Contents

1	The	RC4 stream cipher	2
	1.1	Title of the first subchapter of the first chapter	2
	1.2	Title of the second subchapter of the first chapter	2
2		oretical analysis of the KSA Substracting equations	3
Conclusion		4	
Bi	Bibliography		5

1. The RC4 stream cipher

Algorithm KSA Initialization: for $i = 0, \dots, N-1$ do S[i] = iend for j = 0 Scrambling:for $i = 0, \dots, N-1$ do

Algorithm PRGA

end for return S

```
Initialization i = 0

j = 0

Keystream generation loop i = i + 1

j = j + S[i]

Swap(S[i],S[j]) t = S[i] + S[j]

return S[t]
```

 $j = j + S[i] + K[i \mod l]$

- 1.1 Title of the first subchapter of the first chapter
- 1.2 Title of the second subchapter of the first chapter

2. Theoretical analysis of the KSA

Notation.
$$K[a...b] := \sum_{i=a}^{b} K[i]$$

Lemma 1. TODO prerekvizita vety 1

Lemma 2. TODO prerekvizita vety 1

Theorem 3. [1] Assume that during the KSA the index j takes its values uniformly at random from \mathbb{Z}_N . Then $\forall 0 \leq i \leq r-1, 1 \leq r \leq N$

$$\Pr(S_r[i] = K[0...i] + \frac{i(i+1)}{2}) \ge \left(\frac{N-i}{N}\right) \left(\frac{N-1}{1}\right)^{\frac{i(i+1)}{2}+r} + \frac{1}{N}$$

Proof. TODO

Corollary. TODO zobecneni na posledni kolo nebo predchozi vetu rovnou smerovat tam?

TODO tabulka s aktualnimi hodnotami

TODO to same pro InvS

TODO zobecneni na sekvence

TODO inverzni sekvence

TODO vyyiti tohoto na ziskani klice - rovnice

2.1 Substracting equations

Let $i_1 < i_2$. If $C_{i_1} = K[0...i_1]$ and $C_{i_2} = K[0...i_2]$, then we can substract the values and get

$$C_{i_2} - C_{i_1} = K[0...i_2] - K[0...i_1] = K[i_1 + 1...i_2]$$

This holds with the product of the individual probabilities of C_i

Conclusion

Bibliography

[1] Paul G. and Maitra S. Rc4 state information at any stage reveals the secret key. Proceedings of SAC 2007, 2007.