Pre-Calculus 11

Basic Trigonometric Functions

Created by Yi-Chen Lin

June 12, 2025

What is Trigonometry?

Introduction

- Study of the relationship between the angles in a right triangle with the lengths of the sides
- Basic trigonometry deals mainly with Right Triangles
- There are three basic trigonometry functions:
 - Sine, Cosine, and Tangent [look for them on your calculator]
- These trig. Functions will give you the ratios of the sides in a right triangle

Basic Trig Ratios

Example

For a right triangle with angle 22.62°:

$$\sin 22.62^\circ = \frac{5}{13} \approx 0.38461538...$$

$$\cos 22.62^\circ = \frac{12}{13} \approx 0.92307692...$$

$$\tan 22.62^{\circ} = \frac{5}{12} \approx 0.41666666...$$

Naming Sides of a Right Triangle

Important Notes

- When naming the sides of a R.T., they are relative to the angle that you are using
- The Adjacent and Opposite side can be switched around depending on which angle you use
- The Hypotenuse must be the longest side and opposite from the "box"
- When using Trig, make sure your calculator is on "DEG" mode

SOH-CAH-TOA

Trigonometric Ratios

$$\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}$$

$$\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}$$

$$\tan \theta = \frac{\text{Opposite}}{\text{Adjacent}}$$

- Use SINE when working with Opposite or Hypotenuse
- Use COSINE when working with Adjacent or Hypotenuse
- Use TANGENT when working with Opposite or Adjacent

Finding Missing Sides

Steps to Find Missing Sides

- Identify which sides are given (name them based on the angle)
 - Determine which trig function to use: SOH CAH TOA
- Write the equation and use algebra to find the missing side
- Make sure your calculator is in DEG mode!

Example: Finding Missing Side

Example

Find x:

$$\tan 23^{\circ} = \frac{12}{x}$$

$$0.4244748162 = \frac{12}{x}$$

$$x = \frac{12}{0.4244748162}$$

$$x \approx 28.2702$$

Finding Missing Angles

Important Notes

- Use inverse trig functions: \sin^{-1} , \cos^{-1} , \tan^{-1}
- First determine which sides are given and which trig function to use
- Keep at least 3-4 decimal places for your angles
- You can only "Inverse Tan" a ratio, it gives you the angle

Example: Finding Missing Angle

Example

Find θ :

$$an heta=rac{12}{15}$$
 $heta= an^{-1}\left(rac{12}{15}
ight)$ $hetapprox 38.6598^\circ$

Practice: Identify Sides Trig Function - Part 1

Indicate Sides (Opp

Indicate which sides are given: Opp, Adj, or Hyp. Then indicate which trig function should be used to solve the triangle.

Practice: Identify Sides Trig Function - Part 2

Indicate Sides (Opp

Indicate which sides are given: Opp, Adj, or Hyp. Then indicate which trig function should be used to solve the triangle.

Practice: Finding Missing Sides - Part 1

Practice: Finding Missing Sides - Part 2

Practice: Finding Missing Angles - Part 1

Practice: Finding Missing Angles - Part 2

Pythagorean Theorem

Pythagorean Theorem

- Used to find the missing side lengths of a right triangle when two sides are known.
- Formula: $a^2 + b^2 = c^2$, where a and b are the lengths of the two shorter sides (legs), and c is the length of the longest side (hypotenuse).
- Also used in trigonometry for fundamental identities like $\sin^2 \theta + \cos^2 \theta = 1$.

Challenge Problem

Application of Trigonometry

Two buildings are 70 meters apart. The shorter building is 50m high. A cable is attached to both buildings. The angle of inclination is 15°. How tall is the taller building?

