

Floquet Code

From Honeycomb Code to Toric Code

Yusheng Zhao

HKUST(GZ)

2024-10-19

Yusheng Zhao 2024-10-19 Floquet Code 1 / 22

Motivations

Static Code

Floquetification

Conclusion

Appendix

Motivations

Static Code

Floquetification

Conclusion

Appendix

Yusheng Zhao 2024-10-19 Floquet Code 3 / 22

Benefit of Floquet Code

Low-weight Measurement

• As a result, good threshold?

Low Connectivity Requirement

• Give visualization

Yusheng Zhao 2024-10-19 Floquet Code 4 / 22

Floquet Code's Stats

Floquet Code has good qualities

- **Threshold** of 0.2% 0.3% without native **weight-2 measurement** [1]¹
- Thershold of 1.5% 2.0% with native weight-measurements [1]
- Photon loss threshold: 6.4% on photonic platform [2]
- Code Overhead: $\lim_{n\to\infty} \frac{k}{n} \to \frac{1}{2}$ on qudit codes [3]
- $5.6 \times$ fewer physical qubits are needed to implement Floquet code at depolarizing noise of 0.1% compare to surface code [4]

Yusheng Zhao Floquet Code 5 / 22 2024-10-19

 $^{^{1}0.5\% - 0.7\%}$ for surface code (which surface code was this? which error model?)

Motivations

Static Code

Floquetification

Conclusion

Appendix

Stabilizer Code

Example: [[4,2,2]] Code

- Stabilizers are product of Pauli operators on qubits: $X_1X_2X_3X_4$ and $Z_1Z_2Z_3Z_4$
- Measurement result of stabilizers signals whether you have an error

• Logical Operators commutes with stabilizers but cannot be generated by them: $\widetilde{X}_1=X_1X_2$, $\widetilde{X}_2=X_1X_3$, $\widetilde{Z}_1=Z_1Z_3$ and $\widetilde{Z}_2=Z_1Z_2$

Yusheng Zhao Floquet Code 7 / 22 2024-10-19

Stabilizer Code

Example: Toric Code

1

Yusheng Zhao 2024-10-19 Floquet Code 8 / 22

¹Kott, Viktor, et al. "Quantum robustness of the toric code in a parallel field on the honeycomb and triangular lattice." arXiv preprint arXiv:2402.15389 (2024).

Subsystem Code

Example: [[4,1,2]] Code

- Checks: X_1X_3 , X_2X_4 , Z_1Z_2 , Z_3Z_4
- Not necessarily commute with each other
- Generated group has center $X_1X_2X_3X_4$ and $Z_1Z_2Z_3Z_4$.
- Logical operators commutes with all **checks**: X_1X_2 , and Z_1Z_3

Yusheng Zhao Floquet Code 2024-10-19 9 / 22

Motivations

Static Code

Floquetification

Conclusion

Appendix

Yusheng Zhao 2024-10-19 Floquet Code 10 / 22

Definition:

- 1. Qubits on vertices of lattice
- 2. Each edge associated with a check
- 3. Each plaquette associated with a type 0,1,2
- 4. Each edge associated with a type 0,1,2
- 5. Measurement sequence according to edge type

Yusheng Zhao 2024-10-19 Floquet Code 11 / 22

Check Measurement gives rise to instantaneous stabilizer groups

Given a state stabilized by \mathcal{S} : a group generated by Pauli String operators, projective measurement of Pauli String operators P modifies the stabilizer group of the state as

2. if
$$P \notin \mathcal{S}$$
 and $-P \notin \mathcal{S}$

- 1. P commutes with all of S, include $\pm P$ in ISG depending on the measurement result
- 2. P commutes with all of $\mathcal{S}_0 \subset \mathcal{S}$, ISG is $\mathcal{S}_0 \cup \pm P$

Yusheng Zhao 2024-10-19 Floquet Code 12 / 22

Measurement Visualized

1

Yusheng Zhao 2024-10-19 Floquet Code 13 / 22

¹Zhu, Guo-Yi, and Simon Trebst. "Qubit fractionalization and emergent Majorana liquid in the honeycomb Floquet code induced by coherent errors and weak measurements." arXiv preprint arXiv:2311.08450 (2023).

Embeded Toric Code

- ISG at step $r \ge 3$ contains all hexagons and $r \mod 3$ edge checks.
- Each edge check halfs the degree of freedom of qubits on the edge.
- Effectively, the code is a lattice of hexagons with embedded toric code on each hexagon.

[5]

Yusheng Zhao 2024-10-19 Floquet Code 14 / 22

Motivations

Static Code

Floquetification

Conclusion

Appendix

Yusheng Zhao 2024-10-19 Floquet Code 15 / 22

Conclusion

- Honeycomb Code on a hexagonal lattice is "equivalent" to Toric Code on a hexagonal superlattice
- Floquet code has comparable quality as surface code but requires lower connectivity on hardware

Yusheng Zhao 2024-10-19 Floquet Code 16 / 22

Motivations

Static Code

Floquetification

Conclusion

Appendix

Yusheng Zhao 2024-10-19 Floquet Code 17 / 22

Terms

• "The **teraquop footprint** is the number of physical qubits required to create a logical qubit reliable enough to survive one trillion operations."

Yusheng Zhao 2024-10-19 Floquet Code 18 / 22

Terms

Static Code: Shor-style Measurement

Yusheng Zhao 2024-10-19 Floquet Code 19 / 22

Terms

Repetition Code: Encoding, Syndrome Extraction, and Error Correction

Yusheng Zhao 2024-10-19 Floquet Code 20 / 22

References

Bibliography

- Gidney, C., Newman, M., Fowler, A., Broughton, M.: A Fault-Tolerant Honeycomb Memory.
- Quantum. 5, 605–606 (2021). https://doi.org/10.22331/q-2021-12-20-605
 - Hilaire, P., Dessertaine, T., Bourdoncle, B., Denys, A., Gliniasty, G. de, Valentí-Rojas, G.,
- 2. Mansfield, S.: Enhanced Fault-tolerance in Photonic Quantum Computing: Floquet Code Outperforms Surface Code in Tailored Architecture, http://arxiv.org/abs/2410.07065
- Tanggara, A., Gu, M., Bharti, K.: Simple Construction of Qudit Floquet Codes on a Family of Lattices, http://arxiv.org/abs/2410.02022
- 4. Higgott, O., Breuckmann, N. P.: Constructions and Performance of Hyperbolic and Semi-Hyperbolic Floquet Codes, http://arxiv.org/abs/2308.03750

Yusheng Zhao 2024-10-19 Floquet Code 21 / 22,

References

Hastings, M. B., Haah, J.: Dynamically Generated Logical Qubits. Quantum. 5, 564–565 (2021). https://doi.org/10.22331/q-2021-10-19-564

Yusheng Zhao 2024-10-19 Floquet Code 22 / 22