```
[b]()})}var c=function(b){this.element=a(b)};c.VERSION="3.3.7",c.TRANSITION_DURATION=1!
           use strict";function b(b){return this.each(runction()
    menu)"),d=b.data("target");if(d||(d=b.attr("href"),d=d&&d.replace(/.*(?=#[
a"), f=a.Event("hide.bs.tab", {relatedTarget:b[0]}), g=a.Event("show.b;
wltPrevented()){var h=a(d);this.activate(b.closest("li"),c),this.a
igger({type:"shown.bs.tab",relatedTarget:e[0]})})}}},c.prototype.
.active").removeClass("active").end().find('[data-toggle="tab
    (DATA SCIENCE palled", 10); b. removeC
    Bevestigende analyse [data-toggle="ta
a.proxy(this.checkPosition,this)).on("click")
                                 Wouter Deketelaere
ll,this.pinnedOffset=null,this.checkPosition()};c.VERSION="3
ate=function(a,b,c,d){var e=this.$target.scrollTop(),f=this.$elem
nttom"==this.affixed)return null!=c?!(e+this.unpin<=f.top)&&"bott
&&e<=c?"top":null!=d&&i+j>=a-d&&"bottom"},c.prototype.getPinne
 ET).addClass("affix");var a=this.$target.scrollTop(),b=thi
  ventLoop=function(){setTimeout(a.proxy(this.checkPosity)
```

WAAROM

Waarom doen we dit?

Wat willen we bereiken?

Wat willen we als resultaat?

LEERDOELEN

Na deze les ...

- ken je wat het verschil is tussen een populatie en een steekproef
- weet je wat bedoeld wordt met een steekproef -of populatieparameter
- weet je wat bedoeld wordt met de centrale limietstelling
- weet je wat het gestandaardiseerde steekproefgemiddelde is
- weet je wat een betrouwbaarheidsinterval is
- kan je uitleggen hoe je een betrouwbaarheidsinterval opstelt
- weet je wat een hypothesetoets is
- ken je verschillende soorten hypothesetoetsen
- weet je wat een nul- en alternatieve hypothese is
- ken je het verschil tussen een eenzijdige en tweezijdige toets
- weet je wat een **significantieniveau** lpha betekent
- weet je wat de p-waarde betekent
- weet je wanneer iets statistisch significant is

LEERDOELEN

Na deze les kan je ...

- handmatig een betrouwbaarheidsinterval berekenen
- een betrouwbaarheidsinterval berekenen in GeoGebra
- handmatig een bewering toetsen over een populatie m.b.v. 1 steekproef
- handmatig een bewering toetsen over het gemiddelde van 2 of meer steekproeven
- handmatig een bewering toetsen over de uitzonderlijkheid van een bepaalde verdeling
- een bewering toetsen over een populatie m.b.v. 1 steekproef in GeoGebra of Orange
- een bewering toetsen over het gemiddelde van 2 of meer steekproeven in **GeoGebra** of **Orange**
- een bewering toetsen over de uitzonderlijkheid van een bepaalde verdeling in GeoGebra

WELK PROBLEEM WILLEN WE OPLOSSEN

KANSREKENEN

Wat is de kans?

KANSVERDELINGEN

Het grotere plaatje

STEEKPROEVEN

Informatie verzamelen

BEVESTIGENDE **ANALYSE**

BETROUWBAARHEID

Grenzen stellen

HYPOTHESES TOETSEN

Beweringen controleren

BEVESTIGENDE ANALYSE

TOEVAL OF NIET?

- Is dit patroon toeval?
- Wat is de kans dat we dit waarnemen?
- Welke echte conclusies kunnen we hieruit trekken?

KANSREKENEN

- Grondbeginselen van waarschijnlijkheidstheorie
- Enkele wetten van waarschijnlijkheid

KANSVERDELINGEN

- Normale verdeling
- Standaard normale verdeling
- Studentverdeling
- Chi-kwadraat verdeling

STEEKPROEVEN

- Populatie vs. steekproef
- Eigenschappen van steekproeven

BETROUWBAARHEIDSINTERVALLEN

Binnen welke grenzen vallen nieuwe metingen?

HYPOTHESETESTS

- Kunnen we beweringen verifiëren?
- Wanneer kunnen we beweringen weerleggen?

TECHNIEKEN

Statistieken

WETEN WE ZEKER DAT HET GEBEURT?

WAT IS EEN STEEKPROEF?

WAT IS EEN STEEKPROEF?

Populatie

- Verzameling van objecten waarop het onderzoek zich richt.
- Parameters
 - Populatiegemiddelde μ
 - Populatiestandaardafwijking σ

Steekproef

- Willekeurige selectie van objecten uit de populatie.
- Parameters
 - Steekproefgemiddelde \bar{x} ,
 - Steekproefstandaardafwijking s
 - Steekproefgrootte n

WAAROM EEN STEEKPROEF?

Doel

We willen op basis van een steekproef uitspraken doen over de populatie.

Betrouwbaarheidsinterval

Grenzen bepalen voor μ en σ o.b.v. \bar{x} en s.

Aanvaardingsinterval

Bewering over populatie controleren door zelf meting (steekproef) te doen.

EIGENSCHAPPEN VAN STEEKPROEVEN

WAT IS EEN STEEKPROEF?

Nieuwe definitie

Een steekproef nemen is eigenlijk een toevalsexperiment! \bar{x} en s zijn onderhevig aan toeval.

→ continue toevalsvariabelen

Toevalsvariabelen

 \bar{X} = Het steekproefgemiddelde \bar{x} van een steekproef S = Het steekproefstandaardafwijking S van een steekproef

$$T = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$$
 = gestandaardiseerd steekproefgemiddelde

STEEKPROEFVERDELING

Centrale limietstelling

Geschaalde steekproefgemiddelden zijn normaal verdeeld als steekproefgrootte n groot is.

Verdeling
$$\overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$
 en dus $T \sim N(0,1)$

Gemiddelde van steekproefgemiddelden wordt gelijk aan populatiegemiddelde μ Variantie van steekproeven wordt gelijk aan populatievariantie gedeeld door steekproefgrootte n

Generate 20 random numbers from 0 and 9. Find their average. Repeat 1000 times. The averages will approximate a normal distribution (bell curve) centered at 4.5.

STEEKPROEFVERDELING

Problemen

- 1. We kennen μ en σ niet!
 - \rightarrow Benaderen door \bar{x} en s
- 2. Maar voor kleine steekproef (n < 30)
 - \rightarrow s slechte benadering voor σ
 - \rightarrow voor kleine n is de curve spitser

Oplossing

Andere verdeling gebruiken!

 \rightarrow Studentverdeling t(v)

STUDENTVERDELING

Studentverdeling

Lijkt heel hard op standaardnormale verdeling N(0,1) °4

Notatie

$$X \sim t(v)$$

Definitie van t(v)

ν bepaalt uitzicht van verdeling

 ν aantal vrijheidsgraden (degrees of freedom)

Hoe groter ν hoe meer de verdeling lijkt op normaalverdeling

STEEKPROEFVERDELING

Toevalsvariabele

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$
 = gestandaardiseerde steekproefgemiddelde

Verdeling

 $T \sim t(\nu)$ (= Studentverdeling)

 $\nu=n-1$ altijd gelijk aan steekproefgrootte - 1

Correcter voor kleine steekproeven dan normale verdeling. Even correct voor grote steekproeven!

→ Altijd deze verdeling gebruiken

WELK PROBLEEM WILLEN WE OPLOSSEN

Kunnen we garanties geven?

KANSREKENEN

Wat is de kans?

KANSVERDELINGEN

Het grotere plaatje

IV

STEEKPROEVEN

Informatie verzamelen

BEVESTIGENDE V ANALYSE

BETROUWBAARHEID

Grenzen stellen

HYPOTHESES TOETSEN

Beweringen controleren

VI

BEVESTIGENDE ANALYSE

TOEVAL OF NIET?

- Is dit patroon toeval?
- Wat is de kans dat we dit waarnemen?
- Welke echte conclusies kunnen we hieruit trekken?

KANSREKENEN

- Grondbeginselen van waarschijnlijkheidstheorie
- Enkele wetten van waarschijnlijkheid

KANSVERDELINGEN

- Normale verdeling
- Standaard normale verdeling
- Studentverdeling
- Chi-kwadraat verdeling

STEEKPROEVEN

- Populatie vs. steekproef
- Eigenschappen van steekproeven

BETROUWBAARHEIDSINTERVALLEN

Binnen welke grenzen vallen nieuwe metingen?

HYPOTHESETESTS

- Kunnen we beweringen verifiëren?
- Wanneer kunnen we beweringen weerleggen?

TECHNIEKEN

Statistieken

WETEN WE ZEKER DAT HET GEBEURT?

GRENZEN STELLEN

GRENZEN STELLEN

Voorbeeld

We meten het verbruik van een aantal laptops.

- aantal laptops getest:
 - n = 30
- steekproefgemiddelde:
 - $\bar{x} = 40 W$
- steekproefstandaardafwijking:
 - s = 20 W

Vraag

Wat zegt onze steekproef over het verbruik van alle laptops?

GRENZEN STELLEN

Vaststellingen

- Hoe meer laptops we testen, hoe zekerder we worden
- Hoe groter de standaardafwijking van onze steekproef, hoe onzekerder we worden
- We weten 100% zeker dat het gemiddelde verbruik van laptops tussen $-\infty$ en $+\infty$ W ligt
- We zijn minder zeker dat het verbruik tussen 30 en 50W ligt
- We zijn redelijk zeker dat het verbruik van laptops niet boven de 1000W ligt
- We zijn 100% zeker dat het gemiddelde verbruik niet exact 40,000000W is

Doel

Kunnen we dit niet formaliseren?

Doel

Interval vinden voor populatiegemiddelde μ

Oplossing

Vertrekken van $T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$, het gestandaardiseerde steekproefgemiddelde.

Omvormen geeft $\mu = \bar{X} - T \frac{s}{\sqrt{n}}$

Steekproef (met \bar{x} , s, n) geeft ons waarden voor \bar{X} , S en n: $\mu = \bar{x} - T \frac{s}{\sqrt{n}}$

Maar welke waarde(n) heeft T? Het is een variabele.

Waarde van de variabele *T*?

Hangt af van welke betrouwbaarheid C% we wensen.

$$T \sim t(n-1)$$

C%	t1 en t2				
90,0%	± 1,65				
95,0%	± 1,96				
95,5%	± 2,00				
99,0%	± 2,58				
99,7%	± 3,00				
C%	$\pm t$				

$$\mu = \bar{x} - T \frac{s}{\sqrt{n}} \Rightarrow \mu = \bar{x} \pm t \frac{s}{\sqrt{n}}$$

$$\Rightarrow \bar{x} - t \frac{s}{\sqrt{n}} < \mu < \bar{x} + t \frac{s}{\sqrt{n}}$$

Voorbeeld

$$n = 30, \bar{x} = 40 W, s = 20 W$$

Kies $C\% = 95,5\% \rightarrow t = 2$

Vraag

Wat zegt de steekproef over het verbruik van alle laptops?

$$\bar{x} - t \frac{s}{\sqrt{n}} < \mu < \bar{x} + t \frac{s}{\sqrt{n}}$$

$$40 - 2 \frac{20}{\sqrt{30}} < \mu < 40 + 2 \frac{20}{\sqrt{30}}$$

Voorbeeld

$$n = 30, \bar{x} = 40 W, s = 20 W$$

Kies $C\% = 90\% \rightarrow t = 1.65$

Vraag

Wat zegt steekproef over het verbruik van alle laptops?

$$\bar{x} - t \frac{s}{\sqrt{n}} < \mu < \bar{x} + t \frac{s}{\sqrt{n}}$$

$$40 - 1.65 \frac{20}{\sqrt{30}} < \mu < 40 + 1.65 \frac{20}{\sqrt{30}}$$

Voorbeeld

$$n = 100, \bar{x} = 40 W, s = 20 W$$

Kies $C\% = 90\% \rightarrow t = 1.65$

Vraag

Wat zegt steekproef over het verbruik van alle laptops?

$$\bar{x} - t \frac{s}{\sqrt{n}} < \mu < \bar{x} + t \frac{s}{\sqrt{n}}$$

$$40 - 1.65 \frac{20}{\sqrt{100}} < \mu < 40 + 1.65 \frac{20}{\sqrt{100}}$$

Voorbeeld

$$n = 100, \bar{x} = 40 W, s = 10 W$$

Kies $C\% = 90\% \rightarrow t = 1.65$

Vraag

Wat zegt steekproef over het verbruik van alle laptops?

$$\bar{x} - t \frac{s}{\sqrt{n}} < \mu < \bar{x} + t \frac{s}{\sqrt{n}}$$

$$40 - 1.65 \frac{10}{\sqrt{100}} < \mu < 40 + 1.65 \frac{10}{\sqrt{100}}$$

Conclusies

steekproef	grootte	gemiddelde	afwijking	<i>C</i> %	t_{1} , t_{2}	ondergrens	bovengrens	breedte
1	n = 30	$\bar{x} = 40 W$	s = 20 W	95.5%	±2.00	32.35	47.65	15.30
2	n = 30	$\bar{x} = 40 W$	s = 20 W	90.0%	±1.65	33.98	46.02	12.04
3	n = 100	$\bar{x} = 40 W$	s = 20 W	90.0%	±1.65	36.70	43.30	6.59
4	n = 100	$\bar{x} = 40 W$	s = 10 W	90.0%	±1.65	38.35	41.65	3.30

Groter steekproef, kleine standardafwijking, lagere betrouwbaarheid → kleiner interval.

Conclusies

Betrouwbaarheidsinterval bepaalt de grenzen waarbinnen met C%-zekerheid het echte populatiegemiddelde μ valt.

- 90% \rightarrow kans van 90% dat μ ook effectief in het gevonden interval ligt $P(\mu \in [\bar{x} t \frac{s}{\sqrt{n}}, \bar{x} + t \frac{s}{\sqrt{n}}]) = 0.9$
- 95% \rightarrow kans van 95% dat μ ook effectief in het gevonden interval ligt $P(\mu \in [\bar{x} t \frac{s}{\sqrt{n}}, \bar{x} + t \frac{s}{\sqrt{n}}]) = 0.95$

•

Dat is de echte betekenis van een betrouwbaarheidsinterval.

PRAKTIJK

GEOGEBRA

Betrouwbaarheidsintervallen in GeoGebra

Makkelijkst via Schermindeling → Kansrekening → Statistiek en de juiste schatting kiezen:

T Schatting van gemiddelde

Kan ook manueel via eigen berekeningen.

GEOGEBRA

Voorbeeld

$$n = 30, \bar{x} = 40 W, s = 20 W$$

Kies $C\% = 95,5\% \rightarrow t = 2$

- → Kies voor T Schatting van gemiddelde
- → Stel gewenst betrouwbaarheidsinterval in
- → Gegevens invullen -
- → Resultaten aflezen

WELK PROBLEEM WILLEN WE OPLOSSEN

Kunnen we garanties geven?

KANSREKENEN

Wat is de kans?

KANSVERDELINGEN

Het grotere plaatje

IV

STEEKPROEVEN

Informatie verzamelen

BETROUWBAARHEID

Grenzen stellen

BEVESTIGENDE ANALYSE

VI

HYPOTHESES TOETSEN

Beweringen controleren

Reject

Fail to Reject
the Null

Hypothoeis

HYPOTHESES TOETSEN

BEWERINGEN CONTROLEREN

Reject

Critical Value (-) Critical Value (+)

BEVESTIGENDE ANALYSE

TOEVAL OF NIET?

- Is dit patroon toeval?
- Wat is de kans dat we dit waarnemen?
- Welke echte conclusies kunnen we hieruit trekken?

KANSREKENEN

- Grondbeginselen van waarschijnlijkheidstheorie
- Enkele wetten van waarschijnlijkheid

KANSVERDELINGEN

- Normale verdeling
- Standaard normale verdeling
- Studentverdeling
- Chi-kwadraat verdeling

STEEKPROEVEN

- Populatie vs. steekproef
- Eigenschappen van steekproeven

BETROUWBAARHEIDSINTERVALLEN

Binnen welke grenzen vallen nieuwe metingen?

HYPOTHESETESTS

- Kunnen we beweringen verifiëren?
- Wanneer kunnen we beweringen weerleggen?

TECHNIEKEN

Statistieken

WETEN WE ZEKER DAT HET GEBEURT?

EERST ZIEN EN DAN GELOVEN

EERST ZIEN EN DAN GELOVEN

Ter herinnering

We willen op basis van een steekproef uitspraken doen over de populatie.

Betrouwbaarheidsinterval

Grenzen bepalen voor μ en σ o.b.v. \bar{x} en s.

Aanva Bewer

Aanvaardingsinterval

Bewering over populatie controleren door zelf meting (steekproef) te doen.

EERST ZIEN EN DAN GELOVEN

Voorbeeld

Een vriend stelt voor om een muntstuk op te gooien om te bepalen wie de rekening betaalt.

Je aanvaardt het voorstel, maar houdt rekening met

Vriend gebruikt een eerlijk muntstuk	Nulhypothese H_0
Vriend gebruikt een vervalst muntstuk	Alternatieve hypothese H_1

IS HET MUNTSTUK VERVALST?

Voorbeeld

Vanaf welke kans worden we achterdochtig? Is dit door toeval? Of niet?

- \rightarrow significantieniveau α
- → bv. $\alpha = 0.05 (5\%)$

IS HET MUNTSTUK VERVALST?

All kansen P gaan uit van de nulhypothese H_0 , een eerlijk muntstuk

HYPOTHESES TOETSEN

HOE WERKT EEN HYPOTHESETOETS

WELKE TESTEN ZIJN ER?

t-toets met **2** steekproeven

Chi-kwadraat toets (χ^2)

WELKE TESTEN ZIJN ER?

t-toets met **2** steekproeven

Chi-kwadraat toets (χ^2)

Hypotheses

Dit zijn veronderstellingen, genaamd H_0 en H_1 .

Een significantieniveau α

Dit is een grenswaarde die je op voorhand kiest. Na de test is dit de kans dat je foute conclusie trekt.

Een steekproef

Een steekproef van met grootte n, gemiddelde \bar{x} , en standaardafwijking s

Een verdeling $T(\nu)$

Dit is de Student – verdeling met een aantal vrijheidsgraden ν , ν hangt af van de test.

Een toetsingsgrootheid t

Een maatstaf bepaald door de steekproef waarmee je kan testen, t hangt af van de test.

De p-waarde

De waarschijnlijkheid van de toetsingsgrootheid t, p hangt af van het soort toets.

Hypotheses

Dit zijn veronderstellingen, genaamd H_0 en H_1 .

H_0 - de nulhypothese	H_1 - de alternatieve hypothese
onze steekproef komt overeen met de populatie	onze steekproef toont heel andere resultaten
geen verschil in de parameters	wel een verschil in parameters
• $\bar{x} = \mu$	• $\bar{x} \neq \mu$ (tweezijdige toets)
	• $\bar{x} > \mu$, of $\bar{x} < \mu$ (eenzijdige toets)
We doen de test ervan uitgaande dat H_0 waar is.	Als het resultaat van de test onwaarschijnlijk blijkt, is H_0 vals en H_1 waar.

Voorbeeld

We willen testen of trein tussen Mechelen en Antwerpen-Central er exact 17 minuten over doet.

H_0 - de nulhypothese	H_1 - de alternatieve hypothese
 onze steekproef komt overeen met de populatie 	 onze steekproef toont heel andere resultaten
• H_0 : $\mu = 17$	• H_1 : $\mu \neq 17$ (tweezijdige toets)
We doen de test ervan uitgaande dat H_0 waar is.	Als het resultaat van de test onwaarschijnlijk blijkt, is H_0 vals en H_1 waar.

Voorbeeld

We willen testen of de gemiddelde score voor Programmeren 1 van 1e jaarstudenten groter is dan of gelijk aan 10 op 20.

H_0 - de nulhypothese	H_1 - de alternatieve hypothese
onze steekproef komt overeen met de populatie	onze steekproef toont heel andere resultaten U. 10 (considire toote)
• $H_0: \mu \ge 10$	• H_1 : $\mu < 10$ (eenzijdige toets)
We doen de test ervan uitgaande dat H_0 waar is.	Als het resultaat van de test onwaarschijnlijk blijkt, is H_0 vals en H_1 waar.

Voorbeeld

We willen testen of de hoeveelheid centiliter bier in een fles kleiner is dan 25cl.

H_0 - de nulhypothese	H_1 - de alternatieve hypothese
• onze steekproef komt overeen met de populatie $ H_0 \colon \mu \leq 25 $	 onze steekproef toont heel andere resultaten H₁: μ > 25 (eenzijdige toets)
We doen de test ervan uitgaande dat H_0 waar is.	Als het resultaat van de test onwaarschijnlijk blijkt, is H_0 vals en H_1 waar.

Formuleren van de hypotheses

Hangt dus af van wat je juist wil toetsen.

Een verdeling $T(\nu)$

T is de Studentverdeling met ν het aantal vrijheidsgraden, meestal gelijk aan n-1

Een toetsingsgrootheid t

Een moeilijk woord voor een getal dat uit de steekproef komt gerold. Hangt af van het soort test.

Tweezijdig toets

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

De p-waarde

Als H_0 waar is kunnen we berekenen hoe waarschijnlijk de waarden uit onze steekproef zijn.

Tweezijdig toets Eenzijdig toets $p = 2 \cdot P(T < t)$ p = P(T > t)p = P(T < t)0.025

Hypotheses

Dit zijn veronderstellingen, genaamd H_0 en H_1 .

Significantieniveau

 α

Een steekproef

 n, \bar{x} en s

Een verdeling $T(\nu)$

$$T(n-1)$$

Een toetsingsgrootheid t

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

De p-waarde

tweezijdige toets: $p = 2 \cdot P(T < t)$ of $p = 2 \cdot P(T > t)$ eenzijdige toets: p = P(T < t) of p = P(T > t)

Voorbeeld

Iemand beweert dat de gemiddelde schermgrootte van alle verkochte televisies 40 inch is.

• $\mu = 40$ inch

We doen een steekproef van enkele verkochte televisies.

• n = 50, $\bar{x} = 43$ inch en s = 10 inch

Stappenplan

- 1. Kies voor eenzijdige of tweezijdige test.
- 2. Formuleer H_0 en H_1
- 3. Kies significantieniveau α
- 4. Bepaal de p-waarde van toetsingsgrootheid $t = \frac{\bar{x} \mu}{s/\sqrt{n}}$
- 5. Wat besluit je?

Voorbeeld

Iemand beweert dat de gemiddelde schermgrootte van alle verkochte televisies 40 inch is.

- Kies voor eenzijdige of tweezijdige test tweezijdige test
- 2. Formuleer H_0 en H_1

$$H_0$$
: $\mu = 40$
 H_1 : $\mu \neq 40$

- 3. Kies significantieniveau α $\alpha = 0.05$
- 4. Bepaal de p-waarde van toetsingsgrootheid $t = \frac{x-\mu}{s/\sqrt{n}}$ p = 2 P(T < t) als t negatief is p = 2 P(T > t) als t positief is

Voorbeeld

Iemand beweert dat de gemiddelde schermgrootte van alle verkochte televisies 40 inch is.

4. Bepaal de p-waarde met van $t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$

$$\rightarrow p = 2 \cdot 0.0195$$

$$\rightarrow p = 0.039$$

Voorbeeld

Iemand beweert dat de gemiddelde schermgrootte van alle verkochte televisies 40 inch is.

5. Wat besluit je?

$$p = 0.039$$

$$p < \alpha$$

 \rightarrow We verwerpen $H_0!$

Voorbeeld

Iemand beweert dat de gemiddelde schermgrootte van alle verkochte televisies 40 inch is.

• $\mu = 40$ inch

We doen een steekproef van enkele verkochte televisies.

• n = 50, $\bar{x} = 42$ inch en s = 10 inch

Stappenplan

- 1. Kies voor eenzijdige of tweezijdige test.
- 2. Formuleer H_0 en H_1
- 3. Kies significantieniveau α
- 4. Bepaal de p-waarde met van $t = \frac{x-\mu}{s/\sqrt{n}}$
- 5. Wat besluit je?

Voorbeeld

Iemand beweert dat de gemiddelde schermgrootte van alle verkochte televisies 40 inch is.

- Kies voor eenzijdige of tweezijdige test tweezijdige test
- 2. Formuleer H_0 en H_1

$$H_0$$
: $\mu = 40$
 H_1 : $\mu \neq 40$

3. Kies significantieniveau α $\alpha = 0.05$

4. Bepaal de p-waarde van toetsingsgrootheid $t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$

$$p = 2 P(T < t)$$
 als t negatief is $p = 2 P(T > t)$ als t positief is

Voorbeeld

Iemand beweert dat de gemiddelde schermgrootte van alle verkochte televisies 40 inch is.

4. Bepaal de p-waarde van toetsingsgrootheid $t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$

$$\rightarrow p = 2 \cdot 0.0818$$

$$\rightarrow p = 0.1637$$

Voorbeeld

Iemand beweert dat de gemiddelde schermgrootte van alle verkochte televisies 40 inch is.

5. Wat besluit je?

$$p = 0.1637$$

$$p > \alpha$$

 \rightarrow We kunnen H_0 **niet** verwerpen!

WELKE TESTEN ZIJN ER?

t-toets met **2** steekproeven

Chi-kwadraat toets (χ^2)

Hypotheses

Dit zijn veronderstellingen, genaamd H_0 en H_1 .

Twee steekproeven

$$n_1$$
, \bar{x}_1 en s_1 en n_2 , \bar{x}_2 en s_2

Een verdeling $T(\nu)$

$$\nu = \left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2 / \frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}$$

Een toetsingsgrootheid t

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

De p-waarde

tweezijdige toets: $p = 2 \cdot P(T < t)$ of $p = 2 \cdot P(T > t)$ eenzijdige toets: p = P(T < t) of p = P(T > t)

Voorbeeld

Verkoopt de concurrentie grotere televisies?

We doen twee steekproeven: bij ons (1) en bij de concurrentie (2)

$$n_1 = 50$$
, $\bar{x}_1 = 42$ inch en $s_1 = 10$ inch

$$n_2 = 30$$
, $\bar{x}_2 = 43$ inch en $s_2 = 12$ inch

Stappenplan

- 1. Kies voor eenzijdige of tweezijdige test.
- 2. Formuleer H_0 en H_1
- 3. Kies significantieniveau α
- 4. Bepaal de p-waarde van toetsingsgrootheid $t = (\bar{x}_1 \bar{x}_2) / \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
- 5. Wat besluit je?

Stappenplan

- 1. Kies voor eenzijdige of tweezijdige test.
 - eenzijdige toets
- 2. Formuleer H_0 en H_1

$$H_0: \bar{x}_1 = \bar{x}_2$$

$$H_1: \bar{x}_1 < \bar{x}_2$$

3. Kies significantieniveau α

$$\alpha = 0.01$$

Stappenplan

4. Bepaal de *p*-waarde met van $t = (\bar{x}_1 - \bar{x}_2) / \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

$$t = (42 - 43) / \sqrt{\frac{10^2}{50} + \frac{12^2}{30}} = -0.3835$$

$$\nu = \left(\frac{10^2}{50} + \frac{12^2}{30}\right)^2 / \frac{\left(\frac{10^2}{50}\right)^2}{49} + \frac{\left(\frac{12^2}{30}\right)^2}{39} = 52.78$$

$$p = P(T < t) = 0.3515$$

Stappenplan

5. Wat besluit je?

$$p = 0.3515$$

$$p > \alpha$$

- \rightarrow We kunnen H_0 **niet** verwerpen!
- → De concurrentie verkoopt dus geen grotere televisies!

WELKE TESTEN ZIJN ER?

t-toets met **2** steekproeven

Chi-kwadraat toets (χ^2)

Hypotheses

Dit zijn veronderstellingen, genaamd H_0 en H_1 .

Significantieniveau

 α

k steekproeven met elk een andere waarde voor 1 categorische variabele

 n, n_i, \bar{x}_i steekproefgegevens voor de verschillende steekproeven.

Een verdeling $F(\alpha, \beta)$

$$\alpha = k - 1, \beta = n - k$$

Een toetsingsgrootheid f

$$f = \frac{MSB}{MSW}$$
(zie volgende slides)

De p-waarde

eenzijdige toets:
$$p = P(F > f)$$

Voorbeeld

Is er een verschil tussen de scores op 3 verschillende vakken afgelegd door 5 studenten?

	k groepen		
Student	Programmeren 1	Data Science 1	User Interfaces 1
Bob	10	15	17
Nina	12	16	17
Tim	12	17	16
Kate	11	15	17
Alonzo	10	12	13
$\bar{x} = 14$	$\bar{x}_1 = 11$	$\bar{x}_2 = 15$	$\bar{x}_3 = 16$
gemiddelde van alle observaties $\bar{x}=14$	steekproef 1 $n_1 = 5$ $\bar{x}_1 = 11$	steekproef 2 $n_2 = 5$ $\bar{x}_2 = 15$	steekproef 3 $n_3 = 5$ $\bar{x}_3 = 16$

Sum of Squares Total = Sum of Squares Between + Sum of Squares Within

$$SST = SSB + SSW$$

•
$$SST = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

= $(10 - 14)^2 + (12 - 14)^2 + \dots + (13 - 14)^2$
= 100

•
$$SSB = \sum_{i=1}^{k} n_i \cdot (\bar{x}_i - \bar{x})^2$$

= $5 \cdot (11 - 14)^2 + 5 \cdot (15 - 14)^2 + 5 \cdot (16 - 14)^2$
= 70

•
$$SSW = \sum_{j=1}^{k} \sum_{i=1}^{n_i} (x_i - \bar{x}_j)^2$$

= $(10 - 11)^2 + (12 - 11)^2 + \dots + (10 - 11)^2 + (15 - 15)^2 + (16 - 15)^2 + \dots + (12 - 15)^2 + (17 - 16)^2 + (17 - 16)^2 + \dots + (13 - 16)^2$
= 30

Mean SSB en Mean SSW

We delen de SSB – en SSW – waarden door hun respectievelijke degrees of freedom (df)

$$MSB = \frac{SS_B}{df_B} \text{ en } df_B = k - 1$$
$$= \frac{70}{3-1}$$
$$= 35$$

$$MSW = \frac{SS_W}{df_W} \text{ en } df_W = n - k$$
$$= \frac{30}{15-3}$$
$$= 2.5$$

Stappenplan

- 1. Kies voor eenzijdige of tweezijdige test.
 - eenzijdige toets
- 2. Formuleer H_0 en H_1

$$H_0: \mu_1 = \mu_2 = \mu_3$$
 $H_1: \mu_1 \neq \mu_2 = \mu_3$ of
 $\mu_1 = \mu_2 \neq \mu_3$ of
 $\mu_1 \neq \mu_2 \neq \mu_3$

3. Kies significantieniveau α

$$\alpha = 0.05$$

Stappenplan

4. Bepaal de p-waarde van $f = \frac{MS_{between}}{MS_{within}}$

$$f = \frac{35}{2.5} = 14$$

$$p = P(F > f) = 0.007$$

5. Wat besluit je?

$$p = 0.007 < 0.05 = \alpha$$

- \rightarrow We verwerpen $H_0!$
- → Er is wel degelijk een verschil tussen de scores op de vakken!

WELKE TESTEN ZIJN ER?

t-toets met **2** steekproeven

WAT HEB JE NODIG VOOR DEZE TEST?

Hypotheses

Dit zijn veronderstellingen, genaamd H_0 en H_1 .

Significantieniveau

 α

Een steekproef

Geobserveerde frequenties O en berekende verwachte frequenties E

Een verdeling $\chi^2(\nu)$

$$\nu = (n-1) \cdot (m-1)$$

Een toetsingsgrootheid Q

$$Q = \sum_{i} \frac{(o_i - e_i)^2}{e_i}$$

De p-waarde

eenzijdige toets: $p = P(\chi^2 > Q)$

χ^2 -toets

Voorbeeld

Hebben witte producten een slechtere koeling?

Geobserveerde frequenties

	Wit merk	Geen wit merk	Totalen
Slechte koeling	1498	1513	3011
Goede koeling	504	6485	6989
Totalen	2002	7998	10000

Verwachte frequenties

	Wit merk	Geen wit merk	Totalen
Slechte koeling	$\frac{3011 \cdot 2002}{10000} = 602.8022$	$\frac{3011 \cdot 7998}{10000} = 2408.1978$	3011
Goede koeling	$\frac{6989 \cdot 2002}{10000} = 1399.1978$	$\frac{6989 \cdot 7998}{10000} = 5589.8022$	6989
Totalen	2002	7998	10000

χ^2 -toets

Stappenplan

- 1. Kies voor eenzijdige of tweezijdige test.
 - eenzijdige toets
- 2. Formuleer H_0 en H_1

$$H_0: Q = 0$$

$$H_1: Q > 0$$

3. Kies significantieniveau α

$$\alpha = 0.05$$

Chi-kwadraat toets (χ^2)

χ^2 -toets

Stappenplan

4. Bepaal de p-waarde met van $q = \sum_{i} \frac{(o_i - e_i)^2}{e_i}$

$$q = \frac{(1498 - 602.8)^2}{602.8} + \frac{(1513 - 2408.2)^2}{2408.2} + \frac{(504 - 1399.2)^2}{1399.2} + \frac{(6485 - 5589.8)^2}{5589.8} = 2378,3$$

$$\nu = (2 - 1) \cdot (2 - 1)$$

$$p = P(\chi^2 > Q) = 0$$

5. Wat besluit je?

$$p = 0 < 0.05 = \alpha$$

- \rightarrow We verwerpen $H_0!$
- → Wit producten hebben een slechtere koeling.

Chi-kwadraat toets (χ^2)

Fouten

Risico op het maken van twee soorten fouten bij de interpretatie van de resultaten:

Type I-fout

- de nulhypothese H_0 verwerpen, terwijl deze eigenlijk wel waar is.
- de kans hierop is α (significantie)

Type II-fout

- de nulhypothese H_0 niet verwerpen, terwijl deze eigenlijk onjuist is.
- de kans hierop is β

H_0 is	Waar	Onwaar	
Verworpen	Type I – fout α	Correcte beslissing	
Niet verworpen	Correcte beslissing	Type II – fout eta	

Voorbeeld

Je besluit je te laten testen op corona, omdat je milde symptomen hebt.

Er zijn twee fouten die mogelijk kunnen optreden:

Type I-fout

- → testresultaat beweert dat je corona hebt, maar dat heb je eigenlijk niet.
- → vals positief

Type II-fout

- → testresultaat beweert dat je geen corona hebt, maar dat heb je eigenlijk wel.
- → vals negatief

Wat betekent dat?

- p-waarde > significantieniveau α
 - \rightarrow nulhypothese H_0 niet verworpen
 - → resultaten niet statistisch significant
 - \rightarrow geen conclusie mogelijk (ook niet dat H_1 waar is)
 - → mogelijk type II-fout gemaakt
- p-waarde < significantieniveau α
 - \rightarrow nulhypothese H_0 verworpen
 - → resultaten statistisch significant
 - $\rightarrow H_1$ is (waarschijnlijk) waar
 - → mogelijk type I-fout gemaakt

PRAKTIJK

Toetsen in GeoGebra

Makkelijkst via Schermindeling → Kansrekening → Statistiek en de juiste toets kiezen:

- T-toets van gemiddelde = t-toets met 1 steekproef
- T-toets, verschil van gemiddelden = t-toets met 2 steekproeven
- Kwaliteit van de fitting-test = χ^2 toets
- ChiKwadraat Toets = χ^2 toets
- F-test, variantieanalyse, ANalysis Of VAriance (ANOVA)
 (niet getoond)

Kan ook manueel via eigen berekeningen.

Voorbeeld

Iemand beweert dat de gemiddelde schermgrootte van alle verkochte televisies 40 inch is.

Voorbeeld

Verkoopt de concurrentie grotere televisies?

We doen twee steekproeven: bij ons (1) en bij de concurrentie (2) Verdeling Statistiek

 $n_1 = 50$, $\bar{x}_1 = 42$ inch en $s_1 = 10$ inch

 $n_2 = 30$, $\bar{x}_2 = 43$ inch en $s_2 = 12$ inch

- → Kies voor T-toets, verschil van gemiddelden
- → < betekent eenzijdige toets -
- → Gegevens invullen
- → Resultaten aflezen

Voorbeeld

Is er een verschil tussen de scores op 3 verschillende vakken afgelegd door 5 studenten?

Voorbeeld

Hebben witte producten een slechtere koeling?

Geobserveerde frequenties

	Wit merk	Geen wit merk	Totalen	Verdeling Statistiek
Slechte koeling	1498	1513	3011	ChiKwadraat Toets Riien 2
Goede koeling	504	6485	6989	Rijen 2 v Kolommen 2 v
Totalen	2002	7998	10000	☐ Rij % ☐ Kolom % ✓ Verwachte aantal ☐ X² Contributie
				Wit merk Geen wit merk
				1498 1513
				602.8022 2408.1978
→ Kies voor Chi	ikwadraat T	note		Goede koeling 504 6485
/ Kies voor Gill	ikwauraat i	76(3,		1399.1978 5589.8022
N 17: 11 ::	1 1			2002 7998
→ Kies # rijen en kolommen			Resultaat	
\ O = = = = = = = = = = = = = = = = = =			ChiKwadraat Toets	
→ Gegevens inv	/ulien [=======			olf 1
			df 1 X ² 2378.3006	
→ Resultaten at	flezen			7 2576.5000 p 0
/ Nesultatell al	CZC			P •

Werken mannen langer dan vrouwen? (significantieniveau α =0.10)

Werken mannen langer dan vrouwen? (significantieniveau α =0.10)

Heeft het departement waarvoor je werkt een invloed op je scholingsgraad (1-5)?

Is er een verschil in het totaal aan gewerkte uren naargelang je burgerlijke staat?

Wordt je meer betaald afhankelijk van je opleidingsniveau?

Wat hebben we geleerd?

populatie

de volledige verzameling van individuen, objecten of gebeurtenissen waarop een onderzoek gericht is.

steekproef

een deelverzameling van de populatie die wordt geanalyseerd om conclusies te trekken over de hele populatie. Deze deelverzameling komt tot stand door toeval.

populatieparameter

een kenmerk of eigenschap van de gehele populatie, bijvoorbeeld het gemiddelde of de standaardafwijking.

steekproefparameter

een kenmerk of eigenschap van de steekproef, gebruikt om uitspraken te doen over de populatieparameter.

centrale limietstelling

het gemiddelde van een toevalsvariabele zal, ongeacht de oorspronkelijke verdeling van de toevalsvariabele, normaal verdeeld zal zijn, en bij kleine steekproeven studentverdeeld.

steekproefverdeling

de verdeling van een steekproefparameter, zoals het gemiddelde of de variantie, gebaseerd op herhaalde trekkingen van steekproeven uit dezelfde populatie, vaak gelijk aan de Studentverdeling

Wat hebben we geleerd?

betrouwbaarheidsinterval

een interval voor een onbekende populatieparameter

hypothese

een bewering over de waarde van een populatieparameter

hypothesetest

op basis van bewijsmateriaal uit steekproeven, een procedure om te bepalen of de gestelde hypothese een redelijke of onredelijk verklaring is.

• significantieniveau

kans op het maken van een type I fout

p-waarde

de kans dat een gebeurtenis puur toevallig plaatsvindt, aangenomen dat de nulhypothese waar is; hoe kleiner de pwaarde, hoe sterker het bewijs tegen de nulhypothese is

Wat hebben we geleerd?

- **type I-fout** fout die je maakt wanneer je nulhypothese foutief verwerpt
- type Il-fout fout die je maakt wanneer je nalaat om de nulhypothese te verwerpen
- statistisch significant als p-waarde kleiner is dan α . Hoe kleiner p-waarde hoe meer statistisch significant de test is.