数值分析项目作业三报告

刘陈若 3200104872 信息与计算科学 2001

1 程序编译和运行说明

本次项目作业采用 Makefile 文件对编译进行统一管理。具体地,在 Makefile 所在目录下输入make run 即可完成编译,得到test.cpp的可执行文件test以及报告所需要的程序运行结果。 需要说明三点:

- 1. 本项目作业使用 json file 进行参数输入,以#include <jsoncpp/json/json.h>的形式被调用, 因此在编译时需要保持相应的文件关系;
- 2. 在使用 json file 进行参数输入时,部分参数可能需要修改,参数的含义以及具体的修改方式都将在下文中详细给出;
- 3. 头文件TI.h中使用了C++17的 structure binding, 因此您的电脑需要允许 Makefile 中使用的-std=c++17进行编译。

2 程序运行结果及简要分析

2.1 程序测试指南

所有的任务都可以通过调整test.json中的参数得到解决,test.json中各参数的含义说明如下:

- initial_value: 数值算法初始值。根据项目作业要求,对于第一个轨道,数值算法初始值应设为[0.994,0.0,0.0,0.0,-2.0015851063790825224,0.0];对于第二个轨道,数值算法初始值应设为[0.879779227778,0.0,0.0,0.0,-0.379677780949,0.0];
- one_period_time: 轨道运行周期 T。根据项目作业要求,对于第一个轨道,轨道运行周期应设为17.06521656015796;对于第二个轨道,轨道运行周期应设为19.140450691377;
- one_period_step_number: 单周期数值求解步数 n, 即按照 time-step size 迭代一个周期需要的 迭代次数。需要注意两点: **首先**,例如您可以直接输入[10000]代表您希望用 10000 步完成一个周期的迭代。由于计算收敛阶需要,您也可以输入一个向量[10000,20000,40000,80000],程序将按顺序依次完成对应步数的迭代,并且给出收敛阶。由于在计算收敛阶时我们是取以 2 为底的对数,因此请确保在向量中每一个元素都是前一个的两倍。**其次**,对于 Fehlberg 4(5) embedded RK method 和 Dormand-Prince 5(4) embedded RK method,由于其是变步长的,因此对于这两个方法我们将把您输入的单周期数值求解步数转化成 time-step size 并作为初值;

- method:数值求解算法。根据项目作业要求,对于课本中的八个数值求解算法,按从上至下的顺序应依次输入"Adams_Bashforth", "Adams_Moulton", "Backward_differentiation", "Classical_RK", "explicit_SDIRK", "Gauss_Legendre_RK", "Fehlberg_embedded_RK", "Dormand_Prince_embedded_RK";
- order: 算法精度阶数 p。根据项目作业要求,对于"Adams_Bashforth",精度阶数应取 1,2,3,4; 对于"Adams_Moulton",精度阶数应取 2,3,4,5; 对于"Backward_differentiation",精度阶数应取 1,2,3,4; 对于"Classical_RK",精度阶数应取 4; 对于"explicit_SDIRK",精度阶数应取 4; 对于"Gauss_Legendre_RK",精度阶数应取 2,4,6 (对应 s=1,2,3); 对于"Fehlberg_embedded_RK",精度阶数应取 4 (对应 4(5)); 对于"Dormand_Prince_embedded_RK",精度阶数应取 5 (对应 5(4));
- if_Richardson: 是否需要 Richardson 外插定阶。如输入"yes",则将使用 Richardson 外插给出算法收敛阶估计;如输入"no",则将不使用 Richardson 外插。

2.2 轨道一结果展示

根据项目要求,在这个部分,我对八个数值算法分别对八个轨道所有要求的精度 p 进行数值测试,并给出如下结果:

- 1. **数值结果图像**。我将设置合适的单周期数值求解步数,绘制一幅 u_1 , u_2 较为精确的图像作为直观展示;
- 2. **不同单周期数值求解步数下的误差**。这里的误差指的是运行一个周期的数值结果和初始值的差的绝对值。我将展示 u_1 到 u_6 每一个分量的绝对误差;
- 3. **算法的收敛阶计算**。根据得到的绝对误差,对于六个分量分别求前后两项的比值,然后取以 2 为底的对数得到收敛阶,并且给出其平均数作为平均收敛阶。需要注意三点:
 - 首先,对于一个 p 阶精度的算法,one-step error 为 $\Theta(k^{p+1})$,而对于一个周期的数值求解步数为 $\frac{T}{k}$,因此在运行一个周期之后的误差应是 $\Theta(k^{p+1}) \times \frac{T}{k} = O(k^p)$ 的。所以对于一个 p 阶精度的算法,我们可以期望当 k 足够小时收敛阶应当为 p;
 - 其次,我们对每一个分量都计算收敛阶,而不是利用范数计算,这样的结果是合理且更加精确的。这是因为根据 one-step error 的定义,对于向量函数的每一个维度都应该按照相同的收敛阶收敛,如果用范数计算(如无穷范数)则会丢掉那些量级较小的分量的收敛信息;
 - 第三,由于 u_3 和 u_6 分量恒为 0,因此不纳入收敛阶计算的范围之内;
- 4. **算法 CPU 运行时间**。我将给出算法求解过程中的运行时间对比;

• 5. **算法最大可行步长** n_{max} 。我将给出一个时间步长界,使得当步长再增大之后算法得到的图像就会产生肉眼可见的偏移。这里我们认为当 u_1 或者 u_2 的计算解和真实值的绝对误差达到 5×10^{-2} 时,图像的偏移就会被肉眼观察到。

并且在本节的最后(2.2.9 节),我将完成作业要求的最后部分,绘制并且比较 Euler's method, classical RK method, Dormand-Prince 5(4) embedded RK method 的相关图像和运行时间等。

2.2.1 Adams-Bashforth methods

我们根据 **Definition 11.83** 和 **Definition 11.84** 编写了 Adams-Bashforth 算法,需要注意的是对于 p > 1 的情况,我们需要用合适的方法获得足够的初始值进行迭代,因此,为了保证初始值的精度,我们采用经典四阶 RK 获得足够的初始值。(对于轨道二也是如此,因此在 2.3 节中不再赘述)

• p = 1

首先,设置单周期数值求解步数 $n=8\times10^6$ (关于项目作业要求的 24000 steps 的图像及其运行时间分析请见 2.2.9 节),绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=4\times 10^6, 8\times 10^6, 1.6\times 10^7, 3.2\times 10^7$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n	4×10)6	8 × 1	0^{6}	1.6×10^{7}		3.2×10^{7}	
\ n	绝对误差	收敛阶	绝对误差	收敛阶	绝对误差	收敛阶	绝对误差	收敛阶
u_1	1.071e-03	\	1.139e-05	6.555	5.328e-05	-1.548	5.631e-04	-0.080
u_2	2.564e-02	\	1.397e-02	0.876	7.572e-03	0.883	3.982e-03	0.927
u_3	0	\	0	\	0	\	0	\
u_4	6.841e-01	\	7.350e-01	-0.104	6.615e-01	0.152	4.757e-01	0.476
u_5	1.248e+00	\	9.250e-01	0.432	5.631e-01	0.716	2.779e-01	1.019
u_6	0	\	0	\	0	\	0	\
平均收敛阶	\		1.94		0.05	5	0.59	9
CPU time(ms)	967		1719		3407		6743	

从中可以看出,算法的收敛阶并不固定,我们在此进行如实汇报,但是正如您将在 2.3 节中所看到的,**对于轨道二该方法的收敛阶是准确的! 关于其在轨道一的不稳定性的可能原因请见 2.2.10 节**。 CPU time 与步数 n 基本成正比关系。

此外,以 10^4 为单位不断改变步数 n,得到当 $n = 1.90 \times 10^6$ 时, u_1 和 u_2 的误差较大值为 4.98×10^{-2} , 最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 1.90 \times 10^6$ 。

• p = 2

首先,设置单周期数值求解步数 $n=2\times 10^6$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=1\times 10^6, 2\times 10^6, 4\times 10^6, 8\times 10^6$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\setminus n	1×10^{6}		2×10^6		4×10^6		8×10^{6}	
\ 11	绝对误差 收	女敛阶	绝对误差	收敛阶	绝对误差	收敛阶	绝对误差	收敛阶
u_1	3.516e-04	\	8.516e-05	2.108	2.071e-05	2.040	5.144e-06	2.010
u_2	1.131e-03	\	2.837e-04	1.996	7.097e-05	1.999	1.775e-05	1.999
u_3	0	\	0	\	0	\	0	\
u_4	1.970e-01	\	4.695e-02	2.069	1.158e-02	2.019	2.886e-03	2.005
u_5	3.945e-02	\	1.181e-02	1.740	3.135e-03	1.914	7.951e-04	1.979
u_6	0	\	0	\	0	\	0	\
平均收敛阶	\		1.97		1.99		2.00	
CPU time(ms)	329		617		1170		2295	

从中可以看出,随着 n 的增大,算法的收敛阶稳定在 2,从而验证了算法的精度为 2;CPU time 与步数 n 基本成正比关系。

此外,以 10^3 为单位不断改变步数 n,得到当 $n=1.08\times 10^5$ 时, u_1 和 u_2 的误差较大值为 4.97×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 1.08 \times 10^5$,远小于 p = 1 时的最大可行步长。

• p = 3

首先,设置单周期数值求解步数 $n=1\times 10^5$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=5\times 10^5, 1\times 10^6, 2\times 10^6, 4\times 10^6$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

							1 106		
\ n	5×1	5×10^{5}		1×10^{6}		2×10^{6}		4×10^{6}	
\ n	绝对误差	收敛阶	绝对误差	收敛阶	绝对误差	收敛阶	绝对误差	收敛阶	
u_1	1.681e-06	\	2.161e-07	2.959	2.740e-08	2.980	3.445e-09	2.992	
u_2	5.934e-06	\	7.618e-07	2.961	9.648e-08	2.981	1.212e-08	2.992	
u_3	0	\	0	\	0	\	0	\	
u_4	9.637e-04	\	1.237e-04	2.962	1.566e-05	2.981	1.969e-06	2.992	
u_5	2.608e-04	\	3.361e-05	2.956	4.262e-06	2.979	5.358e-07	2.992	
u_6	0	\	0	\	0	\	0	\	
平均收敛阶	\		2.96		2.98		2.99		
CPU time(ms)	215	Ó	404		779		1559		

从中可以看出,随着 n 的增大,算法的收敛阶稳定趋向于 3,从而验证了算法的精度为 3;CPU time 与步数 n 基本成正比关系。

此外,以 10^2 为单位不断改变步数 n,得到当 $n=3.59\times10^4$ 时, u_1 和 u_2 的误差较大值为 4.96×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 3.59 \times 10^4$,远小于 p = 2 时的最大可行步长。

• p = 4

首先,设置单周期数值求解步数 $n=8\times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=2\times 10^5, 4\times 10^5, 8\times 10^5, 1.6\times 10^6$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n	2×10^5		4×1	4×10^5		8×10^5		10^{6}
	绝对误差 收敛	阶	绝对误差	收敛阶	绝对误差	收敛阶	绝对误差	收敛阶
u_1	2.975e-05 \		1.952e-06	3.930	1.241e-07	3.975	7.821e-09	3.988
u_2	1.016e-04 \		6.565e-06	3.952	4.166e-07	3.978	2.623e-08	3.990
u_3	0 \		0	\	0	\	0	\
u_4	1.639e-02 \		1.067e-03	3.942	6.772e-05	3.977	4.263e-06	3.989
u_5	4.807e-03 \		3.046e-04	3.980	1.933e-05	3.978	1.217e-06	3.989
u_6	0 \		0	\	0	\	0	\
平均收敛阶	\		3.95		3.98		3.99	
CPU time(ms)	134		248		463		789	

从中可以看出,随着 n 的增大,算法的收敛阶稳定趋向于 4,从而验证了算法的精度为 4;CPU time 与步数 n 基本成正比关系。

此外,以 10^2 为单位不断改变步数 n,得到当 $n=3.47\times 10^4$ 时, u_1 和 u_2 的误差较大值为 4.89×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\max}=3.47\times 10^4$,略小于 p=3 时的最大可行步长。

2.2.2 Adams-Moulton methods

我们根据 **Definition 11.83** 和 **Definition 11.84** 编写了 Adams-Moulton 算法,需要注意的是我们需要用合适的方法获得足够的初始值进行迭代,因此,为了保证初始值的精度,我们采用五阶 RK (因为 p 最大是 5) 获得足够的初始值。此外,关于每一步的迭代,由于迭代方程无法直接求解,因此我们采用不动点迭代进行每一步的求解。(对于轨道二也是如此,因此在 2.3 节中不再赘述)

• p = 2

首先,设置单周期数值求解步数 $n=2\times 10^6$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n = 5 \times 10^5, 1 \times 10^6, 2 \times 10^6, 4 \times 10^6$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及

CPU time 如下表所示:

\ n	5×10^5	1×10^6	2×10^6	4×10^6	
\ n	绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	
u_1	2.321e-04 \	6.372e-05 1.865	1.630e-05 1.967	4.100e-06 1.992	
u_2	9.059e-04 \	2.271e-04 1.996	5.681e-05 1.999	1.421e-05 2.000	
u_3	0 \	0 \	0 \	0 \	
u_4	1.379e-01 \	3.632e-02 1.924	9.192e-03 1.982	2.305e-03 1.996	
u_5	4.918e-02 \	1.080e-02 2.187	2.594e-03 2.058	6.416e-04 2.015	
u_6	0 \	0 \	0 \	0 \	
平均收敛阶	\	1.99	2.00	2.00	
CPU time(ms)	520	957	1773	3389	

从中可以看出,随着n 的增大,算法的收敛阶稳定在2,从而验证了算法的精度为2;CPU time 与步数n 基本成正比关系。另外,值得注意的是,和同阶的 Adams-Bashforth 算法相比,Adams-Moulton的误差似乎更小一些,但是由于不动点迭代求解的原因,所花费的时间也更多一些。

此外,以 10^2 为单位不断改变步数 n,得到当 $n=5.93\times 10^4$ 时, u_1 和 u_2 的误差较大值为 4.95×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\max} = 5.93 \times 10^4$ 。

• p = 3

首先,设置单周期数值求解步数 $n=1\times10^5$,绘制轨道一图像(作为直观展示)如下。此时轨道

基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n = 5 \times 10^5, 1 \times 10^6, 2 \times 10^6, 4 \times 10^6$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n	5×10^5	1×10^6	2×10^6	4×10^6	
	绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	
u_1	7.565e-07 \	9.788e-08 2.950	1.244e-08 2.976	1.568e-09 2.988	
u_2	2.674e-06 \	3.451e-07 2.954	4.380e-08 2.978	5.517e-09 2.989	
u_3	0 \	0 \	0 \	0 \	
u_4	4.341e-04 \	5.602e-05 2.954	7.112e-06 2.978	8.958e-07 2.989	
u_5	1.178e-04 \	1.523e-05 2.952	1.935e-06 2.976	2.439e-07 2.988	
u_6	0 \	0 \	0 \	0 \	
平均收敛阶	\	2.95	2.98	2.99	
CPU time(ms)	613	1204	2296	4535	

从中可以看出,随着n的增大,算法的收敛阶稳定趋向于3,从而验证了算法的精度为3;CPU time 与步数n基本成正比关系。另外,值得注意的是,和同阶的 Adams-Bashforth 算法相比,Adams-Moulton 的误差似乎更小一些,但是由于不动点迭代求解的原因,所花费的时间也更多一些。

此外,以 10^2 为单位不断改变步数 n,得到当 $n = 1.31 \times 10^4$ 时, u_1 和 u_2 的误差较大值为 4.95×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\max}=1.31\times 10^4$,小于 p=2 时的最大可行步长。

\bullet p=4

首先,设置单周期数值求解步数 $n=5\times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=2\times 10^5, 4\times 10^5, 8\times 10^5, 1.6\times 10^6$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n	2×10^{5}	4×10^{5}	8×10^5	1.6×10^{6}	
	绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	
u_1	2.335e-06 \	1.495e-07 3.966	9.446e-09 3.984	5.912e-10 3.998	
u_2	7.850e-06 \	5.018e-07 3.968	3.168e-08 3.985	1.983e-09 3.998	
u_3	0 \	0 \	0 \	0 \	
u_4	1.277e-03 \	8.157e-05 3.968	5.150e-06 3.985	3.224e-07 3.998	
u_5	3.624e-04 \	2.326e-05 3.962	1.470e-06 3.984	9.202e-08 3.998	
u_6	0 \	0 \	0 \	0 \	
平均收敛阶	\	3.97	3.98	4.00	
CPU time(ms)	404	748	1643	3302	

从中可以看出,随着n 的增大,算法的收敛阶稳定趋向于4,从而验证了算法的精度为4;CPU time 与步数n 基本成正比关系。另外,值得注意的是,和同阶的 Adams-Bashforth 算法相比,Adams-Moulton 的误差似乎更小一些,但是由于不动点迭代求解的原因,所花费的时间也更多一些。

此外,以 10^2 为单位不断改变步数 n,得到当 $n = 1.07 \times 10^4$ 时, u_1 和 u_2 的误差较大值为 4.91×10^{-2} , 最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 1.07 \times 10^4$,小于 p = 3 时的最大可行步长。

• p = 5

首先,设置单周期数值求解步数 $n=2.5\times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=8\times 10^4, 1.6\times 10^5, 3.2\times 10^5, 6.4\times 10^5$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

	8×10^{4}		1.6 ×	1.6×10^{5}		3.2×10^{5}		$\frac{10^5}{10^5}$
$\setminus \mathbf{n}$	绝对误差 收敛	t/\.	绝对误差		绝对误差		绝对误差	
	地对庆左 以	<u>リー</u>	地 // 块左	以蚁凹	绝对 庆左	以	地 // 庆左	火蚁的
u_1	5.171e-06 \		9.494e-08	5.767	1.697e-09	5.806	3.116e-11	5.817
u_2	1.654e-05 \		2.908e-07	5.830	4.858e-09	5.904	8.099e-11	5.906
u_3	0 \		0	\	0	\	0	\
u_4	2.690e-03 \		4.739e-05	5.827	7.933e-07	5.901	1.327e-08	5.902
u_5	8.093e-04 \		1.478e-05	5.775	2.641e-07	5.806	4.853e-09	5.816
u_6	0 \		0	\	0	\	0	\
平均收敛阶	\		5.80		5.84	4	5.8	5
CPU time(ms)	204		389		749		1378	

从中可以看出,随着 n 的增大,算法的收敛阶趋向于 5.85 左右,我们在此进行如实汇报,但是正如您将在 2.3 节中所看到的,**对于轨道二该方法的收敛阶是准确的! 关于其在轨道一的不稳定性的可能原因请见 2.2.10 节**; CPU time 与步数 n 基本成正比关系。

此外,以 10^1 为单位不断改变步数 n,得到当 $n = 8.89 \times 10^3$ 时, u_1 和 u_2 的误差较大值为 4.92×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 8.89 \times 10^3$,小于 p = 4 时的最大可行步长。

2.2.3 BDFs

我们根据 **Definition 11.89** 编写了 BDF 算法,需要注意的是我们需要用合适的方法获得足够的 初始值进行迭代,因此,为了保证初始值的精度,我们采用经典四阶 RK(因为 p 最大是 4)获得足够 的初始值。此外,关于每一步的迭代,由于迭代方程无法直接求解,因此我们采用不动点迭代进行每一步的求解。(对于轨道二也是如此,因此在 2.3 节中不再赘述)

• p = 1

首先,设置单周期数值求解步数 $n=2.5\times 10^6$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=1\times 10^7, 2\times 10^7, 4\times 10^7, 8\times 10^7$ (n 过大时不动点迭代 会不收敛),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n	1 × 1	0^{7}	2×1	2×10^7		4×10^7		.07
\ 11	绝对误差	收敛阶	绝对误差	收敛阶	绝对误差	收敛阶	绝对误差	收敛阶
u_1	9.532e-03	\	3.686e-03	1.371	1.360e-03	1.439	5.531e-04	1.298
u_2	8.512e-03	\	5.971e-03	0.511	3.255e-03	0.875	1.653e-03	0.977
u_3	0	\	0	\	0	\	0	\
u_4	1.399e+00	\	1.095e+00	0.353	6.037e-01	0.859	2.922e-01	1.047
u_5	1.097e+00	\	3.694e-01	1.570	2.856e-02	3.693	3.065e-02	-0.102
u_6	0	\	0	\	0	\	0	\
平均收敛阶	\		0.95		1.72	2	0.80	0
CPU time(ms)	5938	8	13233		24449		43895	

从中可以看出,算法的收敛阶并不固定,我们在此进行如实汇报,但是正如您将在 2.3 节中所看到的,**对于轨道二该方法的收敛阶是准确的! 关于其在轨道一的不稳定性的可能原因请见 2.2.10 节**; CPU time 与步数 n 基本成正比关系。

此外,以 10^4 为单位不断改变步数 n,得到当 $n = 1.25 \times 10^6$ 时, u_1 和 u_2 的误差较大值为 4.96×10^{-2} , 最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 1.25 \times 10^6$ 。

• p = 2

首先,设置单周期数值求解步数 $n=2\times 10^6$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=1\times 10^6, 2\times 10^6, 4\times 10^6, 8\times 10^6$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n	1×10^6	2×10^6	4×10^6	8×10^{6}	
\ 11	绝对误差 收敛图	计 绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	
u_1	2.308e-04 \	6.353e-05 1.861	1.628e-05 1.964	4.108e-06 1.987	
u_2	9.007e-04 \	2.265e-04 1.991	5.675e-05 1.997	1.423e-05 1.996	
u_3	0 \	0 \	0 \	0 \	
u_4	1.371e-01 \	3.622e-02 1.921	9.182e-03 1.980	2.309e-03 1.992	
u_5	4.883e-02 \	1.076e-02 2.182	2.590e-03 2.055	6.429e-04 2.011	
u_6	0 \	0 \	0 \	0 \	
平均收敛阶	\	1.99	2.00	2.00	
CPU time(ms)	831	1413	2625	4803	

从中可以看出,随着 n 的增大,算法的收敛阶稳定在 2,从而验证了算法的精度为 2;CPU time 与步数 n 基本成正比关系。

此外,以 10^3 为单位不断改变步数 n,得到当 $n=1.16\times 10^5$ 时, u_1 和 u_2 的误差较大值为 4.96×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 1.16 \times 10^5$,远小于 p = 1 时的最大可行步长。

• p = 3

首先,设置单周期数值求解步数 $n=1\times 10^5$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=2.5\times 10^5, 5\times 10^5, 1\times 10^6, 2\times 10^6$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n	2.5×1	10^{5}	5×1	5×10^5		1×10^{6}		-0^{6}
\ 11	绝对误差	收敛阶	绝对误差	收敛阶	绝对误差	收敛阶	绝对误差	收敛阶
u_1	4.261e-05	\	5.901e-06	2.882	7.710e-07	2.976	9.592e-08	3.007
u_2	1.706e-04	\	2.235e-05	2.928	2.729e-06	2.988	3.612e-07	3.000
u_3	0	\	0	\	0	\	0	\
u_4	2.729e-02	\	3.499e-03	2.916	4.430e-04	2.987	5.539e-05	3.000
u_5	7.181e-03	\	9.138e-04	2.950	1.200e-04	2.987	1.492e-05	3.008
u_6	0	\	0	\	0	\	0	\
平均收敛阶	\		2.92		2.98		3.00	
CPU time(ms)	263		505		1011		1935	

从中可以看出,随着 n 的增大,算法的收敛阶稳定趋向于 3,从而验证了算法的精度为 3;CPU time 与步数 n 基本成正比关系。

此外,以 10^2 为单位不断改变步数 n,得到当 $n=3.65\times 10^4$ 时, u_1 和 u_2 的误差较大值为 4.97×10^{-2} , 最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 3.65 \times 10^4$,远小于 p = 2 时的最大可行步长。

• p = 4

首先,设置单周期数值求解步数 $n=8\times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=2\times 10^5, 4\times 10^5, 8\times 10^5, 1.6\times 10^6$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n	2×10^5	4×10^5	8×10^5	1.6×10^{6}	
\ 11	绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	
u_1	1.718e-05 \	1.115e-06 3.946	7.101e-08 3.973	4.443e-09 3.998	
u_2	5.754e-05 \	3.746e-06 3.941	2.383e-07 3.974	1.491e-08 3.998	
u_3	0 \	0 \	0 \	0 \	
u_4	9.390e-03 \	6.091e-04 3.946	3.874e-05 3.975	2.424e-06 3.998	
u_5	2.616e-03 \	1.733e-04 3.917	1.105e-05 3.971	6.915e-07 3.998	
u_6	0 \	0 \	0 \	0 \	
平均收敛阶	\	3.94	3.97	4.00	
CPU time(ms)	272	630	939	1326	

从中可以看出,随着 n 的增大,算法的收敛阶稳定趋向于 4,从而验证了算法的精度为 4;CPU time 与步数 n 基本成正比关系。

此外,以 10^2 为单位不断改变步数 n,得到当 $n=3.25\times 10^4$ 时, u_1 和 u_2 的误差较大值为 4.91×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\max}=3.25\times 10^4$,略小于 p=3 时的最大可行步长。

2.2.4 classical RK method

我们根据 **Definition 11.191** 编写了 classical RK 算法, 首先, 设置单周期数值求解步数 $n = 4 \times 10^4$ (**关于项目作业要求的 6000 steps 的图像及其运行时间分析请见 2.2.9 节**),绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=8\times 10^4, 1.6\times 10^5, 3.2\times 10^5, 6.4\times 10^5$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n	8×10^{4}		1.6×10^5		3.2 ×	10^{5}	6.4×10^{5}		
\ 11	绝对误差	收敛阶	绝对误差	收敛阶	 绝对误差 收敛阶 绝对误差 9.532e-09 4.026 5.900e-10 2.989e-08 4.028 1.849e-09 0 \ 0 4.870e-06 4.028 3.012e-07 1.484e-06 4.026 9.183e-08 0 \ 0 4.03 4.0 	收敛阶			
u_1	2.576e-06	\	1.553e-07	4.052	9.532e-09	4.026	5.900e-10	4.014	
u_2	8.099e-06	\	4.876e-07	4.054	2.989e-08	4.028	1.849e-09	4.015	
u_3	0	\	0	\	0	\	0	\	
u_4	1.320e-03	\	7.943e-05	4.055	4.870e-06	4.028	3.012e-07	4.015	
u_5	3.998e-04	\	2.417e-05	4.048	1.484e-06	4.026	9.183e-08	4.014	
u_6	0	\	0	\	0	\	0	\	
平均收敛阶	\		4.05		4.03		4.01		
CPU time(ms)	67		114	Į.	217		409		

从中可以看出,随着 n 的增大,算法的收敛阶稳定趋向于 4,从而验证了算法的精度为 4;CPU time 与步数 n 基本成正比关系。

此外,以 10^1 为单位不断改变步数 n,得到当 $n=8.73\times10^3$ 时, u_1 和 u_2 的误差较大值为 4.97×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\max}=8.73\times 10^3$,相较之下小于 Adams-Bashforth、Adams-Moulton 以及 BDF 三种算法 p=4 时的最大可行步长。

2.2.5 ESDIRK

我们根据 Example 11.205 编写了 ESDIRK 算法,需要注意的是关于每一步的迭代,由于迭代 方程无法直接求解,因此我们对每一步中每一个 \mathbf{y}_i 的求解都采用不动点迭代,并且带入 \mathbf{y}_{i+1} 的表达式中,从而得到每一轮迭代的结果。(对于轨道二也是如此,因此在 2.3 节中不再赘述)

首先,设置单周期数值求解步数 $n = 4 \times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=4\times 10^4, 8\times 10^4, 1.6\times 10^5, 3.2\times 10^5$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n	4×10^4	8×10^4	1.6×10^{5}	3.2×10^{5}	
\ n	绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	
u_1	1.414e-05 \	8.835e-07 4.001	5.540e-08 3.995	3.470e-09 3.997	
u_2	4.574e-05 \	2.874e-06 3.992	1.803e-07 3.994	1.129e-08 3.997	
u_3	0 \	0 \	0 \	0 \	
u_4	7.466e-03 \	4.677e-04 3.997	2.934e-05 3.995	1.838e-06 3.997	
u_5	2.165e-03 \	1.374e-04 3.978	8.623e-06 3.994	5.401e-07 3.997	
u_6	0 \	0 \	0 \	0 \	
平均收敛阶	\	3.99	3.99	4.00	
CPU time(ms)	260	472	742	1404	

从中可以看出,随着 n 的增大,算法的收敛阶稳定趋向于 4,从而验证了算法的精度为 4;CPU time 与步数 n 近似成正比关系。值得注意的是,相较于 classical RK method, ESDIRK 在相同 n 的条件下拥有更小的误差和更稳定的收敛精度,不过由于需要进行不动点迭代,因此也牺牲了更多的运算时间。

此外,以 10^1 为单位不断改变步数 n,得到当 $n = 7.51 \times 10^3$ 时, u_1 和 u_2 的误差较大值为 4.96×10^{-2} , 最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 7.51 \times 10^3$,相较之下小于 Adams-Bashforth、Adams-Moulton、BDF,以及经典四阶 RK 四种算法 p=4 时的最大可行步长。

2.2.6 Gauss-Legendre RK methods

我们根据 Example 11.226 至 Example 11.228 编写了 ESDIRK 算法,需要注意的是关于每一步的迭代,由于迭代方程无法直接求解,因此我们对每一步中所有 \mathbf{y}_i 视为一个向量,作为整体进行不动点迭代(注意这与 ESDIRK 不同),从而得到每一轮迭代的结果。(对于轨道二也是如此,因此在 2.3 节中不再赘述)

•
$$p = 2(s = 1)$$

首先,设置单周期数值求解步数 $n = 1 \times 10^6$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=1\times 10^6, 2\times 10^6, 4\times 10^6, 8\times 10^6$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n	1×10^{6}		2×10^6		4×1	0^{6}	8×10^{6}	
\ 11	绝对误差 收	 絶対误差 收敛阶 绝对误差 收敛阶 绝对误差 收敛阶 绝对误差 7.758e-05 \ 1.897e-05 2.032 4.717e-06 2.008 1.178e-06 2.388e-04 \ 5.970e-05 2.000 1.492e-05 2.000 3.731e-06 0 \ 0 \ 0 \ 0 3.957e-02 \ 9.764e-03 2.019 2.433e-03 2.005 6.078e-04 1.107e-02 \ 2.892e-03 1.937 7.304e-04 1.985 1.831e-04 0 \ 0 \ 0 2.00 2.00 2.00 	收敛阶					
u_1	7.758e-05	\	1.897e-05	2.032	4.717e-06	2.008	1.178e-06	2.002
u_2	2.388e-04	\	5.970e-05	2.000	1.492e-05	2.000	3.731e-06	2.000
u_3	0	\	0	\	0	\	0	\
u_4	3.957e-02	\	9.764e-03	2.019	2.433e-03	2.005	6.078e-04	2.001
u_5	1.107e-02	\	2.892e-03	1.937	7.304e-04	1.985	1.831e-04	1.996
u_6	0	\	0	\	0	\	0	\
平均收敛阶	\		2.00		2.00		2.00	
CPU time(ms)	1255		2301		4590		8892	

从中可以看出,随着 n 的增大,算法的收敛阶稳定在 2,从而验证了算法的精度为 2; CPU time 与步数 n 近似成正比关系。此外,值得注意的是 Gauss-Legendre RK 方法 2 阶的误差要略小于 Adams-Bashforth,Adams-Moulton,BDF 对应的二阶算法误差,体现了算法的精确性。不过由于此时的不动点迭代是以向量为形式的,更为复杂,因此求解也更耗时。

此外,以 10^2 为单位不断改变步数 n,得到当 $n=8.64\times10^4$ 时, u_1 和 u_2 的误差较大值为 4.90×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\max}=8.64\times10^4$,小于 Adams-Bashforth,Adams-Moulton,BDF 对应的二阶算法的最大可行步长。

•
$$p = 4(s = 2)$$

首先,设置单周期数值求解步数 $n=4\times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=4\times 10^4, 8\times 10^4, 1.6\times 10^5, 3.2\times 10^5$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

	4×10^{4}		8×10^4		1.6 ×	10^{5}	3.2×10^{5}		
\setminus n	绝对误差	收敛阶	绝对误差	收敛阶	绝对误差	收敛阶	所 绝对误差 8 2.531e-09 7 7.450e-09 0 8 1.216e-06 7 3.940e-07 0	收敛阶	
u_1	1.032e-05	\	6.468e-07	3.995	4.048e-08	3.998	2.531e-09	3.999	
u_2	3.023e-05	\	1.903e-06	3.990	1.191e-07	3.997	7.450e-09	3.999	
u_3	0	\	0	\	0	\	0	\	
u_4	4.947e-03	\	3.107e-04	3.993	1.945e-05	3.998	1.216e-06	3.999	
u_5	1.590e-03	\	1.006e-04	3.982	6.301e-06	3.997	3.940e-07	3.999	
u_6	0	\	0	\	0	\	0	\	
平均收敛阶	\		3.99		4.00		4.00		
CPU time(ms)	126	1	240)	453		864		

从中可以看出,随着n 的增大,算法的收敛阶稳定在4,从而验证了算法的精度为4;CPU time 与步数n 近似成正比关系。此外,值得注意的是 Gauss-Legendre RK 方法4 阶的误差要略小于 Adams-Bashforth,Adams-Moulton,BDF 对应的四阶算法误差,体现了算法的精确性。不过由于此时的不动点迭代是以向量为形式的,更为复杂,因此求解也更耗时。

此外,以 10^1 为单位不断改变步数 n,得到当 $n=6.90\times10^3$ 时, u_1 和 u_2 的误差较大值为 4.91×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\max}=6.90\times 10^3$,小于 Adams-Bashforth,Adams-Moulton,BDF 对应的四阶算法的最大可行步长。

•
$$p = 6(s = 3)$$

首先,设置单周期数值求解步数 $n = 1 \times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=1\times 10^4, 2\times 10^4, 4\times 10^5, 8\times 10^4$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\setminus n	1×10^4	2×10^4	4×10^{4}	8×10^{4}	
\ 11	绝对误差 收敛阶	 性 收敛阶 绝对误差 收敛阶 绝对误差 收敛阶 绝对误差 1 7.817e-07 6.095 1.211e-08 6.013 1.885e-10 2.453e-06 6.077 3.796e-08 6.014 5.907e-10 0 \ 0 3.997e-04 6.094 6.183e-06 6.014 9.624e-08 	绝对误差 收敛阶		
u_1	5.418e-05 \	7.817e-07 6.095	1.211e-08 6.013	1.885e-10 6.005	
u_2	1.679e-04 \	2.453e-06 6.077	3.796e-08 6.014	5.907e-10 6.005	
u_3	0 \	0 \	0 \	0 \	
u_4	2.768e-02 \	3.997e-04 6.094	6.183e-06 6.014	9.624e-08 6.005	
u_5	7.941e-03 \	1.216e-04 6.019	1.884e-06 6.012	2.934e-08 6.004	
u_6	0 \	0 \	0 \	0 \	
平均收敛阶	\	6.07	6.01	6.00	
CPU time(ms)	60	108	210	393	

从中可以看出,随着 n 的增大,算法的收敛阶稳定在 6,从而验证了算法的精度为 6;CPU time 与步数 n 近似成正比关系。

此外,以 10^1 为单位不断改变步数 n,得到当 $n = 2.77 \times 10^3$ 时, u_1 和 u_2 的误差较大值为 4.96×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 2.77 \times 10^3$ 。

2.2.7 Fehlberg 4(5) embedded RK method

我们根据 **Example 11.232** 编写了 Fehlberg 4(5) embedded RK method, 首先, 设置初始周期数 值求解步长 $\frac{T_1}{n}$, 其中 $n=4\times10^4$, 并取 $\mathbf{E}_{abs}=\mathbf{E}_{rel}=10^{-8}$, $\rho_{max}=3.0$, $\rho=0.8$, $\rho_{min}=0.5$ 绘制轨 道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置初始周期数值求解步长 $\frac{T_1}{n}$,其中 n 分别为 $n=4\times10^4,8\times10^4,1.6\times10^5,3.2\times10^5$,得 到 u_1 至 u_6 分量和初始值的绝对误差、对应算法总步长、以及 CPU time 如下表所示(由于步长是自适应的,因此无法计算收敛阶):

\ n(初始)	4×10^4	8×10^{4}	1.6×10^{5}	3.2×10^{5}	
\ 11(1)J3 _H)	绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	
u_1	2.893e-06 \	4.191e-06 \	9.338e-06 \	1.355e-05 \	
u_2	3.781e-05 \	1.865e-04 \	4.065e-04 \	5.247e-04 \	
u_3	0 \	0 \	0 \	0 \	
u_4	5.921e-02 \	2.937e-02 \	6.402e-03 \	8.258e-03 \	
u_5	4.241e-04 \	5.448e-04 \	1.621e-03 \	3.011e-04 \	
u_6	0 \	0 \	0 \	0 \	
对应算法总步长	356	356	356	356	
CPU time(ms)	0.4	0.4	0.5	0.5	

从中可以看出,CPU time 远小于之前的所有算法,并且不论初始的 n 是多少,对应算法总步长都是 356, 说明自适应算法能够很好的根据设定误差进行迭代。

2.2.8 Dormand-Prince 5(4) embedded RK method

我们根据 **Example 11.233** 编写了 Dormand-Prince 5(4) embedded RK method, 首先,设置初始周期数值求解步长 $\frac{\tau_0}{n}$, 其中 $n=2.5\times 10^4$, 并取 $\mathbf{E}_{abs}=\mathbf{E}_{rel}=10^{-8}$, $\rho_{max}=3.0$, $\rho=0.8$, $\rho_{min}=0.5$ 绘制轨道一图像(作为直观展示)如下(**关于项目作业要求的 100 steps 的图像及其运行时间分析请见 2.2.9 节**)。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置初始周期数值求解步长 $\frac{T_1}{n}$,其中 n 分别为 $n=4\times 10^4, 8\times 10^4, 1.6\times 10^5, 3.2\times 10^5,$ 得

到 u_1 至 u_6 分量和初始值的绝对误差、	对应算法总步长、	以及 CPU	time 如下表所示	(由于步长是自
适应的,因此无法计算收敛阶):				

\ n(初始)	4×10^4	8×10^{4}	1.6×10^5	3.2×10^5	
\ 11(19) 3H)	绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	绝对误差 收敛阶	
u_1	5.767e-07 \	3.037e-06 -2.397	9.494e-06 -1.644	1.458e-05 -0.619	
u_2	5.403e-05 \	2.558e-04 -2.243	4.789e-04 -0.905	5.988e-04 -0.322	
u_3	0 \	0 \	0 \	0 \	
u_4	8.511e-03 \	4.030e-02 -2.243	7.539e-02 -0.904	9.418e-02 -0.321	
u_5	3.549e-05 \	7.440e-04 -4.390	2.786e-03 -1.905	4.392e-03 -0.657	
u_6	0 \	0 \	0 \	0 \	
对应算法总步长	327	327	327	327	
CPU time(ms)	0.4	0.4	0.4	0.4	

从中可以看出,CPU time 远小于非自适应步长的所有算法,并且不论初始的 n 是多少,对应算法总步长都是 327 说明自适应算法能够很好的根据设定误差进行迭代。

2.2.9 其他:图像绘制及方法比较

首先,分别绘制 Euler's method with 24000 steps, classical RK methods with 6000 steps, 和 Dormand-Prince 5(4) embedded RK methods with 100 steps (经调整参数,当 $\mathbf{E}_{abs} = \mathbf{E}_{rel} = 2.3 \times 10^{-6}$, 其他参数同上节不变时恰好一个周期走过 100 步)的图像如下所示。

显然, Euler's method with 24000 steps, classical RK methods with 6000 steps, 和 Dormand-Prince 5(4) embedded RK methods with 100 steps 的图像依次变得更加精确。

此外,经过调整得到,为了达到 10-3 的无穷范数误差:

- 1.Euler's method 需要的步长大于 6×10^7 ,CPU time 大于 15000ms;
- 2.classical RK method 需要的步长是 8.56 × 10⁴, CPU time 是 69ms;
- 3.Dormand-Prince 5(4) embedded RK method 需要的步长是 5.19 × 10², CPU time 是 0.5ms; 很明显, Dormand-Prince 5(4) embedded RK method 的 CPU time 最小。

2.2.10 收敛阶误差简要分析

鉴于在轨道一和轨道二经常会出现以下现象:某算法在其中一个轨道的收敛阶是精确的,而在另一个轨道的收敛阶是杂乱误差的。我们在此将其汇总如下:

- 1. 轨道一的所有一阶算法收敛阶都杂乱无章,但是轨道二的所有一阶算法都是准确的;
- 2. 轨道一的 AM 五阶算法收敛阶杂乱无章,但是轨道二的对应算法都是准确的;
- 3. 轨道二的除了 GLRK 的所有四阶算法收敛阶都杂乱无章, 但是轨道一的所有四阶算法都是准确的。

我们可以发现出现问题的总是某一个阶数的大部分算法,因此可以首先确认这并不是程序设计有误,而是算法本身存在的问题。此外,由于其总是在某一个轨道正常而在另一个轨道的出现异常,因此我们可以断言是算法对于轨道的条件的不稳定造成的异常。

具体来说, 我认为可能会有以下三个原因导致收敛阶出现异常:

- 1.one-step error 和周期误差并不是等价的。事实上,对于一个 p 阶精度的算法,前文已经得到 one-step error 为 $\Theta(k^{p+1})$,而在运行一个周期之后的误差应是 $\Theta(k^{p+1}) \times \frac{T}{k} = O(k^p)$ 的而不是 $\Theta(k^p)$ 。所以对其周期误差是单步误差的求和,可能会出现在 k 为步长时积累、在 $\frac{k}{2}$ 为步长时抵消的情况(或者相反),因此通常来说并不能由此得到周期误差的收敛阶是 p 阶的。
- 2. 不过, 当 *k* 很小的时候,由于相邻两个点之间的导数变化较小(可近似视为相同),因此相邻两个 one-step error 会有更大的概率是同性质(都是累积或者都是抵消)的,我们由此可以得到此时的收敛阶应该是距离 *p* 阶较近的(这也是为什么我们总是选取较大的 *n* 测试收敛阶,哪怕较小的 *n* 已经误差足够小了)。然而,很小的 *k* 依旧会出现问题:误差太小,由于每一步的误差最小也得是机器精度,因此不可避免的造成收敛阶的测试异常,因为我们此时很难再得到更小的误差了。
- 3. 此外,算法的条件数也会很大地影响收敛阶的稳定性。例如,我们发现 Gauss-Legendre RK 算法的四阶是稳定的,然而其余四阶算法对于轨道二都是不稳定的。并且隐式算法的稳定性要优于显示算法。这些都是因为算法的条件数不同,条件数越小的算法稳定性越高,从而可以得到更精确的收敛阶,或者说,收敛阶更加不受到函数和初始值的影响。

2.3 轨道二结果展示

根据项目要求,在这个部分,我对八个数值算法分别对八个轨道所有要求的精度 p 进行数值测试,并给出如下结果:

- 1. **数值结果图像**。我将设置合适的单周期数值求解步数,绘制一幅 u_1 , u_2 较为精确的图像作为直观展示;
- 2. 基于 Richardson extrapolation 的收敛阶计算。这里 Richardson 外插的算法参考了 LeVeque 的课本附录 A.6.3。具体来说,对于一个步长为 k 的数值算法其收敛阶计算方法如下:
 - 首先,计算步长为 k, $\frac{k}{2}$, $\frac{k}{4}$ 时的计算解 $\mathbf{U}(k)$, $\mathbf{U}(\frac{k}{2})$, $\mathbf{U}(\frac{k}{4})$;

- 其次, 计算 $\overline{\mathbf{E}}(k) = \mathbf{U}(k) \mathbf{U}(\frac{k}{4}), \overline{\mathbf{E}}(\frac{k}{2}) = \mathbf{U}(\frac{k}{2}) \mathbf{U}(\frac{k}{4})$ (不妨取绝对值);
- 第三,算法的收敛阶 $p \approx \log_2\left(\frac{\overline{\overline{E}}(k)}{\overline{\overline{E}}(\frac{k}{2})} 1\right);$
- 4. 算法 CPU 运行时间。我将给出算法求解过程中的运行时间对比;
- 5. **算法最大可行步长** n_{max} 。我将给出一个时间步长界,使得当步长再增大之后算法得到的图像就会产生肉眼可见的偏移。这里我们认为当 $\overline{\mathbf{E}}(k)$ 中的 u_1 或者 u_2 分量达到 5×10^{-2} 时,图像的偏移就会被肉眼观察到。

并且在本节的最后(2.2.9 节), 我将完成作业要求的最后部分, 绘制并且比较 Euler's method, classical RK method, Dormand-Prince 5(4) embedded RK method 的相关图像和运行时间等。

2.3.1 Adams-Bashforth methods

• p = 1

首先,设置单周期数值求解步数 $n=8\times10^6$ (关于项目作业要求的 24000 steps 的图像及其运行时间分析请见 2.3.9 节),绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=5\times 10^6, 1\times 10^7, 2\times 10^7$ (为了能得到相对准确的收敛 阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n	5×10^6			1×10^7			2×10^7		
\ 11	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶
u_1	8.162e-03	2.649 e-03	1.057	3.949e-03	1.300 e-03	1.027	1.943e-03	6.438e-04	1.013
u_2	7.810e-03	2.592 e-03	1.010	3.883e-03	1.291e-03	1.006	1.935e-03	6.441e-04	1.003
u_3	0	0	\	0	0	\	0	0	\
u_4	3.722e-02	1.174e-02	1.118	1.738e-02	5.641e-03	1.057	8.406e-03	2.766e-03	1.028
u_5	1.501e-02	5.125 e-03	0.948	7.717e-03	2.592 e-03	0.983	3.894e-03	1.302 e-03	0.994
u_6	0	0	\	0	0	\	0	0	\
平均收敛阶		1.03			1.02			1.01	
CPU time(ms)		1555			3021			4048	

从中可以看出,随着 n 的增大,算法的收敛阶稳定在 1,从而验证了算法的精度为 1;CPU time 与步数 n 基本成正比关系。

此外,以 10^4 为单位不断改变步数 n,得到当 $n = 1.15 \times 10^6$ 时, u_1 和 u_2 的误差较大值为 4.98×10^{-2} , 最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 1.15 \times 10^6$ 。

• p = 2

首先,设置单周期数值求解步数 $n=1\times 10^6$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=1\times 10^6, 2\times 10^6, 4\times 10^6$ (为了能得到相对准确的收敛 阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n		1×10^6			2×10^6			4×10^6	
\ 11	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶
u_1	1.463e-07	2.931e-08	1.997	3.665e-08	7.345e-09	1.997	9.175e-09	1.830e-09	2.004
u_2	4.243e-08	8.430e-09	2.012	1.052e-08	2.090e-09	2.012	2.618e-09	5.281e-10	1.985
u_3	0	0	\	0	0	\	0	0	\
u_4	6.606e-07	1.324 e-07	1.997	1.655e-07	3.316e-08	1.997	4.143e-08	8.267e-09	2.004
u_5	2.666e-07	5.342 e-08	1.996	6.681e-08	1.339e-08	1.996	1.673e-08	3.336e-09	2.005
u_6	0	0	\	0	0	\	0	0	\
平均收敛阶		2.00			2.00			2.00	
CPU time(ms)		290			577			1086	

从中可以看出,随着 n 的增大,算法的收敛阶稳定在 2,从而验证了算法的精度为 2;CPU time 与步数 n 基本成正比关系。

此外,以 10^1 为单位不断改变步数 n,得到当 $n=9.51\times10^3$ 时, u_1 和 u_2 的误差较大值为 4.93×10^{-2} , 最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 9.51 \times 10^3$,远小于 p = 1 时的最大可行步长。

• p = 3

首先,设置单周期数值求解步数 $n=1\times 10^5$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=2\times 10^4, 4\times 10^4, 8\times 10^4$ (为了能得到相对准确的收敛 阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n		2×10^4			4×10^4		8×10^4		
\ 11	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶
u_1	1.202e-04	1.336e-05	2.999	1.503e-05	1.670e-06	3.000	1.878e-06	2.087e-07	3.000
u_2	1.209e-04	1.344e-05	3.000	1.512e-05	1.680e-06	3.000	1.890e-06	2.100e-07	3.000
u_3	0	0	\	0	0	\	0	0	\
u_4	5.113e-04	5.686 e-05	2.998	6.397e-05	7.108e-06	3.000	7.997e-06	8.885 e-07	3.000
u_5	2.455e-04	2.727e-05	3.000	3.068e-05	3.409 e-06	3.000	3.835e-06	4.261 e-07	3.000
u_6	0	0	\	0	0	\	0	0	\
平均收敛阶		3.00			3.00			3.00	
CPU time(ms)		10			18			38	

从中可以看出,随着 n 的增大,算法的收敛阶稳定于 3,从而验证了算法的精度为 3;CPU time 与步数 n 基本成正比关系。

此外,以 10^1 为单位不断改变步数 n,得到当 $n = 3.53 \times 10^3$ 时, u_1 和 u_2 的误差较大值为 4.90×10^{-2} , 最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\max}=3.53\times 10^3$,远小于 p=2 时的最大可行步长。

• p = 4

首先,设置单周期数值求解步数 $n=2\times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=4\times 10^4, 8\times 10^4, 1.6\times 10^5$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n		4×10^4			8×10^4		1.6×10^{5}		
\ 11	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶
u_1	1.814e-09	1.387e-10	3.595	1.481e-10	9.385e-12	3.885	9.910e-12	5.251e-13	4.160
u_2	1.805e-09	7.412e-11	4.545	7.800e-11	3.879e-12	4.256	4.166e-12	2.866e-13	3.759
u_3	0	0	\	0	0	\	0	0	\
u_4	8.438e-09	6.330 e-10	3.624	6.755e-10	4.247e-11	3.898	4.502e-11	2.554e-12	4.055
u_5	3.081e-09	2.460 e-10	3.527	2.630e-10	1.703e-11	3.853	1.783e-11	8.034e-13	4.406
u_6	0	0	\	0	0	\	0	0	\
平均收敛阶		3.82			3.97			4.09	
CPU time(ms)		20			37			88	

从中可以看出,随着 n 的增大,算法的收敛阶并没有稳定趋向于 4 (事实上改变 n 的值,收敛阶并不稳定),**然而该算法对于轨道一的收敛阶是精确的!** 关于收敛阶不稳定的可能原因,在 2.2.10 节中已经给出了相关分析; CPU time 与步数 n 基本成正比关系。

此外,以 10^1 为单位不断改变步数 n,得到当 $n = 1.51 \times 10^3$ 时, u_1 和 u_2 的误差较大值为 4.93×10^{-2} , 最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 1.51 \times 10^3$,小于 p = 3 时的最大可行步长。

2.3.2 Adams-Moulton methods

• p = 2

首先,设置单周期数值求解步数 $n=1\times 10^6$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=1\times 10^5, 2\times 10^5, 4\times 10^5$ (为了能得到相对准确的收敛 阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n		1×10^5			2×10^5		4×10^5		
\ 11	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶
u_1	2.938e-06	5.876e-07	2.000	7.346e-07	1.469e-07	2.000	1.836e-07	3.673e-08	2.000
u_2	8.356e-07	1.671 e-07	2.000	2.089e-07	4.178e-08	2.000	5.223e-08	1.045e-08	2.000
u_3	0	0	\	0	0	\	0	0	\
u_4	1.327e-05	2.653e-06	2.000	3.317e-06	6.633 e-07	2.000	8.292e-07	1.658e-07	2.000
u_5	5.357e-06	1.071e-06	2.000	1.339e-06	2.679e-07	2.000	3.348e-07	6.696e-08	2.000
u_6	0	0	\	0	0	\	0	0	\
平均收敛阶		2.00			2.00			2.00	
CPU time(ms)		133			259			456	

从中可以看出,随着n 的增大,算法的收敛阶稳定在2,从而验证了算法的精度为2;CPU time 与步数n 基本成正比关系。另外,值得注意的是,和同阶的 Adams-Bashforth 算法相比,Adams-Moulton的误差似乎更小一些,但是由于不动点迭代求解的原因,所花费的时间也更多一些。

此外,以 10^1 为单位不断改变步数 n,得到当 $n=1.31\times 10^3$ 时, u_1 和 u_2 的误差较大值为 4.93×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 1.31 \times 10^3$ 。

• p = 3

首先,设置单周期数值求解步数 $n=5\times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=1\times 10^4, 2\times 10^4, 4\times 10^4$ (为了能得到相对准确的收敛 阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n		1×10^5			2×10^5		4×10^5			
\ 11	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	
u_1	1.069e-04	1.187e-05	3.001	1.336e-05	1.484e-06	3.000	1.670e-06	1.855e-07	3.000	
u_2	1.075e-04	1.194 e-05	3.000	1.344e-05	1.493e-06	3.000	1.680e-06	1.866e-07	3.000	
u_3	0	0	\	0	0	\	0	0	\	
u_4	4.555e-04	5.056e-05	3.002	5.688e-05	6.319 e-06	3.000	7.108e-06	7.898e-07	3.000	
u_5	2.181e-04	2.424e-05	3.000	2.727e-05	3.030e-06	3.000	3.408e-06	3.787e-07	3.000	
u_6	0	0	\	0	0	\	0	0	\	
平均收敛阶		3.00			3.00			3.00		
CPU time(ms)		31			48			93		

从中可以看出,随着n 的增大,算法的收敛阶稳定趋向于3,从而验证了算法的精度为3;CPU time 与步数n 基本成正比关系。另外,值得注意的是,和同阶的 Adams-Bashforth 算法相比,Adams-Moulton 的误差似乎更小一些,但是由于不动点迭代求解的原因,所花费的时间也更多一些。

此外,以 10^1 为单位不断改变步数 n,得到当 $n=1.25\times 10^3$ 时, u_1 和 u_2 的误差较大值为 4.97×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\max}=1.25\times 10^3$,略小于 p=2 时的最大可行步长。

• p = 4

首先,设置单周期数值求解步数 $n=2\times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=1\times 10^4, 2\times 10^4, 4\times 10^4$ (为了能得到相对准确的收敛 阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n		1×10^4			2×10^4		4×10^4		
\ 11	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶
u_1	1.299e-08	2.007e-09	2.452	2.174e-09	1.670e-10	3.587	1.766e-10	9.592e-12	4.122
u_2	5.720e-08	2.118e-09	4.701	2.209e-09	9.080e-11	4.544	9.724e-11	6.443e-12	3.817
u_3	0	0	\	0	0	\	0	0	\
u_4	6.884e-08	9.359 e-09	2.668	1.012e-08	7.623e-10	3.618	8.063e-10	4.398e-11	4.116
u_5	1.474e-08	3.389e-09	1.744	3.685e-09	2.960e-10	3.517	3.129e-10	1.689e-11	4.132
u_6	0	0	\	0	0	\	0	0	\
平均收敛阶		2.89			3.82			4.05	
CPU time(ms)		31			55			118	

从中可以看出,随着 n 的增大,算法的收敛阶并没有稳定趋向于 4 (事实上改变 n 的值,收敛阶并不稳定),**然而该算法对于轨道一的收敛阶是精确的!** 关于收敛阶不稳定的可能原因,在 2.2.10 节中已经给出了相关分析;CPU time 与步数 n 基本成正比关系。另外,值得注意的是,和同阶的 Adams-Bashforth 算法相比,Adams-Moulton 的误差似乎更小一些,但是由于不动点迭代求解的原因,所花费的时间也更多一些。

此外,以 10^2 为单位不断改变步数 n,得到当 $n = 1.01 \times 10^3$ 时, u_1 和 u_2 的误差较大值为 4.94×10^{-2} , 最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 1.01 \times 10^3$,小于 p = 3 时的最大可行步长。

 \bullet p=5

首先,设置单周期数值求解步数 $n = 1 \times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=4\times10^3, 8\times10^3, 1.6\times10^4$ (为了能得到相对准确的收敛阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n		4×10^3			8×10^3		1.6×10^{4}			
\ 11	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	
u_1	3.798e-06	1.157e-07	4.992	1.193e-07	3.617e-09	4.999	3.730e-09	1.128e-10	5.003	
u_2	3.794e-06	1.158e-07	4.989	1.195e-07	3.627e-09	4.997	3.740e-09	1.132e-10	5.002	
u_3	0	0	\	0	0	\	0	0	\	
u_4	1.622e-05	4.940 e-07	4.993	5.094e-07	1.545 e-08	4.999	1.593e-08	4.818e-10	5.003	
u_5	7.704e-06	2.347e-07	4.992	2.420e-07	7.339e-09	4.999	7.568e-09	2.290e-10	5.002	
u_6	0	0	\	0	0	\	0	0	\	
平均收敛阶		4.99			5.00			5.00		
CPU time(ms)		17			30			52		

从中可以看出,随着 n 的增大,算法的收敛阶稳定趋向于 5,从而验证了算法的精度为 5;CPU time 与步数 n 基本成正比关系。

此外,以 10^0 为单位不断改变步数 n,得到当 $n=6.51\times 10^2$ 时, u_1 和 u_2 的误差较大值为 4.92×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 6.51 \times 10^2$,小于 p = 4 时的最大可行步长。

2.3.3 BDFs

• p = 1

首先,设置单周期数值求解步数 $n=4\times 10^6$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n = 4 \times 10^6, 8 \times 10^6, 1.6 \times 10^7$ (n 过大时不动点迭代会不收敛),得到 $u_1 \subseteq u_6$ 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n		4×10^6			8×10^6		1.6×10^{7}		
\ 11	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶
u_1	8.927e-03	3.055e-03	0.943	4.615e-03	1.560e-03	0.969	2.349e-03	7.887e-04	0.984
u_2	9.456e-03	3.178e-03	0.982	4.776e-03	1.598e-03	0.992	2.399e-03	8.013e-04	0.996
u_3	0	0	\	0	0	\	0	0	\
u_4	3.489e-02	1.234e-02	0.870	1.880e-02	6.464 e-03	0.933	9.774e-03	3.310e-03	0.966
u_5	1.973e-02	6.592 e- 03	0.995	9.880e-03	3.287e-03	1.004	4.927e-03	1.639e-03	1.004
u_6	0	0	\	0	0	\	0	0	\
平均收敛阶		0.95			0.97			0.99	
CPU time(ms)		3122			6305			12826	

从中可以看出,随着 n 的增大,算法的收敛阶稳定在 1,从而验证了算法的精度为 1;CPU time 与步数 n 基本成正比关系。

此外,以 10^3 为单位不断改变步数 n,得到当 $n = 8.55 \times 10^5$ 时, u_1 和 u_2 的误差较大值为 4.90×10^{-2} , 最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 8.55 \times 10^5$ 。

• p = 2

首先,设置单周期数值求解步数 $n=2\times 10^6$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=1\times 10^5, 2\times 10^5, 4\times 10^5$ (为了能得到相对准确的收敛 阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n		1×10^5			2×10^5		4×10^{5}		
\ 11	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶
u_1	1.111e-05	2.280 e-06	1.954	2.859e-06	5.795 e-07	1.976	7.267e-07	1.472 e-07	1.976
u_2	3.988e-06	7.399e-07	2.134	9.153e-07	1.754 e-07	2.077	2.168e-07	4.145e-08	2.081
u_3	0	0	\	0	0	\	0	0	\
u_4	5.034e-05	1.031e-05	1.957	1.293e-05	2.618e-06	1.977	3.283e-06	6.648 e-07	1.978
u_5	2.012e-05	4.141e-06	1.948	5.196e-06	1.055e-06	1.973	1.323e-06	2.685 e-07	1.974
u_6	0	0	\	0	0	\	0	0	\
平均收敛阶		2.00			2.00			2.00	
CPU time(ms)		115			198			361	

从中可以看出,随着 n 的增大,算法的收敛阶稳定在 2,从而验证了算法的精度为 2;CPU time 与步数 n 基本成正比关系。

此外,以 10^3 为单位不断改变步数 n,得到当 $n=3.14\times10^3$ 时, u_1 和 u_2 的误差较大值为 4.91×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}}=3.14\times 10^3$,远小于 p=1 时的最大可行步长。

• p = 3

首先,设置单周期数值求解步数 $n=5\times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=2\times 10^4, 4\times 10^4, 8\times 10^4$ (为了能得到相对准确的收敛 阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n		2×10^4			4×10^4		8×10^3		
\ 11	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶
u_1	8.019e-05	8.906e-06	3.001	1.002e-05	1.113e-06	3.000	1.252e-06	1.387e-07	3.004
u_2	8.061e-05	8.958e-06	3.000	1.008e-05	1.120e-06	3.000	1.259e-06	1.395 e-07	3.004
u_3	0	0	\	0	0	\	0	0	\
u_4	3.416e-04	3.792 e- 05	3.001	4.266e-05	4.738e-06	3.001	5.329e-06	5.905e-07	3.004
u_5	1.636e-04	1.818e-05	3.000	2.045e-05	2.272e-06	3.000	2.555e-06	2.832e-07	3.004
u_6	0	0	\	0	0	\	0	0	\
平均收敛阶		3.00			3.00			3.00	
CPU time(ms)		34			54			112	

从中可以看出,随着 n 的增大,算法的收敛阶稳定趋向于 3,从而验证了算法的精度为 3;CPU time 与步数 n 基本成正比关系。

此外,以 10^1 为单位不断改变步数 n,得到当 $n = 2.15 \times 10^3$ 时, u_1 和 u_2 的误差较大值为 4.96×10^{-2} , 最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 2.15 \times 10^3$,小于 p = 2 时的最大可行步长。

• p = 4

首先,设置单周期数值求解步数 $n=1\times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=2\times 10^3, 4\times 10^3, 8\times 10^3$ (为了能得到相对准确的收敛 阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n		2×10^3			4×10^3		8×10^{3}			
\ 11	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	
u_1	1.896e-03	5.001e-05	5.206	5.109e-05	1.076e-06	5.538	1.079e-06	2.886e-09	8.543	
u_2	2.205e-03	6.953 e-05	4.940	7.183e-05	2.301e-06	4.918	2.380e-06	7.932e-08	4.858	
u_3	0	0	\	0	0	\	0	0	\	
u_4	8.121e-03	2.100e-04	5.236	2.143e-04	4.365 e - 06	5.588	4.362e-06	2.229e-09	10.934	
u_5	3.832e-03	1.046e-04	5.155	1.070e-04	2.385 e-06	5.454	2.404e-06	1.849e-08	7.011	
u_6	0	0	\	0	0	\	0	0	\	
平均收敛阶		5.13			5.37			7.84		
CPU time(ms)		4			7			14		

从中可以看出,随着 n 的增大,算法的收敛阶并没有稳定趋向于 4 (事实上改变 n 的值,收敛阶并不稳定),**然而该算法对于轨道一的收敛阶是精确的!** 关于收敛阶不稳定的可能原因,在 2.2.10 节中已经给出了相关分析; CPU time 与步数 n 基本成正比关系。

此外,以 10^1 为单位不断改变步数 n,得到当 $n = 1.39 \times 10^3$ 时, u_1 和 u_2 的误差较大值为 4.91×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 1.39 \times 10^3$,小于 p = 3 时的最大可行步长。

2.3.4 classical RK method

对于经典四阶 RK, 首先, 设置单周期数值求解步数 $n = 1 \times 10^4$ (关于项目作业要求的 6000 steps 的图像及其运行时间分析请见 2.2.9 节), 绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离, 这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=2\times 10^3, 4\times 10^3, 8\times 10^3$ (为了能得到相对准确的收敛 阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n		2×10^3			4×10^3		8×10^{3}		
\ 11	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶
u_1	9.279e-06	2.084e-07	5.444	2.102e-07	1.808e-09	6.848	1.571e-09	2.374e-10	2.490
u_2	1.272e-05	4.109e-07	4.905	4.253e-07	1.445e-08	4.829	1.500e-08	5.521e-10	4.710
u_3	0	0	\	0	0	\	0	0	\
u_4	3.904e-05	8.536e-07	5.484	8.590e-07	5.391e-09	7.307	4.229e-09	1.162e-09	1.401
u_5	1.928e-05	4.515e-07	5.382	4.571e-07	5.537e-09	6.350	5.174e-09	3.629e-10	3.729
u_6	0	0	\	0	0	\	0	0	\
平均收敛阶		5.30			6.33			3.08	
CPU time(ms)		1			3			5	

从中可以看出,随着 n 的增大,算法的收敛阶并没有稳定趋向于 4 (事实上改变 n 的值,收敛阶并不稳定),**然而该算法对于轨道一的收敛阶是精确的!** 关于收敛阶不稳定的可能原因,在 2.2.10 节中已经给出了相关分析; CPU time 与步数 n 基本成正比关系。

此外,以 10^0 为单位不断改变步数 n,得到当 $n=6.23\times10^2$ 时, u_1 和 u_2 的误差较大值为 4.94×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\max}=6.23\times 10^2$,相较之下小于 Adams-Bashforth、Adams-Moulton 以及 BDF 三种算法 p=4 时的最大可行步长。

2.3.5 ESDIRK

对于课本给出的 6-stage 四阶 ESDIRK, 首先,设置单周期数值求解步数 $n = 1 \times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=2\times 10^3, 4\times 10^3, 8\times 10^3$ (为了能得到相对准确的收敛 阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n		2×10^3		4×10^3			8×10^{3}		
\ 11	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶
u_1	1.214e-06	4.584e-08	4.672	4.784e-08	2.006e-09	4.514	2.105e-09	9.897e-11	4.341
u_2	7.656e-07	1.959e-08	5.251	1.995e-08	3.669e-10	5.738	3.635e-10	3.436e-12	6.711
u_3	0	0	\	0	0	\	0	0	\
u_4	5.284e-06	2.012e-07	4.659	2.101e-07	8.890e-09	4.500	9.333e-09	4.425e-10	4.328
u_5	2.384e-06	8.877e-08	4.692	9.259e-08	3.820e-09	4.538	4.006e-09	1.856e-10	4.364
u_6	0	0	\	0	0	\	0	0	\
平均收敛阶		4.82			4.82			4.94	
CPU time(ms)		20			36			68	

从中可以看出,随着 n 的增大,算法的收敛阶并没有稳定趋向于 4 (事实上改变 n 的值,收敛阶并不稳定),**然而该算法对于轨道一的收敛阶是精确的!** 关于收敛阶不稳定的可能原因,在 2.2.10 节中已经给出了相关分析; CPU time 与步数 n 基本成正比关系。值得注意的是,相较于 classical RK method,

ESDIRK 在相同 n 的条件下拥有更小的误差,不过由于需要进行不动点迭代,因此也牺牲了更多的运算时间。

此外,以 10^0 为单位不断改变步数 n,得到当 $n=3.31\times 10^2$ 时, u_1 和 u_2 的误差较大值为 4.96×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}}=3.31\times 10^2$,相较之下小于 Adams-Bashforth、Adams-Moulton、BDF,以及经典四阶 RK 四种算法 p=4 时的最大可行步长。

2.3.6 Gauss-Legendre RK methods

•
$$p = 2(s = 1)$$

首先,设置单周期数值求解步数 $n=5\times 10^5$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=2\times10^5,4\times10^5,8\times10^5$ (为了能得到相对准确的收敛

阶,我们选取相对较大的 n),	得到 u_1 3	$E u_6$	分量和初始值的绝对误差、	对应算法收敛阶以及	CPU time
如下表所示:					

\ n	2×10^5			4×10^5			8×10^{5}		
	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶
u_1	6.941e-07	1.388e-07	2.000	1.735e-07	3.470e-08	2.000	4.338e-08	8.671e-09	2.001
u_2	2.497e-07	4.994 e-08	2.000	6.242e-08	1.248e-08	2.000	1.561e-08	3.126e-09	1.998
u_3	0	0	\	0	0	\	0	0	\
u_4	3.143e-06	6.286 e - 07	2.000	7.858e-07	1.572 e-07	2.000	1.964e-07	3.927e-08	2.001
u_5	1.265e-06	2.531e-07	2.000	3.164e-07	6.328e-08	2.000	7.908e-08	1.581e-08	2.001
u_6	0	0	\	0	0	\	0	0	\
平均收敛阶		2.00			2.00			2.00	
CPU time(ms)		397			584			1407	

从中可以看出,随着 n 的增大,算法的收敛阶稳定在 2,从而验证了算法的精度为 2; CPU time 与步数 n 近似成正比关系。此外,值得注意的是 Gauss-Legendre RK 方法 2 阶的误差要略小于 Adams-Bashforth,Adams-Moulton,BDF 对应的二阶算法误差,体现了算法的精确性。不过由于此时的不动点迭代是以向量为形式的,更为复杂,因此求解也更耗时。

此外,以 10^1 为单位不断改变步数 n,得到当 $n=1.14\times 10^3$ 时, u_1 和 u_2 的误差较大值为 4.92×10^{-2} , 最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到, 算法最大可行步长约为 $n_{\text{max}} = 1.14 \times 10^3$, 小于 Adams-Bashforth, Adams-Moulton,

BDF 对应的二阶算法的最大可行步长。

•
$$p = 4(s = 2)$$

首先,设置单周期数值求解步数 $n=1\times 10^4$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n=2\times 10^3, 4\times 10^3, 8\times 10^3$ (为了能得到相对准确的收敛 阶,我们选取相对较大的 n),得到 u_1 至 u_6 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n	2×10^3			4×10^3			8×10^3		
	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶
u_1	1.756e-06	1.034e-07	3.999	1.098e-07	6.462e-09	4.000	6.866e-09	4.037e-10	4.001
u_2	5.427e-07	3.195 e-08	3.999	3.394e-08	1.997e-09	4.000	2.122e-09	1.250e-10	3.998
u_3	0	0	\	0	0	\	0	0	\
u_4	7.936e-06	4.672 e-07	3.999	4.964e-07	2.921e-08	4.000	3.103e-08	1.825e-09	4.001
u_5	3.201e-06	1.885 e-07	3.999	2.003e-07	1.178e-08	4.000	1.252e-08	7.361e-10	4.001
u_6	0	0	\	0	0	\	0	0	\
平均收敛阶		4.00			4.00			4.00	
CPU time(ms)		11			19			35	

从中可以看出,随着n 的增大,算法的收敛阶稳定在4,从而验证了算法的精度为4;CPU time 与步数n 近似成正比关系。此外,值得注意的是 Gauss-Legendre RK 方法4 阶的误差要略小于 Adams-

Bashforth, Adams-Moulton, BDF 对应的四阶算法误差,体现了算法的精确性。不过由于此时的不动点迭代是以向量为形式的,更为复杂,因此求解也更耗时。

此外,以 10^0 为单位不断改变步数 n,得到当 $n = 2.80 \times 10^2$ 时, u_1 和 u_2 的误差较大值为 4.90×10^{-2} ,最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\text{max}} = 2.80 \times 10^2$, 小于 Adams-Bashforth, Adams-Moulton, BDF 对应的四阶算法的最大可行步长。

•
$$p = 6(s = 3)$$

首先,设置单周期数值求解步数 $n = 2 \times 10^3$,绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,设置单周期数值求解步数分别为 $n = 5 \times 10^2, 1 \times 10^3, 2 \times 10^3$ (为了能得到相对准确的收敛 阶,我们选取相对较大的 n),得到 $u_1 \subseteq u_6$ 分量和初始值的绝对误差、对应算法收敛阶以及 CPU time 如下表所示:

\ n	5×10^2			1×10^3			2×10^3		
	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶	$\overline{\mathbf{E}}(k)$	$\overline{\mathbf{E}}(rac{k}{2})$	收敛阶
u_1	1.615e-06	2.531e-08	5.973	2.571e-08	3.974e-10	5.993	4.035e-10	6.142e-12	6.016
u_2	3.738e-07	5.837e-09	5.978	5.929e-09	9.149e-11	5.995	9.300e-11	1.504e-12	5.927
u_3	0	0	\	0	0	\	0	0	\
u_4	7.278e-06	1.140e-07	5.973	1.158e-07	1.790e-09	5.993	1.818e-09	2.770e-11	6.014
u_5	2.945e-06	4.615 e-08	5.973	4.687e-08	7.245e-10	5.993	7.357e-10	1.118e-11	6.018
u_6	0	0	\	0	0	\	0	0	\
平均收敛阶		5.97			5.99			5.99	
CPU time(ms)		4			8			15	

从中可以看出,随着 n 的增大,算法的收敛阶稳定在 6,从而验证了算法的精度为 6;CPU time 与步数 n 近似成正比关系。

此外,以 10^0 为单位不断改变步数 n,得到当 $n=1.85\times 10^2$ 时, u_1 和 u_2 的误差较大值为 4.96×10^{-2} , 最接近给定阈值 5×10^{-2} ,从而产生肉眼可见的偏离如下(对比上文中的较精确图像):

因此我们得到,算法最大可行步长约为 $n_{\max}=1.85\times 10^2$,小于 Adams-Bashforth,Adams-Moulton,BDF 对应的四阶算法的最大可行步长。

2.3.7 Fehlberg 4(5) embedded RK method

对于 Fehlberg 4(5) embedded RK method, 首先, 设置初始周期数值求解步长 $\frac{T_0}{n}$, 其中 $n=4\times10^4$, 并取 $\mathbf{E}_{abs}=\mathbf{E}_{rel}=10^{-8}$, $\rho_{max}=3.0$, $\rho=0.8$, $\rho_{min}=0.5$ 绘制轨道一图像(作为直观展示)如下。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,由于变步长算法无法直接计算收敛阶,因此此处无法用 richardson 外插展示。

2.3.8 Dormand-Prince 5(4) embedded RK method

对于 Dormand-Prince 5(4) embedded RK method, 首先,设置初始周期数值求解步长 $\frac{T_1}{n}$,其中 $n=4\times 10^4$,并取 $\mathbf{E}_{abs}=\mathbf{E}_{rel}=10^{-8}$, $\rho_{max}=3.0$, $\rho=0.8$, $\rho_{min}=0.5$ 绘制轨道一图像(作为直观展示)如下(**关于项目作业要求的 100 steps 的图像及其运行时间分析请见 2.2.9 节**)。此时轨道基本上没有肉眼可见的偏离,这是算法正确性的体现。

其次,由于变步长算法无法直接计算收敛阶,因此此处无法用 richardson 外插展示。

2.3.9 其他:图像绘制及方法比较

首先,分别绘制 Euler's method with 24000 steps, classical RK methods with 6000 steps, 和 Dormand-Prince 5(4) embedded RK methods with 100 steps (经调整参数,当 $\mathbf{E}_{abs} = \mathbf{E}_{rel} = 2.9 \times 10^{-9}$, 其他参数同上节不变时恰好一个周期走过 100 步)的图像如下所示。

显然, Euler's method with 24000 steps, Dormand-Prince 5(4) embedded RK methods with 100 steps, 和 classical RK methods with 6000 steps 的图像依次变得更加精确。

此外,经过调整得到,为了达到 10-3 的无穷范数误差:

- 1. Euler's method 需要的步长是 $5.57\times 10^7, \ \mathrm{CPU}$ time 是 12342ms ;
- 2.classical RK method 需要的步长是 1.25×10^3 , CPU time 是 1.3ms;
- 3.Dormand-Prince 5(4) embedded RK method 需要的步长是 1.18 × 10³, CPU time 是 1.2ms;

可以看出, Dormand-Prince 5(4) embedded RK method 的 CPU time 和步数都与 classical RK method 几乎相同,略胜一筹。