Module-03. Integral Calculus. Reduction formulae: It is basically a recurrence relation which reduces integral of functions of higher degree to lower degree. It $\int \sin^n x \, dx = -\frac{\sin^n \frac{1}{n} \cdot \cos x}{n} + \frac{n-1}{n} \cdot \ln x = -\frac{1}{n}$ $e^{\frac{1}{2}}\int \cos^n x \, dx = \frac{\cos^{n-1} x \cdot \sin x}{n} + \frac{n-1}{n} \cdot \ln x \cdot \frac{1}{n}$ $3\% \int \sin^{m} x \cdot \cos^{n} x \, dx = -\frac{\sin^{m-1} x \cdot \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} \cdot \lim_{n \to \infty} \int \sin^{m} x \cdot \cos^{n} x \, dx = -\frac{\sin^{m-1} x \cdot \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} \cdot \lim_{n \to \infty} \int \sin^{m} x \cdot \cos^{n} x \, dx = -\frac{\sin^{m-1} x \cdot \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} \cdot \lim_{n \to \infty} \int \sin^{m} x \cdot \cos^{n} x \, dx = -\frac{\sin^{m-1} x \cdot \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} \cdot \lim_{n \to \infty} \int \sin^{m} x \cdot \cos^{n} x \, dx = -\frac{\sin^{m-1} x \cdot \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} \cdot \lim_{n \to \infty} \int \sin^{m} x \cdot \cos^{n} x \, dx = -\frac{\sin^{m-1} x \cdot \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} \cdot \lim_{n \to \infty} \int \sin^{m} x \cdot \cos^{n} x \, dx = -\frac{\sin^{m-1} x \cdot \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} \cdot \lim_{n \to \infty} \int \sin^{m} x \cdot \cos^{n} x \, dx = -\frac{\sin^{m-1} x \cdot \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} \cdot \lim_{n \to \infty} \int \sin^{m} x \cdot \cos^{n} x \, dx = -\frac{\sin^{m-1} x \cdot \cos^{n+1} x}{m+n} + \frac{\sin^{m-1} x \cdot \cos^{m} x}{m+n} + \frac{\sin^{m-1} x \cdot \cos^{m}$ 4) $\int_{-\infty}^{\infty} \sin^{n} x \, dx = \int_{-\infty}^{\infty} \cos^{n} x \, dx = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \cdots \times K$ where $K = \frac{\pi}{2}$ only when n is even. $\frac{\pi}{3}$ $\frac{\pi}{3} = \frac{[(m-1)(m-3)---][(n-1)(n-3)---]}{(m+n)[(m+n-2)---} \times K$. where $k = \mathbb{Z}_2$ only when m k n are even k k = 1 otherwise. 15 Evaluate | Sin (x/2) dx soln: = 2 | Sinst dt. 1: reduction formula. at x=0, t=0 $\chi=\pi$, $t=\pi/2$ $= 2 \cdot \frac{4}{5} \cdot \frac{3}{3} = \frac{16}{15}$ 15MATTOTP31

2: Evaluate Jsin63x dx using reduction formula. put $3x=t \Rightarrow 3dx = dt$ $dx = \frac{1}{3}dt$ $Sel^{n_1} = \frac{1}{3} \int sin^6 t dt$ = $\frac{1}{3}$, $\frac{5}{6}$, $\frac{2}{4}$, $\frac{1}{3}$, $\frac{\pi}{3}$ |: reduction formula $x = \pi_6$, $t = \pi_4$. $= \frac{5\pi}{96}$ $= \int x \cos^6 x \, dx$ $= \int (\pi - x) \cos^6 (\pi - x) dx$ $= \int (\pi - x) \cos^6 (\pi - x) dx$ $= \int (\pi - x) \cos^6 (\pi - x) dx$

$$T = \int_{0}^{\infty} (T-x) \cos^{6}x \, dx \qquad | All id caugh & T quadrant.$$

$$T = \pi \int_{0}^{\infty} (\cos^{6}x \, dx) - \int_{0}^{\infty} x \cos^{6}x \, dx$$

$$T = \pi \int_{0}^{\infty} (\cos^{6}x \, dx) - \int_{0}^{\infty} x \cos^{6}x \, dx$$

$$T = \pi \int_{0}^{\infty} (\cos^{6}x \, dx) - \int_{0}^{\infty} (x) dx = \int_{0}^{\infty} f(x) dx$$

$$| AT = \pi \int_{0}^{\infty} (\cos^{6}x \, dx) - \int_{0}^{\infty} (x) dx + \int_{0}^{\infty} (x) dx = \int_{0}^{\infty} f(x) dx$$

$$| AT = \pi \int_{0}^{\infty} (\cos^{6}x \, dx) - \int_{0}^{\infty} (x) dx + \int_{0}^{\infty} ($$

Scanned by CamScanner

Put
$$x = 4 \sin^2 \theta$$
 $4x = 4 \sin^2 \theta$
 $4x = 4 \cos^2 \theta$
 $4x = 6 \cos^$

Scanned by CamScanner

Thouble integrals: It can be evaluated by expressing 5. Them in terms of two single integrals.

If the sugion R is bounded by curves $x=x_1$, $x=x_2$ & $y=y_1,y=y_2$. then $I = \iint f(x,y) dx dy = \iint f(x,y) dx dy$. case if Let x1, x2 & y1, y2 be constants, then we can joint integrate w. r.t 2 & then w. r.t y or vice vorsa. case ii) Let x, x, be constants & y, y, be functions of x, then me first integrate wort y treating x as constant. i.e., $I = \int_{x_1} \int_{x_1} f(x, y) dy dx$. Case iii) Let y_1, y_2 be constants & χ_1, χ_2 be functions of y, then we first integrate x_1, y_2 towarding y_1 as constant.

i.e., $T = \int_{y_1}^{y_2} \left[\frac{1}{2} (x_1, y_1) dx \right] dy$. 15 HATURE I XX dy dx. 3d": Let $I = \iint xy \, dy \, dx = \iint x \, \frac{y^2}{3} \int x \, dx = \frac{1}{3} \int x \, (x - x^3) \, dx$. $I = \frac{1}{2} \int (x^2 - x^3) dx = \frac{1}{2} \left[\frac{x^3}{3} - \frac{x^4}{4} \right]_0^1 = \frac{1}{2} \left[\frac{1}{3} - \frac{1}{4} \right] - 0$ $T = \frac{1}{2} \left[\frac{4-3}{12} \right] = \frac{1}{24}$ 2> Evaluate | | 1 x3 y d x dy. Let $I = \int_{0}^{\sqrt{1-y^2}} x^3 y \, dx \, dy = \int_{0}^{\sqrt{1-y^2}} y \, dy =$ I = \frac{1}{4} \left(\frac{1}{1-42} \right)^2 dy = \frac{1}{4} \left(9 (1+44-242) dy.

Scanned by CamScanner

$$I = \frac{1}{4} \left[\frac{4^{2} + 4^{6} - 24^{3}}{6} \right] dy$$

$$I = \frac{1}{4} \left[\frac{4^{2} + 4^{6} - 24^{4}}{6} \right] dy$$

$$I = \frac{1}{4} \left[\frac{1}{4} + \frac{1}{6} - \frac{1}{4} \right] - 0 = \frac{1}{24}$$

Solve I = $\frac{1}{4} \left[\frac{1}{4} + \frac{1}{6} - \frac{1}{4} \right] - 0 = \frac{1}{24}$

$$I = \frac{1}{4} \left[\frac{1}{4} + \frac{1}{6} - \frac{1}{4} \right] - 0 = \frac{1}{24}$$

Solve I = $\frac{1}{4} \left[\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \right] dy = \frac{1}{4} \left[\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \right] dy$

$$I = \frac{1}{4} \left[\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \right] = \frac{1}{4} \left[\frac{1}{4} + \frac{1}{4} + \frac{1}{4} \right] = \frac{1}{4} \left[\frac{1}{4} - \frac{32}{3} - \frac{1}{4} + \frac{1}{4} \right]$$

$$I = \frac{1}{4} \left[\frac{1}{4} - \frac{32}{3} - 2 - \frac{1}{4} + \frac{1}{4} \right] = \frac{1}{4} \left[\frac{1}{4} - \frac{32}{3} - \frac{1}{4} + \frac{1}{4} \right]$$

$$I = \frac{1}{4} \left[\frac{1}{4} - \frac{32}{3} - 2 - \frac{1}{4} + \frac{1}{4} \right] = \frac{1}{4} \left[\frac{1}{4} - \frac{32}{3} - \frac{1}{4} + \frac{1}{4} \right]$$

$$I = \frac{1}{4} \left[\frac{1}{4} - \frac{32}{3} - 2 - \frac{1}{4} + \frac{1}{4} \right] = \frac{1}{4} \left[\frac{1}{4} - \frac{32}{3} - \frac{1}{4} + \frac{1}{4} \right]$$

$$I = \frac{1}{4} \left[\frac{1}{4} - \frac{32}{3} - 2 - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \right] = \frac{1}{4} \left[\frac{1}{4} - \frac{32}{3} - \frac{1}{4} - \frac{1}{4} \right]$$

$$I = \frac{1}{4} \left[\frac{1}{4} - \frac{32}{3} - 2 - \frac{1}{4} + \frac{1}{4} - \frac{1$$

Sol": Let I =] 3 x y2 dx.dy $I = \frac{3}{3} y^2 \times \frac{2}{3} |^3 dy = \frac{1}{3} |y^2 (9-1) dy = \frac{1}{3} |^3 8 y^2 dy$ $I = \frac{8^{3}}{3} \frac{3}{1} y^{2} dy = 4 \left[\frac{4^{3}}{3} \right]_{1}^{2} = \frac{4}{3} \left[8 - \overline{1} \right] = \frac{4}{3} \left[17 \right]_{1}^{2}$ $I = \frac{28}{3}$ 6> Evaluate $\int \int dx dy$ $T = \int \left(\frac{3}{4} \frac{3}{4} \frac{1}{4} \frac{1$ $T = 2 \frac{x^2 a^{1/2}}{3} y^{3/2} \Big|_{0}^{4a} - \frac{1}{12a} y^{3} \Big|_{0}^{4a} = \frac{4 a^{1/2} [(4a^{3/2} - 0)] - \frac{1}{12a} [(4a)^{3} - 0]}{3}$ $T = \frac{4a'^{1/2}(2^4)^{3/2}a^{3/2}}{3} - \frac{64a^3}{3} = \frac{4a'^{1/2}a^3}{3} - \frac{16a^2}{3} = \frac{4a'^{1/2}a^3}{3} = \frac{$ Triple integrals: It can be evaluated by expressing it in terms of three integrals in the form, $T = \frac{32a^{3}}{3} - \frac{16a^{2}}{3} = \frac{16a^{3}}{3}$ $T = \iiint \{(x,y,z) dx dy dz = \iiint \{(x,y,z) dz dy dx. \}$ (a are constants. Ifi x,, x2 are constants, ii) 41,42 are constants @ functions of x, iii) Z1, Z2 are constants @ functions of x & y then above integral is evaluated as, (constant) then the resulting expression is just 15 rt z keeping x & y fixed, then the resulting the obtained integrated 15 rt y treating x as constant finally the obtained result is integrated w. s.t x Scanned by CamScann

i.e., \[\left\{ \frac{1}{2} \left\{ \frac{1}{ Integration is carried out from innermost bracket to the outermost bracket. NOTE: If all the limits are constants then integration can be performed in any order. 301 Problems: (x+y+z)dx dy dz Soln: Let $I = \iiint (x+y+z) dx dy dz = \iiint \frac{x^2}{a} + (y+z)x \int_0^z dy dz$ $I = \iint \left(\frac{1}{a} + (y+z) - 0 \right) dy dz = \int \frac{1}{a} y + \frac{y^2}{a} + zy \Big|_0^1 dz$ $T = \int_{0}^{1} \left(1 + \frac{1}{2} + z\right) - 0 dz = \int_{0}^{1} (1 + z) dz$ $I = Z + \frac{Z^2}{2} \Big|_{0}^{1} = (1 + \frac{1}{2}) - 0 = \frac{3}{2}$ 15MATTOLP31

27 Evaluate: $3 \int_{0}^{2} (x + y + Z) dz dx dy$. Sol': Let $I=\int_{0}^{3}\int_{0}^{3}\left(x+y+z\right)dxdydz=\int_{0}^{3}\frac{x^{3}+(y+z)x}{x^{3}}dydz$ $I = \int_{0}^{3} \left(\frac{1}{a} + (y+z) - 0 \right) dy dz = \int_{0}^{3} \frac{1}{a} y + \frac{y^{2}}{2} + \frac{zy}{2} \Big|_{0}^{3} dz$ $T = \int_{0}^{3} \left(\frac{1}{2} + \frac{4^{2}}{2} + 2z \right) - 0 dz = \int_{0}^{3} (3 + 2z) dz = 3z + \frac{2z^{2}}{2} \Big|_{0}^{3}$ sol": Let I = JJJ e x+y+z dx dy dz = JJJ e e e e dx dy dz

$$I = \begin{cases} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dy \, dz = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dy \, dz = (e-1)^{2} \int_{0}^{1} \int_{0}^{1} dz$$

$$I = (e-1)^{2} \int_{0}^{1} \int_{0}^{1$$

$$T = \frac{1}{2} \int_{0}^{1-2x} xy \left(1-x^{2}-y^{2}\right) dy dx$$

$$T = \frac{1}{2} \int_{0}^{1-2x} xy \left(1-x^{2}-y^{2}\right) dy dx = \frac{1}{2} \int_{0}^{1-2x} \left[x\frac{y^{2}}{2} - x\frac{y^{4}}{2} - x\frac{y^{4}}{2}\right] \int_{0}^{1-2x} xy dy dx$$

$$T = \frac{1}{2} \int_{0}^{1-2x} \left[\left(\frac{x}{2}(1-x^{2}) - \frac{x^{3}}{2}(1-x^{2}) - \frac{x}{4}(1-x^{2})^{2}\right) - 0\right] dx \int_{0}^{1-2x} y^{4} = (y^{2})^{2} = (1-x^{2})^{2}$$

$$T = \frac{1}{2} \int_{0}^{1-2x} \left[\frac{x}{2} - \frac{x^{3}}{2} - \frac{x^{3}}{2} + \frac{x^{5}}{2} - \frac{x}{4} + \frac{x^{5}}{4} + \frac{x^{$$