

BLM3123- Veri İletişimi

Dr. Öğr. Üyesi Semih KORKMAZ

semihkorkmaz@bandirma.edu.tr

www.bandirma.edu.tr

1. Hafta

- Veri iletişimine giriş
- > Ağlar ve fiziksel topolojiler

Veri iletişimi

- lletişim bilgi paylaşımıdır ve "yüzyüze" veya "uzaktan" olmak üzere iki şekilde yapılır.
- > Uzaktan yapılan iletişim "telecommunication" olarak adlandırılır ve telefon ve televizyon gibi uygulamaları içerir.
- > Veri (data), bilgiyi paylaşan taraflar arasında kurallarla belirlenmiş formda bilginin ifade edilmesidir.
- > Veri iletişimi (data communications) bilginin herhangi bir ortam (hava, kablo vb.) kullanılarak iki cihaz arasında transfer edilmesidir.

Veri iletişiminin etkinliği aşağıdaki 4 temel parametreye dayanır.

- Doğru hedef: Verinin doğru hedefe ulaşmasıdır.
- Doğruluk: Verinin kaynağından çıktığı şekliyle iletilmesidir.
- Zaman: Verinin zamanında hedefe ulaşmasıdır. Gerçek zamanlı iletişimde (ses ve görüntü) çok önemlidir.
- Gecikme değişimi: Verinin hedefe ulaşma süresindeki değişimdir.

Veri iletişim sistemi 5 elemandan oluşur:

- Mesaj: İletilen bilgidir (ses, görüntü, metin, sayı, resim)
- Gönderici: Veriyi ileten cihazdır (PC, kamera)
- Alıcı: Veriyi alan cihazdır (PC, televizyon)
- İletim ortamı: Verinin gönderen ve alan cihaz arasında iletilmesini sağlayan fiziksel yoldur (Koaksiyel kablo, fiber optik kablo, radyo dalgaları (kablosuz iletim ortamı)
- Protokol: Veri iletişimini başlatır, yönetir, sonlandırır.

Veri Çeşitleri

Bilgi, metin, sayılar, resimler, ses ve video şeklinde iletilir.

Metin

- > Veri iletişiminde metin, bir bit deseni veya bir bit dizisidir.
- Metin sembollerini temsil etmek için farklı bit desenleri tasarlanmıştır.
- > Her set kod olarak adlandırılır ve sembolleri temsil etme işlemine kodlama denir.
- > Bugün yaygın kodlama sistemi, bir sembolü temsil etmek için 32 bit kullanan Unicode olarak adlandırılır.
- > Amerikan Standart Bilgi Değişimi Kodu (ASCII), Unicode'da ilk 127 karakteri oluşturur ve temel Latince olarak da adlandırılır.

Sayılar

- Sayılar, bit desenleriyle temsil edilir. Ancak, ASCII gibi bir kod kullanılmaz.
- Sayıları temsil etmek için sayılar doğrudan ikili sayıya dönüştürülür.

Görüntüler

- Görüntüler, bit desenleriyle temsil edilir.
- En basit haliyle, bir görüntü, her pikselin küçük bir nokta olduğu bir piksel matrisinden oluşur.
- Görüntü kalitesi piksel çözünürlüğe bağlıdır.
- Örneğin, bir görüntü 1000 piksele veya 10.000 piksele bölünsün.
- > 10.000 piksele bölündüğü durumda görüntü daha iyi bir temsili vardır (daha iyi çözünürlük), ancak görüntüyü saklamak için daha fazla bellek gerekir.
- > Bir görüntü piksellere bölündükten sonra, her piksele bir bit deseni atanır.
- > Boyut ve desenin değeri görüntüye bağlıdır. Yalnızca siyah beyaz noktalardan (örneğin bir satranç tahtası) oluşan bir görüntü için, bir pikseli temsil etmek için 1-bit deseni yeterlidir.
- > Bir görüntü saf beyaz ve saf siyah piksellerden oluşmuyorsa, bit deseninin boyutu gri skalayı dahil etmekle arttırılır.
- > Örneğin, dört gri düzeyi göstermek için 2 bit desen ölçekler kullanılabilir.
- > Siyah bir piksel 00, koyu gri piksel 01, açık gri piksel 10 ve beyaz piksel 11 ile temsil edilebilir.
- > Renkli görüntüleri temsil etmenin birkaç yöntemi vardır. Bu yöntem RGB olarak adlandırılır. Bu renkler kırmızı, yeşil ve mavi.
- > Her rengin yoğunluğu ölçülür ve buna bir bit deseni atanır.

Ses

- > Ses, ses veya müziğin kaydedilmesini veya yayınlanmasını ifade eder.
- > Ses doğası gereği metinden, sayılardan veya resimlerden farklıdır.
- > Süreklidir, ayrık değildir.
- > Sesi veya müziği elektrik sinyaline dönüştürmek için bir mikrofon kullandığımızda bile, sürekli bir ses oluşturmuş oluruz.

Video

- ➤ Video, bir resmin veya filmin kaydedilmesini veya yayınlanmasını ifade eder.
- ➤ Video bir TV kamerası tarafından üretilen sürekli bir sinyal olarak üretilir.

Veri Akışı

İki cihaz arasındaki iletişim tek yönlü, yarı çift yönlü veya tam çift yönlü olabilir.

Tek yönlü

- > Tek yönlü modda iletişim, tek yönlü bir caddede olduğu gibi tek yönlüdür.
- > Bağlantıdaki iki cihazın biri bilgi iletir diğeri sadece alabilir.
- ➤ Klavyeler ve monitörler, tek yönlü aygıtlara örnektir.
- Klavye yalnızca girişi tanıtabilir; monitör yalnızca çıktıyı kabul edebilir.
- Tek yönlü mod tek yönde veri göndermek için kanalın tüm kapasitesini kullanabilir.

tek yönlü

Yarı çift yönlü

- Yarı çift yönlü modda, her istasyon hem iletebilir hem de alabilir, ancak bu işlemler aynı anda gerçekleşmez.
- > Bir cihaz gönderirken, diğeri yalnızca alabilir ve bunun tersi de geçerlidir.
- > İçinde yarı çift yönlü iletim bulunan bir kanalın tüm kapasitesi iki cihazdan hangisi o anda iletimde ise ona kanal kullandırılır.
- > Telsizler yarı çift yönlü sistemlerdir.
- > Yarı çift yönlü mod, aynı anda her iki yönde iletişime ihtiyaç duyulmayan durumlarda kullanılır.

tam çift yönlü

Tam çift yönlü

- > Tam çift yönlü modda, her iki istasyon aynı anda bilgiyi hem gönderip hem de alabilir.
- Tam çift yönlü mod, trafiğin aynı anda her iki yönde aktığı iki yönlü bir cadde gibidir.
- Tam çift yönlü modda, bir yöne giden sinyaller, hattın kapasitesini diğer yöne giden sinyallerle paylaşır.
- Bu paylaşım, iki yolla gerçekleşebilir.
- ➤ Bağlantı, fiziksel olarak ayrı iki iletim yolu içerir. Bunlardan biri göndermek ve diğeri ise almak için kullanılır veya kanalın kapasitesi her iki yönde hareket eden sinyaller arasında bölünür.
- > Tam çift yönlü iletişimin yaygın bir örneği telefon ağıdır.
- iki kişi bir telefon hattı üzerinden iletişim kurarken, ikisi de aynı anda hem konuşabilir hem de dinleyebilir.

Ağlar (Networks)

- > Bir ağ, iletişim yoluyla birbirine bağlanan bir dizi cihazdır (genellikle düğümler olarak adlandırılır).
- > Bir düğüm, bir bilgisayar, yazıcı veya gönderme veya alma yeteneğine sahip herhangi bir başka cihaz olabilir.

Dağıtılmış işlem

- > Pek çok ağ, bir görevin birden çok bilgisayar arasında bölündüğü dağıtılmış işlemi kullanır.
- ➤ Bir sürecin tüm yönlerinden sorumlu olan tek bir büyük makine yerine, ayrı bilgisayarlar (genellikle kişisel bir bilgisayar veya iş istasyonu) alt kümeyi idare eder.

Ağ Kriterleri

- ➤ Bir ağ belirli sayıda ölçütü karşılayabilmelidir.
- > Bunlardan en önemlileri performans, güvenilirlik ve güvenliktir.

Performans

- > Performans, iletim süresi ve tepki süresi dahil olmak üzere birçok şekilde ölçülebilir.
- > İletim süresi, bir iletinin bir cihazdan diğerine geçmesi için gereken süredir.
- Yanıt süresi, bir sorgu ile yanıt arasında geçen süredir.
- ➤ Bir ağın performansı, kullanıcı sayısı, iletim ortamının türü, bağlı donanımın yetenekleri ve yazılımın verimliliği gibi bir dizi faktöre bağlıdır.
- > Performans genellikle iki ağ metriğiyle değerlendirilir: verim ve gecikme.
- > Genellikle daha fazla verime ve daha az gecikmeye ihtiyacımız vardır.
- > Bununla birlikte, bu iki kriter genellikle çelişkilidir.
- > Ağa daha fazla veri göndermeye çalışırsak, verimi artırabiliriz, ancak ağdaki trafik sıkışıklığı nedeniyle gecikmeyi arttırırız.

Güvenilirlik

> Bilginin dağıtım doğruluğuna ek olarak, ağ güvenilirliği arıza sıklığı, bir bağlantının bir hatadan kurtarılması için gereken süre ve ağın bir istenmeyen durumdaki sağlamlığı ile ölçülür.

Güvenlik

Ağ güvenliği konuları, verilerin yetkisiz erişime karşı korunmasını, verilerin hasara karşı korunmasını ve ihlallerden ve veri kayıplarından kurtulmak için protokol ve prosedürlerin uygulanmasını içerir.

Fiziksel Yapılar

Ağları tartışmadan önce, bazı ağ öz niteliklerini tanımlamamız gerekir.

Bağlantı Türü

- > Bir ağ, bağlantılar aracılığıyla bağlanan iki veya daha fazla cihazdır.
- > Bağlantı, verileri bir cihazdan diğerine aktaran bir iletişim yoludur.
- > İletişimin gerçekleşmesi için iki cihazın aynı anda aynı bağlantıya bir şekilde bağlanması gerekir.
- İki bağlantı türü vardır: noktadan noktaya ve çok noktalı.

Noktadan noktaya

- Noktadan noktaya bağlantı, iki cihaz arasında özel bir bağlantı sağlar.
- Bağlantının tüm kapasitesi bu iki cihaz arasındaki iletim için ayrılmıştır.
- > Çoğu noktadan noktaya bağlantı, iki ucu bağlamak için bir tel veya kablo kullanır, ancak mikrodalga veya uydu bağlantıları gibi diğer seçenekler de mümkündür.
- Kızılötesi uzaktan kumanda ile televizyon kanallarını değiştirdiğinizde, uzaktan kumanda ile televizyonun kontrol sistemi arasında noktadan noktaya bağlantı kurmuş olursunuz.

Çok noktalı

- > Çok noktalı bağlantı, ikiden fazla belirli cihazın tek bir bağlantıyı paylaştığı bağlantıdır.
- > Çok noktalı bir ortamda, kanalın kapasitesi konumsal veya zaman paylaşımlı olarak paylaşılır.
- ➤ Birkaç cihaz bağlantıyı aynı anda kullanabiliyorsa, bu konumsal olarak paylaşılan bir bağlantıdır.
- > Kullanıcıların sırayla gitmesi gerekiyorsa, bu zaman paylaşımlı bir bağlantıdır.

Fiziksel Topoloji

- Fiziksel topoloji terimi, bir ağın fiziksel olarak düzenlenme şeklini ifade eder.
- ➤ İki veya daha fazla cihaz bir bağlantıya bağlanır.
- iki veya daha fazla bağlantı bir topoloji oluşturur.
- ➤ Bir ağın topolojisi, tüm bağlantıların ve bağlantı aygıtlarının (genellikle düğümler olarak adlandırılır) birbirleriyle ilişkisinin geometrik temsilidir.
- Mümkün olan dört temel topoloji vardır: ağ, yıldız, veri yolu ve halka.

Αğ

- > Bir ağ topolojisinde, her cihazın diğer tüm cihazlara özel bir noktadan noktaya bağlantısı vardır.
- Ağ terimi, bağlantının yalnızca bağladığı iki cihaz arasındaki bilgi taşıması anlamına gelir.
- > N düğümlü tamamen bağlı bir ağ ağındaki fiziksel bağlantıların sayısını bulmak için, önce her düğümün diğer düğümlere bağlı olması gerektiğini düşünürüz.
- Düğüm 1, n 1 düğümlerine, düğüm 2, n 1 düğümlerine bağlı olmalı ve son olarak n düğümü n 1 düğümlerine bağlanmalıdır.
- > n(n-1) fiziksel bağlantılara ihtiyacımız var. Bununla birlikte, her fiziksel bağlantı her iki yönde de iletişime izin veriyorsa (çift yönlü mod), bağlantı sayısını 2'ye bölebiliriz.
- > Başka bir deyişle, bir ağ topolojisinde çift yönlü mod bağlantılarına ihtiyacımız olduğunu söyleyebiliriz.

- Bir ağ (mesh), diğer ağ topolojilerine göre çeşitli avantajlar sunar.
- ilki, özel bağlantıların kullanılması, her bağlantının kendi veri yükünü taşıyabileceğini garanti eder, böylece bağlantıların birden fazla cihaz tarafından paylaşılması gerektiğinde ortaya çıkabilecek trafik sorunlarını ortadan kaldırır.
- ikincisi, ağ topolojisi sağlamdır. Bir bağlantı kullanılamaz hale gelirse, tüm sistemi devre dışı bırakmaz.
- Üçüncüsü, gizlilik veya güvenliğin avantajı vardır. Her mesaj özel bir hat boyunca ilerlediğinde, yalnızca hedeflenen alıcı onu görür.
- Fiziksel sınırlar, diğer kullanıcıların iletilere erişmesini engeller.
- > Son olarak, noktadan noktaya bağlantılar arıza tanımlamayı kolaylaştırır.

- Ağ topolojisinin dezavantajları, kablolama miktarı ve gerekli I/O portlarının sayısı ile ilgilidir.
- ilk olarak, her cihazın diğer tüm cihazlara bağlanması gerektiğinden, kurulum ve yeniden bağlantı zordur.
- ikincisi, kablolamanın büyük kısmı, mevcut alanın (duvarlarda, tavanlarda veya zeminlerde) barındırabileceğinden daha büyük olabilir.
- > Son olarak, her bağlantıyı bağlamak için gereken donanım (I/O bağlantı noktaları ve kablo) pahalı olabilir.
- > Bu nedenlerden dolayı, bir ağ topolojisi genellikle sınırlı bir şekilde, örneğin, diğer birkaç topolojiyi içerebilen hibrit bir ağın ana bilgisayarlarını birbirine bağlayan bir omurga olarak uygulanır.
- > Bir ağ topolojisinin pratik bir örneği, her bölge ofisinin diğer tüm bölge ofislerine bağlanması gereken telefon bölge ofislerinin bağlantısıdır.

Yıldız Topolojisi

- > Bir yıldız topolojisinde, her aygıtın yalnızca merkezi bir denetleyiciye ayrılmış bir noktadan noktaya bağlantısı vardır.
- > Cihazlar birbirleriyle doğrudan bağlantılı değildir.
- > Bir ağ topolojisinden farklı olarak, yıldız topolojisi cihazlar arasında doğrudan trafiğe izin vermez.
- > Denetleyici bir değişim görevi görür: Bir cihaz diğerine veri göndermek isterse, verileri denetleyiciye gönderir ve ardından verileri diğer bağlı cihaza iletir.
- ➤ Bir yıldız topolojisi, bir ağ topolojisinden daha ucuzdur.
- > Bir yıldızda, her cihazın herhangi bir sayıda diğerine bağlanması için yalnızca bir bağlantıya ve bir I/O bağlantı noktasına ihtiyacı vardır.
- > Bu faktör aynı zamanda kurulumu ve yeniden yapılandırmayı kolaylaştırır.

18

- > Diğer avantajlar arasında sağlamlık bulunur. Bir bağlantı başarısız olursa, yalnızca o bağlantı etkilenir. Diğer tüm bağlantılar etkin kalır.
- > Bu faktör aynı zamanda kolay arıza tanımlama ve arıza izolasyonuna da katkıda bulunur.
- > Bir yıldız topolojisinin en önemli dezavantajı, tüm topolojinin tek bir merkeze bağımlılığıdır.
- Merkez çökerse, tüm sistem çöker.
- > Bir yıldız topolojisi bir ağ topolojisine göre çok daha az kablo gerektirse de, her düğüm bir merkeze bağlanmalıdır.
- > Bir yıldız topolojisinde genellikle diğer topolojilerden (halka veya veri yolu gibi) daha fazla kablolama gerekir.
- > Yıldız topolojisi yerel alan ağlarında (LAN) kullanılır.
- Yüksek hızlı LAN'lar genellikle merkeze sahip bir yıldız topolojisi kullanır.

Veri Yolu Topolojisi

- Önceki örneklerin tümü noktadan noktaya bağlantıları açıklar.
- > Öte yandan, bir veri yolu topolojisi çok noktalıdır.
- > Uzun bir kablo, bir ağdaki tüm cihazları bağlamak için bir omurga görevi görür.
- Düğümler (istasyonlar), veri yolu kablosuna bırakma hattı ve terminal erişim noktası (tap) ile bağlanır.
- Bırakma hattı, cihaz ile ana kablo arasında çalışan bir bağlantıdır.
- Freminal erişim noktası (tap), metalik çekirdekle temas oluşturmak için ana kabloya eklenen bir konnektördür.
- > Bir sinyal, omurga boyunca ilerledikçe, enerjisinin bir kısmı ısıya dönüşür.

- > Bu nedenle, daha uzağa ilerledikçe daha da zayıflar.
- > Bu nedenle, bir veri yolunun destekleyebileceği terminal erişim nokta sayısı ve bu noktalar arasındaki mesafe konusunda bir sınır vardır.
- ➤ Veri yolu topolojisinin avantajları arasında kurulum kolaylığı bulunur.
- > Omurga kablosu düğümlere çeşitli uzunluklarda bırakma hattı ile bağlanabilir.
- > Bu şekilde, bir veri yolunda ağ veya yıldız topolojilerinden daha az kablolama kullanır.
- > Örneğin bir yıldız topolojisinde, aynı odadaki dört ağ cihazı, merkeze kadar uzanan dört uzunlukta kablo gerektirir.
- ➤ Bir veri yolunda bu fazlalık ortadan kalkar.
- Omurga kablosu tüm tesis boyunca uzanır. Her bırakma hattı sadece omurgadaki en yakın noktaya kadar ulaşır.

- > Dezavantajları arasında yeniden bağlantı ve arıza yalıtımı bulunur.
- > Bir veri yolu genellikle kurulumda optimum verimli olacak şekilde tasarlanmıştır ve bu nedenle yeni cihazlar eklemek zor olabilir.
- > Terminal erişim noktasındaki sinyal yansıması kalitenin düşmesine olur.
- > Bu bozulma, belirli bir kablo uzunluğuna bağlı cihazların sayısını ve aralığını sınırlayarak kontrol edilebilir.
- > Bu nedenle yeni cihazların eklenmesi, omurganın değiştirilmesini veya yerinin değiştirilmesini gerektirebilir.
- Ek olarak, veri yolu kablosundaki bir arıza veya kopma, sorunun aynı tarafındaki cihazlar arasında tüm iletimi durdurur.
- Hasarlı alan, sinyalleri çıkış yönünde geri yansıtır ve her iki yönde de gürültü oluşturur.
- ➤ Veri yolu topolojisi, erken yerel alan ağlarının tasarımında kullanılan ilk topolojilerden biridir.
- Ethernet LAN'ları veri yolu topolojisi kullanır.

Halka Topolojisi

- > Bir halka topolojisinde, her cihazın yalnızca her iki tarafındaki iki cihazla özel bir noktadan noktaya bağlantısı vardır.
- > Bir sinyal, halka boyunca, cihazdan cihaza, hedefine ulaşana kadar bir yönde iletilir.
- > Halkadaki her cihaz bir tekrarlayıcı içerir.
- > Bir cihaz başka bir cihaza ait bir sinyal aldığında, tekrarlayıcısı bitleri yeniden oluşturur ve iletir.
- ➤ Her cihaz yalnızca yakın komşularına bağlıdır.
- > Bir aygıt eklemek veya kaldırmak için yalnızca iki bağlantının değiştirilmesi gerekir.
- > Tek kısıtlama cihaz ve veri iletimi ile ilgili hususlardır (maksimum halka uzunluğu ve cihaz sayısı).

- ➤ Bir halka topolojisinde, sinyal her zaman dolaşır.
- > Bir cihaz belirli bir süre içinde sinyal almazsa, alarm verebilir.
- Alarm, şebeke operatörünü soruna ve konumuna karşı uyarır.
- > Tek yönlü iletim bir dezavantaj olabilir.
- > Basit bir halkada, halkadaki bir mola (devre dışı bırakılmış bir istasyon gibi) tüm ağı devre dışı bırakabilir.
- > Bu zayıflık, çift halka veya kırılmayı kapatabilen bir anahtar kullanılarak çözülebilir.
- > Halka topolojisi, IBM(International Business Machines)'in yerel alan ağı Token Ring'i tanıtmasıyla yaygın hale geldi.
- Bugün, daha yüksek hızlı LAN'lara duyulan ihtiyaç, bu topolojiyi daha az popüler hale getirmiştir.

Hibrit Topoloji

➤ Bir ağ hibrit olabilir. Örneğin, her dalın bir veri yolu topolojisindeki birkaç istasyonu birbirine bağladığı bir ana yıldız topolojisine sahip tasarım gerçekleşebilir.

Kaynak

Forouzan, B. A. (2007). Data communications and networking. Huga Media.

