化工过程动态模拟技术 HYSYS部分

朱晓军 AspenTech

过程模拟历史

- 化工模拟优化技术的发展是建立在化学工业的发展、人 类对化工过程认识的深入及计算机技术的迅速发展等的历史 背景下的。
- 近现代以来,化学工业朝着综合化方向发展,流程结构 日益复杂,装置规模日趋大型化,化工行业的资源短缺、环 境污染等问题变得越来越重要。
- 同时,人们对化工过程的认识也越来越深入,1915年美国的A.D Little首次提出的单元操作的概念,上世纪50年代,传递过程理论诞生,随后,化工过程系统工程应运而生。自1965年以来,大型电子计算机出现,计算方法得到迅速发展。这一切为现代化工过程模拟优化技术的发展奠定了坚实的基础。

化工过程模拟系统开始产生于上世纪 后半叶, 其标志性事件就是化工流程模拟 软件的出现与开发。化工流程模拟软件是 由化学工程学、化工热力学、系统工程、 应用数理统计、计算方法及计算机技术等 多学科理论在计算机上实现的综合性模拟 系统。

HYSYS在设计和生产中的应用

HYSYS在生产中的应用

应用流程模拟软件解决实际工程的方法

流程模拟软件所需的基础知识

过程稳态模拟与动态模拟的区别

- (1)稳态流程模拟是化工流程模拟研究中开发最早、应用最普遍和发展比较成熟的一种重要技术。 稳态模拟的目的就是用适宜的系统数学模型来预 测过程的稳态性能。它包括物料衡算和能量衡算、 设备尺寸和费用计算以及过程的技术经济评价。
- (2) 动态模拟就是输入随时间变化,输出也是随时间变化的。涉及到动态数据如何输入到模拟系统。模拟实际装置的动态特性,对实际装置的控制策略进行验证。

过程稳态模拟与动态模拟的区别

稳态模拟	动态模拟
仅有代数方程	同时有微分方程和代数方程
物料平衡用代数方程描述	物料方程用微分方程描述
能量平衡方程用代数方程描述	能量方程用微分方程描述
严格的热力学方法	严格的热力学方法
无水力学限制	有水力学限制
无控制器	有控制器

稳态模拟技术

- ◆ 新装置设计
- ◆ 旧装置改造
- ◆ 已有装置校核、标定
- ◆ 操作调优
- 瓶颈分析
- ◆ 科学研究
- ◆ 新工艺流程开发

动态模拟技术

- ◆ 了解装置经受动态负荷的能力。
- 分析开停车及外部干扰作用下的动态性能,为装置及其控制系统的设备提供依据。
- ◆ 通过仿真计算, 在多种控制方案中进行优 选。
- ◆ 代替实验装置对操作给出动态响应,开发 达到训练目的的操作人员培训器。
- ◆用计算机动态模拟手段代替教学实验设备。

- ◆实际生产过程中不可能出现稳态,所以稳态模拟的过程中,势必要运用一些经验数据,可以 认为是一种理想中的运行状态。
- ◆ 在实际生产过程中,过程参数不停的波动,最 理想的状态也是一种动态的平衡,而这种动态 的状态运动稳态模拟工具是不可能实现的。

因此, 动态模拟对实际生产更有指导意义。

- ◆ 1)开停车过程的模拟。对开停车过程的模拟,可以知道开停车过程中将会产生多少不合格品,需要多长时间才能使完成开停车过程,从而可以知道需要多大的容器盛放这些不合格品,进而知道需要和多少高质量的产品混合后可以作为合格品出售。
- 2) 生产过程中参数波动的影响。过程变量如进料组成、温度及压力的波动等如果发生变化,系统需要一定时间才能回到正常状态,通过动态模拟,可以知道进料组成变化幅度在多大范围,生产的参数保持不变,系统经过多长时间可以回复到正常状态,以及因此对产品质量的影响。

Aspen HYSYS

Aspen HYSYS

Steady State Simulation

Steady State Licensed Features

Dynamic Simulation

Dynamic Licensed Features

Links to Other Programs – Aspen HTFS, Aspen Flarenet, Aspen HX-Net, Aspen Simulation Workbook

Basis Environment

Hysys Architecture

FLUID PACKAGE

Compor FLUID PACKAGE

Components

Property Package

HYPO GROUP

Hypo Components

Property Package

BLEND

Simulation Environment

Each Sub-Flowsheet has it's own "Environment"

HYSYS 结构

HYSYS 软件的基本 构件(目标)

流体包的结构

Prop Pkg 物性包 Components 成分名称

Other Property 其它物性

流体包和流程图的关系

Hysys Stand Alone Material Blocks

F4 Key
Object Palette

Material and Energy Streams

Unit Operations

Sub-Flow Sheets and Columns (= Special types of Sub-Flow Sheets)

Logical Operations

Hysys Stand Alone Material Environment

Start HYSYS & Create a new case

Simulation Environment

Basis Environment

Sub - Flow Sheet

HYSYS动态模拟

- → 动态模拟的首要原则
 - ◆真实性 实际工厂可能出现的问题,模型也一样会出现。
- ◆ 事故预测分析
 - ★事故的提前预测以及预防
 - ◆事故后果控制和限制
 - +装置可靠性分析

HYSYS动态模拟

- ◆操作员培训系统(OTS)
 - ◆使操作员深刻的理解装置动态特性
 - ◆使操作员对装置操作规程有更深刻的理解
- ◆提高紧急停车系统、报警系统的可靠性
 - ◆全面的认识非常规操作将导致的后果
 - →对开停车过程的全面分析

企业面对的问题

- ◆ 操作员人身安全问题
- ◆ 操作员技能问题
- ◆ 环境保护问题
- ◆生产资料浪费问题
- 设备维护问题
- ◆ 企业信誉问题

- ◆ 操作员失误
 - ◆缺乏有效沟通
 - →对装置特性缺乏深入了解
 - →对操作规程缺乏理解
 - ◆操作员分心、劳累

生产中的问题

- ◆ 设备问题
 - ◆设备设计或安装过程可能出现的问题
 - ◆生产条件超过装置最大负荷
 - →断电、停水、公用工程造成问题
- 工艺设计缺陷
 - ◆工艺设计考虑不充分
 - ◆控制策略问题
 - ◆装置安全考虑不周

- ◆ Aspen HYSYS 稳态模拟技术
 - ★面向油气和炼油行业
 - ★主要使用稳态模拟功能
 - ◆稳态模拟可以扩展到动态模拟
- ◆ Aspen HYSYS 动态模拟技术
 - ◆自由选择简化模拟和详细模拟
 - ◆用户界面友好
 - +经过多年工业验证

Start HYSYS

Aspen HYSYS®

Version 2006.5

© 2007 Aspen Technology, Inc. AspenTech®, aspenONE® and the Aspen leaf logo are registered trademarks of Aspen Technology, Inc. All rights reserved.

压力驱动和流量驱动

- ◆进料和产物的压力已知,流量是通过压差和物流的阻力计算出来的。在动态模拟里面控制主要是通过控制阀实现的,大部分动态模拟都是采用Pressure Driven的。
- ◆ 压力驱动是由压力差引起的流动,而流量驱动则是在动态模拟中常用的另一种方法,它是将一股流量不经流量驱动设备(阀泵等)直接送入系统。

稳态案例

基础数据

物性包选择

FEED

Valve1

由稳态向动态切换

- ◆ 分离器的设置
- ◆目标是将分离器从稳态模拟转换到动态 模拟,然后安装控制器进行动态测试。

Dynamics Assistant

 从稳态切换到动态最简单的方式,使用 Dynamics Assistant.

Dynamics Assistant			
The assistant has identified the following items for consideration. If you are using non-uniform tray , you may lose the information by chosing "Make Change".			
		Make changes	
	Disable stream pressure specifications	✓	
	Enable stream pressure specifications Enable stream flow specifications	<u> </u>	
	Volumes not known		
A <u>b</u> out <u>P</u> references □ Save steady state case			
General Streams Pressure Flow Specs Unknown Sizes Tray sections her			
Analyze Again Make Changes Cancel			

Overview

分离器设置

- 从稳态流程切换到动态流程,必须重新定义自由度、定义所有的气相空间体积,定义所有的液相持量。
- ◆ 对于动态模拟, 体积大小直接关系到系统的时间

常数。 - V-100 - - X -Model Details **Dynamics** Vessel Volume [m3] <empty> Specs Dry Startup Vessel Diameter [m] <empty> Holdup C Initialize From User Height [m] <empty> Lig Volume Percent [%] 50.00 StripChart Init HoldUp. Heat Exchanger Level Calculator Vertical cylinder Lag Rxn Temperature Fraction Calculator Use levels and nozzles -Dynamic Specifications Feed Delta P [kPa] 0.0000 Vessel Pressure [kPa] 100.0 Add/Configure Level Controller Fating Worksheet Dynamics Reactions Design Delete Ignored

分离器设置

◆当分离器全满或全空之前,操作员必须要有至少 5分钟的预留时间,也就是"五分钟原则"。

◆分离器中的液体持量必须保证下游稳定至少5分钟以上。

 $V_{L} = (60kmol/hr)(5\min/60\min/hr)/\rho_{V}$

 $=5kmol/10kmol/m^3=0.5m^3$

Dynamics Assistant

流量控制器

压力控制器

液位控制器

Face Plate

Strip Chart

Dynamics Assistant

- ◆ Dynamics Assistant提供自由的选择从稳态模 拟切换到动态模拟。
- ◆经验:
 - ◆从工艺角度,应当定义边界物流的压力来模拟 真实的过程。
 - →从控制角度,对于没有压力变换设备的边界物流应当安装阀门。
 - → 泵的出口应当设置控制阀。

由稳态模拟切换至动态模拟

- ◆ 在进行动态模拟前确定过程中相关设备的气相和液相体积参数。
- 进行管路校核。
- ◆ 确定系统的自动控制回路设计,需要PID。
- 必须定义边界物流的压力或流量。
- 建立压力梯度。
- ◆ 检查反向流。

致谢

报告参考信息多数来自不同的公司的公开 资料。另有部分来自各种公开出版物、论文集和 学术报告等,在此对这些文献的作者表示感谢。 报告仅用于技术交流,不得用作商业用途。