TAMS65 - Lecture 10: Linear Regression analysis

Zhenxia Liu

Matematisk statistik Matematiska institutionen

Contents ► Simple linear regression Introduction Model ► Multiple Linear regression Introduction Model ▶ 5 Questions Example TAMS65 - Lecture 10

Simple linear regression - Introduction What is the simple linear regression about?

For example, in one study, people want to know the relation between **damage costs** and **distance** to the nearest fire station in case of fires.

Then we can define two populations X and Y in the following way.

$$X = \{ \text{the distance from fire station (in miles)} \}$$

$$Y = \{ \text{the damage cost (in thousands of dollars)} \}$$

Note: X and Y are Not independent. Note: check by their covariance.

We assume that X and Y are linear. How to check the linear relation? I: $|\rho(X,Y)| \approx 1$. II: plot n observations.

Simple linear regression - Introduction

Take a sample, choose n fire stations:

$$\{x_1, x_2, \ldots, x_n\} \{y_1, y_2, \ldots, y_n\}$$

Paired data: $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$.

For example, we have 15 observations (fire stations) as following:

$$(x_i, y_i)$$
: (3.4, 26.2), (1.8, 17.8), (4.6, 31.3), (2.3, 23.1), (3.1, 27.5),

LU LINKÖPINGS UNIVERSITET

TAMS65 - Lecture 10

5/45

Simple linear regression - Introduction

We want to study the linear relation between X and Y.

Goal: Find $y = \beta_0 + \beta_1 x$ which fits the points best.

Linear regression will give us an answer.

Simple linear regression - Model

Simple linear regression

Model:

$$Y = \beta_0 + \beta_1 x + \varepsilon$$
, where $\varepsilon \sim N(0, \sigma)$

This model is called simple linear regression (Enkel linjär regression).

- $ightharpoonup eta_0, eta_1$ are unknown parameters
- x: variable for observations (Not a r.v.)
- ightharpoonup arepsilon is an error (a r.v.)
 - Y is a r.v.
 - ► There are several equivalent forms of the **Model**.

Simple linear regression - Model

Equivalent forms of the **Model**

▶ Model:
$$Y = \beta_0 + \beta_1 x + \varepsilon$$
, where $\varepsilon \sim N(0, \sigma)$

$$\mu = E(Y) = \beta_0 + \beta_1 x, \ \hat{\beta}_0, \ \hat{\beta}_1 = ?$$

$$\hat{\mu} = \hat{\beta}_0 + \hat{\beta}_1 x$$
 or $y = \hat{\beta}_0 + \hat{\beta}_1 x$ is called **estimated regression** line (skattad regressionslinje).

- x is called explanatory variable (förklaringsvariable).
- ▶ Model: $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, where $\varepsilon_i \sim N(0, \sigma)$, i = 1, ..., n.
 - \triangleright $\varepsilon_1, \ldots, \varepsilon_n$ are independent.
 - $\blacktriangleright \mu_i = E(Y_i) = \beta_0 + \beta_1 x_i, \ \hat{\mu}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i,$
 - $ightharpoonup y_i \hat{\mu}_i = e_i = ext{residual, error}$

Simple linear regression - Model

Equivalent forms of **Model**

$$\underbrace{\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}}_{=\mathbf{Y}} = \underbrace{\begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_n \end{pmatrix}}_{=\mathbf{X}} \underbrace{\begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}}_{=\boldsymbol{\beta}} + \underbrace{\begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}}_{=\boldsymbol{\varepsilon}}$$

▶ Model:
$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
, where $\boldsymbol{\varepsilon} \sim \mathcal{N}(\vec{0}, \sigma^2 \mathbf{I}_{n \times n})$.

- X is a constant matrix (observations).
- ightharpoonup eta is unknown parameter vector.
- Y is a normal vector, and $\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_{n \times n})$.

Multiple linear regression - Introduction

Multiple linear regression

Populations: X_1, X_2, \dots, X_k e.g. distance, water, ...

Population: Y e.g. damage cost.

Not independent

Sample: choose n fire stations, after measure/observe, we have $((x_{11}, x_{12}, \dots, x_{1k}), y_1)$ $((x_{21}, x_{22}, \dots, x_{2k}), y_2)$

$$((x_{n1},x_{n2},\ldots,x_{nk}),y_n)$$

Goal: Find $y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k$ which fits the points best.

Multiple linear regression - Model

Multiple linear regression

Model:

$$Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \varepsilon$$
, where $\varepsilon \sim N(0, \sigma)$

This model is called **Multiple linear regression** (multipel linjär regression.)

- $\triangleright \beta_0, \beta_1, \ldots, \beta_k$ are unknown parameters.
- \triangleright x_1, x_2, \dots, x_k are variables for observations (Not r.v.).
- \triangleright ε is an error (a r.v.)
- Y is a r.v.
- ▶ There are several equivalent forms of the **Model**.

Multiple linear regression - Model

Equivalent forms of the Model

▶ **Model:**
$$Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \varepsilon$$
, where $\varepsilon \sim N(0, \sigma)$.

- $\mu = E(Y) = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k, \ \hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_k = ?$
- $\hat{\mu} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_k x_k$ or $y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_k x_k$ is called **estimated regression line**.
- x_1, x_2, \dots, x_k are called **explanatory variables** (förklaringsvariabler).
- ▶ **Model:** $Y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \varepsilon_i$, where $\varepsilon_i \sim N(0, \sigma)$ for $i = 1, \ldots, n$.

$$\triangleright \varepsilon_1, \ldots, \varepsilon_n$$
 are independent.

- $\mu_i = E(Y_i) = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik},$
- $\hat{u}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \ldots + \hat{\beta}_k x_{ik}.$
- $\mu_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik},$
- $ightharpoonup y_i \hat{\mu}_i = e_i = \text{residual, error}$

Multiple linear regression - Model

Model:

$$\begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1k} \\ 1 & x_{21} & \dots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{nk} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

$$= \mathbf{X} = \mathbf{S} = \mathbf{S}$$

Model:

$$oldsymbol{Y} = \mathbf{X}oldsymbol{eta} + oldsymbol{arepsilon}, ext{ where } oldsymbol{arepsilon} \sim \mathcal{N}(ec{0}, \sigma^2 \mathbf{I}_{n imes n})$$

- X is a constant matrix (observations).
- ightharpoonup eta is unknown parameter vector.
- **Y** is a normal vector, and $\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_{n \times n})$. Exercise.

5 Questions

We will analyze the model by discussing the following 5 questions:

 $ightharpoonup Q_1$: Find the estimated regression line,

$$\hat{\mu} = y = \hat{eta}_0 + \hat{eta}_1 x + \ldots + \hat{eta}_k x_k$$
? That is, $\hat{oldsymbol{eta}} = \begin{pmatrix} eta_0 \\ \hat{eta}_1 \\ \vdots \\ \hat{eta}_k \end{pmatrix} =$?

- $ightharpoonup Q_2$: How well does the model fit observations / data (the estimated regression line)?
- $Q_3: \hat{\sigma^2} = ?$

5 Questions

- ▶ Q_4 : Does y depend on $\{x_1, x_2, \dots, x_k\}$? i.e. at least one variable (say x_j) is useful? i.e. at least one $\beta_j \neq 0$?
- ▶ Q_5 : Does y depend on a specific variable, say x_j ? i.e. Is x_j useful? i.e. $\beta_j \neq 0$? where $j=1,2,\ldots,k$.

That is.

5 Questions - Q_1

$$Q_1: Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \varepsilon \Rightarrow$$

$$\mu = E(Y) = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$$

For the i—th observation, we have

 $\mu_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik}, i = 1, 2, \ldots, n$

Replace
$$\mu_i$$
 by y_i , then $y_i \approx \beta_0 + \beta_1 x_{i1} + ... + \beta_k x_{ik}$

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1k} \\ 1 & x_{21} & \dots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{nk} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}$$

$$\times_{nk}$$

$$\beta_{k}$$

 $\mathbf{v} = \mathbf{X}\boldsymbol{\beta}$

Note:

5 Questions - Q_1

 Q_1 : If $det(\mathbf{X}'\mathbf{X}) \neq 0$, then we get the point estimate

$$\hat{oldsymbol{eta}} = \left(\mathbf{X}'\mathbf{X}
ight)^{-1}\mathbf{X}'oldsymbol{y}.$$

$$\hat{\boldsymbol{\mathcal{B}}} = \begin{pmatrix} B_0 \\ \hat{\mathcal{B}}_1 \\ \vdots \\ \hat{\mathcal{B}}_k \end{pmatrix} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{Y} \sim \mathcal{N} \left(\boldsymbol{\beta}, \sigma^2 \left(\mathbf{X}'\mathbf{X} \right)^{-1} \right).$$

17/45

5 Questions - Q_1 The point estimator $\hat{B}_i \sim N(\beta_i, \sigma \sqrt{h_{ji}})$, where we assume

The point estimator $B_j \sim \mathcal{N}(\beta_j, \sigma \sqrt{h_{jj}})$, where we assum that

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{pmatrix} h_{00} & h_{01} & \dots & h_{0k} \\ h_{10} & h_{11} & \dots & h_{1k} \\ \vdots & & & & \\ h_{k0} & h_{k1} & \dots & h_{kk} \end{pmatrix}$$
Set: Prove that $\hat{R}: \sim N(\beta: \sigma, \sqrt{h_{ii}})$

Exercise: Prove that
$$\hat{B}_j \sim N(\beta_j, \sigma \sqrt{h_{jj}})$$
. Hint: $A = (0 \ldots 0 \ 1 \ 0 \ldots 0)$

$$\hat{\mathcal{B}}_j - \hat{\mathcal{B}}_i \sim \mathcal{N}\left(\beta_j - \beta_i, \sigma\sqrt{A\left(\mathbf{X}'\mathbf{X}\right)^{-1}A'}\right),$$
 Where $A = \begin{pmatrix} 0 & \dots & 1 & 0 & \dots & -1 & 0 & \dots & 0 \end{pmatrix}$

5 Questions - Q_2

 Q_2 : Note: We have $\hat{\mu}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + ... + \hat{\beta}_k x_{ik}$. Then we can divide the sum of squares of total in the following way:

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{\mu}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{\mu}_i)^2.$$

$$= SS_{TOT} = SS_E$$

- \triangleright SS_{TOT} is the sum of squares of Total.
- \triangleright SS_R is the sum of squares of regression.
- \triangleright SS_E is the sum of squares of residuals / errors.

Note: $SS_{TOT} \Leftrightarrow Q_{TOT}$, $SS_R \Leftrightarrow Q_{REGR}$ and $SS_E \Leftrightarrow Q_{RES}$.

5 Questions - Q_2

 Q_2 :

Coefficient of Determination (förklaringsgraden)

$$R^2 = \frac{SS_R}{SS_{TOT}} = \frac{SS_R}{SS_R + SS_E}$$

- $0 \le R^2 \le 1$
- ho $R^2 pprox 1$ implies that the Model (the estimated regression line) fits the observations / data well.
 - ▶ Generally, the higher R^2 , the better Model fits the data.

5 Questions - Theorem

Theorem

Under the conditions of the above model it holds that

$$\triangleright$$
 SS_F , SS_R and $\hat{\mathbf{B}}$ are independent.

$$\frac{SS_R}{\sigma^2} \sim \chi^2(k).$$

$$\hat{\sigma}^2 = s^2 = \frac{SS_E}{n-k-1}.$$

 $\frac{SS_E}{\sigma^2} \sim \chi^2(n-k-1).$

5 Questions -
$$Q_3$$

$$\sigma^2 pprox \hat{\sigma^2} = s^2 = rac{SS_E}{n-k-1},$$

Where n is the number of observations, and k is the number of explanatory variables.

▶
$$n-k-1$$
 is the degrees of freedom of SS_E

5 Questions - Q_4 Hypothesis

$$H_0:\ eta_1=...=eta_k=0$$
 against $H_1:$ at least one $eta_i
eq 0.$

The Sampling distribution

$$\frac{SS_R/k}{SS_E/(n-k-1)} \sim F(k,n-k-1)$$

Test statistics is

$$TS = rac{SS_R/k}{SS_E/(n-k-1)}$$
 and $C = (F_lpha(k,n-k-1),\infty)$

If $TS \in C$, then reject H_0 . That is, at least one variable is useful.

$$\triangleright$$
 k is degrees of freedom of SS_R .

5 Questions - Q_5

 Q_5 :

Note that: The point estimator $\hat{B}_j \sim N(\beta_j, \sigma \sqrt{h_{jj}}), j=1,2,\ldots,k$ where we assume that

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{pmatrix} h_{00} & h_{01} & \dots & h_{0k} \\ h_{10} & h_{11} & \dots & h_{1k} \\ \vdots & & & & \\ h_{k0} & h_{k1} & \dots & h_{kk} \end{pmatrix}$$

Hence, we get the sampling distribution

$$rac{\hat{B}_{j}-eta_{j}}{\sigma_{1}/h_{ii}}\sim N(0,1)\iff rac{\hat{B}_{j}-eta_{j}}{S_{1}/h_{ii}}\sim t(n-k-1)$$

5 Questions - Q_5

Method 1: Make a test on β_j with level α : $\begin{cases} H_0: \beta_j = 0 \\ H_1: \beta_j \neq 0 \end{cases}$

$$TS = rac{\hat{eta}_j - 0}{s\sqrt{h_{jj}}} ext{ or } rac{\hat{eta}_j - 0}{d(\hat{eta}_j)}$$

$$C=(-\infty,-t_{lpha/2}(n-k-1))\cap (t_{lpha/2}(n-k-1),\infty)$$

If $TS \in C$, reject H_0 , i.e. y depends on x_j .

Method 2: Get a confidence interval for β_i with confidence $1 - \alpha$

$$I_{eta_j}=\hat{eta}_j\mp t_{lpha/2}(n-k-1)s\sqrt{h_{jj}}$$
 If $0
otin I_{eta_i}$, then $eta_j
eq 0$, i.e. y depends on x_i .

Method III: In MATLAB, p-value $< \alpha \iff$ reject H_0 .

A company has measured three performance variables x_1, x_2 and x_3 for its sellers. The values of these have been standardized such that 100 represents an average performance for a person in the industry. Furthermore, they have undergone a test where they measured creativity (x_4) , ability to reason mechanically" (x_5) and abstract (x_6) as well as mathematical ability (x_7) .

Nr		.,						
INI	x_1	<i>X</i> ₂	X3	X4	<i>X</i> 5	<i>X</i> ₆	X7	
1	88.8	91.8	87.6	1	10	10	16	
2	99.0	101.3	103.0	5	12	9	23	
49	114.3	109.5	117.1	18	12	12	45	
50	116.0	118.5	112.5	18	16	11	50	

Let's use $y = x_1 + x_2 + x_3$ as the overall performance metric. When recruiting staff, it is interesting to predict the Y value using x_4 and x_7 .


```
We plot y against x_4 and x_7.
y = [268.2 \ 303.3 \ \dots \ 340.9 \ 347.0];
x4 = [1 5 ... 18 18];
x7 = [16 \ 23 \ \dots \ 45 \ 50]';
figure;
scatter(x4,y,'*');
xlabel('x_4'); ylabel('y')
figure;
scatter(x7,y,'*');
xlabel('x_7'); ylabel('y')
```

TAMS65 - Lecture 10

30/45

We also can check the linear relation by correlation.

0.9771

where $\varepsilon \sim N(0, \sigma)$.

$$Y = \beta_0 + \beta_4 x_4 + \beta_7 x_7 + \varepsilon$$

Answer the followings:

- (a) Write out the estimated regression line according to the model.
- (b) How does the model fit the data
- (c) Estimate σ .
- (d) Make a test on $\begin{cases} H_0: \beta_4=\beta_7=0\\ H_1: \text{ at least one } \beta_j\neq 0, j=4,7. \end{cases}$ with a significance level $\alpha=5\%$.
- (e) Is the variable x_7 useful/important for the model with a significance level $\alpha = 5\%$?

Direct output from MATLAB

```
>> regr = regstats(y,[x4 x7],'linear','all')
```

```
regr = >> s2 = regr.mse
...
source: 'regstats' s2 =
```

beta: [3x1 double]
covb: [3x3 double]

yhat: [50x1 double] r: [50x1 double]

r: [50x1 double] mse: 21.5633 rsquare: 0.9551

tstat: [1x1 struct]
fstat: [1x1 struct]

21.5633

>> betahat = re	gr.beta			
betahat =				
248.6924 0.1169				
2.0603				
II.U LINKÖPINGS UNIVERSITET	TAMS65 - Lo	ecture 10	36/4	— 45

>> regr.tstat	>> regr.tstat.beta	
1081.02000	1061.05000.5000	
ans =	ans =	
beta: [3x1 double]	248.6924	
se: [3x1 double]	0.1169	
t: [3x1 double]	2.0603	
<pre>pval: [3x1 double]</pre>		
dfe: 47		
>> regr.tstat.se		
ans =		
2.1654		
0.2189		
0.0862		
LINKÖPINGS UNIVERSITET	TAMS65 - Lecture 10	37/45

- >> format long
- >> Cbetahat = regr.covb
- Cbetahat =
 - 4.689050677582475 -0.198384946199334
 - -0.198384946199334 0.047903470928113 -0.072464543761939 -0.012093152553998
- >> XtXinv = Cbetahat/s2

XtXinv =

0.217455265812369 -0.009200124753437 -0.003360551571997 -0.009200124753437 0.002221528987479 -0.000560821344011 -0.003360551571997 -0.000560821344011 0.000344257027525

LU UNKÖPINGS TAMSO

39/45

-0.072464543761939

-0.012093152553998

0.007423313673958

	> fstat	t = re	egr.fs	tat						
İs	stat =									
)135e+	03						
		e: 47								
	dfr	r: 2								
	ssr	r: 2.1	L555e+	04						
	f	f: 499	8054							
	pval	L: 0								
II.u	LINKÖPINGS UNIVERSITET			-	TAMS65 -	Lecture 10			40	0/45

Summarized information of above output from MATLAB is also given in the following way.

248.6924

0.1169

2.0603

Estimated regression line: $y = 248.69 + 0.12x_4 + 2.06x_7$

RES

TOT

	·		
	Degrees of free	dom sum of squares	;
REGR	2	21555	_

 $d(\widehat{\beta}_i)$

2 1654

0.2189

0.0862

1013.5

22568.5

Note: Degrees of freedom (frihetsgrader), sum of squares (kvadratsumma).

47

49

Variance analysis:

(a) The estimated regression line is $v = \hat{\beta}_0 + \hat{\beta}_4 x_4 + \hat{\beta}_7 x_7 = 248.6924 + 0.1169 x_4 + 2.0603 x_7$

(b)
$$R^2=\frac{SS_R}{SS_{TOT}}=0.9551\approx 1$$
 which means the model fits the data very well.

(c)
$$\hat{\sigma} = \sqrt{s^2} = \sqrt{\frac{SS_E}{n-k-1}} = \sqrt{1013.5/47} \approx 4.6437.$$

$$TS = \frac{SS_R/k}{SS_E/(n-k-1)} = \frac{21555/2}{1013.5/47} = 499.8$$

$$C = (F_{0.05}(2, 47), \infty) = (3.18, \infty)$$
, we reject H_0 since $TS \in C$. i.e. at least one of x_4 and x_7 is useful/important to the model.

 $C = (-\infty, -t_{0.025}(47)) \cup (t_{0.025}(47), \infty) =$

(e) The sampling distribution for β_7 is

 $TS = \frac{\hat{\beta}_7 - 0}{d(\hat{\beta}_7)} = \frac{\hat{\beta}_7}{s\sqrt{h_{77}}} = \frac{2.0603}{0.0862} = 23.91$

 $(-\infty, -2.013) \cup (2.013, \infty)$. $TS \in C$, reject H_0 . i.e. $\beta_7 \neq 0$, which

Method 1:
$$H_0: \beta_7=0$$
 against $H_1: \beta_7\neq 0$

$$\frac{\hat{B}_7 - \beta_7}{s\sqrt{h_{77}}} \sim t(n-k-1).$$

means the variable x_7 is useful/important for the model.

(e) Method 2: Confidence interval

$$I_{\beta_7} = \hat{\beta}_7 \mp t_{0.025}(47)d(\hat{\beta}_7)$$

$$= \hat{\beta}_7 \mp t_{0.025}(47)s\sqrt{h_{77}} = (1.887, 2.234)$$

useful/important for the model.

useful/important for the model.

Method 3: $p - Value = 0 < \alpha$, \Rightarrow reject H_0 . i.e. the variable x_7 is

We can see that $0 \notin I_{\beta_7}$, i.e. $\beta_7 \neq 0$, which means the variable x_7 is

http://courses.mai.liu.se/GU/TAMS65/

