(insert each element into a sorted partition)

0	1	2	3	4	5	6	7	8	9
18	10	2	14	3	12	1	19		

Slides by Sean Szumlanski

for **CS106B**, Programming Abstractions

Summer 2024

(insert each element into a sorted partition)

0	1	2	3	4	5	6	7	8	9
18	10	2	14	3	12	1	19		

(insert each element into a sorted partition)

0	1	2	3	4	5	6	7	8	9
18	10	2	14	3	12	1	19		

Initially, consider the first element to constitute a separate, sorted vector.

(insert each element into a sorted partition)

Initially, consider the first element to constitute a separate, **sorted** vector.

(insert each element into a sorted partition)

0	1	2	3	4	5	6	7	8	9
18	10	2	14	3	12	1	19		

Now pull the first element out of the unsorted partition of the vector.

(insert each element into a sorted partition)

10

Now pull the first element out of the **unsorted** partition of the vector.

(insert each element into a sorted partition)

Now pull the first element out of the **unsorted** partition of the vector.

(insert each element into a sorted partition)

Now pull the first element out of the **unsorted** partition of the vector.

(insert each element into a sorted partition)

Now pull the first element out of the **unsorted** partition of the vector.

(insert each element into a sorted partition)

Now pull the first element out of the **unsorted** partition of the vector.

(insert each element into a sorted partition)

Now pull the first element out of the **unsorted** partition of the vector.

In the **sorted** partition, scooch everything over that is **greater** than that element.

(insert each element into a sorted partition)

0	1	2	3	4	5	6	7	8	9
4.0	4.0		4.4		4.0		4.0		
10	18	2	14	3	12	1	19		

Now pull the first element out of the **unsorted** partition of the vector.

In the **sorted** partition, scooch everything over that is **greater** than that element.

(insert each element into a sorted partition)

_	0	1	2	3	4	5	6	7	8	9
	10	18	2	14	3	12	1	19		

That was easy!

Let's see if we can do it again.

(insert each element into a sorted partition)

Pull the first element out of the **unsorted** partition of the vector.

(insert each element into a sorted partition)

Pull the first element out of the **unsorted** partition of the vector.

(insert each element into a sorted partition)

Pull the first element out of the **unsorted** partition of the vector.

(insert each element into a sorted partition)

Pull the first element out of the **unsorted** partition of the vector.

(insert each element into a sorted partition)

Pull the first element out of the **unsorted** partition of the vector.

(insert each element into a sorted partition)

Pull the first element out of the **unsorted** partition of the vector.

(insert each element into a sorted partition)

Pull the first element out of the **unsorted** partition of the vector.

(insert each element into a sorted partition)

Pull the first element out of the **unsorted** partition of the vector.

(insert each element into a sorted partition)

Pull the first element out of the **unsorted** partition of the vector.

(insert each element into a sorted partition)

Pull the first element out of the **unsorted** partition of the vector.

Start **scooching** things over if they're greater than 2.

(insert each element into a sorted partition)

0	1	2	3	4	5	6	7	8	9
2	10	18	14	3	12	1	19		

Pull the first element out of the **unsorted** partition of the vector.

Start **scooching** things over if they're greater than 2.

(insert each element into a sorted partition)

0	1	2	3	4	5	6	7	8	9
2	10	18	14	3	12	1	19		

TADA!

Pull the first element out of the **unsorted** partition of the vector.

Start **scooching** things over if they're greater than 2.

(insert each element into a sorted partition)

 0	1	2	3	4	5	6	7	8	9
2	10	18	14	3	12	1	19		

(insert each element into a sorted partition)

14

(insert each element into a sorted partition)

(insert each element into a sorted partition)

 0	1	2	3	4	5	6	7	8	9
2	10	14	18	3	12	1	19		

(insert each element into a sorted partition)

(insert each element into a sorted partition)

0	1	2	3	4	5	6	7	8	9
2	3	10	14	18	12	1	19		

(insert each element into a sorted partition)

12

(insert each element into a sorted partition)

(insert each element into a sorted partition)

(insert each element into a sorted partition)

0	1	2	3	4	5	6	7	8	9
2	3	10	12	14	18	1	19		

(insert each element into a sorted partition)

19

(insert each element into a sorted partition)

0	1	2	3	4	5	6	7	8	9
1	2	3	10	12	14	18	19		

We're finished!

(Hooray!)

(insert each element into a sorted partition)

0	1	2	3	4	5	6	7	8	9
1	2	3	10	12	14	18	19		

- 1. What's the worst-case Big-Oh runtime?
- 2. What's the **best-case** Big-Oh runtime?
- 3. Show the vector after each pass of Insertion Sort.

(let's code it up)

18 10 2 14 3 12 1 19

```
void insertionSort(Vector<int>& v)
{
    for (int i = 1; i < v.size(); i++)
    {
        int val = v[i];
        int gap = i;

        for (int j = gap - 1; j >= 0 && v[j] > val; j--)
        {
            v[j + 1] = v[j];
            gap--;
        }

        v[gap] = val;
    }
}
```