Clustering

k-Means

Learning Objectives

- What's Unsupervised Learning?
 - ▶ How does it compare to supervised learning? Why do this?
- What's Clustering?
 - ► How do you do it?
- What's the k-Means Algorithm?
 - ► How does it work? What are centroids? How does the algorithm know when it's done?
 - ▶ How do you choose k?
- Morning Assignment
 - ► **Implement** the *k*-means algorithm from scratch and **test** it on the classic Fisher's Iris dataset

Supervised vs. Unsupervised Learning

Clustering

Intuition

Definition

k-Means Algorithm

Pseudocode

Centroid Initialization

Stopping Criteria

Step-through

Evaluation

Problems

Supervised vs. Unsupervised Learning

Supervised

- Have a target/label that we model
- Models look like functions that take in data and create prediction
- Have an error metric that we can use to compare models

Unsupervised

- ▶ No labels \rightarrow No target!
- No stark error metric to compare models with
- It's easy to be wrong, but it's hard to prove you're right
- Trying to uncover/discover (hidden) structure in our data

Unsupervised Learning

- ▶ No response variable y
 - ▶ Just based on predictors X_1 , ..., X_p
- A fuzzy endeavor...
 - ▶ No cross-validation
 - to choose "best model" in usual sense
 - to know how well you're doing
- Unsupervised learning provides
 - Exploratory Data Analysis (EDA) to look at/uncover feature structure
 - Anomaly detection to provide data quality control (QC)
 - Dimensionality reduction to simplify large feature spaces (e.g., PCA)

Supervised vs. Unsupervised Learning

Clustering

Intuition

Definition

k-Means Algorithm

Pseudocode

Centroid Initialization

Stopping Criteria

Step-through

Evaluation

Problems

What's a "Cluster"?

- ▶ How many clusters do you see?
- What makes something a cluster?
- ▶ What makes something not a cluster?

Supervised vs. Unsupervised Learning

Clustering

Intuition

Definition

k-Means Algorithm

Pseudocode

Centroid Initialization

Stopping Criteria

Step-through

Evaluation

Problems

Defining "Cluster"

- ► A partition of the dataset
 - Not necessarily crisp
- A strong internal similarity
 - Small intra/within cluster distance
- ► A strong external dissimilarity
 - Large extra cluster distance

Supervised vs. Unsupervised Learning

Clustering

Intuition

Definition

k-Means Algorithm

Pseudocode

Centroid Initialization

Stopping Criteria

Step-through

Evaluation

Problems

k-Means Algorithm

The algorithm in all its glory:

- 1. Initialize centroids
- 2. While stopping condition not met:
 - 2.1 Find closest centroid to each point
 - 2.2 Update centroids to the average of all the points closest to them

This training algorithm may look pretty simple... and that's because it is

Supervised vs. Unsupervised Learning

Clustering

Intuition

Definition

k-Means Algorithm

Pseudocode

Centroid Initialization

Stopping Criteria

Step-through

Evaluation

Problems

Centroid Initialization

- ► The simplest way to do this is to randomly choose *k* points from your data and make their locations your initial centroid locations
 - ▶ A.k.a., the Random Choice centroid initialization
- Another straightforward method is to randomly assign a label (numbered 1-k) to each data point, and start the initialize the i^{th} centroid to the average of the points with the i^{th} label (in each dimension)
 - ▶ All centroids start close to the "center" of the feature space
 - ▶ A.k.a., the *Random Assignment* centroid initialization

k-Means++, a 3rd centroid initialization method

A more advanced centroid initialization method, known as k-Means++, chooses **well spread** initial centroids \rightarrow sklearn: init='k-means++', set as default

k-Means++ follows the procedure:

- 1. Choose the first centroid to be the location of a data point chosen at random
- For each remaining centroid, choose the location of a data point with probability proportional to its squared distance from the point's closest existing centroid
 - ▶ Points further from existing centroids have higher probability of being chosen as the next centroid

Initialization - Visual Comparison

More even spread to start with

All start close to the center

Who the eff knows... could be anything!

Supervised vs. Unsupervised Learning

Clustering

Intuition

Definition

k-Means Algorithm

Pseudocode

Centroid Initialization

Stopping Criteria

Step-through

Evaluation

Problems

Stopping Criteria

We can update...

- 1. For a pre-specified number of iterations
 - \rightarrow sklearn: $max_iter=1000$
- 2. Until the centroids don't change at all
 - May take a ton of iterations
- 3. Until the centroids don't move very much
 - \rightarrow sklearn: tol=0.0001, for tolerance of "how much"
 - Takes fewer iterations

Supervised vs. Unsupervised Learning

Clustering

Intuition

Definition

k-Means Algorithm

Pseudocode

Centroid Initialization

Stopping Criteria

Step-through

Evaluation

Problems

Step-by-step Execution: DATA!!

Step-by-step Execution: Initialize

- 1. **Initialize** centroids
- 2. While not stopping condition:
 - 2.1 Assign points to centroid
 - 2.2 Update centroids to new average location

Step-by-step Execution: Iteration 1 - Assign

- 1. Initialize centroids
- 2. While not stopping condition:
 - 2.1 Assign points to centroid \leftarrow
 - 2.2 Update centroids to new average location

Step-by-step Execution: Iteration 1 - Post-Assign

- 1. Initialize centroids
- 2. While not stopping condition:
 - 2.1 Assign points to centroid
 - 2.2 Update centroids to new average location

Step-by-step Execution: Iteration 1 - Update

- 1. Initialize centroids
- 2. While not stopping condition:
 - 2.1 Assign points to centroid
 - 2.2 **Update**centroids to
 new average
 location

Step-by-step Execution: Iteration 1 - Post-Update

- 1. Initialize centroids
- 2. While not stopping condition:
 - 2.1 Assign points to centroid
 - 2.2 Update centroids to new average location

Step-by-step Execution: Iteration 2 - Assign

- 1. Initialize centroids
- 2. While not stopping condition:
 - 2.1 **Assign** points to centroid \longleftarrow
 - 2.2 Update centroids to new average location

Step-by-step Execution: Iteration 2 - Post-Assign

- 1. Initialize centroids
- 2. While not stopping condition:
 - 2.1 Assign points to centroid
 - 2.2 Update
 centroids to
 new average
 location

Step-by-step Execution: Iteration 2 - Update

- 1. Initialize centroids
- 2. While not stopping condition:
 - 2.1 Assign points to centroid
 - 2.2 **Update**centroids to
 new average
 location

Step-by-step Execution: Iteration 2 - Post-Update

- 1. Initialize centroids
- 2. While not stopping condition:
 - 2.1 Assign points to centroid
 - 2.2 Update centroids to new average location

Step-by-step Execution: Iteration 3 - Assign

- 1. Initialize centroids
- 2. While not stopping condition:
 - 2.1 **Assign** points to centroid \longleftarrow
 - 2.2 Update centroids to new average location

Step-by-step Execution: Iteration 3 - Post-Assign

- 1. Initialize centroids
- 2. While not stopping condition:
 - 2.1 Assign points to centroid
 - 2.2 Update centroids to new average location

Step-by-step Execution: Iteration 3 - Update

- 1. Initialize centroids
- 2. While not stopping condition:
 - 2.1 Assign points to centroid
 - 2.2 **Update**centroids to
 new average
 location

Supervised vs. Unsupervised Learning

Clustering

Intuition

Definition

k-Means Algorithm

Pseudocode

Centroid Initialization

Stopping Criteria

Step-through

Evaluation

Problems

Evaluating k-Means

- ▶ How can we quantify how "good" our clustering is?
- ► A good measure should quantify how similar things are in a cluster
- The metric that we will use is called intra-cluster or Within-Cluster Variance (WCV):

$$WCV = \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{i_1, i_2 \in C_k} \sum_{j=1}^{p} (x_{i_1 j} - x_{i_2 j})^2$$

Supervised vs. Unsupervised Learning

Clustering

Intuition

Definition

k-Means Algorithm

Pseudocode

Centroid Initialization

Stopping Criteria

Step-through

Evaluation

Problems

Problems

- Centroids that are "discovered" will likely be different depending on initialization
 - \longrightarrow Run algorithm more than once and choose the run that yields the **smallest** within-cluster variance
- ▶ k-Means is highly dependent on distance as a metric
 - → Have to think about the curse of dimensionality
 - → Normalize features before clustering

Supervised vs. Unsupervised Learning

Clustering

Intuition

Definition

k-Means Algorithm

Pseudocode

Centroid Initialization

Stopping Criteria

Step-through

Evaluation

Problems

Choosing k

Unsupervised

Choosing k is HARD!!!

It usually takes some work and you're never quite sure if you're "right"

There are a number of ways you can go about choosing k:

- ► Domain knowledge
- Elbow method
- Silhouette score
- GAP Statistic

Choosing k: Elbow Method

► Looks at the total amount of within-cluster sum of squares (WCSS) across all the clusters for different values of *k*

$$WCSS = \sum_{k=1}^{K} \sum_{i_1, i_2 \in C_k} \sum_{j=1}^{p} (x_{i_1 j} - x_{i_2 j})^2$$

▶ Chooses the *k* such that adding one more cluster doesn't decrease the WCSS by much more. Leads us to look for an elbow in the *k* vs. *WCSS* plot

Choosing k: Elbow Method

Question: Do you think the elbow will always be so obvious?

Choosing k: Elbow Method - Not Always So Clear

Question: How is this related to the curse of dimensionality?