A2017

Mit (a_n) wird eine Folge bezeichnet, die die Folgenglieder $a_n, (n \in \mathbb{N})$ besitzt.

a. Es sei (a_n) eine reelle Folge und a eine reelle Zahl. Geben Sie die Definition der Konvergenz von (a_n) geben a an.

b. Beweisen Sie, dass $\lim_{n\to\infty}\frac{1}{2^n}=0$. Weisen Sie dazu nach, dass die Definition der Konver-

c. Sei (b_n) eine Folge mit $|b_n| \leq \frac{1}{2^n}$ für $n \in \mathbb{N}$. Zeigen Sie, dass (b_n) geben 0 konvergiert. Weisen Sie dazu nach, dass die Konvergenzdefinition erfüllt ist.

d. Sei (c_n) eine Folge mit $|c_n| \leq \frac{1}{2}$ für $n \in \mathbb{N}$. Sie weiter die Folge (d_n) definiert durch $d_1 = \frac{1}{2}, d_{n+1} = c_n \cdot d_n$ für $n \in \mathbb{N}$. Beweisen Sie, dass die Folgen (d_n) gegen Null konvergiert. Hinweis: Sie dürfen in jedem Aufgabenteil die Resultate der davorliegenden Aufgabenteile verwenden, auch wenn Sie diese nicht bewiesen haben.

a) liman = a => YETO Brock Vn7no: |an-a| < E

b) Sai =>0. | 1/2 - 0 | = 1/2 < E

1 < 2 h

en ≥ < n. lu2

lu c < n

Setze no = [luz], dann giet: | zu | « E für n > no

anfaerundete game Zoll

c) Sei E>O Es gim no EIN:

| lon - 0 | = 1 lon | = = = = E fir n > h. ned

d) Nach c) reicht es zu zeign:

IdnI & in fir alle nEN

Bes. duron vollständige Induktion

Idn+1= |cn · dn | = |cn | · Idn | & |cn | · 2 n $I \sim 1$

4.4.4.

Vor. cn