COMP90038 Algorithms and Complexity

Lecture 14: Transform-and-Conquer (with thanks to Harald Søndergaard & Michael Kirley)

Andres Munoz-Acosta

munoz.m@unimelb.edu.au

Peter Hall Building G.83

On the previous lecture

- We talked about priority queues, heaps and heapsort
- A **priority queue** is a **set** of elements, each containing a **priority** value. Elements with **higher (lower)** priorities are **ejected** first.
- A heap is structured as a complete binary tree that satisfies the condition:

Each child has a priority which is no greater (lesser) than its parent's

 Heapsort is a sorting algorithm that uses repeatedly ejects elements from the heap, and then it restores it

Today's lecture

- Transform-and-Conquer is a group of design techniques that:
 - Modify the problem to a more amenable form, and then
 - Solve it using a known efficient algorithm
- There are three major variations
 - Instance simplification
 - Representational change
 - Problem reduction

Transform-and-conquer

- In instance simplification we try to make the problem easier through some type of pre-processing, typically sorting
- In representation change we use a different data structure with better properties
 - An unsorted array is reorganized as a heap
- In problem reduction we solve the instance as if it was a different problem
 - We will talk more about this on week 11

Instance simplification

- Let's examine two problems in which **pre-sorting** the data significantly reduces complexity:
 - Uniqueness checking, i.e., given an unsorted array A[0]...A[n-1], is $A[i] \neq A[j]$ whenever $i \neq j$?
 - Finding the mode, i.e., the element which occurs most frequently in a data set

Memory state (1)	
$A [0, \dots, 7]$	$[2\ 9\ 8\ 6\ 9\ 5\ 7\ 3]$
n	8
i	0
j	
A[i]	2
A[j]	
A[i] = A[j]	

Memory state (2)	
Memor	y state (2)
$A [0, \dots, 7]$	$[2\ 9\ 8\ 6\ 9\ 5\ 7\ 3]$
n	8
i	0
j	1
A[i]	2
A[j]	9
A[i] = A[j]	

Memory state (3)	
$\boxed{A\left[0,\ldots,7\right]}$	$[2\ 9\ 8\ 6\ 9\ 5\ 7\ 3]$
n	8
i	0
j	1
A[i]	2
A[j]	9
A[i] = A[j]	FALSE

Memory state (4)	
$\boxed{A\left[0,\ldots,7\right]}$	$[2\ 9\ 8\ 6\ 9\ 5\ 7\ 3]$
n	8
i	0
j	2
A[i]	2
A[j]	8
A[i] = A[j]	FALSE

Memory state (5)	
$\boxed{A\left[0,\ldots,7\right]}$	$[2\ 9\ 8\ 6\ 9\ 5\ 7\ 3]$
n	8
i	0
j	3
A[i]	2
A[j]	6
A[i] = A[j]	FALSE

Memory state (6)	
$\boxed{A\left[0,\ldots,7\right]}$	$[2\ 9\ 8\ 6\ 9\ 5\ 7\ 3]$
n	8
i	0
j	4
A[i]	2
A[j]	9
A[i] = A[j]	FALSE

Memory state (7)	
$\boxed{A\left[0,\ldots,7\right]}$	$[2\ 9\ 8\ 6\ 9\ 5\ 7\ 3]$
n	8
i	0
j	5
A[i]	2
A[j]	5
A[i] = A[j]	FALSE

Memory state (8)	
$\boxed{A\left[0,\ldots,7\right]}$	$[2\ 9\ 8\ 6\ 9\ 5\ 7\ 3]$
n	8
i	0
j	6
A[i]	2
A[j]	7
A[i] = A[j]	FALSE

Memory state (9)	
$\boxed{A\left[0,\ldots,7\right]}$	$[2\ 9\ 8\ 6\ 9\ 5\ 7\ 3]$
n	8
i	0
j	7
A[i]	2
A[j]	3
A[i] = A[j]	FALSE

Memory state (10)	
$A[0,\ldots,7]$	$[2\ 9\ 8\ 6\ 9\ 5\ 7\ 3]$
n	8
i	1
j	2
A[i]	9
A[j]	8
A[i] = A[j]	FALSE

Memory state (11)	
$\boxed{A\left[0,\ldots,7\right]}$	$[2\ 9\ 8\ 6\ 9\ 5\ 7\ 3]$
n	8
i	1
j	3
A[i]	9
A[j]	6
A[i] = A[j]	FALSE

$$\mathbf{for} \ i \leftarrow 0 \ \mathbf{to} \ n-2 \ \mathbf{do}$$
 $\mathbf{for} \ j \leftarrow i+1 \ \mathbf{to} \ n-1 \ \mathbf{do}$ $\mathbf{if} \ A[i] = A[j] \ \mathbf{then}$ $\mathbf{return} \ \mathrm{FALSE}$ $\mathbf{return} \ \mathrm{TRUE}$

Memory state (12)	
$A[0,\ldots,7]$	$[2\ 9\ 8\ 6\ 9\ 5\ 7\ 3]$
n	8
i	1
j	4
A[i]	9
A[j]	9
A[i] = A[j]	TRUE

The obvious answer to this problem is a brute force approach

$$\begin{array}{c} \mathbf{for} \ i \leftarrow 0 \ \mathbf{to} \ n-2 \ \mathbf{do} \\ \mathbf{for} \ j \leftarrow i+1 \ \mathbf{to} \ n-1 \ \mathbf{do} \\ \mathbf{if} \ A[i] = A[j] \ \mathbf{then} \\ \mathbf{return} \ \mathbf{FALSE} \\ \mathbf{return} \ \mathbf{TRUE} \end{array}$$

• The complexity of this approach is $O(n^2)$

Memory state (12)	
$A[0,\ldots,7]$	$[2\ 9\ 8\ 6\ 9\ 5\ 7\ 3]$
n	8
i	1
j	4
A[i]	9
A[j]	9
A[i] = A[j]	TRUE

• Let's examine a pre-sorting approach

 $\begin{aligned} \text{MergeSort}(A, n) \\ \textbf{for } i \leftarrow 0 \text{ to } n-2 \textbf{ do} \\ \textbf{if } A[i] = A[i+1] \textbf{ then} \\ \textbf{return } \text{FALSE} \\ \textbf{return } \text{TRUE} \end{aligned}$

Memory state (1)		
$A[0,\ldots,7]$	$[2\ 9\ 8\ 6\ 9\ 5\ 7\ 3]$	
n	8	
i		
$A\left[i ight]$		
A[i+1]		
$A\left[i\right] = A\left[i+1\right]$		

Memory state (2)	
$A\left[0,\ldots,7 ight]$	$[2\ 3\ 5\ 6\ 7\ 8\ 9\ 9]$
n	8
i	0
A[i]	
A[i+1]	
$A\left[i\right] = A\left[i+1\right]$	

Memory state (3)	
$A[0,\ldots,7]$	$[2\ 3\ 5\ 6\ 7\ 8\ 9\ 9]$
n	8
i	0
$A\left[i ight]$	2
A[i+1]	3
$A\left[i\right] = A\left[i+1\right]$	FALSE

Memory state (4)	
$A[0,\ldots,7]$	$[2\ 3\ 5\ 6\ 7\ 8\ 9\ 9]$
n	8
i	1
A[i]	3
A[i+1]	5
$A\left[i\right] = A\left[i+1\right]$	FALSE

Memory state (5)	
$A[0,\ldots,7]$	$[2\ 3\ 5\ 6\ 7\ 8\ 9\ 9]$
n	8
i	2
$A\left[i ight]$	5
A[i+1]	6
$A\left[i\right] = A\left[i+1\right]$	FALSE

Memory state (6)	
$A[0,\ldots,7]$	$[2\ 3\ 5\ 6\ 7\ 8\ 9\ 9]$
n	8
i	4
$A\left[i ight]$	6
A[i+1]	7
$A\left[i\right] = A\left[i+1\right]$	FALSE

Memory state (7)	
$A\left[0,\ldots,7 ight]$	$[2\ 3\ 5\ 6\ 7\ 8\ 9\ 9]$
n	8
i	5
A[i]	7
A[i+1]	8
$A\left[i\right] = A\left[i+1\right]$	FALSE

Memory state (8)	
$A[0,\ldots,7]$	$[2\ 3\ 5\ 6\ 7\ 8\ 9\ 9]$
n	8
i	6
$A\left[i ight]$	8
A[i+1]	9
$A\left[i\right] = A\left[i+1\right]$	FALSE

• Let's examine a pre-sorting approach

 $egin{aligned} \operatorname{MERGESORT}(A,n) \ & \mathbf{for} \ i \leftarrow 0 \ \operatorname{to} \ n-2 \ \mathbf{do} \ & \mathbf{if} \ A[i] = A[i+1] \ \mathbf{then} \ & \mathbf{return} \ \mathrm{FALSE} \ & \mathbf{return} \ \mathrm{TRUE} \end{aligned}$

Memory state (9)	
$A[0,\ldots,7]$	$[2\ 3\ 5\ 6\ 7\ 8\ 9\ 9]$
n	8
i	7
$A\left[i ight]$	9
A[i+1]	9
$A\left[i\right] = A\left[i+1\right]$	TRUE

• Let's examine a pre-sorting approach

$$\begin{aligned} \text{MergeSort}(A, n) \\ \textbf{for } i \leftarrow 0 \text{ to } n-2 \text{ do} \\ \textbf{if } A[i] = A[i+1] \textbf{ then} \\ \textbf{return } \text{FALSE} \\ \textbf{return } \text{TRUE} \end{aligned}$$

• What is the complexity of this approach?

Memory state (9)	
$A\left[0,\ldots,7 ight]$	$[2\ 3\ 5\ 6\ 7\ 8\ 9\ 9]$
n	8
i	7
A[i]	9
A[i+1]	9
A[i] = A[i+1]	TRUE

MERGESORT
$$(A, n)$$

for $i \leftarrow 0$ to $n - 2$ do
if $A[i] = A[i + 1]$ then
return FALSE
return TRUE

- What is the complexity of this approach?
 - The sorting step takes $O(n \log n)$
 - The search step takes O(n)
 - The overall complexity is $O(n \log n)$

Memory state (9)	
$A[0,\ldots,7]$	$[2\ 3\ 5\ 6\ 7\ 8\ 9\ 9]$
n	8
i	7
$A\left[i ight]$	9
A[i+1]	9
$A\left[i\right] = A\left[i+1\right]$	TRUE

• Take a few minutes to **think of a design** for mode-finding algorithm based on the pre-sorting version of uniqueness check. Test it with the following data, whose solution is 42

[42, 78, 13, 57, 42, 57, 78, 42]

• Take a few minutes to **think of a design** for mode-finding algorithm based on the pre-sorting version of uniqueness check. Test it with the following data, whose solution is **42**

```
[42, 78, 13, 57, 42, 57, 78, 42]
```

```
\begin{split} & \text{MERGESORT}(A, n) \\ & i \leftarrow 0 \\ & \textit{fmax} \leftarrow 0 \\ & \textbf{while } i < n \textbf{ do} \\ & \textit{seq} \leftarrow 1 \\ & \textbf{while } i + \textit{seq} < n \textbf{ and } A[i + \textit{seq}] = A[i] \textbf{ do} \\ & \textit{seq} \leftarrow \textit{seq} + 1 \\ & \textbf{ if } \textit{seq} > \textit{fmax} \textbf{ then} \\ & \textit{fmax} \leftarrow \textit{seq} \\ & \textit{mode} \leftarrow A[i] \\ & i \leftarrow i + \textit{seq} \\ & \textbf{return } \textit{mode} \end{split}
```

• Take a few minutes to **think of a design** for mode-finding algorithm based on the pre-sorting version of uniqueness check. Test it with the following data, whose solution is 42

```
Sort the array, the result is [13, 42, 42, 42, 57, 57, 78, 78] \longrightarrow MergeSort(A, n) i \leftarrow 0 fmax \leftarrow 0 while i < n do seq \leftarrow 1 while i + seq < n and A[i + seq] = A[i] do seq \leftarrow seq + 1 if seq > fmax then fmax \leftarrow seq mode \leftarrow A[i] i \leftarrow i + seq return mode
```

• Take a few minutes to **think of a design** for mode-finding algorithm based on the pre-sorting version of uniqueness check. Test it with the following data, whose solution is 42

• Take a few minutes to **think of a design** for mode-finding algorithm based on the pre-sorting version of uniqueness check. Test it with the following data, whose solution is **42**

• Take a few minutes to **think of a design** for mode-finding algorithm based on the pre-sorting version of uniqueness check. Test it with the following data, whose solution is **42**

 $i \leftarrow 0 \\ fmax \leftarrow 0 \\ while \ i < n \ do$ $seq \leftarrow 1 \\ while \ i + seq < n \ and \ A[i + seq] = A[i] \ do$ $seq \leftarrow seq + 1$ $if \ seq > fmax \ then$ $fmax \leftarrow seq$ $mode \leftarrow A[i]$ $i \leftarrow i + seq$ $return \ mode$

• Take a few minutes to **think of a design** for mode-finding algorithm based on the pre-sorting version of uniqueness check. Test it with the following data, whose solution is **42**

 $\begin{aligned} & \text{MERGESORT}(A, n) \\ & i \leftarrow 0 \\ & \textit{fmax} \leftarrow 0 \\ & \textbf{while } i < n \textbf{ do} \\ & \textit{seq} \leftarrow 1 \\ & \textbf{while } i + \textit{seq} < n \textbf{ and } A[i + \textit{seq}] = A[i] \textbf{ do} \\ & \textit{seq} \leftarrow \textit{seq} + 1 \\ & \textbf{ if } \textit{seq} > \textit{fmax} \textbf{ then} \\ & \textit{fmax} \leftarrow \textit{seq} \\ & \textit{mode} \leftarrow A[i] \\ & i \leftarrow i + \textit{seq} \\ & \textbf{return } \textit{mode} \end{aligned}$

While we do not overflow, and the sequence continues —

• Take a few minutes to **think of a design** for mode-finding algorithm based on the pre-sorting version of uniqueness check. Test it with the following data, whose solution is **42**

[42, 78, 13, 57, 42, 57, 78, 42] $\stackrel{\text{MERGESORT}(A, n)}{i \leftarrow 0}$ $\stackrel{\text{while } i < n \text{ do}}{\text{while } i + seq < n \text{ and } A[i + seq] = A[i] \text{ do}}$ $seq \leftarrow 1$ $\text{while } i + seq < n \text{ and } A[i + seq] = A[i] \text{ do}}$ $seq \leftarrow seq + 1$ if seq > fmax then $fmax \leftarrow seq$ $mode \leftarrow A[i]$ $i \leftarrow i + seq$ return mode

• Take a few minutes to **think of a design** for mode-finding algorithm based on the pre-sorting version of uniqueness check. Test it with the following data, whose solution is **42**

[42, 78, 13, 57, 42, 57, 78, 42] MERGESORT(A, n) $i \leftarrow 0$ $fmax \leftarrow 0$ $while \ i < n \ do$ $seq \leftarrow 1$ $while \ i + seq < n \ and \ A[i + seq] = A[i] \ do$ $seq \leftarrow seq + 1$ $if \ seq > fmax \ then$ $fmax \leftarrow seq$ $mode \leftarrow A[i]$ $i \leftarrow i + seq$ $return \ mode$

• Take a few minutes to **think of a design** for mode-finding algorithm based on the pre-sorting version of uniqueness check. Test it with the following data, whose solution is **42**

```
i \leftarrow 0 \\ fmax \leftarrow 0 \\ \mathbf{while} \ i < n \ \mathbf{do} \\ seq \leftarrow 1 \\ \mathbf{while} \ i + seq < n \ \mathbf{and} \ A[i + seq] = A[i] \ \mathbf{do} \\ seq \leftarrow seq + 1 \\ \mathbf{if} \ seq > fmax \ \mathbf{then} \\ fmax \leftarrow seq \\ mode \leftarrow A[i] \\ i \leftarrow i + seq \\ \mathbf{return} \ mode
```

• Take a few minutes to **think of a design** for mode-finding algorithm based on the pre-sorting version of uniqueness check. Test it with the following data, whose solution is **42**

```
[42, 78, 13, 57, 42, 57, 78, 42]
MERGESORT(A, n)
i \leftarrow 0
fmax \leftarrow 0
while \ i < n \ do
seq \leftarrow 1
while \ i + seq < n \ and \ A[i + seq] = A[i] \ do
seq \leftarrow seq + 1
if \ seq > fmax \ then
fmax \leftarrow seq
mode \leftarrow A[i]
Skip the complete sequence of equal numbers
i \leftarrow i + seq
return \ mode
```

• Take a few minutes to **think of a design** for mode-finding algorithm based on the pre-sorting version of uniqueness check. Test it with the following data, whose solution is 42

```
\begin{split} & \text{MERGESORT}(A, n) \\ & i \leftarrow 0 \\ & \text{fmax} \leftarrow 0 \\ & \text{while } i < n \text{ do} \\ & seq \leftarrow 1 \\ & \text{while } i + seq < n \text{ and } A[i + seq] = A[i] \text{ do} \\ & seq \leftarrow seq + 1 \\ & \text{if } seq > fmax \text{ then} \\ & fmax \leftarrow seq \\ & mode \leftarrow A[i] \\ & i \leftarrow i + seq \\ & \text{return } mode \end{split}
```

What is the complexity of this approach?

A challenge for home...

- An **anagram** of a word w is a word which uses the same letters as w but in a different order. For example:
 - 'ate', 'tea' and 'eat' are anagrams.
 - 'post', 'spot', 'pots' and 'tops' are anagrams.
 - 'garner' and 'ranger' are anagrams.
- You are given a very long list of words:

{health, revolution, foolish, garner, drive, praise, traverse, anger, ranger, ... scoop, fall, praise}

• Design an algorithm to find all anagrams in the list using pre-sorting

- On lecture 12, you discussed binary trees in general
 - Each **node** has the fields {root, left, right}

- On lecture 12, you discussed binary trees in general
 - Each **node** has the fields {root, left, right}
 - Empty subtrees are marked by null pointers, and they are often called external nodes

- On lecture 12, you discussed binary trees in general
 - Each **node** has the fields {root, left, right}
 - Empty subtrees are marked by null pointers, and they are often called external nodes
 - Internal nodes have a $root \neq NULL$

- On lecture 12, you discussed binary trees in general
 - Each **node** has the fields {root, left, right}
 - Empty subtrees are marked by null pointers, and they are often called external nodes
 - Internal nodes have a $root \neq NULL$
 - The **root** of the tree is at level 0

- On lecture 12, you discussed binary trees in general
 - Each **node** has the fields {root, left, right}
 - Empty subtrees are marked by null pointers, and they are often called external nodes
 - Internal nodes have a $root \neq NULL$
 - The **root** of the tree is at level 0
 - This tree has a **height** of 4

Binary search trees

 A binary search tree (BST) is a binary tree that stores elements in all internal nodes, with each sub-tree satisfying the property:

Let the root be *r*; then each element in the **left subtree is smaller** than *r* and each element in the **right sub-tree is larger** than *r*

• For simplicity we assume that all keys are different

How to ... an element in a BST?

- To **search** for an element k in a BST, we compare against the root r.
 - If r=k, we are done
 - Otherwise, search to the **left** if *k*<*r* and to the **right** if *k*>*r*
- To insert a new element k into a BST, we pretend to search for k.
 - Once we reach an empty sub-tree, we insert k in that position.
- Let's take a few minutes to **build** a tree by inserting $[15\ 8\ 20\ 5\ 9\ 17\ 25\ 29\ 2\ 6\ 12\ 10]$ one at the time.

The importance of being balanced

- If a BST with n elements is kept "reasonably" balanced, search involves $\Theta(\log n)$ comparisons in the worst case
- If the BST is **unbalanced**, search performance may degrade to be as bad as linear search
- Let's take a few minutes to build a BST by inserting [$325\ 18\ 21\ 212\ 157\ 105$] one at the time

Next lecture

- Balanced binary search trees
 - AVL trees and 2–3 trees (Levitin Section 6.3)