Математическая логика и теория алгоритмов

Лисид Лаконский

October 2023

Содержание

1	Лег	кция —	-06.10.2023
	1.1	Алгебј	ра высказываний
2	m Лекция - 12.10.2023		
	2.1	Алгебр	ра высказываний
		2.1.1	Логические операции
		2.1.2	Операции над функциями истинности

Π екция — 06.10.20231

1.1 Алгебра высказываний

Алгебра высказываний изучает способы построения высказываний из имеющихся высказываний, закономерности таких способов сочетания высказываний, закономерности таких способов сочетания высказываний. Алгебра высказываний является фундаментом математической логики.

2 Π екция — 12.10.2023

Алгебра высказываний

Под высказыванием будем понимать будет понимать предложение, представляющее собой такое утверждение, о котором можно судить, истинно оно или ложно. По совокупности всех высказываний определяется функция истинности, принимающая значение ноль (если высказывание ложно) или один (если высказывание истинно):

$$\lambda(P) = \begin{cases} 1, \text{ если высказывание P истинно} \\ 0, \text{ если высказывание P ложно} \end{cases}$$
 Функцию $\lambda(P)$ называют **логическим значением** (значением истинности) высказывания P .

2.1.1 Логические операции

Выражения связываются с помощью логических операций.

Эквивалентностью логических высказываний P и Q называется новое высказывание $P \leftrightarrow Q$ (P эквивалентно Q; Pнеобходимо и достаточно для Q; P тогда и только тогда, когда Q; P, если и только если Q), значение истинности которого задается следующей таблицей истинности:

$$\begin{pmatrix} \lambda(P) & \lambda(Q) & \lambda(P \leftrightarrow Q) \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Импликацией логических выражений P и Q называется новое высказывание $P \to Q$ (если P, то Q; из P следует Q; Pвлечёт $Q;\,P$ достаточно для $Q;\,Q$ необходимо для P), значение истинности которого задается следующей таблицей истинности:

$$\begin{pmatrix} \lambda(P) & \lambda(Q) & \lambda(P \to Q) \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

В высказывании $P \to Q$ высказывание P называется **посылкой**, а высказывание Q называется **следствием**. Операцию импликации также называют процессом рассуждения.

2.1.2 Операции над функциями истинности

1. (a)
$$0 \wedge 0 = 0$$

(b)
$$0 \land 1 = 0$$

(c)
$$\lambda(P \wedge Q) = \lambda(P) \wedge \lambda(Q)$$

2. (a)
$$\neg 0 = 1$$

(b)
$$\neg 1 = 0$$

(c)
$$\lambda(\neg P) = \neg \lambda(P)$$

3.
$$\lambda(P \vee Q) = \lambda(P) \vee \lambda(Q)$$

4.
$$\lambda(P \to Q) = \lambda(P) \to \lambda(Q)$$

5.
$$\lambda(P \leftrightarrow Q) = \lambda(P) \leftrightarrow \lambda(Q)$$