10. Memoria Virtuale. Esercizi

- (es. 1) Consideriamo un processo con m frame inizialmente vuoti. La stringa di riferimento è lunga p e contiene riferimenti a n pagine diverse. Per un qualsiasi algoritmo di rimpiazzamento:
 - a) qual è il numero minimo di page fault?
 - b) qual è il numero massimo di page faut?

10. Memoria Virtuale. Esercizi

(es. 2) un computer ha uno spazio degli indirizzi logici di 2³² byte. Il computer ha 2¹⁸ byte di memoria fisica. La dememoria virtuale è paginata, con pagine di 4096 byte. Un processo genera l'indirizzo 11123456 (esadecimale). Come viene generato il corrispondente indirizzo fisico?

11/23/156 ×4/956
Co Page Table - XX

(on K ~ ox 3)

NON PAGE FAULT

10. Memoria Virtuale. Esercizi

- (es. 3) In un sistema con demand paging, la PT è tenuta in appositi registri. Ci vogliono 8 millisec per gestire un page fault nel caso migliore, e 20 millisec nel caso peggiore. L'accesso in RAM richiede 100 nanosec.
- Un pagina vittima ha il dirty bit a 1 nel 70% dei casi.
 Qual è la frequenza massima accettabile di page fault per avere un *eat* massimo di 200 nanosecondi? (esprimete i tempi in microsec.)

0,0002 = 0,0001 -0,0001 P+ 1664

 $\frac{5,00.257}{16,4-0.0001} = f = 6,1.10^{-6}$

1 agni 154,000

 10. Memoria Virtuale. Esercizi (es. 4) quali di questi algoritmi: <i>Optimal, FIFO, Seconda chance, LRU</i>, soffrono della anomalia di belady? 	Fifo Si Optimal no 2 ² chance no CRU no
 10. Memoria Virtuale. Esercizi (es. 5) quali sono i vantaggi della memoria virtuale? Quali gli svantaggi? 	- hecessity supports hardware + implements protections memoris = puo rallegione sistems + permette di runnare prog + longh Co d'unenta gradu multip
 10. Memoria Virtuale. Esercizi (es. 6) In un sistema con demand paging vengono fatte le seguenti rilevazioni sulla percentuale di utilizzo: Utilizzo della CPU: 20% Disco di swap attivo: 97.7% altri device di I/O: 5% 	

(es. 6) Quali delle seguenti azioni possono (ragionevolmente) migliorare l'utilizzo della CPU? — Installare una CPU più veloce — Aumentare l'area di swap — Aumentare il grado di multiprogrammazione — Diminuire il grado di multiprogrammazione — Installare più RAM — Installare un HD più veloce — aumentare la dimensione delle pagine

10. Memoria Virtuale. Esercizi

- (es. 7) Supponete una politica di rimpiazzamento in cui a intervalli regolari viene rimossa una pagina se questa non è stata usata dall'intervallo precedente.
- Che vantaggi/svantaggi si hanno rispetto ad una politica che usi LRU o seconda chance chiamati solo in caso di page fault?

+ lo spazio e- liberate ostantenent

- deve trunnare anche se non necessario

+ a monente ~ chiamato e più veloca

- causa + poga fout (toglie + paying

del necessario)

~	m	221	=)
-				_

10. Memoria Virtuale. Esercizi

- (es. 8) In un sistema con demand paging, l'area di swap ha un tempo di accesso e di trasferimento di 5 millisec. Gli indirizzi sono tradotti mediante una PT in RAM, e l'access time in RAM è di 1 µsec.
- Con l'uso di una memoria associativa, la traduzione di un indirizzo logico in fisico si riduce ad un solo accesso in RAM, l'hit rate è dell'80%, mentre dei restanti accessi, il 10% (ossia il 2% del totale) causano page fault. Calcolare reffective access time.

and swor

ه ما	V et
est =0,8. 1u	S +0,48.2ms
40,02.5	,002 ms
= 101,2 ms	Co secas jo 497
	_

10. Memoria Virtuale. Esercizi

 (es. 9) In un sistema con demand paging il grado di multiprogrammazione è stato fissato a 4. In situazioni diverse, alcune misure hanno dato i seguenti risultati:

b) utilizzo CPU: 87% -- utilizzo del disco: 3%

c) utilizzo CPU: 13% -- utilizzo del disco: 3%

 Cosa sta succendendo nei tre casi? Si potrebbe aumentare il grado di multiprogrammazione per migliorare l'uso della CPU? N (toch tage first)

10. Memoria Virtuale. Esercizi

 (es. 10) In un calcolatore la memoria virtuale è di 32K, e la memoria fisica è di 16K. Le pagine del sistema sono di 2K. Si consideri la PT sottostante, e si dia l'indirizzo fisico corrispondente a ciascuno dei seguenti indirizzi virtuali: 565; 4100; 6150 (tutti i numeri sono in base 10)

		-
pagina	frame	valido/inv.
0	3	v
1	6	v
2	x	i
3	2	v
4	x	i

fogine = 2¹⁵

writish= 2¹⁵

fine = 2¹⁵

565 4400

o' `563		
3.2048 +565	i tq	L-4048+ +6
=6709	luvahd	4102
	base trojt	

PT entry

10. Memoria Virtuale. Esercizi

- (es. 11) Un sistema ha le seguenti caratteristiche:
 - È in grado di indirizzare un milione di frames
 - Usa 30 bit per scrivere un indirizzo logico
 - L'offset più grande in un indirizzo è 1FF
- Il sistema dovrebbe prevedere un meccanismo di prevenzione del thrashing? SI 14 quanto find es
- Il sistema deve usare una paginazione a più livelli?
- Nel caso, è sufficiente una paginazione a 2 livelli?
- Quale dimensione minima dovrebbero avere le pagine per non dover usare una paginazione a più livelli? (per questa domanda si usino 4 byte per ogni entry della PT)

indirized by to not

24c. 3 byter 23 bot byte

