

MAPA - Material de Avaliação Prática da Aprendizagem

Acadêmico: Marcos Vinicius de Morais	R.A.: 20127542-5
Curso: Engenharia de Software	
Disciplina: Pesquisa Operacional	

Uma refinaria produz dois tipos de combustíveis, X e Y, que precisam ser trabalhados em duas unidades de processamento. A produção de 1 litro do combustível X necessita de 8 minutos na Unidade de Processamento 1 (UP1) e 4 minutos na Unidade de Processamento 2 (UP2). Um litro do combustível Y precisa de 6 minutos na UP1 e 2 minutos na UP2. A UP1 tem uma disponibilidade máxima de 480 minutos, e a UP2 pode ser usada, no máximo, por 200 minutos por turno de trabalho. A refinaria obtém uma margem de contribuição de R\$ 7,50 por litro com a venda do combustível X e R\$ 4,50 por litro com o combustível Y.

Nessas condições, resolva os itens a seguir:

a) Escreva o problema de pesquisa operacional associado à situação descrita, considerando a obtenção da maior margem de contribuição com a produção dos combustíveis.

	UP1	UP 2	Margem Contribuição
Combustível X	8	4	7,50
Combustível Y	6	2	4,50
Disponibilidade máxima (min)	480	200	

Função Objetivo	maximizar margem de contribuição (L) = 7,50 * X + 4,5 * Y	
Restrições		
disponibilidade UP1:	8 * X + 6 * Y <= 480	
disponibilidade UP2:	4 * X + 2 * Y <= 200	
não negatividade:	X, Y >= 0	

b) Use o método gráfico e determine a quantidade ótima dos combustíveis X e Y a serem produzidos por turno.

c) Use o Solver do Excel e determine a quantidade ótima dos combustíveis X e Y a serem produzidos por turno.

Método Solver			
Variáveis de decisão	X	Υ	
	30	40	
Função Objetivo	405		
Restrições			
disponibilidade UP1	480	<=	480
disponibilidade UP2	200	<=	200

d) Com base no resultado obtido em (b) e (c), qual é a maior margem de contribuição, em reais, obtida com a produção dos dois combustíveis em um turno de trabalho?

Após a utilização dos métodos gráfico e solver para a resolução do problema descrito na atividade, concluí que para obter a maior margem de contribuição, devem ser produzidos 30 litros do combustível X e 40 litros do combustível Y para que tenha um lucro de R\$405,00 por turno de trabalho.

e) Assuma a situação em que a demanda do combustível X seja limitada a 40 litros por turno. A adição dessa nova restrição altera as resoluções dos problemas obtidas nos itens (b) e (c)? Em caso afirmativo, apresente a nova solução, demonstrando os cálculos. Em caso negativo, justifique sua resposta apresentado os cálculos realizados.

Caso a demanda do combustível X seja limitada a 40 litros por turno de trabalho, entendo que a solução do problema seria a mesma, pois, o limite de produção de X é 40 litros por turno, podendo ser produzida uma quantidade menor, desde que não ultrapasse esse limite, e, conforme os cálculos realizados, para obter a maior margem de contribuição, devem ser produzidos 30 litros do combustível X e 40 litros do combustível Y. Diante disso, podemos afirmar que a quantidade do combustível X não extrapola o novo limite definido. Segue abaixo o método Solver com a nova restrição aplicada:

	UP1	UP 2	Margem Contribuição	Limite de Produção (Turno)
Combustível X	8	4	7,50	40
Combustível Y	6	2	4,50	Ilimitado
Disponibilidade máxima (min)	480	200		

Função Objetivo	maximizar margem de contribuição (L) = 7,50 * X + 4,5 * Y		
Restrições			
disponibilidade UP1	8 * X + 6 * Y <= 480		
disponibilidade UP2	4 * X + 2 * Y <= 200		
não negatividade	X, Y >= 0		
Limite de Produção (Turno)	X <= 40		

Método Solver				
Variáveis de decisão	X	Y		
	30	40		
Função Objetivo	405			
Restrições				
disponibilidade UP1	480	<=	480	
disponibilidade UP2	200	<=	200	
Limite de Produção (Turno)	30	<=	40	