

Operating Systems Concepts Ch. 1-8

Study online at quizlet.com/_dadky

 Advantages of Multiprocessor Application 	Increased Throughput, Economy of Scale, Increased Reliability specifies a set of functions that are	22. contiguous memory allocation	each process is contained in a single contiguous portion of memory
Programming Interface (API)	available to an application programmer including parameters and return values	23. copy-on-write	allows parent and child process initially to share the same pages
Asymmetric Multiprocessing	Each processor is assigned a specific task and a master controls the system.	24. CPU Bound Process	generates I/O requests infrequently, does computations
4. Asynchronous cancellation	Master/Slave One thread immediately terminates the target thread	25. CPU-I/O Burst Cycle	Alternation of CPU Burst and I/O Burst (timeline)
5. Atomically	one uninterrupted unit	26. CPU Scheduling	If several jobs are ready to run at the same time, the system must choose
6. backing store	process swapped out of memory to this		among them
o. Ducking store	temporarily then brought back in	27. CPU Utilization	Keep the CPU as busy as possible
7. Belady's anomaly	page-fault rate might increase as allocated frames increases	28. Critical Section Problem	When one process is in it's Critical Section, no others can be. Each must ask
 Benefits of Multithreading 	responsiveness, resource sharing,		permission to enter it's sectionentry section, _exit section, _remainder section
Mottitilleading	economy, utilization of multiprocessor (scalability)	29. Data Section	contains global variables
 Blocking receive 	receiver blocks until a message is available	30. deadlock	a set of resources is in deadlock when every process in the set is waiting for an
10. Blocking Send	sending process blocked until the message is received by the receiving		event that can be used only by another process in the set
Bounded- buffer problem	process/mailbox problem with multithreading	31. deadlock avoidance	give the os additional information about which resources a process will request and use during its lifetime
12. Bounded capacity	Queue has finite length, at most n messages can reside.	32. Deadlock conditions	Mutual exclusion, Hold and Wait, No Preemption, Circular wait
13. Bounded waiting	there is a number of times other processes can enter cs's before a process who	33. deadlock detection	if single instance of each resource type, build wait-for graph search for cycle
	requested goes in it's	34. deadlock	provides methods for ensuring at least
14. Buffering	a temporary queue for messages	prevention	one of necessary conditions cannot hold
15. busy waiting	continual looping while waiting to enter CS	35. deadlock recovery	process termination: abort all deadlocked processes, or one at a time
16. Cache Coherency	All copies of "A" must be updated across multiple processors	36. deadlock recovery	algorithm to detect whether deadlock has occurred and algorithm to recover
17. Caching	As information is used, it is copied to a faster storage system on a temporary basis	37. Deferred cancellation	Target thread periodically checks whether it should terminate, terminates
18. circular wait deadlock avoidance	impose a total ordering on all resource types and require each process request	38. Degree of	itself the number of processes in memory
19. Command		Multiprogramming	
Interpreter	Shells, get and execute the next user-specified command.	39. demand paging	load pages only as they are needed
20. compile time address	absolute code can be generated if you know where process will reside	40. Device Controller	processor that controls the physical actions of one or more storage devices
binding 21. Context Switch	State save of the current process and state	41. Device Driver	a program that determines how a computer will communicate with a peripheral device
	restore of a different process	42. Device Queue	Processes waiting for I/O Action

43. Dining philosophers	Five philosophers spend their lives thinking, eating, only five chopsticks	64. inverted page tables	page table indexes physical memory, search to find entry
problem 44. Direct	send(p, message), receive(q, message)	65. I/O Bound Process	spends more time doing I/O than computations
communication		66. Job Queue	All processes in system
45. Direct Memory Access (DMA)	Uses one interrupt per block without intervention from the CPU	67. job scheduling	OS selects a job from the job pool and loads into memory for execution
46. Dual Mode Operation	Privileges for kernel can not be performed by users (prevents infinite loops)	68. Kernel	The one program always running (the operating system)
47. effective access time	how long to compute if there is a page fault	69. Kernel Mode	Mode Bit: 0. Denotes tasks executed on behalf of the kernel
48. equal allocation	split m frames among n processes equally leaving remainder for buffer	70. Layered OS Approach	Dijskra. Scheduler > Memory Management > Communication > Manage I/O and all devices > Compiler Executing user programs/printing > User Programs
49. exec()	loads a binary file into memory and starts execution		
50. Execution	Parent/Child run concurrently	71. lazy	never swaps a page into memory unless that
51. execution time	process can be moved during execution,	swapper	page will be needed
address binding	binding delayed with special hardware	72. least- recently-	uses recent past to predict future
52. First-Come	Process that requests the CPU first is	used	
First-Served Scheduling	allocated first FIFO queue. Average waiting time high, Gantt chart	replacement	attempts to keep the workload evenly
53. fork()	Creates a new process	Balancing	distributed across all processors in a system
54. fragmentation	first-fit and best-fit cause fragmentation,	74. load time	compiler generates relocatable code for
5	free memory space broken into small pieces	address binding	bindings
55. frame- allocation	how many frames to allocate to each process, when page replacement required	75. locality of reference	allows prediction of needed pages
algorithm		76. local replacement	if one process thrashing, cannot steal frames from another
56. global/local replacement	global looks at all frames, local just at one process's	algorithm	
57. Graphical User	Users employ a mouse-based window-	77. logical address	address located in the CPU
Interface	and-menu system (desktop) and uses a mouse to click on images/icons	78. Logical	Abstraction of main memory that the user
58. hashed page	hash value is virtual page number, linked	Memory	sees (includes VM)
table	list of elements	79. Long Term	selects processes from the pool and loads
59. Heap	memory that is dynamically allocated during process run time	Scheduler 80. main	them into memory for execution process as one rectangle of memory
60. hierarchical	page table is a tree, unused branches don't	memory	addresses, range of legal addresses
paging	exist	81. Mechanism	how to do something
61. Hybrid Structure	layered system in which one layer is a Mach microkernel. Application Environments > Kernel Environment	82. Medium Term Scheduler	Removes processes from memory to reduce degree of multiprogramming and later reintroduce.
62. Indirect communication	messages sent/received from mailboxes (create, send/receive, delete mailboxes)	83. Memory Hierarchy	Registers, Cache, Main Memory, Electronic/Magnetic Disks, Optical Disks,
63. Inter-process Communication	Information sharing between processes to speed up computation, allow modularity, convenience	84. memory resident	in memory, as long as needed pages are in memory no problems

85. Message Passing Model	A connection is opened between processes and messages are exchanged either directly or through a common mailbox (send/receive)	102. OS Services	User Interface, Program Execution, I/O Operations, File-system manipulation, Communications, Error detection, resource allocation, accounting, Protection/Security
86. Microkernel	moves as much as possible out of kernel and creates modules (Mac OSX)	103. over- allocating	more frames are required than available
87. MMU	adds value in relocation register to every address	104. page fault	trying to access a page not brought into memory, access to a page marked invalid
88. modify bit	every frame has a modify bit set by hardware whenever written	105. page-fault frequency	establish upper and lower bounds on desired page-fault rate
89. Modules	Scheduling classes, file systems, loadable system calls, executable formats, STREAMS modules, miscellaneous, device and bus drivers	106. page-fault rate	measures the slowdown of the computer due to paging
		107. pager	concerned with the individual pages of a process.
90. Monitors	an abstract data type with public methods, the set of programmer-defined operations are provided mutual exclusion within the monitor. Each process signals wait(mutex) before CS	108. page replacement	os swaps out a process freeing all frames and reducing multiprogramming
		109. page table structure	logical address spaces are too big, structure techniques
91. MS-DOS	and signal(mutex) after Simple structure. Application Program > Resident System Program > MS-DOS	110. paging	permits physical address space of a process to be non-contiguous by avoiding external fragmentation. break memory into blocks
	Drivers > ROM/BIOS & Device Drivers	ııı. physical	address seen by the memory unit
92. Multilevel Queue Scheduling	partitions ready queue into several separate queues with absolute priority	address 112. physical	base address of page in physical memory +
93. Multiple	processors must be homogeneous, asymmetric (one processor accesses system data & structures), symmetric (each processor self-scheduling)	address	offset within page
Processor Scheduling		113. Physical Memory	The Amount of RAM that is installed in a computer
94. Multiprocessor	Systems with 2 or more processors in	114. Pipe	acts as a conduit allowing two processes to communicate
Systems	close communication sharing the computer bus, clock, memory, and peripherals	115. Policies	determine what will be done
		116. pool	group of free pages for requests
95. Multiprogramming	organizes jobs (code and data) so the CPU always has one to execute	117. Preemptive	Incurs a cost to access shared data
96. Mutual Exclusion	If a process is in its critical section, no other process can be in theirs	118. Priority Scheduling Algorithm	CPU allocated to process with highest priority. Internal (ratio average I/O burst to CPU burst) or External (importance).
97. Non-blocking receive	Receiver retrieves either a valid message or null		Indefinite blocking/starvation solved by aging.
98. Non blocking Send	the sending process sends the message and resumes operation	119. Privileged Instructions	Designated machine instructions that may cause harm only allowed in kernel mode
99. Non-preemptive Scheduling	Scheduling takes place only for Ready > Waiting or Process Termination	120. Process	A Program in execution (program counter, stack, data section)
100. non-uniform memory access	memory access times vary significantly	121. Process Control Block	Process State, Program Counter, CPU Registers, CPU Scheduling Information, Memory Management, Accounting
101. optimal-page-	lowest page-fault rate, does not exist		Information, I/O Status Information
replacement algorithm		122. Process Creation	Parent creates child, resource sharing, children a subset of parents resources but not shared

123. Process Scheduler	Manages the Job queue, Ready Queue, and Device queue	144. Scheduling Criteria	What are we trying to maximize/minimize? What runs next?
124. Process States	New > Running > Waiting > Ready > Terminated	145. secondary memory	holds pages no present in main memory
125. Process Termination	child exit(), parent wait()	146. Semaphores	contains an integer variable that can be accessed only through two standard
126. Process termination	completion of execution	147. shared	operations - acquire/release allowed by virtual memory
127. Progress	If no process is in CS and some processes wish to enter theirs, only processes not in remainder can decide who goes next, cannot be postponed indefinitely	148. Shared- Memory Model	Processes use shared-memory-create and shared-memory-attach system calls to create and gain access to regions of memory owned
128. proportional allocation	allocate available memory to each process according to size	149. Shortest-	Associates length of process's next CPU burst,
129. pure demand paging	never bring a page into memory until it is required	Job-First Scheduling	assigns next CPU cycle to shortest Preemptive (processes booted if shorter comes), Nonpreemptive. Sometimes no way to know length of next CPU burst (short-term
130. Ready > Waiting	invokes wait()	Charl Tarre	CPU)
131. Ready Queue	All processes in memory ready to run	150. Short Term CPU Scheduler	selects from among the processes ready to execute and allocates the CPU to one
132. reference bit	set by hardware whenever a page is referenced for LRU	151. Short Term Scheduler	CPU Scheduler. Selects a process from memory that's ready to execute, allocates
133. reference string	evaluate an algorithm by running on this string in memory	152. Signal	used in UNIX to notify a process that a
134. release	process releases the resource (system call)		particular event has occurred
135. Remote Procedure Call	a way to abstract the procedure-call mechanism for use between systems with network connections	153. Signal and continue	Q either waits until P leaves the monitor or for another condition
136. Rendezvous	both send() and receive() are blocking	154. Signal and wait	P either waits until Q leaves the monitor or for another condition
137. request	process requests resource. if it can't be granted requesting process must wait (system call)	155. simplest deadlock avoidance	require each process declare the _maximum number resources of each type it may need, linear algebra
138. Resource Allocation	Multiple users or jobs running at the same time must share CPU cycles, main memory,	156. Socket	endpoint for communication. Identified by an IP Address concatenated with a port number.
	file storage, and I/O devices	157. sparse	virtual address spaces with holes
139. Resource allocation graph	edge from process Pi to resource Rj is a request edge other is assignment edge	158. Stack	contains temporary data (function parameters, return addresses, local variables)
140. Response Time	how fast do you get anything back (submission > response)	159. stack algorithms	can't exhibit Belady's anomaly
141. response	The time it takes to respond to user interactions such as a mouse click	160. Storage Hierarchy	Magnetic Disk > Main Memory > Cache > Hardware Register
142. Round Robin	designed for time-sharing systems, similar to	161. Swapping	Processes are swapped in and out of main memory to the disk
Scheduling	FCFS but allows preemption	162. Swapping	Processes are swapped out and later swapped in by the Medium Term Scheduler
143. Running > Ready	when interrupt occurs		

163. Symmetric Multiprocessing	Most common type, each processor performs all tasks, all are peers
164. Synchronization hardware	a lock is required for the CS. allow test/modify contents of a word or swap contents of two words atomically
165. System Calls	Provide an interface to the services made available by the OS
166. system libraries	shared by several processes through mapping
167. Text Section	program code
168. thrashing	high paging activity
169. Thread cancellation	terminating a thread before it has completed
170. Threading	One>One, Many>One, Many>Many
171. Thread Pool	create a number of threads at process startup and place them in a pool where they wait for work. Limits number that can run at one time, faster than waiting to create new
172. Threads	Allows one task at a time
173. Throughput	Getting more work done in less time
174. time sharing	Multitasking: CPU executes multiple jobs by switching among them so frequently the user doesn't notice
175. Trap	A Software generated interrupt caused by an error or by a specific request from a user program that an operating-system service be performed
176. Turnaround Time	time from submission (airbag deployment)
177. Types of System Calls	process control, file manipulation, device manipulation, information maintenance, communications, protection
178. Unbounded capacity	Queue's length is potentially infinite, any number of messages can wait, sender never waits
179. UNIX	User (Shell & Commands, Compilers, System Libraries) > Kernel (Signals, File System, Swapping, CPU Scheduling, Virtual Memory) > Hardware (Disks, terminals)
180. USE	the process can operate on the resource
181. User Mode	Mode Bit: 1. Denotes tasks executed on behalf of the user.
182. User OS Interface	Command Interpreter or Graphical User Interface
183. victim frame	frame killed by page-replacement algorithm

184. virtual address space	logical/virtual view of how a process is stored in memory
185. Virtual Machines	abstract the hardware into several different execution environments. Create illusion that each environment is running its own private computer.
186. Virtual Memory	allows the execution of a process that is not completely in memory
187. virtual memory	separation of logical memory as perceived by users from physical memory. no need to worry.
188. virtual memory fork	parent process suspended, child uses address space of parent
189. VM Benefits	complete protection of the system resources, perfect for development
190. Waiting > Ready	completion of I/O event
191. Waiting Time	short and long jobs arrive at the same time
192. Zero capacity	queue has max length zero, link can't have any messages waiting. Sender must block until recipient receives.
193. zero-fill- on- demand	pages zeroed-out before being allocated (erasing previous contents)