Reduced Order Modelling

Parikshit Bajpai

and Objective

Reduced Basis Method

Therma Block

Navier Stokes

Reduced Order Modelling Exploring Reduced Basis Method Through Toy Problems

Parikshit Bajpai

MCSC 6020G - Numerical Analysis December 7, 2019 1 Motivation and Objectives

2 Reduced Basis Method

3 Heat Conduction

4 Fluid Flow

Motivation and Objective

Reduced Order Modelling

Parikshi Bajpai

Motivation and Objectives

Reduce Basis Method

Therm Block

Stoke

The full order simulation is extremely costly!

Can we reduce the computational time and cost associated with these simulations without compromising with the accuracy?

Objective

Demonstrate the principles and use of Reduced Basis Method for a heat conduction toy problem.

Exact Solution

Find $u(\mu) \in \mathbb{V}$ such that

$$a(u(\mu), v; \mu) = f(v; \mu) \quad \forall v \in \mathbb{V}$$

Solution Manifold

$$\mathcal{M} = \{ u(\mu) | \mu \in \mathbb{P} \} \subset \mathbb{V}$$

where each $u(\mu) \in \mathbb{V}$ corresponds to the solution of exact problem.

Truth Solution

Find $u_{\delta}(\mu) \in \mathbb{V}_{\delta}$ such that

$$a(u_{\delta}(\mu), v_{\delta}; \mu) = f(v_{\delta}; \mu) \quad \forall v_{\delta} \in \mathbb{V}_{\delta}$$

Truth Manifold

$$\mathcal{M}_{\delta} = \{u_{\delta}(\mu) | \mu \in \mathbb{P}\} \subset \mathbb{V}_{\delta}$$

where each $u_{\delta}(\mu) \in \mathbb{V}_{\delta}$ corresponds to the solution of exact problem.

Represent the truth solution based on N dimensional subspace \mathbb{V}_{rb} of \mathbb{V}_{δ} , where $N \ll N_{\delta}$ and the reduced basis space is given by

$$\mathbb{V}_{rb} = \operatorname{span}\{\xi_1, \dots, \xi_N\} \subset \mathbb{V}_{\delta}$$

where, $\{\xi_n\}_{n=1}^N \subset \mathbb{V}_\delta$ denote the reduced basis functions.

Reduced Basis Solution

For any given $\mu \in \mathbb{P}$, find $u_{rb}(\mu) \in \mathbb{V}_{rb}$ such that

$$a(u_{rb}(\mu), v_{rb}; \mu) = f(v_{rb}; \mu) \quad \forall v_{rb} \in \mathbb{V}_{rb}$$

and evaluate

$$s_{rb}(\mu) = f(u_{rb}(\mu); \mu)$$

Since the basis functions of \mathbb{V}_{rb} are given by ξ_1,\ldots,ξ_N , we can represent $u_{rb}(\mu)=\sum_{n=1}^N(u_{rb}^\mu)_n\xi_n$ where $\{(u_{rb}^\mu)_n\}_{n=1}^N$ denote the coefficients of the reduced basis approximation.

Parikshi Bajpai

Motivati

Reduced Basis Method

Therm

Let $\{\xi_n\}_{n=1}^N$ denote the reduced basis and define matrix $\mathbf{B} \in \mathbb{R}^{N_\delta \times N}$ such that

$$\xi_n = \sum_{i=1}^{N_\delta} \mathbf{B}_{in} \psi_i$$

i.e., the n-th column of **B** denotes the coefficients when the n-th basis function ξ_n is expressed in terms of the basis functions $\{\psi_i\}_{i=1}^{N_\delta}$. Then, the reduced basis solution matrix $\mathbf{A}_{rb}^\mu \in \mathbb{R}^{N \times N}$ and the right hand side $f_{rb}^\mu \in \mathbb{R}^N$ defined by

$$(\mathbf{A}^\mu_{rb})_{mn}=a(\xi_n,\xi_m;\mu)$$
 and $(f^\mu_{rb})_m=f(\xi_m;\mu)$ $1\leq n,m\leq N$

can be computed by

$$\mathbf{A}^{\mu}_{rb} = \mathbf{B}^T \mathbf{A}^{\mu}_{\delta} \mathbf{B}$$
 and $f^{\mu}_{rb} = \mathbf{B}^T f^{\mu}_{\delta}$

The reduced basis approximation $u_{rb}^{\mu} = \sum_{n=1}^{N} (u_{rb}^{\mu})_n \xi_n$ is obtained by solving the linear system

$$\mathbf{A}^{\mu}_{rb}u^{\mu}_{rb}=f^{\mu}_{rb}$$

and the output of interest evaluated as $s_{rb}(\mu) = (u_{rb}^{\mu})^T f_{rb}^{\mu}$

Navie Stoke

$$\|u(\mu) - u_{rb}(\mu)\|_{\mathbb{V}} \le \|u(\mu) - u_{\delta}(\mu)\|_{\mathbb{V}} + \|u_{\delta}(\mu) - u_{rb}(\mu)\|_{\mathbb{V}}$$

Applying Cea's lemma for a given approximation space \mathbb{V}_{rb} and a given parameter value $\mu \in \mathbb{P}$, the best approximation error can be connected with the reduced approximation:

$$\|u(\mu)-u_{rb}(\mu)\|_{\mathbb{V}}\leq \left(1+rac{\gamma(\mu)}{lpha(\mu)}
ight)\inf_{
u_{tb}\in\mathbb{V}_{rb}}\|u(\mu)-
u_{rb}\|_{\mathbb{V}}$$

Reduced Basis Model

Reduced Order Modelling

Bajpai

and Objective

Reduced Basis Method

Thermal Block

Navier Stokes Algorithm: The offline procedure

Input: An abstract truth model of the form (2.8) satisfying the affine assumption (3.11)–(3.13).

An aposteriori error estimator $\eta(\mu)$ such that $\|u_{\delta}(\mu) - u_{\text{rb}}(\mu)\|_{\mu} \leq \eta(\mu)$.

An error tolerance tol.

A discrete training set \mathbb{P}_h .

Output: A reduced basis model based on the reduced basis space \mathbb{V}_{rb} that guarantees that $\max_{\mu \in \mathbb{P}_h} \|u_\delta(\mu) - u_{rb}(\mu)\|_{\mu} \leq \text{tol}.$

Initialization: Take $\mu_1 \in \mathbb{P}$ arbitrary and set n = 1. **Loop:**

(i) Offline-offline:

- a. Compute $u_{\delta}(\mu_n)$ as solution to (3.1) for μ_n and set $\mathbb{V}_{rb} = \text{span}\{u_{\delta}(\mu_1), \dots, u_{\delta}(\mu_n)\}$.
- b. Based on V_{rb}, pre-compute all quantities from the affine-decomposition that are parameter-independent, e.g., the n-dimensional matrices A^q_{rb} or the n-dimensional vectors f^q_{rb}.

(ii) Offline-online:

- a . For each $\mu \in \mathbb{P}_h$, compute the reduced basis approximation $u_{\mathtt{rb}}(\mu) \in \mathbb{V}_{\mathtt{rb}}$ defined by (3.3) for μ and the error estimator $\eta(\mu)$.
- b. Choose $\mu_{n+1} = \arg \max_{\mu \in \mathbb{P}_h} \eta(\mu)$.
- c. If $\eta(\mu_{n+1}) > \text{tol}$, then set n := n+1 and **go to** (i), otherwise **terminate**.

Algorithm: The greedy algorithm

Input: tol, μ_1 and n=1.

A reduced basis space \mathbb{V}_{rb} . Output:

- 1. Compute $u_{\delta}(\mu_n)$ solution to (3.1) for μ_n and set $\mathbb{V}_{rb} = \text{span}\{u_{\delta}(\mu_1), \dots, u_{\delta}(\mu_n)\}$.
- 2. For each $\mu \in \mathbb{P}_h$
 - a. Compute the reduced basis approximation $u_{rb}(\mu) \in \mathbb{V}_{rb}$ defined by (3.3) for μ .
 - b. Evaluate the error estimator $\eta(\mu)$.
- 3. Choose $\mu_{n+1} = \arg \max \eta(\mu)$.
- 4. If $\eta(\mu_{n+1}) > \text{tol}$, then set n := n+1 and **go to** 1., otherwise **terminate**.

Algorithm: The online procedure

Input: A reduced basis model based on the reduced basis space V_{rb} and a parameter

value $\mu \in \mathbb{P}$.

Output: Fast evaluation of the output functional $(s_{rb}(\mu))$ and the aposteriori estimate $\eta(\mu)$

that is independent of N_{δ} .

1. Assemble the reduced basis solution matrix and right hand side:

$$\mathbf{A}_{\mathtt{rb}}^{\mu} = \sum_{q=1}^{Q\mathtt{a}} \theta_{\mathtt{a}}^{q}(\mu) \, \mathbf{A}_{\mathtt{rb}}^{q}, \qquad \mathbf{f}_{\mathtt{rb}}^{\mu} = \sum_{q=1}^{Q\mathtt{f}} \theta_{\mathtt{f}}^{q}(\mu) \, \mathbf{f}_{\mathtt{rb}}^{q}, \qquad \text{and} \qquad \mathbf{I}_{\mathtt{rb}}^{\mu} = \sum_{q=1}^{Q\mathtt{1}} \theta_{\mathtt{1}}^{q}(\mu) \, \mathbf{I}_{\mathtt{rb}}^{q}.$$

2. Solve the linear system

$$\mathbf{A}^{\mu}_{\mathtt{rb}}\mathbf{u}^{\mu}_{\mathtt{rb}}=\mathbf{f}^{\mu}_{\mathtt{rb}},$$

in order to obtain the degrees of freedom $(u_{rb}^{\mu})_n$ of the reduced basis solution $u_{rb}(\mu)$.

- 3. Computate the output functional $s_{rb}(\mu) = (u_{rb}^{\mu})^T l_{rb}^{\mu}$.
- 4. Computate the error estimate $\eta(\mu)$, see the upcoming Chap. 4 for details.

Orders of Complexity

Reduced Order Modelling

Бајраг

Motivati and Objective

Reduced Basis Method

Therm Block

Stokes

Offline

$$\mathcal{O}(NN_{\delta}^{p}) \quad p \leq 3$$

- Online
 - Assembling Operators

$$\mathcal{O}(Q_a N^2)$$

 $\mathcal{O}(Q_f N)$

$$\mathcal{O}(Q_IN)$$

Recover RB solution

$$\mathcal{O}(N^3)$$

Navier Stokes Consider steady heat conduction in a two-dimensional domain:

We define two subdomains Ω_1 and Ω_2 , such that

- **1** Ω_1 is a disk centered at the origin of radius $r_0 = 0.5$, and
- $\Omega_2 = \Omega / \ \overline{\Omega_1}.$

Reduced Basis Method

Thermal Block

Navie Stoke

The conductivity κ is assumed to be constant on Ω_1 and Ω_2 , i.e.

$$\kappa|_{\Omega_1} = \kappa_0 \quad \text{and} \quad \kappa|_{\Omega_2} = 1.$$

For this problem, we consider P=2 parameters:

- **1** the first one is related to the conductivity in Ω_1 , i.e. $\mu_0 \equiv k_0$;
- f 2 the second parameter μ_1 takes into account the constant heat flux over Γ_{base} .

The parameter vector μ is thus given by $\mu = (\mu_0, \mu_1)$ on the parameter domain $\mathbb{P} = [0.1, 10] \times [-1, 1]$.

Motivation and Objective

Reduced Basis Method

Thermal Block

Navier Stokes

Model the heat transfer process due to the heat flux over the bottom boundary Γ_{base} and the following conditions on the remaining boundaries:

- the left and right boundaries Γ_{side} are insulated,
- the top boundary Γ_{top} is kept at a reference temperature (say, zero), with the aim of measuring the average temperature on Γ_{base} .

For a given parameter $\mu \in \mathbb{P}$, find $u(\mu)$ such that

$$\begin{cases} -\text{div}(\kappa(\mu_0)\nabla u(\boldsymbol{\mu})) = 0 & \text{in } \Omega, \\ u(\boldsymbol{\mu}) = 0 & \text{on } \Gamma_{top}, \\ \kappa(\mu_0)\nabla u(\boldsymbol{\mu}) \cdot \mathbf{n} = 0 & \text{on } \Gamma_{side}, \\ \kappa(\mu_0)\nabla u(\boldsymbol{\mu}) \cdot \mathbf{n} = \mu_1 & \text{on } \Gamma_{base}. \end{cases}$$

- **n** denotes the outer normal to the boundaries Γ_{side} and Γ_{base} ,
- the conductivity $\kappa(\mu_0)$ is defined as follows:

$$\kappa(\mu_0) = \begin{cases} \mu_0 & \text{in } \Omega_1, \\ 1 & \text{in } \Omega_2, \end{cases}$$

For a given parameter $\mu \in \mathbb{P}$, find $u(\mu) \in \mathbb{V}$ such that

$$a(u(\mu), v; \mu) = f(v; \mu) \quad \forall v \in \mathbb{V}$$

 $\ \ \, \textbf{I} \ \, \textbf{functional space} \, \, \mathbb{V} \colon \\$

$$\mathbb{V} = \{ v \in H^1(\Omega) : v |_{\Gamma_{top}} = 0 \}$$

2 parametrised bilinear form $a(\cdot,\cdot;\boldsymbol{\mu}): \mathbb{V} \times \mathbb{V} \to \mathbb{R}$:

$$a(u, v; \boldsymbol{\mu}) = \int_{\Omega} \kappa(\mu_0) \nabla u \cdot \nabla v \ dx,$$

3 parametrised linear form $f(\cdot; \mu) : \mathbb{V} \to \mathbb{R}$:

$$f(\mathbf{v}; \boldsymbol{\mu}) = \mu_1 \int_{\Gamma_{\mathbf{v}}} \mathbf{v} \ d\mathbf{s}.$$

For a given parameter $\mu \in \mathbb{P}$, find $u(\mu) \in \mathbb{V}$ such that

$$a(u(\mu), v; \mu) = f(v; \mu) \quad \forall v \in \mathbb{V}$$

The output of interest $s(\mu)$ given by

$$s(oldsymbol{\mu}) = \mu_1 \int_{\Gamma_{base}} u(oldsymbol{\mu})$$

is computed for each μ .

$$\mathbf{a}(u, v; \mu) = \sum_{q=1}^{Q_g} \Theta_q^s(\mu) \mathbf{a}_q(u, v)$$

$$f(v; \mu) = \sum_{q=1}^{Q_f} \Theta_q^f(\mu) f_q(v)$$

For this problem the affine decomposition is straightforward.

$$a(u, v; \mu) = \underbrace{\mu_0}_{\Theta_0^a(\mu)} \underbrace{\int_{\Omega_1} \nabla u \cdot \nabla v \ dx}_{a_0(u, v)} + \underbrace{1}_{\Theta_1^a(\mu)} \underbrace{\int_{\Omega_2} \nabla u \cdot \nabla v \ dx}_{a_1(u, v)},$$

$$f(v; \mu) = \underbrace{\mu_1}_{\Theta_0^f(\mu)} \underbrace{\int_{\Gamma_{base}} v \ ds}_{f_0(v)}.$$

Parikshi Bajpai

Motivati and

Reduced Basis

Thermal Block

$$egin{aligned} \max_{\mu \in \mathbb{P}_h} & \|u_\delta(\mu) - u_{rb}(\mu)\| \ & rac{1}{|\mathbb{P}_h|} \sum_{\mu \in \mathbb{P}_h} & \|u_\delta(\mu) - u_{rb}(\mu)\| \end{aligned}$$

Result - Speedup

Reduced Order Modelling

Parikshi Bajpai

Motivati and

Reduced Basis Method

Thermal Block

Navier-Stokes equations over the two-dimensional backward-facing step domain Ω shown below:

A Poiseuille flow profile is imposed on the inlet boundary, and a no-flow (zero velocity) condition is imposed on the walls. A homogeneous Neumann condition of the Cauchy stress tensor is applied at the outflow boundary. The inflow velocity boundary condition is characterized by

$$\mathbf{u}(\mathbf{x};\mu) = \mu \left\{ \frac{1}{2.25} (x_1 - 2)(5 - x_1), 0 \right\} \quad \forall \mathbf{x} = (x_0, x_1) \in \Omega$$

This problem is characterized by one parameter μ , which characterizes the inlet velocity. The range of μ is the following

$$\mu \in [1.0, 80.0].$$

Thus, the parameter domain is

$$\mathbb{P} = [1.0, 80.0].$$

Parikshi Bajpai

Motivati and

Reduced Basis

Therma Block

$$egin{aligned} \max_{\mu \in \mathbb{P}_h} \|u_\delta(\mu) - u_{rb}(\mu)\| \ & rac{1}{|\mathbb{P}_h|} \sum_{\mu \in \mathbb{P}_h} \|u_\delta(\mu) - u_{rb}(\mu)\| \end{aligned}$$

Parikshi Bajpai

Motivati

Reduced Basis

Therma Block

$$egin{aligned} \max_{\mu \in \mathbb{P}_h} & \|u_\delta(\mu) - u_{rb}(\mu)\| \ & rac{1}{|\mathbb{P}_h|} \sum_{\mu \in \mathbb{P}_h} & \|u_\delta(\mu) - u_{rb}(\mu)\| \end{aligned}$$

Result - Speedup

Reduced Order Modelling

Parikshi Bajpai

Motivati

Reduce Basis Method

Therm

