החלפת כליות

אראל סגל-הלוי חלק מהשקפים של: Wayne Racey

The donor in each pair cannot give their kidney to the recipient because they are not a match

The donors can give their kidney to the **other** recipient because they are a good match

© UHN Patient Education

החלפת כליות

אראל סגל-הלוי חלק מהשקפים של: Wayne Racey

The donor in each pair cannot give their kidney to the recipient because they are not a match

The donors can give their kidney to the **other** recipient because they are a good match

© UHN Patient Education

התור להשתלת כליות

A Long Wait for a Kidney

Since 1990, the number of people on the waiting list for a kidney transplant has grown sharply, while the number of transplants has increased only slightly.

החלפת כליות

- כמעט בכל המדינות:
- יש מחסור בכליות להשתלה.
- **אסור** לתרום כליות תמורת כסף.
 - מותר לתרום כליה תמורת כליה.

למה להחליף כליות?

תורם מוכן לתרום לחולה אבל לא מתאים, בגלל סוג הדם או סיבות נוספות:

< נתרם תורם V	0	A	В	AB
0	JO	JO	JO	J
Α	לא	כן	לא	כן
В	לא	לא	JO	J
AB	לא	לא	לא	JO

החלפת כליות 2004 - מעגלי מסחר

החלפת כליות 2005 - שידוכי מסחר

:אלגוריתם מעגלי המסחר לא התאים לבעיה

- המעגלים ארוכים מדי! בהחלפת כליות מעדיפים מעגלים קצרים – באורך 2 או 3 – כי כל ההשתלות במעגל חייבות להתבצע במקביל.
 - מצד שני, בהחלפת כליות ההעדפות בינאריות –
 כל חולה מוכן לקבל כליה מכל תורם מתאים.

הפתרון: במקום לחפש מעגלים, נחפש **שידוכים**.

מציאת שידוך גדול ביותר

שידוך בגרף כללי = אוסף של זוגות-צמתים זרים. כל צומת מייצג זוג; כל קשת מייצגת התאמה הדדית. כדי להציל הכי הרבה חולים, נרצה למצוא שידוך גדול ביותר.

אלגוריתם למציאת שידוך גדול ביותר

מסלול שיפור = מתחיל ומסתיים ב*צמתים לא* משודכים, ומתחלף בין קשתות בתוך ומחוץ לשידוך.

:האלגוריתם

כל עוד יש מסלול-שיפור -- הפוך אותו.

(Berge's Lemma) הלמה של ברג'

למה: שידוך M הוא גדול ביותר אם"ם אין מסלול שיפור.

הוכחה: -->: אם יש מסלול שיפור – אפשר להפוך אותו וכך להגדיל את M ב-1.

<--: נניח ש-M לא גדול ביותר.
יהי K שידוך גדול יותר מ-M.
נסתכל על ההפרש הסימטרי
– כל הקשתות הנמצאות
באחד השידוכים ולא בשניהם.

(Berge's Lemma) הלמה של ברג'

[המשך]כל צומת בגרף סמוך לכל היותר לקשת אחת מכל שידוך. לכן, רכיבי הקשירות בגרף ההפרש הם:

- א. צמתים מבודדים, או

ב. מסלולים מתחלפים, או -

ג. מעגלים מתחלפים - באורך זוגי ועם מספר זהה של קשתות משני השידוכים.

(Berge's Lemma) הלמה של ברג'

[המשך] הנחנו ש-K גדול יותר מ-M.

לפי כלל שובך היונים, רכיב אחד חייב לכלול *יותר* קשתות של K מקשתות של M.

הרכיב הזה חייב להיות מסלול מתחלף, שבו הקשת הראשונה והקשת האחרונה הן ב-K ולא ב-M. זה מסלול-שיפור עבור M! ***

אלגוריתם למציאת שידוך גדול ביותר

מהלֶמה של ברג' נובע שהאלגוריתם הבא מוצא שידוך גדול ביותר בגרף כללי:

> כל עוד יש מסלול-שיפור: הפוך אותו.

אלגוריתם הפרחים (Blossom Algorithm – Edmonds 1965)

- ?איך מוצאים מסלול שיפור
- בעזרת *אלגוריתם הפרחים* פותח ע"י אדמונדס.
 - $O(|V|^2 |E|)$:מן ריצה
 - אפשר למצוא גם שידוך עם משקל גדול ביותר.
 - נלמד בקורס מתקדם בתורת הגרפים.
 - networkx.max_weight_matching•

אלגוריתם אמיתי לשידוך כליות?

- **מי הם השחקנים** בבעיית שידוך הכליות?
 - **הזוגות** יכולים לכל היותר להסתיר קשתות, אבל זה לא יעזור להם.
 - המרכזים הרפואיים יכולים להסתיר זוגות - לשדך אותם באופן פנימי.
 - האינטרס של המרכזים הרפואיים הוא לדאוג לחולים "שלהם" - שכמה שיותר חולים שלהם יקבלו כליה.

תמריצים של מרכזים רפואיים

משפט: אין אלגוריתם שהוא גם יעיל פארטו וגם אמיתי עבור המרכזים הרפואיים.

הוכחה: נניח בשלילה שקיים אלגוריתם כזה. נראה מצב שבו, לכל שידוך שהאלגוריתם בוחר, קיים מרכז שיכול להסתיר זוגות, וכך להגדיל את מספר החולים "שלו" שמקבלים כליה. -->

תמריצים של מרכזים רפואיים – הוכחה

שני זוגות ומשדך אותם אצלו, אז יש רמב"ם רק שידוך יעיל-פארטו אחד, ובו כל 4 החולים של הדסה רמב"ם מקבלים

אם רמב"ם מסתיר

תמריצים של מרכזים רפואיים – הוכחה

מסתירה שני זוגות ומשדכת אותם אצלה, אז יש רק שידוך יעיל-פארטו אחד, ובו כל 3 החולים של הדסה מקבלים כליה:

תמריצים של מרכזים רפואיים –

– תמריצים של מרכזים רפואיים קירוב 1/2

כיוון שאין אלגוריתם אמיתי המשיג את השידוך הגדול ביותר, חיפשו אלגוריתם אמיתי המשיג שידוך שהוא גדול-ביותר-בקירוב.

:(2013) אשלגי, פישר, קאש, פרוקצ'יה, 2013)

- מחשבים את השידוך הגדול ביותר *מבין כל* השידוכים שבהם מספר הקשתות **הפנימיות** בכל מרכז רפואי הוא **מקסימלי**.
 - <-- דוגמאות

קירוב 1/2 - דוגמאות

קירוב 1/2 - מימוש

איך מחשבים?

- •נותנים משקל לכל קשת:
- |E| קשת פנימית משקל ספרימית −
- קשת בין מרכזים משקל 1
- •מחשבים את השידוך **הכבד** ביותר (אלגוריתם אדמונדס עם משקלים).
- השידוך ממקסם את מס' הקשתות הפנימיות, • וברחות לזה - את ממ' ההשתות הכולל
 - •ובכפוף לזה את מס' הקשתות הכולל.

קירוב 1/2 - הוכחה

משפט: אלגוריתם אשלגי-פישר-קאש-פרוקצ'יה מחזיר תמיד שידוך שגודלו לפחות 1/2 מהשידוך הגדול ביותר האפשרי.

הוכחה: נניח שהשידוך הגדול ביותר כולל *ח* קשתות (*n*2 צמתים). מכל *קשת*, לפחות *צומת* אחד נמצא בשידוך של האלגוריתם – אחרת האלגוריתם היה יכול להוסיף את הקשת ולהשיג שידוך גדול יותר. לכן השידוך של האלגוריתם כולל לפחות *n* צמתים.

"קירוב 1/2 אמיתי – "הוכחה

משפט: אלגוריתם אשלגי-פישר-קאש-פרוקצ'יה הוא אמיתי כשיש שני מרכזים רפואיים. [יש הכללה למספר כלשהו של מרכזים רפואיים, אבל האלגוריתם מסובך יותר – ראו במאמר].

- "הוכחה" (מקוצרת מאד): יהי M השידוך כשאחד המרכזים אמיתי, ו-K השידוך כשהוא מתחכם.
- •נסתכל על *ההפרש הסימטרי* בין M ל-K.
- •כמו שראינו בלֶמה של בֶרג', רכיבי הקשירות הם צמתים מבודדים או מעגלים או מסלולים.
 - •מ*בודדים* או *מעגלים* לא יעזרו למתחכם.

"קירוב 1/2 אמיתי – "הוכחה

המסלולים בהפרש הסימטרי חייבים להיראות כך:

כלומר:

1)כל קטע *פנימי* חייב להיות באורך זוגי – כי כל אחד מהשידוכים ממקסם את מספר הקשתות הפנימיות.
2)מס' הקשתות *החיצוניות* חייב להיות זוגי – כי כל שידוך ממקסם את מספר הקשתות בכפוף ל- 1).
3)לכן המסלול מתחיל בקשת של K ומסתיים בקשת של M באותו צד; ולכן המתחכם לא מרויח.

מעבר לזוגות – מעגלי-החלפה באורך 3

- כיום אפשר לבצע שישה ניתוחים בו זמנית החלפת כליות במעגלים באורך 3.
 - איך מוצאים הכי הרבה מעגלים באורך ?3•
 - יש רדוקציה: הבעיה היא NP-קשה! יש רדוקציה
- •NP \rightarrow SAT \rightarrow 3-coloring \rightarrow
 - Set cover \rightarrow 3D matching \rightarrow 3-Circles
 - יש שתי גישות לפתרון בעיה NP-קשה:
 - •א. פתרון אופטימלי-בקירוב בזמן פולינומי;
 - •ב. פתרון אופטימלי-ממש בזמן מעריכי.
 - מה לדעתכם הפתרון המתאים לבעיה שלנו?

השתלת כליות בין יבשתית

5:00

החלפת כליות בישראל

2 כליות נתרמות משתי תורמות בביה"ח בילינסון

8:00

הכליה מוטסת לצ'כיה

9:00

12:00

13:00

כליה מתורמת בהדסה הועברה לביה"ח בילינסון

כליה מצ'כיה מוטסת לישראל ומושתלת בהדסה

Ynet 17/12/2019

- שרשראות-החלפה מעבר לזוגות – שרשראות-החלפה מתחילות בתורם אחד חסיד (אלטרואיסט)

- In July 2007, Alliance for paired donations started an "Altruistic Donor Chain"
- Altruistic donor in Michigan donated kidney to woman in Phoenix.
- Husband of Phoenix woman gave kidney to woman in Toledo.
- Her mom gave kidney to patient A in Columbus, whose daugher simultaneously gave kidney to patient B in columbus.
- And so on....

שרשרת החלפה באורך 60

