Lectura y Extracción de Datos

De Facturas Eléctricas

Cesar Damian Celis Maria Angel Lobon Gonzalo Elisban Montañez Montalvo Samuel Porcayo Fraustro

Indice

Desafio

Necesidad del modelo

Solucion

Cambios Propuestos

Arquitectura

Diseño de la arquitectura

Modelos y Herramientas

LLMs y Frameworks utilizados

Pruebas

Outputs de los Modelos

Evaluación

Mecanismos de Evaluación de los Modelos

Desafio

Alta Complejidad

Difícil lectura manual y el análisis eficiente de los datos clave.

Falta de Estandarización

Diferentes compañías presentan la misma información de formas distintas

Gestion Ineficiente

Difícil guardar un histórico sólo de los datos esenciales por orden y que estos datos sean fáciles de buscar

Solucion

Extraer y gestionar información clave de facturas eléctricas

Extracción Datos Importantes

Jupiter is the biggest planet of them

Detección de Anomalias

Detecta posibles errores en los datos

Lector de Datos

Explicaciones sin tecnicismos de los valores y precios de la factura

Gestión Mensual

Datos almacenados - busqueda facil

Optimización de Asesoría

Análisis de los datos más accesible

Arquitectura

Herramientas

Ingesta de Datos PDF

PyMuPDF

0 0 • 0 0

RegEx

Semantic Chunking

División del texto en secciones semánticas

0 • 0 0 0

Chroma

BBDD Vectorial

Almacenamiento de embeddings creados all-MiniLM-L6-v2

0 0 • 0 0

LLM

Mixtral-8x7B-Inst ruct (Together API)

0 0 • 0 0

Pydantic

Validación y estructuración de los campos extraídos

0 0 • 0 0

Pydantic

```
# 3. Prompt para solicitar los datos estructurados al LLM
prompt_json = """
Extrae los siguientes datos de la factura eléctrica y devué

Devuelve el resultado en este formato JSON:

{
    "N factura:": "string",
    "fecha_emision": "YYYY-MM-DDTHH:MM:SS",
    "periodo_inicio": "YYYY-MM-DDTHH:MM:SS",
    "periodo_fin": "YYYY-MM-DDTHH:MM:SS",
    "consumo_total_kwh": float,
    "potencia_punta_kw": float,
    "potencia_valle_kw": float,
    "importe_total": float
}

Usa solo los datos que estén claramente presentes. Si no ap
Devuelve exclusivamente el JSON, sin explicaciones.
""""
```

1

Estructurar datos con clases (BaseModel)

Define una estructura de relevancia para el almacenamiento de datos

2

Validar tipos automáticamente

Al crear una instancia del modelo, Pydantic verifica que los datos coincidan con los tipos definidos.

3

Convertir datos al tipo correcto (ej. string → int)

Si el dato no es compatible, Pydantic lo transforma automáticamente al tipo esperado

Output de los dos Modelos

Obtuvimos el mismo resultado de datos con todos las facturas que se introdujeron en los modelos

```
Pregunta: ¿Cuál es el valor del campo 'fecha_emision'?
Valor extraído por el LLM (del JSON final): 2025-02-13T00:00:00
Pregunta: ¿Cuál es el valor del campo 'periodo_inicio'?
Valor extraído por el LLM (del JSON final): 2024-12-31T00:00:00
Pregunta: ¿Cuál es el valor del campo 'periodo_fin'?
Valor extraído por el LLM (del JSON final): 2025-01-31T00:00:00
Pregunta: ¿Cuál es el valor del campo 'consumo total kwh'?
Valor extraído por el LLM (del JSON final): 66.321
Pregunta: ¿Cuál es el valor del campo 'potencia_punta_kw'?
Valor extraído por el LLM (del JSON final): 6.928
```

Análisis de Resultados

Campo	Valor Real	Valor Predicho	¿Coincide?
numero_factura	P25CON005526043	P25CON005526043	⊮ Sí
fecha_emision	2025-02-13T00:00:00	2025-02-13T00:00:00	⊌ Sí
periodo_inicio	2024-12-31T00:00:00	2024-12-31T00:00:00	⊮ Sí
periodo_fin	2025-01-31T00:00:00	2025-01-31T00:00:00	⊮ Sí
consumo_total_kwh	66.321	66.321	⊮ Sí
potencia_punta_kw	6.928	6.928	⊌ Sí
potencia_valle_kw	6.928	6.928	
importe_total	50.65	50.65	√ Sí

Se evaluó campo por campo comparando valores reales y extraídos.

 Para los valores reales se hizo un labelling manual para cada campo

Métricas alcanzadas:

- F1 Score > 0.9
- Recall > 0.9

se compararon los resultados obtenidos por dos configuraciones de modelo (MiniLM vs MPNet).