Computabilità e Algoritmi (Mod. A) 13 Settembre 2011

Esercizio 1

Dimostrare che un insieme A è r.e. se e solo se esiste una funzione calcolabile $f: \mathbb{N} \to \mathbb{N}$ tale che A = img(f) (si ricordi che $img(f) = \{y: \exists z. \ y = f(z)\}$).

Esercizio 2

Può esistere una funzione non calcolabile $f: \mathbb{N} \to \mathbb{N}$ tale che $dom(f) \cap img(f)$ sia finito? Motivare adeguatamente la risposta (fornendo un esempio di tale f, se esiste, oppure dimostrando che non può esistere).

Esercizio 3

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : \exists k \in \mathbb{N}. \varphi_x(x+3k) \uparrow \}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 4

Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : W_x \supseteq Pr\}$, dove $Pr \subseteq \mathbb{N}$ è l'insieme dei numeri primi, ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 5

Enunciare il Secondo Teorema di Ricorsione ed utilizzarlo per dimostrare che esiste un indice $x \in \mathbb{N}$ tale che

$$\varphi_x(y) = \begin{cases} y^2 & \text{se } x \le y \le x + 2 \\ \uparrow & \text{altrimenti} \end{cases}$$