Factorial Time complexity using Substitution Method

Now, there are two ways to do:

1st Way

Base Cases:

T(0) = 1, when n = 0 i. e. when n = 0, it returns 1 and it takes 1 unit of time.

T(1) = 1, when n = 1 i. e. when n = 1, it returns 1 and it takes 1 unit of time.

and now for n > 0,

 $F(n-1) \times n$ runs each at constant i.e. constant unit of time takes T(n-1) times and as it reaches T(1) it executes an extra constant time i.e. 1 unit of time.

Hence total complexity is:
$$T(n) = T(n-1) + T(1)$$
 or,
 $T(n) = T(n-1) + 1$.

As each time it multiples it takes a constant amount of time complexity.

2nd way:

According to some authors:

Here say base case is 0 only,

```
int factorial(int n)
{
    if (n == 0)
    {
        return 1;
    }
    else
    {
        return n * factorial(n - 1);
    }
}
```

Factorial of (0) = 1 and Factorial of $(1) = 1 \times 1 = 1$.

Then with that approach:

	٦
n = 0	
1	
n = 1	
$1 \times f(0)$	
n=2	
$2 \times f(1)$	4 units of Time $for f(4)$ $i. e. f(5-1)$
n=3	
$3 \times f(2)$	
n = 4	
$4 \times f(3)$	
n=5	
$5 \times f(4)$	
main()	

Hence F(n-1) takes T(n-1) times i. e. upto n>0 or, upto F(1) i. e. $F(4) \rightarrow F(3) \rightarrow F(2) \rightarrow F(1)$.

And,

$Which\ gives\ the\ following\ general\ recurrence\ equation:-$

$$T(n) =$$

$$T(n-1) + 1 \qquad , for (n = 0)$$

But we will move with the first way i.e.:

And we know T(1) = 1, hence rewriting the linear recurrence equation as:

$$T(n) = T(n-1) + 1$$

$$Therefore \ , T(n-1) = T(n-1-1) + 1 = T(n-2) + 1$$

Substituting this in T(n) we get:

$$T(n) = (T(n-2)+1)+1$$

Now,
$$T(n-2) = T(n-2-1) + 1 = T(n-3) + 1$$

Substituting this in T(n) we get:

$$T(n) = ((T(n-3)+1)+1)+1$$

Now if it runs upto `i` times we get:

Now,
$$T(n-i) = T(n-i-1) + 1$$

Substituting this in T(n) we get:

$$T(n) = T(n-i-1) + 1 + 1 + 1 + \cdots i \text{ times}$$

When i = n - 1 we get:

$$T(n) = T(n - (n - 1) - 1) + 1 + 1 + 1 + \cdots + (n - 1)times$$

$$= T(n-n+1-1)+1+1+1....(n-1)times$$

$$= T(0) + 1 + 1 + 1 \dots (n-1)times$$

And we know T(0) = 1 along with T(1) is 1 and as 1 is added to $1 + 1 + 1 + \cdots + (n-1)$ times it becomes:

$$= 1 + 1 + 1 + \cdots n times$$

i. e. $1 \times n = n$ and time complexity is:

= O(n).
