МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Кафедра	Систем Управле	ения и Информатики	Группа	P4135
	ПОЯСНИТ	ТЕЛЬНАЯ ЗАПИСКА	4	
к расч	етно-исследов	ательской работе ма	гистран	тов
	ПС	дисциплине		
Интел	лектуальное управ	вление в условиях неопред	еленност	И
Автор РИРМ		Артемов К.	(1	подпись)
Руководитель		(фамилия, и.о.) Ушаков А.В.	(1	подпись)
3		(фамилия, и.о.)	<u> </u>	·
· · · · · · · · · · · · · · · · · · ·	20 г.	Санкт-Петербург,	20	Г.
Курсовая работ	та выполнена с оценкой	·		

Дата защиты " ____ " ____ 20 ____ г.

САНКТ – ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

КАФЕДРА СИСТЕМ УПРАВЛЕНИЯ И ИНФОРМАТИКИ

«УТВЕРЖДАЮ» Зав.кафедрой А.А.Бобцов

ЗАДАНИЕ

на расчетно – исследовательскую работу (РИРМ)магистрантов по дисциплине ИНТЕЛЛЕКТУАЛЬНОЕ УПРАВЛЕНИЕ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

СТУДЕНТУ: Артемову Кириллу, группа Р4135, кафедра СУиИ

РУКОВОДИТЕЛЬ: д.т.н., профессор А.В.Ушаков
1.ТЕМА РИРМ: ИССЛЕДОВАНИЕ ПАРАМЕТРИЧЕСКОЙ ЧУВСТВИТЕЛЬНОСТИ ОБЪЕКТОВ И СИСТЕМ, СИНТЕЗ НЕАДАПТИВНЫХ И АДАПТИВНЫХ АЛГОРИТМОВ, ОБЕСПЕЧИВАЮЩИХ НЕОБХОДИМУЮ РОБАСТНОСТЬ ИХ ДИНАМИЧЕСКИХ ПОКАЗАТЕЛЕЙ
2. СРОКИ выполнения РИРМ . 17 – я неделя семестра (30 мая 2017 года)
2.00 HEDWALHUE 2A HALHUG
3.СОДЕРЖАНИЕ ЗАДАНИЯ:
3.1. Построить МТЧ непрерывного ОУ(НОУ) ; с использованием матрицы управляемости агреги-рованной системы ранжировать параметры q_i по потенцииальной чувствительности 3.2. Построить МТЧ дискретного ОУ(ДОУ) к вариации интервала дискретности. 3.3. Построить МТЧ спроектированной непрерывной системы(СНС) по каждому из параметров и для значения $ \Delta q_j = 0.3$; выделить доминирующие параметры по степени их влияния на величину σ перерегулирования и длительность t_n переходного процесса; 3.4. Построить матрицу функций модальной чувствительности (МФМЧ) и выделить неблагоприятное сочетание вариаций параметров. 3.5. Методом модального управления (МУ), базовый алгоритм которого дополняется
контролем нормы $\ F_o\ $ медианной составляющей интервальной матрицы $[F]$
спроектированной системы для целей вычисления оценки $\delta_I F$ ее относительной интервальности. Исследовать свойство робастностной устойчивости полученной системы с помощью метода В.Л. Харитонова. 3.6. Оценить алгебраическую реализуемость неадаптивного и адаптивного управления, обеспечивающего параметрическую инвариантность выхода системы, и синтезировать их.
3.7.ВАРИАНТ ЗАДАНИЯ (ВПИСАТЬ СВОЙ)1.1A-1.2A-2.1Б-2.2Б-3A-4-A5A-6A-7A
4.СОДЕРЖАНИЕ пояснительной записки (перечень подлежащих разработке вопросов):

4.1.Введение.Постановка задачи
4.2.Построение МТЧ НОУи результаты ее исследования
4.3.Построение МТЧ ДОУи и результаты ее исследования
4.4.Построение МТЧ СНС и результаты ее исследования
4.5.Построение МФМЧ и результаты ее исследования
4.6.Построение медианного МУ НОУ и оценка его результатов
4.7. Синтез неадаптивного и адаптивного управления, обеспечивающего параметрическу инвариантность выхода СНС относительно неопределенности НОУ
4.8.Заключение
4.9.Литература
4.10.Приложение
5.ИСХОДНЫЕ материалы и пособия к РИРМ:
5.1. Никифоров В.О., Слита О.В., Ушаков А.В. Интеллектуальное управление в услов неопределенности: учебное пособие. СПб.: СПбГУИТМО, 2011.
5.2. Никифоров В.О., Ушаков А.В. Управление в условиях неопределенности: чувствительно адаптация и робастность. СПб.: СПбГИТМО(ТУ), 2002.
5.3. Никифоров В.О. Адаптивное и робастное управление с компенсацией возмущенийСПб.: На 2003.
5.4. Дударенко Н.А., Слита О.В., Ушаков А.В. Математические основы современной теоруправления: аппарат метода пространства состояний: учебное пособие. / Под ред. Ушак А.В. – СПб: СПбГУ ИТМО, 2008. – 323 с.
6.ДАТА выдачи задания на РИРМ
РУКОВОДИТЕЛЬ
7.ДАТА начала выполнения РИРМ
$CTV\Pi EHT$
СТУДЕНТ

Содержание

В	Введ	ение.Пос	танови	ка за	адачи	5
1	П	остроение	e MT ^t	1 HC	ОУ и результаты ее исследования	6
	1.1	. Непрері	ывный	ОУ 1	в форме BCB	6
	1.2	2 Модель	траект	горно	ой чувствительности НОУ	7
	1.3	В Ранжир	ование	епар	аметров	8
2	Π	остроение	e MT ^u	1 ДС	ОУ и результаты ее исследования	12
	2.1	Переход	цк дис	крет	ному описанию ОУ	12
	2.2	2 Построе	ение M	ТЧ Д	ДОУ к вариации интервала дискретности	13
3	Π	остроение	e MT ^t	I CI	IC и результаты ее исследования	16
	3.1	Синтез	закона	мод	ального управления	16
	3.2	2 Построе	ение М	ТЧ с	проектированной системы для каждого из па-	
		раметро	ов q_j .			19
	3.3	3 Опреде.	ление д	цомиі	нирующих параметров	25
$oxed{4}$	П	остроение	е МФІ	мч	и результаты ее исследования	27
	4.1	Построе	ение М	ΦМτ	I	27
	4.2	2 Выдели	ть неб.	лагог	приятное сочетание вариаций параметров	29
5	Π	олучение	вмо	НО	У с интервальными параметрами	30
	5.1	Построе	ение ве	ктор	но-матричное описание НОУ	30
C	Спис	ок испол	ьзован	ных	к источников	32
					КСУИ.06.4135.001 ПЗ	
	Лист	№ докум.	Подп.	Дата		
Разр Пров		Артемов К. Ушаков А.В.			тип w интеллектуальное 4	астов 32
		:			управление в условиях Университет ИТ.	MO
	онтр.				неопределенности" Кафедра СУи Пояснительная записка гр. Р4135	1
y_{TB} .					тр. 14153	

Bзам. инв. $\mathbb{N}^{\underline{b}} \mid \underline{M}$ нв. $\mathbb{N}^{\underline{b}} \perp \underline{U}$ убл.

Подп. и дата

 $\mathit{И}$ нв. $\mathcal{N}^{\underline{\flat}}$ подл.

Введение. Постановка задачи

Задан непрерывный объект управления (НОУ) с помощью передаточной функции (ПФ) «вход-выход (ВВ)»

$$\Phi(s,q) = \frac{b_0(1+q_1)s + b_1(1+q_2)}{[a_0(1+q_3)s + a_1(1+q_4)][a_2(1+q_5)s^2 + a_3(1+q_6)s + a_4(1+q_7)]}$$
(1)

где $q_{10}=q_{20}=q_{30}=q_{40}=q_{50}=q_{60}=q_{70}=0$ — номинальные значения параметров $q_{j0},j=\overline{1,7}.$

Необходимо проделать работу в соответствии с заданием на расчетноисследовательскую работу магистранта (РИРМ). Исходные данные для варианта №6 ААББАААА указаны в таблице 1.

Таблица 1 – Исходные данные

1.1. Значения параметров ПФ	$b_0 = 3; b_1 = 0.4; a_0 = 2; a_1 =$
	$0.6; a_2 = 0; a_3 = 6; a_4 = 10$
1.2. Базис описания НОУ	канонический управляемый
2.1. Интервал дискретности	$\Delta t = 0.03c$
2.2. Метод перехода к ДОУ	с помощью интегральной моде-
	ли ВСВ НОУ
3. Характеристическая частота	$\omega_0 = 3c^{-1}$
5. Граничные (угловые) значения пара-	$q_{\underline{j}} = -0.2; \overline{q_{\overline{j}}} = 0.2$
метра q_j	
6. Относительная интервальность мат-	$\delta_{IR}F = 0.02$
рицы состояния системы	
7. Величина параметрической неопреде-	$q_{\underline{j}} = -0.2; \overline{q_{\overline{j}}} = 0.2$
ленности	

- [7	7	TT	N.Co.	П	TT
- IV	13M.	Лист	№ ДОКУМ.	Полп.	Лата

Инв. № дубл.

Взам. инв. №

Подп. и дата

1 Построение МТЧ НОУ и результаты ее исследования

- 1) Записать непрерывный ОУ (НОУ) в форме «вход-состояние-выход (ВСВ)» в требуемом базисе;
- 2) Построить модель траекторной чувствительности (МТЧ) НОУ;
- 3) Произвести ранжирование параметров по потенциальной чувствительности к ним выхода ОУ с использованием матрицы управляемости агрегированной системы; Оценить, какое из дополнительных движений, вызванных вариацией, потребует максимальных затрат управления при обеспечении его асимптотической сходимости к нулю.

1.1 Непрерывный ОУ в форме ВСВ

Заданный ОУ описывается ПФ

$$\Phi(s,q) = \frac{3(1+q_1)s + 0.4(1+q_2)}{(2(1+q_3)s + 0.6(1+q_4))(6(1+q_6)s + 10(1+q_7))}$$
(1.1)

Для составления векторно-матричного описания ОУ запишем ПФ в фор-

$$\Phi(s,q) = \frac{\frac{(1+q_1)}{4(1+q_3)(1+q_6)}s + \frac{(1+q_2)}{30(1+q_3)(1+q_6)}}{s^2 + \frac{20(1+q_3)(1+q_7) + 3.6(1+q_4)(1+q_6)}{12(1+q_3)(1+q_6)}s + \frac{(1+q_2)}{2(1+q_3)(1+q_6)}}$$

В каноническом управляемом базисе векторно-матричное представление ОУ принимает вид:

$$\begin{cases} \dot{x}(t,q) = A(q)x(t,q) + Bu(t) \\ y(t,q) = C(q)x(t,q) \end{cases}$$
 (1.2)

в котором

ме

Инв. № дубл.

Взам. инв. №

$$A(q) = \begin{bmatrix} 0 & 1 \\ -\frac{(1+q_4)(1+q_7)}{2(1+q_3)(1+q_6)} & -\frac{20(1+q_3)(1+q_7)+3.6(1+q_4)(1+q_6)}{12(1+q_3)(1+q_6)} \end{bmatrix}$$
(1.3)

Изм. Лист № докум. Подп. Дата

 $KCУИ.06.4135.001\ \Pi 3$

$$B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{1.4}$$

$$C(q) = \left[\frac{(1+q_2)}{30(1+q_3)(1+q_6)} \frac{(1+q_1)}{4(1+q_3)(1+q_6)} \right]$$
 (1.5)

1.2 Модель траекторной чувствительности НОУ

ПФ номинального ОУ, когда параметры $q_j = 0, j = \overline{1,7}$, представляет собой

$$\Phi(s,0) = \frac{\frac{1}{4}s + \frac{1}{30}}{s^2 + \frac{236}{120}s + \frac{1}{2}}$$
(1.6)

Матрицы модели ВСВ номинального ОУ имеют реализации

$$A = \begin{bmatrix} 0 & 1 \\ -\frac{1}{2} & -\frac{236}{120} \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{30} & \frac{1}{4} \end{bmatrix}$$

Введем обозначения

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

$$A_{q_j} = \frac{\partial A(q)}{\partial q_j} \Big|_{q=q_0}; B_{q_j} = \frac{\partial B(q)}{\partial q_j} \Big|_{q=q_0}; C_{q_j} = \frac{\partial C(q)}{\partial q_j} \Big|_{q=q_0};$$

$$A(q)|_{q=q_0} = A; B(q)|_{q=q_0} = B; C(q)|_{q=q_0} = C;$$

$$x(t,q)|_{q=q_0} = x(t); y(t,q)|_{q=q_0} = y(t);$$

$$\frac{\partial x(t,q)}{\partial q_j} \Big|_{q=q_0} = \sigma_j(t); \frac{\partial y(t,q)}{\partial q_j} \Big|_{q=q_0} = \eta_j(t);$$

Теперь для j-й модели траекторной чувствительности получим представление МТЧ

$$\begin{cases} \dot{\sigma}_j(t) = A\sigma_j(t) + A_{q_j}x(t) + B_{q_j}u(t); \sigma_j(0) = 0\\ \eta_j(t) = C\sigma_j(t) + C_{q_j}x(t) \end{cases}$$

$$(1.7)$$

МТЧ будет генерировать функции траекторной чувствительности $\sigma_j(t)$ по состоянию и $\eta_j(t)$ по выходу, если ее дополнить моделью номинального ОУ 1.2.

Изм. Лист № докум. Подп. Дата

КСУИ.06.4135.001 ПЗ

На состояние заданного ОУ влияют p=6 (далее, под записью $j=\overline{1,p}$ будет подразумеваться, что j=1,2,3,4,6,7) параметров: q_1,q_2,q_3,q_4,q_6,q_7 . Вычислим матрицы моделей траекторной чувствительности

$$A_{q_1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}; B_{q_1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; C_{q_1} = \begin{bmatrix} 1 \\ 0 & \frac{1}{4} \end{bmatrix}; \tag{1.8}$$

$$A_{q_2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}; B_{q_2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; C_{q_2} = \begin{bmatrix} \frac{1}{30} & 0 \end{bmatrix};$$
 (1.9)

$$A_{q_3} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{36}{120} \end{bmatrix}; B_{q_3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; C_{q_3} = \begin{bmatrix} -\frac{1}{30} & -\frac{1}{4} \end{bmatrix};$$
 (1.10)

$$A_{q_4} = \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & -3.6 \end{bmatrix}; B_{q_4} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; C_{q_4} = \begin{bmatrix} 0 & 0 \end{bmatrix};$$
 (1.11)

$$A_{q_6} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{20}{12} \end{bmatrix}; B_{q_6} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; C_{q_6} = \begin{bmatrix} -\frac{1}{30} & -\frac{1}{4} \end{bmatrix};$$
 (1.12)

$$A_{q_7} = \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & -\frac{20}{12} \end{bmatrix}; B_{q_7} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; C_{q_7} = \begin{bmatrix} 0 & 0 \end{bmatrix};$$
 (1.13)

1.3 Ранжирование параметров

Сконструируем агрегированную систему с составным вектором $\tilde{x}_j = col\{x,\sigma_j\}$ размерности $\dim \tilde{x} = 2n$, которая объединением 1.7 и 1.2, получает представление

$$\dot{\tilde{x}}_j(t) = \tilde{A}_j \tilde{x}_j(t) + \tilde{B}_j u(t); \tilde{x}_j(0) = col\{x(0), 0\}$$
(1.14)

$$x(t) = \tilde{C}_{x_i} \tilde{x}_j; \tag{1.15}$$

$$y(t) = \tilde{C}_j \tilde{x}_j(t); \tag{1.16}$$

$$\sigma_j(t) = \tilde{C}_{\sigma_j} \tilde{x}_j(t); \tag{1.17}$$

$$\eta_j(t) = \tilde{C}_{\eta_j} \tilde{x}_j(t) \tag{1.18}$$

Изм.	Лист	№ докум.	Подп.	Дата

Взам. инв. № Инв. № дубл.

Подп. и дата

KCVM.06.4135.001 FI3

где

$$j = \overline{1, p}, \tilde{A}_j = \begin{bmatrix} A & 0 \\ A_{q_j} & A \end{bmatrix}, \tilde{B}_j = \begin{bmatrix} B \\ B_{q_j} \end{bmatrix},$$

$$\tilde{C}_{x_j} = \begin{bmatrix} I_{n \times n} & O_{n \times n} \end{bmatrix}, \tilde{C}_j = \begin{bmatrix} C & 0_{m \times n} \end{bmatrix}, \tilde{C}_{\sigma_j} = \begin{bmatrix} 0_{n \times n} & I_{n \times n} \end{bmatrix}, \tilde{C}_{\eta_j} = \begin{bmatrix} C_{q_j} & C \end{bmatrix}.$$

Составим необходимые матрицы

$$\tilde{A}_{1,2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{1}{2} & -\frac{236}{120} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -\frac{1}{2} & -\frac{236}{120} \end{bmatrix}; \tilde{A}_3 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{1}{2} & -\frac{236}{120} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{1}{2} & \frac{36}{120} & -\frac{1}{2} & -\frac{236}{120} \end{bmatrix};$$

$$\tilde{A}_{4} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{1}{2} & -\frac{236}{120} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{1}{2} & -3.6 & -\frac{1}{2} & -\frac{236}{120} \end{bmatrix}; \tilde{A}_{6} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{1}{2} & -\frac{236}{120} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{1}{2} & \frac{20}{12} & -\frac{1}{2} & -\frac{236}{120} \end{bmatrix};$$

$$\tilde{A}_{7} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{1}{2} & -\frac{236}{120} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{1}{2} & -\frac{20}{12} & -\frac{1}{2} & -\frac{236}{120} \end{bmatrix}; \tilde{B}_{1,2,3,4,6,7} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix};$$

Изм. Лист № докум. Подп. Дата

КСУИ.06.4135.001 ПЗ

$$\tilde{C}_{x_{1,2,3,4,6,7}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}; \tilde{C}_{1,2,3,4,6,7} = \begin{bmatrix} \frac{1}{30} & \frac{1}{4} & 0 & 0 \end{bmatrix}; \\
\tilde{C}_{\sigma_{1,2,3,4,6,7}} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \\
\tilde{C}_{\eta_{1}} = \begin{bmatrix} 0 & \frac{1}{4} & \frac{1}{30} & \frac{1}{4} \end{bmatrix}; \tilde{C}_{\eta_{2}} = \begin{bmatrix} \frac{1}{30} & 0 & \frac{1}{30} & \frac{1}{4} \end{bmatrix}; \\
\tilde{C}_{\eta_{3}} = \begin{bmatrix} -\frac{1}{30} & -\frac{1}{4} & \frac{1}{30} & \frac{1}{4} \end{bmatrix}; \tilde{C}_{\eta_{4}} = \begin{bmatrix} 0 & 0 & \frac{1}{30} & \frac{1}{4} \end{bmatrix}; \\
\tilde{C}_{\eta_{6}} = \begin{bmatrix} -\frac{1}{30} & -\frac{1}{4} & \frac{1}{30} & \frac{1}{4} \end{bmatrix}; \tilde{C}_{\eta_{7}} = \begin{bmatrix} 0 & 0 & \frac{1}{30} & \frac{1}{4} \end{bmatrix};$$

Для ранжирования параметров по возможным затратам ресурсов управления для достижения нечувствительности траектории проектируемой системы к этим вариациям проведем анализ управляемости системы 1.14 по ее выходу η_i .

Требования к ресурсам управления заметно снижаются, если изначально ограничиться задачей обеспечения траекторной нечувствительности выхода проектируемой системы. На уровне требований к структурным свойствам агрегированной системы 1.14 задача сводится к контролю управляемости тройки матриц $(\tilde{C}_{\eta_j}, \tilde{A}_j, \tilde{B}_j)$ и количественной оценке эффекта управления по переменной η_j при приложении управления u(t) фиксированной нормы с помощью сингулярных чисел матрицы управляемости

$$\tilde{W}_{y\eta_j} = \begin{bmatrix} \tilde{C}_{\eta_j} \tilde{B}_j & \tilde{C}_{\eta_j} \tilde{A}_j \tilde{B}_j & \tilde{C}_{\eta_j} \tilde{A}_j^2 \tilde{B}_j & \cdots & \tilde{C}_{\eta_j} \tilde{A}_j^{2n-1} \tilde{B}_j \end{bmatrix}$$
(1.19)

Взам. инв. $\mathbb{N}^{\underline{b}} \mid \underline{M}$ нв. $\mathbb{N}^{\underline{b}}$ дубл.

Подп. и дата

Инв. № подл.

КСУИ.06.4135.001 ПЗ

С учетом n=2, рассчитаем матрицы управляемости \tilde{W}_{η_j}

$$\begin{split} \tilde{W}_{y\eta_1} &= \begin{bmatrix} 0.25 & -0.4916667 & 0.8419444 & -1.4099907 \end{bmatrix}, \\ \tilde{W}_{y\eta_2} &= \begin{bmatrix} 0 & 0.0333333 & -0.0655556 & 0.1122593 \end{bmatrix}, \\ \tilde{W}_{y\eta_3} &= \begin{bmatrix} -0.25 & 0.5333333 & -0.9363889 & 1.5786481 \end{bmatrix}, \\ \tilde{W}_{y\eta_4} &= \begin{bmatrix} 0 & -0.9 & 3.295 & -8.596 \end{bmatrix}, \\ \tilde{W}_{y\eta_6} &= \begin{bmatrix} -0.25 & 0.875 & -2.2347222 & 5.0222685 \end{bmatrix}, \\ \tilde{W}_{y\eta_7} &= \begin{bmatrix} 0 & -0.4166667 & 1.4583333 & -3.724537 \end{bmatrix} \end{split}$$

Вычислим для полученных матриц управляемости сингулярные числа

$$\alpha\{\tilde{W}_{y\eta_1}\} = 1.7323915, \alpha\{\tilde{W}_{y\eta_2}\} = 0.1342043,$$
 (1.20)

$$\alpha\{\tilde{W}_{y\eta_3}\} = 1.9276666, \alpha\{\tilde{W}_{y\eta_4}\} = 9.2497698,$$
 (1.21)

$$\alpha\{\tilde{W}_{y\eta_6}\} = 5.57183, \alpha\{\tilde{W}_{y\eta_7}\} = 4.0215076 \tag{1.22}$$

Ранги матриц \tilde{W}_{η_j} равны $rang(\tilde{W}_{\eta_j})=1$, что совпадает с размерностью m=1 вектора выхода. Таким образом, выбором закона управления можно обеспечить сходимость $\lim_{t\to\infty} \Delta y(t,q_0,\Delta q_j)=0; j=\overline{1,p}$ с заданным темпом [1]. Сингулярные числа матриц \tilde{W}_{η_j} принимают значения 1.20–1.22. Проранжируем параметры q_j в порядке увеличения затрат ресурсов на управление

1) q_4

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

- 2) q_6
- 3) q_7
- 4) q_3
- 5) q_1
- 6) q_2

Отсюда следует, что асимптотическая сходимость к нулю дополнительного движения $\Delta y(t,q_0,\Delta q_2)$ будет требовать наибольших затрат на управление, чем сходимость остальных дополнительных движений, с тем же темпом.

Изм.	Лист	№ докум.	Подп.	Дата

КСУИ.06.4135.001 ПЗ

2 Построение МТЧ ДОУ и результаты ее исследования

- 1) Перейти к дискретному описанию ОУ с помощью интегральной модели ВСВ НОУ;
- 2) Построить модель траекторной чувствительности (МТЧ) дискретного ОУ (ДОУ) к вариации интервала дискретности;

2.1 Переход к дискретному описанию ОУ

ДОУ представляет собой дискретную по времени с интервалом дискретности длительности Δt выборку из непрерывных процессов по вектору состояния x(t,q) и выходу y(t,q) при фиксированном на интервале $t\in [\Delta tk, \Delta t(k+1)]$ значении управления $u(t)=u(\Delta tk)=u(k)$. Имеет следующий вид

$$\begin{cases} x(k+1,q) = \overline{A}(q)x(k,q) + \overline{B}(q)u(k) \\ y(k,q) = \overline{C}(q)x(k,q) \end{cases}$$
 (2.1)

где матрицы непрерывного 1.2 и дискретного 2.1 ОУ связаны следующими функциональными соотношениями

$$\overline{A}(q) = e^{A(q)\Delta t}; \overline{B}(q) = A^{-1}(q)(e^{A(q)\Delta t} - I)B(q); \overline{C}(q) = C(q)$$
 (2.2)

Номинальная модель ДОУ получается из 2.1 при векторе параметров $q=q_0$

$$\begin{cases} x(k+1) = \overline{A}x(k) + \overline{B}u(k) \\ y(k) = \overline{C}x(k) \end{cases}$$
 (2.3)

Общий вид интегральной модели [2] ВСВ НОУ имеет вид

$$x(t) = \Phi(t)x(0) + \int_0^t \Phi(t,\tau)Bu(\tau)d\tau$$
 (2.4)

$$y(t) = C\Phi(t)x(0) + \int_0^t C\Phi(t,\tau)Bu(\tau)d\tau$$
 (2.5)

где
$$\Phi(t) = e^{At}, \Phi(t,\tau) = \Phi(t)\Phi^{-1}(\tau) = e^{A(t-\tau)}.$$

Изм. Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

КСУИ.06.4135.001 ПЗ

Используя интегральную запись модели BCB непрерывного динамического объекта, нетрудно получить связь между матрицами модели BCB дискретного и непрерывного объектов в форме

$$\overline{A} = \Phi(\Delta t) = e^{A\Delta t}, \overline{B} = \Phi(\Delta t) \int_0^{\Delta t} \Phi^{-1}(\tau) d\tau B, \overline{C} = C$$
 (2.6)

И окончательные формулы для перехода

$$\overline{A} = e^{A\Delta t}, \overline{B} = A^{-1}(e^{A\Delta t} - I)B, \overline{C} = C$$
 (2.7)

При $\Delta t = 0.03$ с, рассчитаем матрицы модели ВСВ ДОУ

$$\overline{A} = \begin{bmatrix} 0.9997794 & 0.0291300 \\ -0.0145650 & 0.9424904 \end{bmatrix}; \overline{B} = \begin{bmatrix} 0.0004413 \\ 0.0291300 \end{bmatrix}; \overline{C} = \begin{bmatrix} 0.03333333 & 0.25 \end{bmatrix};$$

2.2 Построение МТЧ ДОУ к вариации интервала дискретности

Модель траекторной чувствительности, необходимая для генерирования функций траекторной чувствительности $\sigma(k)$ и $\eta(k)$ по состоянию и выходу ДОУ, строится путем дифференцирования компонентов представления 2.1 по компонентам q_j вектора параметров q при его номинальном значении (в нашем случае $q = \Delta t$), в результате чего для МТЧ получаем

$$\begin{cases}
\sigma(k+1) = \overline{A}\sigma(k) + \overline{A}_q x(k) + \overline{B}_q u(k) \\
\eta(k) = \overline{C}\sigma(k) + \overline{C}_q x(k)
\end{cases}$$
(2.8)

№ подл. п Додп. и дата Взам. инв. № Инв. № дубл.

Изм. Лист № докум. Подп. Дата

КСУИ.06.4135.001 ПЗ

где

$$\overline{A}_{q} = \frac{\partial \overline{A}(q)}{\partial \Delta t} \Big|_{q=q_{0}}; \overline{B}_{q} = \frac{\partial \overline{B}(q)}{\partial \Delta t} \Big|_{q=q_{0}}; \overline{C}_{q} = \frac{\partial \overline{C}(q)}{\partial \Delta t} \Big|_{q=q_{0}};$$

$$\sigma(t) = \frac{\partial x(k,q)}{\partial \Delta t} \Big|_{q=q_{0}}; \eta(t) = \frac{\partial y(k,q)}{\partial \Delta t} \Big|_{q=q_{0}};$$

$$\frac{\partial \overline{A}(q)}{\partial \Delta t} = \frac{\partial \left(e^{A(q)\Delta t}\right)}{\partial \Delta t} = A(q)e^{A(q)\Delta t} = e^{A(q)\Delta t}A(q) = \overline{A}(q)A(q);$$

$$\frac{\partial \overline{B}(q)}{\partial \Delta t} = \frac{\partial}{\partial \Delta t} \left[A^{-1}(q)(e^{A(q)\Delta t} - I)B(q)\right] = A^{-1}(q)A(q)e^{A(q)\Delta t}B = \overline{A}(q)B(q);$$

$$\frac{\partial \overline{C}(q)}{\partial \Delta t} = \frac{\partial C(q)}{\partial \Delta t} = 0.$$

Используя полученные выражения вычислим матрицы МТЧ ДОУ

$$\overline{A}_q = \begin{bmatrix} -0.0145650 & 0.9424904 \\ -0.4712452 & -1.8681295 \end{bmatrix}; \overline{B}_q = \begin{bmatrix} 0.0291300 \\ 0.9424904 \end{bmatrix}; \overline{C}_q = \begin{bmatrix} 0 & 0 \end{bmatrix};$$

Сконструируем агрегированную систему с составным вектором $\tilde{x}=col\{x,\sigma\}$ размерности $\dim \tilde{x}=2n$, которая объединением 2.3 и 2.8, получает представление

$$\tilde{x}(k+1) = \frac{\tilde{A}}{\tilde{x}}(k) + \frac{\tilde{B}}{\tilde{B}}u(k); \tilde{x}(0) = col\{x(0), 0\}$$
(2.9)

$$x(k) = \tilde{\overline{C}}_{x_j} \tilde{x}(k); \tag{2.10}$$

$$y(k) = \tilde{\overline{C}}\tilde{x}(k); \tag{2.11}$$

$$\sigma(k) = \tilde{\overline{C}}_{\sigma}\tilde{x}(k); \tag{2.12}$$

$$\eta(k) = \tilde{\overline{C}}_{\eta} \tilde{x}(k) \tag{2.13}$$

где

Инв. № дубл.

Взам. инв. №

Подп. и дата

$$\begin{split} &\tilde{\overline{A}} = \begin{bmatrix} \overline{A} & 0 \\ \overline{A}_q & \overline{A} \end{bmatrix}, \tilde{\overline{B}} = \begin{bmatrix} \overline{B} \\ \overline{B}_q \end{bmatrix}, \\ &\tilde{\overline{C}}_x = \begin{bmatrix} I_{n \times n} & O_{n \times n} \end{bmatrix}, \tilde{\overline{C}} = \begin{bmatrix} \overline{C} & 0_{m \times n} \end{bmatrix}, \tilde{\overline{C}}_\sigma = \begin{bmatrix} 0_{n \times n} & I_{n \times n} \end{bmatrix}, \tilde{\overline{C}}_\eta = \begin{bmatrix} \overline{C}_q & \overline{C} \end{bmatrix}. \end{split}$$

Составим необходимые матрицы

Изм.	Лист	№ докум.	Подп.	Дата

КСУИ.06.4135.001 ПЗ

$$\begin{split} \tilde{\overline{A}} &= \begin{bmatrix} 0.9997794 & 0.0291300 & 0 & 0 \\ -0.0145650 & 0.9424904 & 0 & 0 \\ -0.0145650 & 0.9424904 & 0.9997794 & 0.0291300 \\ -0.4712452 & -1.8681295 & -0.0145650 & 0.9424904 \end{bmatrix}; \\ \tilde{\overline{B}} &= \begin{bmatrix} 0.0004413 \\ 0.0291300 \\ 0.0291300 \\ 0.9424904 \end{bmatrix}; \tilde{\overline{C}}_{\eta} = \begin{bmatrix} 0 & 0 & 0.03333333 & 0.25 \end{bmatrix} \end{split}$$

Проверим управляемость агрегированной системы по выходу $\eta(k)$ с помощью матрицы управляемости $\tilde{\overline{W}}_{y\eta}$

$$\tilde{\overline{W}}_{y\eta} = \begin{bmatrix} \tilde{\overline{C}}_{\eta} \tilde{\overline{B}} & \tilde{\overline{C}}_{\eta} \tilde{\overline{A}} \tilde{\overline{B}} & \tilde{\overline{C}}_{\eta} \tilde{\overline{A}}^2 \tilde{\overline{B}} & \cdots & \tilde{\overline{C}}_{\eta} \tilde{\overline{A}}^{2n-1} \tilde{\overline{B}} \end{bmatrix}$$
(2.14)

которая с учетом n=2 имеет реализацию

$$\tilde{\overline{W}}_{y\eta} = \begin{bmatrix} 0.2365936 & 0.2111102 & 0.1875234 & 0.1657095 \end{bmatrix}$$

Ранги матриц \tilde{W}_{η} равны $rang(\tilde{W}_{\eta})=1$, что совпадает с размерностью m=1 вектора выхода. Таким образом, выбором закона управления можно обеспечить сходимость $\lim_{t\to\infty}\Delta y(t,q_0,\Delta t)=0$ с заданным темпом.

: № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и дата

Изм.	Лист	№ докум.	Подп.	Дата

КСУИ.06.4135.001 ПЗ

3 Построение МТЧ СНС и результаты ее исследования

1) Синтезировать закон управления (ЗУ) вида $u(t) = K_g g(t) + K x(t)$, который должен обеспечивать системе:

$$\begin{cases} \dot{x}(t,q) = F(q)x(t,q) + G(q)g(t); \\ y(t,q) = C(q)x(t,q) \end{cases}, \tag{3.1}$$

где $F(q) = A(q) - B(q)K, G(q) = B(q)K_g$, образованной объединением НОУ и ЗУ равенство входа g(t) и выхода y(t) в неподвижном состоянии при номинальных значениях параметров с помощью:

- 1) матрицы K_g прямой связи по входу g(t);
- 2) матрыцы K обратной связи по состоянию x(t)

распределение мод Баттерворта с характеристической частотой $\omega_0=3c^{-1};$

- 2) Построить МТЧ спроектированной системы по каждому из параметров и для значения $|\Delta q_j|=0.3;$
- 3) Выделить доминирующие параметры по степени их влияния на величину σ перерегулирования и длительности t_{π} переходного процесса.

3.1 Синтез закона модального управления

Замкнутая система 3.1 образована агрегированием ОУ 1.2 и регулятора, реализующего закон управления:

$$u(t) = K_g g(t) + Kx(t) \tag{3.2}$$

в виде прямой связи (ПС) по внешнему воздействию и отрицательной обратной связи (ОС) по вектору состояния ОУ, матрицы которого K_g и K просинтезированы для случая номинальной версии ОУ.

Изм.	Лист	№ докум.	Подп.	Дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

КСУИ.06.4135.001 ПЗ

Перед началом расчета матриц коэффициентов регулятора 3.2 убедимся, что система 1.2 обладает свойством управляемости. Для этого найдем матрицу управляемости и ее определитель

$$U = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & 1\\ 1 & -1.9666667 \end{bmatrix} \tag{3.3}$$

$$det(U) = -1 (3.4)$$

Номинальна система ОУ 1.2 полностью управляема, так как матрица управляемости U не вырождена. rang(U)=2 и равен порядку систему.

Для придания матрице F=A-BK распределения мод Баттерворта с характеристической частотой $\omega_0=3c^{-1}$ составим эталонную модель ОУ

$$\begin{cases} \dot{\xi}(t) = \Gamma \xi(t) \\ v(t) = H \xi(t) \end{cases}$$
(3.5)

где Γ и H — матрицы состояния и выхода эталонной системы.

Решим стандартный полином Баттерворта второго порядка

$$\lambda^2 + 1.414\omega_0\lambda + \omega_0^2 = 0 \tag{3.6}$$

$$\lambda^2 + 4.242\lambda + 9 = 0, (3.7)$$

корни которого $\lambda_{1,2} = -2.121 \pm j2.1216406$

Подп. и дата

Инв. № дубл.

Взам. инв. №

Определим матрицы состояния и выхода эталонной модели. Так как корни желаемого полинома получились комплексные, то матрица Γ примет вид

$$\Gamma = \begin{bmatrix} -\alpha & \beta \\ -\beta & -\alpha \end{bmatrix} = \begin{bmatrix} -2.121 & 2.1216406 \\ -2.1216406 & -2.121 \end{bmatrix}$$
(3.8)

Матрица H выбирается из условия полной наблюдаемости матриц Γ и H

$$H = \begin{bmatrix} 1 & 0 \end{bmatrix} \tag{3.9}$$

Матрицу коэффициентов ОС K найдем, решая уравнение Сильвестра

$$\begin{cases}
BH = M\Gamma - AM \\
K = -HM^{-1}
\end{cases}$$
(3.10)

Изм.	Лист	№ докум.	Подп.	Дата

КСУИ.06.4135.001 ПЗ

Вычислим матрицу преобразования M

$$M = \begin{bmatrix} -0.0998304 & 0.1311712 \\ -0.0665578 & -0.4900185 \end{bmatrix}$$
 (3.11)

Найдем матрицу коэффициентов K

$$K = \begin{bmatrix} 8.5 & 2.2753333 \end{bmatrix} \tag{3.12}$$

Запишем матрицу замкнутой системы F при номинальных значениях параметров q_i

$$F = \begin{bmatrix} 0 & 1 \\ -9 & -4.242 \end{bmatrix} \tag{3.13}$$

Найдем коэффициент ПС K_g из выражения

$$K_g = -(CF^{-1}B)^{-1} (3.14)$$

$$K_g = 270 (3.15)$$

Тогда матрица G принимает вид

$$G = BK_g = \begin{bmatrix} 0\\270 \end{bmatrix} \tag{3.16}$$

Смоделируем полученную систему в пакете прикладных математических программ Scilab, подав в качестве входного сигнала единичное ступенчатое воздействие

Рисунок 3.1 – Схема моделирования замкнутой системы 3.1

Изм. Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

КСУИ.06.4135.001 ПЗ

Рисунок 3.2 – Переходная характеристика замкнутой системы 3.1

Таким образом, система обеспечивает равенство входа g(t) и выхода y(t) в неподвижном состоянии при номинальных значениях параметров q_i .

3.2 Построение МТЧ спроектированной системы для каждого из параметров q_j

Введем обозначения

$$F_{q_j} = \frac{\partial F(q)}{\partial q_j}\Big|_{q=q_0}; G_{q_j} = \frac{\partial G(q)}{\partial q_j}\Big|_{q=q_0}; \qquad F(q)|_{q=q_0} = F; G(q)|_{q=q_0} = G;$$

Подобно тому, как МТЧ строилась ранее, МТЧ замкнутой системы (ЗС)

$$\begin{cases} \dot{\sigma}_{j}(t) = F\sigma_{j}(t) + F_{q_{j}}x(t) + G_{q_{j}}g(t); \sigma_{j}(0) = 0\\ \eta_{j}(t) = C\sigma_{j}(t) + C_{q_{j}}x(t) \end{cases}$$
(3.17)

Пользуясь матрицами НОУ 1.3 и 1.4, рассчитаем матрицу F(q) = A(q) - B(q)K, где K — рассчитанная матрица коэффициентов ОС 3.12 (матрица F(q)

Подп. 1	
Инв. № дубл.	
B зам. инв. N $^{\underline{o}}$	
Подп. и дата	

Инв. № подл.

Изм. Лист № докум. Подп. Дата

КСУИ.06.4135.001 ПЗ

изображена транспонированной из соображений компактности записи)

$$F(q) = \begin{bmatrix} 0 & -\frac{(1+q_4)(1+q_7)}{2(1+q_3)(1+q_6)} - 8.5 \\ 1 & -\frac{20(1+q_3)(1+q_7) + 3.6(1+q_4)(1+q_6)}{12(1+q_3)(1+q_6)} - 2.2753333 \end{bmatrix}^T$$
(3.18)

Рассчитаем матрицы для системы 3.17 (матрицы F_{q_j} приведены без операции транспонирования)

$$F_{q_{1,2}} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}; F_{q_3} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{36}{120} \end{bmatrix}; F_{q_4} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & -3.6 \end{bmatrix}; F_{q_6} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{20}{12} \end{bmatrix}; \quad (3.19)$$

$$F_{q_7} = \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & -\frac{20}{12} \end{bmatrix}; G_{q_{1,2,3,4,6,7}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; C_{q_1} = \begin{bmatrix} 1 \\ \frac{1}{4} \end{bmatrix}; C_{q_2} = \begin{bmatrix} \frac{1}{30} & 0 \end{bmatrix};$$
(3.20)

$$C_{q_3} = \begin{bmatrix} -\frac{1}{30} & -\frac{1}{4} \end{bmatrix}; C_{q_4} = \begin{bmatrix} 0 & 0 \end{bmatrix}; C_{q_6} = \begin{bmatrix} -\frac{1}{30} & -\frac{1}{4} \end{bmatrix}; C_{q_7} = \begin{bmatrix} 0 & 0 \end{bmatrix}; \tag{3.21}$$

Матрицы эквивалентны матрицам ОУ, так как матрица управления B не зависит от параметров q_i .

Сконструируем агрегированную систему с составным вектором $ilde x_j = col\{x_j,\sigma_j\}$ размерности $\dim ilde x = 2n$, которая объединением 3.1 и 3.17, получает представление

$$\dot{\tilde{x}}_j(t) = \tilde{F}_j \tilde{x}_j(t) + \tilde{G}_j g(t); \tilde{x}_j(0) = col\{x(0), 0\}$$
(3.22)

$$x(t) = \tilde{C}_{x_i} \tilde{x}_j; \tag{3.23}$$

$$y(t) = \tilde{C}_j \tilde{x}_j(t); \tag{3.24}$$

$$\sigma_j(t) = \tilde{C}_{\sigma_j} \tilde{x}_j(t); \tag{3.25}$$

$$\eta_j(t) = \tilde{C}_{\eta_j} \tilde{x}_j(t) \tag{3.26}$$

где

Инв. № дубл.

Взам. инв. №

$$\tilde{F} = \begin{bmatrix} F & 0 \\ F_q & F \end{bmatrix}, \tilde{G} = \begin{bmatrix} G \\ G_q \end{bmatrix},$$

тл	π	Mb	TT	π
ИЗМ.	Лист	№ докум.	Подп.	Дата

 $KCУИ.06.4135.001\ \Pi 3$

KCVM.06.4135.001 FI3

Структура матриц выхода C совпадают с матрицами системы 1.14. Составим матрицы агрегированной системы 3.22

$$\begin{split} \tilde{F_{1,2}} &= \begin{bmatrix} 0 & 1 & 0 & 0 \\ -9 & -4.242 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -9 & -4.242 \end{bmatrix}; \\ \tilde{F_{3}} &= \begin{bmatrix} 0 & 1 & 0 & 0. \\ -9 & -4.242 & 0 & 0. \\ 0 & 0 & 0 & 1. \\ 0.5 & 0.3 & -9 & -4.242 \end{bmatrix}; \\ \tilde{F_{4}} &= \begin{bmatrix} 0 & 1 & 0 & 0. \\ -9 & -4.242 & 0 & 0. \\ 0 & 0 & 0 & 1. \\ -0.5 & -0.3 & -9 & -4.242 \end{bmatrix}; \\ \tilde{F_{6}} &= \begin{bmatrix} 0 & 1 & 0 & 0. \\ -9 & -4.242 & 0 & 0. \\ 0 & 0 & 0 & 1. \\ 0.5 & 1.6666667 & -9 & -4.242 \end{bmatrix}; \\ \tilde{F_{7}} &= \begin{bmatrix} 0 & 1 & 0 & 0. \\ -9 & -4.242 & 0 & 0. \\ 0 & 0 & 0 & 1. \\ -0.5 & -1.66666667 & -9 & -4.242 \end{bmatrix}; \\ \tilde{C}_{\eta_{1}} &= \begin{bmatrix} 0 & 0.25 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{2},7} &= \begin{bmatrix} 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &= \begin{bmatrix} 0 & 0 & 0.0333333 & 0.25 \end{bmatrix} \\ \tilde{C}_{\eta_{4,7}} &=$$

Смоделируем полученную систему в пакете прикладных математических программ Scilab, подав в качестве входного сигнала единичное ступенчатое воздействие

Подп. и	
Инв. № дубл.	
B 3 a M. n HB. N $^{ ilde{e}}$	
Подп. и дата	
в. $N^{\underline{\varrho}}$ подл.	

Изм	Лист	№ докум.	Подп.	Дата

КСЛИ '00' 4132' 001 ЦЗ

Рисунок 3.3 – Схема моделирования МТЧ дополненной НОУ 3.1

Рисунок 3.4 – Переходные процессы при вариации параметра q_1

Изм. Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

КСУИ.06.4135.001 ПЗ

Рисунок 3.5 – Переходные процессы при вариации параметра q_2

Рисунок 3.6 – Переходные процессы при вариации параметра q_3

Изм. Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

 $KCУИ.06.4135.001\ \Pi 3$

Рисунок 3.7 – Переходные процессы при вариации параметра q_4

Рисунок 3.8 – Переходные процессы при вариации параметра q_6

Изм. Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

КСУИ.06.4135.001 ПЗ

Рисунок 3.9 – Переходные процессы при вариации параметра q_7

3.3 Определение доминирующих параметров

Занесем полученные из построенных графиков значения перерегулирования σ и времени переходного процесса $t_{\rm n}$ в таблицу 3.1.

Таблица 3.1 – Значения переререгулирования и времени преходного процесса для варьируемых парметров q_i

	Перерегулирование			Вр.перех.процесса		
Параметр		σ , %)		$t_{\scriptscriptstyle \Pi}$, ce	eK.
Парамстр	I	при Δq	q =	I	при Δ	q =
	0.2	0	-0.2	0.2	0	-0.2
q_1	1380		745	2.72	2.72	2.72
q_2	1381		744	2.72		2.72
q_3	1398	$\begin{vmatrix} 1062 \end{vmatrix}$	727	2.69		2.81
q_4	1225	1002	907	3.24		3.84
q_6	1458		669	3.37		3.26
q_7	1306		821	2.89		3.71

Рассчитаем отклонения значений перерегулирования $\Delta \sigma$ и времени пе-

И	ЗМ.	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

КСУИ.06.4135.001 ПЗ

реходного процесса t_{π} характеристик системы при вариациях параметров q_{j} от номинальной характеристики и занесем их в таблицу 3.2.

Таблица 3.2 – Отклонения характеристик системы с варьируемыми параметрами от номинальной системы

	$\Delta \epsilon$	σ, %	$\Delta t_{\scriptscriptstyle \Pi}, \; { m cek.}$		
Параметр	при	$\Delta q =$	при	$\Delta q =$	
	0.2	-0.2	0.2	-0.2	
q_1	318	317	0	0	
q_2	318	319	0	0	
q_3	336	335	0.03	0.09	
q_4	163	155	0.52	1.12	
q_6	396	393	0.65	0.54	
q_7	244	241	0.17	0.99	

где

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

$$\Delta \sigma_{\Delta q = \pm 0.2} = |\sigma_{\Delta q = \pm 0.2} - \sigma_{\Delta q = 0}| \tag{3.27}$$

$$\Delta t_{\Pi,\Delta q=\pm 0.2} = |t_{\Pi,\Delta q=\pm 0.2} - t_{\Pi,\Delta q=0}|$$
 (3.28)

Выделим доминирующие параметры по степени их влияния на величину σ перерегулирования и длительности t_{π} переходного процесса

- 1) Влияние на величину перерегулирования (в порядке уменьшения)
 - 1) при $\Delta q = 0.2$: q_6 , q_3 , q_2 , q_1 , q_7 , q_4 ;
 - 2) при $\Delta q = -0.2 \ q_6, \ q_3, \ q_2, \ q_1, \ q_7, \ q_4;$
- 2) Влияние на время переходного процесса(в порядке уменьшения)
 - 1) при $\Delta q = 0.2$: $q_6, q_5, q_7, q_3, q_{1,2}$;
 - 2) при $\Delta q = -0.2$: q_4 , q_7 , q_6 , q_3 , $q_{1,2}$.

Изм.	Лист	№ докум.	Подп.	Дата

КСУИ.06.4135.001 ПЗ

4 Построение МФМЧ и результаты ее исследования

- 1) Построить матрицу функций модальной чувствительности;
- 2) Выделить неблагоприятное сочетание вариаций параметров.

4.1 Построение МФМЧ

Для вычисления функций чувствительности δq_j и βq_j соответственно вещественных и мнимых частей комплексно-сопряженных собственных значений к вариациям параметра q_j следует вычислить матрицу $M^{-1}F_{q_j}M$ и на элементах этой матрицы сконструировать функции чувствительности δq_j и βq_j с помощью соотношений

$$\delta_{q_j} = \frac{1}{2} \left((M^{-1} F_{q_j} M)_{11} + (M^{-1} F_{q_j} M)_{22} \right) \tag{4.1}$$

$$\beta_{q_j} = \frac{1}{2} \left((M^{-1} F_{q_j} M)_{12} - (M^{-1} F_{q_j} M)_{21} \right) \tag{4.2}$$

где матрица M — матрица диагонального преобразования, F_{q_j} — матрица чувствительности замкнутой системы к вариации параметра q_j .

Найдем спектр собственных значений матрицы F(q) при номинальном векторе параметров q

$$\sigma\{F\} = \{ [\lambda_1, \lambda_2] : det[\lambda I - F] = 0 \} = \{ -2.121 \pm j2.1216406 \}$$
 (4.3)

Для анализа модальной чувствительности спроектированной системы произведем следующие вычисления. Матрицы чувствительности F_{q_j} были рассчитаны ранее в 3.19.

Матрица M находится из выражения

$$M\Lambda = FM \tag{4.4}$$

Так как в спектре $\sigma\{F\}$ имеются комплексно-сопряженные собственные значения $\lambda_{1,2}=\delta\pm j\beta$, то вещественная матрица подобия Λ будет блочно-

Изм.	Лист	$N_{\overline{}}$ докум.	Π од π .	Дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

КСУИ.06.4135.001 ПЗ

диагональной

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

$$\Lambda = \begin{bmatrix} \delta & \beta \\ -\beta & \delta \end{bmatrix} = \begin{bmatrix} -2.121 & 2.1216406 \\ -2.1216406 & -2.121 \end{bmatrix}$$
(4.5)

Тогда, нужно записать матрицу M в форме обобщенной матрицы Вандермонда

$$M = \begin{bmatrix} 1 & 0 \\ \delta & \beta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2.121 & 2.1216406 \end{bmatrix} \tag{4.6}$$

Матрица M^{-1}

$$M^{-1} = \begin{bmatrix} 1 & 0 \\ 0.9997105 & 0.4519487 \end{bmatrix}$$
 (4.7)

Вычислим матрицы $(M^{-1}F_{q_i}M)$, при $j=\overline{1,2,3,4,6,7}$

$$M^{-1}F_{q_{1,2}}M = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \tag{4.8}$$

$$M^{-1}F_{q_3}M = \begin{bmatrix} 0 & 0 \\ -0.0739388 & 0.3 \end{bmatrix}$$
 (4.9)

$$M^{-1}F_{q_4}M = \begin{bmatrix} 0 & 0\\ 3.3729834 & -3.6 \end{bmatrix}$$
 (4.10)

$$M^{-1}F_{q_6}M = \begin{bmatrix} 0 & 0 \\ -1.4402098 & 1.6666667 \end{bmatrix}$$
 (4.11)

$$M^{-1}F_{q_7}M = \begin{bmatrix} 0 & 0\\ 1.4402098 & -1.6666667 \end{bmatrix}$$
 (4.12)

В соответствии с выражениями 4.1, вычислим функции модальной чувствительности $\lambda_{q_j} = \delta_{q_j} \pm j \beta_{q_j}$

$$\lambda_{q_{1,2}} = 0 \tag{4.13}$$

$$\lambda_{q_3} = 0.15 + j0.0369694 \tag{4.14}$$

$$\lambda_{q_4} = -1.8 - j1.6864917 \tag{4.15}$$

$$\lambda_{q_6} = 0.83333333 + j0.7201049 \tag{4.16}$$

Ī					
Ī	Изм.	Лист	№ докум.	Подп.	Дата

 $KCУИ.06.4135.001\ \Pi 3$

$$\lambda_{q_7} = -0.83333333 - j0.7201049 \tag{4.17}$$

Сконструируем матрицу функций модальной чувствительности в виде функций чувствительности вещественной и мнимой частей:

$$S_{\lambda} = \begin{bmatrix} \delta_q \\ \beta_q \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0.15 & -1.8 & 0.8333333 & -0.8333333 \\ 0 & 0 & 0.0369694 & -1.6864917 & 0.7201049 & -0.7201049 \end{bmatrix}$$
(4.18)

4.2 Выделить неблагоприятное сочетание вариаций параметров

Для выделения неблагоприятного сочетания вариаций параметров воспользуемся сингулярным разложением матрицы модальной чувствительности

$$S_{\lambda} = U_{\lambda} \Sigma_{\lambda} V_{\lambda}^{T}$$

$$U_{\lambda} = \begin{bmatrix} -0.7383 & -0.6744 \\ -0.6744 & 0.7383 \end{bmatrix}$$

$$\Sigma_{\lambda} = \begin{bmatrix} 2.9199 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.0909 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$V_{\lambda} = \begin{bmatrix} 0 & 0 & 0.0695 & -0.8346 & 0.3863 & -0.3863 \\ 0 & 0 & -0.8105 & -0.3666234 & -0.3230 & 0.3230 \\ -0.0464 & -0.8121 & 0.3382 & -0.2391 & -0.2886 & 0.2886 \\ 0.8446 & -0.3427 & -0.2391 & 0.169 & 0.204 & -0.204 \\ -0.377 & -0.3338 & -0.2886 & 0.204 & 0.7463 & 0.2536 \\ 0.377 & 0.3338 & 0.2886 & -0.204 & 0.2536 & 0.7463 \end{bmatrix}$$

Запишем оценки вариации

$$\max_{\Delta q} ||\Delta \lambda|| = 2.9199||\Delta q|| \tag{4.19}$$

$$\min_{\Delta q} ||\Delta \lambda|| = 0.0909 ||\Delta q|| \tag{4.20}$$

Наиболее неблагоприятное сочетание вариаций параметров характеризуется вектором

$$\Delta q = \begin{bmatrix} 0 & 0 & -0.0464681 & 0.8446960 & -0.3770473 & 0.3770473 \end{bmatrix}^{T} ||\Delta q|| \quad (4.21)$$

Наименее неблагоприятное характеризуется вектором

$$\Delta q = \begin{bmatrix} 0 & 0 & -0.8121559 & -0.3427354 & -0.3338676 & 0.3338676 \end{bmatrix} ||\Delta q|| \quad (4.22)$$

Изм. Лист № докум. Подп. Дата

Взам. инв. №

КСУИ.06.4135.001 ПЗ

5 Получение ВМО НОУ с интервальными параметрами

1) Получение векторно-матричное описание (ВМО) НОУ с интервальными параметрами с использованием интервальной арифметики на основе интервальной реализации параметров q_j , записываемых в форме $[q_j] = [\underline{q_j}, \overline{q_j}]$ при заданных граничных (угловых) значениях $[q_j] = [\underline{-0.2}, \overline{0.2}]$.

$$\begin{cases} \dot{x}(t) = [A]x(t) + [B]u(t); \\ y(t) = [C]x(t) \end{cases}$$
 (5.1)

$$[A] = A_0 + [\Delta A], [B] = B_0 + [\Delta B], [C] = C_0 + [\Delta C]$$
 (5.2)

где $[\Delta A] = [\underline{\Delta A}, \overline{\Delta A}]$ — интервальный матричный компонент матрицы $[A],\ A_0 = mid[A]$ — медиана матрицы $[A],\ [\Delta C] = [\underline{\Delta C}, \overline{\Delta C}]$ — интервальный матричный компонент матрицы $[C],\ C_0 = mid[C]$ — медиана матрицы $[C],\$ матрица [B] — в случае НОУ 1.2 не зависит от вектора параметров q.

5.1 Построение векторно-матричное описание НОУ

Используя 1.3 и 1.5 и интервальную арифметику, найдем матрицы A(q) и C(q) при угловых значениях параметра $[q_j]=[\underline{q_j},\overline{q_j}]=[\underline{-0.2},\overline{0.2}]$

$$\underline{A} = \begin{bmatrix} 0 & 1 \\ -1.115 & -4.425 \end{bmatrix}; \overline{A} = \begin{bmatrix} 0 & 1 \\ -0.22 & -0.874 \end{bmatrix}; \tag{5.3}$$

$$\underline{C} = \begin{bmatrix} 0.0058 & 0.1389 \end{bmatrix}; \overline{C} = \begin{bmatrix} 0.0625 & 0.4688 \end{bmatrix}.$$
 (5.4)

Теперь, в соответствии с 5.2, необходимо определить матрицы A_0, C_0 и $[\Delta A], [\Delta C]$

$$A_0 = 0.5(\underline{A} + \overline{A}) = \begin{bmatrix} 0 & 1 \\ -0.6675 & -2.6495 \end{bmatrix}$$

$$(5.5)$$

$$C_0 = 0.5(\underline{C} + \overline{C}) = \begin{bmatrix} 0.0371 & 0.3733 \end{bmatrix}$$
 (5.6)

L					
L					
I_{\cdot}	1 зм.	Лист	№ докум.	Подп.	Дата

Инв. № дубл.

Взам. инв. №

КСУИ.06.4135.001 ПЗ

KCVN.06.4135.001 FI3

№ докум.

Подп.

$$[\Delta A] = [\underline{\Delta A}, \overline{\Delta A}] = \begin{bmatrix} 0 & 0\\ [0.2991, 0.4475] & [-1.7755, 1.7755] \end{bmatrix}$$
(5.7)

$$[\Delta C] = [\underline{\Delta C}, \overline{\Delta C}] = [[-0.0313, -0.2344] \ [0.0254, 0.0955]]$$
 (5.8)

Запишем выражения для матриц [A] и [C]

$$[A] = \begin{bmatrix} 0 & 1 \\ -0.6675 & -2.6495 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ [0.2991, 0.4475] & [-1.7755, 1.7755] \end{bmatrix}$$
(5.9)

$$[C] = \begin{bmatrix} 0.0371 & 0.3733 \end{bmatrix} + \begin{bmatrix} [-0.0313, -0.2344] & [0.0254, 0.0955] \end{bmatrix}$$
 (5.10)

№ подл.			I	J.
Подп. и дата				
Взам. инв. №				
Инв. № дубл.				
Подп. и даз				

 $KCУИ.06.4135.001\ \Pi 3$

Список использованных источников

- 1 В.О.Никифоров О.В.Слита А.В.Ушаков. ИНТЕЛЛЕКТУАЛЬНОЕ УПРАВ-ЛЕНИЕ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ. — Санкт-Петербург: СПб-ГУ ИТМО, 2011. — Р. 226.
- 2 И.В. Мирошник. Теория автоматического управления. Линейные системы. Санкт-Петербург: СПбГУ ИТМО, 2005. — Р. 336.

Подп. и дата		
Инв. № дубл.		
Взам. инв. №		
Подп. и дата		
Инв. № подл.		Лист 32 Формат А4