The Local Fundamental Class

Nir Elber

May 25, 2022

Abstract

We compute the local fundamental class of the extension $\mathbb{Q}_p(\zeta_N)/\mathbb{Q}_p$ when p is an odd prime. This requires making a number of standard group cohomology constructions fully explicit in the process.

Contents

Co	ontents	1
1	Set-Up	1
2	Idea	3
3	Computation 3.1 Group Cohomology	3
	3.1 Group Cohomology	3
	3.2 Number Theory	
	3.3 Checks	14
	3.4 Consequences	17

1 Set-Up

We will work over \mathbb{Q}_p as our base field, where p is an odd prime. Set $N := p^{\nu} m$ where k and m integers with $p \nmid m$. This gives us the following tower of fields.

To help us a little later, we will assume that the extension $\mathbb{Q}_p(\zeta_N)/\mathbb{Q}_p$ is not totally ramified nor as unramified, for in this case we can understand the extension by viewing it as a cyclic extension. We provide some quick commentary on these extensions.

- The extension $\mathbb{Q}_p(\zeta_m)/\mathbb{Q}_p$ is unramified of degree $f \coloneqq \operatorname{ord}_p(m)$; note we are assuming 1 < f < n. Its Galois group is thus generated by the Frobenius element defined by $\overline{\sigma}_K \colon \zeta_m \mapsto \zeta_m^p$.
- The extension $\mathbb{Q}_p\left(\zeta_{p^{\nu}}\right)/\mathbb{Q}_p$ is totally ramified of degree $\varphi\left(p^{\nu}\right)$. Its Galois group is thus isomorphic to $(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$, where the isomorphism takes $x\in(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$ to

$$\sigma_x \colon \zeta_{p^{\nu}} \mapsto \zeta_{p^{\nu}}^{x^{-1}}.$$

The group $(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$ is cyclic, so we will fix a generator x, which gives us a distinguished generator $\sigma_x \in \operatorname{Gal}(\mathbb{Q}(\zeta_{p^{\nu}})/\mathbb{Q}_p)$.

• Because $\mathbb{Q}_p(\zeta_{p^{\nu}})$ is totally ramified and $\mathbb{Q}_p(\zeta_m)/\mathbb{Q}_p$ is unramified, we have that the fields $\mathbb{Q}_p(\zeta_{p^{\nu}})$ and $\mathbb{Q}_p(\zeta_m)$ are linearly disjoint over \mathbb{Q}_p . As such, $\mathbb{Q}_p(\zeta_N) = \mathbb{Q}_p(\zeta_{p^{\nu}}) \mathbb{Q}_p(\zeta_m)$ has

$$Gal(\mathbb{Q}_{p}(\zeta_{N})/\mathbb{Q}_{p}(\zeta_{p^{\nu}})) \simeq Gal(\mathbb{Q}_{p}(\zeta_{m})/\mathbb{Q}_{p}) = \langle \overline{\sigma}_{K} \rangle$$

$$Gal(\mathbb{Q}_{p}(\zeta_{N})/\mathbb{Q}_{p}(\zeta_{m})) \simeq Gal(\mathbb{Q}_{p}(\zeta_{p^{\nu}})/\mathbb{Q}_{p}) = \langle \sigma_{x} \rangle$$

$$Gal(\mathbb{Q}_{p}(\zeta_{N})/\mathbb{Q}_{p}) \simeq Gal(\mathbb{Q}_{p}(\zeta_{m})/\mathbb{Q}_{p}) \times Gal(\mathbb{Q}_{p}(\zeta_{p^{\nu}})/\mathbb{Q}_{p}) = \langle \overline{\sigma}_{K} \rangle \times \langle \sigma_{x} \rangle.$$

In light of these isomorphisms, we will upgrade $\overline{\sigma}_K$ to the automorphism of $\mathbb{Q}_p(\zeta_N)/\mathbb{Q}_p$ sending $\zeta_m \mapsto \zeta_m^p$ and fixing $\mathbb{Q}_p(\zeta_{p^{\nu}})$; we do analogously for σ_x . We also acknowledge that our degree is

$$n := \left[\mathbb{Q}_p(\zeta_N) : \mathbb{Q}_p \right] = \left[\mathbb{Q}_p(\zeta_m) : \mathbb{Q}_p \right] \cdot \left[\mathbb{Q}_p(\zeta_{p^{\nu}}) : \mathbb{Q}_p \right] = f\varphi\left(p^{\nu}\right).$$

For brevity, we will also set $L_1 := \mathbb{Q}_p(\zeta_{p^{\nu}})$ and $L_2 := \mathbb{Q}_p(\zeta_m)$, which makes the fields under L look like the following.

Now, the main idea in the computation is to use an unramified extension of the same degree as $\mathbb{Q}_p(\zeta_N)$. As such, we set $N' := p^n - 1$ so that $[\mathbb{Q}_p(\zeta_{N'}) : \mathbb{Q}_p]$ is $\operatorname{ord}_{N'}(p) = n$. This modifies our diagram of fields as follows.

We have labeled the unramified extensions by "unr" and the totally ramified extensions by "ram."

For brevity, we set $K:=\mathbb{Q}_p$ and $L:=\mathbb{Q}_p(\zeta_N)$ and $M:=\mathbb{Q}_p(\zeta_{N'})$ so that $ML=\mathbb{Q}_p(\zeta_N,\zeta_{N'})$. This abbreviates our diagram into the following.

As before, we provide some comments on the field extensions.

• The extension $\mathbb{Q}_p(\zeta_{N'})/\mathbb{Q}_p$ is unramified of degree n. As before, its Galois group is cyclic, generated by $\sigma_K \colon \zeta_{N'} \mapsto \zeta_{N'}^p$. Observe that σ_K restricted to $\mathbb{Q}_p(\zeta_m)$ is $\overline{\sigma}_K$, explaining our notation. In particular, σ_K has order n, but $\overline{\sigma}_K$ has order f < n.

• As before, note that $\mathbb{Q}_p(\zeta_{p^{\nu}})$ and $\mathbb{Q}(\zeta_{N'})$ are linearly disjoint because $\mathbb{Q}_p(\zeta_{p^{\nu}})/\mathbb{Q}_p$ is totally ramified while $\mathbb{Q}_p(\zeta_{N'})/\mathbb{Q}_p$ is unramified. As such, we may say that

$$Gal(ML/M) \simeq Gal(\mathbb{Q}(\zeta_{p^{\nu}})/\mathbb{Q}_p) = \langle \sigma_x \rangle$$

$$Gal(ML/\mathbb{Q}_p(\zeta_{p^{\nu}})) \simeq Gal(M/K) = \langle \sigma_K \rangle$$

$$Gal(ML/K) \simeq Gal(\mathbb{Q}_p(\zeta_{N'})/\mathbb{Q}_p) \times Gal(\mathbb{Q}_p(\zeta_{p^{\nu}})/\mathbb{Q}_p) = \langle \sigma_K \rangle \times \langle \sigma_x \rangle.$$

Again, we will upgrade σ_K and σ_x to their corresponding automorphisms on any subfield of ML.

· We take a moment to compute

$$\operatorname{Gal}(ML/L) \simeq \left\{ \sigma_K^{a_1} \sigma_x^{a_2} \in \operatorname{Gal}(ML/K) : \sigma_K^{a_1} \sigma_x^{a_2} |_L = \operatorname{id}_L \right\}.$$

Because L is $\mathbb{Q}_p(\zeta_{p^{\nu}})\mathbb{Q}_p(\zeta_m)$, it suffices to fix each of these fields individually. Well, to fix $\mathbb{Q}_p(\zeta_{p^{\nu}})$, we need $\sigma_x^{a_2}$ to vanish, so we might as well force $a_2=0$. But to fix $\mathbb{Q}_p(\zeta_m)$, we need $\sigma_K^{a_1}|_{\mathbb{Q}(\zeta_m)}=\overline{\sigma}_k^{a_1}$ to be the identity, so we are actually requiring that $f\mid a_1$ here. As such,

$$\operatorname{Gal}(ML/L) = \langle \sigma_K^f \rangle.$$

These comments complete the Galois-theoretic portion of the analysis.

2 Idea

We will begin by briefly describe the outline for the computation. For a finite extension of finite fields L/K, let $u_{L/K} \in H^2(L/K)$ denote the fundamental class.

Now, take variables as in our set-up in section 1. The main idea is to translate what we know about the unramified extension M/K over to the general extension L/K. In particular, we are able to compute the fundamental class $u_{M/K} \in H^2(M/K)$, so we observe that

$$\inf_{M/K}^{ML/K} u_{M/K} = [ML:M] u_{M/K} = n \cdot u_{ML/K} = [ML:L] u_{ML/L} = \inf_{L/K}^{ML/K} u_{L/K}.$$

As such, we will be able to compute $u_{L/K}$ as long as we are able to invert the inflation map $\mathrm{Inf}\colon H^2(L/K)\to H^2(ML/K)$. This is not actually very easy to do in general, but we are in luck because this inflation map here comes from the Inflation–Restriction exact sequence

$$0 \to H^2(L/K) \overset{\mathrm{Inf}}{\to} H^2(ML/K) \overset{\mathrm{Res}}{\to} H^2(ML/L).$$

The argument for the Inflation—Restriction exact sequence is an explicit computation on cocycles (involving some dimension shifting), but it can be tracked backwards to give the desired cocycle.

3 Computation

In this section we record the details of the computation.

3.1 Group Cohomology

Throughout this section, G will be a group (usually finite) and $H\subseteq G$ will be a subgroup (usually normal). We denote $\mathbb{Z}[G]$ by the group ring and $I_G\subseteq \mathbb{Z}[G]$ by the augmentation ideal, defined as the kernel of the map $\varepsilon\colon\mathbb{Z}[G]\to\mathbb{Z}$ which sends $g\mapsto 1$ for all $g\in G$.

We begin by recalling the statement of the Inflation–Restriction exact sequence.

 $^{^1}$ The difficulty comes from the fact that a generic cocycle might be off from an inflated cocycle by some truly hideous coboundary.

Theorem 1 (Inflation–Restriction). Let G be a finite group with normal subgroup $H \subseteq G$. Given a G-module A, suppose that the $H^i(H,A) = 0$ for $1 \le i < q$ for some index $q \ge 1$. Then the sequence

$$0 \to H^q(G/H, A^H) \stackrel{\text{Inf}}{\to} H^q(G, A) \stackrel{\text{Res}}{\to} H^q(H, A)$$

is exact.

Sketch. The proof is by induction on q, via dimension shifting. For q=1, we can just directly check this on 1-cocycles. The main point is the exactness at $H^q(G,A)$: if $c\in Z^1(G,A)$ has $\mathrm{Res}(c)\in B^1(H,A)$, then find $a\in A$ with

$$\operatorname{Res}(c)(a) := h \cdot a - a.$$

As such, we define $f_a \in B^1(G,A)$ by $f_a(g) := g \cdot a - a$, which implies that $c - f_a$ vanishes on H. It is then possible to stare at the 1-cocycle condition

$$(c - f_a)(gg') = (c - f_a)(g) + g \cdot (c - f_a)(g')$$

to check that $c-f_a$ only depends on the cosets of H (e.g., by taking $g' \in H$) and that $\operatorname{im}(c-f_a) \subseteq A^H$ (e.g., by taking $g \in H$).

For q > 1, we use dimension shifting via the following lemma.

Lemma 2 (Dimension shifting). Let G be a group with subgroup $H \subseteq G$. Given a G-module A, all indices $g \ge 1$ have

$$\delta \colon H^q(H, \operatorname{Hom}_{\mathbb{Z}}(I_G, A)) \simeq H^{q+1}(H, A).$$

Sketch. Recall that we have the short exact sequence of $\mathbb{Z}[H]$ -modules

$$0 \to I_G \to \mathbb{Z}[G] \to \mathbb{Z} \to 0.$$

In fact, this short exact sequence splits over \mathbb{Z} , so it will still be short exact after applying $\operatorname{Hom}_{\mathbb{Z}}(-,A)$, which gives the short exact sequence

$$0 \to A \to \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], A) \to \operatorname{Hom}_{\mathbb{Z}}(I_G, A) \to 0$$

of $\mathbb{Z}[H]$ -modules. The result now follows from the long exact sequence of cohomology upon noting that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G],A)$ is coinduced and hence acyclic for cohomology.

Using the above lemma, we have the following the commutative diagram with vertical arrows which are isomorphisms.

$$0 \longrightarrow H^{q}\left(G/H, \operatorname{Hom}_{\mathbb{Z}}(I_{G}, A)^{H}\right) \longrightarrow H^{q}(G, \operatorname{Hom}_{\mathbb{Z}}(I_{G}, A)) \longrightarrow H^{q}(H, \operatorname{Hom}_{\mathbb{Z}}(I_{G}, A))$$

$$\downarrow^{\delta} \qquad \qquad \downarrow^{\delta} \qquad \qquad \downarrow^{\delta}$$

$$0 \longrightarrow H^{q+1}\left(G/H, A^{H}\right) \longrightarrow H^{q+1}(G, A) \longrightarrow H^{q+1}(H, A)$$

The top row is exact by the inductive hypothesis, so the bottom row is therefore also exact.

Our goal is to make the above proof explicit in the case of q=2, which is the only reason we sketched the above proofs at all. We begin by making the dimension shifting explicit.

Lemma 3. Let G be a group with subgroup $H\subseteq G$, and let $\{g_{\alpha}\}_{{\alpha}\in{\lambda}}$ be coset representatives for $H\backslash G$. Now, given a G-module A, the maps

$$\delta_H \colon Z^1(H, \operatorname{Hom}_{\mathbb{Z}}(I_G, A)) \to Z^2(H, A)$$

$$c \mapsto \left[(h, h') \mapsto h \cdot c(h')(h^{-1} - 1) \right]$$

$$\left[h \mapsto \left((h'g_{\bullet} - 1) \mapsto h' \cdot u((h')^{-1}, h) \right) \right] \leftrightarrow u$$

are group homomorphisms which descend to the isomorphism $\overline{\delta}\colon H^1(H,\operatorname{Hom}_{\mathbb{Z}}(I_G,A))\simeq H^2(H,A)$ of Lemma 2. The map δ above is surjective, and the reverse map is a section; when H=G, these are isomorphisms.

Proof. We begin by noting that our short exact sequence can be written more explicitly as follows.

$$0 \longrightarrow A \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], A) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(I_G, A) \longrightarrow 0$$

$$a \longmapsto (z \mapsto \varepsilon(z)a)$$

$$f \longmapsto f|_{I_G}$$

We now track through the induced boundary morphism $\delta \colon H^1(H, \operatorname{Hom}_{\mathbb{Z}}(I_G, A)) \to H^2(H, Q)$.

• We begin with $c \in Z^1(H, \operatorname{Hom}_{\mathbb{Z}}(I_G, A))$, which means that we have $c(h) \colon I_G \to A$ for each $h, h' \in H$, and we satisfy

$$c(hh') = c(h) + h \cdot c(h').$$

Tracking through the action of H on $\operatorname{Hom}_{\mathbb{Z}}(I_G,A)$, this means that

$$c(hh')(g-1) = c(h)(g-1) + h \cdot c(h')(h^{-1}g - h^{-1})$$

for any $q \in G$.

• To pull c back to $C^1(H, \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], A))$, we need to lift $c(h) \colon I_G \to A$ to a $\widetilde{c}(h) \colon \mathbb{Z}[G] \to A$. Recalling that we only need to preserve group structure, we simply precompose c(h) with the map $\mathbb{Z}[G] \to I_G$ given by $z \mapsto z - \varepsilon(z)$. That is, we define

$$\widetilde{c}(h)(z) := c(h)(z - \varepsilon(z)).$$

• We now push \widetilde{c} through $d \colon C^1(H, \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], A)) \to Z^2(H, \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], A))$. This gives

$$(d\widetilde{c})(h,h') = g\widetilde{c}(h') - \widetilde{c}(hh') + \widetilde{c}(h)$$

for any $h, h' \in H$. Concretely, plugging in some $z \in \mathbb{Z}[G]$ makes this look like

$$(d\widetilde{c})(h,h')(z) = (h\widetilde{c}(h'))(z) - \widetilde{c}(hh')(z) + \widetilde{c}(h)(z)$$

$$= h \cdot c(h') \left(h^{-1}z - \varepsilon(h^{-1}z)\right) - c(hh')(z - \varepsilon(z)) + c(h)(z - \varepsilon(z))$$

$$= h \cdot c(h') \left(h^{-1}z - \varepsilon(z)\right) - c(hh')(z - \varepsilon(z)) + c(h)(z - \varepsilon(z)).$$

Now, from the 1-cocycle condition on c_i , we recall

$$-c(hh')(z-\varepsilon(z))+c(h)(z-\varepsilon(z))=-h\cdot(c(h')(h^{-1}z-\varepsilon(z)h^{-1})),$$

so

$$(d\widetilde{c})(h,h')(z) = h \cdot c(h') \left(\varepsilon(z)h^{-1} - \varepsilon(z) \right)$$
$$= \varepsilon(z) \cdot \left(h \cdot c(h') \left(h^{-1} - 1 \right) \right).$$

In particular, we see that $d\widetilde{c} \in Z^2(H, \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], A))$ pulls back to $(h, h') \mapsto h \cdot c(h') (h^{-1} - 1)$ in $Z^2(H, A)$. It is not too difficult to check that we have in fact defined a 2-cocycle, but we will not do so because it is not necessary for the proof.

Now, we do know that δ_H is a homomorphism abstractly on elements of our cohomology classes by the Snake lemma, but it is also not too hard to see that

$$\delta_H \colon Z^1(H, \operatorname{Hom}_{\mathbb{Z}}(I_G, A)) \to Z^2(H, A)$$

is in fact a homomorphism of groups directly from the construction. In short,

$$\delta_H(c+c')(h,h') = h' \cdot c(h)(h^{-1}-1) + h' \cdot c'(h)(h^{-1}-1) = (\delta_H(c) + \delta_H(c'))(h,h')$$

for any $h, h' \in H$.

It remains to prove the last sentence. We run the following checks; given $u \in Z^2(H,A)$, define $c_u \in C^1(H, \operatorname{Hom}_{\mathbb{Z}}(I_G,A))$ by

$$c_u(h)(h'g_{\bullet}-1)=h'\cdot u\left((h')^{-1},h\right).$$

Note that this is enough data to define $c_u(h) \colon I_G \to A$ because I_G is a free \mathbb{Z} -module generated by $\{g-1 : g \in G\}$.

• We verify that c_u is a 1-cocycle. This is a matter of force. Pick up $h, h' \in H$ and $g_{\bullet}h'' \in G$ and write

$$\begin{split} &(hc_u(h'))(h''g_{\bullet}-1)+c_u(hh')(h''g_{\bullet}-1)+c_u(h)(h''g_{\bullet}-1)\\ &=h\cdot c_u(h')\left(h^{-1}h''g_{\bullet}-h^{-1}\right)+c_u(hh')(h''g_{\bullet}-1)+c_u(h)(h''g_{\bullet}-1)\\ &=h\cdot \left(h^{-1}h''u\left((h'')^{-1}h,h'\right)-h^{-1}u(h,h')\right)+h''u\left((h'')^{-1},hh'\right)+h''u\left((h'')^{-1},h\right)\\ &=h''u\left((h'')^{-1}h,h'\right)-u(h,h')+h''u\left((h'')^{-1},hh'\right)+h''u\left((h'')^{-1},h\right). \end{split}$$

This is just the 2-cocycle condition for u upon dividing out by h'', so we are done.

• For $u \in Z^2(H,A)$, we verify that $\delta_H(c_u) = u$. Indeed, given $h,h' \in H$, we check

$$\delta_H(c_u)(h, h') = h \cdot c_u(h') \left(h^{-1} - 1\right)$$
$$= h \cdot h^{-1} \cdot u(h, h')$$
$$= u(h, h').$$

So far we have verified that δ has section $u\mapsto c_u$ and hence must be surjective. Lastly, we take H=G and show that $c_{\delta c}=c$ to finish. Indeed, for $g,g'\in G=H$, we write

$$c_{\delta_{H}c}(g)(g'-1) = g' \cdot (\delta_{H}c) ((g')^{-1}, g)$$

= $g'(g')^{-1} \cdot c(g)(g'-1)$
= $c(g)(g'-1)$,

which is what we wanted.

We also have used dimension shifting to show that $H^1\left(G/H,\operatorname{Hom}_{\mathbb{Z}}(I_G,A)^H\right)\to H^2\left(G/H,A^H\right)$ is an isomorphism, but this requires a little more trickery. To begin, we discuss how to lift from $\operatorname{Hom}_{\mathbb{Z}}(I_G,A)^H$ to $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G],A)^H$.

Lemma 4. Let G be a group with subgroup $H\subseteq G$. Fix a G-module A with $H^1(H,A)=0$. Then, for any $\psi\in \operatorname{Hom}_{\mathbb{Z}}(I_G,A)^H$, the function $h\mapsto h\psi\left(h^{-1}-1\right)$ is a cocycle in $Z^1(H,A)=B^1(H,A)$, so we can define a function $I_{\bullet}\colon \operatorname{Hom}_{\mathbb{Z}}(I_G,A)^H\to A$ such that

$$\psi(h-1) = h \cdot I_{\omega} - I_{\omega}$$

for all $h \in H$. In fact, given $\varphi \in \operatorname{Hom}_{\mathbb{Z}}(I_G, A)^H$, we can construct $\widetilde{\varphi} \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], A)^H$ by

$$\widetilde{\varphi}(z) \coloneqq \varphi(z - \varepsilon(z)) + \varepsilon(z)I_{\omega}$$

so that $\widetilde{\varphi}|_{I_{\alpha}} = \varphi$.

Proof. We will just run the checks directly.

• We start by checking $\psi \in \operatorname{Hom}_{\mathbb{Z}}(I_G, A)^H$ give 1-cocycles $c(h) \coloneqq \varphi(h-1)$ in $Z^1(A, H)$. To begin, we note that $\psi \in \operatorname{Hom}_{\mathbb{Z}}(I_G, A)^H$ simply means that any $z - \varepsilon(z) \in I_G$ has

$$\psi(z - \varepsilon(z)) = (h\psi)(z - \varepsilon(z)) = h\psi \left(h^{-1}z - h^{-1}\varepsilon(z)\right)$$

for all $h \in H$. In particular, replacing h with h^{-1} tells us that

$$h\psi(z-\varepsilon(z)) = \psi(hz-h\varepsilon(z)).$$

Now, we can just compute

$$(dc)(h,h') = hc(h') - c(hh') + c(h)$$

$$= hc(h'-1) - c(hh'-1) + c(h-1)$$

$$= c(hh'-h) - c(hh'-1) + c(h-1)$$

where in the last equality we used the fact that $\psi \in \operatorname{Hom}_{\mathbb{Z}}(I_G, A)^H$. Now, (dc)(h, h') manifestly vanishes, so we are done.

- Note that $\widetilde{\varphi} \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], A)$ because it is a linear combination of (compositions of) homomorphisms.
- Note that any $z \in I_G$ has $\varepsilon(z) = 0$, so

$$\widetilde{\varphi}(z) = \varphi(z-0) + 0 \cdot I_{\varphi} = \varphi(z),$$

so
$$\widetilde{\varphi}|_{I_G} = \varphi$$
.

• It remains to check that $\widetilde{\varphi}$ is fixed by H. This requires a little more effort. Recall that $\varphi \in \operatorname{Hom}_{\mathbb{Z}}(I_G, A)^H$ means that any $z - \varepsilon(z) \in I_G$ has

$$h\varphi(z-\varepsilon(z)) = \varphi(hz-h\varepsilon(z))$$

for any $h \in H$. Now, we just compute

$$(h\widetilde{\varphi})(z) = h\widetilde{\varphi} (h^{-1}z)$$

$$= h (\varphi (h^{-1}z - \varepsilon(h^{-1}z)) + \varepsilon(h^{-1}z)I_{\varphi})$$

$$= \varphi (z - h\varepsilon(z)) + \varepsilon(z) \cdot hI_{\varphi}$$

$$= \varphi (z - h\varepsilon(z)) + \varepsilon(z)\varphi(h - 1) + \varepsilon(z)I_{\varphi}$$

$$= \varphi(z - \varepsilon(z)) + \varepsilon(z)I_{\varphi}$$

$$= \widetilde{\varphi}(z).$$

The above checks complete the proof.

Remark 5. For motivation, the $\widetilde{\varphi}$ was constructed by tracking through the following diagram.

$$\frac{C^0(H,A)}{B^0(H,A)} \longrightarrow \frac{C^0(H,\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G],A))}{B^0(H,\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G],A))} \longrightarrow \frac{C^0(H,\operatorname{Hom}_{\mathbb{Z}}(I_G,A))}{B^0(H,\operatorname{Hom}_{\mathbb{Z}}(I_G,A))} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow Z^1(H,A) = B^1(H,A) \longrightarrow Z^1(H,\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G],A)) \longrightarrow Z^1(H,\operatorname{Hom}_{\mathbb{Z}}(I_G,A))$$

In short, take $\varphi \in Z^0(H, \operatorname{Hom}_{\mathbb{Z}}(I_G, A)) = \operatorname{Hom}_{\mathbb{Z}}(I_G, A)^H$, pull it back to $z \mapsto \varphi(z - \varepsilon(z))$. Pushing this down to $Z^1(H, \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], A))$ and pulling back to $Z^1(H, A)$ takes us to the 1-cocycle $h \mapsto h\varphi\left(h^{-1} - 1\right)$. Here we use the $H^1(H, A) = 0$ condition above and adjust our lift $z \mapsto \varphi(z - \varepsilon(z))$ accordingly.

And now we can now make our dimension shifting explicit.

Lemma 6. Work in the context of Lemma 4 and assume that $H \subseteq G$ is normal. We track through the isomorphism

$$\delta \colon H^1\left(G/H, \operatorname{Hom}_{\mathbb{Z}}(I_G, A)^H\right) \simeq H^2\left(G/H, A^H\right)$$

given by the exact sequence

$$0 \to A^H \to \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], A)^H \to \operatorname{Hom}_{\mathbb{Z}}(I_G, A)^H \to 0.$$

Proof. We begin with some $c \in H^1(G/H, \operatorname{Hom}_{\mathbb{Z}}(I_G, A)^H)$. To track through the δ_i we define

$$\widetilde{c}(gH) := c(gH)(z - \varepsilon(z)) + I_{c(gH)}\varepsilon(z)$$

to be the lift given in Lemma 4. Now, we are given that dc=0, which here means that any $z\in\mathbb{Z}[G]$ and $gH,g'H\in G/H$ will have

$$\begin{split} 0 &= (dc)(gH,g'H)(z-\varepsilon(z)) \\ 0 &= (gH\cdot c(g'H)-c(gg'H)+c(gH))(z-\varepsilon(z)) \\ 0 &= g\cdot c(g'H)\left(g^{-1}z-g^{-1}\varepsilon(z)\right)-c(gg'H)(z-\varepsilon(z))+c(gH)(z-\varepsilon(z)) \\ g\cdot c(g'H)\left(g^{-1}-1\right)\varepsilon(z) &= g\cdot c(g'H)\left(g^{-1}z-\varepsilon(z)\right)-c(gg'H)(z-\varepsilon(z))+c(gH)(z-\varepsilon(z)) \\ g\cdot c(g'H)\left(g^{-1}-1\right)\varepsilon(z) &= g\cdot c(g'H)\left(g^{-1}z-\varepsilon(g^{-1}z)\right)-c(gg'H)(z-\varepsilon(z))+c(gH)(z-\varepsilon(z)). \end{split}$$

We now directly compute that

$$\begin{split} (d\widetilde{c})(gH,g'H)(z) &= (gH \cdot c(g'H) - c(gg'H) + c(gH))(z) \\ &= g \cdot c(g'H) \left(g^{-1}z - \varepsilon(g^{-1}z) \right) + gI_{c(g'H)}\varepsilon(z) \\ &- c(gg'H)(z - \varepsilon(z)) - I_{c(gg'H)}\varepsilon(z) \\ &+ c(gH)(z - \varepsilon(z)) + I_{c(gH)}\varepsilon(z) \\ &= \left(g \cdot c(g'H) \left(g^{-1} - 1 \right) + g \cdot I_{c(g'H)} - I_{c(gg'H)} + I_{c(gH)} \right) \varepsilon(z) \end{split}$$

As such, we have pulled ourselves back to the 2-cocycle given by

$$u(gH, g'H) := g \cdot c(g'H) (g^{-1} - 1) + g \cdot I_{c(g'H)} - I_{c(gg'H)} + I_{c(gH)}$$

We quickly note that this is in fact independent of our choice of representative $g \in gH$: changing representative of g to gh for $h \in H$ will only affect the terms

$$h \cdot c(g'H) \left(h^{-1}g^{-1} - 1 \right) + hI_{c(g'H)} = c(g'H) \left(g^{-1} - h \right) + c(g'H) \left(h - 1 \right) + I_{c(g'H)} = c(g'H) \left(g^{-1} - 1 \right) + I_{c(g'H)},$$

so we are indeed safe. This completes the proof.

We now make Theorem 1 explicit in the case of q = 2.

Lemma 7. Let G be a group with normal subgroup $H \subseteq G$. Fix a G-module A with $H^1(H,A) = 0$, and define the function $I_{\bullet} \colon \operatorname{Hom}_{\mathbb{Z}}(I_G,A)^H \to A$ of Lemma 4. Given $c \in Z^2(G,A)$ such that $\operatorname{Res}_H^G c \in B^2(H,A)$; in particular, suppose we have $b \in \operatorname{Hom}_{\mathbb{Z}}(I_G,A)$ such that all $h \in H$ have

$$\operatorname{Res}_{H}^{G}(\delta^{-1}c)(h) = (db)(h) = h \cdot b - h,$$

where δ^{-1} is the inverse isomorphism of Lemma 3. Then we find $u \in Z^2\left(G/H,A^H\right)$ such that

$$[Inf u] = [c]$$

in $H^2(G,A)$.

Proof. The main point is that boundary morphisms δ commute with Res and Inf . By construction, we have that $\left(\operatorname{Res}_H^G \delta^{-1} c\right) - db = 0$ in $Z^1(H, \operatorname{Hom}_{\mathbb{Z}}(I_G, A))$. Pulling back to $Z^1(G, \operatorname{Hom}_{\mathbb{Z}}(I_G, A))$, we note that

$$c' := (\delta^{-1}c - db) \in Z^1(G, \operatorname{Hom}_{\mathbb{Z}}(I_G, A))$$

vanishes on H by hypothesis. Because $\delta^{-1}c-db$ is a 1-cocycle, we are able to write

$$c'(gg') = c'(g) + gc'(g').$$

Letting g' vary over H, we see that $\delta^{-1}c-db$ is well-defined on G/H. On the other hand, for any $h\in H$ and $g\in G$, we note that $g^{-1}hg\in H$, so

$$c'(g) = c'(g \cdot g^{-1}hg) = c'(hg) = c'(h) + hc(g),$$

implying that $c'(g) \in \text{Hom}_{\mathbb{Z}}(I_G, A)^H$.

We are now ready to apply Lemma 6, which we use on c', thus defining $u \coloneqq \delta(c')$. Explicitly, we have

$$u(gH, g'H) = g \cdot c'(g'H) \left(g^{-1} - 1\right) + g \cdot I_{c'(g'H)} - I_{c'(gg'H)} + I_{c'(gH)}$$

This is explicit enough for our purposes. Observe that $[\operatorname{Inf} u] = [c]$ because $[\operatorname{Inf} c'] = [\delta^{-1}c]$, and δ commutes with Inf .

3.2 Number Theory

Throughout, we will let $u_{L/K}$ denote a representative of the fundamental class in $H^2(L/K)$ rather than the actual cohomology class, mostly out of laziness.

We now return to the set-up in section 1 and track through Lemma 7 in our case. For reference, the following is the diagram that we will be chasing around; here $G \coloneqq \operatorname{Gal}(ML/K)$ and $H \coloneqq \operatorname{Gal}(ML/L)$.

$$H^{2}(\operatorname{Gal}(M/K), M^{\times}) \\ \downarrow^{\operatorname{Inf}} \\ 0 \longrightarrow H^{2}(\operatorname{Gal}(L/K), L^{\times}) \xrightarrow{\operatorname{Inf}} H^{2}(G, ML^{\times}) \xrightarrow{\operatorname{Res}} H^{2}(\operatorname{Gal}(ML/L), ML^{\times}) \\ \uparrow^{\delta} \qquad \qquad \uparrow^{\delta} \qquad \qquad \uparrow^{\delta} \\ 0 \longrightarrow H^{1}(G/H, \operatorname{Hom}_{\mathbb{Z}}(I_{G}, ML^{\times})^{H}) \xrightarrow{\operatorname{Inf}} H^{1}(G, \operatorname{Hom}_{\mathbb{Z}}(I_{G}, ML^{\times})) \xrightarrow{\operatorname{Res}} H^{1}(H, \operatorname{Hom}_{\mathbb{Z}}(I_{G}, ML^{\times}))$$

To begin, we know that we can write

$$u_{M/K}\left(\sigma_K^i, \sigma_K^j\right) = p^{\left\lfloor \frac{i+j}{n} \right\rfloor} = \begin{cases} 1 & i+j < n, \\ p & i+j \ge n. \end{cases}$$

Inflating this down to $H^2(G, ML^{\times})$ gives

$$\left(\operatorname{Inf} u_{M/K}\right)\left(\sigma_K^{a_1}\sigma_x^{a_2},\sigma_K^{b_1}\sigma_x^{b_2}\right) = p^{\left\lfloor \frac{a_1+b_1}{n} \right\rfloor}.$$

Now, we use Lemma 2 to move down to $H^1(G, \operatorname{Hom}_{\mathbb{Z}}(I_G, ML^{\times}))$ as

$$\delta^{-1}(\operatorname{Inf} u_{M/K}) \left(\sigma_K^{a_1} \sigma_x^{a_1}\right) \left(\sigma_K^{b_1} \sigma_x^{b_2} - 1\right) = \sigma_K^{b_1} \sigma_x^{b_2} \cdot \left(\operatorname{Inf} u_{M/K}\right) \left(\sigma_K^{[-b_1]} \sigma_x^{[-b_2]}, \sigma_K^{a_1} \sigma_x^{a_2}\right) = p^{\left\lfloor \frac{a_1 + [-b_1]}{n} \right\rfloor},$$

where [k] denote the integer $0 \le [k] < n$ such that $k \equiv [k] \pmod{n}$.

Now, we need to show that the restriction to $H=\langle \sigma_k^f \rangle$ is a coboundary. That is, we need to find $b \in \mathrm{Hom}_{\mathbb{Z}}(I_G,ML^\times)$ such that

$$\delta^{-1}(\operatorname{Inf} u_{M/K})\left(\sigma_K^{fa_1}\right) = \frac{\sigma_K^{fa_1} \cdot b}{b}.$$

Because I_G is freely generated by elements of the form g-1 for $g\in G$, it suffices to plug in some arbitrary $\sigma_K^{b_1}\sigma_x^{b_2}-1$, which we see requires

$$\begin{split} p^{\left\lfloor \frac{fa_1 + \left[-b_1 \right]}{n} \right]} &= \frac{\left(\sigma_K^{fa_1} \cdot b \right) \left(\sigma_K^{b_1} \sigma_x^{b_2} - 1 \right)}{b \left(\sigma_K^{b_1} \sigma_x^{b_2} - 1 \right)} \\ &= \frac{\sigma_K^{fa_1} b \left(\sigma_K^{b_1 - fa_1} \sigma_x^{b_2} - 1 \right)}{\sigma_K^{fa_1} b \left(\sigma_K^{-fa_1} - 1 \right) b \left(\sigma_K^{b_1} \sigma_x^{b_2} - 1 \right)}. \end{split}$$

We can see that b should not depend on b_2 , so we define $\hat{b}\left(\sigma_K^a\right) = b\left(\sigma_K^a\sigma_x^{\bullet} - 1\right)$; the above is then equivalent to

$$\begin{split} p^{\left\lfloor \frac{fa_1 + \left[-b_1\right]}{n}\right\rfloor} &= \frac{\sigma_K^{fa_1} \hat{b}\left(\sigma_K^{b_1 - fa_1}\right)}{\sigma_K^{fa_1} \hat{b}\left(\sigma_K^{-fa_1}\right) \hat{b}\left(\sigma_K^{b_1}\right)} \\ p^{\left\lfloor \frac{fa_1 + b_1}{n}\right\rfloor} &= \frac{\hat{b}\left(\sigma_K^{-b_1 - fa_1}\right)}{\hat{b}\left(\sigma_K^{-fa_1}\right) \sigma_K^{-fa_1} \hat{b}\left(\sigma_K^{-b_1}\right)}, \end{split}$$

where we have negated b_1 in the last step. At this point, the right-hand side will look a lot more natural if we set $\tau \coloneqq \sigma_K^{-1}$, which turns this into

$$\frac{\hat{b}\left(\tau^{fa_1}\right)\tau^{fa_1}\hat{b}\left(\tau^{b_1}\right)}{\hat{b}\left(\tau^{b_1fa_1}\right)} = (1/p)^{\left\lfloor\frac{fa_1+b_1}{n}\right\rfloor}$$

after taking reciprocals. Thus, we see that \hat{b} should be counting carries of τ s. With this in mind, we note that $1 - \zeta_{p^{\nu}} \in L$ is a uniformizer because $L/\mathbb{Q}_p\left(\zeta_{p^{\nu}}\right)$ is an unramified extension. It follows that

$$(1 - \zeta_{p^{\nu}})^{\varphi(p^{\nu})} \in \mathcal{N}_{ML/L}(ML^{\times}).$$

Further, $(1-\zeta_{p^{\nu}})^{\varphi(p^{\nu})}$ is only a unit (in \mathcal{O}_{L}^{\times}) multiplied p, so in fact p is a norm from ML^{\times} because ML/L is unramified and so all units in \mathcal{O}_{L}^{\times} are norms from ML^{\times} . Thus, we find $\alpha \in ML^{\times}$ such that

$$N_{ML/L}(\alpha) = p.$$

The point of doing all of this is so that we can codify our carrying by writing

$$\hat{b}(\tau^a) := \prod_{i=0}^{\lfloor a/f \rfloor - 1} \tau^{if}(\alpha)^{-1}.$$

Tracking out \hat{b} backwards to b, our desired $b \in \text{Hom}_{\mathbb{Z}}(I_G, ML^{\times})$ is given by

$$b(\sigma_K^{a_1}\sigma_x^{a_2} - 1) = \prod_{i=0}^{\lfloor [-a_1]/f \rfloor - 1} \sigma_K^{-if}(\alpha)^{-1}.$$

We take a moment to write out $c := \delta^{-1}(\operatorname{Inf} u_{M/K})/db$, which looks like

$$\begin{split} c\left(\sigma_{K}^{a_{1}}\sigma_{x}^{a_{2}}\right)\left(\sigma_{K}^{b_{1}}\sigma_{x}^{b_{2}}-1\right) &= \frac{\delta^{-1}(\inf u_{M/K})}{db}\left(\sigma_{K}^{a_{1}}\sigma_{x}^{a_{2}}\right)\left(\sigma_{K}^{b_{1}}\sigma_{x}^{b_{2}}-1\right) \\ &= \frac{\delta^{-1}(\inf u_{M/K})\left(\sigma_{K}^{a_{1}}\sigma_{x}^{a_{2}}\right)\left(\sigma_{K}^{b_{1}}\sigma_{x}^{b_{2}}-1\right)}{\left(\sigma_{K}^{a_{1}}\sigma_{x}^{a_{2}}b\right)\left(\sigma_{K}^{b_{1}}\sigma_{x}^{b_{2}}-1\right)/b\left(\sigma_{K}^{b_{1}}\sigma_{x}^{b_{2}}-1\right)} \\ &= \frac{p^{\lfloor (a_{1}+\lfloor -b_{1}\rfloor)/n\rfloor}}{\sigma_{K}^{a_{1}}\sigma_{x}^{a_{2}}b\left(\sigma_{K}^{b_{1}-a_{1}}\sigma_{x}^{b_{2}-a_{2}}-\sigma_{K}^{-a_{1}}\sigma_{x}^{-a_{2}}\right)/b\left(\sigma_{K}^{b_{1}}\sigma_{x}^{b_{2}}-1\right)} \\ &= p^{\lfloor (a_{1}+\lfloor -b_{1}\rfloor)/n\rfloor} \cdot \hat{b}\left(\sigma_{K}^{b_{1}}\right) \cdot \sigma_{K}^{a_{1}}\sigma_{x}^{a_{2}}\left(\frac{\hat{b}\left(\sigma_{K}^{-a_{1}}\right)}{\hat{b}\left(\sigma_{K}^{b_{1}-a_{1}}\right)}\right). \end{split}$$

Before proceeding, we discuss a few special cases.

• Taking $\sigma_K^{a_1}\sigma_x^{a_2}=\sigma_x$, we get

$$c\left(\sigma_{x}\right)\left(\sigma_{K}^{b_{1}}\sigma_{x}^{b_{2}}-1\right) = p^{\left\lfloor\left(0+\left[-b_{1}\right]\right)/n\right\rfloor}\cdot\hat{b}\left(\sigma_{K}^{b_{1}}\right)\cdot\sigma_{x}\left(\frac{1}{\hat{b}\left(\sigma_{K}^{b_{1}}\right)}\right)$$
$$=\hat{b}\left(\sigma_{K}^{b_{1}}\right)/\sigma_{x}\hat{b}\left(\sigma_{K}^{b_{1}}\right).$$

In particular, $c\left(\sigma_x\right)\left(\sigma_K^{-1}-1\right)=1$, provided that f>1. Additionally, $c(\sigma_x)\left(\sigma_x^{b_2}-1\right)=1$.

Our general theory says that $h\mapsto c(\sigma_x)(h-1)$ is a 1-cocycle in $Z^1(H,ML^\times)$ (though we could also check this directly), so Hilbert's Theorem 90 promises us a magical element $I_{c(\sigma_x)}\in ML^\times$ such that

$$\frac{\sigma_K^{fb_1} I_{c(\sigma_x)}}{I_{c(\sigma_x)}} = \frac{\hat{b}\left(\sigma_K^{fb_1}\right)}{\sigma_x \hat{b}\left(\sigma_K^{fb_1}\right)}$$

for all $\sigma_K^{fb_1} \in H$. This condition will be a little clearer if we write everything in terms of $\tau \coloneqq \sigma_K^{-1}$, which transforms this into

$$\frac{\tau^{fb_1}I_{c(\sigma_x)}}{I_{c(\sigma_x)}} = \frac{\hat{b}\left(\tau^{-fb_1}\right)}{\sigma_x \hat{b}\left(\tau^{-fb_1}\right)} = \prod_{i=0}^{b_1-1} \frac{\tau^{if}(\alpha^{-1})}{\sigma_x \tau^{if}(\alpha^{-1})} = \prod_{i=0}^{b_1-1} \frac{\sigma_x \tau^{if}(\alpha)}{\tau^{if}(\alpha)}.$$

Because we are dealing with a cyclic group H, it is not too hard to see that it suffices merely for $b_1=1$ to hold, so our magical element $I_{c(\sigma_x)}$ merely requires

$$\boxed{\frac{\sigma_K^{-f}\left(I_{c(\sigma_x)}\right)}{I_{c(\sigma_x)}} = \frac{\sigma_x(\alpha)}{\alpha}}$$

after inverting τ back to σ_K .

• Taking $\sigma_K^{a_1}\sigma_x^{a_2}=\sigma_K$, we get

$$c\left(\sigma_{K}\right)\left(\sigma_{K}^{b_{1}}\sigma_{x}^{b_{2}}-1\right)=p^{\left\lfloor\left(1+\left[-b_{1}\right]\right)/n\right\rfloor}\cdot\hat{b}\left(\sigma_{K}^{b_{1}}\right)\cdot\sigma_{K}\left(\frac{\hat{b}\left(\sigma_{K}^{-1}\right)}{\hat{b}\left(\sigma_{K}^{b_{1}-1}\right)}\right).$$

In particular, $\sigma_K^{b_1}\sigma_x^{b_2}=\sigma_x^{-1}$ will give $c(\sigma_K)\left(\sigma_x^{-1}-1\right)=1$. We will also want $c(\sigma_K)\left(\sigma_K^{-b_1}-1\right)$ for $0\leq b_1< f$. Using the fact that f< n and f>1, it is not too hard to see that everything will cancel

down to 1 except in the case where $b_1 = f - 1$, where we get

$$c(\sigma_K)\left(\sigma_K^{-(f-1)} - 1\right) = \sigma_K\left(\frac{1}{\hat{b}\left(\sigma_K^{-f}\right)}\right) = \sigma_K(\alpha).$$

Continuing as before, our general theory says that $h\mapsto c(\sigma_x)(h-1)$ is a 1-cocycle in $Z^1(H,ML^\times)$, though again we could just check this directly. It follows that Hilbert's Theorem 90 promises us a magical element $I_{c(\sigma_K)}\in ML^\times$ such that

$$\frac{\sigma_K^{fb_1} I_{c(\sigma_K)}}{I_{c(\sigma_K)}} = p^{\lfloor (1 + \lfloor -fb_1 \rfloor)/n \rfloor} \cdot \hat{b} \left(\sigma_K^{fb_1} \right) \cdot \sigma_K \left(\frac{\hat{b} \left(\sigma_K^{-1} \right)}{\hat{b} \left(\sigma_K^{fb_1 - 1} \right)} \right)$$

for all $\sigma_K^{fb_1} \in H$. Using f > 1, this collapses down to

$$\frac{\sigma_K^{fb_1} I_{c(\sigma_K)}}{I_{c(\sigma_K)}} = \frac{\hat{b}\left(\sigma_K^{fb_1}\right)}{\sigma_K \hat{b}\left(\sigma_K^{fb_1-1}\right)}.$$

As before, this condition will be a little clearer if we set $\tau \coloneqq \sigma_K^{-1}$, which turns the condition into

$$\frac{\tau^{fb_1}I_{c(\sigma_K)}}{I_{c(\sigma_K)}} = \frac{\hat{b}\left(\tau^{fb_1}\right)}{\sigma_K \hat{b}\left(\tau^{fb_1+1}\right)} = \prod_{i=0}^{b_1-1} \frac{\tau^{if}(\alpha^{-1})}{\sigma_K \tau^{if}(\alpha^{-1})} = \prod_{i=0}^{b_1-1} \frac{\sigma_K \tau^{if}(\alpha)}{\tau^{if}(\alpha)}.$$

(Notably, $\hat{b}\left(\tau^{fb_1}\right)=\hat{b}\left(\tau^{fb_1+1}\right)$ because f>1.) Again, because H is cyclic generated by τ^f , an induction shows that it suffices to check this condition for $b_1=1$, which means that our magical element $I_{c(\sigma_K)}\in ML^\times$ is constructed so that

$$\boxed{\frac{\sigma_K^{-f}\left(I_{c(\sigma_K)}\right)}{I_{c(\sigma_K)}} = \frac{\sigma_K(\alpha)}{\alpha}}$$

where we have again inverted back from τ to σ_K .

• We will not actually need a more concrete description of this, but we remark that we can run the same story for any $g \in G$ through to get an element $I_{c(g)} \in ML^{\times}$ such that

$$\frac{\sigma_K^{fb_1} I_{c(g)}}{I_{c(g)}} = \frac{1}{c(g)(\sigma_K^{fb_1} - 1)}$$

for any $\sigma_K^{fb_1} \in H.$ As usual, this follows from our general theory.

We are now ready to describe the local fundamental class. Piecing what we have so far, we know from Lemma 7 that we can write

$$u_{L/K}(g, g') := gc(g') \left(g^{-1} - 1\right) \cdot \frac{gI_{c(g')} \cdot I_{c(g)}}{I_{c(gg')}}.$$

Here are the values that we care about for our specific computation.

• We write

$$\begin{split} u_{L/K}(\sigma_K, \sigma_x) &= \sigma_K c(\sigma_x) \left(\sigma_K^{-1} - 1 \right) \cdot \frac{\sigma_K I_{c(\sigma_x)} \cdot I_{c(\sigma_K)}}{I_{c(\sigma_K \sigma_x)}} \\ &= \frac{\sigma_K I_{c(\sigma_K)} \cdot I_{c(\sigma_K)}}{I_{c(\sigma_K \sigma_x)}}. \end{split}$$

• We write

$$\begin{split} u_{L/K}(\sigma_x, \sigma_K) &= \sigma_x c(\sigma_K) \left(\sigma_x^{-1} - 1 \right) \cdot \frac{\sigma_x I_{c(\sigma_K)} \cdot I_{c(\sigma_x)}}{I_{c(\sigma_x \sigma_K)}} \\ &= \frac{\sigma_x I_{c(\sigma_K)} \cdot I_{c(\sigma_x)}}{I_{c(\sigma_x \sigma_K)}}. \end{split}$$

• In particular, we know that we can set β in a triple equal to

$$\begin{split} \beta &\coloneqq \frac{u_{L/K}(\sigma_K, \sigma_x)}{u_{L/K}(\sigma_x, \sigma_K)} \\ &= \frac{\sigma_K I_{c(\sigma_x)} \cdot I_{c(\sigma_K)} / I_{c(\sigma_K \sigma_x)}}{\sigma_x I_{c(\sigma_K)} \cdot I_{c(\sigma_x)} / I_{c(\sigma_x \sigma_K)}} \\ \beta &= \frac{\sigma_K \left(I_{c(\sigma_x)}\right)}{I_{c(\sigma_x)}} \cdot \frac{I_{c(\sigma_K)}}{\sigma_x \left(I_{c(\sigma_K)}\right)} \,. \end{split}$$

As a sanity check, we can hit this β with σ_K^{-f} to show that $\beta \in (ML)^H = L$; namely, $\sigma_K^{-f}I_{c(\sigma_K)} = \frac{\sigma_K\alpha}{\alpha} \cdot I_{c(\sigma_K)}$ and $\sigma_K^{-f}I_{c\sigma(x)} = \frac{\sigma_x\alpha}{\alpha} \cdot I_{c(\sigma_x)}$ by construction, so we can see that everything will appropriately cancel out.

• We will go ahead and compute α_1 and α_2 , for completeness. For α_1 , our element is given by

$$\alpha_1 := \prod_{i=0}^{f-1} u_{L/K} \left(\sigma_K^i, \sigma_K \right)$$

$$= \prod_{i=0}^{f-1} \left(\sigma_K^i c \left(\sigma_K, \sigma_K^{-i} - 1 \right) \cdot \frac{\sigma_K^i I_{c(\sigma_K)} \cdot I_{c(\sigma_K^{i+1})}}{I_{c(\sigma_K^{i+1})}} \right).$$

Recall from our general theory that $I_{c(g)}$ only depends on the coset of g in G/H, so we see that the product of the quotients $I_{c(\sigma_K^i)}/I_{c(\sigma_K^{i+1})}$ will cancel out. As for the c term, we know from our computation that this is 1 until i=f-1, which gives $\sigma_K(\alpha)$. As such, we collapse down to

$$\alpha_1 = \sigma_K^f(\alpha) \cdot \prod_{i=0}^{f-1} \sigma_K^i \left(I_{c(\sigma_K)} \right).$$

• For α_2 , our element is given by

$$\begin{split} \alpha_2 &\coloneqq \prod_{i=0}^{\varphi(p^{\nu})-1} u_{L/K}\left(\sigma_x^i, \sigma_x\right) \\ &= \prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_x^i c(\sigma_x) \left(\sigma_x^{-i} - 1\right) \cdot \frac{\sigma_x^i I_{c(\sigma_x)} \cdot I_{c(\sigma_x^i)}}{I_{c(\sigma_x^{i+1})}}. \end{split}$$

Recalling that σ_x has order $\varphi\left(p^{\nu}\right)$, our quotient term $I_{c(\sigma_x^i)}/I_{c(\sigma_x^{i+1})}$ will again cancel out. Additionally, the cocycle c always spits out 1 on these inputs, so we are left with

$$\boxed{\alpha_2 = \prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_x^i \left(I_{c(\sigma_x)} \right)}.$$

We summarize the results above in the following theorem.

Theorem 8. Fix everything as in the set-up. Then there exists some $lpha\in ML^{ imes}$ such that $\mathrm{N}_{ML/L}(lpha)=p$ and elements in $I_{c(\sigma_K)}, I_{c(\sigma_x)} \in ML^{\times}$ such that

$$\frac{\sigma_K^{-f}\left(I_{c(\sigma_K)}\right)}{I_{c(\sigma_K)}} = \frac{\sigma_K(\alpha)}{\alpha} \qquad \text{and} \qquad \frac{\sigma_K^{-f}\left(I_{c(\sigma_x)}\right)}{I_{c(\sigma_x)}} = \frac{\sigma_x(\alpha)}{\alpha}.$$

Then the triple

$$(\alpha_1, \alpha_2, \beta) \coloneqq \left(\sigma_K^f(\alpha) \cdot \prod_{i=0}^{f-1} \sigma_K^i \left(I_{c(\sigma_K)}\right), \quad \prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_x^i \left(I_{c(\sigma_x)}\right), \quad \frac{\sigma_K \left(I_{c(\sigma_x)}\right)}{I_{c(\sigma_x)}} \cdot \frac{I_{c(\sigma_K)}}{\sigma_x \left(I_{c(\sigma_K)}\right)}\right)$$

corresponds to the fundamental class $u_{L/K} \in H^2(Gal(L/K), L^{\times})$.

We remark that we can replace α with $\sigma_K^f(\alpha)$ (which still has norm p) while keeping all other variables the same; this gives us the following slightly prettier presentation. Note that we have multiplied the equations for I_{\bullet} by σ_K^f on both sides.

Corollary 9. Fix everything as in the set-up. Then there exists some $\alpha \in ML^{\times}$ such that $N_{ML/L}(\alpha) = p$ and elements in $I_{c(\sigma_K)}, I_{c(\sigma_x)} \in ML^{\times}$ such that

$$\frac{I_{c(\sigma_K)}}{\sigma_K^f\left(I_{c(\sigma_K)}\right)} = \frac{\sigma_K(\alpha)}{\alpha} \qquad \text{and} \qquad \frac{I_{c(\sigma_x)}}{\sigma_K^f\left(I_{c(\sigma_x)}\right)} = \frac{\sigma_x(\alpha)}{\alpha}.$$

Then the triple

$$(\alpha_1, \alpha_2, \beta) \coloneqq \left(\alpha \cdot \prod_{i=0}^{f-1} \sigma_K^i \left(I_{c(\sigma_K)} \right), \quad \prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_x^i \left(I_{c(\sigma_x)} \right), \quad \frac{\sigma_K \left(I_{c(\sigma_x)} \right)}{I_{c(\sigma_x)}} \cdot \frac{I_{c(\sigma_K)}}{\sigma_x \left(I_{c(\sigma_K)} \right)} \right)$$

corresponds to the fundamental class $u_{L/K} \in H^2(\mathrm{Gal}(L/K), L^{\times})$.

3.3 Checks

In this section we run some checks and discuss some consequences of Theorem 8, in the form of Corollary 9. For these results, we recall that we set $L := \mathbb{Q}_p(\zeta_N)$ and $L_1 := \mathbb{Q}_p(\zeta_{p^{\nu}})$ and $L_2 := \mathbb{Q}_p(\zeta_m)$ so that $\overline{\sigma}_K = \sigma_K|_{L_1}$ generates $Gal(L/L_1)$ and σ_x generates $Gal(L/L_2)$.

In the discussion which follows, we will make repeated use of the fact that (using notation of Corollary 9)

$$\sigma_K^f\left(I_{c(\sigma_K)}\right) = \frac{\alpha}{\sigma_K(\alpha)} \cdot I_{c(\sigma_K)} \qquad \text{and} \qquad \sigma_K^f\left(I_{c(\sigma_x)}\right) = \frac{\alpha}{\sigma_x(\alpha)} \cdot I_{c(\sigma_x)}.$$

And here are our checks; we start by showing that our elements are in the right field.

Lemma 10. Fix a triple $(\alpha_1, \alpha_2, \beta)$ as in Corollary 9. Then the following are true.

- (a) $\alpha_1 \in L_1^{\times}$. (b) $\alpha_2 \in L_2^{\times}$.

Proof. We run the checks one at a time.

(a) It suffices to show that α_1 is fixed by $Gal(M/L_1) = \langle \sigma_K \rangle$. As such, we simply compute

$$\sigma_{K}(\alpha_{1}) = \sigma_{K} \left(\alpha \cdot \prod_{i=0}^{f-1} \sigma_{K}^{i} \left(I_{c(\sigma_{K})} \right) \right)$$

$$= \sigma_{K}(\alpha) \cdot \prod_{i=0}^{f-1} \sigma_{K}^{i+1} \left(I_{c(\sigma_{K})} \right)$$

$$= \sigma_{K}(\alpha) \cdot \sigma_{K}^{f} \left(I_{c(\sigma_{K})} \right) \prod_{i=1}^{f-1} \sigma_{K}^{i+1} \left(I_{c(\sigma_{K})} \right)$$

$$= \alpha \cdot I_{c(\sigma_{K})} \prod_{i=1}^{f-1} \sigma_{K}^{i+1} \left(I_{c(\sigma_{K})} \right)$$

$$= \prod_{i=0}^{f-1} \sigma_{K}^{i+1} \left(I_{c(\sigma_{K})} \right)$$

$$= \alpha_{1}.$$

(b) It suffices to show that α_2 is fixed by $\mathrm{Gal}(M/L_2) = \langle \sigma_K^f, \sigma_x \rangle$. On one hand,

$$\sigma_K^f(\alpha_2) = \sigma_K^f \left(\prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_x^i \left(I_{c(\sigma_x)} \right) \right)$$

$$= \prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_x^i \left(\sigma_K^f I_{c(\sigma_x)} \right)$$

$$= \left(\prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_x^i \left(\frac{\alpha}{\sigma_x(\alpha)} \right) \right) \cdot \left(\prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_x^i \left(I_{c(\sigma_x)} \right) \right)$$

$$= \left(\prod_{i=0}^{\varphi(p^{\nu})-1} \frac{\sigma_x^i(\alpha)}{\sigma_x^{i+1}(\alpha)} \right) \cdot \alpha_2$$

where the product telescopes because σ_x has order $\varphi\left(p^{\nu}\right)$. On the other hand,

$$\sigma_{x}(\alpha_{2}) = \sigma_{x} \left(\prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_{x}^{i} \left(I_{c(\sigma_{x})} \right) \right)$$

$$= \prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_{x}^{i+1} \left(I_{c(\sigma_{x})} \right)$$

$$= \prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_{x}^{i} \left(I_{c(\sigma_{x})} \right),$$

where we have again used the fact that σ_x has order $\varphi(p^{\nu})$. This last product is α_2 , so we are done.

(c) It suffices to show that β is fixed by $\mathrm{Gal}(M/L) = \langle \sigma_K^f \rangle$. Applying force, we see

$$\begin{split} \sigma_{K}^{f}(\beta) &= \sigma_{K}^{f} \left(\frac{\sigma_{K} \left(I_{c(\sigma_{x})} \right)}{I_{c(\sigma_{x})}} \cdot \frac{I_{c(\sigma_{K})}}{\sigma_{x} \left(I_{c(\sigma_{K})} \right)} \right) \\ &= \frac{\sigma_{K} \left(\sigma_{K}^{f} I_{c(\sigma_{x})} \right)}{\sigma_{K}^{f} I_{c(\sigma_{x})}} \cdot \frac{\sigma_{K}^{f} I_{c(\sigma_{K})}}{\sigma_{x} \left(\sigma_{K}^{f} I_{c(\sigma_{K})} \right)} \\ &= \frac{\sigma_{K} \left(\alpha / \sigma_{x} \alpha \right) \cdot \sigma_{K} \left(I_{c(\sigma_{x})} \right)}{\left(\alpha / \sigma_{x} \alpha \right) \cdot I_{c(\sigma_{x})}} \cdot \frac{\left(\alpha / \sigma_{K} \alpha \right) \cdot I_{c(\sigma_{K})}}{\sigma_{x} \left(\alpha / \sigma_{K} \alpha \right) \cdot \sigma_{x} \left(I_{c(\sigma_{K})} \right)} \\ &= \frac{\sigma_{K} \alpha}{\sigma_{K} \sigma_{x} \alpha} \cdot \frac{\sigma_{x} \alpha}{\alpha} \cdot \frac{\alpha}{\sigma_{K} \alpha} \cdot \frac{\sigma_{x} \sigma_{K} \alpha}{\sigma_{x} \alpha} \cdot \frac{\sigma_{K} \left(I_{c(\sigma_{x})} \right)}{I_{c(\sigma_{x})}} \cdot \frac{I_{c(\sigma_{K})}}{\sigma_{x} \left(I_{c(\sigma_{K})} \right)} \\ &= \beta. \end{split}$$

The above checks complete the proof.

Next we show the relations.

Lemma 11. Fix a triple $(\alpha_1, \alpha_2, \beta)$ as in Corollary 9. Then the following are true.

- (a) $N_{L/L_1}(\beta) = \alpha_1/\sigma_x \alpha_1$
- (b) $N_{L/L_2}(\beta^{-1}) = \alpha_2/\overline{\sigma}_K\alpha_2$

Proof. We go one at a time.

(a) Note $Gal(L/L_1) = \langle \overline{\sigma}_K \rangle$. In particular, $\overline{\sigma}_K$ has order f, so we can just compute out

$$\begin{split} \mathbf{N}_{L/L_{1}}(\beta) &= \prod_{i=0}^{f-1} \sigma_{K}^{i}(\beta) \\ &= \prod_{i=0}^{f-1} \sigma_{K}^{i} \left(\frac{\sigma_{K} \left(I_{c(\sigma_{x})} \right)}{I_{c(\sigma_{x})}} \cdot \frac{I_{c(\sigma_{K})}}{\sigma_{x} \left(I_{c(\sigma_{K})} \right)} \right) \\ &= \prod_{i=0}^{f-1} \frac{\sigma_{K}^{i+1} \left(I_{c(\sigma_{x})} \right)}{\sigma_{K}^{i} \left(I_{c(\sigma_{x})} \right)} \cdot \prod_{i=0}^{f-1} \sigma_{K}^{i} \left(I_{c(\sigma_{K})} \right) \middle/ \sigma_{x} \left(\prod_{i=0}^{f-1} \sigma_{K}^{i} \left(I_{c(\sigma_{K})} \right) \right) \\ &= \frac{\sigma_{K}^{f} \left(I_{c(\sigma_{x})} \right)}{I_{c(\sigma_{x})}} \cdot \prod_{i=0}^{f-1} \sigma_{K}^{i} \left(I_{c(\sigma_{K})} \right) \middle/ \sigma_{x} \left(\prod_{i=0}^{f-1} \sigma_{K}^{i} \left(I_{c(\sigma_{K})} \right) \right) \\ &= \frac{\alpha}{\sigma_{x} \alpha} \cdot \prod_{i=0}^{f-1} \sigma_{K}^{i} \left(I_{c(\sigma_{K})} \right) \middle/ \sigma_{x} \left(\prod_{i=0}^{f-1} \sigma_{K}^{i} \left(I_{c(\sigma_{K})} \right) \right) \\ &= \alpha_{1} / \sigma_{x} \alpha. \end{split}$$

(b) Note $Gal(L/L_2) = \langle \sigma_x \rangle$, so we compute

$$\begin{split} \mathbf{N}_{L/L_{2}}(\beta) &= \prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_{x}^{i}(\beta) \\ &= \prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_{x}^{i} \left(\frac{\sigma_{K} \left(I_{c(\sigma_{x})} \right)}{I_{c(\sigma_{x})}} \cdot \frac{I_{c(\sigma_{K})}}{\sigma_{x} \left(I_{c(\sigma_{K})} \right)} \right) \\ &= \prod_{i=0}^{\varphi(p^{\nu})-1} \frac{\sigma_{x}^{i} \left(I_{c(\sigma_{K})} \right)}{\sigma_{x}^{i+1} \left(I_{c(\sigma_{K})} \right)} \cdot \prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_{K} \left(I_{c(\sigma_{x})} \right) \middle/ \prod_{i=0}^{\varphi(p^{\nu})-1} I_{c(\sigma_{x})} \\ &= \sigma_{K} \left(\prod_{i=0}^{\varphi(p^{\nu})-1} I_{c(\sigma_{x})} \right) \middle/ \prod_{i=0}^{\varphi(p^{\nu})-1} I_{c(\sigma_{x})} \\ &= \sigma_{K} \alpha_{2} / \alpha_{2}. \end{split}$$

Taking the reciprocal finishes; in particular, $\overline{\sigma}_K \alpha_2 = \sigma_K \alpha_2$ is a legal expression because $\alpha_2 \in L^{\times}$.

The above checks complete the proof.

3.4 Consequences

With some checks out of the way, here are some actual consequences. To begin, we state Hilbert's Theorem 90

Lemma 12. Suppose that L/K is a (finite) cyclic extension of fields such that $\Gamma \coloneqq \operatorname{Gal}(L/K)$ is generated by $\sigma \in \Gamma$. Given some $\alpha \in L^{\times}$ such that $\operatorname{N}(\alpha) = 1$, there exists $\beta_0 \in L^{\times}$ such that $\alpha = \beta_0/\sigma\beta_0$. In fact, this β_0 is unique "up to a multiple in K^{\times} " in that

$$\left\{\beta \in L^{\times} : \alpha = \beta/\sigma\beta\right\} = \left\{x\beta_0 : x \in K^{\times}\right\}.$$

Proof. That such a β_0 exists follows directly from Hilbert's Theorem 90. For the last sentence, of course any $\beta \coloneqq x\beta_0 \in L^{\times}$ with $x \in K^{\times}$ will have

$$\frac{\beta}{\sigma\beta} = \frac{\beta_0}{\sigma\beta_0} = \alpha.$$

In the other direction, if $\beta \in L^{\times}$ has $\beta/\sigma\beta = \alpha$, then

$$\sigma(\beta/\beta_0) = (\sigma\beta)/(\sigma\beta_0) = \beta/\beta_0,$$

so
$$\beta/\beta_0 \in K^{\times}$$
 and $\beta = (\beta/\beta_0) \cdot \beta_0$.

And here are two quick consequences of this.

Corollary 13. Fix everything as in the set-up, and fix $\alpha \in ML^{\times}$ such that $N_{ML/L}(\alpha) = p$. Then, for any triple $(\alpha'_1, \alpha'_2, \beta')$ corresponding to the fundamental class, there exist elements $I'_{c(\sigma_K)}, I'_{c(\sigma_x)} \in ML^{\times}$ with

$$\frac{I'_{c(\sigma_K)}}{\sigma_K^f\left(I'_{c(\sigma_K)}\right)} = \frac{\sigma_K(\alpha)}{\alpha} \qquad \text{and} \qquad \frac{I'_{c(\sigma_x)}}{\sigma_K^f\left(I'_{c(\sigma_x)}\right)} = \frac{\sigma_x(\alpha)}{\alpha}$$

such that

$$(\alpha_1',\alpha_2',\beta') = \left(\alpha \cdot \prod_{i=0}^{f-1} \sigma_K^i \left(I_{c(\sigma_K)}'\right), \quad \prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_x^i \left(I_{c(\sigma_x)}'\right), \quad \frac{\sigma_K \left(I_{c(\sigma_x)}'\right)}{I_{c(\sigma_x)}'} \cdot \frac{I_{c(\sigma_K)}'}{\sigma_x \left(I_{c(\sigma_K)}'\right)}\right).$$

In other words, all triples corresponding to the fundamental class come from the recipe described in Corollary 9.

Proof. By Corollary 9, we can certainly find some elements $I_{c(\sigma_K)}, I_{c(\sigma_X)} \in ML^{\times}$ such that

$$\frac{I_{c(\sigma_K)}}{\sigma_K^f\left(I_{c(\sigma_K)}\right)} = \frac{\sigma_K(\alpha)}{\alpha} \qquad \text{and} \qquad \frac{I_{c(\sigma_x)}}{\sigma_K^f\left(I_{c(\sigma_x)}\right)} = \frac{\sigma_x(\alpha)}{\alpha},$$

for which

$$(\alpha_{1}, \alpha_{2}, \beta) \coloneqq \left(\alpha \cdot \prod_{i=0}^{f-1} \sigma_{K}^{i} \left(I_{c(\sigma_{K})} \right), \quad \prod_{i=0}^{\varphi(p^{\nu})-1} \sigma_{x}^{i} \left(I_{c(\sigma_{x})} \right), \quad \frac{\sigma_{K} \left(I_{c(\sigma_{x})} \right)}{I_{c(\sigma_{x})}} \cdot \frac{I_{c(\sigma_{K})}}{\sigma_{x} \left(I_{c(\sigma_{K})} \right)} \right)$$

corresponds to the fundamental class $u_{L/K} \in H^2(\mathrm{Gal}(L/K), L^\times)$. In particular, $(\alpha_1, \alpha_2, \beta)$ and $(\alpha_1', \alpha_2', \beta')$ both correspond to the same cohomology class and hence in the same equivalence class of triples, so we know that there exist $m_1, m_2 \in L^\times$ such that

$$\alpha_1' = \alpha_1 \cdot \mathrm{N}_{L/L_1}(m_1), \quad \alpha_2' = \alpha_2 \cdot \mathrm{N}_{L/L_2}(m_2), \quad \beta' = \beta \cdot \frac{\sigma_K(m_2)}{m_2} \cdot \frac{m_1}{\sigma_x(m_1)}.$$

As such, we set $I'_{c(\sigma_K)}\coloneqq I_{c(\sigma_K)}\cdot m_1$ and $I'_{c(\sigma_x)}\coloneqq I_{c(\sigma_x)}\cdot m_2$, and these can be checked to work. For example, $I'_{c(\sigma_K)}$ satisfies

$$\frac{I'_{c(\sigma_K)}}{\sigma_K^f\left(I'_{c(\sigma_K)}\right)} = \frac{\sigma_K(\alpha)}{\alpha} \qquad \text{and} \qquad \frac{I'_{c(\sigma_x)}}{\sigma_K^f\left(I'_{c(\sigma_x)}\right)} = \frac{\sigma_x(\alpha)}{\alpha}$$

by Lemma 12. The rest of the checks are similar.

Corollary 14. Fix everything as in the set-up, and let $\pi_1 \in L_1^{\times}$ be a uniformizer. If the triple $(\alpha_1, \alpha_2, \beta)$ is a triple corresponding to the fundamental class, then

$$\alpha_1 \equiv \pi_1 \pmod{\mathrm{N}_{L/L_1}(L^\times)}.$$

Proof by triples. Note that L/L_1 is an unramified extension, so all elements of absolute value 1 are norms, so there is in fact a class of elements containing all uniformizers in $L_1^\times/\operatorname{N}_{L/L_1}(L^\times)$. Further, because α_1 is also only defined up to an element $\operatorname{N}_{L/L_1}(L^\times)$, to show that the classes in $L^\times/\operatorname{N}_{L/L_1}(L^\times)$ coincide, it thus suffices to exhibit a single triple $(\alpha_1,\alpha_2,\beta)$ such that $\alpha_1\in L_1^\times$ is a uniformizer.

This is a matter of force. To begin, we can use Corollary 9 to find some α with $N_{ML/L}(\alpha)=p$ and $I_{c(\sigma_K)}, I_{c(\sigma_x)} \in ML^{\times}$ giving the triple $(\alpha_1, \alpha_2, \beta)$ as described. The idea is to force $I_{c(\sigma_K)}$ to have valuation zero.

Let v_{ML} be the fixed valuation of ML extending the standard valuation $v_{\mathbb{Q}_p}$ on \mathbb{Q}_p , and let v_L be its restriction to L. Because ML/L is an unramified, the image of v_{ML} and v_L in \mathbb{Q} is the same. In particular, we can find some $m_1 \in L_1^\times$ such that

$$v_{ML}\left(I_{c(\sigma_K)}\right) = v_L(m_1).$$

Thus, we replace $I_{c(\sigma_K)}$ with $I_{c(\sigma_K)}/m_1$, and we still satisfy the conditions of Corollary 9 by Lemma 12 while getting $v_{ML}\left(I_{c(\sigma_K)}\right)=0$. Now, the corresponding α_1 looks like

$$\alpha_1 = \alpha \cdot \prod_{i=0}^{f-1} \sigma_K^i \left(I_{c(\sigma_K)} \right).$$

In particular, defining $v_{L_1} \coloneqq v_L|_{L_1}$, it follows

$$v_{L_1}(\alpha_1) = v_{ML}(\alpha_1) = v_{ML}(\alpha),$$

However, $N_{ML/L}(\alpha) = p$ by construction, so we see that

$$[ML:L]v_{ML}(\alpha) = v_{ML}(p) = v_{\mathbb{Q}_p}(p) = 1.$$

Explicitly, we see that

$$[ML:L] = \left[\mathbb{Q}(\zeta_{N'}):\mathbb{Q}(\zeta_m)\right] = \frac{\left[\mathbb{Q}(\zeta_{N'}):\mathbb{Q}_p\right]}{\left[\mathbb{Q}_p(\zeta_m):\mathbb{Q}_p\right]} = \frac{n}{f} = \varphi\left(p^{\nu}\right).$$

However, L_1/K has ramification degree $\varphi\left(p^{\nu}\right)$ (from the maximal totally ramified subextension $\mathbb{Q}_p(\zeta_{p^{\nu}})$), so its uniformizers are the elements of valuation $1/\varphi\left(p^{\nu}\right)$. Thus, we have computed that α_1 has the correct valuation and hence is a uniformizer.

Proof by the Artin map. We take a moment to say that there is an alternate derivation of Corollary 14 using the Artin map: one can show that, if $u \in Z^2(L/K)$ is a representative of the fundamental class of an abelian extension L/K, then

$$\operatorname{Gal}(L/K) \to K^{\times}/\operatorname{N}(L^{\times})$$

$$\sigma \mapsto \prod_{g \in \operatorname{Gal}(L/K)} u(g, \sigma)$$

is the inverse Artin map. In particular, from our explicit formula for α_1 , we see

$$\alpha_1 = \prod_{g \in \operatorname{Gal}(L/L_1)} u(g, \overline{\sigma}_K) = \theta_{L/L_1}^{-1}(\overline{\sigma}_K).$$

However, $\overline{\sigma}_K$ is the Frobenius automorphism of L/L_1 because the extension L_1/K is totally ramified, implying that the residue field of L_1 is the same as $K=\mathbb{Q}_p$. Thus, $\theta_{L/L_1}^{-1}(\overline{\sigma}_K)$ is the class containing the uniformizers of L_1^{\times} .