Rigid Body Dynamics (II)

COMP259 March 30, 2006 Nico Galoppo von Borries

Bodies intersect! classify contacts

- Bodies separating
 - $v_{rel} > \varepsilon$
 - No response required
- Colliding contact (Last time)
 - $v_{rel} < -\epsilon$
- Resting contact (Today)
 - $- \varepsilon < V_{rel} < \varepsilon$
 - Gradual contact forces avoid interpenetration
 - All resting contact forces must be computed and applied together because they can influence one another

Resting Contact Response

Handling of Resting Contact

- Global vs. Local Methods
 - Constraint-based vs. Impulse-based
- Colliding Contacts
- Resting Contacts
- Force application
- Friction

Impulse vs. Constraint

- Impulse-based dynamics (local)
 - Faster
 - Simpler
 - No explicit contact constraints
- Constraint-based dynamics (global)
 - Must declare each contact to be a resting contact or a colliding contact

Impulse vs. Constraint

Impulse-based dynamics (local)

Constraint-based dynamics (global)

Impulse vs. Constraint

Resting Contact Response

- The forces at each contact must satisfy three criteria
 - Prevent inter-penetration: $d_i(t_0) \ge 0$
 - Repulsive -- we do not want the objects to be glued together: $f_i \ge 0$
 - Should become zero when the bodies start to separate: $f_i\ddot{d}_i(t_0) = 0$
- To implement hinges and pin joints:

$$\ddot{d}_i(t_0) = 0$$

Resting Contact Response

We can formulate using LCP:

$$\ddot{d}_i(t_0) = a_{i1}f_1 + a_{i2}f_2 + \dots + a_{in}f_n + b_i$$

$$\begin{cases} \ddot{d}_i(t_0) \ge 0 \\ f_i \ge 0 \end{cases} \qquad f_i \ddot{d}_i(t_0) = 0$$

Linear Complimentary Problem (LCP)

- Need to solve a quadratic program to solve for the f_i's
 - General LCP is NP-complete problem
 - A is symmetric positive semi-definite (SPD) making the solution practically possible
- There is an iterative method to solve for without using a quadratic program

[Baraff, Fast contact force computation for nonpenetrating rigid bodies]

Linear Complimentary Problem (LCP)

- In general, LCP can be solved with either:
 - pivoting algos (like Gauss elimination)
 - they change the matrix
 - do not provide useful intermediate result
 - may exploit sparsity well
 - iterative algos (like Conjugate Gradients)
 - only need read access to matrix
 - can stop early for approximate solution
 - faster for large matrices
 - can be warm started (ie. from previous result)

Slide courtesy of Moravanszky (ETHZ 2002)

Global vs. local?

- Global LCP formulation can work for either constraint-based forces or with impulses
 - Hard problem to solve
 - System very often ill-conditioned, iterative
 LCP solver slow to converge

Local vs. Global

- Impulses often applied in **local** contact resolution scheme
- Applied impulses can break non-penetration constraint for other contacting points

 Often applied iteratively, until all resting contacts are resolved

Hard case for local approach

- Prioritize contact points along major axes of acceleration (gravity) and velocity
 - Performance improvement:25% on scene with 60 stacked objects

Global Resting Contact Resolution

```
XÃ CTi Are Contacts (Xnew)
For twhile with Cers Colliding())
    ClearForces (Forty Th) pulses (X<sub>new</sub>)
    So \mathbf{f}er::Step(X, F(t), \tau(t), t, \Deltat)
    t à findCollisionTime()
    X_{new} \tilde{A} Solver::Step(X, F(t), \tau(t), t, \Delta t)
                     <del>Ã C.re</del>stingSet()
    Schlein Properting C, X<sub>new</sub>)
    end if
End to \mathbf{A} t + \Delta t
End for
```

Frictional Forces Extension

- Constraint-based dynamics
 - Reformulate constraints and solve
 - No more on this here
- Impulse-based dynamics
 - Must not add energy to the system in the presence of friction so we have to reformulate the impulse to be applied

Collision Coordinate System

p is the applied impulse. We use j because P is for linear momentum

Impulse Reformulation

 When two real bodies collide there is a period of deformation during which elastic energy is stored in the bodies followed by a period of restitution during which some of this energy is returned as kinetic energy and the bodies rebound of each other.

Impulse Reformulation

- The collision is instantaneous but we can assume that it occurs over a very small period of time: 0 → t_{mc} → t_f.
- t_{mc} is the time of maximum compression

 u_z is the relative normal velocity. We used v_{rel} before. From now on we will use v_z .

Impulse Reformulation

- p_z is the impulse magnitude in the normal direction. We used j before. From now on we will use j_z.
- W_z is the work done in the normal direction.

Impulse Reformulation (I)

- $v^-=v(0)$, $v^0=v(t_{mc})$, $v^+=v(t_f)$, $v_{rel}=v_z$
- Newton's Empirical Impact Law:

$$V_z^+ = -\epsilon V_z^-$$

Coefficient of restitution ε relates before-collision to after-collision relative velocity

The normal component of impulse delivered during restitution phase is ε times the normal component of impulse delivered during the compression phase

Both these hypotheses can cause increase of energy when friction is present!

Impulse Reformulation (II)

Stronge's Hypothesis:

The positive work done during the restitution phase is $-\varepsilon^2$ times the negative work done during compression

$$\left\{ \begin{array}{l} W_z^+ - W_z^0 = -\epsilon^2 W_z^0 \\ W_z^+ = (1-\epsilon^2) W_z^0 \end{array} \right. \label{eq:weights}$$

Energy of the bodies does not increase when friction present

Friction Formulae

- Assume the Coulomb friction law:
 - At some instant during a collision between bodies 1 and 2, let \mathbf{v} be the contact point velocity of body 1 relative to the contact point velocity of body 2. Let \mathbf{v}_t be the tangential component of \mathbf{v} and let $\hat{\mathbf{v}}_t$ be a unit vector in the direction of \mathbf{v}_t . Let \mathbf{f}_z and \mathbf{f}_t be the normal and tangential (frictional) components of force exerted by body 2 on body 1, respectively.

Coulomb Friction model

Sliding (dynamic) friction

$$v_t \neq 0 \Longrightarrow f_t = -\mu \|f_n\|\hat{v}_t\|$$

Dry (static) friction

$$v_t = 0 \Rightarrow ||f_t|| \le \mu ||f_n||$$
 (ie. the *friction cone*)

Assume no rolling friction

Impulse with Friction

 Recall that the impulse looked like this for frictionless collisions:

$$j = \frac{-(1+\epsilon)v_{rel}^{-}}{\frac{1}{M_a} + \frac{1}{M_b} + \hat{n}(t_0) \cdot \left(I_a^{-1}(t_0)\left(r_a \times \hat{n}(t_0)\right)\right) \times r_a + \hat{n}(t_0) \cdot \left(I_b^{-1}(t_0)\left(r_b \times \hat{n}(t_0)\right)\right) \times r_b}$$

- Remember: $p_z(t) = j(t)$ $p(t) = \int_0^t f(\tau) d\tau$
- Recall also that $\Delta v_7 = j/M$ and $\Delta L = r f^T n$
- All are parameterized by time

Impulse with Friction

$$\Delta \mathbf{v}(t) \mathbf{t} = \begin{bmatrix} \mathbf{1}_{\mathbf{K}} \mathbf{j}(\mathbf{t}) \\ \mathbf{m}_{1} & \mathbf{m}_{2} \end{bmatrix} \mathbf{1} - (\mathbf{r}_{1}\mathbf{l}_{1}^{-1}\mathbf{r}_{1} + \mathbf{r}_{2}\mathbf{l}_{2}^{-1}\mathbf{r}_{2}) \end{bmatrix} \mathbf{j}(t) = \mathbf{K}\mathbf{j}(t)$$

where:

r = (p-x) is the vector from the center of mass to the contact point

$$\mathbf{r}^* = \begin{bmatrix} 0 & -\mathbf{r}_z & \mathbf{r}_y \\ \mathbf{r}_z & 0 & -\mathbf{r}_x \\ -\mathbf{r}_y & \mathbf{r}_x & 0 \end{bmatrix}$$

The K Matrix

 K is constant over the course of the collision, nonsingular, symmetric, and positive definite

$$\mathbf{K} = \begin{bmatrix} \mathbf{k}_{x} \\ \mathbf{k}_{y} \\ \mathbf{k}_{z} \end{bmatrix}$$

Collision Functions

- We assume collision to occur over zero time interval! velocities discontinuous over time
- Reparameterize Δv(t) = K j(t) from t to γ
- Take γ such that it is monotonically increasing during the collision: Δv(γ) = Kj(γ)
- Let the duration of the collision \rightarrow 0.
- The functions \mathbf{v} , \mathbf{j} , \mathbf{W} , all evolve continuously over the compression and the restitution phases with respect to γ .

- For the **compression phase**, use $\gamma = V_z$
 - V_Z^- is the relative normal velocity at the start of the collision (we know this)
 - At the end of the compression phase, $V_7^0 = 0$
- For the **restitution phase**, use $\gamma = W_{\gamma}$
 - W_z⁰ is the amount of work that has been done in the compression phase
 - From Stronge's hypothesis, we know that

Compression phase equations are:

$$\frac{d}{dv_z} \begin{bmatrix} v_x \\ v_y \\ W_z \end{bmatrix} = \frac{1}{k_z \xi(\theta)} \begin{bmatrix} k_x \xi(\theta) \\ k_y \xi(\theta) \\ v_z \end{bmatrix}$$

Restitution phase equations are:

$$\frac{d}{dW_z} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \frac{1}{v_z} K \xi(\theta) = \frac{1}{v_z} \begin{bmatrix} k_x \xi(\theta) \\ k_y \xi(\theta) \\ k_z \xi(\theta) \end{bmatrix}$$

where the sliding vector is:

$$\xi(\theta) = \begin{bmatrix} -\mu \cos \theta \\ -\mu \sin \theta \\ 1 \end{bmatrix} = \begin{bmatrix} -\mu v_x \\ \sqrt{v_x^2 + v_y^2} \\ -\mu v_y \\ \sqrt{v_x^2 + v_y^2} \\ 1 \end{bmatrix}$$

• Notice that there is a problem at the point of maximum compression because $v_z = 0$:

$$\frac{d}{dW_{z}}\begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix} = \frac{1}{v_{z}}K\xi(\theta) = \frac{1}{v_{z}}\begin{bmatrix} k_{x}\xi(\theta) \\ k_{y}\xi(\theta) \\ k_{z}\xi(\theta) \end{bmatrix}$$

- Let us integrate using v_z a bit into the restitution phase (extension integration) so that we never divide by 0.
- But we don't want to integrate too far!
 Otherwise we exceed the amount of work that is to be done in the restitution phase.
- We are safe if we stop at:

$$v_z = \sqrt{2(W_z^+ - W_z^0)(K_{33} - \mu\sqrt{K_{31}^2 + K_{32}^2})}$$

- There is another problem if the tangential velocity becomes 0 because the equations that we have derived were based on $v_t \neq 0 \Rightarrow f_t = -\mu \|f_n\| \hat{v}_t$ which no longer holds.
- This brings us to the sticking formulation

Sticking Formulation

Sticking Formulation

- Stable if $(K_{13}^{-1})^2 + (K_{23}^{-1})^2 \le \mu^2 (K_{33}^{-1})^2$
 - This means that static friction takes over for the rest of the collision and ν_x and ν_y remain 0
- If instable, then in which direction do v_x and v_y leave the origin of the v_x , v_v plane?
 - There is an equation in terms of the elements of K which yields 4 roots. Of the 4 only 1 corresponds to a diverging ray a valid direction for leaving instable sticking.

Sticking Formulation

 If sticking occurs, then the remainder of the collision may be integrated analytically due to the existence of closed form solutions to the resulting simplified equations.

Resting Contacts with Impulses

- Modeled by artificial train of collisions
- The resulting collision impulses model a constant reaction force (do not work on stationary objects)
- Problem: book on table: through collisions, energy steadily decreases, book sinks into table
- #of collisions increases, simulator comes to grinding halt!
- Introduce *microcollisions*
 - *Microcollision impulses* are not computed in the standard way, but with artificial coefficient of restitution $\varepsilon(\delta)$
 - Applied only if normal velocity is 'small'

Artificial restitution for microcollisions

• $\epsilon = f(Distance(A,B))$

Other problems arise:

- Boosted elasticity from microcollisions makes box on ramp 'bounce' as if ramp were vibrating
- Stacked books cause too many collision impulses, propagated up and down the stack
- Weight of pile of books causes deep penetration between table and bottom book! large reaction impulses cause instabilities
- Microcollisions are an ad-hoc solution!
- Constrained-based approaches are a better solution for these situations