MXens com a Fotocatalitzadors del Trencament de l'Aigua

Diego Ontiveros, Carme Sousa, Francesc Viñes

Institut de Química Teòrica i Computacional (IQTCUB), Departament de Ciència de Materials i Química Física, Universitat de Barcelona.

M = Metall de Transició (Grups III – VI) $X = C \circ N \quad n = 1-3$ Γ = Terminació (bloc-p: O, F, OH, H, S, Cl) Semiconductors quan s'afegeix una terminació. [2] Bons candidats per fotocatalitzar el trencament de l'aigua i produir H₂ net.^[3]

Font sostenible d'H₂: Trencament d'aigua $2 H_2O \rightarrow 2 H_2 + O_2$

Problema: Requereix energies altes

Solució: Llum del Sol com a font d'energia

Fotocatàlisi

OBJECTIUS Q

Modificar i dissenyar l'espai entre bandes (bandgap) dels MXens variant la seva composició (M, X, T), amplada (n), apilament i posició de la terminació, per trobar possibles candidats fotoactius en el trencament de l'aigua amb la llum solar.

ÈINES

Mètode computacional: DFT Funcional: PBE i PBE0

Estructures: models de llesca periòdics, combinant 2 apilaments (ABC i ABA) i 3 posicions terminals per cada apilament

 $(H_M/H, H_{MX} i H_X)$

Densitat d'Estats

- Es consideren 6 estructures diferents per cada MXè terminat (2376 en total).
- MXens dels Grups III i IV i $n = 1 \rightarrow$ bandgaps grans i a la regió del visible. Els casos més prometedors per ser materials fotoactius amb la llum solar.
- C-MXens → més casos semiconductors i amb major bandgap que N-MXens.
- MXens prístins → propietats metàl·liques (no fotoactius)
- MXens $n \ge 2 \rightarrow Al$ augmentar la quantitat de "bulk", solen ser metàl·lics.

Alineació de Bandes

- S'ha estudiat l'alineació de bandes respecte als potencials de semireacció pels casos fotoactius més prometedors ($E_g > 1.23 \text{ eV}$).
- Els casos ideals seran aquells que amés de tenir una alineació de bandes adequada, son l'estructura més estable de les sis considerades.
- Diverses estructures del Grup III i IV mostren alineacions correctes.
- Els casos de Zr₂CO₂, Sc₂CCl₂, Y₂CCl₂, Sc₂CS₂ i Y₂CS₂ compleixen aquestes condicions ideals, el que ens permet proposar-los com a possibles candidats pel trencament fotocatalític de l'aigua.
- A més, la majoria de casos presenten una bona separació de densitat de càrrega entre el màxim i el mínim de la banda de valència i conducció (VBM i CBM).

Banda de Conducció Bandgap 2.26 eV 2.48 eV 2.44 eV 3.23 eV 3.42 eV H_2O Banda de València Zr_2CO_2 Sc₂CCl₂ Y₂CCl₂ Sc₂CS₂ Y_2CS_2

CONCLUSIONS

Basat en càlculs DFT, els MXens de Zr₂CO₂, Sc₂CCl₂, Y₂CCl₂, Sc₂CS₂i Y₂CS₂ mostren un bandgap en la regió del visible, òptim per la captació d'energia de la llum solar, i extrems de banda que excedeixen els potencials de semireacció del trencament de l'aigua, adient per fotocatalitzar el procés i generar H₂ verd.

REFERÈNCIES 😂

[1] Adv. Mater. 2011, 23, 4248–4253.

[2] Adv. Funct. Mater. 2013, 23, 2185–2192.

[3] J. Mater. Chem. A 2016, 4, 11446–11452.

