```
# IMPORTANT: RUN THIS CELL IN ORDER TO IMPORT YOUR KAGGLE DATA SOURCES
\# TO THE CORRECT LOCATION (\underline{/kaggle/input}) IN YOUR NOTEBOOK,
# THEN FEEL FREE TO DELETE THIS CELL.
# NOTE: THIS NOTEBOOK ENVIRONMENT DIFFERS FROM KAGGLE'S PYTHON
# ENVIRONMENT SO THERE MAY BE MISSING LIBRARIES USED BY YOUR
# NOTEBOOK.
import os
import sys
from tempfile import NamedTemporaryFile
from urllib.request import urlopen
from urllib.parse import unquote, urlparse
from urllib.error import HTTPError
from zipfile import ZipFile
import tarfile
import shutil
CHUNK SIZE = 40960
DATA_SOURCE_MAPPING = 'wind-solar-electricity-production:https%3A%2F%2Fstorage.googleapis.com%2Fkaggle-data-sets%2F3570391%2F6217083%2Fbundle
KAGGLE_INPUT_PATH='/kaggle/input'
KAGGLE_WORKING_PATH='/kaggle/working
KAGGLE_SYMLINK='kaggle'
!umount /kaggle/input/ 2> /dev/null
shutil.rmtree('/kaggle/input', ignore_errors=True)
os.makedirs(KAGGLE_INPUT_PATH, 0o777, exist_ok=True)
os.makedirs(KAGGLE_WORKING_PATH, 0o777, exist_ok=True)
try:
  os.symlink(KAGGLE_INPUT_PATH, os.path.join("..", 'input'), target_is_directory=True)
except FileExistsError:
  pass
try:
  os.symlink(KAGGLE_WORKING_PATH, os.path.join("..", 'working'), target_is_directory=True)
except FileExistsError:
for data_source_mapping in DATA_SOURCE_MAPPING.split(','):
    directory, download_url_encoded = data_source_mapping.split(':')
    download_url = unquote(download_url_encoded)
    filename = urlparse(download_url).path
    destination_path = os.path.join(KAGGLE_INPUT_PATH, directory)
    try:
        with urlopen(download_url) as fileres, NamedTemporaryFile() as tfile:
            total length = fileres.headers['content-length']
            print(f'Downloading {directory}, {total_length} bytes compressed')
            d1 = 0
            data = fileres.read(CHUNK_SIZE)
            while len(data) > 0:
                dl += len(data)
                tfile.write(data)
                done = int(50 * dl / int(total_length))
                sys.stdout.write(f"\r[{'=' * done}{' ' * (50-done)}] {dl} bytes downloaded")
                sys.stdout.flush()
                data = fileres.read(CHUNK SIZE)
            if filename.endswith('.zip'):
              with ZipFile(tfile) as zfile:
                zfile.extractall(destination path)
            else:
              with tarfile.open(tfile.name) as tarfile:
                tarfile.extractall(destination_path)
            print(f'\nDownloaded\ and\ uncompressed:\ \{directory\}')
    except HTTPError as e:
        print(f'Failed to load (likely expired) {download_url} to path {destination_path}')
        continue
    except OSError as e:
        print(f'Failed to load {download_url} to path {destination_path}')
        continue
print('Data source import complete.')
\hbox{\tt\# This Python 3 environment comes with many helpful analytics libraries installed}\\
```

```
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory

import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))

# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & I
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
```

/kaggle/input/wind-solar-electricity-production/intermittent-renewables-production-france.csv

Aim: which month have higest Wind&Solar Power Production

```
#Importing The Required Libraries
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.feature_selection import SelectKBest
from sklearn.preprocessing import LabelEncoder
from \ sklearn.preprocessing \ import \ MinMaxScaler
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier
from xgboost import XGBClassifier
import warnings
warnings.filterwarnings("ignore")
from sklearn.metrics import classification_report,ConfusionMatrixDisplay
```

/opt/conda/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.0 is required for this ve warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"

 $\label{thm:csv} $$ df=pd.read_csv("/kaggle/input/wind-solar-electricity-production/intermittent-renewables-production-france.csv") $$ df $$ df=pd.read_csv("/kaggle/input/wind-solar-electricity-production/intermittent-renewables-production-france.csv") $$ df=pd.read_csv("/kaggle/input/wind-solar-electricity-production/intermittent-renewables-production-france.csv") $$ df=pd.read_csv("/kaggle/input/wind-solar-electricity-production/intermittent-renewables-production-france.csv") $$ df=pd.read_csv("/kaggle/input/wind-solar-electricity-production/intermittent-renewables-production-france.csv") $$ df=pd.read_csv("/kaggle/input/wind-solar-electricity-production/intermittent-renewables-production-france.csv") $$ df=pd.read_csv("/kaggle/input/wind-solar-electricity-production-france.csv") $$ df=pd.read_csv("/kaggle/input/wind-solar-electricity-pd.read_csv") $$ df=pd.read_csv("/kaggle/input/wind-solar-electricity-pd.read_csv") $$ df=pd.read_csv("/kaggle/input/wind-solar-electricity-pd.read_csv") $$ df=pd.read_csv("/kaggle/input/wind-solar-electricity-pd.read_csv") $$ df=pd.rea$

	Date and Hour	Date	StartHour	EndHour	Source	Production	day0fYear	dayName	monthName
0	2020-07-22 20:00:00+02:00	2020-07-22	20:00:00	21:00:00	Solar	244.0	204	Wednesday	July
1	2020-07-23 07:00:00+02:00	2020-07-23	07:00:00	08:00:00	Solar	223.0	205	Thursday	July
2	2020-07-23 16:00:00+02:00	2020-07-23	16:00:00	17:00:00	Solar	2517.0	205	Thursday	July
3	2020-07-23 19:00:00+02:00	2020-07-23	19:00:00	20:00:00	Solar	658.0	205	Thursday	July
4	2020-07-23 23:00:00+02:00	2020-07-23	23:00:00	24:00:00	Solar	0.0	205	Thursday	July
59801	2023-06-30 06:00:00+02:00	2023-06-30	06:00:00	07:00:00	Solar	55.0	181	Friday	June
59802	2023-06-30 13:00:00+02:00	2023-06-30	13:00:00	14:00:00	Solar	4554.0	181	Friday	June
59803	2023-06-30 14:00:00+02:00	2023-06-30	14:00:00	15:00:00	Solar	4589.0	181	Friday	June
59804	2023-06-30 16:00:00+02:00	2023-06-30	16:00:00	17:00:00	Solar	4173.0	181	Friday	June
59805	2023-06-30 18:00:00+02:00	2023-06-30	18:00:00	19:00:00	Solar	2404.0	181	Friday	June

59806 rows × 9 columns

PREPROCESSING

```
df.isna().sum()
                      0
     Date and Hour
     Date
     StartHour
     EndHour
                      0
     Source
                      0
     Production
     dayOfYear
                      0
     dayName
                      0
     {\tt monthName}
                      0
     dtype: int64
df.dropna(inplace=True)
df.dtypes
     Date and Hour
                       object
     Date
                       object
     StartHour
                       object
     EndHour
                       object
     Source
                       object
     Production
                      float64
     day0fYear
                        int64
     dayName
                       object
     monthName
                       object
     dtype: object
df.drop("Date and Hour",axis=1,inplace=True)
df.drop("Date",axis=1,inplace=True)
df['StartHour'] = df['StartHour'].replace('24:00:00', '00:00:00')
df['EndHour'] = df['EndHour'].replace('24:00:00', '00:00:00')
# Step 3: Convert the time columns to pandas datetime objects
df['StartHour'] = pd.to datetime(df['StartHour'])
df['EndHour'] = pd.to_datetime(df['EndHour'])
# Step 4: Perform the subtraction operation and calculate the time difference
# Replace 'new_column_name' with the desired name for the new column
df['TimeDifference'] = df['EndHour'] - df['StartHour']
```

df

	StartHour	EndHour	Source	Production	day0fYear	dayName	monthName	TimeDifference
0	2024-04-04 20:00:00	2024-04-04 21:00:00	Solar	244.0	204	Wednesday	July	0 days 01:00:00
1	2024-04-04 07:00:00	2024-04-04 08:00:00	Solar	223.0	205	Thursday	July	0 days 01:00:00
2	2024-04-04 16:00:00	2024-04-04 17:00:00	Solar	2517.0	205	Thursday	July	0 days 01:00:00
3	2024-04-04 19:00:00	2024-04-04 20:00:00	Solar	658.0	205	Thursday	July	0 days 01:00:00
4	2024-04-04 23:00:00	2024-04-04 00:00:00	Solar	0.0	205	Thursday	July	-1 days +01:00:00
59801	2024-04-04 06:00:00	2024-04-04 07:00:00	Solar	55.0	181	Friday	June	0 days 01:00:00
59802	2024-04-04 13:00:00	2024-04-04 14:00:00	Solar	4554.0	181	Friday	June	0 days 01:00:00
59803	2024-04-04 14:00:00	2024-04-04 15:00:00	Solar	4589.0	181	Friday	June	0 days 01:00:00
59804	2024-04-04 16:00:00	2024-04-04 17:00:00	Solar	4173.0	181	Friday	June	0 days 01:00:00
59805	2024-04-04 18:00:00	2024-04-04 19:00:00	Solar	2404.0	181	Friday	June	0 days 01:00:00
59804 rc	ws × 8 columns							

```
df['Total_time'] = df['TimeDifference'].dt.components['hours']
df = df.drop(['TimeDifference', 'StartHour', 'EndHour'], axis=1)
```

```
df.dtypes
```

Source object
Production float64
dayOfYear int64
dayName object
monthName object
Total_time dtype: object

VISUVALIZATIONS

 $\verb|sns.countplot(x='monthName',data=df)|\\$

sns.countplot(x='dayName',data=df)


```
lst=["Source","dayName","monthName"]
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
for i in lst:
    df[i]=le.fit_transform(df[i])
```

x=df.drop(["monthName"].axis=1)

χ αιταιορί<u>ι</u> ποιοιπαπό 1,αχές ε/

	Source	Production	day0fYear	dayName	Total_time
0	0	244.0	204	6	1
1	0	223.0	205	4	1
2	0	2517.0	205	4	1
3	0	658.0	205	4	1
4	0	0.0	205	4	1
				•••	
59801	0	55.0	181	0	1
59802	0	4554.0	181	0	1
59803	0	4589.0	181	0	1
59804	0	4173.0	181	0	1
59805	0	2404.0	181	0	1

59804 rows × 5 columns

```
y=df.iloc[:,-2]
     0
     1
     2
     3
     59801
     59803
              6
     59804
              6
     59805
     Name: monthName, Length: 59804, dtype: int64
#scaling using standard scaler
ms=MinMaxScaler()
X_ms=ms.fit_transform(x)
X_ms
     ...,
                                                        , 0.
                    , 0.26649245, 0.49315068, 0.
            [0.
                      , 0.24233449, 0.49315068, 0.
                                                         , 0.
            [0.
                      , 0.13960511, 0.49315068, 0.
            [0.
                                                                      ]])
#Performing train_test_split
\label{lem:control_control_control} \textbf{X\_train,X\_test,y\_train,y\_test=train\_test\_split} (\textbf{X\_ms,y,test\_size=0.2,random\_state=0})
```

MODEL CREATION

KNN

```
#KNN
knn=KNeighborsClassifier()
knn.fit(X_train,y_train)
y_pred=knn.predict(X_test)
y_pred
array([ 2,  3,  6, ..., 5, 10, 11])
```

```
knn1=KNeighborsClassifier(algorithm='auto',n_neighbors=9,weights='distance')
knn1.fit(X_train,y_train)
y_pred1=knn1.predict(X_test)
print(classification_report(y_test,y_pred1))
```

	precision	recall	f1-score	support
0	0.98	0.98	0.98	1180
1	0.98	0.98	0.98	871
2	0.99	0.99	0.99	867
3	0.97	0.98	0.98	1034
4	0.99	0.99	0.99	1240
5	0.98	0.97	0.98	874
6	0.98	0.98	0.98	1195
7	0.98	0.97	0.97	921
8	0.98	0.98	0.98	1146
9	0.97	0.98	0.97	893
10	0.97	0.97	0.97	872
11	0.98	0.98	0.98	868
accuracy			0.98	11961
macro avg	0.98	0.98	0.98	11961
weighted avg	0.98	0.98	0.98	11961

SVC

```
sv=SVC(C=10, gamma =1, kernel= 'rbf')
sv.fit(X_train,y_train)
y_pred2=sv.predict(X_test)
y_pred2
```

array([2, 3, 6, ..., 5, 10, 11])

print(classification_report(y_test,y_pred2))

	precision	recall	f1-score	support
0	0.98	0.99	0.99	1180
1	0.96	0.99	0.98	871
2	0.99	1.00	0.99	867
3	0.98	0.98	0.98	1034
4	0.99	0.99	0.99	1240
5	1.00	0.97	0.98	874
6	0.97	0.99	0.98	1195
7	0.99	0.97	0.98	921
8	0.99	0.98	0.99	1146
9	1.00	0.98	0.99	893
10	0.98	0.99	0.98	872
11	0.98	0.97	0.97	868
accuracy			0.98	11961
macro avg	0.98	0.98	0.98	11961
weighted avg	0.98	0.98	0.98	11961

GaussianNB

```
nb=GaussianNB()
nb.fit(X_train,y_train)
y_pred2=nb.predict(X_test)
y_pred2
array([ 2,  3,  6, ...,  5, 10, 11])
```

print(classification_report(y_test,y_pred2))

	precision	recall	f1-score	support
0	0.98	0.97	0.98	1180
1	0.99	0.99	0.99	871
2	1.00	0.98	0.99	867
3	0.97	1.00	0.99	1034
4	1.00	1.00	1.00	1240
5	0.99	0.97	0.98	874
6	0.96	0.98	0.97	1195
7	0.97	0.95	0.96	921

8	0.97	0.98	0.98	1146
9	0.98	0.98	0.98	893
10	0.97	0.99	0.98	872
11	0.99	0.97	0.98	868
accuracy			0.98	11961
macro avg	0.98	0.98	0.98	11961
weighted avg	0.98	0.98	0.98	11961

Decision Tree Classifier

```
dt=DecisionTreeClassifier(criterion='entropy',random_state=2,max_depth=10)
dt.fit(X_train,y_train)
y_pred3=dt.predict(X_test)
y_pred3
```

array([2, 3, 6, ..., 5, 10, 11])

print(classification_report(y_test,y_pred3))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	1180
1	1.00	1.00	1.00	871
2	1.00	1.00	1.00	867
3	1.00	1.00	1.00	1034
4	1.00	1.00	1.00	1240
5	1.00	1.00	1.00	874
6	1.00	1.00	1.00	1195
7	1.00	1.00	1.00	921
8	1.00	1.00	1.00	1146
9	1.00	1.00	1.00	893
10	1.00	1.00	1.00	872
11	1.00	1.00	1.00	868
accuracy			1.00	11961
macro avg	1.00	1.00	1.00	11961
weighted avg	1.00	1.00	1.00	11961

Random Forest Classifier

```
rf=RandomForestClassifier(criterion= 'entropy', max_depth= None, min_samples_leaf= 1, min_samples_split= 4,n_estimators= 200)
rf.fit(X_train,y_train)
y_pred4=rf.predict(X_test)
y_pred4
```

array([2, 3, 6, ..., 5, 10, 11])

print(classification_report(y_test,y_pred4))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	1180
1	1.00	1.00	1.00	871
2	1.00	1.00	1.00	867
3	1.00	1.00	1.00	1034
4	1.00	1.00	1.00	1240
5	1.00	1.00	1.00	874
6	1.00	1.00	1.00	1195
7	1.00	1.00	1.00	921
8	1.00	1.00	1.00	1146
9	1.00	1.00	1.00	893
10	1.00	1.00	1.00	872
11	1.00	1.00	1.00	868
accuracy			1.00	11961
macro avg	1.00	1.00	1.00	11961
weighted avg	1.00	1.00	1.00	11961

XG BOOST Classifier

```
xgb=XGBClassifier()
xgb.fit(X_train,y_train)
y_pred7=xgb.predict(X_test)
y_pred7
array([ 2,  3,  6, ...,  5, 10, 11])
```

print(classification_report(y_test,y_pred7))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	1180
1	1.00	1.00	1.00	871
2	1.00	1.00	1.00	867
3	1.00	1.00	1.00	1034
4	1.00	1.00	1.00	1240
5	1.00	1.00	1.00	874
6	1.00	1.00	1.00	1195
7	1.00	1.00	1.00	921
8	1.00	1.00	1.00	1146
9	1.00	1.00	1.00	893
10	1.00	1.00	1.00	872
11	1.00	1.00	1.00	868
accuracy			1.00	11961
macro avg	1.00	1.00	1.00	11961
weighted avg	1.00	1.00	1.00	11961

HIGEST ACCURACY IS 1 in decition tree,xg boost and Random forest