Definition 0.1. For $z \in \mathbb{C} - \{0\}$, we let

$$\arg z = \left\{ \theta \in \mathbb{R} \mid |z|e^{i\theta} = z \right\}$$

Definition 0.2 (Principal argument). We define the principal argument of $z \in \mathbb{C} - \{0\}$ as the unique element

$$\operatorname{Arg} z \in \operatorname{arg} z \cap (-\pi, \pi]$$

Definition 0.3 (Argument function). An argument function for a subset $A \subset \mathbb{C} - \{0\}$ is a function $\theta \colon A \to \mathbb{R}$ such that $\theta(z) \in \arg z$ for all $z \in A$.

Lemma 0.4. Arg is continuous on $\mathbb{C}_{\pi} = \{re^{i\pi} \mid r \geq 0\}.$

Proof. We have that Arg z maps \mathbb{C}_{π} onto $(-\pi, \pi)$, and

$$\begin{split} & \operatorname{Arg} z = \operatorname{Arccos} \frac{x}{|z|}, \quad z = x + iy, y > 0 \\ & \operatorname{Arg} z = \operatorname{Arctan} \frac{x}{y}, \quad z = x + iy, x > 0 \\ & \operatorname{Arg} z = \operatorname{Arcsin} \frac{y}{|z|}, \quad z = x + iy, y < 0 \end{split}$$

We have that $\operatorname{Arccos} \frac{x}{|z|}$ and $\operatorname{Arctan} \frac{x}{y}$ agree on $\{x+iy\in\mathbb{C}\mid x,y>0\}$ and that $\operatorname{Arctan} \frac{x}{y}$ and $\operatorname{Arcsin} \frac{y}{|z|}$ agree on $\{x+iy\in\mathbb{C}\mid x>0,y<0\}$. All these are C^{∞} functions, so in particular continuous, hence they define a continuous function on \mathbb{C}_{π} .

Definition 0.5 (Argument function for \mathbb{C}_{α}). Likewise, if $\alpha \in \mathbb{R}$, we can define

$$\mathbb{C}_{\alpha} = \mathbb{C} - \left\{ re^{i\alpha} \mid r \ge 0 \right\}.$$

Then we can define

$$Arg_{\alpha} : \mathbb{C}_{\alpha} \to \mathbb{R}$$

by

$$\mathrm{Arg}_{\alpha}(z) = \mathrm{Arg}\left(e^{i(\pi-\alpha)}z\right) + \alpha - \pi.$$

As a composition of continuous maps, $\operatorname{Arg}_{\alpha}$ is continuous on \mathbb{C}_{π} .

Proposition 0.6. There exist a continuous argument function on $A \subset S^1 \subset \mathbb{C}$ if and only if $A \neq S^1$.

Proof. We first show that there does not exist a continuous argument function on S^1 . Suppose there exists a continuous argument function $\theta \colon S^1 \to \mathbb{R}$. Since S^1 is compact and path-connected, the image of S^1 under θ must be a closed interval, [a,b]. As θ is bijective too, it is a homeomorphism. But removing any point of S^1 leaves it path-connected, while removing a point in the interior of [a,b] leaves it separated, and thus not connected. Since connectedness and path-connectedness are topological properties, S^1 is not homeomorphic to [a,b], so no such argument function exists.

Now, conversely, if $A \neq S^1$, then we can pick a point $e^{i\alpha} \in S^1 - A$. Then $\operatorname{Arg}_{\alpha}$ is a continuous argument function for A.

Proposition 0.7. Let $\theta: A \to \mathbb{R}$ be a continuous argument function where $A \subset \mathbb{C} - \{0\}$ is path-connected. Then for any $p \in \mathbb{Z}$, $\theta + 2\pi p$ is also a continuous argument function for A, and all argument functions for A are of this form.

Proof. Any such function is clearly a continuous argument function.

Now suppose $\gamma \colon A \to \mathbb{R}$ is another continuous argument function for A. Then $\theta - \gamma$ takes values in $2\pi\mathbb{Z}$ for all $z \in A$, and since this set is discrete and $\theta - \gamma$ is continuous, we have that $\theta - \gamma$ is constant, so $\gamma = \theta + 2\pi p$ for some $p \in \mathbb{Z}$.