Statistiques décisionnelles

Charles Vin

S6 2022

P	la	n	d	u	C	O	u	rs

1.	Rappel	du	1er	sen	nest	re

2. Test d'ajustement :

 X_1,\ldots,X_n va. iid. de loi \mathbb{P}_X

- (a) Est-ce que les X_i suivent la loi L ($\mathbb{P}_X = L$)?
- (b) Est-ce que la loi des X_i appartient à une famille de loi? Est-ce qu'il existe m,σ^2 tel que $X_i\sim\mathcal{N}(m,\sigma^2)$
- 3. Tests de comparaison:
 - Test non paramétriques : $(\omega, \mathcal{F}, (\mathbb{P}_{\theta})_{\theta \in \Theta})$, On ne se restreint pas à une famille paramétrique de lois
 - Tests de comparaison : $X_1,...,X_n$ jeu de données 1 et $Y_1,...,Y_n$ jeu de données 2. Les X_i Y_i ont-il même loi? Les X_i et Y_i sont-ils indépendants?
- 4. L'ANOVA, voir cours de Mme Lavigne
- 5. Etudes de cas

Table des matières

1	Rap	pel sur les tests	3
2	Test	ts d'ajustement	4
	2.1	Le test d'ajustement de Kolmogorov-Smirnov	4
		2.1.1 Rappels	4
		2.1.2 Le test de Kolmogorov-Smirnov	5
		2.1.2.1 Comment calculer en pratique $h(F_n,F)$	7
		2.1.2.2 Comportement théorique de $h(F_n,F)$	8
		2.1.2.3 Le test de Kolmogorov-Smirnov à 1 échantillon	
			9
		2.1.2.4 Qu'est ce que W_{∞}	
		2.1.2.5 Kolmogorov-Smirnov en pratique	
	2.2	Ajustement à une famille de lois	
		2.2.0.1 Adéquation à une famille d'exponentielle	11
		2.2.0.2 Adéquation à une loi normale	
	2.3	Le test du \mathcal{X}^2 d'ajustement	11
		2.3.0.1 Préparatifs, introduction	
		2.3.0.2 Le test du \mathcal{X}^2	
		2.3.0.3 Mise en place concrette:	13
		2.3.0.4 Test du $\dot{\mathcal{X}}^2$ avec fusion des classes	
	2.4	Le test du \mathcal{X}^2 pour une loi discrète	
		2.4.0.1 En pratique	
		2.4.0.2 Limite	
	2.5	Le test du \mathcal{X}^2 pour une loi continue	
		2.5.0.1 Bilan de la méthode	
	2.6	Le \mathcal{X}^2 d'ajustement à une famille paramétrique de loi $\dots \dots \dots \dots \dots \dots \dots$	
		2.6.0.1 En pratique	
	2.7	Bilan du chapitre	
		·	

3	Loi	de com	nparaison	17
	3.1	Le tes	t d'homogénéité de Kolmogorov-Smirnov	18
		3.1.1	Test d'homogénéité de Kolmogorov-Smirnov	18
			3.1.1.1 En pratique (cas n et m grand)	19
	3.2	Les te	st du \mathcal{X}^2 d'indépendance et d'homogénéité $\dots \dots \dots \dots \dots \dots \dots$	19
		3.2.1	Le \mathcal{X}^2 d'indépendance	19
		3.2.2	Test du \mathcal{X}^2 d'indépendance	21
	3.3	Le \mathcal{X}^2	d'homogénéité	22
		3.3.1	Pour deux échantillons	22
4	Test	ts pour	échantillons gaussiens	24
	4.1	Rappe	els du cours de statistiques mathématiques	24
	4.2	Les te	st sur l'espérance	24
			Forme d'un test	25
		4.2.2	Test sur la moyenne pour 1 échantillon gaussien de variance inconnue. Test de stu-	
			dents à 1 échantillon	25
		4.2.3	Test sur des moyenne pour 2 échantillons gaussiens appariés	25
		4.2.4	Test d'égalité des moyennes pour 2 échantillons gaussiens indépendant de variance	
			connues	26
		4.2.5	Test d'égalité des variances pour un échantillon gaussien de moyenne inconnus	26
		4.2.6	Test de comparaison des variances de Fisher	26
		4.2.7	Test de Student à 2 échantillons : Test de comparaison des moyenne de 2 échan-	
			tillons gaussiens indépendants de variance égale	27
		4.2.8	Test de Welch : Le test de Student se généralisant au cas des variances non égales .	28

1 Rappel sur les tests

On fixe un modèle $(\Omega, \mathcal{F}, (\mathbb{P}_{\theta})_{\theta \in \Theta})$. On dit que le modèle est paramétrique s'il existe

$$d \in \mathbb{N}$$
 tel que $\Theta \in \mathbb{R}^d$.

Sinon, on dira que le modèle est non-paramétrique.

Exemple 1.1 (de modèle paramétrique).

1.
$$\Theta \subset \mathbb{R} \times \mathbb{R}, \mathbb{P}_{\theta} = \mathcal{N}(m, \sigma^2), \theta = (m, \sigma^2)$$

2.
$$\Theta = [0, 1], \mathbb{P}_{\theta} = Ber(\theta), \theta \in [0, 1]$$

3.
$$\Theta = \mathbb{R}^+, \mathbb{P}_{\theta} = \mathcal{E}(\theta), \theta \in \mathbb{R}^+$$

2.
$$\Theta=\{(p_i)_{i\in\mathbb{N}}, \forall i\in\mathbb{N}, p_i\in[0,1]\sum_{+\infty}^{i=0}p_i=1\}, \theta=(p_i)_{i\in\mathbb{N}}, \mathbb{P}_theta=\text{la loi discrète tq}\forall k\in\mathbb{N}, \mathbb{P}(X=k)=p_k,$$

3. $\Theta = \{ \text{ fonction de répartion de var.} \}, F \in \Theta, \mathbb{P}_F = \text{loi de la va. dont la fonction de répartiton est } F, (\mathbb{P}_F)_{F \in \Theta} \}$

Définition 1.1 (Test d'hypothèse). Soit $\mathbb{X}=(X_1,\dots,X_n)$ un ensemble d'observations de loi \mathbb{P}_{θ} On appelle test d'hypothèse de H_0 contre H_1 (à H_0 et H_1 sont des sous-ensemble de Θ). toute fonction des observations à valeur dans $\{0,1\}$

- à $\phi(\mathbb{X}) = 0$ correspond à conserver H_0
- à $\phi(X) = 1$ correspond à rejeter H_0 au profit de H_1

 $R = \phi(\{1\})$ est la zone de rejet, c'est l'ensemble des observation qui ... à un rejet de H_0

Remarque. Si $\phi(X) = \mathbb{1}_{h(X) \in \mathbb{R}}$ on dira que h est la statistique de test et R la zone de rejet

Exemple 1.3.
$$h(\mathbb{X}) = \sum_{i=1}^n X_i, R = [h, +\infty[$$
. Test: $\phi(\mathbb{X}) = \mathbb{1}_{\sum_{i=1}^n X_i \geq k}$

Exemple 1.4. $\phi(X) = 0$ le test que conserve toujours H_0 est un test.

Définition 1.2 (Erreur de première espèce & Taille du test). l'Erreur de 1ère espèce est la fonction :

$$\alpha: \Theta_0 \to [0,1]$$

 $\theta \mapsto \mathbb{P}_{\theta}(\phi(\mathbb{X}=1))$

La taille du test ϕ est

$$\alpha^* = \sup_{\theta \in \theta_0} \alpha(\theta).$$

On dit que ϕ est de niveau α si

$$\alpha^* < \alpha$$
.

Une suite de test $(\phi_n)_{n\in\mathbb{N}}$ est de niveau asymptotique α si

$$\limsup_{n} \alpha_n^* \le \alpha.$$

En général on a : $\lim_{n\to\infty} \alpha_n^* = \alpha$

Remarque. Pour l'erreur de 1ère espèce le meilleur test est $\phi(\mathbb{X})=0$. En effet $\forall \theta \in \Theta_0, \mathbb{P}_{\theta}(\phi(\mathbb{X})=1)=0$ Remarque (Cours de M.Thiam, def 12). Si vous préférez la formulation du 1er semestre, c'est tout aussi valable.

Définition 1.3 (Erreur de seconde espèce et puissance). La fonction erreur de 2nd espèce d'un test ϕ est

$$\underline{\beta}: \Theta_1 \to [0, 1]$$
$$\theta \mapsto \mathbb{P}_{\theta}(\phi(\mathbb{X} = 0))$$

C'est la probabilité de conserver à tort H_0 . On appelle en général erreur de seconde espèce la quantité $\beta = \sup_{\theta \in \Theta_1} \beta(\theta)$

La fonction puissance γ est $1 - \beta$.

Exemple 1.5. Le test $\phi(X) = 0$ (le test stupide) a une erreur de seconde espèce qui vaut 1.

$$\mathbb{P}_{\theta}(\phi(\mathbb{X}) = 0) = 1.$$

et sa puissance vaut 0

Définition 1.4 (p-valeur). Si pour tout niveau α , on a construit un test ϕ_{α} Soit \mathbb{X} une observation.

$$p(\mathbb{X}) = \inf\{\alpha \in [0,1] \text{tel que } \phi_{\alpha}(\mathbb{X}) = 1\}.$$

Si on choisit un niveau α

$$\alpha < p(\mathbb{X})$$
, on conserve H_0 .

Et si $\alpha \geq p(\mathbb{X})$ on rejette H_0

Définition 1.5 (Test consistent). Une suite de tests ϕ_n est dite consistent si pour tout $\theta \in \Theta_1$

$$\gamma_n(\theta) \to_{n \to \infty} 1.$$

Tests d'ajustement

Le but de ce chapitre est de répondre à la question suivante : Étant donnée un échantillon X_1,\ldots,X_n et une loi de proba sur $\mathbb R$ nommée $\mathcal L$

Est ce que les
$$X_i \sim \mathcal{L}$$
.

- $$\begin{split} & \boldsymbol{--} \ H_0 = \mathsf{les} \ X_i \ \mathsf{ont} \ \mathsf{pour} \ \mathsf{loi} \ \mathcal{L} \\ & \boldsymbol{--} \ H_1 = \mathsf{les} \ X_i \ \mathsf{n}' \mathsf{ont} \ \mathsf{pas} \ \mathsf{pour} \ \mathsf{loi} \ \mathcal{L} \end{split}$$

Comment comprendre ce problème?

- 1. En général, on peut utiliser les fonction de répartition. La question devient $F_X = F$ contre $F_X \neq F$ (en tout point de \mathbb{R})
- 2. Si les X_i sont à support dans $\{1,...,K\}$. La question devient $\forall i \in \{1,...,K\}, \hat{p_i} = p_i$ contre $\exists i \text{ tq } \hat{p_i} \neq p_i \text{ où } \hat{p_i} = P(X=i) \text{ et } p_i = P(L=i)$

Énorme problème : On ne connaît pas la loi des X_i , on connaît juste n réalisations.

Problème plus difficile : Ajustement à une famille de lois? Est-ce que les X_i proviennent d'une loi normale? (sans en connaître les paramètres)

Remarque. Cette question est fondamentale pour valider un modèle

Le test d'ajustement de Kolmogorov-Smirnov

2.1.1 Rappels

Définition 2.1 (Fonction de répartition). Soit X une variable aléatoire réelle, sa fonction de répartition est la fonction

$$F_X : \mathbb{R} \to [0, 1]$$

 $t \mapsto P(X \le t)$

Elle caractérise la loi de X.

Si X est à densité, F_X est continue. Les discontinuité de F_X sont les valeurs $t_0 \in \mathbb{R}$ tel que $P(X=t_0)>0$.

- Si $X \sim Unif(0,1)$ Exemple 2.1.

$$F_X(t) = P(X \le t) = \int_0^t \mathbb{1}_{[0,1]}(x) dx = \begin{cases} 0 \text{ si } t \le 0 \\ t \text{ si } t \in [0;1] \\ 1 \text{ si } t \ge 1 \end{cases}.$$

— Si
$$X\sim\mathcal{E}(\lambda)$$

$$F_X(t)=\int_0^t\lambda e^{-\lambda x}dx=\begin{cases} 0\ \text{si }t<0\\ -e^{-\lambda t}\ \text{si }t+1\geq 0 \end{cases}.$$

− Si
$$X \sim \mathcal{B}(p)$$

$$F_X(t) = \begin{cases} 0 \text{ si } t < 0\\ 1 - p \text{ si } t \in [0; 1[\\ 0 \text{ si } t \ge 1 \end{cases}$$

Définition 2.2 (Pseudo inverse de la fonction de répartion). Soit X une var. de fonction de répartition F_X . On pose

$$F_X^{-1}:]0,1[\to \mathbb{R}$$

 $x \mapsto \inf\{t \in \mathbb{R}, F_X(t) \ge x\}$

On l'appelle inverse généralisé de ${\cal F}_X$ et elle coincide avec l'inverse si ${\cal F}_X$ est bijective. Elle vérifie la propriété fondamentale

$$\forall x \in]0,1[, \forall t \in \mathbb{R}, F_X^{-1} \le t \Leftrightarrow x \le F_X(t).$$

Théorème 2.1. Soit X une var. de fonction de répartition F_X et une variable uniforme U sur [0,1] alors

$$X$$
 et $F_X^{-1}(U)$ ont même loi.

Preuve : Soit $t \in \mathbb{R}$

$$P(F_X^{-1}(U) \le t) = P(U \le F_X(t)) \text{ comme } \{F_X^{-1}(U) \le t\} = \{U \le F_X(t)\}.$$

Or $F_X(t) \in [0,1]$ donc

$$P(U \le F_X(t)) = F_X(t).$$

Ainsi ${\cal F}_X^{-1}$ et X ont la même fonction de répartition et donc la même loi

Nouveau cours du 20/01

2.1.2 Le test de Kolmogorov-Smirnov

But : Si on a X_1, \ldots, X_n observation iid. Est-ce que la fonction de répartition des X_i est une certaine fonction F_L donnée?

 $\Leftrightarrow F_X = F_L \Leftrightarrow \mathsf{La} \ \mathsf{loi} \ \mathsf{des} \ X_i \ \mathsf{est} \ \mathsf{la} \ \mathsf{même} \ \mathsf{que} \ \mathsf{L}$

Exemple 2.2. Se demander si les $X_i \sim \mathcal{E}(1)$ revient à demander : Est-ce que $\forall t \in \mathbb{R}, F_X(t) = (1-e^{-t})\mathbb{1}_{t>0}$

Autre reformulation : Est-ce que mes observations sont cohérentes avec l'hypothèse $F_{X_i}=F$? Il va donc falloir estimer F_{X_i} et la comparer à F

Définition 2.3 (Fonction de répartition empirique). Soit X_1, \ldots, X_n un échantillon iid. On appelle **fonction de répartition empirique** de X_1, \ldots, X_n la fonction

$$F_n : \mathbb{R} \to [0, 1]$$
$$t \mapsto \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_i \le t}$$

Illustration graphique 1:

Rappels:

- 1. $\forall t \in \mathbb{R}, F_n(t) \to_{n \to +\infty}^{p.s} F_{X_1}(t)$
- 2. De plus $\forall t \in \mathbb{R}$ fixé

$$\frac{\sqrt{n}}{\sqrt{F_X(t)(1-F_X(t))}}(F_n(t)-(F_X(t)))\to_{n\to+\infty}^{\mathcal{L}}Z\ \text{de loi}\ \mathcal{N}(0,1).$$

Ce n'est rien d'autre que le TCL pour la suite de variables iid. $(Y_i = \mathbb{1}_{X_i \le t})_{i \in \mathbb{N}}$

Figure 1 – Exemple de fonction de répartion empirique

Figure 2 – Illustration graphique de Glivenko-Cantelli

Théorème 2.2 (Glivenko-Cantelli). $(X_i)_{i\in\mathbb{N}}$ une suite de va. iid. alors

$$\sup_{t \in \mathbb{R}} |F_n(t) - F_{X_1}(t)| \to_{n \to +\infty}^{p.s} 0.$$

Illustration graphique 2:

Ce théorème montre que la bonne quantité pour savoir si ${\cal F}_X={\cal F}$ à ${\cal F}$ est une certaine fonction donnée est

$$h(F_n, F) = \sup_{t \in \mathbb{R}} |F_n(t) - F_{X_1}(t)|.$$

— Si $F = F_X$ alors d'après le théorème de Glivenko-Cantelli :

$$h(F_n, F) \to_{n \to +\infty}^{p.s} 0.$$

— Si je me suis trompé et que $F \neq F_X$, alors

$$h(F_n, F) \to_{n \to +\infty}^{p.s} \sup_{t \in \mathbb{R}} |F_n(t) - F_{X_1}(t)|.$$

En effet $F_n \to F_{X_i}$ donc

$$h(F_n, F) = \sup_{t \in \mathbb{R}} |F_n(t) - F_{X_1}(t)|$$

$$\to_{n \to +\infty}^{p.s} \sup_{t \in \mathbb{R}} |F_n(t) - F_{X_1}(t)| > 0$$

De manière informelle, on a envie de dire

- Si $h(F_n, F)$ est petit alors $F_X = F$
- Si $h(F_n, F)$ n'est pas petit alors $F_X \neq F$

2.1.2.1 Comment calculer en pratique $h(F_n, F)$?

Données : X_1, \ldots, X_n des valeurs. F une fonction de répartition cible.

But : Calculer $h(F_n,F)$ de manière pratique. à $h(F_n,F)=\sup_{t\in\mathbb{R}}|F_n(t)-F_{X_1}(t)|$ (Voir Figure. 3)

Note (du dessin). Le but de cette explication est de montrer graphiquement et instinctivement pourquoi on ne regarde pas pour tout $t \in \mathbb{R}$ mais uniquement à chaque saut.

1. étape : avant $X_{\ell}1$)

$$\sup_{t \le X_{(1)}} |F_n(t) - F_{X_1}(t)| = \max\{ \left| \frac{1}{n} - F(X_{(1)}) \right|, \left| F(X_{(1)}) - 0 \right| \}.$$

On recommence pour les différentes valeurs de $X_{(i)}$ et on voit que la plus grande distance entre les deux courbes est forcément atteinte à un des points de saut

Remarque (attention). Pour chaque saut, il faut regarder 2 valeurs AVANT et APRES le saut.

Formule de calcul de $h(F_n, F)$

$$h(F_n, F) = \max_{1 \le i \le n} (\max(\left| \frac{i}{n} - F(X_{(i)}) \right|, \left| \frac{i-1}{n} - F(X_{(i)}) \right|)).$$

Note. On fait le max pour tous les sauts du maximum entre la distance APRES (au moment du saut) et AVANT (juste avant le saut (i-1)).

Exemple 2.3 (Cas concret). $X_1 = 0.06, X_2 = 0.8, X_3 = 0.27, X_4 = 0.67, X_5 = 0.38$

$$F(t) = F_U(t) = egin{cases} 0 ext{ si } t \leq 0 \ t ext{ si } t \in [0 \ 1] \ 1 ext{ si } t \geq 1 \end{cases}.$$

Etape 1 : On ordonne les valeurs lci $h(F_n, F_U) = 0.22$

Figure 3 – Figure pour trouver la fonction $h(F_n, F)$

$X_{(i)}$	0.06	0.27	0.38	0.67	0.8
F_n	0.2	0.4	0.6	0.8	1
F	0.06	0.27	0.38	0.67	0.8
Après le saut : $\left \frac{i}{n} - F(X_{(i)}) \right $	0.14	0.13	0.22	0.13	0.2
Avant le saut : $\left \frac{i-1}{n} - F(X_{(i)}) \right $	0.06	0.07	0.02	0.07	0

2.1.2.2 Comportement théorique de $h(F_n, F)$

$$h(F_n, F) = \sup_{t \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_i \le t} - F(t) \right|.$$

est une variable aléatoire.

A priori, la loi de $h(F_n, F)$ dépend

- de n

— de la loi des X_i

Rappel : $H_0: F = F_{X_o}$ contre $H_1: F \neq F_{X_i}$

Sous H_0 quel est la loi de $h(F_n, F)$?

$$h(F_n, F) = \sup_{t \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_i \le t} - F_{X_1}(t) \right|.$$

Soit U_1,\ldots,U_n iid. uniforme sur [0,1] Soit $F_{X_1}^{-1}$ l'inverse généralisé de F_X Alors $F_{X_1}^{-1}(U_1),\ldots,F_{X_1}^{-1}(U_n)$ ont même loi que X_1,\ldots,X_n . Ainsi en loi

$$h(F_n, F) = \sup_{t \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{F_X^{-1}(U_i) \le t} - F_{X_1}(t) \right|.$$

Or $\{F_X^{-1} \leq t\} = \{U_i \leq F_{X_1}(t)\}$ donc $\mathbb{1}_{F_X^{-1}(U_i) \leq t} = \mathbb{1}_{U_i \leq F_{X_1}(t)}$ et donc

$$h(F_n, F) = \sup_{t \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{U_i \le F_{X_1}(t)} - F_{X_1}(t) \right|.$$

Si F_{X_1} est continue, alors $]0,1[\subset F_{X_1}(\mathbb{R})\subset [0,1]$. Ainsi en reparamétrant le \sup on a

$$h(F_n, F) = \lim_{s \in]0,1[} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{U_i \le s} - s \right|.$$

Dans cette formule, la loi de X (et sa fonction de répartition) n'apparaît pas!

Bilan : La loi de $h(F_n,F)$ ne dépend que de n sout H_0

La loi de $h(F_n,F)$ est tabulé pour toutes les valeurs de n. On peut alors construire un test de niveau $1-\alpha$

2.1.2.3 Le test de Kolmogorov-Smirnov à 1 échantillon

Données:

- $-X_1,\ldots,X_n$
- F une fonction de répartition continue
- $-\alpha$ un niveau
- $H_0 : F_X = F$ contre $H_1 : F_{X_1} ≠ F$

Soit h_{α} le quantile de niveau $1 - \alpha$ de $h(F_n, F)$

- Si $h(F_n, F) > h_{\alpha}$, on rejette H_0
- Si $h(F_n, F) \leq h_\alpha$, on conserve H_0

De manière formelle : $\phi(\mathbb{X}) = \mathbb{1}_{h(F_n,F) > h_\alpha}$

Exemple 2.4 (retour sur l'exemple). Dans le tableau, on avait lu $h(F_n, F) = 0.22, n = 5$.

Test de niveau 90% : la zone de rejet est h > 0.509 (d'après la table). Dans l'exemple on conserve H_0 , les X_i proviennent d'une $\mathcal{U}([0,1])$

Exemple 2.5 (Autre exemple). $X_1 = 1.67, X_2 = 1.3, X_3 = 0.01, X_4 = 2.48, X_5 = 0.11$ Est-ce que les $X_i \sim \mathcal{E}(1)$? On applique le test de Kolmogorov-Smirnov.

$X_{(i)}$	0.01	0.11	1.3	1.67	2.48
F_n	0.2 + 1/n	0.4	0.6	0.8	1
$F(t) = 1 - e^{-x}$	0.01	0.1	0.72	0.81	0.91
Après le saut : $\left \frac{i}{n} - F(X_{(i)}) \right $	0.19	0.3	0.12	0.01	0.09
Avant le saut : $\left \frac{i-1}{n} - F(X_{(i)})\right $	0.01	0.1	0.32	0.21	0.11

$$h_{F_5,F} = 0.32.$$

Test de niveau 99% : Rejet si $h \le 0.6689$ comme $0.32 \le 0.6685$ on conserve H_0

Nouveau cours du 27/01

Rappel du cours précédent

On a vu le test de Kolmogorov-Smirnov : X_1, \ldots, X_n iid. de fdr. F_{X_1} . Fonction de répartion cible F

$$H_0 = F_{X_1} = G$$
 contre $H_1 = F_{X_1} \neq F$.

On calcule $h(F_n, F) = \sup_{t \in \mathbb{R}} |F_n(t) - F(t)|$.

La loi de $h(F_n,F)$ est tabimée, il suffit alors pour un niveau lpha donnée de vérifier si

$$h(F_n, F) > S_\alpha$$
 le seuil au niveau α .

Début du cours

Si n est grand, on ne dispose pas de la table de $h(F_n, F)$. Solution : Utiliser un test asymptotique.

Théorème 2.3. Soit $h_n = \sup_{t \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{U_i \le t} - t \right| \grave{a}U_1, \dots, U_n$ sont des va. iid. de loi uniforme sur [0,1]

$$\sqrt{n}h_n \to_{n\to\infty}^{\mathcal{L}} W_{\infty}.$$

où $P(W_{\infty} \le t) = 1 - 2\sum_{h=1}^{+\infty} (-1)^{k+1} e^{-2k^2t^2}$.

Bonne nouvelle : La loi de W_{∞} est tabulée!!

Exemple 2.6 (Théorique de l'utilisation). Si $n\geq 30$. Pour avoir S_{α} tel que $P(h_n>S_{\alpha})\approx 1-\alpha$. Si je prends k_{α} tel que $P(W_{\infty}>k_{\alpha})=1-\alpha$ (k_{α} est le quantile d'ordre $1-\alpha$ de W_{∞}). Alors, si on pose $S_{\alpha}=\frac{k_{\alpha}}{\sqrt{n}}$ on a :

$$P(h_n \ge S_\alpha) = P(h_n \ge \frac{k_\alpha}{\sqrt{n}}) = P(\sqrt{n}h_n > k_\alpha) \approx P(W_\infty \ge h_\alpha).$$

Conclusion : Si n est grand (pas dans la table), on prend $s_{\alpha}=\frac{k_{\alpha}}{\sqrt{n}}$ à h_{α} est le quantile d'ordre $1-\alpha$ de W_{∞}

2.1.2.4 Qu'est ce que W_{∞}

$$\sqrt{n}h_n = \sqrt{n} \sup_{t \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{U_i \le t} - F(\mathbb{1}_{U_i \le t}) \right|$$
$$= \sup_{t \in \mathbb{R}} \left| \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{U_i \le t} - F(\mathbb{1}_{U_i \le t}) \right| \right|$$

Cette quantité est approximativement une $\mathcal{N}(0, t(1-t))$

$$Gt \to \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{U_i \le t} - F(\mathbb{1}_{U_i \le t})\right).$$

Le graphe de G est aléatoire et est disponible sur moodle (ça resemble à un cours de la bourse, dans notre cas on appelle ça un pont Brownien).

Pour la culture : un inégalité bien pratique

Théorème 2.4 (Inégalité DKW). *Inégalité de Dvoretsky-Kiefer-Wolfanitz* : X_i va. iid.

$$\forall n \in \mathbb{N}, \forall \epsilon > 0, \mathbb{P}(\sup_{t \in \mathbb{R}} |F_n(t) - F_{X_1}(t)| > \epsilon) \le 2e^{-2n\epsilon^2}.$$

Cette inégalité est

- Non asymptotique
- Pas génial si n petit

Mais elle permet aussi de construire une zone de rejet.

2.1.2.5 Kolmogorov-Smirnov en pratique On fait ce test si

1. Les X_i semblent provenir d'une loi à fonction de répartition continue. \Rightarrow on n'a pas plusieurs fois la même valeur (sauf si celle-ci on était arrondi).

Par exemple : si on voit 14 fois la même valeur \to on utilise pas KS. Mais si on voit 2 fois la même valeur \to c'est jouable

- 2. Fonctionne $\forall n$: même si n est petit, ce test est pertinent (alors qu'un test du khi-deux qu'on verra plus tard est exclusivement asymptotique)
- 3. Si $n \ge 100$, on fait le test asymptotique. Sinon on peut faire un test non asymptotique.

2.2 Ajustement à une famille de lois

On veut savoir si nos observations iid. proviennent d'une certaine famille de lois.

Exemple 2.7. — Est-ce que la loi X_i sont des $\mathcal{E}(\lambda)$ pour $\lambda > 0$?

- Est-ce que la loi X_i sont des $\mathcal{N}(m, \sigma^2)$ pour $m \in \mathbb{R}, \sigma^{\nvDash} > \not\vdash$?
- Est-ce que la loi X_i sont des $\mathcal{B}(n,p)$ pour $m \in \mathbb{N}, p \in [0,1]$?

Malheureusement, il est impossible de répondre à cette question en toute généralité. Cependant il y a deux exemple important qu'on peut traiter.

2.2.0.1 Adéquation à une famille d'exponentielle Données : X_1, \ldots, X_n iid. loi inconnue

— H_0 : les X_i sont $\mathcal{E}(\lambda)$ pour un certain $\lambda \in \mathbb{R}^+_*$

— H_1 : les X_i ne sont pas exponentiels.

Idée : On utilise $h(F_n, F_\lambda)$ pour un F_λ bien choisis :

$$F_{\lambda} = (1 - e^{-\lambda x}) \mathbb{1}_{x>0}.$$

Si on veut tester $X_i \sim \mathcal{E}(\lambda)$, λ fixée, on regarde

$$h(F_n, F_\lambda) = \sup_{t \in \mathbb{R}} |F_n(t) - (1 - e^{-\lambda t}) \mathbb{1}_{t > 0}|.$$

Problème : λ est inconnu \Rightarrow On l'estime!

$$\overline{\lambda}_n = \frac{n}{\sum_{i=1}^n X_i}$$
 estimateur Maximum Vraisemblance de λ .

On regarde : X_i iid $\mathcal{E}(\lambda)$

$$h(F_n, F_{\overline{\lambda}_n}) = \sup_{t \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_i \le t} - (1 - e^{-\overline{\lambda}_n x}) \mathbb{1}_{t > 0} \right|.$$

Miracle : La loi de $h(F_n,F_{\overline{\lambda}_n})$ ne dépend pas de λ , mais uniquement de n.

Si les $(Y_i)_{i\in\mathbb{N}}$ sont iid. de loi $\mathcal{E}(1)$, les $(\frac{1}{\lambda}Y_i)_{i\in\mathbb{N}}$ sont iid de loi $\mathcal{E}(\lambda)$. Pour comprendre la loi de $h(F_n,F_{\overline{\lambda}_n})$, je peux remplacer les X_i par $\frac{1}{\lambda}Y_i$.

$$\begin{split} h(F_n, F_{\overline{\lambda}_n}) &=^{loi} \sup_{t \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\frac{Y_i}{\lambda} \le t} - (1 - e^{-\frac{n}{\sum_{i=1}^n Y_i / \lambda} t} \mathbb{1}_{t > 0}) \right| \\ &= \sup_{t \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{Y_i \le \lambda t} - (1 - e^{-\frac{n}{\sum_{i=1}^n Y_i} \lambda t} \mathbb{1}_{\lambda t > 0}) \right| \text{ or } \mathbb{1}_{t > 0} = \mathbb{1}_{\lambda t} \\ &= \sup_{s \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{Y_i \le s} - (1 - e^{-\frac{n}{\sum_{i=1}^n Y_i} s}) \mathbb{1}_{s > 0} \right| \text{ avec } s = \lambda t \end{split}$$

Cela ne dépend pas de λ mais seulement de n. On peut tabuler! (Malheureusement elle n'a pas de nom) et construire un test de KS.

2.2.0.2 Adéquation à une loi normale On peut adapter le test précédent pour des gaussiennes en estimant m et σ^2 avec $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ et $V_n = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ et construire un test. Cela s'appelle le test de normalité de **Lilliefors** (voir exo de TD pour la suite)

2.3 Le test du \mathcal{X}^2 d'ajustement

La lettre grecque \mathcal{X} se prononce "khi".

On dispose de X_1, \ldots, X_n va. iid.

On se place dans le cas particulier où les X_i sont à valeurs dans un ensemble fini $\{x_1,\ldots,x_d\}$. La loi des X_i est donc entièrement déterminée par la donnée de $p_k=P(X_1=x_k)$ pour tout k. Le vecteur $p=(p_1,\ldots,p_d)$ caractérise la loi des X_i

Remarque. On sait que $p_1 + \cdots + p_d = 1$

Hypothèse : $\forall h \in \{1, \dots, d\}, p_k > 0$. On ne s'est pas trompés dans le support, il faut prendre le plus petit d.

Ces restrictions ne sont pas si contraignantes dans beaucoup de cas pratiques, elles sont automatiquement vérifiées

Exemple 2.8. — Réponse à un questionnaire QCM : la réponse prend un nombre fini de valeurs

- Une notes sur 20 d'un examen
- Des variables qualitatives : fille/garçons, couleur des yeux

On a des observations X_1, \ldots, X_n de loi inconnue $p = (p_1, \ldots, p_d)$. On veut savoir si $p = p^{ref}$ pour un vecteur p^{ref} fixé.

$$H_0=p=p^{ref}$$
 i.e. $\forall k\in\{1,\ldots,d\}, p_k=p_k^{ref}$ $H_1=p\neq p^{ref}$ i.e. $\exists k\in\{1,\ldots,d\}: p_k\neq p_k^{ref}$

2.3.0.1 Préparatifs, introduction Si on trie nos valeurs $p^{ref} = (0; 3, 0.1, 0.2, 0.2, 0.2)$ On a envie de

	x1	x2	 XS
Nombre d'observation	17	23	 12

regarder $\overline{p}_1=rac{{
m Nombre\ de\ }n_1}{n},\ldots,\overline{p}_s=rac{{
m Nombre\ de\ }n_s}{n}.$ On a envie de construire quelque chose avec ces esti-

Notation

$$\forall k \in \{1, \dots, d\}, N_{k,n} = \sum_{i=1}^{n} \mathbb{1}_{X_i = x_k}.$$

Les $N_{k,n}$ sont les effectifs observés.

$$\forall k \in \{1, \dots, d\} \overline{p}_{k,n} = \frac{N_{k,n}}{n} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{X_i = x_k}.$$

Les $\overline{p}_{k,n}$ sont les proportions observés. On note $\overline{p}_n=(\overline{p}_{1,n},\dots,\overline{p}_{d,n})$

Sous H_0 , les $\overline{p}_{k,n}$ devraient être proches des p_k^{ref}

Note. Comme dans KS, on vas trouver une formule reliant les deux et pouvant être tabuler pour faire des tests. Mais elle est pas vraiment démontrable à notre niveau et utilise des vecteurs gaussiens

Théorème 2.5. Sous H_0 on note

$$\begin{split} D(\overline{p}_n, p^{ref}) &= n \sum_{k=1}^d \frac{(\overline{p}_{k,n} - p_k^{ref})^2}{p_k^{ref}} \\ D(\overline{p}_n, p^{ref}) &\to_{n \to \infty}^{\mathcal{L}} \mathcal{X}^2(d-1) \end{split}$$

Sous H_1

$$D(\overline{p}_n, p^{ref}) \to_{n \to \infty}^{p.s} +\infty.$$

Remarque (Autre formulation, qu'on utilise en TD!). On peut aussi écrire

$$D(\overline{p}_n, p^{ref}) = \sum_{k=1}^d \frac{(N_{k,n} - np_k^{ref})^2}{np_k^{ref}}$$

Si on note $N_{k}^{ref}=np_{k}^{ref}$ l'effectifs attendu, alors cela devient

$$D(\overline{p}_n, p^{ref}) = \sum_{i=1}^d \frac{(N_{k,n} - N_k^{ref})^2}{N_k^{ref}}.$$

 $N_{\scriptscriptstyle L}^{ref}$ n'est pas un entier en général

2.3.0.2 Le test du \mathcal{X}^2

- Données : X_1, \ldots, X_n à valeur dans $\{x_1, \ldots, x_d\}$
- p^{ref} qu'on veut tester
- Niveau α

Soit h_{α} le quantile d'ordre $1-\alpha$ de la loi $\mathcal{X}^2(d-1)$ alors

- $\begin{array}{l} \text{ Si } D(\overline{p}_n, p^{ref}) \geq h_{\alpha} \text{ on rejette } H_0 \\ \text{ Sinon } D(\overline{p}_n, p^{ref}) < h_{\alpha} \text{ on conserve } H_0 \end{array}$

Attention: Ce test est uniquement asymptotique!

Condition d'utilisation:

$$\forall k \in \{1, \dots, d\}, np_k^{ref}(1 - p_k^{ref}) \ge 5.$$

Cela implique $n \ge 20$ mais en général il faut beaucoup plus

Exemple 2.9 (dé truqué). On dispose d'un dé douteux, on releve les résultats de 100 lancés et on veut determiner si il est pipé ou non.

Condition : $100 * \frac{1}{6} * \frac{5}{6} = \frac{500}{36} = 13.88 > 5$ c'est bon le test du \mathcal{X}^2 est applicable.

	1	2	3	4	5	6
Effectifs	16	20	19	10	17	18
Proportions	0.16	0.2	0.19	0.1	0.17	0.18

—
$$H_0$$
: dè non truqué $\Leftrightarrow p^{ref}=(\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},$
— H_1 : dé truqué $p\neq p^{ref}$

$$-H_1$$
: dé truqué $p \neq p^{rej}$

On calcule

$$D = 100 * \left[\frac{(0.16 - \frac{1}{6})^2}{1/6} + \frac{(0.2 - \frac{1}{6})^2}{1/6} + \dots + \frac{(0.18 - \frac{1}{6})^2}{1/6} \right]$$
$$= 600 \sum_{k=1}^{6} (\overline{p}_k - \frac{1}{6})^2 = 3.8$$

Pour faire un test à 90%, on doit comparer cette valeur avec le quantile d'ordre d'une loi $\mathcal{X}^2(6-1)$ degrés de liberté. Lecture de table : k = 9.24.

Ainsi comme D=3.28<9.24, on conserve H_0 le dé est équilibré

Nouveau cours du 03/02

Bilan jusqu'à présent

Le test du \mathcal{X}^2 "basique" permet de tester l'adéquation de données iid X_1, \dots, X_n à valeurs dans $\{x_1, \dots, x_d\}$ à une loi discrète sur $\{x_1,\ldots,x_d\}$ caractérisé par un vecteur de probabilité : $p=(p_1,\ldots,p_d)$

2.3.0.3 Mise en place concrette:

1. Etape 0 : On vérifie les conditions

$$\forall k \in \{1, \dots, d\}, n * p_k \ge 5.$$

C'est la condition de Cochran (1954), il avait testé cas possible en observant l'approximation faites.

- 2. Etape 1 : On calcule les effectifs et proportions observées : $N_{k,n}$ et $\hat{p}_{k,n}$
- 3. Etape 2 : Calcul de la statistique de test

$$D = n \sum_{d}^{k=1} \frac{(\hat{p}_{k,n} - p_k)^2}{p_k}.$$

- 4. Etape 3 : Détermination de la zone de rejet au niveau α . On lit h_{α} le quantile d'ordre $1-\alpha$ de la loi $\mathcal{X}^2(d_1)$
- 5. Etape 4: Décisions
 - si $D>h_{lpha}$, on rejette H_0 (au niveau lpha).
 - Si $D \leq h_{\alpha}$ on conserve H_0

2.3.0.4 Test du \mathcal{X}^2 avec fusion des classes Que fait-on si la condition $np_k \geq 5$ n'est pas vérifiée? On fusionne des classes!

Exemple 2.10. On a observé des réponses à un questionnaire. On veut tester l'adéquation à la loi p=1 $(\frac{1}{4}, \frac{1}{4}, \frac{7}{16}, \frac{1}{16})$ avec n = 40

Modalité	1	2	3	4
Effectif	10	18	11	1

Vérification des conditions du test du \mathcal{X}^2

$$40*p_1 = \frac{40}{4} = 10 > 540*p_2 = \frac{40}{4} = 10 > 540*p_3 = \frac{40*7}{16} = 10 \geq 540*p_4 = \frac{40}{16} = 10 < 5 \text{ condition non v\'erifi\'ee!}$$

On fusionne des colonnes de manière à remplir les conditions. On fusionne les colonnes 3 et 4 pas exemple.

13

Modalité	1	2	3 ou 4
Effectif	10	18	12

La nouvelle probabilité de référence devient

$$p_{nouvelle}^{ref} = (\frac{1}{4}, \frac{1}{4}, \frac{7}{16} + \frac{1}{16}) = (\frac{1}{4}, \frac{1}{4}, \frac{1}{2}).$$

Nouvelle condition:

$$40 * p_1 = 10 > 540 * p_2 = 10 > 540 * p_3 = \frac{40}{2} = 20 > 5$$

Si on applique le test du \mathcal{X}^2 "de base", on obtient un test asymptotique de niveau α pour le cas à 3 classes (fait avec un $\mathcal{X}^2(2)$), donc c'est aussi un test asymptotique de niveau α pour le cas à 4 classes.

Remarque. Si on prend $q=(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4})$ qui appartient à H_1^4 car $q\neq p=(\frac{1}{4},\frac{1}{4},\frac{7}{16},\frac{1}{16})$. En fusionnant ce cas particulier, on se retrouve dans H_0^3 .

$$q \in H_1^4 \to q^{reduit} = (\frac{1}{4}, \frac{1}{4}, \frac{1}{2}) \in H_0^3.$$

On perd donc en information quand on fusionne des colonnes. La puissance du test se réduit car on se retrouve avec des cas dans H_1 et dans H_0 .

L'opération de fusion des colonnes permet toujours de construire un test de niveau asymptotique α au détriment de la puissance.

2.4 Le test du χ^2 pour une loi discrète

Données : X_1, \ldots, X_n observation iid. Loi cible à valeur dans $\mathbb N$ caractérisée par

$$p = (p_k)_{k \in \mathbb{N}}.$$

Exemple pour une poisson

$$p_k = \frac{\lambda^k e^{-\lambda}}{k!}.$$

Est-ce que la loi des X_i est donnée par p? C'est à dire

$$\forall k \in \mathbb{N}, P(X_1 = k) = p_k$$
?

Valeur	0	1	2	3	4	5	6	
Effectif	5	8	12	7	2	1	0	

Exemple 2.11. "On ne peut pas faire un \mathcal{X}^2 avec une infinité de degrés de liberté" \to On regroupe les classes à partir d'un certain rang On voudrait regarder np_0, np_1, np_2, np_3 et pour la 4ème classe

Valeur	0	1	2	3	4 et plus
Effectif	5	8	12	7	4

 $n(\sum_{k=4}^{+\infty} p_k)$. Les classes sont déterminées afin que toutes les conditions soient satisfaites.

En pratique, on regarde à partir de quel indice la condition $np_k < 5$ ne fonctionne plus, puis on regroupe à partir de la

2.4.0.1 En pratique Donnée : $X_1, ..., X_n$

Loi cible : $p = (p_k)_{k \in \mathbb{N}^*}$

- 1. Etape 0 : On détermine les classes en calculant np_1, np_2, \dots et ainsi de suite.
- 2. On regroupe les classes qui ne vérifient pas la condition
- 3. On calcule les effectifs de chaque classes $N_{1,n},\dots,N_{c-1,n},N_{c,n}$ avec c l'effectif dans la classe agglomérée
- 4. On calcule les proportions observées $\hat{p}_{k,n}$ et la stat de test $D=n\sum_{k=1}^c \frac{(\hat{p}_{k,n}-p_k)^2}{p_k'}$ où $p_k'=p_k$ si $k\leq c_1$ et $p_c'=\sum_{k=c}^{+\infty}p_l$
- 5. On détermine la zone de rejet à l'aide du quantile d'ordre $1-\alpha$ d'une loi $\mathcal{X}^2(c-1)$, noté h_α Et on décide de conserver H_0 si $D \leq h_\alpha$, on rejette sinon.

2.4.0.2 Limite Ce test permet de tester l'adéquation à n'importe quelle loi discrète au niveau α . Cependant, dès lors qu'on regroupe des classes (ce qui est obligatoire ici) on perd la consistance du test.

2.5 Le test du \mathcal{X}^2 pour une loi continue

Données : X_1, \ldots, X_n iid.

Loi cible : L la loi d'une v.a. L (par exemple de densité g)

Idée: Transformer les données en les regroupant par paquets.

Soient I_1,\ldots,I_d des intervalles qui forment une partition du support de L. (disjoints, dont l'union couvre toutes les valeurs de L) Voir 4

Condition

$$\forall k \in \{1, \dots, d\} n * P(L \in I_k) \ge 5.$$

On crée de nouvelle variables Y_i : Numéro de l'intervalle dans lequel est X_i

Figure 4 - Illustration de la partition de L

$$P(Y_1 = k) = P(X_i \in I_k) = p_k(\text{sous } H_0).$$

On a alors : $Y_1, ..., Y_n$ variables à valeur dans $\{1, ..., d\}$, avec comme proba cible : $p = (p_i = P(L \in I_i), ..., p_d = P(L \in I_d))$.

On applique alors le test du \mathcal{X}^2 "basique" aux variable Y_i . Cela fournit un test asymptotique de niveau α . Le tableau à considérer est :

Intervale	I_1	I_2	I_3	 I_d
Effectif				

2.5.0.1 Bilan de la méthode Aspects positifs :

- Fonctionne pour toutes les lois
- Facile à faire

Aspects négatifs :

- Problème de consistance. Regrouper les variables par intervalle ruiner l'erreur de seconde espèce.
- Asymptotique
- Dépendant du choix des intervalles. Ce qui n'est pas canonique.

2.6 Le \mathcal{X}^2 d'ajustement à une famille paramétrique de loi

On dispose d'observation iid. X_1, \ldots, X_n .

On veut savoir si la loi des X_i fait partie d'une famille paramétrique $\mathcal{F}=(P_\theta)_{\theta\in\Theta}$ à $\Theta\subset\mathbb{R}^M$. Par exemple

- Lois de Poisson $(\mathcal{P}ois(\lambda))_{\lambda \in \mathbb{R}^+_*}, M=1$
- Lois Exponentielles : $(\mathcal{E}(\lambda))_{\lambda \in \mathbb{R}^+_*}^{-1}, M = 1$
- Lois géométrique : $(\mathcal{G}eom(p))_{p\in]0,1[}^{n}, M=1$
- Lois normales : $(\mathcal{N}(m, \sigma^2))_{m \in \mathbb{R}, \sigma^2 \in \mathbb{R}^+_+}, M = 2$

Les hypothèses :

- $-H_0 =$ la loi des X_i appartient à \mathcal{F}
- $H_1 = \text{la loi des } X_i \text{ n'appartient pas à } \mathcal{F}$
- 1. Etape 1 : Soit $\hat{\theta}_n$ l'estimateur du maximum de vraisemblance de θ (pour P_{θ}). On estime **tous** les paramètres de la loi $(p_1^{\hat{\theta}_n}, \dots, p_d^{\hat{\theta}_n})$
- 2. Etape 2 : On vas tester l'ajustement de X_1,\ldots,X_n à $P_{\hat{\theta}_n}$ On calcule les fréquences observées $\hat{p}_{k,n}$.

Erreur à ne pas commettre : il est faut de dire que

$$D = n \sum_{k=1}^{d} \frac{(\hat{p}_{k,n} - p_k^{\hat{\theta}_n})^2}{p_k^{\hat{\theta}_n}} \to \mathcal{X}^2(d-1).$$

Théorème 2.6. Sous H_0 ,

$$D = n \sum_{k=1}^{d} \frac{(\hat{p}_{k,n} - p_k^{\hat{\theta}_n})^2}{p_k^{\hat{\theta}_n}} \to \mathcal{X}^2(d - 1 - M).$$

Avec

- -d = Nombre de classes à la fin, après regroupement éventuel
- -M = nombre de paramètre

2.6.0.1 En pratique

- 1. Etape 1 : Soit $\hat{\theta}_n$ l'estimateur du maximum de vraisemblance de θ (pour P_{θ}). On estime **tous** les paramètres de la loi $(p_1^{\hat{\theta}_n}, \dots, p_d^{\hat{\theta}_n})$
- 2. Etape 2 : On vas tester l'ajustement de X_1,\ldots,X_n à $P_{\hat{\theta}_n}$ On calcule les fréquences observées $\hat{p}_{k,n}$.
- 3. Etape 3 : Vérification des conditions $np_k^{\hat{\theta}_n}$ et possible regroupement en classes
- 4. Etape 4 : Calcul de la stat de test D
- 5. Etape 5 : Zone de rejet : lecture de H_{α} le quantile d'ordre $1-\alpha$ d'une $\mathcal{X}^2(d-1-M)$
- 6. Etape 6 : Décision
 - $D>h_{\alpha}$ on rejette H_{0}
 - $D \le h_{\alpha}$ on conserve H_0

Nouveau cours du 10/02

Exemple 2.12 (Test d'ajustement à un loi de Poisson). On dispose d'observation X_1, \ldots, X_n iid. (représentant le nombre d'heure entre 2 pannes de métro). On veut tester pour savoir si les données proviennent d'une loi de Poisson.

Remarque (Rappel). $Z \sim Pois(\lambda), P(Z=k) = \frac{\lambda^k e^{-\lambda}}{k!}, \lambda \in \mathbb{R}^*$

- H_0 La loi des observation est $Pois(\lambda)$ pour un certain $\lambda>0$
- H_1 la loi des X_i n'est pas une loi de Poisson
- 1. Estimer les paramètres (par un maximum de vraisemblance) : On rappelle (1er semestre) que l'EMV pour λ est

$$\bar{\lambda}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Données : Sur ces 100 données, on calcule $\bar{\lambda}_n$:

$$\bar{\lambda} = \frac{1}{100} (14 * 0 + 22 * 1 + \dots + 1 * 7) = 2.29.$$

Valeurs	0	1	2	3	4	5	6	7	8	9	
Effectif	14	22	20	25	7	9	2	1	0	0	0

2. Calcul de la statistique de test comme si on faisait un \mathcal{X}^2 d'ajustement à une $\mathcal{P}(2.29)$. Si $Z \sim \mathcal{P}(2.29), P(X=k) = (2.29)^k \frac{e^{-2.29}}{k!} = p_k$. On calcule les np_k On détermine les classes à

k	0	1	2	3	4	5	6	7	
$100p_k$	10.13	23.19	26.55	20.27	11.6	5.3	2.03	0.66	

regrouper pour avoir $np_k \geq 5$. On se rend compte rapidement qu'il faut regrouper $5 \text{ à} + \infty$ Calcul

k	0	1	2	3	4	5 et +
$100p_k$	10.13	23.19	26.55	20.27	11.6	$100 - \sum autres = 8.26$

de la statistique de test :

$$D = 100 \sum_{k=0}^{5} \frac{(p_{k,n} - p_k)^2}{p_k} = \sum_{k=0}^{5} \frac{(N_{k,n} - 100p_k)^2}{100p_k} = 7.78.$$

3. Zone de rejet au niveau $\alpha = 5\%$

On li dans la table le quantile d'ordre $1-\alpha=0.95$ de la loi $\mathcal{X}^2(6-$ Nombre de classe - Nombre de paramètre estim $\mathcal{X}^2(6-1-1)$. Ici $k_{0.95}=9.48$.

CCL : Comme $D = 7.78 \le k_{0.95} = 9.48$ on conserve H_0 .

Remarque (Chapitre 1). — Remarque sur le \mathcal{X}^2 d'ajustement à une formule paramétrique de lois : Principe:

- 1. On estime
- 2. On calcule comme si on faisait un \mathcal{X}^2 d'ajustement à une seule loi
- 3. Attention au degrés de liberté dans la zone de rejet!
- Remarque sur la consistance : Si le nombre de classes utilisées tend vers $+\infty$ quand $n \to +\infty$, le test du \mathcal{X}^2 est consistant.

2.7 Bilan du chapitre

On a deux test d'ajustement : Kolmogorov-Smirnov et \mathcal{X}^2

- KS : ajustement à une loi de fdr. continue. Fonctionne pour toutes valeurs de n. Si n grand, on prend $\frac{1}{\sqrt{n}}$ quantile de W_{∞} .

Attention : Si n est grand sur des données réelles, KS est très sensible au bruit et rejette très souvent. Une erreur de 0.01 sur la fdr. des données mène vite à un ... si $n \ge 10^5$.

 $-\mathcal{X}^2$: Test asymptotique, n > 50 au minimum + Condition. Fonctionne dans tous les cas.

3 Loi de comparaison

Dans ce chapitre, on dispose de deux jeux de données

- $$\begin{split} & \ X_1, \dots, X_n \text{ avec } n > 0 \text{ iid.} \\ & \ Y_1, \dots, Y_n \text{ avec } n > 0 \text{ iid.} \end{split}$$

On cherche à comparer les lois sous-jacentes.

- 1. Est-ce que les X_i et Y_i ont la même loi? (homogénéité)
- 2. Est-ce que les X_i sont indépendants des Y_j (indépendance)
- 3. Est-ce que les loi de X_i et Y_j ont la même moyenne ou la même médiane?

Deux cas de figure :

— Échantillon appariés : les X_i et Y_i proviennent d'une même mesure / tirage (X_i, Y_i) . Cela implique

Exemple 3.1. On mesure la taille et le poids de pluviomètres à Roubaix et à Croix

— Echantillons indépendants : si (X_1,\ldots,X_n) est indépendant de (Y_1,\ldots,Y_n) , on dira que les échantillons sont indépendants.

3.1 Le test d'homogénéité de Kolmogorov-Smirnov

On dispose des données iid. (X_1,\ldots,X_n) et (Y_1,\ldots,Y_n) . Les échantillons sont indépendants. On veut tester

- H_0 : les X_i et Y_i ont la même loi, c'est à dire $F_{X_1} = F_{V_1}$ où F_{X_1}, F_{Y_1} sont continues.
- $-H_1$ les lois sont différentes

Comme pour le test d'ajustement de KS, on va construire un test non asymptotique se basant sur les fdr. empirique.

Notation:

$$F_n : \mathbb{R} \to [0, 1]$$

$$C_n : \mathbb{R} \to [0, 1]$$

$$t \mapsto \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_i \le t}$$

$$t \mapsto \frac{1}{n} \sum_{j=1}^n \mathbb{1}_{Y_j \le t}$$

Théorème 3.1.

1. Si $F_{X_1} = F_{Y_1}$ alors la variable

$$h(F_n, G_n) = \sup_{t \in \mathbb{R}} |F_n(t) - G_n(t)|.$$

a même loi que la variable

$$h_{n,m} = \sup_{s \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\mathbf{U}_{i} \leq s} - \frac{1}{n} \sum_{j=1}^{n} \mathbb{1}_{\mathbf{V}_{i} \leq s} \right|.$$

avec $(U_1,...,U_n)$ et $(V_1,...,V_n)$ sont deux échantillons indépendants de variable iid. uniformes sur [0,1].

2. De plus si $F_{X_1} \neq F_{Y_1}$ alors

$$h(F_n, G_n) \to_{n,m\to\infty} ||F_{X_1} - F_{V_1}||_{\infty} = \sup_{t \in \mathbb{R}} |F_{X_1}(t) - F_{Y_1}(t)| > 0.$$

Preuve : (a) D'après le théorème de simulation par inversion de la fdr. si U_1,\ldots,U_n sont des variables aléatoire iid. uniforme sur $[0,1],(F_{X_1}^{-1}(U_1),\ldots,F_{X_1}^{-1}(U_n))$ a même loi que (X_1,\ldots,X_n) . Si U_1,\ldots,U_n sont des variables aléatoire iid. uniforme sur $[0,1],(F_{X_1}^{-1}(V_1),\ldots,F_{X_1}^{-1}(V_n))$ a même loi que (Y_1,\ldots,Y_n) .

Ainsi , $h(F_n,G_n)$ a même loi que $\sup_{s\in\mathbb{R}}\left|\frac{1}{n}\sum_{i=1}^n\mathbbm{1}_{F_{X_1}^{-1}(U_i)\leq t}-\frac{1}{n}\sum_{j=1}^n\mathbbm{1}_{F_{X_1}^{-1}(V_i)\leq t}\right|$ Par les propriétés classique de l'inverse généralisée,

$$F_{X_1}^{-1}(U_i) \le t \Leftrightarrow U_i \le F_{X_1}(t)$$

$$F_{X_1}^{-1}(V_j) \le t \Leftrightarrow V_j \le F_{X_1}(t)$$

Ainsi
$$A = \sup_{s \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{U_i \le F_{X_1}(t)} - \frac{1}{n} \sum_{j=1}^{n} \mathbb{1}_{V_i \le F_{X_1}(t)} \right|$$

(b) Conséguence immédiate du théorème de Glivenko Cantelli.

3.1.1 Test d'homogénéité de Kolmogorov-Smirnov

Données : (X_1, \ldots, X_n) et (Y_1, \ldots, Y_n) iid deux échantillon indépendants. $H_0: F_{X_1} = F_{Y_1}$ contre $H_1: F_{X_1} \neq F_{Y_1}$.

Statistique de test : on calcule

$$\sup_{s \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{X_i \le t} - \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{Y_j \le t} \right|.$$

Zone de rejet au niveau α :

Soit k_{α} le quantile d'ordre $1-\alpha$ de la loi de

$$\sup_{s \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{U_i \le s} - \frac{1}{n} \sum_{j=1}^{n} \mathbb{1}_{V_j \le s} \right|.$$

où $(U_1, ..., U_n) \perp (V_1, ..., V_n)$ iid. $\sim U([0, 1])$

CCL : Si $h(F_n,G_n) \leq k_{\alpha}$, on conserve H_0 au niveau α . Sinon on rejette H_0 Remarque. .

- 1. Ce test est de taille α , si on utilise la table de $h_{n,m}$.
- 2. Si n et m sont trop grands, on utilise le résultat suivant : Sous H_0

$$\sqrt{\frac{nm}{n+m}}h(F_n,G_n)
ightarrow_{n,m
ightarrow +\infty}^{lpha} W_{\infty}$$
 voir KS asymptotique.

On utilise alors comme zone de rejet $\sqrt{\frac{n+m}{nm}}W_{\infty}$ avec W_{∞} le quantile d'ordre $1-\alpha$ de W_{∞} .

3.1.1.1 En pratique (cas n et m grand) :

En R: X, Y vecteur, ks.test(X,Y)

A la main:

$$F_n(t) - G_n(t) = \frac{\mathsf{nb} \; \mathsf{de} \; X_i \leq t}{n} - \frac{\mathsf{nb} \; \mathsf{de} \; Y_i \leq t}{m}.$$

Figure 5 - <caption>

On range par ordre croissant:

$X_{(1)}$	$X_{(2)}$	$Y_{(1)}$	$X_{(3)}$	$Y_{(2)}$	$X_{(4)}$	
$\left \frac{1}{n} - \frac{0}{m} \right $	$\left \frac{2}{n} \right $	$\left \frac{2}{n} - \frac{1}{m} \right $	$\left \frac{3}{n} - \frac{1}{m} \right $	$\left \frac{3}{n} - \frac{2}{m} \right $	$\left \frac{4}{n} - \frac{2}{m} \right $	

Je calcules les n+m quantités et je garde la plus grande valeur. Méthode inefficace :

X_i	$X_{(1)}$	$X_{(2)}$		$X_{(3)}$		$X_{(4)}$	
Y_i			$Y_{(1)}$		$Y_{(2)}$		
F_n	$\frac{1}{n}$	$\frac{2}{n}$	$\frac{2}{n}$	$\frac{3}{n}$	$\frac{3}{n}$	$\frac{4}{n}$	
G_m	0	0	$\frac{1}{m}$	$\frac{1}{m}$	$\frac{2}{m}$	$\frac{2}{m}$	

Nouveau cours du 03/03

3.2 Les test du \mathcal{X}^2 d'indépendance et d'homogénéité

3.2.1 Le \mathcal{X}^2 d'indépendance

Rappel: deux variables aléatoire réelle X,Y sont indépendante ssi

$$\forall A, B \subset \mathcal{B}(\mathbb{R}), P(X \in A \text{ et } Y \in B) = P(X \in A)P(Y \in B).$$

De manière informelle, la connaissance de X ne donne aucune information sur Y

Données :

 $(X_1,Y_1),\ldots,(X_T,Y_T)$ données appariés **iid.**. Cela mène à deux échantillons iid. X_1,\ldots,X_T et Y_1,\ldots,Y_T . **Attention** : T= nombre totale de mesures

On veut déterminer si X_1 est indépendant de $Y_1 \Leftrightarrow X_1 \perp Y_1$.

Ainsi on vas construire un test pour

- $H_0: X_1 \bot Y_1$
- $-H_0: X_1 \perp Y_1$ ne sont pas indépendants

Quel genre de situation cela couvre-t-il? 2 exemples :

- Apparition d'effets secondaire pour un traitement
- Effet d'un facteur : réussite au bac en fonction du sexe?

Important : Les données sont à valeurs dans un nombre fini de classes :

- X_1,\ldots,X_T à valeurs dans A_1,\ldots,A_M
- $-Y_1,\ldots,Y_T$ à valeurs dans B_1,\ldots,B_N

Si ce n'est pas le cas, on s'y ramène en **créant** des classes comme pour les autres test du \mathcal{X}^2 La loi de X_1 est caractérisé par

$$p_m = P(X_1 \in A_m) \text{ pour } m \in \{1, \dots, M\}.$$

de même pour Y_1

$$q_n = P(Y_1 \in B_n) \text{ pour } n \in \{1, \dots, N\}.$$

Si on a accès à ces probabilités, l'indépendancese lit

$$\forall m \in \{1, \dots, M\}, \forall n \in \{1, \dots, N\}.$$

$$p_{m,n} = P(X_1 \in A_n \text{ et } Y_1 \in B_n) = p_m * q_n \text{ par indépendance.}$$

Malheuresement : Ni les $p_{m,n}$, ni les q_n ne sont connus! \to On vas estimer ces quantités et construire un test à partir de ces estimateur.

Notation : Pour $m \in \{1, \dots, M\}$ et $n \in \{1, \dots, N\}$. On pose

$$N_{m,n} = \sum_{i=1}^{T} \mathbb{1}_{X_i \in A_m, Y_i \in B_n}$$

= effectif observé sur la classe A_m*B_n

$$N_{m,\centerdot} = \sum_{i=1}^T \mathbbm{1}_{X_i \in A_m}$$

= effectif total de A_m

$$N_{\bullet,n} = \sum_{i=1}^{T} \mathbb{1}_{Y_i \in B_m}$$

= effectif totale de B_n

Remarque. On a immédiatement

$$T = \sum_{n=1}^{N} N_{\cdot,n} = \sum_{m=1}^{M} N_{m,\cdot} = \sum_{n=1}^{N} \sum_{m=1}^{M} N_{m,n}.$$

Estimateurs : Pour $m \in \{1, \dots, M\}$ et $n \in \{1, \dots, N\}$

$$\hat{p}_{m,n} = rac{N_{m,n}}{T} pprox p_{m,n}$$
 si T est grand.

$$\hat{p}_m = rac{N_{m, ullet}}{T} pprox p_m$$
 si T est grand.

$$\hat{q}_n = rac{N_{{ extbf{.}},n}}{T} pprox q_n ext{ si } T ext{ est grand}.$$

3.2.2 Test du \mathcal{X}^2 d'indépendance

Données : $(X_1, Y_1), \dots, (X_T, Y_T)$ iid appariés.

— X_1 à valeur dans A_1,\ldots,A_M

— Y_1 à valeur dans B_1, \ldots, B_N

Hypothèse:

 $- H_0 : X_1 \bot Y_1$

 $- H_1 : X_1 \perp X_1$

Statistique de test

$$D = T * \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{(\hat{p}_{m,n} - \hat{p}_{m}\hat{q}_{n})^{2}}{\hat{p}_{m}\hat{q}_{n}}$$
$$= \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{(N_{m,n} - \frac{N_{m,n}N_{n,n}}{T})^{2}}{\frac{N_{m,n}N_{n,n}}{T}}$$

Condition : Si $\forall m \in \{1, \dots, M\}$ et $\forall n \in \{1, \dots, N\}$

$$T\hat{p}_m\hat{q}_m \geq 5.$$

alors D suit approximativement une loi

$$\mathcal{X}^2(MN-1-(M-1)-(N-1))$$

$$\Leftrightarrow \mathcal{X}^2(MN-1-\text{ estimation de }p_m-\text{ Estimation des }q_n)$$

$$\Leftrightarrow \mathcal{X}^2(MN-M-N+1)$$

$$\Leftrightarrow \mathcal{X}^2((M-1)(N-1))$$

Seuil de rejet : Au niveau α .

Soit h_{α} le quantile d'ordre $1-\alpha$ de la loi $\mathcal{X}^2((M-1)(N-1))$.

Si $D > h_{\alpha}$, on rejette H_0 . Sinon on conserve H_0 .

Que se passe-t-il sous H_1

Si X_1 et Y_1 ne sont pas indépendants, il existe m_0 et n_0 tels que

$$p_{m_0,n_0} \neq p_{m_0}q_{n_0}$$
.

Ainsi,

$$\frac{(\hat{p}_{m_0,n_0} - \hat{p}_{m_0}\hat{q}_{n_0})^2}{\hat{p}_{m_0}\hat{q}_{n_0}} \to_{T \to +\infty} \frac{(p_{m_0,n_0} - p_{m_0}q_{n_0})^2}{p_{m_0}q_{n_0}}.$$

Donc $D \to +\infty$ (on a multiplié par T)

Exemple 3.2. Indépendance de la couleur des yeux et des cheveux.

On a mesuré sur 1000 personnes leurs couleurs de yeux et cheveux qu'on a regroupé dans le tableau suivant.

yeux \ cheveux	Noirs (A_1)	Bruns	Blonds	Roux	Total
Marrons (B_1)	$N_{1,1} = 152$	$N_{2,1} = 247$	83	11	$N_{.,1} = 152$
Vert ou Gris	73	114	37	8	232
Bleus	36	167	127	10	275
Total	$N_{1.1} = 261$	463	247	29	1000

Condition : $T*\hat{p}_m\hat{q}_n \geq 5 \Leftrightarrow T*\frac{N_{m,n}*N_{\bullet,n}}{T*T} = \text{effectif attendu}$ \to Vous calculez les conditions comme vous voulez (?) Tableau des effectifs attendu + regarder si on respecte les conditions

yeux \ cheveux	Noirs (A_1)	Bruns	Blonds	Roux	Total
Marrons (B_1)	128.67	228.26	121.77	14.3	$N_{.,1} = 152$
Vert ou Gris	60.55	107.42	57.3	6.73	232
Bleus	71.78	127.32	67.93	7.98	275
Total	$N_{1,.} = 261$	463	247	29	1000

Tous les effectifs attendus sont ≥ 5 : On peut appliquer le test du \mathcal{X}^2 d'indépendance

$$\begin{split} D &= T \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{(\hat{p}_{m,n} - \hat{p}_{m}\hat{q}_{n})^{2}}{\hat{p}_{m}\hat{q}_{n}} \\ &= \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{(N_{m,n} - \frac{N_{m,n}N_{n,n}}{T})^{2}}{\frac{N_{m,n}N_{n,n}}{T}} \\ &= \frac{(152 - 128.67)^{2}}{128.67} + \frac{(247 - 228.26)^{2}}{228.26} + \dots + \frac{(10 - 7.98)^{2}}{7.98} \\ &= \text{Une somme à 12 termes} \\ &= 104.01 \end{split}$$

Zone de rejet : Sous $H_0, D \sim \mathcal{X}^2(12-13-2) = \mathcal{X}^2(6)$. Pour un test au niveau 5%, on lit le quantile d'ordre 95% d'une $\mathcal{X}^2(6) = 12.6$

Conclusion : D>12.6 On rejette H_0 couleur d'yeux et couleurs de cheveux ne sont pas indépendants

3.3 Le \mathcal{X}^2 d'homogénéité

3.3.1 Pour deux échantillons

Données : X_1, \ldots, X_{n_1} et Y_1, \ldots, Y_{n_2} deux échantillons iid indépendants entre eux (comme pour Kolmogorov-Smirnov).

Les variables sont toutes à valeurs dans les mêmes classes A_1, \ldots, A_M .

Hypothèse: On veut tester l'homogénéité

- $\begin{array}{l} -H_0=X_1 \text{ et } Y_1 \text{ ont la même loi} \Leftrightarrow \forall m \in \{1,\ldots,M\}, P(X_1 \in A_m)=P(Y_1 \in A_m) \\ -H_1=X_1 \text{ et } Y_1 \text{ n'ont pas la même loi} \Leftrightarrow \exists m \in \{1,\ldots,M\} \text{ tel que } P(X_1 \in A_m) \neq P(Y_1 \in A_m) \end{array}$

Remarque (Lien entre test du \mathcal{X}^2 d'indépendance et d'homogénéité). On peut se ramener à un test d'indépendance en construisant l'échantillon apparié suivant $i \le n_1 + n_2 = T$

$$(W_i,Z_i) = \begin{cases} (X_i,1) & \text{si } i \leq n_1 \\ (Y_{i-n},2) & \text{si } i > n_1 \end{cases}.$$

On est passé de :

$$\begin{array}{l} - \stackrel{\cdot}{X}_1, \dots, X_{n_1} \grave{\mathsf{a}} \ (X_1,1), (X_2,1), \dots, (X_n,1) \\ - \ \mathsf{et} \ Y_1, \dots, Y_{n_2} \grave{\mathsf{a}} \ (Y_1,2), (Y_2,2), \dots, (Y_n,2) \end{array}$$

$$-$$
 et Y_1, \ldots, Y_{n_2} à $(Y_1, 2), (Y_2, 2), \ldots, (Y_n, 2)$

On a:

$$W_1 \perp Z_1 \Leftrightarrow X_1$$
 et Y_1 ont la même loi..

Pour tester l'homogénéité des deux population, il suffit de tester l'indépendance de Z_1 et W_1

- W_1 est à valeur dans A_1, \ldots, A_M
- Z_1 est à valeur dans $\{\{1\}, \{2\}\}$
- → Vu comme ça le test se généralise très bien! On peut l'utiliser pour comparer beaucoup plus d'échantillon! (exo 5 TD6)

Exemple 3.3 (Mise en pratique sans l'indépendance). On va tester si $P(X_1 \in A_m) = P(Y_1 \in A_m) \forall m \in A_m$

Sous H_0 les populations sont homogènes. On estime $p_m=P(X_1\in A_m)=P(Y_1\in A_m)$ par

$$\hat{p}_m = \frac{N_m^X + N_m^X}{n_1 + n_2}.$$

Avec
$$N_m^X = \sum_{i=1}^{n_1} \mathbbm{1}_{X_i \in A_m}$$
 et $N_m^Y = \sum_{j=1}^{n_2} \mathbbm{1}_{Y_j \in A_m}$. On pose alors $\hat{p}_m^X = \frac{N_m^X}{n_1}$ et $\hat{p}_m^Y = \frac{N_m^Y}{n_2}$.

Statistique de test :

$$D = n_1 \sum_{m=1}^{M} \frac{(\hat{p}_m^X - \hat{p}_m)^2}{\hat{p}_m} + n_2 \sum_{m=1}^{M} \frac{(\hat{p}_m^Y - \hat{p}_m)^2}{\hat{p}_m}$$
$$= \sum_{m=1}^{M} \frac{(N_m^X - n_1 \hat{p}_m)^2}{n_1 \hat{p}_m} + \sum_{m=1}^{M} \frac{(N_m^Y - n_2 \hat{p}_m)^2}{n_2 \hat{p}_m}$$

Si $\forall m \in \{1, \dots, M\}, n_1 \hat{p}_m \geq 5$ et $n_2 \hat{p}_m \geq 5$ alors $D \sim \mathcal{X}^2(M-1)$.

Seuil de rejet : Au niveau α , soit h_{α} le quantile d'ordre $1-\alpha$ d'une $\mathcal{X}^2(M-1)$. Si $D>h_{\alpha}$, on rejette H_0 , sinon on conserve H_0 .

Pop \ Groupe	0	Α	В	AB	Total
Pop 1	121	120	79	33	$353 = n_1$
Pop 2	118	95	121	30	364 = n ₂
Total	239	215	200	63	717

Exemple 3.4 (Groupe sanguins dans 2 populations). Validité : $n_1\hat{p}_1, n_2\hat{p}_1 \geq 5$. Les calculs sont les mêmes!

$$D = \frac{(121 - \frac{353*239}{717})^2}{\frac{353*239}{717}} + \frac{(120 - \frac{353*215}{717})^2}{\frac{353*215}{717}} + \dots + \frac{(118 - \frac{364*239}{717})^2}{\frac{364*239}{717}} + \dots + \frac{(30 - \frac{364*63}{717})^2}{\frac{364*63}{717}}$$

On lit le quantile d'une loi $\mathcal{X}^2(3)$ et on décide. Faites le calcul et finissez.

Exemple 3.5 (Pour un nombre quelconque de population). Donnée :

$$X_1^{(1)}, \dots, X_{n_1}^{(1)}$$

$$X_1^{(2)}, \dots, X_{n_1}^{(2)}$$

$$\dots$$

$$X_1^{(K)}, \dots, X_{n_1}^{(K)}$$

On a K échantillon indépendants de variable iid à valeur dans A_1, \ldots, A_m

Hypothèse:

- H_0 Tout les échantillons ont la même loi
- $-H_1$ Il existe un échantillons qui diffère des autres

Remarque. On peut créer l'échantillon apparié fictif:

$$(W_i, Z_i) = (X_i^{(k)}, k).$$

et tester l'indépendance de \mathbb{Z}_1 et \mathbb{W}_i

Ou bien on utilise

$$N_m^{(k)} = \sum_{i=1}^{n_k} \mathbb{1}_{X_i^{(k)} \in A_m}$$

$$\hat{p}_m = \frac{N_m^{(1)} + \dots + N_m^{(k)}}{n_1 + \dots + n_k}$$

$$D = \sum_{h=1}^K \sum_{m=1}^M \frac{(N_m^{(k)} - n_k \hat{p}_m)^2}{n_k \hat{p}_m}$$

Condition : Si $\forall k \leq L, \forall m \leq M : n_k \hat{p}_m \geq 5 \text{ alors } D \sim \mathcal{X}^2((M-1)(K-1)).$

Seuil de rejet : Quantile d'une $\mathcal{X}^2((M-1)(K-1))$.

Sous $H_1, D \to +\infty$ EXO (on avait plus le temps)

Nouveau cours du 10/03

4 Tests pour échantillons gaussiens

4.1 Rappels du cours de statistiques mathématiques

Théorème 4.1 (Cochran). X_1, \ldots, X_n v.a. iid. de loi $\mathcal{N}(m, \sigma^2)$ alors $-\bar{X}_n$ et V_n sont indépendant à

$$\bar{X}_n \frac{1}{n} \sum_{i=1}^n X_i, V_n = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

$$\frac{(n-1)V_n}{\sigma^2} \sim \mathcal{X}^2(n-1).$$

Théorème 4.2 (Student). X_1, \ldots, X_n va. iid. $\mathcal{N}(m, \sigma^2)$ alors

$$\frac{\sqrt{n}}{\sqrt{V_n}}(\bar{X}_n - m) \sim \mathcal{T}(n-1).$$

Rappel

— La loi $\mathcal{X}^2(n)$ est la loi de

$$\sum_{i=1}^n Y_i^2 \ \grave{\mathsf{a}} \ Y_i \ \mathsf{iid.} \ \mathcal{N}(0,1).$$

— La loi $\mathcal{T}(n)$ est la loi de

$$\frac{X}{\sqrt{V/n}} \text{ où } X \sim \mathcal{N}(0,1), V \sim \mathcal{X}^2(n).$$

— Opération sur les gaussiennes : $X \sim \mathcal{N}(m_1, \sigma_1^2), Y \sim \mathcal{N}(m_2, \sigma_2^2), X \perp Y$ indépendant alors :

$$X + Y \sim \mathcal{N}(m_1 + m_2, \sigma_1^2 + \sigma_2^2)$$
$$X - Y \sim \mathcal{N}(m_1 - m_2, \sigma_1^2 + \sigma_2^2)$$
$$\lambda X \sim \mathcal{N}(\lambda m_1, \lambda^2 \sigma_1^2)$$

 $\textit{Remarque.} \ \ \mathsf{Que} \ \mathsf{se} \ \mathsf{passe-t-il} \ \mathsf{si} \ X \ \mathsf{et} \ Y \ \mathsf{ne} \ \mathsf{sont} \ \mathsf{pas} \ \mathsf{indépendantes} ?$

X-Y n'est a priori pas gaussienne. Cependant si (X,Y) est gaussienn sur \mathbb{R}^2 (vecteur gaussien) alors X-Y est gaussien d'espérance m_1-m_2 mais de variance **inconnue**. (X,Y) gaussien si sa densité est de la forme

$$g(x,y) = \frac{1}{c}e^{-ax^2 - by^2 - 2cxy}.$$

Exemple 4.1 (Pas à savoir et un peu dur).

$$X \sim \mathcal{N}(0,1)$$

$$Z \sim \mathcal{N}(0,1) \bot X$$

$$B \sim Ber(\frac{1}{2})$$

$$Y = BX + (1-B)Z \sim \mathcal{N}(0,1)$$

$$X - Y = \begin{cases} 0 & \text{si } B = 1 \\ X - Z & \text{si } B = 0 \end{cases}$$

X-Y n'est clairement pas gaussienne $P(Y \le t) = P(Y \le t \text{ et } B=1) + P(Y \le t \text{ et } B=0)$ $= P(X \le t) \frac{1}{2} + P(Z \le t) \frac{1}{2} = P(X \le 1)$

4.2 Les test sur l'espérance

Dans le TD7, vous avez vu plusieurs test "élémentaire" sur les données gaussiennes. Ils sont à connaître et sont succinctement rappelé ici

4.2.1 Forme d'un test

- Nom du test / sa fonction
- Type de données / Condition d'utilisation
- H_0, H_1
- Statistique de test : sous H_0 et H_1
- Forme de la zone de rejet et le seuil de rejet au niveau lpha

Remarque. Je vous encourage fortement à revoir tous vos tests sous cette forme et à faire des fiche

4.2.2 Test sur la moyenne pour 1 échantillon gaussien de variance inconnue. Test de students à 1 échantillon

Données X_1, \ldots, X_n iid. $\mathcal{N}(m, \sigma^2)$ avec σ^2 inconnu

Hypothèse

- $-H_0=m=m_0 \ -H_1=m
 eq m_0$ (cas 1) ou bien $m>m_0$ (cas 2) ou bien $m< m_0$ (cas 3)

Statistique de test

$$D = \frac{\sqrt{n}}{\sqrt{V_n}}(\bar{X}_n - m_0).$$

- Sous $H_0, D \sim \mathcal{T}(n-1)$
- Sous H_1

$$D = rac{\sqrt{n}}{\sqrt{V_n}}(ar{X}_n - m) + rac{\sqrt{n}}{\sqrt{V_n}}$$
 $= \mathcal{T}(n-1) + ext{ Biais? du signe de } m_1 - m_0$

Zone de rejet pour le cas 1 Soit $h_{\alpha/2}$ le quantile d'ordre $\frac{\alpha}{2}$ et $h_{1-\alpha/2}$ le quantile d'ordre $1-\frac{\alpha}{2}$ de la loi $\mathcal{T}(n-1)$

Si
$$D > h_{1-\alpha/2}$$
 ou $D < h_{\alpha/2}$, on rejette H_0

Remarque (Attention). Comme $h_{\alpha/2}=-h_{1-\alpha/2}$ cela se ré-écrit $|D|>h_{1-\alpha/2}$

Zone de rejet pour le cas 2

$$D=\mathcal{T}(n-1)+rac{\sqrt{n}}{\sqrt{V_n}}(m-m_0)$$
 (biais > 0).

Soit $h_{1-\alpha}$ le quantile d'ordre $1-\alpha$ d'une loi $\mathcal{T}(n-1)$.

Si $D > h_{1-\alpha}$ on rejette H_0 . Sinon on conserve H_0 .

Zone de rejet pour le cas 3 Sous $H_1 = m < m_0, D$ prend des valeurs plutôt négatives. Soit H_{α} le quantile d'ordre α d'une $\mathcal{T}(n-1)$.

Si $D < h_{\alpha}$ on rejette H_0 sinon conserver H_0 .

4.2.3 Test sur des moyenne pour 2 échantillons gaussiens appariés

Données

- X_1, \ldots, X_n iid. $\mathcal{N}(m_1, \sigma_1^2), \sigma_1^2$ inconnus
- Y_1, \ldots, Y_n iid. $\mathcal{N}(m_2, \sigma_2^2), \sigma_2^2$ inconnus
- Échantillon apparié (X_i, Y_i) indépendant si $i \neq j$ mais X_i n'est pas indépendant de Y_i

Hypothèse

- $$\begin{split} & \ H_0 = m_1 = m_2 \\ & \ H_1 = m_1 \neq m_2 \ \text{ou} \ m_1 > m_2 \ \text{ou} \ m_1 < m_2 \end{split}$$

Statistique de test Si on pose $\bar{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_i$ et $V_n = \frac{1}{n-1} \sum_{i=1}^n (Z_i - \bar{Z}_n)^2$

$$D = \frac{\sqrt{n}}{\sqrt{V_n}} \bar{Z}_n.$$

Zone de rejet

- Sous $H_0, D \sim \mathcal{T}(n-1)$
- Sous H_1 à completer vous-même, c'est le même que le test précédent

Vois exo2 du TD7

4.2.4 Test d'égalité des moyennes pour 2 échantillons gaussiens indépendant de variance connues

Données

- $\begin{array}{l} \dots \\ -X_1,\dots,X_{n_1} \text{ iid. } \mathcal{N}(m_1,\sigma_1^2),\sigma_1^2 \text{ connue} \\ -Y_1,\dots,Y_{n_2} \text{ iid. } \mathcal{N}(m_2,\sigma_2^2),\sigma_2^2 \text{ connue} \\ -(X_1,\dots,X_{n_1})\bot(Y_1,\dots,Y_{n_2}) \end{array}$

Hypothèse

- $\begin{array}{l} & H_0 = m_1 = m_2 \\ & H_1 = m_1 \neq m_2 \text{ ou } m_1 > m_2 \text{ ou } m_1 < m_2 \end{array}$

Statistique de test Voir TD7 exo 3

Zone de rejet

4.2.5 Test d'égalité des variances pour un échantillon gaussien de moyenne inconnus

Données X_1, \ldots, X_n iid. $\mathcal{N}(m, \sigma^2)$ avec m, σ^2 inconnus

- $\begin{aligned} & \ H_0 = \sigma^2 = \sigma_0^2 \\ & \ H_1 = \sigma^2 \neq \sigma_0^2 \text{ ou } \sigma^2 > \sigma_0^2 \text{ ou } \sigma^2 < \sigma_0^2 \end{aligned}$

Statistique de test

$$D = \frac{(n-1)}{\sigma_0^2} V_n.$$

Zone de rejet à completer (attention \mathcal{X}^2 pas symétrique)

4.2.6 Test de comparaison des variances de Fisher

Définition 4.1 (Loi de Fisher). Soit $V \sim \mathcal{X}^2(d_1), W \sim \mathcal{X}^2(d_2), V \perp W$. La loi de $\frac{V/d_1}{W/d_2}$ est appelée loi de Fisher à (d_1, d_2) degrés de liberté.

Remarque. Cette loi est tabulée pour d_1 et d_2 pas trop grands.

- Elle admet une densité
- Elle est importante car elle sert souvent (en ANOVA notamment)

On la note $\mathcal{F}(d_1,d_2)$

Données

- X_1,\dots,X_{n_1} iid. $\mathcal{N}(m_1,\sigma_1^2)$ m_1 et σ_1^2 inconnus Y_1,\dots,Y_{n_2} iid. Y_1,\dots,Y_{n_2} iid. Y_2,\dots,Y_{n_2} et Y_3,\dots,Y_{n_2} inconnus Y_4,\dots,Y_{n_2} et Y_4,\dots,Y_{n_2} et Y_4,\dots,Y_{n_2}

Hypothèse

$$egin{aligned} &-H_0 = \sigma_1^2 = \sigma_2^2 \ &-H_1 = \sigma_1^2
eq \sigma_2^2 ext{ ou } \sigma_1^2 > \sigma_2^2 ext{ ou } \sigma_1^2 < \sigma_2^2 \end{aligned}$$

Statistique de test

$$D = \frac{V_{n_1}^X}{V_{n_2}^Y}.$$

avec
$$V_{n_1}^X=rac{1}{n_1-1}\sum_{i=1}^{n_1}(X_i-ar{X}_{n_1})^2$$
 et $V_{n_2}^Y=rac{1}{n_2-1}\sum_{i=1}^{n_2}(Y_i-ar{Y}_{n_2})^2$

Zone de rejet

— Sous $H_0, \sigma^2 = \sigma_1^2 = \sigma_2^2$:

$$D = \frac{\frac{V_{n_1}^X(n-1)}{\sigma^2} \frac{1}{n_1-1}}{\frac{V_{n_2}^Y(n_2-1)}{\sigma^2} \frac{1}{n_2-1}} \sim \mathcal{F}(n_1-1,n_2-1) \text{ par Cochran.}$$

— Sous $H_1, \sigma_1^2 \neq \sigma_2^2$

$$D = \mathcal{F}(d_1, d_2) * \frac{\sigma_1^2}{\sigma_2^2}.$$

- Cas 1 : $H_1:\sigma_1^2\neq\sigma_2^2:$ Soit $h_{\alpha/2}$ le quantile $\frac{\alpha}{2}$ d'une $\mathcal{F}(n_1-1,n_2-1)$ et $h_{1-\alpha/2}$ le quantile d'ordre $1-\frac{\alpha}{2}$ d'une $\mathcal{F}(n_1-1,n_2-1)$.
- Si $D > h_{1-\alpha/2}$ ou bien $D < h_{\alpha/2}$ on rejette H_0 . Sinon on conserve H_0 Cas 2: $H_1: \sigma_1^2 > \sigma_2^2$: Soit $h_{1-\alpha}$ le quantile $1-\alpha$ d'une $\mathcal{F}(n_1-1,n_2-1)$
 - Si $D > h_{1-\alpha}$ on rejette H_0 . Sinon on conserve H_0 .
- Cas 3 : $H_1:\sigma_1^2<\sigma_2^2$: Soit h_{α} le quantile α d'une $\mathcal{F}(n_1-1,n_2-1)$
 - Si $D < h_{\alpha}$ on rejette H_0 . Sinon on conserve H_0 .

Test de Student à 2 échantillons : Test de comparaison des moyenne de 2 échantillons gaussiens indépendants de variance égale

Données

- X_1,\ldots,X_{n_1} iid. $\mathcal{N}(m_1,\sigma^2),m_1$ inconnus Y_1,\ldots,Y_{n_2} iid. $\mathcal{N}(m_2,\sigma^2),m_2$ inconnus (même variance)
- Échantillon indépendant $(X_1,\ldots,X_{n_1})\bot(Y_1,\ldots,Y_{n_2})$

Hypothèse

$$-H_0=m_1=m_2$$

$$- H_0 = m_1 = m_2 \ - H_1 = m_1
eq m_1 = m_2 \text{ ou } m_1 > m_2 \text{ ou } m_1 < m_2$$

Statistique de test

$$D = \frac{1}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \frac{\bar{X}_{n_1} - \bar{Y}_{n_2}}{\sqrt{W}}.$$

avec
$$W = \frac{(n_1-1)V_{n_1}^X + (n_2-1)V_{n_2}^Y}{n_1+n_2-2}.$$

Zone de rejet

— Sous
$$H_0: m_1 = m_2$$

$$\bar{X}_{n_1} \sim \mathcal{N}(m_1, \frac{\sigma^2}{n_1})$$

$$\bar{Y}_{n_2} \sim \mathcal{N}(m_2, \frac{\sigma^2}{n_2})$$

$$\bar{X}_{n_1} - \bar{Y}_{n_2} \sim \mathcal{N}(0, \sigma^2(\frac{1}{n_1} + \frac{1}{n_2}))$$

Donc

$$\frac{1}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\sigma}(\bar{X}_{n_1} - \bar{Y}_{n_2}) \sim \mathcal{N}(0, 1).$$

On a déjà un terme de la stat de test, ce qu'il reste

$$\frac{(n_1 - 1)V_{n_1}^X}{\sigma^2} + \frac{(n_2 - 1)V_{n_2}^Y}{\sigma^2} \sim \mathcal{X}^2(n_1 + n_2 - 2)$$
$$\mathcal{X}^2(n_1 - 1) \perp \mathcal{X}^2(n_2 - 1)$$

$$\begin{split} \sqrt{W} &= \frac{\sigma}{\sigma} \frac{\sqrt{(n_1 - 1)V_{n_1}^X + (n_2 - 1)V_{n_2}^Y}}{\sqrt{n_1 + n_2 - 2}} \\ &= \sigma \frac{\sqrt{\mathcal{X}^2(n_1 + n_2 - 2)}}{\sqrt{n_1 + n_2 - 2}} \end{split}$$

Ainsi sous H_0

$$D = {\log \frac{\mathcal{N}(0,1)}{\sqrt{\frac{\mathcal{X}^2(n_1 + n_2 - 2)}{n_1 + n_2 - 2}}}} \sim \mathcal{T}(n_1 + n_2 - 2).$$

CCL à retenir : sous H_0

$$D \sim \mathcal{T}(n_1 + n_2 - 2).$$

- Sous H_1 :
 - Si $m_1>m_2$, D prend des valeurs plus grades qu'une Student à n_1+n_2-2 degrés de libertés Si $m_1< m_2$, D prend des valeurs négatives
- Cas 1: $H_1: m_1 \neq m_2:$ Soit $h_{\alpha/2}$ le quantile $\frac{\alpha}{2}$ d'une $\mathcal{T}(n_1+n_2-2)$ et $h_{1-\alpha/2}$ le quantile d'ordre $1-\frac{\alpha}{2}$ d'une $\mathcal{T}(n_1+n_2-2)$. Attention $h_{\alpha/2}=-h_{1-\alpha/2}$
- Si $|D|>h_{1-\alpha/2}$ on rejette H_0 . Sinon on conserve H_0 Cas 2: $H_1:m_1>m_2$: Soit $h_{1-\alpha}$ le quantile $1-\alpha$ d'une $\mathcal{T}(n_1+n_2-2)$
 - Si $D > h_{1-\alpha}$ on rejette H_0 . Sinon on conserve H_0 .
- Cas 3 : $H_1:m_1 < m_2:$ Soit h_α le quantile α d'une $\mathcal{T}(n_1+n_2-2)$ Si $D < h_\alpha = -h_{1-\alpha}$ on rejette $H_0.$ Sinon on conserve $H_0.$

4.2.8 Test de Welch : Le test de Student se généralisant au cas des variances non égales

Données

- $-X_1,\ldots,X_n$ iid. $\mathcal{N}(m_1,\sigma_1^2),m_1$ et σ_1^2 inconnus
- $-Y_1,\ldots,Y_n$ iid. $\mathcal{N}(m_2,\sigma_2^2),m_2$ et σ_2^2 inconnus
- Échantillons indépendants

Hypothèse

- $-H_0 = m_1 = m_2$
- $-H_1=m_1
 eq m_2$ ou $m_1>m_2$ ou $m_1< m_2$

Statistique de test

$$D = \frac{\bar{X}_{n_1} - \bar{Y}_{n_2}}{\sqrt{\frac{V_{n_1}^X}{n_1} + \frac{V_{n_2}^Y}{n_2}}}.$$

Zone de rejet

- Sous H_0,D suit **approximativement** une loi $\mathcal{T}(\mu)$. μ n'est pas connu et est approximé par des formules horribles
- Sous H_1