PROC NLP: Nonlinear Minimization

Gradient is computed using analytic formulas.

Jacobian of nonlinear constraints is computed using analytic formulas.

PROC NLP: Nonlinear Minimization

Optimizat:	ion Start
Parameter	Estimates

		i ai aii	ictor Ectimato	J		
		Gradient	Gradient	Lower	Upper	Active
		Objective	Lagrange	Bound	Bound	Bound
N Parameter	Estimate	Function	Function	Constraint	Constraint	Constraint
1 x	0	-2.493178	0	0		Lower BC
2 v	0	-2.518756	0	0		Lower BC

Value of Objective Function = 143.26404365

Value of Lagrange Function = 143.26404365

Values of Nonlinear Constraints

Lagrange

	Constra	ınt	value	Residual	Multiplier		
[1]	c1_L	5.2769	-5.2769	. Violat.	NLIC	LinDep
[2]	c2_L	-15.8132	15.8132			
[3]	c3_L	-22.2800	22.2800			
ſ	4]	c4 L	16.0803	-16.0803	. Violat.	NLIC	LinDep

Linearly Dependent Gradients of Active Nonlinear Constraints

Parameter	N
c1_L	1
c2 L	4

PROC NLP: Nonlinear Minimization

Dual Quasi-Newton Optimization

Modified VMCWD Algorithm of Powell (1978, 1982)

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS) Lagrange Multiplier Update of Powell(1982)

Parameter Estimates	2
Lower Bounds	2
Upper Bounds	0
Nonlinear Constraints	4

Optimization Start

Objective Function 93.779712473 Maximum Constraint Violation 1.1543057E-6

Maximum Gradient of the Lagran Func 1.0020745283

							Maximum
							Gradient
							Element
				Maximum	Predicted		of the
		Function	Objective	Constraint	Function	Step	Lagrange
Iter	Restarts	Calls	Function	Violation	Reduction	Size	Function
1	0	13	90.72678	0	12.6762	1.000	1.244
2	0	14	82.88197	0	0.7196	1.000	0.406
3	0	15	82.50229	0	0.6412	1.000	0.351
4	0	16	81.99575	0	0.5150	1.000	0.199
5	0	17	81.99054	0	1.2400	1.000	0.870
6	0	19	81.78003	0	0.00648	0.538	0.0800
7	0	20	81.77412	0	0.0355	1.000	0.0759
8	0	22	81.76792	0	0.0232	0.240	0.0300
9	0	24	81.76361	0	0.00485	0.266	0.0209
10	0	25	81.76125	0	0.000133	1.000	0.0143
11	0	27	81.76123	0	1.077E-6	0.298	0.00031
12	0	28	81.76123	0	3.128E-9	1.000	0.00012

Optimization Results

Iterations	12	Function Calls	29
Gradient Calls	15	Active Constraints	0
Objective Function 81.7612	226037	Maximum Constraint Violation	0
Maximum Projected Gradient 0.00012	217296	Value Lagrange Function	81.761226037
Maximum Gradient of the Lagran Func 0.00012	217296	Slope of Search Direction	-3.12818E-9

FCONV2 convergence criterion satisfied.

PROC NLP: Nonlinear Minimization

Optimization Results Parameter Estimates

	i ai aiie cei	Lotinates	
		Gradient	Gradient
		Objective	Lagrange
N Parameter	Estimate	Function	Function
1 x	12.200048	0.000003695	0.000003695
2 y	20.999976	-0.000122	-0.000122

Value of Objective Function = 81.761226037

Value of Lagrange Function = 81.761226037

Values of Nonlinear Constraints

	Constra	int	Value	Residual	Lagrange Multiplier
[1]	c1_L	-14.9432	14.9432	
[2]	c2_L	-39.8000	39.8000	
[3]	c3_L	-23.2955	23.2955	
Г	4 1	c4 l	-0.2000	0.2000	_

PROC NLP: Nonlinear Minimization

Gradient is computed using finite difference approximations (2).

PROC NLP: Nonlinear Minimization

Optimizat:	ion	Start
Parameter	Es1	timates

		i ai amotoi E	-0 cima coo		
		Gradient	Lower	Upper	Active
		Objective	Bound	Bound	Bound
N Parameter	Estimate	Function	Constraint	Constraint	Constraint
1 x	0	-2.493178	0		Lower BC
2 y	0	-2.518756	0		Lower BC

Value of Objective Function = 143.26404365

Values of Nonlinear Constraints

	Constr	aint	Value	Residual		
[1]	c1_L	5.2769	-5.2769	Violat.	NLIC
[2]	c2_L	-15.8132	15.8132		
[3]	c3_L	-22.2800	22.2800		
[4]	c4_L	16.0803	-16.0803	Violat.	NLIC

PROC NLP: Nonlinear Minimization

Nelder-Mead Simplex Optimization

COBYLA Algorithm by M.J.D. Powell (1992)

Parameter Estimates 2
Lower Bounds 2
Upper Bounds 0
Nonlinear Constraints 4

Optimization Start

Objective Function 140.7650355 Maximum Constraint Violation 15.430136208

Ratio Between Actual Merit and Maximum Function Objective Constraint Merit Function Predicted Iter Restarts Calls Function Violation Change Function Change 0 19 82.69758 0 82,6976 58.067 4.000 1 2 0 25 81.84159 0 81.8416 0.856 1.000 3 0 29 81.79507 0 81.7951 0.0465 0.250 4 0 39 81.76485 0 81.7648 0.0302 0.0938 81.7638 5 0 43 81.76383 0 0.00102 0.0234 6 0 54 81.76204 0 81.7620 0.00178 0.0198 7 0 81.76157 0 81.7616 0.00047 0.0167 64 8 0 67 81.76155 0 81.7616 0.00001 0.0042 9 0 82 81.76140 0 81.7614 0.00015 0.0023

10	0	102	81.76126	0	81.7613	0.00014	0.0067
11	0	106	81.76125	0	81.7612	0.00001	0.0017
12	0	119	81.76124	0	81.7612	0.00001	0.0014
13	0	123	81.76124	0	81.7612	8.12E-7	0.0004
14	0	151	81.76123	0	81.7612	6.97E-6	0.0005
15	0	167	81.76123	0	81.7612	2.85E-6	0.0010
16	0	171	81.76123	0	81.7612	1.31E-7	0.0002
17	0	186	81.76123	0	81.7612	1.35E-6	0.0008
18	0	190	81.76123	0	81.7612	1.02E-7	0.0003
19	0	193	81.76123	0	81.7612	3.94E-8	0.0001

Optimization Results

Iterations19Function Calls194Restarts0Objective Function81.761226441Maximum Constraint Violation0Merit Function81.761226441Actual Over Pred Change0.0001

ABSXCONV convergence criterion satisfied.

The SAS System 19:53 Monday, May 12, 2014 8

PROC NLP: Nonlinear Minimization

Optimization Results Parameter Estimates

		Gradient
		Objective
N Parameter	Estimate	Function
1 x	12.202942	0.000267
2 y	20.999919	-0.000321

Value of Objective Function = 81.761226441

Values of Nonlinear Constraints

(Constra	int	Value	Residual
ſ	1]	c1 L	-14.9423	14.9423
[2]	c2_L	-39.7971	39.7971
[3]	c3_L	-23.2964	23.2964
[4]	c4_L	-0.2029	0.2029