Лекция 4. Резольвента

Резольвента матрицы	1
Необходимые сведения из Анализа	
Особые точки резольвенты и собственные значения матрицы	
Кратность собственного значения	
Собственные векторы	ε
Однородная система линейных уравнений	8
Множество решений однородной системы линейных уравнений	<u>c</u>
Задача на собственные значения	10
Домашнее задание	12

Резольвента матрицы

Пусть A – квадратная матрица размера $n \times n$.

Определение. Матрицу

$$(A - \lambda E)^{-1}$$

называют резольвентой матрицы A; ее обычно обозначают как $R(\lambda)$, если из контекста понятно, о резольвенте какой матрицы идет речь.

Задача 1. Найдите резольвенту матрицы

$$\begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix}$$
.

Решение. По определению искомая резольвента – матрица, обратная к матрице

$$\begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 4 \\ -2 & 1 - \lambda \end{pmatrix}$$

Определитель этой матрицы равен

$$(1-\lambda)^2+8,$$

и поэтому

$$\begin{pmatrix} 1-\lambda & 4 \\ -2 & 1-\lambda \end{pmatrix}^{-1} = \frac{1}{(1-\lambda)^2 + 8} \begin{pmatrix} 1-\lambda & -4 \\ 2 & 1-\lambda \end{pmatrix}.$$

Ответ:

$$\frac{1}{(1-\lambda)^2+8} {1-\lambda \choose 2} \frac{-4}{1-\lambda}.$$

Задача 2. Найдите резольвенту матрицы

$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix}.$$

Решение. По определению искомая резольвента – матрица, обратная к матрице

$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -\lambda - 2 & 3 & 5 \\ 1 & 3 - \lambda & 3 \\ 2 & 2 & 8 - \lambda \end{pmatrix}$$

Ответ:

$$\begin{pmatrix} -\lambda - 2 & 3 & 5 \\ 1 & 3 - \lambda & 3 \\ 2 & 2 & 8 - \lambda \end{pmatrix}^{-1} = \begin{pmatrix} \frac{\lambda - 9}{31 + 7\lambda - \lambda^2} & \frac{3\lambda - 14}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} & \frac{5\lambda - 6}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} \\ \frac{1}{31 + 7\lambda - \lambda^2} & \frac{\lambda^2 - 6\lambda - 26}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} & \frac{3\lambda + 11}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} \\ \frac{2}{31 + 7\lambda - \lambda^2} & \frac{2\lambda + 10}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} & \frac{\lambda^2 - \lambda - 9}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} \end{pmatrix}$$

Правило отыскания обратной матрицы сразу дает:

Теорема 1. Резольвенту матрицы A размера $n \times n$ всегда можно представить в виде

$$(A - \lambda E)^{-1} = \frac{B(\lambda)}{\det(A - \lambda E)'}$$

где элементы матрицы B — многочлены относительно переменной λ , степень которых не превосходит n-1.

Необходимые сведения из Анализа

Исследование резольвенты удобно вести методами Анализа 1 . Пусть f(x) — рациональная функции переменной x, то есть отношение двух многочленов

$$f(x) = \frac{p(x)}{q(x)}.$$

Особыми точками этой функции служат нули знаменателя, то есть корни уравнения

$$q(x) = 0$$
.

Если значение x=c не является нулем знаменателя, то при стремлении $x \to c$ значения функции f(x) стремятся к f(c), иными словами

$$\lim_{x \to c} f(x) = f(c).$$

Напр.,

$$\lim_{x \to 2} \frac{x}{x+2} = \frac{1}{2}.$$

Если значение x=c является нулем знаменателя и не является нулем числителя, то

¹ Васильев С.А. и др. Математический анализ. Часть 1. М.: РУДН, 2015.

$$\lim_{x\to c} f(x) = \infty.$$

Напр.,

$$\lim_{x \to -2} \frac{x}{x+2} = \infty.$$

При этом обычно принимают, что $f(c) = \infty$.

Наиболее трудным является случай, когда значение x=c является нулем и знаменателя, и числителя. В этом случае, и p, и q делятся на некоторые степени (x-c); для вычисления предела следует сначала сократить на общий множитель и свести задачу к одному из двух рассмотренных выше случаев.

Пример 1.

$$\lim_{x \to 2} \frac{x - 2}{x^2 - 4} = \lim_{x \to 2} \frac{x - 2}{(x - 2)(x + 2)} = \lim_{x \to 2} \frac{1}{x + 2} = \frac{1}{4}.$$

Пример 2.

$$\lim_{x \to 1} \frac{x^2 - 1}{(x - 1)^3} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)^3} = \lim_{x \to 1} \frac{x + 1}{(x - 1)^2} = \infty.$$

В любом случае предел рациональной функции имеет или конечное значение, или бесконечно велик.

Наконец, если f(x) и g(x) – две рациональные функции, то

$$\lim_{x \to c} f(x) = f(c) \quad \text{if } \lim_{x \to c} g(x) = g(c)$$

и поэтому

$$\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$

И

$$\lim_{x \to c} f(x) \cdot g(x) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x).$$

Особые точки резольвенты и собственные значения матрицы

Согласно теореме, доказанной на прошлом занятии, матрица обратима тогда и только тогда, когда ее определитель отличен от нуля. Поэтому резольвента определена только там, где

$$\det(A - \lambda E) \neq 0.$$

Определение. Корни уравнения

$$\det(A - \lambda E) = 0$$

называют собственными значениями матрицы A.

Замечание. Английское название для собственных значений — eigenvalue — составлено из двух слов: немецкого eigen (айген) — собственный и английского value (велью) — значение. Поэтому оно так странно читается.

Пример. Собственными значениями матрицы

$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix}$$

будут корни уравнения

$$\det\left(\begin{pmatrix} -2 & 3 & 5\\ 1 & 3 & 3\\ 2 & 2 & 8 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}\right) = 0$$

или, после раскрытия определителя,

$$-\lambda^3 + 9 \lambda^2 + 17 \lambda - 62 = 0$$

Поэтому матрица имеет три собственных значения:

$$\lambda=2$$
 или $\lambda=rac{7-\sqrt{173}}{2}$ или $\lambda=rac{\sqrt{173}+7}{2}$

Собственные значения матрицы – особые точки ее резольвенты.

Теорема 2. Если $\lambda = c$ – собственное значение матрицы A, то

$$\lim_{\lambda \to c} \det R(\lambda) = \infty.$$

Док-во. По определению

$$(A - \lambda E)R = E$$

По теореме об определителе произведения матриц имеем

$$\det(A - \lambda E) \det R = 1$$
,

следовательно

$$\lim_{\lambda \to c} \det R = \infty.$$

Из теоремы 2 не следует, что все элементы резольвенты стремятся к бесконечности, но некоторые действительно бесконечно велики в точке $\lambda=c$.

Пример. Резольвентой матрицы

$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix}$$

служит

$$R = \begin{pmatrix} \frac{\lambda - 9}{31 + 7\lambda - \lambda^2} & \frac{3\lambda - 14}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} & \frac{5\lambda - 6}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} \\ \frac{1}{31 + 7\lambda - \lambda^2} & \frac{\lambda^2 - 6\lambda - 26}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} & \frac{3\lambda + 11}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} \\ \frac{2}{31 + 7\lambda - \lambda^2} & \frac{2\lambda + 10}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} & \frac{\lambda^2 - \lambda - 9}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} \end{pmatrix}$$

Как видно, напр., элемент

$$r_{11} = \frac{\lambda - 9}{31 + 7\lambda - \lambda^2}$$

не имеет особенности при $\lambda=2$, поскольку

$$r_{11}(2) = \frac{2-9}{31+7\cdot 2-2^2} = -\frac{7}{41}.$$

Это не входит в противоречие с теоремой 1, согласно которой элемент r_{ij} резольвенты можно представить как отношение многочленов:

$$r_{ij} = \frac{b_{ij}(\lambda)}{\det(A - \lambda E)}$$

Просто в данном случае не только знаменатель, но и числитель b_{11} делятся на $\lambda-2$.

Кратность собственного значения

Теорема 3. Если $\lambda = c$ — собственное значение матрицы A, то найдется такое натуральное число k, что

$$\lim_{\lambda \to c} (\lambda - c)^k R(\lambda) = P \neq 0 \text{ или } \infty.$$

Число k называют кратностью собственного значения $\lambda = c$.

Док-во. В силу теоремы 1 элемент резольвенты можно представить как отношение многочленов:

$$r_{ij} = \frac{b_{ij}(\lambda)}{\det(A - \lambda E)}.$$

По сокращению на общие множители, по крайней мере некоторые из r_{ij} сохранят в знаменателе множитель $(\lambda-c)$ в силу теоремы 2. Примем за k наибольшую из степеней, в которых этот множитель появляется в знаменателях, тогда

$$r_{ij} = \frac{1}{(\lambda - c)^k} \frac{p_{ij}(\lambda)}{q_{ij}(\lambda)}$$

где $q_{ij}(c) \neq 0$ для всех i,j, а $p_{ij}(c) \neq 0$ хотя бы для некоторых индексов. В пределе имеем

$$\lim_{\lambda \to c} (\lambda - c)^k r_{ij}(\lambda) = \frac{p_{ij}(c)}{q_{ij}(c)}.$$

Составляя из чисел $\frac{p_{ij}(c)}{q_{ij}(c)}$ матрицу P, получим утверждение теоремы.

Замечание. Обычно все корни уравнения

$$det(A - \lambda E) = 0$$

и поэтому кратности собственных значений равны 1. В общем же случае понятие кратности можно ввести несколькими неэквивалентными способами, мы в дальнейшем всегда будем держаться данного выше определения. В курсах линейной алгебры обычно различают алгебраическую и геометрическую кратности собственного значения, мы же останавливаться на этом не будем.

Собственные векторы

При умножении столбца (вектора) на матрицу получается другой столбец. Среди всех столбцов выделяют те, умножение которых на матрицу эквивалентно умножению на некоторое число.

Определение. Столбец f, среди элементов которого имеются отличные от нуля, называют собственным вектором матрицы A, если он удовлетворяет уравнению

$$Af = \lambda f$$

при некотором значении $\lambda = c$.

Перенесем все члены выписанного выше уравнения в одну сторону

$$(A - \lambda E)f = 0$$

Если λ отлично от собственных значений матрицы A, и умножим это уравнение слева на резольвенту, получим

$$R(A - \lambda E)f = 0$$

или

$$f = 0$$
.

Стало быть, в обсуждаемом определении в качестве значений параметра λ могут выступать только собственные значения матрицы.

Теорема 4. Если $\lambda = c$ — собственное значение матрицы A, то имеется хотя бы один собственный вектор f, для которого верно

$$Af = cf$$
;

такой собственный вектор называют собственным вектором, отвечающим собственному значению $\lambda = c$.

Док-во. В силу теоремы 3 найдется такое натуральное число k, что

$$\lim_{\lambda \to c} (\lambda - c)^k R(\lambda) = P \neq 0.$$

Возьмем такой столбец g, что $Pg \neq 0$. Тогда из

$$(A - \lambda E)R = E$$

следует

$$(A - \lambda E)(\lambda - c)^k Rg = (\lambda - c)^k g;$$

в пределе $\lambda \to c$ имеем

$$(A - cE)Pg = 0$$

Приняв f = Pg, видим, что

$$Af = cf$$
,

то есть f – искомый собственный вектор и теорема доказана.

Задача. Найдите один из собственных векторов матрицы

$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix},$$

отвечающий собственному значению $\lambda=2$. – Решение. Значение $\lambda=2$ действительно является собственным, поскольку

$$\det\left(\begin{pmatrix} -2 & 3 & 5\\ 1 & 3 & 3\\ 2 & 2 & 8 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}\right) = 0.$$

По теореме 4 ему должен отвечать хотя бы один собственный вектор

$$f = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Неизвестные х,у, г можно найти из самого определения собственного вектора:

$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \\ y \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$\begin{bmatrix} \begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} x \\ y \\ z \end{pmatrix} = 0$$

$$\begin{pmatrix} 5z + 3y - 4x \\ x + y + 3z \\ 2x + 2y + 6z \end{pmatrix} = 0$$

или

$$\begin{cases} 5z + 3y - 4x = 0 \\ x + y + 3z = 0 \\ 2x + 2y + 6z = 0 \end{cases}$$

В этой системе два уравнения совпадают, поэтому одно из них можно выкинуть и написать

$$\begin{cases} x + y + 3z = 0 \\ 5z + 3y - 4x = 0 \end{cases}$$

Конечно, определить z из этой системы нельзя, напортив, придавая этой переменной различные значения, будем получать различные собственные векторы. В задаче просят найти один любой, потому возьмем z=1 и тогда

$$\begin{cases} x + y + 3 = 0 \\ 5 + 3y - 4x = 0 \end{cases}$$

$$solve\{x + y + 3 = 0, 5 + 3y - 4x = 0\}$$

$$\left(x = -\frac{4}{7}, y = -\frac{17}{7}\right)$$

$$f = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\frac{4}{7} \\ -\frac{17}{7} \\ 1 \end{pmatrix}.$$

Проверка:

$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix} \begin{pmatrix} -\frac{4}{7} \\ -\frac{17}{7} \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{8}{7} \\ -\frac{34}{7} \\ 2 \end{pmatrix}$$
$$2 \begin{pmatrix} -\frac{4}{7} \\ -\frac{17}{7} \\ -\frac{17}{7} \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{8}{7} \\ -\frac{34}{7} \\ 2 \end{pmatrix}$$

Ответ: одним из собственных векторов будет

$$\begin{pmatrix} -\frac{8}{7} \\ -\frac{34}{7} \\ 2 \end{pmatrix}.$$

Замечание. Задача об отыскании собственных векторов имеет бесконечно много решений.

Однородная система линейных уравнений

Система линейных уравнений, столбец правых частей в которой равен нулю, называется однородной. Обратимся к однородной системе в которой число неизвестных совпадает с числом уравнений:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0 \end{cases}$$

или в матричной форме

$$Ax = 0$$
.

Эта система имеет очевидное решение

$$x_1 = x_2 = \dots = x_n = 0,$$

которое называют тривиальным.

Теорема 5. Система линейных однородных уравнений имела нетривиальное решение в том и только в том случае, когда определитель матрицы A равен нулю.

Док-во. 1. Пусть определитель матрицы A не равен нулю. Тогда матрица A обратима и уравнение можно записать как

$$A^{-1}Ax = 0$$

или x = 0. Нетривиальных решений нет.

2. Пусть определитель матрицы А равен нулю. В этом случае уравнение

$$\det(A - \lambda E) = 0$$

имеет корень $\lambda=0$, а матрица A — нулевое собственное значение. В силу теоремы 4 матрица A имеет собственный вектор $f\neq 0$, отвечающий собственному значению $\lambda=0$. Этот вектор удовлетворяет уравнению

$$Af = 0f$$

то есть является нетривиальным решением рассматриваемой системы. Теорема доказана.

Множество решений однородной системы линейных уравнений

Если $\det A = 0$, то в силу теоремы 5 уравнение

$$Ax = 0$$

имеет нетривиальное решение x=f. Столбцы x=2f, x=3f и вообще x=cf тоже являются его решениями. Поэтому множество решений однородной системы бесконечно велико. Это означает, что при решении этой системы методом исключения неизвестных, не получается зафиксировать какую-то неизвестную.

Пример. Система

$$\begin{cases} x + y = 0, \\ x + y = 0 \end{cases}$$

фиксирует лишь связь между неизвестными x и y, бесконечное множество ее решений можно описать как

$$\{x = y, y \in \mathbb{R}\}$$

Определение. Подмножество М линейного пространства L называется линейным подпространством этого пространства, если сложение элементов М и умножение их на число не выводят за множество М, то есть верно

- из $f \in M$ и $g \in M$ следует $f + g \in M$;
- из $f \in M$ и $c \in \mathbb{R}$ следует $cf \in M$.

Теорема 6. Множество всех решений однородной системы линейных уравнений является линейным подпространством пространства столбцов; его называют пространством решений системы.

Док-во. Если столбцы f и g – решения уравнения Ax=0, то

$$A(f+g) = Af + Ag = 0$$

И

$$A(cf) = cAf = 0$$

поэтому f+g и cf - тоже решения этого уравнения.

Задача. Опишите пространство решений системы

$$\begin{cases} x + 2y + 3z = 0, \\ 4x + 5y + 6z = 0, \\ 7x + 8y + 9z = 0. \end{cases}$$

Решение. Определитель матрицы системы

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

равен нулю, следовательно, множество решений бесконечно. Исключаем x:

$$\begin{cases} x = -2y - 3z \\ 4(-2y - 3z) + 5y + 6z = 0 \\ 7(-2y - 3z) + 8y + 9z = 0 \end{cases}$$

или

$$\begin{cases} x = -2 \ y - 3 \ z \\ -3 \ y - 6 \ z = 0 \\ -6 \ y - 12 \ z = 0 \end{cases}$$

Хорошо видно, что два последних уравнения совпадают и поэтому систему можно записать как

$$\begin{cases} x = -2 \ y - 3 \ z \\ y = -2z \end{cases}$$

или

$$\begin{cases} x = z \\ y = -2z \end{cases}$$

Ответ: пространство решений – множество

$$\{x=z, y=-2z, z\in \mathbb{R}\}.$$

Задача на собственные значения

Задача на собственные значения. Найти такие значения параметра λ при которых уравнение

$$Ax = \lambda x$$

имеет нетривиальные решения; для каждого такого параметра указать пространства решений уравнения.

Теорема 5 означает, что искомые значения параметра суть собственные значения матрицы, а соответствующие им пространства решений образованы собственными векторами. Это позволяет предложить следующую схему решения задачи на собственные значения.

Шаг 1. Найти значения параметра из уравнения

$$\det(A - \lambda E) = 0$$

скажем, $\lambda_1, \lambda_2, ...$

Шаг 2. Для каждого k описать пространство Z_k решений уравнения

$$Ax = \lambda_k x$$
.

Пример. Решим задачу на собственные значения

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}.$$

Шаг 1.

$$\det\left(\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) = 0$$
$$\lambda^2 - 2\lambda - 3 = 0$$

$$\lambda_1 = -1$$
 и $\lambda_2 = 3$

Шаг 2. При $\lambda_1=-1$ имеем

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = - \begin{pmatrix} x \\ y \end{pmatrix}$$

или

$$\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0.$$

Если записать это уравнение в виде системы линейных уравнений, получится два раза одно и то же уравнение

$$x + y = 0$$
.

Поэтому первому собственному значению отвечает пространство решений

$$Z_1 = \{ x = -y, \qquad y \in \mathbb{R} \}.$$

При $\lambda_2=3$ имеем

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 3 \begin{pmatrix} x \\ y \end{pmatrix}$$

или

$$\begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0.$$

Поэтому второму собственному значению отвечает пространство решений

$$Z_2 = \{x = y, \quad y \in \mathbb{R}\}.$$

Ответ: уравнение

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

имеет нетривиальные решения только при $\lambda_1 = -1$ и $\lambda_2 = 3$. При $\lambda = -1$ пространством решений будет множество

$${x = -y, y \in \mathbb{R}},$$

а при $\lambda=3$ пространством решений будет множество

$$\{x = y, y \in \mathbb{R}\}.$$

Домашнее задание

- 1. Найдите резольвенты след. матриц:
 - a.) $\begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix}$,
 - b.) $\begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix}^T$,
 - c.) $\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix}$

Укажите особые точки найденных резольвент.

2. При каких значениях параметра a система

$$\begin{cases} x + 2y + az = 0 \\ 4x + 5y + 2az = 0 \\ 7x + 8y + 9z = 0 \end{cases}$$

имеет нетривиальные решения?

3. Решите задачу на собственные значения для матрицы

$$\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$
.

4. Решите задачу на собственные значения для матрицы

$$\begin{pmatrix} 1 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 9 \end{pmatrix}.$$

5. Решите задачу на собственные значения для матрицы

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}.$$

12