Отчёт по лабораторной работе №8 Информационная безопасность

Элементы криптографии. Шифрование (кодирование) различных исходных текстов одним ключом

Выполнила: Данзанова Саяна, НПИбд-01-21, 1032217624

Содержание

Цель работы	4
Теоретическое введение	5
Выполнение лабораторной работы	7
Вывод	9
Список литературы. Библиография	10

Список иллюстраций

1	(Программный код приложения, реализующего режим однократного гам-	
	мирования)	7
2	(Программный код приложения, реализующего режим однократного гам-	
	мирования)	8

Цель работы

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Теоретическое введение

Исходные данные.

Две телеграммы Центра:

- Р1 = НаВашисходящийот 1204
- Р2 = ВСеверныйфилиалБанка

Ключ Центра длиной 20 байт:

• K = 05 0C 17 7F 0E 4E 37 D2 94 10 09 2E 22 57 FF C8 OB B2 70 54

Режим шифрования однократного гаммирования одним ключом двух видов открытого текста реализуется в соответствии с так называемой «схемой шифрования двух различных текстов одним ключом».

Шифротексты обеих телеграмм можно получить по формулам режима однократного гаммирования:

$$C1 = P1 \oplus K, C2 = P2 \oplus K(8.1)$$

Открытый текст можно найти в соответствии с (8.1), зная шифротекст двух телеграмм, зашифрованных одним ключом. Для это оба равенства (8.1) складываются по модулю 2. Тогда с учётом свойства операции XOR

$$1 \square 1 = 0, 1 \square 0 = 1 (8.2)$$

Предположим, что одна из телеграмм является шаблоном — т.е. имеет текст фиксированный формат, в который вписываются значения полей. Допустим, что злоумышленнику этот формат известен. Тогда он получает достаточно много пар С1 □ С2 (известен вид обеих шифровок). Тогда зная Р1 и учитывая (8.2), имеем:

$$C1 \square C2 \square P1 = P1 \square P2 \square P1 = P2 (8.3)$$

Таким образом, злоумышленник получает возможность определить те символы сообщения P2, которые находятся на позициях известного шаблона сообщения P1. В соответствии с логикой сообщения P2, злоумышленник имеет реальный шанс узнать ещё некоторое количество символов сообщения P2. Затем вновь используется (8.3) с подстановкой вместо P1 полченных на предыдущем шаге новых символов сообщения P2. И так далее. Действуя подобным образом, злоумышленник даже если не прочитает оба сообщения, то значительно уменьшит пространство их поиска.

Выполнение лабораторной работы

Два текста кодируются одним ключом (однократное гаммирование). Требуется не зная ключа и не стремясь его определить, прочитать оба текста.

Необходимо разработать приложение, позволяющее шифровать и дешифровать тексты P1 и P2 в режиме однократного гаммирования. Приложение должно определить вид шифротекстов C1 и C2 обоих текстов P1 и P2 при известном ключе;

Необходимо определить и выразить аналитически способ, при котором злоумышленник может прочитать оба текста, не зная ключа и не стремясь его определить.

Для решения задачи написан программный код:

```
[31] # Импорт библиотек
      import random
      import string
[19] # Функция сложения двух строк по модулю
      def xor_text_f(text1, text2):
          if len(text1) != len (text2): return "Ошибка: тексты разной длины"
          xor_text = '
          for i in range(len(text1)):
              xor text symbol = ord(text1[i]) ^ ord(text2[i])
              xor_text += chr(xor_text_symbol)
          return xor_text
[32] Р1 = "НаВашисходящийот1204"
      Р2 = "ВСеверныйфилиалБанка"
      print("Исходный текст P1:", P1)
      print("Исходный текст Р2:", Р2)
 У Исходный текст Р1: НаВашисходящийот1204 Исходный текст Р2: ВСеверныйфилиалБанка
```

Рис. 1: (Программный код приложения, реализующего режим однократного гаммирования)

Рис. 2: (Программный код приложения, реализующего режим однократного гаммирования)

Вывод

В ходе выполнения данной лабораторной работы было освоено на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Список литературы. Библиография

[0] Методические материалы курса