Testing whether an *x* **is Endogenous**

Tyler Ransom

Univ of Oklahoma

Mar 28, 2019

Today's plan

- 1. Review reading topics on when $E(u|\mathbf{x}) \neq 0$
 - 1.1 Review of IV topics
 - 1.2 Testing whether an x is Endogenous
- 2. In-class activity: Work on project

Quick Review

Instrumental Variables (IV)

- An IV (call it z) is a variable correlated with x, but not with u
 - IV's typically come out of so-called natural experiments
 - e.g. exogenous change in laws; school choice lotteries; military conscription
- Allows us to estimate a causal effect, even when A4 is violated

IV conditions

- The instrument z must satisfy
 - 1. z is **exogenous** to the equation:

$$Cov(z, u) = 0$$

2. z is **relevant** for explaining x:

$$Cov(z,x) \neq 0$$

Practical considerations in IV

- How "relevant" is relevant?
 - 1st stage F > 10 or $|t| > \sqrt{10} pprox 3.2$
 - i.e. we need z to be strongly correlated with x
 - Otherwise, our estimation suffers from weak instruments
- Can we test exogeneity condition?
 - No; typically need to appeal to theory or qualitative evidence
 - We can, however, test if we even need to do IV

Multiple instruments, multiple endogenous x's

- With multiple z's and endogenous x's, must satisfy the **order condition**:
- Must exclude at least as many z's from our equation as endogenous x's
- Example: Female labor supply (from a few times ago)
- KIDCOUNT is endogenous x, SAMESEX is excluded z
- Could also come up with additional instruments for KIDCOUNT

Testing whether an x is Endogenous

Setting

- Consider the model

$$y_1 = \alpha_1 y_2 + \mathbf{z}_1 \delta_1 + u_1$$

where $\mathbf{z}_1 \delta_1$ represents a set of exogenous rhs vars & coeffs (incl. constant)

- We want to test whether y_2 and u_1 are uncorrelated
- i.e. $H_0: y_2$ is exogenous (which means we could use OLS rather than IV)
- Assume: elements of \mathbf{z}_1 are exogenous (so they act as their own IVs)
- Need at least one outside exogenous variable (could have more; call it \mathbf{z}_2)

Reduced-form Equation

- The **reduced form** for y₂ is

$$y_2 = \mathbf{z}_1 \pi_1 + \mathbf{z}_2 \pi_2 + V_2$$

- $\mathbf{z}_1 \pi_1$ is shorthand for $z_{11} \pi_{11} + \cdots + z_{L1} \pi_{L1}$
- $\mathbf{z}_2 \pi_2$ is shorthand for $z_{12} \pi_{12} + \cdots + z_{M_2} \pi_{M_2}$
- All **z**'s are exogenous
- With y_2 written this way, it is endogenous if and only if

$$Cov(v_2, u_1) \neq 0$$

Setting up the test

- To test H_0 : $Cov(v_2, u_1) = 0$, we can write

$$u_1 = \rho_1 v_2 + e_1$$

where the new error e_1 is uncorrelated with **z** and v_2 , and therefore y_2

- Plug in for u_1 into the original equation:

$$y_1 = \alpha_1 y_2 + \mathbf{z}_1 \delta_1 + u_1$$

= $\alpha_1 y_2 + \mathbf{z}_1 \delta_1 + \rho_1 v_2 + e_1$

which is an equation that, if we observed v_2 , could be estimated by OLS

The testing procedure

- In the equation

$$y_1=lpha_1y_2+\mathbf{z}_1\delta_1+
ho_1v_2+e_1$$
, e_1 is uncorrelated with y_2 , \mathbf{z}_1 , and v_2

- we can estimate v_2 using the first-stage regression
- The two-step testing procedure is
 - 1. Regress y_2 on \mathbf{z}_1 and \mathbf{z}_2 to obtain the residuals, $\hat{v}_2 = y_2 \mathbf{z}\hat{\pi}_2$
 - 2. Regress y_1 on y_2 , \mathbf{z}_1 , and \hat{v}_2 ; use a robust t-test on $\hat{\rho}_1$

More on the test

- If we do not have an instrument for y_2 , this model is perfectly collinear
- \hat{v}_2 would be an exact linear function of y_2 and \mathbf{z}_1
- Interestingly, OLS estimates from step (2) for the coefficients on y_2 and \mathbf{z}_1 ...
 - ... are always identical to the 2SLS estimates of the structural equation
- Including the first-stage residuals "controls" for the endogeneity of y_2

Example: School spending and test scores

df <- as tibble(meap 94 95) %>% filter(enroll>2000)

```
est.reduced.form <- lm(lavgrexp ~ lfound + math4 94, data=df)
```

df %<>% mutate(v2h = est.reduced.form\$residuals)

```
est.residualized <- lm(math4 ~ lavgrexp + math4 94 + v2h, data
```

|--|

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-27.02431	23.00407	-1.17	0.241	

	L3 CIMA CC	Jea. Elloi	c vacac	11(//61/	
(Intercept)	-27.02431	23.00407	-1.17	0.241	
lavanovn	6 620055	2 71620	2 //	0 015 44	

(Intercept)	-27.02431	23.00407	-1.17	0.241
lavgrexp	6.639055	2.71628	2.44	0.015 **

math4_94 .0324096 0.000 ***

.6392136 19.72

-14.95647 v2h 8.179467 -1.83 0.068

Example: School spending and test scores

2SLS estimation. est.iv <- ivreg(math4 ~ lavgrexp + math4 94 | math4 94 + lfound, data=df) summarv(est.iv) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 22.9201 -1.18 -27.02431 0.239 lavgrexp 6.639055 2.709613 0.015 ** 2.45 math4 94 .6392136 .0328142 19.48 0.000 ***

Discussion

- Coefficient on v2h was significant at 10% level, but not 5% level
- Implies a (marginal) violation of exogeneity condition
- The standard errors are also slightly different between the two
- Should use the ones from ivreg