UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

SEMINARIO DE ANÁLISIS MATEMÁTICO A

Ejemplo: Análisis aplicado a Ecuaciones Diferenciales Parciales

SEMESTRE: Séptimo u octavo

CLAVE: **0743**

HORAS A LA SEMANA/SEMESTRE		
TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Álgebra Moderna I, Análisis Matemáti-

co II, Ecuaciones Diferenciales Parciales I, Variable Compleja I.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): Que el alumno conozca los problemas que aborda esta rama del Análisis y los principales métodos para resolverlos.

NUM. HORAS	UNIDADES TEMÁTICAS
16	1. Espacios de Hilbert
	1.1 Repaso de espacio vectorial normado, completo etc.
	1.2 Producto escalar. Espacios de Hilbert.
	1.3 Teorema de la proyección ortogonal.
	1.4 Espacios de Hilbert separables.
	1.5 Dual de un espacio de Hilbert y Teorema de representación de
	Riesz.
16	2. Algunos espacios clásicos
	2.1 Espacios C^k .
	2.2 Espacios de Lebesgue.
	2.3 Teoremas Fundamentales.
	2.4 Convolución en \mathbb{R}^n .
16	3. Introducción a las distribuciones
	3.1 Definición de \mathcal{D}' y subconjuntos notables
	3.2 Propiedades.
16	4. Espacios de Sobolev en dimensión 1
	4.1 Motivación, definición.
	4.2 Desigualdades de Sobolev.

16	5. Resolución de problemas con valores en la frontera	
	5.1 Teorema de Lax-Milgram.	
	5.2 Ejemplos.	
	5.3 Introducción al método de elementos finitos.	

BIBLIOGRAFÍA BÁSICA:

- 1. Brézis, H., Análisis Funcional, Madrid: Alianza Universidad Textos, 1984.
- 2. Rakotoson, J.E., Rakotoson, J.M., Analyse Fonctionnelle Appliquée aux Équations aux Dérivées Partielles, Paris: Presses Universitaires de France, 1999.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Kreyszig, E., *Introductory Functional Analysis with Applications*, Malabar, Florida: Krieger, 1989.
- 2. Jost, J., Postmodern Analysis, New York: Springer-Verlag, 1998.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.