PLS-models in Practice: sparse and sparse group extensions

Lecture 2/3

MSc Health Data Analytics – Computational epidemiology – February 11, 2021

Marc Chadeau-Hyam

m.chadeau@imperial.ac.uk

Imperial College London

Penalisation: Sparse PLS

- Aim: identify a sparse set of variables to be included in each component
- Defining a penalised objective function:

$$\min_{\substack{||u_h||=1,\ ||v_h||=1}} ||\underbrace{X_h^T Y_h}_{\text{observed covariance low rank approximation}} - \underbrace{u_h v_h^T}_{\text{observed covariance low rank approximation}} ||_F^2 + \underbrace{P_{\lambda_1}(u_h)}_{\text{sparsity on X}} + \underbrace{P_{\lambda_2}(v_h)}_{\text{sparsity on Y}}$$

- Classically the ℓ_1 norm penalty is used: $P_{\lambda}(u) = \lambda ||u||_{\ell_1} = \lambda \sum_{j=1}^p |u_j|$
- Estimation: Soft thresholding approximation to estimate the ℓ_1 norm:
 - 1. Estimate u and v without penalisation
 - 2. Update coordinates of u:

$$sign(u)(max(0,|u|-\frac{\lambda_1}{2}))$$
 and estimate v (step 1)

3. Update coordinates of v:

$$sign(v)(max(0,|v|-\frac{\lambda_2}{2}))$$
 and estimate u (step 1)

- 4. Repeat 1-3 until convergence
- In practice in the mixOmics R package λ is not calibrate, but instead the number of variables to be selected

- Variation of interest: intra-individual variation (before, after swimming in chlorinated pool)
- Decomposition of the k^{th} observation of variable j for individual i

$$x_{ik}^{j} = \underbrace{x_{..}^{j}}_{\text{offset}} + \underbrace{(x_{i.}^{j} - x_{..}^{j})}_{\text{between subject variation}} + \underbrace{(x_{ik}^{j} - x_{i.}^{j})}_{\text{within subject variation}}$$

⇒ 10 subjects, 4 observations per subject

- Variation of interest: intra-individual variation (before, after swimming in chlorinated pool)
- Decomposition of the k^{th} observation of variable j for individual i

$$x_{ik}^{j} = \underbrace{x_{...}^{j}}_{\text{offset}} + \underbrace{(x_{i..}^{j} - x_{...}^{j})}_{\text{between subject variation}} + \underbrace{(x_{ik}^{j} - x_{i..}^{j})}_{\text{within subject variation}}$$

- Variation of interest: intra-individual variation (before, after swimming in chlorinated pool)
- Decomposition of the k^{th} observation of variable j for individual i

$$x_{ik}^{j} = \underbrace{x_{...}^{j}}_{\text{offset}} + \underbrace{\left(x_{i.}^{j} - x_{...}^{j}\right)}_{\text{between subject variation}} + \underbrace{\left(x_{ik}^{j} - x_{i..}^{j}\right)}_{\text{within subject variation}}$$

- Variation of interest: intra-individual variation (before, after swimming in chlorinated pool)
- Decomposition of the k^{th} observation of variable j for individual i

$$x_{ik}^{j} = \underbrace{x_{..}^{j}}_{\text{offset}} + \underbrace{(x_{i.}^{j} - x_{..}^{j})}_{\text{between subject variation}} + \underbrace{(x_{ik}^{j} - x_{i.}^{j})}_{\text{within subject variation}}$$

Multilevel PLS: formalism

- Variation of interest: intra-individual variation (before, after swimming in chlorinated pool)
- Decomposition of the k^{th} observation of variable j for individual i

$$x_{ik}^{j} = \underbrace{x_{..}^{j}}_{\text{offset}} + \underbrace{(x_{i.}^{j} - x_{..}^{j})}_{\text{between subject variation}} + \underbrace{(x_{ik}^{j} - x_{i.}^{j})}_{\text{within subject variation}}$$

• Can be rewritten as:

$$\underbrace{(x_{ik}^j - x_{i.}^j)}_{\text{within subject variation}} = \underbrace{(x_{.k}^j - x_{..}^j)}_{\text{experimental effect}} + \underbrace{(x_{ik}^j - x_{i.}^j - x_{.k}^j + x_{..}^j)}_{\text{residual variability}}$$

- Multilevel in Practice:
 - 1. Calculate the within individual variability
 - 2. Run (s)PLS on the within individual variability

sparse PLS: Calibration

- Calibration of the number of components based on Q^2 criterion
 - \circ R^2 : proportion of variance explained by the model

$$R^{2} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum\limits_{k \in training} (y_{k} - \hat{y}_{k})^{2}}{\sum\limits_{k \in training} (y_{k} - \bar{y})^{2}}$$

• Q^2 analogous to R^2 on the testing set:

$$Q^{2} = 1 - \frac{\sum_{k \in test} (y_{k} - \hat{y}_{k})^{2}}{\sum_{k \in test} (y_{k} - \bar{y})^{2}}$$

• Calibration of the number of variables to be included in each component (sPLS)

$$MSEP = \frac{1}{n} \sum_{k \in test} (y_k - \hat{y}_k)^2$$

Application to PISCINA data

JECH Online First, published on March 21, 2018 as 10.1136/jech-2017-210061 Theory and methods

A multivariate approach to investigate the combined biological effects of multiple exposures

Pooja Jain, ¹ Paolo Vineis, ^{1,2} Benoît Liquet, ^{3,4} Jelle Vlaanderen, ⁵ Barbara Bodinier, ¹ Karin van Veldhoven, ¹ Manolis Kogevinas, ^{6,7,8,9} Toby J Athersuch, ^{1,10} Laia Font-Ribera, ^{6,7,8,9} Cristina M Villanueva, ^{6,7,8,9} Roel Vermeulen, ^{1,5} Marc Chadeau-Hyam^{1,5}

- Question: due to exposure co-occurence, are all exposures needed to explain the inflammatory response?
- Method: Multi-level (sparse) PLS model of (N=4) exposures vs. (N=13) proteins
- Research questions and corresponding models:
 - 1. how does exposure jointly affect protein levels (PLS)
 - 2. which (sets of) exposure are affecting proteins level (sPLS on X)
 - 3. which (sets of) proteins are affected by exposures (sPLS on Y)
 - 4. what set of exposures most affect a subset of the proteins (sPLS on X& Y)

Model calibration

- Number of components:
 - 1. Q^2 criterion: the maximal the number of components such that adding an additional component would yield a substantive drop in the Q^2 value.
 - 2. Q^2 by 1,000-5-fold cross-validation: estimate the average Q^2
 - 3. The number of X and Y components are equal
 - 4. The maximum number of component is min(p = 4, q = 13) = 4

 \Rightarrow for sPLS on X, one component selected.

Model calibration

- Number of components:
 - 1. Q^2 criterion: the maximal the number of components such that adding an additional component would yield a substantive drop in the Q^2 value.
 - 2. Q^2 by 1,000-5-fold cross-validation: estimate the average Q^2
 - 3. The number of X and Y components are equal
 - 4. The maximum number of component is min(p = 4, q = 13) = 4

 \Rightarrow for sPLS on Y, one component selected.

Model calibration

- Number of components:
 - 1. Q^2 criterion: the maximal the number of components such that adding an additional component would yield a substantive drop in the Q^2 value.
 - 2. Q^2 by 1,000-5-fold cross-validation : estimate the average Q^2
 - 3. The number of X and Y components are equal
 - 4. The maximum number of component is min(p = 4, q = 13) = 4

 \Rightarrow for sPLS on both X and Y, one component selected.

		PI	LS		sPLS on X	sPLS on Y	sPLS on X and Y
Exposures (X matrix)	C_{1X}	C_{2X}	C_{3X}	C_{4X}	$C_{1X'}$	$C_{1X^{\prime\prime}}$	$C_{1X'''}$
Cl_3CH	-0.50	-0.60	-0.60	-0.17	-0.48	-0.50	-0.48
BDCM	-0.52	-0.21	0.45	0.70	-0.67	-0.52	-0.66
DBCM	-0.51	0.11	0.51	-0.68	-0.57	-0.51	-0.58
$BrCH_3$	-0.46	0.76	-0.42	0.15	0.00	-0.46	0.00
Explained Variance in X	94.8%	4.5%	0.6%	0.04%	94.0%	94.8%	94.0%
Explained Variance in Y	10.1%	1.3%	1.9%	1.3%	10.4%	14.2%	16.1%
Protein levels (Y matrix)	C_{1Y}	C_{2Y}	C_{3Y}	C_{4Y}	$C_{1Y'}$	$C_{1Y^{\prime\prime}}$	$C_{1Y'''}$
CCL2	0.12	0.195	-0.09	-0.02	0.13	0.00	0.00
IL-8	0.31	0.062	0.19	0.12	0.32	0.30	0.29
EGF	-0.10	0.216	-0.38	-0.11	-0.09	0.00	0.00
MPO	-0.14	0.310	0.18	0.05	-0.13	-0.02	0.00
VEGF	0.21	-0.266	-0.11	-0.36	0.20	0.13	0.11
IL-17	0.03	0.169	0.20	0.22	0.03	0.00	0.00
CCL22	0.42	-0.131	-0.32	-0.09	0.41	0.44	0.43
G-CSF	0.05	-0.079	-0.41	-0.43	0.05	0.00	0.00
CCL11	0.29	0.221	-0.27	-0.16	0.30	0.26	0.26
CRP	0.19	0.367	-0.11	-0.53	0.20	0.09	0.11
CXCL10	0.57	0.121	-0.05	0.46	0.57	0.68	0.67
Periostin	-0.18	-0.318	-0.31	-0.08	-0.18	-0.08	-0.08
IL-1ra	-0.38	-0.627	0.52	-0.28	-0.40	-0.39	-0.41
Explained Variance in Y	19.7%	6.9%	19.5%	23.3%	19.8%	17.7%	17.4%

 \Rightarrow Due to exposure correlation: C_{1X} explains $\sim 95\%$ of the variance in X \Rightarrow All exposures have negative loadings

		PLS				sPLS on Y	sPLS on X and Y
Exposures (X matrix)	C_{1X}	C_{2X}	C_{3X}	C_{4X}	$C_{1X'}$	$C_{1X^{\prime\prime}}$	$C_{1X'''}$
Cl_3CH	-0.50	-0.60	-0.60	-0.17	-0.48	-0.50	-0.48
BDCM	-0.52	-0.21	0.45	0.70	-0.67	-0.52	-0.66
DBCM	-0.51	0.11	0.51	-0.68	-0.57	-0.51	-0.58
$BrCH_3$	-0.46	0.76	-0.42	0.15	0.00	-0.46	0.00
Explained Variance in X	94.8%	4.5%	0.6%	0.04%	94.0%	94.8%	94.0%
Explained Variance in Y	10.1%	1.3%	1.9%	1.3%	10.4%	14.2%	16.1%
Protein levels (Y matrix)	C_{1Y}	C_{2Y}	C_{3Y}	C_{4Y}	$C_{1Y'}$	$C_{1Y^{\prime\prime}}$	$C_{1Y'''}$
CCL2	0.12	0.195	-0.09	-0.02	0.13	0.00	0.00
IL-8	0.31	0.062	0.19	0.12	0.32	0.30	0.29
EGF	-0.10	0.216	-0.38	-0.11	-0.09	0.00	0.00
MPO	-0.14	0.310	0.18	0.05	-0.13	-0.02	0.00
VEGF	0.21	-0.266	-0.11	-0.36	0.20	0.13	0.11
IL-17	0.03	0.169	0.20	0.22	0.03	0.00	0.00
CCL22	0.42	-0.131	-0.32	-0.09	0.41	0.44	0.43
G-CSF	0.05	-0.079	-0.41	-0.43	0.05	0.00	0.00
CCL11	0.29	0.221	-0.27	-0.16	0.30	0.26	0.26
CRP	0.19	0.367	-0.11	-0.53	0.20	0.09	0.11
CXCL10	0.57	0.121	-0.05	0.46	0.57	0.68	0.67
Periostin	-0.18	-0.318	-0.31	-0.08	-0.18	-0.08	-0.08
IL-1ra	-0.38	-0.627	0.52	-0.28	-0.40	-0.39	-0.41
Explained Variance in Y	19.7%	6.9%	19.5%	23.3%	19.8%	17.7%	17.4%

 \Rightarrow Weaker correlations in proteins: C_{1Y} explains $\sim 20\%$ of the variance in X \Rightarrow only 4 negative loadings (including CXCL10)

		PLS			sPLS on X	sPLS on Y	sPLS on X and Y
Exposures (X matrix)	C_{1X}	C_{2X}	C_{3X}	C_{4X}	$C_{1X'}$	$C_{1X^{\prime\prime}}$	$C_{1X'''}$
Cl_3CH	-0.50	-0.60	-0.60	-0.17	-0.48	-0.50	-0.48
BDCM	-0.52	-0.21	0.45	0.70	-0.67	-0.52	-0.66
DBCM	-0.51	0.11	0.51	-0.68	-0.57	-0.51	-0.58
$BrCH_3$	-0.46	0.76	-0.42	0.15	0.00	-0.46	0.00
Explained Variance in X	94.8%	4.5%	0.6%	0.04%	94.0%	94.8%	94.0%
Explained Variance in Y	10.1%	1.3%	1.9%	1.3%	10.4%	14.2%	16.1%
Dustain lavels (V matrix)	C	C	C	C	C	C	C
Protein levels (Y matrix)	C_{1Y}	C_{2Y}	C_{3Y}	C_{4Y}	$C_{1Y'}$	$C_{1Y''}$	$C_{1Y'''}$
CCL2	0.12	0.195	-0.09	-0.02	0.13	0.00	0.00
IL-8	0.31	0.062	0.19	0.12	0.32	0.30	0.29
EGF	-0.10	0.216	-0.38	-0.11	-0.09	0.00	0.00
MPO	-0.14	0.310	0.18	0.05	-0.13	-0.02	0.00
VEGF	0.21	-0.266	-0.11	-0.36	0.20	0.13	0.11
IL-17	0.03	0.169	0.20	0.22	0.03	0.00	0.00
CCL22	0.42	-0.131	-0.32	-0.09	0.41	0.44	0.43
G-CSF	0.05	-0.079	-0.41	-0.43	0.05	0.00	0.00
CCL11	0.29	0.221	-0.27	-0.16	0.30	0.26	0.26
CRP	0.19	0.367	-0.11	-0.53	0.20	0.09	0.11
CXCL10	0.57	0.121	-0.05	0.46	0.57	0.68	0.67
Periostin	-0.18	-0.318	-0.31	-0.08	-0.18	-0.08	-0.08
IL-1ra	-0.38	-0.627	0.52	-0.28	-0.40	-0.39	-0.41
Explained Variance in Y	19.7%	6.9%	19.5%	23.3%	19.8%	17.7%	17.4%

 $\Rightarrow C_{1X}$ explains $\sim 10\%$ of the variance in Y

⇒ limited explanatory performances of the exposures

		Pl	LS		sPLS on X	sPLS on Y	sPLS on X and Y
Exposures (X matrix)	C_{1X}	C_{2X}	C_{3X}	C_{4X}	$C_{1X'}$	$C_{1X^{\prime\prime}}$	$C_{1X'''}$
Cl_3CH	-0.50	-0.60	-0.60	-0.17	-0.48	-0.50	-0.48
BDCM	-0.52	-0.21	0.45	0.70	-0.67	-0.52	-0.66
DBCM	-0.51	0.11	0.51	-0.68	-0.57	-0.51	-0.58
$BrCH_3$	-0.46	0.76	-0.42	0.15	0.00	-0.46	0.00
Explained Variance in X	94.8%	4.5%	0.6%	0.04%	94.0%	94.8%	94.0%
Explained Variance in Y	10.1%	1.3%	1.9%	1.3%	10.4%	14.2%	16.1%
Protein levels (Y matrix)	C_{1Y}	C_{2Y}	C_{3Y}	C_{4Y}	$C_{1Y'}$	$C_{1Y^{\prime\prime}}$	$C_{1Y'''}$
CCL2	0.12	0.195	-0.09	-0.02	0.13	0.00	0.00
IL-8	0.31	0.062	0.19	0.12	0.32	0.30	0.29
EGF	-0.10	0.216	-0.38	-0.11	-0.09	0.00	0.00
MPO	-0.14	0.310	0.18	0.05	-0.13	-0.02	0.00
VEGF	0.21	-0.266	-0.11	-0.36	0.20	0.13	0.11
IL-17	0.03	0.169	0.20	0.22	0.03	0.00	0.00
CCL22	0.42	-0.131	-0.32	-0.09	0.41	0.44	0.43
G-CSF	0.05	-0.079	-0.41	-0.43	0.05	0.00	0.00
CCL11	0.29	0.221	-0.27	-0.16	0.30	0.26	0.26
CRP	0.19	0.367	-0.11	-0.53	0.20	0.09	0.11
CXCL10	0.57	0.121	-0.05	0.46	0.57	0.68	0.67
Periostin	-0.18	-0.318	-0.31	-0.08	-0.18	-0.08	-0.08
IL-1ra	-0.38	-0.627	0.52	-0.28	-0.40	-0.39	-0.41
Explained Variance in Y	19.7%	6.9%	19.5%	23.3%	19.8%	17.7%	17.4%

 $\Rightarrow C_{2X}, \dots, C_{4X}$ explain lesse than 5% of the variance in X \Rightarrow they explain less than 2% of the Y variance

		PI	LS		sPLS on X	sPLS on Y	sPLS on X and Y
Exposures (X matrix)	C_{1X}	C_{2X}	C_{3X}	C_{4X}	$C_{1X'}$	$C_{1X^{\prime\prime}}$	$C_{1X'''}$
Cl_3CH	-0.50	-0.60	-0.60	-0.17	-0.48	-0.50	-0.48
BDCM	-0.52	-0.21	0.45	0.70	-0.67	-0.52	-0.66
DBCM	-0.51	0.11	0.51	-0.68	-0.57	-0.51	-0.58
$BrCH_3$	-0.46	0.76	-0.42	0.15	0.00	-0.46	0.00
Explained Variance in X	94.8%	4.5%	0.6%	0.04%	94.0%	94.8%	94.0%
Explained Variance in Y	10.1%	1.3%	1.9%	1.3%	10.4%	14.2%	16.1%
Protein levels (Y matrix)	C_{1Y}	C_{2Y}	C_{3Y}	C_{4Y}	$C_{1Y'}$	$C_{1Y''}$	$C_{1Y'''}$
CCL2	0.12	0.195	-0.09	-0.02	0.13	0.00	0.00
IL-8	0.31	0.062	0.19	0.12	0.32	0.30	0.29
EGF	-0.10	0.216	-0.38	-0.11	-0.09	0.00	0.00
MPO	-0.14	0.310	0.18	0.05	-0.13	-0.02	0.00
VEGF	0.21	-0.266	-0.11	-0.36	0.20	0.13	0.11
IL-17	0.03	0.169	0.20	0.22	0.03	0.00	0.00
CCL22	0.42	-0.131	-0.32	-0.09	0.41	0.44	0.43
G-CSF	0.05	-0.079	-0.41	-0.43	0.05	0.00	0.00
CCL11	0.29	0.221	-0.27	-0.16	0.30	0.26	0.26
CRP	0.19	0.367	-0.11	-0.53	0.20	0.09	0.11
CXCL10	0.57	0.121	-0.05	0.46	0.57	0.68	0.67
Periostin	-0.18	-0.318	-0.31	-0.08	-0.18	-0.08	-0.08
IL-1ra	-0.38	-0.627	0.52	-0.28	-0.40	-0.39	-0.41
Explained Variance in Y	19.7%	6.9%	19.5%	23.3%	19.8%	17.7%	17.4%

 \Rightarrow variable selection on X excludes $BrCH_3$ \Rightarrow explained variance of X and Y by $C_{1X'}$ are not affected

		Pl	LS		sPLS on X	sPLS on Y	sPLS on X and Y
Exposures (X matrix)	C_{1X}	C_{2X}	C_{3X}	C_{4X}	$C_{1X'}$	$C_{1X^{\prime\prime}}$	$C_{1X'''}$
Cl_3CH	-0.50	-0.60	-0.60	-0.17	-0.48	-0.50	-0.48
BDCM	-0.52	-0.21	0.45	0.70	-0.67	-0.52	-0.66
DBCM	-0.51	0.11	0.51	-0.68	-0.57	-0.51	-0.58
$BrCH_3$	-0.46	0.76	-0.42	0.15	0.00	-0.46	0.00
Explained Variance in X	94.8%	4.5%	0.6%	0.04%	94.0%	94.8%	94.0%
Explained Variance in Y	10.1%	1.3%	1.9%	1.3%	10.4%	14.2%	16.1%
Protein levels (Y matrix)	C_{1Y}	C_{2Y}	C_{3Y}	C_{4Y}	$C_{1Y'}$	$C_{1Y^{\prime\prime}}$	$C_{1Y'''}$
CCL2	0.12	0.195	-0.09	-0.02	0.13	0.00	0.00
IL-8	0.31	0.062	0.19	0.12	0.32	0.30	0.29
EGF	-0.10	0.216	-0.38	-0.11	-0.09	0.00	0.00
MPO	-0.14	0.310	0.18	0.05	-0.13	-0.02	0.00
VEGF	0.21	-0.266	-0.11	-0.36	0.20	0.13	0.11
IL-17	0.03	0.169	0.20	0.22	0.03	0.00	0.00
CCL22	0.42	-0.131	-0.32	-0.09	0.41	0.44	0.43
G-CSF	0.05	-0.079	-0.41	-0.43	0.05	0.00	0.00
CCL11	0.29	0.221	-0.27	-0.16	0.30	0.26	0.26
CRP	0.19	0.367	-0.11	-0.53	0.20	0.09	0.11
CXCL10	0.57	0.121	-0.05	0.46	0.57	0.68	0.67
Periostin	-0.18	-0.318	-0.31	-0.08	-0.18	-0.08	-0.08
IL-1ra	-0.38	-0.627	0.52	-0.28	-0.40	-0.39	-0.41
Explained Variance in Y	19.7%	6.9%	19.5%	23.3%	19.8%	17.7%	17.4%

 \Rightarrow variable selection on Y excludes 4 proteins

 \Rightarrow resulting improvements in the Y explained variance

		Pl	LS		sPLS on X	sPLS on Y	sPLS on X and Y
Exposures (X matrix)	C_{1X}	C_{2X}	C_{3X}	C_{4X}	$C_{1X'}$	$C_{1X''}$	$C_{1X'''}$
Cl_3CH	-0.50	-0.60	-0.60	-0.17	-0.48	-0.50	-0.48
BDCM	-0.52	-0.21	0.45	0.70	-0.67	-0.52	-0.66
DBCM	-0.51	0.11	0.51	-0.68	-0.57	-0.51	-0.58
$BrCH_3$	-0.46	0.76	-0.42	0.15	0.00	-0.46	0.00
Explained Variance in X	94.8%	4.5%	0.6%	0.04%	94.0%	94.8%	94.0%
Explained Variance in Y	10.1%	1.3%	1.9%	1.3%	10.4%	14.2%	16.1%
Protein levels (Y matrix)	C_{1Y}	C_{2Y}	C_{3Y}	C_{4Y}	$C_{1Y'}$	$C_{1Y^{\prime\prime}}$	$C_{1Y'''}$
CCL2	0.12	0.195	-0.09	-0.02	0.13	0.00	0.00
IL-8	0.31	0.062	0.19	0.12	0.32	0.30	0.29
EGF	-0.10	0.216	-0.38	-0.11	-0.09	0.00	0.00
MPO	-0.14	0.310	0.18	0.05	-0.13	-0.02	0.00
VEGF	0.21	-0.266	-0.11	-0.36	0.20	0.13	0.11
IL-17	0.03	0.169	0.20	0.22	0.03	0.00	0.00
CCL22	0.42	-0.131	-0.32	-0.09	0.41	0.44	0.43
G-CSF	0.05	-0.079	-0.41	-0.43	0.05	0.00	0.00
CCL11	0.29	0.221	-0.27	-0.16	0.30	0.26	0.26
CRP	0.19	0.367	-0.11	-0.53	0.20	0.09	0.11
CXCL10	0.57	0.121	-0.05	0.46	0.57	0.68	0.67
Periostin	-0.18	-0.318	-0.31	-0.08	-0.18	-0.08	-0.08
IL-1ra	-0.38	-0.627	0.52	-0.28	-0.40	-0.39	-0.41
Explained Variance in Y	19.7%	6.9%	19.5%	23.3%	19.8%	17.7%	17.4%

 \Rightarrow variable selection on X & Y excludes 5 proteins and $BrCH_3$ \Rightarrow yields maximal Y explained variance by C_{1X}'''

Multi level PLS analyses of PISCINA data

- Despite correlation, 3 exposures selected
 - Bromoform appears less influential (not selected in sPLS-X)
 - Variance is heterogeneously explain across proteins (e.g. IP10, MDCCC, and IL1ra) which are selected in sPLS (on Y)
 - Variable selection on X and Y selects 3 exposures and 8 proteins

Multi level PLS analyses of PISCINA data

Comparison with mixed models (investigating protein separately):

⇒ accounting for the correlation across proteins (multivariate Y) is improving the model's fit

⇒ All PLS variants have similar performances

⇒ For some proteins LMM and PLS equally mis-perform

⇒ Efficient prioritisation tool