Homework 13 ECE2504 CRN:82729

Jacob Abel

December 5, 2017

Question 1: (8 pts) Specify the 20-bit control word that must be applied to the datapath of the single-cycle simple computer in Chapter 8 of your textbook (See Fig 8-16) to implement each of the following microoperations. Use the control word fields shown in Figure 8-16. Present your answers in table form.

Operation		DA	AA	BA	MB	FS	MD	RW	MW	PL	JB	BC
a)	$R2 \leftarrow \text{sr Constant in}$	010	xxx	cnst	1	1101	0	1	0	0	0	1
b)	$M[R4] \leftarrow R2$	XXX	100	010	0	0000	1	0	1	0	0	0
c)	$R1 \leftarrow R3 \lor \text{Constant in}$	001	011	cnst	1	1001	0	1	0	0	0	1
d)	$R4 \leftarrow R3 - 1$	100	011	001	0	0110	0	1	0	0	0	0

Question 2: (8 pts) Given the following 16-bit control words for the Simple Computer datapath shown in Fig. 8-11, determine

- the microoperation sequence that is executed (in RTL),
- the change in register contents

Consider each control word separately, i.e. this is not a sequence. Assume the initial register contents shown is the starting point for each of these microoperations. Assume that Constant = 6 and $Data_in = 0x1B$

Initial Register Contents							
R0	00000000						
R1	00100000						
R2	01000100						
R3	01000111						
R4	01010100						
R5	01001100						
R6	01000001						
R7	01001001						

a) 101 100 101 0 1000 0 1

$$R5 \leftarrow R5$$

Updated Register Contents							
R0	00000000						
R1	00100000						
R2	01000100						
R3	01000111						
R4	01010100						
R5	01000100						
R6	01000001						
R7	01001001						

b) 110 010 100 0 0101 0 1

$$R6 \leftarrow R2 - R4$$

Updated Register Contents							
R0	00000000						
R1	00100000						
R2	01000100						
R3	01000111						
R4	01010100						
R5	01001100						
R6	11110000						
R7	01001001						

c) 101 110 000 0 1100 0 1

$$R5 \leftarrow R4 \wedge R5$$

Updated Register Contents							
R0	00000000						
R1	00100000						
R2	01000100						
R3	01000111						
R4	01010100						
R5	01001100						
R6	01000001						
R7	01001001						

d) 101 000 000 0 0000 0 1

$$R5 \leftarrow R0$$

Updated Register Contents							
R0	00000000						
R1	00100000						
R2	01000100						
R3	01000111						
R4	01010100						
R5	00000000						
R6	01000001						
R7	01001001						

Question 3: (4 pts) A 32-bit computer has a memory unit and a register file with 64 registers. The instruction set consists of 68 different operations. There is only one instruction format with an opcode, a register operand, and an immediate operand. Each instruction is stored in a single word of memory.

- a) How many bits are required for the opcode? 7
- b) How many bits are left for the immediate operand? 19
- c) If the immediate operand is used as an unsigned address to memory, what is the maximum number of words that can be addressed in memory? 524288
- d) What is the range of signed immediate operands that can be accommodated? -262144: 262143

Question 4: (4 pts) Give an instruction for the single cycle computer that resets register R4 to 0 and updates the Z and N status bits based on the value 0 loaded into R4. By examining the ALU logic provided in Chapter 8, determine the values of the V and C status bits.

Instruction	Operation	Opcode	V	С
ANDI R5 R5 0	$R5 \leftarrow R5 \wedge 0$	1001000101101000	0	0

Question 5: (18 pts) Consider the following sequence of assembly language instructions for the Single Cycle Computer show in section 8-8 of your textbook. Assume that the initial register contents are equal to each register's index (i.e. R0 contains 0, R1 contains 1, R2 contains 2, etc). Provide your results in table form.

- a) Give the machine instructions in hex in the same row of the table as the assembly instruction.
- b) Give the contents of any register changed by the instruction, or the location and contents of any memory location changed by the instruction, in the next row of the table.

Note: the information is positioned in this way because new values (due to the execution of an instruction) do not appear in registers or memory until after a positive clock edge has occurred.

add r0, r1, r2	0x040A			
R0 = 3				
sub r3, r4, r5	0x0AE5			
R3 = -1				
sub r6, r7, r0	0x0BB8			
R6 = 10				
add r0, r0, r3	0x0403			
R0 = 2				
sub r0, r0, r6	0x0A06			
R0 = -4				
st r7, r0	0x4038			
M7 = -4				
ld r7, r6	0x21F0			
R7 = M10				
adi r0, r6, 2	0x8432			
R0 = 12				
adi r3, r6, 3	0x84F3			
R3 = 15				

Question 6: (8 pts) Design a 8x6 ROM with the following content

	\mathcal{C}
Address	Data
000	111000
001	000001
010	000000
011	100000
100	001110
101	111111
110	010011
111	110110

Figure 1: 8x6 ROM

GRADING SCALE

Total: 50 pts

Pts	0	6	12	18	25	31	37	43
Letter Grade	D-	D	C-	С	B-	В	A-	A