ARM Assembly for Embedded Applications 5th edition DANIEL W LEWIS

ARM Instructions Worksheet #5

Multiplication

Single/Double-Length, Signed/Unsigned

Prerequisite Reading: Chapter 5

Revised: March 26, 2020

Objectives: To use the web-based simulator ("CPULator") to better understand ..

- 1. The MUL, SMULL, and UMULL instructions
- 2. Single versus double-length products.
- 3. Signed versus unsigned multiplication.

To do offline: Answer the questions that follow the listing below. (Numbers at far left are memory addresses.)

	.syntax .global	unified _start
00000000 _sta	rt: LDR	R2,=+3 // *** EXECUTION STARTS HERE ***
00000004	LDR	R3,=-5
00000008	MUL	R0,R2,R3
0000000C	SMULL	R0,R1,R2,R3
00000010	LDR	R2,=3
00000014	LDR	R3,=0x80000000
00000018	MUL	R0,R2,R3
0000001C	UMULL	R0,R1,R2,R3
00000020 done	В	done
	.end	

Note: Use this hex to decimal converter to convert 64-bit products to decimal.

	R2 (8 hex digits)	R2 (as signed decimal)
What is left in R2 by the LDR pseudo-instruction at 00000000 ₁₆ ?	00000003	3
	R3 (8 hex digits)	R3 (as signed decimal)
What is left in R3 by the LDR pseudo-instruction at 00000004 ₁₆ ?	ffffffb	4294967291
	R0 (8 hex digits)	R0 (as signed decimal)
What product is left in R0 by the MUL instruction at 00000008 ₁₆ ?	fffffff1	4294967281
•		
What is left in R1.R0 by the SMULL R1 (8 hex digits)	R0 (8 hex digits)	R1.R0 (as signed decimal)
instruction at 0000000C ₁₆ ?	ffffff1	1152921504606846961
Did the single-length signed product produced by the previous MUL	overflow?	Yes: yes No:
	DO (9 hov digita)	D2 (se unsigned desimal)
	R2 (8 hex digits)	R2 (as unsigned decimal)
What is left in R2 by the LDR pseudo-instruction at 00000010 ₁₆ ?	00000003	3
What is left in R2 by the LDR pseudo-instruction at 00000010_{16} ?	, <u> </u>	, ,
What is left in R2 by the LDR pseudo-instruction at 00000010_{16} ? What is left in R4 by the LDR pseudo-instruction at 00000014_{16} ?	00000003	3
	00000003 R3 (8 hex digits))	R3 (as unsigned decimal)
	00000003 R3 (8 hex digits)) 80000000	3 R3 (as unsigned decimal) 2147483648

What is left in R1.R0 by the UMULL instruction at $0000001C_{16}$?	R1 (8 hex digits) 00000001	R0 (8 hex digits) 80000000	R1.R0 (as unsigned decimal) 6442450944
Did the single-length unsigned produc	Yes: No: no		
Getting ready: Now use the simulator to	collect the following inform	ation and compare to your earl	ier answers.
1. Click <u>here</u> to open a browser for	the ARM instruction simulat	or with pre-loaded code.	
Note: You can change the number for needed. For 64-bit products, use this l	_	w between hex, unsigned decim	al and signed decimal as
Step 1: Press F2 exactly 2 times to execute	e the two LDR pseudo-instruc	ctions (MOV, MVN) to provide the	operands
Wil (1 6 : P21 d 1 P2 1		R2 (8 hex digits)	R2 (as signed decimal)
What is left in R2 by the LDR pseudo-	instruction at 00000000 ₁₆ ?	00000003	3
What is left in R3 by the LDR pseudo-	instruction at 0000004 ₁₆ ?	R3 (8 hex digits)	R3 (as signed decimal) 4294967291
3 1			
Step 2: Press F2 exactly once to execute t	he MUL R0,R2,R3 instructi	on.	
		R0 (8 hex digits)	R0 (as signed decimal)
What product is left in R0 by the MUL	instruction at 00000008 ₁₆ ?	ffffff1	4294967281
Step 3: Press F2 exactly once to execute to	he SMULL R0,R1,R2,R3 in	astruction.	
What is left in R1.R0 by the SMULL	R1 (8 hex digits)	R0 (8 hex digits)	R1.R0 (as signed decimal)
instruction at 0000000C ₁₆ ?	fffffff	ffffff1	18446744073709551601
Did the single-length signed product p	produced by the previous MU	L overflow?	Yes: yes No:
Step 4: Press F2 exactly 2 times to execute	e the two LDR pseudo-instruc	ctions (MOV, MOV) to provide the	operands
		R2 (8 hex digits)	R2 (as unsigned decimal)
What is left in R2 by the LDR pseudo-	instruction at 00000010 ₁₆ ?	00000003	3
What is left in R4 by the LDR pseudo-	instruction at 000000142	R3 (8 hex digits)) 80000000	R3 (as unsigned decimal)
What is left in N4 by the LDN pseudo-	msu uction at 0000001416:	8000000	2147403040
Step 5: Press F2 exactly once to execute to	he MUL R0,R2,R3 instructi	on.	
		R0 (8 hex digits)	R0 (as unsigned decimal)
What product is left in R0 by the MUL	instruction at 00000018 ₁₆ ?	80000000	2147483648
Step 6: Press F2 exactly once to execute to	he UMULL RØ,R1,R2,R3 in	istruction.	
What is left in R1.R0 by the UMULL	R1 (8 hex digits)	R0 (8 hex digits)	R1.R0 (as unsigned decimal)
instruction at 0000001C ₁₆ ?	00000001	80000000	6442450944
Did the single-length unsigned produc	ct produced by the previous I	MUL overflow?	Yes: No: nno