Heemod: time-varying values

Ivy Tsai 20231031

1. Review simple Markov model of HIV

2. Example

Research Proposal

Cost-Effectiveness Analysis of Lenvatinib Plus Pembrolizumab in The 2nd Line Treatment for Advanced Endometrial Carcinoma

合併使用Lenvatinib及Pembrolizumab於 晚期子宮內膜癌第二線治療之成本效益分析

Presenter: Szu-Ting Chiang (蔣思亭)

Advisor: Dr. Yi-Wen Tsai¹ (蔡憶文¹), Dr. Ming-Neng Shiu¹ (許銘能¹), Dr. Wai-Hou Li² (李偉浩²)

Date: October 26, 2023

IRB No: YM111012E

2.1. Analytic Framework of Cost-Effectiveness Analysis (2/6)

1. Define the elements of decision problem

- Cycle length: 3 weeks
- Time horizon (t): 20 years
- **Discount rate (r):** 3% per year
- Outcome variables:
 - \triangleright Effectiveness (E_1 and E_c)
 - \rightarrow Life years (Lys), quality-adjusted life years (QALYs = Life year \times quality of life).
 - ➤ Directed medical costs (C₁ and Cc)
 - → Medical cost reimbursed by NHI and NHI listing price.

2.1. Analytic Framework of Cost-Effectiveness Analysis (3/6)

2. Analytical Model building

Decision analytical model: Cohort-based Markov model

2.1. Analytic Framework of Cost-Effectiveness Analysis (4/6)

2. Analytical Model building

- Decision analytical model: Cohort-based Markov model
- **Disease model:** 3 health states
 - (1) Progression-free (PF): Disease stable and keep current treatment.
 - (2) Progressed disease (PD): Disease progressed and shift to supportive care.

2.1. Analytic Framework of Cost-Effectiveness Analysis (4/6)

2. Analytical Model building

- Decision analytical model: Cohort-based Markov model
- Cumulated outputs: E_{I,} E_{C,} C_{I,} and C_C

$$E = \sum_{0}^{T} \frac{1}{(1+r)^{t}} E_{t} \qquad C = \sum_{0}^{T} \frac{1}{(1+r)^{t}} C_{t}$$

Cycle	Effectiveness (E) (Unit: LYs, QALYs*)	Cost (C) (Unit: NTD)
0	$E_{0} = E_{PF0}$	$C_0 = C_{PF_0}$
1	$E_1 = E_{PF_1} + E_{PD_1}$	$C_1 = C_{PF_1} + C_{PD_1} + C_{D_1}$
2	$E_2 = E_{PF_2} + E_{PD_2}$	$C_2 = C_{PF_2} + C_{PD_2} + C_{D_2}$
i	:	
Т	$E_{T} = E_{PF\tau} + E_{PD\tau}$	$C_{T} = C_{PF\tau} + C_{PD\tau} + C_{D\tau}$

^{*}LYs = life years, QALYs = quality-adjusted life years.

3. Time variables in heemod

Two stopwatches in heemod

Five steps in the simple Markov model are......

HIV case study-model parameters

Table 2.2 Transition probabilities and costs for the HIV Markov model used in the case study (Chancellor *et al.* 1997)

State at start of cycle		State at end of cycle				
1. Annual transiti	ion probabi	ilities				
(a) Monotherapy						
	State A		State B	State C	State D	
State A	0.721		0.202	0.067	0.010	
State B	0.000		0.581	0.407	0.012	
State C	0.000		0.000	0.750	0.250	
State D	0.000		0.000	0.000	0.000	
(b) Combination	therapy					
State A		State A 0.858 (1 – sum)	State B 0.103 (0.202 × RR)	State C 0.034 (0.067 × RR)	State D 0.005 $(0.010 \times RR)$	
State B		0.000	0.787 (1 – sum)	0.207 (0.407 × RR)	0.006 (0.012 × RR)	
State C		0.000	0.000	0.873 (1 – sum)	0.127 (0.25 × RR)	
State D		0.000	0.000	0.000	1.000	
2. Annual costs						
Direct medical	£1701		£1774	£6948	_	
Community	£1055		£1278	£2059	_	
Total	£2756		£3052	£9007	_	

In other words, which model inputs are timedependent and, thus, could be expressed as functions of time?

The drug costs were £2278 (zidovudine) and £2086 (lamivudine).

RR, relative risk of disease progression. Estimated as 0.509 in a meta-analysis.

2.1 EXPONENTIAL DISTRIBUTION

Hazard function: $h(t) = \lambda$ for $0 \le t < \infty$ where λ is a positive constant and t is time.

2.2 WEIBULL DISTRIBUTION

Hazard function: $h(t) = \lambda \gamma t^{\gamma - 1}$ for $0 \le t < \infty$ where λ is a positive value and is the scale parameter, and γ is a positive value and is the shape parameter.

2.3 GOMPERTZ DISTRIBUTION

Hazard function: $h(t) = \lambda e^{\theta t}$ for $0 \le t < \infty$ where λ is a positive value and is the scale parameter, and θ is the shape parameter.

HIV case study-model parameters

Table 2.2 Transition probabilities and costs for the HIV Markov model used in the case study (Chancellor *et al.* 1997)

State at start of cycle		State at end of cycle				
1. Annual transition	on probabi	ilities				
(a) Monotherapy						
	State A		State B	State C	State D	
State A	0.721		0.202	0.067	0.010	
State B	0.000		0.581	0.407	0.012	
State C	0.000		0.000	0.750	0.250	
State D	0.000		0.000	0.000	0.000	
(b) Combination t	herapy					
C+-+- A		State A	State B	State C	State D	
State A		0.858 (1 – sum)	0.103 (0.202 × RR)	0.034 (0.067 × RR)	0.005 (0.010 × RR)	
State B		0.000	0.787	0.207	0.006	
			(1 – sum)	$(0.407 \times RR)$	$(0.012 \times RR)$	
State C		0.000	0.000	0.873	0.127	
				(1 – sum)	$(0.25 \times RR)$	
State D		0.000	0.000	0.000	1.000	
2. Annual costs						
Direct medical	£1701		£1774	£6948	_	
Community	£1055		£1278	£2059	_	
Total	£2756		£3052	£9007	_	

In other words, which model inputs are timedependent and, thus, could be expressed as functions of time?

The drug costs were £2278 (zidovudine) and £2086 (lamivudine).

RR, relative risk of disease progression. Estimated as 0.509 in a meta-analysis.

HIV case study-model parameters

Table 2.2 Transition probabilities and costs for the HIV Markov model used in the case study (Chancellor *et al.* 1997)

State at start of cycle		State at end of cycle				
1. Annual transition	on probabi	ilities				
(a) Monotherapy						
	State A		State B	State C	State D	
State A	0.721		0.202	0.067	0.010	
State B	0.000		0.581	0.407	0.012	
State C	0.000		0.000	0.750	0.250	
State D	0.000		0.000	0.000	0.000	
(b) Combination t	herapy					
		State A	State B	State C	State D	
State A		0.858	0.103	0.034	0.005	
		(1 – sum)	$(0.202 \times RR)$	$(0.067 \times RR)$	$(0.010 \times RR)$	
State B		0.000	0.787	0.207	0.006	
		0.000	(1 – sum)	$(0.407 \times RR)$	$(0.012 \times RR)$	
State C		0.000	0.000	0.873	0.127	
				(1 – sum)	$(0.25 \times RR)$	
State D		0.000	0.000	0.000	1.000	
2. Annual costs						
Direct medical	£1701		£1774	£6948	_	
Community	£1055		£1278	£2059	_	
Total	£2756		£3052	£9007	_	

RR, relative risk of disease progression. Estimated as 0.509 in a meta-analysis.

The drug costs were £2278 (zidovudine) and £2086 (lamivudine).

In other words, which model inputs are timedependent and, thus, could be expressed as functions of time?

- Costs (first two years?) and utility(maybe?)
- Transition probabilities!

$$\begin{split} tp(t_u) &= 1 - \frac{S(t)}{S(t-u)} \\ &= 1 - \frac{e^{-H(t)}}{e^{-H(t-u)}} \\ &= 1 - \frac{e^{-H(t-u)}}{e^{H(t-u)}} \\ &= 1 - \frac{e^{H(t-u)}}{e^{H(t)}} \\ &= 1 - e^{\{H(t-u)-H(t)\}} \end{split}$$

$$S(t) = e^{-H(t)}$$

$$H(t) = \int_0^t h(u)du$$

$$h(t) = ?$$

$$h(t) = \lambda \emptyset_t$$

 $\lambda = ?$

Constants, which are determined by time-varying X.

Two stopwatches in heemod

Which time variable?

Input	model_time	state_time
Age(t)		
Utility (t)		
Cost(t)		
Natural mortality		
S(t)		
h(t)		

