Lista VI

Tarefa de leitura:

- 1. GY seções 9.1 e 9.2.
- 2. Sakurai seções 7.11 e 7.12.

Problemas para o dia 18 de outubro

1. Foi demonstrado em classe que o auto-estado da hamiltoniana $H=H_0+V,$

$$|\Psi_a^+;t\rangle = |\Psi_a^+\rangle e^{-iE_at/\hbar}$$

é tal que

$$\lim_{t \to -\infty} |\Psi_a^+; t\rangle = |\varphi_a\rangle \ e^{-iE_a t/\hbar}$$

onde $|\varphi_a\rangle$ é auto-estado de H_0 . Além disso estes estados estão relacionados pela equação de Lippmann-Schwinger

$$|\Psi_a^+\rangle = |\varphi_a\rangle + \frac{1}{E_a - H_0 + i\epsilon} |\Psi_a^+\rangle .$$

Obtenha os resultados análogos para o estado $|\Psi_a^-;t\rangle$ o qual tende para $|\varphi_a\rangle$ no limite $t\to+\infty$. Mostre também que

$$|\Psi_a^-\rangle = \left(1 + \frac{1}{E_a - H - i\epsilon}V\right)|\varphi_a\rangle .$$

- 2. Mostre que $U_I(0,+\infty)|\varphi_a\rangle = |\Psi_a^-;t\rangle$.
- 3. Demonstre que
 - (a) $\langle \Psi_a^- | \Psi_b^- \rangle = \delta_{ab}$ e que $\langle \Psi_a^+ | \Psi_b^+ \rangle = \delta_{ab}$ se $\langle \varphi_a | \varphi_b \rangle = \delta_{ab}$.
 - (b) $T_{fi} = \langle \varphi_f | V | \Psi_i^+ \rangle = \langle \Psi_f^- | V | \varphi_i \rangle.$
 - (c) $S^{\dagger}S = 1$.

- 4. Uma partícula A, de massa m_a , encontra-se ligada por um potencial $V = \frac{1}{2}m_a\omega^2r_a^2$, estando no estado fundamental deste sistema. Uma outra partícula B, de massa m_b , interage com a partícula A através do potencial $V = Be^{-\mu r}$ onde $r = |\vec{r}_a \vec{r}_b|$. A velocidade inicial da partícula B é v. Obtanha a seção de choque diferencial e total, na aproximação de Born, para o espalhamento de B com A sendo excitada para o primeiro estado excitado com $\ell = 1$ e m = 0. A seção de choque total possa ser expressa em termos de uma integral paramétrica.
- 5. Considere um problema unidimensional cujo potencial é V. Escreva a equação de Lippmann-Scwinger na representação das coordenadas.