Basic Compiler Optimizations:

Question 1:

The optimizations are listed below:

- 1. Common subexpression elimination
- 2. Copy propagation
- 3. Invariant code motion
- 4. Strength reduction
- 5. Test Elision and Induction Variable Elimination and
- 6. Constant Propagation and Dead Code Elimination

Question 2:

The optimized code after applying the optimizations listed above.

- 1. t1 := addr(a)
- 2. t3 := 10
- 3. t2 := 4
- 4. t9 := n * 4
- 5. if t2 < t9 goto 7
- 6. goto 12
- 7. t1[t2] := t3
- 8. t6 := t2 + 4
- 9. t1[t6] := t3
- 10. t2 := t2 + 8
- 11. goto 5
- 12.

Question 3:

The CFG of the optimized code is attached below.

Dataflow Frameworks:

Question 1:

- a) The property set is the lattice of all subsets of the variables in the problem. As it is a may problem, ≤ is the subset operation. 0 is the empty {} set and 1 is the universal set.
 - Join is the set union operator.

b) Transfer functions: in(j) = gen(j) ∪ (out(j) - kill(j)) out(j) = { U in(i), i is successor of j}

gen(j) = {all the variables in the expression that means the variables in the both left and right side}

 $kill(j) = \{\}$ because used or defined actually does not kill any variables. For example, for the expression, j: x=y+z, $gen(j)=\{x, y, z\}$, $kill(j)=\{\}$

c) The initial value of the extremal node is {}. The initial values of the other nodes are {} also.

Question 2: A. True

Question 3: B. False

Question 4: A. MFP = MOP

Question 5:

No, the answer would not be safe to use for program transformation because some information is being lost. For example, in Reach problem, some definition (x,k) does not reach a node when in fact it reaches the node.

RTA, XTA, PTA and Context Sensitivity:

Question 1:

For I.evaluate():

 $\{ConstExp.evaluate(),\ VarExp.evaluate(),\ OrExp.evaluate(),\ AndExp.evaluate()\}$

For r.evaluate():

{ConstExp.evaluate(), VarExp.evaluate(), OrExp.evaluate(), AndExp.evaluate()}

Question 2:

For I.evaluate():

{ConstExp.evaluate(), VarExp.evaluate(), OrExp.evaluate(), AndExp.evaluate()}

For r.evaluate():

{ConstExp.evaluate(), VarExp.evaluate(), OrExp.evaluate(), AndExp.evaluate()}

Question 3:

For I.evaluate():

 $\{ConstExp.evaluate()\}$

For r.evaluate():

{VarExp.evaluate(), OrExp.evaluate()}

Question 4:

The points-to graph is given below.

Question 5: o3, o1

Question 6: o3

Question 7: o3

Abstract Interpretation:

Question 1:

The constants abstraction defined in the class is:

- 1) $\alpha(c) = \bot \text{ if } c = \{\}$
- 2) $\alpha(c) = \underline{n} \text{ if } c = \{n\}$
- 3) $\alpha(c) = T$ otherwise
- 4) $\gamma(T) = Z$
- 5) $y(\underline{n}) = \{n\}$
- 6) $\gamma(\bot) = \{\}$
- We know that, α and γ form a Galois connection, if for every a ∈ A and every c ∈ C, c ⊆ γ(a) iff α(c) ≤ a

Now, for these constants abstraction we can write, If $c = \{\}$, then for every $a, \{\} \subseteq \gamma(a)$ and $\alpha(\{\}) \le a$. If $c = \{n\}$, then $c \subseteq \gamma(a)$ or $\alpha(c) \le a$ for $a = \underline{n}$ or a = T. If $c = \{n\}$ other set, then $c \subseteq \gamma(a)$ or $\alpha(c) \le a$ for a = T.

So, we can say α and γ form a Galois connection.

2. Now we can show,

$$\alpha(\gamma(T)) = \alpha(Z) = T$$

 $\alpha(\gamma(\underline{n})) = \alpha(\{n\}) = \underline{n}$

$$\alpha(\gamma(\bot)) = \alpha(\{\}) = \bot$$

That proves that $\alpha(\gamma(a)) = a$ for all a.

So, we can say that the constants abstraction is a Galois insertion.

Question 2: A. True

Question 3: B. False

Types:

Question 1:

```
Define factorial = fix \lambda f. \lambda x. if (iszero x) 1 (times x (f (pred x))) Where, times = fix \lambda f. \lambda x. \lambda y. if (iszero x) 0 (plus y (f (pred x) y)) plus = fix \lambda f. \lambda x. \lambda y. if (iszero x) y (f (pred x) (succ y))
```

Question 2:

let factorial n = if n == 0 then 1 else n^* factorial (n-1)

Question 3:

- a) $[Int / t_0, Int -> Int / t_1]$
- b) $[t_0/t_1, t_0/t_2, t_3 \rightarrow t_4/t_0]$
- c) $[Int / t_0, Int / t_1]$
- d) No principal unifier exists.

Question 4:

Question 5:

A. The type is, int -> int

Question 6:

B. Because z comes from outer scope and may not be polymorphic.

Question 7:

- a) YES.
- b) $((((t_0 -> t_0, t_0 -> t_0), (t_0 -> t_0, t_0 -> t_0)), ((t_0 -> t_0, t_0 -> t_0), (t_0 -> t_0, t_0 -> t_0))), (((t_0 -> t_0, t_0 -> t_0)), ((t_0 -> t_0, t_0 -> t_0))))$
- c) It will increase the complexity of the program exponentially. I ran the haskell representation of the code in haskell and it got kind of stuck. It should return 2¹⁰ pairs.