Data Analytics in Finance

FINA 6333 for 2024 Spring

Richard Herron

Table of contents

W	elcome!	10
I	Week 1	11
1	McKinney Chapter 2 - Python Language Basics, IPython, and Jupyter Notebooks1.1Introduction1.2Language Semantics1.3Scalar Types1.4Control Flow	12 12 12 23 27
2	McKinney Chapter 2 - Practice for Section 022.1 Announcements2.2 5-minute Recap2.3 Practice	32 32 32 35
3	McKinney Chapter 2 - Practice for Section 033.1 Announcements3.2 5-minute Recap3.3 Practice	38 38 38 40
4	McKinney Chapter 2 - Practice for Section 04 4.1 Announcements	44 44
5	McKinney Chapter 2 - Practice for Section 05 5.1 Announcements	50 50 50 52
II	Week 2	55
6	McKinney Chapter 3 - Built-In Data Structures, Functions, and Files 6.1 Introduction	56 56

	6.3 List, Set, and Dict Comprehensions	
7	McKinney Chapter 3 - Practice for Section 02 7.1 Announcements	
В	McKinney Chapter 3 - Practice for Section 03 8.1 Announcements	
9	McKinney Chapter 3 - Practice for Section 04 9.1 Announcements	
10	McKinney Chapter 3 - Practice for Section 05 10.1 Announcements	
		•
Ш	Week 3	84
	McKinney Chapter 4 - NumPy Basics: Arrays and Vectorized Computation 11.1 Introduction	85 85 87 99
11	McKinney Chapter 4 - NumPy Basics: Arrays and Vectorized Computation 11.1 Introduction	85 87 99 101 107
11 12	McKinney Chapter 4 - NumPy Basics: Arrays and Vectorized Computation 11.1 Introduction	85 85 87 99 101 107 107 1107
11 12	McKinney Chapter 4 - NumPy Basics: Arrays and Vectorized Computation 11.1 Introduction 11.2 The NumPy ndarray: A Multidimensional Array Object 11.3 Universal Functions: Fast Element-Wise Array Functions 11.4 Array-Oriented Programming with Arrays McKinney Chapter 4 - Practice for Section 02 12.1 Announcements 12.2 Practice McKinney Chapter 4 - Practice for Section 03 13.1 Announcements 13.2 Practice McKinney Chapter 4 - Practice for Section 04	85 85 87 99 101 107 1107 110 1110 113

IV	Week 4	119
16	McKinney Chapter 5 - Getting Started with pandas 16.1 Introduction	121
	16.4 Summarizing and Computing Descriptive Statistics	144
17	McKinney Chapter 5 - Practice for Section 02	150
	17.1 Announcements	
18	McKinney Chapter 5 - Practice for Section 03	153
	18.1 Announcements	
19	McKinney Chapter 5 - Practice for Section 04	156
	19.1 Announcements	
20	McKinney Chapter 5 - Practice for Section 05	159
	20.1 Announcements	
V	Week 5	162
21	Herron Topic 1 - Web Data, Log and Simple Returns, and Portfolio Math	163
	21.1 Web Data	
	21.2 Log and Simple Returns	
22	Herron Topic 1 - Practice for Section 02	175
	22.1 Announcements	175
	22.2 Practice	175
23	Herron Topic 1 - Practice for Section 03	178
	23.1 Announcements	178 178
24	Herron Topic 1 - Practice for Section 04	181
	24.1 Announcements	181
	24.2 Practice	181

25	Herron Topic 1 - Practice for Section 05	184
	25.1 Announcements	
	25.2 Practice	184
VI	Week 6	187
26	McKinney Chapter 8 - Data Wrangling: Join, Combine, and Reshape	188
	26.1 Introduction	
	26.2 Hierarchical Indexing	
	26.3 Combining and Merging Datasets	
	20.4 Resnaping and I footing	211
27	McKinney Chapter 8 - Practice for Section 02	215
	27.1 Announcements	
	27.2 Practice	215
28	McKinney Chapter 8 - Practice for Section 03	218
	28.1 Announcements	218
	28.2 Practice	218
29	McKinney Chapter 8 - Practice for Section 04	221
	29.1 Announcements	
	29.2 Practice	221
30	McKinney Chapter 8 - Practice for Section 05	224
-	30.1 Announcements	
	30.2 Practice	224
VI	I Week 7	227
31	Project 1	228
VI	IIWeek 8	229
32	McKinney Chapter 10 - Data Aggregation and Group Operations	230
JZ	32.1 Introduction	230
	32.2 GroupBy Mechanics	
	32.3 Data Aggregation	
	32.4 Apply: General split-apply-combine	
	32.5 Pivot Tables and Cross-Tabulation	241

33	McKinney Chapter 10 - Practice for Section 02 33.1 Announcements	
34	McKinney Chapter 10 - Practice for Section 03 34.1 Announcements	
35	McKinney Chapter 10 - Practice for Section 04 35.1 Announcements	
36	McKinney Chapter 10 - Practice for Section 05 36.1 Announcements	
ΙX	Week 9	256
37	McKinney Chapter 11 - Time Series 37.1 Introduction	258 266 271
38	McKinney Chapter 11 - Practice for Section 02 38.1 Announcements	
39	McKinney Chapter 11 - Practice for Section 03 39.1 Announcements	
40	McKinney Chapter 11 - Practice for Section 04 40.1 Announcements	
	McKinney Chapter 11 - Practice for Section 05 41.1 Announcements	

X	Week 10	289
42	Herron Topic 2 - Trading Strategies 42.1 What is technical analysis?	290 290 291 298
43	Herron Topic 2 - Practice for Section 02 43.1 Announcements	
44	Herron Topic 2 - Practice for Section 03 44.1 Announcements 44.2 Practice	305 305 305
45	Herron Topic 2 - Practice for Section 04 45.1 Announcements	
46	Herron Topic 2 - Practice for Section 05 46.1 Announcements	309 309
ΧI	Week 11	311
47	Project 2	312
ΧI	I Week 12	313
48	Herron Topic 3 - Multifactor Models 48.1 The Capital Asset Pricing Model (CAPM)	
49	Herron Topic 3 - Practice for Section 02 49.1 Announcements	331 331
50	Herron Topic 3 - Practice for Section 03 50.1 Announcements	334 334
51	Herron Topic 3 - Practice for Section 04 51.1 Announcements	337 337

	51.2 Practice	337
52	Herron Topic 3 - Practice for Section 05 52.1 Announcements	
ΧI	IIWeek 13	343
53	Herron Topic 4 - Portfolio Optimization 53.1 The $\frac{1}{n}$ Portfolio	
54	Herron Topic 4 - Practice for Section 02 54.1 Announcements	
55	Herron Topic 4 - Practice for Section 03 55.1 Announcements	
56	Herron Topic 4 - Practice for Section 04 56.1 Announcements	
57	Herron Topic 4 - Practice for Section 05 57.1 Announcements	
Χľ	VWeek 14	366
58	Herron Topic 5 - Simulations 58.1 Option Pricing	
59	Herron Topic 5 - Practice for Section 02 59.1 Announcements	
60	Herron Topic 5 - Practice for Section 03 60.1 Announcements	383 383

61	Herron Topic 5 - Practice for Section 04				
	61.1 Announcements	384			
	61.2 Practice	384			
62	The second of th	385			
	62.1 Announcements				
	62.2 Practice	385			
X۱	XV Week 15				
63	Project 3	387			

Welcome!

Welcome to FINA 6333 for Spring 2024 at the D'Amore-McKim School of Business at Northeastern University!

For each course topic, we will have one notebook for its lecture and one for its in-class practice exercises. I will maintain these notebooks here because Canvas does not render notebooks. I will maintain everything else on Canvas (e.g., announcements, discussions, grades, etc.).

You have three choices to download or run these notebooks:

- 1. Download them from our shared folder on OneDrive (or click the cloud icon in the left sidebar)
- 2. Download them from our Notebooks folder on GitHub (or click the octo-cat icon in the left sidebar)
- 3. Open them on Google Colab (or click the Google icon in the left sidebar)

Part I

Week 1

1 McKinney Chapter 2 - Python Language Basics, IPython, and Jupyter Notebooks

1.1 Introduction

We must understand the basics of Python before we can use it to analyze financial data. Chapter 2 of Wes McKinney's *Python for Data Analysis* provides a crash course in Python's syntax, and chapter 3 provides a crash course in Python's built-in data structures. This notebook focuses on the "Python Language Basics" in section 2.3, which covers language semantics, scalar types, and control flow.

Note: Indented block quotes are from McKinney unless otherwise indicated. The section numbers here differ from McKinney because we will only discuss some topics.

1.2 Language Semantics

1.2.1 Indentation, not braces

Python uses whitespace (tabs or spaces) to structure code instead of using braces as in many other languages like R, C++, Java, and Perl.

So, spaces are more than cosmetic in Python. For non-Python programmers, white space is often Python's defining feature. Here is a for loop with an if block that shows how Python uses white space.

```
array = [1, 2, 3]
pivot = 2
less = []
greater = []

for x in array:
    if x < pivot:
        print(f'{x} is less than {pivot}')
        less.append(x)</pre>
```

```
else:
    print(f'{x} is NOT less than {pivot}')
    greater.append(x)

1 is less than 2
2 is NOT less than 2
3 is NOT less than 2

less
[1]
greater
[2, 3]
```

Note: We will use f-string print statements wherever we can. These f-string print statements are easy to use, and I do not want to teach old approaches when the new ones are better.

1.2.2 Comments

Any text preceded by the hash mark (pound sign) # is ignored by the Python interpreter. This is often used to add comments to code. At times you may also want to exclude certain blocks of code without deleting them.

The Python interpreter ignores any code after a hash mark # on a given line. We can quickly comment/un-comment lines of code with the <Ctrl>-/ shortcut.

```
# We often use comments to leave notes for future us (or co-workers)
# 5 + 5
```

1.2.3 Function and object method calls

You call functions using parentheses and passing zero or more arguments, optionally assigning the returned value to a variable:

```
result = f(x, y, z)
g()
```

Almost every object in Python has attached functions, known as methods, that have access to the object's internal contents. You can call them using the following > syntax:

```
obj.some_method(x, y, z)
```

Functions can take both positional and keyword arguments:

```
result = f(a, b, c, d=5, e='foo')
```

More on this later.

We can write a function that adds two numbers.

```
def add_numbers(a, b):
    return a + b

%who

add_numbers array greater less pivot x

add_numbers(5, 5)
```

10

We can write a function that adds two strings separated by a space.

```
def add_strings(a, b):
    return a + ' ' + b

%who

add_numbers add_strings array greater less pivot x

add_strings('5', '5')
```

What is the difference between print() and return? print() returns its arguments to the console or "standard output", whereas return returns its argument as an output we can assign to variables. In the example below, we use the return line to assign the output of add_string_2() to the variable return_from_add_strings_2. The print() line prints to the console or "standard output", but its output is not assigned or captured.

```
def add_strings_2(a, b):
    string_to_print = a + ' ' + b + ' (this is from the print statement)'
    string_to_return = a + ' ' + b + ' (this is from the return statement)'
    print(string_to_print)
    return string_to_return

returned = add_strings_2('5', '5')

5 (this is from the print statement)

returned

'5 5 (this is from the return statement)'
```

1.2.4 Variables and argument passing

When assigning a variable (or name) in Python, you are creating a reference to the object on the righthand side of the equals sign.

```
a = [1, 2, 3]
```

[1, 2, 3]

If we assign a to a new variable b, both a and b refer to the *same* object. This same object is the list [1, 2, 3]. If we change a, we also change b, because these variables or names refer to the *same* object.

```
b = a
```

b

[1, 2, 3]

Variables a and b refer to the same object, a list [1, 2, 3]. We will learn more about lists (and tuples and dictionaries) in chapter 3 of McKinney.

a is b

True

If we modify a by appending a 4, we change b because a and b refer to the same list.

```
a.append(4)
```

a

[1, 2, 3, 4]

b

[1, 2, 3, 4]

a is b

True

Likewise, if we modify b by appending a 5, we change a, too!

```
b.append(5)
```

a

[1, 2, 3, 4, 5]

```
b
[1, 2, 3, 4, 5]
a is b
```

True

The behavior is useful but a double-edged sword! Here is a deeper discussion of this behavior.

1.2.5 Dynamic references, strong types

In contrast with many compiled languages, such as Java and C++, object references in Python have no type associated with them.

In Python,

- 1. We do not declare variables and their types
- 2. We can change variables' types because variables are only names that refer to objects

Dynamic references mean we can reassign a variable to a new object in Python. For example, we can reassign a from a list to an integer to a string.

```
a
[1, 2, 3, 4, 5]
type(a)
list
a = 5
```

type(a)

int

```
a = 'foo'
type(a)
```

str

Strong types mean Python typically will not convert object types. For example, the code returns either '55' as a string or 10 as an integer in many programming languages. However, '5' + 5 returns an error in Python.

```
# '5' + 5
```

However, Python implicitly converts integers to floats.

```
a = 4.5
b = 2
print(f'a is {type(a)}, b is {type(b)}')
a / b
```

a is <class 'float'>, b is <class 'int'>

2.25

In the previous code cell:

- 1. The 'a is ...' output prints because of the explicit print() function call
- 2. The output of a / b prints (or displays) because it is the last line in the code cell

If we want integer division (or floor division), we have to use //.

```
5 // 2
```

2

5 / 2

2.5

1.2.6 Attributes and methods

We can use tab completion to list attributes (characteristics stored inside objects) and methods (functions associated with objects).

```
a = 'foo'
a.capitalize()
'Foo'
a.upper().lower()
'foo'
```

1.2.7 Imports

In Python a module is simply a file with the .py extension containing Python code.

We can import with import statements, which have several syntaxes. The basic syntax uses the module name as the prefix to separate module items from our current namespace.

```
import pandas
```

The import as syntax lets us define an abbreviated prefix.

```
import pandas as pd
```

We can also import one or more items from a package into our namespace with the following syntaxes.

```
from pandas import DataFrame

from pandas import DataFrame as df
```

1.2.8 Binary operators and comparisons

Binary operators work like Excel.

```
5 - 7
-2
12 + 21.5
33.5
```

5 <= 2

False

We can operate during an assignment to avoid two names referring to the same object.

```
a = [1, 2, 3]
b = a
c = list(a)
a is b
```

True

a is c

False

Here a and c have the same values but are not the same object!

```
a == c
```

True

```
a is not c
```

True

In Python, = is the assignment operator, == tests equality, and != tests inequality (!= in Python is like <> in Excel).

```
a == c
```

True

```
a != c
```

False

a and c have the same values but reference different objects in memory.

Table 2-1 from McKinney summarizes the binary operators.

- a + b : Add a and b
- a b : Subtract b from a
- a * b : Multiply a by b
- a / b : Divide a by b
- a // b : Floor-divide a by b, dropping any fractional remainder
- a ** b : Raise a to the b power
- a & b: True if both a and b are True; for integers, take the bitwise AND
- a | b: True if either a or b is True; for integers, take the bitwise OR
- a $\hat{}$ b : For booleans, True if a or b is True , but not both; for integers, take the bitwise EXCLUSIVE-OR
- a == b : True if a equals b
- a != b: True if a is not equal to b
- a <= b, a < b: True if a is less than (less than or equal) to b
- a > b, a >= b: True if a is greater than (greater than or equal) to b
- a is b: True if a and b reference the same Python object
- a is not b: True if a and b reference different Python objects

1.2.9 Mutable and immutable objects

Most objects in Python, such as lists, dicts, NumPy arrays, and most user-defined types (classes), are mutable. This means that the object or values that they contain can be modified.

Lists are mutable, so we can modify them.

```
a_list = ['foo', 2, [4, 5]]
```

Python is zero-indexed! The first element has a zero subscript [0]!

```
a_list[0]
'foo'
  a_list[2]
[4, 5]
  a_list[2][0]
4
  a_{list[2]} = (3, 4)
  a_list
['foo', 2, (3, 4)]
Tuples are immutable, so we cannot modify them.
```

```
a_{tuple} = (3, 5, (4, 5))
  a_tuple
(3, 5, (4, 5))
```

The Python interpreter returns an error if we try to modify <code>a_tuple</code> because tuples are immutable.

```
# a_tuple[1] = 'four'
```

Note: Tuples do not require (), but () improve readability.

```
test = 1, 2, 3
```

```
type(test)
```

tuple

We will learn more about Python's built-in data structures in McKinney chapter 3.

1.3 Scalar Types

Python along with its standard library has a small set of built-in types for handling numerical data, strings, boolean (True or False) values, and dates and time. These "single value" types are sometimes called scalar types and we refer to them in this book as scalars. See Table 2-4 for a list of the main scalar types. Date and time handling will be discussed separately, as these are provided by the datetime module in the standard library.

Table 2-2 from McKinney lists the standard scalar types.

- None: The Python "null" value (only one instance of the None object exists)
- str: String type; holds Unicode (UTF-8 encoded) strings
- bytes: Raw ASCII bytes (or Unicode encoded as bytes)
- float: Double-precision (64-bit) floating-point number (note there is no separate double type)
- bool: A True or False value
- int: Arbitrary precision signed integer

1.3.1 Numeric types

In Python, integers are unbounded, and ** raises numbers to a power. So, ival ** 6 is 17239781⁶.

```
ival = 17239871
ival ** 6
```

26254519291092456596965462913230729701102721

Floats (decimal numbers) are 64-bit in Python.

```
fval = 7.243
```

```
type(fval)
float
```

Dividing integers yields a float, if necessary.

```
3 / 2
```

1.5

We have to use // if we want C-style integer division (i.e., 3/2 = 1).

```
3 // 2
```

1

1.3.2 Booleans

The two Boolean values in Python are written as True and False. Comparisons and other conditional expressions evaluate to either True or False. Boolean values are combined with the and and or keywords.

Python is case sensitive, so we must type Booleans as True and False.

```
True and True
```

True

```
(5 > 1) and (10 > 5)
```

True

```
False or True
```

True

```
(5 > 1) or (10 > 5)
True
```

We can substitute & for and and | for or.

```
True & True
```

True

```
False | True
```

True

1.3.3 Type casting

We can "recast" variables to change their types.

```
s = '3.14159'
type(s)
```

str

```
1 + float(s)
```

4.14159

```
fval = float(s)
type(fval)
```

float

```
int(fval)
```

3

Zero is Boolean False, and all other values are Boolean True.

```
bool(0)
```

False

```
bool(1)
```

True

```
bool(-1)
```

True

We can recast the string '5' to an integer or the integer 5 to a string to prevent the 5+'5' error above.

```
5 + int('5')
```

10

```
str(5) + '5'
```

'55'

1.3.4 None

In Python, None is null. None is like #N/A or =na() in Excel.

```
a = None
a is None
```

True

```
b = 5
b is not None
```

True

```
type(None)
```

NoneType

1.4 Control Flow

Python has several built-in keywords for conditional logic, loops, and other standard control flow concepts found in other programming languages.

If you understand Excel's if(), then you understand Python's if, elif, and else.

1.4.1 if, elif, and else

It's negative

```
x = -1
type(x)
int

if x < 0:
    print("It's negative")</pre>
```

Single quotes and double quotes (' and ") are equivalent in Python. However, in the previous code cell, we use double quotes to differentiate between the enclosing quotes and the apostrophe in "It's".

Python's elif avoids Excel's nested if()s. elif continues an if block, and else runs if the other conditions are not met.

```
x = 10
if x < 0:
    print("It's negative")
elif x == 0:
    print('Equal to zero')
elif 0 < x < 5:
    print('Positive but smaller than 5')
else:
    print('Positive and larger than or equal to 5')</pre>
```

Positive and larger than or equal to 5

We can combine comparisons with and and or.

```
a = 5
b = 7
c = 8
d = 4
if a < b or c > d:
    print('Made it')
```

Made it

1.4.2 for loops

We use for loops to loop over a collection, like a list or tuple. The continue keyword skips the remainder of the if block for that loop iteration.

The following example assigns values with +=, where a += 5 is an abbreviation for a = a + 5. There are equivalent abbreviations for subtraction, multiplication, and division (-=, *=, and /=).

```
sequence = [1, 2, None, 4, None, 5, 'Alex']
total = 0
for value in sequence:
   if value is None or type(value) is str:
        continue
   total += value # the += operator is equivalent to "total = total + value"

total
```

The break keyword exits the loop altogether.

```
sequence = [1, 2, 0, 4, 6, 5, 2, 1]
total_until_5 = 0
for value in sequence:
    if value == 5:
        break
    total_until_5 += value

total_until_5
```

13

1.4.3 range

range(10)

The range function returns an iterator that yields a sequence of evenly spaced integers.

- With one argument, range() creates an iterator from 0 to that number but excludes that number (so range(10) is an interator with a length of 10 that starts at 0)
- With two arguments, the first argument is the *inclusive* starting value, and the second argument is the *exclusive* ending value
- With three arguments, the third argument is the iterator step size

```
range(0, 10)
We can cast a range to a list.
list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
list(range(1, 10))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
```

```
list(range(1, 10, 1))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
list(range(0, 20, 2))
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
```

Python intervals are "closed" (inclusive) on the left and "open" (exclusive) on the right. The following is an empty list because we cannot count from 5 to 0 by steps of +1.

```
list(range(5, 0))
```

[]

However, we can count from 5 to 0 in steps of -1.

```
list(range(5, 0, -1))
```

[5, 4, 3, 2, 1]

For loops have the following syntax in many other programming languages.

```
seq = [1, 2, 3, 4]
for i in range(len(seq)):
    val = seq[i]
```

However, in Python, we can directly loop over the list seq. The following code cell is equivalent to the previous code cell and more "Pythonic".

```
for i in seq:
    val = i

val
```

4

1.4.4 Ternary expressions

We said above that Python if and else is cumbersome relative to Excel's if(). We can complete simple comparisons on one line in Python.

```
x = 5
value = 'Non-negative' if x >= 0 else 'Negative'
value
```

^{&#}x27;Non-negative'

2 McKinney Chapter 2 - Practice for Section 02

2.1 Announcements

There are no due dates this week, but please take note of a few due dates next week:

- 1. Before class on Tuesday, complete the week 2 pre-class quiz
- 2. By Friday 1/19 at 11:59 PM:
 - 1. Acknowledge the academic integrity section of our syllabus
 - 2. Complete the first DataCamp course and upload your certificate

2.2 5-minute Recap

2.2.1 First, Python variables are references to objects.

```
a = [1, 2, 3]
a

[1, 2, 3]
b = a
b

[1, 2, 3]
a is b
```

True

Python is zero-indexed!

```
a[0]

1

a[0] = 2_001

a
```

[2001, 2, 3]

So both variables reflect changes to the referenced object.

b

[2001, 2, 3]

We can also reassign a new object, which does not change the original object.

```
a = 'Och'
```

'Och'

b

[2001, 2, 3]

```
b = a
b
```

'Och'

2.2.2 Second, we can define functions to re-use code

```
def square_root(x):
    return x ** 0.5

square_root(4)

2.0

square_root(9)

3.0
```

Note that white space is required and not just cosmetic! Our square_root() function does not work without the white space!

```
# def square_root(x):
# return x ** 0.5
# Cell In[26], line 2
# return x ** 0.5
# ^
# IndentationError: expected an indented block after function definition on line 1
```

2.2.3 Third, if-elif-else blocks let us conditionally run code blocks

Again, note the white space is required and not just cosmetic.

```
x = 5
if x < 0:
    print(f'{x} is negative')
elif x == 0:
    print(f'{x} is zero')
else:
    print(f'{x} is positive')</pre>
```

5 is positive

2.3 Practice

2.3.1 Extract the year, month, and day from an integer 8-digit date (i.e., YYYYMMDD format) using // (integer division) and % (modulo division).

Try 20080915.

- 2.3.2 Use your answer above to write a function date that accepts an integer 8-digit date argument and returns a tuple of the year, month, and date (e.g., return (year, month, date)).
- 2.3.3 Rewrite date to accept an 8-digit date as an integer or string.
- 2.3.4 Finally, rewrite date to accept a list of 8-digit dates as integers or strings.

Return a list of tuples of year, month, and date.

- 2.3.5 Write a for loop that prints the squares of integers from 1 to 10.
- 2.3.6 Write a for loop that prints the squares of even integers from 1 to 10.
- 2.3.7 Write a for loop that sums the squares of integers from 1 to 10.
- 2.3.8 Write a for loop that sums the squares of integers from 1 to 10 but stops before the sum exceeds 50.

2.3.9 FizzBuzz

Write a for loop that prints the numbers from 1 to 100. For multiples of three print "Fizz" instead of the number. For multiples of five print "Buzz". For numbers that are multiples of both three and five print "FizzBuzz". More here.

2.3.10 Use ternary expressions to make your FizzBuzz code more compact.

2.3.11 Triangle

Write a function triangle that accepts a positive integer N and prints a numerical triangle of height N-1. For example, triangle (N=6) should print:

2.3.12 Two Sum

Write a function two_sum that does the following.

Given an array of integers nums and an integer target, return the indices of the two numbers that add up to target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

You can return the answer in any order.

Here are some examples:

```
Example 1:
```

```
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
Example 2:
Input: nums = [3,2,4], target = 6
Output: [1,2]

Example 3:
Input: nums = [3,3], target = 6
Output: [0,1]
```

I saw this question on LeetCode.

2.3.13 Best Time

Write a function best_time that solves the following.

You are given an array prices where prices[i] is the price of a given stock on the i^{th} day.

You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.

Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

Here are some examples:

Example 1:

Input: prices = [7,1,5,3,6,4]

Output: 5

Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5. Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.

Example 2:

Input: prices = [7,6,4,3,1]

Output: 0

Explanation: In this case, no transactions are done and the max profit = 0.

I saw this question on LeetCode.

3 McKinney Chapter 2 - Practice for Section 03

3.1 Announcements

There are no due dates this week, but please take note of a few due dates next week:

- 1. Before class on Tuesday, complete the week 2 pre-class quiz
- 2. By Friday 1/19 at 11:59 PM:
 - 1. Acknowledge the academic integrity section of our syllabus
 - 2. Complete the first DataCamp course and upload your certificate

3.2 5-minute Recap

3.2.1 First, Python variables are references to objects.

```
a = [1, 2, 3]
a
```

[1, 2, 3]

[1, 2, 3]

Python is zero-indexed!

b[0]

```
1
```

```
b[0] = 2_001
```

[2001, 2, 3]

So both variables reflect changes to the referenced object.

a

[2001, 2, 3]

Variables a and b are two names for the same list in memory!

```
b is a
```

True

We can also reassign a new object, which does not change the original object.

```
a = 'Och'
```

'Och'

b

[2001, 2, 3]

3.2.2 Second, we can define functions to re-use code

```
def square_root(x):
    return x ** 0.5
```

```
square_root(4)
2.0
square_root(9)
```

3.0

Note that white space is required and not just cosmetic! Our square_root() function does not work without the white space!

```
# def square_root(x):
# return x ** 0.5
# Cell In[26], line 2
# return x ** 0.5
# ^
# IndentationError: expected an indented block after function definition on line 1
```

3.2.3 Third, if-elif-else blocks let us conditionally run code blocks

Again, note the white space is required and not just cosmetic.

```
x = 5
if x < 0:
    print(f'{x} is negative')
elif x == 0:
    print(f'{x} is zero')
else:
    print(f'{x} is positive')</pre>
```

5 is positive

3.3 Practice

3.3.1 Extract the year, month, and day from an integer 8-digit date (i.e., YYYYMMDD format) using // (integer division) and % (modulo division).

Try 20080915.

- 3.3.2 Use your answer above to write a function date that accepts an integer 8-digit date argument and returns a tuple of the year, month, and date (e.g., return (year, month, date)).
- 3.3.3 Rewrite date to accept an 8-digit date as an integer or string.
- 3.3.4 Finally, rewrite date to accept a list of 8-digit dates as integers or strings.

Return a list of tuples of year, month, and date.

- 3.3.5 Write a for loop that prints the squares of integers from 1 to 10.
- 3.3.6 Write a for loop that prints the squares of even integers from 1 to 10.
- 3.3.7 Write a for loop that sums the squares of integers from 1 to 10.
- 3.3.8 Write a for loop that sums the squares of integers from 1 to 10 but stops before the sum exceeds 50.

3.3.9 FizzBuzz

Write a for loop that prints the numbers from 1 to 100. For multiples of three print "Fizz" instead of the number. For multiples of five print "Buzz". For numbers that are multiples of both three and five print "FizzBuzz". More here.

3.3.10 Use ternary expressions to make your FizzBuzz code more compact.

3.3.11 Triangle

Write a function triangle that accepts a positive integer N and prints a numerical triangle of height N-1. For example, triangle (N=6) should print:

1

22

333

4444

55555

3.3.12 Two Sum

Write a function two_sum that does the following.

Given an array of integers nums and an integer target, return the indices of the two numbers that add up to target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

You can return the answer in any order.

Here are some examples:

```
Example 1:
```

```
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
Example 2:
Input: nums = [3,2,4], target = 6
Output: [1,2]

Example 3:
Input: nums = [3,3], target = 6
Output: [0,1]
```

I saw this question on LeetCode.

3.3.13 Best Time

Write a function best_time that solves the following.

You are given an array prices where prices[i] is the price of a given stock on the i^{th} day.

You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.

Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

Here are some examples:

Example 1:

Input: prices = [7,1,5,3,6,4]

Output: 5

Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5. Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.

Example 2:

Input: prices = [7,6,4,3,1]

Output: 0

Explanation: In this case, no transactions are done and the max profit = 0.

I saw this question on LeetCode.

4 McKinney Chapter 2 - Practice for Section 04

4.1 Announcements

There are no due dates this week, but please take note of a few due dates next week:

- 1. Before class on Tuesday, complete the week 2 pre-class quiz
- 2. By Friday 1/19 at 11:59 PM:
 - 1. Acknowledge the academic integrity section of our syllabus
 - 2. Complete the first DataCamp course and upload your certificate

4.2 Practice

4.2.1 First, Python variables are references to objects.

```
a = [1, 2, 3]
a
[1, 2, 3]
b = a
```

[1, 2, 3]

b

Python is zero-indexed!

b[0]

1

```
b[0] = 2_001
b
```

[2001, 2, 3]

So both variables reflect changes to the referenced object.

a

[2001, 2, 3]

Variables a and b are two names for the same list in memory!

```
b is a
```

True

We can also reassign a new object, which does not change the original object.

```
a = 'Och'
```

'Och'

b

[2001, 2, 3]

4.2.2 Second, we can define functions to re-use code

```
def square_root(x):
    return x ** 0.5
```

```
square_root(4)
2.0
square_root(9)
```

3.0

Note that white space is required and not just cosmetic! Our square_root() function does not work without the white space!

```
# def square_root(x):
# return x ** 0.5
# Cell In[26], line 2
# return x ** 0.5
# ^
# IndentationError: expected an indented block after function definition on line 1
```

4.2.3 Third, if-elif-else blocks let us conditionally run code blocks

Again, note the white space is required and not just cosmetic.

```
x = 5
if x < 0:
    print(f'{x} is negative')
elif x == 0:
    print(f'{x} is zero')
else:
    print(f'{x} is positive')</pre>
```

5 is positive

4.2.4 Extract the year, month, and day from an integer 8-digit date (i.e., YYYYMMDD format) using // (integer division) and % (modulo division).

Try 20080915.

- 4.2.5 Use your answer above to write a function date that accepts an integer 8-digit date argument and returns a tuple of the year, month, and date (e.g., return (year, month, date)).
- 4.2.6 Rewrite date to accept an 8-digit date as an integer or string.
- 4.2.7 Finally, rewrite date to accept a list of 8-digit dates as integers or strings.

Return a list of tuples of year, month, and date.

- 4.2.8 Write a for loop that prints the squares of integers from 1 to 10.
- 4.2.9 Write a for loop that prints the squares of even integers from 1 to 10.
- 4.2.10 Write a for loop that sums the squares of integers from 1 to 10.
- 4.2.11 Write a for loop that sums the squares of integers from 1 to 10 but stops before the sum exceeds 50.

4.2.12 FizzBuzz

Write a for loop that prints the numbers from 1 to 100. For multiples of three print "Fizz" instead of the number. For multiples of five print "Buzz". For numbers that are multiples of both three and five print "FizzBuzz". More here.

4.2.13 Use ternary expressions to make your FizzBuzz code more compact.

4.2.14 Triangle

Write a function triangle that accepts a positive integer N and prints a numerical triangle of height N-1. For example, triangle (N=6) should print:

1

22

333

4444

55555

4.2.15 Two Sum

Write a function two_sum that does the following.

Given an array of integers nums and an integer target, return the indices of the two numbers that add up to target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

You can return the answer in any order.

Here are some examples:

```
Example 1:
```

```
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
Example 2:
Input: nums = [3,2,4], target = 6
Output: [1,2]

Example 3:
Input: nums = [3,3], target = 6
Output: [0,1]
```

I saw this question on LeetCode.

4.2.16 Best Time

Write a function best time that solves the following.

You are given an array prices where prices[i] is the price of a given stock on the i^{th} day.

You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.

Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

Here are some examples:

Example 1:

Input: prices = [7,1,5,3,6,4]

Output: 5

Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5. Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.

Example 2:

Input: prices = [7,6,4,3,1]

Output: 0

Explanation: In this case, no transactions are done and the max profit = 0.

I saw this question on LeetCode.

5 McKinney Chapter 2 - Practice for Section 05

5.1 Announcements

There are no due dates this week, but please take note of a few due dates next week:

- 1. Before class on Tuesday, complete the week 2 pre-class quiz
- 2. By Friday 1/19 at 11:59 PM:
 - 1. Acknowledge the academic integrity section of our syllabus
 - 2. Complete the first DataCamp course and upload your certificate

5.2 5-Minutes Recap

5.2.1 First, Python variables are references to objects.

```
a = [1, 2, 3]
a
```

[1, 2, 3]

Two (or more) variables can refer to the same object.

```
b = a
b
```

[1, 2, 3]

Remember, Python is zero-indexed!

```
b[0] = 2001
b
```

[2001, 2, 3]

So both variables reflect changes to the referenced object.

a

[2001, 2, 3]

We can also reassign a new object, which does not change the original object.

```
b = 'W.T. Door'
b
'W.T. Door'
a
[2001, 2, 3]
```

5.2.2 Second, we can define functions to re-use code

```
def square_root(x):
    return x ** 0.5

square_root(4)

2.0

square_root(9)

3.0
```

Note that white space is required and not just cosmetic! Our square_root() function does not work without the white space!

```
# def square_root(x):
# return x ** 0.5
# Cell In[26], line 2
# return x ** 0.5
# ^
# IndentationError: expected an indented block after function definition on line 1
```

5.2.3 Third, if-elif-else blocks let us conditionally run code blocks

Again, note the white space is required and not just cosmetic.

```
x = 5
if x < 0:
    print(f'{x} is negative')
elif x == 0:
    print(f'{x} is zero')
else:
    print(f'{x} is positive')</pre>
```

5 is positive

5.3 Practice

5.3.1 Extract the year, month, and day from an integer 8-digit date (i.e., YYYYMMDD format) using // (integer division) and % (modulo division).

Try 20080915.

- 5.3.2 Use your answer above to write a function date that accepts an integer 8-digit date argument and returns a tuple of the year, month, and date (e.g., return (year, month, date)).
- 5.3.3 Rewrite date to accept an 8-digit date as an integer or string.
- 5.3.4 Finally, rewrite date to accept a list of 8-digit dates as integers or strings.

Return a list of tuples of year, month, and date.

- 5.3.5 Write a for loop that prints the squares of integers from 1 to 10.
- 5.3.6 Write a for loop that prints the squares of even integers from 1 to 10.
- 5.3.7 Write a for loop that sums the squares of integers from 1 to 10.
- 5.3.8 Write a for loop that sums the squares of integers from 1 to 10 but stops before the sum exceeds 50.

5.3.9 FizzBuzz

Write a for loop that prints the numbers from 1 to 100. For multiples of three print "Fizz" instead of the number. For multiples of five print "Buzz". For numbers that are multiples of both three and five print "FizzBuzz". More here.

5.3.10 Use ternary expressions to make your FizzBuzz code more compact.

5.3.11 Triangle

Write a function triangle that accepts a positive integer N and prints a numerical triangle of height N-1. For example, triangle (N=6) should print:

5.3.12 Two Sum

Write a function two_sum that does the following.

Given an array of integers nums and an integer target, return the indices of the two numbers that add up to target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

You can return the answer in any order.

Here are some examples:

Example 1:

```
Input: nums = [2,7,11,15], target = 9
```

Output: [0,1]

Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].

Example 2:

Input: nums = [3,2,4], target = 6

Output: [1,2]

Example 3:

Input: nums = [3,3], target = 6

Output: [0,1]

I saw this question on LeetCode.

5.3.13 Best Time

Write a function best_time that solves the following.

You are given an array prices where prices[i] is the price of a given stock on the i^{th} day.

You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.

Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

Here are some examples:

Example 1:

Input: prices = [7,1,5,3,6,4]

Output: 5

Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5. Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.

Example 2:

Input: prices = [7,6,4,3,1]

Output: 0

Explanation: In this case, no transactions are done and the max profit = 0.

I saw this question on LeetCode.

Part II

Week 2

6 McKinney Chapter 3 - Built-In Data Structures, Functions, and Files

6.1 Introduction

We must understand Python's core functionality to fully use NumPy and pandas. Chapter 3 of Wes McKinney's *Python for Data Analysis* discusses Python's core functionality. We will focus on the following:

- 1. Data structures
 - 1. tuples
 - 2. lists
 - 3. dicts (also known as dictionaries)
 - 4. we will ignore sets
- 2. List comprehensions
- 3. Functions
 - 1. Returning multiple values
 - 2. Using anonymous functions

Note: Indented block quotes are from McKinney unless otherwise indicated. The section numbers here differ from McKinney because we will only discuss some topics.

6.2 Data Structures and Sequences

Python's data structures are simple but powerful. Mastering their use is a critical part of becoming a proficient Python programmer.

6.2.1 Tuple

A tuple is a fixed-length, immutable sequence of Python objects.

We cannot change a tuple after we create it because tuples are immutable. A tuple is ordered, so we can subset or slice it with a numerical index. We will surround tuples with parentheses but the parentheses are not always required.

```
tup = (4, 5, 6)
Python is zero-indexed, so zero accesses the first element in tup!
  tup[0]
4
  tup[1]
5
  nested_{tup} = ((4, 5, 6), (7, 8))
Python is zero-indexed!
  nested_tup[0]
(4, 5, 6)
  nested_tup[0][0]
4
  tup = tuple('string')
  tup
('s', 't', 'r', 'i', 'n', 'g')
  tup[0]
```

'ន'

```
tup = tuple(['foo', [1, 2], True])
  tup
('foo', [1, 2], True)
  # tup[2] = False # gives an error, because tuples are immutable (unchangeable)
    If an object inside a tuple is mutable, such as a list, you can modify it in-place.
  tup
('foo', [1, 2], True)
  tup[1].append(3)
  tup
('foo', [1, 2, 3], True)
```

You can concatenate tuples using the + operator to produce longer tuples:

Tuples are immutable, but we can combine two tuples into a new tuple.

```
(1, 2) + (1, 2)
(1, 2, 1, 2)
  (4, None, 'foo') + (6, 0) + ('bar',)
(4, None, 'foo', 6, 0, 'bar')
```

Multiplying a tuple by an integer, as with lists, has the effect of concatenating together that many copies of the tuple:

This multiplication behavior is the logical extension of the addition behavior above. The output of tup + tup should be the same as the output of 2 * tup.

```
('foo', 'bar') * 2

('foo', 'bar', 'foo', 'bar')

('foo', 'bar') + ('foo', 'bar')

('foo', 'bar', 'foo', 'bar')
```

6.2.1.1 Unpacking tuples

If you try to assign to a tuple-like expression of variables, Python will attempt to unpack the value on the righthand side of the equals sign.

```
tup = (4, 5, 6)
a, b, c = tup
(d, e, f) = (7, 8, 9) # the parentheses are optional but helpful!
```

We can unpack nested tuples!

```
tup = 4, 5, (6, 7)
a, b, (c, d) = tup
```

6.2.1.2 Tuple methods

Since the size and contents of a tuple cannot be modified, it is very light on instance methods. A particularly useful one (also available on lists) is count, which counts the number of occurrences of a value.

```
a = (1, 2, 2, 2, 3, 4, 2)
a.count(2)
```

4

6.2.2 List

In contrast with tuples, lists are variable-length and their contents can be modified in-place. You can define them using square brackets [] or using the list type function.

```
a_list = [2, 3, 7, None]
tup = ('foo', 'bar', 'baz')
b_list = list(tup)
```

Pyhon is zero-indexed!

```
a_list[0]
```

2

6.2.2.1 Adding and removing elements

Elements can be appended to the end of the list with the append method.

The .append() method appends an element to the list in place without reassigning the list.

```
b_list.append('dwarf')
```

Using insert you can insert an element at a specific location in the list. The insertion index must be between 0 and the length of the list, inclusive.

```
b_list.insert(1, 'red')
b_list.index('red')
```

1

```
b_list[b_list.index('red')] = 'blue'
```

The inverse operation to insert is pop, which removes and returns an element at a particular index.

```
b_list.pop(2)
```

```
'bar'
```

```
b_list
['foo', 'blue', 'baz', 'dwarf']
```

Note that .pop(2) removes the 2 element. If we do not want to remove the 2 element, we should use [2] to access an element without removing it.

Elements can be removed by value with remove, which locates the first such value and removes it from the list.

```
b_list.append('foo')

b_list.remove('foo')

'dwarf' in b_list
```

True

```
'dwarf' not in b_list
```

False

6.2.2.2 Concatenating and combining lists

Similar to tuples, adding two lists together with + concatenates them.

```
[4, None, 'foo'] + [7, 8, (2, 3)]
[4, None, 'foo', 7, 8, (2, 3)]
```

The .append() method adds its argument as the last element in a list.

```
xx = [4, None, 'foo']
xx.append([7, 8, (2, 3)])
```

If you have a list already defined, you can append multiple elements to it using the extend method.

```
x = [4, None, 'foo']
x.extend([7, 8, (2, 3)])
```

Check your output! It will take you time to understand all these methods!

6.2.2.3 Sorting

You can sort a list in-place (without creating a new object) by calling its sort function

```
a = [7, 2, 5, 1, 3]
a.sort()
```

sort has a few options that will occasionally come in handy. One is the ability to pass a secondary sort key—that is, a function that produces a value to use to sort the objects. For example, we could sort a collection of strings by their lengths.

Before you write your own solution to a problem, read the docstring (help file) of the built-in function. The built-in function may already solve your problem faster with fewer bugs.

```
b = ['saw', 'small', 'He', 'foxes', 'six']
b.sort()
```

Python is case sensitive, so "He" sorts before "foxes"!

```
b.sort(key=len)
```

6.2.2.4 Slicing

Slicing is very important!

You can select sections of most sequence types by using slice notation, which in its basic form consists of start:stop passed to the indexing operator [].

Recall that Python is zero-indexed, so the first element has an index of 0. The necessary consequence of zero-indexing is that start:stop is inclusive on the left edge (start) and exclusive on the right edge (stop).

```
seq = [7, 2, 3, 7, 5, 6, 0, 1] seq
```

```
[7, 2, 3, 7, 5, 6, 0, 1]
  seq[<mark>5</mark>]
6
  seq[:5]
[7, 2, 3, 7, 5]
  seq[1:5]
[2, 3, 7, 5]
  seq[3:5]
[7, 5]
     Either the start or stop can be omitted, in which case they default to the start of
     the sequence and the end of the sequence, respectively.
  seq[:5]
[7, 2, 3, 7, 5]
  seq[3:]
[7, 5, 6, 0, 1]
     Negative indices slice the sequence relative to the end.
  seq[-1:]
[1]
```

```
seq[-4:]
[5, 6, 0, 1]
seq[-4:-1]
[5, 6, 0]
seq[-6:-2]
[3, 7, 5, 6]
    A step can also be used after a second colon to, say, take every other element.
seq[:]
[7, 2, 3, 7, 5, 6, 0, 1]
seq[::2]
[7, 3, 5, 0]
seq[1::2]
```

I remember the trick above as :2 is "count by 2".

A clever use of this is to pass -1, which has the useful effect of reversing a list or tuple.

```
seq[::-1]
[1, 0, 6, 5, 7, 3, 2, 7]
```

[2, 7, 6, 1]

We will use slicing (subsetting) all semester, so it is worth a few minutes to understand the examples above.

6.2.3 dict

dict is likely the most important built-in Python data structure. A more common name for it is hash map or associative array. It is a flexibly sized collection of key-value pairs, where key and value are Python objects. One approach for creating one is to use curly braces {} and colons to separate keys and values.

Elements in dictionaries have names, while elements in tuples and lists have numerical indices. Dictionaries are handy for passing named arguments and returning named results.

```
empty_dict = {}
   empty_dict
{}
A dictionary is a set of key-value pairs.
  d1 = {'a': 'some value', 'b': [1, 2, 3, 4]}
  d1['a']
'some value'
  d1[7] = 'an integer'
  d1
{'a': 'some value', 'b': [1, 2, 3, 4], 7: 'an integer'}
We access dictionary values by key names instead of key positions.
  d1['b']
[1, 2, 3, 4]
   'b' in d1
```

True

You can delete values either using the del keyword or the pop method (which simultaneously returns the value and deletes the key).

```
d1[5] = 'some value'
  d1['dummy'] = 'another value'
  d1
{'a': 'some value',
 'b': [1, 2, 3, 4],
7: 'an integer',
5: 'some value',
 'dummy': 'another value'}
  del d1[5]
  d1
{'a': 'some value',
 'b': [1, 2, 3, 4],
7: 'an integer',
 'dummy': 'another value'}
  ret = d1.pop('dummy')
  ret
'another value'
  d1
{'a': 'some value', 'b': [1, 2, 3, 4], 7: 'an integer'}
```

The keys and values method give you iterators of the dict's keys and values, respectively. While the key-value pairs are not in any particular order, these functions output the keys and values in the same order.

```
d1.keys()
dict_keys(['a', 'b', 7])

d1.values()

dict_values(['some value', [1, 2, 3, 4], 'an integer'])
        You can merge one dict into another using the update method.
d1

{'a': 'some value', 'b': [1, 2, 3, 4], 7: 'an integer'}

d1.update({'b': 'foo', 'c': 12})

d1

{'a': 'some value', 'b': 'foo', 7: 'an integer', 'c': 12}
```

6.3 List, Set, and Dict Comprehensions

We will focus on list comprehensions.

List comprehensions are one of the most-loved Python language features. They allow you to concisely form a new list by filtering the elements of a collection, transforming the elements passing the filter in one concise expression. They take the basic form:

```
[expr for val in collection if condition]
```

This is equivalent to the following for loop:

```
result = []
for val in collection:
   if condition:
```

```
result.append(expr)
```

The filter condition can be omitted, leaving only the expression.

List comprehensions are very Pythonic.

```
strings = ['a', 'as', 'bat', 'car', 'dove', 'python']
```

We could use a for loop to capitalize the strings in **strings** and keep only strings with lengths greater than two.

```
caps = []
for x in strings:
   if len(x) > 2:
        caps.append(x.upper())
caps
```

```
['BAT', 'CAR', 'DOVE', 'PYTHON']
```

A list comprehension is a more Pythonic solution and replaces four lines of code with one. The general format for a list comprehension is [operation on x for x in list if condition]

```
[x.upper() for x in strings if len(x) > 2]
['BAT', 'CAR', 'DOVE', 'PYTHON']
```

Here is another example. Write a for-loop and the equivalent list comprehension that squares the integers from 1 to 10.

```
squares = []
for i in range(1, 11):
    squares.append(i ** 2)
squares
```

```
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
```

```
[i**2 for i in range(1, 11)]
```

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

6.4 Functions

Functions are the primary and most important method of code organization and reuse in Python. As a rule of thumb, if you anticipate needing to repeat the same or very similar code more than once, it may be worth writing a reusable function. Functions can also help make your code more readable by giving a name to a group of Python statements.

Functions are declared with the def keyword and returned from with the return keyword:

```
def my_function(x, y, z=1.5):
    if z > 1:
        return z * (x + y)
    else:
        return z / (x + y)
```

There is no issue with having multiple return statements. If Python reaches the end of a function without encountering a return statement, None is returned automatically.

Each function can have positional arguments and keyword arguments. Keyword arguments are most commonly used to specify default values or optional arguments. In the preceding function, x and y are positional arguments while z is a keyword argument. This means that the function can be called in any of these ways:

```
my_function(5, 6, z=0.7)
my_function(3.14, 7, 3.5)
my_function(10, 20)
```

The main restriction on function arguments is that the keyword arguments must follow the positional arguments (if any). You can specify keyword arguments in any order; this frees you from having to remember which order the function arguments were specified in and only what their names are.

Here is the basic syntax for a function:

```
def mult_by_two(x):
    return 2*x
```

6.4.1 Returning Multiple Values

We can write Python functions that return multiple objects. In reality, the function f() below returns one object, a tuple, that we can unpack to multiple objects.

```
def f():
    a = 5
    b = 6
    c = 7
    return (a, b, c)

f()
```

5

If we want to return multiple objects with names or labels, we can return a dictionary.

```
def f():
    a = 5
    b = 6
    c = 7
    return {'a' : a, 'b' : b, 'c' : c}

f()

{'a': 5, 'b': 6, 'c': 7}

f()['a']
```

6.4.2 Anonymous (Lambda) Functions

Python has support for so-called anonymous or lambda functions, which are a way of writing functions consisting of a single statement, the result of which is the return value. They are defined with the lambda keyword, which has no meaning other than "we are declaring an anonymous function."

I usually refer to these as lambda functions in the rest of the book. They are especially convenient in data analysis because, as you'll see, there are many cases where data transformation functions will take functions as arguments. It's often less typing (and clearer) to pass a lambda function as opposed to writing a full-out function declaration or even assigning the lambda function to a local variable.

Lambda functions are very Pythonic and let us to write simple functions on the fly. For example, we could use a lambda function to sort strings by the number of unique letters.

```
strings = ['foo', 'card', 'bar', 'aaaa', 'abab']

strings.sort()
strings

['aaaa', 'abab', 'bar', 'card', 'foo']

strings.sort(key=len)
strings

['bar', 'foo', 'aaaa', 'abab', 'card']

strings.sort(key=lambda x: x[-1])
strings

['aaaa', 'abab', 'card', 'foo', 'bar']

How can I sort by the second letter in each string?

strings.sort(key=lambda x: x[1])
strings

['aaaa', 'card', 'bar', 'abab', 'foo']
```

7 McKinney Chapter 3 - Practice for Section 02

7.1 Announcements

7.2 Practice

7.2.1 Swap the values assigned to a and b using a third variable c.

```
a = 1
b = 2
```

7.2.2 Swap the values assigned to a and b without using a third variable c.

```
a = 1
b = 2
```

7.2.3 What is the output of the following code and why?

```
1, 1, 1 == (1, 1, 1)
(1, 1, False)
```

- 7.2.4 Create a list 11 of integers from 1 to 100.
- 7.2.5 Slice 11 to create a list of integers from 60 to 50 (inclusive).

Name this list 12.

- 7.2.6 Create a list 13 of odd integers from 1 to 21.
- 7.2.7 Create a list 14 of the squares of integers from 1 to 100.
- 7.2.8 Create a list 15 that contains the squares of *odd* integers from 1 to 100.
- 7.2.9 Use a lambda function to sort strings by the last letter.

```
strings = ['card', 'aaaa', 'foo', 'bar', 'abab']
```

7.2.10 Given an integer array nums and an integer ${\bf k}$, return the k^{th} largest element in the array.

Note that it is the k^{th} largest element in the sorted order, not the k^{th} distinct element.

Example 1:

```
Input: nums = [3,2,1,5,6,4], k = 2
Output: 5
Example 2:
Input: nums = [3,2,3,1,2,4,5,5,6], k = 4
Output: 4
```

I saw this question on LeetCode.

7.2.11 Given an integer array nums and an integer k, return the k most frequent elements.

You may return the answer in any order.

Example 1:

```
Input: nums = [1,1,1,2,2,3], k = 2
Output: [1,2]
Example 2:
Input: nums = [1], k = 1
Output: [1]
```

I saw this question on LeetCode.

7.2.12 Test whether the given strings are palindromes.

```
Input: ["aba", "no"]
Output: [True, False]
```

7.2.13 Write a function returns() that accepts lists of prices and dividends and returns a list of returns.

```
prices = [100, 150, 100, 50, 100, 150, 100, 150]
dividends = [1, 1, 1, 1, 2, 2, 2, 2]
```

- 7.2.14 Rewrite the function returns() so it returns lists of returns, capital gains yields, and dividend yields.
- 7.2.15 Rescale and shift numbers so that they cover the range [0, 1].

```
Input: [18.5, 17.0, 18.0, 19.0, 18.0]
Output: [0.75, 0.0, 0.5, 1.0, 0.5]
numbers = [18.5, 17.0, 18.0, 19.0, 18.0]
```

8 McKinney Chapter 3 - Practice for Section 03

8.1 Announcements

8.2 Practice

8.2.1 Swap the values assigned to a and b using a third variable c.

```
a = 1
b = 2
```

8.2.2 Swap the values assigned to a and b without using a third variable c.

```
a = 1
b = 2
```

8.2.3 What is the output of the following code and why?

```
1, 1, 1 == (1, 1, 1)
(1, 1, False)
```

- 8.2.4 Create a list 11 of integers from 1 to 100.
- 8.2.5 Slice 11 to create a list of integers from 60 to 50 (inclusive).

Name this list 12.

- 8.2.6 Create a list 13 of odd integers from 1 to 21.
- 8.2.7 Create a list 14 of the squares of integers from 1 to 100.
- 8.2.8 Create a list 15 that contains the squares of odd integers from 1 to 100.
- 8.2.9 Use a lambda function to sort strings by the last letter.

```
strings = ['card', 'aaaa', 'foo', 'bar', 'abab']
```

8.2.10 Given an integer array nums and an integer ${\bf k}$, return the k^{th} largest element in the array.

Note that it is the k^{th} largest element in the sorted order, not the k^{th} distinct element.

Example 1:

```
Input: nums = [3,2,1,5,6,4], k = 2
Output: 5
Example 2:
Input: nums = [3,2,3,1,2,4,5,5,6], k = 4
Output: 4
```

I saw this question on LeetCode.

8.2.11 Given an integer array nums and an integer k, return the k most frequent elements.

You may return the answer in any order.

Example 1:

```
Input: nums = [1,1,1,2,2,3], k = 2

Output: [1,2]

Example 2:

Input: nums = [1], k = 1

Output: [1]
```

I saw this question on LeetCode.

8.2.12 Test whether the given strings are palindromes.

```
Input: ["aba", "no"]
Output: [True, False]
```

8.2.13 Write a function returns() that accepts lists of prices and dividends and returns a list of returns.

```
prices = [100, 150, 100, 50, 100, 150, 100, 150]
dividends = [1, 1, 1, 1, 2, 2, 2, 2]
```

- 8.2.14 Rewrite the function returns() so it returns lists of returns, capital gains yields, and dividend yields.
- 8.2.15 Rescale and shift numbers so that they cover the range [0, 1].

```
Input: [18.5, 17.0, 18.0, 19.0, 18.0]
Output: [0.75, 0.0, 0.5, 1.0, 0.5]
numbers = [18.5, 17.0, 18.0, 19.0, 18.0]
```

9 McKinney Chapter 3 - Practice for Section 04

9.1 Announcements

9.2 Practice

9.2.1 Swap the values assigned to a and b using a third variable c.

```
a = 1
b = 2
```

9.2.2 Swap the values assigned to a and b without using a third variable c.

```
a = 1
b = 2
```

9.2.3 What is the output of the following code and why?

```
1, 1, 1 == (1, 1, 1)
(1, 1, False)
```

- 9.2.4 Create a list 11 of integers from 1 to 100.
- 9.2.5 Slice 11 to create a list of integers from 60 to 50 (inclusive).

Name this list 12.

- 9.2.6 Create a list 13 of odd integers from 1 to 21.
- 9.2.7 Create a list 14 of the squares of integers from 1 to 100.
- 9.2.8 Create a list 15 that contains the squares of odd integers from 1 to 100.
- 9.2.9 Use a lambda function to sort strings by the last letter.

```
strings = ['card', 'aaaa', 'foo', 'bar', 'abab']
```

9.2.10 Given an integer array nums and an integer ${\bf k}$, return the k^{th} largest element in the array.

Note that it is the k^{th} largest element in the sorted order, not the k^{th} distinct element.

Example 1:

```
Input: nums = [3,2,1,5,6,4], k = 2
Output: 5
Example 2:
Input: nums = [3,2,3,1,2,4,5,5,6], k = 4
Output: 4
```

I saw this question on LeetCode.

9.2.11 Given an integer array nums and an integer k, return the k most frequent elements.

You may return the answer in any order.

Example 1:

```
Input: nums = [1,1,1,2,2,3], k = 2
Output: [1,2]
Example 2:
Input: nums = [1], k = 1
Output: [1]
```

I saw this question on LeetCode.

9.2.12 Test whether the given strings are palindromes.

```
Input: ["aba", "no"]
Output: [True, False]
```

9.2.13 Write a function returns() that accepts lists of prices and dividends and returns a list of returns.

```
prices = [100, 150, 100, 50, 100, 150, 100, 150]
dividends = [1, 1, 1, 1, 2, 2, 2, 2]
```

- 9.2.14 Rewrite the function returns() so it returns lists of returns, capital gains yields, and dividend yields.
- 9.2.15 Rescale and shift numbers so that they cover the range [0, 1].

```
Input: [18.5, 17.0, 18.0, 19.0, 18.0]
Output: [0.75, 0.0, 0.5, 1.0, 0.5]
numbers = [18.5, 17.0, 18.0, 19.0, 18.0]
```

10 McKinney Chapter 3 - Practice for Section 05

10.1 Announcements

10.2 Practice

10.2.1 Swap the values assigned to a and b using a third variable c.

```
a = 1
b = 2
```

10.2.2 Swap the values assigned to a and b without using a third variable c.

```
a = 1
b = 2
```

10.2.3 What is the output of the following code and why?

```
1, 1, 1 == (1, 1, 1)
(1, 1, False)
```

- 10.2.4 Create a list 11 of integers from 1 to 100.
- 10.2.5 Slice 11 to create a list of integers from 60 to 50 (inclusive).

Name this list 12.

- 10.2.6 Create a list 13 of odd integers from 1 to 21.
- 10.2.7 Create a list 14 of the squares of integers from 1 to 100.
- 10.2.8 Create a list 15 that contains the squares of *odd* integers from 1 to 100.
- 10.2.9 Use a lambda function to sort strings by the last letter.

```
strings = ['card', 'aaaa', 'foo', 'bar', 'abab']
```

10.2.10 Given an integer array nums and an integer k, return the k^{th} largest element in the array.

Note that it is the k^{th} largest element in the sorted order, not the k^{th} distinct element.

Example 1:

```
Input: nums = [3,2,1,5,6,4], k = 2
Output: 5
Example 2:
Input: nums = [3,2,3,1,2,4,5,5,6], k = 4
Output: 4
```

I saw this question on LeetCode.

10.2.11 Given an integer array nums and an integer k, return the k most frequent elements.

You may return the answer in any order.

Example 1:

```
Input: nums = [1,1,1,2,2,3], k = 2

Output: [1,2]

Example 2:

Input: nums = [1], k = 1

Output: [1]
```

I saw this question on LeetCode.

10.2.12 Test whether the given strings are palindromes.

```
Input: ["aba", "no"]
Output: [True, False]
```

10.2.13 Write a function returns() that accepts lists of prices and dividends and returns a list of returns.

```
prices = [100, 150, 100, 50, 100, 150, 100, 150]
dividends = [1, 1, 1, 1, 2, 2, 2, 2]
```

- 10.2.14 Rewrite the function returns() so it returns lists of returns, capital gains yields, and dividend yields.
- 10.2.15 Rescale and shift numbers so that they cover the range [0, 1].

```
Input: [18.5, 17.0, 18.0, 19.0, 18.0]
Output: [0.75, 0.0, 0.5, 1.0, 0.5]
numbers = [18.5, 17.0, 18.0, 19.0, 18.0]
```

Part III

Week 3

11 McKinney Chapter 4 - NumPy Basics: Arrays and Vectorized Computation

11.1 Introduction

Chapter 4 of Wes McKinney's *Python for Data Analysis* discusses the NumPy package (an abbreviation of numerical Python), which is the foundation for numerical computing in Python, including pandas.

We will focus on:

- 1. Creating arrays
- 2. Slicing arrays
- 3. Applying functions and methods to arrays
- 4. Using conditional logic with arrays (i.e., np.where() and np.select())

Note: Indented block quotes are from McKinney unless otherwise indicated. The section numbers here differ from McKinney because we will only discuss some topics.

The typical abbreviation for NumPy is np.

```
import numpy as np
```

The "magic" function "precision 4 tells JupyterLab to print NumPy arrays to 4 decimals. This magic function only changes the printed precision and does not change the stored precision of the underlying values.

```
\%precision 4
```

'%.4f'

McKinney thoroughly discuesses the history on NumPy, as well as its technical advantages. But here is a simple illustration of the speed and syntax advantages of NumPy of Python's built-in data structures. First, we create a list and array with values from 0 to 999,999.

```
my_list = list(range(1_000_000))
  my_arr = np.arange(1_000_000)
  my_list[:5]
[0, 1, 2, 3, 4]
  my_arr[:5]
array([0, 1, 2, 3, 4])
If we want to double each value in my_list we have to use a for loop or a list comprehension.
  len(my_list * 2) # concatenates two copies of my_list
2000000
  # [2 * x for x in my_list] # list comprehension to double each value
However, we can multiply my_arr by two because math "just works" with NumPy.
  my_arr * 2
                                 4, ..., 1999994, 1999996, 1999998])
array([
              Ο,
                       2,
We can use the "magic" function %timeit to time these two calculations.
  %timeit [x * 2 for x in my_list]
56.1 ms ± 5.42 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
  %timeit my_arr * 2
```

```
872 \mu s \pm 64.5 \mu s per loop (mean \pm std. dev. of 7 runs, 1,000 loops each)
```

The NumPy version is a hundred times faster than the list version. The NumPy version is also faster to type, read, and troubleshoot, which are typically more important. Our time is more valuable than the computer time!

11.2 The NumPy ndarray: A Multidimensional Array Object

One of the key features of NumPy is its N-dimensional array object, or ndarray, which is a fast, flexible container for large datasets in Python. Arrays enable you to perform mathematical operations on whole blocks of data using similar syntax to the equivalent operations between scalar elements.

We generate random data to explore NumPy arrays. Whenever we generate random data, we should set the random number seed with np.random.seed(42), which makes our random numbers repeatable. If we use the same random number seed, our random numbers will be the same.

Multiplying data by 10 multiplies each element in data by 10, and adding data to itself adds each element to itself (i.e., element-wise addition). To achieve this common-sense behavior, NumPy arrays must contain homogeneous data types (e.g., all floats or all integers).

NumPy arrays have attributes. Recall that Jupyter Notebooks provides tab completion.

```
data.ndim

data.ndim

data.shape

(2, 3)

data.dtype

dtype('float64')

We access or slice elements in a NumPy array using [], the same as we slice lists and tuples.

data[0]

array([ 0.4967, -0.1383,     0.6477])

As with list and tuples, we can chain []s.

data[0][0]
```

However, with NumPy arrays. we can replace n chained []s with one pair of []s containing n values separated by commas. For example, [i][j] becomes [i, j], [i][j][k] becomes [i, j, k]. This abbreviated notation is similar to what you see in your math and econometrics courses.

```
data[0, 0] # zero row, zero column
```

0.4967

0.4967

```
data[0][0] == data[0, 0]
```

True

11.2.1 Creating ndarrays

The easiest way to create an array is to use the array function. This accepts any sequence-like object (including other arrays) and produces a new NumPy array containing the passed data

```
data1 = [6, 7.5, 8, 0, 1]
arr1 = np.array(data1)
arr1

array([6. , 7.5, 8. , 0. , 1. ])
  arr1.dtype

dtype('float64')
```

Here np.array() casts the values in data1 to floats because NumPy arrays must have homogenous data types. We could coerce these values to integers but would lose information.

```
np.array(data1, dtype=np.int64)
array([6, 7, 8, 0, 1], dtype=int64)
```

We can coerce or cast a list-of-lists to a two-dimensional NumPy array.

```
arr2.ndim
2
  arr2.shape
(2, 4)
  arr2.dtype
dtype('int32')
There are several other ways to create NumPy arrays.
  np.zeros(10)
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
  np.zeros((3, 6))
array([[0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.]
       [0., 0., 0., 0., 0., 0.]
The np.arange() function is similar to Python's built-in range() but creates an array di-
rectly.
  list(range(15))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
  np.array(range(15))
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
```

```
np.arange(15)
```

```
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
```

Table 4-1 from McKinney lists some NumPy array creation functions.

- array: Convert input data (list, tuple, array, or other sequence type) to an ndarray either by inferring a dtype or explicitly specifying a dtype; copies the input data by default
- asarray: Convert input to ndarray, but do not copy if the input is already an ndarray
- arange: Like the built-in range but returns an ndarray instead of a list
- ones, ones_like: Produce an array of all 1s with the given shape and dtype; ones_like takes another array and produces a ones array of the same shape and dtype
- zeros, zeros_like: Like ones and ones_like but producing arrays of 0s instead
- empty, empty_like: Create new arrays by allocating new memory, but do not populate with any values like ones and zeros
- full, full_like: Produce an array of the given shape and dtype with all values set to the indicated "fill value"
- eye, identity: Create a square N-by-N identity matrix (1s on the diagonal and 0s elsewhere)

11.2.2 Arithmetic with NumPy Arrays

Arrays are important because they enable you to express batch operations on data without writing any for loops. NumPy users call this vectorization. Any arithmetic operations between equal-size arrays applies the operation element-wise

NumPy array addition is elementwise.

NumPy array multiplication is elementwise.

NumPy array division is elementwise.

NumPy powers are elementwise, too.

We can also raise a single value to an array!

11.2.3 Basic Indexing and Slicing

One-dimensional array index and slice the same as lists.

```
arr = np.arange(10)
arr

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    arr[5]

5
    arr[5:8]

array([5, 6, 7])

    equiv_list = list(range(10))
    equiv_list

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

    equiv_list[5:8]
```

We have to jump through some hoops if we want to replace elements 5, 6, and 7 in equiv_list with the value 12.

```
# TypeError: can only assign an iterable
# equiv_list[5:8] = 12

equiv_list[5:8] = [12] * 3
equiv_list

[0, 1, 2, 3, 4, 12, 12, 12, 8, 9]
```

However, this operation is easy with the NumPy array arr!

```
arr[5:8] = 12
arr

array([ 0,  1,  2,  3,  4, 12, 12, 12,  8,  9])
```

"Broadcasting" is the name for this behavior.

As you can see, if you assign a scalar value to a slice, as in arr[5:8] = 12, the value is propagated (or broadcasted henceforth) to the entire selection. An important first distinction from Python's built-in lists is that array slices are views on the original array. This means that the data is not copied, and any modifications to the view will be reflected in the source array.

```
arr_slice = arr[5:8]
  arr_slice
array([12, 12, 12])
  x = arr_slice
  X
array([12, 12, 12])
  x is arr_slice
True
  y = x.copy()
  y is arr_slice
False
  arr_slice[1] = 12345
  arr_slice
array([
        12, 12345,
                         12])
```

```
arr
array([
                         2,
                                3, 4, 12, 12345,
           Ο,
                  1,
                                                             12,
                                                                     8,
           9])
The : slices every element in arr_slice.
  arr_slice[:] = 64
  arr_slice
array([64, 64, 64])
  arr
array([ 0, 1, 2, 3, 4, 64, 64, 64, 8, 9])
     If you want a copy of a slice of an ndarray instead of a view, you will need to
     explicitly copy the array-for example, arr[5:8].copy().
  arr_slice_2 = arr[5:8].copy()
  arr_slice_2
array([64, 64, 64])
  arr_slice_2[:] = 2001
  arr_slice_2
array([2001, 2001, 2001])
  arr
```

11.2.4 Indexing with slices

We can slice across two or more dimensions, including the [i, j] notation.

array([0, 1, 2, 3, 4, 64, 64, 64, 8, 9])

```
arr2d = np.array([[1,2,3], [4,5,6], [7,8,9]])
  arr2d
array([[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]])
   arr2d[:2]
array([[1, 2, 3],
        [4, 5, 6]])
   arr2d[:2, 1:]
array([[2, 3],
        [5, 6]])
A colon (:) by itself selects the entire dimension and is necessary to slice higher dimensions.
  arr2d[:, :1]
array([[1],
        [4],
        [7]])
   arr2d[:2, 1:] = 0
  arr2d
```

Slicing multi-dimension arrays is tricky! Always check your output!

11.2.5 Boolean Indexing

[4, 0, 0], [7, 8, 9]])

array([[1, 0, 0],

We can use Booleans (Trues and Falses) to slice arrays, too. Boolean indexing in Python is like combining index() and match() in Excel.

```
names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
  np.random.seed(42)
  data = np.random.randn(7, 4)
  names
array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'], dtype='<U4')
  data
array([[ 0.4967, -0.1383, 0.6477, 1.523 ],
       [-0.2342, -0.2341, 1.5792, 0.7674],
       [-0.4695, 0.5426, -0.4634, -0.4657],
       [0.242, -1.9133, -1.7249, -0.5623],
       [-1.0128, 0.3142, -0.908, -1.4123],
       [1.4656, -0.2258, 0.0675, -1.4247],
       [-0.5444, 0.1109, -1.151, 0.3757]])
Here names provides seven names for the seven rows in data.
  names == 'Bob'
array([ True, False, False, True, False, False, False])
  data[names == 'Bob']
array([[ 0.4967, -0.1383, 0.6477, 1.523 ],
       [0.242, -1.9133, -1.7249, -0.5623]
We can combine Boolean slicing with: slicing.
  data[names == 'Bob', 2:]
array([[ 0.6477, 1.523 ],
       [-1.7249, -0.5623]
```

```
cond = names == 'Bob'
  data[~cond]
array([[-0.2342, -0.2341, 1.5792, 0.7674],
       [-0.4695, 0.5426, -0.4634, -0.4657],
       [-1.0128, 0.3142, -0.908, -1.4123],
       [1.4656, -0.2258, 0.0675, -1.4247],
       [-0.5444, 0.1109, -1.151, 0.3757]]
For NumPy arrays, we must use & and | instead of and and or.
  cond = (names == 'Bob') | (names == 'Will')
  data[cond]
array([[ 0.4967, -0.1383, 0.6477, 1.523 ],
       [-0.4695, 0.5426, -0.4634, -0.4657],
       [0.242, -1.9133, -1.7249, -0.5623],
       [-1.0128, 0.3142, -0.908, -1.4123]])
We can also create a Boolean for each element.
  data < 0
array([[False, True, False, False],
       [ True, True, False, False],
       [ True, False, True, True],
       [False, True, True, True],
       [ True, False, True, True],
       [False, True, False, True],
       [ True, False, True, False]])
  data[data < 0] = 0
  data
array([[0.4967, 0. , 0.6477, 1.523],
           , 0.
                    , 1.5792, 0.7674],
           , 0.5426, 0.
                           , 0.
       [0.242, 0.
                   , 0.
                             , 0.
       [0. , 0.3142, 0.
                            , 0.
                                     ],
       [1.4656, 0. , 0.0675, 0.
```

[0. , 0.1109, 0. , 0.3757]])

11.3 Universal Functions: Fast Element-Wise Array Functions

A universal function, or ufunc, is a function that performs element-wise operations on data in ndarrays. You can think of them as fast vectorized wrappers for simple functions that take one or more scalar values and produce one or more scalar results.

```
The functions above accept one argument. These "unary" functions operate on one array and return a new array with the same shape. There are also "binary" functions that operate on two arrays and return one array.
```

1.4841e+02, 4.0343e+02, 1.0966e+03, 2.9810e+03, 8.1031e+03])

array([1.0000e+00, 2.7183e+00, 7.3891e+00, 2.0086e+01, 5.4598e+01,

```
np.random.seed(42)
x = np.random.randn(8)
y = np.random.randn(8)
```

np.exp(arr)

Be careful! Function names are not the whole story. Check your output and read the docstring! For example, np.max() returns the maximum of an array, instead of the elementwise maximum of two arrays for np.maximum().

```
np.max(x)
```

1.5792

Table 4-4 from McKinney lists some fast, element-wise unary functions:

- abs, fabs: Compute the absolute value element-wise for integer, oating-point, or complex values
- sqrt: Compute the square root of each element (equivalent to arr ** 0.5)
- square: Compute the square of each element (equivalent to arr ** 2)
- exp: Compute the exponent e^x of each element
- log, log10, log2, log1p: Natural logarithm (base e), log base 10, log base 2, and log(1 + x), respectively
- sign: Compute the sign of each element: 1 (positive), 0 (zero), or -1 (negative)
- ceil: Compute the ceiling of each element (i.e., the smallest integer greater than or equal to that number)
- floor: Compute the oor of each element (i.e., the largest integer less than or equal to each element)
- rint: Round elements to the nearest integer, preserving the dtype

- modf: Return fractional and integral parts of array as a separate array
- isnan: Return boolean array indicating whether each value is NaN (Not a Number)
- isfinite, isinf: Return boolean array indicating whether each element is finite (non-inf, non-NaN) or infinite, respectively
- cos, cosh, sin, sinh, tan, tanh: Regular and hyperbolic trigonometric functions
- arccos, arccosh, arcsin, arcsinh, arctan, arctanh: Inverse trigonometric functions
- logical not: Compute truth value of not x element-wise (equivalent to ~arr).

Table 4-5 from McKinney lists some fast, element-wise binary functions:

- add: Add corresponding elements in arrays
- subtract: Subtract elements in second array from first array
- multiply: Multiply array elements
- divide, floor_divide: Divide or floor divide (truncating the remainder)
- power: Raise elements in first array to powers indicated in second array
- maximum, fmax: Element-wise maximum; fmax ignores NaN
- minimum, fmin: Element-wise minimum; fmin ignores NaN
- mod: Element-wise modulus (remainder of division)
- copysign: Copy sign of values in second argument to values in first argument
- greater, greater_equal, less, less_equal, equal, not_equal: Perform element-wise comparison, yielding boolean array (equivalent to infix operators >, >=, <, <=, ==, !=)
- logical_and, logical_or, logical_xor: Compute element-wise truth value of logical operation (equivalent to infix operators & |, ^)

11.4 Array-Oriented Programming with Arrays

Using NumPy arrays enables you to express many kinds of data processing tasks as concise array expressions that might otherwise require writing loops. This practice of replacing explicit loops with array expressions is commonly referred to as vectorization. In general, vectorized array operations will often be one or two (or more) orders of magnitude faster than their pure Python equivalents, with the biggest impact in any kind of numerical computations. Later, in Appendix A, I explain broadcasting, a powerful method for vectorizing computations.

11.4.1 Expressing Conditional Logic as Array Operations

The numpy.where function is a vectorized version of the ternary expression **x** if condition else y.

NumPy's where() is an if-else statement that operates like Excel's if().

```
xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])
yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])
cond = np.array([True, False, True, True, False])

np.where(cond, xarr, yarr)

array([1.1, 2.2, 1.3, 1.4, 2.5])
```

We could use a list comprehension, instead, but the list comprehension is takes longer to type, read, and troubleshoot.

```
np.array([(x if c else y) for x, y, c in zip(xarr, yarr, cond)])
array([1.1, 2.2, 1.3, 1.4, 2.5])
```

We could also use np.select() here, but it is overkill to test one condition. np.select() lets us test more more than one condition and provides a default value if no condition is met.

```
np.select(
        condlist=[cond==True, cond==False],
        choicelist=[xarr, yarr]
)
array([1.1, 2.2, 1.3, 1.4, 2.5])
```

·

11.4.2 Mathematical and Statistical Methods

A set of mathematical functions that compute statistics about an entire array or about the data along an axis are accessible as methods of the array class. You can use aggregations (often called reductions) like sum, mean, and std (standard deviation) either by calling the array instance method or using the top-level NumPy function.

We will use these aggregations extensively in pandas.

```
np.random.seed(42)
arr = np.random.randn(5, 4)
arr
```

The aggregation methods above aggregated the whole array. We can use the axis argument to aggregate columns (axis=0) and rows (axis=1).

```
arr.mean(axis=1)
array([ 0.6323,  0.4696, -0.214 , -0.9896, -0.7547])
arr[0].mean()
0.6323
arr.mean(axis=0)
array([-0.1956, -0.2858, -0.1739, -0.03 ])
arr[:, 0].mean()
```

The .cumsum() method returns the sum of all previous elements.

```
arr = np.array([0, 1, 2, 3, 4, 5, 6, 7])
  arr.cumsum()
array([ 0, 1, 3, 6, 10, 15, 21, 28])
We can use the .cumsum() method along the axis of a multi-dimension array, too.
  arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
  arr
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
  arr.cumsum(axis=0)
array([[ 0, 1, 2],
       [3, 5, 7],
       [ 9, 12, 15]])
  arr.cumprod(axis=1)
array([[ 0,
                    0],
               Ο,
              12, 60],
       [ 3,
       [ 6, 42, 336]])
```

Table 4-6 from McKinney lists some basic statistical methods:

- sum: Sum of all the elements in the array or along an axis; zero-length arrays have sum
- mean: Arithmetic mean; zero-length arrays have NaN mean
- std, var: Standard deviation and variance, respectively, with optional degrees of freedom adjustment (default denominator n)
- min, max: Minimum and maximum
- argmin, argmax: Indices of minimum and maximum elements, respectively
- cumsum: Cumulative sum of elements starting from 0
- cumprod: Cumulative product of elements starting from 1

11.4.3 Methods for Boolean Arrays

```
np.random.seed(42)
  arr = np.random.randn(100)
  arr
array([ 0.4967, -0.1383,  0.6477,  1.523 , -0.2342, -0.2341,
       0.7674, -0.4695, 0.5426, -0.4634, -0.4657, 0.242, -1.9133,
      -1.7249, -0.5623, -1.0128, 0.3142, -0.908, -1.4123,
                                                            1.4656,
      -0.2258, 0.0675, -1.4247, -0.5444, 0.1109, -1.151,
                                                            0.3757.
      -0.6006, -0.2917, -0.6017, 1.8523, -0.0135, -1.0577,
                                                            0.8225,
      -1.2208, 0.2089, -1.9597, -1.3282, 0.1969, 0.7385,
                                                            0.1714,
      -0.1156, -0.3011, -1.4785, -0.7198, -0.4606,
                                                  1.0571,
      -1.763 , 0.3241, -0.3851, -0.6769, 0.6117,
                                                   1.031 ,
      -0.8392, -0.3092, 0.3313, 0.9755, -0.4792, -0.1857, -1.1063,
      -1.1962, 0.8125, 1.3562, -0.072, 1.0035, 0.3616, -0.6451,
       0.3614, 1.538, -0.0358, 1.5646, -2.6197,
                                                   0.8219,
                                                           0.087,
      -0.299 , 0.0918 , -1.9876 , -0.2197 , 0.3571 ,
                                                  1.4779, -0.5183,
      -0.8085, -0.5018, 0.9154, 0.3288, -0.5298,
                                                   0.5133,
                                                            0.0971,
       0.9686, -0.7021, -0.3277, -0.3921, -1.4635, 0.2961,
       0.0051, -0.2346])
  arr > 0
array([ True, False, True, True, False, False, True, True, False,
       True, False, False, True, False, False, False, False,
      False, False, True, False, True, False, True, False,
       True, False, False, False, True, False, False, True, False,
       True, False, False, True, True, False, False, False,
      False, False,
                     True,
                           True, False,
                                        True, False, False,
              True, False, False,
                                  True,
                                         True, False, False, False,
       True,
              True, True, False, True,
      False,
                                         True, False, True,
      False,
              True, False,
                           True,
                                  True, False, True, False, False,
              True, False, False, True, True, False,
              True, False, False, False, False,
                                               True,
       True,
                                                      True,
                                                             True,
      False])
  (arr > 0).sum() # Number of positive values
```

46

```
(arr > 0).mean() # percentage of positive values

0.4600

bools = np.array([False, False, True, False])
bools

array([False, False, True, False])

bools.any()

True

bools.all()
```

False

12 McKinney Chapter 4 - Practice for Section 02

12.1 Announcements

12.2 Practice

```
import numpy as np
%precision 4
```

'%.4f'

- 12.2.1 Create a 1-dimensional array named a1 that counts from 0 to 24 by 1.
- 12.2.2 Create a 1-dimentional array named a2 that counts from 0 to 24 by 3.
- 12.2.3 Create a 1-dimentional array named a3 that counts from 0 to 100 by multiples of 3 and 5.
- 12.2.4 Create a 1-dimensional array a3 that contains the squares of the even integers through 100,000.

How much faster is the NumPy version than the list comprehension version?

- 12.2.5 Write a function that mimic Excel's pv function.
- 12.2.6 Write a function that mimic Excel's fv function.
- 12.2.7 Replace the negative values in data with -1 and positive values with +1.

```
np.random.seed(42)
data = np.random.randn(7, 7)
data

array([[ 0.4967, -0.1383,  0.6477,  1.523 , -0.2342, -0.2341,  1.5792],
        [ 0.7674, -0.4695,  0.5426, -0.4634, -0.4657,  0.242 , -1.9133],
        [-1.7249, -0.5623, -1.0128,  0.3142, -0.908 , -1.4123,  1.4656],
        [-0.2258,  0.0675, -1.4247, -0.5444,  0.1109, -1.151 ,  0.3757],
        [-0.6006, -0.2917, -0.6017,  1.8523, -0.0135, -1.0577,  0.8225],
        [-1.2208,  0.2089, -1.9597, -1.3282,  0.1969,  0.7385,  0.1714],
        [-0.1156, -0.3011, -1.4785, -0.7198, -0.4606,  1.0571,  0.3436]])
```

12.2.8 Write a function npmts() that calculates the number of payments that generate x% of the present value of a perpetuity.

Your npmts() should accept arguments c1, r, and g that represent C_1 , r, and g. The present value of a growing perpetuity is $PV = \frac{C_1}{r-g}$, and the present value of a growing annuity is $PV = \frac{C_1}{r-g} \left[1 - \left(\frac{1+g}{1+r} \right)^t \right]$.

- 12.2.9 Write a function that calculates the internal rate of return given a NumPy array of cash flows.
- 12.2.10 Write a function returns() that accepts *NumPy arrays* of prices and dividends and returns a *NumPy array* of returns.

```
prices = np.array([100, 150, 100, 50, 100, 150, 100, 150])
dividends = np.array([1, 1, 1, 1, 2, 2, 2, 2])
```

12.2.11 Rewrite the function returns() so it returns *NumPy arrays* of returns, capital gains yields, and dividend yields.

12.2.12 Rescale and shift numbers so that they cover the range [0, 1]

```
Input: np.array([18.5, 17.0, 18.0, 19.0, 18.0])
Output: np.array([0.75, 0.0, 0.5, 1.0, 0.5])
numbers = np.array([18.5, 17.0, 18.0, 19.0, 18.0])
```

12.2.13 Write functions var() and std() that calculate variance and standard deviation.

NumPy's .var() and .std() methods return population statistics (i.e., denominators of n). The pandas equivalents return sample statistics (denominators of n-1), which are more appropriate for financial data analysis where we have a sample instead of a population.

Both function should have an argument sample that is True by default so both functions return sample statistics by default.

Use the output of returns() to compare your functions with NumPy's .var() and .std() methods.

13 McKinney Chapter 4 - Practice for Section 03

13.1 Announcements

13.2 Practice

```
import numpy as np
%precision 4
```

'%.4f'

- 13.2.1 Create a 1-dimensional array named a1 that counts from 0 to 24 by 1.
- 13.2.2 Create a 1-dimentional array named a2 that counts from 0 to 24 by 3.
- 13.2.3 Create a 1-dimentional array named a3 that counts from 0 to 100 by multiples of 3 and 5.
- 13.2.4 Create a 1-dimensional array a3 that contains the squares of the even integers through 100,000.

How much faster is the NumPy version than the list comprehension version?

- 13.2.5 Write a function that mimic Excel's pv function.
- 13.2.6 Write a function that mimic Excel's fv function.
- 13.2.7 Replace the negative values in data with -1 and positive values with +1.

```
np.random.seed(42)
data = np.random.randn(7, 7)
data

array([[ 0.4967, -0.1383,  0.6477,  1.523 , -0.2342, -0.2341,  1.5792],
        [ 0.7674, -0.4695,  0.5426, -0.4634, -0.4657,  0.242 , -1.9133],
        [-1.7249, -0.5623, -1.0128,  0.3142, -0.908 , -1.4123,  1.4656],
        [-0.2258,  0.0675, -1.4247, -0.5444,  0.1109, -1.151 ,  0.3757],
        [-0.6006, -0.2917, -0.6017,  1.8523, -0.0135, -1.0577,  0.8225],
        [-1.2208,  0.2089, -1.9597, -1.3282,  0.1969,  0.7385,  0.1714],
        [-0.1156, -0.3011, -1.4785, -0.7198, -0.4606,  1.0571,  0.3436]])
```

13.2.8 Write a function npmts() that calculates the number of payments that generate x% of the present value of a perpetuity.

Your npmts() should accept arguments c1, r, and g that represent C_1 , r, and g. The present value of a growing perpetuity is $PV = \frac{C_1}{r-g}$, and the present value of a growing annuity is $PV = \frac{C_1}{r-g} \left[1 - \left(\frac{1+g}{1+r} \right)^t \right]$.

- 13.2.9 Write a function that calculates the internal rate of return given a NumPy array of cash flows.
- 13.2.10 Write a function returns() that accepts *NumPy arrays* of prices and dividends and returns a *NumPy array* of returns.

```
prices = np.array([100, 150, 100, 50, 100, 150, 100, 150])
dividends = np.array([1, 1, 1, 1, 2, 2, 2, 2])
```

13.2.11 Rewrite the function returns() so it returns *NumPy arrays* of returns, capital gains yields, and dividend yields.

13.2.12 Rescale and shift numbers so that they cover the range [0, 1]

```
Input: np.array([18.5, 17.0, 18.0, 19.0, 18.0])
Output: np.array([0.75, 0.0, 0.5, 1.0, 0.5])
numbers = np.array([18.5, 17.0, 18.0, 19.0, 18.0])
```

13.2.13 Write functions var() and std() that calculate variance and standard deviation.

NumPy's .var() and .std() methods return population statistics (i.e., denominators of n). The pandas equivalents return sample statistics (denominators of n-1), which are more appropriate for financial data analysis where we have a sample instead of a population.

Both function should have an argument sample that is True by default so both functions return sample statistics by default.

Use the output of returns() to compare your functions with NumPy's .var() and .std() methods.

14 McKinney Chapter 4 - Practice for Section 04

14.1 Announcements

14.2 Practice

```
import numpy as np
%precision 4
```

'%.4f'

- 14.2.1 Create a 1-dimensional array named a1 that counts from 0 to 24 by 1.
- 14.2.2 Create a 1-dimentional array named a2 that counts from 0 to 24 by 3.
- 14.2.3 Create a 1-dimentional array named a3 that counts from 0 to 100 by multiples of 3 and 5.
- 14.2.4 Create a 1-dimensional array a3 that contains the squares of the even integers through 100,000.

How much faster is the NumPy version than the list comprehension version?

- 14.2.5 Write a function that mimic Excel's pv function.
- 14.2.6 Write a function that mimic Excel's fv function.
- 14.2.7 Replace the negative values in data with -1 and positive values with +1.

```
np.random.seed(42)
data = np.random.randn(7, 7)
data

array([[ 0.4967, -0.1383,  0.6477,  1.523 , -0.2342, -0.2341,  1.5792],
        [ 0.7674, -0.4695,  0.5426, -0.4634, -0.4657,  0.242 , -1.9133],
        [-1.7249, -0.5623, -1.0128,  0.3142, -0.908 , -1.4123,  1.4656],
        [-0.2258,  0.0675, -1.4247, -0.5444,  0.1109, -1.151 ,  0.3757],
        [-0.6006, -0.2917, -0.6017,  1.8523, -0.0135, -1.0577,  0.8225],
        [-1.2208,  0.2089, -1.9597, -1.3282,  0.1969,  0.7385,  0.1714],
        [-0.1156, -0.3011, -1.4785, -0.7198, -0.4606,  1.0571,  0.3436]])
```

14.2.8 Write a function npmts() that calculates the number of payments that generate x% of the present value of a perpetuity.

Your npmts() should accept arguments c1, r, and g that represent C_1 , r, and g. The present value of a growing perpetuity is $PV = \frac{C_1}{r-g}$, and the present value of a growing annuity is $PV = \frac{C_1}{r-g} \left[1 - \left(\frac{1+g}{1+r} \right)^t \right]$.

- 14.2.9 Write a function that calculates the internal rate of return given a NumPy array of cash flows.
- 14.2.10 Write a function returns() that accepts *NumPy arrays* of prices and dividends and returns a *NumPy array* of returns.

```
prices = np.array([100, 150, 100, 50, 100, 150, 100, 150])
dividends = np.array([1, 1, 1, 1, 2, 2, 2, 2])
```

14.2.11 Rewrite the function returns() so it returns *NumPy arrays* of returns, capital gains yields, and dividend yields.

14.2.12 Rescale and shift numbers so that they cover the range [0, 1]

```
Input: np.array([18.5, 17.0, 18.0, 19.0, 18.0])
Output: np.array([0.75, 0.0, 0.5, 1.0, 0.5])
numbers = np.array([18.5, 17.0, 18.0, 19.0, 18.0])
```

14.2.13 Write functions var() and std() that calculate variance and standard deviation.

NumPy's .var() and .std() methods return population statistics (i.e., denominators of n). The pandas equivalents return sample statistics (denominators of n-1), which are more appropriate for financial data analysis where we have a sample instead of a population.

Both function should have an argument sample that is True by default so both functions return sample statistics by default.

Use the output of returns() to compare your functions with NumPy's .var() and .std() methods.

15 McKinney Chapter 4 - Practice for Section 05

15.1 Announcements

15.2 Practice

```
import numpy as np
%precision 4
```

- '%.4f'
- 15.2.1 Create a 1-dimensional array named a1 that counts from 0 to 24 by 1.
- 15.2.2 Create a 1-dimentional array named a2 that counts from 0 to 24 by 3.
- 15.2.3 Create a 1-dimentional array named a3 that counts from 0 to 100 by multiples of 3 and 5.
- 15.2.4 Create a 1-dimensional array a3 that contains the squares of the even integers through 100,000.

How much faster is the NumPy version than the list comprehension version?

- 15.2.5 Write a function that mimic Excel's pv function.
- 15.2.6 Write a function that mimic Excel's fv function.
- 15.2.7 Replace the negative values in data with -1 and positive values with +1.

```
np.random.seed(42)
data = np.random.randn(7, 7)
data

array([[ 0.4967, -0.1383,  0.6477,  1.523 , -0.2342, -0.2341,  1.5792],
        [ 0.7674, -0.4695,  0.5426, -0.4634, -0.4657,  0.242 , -1.9133],
        [-1.7249, -0.5623, -1.0128,  0.3142, -0.908 , -1.4123,  1.4656],
        [-0.2258,  0.0675, -1.4247, -0.5444,  0.1109, -1.151 ,  0.3757],
        [-0.6006, -0.2917, -0.6017,  1.8523, -0.0135, -1.0577,  0.8225],
        [-1.2208,  0.2089, -1.9597, -1.3282,  0.1969,  0.7385,  0.1714],
        [-0.1156, -0.3011, -1.4785, -0.7198, -0.4606,  1.0571,  0.3436]])
```

15.2.8 Write a function npmts() that calculates the number of payments that generate x% of the present value of a perpetuity.

Your npmts() should accept arguments c1, r, and g that represent C_1 , r, and g. The present value of a growing perpetuity is $PV = \frac{C_1}{r-g}$, and the present value of a growing annuity is $PV = \frac{C_1}{r-g} \left[1 - \left(\frac{1+g}{1+r} \right)^t \right]$.

- 15.2.9 Write a function that calculates the internal rate of return given a NumPy array of cash flows.
- 15.2.10 Write a function returns() that accepts *NumPy arrays* of prices and dividends and returns a *NumPy array* of returns.

```
prices = np.array([100, 150, 100, 50, 100, 150, 100, 150])
dividends = np.array([1, 1, 1, 1, 2, 2, 2, 2])
```

15.2.11 Rewrite the function returns() so it returns *NumPy arrays* of returns, capital gains yields, and dividend yields.

15.2.12 Rescale and shift numbers so that they cover the range [0, 1]

```
Input: np.array([18.5, 17.0, 18.0, 19.0, 18.0])
Output: np.array([0.75, 0.0, 0.5, 1.0, 0.5])
numbers = np.array([18.5, 17.0, 18.0, 19.0, 18.0])
```

15.2.13 Write functions var() and std() that calculate variance and standard deviation.

NumPy's .var() and .std() methods return population statistics (i.e., denominators of n). The pandas equivalents return sample statistics (denominators of n-1), which are more appropriate for financial data analysis where we have a sample instead of a population.

Both function should have an argument sample that is True by default so both functions return sample statistics by default.

Use the output of returns() to compare your functions with NumPy's .var() and .std() methods.

Part IV

Week 4

16 McKinney Chapter 5 - Getting Started with pandas

16.1 Introduction

Chapter 5 of Wes McKinney's *Python for Data Analysis* discusses the fundamentals of pandas, which will be our main tool for the rest of the semester. pandas is an abbrviation for *panel data*, which provide time-stamped data for multiple individuals or firms.

Note: Indented block quotes are from McKinney unless otherwise indicated. The section numbers here differ from McKinney because we will only discuss some topics.

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'
```

pandas will be a major tool of interest throughout much of the rest of the book. It contains data structures and data manipulation tools designed to make data cleaning and analysis fast and easy in Python. pandas is often used in tandem with numerical computing tools like NumPy and SciPy, analytical libraries like statsmodels and scikit-learn, and data visualization libraries like matplotlib. pandas adopts significant parts of NumPy's idiomatic style of array-based computing, especially array-based functions and a preference for data processing without for loops.

While pandas adopts many coding idioms from NumPy, the biggest difference is that pandas is designed for working with tabular or heterogeneous data. NumPy, by contrast, is best suited for working with homogeneous numerical array data.

We will use pandas—a wrapper for NumPy that helps us manipulate and combine data—every day for the rest of the course.

16.2 Introduction to pandas Data Structures

To get started with pandas, you will need to get comfortable with its two workhorse data structures: Series and DataFrame. While they are not a universal solution for every problem, they provide a solid, easy-to-use basis for most applications.

16.2.1 Series

obj

A Series is a one-dimensional array-like object containing a sequence of values (of similar types to NumPy types) and an associated array of data labels, called its index. The simplest Series is formed from only an array of data.

The early examples use integer and string labels, but date-time labels are most useful.

```
0    4
1    7
2    -5
3    3
dtype: int64

Contrast obj with a NumPy array equivalent:
    np.array([4, 7, -5, 3])

array([4, 7, -5, 3])

obj.values

array([4, 7, -5, 3], dtype=int64)

obj.index # similar to range(4)
```

RangeIndex(start=0, stop=4, step=1)

obj = pd.Series([4, 7, -5, 3])

We did not explicitly assign an index to obj, so obj has an integer index that starts at 0. We can explicitly assign an index with the index= argument.

```
obj2 = pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])
  obj2
d
    7
b
a
    -5
    3
dtype: int64
  obj2.index
Index(['d', 'b', 'a', 'c'], dtype='object')
  obj2['a']
-5
  obj2.iloc[2]
-5
  obj2['d'] = 6
  obj2
d
     6
     7
    -5
a
dtype: int64
  obj2[['c', 'a', 'd']]
С
    3
    -5
     6
dtype: int64
```

A pandas series behaves like a NumPy array. We can use Boolean filters and perform vectorized mathematical operations.

```
obj2 > 0
d
       True
b
       True
     False
       True
dtype: bool
  obj2[obj2 > <mark>0</mark>]
     6
     7
dtype: int64
  obj2 * 2
d
     12
     14
    -10
       6
dtype: int64
   'b' in obj2
True
   'e' in obj2
```

False

We can create a pandas series from a dictionary. The dictionary labels become the series index.

```
sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
obj3 = pd.Series(sdata)
obj3
```

Ohio 35000
Texas 71000
Oregon 16000
Utah 5000
dtype: int64

We can create a pandas series from a list, too. Note that pandas respects the order of the assigned index. Also, pandas keeps California with NaN (not a number or missing value) and drops Utah because it was not in the index.

```
states = ['California', 'Ohio', 'Oregon', 'Texas']
obj4 = pd.Series(sdata, index=states)
obj4
```

 California
 NaN

 Ohio
 35000.0000

 Oregon
 16000.0000

 Texas
 71000.0000

dtype: float64

Indices are one of pandas' super powers. When we perform mathematical operations, pandas aligns series by their indices. Here NaN is "not a number", which indicates missing values. NaN is considered a float, so the data type switches from int64 to float64.

```
obj3 + obj4
```

 California
 NaN

 Ohio
 70000.0000

 Oregon
 32000.0000

 Texas
 142000.0000

 Utah
 NaN

dtype: float64

16.2.2 DataFrame

A pandas data frame is like a worksheet in an Excel workbook with row and columns that provide fast indexing.

A DataFrame represents a rectangular table of data and contains an ordered collection of columns, each of which can be a different value type (numeric, string, boolean, etc.). The DataFrame has both a row and column index; it can be thought of as a dict of Series all sharing the same index. Under the hood, the data is stored as one or more two-dimensional blocks rather than a list, dict, or some other collection of one-dimensional arrays. The exact details of DataFrame's internals are outside the scope of this book.

There are many ways to construct a DataFrame, though one of the most common is from a dict of equal-length lists or NumPy arrays:

```
data = {
    'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
    'year': [2000, 2001, 2002, 2001, 2002, 2003],
    'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]
}
frame = pd.DataFrame(data)

frame
```

	state	year	pop
0	Ohio	2000	1.5000
1	Ohio	2001	1.7000
2	Ohio	2002	3.6000
3	Nevada	2001	2.4000
4	Nevada	2002	2.9000
5	Nevada	2003	3.2000

We did not specify an index, so frame has the default index of integers starting at 0.

```
frame2 = pd.DataFrame(
    data,
    columns=['year', 'state', 'pop', 'debt'],
    index=['one', 'two', 'three', 'four', 'five', 'six']
)
frame2
```

	year	state	pop	debt
one	2000	Ohio	1.5000	NaN
two	2001	Ohio	1.7000	NaN
three	2002	Ohio	3.6000	NaN
four	2001	Nevada	2.4000	NaN
five	2002	Nevada	2.9000	NaN
six	2003	Nevada	3.2000	NaN

If we extract one column, via either df.column or df['column'], the result is a series. We can use either the df.colname or the df['colname'] syntax to extract a column from a data frame as a series. However, we must use the df['colname'] syntax to add* a column to a data frame.* Also, we must use the df['colname'] syntax to extract or add a column whose name contains a whitespace.

frame2['state']

one Ohio
two Ohio
three Ohio
four Nevada
five Nevada
six Nevada

Name: state, dtype: object

frame2.state

one Ohio
two Ohio
three Ohio
four Nevada
five Nevada
six Nevada

Name: state, dtype: object

Similarly, if we extract one row. via either df.loc['rowlabel'] or df.iloc[rownumber], the result is a series.

```
frame2.loc['one']
```

```
Ohio
state
         1.5000
pop
debt
            NaN
Name: one, dtype: object
Data frame have two dimensions, so we have to slice data frames more precisely than series.
  1. The .loc[] method slices by row labels and column names
  2. The .iloc[] method slices by integer row and label indices
  frame2.loc['three']
year
           2002
state
           Ohio
        3.6000
pop
            NaN
debt
Name: three, dtype: object
  frame2.iloc[2]
           2002
year
           Ohio
state
        3.6000
pop
            NaN
debt
Name: three, dtype: object
We can use NumPy's [row, column] syntamx with .loc[] and .iloc[].
  frame2.loc['three', 'state'] # row, column
'Ohio'
  frame2.loc['three', ['state', 'pop']] # row, column
state
           Ohio
        3.6000
pop
Name: three, dtype: object
```

2000

year

We can assign either scalars or arrays to data frame columns.

- 1. Scalars will broadcast to every row in the data frame
- 2. Arrays must have the same length as the column

```
frame2['debt'] = 16.5
frame2
```

	year	state	pop	debt
one	2000	Ohio	1.5000	16.5000
two	2001	Ohio	1.7000	16.5000
three	2002	Ohio	3.6000	16.5000
four	2001	Nevada	2.4000	16.5000
five	2002	Nevada	2.9000	16.5000
six	2003	Nevada	3.2000	16.5000

```
frame2['debt'] = np.arange(6.)
frame2
```

	year	state	pop	debt
one	2000	Ohio	1.5000	0.0000
two	2001	Ohio	1.7000	1.0000
three	2002	Ohio	3.6000	2.0000
four	2001	Nevada	2.4000	3.0000
five	2002	Nevada	2.9000	4.0000
six	2003	Nevada	3.2000	5.0000

If we assign a series to a data frame column, pandas will use the index to align it with the data frame. Data frame rows not in the series will be missing values NaN.

```
val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])
val
```

two -1.2000
four -1.5000
five -1.7000
dtype: float64

frame2['debt'] = val
frame2

	year	state	pop	debt
one	2000	Ohio	1.5000	NaN
two	2001	Ohio	1.7000	-1.2000
three	2002	Ohio	3.6000	NaN
four	2001	Nevada	2.4000	-1.5000
five	2002	Nevada	2.9000	-1.7000
six	2003	Nevada	3.2000	NaN

We can add columns to our data frame, then delete them with del.

frame2['eastern'] = (frame2.state == 'Ohio')
frame2

	year	state	pop	debt	eastern
one	2000	Ohio	1.5000	NaN	True
two	2001	Ohio	1.7000	-1.2000	True
three	2002	Ohio	3.6000	NaN	True
four	2001	Nevada	2.4000	-1.5000	False
five	2002	Nevada	2.9000	-1.7000	False
six	2003	Nevada	3.2000	NaN	False

del frame2['eastern']
frame2

	year	state	pop	debt
one	2000	Ohio	1.5000	NaN
two	2001	Ohio	1.7000	-1.2000
$_{\rm three}$	2002	Ohio	3.6000	NaN
four	2001	Nevada	2.4000	-1.5000
five	2002	Nevada	2.9000	-1.7000
six	2003	Nevada	3.2000	NaN

16.2.3 Index Objects

```
obj = pd.Series(range(3), index=['a', 'b', 'c'])
index = obj.index

index[1:]

Index(['b', 'c'], dtype='object')

Index objects are immutable!

# index[1] = 'd' # TypeError: Index does not support mutable operations

Indices can contain duplicates, so an index does not guarantee our data are duplicate-free.

dup_labels = pd.Index(['foo', 'foo', 'bar', 'bar'])
```

16.3 Essential Functionality

This section provides the most import pandas operations. It is difficult to provide an exhaustive reference, but this section provides a head start on the core pandas functionality.

16.3.1 Dropping Entries from an Axis

Dropping one or more entries from an axis is easy if you already have an index array or list without those entries. As that can require a bit of munging and set logic, the drop method will return a new object with the indicated value or values deleted from an axis.

```
obj = pd.Series(np.arange(5.), index=['a', 'b', 'c', 'd', 'e'])
obj

a    0.0000
b    1.0000
c    2.0000
d    3.0000
e    4.0000
dtype: float64
```

```
obj_without_d_and_c = obj.drop(['d', 'c'])
obj_without_d_and_c

a     0.0000
b     1.0000
e     4.0000
dtype: float64
```

The .drop() method works on data frames, too.

```
data = pd.DataFrame(
    np.arange(16).reshape((4, 4)),
    index=['Ohio', 'Colorado', 'Utah', 'New York'],
    columns=['one', 'two', 'three', 'four']
)
data
```

	one	two	three	four
Ohio	0	1	2	3
Colorado	4	5	6	7
Utah	8	9	10	11
New York	12	13	14	15

data.drop(['Colorado', 'Ohio']) # implied ", axis=0"

	one	two	three	four
Utah	8	9	10	11
New York	12	13	14	15

data.drop(['Colorado', 'Ohio'], axis=0)

	one	two	three	four
Utah	8	9	10	11
New York	12	13	14	15

data.drop(index=['Colorado', 'Ohio'])

	one	two	three	four
Utah	8	9	10	11
New York	12	13	14	15

The .drop() method accepts an axis argument and the default is axis=0 to drop rows based on labels. To drop columns, we use axis=1 or axis='columns'.

data.drop('two', axis=1)

	one	three	four
Ohio	0	2	3
Colorado	4	6	7
Utah	8	10	11
New York	12	14	15

data.drop(columns='two')

	one	three	four
Ohio	0	2	3
Colorado	4	6	7
Utah	8	10	11
New York	12	14	15

16.3.2 Indexing, Selection, and Filtering

Indexing, selecting, and filtering will be among our most-used pandas features.

```
obj = pd.Series(np.arange(4.), index=['a', 'b', 'c', 'd'])
obj
```

- a 0.0000
- b 1.0000
- c 2.0000

```
d 3.0000
dtype: float64
  obj['b']
1.0000
  obj.iloc[1]
1.0000
  obj.iloc[1:3]
    1.0000
b
    2.0000
dtype: float64
When we slice with labels, the left and right endpoints are inclusive.
  obj['b':'c']
    1.0000
    2.0000
dtype: float64
  obj['b':'c'] = 5
  obj
  0.0000
b
   5.0000
    5.0000
    3.0000
dtype: float64
```

```
data = pd.DataFrame(
    np.arange(16).reshape((4, 4)),
    index=['Ohio', 'Colorado', 'Utah', 'New York'],
    columns=['one', 'two', 'three', 'four']
)
data
```

one	two	three	four
0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
	0 4 8	0 1 4 5 8 9	0 1 2 4 5 6 8 9 10

Indexing one column returns a series.

```
data['two']
```

Ohio 1 Colorado 5 Utah 9 New York 13

Name: two, dtype: int32

Indexing two or more columns returns a data frame.

```
data[['three', 'one']]
```

	three	one
Ohio	2	0
Colorado	6	4
Utah	10	8
New York	14	12

If we want a one-column data frame, we can use [[]]:

```
data['three']
```

Ohio 2 Colorado 6 Utah 10 New York 14

Name: three, dtype: int32

data[['three']]

	three
Ohio	2
Colorado	6
Utah	10
New York	14

data.iloc[:2]

	one	two	three	four
Ohio	0	1	2	3
Colorado	4	5	6	7

We can index a data frame with Booleans, as we did with NumPy arrays.

data < 5

	one	two	three	four
Ohio	True	True	True	True
Colorado	True	False	False	False
Utah	False	False	False	False
New York	False	False	False	False

data[data < 5] = 0 data

	one	two	three	four
Ohio	0	0	0	0

	one	two	three	four
Colorado	0	5	6	7
Utah	8	9	10	11
New York	12	13	14	15

Finally, we can chain slices.

```
data.iloc[:, :3][data.three > 5]
```

	one	two	three
Colorado	0	5	6
Utah	8	9	10
New York	12	13	14

Table 5-4 summarizes data frame indexing and slicing options:

- df [val]: Select single column or sequence of columns from the DataFrame; special case conveniences: boolean array (filter rows), slice (slice rows), or boolean DataFrame (set values based on some criterion)
- df.loc[val]: Selects single row or subset of rows from the DataFrame by label
- df.loc[:, val]: Selects single column or subset of columns by label
- df.loc[val1, val2]: Select both rows and columns by label
- df.iloc[where]: Selects single row or subset of rows from the DataFrame by integer position
- df.iloc[:, where]: Selects single column or subset of columns by integer position
- df.iloc[where_i, where_j]: Select both rows and columns by integer position
- df.at[label_i, label_j]: Select a single scalar value by row and column label
- df.iat[i, j]: Select a single scalar value by row and column position (integers) reindex method Select either rows or columns by labels
- get value, set value methods: Select single value by row and column label

pandas is powerful and these options can be overwhelming! We will typically use df[val] to select columns (here val is either a string or list of strings), df.loc[val] to select rows (here val is a row label), and df.loc[val1, val2] to select both rows and columns. The other options add flexibility, and we may occasionally use them. However, our data will be large enough that counting row and column number will be tedious, making .iloc[] impractical.

16.3.3 Arithmetic and Data Alignment

An important pandas feature for some applications is the behavior of arithmetic between objects with different indexes. When you are adding together objects, if any index pairs are not the same, the respective index in the result will be the union of the index pairs. For users with database experience, this is similar to an automatic outer join on the index labels.

```
s1 = pd.Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'])
  s2 = pd.Series([-2.1, 3.6, -1.5, 4, 3.1], index=['a', 'c', 'e', 'f', 'g'])
  s1
     7.3000
a
    -2.5000
С
d
     3.4000
     1.5000
dtype: float64
  s2
a
    -2.1000
     3.6000
С
е
    -1.5000
f
     4.0000
     3.1000
dtype: float64
  s1 + s2
    5.2000
a
С
    1.1000
       NaN
d
    0.0000
е
f
       NaN
       NaN
dtype: float64
```

```
df1 = pd.DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'), index=['Ohio', 'Tex
df2 = pd.DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'), index=['Utah', 'Ohio']
```

df1

	b	\mathbf{c}	d
Ohio	0.0000	1.0000	2.0000
Texas	3.0000	4.0000	5.0000
Colorado	6.0000	7.0000	8.0000

df2

	b	d	e
Utah	0.0000	1.0000	2.0000
Ohio	3.0000	4.0000	5.0000
Texas	6.0000	7.0000	8.0000
Oregon	9.0000	10.0000	11.0000

df1 + df2

	b	$^{\mathrm{c}}$	d	e
Colorado	NaN	NaN	NaN	NaN
Ohio	3.0000	NaN	6.0000	NaN
Oregon	NaN	NaN	NaN	NaN
Texas	9.0000	NaN	12.0000	NaN
Utah	NaN	NaN	NaN	NaN

```
df1 = pd.DataFrame({'A': [1, 2]})
df2 = pd.DataFrame({'B': [3, 4]})
```

df1

$$\begin{array}{c} A \\ \hline 0 & 1 \\ 1 & 2 \end{array}$$

A

df2

 $\begin{array}{cc} & B \\ \hline 0 & 3 \\ 1 & 4 \end{array}$

df1 - df2

	A	В
0	NaN	NaN
1	NaN	NaN

16.3.3.1 Arithmetic methods with fill values

```
df1 = pd.DataFrame(np.arange(12.).reshape((3, 4)), columns=list('abcd'))
df2 = pd.DataFrame(np.arange(20.).reshape((4, 5)), columns=list('abcde'))
df2.loc[1, 'b'] = np.nan
df1
```

	a	b	c	d
0	0.0000	1.0000	2.0000	3.0000
1	4.0000	5.0000	6.0000	7.0000
2	8.0000	9.0000	10.0000	11.0000

df2

	a	b	c	d	e
0	0.0000	1.0000	2.0000	3.0000	4.0000
1	5.0000	NaN	7.0000	8.0000	9.0000
2	10.0000	11.0000	12.0000	13.0000	14.0000

	a	b	С	d	е
3	15.0000	16.0000	17.0000	18.0000	19.0000

df1 + df2

	a	b	c	d	e
0	0.0000	2.0000	4.0000	6.0000	NaN
1	9.0000	NaN	13.0000	15.0000	NaN
2	18.0000	20.0000	22.0000	24.0000	NaN
3	NaN	NaN	NaN	NaN	NaN

We can specify a fill value for \mathtt{NaN} values. Note that pandas fills would-be \mathtt{NaN} values in each data frame before the arithmetic operation.

```
df1.add(df2, fill_value=0)
```

	a	b	С	d	е
0	0.0000	2.0000	4.0000	6.0000	4.0000
1	9.0000	5.0000	13.0000	15.0000	9.0000
2	18.0000	20.0000	22.0000	24.0000	14.0000
3	15.0000	16.0000	17.0000	18.0000	19.0000

16.3.3.2 Operations between DataFrame and Series

```
arr = np.arange(12.).reshape((3, 4))
arr

array([[ 0.,  1.,  2.,  3.],
       [ 4.,  5.,  6.,  7.],
       [ 8.,  9.,  10.,  11.]])

array([0.,  1.,  2.,  3.])
```

Arithmetic operations between series and data frames behave the same as the example above.

```
frame = pd.DataFrame(
    np.arange(12.).reshape((4, 3)),
    columns=list('bde'),
    index=['Utah', 'Ohio', 'Texas', 'Oregon']
)
series = frame.iloc[0]
```

	b	d	e
Utah	0.0000	1.0000	2.0000
Ohio	3.0000	4.0000	5.0000
Texas	6.0000	7.0000	8.0000
Oregon	9.0000	10.0000	11.0000

series

b 0.0000 d 1.0000 e 2.0000

Name: Utah, dtype: float64

frame - series

	b	d	e
Utah	0.0000	0.0000	0.0000
Ohio	3.0000	3.0000	3.0000

	b	d	e
Texas	6.0000	6.0000	6.0000
Oregon	9.0000	9.0000	9.0000

series2 = pd.Series(range(3), index=['b', 'e', 'f'])

frame

	b	d	e
Utah	0.0000	1.0000	2.0000
Ohio	3.0000	4.0000	5.0000
Texas	6.0000	7.0000	8.0000
Oregon	9.0000	10.0000	11.0000

series2

b 0

e 1

f 2

dtype: int64

frame + series2

	b	d	e	f
Utah	0.0000	NaN	3.0000	NaN
Ohio	3.0000	NaN	6.0000	NaN
Texas	6.0000	NaN	9.0000	NaN
Oregon	9.0000	NaN	12.0000	NaN

series3 = frame['d']

frame.sub(series3, axis='index')

	b	d	e
Utah	-1.0000	0.0000	1.0000
Ohio	-1.0000	0.0000	1.0000
Texas	-1.0000	0.0000	1.0000
Oregon	-1.0000	0.0000	1.0000

16.3.4 Function Application and Mapping

```
np.random.seed(42)
frame = pd.DataFrame(
    np.random.randn(4, 3),
    columns=list('bde'),
    index=['Utah', 'Ohio', 'Texas', 'Oregon']
)
frame
```

	b	d	е
Utah	0.4967	-0.1383	0.6477
Ohio	1.5230	-0.2342	-0.2341
Texas	1.5792	0.7674	-0.4695
Oregon	0.5426	-0.4634	-0.4657

frame.abs()

	b	d	e
Utah	0.4967	0.1383	0.6477
Ohio	1.5230	0.2342	0.2341
Texas	1.5792	0.7674	0.4695
Oregon	0.5426	0.4634	0.4657

Another frequent operation is applying a function on one-dimensional arrays to each column or row. DataFrame's apply method does exactly this:

Note that we can use anonymous (lambda) functions "on the fly":

```
frame.apply(lambda x: x.max() - x.min())
```

```
b
    1.0825
    1.2309
d
    1.1172
dtype: float64
  frame.apply(lambda x: x.max() - x.min(), axis=1)
Utah
         0.7860
Ohio
         1.7572
Texas
         2.0487
Oregon
         1.0083
dtype: float64
```

However, under the hood, the .apply() is basically a for loop and much slowly than optimized, built-in methods. Here is an example of the speed costs of .apply():

```
%timeit frame['e'].abs()

11.5 µs ± 1.34 µs per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

%timeit frame['e'].apply(np.abs)

17.1 µs ± 2.03 µs per loop (mean ± std. dev. of 7 runs, 100,000 loops each)
```

16.4 Summarizing and Computing Descriptive Statistics

```
df = pd.DataFrame(
    [[1.4, np.nan], [7.1, -4.5], [np.nan, np.nan], [0.75, -1.3]],
    index=['a', 'b', 'c', 'd'],
    columns=['one', 'two']
)
df
```

	one	two
a	1.4000	NaN
b	7.1000	-4.5000
c	NaN	NaN
d	0.7500	-1.3000

```
df.sum()
       9.2500
one
      -5.8000
dtype: float64
  df.sum(axis=1)
     1.4000
     2.6000
     0.0000
    -0.5500
dtype: float64
  df.mean(axis=1, skipna=False)
        NaN
a
b
     1.3000
        NaN
    -0.2750
dtype: float64
The .idxmax() method returns the label for the maximum observation.
  df.idxmax()
one
       b
       d
two
```

dtype: object

The .describe() returns summary statistics for each numerical column in a data frame.

```
df.describe()
```

	one	two
count	3.0000	2.0000
mean	3.0833	-2.9000
std	3.4937	2.2627
\min	0.7500	-4.5000
25%	1.0750	-3.7000
50%	1.4000	-2.9000
75%	4.2500	-2.1000
max	7.1000	-1.3000

For non-numerical data, .describe() returns alternative summary statistics.

```
obj = pd.Series(['a', 'a', 'b', 'c'] * 4)
obj.describe()

count    16
unique    3
top     a
freq    8
dtype: object
```

16.4.1 Correlation and Covariance

	AAPL	GOOG	IBM	MSFT
Date				
1962-01-02	NaN	NaN	1.5558	NaN
1962-01-03	NaN	NaN	1.5694	NaN
1962-01-04	NaN	NaN	1.5537	NaN
1962-01-05	NaN	NaN	1.5231	NaN
1962-01-08	NaN	NaN	1.4946	NaN
•••				
2023-12-18	195.8900	137.1900	162.7400	372.6500
2023-12-19	196.9400	138.1000	161.5600	373.2600
2023-12-20	194.8300	139.6600	160.0500	370.6200
2023-12-21	194.6800	141.8000	160.7800	373.5400
2023-12-22	195.2550	143.1900	161.8766	374.1400

The prices data frames contains daily data for AAPL, IBM, MSFT, and GOOG. The Adj Close column provides a reverse-engineered daily closing price that accounts for dividends paid and stock splits (and reverse splits). As a result, the .pct_change() in Adj Close considers both price changes (i.e., capital gains) and dividends, so $R_t = \frac{(P_t + D_t) - P_{t-1}}{P_{t-1}} = \frac{\text{Adj Close}_t - \text{Adj Close}_{t-1}}{\text{Adj Close}_{t-1}}$.

returns = prices['Adj Close'].pct_change().dropna()
returns

	AAPL	GOOG	IBM	MSFT
Date				
2004-08-20	0.0029	0.0794	0.0042	0.0029
2004-08-23	0.0091	0.0101	-0.0070	0.0044
2004-08-24	0.0280	-0.0414	0.0007	0.0000
2004-08-25	0.0344	0.0108	0.0042	0.0114
2004-08-26	0.0487	0.0180	-0.0045	-0.0040
2023-12-18	-0.0085	0.0250	0.0031	0.0052
2023-12-19	0.0054	0.0066	-0.0073	0.0016
2023-12-20	-0.0107	0.0113	-0.0093	-0.0071
2023-12-21	-0.0008	0.0153	0.0046	0.0079
2023-12-22	0.0030	0.0098	0.0068	0.0016

We multiply by 252 to annualize mean daily returns because means grow linearly with time and there are (about) 252 trading days per year.

```
returns.mean().mul(252)
```

AAPL 0.3665 GOOG 0.2565 IBM 0.0908 MSFT 0.1972 dtype: float64

We multiply by $\sqrt{252}$ to annualize the standard deviation of daily returns because variances grow linearly with time, there are (about) 252 trading days per year, and the standard deviation is the square root of the variance.

```
returns.std().mul(np.sqrt(252))
```

AAPL 0.3281 GOOG 0.3076 IBM 0.2264 MSFT 0.2727 dtype: float64

The best explanation I have found on why stock return volatility (the standard deviation of stocks returns) grows with the square root of time is at the bottom of page 7 of chapter 8 of Ivo Welch's free corporate finance textbook.

We can calculate pairwise correlations.

```
returns['MSFT'].corr(returns['IBM'])
```

0.4943

We can also calculate correlation matrices.

```
returns.corr()
```

	AAPL	GOOG	IBM	MSFT
AAPL	1.0000	0.5188	0.4295	0.5234
GOOG	0.5188	1.0000	0.3956	0.5623
IBM	0.4295	0.3956	1.0000	0.4943

	AAPL	GOOG	IBM	MSFT
MSFT	0.5234	0.5623	0.4943	1.0000

returns.corr().loc['MSFT', 'IBM']

0.4943

17 McKinney Chapter 5 - Practice for Section 02

17.1 Announcements

17.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import yfinance as yf

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

tickers = yf.Tickers('AAPL IBM MSFT GOOG')
prices = tickers.history(period='max', auto_adjust=False)
returns = prices['Adj Close'].pct_change().dropna()
returns
```

[********* 4 of 4 completed

	AAPL	GOOG	IBM	MSFT
Date				
2004-08-20	0.0029	0.0794	0.0042	0.0029
2004-08-23	0.0091	0.0101	-0.0070	0.0044
2004-08-24	0.0280	-0.0414	0.0007	0.0000
2004-08-25	0.0344	0.0108	0.0042	0.0114
2004-08-26	0.0487	0.0180	-0.0045	-0.0040

	AAPL	GOOG	IBM	MSFT
Date				
2023-12-18	-0.0085	0.0250	0.0031	0.0052
2023-12-19	0.0054	0.0066	-0.0073	0.0016
2023-12-20	-0.0107	0.0113	-0.0093	-0.0071
2023-12-21	-0.0008	0.0153	0.0046	0.0079
2023-12-22	0.0026	0.0076	0.0072	0.0012

17.2.1 What are the mean daily returns for these four stocks?

17.2.2 What are the standard deviations of daily returns for these four stocks?

17.2.3 What are the *annualized* means and standard deviations of daily returns for these four stocks?

17.2.4 Plot *annualized* means versus standard deviations of daily returns for these four stocks

Use plt.scatter(), which expects arguments as x (standard deviations) then y (means).

17.2.5 Repeat the previous calculations and plot for the stocks in the Dow-Jones Industrial Index (DJIA)

We can find the current DJIA stocks on Wikipedia. We will need to download new data, into tickers2, prices2, and returns2.

17.2.6 Calculate total returns for the stocks in the DJIA

We can use the .prod() method to compound returns as $1 + R_T = \prod_{t=1}^T (1 + R_t)$. Technically, we should write R_T as $R_{0,T}$, but we typically omit the subscript 0.

17.2.7 Plot the distribution of total returns for the stocks in the DJIA

We can plot a histogram, using either the plt.hist() function or the .plot(kind='hist') method.

17.2.8 Which stocks have the minimum and maximum total returns?

17.2.9 Plot the cumulative returns for the stocks in the DJIA

We can use the cumulative product method .cumprod() to calculate the right hand side of the formula above.

17.2.10 Repeat the plot above with only the minimum and maximum total returns

18 McKinney Chapter 5 - Practice for Section 03

18.1 Announcements

18.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import yfinance as yf

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

tickers = yf.Tickers('AAPL IBM MSFT GOOG')
prices = tickers.history(period='max', auto_adjust=False)
returns = prices['Adj Close'].pct_change().dropna()
returns
```

[********* 4 of 4 completed

	AAPL	GOOG	IBM	MSFT
Date				
2004-08-20	0.0029	0.0794	0.0042	0.0029
2004-08-23	0.0091	0.0101	-0.0070	0.0044
2004-08-24	0.0280	-0.0414	0.0007	0.0000
2004-08-25	0.0344	0.0108	0.0042	0.0114
2004-08-26	0.0487	0.0180	-0.0045	-0.0040

	AAPL	GOOG	IBM	MSFT
Date				
2023-12-18	-0.0085	0.0250	0.0031	0.0052
2023-12-19	0.0054	0.0066	-0.0073	0.0016
2023-12-20	-0.0107	0.0113	-0.0093	-0.0071
2023-12-21	-0.0008	0.0153	0.0046	0.0079
2023-12-22	0.0026	0.0076	0.0072	0.0012

18.2.1 What are the mean daily returns for these four stocks?

18.2.2 What are the standard deviations of daily returns for these four stocks?

18.2.3 What are the *annualized* means and standard deviations of daily returns for these four stocks?

18.2.4 Plot *annualized* means versus standard deviations of daily returns for these four stocks

Use plt.scatter(), which expects arguments as x (standard deviations) then y (means).

18.2.5 Repeat the previous calculations and plot for the stocks in the Dow-Jones Industrial Index (DJIA)

We can find the current DJIA stocks on Wikipedia. We will need to download new data, into tickers2, prices2, and returns2.

18.2.6 Calculate total returns for the stocks in the DJIA

We can use the .prod() method to compound returns as $1 + R_T = \prod_{t=1}^T (1 + R_t)$. Technically, we should write R_T as $R_{0,T}$, but we typically omit the subscript 0.

18.2.7 Plot the distribution of total returns for the stocks in the DJIA

We can plot a histogram, using either the plt.hist() function or the .plot(kind='hist') method.

18.2.8 Which stocks have the minimum and maximum total returns?

18.2.9 Plot the cumulative returns for the stocks in the DJIA

We can use the cumulative product method .cumprod() to calculate the right hand side of the formula above.

18.2.10 Repeat the plot above with only the minimum and maximum total returns

19 McKinney Chapter 5 - Practice for Section 04

19.1 Announcements

19.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import yfinance as yf

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

tickers = yf.Tickers('AAPL IBM MSFT GOOG')
prices = tickers.history(period='max', auto_adjust=False)
returns = prices['Adj Close'].pct_change().dropna()
returns
```

[******** 4 of 4 completed

	AAPL	GOOG	IBM	MSFT
Date				
2004-08-20	0.0029	0.0794	0.0042	0.0029
2004-08-23	0.0091	0.0101	-0.0070	0.0044
2004-08-24	0.0280	-0.0414	0.0007	0.0000
2004-08-25	0.0344	0.0108	0.0042	0.0114
2004-08-26	0.0487	0.0180	-0.0045	-0.0040

	AAPL	GOOG	IBM	MSFT
Date				
2023-12-18	-0.0085	0.0250	0.0031	0.0052
2023-12-19	0.0054	0.0066	-0.0073	0.0016
2023-12-20	-0.0107	0.0113	-0.0093	-0.0071
2023-12-21	-0.0008	0.0153	0.0046	0.0079
2023-12-22	0.0026	0.0076	0.0072	0.0012

19.2.1 What are the mean daily returns for these four stocks?

19.2.2 What are the standard deviations of daily returns for these four stocks?

19.2.3 What are the *annualized* means and standard deviations of daily returns for these four stocks?

19.2.4 Plot *annualized* means versus standard deviations of daily returns for these four stocks

Use plt.scatter(), which expects arguments as x (standard deviations) then y (means).

19.2.5 Repeat the previous calculations and plot for the stocks in the Dow-Jones Industrial Index (DJIA)

We can find the current DJIA stocks on Wikipedia. We will need to download new data, into tickers2, prices2, and returns2.

19.2.6 Calculate total returns for the stocks in the DJIA

We can use the .prod() method to compound returns as $1 + R_T = \prod_{t=1}^T (1 + R_t)$. Technically, we should write R_T as $R_{0,T}$, but we typically omit the subscript 0.

19.2.7 Plot the distribution of total returns for the stocks in the DJIA

We can plot a histogram, using either the plt.hist() function or the .plot(kind='hist') method.

19.2.8 Which stocks have the minimum and maximum total returns?

19.2.9 Plot the cumulative returns for the stocks in the DJIA

We can use the cumulative product method .cumprod() to calculate the right hand side of the formula above.

19.2.10 Repeat the plot above with only the minimum and maximum total returns

20 McKinney Chapter 5 - Practice for Section 05

20.1 Announcements

20.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import yfinance as yf

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

tickers = yf.Tickers('AAPL IBM MSFT GOOG')
prices = tickers.history(period='max', auto_adjust=False)
returns = prices['Adj Close'].pct_change().dropna()
returns
```

[********* 4 of 4 completed

	AAPL	GOOG	IBM	MSFT
Date				
2004-08-20	0.0029	0.0794	0.0042	0.0029
2004-08-23	0.0091	0.0101	-0.0070	0.0044
2004-08-24	0.0280	-0.0414	0.0007	0.0000
2004-08-25	0.0344	0.0108	0.0042	0.0114
2004-08-26	0.0487	0.0180	-0.0045	-0.0040

	AAPL	GOOG	IBM	MSFT
Date				
2023-12-18	-0.0085	0.0250	0.0031	0.0052
2023-12-19	0.0054	0.0066	-0.0073	0.0016
2023-12-20	-0.0107	0.0113	-0.0093	-0.0071
2023-12-21	-0.0008	0.0153	0.0046	0.0079
2023-12-22	0.0026	0.0076	0.0072	0.0012

20.2.1 What are the mean daily returns for these four stocks?

20.2.2 What are the standard deviations of daily returns for these four stocks?

20.2.3 What are the *annualized* means and standard deviations of daily returns for these four stocks?

20.2.4 Plot *annualized* means versus standard deviations of daily returns for these four stocks

Use plt.scatter(), which expects arguments as x (standard deviations) then y (means).

20.2.5 Repeat the previous calculations and plot for the stocks in the Dow-Jones Industrial Index (DJIA)

We can find the current DJIA stocks on Wikipedia. We will need to download new data, into tickers2, prices2, and returns2.

20.2.6 Calculate total returns for the stocks in the DJIA

We can use the .prod() method to compound returns as $1 + R_T = \prod_{t=1}^T (1 + R_t)$. Technically, we should write R_T as $R_{0,T}$, but we typically omit the subscript 0.

20.2.7 Plot the distribution of total returns for the stocks in the DJIA

We can plot a histogram, using either the plt.hist() function or the .plot(kind='hist') method.

20.2.8 Which stocks have the minimum and maximum total returns?

20.2.9 Plot the cumulative returns for the stocks in the DJIA

We can use the cumulative product method .cumprod() to calculate the right hand side of the formula above.

20.2.10 Repeat the plot above with only the minimum and maximum total returns

Part V

Week 5

21 Herron Topic 1 - Web Data, Log and Simple Returns, and Portfolio Math

This notebook covers three topics:

- 1. How to download web data with the yfinance and pandas-datareader packages
- 2. How to calculate log and simple returns
- 3. How to calculate portfolio returns

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'
```

21.1 Web Data

We will typically use the yfinance and pandas-datarader packages to download data from the web. If you followed my instructions to install Miniconda on your computer, you have already installed these packages.

21.1.1 The yfinance Package

The yfinance package provides "a reliable, threaded, and Pythonic way to download historical market data from Yahoo! finance." Other packages provide similar functionality, but yfinance is best.

```
import yfinance as yf
```

We can download data for the MATANA stocks (Microsoft, Alphabet, Tesla, Amazon, Nvidia, and Apple). We can pass tickers as either a space-delimited string or a list of strings.

```
df = yf.download(tickers='MSFT GOOG TSLA AMZN NVDA AAPL')
df
```


	Adj Close						Close		
	AAPL	AMZN	GOOG	MSFT	NVDA	TSLA	AAPL	AMZN	GOOG
Date									
1980-12-12	0.0993	NaN	NaN	NaN	NaN	NaN	0.1283	NaN	NaN
1980-12-15	0.0941	NaN	NaN	NaN	NaN	NaN	0.1217	NaN	NaN
1980-12-16	0.0872	NaN	NaN	NaN	NaN	NaN	0.1127	NaN	NaN
1980-12-17	0.0894	NaN	NaN	NaN	NaN	NaN	0.1155	NaN	NaN
1980-12-18	0.0920	NaN	NaN	NaN	NaN	NaN	0.1189	NaN	NaN
									•••
2023-12-18	195.8900	154.0700	137.1900	372.6500	500.7700	252.0800	195.8900	154.0700	137.1900
2023-12-19	196.9400	153.7900	138.1000	373.2600	496.0400	257.2200	196.9400	153.7900	138.1000
2023-12-20	194.8300	152.1200	139.6600	370.6200	481.1100	247.1400	194.8300	152.1200	139.6600
2023-12-21	194.6800	153.8400	141.8000	373.5400	489.9000	254.5000	194.6800	153.8400	141.8000
2023-12-22	194.8899	153.7950	142.3800	374.0350	490.8500	257.1700	194.8899	153.7950	142.3800

```
(
    df
    ['Adj Close']
    .pct_change()
    .loc['2022']
    .add(1)
    .cumprod()
    .sub(1)
    .mul(100)
    .plot()
)
plt.ylabel('Year-to-Date Return (%)')
plt.title('Year-to-Date Returns for MATANA Stocks in 2022')
plt.show()
```


21.1.2 The pandas-datareader package

The pandas-datareader package provides easy access to various data sources, including the Kenneth French Data Library and the Federal Reserve Economic Data (FRED). The pandasdatareader package also downloads Yahoo! Finance data, but the vfinance package has better documentation. We will use pdr as the abbreviated prefix for pandas-datareader.

```
import pandas_datareader as pdr
```

Here we download the daily benchmark factors from Ken French's Data Library.

```
pdr.famafrench.get_available_datasets()[:5]
['F-F_Research_Data_Factors',
```

'F-F_Research_Data_Factors_weekly',

^{&#}x27;F-F_Research_Data_Factors_daily', 'F-F_Research_Data_5_Factors_2x3',

```
'F-F_Research_Data_5_Factors_2x3_daily']
```

For Fama and French data, pandas-datareader returns the most recent five years of data unless we specify a start date. French typically provides data back through the second half of 1926. pandas-datareader returns dictionaries of data frames, and the 'DESCR' value describes these data frames.

```
ff_all = pdr.DataReader(
      name='F-F_Research_Data_Factors_daily',
       data_source='famafrench',
       start='1900'
  )
C:\Users\r.herron\AppData\Local\Temp\ipykernel_19752\2526882917.py:1: FutureWarning: The arg
  ff_all = pdr.DataReader(
  print(ff_all['DESCR'])
F-F Research Data Factors daily
This file was created by CMPT_ME_BEME_RETS_DAILY using the 202310 CRSP database. The Tbill re
  0 : (25608 \text{ rows } x \text{ 4 cols})
      ff_all[0]
       .div(100)
       .add(1)
       .cumprod()
       .sub(1)
       .mul(100)
       .plot()
  )
  plt.ylabel('Cumulative Return (%)')
  plt.title('Cumulative Returns for the Daily Benchmark Factors (%)')
  plt.gca().yaxis.set_major_formatter(plt.matplotlib.ticker.StrMethodFormatter('{x:,.0f}'))
  plt.show()
```


21.2 Log and Simple Returns

We will typically use simple returns, calculated as $R_{simple,t} = \frac{P_t + D_t - P_{t-1}}{P_{t-1}} = \frac{P_t + D_t}{P_{t-1}} - 1$. The simple return is the return that investors receive on invested dollars. We can calculate simple returns from Yahoo Finance data with the .pct_change() method on the adjusted close column (i.e., Adj Close), which adjusts for dividends and splits. The adjusted close column is a reverse-engineered close price (i.e., end-of-trading-day price) that incorporates dividends and splits, making simple return calculations easy.

However, we may see *log* returns elsewhere, which are the (natural) log of one plus simple returns:

$$R_{log,t} = \log(1 + R_{simple,t}) = \log\left(1 + \frac{P_t + D_t}{P_{t-1}} - 1\right) = \log\left(\frac{P_t + D_t}{P_{t-1}}\right) = \log(P_t + D_t) - \log(P_{t-1}) = \log(P_t + D_t) - \log(P_t + D_t) - \log(P_t + D_t) = \log(P_t + D_t) - \log(P_t + D_t) - \log(P_t + D_t) = \log(P_t + D_t) - \log(P_t + D_t) - \log(P_t + D_t) = \log(P_t + D_t) - \log(P_t + D_t) - \log(P_t + D_t) = \log(P_t + D_t) - \log(P_t + D_t) - \log(P_t + D_t) = \log(P_t + D_t) - \log(P_t + D_t) - \log(P_t + D_t) = \log(P_t + D_t) - \log(P_t + D_t$$

Therefore, we calculate log returns as either the log of one plus simple returns or the difference of the logs of the adjusted close column. Log returns are also known as *continuously-compounded* returns.

We will typically use *simple* returns instead of *log* returns. However, this section explains the differences between simple and log returns and where each is appropriate.

21.2.1 Simple and Log Returns are Similar for Small Returns

 $\log(1+x) \approx x$ for small values of x, so simple returns and log returns are similar for small returns. Returns are typically small at daily and monthly horizons, so the difference between simple and log returns is small at these horizons. The following figure shows $R_{simple,t} \approx R_{log,t}$ for small R_s .

```
R = np.linspace(-0.75, 0.75, 100)
logR = np.log(1 + R)

plt.plot(R, logR)
plt.plot([-1, 1], [-1, 1])
plt.xlabel('Simple Return')
plt.ylabel('Log Return')
plt.title('Log Versus Simple Returns')
plt.legend(['Actual', 'If Log = Simple'])
plt.show()
```


21.2.2 Simple Return Advantage: Portfolio Calculations

We can only perform portfolio calculations with simple returns. For a portfolio of N assets with portfolio weights w_i , the portfolio return R_p is the weighted average of the returns of its assets, $R_p = \sum_{i=1}^N w_i R_i$. For two stocks with portfolio weights of 50%, our portfolio return is $R_{portfolio} = 0.5R_1 + 0.5R_2 = \frac{R_1 + R_2}{2}$. However, we cannot calculate portfolio returns with log returns because the sum of logs is the log of products.

We cannot calculate portfolio returns as the weighted average of log returns.

21.2.3 Log Return Advantage: Log Returns are Additive

The advantage of log returns is that we can compound log returns with addition. The additive property of log returns makes code simple, computations fast, and proofs easy when we compound returns over multiple periods.

We compound returns from t = 0 to t = T as follows:

$$1 + R_{0,T} = (1 + R_1) \times (1 + R_2) \times \cdots \times (1 + R_T)$$

Next, we take the log of both sides of the previous equation and use the property that the log of products is the sum of logs:

$$\log(1+R_{0,T}) = \log((1+R_1)\times(1+R_2)\times\cdots\times(1+R_T)) = \log(1+R_1) + \log(1+R_2) + \cdots + \log(1+R_T) = \sum_{t=1}^T \log(1+R_t)$$

Next, we exponentiate both sides of the previous equation:

$$e^{\log(1+R_{0,T})} = e^{\sum_{t=0}^{T} \log(1+R_t)}$$

Next, we use the property that $e^{\log(x)} = x$ to simplify the previous equation:

$$1 + R_{0,T} = e^{\sum_{t=0}^T \log(1+R_t)}$$

Finally, we subtract 1 from both sides:

$$R_{0,T} = e^{\sum_{t=0}^{T} \log(1+R_t)} - 1$$

So, the return $R_{0,T}$ from t=0 to t=T is the exponentiated sum of log returns. The pandas developers assume users understand the math above and focus on optimizing sums.

The following code generates 10,000 random log returns. The np.random.randn() call generates normally distributed random numbers. To generate equivalent simple returns, we exponentiate these log returns, then subtract one.

```
np.random.seed(42)
df2 = pd.DataFrame(data={'R': np.exp(np.random.randn(10000)) - 1})
df2.describe()
```

	R
count	10000.0000
mean	0.6529
std	2.1918
\min	-0.9802
25%	-0.4896

	R
50%	-0.0026
75%	0.9564
max	49.7158

We can time the calculation of 12-observation rolling returns. We use .apply() for the simple return version because .rolling() does not have a product method. We find that .rolling() is slower with .apply() than with .sum() by a factor of 2,000. We will learn about .rolling() and .apply() in a few weeks, but they provide the best example of when to use log returns.

```
%%timeit
  df2['R12_via_simple'] = (
      df2['R']
       .add(1)
       .rolling(12)
       .apply(lambda x: x.prod())
       .sub(1)
  )
316 ms \pm 114 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each)
  %%timeit
  df2['R12\_via\_log'] = (
      df2['R']
       .add(1)
       .pipe(np.log)
       .rolling(12)
       .sum()
       .pipe(np.exp)
       .sub(1)
  )
742 \mu s \pm 91.2 \mu s per loop (mean \pm std. dev. of 7 runs, 1,000 loops each)
```

```
np.allclose(df2['R12_via_simple'], df2['R12_via_log'], equal_nan=True)
```

True

These two approaches calculate the same return, but the simple-return approach is 1,000 times slower than the log-return approach!

We can use log returns to calculate total returns very quickly!

21.3 Portfolio Math

Portfolio return R_p is the weighted average of its asset returns, so $R_p = \sum_{i=1}^N w_i R_i$. Here N is the number of assets, and w_i is the weight on asset i.

21.3.1 The 1/N Portfolio

The $\frac{1}{N}$ portfolio equally weights portfolio assets, so $w_1=w_2=\cdots=w_N=\frac{1}{N}$. We typically rebalance the $\frac{1}{N}$ portfolio every period. If $w_i=\frac{1}{N}$, then $R_p=\sum_{i=1}^N\frac{1}{N}R_i=\frac{\sum_{i=1}^NR_i}{N}=\bar{R}$. Therefore, we can use .mean() to calculate $\frac{1}{N}$ portfolio returns.

	AAPL	AMZN	GOOG	MSFT	NVDA	TSLA
Date						
2022-01-03	0.0250	0.0221	0.0027	-0.0047	0.0241	0.1353
2022-01-04	-0.0127	-0.0169	-0.0045	-0.0171	-0.0276	-0.0418
2022-01-05	-0.0266	-0.0189	-0.0468	-0.0384	-0.0576	-0.0535
2022-01-06	-0.0167	-0.0067	-0.0007	-0.0079	0.0208	-0.0215
2022 - 01 - 07	0.0010	-0.0043	-0.0040	0.0005	-0.0330	-0.0354
				•••		
2022 - 12 - 23	-0.0028	0.0174	0.0176	0.0023	-0.0087	-0.0176
2022 - 12 - 27	-0.0139	-0.0259	-0.0209	-0.0074	-0.0714	-0.1141
2022-12-28	-0.0307	-0.0147	-0.0167	-0.0103	-0.0060	0.0331
2022-12-29	0.0283	0.0288	0.0288	0.0276	0.0404	0.0808
2022-12-30	0.0025	-0.0021	-0.0025	-0.0049	0.0008	0.0112

returns.mean()

AAPL -0.0010 AMZN -0.0022

```
GOOG
       -0.0016
MSFT
       -0.0011
NVDA
       -0.0020
TSLA
       -0.0033
dtype: float64
  rp_1 = returns.mean(axis=1)
  rp_1
Date
2022-01-03
               0.0341
2022-01-04
              -0.0201
              -0.0403
2022-01-05
2022-01-06
              -0.0055
2022-01-07
              -0.0125
                . . .
2022-12-23
              0.0014
2022-12-27
              -0.0423
2022-12-28
             -0.0075
2022-12-29
               0.0391
2022-12-30
               0.0008
Length: 251, dtype: float64
```

Note that when we apply the same portfolio weights every period, we rebalance at the same frequency as the returns data. If we have daily data, rebalance daily. If we have monthly data, we rebalance monthly, and so on.

21.3.2 A More General Solution

If we combine weights into vector w and the time series of asset returns into matrix \mathbf{R} , then we can calculate the time series of portfolio returns as $R_p = w^T \mathbf{R}$. The pandas version of this calculation is $\mathtt{R.dot}(\mathtt{w})$, where \mathtt{R} is a data frame of asset returns and \mathtt{w} is a series of portfolio weights. We can use this approach to calculate $\frac{1}{N}$ portfolio returns, too.

```
weights = np.ones(returns.shape[1]) / returns.shape[1]
weights
array([0.1667, 0.1667, 0.1667, 0.1667, 0.1667])
```

```
rp_2 = returns.dot(weights)
rp_2
```

```
Date
2022-01-03 0.0341
2022-01-04 -0.0201
2022-01-05 -0.0403
2022-01-06 -0.0055
2022-01-07
           -0.0125
              . . .
2022-12-23
            0.0014
2022-12-27 -0.0423
2022-12-28 -0.0075
2022-12-29
           0.0391
2022-12-30
             0.0008
Length: 251, dtype: float64
```

Both approaches give the same answer!

```
np.allclose(rp_1, rp_2, equal_nan=True)
```

True

22 Herron Topic 1 - Practice for Section 02

22.1 Announcements

22.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

22.2.1 Download all available daily price data for tickers TSLA, F, AAPL, AMZN, and META to data frame histories

Remove time zone information from the index and use histories.columns.names to label the variables and tickers as Variable and Ticker.

- 22.2.2 Calculate all available daily returns and save to data frame returns
- 22.2.3 Slices returns for the 2020s and assign to returns_2020s

22.2.4 Download all available data for the Fama and French daily benchmark factors to dictionary ff_all

I often use the following code snippet to find the exact name for the daily benchmark factors file.

pdr.famafrench.get_available_datasets()[:5]

```
['F-F_Research_Data_Factors',
    'F-F_Research_Data_Factors_weekly',
    'F-F_Research_Data_Factors_daily',
    'F-F_Research_Data_5_Factors_2x3',
    'F-F_Research_Data_5_Factors_2x3 daily']
```

- 22.2.5 Slice the daily benchmark factors, convert them to decimal returns, and assign to ff
- 22.2.6 Use the .cumprod() method to plot cumulative returns for these stocks in the 2020s
- 22.2.7 Use the .cumsum() method with log returns to plot cumulative returns for these stocks in the 2020s
- 22.2.8 Use price data only to plot cumulative returns for these stocks in the 2020s

22.2.9 Calculate the Sharpe Ratio for TSLA

Calculate the Sharpe Ratio with all available returns and 2020s returns. Recall the Sharpe Ratio is $\frac{\overline{R_i - R_f}}{\sigma_i}$, where σ_i is the volatility of excess returns.

I suggest you write a function named sharpe() to use for the rest of this notebook.

22.2.10 Calculate the market beta for TSLA

Calculate the market beta with all available returns and 2020s returns. Recall we estimate market beta with the ordinary least squares (OLS) regression $R_i - R_f = \alpha + \beta (R_m - R_f) + \epsilon$. We can estimate market beta with the covariance formula above for a univariate regression if we do not need goodness of fit statistics.

I suggest you write a function named beta() to use for the rest of this notebook.

22.2.11 Guess the Sharpe Ratios for these stocks in the 2020s

22.2.12 Guess the market betas for these stocks in the 2020s

22.2.13 Calculate the Sharpe Ratios for these stocks in the 2020s

How good were your guesses?

22.2.14 Calculate the market betas for these stocks in the 2020s

How good were your guesses?

22.2.15 Calculate the Sharpe Ratio for an *equally weighted* portfolio of these stocks in the 2020s

What do you notice?

22.2.16 Calculate the market beta for an *equally weighted* portfolio of these stocks in the 2020s

What do you notice?

22.2.17 Calculate the market betas for these stocks every calendar year for every possible year

Save these market betas to data frame betas. Our current Python knowledge limits us to a for-loop, but we will learn easier and faster approaches soon!

22.2.18 Plot the time series of market betas

23 Herron Topic 1 - Practice for Section 03

23.1 Announcements

23.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

23.2.1 Download all available daily price data for tickers TSLA, F, AAPL, AMZN, and META to data frame histories

Remove time zone information from the index and use histories.columns.names to label the variables and tickers as Variable and Ticker.

- 23.2.2 Calculate all available daily returns and save to data frame returns
- 23.2.3 Slices returns for the 2020s and assign to returns_2020s

23.2.4 Download all available data for the Fama and French daily benchmark factors to dictionary ff_all

I often use the following code snippet to find the exact name for the daily benchmark factors file.

pdr.famafrench.get_available_datasets()[:5]

```
['F-F_Research_Data_Factors',
    'F-F_Research_Data_Factors_weekly',
    'F-F_Research_Data_Factors_daily',
    'F-F_Research_Data_5_Factors_2x3',
    'F-F_Research_Data_5_Factors_2x3 daily']
```

- 23.2.5 Slice the daily benchmark factors, convert them to decimal returns, and assign to ff
- 23.2.6 Use the .cumprod() method to plot cumulative returns for these stocks in the 2020s
- 23.2.7 Use the .cumsum() method with log returns to plot cumulative returns for these stocks in the 2020s
- 23.2.8 Use price data only to plot cumulative returns for these stocks in the 2020s

23.2.9 Calculate the Sharpe Ratio for TSLA

Calculate the Sharpe Ratio with all available returns and 2020s returns. Recall the Sharpe Ratio is $\frac{\overline{R_i - R_f}}{\sigma_i}$, where σ_i is the volatility of excess returns.

I suggest you write a function named sharpe() to use for the rest of this notebook.

23.2.10 Calculate the market beta for TSLA

Calculate the market beta with all available returns and 2020s returns. Recall we estimate market beta with the ordinary least squares (OLS) regression $R_i - R_f = \alpha + \beta (R_m - R_f) + \epsilon$. We can estimate market beta with the covariance formula above for a univariate regression if we do not need goodness of fit statistics.

I suggest you write a function named beta() to use for the rest of this notebook.

23.2.11 Guess the Sharpe Ratios for these stocks in the 2020s

23.2.12 Guess the market betas for these stocks in the 2020s

23.2.13 Calculate the Sharpe Ratios for these stocks in the 2020s

How good were your guesses?

23.2.14 Calculate the market betas for these stocks in the 2020s

How good were your guesses?

23.2.15 Calculate the Sharpe Ratio for an *equally weighted* portfolio of these stocks in the 2020s

What do you notice?

23.2.16 Calculate the market beta for an *equally weighted* portfolio of these stocks in the 2020s

What do you notice?

23.2.17 Calculate the market betas for these stocks every calendar year for every possible year

Save these market betas to data frame betas. Our current Python knowledge limits us to a for-loop, but we will learn easier and faster approaches soon!

23.2.18 Plot the time series of market betas

24 Herron Topic 1 - Practice for Section 04

24.1 Announcements

24.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

24.2.1 Download all available daily price data for tickers TSLA, F, AAPL, AMZN, and META to data frame histories

Remove time zone information from the index and use histories.columns.names to label the variables and tickers as Variable and Ticker.

- 24.2.2 Calculate all available daily returns and save to data frame returns
- 24.2.3 Slices returns for the 2020s and assign to returns_2020s

24.2.4 Download all available data for the Fama and French daily benchmark factors to dictionary ff_all

I often use the following code snippet to find the exact name for the daily benchmark factors file.

pdr.famafrench.get_available_datasets()[:5]

```
['F-F_Research_Data_Factors',
   'F-F_Research_Data_Factors_weekly',
   'F-F_Research_Data_Factors_daily',
   'F-F_Research_Data_5_Factors_2x3',
   'F-F_Research_Data_5_Factors_2x3 daily']
```

- 24.2.5 Slice the daily benchmark factors, convert them to decimal returns, and assign to ff
- 24.2.6 Use the .cumprod() method to plot cumulative returns for these stocks in the 2020s
- 24.2.7 Use the .cumsum() method with log returns to plot cumulative returns for these stocks in the 2020s
- 24.2.8 Use price data only to plot cumulative returns for these stocks in the 2020s

24.2.9 Calculate the Sharpe Ratio for TSLA

Calculate the Sharpe Ratio with all available returns and 2020s returns. Recall the Sharpe Ratio is $\frac{\overline{R_i - R_f}}{\sigma_i}$, where σ_i is the volatility of excess returns.

I suggest you write a function named sharpe() to use for the rest of this notebook.

24.2.10 Calculate the market beta for TSLA

Calculate the market beta with all available returns and 2020s returns. Recall we estimate market beta with the ordinary least squares (OLS) regression $R_i - R_f = \alpha + \beta (R_m - R_f) + \epsilon$. We can estimate market beta with the covariance formula above for a univariate regression if we do not need goodness of fit statistics.

I suggest you write a function named beta() to use for the rest of this notebook.

24.2.11 Guess the Sharpe Ratios for these stocks in the 2020s

24.2.12 Guess the market betas for these stocks in the 2020s

24.2.13 Calculate the Sharpe Ratios for these stocks in the 2020s

How good were your guesses?

24.2.14 Calculate the market betas for these stocks in the 2020s

How good were your guesses?

24.2.15 Calculate the Sharpe Ratio for an *equally weighted* portfolio of these stocks in the 2020s

What do you notice?

24.2.16 Calculate the market beta for an *equally weighted* portfolio of these stocks in the 2020s

What do you notice?

24.2.17 Calculate the market betas for these stocks every calendar year for every possible year

Save these market betas to data frame betas. Our current Python knowledge limits us to a for-loop, but we will learn easier and faster approaches soon!

24.2.18 Plot the time series of market betas

25 Herron Topic 1 - Practice for Section 05

25.1 Announcements

25.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

25.2.1 Download all available daily price data for tickers TSLA, F, AAPL, AMZN, and META to data frame histories

Remove time zone information from the index and use histories.columns.names to label the variables and tickers as Variable and Ticker.

- 25.2.2 Calculate all available daily returns and save to data frame returns
- 25.2.3 Slices returns for the 2020s and assign to returns_2020s

25.2.4 Download all available data for the Fama and French daily benchmark factors to dictionary ff_all

I often use the following code snippet to find the exact name for the daily benchmark factors file.

pdr.famafrench.get_available_datasets()[:5]

```
['F-F_Research_Data_Factors',
   'F-F_Research_Data_Factors_weekly',
   'F-F_Research_Data_Factors_daily',
   'F-F_Research_Data_5_Factors_2x3',
   'F-F_Research_Data_5_Factors_2x3 daily']
```

- 25.2.5 Slice the daily benchmark factors, convert them to decimal returns, and assign to ff
- 25.2.6 Use the .cumprod() method to plot cumulative returns for these stocks in the 2020s
- 25.2.7 Use the .cumsum() method with log returns to plot cumulative returns for these stocks in the 2020s
- 25.2.8 Use price data only to plot cumulative returns for these stocks in the 2020s

25.2.9 Calculate the Sharpe Ratio for TSLA

Calculate the Sharpe Ratio with all available returns and 2020s returns. Recall the Sharpe Ratio is $\frac{\overline{R_i - R_f}}{\sigma_i}$, where σ_i is the volatility of excess returns.

I suggest you write a function named sharpe() to use for the rest of this notebook.

25.2.10 Calculate the market beta for TSLA

Calculate the market beta with all available returns and 2020s returns. Recall we estimate market beta with the ordinary least squares (OLS) regression $R_i - R_f = \alpha + \beta (R_m - R_f) + \epsilon$. We can estimate market beta with the covariance formula above for a univariate regression if we do not need goodness of fit statistics.

I suggest you write a function named beta() to use for the rest of this notebook.

25.2.11 Guess the Sharpe Ratios for these stocks in the 2020s

25.2.12 Guess the market betas for these stocks in the 2020s

25.2.13 Calculate the Sharpe Ratios for these stocks in the 2020s

How good were your guesses?

25.2.14 Calculate the market betas for these stocks in the 2020s

How good were your guesses?

25.2.15 Calculate the Sharpe Ratio for an *equally weighted* portfolio of these stocks in the 2020s

What do you notice?

25.2.16 Calculate the market beta for an *equally weighted* portfolio of these stocks in the 2020s

What do you notice?

25.2.17 Calculate the market betas for these stocks every calendar year for every possible year

Save these market betas to data frame betas. Our current Python knowledge limits us to a for-loop, but we will learn easier and faster approaches soon!

25.2.18 Plot the time series of market betas

Part VI

Week 6

26 McKinney Chapter 8 - Data Wrangling: Join, Combine, and Reshape

26.1 Introduction

Chapter 8 of Wes McKinney's *Python for Data Analysis* introduces a few important pandas concepts:

- 1. Joining or merging is combining 2+ data frames on 1+ indexes or columns into 1 data frame
- 2. Reshaping is rearranging data frames so it has fewer columns and more rows (wide to long) or more columns and fewer rows (long to wide); we can also reshape a series to a data frame and vice versa

Note: Indented block quotes are from McKinney unless otherwise indicated. The section numbers here differ from McKinney because we will only discuss some topics.

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

26.2 Hierarchical Indexing

We need to learn about hierarchical indexing before we learn about combining and reshaping data. A hierarchical index gives two or more index levels to an axis. For example, we could

index rows by ticker and date. Or we could index columns by variable and ticker. Hierarchical indexing helps us work with high-dimensional data in a low-dimensional form.

```
np.random.seed(42)
  data = pd.Series(
       data=np.random.randn(9),
       index=[
           ['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 'd'],
           [1, 2, 3, 1, 3, 1, 2, 2, 3]
      ]
  )
  data
        0.4967
   1
a
   2
       -0.1383
   3
        0.6477
b
   1
        1.5230
   3
       -0.2342
       -0.2341
   1
   2
        1.5792
        0.7674
   2
       -0.4695
   3
dtype: float64
```

We can partially index this series to concisely subset data.

```
data['b']

1    1.5230
3    -0.2342
dtype: float64

data['b':'c']

b    1    1.5230
3    -0.2342
c    1    -0.2341
2    1.5792
dtype: float64
```

```
data.loc[['b', 'd']]
```

```
b 1 1.5230
3 -0.2342
d 2 0.7674
3 -0.4695
```

dtype: float64

We can subset on the index inner level, too. Here the first: slices all values in the outer index.

data.loc[:, 2]

a -0.1383
c 1.5792
d 0.7674
dtype: float64

Here data has a stacked format. For each outer index level (the letters), we have multiple observations based on the inner index level (the numbers). We can un-stack data to convert the inner index level to columns.

data.unstack()

	1	2	3
a	0.4967	-0.1383	0.6477
b	1.5230	NaN	-0.2342
\mathbf{c}	-0.2341	1.5792	NaN
d	NaN	0.7674	-0.4695

data.unstack().stack()

a 1 0.4967 2 -0.1383 3 0.6477 b 1 1.5230 3 -0.2342

```
c 1 -0.2341
2 1.5792
d 2 0.7674
3 -0.4695
dtype: float64
```

We can create a data frame with hierarchical indexes or multi-indexes on rows and columns.

```
frame = pd.DataFrame(
    data=np.arange(12).reshape((4, 3)),
    index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
    columns=[['Ohio', 'Ohio', 'Colorado'], ['Green', 'Red', 'Green']]
)
frame
```

		Ohio		Colorado
		${\rm Green}$	Red	Green
_	1	0	1	2
a	2	3	4	5
1.	1	6	7	8
b	2	9	10	11

We can name these multi-indexes but names are not required.

```
frame.index.names = ['key1', 'key2']
frame.columns.names = ['state', 'color']
frame
```

key1	color	Ohio Green	Red	Colorado Green
a b	1 2 1	0 3 6	1 4 7 10	2 5 8 11

Recall that df[val] selects the val column. Here frame has a multi-index for the columns, so frame['Ohio'] selects all columns with Ohio as the outer index level.

frame['Ohio']

key1	color key2	Green	Red
-	1	0	1
a	2	3	4
b	1	6	7
D	2	9	10

We can pass a tuple if we only want one column.

	state color	Ohio Green
key1	key2	
	1	0
a	2	3
b	1	6
	2	9

We have to do a more work to slice the inner level of the column index.

frame.loc[:, (slice(None), 'Green')]

key1		Ohio Green	Colorado Green
	1	0	2
a	2	3	5
b	1	6	8
<u> </u>	2	9	11

We can use pd.IndexSlice[:, 'Green'] an alternative to (slice(None), 'Green').

```
frame.loc[:, pd.IndexSlice[:, 'Green']]
```

key1		Ohio Green	Colorado Green
a	1 2	0 3	2 5
b	$\frac{1}{2}$	6 9	8 11

26.2.1 Reordering and Sorting Levels

We can swap index levels with the <code>.swaplevel()</code> method. The default arguments are i=-2 and j=-1, which swap the two innermost index levels.

frame.swaplevel()

key2		Ohio Green	Red	Colorado Green
1	a	0	1	2
2	a	3	4	5
1	b	6	7	8
2	b	9	10	11

We can use index *names*, too.

frame.swaplevel('key1', 'key2')

key2	color	Ohio Green	Red	Colorado Green
1	a	0	1	2
2	a	3	4	5
1	b	6	7	8
2	b	9	10	11

We can also sort on an index (or list of indexes). After we swap levels, we may want to sort our data.

frame

key1		Ohio Green	Red	Colorado Green
	1	0	1	2
a	2	3	4	5
b	1	6	7	8
D	2	9	10	11

frame.sort_index(level=1)

key1		Ohio Green	Red	Colorado Green
a	1	0	1	2
b	1	6	7	8
a	2	3	4	5
b	2	9	10	11

Again, we can give index names, too.

frame.sort_index(level='key2')

lease1	color	Ohio Green	Red	Colorado Green
кеут	key2			
a	1	0	1	2
b	1	6	7	8
a	2	3	4	5
b	2	9	10	11

We can sort by two or more index levels by passing a list of index levels or names.

frame.sort_index(level=[0, 1])

		01.		<u> </u>
		Ohio		Colorado
	color	Green	Red	Green
key1	key2			
	1	0	1	2
a	2	3	4	5
b	1	6	7	8
D	2	9	10	11

We can chain these methods, too.

```
frame.swaplevel(0, 1).sort_index(level=0)
```

key2	color	Ohio Green	Red	Colorado Green
1	a	0	1	2
	b a	$\frac{6}{3}$	7 4	8 5
2	b	9	10	11

26.2.2 Indexing with a DataFrame's columns

We can convert a column into an index and an index into a column with the .set_index() and .reset_index() methods.

```
frame = pd.DataFrame({
    'a': range(7),
    'b': range(7, 0, -1),
    'c': ['one', 'one', 'two', 'two', 'two'],
    'd': [0, 1, 2, 0, 1, 2, 3]
})
frame
```

	a	b	\mathbf{c}	d
0	0	7	one	0
1	1	6	one	1
2	2	5	one	2
3	3	4	two	0

	a	b	\mathbf{c}	d
4	4	3	two	1
5	5	2	two	2
6	6	1	two	3

The $.set_index()$ method converts columns to indexes, and removes the columns from the data frame by default.

```
frame2 = frame.set_index(['c', 'd'])
frame2
```

		a	b
c	d		
	0	0	7
one	1	1	6
	2	2	5
	0	3	4
+	1	4	3
two	2	5	2
	3	6	1

The $.reset_index()$ method removes the indexes, adds them as columns, and sets in integer index.

```
frame2.reset_index()
```

c	d	a	b
one	0	0	7
one	1	1	6
one	2	2	5
two	0	3	4
two	1	4	3
two	2	5	2
two	3	6	1
	one one two two	one 0 one 1 one 2 two 0 two 1 two 2	one 0 0 one 1 1 one 2 2 two 0 3 two 1 4 two 2 5

26.3 Combining and Merging Datasets

pandas provides several methods and functions to combine and merge data. We can typically create the same output with any of these methods or functions, but one may be more efficient than the others. If I want to combine data frames with similar indexes, I try the .join() method first. The .join() also lets use can combine more than two data frames at once. Otherwise, I try the .merge() method, which has a function pd.merge(), too. The pd.merge() function is more general than the .join() method, so we will start with pd.merge().

The pandas website provides helpful visualizations.

26.3.1 Database-Style DataFrame Joins

Merge or join operations combine datasets by linking rows using one or more keys. These operations are central to relational databases (e.g., SQL-based). The merge function in pandas is the main entry point for using these algorithms on your data.

We will start with the pd.merge() syntax, but pandas also has .merge() and .join() methods. Learning these other syntaxes is easy once we understand the pd.merge() syntax.

```
df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'], 'data1': range(7)})
df2 = pd.DataFrame({'key': ['a', 'b', 'd'], 'data2': range(3)})

df1
```

	key	data1
0	b	0
1	b	1
2	a	2
3	\mathbf{c}	3
4	a	4
5	a	5
6	b	6

df2

	key	data2
0	a	0
1	b	1

	key	data2
2	d	2

pd.merge(df1, df2)

	key	data1	data2
0	b	0	1
1	b	1	1
2	b	6	1
3	a	2	0
4	a	4	0
5	a	5	0

The default how is how='inner', so pd.merge() inner joins left and right data frames by default, keeping only rows that appear in both. We can specify how='outer', so pd.merge() outer joins left and right data frames, keeping all rows that appear in either.

pd.merge(df1, df2, how='outer')

	key	data1	data2
0	b	0.0000	1.0000
1	b	1.0000	1.0000
2	b	6.0000	1.0000
3	a	2.0000	0.0000
4	a	4.0000	0.0000
5	a	5.0000	0.0000
6	\mathbf{c}	3.0000	NaN
7	d	NaN	2.0000

A left merge keeps only rows that appear in the left data frame.

pd.merge(df1, df2, how='left')

	key	data1	data2
0	b	0	1.0000
1	b	1	1.0000

	key	data1	data2
2	a	2	0.0000
3	\mathbf{c}	3	NaN
4	a	4	0.0000
5	a	5	0.0000
6	b	6	1.0000

A rights merge keeps only rows that appear in the right data frame.

	key	data1	data2
0	a	2.0000	0
1	a	4.0000	0
2	a	5.0000	0
3	b	0.0000	1
4	b	1.0000	1
5	b	6.0000	1
6	d	NaN	2

By default, pd.merge() merges on all columns that appear in both data frames.

on: label or list Column or index level names to join on. These must be found in both DataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames.

Here key is the only common column between df1 and df2. We *should* specify on to avoid unexpected results.

pd.merge(df1, df2, on='key')

	key	data1	data2
0	b	0	1
1	b	1	1
2	b	6	1
3	a	2	0
4	a	4	0
5	a	5	0

We must specify $left_on$ and $right_on$ if our left and right data frames do not have a common column.

```
df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'], 'data1': range(7)})
df4 = pd.DataFrame({'rkey': ['a', 'b', 'd'], 'data2': range(3)})
df3
```

	lkey	data1
0	b	0
1	b	1
2	a	2
3	\mathbf{c}	3
4	a	4
5	\mathbf{a}	5
6	b	6

df4

rkey	data2
a	0
b	1
d	2
	a b

pd.merge(df3, df4) # this code fails/errors because there are not common columns
pd.merge(df3, df4, left_on='lkey', right_on='rkey')

	lkey	data1	rkey	data2
0	b	0	b	1
1	b	1	b	1
2	b	6	b	1
3	a	2	a	0
4	a	4	a	0
5	a	5	a	0

Here pd.merge() dropped row c from df3 and row d from df4. Rows c and d dropped because

pd.merge() *inner* joins be default. An inner join keeps the intersection of the left and right data frame keys. Further, rows a and b from df4 appear three times to match df3. If we want to keep rows c and d, we can *outer* join df3 and df4 with how='outer'.

```
pd.merge(df1, df2, how='outer')
```

	key	data1	data2
0	b	0.0000	1.0000
1	b	1.0000	1.0000
2	b	6.0000	1.0000
3	a	2.0000	0.0000
4	a	4.0000	0.0000
5	a	5.0000	0.0000
6	\mathbf{c}	3.0000	NaN
7	d	NaN	2.0000

Many-to-many merges have well-defined, though not necessarily intuitive, behavior.

```
df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'], 'data1': range(6)})
df2 = pd.DataFrame({'key': ['a', 'b', 'a', 'b', 'd'], 'data2': range(5)})
df1
```

df2

	key	data2
0	a	0
1	b	1
2	a	2
3	b	3

	key	data2
4	d	4

```
pd.merge(df1, df2, on='key')
```

	key	data1	data2
0	b	0	1
1	b	0	3
2	b	1	1
3	b	1	3
4	b	5	1
5	b	5	3
6	a	2	0
7	a	2	2
8	a	4	0
9	a	4	2

Many-to-many joins form the Cartesian product of the rows. Since there were three b rows in the left DataFrame and two in the right one, there are six b rows in the result. The join method only affects the distinct key values appearing in the result.

Be careful with many-to-many joins! In finance, we do not expect many-to-many joins because we expect at least one of the data frames to have unique observations. pandas will not warn us if we accidentally perform a many-to-many join instead of a one-to-one or many-to-one join.

We can merge on more than one key. For example, we may merge two data sets on ticker-date pairs or industry-date pairs.

left

	key1	key2	lval
0	foo	one	1
1	foo	two	2
2	bar	one	3

right

	key1	key2	rval
0	foo	one	4
1	foo	one	5
2	bar	one	6
3	bar	two	7

pd.merge(left, right, on=['key1', 'key2'], how='outer')

	key1	key2	lval	rval
0	foo	one	1.0000	4.0000
1	foo	one	1.0000	5.0000
2	foo	two	2.0000	NaN
3	bar	one	3.0000	6.0000
4	bar	two	NaN	7.0000

When column names overlap between the left and right data frames, pd.merge() appends $_x$ and $_y$ to the left and right versions of the overlapping column names.

pd.merge(left, right, on='key1')

	key1	key2_x	lval	key2_y	rval
0	foo	one	1	one	4
1	foo	one	1	one	5
2	foo	two	2	one	4
3	foo	two	2	one	5
4	bar	one	3	one	6
5	bar	one	3	two	7

I typically specify suffixes to avoid later confusion.

pd.merge(left, right, on='key1', suffixes=('_left', '_right'))

	key1	key2_left	lval	key2_right	rval
0	foo	one	1	one	4
1	foo	one	1	one	5
2	foo	two	2	one	4
3	foo	two	2	one	5
4	bar	one	3	one	6
5	bar	one	3	two	7

I read the pd.merge() docstring whenever I am in doubt. *Table 8-2* lists the most commonly used arguments for pd.merge().

- left: DataFrame to be merged on the left side.
- right: DataFrame to be merged on the right side.
- how: One of 'inner', 'outer', 'left', or 'right'; defaults to 'inner'.
- on: Column names to join on. Must be found in both DataFrame objects. If not specified and no other join keys given will use the intersection of the column names in left and right as the join keys.
- left_on: Columns in left DataFrame to use as join keys.
- right_on: Analogous to left_on for left DataFrame.
- left_index: Use row index in left as its join key (or keys, if a MultiIndex).
- right_index: Analogous to left index.
- sort: Sort merged data lexicographically by join keys; True by default (disable to get better performance in some cases on large datasets).
- suffixes: Tuple of string values to append to column names in case of overlap; defaults to ('_x', '_y') (e.g., if 'data' in both DataFrame objects, would appear as 'data_x' and 'data_y' in result).
- copy: If False, avoid copying data into resulting data structure in some exceptional cases; by default always copies.
- indicator: Adds a special column _merge that indicates the source of each row; values will be 'left_only', 'right_only', or 'both' based on the origin of the joined data in each row.

26.3.2 Merging on Index

If we want to use pd.merge() to join on row indexes, we can use the left_index and right_index arguments.

```
left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'], 'value': range(6)})
right1 = pd.DataFrame({'group_val': [3.5, 7]}, index=['a', 'b'])
```

left1

	key	value
0	a	0
1	b	1
2	a	2
3	a	3
4	b	4
5	\mathbf{c}	5

right1

	group_val
a	3.5000
b	7.0000

pd.merge(left1, right1, left_on='key', right_index=True, how='outer')

	key	value	group_val
0	a	0	3.5000
2	a	2	3.5000
3	a	3	3.5000
1	b	1	7.0000
4	b	4	7.0000
5	\mathbf{c}	5	NaN

The index arguments work for hierarchical indexes (multi indexes), too.

```
[2001, 2000, 2000, 2000, 2001, 2002]], columns=['event1', 'event2'])
```

pd.merge(lefth, righth, left_on=['key1', 'key2'], right_index=True, how='outer')

	key1	key2	data	event1	event2
0	Ohio	2000	0.0000	4.0000	5.0000
0	Ohio	2000	0.0000	6.0000	7.0000
1	Ohio	2001	1.0000	8.0000	9.0000
2	Ohio	2002	2.0000	10.0000	11.0000
3	Nevada	2001	3.0000	0.0000	1.0000
4	Nevada	2002	4.0000	NaN	NaN
4	Nevada	2000	NaN	2.0000	3.0000

If we use both left and right indexes, pd.merge() will keep the index.

```
pd.merge(left2, right2, how='outer', left_index=True, right_index=True)
```

_				
	Ohio	Nevada	Missouri	Alabama
a	1.0000	2.0000	NaN	NaN
b	NaN	NaN	7.0000	8.0000
\mathbf{c}	3.0000	4.0000	9.0000	10.0000
d	NaN	NaN	11.0000	12.0000
e	5.0000	6.0000	13.0000	14.0000

DataFrame has a convenient join instance for merging by index. It can also be used to combine together many DataFrame objects having the same or similar indexes but non-overlapping columns.

If we have matching indexes on left and right, we can use .join().

left2

	Ohio	Nevada
a	1.0000	2.0000
\mathbf{c}	3.0000	4.0000
e	5.0000	6.0000

right2

	Missouri	Alabama
b	7.0000	8.0000
\mathbf{c}	9.0000	10.0000
d	11.0000	12.0000
e	13.0000	14.0000

left2.join(right2, how='outer')

	Ohio	Nevada	Missouri	Alabama
a	1.0000	2.0000	NaN	NaN
b	NaN	NaN	7.0000	8.0000
\mathbf{c}	3.0000	4.0000	9.0000	10.0000
d	NaN	NaN	11.0000	12.0000
e	5.0000	6.0000	13.0000	14.0000

The .join() method left joins by default. The .join() method uses indexes, so it requires few arguments and accepts a list of data frames.

```
another = pd.DataFrame(
    data=[[7., 8.], [9., 10.], [11., 12.], [16., 17.]],
    index=['a', 'c', 'e', 'f'],
    columns=['New York', 'Oregon']
)
another
```

	New York	Oregon
a	7.0000	8.0000
$^{\mathrm{c}}$	9.0000	10.0000

	New York	Oregon
e	11.0000	12.0000
f	16.0000	17.0000

left2.join([right2, another])

	Ohio	Nevada	Missouri	Alabama	New York	Oregon
a	1.0000	2.0000	NaN	NaN	7.0000	8.0000
\mathbf{c}	3.0000	4.0000	9.0000	10.0000	9.0000	10.0000
e	5.0000	6.0000	13.0000	14.0000	11.0000	12.0000

left2.join([right2, another], how='outer')

	Ohio	Nevada	Missouri	Alabama	New York	Oregon
a	1.0000	2.0000	NaN	NaN	7.0000	8.0000
\mathbf{c}	3.0000	4.0000	9.0000	10.0000	9.0000	10.0000
e	5.0000	6.0000	13.0000	14.0000	11.0000	12.0000
b	NaN	NaN	7.0000	8.0000	NaN	NaN
d	NaN	NaN	11.0000	12.0000	NaN	NaN
f	NaN	NaN	NaN	NaN	16.0000	17.0000

26.3.3 Concatenating Along an Axis

The pd.concat() function provides a flexible way to combine data frames and series along either axis. I typically use pd.concat() to combine:

- 1. A list of data frames with similar layouts
- 2. A list of series because series do not have .join() or .merge() methods

The first is handy if we have to read and combine a directory of .csv files.

```
s1 = pd.Series([0, 1], index=['a', 'b'])
s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e'])
s3 = pd.Series([5, 6], index=['f', 'g'])

pd.concat([s1, s2, s3])
```

```
a 0 b 1 c 2 d 3 e 4 f 5 g 6
```

dtype: int64

pd.concat([s1, s2, s3], axis=1)

	0	1	2
a	0.0000	NaN	NaN
b	1.0000	NaN	NaN
\mathbf{c}	NaN	2.0000	NaN
d	NaN	3.0000	NaN
e	NaN	4.0000	NaN
f	NaN	NaN	5.0000
g	NaN	NaN	6.0000

```
result = pd.concat([s1, s2, s3], keys=['one', 'two', 'three'])
result
```

```
one a 0 b 1 two c 2 d 3 e 4 three f 5 d 6 dtype: int64
```

result.unstack()

	a	b	c	d	е	f	g
one	0.0000	1.0000	NaN	NaN	NaN	NaN	NaN

	a	b	c	d	e	f	g
two	NaN	NaN	2.0000	3.0000	4.0000	NaN	NaN
$_{\mathrm{three}}$	NaN	NaN	NaN	NaN	NaN	5.0000	6.0000

pd.concat([s1, s2, s3], axis=1, keys=['one', 'two', 'three'])

	one	two	three
a	0.0000	NaN	NaN
b	1.0000	NaN	NaN
\mathbf{c}	NaN	2.0000	NaN
d	NaN	3.0000	NaN
e	NaN	4.0000	NaN
f	NaN	NaN	5.0000
g	NaN	NaN	6.0000

pd.concat([df1, df2], axis=1, keys=['level1', 'level2'])

	level1		level2	
	one	two	three	four
a	0	1	5.0000	6.0000
b	2	3	NaN	NaN
\mathbf{c}	4	5	7.0000	8.0000

pd.concat([df1, df2], axis=1, keys=['level1', 'level2'], names=['upper', 'lower'])

upper	level	1	level2	_
lower	one	two	three	four
a	0	1	5.0000	6.0000
b	2	3	NaN	NaN
\mathbf{c}	4	5	7.0000	8.0000

26.4 Reshaping and Pivoting

Above, we briefly explore reshaping data with .stack() and .unstack(). Here we explore reshaping data more deeply.

26.4.1 Reshaping with Hierarchical Indexing

Hierarchical indexes (multi-indexes) help reshape data.

There are two primary actions: - stack: This "rotates" or pivots from the columns in the data to the rows - unstack: This pivots from the rows into the columns

number state	one	two	three
Ohio	0 3	1	2
Colorado		4	5

```
result = data.stack()
  result
          number
state
Ohio
          one
                     0
          two
                     1
          three
Colorado one
                     3
          two
                     4
          three
                     5
dtype: int32
  result.unstack()
```

one	two	three
0	1	2
3	4	5
	0	0 1

```
s1 = pd.Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])
  s2 = pd.Series([4, 5, 6], index=['c', 'd', 'e'])
  data2 = pd.concat([s1, s2], keys=['one', 'two'])
  data2
one
          0
     b
          1
          2
          3
two
     С
     d
          5
          6
     е
```

data2.unstack()

dtype: int64

a	b	\mathbf{c}	d	e
0.0000 NaN			3.0000 5.0000	

Un-stacking may introduce missing values because data frames are rectangular. By default, stacking drops these missing values.

data2.unstack().stack()

```
one a 0.0000
b 1.0000
c 2.0000
d 3.0000
two c 4.0000
d 5.0000
e 6.0000
dtype: float64
```

However, we can keep missing values with dropna=False.

```
data2.unstack().stack(dropna=False)
         0.0000
one
    a
     b
         1.0000
     С
         2.0000
     d
         3.0000
            NaN
two
     a
            NaN
            NaN
     b
         4.0000
     С
         5.0000
         6.0000
dtype: float64
  df = pd.DataFrame({
      'left': result,
      'right': result + 5
      },
      columns=pd.Index(['left', 'right'], name='side')
  )
```

	side	left	right		
state	number				
Ohio	one	0	5		
	two	1	6		
	$_{ m three}$	2	7		
Colorado	one	3	8		
	two	4	9		
	three	5	10		

If we un-stack a data frame, the un-stacked level becomes the innermost level in the resulting index.

```
df.unstack('state')
```

df

side state number	left Ohio	Colorado	right Ohio	Colorado
one	0	3	5	8
two	1	4	6	9
three	2	5	7	10

We can chain .stack() and .unstack() to rearrange our data.

df.unstack('state').stack('side')

	state	Ohio	Colorado
number	side		
one	left	0	3
	right	5	8
two	left	1	4
	right	6	9
three	left	2	5
	right	7	10

McKinney provides two more subsections on reshaping data with the <code>.pivot()</code> and <code>.melt()</code> methods. Unlike, the stacking methods, the pivoting methods can aggregate data and do not require an index. We will skip these additional aggregation methods for now.

27 McKinney Chapter 8 - Practice for Section 02

27.1 Announcements

27.2 Practice

27.2.1 Download data from Yahoo! Finance for BAC, C, GS, JPM, MS, and PNC and assign to data frame stocks.

Use stocks.columns.names to assign the names Variable and Ticker to the column multi index.

- 27.2.2 Reshape stocks from wide to long with dates and tickers as row indexes and assign to data frame stocks_long.
- 27.2.3 Add daily returns for each stock to data frames stocks and stocks_long.

Name the returns variable Returns, and maintain all multi indexes. *Hint:* Use pd.MultiIndex() to create a multi index for the the wide data frame stocks.

- 27.2.4 Download the daily benchmark return factors from Ken French's data library.
- 27.2.5 Add the daily benchmark return factors to stocks and stocks_long.

For the wide data frame stocks, use the outer index name Factors.

27.2.6 Write a function download() that accepts tickers and returns a wide data frame of returns with the daily benchmark return factors.

27.2.7 Download earnings per share for the stocks in stocks and combine to a long data frame earnings.

Use the .earnings_dates method described here. Use pd.concat() to combine the result of each the .earnings_date data frames and assign them to a new data frame earnings. Name the row indexes Ticker and Date and swap to match the order of the row index in stocks_long.

27.2.8 Combine earnings with the returns from stocks_long.

It is easier to leave stocks and stocks_long as-is and work with slices returns and returns_long. Use the tz_localize('America/New_York') method add time zone information back to returns.index and use pd.to_timedelta(16, unit='h') to set time to the market close in New York City. Use pd.merge_asof() to match earnings announcement dates and times to appropriate return periods. For example, if a firm announces earnings after the close at 5 PM on February 7, we want to match the return period from 4 PM on February 7 to 4 PM on February 8.

27.2.9 Plot the relation between daily returns and earnings surprises

Three options in increasing difficulty:

- 1. Scatter plot
- 2. Scatter plot with a best-fit line using regplot() from the seaborn package
- 3. Bar plot using barplot() from the seaborn package after using pd.qcut() to form five groups on earnings surprises

27.2.10 Repeat the earnings exercise with the S&P 100 stocks

27.2.11 Repeat the earnings exercise with excess returns of the S&P 100 Stocks

Excess returns are returns minus market returns. We need to add a timezone and the closing time to the market return from Fama and French.

27.2.12 Improve your download() function from above

Modify download() to accept one or more than one ticker. Since we will not use the advanced functionality of the tickers object that yf.Tickers() creates, we will use yf.download(). The current version of yf.download() does not accept a session= argument.

28 McKinney Chapter 8 - Practice for Section 03

28.1 Announcements

28.2 Practice

28.2.1 Download data from Yahoo! Finance for BAC, C, GS, JPM, MS, and PNC and assign to data frame stocks.

Use stocks.columns.names to assign the names Variable and Ticker to the column multiindex.

- 28.2.2 Reshape stocks from wide to long with dates and tickers as row indexes and assign to data frame stocks_long.
- 28.2.3 Add daily returns for each stock to data frames stocks and stocks_long.

Name the returns variable Returns, and maintain all multi indexes. *Hint:* Use pd.MultiIndex() to create a multi index for the the wide data frame stocks.

- 28.2.4 Download the daily benchmark return factors from Ken French's data library.
- 28.2.5 Add the daily benchmark return factors to stocks and stocks_long.

For the wide data frame stocks, use the outer index name Factors.

28.2.6 Write a function download() that accepts tickers and returns a wide data frame of returns with the daily benchmark return factors.

28.2.7 Download earnings per share for the stocks in stocks and combine to a long data frame earnings.

Use the .earnings_dates method described here. Use pd.concat() to combine the result of each the .earnings_date data frames and assign them to a new data frame earnings. Name the row indexes Ticker and Date and swap to match the order of the row index in stocks_long.

28.2.8 Combine earnings with the returns from stocks_long.

It is easier to leave stocks and stocks_long as-is and work with slices returns and returns_long. Use the tz_localize('America/New_York') method add time zone information back to returns.index and use pd.to_timedelta(16, unit='h') to set time to the market close in New York City. Use pd.merge_asof() to match earnings announcement dates and times to appropriate return periods. For example, if a firm announces earnings after the close at 5 PM on February 7, we want to match the return period from 4 PM on February 7 to 4 PM on February 8.

28.2.9 Plot the relation between daily returns and earnings surprises

Three options in increasing difficulty:

- 1. Scatter plot
- 2. Scatter plot with a best-fit line using regplot() from the seaborn package
- 3. Bar plot using barplot() from the seaborn package after using pd.qcut() to form five groups on earnings surprises

28.2.10 Repeat the earnings exercise with the S&P 100 stocks

28.2.11 Repeat the earnings exercise with excess returns of the S&P 100 Stocks

Excess returns are returns minus market returns. We need to add a timezone and the closing time to the market return from Fama and French.

28.2.12 Improve your download() function from above

Modify download() to accept one or more than one ticker. Since we will not use the advanced functionality of the tickers object that yf.Tickers() creates, we will use yf.download(). The current version of yf.download() does not accept a session= argument.

29 McKinney Chapter 8 - Practice for Section 04

29.1 Announcements

29.2 Practice

29.2.1 Download data from Yahoo! Finance for BAC, C, GS, JPM, MS, and PNC and assign to data frame stocks.

Use stocks.columns.names to assign the names Variable and Ticker to the column multiindex.

- 29.2.2 Reshape stocks from wide to long with dates and tickers as row indexes and assign to data frame stocks_long.
- 29.2.3 Add daily returns for each stock to data frames stocks and stocks_long.

Name the returns variable Returns, and maintain all multi indexes. *Hint:* Use pd.MultiIndex() to create a multi index for the the wide data frame stocks.

- 29.2.4 Download the daily benchmark return factors from Ken French's data library.
- 29.2.5 Add the daily benchmark return factors to stocks and stocks_long.

For the wide data frame stocks, use the outer index name Factors.

29.2.6 Write a function download() that accepts tickers and returns a wide data frame of returns with the daily benchmark return factors.

29.2.7 Download earnings per share for the stocks in stocks and combine to a long data frame earnings.

Use the .earnings_dates method described here. Use pd.concat() to combine the result of each the .earnings_date data frames and assign them to a new data frame earnings. Name the row indexes Ticker and Date and swap to match the order of the row index in stocks_long.

29.2.8 Combine earnings with the returns from stocks_long.

It is easier to leave stocks and stocks_long as-is and work with slices returns and returns_long. Use the tz_localize('America/New_York') method add time zone information back to returns.index and use pd.to_timedelta(16, unit='h') to set time to the market close in New York City. Use pd.merge_asof() to match earnings announcement dates and times to appropriate return periods. For example, if a firm announces earnings after the close at 5 PM on February 7, we want to match the return period from 4 PM on February 7 to 4 PM on February 8.

29.2.9 Plot the relation between daily returns and earnings surprises

Three options in increasing difficulty:

- 1. Scatter plot
- 2. Scatter plot with a best-fit line using regplot() from the seaborn package
- 3. Bar plot using barplot() from the seaborn package after using pd.qcut() to form five groups on earnings surprises

29.2.10 Repeat the earnings exercise with the S&P 100 stocks

29.2.11 Repeat the earnings exercise with excess returns of the S&P 100 Stocks

Excess returns are returns minus market returns. We need to add a timezone and the closing time to the market return from Fama and French.

29.2.12 Improve your download() function from above

Modify download() to accept one or more than one ticker. Since we will not use the advanced functionality of the tickers object that yf.Tickers() creates, we will use yf.download(). The current version of yf.download() does not accept a session= argument.

30 McKinney Chapter 8 - Practice for Section 05

30.1 Announcements

30.2 Practice

30.2.1 Download data from Yahoo! Finance for BAC, C, GS, JPM, MS, and PNC and assign to data frame stocks.

Use stocks.columns.names to assign the names Variable and Ticker to the column multiindex.

- 30.2.2 Reshape stocks from wide to long with dates and tickers as row indexes and assign to data frame stocks_long.
- 30.2.3 Add daily returns for each stock to data frames stocks and stocks_long.

Name the returns variable Returns, and maintain all multi indexes. *Hint:* Use pd.MultiIndex() to create a multi index for the the wide data frame stocks.

- 30.2.4 Download the daily benchmark return factors from Ken French's data library.
- 30.2.5 Add the daily benchmark return factors to stocks and stocks_long.

For the wide data frame stocks, use the outer index name Factors.

30.2.6 Write a function download() that accepts tickers and returns a wide data frame of returns with the daily benchmark return factors.

30.2.7 Download earnings per share for the stocks in stocks and combine to a long data frame earnings.

Use the .earnings_dates method described here. Use pd.concat() to combine the result of each the .earnings_date data frames and assign them to a new data frame earnings. Name the row indexes Ticker and Date and swap to match the order of the row index in stocks_long.

30.2.8 Combine earnings with the returns from stocks_long.

It is easier to leave stocks and stocks_long as-is and work with slices returns and returns_long. Use the tz_localize('America/New_York') method add time zone information back to returns.index and use pd.to_timedelta(16, unit='h') to set time to the market close in New York City. Use pd.merge_asof() to match earnings announcement dates and times to appropriate return periods. For example, if a firm announces earnings after the close at 5 PM on February 7, we want to match the return period from 4 PM on February 7 to 4 PM on February 8.

30.2.9 Plot the relation between daily returns and earnings surprises

Three options in increasing difficulty:

- 1. Scatter plot
- 2. Scatter plot with a best-fit line using regplot() from the seaborn package
- 3. Bar plot using barplot() from the seaborn package after using pd.qcut() to form five groups on earnings surprises

30.2.10 Repeat the earnings exercise with the S&P 100 stocks

30.2.11 Repeat the earnings exercise with excess returns of the S&P 100 Stocks

Excess returns are returns minus market returns. We need to add a timezone and the closing time to the market return from Fama and French.

30.2.12 Improve your download() function from above

Modify download() to accept one or more than one ticker. Since we will not use the advanced functionality of the tickers object that yf.Tickers() creates, we will use yf.download(). The current version of yf.download() does not accept a session= argument.

Part VII

Week 7

31 Project 1

FINA 6333 – Spring 2023

To be determined

Part VIII

Week 8

32 McKinney Chapter 10 - Data Aggregation and Group Operations

32.1 Introduction

Chapter 10 of Wes McKinney's *Python for Data Analysis* discusses grouply operations, which are the pandas equivalent of Excel pivot tables. Pivot tables help us calculate statistics (e.g., sum, mean, and median) for one set of variables by groups of other variables (e.g., weekday or ticker). For example, we could use a pivot table to calculate mean daily stock returns by weekday.

We will focus on:

- 1. Using .groupby() to group by columns, indexes, and functions
- 2. Using .agg() to aggregate multiple functions
- 3. Using pivot tables as an alternative to .groupby()

Note: Indented block quotes are from McKinney unless otherwise indicated. The section numbers here differ from McKinney because we will only discuss some topics.

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

32.2 GroupBy Mechanics

"Split-apply-combine" is an excellent way to describe and visualize pandas groupby operations.

Hadley Wickham, an author of many popular packages for the R programming language, coined the term split-apply-combine for describing group operations. In the first stage of the process, data contained in a pandas object, whether a Series, DataFrame, or otherwise, is split into groups based on one or more keys that you provide. The splitting is performed on a particular axis of an object. For example, a DataFrame can be grouped on its rows (axis=0) or its columns (axis=1). Once this is done, a function is applied to each group, producing a new value. Finally, the results of all those function applications are combined into a result object. The form of the resulting object will usually depend on what's being done to the data. See Figure 10-1 for a mockup of a simple group aggregation.

Figure 10-1 visualizes a split-apply-combine operation that:

- 1. Splits by the key column (i.e., "groups by key")
- 2. Applies the sum operation to the data column (i.e., "and sums data")
- 3. Combines the grouped sums

I describe this operation as "sum the data column by groups formed on the key column."

	key1	key2	data1	data2
0	a	one	0.4967	-0.2341
1	a	two	-0.1383	1.5792
2	b	one	0.6477	0.7674
3	b	two	1.5230	-0.4695
4	a	one	-0.2342	0.5426

Here is one way to calculate the means of data1 by groups formed on key1.

```
df.loc[df['key1'] == 'a', 'data1'].mean()
0.0414
  df.loc[df['key1'] == 'b', 'data1'].mean()
1.0854
We can do this calculation more quickly!
  1. Use the .groupby() method to group by key1
  2. Use the .mean() method to sum data1 within each value of key1
Note that without the .mean() method, pandas only sets up the grouped object, which can
accept the .mean() method.
  grouped = df['data1'].groupby(df['key1'])
  grouped
<pandas.core.groupby.generic.SeriesGroupBy object at 0x00000266A8DE9550>
  grouped.mean()
key1
    0.0414
    1.0854
```

We can can chain the .groupby() and .mean() methods!

```
df['data1'].groupby(df['key1']).mean()
```

```
key1
a 0.0414
b 1.0854
Name: data1, dtype: float64
```

Name: data1, dtype: float64

If we prefer our result as a dataframe instead of a series, we can wrap data1 with two sets of square brackets.

```
df[['data1']].groupby(df['key1']).mean()
```

	data1
key1	
a	0.0414
b	1.0854

We can group by more than one variable. We get a hierarchical row index (or row multi-index) when we group by more than one variable.

```
means = df['data1'].groupby([df['key1'], df['key2']]).mean()
means
```

```
key1 key2
a one 0.1313
two -0.1383
b one 0.6477
two 1.5230
```

Name: data1, dtype: float64

We can use the .unstack() method if we want to use both rows and columns to organize data. Recall the .unstack() method un-stacks the inner index level (i.e., level = -1) by default so that key2 values become the columns.

```
means.unstack()
```

key2 key1	one	two
a	0.1313	-0.1383
b	0.6477	1.5230

The grouping variables can be columns in the data frame we want to group with the .groupby() method. Our grouping variables are typically columns in the data frame we want to group, so this syntax is more compact and easier to understand.

df

	key1	key2	data1	data2
0	a	one	0.4967	-0.2341
1	a	two	-0.1383	1.5792
2	b	one	0.6477	0.7674
3	b	two	1.5230	-0.4695
4	a	one	-0.2342	0.5426

```
# df.groupby('key1').mean() # TypeError: agg function failed [how->mean,dtype->object]
df.groupby('key1')[['data1', 'data2']].mean()
```

	data1	data2
key1		
a	0.0414	0.6292
b	1.0854	0.1490

```
df.groupby(['key1', 'key2']).mean()
```

		data1	data2
key1	key2		
	one	0.1313	0.1542
a	two	-0.1383	1.5792
b	one	0.6477	0.7674
D	two	1.5230	-0.4695

We can use tab completion to reminder ourselves of methods we can apply to grouped series and data frames.

32.2.1 Iterating Over Groups

We can iterate over groups, too, because the <code>.groupby()</code> method generates a sequence of tuples. Each tuples contains the value(s) of the grouping variable(s) and its chunk of the dataframe. McKinney provides two loops to show how to iterate over groups.

```
for k1, group in df.groupby('key1'):
    print(k1, group, sep='\n')
```

```
а
 key1 key2
             data1
                     data2
0
    a one 0.4967 -0.2341
    a two -0.1383 1.5792
1
4
       one -0.2342 0.5426
 key1 key2 data1
                    data2
2
       one 0.6477 0.7674
       two 1.5230 -0.4695
  for (k1, k2), group in df.groupby(['key1', 'key2']):
      print((k1, k2), group, sep='\n')
('a', 'one')
 key1 key2
             data1
                     data2
    a one 0.4967 -0.2341
    a one -0.2342 0.5426
('a', 'two')
 key1 key2
             data1 data2
    a two -0.1383 1.5792
('b', 'one')
 key1 key2 data1 data2
    b one 0.6477 0.7674
('b', 'two')
 key1 key2 data1
                    data2
  b two 1.5230 -0.4695
```

32.2.2 Grouping with Functions

We can also group with functions. Below, we group with the len function, which calculates the length of the first names in the row index. We could instead add a helper column to people, but it is easier to pass a function to .groupby().

```
np.random.seed(42)
people = pd.DataFrame(
    data=np.random.randn(5, 5),
    columns=['a', 'b', 'c', 'd', 'e'],
    index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis']
)
people
```

	a	b	c	d	e
Joe	0.4967	-0.1383	0.6477	1.5230	-0.2342
Steve	-0.2341	1.5792	0.7674	-0.4695	0.5426
Wes	-0.4634	-0.4657	0.2420	-1.9133	-1.7249
Jim	-0.5623	-1.0128	0.3142	-0.9080	-1.4123
Travis	1.4656	-0.2258	0.0675	-1.4247	-0.5444

people.groupby(len).sum()

	a	b	c	d	е
3	-0.5290	-1.6168	1.2039	-1.2983	-3.3714
5	-0.2341	1.5792	0.7674	-0.4695	0.5426
6	1.4656	-0.2258	0.0675	-1.4247	-0.5444

We can mix functions, lists, dictionaries, etc. that we pass to .groupby().

key_list = ['one', 'one', 'one', 'two', 'two']
people.groupby([len, key_list]).min()

		a	b	c	d	e
2	one	-0.4634	-0.4657 -1.0128	0.2420	-1.9133	-1.7249
9	two	-0.5623	-1.0128	0.3142	-0.9080	-1.4123
5	one	-0.2341	1.5792	0.7674	-0.4695	0.5426
6	two	1.4656	-0.2258	0.0675	-1.4247	-0.5444

d = {'Joe': 'a', 'Jim': 'b'}
people.groupby([len, d]).min()

		a	b	c	d	е
3	a b	0.4967 -0.5623	-0.1383 -1.0128	0.6477 0.3142	1.5230 -0.9080	-0.2342 -1.4123

d_2 = {'Joe': 'Cool', 'Jim': 'Nerd', 'Travis': 'Cool'}
people.groupby([len, d_2]).min()

		a	b	c	d	e
3	Cool Nerd	0.4967 -0.5623	-0.1383 -1.0128	0.6477 0.3142	1.5230 -0.9080	-0.2342 -1.4123
			-0.2258			

32.2.3 Grouping by Index Levels

We can also group by index levels. We can specify index levels by either level number or name.

cty	US			JP	
tenor	1	3	5	1	3
0	0.1109	-1.1510	0.3757	-0.6006	-0.2917
1	-0.6017	1.8523	-0.0135	-1.0577	0.8225
2	-1.2208	0.2089	-1.9597	-1.3282	0.1969
3	0.7385	0.1714	-0.1156	-0.3011	-1.4785

hier_df.T.groupby(level='cty').count()

	0	1	2	3
cty				
JP	2	2	2	2
US	3	3	3	3

hier_df.T.groupby(level='tenor').count()

	0	1	2	3
tenor				
1	2	2	2	2
3	2	2	2	2
5	1	1	1	1

32.3 Data Aggregation

Table 10-1 provides the optimized groupby methods:

- count: Number of non-NA values in the group
- sum: Sum of non-NA values
- mean: Mean of non-NA values
- median: Arithmetic median of non-NA values
- std, var: Unbiased (n 1 denominator) standard deviation and variance
- min, max: Minimum and maximum of non-NA values
- prod: Product of non-NA values
- first, last: First and last non-NA values

These optimized methods are fast and efficient, but pandas lets us use other, non-optimized methods. First, any series method is available.

```
df.groupby('key1')['data1'].quantile(0.9)
key1
a  0.3697
b  1.4355
Name: data1, dtype: float64
```

Second, we can write our own functions and pass them to the .agg() method. These functions should accept an array and returns a single value.

```
def max_minus_min(arr):
    return arr.max() - arr.min()

df.sort_values(by=['key1', 'data1'])
```

	key1	key2	data1	data2
4	a	one	-0.2342	0.5426
1	a	two	-0.1383	1.5792
0	a	one	0.4967	-0.2341
2	b	one	0.6477	0.7674
3	b	two	1.5230	-0.4695

```
df.groupby('key1')['data1'].agg(max_minus_min)
```

key1

a 0.7309 b 0.8753

Name: data1, dtype: float64

Some other methods work, too, even if they are do not aggregate an array to a single value.

	count	mean	std	min	25%	50%	75%	max
key1								
a	3.0000	0.0414	0.3972	-0.2342	-0.1862	-0.1383	0.1792	0.4967
b	2.0000	1.0854	0.6190	0.6477	0.8665	1.0854	1.3042	1.5230

32.3.1 Column-Wise and Multiple Function Application

The .agg() methods provides two more handy features:

- 1. We can pass multiple functions to operate on all of the columns
- 2. We can pass specific functions to operate on specific columns

Here is an example with multiple functions:

```
df.groupby('key1')['data1'].agg(['mean', 'median', 'min', 'max'])
```

	mean	median	min	max
key1				
a	0.0414	-0.1383	-0.2342	0.4967
b	1.0854	1.0854	0.6477	1.5230

```
df.groupby('key1')[['data1', 'data2']].agg(['mean', 'median', 'min', 'max'])
```

key1	data1 mean	median	min	max	data2 mean	median	min	max
a	0.0414	-0.1383	-0.2342	0.4967	0.6292	0.5426	-0.2341	1.5792
b	1.0854	1.0854	0.6477	1.5230	0.1490	0.1490	-0.4695	0.7674

What if I wanted to calculate the mean of data1 and the median of data2 by key1?

	data1	data2
key1		
a	0.0414	0.5426
b	1.0854	0.1490

What if I wanted to calculate the mean and standard deviation of data1 and the median of data2 by key1?

key1	data1 mean	std	data2 median
a b	0.0414 1.0854	$0.3972 \\ 0.6190$	$0.5426 \\ 0.1490$

32.4 Apply: General split-apply-combine

The .agg() method aggrates an array to a single value. We can use the .apply() method for more general calculations.

We can combine the .groupby() and .apply() methods to:

- 1. Split a dataframe by grouping variables
- 2. Call the applied function on each chunk of the original dataframe
- 3. Recombine the output of the applied function

```
def top(x, col, n=1):
    return x.sort_values(col).head(n)

df.groupby('key1').apply(top, col='data1')
```

		key1	key2	data1	data2
key1					
a	4	a	one	-0.2342	0.5426
b	2	b	one	0.6477	0.7674

```
df.groupby('key1').apply(top, col='data1', n=2)
```

		key1	key2	data1	data2
key1					
	4	a	one	-0.2342	0.5426
a	1	\mathbf{a}	two	-0.1383	1.5792
b	2	b	one	0.6477	0.7674
D	3	b	two	1.5230	-0.4695

32.5 Pivot Tables and Cross-Tabulation

Above we manually made pivot tables with the <code>groupby()</code>, <code>.agg()</code>, <code>.apply()</code> and <code>.unstack()</code> methods. pandas provides a literal interpretaion of Excel-style pivot tables with the <code>.pivot_table()</code> method and the <code>pandas.pivot_table()</code> function. These also provide row and column totals via "margins". It is worthwhile to read-through the <code>.pivot_table()</code> docstring several times.

```
ind = (
   yf.download(tickers='^GSPC ^DJI ^IXIC ^FTSE ^N225 ^HSI')
   .rename_axis(columns=['Variable', 'Index'])
   .stack()
)
ind.head()
```

[********* 6 of 6 completed

Date	Variable Index	Adj Close	Close	High	Low	Open	Volume
1927-12-30	^GSPC	17.6600	17.6600	17.6600	17.6600	17.6600	0.0000
1928-01-03	^GSPC	17.7600	17.7600	17.7600	17.7600	17.7600	0.0000
1928-01-04	^GSPC	17.7200	17.7200	17.7200	17.7200	17.7200	0.0000
1928-01-05	^GSPC	17.5500	17.5500	17.5500	17.5500	17.5500	0.0000
1928-01-06	^GSPC	17.6600	17.6600	17.6600	17.6600	17.6600	0.0000

The default aggregation function for .pivot_table() is mean.

```
ind.loc['2015':].pivot_table(index='Index')
```

Variable	Adj Close	Close	High	Low	Open	Volume
Index						
^DJI	26268.7993	26268.7993	26409.2622	26112.8527	26265.2096	290352366.5425
^FTSE	7035.2159	7035.2159	7076.6397	6992.6821	7034.7444	802505272.4427
^GSPC	3122.5674	3122.5674	3139.2737	3103.6004	3122.0834	4017528407.9796
^HSI	24483.5675	24483.5675	24647.8922	24313.7685	24500.2319	2021151100.2261
^IXIC	9021.3379	9021.3379	9081.9083	8952.0787	9019.8093	3235066862.1951
^N225	23298.2397	23298.2397	23420.5926	23166.4854	23298.8808	94902460.1367

```
ind.loc['2015':].pivot_table(index='Index', aggfunc='median')
```

Variable Index	Adj Close	Close	High	Low	Open	Volume
^DJI	25979.4648	25979.4648	26113.8896	25817.3203	25992.4355	296605000.0000

Variable Index	Adj Close	Close	High	Low	Open	Volume
^FTSE	7183.5000	7183.5000	7217.0000	7141.5999	7182.8499	755440000.0000
^GSPC	2887.9149	2887.9149	2898.5200	2876.2100	2890.2450	3819130000.0000
^HSI	24698.4805	24698.4805	24855.4707	24540.6309	24697.9805	1864023100.0000
^IXIC	7963.3198	7963.3198	8005.2749	7912.0701	7972.7300	2413820000.0000
^N225	22380.0098	22380.0098	22509.3594	22269.5293	22374.2109	82200000.0000

We can use values to select specific variables, pd.Grouper() to sample different date windows, and aggfunc to select specific aggregation functions.

```
ind
.loc['2015':]
.reset_index()
.pivot_table(
    values='Close',
    index=pd.Grouper(key='Date', freq='A'),
    columns='Index',
    aggfunc=['min', 'max']
)
```

Index Date	min ^DJI	^FTSE	^GSPC	^HSI	^IXIC	^N225	max ^DJI	^FTS
2015-12-31	15666.4404	5874.1001	1867.6100	20556.5996	4506.4902	16795.9609	18312.3906	7104.0
2016-12-31	15660.1797	5537.0000	1829.0800	18319.5801	4266.8398	14952.0195	19974.6191	7142.7
2017-12-31	19732.4004	7099.2002	2257.8301	22134.4707	5429.0801	18335.6309	24837.5098	7687.7
2018-12-31	21792.1992	6584.7002	2351.1001	24585.5293	6192.9199	19155.7402	26828.3906	7877.5
2019-12-31	22686.2207	6692.7002	2447.8899	25064.3594	6463.5000	19561.9609	28645.2598	7686.6
2020-12-31	18591.9297	4993.8999	2237.3999	21696.1309	6860.6699	16552.8301	30606.4805	7674.6
2021-12-31	29982.6191	6407.5000	3700.6499	22744.8594	12609.1602	27013.2500	36488.6289	7420.7
2022-12-31	28725.5098	6826.2002	3577.0300	14687.0195	10213.2900	24717.5293	36799.6484	7672.3
2023-12-31	31819.1406	7256.8999	3808.1001	16201.4902	10305.2402	25716.8594	37557.9219	8014.2

33 McKinney Chapter 10 - Practice for Section 02

33.1 Announcements

33.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

33.2.1 Replicate the following .pivot_table() output with .groupby()

```
.loc['2015':]
.reset_index()
.pivot_table(
    values='Close',
    index=pd.Grouper(key='Date', freq='A'),
    columns='Index',
    aggfunc=['min', 'max']
)
```

Index Date	min ^DJI	^FTSE	^GSPC	^HSI	^IXIC	^N225	max ^DJI	^FTS
2015-12-31	15666.4404	5874.1001	1867.6100	20556.5996	4506.4902	16795.9609	18312.3906	7104.0
2016-12-31	15660.1797	5537.0000	1829.0800	18319.5801	4266.8398	14952.0195	19974.6191	7142.7
2017-12-31	19732.4004	7099.2002	2257.8301	22134.4707	5429.0801	18335.6309	24837.5098	7687.7
2018-12-31	21792.1992	6584.7002	2351.1001	24585.5293	6192.9199	19155.7402	26828.3906	7877.5
2019-12-31	22686.2207	6692.7002	2447.8899	25064.3594	6463.5000	19561.9609	28645.2598	7686.6
2020-12-31	18591.9297	4993.8999	2237.3999	21696.1309	6860.6699	16552.8301	30606.4805	7674.6
2021-12-31	29982.6191	6407.5000	3700.6499	22744.8594	12609.1602	27013.2500	36488.6289	7420.7
2022-12-31	28725.5098	6826.2002	3577.0300	14687.0195	10213.2900	24717.5293	36799.6484	7672.3
2023-12-31	31819.1406	7256.8999	3808.1001	16201.4902	10305.2402	25716.8594	37557.9219	8014.2

33.2.2 Calulate the mean and standard deviation of returns by ticker for the MATANA (MSFT, AAPL, TSLA, AMZN, NVDA, and GOOG) stocks

Consider only dates with complete returns data. Try this calculation with wide and long data frames, and confirm your results are the same.

33.2.3 Calculate the mean and standard deviation of returns and the maximum of closing prices by ticker for the MATANA stocks

Again, consider only dates with complete returns data. Try this calculation with wide and long data frames, and confirm your results are the same.

33.2.4 Calculate monthly means and volatilities for SPY and GOOG returns

33.2.5 Plot the monthly means and volatilities from the previous exercise

33.2.6 Assign the Dow Jones stocks to five portfolios based on their monthly volatility

First, we need to download Dow Jones stock data and calculate daily returns. Use data from 2019 through today.

33.2.7 Plot the time-series volatilities of these five portfolios

How do these portfolio volatilies compare to (1) each other and (2) the mean volatility of their constituent stocks?

33.2.8 Calculate the mean monthly correlation between the Dow Jones stocks

Drop duplicate correlations and self correlations (i.e., correlation between AAPL and AAPL), which are 1, by definition.

33.2.9 Is market volatility higher during wars?

Here is some guidance:

- 1. Download the daily factor data from Ken French's website
- 2. Calculate daily market returns by summing the market risk premium and risk-free rates (Mkt-RF and RF, respectively)
- 3. Calculate the volatility (standard deviation) of daily returns *every month* by combining pd.Grouper() and .groupby())
- 4. Multiply by $\sqrt{252}$ to annualize these volatilities of daily returns
- 5. Plot these annualized volatilities

Is market volatility higher during wars? Consider the following dates:

- 1. WWII: December 1941 to September 1945
- Korean War: 1950 to 1953
 Viet Nam War: 1959 to 1975
- 4. Gulf War: 1990 to 1991
- 5. War in Afghanistan: 2001 to 2021

34 McKinney Chapter 10 - Practice for Section 03

34.1 Announcements

34.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

34.2.1 Replicate the following .pivot_table() output with .groupby()

```
.loc['2015':]
.reset_index()
.pivot_table(
    values='Close',
    index=pd.Grouper(key='Date', freq='A'),
    columns='Index',
    aggfunc=['min', 'max']
)
```

Index Date	min ^DJI	^FTSE	^GSPC	^HSI	^IXIC	^N225	max ^DJI	^FTS
2015-12-31	15666.4404	5874.1001	1867.6100	20556.5996	4506.4902	16795.9609	18312.3906	7104.0
2016-12-31	15660.1797	5537.0000	1829.0800	18319.5801	4266.8398	14952.0195	19974.6191	7142.7
2017-12-31	19732.4004	7099.2002	2257.8301	22134.4707	5429.0801	18335.6309	24837.5098	7687.7
2018-12-31	21792.1992	6584.7002	2351.1001	24585.5293	6192.9199	19155.7402	26828.3906	7877.5
2019-12-31	22686.2207	6692.7002	2447.8899	25064.3594	6463.5000	19561.9609	28645.2598	7686.6
2020-12-31	18591.9297	4993.8999	2237.3999	21696.1309	6860.6699	16552.8301	30606.4805	7674.6
2021-12-31	29982.6191	6407.5000	3700.6499	22744.8594	12609.1602	27013.2500	36488.6289	7420.7
2022-12-31	28725.5098	6826.2002	3577.0300	14687.0195	10213.2900	24717.5293	36799.6484	7672.3
2023-12-31	31819.1406	7256.8999	3808.1001	16201.4902	10305.2402	25716.8594	37557.9219	8014.2

34.2.2 Calulate the mean and standard deviation of returns by ticker for the MATANA (MSFT, AAPL, TSLA, AMZN, NVDA, and GOOG) stocks

Consider only dates with complete returns data. Try this calculation with wide and long data frames, and confirm your results are the same.

34.2.3 Calculate the mean and standard deviation of returns and the maximum of closing prices by ticker for the MATANA stocks

Again, consider only dates with complete returns data. Try this calculation with wide and long data frames, and confirm your results are the same.

34.2.4 Calculate monthly means and volatilities for SPY and GOOG returns

34.2.5 Plot the monthly means and volatilities from the previous exercise

34.2.6 Assign the Dow Jones stocks to five portfolios based on their monthly volatility

First, we need to download Dow Jones stock data and calculate daily returns. Use data from 2019 through today.

34.2.7 Plot the time-series volatilities of these five portfolios

How do these portfolio volatilies compare to (1) each other and (2) the mean volatility of their constituent stocks?

34.2.8 Calculate the mean monthly correlation between the Dow Jones stocks

Drop duplicate correlations and self correlations (i.e., correlation between AAPL and AAPL), which are 1, by definition.

34.2.9 Is market volatility higher during wars?

Here is some guidance:

- 1. Download the daily factor data from Ken French's website
- 2. Calculate daily market returns by summing the market risk premium and risk-free rates (Mkt-RF and RF, respectively)
- 3. Calculate the volatility (standard deviation) of daily returns *every month* by combining pd.Grouper() and .groupby())
- 4. Multiply by $\sqrt{252}$ to annualize these volatilities of daily returns
- 5. Plot these annualized volatilities

Is market volatility higher during wars? Consider the following dates:

- 1. WWII: December 1941 to September 1945
- 2. Korean War: 1950 to 1953
- 3. Viet Nam War: 1959 to 1975
- 4. Gulf War: 1990 to 1991
- 5. War in Afghanistan: 2001 to 2021

35 McKinney Chapter 10 - Practice for Section 04

35.1 Announcements

35.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

35.2.1 Replicate the following .pivot_table() **output with** .groupby()

```
.loc['2015':]
.reset_index()
.pivot_table(
    values='Close',
    index=pd.Grouper(key='Date', freq='A'),
    columns='Index',
    aggfunc=['min', 'max']
)
```

Index Date	min ^DJI	^FTSE	^GSPC	^HSI	^IXIC	^N225	max ^DJI	^FTS
2015-12-31	15666.4404	5874.1001	1867.6100	20556.5996	4506.4902	16795.9609	18312.3906	7104.0
2016-12-31	15660.1797	5537.0000	1829.0800	18319.5801	4266.8398	14952.0195	19974.6191	7142.7
2017-12-31	19732.4004	7099.2002	2257.8301	22134.4707	5429.0801	18335.6309	24837.5098	7687.7
2018-12-31	21792.1992	6584.7002	2351.1001	24585.5293	6192.9199	19155.7402	26828.3906	7877.5
2019-12-31	22686.2207	6692.7002	2447.8899	25064.3594	6463.5000	19561.9609	28645.2598	7686.6
2020-12-31	18591.9297	4993.8999	2237.3999	21696.1309	6860.6699	16552.8301	30606.4805	7674.6
2021-12-31	29982.6191	6407.5000	3700.6499	22744.8594	12609.1602	27013.2500	36488.6289	7420.7
2022-12-31	28725.5098	6826.2002	3577.0300	14687.0195	10213.2900	24717.5293	36799.6484	7672.3
2023-12-31	31819.1406	7256.8999	3808.1001	16201.4902	10305.2402	25716.8594	37557.9219	8014.2

35.2.2 Calulate the mean and standard deviation of returns by ticker for the MATANA (MSFT, AAPL, TSLA, AMZN, NVDA, and GOOG) stocks

Consider only dates with complete returns data. Try this calculation with wide and long data frames, and confirm your results are the same.

35.2.3 Calculate the mean and standard deviation of returns and the maximum of closing prices by ticker for the MATANA stocks

Again, consider only dates with complete returns data. Try this calculation with wide and long data frames, and confirm your results are the same.

35.2.4 Calculate monthly means and volatilities for SPY and GOOG returns

35.2.5 Plot the monthly means and volatilities from the previous exercise

35.2.6 Assign the Dow Jones stocks to five portfolios based on their monthly volatility

First, we need to download Dow Jones stock data and calculate daily returns. Use data from 2019 through today.

35.2.7 Plot the time-series volatilities of these five portfolios

How do these portfolio volatilies compare to (1) each other and (2) the mean volatility of their constituent stocks?

35.2.8 Calculate the mean monthly correlation between the Dow Jones stocks

Drop duplicate correlations and self correlations (i.e., correlation between AAPL and AAPL), which are 1, by definition.

35.2.9 Is market volatility higher during wars?

Here is some guidance:

- 1. Download the daily factor data from Ken French's website
- 2. Calculate daily market returns by summing the market risk premium and risk-free rates (Mkt-RF and RF, respectively)
- 3. Calculate the volatility (standard deviation) of daily returns *every month* by combining pd.Grouper() and .groupby())
- 4. Multiply by $\sqrt{252}$ to annualize these volatilities of daily returns
- 5. Plot these annualized volatilities

Is market volatility higher during wars? Consider the following dates:

- 1. WWII: December 1941 to September 1945
- Korean War: 1950 to 1953
 Viet Nam War: 1959 to 1975
- 5. VIEU IVAIII VVAI. 1999 to 1
- 4. Gulf War: 1990 to 1991
- 5. War in Afghanistan: 2001 to 2021

36 McKinney Chapter 10 - Practice for Section 05

36.1 Announcements

36.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

36.2.1 Replicate the following <code>.pivot_table()</code> output with <code>.groupby()</code>

```
.loc['2015':]
.reset_index()
.pivot_table(
    values='Close',
    index=pd.Grouper(key='Date', freq='A'),
    columns='Index',
    aggfunc=['min', 'max']
)
```

Index Date	min ^DJI	^FTSE	^GSPC	^HSI	^IXIC	^N225	max ^DJI	^FTS
2015-12-31	15666.4404	5874.1001	1867.6100	20556.5996	4506.4902	16795.9609	18312.3906	7104.0
2016-12-31	15660.1797	5537.0000	1829.0800	18319.5801	4266.8398	14952.0195	19974.6191	7142.7
2017-12-31	19732.4004	7099.2002	2257.8301	22134.4707	5429.0801	18335.6309	24837.5098	7687.7
2018-12-31	21792.1992	6584.7002	2351.1001	24585.5293	6192.9199	19155.7402	26828.3906	7877.5
2019-12-31	22686.2207	6692.7002	2447.8899	25064.3594	6463.5000	19561.9609	28645.2598	7686.6
2020-12-31	18591.9297	4993.8999	2237.3999	21696.1309	6860.6699	16552.8301	30606.4805	7674.6
2021-12-31	29982.6191	6407.5000	3700.6499	22744.8594	12609.1602	27013.2500	36488.6289	7420.7
2022-12-31	28725.5098	6826.2002	3577.0300	14687.0195	10213.2900	24717.5293	36799.6484	7672.3
2023-12-31	31819.1406	7256.8999	3808.1001	16201.4902	10305.2402	25716.8594	37557.9219	8014.2

36.2.2 Calulate the mean and standard deviation of returns by ticker for the MATANA (MSFT, AAPL, TSLA, AMZN, NVDA, and GOOG) stocks

Consider only dates with complete returns data. Try this calculation with wide and long data frames, and confirm your results are the same.

36.2.3 Calculate the mean and standard deviation of returns and the maximum of closing prices by ticker for the MATANA stocks

Again, consider only dates with complete returns data. Try this calculation with wide and long data frames, and confirm your results are the same.

36.2.4 Calculate monthly means and volatilities for SPY and GOOG returns

36.2.5 Plot the monthly means and volatilities from the previous exercise

36.2.6 Assign the Dow Jones stocks to five portfolios based on their monthly volatility

First, we need to download Dow Jones stock data and calculate daily returns. Use data from 2019 through today.

36.2.7 Plot the time-series volatilities of these five portfolios

How do these portfolio volatilies compare to (1) each other and (2) the mean volatility of their constituent stocks?

36.2.8 Calculate the mean monthly correlation between the Dow Jones stocks

Drop duplicate correlations and self correlations (i.e., correlation between AAPL and AAPL), which are 1, by definition.

36.2.9 Is market volatility higher during wars?

Here is some guidance:

- 1. Download the daily factor data from Ken French's website
- 2. Calculate daily market returns by summing the market risk premium and risk-free rates (Mkt-RF and RF, respectively)
- 3. Calculate the volatility (standard deviation) of daily returns *every month* by combining pd.Grouper() and .groupby())
- 4. Multiply by $\sqrt{252}$ to annualize these volatilities of daily returns
- 5. Plot these annualized volatilities

Is market volatility higher during wars? Consider the following dates:

- 1. WWII: December 1941 to September 1945
- Korean War: 1950 to 1953
 Viet Nam War: 1959 to 1975
- 4. Gulf War: 1990 to 1991
- 5. War in Afghanistan: 2001 to 2021

Part IX

Week 9

37 McKinney Chapter 11 - Time Series

37.1 Introduction

Chapter 11 of Wes McKinney's *Python for Data Analysis* discusses time series and panel data, which is where pandas *shines*. We will use these time series and panel tools every day for the rest of the course.

We will focus on:

- 1. Slicing a data frame or series by date or date range
- 2. Using .shift() to create leads and lags of variables
- 3. Using .resample() to change the frequency of variables
- 4. Using .rolling() to aggregate data over rolling windows

Note: Indented block quotes are from McKinney unless otherwise indicated. The section numbers here differ from McKinney because we will only discuss some topics.

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

McKinney provides an excellent introduction to the concept of time series and panel data:

Time series data is an important form of structured data in many different fields, such as finance, economics, ecology, neuroscience, and physics. Anything that is observed or measured at many points in time forms a time series. Many time series are fixed frequency, which is to say that data points occur at regular intervals according to some rule, such as every 15 seconds, every 5 minutes, or once per month. Time series can also be irregular without a fixed unit of time or offset

between units. How you mark and refer to time series data depends on the application, and you may have one of the following: - Timestamps, specific instants in time - Fixed periods, such as the month January 2007 or the full year 2010 - Intervals of time, indicated by a start and end timestamp. Periods can be thought of as special cases of intervals - Experiment or elapsed time; each timestamp is a measure of time relative to a particular start time (e.g., the diameter of a cookie baking each second since being placed in the oven)

In this chapter, I am mainly concerned with time series in the first three categories, though many of the techniques can be applied to experimental time series where the index may be an integer or floating-point number indicating elapsed time from the start of the experiment. The simplest and most widely used kind of time series are those indexed by timestamp. 323

pandas provides many built-in time series tools and data algorithms. You can effi- ciently work with very large time series and easily slice and dice, aggregate, and resample irregular- and fixed-frequency time series. Some of these tools are especially useful for financial and economics applications, but you could certainly use them to analyze server log data, too.

37.2 Time Series Basics

Let us create a time series to play with.

```
from datetime import datetime
  dates = [
      datetime(2011, 1, 2),
      datetime(2011, 1, 5),
      datetime(2011, 1, 7),
      datetime(2011, 1, 8),
      datetime(2011, 1, 10),
      datetime(2011, 1, 12)
  ]
  np.random.seed(42)
  ts = pd.Series(np.random.randn(6), index=dates)
  ts
2011-01-02
              0.4967
2011-01-05
             -0.1383
2011-01-07
              0.6477
2011-01-08
              1.5230
```

```
2011-01-10 -0.2342
2011-01-12 -0.2341
dtype: float64
```

Note that pandas converts the datetime objects to a pandas DatetimeIndex object and a single index value is a Timestamp object.

```
ts.iloc[::2]
2011-01-02
              0.4967
2011-01-07
              0.6477
2011-01-10
             -0.2342
dtype: float64
  ts + ts.iloc[::2]
2011-01-02
              0.9934
2011-01-05
                 NaN
2011-01-07
              1.2954
2011-01-08
                 NaN
2011-01-10
             -0.4683
2011-01-12
                 NaN
dtype: float64
```

37.2.1 Indexing, Selection, Subsetting

We can use date and time labels to select data.

```
stamp = ts.index[2]
  stamp
Timestamp('2011-01-07 00:00:00')
  ts[stamp]
0.6477
pandas uses unambiguous date strings to select data.
  ts['1/10/2011'] # M/D/YYYY
-0.2342
  ts['20110110'] # YYYYMMDD
-0.2342
  ts['2011-01-10'] # YYYY-MM-DD
-0.2342
  ts['10-Jan-2011'] # D-Mon-YYYY
-0.2342
  ts['Jan-10-2011'] # Mon-D-YYYY
-0.2342
```

But do not use U.K.-style dates.

```
# ts['10/1/2011'] # D/M/YYYY # KeyError: '10/1/2011'
```

Here is a longer time series for longer slices.

```
np.random.seed(42)
  longer_ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000)
  longer_ts
2000-01-01
              0.4967
2000-01-02
             -0.1383
2000-01-03
             0.6477
2000-01-04
              1.5230
2000-01-05
             -0.2342
2002-09-22
             -0.2811
2002-09-23
             1.7977
2002-09-24
              0.6408
2002-09-25
             -0.5712
              0.5726
2002-09-26
Freq: D, Length: 1000, dtype: float64
```

We can pass a year-month to slice all of the observations in May of 2001.

```
longer_ts['2001-05']
```

```
2001-05-01
            -0.6466
2001-05-02
             -1.0815
2001-05-03
              1.6871
2001-05-04
              0.8816
2001-05-05
             -0.0080
2001-05-06
             1.4799
2001-05-07
             0.0774
2001-05-08
            -0.8613
2001-05-09
              1.5231
2001-05-10
            0.5389
2001-05-11
             -1.0372
2001-05-12
            -0.1903
2001-05-13
             -0.8756
2001-05-14
            -1.3828
```

```
2001-05-15
              0.9262
2001-05-16
              1.9094
2001-05-17
             -1.3986
2001-05-18
              0.5630
2001-05-19
             -0.6506
2001-05-20
             -0.4871
2001-05-21
             -0.5924
2001-05-22
             -0.8640
2001-05-23
              0.0485
2001-05-24
             -0.8310
2001-05-25
              0.2705
2001-05-26
             -0.0502
2001-05-27
             -0.2389
2001-05-28
             -0.9076
2001-05-29
             -0.5768
2001-05-30
              0.7554
2001-05-31
              0.5009
Freq: D, dtype: float64
```

We can also pass a year to slice all observations in 2001.

```
longer_ts['2001']
2001-01-01
              0.2241
2001-01-02
              0.0126
2001-01-03
              0.0977
2001-01-04
             -0.7730
2001-01-05
              0.0245
2001-12-27
              0.0184
2001-12-28
              0.3476
2001-12-29
             -0.5398
2001-12-30
             -0.7783
2001-12-31
              0.1958
Freq: D, Length: 365, dtype: float64
```

If we sort our data chronologically, we can also slice with a range of date strings.

```
ts['1/6/2011':'1/10/2011']
2011-01-07 0.6477
```

```
2011-01-08 1.5230
2011-01-10 -0.2342
dtype: float64
```

To use date slices, our data should be sorted by the date index, as above. The following code works as though our data were sorted, but raises a warning that it will not work in future versions.

```
ts2 = ts.sort_values()

ts2

2011-01-10   -0.2342
2011-01-12   -0.2341
2011-01-05   -0.1383
2011-01-02    0.4967
2011-01-07    0.6477
2011-01-08    1.5230
dtype: float64
```

The following is ambiguous and fails.

```
# ts2['1/6/2011':'1/11/2011'] # KeyError: 'Value based partial slicing on non-monotonic Da
ts2.sort_index()['1/6/2011':'1/11/2011']
2011-01-07     0.6477
```

2011-01-08 1.5230 2011-01-10 -0.2342

dtype: float64

To be clear, a range of date strings is inclusive on both ends.

```
2001-01-10 -0.7673
2001-01-11 0.8723
Freq: D, dtype: float64
```

Recall, if we modify a slice, we modify the original series or dataframe.

Remember that slicing in this manner produces views on the source time series like slicing NumPy arrays. This means that no data is copied and modifications on the slice will be reflected in the original data.

37.2.2 Time Series with Duplicate Indices

Most data in this course will be well-formed with one observation per datetime for series or one observation per individual per datetime for dataframes. However, you may later receive poorly-formed data with duplicate observations. The toy data in series dup_ts has three observations on February 2nd.

The .is_unique property tells us if an index is unique.

```
dup_ts.index.is_unique
```

False

```
dup_ts['1/3/2000'] # not duplicated
```

4

```
dup_ts['1/2/2000'] # duplicated

2000-01-02    1
2000-01-02    2
2000-01-02    3
dtype: int32
```

The solution to duplicate data depends on the context. For example, we may want the mean of all observations on a given date. The .groupby() method can help us here.

```
grouped = dup_ts.groupby(level=0)
  grouped.mean()
2000-01-01
             0.0000
2000-01-02
             2.0000
2000-01-03
             4.0000
dtype: float64
  grouped.last()
2000-01-01
              0
2000-01-02
              3
2000-01-03
dtype: int32
```

Or we may want the number of observations on each date.

37.3 Date Ranges, Frequencies, and Shifting

Generic time series in pandas are assumed to be irregular; that is, they have no fixed frequency. For many applications this is sufficient. However, it's often desirable to work relative to a fixed frequency, such as daily, monthly, or every 15 minutes, even if that means introducing missing values into a time series. Fortunately pandas has a full suite of standard time series frequencies and tools for resampling, inferring frequencies, and generating fixed-frequency date ranges.

We will skip the sections on creating date ranges or different frequencies so we can focus on shifting data.

37.3.1 Shifting (Leading and Lagging) Data

Shifting is an important feature! Shifting is moving data backward (or forward) through time.

```
np.random.seed(42)
ts = pd.Series(np.random.randn(4), index=pd.date_range('1/1/2000', periods=4, freq='M'))
ts
```

If we pass a positive integer N to the .shift() method:

- 1. The date index remains the same
- 2. Values are shifted down N observations

"Lag" might be a better name than "shift" since a postive 2 makes the value at any timestamp the value from 2 timestamps above (earlier, since most time-series data are chronological).

```
2000-04-30 0.6477
Freq: M, dtype: float64
```

```
ts.shift(2)
```

```
2000-01-31 NaN

2000-02-29 NaN

2000-03-31 0.4967

2000-04-30 -0.1383

Freq: M, dtype: float64
```

If we pass a *negative* integer N to the .shift() method, values are shifted up N observations.

```
ts.shift(-2)
```

```
2000-01-31 0.6477
2000-02-29 1.5230
2000-03-31 NaN
2000-04-30 NaN
Freq: M, dtype: float64
```

We will almost never shift with negative values (i.e., we will almost never bring forward values from the future) to prevent look-ahead bias. We do not want to assume that financial market participants have access to future data. Our most common shift will be to compute the percent change from one period to the next. We can calculate the percent change two ways.

```
2000-01-31 NaN

2000-02-29 -1.2784

2000-03-31 -5.6844

2000-04-30 1.3515

Freq: M, dtype: float64
```

We can use np.allclose() to test that the two return calculations above are the same.

```
np.allclose(
    a=ts.pct_change(),
    b=(ts - ts.shift()) / ts.shift(),
    equal_nan=True
)
```

True

Two observations on the percent change calculations above:

- 1. The first percent change is NaN (missing) because there is no previous value to change from
- 2. The default periods argument for .shift() and .pct_change() is 1

The naive shift examples above shift by a number of observations, without considering timestamps or their frequencies. As a result, timestamps are unchanged and values shift down (positive periods argument) or up (negative periods argument). However, we can also pass the freq argument to respect the timestamps. With the freq argument, timestamps shift by a multiple (specified by the periods argument) of datetime intervals (specified by the freq argument). Note that the examples below generate new datetime indexes.

```
2000-03-31
             0.4967
2000-04-30 -0.1383
2000-05-31
             0.6477
2000-06-30
              1.5230
Freq: M, dtype: float64
  ts.shift(3, freq='D')
2000-02-03
              0.4967
2000-03-03 -0.1383
2000-04-03
              0.6477
2000-05-03
              1.5230
dtype: float64
M is already months, so T is minutes.
  ts.shift(1, freq='90T')
2000-01-31 01:30:00
                        0.4967
2000-02-29 01:30:00
                       -0.1383
2000-03-31 01:30:00
                        0.6477
2000-04-30 01:30:00
                        1.5230
dtype: float64
37.3.2 Shifting dates with offsets
We can also shift timestamps to the beginning or end of a period or interval.
  from pandas.tseries.offsets import Day, MonthEnd
  now = datetime(2011, 11, 17)
  now + 3 * Day()
```

```
Timestamp('2011-11-30 00:00:00')
```

now + MonthEnd(0) # 0 is for move to the end of the month, but never leave the month

Timestamp('2011-11-20 00:00:00')

```
now + MonthEnd(1) # 1 is for move to the end of the month, if already at end, move to the
Timestamp('2011-11-30 00:00:00')
  now + MonthEnd(1) + MonthEnd(1) # 1 is for move to the end of the month, if already at end
Timestamp('2011-12-31 00:00:00')
  now + MonthEnd(2)
Timestamp('2011-12-31 00:00:00')
Date offsets can help us align data for presentation or merging. But, be careful! The default
argument is 1, but we typically want 0.
  datetime(2021, 10, 30) + MonthEnd(0)
Timestamp('2021-10-31 00:00:00')
  datetime(2021, 10, 30) + MonthEnd(1)
Timestamp('2021-10-31 00:00:00')
  datetime(2021, 10, 31) + MonthEnd(0)
Timestamp('2021-10-31 00:00:00')
  datetime(2021, 10, 31) + MonthEnd(1)
Timestamp('2021-11-30 00:00:00')
```

37.4 Resampling and Frequency Conversion

Resampling is an important feature!

Resampling refers to the process of converting a time series from one frequency to another. Aggregating higher frequency data to lower frequency is called downsampling, while converting lower frequency to higher frequency is called upsampling. Not all resampling falls into either of these categories; for example, converting W-WED (weekly on Wednesday) to W-FRI is neither upsampling nor downsampling.

We can resample both series and data frames. The .resample() method syntax is similar to the .groupby() method syntax. This similarity is because .resample() is syntactic sugar for .groupby().

37.4.1 Downsampling

Aggregating data to a regular, lower frequency is a pretty normal time series task. The data you're aggregating doesn't need to be fixed frequently; the desired frequency defines bin edges that are used to slice the time series into pieces to aggregate. For example, to convert to monthly, 'M' or 'BM', you need to chop up the data into one-month intervals. Each interval is said to be half-open; a data point can only belong to one interval, and the union of the intervals must make up the whole time frame. There are a couple things to think about when using resample to downsample data:

- Which side of each interval is closed
- How to label each aggregated bin, either with the start of the interval or the end

```
rng = pd.date_range('2000-01-01', periods=12, freq='T')
  ts = pd.Series(np.arange(12), index=rng)
  ts
2000-01-01 00:00:00
                         0
2000-01-01 00:01:00
                         1
2000-01-01 00:02:00
                         2
2000-01-01 00:03:00
                         3
2000-01-01 00:04:00
                         4
2000-01-01 00:05:00
                         5
2000-01-01 00:06:00
                         6
                         7
2000-01-01 00:07:00
```

```
2000-01-01 00:08:00 8

2000-01-01 00:09:00 9

2000-01-01 00:10:00 10

2000-01-01 00:11:00 11

Freq: T, dtype: int32
```

We can aggregate the one-minute frequency data above to a five-minute frequency. Resampling requires and aggregation method, and here McKinney chooses the .sum() method.

```
ts.resample('5min').sum()

2000-01-01 00:00:00 10

2000-01-01 00:05:00 35

2000-01-01 00:10:00 21

Freq: 5T, dtype: int32
```

Two observations about the previous resampling example:

- 1. For minute-frequency resampling, the default is that the new data are labeled by the left edge of the resampling interval
- 2. For minute-frequency resampling, the default is that the left edge is closed (included) and the right edge is open (excluded)

As a result, the first value of 10 at midnight is the sum of values at midnight and to the right of midnight, not including the value at 00:05 (i.e., 10 = 0 + 1 + 2 + 3 + 4 at 00:00 and 35 = 5 + 6 + 7 + 8 + 9 at 00:05). We can use the closed and label arguments to change this behavior.

In finance, we prefer closed='right' and label='right'.

Mixed combinations of closed and label are possible but confusing.

```
ts.resample('5min', closed='right', label='left').sum()
```

```
1999-12-31 23:55:00 0

2000-01-01 00:00:00 15

2000-01-01 00:05:00 40

2000-01-01 00:10:00 11

Freq: 5T, dtype: int32
```

These defaults for minute-frequency data may seem odd, but any choice is arbitrary. I suggest you do the following when you use the .resample() method:

- 1. Read the docstring
- 2. Check your output

pandas (and the .resample() method) are mature and widely used, so the defaults are typically reasonable.

37.4.2 Upsampling and Interpolation

To downsample (i.e., resample from higher frequency to lower frequency), we have to choose an aggregation method (e.g., .mean(), .sum(), .first(), or .last()). To upsample (i.e., resample from lower frequency to higher frequency), we do not have to choose an aggregation method.

	Colorado	Texas	New York	Ohio
2000-01-05	0.4967	-0.1383	0.6477	1.5230
2000-01-12	-0.2342	-0.2341	1.5792	0.7674

We can use the .asfreq() method to convert to the new frequency "as is".

```
df_daily = frame.resample('D').asfreq()
df_daily
```

	Colorado	Texas	New York	Ohio
2000-01-05	0.4967	-0.1383	0.6477	1.5230
2000-01-06	NaN	NaN	NaN	NaN
2000-01-07	NaN	NaN	NaN	NaN
2000-01-08	NaN	NaN	NaN	NaN
2000-01-09	NaN	NaN	NaN	NaN
2000-01-10	NaN	NaN	NaN	NaN
2000-01-11	NaN	NaN	NaN	NaN
2000-01-12	-0.2342	-0.2341	1.5792	0.7674

We do not have to choose an aggregation (disaggregation?) method, but we may want to choose a method to fill in the missing values.

frame.resample('D').ffill()

	Colorado	Texas	New York	Ohio
2000-01-05	0.4967	-0.1383	0.6477	1.5230
2000-01-06	0.4967	-0.1383	0.6477	1.5230
2000-01-07	0.4967	-0.1383	0.6477	1.5230
2000-01-08	0.4967	-0.1383	0.6477	1.5230
2000-01-09	0.4967	-0.1383	0.6477	1.5230
2000-01-10	0.4967	-0.1383	0.6477	1.5230
2000-01-11	0.4967	-0.1383	0.6477	1.5230
2000-01-12	-0.2342	-0.2341	1.5792	0.7674

frame.resample('D').ffill(limit=2)

	Colorado	Texas	New York	Ohio
2000-01-05	0.4967	-0.1383	0.6477	1.5230
2000-01-06	0.4967	-0.1383	0.6477	1.5230
2000-01-07	0.4967	-0.1383	0.6477	1.5230
2000-01-08	NaN	NaN	NaN	NaN
2000-01-09	NaN	NaN	NaN	NaN
2000-01-10	NaN	NaN	NaN	NaN
2000-01-11	NaN	NaN	NaN	NaN
2000-01-12	-0.2342	-0.2341	1.5792	0.7674

```
frame.resample('W-THU').ffill()
```

	Colorado	Texas	New York	Ohio
2000-01-06 2000-01-13	0.200	-0.1383 -0.2341	0.0 1	1.5230 0.7674

37.5 Moving Window Functions

Moving window (or rolling window) functions are one of the neatest features of pandas, and we will frequently use moving window functions. We will use data similar, but not identical, to the book data. We must remove the timezone if we want to merge with Fama-French data.

```
df = (
    yf.download(tickers=['AAPL', 'MSFT', 'SPY'])
    .assign(Date = lambda x: x.index.tz_localize(None))
    .set_index('Date')
    .rename_axis(columns=['Variable', 'Ticker'])
)

df.head()
```

[******** 3 of 3 completed

Variable	Adj			Close			High			Low		
	Close											
Ticker	AAPL	MSFT	SPY	AAPL	MSFT	SPY	AAPL	MSFT	SPY	AAPL	MSFT	SPY
Date												
1980-12-12	0.0993	NaN	NaN	0.1283	NaN	NaN	0.1289	NaN	NaN	0.1283	NaN	NaN
1980-12-15	0.0941	NaN	NaN	0.1217	NaN	NaN	0.1222	NaN	NaN	0.1217	NaN	NaN
1980-12-16	0.0872	NaN	NaN	0.1127	NaN	NaN	0.1133	NaN	NaN	0.1127	NaN	NaN
1980-12-17	0.0894	NaN	NaN	0.1155	NaN	NaN	0.1161	NaN	NaN	0.1155	NaN	NaN
1980-12-18	0.0920	NaN	NaN	0.1189	NaN	NaN	0.1194	NaN	NaN	0.1189	NaN	NaN
1900-12-10	0.0920	INAIN	Ivaiv	0.1109	Ivaiv	Ivaiv	0.1194	Ivaiv	Ivaiv	0.1109	Ivaiv	Τ,

The .rolling() method is similar to the .groupby() and .resample() methods. The .rolling() method accepts a window-width and requires an aggregation method. The next

example calculates and plots the 252-trading day moving average of AAPL's price alongside the daily price.

```
aapl = df.loc['2012':, ('Adj Close', 'AAPL')]
aapl.plot(label='Observed')
aapl.rolling(252).mean().plot(label='252 Trading Day Mean') # min_periods defaults to 252
aapl.rolling('365D').mean().plot(label='365 Calendar Day Mean') # min_periods defaults to
aapl.resample('A').mean().plot(style='.', label='Calendar Year Mean')
plt.legend()
plt.ylabel('AAPL Adjusted Close ($)')
plt.title('Comparison of Rolling and Resampling Means')
plt.show()
```

Comparison of Rolling and Resampling Means

Two observations:

- 1. If we pass the window-width as an integer, the window-width is based on the number of observations and ignores time stamps
- 2. If we pass the window-width as an integer, the .rolling() method requires that number

of observations for all windows (i.e., note that the moving average starts 251 trading days after the first daily price

We can use the min_periods argument to allow incomplete windows. For integer window widths, min_periods defaults to the given integer window width. For string date offsets, min_periods defaults to 1.

37.5.1 Binary Moving Window Functions

Binary moving window functions accept two inputs. The most common example is the rolling correlation between two returns series.

```
returns = df['Adj Close'].pct_change()
returns.head()
```

Ticker	AAPL	MSFT	SPY
Date			
1980-12-12	NaN	NaN	NaN
1980-12-15	-0.0522	NaN	NaN
1980-12-16	-0.0734	NaN	NaN
1980-12-17	0.0248	NaN	NaN
1980-12-18	0.0290	NaN	NaN

```
returns['AAPL'].rolling(126, min_periods=100).corr(returns['SPY']).plot()
plt.ylabel('Correlation(AAPL, SPY)')
plt.title('Rolling Correlation between AAPL and SPY\n (126-Day Window w/ 100-Day Minimum)'
plt.show()
```

Rolling Correlation between AAPL and SPY (126-Day Window w/ 100-Day Minimum)


```
returns[['AAPL', 'MSFT']].rolling(126, min_periods=100).corr(returns['SPY']).plot()
plt.ylabel('Correlation with SPY')
plt.title('Rolling Correlation with SPY\n (126-Day Window w/ 100-Day Minimum)')
plt.show()
```


37.5.2 User-Defined Moving Window Functions

Finally, we can define our own moving window functions and use the .apply() method to apply them However, note that .apply() will be much slower than the optimized moving window functions (e.g., .mean(), .std(), etc.).

McKinney provides an abstract example here, but we will discuss a simpler example that calculates rolling volatility. Also, calculating rolling volatility with the .apply() method provides us a chance to benchmark it against the optimized version.

```
returns['AAPL'].rolling(252).apply(np.std).mul(np.sqrt(252) * 100).plot() # annualize and
plt.ylabel('Volatility (%)')
plt.title('Rolling Volatility\n (252-Day Window w/ 252-Day Minimum)')
plt.show()
```


Do not be afraid to use .apply(), but realize that .apply() is typically 1000-times slower than the pre-built method.

```
%timeit returns['AAPL'].rolling(252).apply(np.std)

936 ms ± 160 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit returns['AAPL'].rolling(252).std()

337 µs ± 58 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
```

38 McKinney Chapter 11 - Practice for Section 02

38.1 Announcements

- 38.2 Practice
- 38.2.1 Cumulative returns with all available data
- 38.2.2 Total returns for each calendar year
- 38.2.3 Total returns over rolling 252-trading-day windows
- 38.2.4 Total returns over rolling 12-months windows after calculating monthly returns
- 38.2.5 Sharpe Ratios for each calendar year

38.2.6 Calculate rolling betas

Calculate rolling capital asset pricing model (CAPM) betas for the MATANA stocks.

The CAPM says the risk premium on a stock depends on the risk-free rate, beta, and the risk premium on the market: $E(R_{stock}) = R_f + \beta_{stock} \times (E(R_{market}) - R_f)$. We can calculate CAPM betas as: $\beta_{stock} = \frac{Cov(R_{stock} - R_f, R_{market} - R_f)}{Var(R_{market} - R_f)}$.

38.2.7 Calculate rolling Sharpe Ratios

Calculate rolling Sharpe Ratios for the MATANA stocks.

The Sharpe Ratio is often used to evaluate fund managers. The Sharpe Ratio is $SR_i = \frac{\overline{R_i - R_f}}{\sigma}$, where $\overline{R_i - R_f}$ is mean fund return relative to the risk-free rate over some period and σ is the standard deviation of $R_i - R_f$ over the same period. While the Sharpe Ratio is typically used for funds, we can apply it to a single stock to test our knowledge of the .rolling()

method. Calculate and plot the one-year rolling Sharpe Ratio for the MATANA stocks using all available daily data.

39 McKinney Chapter 11 - Practice for Section 03

39.1 Announcements

- 39.2 Practice
- 39.2.1 Cumulative returns with all available data
- 39.2.2 Total returns for each calendar year
- 39.2.3 Total returns over rolling 252-trading-day windows
- 39.2.4 Total returns over rolling 12-months windows after calculating monthly returns
- 39.2.5 Sharpe Ratios for each calendar year

39.2.6 Calculate rolling betas

Calculate rolling capital asset pricing model (CAPM) betas for the MATANA stocks.

The CAPM says the risk premium on a stock depends on the risk-free rate, beta, and the risk premium on the market: $E(R_{stock}) = R_f + \beta_{stock} \times (E(R_{market}) - R_f)$. We can calculate CAPM betas as: $\beta_{stock} = \frac{Cov(R_{stock} - R_f, R_{market} - R_f)}{Var(R_{market} - R_f)}$.

39.2.7 Calculate rolling Sharpe Ratios

Calculate rolling Sharpe Ratios for the MATANA stocks.

The Sharpe Ratio is often used to evaluate fund managers. The Sharpe Ratio is $SR_i = \frac{\overline{R_i - R_f}}{\sigma}$, where $\overline{R_i - R_f}$ is mean fund return relative to the risk-free rate over some period and σ is the standard deviation of $R_i - R_f$ over the same period. While the Sharpe Ratio is typically used for funds, we can apply it to a single stock to test our knowledge of the .rolling()

method. Calculate and plot the one-year rolling Sharpe Ratio for the MATANA stocks using all available daily data.

40 McKinney Chapter 11 - Practice for Section 04

40.1 Announcements

- 40.2 Practice
- 40.2.1 Cumulative returns with all available data
- 40.2.2 Total returns for each calendar year
- 40.2.3 Total returns over rolling 252-trading-day windows
- 40.2.4 Total returns over rolling 12-months windows after calculating monthly returns
- 40.2.5 Sharpe Ratios for each calendar year

40.2.6 Calculate rolling betas

Calculate rolling capital asset pricing model (CAPM) betas for the MATANA stocks.

The CAPM says the risk premium on a stock depends on the risk-free rate, beta, and the risk premium on the market: $E(R_{stock}) = R_f + \beta_{stock} \times (E(R_{market}) - R_f)$. We can calculate CAPM betas as: $\beta_{stock} = \frac{Cov(R_{stock} - R_f, R_{market} - R_f)}{Var(R_{market} - R_f)}$.

40.2.7 Calculate rolling Sharpe Ratios

Calculate rolling Sharpe Ratios for the MATANA stocks.

The Sharpe Ratio is often used to evaluate fund managers. The Sharpe Ratio is $SR_i = \frac{\overline{R_i - R_f}}{\sigma}$, where $\overline{R_i - R_f}$ is mean fund return relative to the risk-free rate over some period and σ is the standard deviation of $R_i - R_f$ over the same period. While the Sharpe Ratio is typically used for funds, we can apply it to a single stock to test our knowledge of the .rolling()

method. Calculate and plot the one-year rolling Sharpe Ratio for the MATANA stocks using all available daily data.

41 McKinney Chapter 11 - Practice for Section 05

41.1 Announcements

- 41.2 Practice
- 41.2.1 Cumulative returns with all available data
- 41.2.2 Total returns for each calendar year
- 41.2.3 Total returns over rolling 252-trading-day windows
- 41.2.4 Total returns over rolling 12-months windows after calculating monthly returns
- 41.2.5 Sharpe Ratios for each calendar year

41.2.6 Calculate rolling betas

Calculate rolling capital asset pricing model (CAPM) betas for the MATANA stocks.

The CAPM says the risk premium on a stock depends on the risk-free rate, beta, and the risk premium on the market: $E(R_{stock}) = R_f + \beta_{stock} \times (E(R_{market}) - R_f)$. We can calculate CAPM betas as: $\beta_{stock} = \frac{Cov(R_{stock} - R_f, R_{market} - R_f)}{Var(R_{market} - R_f)}$.

41.2.7 Calculate rolling Sharpe Ratios

Calculate rolling Sharpe Ratios for the MATANA stocks.

The Sharpe Ratio is often used to evaluate fund managers. The Sharpe Ratio is $SR_i = \frac{\overline{R_i - R_f}}{\sigma}$, where $\overline{R_i - R_f}$ is mean fund return relative to the risk-free rate over some period and σ is the standard deviation of $R_i - R_f$ over the same period. While the Sharpe Ratio is typically used for funds, we can apply it to a single stock to test our knowledge of the .rolling()

method. Calculate and plot the one-year rolling Sharpe Ratio for the MATANA stocks using all available daily data.

Part X Week 10

42 Herron Topic 2 - Trading Strategies

This notebook covers trading strategies based on technical analysis in three parts:

- 1. What is technical analysis?
- 2. Why might trading strategies based on technical analysis work (or not work)?
- 3. Implement a simple moving average (SMA) trading strategy

I based this lecture notebook on chapter 12 of Ivo Welch's *Corporate Finance* textbook and chapter 2 of Eryk Lewinson's *Python for Finance Cookbook*. The practice notebook will cover several other trading strategies based on technical analysis.

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'
```

42.1 What is technical analysis?

Technical analysis is a methodology that analyzes past market data (e.g., past prices and volume) in an attempt to forecast future price movements. If technical analysis can predict future price movements, the market is not weak-form efficient. Ivo Welch provides the three degrees of market efficiency in section 12.2 of chapter 12 of his (free) *Corporate Finance* textbook:

The Traditional Classification The traditional definition of market efficiency focuses on information. In the traditional classification, market efficiency comes in one of three primary degrees: weak, semi-strong, and strong.

Weak market efficiency says that all information in past prices is reflected in today's stock prices so that technical analysis (trading based solely on historical price patterns) cannot be used to beat the market. Put differently, the market is the best technical analyst.

Semistrong market efficiency says that all public information is reflected in today's stock prices, so that neither fundamental trading (based on underlying firm fundamentals, such as cash flows or discount rates) nor technical analysis can be used to beat the market. Put differently, the market is both the best technical and the best fundamental analyst.

Strong market efficiency says that all information, both public and private, is reflected in today's stock prices, so that nothing — not even private insider information — can be used to beat the market. Put differently, the market is the best analyst and cannot be beat.

In this traditional classification, all finance professors most U.S. financial markets are not strong-form efficient: Insider trading may be illegal, but it works. However, there are still arguments as to which markets are only semi-strong-form efficient or even only weak-form efficient.

Section 12.2 goes on to provide Welch's own taxonomy of true, firm, mild, and nonbelievers in market efficiency. Chapter 12 summarizes market efficiency, classical finance, behavioral finance, arbitrage, limits to arbitrage, and their consequences for managers and investors. We will focus on technical analysis in this notebook, but chapter 12 is excellent.

42.2 Why might trading strategies based on technical analysis work or not?

42.2.1 ... Work?

Technical analysis relies on a few ideas:

- 1. Market prices and volume reflect all relevant information, so we can focus on past prices and volume instead of fundamentals and news.
- 2. Market prices move in trends and patterns driven by market participants.
- 3. These trends and patterns tend to repeat themselves because market participants create them.

42.2.2 ... Or Not?

The logic above is reasonable. However, if past market prices reflect all relevant information, they should also reflect any prices trends they predict. Therefore, any patterns should be self-defeating, and market prices should follow a random walk. As well, the signal-to-noise ratio in market prices is high! Still, technical analysis provides an opportunity to learn how to implement and back-test trading strategies in Python.

42.2.2.1 A Random Walk

In a random walk, the price tomorrow equals the price today plus a tiny drift plus noise. In math terms, a random walk is $P_t = \rho P_{t-1} + m P_{t-1} + \varepsilon$, where m is a small drift term and $E[\varepsilon] = 0$. If $\rho > 1$, prices would quickly increase, and, if $\rho < 1$, prices would quickly decrease. Let us examine the historical record.

```
import pandas_datareader as pdr

ff = (
    pdr.DataReader(
        name='F-F_Research_Data_Factors_daily',
        data_source='famafrench',
        start='1900'
    )
    [0]
    .assign(Mkt = lambda x: x['Mkt-RF'] + x['RF'])
    .div(100)
)

ff.head()
```

C:\Users\r.herron\AppData\Local\Temp\ipykernel_14600\3181934010.py:2: FutureWarning: The arg pdr.DataReader(

	Mkt-RF	SMB	HML	RF	Mkt
Date					
1926-07-01	0.0010	-0.0025	-0.0027	0.0001	0.0011
1926-07-02	0.0045	-0.0033	-0.0006	0.0001	0.0046
1926-07-06	0.0017	0.0030	-0.0039	0.0001	0.0018
1926-07-07	0.0009	-0.0058	0.0002	0.0001	0.0010
1926-07-08	0.0021	-0.0038	0.0019	0.0001	0.0022

We can use market returns to impute market prices relative to the last day of June 1926.

```
price = ff['Mkt'].add(1).cumprod()
price.tail()
```

```
Date
2023-10-25
             10168.8352
2023-10-26
             10054.0290
2023-10-27
             10002.8540
2023-10-30
             10119.9874
2023-10-31
             10185.8686
Name: Mkt, dtype: float64
  price.plot()
  plt.title('Imputed Market Prices\nAssuming $1 on the Last Day of June 1926')
  plt.ylabel('Imputed Market Price ($)')
  plt.semilogy()
  plt.show()
```


We need lagged prices to estimate ρ . We will add 10 lags of P to help us understand the relation between past and future prices.

```
price_lags = (
   pd.concat(
      objs=[price.shift(t) for t in range(11)],
      keys=[f'Lag {t}' for t in range(11)],
      names=['Price'],
      axis=1,
   )
)
price_lags.head()
```

Price Date	Lag 0	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5	Lag 6	Lag 7	Lag 8	Lag 9	Lag 10
1926-07-01	1.0011	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1926-07-02	1.0057	1.0011	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1926-07-06	1.0075	1.0057	1.0011	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1926-07-07	1.0085	1.0075	1.0057	1.0011	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1926-07-08	1.0107	1.0085	1.0075	1.0057	1.0011	NaN	NaN	NaN	NaN	NaN	NaN

```
(
    price_lags
    .dropna()
    .corr()
    .loc['Lag 0']
    .plot(kind='bar')
)
plt.title('Correlations with Imputed Market Price')
plt.ylabel('Correlation')
plt.show()
```


But these are *pairwise* correlations. If we estimate *conditional* correlations, we see that most of the price information is in the first lag!

```
import statsmodels.api as sm

_ = price_lags.dropna()
y = _['Lag 0']
X = _.drop('Lag 0', axis=1).pipe(sm.add_constant)
model = sm.OLS(endog=y, exog=X)
fit = model.fit(cov_type='HAC', cov_kwds={'maxlags': 10})
fit.summary()
```

Dep. Variable:	Lag 0	R-squared:	1.000
Model:	OLS	Adj. R-squared:	1.000
Method:	Least Squares	F-statistic:	1.768e + 06
Date:	Fri, 22 Dec 2023	Prob (F-statistic):	0.00
Time:	10:00:20	Log-Likelihood:	-1.2187e + 05
No. Observations:	25598	AIC:	2.438e + 05
Df Residuals:	25587	BIC:	2.438e + 05
Df Model:	10		
Covariance Type:	HAC		

	\mathbf{coef}	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]
const	0.1283	0.145	0.888	0.375	-0.155	0.412
${ m Lag} \ 1$	0.9447	0.035	26.932	0.000	0.876	1.013
$\mathbf{Lag} 2$	0.0764	0.061	1.256	0.209	-0.043	0.196
${ m Lag} 3$	-0.0311	0.039	-0.805	0.421	-0.107	0.045
${\rm Lag} 4$	-0.0268	0.043	-0.618	0.536	-0.112	0.058
${ m Lag}~5$	0.0477	0.040	1.187	0.235	-0.031	0.127
${f Lag} {f 6}$	-0.0706	0.043	-1.651	0.099	-0.154	0.013
${ m Lag} \ 7$	0.1277	0.050	2.548	0.011	0.029	0.226
Lag 8	-0.1339	0.056	-2.373	0.018	-0.244	-0.023
$\mathbf{Lag} \; 9$	0.1552	0.048	3.215	0.001	0.061	0.250
${ m Lag} 10$	-0.0890	0.033	-2.729	0.006	-0.153	-0.025
Omnibus:		16175.844	Durbi	n-Watso	n:	1.995
Prob(Omn	ibus):	0.000	Jarqu	e-Bera (JB):	5235480.028
Skew:		-1.860	Prob(JB):		0.00
Kurtosis:		72.963	Cond.	No.		8.70e + 03

Notes:

- [1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 10 lags and without small sample correction
- [2] The condition number is large, 8.7e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
plt.bar(
    x=price_lags.columns[1:],
    height=fit.params[1:],
    yerr=2*fit.bse[1:]
)
plt.title('Conditional Correlations with Imputed Market Price\nBars Indicate $\pm 2$ Standard plt.ylabel('Conditional Correlation')
plt.xlabel('Price')
plt.show()
```

Conditional Correlations with Imputed Market Price Bars Indicate ±2 Standard Errors

42.2.2.2 Signal-to-Noise Ratio

Recall, we can express a random walk as $P_t = \rho P_{t-1} + m P_{t-1} + \varepsilon_t$. Since $\rho = 1$, we can subtract P_{t-1} from both sides, then divide by P_{t-1} on both sides. This transformation expresses a random walk in terms of returns: $r_{t-1,t} = m + e_t$, where $E[e_t] = 0$ and $SD[e_t] = s$, so $E[r_{t-1,t}] = m$. We can think of the signal-to-noise ratio as $\frac{m}{s}$. How high is this ratio?

Here m is about 4 basis points per day!

m

0.0004

However, s is about 108 basis points per day!

S

0.0108

Therefore, the signal-to-noise ratio is less than 4 percent!

m/s

0.0388

Means grow linearly with time, while standard deviations growth with the square-root of time. Therefore, even with a 1 basis point signal, we need a lot of data to make sure this 1 basis point signal is real! For example, if we want $\sqrt{t} \times \frac{1}{s} \ge 2$, we need $t \ge \left(2 \times \frac{s}{1}\right)^2$ days! Even with market noise, which is diversified and low, we need more than 100 years of data!

```
(2 * s / 0.0001)**2 / 365
```

128.0929

42.3 Implement a simple moving average (SMA) trading strategy

One goal of technical analysis is to "buy low, and sell high". The n-day SMA reduces noise in market prices, removing market fluctuations and providing estimates of "true" prices. Market prices below their SMA might be buying opportunities, and market prices below their SMA might be selling opportunities. Here, we will implement a long-only 20-day SMA (SMA(20)) strategy with Bitcoin:

- 1. Buy when the closing price crosses SMA(20) from below
- 2. Sell when the closing price crosses SMA(20) from above
- 3. No short-selling

Because we will not sell short, we can simplify this strategy to "long if above SMA(20), otherwise neutral". First, we will need Bitcoin returns data.

```
import yfinance as yf
```

```
btc = (
   yf.download(tickers='BTC-USD')
   .assign(Return = lambda x: x['Adj Close'].pct_change())
   .rename_axis(columns='Variable')
)
btc.head()
```

[********** 100%/********* 1 of 1 completed

Variable Date	Open	High	Low	Close	Adj Close	Volume	Return
2014-09-17 2014-09-18 2014-09-19 2014-09-20	465.8640 456.8600 424.1030 394.6730	468.1740 456.8600 427.8350 423.2960	452.4220 413.1040 384.5320 389.8830	457.3340 424.4400 394.7960 408.9040	457.3340 424.4400 394.7960 408.9040	21056800 34483200 37919700 36863600	NaN -0.0719 -0.0698 0.0357
2014-09-21	408.0850	412.4260	393.1810	398.8210	398.8210	26580100	-0.0247

Next we:

- 1. Use .rolling(20).mean() to add a SMA20 column containing $\mathrm{SMA}(20)$ to our btc data frame
- 2. Use np.select() to add a Position column containing:
 - 1. 1 (long) when the adjusted close is greater than SMA(20)
 - 2. 0 (neutral) when the adjusted close is less than (or equal to) SMA(20)
 - 3. We could use np.where() instead of np.select(), but using np.select() provides a more flexible framework for more complex examples
 - 4. We use .shift() to compare yesterday's closing prices, avoiding a lookahead bias
- 3. Add a Strategy column containing:
 - 1. Return if Position == 1
 - 2. 0 if Position == 0
 - 3. We could earn the risk-free rate instead of 0 percent, but earning 0 percent simplifies this example

```
btc = (
   btc
   .assign(
```

Variable Date	Open	High	Low	Close	Adj Close	Volume	Return	SMA2
2023-12-18	41348.2031	42720.2969	40530.2578	42623.5391	42623.5391	25224642008	0.0304	41762
2023-12-19	42641.5117	43354.2969	41826.3359	42270.5273	42270.5273	23171001281	-0.0083	41983
2023-12-20	42261.3008	44275.5859	42223.8164	43652.2500	43652.2500	27868908174	0.0327	42280
2023-12-21	43648.1250	44240.6680	43330.0508	43869.1523	43869.1523	22452766169	0.0050	42539
2023-12-22	43868.9883	44367.9570	43441.9688	43665.7266	43665.7266	23145105408	-0.0046	42748

I find it helpful to plot Adj Close, SMA20, and Position for a sort window with one or more crossings.

```
fig, ax = plt.subplots(2, 1, sharex=True)
_ = btc.loc['2023-02'].iloc[-15:]
_[['Adj Close', 'SMA20']].plot(ax=ax[0], ylabel='BTC-USD ($)')
_[['Position']].plot(ax=ax[1], ylabel='Position', legend=False)
plt.suptitle('Bitcoin SMA(20) Strategy')
plt.show()
```

Bitcoin SMA(20) Strategy

We can compare the long-run performance of buy-and-hold and SMA(20).

plt.title(f'Value of \$1 Invested at Close on {_.index[0] - pd.offsets.Day(1):%B %d, %Y}') plt.show()

In the practice notebook, we will dig deeper on this strategy and others.

43 Herron Topic 2 - Practice for Section 02

43.1 Announcements

43.2 Practice

43.2.1 Implement the SMA(20) strategy with Bitcoin from the lecture notebook

Try to create the btc data frame in one code cell with one assignment (i.e., one =).

43.2.2 How does SMA(20) outperform buy-and-hold with this sample?

Consider the following:

- 1. Does SMA(20) avoid the worst performing days? How many of the worst 20 days does SMA(20) avoid? Try the .sort_values() or .nlargest() method.
- 2. Does SMA(20) preferentially avoid low-return days? Try to combine the .groupby() method and pd.qcut() function.
- 3. Does SMA(20) preferentially avoid high-volatility days? Try to combine the .groupby() method and pd.qcut() function.

43.2.3 Implement the SMA(20) strategy with the market factor from French

We need to impute a market price before we calculate SMA(20).

43.2.4 How often does SMA(20) outperform buy-and-hold with 10-year rolling windows?

43.2.5 Implement a long-only BB(20, 2) strategy with Bitcoin

More on Bollinger Bands here and here. In short, Bollinger Bands are bands around a trend, typically defined in terms of simple moving averages and volatilities. Here, long-only BB(20, 2) implies we have upper and lower bands at 2 standard deviations above and below SMA(20):

- 1. Buy when the closing price crosses LB(20) from below, where LB(20) is SMA(20) minus 2 sigma
- 2. Sell when the closing price crosses UB(20) from above, where UB(20) is SMA(20) plus 2 sigma
- 3. No short-selling

The long-only BB(20, 2) is more difficult to implement than the long-only SMA(20) because we need to track buys and sells. For example, if the closing price is between LB(20) and BB(20), we need to know if our last trade was a buy or a sell. Further, if the closing price is below LB(20), we can still be long because we sell when the closing price crosses UB(20) from above.

43.2.6 Implement a long-short RSI(14) strategy with Bitcoin

From Fidelity:

The Relative Strength Index (RSI), developed by J. Welles Wilder, is a momentum oscillator that measures the speed and change of price movements. The RSI oscillates between zero and 100. Traditionally the RSI is considered overbought when above 70 and oversold when below 30. Signals can be generated by looking for divergences and failure swings. RSI can also be used to identify the general trend.

Here is the RSI formula: $RSI(n) = 100 - \frac{100}{1 + RS(n)}$, where $RS(n) = \frac{SMA(U,n)}{SMA(D,n)}$. For "up days", $U = \Delta Adj\ Close$ and D = 0, and, for "down days", U = 0 and $D = -\Delta Adj\ Close$. Therefore, U and D are always non-negative. We can learn more about RSI here.

We will implement a long-short RSI(14) as follows:

- 1. Enter a long position when the RSI crosses 30 from below, and exit the position when the RSI crosses 50 from below
- 2. Enter a short position when the RSI crosses 70 from above, and exit the position when the RSI crosses 50 from above

44 Herron Topic 2 - Practice for Section 03

44.1 Announcements

44.2 Practice

44.2.1 Implement the SMA(20) strategy with Bitcoin from the lecture notebook

Try to create the btc data frame in one code cell with one assignment (i.e., one =).

44.2.2 How does SMA(20) outperform buy-and-hold with this sample?

Consider the following:

- 1. Does SMA(20) avoid the worst performing days? How many of the worst 20 days does SMA(20) avoid? Try the .sort_values() or .nlargest() method.
- 2. Does SMA(20) preferentially avoid low-return days? Try to combine the .groupby() method and pd.qcut() function.
- 3. Does SMA(20) preferentially avoid high-volatility days? Try to combine the .groupby() method and pd.qcut() function.

44.2.3 Implement the SMA(20) strategy with the market factor from French

We need to impute a market price before we calculate SMA(20).

44.2.4 How often does SMA(20) outperform buy-and-hold with 10-year rolling windows?

44.2.5 Implement a long-only BB(20, 2) strategy with Bitcoin

More on Bollinger Bands here and here. In short, Bollinger Bands are bands around a trend, typically defined in terms of simple moving averages and volatilities. Here, long-only BB(20, 2) implies we have upper and lower bands at 2 standard deviations above and below SMA(20):

- 1. Buy when the closing price crosses LB(20) from below, where LB(20) is SMA(20) minus 2 sigma
- 2. Sell when the closing price crosses UB(20) from above, where UB(20) is SMA(20) plus 2 sigma
- 3. No short-selling

The long-only BB(20, 2) is more difficult to implement than the long-only SMA(20) because we need to track buys and sells. For example, if the closing price is between LB(20) and BB(20), we need to know if our last trade was a buy or a sell. Further, if the closing price is below LB(20), we can still be long because we sell when the closing price crosses UB(20) from above.

44.2.6 Implement a long-short RSI(14) strategy with Bitcoin

From Fidelity:

The Relative Strength Index (RSI), developed by J. Welles Wilder, is a momentum oscillator that measures the speed and change of price movements. The RSI oscillates between zero and 100. Traditionally the RSI is considered overbought when above 70 and oversold when below 30. Signals can be generated by looking for divergences and failure swings. RSI can also be used to identify the general trend.

Here is the RSI formula: $RSI(n) = 100 - \frac{100}{1 + RS(n)}$, where $RS(n) = \frac{SMA(U,n)}{SMA(D,n)}$. For "up days", $U = \Delta Adj\ Close$ and D = 0, and, for "down days", U = 0 and $D = -\Delta Adj\ Close$. Therefore, U and D are always non-negative. We can learn more about RSI here.

We will implement a long-short RSI(14) as follows:

- 1. Enter a long position when the RSI crosses 30 from below, and exit the position when the RSI crosses 50 from below
- 2. Enter a short position when the RSI crosses 70 from above, and exit the position when the RSI crosses 50 from above

45 Herron Topic 2 - Practice for Section 04

45.1 Announcements

45.2 Practice

45.2.1 Implement the SMA(20) strategy with Bitcoin from the lecture notebook

Try to create the btc data frame in one code cell with one assignment (i.e., one =).

45.2.2 How does SMA(20) outperform buy-and-hold with this sample?

Consider the following:

- 1. Does SMA(20) avoid the worst performing days? How many of the worst 20 days does SMA(20) avoid? Try the .sort_values() or .nlargest() method.
- 2. Does SMA(20) preferentially avoid low-return days? Try to combine the .groupby() method and pd.qcut() function.
- 3. Does SMA(20) preferentially avoid high-volatility days? Try to combine the .groupby() method and pd.qcut() function.

45.2.3 Implement the SMA(20) strategy with the market factor from French

We need to impute a market price before we calculate SMA(20).

45.2.4 How often does SMA(20) outperform buy-and-hold with 10-year rolling windows?

45.2.5 Implement a long-only BB(20, 2) strategy with Bitcoin

More on Bollinger Bands here and here. In short, Bollinger Bands are bands around a trend, typically defined in terms of simple moving averages and volatilities. Here, long-only BB(20, 2) implies we have upper and lower bands at 2 standard deviations above and below SMA(20):

- 1. Buy when the closing price crosses LB(20) from below, where LB(20) is SMA(20) minus 2 sigma
- 2. Sell when the closing price crosses UB(20) from above, where UB(20) is SMA(20) plus 2 sigma
- 3. No short-selling

The long-only BB(20, 2) is more difficult to implement than the long-only SMA(20) because we need to track buys and sells. For example, if the closing price is between LB(20) and BB(20), we need to know if our last trade was a buy or a sell. Further, if the closing price is below LB(20), we can still be long because we sell when the closing price crosses UB(20) from above.

45.2.6 Implement a long-short RSI(14) strategy with Bitcoin

From Fidelity:

The Relative Strength Index (RSI), developed by J. Welles Wilder, is a momentum oscillator that measures the speed and change of price movements. The RSI oscillates between zero and 100. Traditionally the RSI is considered overbought when above 70 and oversold when below 30. Signals can be generated by looking for divergences and failure swings. RSI can also be used to identify the general trend.

Here is the RSI formula: $RSI(n) = 100 - \frac{100}{1 + RS(n)}$, where $RS(n) = \frac{SMA(U,n)}{SMA(D,n)}$. For "up days", $U = \Delta Adj\ Close$ and D = 0, and, for "down days", U = 0 and $D = -\Delta Adj\ Close$. Therefore, U and D are always non-negative. We can learn more about RSI here.

We will implement a long-short RSI(14) as follows:

- 1. Enter a long position when the RSI crosses 30 from below, and exit the position when the RSI crosses 50 from below
- 2. Enter a short position when the RSI crosses 70 from above, and exit the position when the RSI crosses 50 from above

46 Herron Topic 2 - Practice for Section 05

46.1 Announcements

46.2 Practice

46.2.1 Implement the SMA(20) strategy with Bitcoin from the lecture notebook

Try to create the btc data frame in one code cell with one assignment (i.e., one =).

46.2.2 How does SMA(20) outperform buy-and-hold with this sample?

Consider the following:

- 1. Does SMA(20) avoid the worst performing days? How many of the worst 20 days does SMA(20) avoid? Try the .sort_values() or .nlargest() method.
- 2. Does SMA(20) preferentially avoid low-return days? Try to combine the .groupby() method and pd.qcut() function.
- 3. Does SMA(20) preferentially avoid high-volatility days? Try to combine the .groupby() method and pd.qcut() function.

46.2.3 Implement the SMA(20) strategy with the market factor from French

We need to impute a market price before we calculate SMA(20).

46.2.4 How often does SMA(20) outperform buy-and-hold with 10-year rolling windows?

46.2.5 Implement a long-only BB(20, 2) strategy with Bitcoin

More on Bollinger Bands here and here. In short, Bollinger Bands are bands around a trend, typically defined in terms of simple moving averages and volatilities. Here, long-only BB(20, 2) implies we have upper and lower bands at 2 standard deviations above and below SMA(20):

- 1. Buy when the closing price crosses LB(20) from below, where LB(20) is SMA(20) minus 2 sigma
- 2. Sell when the closing price crosses UB(20) from above, where UB(20) is SMA(20) plus 2 sigma
- 3. No short-selling

The long-only BB(20, 2) is more difficult to implement than the long-only SMA(20) because we need to track buys and sells. For example, if the closing price is between LB(20) and BB(20), we need to know if our last trade was a buy or a sell. Further, if the closing price is below LB(20), we can still be long because we sell when the closing price crosses UB(20) from above.

46.2.6 Implement a long-short RSI(14) strategy with Bitcoin

From Fidelity:

The Relative Strength Index (RSI), developed by J. Welles Wilder, is a momentum oscillator that measures the speed and change of price movements. The RSI oscillates between zero and 100. Traditionally the RSI is considered overbought when above 70 and oversold when below 30. Signals can be generated by looking for divergences and failure swings. RSI can also be used to identify the general trend.

Here is the RSI formula: $RSI(n) = 100 - \frac{100}{1 + RS(n)}$, where $RS(n) = \frac{SMA(U,n)}{SMA(D,n)}$. For "up days", $U = \Delta Adj\ Close$ and D = 0, and, for "down days", U = 0 and $D = -\Delta Adj\ Close$. Therefore, U and D are always non-negative. We can learn more about RSI here.

We will implement a long-short RSI(14) as follows:

- 1. Enter a long position when the RSI crosses 30 from below, and exit the position when the RSI crosses 50 from below
- 2. Enter a short position when the RSI crosses 70 from above, and exit the position when the RSI crosses 50 from above

Part XI

Week 11

47 Project 2

FINA 6333 – Spring 2023

To be determined

Part XII

Week 12

48 Herron Topic 3 - Multifactor Models

This notebook covers multifactor models, emphasizing the capital asset pricing model (CAPM) and the Fama-French three-factor model (FF3). Ivo Welch provides a high-level review of the CAPM and multifactor models in Chapter 10 of his free *Corporate Finance* textbook. The Wikipedia page for the CAPM is surprisingly good and includes its assumptions and shortcomings.

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'
```

48.1 The Capital Asset Pricing Model (CAPM)

The CAPM explains the relation between non-diversifiable risk and expected return, and it has applications throughout finance. We use the CAPM to estimate costs of capital in corporate finance, assemble portfolios with a given risk-return tradeoff in portfolio management, and estimate expected rates of return in investment analysis. The formula for the CAPM is $E(R_i) = R_F + \beta_i [E(R_M) - R_F]$, where:

- 1. R_F is the risk-free rate of return,
- 2. β_i is the measure of non-diversifiable risk for asset i, and
- 3. $E(R_M)$ is the expected rate of return on the market.

Here, β_i measures asset i's risk exposure or sensitivity to market returns. The value-weighted mean of β_i 's is 1 by construction, but a range of values is possible:

- 1. $\beta_i < -1$: Asset i moves in the opposite direction as the market, in larger magnitudes
- 2. $-1 \le \beta_i < 0$: Asset i moves in the opposite direction as the market
- 3. $\beta_i = 0$: Asset i has no correlation between with the market
- 4. $0 < \beta_i \le 1$: Asset i moves in the same direction as the market, in smaller magnitudes

- 5. $\beta_i = 1$: Asset i moves in the same direction with the same magnitude as the market
- 6. $\beta_i > 1$: Asset i moves in the same direction as the market, in larger magnitudes

48.1.1 β Estimation

We can use three (equivalent) approaches to estimate β_i :

- 1. From covariance and variance as $\beta_i = \frac{Cov(R_i R_F, R_M R_F)}{Var(R_M R_F)}$ 2. From correlation and standard deviations as $\beta_i = \rho_{i,M} \cdot \frac{\sigma_i}{\sigma_M}$, where all statistics use excess returns (i.e., $R_i - R_F$ and $R_M - R_F$)
- 3. From a linear regression of $R_i R_F$ on $R_M R_F$

The first two approaches are computationally simpler. However, the third approach also estimates the intercept α and goodness-of-fit statistics. We can use Apple (AAPL) to convince ourselves these three approaches are equivalent.

```
import yfinance as yf
import pandas_datareader as pdr
```

Note, we will leave returns in percent to make it easier to interpret our regression output! Leaving returns in percent does not affect the β s (slopes) but makes the α (intercept) easier to interpret by removing two leading zeros.

```
aapl = (
    yf.download(tickers='AAPL')
    .assign(Ri=lambda x: x['Adj Close'].pct_change().mul(100))
    .rename_axis(columns='Variable')
)
aapl.tail()
```

[********* 100%%********* 1 of 1 completed

Variable Date	Open	High	Low	Close	Adj Close	Volume	Ri
2023-12-18	196.0900	196.6300	194.3900	195.8900	195.8900	55751900	-0.8503
2023-12-19	196.1600	196.9500	195.8900	196.9400	196.9400	40714100	0.5360
2023-12-20	196.9000	197.6800	194.8300	194.8300	194.8300	52242800	-1.0714
2023-12-21	196.1000	197.0800	193.5000	194.6800	194.6800	46432100	-0.0770
2023-12-22	195.1800	195.4100	194.4250	195.2200	195.2200	5005484	0.2774

```
ff = (
    pdr.DataReader(
        name='F-F_Research_Data_Factors_daily',
        data_source='famafrench',
        start='1900',
    )
)
```

C:\Users\r.herron\AppData\Local\Temp\ipykernel_9472\3206174192.py:2: FutureWarning: The argument pdr.DataReader(

```
aapl = (
    aapl
    .join(ff[0])
    .assign(RiRF = lambda x: x['Ri'] - x['RF'])
    .rename(columns={'Mkt-RF': 'MktRF'})
)
aapl.head()
```

	Open	High	Low	Close	Adj Close	Volume	Ri	MktRF	SMB	HML
Date										
1980-12-12	0.1283	0.1289	0.1283	0.1283	0.0993	469033600	NaN	1.3800	-0.0100	-1.0500
1980 - 12 - 15	0.1222	0.1222	0.1217	0.1217	0.0941	175884800	-5.2171	0.1100	0.2500	-0.4600
1980-12-16	0.1133	0.1133	0.1127	0.1127	0.0872	105728000	-7.3398	0.7100	-0.7500	-0.4700
1980 - 12 - 17	0.1155	0.1161	0.1155	0.1155	0.0894	86441600	2.4750	1.5200	-0.8600	-0.3400
1980-12-18	0.1189	0.1194	0.1189	0.1189	0.0920	73449600	2.8993	0.4100	0.2200	1.2600

48.1.1.1 Covariance and Variance

```
vcv = aapl[['MktRF', 'RiRF']].dropna().cov()
vcv
```

	MktRF	RiRF
MktRF	1.2350	1.5564
RiRF	1.5564	7.8792

```
print(f"Apple beta from cov/var: {vcv.loc['MktRF', 'RiRF'] / vcv.loc['MktRF', 'MktRF']:0.4
```

Apple beta from cov/var: 1.2602

48.1.1.2 Correlation and Standard Deviations

```
_ = aapl[['MktRF', 'RiRF']].dropna()
  rho = _.corr()
  sigma = _.std()
  print(f'rho:\n{rho}\n\nsigma:\n{sigma}')
rho:
       MktRF
               RiRF
MktRF 1.0000 0.4989
RiRF 0.4989 1.0000
sigma:
MktRF
        1.1113
RiRF
        2.8070
dtype: float64
  print(f"Apple beta from rho and sigmas: {rho.loc['MktRF', 'RiRF'] * sigma.loc['RiRF'] / si
```

Apple beta from rho and sigmas: 1.2602

48.1.1.3 Linear Regression

We will use the statsmodels package to estimate linear. I typically use the formula application programming interface (API).

```
import statsmodels.formula.api as smf
```

With statsmodels (and most Python model estimation packages), we have three steps:

- 1. Specify the model
- 2. Fit the model
- 3. Summarize the model

```
model = smf.ols('RiRF ~ MktRF', aapl)
fit = model.fit()
summary = fit.summary()
summary
```

Dep. Variable:	RiRF	R-squared:	0.249
Model:	OLS	Adj. R-squared:	0.249
Method:	Least Squares	F-statistic:	3583.
Date:	Fri, 22 Dec 2023	Prob (F-statistic):	0.00
Time:	09:59:32	Log-Likelihood:	-24950.
No. Observations:	10811	AIC:	4.990e + 04
Df Residuals:	10809	BIC:	4.992e + 04
Df Model:	1		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025]	[0.975]
Intercept	0.0527	0.023	2.249	0.025	0.007	0.099
\mathbf{MktRF}	1.2602	0.021	59.856	0.000	1.219	1.302
Omnibus:	;	3208.502	Durbir	ı-Watsoı	n:	1.916
Prob(Omni	ibus):	0.000	Jarque	-Bera (J	(B):	329571.227
Skew:		-0.380	$\operatorname{Prob}(\operatorname{J}$	^(B) :		0.00
Kurtosis:		30.038	Cond.	No.		1.12

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
fit.params
```

Intercept 0.0527 MktRF 1.2602 dtype: float64

```
print(f"Apple beta from linear regression: {fit.params['MktRF']:0.4f}")
```

Apple beta from linear regression: 1.2602

We can chain these operations, but it often makes sense to save the intermediate results (i.e., model and fit).

Dep. Variable:	RiRF	R-squared:	0.249
Model:	OLS	Adj. R-squared:	0.249
Method:	Least Squares	F-statistic:	3583.
Date:	Fri, 22 Dec 2023	Prob (F-statistic):	0.00
Time:	09:59:32	Log-Likelihood:	-24950.
No. Observations:	10811	AIC:	4.990e + 04
Df Residuals:	10809	BIC:	4.992e + 04
Df Model:	1		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} \gt \mathbf{t} $	[0.025]	0.975]	
Intercept	0.0527	0.023	2.249	0.025	0.007	0.099	
MktRF	1.2602	0.021	59.856	0.000	1.219	1.302	
Omnibus:		3208.502	Durbir	ı-Watsoı	1:	1.916	
Prob(Omnibus):		0.000	Jarque-Bera (JB):			329571.227	
Skew:		-0.380	$\operatorname{Prob}(\operatorname{J}$	B):		0.00	
Kurtosis:		30.038	Cond. No.			1.12	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

48.1.2 β **Visualization**

We can visualize Apple's β , using seaborn's regplot() to add a best-fit line.

```
import seaborn as sns
```

We can write a couple of function to more easily make prettier plots.

```
def label_beta(x):
    vcv = x.dropna().cov()
    beta = vcv.loc['RiRF', 'MktRF'] / vcv.loc['MktRF', 'MktRF']
    return r'$\beta=$' + f'{beta: 0.4f}'

def label_dates(x):
    y = x.dropna()
    return f'from {y.index[0]:%b %d, %Y} to {y.index[-1]:%b %d, %Y}'
```

```
_ = aapl[['MktRF', 'RiRF']].dropna()

sns.regplot(
    x='MktRF',
    y='RiRF',
    data=_,
    scatter_kws={'alpha': 0.1},
    line_kws={'label': _.pipe(label_beta)}
)

plt.legend()
plt.xlabel('Market Excess Return (%)')
plt.ylabel('Stock Excess Return (%)')
plt.title(r'$\beta$ Plot with Daily Returns for Apple' + '\n' + _.pipe(label_dates))
plt.show()
```

β Plot with Daily Returns for Apple from Dec 15, 1980 to Oct 31, 2023

We see a strong relation between Apple and market (excess) returns, but there is a lot of unexplained variation in Apple (excess) returns. The best practice is to estimate β with one to three years of daily data.

```
_ = aapl[['MktRF', 'RiRF']].dropna().iloc[-504:]

sns.regplot(
    x='MktRF',
    y='RiRF',
    data=_,
    scatter_kws={'alpha': 0.1},
    line_kws={'label': _.pipe(label_beta)}
)

plt.legend()
plt.xlabel('Market Excess Return (%)')
plt.ylabel('Stock Excess Return (%)')
plt.title(r'$\beta$ Plot with Daily Returns for Apple' + '\n' + _.pipe(label_dates))
plt.show()
```

β Plot with Daily Returns for Apple from Oct 29, 2021 to Oct 31, 2023

48.1.3 The Security Market Line (SML)

The SML is a visualization of the CAPM. We can think of $E(R_i) = R_F + \beta_i [E(R_M) - R_F]$ as y = b + mx, where:

- 1. The equity premium $E(R_M) R_F$ is the slope m of the SML, and
- 2. The risk-free rate of return ${\cal R}_{\cal F}$ is its intercept b.

We will explore the SML more in the practice notebook.

48.1.4 How well does the CAPM work?

The CAPM appears to work well as a single-period model. We can see this with portfolios formed on β from Ken French.

```
ff_beta = pdr.DataReader(
                       name='Portfolios_Formed_on_BETA',
                       data_source='famafrench',
                       start='1900'
         )
C:\Users\r.herron\AppData\Local\Temp\ipykernel_9472\1792222927.py:1: FutureWarning: The arguments of the control of the contro
       ff_beta = pdr.DataReader(
C:\Users\r.herron\AppData\Local\Temp\ipykernel_9472\1792222927.py:1: FutureWarning: The argu
       ff_beta = pdr.DataReader(
C:\Users\r.herron\AppData\Local\Temp\ipykernel_9472\1792222927.py:1: FutureWarning: The argu
       ff_beta = pdr.DataReader(
C:\Users\r.herron\AppData\Local\Temp\ipykernel_9472\1792222927.py:1: FutureWarning: The arguments of the arguments of the second of the control of the contr
       ff_beta = pdr.DataReader(
C:\Users\r.herron\AppData\Local\Temp\ipykernel_9472\1792222927.py:1: FutureWarning: The argu
       ff_beta = pdr.DataReader(
C:\Users\r.herron\AppData\Local\Temp\ipykernel_9472\1792222927.py:1: FutureWarning: The argu
       ff_beta = pdr.DataReader(
C:\Users\r.herron\AppData\Local\Temp\ipykernel_9472\1792222927.py:1: FutureWarning: The argu
       ff_beta = pdr.DataReader(
        print(ff_beta['DESCR'])
Portfolios Formed on BETA
    ______
This file was created by CMPT_BETA_RETS using the 202310 CRSP database. It contains value- as
       0 : Value Weighted Returns -- Monthly (724 rows x 15 cols)
       1 : Equal Weighted Returns -- Monthly (724 rows x 15 cols)
       2 : Value Weighted Returns -- Annual from January to December (59 rows x 15 cols)
       3 : Equal Weighted Returns -- Annual from January to December (59 rows x 15 cols)
       4: Number of Firms in Portfolios (724 rows x 15 cols)
       5 : Average Firm Size (724 rows x 15 cols)
       6 : Value-Weighted Average of Prior Beta (61 rows x 15 cols)
```

This file contains seven data frames. We want the data frame at [2], which contains the annual returns on two sets of portfolios formed on the previous year's β s.

ff_beta[2].head()

	Lo 20	Qnt 2	Qnt 3	Qnt 4	Hi 20	Lo 10	Dec 2	Dec 3	Dec 4	Dec 5	Γ
Date											
1964	16.8700	19.7500	17.6600	8.7300	12.5500	24.7000	13.5900	20.2700	19.0100	19.7900	1
1965	8.7200	6.9800	15.4000	24.8800	49.6700	12.4400	6.7600	10.0200	5.2500	13.7100	1
1966	-9.2500	-12.1700	-9.1000	-2.7300	-2.2000	-9.4300	-9.4400	-12.5700	-12.1600	-7.5000	- 2
1967	13.4300	22.0600	31.9500	42.7900	51.1500	8.9200	18.6400	22.7900	21.6500	31.1100	3
1968	15.8100	9.1200	13.6400	14.4300	24.2400	18.4800	12.8400	14.5100	5.8400	12.6600	1

We can plot the mean annual return on each of the five portfolios in the first set of portflios. We do not need to annualize these numbers because they are the means of annual returns.

```
_ = ff_beta[2].iloc[:, :5]
_.mean().plot(kind='bar')
plt.ylabel('Mean Annual Return (%)')
plt.xlabel('Portfolio')
plt.xticks(rotation=0)
plt.title(r'Mean Returns on Portfolios Formed on $\beta$' + '\n' + f'from {_.index[0]} to
plt.show()
```

Mean Returns on Portfolios Formed on β from 1964 to 2022

We can think of the plot above as a binned plot of the SML. The x axis above is an ordinal measure of β , and the y axis above is the mean return. Recall the slope of the SML is the market risk premium. If the market risk premium is too low, then high β stocks do not have high enough returns. We can see this failure of the CAPM by plotting long-term or cumulative returns on these five portfolios.

```
_ = ff_beta[2].iloc[:, :5]
_.div(100).add(1).cumprod().plot()
plt.semilogy()
plt.ylabel('Value of \$1 Investment (\$)')
plt.title(r'Value of \$1 Investments in Portfolios Formed on $\beta$' + '\n' + f'from {_.i
plt.show()
```

Value of \$1 Investments in Portfolios Formed on β from 1964 to 2022

In the plot above, the highest- β portfolio has the lowest cumulative returns! The log scale masks a lot of variation, too!

```
_ = ff_beta[2].iloc[:, :5]
_.div(100).add(1).prod().plot(kind='bar')
plt.ylabel('Value of \$1 Investment (\$)')
plt.title(r'Value of \$1 Investments in Portfolios Formed on $\beta$' + '\n' + f'from {_.i
plt.show()
```


If the CAPM does not work well, especially over the horizons we use it for (e.g., capital budgeting), why do we continue to learn it?

- 1. The CAPM works well *across* asset classes. We will explore this more in the practice notebook.
- 2. The CAPM intuition that diversification matters is correct and important
- 3. The CAPM assigns high costs of capital to high- β projects (i.e., high-risk projects), which is a hidden benefit
- 4. In practice, everyone uses the CAPM

Ivo Welch provides a more complete discussion in section 10.5 of chapter 10 of this his free *Corporate Finance* textbook.

48.2 Multifactor Models

Another shortcoming of the CAPM is that it fails to explain the returns on portfolios formed on size (market capitalization) and value (book-to-market equity ratio), which we will explore in the practice notebook. These shortcomings have led to an explosion in multifactor models, which we will explore here.

48.2.1 The Fama-French Three-Factor Model

Fama and French (1993) expand the CAPM by adding two additional factors to explain the excess returns on size and value. The size factor, SMB or small-minus-big, is a diversified portfolio that measures the excess returns of small market cap. stocks over large market cap. stocks. The value factor, HML of high-minus-low, is a diversified portfolio that measures the excess returns of high book-to-market stocks over low high book-to-market stocks. We typically call this model the "Fama-French three-factor model" and express it as: $E(R_i) = R_F + \alpha + \beta_M [E(R_M) - R_M)] + \beta_{SMB} SMB + \beta_{HML} HML$. There are two common uses for the three-factor model:

- 1. Use the coefficient estimate on the intercept (i.e., α , often called "Jensen's α ") as a risk-adjusted performance measure. If α is positive and statistically significant, we may attribute fund performance to manager skill.
- 2. Use the remaining coefficient estimates to evaluate how the fund manager generates returns. If the regression \mathbb{R}^2 is high, we may replace the fund manager with the factor itself.

We can use the Fama-French three-factor model to evaluate Warren Buffett at Berkshire Hathaway (BRK-A). We will focus on the first three-years of easily available returns because Buffett had a larger edge when BRK was much smaller.

```
brk = (
   yf.download(tickers='BRK-A')
   .assign(Ri=lambda x: x['Adj Close'].pct_change().mul(100))
   .join(ff[0])
   .assign(RiRF = lambda x: x['Ri'] - x['RF'])
   .rename(columns={'Mkt-RF': 'MktRF'})
   .rename_axis(columns='Variable')
)
```

```
model = smf.ols(formula='RiRF ~ MktRF + SMB + HML', data=brk.iloc[:756])
fit = model.fit()
summary = fit.summary()
summary
```

Dep. Variable:	RiRF	R-squared:	0.053
Model:	OLS	Adj. R-squared:	0.049
Method:	Least Squares	F-statistic:	13.91
Date:	Fri, 22 Dec 2023	Prob (F-statistic):	7.81e-09
Time:	09:59:35	Log-Likelihood:	-1208.9
No. Observations:	755	AIC:	2426.
Df Residuals:	751	BIC:	2444.
Df Model:	3		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
Intercept	0.0801	0.044	1.809	0.071	-0.007	0.167
\mathbf{MktRF}	0.3484	0.075	4.643	0.000	0.201	0.496
\mathbf{SMB}	0.4021	0.093	4.302	0.000	0.219	0.586
HML	0.0907	0.125	0.724	0.469	-0.155	0.336
Omnibus:		118.864	Durbi	n-Watso	n:	1.797
Prob(Omn	ibus):	0.000	Jarque	e-Bera (JB):	1308.034
Skew:		0.284	Prob(JB):		9.20e-285
Kurtosis:		9.423	Cond.	No.		3.51

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The α above seems small, but this is a daily value. We can multiple α by 252 to annualize it.

```
print(f"Buffet's annualized alpha in the early 1980s: {fit.params['Intercept'] * 252:0.4f}
```

Buffet's annualized alpha in the early 1980s: 20.1836

We will explore rolling αs and βs in the practice notebook using RollingOLS() from statsmodels.regression.rolling.

48.2.2 The Four-Factor and Five-Factor Models

There are literally hundreds of published factors! However, many of them have little explanatory power, in or out of sample. Two more factor models that have explanatory power, economic intuition, and widespread adoption are the four-factor model and five-factor model.

The four-factor model adds a momentum factor to the Fama-French three-factor model. The momentum factor is a diversified portfolio that measures the excess returns of winner stocks over the loser stocks over the past 12 months. The momentum factor is often called UMD for up-minus-down or WML for winners-minus-losers. French stores the momentum factor in a different file because Fama and French are skeptical of momentum as a foundational risk factor.

The five-factor model adds profitability and investment policy factors. The profitability factor, RMW or robust-minus-weak, measures the excess returns of stocks with high profits over those with low profits. The investment policy factor, CMA or conservative-minus-aggressive, measures the excess returns of stocks with low corporate investment (conservative) over those with high corporate investment (aggressive).

We will explore the four-factor and five-factor models in the practice notebook.

49 Herron Topic 3 - Practice for Section 02

49.1 Announcements

49.2 Practice

49.2.1 Plot the security market line (SML) for a variety of asset classes

Use the past three years of daily data for the following exhange traded funds (ETFs):

- 1. SPY (SPDR—Standard and Poor's Depository Receipts—ETF for the S&P 500 index)
- 2. BIL (SPDR ETF for 1-3 month Treasury bills)
- 3. GLD (SPDR ETF for gold)
- 4. JNK (SPDR ETF for high-yield debt)
- 5. MDY (SPDR ETF for S&P 400 mid-cap index)
- 6. SLY (SPDR ETF for S&P 600 small-cap index)
- 7. SPBO (SPDR ETF for corporate bonds)
- 8. SPMB (SPDR ETF for mortgage-backed securities)
- 9. SPTL (SPDR ETF for long-term Treasury bonds)

49.2.2 Plot the SML for the Dow Jones Industrial Average (DJIA) stocks

Use the past three years of daily returns data for the stocks listed on the DJIA Wikipedia page. Compare the DJIA SML to the asset class SML above.

49.2.3 Plot the SML for the five portfolios formed on beta

Download data for portfolios formed on β (Portfolios_Formed_on_BETA) from Ken French. For the value-weighted portfolios, plot realized returns versus β . These data should elements [2] and [6], respectively.

49.2.4 Estimate the CAPM β s on several levered and inverse exchange traded funds (ETFs)

Try the following ETFs:

- 1. SPY
- 2. UPRO
- 3. SPXU

Can you determine what these products do from the data alone? Estimate β s and plot cumulative returns. You may want to pick short periods of time with large market swings.

49.2.5 Explore the size factor

49.2.5.1 Estimate α s for the ten portfolios formed on size

Academics started researching size-based portfolios in the early 1980s, so you may want to focus on the pre-1980 sample.

49.2.5.2 Are the returns on these ten portfolios formed on size concentrated in a specific month?

49.2.5.3 Compare the size factor to the market factor

You may want to consider mean excess returns by decade.

49.2.6 Repeat the exercises above with the value factor

49.2.7 Repeat the exercises above with the momentum factor

You may find it helpful to consider the worst months and years for the momentum factor.

49.2.8 Plot the coefficient estimates from a rolling Fama-French three-factor model for Berkshire Hathaway

Use a three-year window with daily returns. How has Buffett's α and β s changed over the past four decades?

49.2.9 Use the three-, four-, and five-factor models to determine how the ARKK Innovation ETF generates returns

50 Herron Topic 3 - Practice for Section 03

50.1 Announcements

50.2 Practice

50.2.1 Plot the security market line (SML) for a variety of asset classes

Use the past three years of daily data for the following exhange traded funds (ETFs):

- 1. SPY (SPDR—Standard and Poor's Depository Receipts—ETF for the S&P 500 index)
- 2. BIL (SPDR ETF for 1-3 month Treasury bills)
- 3. GLD (SPDR ETF for gold)
- 4. JNK (SPDR ETF for high-yield debt)
- 5. MDY (SPDR ETF for S&P 400 mid-cap index)
- 6. SLY (SPDR ETF for S&P 600 small-cap index)
- 7. SPBO (SPDR ETF for corporate bonds)
- 8. SPMB (SPDR ETF for mortgage-backed securities)
- 9. SPTL (SPDR ETF for long-term Treasury bonds)

50.2.2 Plot the SML for the Dow Jones Industrial Average (DJIA) stocks

Use the past three years of daily returns data for the stocks listed on the DJIA Wikipedia page. Compare the DJIA SML to the asset class SML above.

50.2.3 Plot the SML for the five portfolios formed on beta

Download data for portfolios formed on β (Portfolios_Formed_on_BETA) from Ken French. For the value-weighted portfolios, plot realized returns versus β . These data should elements [2] and [6], respectively.

50.2.4 Estimate the CAPM β s on several levered and inverse exchange traded funds (ETFs)

Try the following ETFs:

- 1. SPY
- 2. UPRO
- 3. SPXU

Can you determine what these products do from the data alone? Estimate β s and plot cumulative returns. You may want to pick short periods of time with large market swings.

50.2.5 Explore the size factor

50.2.5.1 Estimate α s for the ten portfolios formed on size

Academics started researching size-based portfolios in the early 1980s, so you may want to focus on the pre-1980 sample.

50.2.5.2 Are the returns on these ten portfolios formed on size concentrated in a specific month?

50.2.5.3 Compare the size factor to the market factor

You may want to consider mean excess returns by decade.

50.2.6 Repeat the exercises above with the value factor

50.2.7 Repeat the exercises above with the momentum factor

You may find it helpful to consider the worst months and years for the momentum factor.

50.2.8 Plot the coefficient estimates from a rolling Fama-French three-factor model for Berkshire Hathaway

Use a three-year window with daily returns. How has Buffett's α and β s changed over the past four decades?

50.2.9 Use the three-, four-, and five-factor models to determine how the ARKK Innovation ETF generates returns

51 Herron Topic 3 - Practice for Section 04

51.1 Announcements

51.2 Practice

51.2.1 Plot the security market line (SML) for a variety of asset classes

Use the past three years of daily data for the following exhange traded funds (ETFs):

- 1. SPY (SPDR—Standard and Poor's Depository Receipts—ETF for the S&P 500 index)
- 2. BIL (SPDR ETF for 1-3 month Treasury bills)
- 3. GLD (SPDR ETF for gold)
- 4. JNK (SPDR ETF for high-yield debt)
- 5. MDY (SPDR ETF for S&P 400 mid-cap index)
- 6. SLY (SPDR ETF for S&P 600 small-cap index)
- 7. SPBO (SPDR ETF for corporate bonds)
- 8. SPMB (SPDR ETF for mortgage-backed securities)
- 9. SPTL (SPDR ETF for long-term Treasury bonds)

51.2.2 Plot the SML for the Dow Jones Industrial Average (DJIA) stocks

Use the past three years of daily returns data for the stocks listed on the DJIA Wikipedia page. Compare the DJIA SML to the asset class SML above.

51.2.3 Plot the SML for the five portfolios formed on beta

Download data for portfolios formed on β (Portfolios_Formed_on_BETA) from Ken French. For the value-weighted portfolios, plot realized returns versus β . These data should elements [2] and [6], respectively.

51.2.4 Estimate the CAPM β s on several levered and inverse exchange traded funds (ETFs)

Try the following ETFs:

- 1. SPY
- 2. UPRO
- 3. SPXU

Can you determine what these products do from the data alone? Estimate β s and plot cumulative returns. You may want to pick short periods of time with large market swings.

51.2.5 Explore the size factor

51.2.5.1 Estimate α s for the ten portfolios formed on size

Academics started researching size-based portfolios in the early 1980s, so you may want to focus on the pre-1980 sample.

51.2.5.2 Are the returns on these ten portfolios formed on size concentrated in a specific month?

51.2.5.3 Compare the size factor to the market factor

You may want to consider mean excess returns by decade.

51.2.6 Repeat the exercises above with the value factor

51.2.7 Repeat the exercises above with the momentum factor

You may find it helpful to consider the worst months and years for the momentum factor.

51.2.8 Plot the coefficient estimates from a rolling Fama-French three-factor model for Berkshire Hathaway

Use a three-year window with daily returns. How has Buffett's α and β s changed over the past four decades?

51.2.9 Use the three-, four-, and five-factor models to determine how the ARKK Innovation ETF generates returns

52 Herron Topic 3 - Practice for Section 05

52.1 Announcements

52.2 Practice

52.2.1 Plot the security market line (SML) for a variety of asset classes

Use the past three years of daily data for the following exhange traded funds (ETFs):

- 1. SPY (SPDR—Standard and Poor's Depository Receipts—ETF for the S&P 500 index)
- 2. BIL (SPDR ETF for 1-3 month Treasury bills)
- 3. GLD (SPDR ETF for gold)
- 4. JNK (SPDR ETF for high-yield debt)
- 5. MDY (SPDR ETF for S&P 400 mid-cap index)
- 6. SLY (SPDR ETF for S&P 600 small-cap index)
- 7. SPBO (SPDR ETF for corporate bonds)
- 8. SPMB (SPDR ETF for mortgage-backed securities)
- 9. SPTL (SPDR ETF for long-term Treasury bonds)

52.2.2 Plot the SML for the Dow Jones Industrial Average (DJIA) stocks

Use the past three years of daily returns data for the stocks listed on the DJIA Wikipedia page. Compare the DJIA SML to the asset class SML above.

52.2.3 Plot the SML for the five portfolios formed on beta

Download data for portfolios formed on β (Portfolios_Formed_on_BETA) from Ken French. For the value-weighted portfolios, plot realized returns versus β . These data should elements [2] and [6], respectively.

52.2.4 Estimate the CAPM β s on several levered and inverse exchange traded funds (ETFs)

Try the following ETFs:

- 1. SPY
- 2. UPRO
- 3. SPXU

Can you determine what these products do from the data alone? Estimate β s and plot cumulative returns. You may want to pick short periods of time with large market swings.

52.2.5 Explore the size factor

52.2.5.1 Estimate α s for the ten portfolios formed on size

Academics started researching size-based portfolios in the early 1980s, so you may want to focus on the pre-1980 sample.

52.2.5.2 Are the returns on these ten portfolios formed on size concentrated in a specific month?

52.2.5.3 Compare the size factor to the market factor

You may want to consider mean excess returns by decade.

52.2.6 Repeat the exercises above with the value factor

52.2.7 Repeat the exercises above with the momentum factor

You may find it helpful to consider the worst months and years for the momentum factor.

52.2.8 Plot the coefficient estimates from a rolling Fama-French three-factor model for Berkshire Hathaway

Use a three-year window with daily returns. How has Buffett's α and β s changed over the past four decades?

52.2.9 Use the three-, four-, and five-factor models to determine how the ARKK Innovation ETF generates returns

Part XIII

Week 13

53 Herron Topic 4 - Portfolio Optimization

This notebook covers portfolio optimization. I have not found a perfect reference that combines portfolio optimization and Python, but here are two references that I find useful:

- 1. Ivo Welch discusses the mathematics and finance of portfolio optimization in Chapter 12 of his draft textbook on investments.
- 2. Eryk Lewinson provides Python code for portfolio optimization in chapter 7 of his *Python* for Finance Cookbook, but he uses several packages that are either non-free or abandoned.

In this notebook, we will:

- 1. Review the $\frac{1}{n}$ portfolio (or equal-weighted portfolio) from Herron Topic 1
- 2. Use SciPy's minimize() function to:
 - 1. Find the minimum variance portfolio
 - 2. Find the (mean-variance) efficient frontier

In the practice notebook, we will use SciPy's minimize() function to achieve any objective.

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

53.1 The $\frac{1}{n}$ Portfolio

We first saw the $\frac{1}{n}$ portfolio (or equal-weighted portfolio) in Herron Topic 1. In the $\frac{1}{n}$ portfolio, each of n assets receives an equal portfolio weight $w_i = \frac{1}{n}$. While the $\frac{1}{n}$ strategy seems too

simple to be useful, DeMiguel, Garlappi, and Uppal (2007) show that it is difficult to beat $\frac{1}{n}$ strategy, even with more advanced strategies.

```
tickers = 'MSFT AAPL TSLA AMZN NVDA GOOG'

matana = (
   yf.download(tickers=tickers)
   .rename_axis(columns=['Variable', 'Ticker'])
)

matana.tail()
```

Variable Ticker Date	Adj Close AAPL	AMZN	GOOG	MSFT	NVDA	TSLA	Close AAPL	AMZN	GOOG
2023-12-18	195.8900	154.0700	137.1900	372.6500	500.7700	252.0800	195.8900	154.0700	137.1900
2023-12-19	196.9400	153.7900	138.1000	373.2600	496.0400	257.2200	196.9400	153.7900	138.1000
2023-12-20	194.8300	152.1200	139.6600	370.6200	481.1100	247.1400	194.8300	152.1200	139.6600
2023-12-21	194.6800	153.8400	141.8000	373.5400	489.9000	254.5000	194.6800	153.8400	141.8000
2023-12-22	195.1250	153.8300	142.6201	373.8800	NaN	256.5600	195.1250	153.8300	142.6201

```
returns = matana['Adj Close'].pct_change().iloc[(-3 * 252):]
returns.describe()
```

C:\Users\r.herron\AppData\Local\Temp\ipykernel_5180\2146458459.py:1: FutureWarning: The defar returns = matana['Adj Close'].pct_change().iloc[(-3 * 252):]

Ticker	AAPL	AMZN	GOOG	MSFT	NVDA	TSLA
count	756.0000	756.0000	756.0000	756.0000	756.0000	756.0000
mean	0.0007	0.0002	0.0009	0.0009	0.0023	0.0009
std	0.0176	0.0236	0.0199	0.0175	0.0333	0.0370
\min	-0.0587	-0.1405	-0.0963	-0.0772	-0.0947	-0.1224
25%	-0.0089	-0.0128	-0.0098	-0.0089	-0.0171	-0.0194
50%	0.0009	0.0003	0.0009	0.0007	0.0024	0.0018

Ticker	AAPL	AMZN	GOOG	MSFT	NVDA	TSLA
75%	0.0115	0.0127	0.0110	0.0112	0.0208	0.0205
max	0.0890	0.1354	0.0775	0.0823	0.2437	0.1964

Before we revisit the advanced techniques from Herron Topic 1, we can calculate $\frac{1}{n}$ portfolio returns manually, where $R_P = \frac{\sum_i^n R_i}{n}$ Since our weights are constant (i.e., do not change over time), we rebalance our portfolio every return period. If we have daily data, rebalance daily. If we have monthly data, we rebalance monthly, and so on.

```
n = returns.shape[1]
  p1 = returns.sum(axis=1).div(n)
  p1.describe()
        756.0000
count
          0.0010
mean
std
          0.0200
         -0.0632
min
25%
         -0.0113
50%
          0.0016
75%
          0.0124
          0.0980
max
dtype: float64
```

Recall from Herron Topic 1 we have two better options:

- 1. The .mean(axis=1) method for the $\frac{1}{n}$ portfolio
- 2. The .dot(weights) method where weights is a pandas series or NumPy array of portfolio weights, allowing different weights for each asset

```
50%     0.0016
75%     0.0124
max     0.0980
dtype: float64

weights = np.ones(n) / n
    p3 = returns.dot(weights)
p3.describe()
```

count	756.0000
mean	0.0010
std	0.0200
min	-0.0632
25%	-0.0113
50%	0.0016
75%	0.0124
max	0.0980
dtype:	float64

dtype: float64

The .describe() method provides summary statistics for data, letting us make quick comparisons. However, we should use np.allclose() if we want to be sure that p1, p2, and p3 are similar.

```
np.allclose(p1, p2)
```

True

```
np.allclose(p1, p3)
```

True

Here is a simple example to help understand the .dot() method.

```
silly_n = 3
  silly_R = pd.DataFrame(np.arange(2*silly_n).reshape(2, silly_n))
  silly_w = np.ones(3) / 3
  print(
      f'silly_n:\n{silly_n}',
      f'silly_R:\n{silly_R}',
      f'silly_w:\n{silly_w}',
      sep='\n\n'
  )
silly_n:
3
silly_R:
   0 1 2
0 0 1 2
1 3 4 5
silly_w:
[0.3333 0.3333 0.3333]
  silly_R.dot(silly_w)
  1.0000
0
    4.0000
dtype: float64
Under the hood, Python and the .dot() method (effectively) do the following calculation:
  for i, row in silly_R.iterrows():
      print(
          f'Row {i}: ',
          ' + '.join([f'{w:0.2f} * {y}' for w, y in zip(silly_w, row)]),
           ' = ',
          f'{silly_R.dot(silly_w).iloc[i]:0.2f}'
Row 0: 0.33 * 0 + 0.33 * 1 + 0.33 * 2 = 1.00
Row 1: 0.33 * 3 + 0.33 * 4 + 0.33 * 5 = 4.00
```

53.2 SciPy's minimize() Function

53.2.1 A Crash Course in SciPy's minimize() Function

The minimize() function from SciPy's optimize module finds the input array x that minimizes the output of the function fun. The minimize() function uses optimization techniques that are outside this course, but you can consider these optimization techniques to be sophisticated trial and error.

Here are the most common arguments we will pass to the minimize() function:

- 1. We pass our first guess for input array x to argument x0=.
- 2. We pass additional arguments for function fun as a tuple to argument args=.
- 3. We pass lower and upper bounds on x as a tuple of tuples to argument bounds=.
- 4. We constrain our results with a tuple of dictionaries of functions to argument contraints=.

Here is a simple example that minimizes the function quadratic() that accepts arguments x and a and returns $y = (x - a)^2$.

```
import scipy.optimize as sco

def quadratic(x, a=5):
    return (x - a) ** 2

quadratic(x=5, a=5)

quadratic(x=10, a=5)

t is helpful to plot y = (x - a) first.

x = np.linspace(-5, 15, 101)
y = quadratic(x=x)
```

```
plt.plot(x, y)
plt.xlabel(r'$x$')
plt.ylabel(r'$y$')
plt.title(r'$y = (x - 5)^2$')
plt.show()
```


The minimum output of quadratic() occurs at x=5 if we do not use bounds or constraints, even if we start far away from x=5.

```
sco.minimize(
   fun=quadratic,
   x0=np.array([2001])
)
```

message: Optimization terminated successfully.

```
success: True
status: 0
  fun: 2.0392713450495178e-16
    x: [ 5.000e+00]
  nit: 4
    jac: [-1.366e-08]
hess_inv: [[ 5.000e-01]]
  nfev: 18
  njev: 9
```

njev: 2

The minimum output of quadratic() occurs at x=6 if we bound x between 6 and 10 (i.e., $6 \le x \le 10$).

```
sco.minimize(
   fun=quadratic,
   x0=np.array([2001]),
   bounds=((6, 10),)
)

message: CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL
success: True
status: 0
   fun: 1.0
    x: [ 6.000e+00]
   nit: 1
   jac: [ 2.000e+00]
   nfev: 4</pre>
```

hess_inv: <1x1 LbfgsInvHessProduct with dtype=float64>

The minimum output of quadratic() occurs at x=6, again, if we constrain x-6 to be non-negative. We use bounds to limit the search space directly, and we use constraints to limit the search space indirectly based on a formula.

```
sco.minimize(
   fun=quadratic,
   x0=np.array([2001]),
   constraints=({'type': 'ineq', 'fun': lambda x: x - 6})
)
```

message: Optimization terminated successfully

```
success: True
status: 0
  fun: 1.00000000000000018
    x: [ 6.000e+00]
  nit: 3
  jac: [ 2.000e+00]
  nfev: 6
  njev: 3
```

We can use the args= argument to pass additional arguments to fun. For example, we change the a= argument in quadratic() from the default of a=5 to a=20 with args=(20,). Note that args= expects a tuple, so we need a trailing comma, if we have one argument.

```
sco.minimize(
   fun=quadratic,
   args=(20,),
   x0=np.array([2001]),
)

message: Optimization terminated successfully.
success: True
  status: 0
   fun: 7.090392030754976e-17
        x: [ 2.000e+01]
        nit: 4
        jac: [-1.940e-09]
hess_inv: [[ 5.000e-01]]
        nfev: 18
        njev: 9
```

53.2.2 The Minimum Variance Portfolio

We can find the minimum variance portfolio with minimize() function from SciPy's optimize module. The minimize() function with vary an input array x (starting from argument x0=) to minimize the objective function fun= subject to the bounds and constraints in bounds= and constraints=. We will define a function port_vol() to calculate portfolio volatility. The first argument to port_vol() must be the input array x that the minimize() function searches over. For clarity, we will call this first argument x, but the argument's name is not important.

```
def port_vol(x, r, ppy):
      return np.sqrt(ppy) * r.dot(x).std()
We will eventually need a mean portfolio return function, too.
  def port_mean(x, r, ppy):
      return ppy * r.dot(x).mean()
  res_mv = sco.minimize(
      fun=port_vol, # objective function that we minimize
      x0=np.ones(returns.shape[1]) / returns.shape[1], # initial portfolio weights
      args=(returns, 252), # additional arguments to our objective function
      bounds=[(0,1) for _ in returns], # bounds limit the search space for each portfolio we
      constraints=(
          {'type': 'eq', 'fun': lambda x: x.sum() - 1} # minimize drives "eq" constraints to
  )
  print(res_mv)
 message: Optimization terminated successfully
 success: True
  status: 0
     fun: 0.2571111710752664
       x: [ 4.478e-01 5.399e-17 1.281e-01 4.241e-01 2.060e-17
            1.323e-17]
     nit: 10
     jac: [ 2.571e-01  2.645e-01  2.571e-01  2.571e-01  3.738e-01
            3.130e-01]
    nfev: 70
    njev: 10
```

What are the attributes of this minimum variance portfolio?

```
def print_port_res(w, r, title, ppy=252, tgt=None):
    width = len(title)
    rp = r.dot(w)
    mu = ppy * rp.mean()
    sigma = np.sqrt(ppy) * rp.std()
    if tgt is not None:
```

```
er = rp.sub(tgt)
                                             sr = np.sqrt(ppy) * er.mean() / er.std()
                            else:
                                             sr = None
                            return print(
                                             title,
                                             '=' * width,
                                             ١١,
                                              'Performance',
                                              '-' * width,
                                             'Return:'.ljust(width - 6) + f'{mu:0.4f}',
                                              'Volatility:'.ljust(width - 6) + f'{sigma:0.4f}',
                                              'Sharpe Ratio: '.ljust(width - 6) + f'{sr:0.4f}\n' if sr is not None else '',
                                              'Weights',
                                              '-' * width,
                                              '\n'.join([f'{_r}:'.ljust(width - 6) + f'{_w:0.4f}' for _r, _w in zip(r.columns, with a column s) in the column s in the col
                                             sep=' \n',
                            )
          print_port_res(w=res_mv['x'], r=returns, title='Minimum Variance Portfolio')
Minimum Variance Portfolio
_____
Performance
_____
```

Return: 0.2037 Volatility: 0.2571

Weights

AAPL: 0.4478 AMZN: 0.0000 GOOG: 0.1281 MSFT: 0.4241 0.0000 NVDA: TSLA: 0.0000

53.2.3 The Mean-Variance Efficient Frontier

We will use the minimize() function to map the efficient frontier. Here is a basic outline:

- 1. Create a NumPy array tret of target returns
- 2. Create an empty list res_ef of minimize() results
- 3. Loop over tret, passing each as a constraint to the minimize() function
- 4. Append each minimize() result to res_ef

We will loop over these target returns, finding the minimum variance portfolio for each target return.

List res_ef contains the results of all 25 minimum-variance portfolios. For example, res_ef [0] is the minimum variance portfolio for the lowest target return.

```
res_ef[0]
```

I typically check that all portfolio volatility minimization succeeds. If a portfolio volatility minimization fails, we should check our function, bounds, and constraints.

```
for r in res_ef:
    assert r['success']
```

We can combine the target returns and volatilities into a data frame ef.

	tret	tvol
0	0.0561	0.3738
1	0.0776	0.3417
2	0.0991	0.3144
3	0.1206	0.2933
4	0.1421	0.2778

```
ef.mul(100).plot(x='tvol', y='tret', legend=False)
plt.ylabel('Annualized Mean Return (%)')
plt.xlabel('Annualized Volatility (%)')
plt.title(
    f'Efficient Frontier' +
```

```
f'\nfor {", ".join(returns.columns)}' +
  f'\nfrom {returns.index[0]:%B %d, %Y} to {returns.index[-1]:%B %d, %Y}'
)

for t, x, y in zip(
  returns.columns,
  returns.std().mul(100*np.sqrt(252)),
  returns.mean().mul(100*252)
):
  plt.annotate(text=t, xy=(x, y))

plt.show()
```

Efficient Frontier for AAPL, AMZN, GOOG, MSFT, NVDA, TSLA from December 22, 2020 to December 22, 2023

54 Herron Topic 4 - Practice for Section 02

54.1 Announcements

54.2 Practice

54.2.1 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years

Note that sco.minimize() finds minimums, so you need to minimize the negative Sharpe Ratio.

- 54.2.2 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years, but allow short weights up to 10% on each stock
- 54.2.3 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years, but allow total short weights of up to 30%
- 54.2.4 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years, but do not allow any weight to exceed 30% in magnitude
- 54.2.5 Find the minimum 95% Value at Risk (Var) portfolio of MATANA stocks over the last three years

More on VaR here.

- 54.2.6 Find the minimum maximum draw down portfolio of MATANA stocks over the last three years
- 54.2.7 Find the minimum maximum draw down portfolio with all available data for the current Dow-Jones Industrial Average (DJIA) stocks

You can find the DJIA tickers on Wikipedia.

- 54.2.8 Plot the (mean-variance) efficient frontier with all available data for the current the DJIA stocks
- 54.2.9 Find the maximum Sharpe Ratio portfolio with all available data for the current the DJIA stocks
- 54.2.10 Compare the $\frac{1}{n}$ and maximum Sharpe Ratio portfolios with all available data for the current DJIA stocks

Use all but the last 252 trading days to estimate the maximum Sharpe Ratio portfolio weights. Then use the last 252 trading days of data to compare the $\frac{1}{n}$ maximum Sharpe Ratio portfolios.

55 Herron Topic 4 - Practice for Section 03

55.1 Announcements

55.2 Practice

55.2.1 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years

Note that sco.minimize() finds minimums, so you need to minimize the negative Sharpe Ratio.

- 55.2.2 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years, but allow short weights up to 10% on each stock
- 55.2.3 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years, but allow total short weights of up to 30%
- 55.2.4 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years, but do not allow any weight to exceed 30% in magnitude
- 55.2.5 Find the minimum 95% Value at Risk (Var) portfolio of MATANA stocks over the last three years

More on VaR here.

- 55.2.6 Find the minimum maximum draw down portfolio of MATANA stocks over the last three years
- 55.2.7 Find the minimum maximum draw down portfolio with all available data for the current Dow-Jones Industrial Average (DJIA) stocks

You can find the DJIA tickers on Wikipedia.

- 55.2.8 Plot the (mean-variance) efficient frontier with all available data for the current the DJIA stocks
- 55.2.9 Find the maximum Sharpe Ratio portfolio with all available data for the current the DJIA stocks
- 55.2.10 Compare the $\frac{1}{n}$ and maximum Sharpe Ratio portfolios with all available data for the current DJIA stocks

Use all but the last 252 trading days to estimate the maximum Sharpe Ratio portfolio weights. Then use the last 252 trading days of data to compare the $\frac{1}{n}$ maximum Sharpe Ratio portfolios.

- 56.1 Announcements
- 56.2 Practice
- 56.2.1 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years

Note that sco.minimize() finds minimums, so you need to minimize the negative Sharpe Ratio.

- 56.2.2 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years, but allow short weights up to 10% on each stock
- 56.2.3 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years, but allow total short weights of up to 30%
- 56.2.4 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years, but do not allow any weight to exceed 30% in magnitude
- 56.2.5 Find the minimum 95% Value at Risk (Var) portfolio of MATANA stocks over the last three years

More on VaR here.

- 56.2.6 Find the minimum maximum draw down portfolio of MATANA stocks over the last three years
- 56.2.7 Find the minimum maximum draw down portfolio with all available data for the current Dow-Jones Industrial Average (DJIA) stocks

You can find the DJIA tickers on Wikipedia.

- 56.2.8 Plot the (mean-variance) efficient frontier with all available data for the current the DJIA stocks
- 56.2.9 Find the maximum Sharpe Ratio portfolio with all available data for the current the DJIA stocks
- 56.2.10 Compare the $\frac{1}{n}$ and maximum Sharpe Ratio portfolios with all available data for the current DJIA stocks

Use all but the last 252 trading days to estimate the maximum Sharpe Ratio portfolio weights. Then use the last 252 trading days of data to compare the $\frac{1}{n}$ maximum Sharpe Ratio portfolios.

57.1 Announcements

57.2 Practice

57.2.1 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years

Note that sco.minimize() finds minimums, so you need to minimize the negative Sharpe Ratio.

- 57.2.2 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years, but allow short weights up to 10% on each stock
- 57.2.3 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years, but allow total short weights of up to 30%
- 57.2.4 Find the maximum Sharpe Ratio portfolio of MATANA stocks over the last three years, but do not allow any weight to exceed 30% in magnitude
- 57.2.5 Find the minimum 95% Value at Risk (Var) portfolio of MATANA stocks over the last three years

More on VaR here.

- 57.2.6 Find the minimum maximum draw down portfolio of MATANA stocks over the last three years
- 57.2.7 Find the minimum maximum draw down portfolio with all available data for the current Dow-Jones Industrial Average (DJIA) stocks

You can find the DJIA tickers on Wikipedia.

- 57.2.8 Plot the (mean-variance) efficient frontier with all available data for the current the DJIA stocks
- 57.2.9 Find the maximum Sharpe Ratio portfolio with all available data for the current the DJIA stocks
- 57.2.10 Compare the $\frac{1}{n}$ and maximum Sharpe Ratio portfolios with all available data for the current DJIA stocks

Use all but the last 252 trading days to estimate the maximum Sharpe Ratio portfolio weights. Then use the last 252 trading days of data to compare the $\frac{1}{n}$ maximum Sharpe Ratio portfolios.

Part XIV

Week 14

58 Herron Topic 5 - Simulations

In finance, we typically perform simulations with Monte Carlo methods. Monte Carlo methods are used throughout science, engineering, and mathematics, and they are especially useful in finance due to the randomness of asset prices. This lecture notebook provides an introduction to Monte Carlo methods in finance.

The basic idea behind Monte Carlo methods in finance is to create many possible paths of financial variables (e.g., stock prices, interest rates, exchange rates) based on their historical behavior, statistical properties, and any other relevant factors. We use these paths to simulate the performance of financial instruments or portfolios, and then we aggregate these results to estimate metrics of interest. This approach helps us model and analyze complex financial problems that may be difficult or impossible to solve analytically.

We could spend a semester (or more) on simulations and Monte Carlo methods. In this lecture notebook, we will limit our focus to:

- 1. Option pricing: Monte Carlo methods can be used to estimate the fair value of financial derivatives, such as options and warrants. By simulating the potential future paths of the underlying asset and calculating the payoffs of the derivative at each path, the expected payoff can be computed and discounted to present value to determine the option's price.
- 2. Value at Risk (VaR): Monte Carlo simulations can be used to compute VaR, a widely used risk management metric that estimates the potential loss in the value of a portfolio over a specific time horizon, given a certain level of confidence (e.g., 95% or 99%). By simulating numerous scenarios and observing the distribution of potential losses, the VaR can be calculated as the threshold below which a certain percentage of losses fall.

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 2
pd.options.display.float_format = '{:.2f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

58.1 Option Pricing

We can use Monte Carlo methods to value stock options. First, we simulate several hundred or thousand possible (but random) price paths for the underlying stock. Then, we calculate the payoff for each path. On some paths, the option will expire "in the money" with $S_T > K$ and pay $S_T - K$. On other paths, the option will expire "out of the money" with $S_T < K$ and pay 0. We average these payoffs and discount them to today. The present value of these payoffs is the option price. This is an illustrative example, and there is a lot of depth to Monte Carlo methods for option pricing.

58.1.1 Simulating Stock Prices

We can simulate stock prices with the following stochastic differential equation (SDE) for Geometric Brownian Motion (GBM): $dS = \mu S dt + \sigma S dW_t$. GBM does not account for mean-reversion and time-dependent volatility. So GBM is often used for stocks and not for bond prices, which tend to display long-term reversion to the face value. In the GBM SDE:

- 1. S is the stock price
- 2. μ is the drift coefficient (i.e., instantaneous expected return)
- 3. σ is the diffusion coefficient (i.e., volatility of the drift)
- 4. W_t is the Wiener Process or Brownian Motion

The GBM SDE has a closed-form solution: $S(t) = S_0 \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma W_t\right)$. We can apply this closed form solution recursively: $S(t_{i+1}) = S(t_i) \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)(t_{i+1} - t_i) + \sigma\sqrt{t_{i+1} - t_i}Z_{i+1}\right)$. Here, Z_i is a Standard Normal random variable $(dW_t$ are independent and normally distributed) and $i = 0, \dots, T-1$ is the time index.

We can use this closed form solution to simulate stock prices for AAPL.

```
aapl = (
   yf.download(tickers='AAPL')
   .assign(Return=lambda x: x['Adj Close'].pct_change())
   .rename_axis(columns=['Variable'])
)
```

[********* 100%%******** 1 of 1 completed

```
aapl.describe()
```

Variable	Open	High	Low	Close	Adj Close	Volume	Return
count	10849.00	10849.00	10849.00	10849.00	10849.00	10849.00	10848.00
mean	19.99	20.21	19.78	20.01	19.26	321584833.93	0.00
std	41.82	42.28	41.38	41.85	41.46	336387347.28	0.03
min	0.05	0.05	0.05	0.05	0.04	0.00	-0.52
25%	0.29	0.30	0.29	0.29	0.24	116124600.00	-0.01
50%	0.51	0.52	0.50	0.51	0.42	209059200.00	0.00
75%	18.89	19.02	18.68	18.89	16.44	401464000.00	0.01
max	198.02	199.62	197.00	198.11	198.11	7421640800.00	0.33

We will use returns from 2021 to predict prices in 2022.

```
train = aapl.loc['2021']
test = aapl.loc['2022']
```

We will use the following function to simulate price paths. Throughout this lecture notebook, we will use one-trading-day steps (i.e., dt=1).

```
def simulate_gbm(S_0, mu, sigma, n_steps, dt=1, seed=42):
    Function to simulate stock prices following Geometric Brownian Motion (GBM).
    Parameters
    -----
    S_0 : float
       Initial stock price
   mu : float
       Drift coefficient
    sigma : float
       Diffusion coefficient
   n_steps : int
       Length of the forecast horizon in time increments, so T = n_steps * dt
    dt : int
       Time increment, typically one day
    seed : int
       Random seed for reproducibility
    Returns
    _____
    S_t : np.ndarray
       Array (length: n_steps + 1) of simulated prices
```

```
1 1 1
      np.random.seed(seed)
      dW = np.random.normal(scale=np.sqrt(dt), size=n_steps)
      W = dW.cumsum()
      t = np.linspace(dt, n_steps * dt, n_steps)
      S_t = S_0 * np.exp((mu - 0.5 * sigma**2) * t + sigma * W)
      S_t = np.insert(S_t, 0, S_0)
      return S t
Now we will simulate price paths. Here is one simulated price path:
  simulate_gbm(
      S_0=train['Adj Close'].iloc[-1],
      mu=train['Return'].pipe(np.log1p).mean(),
      sigma=train['Return'].pipe(np.log1p).std(),
      n_steps=test.shape[0]
  )
array([175.56, 177.13, 176.93, 178.94, 183.5 , 183.01, 182.53, 187.34,
       189.83, 188.62, 190.45, 189.26, 188.07, 188.99, 183.55, 178.8,
       177.41, 174.78, 175.83, 173.51, 169.86, 174.02, 173.59, 173.95,
       170.26, 168.98, 169.46, 166.58, 167.75, 166.34, 165.75, 164.35,
       169.41, 169.55, 166.92, 169.28, 166.22, 166.95, 162.03, 158.83,
       159.49, 161.53, 162.14, 162.02, 161.42, 157.86, 156.24, 155.27,
       158.05, 159.08, 154.87, 155.83, 155.05, 153.56, 155.22, 157.93,
       160.44, 158.5, 157.89, 158.89, 161.53, 160.48, 160.18, 157.57,
       154.78, 156.94, 160.51, 160.5, 163.24, 164.35, 162.85, 163.96,
       168.17, 168.25, 172.65, 165.82, 168.17, 168.57, 167.96, 168.38,
       163.34, 162.95, 164.04, 168.1, 166.9, 164.96, 163.83, 166.39,
       167.44, 166.21, 167.75, 168.18, 170.96, 169.25, 168.55, 167.69,
       164.02, 164.97, 165.83, 166.01, 165.57, 162.08, 161.18, 160.48,
       158.62, 158.39, 159.57, 164.57, 165.2, 166.05, 166.03, 161.24,
       161.34, 161.67, 168.26, 167.93, 168.91, 168.99, 166.08, 169.28,
       171.49, 173.83, 171.53, 175.56, 171.89, 173.68, 179.99, 177.38,
       175.98, 176.45, 175.23, 171.17, 171.54, 168.86, 170.31, 168.03,
       172.38, 170.44, 169.75, 172.13, 168.99, 169.78, 173.51, 169.33,
       170.01, 170.89, 173.19, 170.02, 166.68, 168.24, 169.21, 170.06,
       171.18, 169.53, 170.33, 171.3 , 169.56, 174.82, 176.32, 173.21,
```

```
175.2 , 172.7 , 175.05, 178.48, 176.36, 179.26, 180.62, 183.18, 188.95, 188.42, 186.38, 183.97, 181.81, 181.78, 182.96, 183.95, 186.57, 186.8 , 191.35, 190.75, 199.34, 201.54, 199.03, 195.9 , 197.61, 197.12, 199.57, 201.28, 201.26, 198.79, 194.29, 193.13, 195.97, 196.84, 193.21, 193.94, 195.33, 192.83, 193.5 , 193.88, 190.61, 191.9 , 193.81, 197.36, 200.89, 196.77, 194.08, 195.87, 197.68, 199.5 , 212.26, 214.41, 218.52, 222.07, 224.61, 223.73, 226.67, 224.15, 223.55, 222.08, 222.6 , 231.14, 224.65, 227.34, 221.85, 220.44, 224.5 , 224.97, 221.4 , 219.14, 221.74, 219.43, 220.42, 220.81, 218.78, 226.56, 229.08, 222.1 , 222.99, 220.9 , 224.13, 221.58, 221.41, 223.42, 226.74, 222.71, 221.77, 220.34, 218.31, 224.72, 226.41, 222.17])
```

We will combine simulate_gbm() with a list comprehension and pd.concat() to simulate many price paths. To simplify this combination, we will write a helper function simulate_gbm_series() that:

- 1. Returns a series
- 2. Helps us vary the seed argument

```
def simulate gbm series(seed, train=train, test=test):
    S t = simulate gbm(
        S_0=train['Adj Close'].iloc[-1],
        mu=train['Return'].pipe(np.log1p).mean(),
        sigma=train['Return'].pipe(np.log1p).std(),
        n_steps=test.shape[0],
        seed=seed
    return pd.Series(data=St, index=test.index.insert(0, train.index[-1]))
n = 100
S_t = pd.concat(
    objs=[simulate gbm series(seed=seed) for seed in range(n)],
    axis=1,
    keys=range(n),
    names=['Simulation']
)
S_t
```

Simulation Date	0	1	2	3	4	5	6	7	8	9	 90
2021-12-31	175.56	175.56	175.56	175.56	175.56	175.56	175.56	175.56	175.56	175.56	 175.5
2022-01-03	180.72	180.32	174.60	180.79	175.89	176.98	174.89	180.51	176.00	175.75	 175.1
2022-01-04	182.06	178.77	174.62	182.23	177.47	176.24	177.10	179.37	179.25	175.13	 174.6
2022-01-05	185.09	177.47	169.00	182.70	174.89	183.34	177.90	179.66	174.01	172.25	 173.2
2022-01-06	191.97	174.67	173.63	177.59	177.00	182.80	175.57	181.01	170.41	172.40	 171.2
2022-12-23	263.30	307.78	208.45	242.89	279.85	227.13	237.51	207.87	216.25	252.80	 238.9
2022-12-27	268.12	305.95	209.92	251.23	278.82	226.46	234.31	206.16	212.62	259.22	 232.6
2022-12-28	264.97	315.16	211.85	255.79	275.85	224.22	238.65	206.03	211.34	255.58	 237.0
2022-12-29	259.17	309.05	210.96	256.73	274.65	225.95	238.08	201.73	211.18	258.81	 241.6
2022-12-30	261.59	307.70	210.24	264.08	275.53	225.67	242.50	201.41	213.21	261.36	 236.7

Below, we prefix the simulated price path column names with _ to hide them from the legend. However, this feature triggers a warning 100 times! We will suppress these 100 warnings with the warnings package. Generally, we should avoid suppressing warnings, however it is the easiest option here.

```
import warnings

fig, ax = plt.subplots(1,1)
with warnings.catch_warnings():
    warnings.simplefilter("ignore")
    S_t.add_prefix('_').plot(alpha=0.1, ax=ax)
S_t.mean(axis=1).plot(label='Mean', ax=ax)
aapl.loc[S_t.index, ['Adj Close']].plot(label='Observed', ax=ax)
plt.legend()
plt.ylabel('Price ($)')
plt.title(
    'Apple Simulated and Observed Prices' +
    f'\nTrained from {train.index[0]:%Y-%m-%d} to {train.index[-1]:%Y-%m-%d}')
plt.show()
```

Apple Simulated and Observed Prices Trained from 2021-01-04 to 2021-12-31

58.1.2 Pricing Stock Options

We can use simulated price paths to price options! We will use the Black and Scholes (1973) formula as a benchmark. Black and Scholes (1973) provide a closed form (analytic) solution to price European options.

```
Initial stock price
K : float
    Strike price
T : float
    Time to expiration in days
r : float
    Daily risk-free rate
sigma : float
    Standard deviation of daily stock returns
type : str
    Type of the option. Allowable: ['call', 'put']
Returns
option_premium : float
    The premium on the option calculated using the Black-Scholes model
d1 = (np.log(S_0 / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))
d2 = d1 - sigma * np.sqrt(T)
if type == 'call':
    val = (norm.cdf(d1, 0, 1) * S_0) - (norm.cdf(d2, 0, 1) * K * np.exp(-r * T))
elif type == 'put':
    val = (norm.cdf(-d2, 0, 1) * K * np.exp(-r * T)) - (norm.cdf(-d1, 0, 1) * S_0)
else:
    raise ValueError('Wrong input for type!')
return val
```

We can use the AAPL parameters above to price a European call option on AAPL stock. We will calculate its price at the end of 2021 with an expiration at the end of 2022, assuming a 5% risk-free rate.

```
S_0 = train['Adj Close'].iloc[-1]
K = 100
T = test.shape[0]
r = 0.05/252
sigma = train['Return'].pipe(np.log1p).std()
S_0
```

```
_ = price_bs(
    S_0=S_0,
    K=K,
    T=T,
    r=r,
    sigma=sigma
)

print(f'Black and Scholes (1973) option price: {_:0.2f}')
```

Black and Scholes (1973) option price: 80.50

To simulate the Black and Scholes (1973) option price, we must simulate AAPL prices with the same 5% risk-free rate as the drift. We will write a new helper function to use the same inputs as above.

```
def simulate_gbm_series(seed, S_0=S_0, T=T, r=r, sigma=sigma, train=train, test=test):
    S_t = simulate_gbm(
        S_0=S_0,
        mu=r,
        sigma=sigma,
        n_steps=T,
        seed=seed
)
return pd.Series(data=S_t, index=test.index.insert(0, train.index[-1]))
```

We will simulate more price paths to increase the precision of out option price.

```
n = 10_000

S_t = pd.concat(
    objs=[simulate_gbm_series(seed=seed) for seed in range(n)],
    axis=1,
    keys=range(n),
    names=['Simulation']
)
S_t
```

Simulation Date	0	1	2	3	4	5	6	7	8	9	•••	9990
2021-12-31	175.56	175.56	175.56	175.56	175.56	175.56	175.56	175.56	175.56	175.56		175.5
2022-01-03	180.54	180.14	174.42	180.61	175.72	176.81	174.71	180.33	175.83	175.58		177.4
2022-01-04	181.70	178.42	174.28	181.88	177.12	175.90	176.75	179.02	178.90	174.79		176.7
2022-01-05	184.55	176.95	168.51	182.17	174.37	182.80	177.37	179.13	173.49	171.75		179.4
2022-01-06	191.21	173.99	172.95	176.89	176.31	182.09	174.88	180.30	169.75	171.72		182.3
2022-12-23	206.58	241.48	163.55	190.57	219.57	178.21	186.35	163.09	169.67	198.34		155.5
2022-12-27	210.16	239.81	164.54	196.92	218.54	177.50	183.66	161.60	166.65	203.18		159.6
2022-12-28	207.49	246.79	165.89	200.30	216.00	175.58	186.88	161.33	165.49	200.14		157.4
2022-12-29	202.75	241.77	165.03	200.84	214.86	176.76	186.25	157.81	165.20	202.46		155.9
2022-12-30	204.44	240.47	164.31	206.39	215.33	176.37	189.52	157.40	166.63	204.26		155.8

We can compare this price to a simulated price. The payoff on the call option is $S_T - K$ or 0, whichever is higher. The price of the option is the present value of the mean payoff, discounted at the risk-free rate.

```
payoff = np.maximum(S_t.iloc[-1] - K, 0)
_ = payoff.mean() * np.exp(-r * T)
print(f'Simulated option price: {_:0.2f}')
```

Simulated option price: 81.21

The option prices do not match exactly. However, we can simulate more price paths to bring our simulated option price closer to the analytic solution.

58.2 Estimating Value-at-Risk using Monte Carlo

Value-at-Risk (VaR) measures the risk associated with a portfolio VaR reports the worst expected loss, at a given level of confidence, over a certain horizon under normal market conditions. For example, say the 1-day 95% VaR of our portfolio is \$100. This implies that that 95% of the time (under normal market conditions), we should not lose more than \\$100 over one day. We typically present VaR as a positive value, so a VaR of \$100 implies a loss of less than \$100.

We can calculate VaR several ways, including:

• Parametric Approach (Variance-Covariance)

- Historical Simulation Approach
- Monte Carlo simulations

We only consider the last method to calculate the 1-day VaR of an portfolio of 20 shares each of META and GOOG.

```
tickers = ['GOOG', 'META']
shares = np.array([20, 20])
T = 1
n_sims = 10_000
```

However, we will download all data from Yahoo! Finance and subset our data later.

```
df = (
    yf.download(tickers=tickers)
    .rename_axis(columns=['Variable', 'Ticker'])
)
```

```
[********** 2 of 2 completed
```

Next, we calculate daily returns during 2022. Choosing the window to define "normal market conditions" is part art, part science, and beyod the scope of this lecture notebook.

```
returns = df['Adj Close'].pct_change().loc['2022']
returns
```

Ticker	GOOG	META
Date		
2022-01-03	0.00	0.01
2022-01-04	-0.00	-0.01
2022-01-05	-0.05	-0.04
2022-01-06	-0.00	0.03
2022 - 01 - 07	-0.00	-0.00
	•••	
2022-12-23	0.02	0.01
2022-12-27	-0.02	-0.01
2022-12-28	-0.02	-0.01
2022-12-29	0.03	0.04
2022-12-30	-0.00	0.00

We will need the variance-covariance matrix.

```
cov_mat = returns.cov()
cov_mat * 1_000_000
```

Ticker Ticker	GOOG	META
GOOG	596.48	674.26
META	674.26	1638.50

We will use the variance-covariance matrix to calculate the Cholesky decomposition.

The Cholesky decomposition helps us generate random variables with the same variance and covariance as the observed data.

These random variables have a variance-covariance matrix similar to the real data.

```
np.cov(correlated_rv.T) * 1_000_000
array([[ 597.18, 685.37],
       [ 685.37, 1647.31]])
  np.allclose(cov_mat, np.cov(correlated_rv.T), rtol=0.05)
True
  np.mean(correlated_rv, axis=0) * 100
array([0.02, 0.02])
  returns.mean().values * 100
array([-0.16, -0.32])
Here are the parameters for the simulated price paths:
  mu = returns.mean().values
  sigma = returns.std().values
  S_0 = df.loc['2021', 'Adj Close'].iloc[-1].values
  P_0 = S_0.dot(shares)
Calculate terminal prices using the GBM formula above:
  S_T = S_0 * np.exp((r - 0.5 * sigma ** 2) * T + sigma * np.sqrt(T) * correlated_rv)
  S_T
array([[144.79, 336.82],
       [144.74, 336.38],
       [144.61, 335.63],
       [144.53, 336.3],
       [144.65, 334.95],
       [144.6 , 336.2 ]])
```

Calculate terminal portfolio values and returns. Note that these are dollar values, since VaR is typically expressed in dollar values.

```
P_T = S_T.dot(shares)
  P_T
array([9632.23, 9622.51, 9604.65, ..., 9616.48, 9592.05, 9615.98])
  P diff = P T - P O
  P_diff
array([ 11.64, 1.92, -15.94, ..., -4.11, -28.54, -4.61])
  P_diff.mean()
-4.38
Next, we calculate VaR.
  percentiles = [0.01, 0.05, 0.1]
  var = np.percentile(P_diff, percentiles)
  for x, y in zip(percentiles, var):
      print(f'1-day VaR with \{100-x\}\% confidence: \{-y:.2f\}')
1-day VaR with 99.99% confidence: $48.02
1-day VaR with 99.95% confidence: $44.65
1-day VaR with 99.9% confidence: $42.63
Finally, we will plot VaR:
  fig, ax = plt.subplots()
  ax.hist(P_diff, bins=100, density=True)
  ax.set_title(f'Distribution of 1-Day Changes in Portfolio Value\n from {n_sims} Simulation
  ax.axvline(x=var[2], color='red', ls='--')
```

```
ax.text(x=var[2], y=1, s='99% 1-Day VaR', color='red', ha='right', va='top', rotation=90,
ax.set_ylabel('Density')
ax.set_xlabel('1-Day Change in Portfolio Value ($)')
plt.show()
```

Distribution of 1-Day Changes in Portfolio Value from 10000 Simulations

59.1 Announcements

59.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 2
pd.options.display.float_format = '{:.2f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

59.2.1 Estimate π by simulating darts thrown at a dart board

Hints: Select random xs and ys such that $-r \le x \le +r$ and $-r \le x \le +r$. Darts are on the board if $x^2 + y^2 \le r^2$. The area of the circular board is πr^2 , and the area of square around the board is $(2r)^2 = 4r^2$. The fraction f of darts on the board is the same as the ratio of circle area to square area, so $f = \frac{\pi r^2}{4r^2}$.

59.2.2 Simulate your wealth W_T by randomly sampling market returns

Use monthly market returns from the French Data Library. Only invest one cash flow W_0 , and plot the distribution of W_T .

59.2.3 Repeat the exercise above but add end-of-month investments C_t

60.1 Announcements

60.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 2
pd.options.display.float_format = '{:.2f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

60.2.1 Estimate π by simulating darts thrown at a dart board

Hints: Select random xs and ys such that $-r \le x \le +r$ and $-r \le x \le +r$. Darts are on the board if $x^2 + y^2 \le r^2$. The area of the circlular board is πr^2 , and the area of square around the board is $(2r)^2 = 4r^2$. The fraction f of darts on the board is the same as the ratio of circle area to square area, so $f = \frac{\pi r^2}{4r^2}$.

60.2.2 Simulate your wealth W_T by randomly sampling market returns

Use monthly market returns from the French Data Library. Only invest one cash flow W_0 , and plot the distribution of W_T .

60.2.3 Repeat the exercise above but add end-of-month investments C_{t}

61.1 Announcements

61.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 2
pd.options.display.float_format = '{:.2f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

61.2.1 Estimate π by simulating darts thrown at a dart board

Hints: Select random xs and ys such that $-r \le x \le +r$ and $-r \le x \le +r$. Darts are on the board if $x^2 + y^2 \le r^2$. The area of the circlular board is πr^2 , and the area of square around the board is $(2r)^2 = 4r^2$. The fraction f of darts on the board is the same as the ratio of circle area to square area, so $f = \frac{\pi r^2}{4r^2}$.

61.2.2 Simulate your wealth ${\it W_T}$ by randomly sampling market returns

Use monthly market returns from the French Data Library. Only invest one cash flow W_0 , and plot the distribution of W_T .

61.2.3 Repeat the exercise above but add end-of-month investments C_t

62.1 Announcements

62.2 Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%precision 2
pd.options.display.float_format = '{:.2f}'.format
%config InlineBackend.figure_format = 'retina'

import yfinance as yf
import pandas_datareader as pdr
```

62.2.1 Estimate π by simulating darts thrown at a dart board

Hints: Select random xs and ys such that $-r \le x \le +r$ and $-r \le x \le +r$. Darts are on the board if $x^2 + y^2 \le r^2$. The area of the circlular board is πr^2 , and the area of square around the board is $(2r)^2 = 4r^2$. The fraction f of darts on the board is the same as the ratio of circle area to square area, so $f = \frac{\pi r^2}{4r^2}$.

62.2.2 Simulate your wealth ${\it W_T}$ by randomly sampling market returns

Use monthly market returns from the French Data Library. Only invest one cash flow W_0 , and plot the distribution of W_T .

62.2.3 Repeat the exercise above but add end-of-month investments C_t

Part XV

Week 15

63 Project 3

FINA 6333 – Spring 2023

To be determined