

Shastadari

Sezimal Units of Measurement

"Light said: I know nothing of your time, and yet, I lift your day from darkness, I nourish all life, I lead your thoughts into the infinite; follow me, if only in your pace, and I shall let you see all, and measure all there is."

Shastadari is a coherent system of Units of Measurement based on the same physical constants as the International System of Units, known as the S.I., from it's original French name "Système international d'unités", with the following differences:

- 1st, values are expressed using base six (sezimal) instead of base ten (decimal);
- 2^{nd} , the most important one, is that time is measured in agrimas instead of seconds, and, since the agrima is 1.504 1.851 times bigger than the second, all units adjust accordingly;
- 3rd, in order to mark the difference of both the time unit and the base used, the names of the units are inspired in Sanskrit, instead of Latin or Greek, or names of people, like in the SI; hence, Shastadari, which means Sezimal, in steps of six, in Sanskrit (see in the Appendix Names, the original words in Sanskrit, their original pronunciation and meaning, and how we used them);
- 4th, prefixes are not limited to a pre-determined set, but are constructed from the exponents themselves, through a series of regular affixes;
 - $\mathbf{5}^{\underline{th}}\!,$ the units' symbols are always formed by three lower case letters;

It's 11 7 base units are:

- 1. the **agrima**, the unit of time (symbol **agm**), defined based on the hyperfine transition frequency of Cs Δv_{cs} ;
- 2. the pada, the unit of length (symbol pad), based on the speed of light c and the agrima;
- 3. the **dravya**, the unit of mass (symbol **drv**), based on the Planck constant h, the pada and the agrima;

- 4. the **dara**, the unit of electric current (symbol **dar**), based on the elementary charge *e* and the agrima;
- 5. the **gatika**, the unit of thermodynamic temperature (symbol **gtk**), based on the Boltzmann constant k_B , the dravya, the pada and the agrima;
- 10. the **matra**, the unit of amount of substance (symbol **mtr**), base on the Avogadro constant N_4 ;
- 11. the **tivrata**, the unit of luminous intensity (symbol **tvt**), based on the luminous efficacy of 2.5121 0310 5104 TSavt, the dravya, the pada and the agrima;

Prefixes

Prefixes are formed by combining one or more affixes for the power represented by the prefix, and an infix that shows if the exponent is positive or negative;

The symbols for the prefixes are the combination of the first letter of each digit affix, uppercase when the exponent is positive, lowercase when negative;

So, for each digit of the exponent, we will combine the following:

Digit	Affix	+ Exp. Sym.	- Exp. Sym.
0	shun	S	s
1	eka	E	е
2	di	D	d
3	tri	T	t
4	cha	С	c
5	pan	Р	р

Positive Exponent Infix Negative Exponent Infix ma ti

For euphonic reasons, the <n> at the end of <shun> and <pan> is dropped when they are used imediately before <ma>.

To convert to and from S.I. prefixes, find the exponent conversion factor using the formula:

Shast.
$$\rightarrow$$
 S.I. \rightarrow Shast.
 $14^d \div 10^s$ $10^s \div 14^d$ and d is the absolute sezimal exponent, and d is the absolute decimal one

Finally, if the exponents are positive, divide the original number by the calculated factor; if they're negative, multiply;

With that in mind, we can create a mapping for which Shastadari prefix can accommodate all the magnitude expressed by a SI prefix, or, in other words, which Shastadari prefix is roughly equivalent to which SI prefix:

Positive Exponents

Shastadari		astadari	Factor		~ S.I.		
10 ^x	Sym.	Name	÷ to S.I	÷ to Shast.	Name	Sym.	14 ^x
+1	E	ekama	1.4 da	0.6 E			
+2	D	dima	0.14 da	3.6 D	deca	da	+1
+3	Т	trima	0.244 h	2.16 T	hecto	h	+2
+4	С	chama	0.4344 k	1.296 C	kilo	k	+3
+5	Р	pama	0.0434 4 k	7.776 P			
+10	ES	ekashuma	0.0043 44 k	46.656 ES			
+11	EE	eka eka ma	0.0004 344 k	279.936 EE			
+12	ED	ekadima	0.3323 3344 M	1.679 616 ED	mega	М	+10
+20	DS	dishuma	0.2431 2124 5344 G	2.176 782 336 DS	giga	G	+13
+24	DC	dichama	0.2043 2210 1030 1344 T	2.821 109 907 456 DC	tera	Т	+20
+32	TD	tridima	0.1350 2453 3540 4331 3344 P	3.656 158 440 062 976 TD	peta	Р	+23
+40	CS	chashuma	0.1133 3022 2253 5553 0432 5344 E	4.738 381 338 321 616 896 CS	еха	E	+30
+44	СС	cha cha ma	0.0551 0131 0423 0421 4411 1334 1344 Z	6.140 942 214 464 815 497 216 CC	zetta	Z	+33
+52	PD	pandima	0.0430 5014 3110 4401 4251 2151 1035 3344 Y	7.958 661 109 946 400 884 391 936 PD	yotta	Υ	+40
+100	ESS	eka shun shuma	0.0325 3521 2433 0015 0430 2345 1012 5140 5344 R	10.314 424 798 490 535 546 171 949 056 ESS	ronna	R	+43
+104	ESC	ekashunchama	0.0240 5413 1352 3532 3301 2011 1021 3040 2042 1344 Q	13.367 494 538 843 734 067 838 845 976 576 ESC	quetta	Q	+50

Negative Exponents

Shastadari		astadari	Factor		~ S.I.		
10*	Sym.	Name	× to S.I	× to Shast.	Name	Sym.	14 ^x
-1	е	ekati	1.4 d	0.6 e			
-2	d	diti	0.14 d	3.6 d	deci	d	-1
-3	t	triti	0.244 c	2.16 t	centi	С	-2
-4	С	chati	0.4344 m	1.296 c	milli	m	-3
-5	р	pan <mark>ti</mark>	0.0434 4 m	7.776 p			
-10	es	ekashunti	0.0043 44 m	46.656 es			
-11	ee	eka eka ti	0.0004 344 m	279.936 ee			
-12	ed	ekaditi	0.3323 3344 μ	1.679 616 ed	micro	μ	-10
-20	ds	dishunti	0.2431 2124 5344 n	2.176 782 336 ds	nano	n	-13
-24	dc	dichati	0.2043 2210 1030 1344 p	2.821 109 907 456 dc	pico	р	-20
-32	td	triditi	0.1350 2453 3540	3.656 158 440	femto	f	-23
32	tu	titutt	4331 3344 f	062 976 td	Tellito	•	23
-40	CS	chashunti	0.1133 3022 2253 5553 0432 5344 a	4.738 381 338 321 616 896 cs	atto	а	-30
			0.0551 0131 0423 0421	6.140 942 214 464			
-44	CC	cha cha ti	4411 1334 1344 z	815 497 216 cc	zepto	z	-33
F2	n, al	n an dist	0.0430 5014 3110 4401	7.958 661 109 946			110
-52	pd	panditi	4251 2151 1035 3344 y	400 884 391 936 pd	yocto	У	-40
-100	ess	eka shun shunti	0.0325 3521 2433 0015	10.314 424 798 490	ronto	r	-43
.00		CROSHAHSHAHL	0430 2345 1012 5140 5344 r	535 546 171 949 056 ess	10/10	•	13
			0.0240 5413 1352 3532	13.367 494 538 843			
-104	esc	ekashunchati	3301 2011 1021 3040	734 067 838 845	quecto	q	-50
			2042 1344 q	976 576 esc			

Units

Time and frequency

Formally, the base unit of time is the **agrima** (symbol **agm**), that is defined as the fixed numerical value of the Caesium frequency, Δv_{cs} , the unperturbed ground-state hyperfine transition frequency of the Caesium 341 133 atom, to be 11,4531,1421,2434.4 17,023,392,166. $\overline{6}$ when expressed in the unit **avrita** (symbol **avt**), which is equal one cycle or event per agrima, or agm⁻¹.

Compare it to the S.I. definition of the second: Second

Civil time is divided as such:

```
1 day is comprised of 100,0000 46,656 agrimas (symbol agm);
```

1 day is divided into 100 36 utas (symbol uta);

1 uta is divided into 100 36 poshas (symbol psh);

55:55:55(.555555)

1 posha is divided into 100 36 agrimas (symbol agm);

1 agrima is divided into 100 36 anugas (symbol ang);

1 anuga is divided into 100 36 bodas (symbol bod).

Since civil time is coherently measured in regular powers of six, civil time can also be expressed in terms of agrimas or days, using prefixes:

	Agrima	Day
day	10 ⁺¹⁰ ekashuma agrima ES agm	— x —
ddy	100,0000 46,656 agm	- x -
uta	10 ⁺⁴ chamaagrima Cagm	10 ⁻² di <mark>ti</mark> day dday
utu	1,0000 1,296 agm	0.01 0.027 day
posha	10 ⁺² dimaagrima Dagm	10 ⁻⁴ chatiday cday
розпа	100 36 agm	0.0001 0.000 771 604 day
agrima		10 ⁻¹⁰ ekashuntiday esday
agrina	— x —	0.0000 01 0.000 021 433 day
anuaa	10 ⁻² <mark>diti</mark> agrima dagm	10 ⁻¹² ekaditi day ed day
anuga	0.01 0.02 7 agm	0.0000 0001 0.000 000 595 374 day
boda	10⁴ <mark>chati</mark> agrima c agm	ekachatiday ecday
Doud	0.0001 0.000 771 604 agm	0.0000 0000 01 .000 000 016 538 171 day

	Time				
1 agm	1.504 s	1 s	0.3123 50 agm		
agrima	1.851 s	second	0.54 agm		
	Fre	equency			
1 avt	1.504 Hz	1 Hz	0.3 123 50 avt		
avrita	1.851 Hz	Hertz	0.54 avt		
Civil Time					
1 uta	0.4 h	1 h	1.3 uta		
uta	0. 6 h	hour	1.5 uta		
1 psh	1.04 min	1 min	1.5 2 psh		
posha	1.1 min	minute	0.9 psh		
1 agm	1.504 s	1 s	0.3 123 50 agm		
agrima	1.851 s	second	0.54 agm		
1 ang	0.0150 4 s	1 s	31.2350 1 ang		
anuga	0.051 440 s	second	19.44 ang		
1 bod	0.0001 504 s	1 s	3123. 5012 3 bod		
boda	0.001 428 s	second	699.84 bod		

Length, Speed, Acceleration, Area, Volume

The unit of length is the **pada** (symbol **pad**), defined as the path travelled by light in a vacuum during a time interval of $\frac{1}{1352.5510.4032}$ $\frac{1}{1995.594.916}$ of an agrima.

Compare it to the S.I. definition of the metre: Metre

From the pada and the agrima, we define the following coherent derived units:

1 vega (symbol veg) is a speed of 1 pada per 1 agrima (pad · agm^{-1} ; pad / agm), or 1 pada times 1 avrita (pad · avt);

1 **tevara** (symbol **tvr**) is an acceleration of 1 pada per 1 square agrima (pad \cdot agm⁻²; pad / agm²), or 1 pada times 1 square avrita (pad \cdot avt²);

1 keshe (symbol ksh) is an area of 1 square pada (pad²);

1 aytan (symbol ayt) is a volume of 1 cubic pada (pad³);

Pay attention that, for the square and cubic units, prefixes act on the unit itself, and are not affected by the exponent (square or cube) of the original unit, so that:

```
1 Cksh = 1 Dpad<sup>2</sup> = 1,0000 ksh = 1,0000 pad<sup>2</sup>,

but 1 Cpad<sup>2</sup> = 1 EDksh = 1,0000,0000 ksh = 1,0000,0000 pad<sup>2</sup>

1 cksh = 1 dpad<sup>2</sup> = 0.0001 ksh = 0.0001 pad<sup>2</sup>,

but 1 cpad<sup>2</sup> = edksh = 0.0000 0001 ksh = 0.0000 0001 pad<sup>2</sup>

1 Cayt = 10 Epad<sup>3</sup> = 1,0000 ayt = 1,0000 pad<sup>3</sup>,

but 1 Cpad<sup>3</sup> = 1 DSayt = 1,0000,0000,0000 ayt = 1,0000,0000,0000 pad<sup>3</sup>

1 cayt = 0.1 epad<sup>3</sup> = 0.0001 ayt = 0.0001 pad<sup>3</sup>,

but 1 cpad<sup>3</sup> = 1 dsayt = 0.0000 0000 0001 ayt = 0.0000 0000 0001 pad<sup>3</sup>
```

For civil or day-to-day measure of volume, it may be more convenient to deal with a smaller, even though non-coherent, unit:

1 varti (symbol vrt) is a volume of 1 chatiaytan cayt = $0.0001 \, 0.0007 \, \overline{716049382}$ aytan, that is equal to $0.0001 \, 0.0007 \, \overline{716049382}$ pad³.

		Length	
1 pad	0.532 m	1 m	1.0251 4 pad
pada	0.925 m	metre	1.08 pad
1 Cpad	1.1 km	1 km	0.5 Cpad
chamapada	1.2 km	1 kilometre	0.83 Cpad
1 tpad	0.2323 32 cm	1 cm	2.1555 1504 tpad
tritipada	0.428 669 cm	1 centimetre	2.332 8 tpad
1 cpad	0.4141 532 mm	1 mm	1.2221 5524 cpad
chatipada	0.714 449 mm	millimetre	1.399 68 cpad
		Speed	
1 veg	0.3 m/s	1 m/s	2 veg
vega	0.5 m/s	metre per second	2 veg
1 veg	1.4 km/h	1 km/h	0.32 veg
vega	1.8 km/h	kilometre per hour	0. 5 veg

Since veg = pad/agm, and since the relation between agrimas and utas (chamaagrimas) is the same as padas and chamapadas, i.e., $1,0000\ 1,296$, vegas are the same for pad/agm and Cpad/uta or Cpad/Cagm, quite unlike km/h vs. m/s

		Acceleration	
1 tvr	$0.13\overline{41}\overline{530}\text{m}/\text{s}^2$	1 m / s ²	3.412 tvr
tevara	$0.27 \text{ m}/\text{s}^2$	metre per square second	3. 703 tvr
		Area	
1 ksh	0.5051 04 m ²	1 m ²	1.0555 3532 ksh
keshe	0.857 338 m ²	square metre	1.166 4 ksh
1 EDksh	1.2350 1 km ²	1 km ²	0.41 EDksh
ekadimakeshe	1.44 km²	square kilometre	0.69 4 Cksh
		Volume	
1 ayt	0.4432 4501 2 m ³	1 m ³	1.1320 3304 ayt
aytan	0.793 832 m ³	cubic metre	1.259712 ayt
1 vrt	0.0000 4432 4501 2 m ³	1 m ³	1,1320.3304 2330 vrt
varti	0.000 612 m ³	cubic metre	1,632.586 752 vrt
1 vrt	0.3401 4554 3301 2 L	1 L	1.3443 4554 vrt
varti	0.612 524 L	litre	1.632 586 752 vrt

Mass and Density

The unit of mass is the **dravya** (symbol **drv**), defined by taking the fixed numerical value of the Planck constant h to be:

 $3.4543\,0014\,0450\,1501\,1250\,1044\,2053\,2541\,1323\,3341\,4355\,5032$ $1540\,3052\,5124\,5313\,1411\,3320\,1222\,2211\,5234\,5401\,5451\,1430$ $1230\,5132\,5410\,0552\,4411\,0511\,5342\,1551\,5255\,1010\,0200\,3043$ $2305\,0430\,0125\,4215\,1435\,0432\,0053\,4054\,4332\,3335\,0321\,4555$ $3425\,4445\,3430\,5013\,4354\,3331\,\times\,10^{-111}$

when expressed in the unit kry·agm, which is equal to drv·pad²·agm⁻¹, where the pada and the agrima are defined in terms of c and Δv_{Cs} .

1.252 140 30 × 10⁻³³ [2 × 6.626 070 15 × 10⁻³⁴]

Defined in terms of those units, the dravya is formulated as:

$$drv = c^2 \div (h \times aqm) h \cdot \Delta v_{cs} \cdot c^{-2}$$

$$drv = (1352,5510,4032)^2 \div (3.4543\,0014... \times 10^{-111} \times 11,4531,1421,2434.4) \ \textbf{h} \cdot \Delta \textbf{v}_{cs} \cdot \textbf{c}^{-2} \\ drv = (599,584,916)^2 \div (1.252\,140\,30 \times 10^{-33} \times 17,023,392,166.\overline{6}) \ \textbf{h} \cdot \Delta \textbf{v} \ \textbf{C} s \cdot \textbf{c}^{-2}$$

drv ≈ 3.1414 3120 5233 4521 1233... ×
$$10^{51}$$
 h · Δv_{cs} · c⁻²
drv ≈ 1.593 563 111 714 092... × 10^{40} h · Δv_{cs} · c⁻²

Compare it to the S.I. definition of the kilogram: Kilogram

From the dravya and the pada, we define the following coherent derived unit:

1 **gana** (symbol **gan**) is a density of 1 dravya per 1 cubic pada ($drv \cdot pad^{-3}$; drv / pad^{3}), or 1 dravya per 1 aytan ($drv \cdot ayt^{-1}$; drv / ayt);

There are also the following non-coherent units:

1 taranga (symbol trg) is a mass of 1 chamadravya Cdrv = 1,0000 1,296 dravyas.

1 manu (symbol mnu) is a mass of

2.3505 3001 2141 2314 0410 1152 0230 3041 4551 3131 5555 4200 5050 3515 \times 10⁻⁵⁵ 1.537 536 172 73 $\overline{148}$ x 10⁻²⁷ drv, equivalent to $\frac{1}{20}$ $\frac{1}{12}$ of the mass of an unbound neutral atom of carbon-20 carbon-12 in its nuclear and electonic ground state and at rest.

		Mass	
1 drv	1. 0251 4 kg	1 kg	0.532 drv
dravya	1.08 kg	kilogram	0.925 drv
1 cdrv	0.5 g	1 g	1. 1 cdrv
chatidravya	0.8 3 g	gram	1.2 cdrv
1 eddrv	0.3505 2 mg	1 mg	1.3155 3122 eddrv
ekaditidravya	0.643 004 mg	milligram	1.555 2 eddrv
1 trg	1,0251.40251 kg	1 kg	0.0000 532 trg
taranga	1,399.68 kg	kilogram	0.000714449 trg
1 trg	1.2221 5524 t	1 t	0.4141 5320 trg
taranga	1.399 68 t	tonne	0.714 449 trg
1 manu	1 dal	1 dal	1 mnu
mnu	1 dal	Dalton	1 mnu

	Density					
1 gan	1.2055 1055 kg/m ³	1 kg / m ³ kilogram per cubic metre	0.4224 3331 5224 gan			
gana	1.360 488 960 kg/m ³		0.735 029 gan			

Mechanical Units

Force / Weight, Pressure, Energy / Work / Heat, Power

The set of coherent units defined below, defined from the dravya, the pada, and the agrima, all have a lot of interrelationship between then:

1 **bara** (symbol **bar**) is a force or weight of 1 dravya times 1 pada per 1 square $agrima (drv \cdot pad \cdot agm^{-2}; (drv \cdot pad) / agm^{-2});$

1 daba (symbol dab) is a pressure of 1 dravya per 1 pada per 1 square agrima $(drv \cdot pad^{-1} \cdot agm^{-2}; drv / (pad \cdot agm^2));$

1 karya (symbol kry) is the work done when a force of 1 bara displaces a mass of 1 dravya through a distance of 1 pada, or 1 dravya times 1 square pada per 1 square agrima $(drv \cdot pad^2 \cdot agm^{-2})$;

1 **shati** (symbol **sht**) is the rate at which work is done, when an object velocity is held constant at 1 pada per 1 agrima against a constant opposing force of 1 bara, or 1 dravya times 1 square pada per 1 cubic agrima $(drv \cdot pad^2 \cdot agm^{-3}; (drv \cdot pad^2) / agm^3);$

Unit	Can be expressed as
bara	drv·pad·agm⁻²; drv·pad·avt²
bar	drv·tvr
daba	drv·pad⁻¹·agm⁻²; drv·pad⁻¹·avt²
dab	bar∙pad⁻²; bar·ksh⁻¹
	kry∙pad ⁻³ ; kry∙ayt ⁻¹
karya	drv·pad²·agm⁻²; drv·ksh·avt²
kry	bar·pad
	dab·pad³; dab·ayt
	sht·agm

shati drv·pad²·agm⁻³; drv·ksh·avt³

sht kry·agm⁻¹; kry·avt

bar·pad·agm⁻¹; bar·pad·avt

dab·pad³·agm⁻¹; dab·ayt·avt

	Force / Weight					
1 bar	0.1425 5252 N	1 N	3.2324 24 bar			
bara	0.291 600 N	Newton	3.429 355 bar			
	Pressure					
1 dab	0.2012 4442 Pa	1 Pa	2.5350 2211 3344 dab			
daba	0.340 122 240 Pa	Pascal	2.940 119 dab			
	Energ	y / Work / Heat				
1 kry	0.1341 5304 J	1 J	3.412 kry			
karya	0.27 Ј	Joule	3. 703 kry			
Power						
1 sht	0.0512 5424 W	1 W	10.5052 52 sht			
shati	0.145 8 W	Watt	6.858 710 sht			

Electro-Magnetic Units

Electric Current, Charge, Potential Difference, Resistance, Conductance, Inductance, Capacitance, Magnectic Flux and Magnectic Flux Density

The dara (symbol dar) is the unit of electric current and it is defined by fixing the numerical value of the elementary charge e to be

 $4.3155\,1540\,3043\,1014\,4532\,5122\,0312\,3253\,1454\,3223\,0423\,4513\times 10^{-41}$

when expressed in the unit of electric charge avesha (vsh), and the dara as equal to 1 avesha per 1 agrima (vsh \cdot agm⁻¹; vsh/agm), or:

4.1335 0242 1135 1021 3252 × 10⁻³⁵

electrons worth of charge moving past a point in an agrima. From the dara and the avesha, we derive the following coherent units:

vibava (symbol **vbv**) is the electric potential difference of 1 karya per 1 avesha (kry/vsh);

pratiroda (symbol **ptr**) is the measure of electrical resistance, given by 1 vibava per 1 dara (vbv/dar);

chalana (symbol **chl**) is the measure of electrical conductance, given by 1 dara per 1 vibava (dar/vbv), or the inverse of the pratiroda (1/ptr);

preraka (symbol **prk**) is the measure of electrical inductance, given by 1 pratiroda times 1 agrima ($ptr \cdot agm$);

samai (symbol **sam**) is the measure of electrical capacitance, given by 1 avesha per 1 vibava (vsh/vbv);

abiva (symbol **abv**) is the measure of a magnetic flux of 1 vibava per 1 agrima (vbv/agm);

vistara (symbol **vst**) is the mesure of the density of a magnectic flux of 1 abiva per 1 keshe, or 1 abiva per 1 square pada (abv/ksh; abv/pd^2);

As with the mechanical units, here are the interrelations between those units defined above:

Unit	Can be expressed as	
dara	vsh·agm ⁻¹	
dar		
avesha	dar·agm	
vsh		
vibava	cry·vsh ⁻¹	
vbv	dar·ptr	
	abv · agm ⁻¹	
	sht·dar ⁻¹	
	drv·ksh·agm ⁻³ ·dar ⁻¹ ; drv·pad ² ·agm ⁻³ ·dar ⁻¹	
pratiroda	vbv·dar⁻¹	
ptr	chl ⁻¹	

	1. 1.2
	sht·dar ⁻²
	vbv ² · sht ⁻¹
	agm·sam ⁻¹
	prk·agm ⁻¹
	kry·agm·vsh ⁻²
	drv·ksh·agm ⁻¹ ·vsh ⁻² ; drv·pad ² ·agm ⁻¹ ·vsh ⁻²
	kry·agm ⁻¹ ·dar ⁻²
	drv·ksh·agd ⁻³ ·dar ⁻² ; drv·pad ² ·agm ⁻³ ·dar ⁻²
chalana	dar·vbv ⁻¹
chl	ptr ⁻¹
	dar²·sht⁻¹
	sht · vbv ⁻²
	sam·agm ⁻¹
	agm · prk⁻¹
	vsh ⁻² ·kry ⁻¹ ·agm ⁻¹
	agm·vsh²·drv⁻¹·ksh⁻¹; agm·vsh²·drv⁻¹·pad⁻²
	agm · dar² · kry ⁻¹
	agm³·dar²·drv⁻¹·ksh⁻¹; agm³·dar²·drv⁻¹·pad⁻²
preraka	ptr·agm
prk	ptr·vrt ⁻¹
•	drv · ksh · agm ⁻² · dar ⁻² ; drv · pad ² · agm ⁻² · dar ⁻²
	bar·pad·dar ⁻²
	drv·ksh·vsh ⁻² ; drv·pad ² ·vsh ⁻²
	kry · dar ⁻²
	vrt·ksh·dar-1; vrt·pad²·dar-1
	abv·dar ⁻¹
	vbv · agm · dar ⁻¹
	agm²·sam-1
samai	vsh·vbv ⁻¹
sm	agm ⁴ ·dar ² ·ksh ⁻¹ ·drv ⁻¹ ; agm ⁴ ·dar ² ·pad ⁻² ·drv ⁻¹
	$agm^2 \cdot vsh^2 \cdot ksh^{-1} \cdot drv^{-1}$; $agm^2 \cdot vsh^2 \cdot pad^{-2} \cdot drv^{-1}$
	dar·agm·vbv-1
	sht · agm · vbv ⁻²
	kry·vbv ⁻²
	bar·drv·vbv ⁻²
	vbv ² ·kry ⁻¹
	vbv ² ·bar ⁻¹ ·drv ⁻¹
	agm·ptr-1
	ptr ⁻¹ ·vst ⁻¹
	ptr··vst·

Electric Current				
1 dar	0.3 1235 0 A	1 A	1.504 dar	
dara	0.54 A	Ampere	1.851 dar	
	El	lectric Charge		
1 vsh	1 C	1 C	1 vsh	
avesha	1 C	Coulomb	1 vsh	
	Electric	Potential Difference		
1 vbv	0.1341 5304 V	1 V	3.412 vbv	
vibava	0.27 V	Volt	3.703 vbv	
	Elect	trical Resistance		
1 ptr	0.3 Ω	1 Ω	2 ptr	
pratiroda	0.5 Ω	Ohm	2 ptr	
	Electi	rical Conductance		
1 chl	2 S	1 S	0.3 chl	
chalana	2 S	Siemens	0.5 chl	
	Elect	rical Inductance		
1 prk	0.532 H	1 H	1.0251 4 prk	
preraka	0.925 H	Henry	1.08 prk	
	Elect	rical Capacitance		
1 sam	3.412 F	1 F	0.1341 5304 sam	
samai	3. 703 F	Farad	0.27 sam	
Magnectic Flux				
1 abv	0.3 Wb	1 Wb	2 abv	
abiva	0.5 Wb	Weber	2 abv	
Magnectic Flux Density				
1 vst	0.3255 4544 T	1 T	1.4142 12 vst	
vistara	0.583 2 T	Tesla	1.714 677 vst	

Temperature

1 gatika (symbol gtk) corresponds to a change of thermal energy kT by

 $1.3013\,2354\,1345\,2021\,5010\,3323\,3340\,5002\,2302\,2114\,5503\,3222\times 10^{-45}\,\mathrm{kry}$

so that the Boltzmann constant k if defined exactly as

 $k = 1.301323541345202150103323334050022302211455033222 \times 10^{-45} \, \text{kry} \cdot \text{gkt}^{-1}$

For civil temperature, we define the **tapa** (symbol **tap**), equal to the gatika, which scale starts 1325.2343 341.437 5 gtk, so that 1 tap equals to the temperature change of 1 gtk.

Contrary to the recommendation of the S.I. board to not use ° with Kelvin, usign just K, we can use °G for the gatika and for the tapa, as a parallel to °C for Celsius degrees, also called centigrade degrees, we can °S for the tapa, for sezimal degrees;

Thermodynamic Temperature			
1 gtk	0.4 K	1 K	1.13 gtk
gatika	0.8 K	Kelvin	1.25 gtk
Civil Temperature			
1 tap	0. 4 °C	1 °C	1.13 tap
	0.8 °C	Degree Celsius	1.25 tap

	Gatika	Kelvin	Celsius	Тара
Absolute zero	0	0	-273.15	-1325.2343
Lowest recorded surface temperature on Earth	1021.5343	183.95	-89.2	-303.3
Ice melts	1325.2343	273.15	0	0
Triple point of water	1325.241	273.16	0.01	0.0024 1
Average surface temperature on Earth	1400.1043	288.15	15	30.43
Comfortable room temperature - lowest threshold	1403	290.75	18	34
Comfortable room temperature - highest threshold	1415	297.15	24	50
Human body hypothermia threshold below	1441.1043	308.15	35	112
Average human body temperature	1443.2343	309.95	36.8 ± 0.7	114 ± 1
Human body fever threshold above	1444.1513	310.65	37.5	115
Highest recorded surface temperature on Earth	1525.5343	331.15	58	200.3
Water boils	2054.2343	373.15	100	325
The surface of the Sun	5,3224	5,773	5,500	5,1455

The average human body temperature is $1442.3213 \sim 1443.2343 \sim 1444.1513$ gtk = $113.043 \sim 114 \sim 114.513$ tap (fever is 115 and above, hypothermia 112.5 and below);

Comfortable room temperatures are between $1404 \sim 1420 \text{ gkt} \cong 34.3 \sim 50.3 \text{ tap}$;

Appendix

"Light said: I know nothing of your time, and yet, I lift your day from darkness, I nourish all life, I lead your thoughts into the infinite; follow me, if only in your pace, and I shall let you see all, and measure all there is."

Names

Original Transliteration Pronunciation	Meaning	Used as base for
षष्ठाधारी ṣaṣṭhādhārī / ṣəṣṭ ^h aːd̯ʰaːriː /	षष्ठा şaşṭhā = sixth, धारी dhārī = flows; that flows in sixths, sezimal	Shastadari
शून्य	Zero 0	shun

śūnya / cu:njə /		
एक eka / e:kə /	One 1	eka
द्वि drvi / dvi /	Two 2	di
त्रि tri / tুri /	Three 3	tri
चतुर् catur / cət̪ur /	Four 4	cha
पञ्चन् pañcan / pəɲcən /	Five 5	pan
मह maha / məĥə /	Abundant, great	ma
षष्ठ्य şaşţhya / şəşt ^h jə/	One-sixth (it also has a bouba/kiki effect when paired with ma)	ti
उत्थानम् utthānam / uttʰa:nəm /	Lift up	uta
पोषण poṣaṇa / po:ʂəղə /	Nourishing	posha
अग्रिम agrima / əgrimə /	Leading, preceding, first	agrima
अनुगामी anugāmī / ənuga:mi: /	Follower	anuga
बोध	Knowledge	boda

bo:d ^h ə /		
पद pada / pədə /	Pace, step	pada
द्रव्यमान dravyamāna / d̯rəvjəma:nə /	Mass; द्रव्य dravya = thing	dravya
तरंग taraṃga /t̪ərəʰgə/	Wave; the original etymology for tonne is a Proto-Celtic word for wave	taranga
परमाणु paramāṇu /pərəma:ղu/	Atom	manu
आयतन āyatana / a:jət̪ənə /	Volume; the Hindi pronunciation is aytan / a:j.t̪ən / [ä:j.t̪ə̄n̪]	aytan
वर्ती vartī / vərţi:/	Wrap, bandage, object rolled round, hence, container for a volume (it also lightly resembles vase)	varti
वेग vega / ve:gə /	Speed	vega
क्षेत्रफल kṣetraphala / kṣe:t̪rəp ^h ələ /	Area	keshe
घनत्व ghanatva / g ^h ənət̯və /	Density	gana
भार bhāra / b ^h a:rə /	Load, weight	bara
दाब dāba / d̯a:bə /	Pressure	daba

कार्य kārya / ka:rjə /	Work (physical)	karya
शक्ति śakti / ɕəkt̪i /	Power (physics)	shati
धारा dhārā / dۣ ^h a:ra: /	Stream (as in electric stream or current)	dara
आवेश āveśa / a:ve:ɕə /	Charge (as in electric charge)	avesha
विभव vibhava /vib ^h əvə/	Potencial	vibava
प्रतिरोध pratirodha /prəţiro:dۣ ^h ə/	Resistance	pratiroda
चालन cālana /ca:lənə/	Conductance	chalana
प्रेरकत्व prerakatva /pre:rəkət̪və/	Inductance, persuasion	preraka
समाई samāī /səma:i:/	Capacitance	samai
अभिवाह abhivāha /əb ^h iva:ĥə/	Flow	abiva
विस्तार vistāra /vistृa:rə/	Expansion, spread	vistara
ऊष्मागतिक ūṣmāgatika /u:ṣma:gəṯikə/	Thermodynamic, literally "the motion of steam"; गतिक gatika is motion, going, and ऊष्मा ūṣmā, vapor, steam	gatika

तापमान tāpamāna /t̪a:pəma:nə/	Temperature, literally "heat measurement"; ताप is heat, मान is measurement	tapa
मात्रा mātrā /ma:t̪ra:/	Quantity, amount (mole)	matra
तीव्रता tīvratā /t̯i:vrət̞a:/	Intensity (candela)	tivrata
कोण kōṇa /ko:ղə/	Angle	kona
घूर्णन ghūrṇana /g ^ĥ u:rղənə/	Rotation	gurnan