$Group_14_Analysis$

Introduction

Here is the brief description of the data:

Variable Name	Description
country_of_origin aroma flavor	Country where the coffee bean originates from Aroma grade (ranging from 0-10) Flavour grade (ranging from 0-10)
acidity category_two_defects	Acidity grade (ranging from 0-10) Count of category 2 type defects in the batch of coffee beans tested
altitiude_mean_meters harvested Qualityclass	Mean altitude of the growers farm (in metres) Year the batch was harvested Quality score for the batch.

Note: About Quality class, 82.5 was selected as the cut off as this is the median score for all the batches tested.

Summaries

Table 2: Summary statistics of the coffee data

Variable	n	Mean	SD	Min	Median	Max	IQR
aroma	926	7.57	0.40	0	7.58	8.75	0.17
flavor	926	7.52	0.42	0	7.58	8.83	0.17
acidity	926	7.53	0.40	0	7.50	8.75	0.25
category_two_defects	926	3.52	5.24	0	2.00	47.00	2.00
altitude_mean_meters	926	1656.88	7180.23	1	1310.64	190164.00	289.36
harvested	926	2013.72	1.81	2010	2014.00	2018.00	1.00

We have performed numerical summaries of the data as well as done some plots to visualise the data.

Table 3: Summarie of the quality of coffee datset

country_of_origin	aroma	flavor	acidity	category_two_defects	altitude_mean_meters	harvested	Qualityclass
Length:926	Min. :0.000	Min. :0.000	Min. :0.000	Min. : 0.000	Min. : 1	Min. :2010	Length:926
Class :character	1st Qu.:7.420	1st Qu.:7.330	1st Qu.:7.330	1st Qu.: 0.000	1st Qu.: 1100	1st Qu.:2012	Class :character
Mode :character	Median :7.580	Median :7.580	Median :7.500	Median : 2.000	Median: 1311	Median :2014	Mode :character
NA	Mean :7.571	Mean :7.521	Mean :7.527	Mean : 3.522	Mean : 1657	Mean :2014	NA
NA	3rd Qu.:7.750	3rd Qu.:7.750	3rd Qu.:7.750	3rd Qu.: 4.000	3rd Qu.: 1600	3rd Qu.:2015	NA
NA	Max. :8.750	Max. :8.830	Max. :8.750	Max. :47.000	Max. :190164	Max. :2018	NA

Figure 1: Barplot of country of origin

Figure 2: Barplot of year harvesteds

Figure 3: Boxplots of coffee qualities

Figure 4: Boxplot of cateogry two defects

Figure 5: Boxplot of altitude

Correlation analysis

Next we perform a correlation matrix on some of the variables to see how they are related and be able to make a better decision about what models are best to fit. We have not used the country of origin as from the plots and summaries there didn't seem to be a relation between this variable and quality of coffee.

Figure 6: correlation between each variables

Figure 1 shows there is strong correlation between the first three variables: aroma, flavor and acidity. In addition, aroma, flavor and acidity have medium correlation with Quality Class, category is in weak correlation. However, the correlation of the last two variables are strongly weak.

GLM Part 1

The strong correlation shows that we need can do further data cleaning. For instance, deleting rows with null values and converting quality of coffee from Poor and Good to a numerical variable with 0 and 1. We have also separated the dataset into two categories, the first one with the variables with high correlation values we have called this dataset coffee1_1 and the second with the uncorrelated variables, called coffee1_2.

Model 1: The first three variables with principal component analysis and 3 variables.

We performed a principal components analysis on coffee1_1.

As we can see from the table above, the cumulative proportion of the first component is 0.8746, so we can only choose the first component.

```
Trying: 1st glm function
```

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Call:
  glm(formula = Qualityclass ~ PC1 + category_two_defects + altitude_mean_meters +
       harvested, family = binomial(link = "cloglog"), data = final_1)
## Deviance Residuals:
                      Median
                                   3Q
                 1Q
                                           Max
## -2.7770 -0.4827 -0.0138
                               0.2034
                                        3.7660
##
## Coefficients:
                          Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                        -2.016e-01
                                    2.132e-01 -0.945
                                                         0.344
                                                        <2e-16 ***
## PC1
                        -4.237e+00
                                    2.833e-01 -14.955
## category_two_defects -7.312e-03
                                                         0.682
                                    1.787e-02
                                               -0.409
## altitude_mean_meters 6.180e-06
                                    7.953e-06
                                                0.777
                                                         0.437
## harvested
                        -3.712e-02 3.868e-02
                                               -0.960
                                                         0.337
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1283.4 on 925 degrees of freedom
## Residual deviance: 533.6 on 921 degrees of freedom
## AIC: 543.6
##
## Number of Fisher Scoring iterations: 9
```

Model 2: All variables with principal component analysis.

We performed a principal components analysis on coffee1_3.

```
## Importance of components:
                                                           Comp.4
##
                                      Comp.2
                            Comp.1
                                                Comp.3
                                                                      Comp.5
## Standard deviation
                          1.749350 1.0734284 0.9976865 0.9042951 0.77722534
## Proportion of Variance 0.437175 0.1646069 0.1421969 0.1168214 0.08629703
## Cumulative Proportion
                          0.437175 0.6017819 0.7439788 0.8608002 0.94709722
##
                              Comp.6
                                         Comp.7
## Standard deviation
                          0.49245507 0.35750169
## Proportion of Variance 0.03464457 0.01825821
## Cumulative Proportion 0.98174179 1.00000000
```

As we can see from the table above, the cumulative proportion of the fourth component is 0.8608002, so we can only choose the first four component.

Trying: 2st glm function

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
##
## Call:
  glm(formula = V5 ~ RC1 + RC2 + RC4 + RC3, family = binomial(link = "logit"),
##
       data = final_2)
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
  -2.3701
           -0.4274
                    -0.0028
                               0.3495
                                        4.3489
##
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
               0.18990
                           0.11127
                                     1.707
                                             0.0879 .
## RC1
               -6.07330
                           0.42747 -14.208
                                              <2e-16 ***
## RC2
               -0.14806
                           0.10444
                                    -1.418
                                             0.1563
## RC4
               -0.10265
                           0.14475
                                    -0.709
                                             0.4782
## RC3
                0.06929
                           0.14167
                                     0.489
                                             0.6248
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1283.43
                               on 925
                                       degrees of freedom
## Residual deviance: 545.25
                               on 921
                                       degrees of freedom
## AIC: 555.25
##
## Number of Fisher Scoring iterations: 7
```

All of these two models do not fit well, and the correlation figure shows that the last three variables have really weak relationship with Quality Class, so in this model, we try to fit the third model by deleting harvested, category and altitude.

Model 3: First 3 variables with principal component analysis.

As we can see from the table above, the cumulative proportion of the second component is 0.9561369, so we can only choose the first two components.

Trying: 3rd glm function

```
##
## Call:
  glm(formula = V3 ~ RC1 + RC2, family = binomial(link = "logit"),
##
       data = final_3)
##
##
  Deviance Residuals:
##
                      Median
                                    30
                                           Max
       Min
                 1Q
           -0.4380 -0.0026
  -2.2960
                               0.3756
                                         4.3049
##
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
                            0.1100
                                     1.689
                                              0.0912
## (Intercept)
                 0.1857
                -4.1619
                            0.3364 -12.372
                                              <2e-16 ***
## RC1
## RC2
                -2.2199
                            0.2550 - 8.704
                                              <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1283.43
                               on 925
                                       degrees of freedom
## Residual deviance: 547.78
                               on 923
                                       degrees of freedom
## AIC: 553.78
##
## Number of Fisher Scoring iterations: 7
```

The p-values presented in the table above are all less than 0.05, indicating that the third model fits well and that the first three variables are the most important factors influencing the goodness of the fit.

Model 4: First 3 variables and last one with principal component analysis.

As seen in the boxplots and the correlation matrix there is a relationship between altitude and Quality Class, therefore we have performes a PCA using aroma, flavour, acidity and altitude and fitted a linear model with its components.

The PCA has cumulative proportion of 0.967 in the third component so we have fitted a GLM wiht the first 3 components.

The GLM has low p-values in all the components but one so it is not the model we have fitted.

GLM Part 2

Even though the correlation matrix showed a high correlation between the variables aroma, flavor and acidity, we have perfored GLMs with them without performing PCA.

We have done this given the quote by Applied Linear Statistical Models, p289, 4th Edition; "The fact that some or all predictor variables are correlated among themselves does not, in general, inhibit our ability to obtain a good fit nor does it tend to affect inferences about mean responses or predictions of new observations."

We have removed all the outliers of our dataframe, as there looked to be a lot of them in the boxplots.

Model 1

We have fitted a model with aroma, flavor, acidity, category two defects, year harevested and altitude as explanatory variables

Observations	738
Dependent variable	Qualityclass
Type	Generalized linear model
Family	binomial
Link	logit

$\chi^{2}(6)$	567.76
Pseudo-R ² (Cragg-Uhler)	0.72
Pseudo-R ² (McFadden)	0.56
AIC	463.05
BIC	495.28

	Est.	S.E.	z val.	p
(Intercept)	130.35	10.13	12.87	0.00
aroma	-5.26	0.85	-6.21	0.00
flavor	-7.73	0.98	-7.87	0.00
acidity	-4.04	0.73	-5.52	0.00
$category_two_defects$	-0.05	0.05	-0.86	0.39
harvested	-0.13	0.06	-2.07	0.04
$altitude_mean_meters$	-0.00	0.00	-2.28	0.02

Standard errors: MLE

Model 2

As the p-value for category two defects in the model is greater than 0.05, we have fitted a new GLm without it as an explanory variable.

Observations	738
Dependent variable	Qualityclass
Type	Generalized linear model
Family	binomial
Link	logit

$\chi^{2}(5)$	567.01
Pseudo-R ² (Cragg-Uhler)	0.72
Pseudo-R ² (McFadden)	0.56
AIC	461.80
BIC	489.42

	Est.	S.E.	z val.	р
(Intercept)	129.67	10.07	12.88	0.00
aroma	-5.19	0.84	-6.18	0.00
flavor	-7.73	0.98	-7.87	0.00
acidity	-4.03	0.73	-5.51	0.00
harvested	-0.13	0.06	-2.08	0.04
altitude_mean_meters	-0.00	0.00	-2.30	0.02

Standard errors: MLE

Odds(Good/Poor)

Model 3

As the p-value for category two defects in the model is greater than 0.05, we have fitted a new GLm without it as an explanory variable.

Observations	738
Dependent variable	Qualityclass
Type	Generalized linear model
Family	binomial
Link	logit

$\chi^{2}(4)$	562.64
Pseudo-R ² (Cragg-Uhler)	0.71
Pseudo-R ² (McFadden)	0.55
AIC	464.17
BIC	487.19

	Est.	S.E.	z val.	р
(Intercept)	127.50	9.90	12.88	0.00
aroma	-5.00	0.83	-6.03	0.00
flavor	-7.72	0.98	-7.88	0.00
acidity	-4.05	0.73	-5.54	0.00
$altitude_mean_meters$	-0.00	0.00	-2.12	0.03

Standard errors: MLE

Odds(Good/Poor)

This last model has all p-values under 0.05. If we compare the AIC and BIC of the models, model 2 has a lower AIC but model 3 has a lower BIC. This suggests that both models are good and that we can use either of them.