Author: Quan Nguyen

MEMBABOLIC SYNDROME

Apply Machine Learning for Predictions

healthapta

Data Overview

National Health and Nutrition Examination Survey

Feature	Description					
seqn	Respondent sequence number					
Age	Age in Years					
Sex	Male or Female					
Marital	Marital status					
Income	Income in Dollars					
Race	Racial Group					
WaistCirc	Waist Circumference					
вмі	Body Mass Index					
Albuminuria	Albumin in Urine					
UrAlbCr	Ratio of Albumin to Creatinine in Urine					
UricAcid	Uric Acid in Blood					
BloodGlucose	Glucose in Blood					
HDL	High Density Lipoprotein					
Triglycerides	Triglycerides in Blood					
MetabolicSyndrome	Presence or not of at least three of the five metabolic risk factors					

^{*}The dataset includes of 2401 rows, and 15 columns.

Objective:

- 1. Build predictive models
- 2. Develop all models and select the best performed model.
- 3. Gain insights into the relationships between different variables and their contribution to metabolic syndrome risk prediction.

Methodology

- 1. Data Preprocessing and Visualizations.
- 2. Model training.
- 3. Feature Selection (PCA) and Engineering.
- 4. Clustering.
- 5. Model Evaluation.
- 6. Best model interpretation and Insights.

Correlation Coefficient visualization

Correlation Coefficient visualization

Correlation Coefficient visualization

Clustering

Models Comparison and Recommendation

	Train Accuracy	Train Recall	Train Precision	Train F1- Score	Test Accuracy	Test Recall	Test Precision	Test F1- Score
KNN Classifier	0.868946	0.846083	0.863689	0.853552	0.817094	0.778359	0.788393	0.782958
KNN Best Model	0.849003	0.814746	0.849587	0.827311	0.810256	0.768876	0.780510	0.774115
LightGBM Classifier	1.000000	1.000000	1.000000	1.000000	0.902564	0.884084	0.887635	0.885824
LightGBM best model	0.996011	0.996186	0.995121	0.995650	0.895726	0.880627	0.877264	0.878911
Gradient Boosting Classifier	0.953276	0.946098	0.951476	0.948684	0.907692	0.881780	0.899709	0.889930
GBC best model	0.999430	0.999558	0.999199	0.999378	0.899145	0.883109	0.881963	0.882532
XGB Classifier	1.000000	1.000000	1.000000	1.000000	0.895726	0.874601	0.880463	0.877434
XGB best model	1.000000	1.000000	1.000000	1.000000	0.890598	0.873892	0.871673	0.872767
Logistic Regression Balanced	0.824501	0.825344	0.808291	0.814107	0.829060	0.829227	0.800716	0.810518
Logistic Regression UnderSampling	0.826211	0.825587	0.809757	0.815438	0.820513	0.821517	0.792124	0.801743
Logistic Regression OverSampling	0.823932	0.824542	0.807664	0.813450	0.822222	0.824264	0.794117	0.803858
Logistic Regression with PCA	0.839886	0.811648	0.832285	0.819949	0.841026	0.810794	0.815657	0.813137
Logistic Regression with PCA best model	0.835897	0.806752	0.828050	0.815226	0.837607	0.808313	0.811164	0.809707
Best Light GBM Model with feature engineering	1.000000	1.000000	1.000000	1.000000	0.897436	0.881868	0.879601	0.880719

l Model

Personal Data Insight:

- Detecting Metabolic Syndrome Early
 - Benefits for Individuals and Public Health
 - Early Intervention: Lifestyle modifications, medication, and targeted interventions
- Benefits of Early Treatment:
 - Manage blood pressure, blood sugar, cholesterol levels, and weight
 - Reduce risk of cardiovascular diseases, diabetes, and related complications
 - Improve overall health outcomes and quality of life
 - Potentially reduce healthcare costs

Data Insights for Healthcare Professionals

- Benefits for Healthcare Professionals:
 - Streamline diagnostic process with data-driven approach
 - Save valuable time for personalized care and interventions
- Machine Learning and Metabolic Syndrome Dataset:
 - Analyze patterns and relationships for accurate syndrome detection
- Enhancing Clinical Decision-Making:
 - Incorporate variables and risk factors
 - Gain insights into underlying mechanisms and predictors

