Факты о потенциале.

0.0.1 Обозначения

1. $\varphi(r)$ — безразмерный положительный потегнциал.

•
$$\varphi(r) > 0$$

$$\quad \bullet \quad \varphi(r) = \frac{1}{r}, r \ge 1$$

•
$$\varphi'(r) < 0$$

•
$$\varphi''(r) + \frac{2}{r}\varphi'(r) = -\rho(r) < 0$$

2.~e- положительная энергия

3. l — момент импульса

4. $l_m(e)$ — максимальный момент импульса при данной энергии, $r_m(e)$ — точка достижения этого максимума.

$$l_m^2(e) = \max_r r^2(\varphi(r) - e) \tag{1}$$

5.
$$x_l = \sqrt{1 - \frac{l^2}{l_m^2}}$$

6. T(e,l) — период траектории.

$$T(e,l) = \int_{r_{-}}^{r_{+}} \frac{dx}{\sqrt{\varphi(x) - e - \frac{l^{2}}{x^{2}}}}$$

• $T(e,l) - \frac{\pi}{2e^{3/2}}$ — ограниченная гладкая функция параметров e,x_ll_m .

7.
$$r_{\pm}$$
 — корни уравнения $r^{2}\varphi(r) - er^{2} - l^{2} = 0$

8.
$$u = r^2$$
, u_{\pm} — корни уравнения $u\varphi(u) - eu - l^2 = 0$

9. $F(u) = u\varphi(u)$ — монотонная, гладкая, выпуклая вниз функция.

10.
$$u_- \downarrow e, \uparrow l^2$$

11.
$$u_+ \downarrow e, \downarrow l^2$$

0.0.2 $l_m(e)$

Для нахождения $l_m(e)$ находятся r_{i-1}, r_i, r_{i+1} — точки, такие, что $r_i \ge r_{i\pm 1}$, далее фунция F(u) приближается параболой, после чего находятся u, l_m

Заметим, что если $e>rac{1}{2}$, то максимальный момент равен

$$l_m^2(e) = \frac{1}{4e}$$

однако траектории, пересекающие небесное тело $(\exists t: r(t,e,l) < 1)$ ограничиваются $l^2 \leq 1 - e$

0.0.3 Траектории.

При расчете траектории, делаем замену

$$u = \frac{u_{-} + u_{+}}{2} - \frac{u_{+} - u_{-}}{2} cos(\theta)$$

$$\dot{\theta} = 2\sqrt{\frac{u\varphi(u) - eu - l^2}{(u - u_-)(u - u_+)}}$$

1. если e > 1/2, то будем линейно интерполировать $\theta(e,l,\tau)$ ($\tau = t/T(e,l)$) по параметрам $e,\sqrt{l_m^2(e)-l^2}$ Однако при интегрировании по траектории методом монте-карло, мы можем взять приближенную траекторию $\widetilde{\theta}(t)$, тогда, так как для истинной траектории $F(\theta)dt = d\theta$, то для приближенной таектории $\widetilde{F}(t')dt' = d\widetilde{\theta}$, т.е.

$$dt = \frac{\widetilde{F}(t')}{F(\theta)}dt'$$

 $\widetilde{ heta}$ будем аппроксимировать по точкам с помощью кубического сплайна для непрерывности производных.

2. если e < 1/2, то траектория делится на 2 части: до r < 1 и r > 1. Нас интересует внутреняя часть траектории и внешняя.

При этом выбирается θ_1 , а u_+ подгоняется так, чтобы $u(\theta_1)=1$

• Решение уравнения снаружи:

$$\dot{r} = \sqrt{\frac{e}{r^2} \cdot (r - r_-)(r_+ - r)}$$

где

$$r_{\pm} = \frac{1 \pm \sqrt{1 - 4el^2}}{2e}$$

Внешняя часть периода траектории равна

$$T_{ex}(e,l) = \frac{\pi}{2e^{3/2}} + \frac{\sqrt{1 - e - l^2}}{e} - \frac{\arctan\frac{2\sqrt{e}\sqrt{1 - e - l^2}}{1 - 2e}}{2e^{3/2}}$$
(2)

при маленьких e верно, что

$$T_{ex}(e,l) = \frac{\pi}{2e^{3/2}} - z + \frac{z^3}{6} - \frac{ez^5}{10} + \dots + (-1)^k \frac{e^k z^{2k+3}}{(4k+6)} + \dots$$
 (3)

где

$$z = \frac{2\sqrt{1 - e - l^2}}{1 - 2e} \tag{4}$$

Замена $r = \frac{r_- + r_+}{2} - \frac{r_+ - r_-}{2} \cos \theta$ приводит к уравнению:

$$\dot{\theta} \cdot (1 - y \cdot \cos(\theta)) = \frac{2\sqrt{e}}{r_- + r_+} = 2e^{3/2}$$

где

$$y = \frac{r_+ - r_-}{r_- + r_+} = \sqrt{1 - 4el^2}$$

тогда

$$\theta - y \sin \theta - (\theta_{-} - y \sin \theta_{-}) = 2e^{3/2}(t - t_{-})$$

если G(y,z) — обратная функция $\theta \to \theta - y \sin \theta$, тогда

$$\theta = G(y, 2e^{3/2}(t - t_{-}) + (\theta_{-} - y\sin\theta_{-}))$$

при использовании временного параметра $\tau = t/T_{ex}(e,l)$, получаем

$$heta = G \left(y, \pi \cdot \left(au rac{T_{ex}(e, l)}{T(e)} + rac{T_{in}(e, l)}{T(e)}
ight)
ight)$$

где T_{in} — внутренняя часть периода, $T_{in}+T_{ex}=T(e)=\frac{\pi}{2e^{3/2}}$

$$\theta = G(y, \pi(1 - (1 - \tau)z))$$

$$z = \frac{T_{ex}(e, l)}{T(e)}$$

В интерполяции внутреннего периода есть дин нюанс: он разрывно зависит от e и l. Продемонстрировать это можно тем, что при $e \to 1/2 - 0$ $\theta_1 \to \pi$, а когда $l \to l_{max} - \theta_1 \to 0$. Тогда непрерывной будет величина

$$T_{\theta in} = \frac{T_{in}}{\theta_1} \tag{5}$$

Далее: при интерполяции периода по сетке el, озможно, что каждый бин придется разбить на более маленькие части для более точной интерполяции периода. Для этого квадратный бин можно разделить на части (сделаем это по переменным e и $\xi = \sqrt{1-l^2/l_m^2}$)

0.0.4 Потенциал.

Свяжем величины: безразмерный потенциал $\varphi(r)$, безразмерный радиус r, безразмерная масса M(r) (такая, что M(1)=1), безразмерная плотность $\rho(r)$.

$$\frac{M(r)}{r^2} = -\varphi'(r)$$
$$3\rho(r) = \frac{M'(r)}{r^2}$$

В дальнейшем нам понадобится непрерывная функция

$$Q(r) = \frac{M(r)}{r^3} \tag{6}$$

Для нахождения Q(r) будем делить на $r^3 M(r)$, которая определяется квадратурой Гаусса.

$$Q(r+h) = \frac{Q(r)r^3 + I_G[r \to 3\rho(r)r^2](r,r+h)}{(r+h)^3}$$
(7)

После численного интегрирования мы получим $Q(1) \neq 1$, поэтому необходимо будет разделить Q(r) и $\rho(r)$ на Q(1).

Для получения потенциала останется лишь проинтегрировать непрерывную функцию rQ(r) с помощью квадратур Гаусса.

${f 0.0.5}$ Вычисление функция S(u)

Мы хотим вычислить функцию

$$S(u) = \frac{u\varphi(u) - eu - l^2}{(u - u_-)(u_+ - u)}$$
(8)

Положим $F(u) = u\varphi(u)$. Тогда

$$S(u) = \frac{1}{u_{+} - u_{-}} \cdot \left(\frac{F(u) - F(u_{-})}{u - u_{-}} - \frac{F(u_{+}) - F(u)}{u_{+} - u} \right) \tag{9}$$

Эта функция является непрерывной и определенной, однако при близких значениях u_+, u_-, u необходимо вычисление с помощью производных. Возможные случаи:

• u_+ близко к u_- . В этом случае получаем, что

$$S(u) = -\frac{1}{2}F''\left(\frac{u_+ + u_- + u}{3}\right) \tag{10}$$

• u близко к u_- , но далеко от u_+ (либо наоборот). Тогда через производные оцениваем только первую разность.

$$S(u) = \frac{1}{u_{+} - u_{-}} \cdot \left(F'\left(\frac{u + u_{-}}{2}\right) - \frac{F(u_{+}) - F(u)}{u_{+} - u} \right) \tag{11}$$

Далее — очевидные формулы без текста.

$$\frac{\partial}{\partial u} = \frac{1}{2r} \frac{\partial}{\partial r} \tag{12}$$

$$F'(u) = \frac{1}{2r} \frac{\partial}{\partial r} (r^2 \varphi(r)) = \varphi(r) + \frac{r\varphi'(r)}{2} = \varphi(r) - \frac{r^2}{2} Q(r)$$
(13)

$$F''(u) = \frac{1}{4} \left(\varphi''(r) + 3 \frac{\varphi'(r)}{r} \right) = -\frac{1}{4} (3\rho(r) + Q(r))$$
 (14)

Видно, что F(u) — выпуклая вниз и монотонная функция, поскольку F''(u) < 0, а $F'(\infty) = 0$ и производная убывает, то F'(u) > 0

В случае если $u_p, u > 1$ (т.е. e < 1/2) Мы заменим функцию F(u) на полином

$$F(u) = 1 + \frac{u-1}{2} - \frac{(u-1)^2}{8}$$

Тогда максимальное значение u_p на мнимой траектории равно

$$u_n = -4e + 3 + 2\sqrt{4e^2 - 2l^2 - 6e + 3}$$

0.0.6 Нахождение $l_m(e)$

- при $e \leq \frac{1}{2} \ l_m^2(e) = 1 e$ определяется из условия пересечения траектории с телом
- если условием пересечения пренебречь, то $l_m^2(e) = \frac{1}{4e}$.
- Когда $e > \frac{1}{2}$, необходимо находить $l_m(e)$ из 1. Дифференцируя это выражение по u, получаем уравнение

$$F'(u) - e = 0$$

Как мы уже знаем, F''(u) > 0. Это заначит, что корень уравнения можно найти методом бинарного поиска, так как F'(u) убывает.

Найдя близжайшие точки r_1, r_2 на узлах сетки r_i , мы уточним решение, приблизив функцию F'(u(r)) линейно. Тогда

$$r_m = \frac{r_2 F'(r_1) - r_1 F'(r_2)}{F'(r_1) - F'(r_2)}$$

Также можно дополнительно уточнить, сделав шаг методом Ньютона

$$r_m' = r_m - \frac{F'(r_m)}{F''(r_m)}$$

Кастати, итерацию ньютона можно модифицировать для случая обнуления первой производной.

$$x' = x - \frac{2f(x)}{f'(x) + sgn(f'(x))\sqrt{f'(x)^2 - 2f(x)f''(x)}}$$

0.0.7 Нахождение концов траектории.

Концы траектории определяются соотношением

$$\Phi(u) = F(u) - eu - l^2 = 0$$

Так как $\Phi'(u) = F'(u) - e$ — функция, которая убывает, причем $\Phi'(u_m(e)) = 0$, то $\Phi(u)$ — возрастает при $u < u_m(e)$ и убывает при $u > u_m(e)$. Таким образом, $\Phi(r)$ ведет себя так же как $\Phi(u)$, тогда для нахождения корней нужно лишь использовать метрд деления отрезка попола, а уточнить можно методом ньютона.

0.0.8 Переход из фазовых объемов.

Задача номер 1 сводится к нахождению концентрации частиц в точке r, зная распределение частиц в плоскости E-L.

Итак, фазовый объем предсавляется в виде

$$d\Phi = r_{\odot}^3 v_{esc}^3 \cdot 4\pi^2 d\tau dedl^2 \tag{15}$$

А также в виде

$$d\Phi = r_{\odot}^3 v_{esc}^3 \cdot d^3 \vec{r} d^3 \vec{v} \tag{16}$$

Учтем также, что

$$d^{3}\vec{v} = 2\pi dE d\sqrt{v^{2} - \frac{L^{2}}{r^{2}}} d\vec{n} = \pi de d\sqrt{v^{2} - \frac{l^{2}}{r^{2}}} d\vec{n}.$$
 (17)

Причем, поскольку радиальная скорость v_r и тангенциальная v_t фиксированны, для $d\vec{n}$ остается только выбор направления для тангенциальной скорости ($\int d\vec{n} = 1$).

Отсюда получаем, что

$$n(r) = \int \frac{dN}{4\pi T(e,l)dedl^2} ded\sqrt{v^2 - \frac{l^2}{r^2}}$$
(18)

1. Предположение 1: равномерное распределение внутри бина по dedl:

В этом случае

$$f_1(e,l) = \frac{dN}{dedl} \tag{19}$$

И тогда получим

$$n(r) = \int \frac{1}{r} \frac{f_1(e,l)}{8\pi T(e,l)} de \, d \sin \frac{l}{rv}$$
(20)

Если нужно генерировать распределение, то L — генерируется равномерно, т.е.

$$L = (l_0 + (l_1 - l_0)\xi)L_{max}(e)$$
(21)

где $l_i = L/L_{max}e$ — приведенный момент импульса, а ξ — случайная величина в интервале [0,1].

А энергия генеируется НЕРАВНОМЕРНО:

$$e = e_0 + (e_1 - e_0) \cdot u \tag{22}$$

$$u = \frac{2\xi}{(1-b) + \sqrt{(1-b)^2 + 4b\xi}} \tag{23}$$

$$b = \frac{L_{max}(e_0) - L_{max}(e_0)}{L_{max}(e_0) + L_{max}(e_0)}$$
(24)

2. Предположение 2: равномерное распределение внутри бина по $dedl^2$:

В этом случае

$$f_2(e,l) = \frac{dN}{dedl^2} \tag{25}$$

И тогда получим

$$n(r) = \int \frac{f_2(e,l)}{4\pi T(e,l)} de \, d\sqrt{v^2 - \frac{l^2}{r^2}}$$
 (26)

 Γ енерация L:

$$L = \sqrt{l_0^2 + (l_1^2 - l_0^2)\xi} L_{max}(e)$$
(27)

$$e = e_0 + (e_1 - e_0) \cdot u \tag{28}$$

$$u = \frac{\xi(3+b^2)}{(1-b)^2 + (1-b)\sqrt[3]{(1-b)^3 + 2\xi b(3+b^2)} + \sqrt[3]{\cdots^2}}$$
(29)

$$b = \frac{L_{max}(e_0) - L_{max}(e_0)}{L_{max}(e_0) + L_{max}(e_0)}$$
(30)

При этом важно учитывать пределы интегрирования не только исходя из размеров бина $[e_0,e_1],[\bar{l}_0,\bar{l}_1]$ но и из области определения подинтегральных фунций: $e<\varphi(r),l< rv=\sqrt{r^2(\varphi(r)-e)}$. Эти ограничения

Интеграл легче всего взять методом монте-карло (это не очень затратно и просто реализуется)

Вторая интересующая нас величина — скорость аннигиляции

$$\int d^3 \vec{r} d^3 \vec{v} d^3 \vec{v}_1 f(\vec{r}, \vec{v}) f_1(\vec{r}, \vec{v}_1) \sigma_{ann} |\vec{v} - \vec{v}_1| = \frac{\sigma_{a0} v_{a0}}{r_{\odot}^3} \int dN_1 dn_2(r) \phi_{ann}(v). \tag{31}$$

где $\sigma_{a0}v_{a0}$ — размерное сечение * скорость взятое при произвольной скорости v_{a0} , а

$$\phi_{ann} = \frac{\sigma_{ann} |\vec{v} - \vec{v}_1|}{\sigma_{a0} v_{a0}}.$$
 (32)

 dN_1 — дифференциал количества частиц сорта 1, $dn_2(r)$ — дифференциал концентрации частиц сорта 2 (из 20)

$$dN_1 \approx \frac{dN_1}{T(e_1, l_1)de_1 dl_1^2} d\tau de_1 dl_1^2 \approx \frac{dN_1}{T(e_1, l_1)de_1 dl_1} d\tau de_1 dl_1$$
(33)

Величина ϕ_{ann} зависит от разности скоростей и равна $\phi_0 + \phi_1 v + \phi_2 v^2 + \dots$ При интегрировании можно вычислить эту величину для каждого члена ряда v^i а потом просуммировать с весами ϕ_i