12	
Leclo	Applications of Linear Systems.
INITRO:	We have focused on solving linear
A Second	spotems. You might wonder why,
	since systems you are likely to
	meet in practice are nonlinear.
	That is true, but often we
	can develop approaches to such
	problems that result in the
	Solution of linear egs. Another common scenario is
	that a linear system has no exact
	Sit, but we nevertheless want an approx
	sol. This problem can be cast as another
	linear problem (w) a sol").
LINEAR	
Propositi	Suppose we have a dataset of
	house prices by: 3 and "features" of each house, that may
**************************************	dictate the house's price.
	anciare ove romes price.
	There are also
	tor example.
^	× 1
	Site # Dons price
	Site # nooms price
	2000 3 500K
ses 2	1000 2 12014
woutes w	2000 4 60016
	6
E	

Suppose further, that we wanted to predict house prices given a house's features of thow would we do it? A common approach is to midel the relationship between F and y in the deltaset by a function of i. R2 - R st. y: = h(x201) In parametric regression que additionally assume that we know the structure of he ahead of time for example, Suppose that h is linear: h(x) = 9, oc, + 9₂ oc₂The data in the table can then be written in the form: $0_{1}x_{1}^{(1)} + 0_{2}x_{2}^{(2)} = y^{(2)}$ $0_{1}x_{1}^{(3)} + 0_{2}x_{2}^{(2)} = y^{(2)}$ 0, oc + Oroca = yn)

Contrary to our earlier notation, Ax=b, the unknowns here are the 19's not the x's. Thus: in these. We have arrived a a linear system of ears. Of course, all this is prodicated on the assumption that h(x) is wheat if it is nonlinear? Remarkably, it turns out that the process of Cobtaining the interpolating h(z) is still a linear problem! Let me illustrate w an

Example Suppose our dataset is:

y A P3 (x3148) Pr(xnyr) P: 00 + 0, (-1) + 02(-1)2 = 1 P2: 00+01(0)+01(0)=-1 P3: 00+0, (2)+02(2)= 7 Notice that by analogy with (b), there are three features for each point (x,y): 1, oc, oc Notice also that by analogy with to the we have a linear problem.

EVEN THOUGH h(x) is nonlinear. The reason of course is that has is nonlinear in or, but linear in o = 600,0,000 The process of using hypotheses hold that are linear in B.T.W. GE applied to this system shows that $\overline{0} = \langle -1, 0, 27,$ corresponding to the polynomial h(x)=-1+2x6 In the example above, we were asked SQUARES to fit a graduatic curre to three points. Clearly this can be done exactly. But what if we were presented in the following data:

and asked to fit a strought line, $h(x) = 0 + 0_1 \times .$ Though no like goes

then all three pts, there is a bestfit line. fit line. ASIDE: Before we tackle this problem, it is instructive to ask why we are not considering a graduate function, coupable of passing the all 3 pts.
The answer lies out the heart of machine leaving: we don't want' to overfit. An example w/ more dorta makes the point. 10 Pline A high-order polynomial If you were asked to predict y when x=xo, would you use the I or the D? I think you would use the D because the data appear to be scattered about the line. Put another way, our hypothesis Is that y= 0, +0, x+E, where E 18 some nuise (xe)=0). Had we sampled a different set of pairs (x, y,),

have been very different, but the thie wouldn't have changed very much. Returning to our problem, we have: $\frac{18}{2}$ $\frac{1}{2}$ $\frac{1$ P_{2} : P_{3} : Por $[1 \ 1][0_0] = [1]$ or X0 = y (**) $[1 \ 2][0_1] = [2]$ $[1 \ 3]$ while we count solve (sod) exactly, we can relax the problem and try to find an approx 8st 2 satisfying XO = y. The most common approach 19 to 11 x0-y1/2 = (x0-y) (x0-y) $= (0^T \times T - y^T)(X - y).$

$= 0^{T} \times T \times 0 - 0^{T} \times T_{y} - y^{T} \times 0 - y^{T} y$
But
$(y^{T} \times 0)^{T} = 0^{T} \times Ty$
$\Rightarrow y^{T} \times 0 = (0^{T} \times 1^{T} y)^{T} = 0^{T} \times 1^{T} y$
since ytx10=scalar
Thus:
1/x0 y1/2 = 0Tx Tx0 - 20TxTy - yTy (4)
This is smallast when its graduent is zero
Vollx0-yll2 = 0.
=) 2xTXO - 2xTy = 0. (4)
=)
In our case:
$x^Tx = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$
123)12 [6 14]
VT (1) 1) (1) - (-)
23)2 11

	Trus (5)=)
	3 6 0 = 5
	(6 14) (91) (11)
=)	3 6 5
GE	0 2 1
7	20,=1 = 0,=1/2
Sub.	30, + 60, = 5 = 300 = 5 - 6(2) = 5 - 3 = 2
	$=) 0 = \frac{2}{3}$
	X X 90+91X
	X
	Recall that this line is the one
	that minimizes 11x0-y112. But
	$(XO)_{i} = O_{o} + O_{i} \times i$
	= predicted value of yi, often denuted ŷi.
	often denuted yi.
	The same is
	Thus: $(X\Theta - Y)_i = Y_i - Y_i = e_i$:

