QCM 2

lundi 5 février

Question 11

Soient $n \in \mathbb{N}$ et $p \in [\![0,n]\!]$. Le coefficient binomial $\binom{n}{p}$ est égal à

a.
$$\frac{n!}{p!}$$

b.
$$\frac{p!}{n!}$$

$$\sim$$
 c. $\frac{n!}{p!(n-p)!}$

d.
$$\frac{n!}{(n-p)!}$$

e. Aucune des autres réponses

Question 12

Une urne contient 7 boules numérotées de 1 à 7, indiscernables au toucher. À quoi peut correspondre la réponse « $\binom{7}{4}$ »?

- a. Au nombre de façons de tirer 4 boules de l'urne avec remise après chaque tirage.
- b. Au nombre de façons de tirer 4 boules de l'urne sans remise après chaque tirage.
- 💉 c. Au nombre de façons de tirer simultanément 4 boules de l'urne.
 - d. Rien de ce qui précède

Question 13

Cochez la(les) bonne(s) réponse(s)

- a. Le nombre d'anagrammes du mot « MATH » est égal à 4.
- - c. Le nombre d'anagrammes du mot « ASSEZ » est égal à 5.
- d. Le nombre d'anagrammes du mot « ASSEZ » est égal à 60.
 - e. Aucune des autres réponses

Question 14

Soient $n \in \mathbb{N}^*$ et x et y deux réels non nuls. On a $(x+y)^n = \sum_{k=0}^n x^k y^{n-k}$.

a. Vrai

Nb. Faux

Question 15

Soit E un ensemble à 8 éléments. Cochez la(les) réponse(s) correcte(s)

- \searrow a. Dans E, il y a autant de sous-ensembles à 3 éléments que de sous-ensembles à 5 éléments.
 - b. Le nombre de sous-ensembles de E ayant 3 éléments est égal à $4\times5\times6\times7\times8$.
- $\$ c. Le nombre de sous-ensembles de E ayant 3 éléments est égal à $\binom{8}{3}$.
 - d. Aucune des autres réponses

Question 16

Soient A et B deux événements d'un espace probabilisé $(\Omega, \mathscr{P}(\Omega), P)$. On a

- a. Si A et B sont disjoints, alors $P(A \cup B) = P(A) \times P(B)$.
- $\$ b. Si A et B sont disjoints, alors $P(A \cup B) = P(A) + P(B)$.
 - c. $P(A+B) = P(A) \cup P(B)$
 - d. $P(A \cup B) = P(A) + P(B) + P(A \cap B)$
 - e. Aucune des autres réponses

Question 17

On lance un dé à 6 faces numérotées de 1 à 6. L'ensemble Ω des résultats possibles est $\Omega = [\![1,6]\!]$. On peut définir un espace probabilisé $(\Omega, \mathscr{P}(\Omega), P)$ en posant (cochez la(les) bonne(s) réponse(s))

a.
$$P(\{1\}) = 0, 3$$
 et $\forall k \in [2, 6], P(\{k\}) = 0, 1$

$$\land$$
 b. $P({1}) = 0,5$ et $\forall k \in [2,6], P({k}) = 0,1$

c.
$$P\left(\{1\}\right)=0,3$$
 et $\forall\,k\in \llbracket 2,6\rrbracket,\,P\left(\{k\}\right)=\frac{0,7}{4}$

d. Aucune des autres réponses

Question 18

On lance une fois un dé équilibré à 6 faces numérotées de 1 à 6. La probabilité d'avoir un nombre multiple de 3 est égale à

- a. 2
- $\sqrt{\ }$ b. $\frac{1}{3}$
 - c. 3
 - d. $\frac{1}{2}$
 - e. Aucune des autres réponses

Question 19

Soit $f: \mathbb{R} \to \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par f(x) = |x|. On a

- a. $f(\{1\}) = \{-1, 1\}$
- $\$ b. $f(\{-1,1\}) = \{1\}$
- - d. $f^{-1}(\{0\}) = \emptyset$
 - e. Aucune des autres réponses

Question 20

Soit $f: \mathbb{R} \to \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par f(x) = |x|. On a

- a. f est injective, non surjective.
- b. f est surjective, non injective.
- c. f est bijective.
- √ d. f n'est ni injective, ni surjective.