PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-042684

(43)Date of publication of application: 14.02.1997

(51)Int.CI.

F24C 7/04 F24C 15/22

(21)Application number: 07-198621

(71)Applicant : DENSO CORP

(22)Date of filing:

03.08.1995

(72)Inventor: NISHIMURA SUEKICHI

TAKEUCHI KAZUHIKO

(54) ELECTRIC STOVE

(57)Abstract:

PROBLEM TO BE SOLVED: To ensure heating with uniform radiation intensity over a wide range at a position separated by a predetermined distance from an electric stove by shaping a cross section of a reflection plate located perpendicularly to the longitudinal direction of a heater into a shape comprising a specific radiation. SOLUTION: A reference axis being perpendicular to an opening flat surface of an opening part 6 and passing through the center of a heater 1 is assumed as an axis, and a parabola that takes the center of the heater 1 as a focus is assumed as a reference parabola. Among a plurality of parabolas synthesized as a cross sectional shape of a reflection plate 2 a parabola disposed on one end of the plate is part of a parabola yielded by rotating by an angle θ 1 the reference parabola around the focus, while a parabola disposed at the other end is part of a parabola yielded by rotating by an angle θ 2 the reference parabola around the focus. For the cross sectional configuration of the reflection plate yielded by

synthesizing the plurality of the parabolas the reference parabola is taken as a shape extending outwardly, and the total angle θ of the angle θ 1 and the angle θ 2 ranges from 6 to 14 degree. Accordingly, radiated heat from the reflection plate 2 at the angle θ is spreaded in front of the stove.

LEGAL STATUS

[Date of request for examination]

10.01.2002

Date of sending the examiner's decision of

21.06.2005

rejection

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-42684

(43)公開日 平成9年(1997)2月14日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
F 2 4 C	7/04			F 2 4 C	7/04	С	
	15/22				15/22	D	

森香語文 未請求 請求項の数2 〇1. (全 7 頁)

		番金前水 木前水 前水坝の数2 しし (全 / 貝
(21)出願番号	特願平7-198621	(71)出願人 000004260 株式会社デンソー
(22)出顧日	平成7年(1995)8月3日	愛知県刈谷市昭和町1丁目1番地
		(72)発明者 西村 末吉
-		愛知県刈谷市昭和町1丁目1番地 日本電
		装株式会社内
		(72)発明者 竹内 和彦
		愛知県刈谷市昭和町1丁目1番地 日本電
		装株式会社内
		(74)代理人 弁理士 碓氷 裕彦
		1

(54)【発明の名称】 電気ストープ

(57)【要約】

【目的】 人体の幅程度の均一な輻射分布を得ることができる電気ストーブ。

【構成】 電気ストーブ10は、ハウジング5の内部に設けられた棒状の発熱体1と、この発熱体1の後方に設けられた反射板2を有している。反射板2の、発熱体1の長手方向に略垂直な断面形状は、曲線AD、と曲線D、Cとを、D、とD、を接合した形状である。発熱体1の中心を通り、開口部6の開口平面と垂直な直線を基準軸とすると、曲線AD、は基準軸を角度θ、回転させた軸線を有し、発熱体1の中心を焦点とする放物線の一部であり、曲線D、Cは基準軸を角度θ、回転させた軸線を有し、発熱体1の中心を焦点とする放物線の一部である。なお、これらの曲線AD、と曲線D、Cは基準軸を軸線とし、発熱体1の中心を焦点とする放物線よりも外側に広げた形状となっている。なお、角度θの大きさは6度以上14度以下とする。

【特許請求の範囲】

【請求項1】 前方に開口部を有するハウジングと、 とのハウジングに保持される棒状の発熱体と、

この発熱体の後方に前記ハウジングの前記開口部に対向 するように配され、前記発熱体から輻射される輻射熱線 を前記開口部を介して、前方へと反射させる反射板とを 有する電気ストーブにおいて、

前記反射板の、前記発熱体の長手方向に略垂直な断面形 状が、前記発熱体の中心を焦点とする複数の放物線から 合成された形状であり、

前記開口部の開口平面と略垂直に交差し、前記発熱体を 通る線である基準軸を軸線とし、前記発熱体の中心を焦 点とする放物線を基準放物線とすると、

前記反射板の、前記発熱体の長手方向に略垂直な断面形 状として合成される、前記複数の放物線のうち、一端に 配される放物線は前記基準放物線を前記焦点を中心に角 度 θ 、だけ回転させた放物線の一部であり、

他端に配される放物線は前記基準放物線を前記焦点を中 心に角度 θ 、だけ回転させた放物線の一部であり、

前記反射板の、前記発熱体の長手方向に略垂直な断面形 20 状が、前記基準放物線よりも外側に広がるような形状で あり、前記角度 θ ,の大きさと前記角度 θ ,の大きさと の和である大きさの角度 θ が6度以上14度以下である ことを特徴とする電気ストープ。

【請求項2】 前記角度 θ ,の大きさと前記角度 θ ,の 大きさとが等しく、前記反射板の、前記発熱体の長手方 向に略垂直な断面形状が前記基準軸について対称な形状 であることを特徴とする請求項1記載の電気ストーブ。 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、発熱体の後方に配置し た反射板により、発熱体の輻射熱線を反射し、前方の人 間などに採暖せしめる電気ストーブの、特に反射板の断 面形状に関するものである。

[0002]

【従来の技術】従来の電気ストーブは、図3に示すよう に、ハウジング5内に設けられた発熱体1の後方に反射 板2を配し、発熱体1の輻射熱線を前方に反射させ、前 方の人間などに採暖せしめるものである。このような電 気ストーブでは、反射板2の断面形状を発熱体1の中心 40 を焦点とする放物線としていた。しかし、反射板2で反 射された輻射熱線は広がることなく平行に輻射されるの で、反射板2の幅程度の輻射分布しか得ることができ ず、使用者の体の幅程度の輻射を得るために、大きな反 射板が用いられていた。

【0003】ところで、複数の人間での使用を目的とし て、輻射熱線の輻射分布を広くした電気ストーブとして は、特開昭59-123184号公報に開示されている ような、反射板の断面形状を、複数個の放物線を合成し た形状とする電気ストーブが知られている。この特開昭 50 達距離として550mm以上の距離が必要とされる。ま

59-123184号公報では、図6(a)、(b)、 (c)、(d) に示すように、電気ストーブの反射板の 断面形状を3つの放物線を合成した形状としている。図 6 (a)、(b)、(c)、(d) において、Fは発熱 体の中心である。Y-Y軸は反射板2の中心軸であり、 X-X軸はY-Y軸に直交する軸線である。 I はこの2 軸の交点である。Y,-Y,軸はY-Y軸とheta,(例え ぱ27°)なる傾きを有する軸であり、X,-X,軸は Y、-Y、軸と直交する軸である。 I、はX、-X、軸 10 とY, -Y, 軸の交点である。Y, -Y, 軸はY-Y軸 $\ell - \theta$, (例えば $- 2.7^{\circ}$) なる傾きを有する軸であ り、X、-X、軸はY、-Y、軸と直交する軸である。 I, はX, -X, 軸とY, -Y, 軸の交点である。

【0004】反射板の断面形状として合成される3つの 放物線のうち、GH間の反射板形状はI,Fを焦点距離 とする放物線を軌跡とする形状であり、JK間の反射板 形状はI,Fを焦点距離とする放物線を軌跡とする形状 である。なお、GH間およびJK間の反射板形状は、と もに内側を向くようになっている。また、HIJ間の反 射板形状はIFを焦点距離とする放物線を軌跡とする形

【0005】反射板の断面形状をこのような形状とする ことにより、反射板のHIJ間で反射される輻射熱線は Y-Y軸と平行な向きに反射される。反射板のGH間で 反射される輻射熱線はY, -Y, 軸と平行な向き、つま りΥ-Y軸と角度θ,だけ傾いた向きに反射される。反 射板のJK間で反射される輻射熱線はY、-Y、軸と平 行な向き、つまりY-Y軸と角度 $-\theta$, だけ傾いた向き に反射される。その結果、輻射熱線が反射板で反射する 30 角度を20,広げることができ、輻射熱線の輻射分布を 広くすることができ、数人での使用を可能とするもので ある。

【0006】しかしながら、反射板の断面形状を、この 特開昭59-123184号公報に示されているような 形状とすると、合成された際に両端となるGH間とJK 間の反射板形状は内側に向くようになっているため、図 6 (d) に示すように、反射板のGH間とJK間で反射 する輻射熱線は電気ストーブの前方中央部で交差する。 そのため、との輻射熱線が交差する部分の輻射強度が著 しく高くなってしまい、使用者の体の中央部のみ輻射強 度が大きくなる。その結果、使用者が電気ストーブに比 較的近接した場合に体の中央部のみ暖かく感じられ、体 の部位によって体感温度が大きく異なってしまうという 問題点があった。

【0007】ところで、室温15度において人間が良好 な暖房感を得る、輻射熱線の最適な輻射強度は360♥ /m'である。個人用の電気ストーブとして用いる場 合、回転椅子から離席する際に使用者の足があたらない 位置まで輻射熱線が到達する必要があり、輻射熱線の到 20

た。人間の標準的な腰幅が320mであるので、使用者 の体の中央部のみではなく、体の端部も暖めるために は、輻射熱線の分布幅として320mm以上の幅が必要と される。また、体の部位による体感温度の差をなくすた めに、電気ストーブから一定の距離だけ離れた点におい て、ある程度の範囲で、均一な輻射熱線の分布が要求さ れる。しかしながら、特開昭59-123184号公報 に記載された反射板の断面形状を有する従来の電気スト ーブでは、電気ストーブを使用者から遠ざけた場合、逆 に中央部での輻射強度が減少し、体の中央部での暖房感 が損なわれてしまうという問題があった。

【0008】即ち、本発明者らはさらに鋭意検討した結 果、以下の点を見出した。反射板の、発熱体の長手方向 に垂直な面での断面形状を、複数の放物線から合成し、 これらの放物線のうち、両端に配される放物線の形状 を、基準放物線を角度 θ だけ広げた形状とすることで、 **発熱体から幅射される輻射熱線を角度θの広がりをもっ** て電気ストーブ前方に輻射することができるが、この角 度θが電気ストーブから一定距離だけ離れた位置におけ る輻射分布に影響することを見出した。

【0009】以下、角度の変化による、電気ストーブ から一定距離だけ離れた位置における輻射分布の変化に ついて検討した実験例について述べる。

[実験例] 後述する実施例における電気ストーブ10と 同様の構造の電気ストーブを用いて以下に述べる実験を

【0010】電源スイッチをオンとし、発熱体から輻射 熱線を輻射させ、電気ストーブの前方における輻射強度 を測定した。この際、反射板を外側に広げる角度 θ を0度から20度まで変化させた。なお、発熱体の出力強度 は500 ♥とした。結果について、図4、図5に示す。 図4は、角度8を0度、10度、16度とした際の輻射 分布を示す図である。実線は、輻射強度360W/m² の等輻射強度線である。ととで、輻射強度360W/m 'は、室温15℃において人間が良好な暖房感を得るこ とができる、最適輻射強度である。一方、図5は角度hetaを0度から20度に変化させた際の、360W/m²の 等輻射強度線の到達距離しょ、しょ、最大分布幅wの変 化を示す図である。なお、到達距離1,は360W/m "の等輻射強度線の、電気ストーブの開口部の開口平面 からの最大距離であり、到達距離1,は電気ストーブの 前方中央部における、360W/m²の等輻射強度線 の、電気ストーブの開口部の開口平面からの距離であ る。最大分布幅wは、電気ストーブの開口部の開口平面 から500mk以上離れた領域において、最大となる36 OW/m¹の等輻射強度線の幅である。

【0011】図5に示したように、角度θが大きくなる につれて、360W/m²の等輻射強度曲線の最大分布 幅wは大きくなる。一方、角度θが大きくなるにつれ て、到達距離1,、1,は小さくなる。ととろで、電気 50 角度hetaが6度より小さいと、到達距離1,、1,は5 5

ストーブは使用する際に、例えば、回転椅子から離席す る際に使用者の足が当たらないような位置に配置されて 使用される。そのため、使用者が採暖することが可能と するためには、少なくとも550m以上の到達距離が必 要とされる。

【0012】図4に示すように、角度 f が0度の場合、 反射した輻射熱線は放物線の軸線と平行な向きに反射さ れるので、輻射熱線は反射板の幅とほぼ同じ幅で前方に 反射される。そのため、輻射強度が360W/m¹であ る点の分布は電気ストーブ前方中央部に集中した分布と なっている。その最大分布幅wは270mmとなってお り、人間の腰幅である320mmよりも小さな幅となって いる。そのため、使用者の体の中央部のみ暖かく感じら れ、体の端部においては寒く感じられてしまう。このよ ろに、体の部位により体感温度が異なってしまい、良好 な暖房感を得ることができない。さらに、角度θをマイ ナスとし、反射板を内側に向けた場合には、図6(d) に示した従来例の如く、使用者の体の中央部のみ体感温 度が高くなってしまうという不具合が生じる。

【0013】また、図4に示すように、角度 θ が 16 度 の場合、反射した輻射熱線は基準軸となす角度が大きく なるので、輻射熱線は電気ストーブ前方に16度広がっ て輻射される。そのため、輻射強度が360 W/m²と なる点の分布は電気ストーブ前方両端にわかれて分布し ている。その最大分布幅wは460mmとなっており、人 間の腰幅よりも大きく、使用者の体の端部を暖めること ができる。しかし、輻射熱線は両端にわかれて分布して いるため、電気ストーブ前方中央部の到達距離1、が必 要とされる距離550mmよりも短くなってしまい、使用 者の体の端部のみ暖かく感じられ、体の中央部において は寒く感じられてしまう。このように、体の部位により 体感温度が異なってしまい、良好な暖房感を得ることが できない。

【0014】一方、図4に示すように、角度θが10度 の場合、輻射熱線は電気ストーブ前方に10度広がって 輻射される。360W/m'の等輻射強度曲線の最大分 布幅wは380mmとなっており、人間の腰幅よりも少し 大きく、使用者の体の端部を暖めることができる。ま た、電気ストーブ前方中央部の到達距離12、電気スト ーブ前方両端の到達距離1、とも550mm以上となり、 使用者は体全体で暖かく感じることができる。このよう に、体の部位による体感温度の差をなくすことができ、 良好な暖房感を得ることができる。

[0015]以上に述べたように、角度 θ の大きさによ り、360W/m¹の等輻射強度曲線の分布は変化す る。角度 θ の大きさが小さくても、角度 θ の大きさが大 きくても良好な暖房感を得ることができない。したがっ て、良好な暖房感を得るためには、角度 θ を適正な範囲 の大きさとすることが必要である。図5に示すように、

0 mm以上であるが、最大分布幅が320 mmよりも小さく、電気ストーブから550 mmたけ離れた位置で、人体の幅程度の輻射強度の均一な分布を得ることができず、良好な暖房感を得ることができない。

【0016】一方、角度 θ が14度より大きいと、最大分布幅は320mmよりも大きく、到達距離1, 6550mmよりも大きいが、到達距離1, 4550mmよりも大きいが、到達距離1, 4550mmよりも小さく、電気ストーブから550mmだけ離れた位置で、人体の幅程度の輻射強度の均一な分布を得ることができず、良好な暖房感を得ることができない。したがって、良好 10な暖房感を得ることができる角度 θ の大きさの適正な範囲は、図5に示すように、6度以上14度以下である。【0017】

【発明が解決しようとする課題】本発明は、以上の本発明者らがなした実験、検討に基づいてなされたものであり、電気ストーブから一定の距離だけ離れた位置で、広範囲で、輻射強度が均一な暖房を行うことができる電気ストーブの提供を目的とするものである。

[0018]

【課題を解決するための手段】上記課題を解決するため 20 に、請求項1、2の発明では、反射板の、発熱体の長手方向に垂直な断面形状を、発熱体の中心を焦点とする複数の放物線を合成した形状とし、両端に配される放物線の形状を以下に述べるような形状とすることを特徴とするものである。

【0019】開口部の開口平面に垂直で、発熱体の中心を通る基準軸を軸線とし、発熱体の中心を焦点とする放物線を基準放物線とすると、反射板の上記断面の形状として合成される複数の放物線のうち、一端に配される放物線は、上記基準放物線を焦点を中心として角度 θ 、回 30 転させた放物線の一部であり、他端に配される放物線は、上記基準放物線を焦点を中心として角度 θ 、回転させた放物線の一部である。

【0020】なお、複数の放物線が合成された、反射板の上記断面の形状は、基準放物線が外側に広がった形状とし、角度 θ ,の大きさと角度 θ ,の大きさとの和である大きさの角度 θ を6度以上14度以下とすることも特徴とする。反射板の、発熱体の長手方向に略垂直な断面形状が、発熱体の中心が焦点となる放物線であると、発熱体から輻射され、反射板で反射された輻射熱線は、この放物線の軸線に平行に前方に向けて輻射される。請求項1の発明に示したように、反射板の、発熱体の長手方向に略垂直な断面形状を、以上に述べたような形状とすることにより、発熱体から輻射され、反射板で反射された輻射熱線は、基準軸と角度 θ ,および角度 θ ,だけ回転した方向に輻射される。したがって、反射板で反射された輻射熱線は角度 θ の広がりで電気ストーブ前方に輻射することができる。

【0021】本発明者らは鋭意検討した結果、角度 θ が 光性を電気ストーブから一定距離だけ離れた位置における輻射 50 いる。

分布に影響することを見出した。角度 θ が6度未満であると、図5に示すように、十分な到達距離を得ることはできるが、反射板において反射される輻射熱線が基準軸となす角度 θ 1、および角度 θ 2、が小さくなるので、輻射熱線は反射板の幅程度しか広がらず、十分な分布幅を得ることができない。そのため、使用者の体の中央部のみ暖かく感じられ、体の端部においては寒く感じられてしまう。このように体の部位により体感温度が異なるので、良好な暖房感を得ることができない。

【0022】一方、角度が14度よりも大きいと、図5 に示すように、反射板において反射される輻射熱線が基準放物線の軸線となす角度が大きくなるので、輻射熱線は十分に広がって輻射され、十分な分布幅を得ることができる。しかし、中央部の到達距離が短くなってしまい、使用者の体の端部のみ暖かく感じられ、体の中央部においては寒く感じられてしまう。このように体の部位により体感温度が異なるので、良好な暖房感を得ることができない。

[0023] したがって、上述したように、角度 θ を6度以上14度以下とすることで、反射板で反射射される輻射熱線が十分な到達距離および十分な分布幅を得ることができ、使用者の体全体を均一な輻射強度で輻射することができる。また、請求項2の発明では、角度 θ ,および角度 θ ,の大きさを等しくし、反射板の上記断面を基準軸について対称となる形状とすることを特徴とする。

[0024]

【実施例】以下、本発明を主に家庭で用いられる個人用の電気ストーブに適用した実施例について、図面に基づき説明する。図3は、電気ストーブ10の全体を示す斜視図である。電気ストーブ10は、高さ630mm、幅220mmのストーブ本体3と、ストーブ本体3の下部に配され、ストーブ本体3を支える幅280mmのスタンド4とを備えている。

【0025】ストーブ本体3は、その前方に開口部6を有するハウジング5と、ハウジング5の内部に取付けられた発熱体1と、この発熱体1から輻射される輻射熱線を反射させる反射板2とを備えている。反射板2は発熱体1の後方に設けられており、ハウジング5の開口部6に対向するよう配置される。樹脂などからなるハウジング5は箱形で、その上部に発熱体1への通電のON-OFFを行う電源スイッチ7を有している。

【0026】発熱体1は、電気を通電することにより高温に加熱され、赤外線を発する。この発熱体1はニッケルクロム合金製保護管の中に螺旋状に巻かれたニクロム線を入れ、その間に絶縁粉末である酸化マグネシウムを充填した構造となっている。反射板2は研磨したアルミニウムからなり、発熱体1から放射された輻射熱線に集光性をもたせるために、以下に述べる断面形状を有している。

【0027】図1はストープ本体3の断面図であり、図 2 (a)、(b)は発熱体1の長手方向に略垂直な面で の反射板2の断面形状を示す図である。図2(a)、 (b) において、Fは発熱体1の中心である。Y-Y軸 は、開口部6の開口平面と垂直な、Fを通る直線であ る。X-X軸はY-Y軸と直交する軸であり、BはCの 2軸の交点である。Y₁ - Y₁ 軸は、Fを中心にY-Y 軸を θ_1 (本実施例では5度)回転させた軸であり、X, -X, 軸はY, -Y, 軸と直交する軸である。B, は X, -X, 軸とY, -Y, 軸の交点である。一方、Y, -Y, 軸は、Fを中心にY-Y軸を θ 、(本実施例では 5度)回転させた軸であり、 $X_1 - X_2$ 軸は $Y_2 - Y_3$ 軸と直交する軸である。B、はX、-X、軸とY、-Y ,軸の交点である。

【0028】Y-Y軸を軸線とし、BFを焦点距離とす る放物線を基準放物線(図示しない)とすると、図2 (a) に示した曲線AD, は、Y, -Y, 軸を軸線と し、B,Fを焦点距離とする放物線(X,=2P, * Y, 、C, F=P, /2) であり、基準放物線をFを中 ,はこの放物線とY-Y軸との交点である。

【0029】一方、図2(b)に示した曲線D, Cは、 Y, -Y, 軸を軸線とし、B, Fを焦点距離とする放物 線 $(X_1 = 2P_1 *Y_1 、 C_1 F = P_1 / 2)$ であり、 基準放物線をFを中心に角度 θ、回転させた放物線の一 部である。なお、D、はこの放物線とY-Y軸との交点 である。このような形状の曲線AD、と曲線D、Cと を、D, とD, とを接合することにより合成した形状で あるACを反射板2の断面形状とする。ただし、この反 射板2の断面形状であるACは、基準放物線よりも外側 30 に広がった形状となっている。なお、反射板2の両端A Cの幅は180mmである。

【0030】続いて、本実施例の作動について説明す る。電源スイッチ7をONとすると、発熱体1が通電さ れ、発熱体1から輻射熱線が輻射される。発熱体1から 幅射された輻射熱線は、反射板2により反射され、電気 ストーブ10前方に輻射される。この際、反射板2のA D, で反射する輻射熱線はY, -Y, 軸に平行な向きに 反射され、反射板2のD、Cで反射する輻射熱線はY、 -Y, 軸に平行な向きに反射される。そのため、発熱体 40 1から放射された輻射熱線は角度 θ 1 の大きさと角度 θ $_{2}$ の大きさとの和である大きさである角度 θ の広がりを もって電気ストーブ10前方に輻射され、反射板2の両 端ACの幅よりも広範囲に輻射熱線を輻射することがで きる。

【0031】したがって、反射板2の両端ACの幅が1 80mmと人間の腰幅よりも小さな幅であっても、広範囲 に輻射熱線を輻射することができるので、使用者は十分 に採暖することができる。したがって、電気ストーブ1 0を小型化することができ、製品のコストを低減すると とができる。なお、以上の実施例では、角度 θ が10度 の例について示したが、角度θの範囲は6度以上14度 以下であればよく、その角度 θ は 1 0 度には限定されな

【0032】また、以上の実施例では、反射板の断面形 10 状を放物線の一部である2つの曲線を合成した形状とし たが、合成される曲線の数はこれに限定されるものでは ない。ただし、合成される曲線は、発熱体の中心を焦点 とする放物線の一部でなければならない。また、以上の 実施例では、反射板の断面形状を、基準軸に対して対称 となるような形状としたが、両端に配される反射板の断 面形状である放物線の軸線を基準軸に対して回転させる 角度 θ , 、角度 θ , の大きさの和である大きさの角度 θ が6度以上14度以下であればよく、反射板の断面形状 心に角度 $heta_1$ 回転させた放物線の一部である。なお、D20 は基準軸に対して対称ではなくても実施例と同様の効果 を得ることができる。

> 【0033】また、以上の実施例に示した電気ストーブ や各構成部品の大きさは、特に限定されない。

【図面の簡単な説明】

【図1】発熱体1の長手方向に略垂直な面での、電気ス トーブの断面図である。

【図2】反射板2の、発熱体1の長手方向に略垂直な面 での断面形状の説明に供与する図であり、電気ストーブ の作動の説明に供与する図である。

【図3】電気ストーブの全体を示す斜視図である。

【図4】角度 θ を0度、10度、16度とした際の、そ れぞれの輻射分布を示す図である。

【図5】角度日を0度から20度に変化させた際の、輻 射熱線の到達距離1、、1、、最大分布幅wの変化を示 す図である。

【図6】図6(a)、(b)、(c)は従来例の、反射 板の、発熱体の長手方向に略垂直な面での断面形状の説 明に供与する図であり、図6(d)は従来例の作動の説 明に供与する図である。

【符号の説明】

- 1 発熱体
- 2 反射板
- 5 ハウジング
- 6 開口部
- 10 電気ストーブ

【図2】

【図4】

【図6】

