A 3.4.6 Löse einige der Aufgaben aus A 3.3.2 auf folgende Weise Bestimme zuerst die Koordinatenmatrix (E*, f(E)) jener linearen Abbildung g, welche die drei Angabevektoren in die Kanonische Basis E überführt, sodamn die Koordinatenmatrix (E*, h(E)) jener linearen Abbildung h, welche die Kanonische Basis in die gegebenen Bibliektoren überführt, und verwende schlussendlich diese beiden Matrizen, um die Koordinatenmatrix (E*, (hog)(E)) zu berechnen.

$$\begin{bmatrix}
A & 2 & 2 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
2 & 4 & 0 \\
3 & 2 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
-A & 2 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
-A & 2 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
-A & 2 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
-A & 2 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & A & 0
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix}
A & 0 & 0 \\
0 & 0 & A
\end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & A \end{bmatrix}, \text{ also ist} \qquad \begin{bmatrix} 3 & -3 & 2 \\ 1 & 2 & 4 \\ 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} -1 & -2 & 2 \\ 2 & 1 & 0 \\ 1 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 11 & 1 & 4 \\ -1 & 4 & -2 \\ 1 & -2 & 2 \end{bmatrix} \right\} \langle E^*, (h \circ g)(E) \rangle$$

$$\begin{bmatrix} 3 & -3 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

$$\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \end{bmatrix} \langle E^*, h(E) \rangle$$

A 3.5.4 Es seien V ein Vektorraum und $f \in L(V, V)$ eine nilpotente Abbildung: d.h. für mindestens ein $k \in \mathbb{N}^{\times}$ ist f^{\times} die Nullabbildung. Dabei sind die Potenzen vom f rekursiv durch $f^{\circ} := idv$ und $f^{\circ} := f \circ f^{\circ}$ für alle $f^{\circ} := idv$ und $f^{\circ} := f \circ f^{\circ}$ für alle $f^{\circ} := idv$ und $f^{\circ} := f \circ f^{\circ}$ für alle $f^{\circ} := idv$ und $f^{\circ} := f \circ f^{\circ}$ für alle $f^{\circ} := idv$ und $f^{\circ} := idv$ und $f^{\circ} := f \circ f^{\circ}$ für alle $f^{\circ} := idv$ und $f^{\circ} := idv$ und $f^{\circ} := f \circ f^{\circ}$ für $f^{\circ} := idv$ und $f^{\circ} := idv$ und f

- (a) Zeige Wird zusätzlich dim $V = n < \infty$ vorausgesetzt, so gitt def $t \ge n/k$.
- (6) Gib zwei Matrizen A_1 , $A_2 \in \mathbb{R}^{3\times3}$ an, die nil potente lineare Abbildungen $\mathbb{R}^{3\times1} \to \mathbb{R}^{3\times1}$ bestimmen (nil potente Matrizen). Als Zusatzbedingung seien $A_1 = (0)$, $A_2 = (0)$ bzw. $A_2 = (0)$ aufgestellt.

Beweis (a): rg f = dim f(V); def f = dim kex f; Laut Voraussetzung und dex Definition von kex, gilt $f^{m}(V) = 0 \Rightarrow dim f^{m}(V) = 0 = dim V - def f^{m}(V)$ Sei nun $W = f^{m}(V)$ ein Unterraum von V, so gilt dim $W = dim kex f|_{W} + dim f(W) \wedge dim kex f|_{W} = dim kex f$ $\Rightarrow dim W = dim kex f + dim f(W)$

 \Rightarrow dim $f''(V) = dim \ker f + dim f''(V)$ (1)

 \Rightarrow dim $f^{m}(V)^{-}$ dim ker $f \leq$ dim $f^{m+1}(V)$. (2)

Weiters gilt also

3

 $def f = dim V - dim f(V) \ge dim V - (def f + dim f^2(V)).$

Wir induzieren IV : m def f > n dim f (V) 1A' deff = n - dim f(V) = deff + rat = dim V = n 15: m deff ≥ n dim f m(V) ⇔ (m+1) deff > n - dim f (V) + deft = (m+1) deft > n (dim f (V) + deft) = (m+1) deft > n - f (V) ⇒ k' deff ≥ n f (V) = n ⇒ deff ≥ n/k.

$$\Rightarrow k' \det \{ \} n - \{ k'(V) = n \Rightarrow \det \{ \} n'/k . \square$$

Die Matrizen A, Az E R3x3 sind nihilpotent:

$$A_1 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}; A_1^2 = A_2^2 = O';$$

A 3.5.5 Durch die folgenden Matrizen A; $\in \mathbb{R}^{5\times5}$ sind lineare Abbildungen fi aus $L(\mathbb{R}^{5\times1}, \mathbb{R}^{5\times1})$ festgelegt. Welche davon sind Involutionen, Projektionen (f; \circ (i = fi) bzw. nilpotente Abbildungen?

 $A^2 = A \Rightarrow A$ ist eine Projektion; $B^2 = O \Rightarrow B$ ist nihilpotent; $C^2 = E \Rightarrow C$ ist involut; $D^2 = D \Rightarrow D$ ist eine Projektion; A 3.5.8 Es seien V ein Vektorraum über R und (61,62) Basis von V.

- (a) Bestimme alle (und nicht nur einige) Abbildungen $\{ \in L(V,V), \text{ welche die Menge } \{ b_1, b_2, b_1, b_2 \} \}$ Gijektiv auf sich abbilden. Lege die gesuchten Abbildungen durch ihre Koordinatenmatrix $\{B^*, f(B)\}$ fest.
- (6) Veranschauliche die Ergebnisse aus (a) in einem zweidimensionalen Unterraum von Vo.
- (c) Bilden die Abbildungen aus (a) eine Untergruppe von GL(V)?

$$\begin{bmatrix} 6_{A} & 6_{2} & -6_{A} & -6_{2} \\ 6_{A} & 6_{2} & -6_{A} & -6_{2} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{A} & -6_{2} \\ 6_{A} & 6_{2} & -6_{A} & -6_{2} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{A} & -6_{2} \\ 6_{A} & 6_{2} & -6_{A} & -6_{2} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{A} & -6_{2} \\ -6_{A} & 6_{2} & 6_{A} & -6_{2} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{A} & -6_{2} \\ 6_{2} & 6_{3} & -6_{4} & -6_{2} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{4} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{4} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ 6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ -6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}, \begin{bmatrix} 6_{A} & 6_{2} & -6_{3} & -6_{2} \\ -6_{2} & 6_{3} & -6_{2} & -6_{3} \end{bmatrix}$$

Veransdraulichung im R mit $6_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $6_z = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$:

Untergruppen Kriterium * # p ;
Inverse existieren, wegen Bijektivität;
Bild und Wertemenge sind gleich, also Verknüpfungen
abgeschlossen.

A 3.5.11 Es seien V ein 4 dimensionaler Vektorraum über IR, B eine Basis von V und $t \in L(V, V)$ gegeben durch seine Koordinatermatrix

Zeige'

- (a) Fix alle x & V \ { o } ist Ux = [{ xx, f(x)}] zweidimensional.
- (6) {Ux\{0}] x & V\{0}} ist eine Partition von V\{0}.

Hinweis : Betradite fof.

Beweis (a) : Ux ist zweidimensional, weil {x, f(x)} L.v. :

Betrachte die esste Spalte

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow c = 0$$
 And the Spatter folger analog.

(i) Ø & P, weil x, f(x) # 0

(ii)
$$\bigcup \bigcup_{x \in V \in X} = (\bigcup_{x \in V \in X}) \setminus \{\emptyset\} = V \setminus \{\emptyset\}$$
, weil

∀x € V\{@}: x € Ux.

(iii) Man merkit, dass (f°f)('x) = -x, also, Elemente werden von der ersten, in die zweite Spalte und umgekehrt abgebildet.

Wix zeigen, dass Ux n Uy = Ø => Ux = Uy.

Fall 1: ye Ux

 $y \in [\{x, f(x)\}], danu f(y) \in [\{x, f(x)\}], weil$ f(y) = f(ax + 6f(x)) = af(x) + 6f(f(x)) = af(x) - 6x.

Fall 2 : y & Ux

Waise $f(y) \in [\{x, f(x)\}]$, dam $a' \times b' \cdot f(x) \Rightarrow y = f(ax + bf(x)) = af(x) - bf(f(x)) = af(x) + bx$.

also doch $y \in U_X Y$.

Also $\{y, f(y)\} \subseteq [x, f(x)] \Rightarrow [y, f(y)] \subseteq [[x, f(x)]] = [x, f(x)]$

und "2" folgt analog.

Wenn y, f(y) \$ [x, f(x)] → [x, f(x)] n [y, f(y)] \ [03 = \$.

A 3.6.3 Es seien V ein Vektorraum und $f \in L(V, V)$ eine nilpotente Abbildung, also $f^k = 0$ idv für ein $K \in \mathbb{N}^*$.

- (a) Zeige: Die Abbildung g = idv f ist bijektiv und g -1 = idv + f + f 2 + ... + f k-1
- (6) Übersetze (a) in eine Aussage über Matrizen und bestimme damit die Inverse zu einer der folgenden Matrizen aus 18^{5×5}

Beweis (a): $g(g^{-1}(x)) = id_v(g^{-1}(x)) - f(g^{-1}(x)) =$ $id_v(x) + f(x) + f^2(x) + \cdots + f^{K-1}(x) - (f(x)) + f^2(x) + \cdots$ $f^{K}(x) = id_v(x) = x$.

 $g^{-1}(g(x)) = g^{-1}(id_{V}(x)^{-1}f(x)) = id_{V}(id_{V}(x)^{-1}f(x))^{+}$ $f(id_{V}(x)^{-1}f(x))^{+} \cdots + f^{k-1}(id_{V}(x)^{-1}f(x)) =$ $id_{V}(id_{V}(x))^{-1}id_{V}(f(x))^{+}f(id_{V}(x))^{-1}f(f(x))^{+} \cdots + f^{k-1}(id_{V}(x))^{-1}f^{k-1}(f(x))^{-1} = x^{-1}f^{k}(x)^{-1} = x^{-1}$

g=id, + = + = id, g;

0

$$\begin{bmatrix}
0 & 0 & 0 & -8 & 52 \\
0 & 0 & 0 & 0 & 72 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & -8 & 52 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & -8 & 52 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & -8 & 52 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Anhang' gist linear.

Beweis' $g(x^+y) = (id_v - f)(x^+y) = x^+y^-f(x)^-f(y)$ = id(x) - f(x) + id(y) - f(y) = g(x) + g(y). $g(cx) = (id_v - f)(cx) = cx^-f(cx) = c(id(x)^-f(x))$ = $c^*g(x)$. A 3.6.9 Fostsetzung von A 3.3.10. Sei $\{n : \mathbb{R}^{4\times n} \to \mathbb{R}^{4\times n}\}$ die Spiegelung an U_n in Richtung U_z , d.h., $\{n(x_n) = x_n\}$ für alle $x_n \in U_n$ und $\{n(x_z) = x_z\}$ für alle $x_z \in U_z$. In gleicher Weise sei $\{n : \mathbb{R}^{4\times n}\}$ als die Spiegelung an U_z in Richtung U_n erklärt.

- (a) Zeige, dass $f_z = f_1$ erfüllt ist. Bestimme die Koordinatenmatrizen (E, f_(E)) und (E, f_z(E)).
- (6) Zeige, dass die Abbildung $p_n := \frac{1}{z} (f_n + id_{R^{ann}})$ die Projektion auf Un in Richtung Uz ist, und berechne die Koordinatenmatrix $\langle E, p_n(E) \rangle$.

Beweis' $\forall u_1 \in U_1, u_2 \in U_2$: $f_1(u_1) = u_1, f_1(u_2) = u_2, f_2(u_2) = u_2, f_2(u_1) = u_1.$

Sei V e V beliebig, so gilt

$$\begin{cases} f_{z}(v) = f_{z}(u_{1} + u_{2}) = f_{z}(u_{1}) + f_{z}(u_{2}) = -u_{1} + u_{2}, \\ -f_{1}(v) = -f_{1}(u_{1} + u_{2}) = -f_{1}(u_{1}) - f_{1}(u_{2}) = -u_{1} + u_{2}. \end{cases}$$

$$\begin{bmatrix}
A & A & O & A \\
O & A & A & A \\
O & A & A & A \\
O & O & A & A \\
O & O & A & A \\
O & A & A$$

(E*, f,(E)) folgt analog.

Beweis: $P_{1}(v) = \frac{1}{2}(f^{+}id_{v})(v) = \frac{1}{2}(f_{1}(v)^{+}id_{v}(v)) = \frac{1}{2}(f_{2}(v)^{+}id_{v}(v)) = \frac{1}{2}(f_{3}(v)^{+}id_{v}(v)) = \frac{1}{2}(f_{3}(v)^{+$