Computing Repairs for Inconsistent DL-programs over \mathcal{EL} Ontologies

Thomas Eiter Michael Fink Daria Stepanova

Knowledge-Based Systems Group, Institute of Information Systems, Vienna University of Technology http://www.kr.tuwien.ac.at/

JELIA 2014-September, 26, 2014

Motivation

- DL-program: rules P + consistent ontology O (loose coupling combination approach)
- ullet DL-atoms serve as query interfaces to ${\mathcal O}$
- Possibility to add info from \mathcal{P} to \mathcal{O} prior to querying it: bidirectional data flow

Motivation

- DL-program: rules P + consistent ontology O (loose coupling combination approach)
- DL-atoms serve as query interfaces to $\mathcal O$
- Possibility to add info from P to O prior to querying it: bidirectional data flow

However, information exchange between \mathcal{P} and \mathcal{O} can cause **inconsistency** of the DL-program (absence of answer sets).

Motivation

- DL-program: rules P + consistent ontology O (loose coupling combination approach)
- ullet DL-atoms serve as query interfaces to ${\mathcal O}$
- Possibility to add info from $\mathcal P$ to $\mathcal O$ prior to querying it: bidirectional data flow

However, information exchange between \mathcal{P} and \mathcal{O} can cause **inconsistency** of the DL-program (absence of answer sets).

- ✓ Repair answer sets [E₋ et al, IJCAI 2013]
- ✓ Algorithm based on complete support families [E_ et al, ECAI 2014]

Effective for DL- $Lite_{\mathcal{A}}$ (few small support sets per DL-atom) **Not well suited for** \mathcal{EL} (might be many / large support sets . . .)

In this work: algorithm for repairing DL-programs over \mathcal{EL} ontologies

Overview

Motivation

DL-programs

Support Sets for DL-atoms

Repair Answer Set Computation over \mathcal{EL}

Experiments

Conclusion

EL Description Logic

- Lightweight DL, widely used in biology, medicine and other domains
- Concepts and roles model sets of objects and their relationships
- EL-concept is formed according to the rule

$$C ::= A \mid \top \mid C \sqcap C \mid \exists R.C$$

- An \mathcal{EL} ontology $\mathcal{O} = \langle \mathcal{T}, \mathcal{A} \rangle$ consists of
 - TBox \mathcal{T} specifying inclusions/equivalence between \mathcal{EL} -concepts

$$C \sqsubseteq D \quad C \equiv D$$

ABox A specifying facts that hold in the domain

$$A(b)$$
 $R(a,b)$

Example

$$\mathcal{T} = \left\{ \begin{array}{l} \textit{Blacklisted} \sqsubseteq \textit{Staff} \\ \textit{BLStaffRequest} \equiv \textit{StaffRequest} \sqcap \exists \textit{hasSubject.Blacklisted} \end{array} \right\}$$

$$\mathcal{A} = \left\{ \begin{array}{l} \textit{StaffRequest(r1)} \quad \textit{hasSubject(r1, john)} \quad \textit{Blacklisted(john)} \end{array} \right\}$$

EL Description Logic

- Lightweight DL, widely used in biology, medicine and other domains
- Concepts and roles model sets of objects and their relationships
- EL-concept is formed according to the rule

$$C ::= A \mid \top \mid C \sqcap C \mid \exists R.C$$

- An \mathcal{EL} ontology $\mathcal{O} = \langle \mathcal{T}, \mathcal{A} \rangle$ consists of
 - TBox \mathcal{T} specifying inclusions/equivalence between \mathcal{EL} -concepts

$$C \sqsubseteq D \quad C \equiv D$$

ABox A specifying facts that hold in the domain

$$A(b)$$
 $R(a,b)$

Normalized TBox T_{norm} contains only inclusions of the form

$$A_1 \sqsubseteq A_2$$
 $A_1 \sqcap A_2 \sqsubseteq A_3$ $\exists R.A_1 \sqsubseteq A_2$ $A_1 \sqsubseteq R.A_2^1$

 $^{{}^{1}}A_{i}$ is an atomic concept

 $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle \text{ is a DL-program}$ $\mathcal{O} = \begin{cases} (1) \text{ Blacklisted } \sqsubseteq \text{ Staff} \\ (2) \text{ StaffRequest } \equiv \exists \text{hasAct.Actqcap} \exists \text{hasSubj.Staff} \ \sqcap \exists \text{hasTarg.Proj} \\ (3) \text{ BLStaffRequest } \equiv \text{StaffRequest } \sqcap \exists \text{hasSubj.Blacklisted} \\ (4) \text{ StaffRequest}(r1) \quad (5) \text{ hasSubj}(r1, john) \quad (6) \text{ Blacklisted}(john) \end{cases}$ $\mathcal{P} = \begin{cases} (7) \text{ projfile}(p1); \quad (8) \text{ hasowner}(p1, john); \\ (9) \text{ grant}(r1) \leftarrow \text{DL}[\text{Proj} \uplus \text{projfile}; \text{StaffRequest}](r1), \text{ not deny}(r1) \\ (10) \text{ deny}(r1) \leftarrow \text{DL}[; \text{BLStaffRequest}](r1) \end{cases}$

```
\Pi = \langle \mathcal{O}, \mathcal{P} \rangle \text{ is a DL-program}

\mathcal{O} = \begin{cases}
(1) \text{ Blacklisted } \sqsubseteq \text{ Staff} \\
(2) \text{ StaffRequest } \equiv \exists \text{ hasAct.Actqcap} \exists \text{ hasSubj.Staff } \sqcap \exists \text{ hasTarg.Proj} \\
(3) \text{ BLStaffRequest } \sqsubseteq \text{ StaffRequest } \sqcap \exists \text{ hasSubj.Blacklisted} \\
(4) \text{ StaffRequest}(r1) \quad (5) \text{ hasSubj}(r1, john) \quad (6) \text{ Blacklisted}(john)
\end{cases}

(7) \text{ proifile}(p1); \quad (8) \text{ hasowner}(p1, john); \quad (9) \text{ hasowner}(p1, john); \quad (1) \text{ hasowner}(p1, john); \quad (2) \text{ hasowner}(p1, john); \quad (3) \text{ hasowner}(p1, john); \quad (4) \text{ hasowner}(p1, john); \quad (5) \text{ hasowner}(p1, john); \quad (6) \text{ hasowner}(p1, john); \quad (7) \text{ hasowner}(p1, john); \quad (8) \text{ hasowner}(p1, john); \quad (8
```

$$\mathcal{P} = \left\{ \begin{array}{l} (7) \ \textit{projfile}(\textit{p1}); \quad (8) \ \textit{hasowner}(\textit{p1}, \textit{john}); \\ (9) \ \textit{grant}(\textit{r1}) \leftarrow \mathsf{DL}[\textit{Proj} \ \uplus \ \textit{projfile}; \textit{StaffRequest}](\textit{r1}), \textit{not deny}(\textit{r1}) \\ (10) \ \textit{deny}(\textit{r1}) \leftarrow \mathsf{DL}[; \textit{BLStaffRequest}](\textit{r1}) \end{array} \right\}$$

- Interpretation: $I = \{projfile(p1), hasowner(p1, john), deny(r1)\}$
- Satisfaction relation: $I \models^{\mathcal{O}} projfile(p1)$; $I \models^{\mathcal{O}} DL[Proj \uplus projfile; StaffRequest](r1)$ $I \models^{\mathcal{O}} DL[; BLStaffRequest](r1)$
- Semantics: in terms of answer sets, i.e. founded models (weak, flp, . . .)
- / is a weak and flp answer set

```
\Pi = \langle \mathcal{O}, \mathcal{P} \rangle \text{ is a DL-program} \\
\mathcal{O} = \begin{cases}
(1) & Blacklisted \sqsubseteq Staff \\
(2) & StaffRequest \equiv \exists hasAct.Actqcap\exists hasSubj.Staff \sqcap \exists hasTarg.Proj \\
(3) & BLStaffRequest \sqsubseteq StaffRequest \sqcap \exists hasSubj.Blacklisted \\
(4) & StaffRequest(r1) (5) & hasSubj(r1, john) (6) & Blacklisted(john)
\end{cases}

\mathcal{P} = \begin{cases}
(7) & projfile(p1); (8) & hasowner(p1, john); \\
(9) & grant(r1) \leftarrow DL[Proj \uplus projfile; StaffRequest](r1), not deny(r1) \\
(10) & deny(r1) \leftarrow DL[; BLStaffRequest](r1)
\end{cases}
```

```
(10) deny(r1) \leftarrow DL[; BLStaffRequest](r1)
```

- Interpretation: $I = \{projfile(p1), hasowner(p1, john), deny(r1)\}$
- Satisfaction relation: $I \models^{\mathcal{O}} projfile(p1)$; $I \models^{\mathcal{O}} DL[Proj \uplus projfile; StaffRequest](r1)$ $I \models^{\mathcal{O}} DL[; BLStaffRequest](r1)$
- Semantics: in terms of answer sets, i.e. founded models (weak, flp, . . .)
- / is a weak and flp answer set

```
\Pi = \langle \mathcal{O}, \mathcal{P} \rangle \text{ is a DL-program} \\
\mathcal{O} = \begin{cases}
(1) & Blacklisted \sqsubseteq Staff \\
(2) & StaffRequest \equiv \exists hasAct.Actqcap\exists hasSubj.Staff \sqcap \exists hasTarg.Proj \\
(3) & BLStaffRequest \sqsubseteq StaffRequest \sqcap \exists hasSubj.Blacklisted \\
(4) & StaffRequest(r1) (5) & hasSubj(r1, john) (6) & Blacklisted(john)
\end{cases}

\mathcal{P} = \begin{cases}
(7) & projfile(p1); (8) & hasowner(p1, john); \\
(9) & grant(r1) \leftarrow DL[Proj \uplus projfile; StaffRequest](r1), not deny(r1) \\
(10) & deny(r1) \leftarrow DL[; BLStaffRequest](r1)
\end{cases}
```

- Interpretation: I = {projfile(p1), hasowner(p1, john), deny(r1)}
- Satisfaction relation: $I \models^{\mathcal{O}} projfile(p1)$; $I \models^{\mathcal{O}} DL[Proj \uplus projfile; StaffRequest](r1)$ $I \models^{\mathcal{O}} DL[; BLStaffRequest](r1)$
- Semantics: in terms of answer sets, i.e. founded models (weak, flp, . . .)
- I is a weak and flp answer set

```
\Pi = \langle \mathcal{O}, \mathcal{P} \rangle \text{ is a DL-program} \\
\mathcal{O} = \begin{cases}
(1) & Blacklisted \sqsubseteq Staff \\
(2) & StaffRequest \equiv \exists hasAct.Actqcap \exists hasSubj.Staff \sqcap \exists hasTarg.Proj \\
(3) & BLStaffRequest \sqsubseteq StaffRequest \sqcap \exists hasSubj.Blacklisted \\
(4) & StaffRequest(r1) (5) & hasSubj(r1, john) (6) & Blacklisted(john)
\end{cases} \\
\mathcal{P} = \begin{cases}
(7) & projfile(p1); (8) & hasowner(p1, john); \\
(9) & grant(r1) \leftarrow DL[Proj \uplus projfile; StaffRequest](r1), not deny(r1) \\
(10) & deny(r1) \leftarrow DL[; BLStaffRequest](r1)
\end{cases}
```

- Interpretation: I = {projfile(p1), hasowner(p1, john), deny(r1)}
- Satisfaction relation: $I \models^{\mathcal{O}} projfile(p1)$; $I \models^{\mathcal{O}} DL[Proj \uplus projfile; StaffRequest](r1)$ $I \models^{\mathcal{O}} DL[; BLStaffRequest](r1)$
- Semantics: in terms of answer sets, i.e. founded models (weak, flp, ...)
- I is a weak and flp answer set

```
\mathcal{O} = \left\{ \begin{array}{l} \text{(1) Blacklisted} \sqsubseteq \text{Staff} \\ \text{(2) StaffRequest} \equiv \exists \text{hasAct.Act} \sqcap \exists \text{hasSubj.Staff} \sqcap \exists \text{hasTarg.Proj} \\ \text{(3) BLStaffRequest} \equiv \text{StaffRequest} \sqcap \exists \text{hasSubj.Blacklisted} \\ \text{(4) StaffRequest}(r1) \quad \text{(5) hasSubj}(r1, john) \quad \text{(6) Blacklisted}(john) \\ \end{array} \right\}
\mathcal{P} = \left\{ \begin{array}{ll} (\textit{7}) \; \textit{projfile}(\textit{p1}) & (8) \; \textit{hasowner}(\textit{p1}, \textit{john}) \\ (9) \; \textit{grant}(\textit{r1}) \leftarrow \mathsf{DL}[\textit{Proj} \; \uplus \; \textit{projfile}; \; \textit{StaffRequest}](\textit{r1}), \; \textit{not deny}(\textit{r1}) \\ (10) \; \textit{deny}(\textit{r1}) \leftarrow \mathsf{DL}[; \; \textit{BLStaffRequest}](\textit{r1}) \\ (11) \; \bot \leftarrow \; \textit{projfile}(\textit{p1}), \; \textit{hasowner}(\textit{p1}, \textit{john}), \\ \; \; \mathsf{DL}[; \; \textit{hasSubj}](\textit{r1}, \textit{john}), \; \textit{not grant}(\textit{r1}) \end{array} \right\}
```

```
\mathcal{O} = \left\{ \begin{array}{l} \text{(1) Blacklisted} \sqsubseteq \text{Staff} \\ \text{(2) StaffRequest} \equiv \exists \text{hasAct.Act} \sqcap \exists \text{hasSubj.Staff} \sqcap \exists \text{hasTarg.Proj} \\ \text{(3) BLStaffRequest} \equiv \text{StaffRequest} \sqcap \exists \text{hasSubj.Blacklisted} \\ \text{(4) StaffRequest}(r1) \quad \text{(5) hasSubj}(r1, john) \quad \text{(6) Blacklisted}(john) \\ \end{array} \right\}
\mathcal{P} = \left\{ \begin{array}{ll} (7) \ \textit{projfile}(\textit{p1}) & (8) \ \textit{hasowner}(\textit{p1}, \textit{john}) \\ (9) \ \textit{grant}(r1) \leftarrow \text{DL}[\textit{Proj} \uplus \textit{projfile}; \textit{StaffRequest}](r1), \textit{not deny}(r1) \\ (10) \ \textit{deny}(r1) \leftarrow \text{DL}[; \textit{BLStaffRequest}](r1) \\ (11) \ \bot \leftarrow \textit{projfile}(\textit{p1}), \textit{hasowner}(\textit{p1}, \textit{john}), \\ \text{DL}[; \textit{hasSubj}](r1, \textit{john}), \textit{not grant}(r1) \end{array} \right\}
```

```
\mathcal{O} = \left\{ \begin{array}{l} \text{(1) Blacklisted} \sqsubseteq \text{Staff} \\ \text{(2) StaffRequest} \equiv \exists \text{hasAct.Act} \sqcap \exists \text{hasSubj.Staff} \sqcap \exists \text{hasTarg.Proj} \\ \text{(3) BLStaffRequest} \equiv \text{StaffRequest} \sqcap \exists \text{hasSubj.Blacklisted} \\ \text{(4) StaffRequest}(r1) \quad \text{(5) hasSubj}(r1, john) \quad \text{(6) Blacklisted}(john) \\ \end{array} \right\}
\mathcal{P} = \left\{ \begin{array}{ll} (\textit{7}) \; \textit{projfile}(\textit{p1}) & (\textit{8}) \; \textit{hasowner}(\textit{p1}, \textit{john}) \\ (\textit{9}) \; \textit{grant}(\textit{r1}) \leftarrow \mathsf{DL}[\textit{Proj} \; \uplus \; \textit{projfile}; \; \textit{StaffRequest}](\textit{r1}), \, \textit{not deny}(\textit{r1}) \\ (\textit{10}) \; \textit{deny}(\textit{r1}) \leftarrow \mathsf{DL}[; \; \textit{BLStaffRequest}](\textit{r1}) \\ (\textit{11}) \; \bot \leftarrow \; \textit{projfile}(\textit{p1}), \, \textit{hasowner}(\textit{p1}, \textit{john}), \\ \; \; \mathsf{DL}[; \; \textit{hasSubj}](\textit{r1}, \textit{john}), \, \textit{not grant}(\textit{r1}) \end{array} \right\}
```

```
\mathcal{O} = \left\{ \begin{array}{l} \text{(1) Blacklisted} \sqsubseteq \text{Staff} \\ \text{(2) StaffRequest} \equiv \exists \text{hasAct.Act} \sqcap \exists \text{hasSubj.Staff} \sqcap \exists \text{hasTarg.Proj} \\ \text{(3) BLStaffRequest} \equiv \text{StaffRequest} \sqcap \exists \text{hasSubj.Blacklisted} \\ \text{(4) StaffRequest}(r1) \quad \text{(5) hasSubj}(r1, john) \quad \text{(6) Blacklisted}(john) \\ \end{array} \right\}
 \mathcal{P} = \left\{ \begin{array}{l} (\textit{7}) \; \textit{projfile}(\textit{p1}) \quad (8) \; \textit{hasowner}(\textit{p1}, \textit{john}) \\ (9) \; \textit{grant}(\textit{r1}) \leftarrow \mathsf{DL}[\textit{Proj} \; \uplus \; \textit{projfile}; \textit{StaffRequest}](\textit{r1}), \textit{not deny}(\textit{r1}) \\ (10) \; \textit{deny}(\textit{r1}) \leftarrow \mathsf{DL}[; \textit{BLStaffRequest}](\textit{r1}) \\ (11) \; \bot \leftarrow \textit{projfile}(\textit{p1}), \textit{hasowner}(\textit{p1}, \textit{john}), \\ \mathsf{DL}[; \textit{hasSubj}](\textit{r1}, \textit{john}), \textit{not grant}(\textit{r1}) \end{array} \right\}
```

```
\mathcal{O} = \left\{ \begin{array}{l} \text{(1) Blacklisted} \sqsubseteq \text{Staff} \\ \text{(2) StaffRequest} \equiv \exists \text{hasAct.Act} \sqcap \exists \text{hasSubj.Staff} \sqcap \exists \text{hasTarg.Proj} \\ \text{(3) BLStaffRequest} \equiv \text{StaffRequest} \sqcap \exists \text{hasSubj.Blacklisted} \\ \text{(4) StaffRequest}(r1) \quad \text{(5) hasSubj}(r1, john) \quad \text{(6) Blacklisted}(john) \\ \end{array} \right\}
\mathcal{P} = \left\{ \begin{array}{ll} (7) \ \textit{projfile}(\textit{p1}) & (8) \ \textit{hasowner}(\textit{p1}, \textit{john}) \\ (9) \ \textit{grant}(\textit{r1}) \leftarrow \mathsf{DL}[\textit{Proj} \uplus \textit{projfile}; \textit{StaffRequest}](\textit{r1}), \textit{not deny}(\textit{r1}) \\ (10) \ \textit{deny}(\textit{r1}) \leftarrow \mathsf{DL}[; \textit{BLStaffRequest}](\textit{r1}) \\ (11) \ \bot \leftarrow \textit{projfile}(\textit{p1}), \textit{hasowner}(\textit{p1}, \textit{john}), \\ \mathsf{DL}[; \textit{hasSubj}](\textit{r1}, \textit{john}), \textit{not grant}(\textit{r1}) \end{array} \right\}
```

```
\Pi = \langle \mathcal{O}, \mathcal{P} \rangle is inconsistent!
 \mathcal{O} = \left\{ \begin{array}{l} \text{(1) Blacklisted} \sqsubseteq \textit{Staff} \\ \text{(2) StaffRequest} \equiv \exists \textit{hasAct.Act} \sqcap \exists \textit{hasSubj.Staff} \sqcap \exists \textit{hasTarg.Proj} \\ \text{(3) BLStaffRequest} \equiv \textit{StaffRequest} \sqcap \exists \textit{hasSubj.Blacklisted} \\ \text{(4) StaffRequest}(r1) \quad \text{(5) hasSubj}(r1,john) \quad \text{(6) Blacklisted}(john) \\ \end{array} \right\}
\mathcal{P} = \left\{ \begin{array}{ll} (7) \ \textit{projfile}(\textit{p1}) & (8) \ \textit{hasowner}(\textit{p1}, \textit{john}) \\ (9) \ \textit{grant}(\textit{r1}) \leftarrow \mathsf{DL}[\textit{Proj} \uplus \textit{projfile}; \textit{StaffRequest}](\textit{r1}), \textit{not deny}(\textit{r1}) \\ (10) \ \textit{deny}(\textit{r1}) \leftarrow \mathsf{DL}[; \textit{BLStaffRequest}](\textit{r1}) \\ (11) \ \bot \leftarrow \textit{projfile}(\textit{p1}), \textit{hasowner}(\textit{p1}, \textit{john}), \\ \mathsf{DL}[; \textit{hasSubj}](\textit{r1}, \textit{john}), \textit{not grant}(\textit{r1}) \end{array} \right\}
```

```
\Pi = \langle \mathcal{O}, \mathcal{P} \rangle is consistent!
 \mathcal{O} = \left\{ \begin{array}{l} \text{(1) Blacklisted} \sqsubseteq \textit{Staff} \\ \text{(2) StaffRequest} \equiv \exists \textit{hasAct.Act} \sqcap \exists \textit{hasSubj.Staff} \sqcap \exists \textit{hasTarg.Proj} \\ \text{(3) BLStaffRequest} \equiv \textit{StaffRequest} \sqcap \exists \textit{hasSubj.Blacklisted} \\ \text{(4) StaffRequest(r1)} \end{array} \right. \left. \left( \text{6) Blacklisted(john)} \right. \right\}
                                                                                                                                                                                                                                                                                                                         (6) Blacklisted(john)
\mathcal{P} = \left\{ \begin{array}{l} (\textit{7}) \; \textit{projfile}(\textit{p1}) \quad (\textit{8}) \; \textit{hasowner}(\textit{p1}, \textit{john}) \\ (\textit{9}) \; \textit{grant}(\textit{r1}) \leftarrow \mathsf{DL}[\textit{Proj} \; \uplus \; \textit{projfile}; \textit{StaffRequest}](\textit{r1}), \textit{not deny}(\textit{r1}) \\ (\textit{10}) \; \textit{deny}(\textit{r1}) \leftarrow \mathsf{DL}[; \textit{BLStaffRequest}](\textit{r1}) \\ (\textit{11}) \; \bot \leftarrow \; \textit{projfile}(\textit{p1}), \textit{hasowner}(\textit{p1}, \textit{john}), \\ \mathsf{DL}[; \textit{hasSubj}](\textit{r1}, \textit{john}), \textit{not grant}(\textit{r1}) \end{array} \right\}
```

 $I = \{projfile(p1), hasowner(p1, john), grant(r1)\}\$ is a repair answer set of Π .

```
\Pi = \langle \mathcal{O}, \mathcal{P} \rangle \text{ is consistent!}
```



```
\mathcal{O} = \left\{ \begin{array}{l} \text{(1) Blacklisted} \sqsubseteq \textit{Staff} \\ \text{(2) StaffRequest} \equiv \exists \textit{hasAct.Act} \sqcap \exists \textit{hasSubj.Staff} \sqcap \exists \textit{hasTarg.Proj} \\ \text{(3) BLStaffRequest} \equiv \textit{StaffRequest} \sqcap \exists \textit{hasSubj.Blacklisted} \\ \text{(4) StaffRequest}(r1) \quad \text{(5) hasSubj}(r1,john) \quad \text{(6) Blacklisted}(john) \\ \end{array} \right\}
```

$$\mathcal{P} = \left\{ \begin{array}{ll} (\textit{7}) \; \textit{projfile}(\textit{p1}) & (8) \; \textit{hasowner}(\textit{p1}, \textit{john}) \\ (9) \; \textit{grant}(\textit{r1}) \leftarrow \mathsf{DL}[\textit{Proj} \; \uplus \; \textit{projfile}; \; \textit{StaffRequest}](\textit{r1}), \; \textit{not deny}(\textit{r1}) \\ (10) \; \textit{deny}(\textit{r1}) \leftarrow \mathsf{DL}[; \; \textit{BLStaffRequest}](\textit{r1}) \\ (11) \; \bot \leftarrow \; \textit{projfile}(\textit{p1}), \; \textit{hasowner}(\textit{p1}, \textit{john}), \\ \; \; \mathsf{DL}[; \; \textit{hasSubj}](\textit{r1}, \textit{john}), \; \textit{not grant}(\textit{r1}) \end{array} \right\}$$

 $I = \{projfile(p1), hasowner(p1, john), grant(r1)\}\$ is a repair answer set of Π .

Further repair for *I*: e.g. remove *Blacklisted(john)*

$$\mathcal{O} = \left\{ \begin{array}{c} \mathcal{T} & \mathcal{A} \\ \hline (1) \ StaffRequest \equiv \exists hasTarg.Proj \end{array} \right. (2) \ hasTarg(r1, p1)$$

$$d = DL[Proj \ \uplus \ projfile; \ StaffRequest](r1)$$

Support Sets encode partial info about O, relevant for value of d

$$\mathcal{O} = \left\{ \begin{array}{c} \mathcal{T} \\ \hline \text{(1) StaffRequest} \equiv \exists \textit{hasTarg.Proj} \end{array} \right. \underbrace{\left(2\right) \textit{hasTarg}(r1, p1)}^{\mathcal{A}} \left. \right\}$$

Support Sets encode partial info about O, relevant for value of d

Ground Support Set for d is set S of atoms over projfile such that for all interpretations I ⊇ S, it holds that I ⊨ d ("implicant")

E.g.,
$$S = \{projfile(p1)\}$$

 $d = DL[Proj \uplus projfile; StaffRequest](r1)$

$$\mathcal{O} = \left\{ \begin{array}{c} \mathcal{T} \\ \hline \text{(1) StaffRequest} \equiv \exists \textit{hasTarg.Proj} \end{array} \begin{array}{c} \mathcal{A} \\ \hline \text{(2) hasTarg}(\textit{r1},\textit{p1}) \end{array} \right\}$$

- $d = DL[Proj \uplus projfile; StaffRequest](r1)$
 - Support Sets encode partial info about O, relevant for value of d
 - Ground Support Set for d is set S of atoms over projfile such that for all interpretations I ⊇ S, it holds that I ⊨ d ("implicant")

E.g.,
$$S = \{projfile(p1)\}$$

• Complete Support Family S for d consists of S's s.t. whenever $I \models d$, some $S \in S$ with $I \supseteq S$ exists

$$\mathcal{O} = \left\{ \begin{array}{c} \mathcal{T} \\ \hline \text{(1) StaffRequest} \equiv \exists \textit{hasTarg.Proj} \end{array} \begin{array}{c} \mathcal{A} \\ \hline \text{(2) hasTarg(r1, p1)} \end{array} \right\}$$

d = DL[Proj ⊎ projfile; StaffRequest](X)

- Support Sets encode partial info about \mathcal{O} , relevant for value of d
- Ground Support Set for d is set S of atoms over projfile such that for all interpretations I ⊇ S, it holds that I ⊨ d ("implicant")

E.g.,
$$S = \{projfile(p1)\}$$

- Complete Support Family S for d consists of S's s.t. whenever $I \models d$, some $S \in S$ with $I \supseteq S$ exists
- Nonground Support Set for d(X) is S = (N, γ), where
 N: set of nonground literals over input predicates of d(X)
 - γ : "guard" function, selects from groundings of N support sets for d(c)

$$\mathcal{O} = \left\{ \begin{array}{c} \uparrow \\ \hline \text{(1) StaffRequest} \equiv \exists hasTarg.Proj \end{array} \begin{array}{c} A \\ \hline \text{(2) } hasTarg(r1,p1) \end{array} \right\}$$

d = DL[Proj ⊎ projfile; StaffRequest](X)

- Support Sets encode partial info about O, relevant for value of d
- Ground Support Set for d is set S of atoms over projfile such that for all interpretations I ⊇ S, it holds that I ⊨ d ("implicant")

E.g.,
$$S = \{projfile(p1)\}$$

- Complete Support Family S for d consists of S's s.t. whenever $I \models d$, some $S \in S$ with $I \supseteq S$ exists
- Nonground Support Set for d(X) is S = ⟨ projfile(Y), γ⟩, where
 N: set of nonground literals over input predicates of d(X)

$$\gamma: \mathcal{C} \times grnd_{\mathcal{C}}(projfile(Y)) \rightarrow \{0,1\} \text{ where } \gamma(c,projfile(c')) = 1$$
 if $hasTarg(c,c') \in \mathcal{A}$

```
\mathcal{T} = \{ StaffRequest \equiv \exists hasSubj.Staff \sqcap \exists hasTarg.Proj \} 
d = DL[Proj \uplus projfile; StaffRequest](X)
```

```
\mathcal{T} = \{ StaffRequest \equiv \exists hasSubj.Staff \cap \exists hasTarg.Proj \} 
d = DL[Proj \uplus projfile; StaffRequest](X)
```

• Construct \mathcal{T}_d by compiling info about input predicates of d into \mathcal{T} : $\mathcal{T}_d = \mathcal{T} \cup \{Proj_{projfile} \sqsubseteq Proj\}$

```
\mathcal{T} = \{ StaffRequest \equiv \exists hasSubj.Staff \sqcap \exists hasTarg.Proj \} 
d = DL[Proj \uplus projfile; StaffRequest](X)
```

- Construct T_d by compiling info about input predicates of d into T:
 T_d = T ∪ {Proj_{profile} □ Proj}
- Rewrite DL-query over normalized \mathcal{T}_d into a datalog program:

$$\mathcal{T}_{d_{norm}} = \left\{ \begin{array}{l} \text{(1) } \textit{StaffRequest} \sqsubseteq \exists \textit{hasSubj.Staff} \quad \text{(2) } \textit{Proj}_{\textit{projfile}} \sqsubseteq \textit{Proj} \\ \text{(3) } \textit{StaffRequest} \sqsubseteq \textit{hasTarg.Proj} \quad \text{(4) } \exists \textit{hasSubj.Staff} \sqsubseteq C_1 \\ \text{(5) } \exists \textit{hasTarg.Proj} \sqsubseteq C_2 \quad \text{(6) } C_1 \sqcap C_2 \sqsubseteq \textit{StaffRequest} \end{array} \right\}$$

```
\mathcal{T} = \{StaffRequest \equiv \exists hasSubj.Staff \sqcap \exists hasTarg.Proj\}\ d = DL[Proj \uplus projfile; StaffRequest](X)
```

- Construct T_d by compiling info about input predicates of d into T:
 T_d = T ∪ {Proj_{profile} ⊑ Proj}
- Rewrite DL-query over normalized \mathcal{T}_d into a datalog program:

$$\mathcal{P}_{\mathcal{T}_{d_{norm}}} = \left\{ egin{array}{ll} (1^*) & StaffRequest(X) \leftarrow C_1(X), C_2(X) \ (2^*) & C_1(X) \leftarrow hasSubj(X,Y), Staff(Y) \ (3^*) & C_2(X) \leftarrow hasTarg(X,Y), Proj(Y) \ (4^*) & Proj(X) \leftarrow Proj_{projfile}(X) \end{array}
ight.$$

```
\mathcal{T} = \{StaffRequest \equiv \exists hasSubj.Staff \sqcap \exists hasTarg.Proj\}\ d = DL[Proj \uplus projfile; StaffRequest](X)
```

- Construct T_d by compiling info about input predicates of d into T:
 T_d = T ∪ {Proj_{profile} ⊑ Proj}
- Rewrite DL-query over normalized \mathcal{T}_d into a datalog program:

$$\mathcal{P}_{\mathcal{T}_{d_{norm}}} = \left\{ egin{array}{l} (1^*) \ StaffRequest(X) \leftarrow C_1(X), C_2(X) \ (2^*) \ C_1(X) \leftarrow hasSubj(X,Y), Staff(Y) \ (3^*) \ C_2(X) \leftarrow hasTarg(X,Y), Proj(Y) \ (4^*) \ Proj(X) \leftarrow Proj_{projfile}(X) \end{array}
ight.$$

• Unfold the DL-query and extract support sets:

$$StaffRequest(X) \leftarrow hasSubj(X, Y), Staff(Y), hasTarg(X, Z), Proj(Z)$$

 $StaffRequest(X) \leftarrow hasSubj(X, Y), Staff(Y), hasTarg(X, Z), Proj_{projfile}(Z)$

```
\mathcal{T} = \{ StaffRequest \equiv \exists hasSubj.Staff \sqcap \exists hasTarg.Proj \} 
d = DL[Proj \uplus projfile; StaffRequest](X)
```

- Construct T_d by compiling info about input predicates of d into T:
 T_d = T ∪ {Proj_{projfile} ⊑ Proj}
- Rewrite DL-query over normalized T_d into a datalog program:

$$\mathcal{P}_{\mathcal{T}_{d_{norm}}} = \left\{ egin{array}{l} (1^*) \ \mathit{StaffRequest} \leftarrow \mathit{C}_1(\mathit{X}), \mathit{C}_2(\mathit{X}) \ (2^*) \ \mathit{C}_1(\mathit{X}) \leftarrow \mathit{hasSubj}(\mathit{X}, \mathit{Y}), \mathit{Staff}(\mathit{Y}) \ (3^*) \ \mathit{C}_2(\mathit{X}) \leftarrow \mathit{hasTarg}(\mathit{X}, \mathit{Y}), \mathit{Proj}(\mathit{Y}) \ (4^*) \ \mathit{Proj}(\mathit{X}) \leftarrow \mathit{Proj}_{\mathit{projfile}}(\mathit{X}) \end{array}
ight.$$

• Unfold the DL-query and extract support sets:

$$S_1 = \langle \emptyset, \gamma \rangle$$
 (i.e., $N = \emptyset$) and $\gamma(c, \emptyset) = 1$ if for some c', c'' , we have $hasSubj(c, c')$, $Staff(c')$, $hasTarg(c, c'')$, $Proj(c'') \in \mathcal{A}$

 $S_2 = \langle projfile(X), \gamma \rangle$ (i.e., $N = \{projfile(X)\}$), and $\gamma(c, projfile(c')) = 1$ if for some c'', we have hasSubj(c, c''), Staff(c''), $hasTarg(c, c') \in \mathcal{A}$

```
\mathcal{T} = \{ StaffRequest \equiv \exists hasSubj.Staff \sqcap \exists hasTarg.Proj \} 
d = DL[Proj \uplus projfile; StaffRequest](X)
```

- Construct T_d by compiling info about input predicates of d into T:
 T_d = T ∪ {Proj_{profile} ⊆ Proj}
- Rewrite DL-query over normalized \mathcal{T}_d into a datalog program:

$$\mathcal{P}_{\mathcal{T}_{d_{norm}}} = \left\{ egin{array}{l} (1^*) \ \mathit{StaffRequest} \leftarrow \mathit{C}_1(X), \mathit{C}_2(X) \ (2^*) \ \mathit{C}_1(X) \leftarrow \mathit{hasSubj}(X,Y), \mathit{Staff}(Y) \ (3^*) \ \mathit{C}_2(X) \leftarrow \mathit{hasTarg}(X,Y), \mathit{Proj}(Y) \ (4^*) \ \mathit{Proj}(X) \leftarrow \mathit{Proj}_{\mathit{projfile}}(X) \end{array}
ight\}$$

Unfold the DL-query and extract support sets:

$$\begin{split} &S_1 = \{\textit{hasSubj}(X,Y), \textit{Staff}(X), \textit{hasTarg}(X,Z), \textit{Proj}(Z)\} \\ &S_2 = \{\textit{hasSubj}(X,Y), \textit{Staff}(X), \textit{hasTarg}(X,Z), \textit{Proj}_{\textit{projfile}}(Z)\} \end{split}$$

```
\mathcal{T} = \{ StaffRequest \equiv \exists hasSubj.Staff \sqcap \exists hasTarg.Proj \} 
d = DL[Proj \uplus projfile; StaffRequest](X)
```

- Construct \mathcal{T}_d by compiling info about input predicates of d into \mathcal{T} : $\mathcal{T}_d = \mathcal{T} \cup \{Proj_{projfile} \sqsubseteq Proj\}$
- Rewrite DL-query over normalized T_d into a datalog program:

$$\mathcal{P}_{\mathcal{T}_{d_{norm}}} = \left\{ egin{array}{ll} (1^*) \ \mathit{StaffRequest} \leftarrow C_1(X), C_2(X) \ (2^*) \ C_1(X) \leftarrow \mathit{hasSubj}(X,Y), \mathit{Staff}(Y) \ (3^*) \ C_2(X) \leftarrow \mathit{hasTarg}(X,Y), \mathit{Proj}(Y) \ (4^*) \ \mathit{Proj}(X) \leftarrow \mathit{Proj}_{\mathit{projfile}}(X) \end{array}
ight.
ight.$$

- Unfold the DL-query and extract support sets:
 - infinitely many support sets (axioms $\exists R.A \sqsubseteq A$)
 - exponentially many for acyclic \mathcal{T}
 - Completeness is costly!
 - Compute partial support families: bound size/number

 \checkmark Compute partial support families **S** for all DL-atoms of Π

- ✓ Compute partial support families S for all DL-atoms of Π
- Construct $\hat{\Pi}$ from $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle$:
 - Replace all DL-atoms a with normal atoms e_a
 - Add guessing rules on values of a: e_a ∨ ne_a

- ✓ Compute partial support families S for all DL-atoms of Π
- Construct $\hat{\Pi}$ from $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle$:
 - Replace all DL-atoms a with normal atoms ea
 - Add guessing rules on values of a: e_a ∨ ne_a
- For all $\hat{l} \in AS(\hat{\Pi}) : D_p = \{a \mid e_a \in \hat{l}\}; \ D_n = \{a \mid ne_a \in \hat{l}\}$
- ✓ Ground support sets in **S** wrt. \hat{I} and A: $S_{qr}^{\hat{I}} \leftarrow Gr(\mathbf{S}, \hat{I}, A)$

- ✓ Compute partial support families S for all DL-atoms of Π
- Construct $\hat{\Pi}$ from $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle$:
 - Replace all DL-atoms a with normal atoms ea
 - Add guessing rules on values of a: e_a ∨ ne_a
- For all $\hat{l} \in AS(\hat{\Pi}) : D_p = \{a \mid e_a \in \hat{l}\}; \ D_n = \{a \mid ne_a \in \hat{l}\}$
- ✓ Ground support sets in **S** wrt. \hat{I} and \mathcal{A} : $\hat{S}_{gr}^{\hat{I}} \leftarrow Gr(\mathbf{S}, \hat{I}, \mathcal{A})$
- ✓ For all HS $H \subseteq A$ of support families for all $a \in D_n$:
 - ✓ If all $a \in D_p$ have at least one $S \in S_{gr}^{j}$, s.t. $S \cap H = \emptyset$, then do eval. postcheck on D_n (evaluate atoms from D_n over I and $A \setminus H$)
 - ✓ Else do eval. postcheck on D_n and D_p
- ✓ Check minimality of $\hat{I}|_{\Pi}$ wrt. $\Pi' = \langle \mathcal{T}, \mathcal{A} \backslash \mathcal{H}, \mathcal{P} \rangle$

- \checkmark Compute partial support families **S** for all DL-atoms of Π
- Construct $\hat{\Pi}$ from $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle$:
 - Replace all DL-atoms a with normal atoms ea
 - Add quessing rules on values of a: e_n ∨ ne_n
 Sound wrt. deletion repair answer sets,
 complete if all support families are complete!
- ✓ For all HS $H \subseteq A$ of support families for all $a \in D_n$:
 - ✓ If all $a \in D_p$ have at least one $S \in S_{gr}^{j}$, s.t. $S \cap H = \emptyset$, then do eval. postcheck on D_n (evaluate atoms from D_n over I and $A \setminus H$)
 - ✓ Else do eval. postcheck on D_n and D_n
- ✓ Check minimality of $\hat{I}|_{\Pi}$ wrt. $\Pi' = \langle \mathcal{T}, \mathcal{A} \backslash \mathcal{H}, \mathcal{P} \rangle$

Declarative Implementation

- Requiem tool is used for support set computation
- Repair is computed in a declarative manner using ASP techniques:

(1)
$$S_a(\mathbf{X}) \leftarrow S_a^{\mathcal{P}}(\mathbf{Y})$$

(2)
$$S_a(\mathbf{X}) \leftarrow S_a^{\mathcal{A},\mathcal{P}}(\mathbf{Y})$$

(3)
$$S_a^{\mathcal{P}}(\mathbf{Y}) \leftarrow rb(S_a^{\mathcal{P}}(\mathbf{Y}))$$

(4)
$$S_a^{\mathcal{A},\mathcal{P}}(\mathbf{Y}) \leftarrow rb(S_a^{\mathcal{A},\mathcal{P}}(\mathbf{Y})), nd(S^{\mathcal{A},\mathcal{P}}(\mathbf{Y}))$$

(5)
$$\perp \leftarrow ne_a(\mathbf{X}), S_a^{\mathcal{P}}(\mathbf{Y})$$

(6)
$$\bar{P}_{1a}(\mathbf{Y}) \vee \ldots \vee \bar{P}_{na}(\mathbf{Y}) \leftarrow ne_a(\mathbf{X}), S_a^{\mathcal{A},\mathcal{P}}(\mathbf{Y})$$

(7)
$$eval_a(\mathbf{X}) \leftarrow e_a(\mathbf{X}), not \ C_a(\mathbf{X}), not \ S_a(\mathbf{X})$$

(8)
$$eval_a(\mathbf{X}) \leftarrow ne_a(\mathbf{X}), not C_a(\mathbf{X})$$

Benchmarks-Policy

- Add axiom Blacklisted

 □ Unauthorized
- ABoxes A: staff size n, 30% unauthorized 20% blacklisted
- $hasowner(p_i, s_i)$ with probability p(x-axis)
- Complete vs partial support families, with bounded/unbounded number/size of supports $(2, \infty)$
- Few support sets, but size > 2

Benchmarks-Open Street Map

$$\mathcal{O} = \begin{cases} (1) \ \textit{BuildingFeature} \ \sqcap \ \exists \textit{isLocatedInside.Private} \ \sqsubseteq \ \textit{NoPublicAccess} \\ (2) \ \textit{BusStop} \ \sqcap \ \textit{Roofed} \ \sqsubseteq \ \textit{CoveredBusStop} \end{cases}$$

$$\mathcal{P} = \begin{cases} (9) \ \textit{publicstation}(X) \leftarrow \ \mathsf{DL}[\textit{BusStop} \ \uplus \ \textit{busstop}; \ \textit{CoveredBusStop}](X); \\ \textit{not} \ \mathsf{DL}[; \ \textit{Private}](X); \\ (10) \ \bot \leftarrow \ \mathsf{DL}[\textit{BuildingFeature} \ \uplus \ \textit{publicstation}; \ \textit{NoPublicAccess}](X), \\ \textit{publicstation}(X). \end{cases}$$

- Rules on top of the MyITS ontology:²
 - personalized route planning with semantic information
 - TBox with 406 axioms
- \mathcal{O} (part): building features located inside private areas are not publicly accessible, covered bus stops are those with roof.
- P checks that public stations don't lack public access, using CWA on private areas.

²http://www.kr.tuwien.ac.at/research/projects/myits/

Benchmarks-Open Street Map

- ABox A with bus stops (285) and leisure areas (682) of Cork, plus role isLocatedInside on them (9)
- Randomly made 80% bus stops roofed, 60% leisure areas private
- For *isLocatedInside(bs, la)* make *bs* a bus stop with *p* chance (*x*-axis)
- Many support sets have size ≤ 2

Conclusion and Future Work

Conclusions:

- Generalization of repair answer set computation for EL
 - Partial support families: restricting support sets size/number
- Formal definition of support sets for EL and their computation
- Declarative realization within DLVHEX
- Evaluation on a set of benchmarks

Further and future work:

- Computing preferred repairs
- Syntactic conditions ensuring support families completeness
- Repair by bounded addition..