שיעור 9 שונות

9.1 לכסון אורתוגונית

הגדרה 9.1 מטריצה לכסינה אורתוגונלית

-ט כך שלכסונית ומטריצה ומטריצה אורתוגונלית אן קיימת אורתוגונלית אלכסונית לכסינה אורתוגונלית אורתוגונ

$$A = UDU^{-1} = UDU^t .$$

הגדרה 9.2 מטריצה סימטרית

מטריעה סימטרית נקראת נקראת ל $A \in \mathbb{F}^{n \times n}$ מטריצה מטריצה

$$A = A^t$$
.

משפט 9.1 מטריצה לכסינה אורתוגונלית היא סימטירת

מטריעה מטירצה אורתוגונלית היא אורתוגונלית שלכסינה $A \in \mathbb{F}^{n \times n}$

הוכחה: נניח כי A לכסינה אורתוגונלית.

י"א קיימת D אלכסונית ו- U אורתוגונלית כך ש

$$A = UDU^{-1} = UDU^t .$$

לפיכד

$$A^{t} = \left(UDU^{t}\right)^{t} = \left(U^{t}\right)^{t} D^{t} U^{t} = UDU^{t} = A.$$

משפט 9.2 תנאי מספיק למטירצה סימטרית

מטריצה אם ורק אם היא מטירצה איא $A \in \mathbb{R}^{n imes n}$

$$(Ax, y) = (x, Ay)$$

 \mathbb{R}^n לכל $x,y\in\mathbb{R}^n$ לכל , $x,y\in\mathbb{R}^n$ לכל

הוכחה: נניח כי A סימטרית. אזי

$$(Ax, y) = (Ax)^t y = x^t A^t y = (x, A^t y) = (x, Ay)$$

נניח כי (Ax,y)=(x,Ay). נרשום

$$A = \begin{pmatrix} | & | & & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & & | \end{pmatrix}$$

A באשר של המטריצה $a_i \in \mathbb{R}^n$ כאשר

$$(Ae_i,e_j)=(a_i,e_j)=A_{ji}=\ A$$
 של (j,i) -רכיב ה-

$$(e_i, Ae_j) = (e_i, a_j) = A_{ij} = A$$
 של (i, j) -רכיב ה-

לכן

$$(Ae_i, e_j) = (e_i, Ae_j) \quad \Rightarrow \quad A_{ji} = A_{ij} \quad \Rightarrow \quad A^t = A .$$

A סימטרית.

כלל 9.1 תכונות של מספרים מרוכבים

- z=a+i כל מסםר בעורה ניתן לרשום בצורה בעורה בעור $z\in\mathbb{C}$
 - $.i^2 = -1 \bullet$
- $ar{z}=a-ib$ נתון מסםר מרוכב $z\in\mathbb{C}$ מצורה z=a+i מצורה מרוכב נגדיר הצמוד של
 - $ar{z}=z$ אם ורק אם $z\in\mathbb{R}$
 - $\mathbb{R} \subseteq \mathbb{C}$ •
 - $|z|=\sqrt{a^2+b^2}$ ומוגדר וארך מוחלט של z מסומן. הערך הערך . $z\in\mathbb{C}$
 - $.z\bar{z} = a^2 + b^2 = |z|^2 \bullet$
 - $\overline{zw}=ar{z}ar{w}$ מתקיים $z,w\in\mathbb{C}$ •

משפט 9.3 הערכים עצמיים של מטריצה סימטרית ממשיים

. ממשיים A סימטרית אז כל הערכים עצמיים של $A \in \mathbb{R}^{n \times n}$

. (לא בהכרח שונים) $\lambda_1,\dots,\lambda_n$ לפי משפט הפירוק הפרימרי, ל-A יש ערכים עצמיים לפי לפי משפט הפירוק

: ממשי:
$$a=ar uAu$$
 אסקלר, הסקלר, $u=egin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}\in\mathbb{C}^n$ לכל

$$a = (u^*)^t A u = (u^*)^t A^t u$$
 (סימטרית) אימטרית) (משפט 2.2) $= (Au^*)^t u = u^t (Au^*)$ (9.2) $= u^t A^* u^*$ (9.2) $= a^*$.

נניח כי
$$\lambda_i$$
 ווקטור עצמי של A ששייך ווקטור $u=\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{C}^n$ נניח כי

$$\bar{u}Az = \bar{u}\lambda_i u = \lambda_i \bar{u}u = \lambda_i(\bar{u}, u) = \lambda_i(|z_1|^2 + \dots + |z_n|^2)$$

 $.(|z_1|^2+\cdots+|z_n|^2) \neq 0 \Leftarrow z_k \neq 0 \; \exists \Leftarrow u \neq 0 \Leftarrow u$ ווקטור עצמי ווקטור u בהכרח ממשי. לכן λ_i ממשי, ו- u ממשי, ו- u ממשי, ו-

משפט 9.4 מטריצה ממשית לכסינה אורתוגונלית אם"ם היא סימטרית

. נתונה $A \in \mathbb{R}^{n \times n}$ מטריתה ממשית. לכסינה אורתוגונלית אם ורק אם היא סימטרית.

הוכחה: נניח כי A לכסינה אורתוגונלית.

-ט"א קיימת D אלכסונית ו- U אורתוגונלית כך ש

$$A = UDU^{-1} = UDU^t$$
.

אזי

$$A^{t} = (UDU^{t})^{t} = (U^{t})^{t} D^{t}U^{t} = UDU^{t} = A.$$

. נניח כי $A \in \mathbb{R}^{n imes n}$ סימטרית. נוכיח באמצעות אינדוקציה על סימטרית. נוכיח באמצעות אינדוקציה על

שלב הבסיס

עבור $a \in \mathbb{R}$ כאשר A = a סקלר, גלומר $A \in \mathbb{R}^{1 imes 1}$

$$A = a = UDU^t$$

. אלכסונית $D=(a)\in\mathbb{R}^{1 imes 1}$ - אורתוגונלית שור אורתוגונלית $U=(1)\in\mathbb{R}^{1 imes 1}$

שלב האינדוקציה

. נניח כי כל מטריצה סימטרית מסדר (n-1) imes (n-1) imes (n-1) לכסינה אורתוגונלית (ההנחת האינדוקציה).

לכל מטריצה קיימת לפחות ווקטור עצמי אחד.

 $\|\mathbf{v}_1\|=1$ כי ווקטור עצמי של A ששייך לערך עצמי λ_1 ונניח כי \mathbf{v}_1 ווקטור עצמי של A בעמירים לכן נניח כי \mathbf{v}_1

סימטרית לכן $\lambda_1 \in \mathbb{R}$ (משפט 9.3). נשלים $\{\mathbf{v}_1\}$ לבסיס של $\{\mathbf{v}_1\}$

$$\{\mathbf v_1,\mathbf v_2,\ldots,\mathbf v_n\}$$
.

 $:\mathbb{R}^n$ נבצע התהליך של גרם שמידט כדי להמיר בסיס זו לבסיס שמידט מידט של נבצע

$$B = \{u_1, u_2, \dots, u_n\} ,$$

. נאשר
$$u_2=\mathbf{v}_2-rac{(\mathbf{v}_2,u_1)}{\|u_1\|^2}u_1$$
 , $u_1=\mathbf{v}_1$ כאשר נגדיר

$$P = \begin{pmatrix} | & | & & | \\ u_1 & u_2 & \cdots & u_n \\ | & | & & | \end{pmatrix} .$$

.B נשים לב כי P המטנדרטי המעבר המעבר המטריצה לבסיס נשים לב כי P אורתוגונלי לכן אורתוגונלי $P^{-1}=P^t$ לכן P

ית סימטרית לכ כי נשים לכ $P^{-1}AP = P^tAP$ נתבונן על המטריצה

$$(P^tAP)^t = P^tA^t(P^t)^t = P^tA^tP = P^tAP.$$

והעמודה הראשונה הינה

$$P^{-1}APe_1 = P^{-1}Au_1 = P^{-1}\lambda_1 u_1 = \lambda_1 P^{-1}u_1 = \lambda_1 [u_1]_B = \lambda_1 \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} = \begin{pmatrix} \lambda_1\\0\\\vdots\\0 \end{pmatrix}.$$

(n-1) imes (n-1) imes (n-1) כאשר (n-1) imes (n-1) אפסים ו- (n-1) imes (n-1) כאשר פלוק עם (n-1) imes (n-1) בלוק עם אפסים ו- (n-1) imes (n-1)

לפי ההנחת האינדוקציה B לכסינה אורתוגונלית.

 $B=U'D'U'^{-1}=U'D'U'^t$ אלכסונית כך ש- $D'\in\mathbb{R}^{(n-1) imes(n-1)}$ אורתוגונלית ו- אורתוגונלית ו- $U'\in\mathbb{R}^{(n-1) imes(n-1)}$

לכו

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & B \end{pmatrix} = \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & U'D'U'^{-1} \end{pmatrix} = \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U'^{-1} \end{pmatrix} = \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix}^{-1}$$

 $:P^{-1}$ -ם ומצד ימין ב- P ומצד ימין ב-

$$A=Pegin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} egin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} egin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix}^{-1} P^{-1}$$
 געדיר $D=egin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix}$ -1 $U=Pegin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix}$ געדיר

$$A = UDU^{-1} .$$

. נשים לכ בי U אורתוגונלית ו- D אלכסונית. לפיכך לכסינה אורתוגונלית נשים לכ

9.2 שילוש לכיסון של מטריצה לפי פולינום מינימלי

הגדרה 9.3 צמצום של העתקה

.V שמור של תת-מרחב תת-מרחב ווקטורי אופרטור וניח כי $T:V\to V$ ונתונה אופרטור ווקטורי ער מרחב ווקטור אופרטור $v\in V$ נניח כי יי $\mathbf{v}\in V$

נגדיר קבוצת פולינומים $g\in S_{T}\left(\mathbf{v},W\right)$ פולינום כך כך את מקיים את פולינומים נגדיר כך אכל כך כל מקיים את פולינומים

$$g(T)\mathbf{v} \in W$$
.

T המנחה תקרא $S_T(\mathbf{v},W)$ הקבוצה

הגדרה 9.4

. נתון $S_T\left(\mathbf{v},W\right)$ נקרא מנחה-T מינימלי. הפולינום המתוקן של דרגה הקטנה ביותר ב- $S_T\left(\mathbf{v},W\right)$

משפט 9.5

T מינימלי. עניח כי T conductor $S_T(\mathbf{v},W)$ מינימלי.

$$f \in S_T(\mathbf{v}, W) \Leftrightarrow g \mid f$$
.

הוכחה: נניח כי $g \nmid f$. לפי כלל אוקליד, $g \mid f$ דרך השלילה. ז"א נניח כי $f \in S_T (\mathbf{v}, W)$. לפי כלל אוקליד,

$$f(x) = g(x)q(x) + r(x)$$
 \Rightarrow $f(x) - q(x)g(x) = r(x)$.

 $\deg(r) < \deg(g) \le \deg(f)$ כאשר

שמור. T שמור. T שמור. T לכן T לפיכך של דרגה קטנה ביותר המקיים T שמור. T שמור. T שמור. T לפיכך T שמור. T לפיכך T שמור. T

 $g \mid f$ נניח כי

$$f(T)\mathbf{v} = q(T)g(T)\mathbf{v} \Leftarrow f(x) = q(x)g(x) \Leftarrow$$

-שמור. תת-מרחב T לכן g(T)ע בגלל ש- g(T)ע בגלל ש- g(T)ע לכן

f(T)ע $\in W$ לכן

9.6 משפט

 $g \mid m_T$ אז T-conductor G נניח כי G המנחה. בי תונימלי של הפולינום המינימלי של ד. נניח כי מינימלי של ד. אז הפולינום המינימלי של ד. אז

הוכחה: נוכיח כי $g\mid m_T$ דרך השלילה.

(נניח כי $g \nmid m_T$ לפי כלל אוקליד:

$$m_T(x) = q(x)g(x) + r(x) ,$$

 $.{\rm deg}(r)<{\rm deg}(g)\leq {\rm deg}(m_T)$

$$0 = m_T(T) = g(T)q(T) + r(T) = 0 + r(T) \implies r(T) = 0$$

.בסתירה לכך כי $m_T(T)$ הפולינום המינימלי

9.7 משפט

 $.m_T \in S_T(\mathbf{v}, W)$

 $g\mid m_T$,9.6, פינים לפי משפט T- המנחה המנחה: נניח כי g(x) המנחה: $m_T\in S_T({
m v},W)$,9.5 לכן לפי משפט

9.8 משפט

 $lpha \in V
otin W$ נניח כי V מרחב T שמור. קיים T:V o V אופרטור. נניח כי $W \subset V$ תת מרחב T:V o V שמור. קיים כד ש-

$$(T - \lambda)\alpha \in W$$

T ערך עצמי של λ

הוכחה:

. נוכיח כי המנחה-T המינימלי של α ל- α הוא פולינום לינארי

 $\beta \in V \notin W$ כלומר הב- אבל א ב- ע אבל שב- Vווקטור פל נניח נייח נניח β

W - המנחה - המינימלי של β ל-

. פולינום h(x) -ו T ערך עצמי של א $g(x) = (x - \lambda_i)h(x) \Leftarrow g \mid m_T \Leftarrow$ 9.6 משפט

 $\alpha=h(T)\beta\notin W$ לכן $g(T)\beta\in W$ -פיותר כך ביותר קטנה ביותר פולינום של דרגה פולינום g

לכן

$$(T - \lambda_i I)\alpha = (T - \lambda_i)h(T)\beta = g(T)\beta \in W$$

eta בגלל ש- g(T) המנחה המינימלי

9.9 משפט

ונים: m_T אם ורק אם m_T מתפרק לגורמים לינאריים שונים:

$$m_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$$
.

 $m_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$ נניח כי

 $1 \leq i \leq k$ לכל לכל $Tu_i = \lambda_i u_i$ כאשר ה $eta = u_1 + \ldots + u_k$ אז $eta \in W$ מכיוון ש-

לכן

$$h(T)\beta = h(\lambda_1)u_1 + \ldots + h(\lambda_k)u_k \in W . \tag{*}$$

h לכל פולינום

$$m_T(x)\beta = (x - \lambda_i)q(x) \tag{**}$$

.כאשר q(x) פולינום

לפי מפשט השארית.

$$q(x) = (x - \lambda_i)h(x) + q(\lambda_i)$$
(***)

כאשר q(x) פולינום. לכן

$$q(T)\alpha - q(\lambda_i)\alpha = h(T)(T - \lambda_i I)\alpha = h(T)\beta$$
(****)

 $.h(T)\beta \in W$,(*), לפי

-מכיוון ש

$$0 = m_T(T)\alpha = (T - \lambda_i)q(T)\alpha,$$

 $q(T)\alpha \in W$ ווקטור עצמי אז ששייך לערך עצמי ווקטור עצמי של $q(T)\alpha$ כלומר

 $q(\lambda_i)\alpha \in W$,(****), לכן לפי

 $q(\lambda_i)=0$ לכן, $\alpha \notin W$ אבל

אז לפי (**), לא כל השורשים של m_T שונים. סתירה!

משפט 9.10

ניתנת לשילוש אם ורק אם m_T מתפרק לגורמים לינאריים (לא בהכרח שונים): T

$$m_T(x) = (x - \lambda_1)^{r_1} \cdots (x - \lambda_k)^{r_k}$$
.

 $m_T(x)=(x-\lambda_1)^{r_1}\cdots(x-\lambda_k)^{r_k}$ נניח כי הוכחה: נניח כי $\beta_1,\ldots\beta_n$ כך ש-

$$[T]_{\beta}^{\beta} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

נדרוש כי

$$T(\beta_i) = a_{1i}\beta_1 + \ldots + a_{ii}\beta_i .$$

 $T(eta_i) \in \{eta_1, \dots, eta_i\}$ አ"የ

 $.W=\{0\}\subset V$ יהי

 $.(T-\lambda_1)\alpha\in\{0\}$ -כך ש- $\exists \alpha\in V\notin\{0\}$ 9.8 לפי משפט פייט

7"と

$$(T - \lambda_1 I)\alpha = 0 \quad \Rightarrow \quad T\alpha = \lambda_1 \alpha ,$$

T ווקטור עצמי של lpha

$$[T(eta_1)]_eta=egin{pmatrix} \lambda_1 \ 0 \ dots \ 0 \end{pmatrix}$$
 אז $eta_1=lpha$ נבחור eta .

. שמור Tמרחב תת W_1 כי לב כי $.W_1=\{\beta_1\}\subset V$ יהי

 $\exists \alpha \in V \notin W_1$ -פר ש- $\exists \alpha \in V \notin W_1$ 9.8 לפי משפט

7"1

$$(T - \lambda_2 I)\alpha = k\beta_1 \quad \Rightarrow \quad T(\alpha) = k\beta_1 + \lambda_2 \alpha ,$$

 $T(\beta_2)=k\beta_1+\lambda_2\beta_2$ גבחור $\beta_2=lpha$.

. שימו לב, $\{\beta_1,\beta_2\}$ לכן לכן ,
 $\beta_1\in W$ ים לינארים לינארית שימו לב, איים ל $\beta_1\in W$

$$.[T(\beta_2)]_{\beta} = \begin{pmatrix} k \\ \lambda_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

נמשיך עם התהליך הזה:

יהי T שמור. נשים לב כי $W_i=\{\beta_1,\dots,\beta_i\}\subset V$ יהי לפי משפט 9.8 לפי $\exists \alpha\in V\notin W_i$ פרך ש- ז"א

$$(T - \lambda_j I)\alpha = c_1 \beta_1 + \ldots + c_i \beta_i \quad \Rightarrow \quad T(\alpha) = c_1 \beta_1 + \ldots + c_i \beta_i + \lambda_j \alpha \alpha.$$

 $.\{\beta_1,\ldots,\beta_i\}$ -ם לינאריית תלוי בלתי הכן $\alpha\notin W_i$ שימו לב, שימו שימו

 $\beta_{i+1} = \alpha$ נבחור

$$.[T(\beta_{i+1})]_{\beta} = \begin{pmatrix} c_1 \\ \vdots \\ c_i \\ \lambda_j \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

נניח כי T ניתנת לשילוש.

. לכסין [T] קיים בסיס עבורו המטריצה המייצגת \Leftarrow

הפולינום האופייני של T מתפרק לגורמים לינאריים (לא בהכרלח שונים). \Leftarrow

מתפרק לגורמים ליניאריים (לא בהכרח שונים). $m \Leftarrow m \mid p$