Interstitial Lung Disease

Interstitial lung disease (ILD) encompasses a heterogeneous group of disorders characterized by inflammation and fibrosis of the lung interstitium, leading to impaired gas exchange and progressive respiratory failure. This guide provides physician assistant (PA) students with a comprehensive framework to understand the types, causes, pathophysiology, diagnostic tests, imaging findings, and treatment strategies for ILD, including management of a decompensated ILD flare, with case scenarios to apply the knowledge.

Introduction and Pathophysiology

ILD involves the lung interstitium, the space between the alveolar epithelium and capillary endothelium, where gas exchange occurs. The pathophysiology typically follows a pattern of injury, inflammation, and fibrosis:

Initial Injury: Environmental exposures (e.g., asbestos), autoimmune processes (e.g., rheumatoid arthritis), or unknown triggers (e.g., idiopathic pulmonary fibrosis [IPF]) cause alveolar epithelial damage.

Inflammation: Release of cytokines (e.g., TGF-β, IL-1) leads to inflammatory cell infiltration (e.g., lymphocytes, macrophages).

Fibrosis: Dysregulated repair processes result in fibroblast proliferation, collagen deposition, and interstitial scarring, reducing lung compliance and impairing gas exchange.

Hypoxemia: Fibrotic tissue and vascular remodeling (e.g., pulmonary hypertension) lead to ventilation-perfusion (V/Q) mismatch and diffusion limitation.

ILD can progress to end-stage lung disease, with acute exacerbations (flares) causing rapid deterioration, often requiring hospital management.

Clinical Presentation

History:

Symptoms: Progressive dyspnea on exertion, non-productive cough, fatigue, weight loss.

Risk Factors: Occupational exposures (e.g., silica, asbestos), smoking, autoimmune diseases (e.g., rheumatoid arthritis [RA], scleroderma), drug exposure (e.g., amiodarone, nitrofurantoin), family history of ILD.

Systemic Symptoms: Joint pain, rash (connective tissue disease [CTD]), Raynaud's phenomenon, fever (hypersensitivity pneumonitis [HP]).

Physical Exam:

General: Cyanosis, digital clubbing (common in IPF).

Pulmonary: Fine, end-inspiratory crackles ("Velcro" rales, especially in IPF), wheezing (if HP or sarcoidosis).

Cardiac: Signs of pulmonary hypertension (PH) in advanced disease (e.g., RV heave, loud P2, TR murmur).

Other: Joint swelling (RA), skin changes (scleroderma), lymphadenopathy (sarcoidosis).

Diagnostic Tests and Studies

Initial Labs:

CBC: Anemia (chronic disease), eosinophilia (eosinophilic pneumonia).

ESR/CRP: Elevated in inflammatory ILDs (e.g., CTD-ILD, sarcoidosis).

ANA, RF, Anti-CCP, Anti-Jo-1: Screen for CTD (e.g., scleroderma, RA, polymyositis).

Serum ACE, Calcium: Elevated in sarcoidosis.

Hipersensitivity Panel: For HP (e.g., antibodies to mold, bird proteins).

Pulmonary Function Tests (PFTs):

Restrictive Pattern: Reduced total lung capacity (TLC), forced vital capacity (FVC), and diffusing capacity for carbon monoxide (DLCO).

DLCO: Severely reduced in ILD due to impaired gas exchange; often earliest abnormality.

<u>Bronchoalveolar Lavage (BAL):</u>

Lymphocytosis: Suggests HP, sarcoidosis, or cellular NSIP.

Neutrophilia: Seen in IPF, acute exacerbations. **Eosinophilia:** Indicates eosinophilic pneumonia.

Lung Biopsy:

Surgical Lung Biopsy: Gold standard for definitive diagnosis (e.g., UIP pattern in IPF, granulomas in sarcoidosis); reserved for unclear cases.

Transbronchial Biopsy: Useful for sarcoidosis (granulomas); less diagnostic yield for fibrotic ILDs.

Imaging:

Chest X-Ray: Reticular opacities, honeycombing (late-stage IPF), bilateral hilar lymphadenopathy (sarcoidosis).

High-Resolution CT (HRCT):

IPF (UIP Pattern): Subpleural, basal-predominant reticular opacities, honeycombing, traction bronchiectasis; minimal ground-glass opacities (GGO).

NSIP: Diffuse GGO, reticular opacities, often peribronchovascular; less honeycombing.

Sarcoidosis: Bilateral hilar lymphadenopathy, upper lobe-predominant nodules, perilymphatic distribution.

HP: Centrilobular nodules, GGO, mosaic attenuation (air trapping), "tree-in-bud" in chronic HP.

COP: Patchy consolidation, GGO, "tree-in-bud" (endobronchial spread).

Eosinophilic Pneumonia: Peripheral GGO, consolidation ("photographic negative of pulmonary edema").

Different Types and Causes

Idiopathic Interstitial Pneumonias (IIPs):

Idiopathic Pulmonary Fibrosis (IPF): Most common; UIP pattern on HRCT/ biopsy; associated with smoking, older age (>50 years).

Non-Specific Interstitial Pneumonia (NSIP): Cellular or fibrotic; often associated with CTD (e.g., scleroderma).

Cryptogenic Organizing Pneumonia (COP): Often post-infectious or drug-related; responsive to steroids.

Acute Interstitial Pneumonia (AIP): Rapid onset, diffuse alveolar damage (DAD); ARDS-like presentation.

Connective Tissue Disease-Associated ILD (CTD-ILD):

Causes: RA, scleroderma, polymyositis/dermatomyositis, SLE, Sjögren's syndrome.

Patterns: NSIP most common; UIP, LIP (lymphoid interstitial pneumonia) in Sjögren's.

Hypersensitivity Pneumonitis (HP):

Causes: Inhaled antigens (e.g., farmer's lung [moldy hay], bird fancier's lung [avian proteins]).

Forms: Acute (reversible), subacute, chronic (fibrotic).

Sarcoidosis:

Cause: Unknown; immune-mediated granulomatous inflammation.

Features: Non-caseating granulomas, multi-system involvement (lungs, lymph nodes, eyes, skin).

Drug-Induced ILD:

Causes: Amiodarone, nitrofurantoin, methotrexate, bleomycin.

Patterns: NSIP, OP, or DAD depending on the drug.

Occupational/Environmental ILD:

Causes: Asbestosis, silicosis, coal worker's pneumoconiosis.

Features: Upper lobe-predominant in silicosis; pleural plaques in asbestosis.

Other:

Eosinophilic Pneumonia: Acute or chronic; often idiopathic or drug-related. **Lymphangioleiomyomatosis (LAM):** Rare, affects young women; cystic lung disease, associated with tuberous sclerosis.

Table: Common Types of ILD and Their Causes

Туре	Subtype/Cause	Common Features	HRCT Findings
Idiopathic	IPF	Older males, smoking history, UIP pattern	Subpleural, basal reticular opacities, honeycombing
Idiopathic	NSIP	Often CTD-associated, better prognosis	Diffuse GGO, reticular opacities, peribronchovascular
CTD-ILD	RA, Scleroderma	Systemic symptoms (joint pain, rash)	NSIP pattern most common, some UIP
НР	Mold, bird proteins	Exposure history, acute/subacute/chronic	Centrilobular nodules, GGO, mosaic attenuation
Sarcoidosis	Unknown	Non-caseating granulomas, multisystem Hilar lymphadenopathy, upplobe nodules	

Туре	Subtype/Cause	Common Features	HRCT Findings
Drug- Induced	Amiodarone, Nitrofurantoin	Drug exposure history	NSIP, OP, or DAD patterns
Occupational	Asbestosis, Silicosis	Occupational exposure	Upper lobe nodules (silicosis), pleural plaques (asbestosis)

Treatment

General Principles:

Treat underlying cause: (e.g., remove offending drug, manage CTD).

Supportive care: Supplemental oxygen (SpO2 >90%), pulmonary rehabilitation, vaccination (influenza, pneumococcal).

Consider lung transplantation: for end-stage disease.

Specific Treatments by Type:

- IPF:
 - Antifibrotics: Pirfenidone 801 mg PO TID (slows FVC decline); nintedanib 150 mg PO BID (inhibits tyrosine kinases).
 - Supportive: Avoid corticosteroids (no benefit, increased mortality); oxygen for hypoxemia.
- NSIP/CTD-ILD:
 - Immunosuppression: Prednisone 0.5-1 mg/kg/day PO (taper over weeks), often with azathioprine 2 mg/kg/day PO or mycophenolate mofetil (MMF) 1-1.5 q PO BID.
 - CTD-Specific: Treat underlying disease (e.g., methotrexate for RA, cyclophosphamide for scleroderma).
- Sarcoidosis:
 - Corticosteroids: Prednisone 20-40 mg PO daily for symptomatic disease (e.g., lung nodules, lymphadenopathy); taper over 6-12 months.
 - Steroid-Sparing: Methotrexate 10-15 mg PO weekly or anti-TNF agents (e.g., infliximab) for refractory cases.
- HP:
 - Antigen Avoidance: Remove exposure (e.g., bird removal, change work environment).
 - Corticosteroids: Prednisone 0.5-1 mg/kg/day PO for acute/subacute HP; taper over weeks.
- · COP:
 - **Corticosteroids:** Prednisone 0.5-1 mg/kg/day PO x 6-12 weeks; high response rate.
- Drug-Induced ILD:
 - Discontinue Offending Drug: Immediate cessation (e.g., stop amiodarone).
 - Corticosteroids: Prednisone 0.5-1 mg/kg/day PO if severe or persistent symptoms.

Management of Decompensated ILD Flare:

- An acute exacerbation of ILD (e.g., in IPF) is characterized by rapid worsening of dyspnea, new GGO on HRCT, and hypoxemia, often triggered by infection, aspiration, or unknown causes.
- Supportive Care:
 - Oxygen Therapy: High-flow nasal cannula or non-invasive ventilation (NIV) to maintain SpO2 >90%; avoid over-oxygenation (risk of CO2 retention in COPD overlap).
 - **Fluid Management:** Diuretics (e.g., furosemide 40 mg IV) if volume overload, but cautious use to avoid preload reduction in PH.
- Treat Infection:
 - Broad-spectrum antibiotics: (e.g., cefepime 2 g IV q8h + vancomycin
 15 mg/kg IV q12h) if infection suspected; adjust based on cultures.
 - Antiviral/antifungal therapy: if indicated (e.g., oseltamivir for influenza, voriconazole for aspergillosis).
- Corticosteroids:
 - **High-dose pulse therapy:** Methylprednisolone 500-1000 mg IV daily x 3-5 days, then taper (e.g., prednisone 1 mg/kg/day PO).
 - Use in IPF flares is controversial (no proven benefit, risk of infection);
 reserved for non-IPF ILDs (e.g., COP, NSIP) or suspected inflammatory
 trigger.
- Immunosuppression:
 - Cyclophosphamide: 500-750 mg/m² IV monthly for severe CTD-ILD or NSIP flares.
 - **Consider IVIG or rituximab:** in refractory cases (e.g., polymyositis-ILD).
- Advanced Support:
 - Mechanical ventilation: if NIV fails; use low tidal volumes (6 mL/kg) to minimize barotrauma.
 - **ECMO:** as a bridge to recovery or transplant in refractory hypoxemia.
- Monitoring:
 - Daily ABG: to assess oxygenation/CO2 levels.
 - **HRCT:** to confirm GGO, rule out PE or infection.
 - Monitor for secondary PH: (ECHO, RHC if feasible); avoid vasodilators unless confirmed WHO Group 1 PH.

Treatment

General Principles:

Treat underlying cause: (e.g., remove offending drug, manage CTD).

Supportive care: Supplemental oxygen (SpO2 >90%), pulmonary rehabilitation, vaccination (influenza, pneumococcal).

Consider lung transplantation: for end-stage disease.

Specific Treatments by Type:

- IPF:
 - Antifibrotics: Pirfenidone 801 mg PO TID (slows FVC decline);
 nintedanib 150 mg PO BID (inhibits tyrosine kinases).
 - Supportive: Avoid corticosteroids (no benefit, increased mortality);
 oxygen for hypoxemia.
- NSIP/CTD-ILD:
 - Immunosuppression: Prednisone 0.5-1 mg/kg/day PO (taper over weeks), often with azathioprine 2 mg/kg/day PO or mycophenolate mofetil (MMF) 1-1.5 g PO BID.
 - CTD-Specific: Treat underlying disease (e.g., methotrexate for RA, cyclophosphamide for scleroderma).
- · Sarcoidosis:
 - Corticosteroids: Prednisone 20-40 mg PO daily for symptomatic disease (e.g., lung nodules, lymphadenopathy); taper over 6-12 months.
 - **Steroid-Sparing:** Methotrexate 10-15 mg PO weekly or anti-TNF agents (e.g., infliximab) for refractory cases.
- HP:
 - Antigen Avoidance: Remove exposure (e.g., bird removal, change work environment).
 - Corticosteroids: Prednisone 0.5-1 mg/kg/day PO for acute/subacute HP; taper over weeks.
- · COP:
 - **Corticosteroids:** Prednisone 0.5-1 mg/kg/day PO x 6-12 weeks; high response rate.
- Drug-Induced ILD:
 - Discontinue Offending Drug: Immediate cessation (e.g., stop amiodarone).
 - Corticosteroids: Prednisone 0.5-1 mg/kg/day PO if severe or persistent symptoms.

Management of Decompensated ILD Flare:

- An acute exacerbation of ILD (e.g., in IPF) is characterized by rapid worsening of dyspnea, new GGO on HRCT, and hypoxemia, often triggered by infection, aspiration, or unknown causes.
 - Supportive Care:
 - Oxygen Therapy: High-flow nasal cannula or non-invasive ventilation (NIV) to maintain SpO2 >90%; avoid over-oxygenation (risk of CO2 retention in COPD overlap).
 - Fluid Management: Diuretics (e.g., furosemide 40 mg IV) if volume overload, but cautious use to avoid preload reduction in PH.
 - Treat Infection:
 - **Broad-spectrum antibiotics:** (e.g., cefepime 2 g IV q8h + vancomycin 15 mg/kg IV q12h) if infection suspected; adjust based on cultures.
 - Antiviral/antifungal therapy: if indicated (e.g., oseltamivir for influenza, voriconazole for aspergillosis).
 - Corticosteroids:
 - **High-dose pulse therapy:** Methylprednisolone 500-1000 mg IV daily x 3-5 days, then taper (e.g., prednisone 1 mg/kg/day PO).
 - Use in IPF flares is controversial (no proven benefit, risk of infection); reserved for non-IPF ILDs (e.g., COP, NSIP) or suspected inflammatory trigger.
 - Immunosuppression:
 - **Cyclophosphamide:** 500-750 mg/m² IV monthly for severe CTD-ILD or NSIP flares.
 - **Consider IVIG or rituximab:** in refractory cases (e.g., polymyositis-ILD).
 - Advanced Support:
 - Mechanical ventilation: if NIV fails; use low tidal volumes (6 mL/kg) to minimize barotrauma.
 - **ECMO:** as a bridge to recovery or transplant in refractory hypoxemia.
 - Monitoring:
 - Daily ABG: to assess oxygenation/CO2 levels.
 - **HRCT:** to confirm GGO, rule out PE or infection.
 - Monitor for secondary PH: (ECHO, RHC if feasible); avoid vasodilators unless confirmed WHO Group 1 PH.

Table: Treatment Approaches for ILD Types

ILD Type	Primary Treatment	Medications/ Interventions	Notes
IPF	Antifibrotics, supportive	Pirfenidone, Nintedanib, oxygen	Avoid corticosteroids; transplant referral
NSIP/CTD- ILD	Immunosuppression	Prednisone, Azathioprine, MMF	Treat underlying CTD; monitor for infection
Sarcoidosis	Corticosteroids, steroid- sparing	Prednisone, Methotrexate, Infliximab	Taper steroids over months; multi-system evaluation
НР	Antigen avoidance, corticosteroids	Prednisone, antigen removal	Chronic HP may progress to fibrosis
СОР	Corticosteroids	Prednisone	High response rate; 6-12 week course
Drug- Induced	Discontinue drug, corticosteroids	Prednisone	Immediate cessation of offending agent

Key Pearls

Pathophysiology: ILD involves alveolar injury, inflammation, and fibrosis, leading to impaired gas exchange.

Types: IPF (UIP), NSIP (CTD), sarcoidosis (granulomas), HP (antigen-driven), drug-induced, occupational.

Diagnosis: HRCT for patterns (e.g., UIP in IPF, GGO in NSIP); PFTs (restrictive, low DLCO); biopsy if unclear.

Imaging: IPF (honeycombing), sarcoidosis (hilar nodes), HP (centrilobular nodules), COP (consolidation).

Treatment: Antifibrotics for IPF, immunosuppression for CTD-ILD/NSIP, antigen avoidance for HP, steroids for sarcoidosis/COP.

Decompensated Flare: Oxygen, high-dose steroids, treat infection; NIV preferred, ECMO for refractory cases.

Prognosis: IPF worst prognosis (median survival 3-5 years); NSIP, HP better with treatment.

References

UpToDate: "Interstitial Lung Disease: Diagnosis and Management" (2025). UpToDate ILD

ATS/ERS: "Guidelines for the Diagnosis of Idiopathic Pulmonary Fibrosis" (2024). ATS Guidelines

CHEST: "Management of Acute Exacerbations of ILD" (2023). CHEST ILD

NEJM: "Antifibrotic Therapy in IPF: Advances and Challenges" (2024). NEJM IPF

Case Scenarios

Case 1: A 68-Year-Old Male with Progressive Dyspnea

- Presentation: A 68-year-old male with a history of smoking presents with a 1year history of dyspnea and dry cough. Exam shows fine crackles at lung bases, digital clubbing, SpO2 92% on room air.
- Labs/HRCT/PFTs: ANA negative, FVC 65% predicted, DLCO 50% predicted.
 HRCT shows subpleural, basal reticular opacities, honeycombing, minimal GGO.
- Diagnosis: idiopathic Pulmonary Fibrosis (IPF) → Dyspnea, crackles, UIP pattern on HRCT, restrictive PFTs.
- Management: Start pirfenidone 801 mg PO TID (slows disease progression).
 Supplemental oxygen for SpO2 <90%. Avoid corticosteroids (no benefit).
 Refer for lung transplant evaluation (progressive disease). Pulmonary rehab and vaccinations (influenza, pneumococcal). Follow-up with pulmonology.

Case 2: A 52-Year-Old Female with Acute Worsening

- Presentation: A 52-year-old female with known RA-ILD (NSIP pattern) presents with acute worsening dyspnea, fever, and hypoxemia over 3 days.
 Exam shows T 38°C, SpO2 86% on room air, diffuse crackles.
- Labs/HRCT: CRP 50 mg/L, HRCT shows new diffuse GGO, no PE. BAL negative for infection.
- Diagnosis: Acute Exacerbation of RA-ILD (NSIP) → Rapid worsening, new GGO, likely inflammatory flare.
- Management: Admit to ICU. High-flow oxygen to maintain SpO2 >90%. Start methylprednisolone 1000 mg IV daily x 3 days, then prednisone 1 mg/kg/day PO. Empirical antibiotics (cefepime 2 g IV q8h + vancomycin 15 mg/kg IV q12h) until infection ruled out. Use BiPAP if needed (avoid intubation). Monitor ABG, HRCT for response. Add cyclophosphamide 750 mg/m² IV if refractory. Follow-up with rheumatology.

Case 3: A 40-Year-Old Male with Cough and Fatigue

- Presentation: A 40-year-old male farmer presents with chronic cough, fatigue, and dyspnea for 6 months. Exam shows mid-inspiratory squeaks, no clubbing, SpO2 94% on room air.
- Labs/HRCT/PFTs: Hypersensitivity panel positive for avian antigens, FVC 70% predicted, DLCO 60% predicted. HRCT shows centrilobular nodules, mosaic attenuation.
- Diagnosis: Hypersensitivity Pneumonitis (Chronic) → Exposure history, HRCT findings, restrictive PFTs.
- Management: Advise antigen avoidance (remove birds, improve ventilation).
 Start prednisone 0.5 mg/kg/day PO x 4 weeks, then taper. Supplemental oxygen if SpO2 <90%. Monitor PFTs, HRCT for response. Refer to pulmonology for long-term management.

Visit: medcheatsheets.com for more education, fun resources and 10 category 1 AAPA CME credit!

© Hospital Medicine Cheat Sheets (medcheatsheets.com). For educational purposes only. Do not redistribute or sell. Neither the author nor the company is liable for realworld implications. AI was used in development