

Polar™ HiPERFET **Power MOSFET**

IXFK200N10P IXFX200N10P

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum R	Maximum Ratings		
V _{DSS}	T _J = 25°C to 175°C	100	V		
V _{DGR}	$T_J = 25^{\circ}\text{C} \text{ to } 175^{\circ}\text{C}, R_{GS} = 1\text{M}\Omega$	100	V		
V _{GSS}	Continuous	±20	V		
V _{GSM}	Transient	±30	V		
I _{D25}	T _C = 25°C (Chip Capability)	200	A		
I _{L(RMS)}	External Lead Current Limit	160	Α		
I _{DM}	$T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}	400	Α		
I _A	T _C = 25°C	60	A		
É _{AS}	T _c = 25°C	4	J		
dv/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \leq V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \leq 150^{\circ}\mathrm{C}$	10	V/ns		
P_{D}	T _C = 25°C	830	W		
T_{J}		-55+175	°C		
T _{JM}		175	°C		
T _{stg}		-55+175	°C		
T,	Maximum Lead Temperature for Soldering	300	°C		
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C		
M _d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in		
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb		
Weight	TO-264 PLUS247	10 6	g g		

Symbol (T _J = 25°C,	Test Conditions Unless Otherwise Specified)	Chara Min.		ic Value Max.	es
BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$	100			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 8mA$	2.5		5.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 150^{\circ}C$			25 500	μA μA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$ $V_{GS} = 15V, I_{D} = 400A, Note 1$		5.5	7.5	mΩ mΩ

100V 200A $7.5 m\Omega$ $\mathbf{R}_{\mathrm{DS(on)}}$

TO-264 (IXFK)

G	= Gate	D	=	Drain
S	= Source	Tab	=	Drain

Features

- International Standard Packages
- Low R_{DS(on)} and Q_G
 Avalanche Rated
- Low Package Inductance
- Fast Intrinsic Rectifier

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- DC-DC Coverters
- · Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC and DC Motor Drives
- Uninterrupted Power Supplies
- High Speed Power Switching **Applications**

Symbol (T _J = 25°C	Test Conditions C, unless otherwise specified)	Ch Min.	aracteris Typ.	stic Values Max.
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	60	97	S
C _{iss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		7600 2900	pF pF
C _{rss}			860	pF
t _{d(on)} t _r t _{d(off)}	Resistive Switching Times $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 60A$ $R_{G} = 3.3\Omega \text{ (External)}$		30 35 150 90	ns ns ns
$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		235 50 135	nC nC nC
R _{thJC}			0.15	0.18 °C/W °C/W

Source-Drain Diode

Symbol	Test Conditions C	haracteris	tic Values
$(T_{J} = 25^{\circ}C, 1)$	unless otherwise specified) Min	. Тур.	Max.
I s	$V_{GS} = 0V$		200 A
SM	Repetitive, pulse width limited by T_{JM}		400 A
$\mathbf{V}_{\mathtt{SD}}$	$I_F = I_S$, $V_{GS} = 0V$, Note 1		1.5 V
$\left\{egin{array}{ll} \mathbf{t}_{rr} & & \\ \mathbf{I}_{RM} & & \\ \mathbf{Q}_{RM} & & \end{array} ight\}$	$I_{_{\rm F}} = 25 {\rm A}, -{\rm di}/{\rm dt} = 100 {\rm A}/{\rm \mu s},$ $V_{_{\rm R}} = 50 {\rm V}, V_{_{\rm GS}} = 0 {\rm V}$	6.0 0.4	150 ns Α μC

Note: 1. Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

SYM	INCH	IES	MILLIM	ETERS
21M	MIN	MAX	MIN	MAX
A	.185	.209	4.70	5.30
A1	.102	.118	2.60	3.00
b	.035	.049	0.90	1.25
b1	.091	.106	2.30	2.70
b2	.110	.126	2.80	3.20
С	.020	.033	0.50	0.85
D	1.012	1.035	25.70	26.30
E	.776	.799	19.70	20.30
е	.215	BSC	5.46 BSC	
L	.768	.807	19.50	20.50
L1	.091	.106	2.30	2.70
ØΡ	.122	.138	3.10	3.50
Q	.228	.244	5.80	6.20
Q1	.346	.362	8.80	9.20
ØR	.150	.165	3.80	4.20
ØR1	.071	.087	1.80	2.20
S	.228	.244	5.80	6.20

Terminals: 1 - Gate 2,4 - Drain 3 - Source

SYM	INCHES		MILLIMETERS		
STM	MIN	MAX	MIN	MAX	
Α	.190	.205	4.83	5,21	
A1	.090	.100	2,29	2,54	
A2	.075	.085	1.91	2.16	
Ь	.045	.055	1.14	1.40	
b2	.075	.087	1.91	2.20	
b4	.115	.126	2.92	3.20	
С	.024	.031	0.61	0.80	
D	.819	.840	20.80	21.34	
D1	.650	.690	16.51	17.53	
D2	.035	.050	0.89	1.27	
Ε	.620	.635	15.75	16.13	
E1	.520	.560	13.08	14.22	
е	.215 BSC		5.45 BSC		
L	.780	.810	19.81	20.57	
L1	.150	.170	3.81	4.32	
Q	.220	.244	5.59	6.20	
R	.170	.190	4.32	4.83	

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13 Maximum Transient Thermal Impedance

