Reinforcement Learning using Parallel Computing

Gabriel Baptista - nUSP: 8941300 Hélio Assakura - nUSP: 8941064

Introdução

- MDP
- RL
- Parallel RL

Markov Decision Process - MDP

- Ambiente probabilístico(estocástico)
- Conjunto de estados S
- Conjunto de ações A
- Função de transição P
- (s, a, s') → R(s, a, s'), função de Recompensa
- Estado atual depende apenas do anterior Markov

Política (π)

Sequência de ações

Política Ótima (π^*)

Política que maximiza o valor de recompensa recebido a cada estado

Valor de Iteração

$$V^{\pi}(S) = R(S) + \gamma \sum_{S'} \mathbb{P}(S'|S, \pi(S))V^{\pi}(S')$$

$V^{\pi}(S) = R(S) + \gamma \sum_{S'} \mathbb{P}(S'|S, \pi(S))V^{\pi}(S')$ Equação de Bellman

$$V^*(S) = R(S) + \gamma \max_{A} \sum_{S'} \mathbb{P}(S'|S, A)V^*(S')$$

Reinforcement Learning - RL

- Receber feedbacks na forma de Recompensas
- Utilidade do agente definida pela Função de Recompensa
- Deve aprender para agir de forma que maximize a recompensa esperada

RL

- Modela-se o ambiente como um MDP
- Possui pelo menos um estado terminal
- Não se sabe a função de transição P e nem a função de recompensas R

RL

Algoritmo Q-Learning

Parallel RL

- Parallel Learning
 - Múltiplos agentes juntam informações do mesmo problema
 - Agentes aprendem em diferentes instâncias do mesmo problema
- Multi Agent Reinforcement Learning (MARL)
 - Interações diretas entre agentes
 - Todos aprendem na mesma instância do problema

Parallel RL no controle de tráfego

- Normalmente apresentam um único agente para cada interseção
 - Já foi visto que o uso de RL melhora o trânsito
- Uso de até 4 agentes simultâneos
 - Simulação "real", com picos de quantidade de carros
 - Podem manter ou mudar o sinal para verde

(a) Average Waiting Times

(b) Average Queue Lengths

(c) Average Number of States Visited

Experiment	AWT (s)	% Reduction AWT	AQL	% Reduction AQL	ANSV	% Increase ANSV
2 Phase, 1 agent	41.45	(()	12.74	-	6,170.02	8#1
2 Phase, 2 agents	39.84	3.88 %	12.37	2.90 %	6,874.23	11.41 %
2 Phase, 3 agents	38.66	6.73 %	12.23	4.00 %	7,425.38	20.35 %
2 Phase, 4 agents	38.29	7.62 %	12.12	4.87 %	7,868.37	27.53 %
3 Phase, 1 agent	85.52)) =	15.06	-	13,001.19	(-)
3 Phase, 2 agents	82.45	3.59 %	14.77	1.93 %	13,326.58	2.50 %
3 Phase, 3 agents	80.40	5.99 %	14.42	4.25 %	15,035.03	15.64 %
3 Phase, 4 agents	78.86	7.79 %	14.21	5.64 %	16,322.52	25.55 %

Least-Squares Policy Iteration - LSPI

 Recebe como entrada um conjunto de amostras do ambiente e usa a função LSTDQ para calcular a função do valor de estado-ação durante a avaliação da política a ser adotada. Para a função Q no tempo 1, 2, ..., podemos achar a melhor ação para determinado estado.

Algorithm 1 LSPI

Given: • D - Samples of the form (s, a, r, s')

- k Number of basis functions
- φ Basis functions
- γ Discount factor
- ϵ Stopping criterion
- w₀ Initial policy
- 1: $w' \leftarrow w_0$
- 2: repeat
- 3: w ← w'
- 4: $w' \leftarrow LSTDQ(D, k, \phi, \gamma, w)$
- 5: **until** ($\parallel w w' \parallel < \epsilon$)
- 6: return w

Algorithm 2 LSTDQ

Given: • D - Samples of the form (s, a, r, s')

- k Number of basis functions
 - φ Basis functions
 - γ Discount factor
 - · w Current policy
- 1: $B \leftarrow \frac{1}{\delta}I // (k \times k)$ matrix
- 2: $b \leftarrow 0 // (k \times 1)$ vector
- 3: for all $(s, a, r, s') \in D$ do
- 4: $B \leftarrow B \frac{B\phi(s,a)(\phi(s,a) \gamma\phi(s',\pi(s')))^T B}{1 + (\phi(s,a) \gamma\phi(s',\pi(s')))^T B\phi(s,a)}$
- 5: $b \leftarrow b + \phi(s, a)r$
- 6: end for
- 7: $\tilde{w} \leftarrow Bb$
- 8: return \tilde{w}

Pacman

Gridworld

Outros projetos

- Controle de robôs
- Rota de elevadores
- Telecomunicações
- Backgammon
- Damas
- Go (AlphaGo)
- Treinamento de agentes (OpenAl Gym)

Referências

- Notas de aulas:
 - https://www.ime.usp.br/~ddm/mac425/aulas/mdp.pdf
 - https://www.ime.usp.br/~ddm/mac425/aulas/rl.pdf
 - https://www.ime.usp.br/~ddm/mac425/aulas/rl2.pdf
 - http://ai.berkeley.edu/lecture_slides.html
- Artigos:
 - engr.case.edu/ray_soumya/papers/TylerGoeringer_thesis.pdf
 - http://ai2-s2-pdfs.s3.amazonaws.com/d171/424c1c87afdd3d169b4df7817
 97820eeec62.pdf
 - http://www.sciencedirect.com/science/article/pii/S1877050915009722
- Outras fontes:
 - https://devblogs.nvidia.com/parallelforall/train-reinforcement-learning-age nts-openai-gym/
 - https://en.wikipedia.org/wiki/Reinforcement_learning