

1,500

0.000

0.000

1,200

2.400

3,600

4,800

How do we amplify the weak signal?

Transistor biased in saturation also does not result in Amplification

Transistor needs to be biased in Forward active mode in order to obtain voltage Amplification

To determine amplification factor, we need to carry out small signal analysis

BJT: Small Signal Model

Complete small signal model (dc) for a 3-terminal unilateral device.

Complete small signal model (dc) for a 3-terminal unilateral device.

$$r_{i} = \left(\frac{\partial I_{i}}{\partial V_{i}}\right)^{-1} \qquad g_{m} = \left(\frac{\partial I_{o}}{\partial V_{i}}\right)$$
$$r_{o} = \left(\frac{\partial I_{o}}{\partial V_{o}}\right)^{-1}$$

$$I_{b} = \frac{I_{S}}{\beta_{F}} \left(\exp(\frac{V_{be}}{V_{T}}) - 1 \right)$$

$$r_{\pi}^{-1} = \frac{\partial I_{b}}{\partial V_{be}} \Big|_{I_{B}} \cong \frac{I_{B}}{V_{T}}$$

$$r_{\pi} = \frac{V_{T}}{I_{B}} = \frac{V_{T}}{I_{C}} \cdot \beta \; ; \quad r_{\pi} = r_{E} \cdot \beta$$

$$I_{c} = I_{S} \left(\exp(\frac{V_{be}}{V_{T}}) - 1 \right) \left(1 + \frac{V_{ce}}{V_{A}} \right)$$

$$g_{m} = \frac{\partial I_{c}}{\partial V_{be}} \bigg|_{V_{CE}} \approx \frac{I_{C}}{V_{T}}$$

$$r_{0}^{-1} = \frac{\partial I_{c}}{\partial V_{ce}} \bigg|_{V_{EE}} = \frac{I_{C}}{V_{CE} + V_{A}} \approx \frac{I_{C}}{V_{A}}$$

Hybrid-pi Small Signal Model: low frequency

$$r_{\pi} = \frac{V_T}{I_B} = \frac{V_T}{I_C} \cdot \beta$$

$$g_m = \frac{I_C}{V_T} ; r_0 = \frac{V_A}{I_C}$$

$$I_{b} = \frac{I_{S}}{\beta_{F}} \left(\exp(\frac{V_{be}}{V_{T}}) - 1 \right) \qquad I_{c} = I_{S} \left(\exp(\frac{V_{be}}{V_{T}}) - 1 \right) \left(1 + \frac{V_{ce}}{V_{A}} \right)$$

Validity: $v_{be} \ll V_T$

Device is not strictly unilateral

$$I_i = f(V_i, V_o)$$

$$\Delta I_{i} = \frac{\partial f}{\partial V_{i}} \left| \times \Delta V_{i} + \frac{\partial f}{\partial V_{o}} \right| \times \Delta V_{o}$$

$$i_{i} = \frac{V_{i}}{r_{i}} - \frac{V_{o}}{r_{io}}$$
-VE

$$i_i = (\frac{v_i}{r_i} - \frac{v_i}{r_{io}}) + \frac{v_i - v_o}{r_{io}} \cong \frac{v_i}{r_i} + \frac{v_i - v_o}{r_{io}}$$

$$r_{io} >> r_i$$

$$I_{B} = I_{P} + I_{B1}$$

$$I_{B1} \alpha W_{B}$$

$$I_{B1} = f_{1}(V_{CB})$$

Capacitances and High Frequency Model

Capacitances in a BJT

Anytime we have a charge which changes with voltage, we have a capacitance

$$C = \frac{\partial Q}{\partial V}$$

There are two kinds of charges: 1. Depletion charge

- 2. Diffusion charge

Change in emitter-base depletion charge with base-emitter voltage gives rise to base-emitter junction capacitance. Similarly, change in collector-base depletion charge with base-collector voltage gives rise to base-collector junction capacitance

$$C_{je} = \frac{C_{jeo}}{(1 - \frac{V_{BE}}{V_{bi}})^m}$$

$$C_{jc} = \frac{C_{jco}}{(1 - \frac{V_{BC}}{V_{bi}})^m}$$

Diffusion Charge and Capacitance

When base-emitter junction is forward biased, electrons are injected into base. These excess electrons constitute diffusion charge Q_D

$$C_{diff} = \frac{I_C}{V_T} \times \tau_F$$
$$= g_m \times \tau_F$$

$$\tau_F = K \times \frac{W_B^2}{\mu} + \dots$$

In Forward active mode, collector-base junction is reverse biased so no carriers are injected and hence there is no collector-base diffusion capacitance.

Capacitances in a BJT

There is one more capacitance which is not observable in this one dimensional view of the transistor

Collector Substrate Capacitance

Why do we use a P substrate and not make a transistor on N-Silicon?

Transistor on an N-substrate that serves as a Collector

The problem is that we have to make not just one but several transistors on the same silicon substrate

The two collectors are shorted together!

With a P-substrate, it is easy to isolate the transistors

Reversed Biased PN junction maintains isolation

High Frequency Hybrid-pi Model

High Frequency Hybrid-pi Model

Model of an NPN BJT in forward active mode

$$\begin{split} I_{C} &= I_{S} \Bigg(\exp(\frac{V_{BE}}{V_{T}}) - 1 \Bigg) \Bigg(1 + \frac{V_{CE}}{V_{A}} \Bigg) \\ I_{B} &= \frac{I_{S} \Bigg(\exp(\frac{V_{BE}}{V_{T}}) - 1 \Bigg)}{\beta_{F}} \\ I_{C} &= \beta_{F} I_{B} \Bigg(1 + \frac{V_{CE}}{V_{A}} \Bigg) \end{split}$$

Model of an PNP BJT in forward active mode

$$I_{C} = I_{S} \left(\exp(\frac{V_{EB}}{V_{T}}) - 1 \right) \left(1 + \frac{V_{EC}}{V_{A}} \right)$$

$$I_{B} = \frac{I_{S} \left(\exp(\frac{V_{EB}}{V_{T}}) - 1 \right)}{\beta_{F}}$$

$$I_{C} = \beta_{F} I_{B} \left(1 + \frac{V_{EC}}{V_{A}} \right)$$

Model of a BJT in Saturation mode

Example:

$$I_S = 2.03 \times 10^{-15} A; \beta_F = 100; \beta_R = 1; V_A = 100; r_{bb} = 200\Omega; V_T = 26mV$$

$$C_{jeo} = 1pF; C_{jco} = 0.5pF; C_{jso} = 3pF; m = 0.5; V_{bi} = 0.85; \tau_F = 1ns$$

Dc bias condition:

$$V_{BE} = 0.7V; V_{BC} = -3V; V_{CS} = 2V$$

 $I_C = 1mA; I_R = 10\mu A$

Small Signal Model parameters evaluated at the bias point:

$$g_m = \frac{I_C}{V_T} = 38m\Omega;$$
 $r_\pi = \frac{V_T}{I_C} \times \beta = 2.6k\Omega;$ $r_0 = \frac{V_A}{I_C} = 100k\Omega$

$$r_0 = \frac{V_A}{I_C} = 100k\Omega$$

$$C_{\pi} = g_{m} \tau_{F} + C_{je} = g_{m} \tau_{F} + \frac{C_{jeo}}{(1 - \frac{V_{BE}}{V_{bi}})^{m}} = 38.5 pF$$

$$C_{\mu} = C_{jc} = \frac{C_{jco}}{(1 - \frac{V_{BC}}{V_{bi}})^m} = 0.23 \, pF$$

$$C_{js} = \frac{C_{jso}}{(1 + \frac{V_{CS}}{V_{bi}})^m} = 1.6 \, pF$$

$$C_{js} = \frac{C_{jso}}{(1 + \frac{V_{CS}}{V_{bi}})^m} = 1.6 pF$$

Unity Gain Frequency: a measure of speed of transistor

$$\beta_{ac}(\omega) = \frac{i_c}{i_b}$$

$$\beta_{ac}(\omega) = \frac{i_c}{i_b} = \frac{\beta_{ac}(0)}{1 + j\beta_{ac}(0)\frac{\omega}{\omega_T}}$$

Transistor is useful only for frequencies less than unity gain frequency

Importance of Amplifier Characteristics

3Qs

Can an amplifier with a voltage gain rating of 100 provide less gain than an amplifier with a rating of 10?

Why does an amplifiers performance degrade at higher output power?

How small a signal can an amplifier amplify?

Depending on the input and output, there can be four broad classes of amplifiers

INPUT	OUTPUT	Amplifier
V	V	Voltage
V	1	Transconductance
1	1	Current
I	V	Transresistance

Ideal Voltage Amplifier

$$V_O = A_v \times V_{IN}$$

A_v is a constant

Practical Amplifier

$$V_O = A_v \times V_{IN}$$

$$V_{o} = A_{v}(V_{in}, f, R_{L}, R_{S}, V_{DD}, T) \times v_{in} + \tilde{e}_{N}$$

Effect of Load Resistance

Open circuit voltage gain and output resistance

$$V_0 = A_{V0} \times V_{in} \left(\frac{R_L}{R_0 + R_L} \right)$$

Maximum Current Driving Capability

$$V_0 = -\frac{R_2}{R_1} V_{in} = 10V$$

Opamp has maximum current drive capability of 25mA

Input Resistance

$$A_{VS} = \frac{V_0}{V_S}$$

$$A_{VS} = A_{V0} \times \frac{R_{in}}{R_S + R_{in}} \times \frac{R_L}{R_0 + R_L}$$

Create situations where one amplifier is better than the other

$$A_{V0} = 10^{2}$$

$$R_{in} = 1k\Omega$$

$$R_{o} = 1k\Omega$$

$$A_{V0} = 10^{1}$$

$$R_{in} = 100k\Omega$$

$$R_{o} = 1k\Omega$$

Can the following amplifier be useful? Can it be called an amplifier? $A_{vo} = 1; R_{in} = 10k\Omega; R_o = 10\Omega$

Frequency Response

dc Amplifier

Unity Gain Frequency

Transient Response

Rise time and fall time

Overshoot and time Settling time

Slew rate

Slew rate =
$$\frac{dv_0}{dt}\Big|_{\text{max}}$$

Distortion:

All amplifiers are nonlinear because transistors used for building amplifier are nonlinear elements.

$$V_0 = b_0 + b_1 \sin \omega t + b_2 \sin 2\omega t + b_3 \sin 3\omega t + \dots$$

$$HD_2 = \frac{b_2}{b_1} \times 100$$

$$HD_3 = \frac{b_3}{b_1} \times 100$$

$$THD = \frac{\sqrt{b_2^2 + b_3^2 + \dots}}{b_1} \times 100$$

Example

$$V_0 = kV_{in} + \frac{k}{10}V_{in}^2$$

$$V_{in} = a_0 \sin \omega t$$

$$V_0 = \frac{ka_0^2}{20} + ka_0 \sin \omega t - \frac{ka_0^2}{20} \cos 2\omega t$$

$$THD = HD_2 = \frac{ka_0^2 / 20}{ka_0} \times 100 = 5a_0$$

Distortion increases with magnitude of input signal!

Maximum Voltage Swing

Rail-to-Rail output voltage swing

NOISE

