Лабораторная работа №2

Василий Худицкий

РУДН, 19 Февраля 2022 Москва, Россия

Прагматика выполнения работы

- Изучение основ построения математических моделей на примере задачи о погоне.
- Умение строить графики траекторий движения.

Цель выполнения работы

 Научиться строить математические модели для выбора правильной стратегии при решении задач поиска, рассмотрев задачу преследования браконьеров береговой охраной(задачу о погоне).

Задание лабораторной работы

- 1. Записать уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Найти точку пересечения траектории катера и лодки.

Результаты выполнения лабораторной работы

1. Вывод уравнения, описывающее движение катера:

- 1. Принимаем за $t_0=0$, $x_{\pi0}$ место нахождения лодки браконьеров в момент обнаружения, а за $x_{\kappa0}=\kappa$ место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.
- 2. Введем полярные координаты. Полюс это точка обнаружения лодки $x_{\pi 0}(\theta=x_{\pi 0}=0)$, а полярная ось r проходит через точку нахождения катера.

3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса θ , только в этом случае траектория катера пересечется с траекторией лодки.

Поэтому катер должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка. После этого катер должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка.

4. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер k-x (или k+x в зависимости от начального положения катера). Время, за которое они пройдут это расстояние, вычисляется как x/v или k-x/nv (во втором случае k+x/nv). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние x можно найти из следующего уравнения:

$$\frac{x}{v} = \frac{k-x}{nv}$$
 в первом случае или

$$rac{x}{v} = rac{k+x}{nv}$$
 во втором.

Отсюда мы найдем два значения $x_1=\frac{k}{n+1}=\frac{16.3}{5.1}$ и $x_2=\frac{k}{n-1}=\frac{16.3}{3.1}$, задачу будем решать для двух случаев.

5. После того, как катер окажется на том же расстоянии от полюса, что и лодка, он должен сменить траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v

Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и $v_{ au}$ - тангенциальная скорость.

 $v_r=rac{dr}{dt}$. Нам нужно, чтобы радиальная скорость была равна скорости лодки, поэтому полагаем $rac{dr}{dt}=v$;

Тангенциальная скорость равна произведению угловой скорости $\frac{d\theta}{dt}$ на радиус $r,v_{ au}=r\frac{d\theta}{dt}$;

Из рисунка видно: $v_{ au}=\sqrt{n^2v^2-v^2}=\sqrt{15.81}v$ (учитывая, что радиальная скорость равна v). Тогда получаем: $r\frac{d\theta}{dt}=\sqrt{15.81}v$

6. Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений:

$$\begin{cases} \frac{dr}{dt}=v\\ r\frac{d\theta}{dt}=\sqrt{15.81}v \end{cases}$$
с начальными условиями
$$\begin{cases} \theta_0=0\\ r_0=\frac{16.3}{5.1} \end{cases}$$
 или
$$\begin{cases} \theta_0=-\pi\\ r_0=\frac{16.3}{3.1} \end{cases}$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению:

$$\frac{dr}{d\theta} = \frac{r}{\sqrt{15.81}}$$

Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах.

2. Построение траектории движения катера и лодки:

3. Нахождение точек пересечения траектории катера и лодки:

• Первый случай:

• Второй случай:

Спасибо за внимание!