5

What is claimed is:

- 1. A method of for quantum modulating optical signals by using a nonlinear optical medium, wherein the nonlinear optical medium includes two closely spaced ground states |1> and |2> such that the transition among the ground states is dipole forbidden, and an excited state |3> such that two-photon transition between the ground states |1> and |2> via the excited state |3> is allowed, the method comprising the steps of:
- a) applying a first continuous wave (cw) laser light as an input to the nonlinear optical medium through an optical fiber or free space at a frequency of ω_{α} corresponding to a first transition between the ground state |1> and the excited state |3>;
- b) applying a second laser light to the nonlinear optical medium through an optical fiber or free space at a frequency of ω_{β} corresponding to a second transition between the ground state |2> and the excited state |3>;
- c) adjusting the intensities of the first laser light ω_{α} and the second laser beam ω_{β} to produce a strongly driven superposition state composed of the ground state |1> and the |2> creating two-photon coherence induction $\text{Re}\rho_{12}$;
 - d) applying a third laser light to the nonlinear optical

5

medium through an optical fiber or free space at a frequency of ω_P corresponding to a third transition between the ground state |2> and the excited state |3> for nondegenerate four-wave mixing or phase conjugation geometry with the first laser light ω_{α} , the second laser light ω_{β} , and the third laser light ω_P to produce nondegenerate four-wave mixing signal ω_d ; and

- e) connecting the nondegenerate four-wave mixing signals $\omega_{\rm d}$ to an optical fiber.
- 2. The method of claim 1, wherein the excited state |3> is selected such that its energy level is higher than the energy level of the ground state |1> and the |2>.
- 3. The method of claim 1, wherein the ground state $|2\rangle$ is selected such that its energy level is higher than the energy level of the ground state $|1\rangle$.
- 4. The method of claim 1, wherein the second laser light ω_{β} and the third laser light ω_{p} are synchronized to satisfy a temporal and spatial overlap of the laser lights ω_{α} , ω_{β} and ω_{p} in the nonlinear optical medium, and frequency difference δ_{p} between the second laser light ω_{β} and the third laser light ω_{p} is near the Rabi frequency Ω_{p} of the ω_{p} .

5

5. The method of claim 1, wherein the second laser light ω_{β} and the third laser light ω_{p} are synchronized to satisfy a temporal and spatial overlap of the laser light ω_{α} with the ω_{β} and the ω_{p} , but keeping temporal delay of the laser lights ω_{p} from the ω_{β} by ι no longer than phase decay time T2 among the two ground states |1> and |2> with negligible frequency difference δ_{p} between the second laser light ω_{β} and the third laser light ω_{p} .

- 6. A method for quantum modulating optical signals by using a nonlinear optical medium, wherein the nonlinear medium includes two closely spaced ground states |1> and |2> such that the transition between the ground states is dipole forbidden, and two closely spaced excited states |3> and |4> such that the transition between the excited states is dipole forbidden, and such that two-photon transition between the ground state |1> and the |2> via the excited state |3> or |4> is allowed, the method comprising the steps of:
- f) applying a first continuous wave (cw) laser light as an input to the nonlinear optical medium through an optical fiber or free space at a frequency of ω_{α} corresponding to a first transition between the ground state |1> and the excited state |3>;
 - g) applying a second laser light to the nonlinear optical

5

medium through an optical fiber or free space at a frequency of ω_{β} corresponding to a second transition between the ground state |2> and the excited state |3>;

- h) adjusting the intensities of the first laser light ω_{α} and the second laser beam ω_{β} to produce a strongly driven superposition state composed of the ground state |1> and the |2> creating two-photon coherence induction Rep₁₂;
- i) applying a third laser light to the nonlinear optical medium through an optical fiber or free space at a frequency of ω_P corresponding to a third transition between the ground state |2> and the excited state |4> for nondegenerate four-wave mixing or phase conjugation geometry with the first laser light ω_α , the second laser light ω_β , and the third laser light ω_P to produce nondegenerate four-wave mixing signal ω_d ; and
- j) connecting the nondegenerate four-wave mixing signals $\omega_{\rm d}$ to an optical fiber.
- 7. The method of claim 6, wherein the excited states $|3\rangle$ and $|4\rangle$ are selected such that their energy levels are higher than the energy level of the ground state $|1\rangle$ and the $|2\rangle$.
- 8. The method of claim 6, wherein the ground state $|2\rangle$ is selected such that its energy level is higher than the energy level of the ground state $|1\rangle$.

9. The method of claim 6, wherein the second laser light ω_{β} and the third laser light ω_{p} are synchronized to satisfy a temporal and spatial overlap of the laser lights ω_{α} , ω_{β} and ω_{p} in the nonlinear optical medium, and frequency difference δ_{p} between the second laser light ω_{β} and the third laser light ω_{p} is the same as the frequency difference between the excited states $|3\rangle$ and $|4\rangle$.

1 · 1

- 10. The method of claim 6, wherein the second laser light ω_{β} and the third laser light ω_{p} are synchronized to satisfy a temporal and spatial overlap of the laser light ω_{α} with the ω_{β} and the ω_{p} , but keeping temporal delay of the laser lights ω_{p} from the ω_{β} by ι no longer than phase decay time T2 among the two ground states |1> and |2> with negligible frequency difference δ_{p} between the second laser light ω_{β} and the third laser light ω_{p} .
- 11. An apparatus for quantum modulating optical signals

 20 by using a nonlinear optical medium, wherein the nonlinear

 medium includes two ground states |1> and |2> such that the

 transition between the ground states |1> and |2> is dipole

 forbidden, and an excited states |3> such that two-photon

 transition between the ground states |1> and |2> via the

excited state |3> is allowed, the apparatus comprising:

- a) a first laser light source for applying to the nonlinear optical medium at a frequency of ω_1 corresponding to a first transition between the ground state |1> and the excited state |3>;
- b) a second laser light source for applying to the nonlinear optical medium at a frequency of ω_2 corresponding to a second transition between the ground state |2> and the excited state |3>;
- c) a means of splitting a third laser light from the second laser light for applying to the nonlinear optical medium at a frequency of ω_p corresponding to a third transition between the ground state $|2\rangle$ and the excited state $|3\rangle$; and
- d) a means for adjusting the intensities and the frequencies of the first light, the second light, and the third light to produce a coherent superposition state of the ground state |1> and the |2>.
- 20 12. The apparatus of claim 11, wherein the nonlinear optical medium is a solid.
 - 13. The apparatus of claim 11, wherein the nonlinear optical medium is a doubly coupled semiconductor quantum wells.

5

14. The apparatus of claim 13, wherein the two ground states $|1\rangle$ and $|2\rangle$, and the excited state $|3\rangle$ are selected in conduction band of the doubly coupled semiconductor quantum wells.

- 15. The apparatus of claim 11, wherein the first laser light source delivers single-mode light.
- 16. An apparatus for quantum modulating optical signals by using a nonlinear optical medium, wherein the nonlinear optical medium includes two ground states |1> and |2> such that the transition between the ground states |1> and |2> is dipole forbidden, and two excited state |3> and |4> such that the transition between the excited states |3> and |4> is dipole forbidden, and such that two-photon transition between the ground states |1> and |2> via the excited state |3> or the excited state |4> is allowed, the apparatus comprising:
- a) a first laser light source for applying to the nonlinear optical medium at a frequency of ω_1 corresponding to a first transition between the ground state |1> and the excited state |3>;
- b) a second laser light source for applying to the nonlinear optical medium at a frequency of ω_2 corresponding to

a second transition between the ground state |2> and the excited state |3>;

- c) a means of splitting a third laser light from the second laser light for applying to the nonlinear optical medium at a frequency of ω_p corresponding to a third transition between the ground state $|2\rangle$ and the excited state $|4\rangle$; and
- d) a means for adjusting the intensities and the frequencies of the first light, the second light, and the third light to produce a coherent superposition state of the ground state |1> and the |2>.
- 17. The apparatus of claim 16, wherein the nonlinear optical medium is a solid.
- 18. The apparatus of claim 16, wherein the nonlinear optical medium is a doubly coupled semiconductor quantum wells.
- 19. The apparatus of claim 18, wherein the two ground
 20 states |1> and |2>, and the two excited states |3> and |4> are
 selected in conduction band of the doubly coupled
 semiconductor quantum wells.
 - 20. The apparatus of claim 16, wherein the first laser

light source delivers single-mode light.