

Formation stat & R

Frédéric Baudron & Amélie d'Anfray

IRAD, 19-20 June 2025

Programme

- Importer un fichier
- Manipulation des données
- Introduction aux graphiques
- Quelques tests statistiques
- Modélisation
- Analyse factorielle
- Cartographie

Cirad Objectifs et mode d'emploi

- Rapide rappel sur les stats : quel test faire pour répondre à quelle question
- Prise en main de R
 - Connaitre certaines erreurs à ne pas commettre
 - Savoir interprêter les codes pour pouvoir les réutiliser sur d'autres jeux de données
- **Déroulé progressif et interactif** (bienveillance, écoute et partage)
- Sur deux jeux de données
 - Enquêtes ménages du projet LVAD
 - Données agronomiques de Vicky sur des essais soja

A very quick introduction to statistics

Why use statistics?

- Statistics will rarely show you something that thorough exploration of your data won't: don't mystify statistics!
- Biological science is based on samples:
 - Because of the large variability between individuals
 - Because sampling the whole population is (often) not feasible
- Part of the differences or relations you may observe between two samples is due to chance (because of sampling fluctuation)
- Statistics test the probability that observed differences or relations are simply due to chance

Why use statistics?

- Sampling fluctuation: extent to which a statistic takes on different values with different samples:
 - Two samples, even though very different, don't always come from different populations
 - Two samples, even though very similar, don't always come from the same population

Cirad What types of statistical tests?

- « Comparing » or « linking »
- Parametric and non-parametric

- Removing records that are OBVIOUS aberrations (error during data collection, data capture, etc)
- Removing outliers: observations that are numerically distant from the rest of the data
- Observations that differ by twice the standard deviation or more from the mean
- Log-transformation or other transformation

Comparing

- 2 Means
 - Two large samples (n > 30): Z-test
 - At least one small sample (n < 30) but distribution approximately normal: *T-test*
 - At least one small sample (n < 30) and non-normal distribution U-test (Mann and Whitney) = W-test (Wilcoxon)
- More than 2 means
 - Normal distribution and standard errors not significantly different:
 ANOVA
 - Otherwise: H-test (Kruskall-Wallis)
- Proportions
 - Chi-square test (or Fisher)
- **Test de normalité**: Test de Shapiro (p-value <0.05 : la distribution ne suit pas une loi normale)

Linking

- 2 continuous variables
 - Testing the strength of the relation: Correlation
 - Finding a numeric relation: Regression
- A continuous variable to a binary one (the dependent variable)
 - Logistic regression
- 2 or more categorical variables and a continuous variable (the dependent variable)
 - Multifactor ANOVA
- 2 or more quantitative or categorical variables and a continuous variable
 - General Linear Model

Multivariate analyses

Factorial analysis

To extract m common factors from a set of p quantitative variables

Principal Component Analysis

 To extract k principal components from a set of p quantitative variables (k < p, and each principal component is a linear combination of the p variables)

Cluster analysis

 To group observations (or variables) into clusters based upon similarities between them

Thank you for your interest!

frederic.baudron@cirad.fr