EECE 5550: Mobile Robotics

Lecture 15: Planning

The Central Dogma of Robotics: Sense \rightarrow Think \rightarrow Act

 Sense: Process sensor data to construct a model of the world

 Think: Construct a plan to move from the current state to the goal state

Act: Control actuators to execute plan

The Story So Far

Mathematical foundations ————

Computational tools ————

Sense (perception) —

This week: Think (plan)

Week	Topics (tentative)
1	Coordinate transformations & geometry
2	Lie groups & probability theory
3	Computational tools: Linux, Git, Ros
4	Sensing, kinematics & computer vision
5	Probabilistic robotics & Bayesian filtering
6	Robotic mapping & localization
7	SLAM & optimization
8	Planning & graph search
9	Feedback, optimal, and model-predictive control
10	Planning under uncertainty
11	Applications: Robotic exploration
12	Guest lectures: research frontiers
13	Final presentations

<u>Plan</u> of the day (☺)

- Introduction to planning
- Formulation of a planning problem
- Planning as graph search
- Four canonical graph search algorithms
 - Breadth-first search
 - Depth-first search
 - Searching for *shortest paths*: Dijkstra's algorithm
 - Informed search: A* search

References

Chapter 3 of "Artificial Intelligence: A Modern Approach"

Lecture "Planning I" from ETH Zurich's Autonomous Mobile Robots course

What is "Planning"?

Intuitively: How do I get from A to B?

A bit more precisely: Determine a sequence of actions that will drive the world from an *initial state* to a *goal state*.

Defining a planning problem

We must specify the following elements:

- 1. State space X: possible states of the world
- 2. Initial state $x_0 \in X$
- 3. Actions: function A(x) returns the set of actions available at each state $x \in X$
- 4. Transition model: function R(x,a) describes the *successor* state achieved by applying action a in state x.
- 5. Goal test: G(x) returns true/false to indicate whether we have reached a goal
- 6. Cost: C(x,a) of applying action a in state x.

Solutions of a planning problem

Given a planning problem $P = (X, x_0, A, R, G, C)$:

- A solution is a sequence of actions $a_1, a_2, a_3, ...$ that leads from the initial state x_0 to a goal state (a state satisfying G(x) = true).
- An optimal solution is a solution attaining the minimum possible cost.

Toy example: Vacuum world

States:

- 2 locations (each of which may contain dirt)
- Agent location
- Initial state: Any
- Actions: Left, right, suck
- Transition model: As expected (see diagram)
- Goal test: No dirt remains in any square
- Cost: Each action costs 1

Figure 3.3 The state space for the vacuum world. Links denote actions: L = Left, R = Right, S = Suck.

Real-world example: Route-finding

- States: Specified set of locations (e.g. cities)
- Initial state: Any
- Actions: Following any edge (link) between current location and a neighboring location
- Transition model: As expected (arrive in the neighboring city)
- Goal test: Have you arrived in the goal city?
- **Cost:** Several possible choices:
 - Money: Price of tickets, gas, etc.
 - Time: Elapsed travel time via the given route

Solving a planning problem

Basic insight: We can model each planning problem $P = (X, x_0, A, R, G, C)$ as a weighted directed graph G = (X, E, w), where:

- Vertices of G are the states X
- Edge set E contains $i \to j$ iff there is an action $a \in A(i)$ for which j = R(i, a).
- The weight w(i,j) of an edge $(i,j) \in E$ is just the cost C(i,j).

Therefore: We can recast *planning* as *graph search*!

- Solution of planning problem $P \Leftrightarrow path$ from initial state x_0 to goal state in G
- Optimal solution of $P \Leftrightarrow minimum\text{-}cost\ path$ from x_0 to goal state in G

Payoff: We know how to search graphs efficiently [thanks CS ☺!]

Intermission

(over to "Planning I: Graph Search Methods" ...)