

L'usage des calculatrices programmables ou d'ordinateurs n'est pas autorisé

Le sujet comporte quatre exercices : Un exercice de chimie et trois exercices de physique

Les parties de tous les exercices sont indépendantes

Chimie : (07 point/)

- Etude de l'hydrolyse d'un ester en milieu basique ;
- Etude d'une pile.

Physique : (13 points)

- Physique nucléaire (02 points) :
 - Etude du Radon.
- Electricité (05 points) :
 - Etude de la charge d'un condensateur ;
 - Etude d'un poste radio AM simple.
- Mécanique (06 points) :
 - Etude d'un mouvement sur un plan incliné;
 - Etude d'un mouvement dans le champ de pesanteur uniforme et dans un fluide

موضوع الامتحان الوطني الموحد للبكالوريا 2010 – الدورة العادية – مادة الفيزياء و الكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزيائية (الترجمة الفرنسية)

Barème

Chimie (07 points)

L'hydrolyse basique des esters est un moyen de préparation des alcools à partir de produits naturels, en plus d'autres applications dans le domaine médicalet industriel.

Le but de cet exercice est de suivre, par conductimétrie, l'évolution de la réaction du méthanoate de méthyle avec une solution d'hydroxyde de sodium, et à l'étude d'une pile à combustible utilisant le méthanol résultant.

<u>Première partie : Etude de l'hydrolyse d'un ester en milieu basique</u> <u>Données :</u>

- Toutes les mesures sont effectuées à 25°C;
- L'expression de la conductance à un instant t est : $G = k \sum_i \lambda_i [X_i]$;

Où : • λ_i : Conductivité molaire ionique de l'ion X_i ;

• k : Constante de la cellule de mesure de valeur k = 0.01 m;

Le tableau suivant donne les valeurs des conductivités molaires ioniques des ions en solution :

L'ion	Na_{aq}^{+}	OH aq	HCO - 2aq
$\lambda(S.m^2.mol^{-1})$	$5,01.10^{-3}$	$19,9.10^{-3}$	$5,46.10^{-3}$

• On néglige la concentration des ions Hydroniums H₃O⁺ devant les autres concentrations des ions présents dans le mélange réactionnel.

On verse dans un bécher un volume $V=2.10^{-4}~m^3$ d'une solution S_B d'hydroxyde de sodium de concentration molaire $C_B=10~mol.m^{-3}$, et on y ajoute à l'instant t_0 considérée comme origine des temps, une quantité de matière n_E du méthanoate de méthyle égale à la quantité de matière n_B d'hydroxyde de sodium $(n_E=n_B)$.

(On considère que le volume reste constant $V = 2.10^{-4} \text{ m}^3$).

Une étude expérimentale a permis de tracer la courbe représentative des variations de la conductance G du mélange en fonction du temps (Figure 1)

On modélise la réaction étudiée par l'équation de réaction suivante :

$$HCO_2CH_{3 (aq)} + OH_{aq}^- \longrightarrow HCO_{2 (aq)}^- + CH_3OH_{(aq)}^-$$

0,75

1

1

- 1- Faire l'inventaire des ions présent dans le mélange à un instant t.
- 2- construire le tableau descriptif de l'évolution de cette transformation.

(On notera x l'avancement de la réaction à l'instant t)

3- Montrer que la conductance G dans le milieu réactionnel vérifie la relation : $G = -0.72 \text{ x} + 2.5.10^{-3} \text{ (S)}.$

0,5

- 4- Justifier la décroissance de la conductance G au cours de la réaction.
- 1 5- Déterminer la valeur du temps de demi-réaction $t_{1/2}$.

موضوع الامتحان الوطني الموحد للبكالوريا 2010 – الدورة العادية – مادة الفيزياء و الكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزيائية (الترجمة الفرنسية)

Deuxième partie : Etude de l'hydrolyse d'un ester en milieu basique

Cette pile est constituée de deux compartiments séparés par un électrolyte acide, jouant le rôle d'un pont ionique et de deux électrodes A et B.

La pile est alimentée, au cours du fonctionnement, par du méthanol liquide et du dioxygène gazeux. (Figure 2)

Données:

- Constante de Faraday : $\mathcal{F} = 96500 \text{ C.mol}^{-1}$;
- Masse volumique du méthanol liquide : $\rho = 0.78$ g.cm⁻³;
- Masse molaire du méthanol : M = 32 g.mol⁻¹;
- Les couples intervenants dans la transformation: $(O_{2(g)}/H_2O_{(\ell)})$ et $(CO_{2(g)}/CH_3OH_{(\ell)})$. Au cours du fonctionnement de la pile, il se produit au voisinage de l'une des électrodes une transformation modélisée par l'équation suivante :

$$CH_3OH + H_2O \rightarrow CO_2 + a.H^+ + b.e^-$$

- 2-1- Déterminer les coefficients a et b.
- **2-2-** Préciser au voisinage de quelle électrode A ou B, se produit cette réaction ? Justifier.
- 2-3-Ecrire l'équation modélisant la réaction ayant lieu au voisinage de l'autre électrode. Nommer les deux électrodes A et B.
- 2-4- La pile alimente le circuit extérieur par un courant d'intensité I = 45 mA supposée constante durant $\Delta t = 1$ h 30 min. Trouver la valeur du volume V de méthanol consommé au cours de la durée Δt de fonctionnement.

Physique nucléaire (02 points)

Le Radon ²²²₈₆Rn est un gaz inerte, radioactif naturel. Il résulte de la désintégration spontanée de l'Uranium ²³⁸₉₂U présent dans les roches et la terre.

L'inhalation du Radon 222 ²²²₈₆Rn, est dans plusieurs pays, la cause essentielle du cancer de poumons, après le tabagisme.

Pour lutter contre les risques provoqués par l'exposition des individus au Radon 222, l'OMS recommande l'adoption de 100 Bq/m³ comme niveau de référence et de ne pas dépasser 300 Bq/m³ comme valeur limite maximale.

D'après le site électronique de l'OMS

Données:

- Masse du noyau du Radon 222 : 221,9703u ;
- Masse du neutron : 1,0087 u , Masse du proton : 1,0073u ;
- $1u = 931,5 \text{Mev/}c^2$, 1 jour = 86400 s;
- Demie vie du nucléide ${}^{222}_{86}$ Rn : $t_{1/2} = 3.9$ jours ;
- Constante d'Avogadro : $\mathcal{N}_A = 6,02.10^{23} \text{ mol}^{-1}$;
- Masse molaire du Radon : M(Rn) = 222 g.mol⁻¹.

0,5 0,5

0,75

1

0,5

0,25

0,5

0,5

موضوع الامتحان الوطني الموحد للبكالوريا 2010 – الدورة العادية – مادة الفيزياء و الكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزيائية (الترجمة الفرنسية)

1- <u>Désintégration du nucléide d'Uranium</u> ²³⁸₉₂U

De la désintégration de l'Uranium 238 $_{92}^{238} U$, résulte le Radon $_{86}^{222} Rn$ et des particules α et β $\bar{}$.

0,25 1-1- Donner la composition du noyau $\frac{222}{86}$ Rn.

1-2-Calculer en (MeV) l'énergie de liaison du noyau $^{222}_{86}$ Rn.

1-3-Déterminer le nombre de désintégration de type α et de type β produites par cette transformation nucléaire

2- S'assurer de la pureté de l'air dans une habitation :

A l'instant t_0 , considéré comme origine des dates, la mesure de l'activité du Radon 222 dans chaque mètre cube d'air se trouvant dans une habitation a donné la valeur : $a_0 = 5.10^3$ Bq.

2-1-Déterminer, à la date t₀, la masse du Radon contenu dans chaque mètre cube d'air de cette habitation

2-2-Calculer le nombre de jours nécessaires pour que la valeur de l'activité à l'intérieur de cette habitation soit égale à la valeur limite maximale recommandée par l'OMS.

Electricité (05 points)

Les conducteurs ohmiques, les condensateurs et les bobines sont utilisés dans le montage de différents appareils électroniques

On étudie dans cet exercice quelques dipôles utilisés pour réaliser une radio simple AM permettant de capter une chaine radio de fréquence f.

Première partie : Charge d'un condensateur par un générateur idéal de tension

Le montage représenté dans la figure 1 se compose de :

- Un générateur idéal de tension de f.é.m. E = 9V;
- Un conducteur ohmique de résistance R;
- Un condensateur de capacité C₀;
- Un interrupteur K.

On ferme l'interrupteur à l'instant t = 0, le circuit est désormais traversé par un courant d'intensité i variable en fonction du temps comme l'indique le graphe de la figure 2.

(La droite (T) représente la tangente à la courbe à l'origine des temps)

- 1-1- Recopier sur votre copie le schéma du montage, et représenter dessus, en convention récepteur :
 - La tension u_c aux bornes du condensateur;
 - La tension u_R aux bornes du conducteur ohmique.

Figure 1

0,25

0,25

الصفحت	ſ
5 6	l

موضوع الأمتحان الوطني الموحد للبكالوريا 2010 - الدورة العادية -مادة الفيزياء و الكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزيائية (الترجمة الفرنسية)

- 0,5
- 1-2- Montrer sur le montage précédent, comment faut-il brancher un oscilloscope à mémoire pour visualiser la tension u_c.
- 0,5
- 1-3- Etablir l'équation différentielle vérifiée par la charge du condensateur q(t).
- 0,5
- 1-4- La solution de cette équation s'écrit sous la forme : $q(t)=A(1-e^{-\alpha t})$. Déterminer les expressions de A et de α .

0,25

1-5- Montrer que l'expression de l'intensité du courant circulant dans le circuit s'écrit sous la forme : $i(t) = \frac{E}{R} e^{-\frac{t}{\tau}}$, où τ est une constante qu'il faut exprimer en fonction de R et C_0 .

0,25 0,75

- 1-6- Montrer, par analyse dimentionnelle, que τ est homogène à un temps.
- 1-7- En utilisant le graphe i = f(t), déterminer la résistance R et la capacite C_0 .

Deuxième partie : Réalisation d'une radio AM simple

Au cours d'une séance de travaux pratiques, le montage de la figure 3 a été réalisé pour recevoir une émission radio de fréquence f = 540 kHz, en utilisant trois étages : X, Y et Z.

L'étage X est constitué d'une bobine (b) d'inductance L=5,3 mH et de résistance négligeable, et d'un condensateur de capacité C ajustable entre deux valeurs : $C_1=13,1$ pF et $C_2=52,4$ pF. (on rappelle que : $1 \mu F=10^{-12} F$).

0,75

2-1- Quel est le rôle de chacun des étages Y et Z dans la réception de l'émission? 2-2- S'assurer que l'étage X permet la sélection de l'émission désirée.

Mécanique (06 points)

Les toboggans dans les piscines permettent aux nageurs de glisser et de plonger dans l'eau.

On modélise un toboggan par une piste ABC constituée d'une partie AB inclinée d'un angle α par rapport au plan horizontal et d'une partie circulaire BC, et on modélise le nageur par un solide (S) de centre d'inertie G et de masse m (Figure 1).

Données:

 $\overline{AB} = \overline{2,4} \; m$, $\alpha = 20^{\circ}$, $g = 9.8 \; m.s^{-2}$, $m = 70 \; Kg$.

1- Etude du mouvement sur la partie AB :

Le solide (S) part de la position A supposée confondue avec G, à l'instant t = 0, sans vitesse initiale, et glisse sans frottement sur la piste AB (Figure 1). On étudie le mouvement de G dans le repère terrestre $R_1(A, \vec{i_1}, \vec{j_1})$ supposé galiléen.

0,5

0,5

0,5

موضوع الامتحان الوطني الموحد للبكالوريا 2010 – الدورة العادية – مادة الفيزياء و الكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزيائية (الترجمة الفرنسية)

Par application de la deuxième loi de Newton déterminer :

1-1-Les composantes du vecteur accélération \vec{a}_G dans le repère $R_1(A, \vec{i}_1, \vec{j}_1)$.

1-3-L'intensité R de la force associée à l'action du plan AB sur le solide (S).

Figure 1

Dans la suite de l'exercice, on étudiera le mouvement de G dans le repère terrestre $\Re(O,\vec{i},\vec{j})$ supposé galiléen (Figure 1).

2- Etude du mouvement de G dans l'air :

Le solide (S) arrive au point C avec une vitesse de vecteur horizontal, et de valeur $V_C=4,67\,\mathrm{m.s^{-1}}$, pour le quitter à un instant supposé comme nouvelle origine des temps. Le solide est soumis, en plus de son poids, à l'action d'une air artificielle, modélisée par la force d'expression : $\vec{f}_1 = -f_1.\vec{i}$.

0,5

- 2-1-Trouver, à un instant t, l'expression v_x de la composante horizontale du vecteur vitesse en fonction de : m, V_C , f_1 , et t.
- **2-2-** A l'instant $t_D = 0.86$ s, G arrive au point D se trouvant à la surface de l'eau, où s'annule la composante horizontale de sa vitesse.
 - a- Calculer f₁.
 - b- Calculer l'altitude h de C par rapport à la surface de l'eau.

3- Etude du mouvement vertical de G dans l'eau :

Le solide (S) poursuit son mouvement dans l'eau, avec une vitesse verticale \vec{V} . Il subit en plus de son poids à :

- Une force de frottement fluide modélisée dans le système international d'unité par : $\vec{f} = 140.V^2.\vec{j}$.
- La poussée d'Archimède \vec{F}_A d'intensité $F_A = 637 \text{ N}$.

On considère l'instant d'entrée de (S) dans l'eau comme nouvelle origine des temps.

3-1- Montrer que la vitesse V(t) de G vérifie l'équation différentielle suivante :

$$\frac{dV(t)}{dt} - 2.V^2 + 0.7 = 0$$

0,5

1

- 3-2- Trouver la valeur de la vitesse limite $V_{\ell}.$
- 3-3-Déterminer à l'aide du tableau suivant, et par utilisation de la méthode d'Euler, les valeurs : a_{i+1} et V_{i+2} .

t(s)	V (m.s ⁻¹)	a (m.s ⁻²)
$t_i = 1.8.10^{-1}$	- 1,90	6,52
$t_{i+1} = 1,95.10^{-1}$	- 1,80	a_{i+1}
$t_{i+2} = 2, 1.10^{-1}$	V_{i+2}	5,15

0,5