Московский Физико-Технический Институт

Кафедра общей физики Лабораторная работа №2.3.1

Получение и измерение вакуума

Автор: Алексей Домрачев 615 группа

Цель работы: Измерение объёмов форвакуумной и высоковакуумной частей установки; определение скорости откачки системы в стационарном режиме, а также по ухудшению и улучшению вакуума.

В работе используются: Вакуумная установка с манометрами: масляным, термопарным и ионизационным.

Теория. С физической точки зрения низкий вакуум переходит в высокий, когда длина свободного пробега молекул становится сравнимой с размером установки (а течение газа сугубо молекулярным); сверхвысокий вакуум характерен важностью процессов адсорбции и десорбции частиц на поверхности вакуумной камеры.

В этой работе изучаются традиционные методы откачки механическим форвакуумным насосом до давления 10^{-2} торр и диффузионным масляным насосом до 10^{-5} торр, а также методы измерения вакуума в этом диапазоне

Рабочие формулы. Объёмы частей установки будем рассчитывать с помощью закона Бойля–Мариотта для идеального газа: PV=const

Обозначим через $Q_{\rm H}$ количество газа, десорбирующегося с поверхности откачиваемого объема в единицу времени, через $Q_{\rm H}$ — количество газа, проникающего в единицу времени в этот объем извне — через течи. Будем считать, что насос обладает скоростью откачки W и в то же время сам является источником газа; пусть $Q_{\rm H}$ — поток газа, поступающего из насоса назад в откачиваемую систему. Будем измерять количество газа $Q_{\rm H}$ и $Q_{\rm H}$ в единицах PV (легко видеть, что это произведение с точностью до множителя RT/μ равно массе газа). Основное уравнение, описывающее процесс откачки, имеет вид

$$-VdP = (PW - Q_{\mathrm{H}} - Q_{\mathrm{H}} - Q_{\mathrm{H}})dt. \tag{1}$$

Левая часть этого уравнения равна убыли газа в откачиваемом объеме V, а правая определяет количество газа, уносимого насосом, и количество прибывающего вследствие перечисленных выше причин за время dt. При достижении предельного вакуума (при $P=P_{\rm np}$): $\frac{dP}{dt}=0$, поэтому

$$P_{\text{пр}}W = Q_{\text{д}} + Q_{\text{H}} + Q_{\text{H}} \tag{2}$$

Обычно $Q_{\text{и}}$ постоянна, а $Q_{\text{н}}$ и $Q_{\text{д}}$ слабо зависят от времени, значит в условиях нашего эксперимента эти члены можно считать постоянными. Считая также постоянной W, проинтегрируем (1), используя (2), и получим:

$$P - P_{\text{np}} = (P_0 - P_{\text{np}})exp(-\frac{W}{V}t),$$
 (3)

где P_0 — начальное давление. $P_0\gg P_{\rm np}$ поэтому можно записать, что

$$P = P_0 exp(-\frac{W}{V}t) + P_{\text{np}} \quad \Rightarrow \quad \ln(P - P_{\text{np}}) = -\frac{W}{V}t + \ln(P_0) \tag{4}$$

Следовательно, если построить график зависимости $\ln(P-P_{\rm np})(t)$ и вычислить его угловой коэффициент, то он будет равен $\tau=\frac{V}{W}$ — постоянная времени откачки, она является мерой эффективности откачной системы.

Экспериментальная установка Установка изготовлена из стекла и состоит из форвакуумного баллона, высоковакуумного диффузионного насоса, масляного и ионизационного манометров, термопарных манометров, форвакуумного насоса и соединительных кранов. Кроме того, в состав установки входит регулятор тока нагревателя диффузионного насоса.

Рис. 1: Экспериментальная установка

Параметры установки и начальные условия

$$V_{\text{кап}} = (50 \pm 3) \text{ cm}^3, \quad L_{\text{кап}} = 63 \text{ мм}, \quad d_{\text{кап}} = 0.9 \text{ мм}, \quad P_0 = 98150 \text{ Па}, \quad \rho_{\text{м}} = 0.885 \text{ г/см}^3$$

Определение объёма форвакуумной и высоковакуумной частей установки

- 1. Открыть все краны, кроме K_1 и K_2 .
- 2. Впустить в установку атмосферный воздух.
- 3. Закрыть K_5 и K_6 , заперев в капилляре воздух.
- 4. Откачать установку формвакуумным насосом до $4 \cdot 10^{-4}$ торр.
- 5. Отсоединить вакуумный насос от установки, выключить его, подать на него атмосферу.
- 6. Закрыть K_3 , отделив форвакуумную часть от высоковакуумной.
- 7. Закрыть K_4 , приведя в готовность масляный манометр.

- 8. Открыть K_5 .
- 9. Измерить давление масляным манометром $\Delta h_{\Phi B} = (31.0 15.8)$ см масл. ст.
- Открыть K₃.
- 11. Измерить давление масляным манометром $\Delta h_{\Pi} = (28.4 18.3)$ см масл. ст.
- 12. Открыть K_4 .

Получение высокого вакуума и измерение скорости откачки

- 1. Оставить установку без запертых частей, откачать форвакуумным насосом.
- 2. Включить термопарные вакуумметры.
- 3. Когда давление упало до $\mathbf{P_1} = \mathbf{7} \cdot \mathbf{10^{-3}}$ торр, закрыть $\mathbf{K_6}$.
- 4. Включить нагреватель диффузионного насоса и подождать 10 минут.
- 5. Включить ионизационный манометр.
- 6. Измерить предельное давление в системе $P_{\rm np} = 72 \cdot 10^{-6} \, {\rm topp.}$
- 7. Измерить скорость откачки: отключить откачку краном K_3 и подождать, пока вакуум достаточно ухудшится (10^{-3} торр) , открыть K_3 и фиксировать изменение показаний манометра со временем.
- 8. Измерить величину потока $Q_{\rm H}$: пе'рекрыть ${\rm K}_3$ и фиксировать изменение показаний со временем.
- 9. Повторить измерения пп. 7–8.
- 10. Открыть K_6 , дождаться установления давления: $P_{ycr} = 1.4 \cdot 10^{-4}$ торр.
- 11. Выключить установку.
 - * фиксация зависимостей производилась при помощи видеосъёмки.

Обработка результатов

Объёмы

$$V_{\Phi \mathrm{B}} = V_{\mathrm{\kappa an}} rac{P_0}{
ho_{\mathrm{M}} g \Delta h_{\Phi \mathrm{B}}} = 3.7 \, \mathrm{л},$$

Объём высоковакуумной части равен разности объёмов обеих частей и форвакуумной части: $V=V_{\rm kar}-V_{\Phi \rm B}$

$$V_{
m BB} = V_{
m \kappa a \pi} rac{P_0}{
ho_{
m M} g} \left(rac{1}{\Delta h_{\Pi}} - rac{1}{\Delta h_{\Phi
m B}}
ight) = 1.9\,{
m Jm}$$

Ухудшение вакуума Из паспорта вакуумметра ВИТ-2 узнали, что для перевода из мкА в торры надо полученное значение домножить на 100.

t, c	$I_1 \cdot 10^{-1}$, мкА	$I_2 \cdot 10^{-1}$, MKA	$P \cdot 10^{-5}$, Topp	$(P - P_{\text{пр}}) \cdot 10^{-5}$, торр	$ln(P-P_{\rm np})$
0	78	74	76	68,8	4,23
1	62	58	60	52,8	3,97
2	50	53	51,5	44,3	3,79
3	38	41	39,5	32,3	3,48
4	30	33	31,5	24,3	3,19
5	24	26	25	17,8	2,88
6	22	25	23,5	16,3	2,79
7	18	19	18,5	11,3	2,42
8	16	17	16,5	9,3	2,23
9	12	12	12	4,8	1,57

Таблица 1: Данные полученные при улучшении вакуума

По полученным данным построим график зависимости $\ln(P-P_{\mathrm{np}})$ от t

Рис. 2: График при улучшении вакуума

Посчитав с помощью МНК угловой коэффициент, получим $k=-2.7\pm0.1\cdot10^{-1}$ Из уравнения (4) ясно, что $W=-k\cdot V_{\text{вв}}=0.51\pm0.017\frac{\pi}{\text{c}}$

Улучшение вакуума Теперь оценим величину потока $Q_{\scriptscriptstyle \mathrm{H}}$

Таблица 2: Данные полученные при ухудшении вакуума

t, c	$I_1 \cdot 10^{-1}$, мкА	$I_2 \cdot 10^{-1}$, мкА	$P \cdot 10^{-5}$, торр
0	22	22	22
5	26	25	25,5
10	30	30	30
15	34	34	34
20	38	39	38,5
25	44	44	44
30	48	47	47,5
35	52	53	52,5
40	56	56	56
45	60	60	60
50	64	65	64,5
55	68	68	68
60	72	72	72
65	76	75	75,5

По полученным данным построим график зависимости P от t

Рис. 3: График при улучшении вакуума

Посчитав с помощью МНК угловой коэффициент, получим $k=8.4\pm0.01\cdot10^{-6}\frac{\text{торр}}{\text{с}}$ Мы знаем, что в этому случае(без откачки) изменение давления во времени описывается уравнением (1). Тогда $Q_{\text{д}}+Q_{\text{и}}=kV_{\text{вв}}$. Также $Q_{\text{н}}=P_{\text{пр}}W-Q_{\text{д}}-Q_{\text{и}}$ Значит $Q_{\text{н}}=P_{\text{пр}}W-kV_{\text{вв}}=2.1\cdot10^{-5}\frac{\text{торр}\cdot\text{м}^3}{\text{c}}$, а $\sigma_{Q_{\text{н}}}=Q_{\text{н}}\sqrt{\varepsilon_k^2+\varepsilon_W^2}=0.1\cdot10^{-5}\frac{\text{торр}\cdot\text{m}^3}{\text{c}}$ В итоге $Q_{\text{н}}=2.1\pm0.1\cdot10^{-5}\frac{\text{торр}\cdot\text{m}^3}{\text{c}}$

Производительность насоса Рассчитаем производительность насоса по различию $P_{\rm ycr}$ и $P_{\rm np}$. Для этого используем формулу течения газа через трубу:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_{\Phi B} - P_{ycr}}{L}$$
 (5)

Запишем формулу (2) для случаев, когда капилляр перекрыт и когда он открыт:

$$P_{\text{пр}}W = Q_1, P_{\text{уст}} = Q_1 + \frac{d(PV)_{\text{капилл}}}{dt}$$

$$\tag{6}$$

 Q_1 — сумма всех натеканий, исключив её найдем W:

$$W = \frac{4}{3}r^3 \sqrt{\frac{2\pi RT}{\mu}} \frac{P_{\Phi B} - P_{ycr}}{(P_{ycr} - P_{np})L} = 0.41 \frac{\pi}{c}$$
 (7)

Подведение итогов Были измерены объёмы форвакуумной и высоковакуумной частей установки: $V_{\Phi \rm B} = 3.7\,{\rm m}^3, V_{\rm вв} = 1.9\,{\rm m}^3$. Была рассчитана скорость откачки системы W двумя способами, при это полученные данные близки $W_{\rm ухуд.} = 0.41\,{\rm m}^{1}_{\rm c}, \, W_{\rm улучш.} = 0.51\,{\rm m}^{1}_{\rm c}$