CHAPTER

3

सेल और बैट्री (CELL AND BATTERY)

सेल (Cell)

- यह एक स्थैतिक युक्ति है जो रासायनिक ऊर्जा को विद्युत ऊर्जा में परिवर्तित करता है।
- इसे सिर्कट में ऐसे दर्शाया जाता है—

- ये दो प्रकार के होते हैं :
- (1) प्राथमिक सेल (Primary Cell): जिन सेलों में रसायनों के रासायनिक क्रियाओं के फलस्वरूप विद्युत वाहक बल विकसित होता है उन्हें प्राथमिक सेल कहते हैं।
- इसमें रासायनिक क्रिया अनुत्क्रमणीय होता है।
- प्राथिमक सेल में पैदा होने वाले स्थानीय क्रिया दोष को जस्ता इलेक्ट्रोड पर पारे की पर्त चढाकर (Amalgamation) दूर किया जा सकता है। ये सेल निम्न प्रकार के होते हैं:
- (i) वोल्टेइक सेल (Voltaic Cell):
- सर्वप्रथम वोल्टा नामक वैज्ञानिक ने रसायनिक क्रियाओं के द्वारा विद्युत वाहक बल पैदा कर इसे बनाया था।
- इसमें इलेक्ट्रोलाइट (Electrolyte) के रूप में तनु सल्फ्यूरिक अम्ल (H₂SO₄) तथा एनोड एवं कैथोड के रूप में क्रमश: जस्ता की छड़ एवं ताँबे की छड का प्रयोग किया जाता है।
- इसका विद्युत वाहक बल 1.08 volt होता है।

- (ii) डेनियल सेल (Daniel Cell):
- कैथोड के रूप में ताँबे का एक बेलनाकार पात्र प्रयोग किया जाता है।
 बर्तन में ऊपर की ओर ताँबे का छिद्रयुक्त छन्जा (Balcony) बना होता
 है जिसमें कॉपर सल्फेट (CuSO₄) के ठोस रवे (Crystals) भरे जाते हैं।
- इसमें इलेक्ट्रोलाइट (Electrolyte) के रूप में कॉपर सल्फेट का घोल प्रयोग किया जाता है।

- एक लम्बे बेलनाकार संरध्न पात्र (Porous Pot) में तनु H₂SO₄ भरा जाता है और उसके बीच एक जस्ते की छड़ होती है जो एनोड का कार्य करती है।
- डेनियल सेल का विद्युत वाहक बल (E.M.F.) 1.1 वोल्ट होता है जो
 स्थिर होता है।
- इसका आंतरिक प्रतिरोध $2-6\Omega$ होता है।
- (iii) लैकलांची सेल (Lechlanche Cell) :
- इसमें इलेक्ट्रोलाइट के रूप में अमोनियम क्लोराइड (NH₄Cl) का घोल होता है।
- इसमें कार्बन की छड़ कैथोड का कार्य करती है तथा इलेक्ट्रोलाइट में डुबोई जस्ते की छड़ एनोड का कार्य करती है।
- इसमें विध्रुवक के रूप में मैंगनीज-डाई-ऑक्साइड (MnO2) रहता है।

- लैकलांची सेल का विद्युत वाहक बल 1.46 volts होता है।
- इसका आंतरिक प्रतिरोध $1-5~\Omega$ तक होता है।
- वोल्टेइक अथवा लैकलांची सेल में पॉजिटीव इलेक्ट्रॉड के चारों ओर हाइड्रोजन आयन्स का एकत्र होना ध्रुवाच्छादन कहलाता है।
- (iv) शुष्क सेल (Dry Cell):
- शष्क सेल. लैकलांची सेल का ही संशोधित रूप है।
- इसमें जस्ते का एक बेलनाकार पात्र होता है जो एनोड का कार्य करता है।
- पात्र के ठीक मध्य में एक कार्बन की छड़ स्थापित की जाती है जो कैथोड का कार्य करती है।
- इसमें अमोनियम क्लोराइड, जिंक क्लोराइड तथा प्लास्टर ऑफ पेरिस की लुगदी (Paste) इलेक्ट्रोलाइट के रूप में भरी होती है।
- इसका विद्युत वाहक बल 1.4 1.5 वोल्ट तक होता है।
- इसका उपयोग टॉर्च, दीवार घड़ी, विद्युत घण्टी इत्यादि उपकरणों में होता है।
- इसमें मैंगनीज-डाइ-ऑक्साइड मुख्य रूप से विध्रवक होता है।

(v) मरकरी (Mercury Cell):

- इसमें स्टेनलैस स्टील का एक बेलनाकार पात्र होता है जिसकी तली में मरक्यूरिक ऑक्साइड चूर्ण की (HgO) एक परत होती है जो विध्रुवक एवं कैथोड की भाँति कार्य करती है।
- इसमें पोटैशियम-हाइड्रॉक्साइड (KOH) की लुगदी जिंक ऑक्साइड (ZnO) के साथ इलेक्ट्रोलाइट के रूप में प्रयोग किया जाता है।
- इलेक्ट्रोलाइट परत के ऊपर शुद्ध जस्ता चूर्ण का एनोड बनाया जाता है।
- इस सेल का विद्युत वाहक बल 1.35 से 1.4 वोल्ट तक का होता है।
- इसका व्यास 4 मिमी० तक तथा ऊँचाई 2.5 मिमी तक का होता है।
- इसे बटन सेल (Button Cell) भी कहते हैं।
- इसका उपयोग कलाई घडी, पॉकेट कैलकुलेटर आदि में होता है।

Mercury Dry Cell Battery

- (vi) सिल्वर ऑक्साइड सेल (Silver-Oxide Cell) :
- इसकी संरचना भी मरकरी सेल की भाँति ही होती है लेकिन इसमें HgO
 के स्थान पर सिल्वर ऑक्साइड (Ag₂O) प्रयोग किया जाता है।
- इसका E.M.F. 1.5 वोल्ट होता है।
- यह मरकरी सेल की अपेक्षा महँगा होता है परन्तु इसकी दक्षता उच्च होती है।
- इसका उपयोग अतिलघ् आकार वाले डिजिटल उपकरणों में होता है।

(2) द्वितीयक सेल (Secondary Cell):

- इसे पहले विद्युत देकर आवेशित करना पड़ता है तब यह विद्युत वाहक बल उत्पन्न करता है।
- इसे पुनरावेशित किया जा सकता है।
- इसका विद्यत वाहक बल अधिक होता है।
- इसमें रासायनिक क्रिया उत्क्रमणीय होती है।
- इसे संचित सेल भी कहा जाता है।

(i) लैड-एसिड सैल (Lead Acid Cell)

- इसके प्रमुख भाग निम्नलिखित हैं—
- (a) धन प्लेट (Positive Plate) :
- यह लेड परऑक्साइड (PbO₂) का बना होता है। यह कैथोड होता है।
- पूर्ण चार्ज की अवस्था में यह गहरे भूरे (चॉकलेटी) रंग का होता है।
- (b) ऋण प्लेट (Negative Plate) :
- यह स्पंजी सीसा (Pb) का बना होता है।
- पूर्ण चार्ज की अवस्था में यह स्लेटी (grey) रंग का होता है।
- (c) वैद्युत अपघट्य (Electrolyte) :
- लैड एसिड सैल में इलेक्ट्रोलाइट के रूप में तनु सल्फ्यूरिक अम्ल (Dilute Sulphuric Acid) H₂SO₄ प्रयोग किया जाता है।
- इसमें जल और अम्ल का अनुपात क्रमश: 3:1 होता है।
- इलेक्ट्रोलाइट की अवस्था को आपेक्षिक घनत्व (Specific gravity) के रूप में व्यक्त किया जाता है।
- इलेक्ट्रोलाइट का आपेक्षिक घनत्व हाइडोमीटर से मापा जाता है।
- बैटरी के पूर्ण चार्ज होने पर इलेक्ट्रोलाइट की स्पेसिफिक ग्रेविटी 1.285 होती है। (1280 – 1300)
- चार्ज लेड एसिड बैटरी का इलेक्ट्रोलाइट गाढा होता है।
- यदि इलेक्ट्रोलाइट का आपेक्षिक घनत्व 1.285 से भी अधिक हो जाये तो प्लेटों के ग्रिड पर जंग लगने से इसकी क्षमता कम हो जायेगी और बैटरी का कार्यकाल कम हो जायेगा।
- इलेक्ट्रोलाइट में ही धन और ऋण प्लेटों को डुबोया रखा जाता है तथा इलेक्ट्रोलाइट का लेवल प्लेट के तल से 10–20 mm ऊपर तक रखा जाता है।
- अगर इलेक्ट्रोलाइट का स्तर प्लेटों से नीचे हो जाए तो उनकी क्षमता कम हो जायेगी।
- इलेक्ट्रोलाइट विद्युत के सुचालक होते हैं।
- स्टोरेज बैट्री का emf इलेक्ट्रोलाइट के प्रकार पर भी निर्भर करता है तथा
 प्लेट के क्षेत्रफल पर भी निर्भर करता है।
- (d) सैपरेटर (Separator) :
- धन और ऋण प्लेटों को आपस में शार्ट-सिर्किट होने से बचाने के लिए उनके बीच एक अचालक रखा जाता है जिसे सैपरेटर कहते हैं।
- (e) कॉन्टेनर (Container) :
- यह hard glass या hard rubber का बना होता है ताकि अम्लों में अभिक्रिया न करे।

- इसी के अंदर धन प्लेट, ऋण प्लेट, वैद्युत अपघट्य, सैपरेटर इत्यादि को व्यवस्थित किया जाता है।
- (f) वेन्ट कैप (Vent Cap)
- यह बैटरी के ऊपर में बना हुआ छिद्र होता है जिससे कि अम्ल और पानी की हुई कमी को पुरा किया जाता है।
- चार्जिंग के वक्त इसे खोल दिया जाता है तािक रासायिनक क्रियाओं द्वारा बनी गैसें इससे बाहर आ सके।
- इसमें धन प्लेटों की संख्या ऋण प्लेटों की संख्या से एक कम होती है।
- लेड ऐसिड सेल का प्रति सेल आंतरिक प्रतिरोध हमेशा एडीसन सेल से कम होता है।
- लेड एसिड सेल का औसत वि॰ वा॰ बल (E.M.F.) 2.2 V होता है।
- यदि किसी लेड-एसिड बैट्री को लम्बे समय तक निष्क्रिय रखना हो, तो बैट्री का इलेक्ट्रोलाइट निकालकर इसके प्लेटों को सूखाकर शुष्क, ठंडे एवं साफ जगह में सुरक्षित रखना चाहिए।
- लेड एसिड बैट्री में गैस बाहर निकालने के लिए फिल्टर लगाये जाते हैं।
- इस बैट्री के डिस्चार्ज के समय दोनों एनोड और कैथोड लेड सल्फेट (PbSO₁) में परिवर्तित हो जाते हैं।
- लंड एसिंड बैटरी की एम्पियर-घण्टे दक्षता 90-95% रहती है।
- इसका अनुमानित कार्यकाल दो से पाँच वर्ष है।
- जब ये बैट्री उपयोग में नहीं आ रही हो, तब भी बैटरी लगभग 6 दिन बाद अवश्य चार्ज करना चाहिए।
- डिस्चार्ज सेल के इलेक्ट्रोलाइट का आपेक्षिक घनत्व 1.14 होता है।
- (ii) एडीसन सेल (Edison Cell)/ निकेल आयरन (Ni-Fe-Cell) :
- यह एक क्षारीय सेल है।
- इसमें एक स्टील के पात्र में निकल आलेपित स्टील की बेलनाकार प्लेटें धन प्लेटों का कार्य करती है।
- इन प्लेटों में कुछ पॉकेट्स (Pockets) बनाकर उसमें आयरन हाइड्रेट (Fe(OH)₂) चूर्ण भरा जाता है जो एनोड (ऋण प्लेट) का कार्य करती है।
- इसमें इलेक्ट्रोलाइट के रूप में पोटैशियम हाइड्रॉक्साइड (KOH) तथा लिथियम हाइड्रेट (LiOH) का मिश्रण प्रयोग किया जाता है।

- इसका विद्युत वाहक बल 1.2 1.5 V तक होता है।
- यह एक तर-सेकेंडरी सेल होता है।

- (iii) निकल-कैडमियम सेल (Nickel-Cadmium Cell)
- यह भी एक क्षारीय सेल है।
- इसकी संरचना भी एडीसन सेल के समान ही होती है।
- अंतर सिर्फ यह होता है कि इसमें ऋण प्लेट के रूप में कैडिमियम धातु
 प्रयोग होती है।
- कैडिमियम धातु के प्रयोग से सेल का आंतरिक प्रतिरोध घट जाता है।

बैटरी (Battery)

सेलों के समूहन (Grouping) को बैटरी कहते हैं।

- सेलों को निम्न प्रकार से संयोजित किया जा सकता है।
- (i) श्रेणी समूह (Series Group) :
- अधिक विद्युत वाहक बल प्राप्त करने के लिए सेलों की श्रेणी क्रम में संयोजित किया जाता है।
- ullet यदि सभी सेलों का विद्युत वाहक बल समान हो (E) तो कुल वि० वा० बल (E_{T})

 $E_t = n.E$ जहाँ n सेलों की संख्या है।

 यदि प्रत्येक सेल का आंतरिक प्रतिरोध r हो और लोड प्रतिरोध R हो तो, परिपथ से प्रवाहित होने वाली कुल विद्युत धारा

$$I = \frac{n.E}{n.r + R}$$

- जब बाहरी लोड प्रतिरोध, आंतरिक प्रतिरोध की अपेक्षा अधिक हो सेलों को श्रेणी क्रम में जोड़ना चाहिए।
- (ii) समांतर समूह (Parallel Series) :
- अधिक मान की विद्युत धारा अथवा अधिक समय तक विद्युत धारा प्राप्त करने के लिए सेलों को समानांतर क्रम में संयोजित किया जाता है।
- यदि सभी सेलों का विद्युत वाहक बल समान हो (E) तो कुल वि० वा० बल ($\mathrm{E_T}$)

 $E_T = E$

 यदि प्रत्येक सेल का आंतरिक प्रतिरोध r हो और लोड प्रतिरोध R हो तो परिपथ से प्रवाहित कुल विद्युत धारा (I)

- जब बाहरी लोड प्रतिरोध, आंतरिक प्रतिरोध की अपेक्षा कम हो, सेलों को समांतर क्रम में जोड़ना चाहिए।
- जब बाहरी लोड प्रतिरोध, आंतरिक प्रतिरोध के बराबर हो, तब सेलों को मिक्स क्रम में जोड़ना चाहिए।

- ऐसा क्रम जिसमें श्रेणी और समानांतर क्रम दोनों सेलों को एक साथ जोडा जाता है तो उसे मिक्स क्रम (Mixed Group) कहते हैं।
- जब लोड प्रतिरोध का मान सेलों के कल आंतरिक प्रतिरोध के तल्य हो जाता है तो सर्किट करंट अधिकतम होता है।
- बैटरी की क्षमता एम्पियर घण्टे में व्यक्त की जाती है। (Ah) बैटरी की क्षमता = धारा (एम्पियर में) × समय (घण्टा में) (Ah)
- बैटरी की एम्पियर घण्टा दक्षता $\eta_{Ah}\%$

$$\eta_{Ah}\% = rac{$$
 डिस्चार्जिंग – एम्पियर घंटे $imes 100$ चार्जिंग – एम्पियर घंटे

- लेड-एसिड बैटरी का एंपियर घंटा दक्षता 90-95% होती है।
- बैटरी की वाट-घण्टा दक्षता η_{Wh}%

$$\eta_{Wh}\% = \frac{$$
 डिस्चार्जिंग वाट घटें $}{$ चार्जिंग वाट घंटे $} \times 100$

- लेड एसिड बैटरी की वाट-घण्टा दक्षता का मान 80-85% तक होता है।
- बैटरी की क्षमता डिस्चार्ज की दर पर निर्भर करती है।
- बैटरी चार्जिंग (Battery Charging):
- जब किसी सेल अथवा बैटी को निर्माण के बाद ही या डिस्चार्ज होने पर पुन: किसी बाहरी D.C. स्रोत से जोडा जाता है तो उसे चार्जिंग
- इसके लिए केवल D.C. स्रोत की जरूरत होती है।
- इसमें बैटी का धन संयोजक, स्रोत के धन सिरे तथा ऋण संयोजक, स्रोत के ऋण सिरं से संयोजित किया जाता है।
- बैटरी के चार्जिंग के समय इलेक्ट्राइट का आपेक्षिक घनत्व बढता है।
- लेड-ऐसिड सेल को चार्ज करने की व्यवसायिक विधि स्थिर वोल्टेज विधि है।
- बैटरी को डिस्चार्ज होने के बाद प्लेट का रंग सफेद हो जाता है।
- चार्जिंग के समय लेड-एसिड सेल विद्युत उर्जा को रसायनिक ऊर्जा में परिवर्तित करता है।
- जब Lead Acid Battery को चार्ज किया जाता है तो पॉजिटिव प्लेट lead per oxide बनाती है तथा निगेटिव प्लेट स्पांजी lead ।
- बैटरी के ओवर चार्जिंग होने से उसका आंतरिक प्रतिरोध बढने के साथ-साथ पानी कम हो जायेगा और गैस का उत्सर्जन अधिक होगा।

- यदि चार्ज करते समय बैटरी के कनेक्शन गलत हो जाएँ तो यह बहत अधिक करंट लेगी।
- यदि बैटरी की चार्जिंग रेंट बहुत अधिक हो तो प्लेटों के टेढे होने के साथ-साथ तापमान बढ जायेगा और गैस का उत्सर्जन अधिक होने
- स्थिर वोल्टेज चार्जिंग विधि में डिस्चार्ज से पूर्ण चार्जिंग तक करंट बढता जाता है।
- स्थिर करंट चार्जिंग विधि में डिस्चार्ज से पूर्ण चार्जिंग तक सप्लाई वोल्टेज स्थिर रहता है।
- किसी स्टोरेज बैट्टी की क्षमता उसके प्लेट्स के क्षेत्रफल पर निर्भर करती है।
- दिकल चार्जिंग (Trickle Charging):
- सल्फेशन दोष युक्त लेड-ऐसिड बैटरी को पुनर्जीवित करने के लिए अति निम्न विद्युत धारा दर (सामान्य चार्जिंग धारा का 2-5%) पर आवेशित करना ट्रिकल चार्जिंग कहलाता है।
- महत्वपर्ण तथ्य (Important Facts) :
- बैटरी के डिस्चार्ज के समय सेल की वोल्टेज घटती है।
- विद्युत विच्छेदन के समय जब मुक्त किए गए आयन का भार बढता है, तो उत्पन्न बिजली की मात्रा बढती है।
- बैटरी की स्थिति उच्च दर डिस्चार्जर से निर्धारित की जा सकती है।
- वैद्यतिक अपघटन में कैथोड पर एकत्र होने वाले पदार्थ का द्रव्यमान करंट के परिणाम, विद्युत रसायनिक तुल्यांक तथा समय का गुणनफल
- वैद्युत अपघट्य में उपस्थित अशुद्धियों के कारण सेल की प्लेट्स में आंतरिक शार्ट सर्किट पैदा हो सकता है जो स्थानीय क्रिया कहलाता है।
- जब किसी सेल के पूर्ण चार्ज होने के उपरांत उसमें से गैस बाहर निकलती है तो उसे गैसिंग (gasing) कहते हैं।
- डिस्चार्ज्ड बैट्टी का आंतरिक प्रतिरोध बढ़ जाता है।
- विद्युत रसायनिक क्रिया केवल प्राथमिक सेल के लिए रिवर्सिबल नहीं है।
- स्थिर वोल्टेज प्राप्त करने के लिए पॉवर स्रोत का आंतरिक प्रतिरोध कम होना चाहिए।
- सामान्यत: सबसे अधिक उपयोग होने वाला द्वितीयक सेल (Secondary Cell) लेड-एसिड सेल है।
- यदि सल्फ्यूरिक अम्ल में पानी मिलाया जाए तो अधिक मात्रा में गर्मी पैदा होगी। इसलिए बैट्टी में पहले जल डालते हैं उसके बाद अम्ल।
- कटे हुए आलु में बैट्री के टर्मिनल से जुड़े तार पर हरा रंग प्राप्त होता है।
- कैथोड पर जमा धात का द्रव्यमान आवेश के समानुपाती होता है अर्थात, $m \alpha Q$

 $m \alpha It, m = ZIt$

जहां, $Z \rightarrow$ विद्युत रासायनिक तुल्यांक

Objective Questions

- सर्वप्रथम बनाया गया सेल कौन था?
 - (A) डेनियल सेल
- (B) लैकलांची सेल
- (C) वोल्टेइक सेल
- (D) शुष्क सेल
- वोल्टेइक सेल का विद्युत वाहक बल होता है— 2.
 - (A) 1.08 V
- (B) 2.02 V
- (C) 5 V
- (D) 0.5 V
- 3. डेनियल सेल में प्रयुक्त इलेक्ट्रोलाइट होता है—
 - (A) कॉपर सल्फेट
- (B) सल्फ्यूरिक अम्ल
- (C) मैंगनीज ऑक्साइड
- (D) जिंक ऑक्साइड

- शुष्क सेल किस सेल का संशोधित रूप है— 4.
 - (A) वोल्टेइक सेल
- (B) डेनियल सेल
- (C) लैकलांची सेल
- (D) किसी का नहीं
- लैकलांची सेल में इलेक्टोलाइट के रूप में क्या प्रयक्त होता है ?
 - (A) अमोनियम क्लोराइड
- (B) कॉपर सल्फेट
- (C) मैंगनीज-डाइ-ऑक्साइड (D) H_2SO_4
- निम्न में बटन सेल किसे कहते हैं? 6.
 - (A) लैकलांची सेल
- (B) वोल्टेइक सेल
- (C) मरकरी सेल
- (D) लेड-एसिड बैट्री

7.	सिल्वर ऑक्साइड सेल का E.M.F. कितना होता है ?	21.	प्राइमरी बैटरी में—
	(A) 0.5 V (B) 1.5 V		(A) रासायनिक क्रिया उत्क्रमणीय होती है।
	(C) 2.5 V (D) 2.02 V		(B) रासायनिक क्रिया उत्क्रमणीय नहीं होती है।
8.	प्राथिमक सेल की अपेक्षा द्वितीयक सेल का विद्युत वाहक बल होता है—		(C) कोई रासायनिक क्रिया नहीं होती है।
	(A) कम (B) बराबर	00	(D) रासायनिक क्रिया होती है। सेकेंडरी बैटरी में—
	(C) अधिक (D) इनमें से कोई नहीं	22.	
9.	निम्न में से कौन क्षारीय सेल है ?		(A) रासायनिक क्रिया उत्क्रमणीय होती है।(B) रासायनिक क्रिया उत्क्रमणीय नहीं होती है।
	(A) निकेल कैडिमियम सेल (B) डेनियल सेल		(C) कोई रासायनिक क्रिया नहीं होती है।
	(C) वोल्टेइक सेल (D) लैकलांची सेल		(D) रासायनिक क्रिया होती है।
10.	कैडिमियम धातु के प्रयोग से सेल का आंतरिक प्रतिरोध—	23.	सेकेन्डरी सेल का उदाहरण है-
10.	(A) घटता है (B) बढ़ता है	20.	
			(A) लेक्लांशी सेल(B) लेड एसिड सेल(C) शुष्क सेल(D) डेनियल सेल
4.4	(C) कुछ प्रभाव नहीं पड़ता (D) अनंत हो जाता है	24.	निम्न में से कौन-कौन लेड-एसिड बैटरी के सिक्रय तत्व हैं ?
11.	चार्जिंग क्या है ?	27.	(A) निकेल हाइड्रेटेड और लौह ऑक्साइड
	(A) किसी सेल को लोड के साथ जोड़ना		(B) लेड पर ऑक्साइड और स्पांजी सीसा
	(B) किसी सेल को डिस्चार्ज होने पर पुन: DC से जोड़ना		(C) मैंगनीज डाइऑक्साइड और कार्बन
	(C) किसी सेल की सफाई करना		(D) स्पांज सीसा
	(D) उपरोक्त सभी	25.	कौन-सा इलेक्ट्रोलाइट लेड-एसिड बैटरी में प्रयोग होता है ?
12 .	बैट्री चार्जिंग के लिए किस प्रकार के स्रोत की आवश्यकता होती है ?		(A) सल्फ्यूरिक एसिड (B) एक्वारेजिया
	(A) केवल A.C. स्रोत		(C) मैंगनीज डाइऑक्साइड (D) नाइट्रिक एसिड
	(B) केवल D.C. स्रोत	26.	निम्न में से कौन बैटरी की क्षमता व्यक्त करता है-
	(C) A.C. और D.C. दोनों		(A) ऐम्पियर घंटा (B) ऐम्पियर वोल्ट
	(D) ना ही A.C. और ना ही D.C.		(C) बाट घंटा (D) बोल्ट
13 .	डेनियल सेल का आंतरिक प्रतिरोध होता है—	27.	निम्न में से किस पर बैटरी की क्षमता निर्भर करती है?
	(A) $0-2 \Omega$ (B) $10-15 \Omega$		(A) डिस्चार्ज की दर (B) यह स्वतंत्र है
	(C) 2-6 Ω (D) शून्य		(C) वाट-घंटा (D) तापमान
14.	पॉकेट कैलकुलेटर आदि में किस प्रकार के सेल की जरूरत होती है ?	28.	वोल्ट शुष्क सेल का वि.वा. बल होता है।
	(A) लेड-एसिड सेल (B) डेनियल सेल		(A) 2.5 V (B) 2.0 V (C) 1.8 V (D) 1.5 V
	(C) बोल्टेइक सेल (D) मरकरी सेल		(C) 1.8 V (D) 1.5 V
15	लेड-एसिड बैट्री का कॉन्टेनर किस पदार्थ का बना होता है ?	29 .	क्या होता है जब बैटरी डिस्टार्ज होती है ?
15 .			(A) सेल की वोल्टेज घटती है।(B) सेल की वोल्टेज बढ़ती है।
	(A) लोहा (B) सीसा		(C) वोल्टेज बदलती नहीं है। (D) इनमें से कोई नहीं
	(C) hard रबर (D) चाँदी	30 .	निम्न में से कौन एडिसन सेल में प्रयुक्त इलेक्ट्रोलाइट है?
16 .	स्पेसिफिक ग्रेविटी की इकाई क्या होती है ?		(A) सल्फ्यूरिक एसिड (B) पोटैशियम हाइड्रोक्साइड
	(A) cm/kg (B) kg/cm^2		(C) निकिल हाइड्रेटेड (D) नाइट्रिक एसिड
	(C) kg/cm (D) कोई इकाई नहीं होती	31 .	वोल्ट लेड एसिड सेल का औसत वि.वा. बल है—
17 .	सिल्वर ऑक्साइड सेल की दक्षता, मरकरी सेल की दक्षता से—		(A) 1 V (B) 1.08 V
	(A) अधिक होती है (B) कम होती है		(C) 2.8 V (D) 2.2 V
	(C) बराबर होती है (D) इनमें से कोई नहीं	32 .	इलेक्ट्रोक्लाइट का आपेक्षिक घनत्व क्या होगा जब बैटरी चार्ज हो
18 .	मरकरी सेल में विध्रुवक का कार्य कौन करता है?		रही हो ?
	(A) पोटैशियम हाइड्राक्साइड (B) जिंक ऑक्साइड		(A) घटता है। (B) बढ़ता है।
	(C) मरक्यूरिक ऑक्साइड (D) अमोनियम क्लोराइड	0.0	(C) बदलता नहीं है। (D) इनमें से कोई नहीं
19 .	लैकलांची सेल में ऋण ध्रुव का कार्य कौन करता है ?	33.	चार्ज सेल का आपेक्षिक घनत्व होता है।
	(A) जस्ते की छड़ (B) कार्बन की छड़		(A) 1.25 (B) 0.89
	(C) MnO ₂ का लेप (D) CuSO ₄ के रवे (crystals)	24	(C) 1.10 (D) 2.99
20.	निम्न में से कौन का कार्य विद्युत बैटरी करती है ?	34.	इलेक्ट्रोलाइट का आपेक्षिक घनत्व क्या होगा जब बैटरी डिस्चार्ज हो ?
۷٠.			(A) 1.25 (B) 1.14 (C) 2.25 (D) 0.05
		35.	(C) 2.25 (D) 0.95 बैटरी के प्लेट का रंग कैसा होगा जब बैटरी डिस्चार्ज हो ?
	(B) यांत्रिक ऊर्जा को विद्युत् ऊर्जा में बदलती है। (C) ऊष्मा ऊर्जा को प्रकाश ऊर्जा में बदलता है।	JJ.	बटरा के प्लट का रंग कसा होगा जब बटरा डिस्चाज हा? (A) हरा (B) चॉकलेटी
	, ,		(D) चाक्रसटा (C) भूरा (D) सफेद
	(D) प्रकाश ऊर्जा को विद्युत् ऊर्जा में बदलता है।	<u> </u>	(D) 4414
THE	PLATFORM Join online test series : w	ww.platfor	monlinetest.com ITI TRADE THEORY, VOL2 ■ 32

- 36. बैटरी के धनप्लेट का रंग कैसा होगा जब बैटरी पूर्णत: चार्ज हो ?
 - (A) हरा
- (B) भूरा (धूसर)
- (C) चॉकलेटी
- (D) <u>ब</u>्लू
- 37. बैटरी के ऋण प्लेट का रंग कैसा होगा जब बैटरी पूर्णत: चार्ज हो ?
 - (A) हरा
- (B) स्लेटी
- (C) चॉकलेटी
- (D) पीला
- 38. किसके द्वारा इलेक्ट्रोलाइट का आपेक्षिक घनत्व मापा जाता है ?
 - (A) हाइड्रोमीटर
- (B) हाइग्रोमीटर
- (C) टेकोमीटर
- (D) सेल टेस्टर
- 39. सेल्स को कैसे संयोजित करें ताकि उसकी एंपियर क्षमता बढे ?
 - (A) सिरीज में
- (B) समानांतर में
- (C) सिरीज-पैरेलल में
- (D) पैरेलल-सिरीज में
- 40. लेड-एसिड में सिक्रय पदार्थ होता है-
 - (A) तनु गंधक का अम्ल
- (B) स्पंजी लेड
- (C) लेड परऑक्साइड
- (D) ये सभी
- 41. निम्न में किसमें बैट्टी की क्षमता मापी जाती है?
 - (A) किलोवाट-घंटा में
- (B) वाट्स में
- (C) एंपियर में
- (D) ऐम्पियर-घंटा में
- 42. कार्बन-जिंक सेल (लैकलांची सेल) में विध्नुवक का क्या कार्य है?
 - (A) उत्पन्न हुई हाइड्रोजन को जल में परिवर्तित करना
 - (B) जिंक के बर्तन पर होने वाली रासायनिक प्रक्रिया की तीव्रता को कम करना
 - (C) सेल का आंतरिक प्रतिरोध बढा़ना
 - (D) उत्पन्न हुई ऑक्सीजन का शोषण करना
- 43. विध्रुवक का कार्य शुष्क सेल में कौन करता है?
 - (A) अमोनिया क्लोराइड
- (B) जिंक क्लोराइड
- (C) पेरिस प्लास्टर
- (D) मैंगनीज डाईऑक्साइड
- **44.** एक 144 Ah बैट्री, 9A करंट लगभग घंटों तक प्रदान कर सकती है।
 - (A) 144
- (B) 9
- (C) 18
- (D) 16
- 45. निकेल आयरन सेल होता है—
 - (A) तर सेकंडरी सेल
- (B) शुष्क प्राइमरी सेल
- (C) तर प्राइमरी सेल
- (D) शष्क सेकंडरी सेल
- 46. क्या करेंगे यदि किसी लेड-एसिड बैट्री को लंबे समय तक निष्क्रिय रखना हो ?
 - (A) बैट्री को ओवरचार्ज कर देना चाहिए।
 - (B) इलेक्ट्रोलाइट निकाल देना चाहिए।
 - (C) प्लेट्स को आसुत जल से धो देना चाहिए।
 - (D) बैट्री का इलेक्ट्रोलाइट निकालकर, बैट्री को सूखाकर, शुष्क, ठंडे व स्वच्छ स्थान में सुरक्षित रख देना चाहिए।
- 47. लेड एसिड सेल चार्जिंग के समय विद्युत ऊर्जा को किस ऊर्जा में बदलता है ?
 - (A) ऊष्मीय ऊर्जा में
- (B) रासायनिक ऊर्जा में
- (C) प्रकाश ऊर्जा में
- (D) यांत्रिक ऊर्जा में
- 48. किस रूप में इलेक्ट्राइट की अवस्था व्यक्त की जाती है—
 - (A) आपेक्षिक घनत्व के रूप में
 - (B) आउटपुट वोल्टेज के रूप में
 - (C) आउटपुट करंट के रूप में
 - (D) अम्लीय अंश के रूप में

- 49. सेकेंडरी सेल का मुख्य लाभ होता है—
 - (A) इसे सचल वैद्युतिक स्रोत के रूप में प्रयोग किया जा सकता है।
 - (B) इसे पुन: आवेशित किया जा सकता है।
 - (C) इसका मूल्य कम होता है।
 - (D) इसका आकार छोटा होता है।
- 50. किस प्रक्रिया में गैसिंग संपन्न होता है—
 - (A) शुष्क सेल की डिस्चार्जिंग प्रक्रिया में
 - (B) लेड-एसिड सेल की डिस्चार्जिंग प्रक्रिया में
 - (C) लेड-एसिड सेल की चार्जिंग प्रक्रिया में
 - (D) इनमें से कोई नहीं
- 51. कैसे लेड-एसिड सेल के लिए इलेक्ट्रोलाइट तैयार किया जाता है ?
 - (A) हाइड्रोक्लोरिक अम्ल को जल में घोलकर
 - (B) सल्फ्यूरिक अम्ल को जल में घोलकर
 - (C) सल्फ्यूरिक अम्ल को कार्बनिक अम्ल में घोलकर
 - (D) उसके आकार पर
- 52. निम्नलिखित किस तथ्य पर किसी स्टोरेज बैट्री की क्षमता निर्भर करती है—
 - (A) उसकी प्लेट्स के क्षेत्रफल पर
 - (B) उसकी प्लेट्स की मोटाई पर
 - (C) इलेक्ट्रोलाइट के घनत्व पर
 - (D) उसके आकार पर
- 53. डिस्चार्ज्ड बैट्री का आंतरिक प्रतिरोध—
 - (A) घट जाता है।
- (B) वही रहता है।
- (C) बढ़ जाता है। (D) ऋणात्मक हो जाता है।
- **54.** चित्र में दर्शाए गए परिपथ का प्रभावी वि०वा०ब० (E_r) कितना होगा ?

- (A) 12 V
- (B) 6 V
- (C) 4 V
- (D) 8 V
- 55. ये एक प्राइमरी सेल नहीं है।
 - (A) डेनियल सेल
- (B) लैकलांची सेल
- (C) लेड-एसिड सेल
- (D) शष्क सेल
- 56. चित्र में 1.5 V के 6 सेलों को श्रेणीक्रम में जोड़ा गया है। + और - टर्मिनल्स के आर-पार जुड़ा वोल्टमीटर निम्न माप दर्शाएगा ?

- (A) 3.5 V
- (B) 15.0 V
- (C) 20.0 V
- (D) 2.5 V
- 57. सेल, e.m.f. प्रदान करने का एक स्रोत है, जिसमें
 - (A) विद्युत् ऊर्जा एकत्रित रहती है।
 - (B) रासायनिक ऊर्जा एकत्रित रहती है, उसे विद्युत् ऊर्जा में बदला जाता है।
 - (C) विद्युत् ऊर्जा एकत्रित रहती है, उसे रासायनिक ऊर्जा में बदला जाता है।
 - (D) रासायनिक ऊर्जा एकत्रित रहती है और उसमें कोई परिवर्तन नहीं होता।

- 58. क्यों हम सेलों की सीरिज में जोडते हैं?
 - (A) अधिक करंट चाहिए।
- (B) अधिक वोल्टेज चाहिए।
- (C) स्थिर वोल्टेज चाहिए।
- (D) स्थिर करंट चाहिए।
- 59. कब हम सेलों को पैरलल में जोडते हैं?
 - (A) अधिक करंट चाहिए।
- (B) अधिक वोल्टेज चाहिए।
- (C) स्थिर वोल्टेज चाहिए।
- (D) स्थिर करंट चाहिए।
- 60.सेल के लिए विद्युत-रासायनिक क्रिया रीवर्सिबल नहीं है।
 - (A) केवल प्राइमरी सेल
 - (B) क्रेवल सेकेंडरी सेल
 - (C) दोनों प्राइमरी और सेकेंडरी सेल
 - (D) इनमें से कोई नहीं
- **61.** जब n संख्या के सेलों को जिनका आंतरिक रेजिस्टेंस $r\Omega$ और e.m.f. E वोल्ट है, सीरीज में जुड़े हैं। एक बाहरी रेजिस्टेंस $R\Omega$ से होकर बहने वाले करंट ज्ञात करने का सूत्र—
 - (A) $i = \frac{nE}{R + nr}$
- (B) $i = \frac{E}{R + \frac{r}{n}}$
- (C) $i = \frac{nE}{r + nE}$
- (D) $i = \frac{E}{R+r}$
- **62.** सेलों को किस क्रम में जोड़ना चाहिए जब बाहरी लोड रेजिस्टेंस, आंतरिक रेजिस्टेंस की अपेक्षा अधिक हो?
 - (A) सीरीज में
- (B) पैरेलल में
- (C) मिक्स ग्रुप में
- (D) इनमें से कोई नहीं
- **63.** सेलों को किस क्रम में जोड़ना चाहिए, जब बाहरी लोड रेजिस्टेंस, आंतरिक रेजिस्टेंस की अपेक्षा कम हो?
 - (A) सीरीज में
- (B) पैरेलल में
- (C) मिक्स ग्रुप में
- (D) इनमें से कोई नहीं
- **64.** सेलों को किस क्रम में जोड़ना चाहिए जब बाहरी लोड रेजिस्टेंस, आंतरिक रेजिस्टेंस के बराबर हो ?
 - (A) सीरीज में
- (B) पैरेलल में
- (C) मिक्स ग्रुप में
- (D) इनमें से कोई नहीं
- 65. स्थिर वोल्टेज प्राप्त करने के लिए पॉवर स्रोत का-
 - (A) आंतरिक रेजिस्टेंस कम होना चाहिए।
 - (B) आंतरिक रेजिस्टेंस अधिक होना चाहिए।
 - (C) दक्षता न्यूनतम होनी चाहिए।
 - (D) न्युनतम करंट क्षमता होनी चाहिए।
- 66. किस कारणवश सेलों को सीरिज में जोड़ा जाता है?
 - (A) वोल्टेज आउटपुट अधिक प्राप्त करने के लिए
 - (B) वोल्टेज आउटपुट कम प्राप्त करने के लिए
 - (C) आंतरिक रेजिस्टेंस कम करने के लिए
 - (D) करंट क्षमता बढाने के लिए
- 67. सेकेंडरी सेल, जो सामान्यत: उपयोग किया जाता है?
 - (A) आयरन-निकेल सेल
- (B) निकेल-कैडमियम सेल
- (C) लेड-एसिड सेल
- (D) लैकलेंचीं सेल
- 68. किस रूप में ऊर्जा लेड-एसिड बैट्री को चार्ज करें?
 - (A) डाइलैक्ट्रिको स्टेटिक ऊर्जा (B) यांत्रिक ऊर्जा
 - (C) रासायनिक ऊर्जा (D) आण्विक ऊर्जा
- 69. घन प्लेट क्या बन जायेगा यदि बैट्टी को चार्ज करें?
 - (A) लेड
- (B) लेड ऑक्साइड
- (C) लेड परऑक्साइड
- (D) लिथारज लेड मोनोऑक्साइड

- 70. बैट्टी की दोनों प्लेटें क्या बन जाती है यदि बैट्टी डिस्चार्ज हो ?
 - (A) लेड हाइड्रोक्साइड
- (B) फेरस ऑक्साइड
- (C) लेड ऑक्साइड
- (D) लेड सल्फेट
- 71. किस कारणवश लेड एसिड बैट्टी में सेपेरेटर लगाया जाता है?
 - (A) पोलेराइजेशन को रोकने के लिए
 - (B) करंट के बहाव में मदद के लिए
 - (C) आंतरिक रेजिस्टेंस कम करने के लिए
 - (D) आंतरिक शॉर्ट सर्किट को रोकने के लिए
- 72. क्या होता है जब लेड-एसिड बैट्टी पूर्णत: डिस्चार्ज हो ?
 - (A) दोनों एनोड और कैथोड PbSO₄ बन जाते हैं।
 - (B) तेजाब की स्पेसिफिक ग्रेविटी बढ़ जाती है।
 - (C) सभी सेलों की वोल्टेज बढ जाती है।
 - (C) सभा सला का वाल्टज बढ़ जाता
 - (D) इनमें से कोई नहीं
- 73. क्या होता है जब लेड-एसिड बैट्टी चार्ज होती है—
 - (A) एनोड का रंग बदल जाता है।
 - (B) सेल की वोल्टेज कम हो जाती है।
 - (C) इलेक्ट्रोलाइट की स्पेसिफिक ग्रेविटी बढ़ जाती है।
 - (D) धारा का मान अति निम्न हो जाता है।
- 74. कैसे पता लगायेंगे कि लेड एसिड बैटरी पूर्ण चार्ज है?
 - (A) वोल्टेज नापेंगे।
 - (B) इलेक्ट्रोलाइट की स्पेसिफिक ग्रेविटी नापेंगे।
 - (C) गैस निकल रही है।
 - (D) उपरोक्त सभी
- 75. इलेक्ट्रोलाइट का आपेक्षिक घनत्व कितना होगा अगर बैटरी पूर्ण चार्ज हो—
 - (A) 1.285
- (B) 3.225
- (C) 1.114
- (D) 2.000
- 76. धन प्लेट और ऋण प्लेक्ट क्रमश: क्या होंगे जब बैटरी पूर्ण चार्ज हो ?
 - (A) शुद्ध लेड और लेड ऑक्साइड
 - (B) लेड परऑक्साइड और लेड सल्फेट
 - (C) लेड परऑक्साइड और शुद्ध लेड
 - (D) लेड सल्फेट और लेड ऑक्साइड
- 77. इलेक्टोलाइट कैसा होगा यदि बैटी चार्ज हो—
 - (A) गाढा होता है।
 - (B) पतला होता है।
 - (C) पानी से मिलकर पतला होता है।
 - (D) कोई परिवर्तन नहीं होता है।
- 78. निम्न में से कौन लेड-एसिड बैट्टी की एम्पियर घंटे दक्षता दर्शाता है ?
 - (A) 90–95%
- (B) 30-35%
- (C) 70–75%
- (D) 50-60%
- 79. निम्न में से कौन लेड-एसिड बैट्री का अनुमानित कार्यकाल दर्शाता है—
 - (A) छ: माह है।
- (B) सौ वर्ष है।
- (C) दो से पाँच वर्ष है।
- (D) पाँच से दस वर्ष है।
- 80. क्या होगा जब बैट्री ओवर चार्ज हो जायेगी?
 - (A) आंतरिक रेजिस्टेंस बढ जाएगा।
 - (B) पानी की कमी हो जाएगी।
 - (C) अधिक गैस निकलेगी।
 - (D) उपरोक्त सभी लक्षण
- 81. किस लक्षण द्वारा बैटी की चार्जिंग का का पता लगायेंगे?
 - (A) इलेक्ट्रोलाइट की स्पेसिफिक ग्रेविटी
 - (B) इलेक्ट्रोलाइट की तापमान
 - (C) इलेक्ट्रोलाइट का रंग
 - (D) इलेक्ट्रोलाइट का तल

82. किस बैटी को टिकल चार्जिंग की आवश्यकता होता है। 95. लेड एसिड बैट्री के इलेक्ट्रोलाइट में पानी तथा अम्ल का अनुपात (A) लेड एसिड बैटरी (B) निकेल आयरन बैटरी रखते हैं— (C) प्राइमरी सेल (D) उपरोक्त सभी (A) 2:1(B) 16:1 निम्न में से किस पर स्टोरेज बैट्टी का emf निर्भर करता है। (D) 5:1 83. (C) 3:1 प्रति सेल वोल्टेज कितना होता है यदि बैट्टी पूर्ण चार्ज हो? (A) इलेक्ट्रोड के साइज पर (B) सेल के आकार पर 96. (C) इलेक्टोड के प्रकार पर (D) उपरोक्त सभी कारण (B) 2.5 V (A) 1.5 V कितने देर बाद बैटी को चार्ज करेंगे जब उसे उपयोग में नहीं रखते है? 84. (C) 2.2 V (D) 0.5 V (B) 6 दिन बाद (A) 6 घंटे बाद 97. इलेक्ट्रोलाइट का आपेक्षिक घनत्व क्या होगा यदि बैट्टी पूर्ण डिस्चार्ज हो? (C) 6 सप्ताह बाद (D) 6 माह बाद (A) 1.5 (B) 2.9 किसके द्वारा इलेक्टोलाइट का आपेक्षिक घनत्व मापते हैं? 85. (C) 2.5 (D) 1.14 (A) हाइग्रोमीटर (B) लैक्टोमीटर एक बैट्री की क्षमता 200 AH है, यदि बैट्री पर लगा कोड 5A धारा (C) हाइडोमीटर (D) टेकोमीटर लेता है, तो बैट्टी कितने घंटे कार्य करेगी? 86. क्या होगा अगर चार्ज करते समय बैटरी के कनेक्शन गलत हो जाएँ ? (A) 6 घंटे (B) 40 घंटे (A) बहत अधिक करंट लेगी। (C) 200 घंटे (D) 10 घंटे (B) करंट बहुत कम लेगी। 99. कटे हुए आलु में बैट्टी के टर्मिनल से जुड़े तार पर रंग प्राप्त होगा— (C) बिल्कुल करंट नहीं लेगी। (B) पीला (A) लाल (D) बैट्टी बहुत अधिक मात्रा में करंट देगी। (D) स्लेटी (C) हरा **87**. क्या होगा अगर सेल को 1.78 V से भी नीचे तक डिस्जार्च किया 100. 6 सेलों को जिनमें से प्रत्येक emf E का है, श्रेणी में जोडा जाता है। इस यौगिक का प्रभावी emf होगा— (A) प्लेटों पर सल्फेशन जमा हो जाएगा। (A) E (B) 6E (B) सेल की क्षमता कम हो जाएगी। (C) E/6 (D) 6/E(C) आंतरिक रेजिस्टेंस बढ जाएगा। 101. सीसा सेल में ऋणात्मक प्लेटों की संख्या होती है— (D) उपरोक्त सभी गुण (A) धनात्मक प्लेट से एक कम क्या होगा अगर इलेक्ट्रोलाइट का आपेक्षिक घनत्व 1.23 से अधिक 88. (B) धनात्मक प्लेट से एक अधिक हो जाए? (C) धनात्मक प्लेट के बराबर (A) प्लेटों के ग्रिड पर जंग लग जाएगा। (D) ऐसा कोई प्रतिबंध नहीं है (B) क्षमता कम हो जाएगी। ऐसा सेल जिसमें रासायनिक अभिक्रिया अप्रतिक्रम्य नहीं होती, (C) कार्यकाल कम हो जाएगा। कहलाता है— (D) उपरोक्त सभी कारण (A) द्वितीयक सेल (B) प्राथमिक सेल क्या होगा यदि इलेक्ट्रोलाइट का लेवल प्लेटों के लेवल से कम हो जाए ? 89. (D) ऐडिसन सेल (C) वोल्टीय सेल (A) ओपन प्लेटें लेड सल्फेट में परिवर्तित हो जाएगी। 103. अगर चार सेल प्रत्येक 1.5 वोल्ट सीरिज में जोड़ा जाय तो संपूर्ण (B) क्षमता कम हो जाएगी। ई.एम.एफ. क्या होगा? (C) कार्यकाल कम हो जाएगा। (A) 1.5 V (B) 3 V (D) उपरोक्त सभी कारण (C) 6 V (D) 0.375 V स्थिर वोल्टेज चार्जिंग विधि में, डिस्चार्ज से पूर्ण चार्जिंग तक करंट-90. 104. एक संचयी सेल में क्या संचित रहता है? (A) बढता जाता है। (B) कम होता जाता है। (A) विद्युत आवेश (B) विद्यत विभव (C) स्थिर रहता है। (D) इनमें से कोई नहीं (D) रासायनिक ऊर्जा (C) सीसा या अन्य धातु डिस्चार्ज से पूर्ण चार्जिंग तक सप्लाई वोल्टेज क्या होती है ? जब स्थिर 105. क्षारीय बैटरियाँ निम्नलिखित क्रिया द्वारा विद्युत उत्पन्न करती हैं— 91. करंट चार्जिंग विधि प्रयोग करते हैं ? (A) ऊष्मा (B) चुंबकीय क्रिया (A) बढ़ती रहती है। (B) कम होती रहती है। (D) रासायनिक क्रिया (C) ঘর্षण (D) इनमें से कोई नहीं (C) स्थिर रहती है। 106. बैटरी का प्रयोग किया जाता है—रॉड शुष्क सेल में धनात्मक प्लेट का कार्य करता है। (A) विभव अंतर बनाए रखने के लिए 92. (B) विद्युत धारा मापने के लिए (A) ताँबे की (B) लोहे की (C) कार्बन की (D) पीतल की (C) विद्युत विभव मापने के लिए (D) शॉर्ट-सर्किट के विरुद्ध सुरक्षा उपाय करने के लिए निम्न में से कौन शुष्क सेल का वि.वा. बल दर्शाता है? 93. 107. सेल में इलेक्ट्रोलाइट का तल होना चाहिए-(A) 3.5 V (B) 2.5 V (A) प्लेटों के तल से ऊपर (C) 1.5 V (D) 3 V (B) प्लेटों के तल के समान कौन-सी राशि अधिक मिलेगी अगर सेलों को समांतर क्रम में सजाएँ ? 94. (C) मिट्टी में रसायन की किस्म (A) वोल्टेज (B) शक्ति (D) इनमें से सभी (D) इनमें से कोई नहीं (C) धारा

- 108. सेल में शॉर्ट-सर्किट का कारण हो सकता है—
 - (A) प्लेटों का व्याक्ंचन
 - (B) धन प्लेटों और ऋण प्लेटों के बीच लैड कणों के कारण परिपथ का बनना
 - (C) दोषपूर्ण सैपरेटर्स
 - (D) इनमें से कोई भी
- 109. बैटरी डिस्चार्ज होते समय बैटरी की वोल्टेज-
 - (A) बढती है
 - (B) ਬਟਰੀ हੈ
 - (C) कोई बदलाव नहीं
 - (D) कभी बढती है, कभी घटती है
- 110. संचायक बैटरी की क्षमता निम्नलिखित में व्यक्त की जाती है—
 - (A) कितनी बार इसे रिचार्ज किया जा सकता है
 - (B) समय जिसके लिए इसका प्रयोग किया जा सकता है
 - (C) इसमें कितने सेल हैं
 - (D) बैटरी कितने एम्पियर-घंटा की विद्यत दे सकती है
- 111. कारों में निम्नलिखित एम्पीयर-घंटा क्षमता की बैटरियों का प्रयोग किया जाता है—
 - (A) 5-10 Ah
- (B) 30-60 Ah
- (C) 100–150 Ah
- (D) 200-250 Ah
- 112. किसी 6V सीसा अम्ल बैटरी का आंतरिक प्रतिरोध 0.01 ओह्म है। बैटरी के लघु परिपथित होने पर कितना करंट प्रवाहित होगा ?
 - (A) 1 A
- (B) 6 A
- (C) 100 A
- (D) 600 A
- 113. लोड सेल है एक—
 - (A) स्ट्रेन गेज
- (B) फोटो-वोल्टाइक सेल
- (C) थर्मिस्टर
- (D) प्रेशर पिक-अप
- 114. सीसा-अम्ल बैटरी को चार्ज करने के दौरान निम्नलिखित में से किसमें विद्ध होगी ?
 - (A) टर्मिनल वोल्टेज
- (B) अम्ल का आपेक्षिक घनत्व
- (C) प्लेटों का भार
- (D) बैटरी का भार

- 115. शुष्क सेल का ऋणात्मक पोल निम्न में से किस चीज से बना होता है ?
 - (A) पारा
- (B) कार्बन
- (C) जस्ता
- (D) तांबा
- 116. लेड एसिड सेल की वॉट-आवर (watt-hour) कुशलता किस प्रतिशत के बीच बदलती रहती है ?
 - (A) 20% से 40%
- (B) 80% से 85%
- (C) 40% से 60%
- (D) 90% 社 95%
- 117. निकल को कहां उपयोग किया जाता है?
 - (A) बैटरी
- (B) जनरेटर
- (C) दिष्टकारी (Rectifier)
- (D) मोटर
- 118. एक लेड ऐसिड सेल का विशेष पावर क्या है?
 - (A) 140 वाट/किग्रा
- (B) 160 वाट/ग्रा
- (C) 120 वाट/ग्रा
- (D) 180 वाट/किग्रा
- 119. एक लेड एसिड सेल का ऊर्जा घनत्व क्या है?
 - (A) 90-90 wh/L
- (B) $80-110 \, wh/L$
- (C) 110-60 wh/L (D) 60-110 wh/L
- 120. लेड एसिड सेल को किस वोल्टेज से नीचे डिस्टार्ज नहीं किया जाना चाहिए ?
 - (A) 2 V
- (B) 2.3 V
- (C) 1.8 V
- (D) 2.15 V
- 121. निकिल आयरन सेल, किस प्रकार की सेल है ?
 - (A) शुष्क द्वितीयक सेल
- (B) गीला प्राथमिक सेल
- (C) शुष्क प्राथमिक सेल
- (D) गीला व द्वितीयक सेल
- 22. निम्नलिखित में से क्या निकिल कैडमियम सेल का एक लाभ है?
 - (A) स्वयं निर्वहन (सेल्फ-डिस्चार्जिंग) कम हो जाती है
 - (B) उच्च भीतरी प्रतिरोध होता है
 - (C) यह दूसरे सेलों से अधिक आम होता है
 - (D) यह इलेक्ट्रोलाइट एसिड नहीं होता है
- 123. यदि 100-ah क्षमता वाली बैटरी से 8A का करंट लिया जा रहा है, तो वह लगभग कितने घंटे चलेगी ?
 - (A) 20 ਬਂਟੇ
- (B) 8 घंटे
- (C) 12.5 घंटे
- (D) 100 घंटे

ANSWERS KEY												
1. (C)	2 . (A)	3. (A)	4 . (C)	5 . (A)	6. (C)	7 . (B)	8. (C)	9 . (A)	10 . (A)			
11 . (B)	12 . (B)	13 . (C)	14 . (D)	15 . (C)	16 . (D)	17 . (A)	18 . (C)	19 . (A)	20 . (A)			
21 . (B)	22 . (A)	23 . (B)	24 . (B)	25 . (A)	26 . (A)	27 . (A)	28 . (D)	29 . (A)	30 . (B)			
31 . (D)	32 . (B)	33 . (A)	34 . (B)	35 . (D)	36 . (C)	37 . (B)	38 . (A)	39 . (B)	40 . (D)			
41 . (D)	42 . (A)	43 . (D)	44 . (D)	45 . (A)	46 . (D)	47 . (B)	48 . (A)	49 . (B)	50 . (C)			
51 . (B)	52 . (A)	53 . (C)	54 . (A)	55 . (C)	56 . (B)	57 . (B)	58 . (B)	59 . (A)	60 . (A)			
61 . (A)	62 . (A)	63 . (B)	64 . (C)	65 . (A)	66 . (A)	67 . (C)	68 . (C)	69 . (C)	70 . (D)			
71 . (D)	72 . (A)	73 . (C)	74 . (D)	75 . (A)	76 . (C)	77 . (A)	78 . (A)	79 . (C)	80 . (D)			
81 . (A)	82 . (A)	83 . (C)	84 . (B)	85 . (C)	86 . (A)	87 . (D)	88 . (C)	89 . (D)	90 . (A)			
91 . (C)	92 . (C)	93 . (C)	94 . (C)	95 . (C)	96 . (C)	97 . (D)	98 . (B)	99 . (C)	100 . (B)			
101 . (B)	102 . (B)	103 . (C)	104 . (D)	105 . (D)	106 . (A)	107 . (C)	108 . (D)	109 . (B)	110 . (D)			
111 . (B)	112 . (D)	113 . (B)	114 . (B)	115 . (C)	116 . (B)	117 . (A)	118 . (D)	119 . (D)	120 . (C)			
121 . (D)	122 . (D)	123 . (C)										