Homework 7

Yuki Joyama

2024-04-01

```
# data prep
df = read_csv("HW7-politeness_data.csv")
```

(a) Exploratory Analysis

```
# gender/attitude and pitch
df |>
    ggplot(aes(x = attitude, y = frequency, fill = gender)) +
    geom_boxplot() +
    facet_wrap(~gender)
```



```
gender <- df$gender
attitude <- df$attitude
subject <- df$subject
frequency <- df$frequency
scenario <- df$scenario</pre>
```

The boxplots illustrates the relation between gender/attitude and pitch. We can see that Female tend to have higher frequency than Male, and lower frequency is more likely to be considered as formal (pol).

(b) LMM with random intercepts

I will fit a mixed effects model with random intercepts for different subjects with gender and attitude being the fixed effects.

```
# LMM with random intercept
# gender, attitude fixed
LMM1 <- lme(frequency ~ gender + attitude, random = ~1 | subject, method = "REML")
summary(LMM1)</pre>
```

```
## Linear mixed-effects model fit by REML
##
     Data: NULL
##
          AIC
                   BIC
                          logLik
     806.0805 818.0527 -398.0402
##
##
## Random effects:
   Formula: ~1 | subject
##
##
           (Intercept) Residual
              24.45803 29.11537
## StdDev:
##
## Fixed effects: frequency ~ gender + attitude
                    Value Std.Error DF
                                        t-value p-value
## (Intercept) 256.98690 15.154986 77 16.957251 0.0000
              -108.79762 20.956235 4 -5.191659 0.0066
## genderM
## attitudepol -20.00238 6.353495 77 -3.148248 0.0023
   Correlation:
##
               (Intr) gendrM
               -0.691
## genderM
## attitudepol -0.210 0.000
##
## Standardized Within-Group Residuals:
##
          Min
                      Q1
                                Med
                                            QЗ
                                                      Max
## -2.3564422 -0.5658319 -0.2011979 0.4617895 3.2997610
## Number of Observations: 84
## Number of Groups: 6
```

The covariance matrix for a subject Yi:

```
VarCorr(LMM1)
```

```
## subject = pdLogChol(1)
## Variance StdDev
## (Intercept) 598.1953 24.45803
## Residual 847.7049 29.11537
```

The covariance matrix for the estimates of fixed effects:

```
## (Intercept) genderM attitudepol
## (Intercept) 229.67362 -2.195819e+02 -2.018345e+01
## genderM -219.58189 4.391638e+02 2.879122e-15
```

The best linear unbiased predictions (BLUPs) for subject-specific intercepts:

-20.18345 2.879122e-15 4.036690e+01

```
random.effects(LMM1)
```

```
## (Intercept)
## F1 -13.575831
## F2 10.170522
## F3 3.405309
## M3 27.960288
## M4 4.739325
## M7 -32.699613
```

attitudepol

Residuals:

head(LMM1\$residuals)

```
## fixed subject

## 1 -23.684524 -10.10869

## 2 -52.486905 -38.91107

## 3 48.115476 61.69131

## 4 2.713095 16.28893

## 5 -33.084524 -19.50869

## 6 29.913095 43.48893
```

(c) LMM with random intercepts and interaction

I will fit a mixed effects model with random intercepts for different subjects with gender, attitude and their interaction being the fixed effects.

```
# LMM with random intercept
# gender, attitude, gender*attitude fixed
LMM2 <- lme(frequency ~ gender + attitude + gender*attitude, random = ~1 | subject, method = "REML")
summary(LMM2)</pre>
```

```
## Linear mixed-effects model fit by REML
     Data: NULL
##
##
          AIC
                  BIC
                         logLik
##
     799.8018 814.094 -393.9009
##
## Random effects:
   Formula: ~1 | subject
##
           (Intercept) Residual
##
## StdDev:
              24.46382 29.04716
##
## Fixed effects: frequency ~ gender + attitude + gender * attitude
##
                            Value Std.Error DF
                                                 t-value p-value
## (Intercept)
                        260.68571 15.481307 76 16.838740 0.0000
                       -116.19524 21.893875 4 -5.307203 0.0061
## genderM
                        -27.40000 8.964149 76 -3.056620
## attitudepol
                                                          0.0031
## genderM:attitudepol
                         14.79524 12.677221 76 1.167073 0.2468
   Correlation:
##
##
                       (Intr) gendrM atttdp
                       -0.707
## genderM
## attitudepol
                       -0.290 0.205
## genderM:attitudepol 0.205 -0.290 -0.707
## Standardized Within-Group Residuals:
##
          Min
                      Q1
                                Med
                                            03
## -2.2344163 -0.5454437 -0.1646159 0.4697182 3.1800944
## Number of Observations: 84
## Number of Groups: 6
```

The output indicates that the interaction term does not have a significant influence on the response variable.

Now, I will refit LMM1 and LMM2 using ML method for the likelihood ratio test.

Given the result (p-value > 0.05), we fail to reject the null hypothesis. Therefore, we conclude that including the interaction term is not significantly associated with pitch.

(d) LMM with random intercept for both subject and scenarios I will fit a mixed effects model with random intercepts for different subjects and scenarios with gender and attitude being the fixed effects.

```
LMM3 <- lmer(frequency ~ gender + attitude + (1 | subject) + (1 | scenario))
summary(LMM3)</pre>
```

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: frequency ~ gender + attitude + (1 | subject) + (1 | scenario)
## REML criterion at convergence: 784.1
##
## Scaled residuals:
                10 Median
                                30
      Min
                                       Max
## -2.2690 -0.6331 -0.0878 0.5204 3.5326
##
## Random effects:
## Groups
           Name
                         Variance Std.Dev.
                                  14.98
## scenario (Intercept) 224.5
                                  24.76
## subject (Intercept) 613.2
## Residual
                         637.8
                                  25.25
## Number of obs: 84, groups: scenario, 7; subject, 6
##
## Fixed effects:
##
              Estimate Std. Error t value
## (Intercept) 256.987
                            16.101 15.961
## genderM
              -108.798
                            20.956 -5.192
## attitudepol -20.002
                            5.511 -3.630
## Correlation of Fixed Effects:
               (Intr) gendrM
              -0.651
## genderM
## attitudepol -0.171 0.000
```

The covariance matrix for a subject Yi:

```
v <- VarCorr(LMM3)
as.matrix(Matrix::bdiag(v))</pre>
```

```
## [,1] [,2]
## [1,] 224.4994 0.0000
## [2,] 0.0000 613.1903
```

where Var(scenario) = 224.50 and Var(subject) = 613.19.

The coefficient for the fixed effect attitudepol is -20.00. This means that the pitch is lower in polite speech than in informal speech, by about 20 Hz holding other variable constant.