K-MEANS ALGORITHM

Sevilay Malkoç Fehmi Şener Melih Ürkmez Taha Pek

Table of Content

K-Means Algorithm

K-MEANS

1.1

Decide Cluster Counts

Helps to find the optimum number of clusters.

The elbow method runs k-means

clustering on the dataset for a range of k values (for example, 1 to 10).

Elbow Curve

Silhouette analysis

The silhouette coefficient is a measure of how similar a data point is within-cluster (fitness) compared to other clusterings (disjunction).

PSEUDO CODE

- Step 1: Choose the number of clusters(K) and obtain the data points
- Step 2: Place the centroids c_1, c_2, c_k randomly
- Step 3: Repeat steps 4 and 5 until convergence or until the end of a fixed number of iterations
- Step 4: for each data point x_i:
 - find the nearest centroid(c_1, c_2 .. c_k)
 - assign the point to that cluster
- Step 5: for each cluster j = 1..k
 - new centroid = mean of all points assigned to that cluster
- Step 6: Use labeled data for Decision Tree (from K-Means)
- Step 7: Keep the best feature of the input attributes at the root portion of the tree.
- Step 8: Then make splitting of the training dataset into subsections.
- Step 9: Now repeat steps 7,8 on each subset till the leaf portion in every branch of the tree is found.
- Step 10: Predict cluster of driver data

It is an informal and contrived way of writing programs in which you represent the sequence of actions and instructions (aka algorithms) in a form that humans can easily understand.*

SYSTEM ARCHITECTURE

Thanks!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**