Exposed to a Simulated Convective Titan IV Launch Environment 1-D Transient Thermal Modeling of an Ablative Material (MCC-1)

1998 UTECA Conference April 21-23

Thomas R. Reinarts, Ph. D. Analytical Engineer Presented by

Pratt & Whitney A United Technologies Company

A United Technologies Company

P&W Space Propulsion USBI Co.

OUTLINE

- Introduction
- Testing
- Transient Thermal Analysis
- Results
- Summary and Conclusions

INTRODUCTION

Purpose of work is to demonstrate flat test panel substrate temperatures consistent with analysis predictions

Testing performed in aerothermal facility

MCC-1 on aluminum substrate

Testing

Performed in IHGF facility

Calibration runs define aerothermal heating environment

Three different MCC-1 thicknesses tested

TESTING (Continued)

Bare MCC-1 Test Matrix

Cold Wall Heat Flux (Btu/s/ft²)

TRANSIENT THERMAL MODEI

TRANSIENT THERMAL MODEL (Continued)

- Key assumptions
- ⇒ 1-D heat transfer
- Constant ablation recession rate (determined
- from pre- and post-test measurements)
- Ablation temperature 540°F
- Char left behind ablation front
- Temperature Jump Correction for Incident Heat Transfer Coefficient 1

TRANSIENT THERMAL MODEL (Continued)

- Two Methods Used to Model Heating of Bare MCC-1
- Function of Time, $T_S(t)$, from IR Measurement Directly Input Surface Temperature as a
- Data, Subtracting Radiation Losses to Tunnel Aerothermal Heating Using Calibration Plate Walls

RESULTS

Comparison of T_{sub} (t) Measured and Predicted Values with Imposed T_{surf} (t) Boundary Conditions (q''_{CW} = 4.6 Btu/s/ft², AI thickness = 0.125 in., MCC-1 thickness = 0.158 in.)

Comparison of T_{surf} (t) Measured and Calculated Values with Incident Heat Flux Conditions Specified from Calibration Testing ($q''_{CW} = 4.6 \text{ Btu/s/ft}^2$, AI thickness = 0.125 in., MCC-1 thickness =0.158 in.)

Comparison of T_{sub} (t) Measured and Calculated Values with Incident Heat Flux Conditions Specified from Calibration Testing (q"_{cw} = 4.6 Btu/s/ft², Al thickness = 0.125 in., MCC-1 thickness = 0.158 in.)

Comparison of Predicted Aluminum Substrate Temperatures Using Both the Imposed T_{Surf} (t) and the Incident Heat Flux Boundary Conditions ($q''_{CW} = 4.6 \text{ Btu/s/ft}^2$, Al thickness = 0.125 in., MCC-1 thickness =0.158 in.)

Comparison of T_{sub} (t) Measured and Calculated Values with Incident Heat Flux Conditions Specified from Calibration Testing ($q''_{CW} = 4.6 \text{ Btu/s/ft}^2$, Al thickness = 0.125 in., MCC-1 thickness =0.344 in.)

Comparison of T_{Sub} (t) Measured and Calculated Values for Incident Heat Flux Conditions Specified from Calibration Testing (q"_{CW} = 4.6 Btu/s/ft², Al thickness = 0.125 in., MCC-1 thickness = 0.343 in.)

Comparison of T_{Sub} (t) Measured and Calculated Values Incident Heat Flux Conditions Specified from Calibration Testing ($q''_{CW} = 4.6 \; Btu/s/ft^2$, Al thickness = 0.125 in., MCC-1 thickness =0.158 in.)

