TÍNH TOÁN HÌNH THỰC TRONG MATLAB

I. Giới thiệu

- Tính toán hình thức.
- Symbolic Math Toolbox.

Khai báo

• Khai báo biến:

> syms a b c x

hoặc

- > a = sym('a')
- > b = sym('b')
- > c = sym('c')
- > x = sym('x')

Khai báo biến phức

> x = sym('x','real'); y = sym('y','real')

hoặc syms x y real

z = x + i*y

Khai báo biểu thức:

- - > syms x b
 - f = 2*x + b

hoặc

- > f = sym('2*x + b')
- > sym('(sqrt(2) + 1)/3')
- \rightarrow g = syms('5') (khác g = 5)
- > syms x y
- $h = x^2 + y^2$

- Lệnh findsym: tìm biến hình thức trong biểu thức.
- Ví dụ
 - > syms a b n t x z
 - > $s = x^n; g = sin(a^*t + b)$
 - findsym(f)
 - > ans = x n
 - findsym(g)
 - > ans = a b t
- findsym(g,1): tìm biến hình thức mặc định
 - > findsym(g,1)
 - > ans = t

Hiển thị biến hình thức dưới dạng số học

- t = 0.1
 - > sym(t,' f')
 - \Rightarrow ans = '1.999999999999a'*2^(-4)
 - > sym(t, 'r ')
 - \rightarrow ans = 1/10
 - > sym(t,' e ')
 - \rightarrow ans = 1/10+eps/40
 - > sym(t,' d ')
 - > ans = .1000000000000000555111512312578
 - digits(7)
 - > sym(t,' d ')
 - > ans = .1000000

II. Các phép tính vi tích phân

- Đạo hàm
- Tích phân
- Giới hạn
- Tổng chuỗi

Đạo hàm

o diff(Y)

Y: hàm số hoặc biến hình thức cần lấy đạo hàm.

- Ví dụ
 - > syms x; $f = \sin(5^*x)$
 - diff(f)
 - > ans = $5*\cos(5*x)$
 - \rightarrow g = exp(x)*cos(x)
 - diff(g)
 - > ans = $\exp(x)^*\cos(x) \exp(x)^*\sin(x)$
 - > c = sym('5'); diff(c)
 - \rightarrow ans = 0

- > diff(5)
- > ans = [] vì 5 không phải là biến hình thức

Lấy đạo hàm cấp 2

> diff(g,2)

hoặc

- > diff(diff(g))
- > ans = $-2\exp(x)*\sin(x)$

Đạo hàm đa biến

Gọi f = f(x,y) thì

- Đạo hàm theo x: diff(f,x)
- Đạo hàm theo y: diff(f,y)

- Đạo hàm cấp 2 theo x: diff(f,x,2)
- Đạo hàm cấp 2 theo y: diff(f,y,2)
- Nếu x là biến mặc định của f thì diff(f,2) tương đương với diff(f,x,2).

Ví dụ

- syms s t
- f = sin(s*t)
- diff(f,t) => ans = cos(s*t)*s
- diff(f,s)=> ans = cos(s*t)*t
- diff(f,t,2) => ans = $-sin(s*t)*s^2$
- findsym(f,1) => ans = t

Suy ra biến mặc định là t do đó diff(f,2) = diff(f,t,2)

Đạo hàm đối với ma trận

- syms a x
- A = [cos(a*x) sin(a*x); -sin(a*x) cos(a*x)]
- A =

```
[\cos(a^*x), \sin(a^*x)][-\sin(a^*x), \cos(a^*x)]
```

- diff(A)
- ans =

```
[-\sin(a^*x)^*a, \cos(a^*x)^*a]
[-\cos(a^*x)^*a, -\sin(a^*x)^*a]
```

Tích phân

- int(f,x) hoặc int(f): Tìm nguyên hàm của hàm f = f(x).
- o int(f,a,b): Tính tích phân của f từ a → b.
- Ví dụ
 - > syms x n a b t
 - > f = x ^ n
 - int(f) (hoặc inf(f,x))
 - > ans = $x^{(n+1)/(n+1)}$

- \rightarrow g = cos(a*t + b)
- > int(g)
- \rightarrow ans = $\sin(a*t + b)/a$
- $h = \sin(2^*x)$
- int(h,0,pi/2)
- > ans = 1
- \rightarrow u = exp(-x^2)
- > int(u,0,inf)
- > ans = $1/2*pi^{(1/2)}$

Giới hạn

- limit(f): $\lim_{x \to 0} f(x)$
- $\bullet \ \operatorname{limit}(f,x,a) : \qquad \lim_{x \to a} f(x)$

hoặc limit(f,a)

- limit(f,x,a,'left') : $\lim_{x \to a^+} f(x)$
- limit(f,x,a,'right'): $\lim_{x\to a^-} f(x)$

Ví dụ

- > sym h n x
- > limit((cos(x + h) cos(x))/h,h,0)
- \rightarrow ans = $-\sin(x)$
- > $limit((1 + x/n)^n,n,inf)$
- \rightarrow ans = exp(x)
- > limit(x/abs(x),x,0,'left')
- > ans = -1
- > limit(x/abs(x),x,0,'right')
- > ans = 1
- > limit(x/abs(x),x,0)
- > ans = NaN

Tổng chuỗi

• Tính:
$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$

 $1 + x + x^2 + \dots$

- > syms x k
- > s1 = symsum(1/k²,1,inf)
- > s2 = symsum(x^k,k,0,inf)
- > s1 = 1/6*pi^2
- > s2 = -1/(x-1)

III. Các hàm đơn giản và thay thế biến trong biểu thức

- collect(f,y) f = f(x,y,...)
 - Đơn giản hàm f bằng các nhóm các biến x có cùng số mũ.
 - Trường hợp f có nhiều biến collect(f,y) sẽ chỉ định gom nhóm theo biến y.
 - collect(f) gom nhóm theo biến mặc định được chỉ ra trong findsym(f).

Ví dụ

- > syms x t
- $f = x^3 6x^2 + 11x 6$
- $> g = (x-1)^*(x-2)^*(x-3)$
- $h = -6 + (11 + (-6 + x)^*x)^*x$
- > pretty(f), pretty(g), pretty(h)
- \rightarrow collect(f) => ans = $x^3 6x^2 + 11x 6$
- \rightarrow collect(g) => ans = $x^3 6x^2 + 11x 6$
- \rightarrow collect(h) => ans = $x^3 6x^2 + 11x 6$
- $f = (1 + x)^*t + x^*t$
- > collect(f) => ans = 2*x*t + t
- > collect(f,t) => ans = 2*x*t + t

- o expand(f): phân tích biểu thức f.
- Ví dụ
 - > syms x y a b
 - > $f = a^*(x + y)$
 - > expand(f) => ans = a*x + a*y
 - \Rightarrow g = $(x 1)^*(x 2)^*(x 3)$
 - \Rightarrow expand(g) => ans = $x^3 6x^2 + 11x 6$
 - \rightarrow h = exp(a + b)
 - \rightarrow expand(h) => ans = exp(a)*exp(b)
 - $> \cos(3^*x) =>$ ans = $4^*\cos(x)^3 3^*\cos(x)$

- factor(f): phân tích đa thức f thành nhân tử chung
- Ví dụ
 - $f = x^3 6x^2 + 11x 6$
 - $g = x^3 6x^2 + 11x 5$
 - $h = x^6 + 1$
 - factor(f)
 - > ans = $(x 1)^*(x 2)^*(x 3)$
 - factor(g)
 - \Rightarrow ans = $x^3 6x^2 + 11x 5$?
 - > factor(h)
 - > ans = $(x^2 + 1)^*(x^4 x^2 + 1)$

- simplify(f): đơn giản biểu thức f.
- Ví dụ
 - $> f = x^*(x^*(x-6) + 11) 6$
 - \Rightarrow simplify(f) => ans = $x^3 6x^2 + 11x 6$
 - \Rightarrow g = $(1 x^2)/(1 x)$
 - \rightarrow simplify(g) => ans = x + 1
 - > syms x y positive
 - > simplify(log(x*y)) => log(x) + log(y)
 - $h = \cos(x)^2 + \sin(x)^2$
 - > simplify(h) => ans = 1

- simple(f): rút gọn biểu thức f, kết hợp các phép toán của simplify, collect, factor.
- Ví dụ
 - $f = (1/a^3 + 6/a^2 + 12/a + 8)^1/3$
 - \Rightarrow simplify(f) => ans = ((2*a + 1)^3/a^3)^1/3
 - > simple(f) => ans = (2*a + 1)/a
 - > syms x y positive
 - \rightarrow h = log(x*y)
 - \rightarrow simplify(h) => ans = log(x) + log(y)
 - \rightarrow simple(h) => ans = log(x*y)

- subs(expr,old,new): thay thế old bằng new trong biểu thức expr.
- Ví dụ
 - > syms x y
 - \rightarrow f = sin(x)
 - > subs(f,x,pi/3) => ans = 0.8660
 - > subs(f,x,sym(pi)/3) => ans = 1/2*3^1/2
 - > S = x^y
 - > subs(S,{x y},{3 2})
 - > $subs(S,{x y},{3 x+1})$
 - > subs(S,y,1:5) => ans = $[x, x^2, x^3, x^4, x^5]$

- [N D] = numden(f): trích tử số và mẫu số của f gán cho N và D.
- Ví dụ
 - > syms s
 - \rightarrow H = -(1/6)/(s + 3) -(1/2)/(s + 1) + (2/3)/s
 - simplify(H)
 - pretty(ans)
 - > [N D] = numden(H)
 - > N = s + 2
 - D = (s+3)*(s+1)*s

- poly2sym(a,x): tạo một đa thức theo biến x với các hệ số được lấy lần lượt từ mảng a.
- Ví dụ
 - \Rightarrow syms x; a = [1 4 7 10]
 - \rightarrow p = poly2sym(a,x)
 - $p = x^3 + 4x^2 7x 10$
- x = sym2poly(p): trích các hệ số của đa thức p chứa vào mảng s.
- Ví dụ
 - \Rightarrow syms x; $p = 4*s^2 2*s^2 + 5*s 16$
 - x = sym2poly(p)
 - x = 4 2 5 16

III. Tính toán trong đại số tuyến tính

- Khai báo ma trận
 - > syms a b c d t
 - > A =[a b; c d]
 - > B = $[\cos(t) \sin(t); -\sin(t) \cos(t)]$
 - > C = [t 1 0;1 t 1; 0 1 t]
 - > d = round(rand(3,3))
 - \rightarrow D = sym(D)

- Các phép toán: với 2 ma trận A và B
 - A + B
 - A B
 - A*B
 - A\B (= A*inv(B))
 - A/B (= inv(A)*B)
 - A^n
 - A.'

- Các hàm xử lý ma trận:
 - inv(A)
 - det(A)
 - rank(A)
 - diag(A)
 - tril(A)
 - triu(A)

Ví dụ

- > c = floor(10*rand(4))
- > D = sym(c)
- > A = inv(D)
- > inv(A)*A
- det(A)
- > b = ones(1,4)
- x = b/A
- > x*A
- > A^3

 Có thể dùng các hàm rút gọn và lấy đạo hàm, tích phân trên ma trận.

Ví dụ

- > syms a b s
- > K = [a+b, a-b;b-a, a+b]
- \rightarrow G = [cos(s) sin(s);-sin(s) cos(s)]
- > L = K^2
- collect(L)
- factor(L)
- diff(L,a)
- int(K,a)
- > J = K/G
- simplify(J*G)
- simplify(G*(G.'))

IV. Giải phương trình đại số

- solve(f): giải phương trinh f(x) = 0.
- Ví dụ
 - > syms a b c x

 - > solve(f)
 - > ans =
 [1/2*a(-b + (b^2 4*a*c)^1/2)]
 [1/2*a(-b (b^2 4*a*c)^1/2)]

- solve(f): giải phương trình theo biến mặc định được chỉ ra trong hàm findsym(f), ở đây findsym(f) -> ans = x. solve(f,a): giải theo biến được chỉ định là a (tương tự cho b, c).
- Ví dụ
 - > solve(f,b)
 - > ans = $-(a*x^2 + c)/x$
- solve(' f(x) = g(x) '): giải phương trình f(x) = g(x). Lưu ý: phải đặt trong dấu nháy.

Ví dụ

 solve('f(x)','g(x)','h(x)',...): giải hệ nhiều phương trình.

Ví dụ

```
Giải hệ: \begin{cases} x^2y^2 = 0 \\ x - y/2 = a \end{cases}
```

- > syms x y alpha
- $> [x y] = solve('x^2*y^2=0', 'x y/2 = alpha')$

- [alpha] [0] [alpha] [0]
- Nghiệm: v = [x, y]

```
• Giải hệ: \begin{cases} u^2 + v^2 = a^2 \\ u + v = 1 \\ a^2 - 2a = 3 \end{cases}
• S = solve('u^2+v^2=a^2','u+v=1','a^2-2*a=3')
• S =

a: [2x1 sym]

u: [2x1 sym]

v: [2x1 sym]

> S.a

ans =

[ 3]
[ -1]
```

Giải phương trình đạo hàm riêng

- Hàm: dsolve
- Ví dụ
- Giải: $\frac{dy}{dt} = 1 + y^2$, y(0) = 1
 - > $dsolve('Dy=1+y^2','y(0)=1')$
 - $y = \tan(t + 1/4*pi)$
- Giải: $\frac{d^2y}{dx^2} = \cos(2x) y$, y(0)=1, $\frac{d}{dx}y(0) = 0$
 - y = dsolve('D2y = cos(2*x) y', 'y(0) = 1', 'Dy(0) = 0', 'x')
 - \Rightarrow simplify(y); ans = $4/3*\cos(x) 2/3*\cos(x)^2 + 1/3$

- Giải: $\begin{cases} \frac{d^3 u}{dx^3} = u \\ u(0) = 1; \ u'(0) = -1; \ u''(0) = \pi \end{cases}$
 - > dsolve('D3u=u','u(0)=1','Du(0)=-1','D2u(0)=pi'),'x')
- Giải: $\begin{cases} \frac{df}{dt} = 3f(t) + 4g(t) &, f(0) = 0 \\ \frac{dg}{dt} = -4f(t) + 3g(t) &, g(0) = 1 \end{cases}$
 - > [f g] = dsolve('Df = 3*f + 4*g','Dg = -4*f + 3*g',... 'f(0) = 0','g(0) = 1')
 - $f = \exp(3*t)*\sin(4*t); g = \exp(3*t)*\cos(4*t)$

V. Vẽ đồ thị hàm số

- Trong 2D:
- Hàm ezplot(f)
- Ví dụ
 - > syms t x y
 - $f = \sin(2^*x)$
 - g = t + 3*sin(t)
 - $h = 2*x/(x^2 1)$
 - > ezplot(f); ezplot(g); ezplot(h)
 - > ezplot(x*exp(-x), [-1 4])

- Trong 3D
- Hàm ezplot3(x,y,z)
- Ví dụ
 - > syms x y z t
 - $x = 3*t/(1 + t^3)$
 - $y = 3*t^2/(1 + t^3)$
 - $> z = \sin(t)$
 - > ezplot3(x,y,z)
- ezcontour / ezcontourf
- ezmesh / ezmeshc
- ezsurf / ezsurfc