

Transfer learning Meta-learning

Резяпкин Вячеслав 27.08.2019

Tinkoff.ru

План

Transfer learning – перенос опыта решения некоторого множества задач (знания) для решения новой задачи

1. Зачем

2. Откуда, куда и как

- 1. Fine-tuning, few-shot learning
- 2. Progressive learning
- 3. Multi-task learning
- 4. Meta-learning

Transfer learning. Мотивация

Montezuma's Revenge

Знания, которые позволяют нам

быстрее учиться играть:

- По лестнице можно подниматься и опускаться
- Простая *физика*:

когда под тобой ничего нет – ты падаешь

- Ключ может открывать замки
- *Череп*? Мы не знаем что точно он делает, но наверное что-то нехорошее

Transfer learning. Терминология

Transfer learning – использование опыта решения некоторого *множества* задач (знания) для решения новой задачи

Задача в RL - MDP

<u>K-shot learning:</u> Shot – обучение на target domain

0-shot : сразу пускаем в бой

1-shot: даём один раз попробовать задачу

k-shot: даём k раз попробовать задачу

Что значит «*один раз попробовать задачу*»? Например, *засэмплить* эпизод с фиксированной политикой и затем *поучиться* на нём

Transfer learning в Deep Learning

Transfer learning – использование опыта решения некоторого *множества* задач (знания) для решения новой задачи

Компьютерное зрение

- Fine-tuning
 - Переносим информативные признаковые представления
- Если классы в новой задаче (target domain) совпадают с классами исходной задачи (target domain), то просто дообучим сеть на наших данных.
- Если классы в новой задаче (target domain) не совпадают с классами исходной задачи (target domain), то прежде выбросим последний слой и сделаем новый

Важность признакового представления

Разделим обучение признакового представления от обучения с подкреплением

- 1. Инициализировали RL сеть
- 2. Обучили original
- 3. Сбросили веса последнего слоя
- 4. Обучили recovery

Recovery – fine-tuned политика и value-функция на выученных признаковых представлениях

Loss is its own Reward: Self-Supervision for Reinforcement Learning

Fine-tuning

Проблема с обычным fine-tuning:

- 1. Глубокие нейронные сети хорошо работают, когда содержат много параметров
- 2. В target domain вероятно немного примеров, раз мы хотим прибегнуть к fine-tuning
- 3. Обучение нейросети на небольшом количестве примеров => переобучение
- 4. Можем ли мы уменьшить число обучаемых параметров?

Идея:

Учить веса *только* последнего слоя, остальные веса фиксируем

Fine-tuning

Проблема с обычным fine-tuning:

- 1. Глубокие нейронные сети хорошо работают, когда содержат много параметров
- 2. В target domain вероятно немного примеров, раз мы хотим прибегнуть к fine-tuning
- 3. Обучение нейросети на небольшом количестве примеров => переобучение
- 4. Можем ли мы уменьшить число обучаемых параметров?

Идея:

Учить веса **только** последнего слоя, остальные веса фиксируем *Тоже так себе:*

Ограниченная выразительность
Признаки с исходной игры могут быть не
так актуальны в новой игре

Fine-tuning

Проблема с обычным fine-tuning:

- 1. Глубокие нейронные сети хорошо работают, когда содержат много параметров
- 2. В *target domain* вероятно немного примеров, раз мы хотим прибегнуть к fine-tuning
- 3. Обучение нейросети на небольшом количестве примеров => переобучение
- 4. Можем ли мы уменьшить число обучаемых параметров?

Идея:

Учить веса *только* последнего слоя, остальные веса фиксируем

Тоже так себе:

Ограниченная выразительность Признаки с исходной игры могут быть не так актуальны в новой игре

Идея 2:

Сохранить старые веса, но и использовать сырые признаки тоже

Progressive network

ST.	Pong Soup		Atari		Labyrinth	
	Mean (%)	Median (%)	Mean (%)	Median (%)	Mean (%)	Median (%)
Baseline 1	100	100	100	100	100	100
Baseline 2	35	7	41	21	88	85
Baseline 3	181	160	133	110	235	112
Baseline 4	134	131	96	95	185	108
Progressive 2 col	209	169	132	112	491	115
Progressive 3 col	222	183	140	111	_	
Progressive 4 col	1.	_	141	116	-	-

Table 1: Transfer percentages in three domains. Baselines are defined in Fig. 3.

Что ещё интересного?

Transfer learning может быть особенно полезен в задачах реального мира

Например, учить беспилотные автомобили с нуля может оказаться дорого.

Было бы здорово сначала поучить их ездить в симуляции, а затем перенести опыт на реальные дороги

CAD2RL: Real Single-Image Flight without a Single Real Image

Дрона обучили летать в искусственной среде, затем без дообучения отправили в реальный мир

CAD2RL: Real Single-Image Flight without a Single Real Image

Дрона обучили летать в искусственной среде, затем без дообучения отправили в реальный мир

0-shot learning

Адаптация к реальному миру

Что если у нас есть фотографии реального мира? Сделаем симуляцию похожей на реальность с помощью GAN

Bousmalis et al., "Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping"

Multi-task learning

До сих пор мы рассматривали только one-task learning Учимся **на одной** задаче, переносим опыт в другую задачу Пусть, теперь, мы учимся **на нескольких** задачах Что это вообще значит – одним агентом в одной среде учиться нескольким задачам?

Multi-task learning

Как сформулировать такую задачу?

Дополним состояние (здесь - картинка) контекстом ω :

$$s' = (s, \omega)$$

По **контексту** агент сможет определять, какую именно задачу он должен делать.

Как можно задавать **контекст**:

- OHE, если конечное небольшое количество задач
- Картинка, если задач много. Например, фотография полки, которую нужно протереть

- ...

Multi-task learning

 ω : walking direction

Дополним состояние (здесь - картинка) контекстом ω :

$$s' = (s, \omega)$$

По **контексту** агент сможет определять, какую именно задачу он должен делать.

 ω : where to hit puck

Как можно задавать **контекст**:

- **ОНЕ**, если конечное небольшое количество задач
- Картинка, если задач много. Например, фотография полки, которую нужно протереть

- ...

Modular Networks

Learning Modular Neural Network Policies for Multi-Task and Multi-Robot Transfer

Meta-learning

Задача:

- Инициализируется точка в начале координат
- II. Задача прийти в состояние-цель
- III. Цель точка на координатной плоскости (например (-10, -10))
- IV. Действие шаг в координатной плоскости
- V. Награда минус расстояние до цели

Цель можно задавать **явно** в виде контекста

Тогда state = (x, y, goal. x, goal. y)

Цель можно не задавать явно.

Хочется, чтобы агент понимал где его цель на этот раз с помощью предыдущих состояний, действий, наград

Для представления состояния можно

использовать RNN

Meta-learning

Задача:

- I. Инициализируется точка в начале координат
- II. Задача прийти в состояние-цель
- III. Цель точка на координатной плоскости (например (-10, -10))
- IV. Действие шаг в координатной плоскости
- V. Награда минус расстояние до цели

Цель можно задавать явно в виде
контекста
Tогда state = $(x, y, goal. x, goal. y)$

- Цель можно не задавать явно
- Хочется, чтобы агент понимал где его цель на этот раз по предыдущим состояниям, действиям, наградам
- Для представления состояния можно использовать RNN

Meta-learning:

Проверим обобщающую способность агента.

Для этого разобъем множество целей на train и test

Таким образом проверим качество агента на отложенной выборке

Steps done: 99, Epoch done: 403, Working time: 0h: 6m: 8s,

Learning to learn

Постановка задачи в терминах обучения с подкреплением

Пространство действий

$$A = \{10^{-4}, 5*10^{-4}, 10^{-3}, 5*10^{-3}, 10^{-2}\}$$

Состояние $s = (i, lr, loss_{last}, loss_{prev})$ — номер итерации, η на предыдущем шаге, значения функции на двух предыдущих шагах

Награда r = -loss

Политика $\pi: s \to a$

Траектория $\tau = (s_0, a_0, s_1, a_1, \dots, a_{T-1}, s_T)$

Задача $J(\pi) = \mathbb{E}_{\tau \sim \pi} \sum_{i=1}^{20} r_i \to \max_{\pi} r_i$

Геометрический смысл — минимизации площади под кривой функции ошибки

Learning to learn

Сравнение с бейзлайнами (фиксированные learning rate)

η	accuracy, %	sum loss	final loss
0.0001	41	-44	2.21
0.001	93	-12	0.36
0.01	78	-18	0.92
агент	95	-9	0.14

Траектории во время обучения

15

Зачем останавливаться на достигнутом?

Ссылки

- Berkeley Deep RL. Лекция 19 и 20.
- CAD2RL
- Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping
- PHYRE RL среда с физическими головоломками