

5G 业务应用应用探索

杨峰义
<u>Yangfy.bri@chinatelecom.cn</u>
中国电信技术创新中心

目录

一、5G网络切片的电网应用探索

二、融合MEC的探索

三、5G试验网的业务探索

5G网络切片概念

面向特定需求,满足差异化SLA,构建相互隔离网络实例,节省用户投资,便捷业务上线

- > 网络功能按需定制
- 》 业务隔离区分安全等级,独立的切片生命周期
- 切片部署、编排和资源调配、维护、计费
- ➢ 分解SLA,终端、接入、承载、核心网和业务云协调保障

智能电网的5G切片应用

电力网 传统能源发电 通信网(有线通信或无线通信如5G) mMTC切片: 用电信息采集/ 分布式电源接入/智能汽车充电站 电力系统 (发输变 URLLC 切片: 配用) 变电站 配电自动化/ eMBB切片: 远程 精准负荷控 巡检、线路监控等 制 新型能源发电 输电 配电 用电 电网用户语音切片: 维护巡检/调度管理电话/应急通信等 电压 超高压/高压/中压 10KV 0.4KV 光纤专网 PLC/NB-IoT 通信网络 /LTE无线专网 /3G4G公网/5G公网 (切 光纤专网 /5G公网(切片) 片)

一、5G网络切片的电网应用探索

二、融合MEC的探索

三5G试验网的业务探索

5G架构对于MEC的支持

基于LADN选择边缘UPF

UL/CL和IPv6多归属方案

5G网络架构主要从用户面下沉、分布式部署、灵活路由等角度支持MEC,重点关注网络

5G MEC融合架构

- ■基于通用硬件平台: 支持MEC功能/业务应用快速部署
- ■支持用户面下沉、业务应用本地部署,实现用户面NG-UP及业务的分布式/近距离/按需部署
- ■**支持网络信息感知与开放**,提升网络智能化水平,实现网络与业务的融合
- ■支持缓存与加速等服务/应用

基于MEC的多网协同管理及内容智能分发

通过<mark>边缘网络与业务能力构建</mark>,利用并发挥已有固网资源优势(传输及CDN等),降低移动网络回传压力、提升并

保证多网络用户的一致性业务体验、促进网络与业务的深度融合,解决5G时代多种网络长期共存的问题

基于MEC的内容智能分发---共享CDN

背景 需求

技术 方案

疏导 策略

- ·固网CDN资源下沉至城域,固网用户能够访问近距离部署的CDN节点,业务体验较好
- ·移动网络核心网网关位置高,移动用户无法访问固网下沉CDN资源,业务体验较差
- ·用户发生网络切换后,CDN业务锚点可能发生变化,影响业务体验
- ·5G边缘UPF可配置分流策略将移动业务疏导至固网CDN
- ·CDN调度器将业务调度至边缘CDN节点,优化全局负载均衡
- ·运营商将特定用户/业务疏导至固网CDN ,提升用户/业务体验
- •用户从固网切换到移动网络时,将业务疏导至固网,保持业务锚点不变

实现固移网络CDN资源共享

基于MEC的内容智能分发---合作CDN

背景 需求

技术 方案

有益 效果

- ·边缘计算平台具备存储、计算能力
- ·CDN的发展方向是边缘计算(网宿:边缘计算与CDN融合构建社区云)
- ·在边缘计算平台上部署CDN边缘节点,接入已有CDN系统
- ·配置CDN调度器,将MEC平台覆盖的固移网络业务调度至MEC-CDN节点
- ·MEC-CDN边缘节点为固移网络提供一致的服务能力
- ·新的商业模式(电信运营商为CDN运营商提供平台资源部署边缘CDN节点)

边缘计算与CDN融合

目录

一、5G网络切片的电网应用探索

二、融合MEC的探索

三、5G试验网的业务探索

业务试验一: 无人机视频回传

无人机应用场景

- 媒体娱乐、巡检、植保、监控等
- 上行图传速率需求: >30Mbps
- 网络时延: <20ms

> 试验内容

- 能够支持无人机视频实时回传,体现5G网络对大带宽数据 传输的支持
- 取景区域包括雄安典型建筑及白洋淀

业务试验二: 360全景高清视频直播

- > 试验内容
 - 能够支持4K全景高清视频实时回传,体现5G网络对高清视频提供大带宽数据传输的支持
 - 本业务试验例可以扩展支持VR视频的5G实时回传

> 网络架构

业务试验三: 自动驾驶测试

> 试验内容

测试地点:雄安白洋淀区域附近测试功能:高清地图实时更新

● 验证内容:利用5G网络的高带宽、低时延保障自动驾驶行驶安全

✓ 备注: 体验期,为保障安全,每车配1位辅助安全保障驾驶员

> 网络需求

● 帯宽: 下行300M-500Mbps

● 时延: <10ms ● 时速: <60km/h

5G V2X对网络的需求 (1/2)

	场景描述		负载	发送速率	最大端到端时		数据速率	最小通信范围
车辆编队	场景 	级别	(Bytes)	(Message/ Sec)	延(ms)	可靠性 (%)	(Mbps)	(米) (移动速 度130km/h)
	协作式驾驶编队车辆间信息交 互	最低级别自动驾驶	300-400	30	25	90		
		低级别自动驾驶	6500	50	20			350
		最高级别自动驾驶	50-1200	30	10	99.99		80
		高级别自动驾驶			20		65	180
	编队车辆间和车路间信息共享	N/A	50-1200	2	500			
	车路间信息共享	较低级别自动驾驶	6000	50	20			350
		较高级别自动驾驶			20		50	180
	协作式碰撞避免		2000	100	10	99.99	10	
	自动驾驶车车间的信息共享	较低级别自动驾驶	6500	10	100			700
		较高级别自动驾驶			100		53	360
	自动驾驶车路间的信息共享	较低级别自动驾驶	6000	10	100			700
		较高级别自动驾驶			100		50	360
高级驾驶(半自动/自动驾驶)	紧急情况信息共享		2000		3	99.999	30	500
	十字路口安全信息交互		UL:	UL: 50			UL: 0. 25	
			450				DL: 50	
	车车间协作式变道辅助	较低级别自动驾驶	300- 400		25	90		
		较高级别自动驾驶	12000		10	99.99		
	车辆与服务器间视频传输						UL: 10	
			400				UL: 10	W 17

5G V2X对网络的需求 (2/2)

	场景描述) 负载	发送速率	最大端到端时		数据速率	最小通信范围
	场景	级别	(Bytes)	(Message/ Sec)	延(ms)	可靠性 (%)	(Mbps)	(米) (移动速 度130km/h)
扩展传感器	车辆间传感信息共享	较低级别自动驾驶	1600	10	100	99		1000
		较高级别自动驾驶			10	95	25	
					3	99.999	50	200
					10	99.99	25	500
					50	99	10	1000
					10	99.99	1000	50
	车辆间视频信息共享	较低级别自动驾驶			50	90	10	100
		较高级别自动驾驶			10	99.99	700	200
					10	99.99	90	400

		最大端到端时延(ms)	可靠性 (%)	数据速率(Mbps)
远程驾驶	车辆与服务器间信息交互	5	99 999	UL: 25
		3	, , , , , , , , , , , , , , , , , , , 	DL: 1

谢 谢!

