mu) = \frac{1}{\pi} \left[\frac{\cos(n-1)t}{n-1} - \frac{\cos(n+1)t}{n+1} \right]_0^{\pi}$$
$$= \frac{1}{\pi} \left[((-1)^{n-1} - 1) \left(\frac{1}{n-1} - \frac{1}{n+1} \right) \right]$$
$$= \frac{2}{\pi} \frac{(-1)^{n-1} - 1}{(n-1)(n+1)}.$$

Soit pour tout entier naturel p:

$$a_{2p}(\mu) = -\frac{4}{\pi(2p-1)(2p+1)} = \frac{-4}{\pi(4p^2-1)}$$

 $a_{2p+1}(\mu) = 0.$

III.2.2 On peut justifier la convergence de la série par le fait que

$$\frac{1}{4p^2 - 1} \, \, \widetilde{p \to \infty} \, \, \frac{1}{4p^2} > 0.$$

En appliquant le résultat de III.1.1 on a

$$\forall t \in \mathbb{R}$$
 $|\sin t| = \frac{2}{\pi} - \frac{4}{\pi} \sum_{p=1}^{+\infty} \frac{\cos(2pt)}{4p^2 - 1}$

qui donne pour t = 0

$$0 = \frac{2}{\pi} - \frac{4}{\pi} \sum_{p=1}^{+\infty} \frac{1}{4p^2 - 1}$$

et donc

$$\sum_{p=1}^{+\infty} \frac{1}{4p^2 - 1} = \frac{1}{2}.$$

III.2.3 Cette fois on justifie la convergence de la série par le fait que

$$\frac{1}{(4p^2 - 1)^2} \underbrace{n \to \infty}_{p \to \infty} \frac{1}{16p^4} > 0.$$

On retrouve la convergence et on obtient de plus la somme grâce au théorème de Parseval qui s'applique à μ puisque μ est 2π -périodique et continue par morceaux sur $\mathbb R$:

$$\frac{1}{2\pi} \int_0^{2\pi} \sin^2 t \, dt = \frac{1}{2} \left[\frac{a_0^2}{2} + \sum_{p=1}^{+\infty} a_{2p}^2 \right]$$

soit

$$\frac{1}{\pi} \int_0^{\pi} \sin^2 t \, dt = \frac{1}{2} \left[\frac{2}{\pi^2} + \frac{16}{\pi^2} \sum_{p=1}^{+\infty} \frac{1}{(4p^2 - 1)^2} \right]$$

soit

$$\frac{1}{2} = \frac{4}{\pi^2} + \frac{8}{\pi^2} \sum_{p=1}^{+\infty} \frac{1}{(4p^2 - 1)^2}$$

et finalement

$$\sum_{p=1}^{+\infty} \frac{1}{(4p^2 - 1)^2} = \frac{\pi^2}{16} - \frac{1}{2}.$$

Question III.3

III.3.1 Maintenant $G(x) = \int_0^x |\sin t| \cos t \, dt$ et donc $G(-x) = \int_0^{-x} |\sin t| \cos t \, dt = -G(x)$ après avoir fait le changement de variable u = -t. Donc G est impaire. De même H est paire. On en déduit que $F(=\varphi)$ est paire. Et donc $b_n(\varphi) = 0$ pour $n \in N^*$.

$$a_n(\varphi'') = \frac{1}{\pi} \int_0^{2\pi} \varphi''(t) \cos(nt) dt$$

$$= \frac{1}{\pi} \left[\varphi'(t) \cos(nt) \right]_0^{2\pi} + \frac{n}{\pi} \int_0^{2\pi} \varphi'(t) \sin(nt) dt$$

$$= 0 + \frac{n}{\pi} \left[\varphi(t) \sin(nt) \right]_0^{2\pi} - \frac{n^2}{\pi} \int_0^{2\pi} \varphi(t) \cos(nt) dt$$

$$= -n^2 a_n(\varphi).$$

Pour la troisième égalité on a utilisé le fait que φ' est 2π -périodique.

III.3.3 On a $\varphi + \varphi'' = \mu$ et donc par linéarité des coefficients de Fourier $a_n(\varphi) + a_n(\varphi'') = a_n(\mu)$ soit $(1 - n^2)a_n(\varphi) = a_n(\mu)$.

Donc pour $n \neq 1$ on a $a_n(\varphi) = \frac{1}{1 - n^2} a_n(\mu)$ ce qui donne

$$\forall p \in \mathbb{N}, \ a_{2p}(\varphi) = -\frac{4}{\pi} \frac{1}{(1 - 4p^2)(4p^2 - 1)} = \frac{4}{\pi (4p^2 - 1)^2}$$

et

$$\forall p \in \mathbb{N}^*, \ a_{2p+1}(\varphi) = 0.$$

III.3.4 φ étant 2π -périodique et de classe \mathcal{C}^2 le théorème de convergence normale peut lui être appliqué et donne

$$\forall x \in \mathbb{R}, \ \varphi(x) = \frac{2}{\pi} + a_1(\varphi) \cos x + \frac{4}{\pi} \sum_{p=1}^{+\infty} \frac{\cos(2px)}{(4p^2 - 1)^2}$$

Pour x = 0 on obtient

$$\varphi(0) = 0 = \frac{2}{\pi} + a_1(\varphi) + \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{1}{(4p^2 - 1)^2}$$

d'où l'on tire

$$a_1(\varphi) = -\frac{\pi}{4}.$$

Question III.4 On justifie la convergence de la série par le fait que

$$\frac{1}{(4p^2-1)(16p^4-1)} \ \widetilde{p^{\to\infty}} \ \frac{1}{64p^6} > 0.$$

En reprenant les notations précédentes on a

$$\int_0^{+\infty} e^{-t} \varphi(t) dt = \int_0^{+\infty} e^{-t} \left[\frac{2}{\pi} + a_1 \cos t + \sum_{p=1}^{+\infty} a_{2p} \cos(2pt) \right] dt$$
$$= \frac{2}{\pi} \int_0^{+\infty} e^{-t} dt + a_1 \int_0^{+\infty} \cos t e^{-t} dt + \int_0^{+\infty} \left(\sum_{p=1}^{+\infty} a_{2p} \cos(2pt) e^{-t} \right) dt.$$

Il s'agit donc maintenant de justifier l'interversion série-intégrale.

- $t \mapsto a_{2p} \cos(2pt) e^{-t}$ est continue et intégrable sur \mathbb{R}^+ ,
- la série de fonctions $\sum a_{2p}\cos(2pt) e^{-t}$ converge simplement sur \mathbb{R}^+ vers une fonction continue,
- $\int_0^{+\infty} |a_{2p}\cos(2pt)e^{-t}| dt \leqslant |a_{2p}| = \frac{4}{\pi(4p^2-1)^2} \underbrace{1}_{p\infty} \frac{1}{16\pi p^4} (>0) \text{ terme général d'une série convergente.}$

Le théorème d'intégration terme à terme pour les séries de fonctions à valeurs réelles ou complexes s'applique et permet donc l'interversion. On calcule d'abord

$$\int_0^{+\infty} \cos(nt) e^{-t} \, \mathrm{d}t = \mathfrak{Re} \left[\int_0^{+\infty} e^{(-1+in)t} \, \mathrm{d}t \right] = \mathfrak{Re} \left[\frac{e^{(-1+in)t}}{-1+in} \right]_0^{+\infty} = \mathfrak{Re} \left[\frac{-1}{-1+in} \right] = \frac{1}{1+n^2}$$

d'où
$$\int_0^{+\infty} \cos t \, e^{-t} \, \mathrm{d}t = \frac{1}{2} \, \text{ et } \int_0^{+\infty} \cos(2pt) \, e^{-t} \, \mathrm{d}t = \frac{1}{1+4p^2} \, \text{ donc}$$

$$\int_0^{+\infty} e^{-t} \varphi(t) dt = \frac{2}{\pi} + \frac{1}{2} \left(\frac{2}{\pi} - \frac{\pi}{4} \right) + \frac{4}{\pi} \sum_{p=1}^{+\infty} \frac{1}{(4p^2 - 1)^2 (4p^2 + 1)}$$

et donc

$$\sum_{p=1}^{+\infty} \frac{1}{(4p^2 - 1)(16p^4 - 1)} = \frac{\pi}{4} \left[\frac{1}{4} \frac{1 + e^{-\pi}}{1 - e^{-\pi}} - \frac{2}{\pi} + \frac{\pi}{8} \right]$$

Question III.5

III.5.1 $G_{\varphi}(2\pi) = \int_{0}^{2\pi} \varphi(t) \cos t \, dt = \pi a_1(\varphi) \neq 0$ donc φ n'est pas 2π -périodique d'après le critère de I.4.4.

III.5.2 On a $\phi(x) = \sin x G_{\varphi}(x) - \cos x H_{\varphi}(x)$ donc

$$\phi\left(2n\pi + \frac{\pi}{2}\right) = G_{\varphi}\left(2n\pi + \frac{\pi}{2}\right) = \int_{0}^{2n\pi + \frac{\pi}{2}} \varphi(t)\cos t \, dt = \int_{0}^{\frac{\pi}{2}} \varphi(t)\cos t \, dt + n\int_{0}^{2\pi} \varphi(t)\cos t \, dt$$
$$= \int_{0}^{\frac{\pi}{2}} \varphi(t)\cos t \, dt + n\pi a_{1}(\varphi) \xrightarrow[n\infty]{} -\infty$$

ce qui prouve que ϕ n'est pas bornée sur \mathbb{R} .

III.5.3 Soit $x \ge 0$. Alors

$$|G_{\varphi}(x)| = \left| \int_{0}^{x} \varphi(t) \cos t \, dt \right| \le N_{\infty}(\varphi)x$$

et de même

$$|H_{\varphi}(x)| = \left| \int_0^x \varphi(t) \sin t \, dt \right| \le N_{\infty}(\varphi)x.$$

On en déduit

$$|\phi(x)| = |F_{\varphi}(x)| \leqslant 2xN_{\infty}(\varphi),$$

et donc

$$|e^{-t}\phi(t)| \le 2N_{\infty}(\varphi)t \ e^{-t} = o_{+\infty}\left(\frac{1}{t^2}\right).$$

Ainsi l'application $t \mapsto e^{-t}\phi(t)$ est continue sur \mathbb{R}^+ , négligeable devant une fonction intégrable sur \mathbb{R}^+ , elle est donc intégrable sur \mathbb{R}^+ .