# Reliable Facility Location Problem

——Wenxing Lan

### Outline:

- ➤ Introduction to RFLP
- ➤ EA with Memorable Local Search (EAMLS)
- ➤ Reproduction Result of EAMLS
- **≻**Some Ideas
- **Conclusion**

### Introduction to RFLP:



#### Reliable?

⇒# Candidate Facility fixed or not

- # Candidate Facility
- Position of Candidate Facility

### EAMLS:



#### Initialization Method:

- > Stochastic initialization
- ➤ Binary Representation
- Every gene of an individual takes 0 or 1 with equal probability

#### Memorable Local Search:

- ➤ Do local search for the individuals which have not been search before
- $\triangleright$  At most do local search for n individual each generation

#### Dynamic Population Size:

- $\triangleright$  Change  $p_{size}$  with the  $l3\_value$ .
- $\triangleright p_{size} += step\_size$

[1] H. Zhang, J. Liu, and X. Yao, "A hybrid evolutionary algorithm for reliable facility location problem," in Parallel Problem Solving from Nature – PPSN XVI, T. B"ack, M. Preuss, A. Deutz, H. Wang, C. Doerr, M. Emmerich, and H. Trautmann, Eds. Cham: Springer International Publishing, 2020, pp. 454–467.

### Reproduction Result of EAMLS:

#### **Runtime Environment:**

All programs have been written in C++ 11 and executed on an Intel(R) Core(TM) i5-10400F CPU working at 2.90 GHz on Windows 10 20H2, using a single thread.

### Parameters Setting (Same as ones in [1]):

| Parameters                     | Value |
|--------------------------------|-------|
| Mutation Rate, m               | 0.1   |
| # Local search individual, n   | 10    |
| $l$ 3-value threshold, $\beta$ | 0.8   |
| Step size of population        | 100   |

| Instance Scale (# nodes) | # Generation | Population Size |
|--------------------------|--------------|-----------------|
| 10                       | 10           | 20              |
| 50                       | 20           | 20              |
| 100                      | 50           | 100             |

Wilcox Sign Rank test is done with the level of significance 0.05.

## Reproduction Result of EAMLS: 10 nodes instances:

| Turken e Ne  | M        | y Implementation       | on       | Hu Zhang's Implementation |                        |          |  |
|--------------|----------|------------------------|----------|---------------------------|------------------------|----------|--|
| Instance No. | AVERAGE  | STD                    | BEST     | AVERAGE                   | STD                    | BEST     |  |
| 0            | 3346.929 | $2.27 \times 10^{-12}$ | 3346.929 | 3346.929                  | $2.27 \times 10^{-12}$ | 3346.929 |  |
| 1            | 2608.603 | 0                      | 2608.603 | 2608.603                  | 0                      | 2608.603 |  |
| 2            | 2381.656 | $4.55 \times 10^{-13}$ | 2381.656 | 2381.656                  | $4.55 \times 10^{-13}$ | 2381.656 |  |
| 3            | 3104.342 | $4.55 \times 10^{-13}$ | 3104.342 | 3104.342                  | $4.55 \times 10^{-13}$ | 3104.342 |  |
| 4            | 3063.061 | 0                      | 3063.061 | 3063.061                  | 0                      | 3063.061 |  |
| 5            | 2258.037 | $9.09 \times 10^{-13}$ | 2258.037 | 2258.037                  | $9.09 \times 10^{-13}$ | 2258.037 |  |
| 6            | 2369.84  | 0                      | 2369.84  | 2369.84                   | 0                      | 2369.84  |  |
| 7            | 1808.556 | 0                      | 1808.556 | 1808.556                  | 0                      | 1808.556 |  |
| +/−/≈        |          | /                      | /        | 0/0/8                     | /                      | /        |  |

## Reproduction Result of EAMLS: 50 nodes instances:

| Instance | My Implementation |        |          | My Implementation Hu Zhang's Implementation |                       | entation | GAP       |        |
|----------|-------------------|--------|----------|---------------------------------------------|-----------------------|----------|-----------|--------|
| No.      | AVERAGE           | STD    | BEST     | AVERAGE                                     | STD                   | BEST     | AVERAGE % | BEST % |
| 0        | 7256.336          | 288.57 | 6857.798 | 6814.142*                                   | $4.5 \times 10^{-12}$ | 6814.142 | 6.09      | 0.64   |
| 1        | 7840.407          | 187.00 | 7556.475 | 7514.328*                                   | 7.83                  | 7512.875 | 4.16      | 0.58   |
| 2        | 7369.272          | 174.30 | 7098.768 | 7083.504*                                   | 23.58                 | 7073.701 | 3.88      | 0.35   |
| 3        | 8030.533          | 160.82 | 7721.426 | 7633.463*                                   | 37.30                 | 7625.132 | 4.94      | 1.25   |
| 4        | 8557.142          | 228.39 | 8225.232 | 8108.956*                                   | 21.50                 | 8103.476 | 5.24      | 1.48   |
| 5        | 8094.892          | 195.48 | 7687.733 | 7689.739*                                   | 10.80                 | 7687.733 | 5.01      | 0      |
| 6        | 8197.092          | 173.14 | 7890.151 | 7782.568*                                   | 25.05                 | 7772.954 | 5.06      | 1.49   |
| 7        | 7086.206          | 167.17 | 6796.706 | 6799.642*                                   | 15.81                 | 6796.706 | 4.04      | 0      |
| +/−/≈    |                   | /      | /        | 8/0/0                                       | /                     | /        |           |        |

# Idea 1: Change Initialization

#### Initialization Method in [1]:

- ➤ Stochastic initialization
- ➤ Binary Representation
- Every gene of an individual takes 0 or 1 with equal probability
- ⇒ E(# candidate facility) =  $\frac{1}{2}$  × # nodes

- # Candidate Facility
- Position of Candidate Facility

#### Change:

Make # candidate facility more diversity

# nodes  $\leq \mu$ 

按照m ∈ {2,3,..., # node}生成facility位置随机的个体,剩余部分的个体按照m = uniform[2, #node]生成facility位置随机的个体

 $\mu$  <# nodes <  $2\mu$ 

按照 $m \in \{2,4,...,2[\frac{\#node}{2}]\}$ 生成facility位置随机的个体,剩余部分的个体按照m = uniform[2,#node]生成facility位置随机的个体

# nodes  $\geq 2\mu$ 

 $a = \left\lfloor \frac{\#node}{\mu} \right\rfloor$ ,按照 $m \in \{2,2+a,2+2a,...\}$  ( $m \leq \#node$ )生成facility位置随机的个体,剩余部分的个体按照m = uniform[2,#node]生成facility位置随机的个体

### Experimental Result: 50 node instances:



[1] H. Zhang, J. Liu, and X. Yao, "A hybrid evolutionary algorithm for reliable facility location problem," in Parallel Problem Solving from Nature – PPSN XVI, T. B"ack, M. Preuss, A. Deutz, H. Wang, C. Doerr, M. Emmerich, and H. Trautmann, Eds. Cham: Springer International Publishing, 2020, pp. 454–467.

## Experimental Result:

### 50 nodes instances:

| Instance | EAMLS    |        |          | EAMLS + My Init |        |          | GAP       |        |
|----------|----------|--------|----------|-----------------|--------|----------|-----------|--------|
| No.      | AVERAGE  | STD    | BEST     | AVERAGE         | STD    | BEST     | AVERAGE % | BEST % |
| 0        | 7298.548 | 240.96 | 6857.798 | 6989.502*       | 117.23 | 6814.142 | 4.42      | 0.64   |
| 1        | 7844.357 | 279.38 | 7556.475 | 7665.536*       | 118.26 | 7512.875 | 2.33      | 0.58   |
| 2        | 7399.545 | 169.24 | 7126.035 | 7207.391*       | 94.69  | 7073.701 | 2.67      | 0.74   |
| 3        | 8127.141 | 179.49 | 7759.225 | 7799.453*       | 122.19 | 7625.132 | 4.2       | 1.76   |
| 4        | 8566.518 | 279.54 | 8103.476 | 8312.809*       | 114.16 | 8160.579 | 3.05      | -0.7   |
| 5        | 8054.054 | 210.78 | 7687.733 | 7845.046*       | 123.4  | 7687.733 | 2.66      | 0      |
| 6        | 8229.953 | 198.53 | 7866.683 | 7992.135*       | 147.66 | 7772.954 | 2.98      | 1.21   |
| 7        | 7162.556 | 197.19 | 6884.774 | 7004.941*       | 104.94 | 6834.758 | 2.25      | 0.73   |
| +/−/≈    |          | /      | /        | 8/0/0           | /      | /        |           |        |

### Experimental Result: 50\_0 instance:



# Idea 2: Change Repair Strategy

#### Repair Strategy in [1]:

- > check every gene in ascending order of fixed cost
- $\triangleright$  change the gene with 0-value to 1 until the individual satisfies the constraint  $m \ge 2$

$$\min \sum_{j \in J} f_j X_j + \alpha \sum_{i \in I} \sum_{j \in J} \sum_{r=0}^{m-1} h_i c_{i,j} p^r (1-p) Y_{ijr}$$

Change:

ascending order of Fixed cost +  $\sum_{i \in I} \sum_{j \in J} h_i c_{i,j}$ 

## Experimental Result:

### 50 nodes instances:

| Instance | EAMLS    |        |          | EAMLS + My Repair |        |          | GAP       |        |
|----------|----------|--------|----------|-------------------|--------|----------|-----------|--------|
| No.      | AVERAGE  | STD    | BEST     | AVERAGE           | STD    | BEST     | AVERAGE % | BEST % |
| 0        | 7298.548 | 240.96 | 6857.798 | 7230.945          | 264.76 | 6814.142 | 0.93      | 0.64   |
| 1        | 7844.357 | 279.38 | 7556.475 | 7830.142          | 143.86 | 7560.287 | 0.18      | -0.05  |
| 2        | 7399.545 | 169.24 | 7126.035 | 7460.267          | 229.37 | 7146.44  | -0.81     | -0.29  |
| 3        | 8127.141 | 179.49 | 7759.225 | 8037.818*         | 137.05 | 7794.663 | 1.11      | -0.45  |
| 4        | 8566.518 | 279.54 | 8103.476 | 8509.999          | 200.7  | 8103.476 | 0.66      | 0      |
| 5        | 8054.054 | 210.78 | 7687.733 | 7988.162          | 204.25 | 7687.733 | 0.82      | 0      |
| 6        | 8229.953 | 198.53 | 7866.683 | 8130.014          | 211.05 | 7772.954 | 1.23      | 1.21   |
| 7        | 7162.556 | 197.19 | 6884.774 | 7170.06           | 175.94 | 6834.758 | -0.1      | 0.73   |
| +/−/≈    |          | /      | /        | 1/0/7             | /      | /        | /         | /      |

# Idea 3: Change Local Search

#### Neighborhood in [1]:

The set of individuals whose Hamming distance is 1 from that individual

$$1,0,0,1,1,0,1 \Rightarrow 0,0,0,1,1,0,1$$

$$1,1,0,1,1,0,1$$

Add: Same *m* value, but different position

$$1,0,0,1,1,0,1 \Rightarrow 0,1,0,1,1,0,1$$
  
 $0,0,1,1,1,0,1$ 

## Experimental Result:

### 50 nodes instances:

| Instance | EAMLS    |        |          | EAMLS EAMLS + My Neighborhood Search |        |          | GAP       |        |
|----------|----------|--------|----------|--------------------------------------|--------|----------|-----------|--------|
| No.      | AVERAGE  | STD    | BEST     | AVERAGE                              | STD    | BEST     | AVERAGE % | BEST % |
| 0        | 7298.548 | 240.96 | 6857.798 | 7218.511                             | 209.65 | 6956.724 | 1.11      | -1.42  |
| 1        | 7844.357 | 279.38 | 7556.475 | 7733.453                             | 170.61 | 7512.875 | 1.43      | 0.58   |
| 2        | 7399.545 | 169.24 | 7126.035 | 7434.712                             | 211.93 | 7173.969 | -0.47     | -0.67  |
| 3        | 8127.141 | 179.49 | 7759.225 | 7989.844*                            | 198.11 | 7625.132 | 1.72      | 1.76   |
| 4        | 8566.518 | 279.54 | 8103.476 | 8479.381                             | 185.62 | 8103.476 | 1.03      | 0      |
| 5        | 8054.054 | 210.78 | 7687.733 | 8074.323                             | 232.29 | 7747.924 | -0.25     | -0.78  |
| 6        | 8229.953 | 198.53 | 7866.683 | 8135.349*                            | 166.08 | 7896.164 | 1.16      | -0.37  |
| 7        | 7162.556 | 197.19 | 6884.774 | 7146.154                             | 167.23 | 6834.758 | 0.23      | 0.73   |
| +/−/≈    |          | /      | /        | 2/0/6                                | /      | /        | /         | /      |

### Conclusion:

- **➤**Change Initialization
  - ■Can get better initial population than the initialization method in [1]
- ➤ Change Repair Strategy
  - ■Add more computation
  - ■Performance is poor.  $\Rightarrow$  The number of repair operation is less when # nodes is large.
- > Add Local Search
  - ■Add more computation
  - ■Performance is poor.
    - ☐ The neighborhood added by me may have been cover in other operators.

| Instance No. | Avg<br># Repair |
|--------------|-----------------|
| 0            | 0               |
| 1            | 0               |
| 2            | 0               |
| 3            | 4               |
| 4            | 0               |
| 5            | 0               |
| 6            | 0               |
| 7            | 0               |