EIC0009 | COMPLEMENTOS DE MATEMÁTICA | 1º ANO - 2º SEMESTRE

Prova sem consulta. Duração: 2h.

1ª Prova de Reavaliação

- * Não são consideradas as folhas sem identificação. Justifique convenientemente todos os cálculos que efetuar;
- *A desistência só é possível após 1 hora do início da prova;
- * Não é permitida a utilização de máquinas de calcular gráficas nem de microcomputadores.
- **1.** [4,0] Considere a função de campo escalar $f(x, y, z) = e^{x+y} + z\cos(z)$. Calcule a derivada direcional da função no ponto P = (1, -1, 0), segundo a direção definida pelo vetor tangente à curva $\mathbf{r}(t) = (\cos t, -1 + 2\sin t, 0)$, $t \ge 0$, nesse ponto P.
- **2.** [4,5] Seja a superfície definida pela equação $x^2y + xy^2 + z = 1$. Obtenha:
 - a) Um vetor normal à superfície no ponto Q = (1,0,1).
 - **b)** A equação cartesiana do plano tangente à superfície em Q.
- **3.** [5,0] Considere a curva fechada descrita pela função vetorial $r(t) = (5\cos t, 4\sin t, 3\sin t)$, $t \in [0, 2\pi]$. Determine:
 - a) O versor da tangente à curva no ponto $P = r(\pi/2)$.
 - **b**) A equação cartesiana do plano osculador à curva em *P*.
 - c) O comprimento da curva.
- **4.** [4,5] Seja a equação $e^{yz} + \cos(x) + y^2 + z = 3$. Admitindo que a equação define implicitamente z = f(x, y), calcule:
 - a) As derivadas parciais $\frac{\partial z}{\partial x}$ e $\frac{\partial^2 z}{\partial x^2}$.
 - b) Os valores das derivadas parciais anteriores em f(0,0).
- **5.** [2,0] Seja S uma superfície em \mathbb{R}^3 definida pela equação cartesiana x = f(y,z). Mostre que a área de S é dada por $\iint_T \sqrt{1 + (\partial f/\partial y)^2 + (\partial f/\partial z)^2} \, dy dz$, em que T é a região do plano coordenado yOz onde se projeta S.