

COMPUTER ORGANISATION (TỔ CHỨC MÁY TÍNH)

Sequential circuits

Acknowledgement

- The contents of these slides have origin from School of Computing, National University of Singapore.
- We greatly appreciate support from Mr. Aaron Tan Tuck Choy for kindly sharing these materials.

Policies for students

- These contents are only used for students PERSONALLY.
- Students are NOT allowed to modify or deliver these contents to anywhere or anyone for any purpose.

WHERE ARE WE NOW?

- Number systems and codes
- Boolean algebra
- Logic gates and circuits
- Simplification
- Combinational circuits
- Sequential circuits
- Performance
- Assembly language
- The processor: Datapath and control
- Pipelining
- Memory hierarchy: Cache
- Input/output

Preparation: 2 weeks

Logic Design: 3 weeks

Computer organisation

SEQUENTIAL LOGIC

- Memory Elements
- Latches: S-R Latch, D Latch
- Flip-flops: S-R flip-flop, D flip-flop, J-K flip-flops, T flip-flops
- Asynchronous Inputs
- Synchronous Sequential Circuit: Analysis and Design
- Memory
- Memory Unit
- Read/Write Operations
- Memory Arrays

INTRODUCTION (1/2)

- Two classes of logic circuits
 - Combinational
 - Sequential
- Combinational Circuit
 - Each output depends entirely on the immediate (present) inputs.

Sequential Circuit

 Each output depends on both present inputs and state.

INTRODUCTION (2/2)

- Two types of sequential circuits:
 - Synchronous: outputs change only at specific time
 - Asynchronous: outputs change at any time
- Multivibrator: a class of sequential circuits
 - Bistable (2 stable states)
 - Monostable or one-shot (1 stable state)
 - Astable (no stable state)
- Bistable logic devices
 - Latches and flip-flops.
 - They differ in the methods used for changing their state.

MEMORY ELEMENTS (1/3)

 Memory element: a device which can remember value indefinitely, or change value on command from its inputs.

Characteristic table:

Command (at time t)	Q(t)	Q(t+1)
Set	Χ	1
Reset	Х	0
Memorise /	0	0
No Change	1	1

Q(t) or **Q**: current state

Q(t+1) or Q^+ : next state

MEMORY ELEMENTS (2/3)

Memory element with clock.

Clock is usually a square wave.

CS2100 Sequential Logic 10

MEMORY ELEMENTS (3/3)

- Two types of triggering/activation
 - Pulse-triggered
 - Edge-triggered
- Pulse-triggered
 - Latches
 - ON = 1, OFF = 0

- Edge-triggered
 - Flip-flops
 - Positive edge-triggered (ON = from 0 to 1; OFF = other time)
 - Negative edge-triggered (ON = from 1 to 0; OFF = other time)

CS2100 Sequential Logic 11

S-R LATCH (1/3)

- Two inputs: S and R.
- Two complementary outputs: Q and Q'.
 - When Q = HIGH, we say latch is in SET state.
 - When Q = LOW, we say latch is in RESET state.
- For active-high input S-R latch (also known as NOR gate latch)
 - $R = HIGH \text{ and } S = LOW \rightarrow Q \text{ becomes LOW (RESET state)}$
 - $S = HIGH \text{ and } R = LOW \rightarrow Q \text{ becomes HIGH (SET state)}$
 - Both R and S are LOW → No change in output Q
 - Both R and S are HIGH →Outputs Q and Q' are both LOW (invalid!)
- Drawback: invalid condition exists and must be avoided.

S-R LATCH (2/3)

Active-high input S-R latch:

Block diagram:

S-R LATCH (3/3)

• Characteristic table for active-high input *S-R* latch:

S	R	Q	Q'	
0	0	NC	NC	No change. Latch remained in present state.
1	0	1	0	Latch SET.
0	1	0	1	Latch RESET.
1	1	0	0	Invalid condition.

S	R	Q(t+1)		_
0	0	Q(t)	No change	Q
0	1	0	Reset	Q ₁
1	0	1	Set	
1	1	indeterminate		

$$Q(t+1) = ?$$

ACTIVE-LOW S-R LATCH

- (You may skip this slide.)
- What we have seen is active-high input S-R latch.
- There are active-low input S-R latches, where NAND gates are used instead.
 See diagram on the left below.

- In this case,
 - □ when *R*=0 and *S*=1, the latch is reset (i.e. Q becomes 0)
 - when R=1 and S=0, the latch is set (i.e. Q becomes 1)
 - \square when S=R=1, it is a no-change command.
 - ho when S=R=0, it is an invalid command.
- Sometimes, we use the alternative gate diagram for the NAND gate. See diagram on the right above. (This appears in more complex latches/flip-flops in the later slides.)

(Sometimes, the inputs are labelled as S' and R'.)

GATED S-R LATCH

 S-R latch + enable input (EN) and 2 NAND gates → a gated S-R latch.

Outputs change (if necessary) only when EN is high.

GATED D LATCH (1/2)

- Make input R equal to $S' \rightarrow \text{gated } D \text{ latch.}$
- D latch eliminates the undesirable condition of invalid state in the S-R latch.

CS2100 17

GATED D LATCH (2/2)

- When *EN* is high,
 - $D = HIGH \rightarrow latch is SET$
 - D = LOW → latch is RESET
- Hence when EN is high, Q "follows" the D (data) input.
- Characteristic table:

EN	D	Q(t+1)	
1	0	0	Reset
1	1	1	Set
0	X	Q(t)	No change

When EN=1, Q(t+1) = ?

FLIP-FLOPS (1/2)

- Flip-flops are synchronous bistable devices.
- Output changes state at a specified point on a triggering input called the clock.
- Change state either at the positive (rising) edge, or at the negative (falling) edge of the clock signal.

FLIP-FLOPS (2/2)

- S-R flip-flop, D flip-flop, and J-K flip-flop.
- Note the ">" symbol at the clock input.

Positive edge-triggered flip-flops

Negative edge-triggered flip-flops

S-R FLIP-FLOP

- S-R flip-flop: On the triggering edge of the clock pulse,
 - R = HIGH and S = LOW → Q becomes LOW (RESET state)
 - $S = HIGH \text{ and } R = LOW \rightarrow Q \text{ becomes HIGH (SET state)}$
 - Both R and S are LOW → No change in output Q
 - Both R and S are HIGH → Invalid!
- Characteristic table of positive edge-triggered S-R flip-flop:

S	R	CLK	Q(t+1)	Comments
0	0	Х	Q(t)	No change
0	1	\uparrow	0	Reset
1	0	\uparrow	1	Set
1	1	↑	?	Invalid

X = irrelevant ("don't care")

↑ = clock transition LOW to HIGH

D FLIP-FLOP (1/2)

- D flip-flop: Single input D (data). On the triggering edge of the clock pulse,
 - D = HIGH → Q becomes HIGH (SET state)
 - D = LOW → Q becomes LOW (RESET state)
- Hence, Q "follows" D at the clock edge.
- Convert S-R flip-flop into a D flip-flop: add an inverter.

A positive edge-triggered D flip-flop formed with an S-R flip-flop.

D	CLK	Q(t+1)	Comments
1	\uparrow	1	Set
0	\uparrow	0	Reset

↑ = clock transition LOW to HIGH

D FLIP-FLOP (2/2)

- Application: Parallel data transfer.
 - To transfer logic-circuit outputs X, Y, Z to flip-flops Q1, Q2 and Q3 for storage.

* After occurrence of negative-going transition

CS2100 Sequential Logic 23

J-K FLIP-FLOP (1/2)

- J-K flip-flop: Q and Q' are fed back to the pulse-steering NAND gates.
- No invalid state.
- Include a toggle state
 - J = HIGH and $K = LOW \rightarrow Q$ becomes HIGH (SET state)
 - K = HIGHand $J = LOW <math>\rightarrow$ Q becomes LOW (RESET state)
 - Both J and K are LOW → No change in output Q
 - Both J and K are HIGH → Toggle

J-K FLIP-FLOP (2/2)

• *J-K* flip-flop circuit:

Characteristic table:

J	Κ	CLK	Q(t+1)	Comments
0	0	↑	Q(t)	No change
0	1	\uparrow	0	Reset
1	0	\uparrow	1	Set
1	1	\uparrow	Q(t)'	Toggle

$$Q(t+1) = ?$$

Q	J	K	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

TFLIP-FLOP

• *T* flip-flop: Single input version of the *J-K* flip-flop, formed by tying both inputs together.

Characteristic table:

T	CLK	Q(t+1)	Comments
0	↑	Q(t)	No change
1	\uparrow	Q(t)'	Toggle

$$Q(t+1) = ?$$

Q	T	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

CS2100 Sequential Logic 26

ASYNCHRONOUS INPUTS (1/2)

- S-R, D and J-K inputs are synchronous inputs, as data on these inputs are transferred to the flip-flop's output only on the triggered edge of the clock pulse.
- Asynchronous inputs affect the state of the flip-flop independent of the clock; example: preset (PRE) and clear (CLR) [or direct set (SD) and direct reset (RD)].
- When PRE=HIGH, Q is immediately set to HIGH.
- When CLR=HIGH, Q is immediately cleared to LOW.
- Flip-flop in normal operation mode when both PRE and CLR are LOW.

ASYNCHRONOUS INPUTS (2/2)

 A J-K flip-flop with active-low PRESET and CLEAR asynchronous inputs.

SYNCHRONOUS SEQUENTIAL CIRCUITS

- Building blocks: logic gates and flip-flops.
- Flip-flops make up the memory while the gates form one or more combinational sub-circuits.
- We have discussed S-R flip-flop, J-K flip-flop, D flip-flop and T flip-flop.

FLIP-FLOP CHARACTERISTIC TABLES

 Each type of flip-flop has its own behaviour, shown by its characteristic table.

J	K	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q(t)'	Toggle

S	R	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	?	Unpredictable

D	Q(t+1)	
0	0	Reset
1	1	Set

T	Q(t+1)	
0	Q(t)	No change
1	Q(t)'	Toggle

CS2100 Sequential Logic 30

SEQUENTIAL CIRCUITS: ANALYSIS (1/7)

- Given a sequential circuit diagram, we can analyze its behaviour by deriving its *state table* and hence its *state diagram*.
- Requires *state equations* to be derived for the flip-flop inputs, as well as *output functions* for the circuit outputs other than the flip-flops (if any).
- We use A(t) and A(t+1) (or simply A and A+) to represent the present state and next state, respectively, of a flip-flop represented by A.

SEQUENTIAL CIRCUITS: ANALYSIS (2/7)

Example using D flip-flops

State equations:

$$A^+ = A \cdot x + B \cdot x$$

$$B^+ = A' \cdot x$$

Output function:

$$y = (A + B) \cdot x'$$

CS2100 Sequential Logic 32

SEQUENTIAL CIRCUITS: ANALYSIS (3/7)

• From the *state equations* and *output function*, we derive the *state table*, consisting of all possible binary combinations of present states and inputs.

State table

- Similar to truth table.
- Inputs and present state on the left side.
- Outputs and next state on the right side.
- *m* flip-flops and *n* inputs $\rightarrow 2^{m+n}$ rows.

SEQUENTIAL CIRCUITS: ANALYSIS (4/7)

State table for circuit of Figure 1:

State equations:

Output function:

$$A^+ = A \cdot x + B \cdot x$$

$$y = (A + B) \cdot x'$$

$$B^+ = A' \cdot x$$

Present State		Input		ext ate	Output
A	В	X	A^{\dagger}	B ⁺	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

SEQUENTIAL CIRCUITS: ANALYSIS (5/7)

Alternative form of state table:

Full table

Present State		Input	Next State		Output
A	В	X	\overline{A}^{+}	B ⁺	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Compact table

Present	Next State		Output	
State	x=0	<i>x</i> =1	<i>x</i> =0	<i>x</i> =1
AB	$A^{\dagger}B^{\dagger}$	$A^{\dagger}B^{\dagger}$	У	У
00	00	01	0	0
01	00	11	1	0
10	00	10	1	0
11	00	10	1	0

CS2100 Sequential Logic 35

SEQUENTIAL CIRCUITS: ANALYSIS (6/7)

- From the *state table*, we can draw the *state diagram*.
- State diagram
 - Each state is denoted by a circle.
 - Each arrow (between two circles) denotes a transition of the sequential circuit (a row in state table).
 - A label of the form *a/b* is attached to each arrow where *a* (if there is one) denotes the inputs while *b* (if there is one) denotes the outputs of the circuit in that transition.
- Each combination of the flip-flop values represents a state. Hence, m flip-flops → up to 2^m states.

CS2100 Sequential Logic

SEQUENTIAL CIRCUITS: ANALYSIS (7/7)

State diagram of the circuit of Figure 1:

Present	Next State		Output	
State	<i>x</i> =0	<i>x</i> =1	<i>x</i> =0	<i>x</i> =1
AB	$A^{\dagger}B^{\dagger}$	$A^{\dagger}B^{\dagger}$	У	У
00	00	01	0	0
01	00	11	1	0
10	00	10	1	0
11	00	10	1	0

DONE!

FLIP-FLOP INPUT FUNCTIONS (1/3) The outputs of a sequential circuit are functions of the

- The outputs of a sequential circuit are functions of the present states of the flip-flops and the inputs. These are described algebraically by the *circuit output functions*.
 - In Figure 1: $y = (A + B) \cdot x'$
- The part of the circuit that generates inputs to the flip-flops are described algebraically by the *flip-flop input functions* (or *flip-flop input equations*).
- The flip-flop input functions determine the next state generation.
- From the flip-flop input functions and the characteristic tables of the flip-flops, we obtain the next states of the flip-flops.

FLIP-FLOP INPUT FUNCTIONS (2/3)

- Example: circuit with a JK flip-flop.
- We use 2 letters to denote each flip-flop input: the first letter denotes the input of the flip-flop (*J* or *K* for *J-K* flip-flop, *S* or *R* for *S-R* flip-flop, *D* for *D* flip-flop, *T* for *T* flip-flop) and the second letter denotes the name of the flip-flop.

$$JA = B \cdot C' \cdot x + B' \cdot C \cdot x'$$

 $KA = B + y$

FLIP-FLOP INPUT FUNCTIONS (3/3)

• In Figure 1, we obtain the following state equations by observing that $Q^+ = DQ$ for a D flip-flop:

$$A^+ = A \cdot x + B \cdot x$$
 (since $DA = A \cdot x + B \cdot x$)
 $B^+ = A' \cdot x$ (since $DB = A' \cdot x$)

Figure 1

ANALYSIS: EXAMPLE #2 (1/3)

Given Figure 2, a sequential circuit with two *J-K* flip-flops
 A and B, and one input x.

Obtain the flip-flop input functions from the circuit:

$$JA = B$$
 $JB = x'$
 $KA = B \cdot x'$ $KB = A' \cdot x + A \cdot x' = A \oplus x$

ANALYSIS: EXAMPLE #2 (2/3)

$$KA = B \cdot x'$$

$$KB = A' \cdot x + A \cdot x' = A \oplus x$$

Fill the state table using the above functions, knowing the characteristics of the flip-flops used.

J	K	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q(t)'	Toggle

Pre	sent		No	ext				
sta	ate	<u>Input</u>		ate_	<u>FI</u>	ip-flo	<mark>p inp</mark> ւ	ıts_
A	В	X	A^{\dagger}	B^{\dagger}	JA	KA	JB	KB
0	0	0			0	0	1	0
0	0	1			0	0	0	1
0	1	0			1	1	1	0
0	1	1			1	0	0	1
1	0	0			0	0	1	1
1	0	1			0	0	0	0
1	1	0			1	1	1	1
1	1	1			1	0	0	0

ANALYSIS: EXAMPLE #2 (3/3)

Draw the state diagram from the state table.

	sent	lnnut		ext	Е	in flo	n innı	ıto
<u> 51</u>	ate	<u>Input</u>		ate_	<u> </u>	<u>ıb-110</u>	<u>p inp</u> u	115_
A	В	X	A^{\dagger}	B ⁺	JA	KA	JB	KB
0	0	0			0	0	1	0
0	0	1			0	0	0	1
0	1	0			1	1	1	0
0	1	1			1	0	0	1
1	0	0			0	0	1	1
1	0	1			0	0	0	0
1	1	0			1	1	1	1
1	1	1			1	0	0	0

ANALYSIS: EXAMPLE #3 (1/3)

Derive the state table and state diagram of this circuit.

Figure 3

Flip-flop input functions:

$$JA = B$$
 $JB = KB = (A \oplus x)' = A \cdot x + A' \cdot x'$ $KA = B'$

ANALYSIS: EXAMPLE #3 (2/3)

Flip-flop input functions:

$$JA = B$$

 $KA = B'$

$$JB = KB = (A \oplus x)' = A \cdot x + A' \cdot x'$$

State table:

Pres	sent		Ne	ext					
sta	ate	<u>Input</u>	_sta	ate_	Output	FI_	ip-flo	<mark>p inp</mark> ւ	<u>uts</u>
A	В	X	\boldsymbol{A}^{\dagger}	B^{\dagger}	y	JA	KA	JB	KB
0	0	0			0	0	1	1	1
0	0	1			1	0	1	0	0
0	1	0			1	1	0	1	1
0	1	1			0	1	0	0	0
1	0	0			1	0	1	0	0
1	0	1			0	0	1	1	1
1	1	0			0	1	0	0	0
_1	1	1			1	1	0	1	1

ANALYSIS: EXAMPLE #3 (3/3)

State diagram:

	sent ate	Input	Next state	Output	FI	ip-flo	p inpu	uts
A	В		A^+ B^+	у		KA	-	KB
0	0	0		0	0	1	1	1
0	0	1		1	0	1	0	0
0	1	0		1	1	0	1	1
0	1	1		0	1	0	0	0
1	0	0		1	0	1	0	0
1	0	1		0	0	1	1	1
1	1	0		0	1	0	0	0
1	1	1		1	1	0	1	1

FLIP-FLOP EXCITATION TABLES (1/2)

- Analysis: Starting from a circuit diagram, derive the state table or state diagram.
- Design: Starting from a set of specifications (in the form of state equations, state table, or state diagram), derive the logic circuit.
- · Characteristic tables are used in analysis.
- Excitation tables are used in design.

FLIP-FLOP EXCITATION TABLES (2/2)

• Excitation tables: given the required transition from present state to next state, determine the flip-flop input(s).

Q	Q^{\dagger}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

JK Flip-flop

0 0 0 0 1 1 1 0 0 1 1 1	Q	\mathbf{Q}^{\dagger}	D
1 0 0	0	0	0
	0	1	1
1 1 1 1	1	0	0
	1	1	1

D Flip-flop

Q	Q^{\dagger}	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

SR Flip-flop

Q	Q [†]	T
0	0	0
0	1	1
1	0	1
1	1	0

T Flip-flop

SEQUENTIAL CIRCUITS: DESIGN

Design procedure:

- Start with circuit specifications description of circuit behaviour, usually a state diagram or state table.
- Derive the state table.
- Perform state reduction if necessary.
- Perform state assignment.
- Determine number of flip-flops and label them.
- Choose the type of flip-flop to be used.
- Derive circuit excitation and output tables from the state table.
- Derive circuit output functions and flip-flop input functions.
- Draw the logic diagram.

DESIGN: EXAMPLE #1 (1/5)

 Given the following state diagram, design the sequential circuit using JK flip-flops.

Questions:

How many flip-flops are needed? How many input variable are there?

DESIGN: EXAMPLE #1 (2/5)

Circuit state/excitation table, using JK flip-flops.

Q	Q^{\dagger}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

JK Flip-flop's excitation table.

Present	Next State			
State	x=0	x=1		
AB	$A^{\dagger}B^{\dagger}$	$A^{\dagger}B^{\dagger}$		
00	00	01		
01	10	01		
10	10	11		
11	11	00		

Pres		Input	Next state		F	lip-flo	p inpu	ts
A	В	X	A ⁺	B^{+}	JA	KA	JB	KB
0	0	0	0	0				
0	0	1	0	1				
0	1	0	1	0				
0	1	1	0	1				
1	0	0	1	0				
1	0	1	1	1				
1	1	0	1	1				
1	1	1	0	0				

DESIGN: EXAMPLE #1 (3/5)

Block diagram.

DESIGN: EXAMPLE #1 (4/5)

• From state table, get flip-flop input functions.

Present state		Input	Next state		Flip-flop inputs				
A	В	X	A^{\dagger}	B ⁺	JA	KA	JB	KB	
0	0	0	0	0	0	X	0	X	
0	0	1	0	1	0	X	1	X	
0	1	0	1	0	1	X	X	1	
0	1	1	0	1	0	X	X	0	
1	0	0	1	0	X	0	0	X	
1	0	1	1	1	X	0	1	X	
1	1	0	1	1	X	0	X	0	
1	1	1	0	0	X	1	X	1	

DESIGN: EXAMPLE #1 (5/5)

Flip-flop input functions:

$$JA = B \cdot x'$$
 $JB = x$
 $KA = B \cdot x$ $KB = (A \oplus x)'$

Logic diagram:

DESIGN: EXAMPLE #2 (1/3)

• Using *D* flip-flops, design the circuit based on the state table below. (Exercise: Design it using *JK* flip-flops.)

Present state		Input		ext ate	Output	
A	В	X	A^{+}	B ⁺	У	
0	0	0	0	0	0	
0	0	1	0	1	1	
0	1	0	1	0	0	
0	1	1	0	1	0	
1	0	0	1	0	0	
1	0	1	1	1	1	
1	1	0	1	1	0	
1	1	1	0	0	0	

DESIGN: EXAMPLE #2 (2/3)

Determine expressions for flip-flop inputs and the circuit output y.

Present state		Input		ext ate	Output		
A	В	×	A^{+}	B^{\dagger}	y		
0	0	0	0	0	0		
0	0	1	0	1	1		
0	1	0	1	0	0		
0	1	1	0	1	0		
1	0	0	1	0	0		
1	0	1	1	1	1		
1	1	0	1	1	0		
1	1	1	0	0	0		

$$DA(A,B,x) = \Sigma \text{ m}(2,4,5,6)$$

 $DB(A,B,x) = \Sigma \text{ m}(1,3,5,6)$
 $y(A,B,x) = \Sigma \text{ m}(1,5)$

DESIGN: EXAMPLE #2 (3/3)

From derived expressions, draw logic diagram:

DESIGN: EXAMPLE #3 (1/4)

Design involving unused states.

Pi	rese	nt			Next	t							
	state	e	Input		state	}		Fli	p-flop	inp	uts		Output
Α	В	С	х	A ⁺	B ⁺	C ⁺	SA	RA	SB	RB	sc	RC	У
0	0	1	0	0	0	1	0	Х	0	Χ	Х	0	0
0	0	1	1	0	1	0	0	Х	1	0	0	1	0
0	1	0	0	0	1	1	0	Х	Х	0	1	0	0
0	1	0	1	1	0	0	1	0	0	1	0	Х	0
0	1	1	0	0	0	1	0	Х	0	1	Х	0	0
0	1	1	1	1	0	0	1	0	0	1	0	1	0
1	0	0	0	1	0	1	Х	0	0	Х	1	0	0
1	0	0	1	1	0	0	Х	0	0	Х	0	Х	1
1	0	1	0	0	0	1	0	1	0	Х	Х	0	0
1	0	1	1	1	0	0	X	0	0	Х	0	1	1

Given these

Derive these

Are there other unused states?

Unused state 000:

0	0	0	0	X	X	X	X	X	X	X	Χ	Χ	X
0	0	0	1	X	X	X	X	X	X	X	X	X	X

DESIGN: EXAMPLE #3 (2/4)

• From state table, obtain expressions for flip-flop inputs.

SB = ?

DESIGN: EXAMPLE #3 (3/4)

From state table, obtain expressions for flip-flop inputs

DESIGN: EXAMPLE #3 (4/4)

From derived expressions, draw the logic diagram:

```
SA = B \cdot x SB = A' \cdot B' \cdot x SC = x' y = A \cdot x RA = C \cdot x' RB = B \cdot C + B \cdot x RC = x
```


COUNTERS

- Counters are sequential circuits that cycle through some states.
- They can be implemented using flip-flops.
- Two examples are shown: Ring counter and Johnson counter.
- Implementation is simple: using *D* flip-flops.
- (This and next few slides on ring counter and Johnson counter are just for your reading.)

Ran n bit ing counter cycles through n states.

• Example: A 6-bit ring counter (also called mod-6 ring counter)

Clock	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5
→ 0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	1	0	0	0
3	0	0	0	1	0	0
4	0	0	0	0	1	0
<u>└</u> 5	0	0	0	0	0	1

JOHNSON COUNTERS (1/2)
An *n-bit* Johnson counter (also called twisted-ring counter) cycles through 2*n*

states.

Example: A 4-bit John counter (also called mod-8 Johnson counter)

JOHNSON COUNTERS (2/2) Requires decoding logic for the states.

- Example: Decoding logic for a 4-bit Johnson counter.

Clock	A	В	C	D	Decoding
→0	0	0	0	0	A'.D'
1	1	0	0	0	A.B'
2	1	1	0	0	B.C'
3	1	1	1	0	C.D'
4	1	1	1	1	A.D
5	0	1	1	1	A'.B
6	0	0	1	1	B'.C
<u></u>	0	0	0	1	C'.D

MEMORY (1/4)

- Memory stores programs and data.
- Definitions:
 - 1 byte = 8 bits
 - 1 word: in multiple of bytes, a unit of transfer between main memory and registers, usually size of register.
 - 1 KB (kilo-bytes) = 2^{10} bytes; 1 MB (mega-bytes) = 2^{20} bytes; 1 GB (giga-bytes) = 2^{30} bytes; 1 TB (tera-bytes) = 2^{40} bytes.
- Desirable properties: fast access, large capacity, economical cost, non-volatile.
- However, most memory devices do not possess all these properties.

MEMORY (2/4)

Memory hierarchy

MEMORY (3/4)

Data transfer

MEMORY (4/4)

- A memory unit stores binary information in groups of bits called *words*.
- The data consists of *n* lines (for *n*-bit words). Data input lines provide the information to be stored (*written*) into the memory, while data output lines carry the information out (*read*) from the memory.
- The address consists of k lines which specify which word (among the 2^k words available) to be selected for reading or writing.
- The control lines *Read* and *Write* (usually combined into a single control line *Read/Write*) specifies the direction of transfer of the data.

MEMORY UNIT

Block diagram of a memory unit:

READ/WRITE OPERATIONS

Write operation:

- Transfers the address of the desired word to the address lines.
- Transfers the data bits (the word) to be stored in memory to the data input lines.
- Activates the Write control line (set Read/Write to 0).

Read operation:

- Transfers the address of the desired word to the address lines.
- Activates the Read control line (set Read/Write to 1).

Memory Enable	Read/Write	Memory Operation
0	X	
1	0	
1	1	

MEMORY CELL

- Two types of RAM
 - Static RAMs use flip-flops as the memory cells.
 - Dynamic RAMs use capacitor charges to represent data. Though simpler in circuitry, they have to be constantly refreshed.
- A single memory cell of the static RAM has the following logic and block diagrams:

MEMORY ARR 1/2 (1/1/1)

 Logic construction of a 4×3 RAM (with decoder and OR gates):

MEMORY ARRAYS (2/4)

- An array of RAM chips: memory chips are combined to form larger memory.
- A 1K × 8-bit RAM chip:

Block diagram of a 1K x 8 RAM chip

MEMORY ARRAYS (3/4)
Input data

MEMORY ARRAYS (4/4) 21-bit addresses 19-bit inte

- 2M × 32 memory module
 - Using 512K × 8 memory chips.

Q&A