Fall 2019 - ECON 634 - Advance Macroeconomics - Problem Set 5

Elisa Taveras Pena* Binghamton University

December 9, 2019

1. Running the asked equation in matlab give me the following results:

Table 1: Estimation of OLS regression Using Card's data

	Coefficient	St. Error	
		(
Constant	4.9133***	(0.063121)	
Education	0.073807***	(0.0035336)	
Experience	0.039313***	(0.0021955)	
smsa	0.16474***	(0.015692)	
Black	-0.18822***	(0.017768)	
South	-0.12905***	(0.015229)	
Root Mean Squared Error: 0.377			

2. The histogram of the variables are presented bellow:

^{*}E-mail address: etavera2@binghamton.edu

The summary of the first two moments of the distributions can be seen in the following table:

Table 2: Estimation of OLS regression Using Card's data

	Mean	Variance
Constant	4.9138	0.0040
Education	0.0737	0.0000
Experience	0.0393	0.0000
smsa	0.1658	0.0003
Black	-0.1894	0.0003
South	-0.1262	0.0002
RMSE	0.1425	0.0000

3. The value for education is given by 0.06, which using as prior give the following distribution:

4. As we can see, although the distributions contain the actual value chosen on the OLS, 2. and 3. allows for not only have a mean value, which is pretty close to the OLS value, but also to have a distribution over the likely values of the coefficients. This allows for a more general understanding of the coefficient that a point estimation will gives up.