

Co - Host Utilities

ORGANIZER

India Week 2024

Supporting Ministries

Session: Long Duration Energy Storage (LDES)

Presented By

Shivprasad B Lakhapati Head Engineering - Group Captive (West), Solar, BESS & Wind **Tata Power Solar Systems Ltd.**

INTRODUCTION- Long duration Energy Storage

- Effects of variable and intermittent renewable generation:
 Grid operator's task of matching generation and demand in real time becomes more challenging.
- Changing Customer demands: Based on the load profile and peak demands.
- ➤ Effects of Climate Change: Changing climate & weather dependent energy requirements further adds to challenge.
- Decarbonization goal:
 Reduction in fossil fuel-based capacity which as of now majorly contributing to base load.
- ➤ These emerging grid conditions are creating an imperative for long-duration energy storage (LDES): To ensure Grid Stability, Supply Availability and Reconcile Variable generation resources.

Long-duration storage technology can:

- Knock out coal based and gas peaker plants
- Turn renewables into round-the-clock resources
- In general pave the way for a carbon-free grid.

Quantity	Definition		
Energy	Rated discharge for time (MWh)		
Time	Duration of discharge (h)		
Power Rated output (MW)			

Indian CONTEXT- Why Long Duration Energy

Storage?

India's Renewable journey- started in 2009

- ✓ Achieved 172 GW by 2023
- ✓ Target of RE capacity of 500 GW by 2030
- ✓ RE will be 60% of total installed generation capacity

System Requirement - 2030 %

Base Load Station Coal + Nuclear 30.7

Peak Load Station Hydro + Gas 9.3

Veriable/Intermitant Renewable 60.0

SOLUTION

Required storage by 2030- Total 61 GW

PSP 19 GW / 128 GWh (6.7 hrs)

BESS 42 GW BESS + 208 GWh (5 hrs)

Long duration storage

Source- NEP 2023

- Reduced Stability

Effect on Grid

- Increased Criticality

- Stressed Operations

Firming

Capacity

Energy Storage Systems

Carbon-free grid with Round-theclock Renewables for all seasons

India Smart Utility Week 2024 | 12 - 16 March 2024 | www.isuw.in

RELEVANCE- Grid requirement daily and seasonal

LDES TECHNOLOGIES

Pumped Storage

Advantages	Disadvantages
 High efficiency Environment friendly Suitable for High capacity storage Flexible charging discharging Very long life (40-years) 	Site specific-geography location

Pumped Storage Projects	Energy Storage Tech	Compressed Air Energy Storage
50 MW to 1000+ MW	Capacity (MW)	Upto 300 MW
hours to days	Discharge time (hours)	upto 24 hours
18,000 – 27000 in 50 Years	Life time (number of cycles)	1000 – 10,000
80%	Round-trip efficiency (%)	65-75%
35,000 - 55,000 / KW	CAPEX (₹)	88,000 – 112,000 /kW
3.91	LCOS* (₹/kWh)	3.58
120	GWP** (kg CO ₂ eq/MWh)	160

Compressed Air Storage

Advantages	Disadvantages
 Long duration Suitable for Higher capacity storage Flexible charging/ discharging long life (25-30 years) Uses Conventional synchronous machines 	 High Capital cost Construction Suitable Caverns Low efficiency

LDES TECHNOLOGIES

NaS Battery

Advantages

storage

years

friendly

scalable

Suitable for long

duration 6-8 hour

High life time ~ 20

Fast response

Modular and

Environmentally

Beta alumina ceramics Sulfur (S)	5
Disadvantages	
A high temperature (350°C) requirement to liquefy the sodium leads to high operational cost.	
High Aux consumption 30 KW for 250KW /1450 KWh system Can be dangerous if	
the sodium comes into contact with air	

Nas Storage Projects	Energy Storage Tech	LWS Storage
400 MW +	Capacity (MW)	Up to 100 MW
6-8 hrs	Discharge time (hours)	8 hrs
20 years	Life time (number of cycles)	40-50- years
70 %	Round-trip efficiency (%)	80-83%
-	CAPEX (₹)	-
-	LCOS* (₹/kWh)	-

LWS or Gravity Battery

$\Delta E = mg(h_1$	_	h_2)
---------------------	---	-------	---

Advantages	Disadvantages
 High efficiency Environment friendly Suitable for Higher capacity storage Flexible charging/discharging Very long life (40-50 years) 	 High Initial cost Low energy density Technology in R&D / Pilot stage

LDES TECHNOLOGIES

Flow Battery (Vanadium)

Advantages	Disadvantages
 Unlimited Cycles 100% DOD Temperature tolerance Safe Sustainable Modular and scalable 	 Lower Efficiency Slow Response High upfront Cost Large Space requirements Not suitable for smaller application

Vanadium redox flow battery	Energy Storage Tech	Thermal energy storage
100 MW/400 MWh	Capacity (MW)	1010 MWh
4-12	Discharge time (hours)	Up to 16 hrs
7,000- 10,000+	Life time (number of cycles)	20 to 25 Years
60-65 %	Round-trip efficiency (%)	70%
24,000 – 32000/kWh	CAPEX (₹)	240,000 /kW
11.52	LCOS* (₹/kWh)	8.65
190	GWP** (kg CO ₂ eq/MWh)	185

CSP based thermal storage

Advantages	Disadvantages
 Conventional synchronous machines Sustainable Scalable High Potential in India 	 Lower Efficiency High upfront Cost Space requirements

LDES TECHNOLOGIES- Comparision

Type of storage	Round trip efficiency	Initial Cost	Duration	Features	Applications
Pump storage	80%	Very High	6-8 hrs	Site specific, commercially available and proven technology, long life upto 50 years.	Peak shifting, capacity firming, Ancillary services
Compressed Air storage	65-75%	Very High	24 hours	Still under development, commercial viability yet to be proven,	Peak shifting, capacity firming, Ancillary services
NaS Battery	~ 70%	High	6-8 hrs	Long life of 20 years, High energy density, High Aux consumption.	Peak shifting
Vanadium Flow Battery	~ 70%	High	4 – 12 hrs	Unlimited life, Safe & Sustainable but slow response	Peak shifting
Gravity	~ 83 %	Low	8 hrs	Best efficiency, long storage duration, very long life (50 years), under development technology	Peak shifting
Li-Ion Battery	~ 94 %	High	2-4 hrs	High efficiency, stable chemistry, Quick response, good life cycle	Peak shifting + Ancillary services
CSP Thermal	~ 65 %	High	16 hrs	Long life of 20 years, High Potential Sites in India	Peak shifting, Ancillary services

CASE STUDY

100 MW Solar + 40MW /120 MWh BESS at Chattisgarh for SECI

PROJECT

BESS - 40 MW/ 120 MWh

C rate - 0.33 C

Cycle - 1 /day

RTE (AC) - 80%

Application - Peak Shift

Charge - Solar (120 MWac)

Discharge - Grid

Availability - 98%

CHALLANGES

- New technology with limited know how
- 1st time implementation at Utility scale
- Stringent Tender Requirements
- Unavailability of Indian Supplier
- Unavailability of Competency
- Site Challenges

BEYOND 4 HRS

Hrs	C rate	RTE % (DC)
2	0.5	92.2
3	0.33	95.0
4	0.25	95.5
5	0.20	95.8
6	0.17	96.0

- Increase in Aux consumption
- Increase in DC-DC RTE
- Using higher DOD
- Requirement of additional battery packs

KEY TAKEAWAYS / RECOMMENDATIONS

- LDES are need of the hour for supporting Gird Requirements
- Current Dependency is on PSP and Lithium Batteries have better efficiency
- Other LDES technologies
 - More R&D & pilots required
 - Improvement in efficiency
 - Policy framework to promote
 - Indianization of manufacturing
 - Establishing safety standards and process

THANK YOU

For discussions/suggestions/queries email: isuw@isuw.in

visit: www.isuw.in

Links/References (If any)