Ortogonální projekce, ortogonalizace

Petr Olšák petr@olsak.net

http://petr.olsak.net/

Ortogonální projekce vektoru do rng U

Na tomto slide $\mathbf{U} \in \mathbb{R}^{m \times n}$ značí matici s **ortonormálními sloupci**.

- Tvrzení: Nechť z ∈ R^m je libovolný vektor. Pak vektor x = UU^Tz leží v rng U a má ze všech prvků z rng U nejkratší vzdálenost od vektoru z. Takže (x z) ⊥ rng U.
- Vektor x z předchozího bodu je řešením optimalizační úlohy

$$min\{\|\mathbf{x} - \mathbf{z}\|; \mathbf{x} \in rng \mathbf{U}\}\$$

a nazýváme ho ortogonální projekce vektoru z do rng U

- Souřadnice projekce vzhledem k bázi $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ (sloupce matice \mathbf{U}) najdeme ve vektoru $\mathbf{U}^T\mathbf{z}$, tedy jsou to čísla $\mathbf{u}_1^T\mathbf{z}, \ \mathbf{u}_2^T\mathbf{z}, \dots, \ \mathbf{u}_k^T\mathbf{z}$.
- Matici $\mathbf{U}\mathbf{U}^T$ nazýváme ortogonální projektor do rng \mathbf{U} , protože zobrazení $f: \mathbb{R}^m \to \mathbb{R}^m$ definované předpisem $\mathbf{f}(\mathbf{z}) = (\mathbf{U}\mathbf{U}^T)\mathbf{z}$ je projekce do rng \mathbf{U} , která promítá na rng \mathbf{U} své vzory kolmo.
- Obecná lineární projekce je zobrazení f(x) = Px, kde matice P má vlastnost idempotence: P² = P. Ortogonální projektor je navíc symetrická matice, P = P^T.

Ortogonální rejekce

I na tomto slide $\mathbf{U} \in \mathbb{R}^{m \times n}$ značí matici s **ortonormálními sloupci**.

- Tvrzení: Označme $X = (\operatorname{rng} \mathbf{U})^{\perp}$. Nechť $\mathbf{z} \in \mathbb{R}^m$ je libovolný vektor. Pak vektor $\mathbf{y} = (\mathbf{I} \mathbf{U}\mathbf{U}^T)\mathbf{z}$ leží v X a má ze všech prvků z X nejkratší vzdálenost od vektoru \mathbf{z} . Takže $(\mathbf{y} \mathbf{z}) \perp X$.
- Vektoru y z předchozího bodu říkáme ortogonální rejekce.
- Pro každý vektor z platí, z = x + y, kde x je ortogonální projekce z na rng U a y je odpovídající rejekce.
- Velikost rejekce je rovna vzdálenosti z od rng U, tedy ||y|| = ||x z||.

Příklady

Projekce na podprostor dimenze 1

Podprostor dimenze 1 je přímka Span $\{a\}$, kde a je nenulový směrový vektor přímky. Vytvoříme jednosloupcovou matici $\mathbf{U} = \frac{1}{\|\mathbf{a}\|} [\mathbf{a}]$. Ta obsahuje ve svém sloupci ortonormální bázi, projekci lze pak spočítat:

$$\mathbf{x} = \mathbf{U}\mathbf{U}^T\mathbf{z} = \frac{1}{\|\mathbf{a}\|^2} \mathbf{a}(\mathbf{a}^T\mathbf{z}) = \frac{\mathbf{a}^T\mathbf{z}}{\mathbf{a}^T\mathbf{a}} \mathbf{a}$$

Totéž plyne přímo z geometrické vlastnosti skalárního součinu.

Vzdálenost bodu z od afinního prostoru U^Tx = b

Předpokládáme matici **U** s ortonormálními sloupci. Vezmeme nějaké partikulární řešení **p**, pro které je **Up** = **b** a hledanou vzdálenost spočítáme jako vzdálenost projekce **z** od projekce **p**. Tedy:

$$d = \|\mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{z} - \mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{p}\| = \|\mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{z} - \mathbf{U}\mathbf{b}\| = \|\mathbf{U}(\mathbf{U}^{\mathsf{T}}\mathbf{z} - \mathbf{b})\| = \|\mathbf{U}^{\mathsf{T}}\mathbf{z} - \mathbf{b}\|.$$

Poslední rovnost plyne z faktu, že f(x) = Ux je isometrie.

Gram-Schmidtova ortogonalizace

Ke každé bázi $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ nějakého podprostoru existuje ortonormální báze stejného podprostoru $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k$, pro kterou platí:

$$Span\{a_1, a_2, ..., a_i\} = Span\{q_1, q_2, ..., q_i\} \quad \forall i = \{1, 2, ..., k\}.$$
 (1)

- Cílovou bázi q₁, q₂,..., q_k můžeme vnímat jako modifikaci zadané báze "v mezích mírného pokroku" s požadavkem, aby cílová báze byla ortonormální.
- Toto tvrzení je geometricky velmi názorné.
- Postup sestavení báze $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k$ může být následující:
 - q₁ je normalizovaný a₁.
 - Pro i > 1 najdeme kolmou projekci \mathbf{x}_i vektoru \mathbf{a}_i do Span $\{\mathbf{q}_1, \dots, \mathbf{q}_{i-1}\}$ a dále spočítáme $\mathbf{q}_i' = \mathbf{a}_i \mathbf{x}_i$, konečně \mathbf{q}_i je normalizovaný \mathbf{q}_i' .
 - Vzoreček pro výpočet projekce x, přitom známe z předchozího:

$$\mathbf{x}_i = \sum_{j=1}^{i-1} (\mathbf{q}_j^T \mathbf{a}_i) \mathbf{q}_i$$

Protože $\mathbf{q}_i = LK(\mathbf{q}_1, \dots, \mathbf{q}_{i-1}, \mathbf{a}_i)$, platí pravidlo (1) o obalech.

QR rozklad

QR rozklad není nic jiného, než Gram-Schmidtova ortogonalizace vyjádřená maticovým násobením. Předpokládejme, že $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_n]$ je matice s lineárně nezávislými sloupci.

Redukovaný QR rozklad

Pro matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ existuje $\mathbf{Q} \in \mathbb{R}^{m \times n}$ s ortonormálními sloupci a $\mathbb{R}^{n \times n}$ horní trojúhelníková tak, že $\mathbf{A} = \mathbf{Q}\mathbf{R}$.

Pozorování: Matice **Q** obsahuje ve sloupcích bázi \mathbf{q}_i z Gram-Schmidtovy ortogonalizace báze \mathbf{a}_i . Matice **R** obsahuje souřadnice vektorů \mathbf{a}_i vzhledem k bázi \mathbf{q}_i , viz též pravidlo lineárních obalů (1).

Plný QR rozklad

- Pro $\mathbf{A} \in \mathbb{R}^{m \times n}$ existuje $\mathbf{Q} \in \mathbb{R}^{m \times m}$ ortogonální a $\mathbf{R} \in \mathbb{R}^{m \times n}$ horní trojúhelníková tak, že $\mathbf{A} = \mathbf{Q}\mathbf{R}$.
 - Na rozdíl od předchozího je \mathbf{Q} rozšířena o sloupce s bází ortogonálního doplňku podprostoru Span $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ a \mathbf{R} má dolní řádky zcela nulové.

QR rozklad, poznámky

- QR rozklad matice s LN sloupci (ani redukovaný) není jednoznačný: každý jednotlivý sloupec matice Q může být vynásoben číslem -1 a dostáváme rovněž QR rozklad.
- Při požadavku na kladná čísla na diagonále matice R je redukovaný QR rozklad matice s LN sloupci již jednoznačný.
- Úplný QR rozklad zobrazí v pravém bloku matice Q (ve sloupcích n+1,...,m) ortonormální bázi řešení soustavy A^Tx = 0 jako "vedlejší efekt výpočtu".
- Jsou-li sloupce matice A lin. závislé, pak sloupcům, které jsou lineární kombinací předchozích odpovídají nuly v matici R, tj. rozklad také existuje.
- Je-li A čtvercová, pak det A = ± det R, protože det Q = ±1. Přitom det R spočítáme levně jako součin diagonálních prvků.
- V Matlabu spočítáme úplný QR rozkad pomocí [Q R] = qr(A) a redukovaný pomocí [Q R] = qr(A,0).
- Algoritmus na QR rozkad implementovaný v počítačových systémech se opírá obvykle o Householderovy matice a nekopíruje postup při Gram-Schmidtově ortogonalizaci.

Řešení soustav Ax = b QR rozkladem

Nechť **A** = **QR** je plný QR rozklad matice **A**. Pak můžeme řešit soustavu **Ax** = **b** takto:

$$Ax = b$$

$$QRx = b$$

$$Q^{T}QRx = Q^{T}b$$

$$Rx = Q^{T}b$$

- Soustavu Rx = c můžeme řešit zpětnou substitucí.
- Numerická implemetace QR rozklau je stabilnější než Gaussova eliminace.