Lecture 3-P1 Regression
Another type of supervised learning in which
Another type of supervised learning, in which h: Rd -> R
Predict a numerical quantity, like height, stock value, etc
Need to define a loss function; most common is
probabilistic squared error (SE) Loss (quess, actual) = (quess-actual) ²
Different applications points instifu office loss forthers
Different applications might justify other loss functions.
We will stick with linear hypotheses:
We will strck with linear hypotheses: $h(x; \theta, \theta_0) = \theta^T x + \theta_0$
1,(X) 0,087 0 X 108
Data set: $S_n = \{(\chi^{(n)}, y^{(n)}), \dots, (\chi^{(n)}, y^{(n)})\}$
Data ser, on I (1)
Man consider of hundlings have S. (MSE)
Mean squared error of hypothesis h on Sn: (MSE)
$\frac{1}{\varepsilon_n(\theta,\theta_0)} = \frac{1}{n} \frac{\sum_{i=1}^{n} \left(\theta_i^T \times (i) + \theta_0 - y^{(i)}\right)^2}{\left(\theta_i^T \times (i) + \theta_0 - y^{(i)}\right)^2}$
Ordinary least-squares regression (OLS):
find 0,00 to minimize En (0,00)
Analytic solution Assume we have augmented x's with an extra 1 feature, so no 90
Take derivative of En wrt parameters, set to 0,
solve for param values. Can do 2En/20; for
all j and solve system of equations. We will
take a more compact (and cool!) matrix view.
Take a More Compact (and cook) marine view.
Recall: [x(1) x(n)]
many books
transpace of (1)
this as X!! X
d×n
each column is an example

prediction is too

Step-513e= . 5)

t-gd (order,), draw= True, paux= False,

à pressures 0

to be small