Лекция 4: Нейронные сети и обратное распространение ошибки

Напомним...

$$s=f(x;W)=Wx$$
 Оценки линейного классификатора

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
 SVM loss (или softmax)

$$L = rac{1}{N} \sum_{i=1}^{N} L_i + \lambda \sum_k W_k^2$$
 data loss + regularization

Как найти W?

 $abla_W L$

Поиск W: градиентный спуск


```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

<u>Landscape image is CC0 1.0 public domain</u>
<u>Walking man image is CC0 1.0 public domain</u>

Градиентный спуск

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

- Численный градиент медленный, приближенный, но простой в реализации
- Аналитический градиент: точный, быстрый, можно ошибиться!

=>

<u>На практике:</u> Используем аналитический градиент но сверяем с численным - **gradient check.**

Проблема: Линейная классификация не очень хороша...

Visual Viewpoint

Линейный классификатор делает по одному шаблону на класс

Geometric Viewpoint

Линейный классификатор требует линейной разделимости классов

Сопоставление с шаблоном – плохо Признаками выступают пикселы...

Оценки для классов

Выделение признаков из изображения – лучше!

Признаковое представление

Линейно неразделимые классы

Становятся разделимыми после выделения признаков

Пример выделения признаков: цветовые гистограммы

Пример: Histogram of Oriented Gradients (HoG)

Разобьем на области 8x8 пикселов В каждом регионе подсчитаем 9 направлений градиента

Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Пример: 320х240 пикселов поделили на 40х30 областей; в каждой области 9 значений градиента размер вектора признаков 30*40*9 = 10 800 вместо 320*240*3 = 230 400

Пример: Фильтры Габора

Примеры фильтров Габора разных размеров и ориентаций

Применение фильтров Габора

Пример: визуальное кодирование (bag of words)

Image Features

Image features vs ConvNets

One Solution: Feature Transformation

(**Было**) линейная оценка:
$$f = Wx$$
 (**Стало**) 2-слоя НС $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

"Нейронные сети" общий термин; эти сети называют полносвязными "fully-connected networks" или "multi-layer perceptrons" (MLP)

(Было) линейная оценка:

f = Wx

(Стало) 2-слоя НС

 $f=W_2\max(0,W_1x)$

100 шаблонов вместо 10

Общие шаблоны для классов

(Было) линейная оценка:

f = Wx

(Стало) 2-слоя НС

$$f=W_2\max(0,W_1x)$$

Функция max(0,z) называется функция активации.

Q: что будет если ее убрать?

(Было) линейная оценка:

f = Wx

(Стало) 2-слоя НС

$$f=W_2 \overline{\max(0,W_1x)}$$

Функция max(0,z) называется функция активации.

Q: что будет если ее убрать?

$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

А: опять получим линейный классификатор!

Функции активации

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

10

ReLU

 $\max(0, x)$

Rectified Linear Unit

ReLU выбор по умолчанию

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

PReLU - Parametric ReLU

www.cv-foundation.org > He_... ▼ РФЕ Перевести эту страницу

Delving Deep into Rectifiers: Surpassing Human-Level ...

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. Kaiming He. Xiangyu Zhang. Shaoqing Ren. Jian Sun. автор: К Не <u>- 2015</u> - Цитируется: 9211 - Похожие статьи

Сравните с цитируемостью работ Колмогорова и Цибенко

link.springer.com > article - Перевести эту страницу

Approximation by superpositions of a sigmoidal function ...

Jones, Constructive **approximations** for neural networks by **sigmoidal functions**, Technical Report Series, No. 7, Department of Mathematics, University of Lowell, ... автор: G Cybenko - 1989 - Цитируется: 13151 - Похожие статьи

$$f(y_i) = \begin{cases} y_i, & \text{if } y_i > 0\\ a_i y_i, & \text{if } y_i \le 0 \end{cases}$$

www.mathnet.ru > dan22050 - Перевести эту страницу

A. N. Kolmogorov, "On the representation of continuous ...

On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition A. N. Kolmogorov Full text: ... автор: AN Kolmogorov - 1957 - Цитируется: 1194 - Похожие статьи

$$f(x_1, \dots, x_n) = \sum_{i=1}^{2n+1} g_i \left(\sum_{j=1}^n \phi_{ji}(x_j) \right)$$

Kolmogorov's Theorem (1957)

Нейронные сети: архитектура

hidden layer 1 hidden layer 2

"3-layer Neural Net", or "2-hidden-layer Neural Net"

"Fully-connected" layers – полносвязные слои

Сеть с одним скрытым слоем

Пример: прямой проход HC (forward pass)

hidden layer 1 hidden layer 2

```
# forward-pass of a 3-layer neural network: f = lambda \ x: \ 1.0/(1.0 + np.exp(-x)) \ \# \ activation \ function \ (use \ sigmoid)  x = np.random.randn(3, 1) \ \# \ random \ input \ vector \ of \ three \ numbers \ (3x1)  h1 = f(np.dot(W1, x) + b1) \ \# \ calculate \ first \ hidden \ layer \ activations \ (4x1)  h2 = f(np.dot(W2, h1) + b2) \ \# \ calculate \ second \ hidden \ layer \ activations \ (4x1)  out = np.dot(W3, h2) + b3 \ \# \ output \ neuron \ (1x1)
```

```
import numpy as np
    from numpy.random import randn
 3
    N, D_{in}, H, D_{out} = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D in, H), randn(H, D out)
    for t in range(2000):
                                                    Прямой проход
9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
     loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
                                                    Расчет градиента
      grad_w2 = h.T.dot(grad_y_pred)
15
                                                    (обратный проход)
16
      grad h = grad y pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
                                                     Обновление весов
      w1 -= 1e-4 * grad w1
19
20
      w2 -= 1e-4 * grad w2
```

```
import numpy as np
    from numpy.random import randn
 3
    N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
    for t in range(2000):
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
16
      grad h = grad y pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
      w1 -= 1e-4 * grad w1
20
      w2 -= 1e-4 * grad w2
```

Определим сеть.

х, у – вход и выход w1, w2 – матрицы весов

```
import numpy as np
    from numpy.random import randn
 3
    N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D in, H), randn(H, D out)
 8
    for t in range(2000):
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
16
      grad h = grad y pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w2 -= 1e-4 * grad w2
```

Определение сети

Прямой проход (forward pass)

Сигмоидальная активация sigmoid activation function

$$\frac{1}{1+e^{-x}}$$

```
import numpy as np
     from numpy.random import randn
 3
     N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
                                                                          Определение сети
     w1, w2 = randn(D in, H), randn(H, D out)
     for t in range(2000):
 9
       h = 1 / (1 + np.exp(-x.dot(w1)))
10
       y_pred = h.dot(w2)
                                                                          Forward pass
11
      loss = np.square(y pred - y).sum()
       print(t, loss)
12
13
       grad_y_pred = 2.0 * (y_pred - y)
14
       grad_w2 = h.T.dot(grad_y_pred)
15
                                                                          Аналитический расчет градиента
       grad h = grad y pred.dot(w2.T)
16
       grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
                                                  rac{d\sigma(x)}{dx} = rac{e^{-x}}{\left(1 + e^{-x}
ight)^2} = \left(rac{1 + e^{-x} - 1}{1 + e^{-x}}
ight) \left(rac{1}{1 + e^{-x}}
ight) = \left(1 - \sigma(x)
ight)\sigma(x)
       w1 -= 1e-4 * grad w1
19
20
       w2 -= 1e-4 * grad w2
```

```
import numpy as np
    from numpy.random import randn
 3
    N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
                                                               Определение сети
    w1, w2 = randn(D in, H), randn(H, D out)
    for t in range(2000):
9
     h = 1 / (1 + np.exp(-x.dot(w1)))
10
     y_pred = h.dot(w2)
                                                               Forward pass
11
     loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
                                                               Аналитический расчет градиента
16
      grad h = grad y pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
                                                               Градиентный спуск
20
      w2 -= 1e-4 * qrad w2
                                                               Gradient descent
```

Размер и число слоев

Регуляризация:

(Демо ConvNetJS: http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Аналогия с мозгом

This image by Fotis Bobolas is licensed under CC-BY 2.0

Биологические нейроны: Сложная связность

This image is CC0 Public Domain

Искусственная НС: слоистая организация

Биологические нейроны: Сложная связность

This image is CC0 Public Domain

Искусственная НС: Случайная связность тоже работает!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Нейробиологические аналогии не работают!

Биологические нейроны:

- Разные типы нейронов, импульсная активация!
- Возможна нелинейная связность в дендритах
- Синапсы не просто вес, а сложная нелинейность

[Dendritic Computation. London and Hausser]

Michael Jordan: Well, I want to be a little careful here. I think it's important to distinguish two areas where the word *neural* is currently being used.

One of them is in deep learning. And there, each "neuron" is really a cartoon.

https://spectrum.ieee.org/artificial-intelligence/machine-learning/machinelearning-maestro-michael-jordan-on-the-delusions-of-big-data-and-other-huge-engineering-efforts

Главный вопрос: как считать градиенты?

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
 Нелинейная оценка

$$L_i = \sum_{i \neq j} \max(0, s_j - s_{y_i} + 1)$$
 Функция потерь: SVM Loss

$$R(W) = \sum_k W_k^2$$
 Регуляризация

$$L=rac{1}{N}\sum_{i=1}^{N}L_{i}+\lambda R(W_{1})+\lambda R(W_{2})$$
 Итого: функция потерь+регуляризация

Если можем посчитать $\frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2}$ то можем найти W_1 и W_2

(Плохое) решение: вывести на бумаге $\nabla_W L$

$$s=f(x;W)=Wx$$
 Проблема: Можно ошиб $L_i=\sum_{j\neq y_i}\max(0,s_j-s_{y_i}+1)$ Проблема: а что если что поменяется? Например захотели софтмакс? Все пересчитывать? А если один слой? Проблема: не реализуе $L=\frac{1}{N}\sum_{i=1}^N \sum_{j\neq y_i}\max(0,W_{j,:}\cdot x+W_{y_i,:}\cdot x+1)+\lambda\sum_k W_k^2$ Проблема: не реализуе для больших моделей с динамическим определе

Проблема: Можно ошибиться

Проблема: а что если что то поменяется? Например мы захотели софтмакс? Все пересчитывать? А если еще один слой?

Проблема: не реализуемо динамическим определением!

$$\nabla_{W} L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

Решение: Вычислительные графы + Backpropagation

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Обратное распространение ошибки

Решение: Backpropagation

$$f(x,y,z) = (x+y)z$$

$$f(x,y,z) = (x+y)z$$

$$f(x,y,z) = (x+y)z$$

Пусть x = -2, y = 5, z = -4

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f(x,y,z) = (x+y)z$$

Пусть x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

Пусть x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Ищем:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z) = (x+y)z$$

Пусть
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Ищем:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$f(x,y,z) = (x+y)z$$

Пусть
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Ищем:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

 $\frac{\partial f}{\partial z}$

$$f(x,y,z) = (x+y)z$$

Пусть
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \hspace{1cm} rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Ищем:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$f(x,y,z) = (x+y)z$$

Пусть
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Ищем:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z) = (x+y)z$$

Пусть
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Ищем:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z)=(x+y)z$$

Пусть x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Ищем: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x,y,z) = (x+y)z$$

Пусть x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Ищем: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x,y,z)=(x+y)z$$

Пусть
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Ищем:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z) = (x+y)z$$

Пусть x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Ищем: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

A.B. Никоноров, основано на курсе http://cs231n.stanford.edu/

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad f(x)=rac{1}{x} \qquad o \qquad rac{df}{dx}=-1/x^2 \qquad f_c(x)=ax \qquad o \qquad rac{df}{dx}=1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = e^x \$$

$$egin{aligned} rac{df}{dx} &= e^x & f(x) &= rac{1}{x} &
ightarrow & rac{df}{dx} &= -1/x \ rac{df}{dx} &= a & f_c(x) &= c + x &
ightarrow & rac{df}{dx} &= 1 \end{aligned}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Another example:

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Вычислительный граф не единственный, и может быть упрощен!

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{(1+e^{-x})^2} = \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \left. (1-\sigma(x))\,\sigma(x)
ight.$$

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Вычислительный граф не единственный, и может быть упрощен!

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{\left(1 + e^{-x}
ight)^2} = \ \left(rac{1 + e^{-x} - 1}{1 + e^{-x}}
ight) \left(rac{1}{1 + e^{-x}}
ight) = \ \left(1 - \sigma(x)
ight)\sigma(x)$$

Another example:

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Вычислительный граф не единственный, и может быть упрощен!

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{\left(1 + e^{-x}
ight)^2} = \left(rac{1 + e^{-x} - 1}{1 + e^{-x}}
ight) \left(rac{1}{1 + e^{-x}}
ight) = \left(1 - \sigma(x)
ight)\sigma(x)$$

Правила вычисления градиантов

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

Прямой проход: Считаем выход

Обратный проход: Считаем градиенты

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

Прямой проход: Считаем выход

Инициализация

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

Прямой проход: Считаем выход

Sigmoid

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

Прямой проход: Считаем выход

Add gate

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

Прямой проход: Считаем выход

Add gate

```
def f(w0, x0, w1, x1, w2):
 50 = w0 * x0
 s1 = w1 * x1
 s2 = s0 + s1
 s3 = s2 + w2
  L = sigmoid(s3)
 grad_L = 1.0
 grad_s3 = grad_L * (1 - L) * L
 grad_w2 = grad_s3
 grad_s2 = grad_s3
 grad_s0 = grad_s2
 grad_s1 = grad_s2
 grad_w1 = grad_s1 * x1
 grad_x1 = grad_s1 * w1
 grad_w0 = grad_s0 * x0
```

 $grad_x0 = grad_s0 * w0$

Прямой проход: Считаем выход

Multiply gate

```
def f(w0, x0, w1, x1, w2):
 50 = w0 * x0
 s2 = s0 + s1
 s3 = s2 + w2
   = sigmoid(s3)
  grad_L = 1.0
  grad_s3 = grad_L * (1 - L) * L
 grad_w2 = grad_s3
 grad_s2 = grad_s3
 grad_s0 = grad_s2
  grad_s1 = grad_s2
 grad_w1 = grad_s1 * x1
 grad_x1 = grad_s1 * w1
  grad w0 = grad s0 * x0
  grad_x0 = grad_s0 * w0
```

Прямой проход: Считаем выход

Multiply gate

```
def f(w0, x0, w1, x1, w2):
 50 = w0 * x0
 s1 = w1 * x1
 s2 = s0 + s1
 s3 = s2 + w2
  L = sigmoid(s3)
 grad_L = 1.0
 grad_s3 = grad_L * (1 - L) * L
 grad_w2 = grad_s3
 grad_s2 = grad_s3
 grad_s0 = grad_s2
 grad_s1 = grad_s2
 grad_w1 = grad_s1 * x1
 grad_x1 = grad_s1 * w1
 grad_w0 = grad_s0 * x0
```

 $grad_x0 = grad_s0 * w0$

"Плоский" Backprop

Можно подставить ваши лабораторки!

"Плоский" Backprop

Двуслойная сеть:

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = \#... function of X,W1,b1
scores = #... function of h1, W2, b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = #...
dh1,dW2,db2 = #...
dW1, db1 = #...
```

Модульное API для Backprop

Graph (Net) object (псевдокод)

```
class ComputationalGraph(object):
   # . . .
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes topologically sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs gradients
```

Далее: векторный backprop

Вспомним векторные производные

Скаляр на скаляр Вектор на скаляр

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Производная:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

Как изменится у при малом изменении х?

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Производная стала градиентом:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

Как изменится у при малом изменении каждого элемента х?

Вектор на вектор

$$x \in \mathbb{R}^N, y \in \mathbb{R}^M$$

Производная стала якобианом:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n} \quad \frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M} \quad \left(\frac{\partial y}{\partial x}\right)_{n,m} = \frac{\partial y_m}{\partial x_n}$$

Как изменится каждый элемент у при малом изменении каждого элемента х?

Градиенты переменных имеют ту же размерность что и сами переменные

Backprop with Vectors

```
4D input x:
                                      4D output z:
                f(x) = \max(0, x)
                 (поэлементно)
4D dL/dx:
                [dz/dx] [dL/dz]
                                       4D dL/dz:
                                                       Upstream
                                                        gradient
```


Якобиан всегда **разряженный**: внедиагональные элементы нулевые! Матрицу якобиана никогда не формируется **явно** – всегда используется **неявное умножение**

4D input x:
$$\begin{bmatrix}
1 \\
-2
\end{bmatrix} \longrightarrow f(x) = max(0,x) & f($$

Якобиан всегда **разряженный**: внедиагональные элементы нулевые! Матрицу якобиана никогда не формируется **явно** – всегда используется **неявное умножение**

Матричный (тензорный) Backprop

L скаляр!

Далее сверточные сетки!

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Полезно посмотреть:

http://cs231n.stanford.edu/handouts/linear-backprop.pdf

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Jacobians: dy/dx:

$$[(N\times D)\times (N\times M)]$$

dy/dw: $[(D\times M)\times (N\times M)]$

Для нейронной сети может быть N=64, D=M=4096
Каждый якобиан требует 256 GB!
Только неявное умножение!

y: [N×M]
[13 9 2-10]
[5 2 17 1]

dL/dy: [N×M] -----[2 3-3 9] [-8 1 4 6]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Q: на какую часть у влияет один элемент х? y: [N×M] [13 9 2-10]

[5 2 17 1]

dL/dy: [N×M] -----[2 3-3 9] [-8 1 4 6]

2 1 3 2]

[3 2 1-2]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

у влияет один элемент х?

A: $x_{n,d}$ влияет на всю строку $y_{n,.}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

y: [N×M]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Q: Как

на

влияет $x_{n,d}$

 $y_{n,m}$

у влияет один

элемент х?

A: $x_{n,d}$ влияет на всю строку $y_{n,.}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

$[N\times D] [N\times M] [M\times D]$

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

A:
$$x_{n,d}$$
 влияет на всю строку $y_{n,.}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum \frac{\partial L}{\partial y_n}$$

влияет
$$x_{n,d}$$
 на $y_{n,m}$

$$w_{d,m}$$

Q: Как

на

A:

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m}$$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

y: [N×M]

Аналогично:

[N×D] [N×M] [M×D]

3 2 1 - 2]

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

$$\frac{\partial L}{\partial w} = x^T \left(\frac{\partial L}{\partial y} \right)$$

Тут все просто – главное чтобы совпадали размерности!

Итоги:

- Полносвязные (fully-connected, dense) это последовательность линейных классификаторов с нелинейными активационными функциями; они обеспечивают лучшие результаты чем линейные классификаторы
- **backpropagation** = рекурсивное применение цепного правила к вычислительному графу при обратном распространении позволяет получить значение градиента функции потерб по параметрам
- Граф может быть реализован универсальным API с функциями forward() / backward()
- **forward**: вычисляем результат прямого распространения с сохранением всех промежуточных значений, необходимых для обратного распространения
- **backward**: применяя цепное правило вычисляем значения градиента функции потерь по параметрам

A vectorized example: $f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$ $\in \mathbb{R}^n\in\mathbb{R}^{n\times n}$

A vectorized example: $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_{X}$$

$$* \begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$L2 \underbrace{ 0.116 }_{1.00}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$
$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$
 $\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$

$$\begin{bmatrix} 0.8 \\ 0.8 \end{bmatrix}_{\mathbf{W}}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\mathbf{L2}$$

$$\begin{bmatrix} 0.116 \\ 1.00 \end{bmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$
$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$=2q$$

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$
 $\begin{bmatrix}0.1&0.5\\-0.3&0.8\end{bmatrix}_W$

$$\begin{bmatrix} 0.8 \\ 0.8 \end{bmatrix}_{\mathbf{W}}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$
$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$=2q$$

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_{X}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i} x_j$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$
$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_{\mathbf{W}}$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_{\mathbf{X}}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i}x_j$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$= 2q_ix_j$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix} W \begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix} W \begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix} \times \begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix} \underbrace{ \begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}} \underbrace{ \begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}} \underbrace{ \begin{bmatrix} 0.116 \\ 0.44 \\ 0.52 \end{bmatrix}}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix} \underbrace{ \begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}} \underbrace{ \begin{bmatrix} 0.116 \\ 0.44 \\ 0.52 \end{bmatrix}} \underbrace{ \begin{bmatrix} 0.44$$

A vectorized example:
$$f(x,W) = ||W\cdot x||^2 = \sum_{i=1}^n (W\cdot x)_i^2$$

$$\begin{bmatrix} 0.11 & 0.5 \\ -0.3 & 0.8 \\ 0.104 & 0.208 \end{bmatrix} W \begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix} X \begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix} & \nabla_W f = 2q \cdot x^T \\ \begin{bmatrix} 0.2 \\ 0.44 \\ 0.52 \end{bmatrix} & \frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i} x_j \\ \vdots & & \frac{\partial f}{\partial W_{i,j}} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial W_{i,j}} \\ \vdots & & & = \sum_k (2q_k)(\mathbf{1}_{k=i} x_j) \\ f(q) = ||q||^2 = q_1^2 + \dots + q_n^2 & = 2q_i x_j \end{bmatrix}$$

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$
 \quad \text{\sum_{0.088} \quad 0.176} \]\text{W}\quad \quad \text{\sum_{0.22} \quad \quad \text{V}} \quad \text{\sum_{0.22} \quad \quad \text{V}} \quad \quad \text{\sum_{0.22} \quad \quad \quad \text{V}} \quad \qu

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\cdots + a_n^2$$

 $f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix} W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix} \times \begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix} \times \begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix} \quad \frac{\partial q_k}{\partial x_i} = W_{k,i}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$= \sum_{k=0}^{n} 2q_k W_{k,i}$$

$$egin{align} egin{align} egin{align} & dots \ W_{n,1}x_1+\cdots+W_{n,n}x_n \end{array} igg) & rac{\partial f}{\partial x_i} = \sum_k rac{\partial f}{\partial q_k} rac{\partial q_k}{\partial x_i} \ & = \sum_k 2q_k W_{k,i} \end{array} \end{split}$$