



IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:  
Timothy A. Coleman

Docket No.: PF112P6

Application No.: 09/921,143

Group Art Unit: 1653

Filed: August 3, 2001

Examiner: Not Yet Assigned

For: Vascular Endothelial Growth Factor 2

SUBMISSION OF REPLACEMENT/SUBSTITUTE DRAWINGS

Attn: Draftsperson  
Commissioner for Patents  
Washington, DC 20231

Sir:

Applicants submit herewith replacement/substitute Figures 1A-31U (68 sheets) to replace Figures 1A-31G (47 sheets) as originally filed. Additional pages are due to reorganization of the drawings in order to comply with the margin requirements under 37 C.F.R. § 1.84. No new matter is introduced.

No fee is believed due for this submission. In the event that a fee is required in connection with this submission, please charge the required fee to Deposit Account No. 08-3425.

Respectfully submitted,

Melissa J. Pytel

Registration No. 41,512

HUMAN GENOME SCIENCES, INC.  
9410 Key West Avenue  
Rockville, Maryland 20850  
(301) 610-5764  
Attorney for Applicants

Dated: April 17, 2003

RECEIVED  
APR 21 2003  
TECH CENTER 1600/2900



1 / 68

**FIG. 1A** MATCH WITH FIG. 1B



2 / 68

**MATCH WITH FIG. 1A**

|     |                                                                                                                                                                                                                                        |     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 361 | AGATCTTGAAAAGTATTGATAATGAGTGGAGAAAGACTCAATGCATGCCACGGGAGGTG<br>-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+<br>TCTAGAACTTTCATAACTATTACTCACCTCTTCTGAGTTACGTACGGTGCCTCCACA<br>I L K S I D N E W R K T Q C M P R E V C    | 420 |
| 421 | GTATAGATGGGGAAAGGGAGTTGGAGTCGGACAAACACCTCTTAAACCTCCATGTG<br>-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+<br>CATATCTACACCCCTTCCTCAAACCTCAGCGCTGTTGTGAAGAAATTGGAGGTACAC<br>I D V G K E F G V A T N T F F K P P C V       | 480 |
| 481 | TGTCGGTCTACAGATGTGGGGTTGCTGCAATAGTGAGGGCTGCAGTCATGAACACCA<br>-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+<br>ACAGGCAGATGTCTACACCCCCAACGACGTTATCACTCCCGACGTACGTACTTGTGGT<br>S V Y R C G G C C N S E G L Q C M N T S     | 540 |
| 541 | GCACGGAGCTACCTCAGCAAGACGTATTGAAATTACAGTGCCTCTCTCAAGGCCCCA<br>-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+<br>CGTGCCTCGATGGAGTCGTTCTGCAATAAAACTTTAATGTCACGGAGAGAGGTCCGGGGT<br>T S Y L S K T L F E I T V P L S Q G P K   | 600 |
| 601 | AACCAGTAACAATCAGTTTGCCTCAATCACACTCCTGCCGATGCATGTCTAAACTGGATG<br>-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+<br>TTGGTCATTGTTAGTCAAAACGGTTAGTGTGAAGGACGGCTACGTACAGATTGACCTAC<br>P V T I S F A N H T S C R C M S K L D V | 660 |

**MATCH WITH FIG. 1C**

**FIG. 1B**



**MATCH WITH FIG. 1B**

|     |                                                                                                                                                                                                                                    |     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 661 | TTTACAGACAAGTTCATTCCATTATTAGACGTTCCCTGCCAGCAAACACTACCACAGTGT<br>-----+-----+-----+-----+-----+-----+-----+-----+-----+<br>AAATGTTCTGTTCAAGTAAGGTTAATAATCTGCAAGGGACGGTCTGTTGATGGTGTACAG<br>Y R Q V H S I R R S L P A T L P Q C Q    | 720 |
| 721 | AGGCAGCGAACAAAGACCTGCCAACCAATTACATGGAAATAATCACATCTGGCAGATGCC<br>-----+-----+-----+-----+-----+-----+-----+-----+-----+<br>TCCGTCGCTTGTTCGGACGGGGTGGTTAATGTCACACCTTATTAGTGTAGACGGTCTACGG<br>A A N K T C P T N Y M W N N H I C R C L | 780 |
| 781 | TGGCTCAGGAAGATTTATGTTTCCTCGGATGGCTGGAGATGACTAACAGATGGATTCC<br>-----+-----+-----+-----+-----+-----+-----+-----+-----+<br>ACCGAGTCCTTCTAAATAACAAAGGACCCCTACGACCTCTACTGAGTTGTCTACCTAAAGG<br>A Q E D F M F S S D A G D D S T D G F H   | 840 |
| 841 | ATGACATCTGGGACCAAAAGGAGCTGGATGAAGAGACCTGTCAGTGTGTCAGAG<br>-----+-----+-----+-----+-----+-----+-----+-----+<br>TACTGTAGACACCTGGTTGTTCTCGACCTACTTCTCTGGACAGTCACACAGACGTCTC<br>D I C G P N K E L D E T C Q C V C R A                  | 900 |
| 901 | CGGGGCTTCGGCCTGGCCAGCTGGACCCCCAACAAAGAAACTAGACAGAAACTCATGCCAGT<br>-----+-----+-----+-----+-----+-----+-----+-----+<br>GCCCGAAGCCGGACGGTCGACACCTGGGTCTCTGATCTGTCTTGTAGTACGGTCA<br>G L R P A S C G P H K E L D R N S C Q C           | 960 |

**FIG. 1C**

**MATCH WITH FIG. 1D**



**MATCH WITH FIG. 1C**

|      |                                                                                                                                                                                                                                  |      |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 961  | GTGCTGTAAAAACAAACTCTCCCCAGCCAATGGGGCAACCGAGAATTGATGAAA<br>-----+-----+-----+-----+-----+-----+-----+-----+-----+<br>CACAGACATTGGTTGAGAAGGGTTCGGTTACACCCCGGTTGGCTCTAAACTACTTT<br>V C K N L F P S Q C G A N R E F D E N            | 1020 |
| 1021 | ACACATGCCAAGTGTATGTAAAAAGAACCTGCCAGAAATCAACCCCTAAATCCTGGAA<br>-----+-----+-----+-----+-----+-----+-----+-----+-----+<br>TGTGTACGGTCACACATACTTACATTCTTGACGGGTCTTAGTTGGGATTAGGACCTT<br>T C Q C V C K R T C P R N Q P L N P G K     | 1080 |
| 1081 | AATGTGCCTGTGAATGTACAGAAAGTCCACAGAAATGCTTAAAGGAAAGGAAGTTC<br>-----+-----+-----+-----+-----+-----+-----+-----+-----+<br>TTACACGGACACTTACATGTCTTCAGGTGTCTTACGAACAATTTCCTTCAAGG<br>C A C E C T E S P Q K C L L K G K F H             | 1140 |
| 1141 | ACCACCAAACATGCCAGCTGTTACAGACGCCATGTACGAACCGCCAGAAGGCTTGTGAGC<br>-----+-----+-----+-----+-----+-----+-----+-----+-----+<br>TGGTGGTTGTACGGTGGACAATGTCTGCCGGTACATGCTTGGGGTCTTCCGAACACTCG<br>H Q T C S C Y R R P C T N R Q K A C E P | 1200 |
| 1201 | CAGGATTTCATATAAGTGAAGAAGTGTGTCGGTTGTGTCCCTCATATTGGCAAAGACAC<br>-----+-----+-----+-----+-----+-----+-----+-----+-----+<br>GTCTAAAGTATATCACTTCTTCACACAGCAACACAGGGAAAGTATAACCGTTCTGGTG<br>G F S V S E E V C R C V P S Y W Q R P Q   | 1260 |



**MATCH WITH FIG. 1D**

|                                                                                                                               |      |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|
|                                                                                                                               |      |  |  |  |  |  |
| AAATGAGCTAAGATGGTACTGTTTCCAGTTCATCGATTTCATCTATTATGGAAAACACTGTT<br>TTTACTCGATTCTAACATGACAAAAGGTCAAGTAGCTAAAAGATAATACTTTTGACACA |      |  |  |  |  |  |
| M S *                                                                                                                         |      |  |  |  |  |  |
|                                                                                                                               |      |  |  |  |  |  |
| TGCCACAGTAGAACACTGTCTGTAAACAGAGACCCTTGTGGGCCATGCTAACAAAGACA<br>ACGGTGTCACTCTTGACAGACACTTGTCTCTCTGGGAACACCCCAGGTACGATTGTTCTGT  | 1321 |  |  |  |  |  |
|                                                                                                                               |      |  |  |  |  |  |
| AAAGTCTGTCTTCCCTGAACCATGTGGATAACTTTACAGAAATGGACTGGAGCTCATCTG<br>TTTCAGACAGAAAGGACTTGGTACACCTATTGAAATGTCTTACCTGACCTCGAGTAGAC   | 1381 |  |  |  |  |  |
|                                                                                                                               |      |  |  |  |  |  |
| CAAAAGGCCTCTTGTAAAGACTGGTTCTGCCAATGACCAACAGCCAAGATTTCCTC<br>GTTTCCGGAGAACATTCTGACCCAAAGACGGTTACTGGTTGTCGGTTCTAAAGGAG          | 1441 |  |  |  |  |  |
|                                                                                                                               |      |  |  |  |  |  |
| TTGTGATTCTTAAAGAATGACTATAATTATTTCCACTAAAAATAATTGTTCTGC<br>AACACTAAAGAAATTCTTACTGATATTAAATAAGGTGATTTTATAACAAAGAC               | 1501 |  |  |  |  |  |
|                                                                                                                               |      |  |  |  |  |  |
| ATTCAATTATAGCAACAAATTGGTAAAACCTCACTGTGATCAATTATTTATATCAT<br>TAAGTAAAATATCGTTGTTAACATTGAGTGACACTAGTTATAAAAATATAGTA             | 1561 |  |  |  |  |  |
|                                                                                                                               |      |  |  |  |  |  |
| GCAAAATATGTTAAATAAAATGAAATTGTATTATAAAAAAAAAAAAAAA<br>CGTTTTATACAAATTCTTATTCTTACTTTAACATAAATTTTTTTTTTTTTTTT                    | 1621 |  |  |  |  |  |
|                                                                                                                               |      |  |  |  |  |  |

FIG 1E



**FIG. 61** MATCH WITH FIG. 2B

**MATCH WITH FIG. 2A**

421            TGAATTACAGTGCCTCTCTCAAGGCCAAACCAGTAACAATCAGTTTGCCAATCA  
- - +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
E I T V P L S Q G P K P V T I S F A N H

481            CACTTCCTGCCGATGCCATGCTAAACTGGATGTTACAGACAAGTCATTCCATTATTAG  
- - +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
T S C R C M S K L D V Y R Q V H S I I R

541            ACGTTCCCTGCCAGCAAACACTAACAGTGTCAAGCAGCGAACAAAGACCTGCCACCAA  
- - +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
R S L P A T L P Q C Q A A N K T C P T N

601            TTACATGTGGAATAATCACATCTGCAGATGCCCTGGCTCAGGAAGATTATGTTTCCCTC  
- - +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
Y M W N N H I C R C L A Q E D F M F S S

661            GGATGCTGGAGATGACTCAACAGATGGATTCCATGACATCTGTGGACCAAAACAAGGAGCT  
- - +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
D A G D D S T D G F H D I C G P N K E L

721            GGATGAAGAGACCTGTCAGTGTCTGCCAGAGGGGGCTCGGCCCTGGCTGTGGACCC  
- - +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
D E E T C Q C V C R A G L R P A S C G P

**MATCH WITH FIG. 2C****FIG. 2B**



MATCH WITH FIG-2B

EIG 2C

**MATCH WITH FIG. 2C**

|      |                                                                                                                   |
|------|-------------------------------------------------------------------------------------------------------------------|
| 1141 | GTTCATCGATTTCATTATGGAAAACCTGTTGCCACAGTAGAACACTGTCTGTGAACAGA<br>-----+-----+-----+-----+-----+-----+-----+-----+   |
| 1201 | GAGACCCTGTGGGTCCATGCTAAACAAGACAAAAGTCTGCTTCTGAACCATGTGGA<br>-----+-----+-----+-----+-----+-----+-----+-----+      |
| 1261 | TAACTTACAGAAATGGACTGGAGCTCATCTGCAAAAGGCCCTCTTGTAAAGACTGGTTT<br>-----+-----+-----+-----+-----+-----+-----+-----+   |
| 1321 | CTGCCAATGACCCAAGATTTCCTCTGTGATTCTTTAAAGAATGACTATA<br>-----+-----+-----+-----+-----+-----+-----+-----+             |
| 1381 | TAATTATTCCACTAAAAATTGTGTTCTGCATTCAATTTATATGTTAAATAAACAAATTGGT<br>-----+-----+-----+-----+-----+-----+-----+-----+ |
| 1441 | AAAACCTCACTGTGATCAATATTCTTATATCATGCCAAATATGTTAAATAAACAAATTGAA<br>-----+-----+-----+-----+-----+-----+-----+-----+ |
| 1501 | TTGTATTATAAAAAAA<br>-----+-----+-----+-----+-----+-----+-----+-----+                                              |



1 Pdgfa MRTLACLLL LGGCYLAHVL AEEAEIPREV IERLARSQIH SIRDLQRILLE  
Pdgfb MNRCWA. LFL SLCCYLRVS AEGDPIEEL YEMLSDHSIR SFDDLQRLLH  
Vegf ..... MNFLL SWIVHWSALL LY ..... .LHHAKWSQA  
Vegf2 ..... MTV LYPEYWKKMYK CQ ..... .LRKGCGWQHN

50

51 Pdgfa IDSVGSEDSL DTSLRAHCVH ATKHYPEKRP LPIRRKRSL ..... EAVP  
Pdgfb GDP.GEEDGA ELDLNMTRSH SGGELES. .... LARGRRSLG SLTIAEPAMI  
Vegf APMAE ..... GGCQ NHHEWVKFMD VYQR .....  
Vegf2 REQANILNSRT ETIKFAAAH YNTIELKSID NEWRK.....

100

101 Pdgfa AVCKTRTVIY EIPRSQWDPT SANFLIWPPC VEVKRCTGCC NTSSVVKQOPS  
Pdgfb AECKTRTEVF EISRRLIDRT NANFLVWPPC VEVQRCSGCC NNRNVQCRPT  
Vegf SYCHPIETLV DIFQEYPDEI .. YIFKPSV VPLMRCGGCC NDECLEQVPT  
Vegf2 TOQMPREVC1 DVGKEFGVAT .. NTFFKPPC VSVYRCCGC NSECLQMT

150

151 Pdgfa RVHHRSVKVA KVEYRKPK LKEVQVRLEE HLE6AC ..... AT .....  
Pdgfb QVQLRPVQVR KIEYRKPKI FKKATVTLED HLAC ..... ETVAAPRVVT  
Vegf EESNITMQIM RIK.PH. QC QHIGEMSFLQ HNKCECRPKK DRARQEKKSV  
Vegf2 STSYLSKTLF EIT.VPLSOG PKPVTISAN HTSGCQMSKL DVYRQWHSII

200

FIG. 3A



201 Pdgfa TSLNPD YREEDT D VR.

Pdgfb RSPGGSQEQR AKTPQTRVTI RTVVRRRPK GKHRKFKHIT DKTALKETLG  
Vegf RGK GKGQKRKRK K SRYKSWSY V GARCCLM PW SLPGPHP  
Vegf2 RRSSUPATLPO CQAANKTCPT NYMMNNHICR CLAQEDFMFS SDAGDDSTDG250 Pdgfa .....  
Pdgfb A .....  
Vegf CGP .....  
Vegf2 FHDICCPNKE LDEETCACVC RAGLRPASCC PHKEL...DR NSCCCVCKNK300 Pdgfa .....  
Pdgfb A .....  
Vegf CSE RRKHLFVQDP QTCKCSCKNT  
Vegf2 FHDICCPNKE LDEETCACVC RAGLRPASCC PHKEL...DR NSCCCVCKNK350 Pdgfa .....  
Pdgfb DSRCKARQ LELNERTCRC DKPRR  
Vegf EFDENTCQC VCKRTCPRNQ PLNPCKCACE CTE SPQKCLL  
Vegf2 LFPSQCCANR398 Pdgfa .....  
Pdgfb .....  
Vegf .....  
Vegf2 KGKKFHHTC SCYRRPCTNR QKACEPGFSY SEEVCRCVPS YWQRQMS

FIG. 3B



**PERCENTAGE (%) OF AMINO ACID IDENTITIES BETWEEN  
EACH PAIR OF GENES IS SHOWN IN THE  
FOLLOWING TABLE**

|               | PDGF $\alpha$ | PDGF $\beta$ | VEGF | VEGF-2 |
|---------------|---------------|--------------|------|--------|
| PDGF $\alpha$ |               |              |      |        |
| PDGF $\beta$  | 48.0          |              |      |        |
| VEGF          | 20.7          | 22.7         |      |        |
| VEGF-2        | 23.5          | 22.4         | 30.0 |        |

**FIG. 4**

### Expression of VEGF2 mRNA in Human Breast Tumor Cells



- Lane 1. normal breast tissue
- Lane 2. breast tumor tissue
- Lane 3-9. breast tumor cell lines.

**FIG. 5**



### Expression of VEGF-2 mRNA in Human Adult Tissues



**FIG. 6**



- Lane 1: 14-C and rainbow M.W. marker  
Lane 2: FGF control  
Lane 3: VEGF2 (M13-reverse & forward primer)  
Lane 4: VEGF2 (M13-reverse & VEGF-F4 primer)  
Lane 5: VEGF2 (M13-reverse & VEGF-F5 primer)

**FIG. 7**

O I P F JC109  
APR 17 2003  
PATENT & TRADEMARK OFFICE

16 / 68



Lane M: Marker  
Lane 1: Vector medium  
Lane 2: VEGF2 medium

**FIG. 8A**



Lane M: Marker  
Lane 1: vector cytoplasm  
Lane 2: vector medium  
Lane 3: VEGF2 cytoplasm  
Lane 4: VEGF2 medium

**FIG. 8B**

**FIG. 9**



Lane 1: Molecular weight marker  
Lane 2: Precipitates containing VEGF2.

**FIG. 10**





FIG. 11



**FIG. 12**



**FIG. 13**



21 / 68

|              |            |             |       |        |      |       |        |        |             |        |          |                 |
|--------------|------------|-------------|-------|--------|------|-------|--------|--------|-------------|--------|----------|-----------------|
| fetal kidney | fetal lung | fetal liver | brain | kidney | lung | liver | spleen | thymus | bone marrow | testes | placenta | skeletal muscle |
| 1            | 2          | 3           | 4     | 5      | 6    | 7     | 8      | 9      | 10          | 11     | 12       | 13              |



FIG. 14A

M B 1 2 3 4 5 6 7 8 9 10 11 12 13



FIG. 14B

O.I.  
APR 17 2003  
PATENT & TRADEMARK OFFICE

22 / 68

1 2 3 4 5 6



1. Molecular weight marker
2. Umbilical vein endothelial cells
3. Aortic smooth muscle cells
4. Dermal fibroblast

**FIG. 15**

OTPA  
OFFICE 6103  
PATENT & TRADEMARK  
APR 17 2003



1. Molecular weight marker
2. Blank
3. Control protein-HA
4. Vector control
5. VEGF2-HA

**FIG. 16A**



1. Molecular weight marker
2. Blank
3. Control protein-HA
4. VEGF2-HA
5. Vector control

**FIG. 16B**



FIG. 17



FIG. 18



FIG. 19



FIG. 20A



FIG. 20B



FIG. 21A



FIG. 21B



FIG. 22



FIG. 23



FIG. 24

O I P F JC103  
APR 17 2003  
PATENT & TRADEMARK OFFICE

32 / 68

CALF BLOOD PRESSURE RATIO  
-PROTEIN I.A.-



FIG. 25A

CALF BLOOD PRESSURE RATIO  
-PLASMID-



FIG. 25B

APR 17 2003  
PATENT & TRADEMARK OFFICE



FIG. 25C



FIG. 25D



FIG. 25E



FIG. 25F



**FIG. 25G**

LLIAC BLOOD FLOW



FIG. 25H



FIG. 25I

O I P F JC183  
APR 17 2003  
PATENT & TRADEMARK OFFICE



FIG. 25J



FIG. 25K



FIG. 25L



FIG. 25M



FIG. 25N



FIG. 25O

O I P E JC108  
APR 17 2003  
PATENT & TRADEMARK OFFICE

40 / 68



FIG. 26A



FIG. 26B



**FIG. 26C**



**FIG. 26D**



**FIG. 26E**



**FIG. 26F**

THE EFFECT OF VEGF-2 ON THE DIASTOLIC BLOOD PRESSURE OF SHR RATS



FIG. 26G



**FIG. 27**



FIG. 28

APR 17 2003  
FBI - MEMPHIS  
LABORATORY

46 / 68

-35 OPERATOR 1  
1 A A G C T T A A A A A A C T G C A A A A A T A G C T T I G A C T T I G T G A G G G A T A A G C A A T  
  
-10 OPERATOR 2  
50 T A A G A T G C T A C C C A A T T I G A G G G A T A A C A A T T I T C A C A C A T T A A  
  
S/D  
94 A G A G G A A A T T A C A T A T G

FIG. 29



FIG. 30



HindIII

AAGCTT GACCTT ATGCCACTTT CCTACTTGGCAGTACATCTACGTTACGTATTAGTCATCGCTTACCATGGTGATGCC  
75  
TTCGAACCTGGAAATACCGCTGAAAGGATGAACCGTCATGTAGATAATCGATAATCGATAATGGTACCACTACGC

Ncol

GTTTGGCAGTACATCAATGGGGTTTAGCGGTTTGACTCACGGGGATTCCAAAGTCTCCACCCCCACTGACGT  
150  
CAAACCCGTCAATGAGTACCCGACCTATGCCAAACTGAGTGCCCCTAAGGTTTCAGAGGTGGGGTACTGCA

CMV Enhancer

CAATGGGAGTTGGCACCAAAATCAACGAGACTTCCAAAATGTCGTAACAACCTCCGCCATTGACCCA  
225  
GTTACCCCTCAAAACAAACCGTGGTTTAGTTGCTCTGAAGGTTTACAGCATTGAGGGGGTTAACCTGGCT

CMV Enhancer

FIG.31A



AATGGGGCAACATGCTTATGTAACGGTGAGTTAGGAAACATGCCCTATAAGGAGAAAAAGCACCGTG  
TTACCCGCCATGCCATTGAGAATACATTGCCACTCAATCGTTGACGGAAATATTCCCTCTTTCTGGCAC  
300

The diagram illustrates the vector construct. It features a thick black horizontal bar representing the CMV Enhancer at the bottom. Above it is a thinner black horizontal bar representing the RSV-LTR Promoter. The target gene sequence is shown as a vertical line of text with a dotted line running through it, indicating its orientation. The sequence itself is: CATGCCATTGGGAGTAAGGTGGTATGATCGTGCTTGTAGGAAGGCAACAGACGGGTCTTACCCCCAACCCCATACCTAGCACCAACTAGCACGGAAACAATCCTTCGGTTGTCGCCAGA.

AACACGGATTGGACGAACCACTGAATTCCGCATTGAGAGATATTGTATTAAAGTGCCAGCTCGATAAA  
TTTCTCCCTAACCTCTGGGCACTTAAGGCGTAAACGTCCTAAATCAGGGTCGAGCTAATGTTATT  
RSV-LTR Promoter

RSV-1TR Promoter

FIG. 31 B



50 / 68



EIG 31C



51 / 68

GAGCAGTTACGGCTGTGTCAGTGTAGATGAACCTCATGACTCTACCCAGAAATTGGAAAAATGTACAAG  
CTCGCAATGCCAGACACAGGTACATCTACTTGAGTAATGACATGAGATGGGTCTTACATGTT  
[REDACTED]

E O L R S V S S V D E L M T V L Y P E Y W K M Y K  
[REDACTED] VEGF-2

TGTAGCTAAGGAAAGGAGGCCTGGCAACATAACAGAGAACAGGCCAACCTCAACTCAAGGACAGAGACTATA  
ACAGTCGATTCTTCTCCGACCCTTGTATTCGTCCTGGAGTTGAGTTCTGCTCTCTGAT  
[REDACTED]

C Q L R K G G W Q H N R E Q A N L N S R T E E T I  
[REDACTED] VEGF-2

PstI BglII  
AAATTTCGCTGAGCACATTATAACAGAGATCTTGAAAGTATTGATAATGAGTTGGAGAAAGACCTCAATGCATG  
TTAACGACGTCGTTGTAATATTATGCTCTAGAACATTACTCACCTCTTGTAGTTACGTAC  
[REDACTED]

K F A A H Y N T E I L K S I D N E W R K T Q C M  
[REDACTED] VEGF-2

**FIG.31D**

O  
APR 17 2003  
U.S. TRADEMARK OFFICE

52 / 68

CCACGGAGGTGTATAGATGIGGGAAAGGAGTTGGAGTCGGACAAACACCTTAAACCTCCATGTG 975  
GGTGCCCTCACACATATCTACACCCCTCAAAACCTCAGCGCTGTTGGAAAGAAATTGGAGGTACAC

P R E V C I D V G K E F G V A T N T F K P P C V  
VEGF-2

PstI

TCCGCTACAGATGIGGGTTGCTGCAATAGTGAGGGCTGCAGTGCATGAACACCAGCACGAGCTACCTCAGC 1050  
AGGCAGATGCTCACACCCAACGACGTTATCACTCCCGACGTCACGTACTTGTTGGCTGATGGAGTCG

S V Y R C G G C C N S E G L Q C M N T S T S Y L S  
VEGF-2

AAGACGTTATTGAAATTACAGTGCCCTCTCTCAAGGCCAAACCAAGTAACAATCAGTTTGCCAAATCACACT 1125  
TTCTGCAATAACTTAATGTCACGGAGAGTTCCGGGTTGGTCATTGTTAGTCAAACGGTTAGTGTGA

K T L F E I T V P L S Q G P K P V T I S F A N H T  
VEGF-2

FIG.31E



T C T G C C G A T G C T T A A A C T G G A T G T T A C A G A C A A G T C A T T C C A T T A G A C G T T C C T G C C A G C A C A  
1200  
A G G A C G G C T A C G G T A C A G A T T G A C C T A C A A A T G T C G T T C A A G T A A G G T A A T C T G C A A G G A C G G T C G T T G T

S C R C M S K L D V Y R Q V H S I I R R S L P A T  
VEGF-2

PstI

C T A C C A C A G T G C A G G C A G G G A A C A A G A C C T G C C C A C C A A T T A C A T G T G G A A A T A A T C A C A C A T C T G C A G A T G C C T G  
1275  
G A T G G T G T C A C A G T C C G T C G C T T G T T C T G G A C G G G G T G G T T A A T G T A C A C C T T A T T A G T G T A G A C G G T C T A C G G A C

L P O C Q A A N K T C P T N Y M W N N H I C R C L  
VEGF-2

G C T A C G G A A G A T T T A T G T T T C C T G G A T G C T G G G A T G A C T C A A C A G A T G G A T T C C A T G A C A T C T G T G G A C C A  
1350  
C G A G T C C T T C T A A A A T A C A A A A G G A G C C T A C G A C C T T A C T G A G G T T A C T G A G G T A A G G T A C T G T A G A C A C C T G G T

A Q E D F M F S S D A G D D S T D G F H D I C G P  
VEGF-2

FIG.31F



54 / 68

Pvul

B51

AACAAGGAGCTGGATGAAGAGACCTGTCACTGTCAGTGTCTGGAGAGGGCTGGCTGGAGCTGGACACCTGGGGTG  
1425

N K E L D E E T C O C V C R A G L R P A S C G P H

AAAGAACTAGACAGAAACTCATGCCAGTGTGCTGTAAAACAAACTCTTCCCAGCCAAATGTGGGCAACCGA  
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
TTCTTGATCTGTGCTTGAAGTACGGTCACACAGACATTITGAGAAAGGGTGTGGTTACACCCCCGGTTGGCT

K E L D R N S C Q C V C K N K L F P S A C G A N R

GAATTGAAACACATGCCAGTGTATGAAAGAACCTGGCCAGAAAATCAACCCCTAAATCCTGGAAAAT  
CTTAAACACTACATTTCTTGACGGTACACATACTACATTTCTTGACGGGTCTTATGTGGGGATTAGGACCTTT

E F D E N T C Q C V C K R T C P R N Q P L N P G K  
VEGF-2

FIG. 31 G



Pvull

TGTGCCCTGTTGAATGACAGAAAGTCCACAGAAAATGCTTGTAAAAAGGAAAGAAGTTCCACCAAAACATGCAGC  
ACACGGACACTTACATGCTTCAAGGTGTCCTTACGAACATAATTCCCTTCAAGGGGGTTGTACGTCG  
1650

C A C E C T E S P Q K C L .K G K F H H Q T C R  
VEGF-2

BamHI

TGTACAGACGGCCATGTTACGAACCGCCAGAACGGCTTGAGGCCAGGGATTTCATATAGTGAAGAACAGTGTGTCGT  
ACAATGTCGCCGGTACATGCTTGGCGGTCTCGAACACTCGGTCTAAAGTATACTCTTACACAGCA  
1725

C Y R R P C T N R Q K A C E P G F S Y S E E V C R  
VEGF-2

FIG.31H



AGCACCTTTGGTTCTCACTTGGTGGAAAGCTCTACCTGGTGTCACACACCCCA  
1875  
TCGTGGAAACACCAAGAGTGAACCACCTTGAGAGATGGACACACACCCCTGGACCTAAGAAGATGTTGGGT

rppi poly A

TGTCCCCGCCGAAGTGGAGGACCCACAAGGTAAGCTTGCTCTGAAATTCTTCAACTACCCCTGT  
1950  
ACAGGGGGGGCTTCACTCTGGGTGTCCATTGAGACGAGGACTTAAGATAAGGTTCACGATTGATGGGACA

rppi poly A

TTGTCTTCAACCTTGAGACCTTGTAAAATTGTGCCCTAGGTGGAGGGCTCAGGCTAACCAAGTGGGGGCACA  
2025  
AACAGAAAGTGGAAACTCTGGAACATTAAACACGGATCCACACCTCCCAGAGTCGGATGGTCACCCCCGGTGT

rppi poly A

FIG. 31I

O I P F JC168  
APR 17 2003  
FEDERAL BUREAU OF INVESTIGATION - OFFICE

57 / 68

TTTCCTGGCAGCTAGACATATGTAACATGGTAGCTGCAGGAAGGAGTGAAGAATCCCTTAAGTCCTCA 2100  
AAAGACACCCCGTGTGATCTGTATACTTGTACCATCGACGGTCCCTCACTCTTAGGAAGGAATTCAAGGAT

rppi poly A

KpnI

GGTGGTGACGGGTGGCTAGGCCAGGATAGGTACCTATTGGGACCCATAGAGCAGTGCACGTGACTGAGGGA 2175  
CCACCACTGCCAACCGATCCGGGTCCATCCATGGATAAACCCC TGGGTATCTCGTGACGTGACTCCCT

rppi poly A

TGGTAACAGGATGTGTAGGTTTGGAGGCCATATGTCATTGACCTGGTACCTGCTCACAGCCATGCAAC 2250  
ACCATTGGCTCACACATCCAAAACCTCCGGGTATACAGGTAAAGTACTGGTACACTGAAAGAGTGTGGTACGTG

rppi poly A

**FIG.31J**



58 / 68

CCTTGCTCTGTGCTGACTTAGCAGGGATAAAAGTGAGAGAAAGCCCTGGGCTTAATCAGGGGGTGCCTCAGTC  
GGAACGGAGGACACCGACTGAATCGTCCCTCATTTCACTCTTGGACCCGATTAGTCCCCAGGGAGTCAGG  
2325

rppi poly A

TCCTTAACTGGATTCTATGGTCTTGTGCTGCTGCTTGCTTGCTTGCTTGCCCTTGCTGACATGACCTCCTG  
AGGATTGACCTAACAGGATAACAGAAAAGAACACGGACACTAGAGACGGACACGGACTGACTGGAGGGAC  
2400

rppi poly A

SmaI

GCAGTGGCACAACTGGAGCTGGGTGGAGGCCGGGGCAGGTGACCTTCAGACCTTGGAACCTGGGACTGGAGGTGGCCGG  
CGTCACCGTGTGACCTGGACCCACCTGGGGCCCGTCCACCTGGAAAGTCIGGAACCGTGGACCTCCACGGGCC  
2475

rppi poly A

CAGAAGCGGGCATCGTGGATCAGTGCTGCACCAAGCATCTGCTCTTACCAAACCTGGAGAAACTACTGCAACTAG  
GTCTTGGCCGTAGCACCTAGTCACGACGTGGCTAGACGAGAGATGGTTGACCTTGATGACGTTGATC  
2550

rppi poly A

**FIG.31K**



GGCCACCACTACCCCTGTCCACCCCTCTGCAATGAATAAACCTTTGAAAGAGCACTACAAGTTGAGTGTACATGC  
CGGGTGGTCAATGGGACACAGTGAGGAGACGTTACTTATTTGGAAACTTTTCGGTGTGTTAACACACATGTACG 2625

[REDACTED]

[REDACTED] rppi poly A

GTGCATGTGCATATGTGGTGGGGGGAAACATGAGTGGGGCTGGCTGGAGTGGTGGCTGGCTTAATCTATCTGGCA  
CACGTACACGTATACACCACGCCCTTGTACTCACCCCGACCGACCTCACACAGGCCGAATTAGATAACCCGT 2700

[REDACTED]

[REDACTED] rppi poly A

PvuII XbaI

GCTGTCTAGACGTAATCATGGTCAAGCTGTGTTCTGTGAAATTGTTATCCGCTCACAAATTCCACACATA  
CGACAGATCTGCATTAGTACCAAGTATCGACAAAGGACACACTTAAACAAATTAGGCCAGTGTAAAGGTGTGTGTAT 2775

CGAGGCCGGAAAGCATAAAGTAAAGCCTGGGGTGCCTAATGAGTGAAGCTAACCTCACATAATTGCGTTGCCGCTCA  
GCTCGGCCCTTCGTATTTCACATTGGACCCACGGATTACTCACTCGATTGAGTGTAAATTAAACGCCAACGGAGT 2850

**FIG.31L**



PvuII

CTGGCCGCTTTCCAGTGGAAACCTGTCTGCCAGCTGCATTAAATGAAATCGCCAACGGCGGGAGAGCCGT  
GACGGCGAAAGGTCAGCCCTTGACAGCACGGTCGACGTAAATTACTTAGCCGGTTGGCCTCCGCCAT

TTGCGTATTGGGGCTCTTCCGGCTCGCTCACTGACTCGCTGGCTCGGTGTTGGCTGCGGAGGGTA  
AACGCATAACCCGGAGAGGAAGGGCAAGGGCAGCGGAGCTGAGCTGAGCTGAGTGGCTTGTACACTGGTTT

TCAGCTCACTCAAAGGGGTAATAACGGTTATCCACAGAAATCAGGGATAACGGAGAAACATGTGAGCAAA  
AGTCGAGTGAGTTCCGCCATTATGCCAATAGGTGCTTAGTCCCATTATGCCCTTATGGCTTGTACACTGGTTT

GGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGGCTGGCTGGCTTTCCATAGGCTCCGCCCTGACGGAG  
CCGGTCTGGTTCCGGICCTTGGCATTTTCCGGCAACGACGGCAAAAGGTATCCAGGGGGGACTGCTC

**FIG. 31M**



CATCACAAATACTGACGCCTCAAGTCAGAGGTGGCGAAAACCCGACAGGACTATAAAGATAACCAGGGTTTCCCCCT  
GTAGTGTGTTTAGCTGGAGATCAGTCAGTCACCCGCTTACGGATACCTGTCGGCTTCCCTTCTCCCTGGGA  
3225

GGAAAGCTCCCTCGCGCTCTGCTGGACCCCTGCCGCTTACCGGATACCTGTCGGCTTCCCTTCTCCCTGGGA  
CCTTCAGGGAGCACGGAGAGGACAAGGGCTGGGACGGGAATGGCCTATGGACAGGGAAAGAGGGAAAGCCCT  
3300

AGCGGTGGCTTTCTCATAGCTCAGCTGAGGTATCTCAGTTCGGTAGGTCGTTGGCTCCAAAGCTGGCTGT  
TCGCACCGCGAAAGAGTATCGAGTGCAGACATCCATAGAGTCAGGCTAACGCAAGCCACATCCAGGAGGTTCGACCCGACA  
3375

GTTGACGAAACCCCCGGTTCAAGCCCCGACCGCTGGCTTATCCGGTAACATCGTCTTGAGTCACCCGGTAAGA  
CACGTGCTTGGGGGCAAGTCGGGACGGAAATTAGGCCATTAGGCAAGAACTCAGGTTCAGGTTGGGCCATTCT  
3450

CACGACTTATCGCCACTGGCAGGCCACTGGTAACAGGATTAGCAGGGAGGTATGTTAGGGGGCTACAGAG  
GTTGCTGAATTAGGGGTGACCGTGGTGACCATTTGTCCTTAATCGTCCTGCTCCATACATCCGCACGATGTC  
3525

**FIG.31N**



62 / 68

TCTTGAAGTGGGCCAACTACGGCTACACTAGAAAGAACAGIATTGGTATCTGGCTCTGGCTGAAGCCAGTT  
3600  
AAGAACCTTCAACCACCGGATTGATGCCGATGTGATCTTGTICATAAACCATAGACCGAGACCTCGGTCAA

ACCTTCGGAAAAAGAGTTGGTAGCTTTGATCCTGGATCCTTAAGAACCAACCCGCTGGTAGCGGTGGTTTGTTCAG  
3675  
TGGAAGCCTTTTCTCAACCATCGAGAACCTAGGCCGTTTGTGGCGACCATGCCACCAAAAAAACAAACCG

AAGCAGCAGATTACGGCAGAAAAAAAGGATCTCAAGAACGATCCTTGTATCTTGTACGGGTCTGACGCTCAG  
3750  
TTCTGCCTTAATGCCGCTTTCTAGAGTTCTAGAAACTAGAAAAGATGCCACAGACTGCGAGTC

Sall

TGGAACGAAAACCTACGGTTAACGGATTGGTCATGAGATATGGTACGGACCAAGGGCCATCGTGCCTCCCCAC  
3825  
ACCTTGCTTTGAGTGCATTCCCTAAACCAATTCTAATAGCAGCTACTCTAACTCTAATAGCAGCTGGTTGCCGGTAGCACGGAGGGTG

**FIG.31O**

APR 17 2003  
PATENT & TRADEMARK OFFICE  
601

63 / 68

PstI |  
TCCTGCAGTTGGGGCATGGATGCCGATAGCCGCTGCTGGTTTCTGGATGCCGACGGATTGCACTGGCGG  
3900  
AGGACGTCAAGCCCCGGTACCTACGCCCTATGGGCCATACGGCTAACGGCTAACACTAAACGTTGACGGCC

PvuII |  
TAGAAACTCCGGGAGGTGTCAGGCCCTCAGGCAGGCTGAACCAACTCGCGAGGGATCGAGGCCGGGGTGGCG  
3975  
ATCTGAGGCCGCTCCAGCAGGTGGAGTCGGCTCGACTTGGTTAGGCCTCCCTAGCTCGGGCCCAUCCGC

SmaI |  
AAGAACTCCAGCATGAGATCCCGGGCTGGAGGATCATCCAGCCGGCTCCGGAAAACGATTCCGAAGCCCCAAC  
4050  
TTCTTGAGGGTGTACTCTAGGGGGCGGACCTCCCTAGGGTGGGGCTTTTGCTAAGGCTTGGGTTG

CCTTCATAGAAGGGGGTGGAAATCGAAATCTCGTGAATGGCAGGTGGGGCTCGCTGGTCAATTGAAAC  
4125  
GAAAGTATCTTCCGGCCACCTTAGCTTAGAGCAC TACCGTCCAAACCCGAGCCAGTAAAGCTTG

FIG.31P



APR 17 2003

64 / 68

F F E D L L R Y F A I R Q S D P A A I G

CGTAAAGCACGAGGAAGGGTCAGCCCATTGGCCCAAGCTCTTCAGCAATATCAGGGTAGCCAACGGCTATGT  
GTTATGGCTCTTGCCAGTCGGTAAGGGGGITCGAGAAGTGTATAGGCCCATCGTTGGGATAACA  
4275

Y L V L F R D A W E G G L E E A I D R T A L A I D

CCTGATAGCGGTCCGCCACACCCAGCCCCACAGTCGATGAATCCAGAAAAGGGCATTTCACCATGATA  
GGACTATGGCAGGGGGTGGGTGGGGTGGTCACTTAGGTCTTTCCGGTAAAGGTGGTACTATA 4350

Q Y R D A V G L R G C D I F G S F R G N E V M I N  
kan

FIG.31Q



65 / 68

Ncol

TCGGCAAGCAGGATGCCATGGGTACCGAGAGATCGCCGTCGGCATGGGCCTTGAGCCGGGAACA  
4425  
AGCCGGTCCGTCCGTAGGGTAGCCAGTAGCTGCTCTAGGAGGGCAGCCGTACGGCGGAACACTCGGACCGCTTGT

P L C A D G H T V V L D E G D P M R A K L R A F L  
kan r

GTTCCGGCTGGCGGAGGCCCTGATGCTCTTCTGTCAGATCATCCTGATCGACAAGACCGGCTTCGAGTAC  
4500  
CAAGCCGACCCGGCTCGGGGACTACCGAGAACCTAGGACTAGCTGTTCTGGCCAAAGGTAGGGCTCATG

E A P A L G Q H E E D L D Q D V L G A E M R T R  
kan r

GTGCTCGCTCGATGCGATTGGCTGGTGAATGGCGAGTAGCCGGATCAAGCGTATGAGGCCGGCA  
4575  
CACCGAGCGAGCTACGGCTACCGACTACAAAGGAACCAACCAGCTTACCCGTCCTAGTTGGCATACGGTGGCGGT

A R E I R H K A Q H D F P C T A P D L T H L R R M  
kan r

**FIG.31R**

APR 17 2003  
RENTAL & TRADEMARK OFFICE

66 / 68

TTGCATCAGCCATGGATACTTTCGGCAGGCAAGGTGAGATGACAGGAGATCCCTGCCCGGCACCTTCGC  
AACGGTAGTCGGTACTACCTATGAAAGAGCCGCTCCTCGTTCCACTCTACTGTICCTCTAGGACGGGGCGTGAAGCG  
  
A D A M I S V K E A P A L H S S L D Q G P V E G  
kan r

Pvull

CCAATAGCAGCCAGTCCTTCCCGCTTCAGTGACAACGTCGGCAGGACAGCTGCCAAAGGAACGCCCGTCACTGGCCA  
GGTTATCGTCGGTCAGGGAAAGGGCAAGTGACTGTTGCAGCTCGTGTGACGGCTTCCTTGCGGGCAGCACCGGT  
  
L L L W D R G A E T V V D L V A A C P V G T T A L  
kan r

FIG.31S



67 / 68

PstI

GGCACGATAGCCGCCTGCCCTCGCTTCAGTTCAACGGGACAGGTGGTCTTGACAAAAAGAACCG  
CGGTGCTATGGCGCGACGGAGGACTCAAGTAAGTCCCCTGGCCTGGCCAGAACTGTGTTTCTGGC  
  
W S L R A A E D Q L E N L A G S L D T K V F L V P  
kan r

GGCCGCCCTGGCTGACAGCCGGAACACGGGGCATCAGAGCAAGCCGATTGGCTGTGTTGGCCAGTCATAGCCGA  
CCGGGGGACGGGACTGTGGCCCTGGCCCTGGCTAACAGACAACAGGGTCAGTATCGCT  
  
R G Q A S L R F V A A D S C G I T Q Q A W D Y G F  
kan r

ATAGCCCTCCACCCAAGGGGGGGGAACCTGGGTGCAATCCATCTTGTCAATCATGGGAAACGATCCTCATC  
TATGGAGAGGTGGTTGGCGCTCTGGACGGCACGTTAGGTAGAACAAAGTTAGTACGGCTTGGCTAGGAGTAG  
  
L R E V W A A P S G A H L G D Q E I M  
kan r

FIG.31T

RECEIVED  
APR 17 2003  
OIP R  
JCI03

68 / 68

BgIII

CTGCTCTTGTATCAGATCCCTGGCCATCAAGATCCCTGGGGCAAGAAAGCCATCCAGTTACTTGC  
GACAGAGAACTAGTCTAGAACCTAGGGGACCGGTAGTCAGGAACCCGTTCTGGTAGGTCAAATGAAACG  
5025

PvuII

AGGGCTTCCCCAACCTTACCAAGAGGGCCCCAGCTGGCAATTCCGGTTGGCTTGCTGTCCATAAAACCGCCCCAGT  
TCCCAGAAGGGTTGGAAATTGGTCTCCCGGGTGCACCGTTAAGGCCAAGCGAACGACAGGTATTGGGGTCA  
5100

CTAGCTATCGCCATGTAAGCCCCACTGCAAGCTACCTGCTTCTCTGGCTTTGGCTTTCCCTTGTCCAGATA  
GATCGATAGCGGTACATTGGGTGACCTTGATGGACGAAAGAGAAACGGCAACGGAAACAGGTCTATC  
5175

CCCAGTAGCTGACATTCACTCCGGGTCAAGCACCGTTTGGCTTCTACGTTGTTGGCTTCCCTTGTAGC  
GGGTATCGACTGTAAGTAGGCCCAAGTGTGGCAAAAGACGGCTGACGGAAAGAGATGGCACAGGGGAAGAAATCG  
5250

AGCCCTTGGCCCTGAGTGCTTGGGGAGCGGTG  
TCGGGAACGGGGACTCACGAACGCCGTGGCAC  
5283

**FIG.31U**