

Stavebník: Mgr. Ladislav Lüley

Staré Dvory 73/5

02061 Lednické Rovné Slovenská republika

Datum: Prosinec 2019

Zakázka č.: A1915

Stupeň: Dokumentace pro provedení stavby

Akce:

"Oprava RD Jeníčkova 14"

Zachova 634/6 602 00 Brno tel.: +420 736 458 241

ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍCH KONSTRUKCÍ

podle ČSN EN ISO 13788, ČSN EN ISO 6946, ČSN 730540 a STN 730540

Název úlohy: ST01 CPP+vata

Zpracovatel: At2002

. Zakázka :

Datum: 24.10.2019

KONTROLNÍ TISK VSTUPNÍCH DAT:

Typ hodnocené konstrukce : Stěna

Korekce součinitele prostupu dU: 0.020 W/m2K

Skladba konstrukce (od interiéru):

Číslo	Název	D[m]	L[W/mK]	C[J/kgK]	Ro[kg/m3]	Mi[-]	Ma[kg/m2]
1	Zdivo CPP	0,3000	0,8000	900,0	1700,0	8,5	0.0000
2	Isover Orsil TF	0,1600	0.0380	1140,0	150,0	1,5	0.0000

Okrajové podmínky výpočtu:

Tepelný odpor při přestupu tepla v interiéru Rsi : 0.13 m2K/W dtto pro výpočet kondenzace a povrch. teplot Rsi : 0.25 m2K/W Tepelný odpor při přestupu tepla v exteriéru Rse : 0.04 m2K/W dtto pro výpočet kondenzace a povrch. teplot Rse : 0.04 m2K/W

Návrhová venkovní teplota Te: -15.0 C Návrhová teplota vnitřního vzduchu Tai: 20.6 C Návrhová relativní vlhkost venkovního vzduchu RHe: 84.0 % Návrhová relativní vlhkost vnitřního vzduchu RHi: 55.0 %

Měsíc	Délka[dny]	Tai[C]	RHi[%]	Pi[Pa]	Te[C]	RHe[%]	Pe[Pa]	
1	31	20.6	55.0	1333.8	-2.5	81.3	403.2	
2	28	20.6	58.2	1411.4	-0.3	80.5	479.4	
3	31	20.6	58.2	1411.4	3.8	79.2	634.8	
4	30	20.6	59.7	1447.8	9.0	76.8	881.2	
5	31	20.6	63.4	1537.6	13.9	73.6	1168.3	
6	30	20.6	66.6	1615.2	17.0	70.9	1373.1	
7	31	20.6	68.3	1656.4	18.5	69.3	1475.1	
8	31	20.6	67.9	1646.7	18.1	69.8	1448.9	
9	30	20.6	63.8	1547.3	14.3	73.3	1194.1	
10	31	20.6	59.7	1447.8	9.1	76.7	886.1	
11	30	20.6	58.2	1411.4	3.5	79.3	622.3	
12	31	20.6	57.7	1399.3	-0.6	80.7	468.9	

Pro vnitřní prostředí byla uplatněna přirážka k vnitřní relativní vlhkosti : 5.0 % Výchozí měsíc výpočtu bilance se stanovuje výpočtem dle ČSN EN ISO 13788. Počet hodnocených let : 1

TISK VÝSLEDKŮ VYŠETŘOVÁNÍ:

Tepelný odpor a součinitel prostupu tepla dle ČSN EN ISO 6946:

Tepelný odpor konstrukce R : 4.17 m2K/W Součinitel prostupu tepla konstrukce U : 0.230 W/m2K

Součinitel prostupu zabudované kce U,kc: 0.25 / 0.28 / 0.33 / 0.43 W/m2K Uvedené orientační hodnoty platí pro různou kvalitu řešení tep. mostů vyjádřenou přibližnou přirážkou dle poznámek k čl. B.9.2 v ČSN 730540-4.

Difuzní odpor konstrukce ZpT : 1.4E+0010 m/s
Teplotní útlum konstrukce Ny* : 601.7
Fázový posun teplotního kmitu Psi* : 16.1 h

Teplota vnitřního povrchu a teplotní faktor dle ČSN 730540 a ČSN EN ISO 13788:

Vnitřní povrchová teplota v návrhových podmínkách Tsi,p: 18.61 C Teplotní faktor v návrhových podmínkách f,Rsi,p: 0.944

Číslo měsíce		•	/ané hodno třním povrcl	Vypočtené hodnoty			
	80)%	100	0%			
	Tsi,m[C]	f,Rsi,m	Tsi,m[C]	f,Rsi,m	Tsi[C]	f,Rsi	RHsi[%]
1	14.7	0.743	11.2	0.595	19.3	0.944	59.6
2	15.5	0.758	12.1	0.593	19.4	0.944	62.6
3	15.5	0.699	12.1	0.494	19.7	0.944	61.7
4	15.9	0.598	12.5	0.301	20.0	0.944	62.1
5	16.9	0.445	13.4		20.2	0.944	64.9
6	17.7	0.183	14.2		20.4	0.944	67.4
7	18.1		14.6		20.5	0.944	68.8
8	18.0		14.5		20.5	0.944	68.5
9	17.0	0.425	13.5		20.2	0.944	65.2
10	15.9	0.594	12.5	0.295	20.0	0.944	62.1
11	15.5	0.704	12.1	0.503	19.6	0.944	61.8
12	15.4	0.755	12.0	0.593	19.4	0.944	62.1

Poznámka:

RHsi je relativní vlhkost na vnitřním povrchu,

Tsi je vnitřní povrchová teplota a f,Rsi je teplotní faktor.

<u>Difuze vodní páry v návrhových podmínkách a bilance vlhkosti dle ČSN 730540:</u> (bez vlivu zabudované vlhkosti a sluneční radiace)

Průběh teplot a tlaků v návrhových okrajových podmínkách:

rozhraní:	i	1-2	е
tepl.[C]:	18.8	16.0	-14.7
p [Pa]:	1334	241	138
p.sat [Pa]:	2165	1822	169

Při venkovní návrhové teplotě nedochází v konstrukci ke kondenzaci vodní páry.

Množství difundující vodní páry Gd: 8.570E-0008 kg/m2s

Bilance zkondenzované a vypařené vlhkosti dle ČSN EN ISO 13788:

Roční cyklus č. 1

V konstrukci nedochází během modelového roku ke kondenzaci.

I. Požadavek na teplotní faktor (čl. 5.1 v ČSN 730540-2)

Požadavek: f,Rsi,N = f,Rsi,cr = 0,747 Vypočtená průměrná hodnota: f,Rsi,m = 0,944

Kritický teplotní faktor f,Rsi,cr byl stanoven pro maximální přípustnou vlhkost na vnitřním povrchu 80% (kritérium vyloučení vzniku plísní).

Průměrná hodnota fRsi,m (resp. maximální hodnota při hodnocení skladby mimo tepelné mosty a vazby) není nikdy minimální hodnotou ve všech místech konstrukce. Nelze s ní proto prokazovat plnění požadavku na minimální povrchové teploty zabudované konstrukce včetně tepelných mostů a vazeb. Její převýšení nad požadavkem naznačuje pouze možnosti plnění požadavku v místě tepelného mostu či tepelné vazby.

II. Požadavek na součinitel prostupu tepla (čl. 5.2 v ČSN 730540-2)

 Požadavek: U,N =
 0,30 W/m2K

 Doporučeno U,N,dop =
 0,25 W/m2K

 Vypočtená hodnota: U =
 0,23 W/m2K

U < U,N ... POŽADAVEK JE SPLNĚN. U < U,N,dop ... POŽADAVEK JE SPLNĚN

Vypočtený součinitel prostupu tepla musí zahrnovat vliv systematických tepelných mostů (např. krokví v zateplené šikmé střeše).

III. Požadavky na šíření vlhkosti konstrukcí (čl. 6.1 a 6.2 v ČSN 730540-2)

Požadavky:

- 1. Kondenzace vodní páry nesmí ohrozit funkci konstrukce.
- 2. Roční množství kondenzátu musí být nižší než roční kapacita odparu.
- 3. Roční množství kondenzátu Mc,a musí být nižší než 0,1 kg/m2.rok, nebo 3-6% plošné hmotnosti materiálu (nižší z hodnot).

Vypočtené hodnoty: V kci nedochází při venkovní návrhové teplotě ke kondenzaci. POŽADAVKY JSOU SPLNĚNY.

Název úlohy: ST01.1 Římsa

KONTROLNÍ TISK VSTUPNÍCH DAT:

Typ hodnocené konstrukce: Stěna

Korekce součinitele prostupu dU: 0.020 W/m2K

Skladba konstrukce (od interiéru):

Číslo	Název	D[m]	L[W/mK]	C[J/kgK]	Ro[kg/m3]	Mi[-]	Ma[kg/m2]
1	Ytong	0,3000	0,1500	1000,0	500,0	7,0	0.0000
2	Isover Orsil TF	0,1000	0,0430	1140,0	150,0	1,5	0.0000

Okrajové podmínky výpočtu:

Tepelný odpor při přestupu tepla v interiéru Rsi : 0.13 m2K/W dtto pro výpočet kondenzace a povrch. teplot Rsi : 0.25 m2K/W Tepelný odpor při přestupu tepla v exteriéru Rse : 0.04 m2K/W dtto pro výpočet kondenzace a povrch. teplot Rse : 0.04 m2K/W

Návrhová venkovní teplota Te: -15.0 C Návrhová teplota vnitřního vzduchu Tai: 20.6 C Návrhová relativní vlhkost venkovního vzduchu RHe: 84.0 % Návrhová relativní vlhkost vnitřního vzduchu RHi: 55.0 %

Měsíc	Délka[dny]	Tai[C]	RHi[%]	Pi[Pa]	Te[C]	RHe[%]	Pe[Pa]
1	31	20.6	55.0	1333.8	-2.5	81.3	403.2
2	28	20.6	58.2	1411.4	-0.3	80.5	479.4
3	31	20.6	58.2	1411.4	3.8	79.2	634.8
4	30	20.6	59.7	1447.8	9.0	76.8	881.2
5	31	20.6	63.4	1537.6	13.9	73.6	1168.3
6	30	20.6	66.6	1615.2	17.0	70.9	1373.1
7	31	20.6	68.3	1656.4	18.5	69.3	1475.1
8	31	20.6	67.9	1646.7	18.1	69.8	1448.9
9	30	20.6	63.8	1547.3	14.3	73.3	1194.1
10	31	20.6	59.7	1447.8	9.1	76.7	886.1
11	30	20.6	58.2	1411.4	3.5	79.3	622.3
12	31	20.6	57.7	1399.3	-0.6	80.7	468.9

Pro vnitřní prostředí byla uplatněna přirážka k vnitřní relativní vlhkosti : 5.0 % Výchozí měsíc výpočtu bilance se stanovuje výpočtem dle ČSN EN ISO 13788. Počet hodnocených let : 1

TISK VÝSLEDKŮ VYŠETŘOVÁNÍ:

Tepelný odpor a součinitel prostupu tepla dle ČSN EN ISO 6946:

Tepelný odpor konstrukce R : 3.95 m2K/W Součinitel prostupu tepla konstrukce U : 0.242 W/m2K

Součinitel prostupu zabudované kce U,kc: 0.26 / 0.29 / 0.34 / 0.44 W/m2K Uvedené orientační hodnoty platí pro různou kvalitu řešení tep. mostů vyjádřenou přibližnou přirážkou dle poznámek k čl. B.9.2 v ČSN 730540-4.

Difuzní odpor konstrukce ZpT : 1.2E+0010 m/s
Teplotní útlum konstrukce Ny* : 407.9
Fázový posun teplotního kmitu Psi* : 15.1 h

Teplota vnitřního povrchu a teplotní faktor dle ČSN 730540 a ČSN EN ISO 13788:

Vnitřní povrchová teplota v návrhových podmínkách Tsi,p: 18.50 C Teplotní faktor v návrhových podmínkách f,Rsi,p: 0.941

Číslo měsíce	Minimální požadované hodnoty při max. rel. vlhkosti na vnitřním povrchu:				Vypočtené hodnoty			
	80)%	100	0%				
	Tsi,m[C]	f,Rsi,m	Tsi,m[C]	f,Rsi,m	Tsi[C]	f,Rsi	RHsi[%]	
1	14.7	0.743	11.2	0.595	19.2	0.941	59.8	
2	15.5	0.758	12.1	0.593	19.4	0.941	62.8	
3	15.5	0.699	12.1	0.494	19.6	0.941	61.9	
4	15.9	0.598	12.5	0.301	19.9	0.941	62.3	
5	16.9	0.445	13.4		20.2	0.941	65.0	
6	17.7	0.183	14.2		20.4	0.941	67.5	
7	18.1		14.6		20.5	0.941	68.8	
8	18.0		14.5		20.5	0.941	68.5	
9	17.0	0.425	13.5		20.2	0.941	65.3	
10	15.9	0.594	12.5	0.295	19.9	0.941	62.3	
11	15.5	0.704	12.1	0.503	19.6	0.941	61.9	
12	15.4	0.755	12.0	0.593	19.4	0.941	62.3	

Poznámka:

RHsi je relativní vlhkost na vnitřním povrchu,

Tsi je vnitřní povrchová teplota a f,Rsi je teplotní faktor.

<u>Difuze vodní páry v návrhových podmínkách a bilance vlhkosti dle ČSN 730540:</u> (bez vlivu zabudované vlhkosti a sluneční radiace)

Průběh teplot a tlaků v návrhových okrajových podmínkách:

rozhrani:	i	1-2	е	
tepl.[C]:	18.7	3.2	-14.7	
p [Pa]:	1334	218	138	
p,sat [Pa]:	2152	771	170	

Při venkovní návrhové teplotě nedochází v konstrukci ke kondenzaci vodní páry.

Množství difundující vodní páry Gd: 1.062E-0007 kg/m2s

Bilance zkondenzované a vypařené vlhkosti dle ČSN EN ISO 13788:

Roční cyklus č. 1

V konstrukci nedochází během modelového roku ke kondenzaci.

I. Požadavek na teplotní faktor (čl. 5.1 v ČSN 730540-2)

Požadavek: f,Rsi,N = f,Rsi,cr = 0,747 Vypočtená průměrná hodnota: f,Rsi,m = 0,941

Kritický teplotní faktor f,Rsi,cr byl stanoven pro maximální přípustnou vlhkost na vnitřním povrchu 80% (kritérium vyloučení vzniku plísní).

Průměrná hodnota fRsi,m (resp. maximální hodnota při hodnocení skladby mimo tepelné mosty a vazby) není nikdy minimální hodnotou ve všech místech konstrukce. Nelze s ní proto prokazovat plnění požadavku na minimální povrchové teploty zabudované konstrukce včetně tepelných mostů a vazeb. Její převýšení nad požadavkem naznačuje pouze možnosti plnění požadavku v místě tepelného mostu či tepelné vazby.

II. Požadavek na součinitel prostupu tepla (čl. 5.2 v ČSN 730540-2)

 Požadavek: U,N =
 0,30 W/m2K

 Doporučeno U,N,dop =
 0,25 W/m2K

 Vypočtená hodnota: U =
 0,24 W/m2K

U < U,N ... POŽADAVEK JE SPLNĚN. U < U,N,dop ... POŽADAVEK JE SPLNĚN

Vypočtený součinitel prostupu tepla musí zahrnovat vliv systematických tepelných mostů (např. krokví v zateplené šikmé střeše).

III. Požadavky na šíření vlhkosti konstrukcí (čl. 6.1 a 6.2 v ČSN 730540-2)

Požadavky:

- 1. Kondenzace vodní páry nesmí ohrozit funkci konstrukce.
- 2. Roční množství kondenzátu musí být nižší než roční kapacita odparu.
- 3. Roční množství kondenzátu Mc,a musí být nižší než 0,1 kg/m2.rok, nebo 3-6% plošné hmotnosti materiálu (nižší z hodnot).

Vypočtené hodnoty: V kci nedochází při venkovní návrhové teplotě ke kondenzaci. POŽADAVKY JSOU SPLNĚNY.

Název úlohy: ST04 Stěna předsíně

KONTROLNÍ TISK VSTUPNÍCH DAT:

Typ hodnocené konstrukce : Stěna

Korekce součinitele prostupu dU: 0.020 W/m2K

Skladba konstrukce (od interiéru):

Číslo	Název	D[m]	L[W/mK]	C[J/kgK]	Ro[kg/m3]	Mi[-]	Ma[kg/m2]
1	Sádrokarton	0,0250	0,2200	1060,0	750,0	9,0	0.0000
2	PE folie	0,0001	0,3500	1470,0	900,0	144000,0	0.0000
3	Isover UNI	0,1200	0,0350	840,0	30,0	1,0	0.0000
4	Isover UNI	0,0400	0,0350	840,0	30,0	1,0	0.0000
5	OSB desky	0,0180	0,1300	1700,0	650,0	50,0	0.0000

Okrajové podmínky výpočtu:

Tepelný odpor při přestupu tepla v interiéru Rsi : 0.13 m2K/W dtto pro výpočet kondenzace a povrch. teplot Rsi : 0.25 m2K/W Tepelný odpor při přestupu tepla v exteriéru Rse : 0.04 m2K/W dtto pro výpočet kondenzace a povrch. teplot Rse : 0.04 m2K/W

Návrhová venkovní teplota Te: -15.0 C Návrhová teplota vnitřního vzduchu Tai: 20.6 C Návrhová relativní vlhkost venkovního vzduchu RHe: 84.0 % Návrhová relativní vlhkost vnitřního vzduchu RHi: 55.0 %

Měsíc	Délka[dny]	Tai[C]	RHi[%]	Pi[Pa]	Te[C]	RHe[%]	Pe[Pa]
1	31	20.6	55.0	1333.8	-2.5	81.3	403.2
2	28	20.6	58.2	1411.4	-0.3	80.5	479.4
3	31	20.6	58.2	1411.4	3.8	79.2	634.8
4	30	20.6	59.7	1447.8	9.0	76.8	881.2
5	31	20.6	63.4	1537.6	13.9	73.6	1168.3
6	30	20.6	66.6	1615.2	17.0	70.9	1373.1
7	31	20.6	68.3	1656.4	18.5	69.3	1475.1
8	31	20.6	67.9	1646.7	18.1	69.8	1448.9
9	30	20.6	63.8	1547.3	14.3	73.3	1194.1
10	31	20.6	59.7	1447.8	9.1	76.7	886.1
11	30	20.6	58.2	1411.4	3.5	79.3	622.3
12	31	20.6	57.7	1399.3	-0.6	80.7	468.9

Pro vnitřní prostředí byla uplatněna přirážka k vnitřní relativní vlhkosti : 5.0 % Výchozí měsíc výpočtu bilance se stanovuje výpočtem dle ČSN EN ISO 13788.

Počet hodnocených let: 1

TISK VÝSLEDKŮ VYŠETŘOVÁNÍ:

Tepelný odpor a součinitel prostupu tepla dle ČSN EN ISO 6946:

Tepelný odpor konstrukce R: 4.37 m2K/W Součinitel prostupu tepla konstrukce U: 0.220 W/m2K

Součinitel prostupu zabudované kce U,kc: 0.24 / 0.27 / 0.32 / 0.42 W/m2K Uvedené orientační hodnoty platí pro různou kvalitu řešení tep. mostů vyjádřenou přibližnou přirážkou dle poznámek k čl. B.9.2 v ČSN 730540-4.

Teplota vnitřního povrchu a teplotní faktor dle ČSN 730540 a ČSN EN ISO 13788:

Difuzní odpor konstrukce ZpT : 8.3E+0010 m/s Teplotní útlum konstrukce Ny* : 40.6

Fázový posun teplotního kmitu Psi* : 2.6 h

Vnitřní povrchová teplota v návrhových podmínkách Tsi,p: 18.69 C Teplotní faktor v návrhových podmínkách f,Rsi,p: 0.946

Číslo měsíce	Minimální požadované hodnoty při max rel. vlhkosti na vnitřním povrchu:				Vypočtené hodnoty			
	80)%	100	0%		ŕ		
	Tsi,m[C]	f,Rsi,m	Tsi,m[C]	f,Rsi,m	Tsi[C]	f,Rsi	RHsi[%]	
1	14.7	0.743	11.2	0.595	19.4	0.946	59.4	
2	15.5	0.758	12.1	0.593	19.5	0.946	62.4	
3	15.5	0.699	12.1	0.494	19.7	0.946	61.5	
4	15.9	0.598	12.5	0.301	20.0	0.946	62.0	
5	16.9	0.445	13.4		20.2	0.946	64.8	
6	17.7	0.183	14.2		20.4	0.946	67.4	
7	18.1		14.6		20.5	0.946	68.8	
8	18.0		14.5		20.5	0.946	68.5	
9	17.0	0.425	13.5		20.3	0.946	65.1	
10	15.9	0.594	12.5	0.295	20.0	0.946	62.0	
11	15.5	0.704	12.1	0.503	19.7	0.946	61.6	
12	15.4	0.755	12.0	0.593	19.5	0.946	61.9	

Poznámka:

RHsi je relativní vlhkost na vnitřním povrchu,

Tsi je vnitřní povrchová teplota a f,Rsi je teplotní faktor.

<u>Difuze vodní páry v návrhových podmínkách a bilance vlhkosti dle ČSN 730540:</u> (bez vlivu zabudované vlhkosti a sluneční radiace)

Průběh teplot a tlaků v návrhových okrajových podmínkách:

rozhraní:	i	1-2	2-3	3-4	4-5	е
tepl.[C]:	18.9	18.1	18.1	-5.8	-13.8	-14.7
p [Pa]:	1334	1317	219	210	207	138
p,sat [Pa]:	2177	2072	2071	375	185	169

Při venkovní návrhové teplotě dochází v konstrukci ke kondenzaci vodní páry.

Kond.zóna	Hranice	konden	zační zóny	Kondenzující množstv		
číslo	levá	[m]	pravá	vodní páry [kg/m2s]		
1	0.1851		0.1851	5.249E-0009		

Celoroční bilance vlhkosti:

Množství zkondenzované vodní páry Mc,a:

0.003 kg/m2,rok
Množství vypařitelné vodní páry Mev,a:

2.219 kg/m2,rok

Ke kondenzaci dochází při venkovní teplotě nižší než -10.0 C.

Bilance zkondenzované a vypařené vlhkosti dle ČSN EN ISO 13788:

Roční cyklus č. 1

V konstrukci nedochází během modelového roku ke kondenzaci.

I. Požadavek na teplotní faktor (čl. 5.1 v ČSN 730540-2)

Požadavek: f,Rsi,N = f,Rsi,cr = 0,747 Vypočtená průměrná hodnota: f,Rsi,m = 0,946

Kritický teplotní faktor f,Rsi,cr byl stanoven pro maximální přípustnou vlhkost na vnitřním povrchu 80% (kritérium vyloučení vzniku plísní).

Průměrná hodnota fRsi,m (resp. maximální hodnota při hodnocení skladby mimo tepelné mosty a vazby) není nikdy minimální hodnotou ve všech místech konstrukce. Nelze s ní proto prokazovat plnění požadavku na minimální povrchové teploty zabudované konstrukce včetně tepelných mostů a vazeb. Její převýšení nad požadavkem naznačuje pouze možnosti plnění požadavku v místě tepelného mostu či tepelné vazby.

II. Požadavek na součinitel prostupu tepla (čl. 5.2 v ČSN 730540-2)

 Požadavek: U,N =
 0,30 W/m2K

 Doporučeno U,N,dop =
 0,25 W/m2K

 Vypočtená hodnota: U =
 0,22 W/m2K

U < U,N ... POŽADAVEK JE SPLNĚN. U < U,N,dop ... POŽADAVEK JE SPLNĚN

Vypočtený součinitel prostupu tepla musí zahrnovat vliv systematických tepelných mostů (např. krokví v zateplené šikmé střeše).

III. Požadavky na šíření vlhkosti konstrukcí (čl. 6.1 a 6.2 v ČSN 730540-2)

Požadavky:

- 1. Kondenzace vodní páry nesmí ohrozit funkci konstrukce.
- 2. Roční množství kondenzátu musí být nižší než roční kapacita odparu.
- 3. Roční množství kondenzátu Mc,a musí být nižší než 0,1 kg/m2.rok, nebo 3-6% plošné hmotnosti materiálu (nižší z hodnot).

Limit pro max. množství kondenzátu odvozený z min. plošné hmotnosti

materiálu v kondenzační zóně činí: 0,072 kg/m2,rok

(materiál: Isover UNI).

Dále bude použit limit pro max. množství kondenzátu: 0,072 kg/m2,rok

Vypočtené hodnoty: V kci dochází při venkovní návrhové teplotě ke kondenzaci.

Roční množství zkondenzované vodní páry Mc,a = 0,0030 kg/m2,rok Roční množství odpařitelné vodní páry Mev,a = 2,2191 kg/m2,rok

Vyhodnocení 1. požadavku musí provést projektant ... 1. POŽADAVEK JE SPLNĚN. Mc,a < Mev,a ... 2. POŽADAVEK JE SPLNĚN.

Mc,a < Mc,N ... 3. POŽADAVEK JE SPLNĚN.

Název úlohy: S01 Střecha

KONTROLNÍ TISK VSTUPNÍCH DAT:

Typ hodnocené konstrukce : Strop, střecha - tepelný tok zdola

Korekce součinitele prostupu dU: 0.020 W/m2K

Skladba konstrukce (od interiéru):

Číslo	Název	D[m]	L[W/mK]	C[J/kgK]	Ro[kg/m3]	Mi[-]	Ma[kg/m2]
1	Jutafol N 110	0,0002	0,3900	1700,0	440,0	210154,0	0.0000
2	Isover Orsil Uni	0,1600	0,0650*	1176,0	112,4	1,0	0.0000
3	Isover UNI	0,1600	0,0350	840,0	30,0	1,0	0.0000
4	Bramac Pro	0,0001	0,3500	1450,0	800,0	130,0	0.0000

^{*} ekvival. tep. vodivost s vlivem tepelných mostů, stanovena interním výpočtem

Okrajové podmínky výpočtu:

Tepelný odpor při přestupu tepla v interiéru Rsi : 0.10 m2K/W dtto pro výpočet kondenzace a povrch. teplot Rsi : 0.25 m2K/W Tepelný odpor při přestupu tepla v exteriéru Rse : 0.04 m2K/W dtto pro výpočet kondenzace a povrch. teplot Rse : 0.04 m2K/W

Návrhová venkovní teplota Te: -15.0 C Návrhová teplota vnitřního vzduchu Tai: 20.6 C Návrhová relativní vlhkost venkovního vzduchu RHe: 84.0 % Návrhová relativní vlhkost vnitřního vzduchu RHi: 55.0 %

Měsíc	Délka[dny]	Tai[C]	RHi[%]	Pi[Pa]	Te[C]	RHe[%]	Pe[Pa]
1	31	20.6	55.0	1333.8	-2.5	81.3	403.2
2	28	20.6	58.2	1411.4	-0.3	80.5	479.4
3	31	20.6	58.2	1411.4	3.8	79.2	634.8
4	30	20.6	59.7	1447.8	9.0	76.8	881.2
5	31	20.6	63.4	1537.6	13.9	73.6	1168.3
6	30	20.6	66.6	1615.2	17.0	70.9	1373.1
7	31	20.6	68.3	1656.4	18.5	69.3	1475.1
8	31	20.6	67.9	1646.7	18.1	69.8	1448.9
9	30	20.6	63.8	1547.3	14.3	73.3	1194.1
10	31	20.6	59.7	1447.8	9.1	76.7	886.1
11	30	20.6	58.2	1411.4	3.5	79.3	622.3
12	31	20.6	57.7	1399.3	-0.6	80.7	468.9

Pro vnitřní prostředí byla uplatněna přirážka k vnitřní relativní vlhkosti : 5.0 % Výchozí měsíc výpočtu bilance se stanovuje výpočtem dle ČSN EN ISO 13788.

Počet hodnocených let: 1

TISK VÝSLEDKŮ VYŠETŘOVÁNÍ:

Tepelný odpor a součinitel prostupu tepla dle ČSN EN ISO 6946:

Tepelný odpor konstrukce R : 6.13 m2K/W Součinitel prostupu tepla konstrukce U : 0.159 W/m2K

Součinitel prostupu zabudované kce U,kc: 0.18 / 0.21 / 0.26 / 0.36 W/m2K Uvedené orientační hodnoty platí pro různou kvalitu řešení tep. mostů vyjádřenou přibližnou přirážkou dle poznámek k čl. B.9.2 v ČSN 730540-4.

Difuzní odpor konstrukce ZpT : 2.5E+0011 m/s
Teplotní útlum konstrukce Ny* : 122.8
Fázový posun teplotního kmitu Psi* : 5.9 h

Teplota vnitřního povrchu a teplotní faktor dle ČSN 730540 a ČSN EN ISO 13788:

Vnitřní povrchová teplota v návrhových podmínkách Tsi,p: 19.21 C Teplotní faktor v návrhových podmínkách f,Rsi,p: 0.961

Číslo měsíce		ilní požadov kosti na vnit		Vypočtené hodnoty					
	80% 100%			0%					
	Tsi,m[C]	f,Rsi,m	Tsi,m[C]	f,Rsi,m	Tsi[C]	f,Rsi	RHsi[%]		
1	14.7	0.743	11.2	0.595	19.7	0.961	58.1		
2	15.5	0.758	12.1	0.593	19.8	0.961	61.2		
3	15.5	0.699	12.1	0.494	19.9	0.961	60.6		
4	15.9	0.598	12.5	0.301	20.1	0.961	61.4		
5	16.9	0.445	13.4		20.3	0.961	64.4		
6	17.7	0.183	14.2		20.5	0.961	67.2		
7	18.1		14.6		20.5	0.961	68.6		
8	18.0		14.5		20.5	0.961	68.3		
9	17.0	0.425	13.5		20.4	0.961	64.8		
10	15.9	0.594	12.5	0.295	20.2	0.961	61.4		
11	15.5	0.704	12.1	0.503	19.9	0.961	60.6		
12	15.4	0.755	12.0	0.593	19.8	0.961	60.7		

Poznámka:

RHsi je relativní vlhkost na vnitřním povrchu,

Tsi je vnitřní povrchová teplota a f,Rsi je teplotní faktor.

<u>Difuze vodní páry v návrhových podmínkách a bilance vlhkosti dle ČSN 730540:</u> (bez vlivu zabudované vlhkosti a sluneční radiace)

Průběh teplot a tlaků v návrhových okrajových podmínkách:

rozhrani:	ı	1-2	2-3	3-4	е	
tepl.[C]:	19.4	19.4	7.4	-14.8	-14.8	
p [Pa]:	1334	147	143	139	138	
p,sat [Pa]:	2249	2249	1030	168	168	

Při venkovní návrhové teplotě nedochází v konstrukci ke kondenzaci vodní páry.

Množství difundující vodní páry Gd: 5.134E-0009 kg/m2s

Bilance zkondenzované a vypařené vlhkosti dle ČSN EN ISO 13788:

Roční cyklus č. 1

V konstrukci nedochází během modelového roku ke kondenzaci.

I. Požadavek na teplotní faktor (čl. 5.1 v ČSN 730540-2)

Požadavek: f,Rsi,N = f,Rsi,cr = 0,747 Vypočtená průměrná hodnota: f,Rsi,m = 0,961

Kritický teplotní faktor f,Rsi,cr byl stanoven pro maximální přípustnou vlhkost na vnitřním povrchu 80% (kritérium vyloučení vzniku plísní).

Průměrná hodnota fRsi,m (resp. maximální hodnota při hodnocení skladby mimo tepelné mosty a vazby) není nikdy minimální hodnotou ve všech místech konstrukce. Nelze s ní proto prokazovat plnění požadavku na minimální povrchové teploty zabudované konstrukce včetně tepelných mostů a vazeb. Její převýšení nad požadavkem naznačuje pouze možnosti plnění požadavku v místě tepelného mostu či tepelné vazby.

II. Požadavek na součinitel prostupu tepla (čl. 5.2 v ČSN 730540-2)

 Požadavek: U,N =
 0,24 W/m2K

 Doporučeno U,N,dop =
 0,16 W/m2K

 Vypočtená hodnota: U =
 0,16 W/m2K

U < U,N ... POŽADAVEK JE SPLNĚN. U < U,N,dop ... POŽADAVEK JE SPLNĚN

Vypočtený součinitel prostupu tepla musí zahrnovat vliv systematických tepelných mostů (např. krokví v zateplené šikmé střeše).

III. Požadavky na šíření vlhkosti konstrukcí (čl. 6.1 a 6.2 v ČSN 730540-2)

Požadavky:

- 1. Kondenzace vodní páry nesmí ohrozit funkci konstrukce.
- 2. Roční množství kondenzátu musí být nižší než roční kapacita odparu.
- 3. Roční množství kondenzátu Mc,a musí být nižší než 0,1 kg/m2.rok, nebo 3-6% plošné hmotnosti materiálu (nižší z hodnot).

Vypočtené hodnoty: V kci nedochází při venkovní návrhové teplotě ke kondenzaci. POŽADAVKY JSOU SPLNĚNY.

Název úlohy: S03 Fóliová hydroizolace

KONTROLNÍ TISK VSTUPNÍCH DAT:

Typ hodnocené konstrukce : Strop, střecha - tepelný tok zdola

Korekce součinitele prostupu dU: 0.020 W/m2K

Skladba konstrukce (od interiéru):

Číslo	Název	D[m]	L[W/mK]	C[J/kgK]	Ro[kg/m3]	Mi[-]	Ma[kg/m2]
1	Sádrokarton	0,0125	0,2200	1060,0	750,0	9,0	0.0000
2	Sádrokarton	0,0125	0,2200	1060,0	750,0	9,0	0.0000
3	Dekfol N AL 170 Spec	0,0003	0,3500	1500,0	567,0	1600000,0	0.0000
4	OSB desky	0,0220	0,1300	1700,0	650,0	50,0	0.0000
5	Isover UNI	0,0400	0,0350	840,0	30,0	1,0	0.0000
6	Rigips EPS spád	0,0200	0,0350	1270,0	25,0	30,0	0.0000
7	Rigips EPS 150S	0,2000	0,0350	1270,0	25,0	30,0	0.0000
8	Fatrafol 810	0,0020	0,3500	1470,0	1313,0	24000,0	0.0000

Okrajové podmínky výpočtu:

Tepelný odpor při přestupu tepla v interiéru Rsi : 0.10 m2K/W dtto pro výpočet kondenzace a povrch. teplot Rsi : 0.25 m2K/W Tepelný odpor při přestupu tepla v exteriéru Rse : 0.04 m2K/W dtto pro výpočet kondenzace a povrch. teplot Rse : 0.04 m2K/W

Návrhová venkovní teplota Te: -15.0 C Návrhová teplota vnitřního vzduchu Tai: 20.6 C Návrhová relativní vlhkost venkovního vzduchu RHe: 84.0 % Návrhová relativní vlhkost vnitřního vzduchu RHi: 55.0 %

Měsíc	Délka[dny]	Tai[C]	RHi[%]	Pi[Pa]	Te[C]	RHe[%]	Pe[Pa]	
1	31	20.6	55.0	1333.8	-2.5	81.3	403.2	
2	28	20.6	58.2	1411.4	-0.3	80.5	479.4	
3	31	20.6	58.2	1411.4	3.8	79.2	634.8	
4	30	20.6	59.7	1447.8	9.0	76.8	881.2	
5	31	20.6	63.4	1537.6	13.9	73.6	1168.3	
6	30	20.6	66.6	1615.2	17.0	70.9	1373.1	
7	31	20.6	68.3	1656.4	18.5	69.3	1475.1	
8	31	20.6	67.9	1646.7	18.1	69.8	1448.9	
9	30	20.6	63.8	1547.3	14.3	73.3	1194.1	
10	31	20.6	59.7	1447.8	9.1	76.7	886.1	
11	30	20.6	58.2	1411.4	3.5	79.3	622.3	
12	31	20.6	57.7	1399.3	-0.6	80.7	468.9	

Pro vnitřní prostředí byla uplatněna přirážka k vnitřní relativní vlhkosti : 5.0 % Výchozí měsíc výpočtu bilance se stanovuje výpočtem dle ČSN EN ISO 13788.

Počet hodnocených let: 1

TISK VÝSLEDKŮ VYŠETŘOVÁNÍ:

Tepelný odpor a součinitel prostupu tepla dle ČSN EN ISO 6946:

Tepelný odpor konstrukce R : 6.65 m2K/W Součinitel prostupu tepla konstrukce U : 0.147 W/m2K

Součinitel prostupu zabudované kce U,kc: 0.17 / 0.20 / 0.25 / 0.35 W/m2K Uvedené orientační hodnoty platí pro různou kvalitu řešení tep. mostů vyjádřenou přibližnou přirážkou dle poznámek k čl. B.9.2 v ČSN 730540-4.

Difuzní odpor konstrukce ZpT : 2.8E+0012 m/s
Teplotní útlum konstrukce Ny* : 106.1
Fázový posun teplotního kmitu Psi* : 5.5 h

Teplota vnitřního povrchu a teplotní faktor dle ČSN 730540 a ČSN EN ISO 13788:

Vnitřní povrchová teplota v návrhových podmínkách Tsi,p : 19.32 C Teplotní faktor v návrhových podmínkách f,Rsi,p : 0.964

Číslo	Minimální požado		Vypočtené				
měsíce	rel. vlhkosti na vni	rel. vlhkosti na vnitřním povrchu:					
	80%	100%					
	Teim[C] f Reim	Teim[C] f Reim	TeilC1	f Rei			

	00	, , 0	10	10070			
	Tsi,m[C]	f,Rsi,m	Tsi,m[C]	f,Rsi,m	Tsi[C]	f,Rsi	RHsi[%]
1	14.7	0.743	11.2	0.595	19.8	0.964	57.9
2	15.5	0.758	12.1	0.593	19.8	0.964	61.0
3	15.5	0.699	12.1	0.494	20.0	0.964	60.4
4	15.9	0.598	12.5	0.301	20.2	0.964	61.3
5	16.9	0.445	13.4		20.4	0.964	64.4
6	17.7	0.183	14.2		20.5	0.964	67.1
7	18.1		14.6		20.5	0.964	68.6
8	18.0		14.5		20.5	0.964	68.3
9	17.0	0.425	13.5		20.4	0.964	64.7
10	15.9	0.594	12.5	0.295	20.2	0.964	61.2
11	15.5	0.704	12.1	0.503	20.0	0.964	60.5
12	15.4	0.755	12.0	0.593	19.8	0.964	60.5

Poznámka:

RHsi je relativní vlhkost na vnitřním povrchu,

Tsi je vnitřní povrchová teplota a f,Rsi je teplotní faktor.

Difuze vodní páry v návrhových podmínkách a bilance vlhkosti dle ČSN 730540: (bez vlivu zabudované vlhkosti a sluneční radiace)

Průběh teplot a tlaků v návrhových okrajových podmínkách:

rozhraní:	i	1-2	2-3	3-4	4-5	5-6	6-7	7-8	е
tepl.[C]:	19.5	19.2	19.0	19.0	18.2	13.1	10.6	-14.8	-14.8
p [Pa]:	1334	1334	1333	263	260	260	259	245	138
p,sat [Pa]:	2264	2229	2194	2193	2092	1511	1278	168	167

Při venkovní návrhové teplotě dochází v konstrukci ke kondenzaci vodní páry.

Kond.zóna	Hranice k	onden	zační zóny	Kondenzující množství
číslo	íslo levá [m]		pravá	vodní páry [kg/m2s]
1	0.3073		0.3073	3.550E-0010

Celoroční bilance vlhkosti:

Celorocni pilance vinkoca.

Množství zkondenzované vodní páry Mc,a: 0.001 kg/m2,rok Množství vypařitelné vodní páry Mev,a: 0.039 kg/m2,rok

Ke kondenzaci dochází při venkovní teplotě nižší než 0.0 C.

Bilance zkondenzované a vypařené vlhkosti dle ČSN EN ISO 13788:

Roční cyklus č. 1

V konstrukci nedochází během modelového roku ke kondenzaci.

I. Požadavek na teplotní faktor (čl. 5.1 v ČSN 730540-2)

Požadavek: f,Rsi,N = f,Rsi,cr = 0,747 Vypočtená průměrná hodnota: f,Rsi,m = 0,964

Kritický teplotní faktor f,Rsi,cr byl stanoven pro maximální přípustnou vlhkost na vnitřním povrchu 80% (kritérium vyloučení vzniku plísní).

Průměrná hodnota fRsi,m (resp. maximální hodnota při hodnocení skladby mimo tepelné mosty a vazby) není nikdy minimální hodnotou ve všech místech konstrukce. Nelze s ní proto prokazovat plnění požadavku na minimální povrchové teploty zabudované konstrukce včetně tepelných mostů a vazeb. Její převýšení nad požadavkem naznačuje pouze možnosti plnění požadavku v místě tepelného mostu či tepelné vazby.

II. Požadavek na součinitel prostupu tepla (čl. 5.2 v ČSN 730540-2)

 Požadavek: U,N =
 0,24 W/m2K

 Doporučeno U,N,dop =
 0,16 W/m2K

 Vypočtená hodnota: U =
 0,15 W/m2K

U < U,N ... POŽADAVEK JE SPLNĚN. U < U,N,dop ... POŽADAVEK JE SPLNĚN

Vypočtený součinitel prostupu tepla musí zahrnovat vliv systematických tepelných mostů (např. krokví v zateplené šikmé střeše).

III. Požadavky na šíření vlhkosti konstrukcí (čl. 6.1 a 6.2 v ČSN 730540-2)

Požadavky:

- 1. Kondenzace vodní páry nesmí ohrozit funkci konstrukce.
- 2. Roční množství kondenzátu musí být nižší než roční kapacita odparu.
- 3. Roční množství kondenzátu Mc,a musí být nižší než 0,1 kg/m2.rok, nebo 3-6% plošné hmotnosti materiálu (nižší z hodnot).

Limit pro max. množství kondenzátu odvozený z min. plošné hmotnosti

materiálu v kondenzační zóně činí: 0,079 kg/m2,rok

(materiál: Fatrafol 810).

Dále bude použit limit pro max. množství kondenzátu: 0,079 kg/m2,rok

Vypočtené hodnoty: V kci dochází při venkovní návrhové teplotě ke kondenzaci.

Roční množství zkondenzované vodní páry Mc,a = 0,0006 kg/m2,rok Roční množství odpařitelné vodní páry Mev,a = 0,0387 kg/m2,rok

Vyhodnocení 1. požadavku musí provést projektant ... 1. POŽADAVEK JE SPLNĚN.

Mc,a < Mev,a ... 2. POŽADAVEK JE SPLNĚN. Mc,a < Mc,N ... 3. POŽADAVEK JE SPLNĚN.

Název úlohy: P04.2 Podlaha nad sklepem

KONTROLNÍ TISK VSTUPNÍCH DAT:

Typ hodnocené konstrukce : Podlaha - výpočet poklesu dotykové teploty

Korekce součinitele prostupu dU: 0.020 W/m2K

Skladba konstrukce (od interiéru):

Číslo	Název	D[m]	L[W/mK]	C[J/kgK]	Ro[kg/m3]	Mi[-]	Ma[kg/m2]
1	Vlysy	0,0600	0,1800	2510,0	600,0	157,0	0.0000
2	Baumit Nivello	0,0060	1,4000	840,0	1550,0	40,0	0.0000
3	Beton hutný 1	0,0500	1,2300	1020,0	2100,0	17,0	0.0000
4	BASF Styrodur	0,1100	0,0300	2060,0	30,0	100,0	0.0000
5	Strop Hurdis	0,1000	0,6000	960,0	710,0	18,0	0.0000

Okrajové podmínky výpočtu:

Tepelný odpor při přestupu tepla v interiéru Rsi : 0.17 m2K/W Tepelný odpor při přestupu tepla v exteriéru Rse : 0.00 m2K/W

Návrhová venkovní teplota Te: 13.0 C Návrhová teplota vnitřního vzduchu Tai: 20.6 C Návrhová relativní vlhkost venkovního vzduchu RHe: 50.0 % Návrhová relativní vlhkost vnitřního vzduchu RHi: 55.0 %

TISK VÝSLEDKŮ VYŠETŘOVÁNÍ:

Tepelný odpor a součinitel prostupu tepla dle ČSN EN ISO 6946:

Tepelný odpor konstrukce R : 3.86 m2K/W Součinitel prostupu tepla konstrukce U : 0.248 W/m2K

Součinitel prostupu zabudované kce U,kc: 0.27 / 0.30 / 0.35 / 0.45 W/m2K Uvedené orientační hodnoty platí pro různou kvalitu řešení tep. mostů vyjádřenou přibližnou přirážkou dle poznámek k čl. B.9.2 v ČSN 730540-4.

Difuzní odpor konstrukce ZpT : 1.2E+0011 m/s

Teplota vnitřního povrchu a teplotní faktor dle ČSN 730540 a ČSN EN ISO 13788:

Vnitřní povrchová teplota v návrhových podmínkách Tsi,p: 20.14 C Teplotní faktor v návrhových podmínkách f,Rsi,p: 0.940

Pokles dotykové teploty podlahy dle ČSN 730540:

Tepelná jímavost podlahové konstrukce B: 520.65 Ws/m2K

Pokles dotykové teploty podlahy DeltaT: 4.04 C

I. Požadavek na teplotní faktor (čl. 5.1 v ČSN 730540-2)

Požadavek: f,Rsi,N = f,Rsi,cr = 0,805 Vypočtená průměrná hodnota: f,Rsi,m = 0,940

Kritický teplotní faktor f,Rsi,cr byl stanoven pro maximální přípustnou vlhkost na vnitřním povrchu 80% (kritérium vyloučení vzniku plísní).

Průměrná hodnota fRsi,m (resp. maximální hodnota při hodnocení skladby mimo tepelné mosty a vazby) není nikdy minimální hodnotou ve všech místech konstrukce. Nelze s ní proto prokazovat plnění požadavku na minimální povrchové teploty zabudované konstrukce včetně tepelných mostů a vazeb. Její převýšení nad požadavkem naznačuje pouze možnosti plnění požadavku v místě tepelného mostu či tepelné vazby.

II. Požadavek na součinitel prostupu tepla (čl. 5.2 v ČSN 730540-2)

 Požadavek: U,N =
 0,45 W/m2K

 Doporučeno U,N,dop =
 0,30 W/m2K

 Vypočtená hodnota: U =
 0,25 W/m2K

U < U,N ... POŽADAVEK JE SPLNĚN. U < U,N,dop ... POŽADAVEK JE SPLNĚN

Vypočtený součinitel prostupu tepla musí zahrnovat vliv systematických tepelných mostů (např. krokví v zateplené šikmé střeše).

III. Požadavek na pokles dotykové teploty (čl. 5.5 v ČSN 730540-2)

Požadavek: teplá podlaha - dT10,N = 5,5 C Vypočtená hodnota: dT10 = 4,04 C dT10 < dT10,N ... POŽADAVEK JE SPLNĚN.

Název úlohy: Pl01 Podlaha předsíně

KONTROLNÍ TISK VSTUPNÍCH DAT:

Typ hodnocené konstrukce : Podlaha - výpočet poklesu dotykové teploty

Korekce součinitele prostupu dU: 0.020 W/m2K

Skladba konstrukce (od interiéru):

Číslo	Název	D[m]	L[W/mK]	C[J/kgK]	Ro[kg/m3]	Mi[-]	Ma[kg/m2]
1	Ker. dlažba	0,0100	1,0100	840,0	2000,0	200,0	0.0000
2	Beton hutný 2	0,0500	1,3000	1020,0	2200,0	20,0	0.0000
3	PE folie	0,0001	0,3500	1470,0	900,0	144000,0	0.0000
4	Rigips EPS 150	0,1500	0,0350	1270,0	25,0	30,0	0.0000
5	Sklobit A	0,0038	0,2100	1470,0	1195,0	15000,0	0.0000
6	Beton hutný 2	0,1000	1,3000	1020,0	2200,0	20,0	0.0000

Okrajové podmínky výpočtu:

Tepelný odpor při přestupu tepla v interiéru Rsi : 0.17 m2K/W Tepelný odpor při přestupu tepla v exteriéru Rse : 0.00 m2K/W

Návrhová venkovní teplota Te: 5.0 C Návrhová teplota vnitřního vzduchu Tai: 15.6 C Návrhová relativní vlhkost venkovního vzduchu RHe: 99.0 % Návrhová relativní vlhkost vnitřního vzduchu RHi: 55.0 %

TISK VÝSLEDKŮ VYŠETŘOVÁNÍ:

Tepelný odpor a součinitel prostupu tepla dle ČSN EN ISO 6946:

Tepelný odpor konstrukce R : 4.04 m2K/W Součinitel prostupu tepla konstrukce U : 0.237 W/m2K

Součinitel prostupu zabudované kce U,kc: 0.26 / 0.29 / 0.34 / 0.44 W/m2K Uvedené orientační hodnoty platí pro různou kvalitu řešení tep. mostů vyjádřenou přibližnou přirážkou dle poznámek k čl. B.9.2 v ČSN 730540-4.

Difuzní odpor konstrukce ZpT : 4.3E+0011 m/s

Teplota vnitřního povrchu a teplotní faktor dle ČSN 730540 a ČSN EN ISO 13788:

Vnitřní povrchová teplota v návrhových podmínkách Tsi,p: 14.99 C Teplotní faktor v návrhových podmínkách f,Rsi,p: 0.942

Pokles dotykové teploty podlahy dle ČSN 730540:

Tepelná jímavost podlahové konstrukce B: 1583.01 Ws/m2K

Pokles dotykové teploty podlahy DeltaT: 10.43 C

I. Požadavek na teplotní faktor (čl. 5.1 v ČSN 730540-2)

Požadavek: f,Rsi,N = f,Rsi,cr = 0.787 Vypočtená průměrná hodnota: f,Rsi,m = 0,942

Kritický teplotní faktor f,Rsi,cr byl stanoven pro maximální přípustnou vlhkost

na vnitřním povrchu 80% (kritérium vyloučení vzniku plísní).

Průměrná hodnota fRsi,m (resp. maximální hodnota při hodnocení skladby mimo tepelné mosty a vazby) není nikdy minimální hodnotou ve všech místech konstrukce. Nelze s ní proto prokazovat plnění požadavku na minimální povrchové teploty zabudované konstrukce včetně tepelných mostů a vazeb. Její převýšení nad požadavkem naznačuje pouze možnosti plnění požadavku v místě tepelného mostu či tepelné vazby.

II. Požadavek na součinitel prostupu tepla (čl. 5.2 v ČSN 730540-2)

Požadavek: U,N = 0,45 W/m2K 0,30 W/m2K Doporučeno U,N,dop = Vypočtená hodnota: U = 0,24 W/m2K

U < U,N ... POŽADAVEK JE SPLNĚN. U < U,N,dop ... POŽADAVEK JE SPLNĚN

Vypočtený součinitel prostupu tepla musí zahrnovat vliv systematických tepelných mostů (např. krokví v zateplené šikmé střeše).

III. Požadavek na pokles dotykové teploty (čl. 5.5 v ČSN 730540-2)

Požadavek: studená podlaha

Vypočtená hodnota: dT10 = 7,61 C