

Appl. No. 10/532,027
 Reply to Office Action of April 19, 2007

Amendments to the Claims:

This listing of claims will replace all prior versions, and
 listings, of claims in the application:

Listing of Claims:

Claims 1-3 (Canceled)

4. (Currently amended) A [[The]] pyrrole derivative for [[the]] an
 organic electroluminescent element represented by one of Formulae (7)
 to (11) [[(10)]]:

Formula (7)

Formula (9)

Formula (8)

Formula (10)

Appl. No. 10/532,027
Reply to Office Action of April 19, 2007

wherein:

R_{16} , R_{19} , R_{22} and R_{25} each represent an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent or a heterocyclic group which may have a substituent;

R_{17} , R_{18} , R_{20} , R_{21} , R_{23} , R_{24} , R_{26} , and R_{27} each represent a substituent;

n_4 represents an integer of 0 to 4; and

n_5 through n_{11} each represent an integer of 0 to 3;

and

Formula (11)

Appl. No. 10/532,027
Reply to Office Action of April 19, 2007

wherein:

R₂₈, and R₂₉ each represent a hydrogen atom or a substituent;
Z₉ and Z₁₂ each represent a group of atoms necessary to form a 5-
to 7-member fused ring;

Z₁₀ and Z₁₁ each represent a group of atoms necessary to form a
nitrogen-containing 5-to 7-membered heterocycle;

L represents a linking group of divalent through tetravalent; and
m and n each represent an integer of 1 or 2.

Claims 5-6 (Cancelled)

7. (Currently amended) An [[The]] organic electroluminescent
element comprising a pair of electrodes having therebetween one or
more constituting layers, wherein:

at least one of the constituting layers is a light emitting
layer;

one of the constituting layers contains the pyrrole derivative
for the organic electroluminescent element of claim 1 represented by
the following Formula (1), and having a molecular weight of not less
than 450:

Formula (1)

Appl. No. 10/532,027
Reply to Office Action of April 19, 2007

wherein:

R₁ represents an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent or a heterocyclic group which may have a substituent;

R₂ represents a hydrogen atom or a substituent;

Z₁ represents a group of atoms necessary to form a 5-to 7-membered fused ring combined with two carbon atoms; and

Z₂ represents a group of atoms necessary to form a nitrogen-containing 5-to 7-membered heterocycle combined with a carbon atom and a nitrogen atom.

8. (Original) The organic electroluminescent element of claim 7, wherein the light emitting layer contains the pyrrole derivative for the organic electroluminescent element.

Appl. No. 10/532,027
Reply to Office Action of April 19, 2007

9. (Previously presented) The organic electroluminescent element of claim 7, wherein the constituting layers contain a hole blocking layer containing the pyrrole derivative for the organic electroluminescent element.

10. (Previously presented) The organic electroluminescent element of claim 7, wherein the organic electroluminescent element emits blue light.

11. (Previously presented) The organic electroluminescence element of claim 7, wherein the organic electroluminescent element emits white light.

12. (Previously presented) An illuminator comprising the organic electroluminescent element of claim 7.

13. (Previously presented) A display device comprising the organic electroluminescent element of claim 7.

14. (New) The organic electroluminescent element of claim 7, wherein the pyrrole derivative is represented by Formula (2)

Appl. No. 10/532,027
Reply to Office Action of April 19, 2007

Formula (2)

wherein:

Ar₁ represents an aryl group which may have a substituent, or a heterocyclic group which may have a substituent;
R₃ represents a hydrogen atom or a substituent; and
Z₃ and Z₄ each represent a group of atoms necessary to form a 5- to 7-member fused ring.

15. (New) The organic electroluminescent element of claim 7,
wherein the pyrrole derivative is represented by one of Formulae (3)
to (6):

Formula (3)

Formula (5)

Formula (4)

Formula (6)

Appl. No. 10/532,027
Reply to Office Action of April 19, 2007

wherein:

R_4 , R_7 , R_{10} and R_{13} each represent an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent or a heterocyclic group which may have a substituent;

R_5 , R_6 , R_8 , R_9 , R_{11} , R_{12} , R_{14} , and R_{15} each represent a substituent;

Z_5 through Z_8 each represent a group of atoms necessary to form a 5-to-7-membered fused ring;

n_1 represents an integer of 0 to 3; and

n_2 and n_3 each represent an integer of 0 to 2.

16. (New) The organic electroluminescent element of claim 7, wherein the pyrrole derivative is represented by one of Formulae (7) to (10):

Appl. No. 10/532,027
Reply to Office Action of April 19, 2007

Formula (7)

Formula (9)

wherein:

R₁₆, R₁₉, R₂₂ and R₂₅ each represent an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent or a heterocyclic group which may have a substituent;

R₁₇, R₁₈, R₂₀, R₂₁, R₂₃, R₂₄, R₂₆, and R₂₇, each represent a substituent;

n₄ represents an integer of 0 to 4; and

n₅ through n₁₁ each represent an integer of 0 to 3.

17. (New) The organic electroluminescent element of claim 7, wherein the pyrrole derivative is represented by Formula (11)

Formula (8)

Formula (10)

Appl. No. 10/532,027
 Reply to Office Action of April 19, 2007

Formula (11)

wherein:

R_{28} , and R_{29} each represent a hydrogen atom or a substituent;

Z_9 , and Z_{12} each represent a group of atoms necessary to form a

5-to 7-membered fused ring;

Z_{10} and Z_{11} each represent a group of atoms necessary to form a nitrogen-containing 5-to 7-membered heterocycle;

L represents a linking group of divalent through tetravalent;

and

m and n each represent an integer of 1 or 2.

18. (New) The organic electroluminescent element of claim 7
 wherein a wavelength giving a fluorescence maximum of the pyrrole
 derivative represented by Formula (1) or Formula (2) is not more
 than 500 nm.

Appl. No. 10/532,027
Reply to Office Action of April 19, 2007

19. (New) The organic electroluminescent element of claim 14
wherein a wavelength giving a fluorescence maximum of the pyrrole
derivative represented by Formula (1) or Formula (2) is not more
than 500 nm.

20. (New) The organic electroluminescent element of claim 15
wherein a wavelength giving a fluorescence maximum of the pyrrole
derivative represented by Formula (1) or Formula (2) is not more
than 500 nm.

21. (New) The organic electroluminescent element of claim 16
wherein a wavelength giving a fluorescence maximum of the pyrrole
derivative represented by Formula (1) or Formula (2) is not more
than 500 nm.

22. (New) The organic electroluminescent element of claim 17
wherein a wavelength giving a fluorescence maximum of the pyrrole
derivative represented by Formula (1) or Formula (2) is not more
than 500 nm.