State-of-the art техники RAG на примере победного решения Enterprise RAG Challenge и его адаптации

Актуальность RAG

The 2025 AI Engineering Report

Retrieval Augmented Generation (на пальцах)

Васе 15 лет

Вопрос пользователя

Retrieval Augmented Generation (если погружаться)

HyDE

RAG-Fusion

Haystack

LlamaIndex

Langchain

Knowledge Graph

MMR TrueLens

RAGAS

Agentic RAG

Recall@k

BM25 + TF-IDF

Contextual

Retrieval Neo4j

Cross-Encoder Reranking

HNSW

IVF-Flat

AutoRAG

Multi-Query

ColBERT

DeepEval

CRAG

4

Enterprise RAG Challenge v2 (2025)

Статья получила международную популярность и была переведена на китайский:

Конкурс на деньги (как и в случае с Kaggle) – часто лучший способ определить state-of-the-art техники.

В чём суть RAG Challenge?

Нужно создать вопросно-ответную систему на основе годовых отчётов компании. Если коротко, то в день конкурса:

- 1. Выдаётся 100 годовых отчётов по случайно выбранным компаниям и 2.5 часа на их парсинг и составление базы данных. Отчёты представляют из себя PDF размером до 1000 страниц.
- 2. После этого генерируется 100 случайных вопросов (по заранее известным шаблонам), на которые система должна как можно быстрее ответить.

Все вопросы должны иметь однозначный ответ:

- Да/Нет;
- название компании (или нескольких компаний);
- названия управляющих позиций, выпущенных продуктов;
- размер той или иной метрики: выручка, количество магазинов и т.д.

Каждый ответ должен сопровождаться ссылками на страницы с ответом в качестве доказательства, что система по честному нашла ответ и не сгаллюцинировала.

Enterprise RAG Challenge v2 (условия)

100 PDF годовых отчетов компаний (случайно отобранных)

100 случайных вопросов (Да/Нет; Числовые показатели и т.д.)

Оценивался Retrieval (верная ссылка в ответе) и Generation (верный ответ)

Итоговая метрика R/3 + G (т.е. верный ответ оценивался в 3 раза выше верного цитирования)

Enterprise RAG Challenge v2. Победное решение (кратко)

Team / Experiment		Time	R/G	Score
1. ▶ Ilia Ris	9	49 min	83/81	123.7
2. ▶ Emil Shagiev	9	55 min	86/78	121.6
3. ▶ Dmitry Buykin	9	8 hours	81/76	117.5
4. ▶ Sergey Nikonov	9	30 hours	85/73	116.4
5. ► ScrapeNinja.net	9	23 hours	82/71	112.5
6. ► xsl777	9	16 hours	79/71	110.9
7. ▶ nikolay_sheyko(grably.tech)	9	25 hours	81/69	110.4
8. ▶ Felix-TAT	9	7 days	80/69	109.4
9. ► A.Rasskazov/V.Kalesnikau		30 hours	84/67	109.3
10. ▶ Dany the creator	9	3 hours	82/67	108.4
11. ▶ SergC	9	7 days	77/69	108.1
12. ▶ Swisscom Innovation Lab		21 hours	83/66	107.8
13. ▶ fomih	9	10 days	83/65	107.4
14. ▶ Al Bo		12 days	81/65	105.9
15. ► NumericalArt		8 days	70/70	105.3

Схема победного решения Ilia Ris

На доп. треке IBM (использование open-source LLM Llama 2 70В) качество просело менее, чем на 2%!

Parsing

JSON

помимо самого текста хранится идентификатор документа и номер страницы (в дальнейшем понадобится для роутинга и parent-page enrichment)

Markdown

(дальше его и используем для чанкинга)

Html

(про запас; если понадобится заново обработать сложную таблицу, например)

Илья использовал Docling, арендовав сервер на Runpod. Можно также использовать Unstructured, Marker, LlamaParse и пр.

В своем упрощенном примере я использовал pdfplumber.

Ingestion

Markdown текст

рекурсивный md сплиттер

Чанки текста по 300 токенов с перекрытием по 50 токенов

text-embedding-3-large

Для каждого отчета создавалась своя векторная база данных

metadata.json (какой чанк на какой странице для будущего parent page enrichment)

Как работает рекурсивный md сплиттер:

страница

режем по пустым строкам (/n/n) Абзац 1 (пустая строка) Абзац 2 (пустая строка) Если чанки все еще больше 300 токенов, режем по строкам, потом по символам

Чанки не более 300 токенов

•••

Абзац п

Retrieval

LLM-реранкинг – перспективная новинка! Обычно используется cross-encoder reranking.

Серебряный призер вообще построил RAG без эмбеддингов.

Augmentation

User

prompt

Ты — RAG (Retrieval-Augmented Generation) система ответов. Твоя задача — отвечать на заданный вопрос, опираясь ТОЛЬКО на информацию из годового отчёта компании, который предоставляется как релевантные страницы (контекст) после процедуры RAG.

Перед финальным ответом внимательно, вслух и по шагам проанализируй вопрос. (и т.д.)

step_by_step_analysis: str = Field(description="
Подробный пошаговый анализ ответа минимум из 5 шагов и не менее 150 слов."
str = Field(description="Краткое резюме пошагового анализа. Около 50 слов.") (и т.д.)

Пример 1: Какова прибыль Сбера за 2023 год? {"step_by_step_analysis": «...»","reasoning_summary": «...»", "relevant_pages": ..., "final_answer": ...}

Контекст: (найденный контекст, т.е. отобранные страницы) Вопрос: (вопрос)

Template для вставки контекст и вопроса

Generation

Специфическое для условий данного соревнования решение:

- каждый запрос (кроме multiquery) касался только одного отчета;
- в запросе было явно указано, к отчету какой компании он относится;
- запросы относились к одному из нескольких известных типов.

1. <u>Роутинг к нужной БД</u> по имени компании

Какова прибыль Сбера за 2023 год?

2. <u>Роутинг к нужному</u> шаблону промпта

Какова прибыль Сбера за 2023 год?

Шаблон промпта, где ответ – одно число

3. <u>Роутинг multiquery</u> запросов

У кого больше прибыль за 2023 г. – у Сбера или ВТБ?

перефразируем с помощью LLM

Какая прибыль у Сбера за 2023 год? Какая прибыль у ВТБ за 2023 год?

И дальше как в п.1 и п.2

Еще раз соберем всё решение вместе

Упрощенная адаптация (мой курсовой проект, развернут на HF)

Demo

Выводы

- > RAG одно из основных применений LLM на сегодняшний день.
- > В работе была реализована мультимодальная RAG-система, вдохновленная победным решением Enterprise RAG Challenge (2025 год).
- > Основные используемые технологии: pdfplumber, RecursiveCharacterTextSplitter, FAISS, Parent-page enrichment, LLM reranking, Chain-of-Thoughts, pydantic, pymupdf, gradio, text-embedding-3-large, GPT-40, gpt-40-mini.
- Основные сложности: некачественное выделение и распознавание картинок (следует рассмотреть переход с pdfplumber на docling, а также уточнить промпт для GPT-40 и добавить автоматический повторный запрос в случае отказа создать описание картинки).
- Перспективы на будущее: целесообразно верифицировать качество собранного пайплайна путем построения автоматической оценки (RAGAS и др.).

Список используемых источников/программных средств:

- Google Colab, HuggingFace
- «Как я победил в RAG Challenge: от нуля до SoTA за один конкурс» (https://habr.com/ru/articles/893356/)