5. Gramáticas de atributos

Finalidade

- Pretende-se associar a cada nó de uma árvore de derivação informação de natureza semântica.
- Essa informação assume a forma de <u>atributos</u> dos símbolos não terminais.
- Os atributos de um nó dependem apenas de atributos de nós "vizinhos." Há dois casos:
- Atributos <u>sintetizados</u>: só dependem de atributos dos "filhos" ou de si próprio.
- Atributos <u>herdados</u>: só dependem de atributos do "pai" e dos "irmãos."
- Os atributos definem-se para cada produção:
- Sintetizados: atributos da cabeça em função de atributos da produção.
- Herdados: atributos do corpo em função de atributos da produção.

182

Exemplo

$$S \to E$$

$$E \to E + F \mid F$$

$$F \to 0 \mid 1 \mid 2 \mid \dots \mid 9$$

Objectivo: calcular o valor de cada expressão.

Método

- ullet Associar aos não terminais S,E,F o atributo v que representa o valor da respectiva expressão.
- Os atributos (neste caso um só) indicam-se por uma tabela:

N	Atr.
S	v
E	v
\overline{F}	v

ullet Domínio dos valores de v:

$$V_v = \mathbf{N} = \{0, 1, 2, \ldots\}.$$

• Os atributos definem-se em cada produção por meio de equações.

Definição dos atributos

Produções	Atributos
$S \to E$	v(S) = v(E)
$E_1 \rightarrow E_2 + F$	$v(E_1) = v(E_2) + v(F)$
$E \to F$	v(E) = v(F)
F o 0	v(F) = 0
:	:
$F \rightarrow 9$	v(F) = 9

Exemplo: valor decimal de número binário

Produções	Atributos
$N \rightarrow L_1.L_2$	$v(N) = v(L_1) + v(L_2) \times 2^{-c(L_2)}$
$N \to L$	v(N) = v(L)
$L_1 \rightarrow L_2 B$	$v(L_1) = 2v(L_2) + v(B)$
	$c(L_1) = c(L_2) + 1$
$L \to B$	v(L) = v(B)
	c(L) = 1
$B \rightarrow 0$	v(B) = 0
$B \rightarrow 1$	v(B) = 1

186

Cálculo dos atributos

Produções	Atributos
$N \to L_1.L_2$	$v(N) = v(L_1) + v(L_2) \times 2^{-c(L_2)}$
$N \to L$	v(N) = v(L)
$L_1 \to L_2 B$	$v(L_1) = 2v(L_2) + v(B)$
	$c(L_1) = c(L_2) + 1$
$L \to B$	v(L) = v(B)
	c(L) = 1
$B \rightarrow 0$	v(B) = 0
$B \rightarrow 1$	v(B) = 1

Atributos sintetizados e herdados

Sintetizados: Só dependem de atributos dos

"filhos" ou de si próprio.

Herdados: Só dependem de atributos do

"pai" e dos "irmãos."

Para toda a produção definem-se:

- Atributos sintetizados da cabeça.
- Atributos <u>herdados</u> do corpo.

Exemplo

$$S \to E$$

$$E \to FX$$

$$X \to +FX \mid \lambda$$

$$F \to 0 \mid \dots \mid 9$$

S, E, F têm um $\boxed{\mathsf{v}}$ alor associado (sintetizado)

X recebe um dado (herdado) produz um resultado (sintetizado)

N	Sint.	Herd.
S	v	_
E	v	_
F	v	_
X	r	d

$$\mathcal{V}_v = \mathcal{V}_r = \mathcal{V}_d = \mathbf{N}$$

189

Definição dos atributos

	Sintetizados	Herdados
$S \to E$	v(S) = v(E)	
$E \to FX$	v(E) = r(X)	d(X) = v(F)
$X_1 \to +FX_2$	$r(X_1) = r(X_2)$	$d(X_2) = d(X_1) + v(F)$
$X \to \lambda$	r(X) = d(X)	
$F \rightarrow 0$	v(F) = 0	
:	:	
F o 9	v(F) = 9	

190

Numeração binária - nova versão

A cada bit

- associa-se o seu valor posicional;
- somam-se todos esses valores.

Posições dos bits

Valor

$$v = 2^2 + 2^0 + 2^{-2} = 5,25$$

Atributos

- ullet valor do número binário.
- c comprimento de uma sequência de bits.
- p(B) posição do bit B.
- p(L) posição do bit menos significativo de L.

	N	Sint.	Herd.
	N	v	_
•	L	v, c	p
	B	v	p

$$\mathcal{V}_v = \mathbf{Q}$$
 (racionais) $\mathcal{V}_c = \mathbf{N}$ $\mathcal{V}_p = \mathbf{Z} = \{\dots, -1, 0, 1, 2, \dots\}$

Cálculo dos atributos

	Sintetizados	Herdados
$N \to L_1.L_2$	$v(N) = v(L_1) + v(L_2)$	$p(L_1)=0$
		$p(L_2) = -c(L_2)$
$N \to L$	v(N) = v(L)	p(L) = 0
$L_1 \to L_2 B$	$v(L_1) = v(L_2) + v(B)$	$p(B) = p(L_1)$
	$c(L_1) = c(L_2) + 1$	$p(L_2) = p(L_1) + 1$
$L \to B$	v(L) = v(B)	p(B) = p(L)
	c(L) = 1	
$B \rightarrow 0$	v(B) = 0	
$B \rightarrow 1$	$v(B) = 2^{p(B)}$	

Circularidade na avaliação dos atributos

Consideremos a gramática de atributos:

$$S \to BA B \to BA \mid b A \to a$$

	Sint.	Herd.	
S	s, t, u		
B	s, v	z	
A		z	

$$\begin{aligned}
\mathcal{V}_s &= \mathcal{V}_t = \mathcal{V}_u \\
&= \mathcal{V}_v = \mathcal{V}_z = \mathbf{N}.
\end{aligned}$$

	6: 1 1: 1	
	Sintetizados	Herdados
$S \to BA$	s(S) = z(A) + 1	z(B) = 2s(S) + 1
	t(S) = s(B) + 2	z(A) = t(S) + 1
	u(S) = 0	
$B_1 \to B_2 A$	$s(B_1) = z(A) + 1$	$z(B_2) = z(B_1) + 1$
	$v(B_1) = v(B_2) + z(B_2)$	$z(A) = 2v(B_1) + 3$
$B \rightarrow b$	s(B) = 0	
	v(B) = 0	
$A \rightarrow a$		

194

Dependência circular

Árvore de derivação exibindo dependência circular:

Corresponde a resolver um sistema de equações:

$$\begin{split} s(S) &= z(A_1) + 1 = 4s(S) + 12 \\ z(A_1) &= t(S) + 1 \\ t(S) &= s(B_1) + 2 \\ s(B_1) &= z(A_2) + 1 \\ z(A_2) &= 2v(B_1) + 3 \\ v(B_1) &= v(B_2) + z(B_2) \\ v(B_2) &= 0 \\ z(B_2) &= z(B_1) + 1 \\ z(B_1) &= 2s(S) + 1. \end{split}$$

Avaliação da esquerda para a direita

Condições:

Para toda a produção $X_0 \rightarrow X_1 X_2 \cdots X_n$:

- Os atributos <u>sintetizados</u> de X₀ só dependem de:
 - atributos <u>herdados</u> de X_0 ;
 - atributos quaisquer de X_1, \ldots, X_n .
- Os atributos <u>herdados</u> de X_k com $1 \le k \le n$ só dependem de:
 - atributos <u>herdados</u> de X_0 ;
 - atributos quaisquer de X_1, \ldots, X_{k-1} .

195

Uma gramática de atributos consiste em:

I. Uma GIC G = (T, N, S, P), onde

- G está na forma reduzida.
- ullet S não ocorre no corpo de nenhuma produção.

II. Um conjunto de <u>atributos</u> A e para cada:

- $a \in \mathcal{A} \rightarrow \mathcal{V}_a$ domínio de <u>valores</u> de a.
- $A \in N$ \rightarrow $\mathcal{A}(A) \subseteq \mathcal{A}$ atributos de A:

197

$$- \mathcal{A}(A) = \mathcal{H}(A) \cup \mathcal{S}(A)$$

(herdados, sintetizados).

$$-\mathcal{H}(A)\cap\mathcal{S}(A)=\emptyset.$$

$$-\mathcal{H}(S) = \emptyset \in \mathcal{A}(S) = \mathcal{S}(S).$$

Cálculo dos atributos

III. Funções de cálculo

- Para cada $X_0 \to X_1 \cdots X_n$;
- para cada $a \in \mathcal{A}(X_k)$: $a \in \mathcal{S}(X_k) \text{ se } k = 0, \ a \in \mathcal{H}(X_k) \text{ se } k > 0;$
- para certos

$$a_1 \in \mathcal{A}(X_{k_1}), \dots, a_m \in \mathcal{A}(X_{k_m})$$

 $0 \le k_1 \le \dots \le k_m \le n;$

• É dada uma função

$$f: \mathcal{V}_{a_1} \times \cdots \times \mathcal{V}_{a_m} \to \mathcal{V}_a$$

ullet que calcula $a(X_k)$ pela equação

$$a(X_k) = f(a_1(X_{k_1}), \dots, a_m(X_{k_m})).$$