

Probability and Statistics (Monsoon 2022) Lecture-21

Statistical Inference
 Likelihood and log likelihood Function
 Examples of Maximum Likelihood Estimators

Asymptotic Properties of MLEs More Solved Examples Interval Estimation and Confidence Level

Outline

Statistical Inference

Likelihood and log likelihood Function Examples of Maximum Likelihood Estimators Asymptotic Properties of MLEs More Solved Examples Interval Estimation and Confidence Level

Likelihood and log likelihood Function...

Definition of Likelihood and log likehood Function

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Suppose that we have observed $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$.

1 If X_i 's are discrete, then the likelihood function is defined as

$$L(x_1, x_2, ..., x_n; \theta) = P_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n; \theta)$$

2 If X_i 's are jointly continuous, then the likelihood function is defined as

$$L(x_1, x_2, ..., x_n; \theta) = f_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n; \theta)$$

In some problems, it is easier to work with the log likelihood function given by

$$\ln L(x_1,x_2,\ldots,x_n;\theta)$$

Example of Maximum Likelihood Estimators...

Example (Example of maximum likelihood estimator)

Suppose that we have observed the random sample $X_1, X_2, X_3, ..., X_n$, where $X_i \sim N(\theta_1, \theta_2)$ so

$$f_{X_i}(x_i; \theta_1, \theta_2) = \frac{1}{\sqrt{2\pi\theta_2}} e^{-\frac{(x_i - \theta_1)^2}{2\theta_2}}$$

Find the maximum likelihood estimators for θ_1 and θ_2 .

Asymptotic Properties of MLEs...

Asymptotic Properties of MLEs

[By asymptotic properties we mean properties that are true when the sample size becomes large.] Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Let $\hat{\Theta}_{ML}$ denote the maximum likelihood estimator (MLE) of θ . Then, under some mild regularity conditions,

- 1 $\hat{\Theta}_{ML}$ is asymptotically consistent, i.e., $\lim_{n\to\infty} P(|\hat{\Theta}_{ML} \theta| > \epsilon) = 0$
- 2 $\hat{\Theta}_{ML}$ is asymptotically unbiased, i.e., $\lim_{n\to\infty} E[\hat{\Theta}_{ML}] = \theta$
- 3 As n becomes large, $\hat{\Theta}_{ML}$ is approximately a normal random variable. More precisely, the random variable

$$rac{\hat{\Theta}_{\mathit{ML}} - heta}{\sqrt{\mathsf{Var}(\hat{\Theta}_{\mathit{ML}})}}$$

converges in distribution to N(0,1).

Solved Example 1 ...

Example

Show the following:

1 Let $\hat{\Theta}_1$ be an unbiased estimator for θ , and W is a zero mean random variable. Show that

$$\hat{\Theta}_2 = \hat{\Theta}_1 + W$$

is also an unbiased estimator for θ

2 Let $\hat{\Theta}_1$ be an estimator for θ such that $E[\hat{\Theta}_1] = a\theta + b$, where $a \neq 0$. Show that

$$\hat{\Theta}_2 = rac{\hat{\Theta}_1 - b}{a}$$

is an unbiased estimator for θ

Solved Example...

Example

Let X_1, X_2, \dots, X_n be a random variable from a Uniform $(0, \theta)$ distribution, where θ is unknown. Consider the estimator

$$\hat{\Theta}_n = \max\{X_1, X_2, \cdots, X_n\}$$

- 1 Find the bias of $\hat{\Theta}_n$, $B(\hat{\Theta}_n)$
- 2 Find the MSE of $\hat{\Theta}_n$, MSE($\hat{\Theta}_n$)
- 3 Is $\hat{\Theta}_n$ a consistent estimator of θ ?

Solved Example...

Example

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a Geometric(θ) distribution, where θ is unknown. Find the maximum likelihood estimator (MLE) of θ based on this random sample.

Solved Example...

Example

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a Uniform $(0, \theta)$ distribution, where θ is unknown. Find the maximum likelihood estimator (MLE) of θ based on this random sample.

Interval Estimation and Confidence Level...

Interval Estimation and Confidence Level

- 1 Let X_1, X_2, \ldots, X_n be random sample from a distribution with a parameter θ to be estimated
- 2 Suppose we observed $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$, and obtained point estimate $\hat{\theta}$ of θ
- 3 Without additional information, we don't know whether $\hat{\theta}$ is close to θ
- 4 In an interval estimation, instead of just one value $\hat{\theta}$, we produce an interval $[\hat{\theta}_{\ell}, \hat{\theta}_{\hbar}]$ that is likely to include true value of θ
- 5 The confidence level is the probability that the interval that we construct includes the real value of θ
- 6 The smaller the interval, the higher the precision with which we can estimate θ , and higher the confidence level

Interval Estimation with Confidence Level...

Interval Estimation

- Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ that is to be estimated
- An interval estimator with confidence level 1α consists of two estimators $\hat{\Theta}_l(X_1, X_2, \dots, X_n)$ and $\hat{\Theta}_h(X_1, X_2, \dots, X_n)$ such that

$$P\left(\hat{\Theta}_{l} \leq \theta \text{ and } \hat{\Theta}_{h} \geq \theta\right) \geq 1 - \alpha,$$

for every possible value of $\boldsymbol{\theta}$

- Equivalently, we say that $[\hat{\Theta}_I, \hat{\Theta}_h]$ is a $(1-\alpha)100\%$ confidence interval for θ
- The randomness in these terms is due to $\hat{\Theta}_{l}$ and $\hat{\Theta}_{h}$, not θ
- Here $\hat{\Theta}_l$ and $\hat{\Theta}_h$ are random variables because they are functions of X_1, \ldots, X_n

Steps for Finding Interval Estimators...

- 1 Let X be a continuous random variable with CDF $F_X(x) = P(X \le x)$
- 2 We are interested in finding two values x_l and x_h such that

$$P\left(x_{l} \leq X \leq x_{h}\right) = 1 - \alpha$$

3 We can choose this as follows

$$P(X \le x_l) = \frac{\alpha}{2}$$
 and $P(X \ge x_h) = \frac{\alpha}{2}$

4 That is, we have from above

$$F_X(x_l) = \frac{\alpha}{2}$$
 and $F_X(x_h) = 1 - \frac{\alpha}{2}$

5 Rewriting these equations by using inverse, we have

$$x_l = F_X^{-1} \left(\frac{\alpha}{2}\right)$$
 and $x_h = F_X^{-1} \left(1 - \frac{\alpha}{2}\right)$

Plot of confidence Interval...

• $[x_l, x_h]$ is a $(1 - \alpha)$ interval for X, that is, $P(x_l \le X \le x_h) = 1 - \alpha$