

METHOD FOR PRODUCING 6-ALKOXY-(6H)-DIBENZ[C,E][1,2]-OXAPHOSPHORINES

Publication number: DE10206982

Publication date: 2003-09-04

Inventor: DOERING MANFRED (DE); CIESIELSKI MICHAEL (DE); KOLLANN CARSTEN (DE); SPRENGER STEPHAN (DE)

Applicant: KARLSRUHE FORSCHZENT (DE)

Classification:

- **international:** C07B61/00; C07F9/6571; C07F9/6574;
C07B61/00; C07F9/00; (IPC1-7):
C07F9/6571

- **european:** C07F9/6571L6

Application number: DE20021006982 20020220

Priority number(s): DE20021006982 20020220

Also published as:

WO03070736 (A1)
EP1476453 (A1)
US7115765 (B2)
US2005176983 (A1)
EP1476453 (A0)

[Report a data error here](#)

Abstract not available for DE10206982

Abstract of corresponding document: **WO03070736**

The invention relates to a method for producing 6-alkoxy-(6H)-dibenz[c,e][1,2]-oxaphosphorines, whereby 6H-dibenz[c,e][1,2]-oxaphosphorine-6-oxides of formula (I) are used as an educt.

Data supplied from the **esp@cenet** database - Worldwide

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑰ Offenlegungsschrift
⑩ DE 102 06 982 A 1

⑯ Int. Cl.⁷:
C 07 F 9/6571

DE 102 06 982 A 1

⑯ Aktenzeichen: 102 06 982.4
⑯ Anmeldetag: 20. 2. 2002
⑯ Offenlegungstag: 4. 9. 2003

⑯ Anmelder:
Forschungszentrum Karlsruhe GmbH, 76133
Karlsruhe, DE

⑯ Vertreter:
Dres. Fitzner, Münch & Kluin, 40878 Ratingen

⑯ Erfinder:
Döring, Manfred, Dr., 76744 Wörth, DE; Ciesielski,
Michael, Dr., 06217 Merseburg, DE; Kollann,
Carsten, Dr., 76297 Stutensee, DE; Sprenger,
Stephan, Dr., 22113 Oststeinbek, DE

⑯ Entgegenhaltungen:
EP 07 87 738 A1
EP 03 04 782 A2

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- ⑯ Verfahren zur Herstellung von 6-Alkoxy-(6H)-dibenz(c,e)(1,2)-oxaphosphorinen
⑯ Die vorliegende Erfindung betrifft ein Verfahren zur
Herstellung von 6-Alkoxy-(6H)-dibenz[c,e][1,2]-oxaphos-
phorinen, wobei 6H-Dibenz[c,e][1,2]-oxaphosphorin-
6-oxide der Formel I

als Edukt eingesetzt werden.

DE 102 06 982 A 1

DE 102 06 982 A 1

Beschreibung

- [0001] Die vorliegende Erfindung betrifft die Herstellung von 6-Alkoxy-(6H)-dibenz[c,e][1,2]-oxaphosphorinen.
- [0002] Aus der Literatur ist als Methode zur Darstellung der 6-Alkoxy-(6H)-dibenz[c,e][1,2]-oxaphosphorine aus schließlich die Alkoholyse der 6-Chlor-(6H)-dibenz[c,e][1,2]-oxaphosphorine in Gegenwart stöchiometrischer Mengen Base, wie tertiäre Amine oder Ammoniak bekannt (EP 0787738 A1, EP 0304782 A2, Phosphorus and Sulfur 1987, 31, S. 71).
- [0003] Reaktionen von 6H-Dibenz[c,e][1,2]-oxaphosphorin-6-oxiden mit Orthoameisensäureestern ergaben bisher nur selektiv 6-(Dialkoxymethyl)-dibenz[c,e][1,2]-oxaphosphorin-6-oxide (J. praktische Chemie 1979, 321, S. 361).
- [0004] Die Darstellung von 6-Alkoxy-(6H)-dibenz[c,e][1,2]-oxaphosphorinen durch Alkoholyse von 6-Chlor-(6H)-dibenz[c,c][1,2]-oxaphosphorinen mittels Basen erfordert eine zweistufige Darstellung des 6-Chlor-Derivats aus o-Hydroxybiphenyl und Phosphortrichlorid mit einer unbefriedigenden Gesamtausbeute von weniger als 50%. Gerade die zweite Synthesestufe wird dabei Metallhalogenid-katalysiert bei Temperaturen über 200°C und unter HCl-Eliminierung durchgeführt. Dieses Verfahren stellt an die Technik so hohe Anforderungen, dass eine technische Lösung bisher nicht erwogen wurde. Dagegen ist das 6H-Dibenz[c,e][1,2]-oxaphosphorin-6-oxid heute bereits industriell verfügbar und wird in Ausbeuten über 95% in einer Einstufenreaktion aus gleichen Edukten hergestellt (EP 0806429 A2).
- [0005] Es ist somit wünschenswert, ein Verfahren zu entwickeln, welches auf einfacherem und kostengünstigeren Weg die Herstellung der 6-Alkoxy-(6H)-dibenz[c,e][1,2]-oxaphosphorine ermöglicht. Diese sind als Zusatzmittel bzw. Modifier für mehrere Kunststoffe sowie als Zwischenprodukte zur Herstellung von Photoinitiatorn bereits bekannt (EP-PS 0292786, 7856250 und EP-OS 0304782).
- [0006] Die erfundungsgemäße Aufgabe wird dadurch gelöst, daß 6H-Dibenz[c,e][1,2]-oxaphosphorin-6-oxide der Formel I

- als Edukt eingesetzt werden.
- [0007] Das erfundungsgemäße Verfahren beinhaltet im allgemeinen folgende Einzelschritte: 1) Bereitstellung wenigstens eines Lösemittels, 2) Zugabe des Edukts, 3) Zugabe eines Orthoesters, 4) Zusatz eines Alkohols, sofern dieser nicht bereits in Form des Lösemittels vorliegt.
- [0008] Als Lösungsmittel kommen Methanol, Ethanol und nichtaromatische substituierte Alkohole, Benzol, alkylierte Benzole, aliphatische und cycloaliphatische Ether in Betracht.
- [0009] Erfundungsgemäß handelt es sich nach dem gesagten um Verfahren zur schonenden und selektiven Herstellung von 6-Alkoxy-(6H)-dibenz[c,e][1,2]-oxaphosphorinen durch Umlauftechnisch verfügbarer 6H-Dibenz[c,e][1,2]-oxaphosphorin-6-oxide mit Orthocarbonsäureestern, das säurekatalysiert ist. Durch die Wahl eines geeigneten Alkohols als Reaktionsmedium kann das gewünschte 6-Alkoxy-(6H)-dibenz[c,e][1,2]-oxaphosphorinen dann durch in-situ Umlagerung vermittels dieses Alkohols erhalten werden. Entsprechend lässt sich die Reaktion wie folgt darstellen:

- [0010] Für die Reste R₁ und R₂ in den oben genannten Formeln können u. a. im einzelnen folgende Stoffe eingesetzt werden:
Ggf. subst. Alkyl: gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste, insbesondere mit 1 bis 10 Kohlenstoffatomen, z. B. C₁-C₆-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl;

DE 102 06 982 A 1

Ggf. subst. Alkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste, insbesondere mit 2 bis 10 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z. B. C₂-C₆-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3,1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl;

Ggf. subst. Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen, insbesondere mit 2 bis 20 Kohlenstoff-

atomen und einer Dreifachbindung in einer beliebigen Position, z. B. C₂-C₆-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl;

Ein ggf. subst. gesättigter oder ein- oder zweifach ungesättigter Ring, welcher neben Kohlenstoffatomen ein bis drei der folgenden Heteroatome als Ringglieder enthalten kann: Sauerstoff, Schwefel und Stickstoff, beispielsweise Carbocyclen

wie Cyclopropyl, Cyclopentyl, Cyclohexyl, Cyclopent-2-enyl, Cyclohex-2-enyl, 5- bis 6-gliedrige, gesättigte oder ungesättigte Heterocyclen, enthalten ein bis drei Stickstoffatome oder ein Sauerstoff oder Schwefelatom wie 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoazolidinyl, 4-Isoazolidinyl, 5-Isoazolidinyl, 2-Isothiazolidinyl, 4-Isothiazolidinyl, 5-Isothiazolidinyl, 2-Pyrazolidinyl, 4-

dinyl, 4-Isoxazolidinyl, 5-Isoxazolidinyl, 3-Isothiazolidinyl, 4-Isothiazolidinyl, 5-Isothiazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thiazolidinyl, 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl, 1,2,4-Oxadiazolidin-3-yl, 1,2,4-Oxadiazolidin-5-yl, 1,2,4-Thiadiazolidin-3-yl, 1,2,4-Thiadiazolidin-5-yl, 1,2,4-Triazolidin-3-yl, 1,3,4-Oxadiazolidin-2-yl, 1,3,4-Thiadiazolidin-2-yl, 1,3,4-

1,12,4-Triazolidin-3-yl, 1,2,4-Triazolidin-3-yl, 1,2,4-Triazolidin-3-yl, 1,3,4-Oxadiazolidin-2-yl, 1,3,4-Tiadiazolidin-2-yl, 1,3,4-Triazolidin-2-yl, 2,3-Dihydrofuran-2-yl, 2,3-Dihydrofuran-3-yl, 2,4-Dihydrofuran-2-yl, 2,4-Dihydrofuran-3-yl, 2,3-Dihydropyran-2-yl, 2,3-Dihydropyran-3-yl, 2,4-Dihydropyran-2-yl, 2,4-Dihydropyran-3-yl, 2,3-Pyrrolin-2-yl, 2,3-Pyrrolin-3-yl, 2,4-Pyrrolin-2-yl, 2,4-Pyrrolin-3-yl, 2,3-Isoxazolin-3-yl, 3,4-Isoxazolin-3-yl, 4,5-Isoxazolin-3-yl, 2,3-Isoxazolin-4-yl,

2,4-Isoxazolin-5-yl, 2,3-Isoxazolin-5-yl, 3,4-Isoxazolin-5-yl, 4,5-Isoxazolin-5-yl, 2,3-Isoxazolin-4-yl, 3,4-Isoxazolin-4-yl, 4,5-Isoxazolin-4-yl, 2,3-Isoxazolin-5-yl, 3,4-Isoxazolin-5-yl, 4,5-Isoxazolin-5-yl, 2,3-Isothiazolin-3-yl, 3,4-Isothiazolin-3-yl, 4,5-Isothiazolin-3-yl, 2,3-Isothiazolin-4-yl, 3,4-Isothiazolin-4-yl, 4,5-Isothiazolin-4-yl, 2,3-Isothiazolin-5-yl, 3,4-Isothiazolin-5-yl, 4,5-Isothiazolin-5-yl, 2,3-Isothiazolin-5-yl, 3,4-Isothiazolin-5-yl, 4,5-Isothiazolin-5-yl, 2,3-Dihydropyrazol-1-yl, 2,3-Dihydropyrazol-2-yl, 2,3-

Dihydropyrazol-3-yl, 2,3-Dihydroxypyrazol-4-yl, 2,3-Dihydroxypyrazol-5-yl, 3,4-Dihydroxypyrazol-1-yl, 3,4-Dihydroxypyrazol-3-yl, 3,4-Dihydroxypyrazol-4-yl, 3,4-Dihydroxypyrazol-5-yl, 4,5-Dihydroxypyrazol-1-yl, 4,5-Dihydroxypyrazol-3-yl, 4,5-Dihydroxypyrazol-4-yl, 4,5-Dihydroxypyrazol-5-yl, 2,3-Dihydrooxazol-2-yl, 2,3-Dihydrooxazol-3-yl, 2,3-Dihydrooxazol-4-yl,

trahydropyridazinyl, 2-Tetrahydropyrimidinyl, 4-Tetrahydropyrimidinyl, 5-Tetrahydropyrimidinyl, 2-Tetrahydropyrazinyl, 1,3,5-Tetrahydrotiazin-2-yl und 1,2,4-Tetrahydrotiazin-3-yl, vorzugsweise 2-Tetrahydrofuranyl, 2-Tetrahydrothieno[2,3-*y*]pyrrolidinyl, 3-Isoxazolidinyl, 3-Isothiazolidinyl, 3,4-Dioxazolidinyl, 2-yl, 2,3-Dihydrothieno[2,3-*y*]4,5-Dioxazolinyl, 3-

[0011] Für die Reste R₃ und R₄ in den oben genannten Formeln können u. a. im einzelnen folgende Stoffe eingesetzt werden:

Alkoxy: geradkettige oder verzweigte Alkylgruppen mit ein bis 30 Kohlenstoffatomen (wie vorstehend genannt), welche über ein Sauerstoffatom (-O-) an das Gerüst gebunden sind.

Alkylthio: geradkettige oder verzweigte Alkylgruppen mit ein bis 30 Kohlenstoffatomen (wie vorstehend genannt), welche über ein Schwefelatom (-S-) an das Gerüst gebunden sind.

Ggf. subst. Alkyl, wie oben für R₁ und R₂ beschrieben.
Ggf. subst. Alkenyl, wie oben für R₁ und R₂ beschrieben.
Ggf. subst. Alkinyl wie oben für R₁ und R₂ beschrieben.

Ein ggf. subst. gesättigter oder ein- oder zweifach ungesättigter Ring, wie oben für R₁ und R₂ beschrieben.
Ein ggf. subst. ein- oder zweikerniges aromatisches Ringsystem, welches neben Kohlenstoffatomen ein bis vier Stick-

stoffatome oder ein oder zwei Stickstoffatome und ein Sauerstoff oder Schwefelatom oder ein Sauerstoff oder Schwefelatom als Ringglieder enthalten kann, d. h. Arylreste wie Phenyl und Naphthyl, vorzugsweise Phenyl oder 1- oder 2-Naphthyl, und Hetarylreste, beispielsweise 5-Ring Heteroaromatene enthaltend ein bis drei Stickstoffatome und/oder ein

Sauerstoff oder Schwefelatomen wie 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 1-Pyrrolyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 1-Pyrazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 1-Imidazolyl, 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Triazolyl, 1,3,4-Triazolyl, 1,2,3-Triazolyl, 1,2,4-Triazolyl, 1,2,5-Triazolyl, 1,2,6-Triazolyl.

Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,2,4'-Thiadiazol-3-yl, 1,2,4'-Thiadiazol-5-yl, 1,2,5'-Irriazol-3-yl, 1,2,3-Triazol-4-yl, 1,2,3-Triazol-5-yl, 1,2,3-Triazol-4-yl, 5-Tetrazolyl, 1,2,3,4-Thiatriazol-5-yl und 1,2,3,4-Oxatriazol-5-yl, insbesondere 3-Isoxazolyl, 5-Isoxazolyl, 4-Oxazolyl, 4-Thiazolyl, 1,3,4-Oxadiazol-2-yl und 1,3,4-Thiadiazol-2-yl; Saccharin-Heterocarboxysten enthaltend ein bis vier Stickstoffatome als Heterocarboxylic wie 2-Pyridinyl, 3-Pyridinyl, 4-Puri-

Sechsring-Heteroaromatene enthalten ein bis vier Stickstoffatome als Heteroatome wie 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl und 1,2,4,5-Tetrazin-3-yl, insbesondere 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 2-Pyrazinyl und 4-Pyridazinyl.

DE 102 06 982 A 1

- [0012] Der Zusatz "ggf. subst." in Bezug auf Alkyl-, Alkenyl- und Alkinylgruppen soll zum Ausdruck bringen, daß diese Gruppen partiell oder vollständig halogeniert sein können (d. h. die Wasserstoffatome dieser Gruppen können teilweise oder vollständig durch gleiche oder verschiedene Halogenatome wie vorstehend genannt (vorzugsweise Fluor, Chlor und Brom, insbesondere Fluor und Chlor) ersetzt sein können und/oder einen bis drei, insbesondere einen, der folgenden Reste tragen können:
- Nitro, Cyano, C1-C4-Alkoxy, C1-C4-Alkoxy carbonyl oder ein ggf. subst. ein- oder zweikerniges aromatisches Ringsystem, welches neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein oder zwei Stickstoffatome und ein Sauerstoff oder Schwefelatom oder ein Sauerstoff oder Schwefelatom als Ringglieder enthalten kann, d. h. Aryreste wie Phenyl und Naphthyl, vorzugsweise Phenyl oder 1- oder 2-Naphthyl, und Hetaryreste, beispielsweise 5-Ring Heteroaromataten enthaltend ein bis drei Stickstoffatome und/oder ein Sauerstoff oder Schwefelatom wie 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 1-Pyrrolyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Iothiazolyl, 4-Iothiazolyl, 5-Iothiazolyl, 1-Pyrazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 1-Imidazolyl, 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,2,5-Triazol-3-yl, 1,2,3-Triazol-4-yl, 1,2,3-Triazol-5-yl, 1,2,3-Triazol-4-yl, 5-Tetrazolyl, 1,2,3,4-Thiatriazol-5-yl und 1,2,3,4-Oxatriazol-5-yl, insbesondere 3-Isoxazolyl, 5-Isoxazolyl, 4-Oxazolyl, 4-Thiazolyl, 1,3,4-Oxadiazol-2-yl und 1,3,4-Thiadiazol-2-yl;
- Sechsring-Heteroaromataten enthaltend ein bis vier Stickstoffatome als Heteroatome wie 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl und 1,2,4,5-Tetrazin-3-yl, insbesondere 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 2-Pyrazinyl und 4-Pyridazinyl.
- [0013] Der Zusatz "ggf. subst" in Bezug auf die cyclischen (gesättigten, ungesättigtem oder aromatischen) Gruppen soll zum Ausdruck bringen, daß diese Gruppen partiell oder vollständig halogeniert sein können (d. h. die Wasserstoffatome dieser Gruppen können teilweise oder vollständig durch gleiche oder verschiedene Halogenatome wie vorstehend genannt (vorzugsweise Fluor, Chlor und Brom, insbesondere Fluor und Chlor) ersetzt sein können und/oder einen bis drei, der folgenden Reste tragen können: Nitro, Cyano, C1-C4-Alkyl, C1-C4-Alkoxy und C1-C4-Alkoxy carbonyl.
- [0014] Die bei den Resten genannten ein- oder zweikernigen aromatischen oder heteroaromatischen Systemen können ihrerseits partiell oder vollständig halogeniert sein, d. h. die Wasserstoffatome dieser Gruppen können partiell oder vollständig durch Halogenatome wie Fluor, Chlor, Brom und Jod, vorzugsweise Fluor und Chlor ersetzt sein.
- [0015] Diese ein- oder zweikernigen aromatischen oder heteroaromatischen Systeme können neben den bezeichneten Halogenatomen zusätzlich ein bis drei der folgenden Substituenten tragen:
- Nitro, Cyano, Thiocyanato;
- Alkyl, besonders C1-C6-Alkyl wie vorstehend genannt,
- C1-C30-Alkoxy,
- C1-C30-Alkylthio,
- C1-C4-Alkylamino,
- C1-C6-Alkylcarbonyl;
- C1-C6-Alkoxy carbonyl,
- C1-C6-Alkylamino carbonyl,
- C1-C6-Alkylcarboxyl,
- C1-C6-Alkylcarbonyl amino,
- C3-C7-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl und Cycloheptyl, vorzugsweise Cyclopropyl, Cyclopentyl und Cyclohexyl, insbesondere Cyclopropyl;
- C3-C7-Cycloalkoxy wie Cyclopropyloxy, Cyclobutyloxy, Cyclopentyloxy, Cyclohexyloxy und Cycloheptyloxy, vorzugsweise Cyclopentyloxy und Cyclohexyloxy, insbesondere Cyclohexyloxy;
- C3-C7-Cycloalkylthio wie Cyclopropylthio, Cyclobutylthio, Cyclopentylthio, Cyclohexylthio und Cycloheptylthio, vorzugsweise Cyclohexylthio;
- C3-C7-Cycloalkylamino wie Cyclopropylamino, Cyclobutylamino, Cyclopentylamino, Cyclohexylamino und Cycloheptyl amino, vorzugsweise Cyclopropylamino und Cyclohexylamino, insbesondere Cyclopropylamino;
- weitere Reste für ggf. subst. ein- oder zweikernige aromatische oder heteroaromatische Reste:
- Alkenyl, Alkinyl, Halogenalkenyl, Halogenalkinyl, Alkenyloxy, Alkinyloxy, Halogenalkenyloxy, Halogenalkinyloxy, Alkenylthio, Alkinylthio, Alkylsulfoxyl, Alkylsulfonyl, Alkenylsulfoxyl, Alkinylsulfoxyl, Alkinylsulfonyl,
- [0016] Vorzugsweise werden für die vorliegende Erfindung als Lösemittel Alkohole oder Alkohol enthaltende Gemische eingesetzt. Als Alkohol wird hierbei insbesondere ein solcher ausgewählt, bei dem R₁ ungleich R₂ ist. Als Lösemittel können außerdem Benzol, alkylierte Benzole, aliphatische und cycloaliphatische Ether eingesetzt werden.
- [0017] Ein Vorteil bei der Wahl eines Alkohols, bei dem R₁ ungleich R₂ ist, ist, daß es möglich wird, den Zielmolekülrest R₂ durch den Alkoholrest R₂ zu bestimmen und den preisgünstigsten Orthoester einzusetzen.
- [0018] Erfindungsgemäß wird die Reaktion vorzugsweise in Gegenwart einer mit dem Edukt zur Esterbildung befähigten Verbindung durchgeführt. Hierfür kommen z. B. Orthoester, insbesondere Trialkyl- bzw. Triarylorthocester oder Lactonacetale in Betracht. Erfindungsgemäß bevorzugt werden demgemäß Trialkylorthoformate. Ganz besonders bevorzugt sind Methyl- oder Ethylorthoformate.
- [0019] In den einzelnen Schritten können Katalysatoren zugesetzt werden. Hierfür kommen z. B. Lewis-Säuren und Brönsted-Säuren in Betracht. Insbesondere sind hier Protonendonatoren zu nennen. Beispiele sind Halogenwasserstoffe, Phosphorsäuren, Schwefelsäuren u. ä. Bevorzugt sind Halogenwasserstoffe, insbesondere Salzsäure. Die Katalysatoren werden vorzugsweise recycelt.
- [0020] Bei den entstehenden Produkten handelt es sich um 6-Alkoxy-(oder 6-Aryloxy 6H)-dibenzo[c,e][1,2]-oxaphosphorine. Bei den Alkoxygruppen handelt es sich vorzugsweise um Methoxy-, Ethoxy- oder Propoxy-Reste.
- [0021] Das erfundungsgemäße Verfahren ermöglicht die Darstellung der 6-Alkoxy-(6H)-dibenzo[c,e][1,2]-oxaphosphorine, insbesondere wenn als Lösemittel Alkohol verwendet wird, direkt aus industriell verfügbaren 6H-Dibenzo[c,e][1,2]-

DE 102 06 982 A 1

oxaphosphorin-6-oxiden in einem Syntheseschritt mit ausgezeichneten Ausbeuten. Vorteilhaft ist, dass unter technischen Bedingungen auf die Feindestillation verzichtet werden kann, und hierbei eine Reinheit von über 96% nach der Gaschromatographie erzielt wird.

[0022] Ferner ist vorteilhaft, dass das erfundungsgemäße Verfahren ein halogenfreies Arbeiten ermöglicht. Sofern z. B. Salzsäure zum Einsatz kommt wird diese lediglich als Katalysator eingesetzt. Diese wird bei der Entfernung des überschüssigen Alkohols mit recycelt. Die Folge hiervon ist, dass keine Halogenidabfälle entstehen. Weiterer Vorteil der vorliegenden Erfindung ist, dass die eingesetzten Edukte preiswert verfügbar sind. Außerdem ermöglicht die vorliegende Erfindung bei Einsatz saurer Harze als Katalysatoren ein kontinuierliches Arbeiten. Ausgehend von o-Hydroxybiphenyl und Phosphortrichlorid handelt es sich um ein zweistufiges Verfahren, während im Stand der Technik dreistufige Verfahren zum Einsatz kommen.

[0023] Im folgenden wird die Erfindung unter Bezugnahme auf die Beispiele näher erläutert:

6-Methoxy-(6H)-dibenz[c,e][1,2]-oxaphosphorin aus 6H-Dibenz[c,e][1,2]-oxaphosphorin-6-oxid und Trimethylorthoformiat in Methanol

[0024] 1,33 mol (287,5 g) 6H-Dibenz[c,c][1,2]-oxaphosphorin-6-oxid und 2,5 ml konz. HCl werden in 1230 ml Methanol gelöst und die Mischung wird auf 85°C zum Rückfluß erhitzt (leichter Überdruck). Nach 45 min. werden weitere 0,5 ml konz. HCl zugegeben und anschließend innerhalb von 5 h 2,7 mol (295 ml) Trimethylorthoformiat zugetropft. Während des Zutropfens des Trimethylorthoformats werden alle 30 min. jeweils 0,5 ml konz. HCl zugefügt. Nach Beendigung der Reaktion werden alle flüchtigen Bestandteile am Rotationsverdampfer unter reduziertem Druck entfernt. Der gelbe, ölige Rückstand wird im Feinvakuum (0,1 mbar) destilliert. Bei 130–135°C destilliert das Produkt als farblose, ölige Flüssigkeit, welche langsam nach mehreren Wochen erstarrt. Ausbeute: 265 g, 87% der Theorie.

6-Ethoxy-6H-dibenz[c,e][1,2]-oxaphosphorin aus 6H-Dibenz[c,e][1,2]-oxaphosphorin-6-oxid, Ethanol und Triethylorthoformiat

[0025] 0,2 mol (43,2 g) 6H-Dibenz[c,c][1,2]-oxaphosphorin-6-oxid und 0,5 ml konz. HCl werden in 352 ml Ethanol gelöst und die Mischung wird auf 90°C zum Rückfluß erhitzt (leichter Überdruck). Nach 50 min. werden weitere 0,1 ml konz. HCl zugegeben und anschließend innerhalb von 4 h 0,4 mol (59,3 g, 66,5 ml) Triethylorthoformiat zugetropft. Während des Zutropfens des Triethylorthoformats werden alle 30 min. jeweils 0,1 ml konz. HCl zugegeben. Nach Beendigung der Reaktion werden alle flüchtigen Bestandteile am Rotationsverdampfer unter reduziertem Druck entfernt. Der gelbe, ölige Rückstand wird im Feinvakuum (0,1 mbar) destilliert. Bei 135–142°C destilliert das Produkt als farblose, ölige Flüssigkeit (erstarnte Schmelze $F_p = 42^\circ\text{C}$). Ausbeute: 44,8 g, 92% der Theorie.

6-Ethoxy-6H-dibenz[c,e][1,2]-oxaphosphorin aus 6H-Dibenz[c,e][1,2]-oxaphosphorin-6-oxid Edukt, Ethanol und Trimethylorthoformiat

[0026] 5,0 mol (1081 g) 6H-Dibenz[c,c][1,2]-oxaphosphorin-6-oxid und 2,0 ml konz. HCl werden in 4400 ml Ethanol gelöst und die Mischung wird auf 95°C zum Rückfluß erhitzt (leichter Überdruck). Nach 1 h werden weitere 1,0 ml konz. HCl zugegeben und anschließend innerhalb von 8 h 6,5 mol (689,8 g 711,1 ml) Trimethylorthoformiat zugetropft. Während des Zutropfens des Trimethylorthoformats werden alle 30 min. jeweils 1,0 ml konz. HCl zugefügt. Nach Beendigung der Reaktion werden alle flüchtigen Bestandteile am Rotationsverdampfer unter reduziertem Druck entfernt. Der gelbe, ölige Rückstand wird im Feinvakuum (0,1 mbar) destilliert. Bei 135–142°C destilliert das Produkt als farblose, ölige Flüssigkeit (erstarnte Schmelze $F_p = 42^\circ\text{C}$). Ausbeute: 1001,0 g, 82% der Theorie.

6-iso-Propoxy-6H-dibenz[c,e][1,2]-oxaphosphorin aus 6H-Dibenz[c,c][1,2]-oxaphosphorin-6-oxid Edukt, iso-Propanol und Triethylorthoformiat

[0027] 0,28 mol (59,5 g) 6H-Dibenz[c,c][1,2]-oxaphosphorin-6-oxid werden in 600 ml iso-Propanol gelöst. 0,6 ml konz. HCl werden zugescizt und die Mischung auf 105°C zum Rückfluß erhitzt (leichter Überdruck). Nach 1 h werden weitere 0,15 ml konz. HCl zugegeben und anschließend innerhalb von 3 h 0,55 mol (81,5 g, 92 ml) Triethylorthoformiat zugetropft. Während des Zutropfens des Triethylorthoformats werden alle 15 min. jeweils 0,15 ml konz. HCl zugefügt. Nach Beendigung der Reaktion werden alle flüchtigen Bestandteile am Rotationsverdampfer unter reduziertem Druck entfernt. Der gelbe, ölige Rückstand wird im Feinvakuum (0,1 mbar) destilliert. Bei 142–145°C destilliert das Produkt als farblose, ölige Flüssigkeit. Ausbeute: 35,2 g, 78% der Theorie.

Patentansprüche

1. Verfahren zur Herstellung von 6-Alkoxy-(6H)-dibenz[c,e][1,2]-oxaphosphorinen, dadurch gekennzeichnet, dass 6H-Dibenz[c,e][1,2]-oxaphosphorin-6-oxide der Formel I

5

10

15

20

30

35

40

45

50

55

65

- mit R3, R4 = Alkyl-, Alkoxy-, Alkylthio-, Alkenyl-, Alkinyl-, Aryl-, Heteroaryl-, Cyclolakyl-Gruppen
als Edukt eingesetzt werden.
- 15 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Herstellung in folgenden Schritten erfolgt:
- 1) Bereitstellung wenigstens eines Lösemittels
 - 2) Zugabe des Edukts
 - 3) Zugabe eines Orthoesters und
 - 4) Zusatz von Alkohol falls dieser nicht schon unter Stufe 1) verwendet wird.
- 20 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass als Lösemittel Alkohol oder Alko-hol enthaltenden Gemische eingesetzt werden.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass Alkohole der Formel R₂OH eingesetzt werden, wobei
R₂ Alkyl bedeutet.
- 25 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Reaktion in Gegenwart einer mit
6H-Dibenz[c,e][1,2]-oxaphosphorin-6-oxiden zur Esterbildung befähigten Verbindung durchgeführt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Reaktion in Gegenwart eines Tri-alkylorthoformiats durchgeführt wird.
- 30 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Reaktion in Gegenwart eines Tri-Methyl- oder
Tri-Ethylorthoformiats durchgeführt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es in Gegenwart von Katalysatoren
durchgeführt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als Katalysatoren Lewis-Säuren oder Brönsted-Säu-ren eingesetzt werden.
- 35 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass als Säuren Protonendonatoren eingesetzt werden.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass als Säuren Halogenwasserstoffe eingesetzt werden.
12. Verfahren nach Anspruch 1-11, dadurch gekennzeichnet, dass der überschüssige Alkohol entfernt und zugleich
der Katalysator recycelt wird.

40

45

50

55

60

65