Interrupt And Exception

Exception

Table 4.9 Except	tion Types			
Exception Number	CMSIS Interrupt Number	Exception Type	Priority	Function
1	_	Reset	-3 (Highest)	Reset
2	-14	NMI	-2	Non-Maskable interrupt
3	-13	HardFault	-1	All classes of fault, when the corresponding fault handler cannot be activated because it is currently disabled or masked by exception masking
4	-12	MemManage	Settable	Memory Management fault; caused by MPU violation or invalid accesses (such as an instruction fetch from a non-executable region)
5	-11	BusFault	Settable	Error response received from the bus system; caused by an instruction prefetch abort or data access error
6	-10	Usage fault	Settable	Usage fault; typical causes are invalid instructions or invalid state transition attempts (such as trying to switch to ARM state in the Cortex-M3)
7–10	_	_	_	Reserved
11	-5	SVC	Settable	Supervisor Call via SVC instruction
12	-4	Debug monitor	Settable	Debug monitor – for software based debug (often not used)
13	_	_	_	Reserved
14	-2	PendSV	Settable	Pendable request for System Service
15	-1	SYSTICK	Settable	System Tick Timer
16–255	0-239	IRQ	Settable	IRQ input #0-239

Interrupt Request(IRQ)

```
STM32 specific Interrupt Numbers
                                     /*!< Window WatchDog Interrupt
WWDG IROn
                           = 0.
                                    /*!< PVD/PVM1/PVM2/PVM3/PVM4 through EXTI Line detection Interrupts
PVD PVM IROn
                           = 1,
TAMP STAMP IRQn
                           = 2,
                                    /*!< Tamper and TimeStamp interrupts through the EXTI line
RTC WKUP IRQn
                           = 3,
                                     /*!< RTC Wakeup interrupt through the EXTI line
                                     /*!< FLASH global Interrupt
FLASH IRQn
                           = 4,
                                     /*!< RCC global Interrupt
RCC IRQn
                           = 5,
                                     /*!< EXTI Line0 Interrupt
                           = 6,
EXTI0 IRQn
EXTI1 IRQn
                           = 7.
                                    /*!< EXTI Line1 Interrupt
EXTI2 IROn
                           = 8,
                                    /*!< EXTI Line2 Interrupt
EXTI3 IRQn
                           = 9,
                                   /*!< EXTI Line3 Interrupt
EXTI4 IRQn
                           = 10,
                                     /*!< EXTI Line4 Interrupt
DMA1 Channell IRQn
                           = 11,
                                     /*!< DMA1 Channel 1 global Interrupt
                                  /*!< DMA1 Channel 2 global Interrupt
DMA1 Channel2 IRQn
                           = 12.
                                    /*!< DMA1 Channel 3 global Interrupt
DMA1 Channel3 IRQn
                           = 13,
DMA1 Channel4 IRQn
                           = 14, /*!< DMA1 Channel 4 global Interrupt
DMA1 Channel5 IRQn
                                    /*!< DMA1 Channel 5 global Interrupt
                           = 15,
DMA1 Channel6 IROn
                                    /*!< DMA1 Channel 6 global Interrupt
                           = 16,
                                     /*!< DMA1 Channel 7 global Interrupt
DMA1 Channel7 IROn
                           = 17,
ADC1 2 IRQn
                           = 18,
                                     /*!< ADC1, ADC2 SAR global Interrupts
CAN1 TX IRQn
                           = 19,
                                     /*!< CAN1 TX Interrupt
                                     /*!< CAN1 RX0 Interrupt
CAN1 RX0 IRQn
                           = 20,
                           = 21,
CAN1 RX1 IRQn
                                     /*!< CAN1 RX1 Interrupt
                                     /*!< CAN1 SCE Interrupt
CAN1 SCE IRQn
                           = 22,
                                     /*!< External Line[9:5] Interrupts</pre>
EXTI9 5 IRQn
                           = 23,
                                     /*!< TIM1 Break interrupt and TIM15 global interrupt
TIM1 BRK TIM15 IRQn
                           = 24,
TIM1 UP TIM16 IRQn
                           = 25,
                                    /*!< TIM1 Update Interrupt and TIM16 global interrupt
TIM1 TRG COM TIM17 IRQn
                                     /*!< TIM1 Trigger and Commutation Interrupt and TIM17 global interrup
                           = 26,
                           = 27,
                                     /*!< TIM1 Capture Compare Interrupt
TIM1 CC IRQn
                                     /*!< TIM2 global Interrupt
TIM2 IRQn
                           = 28,
                                     /*!< TIM3 global Interrupt
TIM3 IRQn
                           = 29.
```

11.3 Interrupt and exception vectors

Table 42. STM32L4x6 vector table

				,	
Position	Priority	Type of priority	Acronym	Description	Address
-	-	-	-	Reserved	0x0000 0000
-	-3	fixed	Reset	Reset	0x0000 0004
-	-2	fixed	NMI	Non maskable interrupt. The RCC Clock Security System (CSS) is linked to the NMI vector.	0x0000 0008
-	-1	fixed	HardFault	All classes of fault	0x0000 000C
-	0	settable	MemManage	Memory management	0x0000 0010
-	1	settable	BusFault	Pre-fetch fault, memory access fault	0x0000 0014
-	2	settable	UsageFault	Undefined instruction or illegal state	0x0000 0018
-	-	-	-	Reserved	0x0000 001C - 0x0000 0028
-	3	settable	SVCall	System service call via SWI instruction	0x0000 002C
-	4	settable	Debug	Monitor	0x0000 0030
-	-	-	-	Reserved	0x0000 0034
-	5	settable	PendSV	Pendable request for system service	0x0000 0038
-	6	settable	SysTick	System tick timer	0x0000 003C
0	7	settable	WWDG	Window Watchdog interrupt	0x0000 0040
1	8	settable	PVD_PVM	PVD/PVM1/PVM2/PVM3/PVM4 through EXTI lines 16/35/36/37/38 interrupts	0x0000 0044
2	9	settable	RTC_TAMP_STAMP /CSS_LSE	RTC Tamper or TimeStamp /CSS on LSE through EXTI line 19 interrupts	0x0000 0048
3	10	settable	RTC_WKUP	RTC Wakeup timer through EXTI line 20 interrupt	0x0000 004C

4	11	settable	FLASH	Flash global interrupt	0x0000 0050
5	12	settable	RCC	RCC global interrupt	0x0000 005C
6	13	settable	EXTI0	EXTI Line0 interrupt	0x0000 005C
7	14	settable	EXTI1	EXTI Line1 interrupt	0x0000 005C
8	15	settable	EXTI2	EXTI Line2 interrupt	0x0000 0060
9	16	settable	EXTI3	EXTI Line3 interrupt	0x0000 0064
10	17	settable	EXTI4	EXTI Line4 interrupt	0x0000 0068
11	18	settable	DMA1_CH1	DMA1 channel 1 interrupt	0x0000 006C
12	19	settable	DMA1_CH2	DMA1 channel 2 interrupt	0x0000 0070
13	20	settable	DMA1_CH3	DMA1 channel 3 interrupt	0x0000 0074
14	21	settable	DMA1_CH4	DMA1 channel 4 interrupt	0x0000 0078
15	22	settable	DMA1_CH5	DMA1 channel 5 interrupt	0x0000 007C
16	23	settable	DMA1_CH6	DMA1 channel 6 interrupt	0x0000 0080
17	24	settable	DMA1_CH7	DMA1 channel 7 interrupt	0x0000 0084
18	25	settable	ADC1_2	ADC1 and ADC2 global interrupt	0x0000 0088
19	26	settable	CAN1_TX	CAN1_TX interrupts	0x0000 008C
20	27	settable	CAN1_RX0	CAN1_RX0 interrupts	0x0000 0090
21	28	settable	CAN1_RX1	CAN1_RX1 interrupt	0x0000 0094
22	29	settable	CAN1_SCE	CAN1_SCE interrupt	0x0000 0098
23	30	settable	EXTI9_5	EXTI Line[9:5] interrupts	0x0000 009C
24	31	settable	TIM1_BRK/TIM15	TIM1 Break/TIM15 global interrupts	0x0000 00A0
25	32	settable	TIM1_UP/TIM16	TIM1 Update/TIM16 global interrupts	0x0000 00A4
26	33	settable	TIM1_TRG_COM /TIM17	TIM1 trigger and commutation/TIM17 interrupts	0x0000 00A8
27	34	settable	TIM1_CC	TIM1 capture compare interrupt	0x0000 00AC
28	35	settable	TIM2	TIM2 global interrupt	0x0000 00B0
29	36	settable	TIM3	TIM3 global interrupt	0x0000 00B4
30	37	settable	TIM4	TIM4 global interrupt	0x0000 00B8

Signal flow/setup for External Interrupt EXTIx, x = 0...15

System configuration controller (SYSCFG)

SYSCFG main features

The STM32L4x6 devices feature a set of configuration registers. The main purposes of the system configuration controller are the following:

- Remapping memory areas
- Managing the external interrupt line connection to the GPIOs
- Managing robustness feature
- Setting SRAM2 write protection and software erase
- Configuring FPU interrupts
- Enabling the firewall
- Enabling /disabling I²C Fast-mode Plus driving capability on some I/Os and voltage booster for I/Os analog switches.

6.4.21 APB2 peripheral clock enable register (RCC_APB2ENR)

Address: 0x60

Reset value: 0x0000 0000

Access: word, half-word and byte access

Note: When the peripheral clock is not active, the peripheral registers read or write access is not

supported.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	DFSDM 1 EN	Res.	SAI2 EN	SAI1 EN	Res.	Res.	TIM 17EN	TIM16 EN	TIM15 EN
							rw		rw	rw			rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	USART 1 EN	TIM8 EN	SPI1 EN	TIM1 EN	SDMMC 1 EN		Res.	FW EN	Res.	Res.	Res.	Res.	Res.	Res.	SYS CFGEN

8.2.3 SYSCFG external interrupt configuration register 1 (SYSCFG_EXTICR1)

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res	Res	Res	Res												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res		EXTI3[2:0]	Res	I	EXTI2[2:0	1	Res	-	EXTI1[2:0)]	Res	I	EXTI0[2:0]
					rw	rw	rw		rw	rw	rw		rw	rw	rw

Bits 31:15 Reserved, must be kept at reset value.

Bits 14:12 EXTI3[2:0]: EXTI 3 configuration bits

These bits are written by software to select the source input for the EXTI3 external interrupt.

000: PA[3] pin

001: PB[3] pin

010: PC[3] pin

011: PD[3] pin

100: PE[3] pin

101: PF[3] pin

110: PG[3] pin

111: Reserved

Bit 11 Reserved, must be kept at reset value.

SYSCFG external interrupt configuration register 2 8.2.4 (SYSCFG_EXTICR2)

Address offset: 0x0C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res	Res	Res	Res												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	E	EXT17[2:0]	Res	E	EXTI6[2:0]	Res		EXTI5[2:0]	Res	ı	EXTI4[2:0]
	rw	rw	rw												

Bits 31:15 Reserved, must be kept at reset value.

Bits 14:12 EXTI7[2:0]: EXTI 7 configuration bits

These bits are written by software to select the source input for the EXTI7 external interrupt.

000: PA[7] pin

001: PB[7] pin

010: PC[7] pin

011: PD[7] pin

100: PE[7] pin

101: PF[7] pin

110: PG[7] pin

111: Reserved

Bit 11 Reserved, must be kept at reset value.

Bits 10:8 EXTI6[2:0]: EXTI 6 configuration bits

These bits are written by software to select the source input for the EXTI6 external interrupt.

000: PA[6] pin

001: PB[6] pin

010: PC[6] pin

011: PD[6] pin

100: PE[6] pin

101: PF[6] pin

110: PG[6] pin

111: Reserved

Bit 7 Reserved, must be kept at reset value.

8.2.5 SYSCFG external interrupt configuration register 3 (SYSCFG_EXTICR3)

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	E	XTI11[2:	0]	Res	E	XTI10[2:0	0]	Res		EXTI9[2:0)]	Res		EXTI8[2:0)]

Bits 31:15 Reserved, must be kept at reset value.

Bits 14:12 EXTI11[2:0]: EXTI 11 configuration bits

These bits are written by software to select the source input for the EXTI11 external interrupt.

000: PA[11] pin

001: PB[11] pin

010: PC[11] pin

011: PD[11] pin

100: PE[11] pin

101: PF[11] pin

110: PG[11] pin

111: Reserved

Bit 11 Reserved, must be kept at reset value.

Bits 10:8 EXTI10[2:0]: EXTI 10 configuration bits

These bits are written by software to select the source input for the EXTI10 external interrupt.

000: PA[10] pin

001: PB[10] pin

010: PC[10] pin

011: PD[10] pin

100: PE[10] pin

101: PF[10] pin

110: PG[10] pin

111: Reserved

Bit 7 Reserved, must be kept at reset value.

8.2.6 SYSCFG external interrupt configuration register 4 (SYSCFG_EXTICR4)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	E	XTI15[2:	0]	Res	E	XTI14[2:0	0]	Res	E	XTI13[2:0	0]	Res	E	XTI12[2:0	0]
	rw	rw	rw		rw	rw	rw		rw	rw	rw		rw	rw	rw

Bits 31:15 Reserved, must be kept at reset value.

Bits 14:12 EXTI15[2:0]: EXTI15 configuration bits

These bits are written by software to select the source input for the EXTI15 external interrupt.

000: PA[15] pin

001: PB[15] pin

010: PC[15] pin

011: PD[15] pin

100: PE[15] pin

101: PF[15] pin

110: PG[15] pin

111: Reserved

Bit 11 Reserved, must be kept at reset value.

Bits 10:8 EXTI14[2:0]: EXTI14 configuration bits

These bits are written by software to select the source input for the EXTI14 external interrupt.

000: PA[14] pin

001: PB[14] pin

010: PC[14] pin

011: PD[14] pin

100: PE[14] pin

101: PF[14] pin

110: PG[14] pin

111: Reserved

Bit 7 Reserved, must be kept at reset value.

EXTI

Extended interrupts and events controller (EXTI)

Introduction

The EXTI main features are as follows:

- Generation of up to 40 event/interrupt requests
 - 26 configurable lines
 - 14 direct lines
- Independent mask on each event/interrupt line
- Configurable rising or falling edge (configurable lines only)
- Dedicated status bit (configurable lines only)
- Emulation of event/interrupt requests (configurable lines only)

12.3.1 EXTI block diagram

The extended interrupt/event block diagram is shown on Figure 26.

APB bus PCLK -Peripheral interface Falling Rising Software Event Interrupt Pending trigger trigger interrupt mask mask request selection selection event register register register register register register Interrupts Configurable Edge detect circuit events Events Stop mode Rising edge Direct events detect Wakeup MS33393V1

Figure 26. Configurable interrupt/event block diagram

12.3.4 Hardware interrupt selection

To configure a line as an interrupt source, use the following procedure:

- Configure the corresponding mask bit in the EXTI_IMR register.
- Configure the Trigger Selection bits of the Interrupt line (EXTI_RTSR and EXTI_FTSR).
- Configure the enable and mask bits that control the NVIC IRQ channel mapped to the EXTI so that an interrupt coming from one of the EXTI lines can be correctly acknowledged.

Note: The direct lines do not require any EXTI configuration.

12.3.5 Hardware event selection

To configure a line as an event source, use the following procedure:

- Configure the corresponding mask bit in the EXTI_EMR register.
- Configure the Trigger Selection bits of the Event line (EXTI_RTSR and EXTI_FTSR).

12.3.6 Software interrupt/event selection

Any of the configurable lines can be configured as a software interrupt/event line. The procedure to generate a software interrupt is as follows:

- Configure the corresponding mask bit (EXTI_IMR, EXTI_EMR).
- 2. Set the required bit of the software interrupt register (EXTI_SWIER).

12.4 **EXTI interrupt/event line mapping**

In the STM32L4x6, 40 interrupt/event lines are available. The GPIOs are connected to 16 configurable interrupt/event lines (see Figure 27).

EXTI0[3:0] bits in the SYSCFG_EXTICR1 register PA0 \square PB0 []-PC0 -PD0 -EXTI0 PE0 -PF0 -PG0 -PH0 -EXTI1[3:0] bits in the SYSCFG_EXTICR1 register PA1 -PB1 []-PC1 D PD1 -EXTI1 PE1 []-PF1 D-PG1 -PH1 []-EXTI15[3:0] bits in the SYSCFG_EXTICR4 register PA15 _-PB15 []-PC15 []-PD15 🗀-EXTI15 PE15 _-PF15 -PG15 []-MSv40153V1

Figure 27. External interrupt/event GPIO mapping

Table 43. EXTI lines connections

EXTI line	Line source ⁽¹⁾	Line type
0-15	GPIO	configurable
16	PVD	configurable
17	OTG_FS wakeup event(2)	direct
18	RTC alarms	configurable
19	RTC tamper or timestamp or CSS_LSE	configurable
20	RTC wakeup timer	configurable
21	COMP1 output	configurable
22	COMP2 output	configurable
23	I2C1 wakeup ⁽²⁾	direct

	1	I
24	I2C2 wakeup ⁽²⁾	direct
25	I2C3 wakeup	direct
26	USART1 wakeup ⁽²⁾	direct
27	USART2 wakeup ⁽²⁾	direct
28	USART3 wakeup ⁽²⁾	direct
29	UART4 wakeup ⁽²⁾	direct
30	UART5 wakeup ⁽²⁾	direct
31	LPUART1 wakeup	direct
32	LPTIM1	direct
33	LPTIM2 ⁽²⁾	direct
34	SWPMI1 wakeup ⁽²⁾	direct
35	PVM1 wakeup	configurable
36	PVM2 wakeup	configurable
37	PVM3 wakeup	configurable
38	PVM4 wakeup	configurable
39	LCD wakeup	direct

12.5.1 Interrupt mask register 1 (EXTI_IMR1)

Address offset: 0x00

Reset value: 0xFF82 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IM31	IM30	IM29	IM28	IM27	IM26	IM25	IM24	IM23	IM22	IM21	IM20	IM19	IM18	IM17	IM16
rw															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IM15	IM14	IM13	IM12	IM11	IM10	IM9	IM8	IM7	IM6	IM5	IM4	IM3	IM2	IM1	IMO
rw															

Bits 31:0 IMx: Interrupt Mask on line x (x = 31 to 0)

0: Interrupt request from Line x is masked 1: Interrupt request from Line x is not masked

Note: The reset value for the direct lines (line 17, lines from 23 to 34, line 39) is set to '1' in order

to enable the interrupt by default.

12.5.2 Event mask register 1 (EXTI_EMR1)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EM31	EM30	EM29	EM28	EM27	EM26	EM25	EM24	EM23	EM22	EM21	EM20	EM19	EM18	EM17	EM16
rw															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EM15	EM14	EM13	EM12	EM11	EM10	ЕМ9	EM8	EM7	EM6	EM5	EM4	EM3	EM2	EM1	ЕМ0
rw															

Bits 31:0 EMx: Event mask on line x (x = 31 to 0)

0: Event request from line x is masked

1: Event request from line x is not masked

12.5.3 Rising trigger selection register 1 (EXTI_RTSR1)

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	RT22	RT21	RT20	RT19	RT18	Res.	RT16
									rw	rw	rw	rw	rw		rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 RT15	14 RT14	13 RT13	12 RT12	11 RT11	10 RT10	9 RT9	8 RT8	7 RT7	6 RT6	5 RT5	4 RT4	3 RT3	2 RT2	1 RT1	0 RT0

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:18 RTx: Rising trigger event configuration bit of line x (x = 22 to 18)

0: Rising trigger disabled (for Event and Interrupt) for input line

1: Rising trigger enabled (for Event and Interrupt) for input line

Bit 17 Reserved, must be kept at reset value.

Bits 16:0 RTx: Rising trigger event configuration bit of line x (x = 16 to 0)

0: Rising trigger disabled (for Event and Interrupt) for input line

1: Rising trigger enabled (for Event and Interrupt) for input line

Note:

The configurable wakeup lines are edge-triggered. No glitch must be generated on these lines. If a rising edge on a configurable interrupt line occurs during a write operation in the EXTI_RTSR register, the pending bit is not set.

Rising and falling edge triggers can be set for the same interrupt line. In this case, both generate a trigger condition.

12.5.4 Falling trigger selection register 1 (EXTI_FTSR1)

Address offset: 0x0C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res	Res.	Res.	FT22	FT21	FT20	FT19	FT18	Res.	FT16
									rw	rw	rw	rw	rw		rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FT15	FT14	FT13	FT12	FT11	FT10	FT9	FT8	FT7	FT6	FT5	FT4	FT3	FT2	FT1	FTO
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 22:18 FTx: Falling trigger event configuration bit of line x (x = 22 to 18)

0: Falling trigger disabled (for Event and Interrupt) for input line

1: Falling trigger enabled (for Event and Interrupt) for input line

Bit 17 Reserved, must be kept at reset value.

Bits 16:0 FTx: Falling trigger event configuration bit of line x (x = 16 to 0)

0: Falling trigger disabled (for Event and Interrupt) for input line

1: Falling trigger enabled (for Event and Interrupt) for input line

Note:

The configurable wakeup lines are edge-triggered. No glitch must be generated on these lines. If a falling edge on a configurable interrupt line occurs during a write operation to the EXTI_FTSR register, the pending bit is not set.

Rising and falling edge triggers can be set for the same interrupt line. In this case, both generate a trigger condition.

12.5.5 Software interrupt event register 1 (EXTI_SWIER1)

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	SWI 22	SWI 21	SWI 20	SWI 19	SWI 18	Res.	SWI 16
									rw	rw	rw	rw	rw		rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SWI 15	14 SWI 14	13 SWI 13	12 SWI 12	11 SWI 11	10 SWI 10	SWI 9	SWI 8	SWI 7	SWI 6	SWI 5	SWI 4	SWI 3	SWI 2	SWI 1	SWI 0

Bits 31:23 Reserved, must be kept at reset value.

Bits 22: 18 SWIx: Software interrupt on line x (x = 22 o 18)

If the interrupt is enabled on this line in the EXTI_IMR, writing a '1' to this bit when it is at '0' sets the corresponding pending bit in EXTI_PR resulting in an interrupt request generation.

This bit is cleared by clearing the corresponding bit in the EXTI_PR register (by writing a '1' into the bit).

Bit 17 Reserved, must be kept at reset value.

Bits 16:0 SWIx: Software interrupt on line x (x = 16 to 0)

If the interrupt is enabled on this line in the EXTI_IMR, writing a '1' to this bit when it is at '0' sets the corresponding pending bit in EXTI_PR resulting in an interrupt request generation.

This bit is cleared by clearing the corresponding bit of EXTI_PR (by writing a '1' into the bit).

12.5.6 Pending register 1 (EXTI_PR1)

Address offset: 0x14

Reset value: undefined

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	PIF22	PIF21	PIF20	PIF19	PIF18	Res.	PIF16								
									rc_w1	rc_w1	rc_w1	rc_w1	rc_w1		rc_w1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PIF15	PIF14	PIF13	PIF12	PIF11	PIF10	PIF9	PIF8	PIF7	PIF6	PIF5	PIF4	PIF3	PIF2	PIF1	PIF0
rc_w1															

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:18 PIFx: Pending interrupt flag on line x (x = 22 to 18)

0: No trigger request occurred

1: Selected trigger request occurred

This bit is set when the selected edge event arrives on the interrupt line. This bit is cleared by writing a '1' to the bit.

Bit 17 Reserved, must be kept at reset value.

Bits 16:0 PIFx: Pending interrupt flag on line x (x = 16 to 0)

0: No trigger request occurred

1: Selected trigger request occurred

This bit is set when the selected edge event arrives on the interrupt line. This bit is cleared by writing a '1' to the bit.

Nested Vectored Interrupt Controller (NVIC)

NVIC main features:

- Supports up to 240 interrupts but 82 maskable interrupt channels in stm32l4
- Low-latency exception and interrupt handling
- Power management control
- Implementation of System Control Registers

All interrupts including the core exceptions are managed by the NVIC.

All interrupts including the core exceptions are managed the NVIC.

Hardware and software control of interrupts

The Cortex-M4 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:

- the NVIC detects that the interrupt signal is HIGH and the interrupt is not active
- the NVIC detects a rising edge on the interrupt signal
- software writes to the corresponding interrupt set-pending register bit

```
typedef struct
  IOM uint32 t ISER[8U];
                                        /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
        uint32 t RESERVED0[24U];
  IOM uint32 t ICER[8U];
                                         /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */</pre>
        uint32 t RSERVED1[24U];
                                         /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
  IOM uint32 t ISPR[8U];
        uint32 t RESERVED2[24U];
  IOM uint32 t ICPR[8U];
                                         /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
        uint32 t RESERVED3[24U];
                                         /*!< Offset: 0x200 (R/W) Interrupt Active bit Register */
  IOM uint32 t IABR[8U];
        uint32 t RESERVED4[56U];
  IOM uint8 t IP[240U];
                                         /*!< Offset: 0x300 (R/W) Interrupt Priority Register (8Bit wide) */
        uint32 t RESERVED5[644U];
                                         /*!< Offset: 0xE00 ( /W) Software Trigger Interrupt Register */
    OM uint32 t STIR;
} NVIC Type;
```

Interrupt Enable Set and Clear Register

Address	Name	Туре	Reset Value	Descriptions
0xE000E100	SETENA	R/W	0x00000000	Set enable for interrupt 0 to 31. Write 1 to set bit to 1, write 0 has no effect. Bit[0] for Interrupt #0 (exception #16) Bit[1] for Interrupt #1 (exception #17)
0xE000E180	CLRENA	R/W	0x00000000	Bit[31] for Interrupt #31 (exception #47) Read value indicates the current enable status Clear enable for interrupt 0 to 31. Write 1 to clear bit to 0, write 0 has no effect. Bit[0] for Interrupt #0 (exception #16) Bit[31] for Interrupt #31 (exception #47) Read value indicates the current enable status

[31:0] SETENA Interrupt set-enable bits.

Write:

0 = no effect

1 = enable interrupt.

Read:

0 = interrupt disabled

1 = interrupt enabled

CLRENA bits X 8

[31:0] CLRENA Interrupt clear-enable bits.

Write:

0 = no effect

1 = disable interrupt.

Read:

0 = interrupt disabled

Interrupt Pending and Clear Pending

Address	Name	Туре	Reset Value	Descriptions
0xE000E200	SETPEND	R/W	0x00000000	Set pending for interrupt 0 to 31. Write 1 to set bit to 1, write 0 has no effect. Bit[0] for Interrupt #0 (exception #16) Bit[1] for Interrupt #1 (exception #17)
0xE000E280	CLRPEND	R/W	0x00000000	Bit[31] for Interrupt #31 (exception #47) Read value indicates the current pending status Clear pending for interrupt 0 to 31. Write 1 to clear bit to 0, write 0 has no effect. Bit[0] for Interrupt #0 (exception #16)
				Bit[31] for Interrupt #31 (exception #47) Read value indicates the current pending status

1 = interrupt is pending.

Interrupt Active Bit Registers

Read:

[31:0] ACTIVE Interrupt active flags: 0 = interrupt not active

1 = interrupt active.

A bit reads as one if the status of the corresponding interrupt is active or active and pending.

Software Trigger Interrupt Register

Write:

[31:9] -	Reserved.
[8:0] INTID	Interrupt ID of the interrupt to trigger, in the range 0-239. For example, a value of 0x03 specifies interrupt IRQ3.

Interrupt Priority Registers

Table 4-9 IPR bit assignments

Bits	Name	Function
[31:24]	Priority, byte offset 3	Each implementation-defined priority field can hold a priority value, 0-255. The
[23:16]	Priority, byte offset 2	lower the value, the greater the priority of the corresponding interrupt. Register priority value fields are eight bits wide, and non-implemented low-order bits read as
[15:8]	Priority, byte offset 1	zero and ignore writes.
[7:0]	Priority, byte offset 0	

8-bit priority field for each interrupt and each register holds four priority fields [3:0] reserved

In startup_stm32l476xx.S

```
WWDG IRQHandler
.word
        PVD PVM IRQHandler
.word
       TAMP STAMP IRQHandler
.word
        RTC WKUP IRQHandler
.word
        FLASH IRQHandler
.word
.word
        RCC IRQHandler
        EXTI0 IRQHandler
.word
        EXTI1 IRQHandler
-word
        EXTI2 IRQHandler
.word
        EXTI3 IRQHandler
.word
        EXTI4 IRQHandler
.word
       DMA1 Channell IRQHandler
.word
       DMA1 Channel2 IRQHandler
.word
       DMA1 Channel3 IRQHandler
.word
       DMA1 Channel4 IRQHandler
.word
       DMA1 Channel5 IRQHandler
.word
       DMA1 Channel6 IRQHandler
.word
       DMA1 Channel7 IRQHandler
.word
       ADC1 2 IRQHandler
.word
       CAN1 TX IRQHandler
.word
       CAN1 RX0 IRQHandler
.word
       CAN1 RX1 IRQHandler
.word
       CAN1 SCE IRQHandler
.word
.word
        EXTI9 5 IRQHandler
       TIM1 BRK TIM15 IRQHandler
.word
       TIM1 UP TIM16 IRQHandler
.word
        TIM1 TRG COM TIM17 IRQHandler
.word
.word
        TIM1 CC IRQHandler
        TIM2 IRQHandler
.word
        TIM3 IRQHandler
.word
```

SysTick Timer

24-bit count down SysTick timer

Address	Name	Туре	Required privilege	Reset value	Description
0xE000E010	SYST_CSR	RW	Privileged	a	SysTick Control and Status Register
0xE000E014	SYST_RVR	RW	Privileged	Unknown	SysTick Reload Value Register
0xE000E018	SYST_CVR	RW	Privileged	Unknown	SysTick Current Value Register
0xE000E01C	SYST_CALIB	RO	Privileged	_a	SysTick Calibration Value Register

SysTick Control and Status Register

The SysTick SYST_CSR register enables the SysTick features. The register resets to 0x0000000, or to 0x00000004

Table 4-33 SysTick SYST_CSR register bit assignments

Bits	Name	Function	
[31:17]	-	Reserved.	
[16]	COUNTFLAG	Returns 1 if timer counted to 0 since last time this was read.	(::
[15:3]	-	Reserved.	(+)

Bits	Name	Function
[2]	CLKSOURCE	Indicates the clock source: 0 = external clock 1 = processor clock.
[1]	TICKINT	Enables SysTick exception request: 0 = counting down to zero does not assert the SysTick exception request 1 = counting down to zero asserts the SysTick exception request. Software can use COUNTFLAG to determine if SysTick has ever counted to zero.
[0]	ENABLE	Enables the counter: 0 = counter disabled 1 = counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR register and then counts down. On reaching 0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then loads the RELOAD value again, and begins counting.

SysTick Reload Value Register

The SYST_RVR register specifies the start value to load into the SYST_CVR register

Table 4-34 SYST_RVR register bit assignments

Bits	Name	Function
[31:24]	-	Reserved.
[23:0]	RELOAD	Value to load into the SYST_CVR register when the counter is enabled and when it reaches 0, see <i>Calculating the RELOAD value</i> .

Calculating the RELOAD value

The RELOAD value can be any value in the range 0x00000001-0x00FFFFF. A start value of 0 is possible, but has no effect because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.

The RELOAD value is calculated according to its use. For example, to generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of N-1. If the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

SysTick Current Value Register

The SYST_CVR register contains the current value of the SysTick counter.

Table 4-35 SYST_CVR register bit assignments

Bits	Name	Function
[31:24]	-	Reserved.
[23:0]	CURRENT	Reads return the current value of the SysTick counter. A write of any value clears the field to 0, and also clears the SYST_CSR COUNTFLAG bit to 0.

System control block

The System Control Block (SCB) provides system implementation information, and system control. This includes configuration, control, and reporting of the system exceptions. The system control block registers are:

Table 4-12 Summary of the system control block registers

Address	Name	Туре	Required privilege	Reset value	Description
0xE000E008	ACTLR	RW	Privileged	0x00000000	Auxiliary Control Register
0xE000ED00	CPUID	RO	Privileged	0x410FC240	CPUID Base Register on page 4-13
0xE000ED04	ICSR	RWa	Privileged	0×00000000	Interrupt Control and State Register on page 4-13
0xE000ED08	VTOR	RW	Privileged	0x00000000	Vector Table Offset Register on page 4-16
0xE000ED0C	AIRCR	RWa	Privileged	0xFA050000	Application Interrupt and Reset Control Register on page 4-16
0xE000ED10	SCR	RW	Privileged	0x00000000	System Control Register on page 4-19
0xE000ED14	CCR	RW	Privileged	0x00000200	Configuration and Control Register on page 4-19
0xE000ED18	SHPR1	RW	Privileged	0×00000000	System Handler Priority Register 1 on page 4-21
0xE000ED1C	SHPR2	RW	Privileged	0x00000000	System Handler Priority Register 2 on page 4-22
0xE000ED20	SHPR3	RW	Privileged	0x00000000	System Handler Priority Register 3 on page 4-22
0xE000ED24	SHCRS	RW	Privileged	0x00000000	System Handler Control and State Register on page 4-23
0xE000ED28	CFSR	RW	Privileged	0×00000000	Configurable Fault Status Register on page 4-24
0xE000ED28	MMSRb	RW	Privileged	0x00	MemManage Fault Status Register on page 4-25
0xE000ED29	BFSRb	RW	Privileged	0×00	BusFault Status Register on page 4-26
0xE000ED2A	UFSRb	RW	Privileged	0×0000	UsageFault Status Register on page 4-28
0xE000ED2C	HFSR	RW	Privileged	0x00000000	HardFault Status Register on page 4-30
0xE000ED34	MMAR	RW	Privileged	Unknown	MemManage Fault Address Register on page 4-30
0xE000ED38	BFAR	RW	Privileged	Unknown	BusFault Address Register on page 4-31
0xE000ED3C	AFSR	RW	Privileged	0x00000000	Auxiliary Fault Status Register on page 4-31

Interrupt Control and State Register

The ICSR:

- provides:
 - a set-pending bit for the Non-Maskable Interrupt (NMI) exception
 - set-pending and clear-pending bits for the PendSV and SysTick exceptions
- indicates:
 - the exception number of the exception being processed
 - whether there are preempted active exceptions
 - the exception number of the highest priority pending exception
 - whether any interrupts are pending.

Bits	Name	Туре	Function	
[31]	NMIPENDSET	RW	NMI set-pending bit. Write: 0 = no effect 1 = changes NMI exception state to pending. Read: 0 = NMI exception is not pending 1 = NMI exception is pending. Because NMI is the highest-priority exception, normally the processor enter the NMI exception handler as soon as it registers a write of 1 to this bit, and entering the handler clears this bit to 0. A read of this bit by the NMI exception handler returns 1 only if the NMI signal is reasserted while the processor is executing that handler.	
[30:29]	-	-	Reserved.	
[28]	PENDSVSET	RW	PendSV set-pending bit. Write: 0 = no effect 1 = changes PendSV exception state to pending. Read: 0 = PendSV exception is not pending 1 = PendSV exception is pending. Writing 1 to this bit is the only way to set the PendSV exception state to pending.	
[27]	PENDSVCLR	WO	PendSV clear-pending bit. Write: 0 = no effect 1 = removes the pending state from the PendSV exception.	
[26]	PENDSTSET	RW	SysTick exception set-pending bit. Write: 0 = no effect 1 = changes SysTick exception state to pending. Read: 0 = SysTick exception is not pending 1 = SysTick exception is pending.	

Bits	Name	Туре	Function
[25]	PENDSTCLR	wo	SysTick exception clear-pending bit. Write: 0 = no effect 1 = removes the pending state from the SysTick exception. This bit is WO. On a register read its value is Unknown.
[24]	-	-	Reserved.
[23]	Reserved for Debug use	RO	This bit is reserved for Debug use and reads-as-zero when the processor is not in Debug.
[22]	ISRPENDING	RO	Interrupt pending flag, excluding NMI and Faults: 0 = interrupt not pending 1 = interrupt pending.
[21:18]	-	-	Reserved.
[17:12]	VECTPENDING	RO	Indicates the exception number of the highest priority pending enabled exception: 0 = no pending exceptions Nonzero = the exception number of the highest priority pending enabled exception. The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the PRIMASK register.
[11]	RETTOBASE	RO	Indicates whether there are preempted active exceptions: 0 = there are preempted active exceptions to execute 1 = there are no active exceptions, or the currently-executing exception is the only active exception.
[10:9]	-	-	Reserved.
[8:0]	VECTACTIVE ^a	RO	Contains the active exception number: 0 = Thread mode Nonzero = The exception numbera of the currently active exception. Note Subtract 16 from this value to obtain the CMSIS IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-Pending, Set-Pending, or Priority Registers, see Table 2-5 on page 2-6.

a. This is the same value as IPSR bits[8:0], see Interrupt Program Status Register on page 2-6.

When you write to the ICSR, the effect is Unpredictable if you:

- write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
- write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

System Handler Priority Registers

System Handler Priority Register 1

The bit assignments are:

Table 4-21 SHPR1 register bit assignments

Bits	Name	Function
[31:24]	PRI_7	Reserved.
[23:16]	PRI_6	Priority of system handler 6, UsageFault
[15:8]	PRI_5	Priority of system handler 5, BusFault
[7:0]	PRI_4	Priority of system handler 4, MemManage

System Handler Priority Register 2

The bit assignments are:

Table 4-22 SHPR2 register bit assignments

Bits	Name	Function
[31:24]	PRI_11	Priority of system handler 11, SVCall
[23:0]	-	Reserved.

System Handler Priority Register 3

The bit assignments are:

Table 4-23 SHPR3 register bit assignments

Bits	Name	Function
[31:24]	PRI_15	Priority of system handler 15, SysTick exception
[23:16]	PRI_14	Priority of system handler 14, PendSV
[15:0]	-	Reserved.

SysTick usage hints and tips

Some implementations stop all the processor clock signals during deep sleep mode. If this happens, the SysTick counter stops.

Ensure software uses aligned word accesses to access the SysTick registers.

The SysTick counter reload and current value are not initialized by hardware. This means the correct initialization sequence for the SysTick counter is:

- Program reload value.
- Clear current value.
- 3. Program Control and Status register.
- 4. (optional) Set SysTick timer priority.

```
estack
.word
        Reset Handler
.word
        NMI Handler
.word
        HardFault_Handler
.word
        MemManage Handler
.word
        BusFault Handler
.word
        UsageFault Handler
.word
.word
.word
.word
.word
        SVC Handler
.word
        DebugMon_Handler
.word
.word
        PendSV Handler
.word
        SysTick Handler
.word
```

Reference

http://www.st.com/content/ccc/resource/technical/document/reference_manual/02/35/09/0c/4f/f7/40/03/DM00083560.pdf/files/DM00083560.pdf/jcr:content/translations/en.DM00083560.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/DUI0553A_cortex_m4_dgug.pdf

http://www.eng.auburn.edu/~nelson/courses/elec5260_6260/slides/ARM%20 STM32F407%20Interrupts.pdf