Imaging in the Information Dimension

- Suhas Somnath
- Chris R. Smith
- Stephen Jesse

Multitude of Instruments

Micro Raman Microscope

<u>A</u>tomic <u>F</u>orce <u>M</u>icroscope (AFM)

<u>AFM</u> with <u>Infrared</u> spectroscopy (AFM-IR)

What we wanted

Instrument Tier

Interactive visualization, analysis, storage on supercomputers

Growing Data Sizes and Dimensionality

Evolution of Scanning Probe Microscopy Data

 Data sizes have grown from ~ 10 MB to ~ 1 TB in 10 years!

 Dimensionality ranges from 1D spectra to 7D hyperspectral datasets

 Cannot use laptops to analyze data

Instrumentation Software Inadequate for Analysis

- Software provided for controlling instruments typically only comes with basic data analysis capabilities
- Integrating user-developed functionality often impossible

Multitude of File Formats

Disjoint & Unorganized Communities

- Filter Image
- Register Image ...

SVD Filtering ...

- **FFT Filtering**
- SVD Filtering ...

- FFT Filtering
 - Classify Images ...

Register Images

Cannot Share Code Efficiently

Problems Opportunities in Imaging

- 1. Closed science
 - a. No traceability for data analysis
 - b. Results not (readily) reproducible
- 2. Multiple, incompatible, proprietary data formats
- 3. Disorganized and unorganized communities
- 4. No proper analysis software
- 5. Growing data volumes, variety, and dimensionality

The Solution

Instrument Tier

Automated, standardized, modularized data acquisition

Instrument-agnostic, self-describing, model in HPC-friendly file format

Centralized repository for data processing, analysis

Interactive visualization + analysis + storage on supercomputers

Expectation of Data Model

- Store data of different shapes, dimensionalities, precision and sizes.
- Accommodate data without N-dimensional form
 - Compressed sensing / sparse sampling
 - Not all combinations of spectroscopic variables
 - Incomplete experimental data

Universal Imaging and Spectroscopic Data (USID)

- Data stored as 2D matrix of (position x spectral values) regardless of dimensionality
- Ancillary datasets explain the data

Example data types:

- 2D images = $(N_{pixels} \times 1)$
- Single spectra = (1 x Z_{steps})
- Spectroscopy on grid = $(N_{pixels}x V_{steps})$

USID – 1D spectra

Original N-dimensional form

USID 2-dimensional form

Shape: (7,)

Quantity: Amplitude

Units: V

- **S. I.** Frequency 0 1 2 3 4 5 6
- **S. V. Frequency** 300 305 310 315 320 325 330

USID – 2D Image

Original N-D

form

Quantity: Intensity Units: arb. units

Spectroscopic P. I.

P. V.

X	Υ		Х	Υ	
)	0		-250	0	
1	0		-125	0	
2	0		0	0	
3	0		125	0	
1	0		250	0	
0	1		-250	3.5	
2	1		-125	3.5	
	1		0	3.5	
3	1		125	3.5	
4	1		250	3.5	
)	2		-250	7	
L	2		-125	7	
<u>l</u> 2	2		0		
3	2		125	7	
1	2		250	7	
V V V V V V V V V V V V V V V V V V V					

USID 2D form

S. I. arb. 0

S. V. arb. 0.0

Shape: (15, 1)

USID - Spectra on Grid (3D)

Original N-dimensional form

USID 2-dimensional Form

National Laboratory

Suhas Somnath, somnaths@ornl.gov

USID - Instrument Agnostic Code

- Instrument-agnostic data allows instrument-agnostic code
- Single version of analysis and processing routine
- Brings multiple scientific communities together

Hierarchical Data Format (HDF5)

- A HDF5 file is a smart container
 - Capable of storing multidimensional datasets, Images, text, measurement parameters, etc.
 - Contents organized like traditional folders and files
 - Groups Analogous to file folders
 - Dataset 1 to N dimensional data
 - Integer, floating point, complex numbers etc
 - Attributes {Key: value} pairs useful for describing data and experimental parameters, etc.
- Easily accessible C, C++, python, Java....
- Tree structure + nomenclature +attributes are records of workflow applied to dataset
- Parallel read / write, HPC & cloud compatible

Expectation from Software

- Easy to learn and understand
- Strong support-base
- Established community standard
- Straightforward to implement and maintain
- Optimized libraries for scientific and numeric algorithms
- Access to existing imaging related packages
- Free
- Scalable to multiple CPU cores + distributed computing

(Purely) Programmer-Driven Solution

Software connecting scientific instruments to supercomputers

Successes:

- Easy to use –Point-click
- Fast on super-computers

Shortcomings:

- Very long development cycle
- Very expensive
- Brittle (points of failure)
- Scientists had no control!!

Python for Scientific Research

Very easy to learn + code

Numerous, **powerful** libraries for science

- Facilitates innovation
- More robust code
- Improved adoption of new methods / standards
- Accelerates scientific progress

Crossplatform

Established standard for:

- Microscopy
- Microbiology
- Deep learning
- Data science
- Neutron science
- More!

Strong user community

All for a princely sum of **\$0!**

Software Packages

- Written in Python
- Open source & free
- Written by scientists
- Data centric
- Instrument-independent data model in HDF5
- Instrument-independent analysis algorithms
 - Reusable across scientific domains

Software Organization

pycroscopy

1/0

Data translators (proprietary formats to HDF5)

Visualization

- Plotting utilities
- Jupyter widgets

Simulation

AFM Force-distance ...

Analysis

- Physical model specific
- Fitting to model, etc.
- Physics based regression

Processing

- Physical model agnostic
- Image filtering, registration,
- Multivariate analysis

pyUSID

- HDF5 file i/o operations
- Base data processing,
- visualization...

Software Organization

PyUSID & Pycroscopy - Well documented

To view the filti

('ifft2'), Remem

necessary to us

transform, Also

the inverse tran

symmetric abou

result in the inv

times smaller th

image_filters image_filters

kept.

Beginner topics

To learn how to use pyUSID, Please go through the following documents in the recommended order:

01. Primer to HDF5 and h5py

02. The USIDataset

03. Translation and the NumpyTranslator

04. Plotting utilities

05. Utilities for reading h5USID files

Intermediate topics

To learn how to write to h5USID files, write data processing classes, or adding functionality to pyUSID, go through these additional documents in the recommended order: Those interested in contributing to pyUSID are encouraged to read our guidelines for contributing code

06 Utilities for handling

ford, all peans based cases at more (CI)

07 Speed up

08 Utilities that assist

reshape_to_Ndims(h5_main, h5_pos=None, h5_spec=None, get_labels=False, verbose=False, sert_dims=False) (euro)

Reshape the input 2D matrix to be N-dimensions based on the position and spectroscopic

Parameter

datasets.

- . h5_main (HDF5 Datased 2D data to be reshaped
- h5_pos (HDFS Dataset, optional) Position indices corresponding to rows in h5_main
- h5_spec (HDF5 Dataset, optional) Spectroscopic indices corresponding to columns in h5, main
- get_labels (bool, optional) Whether or not to return the dimension labels.
 Default False
- · verbase (bool, optional) Whether or not to print debugging statements
- sort_dims (bool If True, the data is sorted so that the dimensions are in order from fastest to slowest if False, the data is kept in the original order if get_labels is also True, the labels are sorted as well.

Returns:

 ds_Nd (N-D numpy array) - N dimensional numpy array arranged as [positions slowest to fastest, spectroscopic slowest to fastest]

Entering the Pycroscopy Ecosystem

- hdf5 file is the hub for all operations
- Analysis, processing, visualization available after translation to .hdf5

Jupyter Notebooks

Jupyter Notebook

- Interactive documents
- Exploratory programming
- Code
- Text
- Images
- Interactive slice through data, pan, move, rotate ...

Pycroscopy - Supporting User Research

Before 2016

Suhas Somnath, somnaths@ornl.gov

Since 2016

National Laboratory

Scripts + complicated, Matlab GUI	Set of simple Jupyter notebooks	
Witten by dedicated software engineer	Written by material scientists	
Not customizable	Completely customizable.	
2-3 hours of training before use	Notebooks include instructions. NO training required!	
Deployed only on two offline workstations due to licensing restrictions = queue	Each user gets VMs with jupyter notebook server	
Will remain on off-line desktops	In the process of switching to computations	

on clusters

Truly Achieving Open Science, Reproducibility

Aim – <u>ALL</u> scientific journal papers accompanied with:

- Jupyter notebook that shows all analysis (raw data → figures).
- Data with DOI number

The technique is demonstrated by acquiring I-V curves in ferroelectric nanocapacitors.

yielding >100,000 J-V curves in <20 min. This allows detection of switching currents in the nanoscale capacitors, as well as determination of the dielectric constant. These experiments

show the potential for the use of full information capture and Bayesian inference toward extracting physics from rapid I-V measurements, and can be used for transport measure-

Jupyter notebook associated with paper

DOI associated with data (raw → paper figures)

ments in both atomic force and scanning tunneling microscopy.

Pycroscopy - Scientific Advancements

3,500x faster imaging via adaptive signal filtering, linear unmixing of signals

200x faster spectroscopy via Bayesian inference

Separating uncorrelated data from correlated data to clean images

Identifying invisible patterns using multivariate analysis

Simplified navigation multidimensional data - users

Software Progression

Scaling up Computing:

2016 Single core 2017 Multi-core Single CPU 2018 Multi-core Multi CPU

2019
JupyterHub
On HPC

Emphasis always on ease-of-development instead of raw performance

New Scientific Domains:

Atomic Force Microscopy

2016

+ Scanning
Transmission
Electron
Microscopy

Mass
Spectrometry
+ BioChemistry

+

2017

2018

2019

Thank you

Questions?