Sul quaderno ci sono scritti i limiti per funzioni a valore scalare e a valore vettoriale

1 Definizioni

1.1 Sfera

Dato $x_0 \in \mathbb{R}^n$ e p > 0 si definiscono

- Sfera Chiusa di centro x_0 e raggio p $\overline{\mathbf{B}}(x_0,p)=\{\mathbf{x}\in\mathbbm{R}^n\,:|x-x_0|\leqslant p\}$

1.2 Punto Interno

Dato $x_0 \in \mathbb{R}^n$ e $\Omega \in \mathbb{R}^n$, x_0 si dice interno ad Ω se : $\exists p: B_p(x_0) \subseteq \Omega$

1.3 Punto Esterno

Dato $x_0 \in \mathbb{R}^n$ e $\Omega \in \mathbb{R}^n$, x_0 si dice esterno ad Ω se :

- $\bullet \quad \exists p > 0: B_p(x_0) \cap \Omega = 0$
- $B_p(x_0) \subseteq \mathbb{R}^n \Omega$ (Ovvero se appartiene al complemento di Ω)

1.4 Punto di frontiera

Dato $x_0 \in \mathbb{R}^n$ e $\Omega \in \mathbb{R}^n$, x_0 si dice di frontiera per Ω se

- $\forall p > 0 \Omega \cap B_p(x_0) \neq 0 \wedge \Omega^c \cap B_p(x_0) \neq 0$
- $\forall p > 0 \ x_1 \in \Omega, \ x_2 \notin \Omega \ x_1, x_2 \in B_p(x_0)$

1.5 Punto Isolato

Dato $x_0 \in \mathbb{R}^n$ e $\Omega \in \mathbb{R}^n$, x_0 si dice isoladato ad Ω se

• $\exists p > 0: B_p(x_0) \cap \Omega = \{x_0\}$ (Cioè è l'unico punto del suo intorno appartente all'insieme)

1.6 Punto di Accumulazione

Dato $x_0 \in \mathbb{R}^n$ e $\Omega \in \mathbb{R}^n$, x_0 si dice punto di accumilazione per Ω o apprissmabile da da punti di Ω se

- $\forall p > 0 \exists x \in \Omega \cap B_p(x_0) : x \neq x_0$
- $\forall p > 0 \exists x \in \Omega : x \in B_p(x_0) \{x_0\}$

1.7 Insieme aperto

Dato $\Omega \subseteq \mathbb{R}^n$ si definisce insieme aperto se $\forall x \in \Omega \exists p > 0 : B_p(x) \subseteq \Omega$

1.8 Insieme Chiuso

Dato $\Omega \subseteq \mathbb{R}^n$ si definisce insieme chiuso se

- Il suo complementare $\Omega^c = \mathbb{R}^n \Omega$ è aperto
- Contiene tutti i suoi punti di accumulazione " $\partial \Omega \subseteq \Omega$ "
- Contiene tutti i suoi punti di frontiera "F $\Omega \subseteq \Omega$ "

1.9 Insieme Limitato

Dato $\Omega \subseteq \mathbb{R}^n$ si definisce insieme limiato se $\exists x_0 \in \mathbb{R}^n \land \exists p > 0 \colon \Omega \subseteq B_p(x_0)$ ovvero se l'insieme è compreso in una sfera limitata.

1.10 Insieme Convesso

Dato $\Omega \subseteq \mathbb{R}^n$ si definisce insieme convesso se :

• $\forall x_1, x_2 \in \Omega, \forall \lambda \in [0, 1] (1 - \lambda)x_1 + \lambda x_2 \in \Omega$ (cioè se scelti due punti appartenti ad Ω il segmento che li congiunge appartiene a sua volta ad omega)

1.11 Insieme Connesso

Dato un insieme $\Omega \in \mathbb{R}^n$ si definisce connesso se $\forall x_1, x_2 \in \Omega \exists$ una curva γ : $[0,1] \to \Omega$ continua tale che $\gamma(0) = x_1$ e $\gamma(1) = x_2$.

1.12 Chiusura di un insieme

Dato $\Omega \subseteq \mathbb{R}^n$ si definisce chiusura dell'insieme Ω , l'insieme Ω più l'insieme formato dai suoi punti di accuumulazione (quindi sè Ω è chiuso, la sua chiusura sarà uguale ad Ω):

- $\overline{\Omega} = \Omega + \partial \Omega$ se invece Ω è chiuso $\overline{\Omega} = \Omega$

1.13 Insieme compatto

Dato $\Omega \subseteq \mathbb{R}^n$ si definisce compatto se è un insieme chiuso e limitato

1.14 Successione

Una successione $X_n \in \mathbb{R}^n$ è una funzione da \mathbb{N} in \mathbb{R}^n $X_n : \mathbb{N} \to \mathbb{R}^n$

1.15 Successione convergente

 $X_n \in \mathbb{R}^n$ si definisce successione convergente se

 $\lim_{n\to\inf} X_n = x$ ovvero dalla definizione $=> \forall \varepsilon > 0, \exists \overline{n} : \forall n > \overline{n} | x_n - x | < \varepsilon$ si può anche dire che $\lim_{n\to\inf} |x_n - x| = 0$, dove $|x_n - x| = a_n : \mathbb{N} \to \mathbb{R}$, perchè è una norma.

1.16 Successione divergente

 $X_n \in \mathbb{R}^n$ si definisce successione divergente se $\lim_{n \to \inf} X_n = \inf$ ovvero se $\forall \varepsilon > 0 \exists \, \overline{n} : \forall n > \overline{n} \, |X_n| > \varepsilon$

1.17 Successioni oscillanti

 $X_n \in \mathbb{R}^n$ si definisce successione oscillante se se non converge e non diverge ovvero se

 $\lim_{n\to+\inf} X_n = NE$

1.18 Continuità di $f: \mathbb{R}^n \to \mathbb{R}^m$

Data la funzione $f: \Omega \to \mathbb{R}^m$ con $\Omega \subset \mathbb{R}^n$ f è continua in x_0 se :

 $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \text{dom } f |x - x_0| < \delta |f(x) - f(x_0)| < \varepsilon$

1.19 Curva parametrica

Una curva parametrica γ è una funzione $\gamma:[a,b]\to\Omega$ con $\Omega\subseteq\mathbb{R}^n$

1.20 Superfice Parametrica

Una seuperfice paramatrica $\phi\colon \mathbb{R}^2\to \mathbb{R}^3$ è composta da $\phi(u,v)=(x(u,v),y(u,v),z(u,v))$

1.21 Curva chiusa

Una curva chiusa γ è una funzione continua $\gamma:[a,b]\to\Omega$ con $\Omega\subseteq\mathbb{R}^n$ tale che $\gamma(a)=\gamma(b)$

1.22 Curva costante

Una curva costante γ è una funzione γ : $[a, b] \to \Omega$ con $\Omega \subseteq \mathbb{R}^n$ tale che $\gamma(t) = x_0 \, \forall t \in [a, b]$ e $x_0 \in \Omega$

1.23 Curva Semplice

Una curva semplice γ è una funzione $\gamma\colon [a,b]\to \Omega$ iniettiva su (a,b) cioè che $\gamma(t)\neq \gamma(s)$ con $t\neq s\, \forall\, t,s\in (a,b)$

1.24 Insieme connesso (per archi)

Dato $\Omega \subseteq \mathbb{R}^n$ si definisce insieme connesso (per archi) se : $\forall x, y \in \Omega \exists \gamma$: $[a,b] \to \Omega$: $\gamma(a) = x, \gamma(b) = y$ continua

1.25 Funzione oscillante

Una funzione f si dice oscillante se non converge e non diverge

1.26 Derivata direzionale

Sia $f \colon \Omega \to R$ con $\Omega \subseteq R^n$ e sia $x_0 \in \Omega$ allora si dirà che f è derivabile nella direzione di v, $v \in \mathbb{R}^n - \{0\}$, se esiste finito il limite $\lim_{h \to 0} \frac{1}{h} [f(x_0 + hv) - f(x_0)]$ ed esso verrà chiamato derivata direzionale di f nella direzione di v in x_0 e verrà indicato con il seguente simbolo $\frac{\partial f(x_0)}{\partial v}$ oppure $f_v(x_0)$ oppure $\partial_v(x_0)$. La derivata direzionale lungo le basi canonica viene detta derivata parziale e si denotano con $\frac{\partial f(x_0)}{\partial x_i}$, oppure $f_{x_i}(x_0)$ oppure $\partial_{x_i}(x_0)$.

1.27 Funzione α -omogenea

Una funzione f si dice α -omogenea (o omogenea di grado α) se $f(\mathrm{tx}) = t^{\alpha} f(x) \forall \, \mathrm{tx} \in \mathrm{dom} \, f$

Una funzione 0 omogenea è del tipo $f(tx) = t^0 f(x) = f(x)$

1.28 Differenziale

Sia $f \colon \Omega \to \mathbb{R}$ con $\Omega \in \mathbb{R}^n$ e sia $x_0 \in \Omega$ allora f si dice differenziabile in x_0 se $\exists A \colon \mathbb{R}^n \to \mathbb{R}$ lineare tale che $\lim_{w \to 0} \frac{f(x_0 + w) - f(x_0) - A(w)}{|w|} = 0$. L'applicazione lineare A(w) si chiama differenziale di f nel punto x_0 secndo l'incremento w si indica con $\mathrm{df}(x_0 + w) = A(w)$ $x_0, w \in \mathbb{R}^n$. La formula con cui si calcola il differenziale è $A(w) = \sum_{i=1}^n w_i \frac{\partial f(x_0)}{\partial x_i}$ ovvero corrisponde al prodotto scalare tra il gradiente è l'incremento -> $A(w) = \nabla f(x_0)$ $w = \mathrm{df}(x_0, w)$.

1.29 Funzione di classe C^1

Una funzione $f: \Omega \to \mathbb{R}$ con $\Omega \subseteq \mathbb{R}^n$ si dice di classe C^1 se è continua in Ω e se le sue derivate parziali prime sono continue in Ω ,

1.30 Equazioni della curva di livello

Data una funzione $f:\Omega\to\mathbb{R}$ con $\Omega\subseteq\mathbb{R}^n$ e data $\gamma\colon [a,b]\to\Omega$ si dice curva di livello K di f su Ω se

$$f(\gamma(t)) = k \quad \forall t \in [a, b].$$

Le curva di livello sono sempre perpendicolari al gradiente in quanto se $f(\gamma(t)) = k$ allora $\frac{d(f(\gamma(t)))}{dt} = 0$ e di conseguenza $\nabla f(\gamma(t)) \gamma(t)' = 0 \ \forall t \in (a,b)$

1.31 Direzione di massima pendenza

Si definisce direzione di massima pendenza, crescente o decresente, la direzione nel quale la funzione "cresce" più, velocemente.

- Versore nella direzione di massima pendennza crescenente = $\frac{\nabla f(x_0)}{|\nabla f(x_0)|}$
- Versore nella direzione di massima pendennza decresc
nete = $-\frac{\nabla f(x_0)}{|\nabla f(x_0)|}$

1.32 Funzioni tangent in punto

Data $f: \mathbb{R}^n \to \mathbb{R}$ e $g: \mathbb{R}^n \to \mathbb{R}$ si definiscono tangenti in un punto $x_0 \in \mathbb{R}^n$ se $\lim_{w \to 0} \frac{f(x_0 + w) - g(x_0 + w)}{w} = 0$

1.33 Vettore Normale, Piano Tangente e Retta tangente

- Dato una funzione $f: \Omega \to \mathbb{R}$ con $\Omega \subseteq \mathbb{R}^n$ si definisce graph $f = \{(x, y) : x \in \text{dom } f \mid y = f(x)\}$
- Mentre si definisce Piano tangente al graph di f l'equazione $z = f(x_o) + \nabla f(x_0)(x x_0)$
- Si definisce vettore normale al piano tangente il vettore avente le seguenti coordinate $V = (\nabla f(x_0), -1)$ (Con il gradiente si intendono tutte le sue derivate parziali prime, una per componente).
- Si definisce invece Retta Tangente al sostegno di γ nel suo punto $\gamma(t_o)$ la retta parametrica $\sigma(t) = \gamma(t_0) + (t t_0)\gamma(t_0)'$. Il vettore $\gamma(t_0)'$ oltre che derivata si dirà anche velocità di γ in $\gamma(t_0)$.

1.34 Matrice Hessiana e Jacobiana

Si definisce matrice Hessiana la matrice contente tutte le derivate parziali seconde (solo seconde).

Mentre si definisce matrice Jacobiana la matrice avente le funzioni e le sue derivate parziali prime.

1.35 Funzione di classe C^2

Una funzione $f: \Omega \to \mathbb{R}$ con $\Omega \subseteq \mathbb{R}^n$ si dice di classe C^2 se è continua in Ω , se le se derivate parziali prime sono continue in Ω e se lo sono anche le derivate parziali seconde in Ω

1.36 Polinomio di Taylor

Si definisce Polinomio di Taylor il Polinomio costruito su una funzione avente la seguente forma:

$$f(x_0 + w) = \sum_{k=0}^n \sum_{\mu_1 \dots \mu_n, \mu_1 + \dots \mu_n = k, \mu_i \geqslant 0} \frac{f_{x_1}^{\mu_1} \dots f_{x_n}^{\mu_n}(x_0)}{\mu_1! \dots \mu_n!} w_1^{\mu_1} \dots w_n^{\mu_n} + R_N(w)$$

Dove R_n può essere

- Resto di Peano : $R_n(w) = O(|W|^n)$
- Resto di Lagrange : $R_n(w) = \frac{f^{n+1}(\xi)w^{n+1}}{(n+1)!}$

1.37 Primitive

Data una funzione f si dice se, date F e G primitive di f allora F' = f, G'=f , (F-G)' = 0 con soluzioni particolari u' = 0, u' = f.

1.38 Campo di vettori di classe C^k

Dato $\Omega \subseteq \mathbb{R}^n$ si definisce campo (di vettori) in Ω , di classe C^k ,una funzione $A \colon \Omega \to \mathbb{R}^n$ con $A = A(A_1, A_2, \dots, A_n)$ le cui componenti scalari $A_i \colon \Omega \to \mathbb{R}$ sono funzioni scalari continue e deriviabili fino all'ordine K $\forall i = 1...n.$ Il vettore di arrivo di A(x) ha lo stesso numero di componenti del vettore di partenza x.

1.39 Campo Piano

Si definisce campo piano un campo definito su \mathbb{R}^2 o su un suo sottinsieme ed è composto da una coppia di funzioni $A(x, y) = (\alpha(x, y), \beta(x, y))$ che individuano il vettore in \mathbb{R}^2 associato al punto (x,y)

1.40 Forma differenziale lineare

Dato $\Omega \subseteq \mathbb{R}^n$ si definisce forma differenziale lineare(o solo forma differenziale (o solo forma))) una funzione $\alpha \colon \Omega \times \mathbb{R}^n \to \mathbb{R}$ tale che $\forall \ \overline{\mathbf{x}} \in \Omega$ la funzione $t \to \alpha(\overline{x}, t)$ si lineare in t.

1.41 Campo associato all forma e forma associata al campo

Qualunque forma $\alpha(x,w)$ per la quale $w \to \alpha(\overline{x},w)$ è lineare $\forall \overline{x}$ fissato si può definire un campo di vettori A(x) tale che $\alpha(\overline{x},w) = A(\overline{x})w$. Il campo di vettori A(x) verrà detto associato alla forma $\alpha(x,w)$. $\alpha(x,w)$ verrà detto di classe C^k se A(x) è di classe C^k .

1.42 Integrale di un campo su una curva continua

Sia $A:\Omega\to\mathbb{R}^n$ un campo di classe C^0 \forall curva parametrica continua $\gamma:[a,b]\to\Omega$ si definisce integrale di A esteso alla curva γ l'integral $\int_{-\gamma}^{-b}A(\gamma(t))\,\gamma(t)'\,\mathrm{d}t$

1.43 Campo e Forma Integrabili

- Un campo di vettori $A: \Omega \to \mathbb{R}^n$ si dirà integrabile o potenziale se $\exists f: \Omega \to \mathbb{R}$ tale che $\nabla f = A$. Ogni funzione verificante tale identità si dirà primitiva o potenziale.
- Una forma $\alpha: \Omega \times \mathbb{R}^n \to \mathbb{R}$ si dirà integrabile o esatta se $\exists f: \Omega \to \mathbb{R}$ tale che $df(x,w) = \alpha(x,w)$ su $\Omega \times \mathbb{R}^n$. Ogni funzione f verificante tale indentità si dirà primitiva o potenziale della forma α

1.44 Curva Regolare

Una curva $\gamma[a,b] \to \mathbb{R}^n$ si dirà regolare se $|\gamma(t)'| \neq 0 \quad \forall t \in [a,b]$

1.45 Superfice Parametica regolare

Data una superfice $\phi: \Omega \to \mathbb{R}^3$ con Ω compatto $(\subseteq \mathbb{R}^2)$ si definisce regolare se

- ϕ è iniettiva su Ω
- $\phi \in C^1(\Omega)$
- ϕ ' jacobiano di ϕ è di rango 2
- $\phi_u \land \phi_v \neq 0 \forall (u, v) \in \Omega$

1.46 Curva Rettificabile

Una curva $\gamma[a, b] \to \mathbb{R}^n$ si definisce rettificabile (= lunghezza finita) se $\sup_{\Pi} (\Pi) < +$ inf e si definisce Π la partizione della curva sull'intervallo [a,b]. La formula per la lunghezza della polinomiale della partizione è $\wedge(\Pi) = \sum_{i=0}^{n-1} |\gamma_{t_i+1} - \gamma_{t_i}|$. Se una curva è rettificabile allora \wedge $(\gamma) = \int_a^b |\gamma(t)'| dt$.

1.47 Campo Irrotazione e forma chiusa

- Una campo A di classe C^k è detto irrotazione se $(A_i)_{x_i} = (A_J)_{x_i} \forall i \neq j$
- Una forma differenziale $\alpha(x,w)=A(x)w$ si dirà chiusa se il suo campo associato A è irrotazionale

1.48 Congiunzione di curva

Date due curve $\gamma_1: [a,b] \to \Omega$ e $\gamma_2[b,c] \to \Omega$ si dirà congiunzione delle curve $\gamma_1 \oplus \gamma_2$ la curva definita da γ_1 se $t \in [a,b]$ mentre da γ_2 se $t \in [b,c]$.

1.49 Curva Opposta

Data una curva γ : $[a, b] \to \Omega$ si definisce curva opposta $\ominus \gamma$ la curva $\ominus \gamma$: $[a, b] \to \Omega$ tale che $\ominus \gamma(t) = \gamma(b - t + a)$.

1.50 Curve Deformabili od Omotope

Due curve $\gamma_1[0,1] \to \Omega$ e $\gamma_2[0,1] \to \Omega$ tale che $\gamma_1(0) = \gamma_2(0)$ e $\gamma_1(1) = \gamma_2(1)$ si dicono deformabili od omotope se $\exists h \colon [0,1] \times [0,1] \to \Omega$ continua tale che $h(0,t) = \gamma_!(t)$ e $h(1,t) = \gamma_2(t)$.

1.51 Insieme Semplicemente Connesso

Un insieme $\Omega \subseteq \mathbb{R}^n$ si dirà semplicmente connesso se ogni curva chiusa $\gamma[0, 1] \to \Omega$ è omotopa in Ω ad una curva costante $\sigma(t) = x_0 \,\forall t \in [0, 1]$.

1.52 Insieme a stella

Un insieme $\Omega \subseteq \mathbb{R}^n$ verrà detto a stella se $\exists x_0 \in \Omega$ tale che il segmento $\overline{x_0}x \subseteq \Omega$ $\forall x \in \Omega$

1.53 Rotore

Dato $A: \Omega \to \mathbb{R}^3$ con $\Omega \subseteq \mathbb{R}^3$ di definisce rotore il rot $A = ((A_2)_{x_3} - (A_3)_{x_2}, -[(A_1)_{x_3} - (A_3)_{x_1}], (A_1)_{x_2} - (A_2)_{x_1})$. Il rotore di un campo vettoriale è a sua volta un campo vettoriale ed è il prodotto vettore tra le componenti scalari del campo e le derivate parziali.

1.54 Componente connessa

Un insieme sconnesso è un insieme non connesso ed un insieme sconnesso può essere decomposto i componenti connesse.

Dato $\Omega \subseteq \mathbb{R}^n$, $x_0 \in \Omega$ si definisce componente connessa contenente x_0 come : $\Omega(x_0) = \{x \in \Omega : \exists \gamma : [0,1] \to \Omega : \gamma(0) = x_0 e \gamma(1) = x\}$

1.55 Sostengo di una curva

Data una curva $\gamma[a, b] \to \mathbb{R}^n$ si definisce sostegno l'immagine della curva $\gamma \operatorname{Im} \gamma = \{y \in \mathbb{R}^n : \exists t \in [a, b] : y = \gamma(t)\}$. Il sostegno di una curva definisce il grafico di essa, ma non il verso e la velocità di percorrenza

1.56 Curve Equivalenti

Date due curve $\gamma: [a,b] \to \mathbb{R}^n$ e $\sigma[c,d] \to \mathbb{R}^n$ si diranno equivalenti se $\exists \alpha: [a,b] \to [c,d]$ invertibile con $\alpha \in C^1([a,b])$ tale che $\gamma(t) = \sigma(\alpha(t))$.

1.57 Elementi delle teoria della misura e dell'integrazione secondo L

- Misura di un intervallo in \mathbb{R} : $[a,b] \subseteq \mathbb{R}$ allora $\mathrm{n}([a,b]) = \mathrm{b}$ -a
- Miusra di un intervallo in \mathbb{R}^2 : [a,b]x[c,d] = {(x,y) : x \in [a,b] e y \in [c,d]} -> n([a,b]x[c,d]) (b-a) * (c-d)
- Misura di un intervallo in \mathbb{R}^n : $\Pi_{i=1}^n[a_i,b_i] = \{(x_1,...,x_n): x_i \in [a_i,b_i] \forall i=1...n\} = I -> |I| = \Pi_{i=1}^n(b_i-a_i)$
- Plurintervallo : è un insieme di intervalli che non hanno punti in comuni-> $\Pi = U_{i=1}^n I_i$ con $|I_i \cap I_j| = 0 \ \forall i \neq j$
- Misura degli insiemi aperti : Ω aperto, Π plurintervallo contenuto in Ω $\Pi \subseteq \Omega \longrightarrow |\Omega| = \sup(\Pi)$
- Misura degli insiemi compatti: K compatto, Π plurintervallo conentente Ω -> $|K| = \inf(\Pi)$
- Misura interna ed esterna: E $\subseteq \mathbb{R}^n$ insieme arbitrario limitato, definiamo con
 - \circ $|E|^* = \inf(A) \ A \supseteq E$ aperto (misura esterna)
 - \circ $|E|_* = \sup(K) K \subseteq E \text{ compatto (msura interna)}$

1.58 Proprietà di un insieme misurabile

- Se E e F sono misurabili allora E U F , $E \cap F$ e E\F sono misurabili
- Se E e F misurabili con E $\cap F = 0$ allora |E+F| = |E| + |F|
- Se E e F misurabili con $E \subseteq F$ allora $|E| \leq |F|$ (MONOTONIA)
- Se E_i i= 1..n misurabili e $E_i \cap E_j = 0 \forall i \neq j$ allora $|U_{i=1}^n E_i| = \sum_{i=1}^n |E_i|$ additiva numerabile
- Se $E_i i = 1...n$ misurbuli $|U_{i=1}^n E_i| \leq \sum_{i=1}^n |E_i|$ subadditività numerabile
- Se $E_1 \subseteq E_2 \subseteq ... E_n$ misurabili con $E = U_{i=1}^n E_i$ allora $|E| = \sup_{i=1...n} (|E_i|)$ continuità verso l'alto
- Se $E_1 \supseteq E_2 \supseteqE_n$ misurabili sia $E = \bigcap_{i=1}^n E_i$ allora $|E| = \inf_{i=1...n} (|E_i|)$

1.59 Insieme Numerabile

Un insieme Ω si dice numerabile se ha la stessa cardinalità dell'insieme dei numeri naturali \mathbb{N} ,cioè se è possibile stabilire una corrispondenza biuniovca tra $\mathrm{N}e\Omega$. Se Ω numerabile allora $|\Omega|=0$.

1.60 Misura di insiemi non limitati

Dato E insieme non limitato e data $B_r(0)$ sfera di raggio r > 0 con $E \cap B_r(0)$ misurabile allora $|E| = \sup_r |E \cap B_r(0)|$

1.61 Funzione Misurabile

Una funzione si dice misurabile se l'insieme $\{x \in \text{domf}: f(x) \in I\}$ è misurabile per ogni intervallo I

1.62 Funzione Numerabile

Una funzione f
 si dice numerabile se \forall intervallo I, $f^{-1}(I)$ è misurabile

1.63 Proprietà dell'integrale di Lebesgue

•

- Se f e g integrabili su E e $f \geqslant g$ allora $\int_E f \geqslant \int_e g$ (MONOTONIA)
- Se f $\geqslant 0$ integrabile su E allora $\int_E F \geqslant 0$ (Positività)
- Se f integrabile su E e |E| = 0 allora $\int_E f = 0$

- Se f integrabile su $U_{i=1}^n E_i$, con $E_i \cap E_j = 0 \, \forall i \neq j$ allora $\int_{U_{i=1}^n} E_i = \sum_{i=1}^n \int_{E_i} f$

• CNS: affinche f sia integrabile su E è che $\forall \varepsilon > 0 \exists \Pi : (\Sigma_{\Pi} - \sigma_{\Pi}) < \varepsilon$

1.64 Dominio Normale

Si deginisce Dominio normale lo spazio compreso tra due funzioni

- Rispetto ad x : E un dominio normale rispetto ad x se
 - $\circ \quad E_x = [a, b]$
 - $\circ \quad \exists \varphi : [a,b] \to \mathbb{R} : \psi : [a,b] \to \mathbb{R}$
 - $\circ \quad \mathbf{E} = \{(\mathbf{x}, \mathbf{y}) : \mathbf{x} \in [\mathbf{a}, \mathbf{b}] \in \varphi(x) \leqslant y \leqslant \psi(x)\}$
- Rispetto ad y : E un dominio normale rispetto ad y se
 - $\circ \quad E_y = [c, d]$
 - $\circ \quad \exists \varphi : [c,d] \to \mathbb{R} : \psi : [c,d] \to \mathbb{R}$
 - $\circ \quad \mathbf{E} = \{ (\mathbf{x}, \mathbf{y}) : \mathbf{y} \in [\mathbf{c}, \mathbf{d}] \in \varphi(d) \leq \mathbf{x} \leq \psi(d) \}$