Rozšiřitelné hašování (Extendible Hashing)

Standardní metoda hašování vyžaduje na začátku zvolit velikost hašovací tabulky. Pokud ji zvolíme nedostatečnou, u otevřeného adresování dojde k vyčerpání kapacity tabulky, u zřetězení sice tento problém nenastává, ale roste časová složitost vyhledání prvku. Metoda hašování nazývaná *extendible hashing* nevyžaduje počáteční stanovení velikosti hašovací tabulky a navíc poskytuje konstantní časovou složitost vyhledání prvku bez ohledu na to, kolik prvků je v hašovací struktuře uloženo.

Hašovací datová struktura se skládá ze dvou částí:

- adresáře
- přihrádek

Adresář je pole odkazů na přihrádky. Velikost pole adresáře je 2^d odkazů. Hodnota *d* se dynamicky mění v závislosti na počtu prvků uložených v hašovací struktuře. Na začátku je zpravidla *d* malé. Při postupném zvyšování počtu ukládaných prvků do hašovací struktury se v určitých okamžicích hodnota *d* zvyšuje.

Přihrádka je místo pro uložení pevně stanoveného počtu prvků. Velikost všech přihrádek je stejná (například pro 4 prvky).

Základem metody je opět hašovací funkce, která datový prvek zobrazí na celé číslo. Posledních *d* bitů tohoto čísla je indexem v poli adresáře, kde najdeme odkaz na přihrádku, ve které je uložen daný prvek.

Příklad. Máme navrhnout rozšiřitelné hašování pro uložení řetězců. Hašovací funkci zvolíme:

$$h(z_1z_2...z_k) = 7 * asc(z_1) + 3 * asc(z_2) + asc(z_k) + k$$

Velikost přihrádek zvolíme 4 prvky.

Dec	Hex	Char	Dec	Нех	Char	Dec	Нех	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`
1	01	Start of heading	33	21	į.	65	41	A	97	61	а
2	02	Start of text	34	22	"	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	c
4	04	End of transmit	36	24	Ş	68	44	D	100	64	d
5	05	Enquiry	37	25	*	69	45	E	101	65	e
6	06	Acknowledge	38	26	٤	70	46	F	102	66	f
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	Н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k
12	OC.	Form feed	44	2C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	_	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	ន	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
23	17	End trans, block	55	37	7	87	57	W	119	77	w
24	18	Cancel	56	38	8	88	58	X	120	78	х
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z
27	1B	Escape	59	3 B	;	91	5B	[123	7B	{
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	ı
29	1D	Group separator	61	ЗD	=	93	5D]	125	7D	}
30	1E	Record separator	62	3 E	>	94	5E	^	126	7E	~
31	1F	Unit separator	63	3 F	?	95	5F	_	127	7F	

Na začátku zvolíme velikost adresáře 2 (*d*=1).

Do hašovací struktury uložíme jména

$$h(Eva) = 7*69+3*118+97+3 = 937 = 1110101001$$
 $h(Irena) = 7*73+3*114+97+5 = 955 = 1110111011$
 $h(Pavel) = 7*80+3*97+108+5 = 964 = 1111000100$
 $h(Marta) = 7*77+3*97+97+5 = 932 = 1110100100$
 $h(Ivan) = 7*73+3*118+110+4 = 979 = 1111010011$
 $h(Nina) = 7*78+3*105+97+4 = 962 = 1111000010$

0	\vdash	→ Pavel	Marta	Nina	
1		→ Eva	Irena	Ivan	

Vyhledání prvku v hašovací struktuře

Jednotlivé bity hodnoty hašovací funkce si označíme:

...
$$b_{d+1}b_db_{d-1}$$
 ... $b_3b_2b_1$ (b_1 je nejméně významný bit)

- ◊ Vypočítáme hodnotu hašovací funkce hledaného prvku.
- \Diamond Vezmeme posledních d bitů $b_{d..}b_1$ vypočtené hodnoty hašovací funkce. Ty jsou indexem v poli adresáře. V prvku pole adresáře, který odpovídá tomuto indexu, zjistíme odkaz na příslušnou přihrádku.
- ◊ V přihrádce procházíme v ní uložené prvky a srovnáváme je s hledaným prvkem, dokud nenalezneme prvek shodný s hledaným prvkem nebo je všechny neprojdeme (pak hledaný prvek není nalezen).

Přidání prvku do hašovací struktury

- Vypočítáme hodnotu hašovací funkce přidávaného prvku.
- Vezmeme posledních d bitů b_d..b₁ vypočtené hodnoty hašovací funkce. Ty jsou indexem v poli adresáře. V prvku pole adresáře, který odpovídá tomuto indexu, zjistíme odkaz na příslušnou přihrádku.
- Je-li v přihrádce místo pro uložení přidávaného prvku, prvek do přihrádky vložíme. Jinak je nutné přihrádku rozdělit.

$$h(Jana) = 7*74+3*97+97+4 = 910 = 1110001110$$
 $0 \longrightarrow Pavel Marta Nina Jana$
 $1 \longrightarrow Eva Irena Ivan$
 $h(Hana) = 7*72+3*97+97+4 = 896 = 1110000000$

Toto jméno se už do přihrádky nevejde, je nutné ji rozdělit.

Rozdělení přihrádky

Pokud mají všechny prvky uložené v přihrádce stejnou hodnotu posledních d bitů $b_{\rm d}..b_1$ hodnot svých hašovacích funkcí, přihrádku rozdělíme na dvě a do první dáme prvky, jejichž hašovací funkce má hodnotu dalšího bitu $b_{\rm d+1}$ rovnu 0. Do druhé dáme prvky, jejichž hodnota bitu $b_{\rm d+1}$ je 1. Po rozdělení přihrádek následně i zdvojnásobíme velikost adresář (hodnotu d zvýšíme o 1). Při zdvojnásobení velikosti adresáře zachováme všechny odkazy na přihrádky, které se nerozdělily.

Pokud by bit b_{d+1} byl u všech prvků stejný, vzali bychom další bit b_{d+2} a adresář bychom zvětšili čtyřikrát (hodnotu d bychom zvýšili celkově o 2). Atd.

Jestliže prvky uložené v přihrádce nemají shodnou hodnotu posledních d bitů hodnot svých hašovacích funkcí, rozdělíme je do dvou přihrádek podle prvního (bráno zleva) z d bitů, který není u všech prvků identický. Nechť je to bit bi, kde i≤d a i je největší index takový, že hodnota tohoto bitu hašovacích funkcí všech prvků není stejná. Následně v adresáři příslušně upravíme odkazy na tyto přihrádky.

Příklad – pokračování.

Pavel	1111000100
Marta	1110100100
Nina	11110000 <mark>1</mark> 0
Jana	11100011 <mark>1</mark> 0
Hana	11100000 <mark>0</mark> 0

h(Adam) = 7*65+3*100+109+4 = 868 = 1101100100

00		→Pavel	Marta	Hana	Adam
01	/	Nina	Jana		
10		Eva	Irena	Ivan	Lucie
11					

h(Jitka) = 7*74+3*105+97+5 = 868 = 1110100111

Eva	111010100 <mark>1</mark>
Irena	111011101 <mark>1</mark>
Ivan	1111010011
Lucie	1111011101
Jitka	1110100111

00		→ Pavel	Marta	Hana	Adam
01		→ Eva	Lucie		
10		→Nina	Jana		
11	_	→Irena	Ivan	Jitka	

```
h(Marek) = 7*77+3*97+107+5 = 942 = 1110101110
h(Martin) = 7*77+3*97+110+6 = 946 = 1110110010
h(Lenka) = 7*76+3*101+97+5 = 937 = 1110101001
h(Radek) = 7*82+3*97+107+5 = 977 = 1111010001
     00
              Pavel
                        Marta
                                 Hana
                                          Adam
               Eva
     01
                        Lucie
                                 Lenka
                                           Radek
              ≯Nina
                                 Marek
                                           Martin
     10
                        Jana
              ≯ Irena
                        Ivan
                                 Jitka
     11
h(Tereza) = 7*84+3*101+97+6 = 994 = 1111100010
         Nina
                      1111000010
         Jana
                      1110001110
         Marek
                      1110101110
         Martin
                      1110110010
                      1111100010
         Tereza
                Pavel
                                            Adam
                         Marta
     000
                                  Hana
     001
                Eva
                         Lucie
                                   Lenka
                                            Radek
     010
     011
                         Martin
                Nina
                                   Tereza
     100
                Jana
                         Marek
     101
     110
                Irena
                         Ivan
                                  Jitka
     111
h(Denisa) = 7*68+3*101+97+6 = 882 = 1101110010
                         Marta
     000
                                            Adam
                Pavel
                                  Hana
     001
                         Lucie
                                   Lenka
                Eva
                                            Radek
     010
     011
                         Martin
                                   Tereza
                Nina
                                            Denisa
     100
                         Marek
                Jana
     101
     110
                Irena
                         Ivan
                                  Jitka
     111
```

h(Emil) = 7*69+3*109+108+4 = 922 = 1110011010

Nina	1111000010
Martin	1110110010
Tereza	1111100010
Denisa	1101110010
Emil	1110011010

h(Iva) = 7*73+3*118+97+3 = 965 = 1111000101

Eva	1110101001
Lucie	1111011101
Lenka	1110101001
Radek	1111010001
Iva	1111000101

Odebrání prvku z hašovací struktury

- Vyhledáme odebíraný prvek.
- Pokud byl nalezen, odstraníme ho z dané přihrádky.

Při větším odebírání, kdy vznikne více prázdných přihrádek, lze některé přihrádky sloučit. Případně po větším sloučení je někdy možné zmenšit velikost adresáře na polovinu. Jednoduchým způsobem lze sloučit prázdnou přihrádku, na kterou je jen jeden odkaz z adresáře, s přihrádkou, na kterou je opět jen jeden odkaz z adresáře a zároveň hodnoty indexů těchto odkazů v adresáři se liší jen v jednom bitu.

Bylo by možné sloučit i v případě, že na obě slučované přihrádky je stejný počet 2^m odkazů a přitom hodnoty indexů jednotlivých odkazů v adresáři se liší právě v *m* bitech.

V praxi se ale při odebírání zmenšování rozsahu adresáře nebo slučování přihrádek nedělá.

Složitost hašování

Složitost operace vyhledání je dána velikostí přihrádek. Vyhledání prvku vyžaduje výpočet jedné hodnoty hašovací funkce a nejvýše tolik srovnání hledaného prvku s jinými prvky, kolik je kapacita přihrádek. Složitost operace přidání prvku závisí na tom, zda dojde k dělení přihrádek a jak rozsáhlé dělení to je. Závisí to na volbě vhodné hašovací funkce. Složitost operace odebrání je stejná jako složitost operace vyhledání (pokud bychom nedělali slučování přihrádek).

Uložení na vnější paměti

Použití této metody je vhodné i v případech, kdy standardní hašovací tabulka by byla tak rozsáhlá, že by se nevešla do paměti. U rozšiřitelného hašování stačí, aby v paměti byl uložen jen adresář. Přihrádky mohou být uloženy na vnější paměti.