Scruter la forme de l'informel Automatiser l'analyse du free jazz

Marie Tahon, Zaher Belghith

Sommaire

- Contexte musical: le Free Jazz des années 50-60
- Problématique
- Proposition pour une segmentation automatique
- Analyse acoustique
- Perspectives

Le Free Jazz (50-60)

Le Free Jazz (50-60)

Extrait de la notice du CD Globe Unity 67

Problématique

- Le Free Jazz: « le refus des codes conventionnels » [Ekkehard Jost]
- L'analyste cherche des catégories musicales
- Il existe des « partitions » graphiques montrant implicitement l'existence d'une structure musicale
- Peut-on (re)trouver une structure musicale dans les enregistrements de Globe Unity?

Structure musicale

cas d'étude: Mozart

- Motifs harmoniques ou rythmiques
- Sections AABA
 - A: abac
 - B: deabfg
- Exemple de l'allegretto K545 (Mozart)

Structure musicale

vers une extraction automatique?

- Méthodes de partionnement et regroupement spectral [McFee&Ellis2014]
 - Segmenter le signal musical et regrouper ces segments suivant leur similarité
 - Méthode non-supervisée (absence de corpus conséquent)
- Quelle représentation du signal musical ?
- Quelle résolution temporelle ?
- Combien de structures cherche-t-on?

Résolution temporelle (1/2)

- Résolution pour l'analyse spectrale ≈ 30ms (FFT)
- Résolution pour l'analyse musicale ?
 - Les temps ? détection automatique de beat
 - Les début de notes ? détection automatique d'onset
 - La phrase musicale ? ≈ 1s (comment la segmenter ?)
 - Une taille fixe ? 30ms
 - Définie manuellement

Résolution temporelle (2/2)

Analyse musicale et modélisation informatique des activités cognitives 14 novembre 2019

Représentation spectrale (1/4)

- Matrice de similarité à court terme: R_{court}
 - Entre 2 trames de 30ms
 - Représentation acoustique: coefficients cepstraux

Représentation spectrale (2/4)

Matrice de similarité à long terme:

$$R_{long}$$

Time

- Résolution à définir: onset, beat detection
- Représentation acoustique: cepstraux (MFCC), spectraux, chroma

Représentation spectrale (3/4)

Représentation spectrale (4/4) cas d'étude: Mozart

Clustering (1/2)

- Objectif: regrouper les zones de la matrice de similarités en K groupes homogènes
- Définir le nombre de groupes K
 - Détermination automatique (plusieurs méthodes issues du clustering)
 - Itération sur plusieurs valeurs de K
- Obtenir une représentation compacte: K premiers vecteurs propres.
- Ajout d'une distance de similarité entre deux clusters

Analyse musicale et modélisation informatique des activités cognitives 14 novembre 2019

Segmentation automatique

- On retrouve à peu près la structure
- Les clusters peuvent être mélodiques, rythmiques ou timbraux
- Plusieurs paramètres à choisir mais outil flexible
- Disponible à l'adresse:

https://git-lium.univ-lemans.fr/tahon/spectral-clustering-music

Passons à l'analyse du Free Jazz ...

Paramètres choisis pour le Free Jazz

30ms

Segmentation Manuelle

- Résolution temporelle donnée manuellement
- Représentation spectrale à long terme: chroma
- Nombre de clusters: K=4, 6

Représentation temporelle: chroma

- Exposition: 2 tétracordes (+ 2 mineurs)
- Transition
- Prolifération

Figure 2. Série de 23 notes extraite de Globe Unity.

Transformée différentielle (Δ chroma)

Clustering

Bilan

- Pour la segmentation
 - difficulté de la tâche
 - question de l'évaluation sur des musiques non mesurées.
 - évaluation sur d'autres types de geste: parole expressive
- Pour l'analyse:
 - ajout de mesures de densité harmonique et rythmique
 - la performance Free Jazz: déterminée / suite d'accidents ?
 - proposer un niveau de structure clair et dégager une Gesthalt
- Questions d'ordre esthétique
 - Hyper formalisme qui s'est développé à la fin des années 1950

Speaker diarization

Base de données

Perspectives

Modèles supervisés

(modèles de chaque locuteur)

Modèles types réseaux de neurones

- Très performants mais besoin de beaucoup de données (100h)
- Travaux en cours sur l'interprétation
 - Quelle représentation interne de la structure musicale ?

Perspectives

- Modèles <u>supervisés</u> pour la recherche de structures musicales?
 - Base de données segmentées et annotées manuellement
 - Segmentation + prédiction de l'appartenance à une classe.
- Quelle <u>interprétation</u> ?
 - Quelle représentation interne au système ?
 - Lien avec les activités cognitives humaines ?
- Comment évaluer la segmentation et les catégories obtenues ?
 - Annotation?
 - Groupe d'experts ?

MFCCs

Figure 1.1 – Extraction des paramètres MFCC.

Larcher - HDR (2018)