TESIS CARRERA DE DOCTORADO EN CIENCIAS DE LA INGENIERÍA

SIMULACIÓN NUMÉRICA DEL FENÓMENO DE EBULLICIÓN EMPLEANDO EL MÉTODO DE LATTICE BOLTZMANN

Ezequiel O. Fogliatto Doctorando

Dr. Federico E. Teruel

Dr. Alejandro Clausse

Director

Co-director

Miembros del Jurado

Dr. J. J. Jurado (Instituto Balseiro)
Dr. Segundo Jurado (Universidad Nacional de Cuyo)
Dr. J. Otro Jurado (Univ. Nac. de LaCalle)
Dr. J. López Jurado (Univ. Nac. de Mar del Plata)

Dr. U. Amigo (Instituto Balseiro, Centro Atómico Bariloche)

10 de Agosto de 2020

Departamento de Mecánica Computacional – Centro Atómico Bariloche

Instituto Balseiro
Universidad Nacional de Cuyo
Comisión Nacional de Energía Atómica
Argentina

A mi familia

Índice de símbolos

Índice de contenidos

Indice de símbolos	\mathbf{v}
Índice de contenidos	vii
Índice de figuras	ix
Índice de tablas	xi
1. Introducción	1
2. Fundamentos de lattice Boltzmann	3
2.1. Naturaleza cinética del método	3
Bibliografía	5

Índice de figuras

Índice de tablas

Capítulo 1

Introducción

Prueba de citas: [1]

Capítulo 2

Fundamentos de lattice Boltzmann

En este capítulo se describirán los fundamentos necesarios y la sarasa obligatoria para más o menos entender el detalle de un modelo de lattice Boltzmann. Poner acá la idea de mostrar este camino para llegar a lo que nos interesa de LB

2.1. Naturaleza cinética del método

La descripción matemática de la dinámica de fluidos se basa típicamente en la hipótesis de un medio continuo, con escalas temporales y espaciales suficientemente mayores que las asociadas a la naturaleza atomística subyacente. En este contexto, suelen encontrarse referencias a descripciones microscópicas, mesoscópicas o macroscópicas. La descripción microscópica, por un lado, hace referencia a una descripción molecular, mientras que la macroscópica involucra una visión continua completa, con cantidades tangibles como densidad o velocidad del fluido. Por otro lado, entre ambas aproximaciones se encuentra la teoría cinética mesoscópica, la cuál no describe el movimiento de partículas individuales, sino de distribuciones o colecciones representativas de dichas partículas.

La variable fundamental de la teoría cinética se conoce como función de distribución de partículas (particle distribution function, o pdf por sus siglas en inglés), que puede verse como una generalización de la densidad ρ y que a su vez tiene en cuenta la velocidad microscópica de las partículas $\boldsymbol{\xi}$. Por lo tanto, mientras que $\rho(\boldsymbol{x},t)$ representa la densidad de masa en el espacio físico, $f(\boldsymbol{x},\boldsymbol{\xi},t)$ corresponde a la densidad de masa tanto en el espacio físico como en el espacio de velocidades.

La función de distribución f se relaciona con variables macroscópicas como densidad ρ y velocidad \boldsymbol{u} a través de momentos, es decir, integrales de f con funciones de peso dependientes de $\boldsymbol{\xi}$ sobre todo el espacio de velocidades. En particular, la densidad de masa macroscópica puede obtenerse como el momento

$$\rho(\boldsymbol{x},t) = \int f(\boldsymbol{x},\boldsymbol{\xi},t) d^3\xi, \qquad (2.1)$$

en el cual se considera la contribución de partículas con todas las velocidades posibles en la posición \boldsymbol{x} a tiempo t. De esta forma, puede determinarse la densidad de impulso mediante

$$\rho(\boldsymbol{x},t)\boldsymbol{u}(\boldsymbol{x},t) = \int \boldsymbol{\xi} f(\boldsymbol{x},\boldsymbol{\xi},t) d^3 \xi.$$
 (2.2)

De forma similar, la densidad de energía total corresponde al momento

$$\rho(\boldsymbol{x},t)E(\boldsymbol{x},t) = \frac{1}{2} \int |\boldsymbol{\xi}|^2 f(\boldsymbol{x},\boldsymbol{\xi},t) d^3 \xi.$$
 (2.3)

Bibliografía

[1] Fogliatto, E. O., Clausse, A., Teruel, F. E. Simulation of phase separation in a Van der Waals fluid under gravitational force with Lattice Boltzmann method. International Journal of Numerical Methods for Heat & Fluid Flow, 29 (9), 3095–3109, 2019. URL https://www.emerald.com/insight/content/doi/10.1108/HFF-11-2018-0682/full/html. 1