LITERATURE SURVEY

SNO	TITLE OF THE PAPER	NAME OF THE JOURNAL	AUTHOR	YEAR OF PUBLISHING	ACHIEVEMENTS	FUTURE WORK
1.	Heart Disease Prediction using Machine Learning	IEEE	Chaimaa Boukhatem, Heba Yahia Youssef, Ali Bou Nassif.	2022	This paper refers to any critical condition that impacts the heart. Because heart diseases can be life-threatening, researchers are focusing on designing smart systems. This work presents several machine learning approaches for predicting heart diseases, using data of major health factors from patients. The paper demonstrated four classification methods: Multilayer Perceptron (MLP), Support Vector Machine (SVM), Random Forest (RF), and Naïve Bayes (NB), to build the prediction models.	Common diseases result from the combined effects of multiple genes and environmental factors. This complexity makes it very difficult to predict whether or not an individual will inherit disease.
2.	Heart Disease Prediction using Machine Learning and Data Analytics Approach	Research	M.Marimuthu, M.Abinaya, K.S.Hariesh, K.Madhankumar, V.Pavithra	2018	Some of the data mining and machine learning techniques are used to predict the heart disease, such as Artificial Neural Network (ANN), Decision tree, Fuzzy Logic, K-Nearest Neighbour(KNN), Naïve Bayes and Support Vector Machine (SVM). This paper provides an insight of the existing algorithm and it gives an overall summary of the existing work.	There are many possible improvements that could be explored to improve the scalability and accuracy of this prediction system. Due to time limitation, the following research / work need to be performed for the future
3	Prediction Techniques of Heart Disease using Machine Learning	IJERT	Mangesh Limbitote, Dnyaneshwari Mahajan, Kedar Damkondwar, Pushkar Patil	2020	This data is analysed on regular basis. In this review, an overview of the heart disease and its current procedures is firstly introduced. Furthermore, an in-depth analysis of the most relevant machine learning	A computerized system alone does not ensure accuracy, and the warehouse data is only as good as the data entry that created it. The system is not fully automated, it needs data from user for full

					techniques available on the literature for heart disease prediction is briefly elaborated. We are working on the algorithm with best accuracy. This will help the doctors to assist the heart problem easily.	diagnosis.
4	Heart Disease Prediction using Strength Scores with Significant Predictors	NCBI	Armin Yazdani, Kasturi Dewi Varathan, Wan Azman Wan Ahmad	2021	This paper is motivated by the gap in the literature, thus proposes an algorithm that measures the strength of the significant features that contribute to heart disease prediction. The study is aimed at predicting heart disease based on the scores of significant features using Weighted Associative Rule Mining.	Future researches may look into predicting the risk levels of heart disease, as this will help medical practitioners and patients to gauge their heart disease severity. The algorithm used in this study for measuring weight can be further explored for use with other datasets to cater to other prediction models using the weighted approach.
5	Heart Disease Prediction Based on Data Mining Algorithms	IJRTI	Apruv Patel, kunjan D. khatri, Smit Kiri, Kathan Patel	2018	Handling large data in the old way can affect the results. Advanced data mining techniques are especially used in heart disease prediction to find facts about databases and medical research.	In this paper, a single or hybrid combination of data mining algorithms can be used to investigate several papers used in cardiac disease prediction to identify algorithms for future research with high
6	Heart Disease Diagnosis and Prediction Using Machine Learning and Data Mining Techniques	Research India Publications	Animesh Hazra, Subrata Kumar Mandal, Amit Gupta, Arkomita Mukherjee, Asmita Mukherjee	2017	The aim of this paper is to summarize some of the current research on predicting heart diseases using data mining techniques, analyse the various combinations of mining algorithms used and conclude which techniques are effective and efficient. Also, some future directions on prediction systems have	In future an intelligent system may be developed that can lead to selection of proper Treatment methods for a patient diagnosed with heart disease. Data mining can be of very good help in deciding the line of treatment to be followed by extracting knowledge from such suitable databases.

					been addressed.	
7	An artificial	Science	2022	VictorChang,	In this paper, a	Along with that,
	intelligence	Direct		Vallabhanent	python-based	a model
	model for			RupaBhavani,	application is	regarding ML
	heart			Ariel	developed for	has played a
	disease			QianwenXu,	healthcare	significant role
	detection			MAHossain	research as it is	in creating
	using				more reliable and	accuracy and
	machine				helps track and	determining
	learning				establish	results with the
	algorithms				different types of	aid of training
					health monitoring	data. The
					applications. We	emphasis for
					present data	discussion is on
					processing that	data analysis. It
					entails working	works with
					with categorical	categorical
					variables and	variables along
					conversion of	with that; it will
					categorical	break particular
					columns. We	categorical
					describe the main	columns into
					phases of	dummy columns
					application	with 1s and 0s.
					developments:	
					collecting	
					databases,	
					performing	
					logistic	
					regression, and	
					evaluating the dataset's	
					attributes.	
					attributes.	