Federated Multi-Task Learning General Multi-Task Learning Setup

General formulation :

$$\min_{W,\Omega} \left[\sum_{k=1}^{K} \sum_{i \in \mathcal{P}_k} f_k(w_k^{\mathsf{T}} x_k^i, y_k^i) + \mathcal{R}(W, \Omega) \right]$$

 $\Omega \in \mathbb{R}^{K \times K}$ models relationships among tasks. f_k is a convex loss function.

• MTL problems differ based on their assumptions on ${\mathscr R}$

$$\mathcal{R}(W,\Omega) = \lambda_1 \operatorname{tr}\left(W\Omega W^{\mathsf{T}}\right) + \lambda_2 |W|_F^2$$

Federated Multi-Task Learning

MOCHA: A Framework for Federated Multi-Task Learning

$$\min_{W,\Omega} \left[\sum_{k=1}^{K} \sum_{i \in \mathcal{P}_k} f_k(w_k^{\mathsf{T}} x_k^i, y_k^i) + \mathcal{R}(W, \Omega) \right]$$

$$\mathcal{R}(W, \Omega) = \lambda_1 \operatorname{tr} \left(W \Omega W^{\mathsf{T}} \right) + \lambda_2 |W|_F^2$$

- lacksquare Not jointly convex in W and Ω
- \checkmark When fixing Ω , updating W depends on the data X.
- \checkmark When fixing W, optimizing for Ω only depends on W, not on X.