A cache's organization can be characterized by the tuple: (5, E, B, m): Number of Sets S = 23 E = : Lines per set

B = 2^b : Block Size $M = log_2(M)$: Number of physical Address bits $M = 2^m$: Number of unique addresses $s = log_2(s)$: Number of set index bits $b = log_2(s)$: Number of block offset bits t = m - (s+b): Tag bits C = B x E x S : Cache Size (without overhead) CBE m 1024 4 4 64 24 32 1 30 1024 4 256 32 1024 8 128 22 32 1 29 1024 32 128 32 22 1 5 5 32 32 1024 32 8 24 32 1024 Part 1 3 4 CT CT CT CT CT CT CT CT E = 2 b = log 2 4 = 2 \ t = 13 - (3 + 2) = 8 S = lines / E = 16/2 = 86= 10928 = 3

0	
Parameter	Value
Byte Offset	0×0
Cache Index	0×5
Cache Tag	0×71
Cache Hit (T/N)	Y
Cache Byte returned	0×B
returned	
(