

Computer Networks

Wenzhong Li, Chen Tian

Nanjing University

Material with thanks to James F. Kurose, Mosharaf Chowdhury, and other colleagues.

Chapter 3. Network Layer

- Network Layer Functions
- IP Protocol Basic
- IP Protocol Suit
- Routing Fundamentals
- Internet Routing Protocols
- IP Multicasting

Chapter 3. Network Layer

- Basic of IP Multicast
- IGMP: Internet Group Management Protocol
- Multicast Routing
- Application-level Multicast

Basic of IP Multicast

Related Concepts

- Unicast: one-to-one transfer
- Broadcast: one-to-all transfer
- Multicast: one-to-many transfer
- Anycast: one-to-many, but only deliver to one random host
 - Anycast address in IPv6 is an address that is assigned to more than one interface in different hosts.
 - A packet that is sent to an anycast address is routed to the nearest interface that has that address.

Multicast – Efficient Data Distribution

IP Multicasting

Multicast

- Act of sending datagram to multiple receivers (hosts)
 with single transmit operation
- Multicast address (class D in IPv4)
 - Addresses that refer to group of hosts on one or more networks
- Applications
 - Multimedia (TV) broadcast
 - Teleconferencing
 - Database replication
 - Distributed computing, ...

Definitions

- A multicast group is a set of receivers with a common interest.
- A source is an end user that originates a data stream.
- A receiver is an end user wishing to receive a data stream.

Example Config

N2

Handling IP Multicast

- Multicast (Spanning) Tree
 - Build a (least cost) tree connecting routers having local mcast group members
 - Nodes (routers) forward copies only along spanning tree

Sender only sends once

Multicast Router Responsibilities

 Learn of the existence of multicast groups (through advertisement)

Identify links with group members

- Establish state to route packets
 - Replicate packets on appropriate interfaces
 - Routing entry:

Src, incoming interface

List of outgoing interfaces

Multicast Example

(a) Spanning tree from source to multicast group

(b) Packets generated for multicast transmission

IP Multicast Architecture

IP Multicast Service Model

- Multicast group concept: use of indirection
 - Hosts address IP datagram to a multicast group
 - Routers forward multicast datagrams to hosts that have joined that multicast group

Multicast Address

- Convention needed to identify multicast addresses
 - IPv4: Class D, start with 1110

IPv6: 8 bit prefix, 4 bit flags, 4 bit scope, 112 bit group identifier

```
11111111 | flgs | scop | group ID
```

- 224.0.0.0~224.0.0.255为预留的<u>组播</u>地址(永久组地址),地址224.0.0.0保留 不做分配;
- 224.0.1.0~224.0.1.255是公用<u>组播</u>地址,可以用于Internet;
- 224.0.2.0~238.255.255.255为用户可用的<u>组播</u>地址(临时组地址),全网范围内有效:
- 239.0.0.0~239.255.255.255为本地管理<u>组播</u>地址,仅在特定的本地范围内有效。

Address translation

- IP: translate between IP multicast addresses and lists of networks containing group members
- Malticast MAC: translate between IP multicast address and multicast MAC address

组播mac地址的高24bit为0x01005e,mac 地址的低23bit为组播ip地址的低23bit。

IGMP: Internet Group Management Protocol

Maintain a Multicast Group

Local network

- Host informs local meast router of desire to join a group
- IGMP (Internet Group Management Protocol) used

Wide area

- Mcast routers interact with each other to build spanning tree, and interchange mcast datagrams
- Many protocols (e.g. DVMRP, MOSPF, PIM)

RFC 3376

- Host and router exchange of multicast group info on local net
- Can use broadcast LAN to transfer info among multiple hosts and routers

Principle Operations

Hosts

- Send reports to routers to subscribe to (join) and unsubscribe from (unjoin) multicast group
- Host need not explicitly unjoin group when leaving

Routers

- Sends query info at regular intervals
- Host belonging to a mcast group must reply to query

IGMP Operations (1)

- 2 special multicast address
 - 224.0.0.1: all multicast groups on subnet
 - 224.0.0.2: all routers on subnet
- On each LAN, one router is elected as the querier
 - Querier periodically sends a Membership Query message to 224.0.0.1 with TTL = 1
- On receipt, hosts start random timers (0~10s) for each multicast group to which they belong

IGMP Operations (2)

- When a host's timer for group G expires, it sends a Membership Report to group G, with TTL = 1
- Other members of G hear the report and stop their timers

Routers hear all reports, and time out non-responding

IGMP Versions

IGMP v1

- Routers: "Host Membership Query" broadcast on LAN to all hosts
- Use timer to unsubscribe members
- Hosts: explicitly issues "Host Membership Report" to indicate group membership (join a group)
- Implicit leave via no reply to Query

IGMP v2

- Routers can use group-specific Query
- Host replying to Query can send explicit "Leave Group" message

IGMP v1 & v2

Operations

- Sources do not have to subscribe to groups
- Any host can send traffic to any multicast group

Problems

- Location of sources is not known
- Establishment of distribution trees is problematic (not optimistic)
- Spamming of multicast groups consume valuable resources
- Finding globally unique multicast addresses difficult

IGMP v3

- Allows hosts to specify source list from which they want to receive traffic
 - Traffic from other hosts blocked at routers

 Allows hosts to block packets from sources that send unwanted traffic

Membership Query

- Sent by multicast router
- General query
 - Which groups have members on attached network?
- Group-specific query
 - Does specified group have members on attached network?
- Group-and-source specific query
 - Do attached hosts want packets sent to specified multicast address from any of specified list of sources?

IGMP Message – Membership Query

(a) Membership query message

Membership Query Fields (1)

- Type (8 bits): 0x11, means Query
- Max Response Time (8 bits)
 - Max time before host sending report in units of 1/10 second
- Checksum (16 bits): Same algorithm as IPv4
- Group Address (32 bits)
 - Zero for general query message
 - Multicast group address for group-specific or group-and-source
- S Flag (1 bit)
 - 1 indicates that receiving routers should suppress normal timer updates done on hearing query

Membership Query Fields (2)

- QRV (querier's robustness variable) (3 bits)
 - RV dictates number of retransmissions to assure report not missed
 - Other routers can adopt value from most recently received query
- QQIC (querier's querier interval code) (8 bits)
 - QI dictates timer for sending multiple queries
 - Routers not current querier adopt most recently received QI
- Number of Sources (16 bits)
- Source addresses
 - One 32 bit unicast address for each source

IGMP Message – Membership Report

(b) Membership report message

Membership Reports Fields

- Type (8 bits)
 - 0x22, means Report
- Checksum (16 bits)
 - Same algorithm as IPv4
- Number of Group Records
- Group Records
 - One record for each group attended

IGMP Message – Group Record

(c) Group record

Group Record

- Multicast Address (32 bits)
 - Identify the group attended
- Record Type (8 bits)
 - EXCLUDE or INCLUDE mode (6 modes defined)
- Number of Sources (16 bits)
- Source Addresses
- Aux Data Length (8 bits)
 - Length of Auxiliary Data, in 32-bit words
- Auxiliary Data
 - Currently, no auxiliary data values defined

Group Membership with IPv6

- IPv6 internets need same functionality
- IGMP functions incorporated into Internet Control Message Protocol version 6 (ICMP v6)
 - ICMPv6 includes all of functionalities of ICMPv4 and IGMP
- ICMPv6 includes Group-membership Query and Group-membership Report message
 - Used in the same fashion as in IGMP v3

Multicast Routing

Multicast Routing

- Find a spanning tree (or trees) connecting routers having local mcast group members
- Shared-tree
 - Same tree used by all group members
- Source-based
 - Different tree from each sender to receivers

Shared tree

Source-based trees

Approaches for Multicast Trees

- Source-based tree: one tree per source
 - Shortest path trees
 - Reverse path forwarding
- Group-shared tree: group uses one tree
 - Minimal spanning (Steiner)
 - Center-based trees

Shortest Path Trees

- Multicast forwarding tree
 - Tree of shortest path routes from source to all receivers
 - Use Dijkstra's algorithm, used with OSPF

LEGEND

router with no attached group member

link used for forwarding, i indicates order link added by algorithm

Reverse Path Forwarding

- Rely on router's knowledge of unicast shortest path from it to sender
- Each router has simple forwarding behavior:
- Used with RIP

if (mcast datagram received on incoming link on shortest path back to sender)then flood datagram onto all outgoing links else ignore datagram

Reverse Path Forwarding: Example

LEGEND

- router with no attached group member
- datagram will be forwarded
- ——→I datagram will not be forwarded
- The result is a source-specific reverse SPT
 - May be a bad choice with asymmetric links

Reverse Path Forwarding: Pruning

- Forwarding tree contains subtrees with no mcast group members
 - No need to forward datagrams down subtree
 - "Prune" msgs sent upstream by router with no downstream group members

Shared-Tree: Steiner Tree

Steiner Tree

- Minimum cost tree connecting all routers with attached group members
- Problem is NP-complete, but excellent heuristics exists

Not used in practice

- Computational complexity
- Information about entire network needed
- Monolithic: rerun whenever a router needs to join/leave

Center-based Trees

- Single delivery tree shared by all
 - One router identified as center of tree
- Other routers to join:
 - Edge router sends unicast join-msg addressed to center router
 - join-msg processed by intermediate routers and forwarded towards center
 - join-msg either hits existing tree branch for this center, or arrives at center
 - Path taken by join-msg becomes new branch of tree for this router

Center-based Trees: Example

Suppose R6 chosen as center:

LEGEND

router with no attached group member

path order in which join messages generated

Multicasting Routing Protocols

DVMRP

- Distance Vector Multicast Routing Protocol, RFC1075
- Based on RIP
- Flood and prune: source-based tree, reverse path forwarding

Soft state

- DVMRP router periodically (1 min) "forgets" branches are pruned
- Mcast data again flows down unpruned branch
- Downstream router: reprune or else continue to receive data

Does not scale well

 All routers in the network need global information about all multicast groups and their sources.

Multicasting Routing Protocols

MOSPF

- RFC 1584 defines Multicast Extensions to OSPF
- Link State
- For a given multicast datagram, all routers calculate an identical shortest-path tree. There is a single path between the datagram's source and any particular destination group member.

Not widely deployed

Multicasting Routing Protocols

- PIM: Protocol Independent Multicast
 - Not dependent on any specific underlying unicast routing algorithm (works with all)
- Sparse mode
 - Group-shared tree, use center-based approach
 - Group members widely dispersed, bandwidth not plentiful
- Dense mode
 - Flood and prune: source-based tree, reverse path forwarding (Nearly same as DVMRP)
 - group members densely packed, bandwidth more plentiful

Application-level Multicast

Failure of IP Multicast

- Not widely deployed even after 15 years!
 - Use carefully e.g., on LAN or campus, rarely over WAN
- Various failings
 - Scalability of routing protocols
 - Hard to manage
 - Hard to implement TCP equivalent
 - Hard to get applications to use IP Multicast without existing wide deployment
 - Hard to get router vendors to support functionality and hard to get ISPs to configure routers to enable
- Can we achieve efficient multi-point delivery without IP-layer support?

Supporting Multicast on the Internet

At which layer should multicast be implemented?

Internet architecture

IP Multicast

- Highly efficient
- Good delay

End System (App-layer) Multicast

Potential Benefits

- Quick deployment
- All multicast state in end systems
- Computation at forwarding points simplifies support for higher level functionality

Concerns

- Self-organize recipients into multicast delivery overlay tree
 - Must be closely matched to real network topology to be efficient
- Performance concerns compared to IP Multicast
 - Increase in delay
 - Bandwidth waste (packet duplication)
 - Penalty can be kept small in practice

Summary

IP Multicast

- 组播地址
- 组管理: IGMP
- 组播路由机制及协议