Predicting Seoul bike sharing demand with GAMs.

Klaudia Weigel

Dataset

The dataset contains information about shared bikes in Seoul, Korea. The variables in the dataset are:

- ▶ Date day indicator. Data has been collected from 2017-12-01 to 2018-11-30.
- RentedBikeCount number of rented bikes, response variable,
- Hour hour of the day,
- Temperature, Humidity, WindSpeed, Visibility, DewPointTemp, SolarRadiation, Rainfall, Snowfall - variables associated with weather conditions,
- Seasons categorical variable indicating season (winter, spring, summer, autumn)
- Holiday categorical variable indicating whether a particular day is a holiday,
- FunctioningDay functional days of the rental bike system.

```
##
           Date RentedBikeCount Hour Temp Humidity WindSpeed Visibility
## 1 01/12/2017
                             254
                                    0 - 5.2
                                                 37
                                                           2.2
                                                                      2000
## 2 01/12/2017
                             204
                                    1 -5.5
                                                 38
                                                           0.8
                                                                     2000
## 3 01/12/2017
                             173
                                    2 -6.0
                                                 39
                                                           1.0
                                                                     2000
     DewPointTemp SolarRadiation Rainfall Snowfall Season
                                                               Holiday
            -17.6
                                         0
                                                  O Winter No Holiday
## 1
                                0
                                                  O Winter No Holiday
## 2
            -17.6
                                0
                                         0
## 3
            -17.7
                                0
                                         Ω
                                                   O Winter No Holiday
    FunctioningDay
## 1
                Yes
## 2
                Yes
## 3
                Yes
```

Amount of rented bikes by Hour

Figure 1: Number of rented bikes with respect to the hour of the rental and factored by day.

Categorical variables

Figure 2: Boxplots of the number of rented bikes with respect to Month, Day, Holiday, Weekend and Season.

Exploring numerical variables

Exploring numerical variables

Correlations between numerical variables

Dealing with overdispersion: quasi-Poisson model

After checking the mean and variance of the response variable mean(seoul bikes\$RentedBikeCount)

[1] 704.6021

var(seoul_bikes\$RentedBikeCount)

[1] 416021.7

For the quasi-Poisson model assumes that the response variable has mean μ and variance $\theta\mu$, where θ is a dispersion parameter. The quasi-Poisson uses the log link function to model the mean

$$\log(\mu_i) = \beta_0 + \beta_1 x_{1,i} + \dots + \beta_p x_{p,i}.$$

Modelling the data

▶ Split the dataset into training and validation sets, with 80% split ratio.

	Train	Test
Size	6772	1693

- ▶ Features kept in the model: Hour, Temp, Humidity, WindSpeed, Visibility, SolarRadiation, Rainfall, Snowfall, Holiday, Weekend, Month, a total of 11 variables. Also removed observations, where FunctioningDay == No (295 obs.).
- ▶ Use generalized additive models to model the data

$$g(\mu_i) = \beta_0 + \sum_j f_i(x_{ij}) + \sum_{k \neq j} f_{kj}(x_{ik}, x_{ij}).$$

Compare models with F-test, RMSE, MAE

$$\textit{RMSE} = \sqrt{\frac{\sum_{i=1}^{n}(\hat{y}_i - y_i)^2}{n}}, \quad \textit{MAE} = \frac{\sum_{i=1}^{n}|\hat{y}_i - y_i|}{n}.$$

GAM Model

First we will consider a generalized additive model with all numerical variables, except for Snowfall as smooth terms.

Hour-Weekend interaction

First step in improving a basic model is to add an interaction between Hour and Weekend variable. We are fitting separate smooths for each level of Weekend s(Hour, by = Weekend).

Comparing the two models with the F-test, we get p-value equal to anova(gam1, gam2, test = "F")\$"Pr(>F)"[2]

```
## [1] 0
```

Smooth terms interactions

To introduce interactions we use ti, which produces a tensor product interaction, appropriate when the main effects (and any lower interactions) are also present.

- ► Temp and Humidity
- ► Temp and SolarRadiation
- Temp and WindSpeed

Temp, Humidity

Temp, SolarRadiation

Temp, WindSpeed

Model comparison

GLM - basic generalized linear model with all predictor variables,

$$\begin{split} \log(\mu_i) &= \beta_0 + \beta_1 * \textit{Hour}_i + \beta_2 * \textit{Temp}_i + \beta_3 * \textit{Humidity}_i + \dots + \beta_7 * \textit{Rainfall}_i + \beta_8 * \textit{Snowfall}_i \\ &+ \beta_9 * \mathbb{I}(\textit{Holiday}_i == "\textit{NoHoliday}") + \beta_{10} * \mathbb{I}(\textit{Weekend}_i == "\textit{Yes}") \\ &+ \beta_{11} \; \mathbb{I}(\textit{Month} == "\textit{Feb}") + \dots + \beta_{21} \; \mathbb{I}(\textit{Month} == "\textit{Dec}") \end{split}$$

 GAM1 - generalized additive model with all continuous variables, except Snowfall defined as smooth functions,

$$\begin{split} \log(\mu_i) &= \beta_0 + \beta_1 * Snowfall_1 + \beta_3 * \mathbb{I}(Holiday_i == "NoHoliday") + \beta_4 * \mathbb{I}(Weekend_i == "Yes") \\ &+ \beta_4 \; \mathbb{I}(Month == "Feb") + \dots + \beta_{14} \; \mathbb{I}(Month == "Dec") + f_1(Hour_i) + f_2(Temp_i) \\ &+ f_3(Humidity_i) + f_4(WindSpeed_i) + f_5(Visibility) + f_6(SolarRadiation) + f_7(Rainfall_i) \end{split}$$

- GAM2 GAM1 model with added interaction between Hour and Weekend,
- GAM3 GAM2 model with tensor interactions.

	RMSE		MAE			
	Train	Test	Train	Test	R-sq. (adj)	Deviance expl.
GLM	369.51	376.43	253.95	259.80	0.66	0.68
GAM1	235.57	236.14	155.24	160.67	0.86	0.87
GAM2	198.01	198.95	125.12	128.59	0.90	0.91
GAM3	187.80	189.50	114.34	119.05	0.91	0.92

The end