Cvičení 5 - Aplikace

Elektroenergetika 3

Petr Jílek

2024

Obsah

	Průtokový ohřívač 🔰 🥒	2
	1.1 Řešení	2
2	Indukční ohřev	5

1 Průtokový ohřívač 🚚

Máme průtokový ohřívač tvořený dvěma obdelníkovými elektrodovými deskami o délce l (m) a šířce b (m). Vzdálenost mezi deskami je d (m). Mezi deskami je voda o rychlostí v. Voda má měrnou tepelnou kapacitu c (J kg $^{-1}$ K $^{-1}$) a hustotu ρ (kg m $^{-3}$). Elektrické napětí mezi deskami je U (V). Odvoďte změnu teploty vody ΔT (K).

Budou platit následující předpoklady:

- $\frac{\partial T}{\partial t} = 0$,
- $\nabla \cdot (\lambda \cdot \vec{\nabla} T) = 0$,

1.1 Řešení

Foruier-Kirchhoffova rovnice:

$$\rho \cdot c \cdot \vec{v} \cdot \vec{\nabla} T = Q_v, \tag{1}$$

kde:

 ρ – hustota (kg m⁻³),

c – měrná tepelná kapacita (J kg⁻¹ K⁻¹),

 \vec{v} - rychlost (m s⁻¹),

 $\vec{\nabla}T$ – gradient teploty (K m⁻¹),

 Q_v – objemový zdroj tepla (W m⁻³).

Vektor rychlosti \vec{v} je:

$$\vec{v} = \begin{pmatrix} v_x \\ 0 \\ 0 \end{pmatrix}.$$

Vektor rychlosti \vec{v} má pouze složku v_x , protože voda teče pouze ve směru osy x. Můžeme tedy rovnici zjednodušit na:

$$\rho \cdot c \cdot v_x \cdot \frac{dT}{dx} = Q_v.$$

Dále je třeba vyjádřit rychlost v_x a objemový zdroj tepla Q_v . Rychlost v_x je:

$$v_x = \frac{\dot{V}}{S} = \frac{\dot{V}}{d \cdot b},$$

kde:

 \dot{V} – objemový průtok (m³ s⁻¹).

Objemový zdroj tepla Q_v můžeme vyjádřit pomocí intenzity elektrického pole E a proudové hustoty J:

$$Q_v = E \cdot J,$$

kde:

E – intenzita elektrického pole (V m⁻¹),

J – proudová hustota (A m⁻²).

Proudovou hustotu Jmůžeme vyjádřit pomocí Ohmova zákona v diferenciálním tvaru:

$$J = \gamma \cdot E$$
,

kde:

 γ – měrná elektrická vodivost (Ω m⁻¹).

Dostaneme tedy:

$$Q_v = E \cdot \gamma \cdot E = \gamma \cdot E^2.$$

Intenzitu elektrického pole E můžeme vyjádřit pomocí napětí U a vzdálenosti mezi deskami d:

 $E = \frac{U}{d}.$

Dostaneme tedy:

$$Q_v = \gamma \cdot \left(\frac{U}{d}\right)^2.$$

Zde je třeba uvažovat měrnou elektrickou vodivost γ jako proměrnou závislou na teplotě. U kovů se vzrůstající teplotou se měrná elektrická vodivost snižuje, jelikož volné nostiče náboje mají problém se v rozpohybované krystalové mřížce kvůli teplotě pohybovat. Naopak u iontových roztoku jako třeba u vody se měrná elektrická vodivost zvyšuje s teplotou. Nahradíme tedy γ lineární funkcí teploty $\gamma(T)$:

$$\gamma = \gamma_0 + \gamma_1 \cdot T.$$

Nyní můžeme dosadit vše do rovnice:

$$\rho \cdot c \cdot \frac{\dot{V}}{d \cdot b} \cdot \frac{dT}{dx} = (\gamma_0 + \gamma_1 \cdot T) \cdot \left(\frac{U}{d}\right)^2.$$

Dostáváme diferenciální rovnici, kterou můžeme řešit separací proměnných:

$$\frac{dT}{\gamma_0 + \gamma_1 \cdot T} = \frac{U^2 \cdot b}{d \cdot \rho \cdot c \cdot \dot{V}} \cdot dx.$$

Pravou staranu můžeme pro lepší čitelnost narhadit:

$$\xi = \frac{U^2 \cdot b}{d \cdot \rho \cdot c \cdot \dot{V}}.$$

Dostáváme:

$$\frac{dT}{\gamma_0 + \gamma_1 \cdot T} = \xi \cdot dx.$$

Integrujeme obě strany:

$$\int_{T_1}^{T_2} \frac{dT}{\gamma_0 + \gamma_1 \cdot T} = \int_0^l \xi \cdot dx,$$

kde:

 T_1 – počáteční teplota (K),

 T_2 – konečná teplota (K), l – délka průtokového ohřívače (m).

Dostáváme:

$$\left[\frac{1}{\gamma_{1}} \cdot \ln\left(\gamma_{0} + \gamma_{1} \cdot T\right)\right]_{T_{1}}^{T_{2}} = \left[\xi \cdot x\right]_{0}^{l}$$

$$\frac{1}{\gamma_{1}} \cdot \ln\left(\gamma_{0} + \gamma_{1} \cdot T_{2}\right) - \frac{1}{\gamma_{1}} \cdot \ln\left(\gamma_{0} + \gamma_{1} \cdot T_{1}\right) = \xi \cdot l$$

$$\ln\left(\frac{\gamma_{0} + \gamma_{1} \cdot T_{2}}{\gamma_{0} + \gamma_{1} \cdot T_{1}}\right) = \gamma_{1} \cdot \xi \cdot l$$

$$\frac{\gamma_{0} + \gamma_{1} \cdot T_{2}}{\gamma_{0} + \gamma_{1} \cdot T_{1}} = e^{\gamma_{1} \cdot \xi \cdot l}$$

$$\gamma_{0} + \gamma_{1} \cdot T_{2} = (\gamma_{0} + \gamma_{1} \cdot T_{1}) \cdot e^{\gamma_{1} \cdot \xi \cdot l}$$

$$T_{2} = \frac{(\gamma_{0} + \gamma_{1} \cdot T_{1}) \cdot e^{\gamma_{1} \cdot \xi \cdot l} - \gamma_{0}}{\gamma_{1}} = \frac{\gamma_{0} \cdot e^{\gamma_{1} \cdot \xi \cdot l} - \gamma_{0} + \gamma_{1} \cdot T_{1} \cdot e^{\gamma_{1} \cdot \xi \cdot l}}{\gamma_{1}} = \frac{\gamma_{0} \cdot e^{\gamma_{1} \cdot \xi \cdot l} - \gamma_{0}}{\gamma_{1}} + T_{1} \cdot e^{\gamma_{1} \cdot \xi \cdot l}.$$

Pokud za ξ dosadíme původní výraz, dostaneme:

$$T_2 = \frac{\gamma_0 \cdot e^{\gamma_1 \cdot \frac{U^2 \cdot b}{d \cdot \rho \cdot c \cdot \hat{V}} \cdot l} - \gamma_0}{\gamma_1} + T_1 \cdot e^{\gamma_1 \cdot \frac{U^2 \cdot b}{d \cdot \rho \cdot c \cdot \hat{V}} \cdot l}.$$

2 Indukční ohřev