Rank-65609 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_0^2 X_3 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

The point rank of the equation over GF(4) is 1431659885

General information

Number of lines	6
Number of points	29
Number of singular points	1
Number of Eckardt points	1
Number of double points	6
Number of single points	15
Number of points off lines	7
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{6}
Type of lines on points	$3, 2^6, 1^{15}, 0^7$

Singular Points

The surface has 1 singular points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 6 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_{13}$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{106} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{106} = \mathbf{Pl}(1, 1, 1, 1, 0, 1)_{150}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & \omega^{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{355} = \begin{bmatrix} 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{355} = \mathbf{Pl}(0, 3, 0, 1, 0, 0)_{15}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & \omega & 1 \\ 0 & 1 & \omega^{2} & 0 \end{bmatrix}_{129} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 3 & 0 \end{bmatrix}_{129} = \mathbf{Pl}(3, 2, 2, 3, 0, 1)_{173}$$

$$\ell_{4} = \begin{bmatrix} 0 & 1 & \omega & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{350} = \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{350} = \mathbf{Pl}(0, 2, 0, 1, 0, 0)_{14}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & \omega^{2} & 1 \\ 0 & 1 & \omega & 0 \end{bmatrix}_{149} = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 2 & 0 \end{bmatrix}_{149} = \mathbf{Pl}(2, 3, 3, 2, 0, 1)_{166}$$

Rank of lines: (345, 106, 355, 129, 350, 149)

Rank of points on Klein quadric: (13, 150, 15, 173, 14, 166)

Eckardt Points

The surface has 1 Eckardt points: $0: P_3 = \mathbf{P}(0, 0, 0, 1) = \mathbf{P}(0, 0, 0, 1).$

Double Points

The surface has 6 Double points: The double points on the surface are:

$$P_{11} = (0, 1, 1, 0) = \ell_0 \cap \ell_1$$

$$P_{78} = (1, 2, 3, 1) = \ell_1 \cap \ell_3$$

$$P_{66} = (1, 3, 2, 1) = \ell_1 \cap \ell_5$$

$$P_{15} = (0, 2, 1, 0) = \ell_2 \cap \ell_3$$

 $P_4 = (1, 1, 1, 1) = \ell_3 \cap \ell_5$ $P_{19} = (0, 3, 1, 0) = \ell_4 \cap \ell_5$

Single Points

The surface has 15 single points: The single points on the surface are:

0: $P_{27} = (1, 1, 0, 1)$ lies on line ℓ_1 1: $P_{31} = (1, 2, 0, 1)$ lies on line ℓ_5 2: $P_{35} = (1, 3, 0, 1)$ lies on line ℓ_3 3: $P_{39} = (1, 0, 1, 1)$ lies on line ℓ_1 4: $P_{42} = (0, 1, 1, 1)$ lies on line ℓ_0 5: $P_{45} = (0, 2, 1, 1)$ lies on line ℓ_2 6: $P_{49} = (0, 3, 1, 1)$ lies on line ℓ_4 7: $P_{54} = (1, 0, 2, 1)$ lies on line ℓ_3 $\begin{array}{l} 8: \ P_{57} = (0,1,2,1) \ \text{lies on line} \ \ell_4 \\ 9: \ P_{61} = (0,2,2,1) \ \text{lies on line} \ \ell_0 \\ 10: \ P_{65} = (0,3,2,1) \ \text{lies on line} \ \ell_2 \\ 11: \ P_{70} = (1,0,3,1) \ \text{lies on line} \ \ell_5 \\ 12: \ P_{73} = (0,1,3,1) \ \text{lies on line} \ \ell_2 \\ 13: \ P_{77} = (0,2,3,1) \ \text{lies on line} \ \ell_4 \\ 14: \ P_{81} = (0,3,3,1) \ \text{lies on line} \ \ell_0 \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 7 points not on any line: The points on the surface but not on lines are:

```
\begin{array}{lll} 0: \, P_0 = (1,0,0,0) & 4: \, P_{64} = (3,2,2,1) \\ 1: \, P_{47} = (2,2,1,1) & 5: \, P_{76} = (3,1,3,1) \\ 2: \, P_{52} = (3,3,1,1) & 6: \, P_{83} = (2,3,3,1) \\ 3: \, P_{59} = (2,1,2,1) & \end{array}
```

Line Intersection Graph

	012345
$\overline{0}$	011010
1	100101
2	100110
3	011001
4	101001
5	$\begin{array}{c} 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_4
in point	P_{11}	P_3	P_3

Line 1 intersects

Line	ℓ_0	ℓ_3	ℓ_5
in point	P_{11}	P_{78}	P_{66}

Line 2 intersects

Line	ℓ_0	ℓ_3	ℓ_4
in point	P_3	P_{15}	P_3

Line 3 intersects

Line	ℓ_1	ℓ_2	ℓ_5
in point	P_{78}	P_{15}	P_4

Line 4 intersects

Line	ℓ_0	ℓ_2	ℓ_5
in point	P_3	P_3	P_{19}

Line 5 intersects

Line	ℓ_1	ℓ_3	ℓ_4
in point	P_{66}	P_4	P_{19}

The surface has 29 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$10: P_{42} = (0, 1, 1, 1)$	$20: P_{65} = (0, 3, 2, 1)$
$1: P_3 = (0,0,0,1)$	$11: P_{45} = (0, 2, 1, 1)$	$21: P_{66} = (1, 3, 2, 1)$
$2: P_4 = (1, 1, 1, 1)$	$12: P_{47} = (2, 2, 1, 1)$	$22: P_{70} = (1,0,3,1)$
$3: P_{11} = (0, 1, 1, 0)$	13: $P_{49} = (0, 3, 1, 1)$	$23: P_{73} = (0, 1, 3, 1)$
$4: P_{15} = (0, 2, 1, 0)$	$14: P_{52} = (3, 3, 1, 1)$	$24: P_{76} = (3, 1, 3, 1)$
$5: P_{19} = (0, 3, 1, 0)$	15: $P_{54} = (1,0,2,1)$	$25: P_{77} = (0, 2, 3, 1)$
$6: P_{27} = (1, 1, 0, 1)$	$16: P_{57} = (0, 1, 2, 1)$	$26: P_{78} = (1, 2, 3, 1)$
$7: P_{31} = (1, 2, 0, 1)$	17: $P_{59} = (2, 1, 2, 1)$	$27: P_{81} = (0, 3, 3, 1)$
$8: P_{35} = (1, 3, 0, 1)$	18: $P_{61} = (0, 2, 2, 1)$	$28: P_{83} = (2, 3, 3, 1)$
$9: P_{39} = (1,0,1,1)$	$19: P_{64} = (3, 2, 2, 1)$	