TIRISTORI

Vrste tiristora

Postoji više poluprovodničkih elemenata koji se nazivaju zajedničkim imenom tiristor. To su:

- Triodni tiristor (često se označava kao SCR, što je skraćenica od engleskog naziva Silicon Controlled Rectifier - silicijumski kontrolisani usmerač),
- Dvosmerni triodni tiristor (triak),
- Diak, itd.

Struktura i ekvivalentna šema tiristora

- •Tiristor se sastoji od četiri poluprovodnička sloja koji obrazuju tri PN spoja.
- •Ima tri elektrode: anodu A, katodu K i upravljačku elektrodu gejt G.
- •Četiri poluprovodnička sloja tiristora mogu se podeliti na dva dela po tri sloja.
- •Svaki deo obrazuje po jedan ekvivalentni tranzistor. Gornji tranzistor je PNP, a donji NPN tipa.

Princip rada tiristora

 Ako se na anodu tiristora priključi pozitivan napon u odnosu na katodu, kroz njega neće proticati struja. Da bi gornji PNP tranzistor provodio, potrebno je da iz njegove baze ističe pobudna struja. Da bi donji NPN tranzistor provodio, potrebno je da pobudna struja utiće u njegovu bazu. Oba tranzistora su neprovodna iako je tiristor direktno polarisan. Tiristor je u stanju direktnog neprovođenja.

 Ako se pri pozitivnoj polarizaciji anode na gejt priključi odgovarajući pozitivan napon, tada će kroz spoj baza emitor NPN tranzistora proticati struja. Kolektorska struja NPN tranzistora ističe iz baze PNP tranzistora, pa i on počinje da provodi. Kolektorska struja PNP tranzistora utiče u bazu NPN tranzistora povećavajući njegovu kolektorsku struju. Povećanjem Ic NPN tranzistora još više se povećava Ic PNP tranzistora. itd.

 Proces povećavanja struja je veoma brz tako da za kratko vreme oba tranzistora dolaze u zasićenje i tiristor se nalazi u provodnom stanju. Struja kroz tiristor je ograničena samo otporom u spoljašnjem kolu (LOAD).

Statička karakteristika tiristora.

 karakteristika triodnog tiristora koja daje zavisnost glavne struje I_⊤ (koja teče od anode ka katodi) od napona izme | u anode i katode U_D (U_{AK}). Ako se povećava napon direktne polarizacije U_{AK} , kroz tiristor teče neka mala struja curenja (I_D). Pri inverznoj polarizaciji, takođe, teče slična struja curenja I_R. Obe struje curenja su zanemarljivo male i karakteristika praktično leži na horizontalnoj osi.

- Tiristor može da dođe u stanje direktnog provođenja ako mu se napon poveća do probojnog napona U_{DM}.
- Posle proboja u direktnom smeru, ne dolazi do uništenja tiristora ako je struja ograničena na vrednost manju od maksimalno dozvoljene.
- Posle povećanja napona preko U_{DM} tiristor naglo prelazi u stanje provođenja. Napon na njemu naglo opada na vrednost U_T, a struja raste linearno pri daljem povećanju napona.

- Do proboja tiristora može da dođe i u inverznom smeru, tj. kada se na katodu dovede pozitivan napon, a na anodu negativan.
- Ako se inverzni napon poveća iznad U_{BR} dolazi do proboja koji je lavinskog tipa. Napon na tiristoru ostaje približno jednak naponu proboja U_{BR} .
- Zbog velikog napona i struje (velike snage disipacije), obično dolazi do uništenja tiristora.

- Kada tiristor provede gejt gubi upravljačku ulogu, tj. smanjenjem struje gejta ne može da se prekine provođenje tiristora.
- Provođenje tiristora može da prestane samo ako se anodna struja smanji ispod struje držanja (I_H).
- Tiristor se zbog parazitskih kapacitivnosti može spontano uključiti i ako mu se naglo promeni napon UAK.

Primena tiristora

Circuit at minimum power setting

TRIAK

- Triak je poluprovodnički element sa tri izvoda, koji se dovodi u stanje provođenja pomoću signala male snage na pobudnoj elektrodi.
- Triak propušta struju u oba smera kada je uključen, zbog čega je on dvosmerni element za regulisanje snage naizmenične struje.
- Pošto je dvosmerni element, nazivi "anoda" i "katoda" se ne koriste već se zamenjuju izrazima glavni priključak (Main Terminal). Obeležavaju se sa MT1 i MT2 ili A1 i A2. Pobudna elektroda i dalje zadržava svoju oznaku G (Gate).

• U principu, triak se može zameniti sa dva tiristora u antiparalelnoj vezi. Primena triaka za regulisanje snage naizmenične struje ima prednosti i iz ekonomskih razloga. Umesto dva, koristi se samo jedan hladnjak koji zauzima manje prostora i manja mu je cena.

Statička karakteristika triaka

- Triak se može pobuđivati pozitivnim i negativnim signalom na gejtu, bez obzira na napon između glavnih priključaka.
- Kod triaka je usvojeno pravilo da se polaritet pobudnog impulsa uvek računa u odnosu na glavni priključak 1 (MT1).
- U slučaju kada je glavna struja u istom smeru kao i struja gejta, potrebna je manja struja za okidanje nego u slučaju kada su ove dve struje suprotnog smera.

 Triak se može pobuđivati jednosmernim ili naizmeničnim naponom, usmerenim naizmeničnim impulsima i impulsno.

