

ИДЗ 1. Математическая статистика

Вариант 8 Комаров Николай, M3205

Задание 1.

- Построить группированный статистический ряд
- С его помощью приближённо найти функцию распределения, построить её график
- Построить гистограмму
- Приближённой найти выборочное среднее значение и дисперсию

max(data) = 35.2, min(data) = 23.5 ⇒ Все элементы принадлежат интервалу (23, 36)

Будем разбивать выборку на 13 интервалов

				27- 28								
2	5	12	22	30	38	28	18	17	17	2	8	1

Объединим интервалы, в которые попало "мало" элементов выборки (первый со вторым и три последних)

Интервал	23- 25	25- 26	26- 27	27- 28	28- 29	29- 30	30- 31	31- 32	32- 33	33-36
Частота ni	7	12	22	30	38	28	18	17	17	11

Далее, найдем середины интервалов, частоты, относительные частоты и накопительные относительные частоты, результаты занесем в таблицу

Номер интервала	Границы интервала	Середина zi	Частота ni	Относительная частота, ni/n	Накопительная относительная частота
1	23-25	24	7	0.035	0.035
2	25-26	25.5	12	0.06	0.095
3	26-27	26.5	22	0.11	0.205
4	27-28	27.5	30	0.15	0.355
5	28-29	28.5	38	0.19	0.545
6	29-30	29.5	28	0.14	0.685
7	30-31	30.5	18	0.09	0.775
8	31-32	31.5	17	0.085	0.86
9	32-33	32.5	17	0.085	0.945
10	33-36	34.5	11	0.055	1

Построим выборочную функцию распределения

Построим гистограмму распределения

Приближенно найдет выборочное среднее значение и дисперсию:

C = 28,5

zi	ni	zi - C	(zi - C)*ni	(zi - C)^2
24,00	7,00	-4,50	-31,5	20,25
25,50	12,00	-3,00	-36	9,00
26,50	22,00	-2,00	-44	4,00
27,50	30,00	-1,00	-30	1,00
28,50	38,00	0,00	0	0,00
29,50	28,00	1,00	28	1,00
30,50	18,00	2,00	36	4,00
31,50	17,00	3,00	51	9,00
32,50	17,00	4,00	68	16,00
34,50	11,00	6,00	66	36,00

Используем следующие формулы:

$$egin{aligned} \overline{X} &= \left(rac{1}{n} \cdot \sum_{i=1}^k (z_i - C) \cdot n_i
ight) + C \ S^2 &= \left(rac{1}{n} \cdot \sum_{i=1}^k (z_i - C)^2 \cdot n_i
ight) - \left(rac{1}{n} \sum_{i=1}^k (z_i - C) \cdot n_i
ight)^2 \end{aligned}$$

Полученные результаты:

$$\overline{X}=29,0375$$

$$S^2 = 6,154$$

Задание 2.

Имеется группированный статистический ряд, полученный по результатам наблюдений над случайной величиной X — распределена равномерно на интервале (a,b)

Требуется с помощью метода моментов получить точечные оценки a^* и b^* параметров a и b и изобразить (можно для наглядности на одном чертеже) гистограмму, отвечающую данному статистическому ряду и сглаживающую ее кривую распределения случайной величины, распределённой равномерно на интервале (a^*,b^*)

Интервал	13-14	14-15	15-16	16-17	17-18	18-19	19-20
Частота ni	12	21	22	17	17	11	26

Формулы для выборочного среднего и выборочной дисперсии

$$\overline{X} = rac{1}{n} \cdot \sum_{i=1}^k x_i \cdot n_i,$$

$$S^2 = rac{1}{n} \cdot \sum_{i=1}^k (x_i - \overline{X})^2 \cdot n_i$$

Математическое ожидание и дисперсия для равномерного распределения с параметрами а, b:

$$M(X)=rac{a+b}{2}$$

$$D(X) = \frac{(b-a)^2}{12}$$

Для нашего распределения параметры следующие:

а = 13 (левая граница)

b = 24 (правая граница)

Найдем X и S:

$$\overline{X} = 18,5, \quad S^2 = 9,1, \quad S = 3,017$$
 $a^* = 13,275, \quad b^* = 23,725$

График плотности:

