Cours de Chimie Organique

S. HADJOUT

CHAPITRE III

- A. Nomenclature en chimie organique
- B. Isomérie plane
- C. Stétéoisomérie

(Géométrique et optique)

A. Nomenclature en chimie organique

I. Introduction

La chimie organique étudie :

La transformation de molécules d'origine pétrolière ou vivante Elle est composées principalement

(C, H, O, N et S... etc)

- > Leurs structures
- > Leurs propriétés
- > Leurs caractéristiques
- > Leurs compositions
- > Leurs réactions
- Leur préparation par synthèse ou par autres moyens)

« Le pétrole est d'origine biologique »

La chimie organique se définit:

« La chimie du carbone »

- Le carbone forme des liaisons covalentes avec lui-même et avec d'autre atomes et forme de nombreuses chaînes ainsi que des cycles
- ➤ Solubles dans l'eau pour quelques uns et peu solubles pour d'autres

➤ Ils sont solubles dans les solvants organiques (l'éther, l'alcool ou autres)

La plupart se décomposent audessus de 200°C

Essence	Bois	Médicaments	Pesticides	
Vitres	Papier	Parfums	Insecticides	
Pneus	Jouets	Détergents	Huiles	
Sacs	Vêtements	Savons	Graisses	
Plastiques	Tapis	Colorants	Peintures	

- Auparavant les composés organiques sont obtenus à partir des ressources naturelles
- > Actuellement à partir de la pétrochimie

L'industrie chimique

II. Composés carbonés

Ceux sont des chaînes de carbone linéaires, ramifiées ou cycliques qui peuvent être modifiées par des groupements fonctionnels

1) Les hydrocarbures saturés

a) Les alcanes

Ce sont des chaînes linéaires ou ramifiées et ont pour formule brute

$$C_nH_{2n+2}$$

b) Les cyclanes

Formule générale : $C_nH_{2n+2-2p}$ (p = le nombre de fermeture de cycles)

Exemple

Pour un cycle : C_nH_{2n}

Pour un bicycle : C_nH_{2n-2}

> Nomenclature des alcanes

Un système de nomenclature est adopté par tous les chimistes du monde

« International Union of Pure and Applied Chemistry »

« IUPAC »

a. Le nom alcanes est donné aux hydrocarbures saturés, il est indiqué par la terminaison : « ane »

b. Pour les alcanes ramifiés on considère la chaîne carbonée la plus longue

c. Les atomes ou les groupes d'atomes liés à la chaîne principale appelés :

Substituants

d. La position des groupes est précisée par un numéro, on affecte aux substituants les indices dont leur somme soit la plus faible

e. La ponctuation dans la nomenclature

IUPAC

- On doit écrire les noms en un seul mot
- Les numéros sont séparés par des virgules
- Les numéros et les lettres sont séparés
 par un traits d'union : « »

Quand plusieurs substituents sont ≠ ,
 on les classe par l'ordre alphabétique

Les préfixes : di, tri, tétra, sec, iso, tertio, néo n'interviennent pas dans cet ordre

> Nomenclature des cyclanes

Pour les hydrocarbures cycliques, on place le préfixe «cyclo» devant le nom alcane

La nomenclature des cyclanes substitués, est analogue à celle des alcanes

Exemples

Cyclopropane

Cyclobutane

Cyclopentane

Cyclohexane

c) Les groupes alkyles et cycloalkyles

Les ramifications sur la chaîne principale d'un hydrocarbure = « Substituants »

Le suffixe « ane » est remplacé par « yle »

α) Alkyles linéaires

n.alkyle:-CH₃ (méthyle), -C₂H₅ (éthyle) -C₃H₇ (propyle), -C₄H₉ (butyle)

β) Alkyles ramifiés

Structure	Nom courant	Nom systématique	Dérivé
	Courant	systematique	
H ₃ C CH-	Isopropyle	1-méthyléthyle	Propane
H ₃ C CH-CH ₂ —	Isobutyle	2-méthylpropyle	2-méthylpropane
H ₃ C			(isobutane)
H ₃ C-CH-CH ₂ -CH ₃	Sec-butyle	1-méthylpropyle	Butane

Structure	Nom courant	Nom systématique	Dérivé
СН ₃ Н ₃ С—С–	Tertio-	1,1-diméthyl éthyle	2-méthylpropane (tertiobutane)
CH ₃	butyle		
CH ₃ H ₃ C—C-CH ₂ - CH ₃	Néopentyle	2,2-diméthyl propyle	2,2-diméthyl propane (néopentane)

Tableau 3 : Groupes alkyles ramifiés

γ) Cycloalkyles

Les cycloalkyles résultent de l'élimination d' 1H d'un cycloalcane

Ils sont nommés en remplaçant la terminaison « ane » par « yle »

Exemples

Exemples

2,4-dimethylhexane
3,5-dimethylhexane

2-méthyl-4-isopropylhexane 5-méthyl-3-isopropylhexane

(6) (3) t.Bu (6) (6) (6)
$$(4)$$
 (6) (5) (7) (1) (5) (2) (4) (6) (5) (1) (5) (2)

4-tertiobutyl-3-méthylhexane

ou 3-tertiobutyl-4-méthylhexane

$$CH_3$$
 CH_3
 CC

1,2-diméthylcyclopentane 1,5-diméthylcyclopentane

1-chlorocyclohexane

2) Les hydrocarbures insaturés

a) Les alcènes

Présence d'une (C=C), de formule brute C_nH_{2n} et C_nH_{2n-2} pour les alcènes cycliques Ils peuvent être ramifiés par des groupements

> Nomenclature des alcènes acycliques IUPAC

1.C=C est désignée par la terminaison :

« ène » « diène » « triène »

- 2.L'indice le plus petit est donné à la double liaison
- 3. Ce petit numéro de la C=C est placé devant la terminaison ène

Exemples

butène but-1-éne

$$CH_3$$
- CH = CH_2 - CH_3

but-2-éne

$$(1) (2) (4) (5) (6) (7) (8)$$

2-méthyloct-3-éne

7-méthyloct-5-éne

> Nomenclature des alcènes cycliques

La numérotation du cycle se fait à partir des carbones porteurs des doubles liaisons

cyclohex-1,3-diène

4-méthylcyclopentène

> Nomenclature des groupes alcènyles

3 groupes importants dérivent de

l'éthylène et du propène

CH₂=CH- vinyle

CH₂=CH-CH₂- Propènyle

CH₃-CH=CH– allyle

b) Les alcynes

Ce sont des hydrocarbures qui comportent une triple liaison $C \equiv C$. Ils peuvent être ramifiées et de formule brute C_nH_{2n-2}

- > Nomenclature des alcynes iupac
- 1. La triple liaison C≡C est désignée par la terminaison « yne » « diyne » « triyne »
- 2. L'indice le plus petit est affecté à la triple liaison
- 3. Le plus petit numéro de la triple liaison est placé devant la terminaison yne

Exemples

$$CH_3-C\equiv C-CH_2-CH_3$$
pent-2-yne / pent-3-yne

4-méthyloct-1,5-diyne 5-méthyloct-3,7-diyne

Nomenclature des groupes alcynyles

2 groupes bien connu dérivent de l'acétylène

3) Les hydrocarbures benzèniques

a) Les composés benzèniques

Molécules cycliques de 6 carbones comportant 3 doubles liaisons alternées Leur formule de base générale C_6H_6

« aromatiques ou arènes »

> Nomenclature des aromatiques

Avec plusieurs substituants sur le cycle, on désigne leurs positions par les préfixes ortho méta ou para ou par la numérotation de 1 à 5

benzène

méthylbenzéne ou toluène

vinylbenzène ou styrène

Isopropylbenzène (cuméne)

parabromostyrène

> Nomenclature des substituants aromatiques

2 groupes aromatiques très courant ont un nom particulier

Exercices 1

- 1) Donnez les formules des composés suivants :
 - a) 2-méthyl-3-chloro-3-isopropyl-4-phenylheptane
 - b) 3-ethyl-4-tertiobutyloct-2-ène
 - c) 1-methyl-4-clhlorocyclohexane
 - d) 1-bromo-4-nitropent-2-yne
 - e) bromobenzène
 - f) 3-chlorotoluène

Exercices 2

2) Donnez la nomenclature selon IUPAC des composés suivants :

3) Proposez deux molécules et donnez leur nomenclature selon IUPAC

III. Composés monofonctionnels

a) Nomenclature des alcools et thiol

Portent une fonction –OH ou –SH

« alcools et thiols »

La terminaison de la fonction alcool est désignée par le suffixe —ol— et celui du thiol par le suffixe « thiol »

CH₃-CH₂-CH₂-OH
propanol

3,7-diméthyloct-2,6-diènol Géraniol (essence de rose)

CH₃-CH₂-CH₂-SH propanthiol

2-méthylphénol ou orthométhylphénol

b) Nomenclature des éthers et thioethers

Composés porteurs d'un atome d'oxygène intercalé entre 2 carbones R-O-R ou R-O-R'

Leur terminaison est désignée par le suffixe « éther »

 CH_3 - CH_2 -O- CH_2 - CH_3 CH_3 - CH_2 -O- CH_3

diéthylether éthylméthylether

méthylphénylether (anisol)

tétrahydrofurane

furane

thiophène

c) Nomenclature des cétones

Composés porteurs d'une fonction C=O « cétones »

Leur terminaison est désignée par le suffixe « one »

Le numéro le plus petit est donné au carbone C=O, si la fonction est prioritaire

$$H_3C$$
 $\stackrel{O}{\longleftarrow}$ CH_3

Propan-2-one

2-méthylcyclopentanone

$$O$$
 \parallel
 $H_3C-C-CH=CH_2$

but-3-èn-2-one

d) Nomenclature des aldéhydes

Composés porteurs d'un groupement HC=O à l'extrémité de la chaîne ou du cycle

Leur terminaison est désignée par le suffixe

« al »

Le plus petit numéro est donné au carbone de la fonction aldéhyde si elle est prioritaire

$$\begin{array}{c} O \\ H-C-CH-CH_2CH_3 \\ CH_3 \end{array}$$

éthanal

2-méthylbutanal

$$\begin{array}{c} O \\ \parallel \\ H-C-CH_2-CH=CH_2 \end{array}$$

but-3-énal

cyclopentancarbaldéhyde

benzaldéhyde

e) Nomenclatures des acides et leurs dérivées

> Les acides carboxyliques

Composés porteurs d'une fonction carboxylique «—COOH» à l'extrémité de la chaîne ou du cycle

Leur terminaison est désignée par le suffixe

« oïque »

Le nom est précédé par le mot acide. Le plus petit numéro est donné au carbone de la fonction acide

$$H_3C-C-OH$$

Acide éthanoïque Acide but-3-énoïque

Acide cyclopentancarboxylique

Acide benzoïque

> Les esters

Ont la même structure que les acides où OR remplace le groupe OH

$$\Rightarrow$$
 « -COOR »

Leur terminaison est désignée par le suffixe « oate » suivi du mot alkyle

Le plus petit numéro est donné au carbone de la fonction ester si elle est prioritaire

$$O$$
 \parallel
 $H_3CO-C-CH_2-CH_3$

Propanoate de méthyle

Benzoate d'éthyle

> Les amides

Ont la même structure que les acides où OH est remplacé par NH₂ NHR, NRR ou NRR'

$$\Rightarrow$$
 «-CONH₂»

La terminaison est désignée par le suffixe

« amide »

Le premier numéro est donné au carbone de la fonction amide si elle est prioritaire

$$H_3C-CH_2-C-NH_2$$

Propanamide

$$H_3C$$
 CH_3
 CH_3
 CH_3

N,N-diméthyléthanamide

Benzène carboxamide

> Les halogénures d'acide

Ont la même structure que les acides où un halogène X remplace $OH \implies \ll -COX \gg$ terminaison des halogénures désignée par le suffixe « oyle » précédée du mot halogénure

Chlorure de propanoyle

Chlorure de benzoyle

> Les anhydrides d'acide

« ROC-O-COR » sont nommés en faisant précéder le nom de l'acide par le terme anhydride

$$H_3C \bigcirc O \bigcirc CH_3$$

Anhydride benzoïque Anhydride acétique

f) Nomenclatures des composés azotés

Les amines

Dérivés d'ammoniac où les H sont substitués par des groupes hydrocarbonés R-NH₂ d'où amine I, II ou III

Désignées par le suffixe «amine», précédé par le nom alkyle ou aryle

$$H_3C$$
 $CH-NH_2$ H_3C

$$H_3C-C=CH-NH_2$$
 CH_3

Isopropylamine

2-methylpropènylamine

$$\sim$$
NH₂

$$CI - NH_2$$

Phénylamine ou aniline

4-chloroaniline

Les nitriles

Sont des composés où le carbone est lié à l'azote par une triple liaison C≡N

Leur terminaison est désignée par le suffixe « nitrile » précédé par le nom

$$H_3C-CH_2-C\equiv N$$
 $\bigcirc -C\equiv N$ $\bigcirc -C\equiv N$

propanonitrile cyclopentanonitrile benzanonitrile

IV. Les composés polyfonctionnels

Composés comportant deux ou plusieurs fonctions identiques

Sont désignées par leur suffixe et précédées par le préfixe di, tri, tétra

3-méthylhexan-2,4-diol

5-méthylhexan-2,4-dione

$$H \xrightarrow{\bigcirc} H$$

Acide butandioïque

2-méthylbutandial

$$H_2N$$
 O
 NH_2

$$NH_2$$
 NH_2

2-méthylbutandiamide

Pentan-1,4-diamine

V. Les composés à fonctions mixtes

Composés qui comportent 2 ou plusieurs fonctions \neq . La fonction prioritaire impose son suffixe et les autres fonctions appelées aussi fonctions secondaires auront leur préfixe d'après la nomenclature IUPAC

Acide 4-méthyl-3-oxopentanoïque

Acide 4-hydroxy-3-méthypentanoïque

Acide 2-formyl-3-méthyl -4-cyanobutanoïque

Classement par ordre de priorité des fonctions

Fonctions	Suffixe (prioritaire)	Préfixe (Secondaire)
Acide carboxylique	-oïque	_
Ester	-oate d'alkyle	Carboxylate
Chlorure d'acide	-oyle (nom précédée du mot halogénure de)	Chloroformyle

Amide O (NH2, NHR, NRR)	-amide	Carboxamide
Nitrile -C≡N	-nitrile	cyano
Aldéhyde	-al	Oxo au bout de la chaîne Formyle en chaine latérale
Cétone	-one	Oxo

Alcool et phénol -OH	-o1	Hydroxy
Amine -NH ₂ , -NHR, -NRR	-amine	Amino
Ether oxyde R-O-R	-oxyde d'alkyle	alkyloxy
C≡C	-yne	_
C=C	-ène	-

Exercices 1

1) Donnez la nomenclature selon IUPAC des composés suivants :

- 2) Donnez la nomenclature selon IUPAC des composés suivants :
 - a) 2-methoxy-4-clhlorocyclohexane

b) 2-oxo-3-(paranitrophenyl)pentanal.

c) 3-amino-2-methyl-4-propylephenol

Exercices 2

Écrivez les formules semi-développées des corps suivants :

- a) 2,2-diméthylbutane
- f) but-1-yne

b) 3-méthylpentane

g) 1-chloro-2-méthyl propane

c) 2-méthylpropane

h) 2,3-dibromobutène-2.

- d) 3-méthylbut-1-ène
- i) butan-2-ol

e) pent-2-ène

j) trichloroéthylène.

k) phénol

o) 2-méthylpropan-2-ol

1) 1,3,5-trichlorobenzène

p) 3-méthylbutanol

m) acide propanoïque

q) 2,2-diméthylpropanol

n) acide 2-méthylpropanoïque r) 1,2-diméthylbenzène