

Class 7

Unsaturated Hydrocarbons

Alkenes

Alkynes

Arenes

Reactions of hydrocarbons

Stereochemistry

References

Blackman A, Bottle S, Schmid G, Mocerino M and Wille U (2019a), *Chemistry*, 4th edn, John Wiley & Sons, Milton, Qld.

Blackman A, Southam D, Lawrie G, Williamson N, Thompson C and Bridgeman A (2019b), *Chemistry: core concepts*, 2nd edn, John Wiley & Sons, Milton, Qld.

1

Unsaturated hydrocarbons

Alkenes and Alkynes

Alkenes

1 or more carbon-carbon double bonds bond angles around each carbon atom of the double bond ${\sim}120^{\circ}$

Alkynes

1 or more carbon-carbon triple bonds bond angles around each carbon atom in triple bond $\sim\!\!180^{\circ}$

Alkenes and Alkynes

IUPAC nomenclature

alkenes end in -ene

alkynes end in -yne

Branched alkene or alkyne

number the longest C chain such that the multiple bond has the lowest set of numbers

$$\begin{array}{c} 6 & 4 & 2 \\ \hline & 5 & 4 & 3 & 2 \\ \text{CH}_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH} = \text{CH}_{2} \\ \text{hex-1-ene} \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{C} \\ \text$$

Alkenes and Alkynes

Configurational cis-trans isomerism

Restricted rotation about carbon-carbon double bond leads to different compounds with different physical and chemical properties.

cis isomers: 'same side' of the double bond.

trans isomers: 'opposite sides' of the double bond.

Source: Blackman et al. (2019:820).

Alkenes and Alkynes

E, Z system

assigns priorities to the substituents on each side of the carbon-carbon double bond

Z configuration if higher priority groups are on the same side

E configuration if higher priority groups are on opposite sides

higher higher lower

$$C = C$$
 $C = C$
lower lower lower higher

 $Z(zusammen)$
 $E(entgegen)$

Sequence rules for assigning priorities to the four substituents on the carbon-carbon double bond

Assign priorities in decreasing order of atomic number.

If the higher priority groups are on the same side of the double bond, the alkene is **Z** (zusammen).

Sequence rules for assigning priorities to the four substituents on the carbon-carbon double bond

Assign priorities in decreasing order of atomic number.

If the higher priority groups are on the opposite side of the double bond, the alkene is **E** (*entgegen*).

Stereochemistry

E, Z designation

$$\begin{array}{c} H \\ low \\ C = C \\ high \\ H_3C \\ \end{array} \begin{array}{c} Cl \\ high \\ low \\ low \\ high \\ CH_3 \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ low \\ high \\ CH_3 \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ low \\ high \\ Cl \\ \end{array}$$

(E)-2-chlorobut-2-ene

(Z)-2-chlorobut-2-ene

Name the following compound

The ethyl group at C3 is higher priority than the methyl group at C3

The alkyl group at C4 is higher priority than the H atom at C4

Configuration is Z

Alkenes and Alkynes

Dienes, trienes and polyenes

alkadienes have 2 C=C double bonds alkatrienes have 3 C=C double bonds polyenes have multiple C=C double bonds n carbon-carbon double bonds: maximum 2^n cis-trans isomers possible

Physical properties of alkenes/alkynes

non-polar compounds dispersion forces (only attractive forces) physical properties similar to alkanes

Reactions of alkanes

Alkanes undergo combustion by reacting with oxygen to produce carbon dioxide, water, and energy.

Alkanes are not very reactive due to strong C-C single bonds.

alkane + $O_2 \longrightarrow CO_2 + H_2O + energy$

Reactions of alkanes

Halogenation – a substitution reaction

When alkanes react with halogens,

- The reaction is called **substitution**, one or more H atoms are replaced with a halogen usually Cl or Br.
- Light or heat is required.
- A mixture of halogenated products results, but we write the equation with the monosubstituted product.

Example: ethane and chlorine

$$CH_3CH_3(g) + Cl_2(g) \xrightarrow{light} CH_3CH_2Cl(g) + HCl(g)$$

Types of Reagents

- Nucleophile an electron rich reagent that can donate an electron pair to another species in a reaction.
- Electrophile an electron poor reagent that can accept an electron pair from another species in a reaction.
- Radical a species that contains an odd number of electrons.

Reactions of alkenes

Reactions of alkenes

Electrophilic addition reactions

hydrohalogenation

intermediate

addition of HCl, HBr or HI to alkene addition obeys Markovnikov's rule hydrogen adds to carbon with most hydrogens so that reaction proceeds via the most stable carbocation

DEAKIN DEAKIN COLLEGE

Reactions of alkenes

Electrophilic addition reactions

Stability of carbocations

Order of increasing carbocation stability

Source: Blackman et al. (2019:854).

Aromatic compounds

Benzene

aromatic, parent arene, highly unsaturated does not undergo addition, oxidation or reduction, reacts by substitution

Kekulé's model of benzene

Aromatic compounds

Orbital overlap model

Resonance

benzene as a hybrid of two equivalent contributing structures

DEAKIN DEAKIN DEAKIN DEAKIN

Naming aromatic compounds

'substituent name' followed by 'benzene'

ethylbenzene

chlorobenzene

nitrobenzene

Naming aromatic compounds

Some aromatic compounds have non-systematic names allowed by IUPAC. You must use them!

methylbenzene (toluene)

hydroxybenzene (phenol)

aminobenzene (aniline)

Naming aromatic compounds

when there is >1 substituent, numbers are used to specify their relative position *ortho-*, *meta-* and *para-* may be used in place of numbers for disubstituted benzenes

1,2-dibromobenzene ortho-dibromobenzene meta-dibromobenzene

1,3-dibromobenzene 1,4-dibromobenzene meta-dibromobenzene para-dibromobenzene

Naming aromatic compounds

when there are >2 substituents, numbers <u>must</u> be used to specify their relative positions

$$CH_3$$
 O_2N
 NO_2
 NO_2

1,3,5-trimethylbenzene

2,4,6-trinitrophenol

Reactions of aromatic compounds

In a substitution reaction, a hydrogen atom on a benzene ring is replaced by an atom or group of atoms.

Type of substitution H on benzene replaced by

Halogenation chlorine or bromine atom

Nitration nitro group (—NO₂)

Sulfonation —SO₃H group

Reactions of aromatic compounds

Stereochemistry

Isomers

• Isomers are molecules with the same formula but different structures.

Stereochemistry

Isomers

• Constitutional isomers differ in the order in which their atoms are bonded.

Same family, they are both alkanes

DEAKIN DEAKIN

DEAKIN COLLEGE DEAKIN

Organic Chemistry

Stereochemistry

Isomers

• Constitutional isomers differ in the order in which their atoms are bonded.

Stereochemistry

Isomers

- Constitutional isomers differ in the order in which their atoms are bonded, and
- have different physical properties.
- Their chemical properties will be different if they are from different families.

Organic Chemistry

Stereochemistry

Conformers

 Change from one conformation to another involves rotations about a single bond.

Stereochemistry

Conformers

DEAKIN DEAKIN

Organic Chemistry

Stereochemistry

Isomers

- Change from one conformation to another involves rotations about a single bond.
- Change from one configuration to another involves breaking and making of bonds.
- Stereoisomers have the same structure but different arrangement in space of atoms (different configurations).

Stereochemistry

Isomers

• Stereoisomers have the same structure but different arrangement in space of atoms (different configurations).

Organic Chemistry

Stereochemistry

Isomers

• Two types of stereoisomers are optical and geometrical.

Stereochemistry

Geometrical Isomers cis-trans isomerism

Restricted rotation about C to C double bond leads to different compounds with different properties.

cis isomers: 'same side' of the double bond.
trans isomers: 'opposite sides' of the double bond.

Organic Chemistry

Stereochemistry

Isomers

- An object that is not superimposable on its mirror image is said to be chiral.
- Chirality in organic molecules is caused by the presence of a tetrahedral carbon atom that is bonded to four different groups.

Stereochemistry

Isomers

- Chirality in organic molecules is usually caused by the presence of a tetrahedral carbon atom that is bonded to four different groups.
- Such a carbon atom is described as a chiral carbon or stereocentre.

Organic Chemistry

Stereochemistry

Enantiomers

Stereoisomers that are non-superimposable mirror images.

$$\begin{array}{c} \text{OH} \\ \text{HO} \\ \text{Corner} \\ \text{H}_{3}\text{C} \\ \text{CH}_{2}\text{CH}_{3} \\ \text{original} \end{array} \\ \begin{array}{c} \text{HO} \\ \text{Cource: Blackman et al.} \\ \text{(2019:894).} \\ \text{H}_{3}\text{C} \\ \text{CH}_{3} \\ \text{CH}_{3}\text{CH}_{2} \\ \text{mirror image} \end{array}$$

DEAKIN DEAKIN

Stereochemistry

Achiral molecules

Central carbon bears 2 or more groups which are the same, e.g., 2-propanol.

Mirror image is superimposable on the original.

The molecule and its mirror image are identical, achiral (without chirality).

DEAKIN DEAKIN COLLEGE

Organic Chemistry

Stereochemistry

Stereocentres or stereogenic centres

A carbon atom with 4 different groups bonded to it is the most common cause of enantiomerism in organic molecules.

Stereochemistry

Representing enantiomers

Keep carbon framework in the plane of the paper. One atom coming out of the plane and the other atom behind the plane, e. g., one enantiomer of 2-butanol.

DEAKIN DEAKIN

Organic Chemistry

Stereochemistry

Isomers

- The absolute configuration of a stereogenic centre refers to the exact three-dimensional arrangement of the groups.
- The method for naming enantiomers is called the Cahn-Ingold-Prelog convention.

Stereochemistry

Isomers

• This is based on describing the relative positions of the substituents attached to the stereogenic centre.

Organic Chemistry

Stereochemistry

Isomers

• A set of rules is used to establish the stereochemical configuration of stereogenic carbon centres:

Sequence rules for assigning priorities to the four substituents on the chiral carbon

Look at the four atoms directly attached to the stereogenic centre.

Assign priorities in decreasing order of atomic number (number of protons).

Designate these groups high, medium, low and lowest.

DEAKIN COLLEGE PEAK

Sequence rules for assigning priorities to the four substituents on the chiral carbon

If the priorities cannot be determined by rule 1:

Compare the atomic numbers of the second atoms away from the stereogenic centre.

Continue if necessary to the third and fourth atoms until some difference is noted.

Sequence rules for assigning priorities to the four substituents on the chiral carbon

Multiply bonded atoms are considered to be an equivalent number of singly bonded atoms.

Sequence rules for assigning priorities to the four substituents on the chiral carbon

Mentally orientate the molecule so that the lowest priority group is pointing away from you.

If a curved arrow drawn from high to medium to low is clockwise, the configuration at the stereogenic centre is R (rectus, right).

If it is anticlockwise, the configuration is S (sinister, left).

Stereochemistry

R configuration: groups are in a clockwise direction.

S configuration: groups are in an anti-clockwise direction.

DEAKIN DEAKIN COLLEGE

Organic Chemistry

Stereochemistry

Isomers

(-) lactic acid found in sour milk

(+) lactic acid produced by muscle tissue in humans

Stereochemistry

For a molecule with n stereocentres, maximum number of stereoisomers is 2^n .

e.g. 2,3,4-trihydroxybutanal has 4 stereoisomers.

(a) and (c) are called diastereomers which are stereoisomers that are NOT mirror images.

Organic Chemistry

Stereochemistry

Meso compound: an achiral compound with 2 or more stereocentres, e.g. tartaric acid.

- (a) and (b) are enantiomers.
- Source: Blackman et al. (2019a:1057)
- (c) and (d) are superimposable mirror images and therefore achiral (as same molecule).

Stereoisomer represented by (c) or (d) is called a *meso* compound.

Stereochemistry

Molecules with 3 or more stereocentres e.g., cholesterol has 8 stereocentres.

 $2\times2\times2\times2\times2\times2\times2=2^8$ stereoisomers are possible.

DEAKIN COLLEGE

Organic Chemistry

Stereochemistry

Isomers

thalidomide has a chiral carbon

Stereochemistry

Isomers

- Thalidomide has a chiral carbon.
- The (-) enantiomer has teratogenic properties.
- The (+) isomer has a hypnotic action.

Organic Chemistry

Stereochemistry

Almost all molecules in living systems (both plant and animal) are chiral.

Although chiral molecules can exist as a number of stereoisomers, almost invariably, only one stereoisomer is found in nature.

The enzyme chymotrypsin has 251 stereocentres but only 1 of its stereoisomers is produced and used by any given organism.

Stereochemistry

Enzymes are chiral substances which only produce or react with substances that match their stereochemical requirements.

For an enzyme to catalyse a biological reaction, the molecule involved must fit into enzyme's chiral binding site.

Organic Chemistry

Stereochemistry

e. g., enzyme that catalyses reaction by glyceraldehyde.

Enzyme can distinguish between different enantiomers of glyceraldehyde!

DEAKIN GEAKIN

Summary

Carbon – hydrogen frameworks alkanes, cycloalkanes, alkenes, alkynes, arenes

Nonpolar compounds with dispersion forces

Isomers have different properties

Stereoisomers differ in 3-D orientation of their atoms in spaces and are particularly important in the biological world and synthesising drugs

Chiral objects are nonsuperimposable on their mirror images

Enantiomers differ in their optical activity

Stereocentres are named using the R,S system