

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

Offenlegungsschrift

® DE 10142170 A 1

Aktenzeichen: 101 42 170.2 Anmeldetag:

29. 8. 2001 Offenlegungstag: 20. 3.2003 (f) Int. Cl.⁷:

G 01 S 13/12 G 01 S 13/58

(7) Anmelder:

Robert Bosch GmbH, 70469 Stuttgart, DE

Erfinder:

Gottwald, Frank, 71277 Rutesheim, DE; Schlick, Michael, Dr., 71229 Leonberg, DE; Toennesen, Tore, Dr., 72760 Reutlingen, DE; Haensel, Jens, 71229 Leonberg, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Pulsradaranordnung
- Eine Pulsradaranordnung weist eine ein kontinuierliches Hochfrequenzsignal liefernde Hochfrequenzquelle (1) auf, die einerseits mit einem sendeseitigen Pulsmodulator (3) und andererseits mit zwei getrennt steuerbaren Pulsmodulatoren (71, 72) in mindestens einem Empfangszug in Verbindung steht. Den Pulsmodulatoren (71, 72) sind jeweils Mischer (4, 5) nachgeschaltet. Die Mischer werten einen an einem Objekt reflektierten Radarpuls zusammen mit dem Signal der Hochfrequenzquelle (1) aus.

Die Pulsradaranordnung läßt unterschiedliche Betriebsweisen zu, die auf einfache Weise umsteuerbar sind.

Beschreibung

[0001] Die Erfindung geht aus von einer Pulsradaranordnung insbesondere für Nahbereichs-Pulsradaranwendungen bei Kraftfahrzeugen.

Stand der Technik

[0002] In der Kraftfahrzeugtechnik werden Radarsensoren für die Messung des Abstandes zu Zielen und/oder der 10 Relativgeschwindigkeit bzgl. solcher Ziele außerhalb des Kraftfahrzeuges eingesetzt. Als Ziele kommen z. B. vorausfahrende oder parkende Kraftfahrzeuge, Fußgänger, Radfahrer oder Einrichtungen im Umfeld des Kraftfahrzeugs in Frage. Das Pulsradar arbeitet bspw. bei 24,125 GHz und ist 15 für die Funktionen Stop & Go, Precrash, Tote-Winkel-Detektion, Park-Assistent und Rückfahrhilfe verwendbar.

[0003] Fig. 1 zeigt eine schematische Darstellung einer Radareinrichtung mit einem Korrelationsempfänger des Standes der Technik. Ein Sender 300 wird durch eine Puls- 20 erzeugung 302 veranlaßt, über eine Antenne 304 ein Sendesignal 306 abzustrahlen. Das Sendesignal 306 trifft auf ein Zielobjekt 308 wo es reflektiert wird. Das Empfangssignal 310 wird von der Antenne 312 empfangen. Diese Antenne 312 kann mit der Antenne 304 identisch sein. Nach dem 25 Empfang des Empfangsignals 310 durch die Antenne 312 wird dieses dem Empfänger 314 übermittelt und nachfolgend über eine Einheit 316 mit Tiefpaß und Analog/-Digitalwandlung einer Signalauswertung 318 zugeführt. Die Besonderheit bei einem Korrelationsempfänger besteht darin, 30 daß der Empfänger 314 von der Pulserzeugung 302 ein Referenzsignal 320 erhält. Die von dem Empfänger 314 empfangenen Empfangssignale 310 werden in dem Empfänger 314 mit dem Referenzsignal 320 gemischt. Durch die Korrelation kann auf der Grundlage der zeitlichen Verzögerung 35 von außen bis zum Empfangen der Radarimpulse bspw. auf die Entfernung eines Zielobjektes geschlossen werden.

[0004] Aus der DE 199 26 787 ist eine ähnliche Radareinrichtung bekannt. Dabei wird ein Sendeschalter durch die Impulse eines Generators ein- und ausgeschaltet, so daß 40 während der Pulsdauer eine von einem Oszillator generierte und über eine Gabelung auf den Sendeschalter geleitete Hochfrequenzwelle zur Sendeantenne durchschaltet. Ein Empfangsteil erhält ebenfalls das Ausgangssignal des Generators. Das Empfangssignal, d. h. ein an einem Objekt re- 45 flektierter Radarpuls, wird mit dem Oszillatorsignal, das über einen Empfangsschalter zu einem Mischer gelangt, während eines vorgegebenen Zeittores gemischt und ausgewertet.

[0005] Auch die US 6,067,040 arbeitet mit einem Sende- 50 schalter, der durch Impulse eines Generators ein- und ausgeschaltet wird. Für den Empfang der reflektierten Radarpulse sind getrennte Züge für I-Q-Signale vorgesehen. Auch hier wird das Empfangssignal nur während eines vorgegebenen Zeittores gemischt und ausgewertet.

Vorteile der Erfindung

[0006] Mit den Maßnahmen der Erfindung kann die Performance gegenüber bekannten Pulsradaranordnungen er- 60 weitert werden. Bei der Lösung gemäß US 6,067,040 befindet sich ein empfangsseitiger Pulsmodulator oder/-schalter vor einem Leistungsteiler für die Aufteilung des LO (Local Oszillator) -Signals auf die Mischer in den empfangsseitigen IQ-Zweigen. Dies hat den Nachteil, daß kein Mehremp- 65 fängersystem realisiert werden kann und keine gleichzeitige Auswertung mehrerer unterschiedlicher Empfangszellen möglich ist. Bei der erfindungsgemäßen Lösung hingegen

sind zwei getrennt steuerbare empfangsseitige Pulsmodulatoren vorgesehen, über die das kontinuierliche Signal der Hochfrequenzquelle, die auch den sendeseitigen Pulsmodulator steuert, auf jeweils einen empfangsseitigen Mischer 5 schaltbar ist. D. h. hier kann im Gegensatz zur US 6,067,040 jeder Mischer in einem Empfangszweig zu unterschiedlichen Zeitpunkten mit dem Signal der Hochfrequenzquelle beaufschlagt werden und auch unterschiedlich lange mit dem Signal der Hochfrequenzquelle verbunden sein. Auf diese Weise können unterschiedliche Betriebsweisen ermöglicht werden, die darüber hinaus noch schnell und flexibel geändert werden können. Eine solche Anderung kann einfach dadurch erfolgen, daß die Verzögerungszeit der Verzögerungsschaltungen über die die empfangsseitigen Pulsmodulatoren ansteuerbar sind, variiert werden. Es können auch mehrere Betriebsarten hintereinander nach einem vorgegebenen Schema automatisch ablaufen.

[0007] Werden beide Pulsmodulatoren/-schalter zu gleichen Zeiten geschaltet, so besitzt der Empfangszug bestehend aus zwei Empfangszweigen der Pulsradaranordnung die übliche Funktionsweise. Werden die Schalter zu verschiedenen Zeiten geschaltet bzw. besitzen sie unterschiedlich lange Öffnungszeiten, so lassen sich alle Möglichkeiten eines Mehrempfängersystems ausnutzen.

[0008] Es können eine Vielzahl von Einstellungen bzw. Moden eingestellt werden. Ein Detektionsbereich von bspw. bisher 7 m kann nun aufgeteilt werden in z. B. 0 bis 4 m und 4 bis 7 m. Eine Erweiterung des Detektionsbereichs führt nicht zwangsläufig zu einer Verlängerung der Meßzeiten. Ein Kanal kann die 0 bis 4 m abdecken und der andere mit z. B. längerer Meßzeit den Bereich 7 bis 14 m. Im Spezialfall arbeitet die Radaranordnung nach der Erfindung als üblicher IQ-Demodulator. Weiterhin kann sich parallel zur Entfernungsmessung ein Kanal um die CV (Closing Velocity) -Messung kümmern, die z. B. zur Bestimmung der Radialgeschwindigkeit eingesetzt werden kann.

[0009] So können insbesondere:

55

- mehrere Empfangskanäle parallel betrieben werden,
- IQ-Demodulatorbetrieb und Einzelbetrieb ermöglicht sein, mehrere Antennen parallel betrieben werden (Multiempfänger-Prinzip),
- die Tastverhältnisse im Sende- und Empfangszug unterschiedlich gewählt werden,
- das Tastverhältnis kann eins sein (reines Dopplerradar),
- die Radarpulse können in ihrer Wiederholfrequenz und/oder Pulsdauer zur Erhöhung der Störsicherheit variiert werden,
- beim Einsatz der doppelten oder dreifachen Sendepulsleistung können mehrere Empfangszellen gleichzeitig untersucht werden,
- bei zu starken Zielen im Nahbereich kann die Leistung der Empfangspulse auf mehrere Empfangszüge aufgeteilt werden, um nachfolgende Empfangssignalverstärker nicht zu übersteuern,
- es kann eine PN-Codicrung vorgesehen sein mit einer zur eingestellten Entfernung korrespondierenden Empfangsfolge,
- es ist eine Kreuzechoauswertung möglich,
- im Sendezug kann die Überlagerung zweier orthogonaler Codes vorgesehen sein und empfangsseitig eine Auswertung jeweils nur eines der gesendeten orthogonalen Codes pro Empfangszweig.

3

Zeichnungen

[0010] Anhand der weiteren Zeichnungen werden Ausführungsbeispiele der Erfindung näher erläutert. Es zeigen [0011] Fig. 2 ein Blockschaltbild einer Pulsradaranordnung nach der Erfindung,

[0012] Fig. 3 ein Blockschaltbild einer Pulsradaranordnung nach der Erfindung mit gemeinsamer Pulsaufbereitung,

[0013] Fig. 4 ein Blockschaltbild einer Pulsradaranord- 10 nung nach der Erfindung mit mehreren Empfangszügen.

Beschreibung von Ausführungsbeispielen

[0014] Der in Fig. 2 dargestellte erfindungsgemäße Ra- 15 darsensor weist eine Hochfrequenzquelle 1 auf, die ein kontinuierliches Hochfrequenzsignal (CW-Signal) liefert. Über einen Signalteiler in Form einer Gabelschaltung 2 gelangt dieses Hochfrequenzsignal einerseits an den Eingang eines sendeseitigen Pulsmodulators 3 zur Abgabe von Radarim- 20 pulsen an die Sendeantenne 61 und andererseits über einen weiteren Signalteiler 8 direkt an die Eingänge zweier empfangsseitiger Pulsmodulatoren 71 und 72. Die Ausgänge dieser Pulsmodulatoren 71 und 72 sind mit jeweils einem Mischer 4 und 5 verbunden. Die Ausgänge dieser Mischer 4 25 und 5 wiederum sind über einen Leistungsteiler 9, z. B. einen 3 dB Signalteiler mit der Empfangsantenne 6 verbunden. Es sind zwei Empfangszweige mit zwei Pulsmodulatoren 71, 72 und zwei Mischern 4 und 5 vorgesehen, um eine I/Q (Inphase/Quadraturphase)- Fähigkeit der Radaranord- 30 nung zu erreichen. Der Signalteiler 9 dient zur empfangsseitigen Aufteilung des Antennensignals in die Quadraturkomponentensignale I und Q. Die Mischer 4 und 5 sind bspw. als balancierte Mischer in Form eines RAT-RACE-Hybrides realisiert (vgl. hierzu insbesondere die EP 685 930 A1 die 35 den Aufbau eines solchen RAT-RACE-Hybrides beschreibt). Über die Pulsmodulatoren 71 und 72 ist das kontinuierliche Signal der Hochfrequenzquelle 1 jeweils auf einen der Mischer 4 und 5 schaltbar. Die Ansteuerung des sendeseitigen Pulsmodulators/-schalters 3 geschieht über eine 40 Pulssignalquelle 10 und eine Sendetorschaltung 101. Die Steuerung der Pulsmodulatoren 71 und 72 erfolgt jeweils getrennt von den Pulssignalquellen 11 und 12 aus, denen jeweils eine Verzögerungsschaltung 21 und 22 sowie eine Empfangstorschaltung 211 und 212 zugeordnet ist.

[0015] Ist ein an einem Objekt reflektierter Radarpuls von der Antenne 6 über den Leistungsteiler 9 zum Mischer 4 bzw. 5 gelangt, so wird aus dem kontinuierlichen Signal der Hochfrequenzquelle und dem reflektierten Radarpuls während der Zeit in der der Pulsmodulator das Signal der Hochfrequenzquelle 1 passieren läßt die Hüllkurve des Empfangspulses (ZF-Signal) gebildet. Diese/s Mischsignal/Hüllkurve wird durch den ZF-Verstärker 411 bzw. 412 einer Bandbreite von z. B. 10 kHz verstärkt und einem Empfangsabtaster 413 bzw. 414 zugeführt. Dies geschieht für den I- und den Q-Kanal getrennt (getrennte Empfangs- und Auswertezüge für das I- und Q-Empfangssignal). Um die Laufzeit des empfangenen Radarpulses vergleichen zu können und daraus eine Entfernungsinformation zu erhalten, sind die Verzögerungsschaltungen 21 und 22 erforderlich.

[0016] Nach einer definierten Zeit nach der Generierung des Sendepulses, die der Pulslaufzeit für die gewünschte Entfernungszelle entspricht, wird ein breitbandiger Abtaster 413 bzw. 414 mit einem sehr kurzen Abtastpuls beaufschlagt und tastet das Ausgangssignal des ZF-Verstärkers 65 411 bzw. 412 in der gewählten Entfernungszelle ab. Die Länge des Abtastpulses ist dabei in der Größenordnung der Sendepuls- und ZF-Pulsbreite. Dies geschieht in der Rate

4

der Erzeugung der Sendepulse, nur entsprechend verzögert. Die Variation der Verzögerungszeit erlaubt das Abtasten des gewünschten Entfernungsbereiches identisch zum SRR (Short Range Radar). Der Abtaster detektiert von 0 verschiedene Spannungen und erkennt damit die Pulsrückkehr nach der gewünschten Laufzeit. Nicht kohärente Pulsintegration ist möglich, die das Signalrauschverhältnis proportional zu SQRT (n) verbessert, wobei n die Anzahl der integrierten Pulse ist.

[0017] Die Aufbereitung der Steuerpulse für die Pulsmodulatoren 3, 71 und 72 kann gemäß Fig. 3 auch gemeinsam durch eine gemeinsame Pulssignalquelle 100 erfolgen. Da die Verzögerungszeiten der Verzögerungsschaltungen 21 und 22 unterschiedlich wählbar sind, können auch hier die Pulsmodulatoren 71 und 72 unabhängig voneinander gesteuert werden. Natürlich kann alternativ auch nur der sendeseitige Pulsmodulator 3 eine eigene Pulssignalquelle 10 aufweisen und für die empfangsseitigen Pulsmodulatoren ist dann eine gemeinsame Pulssignalquelle vorgesehen.

[0018] Fig. 4 zeigt ein Ausführungsbeispiel mit mehreren Empfangszügen, hier speziell zwei. Die einzelnen Empfangszüge können wie in Fig. 2 oder 3 ausgestaltet sein. Wie in den Fig. 2 und 3 weist jeder Mischer 4, 5 bzw. 41, 51 einen separaten Pulsmodulator 71, 72 bzw. 711, 721 auf, der unabhängig vom jeweils anderen Mischer des gleichen Empfangszuges über eine entsprechende Pulssignalquelle 11, 12 bzw. 111, 121, Verzögerungsschaltung 21, 22 bzw. 211, 221 und Empfangstor 212, 213 bzw. 214, 215 steuerbar ist. Die einzelnen Empfangszüge können entweder über eine gemeinsame Empfangsantenne verfügen oder jeweils über separate Empfangsantenne 62, 63. Um die Mischer 41, 51 der weiteren Empfangszüge an die allen Empfangszügen gemeinsame Hochfrequenzquelle 1 anzubinden, sind nachgeordnete weitere Signalteiler 91, 92 erforderlich.

[0019] Durch die mindestens zwei Empfangszüge und separate Steuerung der empfangsseitigen Pulsmodulatoren 71, 72 bzw. 711, 712 mit jeweils einstellbaren Verzögerungsschaltungen 21, 22, 211, 221 auf unterschiedliche Verzögerungszeiten sind unterschiedliche Betriebsarten möglich und auch ein schneller Wechsel zwischen diesen unterschiedlichen Betriebsarten je nach den Bedürfnissen des Fahrzeugführers ist möglich. Es können damit insbesondere

- mehrere Kanäle (Mischer) parallel betrieben werden,
- mehrere Antennen parallel betrieben werden (Multiempfänger-Prinzip),
- die Tastverhältnisse im Sende- und den Empfangszügen können unterschiedlich gewählt werden,
- das Tastverhältnis kann eins sein (reines Dopplerradar),
- die Sendepulse können in ihrer Wiederholfrequenz und/oder Pulsdauer insbesondere zur Erhöhung der Störsicherheit variiert werden,
- es ist I/Q-Demodulatorbetrieb und Einzelkanalbetrieb möglich,
- beim Einsatz der doppelten oder dreifachen Sendepulsleistung können bei gleicher Empfindlichkeit mehrere Empfangszellen gleichzeitig ausgewertet werden,
 die Entfernungszellen können durch Tasten bzw.
 Ausblenden des Empfangssignals eingestellt werden,
 bei zu starken Zielen im Nahbereich kann die Empfangspulsleistung geteilt werden, um insbesondere nachfolgende Verstärker nicht zu übersteuern,
- es ist eine Kreuzechoauswertung möglich.

[0020] Werden codierte Folgen von Pulsen (PN-Codierung) ausgesendet, werden die Modulatoren in den Emp-

35

45

50

55

5

fangszügen, in diesem Falle z. B. Phasendreher, mit einer der eingestellten Entfernung korrespondierenden Empfangsfolge angesteuert. Dies trägt in hohem Maße zur Unterdrückung von Falschzielen bei. Die Kanäle überwachen verschiedene Entfernungsbereiche. Wird eine empfangsseitige Einrichtung auf den PN-Code einer benachbarten Einrichtung eingestellt, ist eine Kreuzechoauswertung möglich. [0021] Im Sendezug kann eine Überlagerung zweier orthogonaler Codes vorgesehen sein und pro Empfangszug jeweils nur eines der gesendeten orthogonalen Signale ausge- 10 wertet werden.

[0022] Die sendeseitigen und empfangsseitigen Pulssignalquellen 10, 100, 11, 12, 111, 121 oder nur die empfangsseitigen Pulssignalquellen 11, 12, 111, 121 untereinander sind insbesondere bei mehreren Empfangszügen miteinan- 15 der phasengekoppelt, um definierte Zeitbeziehungen insbesondere für die gleichzeitige Überwachung mehrerer Empfangszellen zu erzielen.

[0023] Bei der Erfindung können mehrere Betriebsarten nacheinander nach einem vorgegebenen Ablaufschema ein- 20 gestellt werden. Hierzu ist lediglich eine gemeinsame Steuerschaltung 400 für die Pulssignalquellen und/oder die Verzögerungsschaltungen notwendig, die jeweils die Zeitfenster für das Aussenden und die Auswertung der Radarpulse nach dem vorgegebenen Ablaufschema vorgeben. Die un- 25 terschiedlichen Parameter für die jeweiligen Betriebsarten können in einem in der Steuerschaltung vorgesehenen Speicherbaustein geladen sein oder von einem separaten Speicherbaustein 401 aus zugeführt werden. Die Steuerung der Betriebsarten kann natürlich auch interaktiv ausgestaltet 30 sein, d. h. in Abhängigkeit der Auswertung in einer ersten Betriebsart können geänderte Parameter für weitere Betriebsarten vorgesehen sein.

Patentansprüche

- 1. Pulsradaranordnung insbesondere für Nahbereichs-Pulsradaranwendungen bei Kraftfahrzeugen mit folgenden Merkmalen:
 - einer Hochfrequenzquelle (1) zur Abgabe eines 40 kontinuierlichen Hochfrequenzsignals, die einerseits mit einem sendeseitigen Pulsmodulator (3) zur Abgabe von Radarpulsen beschaltet ist und andererseits mit je einem Pulsmodulator (71, 72) in einem Empfangszweig,
 - zwei getrennt steuerbaren empfangsseitigen Pulsmodulatoren (71, 72) über die das kontinuierliche Signal der Hochfrequenzquelle (1) auf jeweils einen empfangsseitigen Mischer (4, 5) schaltbar ist.
- 2. Pulsradaranordnung nach Anspruch 1, dadurch gekennzeichnet, daß zur Ansteuerung der empfangsseitigen Pulsmodulatoren (71, 72) zwei Pulssignalquellen (11, 12) vorgesehen sind, die jeweils über eine separate Verzögerungsschaltung (21, 22) verfügen.
- 3. Pulsradaranordnung nach Anspruch 1, dadurch gekennzeichnet, daß zur Ansteuerung der empfangsseitigen Pulsmodulatoren (71, 72) eine gemeinsame Pulssignalquelle (100) vorgesehen ist, die mit jeweils einer separaten Verzögerungsschaltung (21, 22) für jeweils 60 einen der empfangsseitigen Pulsmodulatoren (71, 72) beschaltet ist.
- 4. Pulsradaranordnung nach Anspruch 3, dadurch gekennzeichnet, daß die gemeinsame Pulssignalquelle (10) für die empfangsseitigen Pulsmodulatoren (71, 65 72) auch das Pulssignal für den sendeseitigen Pulsmodulator (3) liefert.
- 5. Pulsradaranordnung nach einem der Ansprüche 1

6

- bis 4, dadurch gekennzeichnet, daß zwischen der Empfangsantenne (6) und den empfangsseitigen Mischern (4, 5) ein Quadratur-Leistungsteiler (9) vorgesehen ist, so daß dem einen Mischer (4) ein I (Inphace)-Empfangssignal und dem anderen Mischer (5) ein Q (Quadratur)- Empfangssignal zuführbar ist.
- 6. Pulsradaranordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß eine Signalteilereinrichtung (2, 8) vorgesehen ist zur Aufteilung des kontinuierlichen Signals der Hochfrequenzquelle (1) auf den sendeseitigen Pulsmodulator (2) und auf die in den Empfangszweigen vorgesehenen Pulsmodulatoren (71, 72).
- 7. Pulsradaranordnung nach einem der Ansprüche 1 bis 3, bzw. 5 oder 6, dadurch gekennzeichnet, daß für den sendeseitigen Pulsmodulator (3) eine separate Pulssignalquelle (10) vorgesehen ist.
- 8. Pulsradaranordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß mindestens ein weiterer Empfangszug mit entsprechenden Empfangsantennen (63...), empfangsseitigen Mischern (41, 51), empfangsseitigen Pulsmodulatoren (711, 721) sowie gegebenenfalls erforderlichen weiteren Signalteilern (91, 92) und Pulssignalquellen (111, 121) vorgesehen ist.
- 9. Pulsradaranordnung nach Anspruch 8, dadurch gekennzeichnet, daß die Anbindung der Pulsmodulatoren (711, 721) der weiteren Empfangszüge über zusätzliche Signalteiler (91, 92) erfolgt, die der Hochfrequenzquelle (1) nachgeordnet sind.
- 10. Pulsradaranordnung nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß bei mehreren Empfangszügen mehrere Entfernungszellen über entsprechende Auswerteeinrichtungen gleichzeitig auswertbar sind. 11. Pulsradaranordnung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die sendeseitige und die empfangsseitigen Pulssignalquellen (10, 11, 12, 111, 121) oder nur die empfangsseitigen Pulssignalquellen (11, 12, 111, 121) untereinander, insbesondere wenn mehrere Empfangszüge vorgesehen sind, miteinander phasengekoppelt sind.
- 12. Pulsradaranordnung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Tastverhältnisse der Radarpulse im Sendezug und Empfangszug bzw. den Empfangszügen unterschiedlich gewählt sind.
- 13. Pulsradaranordnung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß bei einer PN-Codierung der Radarpulse die empfangsseitigen Pulsmodulatoren (71, 72, 711, 721) mit einer zur eingestellten Entfernung korrespondierenden Empfangsfolge ansteuerbar sind.
- 14. Pulsradaranordnung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß eine Kreuzechoauswertung vorgesehen ist, d. h. bei mehreren Empfangszügen ist eine empfangsseitige Einrichtung auf den PN-Code einer benachbarten Einrichtung einstellbar.
- 15. Pulsradareinrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß im Sendezug die Überlagerung zweier orthogonaler Codes vorgesehen ist und ein Empfangszweig/-zug jeweils nur eines der gesendeten orthogonalen Signale auswertet.

Hierzu 3 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁷: Offenlegungstag: DE 101 42 170 A1 G 01 S 13/12 20. März 2003

Fig.1

Nummer: Int. Cl.⁷: Offenlegungstag: DE 101 42 170 A1 G 01 S 13/12 20. März 2003

Nummer. Int. Cl.⁷: Offenlegungstag: DE 101 42 170 A1 G 01 S 13/12 20. März 2003

Fig. 4