Electronic Materials and Devices

5 Semiconductor

陈晓龙 Chen, Xiaolong 电子与电气工程系

5.7 Solar cells

Green technology

Solar spectrum

Bandgap for Silicon: 1.1 eV

Photovoltaic device principles

No incident light

Open circuit voltage: $V_{oc} = 0V$

With incident light

In P-region

Electron recombination lifetime: $\tau_{\rm e}$

Electron mean diffusion length: $L_{\rm e} = \sqrt{D_{\rm e} \tau_{\rm e}}$

Electrons generated within $L_{\rm e}$ can diffusive to depletion region and contribute to the current.

In N⁺-region

Hole recombination lifetime in N⁺ region: τ_h

Hole mean diffusion length in N+ region : $L_{\rm h} = \sqrt{D_{\rm h} \tau_{\rm h}}$

In silicon: $L_{\rm e} \gg L_{\rm h}$

In depletion region

Electrons and holes are separated and accelerated to N⁺ and P region, respectively.

Photovoltaic effect occurs in region $L_e + W + L_h$

For 1-1.2 μ m infrared light, absorption depth in silicon is ~100 μ m

Thick P-region: 200-500 µm

Thin N+-region: 0.2 μm

Electrons and holes will accumulated in N+ and P region, respectively, resulting in an open circuit voltage $V_{\rm OC}$.

Silicon solar cell efficiency

Ideal efficiency: 100%

Bandgap limitation: $<1.1 \mu m$

75%

Surface recombination (defects) in N+ region:

45%

Antireflection coating at surface is not perfect:

38%

Limitation of load resistor:

25%

Effect of load resistor

No load resistor: R=0

Q:
$$I'_{\rm ph} < I_{\rm ph}$$
 or $I'_{\rm ph} = I_{\rm ph}$ or $I'_{\rm ph} > I_{\rm ph}$?

No load resistor: R=0

Voltage on diode is 0

With load resistor: R

Voltage on diode >0

With load resistor: R

$$I = I_{\rm d} - I_{\rm ph}$$

$$I_{\rm d} = I_{\rm o} \left[\exp \left(\frac{eV}{\eta kT} \right) - 1 \right]$$

$$\begin{cases} I = I_{o} \left[\exp \left(\frac{eV}{\eta kT} \right) - 1 \right] - I_{ph} \\ I = -\frac{V}{R} \end{cases}$$

Use graphic method 图解法 to solve the equations.

$$\begin{cases} I = I_{\rm o} \left[\exp \left(\frac{eV}{\eta kT} \right) - 1 \right] - I_{\rm ph} \\ I = -\frac{V}{R} \end{cases}$$

$$|I_{\rm P}| < |I_{\rm sc}| \qquad I_{\rm sc} \approx -I_{\rm ph}$$

$$V_{\rm P} < V_{\rm oc}$$

Output power: $P = |V_P I_P|$

Maximum output power:

$$P = |V_{\rm m}I_{\rm m}|$$

Fill factor:

$$F = \frac{V_{\rm m}I_{\rm m}}{V_{\rm oc}I_{\rm sc}}$$

Fill factor is typically 70-85% in silicon solar cell.

Ideal solar cell circuit model

$$I = I_{\rm d} - I_{\rm ph}$$

Constant current source

Real solar cell circuit model

Series resistance R_s:

Resistance of electrode and contact resistance

Parallel resistance R_p:

Current flow through the crystal surface/grain boundary

Practice: For a solar cell made from N+P diode: reverse current $I_0 = 3.2 \times 10^{-6} \mathrm{mA}$, ideality factor $\eta = 1.6$, parallel resistance $R_\mathrm{p} \to \infty$. When the diode is under illumination and is short, the photocurrent $-I_\mathrm{ph}$ is -10 mA, ask:

- (1) When $R_s=0$, 20, and 50 Ω , draw the *IV* curves. (You can use any software, including origin, matlab, ...).
- (2) When $R_s=0$, 20, and 50 Ω , the value of I and V for load resistor 40 Ω (suggest you to use graphic method).

Solar cell materials

Table 6.5 Room temperature typical photovoltaic parameters for individual cells under AM1.5 illumination 1000 W m⁻²

Semiconductor	E_g (eV)	V_{oc} (V)	$J_{\rm sc}~({\rm mA~cm^{-2}})$	FF (%)	η (%)	Comment
Si, single crystal	1.1	0.706	42.7	82.8	25.6	Single crystal, PERL
Si, polycrystalline	1.1	0.663	39.0	80.9	20.4	
Si, c-Si/a-Si:H	1.1/1.7	0.750	41.8	83.2	25.6	Crystalline Si (c-Si)/a-Si:H heterojunction
Amorphous Si (a-Si:H)	1.7	0.896	16.36	69.8	10.2	Thin film
Amorphous Si:Ge:H film					8–13	Amorphous film with tandem structure. Convenient large area fabrication
GaAs, single crystal	1.42	1.030	29.8	86.0	26.4	High fill factor
GaAs, polycrystalline	1.42	0.757	23.2	79.7	18.4	Ge substrate
InP, single crystal	1.34	0.878	29.5	85.4	22.1	Epitaxial layer
CIGS	1.2-1.4	0.757	35.7	77.6	21.0	CIGS is $Cu(In_{1-x}Ga_x)Se_2$
CdTe, polycrystalline	1.5	0.84	26	75	16-17	Thin film
Perovoskite film		1.074	19.29	75.1	15.6	
Organic films		0.793	19.4	71.4	11.0	
GaInP ₂ /GaAs Tandem	1.9/1.4	2.488	14.22	85.6	30.3	Different bandgap materials in tandem increases absorption efficiency
GaInP ₂ /GaAs/Ge Tandem	1.9/1.4/0.7	2.622	14.37	85.0	32.0	Triple junction

Data: year of 2010

Tandem (multijunction) solar cells 串联太阳能电池组

pin diodes, photodiodes, and solar cells

P+-Si: heavily doped, thin

N+-Si: heavily doped, thin

i-Si: intrinsic, thick 5-50 μm

Depletion region is very wide in *i* region

Holes diffusive from P^+ to i region

Electrons diffusive from N^+ to i region

Electrons and holes recombine in *i* region

It's like a parallel-plate capacitor, the capacitance of *pin* junction:

$$C_{\rm dep} = \frac{\varepsilon_0 \varepsilon_{\rm r} A}{W}$$

Because W can be at μm orders, $C_{\rm dep}$ can be very small ~pF. RC time constant of pin diode is very small ~ ps.

pin diode can be applied in high frequency circuits.

pin diodes operate as photodiodes/photodetectors

A reverse bias is applied, and internal electric field is enhanced:

$$E = \frac{V_0 + V_r}{R}$$

Resistance of *i* region is very large

Current in circuit ≈ 0

pin diodes operate as photodiodes/photodetectors

pin diodes operate as solar cells

When there is light, electron and hole pairs are separated, resulting in a total photocurrent I_{ph} .

Output voltage: $V_{\text{out}} = I_{\text{ph}}R$

Classic mechanisms in photodetectors

- 1. Photovoltaic effect
- 2. Photoconductive effect
- 3. Photothermal effect
- 4. Bolometric effect

Photovoltaic effect

Photo-generated electron and hole pairs are separated by build-in electric field, resulting in a finite potential *V* across the sample.

Photovoltaic effect: PN junction devices

Photoconductive effect

Photo-generated electron and hole pairs changed the conductance/resistance of materials.

Photoconductive effect

Photothermal effect

Light → Thermal gradient → Photocurrent (Seeback effect) → Photovoltage

Q: Which V is nonzero? (Assume there is no Schottky barrier between metal and semiconductor)

Bolometric effect

Light → Thermal effect → Resistance change

Q: Difference between photoconductive, photothermal and bolometric effects?

Photoconductive

Light

Photo-excited carriers

Photo-excited carriers are collected by electrodes

Photocurrent

Photothermal

Non uniform light

Photo-excited carriers

Transfer partially/all energy to lattice

Temperature gradient

Photocurrent

Bolometric

Light

Photo-excited carriers

Transfer partially/all energy to lattice

Temperature change

Resistance change

(Bias V)

Current change