# Spatial II

Peter Ganong and Maggie Shi

October 30, 2024

#### Table of contents I

Introduction to data structures in geopandas (6.2)

Geometries in geopandas (6.2)

Common geometric operations (6.3)

# Introduction to data structures in geopandas (6.2)

# Geopandas roadmap

In practice, we won't be coding our geodata by hand... Instead we are going to use shapefiles!

import geopandas as gpd

#### Roadmap

- Vocabulary
- ► File formats
- Read in data
- Preview data

# Define vocabulary

#### Vocabulary

- ▶ A GeoDataFrame is basically like a pandas.DataFrame that contains dedicated columns for storing geometries.
  - ▶ We will start with examples with a single column and later teach you how to use more than one column
- ➤ That column is called a GeoSeries. This can be any of data types (point, line, polygon) from the prior section. All of the methods you saw in the last section can also be used on a GeoSeries

#### File format I: Shapefile

- consists of at least three files .shp has feature geometrics, .shx has a positional index, .dbf has attribute information
- Usually also have .prj which describes the Coordinate Reference System (CRS)
- When you read in map.shp it automatically reads the rest of them as well to give you proper GeoDataFrame composed of geometry, attributes and projection.

# Coordinate Reference Systems

- Coordinate Reference System (CRS) is a combination of:
  - ▶ "Datum": origin of latitude and longitude
  - "Project": representation of curved surface onto flat map
- ▶ Most common CRS: WGS84 (used for GPS)
- All coordinates are consistent within a CRS, but not always across CRS's
- ▶ Different CRS's suit different needs
  - optimized for local vs. global accuracy
  - different approaches to approx. shape of the earth
  - b distance is measured in different units: degrees, miles, meters
- ► Each system is associated with a unique *EPSG code*. Searchable on https://epsg.io
  - (Aside: EPSG stands for European Petroleum Survey Group)
  - ▶ These codes are used to convert one CRS into another

# Reading a Shapefile .shp

```
#in same dir: `.shx` and `.dbf`
filepath = "data/shp/austin_pop_2019.shp"
data = gpd.read_file(filepath)
```

# File format II: GeoPackage

- single file .gpkg
- Supports both raster and vector data
- ▶ Efficiently decodable by software, particularly in mobile devices

GeoPackage is more modern, but you will encounter shapefiles everywhere you look so good to be familiar with it.

# Reading a GeoPackage gpkg

```
filepath = "data/austin_pop_2019.gpkg"
data = gpd.read_file(filepath)
type(data)
```

geopandas.geodataframe.GeoDataFrame

# Previewing a GeoDataFrame

#### data.head()

|   | pop2019 | tract  | geometry                                       |
|---|---------|--------|------------------------------------------------|
| 0 | 6070.0  | 002422 | POLYGON ((615643.487 3338728.496, 615645.477 3 |
| 1 | 2203.0  | 001751 | POLYGON ((618576.586 3359381.053, 618614.330 3 |
| 2 | 7419.0  | 002411 | POLYGON ((619200.163 3341784.654, 619270.849 3 |
| 3 | 4229.0  | 000401 | POLYGON ((621623.757 3350508.165, 621656.294 3 |
| 4 | 4589.0  | 002313 | POLYGON ((621630.247 3345130.744, 621717.926 3 |

# Previewing a GeoSeries

data.plot()

<Axes: >



Discussion question: Why isn't it enough to just to head()?

# Geopandas summary

- GeoDataFrame and GeoSeries are the counterparts of pandas.DataFrame and pandas.Series
- .shp and .gpkg are two ways of storing geo data
- Always plot your map before you do anything else

# Geometries in geopandas (6.2)

# geometries: roadmap

- methods applied to GeoSeries
- my first choropleth

#### GeoSeries

```
type(data["geometry"])
```

geopandas.geoseries.GeoSeries

#### head()

```
data["geometry"].head()

0    POLYGON ((615643.487 3338728.496, 615645.477 3...
1    POLYGON ((618576.586 3359381.053, 618614.330 3...
2    POLYGON ((619200.163 3341784.654, 619270.849 3...
3    POLYGON ((621623.757 3350508.165, 621656.294 3...
4    POLYGON ((621630.247 3345130.744, 621717.926 3...
Name: geometry, dtype: geometry
```

# calculate area (in square meters)

```
data["geometry"].area
       4.029772e+06
0
       1.532030e+06
2
       3.960344e+06
3
       2.181762e+06
4
       2.431208e+06
125
       2.321182e+06
126
       4.388407e+06
127
       1.702764e+06
128
       3.540893e+06
129
       2.054702e+06
Length: 130, dtype: float64
```

#### add column to data frame

```
#data.area is just a shorthand for data.geometry.area
data["area_km2"] = data.area / 1000000
data[['tract', 'area_km2', 'geometry']].head()
```

|   | tract  | area_km2 | geometry                                       |
|---|--------|----------|------------------------------------------------|
| 0 | 002422 | 4.029772 | POLYGON ((615643.487 3338728.496, 615645.477 3 |
| 1 | 001751 | 1.532030 | POLYGON ((618576.586 3359381.053, 618614.330 3 |
| 2 | 002411 | 3.960344 | POLYGON ((619200.163 3341784.654, 619270.849 3 |
| 3 | 000401 | 2.181762 | POLYGON ((621623.757 3350508.165, 621656.294 3 |
| 4 | 002313 | 2.431208 | POLYGON ((621630.247 3345130.744, 621717.926 3 |

## my first choropleth

data.plot(column="area\_km2", legend=True)

<Axes: >



Discussion question - why is this a nearly useless set of colors?

#### geometries: summary

- can do all the same operations on a GeoSeries that you would do on any other polygon, like Area
- data.plot(column="var") draws a choropleth map with shading corresponding to the highlighted variable

# Common geometric operations (6.3)

## common geometric operations: roadmap

- load and explore data
- methods
  - centroid
  - bounding box
  - buffer
  - dissolve
  - spatial join
- do-pair-share

#### Austin, continued

```
(The textbook uses a slightly different file here, unclear why to us.)

filepath = "data/austin_pop_density_2019.gpkg"
data = gpd.read_file(filepath)
```

# explore the data I

#### data.head()

|   | pop2019 | tract  | area_km2 | pop_density_km2 | geometry   |
|---|---------|--------|----------|-----------------|------------|
| 0 | 6070.0  | 002422 | 4.029772 | 1506.288778     | MULTIPOLYG |
| 1 | 2203.0  | 001751 | 1.532030 | 1437.961394     | MULTIPOLYG |
| 2 | 7419.0  | 002411 | 3.960344 | 1873.322161     | MULTIPOLYG |
| 3 | 4229.0  | 000401 | 2.181762 | 1938.341859     | MULTIPOLYG |
| 4 | 4589.0  | 002313 | 2.431208 | 1887.538658     | MULTIPOLYG |
|   |         |        |          |                 |            |

#### explore the data II

```
type(data["geometry"].values[0])
```

shapely.geometry.multipolygon.MultiPolygon

# explore the data III

```
import matplotlib.pyplot as plt
data.plot(facecolor="none", linewidth=0.2)
plt.axis("off")
plt.show()
```



- ► Import matplotlib.pyplot to access additional plotting options (e.g., x and y labels, title)
- ▶ We turn the axis off because the WKT is not informative

## explore the data IV

```
data.plot(column="pop_density_km2")
plt.axis("off")
plt.show()
```



- facecolor (or fc or color) defines a uniform color across all geometries
- whereas columns generates colors based on the underlying values

#### methods: centroid I

What it is: arithmetic mean position of all the points in a polygon

Sample use case: measuring distance between center of each multipolygon

```
data["geometry"].centroid.head()
```

- O POINT (616990.190 3339736.002)
- 1 POINT (619378.303 3359650.002)
- 2 POINT (620418.753 3342194.171)
- 3 POINT (622613.506 3351414.386)
- 4 POINT (622605.359 3343869.554)

dtype: geometry

#### methods: centroid II

```
data.centroid.plot(markersize=1)
plt.axis("off")
plt.show()
```



#### centroid example outside polygon

#### Census tracts and centroids



These centroids relate to the census tracts that are highlighted, in both cases being outside of their own tracts and inside another tract

#### Source:

https://spatialanalysisonline.com/HTML/centroids\_and\_centers.htmg/47

# aside: change active geometry

```
data["centroid"] = data.centroid
data.set_geometry("centroid")
data[['tract', 'centroid', 'geometry']].head()
```

|   | tract  | centroid                       | geometry                          |
|---|--------|--------------------------------|-----------------------------------|
| 0 | 002422 | POINT (616990.190 3339736.002) | MULTIPOLYGON (((615643.488 333872 |
| 1 | 001751 | POINT (619378.303 3359650.002) | MULTIPOLYGON (((618576.586 335938 |
| 2 | 002411 | POINT (620418.753 3342194.171) | MULTIPOLYGON (((619200.163 334178 |
| 3 | 000401 | POINT (622613.506 3351414.386) | MULTIPOLYGON (((621623.757 335050 |
| 4 | 002313 | POINT (622605.359 3343869.554) | MULTIPOLYGON (((621630.247 334513 |

## methods: bounding box definition

What it is: the tightest possible rectangle around a shape, capturing all of its points within this rectangle.

Sample use case: filtering a larger spatial dataset to subset of interest

# methods: bounding box for each polygon I

```
data.envelope.head()

0    POLYGON ((615643.488 3337909.895, 618358.033 3...
1    POLYGON ((618529.497 3358797.000, 620192.632 3...
2    POLYGON ((619198.456 3340875.421, 621733.880 3...
3    POLYGON ((621599.087 3350329.320, 623714.365 3...
4    POLYGON ((621630.247 3343015.679, 624133.189 3...
dtype: geometry
```

# methods: bounding box for each polygon II

data.envelope.plot()

<Axes: >



# methods: bounding box for whole data I

#### data.total\_bounds

```
array([ 608125.39429998, 3337909.89499998, 629828.38850021, 3370513.68260002])
```

## methods: bounding box for whole data II

#### Flashback to section 6.1

```
from shapely import Point, Polygon
point1 = Point(data.total_bounds[0], data.total_bounds[1])
point2 = Point(data.total_bounds[2], data.total_bounds[1])
point3 = Point(data.total_bounds[2], data.total_bounds[3])
point4 = Point(data.total_bounds[0], data.total_bounds[3])
poly = Polygon([point1, point2, point3, point4])
#poly
```

Note: the order in which you put these points together matters, and you'll get all sorts of interesting shapes with different orders!

#### methods: buffer I

What it is: shape representing all points that are less than a certain distance from the original shape

#### Sample use cases:

- how many stores or parks near a neighborhood
- peometries that don't line up well (e.g. coasts)
- selecting nearby geometries

#### methods: buffer II

```
data.buffer(1000).plot(edgecolor="white") #1000 meters
plt.axis("off")
plt.show()
```



#### methods: dissolve I

What it is: combining geometries into coarser spatial units based on some attributes.

Sample use case: construct the geometries that you want to serve with public transit

```
# Create a new column and add a constant value
data["dense"] = 0

# Filter rows with above average pop density and update the
data.loc[data["pop_density_km2"] > data["pop_density_km2"]
data.dense.value_counts()
```

#### dense

0 86

1 44

Name: count, dtype: int64

#### methods: dissolve II

```
dissolved = data[["pop2019", "area_km2", "dense", "geometry"]].dissolve(
    by="dense", aggfunc="sum"
)
#aggregation step set index to "dense", reset to default
dissolved = dissolved.reset_index()
dissolved
```

|   | dense | geometry                                                                                         | pop2019              | area_kn |
|---|-------|--------------------------------------------------------------------------------------------------|----------------------|---------|
| 0 | T.    | MULTIPOLYGON (((614108.230 3339640.551, 614288<br>MULTIPOLYGON (((612263.531 3338931.800, 612265 | 368992.0<br>242943.0 |         |

- Aggregating alters the way the data is indexed and makes the grouping variable the index
- ▶ We need to reset it in order to plot, since some plotting libraries expect data to be indexed in a specific way

#### methods: dissolve III

```
dissolved.plot(column="dense")
plt.axis("off")
plt.show()
```



Discussion Question: What can we do to improve this map?

## methods: spatial join

Spatial join: find the closest neighbor.

```
data_for_join = data[["tract", "geometry"]]
print("N tracts " + str(len(data_for_join)))
join_to_self = gpd.sjoin_nearest(
    data_for_join, #left df
    data_for_join, #right df
    how='inner',
    distance_col="distance"
)
```

N tracts 130

(Contrived) example: Join every Austin tract to its closest neighbor or neighbors. How many tracts should we expect to get?

#### methods: spatial join II

```
print("N tracts w closest neighbor " +
    str(len(join_to_self)))
join_to_self[['tract_left', 'tract_right', 'distance']].hea
```

#### N tracts w closest neighbor 848

|   | tract_left | tract_right | distance |
|---|------------|-------------|----------|
| 0 | 002422     | 002423      | 0.0      |
| 0 | 002422     | 002422      | 0.0      |
| 0 | 002422     | 002424      | 0.0      |
| 0 | 002422     | 002402      | 0.0      |
|   |            |             |          |

#### common geometric operations: summary

- methods
  - centroid computes arithmetic mean of points in the polygon
  - bounding box expands polygon in a rectangle
  - buffer expands polygon in every direction
  - dissolve combines several polygons
  - spatial join finds nearest neighbor
- do-pair-share

#### do pair share

Goal: Create and plot a 500m buffer zone around the dense areas in Austin.

#### Steps

- From the dissolved GeoDataFrame, get the polygon for the dense areas
- 2. Create a new geometry object called geo, which is the dense areas with a 500m buffer
- 3. geo.plot()

After you are done, here are some cosmetic suggestions:

- Start with a grey plot of all of the Austin boundaries: austin
  = data.plot(color="grey")
- Make your buffer transparent
- Putting it all together geo.plot(ax = austin, alpha=0.5)
  - ► This plots the geo object with 50% transparency, on top of axes based on the austin object