The LNM Institute of Information Technology Jaipur, Rajsthan

MATH-I \blacksquare Assignment #2

(Sequences)

- Q1. Prove that limit of a sequence is always unique.
- Q2. Prove or disprove: the sequence (x_n) is convergent using the definition of convergent if x_n is as follows:

1.
$$x_n = 2$$

$$2. \ x_n = \frac{1}{n^2 + 2n - 4}$$

3.
$$x_n = \frac{n^2 + 3n}{3n^2 + 5}$$

(Hint: First guess what is limit "l".)

- Q3. Let $a_n \to a$ and $a \neq 0$. Then using the definition of limit of a sequence, show that there is $m \in \mathbb{N}$ such that $\frac{|a_n|}{2} > 0$ for all $n \geq m$. (Hint: $a \neq 0$ implies |a| > 0. Also use inequality $||b| - |a|| \leq |b - a|$.)
- Q4. Investigate the convergence/divergence of the following sequences:

(a)
$$x_n = \frac{1}{n^2 + 1} + \frac{2}{n^2 + 2} + \dots + \frac{n}{n^2 + n}$$

(b)
$$x_n = \frac{n^2}{n^3 + n + 1} + \frac{n^2}{n^3 + n + 2} + \dots + \frac{n^2}{n^3 + 2n}$$

(c)
$$x_n = (n+1)^{\alpha} - n^{\alpha}$$
 for some $\alpha \in (0,1)$

(a)
$$x_n = \frac{1}{n^2+1} + \frac{2}{n^2+2} + \dots + \frac{n}{n^2+n}$$

(b) $x_n = \frac{n^2}{n^3+n+1} + \frac{n^2}{n^3+n+2} + \dots + \frac{n^2}{n^3+2n}$
(c) $x_n = (n+1)^{\alpha} - n^{\alpha}$ for some $\alpha \in (0,1)$
(d) $x_n = \left(\sqrt{2} - 2^{\frac{1}{3}}\right) \left(\sqrt{2} - 2^{\frac{1}{5}}\right) \dots \left(\sqrt{2} - 2^{\frac{1}{2n+1}}\right)$
(e) $x_n = \frac{n!}{(2n+1)!}$

(e)
$$x_n = \frac{n!}{(2n+1)!}$$

$$(f) x_n = \frac{n}{4^n}$$

$$(g) x_n = (n!)^{\frac{1}{n^2}}.$$

- Q5. Let a > 0 and $x_1 > 0$. Define $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$ for all $n \in \mathbb{N}$. Prove that the sequence (x_n) converges to \sqrt{a} . These sequences are used in the numerical calculation of \sqrt{a} .
- Q6. Prove that the sequence $\left(n^{\frac{1}{n}}\right)$ converges to 1 as $n \to \infty$. (Hint: Consider $d_n := n^{\frac{1}{n}} - 1$. Then prove $d_n \to 0$ using binomial expansion and Squeeze theorem.)
- Q7. Prove or disprove: "Every bounded sequence of real number is convergent."
- Q8. Let $x_1 = 8$ and $x_{n+1} = \frac{1}{2}x_n + 2$ for all $n \in \mathbb{N}$. Using Mathematical Induction prove that $\frac{x_{n+1}}{x_n} < 1$ for every $n \in \mathbb{N}$. However, prove that (x_n) does not converge to 0.