International Rectifier

IRLML5203PbF

HEXFET® Power MOSFET

Г	V _{DSS}	$R_{DS(on)} \max (m\Omega)$	I _D
	-30V	98@V _{GS} = -10V	-3.0A
		165@V _{GS} = -4.5V	-2.6A

- Ultra Low On-Resistance
- P-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- Low Gate Charge
- Lead-Free

Description

These P-channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3TM, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	-30	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-3.0	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-2.4	Α
I _{DM}	Pulsed Drain Current ①	-24	
P _D @T _A = 25°C	Power Dissipation	1.25	W
P _D @T _A = 70°C	Power Dissipation	0.80	VV
	Linear Derating Factor	10	mW/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	100	°C/W

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.019		V/°C	Reference to 25°C, I _D = -1mA
Book	Static Drain-to-Source On-Resistance			98	mΩ	V _{GS} = -10V, I _D = -3.0A ②
R _{DS(on)}	Statio Brain to Godine On Hediotarioe			165		V _{GS} = -4.5V, I _D = -2.6A ②
V _{GS(th)}	Gate Threshold Voltage	-1.0		-2.5	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
9 fs	Forward Transconductance	3.1			S	$V_{DS} = -10V, I_{D} = -3.0A$
1	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -24V, V_{GS} = 0V$
I _{DSS}				-5.0	μA	V _{DS} = -24V, V _{GS} = 0V, T _J = 70°C
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -20V
IGSS	Gate-to-Source Reverse Leakage			100	IIA I	V _{GS} = 20V
Q _g	Total Gate Charge		9.5	14		$I_D = -3.0A$
Q _{gs}	Gate-to-Source Charge		2.3	3.5	nC	V _{DS} = -24V
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.6	2.4		V _{GS} = -10V ②
t _{d(on)}	Turn-On Delay Time		12			V _{DD} = -15V ②
t _r	Rise Time		18		ns	$I_D = -1.0A$
t _{d(off)}	Turn-Off Delay Time		88		115	$R_G = 6.0\Omega$
t _f	Fall Time		52			$V_{GS} = -10V$
C _{iss}	Input Capacitance		510			V _{GS} = 0V
Coss	Output Capacitance		71		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		43			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current			4.0		MOSFET symbol		
	(Body Diode)		-1.3		-1.3 A	showing the		
I _{SM}	Pulsed Source Current			24	24	24	^	integral reverse
	(Body Diode) ①					p-n junction diode.		
V_{SD}	Diode Forward Voltage	I		-1.2	V	$T_J = 25^{\circ}C$, $I_S = -1.3A$, $V_{GS} = 0V$ ②		
t _{rr}	Reverse Recovery Time		17	26	ns	$T_J = 25^{\circ}C$, $I_F = -1.3A$		
Q _{rr}	Reverse Recovery Charge	I	12	18	nC	di/dt = -100A/µs ②		

Notes:

① Repetitive rating; pulse width limited by max. junction temperature.

② Pulse width \leq 400 μ s; duty cycle \leq 2%.

International Rectifier

IRLML5203PbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLML5203PbF

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International TOR Rectifier

Fig 11. Typical On-Resistance Vs. Gate Voltage

Fig 12. Typical On-Resistance Vs. Drain Current

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

6

International TOR Rectifier

IRLML5203PbF

Fig 14. Threshold Voltage Vs. Temperature

Fig 15. Typical Power Vs. Time

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

Micro3 (SOT-23/TO-236AB) Part Marking Information

PART NUMBER CODE REFERENCE:

A= IRLML2402 B = IRLML2803

C = IRLML6302

D = IRLML5103E = IRLML6402

F = IRLML6401

G = IRLML2502 H = IRLML5203

Note: A line above the work week (as shown here) indicates Lead-Free.

YEAR	Υ	WORK WEEK	W
2001	1	01	Α
2002	2	02	В
2003	3	03	С
1994	4	04	D
1995	5		
1996	6		
1997	7		
1998	8	1	1
1999	9	1	7
2000	0	24	X
		25	Υ
		26	Z

W= (27-52) IF PRECEDED BY A LETTER

YEAR	Υ	WORK WEEK	W
2001	Α	27	Α
2002	В	28	В
2003	С	29	С
1994	D	30	D
1995	E		
1996	F		
1997	G		
1998	Н	1	1
1999	J	1	1
2000	K	50	X
		51	Υ
		52	Z

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.11/04