

POLITECHNIKA WARSZAWSKA

Wydział Matematyki i Nauk Informacyjnych

PRACA DYPLOMOWA MAGISTERSKA

ANALIZA MOŻLIWOŚCI WYKORZYSTANIA W ALGORYTMIE CMA-ES WIEDZY O OGRANICZENIACH KOSTKOWYCH

AUTOR:

INŻ. ROBERT JAKUBOWSKI

PROMOTOR:

dr hab. inż. Jarosław Arabas

PROF. NZW. PW

Warszawa Maj 2016

Spis treści

1	Stre	eszczenie	4	
2	Wstep			
	2.1	Cel pracy	5	
3	Tec	hniki uwzględniania ograniczeń	6	
	3.1	Transformacje rozwiązań	6	
		3.1.1 Powrót?	6	
		3.1.2 Rzutowanie	7	
		3.1.3 Reinicjalizacja	7	
		3.1.4 Odbicie	7	
		3.1.5 Próbkowanie	7	
		3.1.6 Zawijanie	8	
	3.2	Błądzenie przypadkowe	8	
	3.3	Metoda przeprowadzania testów	8	
	3.4	Wyniki testów	9	
	3.5	Wnioski	18	
4	Ber	nchmarki	19	
	4.1	Metoda przeprowadzania testów	19	
	4.2	Wnioski	19	
5	$\mathbf{W}\mathbf{p}$	oływ technik na efektywność CMA-ES	20	
	5.1	Algorytm CMA-ES	20	
6	Podsumowanie			
	6.1	Wyniki	21	
	6.2	Możliwości rozwoju	21	

1. Streszczenie

- 2. Wstęp
- 2.1. Cel pracy

3. Techniki uwzględniania ograniczeń

Niektóre problemy optymalizacyjne posiadają ograniczenia. Szukając rozwiązania należy zapewnić, że rozwiązanie będzie dopuszczalne. Zgodnie z ——łącze—— techniki, które w tym pomagają można podzielić w następujący sposób:

- definicja przestrzeni przeszukiwań zapewnienie, że podczas krzyżowań, mutacji
 i innych zmian punktów, żaden z punktów nie wypadnie poza przestrzeń przeszukiwań,
- modyfikacja funkcji celu zmienienie funkcji celu tak, aby funkcja celu dla punktów spoza ograniczeń zwracały gorsze wyniki,
- transformacja rozwiązań punkty, które są poza ograniczeniami zostają zamieniane na punkty, które znajdują się w ograniczeniach.

W tej pracy skupiono się na transformacji rozwiązań

3.1. Transformacje rozwiązań

Nie istnieje jedna technika transformacji rozwiązań spoza ograniczeń, na dopuszczalne. W kolejnych podrozdziałach opisane są metody transformacji rozwiązań, które były badane. Każda z technik jest opisana słownie oraz pseudokodem. Opis słowny zawiera wyjaśnienie, co się dzieje z punktem, który znalazł się poza ograniczeniem. W pseudokodzie zastosowane następujące oznaczenia:

- x punkt, który poddajemy naprawie
- \bullet x'- ojciec punktu x,czyli z punktu x'z zadanym rozkładem został wylosowany punktx
- x(i) wartość *i*-tej współrzędnej punktu x
- \bullet lb ograniczenie dolne
- \bullet ub ograniczenie górne

3.1.1. Powrót?

Nowy punkt zostaje odrzucony i wraca do poprzedniej pozycji.

x = x'

3.1.2. Rzutowanie

Punkt jest transformowany do najbliższego punktu, który spełnia ograniczenie. Oznacza to, że dla każdej współrzędnej sprawdzany jest warunek zawierania się w ograniczeniach. Dla współrzędnych, dla których nie jest on spełniony, wartość jest zamieniana na wartość ograniczenia (dolnego lub górnego), które jest najbliżej.

```
dla każdej współrzędnej i

jeżeli lb(i) > x(i)

x(i) = lb(i)

jeżeli ub(i) < x(i)

x(i) = ub(i)
```

3.1.3. Reinicjalizacja

Punkt jest przenoszony do pozycji początkowej. W tej pracy był to jednocześnie środek układu współrzędnych oraz środek symetrii ograniczeń.

$$x = x0$$

3.1.4. Odbicie

Dla każdej współrzędnej sprawdzane są warunki na ograniczenie. W przapadku współrzędnych, na których punkt jest poza ograniczeniem, wartość punktu tej współrzędnej jest symetrycznie odbita względem ograniczenia, którego warunek został złamany.

```
dla każdej współrzędnej i 

jeżeli lb(i) > x(i) 

x(i) = x(i) + 2 * (lb(i) - x(i)) 

jeżeli ub(i) < x(i) 

x(i) = x(i) - 2 * (x(i) - ub(i))
```

3.1.5. Próbkowanie

Punkt jest powtórnie losowany dopóty, dopóki spełnia ograniczenia kostkowe.

3.1.6. Zawijanie

Dla każdej współrzędnej sprawdzane są warunki na ograniczenie. W przapadku współrzędnych, na których punkt jest poza ograniczeniem, różnica, pomiędzy ograniczeniem a wartością współrzędnej punktu, jest zapamiętywana. Tę różnicę odkładamy na przeciwległym ograniczeniu po stronie, która jest wewnątrz ograniczenia. W tym miejscu znajduje się nowa wartość współrzędnej punktu. W intuicyjny sposób można to wyjaśnijć tak, że dla punktów nie ma ograniczeń, a przestrzeń przeszukiwań po każdym wymiarze jest jakby "zawinięta".

```
dla każdej współrzędnej i 

jeżeli lb(i) > x(i) 

x(i) = ub(i) - (lb(i) - x(i)) 

jeżeli ub(i) < x(i) 

x(i) = lb(i) + (x(i) - ub(i))
```

3.2. Błądzenie przypadkowe

Można się spodziewać, że algorytm CMA-ES dla funkcji stałej będzie zachowywał się analogicznie do błądzenia przypadkowego. Takie założenie skłoniło autorów, żeby przyjrzeć się błądzeniu przypadkowemu z ograniczeniami. Błądzenie przypadkowe jest algorytmem dużo prostrzym, niż CMA-ES, więc umożliwia szybsze testowanie i wyciąganie wniosków.

Niech $X_1, X_2, ...$ będą niezależnymi n-wymiarowymi zmiennymi losowymi o wartości oczekiwanej równej $\{0\}^n$. Błądzeniem przypadkowym nazywamy sekwencję zmiennych losowych:

$$S_0 = 0, S_i = X_1 + X_2 + \dots + X_i \tag{1}$$

3.3. Metoda przeprowadzania testów

W celu przeprowadzenia testów napisano szereg skryptów w języku MATLAB. Testy te obserwowały wpływ metod uwzględniania ograniczeń na ruch punktu. W rezultacie miały one pokazać rozkład prawdopodobieństwa punktu dla danej metody. Metody wybrane do testowania są takie jak w podrozdziale 3.1. Ponadto badano 2 różne metody losowania punktów: rozkład normalny oraz jednostajny. W przypadku rozkładu jed-

nostajnego losowano liczby z przedziału [-0.5; 0.5] (przedział zazwyczaj kilkukrotnie krótszy od ograniczeń kostkowych).

Skrypty

Skrypty zostały zbudowane zgodnie z poniższym pseudokodem.

3.4. Wyniki testów

Wykresy zamieszczone w tym rozdziałe są histogramami wystąpień punktu. Symulacje skryptów były uruchamiane z liczbą iteracji wynosząco od 1 miliona do 100 milionów. Szerokość przedziałów jest różna i była dobierana tak, aby jak najlepiej przedstawić interesujące fakty.

Powrót?

Rysunek 1: Rozkład normalny

Rysunek 2: Rozkład jednostajny

Rysunek 3: Rozkład normalny na dwóch wymiarach z kopiowaniem symetrycznym

Rzutowanie

Rysunek 4: Rozkład normalny na dwóch wymiarach z kopiowaniem symetrycznym

Rysunek 5: Rozkład normalny

Rysunek 6: Rozkład jednostajny

Reinicjalizacja

Rysunek 7: Rozkład normalny na dwóch wymiarach z kopiowaniem symetrycznym

Rysunek 8: Rozkład normalny na dwóch wymiarach z kopiowaniem symetrycznym; oddzielne histogramy dla obu wymiarów

Rysunek 9: Rozkład normalny

Rysunek 10: Rozkład jednostajny

Odbicie

Rysunek 11: Rozkład normalny na dwóch wymiarach z kopiowaniem symetrycznym

Rysunek 12: Rozkład jednostajny

Próbkowanie

Rysunek 13: Rozkład normalny na dwóch wymiarach z kopiowaniem symetrycznym

Rysunek 14: Rozkład normalny

Rysunek 15: Rozkład jednostajny

Zawijanie

Rysunek 16: Rozkład normalny na dwóch wymiarach z kopiowaniem symetrycznym

Rysunek 17: Rozkład jednostajny

3.5. Wnioski

4. Benchmarki

Zgodnie z założeniami poczynionymi w rozdziale 3.2 testy algorytmu CMA-ES powinny przynieść rezultaty zbliżone do testów błądzenia przypadkowego.

4.1. Metoda przeprowadzania testów

Do przeprowadzania testów została użyta biblioteka przygotowana przez Nikolausa Hansena, współautora algorytmu CMA-ES. Podobnie, jak w przypadku błądzenia przypadkowego, wykorzystano implementację w języku MATLAB —przypis—.

4.2. Wnioski

5. Wpływ technik na efektywność CMA-ES

5.1. Algorytm CMA-ES

Klasyczne algorytmy ewolucyjne nie dostosowują się do charakterystyki optymalizowanej funkcji. W większości z nich rozkład prawdopodobieństwa losowanych punktów jest stały. Z tego faktu wynika problem dobrania parametrów przeszukiwania. Na przeciw tym problemom wychodzi algorytm CMA-ES, który w swej idei ma dopasowywać się do badanej funkcji.

Rozwinięcie akronimu CME-ES podpowiada, w jaki sposób jest to realizowane: Covariance Matrix Adaptation - Evolution Strategy (adaptacja macierzy kowariancji - strategia ewolucyjna). Punkty losowane są na podstawie macierzy kowariancji, która jest w każdej iteracji dostosowywana do aktualnej sytuacji przeszukiwań.

Szczegóły

6. Podsumowanie

- 6.1. Wyniki
- 6.2. Możliwości rozwoju

Literatura

Oświadczenie

Oświadczam, że pracę magisterską pod tytułem "Analiza możliwości wykorzystania w algorytmie CMA-ES wiedzy o ograniczeniach kostkowych", której promotorem jest dr hab. inż. Jarosław Arabas prof. nzw. PW, wykonałem samodzielnie, co poświadczam własnoręcznym podpisem.

.....