

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Geometría III Examen XII

Los Del DGIIM, losdeldgiim.github.io

Jesús Muñoz Velasco Arturo Olivares Martos

Granada, 2023-2024

Asignatura Geometría III.

Curso Académico 2023-24.

Grado en Matemáticas.

Grupo A.

Profesor María Magdalena Rodríguez Pérez.

Descripción Prueba de clase (Tema 1).

Fecha 14 de noviembre de 2023.

Ejercicio 1 (3 puntos). Encuentra un sistema de referencia \mathcal{R} de \mathbb{R}^2 en el que los puntos (1,2) y (3,4) tengan coordenadas, respectivamente, (0,0) y (0,1). Calcula el cambio de coordenadas de \mathcal{R} al sistema de referencia usual.

Como \mathcal{R} es un sistema de referencia de \mathbb{R}^2 , será de la forma

$$\mathcal{R} = \{p , \mathcal{B} = \{e_1, e_2\}\} \quad p \in \mathbb{R}^2, \quad e_1, e_2 \in \overrightarrow{\mathbb{R}^2}$$

Sabemos que p = (1, 2), ya que sus coordenadas son el $(0, 0)_{\mathcal{R}}$. Además, el segundo vector de la base de \mathcal{R} es el $\overline{(1, 2)(3, 4)} = (2, 2)$, ya que $(3, 4) = (0, 1)_{\mathcal{R}}$, y por tanto $(3, 4) = (0, 0)_{\mathcal{R}} + 0 \cdot e_1 + 1 \cdot e_2 = (1, 2) + e_2 \Rightarrow e_2 = (2, 2)$. Nos faltará encontrar solo e_1 . Como no se impone ninguna condición adicional en el enunciado bastará con que sea linealmente independiente de e_2 . El (1, 0) nos vale. Consideremos entonces

$$\mathcal{R} = \{(1,2), \{(1,0), (2,2)\}\}$$

Con esto nos queda

$$M(\mathcal{R}_0 \leftarrow \mathcal{R}) = \begin{pmatrix} \frac{1 & 0 & 0}{1 & 1 & 2} \\ 2 & 0 & 2 \end{pmatrix} \Rightarrow (x, y)_{\mathcal{R}_0} = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}_{\mathcal{R}} + \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\Rightarrow (x,y)_{\mathcal{R}_0} = (x+2y+1,2y+2)_{\mathcal{R}}$$

Ejercicio 2 (2 puntos). Demuestra que si a, b, c, d son cuatro puntos de un espacio afín \mathcal{A} tales que $\overrightarrow{ab} = \overrightarrow{cd}$, entonces se cumple que $\overrightarrow{ac} = \overrightarrow{bd}$.

Esta es la identidad del paralelogramo. Su demostración es sencilla:

$$\overrightarrow{ac} = \overrightarrow{ab} + \overrightarrow{bc} = \overrightarrow{cd} + \overrightarrow{bc} = \overrightarrow{bc} + \overrightarrow{cd} = \overrightarrow{bd}$$

Ejercicio 3 (3 puntos). Calcula la expresión explícita en coordenadas usuales de una aplicación afín de \mathbb{R}^2 cuyo conjunto de puntos fijos sea la recta de ecuación implícita x=1 (en coordenadas de sistema de referencia usual) y tal que la imagen del origen sea el punto (2,2). ¿De qué aplicación se trata?

Como f(0,0)=(2,2) y sabiendo que f es una aplicación afín de \mathbb{R}^2 podemos considerar

$$A = M(f; \mathcal{R}_0) = \begin{pmatrix} 1 & 0 & 0 \\ 2 & a & b \\ 2 & c & d \end{pmatrix}$$

Sabemos que tiene una recta de puntos fijos. Es decir, $(A-I)(1,p)=0 \Leftrightarrow p \in P_f$.

$$(A-I) = \begin{pmatrix} 0 & 0 & 0 \\ 2 & a-1 & b \\ 2 & c & d-1 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 0 & 0 \\ 2 & a-1 & b \\ 2 & c & d-1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ p_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{array}{l} 2+a-1+bp_2=0\\ 2+c+p_2(d-1)=0 \end{array} \right\} a=-1,\ b=0,\ c=-2,\ d=1$$

Esta solución verifica la condición $\forall p_2 \in \mathbb{R}^2$. Por tanto nos queda

$$A = M(f; \mathcal{R}_0) = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 2 & -2 & 1 \end{pmatrix}$$

Veamos ahora qué aplicación es. Tenemos que |A| = -1 por lo que tenemos un movimiento inverso con una recta de puntos fijos. Se trata de una reflexión axial con respecto a la recta dada por x = 1. Sin embargo no es ortogonal, como se puede ver al calcular f(0,0). Estará orientada con respecto al vector (0,0)f(0,0) = (0,0)(2,2) = (2,2).

Ejercicio 4 (2 puntos). Sean \mathcal{A} un espacio afín, $f: \mathcal{A} \to \mathcal{A}$ una aplicación afín y $\mathcal{S} = p_0 + \mathcal{L}(\{v_0\})$ una recta en \mathcal{A} . Demuestra que $f(\mathcal{S}) = \mathcal{S}$ si, y solo si, $p_0 f(p_0) \in \mathcal{L}(\{v_0\})$ y v_0 es un vector propio de \overrightarrow{f} de autovalor no nulo.

Veamos ambas implicaciones:

- \Rightarrow) Sea $p_0 \in \mathcal{S}$. Entonces, $f(p_0) \in f(\mathcal{S}) = \mathcal{S}$, por lo que $\overrightarrow{p_0 f(p_0)} \in \overrightarrow{\mathcal{S}} = \mathcal{L}(\{v_0\})$. Falta por ver que v_0 es un vector propio de \overrightarrow{f} de autovalor no nulo. Como $v_0 \in \overrightarrow{\mathcal{S}}$, entonces $\overrightarrow{f}(v_0) \in \overrightarrow{f}(\mathcal{S}) = \overrightarrow{f(\mathcal{S})} = \overrightarrow{\mathcal{S}} = \mathcal{L}(\{v_0\})$. Por tanto, se tiene que $\overrightarrow{f}(v_0) = \lambda v_0$, con $\lambda \neq 0$.
- \Leftarrow) Sea $p_0 \in \mathcal{S}$, y veamos que $f(\mathcal{S}) = \mathcal{S}$. Tenemos que $f(S) = f(p_0) + \mathcal{L}\{\overrightarrow{f}(v_0)\}$, y como v_0 es un vector propio de \overrightarrow{f} de autovalor no nulo, entonces se tiene que $f(S) = f(p_0) + \mathcal{L}\{v_0\}$.

Como $p_0 \in \mathcal{S}$ y $\overrightarrow{p_0 f(p_0)} \in \overrightarrow{\mathcal{S}}$, entonces $f(p_0) \in \mathcal{S}$, por lo que $f(\mathcal{S}) = \mathcal{S}$.