Module V: Knowledge Graph Inference and Applications

2:20 pm - 3:30 pm

Knowledge Graph Inference

- What & Why
- How
 - Problem formulation & Overview
 - Knowledge Graph Embedding

Knowledge Graph Applications

• Entity Recommendation

<u>Lab 5 – Structural + Textual Similarity in *MAG*</u>

Module 5 Overview

KG Inference and Applications

KNOWLEDGE GRAPH INFERENCE -WHAT

•	Knowledge	Base is	largely	incomplete
---	-----------	---------	---------	------------

► Need systematic and scalable approaches to complete knowledge graph

Relation	Percentage unknown		
	All 3M	Top 100K	
PROFESSION	68%	24%	
PLACE OF BIRTH	71%	13%	
NATIONALITY	75%	21%	
EDUCATION	91%	63%	
SPOUSES	92%	68%	
PARENTS	94%	77%	
CHILDREN	94%	80%	
SIBLINGS	96%	83%	
ETHNICITY	99%	86%	

Incompleteness of Freebase for some relations that apply to entities of type PERSON. Left: all 3M Freebase PERSON entities. Right: only the 100K most frequent PERSON entities.

West, et al., WWW'14, Knowledge Base Completion via Search-Based Question Answering

KNOWLEDGE GRAPH INFERENCE - WHY

$$Y_{ijk} = \begin{cases} 1, & \text{if the triple } (e_i, r_k, e_j) \text{ exists;} \\ 0, & \text{otherwise.} \end{cases}$$
 Element-wise

$$Y \in \{0,1\}^{Ne \times Ne \times Nr}$$
 adjacency tensor (adjacency matrix)

$$P(Y)$$
 Estimate the joint-distribution

$$P(yijk)$$
 Predict unobserved triples

KNOWLEDGE GRAPH INFERENCE — HOW PROBLEM FORMULATION

- ▶ Within existing KG
 - ► Graph feature model
 - ► "Similar" entities
 - ► Local common neighbors
 - ► Global random walk
 - ▶ Quasi-local random walk with bounded length
 - ► Latent feature model
- ► Use external sources / information
 - ► QnA system

- |N|: Number of Nodes in Graph
 - Graph

- |E|: Number of Entities in Knowledge Graph
- |R|: Number of Relations in Knowledge Graph

KNOWLEDGE GRAPH INFERENCE - HOW

Knowledge Graph

OVERVIEW

► *Entity* Representation

- Low dimensional vector: e_i
- Initialization
 - Random
 - Average word vector with pre-trained vectors ($V_{
 m word}$), e.g.

$$e_{homo\ sapiens} = 0.5 \times (V_{homo} + V_{sapiens})$$

► *Relation type* representation

- Each relation type as matrix:
 - W_k : bilinear weight matrix
 - A_k : linear feature map
- Each relation type as **vector**: r_k

► *Entity-Relation* interaction

• Linear : $A_k e_i$

• Bilinear: $e_i^T W_k e_i$

▶ Scoring function

• Margin-based ranking loss Maximize the margin btw existing & non-existing triples
$$\sum_{(s,r,o) \in T} \sum_{(s',r,o) \in T(s,r,o)} \max(0,1+f(s',r,o')-f(s,r,o))$$

$$\begin{aligned} & \cdot \text{ Negative sampling loss} & \quad & \text{ Negative log-likelihood of the correct triples \& sampled corrupted triples} \\ & - \sum_{(s,r,o) \in T} (\ \log \sigma \left(f(s,r,o) \right) + \sum_{(s',r,o') \in T'(s,r,o)} \log \sigma \left(-f(s',r,o') \right) \) \end{aligned}$$

|N|: Number of Nodes in Graph

k: Dimensionality

|E|: Number of Entities in Knowledge Graph

|R|: Number of Relations in Knowledge Graph

k: Dimensionality

KNOWLEDGE GRAPH INFERENCE - HOW

Knowledge Graph

LATENT FEATURE MODELS

KNOWLEDGE GRAPH INFERENCE - HOW

LATENT FEATURE MODELS - MILESTONES

KNOWLEDGE GRAPH INFERENCE – HOW

LATENT FEATURE MODELS – SCALABILITY

► <u>Co-occurrence</u> based

- ► Search user behavior
- ▶ Wikipedia
- ▶ Web documents

► *Similarity* based

- ► Textual (tf-idf)
- ► Embedding

KNOWLEDGE GRAPH APPLICATION

ENTITY RECOMMENDATION

Paper Recommendation

► <u>Co-occurrence</u> based

- ► Co-citation
- ► Co-author
- ► Co-venue
- ► Graph embedding

► *Similarity* based

- ► Tf-idf
- ► Word2Vec

KNOWLEDGE GRAPH APPLICATION

ENTITY RECOMMENDATION – CASE STUDY

- Task : Paper recommendation
 - Based on co-citation
 - Based on textual (tf-idf) similarity
 - Based on semantic (word embedding) similarity

Lab 5: Structural + Textual Similarity in MAG