Topics in Computational Economics

Lecture 11

John Stachurski

NYU 2016

Today's Lecture

Topics:

- Measure theory
- Integration
- The L_p spaces

References:

- Cheney, Analysis for Applied Mathematics, Chapter 8
- Pollard, A Users Guide to Measure Theoretic Probability
- Cinlar, Probability and Stochastics

Motivation

Why measure theory?

Example. Consider the symbol $\mathbb E$ here:

$$\max \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t u(c_t)\right]$$

subject to

$$a_{t+1} = R(a_t - c_t) + W_{t+1}, \quad a_0 \text{ given}$$

To define ${\mathbb E}$ we need measure theory

Example. Consider the space $cb\mathbb{R}^S$ with S=[a,b] and metric

$$d(f,g) = \int_{a}^{b} |f(x) - g(x)| dx$$

This is indeed a metric space

But it is not complete

Moreover, the ordinary Riemann integral is not very general

- What if we want to change S to some abstract set?
- How can we deal with more general functions?

To generalize we use measure theory

Prequel: Definition of a σ -algebra

Let S be any set

A nonempty family of subsets $\mathscr S$ of S is called a σ -algebra of S if

- 1. $A \in \mathcal{S} \implies A^c \in \mathcal{S}$
- 2. $A_1, A_2, \ldots \subset \mathscr{S} \implies \bigcup_n A_n \in \mathscr{S}$

Implication: \emptyset and S are both in \mathscr{S} (why?)

Are the following families σ -algebras on \mathbb{R}^n ?

- 1. $\mathscr{S} := \{\emptyset, \mathbb{R}^n\}$
- 2. $\mathscr{S} := \text{set of all subsets of } \mathbb{R}^n$
- 3. $\mathscr{S} := \{\emptyset, B, B^c, \mathbb{R}^n\}$ for some $B \subset \mathbb{R}^n$
- 4. $\mathscr{S} := \mathsf{all} \; \mathsf{rectangles} \; \mathsf{in} \; \mathbb{R}^n$
- 5. $\mathscr{S} := \mathsf{all} \mathsf{ open} \mathsf{ subsets} \mathsf{ of } \mathbb{R}^n$
- 6. $\mathscr{S} := \mathsf{all} \ \mathsf{compact} \ \mathsf{subsets} \ \mathsf{of} \ \mathbb{R}^n$

Generated σ -algebras

Let S be any set and let $\mathscr A$ be a set of subsets

The σ -algebra generated by $\mathscr A$ is the smallest σ -algebra containing $\mathscr A$

• The intersection of all σ -algebras on S containing $\mathscr A$

Well defined, typically written as $\sigma(\mathscr{A})$

Example. If
$$\mathscr{A} := \{B, S\}$$
, then $\sigma(\mathscr{A}) = \{\emptyset, B, B^c, S\}$

Facts

- If $\mathscr{A} \subset \mathscr{B}$, then $\sigma(\mathscr{A}) \subset \sigma(\mathscr{B})$
- If \mathscr{A} is a σ -algebra, then $\sigma(\mathscr{A}) = \mathscr{A}$

The Borel Sets

Let S be a metric space

The **Borel** subsets of S are defined as $\sigma(\mathscr{O})$, the σ -algebra generated by the open subsets of S

• write \mathscr{B} or $\mathscr{B}(S)$

When $S = \mathbb{R}^n$, the set \mathscr{B} is very large, containing

- all open sets
- all closed sets
- all rectangles
- all compact sets

Ex. Show that every countable subset of a metric space S is Borel measurable

Summary: Borel sets contain almost every set you'll every use in analysis

- **Ex.** Show that $\mathscr{B}(S)$ can also be defined as $\sigma(\mathscr{C})$ where \mathscr{C} is
 - the closed subsets of S
 - the compact subsets of S, when S is σ -finite
 - ullet then open intervals, when $S=\mathbb{R}$

Lebesgue Measure

How to assign a "natural" measure $\lambda(B)$ of "size" to $B \subset \mathbb{R}^n$

• length in \mathbb{R} , area in \mathbb{R}^2 , volume in \mathbb{R}^3 , etc.

Some sets are easy to measure

- For a rectangle, area is the product of the sides
- For a circle, area is πr^2

But how about arbitrary subsets?

Maybe we can bootstrap up from rectangles by approximation?

Let \mathscr{J} be the set of rectangles in \mathbb{R}^n of the form

$$I = \times_{i=1}^{n} (a_i, b_i]$$
 for some $a_i, b_i \in \mathbb{R}$

Let λ be the map from \mathscr{J} into \mathbb{R} defined by

$$\lambda\left(\times_{i=1}^n(a_i,b_i]\right)=\prod_{i=1}^n(b_i-a_i)$$

Abstract Measure and Integral

Figure: The measure of a rectangle $I \subset \mathbb{R}^2$

We want to extend the domain of λ to arbitrary subsets of \mathbb{R}^n

So now let's taken any $A \subset \mathbb{R}^n$

Natural idea:

$$\lambda(A) := \inf \sum_{k=1}^{\infty} \lambda(I_k)$$
 (1)

subject to

- $I_k \in \mathscr{J}$ for all $k \in \mathbb{N}$
- $\bigcup_{k=1}^{\infty} I_k \supset A$

Called Lebesgue outer measure

A set function from all subsets of \mathbb{R}^n to $[0,\infty]$

Figure: A covering of A by elements of \mathcal{J}

Example. If $C \subset \mathbb{R}^n$ is countable, then $\lambda(C) = 0$

Proof:

Let $C = \{x_k\}_{k \in \mathbb{N}}$, with $x_k \in \mathbb{R}^n$ for all k

Fix $\epsilon > 0$

Let I_k be a rectangle containing x_k with area $\leqslant \epsilon 2^{-k}$

Then
$$\sum_{k=1}^{\infty} \lambda(I_k) \leqslant \epsilon$$

$$0 \le \lambda(\{x_k\}_{k \in \mathbb{N}}) \le \epsilon \quad \forall \epsilon > 0$$

$$\lambda(\{x_k\}_{n\in\mathbb{N}})=0$$

Good news about λ :

- Nonnegative, with $\lambda(\emptyset) = 0$
- Agrees with the usual notion of "size" for rectangles, triangles, circles, spheres, etc.
- Translation invariant:

$$\lambda(A+x) = \lambda(A) \quad \forall x \in \mathbb{R}^n, A \subset \mathbb{R}^n$$

- Monotone $(A \subset B \text{ implies } \lambda(A) \leqslant \lambda(B))$
- $\lambda(A) = 0$ implies $\lambda(A \cup B) = \lambda(B)$

Bad news about λ :

• Additivity fails!

Theorem. (Vitali, 1905) There exists sets $A,B \subset \mathbb{R}$ such that

$$A \cap B = \emptyset$$
 and $\lambda(A) + \lambda(B) > \lambda(A \cup B)$

But surely the whole should equal sum of its parts So must λ be abandoned?

H. Lebesgue: Keeps λ but restrict its domain to well behaved sets One such class of sets is the Borel sets. . .

Theorem. For $A, B \in \mathcal{B}(\mathbb{R}^n)$, we have

$$A \cap B = \emptyset \implies \lambda(A \cup B) = \lambda(A) + \lambda(B)$$

In fact, on \mathcal{B} , Lebesgue outer measure is not just additive but **countably additive**:

$$\{A_n\}\subset \mathscr{B}, \text{ disjoint } \Longrightarrow \lambda(\cup_{n=1}^{\infty}A_n)=\sum_{n=1}^{\infty}\lambda(A_n)$$

When restricted to \mathscr{B} , Lebesgue outer measure λ is simply called **Lebesgue measure**

The Lebesgue Integral

The Riemann integral lets us integrate continuous functions on \mathbb{R}^n

We want an integral that

- 1. agrees with the Riemann integral on continuous functions
- 2. can integrate lots of other functions too
- 3. can extend to more abstract settings

Borel Measurable Functions

We call $f \colon \mathbb{R}^n \to \mathbb{R}$ Borel measurable and write $f \in m\mathscr{B}$ if

$$f^{-1}(B) \in \mathscr{B}, \quad \forall \, B \in \mathscr{B}$$

A necessary and sufficient condition is

$$f^{-1}(G) \in \mathscr{B}$$
, \forall open $G \subset \mathbb{R}$

Example.

- Every continuous function is Borel measurable
- But so are lots of other functions, like $\mathbb{1}_{\mathbb{O}}$

Proof that

$$f^{-1}(G) \in \mathcal{B}, \ \forall G \in \mathcal{O} \implies f^{-1}(B) \in \mathcal{B}, \ \forall B \in \mathcal{B}$$

Let
$$\mathcal{M} := \{ A \in \mathbb{R} : f^{-1}(A) \in \mathcal{B} \}$$

The set \mathcal{M} is a σ -algebra. For example, $A \in \mathcal{M}$ implies $A^c \in \mathcal{M}$ because

$$A \in \mathscr{M} \implies f^{-1}(A) \in \mathscr{B} \implies (f^{-1}(A))^c = f^{-1}(A^c) \in \mathscr{B}$$

Moreover, by assumption $\mathscr{O} \subset \mathscr{M}$

$$\therefore \quad \mathscr{B} := \sigma(\mathscr{O}) \subset \sigma(\mathscr{M}) = \mathscr{M}$$

This is exactly what we wish to show

Like continuity, measurability is preserved under simple algebraic operations

- $f \in \mathscr{B}$ and $\alpha \in \mathbb{R} \implies \alpha f \in \mathscr{B}$
- $f,g \in \mathcal{B} \implies f+g \in \mathcal{B}$
- $f,g \in \mathcal{B} \implies f * g \in \mathcal{B}$
- $f \in \mathcal{B}$ and $f > 0 \implies 1/f \in \mathcal{B}$

Unlike continuity, measurability is preserved under pointwise limits

• $f_n \in \mathscr{B}$ for all n and $f_n \to f$ pointwise on $S \implies f \in \mathscr{B}$

Given nonnegative $f \in m\mathcal{B}$, let

$$A(f) := \left\{ (x, y) \in \mathbb{R}^{n+1} \mid 0 < y < f(x) \right\}$$

Fact. f Borel measurable $\implies A(f)$ is a Borel set in \mathbb{R}^{n+1}

The **Lebesgue integral** of f is

$$\int f \, \mathrm{d}\lambda := \lambda(A(f))$$

Notes

- There are other (equivalent) ways to define $\int f \, \mathrm{d}\lambda$
- $\int f \, \mathrm{d}\lambda$ sometimes written $\lambda(f)$

Properties

1.
$$A \in \mathscr{B} \implies \int \mathbb{1}_A \, d\lambda = \lambda(A)$$

2.
$$f \leqslant g \implies \int f \, d\lambda \leqslant \int g \, d\lambda$$

3.
$$\int (\alpha f + \beta g) d\lambda = \alpha \int f d\lambda + \beta \int g d\lambda$$

4.
$$f_n \uparrow f$$
 pointwise $\implies \int f_n d\lambda \uparrow \int f d\lambda$

So far we've only discussed how to integrate nonnegative $f \in m\mathscr{B}$

So now take any $f \in m\mathscr{B}$

Decompose as $f = f^+ - f^-$

Fact. $f \in m\mathscr{B} \implies f^+ \in m\mathscr{B}$ and $f^- \in m\mathscr{B}$

Define

$$\int f \, \mathrm{d}\lambda := \int f^+ \, \mathrm{d}\lambda - \int f^- \, \mathrm{d}\lambda$$

This is the general Lebesgue integral on \mathbb{R}^n

Integration over a subset $B\in\mathscr{B}(\mathbb{R}^n)$ is defined by

$$\int_{B} f \, \mathrm{d}\lambda := \int \mathbb{1}_{B} f \, \mathrm{d}\lambda$$

Theorem. If $f: \mathbb{R} \to \mathbb{R}$ is continuous and $a \leq b$, then

$$\int \mathbb{1}_{[a,b]} f \, \mathrm{d}\lambda = \int_a^b f(x) dx$$

where the right hand side is the regular Riemann integral

Abstract Measure

In probability theory, $\mathbb{P}(A)$ means "the probability of A" Viewed as a function, \mathbb{P} resembles Lebegue measure:

- a set function
- nonnegative
- $\mathbb{P}(\emptyset) = 0$
- A and B disjoint implies $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$

So let's define abstract measure with λ , \mathbb{P} as special cases

Let S be a set and let $\mathscr S$ be a σ -algebra on S

A measure μ on (S, \mathscr{S}) is a function from \mathscr{S} to $[0, \infty]$ with the properties

- (a) $\mu(\emptyset) = 0$
- (b) μ is countably additive

The triple (S, \mathcal{S}, μ) is called a **measure space**

Ex.

- Show that if $\mu(S) < \infty$, then (b) \implies (a)
- Show that if $E, F \in \mathscr{S}$ and $E \subset F$, then $\mu(E) \leqslant \mu(F)$

A measure P on (S, \mathcal{S}) is called a

- probability measure if P(S) = 1
- Borel probability measure if P(S) = 1 and $\mathscr{S} = \mathscr{B}(S)$

Theorem There is a one-to-one correspondence between

- 1. the collection of all CDFs on \mathbb{R}
- 2. the set of all Borel probability measures on ${\mathbb R}$

If P is a Borel probability measure, then the corresponding ${\scriptsize \mathtt{CDF}}$ is

$$F(x) = P((-\infty, x]) \qquad (x \in \mathbb{R})$$

Abstract Integral

Let

- S be a set
- $\mathscr S$ be a σ -algebra on S

A function $f: S \to \mathbb{R}$ called \mathscr{S} -measurable if

$$f^{-1}(G) \in \mathscr{S}$$
, \forall open $G \subset \mathbb{R}$

Notation:

- $m\mathscr{S} := \text{all such functions}$
- $m\mathcal{S}^+ :=$ the nonnegative functions in $m\mathcal{S}$

Theorem For each measure μ on (S, \mathscr{S}) there exist a unique functional $L \colon \mathscr{mS}^+ \to [0, \infty]$ such that

- 1. $L1_A = \mu(A)$ for all $A \in \mathscr{S}$
- $2. \ f \leqslant g \implies Lf \leqslant Lg$
- 3. $L(\alpha f + \beta g) = \alpha L f + \beta L g$
- 4. $f_n \uparrow f$ pointwise on $S \implies Lf_n \uparrow Lf$ pointwise on S

The value Lf is also written as

$$\mu(f)$$
 or $\int f \, \mathrm{d}\mu$ or $\int f(x)\mu(\mathrm{d}x)$

and called the **integral** of f with respect to μ

The above theorem takes care of all $f \in m\mathscr{S}^+$

For $f \in \mathcal{MS}$ we can decomposed f as

$$f = f^+ - f^-$$

Now let

$$\int f \, \mathrm{d} \mu := \int f^+ \, \mathrm{d} \mu - \int f^- \, \mathrm{d} \mu$$

The function f is called **integrable** if both terms on RHS are finite If μ is a probablity measure, the integral is usually written as

$$\mathbb{E} f := \int f \, \mathrm{d}\mu$$

and called the expectation

Example. Let X be a finite random variable on $(\Omega, \mathscr{F}, \mathbb{P})$:

$$X(\omega) = \sum_{k=1}^{K} x_k \mathbb{1}_{A_k}(\omega)$$

where

- 1. $A_k \in \mathscr{F}$ for each k
- 2. the set $\{A_k\}$ are disjoint

Then, by the properties of the integral,

$$\mathbb{E}(X) = \mathbb{E}\left[\sum_{k=1}^{K} x_k \mathbb{1}_{A_k}\right] = \sum_{k=1}^{K} x_k \mathbb{E}\left[\mathbb{1}_{A_k}\right] = \sum_{k=1}^{K} x_k \mathbb{P}(A_k)$$

This aligns with our intuition

Two Famous Convergence Theorems

Monotone Convergence Theorem. If $\{f_n\}$ is a sequence of measurable functions with $f_n \uparrow f$ pointwise and $\int f_1 d\mu > -\infty$, then

$$\lim_{n\to\infty}\int f_n\,\mathrm{d}\mu=\int f\,\mathrm{d}\mu$$

Dominated Convergence Theorem. Let $\int |g| d\mu < \infty$ and let $\{f_n\}$ be a measurable sequence with $|f_n| \leq g$ for all n. If $f_n \to f$ pointwise, then

$$\lim_{n\to\infty}\int f_n\,\mathrm{d}\mu=\int f\,\mathrm{d}\mu$$

The Banach space L_p

Let (S, \mathcal{S}, μ) be any measure space

Theorem. \mathscr{mS} is a vector space and a linear subspace of \mathbb{R}^S

<u>Proof</u>: It suffices to show that $m\mathscr{S}$ is a linear subspace of \mathbb{R}^S Measurability is preserved under simple algebraic operations In particular,

$$f,g \in \mathcal{MS}$$
 and $\alpha,\beta \in \mathbb{R}$ \Longrightarrow $\alpha f + \beta g \in \mathcal{MS}$

That's all we need to show

Adding a Norm

For $f \in \mathcal{MS}$ and $p \geqslant 1$, let

$$||f||_p := \left[\int |f|^p \, \mathrm{d}\mu \right]^{1/p}$$

$$L_p(\mu) := \text{all } f \in m\mathscr{S} \text{ with } ||f||_p < \infty$$

Fact. If $f \in L_p(\mu)$ and $\alpha \in \mathbb{R}$, then $\|\alpha f\|_p = |\alpha| \|f\|_p$

Fact. (Minkowski) If $f,g\in L_p(\mu)$, then $f+g\in L_p(\mu)$ with $\|f+g\|_p\leqslant \|f\|_p+\|g\|_p$

In particular, $L_v(\mu)$ is a vector space

Given $p \geqslant 1$, is

$$||f||_p := \left[\int |f|^p \, \mathrm{d}\mu \right]^{1/p}$$

a norm on $L_p(\mu)$?

In fact only a semi-norm on $L_p(\mu)$

• all properties of a norm except $\|f\|_p=0$ does not imply f=0

Example.

$$\|\mathbb{1}_{\mathbb{Q}}\|_1 = \int \mathbb{1}_{\mathbb{Q}} \, d\lambda = \lambda(\mathbb{Q}) = 0$$

However, $||f||_p = 0$ implies $\mu\{x \in S : f(x) \neq 0\} = 0$

Similarly, $||f - g||_p = 0$ implies

$$\mu\{x \in S : f(x) \neq g(x)\} = 0$$

We say that $f = g \mu$ -almost everywhere

Let's agree to identify elements of $L_p(\mu)$ that are equal μ -a.e.

Then $\|\cdot\|_p$ is a norm on $L_p(\mu)$

Completeness of the L_p spaces

As above let

- (S, \mathcal{S}, μ) be any measure space
- *p* ≥ 1
- $L_p(\mu) := \text{all } f \in m\mathscr{S} \text{ with } ||f||_p < \infty$

Theorem $(L_p(\mu), \|\cdot\|_p)$ is a Banach space

