```
In [62]: # Import our dependencies
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler,OneHotEncoder, MinMaxScaler
    import pandas as pd
    import tensorflow as tf
    import numpy as np

# Import our input dataset
    df = pd.read_csv('../neural-network/pitcher_salaries_cleaned.csv')
    df.head()
```

Out[62]:

:		Year	Full Name	Age	Salary	ERA	Hits	Earned Runs	Strike Outs	Home Runs	Wins	Losses	Outs Pitched	Faced by Pitcher	Games Finished	Weight	ı
	0	1990	AbbottJim	23	185000	4.51	246	106	105	16	10	14	635	925	0	200	
	1	1990	AbbottPaul	23	100000	5.97	37	23	25	0	0	5	104	162	0	185	
	2	1990	AldredScott	22	100000	3.77	13	6	7	0	1	2	43	63	0	195	
	3	1990	AndersonAllan	26	300000	4.53	214	95	82	20	7	18	566	797	0	178	
	4	1990	AppierKevin	23	100000	2.76	179	57	127	13	12	8	557	784	1	180	

Dattore

In [63]:

create log transformed column for salary
df['sal-log']=np.log10(df['Salary'])
df

Out[63]:

	Year	Full Name	Age	Salary	ERA	Hits	Earned Runs	Strike Outs	Home Runs	Wins	Losses	Outs Pitched	Faced by Pitcher	Games Finished
0	1990	AbbottJim	23	185000	4.51	246	106	105	16	10	14	635	925	0
1	1990	AbbottPaul	23	100000	5.97	37	23	25	0	0	5	104	162	0
2	1990	AldredScott	22	100000	3.77	13	6	7	0	1	2	43	63	0
3	1990	AndersonAllan	26	300000	4.53	214	95	82	20	7	18	566	797	0
4	1990	AppierKevin	23	100000	2.76	179	57	127	13	12	8	557	784	1
•••														
4932	2016	WorleyVance	29	2600000	3.53	84	34	56	11	2	2	260	365	13
4933	2016	WrightMike	26	510500	5.79	81	48	50	12	3	4	224	328	5
4934	2016	WrightSteven	32	514500	3.33	138	58	127	12	13	6	470	656	0
4935	2016	YoungChris	37	4250000	6.19	104	61	94	28	3	9	266	406	7
4936	2016	ZimmermannJordan	30	18000000	4.87	118	57	66	14	9	7	316	450	1

4937 rows × 20 columns

Reduce down to top features

df= df.drop(["Full Name","Team","League","Age","Earned Runs","Home Runs","Wins","Losses","Weight","Height
df.head()

version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only """Entry point for launching an IPython kernel.

\cap		+	Γ	6	Л	٦	۰
U	u	L	L	U	+	J	۰

	ERA	Hits	Strike Outs	Outs Pitched	Batters Faced by Pitcher	Games Finished	Games Started	sal-log
0	4.51	246	105	635	925	0	33	5.267172
1	5.97	37	25	104	162	0	7	5.000000
2	3.77	13	7	43	63	0	3	5.000000
3	4.53	214	82	566	797	0	31	5.477121
4	2.76	179	127	557	784	1	24	5.000000

```
In [65]:
```

```
df= df.drop(["Games Finished", "Games Started", "Hits"],1)
df.head()
```

C:\Users\alyss\anaconda3\envs\mlenv\lib\site-packages\ipykernel_launcher.py:1: FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only """Entry point for launching an IPython kernel.

Out[65]:

	ERA	Strike Outs	Outs Pitched	Batters Faced by Pitcher	sal-log
0	4.51	105	635	925	5.267172
1	5.97	25	104	162	5.000000
2	3.77	7	43	63	5.000000
3	4.53	82	566	797	5.477121
4	2.76	127	557	784	5.000000

In [77]:

```
df= df.drop(["Batters Faced by Pitcher"],1)
df.head()
```

C:\Users\alyss\anaconda3\envs\mlenv\lib\site-packages\ipykernel_launcher.py:1: FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only """Entry point for launching an IPython kernel.

Out[77]:

	ERA	Strike Outs	Outs Pitched	sal-log
0	4.51	105	635	5.267172
1	5.97	25	104	5.000000
2	3.77	7	43	5.000000
3	4.53	82	566	5.477121
4	2.76	127	557	5.000000

Split Features/Target & Training/Testing Sets

Split into features and target

- y variable: Our target variable, Salary
- X variable: Our features; just drop Salary and Full Name

```
In [78]:
          # Split our preprocessed data into our features and target arrays
          y = df["sal-log"].values
          X = df.drop(["sal-log"],1).values
          # Split the preprocessed data into a training and testing dataset
          X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
```

C:\Users\alyss\anaconda3\envs\mlenv\lib\site-packages\ipykernel_launcher.py:3: FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only This is separate from the ipykernel package so we can avoid doing imports until

Build and Instantiate StandardScaler object, then standardize numerical features

```
In [79]:
          # Create a StandardScaler instance
          scaler = MinMaxScaler()
          # Fit the StandardScaler
          X scaler = scaler.fit(X train)
          # Scale the data
          X_train_scaled = X_scaler.transform(X_train)
          X_test_scaled = X_scaler.transform(X_test)
In [ ]:
          # see if data scaled properly
          scaled_data=pd.DataFrame(X_train_scaled)
          scaled_data.head()
In [ ]:
          # see if data scaled properly
          scaled_y=pd.DataFrame(y_train_scaled)
          scaled y.head()
```

Build Neural Net Framework

```
In [80]:
          # Define the model - deep neural net
          number_input_features = len(X_train[0])
          hidden_nodes_layer1 = 100
          hidden_nodes_layer2 = 100
          hidden_nodes_layer3 = 50
          hidden_nodes_layer4 = 20
          nn = tf.keras.models.Sequential()
          # First hidden Layer
          nn.add(
              tf.keras.layers.Dense(units=hidden_nodes_layer1, input_dim=number_input_features, activation="selu")
          # Second hidden Layer
          nn.add(tf.keras.layers.Dense(units=hidden_nodes_layer2, activation="relu"))
          # Third hidden Layer
          nn.add(tf.keras.layers.Dense(units=hidden_nodes_layer3, activation="elu"))
          # Fourth hidden Layer
          nn.add(tf.keras.layers.Dense(units=hidden_nodes_layer4, activation="elu"))
          # Output Layer
          nn.add(tf.keras.layers.Dense(units=10, activation="elu"))
          # Check the structure of the model
          nn.summary()
```

Model: "sequential_13"

Layer (type) Output Shape Param #

```
______
dense_68 (Dense)
                   (None, 100)
                                     400
dense_69 (Dense)
                   (None, 100)
                                     10100
dense 70 (Dense)
                    (None, 50)
                                      5050
dense_71 (Dense)
                    (None, 20)
                                      1020
dense 72 (Dense)
                    (None, 10)
                                      210
______
Total params: 16,780
Trainable params: 16,780
Non-trainable params: 0
```

Compile the Model

```
# Compile the model
nn.compile(loss="mean_squared_logarithmic_error", optimizer="RMSprop", metrics=["accuracy"])
```

Train the model

```
In [82]:
     # Train the model
     fit_model = nn.fit(X_train,y_train,epochs=200)
     Epoch 1/200
     116/116 [============== ] - 1s 2ms/step - loss: 0.9420 - accuracy: 0.0000e+00
     Epoch 2/200
     Epoch 3/200
     116/116 [============ ] - 0s 1ms/step - loss: 0.7883 - accuracy: 5.4025e-04
     Epoch 4/200
    Epoch 5/200
     116/116 [================ ] - 0s 1ms/step - loss: 0.7742 - accuracy: 8.1037e-04
     Epoch 6/200
     116/116 [================= ] - 0s 1ms/step - loss: 0.7716 - accuracy: 0.0011
     Epoch 7/200
     Epoch 8/200
     116/116 [============= ] - 0s 1ms/step - loss: 0.7699 - accuracy: 8.1037e-04
     Epoch 9/200
     Epoch 10/200
     Epoch 11/200
     Epoch 12/200
     116/116 [============] - 0s 1ms/step - loss: 0.7682 - accuracy: 0.0022
     Epoch 13/200
     Epoch 14/200
     Epoch 15/200
     116/116 [=============== ] - 0s 930us/step - loss: 0.7681 - accuracy: 0.0014
    Epoch 16/200
     Epoch 17/200
     116/116 [================= ] - 0s 2ms/step - loss: 0.7680 - accuracy: 5.4025e-04
     Epoch 18/200
     116/116 [============= ] - 0s 1ms/step - loss: 0.7678 - accuracy: 0.0014
     Epoch 19/200
     116/116 [============ ] - 0s 1ms/step - loss: 0.7679 - accuracy: 5.4025e-04
     Epoch 20/200
     116/116 [=============== ] - 0s 1ms/step - loss: 0.7679 - accuracy: 5.4025e-04
     Epoch 21/200
```

```
Epoch 22/200
Epoch 23/200
116/116 [============ ] - 0s 913us/step - loss: 0.7679 - accuracy: 0.0016
Epoch 24/200
Epoch 25/200
116/116 [============ ] - 0s 948us/step - loss: 0.4045 - accuracy: 0.0014
Epoch 26/200
Epoch 27/200
116/116 [============== ] - 0s 1ms/step - loss: 0.0078 - accuracy: 0.0014
Epoch 28/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0078 - accuracy: 0.0014
Epoch 29/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0077 - accuracy: 0.0011
Epoch 30/200
116/116 [============] - 0s 1ms/step - loss: 0.0077 - accuracy: 0.0022
Epoch 31/200
Epoch 32/200
116/116 [=========== ] - 0s 2ms/step - loss: 0.0076 - accuracy: 0.0030
Epoch 33/200
116/116 [============= ] - 0s 2ms/step - loss: 0.0076 - accuracy: 0.0022
Epoch 34/200
116/116 [============ ] - 0s 2ms/step - loss: 0.0076 - accuracy: 0.0016
Epoch 35/200
116/116 [============= ] - 0s 1ms/step - loss: 0.0076 - accuracy: 0.0032
Epoch 36/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0076 - accuracy: 0.0035
Epoch 37/200
116/116 [============== ] - 0s 904us/step - loss: 0.0076 - accuracy: 0.0035
Epoch 38/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0076 - accuracy: 0.0019
Epoch 39/200
116/116 [============== ] - 0s 1ms/step - loss: 0.0076 - accuracy: 0.0030
Epoch 40/200
Epoch 41/200
Epoch 42/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0030
Epoch 43/200
116/116 [============== ] - 0s 1ms/step - loss: 0.0076 - accuracy: 0.0030
Epoch 44/200
Epoch 45/200
116/116 [============= ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0027
Epoch 46/200
Epoch 47/200
Epoch 48/200
116/116 [============== ] - 0s 1ms/step - loss: 0.0076 - accuracy: 0.0024
Epoch 49/200
116/116 [============] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0035
Epoch 50/200
Epoch 51/200
116/116 [============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 8.1037e-04
Epoch 52/200
116/116 [================= ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0030
Epoch 53/200
116/116 [=========== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0024
Epoch 54/200
116/116 [============= ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0016
Epoch 55/200
116/116 [=================== - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0030
Epoch 56/200
116/116 [============ ] - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0016
Epoch 57/200
116/116 [=========== ] - 0s 3ms/step - loss: 0.0075 - accuracy: 0.0014
Epoch 58/200
116/116 [============== ] - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0030
Epoch 59/200
116/116 [================= ] - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0024
```

```
Epoch 60/200
Epoch 61/200
Epoch 62/200
Epoch 63/200
116/116 [=========== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0014
Epoch 64/200
116/116 [================ ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0035
Epoch 65/200
116/116 [=============== ] - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0011
Epoch 66/200
116/116 [============= ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0016
Epoch 67/200
116/116 [=========== ] - 0s 983us/step - loss: 0.0075 - accuracy: 0.0032
Epoch 68/200
Epoch 69/200
116/116 [============= ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0022
Epoch 70/200
116/116 [============] - 0s 1ms/step - loss: 0.0074 - accuracy: 0.0022
Epoch 71/200
116/116 [============= ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0019
Epoch 72/200
116/116 [=========== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0024
Epoch 73/200
116/116 [============= ] - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0014
Epoch 74/200
116/116 [=========== ] - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0024
Epoch 75/200
116/116 [============== ] - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0024
Epoch 76/200
116/116 [============ ] - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0016
Epoch 77/200
116/116 [============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0019
Epoch 78/200
Epoch 79/200
116/116 [============] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0016
Epoch 80/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0016
Epoch 81/200
116/116 [============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0019
Epoch 82/200
116/116 [============= ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0027
Epoch 83/200
116/116 [============= ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0024
Epoch 84/200
Epoch 85/200
Epoch 86/200
116/116 [=============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0016
Epoch 87/200
116/116 [============] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0019
Epoch 88/200
116/116 [============= ] - 0s 3ms/step - loss: 0.0075 - accuracy: 0.0014
Epoch 89/200
116/116 [============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0024
Epoch 90/200
116/116 [=============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0011
Epoch 91/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0019
Epoch 92/200
116/116 [============ - 0s 1ms/step - loss: 0.0075 - accuracy: 8.1037e-04
Epoch 93/200
Epoch 94/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0019
Epoch 95/200
Epoch 96/200
116/116 [================= ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0016
Epoch 97/200
116/116 [================= ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0011
```

```
Epoch 98/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0030
Epoch 99/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0011
Fnoch 100/200
116/116 [============= ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0019
Epoch 101/200
116/116 [=========== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0024
Epoch 102/200
116/116 [================== ] - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0016
Epoch 103/200
116/116 [================== ] - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0016
Epoch 104/200
116/116 [============= ] - 0s 1ms/step - loss: 0.0075 - accuracy: 8.1037e-04
Epoch 105/200
116/116 [=========== ] - 0s 957us/step - loss: 0.0075 - accuracy: 0.0014
Epoch 106/200
Epoch 107/200
Epoch 108/200
116/116 [=========== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0024
Epoch 109/200
116/116 [============= ] - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0011
Epoch 110/200
116/116 [=========== ] - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0016
Epoch 111/200
116/116 [============= ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0030
Epoch 112/200
116/116 [=========== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0022
Epoch 113/200
116/116 [=============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0022
Epoch 114/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0011
Epoch 115/200
116/116 [=============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0019
Epoch 116/200
116/116 [============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0014
Epoch 117/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0024
Epoch 118/200
Epoch 119/200
Epoch 120/200
Epoch 121/200
Epoch 122/200
116/116 [============ ] - 0s 957us/step - loss: 0.0075 - accuracy: 0.0014
Epoch 123/200
Epoch 124/200
Epoch 125/200
116/116 [=============] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0016
Epoch 126/200
Epoch 127/200
Epoch 128/200
116/116 [=============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0022
Epoch 129/200
116/116 [=========== ] - 0s 948us/step - loss: 0.0075 - accuracy: 0.0019
Epoch 130/200
Epoch 131/200
116/116 [================== - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0011
Epoch 132/200
Epoch 133/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0032
Epoch 134/200
116/116 [============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0019
Epoch 135/200
```

```
Epoch 136/200
Epoch 137/200
Fnoch 138/200
Epoch 139/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0019
Epoch 140/200
Epoch 141/200
116/116 [================= ] - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0016
Epoch 142/200
116/116 [============ ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0024
Epoch 143/200
116/116 [============ ] - 0s 930us/step - loss: 0.0075 - accuracy: 0.0011
Epoch 144/200
Epoch 145/200
Epoch 146/200
116/116 [=========== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0016
Epoch 147/200
116/116 [============= ] - 0s 1ms/step - loss: 0.0074 - accuracy: 0.0022
Epoch 148/200
116/116 [=========== ] - 0s 1ms/step - loss: 0.0074 - accuracy: 0.0027
Epoch 149/200
116/116 [============= ] - 0s 2ms/step - loss: 0.0075 - accuracy: 0.0022
Epoch 150/200
116/116 [============ ] - 0s 913us/step - loss: 0.0075 - accuracy: 0.0016
Epoch 151/200
116/116 [================= ] - 0s 904us/step - loss: 0.0075 - accuracy: 0.0035
Epoch 152/200
116/116 [============ ] - 0s 948us/step - loss: 0.0074 - accuracy: 0.0030
Epoch 153/200
Epoch 154/200
Epoch 155/200
Epoch 156/200
116/116 [=========== ] - 0s 904us/step - loss: 0.0074 - accuracy: 0.0024
Epoch 157/200
Epoch 158/200
Epoch 159/200
116/116 [============ ] - 0s 913us/step - loss: 0.0075 - accuracy: 8.1037e-04
Epoch 160/200
116/116 [=========== ] - 0s 913us/step - loss: 0.0075 - accuracy: 0.0032
Epoch 161/200
Epoch 162/200
116/116 [================ ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0022
Epoch 163/200
Epoch 164/200
116/116 [=========== ] - 0s 948us/step - loss: 0.0075 - accuracy: 0.0019
Epoch 165/200
Epoch 166/200
Epoch 167/200
116/116 [=========== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0024
Epoch 168/200
Epoch 169/200
Epoch 170/200
Epoch 171/200
116/116 [============ ] - 0s 922us/step - loss: 0.0075 - accuracy: 0.0016
Epoch 172/200
116/116 [================== ] - 0s 974us/step - loss: 0.0074 - accuracy: 0.0027
Epoch 173/200
116/116 [============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0030
```

```
Epoch 174/200
     116/116 [=========== ] - 0s 913us/step - loss: 0.0074 - accuracy: 0.0024
     Epoch 175/200
     116/116 [============ ] - 0s 939us/step - loss: 0.0075 - accuracy: 0.0014
     Fnoch 176/200
     116/116 [============= ] - 0s 1ms/step - loss: 0.0074 - accuracy: 0.0027
     Epoch 177/200
     116/116 [============ ] - 0s 904us/step - loss: 0.0075 - accuracy: 0.0016
     Epoch 178/200
     Epoch 179/200
     Epoch 180/200
     116/116 [============ ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0024
     Epoch 181/200
     116/116 [=========== ] - 0s 904us/step - loss: 0.0075 - accuracy: 0.0014
     Epoch 182/200
     Epoch 183/200
     Epoch 184/200
     116/116 [============ ] - 0s 965us/step - loss: 0.0074 - accuracy: 0.0019
     Epoch 185/200
     Epoch 186/200
     116/116 [=========== ] - 0s 878us/step - loss: 0.0074 - accuracy: 0.0027
     Epoch 187/200
     Epoch 188/200
     116/116 [=========== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0030
     Epoch 189/200
     Epoch 190/200
     Epoch 191/200
     116/116 [=============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0038
     Epoch 192/200
     Epoch 193/200
     116/116 [============= ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0016
     Epoch 194/200
     116/116 [===========] - 0s 1ms/step - loss: 0.0074 - accuracy: 0.0024
     Epoch 195/200
     116/116 [============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0014
     Epoch 196/200
     Epoch 197/200
     Epoch 198/200
     116/116 [============ ] - 0s 939us/step - loss: 0.0075 - accuracy: 0.0030
     Epoch 199/200
     116/116 [============== ] - 0s 1ms/step - loss: 0.0075 - accuracy: 0.0014
     Epoch 200/200
     116/116 [=============== ] - 0s 1ms/step - loss: 0.0074 - accuracy: 5.4025e-04
In [83]:
      # Evaluate the model using the test data
      model_loss, model_accuracy = nn.evaluate(X_test_scaled,y_test,verbose=2)
      print(f"Loss: {model_loss}, Accuracy: {model_accuracy}")
     39/39 - 0s - loss: 0.0156 - accuracy: 0.0000e+00 - 104ms/epoch - 3ms/step
     Loss: 0.015576616860926151, Accuracy: 0.0
In [84]:
      # Create a DataFrame containing training history
      history_df = pd.DataFrame(fit_model.history, index=range(1,len(fit_model.history["loss"])+1))
      # Plot the loss
      history_df.plot(y="loss")
```



```
In [85]: # Plot the accuracy
history_df.plot(y="accuracy")
```

Out[85]: <AxesSubplot:>


```
In [ ]:
```