

1 WHAT IS CLAIMED IS:

2

3 1. A method for inter-node communication, comprising the steps of:

4

5 dividing a plurality of unencoded signals into groups at a first node,
6 wherein each group has a number of unencoded signals;

7

8 transforming each group of unencoded signals into a group of encoded
9 signals, wherein each group of encoded signals has nearly an equal number of
10 logic 1's and logic 0's; and

11

12 transmitting the groups of encoded signals to a second node, whereby
13 the groups of encoded signals are transmitted with minimal current
14 fluctuations.

15

16

17 2. The method of claim 1 wherein each group of unencoded signals
18 includes an equal number of signals.

19

20

21 3. The method of claim 1 wherein the transforming step includes the step
22 of transforming the groups of unencoded signals into groups of encoded
23 signals having an equal number of logic 1's and logic 0's.

24

25

26 4. The method of claim 1 wherein the step of transforming each group of
27 unencoded signals into a group of encoded signals comprises the step of
28 transforming a group of six unencoded signals into a group of eight encoded
29 signals.

30

31

32 5. The method of claim 1 wherein the step of transforming each group of
33 unencoded signals into a group of encoded signals comprises the step of
34 transforming a group of four unencoded signals into a group of six encoded
35 signals.

1

2

3 6. The method of claim 1 further comprising the step of selecting an
4 encoding scheme prior to performing the step of dividing a plurality of
5 unencoded signals into groups.

6

7

8 7. The method of claim 6 wherein the encoding scheme transforms a
9 group of unencoded signals to encoded signals such that a difference between
10 a total number of unencoded data values and a total number of encoded data
11 values is a predetermined fraction of the total number of unencoded data
12 values.

13

14

15 8. The method of claim 1 further comprising the step of transforming the
16 groups of encoded signals received by the second node back into the plurality
17 of unencoded signals.

18

19

20 9. A method for inter-node communication, comprising the steps of:

21

22 dividing a plurality of unencoded signals into groups at a first node,
23 wherein each group has a number of unencoded signals;

24

25 transforming each group of unencoded signals into a group of encoded
26 signals, wherein each group of encoded signals has nearly a constant number
27 of logic 1's and logic 0's; and

28

29 transmitting the groups of encoded signals to a second node, whereby
30 the groups of encoded signals are transmitted with minimal current
31 fluctuations.

32

33

34 10. The method of claim 9 wherein each group of unencoded signals
35 includes an equal number of signals.

36

1

2 11. The method of claim 9 wherein the transforming step includes the step
3 of transforming the groups of unencoded signals into groups of encoded
4 signals having a constant number of logic 1's and logic 0's.

5

6

7 12. The method of claim 9 further comprising the step of selecting an
8 encoding scheme prior to performing the step of dividing a plurality of
9 unencoded signals into groups.

10

11

12 13. The method of claim 12 wherein the encoding scheme transforms a
13 group of unencoded signals to encoded signals such that a difference between
14 a total number of unencoded data values and a total number of encoded data
15 values is a predetermined fraction of the total number of unencoded data
16 values.

17

18

19 14. The method of claim 9 further comprising the step of transforming the
20 groups of encoded signals received by the second node back into the plurality
21 of unencoded signals.

PROPRIETARY MATERIAL
© 2012 Qualcomm Incorporated. All rights reserved.
Qualcomm and other Qualcomm brands and trademarks are the sole property of Qualcomm Incorporated and/or its subsidiaries and/or affiliates.