MATHEMATICAL REASONING

Chapter 7

INTERPRETACIÓN DE ENUNCIADOS II

HELICO THEORY

ECUACIONES DIOFÁNTICAS

Se denomina Ecuación Diofántica (en recuerdo a Diofanto de Alejandría) a aquella ecuación algebraica con coeficientes enteros, generalmente de varias variables, definidas en el conjunto de los \mathbb{Z} o \mathbb{N} , es decir, sus soluciones son números enteros.

<u>Ejemplos</u>

$$11x + 7y = 90$$
$$x^2 + y^2 = z^2$$
$$7x + y + xy = 41$$

TENGA EN CUENTA

• Por tratarse de problemas contextualizados solo veremos ecuaciones diofánticas lineales cuyas variables $\in \mathbb{Z}^+$.

$$ax + by = c.$$

 $ax + by + cz = d.$
 $ax + by + cxy = d.$

Donde: a; b; c; d: coeficientes x; y; z: variables

DETERMINACIÓN DE LAS SOLUCIONES DE UNA ECUACIÓN DIOFÁNTICA.

CRITERIO DE MULTIPLICIDAD

Se emplea cuando el resultado es múltiplo de uno de los coeficientes de los sumandos.

<u>Ejemplo</u>

$$\frac{3}{3x} + 4y = 33$$
; $\{x; y\} \in \mathbb{Z}^+$
 $\frac{1}{7}$
 $\frac{1}{3}$
 $\frac{3}{3}$
 $\frac{3}{3}$
 $\frac{3}{3}$
 $\frac{3}{3}$
 $\frac{3}{3}$
 $\frac{3}{3}$
 $\frac{3}{3}$

Veamos algo más en el ejemplo.

<u>Ejemplo</u>

TENGA EN CUENTA

Si bien se indica que {x; y} ∈
 Z⁺, según el contexto del problema, podría incluirse la solución:

$$x = 11$$
; $y = 0$

Mientras una de las variables (x) disminuye en tantas unidades como el coeficiente de su vecina (y), esta aumenta en tantas unidades como el coeficiente de x.

CRITERIO DE MULTIPLICIDAD

Sebastián compra lápices a S/.3 cada uno y lapiceros de S/.7 soles cada uno. Si gastó 91 soles exactamente comprando ambos artículos, ¿de cuántas maneras diferentes pudo Sebastián realizar la compra?

 N° de maneras diferentes = 4

DETERMINACIÓN DE LAS SOLUCIONES DE UNA ECUACIÓN DIOFÁNTICA.

• CRITERIO DE LA ÚTIMA CIFRA

Se emplea cuando uno de los coeficientes de los sumandos es 5 o termina en cifra 5.

<u>Ejemplo</u>

$$3x + 5y = 37$$
; $\{x; y\} \in \mathbb{Z}^+$

<u>Resolución</u>

Multiplicamos por 2 toda la ecuación

DETERMINACIÓN DE LAS SOLUCIONES DE UNA ECUACIÓN DIOFÁNTICA.

CRITERIO DE FACTORIZACIÓN

Se emplea cuando en los sumandos se encuentran las variables en operaciones de adición y multiplicación.

<u>Ejemplo</u>

Factor común
$$y$$

$$x + 3y + xy = 74; \{x; y\} \in \mathbb{Z}^+$$

$$y > x$$
Factor común x

Factorizo
$$x$$
 $x(y+1) + 3y = 74$
(+3) mam $x(x(y+1)1) + 3(3y+13) = 74 + 3$
Factorizo $(y+1)$ $(y+1)(x+3) = 7(11)$

$$x = 4; y = 10$$

RESOLUCIÓN DE LA PRÁCTICA

Halle el máximo valor de x en 3x + 5y = 70 si $x, y \in$

И

<u>RESOL UCIÓN</u>

$$3x + 5y = 70$$

$$3(x) + 5(2) = 70$$

$$60$$

Una persona compró pelotas, a S/21 la unidad; medias, a S/15 la unidad y gorros, a S/35 la unidad. Si gastó S/219, ¿cuántos

OBSERVACIÓN

CRITERIO DE DIVISIBILIDAD DEL 3

Suma de cifras es
$$3^{\circ}$$

 $3^{\circ} + 3^{\circ} + 3^{\circ} = 3^{\circ}$

$$21 = 3 (7)$$

$$15 = 3(5) =$$

3°

$$219 = 3(73) =$$

<u>RESOLUCIÓN</u>

ARTÍCULO	CANTIDAD	COSTO UNIDAD
PELOTAS	р	21
MEDIAS	m	15
GORROS	g	35

¿De cuántas maneras diferentes se puede pagar una deuda de S/200 con billetes de S/10 y S/20, únicamente?

RESOL UCIÓN

Una piscina rectangular de 4 m de ancho por 9 m de largo tiene alrededor un paseo de ancho uniforme.

Si el área del paseo es 68m² ¿cuánto será el ancho del paseo, en metros?

RESOL UCIÓN

$$2 [x(4+x) + x(9+x)] =$$
 6 $x(4+x) + x(9+x)] = 34$
 $x(13+2x) = 34$

OTRA FORMA

Una piscina rectangular de 4 m de ancho por 9 m de largo tiene alrededor un *paseo de ancho* uniforme.

Si el área del paseo es 68m² ¿cuánto será el ancho del paseo, en metros?

RESOLUCIÓN

ÁREA DEL PASEO

$$4 x^{2} + 26 x = 68$$

$$2x^{2} + 13x - 34 = 0$$

$$2x + 17$$

$$x - 2 = 0$$

$$x - 2 = 0 \qquad \therefore X = 2$$

Se desea comprar el máximo número de aves con S/169, entre palomas y canarios de S/9 y S/4 cada una, respectivamente. ¿Cuántas aves se compraron?

RESOLUCIÓN

PALOMAS: P CANARIOS: C

S/9

OBSERVACIÓN

Máxima cantidad aves: Mínima

de

de E

cantidad palomas

.. Total de aves: 41

Una promoción de verano ofrecía un gran premio al que llegaba a juntar cierto número de chapas marcadas. Ana y Bety se aliaron para ganar el premio. Al cabo de una semana, hicieron sus cuentas:

Ana: ¡Bety, solo has juntado los 7/20

de lo necesario!...

Bety: ¡No reclames!, pues tú_has juntado 2/5 de lo mío. ¡Así no llegamos ni a 50!

¿Cuántas chapas eran necesarias para cobrar el premio?

RESOL UCIÓN

TOTAL:

Bety:
$$\frac{7}{20}$$
 (100K)= 35K

Ana:
$$\frac{2}{5}$$
 (35 K) = 14K

Por la cuarentena establecida y las poder nuevas normas para reanudar el trabajo presencial, una fábrica debía transportar a sus 178 operarios en vehículos de dos tipos: unos tienen capacidad para 17 empleados y otros que tienen capacidad solo para 5. ¿Cuál es el menor número de vehículos que se debe habilitar la fábrica si ninguna persona debe ir de pie y ningún asiento debe quedar vacío?

RESOL UCIÓN

	# VEHÍCULOS	#ASIENTOS
	a	17
TAXI	b	5

17 a + 5 b = 178

$$17(9) + 5 b = 178$$

 $153 + 5(5) = 178$
25

: #VEHÍCULOS: 14

Resolución del

taller

Se dispone de s/.999 para ser gastados en artículos de s/37. y s/.21 cada uno.

¿Cuánto artículos se adquirieron si el dinero alcanzó exactamente?

<u>RESOLUCIÓN</u>

$$37x + 21y = 999$$

$$37x + 21y = 3x3x3x37$$

$$x + \frac{21y}{37} = 27$$

$$y = 37 \quad x = 6$$

Rpta.43

Ejercicio adicional

ADICIONAL

El año de nacimiento y de muerte de un matemático, suman 3710 y se escriben con los mismos dígitos, pero con la cifra de las decenas y la de las unidades en orden invertido.

Si la vida de este matemático transcurrió durante el siglo XIX, ¿Cuál es la máxima edad que pudo tener?

RESOL UCIÓN

AÑO DE NACIMIENTO: $\overline{18ab}$

AÑO DE FALLECIMIENTO18ba

$$\therefore 1891 - 1819 = 72$$

OTRA FORMA

El año de nacimiento y de muerte de un matemático, suman 3710 y se escriben con los mismos dígitos, pero con la cifra de las decenas y la de las unidades en orden invertido.

Si la vida de este matemático transcurrió durante el **siglo XIX**, ¿cuál es la máxima edad que pudo tener?

<u>RESOLUCIÓN</u>

Nació Falleció

Año: $\overline{18ab}$ $\overline{18ba}$

Edad: 0 Máxim

 $\frac{18ba}{18ab} + \begin{array}{c} \text{Sumando verticalmente, en} \\ \text{las unidades y decenas se} \\ \text{cumple :} \\ \text{a + b} = \end{array}$

 $\begin{array}{ccc}
18ab & a + b = \\
10 & 9 & 371
\end{array}$

0

Maxima FDAD

$$\therefore$$
 1891 – 1819 = 72