Package 'SVHM'

February 28, 2022

Type Package

Title Support-Vector-Hazard-Machine

 data_at_time
 8

 normalize
 8

 optimization_data
 9

 optimization_time_data
 10

 opt_sol_mosek
 10

 opt_sol_osqp
 11

 opt_time_sol_mosek
 11

 opt_time_sol_osqp
 12

 predict_event_time
 12

 radial_kernel
 13

 radial_kernel_mat
 14

 risk_score
 14

 risk_score_training
 15

 risk_time_score
 16

2 createDataPartition

Index		21
	train_svhm train_time_svhm tra	19
	risk_time_score_training	17

condition_mat

Constraint matrix in quadratic optimization problem

Description

calculates the matrix which defines the constraints in the SVHM algorithm

Usage

```
condition_mat(event_vec, num_event_time)
```

Arguments

event_vec

vector containing information if a subject is at risk or if an event happens. If n are the number of subjects and m the number of event times, then event_vec has

length n*m

num_event_time number of event

Value

matrix

createDataPartition

createDataPartition

Description

partitions a dataset into a test set and cross validation sets. createDataPartition() is not randomized, therefore df should be randomized before creating the partition!

Usage

```
createDataPartition(df, cross_validation_val, test_size = 0.2)
```

Arguments

df data frame cross_validation_val

number of sets for k-fold cross validation

test_size size of test set (default=.8)

Value

partitioned dataset

createListPartition 3

Examples

```
{
# Example with the preloaded mtcars dataset
df<-mtcars
partition <- SVHM:::createDataPartition(mtcars, 4, .2)
}</pre>
```

createListPartition createListPartition

Description

partitions a List into a test set and cross validation sets. createDataPartition() is not randomized, therefore the list should be randomized before creating the partition!

Usage

```
createListPartition(l, cross_validation_val, test_size = 0.2)
```

Arguments

Value

partitioned list

```
{
# Example with the preloaded mtcars dataset
l<-list("A", "B", "C", "D", "E", "F", "G", "H", "I", "J")
partition <- SVHM:::createListPartition(1, 3, .1)
}</pre>
```

Description

calculates two matrices of length n*m, if n are the number of subjects and m the number of event times. The Risk Matrix indicates for every subject in a dataset if the subject is still at risk at every event time. The Event Matrix is equal to the Risk Matrix but if a subject experiences an event at an event time the entrie is set to -1

Usage

```
create_risk_and_event_matrix(training_dataset, ordered_event_times)
```

Arguments

```
training_dataset
data frame representing the training data
ordered_event_times
data frame of all event times ordered in ascending order
```

Value

List \$r_mat matrix indicating at risk at every event time for subjects \$e_mat matrix indicating if subjects are at risk and if they are experiencing an event at any event time

create_svhm 5

Description

predicts the event times of a given dataset using cross validation for the cost parameter. Final model includes predicted event times as well as parameters to predict new event times from subject who are not in df. All values of covariates are first normalized to the intervall [0,1] before the SVHM algorithm is applied. The cost parameter for the final model is chosen with the best pearson correlation.

Usage

```
create_svhm(
   df,
   covariates,
   cross_validation_val,
   cost_grid,
   varName_cencored,
   varName_futime,
   k = 3,
   test_size = 0.2,
   opt = "osqp",
   gamma_squared = 0.5,
   choose = "c"
)
```

Arguments

df data frame covariates vector of name of covariates cross_validation_val number of subset to use for cost optimization grid of all cost parameter to be optoimzed uponl cost_grid varName_cencored name of variable in df that indicates cencoring varName_futime name of variable in df that indicates event time integer of how many nearest event times are used to predict the event time (default is 3) size of final test set in precent test_size which quadratic optimization is used (opt='mosek' or opt='osqp') width of gaussian kernel gamma_squared optional parameter which decides if the C-index or the pearson correlation is choose used to determine the optimal cost parameter. Values are either 'c' for the C-Index or 'p' for the pearson correlation

6 create_time_svhm

Value

trained model with \$e_vec vector indicating vector containing information if a subject is at risk or if an event happens. If n are the number of subjects and m the number of event times, then event_vec has length n*m, \$k_mat kernel matrix, \$sol calculated optimal solution, \$t_predict test dataset with risk scores risk and t_predict, \$p_corr pearson correlation of the predicted times \$C_indes C-Index

Note

The mosek package requires a license

Examples

```
{
library(KMsurv)
library(SVHM)
##############
# Parameters #
##############
gamma_squared <- 100</pre>
k <- 1
cross_validation_val <- 3</pre>
test_size=.3
cost_grid <- 2^c(-6:6)
covariates <- c('z7')</pre>
######################
# Model prediction #
########################
data(bmt)
model <- create_svhm(bmt, covariates, cross_validation_val, cost_grid, varName_cencored="d3", varName_futime</pre>
```

 $\verb|create_time_svhm|$

Train Time Dependent SVHM

Description

Calculates the Risk score and the value of the prediction function for each individual in the data set.

Usage

```
create_time_svhm(
  df,
  covariates,
  cost,
```

create_time_svhm 7

```
varName_cencored,
varName_futime,
start_interval,
end_interval,
test_size = 0.3,
opt = "osqp",
gamma_squared = 0.5
```

Arguments

df data frame vector of name of covariates covariates cost parameter to be used cost varName_cencored name of variable in df that indicates cencoring varName_futime name of variable in df that indicates event time start_interval name of variable that indicates when the interval starts end_interval name of variable that indicates when the interval ends test_size size of final test set in precent which quadratic optimization is used (opt='mosek' or opt='osqp') opt width of gaussian kernel gamma_squared

Value

trained model with \$e_vec vector indicating if an event happens at each event time \$sol calculated optimal solution for each event time \$train train dataset with risk scores \$test test dataset with risk scores cost cost parameter

Note

In contrast to the create_svhm() function this function does not predict event times!

8 normalize

```
data(csl)
time_model <- create_time_svhm(csl, c("sex", "age"), cost, varName_cencored='dc', varName_futime='eventT', st
}</pre>
```

data_at_time

data_at_time

Description

Retrieves the relevant data for each individual at every event time.

Usage

```
data_at_time(i, j, df, times)
```

Arguments

i index of individualsj index of event time

df list of dataframes of the individuals

times dataframe of event times

Value

row of data for i-th individual if the individual is still under risk, otherwise return row of NA.

normalize

Normalize

Description

normalizes a vector

Usage

```
normalize(df, covariates)
```

Arguments

df dataframe

col columns to be normalized

Value

normalized columns of dataframe

optimization_data 9

Examples

```
{
Example with the preloaded mtcars dataset
SVHM:::normalize(mtcars, c('disp', 'hp'))
}
```

optimization_data

Optimization Data

Description

calculates all needed values to execute quadratic optimization in SVHM

Usage

```
optimization_data(
  covariates,
  training_dataset,
  ordered_event_times,
  gamma_squared = 0.5,
  d = 1
)
```

Arguments

```
covariates dataset of covariates of the subjects in a dataset

training_dataset

data frame representing the trainings dataset

ordered_event_times

data frame of all event times ordered in ascending order

gamma_squared width of gaussian kernel

d degree of polynomial kernel

type Type of kernel, either 'gauss' or 'poly' for gaussian or polynomial kernel
```

Value

List \$r_vec vector representing at which event times the subjects are under risk \$adap_kernel_mat matrix on which quadratic optimization will be performed \$c_mat matrix representing the constraints of the optimization problem \$w_vec vector of weights at any event time for all subjects \$kernel_mat Gram matrix of covariates \$e_vec vector indicating vector containing information if a subject is at risk or if an event happens. If n are the number of subjects and m the number of event times, then event_vec has length n*m,

10 opt_sol_mosek

```
optimization_time_data
```

Time Dependent Optimization Data

Description

calculates all needed values to execute quadratic optimization for the time dependent SVHM at the given event time.

Usage

```
optimization_time_data(covariates, mat_train, event_time, gamma_squared = 0.5)
```

Arguments

covariates dataset of covariates of the subjects in a dataset
mat_train matrix of all individuals under risk at the event time

event_time event time for which data is calculated

gamma_squared width of gaussian kernel

Value

List \$adap_k_mat matrix on which quadratic optimization will be performed \$w_vec vector of weights at any event time for all subjects \$k_mat Gram matrix of covariates \$e_vec vector indicating vector containing information if a subject experiences an event.

opt_sol_mosek

Optimal solution of SVHM

Description

Uses the Rmosek package to solve the quadratic optimization problem defined by SVHM.

Usage

```
opt_sol_mosek(optimizazion_data, num_event_times, cost)
```

Arguments

num_event_times

number of event times in the training dataset

cost cost parameter of the support vector machine of type numeric

optimization_data

all values needed for optimization in a list with order (risk_vector, adapted_kernel_matrix, cond_mat, weight_vec)

Value

optimal solution for the SVHM

opt_sol_osqp

Note

Rmosek requires a license to use!

opt_sol_osqp

Optimal solution of SVHM

Description

Uses the osqp package to solve the quadratic optimization problem defined by SVHM.

Usage

```
opt_sol_osqp(optimizazion_data, num_event_times, cost)
```

Arguments

num_event_times

number of event times in the training dataset

cost

cost parameter of the support vector machine of type numeric

optimization_data

all values needed for optimization in a list with order (risk_vector, adapted_kernel_matrix,

cond_mat, weight_vec)

Value

optimal solution for the SVHM

opt_time_sol_mosek

Optimal solution of time dependent SVHM

Description

Uses the Rmosek package to solve the quadratic optimization problem defined by SVHM.

Usage

```
opt\_time\_sol\_mosek(e\_vec, k\_mat, w\_vec, cost)
```

Arguments

e_vec vector indicating if a subject experienced an event at an event time

k_mat matrix

w_vec weight vector

cost cost parameter of the support vector machine of type numeric

Value

optimal solution for the time dependent SVHM

Note

Rmodek package requires a licence!

12 predict_event_time

Description

Uses the osqp package to solve the quadratic optimization problem defined by the time dependent SVHM.

Usage

```
opt_time_sol_osqp(e_vec, k_mat, w_vec, cost)
```

Arguments

e_vec vector indicating if a subject experienced an event at an event time

k_mat matrix

w_vec weight vector

cost cost parameter of the support vector machine of type numeric

Value

optimal solution for the time dependent SVHM

Predict Event Time of a subject	
	Predict Event Time of a subject

Description

calculate the predicted event time of an individual

Usage

```
predict_event_time(df, x, k = 3, rounding = "ceil")
```

Arguments

df dataframe of non censored subjects in the training set
x Risk score of the individual which will be predicted upon

k integer of how many nearest event times are used to predict the event time (de-

fault is 3)

rounding Options are 'ceil', 'floor' and 'no'. (default is 'ceil')

Details

This function predicts the event time of a subject based on the k closest risks subjects in the training dataset of non cencored individuals df. The risks in df are ranked and the predicted event time is the average of the k event times that coincide with the rank of the k closest risks. The predicted event time is rounded up to integers by default. A vectorized version predict_event_time_vec() for the parameter x exists.

radial_kernel 13

Value

predicted event time

References

Wang, Y., Chen, T., and Zeng, D. Support vector hazards machine: A counting process framework for learning risk scores for censored outcomes. Journal of Machine Learning Research, 17(167):1-37, 2016

radial_kernel

Gaussian Kernel

Description

calculates the Gaussian Kernel value of two inputs

Usage

```
radial_kernel(x, y, gamma_squared)
```

Arguments

```
x first input vectory second input vectorgamma_squared width of the kernel
```

Value

gaussian kernel value

```
{
x <- runif(n=10)
y <- runif(n=10)
SVHM:::radial_kernel(x,y,.5)
}</pre>
```

14 risk_score

radial_kernel_mat

Gaussian Kernel Matrix

Description

calculates the gaussian kernel value of the covariates with each other. calculated matrix will be symmetric

Usage

```
radial_kernel_mat(covariates, gamma_squared)
```

Arguments

```
covariates dataset of covariates of the subjects in a dataset gamma_squared width of the kernel
```

Value

gaussian kernel matrix

Examples

```
{
# Example with the preloaded mtcars dataset
covariates <- subset( mtcars, select = c('drat', 'wt') )
SVHM:::radial_kernel_mat(covariates,.5)
}</pre>
```

risk_score

risk scores

Description

calculates the risk scores for one individual with the help of the calculated optimal solution to the quadratic programming problem of SVHM and the kernel matrix of the covariates of the test dataset.

Usage

```
risk_score(
  gamma_sol,
  event_vec,
  v,
  covariates_train,
  num_event_times,
  gamma_squared = 0.5,
  d = 1
)
```

risk_score_training 15

Arguments

gamma_sol optimal solution of the SVHM

event_vec vector containing information of the training if a subject in the training dataset

is at risk or if an event happens. If n are the number of subjects in the training dataset and m the number of event times in the training dataset, then event_vec

has length n*m

v covariates of the individual for which the risk is to be calculated

covariates_train

dataset of covariates of the subjects in the training dataset

num_event_times

number of event times that occour in the training data set

gamma_squared width of gaussian kernel
degree of polynomial kernel

type Type of kernel, either 'gauss' or 'poly' for gaussian or polynomial kernel

Value

risk score of the individual

Note

The calculated risk score is not the actual risk scores defined by the Risk function but it induce an ordering of the risk scores. For detailed information see reference

References

Wang, Y., Chen, T., and Zeng, D. Support vector hazards machine: A counting process framework for learning risk scores for censored outcomes. Journal of Machine Learning Research, 17(167):1-37, 2016

Description

calculates the risk scores for all individuals in the training dataset.

Usage

```
risk_score_training(
  gamma_sol,
  kernel_mat,
  event_vec,
  num_event_times,
  training_set_size
```

risk_time_score

Arguments

```
gamma_sol optimal solution of the SVHM kernel_mat Gram matrix of the covariates num_event_times
```

number of event times that occour in the training data set

Value

vector of risk scores for all training subjects

Note

The calculated risk scores are not the actual risk scores defined by the Risk function but the induce an ordering of the risk scores. For detailed information see reference

References

Wang, Y., Chen, T., and Zeng, D. Support vector hazards machine: A counting process framework for learning risk scores for censored outcomes. Journal of Machine Learning Research, 17(167):1-37, 2016

risk_time_score

risk time scores

Description

calculates the risk scores for one individual with the help of the calculated optimal solution to the quadratic programming problem of time dependent SVHM at time j.

Usage

```
risk_time_score(
  gamma_sol,
  event_vec,
  weight_vec,
  v,
  covariates_train,
  n,
  gamma_squared = 0.5
)
```

Arguments

gamma_sol optimal solution of the SVHM

event_vec vector containing information of the training if a subject experiences an event

happens.

weight_vec vector containing weigths

v covariates of the individual for which the risk is to be calculated

covariates_train

dataset of covariates of the subjects in the training dataset

n number of individuals in the training dataset

gamma_squared width of gaussian kernel

risk_time_score_training

17

Value

\$f_at_j decision function at j \$risk_at_j risk score of the individualat time j

```
risk_time_score_training
```

Training risk time scores

Description

calculates the risk scores for all individuals in the training dataset for the time dependent SVHM.

Usage

```
risk_time_score_training(kernel_mat, event_vec, weight_vec, f_vec, n)
```

Arguments

kernel_mat Gram matrix of the covariates event_vec vector containing information of the training if a subject experiences an event happens. weight_vec vector containing weigths f_vec optimal decision function

number of individuals in the training dataset n

Value

vector of risk scores for all training subjects

Train SVHM train_svhm

Description

Uses the Rmosek or osqp package to train the SVHM on a given training and test set. Names of the cencoring variable and event variable mus be death and futime

Usage

```
train_svhm(
  train,
  test,
  covariates,
  cost,
  k = 3,
  opt = "osqp",
  gamma\_squared = 0.5
```

18 train_svhm

Arguments

train training dataset

test test dataset

covariates vector of name of covariates

cost cost parameter of the support vector machine of type numeric

k integer of how many nearest event times are used to predict the event time (default is 3)

opt which quadratic optimization is used (opt='mosek' or opt='osqp')

gamma_squared width of gaussian kernel

Value

trained model with \$e_vec vector indicating vector containing information if a subject is at risk or if an event happens. If n are the number of subjects and m the number of event times, then event_vec has length n*m, \$k_mat kernel matrix, \$sol calculated optimal solution, \$t_predict test dataset with risk scores risk and t_predict, \$p_corr pearson correlation of the predicted times \$C_indes C-Index

Note

The mosek package requires a license

```
{
library(KMsurv)
library(SVHM)
data(bmt)
df<-bmt[1:40,]
# shuffle data
rows <- sample(nrow(df))</pre>
df <- df[rows, ]</pre>
covariates <- c('z3', 'z4')</pre>
# censoring variable and event variable need to have names "death" and "futime"
names(df)[names(df) == "d3"] <- "death"</pre>
names(df)[names(df) == "t2"] <- "futime"</pre>
n<-floor(nrow(df)/2)</pre>
train<- df[(1:n), ]</pre>
test<- df[-(1:n), ]
train_svhm(train, test, covariates, 10, .5, k=1, opt='osqp')
```

train_time_svhm 19

train_time_svhm

Train time dependent SVHM

Description

Uses the Rmosek or osqp package to train the time dependent SVHM on a given training and test set. The training calculates the risk scores and the optimal decision function values for each individual at every event time of the training set. The columns of the dataset must contain id, futime, death, covariates, lt, rt where lt and rt are the start and end times of each time interval. the death column must also be logical values.

Usage

```
train_time_svhm(
  train,
  test,
  covariates,
  cost,
  opt = "osqp",
  gamma_squared = 0.5
```

Arguments

```
train training dataset

test test dataset

cost cost parameter of the support vector machine of type numeric

opt which quadratic optimization is used (opt='mosek' or opt='osqp')

gamma_squared width of gaussian kernel
```

Value

trained model with \$e_vec vector indicating if an event happens at each event time \$event_times ordered event times of the training dataset \$sol calculated optimal solution for each event time \$train train dataset with risk scores \$test test dataset with risk scores

```
{
library(timereg)
library(SVHM)

data(csl)

df <- csl

names(df)[names(df) == "dc"] <- "death"

names(df)[names(df) == "eventT"] <- "futime"

df <- transform(df,</pre>
```

20 weight_mat

```
death = as.logical(death))

df<-split(df, df$id)

df[sample(1:length(df))]

partition <- SVHM:::createListPartition(df, 1, test_size=.3)

df_test <- partition$"test"

df_train <- partition[["1"]]

trained_model <- train_time_svhm(df_train, df_test, c("sex"), 10, opt="osqp", gamma_squared=100)
}</pre>
```

weight_mat

Weight matrix

Description

calculates the weights for every individual in the training dataset at every event time. If an individual experiences an event the weight is given by the ratio of at risk subjects with no event to all at risk subjects. If no event is experienced the weight is given by the ratio of one over all at risk subjects.

Usage

```
weight_mat(training_dataset, ordered_event_times)
```

Arguments

```
training_dataset
data frame representing the training data
ordered_event_times
data frame of all event times ordered in ascending order
```

Value

matrix storing all weights for every individual

```
{
training <- data.frame(id =c(1:5), futime= sort(runif(5)), death = c(TRUE, FALSE, TRUE, TRUE), Y=c(5,4,3)
times <- subset(training[training$death==TRUE,], select=sort(futime))
SVHM:::weight_mat(training, times)
}</pre>
```

Index

```
condition_mat, 2
create_risk_and_event_matrix, 4
create_svhm, 5
create_time_svhm, 6
createDataPartition, 2
{\tt createListPartition}, 3
data_at_time, 8
normalize, 8
opt_sol_mosek, 10
opt_sol_osqp, 11
\verb"opt_time_sol_mosek", \verb"11"
opt_time_sol_osqp, 12
{\tt optimization\_data}, {\color{red} 9}
{\tt optimization\_time\_data}, 10
predict_event_time, 12
radial_kernel, 13
radial_kernel_mat, 14
risk_score, 14
risk_score_training, 15
risk_time_score, 16
risk_time_score_training, 17
train_svhm, 17
train\_time\_svhm, 19
weight_mat, 20
```