

DSA [

Data Structures

Algorithms

Write & Earn

Sale Ends Soon! Interview Preparation

Topic-wise Practice

Regular grammar (Model regular grammars)

Difficulty Level : Expert • Last Updated : 26 Apr, 2022

Prerequisites: Chomsky hierarchy

Type-3 grammar/regular grammar:

Regular grammar generates regular language. They have a single non-terminal on the left-hand side and a right-hand side consisting of a single terminal or single terminal followed by a non-terminal.

The productions must be in the form:

 $A \longrightarrow xB$

 $A \longrightarrow x$

A ··· Bx

where A, B \in Variable(V) and $x \in T^*$ i.e. string of terminals.

Types of regular grammar:

- Left Linear grammar(LLG)
- Right linear grammar(RLG)

1. Left linear grammar(LLG):

In LLG, the productions are in the form if all the productions are of the form

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>

Login

Register

```
A \longrightarrow Bx A \longrightarrow x where A,B \in V and x \in T^*
```

2. Right linear grammar(RLG):

In RLG, the productions are in the form if all the productions are of the form

$$A \longrightarrow xB$$

$$A \longrightarrow x$$
 where $A,B \in V$ and $x \in T^*$

The language generated by type-3 grammar is a regular language, for which a FA can be designed. The FA can also be converted into type-3 grammar

Example: FA for accepting strings that start with b

$$\Sigma = \{a,b\}$$

Initial state $(q_0) = A$
Final state $(F) = B$

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>

Login

Register

The above grammar is RLG, which can be written directly through FA.

This grammar derives strings that are stated with B

The above RLG can derive strings that start with b and after that any input symbol (i.e. $\Sigma = \{a, b\}$ can be accepted).

```
The regular language corresponding to RLG is L= {b, ba, bb, baa, bab ,bba,bbb .....}
```

If we reverse the above production of the above RLG, then we get

```
A → Bb

B → ∈/Ba/Bb

It derives the language that contains all the strings which end with b.

i.e. L' = {b, bb, ab, aab, bab, abb, bbb ....}
```

So we can conclude that if we have FA that represents language L and if we convert it, into RLG, which again represents

language L, but after reversing RLG we get LLG which represents language L'(i.e. reverse of L).

For converting the RLG into LLG for language L, the following procedure needs to be followed:

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>

Login

Register

This represents the same procedure as above for converting RLG to LLG

Here L is a language for FA and L^R is a reversal of the language L.

Example:

The above FA represents language L(i.e. set of all strings over input symbols a and b which start with b).

We are converting it into LLG.

Step1: The reversal of FA is

The reversal of FA represents all strings starting with b.

Step 2: The corresponding RLG for this reversed FA is

 $B \rightarrow aB/bB/bA$

 $\mathsf{A} \; \dashrightarrow \; \; \in$

Step 3: The reversing the above RLG we get

B → Ba/Bb/Ab

A ---> ∈

So this is LLG for language L(which represents all strings that start with b).

L= {b, ba, bb, baa, bab, bba, bbb}

Conversion of RLG to FA:

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>

Login

Register

Example: The RLL grammar for Language (L), represents a set of all strings which end with 0.

 $A \rightarrow 0A/1B/0B$

B → ∈

So the FA for corresponding to RLG can be found out as

Start with variable A and use its production.

- For production A ---> 0A, this means after getting input symbol 0, the transition will remain in the same state.
- For production, A → 1B, this means after getting input symbol 1, the state transition will take place from State A to B.
- For production A → 0B, this means after getting input symbol 0, the state transition will take place from State A to B.
- For production $B \rightarrow \in$, this means there is no need for state transition. This means it would be the final state in the corresponding FA as RHS is terminal.

So the final NFA for the corresponding RLG is

Set of all strings that end with 0

Conversion of LLG to FA:

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy & Privacy Policy</u>

Login

Register

LLG
$$\xrightarrow{\text{Reverse}}$$
 RLG \longrightarrow FA $\xrightarrow{\text{Reverse}}$ FA

(L) $(L)^R$ $(L)^R$ $(L^R)^R = L$

Explanation: First convert the LLG which represents the Language (L) to RLG, which represents, the reversal of language $L(i.e.L^R)$ then design FA corresponding to it(i.e. FA for Language L^R). Then reverse the FA. Then the final FA is FA for language L).

Conversion of LLG to RLG: For example, the above grammar is taken which represents language L(i.e. set of all strings that start with b)

The LLG for this grammar is

Step 1: Convert the LLG into FA(i.e. the conversion procedure is the same as above)

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>

Login

Register

Step 3: Write RLG corresponding to reversed FA.

 $A \longrightarrow bB$

 $B \rightarrow aB/bB/\epsilon$

LLG ← RLG

They can be easily converted to other

All have the same power and can be converted to other

Interview Series Prepare for free
Every Sunday | 7 - 8:30 PM IST

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy

Login

Register

Page: 1 2 3

Previous

RECOMMENDED ARTICLES

- Difference between Context Free Grammar and Regular Grammar

 10, May 21

 Classification of Context Free Grammars

 26, Feb 16
- Regular Expressions, Regular
 Grammar and Regular Languages 06

 19, Mar 16

 Simplifying Context Free
 Grammars
 28, May 16
- Removal of ambiguity (Converting an Ambiguous grammar into Unambiguous grammar)

 01, Jun 21

 Removal of ambiguity (Converting an Ambiguous grammars using LR parser 19, Sep 19
- Right and Left linear Regular
 Grammars
 01, Feb 21

 Regular Expression Vs Context
 Free Grammar
 01, May 19

Article Contributed By:

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>

Login

Register

Improved By: jasminjoyp, yuganshchauhan21

Article Tags: Picked, GATE CS, Theory of Computation & Automata

Improve Article

Report Issue

Writing code in comment? Please use ide.geeksforgeeks.org, generate link and share the link here.

Load Comments

A–143, 9th Floor, Sovereign Corporate Tower, Sector–136, Noida, Uttar Pradesh – 201305

feedback@geeksforgeeks.org

Company	Learn
About Us	Algorithms
Careers	Data Structures
In Media	SDE Cheat Sheet
Contact Us	Machine learning
Privacy Policy	CS Subjects
Copyright Policy	Video Tutorials
	Courses

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>

Languages

Got It!

News

Start Your Coding Journey Now! Lifestyle Knowledge SQL Kotlin

Web Development

Contribute

Web Tutorials

Write an Article

Django Tutorial

Improve an Article

 HTML

Pick Topics to Write

JavaScript

Write Interview Experience

Bootstrap

Internships

ReactJS

Video Internship

NodeJS

@geeksforgeeks, Some rights reserved

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>