MAT-042: Estadísticas de resumen

Felipe Osorio

http://fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Investigación Estadística

Método Científico:

Observación sistemática, medición y experimentación, y la formulación, análisis y modificación de las hipótesis.

- Etapas de una Investigación Estadística.
 - Formulación del problema.
 - Diseño del experimento.
 - Experimentación y recolección de datos.
 - Tabulación y descripción de los resultados.
 - Inferencia estadística.

Conceptos básicos

- Población: Conjunto de entidades (indivíduos, elementos) desde los que se desea extraer información, i.e. hacer inferencias.
- Muestra: Es un subconjunto de la población, seleccionada de acuerdo a una regla o plan.
- Variable: Características o atributos de los elementos que conforman la población.
 - Categóricas: Partición en dos o más clases (variables discretas o factores).
 - Binarias: sólo dos categorías (masc/fem, fumador/no fumador).
 - Nominal: no existe orden entre categorías (país de origen).
 - Ordinal: categorías con un orden natural (leve/moderado/grave).
 - Cuantitativas: Pueden adoptar infinitos valores sobre un conjunto (R).

Tipos de muestreo

Ejemplo: Datos del SIMCE.

- ► Regiones geográficas.
- ▶ Niveles educacionales: 2º, 4º, 8º básico; 2º medio.
- Dependencia: Municipal, Subvencionado, Particular.
- ► Área: Urbano, Rural.

Tipos de muestreo

► Muestreo Aleatorio Simple (m.a.s.)

Todas las muestras posibles de tamaño n desde una población de tamaño N tienen la misma probabilidad de ser escogida.

► Muestreo Estratificado

Se emplea cuando la población está agrupada en varios grupos homogéneos o estratos. Luego, se obtiene una m.a.s. desde cada estrato.

Muestreo Sistemático

En este caso las unidades de la población están ordenadas y se selecciona la muestra aprovechando este ordenamiento.

► Muestreo por Conglomerado

Se emplea cuando la población está dividida en grupos pequeños. Consiste en una m.a.s. de conglomerados y luego se censa cada uno de éstos.

► Muestreo en dos Etapas

Primero se selecciona una muestra de unidades primarias y luego se realiza un muestreo desde cada muestra escogida.

Gráfico circular: se usa para representar magnitudes en frecuencias o porcentajes. El largo de arco (i.e. área) de cada sector es proporcional a la cantidad que representa.

Ejemplo: Distribución de colores en bolsitas de M&M (chocolate de leche)

Ejemplo: Proporción de población anglófona en el mundo

Limitación: Gráfico circular de un arcoiris.

HOW PROFESSORS SPEND THEIR TIME

How departments expect them to spend their time:

How Professors would *like* to spend their time: JORGE CHAM @ 2008

WWW. PHDCOMICS. COM

Gráfico de Barras

Gráfico de barras (bloques): la magnitud de la variable es representada por la altura de un rectángulo. Permite una mejor comparación que juzgando áreas relativas.

Ejemplo: Promedio prueba SIMCE Lenguaje en 631 establecimientos de Valparaíso.

Gráfico de Barras

Gráfico de Barras

Notes: Administrator figures are medians salaries, the rest are averages. All figures in 2008 dollars. Sources: College and University Professional Association for Human Resources 2005 Survey; American Association of University Professors 2007 Survey; The Chronicle of Higher Education 2001 Survey of Graduate Assistants: USA Today Survey of Up: I-A College Football Coaches Compensation 2007.

WWW.PHDCOMICS.COM

Histograma

Histograma: usa rectángulos para visualizar frecuencias y proporciones. Se debe:

- dividir el rango de los datos en "bins"
- contar el número de observaciones en cada clase
- dibujar rectángulos representando las frecuencias o porcentajes

Ejemplo: Diámetro (mm) de pernos producidos por una máquina en un día.

72	61	76	76	67	67	77	
77	72	69	62	71	67	63	
71	81	64	72	73	72	78	
73	76	65	84				

Histograma

Reglas para escoger el número de bins:

Raíz cuadrada:

$$k = \sqrt{n}$$
,

► Regla de Sturges:

$$k = 1 + 3.3 \log_{10}(n),$$

► Regla de Rice:

$$k = \lceil 2n^{1/3} \rceil,$$

En general es posible considerar

$$k = \left\lceil \frac{\max\{x\} - \min\{x\}}{h} \right\rceil,$$

donde h es el "ancho de ventana".

▶ Otros tipos de reglas: Doane, Scott, Freedman-Diaconis.

Histograma

Función de distribución acumulada empírica (ojiva)

 $F_n(x)$, CDF empírica, atribuye a cada valor de x, la fracción de datos menor o igual a x, es decir:

$$F_n(x) = \frac{1}{n} \{ \# \text{ elementos } \le x \}$$
$$= \frac{1}{n} \sum_{i=1}^n I_{\{x_i \le x\}}.$$

Función de distribución acumulada empírica

Diagrama de dispersión (scatterplot)

Se utilizan cuando tenemos pares de observaciones

$$(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n),$$

que pueden ser descritos por alguna función

$$Y = f(x)$$
.

Permiten identificar:

- relaciones funcionales
- agrupaciones
- direcciones de asociación.

Diagrama de dispersión (scatterplot)

Series de tiempo

Algunos conjuntos de datos tienen un ordenamiento natural, por ejemplo el tiempo.

Series de tiempo

Muertes por bronquitis, enfisema y asma en UK, 1974-1979.

Series de tiempo

Análisis de puntos de cambio (Chen y Gupta, 2011).

Otros tipos de gráficos

Coordenadas de las muestras de suelo

Concentración de Plomo

Otros tipos de gráficos

Flamabilidad de nanotubos

Estudio reproductivo con roedores

Otros tipos de gráficos

Comparación del patrón de crecimiento de dos genotipos de plantas de soya (Davidian y Giltinan, 1995). Variedad comercial (F), Variedad experimental (P).

Referencias adicionales sobre gráficos en Estadística

Chambers, J.M., Cleveland, W.S., Kleiner, B., and Tukey, P.A. (1983). Graphical Methods for Data Analysis.

Wadsworth & Brooks/Cole.

Cleveland, W.S. (1993).

Visualizing Data.

Hobart Press, Summit.

Murrell, P. (2005).

R Graphics.

Chapman & Hall/CRC Press.

Sarkar, D. (2008).

Lattice: Multivariate Data Visualization with R.

Springer. URL: http://lmdvr.r-forge.r-project.org

Wilkinson, L. (2005).

The Grammar of Graphics, 2nd edition.

Springer.

Desde 1988 el SIMCE evalua los resultados de aprendizaje de los estudiantes del sistema de educación chileno.

Objetivos:

- Describir el comportamiento del aprendizaje de los estudiantes.
- Determinar si existe diferencias significativas entre el tipo de dependencia (municipal, subvencionado, particular).

Características del problema:

- Mediciones de un mismo individuo (estudiante) a través del tiempo (4º y 8º básico, 2º medio).¹
- Datos disponibles para los años 2007, 2011 y 2013, pruebas de Lenguaje y Matemáticas.
- Aproximadamente 133K estudiantes para ser analizados (base de datos de mediano porte).

¹Conocido como: datos con estructura longitudinal.

Datos del SIMCE²

Figure: histograma puntajes matemática.

²colegios, 1: municipales, 2: subvencionados y 3: particules.

Figure: densidad puntajes matemática, organizados por Sexo.

Figure: densidad puntajes lenguaje, organizados por Sexo.

Base de datos con aproximadamente 133K individuos > SIMCE

```
Sex type math04 math08 math10 spa04 spa08
                                                      spa10
        Male
                1 338.86 303.94 372.51 342.74 327.92 317.38
1
2
      Female
                2 301.98 256.04 324.65 298.30 263.12 322.40
3
                1 258.45 263.44 225.95 192.59 206.72 216.66
      Female
4
        Male
                2 233.13 323.76 288.60 268.91 274.84 251.44
5
        Male
                1 284.17 276.37 293.11 236.55 261.67 283.78
6
        Male
                1 248.64 259.76 210.17 254.34 252.15 280.53
```

. . .

132947	Female	2	211.78	254.21	246.78	244.97	286.21	269.24
132948	Female	3	285.18	315.25	354.90	303.95	341.67	315.81
132949	Male	1	259.05	232.65	224.18	305.65	195.92	217.71

Para pensar:

- ¿Cómo resumir la información del total de 133K datos para cada una de las 8 variables?³
- Podemos usar, digamos unas pocas cantidades para describir esta información?

 $^{^{3}}$ Es decir un poco más de 1 millón de registros.

Estadísticas de resumen

Ingredientes:

Conjunto de n observaciones $\{x_1, x_2, \ldots, x_n\}$ conocidas como muestra.

En general, nuestro interés recaerá en resúmenes de la información a través de una estadística, digamos $T=T(x_1,\ldots,x_n)$.

En esta clase consideraremos 3 tipos de estadísticas de resumen 4 para una muestra ${m x}=(x_1,\dots,x_n)^{\sf T}$,

- medidas de posición.
- medidas de dispersión.
- medidas de forma (asimetría y curtosis).

⁴En ocasiones escribiremos T = T(x).

Medidas de posición

Definición 3 (Media muestral o promedio):

Sea x_1, \ldots, x_n valores muestrales. Se define el promedio o media muestral como:

$$\overline{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Suponga que la observación i-ésima, digamos x_i , se repite n_i veces. Entonces tenemos

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} n_i x_i = \sum_{i=1}^{n} f_i x_i,$$

donde $f_i=n_i/n$ es la frecuencia relativa. En general, considere "pesos" ω_1,\ldots,ω_n asociados a las observaciones x_1,\ldots,x_n . En este caso,

$$\overline{x} = \frac{1}{\sum_{j=1}^{n} \omega_j} \sum_{i=1}^{n} \omega_i x_i.$$

Medidas de posición

Ejemplo:

Considere el conjunto de datos $\boldsymbol{x} = \{1, 2, 2, 2, 3, 3, 8\}.$ Tenemos n=7, y

$$\sum_{i=1}^{7} x_i = 1 + 2 + 2 + 2 + 3 + 3 + 8$$
$$= 1 + 2 \cdot 3 + 2 \cdot 3 + 8 = 21,$$

así $\overline{x}=21/7=3$. Note también que el gráfico de tallo y hoja, adopta la forma:

```
1 | * 2 | * * * * * 3 | * * * 4 | 5 | 6 | 7 | 8 | * *
```


Medidas de posición

Ejemplo (datos de accidentes):

Suponga el siguiente conjunto de datos:

Frecuencia	
(n_i)	$n_i x_i$
55	0
14	14
5	10
2	6
0	0
76	30
	$egin{array}{c} (n_i) \\ 55 \\ 14 \\ 5 \\ 2 \\ 0 \\ \end{array}$

De este modo, $\overline{x}=30/76=0.3947$ es el número promedio de accidentes.

Medidas de posición

Definición 4 (Estadísticos de orden):

Sea x_1, \ldots, x_n una muestra. Entonces los valores ordenados

$$x_{(1)} \le x_{(2)} \le \dots \le x_{(n)},$$

se denominan estadísticos de orden. Algunas estadísticas de orden son: el mínimo muestral $x_{(1)}$, el máximo muestral $x_{(n)}$.

Definición 5 (Mediana):

Sea $x_{(1)},\ldots,x_{(n)}$ observaciones ordenadas. La mediana es definida como:

$$\mathsf{me}(\pmb{x}) = \begin{cases} x_{(n+1)/2}, & n \text{ es impar,} \\ \left(x_{(n/2)} + x_{(n/2+1)}\right)/2, & n \text{ es par.} \end{cases}$$

Medidas de posición

Observación:

Sea f(x) cualquier función de números reales.⁵ Entonces podemos definir

$$\overline{f} = \frac{1}{n} \sum_{i=1}^{n} f(x_i) = \frac{1}{n} (f(x_1) + \dots + f(x_n)).$$

Caso particular (media geométrica):

Suponga x_1, \ldots, x_n números positivos y $f(x) = \log(x)$. Entonces la media geométrica G es dada por:

$$\log G = \frac{1}{n} \left(\log x_1 + \dots + \log x_n \right) = \frac{1}{n} \sum_{i=1}^n \log x_i.$$

Es decir,

$$G = (x_1 \cdot x_2 \cdots x_n)^{1/n} = \left(\prod_{i=1}^n x_i\right)^{1/n}.$$

 $^{{}^{\}bf 5}$ Por ejemplo, $f(x)=x^2$ lleva a la media cuadrática, mientras que f(x)=1/x es la media armónica.

Datos del SIMCE: Puntajes de matemáticas

```
## sólo puntajes de matemáticas
> MATH
math04 math08 math10
1 338.86 303.94 372.51
2 301.98 256.04 324.65
3 258.45 263.44 225.95
4 233.13 323.76 288.60
5 284.17 276.37 293.11
6 248.64 259.76 210.17
> x <- MATH$math04 # análogamente x <- MATH[,1]
> mean(x)
             # promedio
[1] 261.5766
> median(x) # mediana
[1] 263.96
> library(fastmatrix) # https://faosorios.github.io/fastmatrix
> geomean(x) # media geométrica
[1] 256.0357
# alternativamente: exp(mean(log(x)))
> apply(MATH, 2, mean) # para todas la variables
  math04 math08
                    math10
261.5766 269.6779 276.6267
```


Considere los siguientes conjuntos de datos:

$$D_1 = \{10, 20, 30\}, \qquad D_2 = \{5, 5, 20, 35, 35\}, \qquad D_3 = \{20, 20, 20\},$$

Tenemos los gráficos de tallo-y-hoja:

Datos D_1 :		Da	Datos D_2 :			Datos D_3 :			
5		5	*	*	5				
10	*	10			10				
15		15			15				
20	*	20	*		20	*	*	*	
25		25			25				
30	*	30			30				
35		35	*	*	35				

Sea \overline{x}_j y me $_j$ el promedio y la mediana asociada al conjunto de datos D_j (j=1,2,3). Entonces,

$$\overline{x}_1 = \frac{1}{3}(10 + 20 + 30) = \frac{60}{3} = 20,$$

$$\overline{x}_2 = \frac{1}{5}(2 \cdot 5 + 20 + 2 \cdot 35) = \frac{100}{5} = 20,$$

$$\overline{x}_3 = \frac{3 \cdot 20}{3} = 20.$$

Además, $me_j = 20$ para todo j.

Observación:

Es decir, tenemos tres configuraciones de datos con valores centrales idénticos.

Sean Q_1 y Q_3 las medianas de la mitad inferior y superior de los datos, conocidos como el 1er y 3er cuartiles, respectivamente. Esto permite definir:

$$IQR = Q_3 - Q_1,$$

que es conocido como rango intercuartílico.

También podemos considerar el rango de la muestra como:

$$R = \max\{x_i\}_{i=1}^n - \min\{x_i\}_{i=1}^n = x_{(n)} - x_{(1)}.$$

Algunos software estadísticos (R/S-Plus, Stata, entre otros) reportan:

$$x_{(1)}, Q_1, \mathsf{me}, Q_3, x_{(n)}.$$

Considere subdividir los datos ordenados $x_{(1)},\ldots,x_{(n)}$ en secciones de 100%, llamados percentiles. Entonces el percentil de orden j $(1 \le j \le 100)$ está dado por:

$$P_j = x_{(j(n+1)/100)}.$$

Note que $Q_1=P_{25}$, la mediana (o $2^{\underline{o}}$ cuartil, Q_2) es me $=P_{50}$ y $Q_3=P_{75}$.

Ejemplo:

Considere el conjunto de datos $x=\{4,7,18,1,7,13,2\}$ y suponga que deseamos calcular el rango intercuartílico IQR.

Primeramente es necesario ordenar el conjunto de datos:

$$\{x_{(1)},x_{(2)},x_{(3)},x_{(4)},x_{(5)},x_{(6)},x_{(7)}\}=\{1,2,4,7,7,13,18\}.$$

Disponemos de $n=7\,\mathrm{datos}$, luego para obtener el 1er y 3er cuartiles podemos usar

$$Q_1 = P_{25} = x_{(25\cdot(7+1)/100)} = x_{(1\cdot8/4)} = x_{(2)} = 2,$$

$$Q_3 = P_{75} = x_{(75 \cdot (7+1)/100)} = x_{(3 \cdot 8/4)} = x_{(6)} = 13.$$

De este modo, $IQR = Q_3 - Q_1 = 13 - 2 = 11$.

Definición 6 (Varianza muestral):

Considere x_1, \ldots, x_n valores observados, se define su varianza muestral como:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$$

Observación:

 $s=\sqrt{s^2}$ se denomina desviación estándar.

Observación:

Otras medidas de dispersión:

Desviación absoluta en torno de la media:

$$\frac{1}{n}\sum_{i=1}^{n}|x_i-\overline{x}|.$$

Desviación absoluta en torno de la mediana:

$$\frac{1}{n}\sum_{i=1}^n|x_i-\mathsf{me}(\boldsymbol{x})|.$$

ightharpoonup r-ésimo momento centrado en torno de a:6

$$m_r(a) = \frac{1}{n} \sum_{i=1}^{n} (x_i - a)^r.$$

⁶Para r=2 y $a=\overline{x}$ obtenemos la varianza.

Propiedades:

(a)

$$\sum_{i=1}^{n} (x_i - \overline{x}) = 0.$$

(b)

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$$

(c) \overline{x} es el valor que minimiza la función:

$$S(a) = \sum_{i=1}^{n} (x_i - a)^2.$$

(d) Sea x_1, \ldots, x_n y considere la transformación:

$$y_i = a x_i + b, \qquad i = 1, \dots, n.$$

Entonces
$$\overline{y}=a\,\overline{x}+b$$
 y $s_y^2=a^2s_x^2.$

(a) En efecto,

$$\sum_{i=1}^{n} (x_i - \overline{x}) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \overline{x} = \sum_{i=1}^{n} x_i - n\overline{x} = n\overline{x} - n\overline{x} = 0.$$

(b) (Fórmula de Köning)

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} (x_i^2 - 2x_i \overline{x} + \overline{x}^2) = \sum_{i=1}^{n} x_i^2 - 2\overline{x} \sum_{i=1}^{n} x_i + n\overline{x}^2$$
$$= \sum_{i=1}^{n} x_i^2 - n\overline{x}^2 = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i\right)^2$$

(c) \overline{x} es el valor que minimiza la función $S(a) = \sum_{i=1}^n (x_i - a)^2$. En efecto, note que

$$\frac{d}{da}S(a) = \sum_{i=1}^{n} \frac{d}{da}(x_i - a)^2 = -2\sum_{i=1}^{n} (x_i - a),$$

resolviendo la condición de primer orden, tenemos

$$\sum_{i=1}^{n} (x_i - \widehat{a}) = 0,$$

desde donde sigue que $\widehat{a} = \overline{x}$. Además

$$\frac{d^2}{da^2}S(a) = -2\sum_{i=1}^{n} \frac{d}{da}(x_i - a) = 2n,$$

y como la segunda derivada es positiva (para cualquier valor de n), obtenemos que \overline{x} es máximo global.

(d) Sea x_1,\ldots,x_n y considere la transformación, $y_i=ax_i+b$, para $i=1,\ldots,n$. Entonces

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b) = \frac{1}{n} \left(a \sum_{i=1}^{n} x_i + b \right)$$
$$= a \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right) + b = a\overline{x} + b.$$

Mientras que

$$s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2,$$

como $y_i - \overline{y} = ax_i + b - (a\overline{x} + b) = a(x_i - \overline{x})$, sigue que

$$s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2 = \frac{1}{n-1} \sum_{i=1}^n \{a(x_i - \overline{x})\}^2$$
$$= a^2 \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = a^2 s_x^2.$$

Medidas de resumen

Observación:

Un caso particular de importancia es la estandarización del conjunto de datos x_1,\dots,x_n , definida como:

$$z_i = \frac{x_i - \overline{x}}{s}, \quad i = 1, \dots, n.$$

Entonces,7

$$\overline{z} = 0$$
 y $s_z^2 = 1$.

⁷Basta hacer a=1/s y $b=\overline{x}/s$ en la Propiedad (d).

Medidas de resumen

Definición 7 (Coeficiente de variación):

Este coeficiente es una medida que compara la desviación estándar con el promedio de una muestra y es definido como

$$CV = s/\overline{x}, \quad \overline{x} \neq 0.$$

El coeficiente es particularmente útil para comparar dos o más muestras (o grupos).

Observación:

Un valor pequeño para el CV está asociado a una muestra homogénea.

Observación:

En Econometría 1/CV es conocido como la razón de Sharpe.

(a) distribuciones simétricas

(b) asimetría negativa (-), positiva (- -)

Definición 8 (Coeficiente de asimetría):

Considere m_3 el tercer momento muestral, entonces se define el coeficiente de asimetría (o sesgo) como:

$$b_1 = \frac{m_3}{s^3} = \frac{1}{n} \sum_{i=1}^n \left(\frac{x_i - \overline{x}}{s} \right)^3.$$

Observación:

- ▶ Si $b_1 = 0$ la distribución es simétrica con relación a \overline{x} .
- Si b₁ > 0 la distribución tiene sesgo positivo. En caso contrario, decimos que tiene sesgo negativo.

Observación:

Se han definido diversos índices de simetría, por ejemplo la medida de sesgo de Galton:

$$b_{\mathsf{G}} = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{Q_3 - Q_1}.$$

(a) Distribución leptocúrtica (—·–), mesocúrtica (—) y platicúrtica (— –)

Definición 9 (Coeficiente de curtosis):

Considere m_4 el cuarto momento muestral, entonces se define el coeficiente de curtosis 8 como:

$$b_2 = \frac{m_4}{s^4} - 3 = \left\{ \frac{1}{n} \sum_{i=1}^n \left(\frac{x_i - \overline{x}}{s} \right)^4 \right\} - 3.$$

Observación:

El término -3 hace que $b_2=0$ cuando los datos siguen una distribución normal.

⁸también conocido como exceso de curtosis

Datos del SIMCE: Puntajes de matemáticas⁹

```
> z <- quantile(x)
> z
    0%
          25% 50% 75% 100%
 87.74 226.32 263.96 299.29 369.55
> sd(x) # desviación estándar
[1] 51.79042
> var(x) # varianza
[1] 2682.247
> library(fastmatrix) # https://faosorios.github.io/fastmatrix
> moments(x)
$second
[1] 2682,227
$third
[1] -30409.6
$fourth
[1] 18784749
$skewness
[1] -0.2189084
$kurtosis
[1] -0.3889947
```


 $^{^{\}mathbf{9}}n = 132\,793$ observaciones, así que (n-1)/n = 0.9999925.

Gráfico de cajón con bigotes (boxplot)

