Three point charges Q_1 =5 μ C, Q_2 =-7.5 μ C and Q_3 =5 μ C are placed a distance L=1.3 meter apart on the x-axis at points (-L, 0), (0,0), and (L, 0) as shown in the figure. A fourth charge Q_4 =-7.5 μ C is placed at a position (0, h) where h = 2.6 m.

1) What is x-component of the force on Q_4 due to the charges Q_1 , Q_2 , and Q_3 ?

a.
$$F_{Q4x} = 0.0749 \text{ N}$$

b.
$$F_{Q4x} = 0.0392 \text{ N}$$

c.
$$F_{O4x} = Zero$$

d.
$$F_{Q4x} = -0.111 \text{ N}$$

e.
$$F_{O4x} = -0.0357 \text{ N}$$

2) What is y-component of the force on Q_4 due to the charges Q_1 , Q_2 , and Q_3 ?

a.
$$F_{Q4y} = 0.0749 \text{ N}$$

b.
$$F_{Q4y} = -0.00499 \text{ N}$$

c.
$$F_{Q4y} = -0.146 \text{ N}$$

d.
$$F_{Q4y} = Zero$$

e.
$$F_{Q4y} = 0.00344 \text{ N}$$

Two conducting spheres of radii r_1 = 20 mm and r_2 = 5 mm are charged with q_1 = 0.4 μ C and q_2 = 0.12 μ C respectively. The spheres are separated by a large distance.

- 3) What is the potential difference between the surfaces of the two spheres?
 - a. 3.6×10^4 Volts
 - b. 2.16×10^5 Volts
 - c. 1.8×10^5 Volts
- 4) If the spheres are connected by a thin conducting wire, in which direction (if any) would positive charge flow?
 - a. from sphere 1 to sphere 2
 - b. no net charge is transferred between the two spheres
 - c. from sphere 2 to sphere 1

Two infinite nonconducting sheets of charge and one infinite conducting slab are placed perpendicular to the x direction as shown in the following figure. The conducting slab is electrically neutral and labeled C. The charge densities on the two sheets of charge are $\sigma_I = +5 \,\mu\text{C/m}^2$ and $\sigma_2 = -9.5 \,\mu\text{C/m}^2$.

5) The x-component of the electric field at x = 0.9 is:

a.
$$E_x = -0.536 \times 10^6 \text{ V/m}$$

b.
$$E_{\rm x} = 0.536 \times 10^6 \,\text{V/m}$$

c.
$$E_x = -0.254 \times 10^6 \text{ V/m}$$

6) The induced charge density on the left side of the conductor (i.e. at x=0.2) is

a.
$$\sigma_L = -7.25 \ \mu \text{C/m}^2$$

b.
$$\sigma_{L} = -2.5 \ \mu \text{C/m}^2$$

c.
$$\sigma_L = -5 \mu C/m^2$$

d.
$$\sigma_{L} = -2.25 \ \mu\text{C/m}^2$$

e.
$$\sigma_L = -14.5 \ \mu \text{C/m}^2$$

An infinite sheet with charge density per unit area σ is placed along the y axis at x=0. An infinite line of charge with charge density per unit length λ is located at x=d and y=0 and oriented in the z direction (out of page) as shown in the figure.

7) What is the x component of the electric field **due ONLY to the infinite line of charge** at the point on the x axis a distance r to the right of the plane, as shown in the figure?

a.
$$E_x=rac{\lambda}{2\pi\epsilon_0 r}$$

b.
$$E_x=rac{\lambda}{4\pi\epsilon_0 r^2}$$

c.
$$E_x=rac{-\lambda}{2\pi\epsilon_0 r}$$

d.
$$E_x=rac{\lambda}{2\pi\epsilon_0(d-r)}$$

e.
$$E_x=rac{-\lambda}{2\pi\epsilon_0(d-r)}$$

8) You are told that there is a point on the x axis between the charged plane and the line of charge (0 < r < d) where the electric field is zero. What can you conclude about the signs of λ and σ ?

- a. They are both negative.
- b. The are both positive.
- c. They have the opposite sign.
- d. Nothing.
- e. They have the same sign.

9) Which expression gives the position along the x axis between the line of charge and the charged plane at which the electric field is zero?

a.
$$r=rac{\lambda}{\pi\sigma}$$

b.
$$r=d+rac{\lambda}{\pi\sigma}$$

c.
$$r=d-rac{\lambda}{\pi\sigma}$$

An insulating sphere of radius R carries a charge density per unit volume p as shown in the figure.

10) What is the magnitude of the electric field at a distance r > R from the center of the sphere?

a.
$$|E| = \frac{1}{3
ho\epsilon_0} \frac{R^3}{r^2}$$

b.
$$|E|=rac{1}{3\epsilon_0}rac{
ho R^3}{r^2}$$

c.
$$|E| = \frac{1}{4\pi\epsilon_0} \frac{\rho R^3}{r^2}$$

d.
$$|E|=rac{1}{4\pi\epsilon_0}rac{
ho}{rac{r^2}{r^2}}$$

e.
$$|E|=rac{1}{3\epsilon_0}rac{
ho R^2}{r}$$

11) What is the magnitude of the electric field at a distance r < R from the center of the sphere?

a.
$$|E|=rac{
ho R}{3\epsilon_0}$$

b.
$$|E|=rac{
ho r^2}{3\epsilon_0}$$

c.
$$|E|=rac{
ho r}{6\epsilon_0}$$

d.
$$|E|=rac{
ho R}{6\epsilon_0}$$
 e. $|E|=rac{
ho R}{3\epsilon_0}$

e.
$$|E|=rac{
ho r}{3\epsilon_0}$$

12) Which of the following best describes the magnitude of the |E| field as a function of the distance from the center of the sphere r?

a) IEI

d)

b)

e)

c)

- a.
- b.
- c.
- d.
- e.

A charge Q_1 is placed at the point (-L, h) and a rod of length 2 m and total charge charge Q_{rod} = 18 μC distributed uniformly along its length, is placed with its ends at (-L, 0) and (0, L) as shown in the figure.

13) What is the linear charge density of the rod?

a.
$$\lambda = 9 \,\mu\text{C/m}$$

b.
$$\lambda = 36 \,\mu\text{C/m}$$

c.
$$\lambda = 4.5 \,\mu\text{C/m}$$

14) Which expression gives the electric field at the point P = (0, h) due to the point charge and line of charge?

a.
$$ec{E}=k\lambda\int_{-L}^{L}rac{dx}{(x^2+h^2)}\hat{y}$$

b.
$$\vec{E} = \frac{kQ_1}{L^2} \hat{a}$$

c.
$$\vec{E} = k\lambda \int_{-L}^{L} \frac{hdx}{(x^2 + b^2)^{\frac{3}{2}}} \hat{y} + \frac{kQ_1}{L^2} \hat{x}$$

d.
$$ec{E}=k\lambda\int_{-L}^{L}rac{dx}{(x^2+h^2)}\hat{y}+rac{kQ_1}{L^2}\hat{x}$$

b.
$$\vec{E} = \frac{kQ_1}{L^2}\hat{x}$$

c. $\vec{E} = k\lambda \int_{-L}^{L} \frac{hdx}{(x^2+h^2)^{\frac{3}{2}}}\hat{y} + \frac{kQ_1}{L^2}\hat{x}$
d. $\vec{E} = k\lambda \int_{-L}^{L} \frac{dx}{(x^2+h^2)^{\frac{3}{2}}}\hat{y} + \frac{kQ_1}{L^2}\hat{x}$
e. $\vec{E} = k\lambda \int_{-L}^{L} \frac{xdx}{(x^2+h^2)^{\frac{3}{2}}}\hat{y} + \frac{kQ_1}{L^2}\hat{x}$

15) A second charge, Q_2 , is placed at (L,h). What value should Q_2 take in order that the **total** electric field at (0, h) is zero

a. It is not possible to make the field at (0, h) vanish by placing a point charge at (L, h).

b.
$$Q_2 = Q_1$$

c.
$$Q_2 = -Q_1$$

A parallel plate capacitor with a large surface area A compared to the separation between the plates d has charge Q. After a certain time, a conducting slab with the same area A and a thickness of half the separation between the plates d/2 is inserted exactly in the middle of the two plates.

16) What is the relationship between the capacitance before, C, and after, C'?

a.
$$C' = C/2$$

b.
$$C' = C$$

c.
$$C' = 2C$$

17) What is the relationship between the energy stored in the capacitor before, U, and after, U'?

b.
$$U' = U$$

- 18) Consider the "before" configuration shown above. In what direction can a charge be moved in the field created between the plates without doing any external work on the charge?
 - a. external work is always necessary
 - b. parallel to the y-axis
 - c. parallel to the x-axis

A solid conducting cylinder of radius r_1 and length L with charge Q is placed inside a hollow conducting cylinder of the same length L with inner radius r_2 and outer radius r_3 and charge -Q.

- 19) How does the capacitance change if r₂ is decreased slightly keeping L, r₁, and r₃ unchanged.
 - a. The capacitance remains the same.
 - b. The capacitance increases.
 - c. The capacitance decreases.
- 20) Suppose the cylinder is submerged in gasoline ($\varepsilon = 2.0$) so that there is gasoline between the plates. How does the capacitance change relative to the capacitance of the previous question?

a.
$$C_1 = 2 C_0$$

b.
$$C_1 = C_0/2$$

c.
$$C_1 = C_0$$

Six capacitors are connected to a battery as shown in the circuit diagram. The battery supplies E = 12 V.

$$C_2 = 16 \, \mu F$$

$$C_3 = 50 \, \mu F$$

$$C_4 = 6 \mu F$$

$$C_5 = 20 \ \mu F$$

$$C_6 = 40 \ \mu F$$

21) What is the equivalent capacitance for the combination of the six capacitors?

a.
$$C_{123456} = 142 \mu F$$

b.
$$C_{123456} = 92.6 \mu F$$

c.
$$C_{123456} = 15.6 \,\mu\text{F}$$

22) Which capacitors have the same charge

a.
$$C_3$$
 and C_6

23) What is the energy stored in capacitor C_3 ?

a.
$$U_3 = 3600 \mu J$$

b.
$$U_3 = 1120 \mu J$$

c.
$$U_3 = 350 \, \mu J$$

A water molecule may be crudely approximated as two positively charged hydrogen atoms and a negatively charged oxygen atom, as shown in the figure. Note the electron charge $e = 1.6 \times 10^{-19} \text{ C}$, and the separation between the two hydrogen atoms is $1.6 \times 10^{-10} \text{ m}$.

24) What is the electric potential energy associated with this configuration of charges? (Let 0 corresponds to the three charges being infinitely far apart.)

a.
$$-7.76 \times 10^{-18} \text{ J}$$

b.
$$1.45 \times 10^{-18} \,\mathrm{J}$$

c.
$$-9.22 \times 10^{-18} \text{ J}$$

- 25) If the angle between the two hydrogen atoms is increased from 105 degrees to 180 degrees, while keeping the distance between the hydrogen and oxygen atoms fixed at 10⁻¹⁰ m, the electric potential energy of the system will
 - a. remain the same
 - b. increase
 - c. decrease