Linear Algebra MATH 325: Assignment 3

(Due in class, February 1)

Problem 1: Let $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 1 & 0 & 1 \end{pmatrix}$. Compute A^{-1} using the Cayley-Hamilton theorem. (Hint:

compute the characteristic polynomial $P_A(T)$ of A and analyze the equality $P_A(A) = 0$.)

Problem 2: Let $A = \begin{pmatrix} 2 & 9 \\ -1 & 8 \end{pmatrix}$ and $\alpha_A : \mathbb{C}^2 \longrightarrow \mathbb{C}^2$, $v \mapsto A \cdot v$, the corresponding linear map.

- (i) Show that A has only one eigenvalue and that A is not diagonalizable.
- (ii) Find a basis of \mathbb{C}^2 , such that the matrix of α_A with respect to this basis is

$$\left(\begin{array}{c} \lambda & 1 \\ 0 & \lambda \end{array}\right),\,$$

where λ is the only eigenvalue of A.

Problem 3: Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Show that $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ is a generalized eigenvector for the

eigenvalue 1 of A.

Problem 4: Let A be a complex non zero $n \times n$ -matrix, and f(T) a complex polynomial of minimal degree ≥ 1 , such that f(A) = 0. Show that f(T) divides the characteristic polynomial of A. (Hint: apply the division algorithm.)