#### **UNIT IV**

# Continuous Time Fourier Transform (CTFT)



# Joseph Fourier

#### Continuous Time

#### Discrete Time

**Periodic Continuous Time Discrete Fourier Time Fourier Series Series Continuous Time Discrete Time Aperiodic Fourier Fourier Transform Transform** 

#### **Review of Fourier Series**

- Deals with continuous-time periodic signals.
- Discrete frequency spectra.



# Generalization of Fourier series to aperiodic signals

 How do we get aperiodic signals by adding complex exponentials?



# **How to Deal with Aperiodic Signal?**



If  $T \rightarrow \infty$ , what happens? T increases

 $\omega$ 0 decreases (becomes very very small).

> A periodic signal can be represented as linear combination of complex exponentials which are harmonically related.

➤ An aperiodic signal can be represented as linear combination of complex exponentials, which are infinitesimally close in frequency. So the representation take the form of an integral rather than a sum

# Fourier series synthesis equation takes Integral form

- In the Fourier representation, as the period increases the fundamental frequency decreases and the harmonically related components become closer in frequency. As the period becomes infinite, the components form a continuum and the Fourier series becomes an integral.
- Fourier series synthesis equation.

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$x(t) = \begin{cases} 1, |t| < T_1 \\ 0, T_1 < |t| < \infty \end{cases}$$

$$\tilde{x}(t) = \begin{cases} 1 & , |t| < T_1 \\ 0 & , T_1 < |t| < T/2 \end{cases}$$

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_{-T/2}^{T/2} \tilde{x}(t) e^{-jk\omega_0 t} dt$$

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_{k} = \frac{1}{T} \int_{-T/2}^{T/2} \tilde{x}(t) e^{-jk\omega_{0}t} dt$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jk\omega_0 t} dt$$

• As  $T \to \infty$ ,  $\widetilde{x}(t) = x(t)$ 

• In addition,  $\omega_0 \to 0$  as  $T \to \infty$   $k\omega_0 \to \omega$ 

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_{-T/2}^{T/2} \tilde{x}(t) e^{-jk\omega_0 t} dt$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jk\omega_0 t} dt$$

$$= \frac{1}{T} \int_{-\infty}^{\infty} x(t) e^{-jk\omega_0 t} dt$$

$$a_{k} = \frac{1}{T} \int_{-\infty}^{\infty} x(t) e^{-jk\omega_{0}t} dt$$

$$T a_{k} = \int_{-\infty}^{\infty} x(t) e^{-jk\omega_{0}t} dt$$

$$X(jk\omega_0) = \int_{-\infty}^{\infty} x(t)e^{-jk\omega_0 t} dt$$

we have for the coefficients  $a_k$ ,

$$a_k = \frac{1}{T} X(jk\omega_0)$$
 As  $T \to \infty$  
$$k\omega_0 \to \omega$$

### $X(j\omega)$ is the envelope of $Ta_k$

The Fourier coefficients  $a_k$  for this square wave are

$$a_k = \frac{2\sin(k\omega_0 T_1)}{k\omega_0 T}. \qquad Ta_k = \frac{2\sin(\omega T_1)}{\omega}\bigg|_{\omega = k\omega_0},$$

where  $2\sin(\omega T_1)/\omega$  represent the envelope of  $Ta_k$ 

• When *T increases or the fundamental* frequency  $\omega_0 = 2\pi/T$  decreases

- the envelope is sampled with a closer and closer spacing. As T becomes arbitrarily large, the original periodic square wave approaches a rectangular pulse.
- $Ta_k$  becomes more and more closely spaced samples of the envelope, as  $T \to \infty$ , the Fourier series coefficients approaches the envelope function.



$$X(jk\omega_0) = \int_{-\infty}^{\infty} x(t)e^{-jk\omega_0 t} dt$$

we have for the coefficients  $a_k$ ,

$$a_k = \frac{1}{T}X(jk\omega_0)$$

$$Ta_{k} = \int_{-\infty}^{\infty} x(t)e^{-jk\omega_{0}t}dt$$
Fourier Transform

equation

Analysis 
$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
 equation

# Synthesis equation

$$\widetilde{x}(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T}X(jk\omega_0)$$

$$\widetilde{x}(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{T} X(jk\omega_0) e^{jk\omega_0 t}$$

$$\widetilde{x}(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{T} X(jk\omega_0) e^{jk\omega_0 t}$$

$$= \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jk\omega_0) e^{jk\omega_0 t} \omega_0$$

• As 
$$T \to \infty$$
,  $\widetilde{x}(t) = x(t)$ 

• In addition, 
$$\omega_0 \to 0$$
 as  $T \to \infty$ 

$$d\omega \qquad k\omega_0 \to \omega$$

**Summation becomes integral** 

# Synthesis equation

Inverse Fourier Transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
 FT  
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega$$
 Inverse FT

## Fourier Series vs. Fourier Integral

Fourier Series:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

**Period Function** 

$$a_k = \frac{1}{T} \int_{-T/2}^{T/2} x_T(t) e^{-jk\omega_0 t} dt$$

Discrete Spectra

Fourier Integral:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

Non-Period Function

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Continuous Spectra
ECE Dept. PES

#### Existence of the Fourier Transform

#### **Dirichlets Conditions**

For existence of FT:

1. x(t) is absolutely integrable, i.e., each coefficient  $X(\omega)$  to be finite

$$\int_{-\infty}^{\infty} |x(t)| dt < \infty$$

Condition 2: In any finite interval of time,

x(t) have a finite number of maxima and minima.

Condition 3: In any finite interval of time, there are only a finite number of discontinuities.

Furthermore, each of these discontinuities is finite.

$$x(t) = e^{-at}u(t) \qquad a > 0$$

$$x(t) = e^{-at}u(t)$$
  $a > 0$    
  $X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$ 

$$x(t) = e^{-at}u(t) \quad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} e^{-at}u(t)e^{-j\omega t}dt$$

$$x(t) = e^{-at}u(t) \quad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} e^{-at}u(t)e^{-j\omega t}dt$$

$$= \int_{0}^{\infty} e^{-at}e^{-j\omega t}dt$$

$$x(t) = e^{-at} u(t) \qquad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} e^{-at} u(t) e^{-j\omega t} dt$$

$$= \int_{0}^{\infty} e^{-at} e^{-j\omega t} dt$$

$$= \int_{0}^{\infty} e^{-(a+j\omega)t} dt$$

$$x(t) = e^{-at} u(t) \qquad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} e^{-at} u(t) e^{-j\omega t} dt$$

$$= \int_{0}^{\infty} e^{-at} e^{-j\omega t} dt$$

$$= \int_{0}^{\infty} e^{-(a+j\omega)t} dt$$

$$= \frac{-1}{a+j\omega} e^{-(a+j\omega)t} \Big|_{0}^{\infty}$$

$$x(t) = e^{-at} u(t) \qquad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} e^{-at} u(t) e^{-j\omega t} dt$$

$$= \int_{0}^{\infty} e^{-at} e^{-j\omega t} dt$$

$$= \int_{0}^{\infty} e^{-(a+j\omega)t} dt$$

$$= \frac{-1}{a+j\omega} e^{-(a+j\omega)t} \Big|_{0}^{\infty}$$

$$= \frac{1}{a+i\omega}$$

$$X(j\omega) = e^{-at}u(t) \quad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} e^{-at}u(t)e^{-j\omega t}dt$$

$$= \int_{0}^{\infty} e^{-at}e^{-j\omega t}dt$$

$$= \int_{0}^{\infty} e^{-(a+j\omega)t}dt$$

$$= \frac{-1}{a+j\omega}e^{-(a+j\omega)t}\Big|_{0}^{\infty}$$

$$= \frac{1}{a+j\omega}$$

$$|X(j\omega)| = \frac{1}{\sqrt{a^2+\omega^2}} \qquad \angle X(j\omega) = -\tan^{-1}\frac{\omega}{a}$$





$$x(t) = e^{-a|t|} \qquad a > 0$$



$$x(t) = e^{-a|t|} \qquad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$x(t) = e^{-a|t|} \qquad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
$$= \int_{-\infty}^{\infty} e^{-a|t|}e^{-j\omega t}dt$$

$$x(t) = e^{-a|t|} \qquad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} e^{-a|t|}e^{-j\omega t}dt$$

$$= \int_{-\infty}^{0} e^{at}e^{-j\omega t}dt + \int_{0}^{\infty} e^{-at}e^{-j\omega t}dt$$

$$x(t) = e^{-a|t|} \qquad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} e^{-a|t|}e^{-j\omega t}dt$$

$$= \int_{-\infty}^{0} e^{at}e^{-j\omega t}dt + \int_{0}^{\infty} e^{-at}e^{-j\omega t}dt$$

$$= \int_{-\infty}^{0} e^{(a-j\omega)t}dt + \int_{0}^{\infty} e^{(-a-j\omega)t}dt$$

$$x(t) = e^{-a|t|} \qquad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} e^{-a|t|}e^{-j\omega t}dt$$

$$= \int_{-\infty}^{0} e^{at}e^{-j\omega t}dt + \int_{0}^{\infty} e^{-at}e^{-j\omega t}dt$$

$$= \int_{-\infty}^{0} e^{(a-j\omega)t}dt + \int_{0}^{\infty} e^{(-a-j\omega)t}dt$$

$$= \frac{1}{a-j\omega}e^{(a-j\omega)t}\Big|_{-\infty}^{0} + \frac{1}{-a-j\omega}e^{(-a-j\omega)t}\Big|_{0}^{\infty}$$

$$x(t) = e^{-a|t|} \qquad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} e^{-a|t|}e^{-j\omega t}dt$$

$$= \int_{-\infty}^{0} e^{at}e^{-j\omega t}dt + \int_{0}^{\infty} e^{-at}e^{-j\omega t}dt$$

$$= \int_{-\infty}^{0} e^{(a-j\omega)t}dt + \int_{0}^{\infty} e^{(-a-j\omega)t}dt$$

$$= \frac{1}{a-j\omega}e^{(a-j\omega)t}\Big|_{-\infty}^{0} + \frac{1}{-a-j\omega}e^{(-a-j\omega)t}\Big|_{0}^{\infty}$$

$$= \frac{1}{a-j\omega}(1-0) + \frac{1}{-a-j\omega}(0-1)$$

$$x(t) = e^{-a|t|} \quad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} e^{-a|t|} e^{-j\omega t} dt$$

$$= \int_{-\infty}^{0} e^{at} e^{-j\omega t} dt + \int_{0}^{\infty} e^{-at} e^{-j\omega t} dt$$

$$= \int_{-\infty}^{0} e^{(a-j\omega)t} dt + \int_{0}^{\infty} e^{(-a-j\omega)t} dt$$

$$= \frac{1}{a-j\omega} + \frac{1}{a+j\omega}$$

$$x(t) = e^{-a|t|} \quad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} e^{-a|t|}e^{-j\omega t}dt$$

$$= \int_{-\infty}^{0} e^{at}e^{-j\omega t}dt + \int_{0}^{\infty} e^{-at}e^{-j\omega t}dt$$

$$= \int_{-\infty}^{0} e^{(a-j\omega)t}dt + \int_{0}^{\infty} e^{(-a-j\omega)t}dt$$

$$= \frac{1}{a-j\omega} + \frac{1}{a+j\omega}$$

$$= \frac{2a}{a^2+\omega^2}$$

$$x(t) = e^{-a|t|} \qquad a > 0$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} e^{-a|t|}e^{-j\omega t}dt$$

$$= \int_{-\infty}^{0} e^{at}e^{-j\omega t}dt + \int_{0}^{\infty} e^{-at}e^{-j\omega t}dt$$

$$= \int_{-\infty}^{0} e^{(a-j\omega)t}dt + \int_{0}^{\infty} e^{(-a-j\omega)t}dt$$

$$= \frac{1}{a-j\omega} + \frac{1}{a+j\omega}$$

$$= \frac{2a}{a^2+\omega^2}$$

 $X(j\omega)$  is real and even since x(t) is real and even



$$x(t) = \delta(t)$$

$$x(t) = \delta(t)$$
 $X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$ 

$$x(t) = \delta(t)$$
  $X(j\omega) = 1$ 

$$x(t) = \delta(t)$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t}dt$$

$$x(t) = \delta(t)$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t}dt$$

$$= 1$$

$$x(t) = \delta(t)$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t}dt$$

$$= 1$$

FT of unit impulse contains equal contributions at all frequencies

$$x(t) = egin{cases} 1 & , & |t| < T_1 \ 0 & , & |t| > T_1 \end{cases}$$



$$x(t) = egin{cases} 1 & , & |t| < T_1 \ 0 & , & |t| > T_1 \end{cases}$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$x(t) = egin{cases} 1 & , & |t| < T_1 \ 0 & , & |t| > T_1 \end{cases}$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$
$$= \int_{-T_1}^{T_1} e^{-j\omega t} dt$$

$$x(t) = \begin{cases} 1 & , & |t| < T_1 \\ 0 & , & |t| > T_1 \end{cases}$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$= \int_{-T_1}^{T_1} e^{-j\omega t} dt$$

$$= \frac{e^{j\omega T_1} - e^{-j\omega T_1}}{j\omega}$$

$$x(t) = \begin{cases} 1 & , & |t| < T_1 \\ 0 & , & |t| > T_1 \end{cases}$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-T_1}^{T_1} e^{-j\omega t}dt$$

$$= \frac{e^{j\omega T_1} - e^{-j\omega T_1}}{j\omega}$$

$$= \frac{2\sin(\omega T_1)}{2}$$



$$X(j\omega) = \begin{cases} 1 & , & |\omega| < W \\ 0 & , & |\omega| < W \end{cases}$$



$$X(j\omega) = \begin{cases} 1 & , & |\omega| < W \\ 0 & , & |\omega| < W \end{cases}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \begin{cases} 1 & , & |\omega| < W \\ 0 & , & |\omega| < W \end{cases}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
$$= \frac{1}{2\pi} \int_{-W}^{W} e^{j\omega t} d\omega$$

$$X(j\omega) = \begin{cases} 1 & , & |\omega| < W \\ 0 & , & |\omega| < W \end{cases}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi} \int_{-W}^{W} e^{j\omega t} d\omega$$

$$= \frac{e^{jWt} - e^{-jWt}}{2\pi jt}$$

$$X(j\omega) = \begin{cases} 1 & , & |\omega| < W \\ 0 & , & |\omega| < W \end{cases}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi} \int_{-W}^{W} e^{j\omega t} d\omega$$

$$= \frac{e^{jWt} - e^{-jWt}}{2\pi jt}$$

$$= \frac{\sin(Wt)}{\pi t}$$



#### Rects and Sincs

$$x(t) = egin{cases} 1 & , & |t| < T_1 \ 0 & , & |t| > T_1 \end{cases}$$

$$X(j\omega) = \frac{2\sin(\omega T_1)}{\omega}$$

$$X(j\omega) = \begin{cases} 1 & , & |\omega| < W \\ 0 & , & |\omega| < W \end{cases}$$

$$x(t) = \frac{\sin(Wt)}{\pi t}$$

Square wave



Sinc function

This means a square wave in the time domain, its Fourier transform is a *sinc* function. However, if the signal in the time domain is a *sinc* function, then its Fourier transform is a square wave.

This property is referred to as *Duality Property*.

# **Duality**



We also note that when the width of  $X(j\omega)$  increases, its inverse Fourier transform x(t) will be compressed. When  $W \to \infty$ ,  $X(j\omega)$  converges to an impulse.



$$x(t) = x(t+T)$$
  $T = 2\pi/\omega_0$ 

$$x(t) = x(t+T)$$
  $T = 2\pi/\omega_0$   
 $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$ 

$$x(t) = x(t+T)$$
  $T = 2\pi/\omega_0$   $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$   $X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$ 

$$x(t) = x(t+T) \qquad T = 2\pi / \omega_0$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}\right) e^{-j\omega t} dt$$

$$x(t) = x(t+T) \qquad T = 2\pi / \omega_0$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}\right) e^{-j\omega t} dt$$

$$= \sum_{k=-\infty}^{\infty} a_k \left(\int_{-\infty}^{\infty} e^{j(k\omega_0 - \omega)t} dt\right)$$

$$x(t) = x(t+T) \qquad T = 2\pi / \omega_0$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}\right) e^{-j\omega t} dt$$

$$= \sum_{k=-\infty}^{\infty} a_k \left(\int_{-\infty}^{\infty} e^{j(k\omega_0 - \omega)t} dt\right)$$

$$= 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$$

### Fourier transform of periodic signal: Example 1

$$x(t) = \sin(\omega_0 t)$$

#### Fourier transform of periodic signal: Example 1

$$x(t) = \sin(\omega_0 t)$$

$$= \frac{1}{2j} e^{j\omega_0 t} - \frac{1}{2j} e^{-j\omega_0 t}$$

$$x(t) = \sin(\omega_0 t)$$

$$= \frac{1}{2j} e^{j\omega_0 t} - \frac{1}{2j} e^{-j\omega_0 t}$$
 $a_1 = 1/2j$ 
 $a_{-1} = -1/2j$ 
 $a_k = 0 \quad k \neq \pm 1$ 

$$x(t) = \sin(\omega_0 t)$$
 $= \frac{1}{2j}e^{j\omega_0 t} - \frac{1}{2j}e^{-j\omega_0 t}$ 
 $a_1 = 1/2j$ 
 $a_{-1} = -1/2j$ 
 $a_k = 0 \quad k \neq \pm 1$ 
 $X(j\omega) = 2\pi \sum_{k=0}^{\infty} a_k \delta(\omega - k\omega_0)$ 

$$x(t) = \sin(\omega_0 t)$$
 $= \frac{1}{2j}e^{j\omega_0 t} - \frac{1}{2j}e^{-j\omega_0 t}$ 
 $a_1 = 1/2j$ 
 $a_{-1} = -1/2j$ 
 $a_k = 0 \quad k \neq \pm 1$ 
 $X(j\omega) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$ 
 $= 2\pi(a_1\delta(\omega - \omega_0) + a_{-1}\delta(\omega + \omega_0))$ 

$$x(t) = \sin(\omega_0 t)$$

$$= \frac{1}{2j} e^{j\omega_0 t} - \frac{1}{2j} e^{-j\omega_0 t}$$

$$a_1 = 1/2j$$

$$a_{-1} = -1/2j$$

$$a_k = 0 \quad k \neq \pm 1$$

$$X(j\omega) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$$

$$= 2\pi (a_1 \delta(\omega - \omega_0) + a_{-1} \delta(\omega + \omega_0))$$

$$= 2\pi \left(\frac{1}{2j} \delta(\omega - \omega_0) - \frac{1}{2j} \delta(\omega + \omega_0)\right)$$

$$x(t) = \sin(\omega_0 t)$$

$$= \frac{1}{2j} \left( e^{j\omega_0 t} - e^{-j\omega_0 t} \right)$$

$$X(j\omega) = \frac{1}{2j} \left( 2\pi\delta(\omega - \omega_0) - 2\pi\delta(\omega + \omega_0) \right)$$

$$x(t) = \sin(\omega_0 t)$$

$$= \frac{1}{2j} (e^{j\omega_0 t} - e^{-j\omega_0 t})$$

$$X(j\omega) = \frac{1}{2j} (2\pi\delta(\omega - \omega_0) - 2\pi\delta(\omega + \omega_0))$$

$$x(t) = \cos(\omega_0 t)$$

$$= \frac{1}{2} (e^{j\omega_0 t} + e^{-j\omega_0 t})$$

$$X(j\omega) = \frac{1}{2} (2\pi\delta(\omega - \omega_0) + 2\pi\delta(\omega + \omega_0))$$

$$x(t) = \sin(\omega_0 t)$$

$$= \frac{1}{2j} (e^{j\omega_0 t} - e^{-j\omega_0 t})$$

$$X(j\omega) = \frac{1}{2j} (2\pi\delta(\omega - \omega_0) - 2\pi\delta(\omega + \omega_0))$$

$$x(t) = \cos(\omega_0 t)$$

$$= \frac{1}{2} (e^{j\omega_0 t} + e^{-j\omega_0 t})$$

$$X(j\omega) = \frac{1}{2} (2\pi\delta(\omega - \omega_0) + 2\pi\delta(\omega + \omega_0))$$

$$x(t) = e^{j\omega_0 t}$$

$$X(j\omega) = 2\pi\delta(\omega - \omega_0)$$



Fourier transforms of (a)  $x(t) = \sin \omega_0 t$ ; (b)  $x(t) = \cos \omega_0 t$ .

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t-kT)$$



$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t-kT)$$

$$X(j\omega) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega-k\omega_0)$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

$$X(j\omega) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$$

$$a_k = \frac{1}{T} \int_{T} x(t) e^{-jk\omega_0 t} dt$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-jk\omega_0 t} dt$$

$$= \frac{1}{T}$$

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t-kT)$$

$$X(j\omega) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$$

$$a_{k} = \frac{1}{T} \int_{T} x(t) e^{-jk\omega_{0}t} dt$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-jk\omega_{0}t} dt$$

$$= \frac{1}{T}$$

$$X(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$$

The Fourier transform of a periodic impulse train in the time domain with period T is a periodic impulse train in the frequency domain with period  $2\pi/T$ 





Figure 4.14 (a) Periodic impulse train; (b) its Fourier transform.

