FEB. 6. 2006 8:08PM ENZO BIOCHEM NO. 7993 P. 80

Stavrianopoulos et al., Serial No. 08/486,070 (Filed June 7, 1995) Exhibit 6 [Fifth Supplemental ID -- February 6, 2006]

EXHIBIT 6

NATUE

coli rR slumin

The

188 cos tional

extract

of incu

f the b

the san ពិទនារច ទ àn an I per cer RNA DNA, I at sam TTo r eteroeta fixed fe form (: Edded. action.

hydrat g**lyce**rii роге, б

Dens

tiaauo i

for 10 Anneal CONTAIL

hamste

on filt Spiegel

The sp 2×850

for 1 h

ar-drie

in elida

washin kons. Prore a were d

periods with E

etsined directly

membr ion oi Micr

ained:

ļn brai

the nu

larly a

gonnide

Similar Liucleol

falso in

presenc miclei all cas absent,

probab

Hician

greater of the

mìght 1 and in or its

<u> Paperin</u>

To v

tructu bybridi

H.R erin

NATURE VOL 225 MARCH 7 1970

pH 8.0 (0.05 M Tris-HCl buffer) using 16 V/cm for 1 h. The two virus bands, located by staining a portion of the gel as described here, were cut out and the virus particles were eluted by vigorous stirring with 0.03 M sodium phosphate buffer, pH 7.6. Viruses from each band were examined with the electron microscope using negative staining with phosphotungstic acid, and found to consist of polyhedral particles, both of similar diameter (25-30 In addition, the slow virus preparation contained small numbers of larger polyhedral particles (40-45 nm

Polyactylamide sel electrophoresis in TAE buster. Anode at gel. 5 mA/tube (internal diameter 5 mm). g. Unseparated inferent virus (2-5 h) stained with amide black; b. RNA prepared from a (1-6 h) stained with actidine orunge.

The two smaller viruses were serologically distinct. In gel diffusion tests, using the antiserum described here, two precipitin lines were obtained, both with the unfractionated virus preparations and with mixtures of the separated viruses. Separately the slow and fast viruses each yielded a single precipitin line. The two lines crossed over each other indicating non-identity of the two immunogens (Fig. 2). Examination of each precipitin line electron microscopically revealed the presence of only the smaller virus particles (25-30 nm diameter). The larger particles (40-45 nm diameter) did not give rise to a precipitin line with the antiserum used, and further investigation is required to determine if they are sero-logically related to either of the two smaller viruses.

Previous work has established that the viral RNA from P. stoloniferum is double stranded?.? with a sedimentation coefficient of 10-12S. Because this RNA was prepared without separation of the individual viruses it was suspected that it may have been a mixture. RNA prepared from the natural mixture of the three viruses by the phenol method has now been examined by polyacrylamide gel electrophoresie (4 per cent acrylamide, 0-04 per cent methylene bis-acrylamide, TAE buffer) and found to give three principal bands (Fig. 2). Further characterization of the RNAs from the individual viruses is in progress.

Fig. 2. Serological gal-diffusion plate. A. Antiserum; V. unseparated virus; F. fast virus; S. alow virus.

We thank Professor Sir Ernst Chain for his interest and advice, Mr G. T. Banks for pilot plant fermentations and Mrs Joan E. Darbyshire for electron microscopy.

> K. W. Buck GILLIAN F. KEMPSON-JONES

Department of Biochemistry, Imperial College of Science and Technology, London SW7.

Received Jamuary 2, 1970.

Ellis, L. F., and Kleinschmidt, W. J., Yelere, 215, 649 (1967).
 Banks, G. T., Beck, K. W., Chain, E. B., Himmelweit, F., Marks, J. E., Tyler, J. M., Hallings, M., Last, F. T., and Stone, O. M., Nature, 213, 542 (1968).

Kleinschmidt, W. J., Elle, L. P., Yan Frank, B. M., and Murphy, E. B., Nature, 220, 167 (1968).

Smith, I., Chromatographic and Electrophoretic Techniques, 2, 382 (Heinemann, London, 1068).

^a Richarda, E. G., Coll, J. A., and Gratzer, W. B., Anol. Diochem., 12, 452 (1965).

Franklin, R. M., Proc. US Nat. Acad. Sci., 55, 1504 (1968).

Autoradiographic Detection of Molecular Hybrids between rRNA and DNA in Tissue Sections

We describe here a method for DNA-RNA hybridization which permits one to localize, at the microscopical level, molecular hybrids formed between a purified H-labelled RNA species and DNA in the cell structures of tissue sections.

Chinese hamster cells of the CHEF 125 strain were grown in monolayer cultures in Eagle's minimal essential medium supplemented with 10 per cent calf serum. In order to label the rRNA to a high specific activity, H-5uridine (Radiochemical Centre, Ameraham, 19 Ci/mmole) was added to the cultures at 30 µCi/ml. for three generations; a half-generation chase with non-radioactive uniding followed. For the same purpose the Escherichia coli 500 Hfr U- uracil requiring strain was grown for several generations in synthetic medium' in the presence of 'H-5uridine (10 Ci/mmole; 20 µCi/ml.); a hundred fold excess of non-radioactive uridine was then added for about half a generation. Hamster rRNA was extracted from total cells and purified by sucrose gradient centrifugations. E.

PAGE 81/137 * RCVD AT 2/6/2006 7:49:12 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-6/30 * DNIS:2738300 * CSID:2125830150 * DURATION (mm-ss):41-24

coli rRNA was extracted from cells, by grinding with

clumina, following the same procedure.

The hamster 'H-RNA (equimolar mixture of 28S and 18S components) studied here has been tested in conventional hybridization experiments with purified DNA extracted from hamster cells. The temperature and time of incubation (65° C for 14 h) and ribonuclease treatment of the hybrids (10 µg/ml. at room temperature for 1 h) were the same as those for the hybridization experiments with tissue sections. In these conditions, esturation was reached at an RNA concentration of about 2 µg/ml.; about 0.02 per cent of the DNA was hybridized at esturation. H rRNA from E. coli hybridized negligibly with hamster DNA, but the expected level of hybridization (0.2 per cent at saturation) was obtained with DNA from E. coli.

To minimize the effects of the fixative on the DNA structure, golden hamster brain and liver were usually fixed for 3 h in a mixture of absolute alcohol and chloroform (2:1); in some cases 10 per cent acetic acid was added. The tissues were then embedded in paraffin and sectioned at 5 µm. Following removal of the paraffin and hydration, the sections were mounted on slides with glycerin-albumin or collected on membrane filters (Milli-

pore, GS type, pore size 0-22 µm).

est and ons and

ONES

lization al level

labelled,

f tissue

in were

ssential

1m, In y, 1H-52

'mmole)

genera

uridine

coli 500

several of "H.5.

seeoxe k

out half

m total;

ona.

Denaturation of DNA was carried out by heating the tissue sections, on filters or alides, in SSC/10 at 100° C for 10 min (SSC=0.15 M NaCl-0.015 M sodium citrate). Annealing was then performed at 65° C for 14 h in 2 x SSC containing 3 µg/ml. of purified H-rRNA from Chinese hamster (1,250,000 d.p.m./µg). From then on the sections on filters were treated as described by Gillespie and Spiegelmana for conventional DNA-RNA hybridization. The specimens were thoroughly washed by filtration with 2×8SC and then treated with ribonuclease (10 µg/ml.) for 1 h at room temperature in 2×88C. After another washing, by filtration with 6 x SSC, the specimens were sir-dried and prepared for autoradiography. For sections on slides the same procedure was followed except that the washing was performed by several changes of SSC solutions. After the hybridization procedure, the sections were air-dried and the filters glued on slides. All slides were dipped in undiluted Kodak NTB 2 emulsion, airdried and exposed in a dry atmosphere at 0° 4° C for periods from 20 to 60 days. Processing was carried out with Kodak D-19 developer. The slides were usually The slides were usually The sections, attached stained with haematoxylin. directly to slides, were mounted with a coverslip. The membrane filters were air-dried and clarified with immer-

Microscopic examination of the autoradiographs obtained in this way revealed that most audei were labelled. In brain sections this labelling was chiefly restricted to the nucleolar regions (Fig. 1C). Neural calls are particularly suitable for this kind of observation because of the considerable size of their nuclei and nucleoli (Fig. 1.4). Similarly, liver cells showed a grain concentration in the nucleoli (Fig. 1D) but silver grains sometimes appeared also in other nuclear regions. This may result from the presence of several smaller nucleoli (Fig. 1B) in these nuclei which are known frequently to be polyploid. In all cases the cytoplasmic labelling was very weak or absent, especially in the case of sections on filters. This is probably because the washing by filtration is more efficient. On the other hand, the nuclear labelling was greater in sections mounted on filters, probably because of the binding of the denatured DNA to the filters which might result in a decrease in the loss of DNA from sections and in less renaturation of DNA. For these reasons and for its simplicity the filter method was preferred in our

experiments.

To verify that the binding of H-RNA to the nuclear

To verify that the binding of specific DNA-RNA hybridization, a heterologous radioactive rRNA (B. coli H-rRNA; 1,200,000 d.p.m./µg) was used in hybridization experiments on tissue sections following the method

Fig. 1. Sections from hamster brain (A) and fiver (B) fixed in alcohol-chloroform and stained with hamsaterylin. Autoradiographs (expected time 30 days) of first (C and E) and liver (D and E) earlies after hybridization with hamster "H-rRNA (I and D) and E, cots "H-rRNA (B and F). Fixetion and staining as (or (A) and (B). The bar represents 10 sem.

described. Fig. 1E and 1F demonstrate that there is no labelling in the cells. Further evidence for the specificity of the hybrids obtained in tissue sections comes from competition experiments. The annealing reaction was carried out as described but in the presence of non-radioactive RNA in a ten-fold excess with respect to hamster H-rRNA. When the non-radioactive RNA was home. logous (hamster rRNA) to the radioactive RNA, the labelling of the nuclei and nucleoli was drastically diminished, while the addition of non-radioactive heterologous RNA (E. coli rRNA) lowered the nuclear and nucleolar labelling only slightly.

In all the experiments we have described the ribo-

nuclease treatment following the hybridization was performed at a concentration of 10 µg/ml. at room temperature for 1 h. The suppression of this step resulted in a net increase of the grain number in the nuclei and nucleoli; a ribonuclease concentration of 100 µg/ml. (1 h at room temperature) reduced partially (30-50 per cent) the labelling as compared with the 10 µg/ml. ribonuclease treatment. In experiments with E. coli *H-rRNA, even in the absence of ribonuclease treatment, the grain count was at background level.

If the DNA thermal denaturation step (100°C in SSC/10 for 10 min) is omitted some hybridization still occurs on alcohol-chloroform fixed tissues. It is possible

that the prolonged heating at 65° C during the annealing incubation is sufficient to loosen somewhat the DNA structure and to allow a certain degree of hybridization; a more likely explanation is that, during the histological procedure for paraffin embedding, conditions are such as to cause DNA denaturation. When there was acetic acid in the fixative solution, the hybridization seemed to be about the same with or without the thermic denaturation step, probably because of the denaturing action of acetic acid.

The number of silver grains found in hybridization experiments with hamster H-rRNA averaged fifty per nucleus in 30 days' exposure time, when the 10 µg/ml, ribonuclease treatment was adopted. There is, however, considerable variability-from ten to ninety grains per nucleus—because only part of the nucleus is present in each section. These values are of the order of magnitude expected on the basis of the number of rRNA genes per cell, the specific activity of the H-rRNA used and the efficiency of the autoradiographic method (about 100 grains per nucleus in 30 days' exposure time).

While this manuscript was in preparation two articles by Gall and Pardue and by John, Birnstiel and Jones appeared which describe similar in situ hybridization techniques.

We thank Professor A. Lima-de-Faria for assistance in the preparation of this manuscript,

M. Buongiorno-Nardelly

Istituto di Istologia ed Embriologia, Facoltà di Scienze, Università di Roma, Italy.

F. AMALDI

Centro degli Acidi Nucleioi del C.N.R., Istituto di Fisiologia Generale, Università di Roma, Italy.

Received August 8; revised October 14, 1989.

Cohen, S. S., J. Biol. Chem., 177, 807 (1949).

² Attardi, G., Parnas, H., Hwang, M.-I. H., and Attardi, B., J. Mol. Biol., 30, 145 (1980).

Gillespie, D., and Spiegolman, S., J. Mel. Biol., 12, 829 (1965).
 Gall, J. G., and Pardue, M. L., Proc. US Nat. Acad. Sci., 63, 878 (1969).
 John, H. A., Elrastici, M. L., and Jones, K. W., Fature, 223, 582 (1969).

Rare Bases in Animal DNA

THE rare bases which occur in animal DNA deserve special attention because their presence is directly relevant to questions concerning the cellular, subcellular and species specificity of DNA methylation. In animal DNA, the base 5-methylcytosine (5-MeCyt) is usually detected. Numerous attempts to find N-methyladenine (6-MeAds)— do not contain the enzymes required for methylating DNA at adenine residues. Nevertheless, 6-MeAde and certain No methylated derivatives of guanine have been recently discovered in appreciable amounts in bovine and human sperm DNA¹⁰. Our present knowledge on the specificity of DNA methylation in animal cells is not only scanty but also contradictory.

We report here a comparative atudy of the content of 5-McCyt in the DNA of invertebrate and vertebrate animale belonging to different taxonomic groups. Further, we have studied the degree of methylation of the DNA in the sperm and different somatic tissues of the same enimal. Special attention has been given to the detection of 6-MeAde in animal DNA.

DNA preparations from different cells and tisaues11,12

NATURE VOL 225 MARCH 7 1970

were hydrolysed (72 per cent HClO4, I.h, 100°) and $b_{\rm 0.86\%}$ were separated by paper chromatography as described

5-McCyt was found in the DNA of all animals studied regardless of their taxonomic position (Table 1). The DNA of Heliz pomatia is somewhat different from that of other molluses with respect to the content of 5-MeCvi. DNA preparations from the sperm cells of various species of see urchin differ: the quantity of 5-MeCyt in the DNA of Strongylocentrotus intermedius is three-fold less than that in the DNA of Echinus esculentus. The content of 5-MeCyt in the DNA of various species of mammals (somatic cells of rabbit and bull) also seems to be different but not so markedly. It is of interest that the DNAs of the rodents studied (rati, rabbit, mouse) are similar and have lower 5-MeCyt contents as compared with other mammals. A large proportion of 5-MeCyt is specific for fish DNA (about 1.5-2 moles per 100 moles).

Table 1. CONTEXT OF 5-METHYLCHTOSING IN DIFFERENT ANIMAL DIA

AKG to couge	Moles per 100 moles 5-McCyt G+0.4			
Invertebrates Portfers	Ŋ	(0)	n	G÷C+
Suberites domuncula: Whole animal	1.8		3	3 9-5
Metricium sentle: whole unimal	0-9		4	39-0
Heliz popatia: liver Echinodermata	0-6		5	41.0
Strongulocentrolus intermedius: sperm Variahentes Outsichthyes	8-0		4	41-4
Collus ap: sperm Trickiur spronicus; sperm Spheroids ap; sperm Oxprinus carpio (carp): liver Oxoarhynchus gorbuscha (salmon): muscles liver kidney spleen	1·7 1·5 1·5 1·41 1·17 2·13 1·98 2·05	0-02 0-02 0-03 0-05 0-03	438779999	11·0 41·3 41·0 44·1 44·1 44·0
Amphilds Sperm	1-64	0.04	6	11-0
Rana temporaria: liver red calls Reptilis	1·6 1·5		8	41.0
Testudo horafieldi: liver Mammalin	1.5		4	11 .9
Mouse: spicen liver Rabbit: liver liver Rabbit: liver lidney spicen (buil I) spicen (buil I) spicen (buil II) spicen (buil II) spicen (buil II) spicen (buil II)	1.0 1.1 0.93 0.88 1.20 1.10 1.15 1.70 1.40 1.38 1.66 1.59 1.99	077 0-113 0-002 0-005 0-002 0-002 0-002 0-002	4444478886868666666666	12:26 41:116:51000100110:
Sperm N=Mean or (V): g_standard doubles	0.76		i	41-3

M=Mean or (X); σ=standard deviation or s(x); n=number of decr

We observe that the content of 5-MeCyt of DNA various from 0.5 to 2 moles per 100 moles depending on the species. Taking into consideration that some insects and Crustaces have about 0.1 mole per 100 moles of 5-McCyt in their DNA (rofs. 1, 2), it may be stated that in general the degree of methylation of animal DNA differmore than twenty-fold. This favours a marked species specificity in the methylation of animal DNA. As a role. the more distant the species are taxonomically, the greater is the difference of the proportion of 5-MeCyt in their DNA. Animal DNA is less methylated than that of higher plants¹³, but in animal DNA the variability of 5-MeCyt content is much greater within a particular species. In animal DNA, 5-McCyt occurs predominantly in Pu-mcC.Po or Pu-maC-G sequences,14 and is evidently concentrated chiefly in GC-rich DNA. The possibility that the observed differences in 5-MeCyt content may be escribed not only to the specificity of DNA methylases but also to the

NATURE

yeouliariti cannot the Of speci ity is the particulari rolysa prtebrate Mitraviolet 强度the DN mdividual that the organisma Trubstantio We did no boar, shee of these D yielded up geven if 6. dimentity fish does edemine. We also means of adenine animals (
incorp.
inco io 6-Me. FAdenine therefore Liound con DNA 1 same and degree of DNA th different the bovin eno fluevu mdividu Pepleen a Tevident i that rat e eccept i II the a ormall pite of very lov Chang Enimal 1 e c MeCy cure the eccomp are evid limmu We h regular. conteni diniler denally dimler disnally A lower with the company oxplair dower (2) spe lterns Pin pr