Spatial Transcriptomics Data Analysis

GitHub: https://github.com/ashoks773/SpatialTranscriptomicsWorkflow

Ashok Kumar Sharma, Ph.D.

Research Bioinformatician II Digestive and Liver Diseases Cedars Sinai Medical Center

@ashoks773

@ashoks773

@sharma-ak

cedars-sinai.org

Spatial Transcriptomics Analysis Workflow – Outline

- Introduction to Spatial Transcriptomics
- Select and Download the Dataset
- Load and Create Single-Cell Object
- Normalization, PCA, UMAP, Clustering, and Visualization
- Marker Gene Identification
- Cell Type Annotations Using Different Methods

Overview of Techniques

- Measure av. Gene expression across cells
- Gene expression at Cell level
- Capture spatial context helpful to link molecular data to tissue architecture

Cellular Resolution

- Aggregate signals from diverse cell types
- High resolution- identify distinct cell types and states
- Moderate resolution depending upon the technique preserve tissue organization

Applications

Ideal for studying tissue architecture and cellular interactions in context (e.g., development, pathology)

Limitations

- Cannot distinguish cell-type specific effects
- May miss spatial interactions without further context
- Potentially lower sensitivity for lowly expressed genes compared to Bulk methods

What is spatial Transcriptomics

Technologies that make *transcripts* (RNA) seen, while preserving their spatial information in the cell or tissue, with high-throughput (many cells and many genes)

Major events in evolution of current-era techniques

Two major Technologies – for Spatial transcriptomics

Imaging-based

- MERFISH
- seqFISH
- STARmap

Sequencing-based

- Slide-seq
- 10X Visium

Overview of a spatial transcriptomics workflow

Sequencing-based vs Imaging-based assays

Data processing workflow Image-based & Sequencing-based

Data processing workflow Image-based & Sequencing-based

Data processing workflow Image-based & Sequencing-based

Analysis overview

- [x, y, one gene at a time] spatial distribution of gene expression
- [All genes] dimensionality reduction (PCA, UMAP)
- [All genes] clustering/cell typing (k-means, hierarchical, Leiden)
- [x, y, cell type] spatial proximity, interaction, and spatial enrichment of cell types.

Ref: UCLA Collaboratory workshop (W31)

Spatial Transcriptomics Analysis Workflow – Outline

- Introduction to Spatial Transcriptomics
- Select and Download the Dataset
- Load and Create Single-Cell Object
- Normalization, PCA, UMAP, Clustering, and Visualization
- Marker Gene Identification
- Cell Type Annotations Using Different Methods

Recourses: Datasets and tutorial links to be followed during this course

Spatial transcriptomics analysis of neoadjuvant cabozantinib and nivolumab in advanced hepatocellular carcinoma identifies independent mechanisms of resistance and recurrence

Dataset

- Spatial transcriptomics with Visium (10x Genomics)
- Samples: 7 HCC-patients (4 Responder and 3 NonResponders)
- Raw data: "GSE238264"
 - https://www.ncbi.nlm.nih.gov/geo/query /acc.cgi?acc=GSE238264

Learnings

- Step1: Load and Create single Cell Object
- Step2: Normalization PCA; UMAP; Clustering;
 Visualization
- Step3: Marker gene identification for each cluster; sample or response group
- Step4: Cell Type Annotations using CellTypist

Requirements – Python libraries

Data processing; normalization

numpy pandas matplotlib seaborn sklearn umap-learn umap

For Cell Type Annotation

Seurat
celldex
SingleCellExperiment
celltypist
azimuth
scType
singleR

To use R based annotations methods in Python

rpy2 (to use R consol directly in Python)

scanpy

Spatial Transcriptomics Analysis Workflow – Outline

- Introduction to Spatial Transcriptomics
- Select and Download the Dataset
- Load and Create Single-Cell Object
- Normalization, PCA, UMAP, Clustering, and Visualization
- Marker Gene Identification
- Cell Type Annotations Using Different Methods

Step1: Overview of the AnnData Object - hepatocellular carcinoma (HCC) resection specimens (n=7)

AnnData object with

n_obs × n_vars = 17292 × 36601

- obs: 'in_tissue',
 'array_row',
 'array_col', 'sample',
 'center_x', 'center_y'
- var: 'gene_ids', 'feature_types'
- obsm: 'spatial'

Total observations in 7 samples

obs: Observation Metadata (Rows/Cells or Spots)

• **obs** stores information related to each observation (cell or spatial location). This can include sample-specific details, spatial coordinates, and metadata labels for grouping or comparisons

var: Variable Metadata (Columns/Genes or Features)

• var contains metadata for each variable (usually genes). This includes details about each gene or feature being measured.

Obsm: Multi-dimensional Observation Metadata (Spatial Coordinates)

• **obsm** holds multi-dimensional data, often matrices, related to observations (cells or spots). It's especially useful for embeddings or spatial coordinates.

uns: Unstructured Metadata (Annotations or Color Maps)

 uns is used for unstructured data, like color maps, analysis parameters, or general annotations that don't fit neatly into rows or columns.

QC metrics

First check – weather the gene is mitochondrial often identified by the names starting with MT- or mt-

- Proportion of RNA counts derived from mitochondrial genes in each cell
 - Low %: Indicates healthy cells with minimal stress or apoptosis, as mitochondria typically contribute only a small proportion of the total RNA in viable cells
 - High %: May indicate cellular stress, apoptosis, or poor-quality data, as dying cells often show increased mitochondrial RNA relative to the total RNA content

HCC1R

Other Checks can be:

- Total counts
- # of expressed genes
- % contribution by top genes

QC metric calculation: sc.pp.calculate_qc_metrics

Total counts

Reads or UMIs) detected in given cell/**spot** across all genes Overall RNA content captured for a cell/spot

May indicate low RNA content or poor capture efficiency

May also suggest doublets or sequencing artifacts

N genes by counts

of Genes with nonzero expression in given cell/spot How many genes are actively expression in a cell/spot

May indicate dead or dying cells or empty **spots** in spatial data

Could indicate doublets (two cells/spots captured together)

PCT counts in top 100 genes

How much of top 100 genes contribute to the total counts

Weather a few genes dominate the transcriptome of a cell/spot

Suggest a balanced gene expression profiles across cells/spots

May suggest biases or the presence of dominant genes; potential artifacts

Spatial Transcriptomics Analysis Workflow – Outline

- Introduction to Spatial Transcriptomics
- Select and Download the Dataset
- Load and Create Single-Cell Object
- Normalization, PCA, UMAP, Clustering, and Visualization
- Marker Gene Identification
- Cell Type Annotations Using Different Methods

Why normalization is Important – hepatocellular carcinoma (HCC) resection specimen HCC1R – UMAP

Apply log1p normalization: sc.pp.log1p(ad_viz)

Why normalization is Important – hepatocellular carcinoma (HCC) resection specimen HCC1R – Selected Gene Expression

Apply log1p normalization: sc.pp.log1p(ad_viz)

Why Dimensionality reduction is important

Gene of interest: SERPINA1

PCA: principal component analysis

- Simple, linear, clear, robust, fast
- Preserves global structure (everything) as much as possible

UMAP: uniform manifold approximation and projection for dimension reduction

- Complex, non-linear, flexible, slower but reasonably fast
- Preserves local structure (neighborhood) as much as possible

PCA and **UMAP**

Clustering

Graph based clustering methods

Graph based clustering methods

Features	Louvain Clustering	Leiden Clustering
Type of Method	Graph-based (community detection)	Graph-based (community detection)
Algorithm	Greedy optimization algorithm	Improved refinement algorithm based on Louvain
Modularity Optimization	Louvain optimizes for modularity (a measure of the density of edges within clusters vs. between clusters)	Leiden optimizes for modularity as well but includes a refinement step to ensure all nodes within a cluster are well-connected
Partition Stability	Can lead to disconnected or poorly connected clusters (clusters with weak intra-cluster connections)	Ensures that clusters are well-connected internally, which addresses Louvain's tendency to form disconnected clusters
Resolution	Both support resolution parameters, though Louvain may lead to less fine-grained control over community sizes	Leiden typically offers better control and fine-tuning of resolution parameters
Performance	Faster but may lead to less accurate clustering and is more prone to converging on suboptimal solutions	Slightly slower but more robust, reaching more optimal solutions and typically providing higher-quality clusters
Hierarchical Structure	Can be used in a hierarchical setting, but not inherently hierarchical like classic hierarchical clustering	Can also be used in hierarchical clustering; has better handling of hierarchical or multi-level structures in complex graphs
Scalability	Generally faster in large-scale networks but less accurate on some data types	More computationally intensive but more reliable for high-resolution or complex community detection

Comparison of different clustering approach

ARI and NMI between

leiden and kmeans: ARI: 0.79, NMI: 0.87 louvain and kmeans ARI: 0.78, NMI: 0.86 louvain and leiden ARI: 0.95, NMI: 0.96

Comparison of different clustering approach – Cluster Purity

Cluster Purity Summary:

Leiden: 0.99 Louvain: 0.99 KMeans: 0.96

PCA and UMAP – After clustering (Louvain)

UMAP Clusters by Sample and Groups

Spatial Transcriptomics Analysis Workflow – Outline

- Introduction to Spatial Transcriptomics
- Select and Download the Dataset
- Load and Create Single-Cell Object
- Normalization, PCA, UMAP, Clustering, and Visualization
- Marker Gene Identification
- Cell Type Annotations Using Different Methods

Marker gene identification

Key Steps:

- Data Preparation and Clustering (already done)
- Ranking Marker Genes
 (Cluster specific markers)
- Statistical Testing
- Marker Gene Plotting

Marker gene identification

Spatial Transcriptomics Analysis Workflow – Outline

- Introduction to Spatial Transcriptomics
- Select and Download the Dataset
- Load and Create Single-Cell Object
- Normalization, PCA, UMAP, Clustering, and Visualization
- Marker Gene Identification
- Cell Type Annotations Using Different Methods

Overview of Cell Type Annotation Methods

Marker gene database-based:

• scType; MAESTRO; SCINA; CellAssign

Correlation-based

scmap-cluster; scmap-cell;
 <u>SingleR</u>; CHETAH; scMatch;
 ClustifyR; CIPR

Supervised Classification Based

 CellTypist; CaSTLe; Moana; LAmbDA; superCT; SingleCellNet; Garnett; scPred; ACTINN; OnClass; scClassify

Knowledge Based

• Azimuth; SingleCellNet

Cell Typist and singleR on smaller subset (considering 10000 genes)

Thank you

GitHub: https://github.com/ashoks773/SpatialTranscriptomicsWorkflow

