1/EH-24 (i) (Syllabus-2020)

(2)

Odd Semester, 2020

(Held in March, 2021)

PHYSICS

(Elective/Honours)

[Phy-01(T)]

(Mathematical Physics—I, Mechanics, Waves and Acoustics)

Marks : 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any ten questions

- **1.** (a) State Gauss' divergence theorem and Stokes' theorem and explain their significance. $2\frac{1}{2}+2\frac{1}{2}=5$
 - (b) Calculate the work done in moving a body along a vector $\vec{r} = 3\hat{i} 6\hat{j} + 3\hat{k}$ through 1 m if the force applied is given by $\vec{F} = 2\hat{i} \hat{j} + \hat{k}$. (Units of force and displacement are in SI.)

- 2. (a) Solve: $\frac{dy}{dx} + y \sec x = \tan x$
 - (b) Find the solution of the following equation: $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 0$
- **3.** Derive the expressions for tangential and normal components of acceleration of a particle moving along a curve. What is the magnitude and direction of acceleration when the particle moves in a circular path with a uniform velocity?

 6+1½=7½
- **4.** (a) What are geosynchronous satellites? Obtain the expression for velocity of a satellite in circular orbit at a height *H* above the surface of the earth. 1+3=4
 - (b) Show that the central forces are conservative in nature. 3½
- **5.** (a) Distinguish between elastic and inelastic collisions. Obtain the expression for loss of kinetic energy in an inelastic collision in the laboratory system in one dimension. 2+4=6
 - (b) Two particles of masses $3 \, \mathrm{g}$ and $5 \, \mathrm{g}$ have position vectors $(2\hat{i} + \hat{j} \hat{k})$ and $(\hat{i} + 2\hat{j} + 3\hat{k})$ respectively (in cm). Calculate the position vector of the centre of mass.

 $1\frac{1}{2}$

- **6.** State the theorems of parallel axës and perpendicular axes related to moment of inertia. Obtain an expression for the moment of inertia of a thin spherical shell rotating about any of its diameter. 3+4½=7½
- 7. (a) State Hooke's law. Deduce the relation

$$\frac{3}{\eta} + \frac{1}{K} = \frac{9}{Y}$$

where the symbols have usual significance. $\frac{1}{2}+5\frac{1}{2}=6$

- (b) The Young's modulus and Poisson's ratio of a material are $7.25 \times 10^{10} \, \text{N/m}^2$ and 0.39 respectively. Calculate its Bulk modulus.
- **8.** State and prove Bernoulli's theorem. $1\frac{1}{2}+6=7\frac{1}{2}$
- **9.** What is surface tension? Derive the expression for the height to which a liquid may rise in a capillary tube. $1\frac{1}{2}+6=7\frac{1}{2}$
- 10. Two mutually perpendicular simple harmonic vibrations of same frequency but different amplitude with constant phase difference ϕ are acting simultaneously on a particle. Show that the resultant motion is in general elliptic. What would be the nature of the resultant figure if the phase difference is $\pi/2$ and the two amplitudes are equal? $5\frac{1}{2}+2=7\frac{1}{2}$

- **11.** Write down the equation of damped simple harmonic motion and solve it for critical damping. $1\frac{1}{2}+6=7\frac{1}{2}$
- **12.** What is progressive wave? Show that the kinetic energy and potential energy densities in the plane progressive wave are equal. $1\frac{1}{2}+3+3=7\frac{1}{2}$
- **13.** (a) Deduce an expression for the speed of a transverse wave in a stretched string. 3½
 - (b) Explain how constructive interference and destructive interference of sound wave occur.
- **14.** What are ultrasonic waves? Give a detailed description of any method for generating ultrasonic wave.

 1½+6=7½
- **15.** What are the requirements of a good auditorium? Obtain the equation for growth of sound intensity and decay of sound intensity in an auditorium. $3\frac{1}{2}+4=7\frac{1}{2}$

 $\star\star\star$

1/EH-24 (i) (Syllabus-2020)

(2)

2022

(February)

PHYSICS

(Elective/Honours)

(Mathematical Physics—I, Mechanics, Waves and Acoustics)

[PHY-01 (T)]

Marks : 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any ten questions

- **1.** (a) What is the physical significance of 'divergence of a vector'? $1\frac{1}{2}$
 - (b) Calculate the curl of the function \overrightarrow{V} $y\hat{x}$ $x\hat{y}$.
 - (c) Solve the differential equation

$$\frac{d^2y}{dx^2} \quad 3\frac{dy}{dx} \quad 2y \quad x^3 \quad x$$

2. (a) State the Stokes' theorem and explain its significance. 3½

(b) Solve the equation

 $\cos x \frac{dy}{dx} \quad y \sin x \quad 1$

3. (a) What are non-inertial frames?

- (b) Derive the equation for the forces on a moving particle in a uniformly rotating frame of reference. Mention the fictitious forces.5½+1=6½
- **4.** (a) What is universal gravitational constant? Write its dimension and SI unit. 1+1+1=3
 - (b) What are the forces that keep a satellite in its orbit? Show that the orbit of a geostationary satellite is at a height of 36000 km above the surface of the earth. [Radius of the earth 6.4×10^8 m.] $1+3\frac{1}{2}=4\frac{1}{2}$

5. (a) Write the expressions for velocity and acceleration of the centre of mass of a system of particles. 1+1=2

(b) Derive the equation of motion of the centre of mass of a system of moving particles.

3

22D**/112** (Continued)

22D**/112** (Turn Over)

	(c)	Obtain the expression for total angular momentum of a system of particles in terms of angular momentum of the centre of mass. $2\frac{1}{2}$
6.	(a)	State and prove the theorem of parallel axes on moment of inertia for a plane laminar body. $1+2\frac{1}{2}=3\frac{1}{2}$
	(b)	Calculate the moment of inertia of a disc about an axis through its centre and perpendicular to its plane.
7.	What is bending moment? Obtain the expression for the depression due to a load attached to the free end of a rectangular cantilever. $1+6\frac{1}{2}=7\frac{1}{2}$	
8.	(a)	Write the equation of continuity for fluids and explain its significance. $1+1\frac{1}{2}=2\frac{1}{2}$
	(b)	Derive the Poiseuille's equation for the streamline flow of liquid through a capillary tube.
9.	(a)	Explain surface tension and surface energy of a liquid. $1+1\frac{1}{2}=2\frac{1}{2}$
	(b)	Obtain an expression for the excess

pressure inside an air bubble.

10.	(a)	What are Lissajous figures? 1	
	(b)	Discuss the resultant motion of two mutually perpendicular simple harmonic motions having different amplitudes and phases but frequencies in the ratio of 1:2. Show the resultant patterns for phase differences 0 and $\frac{1}{2}$. $4\frac{1}{2}+1+1=6\frac{1}{2}$	
11.	(a)	What are damped and forced oscillations? 1+1=2	
	(b)	Calculate the average energy of a damped simple harmonic oscillator. $5\frac{1}{2}$	
12.	(a)	What is a plane progressive wave?	
	(b)	Establish the differential equation of a plane progressive harmonic wave and obtain its general solution. $2\frac{1}{2}+4=6\frac{1}{2}$	
13.	What are wave velocity and group velocity? Derive the relation between them. $1+1+5\frac{1}{2}=7\frac{1}{2}$		
14.	What are ultrasonic vibrations? Describe a method to detect them. Mention three applications of ultrasonic waves. $1+3\frac{1}{2}+3=7\frac{1}{2}$		
15.		ne reverberation time and hence obtain expression for it. $1+6\frac{1}{2}=7\frac{1}{2}$	

22D-	-PD	F /112 1/EH–24 (i) (Syllabus–2020)	

5