Linear Algebra

Cody Vig

January 2022

Definition 1 (Set of linear maps). We say $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ if T is a linear transformation from a vector space \mathbf{V} to a vector space \mathbf{W} . We say $T \in \mathcal{L}(\mathbf{V})$ if $T \in \mathcal{L}(\mathbf{V}, \mathbf{V})$.

Definition 2 (Coordinate vector). Let x be a vector in a vector space \mathbf{V} over \mathbb{F} and suppose $\beta = \{v_1, \dots, v_n\}$ is a basis for \mathbf{V} . Write $x = \sum_{i=1}^n a_i v_i$ for unique scalars $\{a_i\}_{i=1}^n \subset \mathbb{F}$. Then

$$[x]_{\beta} := \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{F}^n$$

is called the coordinate vector of x relative to β .

Definition 3 (Matrix representations). Suppose **V** and **W** are vector spaces with standard ordered bases β and γ , respectively. If w = T(v), then the matrix $[T]^{\gamma}_{\beta}$ such that $[w]_{\gamma} = [T]^{\gamma}_{\beta}[v]_{\beta}$ is called the matrix representation of T in the ordered bases β and γ . If $\mathbf{V} = \mathbf{W}$ and $\beta = \gamma$, we write $[T]^{\gamma}_{\beta} = [T]_{\beta}$.

Definition 4 (Left-multiplication transformation). Let $A \in M_{m,n}(\mathbb{F})$. We denote by L_A the mapping $L_A : \mathbb{F}^n \to \mathbb{F}^m$ defined by $L_A(x) = Ax$ (the matrix product of A and x).

Definition 5 (Isomorphism). Let V and W be finite dimensional vector spaces. An isomorphism between W and W is a linear transformation $T \in \mathcal{L}(V, W)$ such that T has an inverse $T^{-1} \in \mathcal{L}(W, V)$. If such an isomorphism exists, we say V and W are isomorphic.

Problem Set 2: Linear Transformations and Matrices

1. Prove that the composition of linear transformations is a linear transformation. In particular, if \mathbf{V}_1 , \mathbf{V}_2 , and \mathbf{V}_3 are vector spaces over a common field \mathbb{F} , and $T_1 \in \mathcal{L}(\mathbf{V}_1, \mathbf{V}_2)$ and $T_2 \in \mathcal{L}(\mathbf{V}_2, \mathbf{V}_3)$, show that $T_2 \circ T_1 : \mathbf{V}_1 \to \mathbf{V}_3$ satisfies

$$T_2 \circ T_1(ax + y) = aT_2 \circ T_1(x) + T_2 \circ T_1(y)$$

for any x, y in \mathbf{V}_1 and a in \mathbb{F} .

Solution: Since T_1 and T_2 are linear, we get

$$T_2 \circ T_1(ax+y) = T_2(T_2(ax+y)) = T_2(aT_1(x) + T_1(y))$$
$$= aT_2(T_1(x)) + T_2(T_1(y)) = aT_2 \circ T_1(x) + T_2 \circ T_1(y),$$

as expected.

2. (a) Prove that every vector space of dimension n over a field \mathbb{F} is isomorphic to \mathbb{F}^n by exhibiting an isomorphism. (Make sure to prove that your linear transformation is indeed an isomorphism.)

Solution: Let **V** be a finite dimensional vector space of dimension n and fix a basis $\beta := \{v_1, \ldots, v_n\}$ of **V**. Write x in **V** as $x = \sum_{i=1}^n c_i v_i$ for $\{c_i\} \subset \mathbb{F}$ and define the linear transformation $T(x) = [x]_{\beta}$. I claim T is an isomorphism. To prove this, it is sufficient to construct an inverse. In particular, for $\xi = (\xi_1, \ldots, \xi_n)^{\top} \in \mathbb{F}^n$, put $S(c) = \sum_{i=1}^n \xi_i v_i$. Then for $v = \sum_{i=1}^n c_i v_i \in V$, we have

$$S \circ T(v) = S\left(T\left(\sum_{i=1}^{n} c_i v_i\right)\right) = S\left(\begin{pmatrix}c_1\\ \vdots\\ c_n\end{pmatrix}\right) = \sum_{i=1}^{n} v_i v_i = v.$$

And, for any $\xi \in (\xi_1, \dots, \xi_n)^{\top} \in \mathbb{F}^n$, we have

$$T \circ S(\xi) = T\left(S\left(\begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}\right)\right) = T\left(\sum_{i=1}^n \xi_i v_i\right) = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix} = \xi.$$

Hence $T \circ S = \mathbf{I}_{\mathbb{F}^n}$ and $S \circ T = \mathbf{I}_{\mathbf{V}}$, and so $S = T^{-1}$. This proves T is an isomorphism and therefore proves that \mathbf{V} is isomorphic to \mathbb{F}^n .

(b) Show that two finite dimensional vector spaces are isomorphic if and only if they have the same dimension.

Solution:

(\Longrightarrow) Suppose **V** and **W** are isomorphic vector spaces; i.e., that $V \cong W$. Then there exists an isomorphism $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$; that is, there exists a map T which is one-to-one and onto on **W**. Thus, $R(T) = \mathbf{W}$ and $N(T) = \{0_{\mathbf{V}}\}$, and so dim $\mathbf{V} = \dim \mathbf{W}$.

(\Leftarrow) Suppose **V** and **W** are two finite dimensional vector spaces with the same dimension n, and let β and γ be bases, respectively. From Part (a), we have $\phi_{\beta}: \mathbf{V} \to \mathbb{F}^n$ and $\phi_{\gamma}: \mathbf{W} \to \mathbb{F}^n$ are isomorphisms (and in particular, $\mathbf{V} \cong \mathbb{F}^n$ and $\mathbf{W} \cong \mathbb{F}^n$). The map $\phi_{\gamma}^{-1} \circ \phi_{\beta}: \mathbf{V} \to \mathbf{W}$ is therefore an isomorphism, since the composition of isomorphisms is an isomorphism.

3. Let $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ where \mathbf{V} and \mathbf{W} are n- and m-dimensional vector spaces over \mathbb{F} with ordered bases β and γ , respectively. Let $\phi_{\beta} \in \mathcal{L}(\mathbf{V}, \mathbb{F}^n)$ be such that $\phi_{\beta}(v) = [v]_{\beta}$ and $\phi_{\gamma} \in \mathcal{L}(\mathbf{W}, \mathbb{F}^m)$ be such that $\phi_{\gamma}(w) = [w]_{\gamma}$. Write T in terms of ϕ_{β} , ϕ_{γ} , and the left-multiplication transformation L_A where $A = [T]_{\beta}^{\gamma}$.

Solution: Set $A = [T]_{\beta}^{\gamma}$. Observe that we can map from \mathbf{V} to \mathbb{F}^m in two different ways; either by mapping first to \mathbf{W} and then to \mathbb{F}^m , or by mapping first to \mathbb{F}^n and then to \mathbb{F}^m . I claim these two maps are equal, i.e., that $L_A \circ \phi_{\beta} = \phi_{\gamma} \circ T$. To prove this claim, it is sufficient to show these two transformations give the same result when applied to the elements of a given basis for \mathbf{V} , say $\{v_1, \ldots, v_n\}$. The left side gives

$$L_A \circ \phi_{\beta}(v_j) = L_A(\phi_{\beta}(v_j)) = L_A[v_j]_{\beta} = [T(v_j)]_{\gamma}.$$

The right side gives

$$\phi_{\gamma} \circ T(v_j) = \phi_{\gamma} (T(v_j)) = [T(v_j)]_{\gamma}.$$

Hence, $L_A \circ \phi_\beta = \phi_\gamma \circ T$. Since ϕ_γ is an isomorphism (by Problem 2a), ϕ_γ^{-1} exists, and so $T = \phi_\gamma^{-1} \circ L_A \circ \phi_\beta$.

[This problem and its predecessor shows why we are so concerned with \mathbb{R}^n in linear algebra. All of finite-dimensional linear algebra over the reals can be done in terms of \mathbb{R}^n .]

4. Let B be an $n \times n$ invertible matrix and define $\Phi: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ by $\Phi(A) = B^{-1}AB$. Prove that Φ is an isomorphism.

Solution: Since the domain and co-domain have the same dimension (indeed, they are they same vector space), it is sufficient to show that Φ has an inverse. Note that $\Phi^{-1}(C) = BCB^{-1}$, since $\Phi^{-1}(\Phi(A)) = \Phi^{-1}(B^{-1}AB) = BB^{-1}ABB^{-1} = A$, and since $\Phi(\Phi^{-1}(A)) = \Phi(BAB^{-1}) = B^{-1}BAB^{-1}B = A$. Hence Φ is an isomorphism.

5. In this problem we are going to deduce the rule for matrix multiplication. Let \mathbf{V}_1 , \mathbf{V}_2 , \mathbf{V}_3 be p, n, m-dimensional vector spaces with ordered bases β_1 , β_2 , β_3 , respectively. Let $T_{12} \in \mathcal{L}(\mathbf{V}_1, \mathbf{V}_2)$ and $T_{23} \in \mathcal{L}(\mathbf{V}_2, \mathbf{V}_3)$. We want to develop a multiplication rule such that

$$[T_{23} \circ T_{12}]_{\beta_1}^{\beta_3} = [T_{23}]_{\beta_2}^{\beta_3} [T_{12}]_{\beta_1}^{\beta_2}$$

For simplicity, let $A = [T_{23}]_{\beta_2}^{\beta_3}$, $B = [T_{12}]_{\beta_1}^{\beta_2}$, and $C = [T_{23} \circ T_{12}]_{\beta_1}^{\beta_3}$.

(a) What are the sizes of A, B, and C in terms of m, n, and p? Does this agree with your understanding of matrix multiplication?

Solution: Since $T_{23}: \mathbf{V}_2 \to \mathbf{V}_3$ and $\dim(\mathbf{V}_2) = n$, there are n basis vectors whose image under T_{23} form the columns of A; and since $\dim(\mathbf{V}_3) = m$, each of these transformed basis vectors has m-many elements. Hence, there are n columns and m rows in the matrix representation A of T_{23} , and so A has size $m \times n$. Similarly, B has size $n \times p$, and C has size $m \times p$. If C = AB, then it must be the case that the number of columns of A equals the number of rows of B, which is indeed the case here.

Let $\beta_1 := \{v_1, \dots, v_p\}$, $\beta_2 := \{w_1, \dots, w_n\}$, and $\beta_3 := \{u_1, \dots, u_m\}$ be ordered bases for $\mathbf{V}_1, \mathbf{V}_2$, and \mathbf{V}_3 , respectively.

(b) Write an expression for $T_{12}(v_j)$ in terms of the matrix elements b_{ij} of B and the elements of β_2 . Do the same for $T_{23}(w_k)$. Finally, write an expression for $T_{23} \circ T_{12}(v_j)$ in terms of the matrix elements c_{ij} of C and the elements of β_3 .

Solution: By the definition of the matrix representations, we have

$$T_{12}(v_j) = \sum_{k=1}^n b^k{}_j w_k \quad ; \quad T_{23}(w_k) = \sum_{i=1}^m a^i{}_k u_i \quad ; \quad T_{23} \circ T_{12}(v_j) = \sum_{i=1}^m c^i{}_j u_i$$

for $1 \le j \le p$ and $1 \le k \le n$.

(c) Using the linearity of the composition $T_{23} \circ T_{12}$ to write an expression for $T_{23} \circ T_{12}(v_j)$ in terms of the elements of β_3 . Your answer should depend on a_{ij} and b_{ij} .

Solution: Using Problem 1, we get

$$T_{23} \circ T_{12}(v_j) = T_{23}(T_{12}(v_j)) = T_{23}\left(\sum_{k=1}^n b^k{}_j w_k\right) = \sum_{k=1}^n b^k{}_j T_{23}(w_k)$$

$$= \sum_{k=1}^{n} b^{k}{}_{j} \left(\sum_{i=1}^{m} a^{i}{}_{k} u_{i} \right) = \sum_{i=1}^{m} \left(\sum_{k=1}^{n} a^{i}{}_{k} b^{k}{}_{j} \right) u_{i}$$

where the parentheses in the last step have been introduced for future convenience.

(d) Compare your expressions for $T_{23} \circ T_{12}(v_j)$ from part (b) and part (c) to deduce the rule for matrix multiplication.

Solution: From parts (b) and (c), we have

$$\sum_{i=1}^{m} c^{i}{}_{j} u_{i} = T_{23} \circ T_{12}(v_{j}) = \sum_{i=1}^{m} \left(\sum_{k=1}^{n} a^{i}{}_{k} b^{k}{}_{j} \right) u_{i}.$$

Hence, we conclude

$$c^i{}_j = \sum_{k=1}^n a^i{}_k b^k{}_j,$$

which is indeed the rule for multiplication of matrices.

6. Let g(x) = x + 3, and let $T \in \mathcal{L}(P_2(\mathbb{R}))$ and $U \in \mathcal{L}(P_2(\mathbb{R}), \mathbb{R}^3)$ be defined by

$$T(f(x)) = f'(x)g(x) + 2f(x)$$
$$U(a + bx + cx^{2}) = (a + b, c, a - b)^{\top}.$$

Let β and γ be the standard ordered bases for $P_2(\mathbb{R})$ and \mathbb{R}^3 , respectively.

(a) Compute $[U]^{\gamma}_{\beta}$, $[T]_{\beta}$, and $[U \circ T]^{\gamma}_{\beta}$ directly.

Solution: First we construct $[T]_{\beta}$, given $\beta := \{1, x, x^2\}$. We have:

$$T(1) = (x+3)(0) + 2(1) = 2 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}_{\beta}$$

$$T(x) = (x+3)(1) + 2(x) = 3x + 3 = \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix}_{\beta}$$

$$T(x^2) = (x+3)(2x) + 2(x^2) = 4x^2 + 6x = \begin{pmatrix} 0 \\ 6 \\ 4 \end{pmatrix}_{\beta}$$

Since the j'th column of $[T]_{\beta}$ is $[T(\beta_j)]_{\beta}$, we find

$$[T]_{\beta} = \begin{pmatrix} 2 & 3 & 0 \\ 0 & 3 & 6 \\ 0 & 0 & 4 \end{pmatrix}.$$

Next we construct $[U]^{\gamma}_{\beta}$. We have:

$$U(1) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}_{\gamma} \quad ; \quad U(x) = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}_{\gamma} \quad ; \quad U(x^2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}_{\gamma}$$

Again since the j'th column of $[U]^{\gamma}_{\beta}$ is $[U(\beta_j)]_{\gamma}$, we find

$$\begin{bmatrix} [U]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$$

To compute $[U \circ T]^{\gamma}_{\beta}$, we need to compute $U \circ T$ in general. Let $a + bx + cx^2 \in P_2(\mathbb{R})$. We have:

$$T(a + bx + cx^{2}) = (x + 3)(b + 2cx) + 2(a + bx + c^{2}) = [2a + 3b] + [3b + 6c]x + [4c]x^{2},$$

and so.

$$U \circ T(a + bx + cx^2) = \begin{pmatrix} 2a + 6b + 6c \\ 4c \\ 2a - 6c \end{pmatrix}.$$

Applying the transformation to each of the β -basis elements, we get

$$U \circ T(1) = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}_{\gamma} \quad ; \quad U \circ T(x) = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}_{\gamma} \quad ; \quad U \circ T(x^2) = \begin{pmatrix} 6 \\ 4 \\ -6 \end{pmatrix}_{\gamma},$$

and so the matrix representation is

$$[U \circ T]_{\beta}^{\gamma} = \begin{pmatrix} 2 & 6 & 6 \\ 6 & 0 & 4 \\ 2 & 0 & -6 \end{pmatrix}.$$

(b) Use the previous problem to verify your result.

Solution: The previous problem states that $[U \circ T]^{\gamma}_{\beta} = [U]^{\gamma}_{\beta}[T]_{\beta}$, and indeed:

$$\underbrace{\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}}_{[U]_{\beta}^{\gamma}} \underbrace{\begin{pmatrix} 2 & 3 & 0 \\ 0 & 3 & 6 \\ 0 & 0 & 4 \end{pmatrix}}_{[T]_{\beta}} = \underbrace{\begin{pmatrix} 2 & 6 & 6 \\ 6 & 0 & 4 \\ 2 & 0 & -6 \end{pmatrix}}_{[U \circ T]_{\beta}^{\gamma}},$$

as expected.

7. Let **V** and **W** be finite dimensional vector spaces with the same dimension with ordered bases β and γ , respectively. Let $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$. Prove that T is invertible if and only if $[T]_{\beta}^{\gamma}$ is invertible. Further show that $[T^{-1}]_{\gamma}^{\beta} = ([T]_{\beta}^{\gamma})^{-1}$.

Solution:

(\Longrightarrow) Let dim $\mathbf{V} = \dim \mathbf{W} = n$. Then T has matrix representation $[T]_{\beta}^{\gamma} \in M_{n \times n}(\mathbb{F})$. If T is invertible, then there exists a $T^{-1} \in \mathcal{L}(\mathbf{W}, \mathbf{V})$ which satisfies $T^{-1} \circ T = \mathbf{I}_{\mathbf{V}}$ and $T \circ T^{-1} = \mathbf{I}_{\mathbf{W}}$. Then, T^{-1} has matrix representation $[T^{-1}]_{\gamma}^{\beta} \in M_{n \times n}(\mathbb{F})$, and:

$$\begin{split} \mathbf{I}_n &= [\mathbf{I}_{\mathbf{V}}]_{\beta}^{\beta} = [T^{-1} \circ T]_{\beta}^{\beta} = [T^{-1}]_{\gamma}^{\beta} [T]_{\beta}^{\gamma}, \\ \mathbf{I}_n &= [\mathbf{I}_{\mathbf{W}}]_{\gamma}^{\gamma} = [T \circ T^{-1}]_{\gamma}^{\gamma} = [T]_{\beta}^{\gamma} [T^{-1}]_{\gamma}^{\beta}. \end{split}$$

This proves that if T is invertible, then $[T]_{\beta}^{\gamma}$ is invertible, and incidentally, that $[T^{-1}]_{\gamma}^{\beta} = ([T]_{\beta}^{\gamma})^{-1}$. (\longleftarrow) Suppose $A = [T]_{\beta}^{\gamma} \in M_{n \times n}(\mathbb{F})$ is invertible. Then there exists a $B \in M_{n \times n}(\mathbb{F})$ such that $AB = BA = \mathbf{I}_n$. Since the map $\Phi_{\gamma}^{\beta} : \mathcal{L}(\mathbf{W}, \mathbf{V}) \to M_{m \times n}(\mathbb{F})$ is an isomorphism, there exists a unique $U \in \mathcal{L}(\mathbf{W}, \mathbf{V})$ such that $[U]_{\gamma}^{\beta} = B$. I claim $U = T^{-1}$. Note that

$$\mathbf{I}_n = AB = [T]_{\beta}^{\gamma} [U]_{\gamma}^{\beta} = [T \circ U]_{\gamma}^{\gamma},$$

$$\mathbf{I}_n = BA = [U]_{\gamma}^{\beta} [T]_{\beta}^{\gamma} = [U \circ T]_{\beta}^{\beta}.$$

Hence $U = T^{-1}$ and T is invertible.

8. The benefit of changing coordinate systems is that you can change coordinates into a set which optimizes efficiency, perform the relevant computations, and then transform back into the original coordinates. Let $T \in \mathcal{L}(\mathbf{V})$ and suppose β and β' are ordered bases for \mathbf{V} . If $Q = [\mathbf{I}_{\mathbf{V}}]^{\beta}_{\beta'}$ is the change of coordinate matrix that changes β' -coordinates into β coordinates, prove $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$.

Solution: Recall that $Q = [\mathbf{I}_{\mathbf{V}}]_{\beta'}^{\beta}$ and $Q^{-1} = [\mathbf{I}_{\mathbf{V}}]_{\beta'}^{\beta'}$. From equation 5, we get

$$Q^{-1}[T]_{\beta'}Q = [\mathbf{I}_{\mathbf{V}}]_{\beta}^{\beta'}[T]_{\beta}^{\beta}[\mathbf{I}_{\mathbf{V}}]_{\beta'}^{\beta} = [\mathbf{I}_{\mathbf{V}}]_{\beta}^{\beta'}[T \circ \mathbf{I}_{\mathbf{V}}]_{\beta'}^{\beta} = [\mathbf{I}_{\mathbf{V}} \circ T \circ \mathbf{I}_{\mathbf{V}}]_{\beta'}^{\beta'} = [T]_{\beta'},$$

which completes the proof.