CoAP in spacedraft-gomez-core-coap-space-01

Carles Gomez

Universitat Politècnica de Catalunya

Sergio Aguilar

Sateliot

Updates (I/II)

- Extended scope: spatial environments characterized by long delays and intermittent communication opportunities
 - Deep space
 - Some LEO satellite-based scenarios
 - Discontinous coverage, store-and-forward support
 - 3GPP in Rel. 19 [TR23.700-29]
- Section 4. Caching
 - Max-Age needs to be set according to expected latency of the scenario
 - If it makes sense to consider the response fresh after Max-Age
 - Maximum possible Max-Age value = $2^{32} 1$ seconds (~136 years)
- Section 5. Observe:
 - If the time between the two last notifications received is
 128 seconds, the last one is also the latest sent by the server
 - In delay-tolerant environments, duration to be chosen > MAX_LATENCY of the scenario

Updates (II/II)

- Section 7. CoAP group communication
 - MIN_TOKEN_REUSE_TIME = 500 seconds
 - In delay-tolerant environments, needs to be set according to the scenario (deep space: 1-2 orders of magnitude greater)
- Section 8. Security
 - Group OSCORE protocol used to secure CoAP group communication
 - Protection against replay attacks:
 - OSCORE uses by default an anti-replay sliding window, window size of 32
 - If greater window size needed (e.g., due to high latency), it needs to be known by both endpoints at security context establishment

CoAP over Bundle Protocol (BP) draft-gomez-core-coap-bp-01

Carles Gomez

Anna Calveras

Universitat Politècnica de Catalunya

5. Encapsulating bundle

- CoAP message carried as the block-type-specific data field of the Bundle Payload Block (block type 1)
- Lifetime of the encapsulating bundle MUST be:
 - EXCHANGE_LIFETIME (for CoAP CON messages)
 - NON_LIFETIME (for CoAP NON messages)
- Destination EID of a response is the Source Node ID of the sender of the message triggering the response
- Aggregation of CoAP messages in a bundle
 - Perhaps a transport-independent solution needed?
 - Suggested (over UDP) in draft-bormann-coap-misc-27
 - Payload-Length Option

9. URI scheme

- The URI scheme for CoAP over BP is "coap"
 - Recommended in [draft-ietf-core-transport-indication]
- Two new reserved domains in the .arpa name space:
 - .dtn.arpa
 - .ipn.arpa
- Full Domain Name Reservation Considerations in IANA considerations section (as per RFC 6761)
- Examples, URI of the discovery resource
 - endpoint ID dtn://JupiterSensor
 - coap://JupiterSensor.dtn.arpa/.well-known/core
 - endpoint ID ipn:81.2
 - coap://81.2.ipn.arpa/.well-known/core

10. Securing CoAP over BP

- CoAP base spec (RFC 7252) defines a binding to DTLS
- Also, OSCORE (RFC 8613)
 - Optional, end-to-end application-layer payload protection
 - Shared security context, may be based on pre-shared materials, avoiding initial handshake
 - Use of DTLS for CoAP over BP is NOT RECOMMENDED
- BPSec (RFC 9172) provides security services for BP
 - Integrity and/or confidentiality for one or more blocks of a bundle
- OSCORE protects, with confidentiality and integrity:
 - CoAP message payload
 - One CoAP message header field

Message ID discussion summary

- CoAP Message ID size: 16 bits
- Message ID size proposed for DTN scenarios: 24 bits
 - Pros:
 - Avoid a limitation of the message rate
 - Cons:
 - 1 additional byte of header overhead
 - Increased memory requirements for endpoints to keep track of Message IDs used
 - » Sender: to retire Message IDs
 - » Receiver: duplicate detection