Journal Club: Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Jitian Zhao

University of Wisconsin Madison

November 21, 2019

Outline

- Problems of Vanilla Transformer
- Special Techniques in Transformer-XL
- State-of-the-art Results

Problems of Vanilla Transformer

Figure: train phase

- not able to model dependencies that are longer than a fixed length
- context fragmentation

Problems of Vanilla Transformer

Figure: evaluation phase

• inefficient evaluation procedure

Special Techniques in Transformer-XL

Figure: train phase

- technique: segment-level recurrence
- key difference: updates of key and value rely on extended context
- benefits: model extra long context, faster evaluation

Comparison of evaluation process

Figure: vanilla Transformer

Figure: Transformer-XL

Special Techniques in Transformer-XL

Figure: original position encoding

- technique: relative positional encoding
- **original**: U_i represents absolute position within a segment
- **modified**: R_i represents a relative distance of i between two position

Mathematical Explanation

$$\mathbf{A}_{i,j}^{\text{abs}} = \underbrace{\mathbf{E}_{x_i}^\top \mathbf{W}_q^\top \mathbf{W}_k \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^\top \mathbf{W}_q^\top \mathbf{W}_k \mathbf{U}_j}_{(b)} \qquad \qquad \mathbf{A}_{i,j}^{\text{rel}} = \underbrace{\mathbf{E}_{x_i}^\top \mathbf{W}_q^\top \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^\top \mathbf{W}_q^\top \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(b)} + \underbrace{\mathbf{U}_i^\top \mathbf{W}_q^\top \mathbf{W}_k \mathbf{E}_{x_j}}_{(c)} + \underbrace{\mathbf{U}_i^\top \mathbf{W}_q^\top \mathbf{W}_k \mathbf{U}_j}_{(d)}.$$

$$(a) \text{ original} \qquad \qquad \mathbf{(b) \text{ modified}}$$

Figure: attention score between query q_i and key k_i

- ullet absolute position $U_i
 ightarrow {
 m relative}$ positional encoding R_{i-j}
- query $U_i^T W_q^T \rightarrow \text{trainable parameter } u, v \text{ in (c),(d)}$
- seperate W into $W_{k,E}$, $W_{k,R}$ to represent content-based key vector and location-based key vector

Results

- Long-term and short-term dependency: Reduced perplexity (exponentiation of the entropy) on benchmark datasets
- **Ablation study**: Both segment level recurrence and relative position encoding are necessary
- Evaluation speed: Compared with vanilla transformer

