Резюме

Число $a \in \mathbb{C}$ называют корнем алгебраического многочлена $P_n(z) = \sum_{k=0}^n p_k z^{n-k}$, если $P_n(a) = 0$.

Всякий алгебраический многочлен степени $n \ge 1$ имеет хотя бы один корень (теорема Гаусса).

Число $k \in \mathbb{N}$, $1 \le k \le n$, называется кратностью корня a многочлена $P_n(z)$, если этот многочлен без остатка делится на $(z-a)^m$ при $m=1,\ 2,\ \dots,\ k$ и не делится на $(z-a)^m$ при m>k.

Если a_1, a_2, \ldots, a_m — все попарно различные корни многочлена $P_n(z) = \sum_{k=0}^n p_k z^{n-k}$, $p_0 \neq 0$, а k_1, k_2, \ldots, k_m — кратность этих корней, то

- 1) $k_1 + k_2 + \ldots + k_m = n$;
- 2) $P_n(z) = p_0(z a_1)^{k_1} (z a_2)^{k_2} ... (z a_m)^{k_m}$.

Многочлен $P_n(z)$ называют вещественным многочленом, если все его коэффициенты – вещественные числа.

Если число a является корнем вещественного многочлена, то и \bar{a} — также корень, причем той же кратности что и a .

Пусть x_1, x_2, \ldots, x_l — все попарно различные вещественные корни вещественного многочлена $P_n(z) = \sum_{k=0}^n p_k z^{n-k}$, $p_0 \neq 0$, а k_1, k_2, \ldots, k_l — кратности этих корней. Пусть, далее, z_1 и \overline{z}_1 , z_2 и \overline{z}_2 , ..., z_s и \overline{z}_s — все пары мнимых корней, а q_1, q_2, \ldots, q_s — кратности корней, входящих в соответствующую пару. Тогда

- 1) $k_1 + k_2 + ... + k_l + 2q_1 + 2q_2 + ... + 2q_s = n$;
- $2) \ P_n(z) = p_0(z-x_1)^{k_1}(z-x_2)^{k_2}...(z-x_l)^{k_l}(z^2+b_1z+c_1)^{q_1}(z^2+b_2z+c_2)^{q_2}...(z^2+b_sz+c_s)^{q_s}\,,$ где трехчлен $z^2+b_jz+c_j$ имеет корнями числа z_j и \bar{z}_j , $j=1,\ 2,\ ...,\ s$.

Контрольные вопросы к главе 2

1. Что такое корень алгебраического многочлена $P_n(z)$? Что называют кратностью корня? Определите кратность корня a=1 многочлена $P_4(z)=z^4-(2-i)z^3+(3+2i)z^2-(4+i)z+2\,.$

- 2. Числа $a_1=1$, $a_2=-i$, $a_3=2i$ все попарно различные корни многочлена P(z), причем a_1 корень кратности 2, а a_2 и a_3 простые корни. Запишите разложение P(z) на линейные множители, если его старший коэффициент $p_0=1$; найдите его другие коэффициенты.
- 3. В чем состоит свойство корней вещественного многочлена? Число $a_1 = -1 + i$ является корнем многочлена $P_4(z) = z^4 + 4z^3 + 11z^2 + 14z + 10$; найти остальные корни $P_4(z)$, записать его разложение на вещественные множители первой и второй степени.

Ответы на контрольные вопросы

- 1. Кратность равна 2.
- 2. $P(z) = (z-1)^2(z+i)(z-2i) = z^4 (2+i)z^3 + (3+2i)z^2 (4+i)z + 2$.
- 3. $P_4(z) = (z^2 + 2z + 2)(z^2 + 2z + 5)$.