DRAFTSMAN	

•
ග්

50

40

ω₁

201

<u>0</u> I

ပ ပ ပ ပ ⊢ < ပ ပ \circ < -ပပ တ ပ ပ $\forall \vdash \forall$ ပ ဖ ပ 000 000 \vdash \prec \vdash $\forall \vdash \forall$ \vdash \prec \vdash $\vdash \land \vdash \land$ $\circ \circ \circ \circ$ $\vdash \land \vdash \land$ \circ \circ \circ \circ $\vdash \land \vdash \land$ $\circ \circ \circ \circ$ $\circ \circ \circ \circ$ $\circ \circ \circ \circ$ 0000 $\forall \vdash \forall \vdash$ \odot \odot \odot \odot $\forall \vdash \forall \vdash$ 0000 \circ \forall **O O** $\forall \vdash$ (C) \vdash \triangleleft $\forall \vdash$ \vdash \triangleleft **⊢** ∢ V H < ⊢ ຕີດຄືດ້ Bet v 1 non-sense Bet v 1 sense sense primer

ග

-

S

 \circ

Ø

non-sense primer

Oligonucleotide primers for site directed mutagenesis of Bet v 1 (No. 2801)

O.A \circ \circ 4 4 $\circ \circ \vdash \vdash$ 04000-44444-4-4- $A \vdash Q \cup Q \cup Q \cup Q \cup Q \vdash A \vdash Q \vdash$ $\circ\circ$ O + O + O + O + O + O + O + O \vdash 0 0 0 0 \vdash \vdash 1 0 0 0 0 0 4 4 \bigcirc $O \vdash \vdash O \land \land \vdash O \vdash O \land O \land \land \vdash \vdash O \land$ -00+0404+4+04004++ $\forall \vdash \vdash \vdash \forall \circlearrowleft \vdash \circlearrowleft \circlearrowleft \forall \circlearrowleft \circlearrowleft \circlearrowleft \circlearrowleft \circlearrowleft \circlearrowleft \circlearrowleft \circlearrowleft \vdash \circlearrowleft$ 000-404--4000---00 OOOOAAAA+O+AOOAOAO \bigcirc \bigcirc 0004+404+0+004+4+05 ည် 5. 5. 'n 31-mer 24-mer 23-mer 23-mer 31-mer 23-mer 23-mer 23-mer 23-mer 23-mer 23-mer 23-mer 23-mer 24-mer 24-mer 24-mer 15-mer 183Bv, 198Bv, 185Bv, 186Bv, 189Bv, 192Bv, 184Bv, 197Bv, 187Bv, 188Bv, 190Bv, 191Bv, 193Bv, 194Bv, 195Bv, 196Bv. 199Bv 200Bv, 15: 7 . 16: 8 4: 5: 7: 8: g 12. 33. 7. non-sense non-sense non-sense non-sense non-sense non-sense non-sense non-sense non-sense sense sense sense sense sense sense sense sense sense 9 9

5 A

Q D

Y U

O A

FIG. 3

1 (· A- C)

GGT	GTG	TTT	AA.	ГТАТ	GAG	ACT	GAG	ACC	C <u>A</u> CC	ТСТ	GTT.	ATC	CCA	GCA	GCT	CGA	CTG	TTC	AA	.G	60
G	V	F	N	Y	E	T	E	Ť	T-F	S	V	I	P	Α	Α	R	L	F	K		20
			9	(A- C	3)		2 (A	A-C)) 2(A- C)										
GCC	CTTT.	ATC	CTT	G <u>A</u> T(GGC	GAT	A <u>A</u> C	CTC	TTTC	CA <u>A</u>	<u>L</u> AG	GTTC	GCAG	CCC	CAA	GCC	ATT.	AGC	AG	T	120
Α	F	I	L	D-G	G	D	N-T	L	F	P	ζ- Q	V	A	P	Q	A	I	S	5	5	40
		3(G	A- 7	CC)	7	7 (A.	A- TC)					4	G- (C)		6	(GA	\- T	(C)	
GTT	GAA	AAC	CAT	Г <u>GA</u> A	.GG/	۸ <u>۸۸</u>	TGGA	\GG	GCC1	rgg.	AAC	CAT"	TAA	GAA	<u>G</u> A1	CAC	CTT	TCC	CCC	<u> </u>	180
V	Е	N	I	E-S	G	N- :	S G	٠G	P	G	Т	I	K	K -	N I	S	F	·]	PE	E - S	60
										•					5	(CA	TO	3)			
GGC	GGCCTCCCTTTCAAGTACGTGAAGGACAGAGTTGATGAGGTGGACCA <u>CA</u> CAAACTTCAAA															AA -	240				
G	L	P	F	K	Y	V	K	D	R	V	D	E	V	D	Н	T - A	A N	F	,	K	80
																		-			
TAC	AAT	TAC	AGO	CGTG	ATC	GAC	GGC	GG7	rccc	ATA	.GGC	CGAC	CACA	ATTO	GGA	GAA	GAT	СТС	CA	AC	300
Y	N	Y	S	V	I	Е	G	С	P	. I	G	D	T	L	E	K	I	S	S	N	100
10 (G AC	G -CA	C)		8	(CC	CC - T	GG :)												
GAG	ATA	AAC	AT.	AGTO	GC/	4A <u>C</u>	<u>CC</u> CT	GA?	ΓGGA	.GGA	ATC(CATO	CTTC	AA(GAT(CAG	CAA	CAA	\GT	AC	360
Е	I	K	I	V	Α	T	P -C	D	G	G	S	I	L	K	I	S	N	I	ζ	Y	120
CAC	ACC.	AAA	.GG	ГGАС	CAT	rga(GGTC	AA(GGCA	\GA(GCA	GGT'	TAA	GGC	AAC	TAA	AG	٩AA	TG	GGC	420
H	T	K	G	D	Н	Е	V	K	A	E	Q	V	K	A		K	. E	Ξ .	M	Ġ	140
GAG	ACA	CTT	TTC	AGG	GCC	GTT	GAG.	AGC	CTAC	CTC	TTG	GCA	CAC	TCC	GAT	GCC'	TAC	AA(СТА	A	480
С	т	т	т	D		3.7	E	c	v	Ŧ	т		* *	C	Б		3.7	N.T	-4-		150

F16. 9

9/16

FIG. IOA

10/16 0 09 50 FIG. 10B **4**0 0 8 8 8 5 8 8 8 8 \$ 8 T.P. Vcs v 5 Vcs v 5 Vcs v 5 Vcs m 5 Vcs m 5 Vcs p 5 Vcs p 5 Vcs g 5 Vcs s 5 Vcs c 5 Vcs c 5

FIG. 10 C

11/16

FIG. 10D

0 0

ပ ပ

⊢ ∢

ပ ပ

⊢ <

∢ ⊢

< - <

∢⊢ ∢

< ⊢ < 0000

< ⊢

 $\vdash \triangleleft \vdash \triangleleft$

Ø O ⊢ ∢

0000

0000

0000

ပဖပဖ

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

⋖

ပ ဖ

ပ ပ

O O

∢ ⊢

ပ ပ

< ⊢

) (၁ (၁ (၁)

∢ ⊢

Ves v 5 mutant 1 (K72A)

.

Ves v 5 non-sense

Ves v 5 sense

non-sense primer

sense primer

∢ ⊢

 \prec \vdash

 $\prec \vdash$

∢ ⊢

Mutant-specific oligonucleotide primers used for Ves v 5 mutants.

Mutated nucleotides underlined

 \triangleleft

< ⊢

< ⊢

(b) (c)

< ⊢

⋖

ග

G

 \circ

 \vdash

G

⋖

< ⊢

⋖

 \checkmark

⊢ <

< ⊢

00

ပ ပ

V É

ပ ပ

O O

⋖

ပဖပ

 $\forall \vdash \forall$

 \vdash \prec \vdash

< 1 < 000

 \circ \circ \circ \circ

 $\forall \vdash \forall \vdash$

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

 $\vdash \land \vdash \land$

9090

9090

 $\vdash \triangleleft \vdash \triangleleft$

 $\forall \vdash \bigcirc \bigcirc$

 $\forall \vdash \forall \vdash$

 $\forall \vdash \forall \vdash$

 \circ \circ \circ

 $\circ \circ \circ \circ$

 \prec \vdash

 \forall \vdash

< ⊢

ပ ပ

 \vdash \triangleleft

< H

∢ ⊢

⊢ ∢

ပ ပ ပ

ပ ပ

Ves v 5 mutant 2 (Y96A)

3 4 3 4

Ves v 5 non-sense

Ves v 5 sense

non-sense primer

sense primer

 \triangleleft

⋖

 \vdash

 \vdash ග

⋖

—

A Q C

 \triangleleft

F16. 12

Oligonucleotide primers for the site directed mutagenesis of Ves v 5.

38-mer: 1: Xhol start, all sense

TGTAAAATAAATG C K I K EcoRI
5'-C C G C T C G A G A A A G A A A C A A T T A T T C
L E K R N N Y C
amino terminus of Ves v 5

 \vdash \circ ∀ ⊢
C > **⊢** ७ 4 ⊢ C ⊢ C A G **⊢** ∪ ပ ပ <u>ე</u> ∢ Ū ⊢ **∪** ⊢ 5'- C C A G C 5'- C A T A 1 21-mer 21-mer 1: K72As non-sense sense

O A ⊢ ഗ <u>ე</u> ⊢ 5'- T 5'- G 21-mer 21-mer 4: Y96Aa 3: Y96As

⋖ **—** ⋖ G 4 G ပ ဗ **-**ပ G ⋖ ပ <u>⊢</u> 5'-ATTCA 7: CT-pPICZaA, 21-mer

all non-sense

non-sense

sense

2 2

G

G

4 4

< ⊢ <u>ე</u> ⊢

O A

Q O

O 4 **⊢** ७

७ ⊢

<u>ი</u> ⊢

⊢ ن

ပ ပ

<u>ე</u> ∢

Q O

A O

G

FIG. 13

					,								ATAT Y		60 20
	'AAA K													GAG E	120 40
	AGA(D													GGAG E	.180 60
	G)AA	GAA'	ĠAA	AAA	TTT		ATG(W	GAAC N	240 80
										(ATA	rgg1	CÁC	TA -0 CGAT. D	ACT	300 100
	GAT D											TAG S S		GGCT A	360 120
	TAC Y									TGA E		GAA K		TAT Y	420 140
	'AAG K												TCAA Q	ATG M	480 160
													GAAA K	ATGG W	540 180
													GGAA E		600 200
	ACA T			,											612 204

