CS 33

Machine Programming (4)

Not a Quiz!

What C code would you compile to get the following assembler code?

```
movq $0, %rax
.L2:

movq %rax, a(,%rax,8)
addq $1, %rax
cmpq $10, %rax
jne .L2
ret
```

```
long a[10];
void func() {
  long i=0;
  while (i<10)
    a[i]= i++;
}</pre>
```

```
long a[10];
void func() {
  long i;
  for (i=0; i<10; i++)
    a[i]= 1;
}</pre>
```

b

```
long a[10];
void func() {
  long i=0;
  switch (i) {
  case 0:
    a[i] = 0;
    break;
  default:
    a[i] = 10
  }
}
```

a

C

Digression (Again): Where Stuff Is (Roughly)

Function Call and Return

- Function A calls function B
- Function B calls function C

... several million instructions later

- C returns
 - how does it know to return to B?
- B returns
 - how does it know to return to A?

The Runtime Stack

Higher memory addresses

Lower memory addresses

Stack Operations

Push

pushl \$0x1234

Pop

Call and Return

0x1000: call func

0x1004: addq \$3, %rax

0x2000: func:

• • • • •

0x2200: movq \$6, %rax

0x2203: ret

0x2000: func:

• • • • •

0x2200: movq \$6, %rax

0x2203: ret

→ 0x1000: call func

Call and Return

0x1004: addq \$3, %rax

stack growth

00	00	00	00	0	00	10	0
00	00	00	0f	ff	f1	00	00

%rax

%rip

→ 0x2000: func:

• • • • •

0x2200: movq \$6, %rax

0x2203: ret

0x1000: call func

Call and Return

0x1004: addq \$3, %rax

stack growth

0xffff10018
0xffff10010
0xffff10008
0xffff10000
0xffff0fff8 <</pre>

00	00	0	00	0	0	20	0
00	00	00	0f	ff	f0	ff	f8

%rax

%rip

0x2000: func:

• • • • • •

0x2200: movq \$6, %rax

→ 0x2203: ret

0x1000: call func

Call and Return

0x1004: addq \$3, %rax

stack growth

0xffff10018
0xffff10010
0xffff10008
0xffff10000
0xffff0fff8

00	00	00	00	00	00	00	06
00	00	00	00	00	00	22	03
00	00	00	0f	ff	f0	ff	f8

%rax

%rip

0x2000: func:

• • • • •

0x2200: movq \$6, %rax

0x2203: ret

0x1000: call func

Call and Return

0x1004: addq \$3, %rax

stack growth

00	00	00	00	00	00	00	06
00	00	00	00	00	00	10	04
00	00	00	0f	ff	f1	00	00

%rax

%rip

Arguments and Local Variables

```
int mainfunc() {
  long array[3] =
      {2,117,-6};
  long sum =
      ASum(array, 3);
    ...
  return sum;
}
```

- Local variables usually allocated on stack
- Arguments to functions pushed onto stack

```
long ASum(long *a,
    unsigned long size) {
    long i, sum = 0;
    for (i=0; i<size; i++)
        sum += a[i];
    return sum;
}</pre>
```

 Local variables may be put in registers (and thus not on stack)

Arguments and Local Variables

mainfunc: pushq %rbp # save old %rbp # set %rbp to point to stack frame mova %rsp, %rbp subq \$32, %rsp # alloc. space for locals (array and sum) movq \$2, -32(\$rbp) # initialize array[0] movg \$117, -24(%rbp) # initialize array[1] movq \$-6, -16(\$rbp) # initialize array[2] # push arg 2 pusha \$3 leaq -32(%rbp), %rax # array address is put in %rax # push arg 1 pushq %rax call ASum addq \$16, %rsp # pop args movq %rax, -8(%rbp) # copy return value to sum addq \$32, %rsp # pop locals popq %rbp # pop and restore old %rbp

Arguments and Local Variables

```
ASum:
   pushq %rbp
                              # save old %rbp
   movq %rsp, %rbp
                              # set %rbp to point to stack frame
                              # i in %rcx
   movq $0, %rcx
   movq $0, %rax
                              # sum in %rax
   movq 16(%rbp), %rdx
                              # copy arg 1 (array) into %rdx
loop:
   cmpq 24(%rbp), %rcx # i < size?</pre>
   jge done
   addq (%rdx, %rcx, 8), %rax # sum += a[i]
   incq %rcx
                              # i++
   ja loop
done:
                              # pop and restore %rbp
   popq %rbp
   ret
```

Enter mainfunc

Enter mainfunc

Setup Frame

Allocate Local Variables

Initialize Local Array

Initialize Local Array

Initialize Local Array


```
mainfunc:
   pushq %rbp
   movq %rsp, %rbp
   subq $32, %rsp
   movq $2, -32(%rbp)
   movq $117, -24(%rbp)
   movq $-6, -16(%rbp)
   pushq $3
   leaq -32(%rbp), %rax
   pushq %rax
   call ASum
   addq $16, %rsp
   movq %rax, -8(%rbp)
   addq $32, %rsp
   popq %rbp
   ret
```

Push Second Argument

Get Array Address


```
mainfunc:
   pushq %rbp
   movq %rsp, %rbp
   subq $32, %rsp
   movq $2, -32(%rbp)
   movg $117, -24(%rbp)
   movq \$-6, -16(%rbp)
   pushq $3
   leaq -32(%rbp), %rax
   pushq %rax
   call ASum
   addq $16, %rsp
   movq %rax, -8(%rbp)
   addq $32, %rsp
   popq %rbp
   ret
```

Push First Argument

mainfunc: pushq %rbp movq %rsp, %rbp subq \$32, %rsp movq \$2, -32(%rbp) movq \$117, -24(%rbp) movg \$-6, -16(%rbp)pusha \$3 leaq -32(%rbp), %rax pushq %rax call ASum addq \$16, %rsp movq %rax, -8(%rbp) addq \$32, %rsp popq %rbp ret

Call ASum

Enter ASum

Setup Frame

Execute the Function

Quiz 1

What's at 16(%rbp)?

- a) a local variable
- b) the first argument to ASum
- c) the second argument to ASum
- d) something else

```
ASum:
   pushq %rbp
   movq %rsp, %rbp
   movq $0, %rcx
   movq $0, %rax
   movq 16(%rbp), %rdx
loop:
   cmpq 24(%rbp), %rcx
   jge done
   addq (%rdx,%rcx,8), %rax
   incq %rcx
   ja loop
done:
   popq %rbp
   ret
```

Prepare to Return

Return

Pop Arguments


```
mainfunc:
   pushq %rbp
   movq %rsp, %rbp
   subq $32, %rsp
   movq $2, -32(%rbp)
   movg $117, -24(%rbp)
   movq $-6, -16(%rbp)
   pusha $3
   leaq -32(%rbp), %rax
   pushq %rax
   call ASum
   addq $16, %rsp
   movq %rax, -8(%rbp)
   addq $32, %rsp
   popq %rbp
   ret
```

Save Return Value


```
mainfunc:
   pushq %rbp
   movq %rsp, %rbp
   subq $32, %rsp
   movq $2, -32(%rbp)
   movg $117, -24(%rbp)
   movq \$-6, -16(%rbp)
   pusha $3
   leaq -32(%rbp), %rax
   pushq %rax
   call ASum
   addq $16, %rsp
   movq %rax, -8(%rbp)
   addq $32, %rsp
   popq %rbp
   ret
```

Pop Local Variables


```
mainfunc:
   pushq %rbp
   movq %rsp, %rbp
   subq $32, %rsp
   movq $2, -32(%rbp)
   movg $117, -24(%rbp)
   movq $-6, -16(%rbp)
   pusha $3
   leaq -32(%rbp), %rax
   pushq %rax
   call ASum
   addq $16, %rsp
   movq %rax, -8(%rbp)
   addq $32, %rsp
   popq %rbp
```

ret

Prepare to Return


```
mainfunc:
   pushq %rbp
   movq %rsp, %rbp
   subq $32, %rsp
   movq $2, -32(%rbp)
   movg $117, -24(%rbp)
   movg $-6, -16(%rbp)
   pusha $3
   leaq -32(%rbp), %rax
   pushq %rax
   call ASum
   addq $16, %rsp
   movq %rax, -8(%rbp)
   addq $32, %rsp
   popq %rbp
   ret
```

Return

return address
old %rbp
sum
array[2]
array[1]
array[0]
ASum arg 2
ASum arg 1
return address
old %rbp

mainfunc: pushq %rbp movq %rsp, %rbp subq \$32, %rsp movq \$2, -32(%rbp) movq \$117, -24(%rbp) movg \$-6, -16(%rbp)pushq \$3 leaq -32(%rbp), %rax pushq %rax call ASum addq \$16, %rsp movq %rax, -8(%rbp) addq \$32, %rsp popq %rbp ret

Using Registers

- ASum modifies registers:
 - %rsp
 - %rbp
 - %rcx
 - %rax
 - %rdx
- Suppose its caller uses these registers

```
movq $33, %rcx
movq $167, %rdx
pushq $6
pushq array
call ASum
    # assumes unmodified %rcx and %rdx
addq $16, %rsp
addq %rax,%rcx  # %rcx was modified!
addq %rdx, %rcx  # %rdx was modified!
```

```
ASum:
   pushq %rbp
   movq %rsp, %rbp
   movq $0, %rcx
   movq $0, %rax
   movq 16(%rbp), %rdx
loop:
   cmpq 24(%rbp), %rcx
   jge done
   addq (%rdx,%rcx,8), %rax
   incq %rcx
   ja loop
done:
   popq %rbp
   ret
```

Register Values Across Function Calls

- ASum modifies registers:
 - %rsp
 - %rbp
 - %rcx
 - %rax
 - %rdx
- May the caller of ASum depend on its registers being the same on return?
 - ASum saves and restores %rbp and makes no net changes to %rsp
 - » their values are unmodified on return to its caller
 - %rax, %rcx, and %rdx are not saved and restored
 - » their values might be different on return

```
ASum:
   pushq %rbp
   movq %rsp, %rbp
   movq $0, %rcx
   movq $0, %rax
   movq 16(%rbp), %rdx
loop:
   cmpq 24(%rbp), %rcx
   jge done
   addq (%rdx,%rcx,8), %rax
   incq %rcx
   ja loop
done:
   popq %rbp
   ret
```

Register-Saving Conventions

Caller-save registers

 if the caller wants their values to be the same on return from function calls, it must save and restore them

```
pushq %rcx
call func
popq %rcx
```

Callee-save registers

 if the callee wants to use these registers, it must first save them, then restore their values before returning

```
func:
    pushq %rbx
    movq $6, %rbx
    ...
    popq %rbx
```

x86-64 General-Purpose Registers: Usage Conventions

%rax	Return value
%rbx	Callee saved
%rcx	Caller saved
%rdx	Caller saved
%rsi	Caller saved
%rdi	Caller saved
%rsp	Stack pointer
%rbp	Base pointer

%r8	Caller saved
%r9	Caller saved
%r10	Caller saved
%r11	Caller Saved
%r12	Callee saved
%r13	Callee saved
%r14	Callee saved
%r15	Callee saved

Passing Arguments in Registers

Observations

- accessing registers is much faster than accessing primary memory
 - » if arguments were in registers rather than on the stack, speed would increase
- most functions have just a few arguments

Actions

- change calling conventions so that the first six arguments are passed in registers
 - » in caller-save registers
- any additional arguments are pushed on the stack

Why Bother with a Base Pointer?

- It (%rbp) points to the beginning of the stack frame
 - making it easy for people to figure out where things are in the frame
 - but people don't execute the code ...
- The stack pointer always points somewhere within the stack frame
 - it moves about, but the compiler knows where it is pointing
 - » a local variable might be at 8(%rsp) for one instruction, but at 16(%rsp) for a subsequent one
 - » tough for people, but easy for the compiler
- Thus the base pointer is superfluous
 - it can be used as a general-purpose register

x86-64 General-Purpose Registers: Updated Usage Conventions

%rax	Return value
%rbx	Callee saved
%rcx	Argument #4
%rdx	Argument #3
%rsi	Argument #2
%rdi	Argument #1
%rsp	Stack pointer
%rbp	Callee saved

%r8	Argument #5
%r9	Argument #6
%r10	Caller saved
%r11	Caller Saved
%r12	Callee saved
%r13	Callee saved
%r14	Callee saved
%r15	Callee saved

The IA32 Stack Frame

The x86-64 Stack Frame

return address

saved registers local variables

%rsp

The -O0 x86-64 Stack Frame (Traps and Buffer)

Summary

- What's pushed on the stack
 - return address
 - saved registers
 - » caller-saved by the caller
 - » callee-saved by the callee
 - local variables
 - function parameters
 - » those too large to be in registers (structs)
 - » those beyond the six that we have registers for
 - large return values (structs)
 - » caller allocates space on stack
 - » callee copies return value to that space

Quiz 2

Suppose function A is compiled using the convention that %rbp is used as the base pointer, pointing to the beginning of the stack frame. Function B is compiled using the convention that there's no need for a base pointer. Will there be any problems if A calls B or if B calls A?

- a) Neither case will work
- b) A calling B works, but B calling A doesn't
- c) B calling A works, but A calling B doesn't
- d) Both work