

## Agenda

- 1 What is Graph Representation Learning?
- 2 The Emergence of Diffusion Models
- 3 Graphs vs. Images
- 4 The Architecture of Directed Diffusion Models
- 5 Benchmarks
- 6 Conclusion



# 1 What is Graph Representation Learning?

### What is a graph?



- ightharpoonup G = (V, E), vertices V and edges E
- Graphs can represent anything from molecules to road networks or social networks



User: AzaToth, Public domain, via Wikimedia Commons





- Graph Learning on Graph Datasets enables the use of AI on those data structures
- ► IMDB-B contains ego-networks of actors from Action or Romance movies (Yanardag et al., 2015)
- ► From only the knowledge of which actors have co-starred, models can determine the genre with an accuracy of up to 95% (Nguyen et al., 2019)



### Representation Learning

- ► RL is an important part of Machine Learning that converts data to a form that can be worked with more easily
- ► Here, there is also a difference between unsupervised and supervised learning
- Dimensionality Reduction is a prominent subfield







Presentation Code

## Graph Representation Learning - GNNs



- For RL on Graphs, Graph Neural Networks are often used
- ► They work similar to Convolutional Neural Networks (CNNs)
- ► Instead of using neighboring pixels, the adjacency matrix, which contains the edges, is used





By NickDiCicco - Own work, CC BY-SA 4.0



#### 2 The Successful Diffusion Model

# Denoising Probabilistic Diffusion Models



► Introduced to Machine Learning only recently (Ho et al., 2020), but has become the standard for image generation beating former SOTA technology (Dhariwal et al., 2021)

#### **Algorithm 1** Training

#### 1: repeat

- 2:  $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3:  $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4:  $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

#### Algorithm 2 Sampling

- 1:  $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3:  $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$  if t > 1, else  $\mathbf{z} = \mathbf{0}$
- 4:  $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left( \mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: **return**  $\mathbf{x}_0$

Ho et al., 2020





#### The DM's forward step

- ► To gradually add noise to the images, Diffusion Models add Gaussian noise in each step
- ► Thus, all data is asymptotically converted to a standard Gaussian distribution (Ho et al., 2020)

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) \coloneqq \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{x}_{t-1}) \quad q(\mathbf{x}_t|\mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$



### 3 Graphs vs. Images



### The Anisotropy of Graphs

► While images are naturally isotropic and euclidean, Graphs are anisotropic



## se

#### White Noise vs. Directed Noise

- ► The information density of a directed Gaussian declines quickly if White Noise is applied
- ► Hence, Yang et al. introduce "Directional Noise":

$$x_{t,i} = \sqrt{\bar{\alpha}_t} x_{0,i} + \sqrt{1 - \bar{\alpha}_t} \epsilon',$$

$$\epsilon' = \operatorname{sgn}(x_{0,i}) \odot |\bar{\epsilon}|,$$

$$\bar{\epsilon} = \mu + \sigma \odot \epsilon \quad \text{where } \epsilon \sim \mathcal{N}(0, \mathbf{I})$$



**Presentation Code** 

# The effect on the Signal-To-Noise-Ratio



- ► The Signal-To-Noise-Ratio is fundamental for the learning process of Diffusion Models
- ► The application of directional noise has a vital effect on the SNR





## 4 Directed Diffusion Models - Architecture

### Components of the Model



Training stepEmbedding step



Skip connection Representation vector

Yang et al., 2023

### The Algorithm

- ► The two algorithms work similar to Ho's algorithm
- ► Instead of generating an image, a representation is generated



```
Algorithm 1 The training algorithm.
```

**Input:** A batch of graphs  $\mathcal{G} = \{G_1, \dots G_B\}$  **Output:** The denoising network  $f_{\theta}$ 

```
1: Initialize: the denoising network f_{\theta}
2: Compute \mu, the mean of node features across batch \mathcal{G}
3: Compute \sigma, the standard deviation of node features across batch \mathcal{G}
4: while not convergence do
5: for G_i in \mathcal{G} do
6: for t = 1, \dots, T do
7: Sample directional noise \epsilon' using equation (2)
8: Take gradient descent step on \nabla_{\theta} \| \mathbf{X}_0 - f_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{X_i} + \sqrt{1 - \bar{\alpha}_t}\epsilon', \mathbf{A}, t) \|
9: end for
10: end for
11: end while
```

#### **Algorithm 2** Extracting representations.

**Input:**  $G = (\mathbf{A}, \mathbf{X})$ , forward step set  $\{T_0, T_1, \dots, T_K\}$ , pre-trained denoising network  $f_{\theta}$  **Output:**  $\mathbf{H}$ , the representation of G

```
1: Compute \mu the mean of node features

2: Compute \sigma the standard deviation of node features

3: for k in \{T_0, T_1, \ldots, T_K\} do

4: Sample directional noise \epsilon' using equation (2)

5: \mathbf{X_k} \leftarrow \sqrt{\bar{\alpha}_k} \mathbf{X_0} + \sqrt{1 - \bar{\alpha}_k} \epsilon'

6: \mathbf{H}_k \leftarrow f_{\theta}(\mathbf{X_k}, \mathbf{A}, k)

7: end for

8: Concatenate \mathbf{H} = [\mathbf{H}_{T_0}, \mathbf{H}_{T_1}, \ldots, \mathbf{H}_{T_K}]

9: return \mathbf{H}
```



#### 5 Resulting Benchmarks





- ► The paper compares multiple State-Of-The-Art models with DDMs
- SVMs are used on the learned representations
- ► While here only graph classification results are presented, the results from node classification are similarly promising



#### Results

| Dataset   | IMDB-B     | IMDB-M     | COLLAB         | REDDIT-B   | PROTEINS         | MUTAG            |
|-----------|------------|------------|----------------|------------|------------------|------------------|
| GIN       | 75.1±5.1   | 52.3±2.8   | 80.2±1.9       | 92.4±2.5   | $76.2 \pm 2.8$   | 89.4±5.6         |
| DiffPool  | 72.6±3.9   | -          | $78.9 \pm 2.3$ | 92.1±2.6   | $75.1 \pm 2.3$   | 85.0±10.3        |
| Infograph | 73.03±0.87 | 49.69±0.53 | 70.65±1.13     | 82.50±1.42 | 74.44±0.31       | 89.01±1.13       |
| GraphCL   | 71.14±0.44 | 48.58±0.67 | 71.36±1.15     | 89.53±0.84 | $74.39 \pm 0.45$ | $86.80 \pm 1.34$ |
| JOAO      | 70.21±3.08 | 49.20±0.77 | 69.50±0.36     | 85.29±1.35 | 74.55±0.41       | 87.35±1.02       |
| GCC       | 72         | 49.4       | 78.9           | 89.8       | -                | -                |
| MVGRL     | 74.20±0.70 | 51.20±0.50 | -              | 84.50±0.60 | -                | 89.70±1.10       |
| GraphMAE  | 75.52±0.66 | 51.63±0.52 | 80.32±0.46     | 88.01±0.19 | 75.30±0.39       | 88.19±1.26       |
| DDM       | 76.40±0.22 | 52.53±0.31 | 81.72±0.31     | 89.15 ±1.3 | 75.47 ±0.50      | 91.51 ±1.45      |

Yang et al., 2023



#### 6 Conclusion

#### Research Outlook

- ► Yang et al. only introduce the idea, they admit that their hyperparameters are not optimal yet
- One open question is how the optimal set of diffusion steps can be determined
- Variants of DDMs could bring value to areas such as computer vision and natural language processing



### What makes this paper special?

- ► As mentioned, the technology introduced holds great potential for the future
- The benchmarks are remarkable
- ► The researchers consider themselves "among the pioneers in the literature" regarding the "exploration of anisotropic structure in graph data"

#### References & Weblinks

- ► Yang et al. (2023). Directional diffusion models for graph representation learning
- ► Yanardag et al. (2015). Deep Graph Kernels
- ▶ Nguyen et al. (2019). Universal Graph Transformer Self-Attention Networks
- ▶ Ho et al. (2020). Denoising Diffusion Probabilistic Model
- ▶ Dhariwal et al. (2021). Diffusion Models Beat GANs on Image Synthesis
- Presentation Code: https://github.com/JavaLangMarlon/ddm-proseminar-tu-dortmund
- CC BY-SA 3.0: https://creativecommons.org/licenses/by-sa/3.0
- ► CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0