Homework 2

Insert your name here

Table of contents

Appendix																													8
Question 3	•	•		•	•	•	•	•	•			•	•	•	•	•	•	•	•	•		•	•			•	•	•	(
Question 2																													4
Question 1																													4

Link to the Github repository

Due: Tue, Feb 14, 2023 @ 11:59pm

Please read the instructions carefully before submitting your assignment.

- 1. This assignment requires you to only upload a PDF file on Canvas
- 2. Don't collapse any code cells before submitting.
- 3. Remember to make sure all your code output is rendered properly before uploading your submission.

Please add your name to the author information in the frontmatter before submitting your assignment

For this assignment, we will be using the Abalone dataset from the UCI Machine Learning Repository. The dataset consists of physical measurements of abalone (a type of marine snail) and includes information on the age, sex, and size of the abalone.

We will be using the following libraries:

```
library(readr)
library(tidyr)
```

```
library(ggplot2)
library(dplyr)
library(purrr)
library(cowplot)
```

Question 1

```
② 30 points

EDA using readr, tidyr and ggplot2
```

1.1 (5 points)

Load the "Abalone" dataset as a tibble called abalone using the URL provided below. The abalone_col_names variable contains a vector of the column names for this dataset (to be consistent with the R naming pattern). Make sure you read the dataset with the provided column names.

```
library(readr)
url <- "http://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data"

abalone_col_names <- c(
    "sex",
    "length",
    "diameter",
    "height",
    "whole_weight",
    "shucked_weight",
    "viscera_weight",
    "shell_weight",
    "rings"
)

abalone <- ... # Insert your code here</pre>
```

1.2 (5 points)

Remove missing values and NAs from the dataset and store the cleaned data in a tibble called df. How many rows were dropped?

```
df <- ... # Insert your code here
```

1.3 (5 points)

Plot histograms of all the quantitative variables in a **single plot** ¹

```
... # Insert your code here
```

1.4 (5 points)

Create a boxplot of length for each sex and create a violin-plot of of diameter for each sex. Are there any notable differences in the physical appearences of abalones based on your analysis here?

```
... # Insert your code for boxplot here
... # Insert your code for violinplot here
```

1.5 (5 points)

Create a scatter plot of length and diameter, and modify the shape and color of the points based on the sex variable. Change the size of each point based on the shell_wight value for each observation. Are there any notable anomalies in the dataset?

```
... # Insert your code here
```

 $^{^1}$ You can use the facet_wrap() function for this. Have a look at its documentation using the help console in R

1.6 (5 points)

For each sex, create separate scatter plots of length and diameter. For each plot, also add a linear trendline to illustrate the relationship between the variables. Use the facet_wrap() function in R for this, and ensure that the plots are vertically stacked **not** horizontally. You should end up with a plot that looks like this: ²

```
... # Insert your code here
```

Question 2

40 points

More advanced analyses using dplyr, purrrr and ggplot2

2.1 (10 points)

Filter the data to only include abalone with a length of at least 0.5 meters. Group the data by sex and calculate the mean of each variable for each group. Create a bar plot to visualize the mean values for each variable by sex.

```
df %>% ... # Insert your code here
```

2.2 (15 points)

Implement the following in a **single command**:

- 1. Temporarily create a new variable called num_rings which takes a value of:
- "low" if rings < 10
- "high" if rings > 20, and

 $^{^2}$ Plot example for 1.6

- "med" otherwise
- 2. Group df by this new variable and sex and compute avg_weight as the average of the whole_weight + shucked_weight + viscera_weight + shell_weight for each combination of num_rings and sex.
- 3. Use the geom_tile() function to create a tile plot of num_rings vs sex with the color indicating of each tile indicating the avg_weight value.

```
df %>% ... # Insert your code here
```

2.3 (5 points)

Make a table of the pairwise correlations between all the numeric variables rounded to 2 decimal points. Your final answer should look like this 3

```
df %>% ... # Insert your code here
```

2.4 (10 points)

Use the map2() function from the purr package to create a scatter plot for each quantitative variable against the number of rings variable. Color the points based on the sex of each abalone. You can use the cowplot::plot_grid() function to finally make the following grid of plots.

# Insert	your code	here

 $^{^3\}mathrm{Table}$ for 2.3

Question 3

9 30 points

Linear regression using 1m

3.1 (10 points)

Perform a simple linear regression with diameter as the covariate and height as the response. Interpret the model coefficients and their significance values.

```
... # Insert your code here
```

3.2 (10 points)

Make a scatterplot of height vs diameter and plot the regression line in color="red". You can use the base plot() function in R for this. Is the linear model an appropriate fit for this relationship? Explain.

```
... # Insert your code here
```

3.3 (10 points)

Suppose we have collected observations for "new" abalones with new_diameter values given below. What is the expected value of their height based on your model above? Plot these new observations along with your predictions in your plot from earlier using color="violet"

```
new_diameters <- c(</pre>
  0.15218946,
  0.48361548,
  0.58095513,
  0.07603687,
  0.50234599,
  0.83462092,
```

```
0.95681938,
0.92906875,
0.94245437,
0.01209518
)
```

Appendix

```
i Session Information
Print your R session information using the following command
  sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-apple-darwin22.1.0 (64-bit)
Running under: macOS Ventura 13.2
Matrix products: default
BLAS:
        /usr/local/Cellar/openblas/0.3.21/lib/libopenblasp-r0.3.21.dylib
LAPACK: /usr/local/Cellar/r/4.2.2_1/lib/R/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats
              graphics grDevices datasets utils
                                                      methods
                                                                base
loaded via a namespace (and not attached):
 [1] digest_0.6.31
                     lifecycle_1.0.3 jsonlite_1.8.4 magrittr_2.0.3
 [5] evaluate_0.20
                     rlang_1.0.6
                                     stringi_1.7.12 cli_3.6.0
 [9] renv_0.16.0-53 vctrs_0.5.1
                                     rmarkdown_2.20 tools_4.2.2
[13] stringr_1.5.0
                     glue_1.6.2
                                     xfun_0.36
                                                     yaml_2.3.6
[17] fastmap_1.1.0
                     compiler_4.2.2 htmltools_0.5.4 knitr_1.41
```