Obfuscated Access and Searchable Encryption

Zhiwei Shang, Simon Oya, Andreas Peter, Florian Kerschbaum

University of Waterloo

University of Twente

NDSS'21

Hiding Access Pattern

DOG.	CAT	COW
/		\
/	~	
	\	
~		>

Hiding Access Pattern

G. Chen, T.-H. Lai, M. K. Reiter, and Y. Zhang, "Differentially private access patterns for searchable symmetric encryption," in *IEEE INFO-COM 2018-IEEE Conference on Computer Communications*. IEEE, 2018, pp. 810–818.

Hiding Access Pattern

CLRZ

DOG CAT COW

False

Positives

Positives

G. Chen, T.-H. Lai, M. K. Reiter, and Y. Zhang, "Differentially private access patterns for searchable symmetric encryption," in *IEEE INFO-COM 2018-IEEE Conference on Computer Communications*. IEEE, 2018, pp. 810–818.

Hiding Access Pattern

CLRZ

False negatives

- False positives

G. Chen, T.-H. Lai, M. K. Reiter, and Y. Zhang, "Differentially private access patterns for searchable symmetric encryption," in *IEEE INFO-COM 2018-IEEE Conference on Computer Communications*. IEEE, 2018, pp. 810–818.

Hiding Search Pattern?

Hiding Access Pattern

False negatives

False positives

G. Chen, T.-H. Lai, M. K. Reiter, and Y. Zhang, "Differentially private access patterns for searchable symmetric encryption," in *IEEE INFO*-COM 2018-IEEE Conference on Computer Communications. IEEE, 2018, pp. 810-818.

Hiding Search Pattern?

$$P(x) = (x-r_1)(x-r_2)\cdots(x-r_d) =$$

$$P(x) = (x-r_1)(x-r_2)\cdots(x-r_d) =$$

$$Q_0 + a_1x + a_2x^2 + \cdots + a_d x^d$$

$$P(x) = (x-r_1)(x-r_2)\cdots(x-r_d) = (x^0, x^1, x^2, \cdots)$$

$$Q_0 + a_1x + a_2x^2 + \cdots + a_d \cdot x^d = \vec{a} \cdot \vec{x}$$

h: [n]->[lhl]
Docs Labels

Labels

OSSE: ObPuscated SSE h: [n]->[lhl] Labels Docs

Labels

$$D_{30} = \{DOG, COW, RAT\}$$
 $\{l = h(30)\}$

$$D_{30} = \{DOG, COW, RAT\}$$

$$\{l = h(30) \}$$

There are
$$\Gamma_1 = (DOG || l || 5) + 5 (DOG || l || ...)$$

$$\Gamma_2 = (COW || l || 0) = 3 || ready$$

$$\Gamma_3 = (RAT || l || l || 1)$$

$$D_{30} = \{DOG, COW, RAT\}$$

$$\{l = h(30)\}$$

$$D_{30} = \{DOG, COW, RAT\}$$

$$\{l = h(30)\}$$

There are
$$\Gamma_{1} = (DOG|| l || 5) < 5 (DOG|| l || ...)$$

$$\Gamma_{2} = (COW|| l || 0) = 2 || ready$$

$$\Gamma_{3} = (RAT || l || l || 1)$$

$$D_{30} = \{DOG, COW, RAT\}$$

$$\{l = h(30)\}$$

There are
$$r_1 = (DOG|| l | l | 5) + 5 (DOG|| l | | 0)$$

$$r_2 = (Cow|| l | 0) = 3 |ready$$

$$r_3 = (RAT \parallel l \parallel 1)$$

$$r_6 = (30 | 0 | 1-1)$$

$$D_{30} = \{DOG, COW, RAT\}$$

$$\{l = h(30) \}$$

Polynomial Generation

$$r_3 = (RAT \parallel l \parallel 1)$$

$$r_6 = (30 | 0 | | -1)$$

$$D_{30} = \{DOG, COW, RAT\}$$

$$l=h(30)$$

$$r_6 = (30 || 0 || -1)$$

Find with "Dog":

For l=1→1h1:

For C=0-0 Cmax:

X = (DOG11 &11 C) -> TIME

$$r_6 = (30 | 0 | | -1)$$

$$r_6 = (30 || 0 || -1)$$

For
$$id=1\rightarrow n$$
:

$$r_3 = (RAT \parallel l \parallel 1)$$

$$r_6 = (30 | 0 | | -1)$$

$$r_3 = (RAT \parallel l \parallel 1)$$

$$r_6 = (30 || 0 || -1)$$

Non-matches:

$$r_3 = (RAT \parallel l \parallel 1)$$

$$r_6 = (30 | 0 | | -1)$$

Non-matches:

Holversary's View 1006 Matches

Non-matches

We prove it holds by IPPE security

by IPPE security

Differential Privacy

Matches

Non-matches

We prove it holds a by IPPE security

TPR=0.9999} FPR=0.025

Differential Privacy

Non-matches

· Communication overhead (Zipf)

1 round

· Communication overhead (Zipf)

· Computational Complexity

COMP< n.(Cmax+1)

· Communication overhead (Zipf)

1 round

· Computational Complexity

COMP< n.(Cmax+1)

· Client Storage:

· Communication overhead (Zipf)

1 round

· Computational Complexity

COMP< n.(Cmax+1)

· Client Storage:

TWORAH (ORAM)

O(logn·loglogn)

4 rounds at least

O(logn) storage

- CLRZ VS. OSSE

- CLRZ VS. OSSE

Four different query recovery attacks

- CLRZ VS. OSSE

- Four different query recovery attacks
- -> Enron dataset

- CLRZ VS. OSSE

- Four different query recovery attacks
- -> Enron dataset
- we adapt the attacks against the defenses

Evaluation: Frequency Attack

C. Liu, L. Zhu, M. Wang, and Y.-A. Tan, "Search pattern leakage in searchable encryption: Attacks and new construction," *Information Sciences*, vol. 265, pp. 176–188, 2014.

Evaluation: Frequency Attack

C. Liu, L. Zhu, M. Wang, and Y.-A. Tan, "Search pattern leakage in searchable encryption: Attacks and new construction," *Information Sciences*, vol. 265, pp. 176–188, 2014.

Evaluation: Frequency Attack Against OSSE:

Evaluation: Frequency Attack

C. Liu, L. Zhu, M. Wang, and Y.-A. Tan, "Search pattern leakage in searchable encryption: Attacks and new construction," *Information Sciences*, vol. 265, pp. 176–188, 2014.

M. S. Islam, M. Kuzu, and M. Kantarcioglu, "Access pattern disclosure on searchable encryption: Ramification, attack and mitigation." in *NDSS*, vol. 20, 2012, p. 12.

M. S. Islam, M. Kuzu, and M. Kantarcioglu, "Access pattern disclosure on searchable encryption: Ramification, attack and mitigation." in *NDSS*, vol. 20, 2012, p. 12.

M. S. Islam, M. Kuzu, and M. Kantarcioglu, "Access pattern disclosure on searchable encryption: Ramification, attack and mitigation." in *NDSS*, vol. 20, 2012, p. 12.

Evaluation: IKK matchin9 Aux Info This is a 006 0 matching! CAT PUP

M. S. Islam, M. Kuzu, and M. Kantarcioglu, "Access pattern disclosure on searchable encryption: Ramification, attack and mitigation." in *NDSS*, vol. 20, 2012, p. 12.

Evaluation: count attack

D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, "Leakage-abuse attacks against searchable encryption," in *Proceedings of the 22nd ACM SIGSAC conference on computer and communications security*. ACM, 2015, pp. 668–679.

Evaluation: count attack Against matching osse: DOG

D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, "Leakage-abuse attacks against searchable encryption," in *Proceedings of the 22nd ACM SIGSAC conference on computer and communications security*. ACM, 2015, pp. 668–679.

Evaluation: count attack

D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, "Leakage-abuse attacks against searchable encryption," in *Proceedings of the 22nd ACM SIGSAC conference on computer and communications security*. ACM, 2015, pp. 668–679.

Evaluation: graph matching matchin9 Aux Info 006 CAT PUP

D. Pouliot and C. V. Wright, "The shadow nemesis: Inference attacks on efficiently deployable, efficiently searchable encryption," in *Proceedings* of the 2016 ACM SIGSAC conference on computer and communications security, 2016, pp. 1341–1352.

Evaluation: graph matching matchin9 Aux Info CAT 006 CAT PUP

Evaluation: graph matching

D. Pouliot and C. V. Wright, "The shadow nemesis: Inference attacks on efficiently deployable, efficiently searchable encryption," in *Proceedings of the 2016 ACM SIGSAC conference on computer and communications security*, 2016, pp. 1341–1352.

► Hiding search pattern is challenging but very effective against attacks!

► Hiding search pattern is challenging but very effective against attacks!

►OSSE: SSE using IPPE

► Hiding search pattern is challenging but very effective against attacks!

►OSSE: SSE using IPPE

High computation

# cores	BuildIndex (min)	Trapdoor (s)	Search (min)
4	272.5	580.7	1099.1
8	136.3	290.5	549.6
16	68.2	145.3	274.8
32	34.1	72.8	137.4
64	17.1	36.4	68.7
128	8.5	18.2	34.4
160	6.9	14.7	27.5

TABLE V: Running Times

► Hiding search pattern is challenging but very effective against attacks!

►OSSE: SSE using IPPE

High computation

# cores	BuildIndex (min)	Trapdoor (s)	Search (min)
4	272.5	580.7	1099.1
8	136.3	290.5	549.6
16	68.2	145.3	274.8
32	34.1	72.8	137.4
64	17.1	36.4	68.7
128	8.5	18.2	34.4
160	6.9	14.7	27.5

TABLE V: Running Times

► Hiding search pattern is challenging but very effective against attacks!

Better a symp. Hise stem of Colim than ORAM

