Ricerca Operativa

 Modelli di Programmazione Lineare

Modelli di programmazione lineare

- Il metodo grafico è basato su
 - ⇒ linearità della funzione obiettivo
 - ⇒ linearità dei vincoli
- Sotto queste ipotesi (come vedremo meglio in seguito), una soluzione si trova su un vertice della regione ammissibile: l'ultimo toccato traslando le rette isoprofitto nella direzione del gradiente
- Si parla in questi casi di modelli di programmazione lineare (PL)

Elementi di un modello PL

- Insiemi: elementi del sistema;
- Parametri: dati del problema;
- Variabili decisionali o di controllo: grandezze sulle quali possiamo agire;
- Vincoli: relazioni matematiche che descrivono le condizioni di ammissibilità delle soluzioni;
- Funzione obiettivo: la quantità da massimizzare o minimizzare.

Un modello PL dichiara le caratteristiche della soluzione ottima in linguaggio matematico

Formulazione generale di un modello di Programmazione Lineare

```
\min (\max) z = [c_1 x_1 + c_2 x_2 + \dots + c_j x_j + \dots + c_n x_n (+ cost.)] \cdot cost \ge 0
subject to (s.t., soggetto a, s.a)
       a_{11}x_1 + a_{12}x_2 + \dots + a_{1j}x_j + \dots + a_{1n}x_n \ge (=, \le) b_1
       a_{21}x_1 + a_{22}x_2 + \dots + a_{2i}x_i + \dots + a_{2n}x_n \ge (=, \le) b_2
       a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mj}x_j + \dots + a_{mn}x_n \ge (=, \le) b_m
       x_i \in \mathbb{R}_{(+)} (x_i \text{ intere})
: funzione obiettivo da minimizzare (min) o massimizzare (max)
: variabili decisionali (incognite)
       reali (eventualmente non negative)
       intere (eventualmente non negative)
                                                                  Programmazione
                                                                  lineare intera (PLI)
       binarie (x_i \in \{0,1\})
: coefficienti di costo (min) o profitto (max) [costante nota]
: coefficienti tecnologici [costante nota]
: termini noti [costante nota]
```

 C_{i}

CAVEAT!!!

In questo corso si richiedono

MODELLI LINEARI

le variabili,

di qualsiasi natura esse siano,

possono essere solo moltiplicate per una costante e sommate tra loro.

E basta!!!

Telecomandi

Per l'assemblaggio di telecomandi, si hanno a disposizione 10 moduli display, 18 moduli di logica di controllo, 12 moduli di trasmissione, 21 tastierini, 9 moduli di navigazione e 10 moduli led. I telecomandi sono di due tipi. Il tipo A richiede un display, un modulo di navigazione, 2 tastierini, 2 moduli di logica, un modulo di trasmissione e un led. Il tipo B richiede 2 display, 3 tastierini, 2 moduli di logica e 3 moduli di trasmissione. Considerando che il tipo A permette un guadagno netto di 4 euro e il tipo B di 6 euro, determinare la produzione che massimizza il guadagno.

Siano x_A e x_B le quantità di telefoni di tipo A e B

max 4
$$x_A$$
 + 6 x_B (guadagno complessivo)
s.t.
$$x_A + 2 x_B \le 10$$
 (display)
 x_A ≤ 9 (navigazione)
2 x_A + 3 x_B ≤ 21 (tastierini)
2 x_A + 2 x_B ≤ 18 (logica)
 x_A + 3 x_B ≤ 12 (trasmissione)
 x_A ≤ 10 (led)

$$x_A, x_B \in \mathbb{Z}_+$$

Money makers

Un gruppo di ragazzi vuole ricavare il più possibile vendendo agli amici magliette e borse decorate. Sono disponibili 10 magliette di cotone e 15 borse di tela e, per la decorazione, 32 riquadri disegnati e 40 profili rossi. Su ogni maglietta vengono apposti 6 riquadri e 2 profili, e su ogni borsa 3 riquadri e 5 profili. Sono anche disponibili 15 bottoni, e ogni borsa ne utilizzerà due per la chiusura. Sono state anche preparate 22 etichette, da apporre una su ogni maglietta e due su ogni borsa. Considerando che ogni maglietta decorata è venduta a 24 euro e ogni borsa a 16 euro, e che gli amici compreranno tutte le magliette e le borse, determinare la produzione che massimizza il ricavo.

Dieta economica

Un dietologo deve preparare una dieta che garantisca un apporto giornaliero di proteine, ferro e calcio di almeno 20 mg, 30 mg e 10 mg, rispettivamente. Il dietologo è orientato su cibi a base di verdura (5 mg/kg di proteine, 6 mg/Kg di ferro e 5 mg/Kg di calcio, al costo di 4 €/Kg), carne (15 mg/kg di proteine, 10 mg/Kg di ferro e 3 mg/Kg di calcio, al costo di 10 €/Kg) e frutta (4 mg/kg di proteine, 5 mg/Kg di ferro e 12 mg/Kg di calcio, al costo di 7 €/Kg). Determinare la dieta di costo minimo.

Siano x_1 , x_2 e x_3 le quantità di cibi a base di verdura, carne e frutta, rispettivamente

min
$$4x_1+10x_2+7x_3$$
 (costo giornaliero dieta) s.t.

$$5x_1+15x_2+4x_3 \ge 20$$
 (proteine)
 $6x_1+10x_2+5x_3 \ge 30$ (ferro)
 $5x_1+3x_2+12x_3 \ge 10$ (calcio)

$$x_i \in \mathbb{R}_+, \ \forall i \in \{1, 2, 3\} \quad \times_j \in \mathbb{Z}_+$$

Indagine di mercato

Un'azienda pubblicitaria deve svolgere un'indagine di mercato per lanciare un nuovo prodotto. Si deve contattare telefonicamente un campione significativo di persone: almeno 150 donne sposate, almeno 110 donne non sposate, almeno 120 uomini sposati e almeno 100 uomini non sposati. Le telefonate possono essere effettuate al mattino (al costo operativo di 1.1 euro) o alla sera (al costo di 1.6 euro). Le percentuali di persone mediamente raggiunte sono riportate in tabella.

	Mattino	Sera
Donne sposate	30%	30%
Donne non sposate	10%	20%
Uomini sposati	10%	30%
Uomini non sposati	10%	15%
Nessuno	40%	5%

Si noti come le telefonate serali sono più costose, ma permettono di raggiungere un maggior numero di persone: solo il 5% va a vuoto. Si vuole minimizzare il costo complessivo delle telefonate da effettuare (mattina/sera) in modo da raggiungere un campione significativo di persone

Siano x₁ e x₂ il numero di telefonate da fare al mattino e alla sera, rispettivamente

 $1.1 x_1 + 1.6 x_2$ (costo totale telefonate)

```
s.t. 0.3x_1+0.3x_2 \ge 150 (donne sposate) 0.1x_1+0.2x_2 \ge 110 (donne non sposate) 0.1x_1+0.3x_2 \ge 120 (uomini sposati) 0.1x_1+0.15x_2 \ge 100 (uomini non sposati)
```

$$x_i \in \mathbb{Z}_+, \ \forall i \in \{1, 2\}$$

Alcuni schemi base di modellazione

Modelli di copertura di costo minimo

min
$$\sum_{i \in I} C_i x_i$$
s.t.
$$\sum_{i \in I} A_{ij} x_i \ge D_j \qquad \forall j \in J$$

$$x_i \in \mathbb{R}_+ \left[\mathbb{Z}_+ \mid \{0, 1\} \right] \quad \forall i \in I$$

- I insieme delle risorse da acquistare;
- J insieme delle domande da coprire;
- C_i costo (unitario) per l'utilizzo della risorsa $i \in I$;
- D_i ammontare della domanda di $j \in J$;
- A_{ij} capacità (unitaria) della risorsa i di soddisfare la domanda j.

Alcuni schemi base di modellazione

Modelli di mix ottimo di produzione

$$\max \sum_{i \in I} P_i x_i$$
s.t.
$$\sum_{i \in I} A_{ij} x_i \leq Q_j \qquad \forall j \in J$$

$$x_i \in \mathbb{R}_+ \left[\mathbb{Z}_+ \mid \{0, 1\} \right] \quad \forall i \in I$$

- I insieme dei beni che possono essere prodotti;
- J insieme delle risorse disponibili;
- P_i profitto (unitario) per il bene $i \in I$;
- Q_j quantità disponibile della risorsa $j \in J$;
- A_{ij} quantità di risorsa j necessaria per la produzione di un'unità del bene i.

Trasporto di frigoriferi

Una ditta di produzione di elettrodomestici produce dei frigoriferi in tre stabilimenti e li smista in quattro magazzini intermedi di vendita. La produzione settimanale nei tre stabilimenti A, B e C è rispettivamente di 50, 70 e 20 unità. La quantità richiesta dai 4 magazzini è rispettivamente di 10, 60, 30 e 40 unità. I costi per il trasporto di un frigorifero tra gli stabilimenti e i magazzini 1, 2, 3 e 4 sono i seguenti:

- dallo stabilimento A: 6, 8, 3, 4 euro;
- dallo stabilimento B: 2, 3, 1, 3 euro;
- dallo stabilimento C: 2, 4, 6, 5 euro.

La ditta vuole determinare il piano di trasporti di costo minimo.

 Sia x_{ij} il numero di frigoriferi prodotti nello stabilimento i e smistati nel magazzino j

min
$$6 x_{A1} + 8 x_{A2} + 3 x_{A3} + 4 x_{A4} + 2 x_{B1} + 3 x_{B2} + 1 x_{B3} + 3 x_{B4} + 2 x_{C1} + 4 x_{C2} + 6 x_{C3} + 5 x_{C4}$$

s.t.

 $x_{A1} + x_{A2} + x_{A3} + x_{A4} \le 50$ (capacità produttiva stabilimento A) $x_{B1} + x_{B2} + x_{B3} + x_{B4} \le 70$ (capacità produttiva stabilimento B) $x_{C1} + x_{C2} + x_{C3} + x_{C4} \le 20$ (capacità produttiva stabilimento C)

 $x_{A1} + x_{B1} + x_{C1} \ge 10$ (domanda magazzino 1) $x_{A2} + x_{B2} + x_{C2} \ge 60$ (domanda magazzino 2) $x_{A3} + x_{B3} + x_{C3} \ge 30$ (domanda magazzino 3) $x_{A4} + x_{B4} + x_{C4} \ge 40$ (domanda magazzino 4)

 $x_{ij} \in \mathbb{Z}_+ \ \forall i \in \{A, B, C\}, j \in \{1, 2, 3, 4\}$

Alcuni schemi base di modellazione

Modelli di trasporto

min
$$\sum_{i \in I} \sum_{j \in J} C_{ij} x_{ij}$$
s.t.
$$\sum_{j \in J} x_{ij} \leq O_i \qquad \forall i \in I$$

$$\sum_{j \in I} x_{ij} \geq D_j \qquad \forall j \in J$$

$$x_{ij} \in \mathbb{R}_+ \left[\mathbb{Z}_+ \mid \{0, 1\} \right] \quad \forall i \in I, j \in J$$

I insieme dei centri di offerta; O_i ammontare dell'offerta in $i \in I$;

J insieme dei centri di domanda; D_j ammontare della domanda in $j \in J$.

 C_{ij} costo (unitario) per il trasporto da $i \in I$ a $j \in J$;

Turni in ospedale

Si vogliono organizzare i turni degli infermieri in ospedale. Ogni infermiere lavora 5 giorni consecutivi, indipendentemente da come sono collocati all'interno della settimana, e poi ha diritto a due giorni consecutivi di riposo. Le esigenze di servizio per i vari giorni della settimana richiedono la presenza di 17 infermieri il lunedì, 13 il martedì, 15 il mercoledì, 19 il giovedì, 14 il venerdì, 16 il sabato e 11 la domenica. Organizzare il servizio in modo da minimizzare il numero totale di infermieri da impegnare.

 Siano lun, mar, mer, gio, ven, sab e dom il numero di infermieri in cui turno inizia di lunedì,... domenica

```
minlun + mar + mer + gio + ven + sab + doms.t.lun + gio + ven + sab + dom \ge 17 (presenze lunedi)lun + mar + mer + ven + sab + dom \ge 13 (presenze martedi)lun + mar + mer + mer + gio + ven + sab + dom \ge 15 (presenze mercoledi)lun + mar + mer + gio + ven + gio + ven + gio + ven + sab + dom \ge 16 (presenze venerdi)mar + mer + gio + ven + sab + dom \ge 16 (presenze domenica)
```

lun, mar,mer, gio, ven, sab, dom ∈ ZZ₊

Localizzazione di servizi

Una città è divisa in sei quartieri, dove si vogliono attivare dei centri unificati di prenotazione (CUP) per servizi sanitari. In ciascun quartiere è stata individuata una possibile località di apertura. Le distanze medie in minuti da ciascun quartiere a ciascuna delle possibili località è indicata in tabella. Si desidera che nessun utente abbia un tempo medio di spostamento superiore a 15 minuti per arrivare al CUP più vicino e si vuole minimizzare il numero di CUP attivati.

	Loc. 1	Loc. 2	Loc 3	Loc. 4	Loc. 5	Loc. 6
Q.re 1	5	10	20	30	30	20
Q.re 2	10	5	25	35	20	10
Q.re 3	20	25	5	15	30	20
Q.re 4	30	35	15	5	15	25
Q.re 5	30	20	30	15	5	14
Q.re 6	20	10	20	25	14	5

Sia $x_i = 1$, se viene aperto il CUP nel quartiere i, 0 altrimenti

min
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6$$

s.t.

$$x_1 + x_2 \qquad \geq 1 \text{ (esigenze q.re 1)}$$

$$x_1 + x_2 \qquad + x_6 \geq 1 \text{ (esigenze q.re 2)}$$

$$x_3 + x_4 \qquad \geq 1 \text{ (esigenze q.re 3)}$$

$$x_3 + x_4 + x_5 \qquad \geq 1 \text{ (esigenze q.re 4)}$$

$$x_4 + x_5 + x_6 \qquad \geq 1 \text{ (esigenze q.re 5)}$$

$$x_2 \qquad + x_5 + x_6 \qquad \geq 1 \text{ (esigenze q.re 6)}$$

$$x_i \in \{0,1\}$$

Produzione e forza lavoro

Un'azienda produce i modelli I, II e III di un certo prodotto a partire dai materiali grezzi A e B, di cui sono disponibili 4000 e 6000 unità, rispettivamente. In particolare, ogni unità del modello I richiede 2 unità di A e 4 di B; un'unità del modello II richiede 3 unità di A e 2 di B; ogni unità del modello III richiede 5 unità di A e 7 di B. Il modello I richiede una forza lavoro doppia rispetto al modello II e tripla rispetto al modello III. La forza lavoro disponibile è in grado di produrre al massimo l'equivalente di 700 unità del modello I. Il settore marketing dell'azienda ha reso noto che la domanda minima per ciascun modello è rispettivamente di 200, 200 e 150 unità, al prezzo di 30, 20 e 50 euro. Si vuole massimizzare il ricavo totale.

 x_i : numero di unità del modello i da produrre, $\forall i \in \{I, II, III\}$

$$\max \ 30x_I + 20x_{II} + 50x_{III}$$

s.t.

$$x_I \ge 200$$

$$x_{II} \ge 200$$

$$x_{III} \ge 150$$

(vincoli sulla domanda)

$$2x_I + 3x_{II} + 5x_{III} \le 4000$$
 (vincoli sui materiali)
 $4x_I + 2x_{II} + 7x_{III} \le 6000$

$$x_I + \frac{1}{2}x_{II} + \frac{1}{3}x_{III} \le 700$$

(vincoli sulla forza lavoro)

$$x_i \in \mathbb{Z}_+^{\bigcirc}, \forall i \in \{I, II, III\}$$
 (dominio)

Capacità produttiva in eccesso

Una società ha tre impianti con capacità produttiva eccedente. Tutti e tre impianti sono in grado di produrre schiume di lattice e si è deciso di sfruttare in questo modo la capacità produttiva in eccesso. Le schiume possono essere realizzate in tre diverse densità (bassa, media e alta) che forniscono un profitto netto unitario di 9, 10 e 12 euro. Gli stabilimenti 1, 2 e 3 hanno manodopera e capacità produttiva in eccesso per produrre, rispettivamente, 500, 600 e 300 quintali al giorno, indipendentemente dalla densità delle schiume. Comunque, la disponibilità dello spazio destinato all'immagazzinamento durante il processo produttivo limita la produzione. Gli stabilimenti 1, 2 e 3 hanno, rispettivamente, 900, 800 e 350 mg di magazzino disponibile per questo prodotto. Ogni quintale di schiuma prodotta al giorno in densità bassa, media o alta richiede 2, 1.5 e 1 mg, rispettivamente. Le previsioni di vendita indicano che si possono vendere al massimo 600, 800 e 500 quintali delle schiume di densità bassa, media e alta, rispettivamente. I sindacati hanno chiesto di mantenere un carico di lavoro uniforme e la direzione ha concordato che sarà utilizzata la medesima percentuale della capacità produttiva in eccesso. La direzione ci chiede di determinare come suddividere la produzione per massimizzare il profitto totale.

 x_{ij} : quantità di schiuma di densità j prodotta nello stabilimento

luigi.deg

$$\max \quad 9(x_{1b} + x_{2b} + x_{3b}) + 10(x_{1m} + x_{2m} + x_{3m}) + 12(x_{1a} + x_{2a} + x_{3a}) \qquad x_{ij} \in \mathbb{R}_{+} \forall i \in \{1, 2, 3\}, \forall j \in \{b, m, a\}$$

s.t.
$$x_{1b} + x_{1m} + x_{1a} \le 500$$
 manodopera

$$x_{2b} + x_{2m} + x_{2a} \le 600$$
$$x_{3b} + x_{3m} + x_{3a} \le 300$$

$$x_{1b} + x_{2b} + x_{3b} \le 600$$
$$x_{1m} + x_{2m} + x_{3m} \le 800$$

 $x_{1a} + x_{2a} + x_{3a} \le 500$

$$2x_{1b} + 1.5x_{1m} + 1x_{1a} \le 900$$

$$2x_{2b} + 1.5x_{2m} + 1x_{2a} \le 800$$

$$2x_{3b} + 1.5x_{3m} + 1x_{3a} \le 350$$
 magazzini

$$\frac{\frac{1}{500}(x_{1b} + x_{1m} + x_{1a}) = \frac{1}{600}(x_{2b} + x_{2m} + x_{2a})}{\frac{1}{500}(x_{1b} + x_{1m} + x_{1a}) = \frac{1}{300}(x_{3b} + x_{3m} + x_{3a})}$$

Luigi De Giovanni - Ricerca Operativa - 2. Modelli di Programmazione Lineare

carico di lavoro

vendita

Piani multi-periodo di investimento

Un finanziere ha due piani di investimento A e B disponibili all'inizio di ciascuno dei prossimi cinque anni. Ogni euro investito in A all'inizio di ogni anno garantisce, due anni più tardi, un profitto di 0,4 euro (e può essere immediatamente reinvesito). Ogni euro investito in B all'inizio di ogni anno dà, tre anni dopo, un profitto di 0,7 euro. In più, da un certo momento in avanti, sarà possibile sfruttare anche i piani di investimento C e D. Ogni euro investito in C all'inizio del secondo anno raddoppierà dopo 4 anni. Ogni euro investito in D all'inizio del quinto anno darà un profitto di 0,3 euro l'anno successivo. Anche per i piani B, C e D vale la possibilità di reinvestimento, come per il piano A. Il finanziere ha a disposizione 10000 euro e vuole sapere quale piano di investimento massimizza il capitale posseduto all'inizio del sesto anno.

luigi.deg

 x_{ij} : capitale, in euro, investito nel piano i all'inizio dell'anno j

$$\max \quad 0.4(x_{A1} + x_{A2} + x_{A3} + x_{A4}) + 0.7(x_{B1} + x_{B2} + x_{B3}) + x_{C2} + 0.3x_{D5} + 10000$$

s.t.

$$\begin{array}{l} x_{A1} + x_{B1} \leq 10000 & \text{(anno 1)} \\ x_{A2} + x_{B2} + x_{C2} \leq 10000 - x_{A1} - x_{B1} & \text{(anno 2)} \\ x_{A3} + x_{B3} \leq 10000 + 0.4x_{A1} - x_{B1} - x_{A2} - x_{B2} - x_{C2} & \text{(anno 3)} \\ x_{A4} \leq 10000 + 0.4x_{A1} + 0.7x_{B1} + 0.4x_{A2} - x_{B2} - x_{C2} - x_{A3} - x_{B3} & \text{(anno 4)} \\ x_{D5} \leq 10000 + 0.4x_{A1} + 0.7x_{B1} + 0.4x_{A2} + 0.7x_{B2} + 0.4x_{A3} + \\ -x_{C2} - x_{B3} - x_{A4} & \text{(anno 5)} \end{array}$$

$$x_{ij} \in \mathbb{R}_+, \forall i \in \{A, B, C, D\}, \forall j \in \{1, 2, 3, 4, 5\}$$
 (dominio)

Produzione su più linee

Un mangime è ottenuto miscelando una stessa quantità di tre componenti che produzione essere lavorate su quattro linee di produzione differenti. Ogni linea è dotata di una limitata capacità di ore di lavorazione e una diversa produttività (unità di componente per ogni ora), come indicato nella seguente tabella:

Linea	Capacità	Produttività			
		componente 1	componente 2	componente 3	
1	100	10	15	5	
2	150	15	10	5	
3	80	20	5	10	
4	200	10	15	20	

Si vuole determinare il numero di ore di lavorazione di ciascuna componente su ciascuna linea di produzione in modo da massimizzare la quantità di mangime complessivamente prodotta.

Una formulazione

 x_{ij} : numero di ore di lavorazione della componente j sulla linea di lavorazione t

 $\max_{s.t.} \min\{p_1, p_2, p_3\}$

 p_j : quantità di componente j prodotta

$$p_1 = 10x_{11} + 15x_{21} + 20x_{31} + 10x_{41}$$

$$p_2 = 15x_{12} + 10x_{22} + 5x_{32} + 15x_{42}$$

$$p_3 = 5x_{13} + 5x_{23} + 10x_{33} + 20x_{43}$$

$$x_{11} + x_{12} + x_{13} \le 100$$

 $x_{21} + x_{22} + x_{23} \le 150$
 $x_{31} + x_{42} + x_{53} \le 80$
 $x_{31} + x_{42} + x_{53} \le 200$

$$x_{ij} \in \mathbb{R}_+, \forall i \in \{1, 2, 3, 4\}, \forall j \in \{1, 2, 3\}$$

min non è una funzione lineare

Una formulazione non lineare

 x_{ij} : numero di ore di lavorazione della componente j sulla linea di lavorazione t

 $\max_{s.t.} \min\{p_1, p_2, p_3\}$

 p_j : quantità di componente j prodotta

$$p_1 = 10x_{11} + 15x_{21} + 20x_{31} + 10x_{41}$$

$$p_2 = 15x_{12} + 10x_{22} + 5x_{32} + 15x_{42}$$

$$p_3 = 5x_{13} + 5x_{23} + 10x_{33} + 20x_{43}$$

$$x_{11} + x_{12} + x_{13} \le 100$$

$$x_{21} + x_{22} + x_{23} \le 150$$

$$x_{31} + x_{42} + x_{53} \le 80$$

$$x_{31} + x_{42} + x_{53} \le 200$$

$$x_{ij} \in \mathbb{R}_+, \forall i \in \{1, 2, 3, 4\}, \forall j \in \{1, 2, 3\}$$

Min-max, max-min e min-abs

max min
$$\{e_1, e_2, ..., e_n\}$$

max y
 $y \le e_1$
 $y \le e_2$

min max
$$\{e_1, e_2, ..., e_n\}$$

min y

$$y \ge e_1$$

$$y \ge e_2$$
...
$$y \ge e_n$$

min non è una funzione lineare

 $y \leq e_n$

- max non è una funzione lineare
- Valore assoluto non è una funzione lineare

```
min |e| \equiv \min \max \{e, -e\}

min y

y \ge e

y \ge -e
```

Una formulazione LINEARE (modello PL)

 x_{ij} : numero di ore di lavorazione della componente j sulla linea di lavorazione t p_j : quantità di componente j prodotta

max y

s.t.

$$p_{1} = 10x_{11} + 15x_{21} + 20x_{31} + 10x_{41} p_{2} = 15x_{12} + 10x_{22} + 5x_{32} + 15x_{42} p_{3} = 5x_{13} + 5x_{23} + 10x_{33} + 20x_{43} y \le p_{1} y \le p_{2} y \le p_{3}$$

$$x_{11} + x_{12} + x_{13} \le 100$$

 $x_{21} + x_{22} + x_{23} \le 150$
 $x_{31} + x_{42} + x_{53} \le 80$
 $x_{31} + x_{42} + x_{53} \le 200$

$$x_{ij} \in \mathbb{R}_+, \forall i \in \{1, 2, 3, 4\}, \forall j \in \{1, 2, 3\}$$