

Adult/Child Musculoskeletal Model and Motion Analysis Comparison

Final Project in *Medical Robotics*July 2021

Olga Sorokoletova, Giulio Recupito, Lorenzo Mandelli, Yannick Moell

- Given: Kinematic marker data from MOCAP system
 - Child (= Sirine) recording
 - Various gait captures from Sirine
 - Marker data, inverse kinematics
 - Scaled OpenSim model
 - Adult recording
 - Kinematic data via joint frame trajectories and rotation matrices
- Goal: Model and motion analysis comparison
 - Provide utilities (software) and videos to visualize human motion
 - Gait properties change with age
 - Tracking tools for evolution of marker trajectories and joint angles

How to scale from child to adult?

Data Basis

Adult/Child Musculoskeletal Model and Motion Analysis Comparison

Data Basis – Sirine

- 7 years old, 1.20m height, 20kg weight
- OpenSim model
 - Defined bodies and joints, all scaled to one (basis model)
- Marker data in marcheN files (other files available)
 - x-y-z coordinates for 56 markers from MOCAP system, focus on torso and lower body for further investigation (simplified model with 30 markers)
 - 200Hz sampling rate, in meters, recorded in camera frame
- Joint angles in marcheNik files (inverse kinematics)
 - Labeled in biomedical terminology (e.g hip flexion/ extension, adduction/abduction, external/internal rotation)

Data Basis – Sirine

• Body marker setup for Sirine

Segm	Markers
Torso	C7 T10 SUP STRN
Pelvis	LASIS/RASIS LPSIS/RPSIS
L leg	LGT LATT LMFE LLFE RAJC
R leg	RGT RATT RMFE RLFE CD
L foot	LSPH LLM LCAL LMFH5/1 LTT2
R foot	RSPH RLM RCAL RMFH5/1 RTT2

2	Dat	aRate	CameraRate	NumFrames	NumMarkers	Units Or	igDataRate	OrigDataSt	artFrame Or	igNumFrames
3	200	200 500	56 m 200	1 500			70			
×.	Fra	mel Time								
5	LTE	MP	SEL	RTEMP	LA	C7	BUP	RA	STR	T10
ś	Tra	me#Zime	X1	Yi	21	30.2	¥2	22	ж3	¥3
9	31	0.0050	-1.066544	1.130608	-0.421391	-0.971893	1.166676	-0.327726	-1.005669	1.119309
ż	2	0.0100	-1.060079	1.130785	-0.422000	-0.965609	1.167461	-0.328278	-1.079431	1.12011€
9	-3	0.0150	-1.053580	1,130961	-0.422610	-0.959297	1,168248	-0.328832	-1.073161	1.120843
	14	0.0200	-1.047074	1.131134	-0.423216	-0.952902	1-169031	-0.329304	-1.066888	1-121562
ï	5	0.0250	-1,040579	1.131303	-0.423815	-0.946685	1.169804	-0.329930	-1.060630	1.122271
ž	: 6	0.0300	-1.034114	1.131468	-0.424400	-0.540422	1.170563	-0.330466	-1.054404	1.122566
ø	17	0.0350	-1.027689	1.131628	-0.424970	-0.534203	1-171304	-0.330989	-1.048222	1.123645
ť	8	0.0400	-1.021311	1.131785	-0.425521	-0.928037	1.172025	-0.331495	-1.042090	1.12430€
5	9	0.0450	-1,014585	1.131538	-0.426050	-0.921925	1.172724	-0.331982	-1.036012	1.224948
ă.	10	0.0500	-1,009710	1.132090	-0.426554	-0.915867	1,173400	-0.332448	-1.029988	1.125573
Ŧ	11	0.0550	-1,002484	1.132241	-0.427032	-0.909859	1.174053	-0.332891	-1,024013	1.126180
Ħ	12	0.0600	-0.596302	1.132354	-0.427482	-0.903895	1.174684	-0.333310	-1.018084	1.126773
9	13	0.0650	-0.990159	1.132551	-0.427902	-0,997967	1,175294	-0.333703	-1.012192	1.127352
	14	0.0700	-0.984049	1.132713	-0.428291	-0.892068	1.175883	-0.334069	-1.006330	1.127921
1	15	0.0750	-0.977563	1,132003	-0.428649	-0.006188	1,176453	-0.334407	-1.000491	1.120480
2	16	0.0800	-0.971895	1.133062	-0.428976	-0.880319	1,177006	-0.335717	-0.994664	1.129033
9	1.7	0.0850	-0,965839	1.133251	-0.425271	-0.874452	1.177541	-0.334998	-0.988843	1.125580
4	118	0.0900	-0.959707	1.133452	-0.425534	-0.868579	1.170060	-0.335250	-0.903020	1.130123

Data Basis – Adult

- Given data from MOCAP system
 - 71kg weight, 171 cm height
 - Raw marker data:
 - x-y-z coordinates for 21 markers, recorded in camera frame,
 200Hz sampling rate, in millimeters
 - Kinematic data:
 - x-y-z coordinates for the origins of each, joint frame recorded in camera frame, rotation matrices for each joint frame w.r.t parental one, 200Hz sampling rate, in millimeters

Segm	Markers
Torso	C7 T10 CLAV RBAK STRN
Pelvis	LASI/RASI LPSI/RPSI
L leg	LTHI LKNE LTIB LANK
R leg	RTHI RKNE RTIB RANK
L foot	LHEE LTOE
R foot	RHEE RTOE

```
1 Raw data
2 Sampling frequency=200 Hz
3 c7_x c7_y c7_z t10_x t10_y t10_z clav_x clav_y clav_z strn_x strn_y strn_z
4 283.0 1428.6 1615.0 278.1 1202.3 1710.2 273.1 1330.2 1491.5 271.6 1176.3 1459.0
5 283.8 1428.9 1610.8 279.2 1202.5 1706.1 273.7 1330.2 1488.1 272.1 1176.6 1455.1
6 284.4 1429.0 1606.6 280.1 1202.7 1702.1 274.4 1330.1 1484.3 272.7 1176.7 1451.5
7 285.2 1429.0 1602.5 281.0 1202.9 1698.1 275.0 1330.1 1481.2 273.5 1176.7 1447.3
8 285.9 1428.9 1598.4 281.8 1202.9 1694.0 275.5 1330.1 1476.5 274.2 1176.5 1443.1
5 286.7 1428.9 1598.4 281.8 1202.9 1694.0 275.5 1330.1 1476.5 274.2 1176.5 1443.1
5 286.7 1428.9 1598.4 282.7 1203.0 1690.0 276.1 1330.0 1470.3 274.6 1176.1 1439.8
10 287.3 1428.9 1585.6 284.3 1203.2 1681.9 276.5 1329.9 1465.2 275.1 1176.0 1436.0
21 288.5 1428.6 1581.5 285.1 1203.2 1677.8 277.3 1329.6 1459.0 276.2 1176.3 1426.4
13 289.1 1428.5 1577.2 288.9 1203.2 16673.5 277.7 1329.4 1455.7 276.5 1176.1 1422.4
14 289.7 1428.4 1573.2 286.5 1203.2 1669.8 278.4 1329.4 1455.7 276.5 1175.9 1418.7
15 290.1 1428.1 1568.8 287.1 1203.3 1665.8 279.1 1329.4 1446.6 277.5 1175.6 1414.9
```

Model Implementations in MATLAB

Adult/Child Musculoskeletal Model and Motion Analysis Comparison

MATLAB Implementation — Model of Sirine

- File processing for marche files
 - Redefine tabstops (readable via fget1 function)
- Iterate through timesteps of each marker channel
- Plotting each body part
 - Set of coordinates connected by line segments
 - → figure out fitting markers per body part
 - Body parts:
 - Torso, pelvis, knees, feet (ankle, toe)
 - Plot markers additionally
- Utility usable via Sirine_model.m file

MATLAB Implementation — Adult model

- Using data from two files
 - Kinematic data (draw stickman model with 6 sticks)
 - x-y-z of body part origins for trunk, pelvis, femurs, tibiae, feet
 - Rotation matrices for frame orientation calculation
 - Raw marker data used in same manner as for Sirine
 - Plot onto stickman model
 - Different name convention of marker coordinates
 - Different adopted strategy for linking markers (building body segments)
- Transformed into child ground reference frame, allowing better comparison
- Utility usable via Adult_model.m file

MATLAB Implementation — Adult model

MATLAB Implementation –

Utilities for Cartesian Comparison

- Cartesian Comparison
 - Parallel animated simulation of both Sirine and Adult motion
 - Sirine ground reference frame has been chosen as **word reference frame**, adult data expressed in this one (application of scaling, translation, rotation)
 - Different perspective views are possible
 - Cartesian_comparison.m file

Animated Cartesian Comparison

MATLAB Implementation –

Utilities for Marker and Angle Comparison

Marker comparison

- Select specific marker trajectories to plot desired marker time evolutions in 3D space (x,y,z),
 visualizable as 2D screenshots
- Helpful to analyse the motion of adult and child and plot them into one plot
- Marker_comparison.m file

Angle comparison

- Plotting joint angle trajectories in 2D space (time, angle in degrees) taken from marcheNik.mot files
- Adult angles computed via analytical inverse kinematics formulae (sequential rotation transformations, roll/yaw/pitch)
- Angle_comparison.m file

MATLAB Implementation –

Example of a Marker Plotting Animation for the Ankles

Motion Analysis and Comparison – Marker Trajectories

Adult/Child Musculoskeletal Model and Motion Analysis Comparison

Motion Analysis - Deep Diving

- Cartesian comparison provides good overview
 - Deep-dive by comparing body parts separately, torso, pelvis and right/left leg (= ankle + knee + toe) areas
- Coordinate system definition (Sirine's Camera frame)
 - X-axis: normal to Coronal Plane (movement direction)
 - Y-axis: normal to Transverse Plane (height)
 - Z-axis: normal to Sagittal Plane (depth)
- Data adjustments (Adult data)
 - **Rotation** of 90 degree around the Y-axis Point (x, y, z) is represented as (z, y, -x) in the rotated frame
 - Translation along the X-axis of 500 cm
 Child and adult share the same initial positon
 - Translation along the Z-axis of 500 cm
 Avoid motion trajectories overlapping

Motion Analysis – Torso Segment

Adult (Plug-In Gait)

Sirine

Motion Analysis - Torso Segment

Motion Analysis - Pelvis Segment

Adult (Plug-In Gait)

Sirine

Motion Analysis - Pelvis Segment

Motion Analysis – Left/Right Leg Segment

Sirine

Motion Analysis — Left/Right Knee

Motion Analysis — Left/Right Ankle and Toe

	Sagittal Plane						
Ankle	Regular behaviour, differences in amplitude and periodicity due to different body part dimensions						
Toe	Low peak for LTT2 marker trajectory (purple curve) in second gait cycle, foot drags close to the ground (unnatural motion)						

Motion Analysis — Left/Right Ankle and Toe

Motion Analysis — Left/Right Ankle and Toe

Motion Analysis and Comparison – Inverse Kinematics

Adult/Child Musculoskeletal Model and Motion Analysis Comparison

Motion Analysis - Hip Flexion/Extension

Symmetry:

Angle bias due to initial orientation of reference frame

Sirine:

Higher slope conditioned by higher angular velocity along the hip (faster hip rotation during extension phase), flexion of hips has characteristical angular acceleration pattern

Adult:

Curves are smooth and characterize the constant joint rotation

Motion Analysis – Knee Flexion/Extension

Evaluation:

Swing and step phases clearly visible for both

Sirine:

Amplitude of right knee higher than the left one, differences in angles during different gait cycles (again due to non-straight walk)

Adult:

Same shifts in angle curves, overall amplitude is smaller for Adult than for Sirine

Motion Analysis — Ankle Planta-/Dorsiflexion

Angle shift:

Measurement in other reference frame, different angle convention

Sirine:

High angle amplitude, last gait cycle with really high angle range

Adult:

Small angle amplitude, only ranging within 15-20 degrees with consequent less rapid jumps

Motion Analysis — Conspicuities

- Plots based on marche9, comparable behaviour for the other recordings
- Sirine's non-straight gait complicates analysis (Coronal plane)
 - Upper body (torso and pelvis) shows **small irregularities** in oscillations and amplitues, still mainly constant and smooth motion
 - High conspicuities for knee part (knee buckling)
 - Unexpected: Ankle motion quite regular and periodically, right toe of Sirine dragged wrong-sided
 - Angle comparison: Child angular motion wider ranged, rotations more quick (accelerated)
- Differences between adult/child:
 - Wide-view: Smaller height/width leads to smaller steps and more gaits, scaling well visible for toe and ankle plot
 - Close-view: Motion model of Sirine can be viewed as slightly perturbated adult one

Wrap-up and Conclusions

Adult/Child Musculoskeletal Model and Motion Analysis Comparison

Wrap-up and Conclusion

- Developed Matlab-based visualization tool for human motion analysis
- Ability to perform a comparative analysis between walking characteristics of children vs. adults
 - Scaling properties well visible (but only to a certain extent)
 - Children-specific motion must be modeled separately
- Further steps/Future work:
 - Include dynamical data too, analyze forces between body parts
 - A step further than just analyzing: Which treatments are helpful for children?
 - → Strengthen biomedical viewpoint, i.e. collaboration with doctors, orthopaedists
- All in all: Powerful tool with good outlook for orthopedic treatments of patients

Sources

- M. Marchitto. *Motion Analysis for Children with Cerebral Palsy: Study on Twins*. Master thesis at Sapienza Università di Roma.
- Crossfit Essentials (biomedical information on angular movements). Movement about the joints (hip, knee, angle) and images. Accessed on 27.07.2021.

https://www.crossfit.com/essentials/movement-about-joints-part-5-the-hip

https://www.crossfit.com/essentials/movement-about-joints-part-6-knee

https://www.crossfit.com/essentials/movement-about-joints-part-7-the-ankle