Tutorial 4B: Beta-reduction

Computation in the lambda-calculus is by **beta-reduction**, defined by the following **rewrite rule**, the **beta-rule**.

$$(\lambda x.N)M \longrightarrow_{\beta} N[M/x]$$

As a rewrite rule, it may be applied anywhere in a term, not just at the top level. Within a term, a sub-term that is of the form $(\lambda x.N)M$, where the beta-rule can be applied, is called a **redex**, short for "reducible expression".

The **substitution** [M/x] in the definition of beta-reduction is a **capture-avoiding** substitution. With a regular substitution, **variable capture** is when a substitution introduces a free variable x into a term $\lambda x.N$. This causes the variable to be **captured**: to become bound by the abstraction λx . In most cases, this gives an incorrect solution.

Capture-avoiding substitution avoids capture by **renaming** bound variables where necessary. That is, before carrying out a substitution under an abstraction λx , the variable x is given a new name z that does not occur anywhere in the term yet:

$$(\lambda x.N)[M/y] = \lambda z. (N[z/x][M/y])$$

For these exercises, you do not need to follow the definition of capture-avoidance **exactly** — it is very mechanical, and thus tedious. You only need to rename an abstraction λx that would otherwise capture a variable (in the substitution rule above, when x is a free variable in M). Renaming an abstraction, from $\lambda x.M$ to $\lambda z.(M[z/x])$, simply means renaming all variables x bound by λx , and λx itself, to z.

Exercise 1: Perform the following (capture-avoiding) substitutions.

- a) $(\lambda x.xy)[\lambda z.z/y]$
- b) $(\lambda x.xy)[\lambda z.zx/y]$
- c) $(f(\lambda x.yx)yx)[fy/x]$
- d) $(\lambda f. f(\lambda x. yx)yx)[fy/x]$

Exercise 2: Identify all the redexes in the following terms, and compute the λ -terms that result from β -reducing each redex.

- a) $(\lambda x.\lambda y.x)yx$
- b) $(\lambda f. f(\lambda x. x))(\lambda y. z)$

- c) $(\lambda x.\lambda y.yx)(\lambda x.xy)$
- d) $(\lambda x.xx)((\lambda y.y)(\lambda x.x))$
- e) $(\lambda x.xx)(\lambda y.y)(\lambda x.x)$
- f) $(\lambda x.xx)(\lambda x.xx)((\lambda y.y)(\lambda x.x))$

Exercise 3:

- a) Find distinct terms M,N,P such that $M\to_{\beta} P$ and $N\to_{\beta} P$.
- b) Find distinct terms M,N,P,Q such that $M\to_{\beta} N$, $M\to_{\beta} P$ and $M\to_{\beta} Q$.

Exercise 4: The **combinators** S, K and I are defined to be the following λ -terms:

$$S = \lambda xyz.xz(yz)$$

$$K = \lambda xy.x$$

$$I = \lambda x.x$$

Reduce the following terms to normal form.

- a) SKK
- b) SIK
- c) SSS

Exercise 5: Let W be the term

$$\lambda x.\lambda y.xyy.$$

- a) Reduce the term $\,WW\,$ to normal form.
- b) Give a complete analysis of the sequences of beta-reductions that the term $\,WWW\,$ can perform.