Desafio Técnico IEL/FORD

Possíveis soluções para problemas de Data Scarcity, Unbalanced e Not Validated.

Data Scarcity

Os modelos de Machine Learning no geral necessitam de uma grande quantidade de dados para apresentarem um desempenho adequado. No entanto, nota-se que é comum ocorrer dificuldades na coleta de um conjunto de dados de treinamento grandes o suficiente.

De forma a contornar tal situação pode-se optar por algumas soluções, destacando-se:

- i. Data Generation Busca-se realizar manipulações com a base de dados existente de forma a criar novos dados. Exemplo: a partir de uma única imagem de um cachorro, pode-se gerar outras apenas invertendo, recortando, diminuindo o tamanho, ou dando um zoom.
- ii. Transfer Learning Busca-se utilizar modelos já treinados com outro conjunto de dados. Nesse caso, deve-se considerar o fato de não haver dados de treinamento suficientes e os domínios de origem e destino têm algumas semelhanças, mas não necessariamente idênticos.

Data Unbalanced

Os modelos de Machine Learning no geral necessitam de uma grande quantidade de dados para apresentarem um desempenho adequado. De fato, a maioria dos modelos de Machine Learning não apresentam um bom funcionamento quando relacionados a conjuntos de dados desequilibrados.

De forma a contornar tal situação pode-se optar por algumas soluções, destacando-se:

1) Resample do conjunto de treinamento

- i. Under-sampling Equilibra o conjunto de dados reduzindo o tamanho da classe abundante.
- ii. Over-sampling Equilibra o conjunto de dados aumentando o tamanho de amostras raras.
- 2) K-fold Cross-Validation de forma adequada É importante salientar que a validação cruzada deve ser aplicada adequadamente ao usar o método de Over-sampling para resolver os problemas de desequilíbrio dos dados. A validação cruzada deve sempre ser feita antes do s Over-sampling dos dados.
- 3) Clusterização da classe abundante Em vez de apenas depender de amostras aleatórias para cobrir a variedade das amostras de treinamento, sugere-se clusterizar a classe abundante em R grupos, com R sendo o número de casos em R. Para cada grupo, apenas o Medoid (centro do cluster) é mantido. O modelo é então treinado com a classe rara e apenas os Medoids.
- 4) Combinar diferentes conjuntos de dados resampled Geralmente alguns classificadores como a logistic regression ou random forest tendem a generalizar "jogando fora" a classe rara. Assim sendo, pode-se construir N modelos que usem todas as amostras da classe rara e N amostras diferentes da classe abundante. Por exemplo, deseja-se reunir 10 modelos, manter-seia os 1.000 casos da classe rara e amostram aleatoriamente 10.000 casos da classe abundante. Assim sendo, divide-se as 10.000 caixas em 10 blocos e treina 10 modelos diferentes.

Data Not validated

A validação de dados é muito importante essencial de qualquer tarefa de tratamento de dados. Nesse sentido, caso os dados não sejam precisos desde o início, provavelmente os resultados também não serão precisos. Dessa forma, faz-se necessário verificar e validar os dados antes de serem usados.

De forma a contornar tal situação pode-se optar por algumas soluções, destacando-se:

- iii. k-Fold Cross-Validation Cross-validation é um procedimento de resampling usado para avaliar modelos em uma amostra de dados limitada. Este método popular porque é simples de entender, geralmente resulta em uma estimativa menos tendenciosa ou menos otimista da habilidade do modelo do que outros métodos, como uma divisão simples de train/test.
- iv. Leave-one-out cross-validation— É um caso especial da cross-validation em que o número de folds é igual ao número de instâncias no dataset. Assim, o algoritmo de aprendizado é aplicado uma vez para cada instância, usando todas as outras instâncias como um conjunto de treinamento e usando a instância selecionada como um conjunto de teste de item único.