Property Prediction of HEAs using ML

Reference

Endsem ME793

Shiv Modi 19D100011

Background of the Problem

<u>Science Direct</u> - <u>Yield strength prediction of high-entropy alloys using machine learning</u>.

Why is it important?

Predicting the properties of HEAs is important for several reasons:

- 1. Material Design and Optimization
- 2. Performance Assessment
- 3. Cost Reduction
- 4. HEAs tend to have 'good' properties
- 5. Understanding Structure-Property Relationships

Overall, accurate prediction of properties of high-entropy alloys is essential for advancing the development and application of promising materials in various industries.

Fig1: https://www.isis.stfc.ac.uk/Pages/SH22 HEAs.aspx

Motivation & Objectives

Motivation:

- HEAs have many 'good' properties
- Traditional trial and error method is costly and time consuming
- Thus, a good ML model can help us in this pursuit
- Particularly, finding the relationship between alloy properties is of great scientific importance
- Further, a model that can predict alloy composition for a given set of requirements is highly desirable
- There are vast datasets available for HEAs

Fig2: Key Steps Reference

Objectives:

- Utilizing a Random Forest (RF) regressor model to predict yield strengths of MoNbTaTiW and HfMoNbTaTiZr at 800°C, 1200°C, and 1500°C. [1]
- Incorporating features like mixing of entropy, bulk modulus, valence electron concentration, and melting temperature in the ML model.
- Testing other algorithms like SVM[2], GP[3], KNN[4], NN[5] to predict other properties like UTS, phase type, Melting point, etc.

Data Analysis

- On left side, calculated the F-values and P-Values of all (103) features with respect to Bulk Modulus and D Bulk.
- The result was that there are about 50 key properties correlated with Bulk Modulus, and about 30 key properties correlated with D_Bulk.
- Rest of the properties had P values more than 10⁻³
- The bottom values commonly correspond to elements

	features		f_values	p_values			features	f_values	p_values
0	a (Å)	188	5.752281 7	.714943e-241	0	D _.	_elec_nega	320.565804	4.061945e-63
1	Elec_nega	123	5.266947 4	.480027e-182	1		D_Tm (K)	216.025241	8.687131e-45
2	Tm (K)	65	1.885366 2	.586338e-113	2		Zr	199.002622	1.158671e-41
3	VEC	30	5.140318	1.680523e-60	3		FCCp	187.965045	1.296955e-39
4	SSsp	24	3.778620	8.544190e-50	4		delta	133.417913	3.272282e-29
	featur	es	f_values	p_values			features	f_values	p_values
Ş	93	K	0.0	1.0		93	K	0.0	1.0
9	94 1	Ne	0.0	1.0		94	Ne	0.0	1.0
Ş	95	Ns	0.0	1.0		95	Ns	0.0	1.0
Ş	96	0	0.0	1.0		96	0	0.0	1.0
ę	97 (Os	0.0	1.0		97	Os	0.0	1.0
ç	98	Rb	0.0	1.0		98	Rb	0.0	1.0
Ş	99	S	0.0	1.0		99	S	0.0	1.0
10	00	Se	0.0	1.0	1	00	Se	0.0	1.0
10	01	Те	0.0	1.0	1	01	Te	0.0	1.0
10	02	TI	0.0	1.0	1	02	TI	0.0	1.0

Top 5 and Bottom 10 values for Bulk Modulus (left)
D_Bulk (right)

Data Analysis (Contd.)

- On the left, there are two bar plots- the top plot displays the average bulk modulus of HEAs that have a particular element, say Ag present in them Similarly, the bottom plot corresponds to the D_bulk parameter.
- The gaps in the plot are because of presence of no HEAs of the given elements, and this has been taken care of while cleaning the data
- This plot gives a clear direction about which elements to choose for a particular range of bulk modulus

Data Analysis (Contd.)

- These plots indicate the trends for the Bulk Modulus and its standard deviation with other property variables.
- Often, we can observe linear relationships for Bulk Modulus, but the D_Bulk (standard deviation) parameter often displays non-linear behavior
- Thus, it is logical to use a multilinear regression for the Bulk Modulus model.
- The exploratory data analysis (EDA) indicates that equivalent performance for D_bulk cannot be anticipated.

Results & Discussion

MULTILINEAR REGRESSION

- Employed a relatively simple model- multilinear regression using Linear Regression function.
- The results were good- r^2 value of 0.94 for a train-test split of 4:1.
- Performance for D_bulk was worse (as expected)- a
 r^2 score of only 0.69
- Still, proper feature selection needs to be done in this aspect as the model performance dipped to as low as $r^2 = 0.84$ when we tried to restrict features.

Results & Discussion

k-NEAREST NEIGHBOURS

- The key insight from employing the K-Nearest Neighbors (KNN) model lies in confirming the presence of non-linear relationships among variables.
- Utilized the KNeighborsRegressor function, leveraging its default settings.
- Achieved a test accuracy of o.84, notably surpassing the performance of the multilinear regression model.

Test accuracy: 0.84 KNN MSE: 115.18 KNN MAE: 6.69

KNN RMSE: 10.73

Results & Discussion

NEURAL NETWORK

- The important takeaway from this model is the verification of the non-linear relationship of variables.
- Used the MLPRegressor function, whose default activation function is the ReLu function.
- The test accuracy for this model was 0.88, significantly higher compared to the k nearest neighbour and multilinear regression model
- The RMSE, MSE and MAE values are also significant lower than previous model

Test accuracy: 0.88

NN MSE: 72.16 NN MAE: 4.12

NN RMSE: 8.49

Conclusion

- Observation of plots for model choice and correlation for feature selection has made the explanation of model differences possible.
- Multilinear regression, K-Nearest Neighbors (KNN), and Neural Networks display promising outcomes in predicting Bulk Modulus, outperforming their performance on D_Bulk.
- Notably, the neural network exhibits superior performance overall.
- The neural network demonstrates notable efficacy with D_bulk, attributed to its capability to capture non-linear relationships.
- Exploratory data analysis (EDA) proves instrumental in guiding model selection.

https://www.cell.com/joule/fulltext/S25 42-4351(18)30621-4

Thank you!