Digital Integrated Circuits

Homework #4

P(B=1).P(C=1) = 4.5 \$

Due 2 hours before the next lecture

Problem 1: Finding α

Figure 1 shows the logical symbol (and functional picture) of an "And-Or-Invert" gate that implements F = (A(B + C))'.

Estimate the activity factor, $\alpha_{F_{0\to 1}}$, for the output f, if $p(A=1)=\frac{1}{2}$, $p(R=1)=\frac{1}{4}$, and $p(C=1)=\frac{1}{3}$.

Problem 2: Power and Energy $p(\bar{F}=1) = p(A = 1) = \frac{1}{2}$, $p(R=1)=\frac{1}{4}$, and $p(\bar{F}=1) = p(A=1) \cdot p(B+C=1)$ $p(\bar{F}=1) = p(A=1) \cdot p(B+C=1)$

Consider the following circuit, with XOR, AND gates and one NMOS transistor.

(a) What logic function is implemented by this circuit (inputs: A, B, C, and D)?

(b) Assume the probably of logic 1 for inputs: p(A = 1) = 0.5, p(B = 1) = 0.5, p(C = 1) = 0.2, p(D = 1) = 0.3, capacitance: $C_X = C_Y = 10$ fF, $C_L = 20$ fF, frequency f = 100 MHz, $V_{DD} = 1$ V, threshold voltage $V_{TN} = 0.2 \text{ V}$, $V_{TP} = -0.3 \text{ V}$. Calculate the average switching power P_{sw} of the circuit (logic gates and input D are powered from V_{DD}).

The state (togo gaves and input 2 to power and the basis of the state						
: YOX	A	В	×	_(x-1) - P(A=1)·Y (B=0) + P(A=0)+ P(B=1) =立 立せ:		
	0	0	D	p(x=1) = P(A=1) · P(B=0) + P(A=0)+ P(B=1) = = = = = = = = =		
	ı	၁	1			
_	0	_	-	0x0->1= P(x=0) P(x=1) = 2-2=4		
C=D=a8	'	-	0	() () () () () () () () () ()		
(:(:0.2				= P(x=q. (1-P(x=9))		

$$p(X=1) = \frac{1}{2}$$

$$\alpha_{X:0-1} = \frac{1}{4}$$

$$p(Y = 1) = 0.6$$
 $\alpha_{Y:0\to 1} = 0.24$

$$P_{sw,X} + P_{sw,Y} = 4.9 \cdot 10^{7} \text{W}$$

, Y=(Ox.Cx + Oxy.Cy). Noo · +	
$= \left(\frac{1}{4} \cdot [0 \cdot 10^{15} + 0.24 \cdot [0 \cdot 10^{15} \cdot]) \cdot 1^{2} \cdot 100M = 4.9\right)$	·lo]W

P(F=1) = 0.18					
$\alpha_{F:0\rightarrow 1} = 0.147b$					

END:

$$P_{\text{sw,F}} = 2.3616 \cdot (0^{-7} \text{W})$$

$$\text{Change} (\text{Von-Vin}) \cdot \text{J}$$

Discharging Ehrac = 54J

Node Y

charging Esopply =
$$|0f \cdot | \cdot (|-0|) = |0f|$$

Ecap = $\frac{1}{5} \cdot [0f \cdot (|^2 \cdot 0^2|) = |5f|$
Ehear = $|0f| - |5f| = |5f|$

Discharging Ehear = 54)

@ Node L

charging Esupply = 20f. [. (+02-10)] = 16f]

Ecap =
$$\frac{1}{5} \cdot 20f \cdot (88^2 \cdot 0^2) = 6.4 f$$

Eheat = $(6f) - 6.4 f = 9.6 f = 1$

Discharging Eheats 6.4+1

(c) Calculate the heat energy dissipation for charging and discharging Cx, Cy, and CL.

Heat Energy	Charging	Discharging
Node X (C _X)	st J	5 + J
Node Y (C _Y)	słj	sf 1
Node F (C _L)	9.675	6-41)
Total Eheat	19.6/1	16.4+1

Problem 3: CMOS Logic and Delay

(a) Implement the following function using static CMOS logic.

$$F = \overline{A(B+C)(D+E+F)}$$

(b) Assume output load capacitance $C_L = 50$ fF, and that transistors are sized such that the on-resistance of NMOS $R_N = 12$ k Ω , on-resistance of PMOS $R_P = 24$ k Ω . Calculate the **worst-case** low-to-high propagation delay t_{pLH} and the **best-case** high-to-low delay t_{pHL} . Assume ideal step-input switching.

Worst
$$t_{pLH} = 2.48 \cdot | \overline{0}^{4} |$$

Best $t_{pHL} = 1.242 \cdot | \overline{0}^{4} |$