BSM 420 – BİLGİSAYAR MİMARİ

Deney Tasarımı 10.Hafta

Giriş (1 / 3)

Deney hiçbir zaman başarısızlıkla sonuçlanmaz. Kötü deney olumsuz bir örnek olur.

Arthur Bloch - Yazar

Bilimin temel prensibi, tanımı şudur: herhangi bir fikrin geçerliliğinin yegane testi deneydir.

- Richard P. Feynman Fizikçi
- Amaç, minimum deney sayısı ile maksimum bilgi elde etmektir,
- Doğru analiz faktörleri ayıklamaya yardımcı olacaktır
- İstatistiksel teknikler, farklılıkların hatalardan kaynaklanıp kaynaklanmadığını belirlemeye yardımcı olacaktır

Giriş (2 / 3)

- Sıfır-maliyetli bir süreç değildir
 - Veri toplamak zaman ve çaba gerektirir
 - Sonuçları analiz etmek ve sunmak
 - → Deney sayısı en aza indirilmelidir
- İyi deneysel tasarım aşağıdaki avantajları sağlar:
 - Her giriş değişkeninin etkilerini izole etme
 - Giriş değişkenlerinin etkileşimlerinin etkilerini belirleme
 - Deneysel hatanın büyüklüğünü belirleme
 - Minimum çabayla maksimum bilgi edinme

Giriş (3 / 3)

- Diğerlerini sabit tutarken sadece bir girişi değiştirin
 - Basit, ancak iki giriş değişkeni arasındaki olası etkileşimi yok sayar
- Giriş değişkenlerinin olası tüm kombinasyonlarını test edin
 - Etkileşim etkilerini belirleyebilir, ancak çok büyük olabilir
 - Örn: 4 seviyeli 5 faktör 4⁵ = 1024 deney.
 Ölçüm hatasını elde etmek için yineleme sayısı 1024x3 = 3072

<u>İçindekiler</u>

- Giriş
- Terminoloji
- Genel Hatalar
- Basit Tasarımlar
- Tam Faktöryel Tasarımları
 - 2^k Faktöriyel Tasarımları
- 2^Kr Faktöriyel Tasarımları

Terminoloji (1 / 4)

- PC performansını ele alalım
 - Cpu seçimi: 6800, z80, 8086
 - Bellek boyutu: 512 KB, 2 MB, 8 MB
 - Disk sürücüleri: 1-4
 - İş yükü: sekreterlik, yönetimsel, bilimsel
 - Kullanıcılar: lise, kolej, mezun
- Yanıt değişkeni sonuç veya ölçülen performans
 - Örn: görev/dk cinsinden çıkış (throughput)
 veya saniye cinsinden bir görev in yanıt süresi

Terminoloji (2 / 4)

- Faktörler yanıtı etkileyen her değişken
 - Örn: CPU, bellek, diskler, iş yükü, kullanıcı
 - Ayrıca kestirimci (predictor) değişkenleri olarak ta adlandırılırlar
- Düzeyler faktörler farklı değerler alabilir
 - ÖR: CPU 3, bellek 3, diskler 4, iş yükü 3, kullanıcılar
- Birincil faktörler en önemli olanlar
 - Örn: CPU ve bellek

Terminoloji (3 / 4)

- İkincil faktörler daha az öneme sahip
 - Örn: belki kullanıcı türü o kadar önemli değil
- Yineleme Tüm veya bazı deneylerin tekrarı
 - Örn: üç kez çalıştırılırsa, üç yineleme
- Tasarım yineleme özellikleri, faktörler, düzeyler
 - Örn: 5 yinelemeli yukarıdaki seviyelerde tüm faktörleri belirtin, böylece 3x3x4x3x3 = 324 çarpı 5 yineleme 1215 toplam deney sayısı

Terminoloji (4 / 4)

 Etkileşim – eğer biri diğerine bağımlılık gösterirse A ve B faktörleri etkileşir

Örn: A her zaman 2 arttığı için etkileşime giremeyen

faktör

B ₁	
B_2	

 Örn: A değişimi B'ye bağlı olduğundan etkileşim faktörleri

	<u>A</u> ₁
B ₁	3
B ₂	6
_	

 B_2

Anahat

- Giriş
- Terminoloji
- Genel Hatalar
- Basit Tasarımlar
- Tam Faktöryel Tasarımlar
 - 2^K Faktöriyel Tasarımları
- 2^K r Faktöriyel Tasarımları

Deneylerde Sık Yapılan Hatalar (1/2)

- Deneysel hata nedeniyle sapma yok sayılır.
 - Ölçülen değerler ölçüm hatasına bağlı olarak rasgeleliğe sahiptir. Tüm sapmanın faktörlere bağlı olduğunu varsaymayın
- Önemli parametrelerin kontrol edilmemesi
 - Tüm parametreler (faktörler) listelenmeli ve tümü değişemese bile hesaba katılmalıdır.
- Farklı faktörlerin etkileri izole değil.
 - Aynı anda çeşitli faktörler değişebilir
 - Basit tasarımların kullanılması faydalı olabilir ama sorunları ortadan kaldırmaz

Deneylerde Sık Yapılan Hatalar (2/2)

- Etkileşimler yok sayılması
 - Genellikle bir faktörün etkisi diğerine bağlıdır. Örn: önbelleğin etkileri programın boyutuna bağlı olabilir.
- Çok fazla deney yapılması
 - Tüm faktörleri, tüm düzeyleri, tüm kombinasyonlarda, çalıştırmak yerine, adımlara bölmek
 - İlk adım, birkaç faktör ve birkaç düzey
 - Hangi faktörlerin önemli olduğunu belirleme
 - Faktör başına iki düzey
 - Daha sonraki tasarımda uygun olduğunda daha fazla düzey eklenir

İçindekiler

- Giriş
- Terminoloji
- Genel Hatalar
- Basit Tasarımlar
- Tam Faktöryel Tasarımları
 - 2^k Faktöriyel Tasarımları
- 2^Kr Faktöriyel Tasarımları

Basit Tasarımlar

- Tipik yapılandırma ile başlayın
- Bir seferde bir faktörü değiştirin
- Örn: tipik bir PC z80 işlemcili, 2 MB RAM, 2 disk, üniversite öğrencisi tarafından üretilen iş yükü
 - diğer her şeyi sabit tutarak CPU'yu değiştir ve karşılaştır
 - diğer her şeyi sabit tutarak Disk sürücülerini değiştir ve karşılaştır
- Verilen i adet k faktörü her biri n_i düzeyine sahip Toplam = 1 + $\Sigma(n_i$ 1) her i = 1 den k ya kadar
- Örnek: iş istasyonu çalışmasında
 1 + (3-1) + (3-1) + (4-1) + (3-1) + (3-1) + (3-1) = 14
- Ama etkileşimi göz ardı edebilir

Faktörlerin Etkileşimi Örneği

 Yanıt süresini vs. bellek boyutuna ve çoklu programlama derecesini ele alalım

Derece	32 MB	64 MB	128MB
1	0.25	0.21	0.15
2	0.52	0.45	0.36
3	0.81	0.66	0.50
4	1.50	1.45	0.70

- Eğer programlama derecesi 3, sabit olup 64 MB bellek değiştirilmez ise etkileşim farkedilmez
 - Örnek: derece 4, bellek ile doğrusal olmayan bir yanıt süresine sahiptir

Anahat

- Giriş
- Terminoloji
- Genel Hatalar
- Basit Tasarımlar
- Tam Faktöryel Tasarımlar
 - 2^K Faktöriyel Tasarımları
- 2^K r Faktöriyel Tasarımları

Tam Faktöryel Tasarımlar

- Tüm faktörlerin her düzeyinde mümkün olan her kombinasyon
- Verilen k faktörü, herbiri n_i düzeyine sahip Toplam = Π n_i i =1 den k ya
- Örnek: CPU tasarım çalışmasında
 (3 CPU) (3 mem) (4 disk) (3 yük) (3 kullanıcı)
 = 324 deney
- Avantaj her etkileşen bileşeni bulabilirsiniz
- Dezavantajı maliyetleri (zaman ve para), özellikle de birden fazla yineleme (daha sonra) gerekebilir
- Düzeyleri azaltmak, faktörleri azaltmak, tam faktöryelin bir kısmını çalıştırmak suretiyle maliyetleri azaltabilir:

2^k Faktöriyel Tasarımları

İşlerin %20'si kaynak tüketiminin %80'ini oluşturuyor.

– Pareto Yasası

- Her faktör de birçok düzeye sahip
 - Ör: ağ gecikmesinin kullanıcı yanıt süresi üzerindeki etkisi → test edilecek çok sayıda gecikme değeri vardır
- Genellikle, düzeylere göre performans sürekli artar veya azalır
 - Örn: yanıt süresi her zaman daha yüksek olur
 - Min ve max ile yönünü belirleyebilirsiniz
- Her faktör için, her düzeyde 2 alternatif seçin
 - 2^k faktöryel tasarımları
- Daha sonra, hangi faktörlerin performansı en çok etkilediğini belirleyebilir ve ileri seviyede incelenebilir

2² Faktöriyel Tasarım (1/4)

- Sadece 2 faktörlü özel durum
 - Regresyon ile kolayca analiz edilebilir
- Örnek: Mem (4 veya 16 Mbyte) ve Önbellek (1 veya 2 Kbyte) için MIPS

	Mem 4MB	Mem 16MB
Önbellek 1 KB	15	45
Önbellek 2 KB	25	75

- $x_A = e ger 4 Mbytes ise -1, 16 Mbyte ise +1$
- X_B= eğer 1 Kbyte önbellek ise -1, 2 Kbyte ise +1
- Performans:

$$y = q_0 + q_a x_a + q_b x_b + q_{ab} x_a x_b$$

2² Faktöriyel Tasarım (2 / 4)

Değiştirme:

$$15 = q_0 - q_A - q_B + q_{Açik}$$

$$45 = q_0 + q_A - q_B - q_{Açik}$$

$$25 = q_0 - q_A + q_B - q_{Açik}$$

$$75 = q_0 + q_A + q_B + q_{Açik}$$

(4 denklem 4 bilinmeyen)

Çözüldüğünde :

$$y = 40 + 20x_A + 10x_B + 5x_AX_B$$

- Yorum:
 - Ortalama performans 40 MIPS, bellek etkisi 20 MIPS, önbellek etkisi 10 MIPS ve etkileşim etkisi 5 MIPS

2² Faktöriyel Tasarım (3 / 4)

Deny	a	b	<u>y</u>
1	-1	-1	y ₁
2	1	-1	y ₂
3	-1	1	y ₃
4	1	1	y ₄
•	$y = q_0$	$_{0}$ + $q_{a}x_{a}$ +	+ q _b x _b +
		q _{ab} x _a >	(b

Dolayısıyle:

$$y_1 = q_0 - q_a - q_b + q_{ab}$$

 $y_2 = q_0 + q_a - q_b - q_{ab}$
 $y_3 = q_0 - q_a + q_b - q_{ab}$
 $y_4 = q_0 + q_a + q_b + q_{ab}$

Çözerek:

$$q_0 = \frac{1}{4}(y_1 + y_2 + y_3 + y_4)$$

$$q_a = \frac{1}{4}(-y_1 + y_2 - y_3 + y_4)$$

$$q_b = \frac{1}{4}(-y_1 - y_2 + y_3 + y_4)$$

$$q_{ab} = \frac{1}{4}(y_1 - y_2 - y_3 + y_4)$$

- q_a için a sütunu iy sütunu çarpılarak elde edilir
- q_b ve q_{ab} de aynı şekilde hesaplanır

2² Faktöriyel Tasarım (4 / 4)

<u>i </u>	a	b	ab	<u>y</u>
1	-1	-1	1	15
1	1	-1	-1	45
1	-1	1	-1	25
1	1	1	1	<u>75</u>
<u>160</u>	80	40	20	Total
4020	10	5	Ttl/4	

- "i" sütunu 1 ile dolu
- "a" ve "b" kolonları 1, -1
- "ab" sütunu ise "a" ve "b" nin çarpımı

- Sütunları y ile çarpıp toplayarak
- Regresyon modelinde ağırlık vermek için 4'e böl
- Sonuç:

$$y = 40 + 20x_A + 10x_B + 5x_A X_B$$

Sapmayı Tayin etme (1/3)

- Bir faktörün önemi: faktör cevabındaki toplam sapma oranı ile ölçülür
 - Bu nedenle, iki faktör cevabı sırasıyla %90
 ve %5 ise, ikinci önemsizdir, ihmal edilebilir
 - Örn: TCP sürüm faktörü (Reno veya Sack) karşısında kapasite faktörü (768 Kbps veya 10 Mbps) karşı
- y örnek sapması

$$s_v^2 = \Sigma (y_i - \underline{y})^2 / (2^2 - 1)$$

 Toplam sapma olan pay veya Toplam Kareler Toplamı (SST)

$$SST = \Sigma(y_i - \underline{y})^2$$

Sapmayı Tayin Etme(2 / 3)

- 2 ² tasarımı için, sapma 3 bölümden oluşur:
 - $SST = 2^2q_a^2 + 2^2q_b^2 + 2^2q_{ab}^2$
- Toplam sapmanın kısımları:
 - a için 2²q²_a
 - b için 2²q²_b
 - ab için 2²q²_{ab}
- Böylece, SST = SSA + SSB + SSAB
- Ve kesir Varyasyon tarafından açıklanabilir:

 Dikkat ediniz, sapma hatalara bağlı olduğundan aynı kesir değil

(Türev 17.1, s.287)

Sapmayı Tayin Etme(3 / 3)

Bellek önbellek çalışmasında

$$y = \frac{1}{4}(15 + 55 + 25 + 75) = 40$$

Toplam sapma

=
$$\Sigma(y_i-y)^2$$
 = $(25^2 + 15^2 + 15^2 + 35^2)$
= $2100 = 4x20^2 + 4x10^2 + 4x5^2$

- Böylece, toplam sapma 2100 olur
 - 1600 (2100'ün % 76'sı) belleğe atfedilir
 - 400 (2100'ün % 19'u) önbelleğe atfedilir
 - Sadece 100 (2100, 5%) etkileşime atfedilir
- Bu veriler, belleği daha fazla araştırmayı ve önbellekte (veya etkileşime) daha fazla zaman harcamamayı gerektirir

Genel 2^k Faktöriyel Tasarımlar (1/4)

- Aynı metodoloji her biri 2 seviyeli k faktörlerine genişletebilir → 2² deneye ihtiyaç duyulur
 - k ana etkileri
 - (k → 2) iki faktör etkiler
 - (k → 3) üç faktör etkiler
- İşaret tablosu yöntemini kullanabilirsiniz

Genel 2^k Faktöriyel Tasarımlar (2/4)

- Örnek: LISP makinesi tasarımı
 - Önbellek, bellek ve işlemciler

<u>Faktör</u>	_1 düzey	<u>1 düzey</u>
Bellek (a)	4 Mbyte	16 Mbyte
Önbellek (b)	1 Kbyte	2 Kbyte
İşlemciler (c)	1	2

■ 2.3 tasarımı ve MIPS perf sonuçları şunlardır:

	4 Mbytes Mem(a)	16 Mbytes Mem			
Önbellel	k (b) Bir proc (c)	İki proc	Bir proc	İki procs	
1 KB	14	46	22	58	
2 KB	10	50	34	86	

Genel 2^k Faktöriyel Tasarımlar (3 / 4)

İşaret tablosunu hazırla:

<u>i</u>	a	b	С	ab	ac	bc	abc	<u>y</u>
1	-1	-1	-1	1	1	1	-1	14
1	1	-1	-1	-1	-1	1	1	22
1	-1	1	-1	1	-1	-1	-1	10
1	1	1	-1	1	-1	-1	-1	34
1	-1	1	1	-1	-1	1	-1	46
1	1	-1	1	-1	1	-1	-1	58
1	-1	1	1	-1	-1	1	-1	50
1	1	1	1	1	1	1	1	86
320	80	40	160	40	16	24	9	Ttl
40	10	5	20	5	2	3	1	Ttl/8

$$q_a = 10$$
, $q_b = 5$, $q_c = 20$ and $q_{ab} = 5$, $q_{ac} = 2$, $q_{bc} = 3$ ve $q_{abc} = 1$

Genel 2^k Faktöriyel Tasarımlar (3 / 4)

■ SST =
$$2^3 (q_a^2 + q_b^2 + q_c^2 + q_{ab}^2 + q_{ac}^2 + q_{bc}^2 + q_{abc}^2)$$

= $8 (10^2 + 5^2 + 20^2 + 5^2 + 2^2 + 3^2 + 1^2)$
= $800 + 200 + 3200 + 200 + 32 + 72 + 8$
= 4512

7 adet faktörün katkısı :

```
mem = 800/4512 (18%)
proc = 3200/4512 (71%)
mem-proc = 32/4512 (1%)
mem-proc-cache = 8/4512 (0%)
```

<u>İçindekiler</u>

- Giriş
- Terminoloji
- Genel Hatalar
- Basit Tasarımlar
- Tam Faktöryel Tasarımlar
 - 2^k Faktöriyel Tasarımlar
- 2^kr Faktöriyel Tasarımlar

2kr Faktöriyel Tasarımları

Hiçbir deney beni haklılığımı kanıtlayamaz; ama tek bir deney yanıldığımı kanıtlayabilir. -Albert Einstein

- 2^k faktöriyel tasarımları sadece bir kez tekrarlandığı için hata tahmin etmek mümkün değildir
- 2^k tasarımını r kez tekrarlanır
- Daha önce olduğu gibi, 2²r adet model genişletilir
- İki düzeyde iki faktör ile deneysel hatalar izole edilmek istenir
 - 4 konfigürasyonu r kez tekrar et
- Hata terimini verir:
 - $y = q_0 + q_a x_a + q_b x_b + q_{ab} x_a x_b + e$
 - E nasıl ölçülür

2²r Faktöriyel Tasarım Hataları (1 / 2)

Daha önceki önbellek örneği r=3

<u>i </u>	a	b	ab	У	<u>ortalama y</u>
1	-1	-1	1	(15, 18, 12)	15
1	1	-1	-1	(45, 48, 51)	48
1	-1	1	-1	(25, 28, 19)	24
1	1	1	1	(75, 75, 81)	77
<u>164</u>	86	38	20		Toplam
41	21.5	9.5	5		Ttl/4

Herbir y nin hesabı

$$y_i = q_0 + q_a x_{ai} + q_b x_{bi} + q_{ab} x_{ai} x_{bi} + e_i$$

Her tekrarın farkı (hata)

•
$$e_{ij} = y_{ij} - y_i = y_{ij} - q_0 - q_a x_{ai} - q_b x_{bi} - q_{ab} x_{ai} x_{bi}$$

2²r Faktöriyel Tasarım Hataları (2/2)

 Sapma ve güven aralığını hesaplamak için hataların karesinin toplamı (SSE) kullanılır

SSE =
$$\Sigma \Sigma e^2_{ij}$$
 for i = 1 to 4 and j = 1 to r

Örnek

<u>i </u>	а	b	ab	<u> </u>	<u> </u>	e_{i1} e_{i2} e_{i3}
1	-1	-1	1		15 18 12	0 3 -3
1	1	-1	-1	48	45 48 51	-3 0 3
1	-1	1	-1	24	25 28 19	1 4 -5
1	1	1	1	77	75 75 81	-2 -2 4

Ex:
$$y_1 = q_0 - q_a - q_b + q_{ab} = 41 - 21.5 - 9.5 + 5 = 15$$

• Ex:
$$e_{11} = y_{11} - y_1 = 15 - 15 = 0$$

■ SSE =
$$0^2+3^2+(-3)^2+(-3)^2+0^2+3^2+1^2+4^2+(-5)^2$$

+ $(-2)^2+(-2)^2+4^2$

$$= 102$$

2²r Faktöriyel Sapma Tayini

Toplam sapma (SST)

$$SST = \Sigma (y_{ij} - \underline{y}_{..})^2$$

4 bölüme ayrılabilir:

$$\Sigma (y_{ij} - \underline{y}_{..})^2 = 2^2 rq_a^2 + 2^2 rq_b^2 + 2^2 rq_{ab}^2 + \Sigma e_{ij}^2$$

 $SST = SSA + SSB + SSAB + SSE$

- Böylece
 - SSA, SSB, SSAB a, b ve ab faktörlerindeki sapma
 - SSE deneysel hatalar nedeniyle açıklanamayan bir sapmadır
- Ayrıca SST = SSY-SS0 yazılabilir
- Burada, SS0 ortalamanın toplam kareleridir

2²r Faktöriyel Sapma Tayini Örneği

- Bellek önbelleği çalışması için:
 - $SSY = 15^2 + 18^2 + 12^2 + ... + 75^2 + 81^2 = 27,204$
 - $SS0 = 2^2 rq^2_0 = 12x41^2 = 20,172$
 - $SSA = 2^2 rq^2 = 12x(21.5)^2 = 5547$
 - SSB = $2^2 \text{rq}^2_b = 12x(9.5)^2 = 1083$
 - $SSAB = 2^2 rq^2_{ab} = 12x5^2 = 300$
 - SSE = $27,204-2^2x3(41^2+21.5^2+9.5^2+5^2)=102$
 - \blacksquare SST = 5547 + 1083 + 300 + 102 = 7032
- Böylece, 7032 toplam sapma 4 bölüme ayrılmıştır:
 - Faktör a 5547/7032 (%78,88), b %15,40, ab %4,27
 - Kalan % 1.45 açıklanamayan

Etkiler için Güven Aralıkları

- Hataların normal dağıldığını varsayarsak,
 y_{ij} normal olarak aynı sapma ile dağıtılır
- q_o, q_a, q_b, q_{ab} y_{ij} lerin tüm doğrusal kombinasyonu olduğu için (2²r ile bölünür) aynı sapma değerine sahiptir
- Sapma $s^2 = SSE /(2^2(r-1))$
- Etkileri için güven aralıkları :
 - $q_i \pm t_{[1-\alpha/2; 2^2(r-1)]} s_{qi}$
- Güven aralığı sıfır içermiyorsa, etki önemli

Etkiler için Güven Aralıkları (Örnek)

Bellek önbellek çalışması, hataların standat sapmas s_e = sqrt[SSE / (2²(r-1)] = sqrt(102/8) = 3.57

Etkilerin standart sapması:

$$s_{qi} = s_e / sqrt(2^2r) = 3.57/3.47 = 1.03$$

- 8 serbestlik derecesindeki ve %95 güven deki t değeri 1,86
- Parametreler için güven aralıkları:

$$q_i \pm (1.86)(1.03) = q_i \pm 1.92$$

- $q_0 \rightarrow (39.08,42.91), q_a \rightarrow (19.58,23,41), q_b \rightarrow (7.58,11.41), q_{ab} \rightarrow (3.08,6.91)$
- Hiçbiri sıfır içermediğinden, tüm bunlar istatistiksel olarak anlamlıdır

T<mark>ahmini Yanıtlar için Güven Aralıkları (1/2)</mark>

- Ortalama tahmini yanıt
 - $y = q_0 + q_a x_a + q_b x_b + q_{ab} x_a x_b$
- m ilave deneyden gelen tahmini ortalama aynı olursa ancak tahmini yanıt üzerindeki güven aralığı azalırsa
- Bu şunu gösterir: tahmini y değerinin standat sapması daha fazla deneyden hesaplanmıştır
 - $s_{ym} = s_e sqrt(1/n_{eff} + 1/m)$
 - Burada $n_{eff} = runs/(1+df)$
 - 2 seviye durumunda, her parametre 1 df, bu nedenle n_{Flver} = 2²r/5

Tahmini Yanıtlar için Güven Aralıkları (2/2)

- 100(1-Bu da)% yanıt güven aralığı:
 - $y_p \pm t_{[1-\alpha/2; 2^2(r-1)]} s_{ym}$
- İki durum ilgi çekicidir
 - Bir adet çalışmanın standart sapması (m=1)
 - $s_{v1} = s_e sqrt(5/2^2r + 1)$
 - Birçok çalışmanın standart sapması (m=∞)
 - $s_{v1} = s_e sqrt(5/2^2r)$

<u> Tahmini Yanıtlar Için Güven Aralıkları Örneği (1 /2)</u>

- Mem-cache çalışması, için x_a=-1, x_b=-1
- Gelecekteki deney için tahmini ortalama yanıt
 - $y_1 = q_0 q_a q_b + q_{ab} = 41 21.5 + 1 = 15$
 - Std dev = $3.57 \times \text{sqrt}(5/12 + 1) = 4.25$
- t[0.95;8] = 1.86, 90% conf interval kullanarak 15±1.86x4.25 = (8.09,22.91)
- Gelecekteki 5 deney için tahmini ortalama yanıt
 - Std dev = 3.57(sqrt 5/12 + 1/5) = 2.80 15 ± 1.86 x2.80 = (9.79,20.29)

Tahmini Yanıtlar İçin Güven Aralıkları Örneği (2/2)

- Çok Sayıda Deney için Öngörülen
 Ortalama Yanıt
 - Std dev = 3.57xsqrt(5/12) = 2,30
 - Güven aralığı:

15±1.86x2.30=(10.72,19.28)

BİLGİSAYAR BİLİMİNDE DENEYLER

<u>Giriş</u>

- Bazıları bilgisayar biliminin deneysel bir bilim olmadığını iddia eder
 - Bilgisayarlar insan yapımı, öngörülebilir
 - Teorik bir bilimdir (Matematik gibi)
- Bazı iddialar
 - sistem geliştirme = bilgisayar bilimi
 - Bir işletim sistemi veya birleşik veritabanı oluşturma
 - Bilgisayar mühendisliği
 - «bilim» ifadesi daha sonra gelir

Teori ve Mühendislik

- Şu ana kadar aldığınız bilgisayar teorisi:
 - "Yukarıdaki koddaki hatalara dikkat edin; sadece doğru olduğunu kanıtladım, denemedim."
 - Donald E. Knuth- Amerikan bilişimci, bilim tarihçisi
- Şu ana kadarki mühendislik seviyemiz
 - Bir aparat geliştirmek faydalı olsa da, yeni bilgi vermedikçe boşa bir çabadır
 - Bilgiyi artırmak için bilime ihtiyaç var
- Teori veya aparatı değerlendirmek için deneyler kullanılır!

Bilgisayar Biliminde Deneyler

- Bilimin temel prensibi, neredeyse tanımı şudur: herhangi bir fikrin geçerliliğinin yegane yolu deneydir"
 - Richard P. Feynman
- Fizik, Biyoloji, Kimya'dan denenmiş ve gerçek deneysel bilimsel metodoloji ...
 - Bilgisayar Bilimlerinde takip edilmez
- Daha iyi Bilgisayar Uzmanları olalım !

Bilimsel Metodoloji

- Gözlem
 - (Çözüm geliştirin)
- Hipotez / Varsayımda bulunmak
- Tasarım
- Deney
- Analiz
- Rapor

Metodoloji: Gözlemleyin ve Anlayın

- Sorun Bul
 - Test: Netscape Ses
 - Derle: Ses konferansi
 - Oku: Kevin Jeffay diyor ki...
- İlişkileri Anlayın
 - UDP paketleri kaybediyor
 - TCP gecikmeyi artırır
 - P-çerçeveleri I-çerçevelerine bağlıdır

Metodoloji: Tasarla ve hipotez

- Çözüm Tasarlayın (deneysel değilse)
 - Claypool Güvenilir Ses Protokolü (CRAP)
 - Claypool tamponlama algoritması
- Hipotez Yap
 - İlişkiler hakkında genelleme
 - İşlemci yükü ısınmayı artırır
 - Java sanal makinesi ısınmayı artırır
 - Test edilmesi gerekenler (kanıtlanmamış)

Metodoloji: Deney

- Tasarım Deneyi
 - Değişken: işlemci iş yükü
 - Kontrol: temel iş yükü
- Deney yap
 - "Eyvah! Beklediğim bu değil!"
 - Koddaki hata (soketi paylaşan iki işlem)
 - "Çalıştır" a geri dön
 - Kontrolsüz olay (sistem yedeklemesi)
 - Tasarım'a geri dön
 - Yetersiz anlayış (Unix sıralaması)
 - «Anlayışa" ya geri dön

Metodoloji: Analiz et

- Yorumlama ve Değerlendirme
 - İstatistiksel anlamlılık
 - ortalama, güven aralıkları, korelasyon,
 - Uygunluğun güzelliği
 - Veriler hipotezi destekliyor veya reddediyor mu?
 - Diğer fenomenlerin açıklaması
 - İşlemci yükü telefon aramamı zorlaştırıyor
 - Etkileşimli multimedya için Java yetersiz

<u>**Cukurlar**</u>

- Mini deneyler (hayır, "Pilot Testleri")
- Aslında hipotezler
 - Kodun çalışması anlamayı sağlar
- Kontrollü sistem hala gerçek dünya hakkında anlamlı şeyler söylüyor
- Bir sistemi gözlemlemek sistemi değiştirmez