Information Storage and Retrieval

CSCE 670
Texas A&M University
Department of Computer Science & Engineering
Instructor: Prof. James Caverlee

Content-Based Recommenders 4 April 2017

Today

- Content-based recommenders
- Model-based recommenders
- (recap of where we are)
- Evaluation
- Attacks

Content-based recommendations

Content-based recommendations

- Main idea: recommend items to customer
 x similar to previous items rated highly by x
- Movie recommendations
 - recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - recommend other sites with "similar" content

Plan of action

Item Profiles

- For each item, create an item profile
- Profile is a set of features (vectors!)
 - movies: author, title, actor, director,...
 - text: set of "important" words in document
- How to pick important words?
 - Usual heuristic is TF.IDF

User profiles and prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item
 - ...
- Prediction heuristic
 - Given user profile **x** and item profile **i**, estimate
 - $u(\mathbf{x},\mathbf{i}) = \cos(\mathbf{x},\mathbf{i}) = \mathbf{x}.\mathbf{i}/(|\mathbf{x}||\mathbf{i}|)$

Advantages of Content-based Recs?

- No need for data on other users
 - No cold-start or sparsity problems
- Able to recommend to users with unique tastes
- Able to recommend new and unpopular items
 - No first-rater problem
- Can provide explanations of recommended items by listing content-features that caused item to be recommended

Limitations of content-based approach

- Finding the appropriate features
 - e.g., images, movies, music
- Recommendations for new users
 - How to build a profile?
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Hybrid: Content + Collaborative

Hybrid Methods

- Implement two separate recommenders and combine predictions
- Add content-based methods to collaborative filtering
 - item profiles for new item problem
 - demographics to deal with new user problem

Recommendation	Recommendation	n Technique
Approach	Heuristic-based	Model-based
Content-based Collaborative	Commonly used techniques: TF-IDF (information retrieval) Clustering Representative research examples: Lang 1995 Balabanovic & Shoham 1997 Pazzani & Billsus 1997 Commonly used techniques: Nearest neighbor (cosine, correlation) Clustering Graph theory Representative research examples: Resnick et al. 1994 Hill et al. 1995 Shardanand & Maes 1995 Breese et al. 1998 Nakamura & Abe 1998 Aggarwal et al. 1999 Delgado & Ishii 1999 Pennock & Horwitz 1999 Sarwar et al. 2001	Commonly used techniques: Bayesian classifiers Clustering Decision trees Artificial neural networks Representative research examples: Pazzani & Billsus 1997 Mooney et al. 1998 Mooney & Roy 1999 Billsus & Pazzani 1999, 2000 Zhang et al. 2002 Commonly used techniques: Bayesian networks Clustering Artificial neural networks Clustering Artificial neural networks Billsus & Pazzani 1998 Ungar regression Probablistic models Representative research examples: Billsus & Pazzani 1998 Breese et al. 1998 Ungar & Foster 1998 Chien & George 1999 Getoor & Sahami 1999 Pennock & Horwitz 1999 Goldberg et al. 2001 Kumar et al. 2001 Pavlov & Pennock 2002 Shani et al. 2002 Yu et al. 2002, 2004 Hofmann 2003, 2004
		Marlin 2003 Si & Jin 2003
Hybrid	Combining content-based and collaborative components using: Linear combination of predicted ratings Various voting schemes Incorporating one component as a part of the heuristic for the other Representative research examples: Balabanovic & Shoham 1997 Claypool et al. 1999 Good et al. 1999 Pazzani 1999 Billsus & Pazzani 2000 Tran & Cohen 2000 Melville et al. 2002	Combining content-based and collaborative components by: Incorporating one component as a part of the model for the other Building one unifying model Representative research examples: Basu et al. 1998 Condliff et al. 1999 Soboroff & Nicholas 1999 Ansari et al. 2000 Popescul et al. 2001 Schein et al. 2002

Model-Based Methods

Suppose we want to build a movie recommender

e.g. which of these films will I rate highest?

We already have a few tools in our "supervised learning" toolbox that may help us

 $f(\text{user features}, \text{movie features}) \xrightarrow{?} \text{star rating}$

$f(\text{user features}, \text{movie features}) \stackrel{?}{\rightarrow} \text{star rating}$

Movie features: genre, actors, rating, length, etc. **Product Details** Science Fiction, Action, Horror Genres Director David Twohy Starring Vin Diesel, Radha Mitchell Cole Hauser, Keith David, Lewis Fitz-Gerald, Claudia Black, Rhiana Gr Supporting actors Angela Moore, Peter Chiang, Ken Twohy NBC Universal Studio MPAA rating R (Restricted) English Details * Captions and subtitles Rental rights 24 hour viewing period. Details * Purchase rights Stream instantly and download to 2 locations Details . Format Amazon Instant Video (streaming online video and digital download)

User features: age, gender, location, etc. A. Phillips Reviewer ranking: #17,230,554 90% helpful votes received on reviews (151 of 167) ABOUT ME Enjoy the reviews... ACTIVITIES Reviews (16) Public Wish List (2) Listmania Lists (2)

Tagged Items (1)

 $f(\text{user features}, \text{movie features}) \stackrel{?}{\rightarrow} \text{star rating}$

With the models we've seen so far, we can build predictors that account for...

- Do women give higher ratings than men?
- Do Americans give higher ratings than Australians?
- Do people give higher ratings to action movies?
- Are ratings higher in the summer or winter?
- Do people give high ratings to movies with Vin Diesel?

So what **can't** we do yet?

 $f(\text{user features}, \text{movie features}) \xrightarrow{?} \text{star rating}$

Consider the following linear predictor (e.g. from week 1):

```
f(\text{user features}, \text{movie features}) = \langle \phi(\text{user features}); \phi(\text{movie features}), \theta \rangle
```

But this is essentially just two separate predictors!

```
f(\text{user features}, \text{movie features}) =
= \langle \phi(\text{user features}), \theta_{\text{user}} \rangle + \langle \phi(\text{movie features}), \theta_{\text{movie}} \rangle
= \langle \phi(\text{user predictor}), \theta_{\text{user}} \rangle + \langle \phi(\text{movie predictor}), \theta_{\text{movie}} \rangle
```

That is, we're treating user and movie features as though they're **independent!**

But these predictors should (obviously?) not be independent

f(user features, movie features) = f(user) + f(movie) do I tend to give high ratings?

does the population tend to give high ratings to this genre of movie?

But what about a feature like "do I give high ratings to **this genre** of movie"?

Recommender Systems go beyond the methods we've seen so far by trying to model the **relationships** between people and the items they're evaluating

Recap

- Ratings-based
 - Baseline (overall average + user-bias + itembias)
 - Collaborative filtering (user-user, item-item)
 - Latent factor approaches (SVD)
- Content-based
- Hybrid collaborative + content
- Model-based

Evaluation

Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
- Another approach:
 - Coverage
 - Number of items/users for which system can make predictions
 - Precision
 - Accuracy of predictions
 - Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

Problems with Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions

Extending capabilities

- Multidimensionality of recommendations
- Multi-criteria ratings
- Non-intrusiveness
- Flexibility
- Effectiveness of recommendations