

Schletter, Inc.		20° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

		<u>Minimum</u>	
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g _{мім}	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P _s =	20.62 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
$C_s =$	0.91	
$C_e =$	0.90	

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	90 mph	Exposure Category = C
Heiaht <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 12.72 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.050 (Draggura)	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.400	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied and nomino carrace.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	<u>Location</u>	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>764.43</u>	<u>4455.60</u>	k
Compressive Load =	4230.95	<u>4754.95</u>	k
Lateral Load =	<u>15.96</u>	2016.29	k
Moment (Weak Axis) =	0.03	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 124503.7 in-lbs Resisting Force Required = 1741.31 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2902.19 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 484.52 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1211.30 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 484.52 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

ASD LC	1.0D + 1.0S			1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W						
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1582 lbs	1582 lbs	1582 lbs	1582 lbs	1294 lbs	1294 lbs	1294 lbs	1294 lbs	2028 lbs	2028 lbs	2028 lbs	2028 lbs	-361 lbs	-361 lbs	-361 lbs	-361 lbs
F _B	1703 lbs	1703 lbs	1703 lbs	1703 lbs	1577 lbs	1577 lbs	1577 lbs	1577 lbs	2322 lbs	2322 lbs	2322 lbs	2322 lbs	-2136 lbs	-2136 lbs	-2136 lbs	-2136 lbs
F _V	170 lbs	170 lbs	170 lbs	170 lbs	872 lbs	872 lbs	872 lbs	872 lbs	769 lbs	769 lbs	769 lbs	769 lbs	-969 lbs	-969 lbs	-969 lbs	-969 lbs
P _{total}	10845 lbs	11061 lbs	11277 lbs	11493 lbs	10431 lbs	10647 lbs	10863 lbs	11079 lbs	11910 lbs	12126 lbs	12342 lbs	12558 lbs	2039 lbs	2168 lbs	2298 lbs	2427 lbs
M	3593 lbs-ft	3593 lbs-ft	3593 lbs-ft	3593 lbs-ft	3495 lbs-ft	3495 lbs-ft	3495 lbs-ft	3495 lbs-ft	5022 lbs-ft	5022 lbs-ft	5022 lbs-ft	5022 lbs-ft	2964 lbs-ft	2964 lbs-ft	2964 lbs-ft	2964 lbs-ft
е	0.33 ft	0.32 ft	0.32 ft	0.31 ft	0.34 ft	0.33 ft	0.32 ft	0.32 ft	0.42 ft	0.41 ft	0.41 ft	0.40 ft	1.45 ft	1.37 ft	1.29 ft	1.22 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft						
f _{min}	260.0 psf	258.8 psf	257.7 psf	256.6 psf	249.5 psf	248.6 psf	247.7 psf	246.9 psf	269.9 psf	268.4 psf	267.1 psf	265.8 psf	15.7 psf	18.9 psf	21.9 psf	24.8 psf
f _{max}	364.1 psf	360.0 psf	356.2 psf	352.5 psf	350.7 psf	347.0 psf	343.5 psf	340.2 psf	415.4 psf	409.9 psf	404.7 psf	399.8 psf	101.6 psf	102.4 psf	103.2 psf	103.9 psf

Maximum Bearing Pressure = 415 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 1335.7 \text{ ft-lbs}$

Resisting Force Required = 915.90 lbs S.F. = 1.67

Weight Required = 1526.50 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	257 lbs	663 lbs	257 lbs	930 lbs	2694 lbs	930 lbs	75 lbs	194 lbs	75 lbs		
F _V	1 lbs	0 lbs	1 lbs	6 lbs	0 lbs	6 lbs	0 lbs	0 lbs	0 lbs		
P _{total}	9616 lbs	7560 lbs	9616 lbs	9839 lbs	7560 lbs	9839 lbs	2812 lbs	7560 lbs	2812 lbs		
M	5 lbs-ft	0 lbs-ft	5 lbs-ft	20 lbs-ft	0 lbs-ft	20 lbs-ft	1 lbs-ft	0 lbs-ft	1 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	276.4 psf	217.5 psf	276.4 psf	281.9 psf	217.5 psf	281.9 psf	80.9 psf	217.5 psf	80.9 psf		
f _{max}	277.0 psf	217.5 psf	277.0 psf	284.3 psf	217.5 psf	284.3 psf	80.9 psf	217.5 psf	80.9 psf		

Maximum Bearing Pressure = 284 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 24in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

	Rear Strut	
3.255 k	Maximum Axial Load = 3.430 k	
12.808 k	M12 Bolt Capacity = 12.808 k	
7.421 k	Strut Bearing Capacity = 7.421 k	
<u>44%</u>	Utilization = $\frac{46\%}{}$	
1.547 k		
12.808 k	Bolt and bearing capacities are accounting for double shear	r.
7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
<u>21%</u>		
	Strute under compression are shown to dom	
	12.808 k 7.421 k 44% 1.547 k 12.808 k 7.421 k	3.255 k 12.808 k 7.421 k 44% 1.547 k 12.808 k Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 51.89 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.038 in Max Drift, Δ_{MAX} = 0.034 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 108 \text{ in}$$

$$J = 0.432$$

$$298.779$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 27.7 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18 h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$c_2 = \frac{k_1Bbr}{k_1Bbr}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &= & 25.1 \text{ ksi} \\ \text{lx} &= & 897074 \text{ mm}^4 \\ & & 2.155 \text{ in}^4 \\ \text{y} &= & 41.015 \text{ mm} \\ \text{Sx} &= & 1.335 \text{ in}^3 \\ \text{M}_{\text{max}} St &= & 2.788 \text{ k-ft} \end{aligned}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 108 \\ \mathsf{J} &= & 0.432 \\ & 190.005 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_l} &= & 28.9 \end{split}$$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.599 in³

1.152 k-ft

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$
 179.85

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$

$$\phi F_L =$$

$$\phi F_1 = 29.0 \text{ ksi}$$

$$L_b = 104.56$$
 $J = 1.08$
 190.335

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_I &= 28.9 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$S2 = 46.7$$

 $\phi F_L = \phi b [Bp-1.6Dp*b/t]$

$$\varphi F_L = 31.6 \text{ ksi}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b [Bt - Dt^* \sqrt{(Rb/t)}]$$

Compression

3.4.9

b/t = 16.2 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$ $\phi F_L = 31.6 \text{ ksi}$ b/t = 7.4 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$

33.3 ksi

3.4.10

 $\varphi F_L =$

A.10 Rb/t = 18.1 $S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$ S1 = 6.87 S2 = 131.3 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$ $\phi F_L = 31.09 \text{ ksi}$ $\phi F_L = 31.09 \text{ ksi}$ $A = 1215.13 \text{ mm}^2$ 1.88 in^2

58.55 kips

 $P_{max} =$

Rev. 07.29.2016

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_I = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18 h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$\phi F_L St = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$\phi F_L St = 27.5 \text{ mm}$$

$$\phi Sx = 0.621 \text{ in}^3$$

$$\phi Sx = 0.621 \text{ in}^3$$

$$\phi Sx = 1.460 \text{ k-ft}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

h/t = 24.5

SCHLETTER

Compression

3.4.7 λ = 0.57371 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ S1* = 0.33515 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ S2* = 1.23671 $\phi cc = 0.87952$ $\phi F_L = \phi cc(Bc-Dc^*\lambda)$ $\phi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_{1}Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_{L} = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_{L} = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ Sy &= & 0.621 \text{ in}^3 \\ M_{max} W k &= & 1.460 \text{ k-ft} \end{split}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 61.10 in $L_b =$ 61.1 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\varphi F_L =$ $\phi F_L = 30.2 \text{ ksi}$ 30.2

$$S.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$S.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{\frac{\theta_y}{\theta_b} Fcy}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

3.4.18

h/t =

24.5

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$
 $ly = 279836 \text{ mm}^4$
 0.672 in^4
 $x = 27.5 \text{ mm}$
 $Sy = 0.621 \text{ in}^3$
 $M_{max} W k = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.41345 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.77788 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 13.6277 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phi} \textbf{F}_{L} = & \textbf{\phi} \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phi} \textbf{F}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phi} \textbf{F}_{L} = & \textbf{\phi} \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phi} \textbf{F}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}} Fcy}{Dt} \right)^{2} \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \phi \text{F}_{\text{L}} &= & \phi \text{yFcy} \\ \phi \text{F}_{\text{L}} &= & 33.25 \text{ ksi} \\ \phi \text{F}_{\text{L}} &= & 13.63 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^{2} \\ & & 1.03 \text{ in}^{2} \\ \text{P}_{\text{max}} &= & 14.03 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-63.565	-63.565	0	0
2	M14	Υ	-63.565	-63.565	0	0
3	M15	Υ	-63.565	-63.565	0	0
4	M16	Υ	-63 565	-63 565	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-43.811	-43.811	0	0
2	M14	V	-43.811	-43.811	0	0
3	M15	V	-68.846	-68.846	0	0
4	M16	V	-68.846	-68.846	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	100.14	100.14	0	0
2	M14	V	76.774	76.774	0	0
3	M15	V	41.725	41.725	0	0
4	M16	V	41 725	41 725	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	В	Fa	В	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	381.388	2	1124.756	1	.941	1	.005	1	Ó	1	0	1
2		min	-506.605	3	-1066.538	3	.04	15	0	15	0	1	0	1
3	N7	max	.033	9	1175.376	1	454	15	0	15	0	1	0	1
4		min	118	2	-163.236	3	-12.277	1	025	1	0	1	0	1
5	N15	max	0	15	3254.578	1	0	12	0	12	0	1	0	1
6		min	-1.398	2	-588.023	3	0	1	0	1	0	1	0	1
7	N16	max	1458.243	2	3657.657	1	0	2	0	2	0	1	0	1
8		min	-1550.991	3	-3427.388	3	0	3	0	3	0	1	0	1
9	N23	max	.033	9	1175.376	1	12.277	1	.025	1	0	1	0	1
10		min	118	2	-163.236	3	.454	15	0	15	0	1	0	1
11	N24	max	381.388	2	1124.756	1	04	15	0	15	0	1	0	1
12		min	-506.605	3	-1066.538	3	941	1	005	1	0	1	0	1
13	Totals:	max	2219.383	2	11512.498	1	0	12						
14		min	-2564.632	3	-6474.958	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	76.73	1_	475.065	1	-6.023	15	0	15	.214	1_	0	1
2			min	2.757	15	-521.796	3	-168.674	1	014	1	.008	15	0	3
3		2	max	76.73	1	331.651	1	-4.618	15	0	15	.065	1	.445	3
4			min	2.757	15	-367.456	3	-129.232	1	014	1	.002	15	403	1
5		3	max	76.73	1	188.236	1	-3.213	15	0	15	0	3	.735	3
6			min	2.757	15	-213.117	3	-89.79	1	014	1	044	1	663	1
7		4	max	76.73	1	44.821	1	-1.809	15	0	15	003	12	.871	3
8			min	2.757	15	-58.778	3	-50.348	1	014	1	114	1	78	1
9		5	max	76.73	1	95.562	3	404	15	0	15	005	12	.852	3
10			min	2.757	15	-98.593	1	-10.906	1	014	1	145	1	753	1
11		6	max	76.73	1	249.901	3	28.536	1	0	15	005	15	.68	3
12			min	2.757	15	-242.008	1	.281	12	014	1	136	1	583	1
13		7	max	76.73	1	404.24	3	67.978	1	0	15	003	15	.353	3
14			min	2.757	15	-385.423	1	1.709	12	014	1	088	1	269	1
15		8	max	76.73	1	558.58	3	107.42	1	0	15	.002	2	.188	1
16			min	2.757	15	-528.838	1	3.137	12	014	1	003	3	129	3
17		9	max	76.73	1	712.919	3	146.862	1	0	15	.127	1	.789	1
18			min	2.757	15	-672.252	1	4.565	12	014	1	.002	12	765	3
19		10	max	76.73	1	867.258	3	186.304	1	.014	1	.294	1	1.533	1
20			min	2.757	15	-815.667	1	5.993	12	002	3	.007	12	-1.555	3
21		11	max	76.73	1	672.252	1	-4.565	12	.014	1	.127	1	.789	1
22			min	2.757	15	-712.919	3	-146.862	1	0	15	.002	12	765	3
23		12	max	76.73	1	528.838	1	-3.137	12	.014	1	.002	2	.188	1
24			min	2.757	15	-558.58	3	-107.42	1	0	15	003	3	129	3
25		13	max	76.73	1	385.423	1	-1.709	12	.014	1	003	15	.353	3
26			min	2.757	15	-404.24	3	-67.978	1	0	15	088	1	269	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
27		14	max	<u>76.73</u>	1	242.008	1	281	12	.014	_1_	005	15	.68	3
28			min	2.757	15	-249.901	3	-28.536	1	0	15	136	1	583	1
29		15	max	76.73	1	98.593	_1_	10.906	1_	.014	_1_	005	12	.852	3
30			min	2.757	15	-95.562	3	.404	15	0	15	145	1	753	1
31		16	max	76.73	1_	58.778	3	50.348	1_	.014	_1_	003	12	.871	3
32			min	2.757	15	-44.821	1	1.809	15	0	15	114	1	78	1
33		17	max	76.73	1	213.117	3	89.79	1	.014	1	0	3	.735	3
34			min	2.757	15	-188.236	1	3.213	15	0	15	044	1	663	1
35		18	max	76.73	1	367.456	3	129.232	1	.014	1	.065	1	.445	3
36			min	2.757	15	-331.651	1	4.618	15	0	15	.002	15	403	1
37		19	max	76.73	1	521.796	3	168.674	1	.014	1	.214	1	0	1
38			min	2.757	15	-475.065	1	6.023	15	0	15	.008	15	0	3
39	M14	1	max	44.503	1	527.209	1	-6.257	15	.009	3	.254	1	0	1
40			min	1.602	15	-417.061	3	-175.224	1	015	1	.009	15	0	3
41		2	max	44.503	1	383.794	1	-4.852	15	.009	3	.098	1	.359	3
42		_	min	1.602	15	-300.108	3	-135.782	1	015	1	.004	15	455	1
43		3	max	44.503	1	240.379	1	-3.447	15	.009	3	.002	3	<u>.433 </u>	3
44		-	min	1.602	15	-183.154	3	-96.34	1	015	1	018	1	768	1
45		4		44.503	1	96.965	1	-2.042	15	.009	3	002	12	.725	3
		4	max										1		
46		-	min	1.602	15	-66.2	3	-56.898	1_	015	1	095		<u>936</u>	1
47		5	max	44.503	1	50.754	3	637	15	.009	3	004	12	.733	3
48			min	1.602	15	-46.45	1	-17.456	1_	015	1_	132	1	962	1
49		6	max	44.503	1	167.707	3	21.986	1	.009	3_	005	15	.623	3
50		-	min	1.602	15	-189.865	1	014	3	015	1_	13	1	<u>843</u>	1
51		7	max	44.503	1	284.661	3	61.428	1	.009	3_	003	15	.397	3
52			min	1.602	15	-333.279	1_	1.467	12	015	1_	088	1	582	1
53		8	max	44.503	1	401.615	3	100.87	1_	.009	3	0	10	.054	3
54			min	1.602	15	-476.694	1_	2.895	12	015	1_	007	1	177	1
55		9	max	44.503	1	518.569	3	140.312	1	.009	3	.114	1	.372	1
56			min	1.602	15	-620.109	1_	4.323	12	015	1_	.001	12	406	3
57		10	max	44.503	1	635.522	3	179.754	1_	.015	_1_	.274	1	1.063	1
58			min	1.602	15	-763.523	1	5.751	12	009	3	.006	12	983	3
59		11	max	44.503	1	620.109	1	-4.323	12	.015	1	.114	1	.372	1
60			min	1.602	15	-518.569	3	-140.312	1	009	3	.001	12	406	3
61		12	max	44.503	1	476.694	1	-2.895	12	.015	1	0	10	.054	3
62			min	1.602	15	-401.615	3	-100.87	1	009	3	007	1	177	1
63		13	max	44.503	1	333.279	1	-1.467	12	.015	1	003	15	.397	3
64			min	1.602	15	-284.661	3	-61.428	1	009	3	088	1	582	1
65		14	max	44.503	1	189.865	1	.014	3	.015	1	005	15	.623	3
66			min	1.602	15	-167.707	3	-21.986	1	009	3	13	1	843	1
67		15		44.503	1	46.45	1	17.456	1	.015	1	004	12	.733	3
68			min	1.602	15	-50.754	3	.637	15	009	3	132	1	962	1
69		16	max	44.503	1	66.2	3	56.898	1	.015	1	002	12	.725	3
70		· · ·	min	1.602	15	-96.965	1	2.042	15	009	3	095	1	936	1
71		17	max	44.503	1	183.154	3	96.34	1	.015	1	.002	3	<u></u>	3
72			min	1.602	15	-240.379	1	3.447	15	009	3	018	1	768	1
73		18	max	44.503	1	300.108	3	135.782	1	.015	1	.098	1	.359	3
74		10	min	1.602	15	-383.794	1	4.852	15	009	3	.004	15	455	1
75		19	max	44.503	1	417.061	3	175.224	1	.015	1	.254	1	433	1
76		13	min	1.602	15	-527.209	1	6.257	15	009	3	.009	15	0	3
77	M15	1		-1.708	15	594.767	1	-6.254	15	.015	<u> </u>	.253	1	0	2
	IVI IO		max					-0.254		007		.009	15	0	3
78		2	min	<u>-47.377</u>	1 1 5	-228.28	3		1_		3				
79		2	max	-1.708	15	431.324	1	-4.849	15	.015	1	.098	1	.198	3
80		_	min	-47.377	1	-167.405	3	-135.736	1_	007	3	.004	15	513	1
81		3	max	-1.708	15	267.882	1	-3.444	<u>15</u>	.015	1	.002	3	.335	3
82			min	-47.377	1_	-106.53	3	-96.294	1_	007	3	018	1	863	1
83		4	max	-1.708	15	104.439	_1_	-2.039	15	.015	_1_	002	12	.411	3

Model Name

Schletter, Inc.HCV

:

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-47.377	1	-45.654	3	-56.852	1	007	3	095	1	-1.049	1
85		5	max	-1.708	15	15.221	3	635	15	.015	1	004	12	.426	3
86			min	-47.377	1	-59.004	1_	-17.41	1	007	3	132	1	-1.072	1
87		6	max	-1.708	15	76.096	3	22.032	1	.015	1	005	15	.38	3
88			min	-47.377	1	-222.446	1	.089	3	007	3	13	1	931	1
89		7	max	-1.708	15	136.972	3	61.474	1	.015	1	003	15	.274	3
90			min	-47.377	1	-385.889	1	1.532	12	007	3	088	1	627	1
91		8	max	-1.708	15	197.847	3	100.916	1	.015	1	0	10	.107	3
92			min	-47.377	1	-549.332	1	2.959	12	007	3	007	1	159	1
93		9	max	-1.708	15	258.722	3	140.358	1	.015	1	.114	1	.472	1
94			min	-47.377	1	-712.774	1	4.387	12	007	3	.002	12	122	3
95		10	max	-1.708	15	319.598	3	179.8	1	.007	3	.274	1	1.267	1
96			min	-47.377	1	-876.217	1	5.815	12	015	1	.007	12	411	3
97		11	max	-1.708	15	712.774	1	-4.387	12	.007	3	.114	1	.472	1
98			min	-47.377	1	-258.722	3	-140.358	1	015	1	.002	12	122	3
99		12	max	-1.708	15	549.332	1	-2.959	12	.007	3	0	10	.107	3
100			min	-47.377	1	-197.847	3	-100.916	1	015	1	007	1	159	1
101		13	max	-1.708	15	385.889	1	-1.532	12	.007	3	003	15	.274	3
102			min	-47.377	1	-136.972	3	-61.474	1	015	1	088	1	627	1
103		14	max	-1.708	15	222.446	1	089	3	.007	3	005	15	.38	3
104			min	-47.377	1	-76.096	3	-22.032	1	015	1	13	1	931	1
105		15	max	-1.708	15	59.004	1	17.41	1	.007	3	004	12	.426	3
106			min	-47.377	1	-15.221	3	.635	15	015	1	132	1	-1.072	1
107		16	max	-1.708	15	45.654	3	56.852	1	.007	3	002	12	.411	3
108			min	-47.377	1	-104.439	1	2.039	15	015	1	095	1	-1.049	1
109		17	max	-1.708	15	106.53	3	96.294	1	.007	3	.002	3	.335	3
110			min	-47.377	1	-267.882	1	3.444	15	015	1	018	1	863	1
111		18	max	-1.708	15	167.405	3	135.736	1	.007	3	.098	1	.198	3
112			min	-47.377	1	-431.324	1	4.849	15	015	1	.004	15	513	1
113		19	max	-1.708	15	228.28	3	175.178	1	.007	3	.253	1	0	2
114		10	min	-47.377	1	-594.767	1	6.254	15	015	1	.009	15	0	3
115	M16	1	max	-3.067	15	543.251	1	-6.036	15	.012	1	.217	1	0	1
116	IVITO		min	-85.192	1	-199.477	3	-169.125	1	009	3	.008	15	0	3
117		2	max	-3.067	15	379.808	1	-4.631	15	.012	1	.067	1	.169	3
118			min	-85.192	1	-138.602	3	-129.683	1	009	3	.002	15	462	1
119		3	max	-3.067	15	216.365	1	-3.226	15	.012	1	0	12	.277	3
120			min	-85.192	1	-77.726	3	-90.241	1	009	3	043	1	76	1
121		4	max	-3.067	15	52.923	1	-1.821	15	.012	1	003	12	.324	3
122		_	min	-85.192	1	-16.851	3	-50.799	1	009	3	113	1	894	1
123		5	max	-3.067	15	44.024	3	417	15	.012	1	005	12	.311	3
124						-110.52				009	3	144	1	865	1
125		6	max		15	104.9	3	28.085	1	.012	1	005	15	.236	3
126			min		1	-273.963	1	.478	12	009	3	136	1	673	1
127		7	max	-3.067	15	165.775	3	67.527	1	.012	1	003	15	.101	3
128			min	-85.192	1	-437.405	1	1.906	12	009	3	088	1	318	1
129		8	max	-3.067	15	226.65	3	106.969	1	.012	1	.001	2	.202	1
130		0	min	-85.192	1	-600.848	1	3.333	12	009	3	002	3	095	3
131		9	max	-3.067	15	287.526	3	146.411	1	.012	1	.126	1	.884	1
		9		-85.192											3
132		10	min	-65.192 -3.067	1 1 5	-764.291	<u>1</u> 3	4.761 185.853	<u>12</u> 1	009 .009	3	.003 .292	12	352	1
133 134		10	max	-85.192	1 <u>5</u>	348.401 -927.733	<u> </u>	6.189	12	012	1	.008	12	1.73 67	3
		11	min								3				
135		11	max	-3.067 95.102	15	764.291	1	-4.761	12	.009		.126	1	.884	1
136		10	min		1 1 5	-287.526	3_	-146.411	1	012	1	.003	12	352	3
137		12	max	-3.067	15	600.848	1	-3.333	12	.009	3	.001	2	.202	1
138		40	min	-85.192	1	-226.65	3	-106.969	1	012	1	002	3	095	3
139		13	max	-3.067	15	437.405	1	-1.906	12	.009	3	003	15	.101	3
140			min	<u>-85.192</u>	1	-165.775	3	-67.527	1	012	1	088	1	318	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
141		14	max	-3.067	15	273.963	1	478	12	.009	3	005	15	.236	3
142			min	-85.192	1	-104.9	3	-28.085	1	012	1	136	1_	673	1
143		15	max	-3.067	15	110.52	1	11.357	1	.009	3	005	12	.311	3
144			min	-85.192	1	-44.024	3	.417	15	012	1	144	1	865	1
145		16	max	-3.067	15	16.851	3	50.799	1	.009	3	003	12	.324	3
146			min	-85.192	1	-52.923	1	1.821	15	012	1	113	1	894	1
147		17	max	-3.067	15	77.726	3	90.241	1	.009	3	0	12	.277	3
148			min	-85.192	1	-216.365	1	3.226	15	012	1	043	1	76	1
149		18	max	-3.067	15	138.602	3	129.683	1	.009	3	.067	1	.169	3
150		10	min	-85.192	1	-379.808	1	4.631	15	012	1	.002	15	462	1
151		19	max	-3.067	15	199.477	3	169.125	1	.009	3	.217	1	0	1
152		19		-85.192	1	-543.251	1	6.036	15	012	1		15	0	3
	M2	1	min								3	.008			
153	IVIZ			1093.647	1	2.156	4	.906	1	0	<u> </u>	0	<u>3</u>	0	1
154			min	-954.617	3	.507	15	.032	15	0		0		0	-
155		2		1094.063	1	2.147	4	.906	1	0	3	0	1_	0	15
156			min	-954.305	3	.505	15	.032	15	0	1	0	15	0	4
157		3		1094.479	1_	2.139	4	.906	1	0	3	0	_1_	0	15
158			min	-953.993	3	.503	15	.032	15	0	1	0	15	001	4
159		4	max	1094.895	1	2.13	4	.906	1	0	3	0	1_	0	15
160			min	-953.681	3	.501	15	.032	15	0	1	0	15	002	4
161		5	max	1095.311	1	2.121	4	.906	1	0	3	.001	1	0	15
162			min	-953.369	3	.499	15	.032	15	0	1	0	15	002	4
163		6	max	1095.727	1	2.113	4	.906	1	0	3	.001	1	0	15
164			min	-953.057	3	.497	15	.032	15	0	1	0	15	003	4
165		7		1096.142	1	2.104	4	.906	1	0	3	.002	1	0	15
166			min	-952.745	3	.495	15	.032	15	Ö	1	0	15	004	4
167		8	max		1	2.095	4	.906	1	0	3	.002	1	0	15
168			min	-952.434	3	.493	15	.032	15	0	1	0	15	004	4
169		9		1096.974	1	2.086	4	.906	1	0	3	.002	1	004	15
170		9	min	-952.122	3	.491	15	.032	15	0	1	0	15	005	4
		10			_						_	_			
171		10	max		1	2.078	4	.906	1	0	3	.002	1_	001	15
172		44	min	-951.81	3	.489	15	.032	15	0	1	0	15	005	4
173		11		1097.806	1	2.069	4	.906	1	0	3	.003	1_	001	15
174			min	-951.498	3	.486	15	.032	15	0	1	0	15	006	4
175		12		1098.222	1	2.06	4	.906	1	0	3	.003	1_	002	15
176			min	-951.186	3	.484	15	.032	15	0	1	0	15	007	4
177		13	max	1098.638	1	2.052	4	.906	1	0	3	.003	_1_	002	15
178			min	-950.874	3	.482	15	.032	15	0	1	0	15	007	4
179		14	max	1099.054	1_	2.043	4	.906	1	0	3	.003	1_	002	15
180			min	-950.562	3	.48	15	.032	15	0	1	0	15	008	4
181		15	max	1099.469	1	2.034	4	.906	1	0	3	.004	1_	002	15
182			min	-950.25	3	.478	15	.032	15	0	1	0	15	008	4
183		16	max	1099.885	1	2.025	4	.906	1	0	3	.004	1	002	15
184				-949.938	3	.476	15	.032	15	0	1	0	15	009	4
185		17		1100.301	1	2.017	4	.906	1	0	3	.004	1	002	15
186				-949.626	3	.474	15	.032	15	0	1	0	15	009	4
187		18		1100.717	1	2.008	4	.906	1	0	3	.004	1	002	15
188			min		3	.472	15	.032	15	0	1	0	15	01	4
189		19		1101.133	1	1.999	4	.906	1	0	3	.005	1	002	15
190		13	min		3	.47	15	.032	15	0	1	0	15	002	4
191	M3	1				9.1		.032	1		5		<u>15</u> 1		4
	IVIO		max		2		4			0		0		.01	
192		_	min	-505.71	3	2.139	15	.008	15	0	1	0	<u>15</u>	.002	15
193		2	max		2	8.226	4	.21	1	0	5	0	1_	.006	4
194			min		3	1.934	15	.008	15	0	1	0	15	.002	15
195		3		377.828	2	7.352	4	.21	1	0	5	0	1_	.003	2
196			min		3	1.728	15	.008	15	0	1_	0	15	0	12
197		4	max	377.658	2	6.477	4	.21	1	0	5	0	<u> 1</u>	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
198			min	-506.093	3	1.523	15	.008	15	0	1	0	15	002	3
199		5	max	377.487	2	5.603	4	.21	1	0	5	0	1	0	15
200			min	-506.221	3	1.317	15	.008	15	0	1	0	15	003	4
201		6	max	377.317	2	4.728	4	.21	1	0	5	0	1	001	15
202			min	-506.348	3	1.112	15	.008	15	0	1	0	15	006	4
203		7	max	377.147	2	3.854	4	.21	1	0	5	0	1	002	15
204			min	-506.476	3	.906	15	.008	15	0	1	0	15	008	4
205		8	max	376.976	2	2.979	4	.21	1	0	5	0	1	002	15
206		Ť	min	-506.604	3	.7	15	.008	15	0	1	0	15	01	4
207		9	max	376.806	2	2.105	4	.21	1	0	5	0	1	003	15
208		1 3	min	-506.732	3	.495	15	.008	15	0	1	0	15	011	4
209		10	max	376.636	2	1.23	4	.21	1	0	5	0	1	003	15
		10				.289	15	.008	15	0	1	0	15	012	4
210		4.4	min	-506.86	3										_
211		11	max	376.465	2	.397	2	.21	1	0	5	.001	1_	003	15
212		40	min	-506.987	3	.035	12	.008	15	0	1	0	15	012	4
213		12	max	376.295	2	122	15	.21	1	0	5	.001	1	003	15
214			min	-507.115	3_	518	4	.008	15	0	1	0	15	012	4
215		13	max	376.125	2	327	15	.21	1_	0	5	.001	1_	003	15
216			min	-507.243	3	-1.393	4	.008	15	0	1	0	15	011	4
217		14	max	375.954	2	533	15	.21	1	0	5	.001	1_	002	15
218			min	-507.371	3	-2.267	4	.008	15	0	1	0	15	011	4
219		15	max	375.784	2	738	15	.21	1	0	5	.001	1	002	15
220			min	-507.498	3	-3.142	4	.008	15	0	1	0	15	009	4
221		16	max	375.614	2	944	15	.21	1	0	5	.002	1	002	15
222			min	-507.626	3	-4.016	4	.008	15	0	1	0	15	008	4
223		17	max	375.443	2	-1.15	15	.21	1	0	5	.002	1	001	15
224			min	-507.754	3	-4.891	4	.008	15	0	1	0	15	005	4
225		18	max	375.273	2	-1.355	15	.21	1	0	5	.002	1	0	15
226		1	min	-507.882	3	-5.765	4	.008	15	0	1	0	15	003	4
227		19	max	375.103	2	-1.561	15	.21	1	0	5	.002	1	0	1
228		10	min	-508.009	3	-6.64	4	.008	15	0	1	0	15	0	1
229	M4	1	max	1172.31	1	0	1	455	15	0	1	.001	1	0	1
230	IVIT		min	-165.535	3	0	1	-12.718	1	0	1	0	15	0	1
231		2	max		1	0	1	455	15	0	1	0	12	0	1
232			min	-165.408	3	0	1	-12.718	1	0	1	0	1	0	1
233		3	max	1172.65	<u> </u>	0	1	455	15	0	1	0	15	0	1
		-3	_	-165.28	3	0	1	-12.718	1	0	1	002	1	0	1
234		1	min										15		
235		4	max		1	0	1	455	15	0	1	0		0	1
236		-	min	-165.152	3	0		-12.718	1_	0	-	003	1_	0	
237		5		1172.991	1_	0	1	455	15	0	1	0	15	0	1
238				-165.024		0	1	-12.718	1 45	0	1	005	1_	0	1
239		6		1173.161	1_	0	1	455	15	0	1	0	15	0	1
240		-	min		3_	0	1	-12.718	1_	0	1	006	1_	0	1
241		7		1173.332	_1_	0	1	455	15	0	1	0	15	0	1
242		_		-164.769		0	1	-12.718	1	0	1	008	1_	0	1
243		8		1173.502	1_	0	1	455	15	0	1	0	15	0	1
244				-164.641	3	0	1	-12.718	1	0	1	009	1	0	1
245		9		1173.672	_1_	0	1	455	15	0	1	0	15	0	1
246				-164.513	3	0	1	-12.718	1	0	1	011	1	0	1
247		10		1173.843	1	0	1	455	15	0	1	0	15	0	1
248			min	-164.386	3	0	1	-12.718	1	0	1	012	1	0	1
249		11	max	1174.013	1	0	1	455	15	0	1	0	15	0	1
250			min		3	0	1	-12.718	1	0	1	014	1	0	1
251		12		1174.184	1	0	1	455	15	0	1	0	15	0	1
252			min		3	0	1	-12.718	1	0	1	015	1	0	1
253		13		1174.354	1	0	1	455	15	0	1	0	15	0	1
254		· ·		-164.002	3	0	1	-12.718	1	0	1	016	1	0	1
207			111111	101.002				12.710				.010			

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
255		14	max	1174.524	1	0	1	455	15	0	1	0	15	0	1
256				-163.875	3	0	1	-12.718	1	0	1	018	1	0	1
257		15		1174.695	_1_	0	1	455	15	0	_1_	0	15	0	1
258				-163.747	3	0	1	-12.718	1	0	1	019	1	0	1
259		16		1174.865	_1_	0	1	455	15	0	_1_	0	15	0	1
260				-163.619	3	0	1	-12.718	1	0	1	021	1	0	1
261		17	-	1175.035	_1_	0	1	455	15	0	_1_	0	15	0	1
262				-163.491	3	0	1	-12.718	1	0	1	022	1	0	1
263		18		1175.206	_1_	0	1	455	15	0	_1_	0	15	0	1
264				-163.364	3	0	1	-12.718	1	0	1	024	1	0	1
265		19		1175.376	_1_	0	1	455	15	0	_1_	0	15	0	1
266				-163.236	3	0	1	-12.718	1	0	1	025	1	0	1
267	<u>M6</u>	1		3422.387	_1_	2.415	2	0	1	0	_1_	0	1	0	1
268			_	-3063.415	3	.299	12	0	1	0	1	0	1	0	1
269		2		3422.803	_1_	2.409	2	0	1_	0	_1_	0	1	0	12
270			_	-3063.103	3	.295	12	0	1	0	1	0	1	0	2
271		3		3423.219	_1_	2.402	2	0	1_	0	_1_	0	1	0	12
272				-3062.791	3	.292	12	0	1	0	1	0	1	001	2
273		4		3423.635	_1_	2.395	2	0	1	0	1	0	1	0	12
274				-3062.479	3	.288	12	0	1	0	1	0	1	002	2
275		5	max	3424.051	_1_	2.388	2	0	1	0	_1_	0	1	0	12
276			min	-3062.168	3_	.285	12	0	1	0	1_	0	1	003	2
277		6	max	3424.467	_1_	2.381	2	0	1	0	1	0	1	0	12
278			min	-3061.856	3	.282	12	0	1	0	1	0	1	003	2
279		7		3424.883	_1_	2.375	2	0	1_	0	_1_	0	1	0	12
280				-3061.544	3	.278	12	0	1	0	1	0	1	004	2
281		8		3425.299	_1_	2.368	2	0	1	0	_1_	0	1	0	12
282				-3061.232	3	.275	12	0	1	0	1	0	1	005	2
283		9		3425.715	_1_	2.361	2	0	1	0	_1_	0	1	0	12
284			min	-3060.92	3	.271	12	0	1	0	1	0	1	005	2
285		10	max		_1_	2.354	2	0	1_	0	_1_	0	1	0	12
286			min	-3060.608	3	.268	12	0	1	0	1_	0	1	006	2
287		11		3426.546	_1_	2.348	2	0	1_	0	_1_	0	1	0	12
288			min	-3060.296	3	.265	12	0	1	0	1	0	1	007	2
289		12		3426.962	1_	2.341	2	0	1	0	1	0	1	0	12
290				-3059.984	3	.261	12	0	1	0	1	0	1	007	2
291		13		3427.378	_1_	2.334	2	0	1	0	1	0	1	0	12
292				-3059.672	3	.258	12	0	1_	0	1	0	1	008	2
293		14		3427.794	_1_	2.327	2	0	1	0	1	0	1	001	12
294		4 -		-3059.36	3	.254	12	0	1	0	1	0	1	009	2
295		15		3428.21	1_	2.32	2	0	1	0	1	0	1	001	12
296		4.0	min		3_	.251	12	0	1_	0	1_	0	1	009	2
297		16		3428.626	1	2.314	2	0	1	0	1	0	1	001	12
298		4-		-3058.737	3	.248	12	0	1_	0	1_	0	1	01	2
299		17		3429.042	1_	2.307	2	0	1	0	1_	0	1	001	12
300		40		-3058.425	3	.244	12	0	1_	0	1_	0	1	011	2
301		18		3429.457	1	2.3	2	0	1	0	1	0	1	001	12
302		40		-3058.113	3	.241	12	0	1_	0	1	0	1	011	2
303		19		3429.873	1_	2.293	2	0	1_	0	1	0	1	001	12
304	N 47	4		-3057.801	3	.237	12	0	1	0	1	0	1	012	2
305	<u>M7</u>	1		1457.018	2	9.141	4	0	1	0	1	0	1	.012	2
306		_		-1544.96	3	2.145	15	0	1_	0	1_	0	1	.001	12
307		2		1456.848	2	8.267	4	0	1	0	1	0	1	.008	2
308				-1545.088	3	1.939	15	0	1_	0	1	0	1	0	3
309		3		1456.678	2	7.392	4	0	1	0	1	0	1	.005	2
310				-1545.215	3	1.734	15	0	1_	0	1	0	1	002	3
311		4	max	1456.507	2	6.518	4	0	1	0	1	0	1	.003	2

Model Name

Schletter, Inc. HCV

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-1545.343	3	1.528	15	0	1	0	1	0	1	004	3
313		5	max	1456.337	2	5.643	4	0	1	0	_1_	0	<u>1</u>	0	2
314			min	-1545.471	3	1.323	15	0	1	0	1	0	1_	005	3
315		6	max	1456.167	2	4.769	4	0	1	0	1	0	_1_	001	15
316			min	-1545.599	3	1.117	15	0	1	0	1	0	1	007	3
317		7	max		2	3.895	4	0	1	0	_1_	0	_1_	002	15
318			min	-1545.726	3	.912	15	0	1	0	1	0	1	008	4
319		8	max	1455.826	2	3.02	4	0	1	0	1	0	_1_	002	15
320			min	-1545.854	3	.706	15	0	1	0	1	0	1_	009	4
321		9	max	1455.656	2	2.146	4	0	1	0	_1_	0	_1_	002	15
322			min	-1545.982	3	.499	12	0	1	0	1	0	1	011	4
323		10	max	1455.485	2	1.394	2	0	1	0	_1_	0	<u>1</u>	003	15
324			min	-1546.11	3	.159	12	0	1	0	1	0	1_	011	4
325		11	max	1455.315	2	.713	2	0	1	0	1	0	_1_	003	15
326			min	-1546.238	3	305	3	0	1	0	1	0	1	012	4
327		12	max	1455.145	2	.031	2	0	1	0	1	0	1_	003	15
328			min	-1546.365	3	816	3	0	1	0	1	0	1	012	4
329		13	max	1454.974	2	322	15	0	1	0	1	0	1	003	15
330			min	-1546.493	3	-1.352	4	0	1	0	1	0	1	011	4
331		14	max	1454.804	2	527	15	0	1	0	1	0	1	002	15
332			min	-1546.621	3	-2.227	4	0	1	0	1	0	1	01	4
333		15	max	1454.634	2	733	15	0	1	0	1	0	1	002	15
334			min	-1546.749	3	-3.101	4	0	1	0	1	0	1	009	4
335		16	max	1454.463	2	938	15	0	1	0	1	0	1	002	15
336			min	-1546.876	3	-3.975	4	0	1	0	1	0	1	008	4
337		17	max	1454.293	2	-1.144	15	0	1	0	1	0	1	001	15
338			min	-1547.004	3	-4.85	4	0	1	0	1	0	1	005	4
339		18	max	1454.123	2	-1.35	15	0	1	0	1	0	1	0	15
340			min	-1547.132	3	-5.724	4	0	1	0	1	0	1	003	4
341		19	max	1453.952	2	-1.555	15	0	1	0	1	0	1	0	1
342			min	-1547.26	3	-6.599	4	0	1	0	1	0	1	0	1
343	M8	1	max	3251.511	1	0	1	0	1	0	1	0	1	0	1
344			min	-590.323	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3251.682	1	0	1	0	1	0	1	0	1	0	1
346			min	-590.195	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3251.852	1	0	1	0	1	0	1	0	1	0	1
348			min	-590.067	3	0	1	0	1	0	1	0	1	0	1
349		4	max		1	0	1	0	1	0	1	0	1	0	1
350			min	-589.94	3	0	1	0	1	0	1	0	1	0	1
351		5	max	3252.193	1	0	1	0	1	0	1	0	1	0	1
352				-589.812	3	0	1	0	1	0	1	0	1	0	1
353		6		3252.363	1	0	1	0	1	0	1	0	1	0	1
354			min	-589.684	3	0	1	0	1	0	1	0	1	0	1
355		7		3252.533	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8		3252.704	1	0	1	0	1	0	1	0	1	0	1
358				-589.429	3	0	1	0	1	0	1	0	1	0	1
359		9		3252.874	1	0	1	0	1	0	1	0	1	0	1
360				-589.301	3	0	1	0	1	0	1	0	1	0	1
361		10		3253.045	1	0	1	0	1	0	1	0	1	0	1
362		_ · ·		-589.173	3	0	1	0	1	0	1	0	1	0	1
363		11		3253.215	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		3253.385	1	0	1	0	1	0	1	0	1	0	1
366		14	min		3	0	1	0	1	0	1	0	1	0	1
367		13		3253.556		0	1	0	1	0	1	0	1	0	1
368		'	min		3	0	1	0	1	0	1	0	1	0	1
000			111111	000.70						<u> </u>		•			

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
369		14	max	3253.726	1	0	1	0	1	0	1	0	1	0	1
370			min	-588.662	3	0	1	0	1	0	1	0	1	0	1
371		15	max	3253.896	1	0	1	0	1	0	1	0	1	0	1
372			min	-588.534	3	0	1	0	1	0	1	0	1	0	1
373		16	max	3254.067	1	0	1	0	1	0	1	0	1	0	1
374			min	-588.407	3	0	1	0	1	0	1	0	1	0	1
375		17	max	3254.237	1	0	1	0	1	0	1	0	1	0	1
376			min	-588.279	3	0	1	0	1	0	1	0	1	0	1
377		18	max	3254.407	1	0	1	0	1	0	1	0	1	0	1
378			min	-588.151	3	0	1	0	1	0	1	0	1	0	1
379		19	max	3254.578	1	0	1	0	1	0	1	0	1	0	1
380			min	-588.023	3	0	1	0	1	0	1	0	1	0	1
381	M10	1	max	1093.647	1	2.156	4	032	15	0	1	0	1	0	1
382			min	-954.617	3	.507	15	906	1	0	3	0	3	0	1
383		2	max	1094.063	1	2.147	4	032	15	0	1	0	15	0	15
384			min	-954.305	3	.505	15	906	1	0	3	0	1	0	4
385		3	max	1094.479	1	2.139	4	032	15	0	1	0	15	0	15
386			min	-953.993	3	.503	15	906	1	0	3	0	1	001	4
387		4	max	1094.895	1	2.13	4	032	15	0	1	0	15	0	15
388			min	-953.681	3	.501	15	906	1	0	3	0	1	002	4
389		5		1095.311	1	2.121	4	032	15	0	1	0	15	0	15
390			min	-953.369	3	.499	15	906	1	0	3	001	1	002	4
391		6	max	1095.727	1	2.113	4	032	15	0	1	0	15	0	15
392			min		3	.497	15	906	1	0	3	001	1	003	4
393		7	max	1096.142	1	2.104	4	032	15	0	1	0	15	0	15
394			min	-952.745	3	.495	15	906	1	0	3	002	1	004	4
395		8		1096.558	1	2.095	4	032	15	0	1	0	15	0	15
396			min	-952.434	3	.493	15	906	1	0	3	002	1	004	4
397		9	max	1096.974	1	2.086	4	032	15	0	1	0	15	001	15
398			min	-952.122	3	.491	15	906	1	0	3	002	1	005	4
399		10	max		1	2.078	4	032	15	0	1	0	15	001	15
400			min	-951.81	3	.489	15	906	1	0	3	002	1	005	4
401		11		1097.806	1	2.069	4	032	15	0	1	0	15	001	15
402			min		3	.486	15	906	1	0	3	003	1	006	4
403		12	max	1098.222	1	2.06	4	032	15	0	1	0	15	002	15
404			min	-951.186	3	.484	15	906	1	0	3	003	1	007	4
405		13	max	1098.638	1	2.052	4	032	15	0	1	0	15	002	15
406			min	-950.874	3	.482	15	906	1	0	3	003	1	007	4
407		14	max	1099.054	1	2.043	4	032	15	0	1	0	15	002	15
408			min	-950.562	3	.48	15	906	1	0	3	003	1	008	4
409		15		1099.469	1	2.034	4	032	15	0	1	0	15	002	15
410			min		3	.478	15	906	1	0	3	004	1	008	4
411		16	max	1099.885	1	2.025	4	032	15	0	1	0	15	002	15
412			min	-949.938	3	.476	15	906	1	0	3	004	1	009	4
413		17		1100.301	1	2.017	4	032	15	0	1	0	15	002	15
414			min		3	.474	15	906	1	0	3	004	1	009	4
415		18	max	1100.717	1	2.008	4	032	15	0	1	0	15	002	15
416			min		3	.472	15	906	1	0	3	004	1	01	4
417		19		1101.133	1	1.999	4	032	15	0	1	0	15	002	15
418		1	min	-949.003	3	.47	15	906	1	0	3	005	1	01	4
419	M11	1	max		2	9.1	4	008	15	0	1	0	15	.01	4
420			min		3	2.139	15	21	1	0	5	0	1	.002	15
421		2		377.998	2	8.226	4	008	15	0	1	0	15	.006	4
422				-505.837	3	1.934	15	21	1	0	5	0	1	.002	15
423		3	max		2	7.352	4	008	15	0	1	0	15	.002	2
424			min		3	1.728	15	21	1	0	5	0	1	0	12
425		4		377.658	2	6.477	4	008	15	0	1	0	15	0	2
120		_ т	mux	511.000		U. 11 1	т	.000							

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
426			min	-506.093	3	1.523	15	21	1	0	5	0	1	002	3
427		5	max	377.487	2	5.603	4	008	15	0	1	0	15	0	15
428			min	-506.221	3	1.317	15	21	1	0	5	0	1	003	4
429		6	max	377.317	2	4.728	4	008	15	0	1	0	15	001	15
430			min	-506.348	3	1.112	15	21	1	0	5	0	1	006	4
431		7	max	377.147	2	3.854	4	008	15	0	1	0	15	002	15
432			min	-506.476	3	.906	15	21	1	0	5	0	1	008	4
433		8	max	376.976	2	2.979	4	008	15	0	1	0	15	002	15
434			min	-506.604	3	.7	15	21	1	0	5	0	1	01	4
435		9	max	376.806	2	2.105	4	008	15	0	1	0	15	003	15
436			min	-506.732	3	.495	15	21	1	0	5	0	1	011	4
437		10	max	376.636	2	1.23	4	008	15	0	1	0	15	003	15
438			min	-506.86	3	.289	15	21	1	0	5	0	1	012	4
439		11	max	376.465	2	.397	2	008	15	0	1	0	15	003	15
440			min	-506.987	3	.035	12	21	1	0	5	001	1	012	4
441		12	max	376.295	2	122	15	008	15	0	1	0	15	003	15
442			min	-507.115	3	518	4	21	1	0	5	001	1	012	4
443		13	max	376.125	2	327	15	008	15	0	1	0	15	003	15
444			min	-507.243	3	-1.393	4	21	1	0	5	001	1	011	4
445		14	max	375.954	2	533	15	008	15	0	1	0	15	002	15
446			min	-507.371	3	-2.267	4	21	1	0	5	001	1	011	4
447		15	max	375.784	2	738	15	008	15	0	1	0	15	002	15
448			min	-507.498	3	-3.142	4	21	1	0	5	001	1	009	4
449		16	max	375.614	2	944	15	008	15	0	1	0	15	002	15
450			min	-507.626	3	-4.016	4	21	1	0	5	002	1	008	4
451		17	max	375.443	2	-1.15	15	008	15	0	1	0	15	001	15
452			min	-507.754	3	-4.891	4	21	1	0	5	002	1	005	4
453		18	max	375.273	2	-1.355	15	008	15	0	1	0	15	0	15
454			min	-507.882	3	-5.765	4	21	1	0	5	002	1	003	4
455		19	max	375.103	2	-1.561	15	008	15	0	1	0	15	0	1
456			min	-508.009	3	-6.64	4	21	1	0	5	002	1	0	1
457	M12	1	max	1172.31	1	0	1	12.718	1	0	1	0	15	0	1
458			min	-165.535	3	0	1	.455	15	0	1	001	1	0	1
459		2	max	1172.48	1	0	1	12.718	1	0	1	0	1	0	1
460			min	-165.408	3	0	1	.455	15	0	1	0	12	0	1
461		3	max	1172.65	1	0	1	12.718	1	0	1	.002	1	0	1
462			min	-165.28	3	0	1	.455	15	0	1	0	15	0	1
463		4	max	1172.821	1	0	1	12.718	1	0	1	.003	1	0	1
464			min	-165.152	3	0	1	.455	15	0	1	0	15	0	1
465		5	max	1172.991	1	0	1	12.718	1	0	1	.005	1	0	1
466			min	-165.024	3	0	1	.455	15	0	1	0	15	0	1
467		6		1173.161	1	0	1	12.718	1	0	1	.006	1	0	1
468			min	-164.897	3	0	1	.455	15	0	1	0	15	0	1
469		7	max	1173.332	1	0	1	12.718	1	0	1	.008	1	0	1
470				-164.769	3	0	1	.455	15	0	1	0	15	0	1
471		8		1173.502	1	0	1	12.718	1	0	1	.009	1	0	1
472			min	-164.641	3	0	1	.455	15	0	1	0	15	0	1
473		9	max	1173.672	1	0	1	12.718	1	0	1	.011	1	0	1
474				-164.513	3	0	1	.455	15	0	1	0	15	0	1
475		10		1173.843	1	0	1	12.718	1	0	1	.012	1	0	1
476				-164.386	3	0	1	.455	15	0	1	0	15	0	1
477		11		1174.013	1	0	1	12.718	1	0	1	.014	1	0	1
478				-164.258		0	1	.455	15	0	1	0	15	0	1
479		12		1174.184		0	1	12.718	1	0	1	.015	1	0	1
480			min	-164.13	3	0	1	.455	15	0	1	0	15	0	1
481		13		1174.354	1	0	1	12.718	1	0	1	.016	1	0	1
482				-164.002	3	0	1	.455	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Member Sec Assellib LC Sheetib LC Zsheetib LC Torquelleft LC Syshome LC Zsheetib LC Sheetib LC		Member	Sec		Axial[lb]	LC	v Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	LC
AB64	483			max											l _	
AB6	484					3	0	1	.455	15	0	1		15	0	1
## ## ## ## ## ## ## #			15	max			0	1			0	1	.019		0	1
1887								1				1				1
ABB			16			1		1				1	.021			1
A89								1		_		1				1
A90			17				0	1			0	1	.022		0	1
491							_	_			_					
1992			18					-								
198			-10									<u> </u>		_		
1994			19									-				-
A95			-10				_			_				_		
A96		M1	1				_									_
498		1711														
A98			2													
A99																
500			3								-					
501											_					
502			1													
503 5 max 324,693 3 550,051 1 -2,725 15 0 3 .025 1 -005 15 504 min -219,37 2 -387,046 3 -75,958 1 0 1 0 15 -,159 3 506 min -218,794 2 -388,234 3 -75,958 1 0 1 .002 1 -,462 1 507 7 max 325,557 3 546,884 1 -2,725 15 0 3 -002 15 .323 3 508 min -218,217 2 -389,421 3 -75,958 1 0 1 -069 1 -302 1 509 8 max 325,989 3 545,301 1 -2,725 15 0 3 -004 15 .565 3 510 min -217,641 2			4													
504			5													
505			3											_		
506			6									_				
507 7 max 325,557 3 546,884 1 -2,725 15 0 3 -002 15 .323 3 508 min -218,217 2 -389,421 3 -75,958 1 0 1 -0.09 1 -802 1 509 8 max 325,989 3 545,301 1 -2,725 15 0 3 -004 15 .565 3 510 min -217,641 2 -390,609 3 -75,958 1 0 1 -116 1 -1,141 1 511 9 max 337,144 3 34,617 2 -4,328 15 0 9 .0 15 .644 3 512 min -148,198 2 .04 15 -120,508 1 0 3 .001 1 -1,131 1 515 11 max 338,008			О													
508			-													
509																
STO Min -217.641 2 -390.609 3 -75.958 1 0 1 -1.16 1 -1.141 1 1 511 9 max 337.144 3 34.617 2 -4.328 15 0 9 0.073 1 6.661 3 3 10 max 337.576 3 33.034 2 -4.328 15 0 9 0 15 6.644 3 3 514 min -148.775 2 482 15 -120.508 1 0 3 -0.001 1 -1.31 1 1 1 1 1 1 1 1 1			_								-			_		•
STI			8								_					
512																_
513			9													
514 min -148.198 2 .004 15 -120.508 1 0 3 001 1 -1.31 1 515 11 max 338.008 3 31.451 2 -4.328 15 0 9 003 15 .628 3 516 min -147.622 2 -1.922 4 -120.508 1 0 3 076 1 -1.321 1 517 12 max 349.061 3 254.48 3 -2.62 15 0 1 .114 1 .549 3 518 min -86.73 10 -582.854 1 -73.172 1 0 3 .004 15 -1.167 1 519 13 min -86.25 10 -584.437 1 -73.172 1 0 3 .002 15 -805 1 521 14 max 349.926			4.0							_						_
515 11 max 338.008 3 31.451 2 -4.328 15 0 9 003 15 .628 3 516 min -147.622 2 -1.922 4 -120.508 1 0 3 076 1 -1.321 1 517 12 max 349.061 3 254.48 3 -2.62 15 0 1 .114 1 .549 3 518 min -86.73 10 -582.854 1 -73.172 1 0 3 .004 15 -1.167 1 519 13 max 349.494 3 253.293 3 -2.62 15 0 1 .069 1 .391 3 520 min -86.25 10 -584.437 1 -73.172 1 0 3 .002 15 -805 1 521 14 max 349.926			10													
516 min -147.622 2 -1.922 4 -120.508 1 0 3 076 1 -1.321 1 517 12 max 349.061 3 254.48 3 -2.62 15 0 1 .114 1 .549 3 518 min -86.73 10 -582.854 1 -73.172 1 0 3 .004 15 -1.167 1 519 13 max 349.494 3 253.293 3 -2.62 15 0 1 .069 1 .391 3 520 min -86.25 10 -584.437 1 -73.172 1 0 3 .002 15 805 1 521 14 max 349.926 3 252.105 3 -2.62 15 0 1 .023 1 .242 1 522 min -85.29 10														_		_
517 12 max 349.061 3 254.48 3 -2.62 15 0 1 .114 1 .549 3 518 min -86.73 10 -582.854 1 -73.172 1 0 3 .004 15 -1.167 1 519 13 max 349.494 3 253.293 3 -2.62 15 0 1 .069 1 .391 3 520 min -86.25 10 -584.437 1 -73.172 1 0 3 .002 15 -805 1 521 14 max 349.926 3 252.105 3 -2.62 15 0 1 .023 1 .234 3 522 min -85.77 10 -586.02 1 -73.172 1 0 3 0 15 .442 1 523 15 min -84.81 <td< td=""><td></td><td></td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			11													
518 min -86.73 10 -582.854 1 -73.172 1 0 3 .004 15 -1.167 1 519 13 max 349.494 3 253.293 3 -2.62 15 0 1 .069 1 .391 3 520 min -86.25 10 -584.437 1 -73.172 1 0 3 .002 15 805 1 521 14 max 349.926 3 252.105 3 -2.62 15 0 1 .023 1 -344 1 522 min -85.77 10 -586.02 1 -73.172 1 0 3 0 15 -442 1 523 15 max 350.358 3 250.918 3 -2.62 15 0 1 0 15 .442 1 524 min -84.81 10 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																
519 13 max 349.494 3 253.293 3 -2.62 15 0 1 .069 1 .391 3 520 min -86.25 10 -584.437 1 -73.172 1 0 3 .002 15 805 1 521 min -85.77 10 -586.02 1 -73.172 1 0 3 .0023 1 .234 3 522 min -85.77 10 -586.02 1 -73.172 1 0 3 0 15 -442 1 523 15 max 350.358 3 250.918 3 -2.62 15 0 1 0 15 .742 1 524 min -85.29 10 -587.604 1 -73.172 1 0 3 -022 1 -077 1 525 16 max 350.79 3 2			12													
520 min -86.25 10 -584.437 1 -73.172 1 0 3 .002 15 805 1 521 14 max 349.926 3 252.105 3 -2.62 15 0 1 .023 1 .234 3 522 min -85.77 10 -586.02 1 -73.172 1 0 3 0 15 442 1 523 15 max 350.358 3 250.918 3 -2.62 15 0 1 0 15 .442 1 524 min -85.29 10 -587.604 1 -73.172 1 0 3 022 1 077 1 525 16 max 350.79 3 249.73 3 -2.62 15 0 1 002 15 .288 1 526 17 min -84.81 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>•</td></td<>											-					•
521 14 max 349.926 3 252.105 3 -2.62 15 0 1 .023 1 .234 3 522 min -85.77 10 -586.02 1 -73.172 1 0 3 0 15 442 1 523 15 max 350.358 3 250.918 3 -2.62 15 0 1 0 15 .078 3 524 min -85.29 10 -587.604 1 -73.172 1 0 3 022 1 077 1 525 16 max 350.79 3 249.73 3 -2.62 15 0 1 002 15 .288 1 526 min -84.81 10 -589.187 1 -73.172 1 0 3 068 1 077 3 527 17 max 351.222 <t< td=""><td></td><td></td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></t<>			13								_					
522 min -85.77 10 -586.02 1 -73.172 1 0 3 0 15 442 1 523 15 max 350.358 3 250.918 3 -2.62 15 0 1 0 15 .078 3 524 min -85.29 10 -587.604 1 -73.172 1 0 3 022 1 077 1 525 16 max 350.79 3 249.73 3 -2.62 15 0 1 002 15 .288 1 526 min -84.81 10 -589.187 1 -73.172 1 0 3 068 1 077 3 527 17 max 351.222 3 248.543 3 -2.62 15 0 1 004 15 .654 1 528 min -84.329 10																
523 15 max 350.358 3 250.918 3 -2.62 15 0 1 0 15 .078 3 524 min -85.29 10 -587.604 1 -73.172 1 0 3 022 1 077 1 525 16 max 350.79 3 249.73 3 -2.62 15 0 1 002 15 .288 1 526 min -84.81 10 -589.187 1 -73.172 1 0 3 068 1 077 3 527 17 max 351.222 3 248.543 3 -2.62 15 0 1 004 15 .654 1 528 min -84.329 10 -590.77 1 -73.172 1 0 3 104 1 232 3 529 18 max -6.21			14													
524 min -85.29 10 -587.604 1 -73.172 1 0 3 022 1 077 1 525 16 max 350.79 3 249.73 3 -2.62 15 0 1 002 15 .288 1 526 min -84.81 10 -589.187 1 -73.172 1 0 3 068 1 077 3 527 17 max 351.222 3 248.543 3 -2.62 15 0 1 004 15 .654 1 528 min -84.329 10 -590.77 1 -73.172 1 0 3 113 1 232 3 529 18 max -6.21 15 546.868 1 -3.067 15 0 3 006 15 .327 1 530 min -169.697 1				min	-85.77							3				
525 16 max 350.79 3 249.73 3 -2.62 15 0 1 002 15 .288 1 526 min -84.81 10 -589.187 1 -73.172 1 0 3 068 1 077 3 527 17 max 351.222 3 248.543 3 -2.62 15 0 1 004 15 .654 1 528 min -84.329 10 -590.77 1 -73.172 1 0 3 113 1 232 3 529 18 max -6.21 15 546.868 1 -3.067 15 0 3 006 15 .327 1 530 min -169.697 1 -198.353 3 -85.307 1 0 1 164 1 114 3 531 19 max -6.036			15									1				
526 min -84.81 10 -589.187 1 -73.172 1 0 3 068 1 077 3 527 17 max 351.222 3 248.543 3 -2.62 15 0 1 004 15 .654 1 528 min -84.329 10 -590.77 1 -73.172 1 0 3 113 1 232 3 529 18 max -6.21 15 546.868 1 -3.067 15 0 3 006 15 .327 1 530 min -169.697 1 -198.353 3 -85.307 1 0 1 164 1 114 3 531 19 max -6.036 15 545.285 1 -3.067 15 0 3 008 15 .009 3 532 min -169.121 1 </td <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td>											-			_		_
527 17 max 351.222 3 248.543 3 -2.62 15 0 1 004 15 .654 1 528 min -84.329 10 -590.77 1 -73.172 1 0 3 113 1 232 3 529 18 max -6.21 15 546.868 1 -3.067 15 0 3 006 15 .327 1 530 min -169.697 1 -198.353 3 -85.307 1 0 1 164 1 114 3 531 19 max -6.036 15 545.285 1 -3.067 15 0 3 008 15 .009 3 532 min -169.121 1 -199.54 3 -85.307 1 0 1 -2.17 1 -0.02 1 533 M5 1 max			16								0			15		
528 min -84.329 10 -590.77 1 -73.172 1 0 3 113 1 232 3 529 18 max -6.21 15 546.868 1 -3.067 15 0 3 006 15 .327 1 530 min -169.697 1 -198.353 3 -85.307 1 0 1 164 1 114 3 531 19 max -6.036 15 545.285 1 -3.067 15 0 3 008 15 .009 3 532 min -169.121 1 -199.54 3 -85.307 1 0 1 217 1 012 1 533 M5 1 max 372.598 1 1734.464 3 0 1 0 1 0 1 0 1 0 1 0 1 0				min							0	3		_		
529 18 max -6.21 15 546.868 1 -3.067 15 0 3006 15 .327 1 530 min -169.697 1 -198.353 3 -85.307 1 0 1164 1114 3 531 19 max -6.036 15 545.285 1 -3.067 15 0 3008 15 .009 3 532 min -169.121 1 -199.54 3 -85.307 1 0 1217 1012 1 533 M5 1 max 372.598 1 1734.464 3 0 1 0 1 0 1 0 1 0 1 .029 1 534 min 11.986 12 -1621.186 1 0 1 0 1 0 1 0 1 0 15 0 1 0 1 0 1 0 15 535 2 max 373.174 1 1733.277 3 0 1 0 1 0 1 0 1 0 1 .035 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1			17			3		3								
530 min -169.697 1 -198.353 3 -85.307 1 0 1 164 1 114 3 531 19 max -6.036 15 545.285 1 -3.067 15 0 3 008 15 .009 3 532 min -169.121 1 -199.54 3 -85.307 1 0 1 -217 1 012 1 533 M5 1 max 372.598 1 1734.464 3 0 1 0 1 0 1 .029 1 534 min 11.986 12 -1621.186 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0						10		1			0					3
531 19 max -6.036 15 545.285 1 -3.067 15 0 3 008 15 .009 3 532 min -169.121 1 -199.54 3 -85.307 1 0 1 217 1 012 1 533 M5 1 max 372.598 1 1734.464 3 0 1 0 1 0 1 0 1 0.029 1 534 min 11.986 12 -1621.186 1 0 1<			18			15		1				3		15	.327	
531 19 max -6.036 15 545.285 1 -3.067 15 0 3 008 15 .009 3 532 min -169.121 1 -199.54 3 -85.307 1 0 1 217 1 012 1 533 M5 1 max 372.598 1 1734.464 3 0 1 0 1 0 1 0 1 0.029 1 534 min 11.986 12 -1621.186 1 0 1<	530			min	-169.697	1		3	-85.307	1	0	_	164	1	114	
532 min -169.121 1 -199.54 3 -85.307 1 0 1 217 1 012 1 533 M5 1 max 372.598 1 1734.464 3 0 1 0 1 0 1 0.029 1 534 min 11.986 12 -1621.186 1 0	531		19			15		1	-3.067	15	0	3	008	15	.009	3
533 M5 1 max 372.598 1 1734.464 3 0 1 0 1 0 1 0.029 1 534 min 11.986 12 -1621.186 1 0 1 0 1 0 1 0 15 535 2 max 373.174 1 1733.277 3 0 1 0 1 0 1 1.035 1 536 min 12.274 12 -1622.769 1 0 1 0 1 0 1 -1.073 3 537 3 max 1018.393 3 1575.269 1 0 1 0 1 0 1 2.008 1 538 min -750.351 2 -1180.56 3 0 1 0 1 0 1 -2.116 3	532			min		1		3	-85.307	1	0	1	217	1	012	1
534 min 11.986 12 -1621.186 1 0 1		M5	1			1	1734.464	3	0	1		1		1	.029	1
535 2 max 373.174 1 1733.277 3 0 1 0 1 0 1 1.035 1 536 min 12.274 12 -1622.769 1 0 1 0 1 0 1 -1.073 3 537 3 max 1018.393 3 1575.269 1 0 1 0 1 0 1 2.008 1 538 min -750.351 2 -1180.56 3 0 1 0 1 0 1 -2.116 3						12				1		1		1		15
536 min 12.274 12 -1622.769 1 0 1 0 1 0 1 -1.073 3 537 3 max 1018.393 3 1575.269 1 0 1 0 1 0 1 2.008 1 538 min -750.351 2 -1180.56 3 0 1 0 1 0 1 -2.116 3			2	max		1	1733.277	3	0	1	0	1	0	1	1.035	
537 3 max 1018.393 3 1575.269 1 0 1 0 1 0 1 2.008 1 538 min -750.351 2 -1180.56 3 0 1 0 1 0 1 -2.116 3						12				1						
538 min -750.351 2 -1180.56 3 0 1 0 1 0 1 -2.116 3			3			3		1	0	1		1	0	1		
								3				_		1		
			4							1		_1		1		_

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
540			min	-749.775	2	-1181.747	3	0	1	0	1	0	1	-1.383	3
541		5	max	1019.257	3	1572.103	1	0	1	0	_1_	0	1	.055	1
542			min	-749.198	2	-1182.935	3	0	1	0	1	0	1	649	3
543		6	max	1019.689	3	1570.52	1	0	1	0	_1_	0	1	.085	3
544			min	-748.622	2	-1184.122	3	0	1	0	1_	0	1	921	1
545		7	max	1020.121	3	1568.937	1	0	1	0	_1_	0	1	.82	3
546			min	-748.046	2	-1185.309	3	0	1	0	1	0	1	-1.895	1
547		8	max	1020.554	3	1567.353	1	0	1	0	<u>1</u>	0	1	1.556	3
548			min	-747.47	2	-1186.497	3	0	1	0	1_	0	1	-2.868	1
549		9		1038.093	3	115.369	2	0	1	0	1_	0	1	1.797	3
550			min	-603.981	2	.48	15	0	1	0	1	0	1	-3.252	1
551		10	max	1038.526	3	113.786	2	0	1	0	_1_	0	1	1.735	3
552			min	-603.405	2	.002	15	0	1	0	1_	0	1	-3.291	1
553		11	max	1038.958	3	112.203	2	0	1	0	_1_	0	1	1.675	3
554			min	-602.829	2	-1.727	4	0	1	0	1	0	1	-3.33	1
555		12	max	1056.701	3	754.578	3	0	1	0	_1_	0	1	1.466	3
556			min	-459.385	2	-1692.177	1	0	1	0	1	0	1	-2.961	1
557		13	max	1057.133	3	753.39	3	0	1	0	<u>1</u>	0	1	.998	3
558			min	-458.809	2	-1693.76	1	0	1	0	1	0	1	-1.91	1
559		14		1057.565	3	752.203	3	0	1	0	_1_	0	1	.53	3
560			min	-458.233	2	-1695.343	1	0	1	0	1	0	1	859	1
561		15	max	1057.998	3	751.016	3	0	1	0	_1_	0	1	.244	2
562			min	-457.656	2	-1696.927	1	0	1	0	1	0	1	0	15
563		16	max	1058.43	3	749.828	3	0	1	0	_1_	0	1	1.248	1
564			min	-457.08	2	-1698.51	1	0	1	0	1	0	1	402	3
565		17	max	1058.862	3	748.641	3	0	1	0	1_	0	1	2.302	1
566			min	-456.504	2	-1700.093	1	0	1	0	1	0	1	867	3
567		18	max	-12.666	12	1866.419	1	0	1	0	1_	0	1	1.183	1
568			min	-372.289	1	-695.909	3	0	1	0	1	0	1	451	3
569		19	max	-12.378	12	1864.836	1	0	1	0	_1_	0	1	.025	1
570			min	-371.713	1	-697.096	3	0	1	0	1	0	1	019	3
571	M9	11	max	168.679	1	521.766	3	76.609	1	0	3	008	15	0	15
572			min	6.023	15	-472.92	1	2.757	15	0	1_	214	1	014	1
573		2	max	169.255	1	520.579	3	76.609	1	0	3	006	15	.28	1
574			min	6.197	15	-474.503	1	2.757	15	0	1_	167	1	325	3
575		3	max	323.828	3	553.217	1	75.958	1	0	_1_	004	15	.563	1
576			min	-220.522	2	-384.672	3	2.725	15	0	3	119	1	638	3
577		4	max	324.26	3	551.634	1	75.958	1	0	_1_	003	15	.221	1
578			min	-219.946	2	-385.859	3	2.725	15	0	3	072	1	399	3
579		5	max		3	550.051	1_	75.958	1	0	_1_	0	15	005	15
580			min		2	-387.046	3	2.725	15	0	3	025	1	159	3
581		6	max		3	548.468	1	75.958	1	0	1	.022	1	.082	3
582			min		2	-388.234	3	2.725	15	0	3	0	15	462	1
583		7	max		3	546.884	1	75.958	1	0	1	.069	1_	.323	3
584			min	-218.217	2	-389.421	3	2.725	15	0	3	.002	15	802	1
585		8		325.989	3	545.301	1	75.958	1	0	1_	.116	1	.565	3
586			min		2	-390.609	3	2.725	15	0	3	.004	15	-1.141	1
587		9	max		3	34.617	2	120.508	1	0	3	003	15	.661	3
588			min	-148.775	2	.482	15	4.328	15	0	9	073	1	-1.299	1
589		10	max		3	33.034	2	120.508	1	0	3	.001	1	.644	3
590			min	-148.198	2	.004	15	4.328	15	0	9	0	15	-1.31	1
591		11		338.008	3	31.451	2	120.508	1	0	3	.076	1	.628	3
592				-147.622	2	-1.922	4	4.328	15	0	9	.003	15	-1.321	1
593		12	max		3	254.48	3	73.172	1	0	3	004	15	.549	3
594			min	-86.73	10	-582.854	1	2.62	15	0	1_	114	1	-1.167	1
595		13	max		3	253.293	3	73.172	1	0	3	002	15	.391	3
596			min	-86.25	10	-584.437	1	2.62	15	0	1	069	1	805	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	349.926	3	252.105	3	73.172	1	0	3	0	15	.234	3
598			min	-85.77	10	-586.02	1	2.62	15	0	1	023	1	442	1
599		15	max	350.358	3	250.918	3	73.172	1	0	3	.022	1	.078	3
600			min	-85.29	10	-587.604	1	2.62	15	0	1	0	15	077	1
601		16	max	350.79	3	249.73	3	73.172	1	0	3	.068	1	.288	1
602			min	-84.81	10	-589.187	1	2.62	15	0	1	.002	15	077	3
603		17	max	351.222	3	248.543	3	73.172	1	0	3	.113	1	.654	1
604			min	-84.329	10	-590.77	1	2.62	15	0	1	.004	15	232	3
605		18	max	-6.21	15	546.868	1	85.307	1	0	1	.164	1	.327	1
606			min	-169.697	1	-198.353	3	3.067	15	0	3	.006	15	114	3
607		19	max	-6.036	15	545.285	1	85.307	1	0	1	.217	1	.009	3
608			min	-169.121	1	-199.54	3	3.067	15	0	3	.008	15	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.192	1	.006	3 1.282e-2	1_	NC	1_	NC	1
2			min	0	15	032	3	003	2 -1.963e-3	3	NC	1	NC	1
3		2	max	0	1	.151	3	.031	1 1.408e-2	1	NC	5	NC	2
4			min	0	15	.002	15	0	10 -1.812e-3	3	1186.354	3	7128.016	1
5		3	max	0	1	.298	3	.073	1 1.535e-2	1	NC	5	NC	3
6			min	0	15	053	1	.003	15 -1.661e-3	3	654.786	3	3018.19	1
7		4	max	0	1	.389	3	.107	1 1.661e-2	1	NC	5	NC	3
8			min	0	15	108	1	.004	15 -1.511e-3	3	513.809	3	2031.451	1
9		5	max	0	1	.411	3	.124	1 1.788e-2	1	NC	5	NC	3
10			min	0	15	102	1	.005	15 -1.36e-3	3	487.788	3	1750.177	1
11		6	max	0	1	.367	3	.119	1 1.914e-2	1_	NC	5	NC	3
12			min	0	15	037	1	.004	15 -1.209e-3	3	541.878	3	1831.328	1
13		7	max	0	1	.27	3	.092	1 2.041e-2	1	NC	5	NC	3
14			min	0	15	.003	15	.002	10 -1.058e-3	3	716.433	3	2365.133	1
15		8	max	0	1	.203	1	.052	1 2.167e-2	1_	NC	1	NC	2
16			min	0	15	.006	15	002	10 -9.066e-4	3	1217.526	3	4214.684	1
17		9	max	0	1	.317	1	.02	3 2.293e-2	1	NC	5	NC	1
18			min	0	15	.009	15	007	10 -7.557e-4	3	1717.945	1	NC	1
19		10	max	0	1	.368	1	.02	3 2.42e-2	1	NC	3	NC	1
20			min	0	1	018	3	013	2 -6.047e-4	3	1222.666	1	NC	1
21		11	max	0	15	.317	1	.02	3 2.293e-2	1	NC	5	NC	1
22			min	0	1	.009	15	007	10 -7.557e-4	3	1717.945	1	NC	1
23		12	max	0	15	.203	1	.052	1 2.167e-2	1	NC	1	NC	2
24			min	0	1	.006	15	002	10 -9.066e-4	3	1217.526	3	4214.684	1
25		13	max	0	15	.27	3	.092	1 2.041e-2	1	NC	5	NC	3
26			min	0	1	.003	15	.002	10 -1.058e-3	3	716.433	3	2365.133	1
27		14	max	0	15	.367	3	.119	1 1.914e-2	1	NC	5	NC	3
28			min	0	1	037	1	.004	15 -1.209e-3	3	541.878	3	1831.328	1
29		15	max	0	15	.411	3	.124	1 1.788e-2	1	NC	5	NC	3
30			min	0	1	102	1	.005	15 -1.36e-3	3	487.788	3	1750.177	1
31		16	max	0	15	.389	3	.107	1 1.661e-2	1_	NC	5	NC	3
32			min	0	1	108	1	.004	15 -1.511e-3	3	513.809	3	2031.451	1
33		17	max	0	15	.298	3	.073	1 1.535e-2	1_	NC	5	NC	3
34			min	0	1	053	1	.003	15 -1.661e-3	3	654.786	3	3018.19	1
35		18	max	0	15	.151	3	.031	1 1.408e-2	1	NC	5	NC	2
36			min	0	1	.002	15	0	10 -1.812e-3	3	1186.354	3	7128.016	1
37		19	max	0	15	.192	1	.006	3 1.282e-2	1	NC	1	NC	1
38			min	0	1	032	3	003	2 -1.963e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.27	3	.006	3 7.702e-3	1	NC	1	NC	1
40			min	0	15	59	1	003	2 -4.169e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

41	1 2 397 1 3 745 1 3 3 3569 1 1 1 1 1 1 1 2 394 1 3 3 569 1
43	2 397 1 3 745 1 3 736 1 3 937 1 3 569 1 1 1 1 1 1 2 394 1 1 2 3 3 3 3 3 3 1
Max	397 1 3745 1 3736 1 3937 1 3569 1 2394 1 1 1 1 1 2394 1 3569 1
45	3 745 1 3 736 1 3 937 1 3 569 1 1 1 1 1 1 1 2 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1
46	745
A7	3 736 1 3 937 1 3 569 1 2 394 1 1 1 1 1 2 394 1 3 569 1
Max	736
49 6 max 0 1 .885 3 .106 1 1.415e-2 1 8431.834 15 NC 50 min 0 15 -1.571 1 .004 15 -8.101e-3 3 220.087 1 2060.5 51 7 max 0 1 .855 3 .084 1 1.544e-2 1 813.583 15 NC 52 min 0 15 -1.566 1 .002 10 -8.888e-3 3 221.215 1 2068.5 53 8 max 0 1 .73 3 .049 1 1.673e-2 1 9024.625 15 NC 55 9 max 0 1 .73 3 .018 3 1.802e-2 1 .9024.625 15 NC 56 min 0 15 -1.452 1 006 10 -1.046e-2	3 937 1 3 569 1 2 394 1 1 1 1 1 1 2 394 1 3 569 1
50	937 1 3569 1 2394 1 1 1 1 1 1 2 394 1 3 3
51 7 max 0 1 .855 3 .084 1 1.544e-2 1 8513.583 15 NC 52 min 0 15 -1.566 1 .002 10 -8.88e-3 3 221.215 1 2608.5 53 8 max 0 1 .794 3 .049 1 1.673e-2 1 9024.625 15 NC 54 min 0 15 -1.516 1 -0.00 10 -9.674e-3 3 233.211 1 4564.5 5 55 9 max 0 1 .73 3 .018 3 1.802e-2 1 9740.072 15 NC 56 min 0 15 -1.452 1 006 10 -1.046e-2 3 250.32 1 NC 58 min 0 1 -1.452 1 006 10 -1.046e-2	3 569 1 2 394 1 1 1 1 1 1 2 394 1 3 569 1
52 min 0 15 -1.566 1 .002 10 -8.888e-3 3 221.215 1 2608.65 53 8 max 0 1 .794 3 .049 1 1.673e-2 1 9024.625 15 NC 54 min 0 15 -1.516 1 002 10 -9.674e-3 3 233.211 1 4564.3 55 9 max 0 1 .73 3 .018 3 1.802e-2 1 9740.072 15 NC 56 56 min 0 15 -1.452 1 006 10 -1.046e-2 3 250.32 1 NC 57 10 max 0 15 .73 3 .018 3 1.802e-2 1 NC 15 .80 NC 60 1 1 .046e-2 3 250.32 1 NC NC	569 1 2 394 1 1 1 1 1 1 2 394 1 3 569 1
53 8 max 0 1 .794 3 .049 1 1.673e-2 1 9024.625 15 NC 54 min 0 15 -1.516 1 002 10 -9.674e-3 3 233.211 1 4564.3 55 9 max 0 1 .73 3 0.018 3 1.802e-2 1 9740.072 15 NC 56 min 0 15 -1.452 1 -0.06 10 -1.046e-2 3 250.32 1 NC 57 10 max 0 1 -6.98 3 .017 3 1.931e-2 1 NC 15 NC 58 min 0 15 .73 3 .018 3 1.802e-2 1 NC 15 NC 60 min 0 15 .794 3 .049 1 1.673e-2 1 9024.625 15<	2 394 1 1 1 1 1 1 1 2 394 1 3 569 1
54 min 0 15 -1.516 1 002 10 -9.674e-3 3 233.211 1 4564.3 55 9 max 0 1 .73 3 .018 3 1.802e-2 1 .9740.072 15 NC 56 min 0 15 -1.452 1 006 10 -1.046e-2 3 250.32 1 NC 57 10 max 0 1 .698 3 .017 3 1.931e-2 1 NC 15 NC 58 min 0 1 -1.42 1 012 2 -1.125e-2 3 260.233 1 NC 59 11 max 0 15 .73 3 .018 3 1.802e-2 1 .9740.072 15 NC 60 min 0 1 -1.516 1 .006 10 -1.046e-2 3 2	394 1 1 1 1 1 1 1 2 394 1 3 569 1
55 9 max 0 1 .73 3 .018 3 1.802e-2 1 9740.072 15 NC 56 min 0 15 -1.452 1 006 10 -1.046e-2 3 250.32 1 NC 57 10 max 0 1 .698 3 .017 3 1.931e-2 1 NC 15 NC 58 min 0 1 -1.42 1 -1.012 2 -1.125e-2 3 260.233 1 NC 60 min 0 15 .73 3 .018 3 1.802e-2 1 9740.072 15 NC 60 min 0 15 .794 3 .049 1 1.673e-2 1 9024.625 15 NC 61 12 max 0 15 .855 3 .084 1 1.644e-2 1 8513.58315 NC	1 1 1 1 1 1 2 394 1 3 569 1
56 min 0 15 -1.452 1 006 10 -1.046e-2 3 250.32 1 NC 57 10 max 0 1 .698 3 .017 3 1.931e-2 1 NC 15 NC 58 min 0 1 -1.42 1 012 2 -1.125e-2 3 260.233 1 NC 59 11 max 0 15 .73 3 .018 3 1.802e-2 1 9740.072 15 NC 60 min 0 1 -1.452 1 006 10 -1.046e-2 3 250.32 1 NC 61 12 max 0 15 .794 3 .049 1 1.673e-2 1 9024.625 15 NC 61 12 max 0 15 .855 3 .084 1 1.544e-2 1	1 1 1 1 1 2 394 1 3 569 1
56 min 0 15 -1.452 1 006 10 -1.046e-2 3 250.32 1 NC 57 10 max 0 1 .698 3 .017 3 1.931e-2 1 NC 15 NC 58 min 0 1 -1.42 1 012 2 -1.125e-2 3 260.233 1 NC 60 min 0 15 .73 3 .018 3 1.802e-2 1 9740.072 15 NC 60 min 0 1 -1.452 1 006 10 -1.046e-2 3 250.32 1 NC 61 12 max 0 15 .794 3 .049 1 1.673e-2 1 9024.625 15 NC 62 min 0 1 -1.516 1 002 10 -9.674e-3 3 233.211	1 1 1 1 2 394 1 3 569 1
58 min 0 1 -1.42 1 012 2 -1.125e-2 3 260.233 1 NC 59 11 max 0 15 .73 3 .018 3 1.802e-2 1 9740.072 15 NC 60 min 0 1 -1.452 1 006 10 -1.046e-2 3 250.32 1 NC 61 12 max 0 15 .794 3 .049 1 1.673e-2 1 9024.625 15 NC 62 min 0 1 -1.516 1 002 10 -9.674e-3 3 233.211 1 4564.3 63 13 max 0 15 .855 3 .084 1 1.544e-2 1 8513.583 15 NC 64 min 0 1 -1.566 1 .002 10 -8.88e-3 3	1 1 1 2 394 1 3 569 1
58 min 0 1 -1.42 1 012 2 -1.125e-2 3 260.233 1 NC 60 min 0 15 .73 3 .018 3 1.802e-2 1 9740.072 15 NC 60 min 0 1 -1.452 1 006 10 -1.046e-2 3 250.32 1 NC 61 12 max 0 15 .794 3 .049 1 1.673e-2 1 9024.625 15 NC 62 min 0 1 -1.516 1 -002 10 -9.674e-3 3 233.211 1 4564.3 63 13 max 0 15 .855 3 .084 1 1.544e-2 1 8513.583 15 NC 64 min 0 1 -1.566 1 .002 10 -8.88e-3 3 221.215	1 1 2 394 1 3 569 1
59 11 max 0 15 .73 3 .018 3 1.802e-2 1 9740.072 15 NC 60 min 0 1 -1.452 1 006 10 -1.046e-2 3 250.32 1 NC 61 12 max 0 15 .794 3 .049 1 1.673e-2 1 9024.625 15 NC 62 min 0 1 -1.516 1 002 10 -9.674e-3 3 233.211 1 4564 63 13 max 0 15 .855 3 .084 1 1.544e-2 1 8513.583 15 NC 64 min 0 1 -1.566 1 .002 10 -8.888e-3 3 221.215 1 208.9 65 14 max 0 15 .885 3 .106 1 1.415e-2	1 2 394 1 3 569 1
60 min 0 1 -1.452 1 006 10 -1.046e-2 3 250.32 1 NC 61 12 max 0 15 .794 3 .049 1 1.673e-2 1 9024.625 15 NC 62 min 0 1 -1.516 1 002 10 -9.674e-3 3 233.211 1 4564.3 63 13 max 0 15 .855 3 .084 1 1.544e-2 1 8513.583 15 NC 64 min 0 1 -1.566 1 .002 10 -8.888e-3 3 221.215 1 2608.5 65 14 max 0 15 .885 3 .106 1 .1415e-2 1 8431.834 15 NC 66 min 0 1 -1.571 1 .004 15 -8.101e-3 3	1 2 394 1 3 569 1
61 12 max 0 15 .794 3 .049 1 1.673e-2 1 9024.625 15 NC 62 min 0 1 -1.516 1 002 10 -9.674e-3 3 233.211 1 4564.3 63 13 max 0 15 .855 3 .084 1 1.544e-2 1 8513.583 15 NC 64 min 0 1 -1.566 1 .002 10 -8.888e-3 3 221.215 1 2608.9 65 14 max 0 15 .885 3 .106 1 1.415e-2 1 8431.834 15 NC 66 min 0 1 -1.571 1 .004 15 -8.101e-3 3 220.087 1 2060.9 67 15 max 0 15 .866 3 .108 1 1.286e-2	2 394 1 3 569 1
62 min 0 1 -1.516 1 002 10 -9.674e-3 3 233.211 1 4564.3 63 13 max 0 15 .855 3 .084 1 1.544e-2 1 8513.583 15 NC 64 min 0 1 -1.566 1 .002 10 -8.888e-3 3 221.215 1 2608.5 65 14 max 0 15 .885 3 .106 1 1.415e-2 1 8431.834 15 NC 66 min 0 1 -1.571 1 .004 15 -8.101e-3 3 220.087 1 2060.9 67 15 max 0 15 .866 3 .108 1 1.286e-2 1 8959.162 15 NC 68 min 0 1 -1.51 1 .004 15 -7.315e-3 3 <td>394 1 3 569 1</td>	394 1 3 569 1
63 13 max 0 15 .855 3 .084 1 1.544e-2 1 8513.583 15 NC 64 min 0 1 -1.566 1 .002 10 -8.888e-3 3 221.215 1 2608.9 65 14 max 0 15 .885 3 .106 1 1.415e-2 1 8431.834 15 NC 66 min 0 1 -1.571 1 .004 15 -8.101e-3 3 220.087 1 2060.9 67 15 max 0 15 .866 3 .108 1 1.286e-2 1 8959.162 15 NC 68 min 0 1 -1.51 1 .004 15 -7.315e-3 3 234.665 1 2024.7 69 16 max 0 15 .79 3 .089 1 1.157e-2	3 569 1
64 min 0 1 -1.566 1 .002 10 -8.888e-3 3 221.215 1 2608.9 65 14 max 0 15 .885 3 .106 1 1.415e-2 1 8431.834 15 NC 66 min 0 1 -1.571 1 .004 15 -8.101e-3 3 220.087 1 2060.9 67 15 max 0 15 .866 3 .108 1 1.286e-2 1 8959.162 15 NC 68 min 0 1 -1.51 1 .004 15 -7.315e-3 3 234.665 1 2024.7 69 16 max 0 15 .79 3 .089 1 1.157e-2 1 NC 15 NC 70 min 0 1 -1.374 1 .003 15 -6.528e-3 3	569 1
65 14 max 0 15 .885 3 .106 1 1.415e-2 1 8431.834 15 NC 66 min 0 1 -1.571 1 .004 15 -8.101e-3 3 220.087 1 2060.9 67 15 max 0 15 .866 3 .108 1 1.286e-2 1 8959.162 15 NC 68 min 0 1 -1.51 1 .004 15 -7.315e-3 3 234.665 1 2024.7 69 69 16 max 0 15 .79 3 .089 1 1.157e-2 1 NC 15 NC 70 min 0 1 -1.374 1 .003 15 -6.528e-3 3 275.462 1 2452.7 71 1 17 max 0 15 .657 3 .056 1 1.028e-2	
66 min 0 1 -1.571 1 .004 15 -8.101e-3 3 220.087 1 2060.9 67 15 max 0 15 .866 3 .108 1 1.286e-2 1 8959.162 15 NC 68 min 0 1 -1.51 1 .004 15 -7.315e-3 3 234.665 1 2024.7 69 16 max 0 15 .79 3 .089 1 1.157e-2 1 NC 15 NC 70 min 0 1 -1.374 1 .003 15 -6.528e-3 3 275.462 1 2452.7 71 17 max 0 15 .657 3 .056 1 1.028e-2 1 NC 15 NC 72 min 0 1 -1.164 1 .002 15 -5.742e-3 3	3
67 15 max 0 15 .866 3 .108 1 1.286e-2 1 8959.162 15 NC 68 min 0 1 -1.51 1 .004 15 -7.315e-3 3 234.665 1 2024.7 69 16 max 0 15 .79 3 .089 1 1.157e-2 1 NC 15 NC 70 min 0 1 -1.374 1 .003 15 -6.528e-3 3 275.462 1 2452.7 71 17 max 0 15 .657 3 .056 1 1.028e-2 1 NC 15 NC 72 min 0 1 -1.164 1 .002 15 -5.742e-3 3 376.001 1 3935.3 73 18 max 0 15 .477 3 .021 1 8.992e-3 1<	
68 min 0 1 -1.51 1 .004 15 -7.315e-3 3 234.665 1 2024.7 69 16 max 0 15 .79 3 .089 1 1.157e-2 1 NC 15 NC 70 min 0 1 -1.374 1 .003 15 -6.528e-3 3 275.462 1 2452.7 71 17 max 0 15 .657 3 .056 1 1.028e-2 1 NC 15 NC 72 min 0 1 -1.164 1 .002 15 -5.742e-3 3 376.001 1 3935.3 73 18 max 0 15 .477 3 .021 1 8.992e-3 1 NC 5 NC 74 min 0 1 894 1 0 10 -4.955e-3 3 708.588 <td></td>	
69 16 max 0 15 .79 3 .089 1 1.157e-2 1 NC 15 NC 70 min 0 1 -1.374 1 .003 15 -6.528e-3 3 275.462 1 2452.7 71 17 max 0 15 .657 3 .056 1 1.028e-2 1 NC 15 NC 72 min 0 1 -1.164 1 .002 15 -5.742e-3 3 376.001 1 3935.3 73 18 max 0 15 .477 3 .021 1 8.992e-3 1 NC 5 NC 74 min 0 1 894 1 0 10 -4.955e-3 3 708.588 1 NC 75 19 max 0 15 .27 3 .006 3 7.702e-3 1 NC 1 NC 76 min 0 1 59 1	
70 min 0 1 -1.374 1 .003 15 -6.528e-3 3 275.462 1 2452.7 71 17 max 0 15 .657 3 .056 1 1.028e-2 1 NC 15 NC 72 min 0 1 -1.164 1 .002 15 -5.742e-3 3 376.001 1 3935.3 73 18 max 0 15 .477 3 .021 1 8.992e-3 1 NC 5 NC 74 min 0 1 894 1 0 10 -4.955e-3 3 708.588 1 NC 75 19 max 0 15 .27 3 .006 3 7.702e-3 1 NC 1 NC 76 min 0 1 599 1 003 2 -4.169e-3 3 NC	
71 17 max 0 15 .657 3 .056 1 1.028e-2 1 NC 15 NC 72 min 0 1 -1.164 1 .002 15 -5.742e-3 3 376.001 1 3935.3 73 18 max 0 15 .477 3 .021 1 8.992e-3 1 NC 5 NC 74 min 0 1 894 1 0 10 -4.955e-3 3 708.588 1 NC 75 19 max 0 15 .27 3 .006 3 7.702e-3 1 NC 1 NC 76 min 0 1 59 1 003 2 -4.169e-3 3 NC 1 NC 77 M15 1 max 0 15 .277 3 .005 3 3.479e-3 3 NC 1 NC 78 min 0 1 589 1 </td <td></td>	
72 min 0 1 -1.164 1 .002 15 -5.742e-3 3 376.001 1 3935.3 73 18 max 0 15 .477 3 .021 1 8.992e-3 1 NC 5 NC 74 min 0 1 894 1 0 10 -4.955e-3 3 708.588 1 NC 75 19 max 0 15 .27 3 .006 3 7.702e-3 1 NC 1 NC 76 min 0 1 59 1 003 2 -4.169e-3 3 NC 1 NC 77 M15 1 max 0 15 .277 3 .005 3 3.479e-3 3 NC 1 NC 78 min 0 1 589 1 003 2 -7.841e-3 1 NC	
73 18 max 0 15 .477 3 .021 1 8.992e-3 1 NC 5 NC 74 min 0 1 894 1 0 10 -4.955e-3 3 708.588 1 NC 75 19 max 0 15 .27 3 .006 3 7.702e-3 1 NC 1 NC 76 min 0 1 59 1 003 2 -4.169e-3 3 NC 1 NC 77 M15 1 max 0 15 .277 3 .005 3 3.479e-3 3 NC 1 NC 78 min 0 1 589 1 003 2 -7.841e-3 1 NC 1 NC	
74 min 0 1 894 1 0 10 -4.955e-3 3 708.588 1 NC 75 19 max 0 15 .27 3 .006 3 7.702e-3 1 NC 1 NC 76 min 0 1 59 1 003 2 -4.169e-3 3 NC 1 NC 77 M15 1 max 0 15 .277 3 .005 3 3.479e-3 3 NC 1 NC 78 min 0 1 589 1 003 2 -7.841e-3 1 NC 1 NC	
75	
76 min 0 1 59 1 003 2 -4.169e-3 3 NC 1 NC 77 M15 1 max 0 15 .277 3 .005 3 3.479e-3 3 NC 1 NC 78 min 0 1 589 1 003 2 -7.841e-3 1 NC 1 NC	
77 M15 1 max 0 15 .277 3 .005 3 3.479e-3 3 NC 1 NC 78 min 0 1589 1003 2 -7.841e-3 1 NC 1 NC	
78 min 0 1589 1003 2 -7.841e-3 1 NC 1 NC	
170 0 0 45 404 0 004 4 4 404 0 0 NO 5 NO	
79 2 max 0 15 .421 3 .021 1 4.131e-3 3 NC 5 NC	
80 min 0 1917 1 0 10 -9.163e-3 1 658.602 1 NC	
81 3 max 0 15 .549 3 .057 1 4.783e-3 3 NC 15 NC	
82 min 0 1 -1.205 1 .002 15 -1.049e-2 1 350.476 1 3913.7	
83 4 max 0 15 .652 3 .09 1 5.435e-3 3 NC 15 NC	
84 min 0 1 -1.426 1 .003 15 -1.181e-2 1 257.982 1 2441.9	
85 5 max 0 15 .722 3 .108 1 6.087e-3 3 8973.006 15 NC	
86 min 0 1 -1.565 1 .004 15 -1.313e-2 1 221.293 1 2016.3	
87 6 max 0 15 .758 3 .107 1 6.739e-3 3 8446.558 15 NC	
88 min 0 1 -1.62 1 .004 15 -1.445e-2 1 209.516 1 2051.7	
89 7 max 0 15 .765 3 .085 1 7.391e-3 3 8530.692 15 NC	
90 min 0 1 -1.602 1 .003 10 -1.577e-2 1 213.222 1 2593.5	
91 8 max 0 15 .751 3 .049 1 8.043e-3 3 9045.654 15 NC	
92 min 0 1 -1.535 1001 10 -1.71e-2 1 228.217 1 4518.	77 1
93 9 max 0 15 .728 3 .017 3 8.695e-3 3 9765.912 15 NC	1
94 min 0 1 -1.457 1005 10 -1.842e-2 1 248.742 1 NC	
95 10 max 0 1 .716 3 .016 3 9.347e-3 3 NC 15 NC	
96 min 0 1 -1.418 1011 2 -1.974e-2 1 260.615 1 NC	
97	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r			LC		LC
98			min	0	15	-1.457	1	005	10 -1.842e-2	1_	248.742	1	NC	1
99		12	max	0	1	.751	3	.049	1 8.043e-3	3	9045.654	15	NC	2
100			min	0	15	-1.535	1	001	10 -1.71e-2	<u>1</u>	228.217	<u>1</u>	4518.77	1
101		13	max	0	1	.765	3	.085	1 7.391e-3	3_	8530.692	15	NC	3
102			min	0	15	-1.602	1	.003	10 -1.577e-2	1_	213.222	1_	2593.519	1
103		14	max	0	1	.758	3	.107	1 6.739e-3	3	8446.558	15	NC	3
104			min	0	15	-1.62	1	.004	15 -1.445e-2	1_	209.516	1_	2051.704	1
105		15	max	0	1	.722	3	.108	1 6.087e-3	3	8973.006	<u>15</u>	NC	3
106			min	0	15	-1.565	1	.004	15 -1.313e-2	1	221.293	1	2016.343	1
107		16	max	0	1	.652	3	.09	1 5.435e-3	3	NC	15	NC	3
108			min	0	15	-1.426	1	.003	15 -1.181e-2	1	257.982	1_	2441.923	1
109		17	max	0	1	.549	3	.057	1 4.783e-3	3	NC	15	NC	2
110			min	0	15	-1.205	1	.002	15 -1.049e-2	1	350.476	1	3913.774	1
111		18	max	0	1	.421	3	.021	1 4.131e-3	3	NC	5	NC	1
112			min	0	15	917	1	0	10 -9.163e-3	1	658.602	1	NC	1
113		19	max	0	1	.277	3	.005	3 3.479e-3	3	NC	1	NC	1
114			min	0	15	589	1	003	2 -7.841e-3	1	NC	1	NC	1
115	M16	1	max	0	15	.186	1	.005	3 6.405e-3	3	NC	1	NC	1
116			min	0	1	096	3	002	2 -1.206e-2	1	NC	1	NC	1
117		2	max	0	15	.023	1	.031	1 7.232e-3	3	NC	5	NC	2
118		_	min	0	1	044	3	0	10 -1.314e-2	1	1325.549	1	7208.657	1
119		3	max	0	15	0	15	.072	1 8.058e-3	3	NC	5	NC	3
120		<u> </u>	min	0	1	127	2	.003	15 -1.423e-2	1	743.906	1	3033.809	1
121		4	max	0	15	.011	3	.107	1 8.885e-3	3	NC	5	NC	3
122			min	0	1	195	2	.004	15 -1.531e-2	1	602.393	1	2034.52	1
123		5	max	0	15	.004	12	.125	1 9.712e-3	3	NC	5	NC	3
124			min	0	1	197	2	.005	15 -1.64e-2	1	605.216	1	1747.157	1
125		6	max	0	15	0	13	.12	1 1.054e-2	3	NC	5	NC	3
126		-	min	0	1	136	2	.004	15 -1.749e-2	1	747.727	2	1820.82	1
127		7		0	15	.03	9	.004	1 1.137e-2	3	NC	3	NC	3
128			max	0	1	081	3	.004	15 -1.857e-2	1	1213.79	2	2335.225	1
129		0	min		15						NC	1	NC	2
		8	max	0		.165	1	.054		3				-
130			min	0	1	14	3	0	10 -1.966e-2	1_	4924.064	3_	4086.44	1
131		9	max	0	15	.294	1	.015	1 1.302e-2	3_	NC 4000 007	_5_	NC NC	1
132		40	min	0	1	191	3	005	10 -2.074e-2	1_	1993.327	<u>1</u>	NC NC	1
133		10	max	0	1	.351	1	.014	3 1.385e-2	3	NC 1000.00	5_	NC	1
134		4.4	min	0	1	213	3	01	2 -2.183e-2	1_	1303.03	1_	NC NC	1
135		11	max	0	1	.294	1	.015	1 1.302e-2	3	NC	5	NC	1
136			min	0	15	191	3	005	10 -2.074e-2	1_	1993.327	_1_	NC	1
137		12	max	0	1	.165	1	.054	1 1.219e-2	3	NC	1_	NC	2
138			min	0	15	14	3	0	10 -1.966e-2				4086.44	1
139		13	max	0	1	.03	9	.094	1 1.137e-2	3_	NC	3	NC	3
140			min	0	15	081	3	.004	15 -1.857e-2	_1_	1213.79	2	2335.225	
141		14	max	0	1	0	13	.12	1 1.054e-2	3	NC	5_	NC	3
142			min	0	15	136	2	.004	15 -1.749e-2	1	747.727	2	1820.82	1
143		15	max	0	1	.004	12	.125	1 9.712e-3	3	NC	5	NC	3
144			min	0	15	197	2	.005	15 -1.64e-2	1	605.216	1	1747.157	1
145		16	max	0	1	.011	3	.107	1 8.885e-3	3	NC	5	NC	3
146			min	0	15	195	2	.004	15 -1.531e-2	1	602.393	1	2034.52	1
147		17	max	0	1	0	15	.072	1 8.058e-3	3	NC	5	NC	3
148			min	0	15	127	2	.003	15 -1.423e-2	1	743.906	1	3033.809	
149		18	max	0	1	.023	1	.031	1 7.232e-3	3	NC	5	NC	2
150			min	0	15	044	3	0	10 -1.314e-2	1	1325.549	1	7208.657	1
151		19	max	0	1	.186	1	.005	3 6.405e-3	3	NC	1	NC	1
152		· Ŭ	min	0	15	096	3	002	2 -1.206e-2	1	NC	1	NC	1
153	M2	1	max	.006	1	.005	2	.01	1 -8.051e-6		NC	1	NC	2
154			min	006	3	009	3	0	15 -2.247e-4	1	NC	1	6068.16	1
104			10001	.000	J	.003	J	U	10 2.24764		NO		0000.10	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
155		2	max	.006	1	.004	2	.009	1	-7.542e-6	15	NC	1_	NC	2
156			min	005	3	009	3	0	15	-2.104e-4	1_	NC	1_	6616.374	1
157		3	max	.006	1	.003	2	.008	1	-7.032e-6		NC	_1_	NC	2
158			min	00 <u>5</u>	3	008	3	0		-1.962e-4	1_	NC	1_	7269.237	1
159		4	max	.005	1	.003	2	.008	1	-6.523e-6	<u>15</u>	NC	1_	NC	2
160		_	min	005	3	008	3	0	15	-1.819e-4	1_	NC NC	1_	8054.364	1
161		5	max	.005	1	.002	2	.007	1	-6.013e-6	<u>15</u>	NC	1	NC	2
162			min	004	3	008	3	0	15	-1.677e-4	1_	NC NC	1_	9009.396	
163		6	max	.005	1	.001	2	.006	1	-5.504e-6	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
164 165		7	min	004 .004	3	008 0	2	<u> </u>	1 <u>5</u>	-1.535e-4 -4.995e-6	<u>1</u> 15	NC NC	1	NC NC	1
166			max min	004	3	007	3	<u>.005</u>	15	-4.995e-6 -1.392e-4	1	NC NC	1	NC NC	1
167		8	max	.004	1	<u>007</u> 0	2	.004	1	-4.485e-6	15	NC	1	NC	1
168		0	min	003	3	007	3	0	15	-1.25e-4	1	NC	1	NC	1
169		9	max	.003	1	<u>007</u> 0	2	.004	1	-3.976e-6	15	NC	1	NC	1
170		-	min	003	3	007	3	0	15	-1.108e-4	1	NC	1	NC	1
171		10	max	.003	1	001	15	.003	1	-3.466e-6	15	NC	1	NC	1
172			min	003	3	006	3	0	15	-9.655e-5	1	NC	1	NC	1
173		11	max	.003	1	001	15	.003	1	-2.957e-6	15	NC	1	NC	1
174			min	002	3	006	3	0	15	-8.231e-5	1	NC	1	NC	1
175		12	max	.002	1	001	15	.002	1	-2.448e-6	15	NC	1	NC	1
176			min	002	3	005	3	0	15	-6.808e-5	1	NC	1	NC	1
177		13	max	.002	1	001	15	.001	1	-1.938e-6	15	NC	1	NC	1
178			min	002	3	005	3	0	15		1	NC	1	NC	1
179		14	max	.002	1	0	15	.001	1	-1.429e-6	15	NC	1_	NC	1_
180			min	002	3	004	3	0	15	-3.961e-5	1_	NC	1_	NC	1
181		15	max	.001	1	00	15	00	1	-9.194e-7	15	NC	_1_	NC	1
182			min	001	3	004	4	0	15	-2.538e-5	<u>1</u>	NC	<u>1</u>	NC	1
183		16	max	.001	1	0	15	0	1	-4.1e-7	<u>15</u>	NC	1_	NC	1
184		47	min	0	3	003	4	0	15	-1.114e-5	1_	NC NC	1_	NC NC	1
185		17	max	0	1	0	15	0	1	3.092e-6	1_	NC NC	1_	NC NC	1
186		40	min	0	3	002	4	0	15	-3.195e-7	3	NC NC	1_	NC NC	1
187		18	max	0	3	0 001	15	<u> </u>	1	1.733e-5 5.459e-7	1	NC NC	1	NC NC	1
188 189		19	min	<u> </u>	1	<u>001</u> 0	1	0	15	3.459e-7 3.156e-5	<u>12</u> 1	NC NC	1	NC NC	1
190		19	max min	0	1	0	1	0	1	1.118e-6	15	NC NC	1	NC NC	1
191	M3	1	max	0	1	0	1	0	1	-3.417e-7	15	NC	1	NC	1
192	IVIO		min	0	1	0	1	0	1	-9.62e-6	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	1.903e-5	1	NC	1	NC	1
194			min	0	2	002	4	0	15	6.82e-7	15	NC	1	NC	1
195		3	max	0	3	001	15	0		4.768e-5		NC	1	NC	1
196			min	0	2	005	4	0	15		15	NC	1	NC	1
197		4	max	0	3	002	15	0	1	7.633e-5	1	NC	1	NC	1
198			min	0	2	008	4	0	15	2.729e-6	15	NC	1	NC	1
199		5	max	.001	3	003	15	0	1	1.05e-4	1_	NC	1	NC	1
200			min	0	2	011	4	0	15	3.753e-6	15	9252.221	4	NC	1
201		6	max	.001	3	003	15	.001	1	1.336e-4	_1_	NC	_1_	NC	1
202			min	001	2	014	4	0	15	4.777e-6	-	7427.588	4	NC	1
203		7	max	.002	3	004	15	.001	1	1.623e-4	1_	NC	5_	NC	1
204			min	001	2	016	4	0	15	5.8e-6		6332.673	4_	NC NC	1
205		8	max	.002	3	004	15	.002	1	1.909e-4	1_	NC FCFC 70	5	NC NC	1
206		0	min	001	2	018	4	0	15		<u>15</u>		4_	NC NC	1
207		9	max min	.002 002	3	005 02	15 4	.002 0	15	2.196e-4	<u>1</u>	NC 5253.997	<u>5</u> 4	NC NC	1
208		10	max	.002	3	02 005	15	.002	1	7.848e-6 2.482e-4	<u>15</u> 1	NC	<u>4</u> 5	NC NC	1
210		10	min	002	2	005 021	4	<u>.002</u>	15	8.872e-6		5053.202	4	NC NC	1
211		11	max	.002	3	005	15	.003	1	2.769e-4	1	NC	5	NC	1
			IIIUA	.000		.000	10	.000				. 10		110	

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
212			min	002	2	021	4	0	15	9.895e-6	15	5024.463	4	NC	1
213		12	max	.003	3	005	15	.003	1	3.055e-4	1_	NC	5	NC	1
214			min	002	2	02	4	0	15	1.092e-5	15	5167.51	4	NC	1
215		13	max	.003	3	004	15	.004	1	3.342e-4	_1_	NC	5	NC	1_
216			min	002	2	019	4	0	15	1.194e-5	15	5513.056	4	NC	1
217		14	max	.004	3	004	15	.005	1	3.628e-4	1	NC	5	NC	1
218			min	003	2	017	4	0	15	1.297e-5	15	6139.043	4	NC	1
219		15	max	.004	3	003	15	.005	1	3.915e-4	1	NC	3	NC	1
220			min	003	2	015	4	0	15	1.399e-5	15	7219.459	4	NC	1
221		16	max	.004	3	003	15	.006	1	4.201e-4	1	NC	1_	NC	1
222			min	003	2	012	4	0	15	1.501e-5	15	9176.637	4	NC	1
223		17	max	.004	3	002	15	.007	1	4.488e-4	1	NC	1	NC	1
224			min	003	2	008	4	0	15	1.604e-5	15	NC	1_	NC	1
225		18	max	.005	3	001	15	.008	1	4.774e-4	1	NC	1	NC	1
226			min	004	2	006	1	0	15	1.706e-5	15	NC	1	NC	1
227		19	max	.005	3	0	15	.009	1	5.061e-4	1	NC	1	NC	1
228			min	004	2	003	1	0	15	1.808e-5	15	NC	1	NC	1
229	M4	1	max	.003	1	.003	2	0	15	7.751e-5	1	NC	1	NC	3
230			min	0	3	005	3	009	1	2.792e-6	15	NC	1	2661.239	1
231		2	max	.003	1	.003	2	0	15	7.751e-5	1	NC	1	NC	3
232			min	0	3	005	3	009	1	2.792e-6	15	NC	1	2894.481	1
233		3	max	.002	1	.003	2	0	15	7.751e-5	1	NC	1	NC	3
234			min	0	3	004	3	008	1	2.792e-6	15	NC	1	3172.04	1
235		4	max	.002	1	.003	2	0	15	7.751e-5	1	NC	1	NC	3
236			min	0	3	004	3	007	1	2.792e-6	15	NC	1	3505.438	
237		5	max	.002	1	.003	2	0	15	7.751e-5	1	NC	1	NC	2
238			min	0	3	004	3	006	1	2.792e-6	15	NC	1	3910.326	1
239		6	max	.002	1	.002	2	0	15	7.751e-5	1	NC	1	NC	2
240			min	0	3	004	3	006	1	2.792e-6	15	NC	1	4408.414	1
241		7	max	.002	1	.002	2	0	15	7.751e-5	1	NC	1	NC	2
242			min	0	3	003	3	005	1	2.792e-6	15	NC	1	5030.516	1
243		8	max	.002	1	.002	2	0	15	7.751e-5	1	NC	1	NC	2
244			min	0	3	003	3	004	1	2.792e-6	15	NC	1	5821.575	1
245		9	max	.002	1	.002	2	0	15	7.751e-5	1	NC	1	NC	2
246			min	0	3	003	3	004	1	2.792e-6	15	NC	1	6849.25	1
247		10	max	.001	1	.002	2	0	15	7.751e-5	1	NC	1	NC	2
248			min	0	3	003	3	003	1	2.792e-6	15	NC	1	8219.312	1
249		11	max	.001	1	.001	2	0	15	7.751e-5	1	NC	1	NC	1
250			min	0	3	002	3	002	1	2.792e-6	15	NC	1	NC	1
251		12	max	.001	1	.001	2	0	15	7.751e-5	1	NC	1	NC	1
252			min	0	3	002	3	002	1		15	NC	1	NC	1
253		13	max	0	1	.001	2	0		7.751e-5	1	NC	1	NC	1
254			min	0	3	002	3	001	1	2.792e-6	15	NC	1	NC	1
255		14	max	0	1	0	2	0	15	7.751e-5	1	NC	1	NC	1
256			min	0	3	001	3	001	1	2.792e-6	15	NC	1	NC	1
257		15	max	0	1	0	2	0	15	7.751e-5	1	NC	1	NC	1
258		1	min	0	3	001	3	0	1	2.792e-6	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15	7.751e-5	1	NC	1	NC	1
260		T.	min	0	3	0	3	0	1	2.792e-6	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	7.751e-5	1	NC	1	NC	1
262			min	0	3	0	3	0	1	2.792e-6	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	7.751e-5	1	NC	1	NC	1
264		1.0	min	0	3	0	3	0	1	2.792e-6	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	7.751e-5	1	NC	1	NC	1
266			min	0	1	0	1	0	1	2.792e-6	15	NC	1	NC	1
267	M6	1	max	.02	1	.02	2	0	1	0	1	NC	3	NC	1
268	IVIO		min	018	3	027	3	0	1	0	1	3040.197	2	NC	1
200			1111111	.010	J	.021	J	U		U		0070.131		110	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
269		2	max	.019	1	.018	2	0	1	0	1	NC	3	NC	1
270			min	017	3	026	3	0	1	0	1	3347.602	2	NC	1
271		3	max	.018	1	.016	2	0	1	0	1	NC	3	NC	1
272			min	016	3	024	3	0	1	0	1	3721.061	2	NC	1
273		4	max	.017	1	.014	2	0	1	0	1	NC	3	NC	1
274			min	015	3	023	3	0	1	0	1	4180.472	2	NC	1
275		5	max	.016	1	.013	2	0	1	0	1	NC	3	NC	1
276			min	014	3	021	3	0	1	0	1		2	NC	1
277		6	max	.014	1	.011	2	0	1	0	1	NC	3	NC	1
278			min	013	3	02	3	0	1	0	1	5483.201	2	NC	1
279		7	max	.013	1	.009	2	0	1	0	1	NC	1	NC	1
280			min	012	3	019	3	0	1	0	1	6430.043	2	NC	1
281		8	max	.012	1	.008	2	0	1	0	1	NC	1	NC	1
282			min	011	3	017	3	0	1	0	1	7692.298	2	NC	1
283		9	max	.011	1	.006	2	0	1	0	1	NC	1	NC	1
284			min	01	3	016	3	0	1	0	1	9430.74	2	NC	1
285		10	max	.01	1	.005	2	0	1	0	1	NC	1	NC	1
286		10	min	009	3	014	3	0	1	0	1	NC	1	NC	1
287		11	max	.009	1	.004	2	0	1	0	1	NC	1	NC	1
288			min	008	3	013	3	0	1	0	1	NC	1	NC	1
289		12	max	.008	1	.003	2	0	1	0	1	NC	1	NC	1
290		_	min	007	3	011	3	0	1	0	1	NC	1	NC	1
291		13	max	.007	1	.002	2	0	1	0	1	NC	1	NC	1
292		10	min	006	3	01	3	0	1	0	1	NC	1	NC	1
293		14	max	.006	1	.001	2	0	1	0	1	NC	1	NC	1
294		17	min	005	3	008	3	0	1	0	1	NC	1	NC	1
295		15	max	.004	1	0	2	0	1	0		NC	;	NC	1
296		10	min	004	3	007	3	0	1	0	1	NC	1	NC	1
297		16	max	.003	1	0	2	0	1	0	1	NC	1	NC	1
298		10	min	003	3	005	3	0	1	0	1	NC	1	NC	1
299		17	max	.002	1	<u>003</u> 0	2	0	1	0	1	NC	1	NC	1
300		17	min	002	3	003	3	0	1	0	1	NC	1	NC	1
301		18	max	.002	1	<u>003</u>	2	0	1	0	1	NC	1	NC	1
302		10	min	0	3	002	3	0	1	0	1	NC	1	NC NC	1
303		19	max	0	1	<u>002</u> 0	1	0	1	0	1	NC	1	NC	1
304		13	min	0	1	0	1	0	1	0	1	NC	1	NC NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	IVII		min	0	1	0	1	0	1	0	1	NC	1	NC NC	1
307		2	max	0	3	0	15	0	1	0	1	NC	1	NC	1
308			min	0	2	003	3	0	1	0	1	NC	1	NC NC	1
309		3		000	3	003 001	15	0	1	0	1	NC NC	1	NC NC	1
310			max	002	2	006	3	0	1	0	1	NC	1	NC	1
311		4	max	.002	3	002	15	0	1	0	1	NC	1	NC	1
312		_	min	002	2	002	3	0	1	0	1	NC	1	NC NC	1
313		5	max	.002	3	003	15	0	1	0	1	NC	1	NC NC	1
314		J	min	003	2	003 011	3	0	1	0	1	9537.57	4	NC NC	1
315		6	max	.004	3	003	15	0	1	0	1	NC	1	NC NC	1
316		J	min	004	2	003 014	4	0	1	0	1	7633.753	4	NC NC	1
317		7	max	.005	3	014 004	15	0	1	0	1	NC	1	NC NC	1
318			min	005	2	004 016	4	0	1	0	1	6492.938	4	NC NC	1
319		8		.005	3	016 004	15	0	1	0	1	NC	2	NC NC	1
320		0	max	006	2	004 018	4	0	1	0	1	5788.726	4	NC NC	1
321		0	min	.006	3	018 005	15		1		1	NC	5	NC NC	1
		9	max					0	1	0	1				
322		10	min	006	2	02	4	0		0		5367.997	4	NC NC	1
323		10	max	.008	3	005	15	0	1	0	1	NC 5156 024	5_4	NC NC	1
324		4.4	min	007	2	021	4	0		0	1	5156.024	4	NC NC	1
325		11	max	.008	3	005	15	0	1	0	1_	NC	5	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			, LC
326			min	008	2	021	4	0	1	0	1	5121.038	4	NC	1
327		12	max	.009	3	005	15	0	1	0	1	NC	5	NC	1
328			min	009	2	02	4	0	1	0	1	5261.962	4	NC	1
329		13	max	.01	3	004	15	0	1	0	1	NC	5	NC	1
330			min	01	2	019	4	0	1	0	1	5609.486	4	NC	1
331		14	max	.011	3	004	15	0	1	0	1	NC	2	NC	1
332			min	01	2	017	4	0	1	0	1	6242.426	4	NC	1
333		15	max	.012	3	003	15	0	1	0	1	NC	1	NC	1
334		13	min	011	2	015	4	0	1	0	1	7337.22	4	NC	1
		16							1	_	1	NC	1	NC NC	1
335		16	max	.013	3	003	15	0		0					_
336			min	012	2	012	4	0	1	0	1	9322.52	4	NC	1
337		17	max	.014	3	002	15	0	1	0	1	NC	1_	NC	1
338			min	013	2	01	1	0	1	0	1_	NC	1_	NC	1
339		18	max	.014	3	001	15	0	1	0	_1_	NC	1_	NC	1
340			min	014	2	008	1	0	1	0	1	NC	1	NC	1
341		19	max	.015	3	0	15	0	1	0	1	NC	1	NC	1
342			min	014	2	006	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.013	2	0	1	0	1	NC	1	NC	1
344			min	001	3	015	3	0	1	0	1	NC	1	NC	1
345		2	max	.007	1	.012	2	0	1	0	1	NC	1	NC	1
346			min	001	3	014	3	0	1	0	1	NC	1	NC	1
		3							1			NC	•		-
347		3	max	.007	1	.012	2	0		0	1		1_	NC NC	1
348		_	min	<u>001</u>	3	014	3	0	1	0	1	NC	1_	NC NC	1
349		4	max	.006	1	.011	2	0	1	0	1	NC	1_	NC	1
350			min	001	3	013	3	0	1	0	1_	NC	1_	NC	1
351		5	max	.006	1	.01	2	0	1	0	<u>1</u>	NC	<u>1</u>	NC	1
352			min	001	3	012	3	0	1	0	1	NC	1_	NC	1
353		6	max	.006	1	.01	2	0	1	0	1	NC	1	NC	1
354			min	001	3	011	3	0	1	0	1	NC	1	NC	1
355		7	max	.005	1	.009	2	0	1	0	1	NC	1	NC	1
356			min	0	3	01	3	0	1	0	1	NC	1	NC	1
357		8	max	.005	1	.008	2	0	1	0	1	NC	1	NC	1
358			min	0	3	009	3	0	1	0	1	NC	1	NC	1
359		9		.004	1	.007	2	0	1	0	1	NC	1	NC	1
		9	max		3		3	0	1	0	1	NC NC	1	NC NC	1
360		40	min	0		009			_	_			1		•
361		10	max	.004	1	.007	2	0	1	0	1	NC	_	NC NC	1
362			min	0	3	008	3	0	1	0	_1_	NC	1_	NC	1
363		11	max	.003	1	.006	2	0	1	0	_1_	NC	1_	NC	1
364			min	0	3	007	3	0	1	0	1	NC	1	NC	1
365		12	max	.003	1	.005	2	0	1	0	<u>1</u>	NC	<u>1</u>	NC	1
366			min	0	3	006	3	0	1	0	1	NC	1	NC	1
367		13	max	.003	1	.004	2	0	1	0	1	NC	1	NC	1
368			min	0	3	005	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
370			min	0	3	004	3	0	1	0	1	NC	1	NC	1
371		15	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
372		10	min	0	3	003	3	0	1	0	1	NC	1	NC	1
		16													
373		16	max	.001	1	.002	2	0	1	0	1	NC NC	1_	NC NC	1
374			min	0	3	003	3	0	1	0	1	NC	1_	NC	1
375		17	max	0	1	.001	2	0	1	0	1	NC	1_	NC	1
376			min	0	3	002	3	0	1	0	1_	NC	1_	NC	1
377		18	max	00	1	00	2	00	1	0	_1_	NC	_1_	NC	1
378			min	0	3	0	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.006	1	.005	2	0	15	2.247e-4	1	NC	1	NC	2
382			min	006	3	009	3	01	1	8.051e-6	15	NC	1	6068.16	1
002			11/11/1	.000		.000		.01		0.00100	.0		_	3000.10	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.006	1	.004	2	00	15	2.104e-4	_1_	NC	_1_	NC	2
384			min	005	3	009	3	009	1	7.542e-6	15	NC	1_	6616.374	1
385		3	max	.006	1	.003	2	0	15	1.962e-4	_1_	NC	_1_	NC	2
386			min	005	3	008	3	008	1	7.032e-6	15	NC	1	7269.237	1
387		4	max	.005	1	.003	2	0	15	1.819e-4	_1_	NC	_1_	NC	2
388			min	005	3	008	3	008	1	6.523e-6	15	NC	1_	8054.364	1
389		5	max	.005	1	.002	2	0	15	1.677e-4	_1_	NC	_1_	NC	2
390			min	004	3	008	3	007	1	6.013e-6	15	NC	1_	9009.396	
391		6	max	.005	1	.001	2	0	15	1.535e-4	1_	NC	1_	NC	1
392			min	004	3	008	3	006	1	5.504e-6	15	NC	1_	NC	1
393		7	max	.004	1	00	2	0	15	1.392e-4	_1_	NC	_1_	NC	1
394			min	004	3	007	3	005	1	4.995e-6	15	NC	1	NC	1
395		8	max	.004	1	0	2	0	15	1.25e-4	_1_	NC	_1_	NC	1
396			min	003	3	007	3	004	1	4.485e-6	15	NC	1	NC	1
397		9	max	.004	1	0	2	0	15	1.108e-4	1_	NC	_1_	NC	1
398			min	003	3	007	3	004	1	3.976e-6	15	NC	1_	NC	1
399		10	max	.003	1	001	15	0	15	9.655e-5	_1_	NC	_1_	NC	1
400			min	003	3	006	3	003	1	3.466e-6	15	NC	1_	NC	1
401		11	max	.003	1	001	15	0	15	8.231e-5	1_	NC	1_	NC	1
402			min	002	3	006	3	003	1	2.957e-6	15	NC	1_	NC	1
403		12	max	.002	1	001	15	0	15	6.808e-5	_1_	NC	_1_	NC	1
404			min	002	3	005	3	002	1	2.448e-6	15	NC	1_	NC	1
405		13	max	.002	1	001	15	0	15	5.384e-5	_1_	NC	_1_	NC	1
406			min	002	3	005	3	001	1	1.938e-6	15	NC	1_	NC	1
407		14	max	.002	1	0	15	0	15	3.961e-5	1_	NC	_1_	NC	1
408			min	002	3	004	3	001	1	1.429e-6	15	NC	1_	NC	1
409		15	max	.001	1	0	15	0	15	2.538e-5	<u>1</u>	NC	_1_	NC	1
410			min	001	3	004	4	0	1	9.194e-7	15	NC	1_	NC	1
411		16	max	.001	1	0	15	0	15	1.114e-5	1_	NC	1_	NC	1
412			min	0	3	003	4	0	1	4.1e-7	15	NC	1	NC	1
413		17	max	0	1	0	15	0	15	3.195e-7	3	NC	_1_	NC	1
414			min	0	3	002	4	0	1	-3.092e-6	1_	NC	1_	NC	1
415		18	max	0	1	0	15	0	15	-5.459e-7	12	NC	_1_	NC	1
416			min	0	3	001	4	0	1	-1.733e-5	1_	NC	1_	NC	1
417		19	max	0	1	0	1	0	1	-1.118e-6	<u>15</u>	NC	_1_	NC	1
418			min	0	1	0	1	0	1	-3.156e-5	1_	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	9.62e-6	<u>1</u>	NC	_1_	NC	1
420			min	0	1	0	1	0	1	3.417e-7	15	NC	1_	NC	1
421		2	max	0	3	0	15	00	15	-6.82e-7	15	NC	_1_	NC	1
422			min	0	2	002	4	0	1	-1.903e-5	1	NC	1	NC	1
423		3	max	0	3	001	15	0	15	-1.706e-6	15	NC	_1_	NC	1
424			min	0	2	005	4	0	1	-4.768e-5	1	NC	1_	NC	1
425		4	max	0	3	002	15	0	15		15	NC	_1_	NC	1
426			min	0	2	008	4	0	1	-7.633e-5	1	NC	1	NC	1
427		5	max	.001	3	003	15	0	15	-3.753e-6	15	NC	1_	NC	1
428			min	0	2	011	4	0	1	-1.05e-4	1	9252.221	4	NC	1
429		6	max	.001	3	003	15	0	15	-4.777e-6	<u>15</u>	NC	_1_	NC	1
430			min	001	2	014	4	001	1	-1.336e-4	1_	7427.588	4	NC	1
431		7	max	.002	3	004	15	0	15	-5.8e-6	15	NC	5	NC	1
432			min	001	2	016	4	001	1	-1.623e-4	1	6332.673	4	NC	1
433		8	max	.002	3	004	15	0	15		15	NC	5	NC	1
434			min	001	2	018	4	002	1	-1.909e-4	1	5656.78	4	NC	1
435		9	max	.002	3	005	15	0	15		15	NC	5	NC	1
436			min	002	2	02	4	002	1	-2.196e-4	1	5253.997	4	NC	1
437		10	max	.002	3	005	15	0	15		15	NC	5	NC	1
438			min	002	2	021	4	002	1	-2.482e-4	1	5053.202	4	NC	1
439		11	max	.003	3	005	15	0	15	-9.895e-6	15	NC	5	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
440			min	002	2	021	4	003	1	-2.769e-4	1	5024.463	4	NC	1
441		12	max	.003	3	005	15	0	15		15	NC	5	NC	1
442			min	002	2	02	4	003	1	-3.055e-4	1_	5167.51	4	NC	1
443		13	max	.003	3	004	15	0	15		15	NC	_5_	NC	1
444			min	002	2	<u>019</u>	4	004	1	-3.342e-4	1_	5513.056	<u>4</u>	NC	1
445		14	max	.004	3	004	15	0	15		<u>15</u>	NC 0400 040	5_	NC	1
446		45	min	003	2	017	4	005	1	-3.628e-4	1_	6139.043	4	NC NC	1
447		15	max	.004	3	003	15	0	15		<u>15</u>	NC 7040 450	3	NC	1
448		4.0	min	003	2	015	4	005	1	-3.915e-4	1_	7219.459	4	NC NC	1
449		16	max	.004 003	3	003 012	15	0 006	15	-1.501e-5	<u>15</u> 1	NC 9176.637	1_4	NC NC	1
450 451		17	min		3	012	15	<u>006</u> 0	15	-4.201e-4 -1.604e-5	_	NC	<u>4</u> 1	NC NC	1
451		17	max	.004 003	2	002 008	4	007	1	-1.604e-5	<u>15</u>	NC NC	1	NC NC	1
452		18		.005	3	006 001	15	<u>007</u> 0	15		1_	NC NC	1	NC NC	1
454		10	max min	005	2	006	1	008	1	-1.706e-3	<u>15</u> 1	NC NC	1	NC NC	1
455		19	max	.005	3	<u>000</u> 0	15	<u>008</u> 0	15		15	NC	1	NC	1
456		13	min	004	2	003	1	009	1	-5.061e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.003	2	.009	1	-2.792e-6	15	NC	1	NC	3
458	IVIIZ	'	min	0	3	005	3	0	15		1	NC	1	2661.239	1
459		2	max	.003	1	.003	2	.009	1	-2.792e-6	15	NC	1	NC	3
460			min	0	3	005	3	0	15	-7.751e-5	1	NC	1	2894.481	1
461		3	max	.002	1	.003	2	.008	1	-2.792e-6	15	NC	1	NC	3
462			min	0	3	004	3	0	15	-7.751e-5	1	NC	1	3172.04	1
463		4	max	.002	1	.003	2	.007	1	-2.792e-6	15	NC	1	NC	3
464			min	0	3	004	3	0	15	-7.751e-5	1	NC	1	3505.438	1
465		5	max	.002	1	.003	2	.006	1	-2.792e-6	15	NC	1	NC	2
466			min	0	3	004	3	0	15	-7.751e-5	1	NC	1	3910.326	1
467		6	max	.002	1	.002	2	.006	1	-2.792e-6	15	NC	1	NC	2
468			min	0	3	004	3	0	15	-7.751e-5	1	NC	1	4408.414	1
469		7	max	.002	1	.002	2	.005	1	-2.792e-6	<u>15</u>	NC	1_	NC	2
470			min	0	3	003	3	0	15	-7.751e-5	1_	NC	1	5030.516	
471		8	max	.002	1	.002	2	.004	1	-2.792e-6	15	NC	_1_	NC	2
472			min	0	3	003	3	0	15	-7.751e-5	1_	NC	1_	5821.575	1
473		9	max	.002	1	.002	2	.004	1	-2.792e-6	<u>15</u>	NC	_1_	NC	2
474			min	0	3	003	3	0	15	-7.751e-5	_1_	NC	_1_	6849.25	1
475		10	max	.001	1	.002	2	.003	1	-2.792e-6	<u>15</u>	NC	_1_	NC	2
476			min	0	3	003	3	0	15	-7.751e-5	_1_	NC	1_	8219.312	1
477		11	max	.001	1	.001	2	.002	1	-2.792e-6	<u>15</u>	NC	1_	NC	1
478		40	min	0	3	002	3	0	15		1_	NC	_1_	NC	1
479		12	max	.001	1	.001	2	.002	1	-2.792e-6	<u>15</u>	NC NC	1_	NC NC	1
480		40	min	0	3	002	3	0		-7.751e-5		NC NC	1	NC NC	1
481		13	max	0	3	.001	2	.001	1	-2.792e-6		NC NC	1	NC NC	1
482		1.1	min	0	1	002	2	0		-7.751e-5	1_	NC NC	<u>1</u> 1	NC NC	1
483		14	max	0 0	3	0	3	.001	1	-2.792e-6			1	NC NC	1
484 485		15	min	0	1	001 0	2	<u> </u>	1 <u>5</u>	-7.751e-5 -2.792e-6	1_	NC NC	1	NC NC	1
486		15	max min	0	3	001	3	0	15		1	NC	1	NC	1
487		16	max	0	1	0	2	0	1	-2.792e-6		NC	1	NC	1
488		10	min	0	3	0	3	0	_	-7.751e-5	1	NC	1	NC	1
489		17	max	0	1	0	2	0	1	-7.751e-5 -2.792e-6	•	NC	1	NC	1
490		11/	min	0	3	0	3	0	15		1	NC	1	NC	1
491		18	max	0	1	0	2	0	1	-2.792e-6		NC	1	NC	1
492		1.0	min	0	3	0	3	0	15		1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-2.792e-6		NC	1	NC	1
494		13	min	0	1	0	1	0	1	-7.751e-5	1	NC	1	NC	1
495	M1	1	max	.006	3	.192	1	0	1	1.2e-2	1	NC	1	NC	1
496			min	003	2	032	3	0		-1.574e-2	3	NC	1	NC	1
					_	.002				1101 10 2			_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio LC		
497		2	max	.006	3	.095	1	0	15	5.794e-3	_1_	NC 5	NC	1
498			min	003	2	016	3	007	1	-7.813e-3	3	1399.145 1	NC	1
499		3	max	.006	3	.009	3	0	15	7.478e-6	10	NC 5	NC	1
500			min	003	2	008	1	01	1	-2.202e-4	1	672.371 1	NC	1
501		4	max	.006	3	.049	3	0	15	4.629e-3	_1_	NC 15	NC	1
502			min	003	2	126	1	009	1	-3.35e-3	3	423.207 1	NC	1
503		5	max	.006	3	.101	3	0	15	9.478e-3	_1_	9566.769 15	NC	1
504			min	003	2	25	1	006	1	-6.617e-3	3	304.504 1	NC	1
505		6	max	.006	3	.157	3	0	15	1.433e-2	1_	7564.703 15	NC	1
506			min	003	2	37	1	003	1	-9.885e-3	3	239.225 1	NC	1
507		7	max	.006	3	.211	3	0	1	1.918e-2	1	6382.264 15	NC	1
508			min	003	2	478	1	0	3	-1.315e-2	3	200.763 1	NC	1
509		8	max	.006	3	.256	3	0	1	2.403e-2	1	5682.415 15	NC	1
510			min	003	2	564	1	0	15	-1.642e-2	3	178.046 1	NC	1
511		9	max	.006	3	.285	3	0	15	2.634e-2	1	5316.258 15	NC	1
512			min	003	2	618	1	0	1	-1.67e-2	3	166.213 1	NC	1
513		10	max	.006	3	.296	3	0	1	2.697e-2	1	5204.358 15	NC	1
514			min	003	2	635	1	0	15	-1.498e-2	3	162.659 1	NC	1
515		11	max	.005	3	.289	3	0	1	2.76e-2	1	5316.065 15	NC	1
516			min	003	2	617	1	0	15	-1.326e-2	3	166.413 1	NC	1
517		12	max	.005	3	.265	3	0	15	2.594e-2	1	5682.007 15	NC	1
518			min	003	2	562	1	001	1	-1.132e-2	3	178.657 1	NC	1
519		13	max	.005	3	.226	3	0	15	2.088e-2	1	6381.55 15	NC	1
520			min	002	2	475	1	0	1	-9.056e-3	3	202.246 1	NC	1
521		14	max	.005	3	.175	3	.002	1	1.581e-2	1	7563.497 15	NC	1
522		17	min	002	2	366	1	0	15	-6.793e-3	3	242.378 1	NC	1
523		15	max	.005	3	.119	3	.006	1	1.075e-2	1	9564.689 15	NC	1
524		10	min	002	2	244	1	0	15	-4.529e-3	3	310.937 1	NC	1
525		16	max	.005	3	.06	3	.009	1	5.687e-3	1	NC 15	NC	1
526		10	min	002	2	12	1	.003	15	-2.266e-3	3	436.592 1	NC	1
527		17	max	.005	3	.003	3	.009	1	6.241e-4	1	NC 5	NC	1
528		17	min	002	2	005	2	0	15	-2.43e-6	3	702.139 1	NC	1
529		18		.005	3	.095	1	.007	1	7.294e-3	<u> </u>	NC 5	NC	1
530		10	max	002	2	048	3		15	-2.218e-3	3	1474.173 1	NC NC	1
		40	min					0						•
531		19	max	.005	3	.186	1	0	15	1.417e-2	1		NC NC	1
532	N 4 C	4	min	002	2	096	3	0	1	-4.513e-3	3	110	NC NC	-
533	<u>M5</u>	1	max	.02	3	.368	1	0	1	0	1	NC 1	NC	1
534			min	013	2	018	3	0	1	0	1_	NC 1	NC NC	1
535		2	max	.02	3	.185	1	0	1	0	1	NC 5	NC	1
536			min	<u>014</u>	2	01	3	0	1	0	1	734.047 1	NC	1
537		3	max	.02	3	.027	3	0	1	0	1	NC 15	NC	1
538			min	014	2	028	1	0	1	0	1_	340.297 1	NC	1
539		4	max	.019	3	.118	3	0	1	0	1	7176.111 15	NC	1
540			min	013	2	29	1	0	1	0	1_	204.57 1	NC	1
541		5	max	.019	3	.247	3	0	1	0	1_	4996.893 15	NC	1
542			min	013	2	581	1	0	1	0	1_	141.832 1	NC	1
543		6	max	.018	3	.394	3	0	1	0	_1_	3832.696 15	NC	1
544			min	013	2	873	1	0	1	0	1	108.411 1	NC	1
545		7	max	.018	3	.538	3	0	1	0	1	3162.848 15	NC	1
546			min	012	2	-1.14	1	0	1	0	1	89.223 1	NC	1
547		8	max	.018	3	.66	3	0	1	0	1	2774.575 15	NC	1
548			min	012	2	-1.354	1	0	1	0	1	78.118 1	NC	1
549		9	max	.017	3	.739	3	0	1	0	1	2575.675 15	NC	1
550			min	012	2	-1.49	1	0	1	0	1	72.44 1	NC	1
551		10	max	.017	3	.769	3	0	1	0	1	2515.722 15	NC	1
552			min	012	2	-1.535	1	0	1	0	1	70.75 1	NC	1
553		11	max	.016	3	.75	3	0	1	0	1	2575.766 15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio L			o LC
554			min	011	2	-1.489	1	0	1	0	1_	7 2.0 1	1	NC	1
555		12	max	.016	3	.684	3	0	1	0	1_	2774.793 1	15	NC	1
556			min	011	2	-1.351	1	0	1	0	1	78.451	1	NC	1
557		13	max	.016	3	.579	3	0	1	0	1	3163.292 1	15	NC	1
558			min	011	2	-1.131	1	0	1	0	1	90.098	1	NC	1
559		14	max	.015	3	.445	3	0	1	0	1	3833.561 1	15	NC	1
560			min	011	2	858	1	0	1	0	1	110.406	1	NC	1
561		15	max	.015	3	.297	3	0	1	0	1	4998.604 1	15	NC	1
562			min	011	2	562	1	0	1	0	1		1	NC	1
563		16	max	.014	3	.147	3	0	1	0	1	7179.701 1	15	NC	1
564			min	01	2	27	1	0	1	0	1		1	NC	1
565		17	max	.014	3	.009	3	0	1	0	1		15	NC	1
566			min	01	2	014	1	0	1	0	1		1	NC	1
567		18	max	.014	3	.185	1	0	1	0	1		5	NC	1
568		''	min	01	2	108	3	0	1	0	1		1	NC	1
569		19	max	.014	3	.351	1	0	1	0	1		1	NC	1
570		13	min	01	2	213	3	0	1	0	1		1	NC	1
571	M9	1		.006	3	.192	1	0	15	1.574e-2	3		1	NC	1
572	IVIS		max	003	2	032	3	0	1	-1.2e-2	1		1	NC NC	1
		2		.006	3		1	.007	1	7.813e-3	•		5	NC NC	1
573 574			max	003	2	.095 016	3	<u>.007</u>	15	-5.794e-3	<u>3</u> 1		1	NC NC	1
		3	min		_					2.202e-4	•			NC NC	
575		3	max	.006	3	.009	3	.01	1		1		5		1
576		-	min	003	2	008	1	0	15	-7.478e-6		0.2.0.	1	NC NC	1
577		4	max	.006	3	.049	3	.009	1	3.35e-3	3_		15	NC_	1
578		_	min	003	2	126	1	0	15	-4.629e-3	1_	120.201	1	NC NC	1
579		5	max	.006	3	.101	3	.006	1	6.617e-3	3		15	NC_	1
580			min	003	2	25	1	0	15	-9.478e-3	_1_		1	NC	1
581		6	max	.006	3	.157	3	.003	1	9.885e-3	3		15	NC	1
582			min	003	2	37	1	0	15	-1.433e-2	1_		1	NC	1
583		7	max	.006	3	.211	3	0	3	1.315e-2	3		15	NC_	1
584			min	003	2	478	1	0	1	-1.918e-2	<u> 1</u>		1	NC	1
585		8	max	.006	3	.256	3	0	15	1.642e-2	3		15	NC	1
586			min	003	2	564	1	0	1	-2.403e-2	1_		1	NC	1
587		9	max	.006	3	.285	3	0	1	1.67e-2	3		15	NC_	1
588			min	003	2	618	1	0	15	-2.634e-2	1_		1	NC_	1
589		10	max	.006	3	.296	3	0	15	1.498e-2	3		15	NC_	1
590			min	003	2	635	1	0	1	-2.697e-2	1	162.659	1	NC	1
591		11	max	.005	3	.289	3	0	15	1.326e-2	3	5316.065 1	15	NC	1
592			min	003	2	617	1	0	1	-2.76e-2	1	166.413	1	NC	1
593		12	max	.005	3	.265	3	.001	1	1.132e-2	3		15	NC	1
594			min	003	2	562	1	0	15	-2.594e-2	1	178.657	1	NC	1
595		13	max	.005	3	.226	3	0	1	9.056e-3	3		15	NC	1
596			min	002	2	475	1	0	15	-2.088e-2	1_	202.246	1	NC	1
597		14	max	.005	3	.175	3	0	15	6.793e-3	3	7563.497 1	15	NC	1
598			min	002	2	366	1	002	1	-1.581e-2	1	242.378	1	NC	1
599		15	max	.005	3	.119	3	0	15	4.529e-3	3	9564.689 1	15	NC	1
600			min	002	2	244	1	006	1	-1.075e-2	1		1	NC	1
601		16	max	.005	3	.06	3	0	15	2.266e-3	3		15	NC	1
602			min	002	2	12	1	009	1	-5.687e-3	1		1	NC	1
603		17	max	.005	3	.003	3	0	15	2.43e-6	3		5	NC	1
604			min	002	2	005	2	009	1	-6.241e-4	1		1	NC	1
605		18	max	.005	3	.095	1	0	15	2.218e-3	3		5	NC	1
606			min	002	2	048	3	007	1	-7.294e-3			1	NC	1
607		19	max	.005	3	.186	1	0	1	4.513e-3	3		1	NC	1
608			min	002	2	096	3	0		-1.417e-2			1	NC	1
000			1111111	.002		.000	U	U	10	1.71762		110		110	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{ m ed,Na}$ $\Psi_{ m p,Na}$

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5}$ (Eq. D-24)									
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)					
4.00	0.50	1.00	2500	7.87					

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	/c/ / (v co) 1 eu, v 1 c, i	V 1 11, V V by (OCO. D	.+. 1, D.O.Z. 1(0)	α Lq. D Z 1)			
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			_

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

k c	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_i)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	$_{d,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (Ib)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τκ,cr (psi)	f short-term	K_{sat}	$\tau_{k,cr}$ (psi)	
1035	1.00	1.00	1035	
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \Psi_{ed,Na} \Psi_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N_{a0} \text{ (Sec. D.4.1 \& Eq. D-16b)}$

A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{ec,Na}$	$arPsi_{ ho, Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 21-31 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\mathscr{\Psi}_{ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.