Zadanie 1.

Z odcinka [0,1] wybieramy losowo punkt X_1 . Następnie z odcinka $[0,X_1]$ wybieramy losowo punkt X_2 , z odcinka $[0,X_2]$ - punkt X_3 i tak dalej. Oblicz współczynnik zmienności otrzymanego w n-tym kroku punktu X_n , czyli

$$\frac{\sqrt{Var(X_n)}}{E(X_n)}$$

(A)
$$\sqrt{2/3 - (1/3)^n}$$

(B)
$$\sqrt{(3/4)^n + 1}$$

(C)
$$\sqrt{\left(4/3\right)^n - 1}$$

(D)
$$\sqrt{3n^2 - 4n}$$

(E)
$$1/3$$
 dla każdego $n \ge 1$

Wskazówka: Zmienna X_n jest iloczynem niezależnych zmiennych losowych.

Zadanie 2.

W urnie znajduje się 20 kul, na każdej z nich jest narysowana litera i cyfra. Mamy:

- 8 kul oznaczonych A1
- 4 kule oznaczone **A2**
- 6 kul oznaczonych **B1**
- 2 kule oznaczone **B2**

Losujemy bez zwracania 10 kul. Niech N_A oznacza liczbę wylosowanych kul, oznaczonych literą $\bf A$, zaś N_1 - liczbę wylosowanych kul, oznaczonych cyfrą $\bf 1$. Oblicz

$$E(N_1 | N_A)$$
.

(A)
$$\frac{2}{3}$$

(B)
$$\frac{2}{3}N_A$$

(C)
$$-\frac{1}{12}N_A + \frac{3}{4}$$

(D)
$$\frac{1}{12}N_A + \frac{3}{5}$$

(E)
$$-\frac{1}{12}N_A + \frac{15}{2}$$

Zadanie 3.

O zmiennych losowych X i Y wiemy, że $0 \le Y \le X$, Pr(X = 0) = 0,

$$E(Y \mid X) = \frac{X}{2}$$
 i $Var(Y) = \frac{1}{2}Var(X) + \frac{1}{4}E^{2}(X)$.

Z tych założeń wynika, że

- (A) Pr(Y = 0) = 0
- (B) Rozkład warunkowy zmiennej Y dla danego X = x jest jednostajny na przedziale [0, x]
- (C) $Pr(Y = X) = \frac{1}{2}$
- (D) $Y = \frac{X}{2}$
- (E) $E(Y^2) \le \frac{1}{4} E(X^2)$

Wskazówka: Każdy rozkład prawdopodobieństwa na przedziale [0,x] o wartości oczekiwanej x/2 ma wariancję nie przekraczającą $x^2/4$.

Zadanie 4.

Wybieramy losowo i niezależnie punkty P_1, P_2, P_3, P_4 z pewnego okręgu. Obliczyć prawdopodobieństwo tego, że cięciwy P_1P_2 i P_3P_4 przecinają się.

- (A) 3/4
- (B) $\pi/8$
- (C) 1/2
- (D) 1/3
- (E) $1/\pi$

Zadanie 5.

O zmiennych losowych X_0 i X_1 zakładamy, że: $E(X_0) = E(X_1) = 0$, $Var(X_0) = Var(X_1) = 1$ i $Cov(X_0, X_1) = \rho$, gdzie $0 < \rho < 1$. Niech

$$X_1 = \rho X_0 + W.$$

Rozważamy zmienne losowe postaci

$$\hat{W} = zX_1 + (1-z)X_0,$$

interpretowane jako predyktory nieobserwowanej zmiennej W. Znaleźć współczynnik z_* , dla którego błąd średniokwadratowy

$$E(\hat{W}-W)^2$$

jest minimalny.

$$(A) z_* = 1 + \frac{\rho}{2}$$

(B)
$$z_* = 1 + \frac{\rho^2}{2}$$

$$(C) z_* = \frac{1}{2}$$

(D)
$$z_* = 1$$

(E)
$$z_* = 1 - \frac{\rho^2}{2}$$

Zadanie 6.

Wykonujemy rzuty monetą aż do otrzymania po raz pierwszy sekwencji dwóch jednakowych wyników (tj. OO lub RR) w dwóch *kolejnych* rzutach. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

- (A) 6
- (B) 2
- (C) 4
- (D) 3
- (E) 5

Zadanie 7.

Załóżmy, że $X_1,...,X_n$ jest próbką z rozkładu normalnego $N(\mu,\sigma^2)$ z nieznanymi parametrami. Rozważmy (nieobciążony) estymator wielkości μ^2 dany wzorem

$$\overline{\mu^2} = \left(\overline{X}\right)^2 - \frac{S^2}{n},$$

gdzie
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 i $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$. Oblicz $Var(\overline{\mu^2})$.

(A)
$$\frac{4}{n}\mu^2\sigma^2 + \frac{2}{n(n-1)}\sigma^2$$

(B)
$$\frac{4}{n}\mu^2\sigma^2$$

(C)
$$\frac{4}{n}\mu^2\sigma^2 + \frac{2}{n-1}\sigma^4$$

(D)
$$\frac{4}{n}\mu^2\sigma^2 + \frac{2}{n(n-1)}\sigma^4$$

(E)
$$\frac{4}{n^2}\mu^2\sigma^2 + \frac{2}{n(n-1)}\sigma^4$$

Zadanie 8.

Załóżmy, że $X_1,...,X_n$ jest próbką z rozkładu normalnego $N(\mu,1)$ z nieznanym parametrem μ i znaną wariancją $\sigma^2=1$. Znaleźć najmniejsze n, dla którego istnieje test hipotezy

$$H_0: \mu = 10.0$$

przeciwko alternatywie

$$H_1: \mu = 10.1$$

na poziomie istotności $\alpha = 0.05$ o mocy przynajmniej 0.50.

- (A) n = 13
- (B) n = 271
- (C) n = 28
- (D) n = 17
- (E) n = 100

Zadanie 9.

Załóżmy, że $X_1,...,X_6$ jest próbką z rozkładu normalnego $N(\mu,\sigma^2)$ z nieznanymi parametrami. Zadanie polega na zbudowaniu jednostronnego przedziału ufności dla wariancji σ^2 . Żądany poziom ufności jest równy $1-\alpha=0.99$. Rozpatrzmy dwie metody:

- **Metoda S** jest standardowa: budujemy przedział postaci $[0,G_S]$, gdzie $G_S = \frac{5S^2}{c}$, $(S^2$ oznacza nieobciążony estymator wariancji, zaś c jest odpowiednim kwantylem rozkładu χ^2).
- **Metoda N** polega na podziale próbki na dwie części. Podpróbkę X_1, X_2, X_3 wykorzystujemy do zbudowania przedziału ufności $[0, G_{123}]$, zaś podpróbkę X_4, X_5, X_6 do zbudowania przedziału ufności $[0, G_{456}]$. Oba te przedziały obliczamy niezależnie, w standardowy sposób, *przyjmując poziom istotności* $1-\sqrt{\alpha}=0.90$. Ostatecznie, naszym przedziałem ufności jest

$$[0,G_N]$$
, gdzie $G_N = \max\{G_{123},G_{456}\}$.

Porównaj średnie długości przedziałów otrzymanych obiema metodami.

(A)
$$E(G_N) = 1.93E(G_S)$$

(B)
$$E(G_N) = 0.93E(G_S)$$

(C)
$$E(G_N) = E(G_S)$$

(D)
$$E(G_N) = 1.58E(G_S)$$

(E) Stosunek $E(G_N)/E(G_S)$ zależy od nieznanej wariancji σ^2

 $Wskaz \acute{o}wka$: Jeśli W_1 i W_2 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie wykładniczym, to $E \max\{W_1,W_2\}=1.5\ E(W_1)$.

Zadanie 10.

Załóżmy, że zmienne losowe X_1, X_2, \dots są niezależne i mają jednakowy rozkład wykładniczy o gęstości

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & dla \quad x > 0; \\ 0 & dla \quad x < 0. \end{cases}$$

Zmienne losowe $\overline{X}_1, \overline{X}_2, \ldots$ określamy wzorem

$$\overline{X}_{i} = \begin{cases} X_{i} - a \cdot E(X_{i}) & dla & X_{i} > a \cdot E(X_{i}); \\ 0 & dla & X_{i} \leq a \cdot E(X_{i}). \end{cases}$$

Zmienna losowa N ma rozkład Poissona o wartości oczekiwanej λ i jest niezależna od X_1, X_2, \dots

Niech
$$S = \sum_{i=1}^{N} X_i$$
; $\overline{S} = \sum_{i=1}^{N} \overline{X}_i$.

Dobrać liczbę a > 0 tak, żeby $Var(\overline{S}) = 0.36 Var(S)$.

- (A) 2.000
- (B) 0.1233
- (C) 5.5300
- (D) 1.0217
- (E) 1.6094

Egzamin dla Aktuariuszy z 12 stycznia 2002 r.

Prawdopodobieństwo i Statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko .	K L U C Z	ODPOWIEDZI	
<u>Pecel</u>			

Zadanie nr	Odpowiedź	Punktacja*
1	С	
2	Е	
3	C	
4	D	
5	A	
6	D	
7	D	
8	В	
9	D	
10	D	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.