High Performance Computing for Data Science

Theses opportunities, useful tips, fInal remarks & project activity

Lecture 24 - 01/12/2023

Prof. Sandro Fiore, Ph.D.

Department of Information Engineering and Computer Science (DISI)

University of Trento, 2023-2024

Theses opportunities (I)

Distributed caching systems for federated climate repositories

- The thesis's work will support
 - Automated "data space" instantiation in the cloud
 - Fast access to most-used datasets
 - Real testbed with ESGF nodes in EU, US and Australia
- Integration of the caching system with parallel data transfer systems & novel file catalogs

Theses opportunities (II)

NFT & Blockchain convergence for large-scale climate repositories

- The thesis's work will support
 - NFT exploitation for scientific data
 - Integration of NFT and blockchain for climate data management purposes

Theses opportunities (III)

Hierarchical scheduling for exascale applications

- The thesis's work will support
 - Design of hierarchical scheduling approaches to tackle exascale
 - Application of hierarchical scheduling to existing systems & frameworks
 - In particular the analysis will target «Dask» scheduler extensions

Theses opportunities (IV)

On the integration of workflow systems and provenance services

- The thesis's work will support
 - Extension of workflow management systems with provenance capabilities
 - Streamflow workflow management system
 - yProv service (for provenance tracking)

Theses opportunities (V)

On the extension of the yProv service with blockchain-based capabilities

- The thesis's work will support
 - Extension of provenance service with blockchainbased capabilities
 - Trustworthy provenance management
 - yProv service (for provenance tracking) and blockchain middleware integration

Theses opportunities (VI)

Expanding the sound speed dataset analysis to more advanced and novel directions (collaboration with OGS)

- The thesis's work can focus on different topics:
 - Sound speed dataset parallel analysis (more metrics)

Theses opportunities (VII)

Al at scale for extreme events detection and prediction

- The thesis's work could focus on different areas:
 - AI-based approaches (see Dr. Valentine Anantharaj's seminar for more details subjects in this area)
 - Target applications «environmental digital twins»
 - Big data engineering pipelines by leveraging frameworks like Dask

Theses opportunities (VIII)

Large-scale applications via containers over HPC

 Collaboration with CINECA in the context of the National Center on Big Data, HPC and QC

High Performance Computing for Data Science

Final remarks Lecture 24 - 01/12/2023

Some notes on hybrid and nested parallelization

Prof. Sandro Fiore

Department of Information Engineering and Computer Science (DISI)
University of Trento, 2023-2024

Nested parallelism

- In OpenMP it is possible to have nested parallelism
- Basically, having two nested parallel directives
- A thread in the first team, once it encounters a new parallel directive, creates a brand-new team of threads of which it will become the master until the end of such nested region
- To enabled nested parallelism:
 - \$ export OMP NESTED=TRUE

Hybrid parallelization: MPI+OpenMP Motivation

Hybrid parallelization: MPI+OpenMP Master-only style

- Master-only MPI only outside of parallel regions
- Advantages
 - No message passing inside of the SMP nodes
- Major Problems
 - All other threads are sleeping while master thread communicates!
- Within your PBS script:

```
export OMP_PLACES=threads
mpiexec --report-bindings --map-by <x>
    --bind-to core
```

```
for (iteration ....)

{

    #pragma omp parallel
    numerical code
    /*end omp parallel */

/* on master thread only */
    MPI_Send (original data
    to halo areas
    in other SMP nodes)
    MPI_Recv (halo data
    from the neighbors)
} /*end for loop
```

Binding

```
#define GNU SOURCE // sched getcpu(3) is glibc-specific (see the man page)
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include <sched.h>
#include <mpi.h>
#ifdef _OPENMP
# include <omp.h>
#endif
int main(int argc, char **argv){
    // initialize MPI
    int provided:
    MPI Init thread(&argc, &argv, MPI THREAD FUNNELED, &provided);
    int rank, size;
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &size);
    int threads = omp_get_max_threads();
    if(rank==0){
        printf("Processes for MPI %d\n",size);
        printf("Threading for OMP %d\n",threads);
    #pragma omp barrier
    #pragma omp parallel
        int thread_id = omp_get_thread_num();
        int cpu_num = sched_getcpu();
        printf("Thread %d of process %d run on CPU %d \n",thread_id,rank,cpu_num);
    #pragma omp barrier
    printf("Process rank %d is done \n", rank);
    MPI_Barrier(MPI_COMM_WORLD);
    MPI Finalize();
    return 0;
}
```

Binding

PBS Script with binding:

```
#!/bin/bash
#PBS -l select=1:ncpus=2:mem=4gb
export OMP_PLACES=threads
mpiexec --report-bindings -np 1 --map-by node:pe=2 --bind-to core exec.out
```

Output with binding:

```
Processes for MPI 1
Threading for OMP 2
Thread 0 of process 0 run on CPU 0
Thread 1 of process 0 run on CPU 1
Process rank 0 is done
```

Without binding, you could replace the last line with the following one: mpiexec -np 1 exec.out

Feedback form

- Throughout the entire HPC4DS course there will be a form available for your feedback
 - Please provide any comment about:
 - Pros
 - Cons
 - Aspects that were not clear enough during the class
 - Any other feedback you think can be relevant for the course
 - ...
- Information are gathered in an anonymous way