COMBINED DECLARATION FOR PATENT APPLICATION AND POWER OF ATTORNEY (Includes Reference to PCT International Applications)

ATTORNEY'S DOCKET NUMBER 57955/010

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METHOD FOR MODIFYIN	G PLANT MORPHOL	OGY, BIOCHEMIS	STRY AND PHYSIOLOGY
the specification of which (check only	y one item below):		
[X] is attached hereto.			
[] was filed as U.S. Patent a (if applicable).	Application Serial No	on	_and was amended on
Article 19 on	tional Application Number (if applicable).	on	and was amended under PCT
by any amendment referred to above.			fications, including the claims, as amended application in accordance with Title 37,
Code of Federal Regulations, § 1.56(a) for Federal Regulations, § 1.56(a) for Federal Regulations, § 1.56(a) for Federal Regulation (a) for Federal Regulation (b) for Federal Regulation (c) for Federal Regulations, § 1.56(a) for Federal Re	a). Title 35, United States Code. designating at least one count inventor's certificate or any	, § 119 of any application ry other than the United S PCT international applica	(s) for patent or inventor's certificate or states listed below and have also identified tion(s) designating at least one country ng date before that of the application(s) of
PRIOR APPLICATION(S) AND AN	Y PRIORITY CLAIMS UNI	DER 35 U.S.C. 119:	
COUNTRY (IF PCT, indicate "PCT")	APPLICATION NUMBER	DATE OF FILING (day, month, year)	PRIORITY CLAIMED UNDER 35 USC 119
ЕР	00870132.8	16/6/00	[X] YES [] NO
			[]YES[]NO

Page 1 of 2

COMBINED DECLARATION FOR PATENT APPLICATION AND POWER OF ATTORNEY (Continued) (Includes Reference to PCT International Applications)

ATTORNEY'S DOCKET NUMBER 57955/010

I hereby claim the benefit under Title 35, United States Code, § 120 of any United States application(s) or PCT international application(s) designating the United States of America that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in that/those prior application(s) in the manner provided by the first paragraph of Title 35, United States Code, § 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, § 1.56(a) which occurred between the filing date of the prior application(s) and the national or PCT International filing date of this application:

PRIOR U.S. APPLICATIONS OR PCT INTERNATIONAL APPLICATIONS DESIGNATING THE U.S. FOR BENEFIT UNDER 35 U.S.C. 120:

U.S.	APPLICATIONS			STATUS (Check One)						
U.S. APPLICAT	ION NUMBER	U.S. F	ILING DATE	PATENTED	PENDING	ABANDONED				
			· · · · · · · · · · · · · · · · · · ·							
PCT API	PLICATIONS DESIGN	NATING THE U	.S							
PCT APPLICATION NO.	PCT FILING DATE	U.S. SERIA ASSIGNED	L NUMBERS (if any)							
PCT/EP01/06833	June 18, 2001									
entrance Comment Comme										

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith. Ann R. Pokalsky, Registration No. 34,697; Michael L. Goldman, Registration No. 30,727; Joseph M. Noto, Registration No. 32,163; Gunnar G. Leinberg, Registration No. 35,584; Edwin V. Merkel, Registration No. 40,087; Georgia Evans, Registration No. 44,597; Alice Y. Choi, Registration No. 45,758; Andrew K. Gonsalves, Registration No. 48,145; Noreen L. Connolly, Registration No. 48,987; John Campa, Registration No. 49,014

Sem	Correspondence to:	Ann R. Pokalsky, Esc NIXON PEABODY I 990 Stewart Avenue Garden City, New Yo	LLP	Direct telephone calls to: (516) 832-7572				
	FULL NAME OF INVENTOR	FAMILY NAME Schmulling	FIRST GIVEN NAME Thomas	SECOND GIVEN NAME				
0	RESIDENCE & CITIZENSHIP	CITY Tübingen	STATE/FOREIGN COUNTRY Germany	COUNTRY OF CITIZENSHIP Germany				
	POST OFFICE ADDRESS	P.O. ADDRESS Gertrud-Baümer-strasse 8	CITY Tübingen	STATE & ZIP CODE/COUNTRY D-72074/Germany				
	FULL NAME OF INVENTOR	FAMILY NAME Werner	FIRST GIVEN NAME Tomás	SECOND GIVEN NAME				
$\begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$	RESIDENCE & CITIZENSHIP	CITY Tübingen	STATE/FOREIGN COUNTRY Germany	COUNTRY OF CITIZENSHIP Germany				
	POST OFFICE ADDRESS	P.O. ADDRESS Haldenstrasse 2	CITY Tübingen	STATE & ZIP CODE/COUNTRY D-72074/Germany				
	FULL NAME OF INVENTOR	FAMILY NAME	FIRST GIVEN NAME	SECOND GIVEN NAME				
0 3	RESIDENCE & CITIZENSHIP	CITY	STATE/FOREIGN COUNTRY	COUNTRY OF CITIZENSHIP				
	POST OFFICE ADDRESS	P.O. ADDRESS	CITY	STATE & ZIP CODE/COUNTRY				

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

SIGNATURE OF INVENTOR 201	SIGNATURE OF INVENTOR 202	SIGNATURE OF INVENTOR 203
UNSIGNED	UNSIGNED	
DATE: December 10, 2001	DATE: December 10, 2001	DATE

SEQUENCE LISTING

5	<110>		ülling, Th er, Tomás	omas				
3	<120>		od for mod iology	ifying	plant	morphology	, biochemis	try and
10	<130>	CROP	-005-PCT					
10	<140> <141>							
15			0870132.8 -06-16					
			0/258,415 -12-27					
20			1870053.4 -03-16					
	<160>	36						
25	<170>	Pater	ntIn Ver.	2.1				
30	<210><211><212><213>	2236 DNA	idopsis th	aliana		-		
	<400>							
25	60					agacaaaaca	-	
35	120					ggtagaacca		
	gttagt 180	caccc	caaaagaat	t acct	tcttca	aatccttcag	atattcgttc	ctcattagtt
40	tcacta 240	agatt	tggagggtt	a tata	agcttc	gacgatgtcc	acaatgtggc	caaggacttt
	ggcaad 300	cagat	accagttac	c acct	ttggca	attctacatc	caaggtcagt	ttttgatatt
	tcatco	gatga	tgaagcata	t agta	catctg	ggctccacct	caaatcttac	agtagcagct
45	agaggo 420	ccatg	gtcactcgc	t tcaa	ggacaa	gctctagctc	atcaaggtgt	tgtcatcaaa
	atggag 480	gtcac	ttcgaagtc	c tgat	atcagg	atttataagg	ggaagcaacc	atatgttgat
50	gtctca 540	aggtg	gtgaaatat	g gata	aacatt	ctacgcgaga	ctctaaaata	cggtctttca
	ccaaag	gtcct	ggacagact	a cctt	catttg	accgttggag	gtacactatc	taatgctgga
	atcago	ggtc	aagcattca	a gcat	ggaccc	caaatcaaca	acgtctacca	gctagagatt
55		aggta	tttcattca	t gctt	tatctc	tgcggtagtc	tcaaaaaaat	atgcacctgt
		atatc	catctcttc	a tgag	caaaaa	cactgacgac	tttaaataat	ttttgactat
60	aaaaca 840	agag	tgcataggc	a caaa	tgtgaa	atatgcaaca	cacaattgta	acttgcacca

```
agaaaaaagt tataaaaaca aacaactgat aagcaatata tttccaatat ttaatcaqqq
     900
    aaaggagaag tegtaacetg ttetgagaag eggaattetg aacttttett caqtqttett
 5
    ggcgggcttg gacagtttgg cataatcacc cgggcacgga tctctcttqa accaqcaccq
     1020
     catatggtaa agttctatct tgaacaaagt tcaaacaata tacgctatga ttctaagaac
    10
    tgacttttct gcattttcaa gggaccaaga atatctgatt tcgaaggaga aaacttttga
     1200
     ttacgttgaa ggatttgtga taatcaatag aacagacctt ctcaataatt qqcqatcqtc
    1260
15
    attcagtccc aacgattcca cacaggcaag cagattcaag tcagatggga aaactcttta
    1320
     ttgcctagaa gtggtcaaat atttcaaccc agaagaagct agctctatgg atcaggtaag
    1380
    atgtgaaagc aatatataac tagacttagt ttccacagag agctccaaat caaccqttqq
20
    1440
    ctactagcct actaacataa tgaatggttg ccgtgcagga aactggcaag ttactttcag
     1500
    agttaaatta tattccatcc actttgtttt catctgaagt gccatatatc gagtttctqq
     1560
25
     atcgcgtgca tatcgcagag agaaaactaa gagcaaaggg tttatgggag gttccacatc
     1620
     cctggctgaa tctcctgatt cctaagagca gcatatacca atttgctaca gaagttttca
     1680
     acaacattct cacaagcaac aacaacggtc ctatccttat ttatccagtc aatcaatcca
30
     1740
     agtaagtgag caaaatgcca aaagcaaatg cgtccagtga ttctgaaaca taaattacta
     1800
    accatatcca acattttgtg gtttcaggtg gaagaaacat acatctttga taactccaaa
     1860
35
     tgaagatata ttctatctcg tagcctttct cccctctgca gtgccaaatt cctcaqqgaa
     1920
     aaacgatcta gagtaccttt tgaaacaaaa ccaaagagtt atgaacttct gcgcagcagc
    1980
     aaacctcaac gtgaagcagt atttgcccca ttatgaaact caaaaagagt ggaaatcaca
40
    2040
     ctttggcaaa agatgggaaa catttgcaca gaggaaacaa gcctacgacc ctctagcgat
     2100
     tctagcacct ggccaaagaa tattccaaaa gacaacagga aaattatctc ccatccaact
     2160
45
     cgcaaagtca aaggcaacag gaagtcctca aaggtaccat tacgcatcaa tactqccqaa
     2220
     acctagaact gtataa
     2236
50
     <210> 2
     <211> 575
     <212> PRT
     <213> Arabidopsis thaliana
55
     <400> 2
    Met Gly Leu Thr Ser Ser Leu Arg Phe His Arg Gln Asn Asn Lys Thr
      1
60
     Phe Leu Gly Ile Phe Met Ile Leu Val Leu Ser Cys Ile Pro Gly Arq
```

				20					25					30		
5	Thr	Asn	Leu 35	Cys	Ser	Asn	His	Ser 40	Val	Ser	Thr	Pro	Lys 45	Glu	Leu	Pro
5	Ser	Ser 50	Asn	Pro	Ser	Asp	Ile 55	Arg	Ser	Ser	Leu	Val 60	Ser	Leu	Asp	Leu
10	Glu 65	Gly	Tyr	Ile	Ser	Phe 70	Asp	Asp	Val	His	Asn 75	Val	Ala	Lys	Asp	Phe 80
	Gly	Asn	Arg	Tyr	Gln 85	Leu	Pro	Pro	Leu	Ala 90	Ile	Leu	His	Pro	Arg 95	Ser
15	Val	Phe	Asp	Ile 100	Ser	Ser	Met	Met	Lys 105	His	Ile	Val	His	Leu 110	Gly	Ser
20	Thr	Ser	Asn 115	Leu	Thr	Val	Ala	Ala 120	Arg	Gly	His	Gly	His 125	Ser	Leu	Gln
	Gly	Gln 130	Ala	Leu	Ala	His	Gln 135	Gly	Val	Val	Ile	Lys 140	Met	Glu	Ser	Leu
25	Arg 145	Ser	Pro	Asp	Ile	Arg 150	Ile	Tyr	Lys	Gly	Lys 155	Gln	Pro	Tyr	Val	Asp 160
	Val	Ser	Gly	Gly	Glu 165	Ile	Trp	Ile	Asn	Ile 170	Leu	Arg	Glu	Thr	Leu 175	Lys
30	_	_		180		Lys		-	185	_	_			190		
35			195			Asn		200					205			
	Gly	Pro 210	Gln	Ile	Asn	Asn	Val 215	Tyr	Gln	Leu	Glu	Ile 220	Val	Thr	Gly	Lys
40	Gly 225	Glu	Val	Val	Thr	Cys 230	Ser	Glu	Lys	Arg	Asn 235	Ser	Glu	Leu	Phe	Phe 240
	Ser	Val	Leu	Gly	Gly 245	Leu	Gly	Gln	Phe	Gly 250	Ile	Ile	Thr	Arg	Ala 255	Arg
45				260		Ala			265					270		
50	Tyr	Ser	Asp 275	Phe	Ser	Ala	Phe	Ser 280	Arg	Asp	Gln	Glu	Tyr 285	Leu	Ile	Ser
	Lys	Glu 290	Lys	Thr	Phe	Asp	Tyr 295	Val	Glu	Gly	Phe	Val 300	Ile	Ile	Asn	Arg
55	Thr 305	Asp	Leu	Leu	Asn	Asn 310	Trp	Arg	Ser	Ser	Phe 315	Ser	Pro	Asn	Asp	Ser 320
					325	Phe	_			330					335	
60	Glu	Val	Val	Lys	Tyr	Phe	Asn	Pro	Glu	Glu	Ala	Ser	Ser	Met	Asp	Gln

				340					345					350		
5	Glu	Thr	Gly 355	Lys	Leu	Leu	Ser	Glu 360	Leu	Asn	Tyr	Ile	Pro 365	Ser	Thr	Leu
3	Phe	Ser 370	Ser	Glu	Val	Pro	Tyr 375	Ile	Glu	Phe	Leu	Asp 380	Arg	Val	His	Ile
10	Ala 385	Glu	Arg	Lys	Leu	Arg 390	Ala	Lys	Gly	Leu	Trp 395	Glu	Val	Pro	His	Pro 400
	Trp	Leu	Asn	Leu	Leu 405	Ile	Pro	Lys	Ser	Ser 410	Ile	Tyr	Gln	Phe	Ala 415	Thr
15	Glu	Val	Phe	Asn 420	Asn	Ile	Leu	Thr	Ser 425	Asn	Asn	Asn	Gly	Pro 430	Ile	Leu
20	Ile	Tyr	Pro 435	Val	Asn	Gln	Ser	Lys 440	Trp	Lys	Lys	His	Thr 445	Ser	Leu	Ile
20	Thr	Pro 450	Asn	Glu	Asp	Ile	Phe 455	Tyr	Leu	Val	Ala	Phe 460	Leu	Pro	Ser	Ala
25	Val 465	Pro	Asn	Ser	Ser	Gly 470	Lys	Asn	Asp	Leu	Glu 475	Tyr	Leu	Leu	Lys	Gln 480
	Asn	Gln	Arg	Val	Met 485	Asn	Phe	Cys	Ala	Ala 490	Ala	Asn	Leu	Asn	Val 495	Lys
30	Gln	Tyr	Leu	Pro 500	His	Tyr	Glu	Thr	Gln 505	Lys	Glu	Trp	Lys	Ser 510	His	Phe
35	Gly	Lys	Arg 515	Trp	Glu	Thr	Phe	Ala 520	Gln	Arg	Lys	Gln	Ala 525	Tyr	Asp	Pro
55	Leu	Ala 530	Ile	Leu	Ala	Pro	Gly 535	Gln	Arg	Ile	Phe	Gln 540	Lys	Thr	Thr	Gly
40	Lys 545	Leu	Ser	Pro	Ile	Gln 550	Leu	Ala	Lys	Ser	Lys 555	Ala	Thr	Gly	Ser	Pro 560
	Gln	Arg	Tyr	His	Tyr 565	Ala	Ser	Ile	Leu	Pro 570	Lys	Pro	Arg	Thr	Val 575	
45																
50	<211 <212	0> 3 L> 29 2> DI 3> An	AI	lops:	is tl	nalia	ana									
			atc 1	tcgt	ttaa	at ga	atcad	cttta	a ato	cacgo	gttt	taat	gato	cac (caaat	catc
55		ggtat	tta a	aatt	gatt	t a	cctaa	aatco	c ctt	caaco	ctca	ccct	cctct	cac	cgato	ccttc
	120 atca 180	atcto	ccg (cagco	ctct	ca to	gactt	cgga	a aac	cataa	acca	ccgt	gac	ccc (cggcg	ggggt
60	atct 240	gaad	cct d	cctco	cacco	gc to	gatat	cctct	cgt	cctco	ctcc	aata	acgc	cgc	aaaco	ggaaa

agtacattcc aagtagcggc tcgtggccaa ggccactcct taaacggcca agcctcggtc tccggcggag taatcgtcaa catgacgtgt atcactgacg tggtggtttc aaaagacaaq 360 5 aagtacgetg acgtggcggc cgggacgtta tgggtggatg tgcttaagaa gacggcggag aaaggggtgt cgccggtttc ttggacggat tatttgcata taaccgtcgg aggaacgttg tcgaatggtg gaattggtgg tcaagtgttt cgaaacggtc ctcttgttag taacgtcctt 10 gaattggacg ttattactgg tacgcatctt ctaaactttg atgtacatac aacaacaaaa actgtttttg ttttatagta tttttcattt tttgtaccat aggttttatg ttttatagtt 15 gtgctaaact tcttgcacca cacgtaagtc ttcgaaacac aaaatgcgta acgcatctat atgttttttg tacatattga atgttgttca tgagaaataa agtaattaca tatacacaca 780 tttattgtcg tacatatata aataattaaa gacaaatttt cacaattggt agcgtgttaa 20 tttgggattt ttgtaatgta catgcatgac gcatgcatat ggagcttttc ggttttctta 900 gatttgtgta gtatttcaaa tatatcattt attttctttc gaataaagag gtggtatatt 960 25 tttaaaatag caacatttca gaatttttct ttgaatttac actttttaaa ttgttattqt 1020 taatatggat tttgaataaa taatttcagg gaaaggtgaa atgttgacat gctcgcgaca 1080 gctaaaccca gaattgttct atggagtgtt aggaggtttg ggtcaatttg gaattataac 30 gagagccaga attgttttgg accatgcacc taaacgggta cgtatcatca tattttacca 1200 tttgttttag tcagcattca tttttcatta gtaattccgt ttcaatttct aaattttttt 1260 35 agtcaataga aaatgattct tatgtcagag cttgattatt tagtgatttt tattgagata 1320 aaataaaata taacctaacg gaaataatta ttttactaat cggataatgt ctgattaaaa 1380 cattttatga tattacacta agagagttag agacgtatgg atcacaaaac atgaagcttt 40 1440 cttagatggt atcctaaaac taaagttagg tacaagtttg gaatttaggt caaatgctta 1500 agttgcatta atttgaacaa aatctatgca ttgaataaaa aaaagatatg gattatttta 1560 45 taaagtatag teetigtaat eetaggaett gitgtetaat eitgtettat gegigeaaat 1620 ctttttgatg tcaatatata atccttgttt attagagtca agctctttca ttagtcaact 1680 actcaaatat actccaaagt ttagaatata gtcttctgac taattagaat cttacaaccg 50 1740 ataaacgtta caatttggtt atcattttaa aaaacagatt tggtcataat atacgatgac 1800 gttctgtttt agtttcatct attcacaaat tttatataat tattttcaag aaaatattga 55 tctctaaatg aaattgtgta ggccaaatgg tttcggatgc tctacagtga tttcacaact 1980 tttacaaagg accaagaacg tttgatatca atggcaaacg atattggagt cgactattta 60 2040

gaaggtcaaa tatttctatc aaacggtgtc gttgacacct cttttttccc accttcaqat 2100 caatctaaag tegetgatet agteaageaa caeggtatea tetatgttet tgaaqtagee 2160 5 aagtattatg atgatcccaa tctccccatc atcagcaagg tactacacat ttacattttc atcatcgttt ttatcatacc ataaqatatt taaatqattc atcattqcac cacattaaqa tattcatcat catcatcgtt acatttttt ttgcatctta tgcttctcat aatctactat 10 tgtgtaggtt attgacacat taacgaaaac attaagttac ttgcccgggt tcatatcaat gcacgacgtg gcctacttcg atttcttgaa ccgtgtacat gtcgaagaaa ataaactcaq 2460 15 atctttggga ttatgggaac ttcctcatcc ttggcttaac ctctacgttc ctaaatctcq 2520 gattctcgat tttcataacg gtgttgtcaa agacattctt cttaagcaaa aatcagcttc 2580 gggactcgct cttctctatc caacaaaccg gaataagtac atacttctct tcattcatat 20 2640 ttatcttcaa gaaccaaagt aaataaattt ctatgaactg attatgctgt tattqttaga 2700 tgggacaatc gtatgtcggc gatgatacca qaqatcqatq aaqatqttat atatattatc 2760 25 ggactactac aatccgctac cccaaaggat cttccagaag tggagagcgt taacqaqaaq 2820 ataattaggt tttgcaagga ttcaggtatt aagattaagc aatatctaat gcattatact 2880 agtaaagaag attggattga gcattttgga tcaaaatggg atgatttttc gaagaggaaa 30 gatctatttg atcccaagaa actgttatct ccagggcaag acatcttttq a 2991 35 <210> 4 <211> 501 <212> PRT <213> Arabidopsis thaliana 40 <400> 4 Met Ala Asn Leu Arg Leu Met Ile Thr Leu Ile Thr Val Leu Met Ile Thr Lys Ser Ser Asn Gly Ile Lys Ile Asp Leu Pro Lys Ser Leu Asn 45 20 Leu Thr Leu Ser Thr Asp Pro Ser Ile Ile Ser Ala Ala Ser His Asp 50 Phe Gly Asn Ile Thr Thr Val Thr Pro Gly Gly Val Ile Cys Pro Ser 50 Ser Thr Ala Asp Ile Ser Arg Leu Leu Gln Tyr Ala Ala Asn Gly Lys 55 Ser Thr Phe Gln Val Ala Ala Arg Gly Gln Gly His Ser Leu Asn Gly Gln Ala Ser Val Ser Gly Gly Val Ile Val Asn Met Thr Cys Ile Thr 60 100 105 110

Asp Val Val Val Ser Lys Asp Lys Lys Tyr Ala Asp Val Ala Ala Gly 120 5 Thr Leu Trp Val Asp Val Leu Lys Lys Thr Ala Glu Lys Gly Val Ser 135 Pro Val Ser Trp Thr Asp Tyr Leu His Ile Thr Val Gly Gly Thr Leu 145 150 10 Ser Asn Gly Gly Ile Gly Gly Gln Val Phe Arg Asn Gly Pro Leu Val 170 Ser Asn Val Leu Glu Leu Asp Val Ile Thr Gly Lys Gly Glu Met Leu 15 180 Thr Cys Ser Arg Gln Leu Asn Pro Glu Leu Phe Tyr Gly Val Leu Gly 20 Gly Leu Gly Gln Phe Gly Ile Ile Thr Arg Ala Arg Ile Val Leu Asp His Ala Pro Lys Arg Ala Lys Trp Phe Arg Met Leu Tyr Ser Asp Phe 25 Thr Thr Phe Thr Lys Asp Gln Glu Arg Leu Ile Ser Met Ala Asn Asp Ile Gly Val Asp Tyr Leu Glu Gly Gln Ile Phe Leu Ser Asn Gly Val 30 Val Asp Thr Ser Phe Phe Pro Pro Ser Asp Gln Ser Lys Val Ala Asp 35 Leu Val Lys Gln His Gly Ile Ile Tyr Val Leu Glu Val Ala Lys Tyr Tyr Asp Asp Pro Asn Leu Pro Ile Ile Ser Lys Val Ile Asp Thr Leu 315 40 Thr Lys Thr Leu Ser Tyr Leu Pro Gly Phe Ile Ser Met His Asp Val Ala Tyr Phe Asp Phe Leu Asn Arg Val His Val Glu Glu Asn Lys Leu 45 Arg Ser Leu Gly Leu Trp Glu Leu Pro His Pro Trp Leu Asn Leu Tyr 50 Val Pro Lys Ser Arg Ile Leu Asp Phe His Asn Gly Val Val Lys Asp 375 Ile Leu Leu Lys Gln Lys Ser Ala Ser Gly Leu Ala Leu Leu Tyr Pro 55 Thr Asn Arg Asn Lys Trp Asp Asn Arg Met Ser Ala Met Ile Pro Glu 410 Ile Asp Glu Asp Val Ile Tyr Ile Ile Gly Leu Leu Gln Ser Ala Thr 60

425

1080

- Pro Lys Asp Leu Pro Glu Val Glu Ser Val Asn Glu Lys Ile Ile Arg 435 440 445
- 5 Phe Cys Lys Asp Ser Gly Ile Lys Ile Lys Gln Tyr Leu Met His Tyr 450 455 460
- Thr Ser Lys Glu Asp Trp Ile Glu His Phe Gly Ser Lys Trp Asp Asp $_{465}$ $_{470}$ $_{470}$ $_{475}$ $_{480}$
 - Phe Ser Lys Arg Lys Asp Leu Phe Asp Pro Lys Lys Leu Leu Ser Pro
 485 490 495
- Gly Gln Asp Ile Phe 500
- <210> 5
 20 <211> 3302
 <212> DNA
 <213> Arabidopsis thaliana
- <400> 5 25 atggcgagtt ataatcttcg ttcacaagtt cgtcttatag caataacaat agtaatcatc attactetet caacteegat cacaaccaac acateaceac aaccatggaa tateetttea 120 cacaacgaat tegeeggaaa acteacetee teeteeteet eegtegaate ageegeeaca 30 gattteggee aegteaceaa aatetteeet teegeegtet taateeette eteeqttqaa gacatcacag atctcataaa actctctttt qactctcaac tqtcttttcc tttaqccqct 35 cgtggtcacg gacacagcca ccgtggccaa gcctcggcta aagacggagt tgtggtcaac atgcggtcca tggtaaaccg qgatcqaqqt atcaaqqtqt ctaqqacctq tttatatqtt 420 gacgtggacg ctgcgtggct atggattgag gtgttgaata aaactttgga gttagggtta 40 acgccggttt cttggacgga ttatttgtat ttaacagtcg gtgggacgtt atcaaacggc ggaattagtg gacaaacgtt tcggtacggt ccacagatca ctaatgttct aqaqatqqat 45 gttattactg gtacgtacca cgatcttttt cacacagaga ttaaaaaaaa caqtaataqt gattttaact tcgtacgttt ctgatagaca acaaagaact tcgtacgttt ttcqaaqttt 720 tttcgtcttt ttcattttag atctgcgcgg ccatttttgg ttatgctatt gtttgtttgt 50 attgtttgtc tctgtttatt tatttctcga acttgttgat agcttttctt cttttcacac 840 atcaatctaa tcaccttttt tggtcttaag attagaaaga agatacggac taggtaaaaa 900 55 taggtggttg taaacgtaga cgcattaaaa aaatattggt ttttttattt tttgataagc aaaattggtg gttggtctaa gattataaac ttgatattaa tgcaaaggtc gatctagcaa

tagaagatta atcaatatto ttggtgtttt aacaacagat tatttcatca ttaaaatcgt

	gaaacaaaga 1140	aattttggta	gtatacatta	cgtgtagttt	tgttagttta	ttaaaaaaaa
	tagtatatag 1200	ttttgttaaa	acgcgattta	tttagtaaca	cattagtata	ttacacgttt
5	aaccaactaa 1260	acttttttt	ttgaataatt	atgttctata	tttcttactc	aaattatgca
	aatttcgtgg 1320	attcgaagtc	aaatttctgc	gaaatttaca	tggtcatata	ttataaaact
10		cccggtgaac	aaacagacaa	ttaagggttt	gaatggttac	ggcggttggg
		ccgtcaatag	atcagaccgt	tttttattta	ccattcatca	attatattcc
		ggggtaaaaa	aaatagaaga	aaaccgcagc	ggaccaattc	cataccgttt
15		ataaacatgg	tgcgcaacgg	tttattgtcc	gcctcaaaaa	tgaaatggac
	taaaccgcag 1620	ataaattaga	ccgctttgtc	cgctgcctcc	attcatagac	taaaaaaaaa
20		aaaaatggtc	ccacgcccat	gattttacac	gaggtttctt	gtggcgtaag
		aaaagttcat	aacgtttggt	cctaaccagg	tgtaatggat	taagtaacag
	tcaattttct 1800	tattatagct	gtatccatta	tgtccacata	tgcatccata	tacattacac
25	tgttggtctc 1860	aagtgtagtt	agattacgaa	gactttcaag	ttccattttt	tggttaggag
	ataaacataa 1920	tttaatgata	ccgactttag	cactctaggc	tcaaaacaag	tacagaagag
30	aatagtttta 1980	tttcaaactc	gttgcattgt	tgtatcaatt	aattgtgtta	gtctttgtat
	attcttacat 2040	aacggtccaa	gtttgttgaa	atagtttact	tactaaactt	ttcctaatgg
	ggtcaaattt 2100	tattttatag	gaaaaggaga	gattgcaact	tgttccaagg	acatgaactc
35	ggatcttttc 2160	ttcgcggtgt	taggaggttt	gggtcaattc	ggcattataa	caagagccag
	aattaaactt 2220	gaagtagctc	cgaaaagggt	atgttaaatt	tgtaaattat	gcaactacag
40	aaaattctat 2280	gaaatttatg	aatgaacata	tatgcatttt	tggatttttg	taggccaagt
	ggttaaggtt 2340	tctatacata	gatttctccg	aattcacaag	agatcaagaa	cgagtgatat
	cgaaaacgga 2400	cggtgtagat	ttcttagaag	gttccattat	ggtggaccat	ggcccaccgg
45	ataactggag 2460	atccacgtat	tatccaccgt	ccgatcactt	gaggatcgcc	tcaatggtca
	aacgacatcg 2520	tgtcatctac	tgccttgaag	tcgtcaagta	ttacgacgaa	acttctcaat
50	acacagtcaa 2580	cgaggtccgt	acatacatac	aatcataaat	catacatgta	taattgggag
	atctttatgc 2640	attattcaat	tatattaatt	tactttagtt	atttaactta	tgcaggaaat
	ggaggagtta 2700	agcgatagtt	taaaccatgt	aagagggttt	atgtacgaga	aagatgtgac
55	gtatatggat 2760	ttcctaaacc	gagttcgaac	cggagagcta	aacctgaaat	ccaaaggcca
	2820	ccacatccat				
60	tgatgatggt 2880	gtttttaagg	gtattatcct	aagaaataac	atcactagcg	gtcctgttct

tgtttatcct atgaatcgca acaagtaagt ttaactcgat attgcaaaat ttactatcta cattttcgtt ttggaatccg aaatattctt acaagctaat tttatgcggc qtttttaqqt 5 ggaatgateg gatgtetqee qetataceeq aqqaaqatqt attttatqeq qtaqqqtttt taagatccgc gggttttgac aattgggagg cttttgatca agaaaacatg qaaatactga agttttgtga ggatgctaat atgggggtta tacaatatct tccttatcat tcatcacaag 10 aaggatgggt tagacatttt ggtccgaggt ggaatatttt cgtagagaga aaatataaat atgatcccaa aatgatatta tcaccgggac aaaatatatt tcaaaaaaata aactcgagtt 15 ag 3302 <210> 6 20 <211> 523 <212> PRT <213> Arabidopsis thaliana <400> 6 25 Met Ala Ser Tyr Asn Leu Arg Ser Gln Val Arg Leu Ile Ala Ile Thr Ile Val Ile Ile Ihr Leu Ser Thr Pro Ile Thr Thr Asn Thr Ser 20 25 30 Pro Gln Pro Trp Asn Ile Leu Ser His Asn Glu Phe Ala Gly Lys Leu 40 Thr Ser Ser Ser Ser Val Glu Ser Ala Ala Thr Asp Phe Gly His 35 50 55 Val Thr Lys Ile Phe Pro Ser Ala Val Leu Ile Pro Ser Ser Val Glu 40 Asp Ile Thr Asp Leu Ile Lys Leu Ser Phe Asp Ser Gln Leu Ser Phe 85 90 Pro Leu Ala Ala Arg Gly His Gly His Ser His Arg Gly Gln Ala Ser 105 45 Ala Lys Asp Gly Val Val Val Asn Met Arg Ser Met Val Asn Arg Asp 115 120 125 Arg Gly Ile Lys Val Ser Arg Thr Cys Leu Tyr Val Asp Val Asp Ala 50 Ala Trp Leu Trp Ile Glu Val Leu Asn Lys Thr Leu Glu Leu Gly Leu 145 150 155 55 Thr Pro Val Ser Trp Thr Asp Tyr Leu Tyr Leu Thr Val Gly Gly Thr Leu Ser Asn Gly Gly Ile Ser Gly Gln Thr Phe Arg Tyr Gly Pro Gln

Ile Thr Asn Val Leu Glu Met Asp Val Ile Thr Gly Lys Gly Glu Ile 200 Ala Thr Cys Ser Lys Asp Met Asn Ser Asp Leu Phe Phe Ala Val Leu 5 Gly Gly Leu Gly Gln Phe Gly Ile Ile Thr Arg Ala Arg Ile Lys Leu 10 Glu Val Ala Pro Lys Arg Ala Lys Trp Leu Arg Phe Leu Tyr Ile Asp Phe Ser Glu Phe Thr Arg Asp Gln Glu Arg Val Ile Ser Lys Thr Asp 265 15 . Gly Val Asp Phe Leu Glu Gly Ser Ile Met Val Asp His Gly Pro Pro 275 280 Asp Asn Trp Arg Ser Thr Tyr Tyr Pro Pro Ser Asp His Leu Arg Ile 20 Ala Ser Met Val Lys Arg His Arg Val Ile Tyr Cys Leu Glu Val Val 310 25 Lys Tyr Tyr Asp Glu Thr Ser Gln Tyr Thr Val Asn Glu Glu Met Glu 330 Glu Leu Ser Asp Ser Leu Asn His Val Arg Gly Phe Met Tyr Glu Lys 340 345 30 Asp Val Thr Tyr Met Asp Phe Leu Asn Arg Val Arg Thr Gly Glu Leu 360 Asn Leu Lys Ser Lys Gly Gln Trp Asp Val Pro His Pro Trp Leu Asn 35 370 375 Leu Phe Val Pro Lys Thr Gln Ile Ser Lys Phe Asp Asp Gly Val Phe 390 395 40 Lys Gly Ile Ile Leu Arg Asn Asn Ile Thr Ser Gly Pro Val Leu Val Tyr Pro Met Asn Arg Asn Lys Trp Asn Asp Arg Met Ser Ala Ala Ile 45 Pro Glu Glu Asp Val Phe Tyr Ala Val Gly Phe Leu Arg Ser Ala Gly Phe Asp Asn Trp Glu Ala Phe Asp Gln Glu Asn Met Glu Ile Leu Lys 50 455 Phe Cys Glu Asp Ala Asn Met Gly Val Ile Gln Tyr Leu Pro Tyr His 470 55 Ser Ser Gln Glu Gly Trp Val Arg His Phe Gly Pro Arg Trp Asn Ile 485 Phe Val Glu Arg Lys Tyr Lys Tyr Asp Pro Lys Met Ile Leu Ser Pro 500 505

Gly Gln Asn Ile Phe Gln Lys Ile Asn Ser Ser 515 520

5	-010- 7					
	<210> 7 <211> 2782 <212> DNA					
10	<213> Arab:	idopsis thal	Liana			
	<400> 7 atgactaata 60	ctctctgttt	aagcctcatc	accctaataa	cgctttttat	aagtttaacc
15		tcaaatcaga	tgagggcatt	gatgttttct	tacccatatc	actcaacctt
	acggtcctaa 180	ccgatccctt	ctccatctct	gccgcttctc	acgacttcgg	taacataacc
		ccggcgccgt	cctctgccct	tcctccacca	cggaggtggc	tegteteete
20		acggaggatt	ctcttacaat	aaaggctcaa	ccagccccgc	gtctactttc
		ctcgaggcca	aggccactcc	ctccgtggcc	aagcctctgc	acccggaggt
25	gtcgtcgtga 420	acatgacgtg	tctcgccatg	gcggctaaac	cagcggcggt	tgttatctcg
	gcagacggga 480	cttacgctga	cgtggctgcc	gggacgatgt	gggtggatgt	tctgaaggcg
		gaggcgtctc	gccggttaca	tggacggatt	atttgtatct	cagcgtcggc
30	gggacgttgt	cgaacgctgg	aatcggtggt	cagacgttta	gacacggccc	tcagattagt
		agcttgacgt	tattaccggt	acgtaaatac	caaaacttca	ctaatctcgt
35	tacaattttt 720	taattttttg	gtaatataaa	ttttgtacgg	ctcaactctt	aattaagaat
	gaaacagtat 780	ctatgatctt	ctagatgctc	tttttttgtc	tgcaagcttt	aattgtagta
	acatcagcga 840	tatatatatc	acatgcatgt	gtattattga	tgataatata	taatgtttta
40	gttacaaatt 900	tgattctcaa	ggtaaaactc	acacgccata	accagtataa	aactccaaaa
	atcacgtttt 960	ggtcagaaat	acatatcctt	cattaacagt	agttatgcta	taatttgtga
45	ttataaataa 1020	ctccggagtt	tgttcacaat	actaaatttc	aggaaaaggt	gaaatgatga
	cttgctctcc	aaagttaaac	cctgaattgt	tctatggagt	tttaggaggt	ttgggtcaat
	tcggtattat 1140	aacgagggcc	aggattgcgt	tggatcatgc	acccacaagg	gtatgtatca
50	tgcatctata 1200	gtgtaatcaa	tttataattt	taatgtagtg	gtcctaaatc	caaaatttga
	tttgatttgg 1260	ttggaacgta	cgtatatata	ataagtcaaa	aggctgattt	tgaagacgaa
55	tttatatact 1320	tttgttgaat	taaatctgat	tttgcttacg	ttttattaga	ttctgcgtaa
		gacttgctcg	agtgtaatct	tgtcttatgc	ttgcaaatct	tgttgatgtc
	aatatctaat 1440	cttttttatt	atatttccct	acgtaagttt	tagatatagt	tattttaaac

tgctataaat tgtgtacgta tagactttag ataaaaagtt gtgqtcqctt qcacctattt gtttatcgct atagtgattc aaaggtctat atatgattct tggtttttct ttttgaaaaa 5 aatagaccat acaatccaag gaagatgatc ttaaatggac taatttatgg atataaattg 1620 atatacaaat ctgcaggtga aatggtctcg catactctac agtgacttct cggcttttaa aagagaccaa gagcgtttaa tatcaatgac caatgatctc ggagttgact ttttggaagg 10 tcaacttatg atgtcaaatg gcttcgtaga cacctctttc ttcccactct ccgatcaaac aagagtcgca tctcttgtga atgaccaccg gatcatctat gttctcgaag tagccaagta 15 ttatgacaga accaccette ccattattga ccaggtacta aaatecatta tteatgatga ttatcttcac acaatcagta tcatcaccaa ttaccatcat cacttqtcat atatqatcca aagtaaatat atcacatgat ataaataaat cgttcaaatc ttttttttta aagaataaaa 20 gaatcatttt caagcattac tcatacacat ctacqaatca ccqtqaccat atataaccat 2100 acgcttatta aataatcatt tttgtttgta ggtgattgac acgttaagta gaactctagg 25 tttcgctcca gggtttatgt tcgtacaaga tgttccgtat ttcgatttct tgaaccgtgt ccgaaacgaa gaagataaac tcagatcttt aggactatgg gaagttcctc atccatggct taacatcttt gtcccggggt ctcgaatcca agattttcat gatggtgtta ttaatggcct 30 2340 tcttctaaac caaacctcaa cttctggtgt tactctcttc tatcccacaa accgaaacaa 2400 gtaaatattt actttttgat tttgttttat ttgaaagtat atcccaataa tqtatqttaa 2460 35 attgttaaca agaatttatt ttattaatag atggaacaac cgcatgtcaa cgatgacacc ggacgaagat gttttttatg tgatcggatt actgcaatca gctggtggat ctcaaaattg 2580 gcaagaactt gaaaatctca acgacaaggt tattcagttt tgtgaaaact cgggaattaa 40 2640 gattaaggaa tatttgatgc actatacaag aaaagaagat tgggttaaac attttggacc 2700 aaaatgggat gattttttaa gaaagaaaat tatgtttgat cccaaaagac tattgtctcc 45 aggacaagac atatttaatt aa 2782 <210> 8 50 <211> 524 <212> PRT <213> Arabidopsis thaliana <400> 8 55 Met Thr Asn Thr Leu Cys Leu Ser Leu Ile Thr Leu Ile Thr Leu Phe

Ile Ser Leu Thr Pro Thr Leu Ile Lys Ser Asp Glu Gly Ile Asp Val

25

	Phe	Leu	Pro 35	Ile	Ser	Leu	Asn	Leu 40	Thr	Val	Leu	Thr	Asp 45	Pro	Phe	Ser
5	Ile	Ser 50	Ala	Ala	Ser	His	Asp 55	Phe	Gly	Asn	Ile	Thr 60	Asp	Glu	Asn	Pro
	Gly 65	Ala	Val	Leu	Cys	Pro 70	Ser	Ser	Thr	Thr	Glu 75	Val	Ala	Arg	Leu	Let 80
10	Arg	Phe	Ala	Asn	Gly 85	Gly	Phe	Ser	Tyr	Asn 90	Lys	Gly	Ser	Thr	Ser 95	Pro
15	Ala	Ser	Thr	Phe 100	Lys	Val	Ala	Ala	Arg 105	Gly	Gln	Gly	His	Ser 110	Leu	Arg
15	Gly	Gln	Ala 115	Ser	Ala	Pro	Gly	Gly 120	Val	Val	Val	Asn	Met 125	Thr	Cys	Leu
20	Ala	Met 130	Ala	Ala	Lys	Pro	Ala 135	Ala	Val	Val	Ile	Ser 140	Ala	Asp	Gly	Thr
	Tyr 145	Ala	Asp	Val	Ala	Ala 150	Gly	Thr	Met	Trp	Val 155	Asp	Val	Leu	Lys	Ala 160
25	Ala	Val	Asp	Arg	Gly 165	Val	Ser	Pro	Val	Thr 170	Trp	Thr	Asp	Tyr	Leu 175	Туг
30	Leu	Ser	Val	Gly 180	Gly	Thr	Leu	Ser	Asn 185	Ala	Gly	Ile	Gly	Gly 190	Gln	Thr
50	Phe	Arg	His 195	Gly	Pro	Gln	Ile	Ser 200	Asn	Val	His	Glu	Leu 205	Asp	Val	Ile
35	Thr	Gly 210	Lys	Gly	Glu	Met	Met 215	Thr	Cys	Ser	Pro	Lys 220	Leu	Asn	Pro	Glu
	Leu 225	Phe	Tyr	Gly	Val	Leu 230	Gly	Gly	Leu	Gly	Gln 235	Phe	Gly	Ile	Ile	Thr 240
40	Arg	Ala	Arg	Ile	Ala 245	Leu	Asp	His	Ala	Pro 250	Thr	Arg	Val	Lys	Trp 255	Ser
45	Arg	Ile	Leu	Tyr 260	Ser	Asp	Phe	Ser	Ala 265	Phe	Lys	Arg	Asp	Gln 270	Glu	Arç
	Leu	Ile	Ser 275	Met	Thr	Asn	Asp	Leu 280	Gly	Val	Asp	Phe	Leu 285	Glu	Gly	Glr
50	Leu	Met 290	Met	Ser	Asn	Gly	Phe 295	Val	Asp	Thr	Ser	Phe 300	Phe	Pro	Leu	Ser
	Asp 305	Gln	Thr	Arg	Val	Ala 310	Ser	Leu	Val	Asn	Asp 315	His	Arg	Ile	Ile	Туг 320
55	Val	Leu	Glu	Val	Ala 325	Lys	Tyr	Tyr	Asp	Arg 330	Thr	Thr	Leu	Pro	Ile 335	Ile
60	Asp	Gln	Val	Ile 340	Asp	Thr	Leu	Ser	Arg 345	Thr	Leu	Gly	Phe	Ala 350	Pro	GlΣ

	Phe	Met	Phe 355	Val	Gln	Asp	Val	Pro 360	Tyr	Phe	Asp	Phe	Leu 365	Asn	Arg	Val
5	Arg	Asn 370	Glu	Glu	Asp	Lys	Leu 375	Arg	Ser	Leu	Gly	Leu 380	Trp	Glu	Val	Pro
	His 385	Pro	Trp	Leu	Asn	Ile 390	Phe	Val	Pro	Gly	Ser 395	Arg	Ile	Gln	Asp	Phe 400
10	His	Asp	Gly	Val	Ile 405	Asn	Gly	Leu	Leu	Leu 410	Asn	Gln	Thr	Ser	Thr 415	Ser
15	Gly	Val	Thr	Leu 420	Phe	Tyr	Pro	Thr	Asn 425	Arg	Asn	Lys	Trp	Asn 430	Asn	Arg
15	Met	Ser	Thr 435	Met	Thr	Pro	Asp	Glu 440	Asp	Val	Phe	Tyr	Val 445	Ile	Gly	Leu
20	Leu	Gln 450	Ser	Ala	Gly	Gly	Ser 455	Gln	Asn	Trp	Gln	Glu 460	Leu	Glu	Asn	Leu
	Asn 465	Asp	Lys	Val	Ile	Gln 470	Phe	Cys	Glu	Asn	Ser 475	Gly	Ile	Lys	Ile	Lys 480
25	Glu	Tyr	Leu	Met	His 485	Tyr	Thr	Arg	Lys	Glu 490	Asp	Trp	Val	Lys	His 495	Phe
30	Gly	Pro	Lys	Trp 500	Asp	Asp	Phe	Leu	Arg 505	Lys	Lys	Ile	Met	Phe 510	Asp	Pro
	Lys	Arg	Leu 515	Leu	Ser	Pro	Gly	Gln 520	Asp	Ile	Phe	Asn				
35	<210	n														
40	<211 <212	l> 28 2> Di	ΑV	dopsi	is th	nalia	ana									
40	<400	0> 9														
	atga 60	acgto														gtgggt
45	120	aacgt	gg 9	gece	cagto	ga go	ctcct	ccg	c ato	ggag	gcca	taga	atgto	ega o	egged	cacttc
	acco	gtcca	acc (cttco	cgact	t ag	gcct	ccgto	c tco	ctcas	gact	tcgg	gtate	gct g	gaagt	cacct
	gaag 240	gagco	cat 1	ggc	gtgo	ct to	catco	catca	a tog	ggccg	gaag	acgt	ggca	acg a	actc	gtcaga
50	acag	gctta	acg (gttca	agcca	ac gg	gcgtt	tccg	ggto	ctcag	gccc	gagg	gccac	gg (ccatt	ccata
		ggaca	aag (ccgcg	ggcgg	gg ga	aggaa	acggt	gtg	gtgg	gttg	aaat	gaad	cca d	ggcg	gtaacc
55		acgco	cca a	agcca	actc	gt co	gaco	cggat	gaa	atgt	atg	tgga	atgta	atg g	gggtg	ggagag
JJ		gggt	cg a	atgte	gttga	aa ga	aaaa	gttg	g gaç	gcate	ggct	tago	cacca	aaa a	atcat	ggacg
	480 gatt 540	cactt	igt a	atcta	aaccg	gt to	ggagg	gtaca	a cto	ctcca	aatg	cag	gaato	cag t	ggto	caagct

tttcaccatg gtcctcaaat tagtaacgtc cttgagctcg acgttgtaac tggttagtat taaaacattc aagttcatat attttaaatg cttttgtctg aagttttact aataacaaga 5 aattgatacc aaaaagtagg gaaaggagag gtgatgagat gctcagaaga agagaacaca aggetattee atggagttet tggtggatta ggteaatttg ggateateae tegageaega atctctctcg aaccagctcc ccaaagggta atatttttt aatgactagc tatcaaaaat 10 ccctggcggg tccatacgtt gtaatctttt tagtttttac tgttgatqqt atttttata 900 tattttggat aataaaaccc taaaatggta tattgtgatg acaggtgaga tggatacggg 960 15 tattgtattc gagcttcaaa gtgtttacgg aggaccaaga gtacttaatc tcaatgcatg 1020 gtcaattaaa gtttgattac gtggaaggtt ttgtgattgt ggacgaagga ctcgtcaaca 1080 attggagate ttetteette tetecaegta acceegteaa gateteetet qttaqtteca 20 acggctctgt tttgtattgc cttgagatca ccaagaacta ccacgactcc gactccgaaa 1200 tcgttgatca ggtcactttc attattcact tagaaaaaag cgatattttc atttttata 25 ttgatgaata tctggaagga tttaacgcta tgcgactatt gggaaatcat tatgaaaaaa tatttagttt atatgattga aagtggtctc catagtattt ttgttgtgtc qactttatta taacttaaat ttggaagagg acatgaagaa gaagccagag aggatctaca gagatctagc 30 ttttccacct gaacttaata atgcacattt atataattat ttttcttctt ctaaagttta gtttatcact agcgaattaa tcatggttac taattaagta gtggacaggg tcatggacca 35 ctcactcacc aaataatgat tcctctttac tcttaagttt aattttaata aaaccaactc 1620 tactggaatc ttaacttatc cttggttttg gtaggctttt atagcaacac ggttttttta 1680 attttcctat tccagatttt gtatattaaa tgtcgatttt ttttcttttt gtttcaggaa 40 1740 gttgagattc tgatgaagaa attgaatttc ataccgacat cggtctttac aacggattta caatatgtgg actttctcga ccgggtacac aaggccgaat tgaagctccg gtccaagaat 45 ttatgggagg ttccacaccc atggctcaac ctcttcgtgc caaaatcaag aatctctgac 1920 ttcgataaag gcgttttcaa gggcattttg ggaaataaaa caagtggccc tattcttatc taccccatga acaaagacaa gtaagtcttg acattaccat tgattactac ttctaaattt 50 2040 2100 ggggattaat tagtggtcca agaaaaaaag tttgtcaaaa ttgaaaaaaa ctagacacgt 2160 55 ggtacatggg attgtccgaa aaacgttgtc cacatgtgca tcgaaccagc taagattgac 2220 attgggttta tttgttttta agttcctaga actcatggtg ggtgggtccc aatcagattc 60 2340

	tcc1 2400	-	cca a	aacc	gatci	cc a	acga	accct	c ccg	gcaca	atca	ttga	attat	ta (catta	atata
	gata 2460		tcg 1	ttgct	gac	gt g	tcgta	aatti	t gat	gtta	attg	tcag	gatg	gga	cgaga	aggagc
5	tcag 2520		tga (cgcc	ggato	ga g	gaagt	tttt	c tat	ctg	gtgg	ctct	tatto	gag	atcag	gcttta
	acgg 2580		gtg a	aagag	gacad	ca ga	aagct	tagag	g tat	ctga	aaag	atca	agaad	ccg	tcgga	atcttg
10	gagt 2640		gtg a	aacaa	agcca	aa ga	atcaa	atgt	g aaq	gcagt	tatc	ttc	ctcad	cca	cgcaa	acacag
	2700)														gctgag
1 m	2760)												CCC	atctt	tgtct
15	ttgt 2805		ctc (cgtc	gtcgt	c t	tctt	cgtca	a gcg	ggcti	tcat	ggt	ga			
20	<211 <212	0> 10 L> 53 2> PI 3> Ai	36 RT	dops:	is tl	nalia	ana									
25)> 1(Thr		Ser	Phe 5	Leu	Leu	Leu	Thr	Phe 10	Ala	Ile	Cys	Lys	Leu 15	Ile
30	Ile	Ala	Val	Gly 20	Leu	Asn	Val	Gly	Pro 25	Ser	Glu	Leu	Leu	Arg 30	Ile	Gly
	Ala	Ile	Asp 35	Val	Asp	Gly	His	Phe 40	Thr	Val	His	Pro	Ser 45	Asp	Leu	Ala
35	Ser	Val 50	Ser	Ser	Asp	Phe	Gly 55	Met	Leu	Lys	Ser	Pro 60	Glu	Glu	Pro	Leu
	Ala 65	Val	Leu	His	Pro	Ser 70	Ser	Ala	Glu	Asp	Val 75	Ala	Arg	Leu	Val	Arg 80
40	Thr	Ala	Tyr	Gly	Ser 85	Ala	Thr	Ala	Phe	Pro 90	Val	Ser	Ala	Arg	Gly 95	His
45	Gly	His	Ser	Ile 100	Asn	Gly	Gln	Ala	Ala 105	Ala	Gly	Arg	Asn	Gly 110	Val	Val
	Val	Glu	Met 115	Asn	His	Gly	Val	Thr 120	Gly	Thr	Pro	Lys	Pro 125	Leu	Val	Arg
50	Pro	Asp 130	Glu	Met	Tyr	Val	Asp 135	Val	Trp	Gly	Gly	Glu 140	Leu	Trp	Val	Asp
	Val 145	Leu	Lys	Lys	Thr	Leu 150	Glu	His	Gly	Leu	Ala 155	Pro	Lys	Ser	Trp	Thr 160
55	Asp	Tyr	Leu	Tyr	Leu 165	Thr	Val	Gly	Gly	Thr 170	Leu	Ser	Asn	Ala	Gly 175	Ile

Ser Gly Gln Ala Phe His His Gly Pro Gln Ile Ser Asn Val Leu Glu 180 185 190

	Leu	Asp	Val 195	Val	Thr	Gly	Lys	Gly 200	Glu	Val	Met	Arg	Cys 205	Ser	Glu	Glu
5	Glu	Asn 210	Thr	Arg	Leu	Phe	His 215	Gly	Val	Leu	Gly	Gly 220	Leu	Gly	Gln	Phe
	Gly 225	Ile	Ile	Thr	Arg	Ala 230	Arg	Ile	Ser	Leu	Glu 235	Pro	Ala	Pro	Gln	Arg 240
10	Val	Arg	Trp	Ile	Arg 245	Val	Leu	Tyr	Ser	Ser 250	Phe	Lys	Val	Phe	Thr 255	Glu
15	Asp	Gln	Glu	Tyr 260	Leu	Ile	Ser	Met	His 265	Gly	Gln	Leu	Lys	Phe 270	Asp	Tyr
13	Val	Glu	Gly 275	Phe	Val	Ile	Val	Asp 280	Glu	Gly	Leu	Val	Asn 285	Asn	Trp	Arg
20	Ser	Ser 290	Phe	Phe	Ser	Pro	Arg 295	Asn	Pro	Val	Lys	Ile 300	Ser	Ser	Val	Ser
	Ser 305	Asn	Gly	Ser	Val	Leu 310	Tyr	Cys	Leu	Glu	Ile 315	Thr	Lys	Asn	Tyr	His 320
25	Asp	Ser	Asp	Ser	Glu 325	Ile	Val	Asp	Gln	Glu 330	Val	Glu	Ile	Leu	Met 335	Lys
30	Lys	Leu	Asn	Phe 340	Ile	Pro	Thr	Ser	Val 345	Phe	Thr	Thr	Asp	Leu 350	Gln	Tyr
30	Val	Asp	Phe 355	Leu	Asp	Arg	Val	His 360	Lys	Ala	Glu	Leu	Lys 365	Leu	Arg	Ser
35	Lys	Asn 370	Leu	Trp	Glu	Val	Pro 375	His	Pro	Trp	Leu	Asn 380	Leu	Phe	Val	Pro
	Lys 385	Ser	Arg	Ile	Ser	Asp 390	Phe	Asp	Lys	Gly	Val 395	Phe	Lys	Gly	Ile	Leu 400
40	Gly	Asn	Lys	Thr	Ser 405	Gly	Pro	Ile	Leu	Ile 410	Tyr	Pro	Met	Asn	Lys 415	Asp
45	Lys	Trp	Asp	Glu 420	Arg	Ser	Ser	Ala	Val 425	Thr	Pro	Asp	Glu	Glu 430	Val	Phe
43	Tyr	Leu	Val 435	Ala	Leu	Leu	Arg	Ser 440	Ala	Leu	Thr	Asp	Gly 445	Glu	Glu	Thr
50	Gln	Lys 450	Leu	Glu	Tyr	Leu	Lys 455	Asp	Gln	Asn	Arg	Arg 460	Ile	Leu	Glu	Phe
	Cys 465	Glu	Gln	Ala	Lys	Ile 470	Asn	Val	Lys	Gln	Tyr 475	Leu	Pro	His	His	Ala 480
55	Thr	Gln	Glu	Glu	Trp 485	Val	Ala	His	Phe	Gly 490	Asp	Lys	Trp	Asp	Arg 495	Phe
60	Arg	Ser	Leu	Lys 500	Ala	Glu	Phe	Asp	Pro 505	Arg	His	Ile	Leu	Ala 510	Thr	Gly

Gln Arg Ile Phe Gln Asn Pro Ser Leu Ser Leu Phe Pro Pro Ser Ser 515 520 525

Ser Ser Ser Ala Ala Ser Trp 5 530 535

<213> Arabidopsis thali

<400> 11
atgcttatag taagaagttt caccatcttg cttctcagct gcatagcctt taagttggct
60
tgctgcttct ctagcagcat ttcttctttg aaggcgcttc ccctagtagg ccatttggag
120
tttgaacatg tccatcacgc ctccaaagat tttggaaatc gataccagtt gatccctttg
20 180

gcggtcttac atcccaaatc ggtaagcgac atcgcctcaa cgatacgaca catctggatg 240 atgggcactc attcacagct tacagtggca gcgagaggtc gtggacattc actccaaggc 300

25 caageteaaa caagacatgg aattgttata cacatggaat cactecatee ecagaagetg 360 caggtetaca gtgtggatte ecetgeteea tatgttgatg tgtetggtgg tgagetgtgg

ataaacattt tgcatgagac ceteaagtac gggettgeac caaaatcatg gaeggattac

30 480 ctgcatttaa ctgtaggtgg tactctgtcc aatgctggaa taagcggcca ggcattccga 540

catggaccac agatcagcaa tgttcatcaa ctggagattg tcacaggtta gttcagagtt

35 gcagtattcg tgttttgaaa gcatagactc tatatggttg gtgactatta acaacatgaa 660 gagattcccg agaatagcta cccactaatg tcatgcctat ttattgactg caggaaaagg

720 cgagatecta aactgtacaa agaggcagaa cagegaetta tttaatggtg ttettggtgg

780 tttaggtcag tttggcatca taacgcgggc aagaatagca ttggaaccag caccaaccat 840

ggtaaacaat aaataaataa aaacttaaa aactgaacac gcgtgtgtcc tcctaactct 900

45 gtataatgga caggtaaaat ggataagagt gttatacctg gattttgcag cttttgccaa 960 ggaccaagag caactaatat ctgcccaggg ccacaaattc gattacatag aagggtttgt

1020 gataataaac aggacaggcc teetgaacag etggaggttg tettteaceg cagaagagee

50 1080 tttagaagca agccaattca agtttgatgg aaggactctg tattgtctgg agctagccaa 1140

gtatttgaag caagataaca aagacgtaat caaccaggtg agaaaacaga gtagaagcaa 1200

tcggtagaat cttctttggt agatgacatt cattggaact gaaaatatat atatatttgt
1260
ccaatccagg aagtgaaaga aacattatca gagctaagct acgtgacgtc gacactgttt
1320

acaacggagg tagcatatga agcattcttg gacagggtac atgtgtctga ggtaaaactc

60 1380

	cga 144		aag	ggca	gtgg	ga g	gtgc	cacat	t cca	atgg	ctga	acct	cct	ggt	accaa	agaagc
		atca	atg	aatt	tgcaa	ag a	ggtg	tatti	t gga	aaac	atac	taad	cgga	tac	aagca	aacggc
5		gtca	tcg	tcta	ccca	gt ga	aacaa	aatca	a aa	gtaa	gaaa	gaaa	agaa	aga	aaga	gctagt
		gatt	ttg	tttc [.]	tttt	ca c	ttgt	tgaca	a aaa	acaa	aagc	atg	tgg	tga	gcag	gtggga
10		tcaa	aca	tcag	cagta	aa ca	accg	gagga	a aga	aggta	attc	taco	ctggi	tgg	cgato	cctaac
10		ggca	tct	ccag	ggtc	gg ca	aggaa	aagga	a tg	gagta	agaa	gaga	atcti	tga	ggcg	gaacag
		aata	ctg	gaat [.]	tcagi	tg aa	agaa	gcag	g gat	tagg	gttg	aago	cagta	atc	tgcca	acatta
15		gaca	aga	gaag	agtg	ga ga	atcc	catt	t cgg	ggga	caag	tggg	ggaga	aat	ttgt	gaggag
		atcca	aga	tatg	atcca	at to	ggcaa	attct	t tg	egact	tggc	caco	cgaat	ttt	ttcaa	aaaggc
20		ctca	tac	tcat	ga											
		-														
25	<213	0> 1: 1> 5: 2> P: 3> A:	04 RT	dops:	is tl	nalia	ana									
		0> 1:		-												
30	Met 1	Leu	Ile	Val	Arg 5	Ser	Phe	Thr	Ile	Leu 10	Leu	Leu	Ser	Cys	Ile 15	Ala
	Phe	Lys	Leu	Ala 20	Cys	Cys	Phe	Ser	Ser 25	Ser	Ile	Ser	Ser	Leu 30	Lys	Ala
35	Leu	Pro	Leu 35	Val	Gly	His	Leu	Glu 40	Phe	Glu	His	Val	His 45	His	Ala	Ser
40	Lys	Asp 50	Phe	Gly	Asn	Arg	Tyr 55	Gln	Leu	Ile	Pro	Leu 60	Ala	Val	Leu	His
40	Pro 65	Lys	Ser	Val	Ser	Asp 70	Ile	Ala	Ser	Thr	Ile 75	Arg	His	Ile	Trp	Met 80
45	Met	Gly	Thr	His	Ser 85	Gln	Leu	Thr	Val	Ala 90	Ala	Arg	Gly	Arg	Gly 95	His
	Ser	Leu	Gln	Gly 100	Gln	Ala	Gln	Thr	Arg 105	His	Gly	Ile	Val	Ile 110	His	Met
50	Glu	Ser	Leu 115	His	Pro	Gln	Lys	Leu 120	Gln	Val	Tyr	Ser	Val 125	Asp	Ser	Pro
55	Ala	Pro 130	Tyr	Val	Asp	Val	Ser 135	Gly	Gly	Glu	Leu	Trp 140	Ile	Asn	Ile	Leu
55	His 145	Glu	Thr	Leu	Lys	Tyr 150	Gly	Leu	Ala	Pro	Lys 155	Ser	Trp	Thr	Asp	Tyr 160
60	Leu	His	Leu	Thr	Val 165	Gly	Gly	Thr	Leu	Ser 170	Asn	Ala	Gly	Ile	Ser 175	Gly

	Gln	Ala	Phe	Arg 180	His	Gly	Pro	Gln	Ile 185	Ser	Asn	Val	His	Gln 190	Leu	Glu
5	Ile	Val	Thr 195	Gly	Lys	Gly	Glu	Ile 200	Leu	Asn	Cys	Thr	Lys 205	Arg	Gln	Asn
10	Ser	Asp 210	Leu	Phe	Asn	Gly	Val 215	Leu	Gly	Gly	Leu	Gly 220	Gln	Phe	Gly	Ile
	Ile 225	Thr	Arg	Ala	Arg	Ile 230	Ala	Leu	Glu	Pro	Ala 235	Pro	Thr	Met	Asp	Gln 240
15	Glu	Gln	Leu	Ile	Ser 245	Ala	Gln	Gly	His	Lys 250	Phe	Asp	Tyr	Ile	Glu 255	Gly
	Phe	Val	Ile	Ile 260	Asn	Arg	Thr	Gly	Leu 265	Leu	Asn	Ser	Trp	Arg 270	Leu	Ser
20	Phe	Thr	Ala 275	Glu	Glu	Pro	Leu	Glu 280	Ala	Ser	Gln	Phe	Lys 285	Phe	Asp	Gly
25	Arg	Thr 290	Leu	Tyr	Cys	Leu	Glu 295	Leu	Ala	Lys	Tyr	Leu 300	Lys	Gln	Asp	Asn
20	Lys 305	Asp	Val	Ile	Asn	Gln 310	Glu	Val	Lys	Glu	Thr 315	Leu	Ser	Glu	Leu	Ser 320
30	Tyr	Val	Thr	Ser	Thr 325	Leu	Phe	Thr	Thr	Glu 330	Val	Ala	Tyr	Glu	Ala 335	Phe
	Leu	Asp	Arg	Val 340	His	Val	Ser	Glu	Val 345	Lys	Leu	Arg	Ser	Lys 350	Gly	Gln
35	Trp	Glu	Val 355	Pro	His	Pro	Trp	Leu 360	Asn	Leu	Leu	Val	Pro 365	Arg	Ser	Lys
40	Ile	Asn 370	Glu	Phe	Ala	Arg	Gly 375	Val	Phe	Gly	Asn	Ile 380	Leu	Thr	Asp	Thr
	Ser 385	Asn	Gly	Pro	Val	Ile 390	Val	Tyr	Pro	Val	Asn 395	Lys	Ser	Lys	Trp	Asp 400
45	Asn	Gln	Thr	Ser	Ala 405	Val	Thr	Pro	Glu	Glu 410	Glu	Val	Phe	Tyr	Leu 415	Val
	Ala	Ile	Leu	Thr 420	Ser	Ala	Ser	Pro	Gly 425	Ser	Ala	Gly	Lys	Asp 430	Gly	Val
50	Glu	Glu	Ile 435	Leu	Arg	Arg	Asn	Arg 440	Arg	Ile	Leu	Glu	Phe 445	Ser	Glu	Glu
55	Ala	Gly 450	Ile	Gly	Leu	Lys	Gln 455	Tyr	Leu	Pro	His	Tyr 460	Thr	Thr	Arg	Glu
	Glu 465	Trp	Arg	Ser	His	Phe 470	Gly	Asp	Lys	Trp	Gly 475	Glu	Phe	Val	Arg	Arg 480
60	Lys	Ser	Arg	Tyr	Asp 485	Pro	Leu	Ala	Ile	Leu 490	Ala	Pro	Gly	His	Arg 495	Ile

```
Phe Gln Lys Ala Val Ser Tyr Ser
                  500
 5
     <210> 13
     <211> 31
     <212> DNA
10
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
15
     <400> 13
     cggtcgacat gggattgacc tcatccttac g
     31
20
     <210> 14
     <211> 35
     <212> DNA
     <213> Artificial Sequence
25
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
30
     <400> 14
     gcgtcgactt atacagttct aggtttcggc agtat
     35
35
     <210> 15
     <211> 33
     <212> DNA
     <213> Artificial Sequence
40
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
     <400> 15
45
     gcggtaccag agagagaaac ataaacaaat ggc
     33
     <210> 16
50
     <211> 31
     <212> DNA
     <213> Artificial Sequence
55
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
     <400> 16
     gcggtaccca attttacttc caccaaaatg c
60
     31
```

```
<210> 17
     <211> 34
5
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
10
           : primer or probe
     <400> 17
     gcggtacctt cattgataag aatcaagcta ttca
15
     <210> 18
     <211> 31
     <212> DNA
20
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
25
     <400> 18
     gcggtaccca aagtggtgag aacgactaac a
     31
30
     <210> 19
     <211> 28
     <212> DNA
     <213> Artificial Sequence
35
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
40
     <400> 19
     gcggtacccc cattaaccta cccgtttg
     28
45
     <210> 20
     <211> 32
     <212> DNA
     <213> Artificial Sequence
50
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
     <400> 20
55
     gcggtaccag acgatgaacg tacttgtctg ta
     32
     <210> 21
60
     <211> 28
```

```
<212> DNA
     <213> Artificial Sequence
     <220>
 5
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
     <400> 21
     ggggtacctt gatgaatcgt gaaatgac
10
     <210> 22
     <211> 31
15
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
20
           : primer or probe
     <400> 22
     ggggtaccct ttcctcttgg ttttgtcctg t
     31
25
     <210> 23
     <211> 32
     <212> DNA
30
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
35
     <400> 23
     gctctagatc aggaaaagaa ccatgcttat ag
     32
40
     <210> 24
     <211> 32
     <212> DNA
     <213> Artificial Sequence
45
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
50
     <400> 24
     gctctagatc atgagtatga gactgccttt tg
     32
55
     <210> 25
     <211> 1728
     <212> DNA
     <213> Arabidopsis thaliana
60
     <400> 25
```

	atgggattga 60	cctcatcctt	acggttccat	agacaaaaca	acaagacttt	cctcggaatc
	ttcatgatct 120	tagttctaag	ctgtatacca	ggtagaacca	atctttgttc	caatcattct
5	gttagtaccc 180	caaaagaatt	accttcttca	aatccttcag	atattcgttc	ctcattagtt
	tcactagatt 240	tggagggtta	tataagcttc	gacgatgtcc	acaatgtggc	caaggacttt
10	ggcaacagat 300	accagttacc	acctttggca	attctacatc	caaggtcagt	ttttgatatt
	tcatcgatga 360	tgaagcatat	agtacatctg	ggctccacct	caaatcttac	agtagcagct
	agaggccatg 420	gtcactcgct	tcaaggacaa	gctctagctc	atcaaggtgt	tgtcatcaaa
15	atggagtcac 480	ttcgaagtcc	tgatatcagg	atttataagg	ggaagcaacc	atatgttgat
	gtctcaggtg 540	gtgaaatatg	gataaacatt	ctacgcgaga	ctctaaaata	cggtctttca
20	600	ggacagacta				
	660	aagcattcaa				
25	720	aaggagaagt				
25	780	gcgggcttgg				
	840	atatggttaa				
30	900	aatatctgat				
	960	gaacagacct				
25	1020	gcagattcaa				
35	1080	cagaagaagc				
	1140	ttccatccac				
40	1200	tcgcagagag				
	1260	tcctgattcc				
45	1320	caagcaacaa			J	3
73	1380	atacatcttt				
	1440	cagtgccaaa				
50	1500	ttatgaactt				
	1560	ctcaaaaaga				_
55	1620	aagcctacga		_		
<i>JJ</i>	1680	gaaaattatc				aggaagtcct
	1728	attacgcatc	aatactgccg	aaacctagaa	ctgtataa	

```
<210> 26
     <211> 1506
     <212> DNA
     <213> Arabidopsis thaliana
 5
     <400> 26
     atggctaatc ttcgtttaat gatcacttta atcacggttt taatgatcac caaatcatca
     aacggtatta aaattgattt acctaaatcc cttaacctca ccctctatac cqatccttcc
10
     atcatctccg cagcctctca tgacttcgga aacataacca ccgtgacccc cggcggcgta
     180
     atetgeeeet eeteeacege tgatatetet egteteetee aataegeege aaaeggaaaa
15
     agtacattcc aagtagegge tegtggeeaa ggeeacteet taaaeggeea ageeteggte
     300
     tccggcggag taatcgtcaa catgacgtgt atcactgacg tggtggtttc aaaagacaag
     aagtacgctg acgtggcggc cgggacgtta tgggtggatg tgcttaagaa gacggcggag
20
     aaaggggtgt cgccggtttc ttggacggat tatttgcata taaccgtcgg aggaacgttg
     tegaatggtg gaattggtgg teaagtgttt egaaaeggte etettgttag taaegteett
25
     gaattggacg ttattactgg gaaaggtgaa atgttgacat gctcgcgaca gctaaaccca
     gaattgttct atggagtgtt aggaggtttg ggtcaatttg gaattataac gagagccaga
     attgttttgg accatgcacc taaacgggcc aaatggtttc ggatgctcta cagtgatttc
30
     acaactttta caaaggacca agaacgtttg atatcaatgg caaacgatat tggagtcgac
     tatttagaag gtcaaatatt tctatcaaac ggtgtcgttg acacctcttt tttcccacct
35
     tcagatcaat ctaaagtcgc tgatctagtc aagcaacacg gtatcatcta tgttcttgaa
     gtagccaagt attatgatga tcccaatctc cccatcatca gcaaggttat tgacacatta
     acgaaaacat taagttactt gcccgggttc atatcaatgc acgacgtggc ctacttcgat
40
     1020
     ttcttgaacc gtgtacatgt cgaagaaaat aaactcagat ctttgggatt atgggaactt
     1080
     cctcatcctt ggcttaacct ctacgttcct aaatctcgga ttctcgattt tcataacggt
     1140
45
     gttgtcaaag acattcttct taagcaaaaa tcagcttcgg gactcgctct tctctatcca
     1200
     acaaaccgga ataaatggga caatcgtatg tcggcgatga taccagagat cgatgaaqat
     1260
     gttatatata ttatcggact actacaatcc gctaccccaa aggatcttcc agaagtggag
50
     1320
     agcgttaacg agaagataat taggttttgc aaggattcag gtattaaqat taaqcaatat
     1380
     ctaatgcatt atactagtaa agaagattgg attgagcatt ttggatcaaa atgggatgat
55
     ttttcgaaga ggaaagatct atttgatccc aagaaactgt tatctccagg gcaagacatc
     1500
     ttttga
     1506
```

```
<210> 27
     <211> 1572
     <212> DNA
     <213> Arabidopsis thaliana
 5
     <400> 27
     atggcgagtt ataatcttcg ttcacaagtt cgtcttatag caataacaat agtaatcatc
     attactctct caactccgat cacaaccaac acatcaccac aaccatggaa tatcctttca
10
     cacaacgaat tcgccggaaa actcacctcc tcctcctcct ccgtcgaatc agccqccaca
     gatttcggcc acgtcaccaa aatcttccct tccgccgtct taatcccttc ctccgttgaa
15
     gacatcacag atctcataaa actctctttt gactctcaac tgtcttttcc tttagccgct
     cgtggtcacg gacacagcca ccgtggccaa gcctcggcta aagacggagt tqtqqtcaac
     atgcggtcca tggtaaaccg ggatcgaggt atcaaggtgt ctaggacctg tttatatgtt
20
     gacgtggacg ctgcgtggct atggattgag gtgttgaata aaactttgga gttagggtta
     480
     acgccggttt cttggacgga ttatttgtat ttaacagtcg gtgggacgtt atcaaacggc
25
     ggaattagtg gacaaacgtt tcggtacggt ccacagatca ctaatgttct agagatggat
     gttattactg gaaaaggaga gattgcaact tgttccaagg acatgaactc ggatcttttc
     660
     ttcgcggtgt taggaggttt gggtcaattc ggcattataa caagagccag aattaaactt
30
     gaagtagete egaaaaggge caagtggtta aggtttetat acatagattt etcegaatte
     780
     acaagagatc aagaacgagt gatatcgaaa acggacggtg tagatttctt agaaggttcc
35
     attatggtgg accatggece accggataac tggagateca cgtattatec accgtecgat
     cacttgagga tegeeteaat ggteaaaega categtgtea tetaetgeet tgaagtegte
     aagtattacg acgaaacttc tcaatacaca gtcaacgagg aaatggagga gttaagcqat
40
     1020
     agtttaaacc atgtaagagg gtttatgtac gagaaagatg tgacgtatat ggatttccta
     1080
     aaccgagttc gaaccggaga gctaaacctg aaatccaaag gccaatggga tgttccacat
     1140
45
     ccatggctta atctcttcgt accaaaaact caaatctcca aatttgatga tggtgttttt
     aagggtatta teetaagaaa taacateaet ageggteetg ttettgttta teetatgaat
     cgcaacaagt ggaatgatcg gatgtctgcc gctatacccg aggaagatgt attttatqcq
50
     1320
     gtagggtttt taagatccgc gggttttgac aattgggagg cttttgatca agaaaacatg
     1380
     gaaatactga agttttgtga ggatgctaat atgggggtta tacaatatct tccttatcat
55
     tcatcacaag aaggatgggt tagacatttt ggtccgaggt ggaatatttt cgtagagaga
     1500
     aaatataaat atgatcccaa aatgatatta tcaccgggac aaaatatatt tcaaaaaata
     1560
     aactcgagtt ag
60
     1572
```

```
<210> 28
     <211> 1575
 5
     <212> DNA
     <213> Arabidopsis thaliana
     <400> 28
     atgactaata ctctctgttt aagcctcatc accctaataa cgctttttat aagtttaacc
10
     ccaaccttaa tcaaatcaga tgagggcatt gatgttttct tacccatatc actcaacctt
     acggtectaa cegatecett etecatetet geegettete acgaettegg taacataace
     180
15
     gacgaaaatc ccggcgccgt cctctgccct tcctccacca cggaggtggc tcgtctcctc
     cgtttcgcta acggaggatt ctcttacaat aaaggctcaa ccagccccgc gtctactttc
     300
     aaagtggctg ctcgaggcca aggccactcc ctccgtggcc aagcctctgc acccggaggt
20
     gtcgtcgtga acatgacgtg tctcgccatg gcggctaaac cagcggcggt tgttatctcg
     420
     gcagacggga cttacgctga cgtggctgcc gggacgatgt gggtggatgt tctgaaggcg
25
     gcggtggata gaggcgtctc gccggttaca tggacggatt atttgtatct cagcgtcggc
     gggacgttgt cgaacgctgg aatcggtggt cagacgttta gacacggccc tcagattagt
     600
     aacgttcatg agcttgacgt tattaccgga aaaggtgaaa tgatgacttg ctctccaaag
30
     ttaaaccctg aattgttcta tggagtttta ggaggtttgg gtcaattcgg tattataacg
     agggccagga ttgcgttgga tcatgcaccc acaagggtga aatggtctcg catactctac
35
     agtgacttct cggcttttaa aagagaccaa gagcgtttaa tatcaatgac caatgatctc
     ggagttgact ttttggaagg tcaacttatg atgtcaaatg gcttcgtaga cacctctttc
     900
     ttcccactct ccgatcaaac aagagtcgca tctcttgtga atgaccaccg gatcatctat
40
     gttctcgaag tagccaagta ttatgacaga accacccttc ccattattga ccaggtgatt
     gacacgttaa gtagaactct aggtttcgct ccagggttta tgttcgtaca agatgttccg
45
     tatttcgatt tcttgaaccg tgtccgaaac gaagaagata aactcagatc tttaggacta
     tgggaagttc ctcatccatg gcttaacatc tttgtcccgg ggtctcgaat ccaagatttt
     catgatggtg ttattaatgg ccttcttcta aaccaaacct caacttctgg tgttactctc
50
     1260
     ttctatccca caaaccgaaa caaatggaac aaccgcatgt caacgatgac accggacgaa
     1320
    gatgtttttt atgtgatcgg attactgcaa tcagctggtg gatctcaaaa ttggcaagaa
     1380
55
     cttgaaaatc tcaacgacaa ggttattcag ttttgtgaaa actcgggaat taagattaag
     1440
    gaatatttga tgcactatac aagaaaagaa gattgggtta aacattttgg accaaaatgg
    gatgattttt taagaaagaa aattatgttt gatcccaaaa gactattgtc tccaggacaa
60
     1560
```

gacatattta attaa 1575

5 <210> 29 <211> 1611 <212> DNA <213> Arabidopsis thaliana 10 <400> 29 atgacgtcaa gctttcttct cctgacgttc gccatatgta aactgatcat agccgtgggt ctaaacgtgg gccccagtga gctcctccgc atcggagcca tagatgtcga cggccacttc 15 acceptionace etteogaett ageoteogte teeteagaet teggtatget gaaqteacet 180 gaagageeat tggeegtget teateeatea teggeegaag aegtggeaeg aetegteaga acagettaeg gtteageeae ggegttteeg gteteageee gaggeeaegg ceatteeata 20 aacggacaag ccgcggcggg gaggaacggt gtggtggttg aaatgaacca cggcgtaacc gggacgccca agccactcgt ccgaccggat gaaatgtatg tggatgtatg gggtggaqaq 420 25 ttatgggtcg atgtgttgaa gaaaacgttq qaqcatqqct taqcaccaaa atcatqqacq gattacttgt atctaaccgt tggaggtaca ctctccaatg caggaatcag tggtcaagct tttcaccatg gtcctcaaat tagtaacgtc cttgagctcg acgttgtaac tgggaaagga 30 gaggtgatga gatgctcaga agaagagaac acaaggctat tccatggagt tcttggtgga ttaggtcaat ttgggatcat cactcgagca cgaatctctc tcgaaccagc tccccaaaqq 35 gtgagatgga tacgggtatt gtattcgagc ttcaaagtgt ttacggagga ccaagagtac ttaatctcaa tgcatggtca attaaagttt gattacgtgg aaggttttgt gattgtggac gaaggactcg tcaacaattg gagatcttct ttcttctctc cacqtaaccc cqtcaaqatc 40 tectetgtta gttecaaegg etetgttttg tattgeettg agateaecaa gaaetaecae 960 gactccgact ccgaaatcgt tgatcaggaa gttgagattc tgatgaagaa attgaatttc 1020 45 ataccgacat cggtctttac aacggattta caatatgtgg actttctcga ccgggtacac 1080 aaggccgaat tgaagctccg gtccaagaat ttatgggagg ttccacaccc atggctcaac 1140 ctcttcgtgc caaaatcaag aatctctgac ttcgataaag gcgttttcaa gggcattttg 50 1200 ggaaataaaa caagtggccc tattcttatc taccccatga acaaagacaa atgggacgag 1260 aggageteag cegtgaegee ggatgaggaa gttttetate tggtggetet attgagatea 1320 55 gctttaacgg acggtgaaga gacacagaag ctagagtatc tgaaagatca gaaccgtcgg 1380 atcttggagt tctgtgaaca agccaagatc aatgtgaagc agtatcttcc tcaccacgca acacaggaag agtgggtggc tcattttggg gacaagtggg atcggttcag aagcttaaag 60 1500

```
gctgagtttg atccgcgaca catactcgct actggtcaga gaatctttca aaacccatct
     ttgtctttgt ttcctccgtc gtcgtcttct tcgtcagcgg cttcatggtg a
     1611
 5
     <210> 30
     <211> 1515
     <212> DNA
10
     <213> Arabidopsis thaliana
     <400> 30
     atgcttatag taagaagttt caccatcttg cttctcagct gcatagcctt taagttggct
15
     tgctgcttct ctagcagcat ttcttctttg aaggcgcttc ccctagtagg ccatttggag
     tttgaacatg tccatcacgc ctccaaagat tttggaaatc gataccagtt gatccctttg
     geggtettae ateceaaate ggtaagegae ategeeteaa egataegaea catetggatg
20
     atgggcactc attcacagct tacagtggca gcgagaggtc gtggacattc actccaaggc
     caagctcaaa caagacatgg aattgttata cacatggaat cactccatcc ccagaagctg
     360
25
     caggictaca gigiggatic cccigcicca taigitgatg igiciggigg igagcigigg
     ataaacattt tgcatgagac cctcaagtac gggcttgcac caaaatcatg gacggattac
     ctgcatttaa ctgtaggtgg tactctgtcc aatgctggaa taagcggcca ggcattccga
30
     catggaccac agatcagcaa tgttcatcaa ctggagattg tcacaggaaa aggcgagatc
     600
     ctaaactgta caaagaggca gaacagcgac ttatttaatg gtgttcttgg tggtttaggt
     660
35
     cagtttggca tcataacgcg ggcaagaata gcattggaac cagcaccaac catggaccaa
     gagcaactaa tatctgccca gggccacaaa ttcgattaca tagaagggtt tgtgataata
     aacaggacag gcctcctgaa cagctggagg ttgtctttca ccgcagaaga gcctttagaa
40
    gcaagccaat tcaagtttga tggaaggact ctgtattgtc tggagctagc caagtatttg
     aagcaagata acaaagacgt aatcaaccag gaagtgaaag aaacattatc agagctaagc
45
     tacgtgacgt cgacactgtt tacaacggag gtagcatatg aagcattctt ggacagggta
     catgtgtctg aggtaaaact ccgatcgaaa gggcagtggg aggtgccaca tccatggctg
     1080
     aacctcctgg taccaagaag caaaatcaat gaatttgcaa gaggtgtatt tggaaacata
50
     ctaacggata caagcaacgg cccagtcatc gtctacccag tgaacaaatc aaagtgggac
     aatcaaacat cagcagtaac accggaggaa gaggtattct acctggtggc gatcctaaca
     1260
55
     teggeatete cagggtegge aggaaaggat ggagtagaag agatettgag geggaacaga
     agaatactgg aattcagtga agaagcaggg atagggttga agcagtatct gccacattac
     acgacaagag aagagtggag atcccatttc ggggacaagt ggggagaatt tgtgaggagg
60
```

```
aaatccagat atgatccatt ggcaattctt gcgcctggcc accgaatttt tcaaaaggca
     gtctcatact catga
     1515
 5
     <210> 31
     <211> 84
     <212> DNA
10
     <213> Arabidopsis thaliana
     <400> 31
     tcagcttcgg gactcgctct tctctatcca acaaaccqqa ataaatqqqa caatcqtatq
15
     tcggcgatga taccagagat cgat
     84
     <210> 32
20
     <211> 28
     <212> PRT
     <213> Arabidopsis thaliana
     <400> 32
25
     Ser Ala Ser Gly Leu Ala Leu Leu Tyr Pro Thr Asn Arg Asn Lys Trp
     Asp Asn Arg Met Ser Ala Met Ile Pro Glu Ile Asp
30
     <210> 33
     <211> 2814
35
     <212> DNA
     <213> Arabidopsis thaliana
     <400> 33
     atgaatcgta tgacgtcaag ctttcttctc ctgacgttcg ccatatgtaa actgatcata
40
     gccgtgggtc taaacgtggg ccccagtgag ctcctccgca tcggagccat agatqtcqac
     120
     ggccacttca ccgtccaccc ttccgactta gcctccgtct cctcagactt cggtatgctg
     180
45
     aagtcacctg aagagccatt ggccgtgctt catccatcat cggccgaaga cgtggcacga
     240
     ctcgtcagaa cagcttacgg ttcagccacg gcgtttccgg tctcagcccg aggccacggc
     300
     cattccataa acggacaagc cgcggcgggg aggaacggtg tggtggttga aatgaaccac
50
     360
     ggcgtaaccg ggacgcccaa gccactcgtc cgaccggatg aaatgtatgt ggatgtatgg
     420
     ggtggagagt tatgggtcga tgtgttgaag aaaacgttgg agcatggctt agcaccaaaa
     480
55
     tcatggacgg attacttgta tctaaccgtt ggaggtacac tctccaatgc aggaatcagt
     540
     ggtcaagctt ttcaccatgg tcctcaaatt agtaacgtcc ttgagctcga cgttgtaact
     600
     ggttagtatt aaaacattca agttcatata ttttaaatgc ttttgtctga agttttacta
60
     660
```

	ataacaagaa 720	attgatacca	aaaagtaggg	aaaggagagg	tgatgagatg	ctcagaagaa
	gagaacacaa 780	ggctattcca	tggagttctt	ggtggattag	gtcaatttgg	gatcatcact
5	cgagcacgaa 840	tctctctcga	accagctccc	caaagggtaa	tatttttta	atgactagct
	atcaaaaatc 900	cctggcgggt	ccatacgttg	taatcttttt	agtttttact	gttgatggta
10		attttggata	ataaaaccct	aaaatggtat	attgtgatga	caggtgagat
		attgtattcg	agcttcaaag	tgtttacgga	ggaccaagag	tacttaatct
	caatgcatgg	tcaattaaag	tttgattacg	tggaaggttt	tgtgattgtg	gacgaaggac
15		ttggagatct	tctttcttct	ctccacgtaa	ccccgtcaag	atctcctctg
		cggctctgtt	ttgtattgcc	ttgagatcac	caagaactac	cacgactccg
20		cgttgatcag	gtcactttca	ttattcactt	agaaaaaagc	gatattttca
		tgatgaatat	ctggaaggat	ttaacgctat	gcgactattg	ggaaatcatt
		atttagttta	tatgattgaa	agtggtctcc	atagtatttt	tgttgtgtcg
25		aacttaaatt	tggaagagga	catgaagaag	aagccagaga	ggatctacag
		tttccacctg	aacttaataa	tgcacattta	tataattatt	tttcttcttc
30		tttatcacta	gcgaattaat	catggttact	aattaagtag	tggacagggt
		tcactcacca	aataatgatt	cctctttact	cttaagttta	attttaataa
		actggaatct	taacttatcc	ttggttttgg	taggctttta	tagcaacacg
35	gtttttttaa 1740	ttttcctatt	ccagattttg	tatattaaat	gtcgattttt	tttctttttg
	tttcaggaag 1800	ttgagattct	gatgaagaaa	ttgaatttca	taccgacatc	ggtctttaca
40	acggatttac 1860	aatatgtgga	ctttctcgac	cgggtacaca	aggccgaatt	gaagctccgg
	tccaagaatt 1920	tatgggaggt	tccacaccca	tggctcaacc	tcttcgtgcc	aaaatcaaga
		tcgataaagg	cgttttcaag	ggcattttgg	gaaataaaac	aagtggccct
45	attcttatct 2040	accccatgaa	caaagacaag	taagtcttga	cattaccatt	gattactact
	tctaaatttc 2100	ttctctagaa	aaaagaataa	aacgagtttt	gcattgcatg	catgcaaagt
50	tacacttgtg 2160	gggattaatt	agtggtccaa	gaaaaaaagt	ttgtcaaaat	tgaaaaaaac
	tagacacgtg 2220	gtacatggga	ttgtccgaaa	aacgttgtcc	acatgtgcat	cgaaccagct
	aagattgaca 2280	acaacacttc	gtcggctcgt	atttctcttt	ttgttttgtg	accaaatccg
55	atggtccaga 2340	ttgggtttat	ttgtttttaa	gttcctagaa	ctcatggtgg	gtgggtccca
		cctagaccaa	accgatctca	acgaaccctc	cgcacatcat	tgattattac
60	attaatatag 2460	atattgtcgt	tgctgacgtg	tcgtaatttg	atgttattgt	cagatgggac

- gagaggagct cagccgtgac gccggatgag gaagttttet atctggtggc tetattgaga 2520
 tcagctttaa cggacggtga agagcacag aagctagagt atctgaaaga tcagaaccgt 2580
 5 cggatcttgg agttetgtga acaagcaag atcaatgtga agcagtatet teetcaccac 2640
 gcaacacagg aagagtggt ggetcatttt ggggacaagt gggateggtt cagaagetta 2700
 aaggetgagt ttgatcegeg acacatacte getactggte agagaatett teaaaaccca 2760
 tetttgtett tgtteetee gtegtegtet tettegteag eggetteatg gtga
- 15 <210> 34 <211> 1620 <212> DNA <213> Arabidopsis thaliana
- 20 <400> 34 atgaatcgta tgacgtcaag ctttcttctc ctgacgttcg ccatatgtaa actgatcata gccgtgggtc taaacgtggg ccccagtgag ctcctccgca tcggagccat agatgtcgac 25 ggccacttca ccgtccaccc ttccgactta gcctccgtct cctcagactt cggtatgctg 180 aagtcacctg aagagccatt ggccgtgctt catccatcat cggccgaaga cgtggcacga 240 ctcgtcagaa cagcttacgg ttcagccacg gcgtttccgg tctcagcccg aggccacggc 30 300 cattccataa acggacaagc cgcggcgggg aggaacggtg tggtggttga aatgaaccac ggcgtaaccg ggacgcccaa gccactcgtc cgaccggatg aaatgtatgt ggatgtatgg 420 35 ggtggagagt tatgggtcga tgtgttgaag aaaacgttgg agcatggctt agcaccaaaa 480 tcatggacgg attacttgta tctaaccgtt ggaggtacac tctccaatgc aggaatcagt ggtcaagctt ttcaccatgg tcctcaaatt agtaacgtcc ttgagctcga cgttgtaact 40 600 gggaaaggag aggtgatgag atgctcagaa gaagagaaca caaggctatt ccatggagtt cttggtggat taggtcaatt tgggatcatc actcgagcac gaatctctct cgaaccagct 45 ccccaaaggg tgagatggat acgggtattg tattcgagct tcaaagtgtt tacggaggac caagagtact taatctcaat gcatggtcaa ttaaagtttg attacgtgga aggttttgtg attgtggacg aaggactcgt caacaattgg agatcttctt tcttctctcc acgtaacccc 50 gtcaagatct cctctgttag ttccaacggc tctgttttgt attgccttga gatcaccaag 960 aactaccacg actccgactc cgaaatcgtt gatcaggaag ttgagattct gatgaagaaa 55 ttgaatttca taccgacatc ggtctttaca acggatttac aatatgtgga ctttctcgac cgggtacaca aggccgaatt gaagctccgg tccaagaatt tatgggaggt tccacaccca tggctcaacc tcttcgtgcc aaaatcaaga atctctgact tcgataaagg cgttttcaag 60 1200

	ggc. 126		tgg	gaaa	taaa	ac a	agtg	gccc.	t at	tctt	atct	acc	ccat	gaa	caaa	gacaaa	
	tgg:		aga	ggag	ctca	gc c	gtga	cgcc	g gai	tgag	gaag	ttt	tcta	tct	ggtg	gctcta	
5	ttg		cag	cttt	aacg	ga c	ggtg	aaga	g ac	acag	aagc	tag	agta	tct	gaaa	gatcag	
		cgtc	gga	tctt	ggagt	tt c	tgtg	aaca	a gc	caag	atca	atg	atgtgaagca gtatcttcct				
10		cacg	caa	caca	ggaa	ga g	tggg	tggc:	t cat	tttt	aaaa	aca	agtg	gga	tcggi	ttcaga	
	agc ⁻		agg	ctga	gttt	ga t	ccgc	gaca	c ata	actc	gcta	ctg	gtca	gag	aatc	tttcaa	
	aac		ctt	tgtc	tttgi	tt t	cctc	cgtc	g to	gtcti	tctt	cgt	cagc	ggc	ttcai	tggtga	
15																	
20	<210> 35 <211> 539 <212> PRT <213> Arabidopsis thaliana																
20		0> 3!		чорь.	IB CI	.IG.L.T.	ana										
25				Met	Thr 5	Ser	Ser	Phe	Leu	Leu 10	Leu	Thr	Phe	Ala	Ile 15	Cys	
25	Lys	Leu	Ile	Ile 20	Ala	Val	Gly	Leu	Asn 25	Val	Gly	Pro	Ser	Glu 30	Leu	Leu	
30	Arg	Ile	Gly 35	Ala	Ile	Asp	Val	Asp 40	Gly	His	Phe	Thr	Val 45	His	Pro	Ser	
	Asp	Leu 50	Ala	Ser	Val	Ser	Ser 55	Asp	Phe	Gly	Met	Leu 60	Lys	Ser	Pro	Glu	
35	Glu 65	Pro	Leu	Ala	Val	Leu 70	His	Pro	Ser	Ser	Ala 75	Glu	Asp	Val	Ala	Arg 80	
40	Leu	Val	Arg	Thr	Ala 85	Tyr	Gly	Ser	Ala	Thr 90	Ala	Phe	Pro	Val	Ser 95	Ala	
40	Arg	Gly	His	Gly 100	His	Ser	Ile	Asn	Gly 105	Gln	Ala	Ala	Ala	Gly 110	Arg	Asn	
45	Gly	Val	Val 115	Val	Glu	Met	Asn	His 120	Gly	Val	Thr	Gly	Thr 125	Pro	Lys	Pro	
	Leu	Val 130	Arg	Pro	Asp	Glu	Met 135	Tyr	Val	Asp	Val	Trp 140	Gly	Gly	Glu	Leu	
50	Trp 145	Val	Asp	Val	Leu	Lys 150	Lys	Thr	Leu	Glu	His 155	Gly	Leu	Ala	Pro	Lys 160	
55	Ser	Trp	Thr	Asp	Tyr 165	Leu	Tyr	Leu	Thr	Val 170	Gly	Gly	Thr	Leu	Ser 175	Asn	
55	Ala	Gly	Ile	Ser 180	Gly	Gln	Ala	Phe	His 185	His	Gly	Pro	Gln	Ile 190	Ser	Asn	
60	Val	Leu	Glu 195	Leu	Asp	Val	Val	Thr 200	Gly	Lys	Gly	Glu	Val 205	Met	Arg	Cys	

	Ser	Glu 210	Glu	Glu	Asn	Thr	Arg 215	Leu	Phe	His	Gly	Val 220	Leu	Gly	Gly	Leu
5	Gly 225	Gln	Phe	Gly	Ile	Ile 230	Thr	Arg	Ala	Arg	Ile 235	Ser	Leu	Glu	Pro	Ala 240
10	Pro	Gln	Arg	Val	Arg 245	Trp	Ile	Arg	Val	Leu 250	Tyr	Ser	Ser	Phe	Lys 255	Val
10	Phe	Thr	Glu	Asp 260	Gln	Glu	Tyr	Leu	Ile 265	Ser	Met	His	Gly	Gln 270	Leu	Lys
15	Phe	Asp	Tyr 275	Val	Glu	Gly	Phe	Val 280	Ile	Val	Asp	Glu	Gly 285	Leu	Val	Asn
	Asn	Trp 290	Arg	Ser	Ser	Phe	Phe 295	Ser	Pro	Arg	Asn	Pro 300	Val	Lys	Ile	Ser
20	Ser 305	Val	Ser	Ser	Asn	Gly 310	Ser	Val	Leu	Tyr	Cys 315	Leu	Glu	Ile	Thr	Lys 320
25	Asn	Tyr	His	Asp	Ser 325	Asp	Ser	Glu	Ile	Val 330	Asp	Gln	Glu	Val	Glu 335	Ile
20	Leu	Met	Lys	Lys 340	Leu	Asn	Phe	Ile	Pro 345	Thr	Ser	Val	Phe	Thr 350	Thr	Asp
30	Leu	Gln	Tyr 355	Val	Asp	Phe	Leu	Asp 360	Arg	Val	His	Lys	Ala 365	Glu	Leu	Lys
	Leu	Arg 370	Ser	Lys	Asn	Leu	Trp 375	Glu	Val	Pro	His	Pro 380	Trp	Leu	Asn	Leu
35	Phe 385	Val	Pro	Lys	Ser	Arg 390	Ile	Ser	Asp	Phe	Asp 395	Lys	Gly	Val	Phe	Lys 400
40	Gly	Ile	Leu	Gly	Asn 405	Lys	Thr	Ser	Gly	Pro 410	Ile	Leu	Ile	Tyr	Pro 415	Met
10	Asn	Lys	Asp	Lys 420	Trp	Asp	Glu	Arg	Ser 425	Ser	Ala	Val	Thr	Pro 430	Asp	Glu
45	Glu	Val	Phe 435	Tyr	Leu	Val	Ala	Leu 440	Leu	Arg	Ser	Ala	Leu 445	Thr	Asp	Gly
	Glu	Glu 450	Thr	Gln	Lys	Leu	Glu 455	Tyr	Leu	Lys	Asp	Gln 460	Asn	Arg	Arg	Ile
50	Leu 465	Glu	Phe	Cys	Glu	Gln 470	Ala	Lys	Ile	Asn	Val 475	Lys	Gln	Tyr	Leu	Pro 480
55	His	His	Ala	Thr	Gln 485	Glu	Glu	Trp	Val	Ala 490	His	Phe	Gly	Asp	Lys 495	Trp
	Asp	Arg	Phe	Arg 500	Ser	Leu	Lys	Ala	Glu 505	Phe	Asp	Pro	Arg	His 510	Ile	Leu
60	Ala	Thr	Gly 515	Gln	Arg	Ile	Phe	Gln 520	Asn	Pro	Ser	Leu	Ser 525	Leu	Phe	Pro

```
Pro Ser Ser Ser Ser Ser Ala Ala Ser Trp
         530
                             535
 5
     <210> 36
     <211> 842
     <212> DNA
10
     <213> Arabidopsis thaliana
     aagcttaaat gacaatttag taccttgggt tggtcatgat ttagagcgga acaaatatac
15
    catacatcaa acgaggatat acagagaaaa ttcatggaag tatggaattt agaggacaat
     ttctcttctg ggctacaacg gaccggccca ttcgctcatt tacccagagg tatcgagttt
     gtggactttt gatgccgcta gagactattg gcatcggatt gaaaaaaatg tttacttcgt
20
     tgttaacaat tttctgaatg caatattttc cttgtcatga atatttaaac ttgttattac
     tttcttttag cttaggtgtg gacaattatg gagtttactt caaacgagga agaatcttaa
25
     acgctcggtt caggtctcga aaacaaacca actcacaatc ctgacttaat tgaggaaaac
     aatgcaaaac cacatgcatg cttccatatt tctatcataa tcttataaga aaaaacacta
     480
     ctaagtgaaa tgattctgta tatatataac caatgccttt tgttttgtga tattttatgt
30
     atatataact attgactttt gtcatctatg gatagtgtct cgggctcttg gcaaacatat
     ttcaaagaaa agttaatgac tgtaattaat taatctgaag ctagaaacag aaccccgagg
     660
35
     taaaagaaaa agacagagca catgaagttt agtactttta tatatttaat atatcattct
     720
     ttettattge ttatetetaa ageaaaaaet teeetaaaee etaageeaaa ggaeteagat
     cgatgcagaa ccaagaaggc ttgttttgga tttgagagcc aaatgcaaag aaaaaaactc
40
     840
     tt
     842
```