#### **Model Comparison**

**PSYC 573** 

University of Southern California April 14, 2022

## **Guiding Questions**

- What is *overfitting* and why is it problematic?
- How to measure *closeness* of a model to the true model?
  - What do information criteria do?

#### In-Sample and Out-Of-Sample Prediction

• Randomly sample 10 states



# Underfitting and Overfitting

- Complex models require more data
  - Too few data for a complex model: overfitting
  - A model being too simple: **underfitting**

#### Prediction of Future Observations

• The more a model captures the noise in the original data, the less likely it predicts future observations well



#### What Is A Good Model?

- ullet Closeness from the proposed model  $(M_1)$  to a "true" model  $(M_0)$ 
  - $\circ$  Kullback-Leibler Divergence  $(D_{\mathrm{KL}})$  =  $\mathrm{Entropy}\ \mathrm{of}\ M_0 \mathrm{elpd}\ \mathrm{of}\ M_1$
  - $\circ$  elpd: expected log predictive density:  $E_{M_0}[\log P_{M_1}( ilde{\mathbf{y}})]$
- ullet Choose a model with smallest  $D_{
  m KL}$ 
  - $\circ$  When  $M_0=M_1$  ,  $D_{
    m KL}=0$
  - $\circ \Rightarrow$  choose a model with largest elpd

#### Expected log *pointwise* predictive density

$$\sum_i \log P_{M_1}(y_i)$$

Note: ELPD is a function of sample size

- ullet Problem: elpd depends on  $M_0$ , which is unknown
  - Estimate elpd using the current sample → underestimate discrepancy
  - Need to estimate elpd using an independent sample

## Overfitting

Training set: 25 states; Test set: 25 remaining states



 More complex model = more discrepancy between insample and out-of-sample elpd

### Information Criteria (IC)

Approximate discrepancy between in-sample and out-of-sample elpd

IC =  $-2 \times \text{in-sample elpd} + p$ 

p = penalty for model complexity

function of number of parameters

Choose a model with **smaller** IC

Bayesian ICs: DIC, WAIC, etc

#### **Cross-Validation**

- ullet Split the sample into K parts
- ullet Fit a model with K 1 parts, and obtain elpd for the "hold-out" part
- Very computationally intensive
- loo package: approximation using Pareto smoothed importance sampling

#### loo(m1)

```
>#
># Computed from 8000 by 50 log-likelihood matrix
>#
># Estimate SE
># elpd_loo 15.1 4.9
># p_loo 3.3 1.0
># looic -30.2 9.9
># ----
># Monte Carlo SE of elpd_loo is 0.0.
>#
># All Pareto k estimates are good (k < 0.5).
># See help('pareto-k-diagnostic') for details.
```

### **Comparing Models**

$$exttt{Divorce}_i \sim N(\mu_i, \sigma)$$

- M1: Marriage
- M2: Marriage, South, Marriage × South
- M3: South, smoothing spline of Marriage by South
- M4: Marriage, South, MedianAgeMarriage, Marriage ➤ South,

Marriage  $\times$  MedianAgeMarriage, South  $\times$  MedianAgeMarriage,

 $Marriage \times South \times MedianAgeMarriage$ 

|                                             | M1    | M2    | М3    | M4    |
|---------------------------------------------|-------|-------|-------|-------|
| b_Intercept                                 | 0.61  | 0.67  | 0.94  | 5.53  |
| b_Marriage                                  | 0.18  | 0.13  |       | -1.21 |
| b_Southsouth                                |       | -0.62 | 0.10  | 0.32  |
| b_Marriage × Southsouth                     |       | 0.36  |       | 0.52  |
| bs_sMarriage × SouthnonMsouth_1             |       |       | -0.55 |       |
| bs_sMarriage × Southsouth_1                 |       |       | 1.27  |       |
| sds_sMarriageSouthnonMsouth_1               |       |       | 0.91  |       |
| sds_sMarriageSouthsouth_1                   |       |       | 0.48  |       |
| b_MedianAgeMarriage                         |       |       |       | -1.73 |
| b_Marriage × MedianAgeMarriage              |       |       |       | 0.45  |
| b_MedianAgeMarriage × Southsouth            |       |       |       | -0.36 |
| b_Marriage × MedianAgeMarriage × Southsouth |       |       |       | -0.08 |
| ELPD                                        | 15.1  | 18.3  | 17.7  | 23.8  |
| ELPD s.e.                                   | 4.9   | 5.5   | 5.8   | 6.1   |
| LOOIC                                       | -30.2 | -36.6 | -35.3 | -47.5 |
| LOOIC s.e.                                  | 9.9   | 11.0  | 11.7  | 12.1  |
| WAIC                                        | -30.3 | -36.9 | -37.1 | -48.1 |
| RMSE                                        | 0.17  | 0.15  | 0.14  | 0.13  |

### Notes for Using ICs

- Same outcome variable and transformation
- Same sample size
- Cannot compare discrete and continuous models
  - o E.g., Poisson vs. normal