Number Theory Algorithms

Ervin Gegprifti

gegprifti.ervin@gmail.com

Abstract

This paper is the documentation for the Calculator module in Number Theory Algorithms mobile application.

Calculator operations

Addition: a + b

Description: Add b to a. **Input:** a, b, where $a, b \in \mathbb{Z}$

Output: a + b

Subtraction: a - b

Description: Subtract b from a.

Input: a, b, where $a, b \in \mathbb{Z}$

Output: a - b

Multiplication: $a \times b$

Description: Multiply a with b.

Input: a, b, where $a, b \in \mathbb{Z}$

Output: $a \times b$

Division: a/b

Description: Divide a with b. **Input:** a, b, where $a \in \mathbb{Z}$, $b \in \mathbb{Z}_{\neq 0}$

Output: quotient as |a/b|, remainder as a - (|a/b|b)

Power: a^b

Description: Raise a to the power of b.

Input: a, b, where $a \in \mathbb{Z}$, $b = \{0, \dots, 2147483647\}$

Output: ab

Root: $\sqrt[b]{a}$

Description: The b root of a.

Input: a, b, where $a \in \mathbb{Z}$, $b = \{1, \dots, 2147483647\}$

Output: $\sqrt[b]{a}$

Greatest Common Divisor: GCD(|a|,|b|)

Description: The largest number that divides both a and b without leaving a remainder.

Input: a, b, where $a, b \in \mathbb{Z}$ **Output:** GCD(|a|,|b|)

Lowest Common Multiple: LCM(a, b)

Description: The smallest integer that is evenly divisible by both a and b.

Input: a, b, where $a, b \in \mathbb{Z}$, not both 0

Output: LCM(a,b) = (ab)/GCD(a,b) since (ab) = GCD(a,b)LCM(a,b)

Modulo: $a \pmod{b}$

Description: The remainder when a is divided by b.

Input: a, b, where $a \in \mathbb{Z}$, $b \in \mathbb{Z}_{\geq 1}$

Output: $a \pmod{b}$, output is always a non-negative number

Modulo Inverse: $a^{-1} \pmod{b}$

Description: Modular inverse of $a \pmod{b}$ is a^{-1} . If $a \equiv c \pmod{b}$, then $aa^{-1} \equiv 1 \pmod{b}$.

Input: a, where $a \in \mathbb{Z}$, $b \in \mathbb{Z}_{>1}$

Output: $a^{-1} \pmod{b}$

Is probable prime:

Description: Check if a number is probable prime within a certain certainty.

Input: a, where $a \in \mathbb{Z}$ with a > 2, $b = \{1, ..., 2147483647\}$

Output: 1 if a is probably prime with probability $1 - 1/2^b$, 0 if a is definitely composite

Euler's phi-function: $\phi(a)$

Relatively prime definition. The integers d and e, with $d \neq 0$ and $e \neq 0$, are relatively prime if d and e have greatest common divisor (d, e) = 1. Because (25, 42) = 1, then 25 and 42 are relatively prime.

Euler's phi-function $\phi(a)$ definition. Let a be a positive integer. The $\phi(a)$ is defined to be the number of positive integers not exceeding a that are relatively prime to a.

Example.

$$\phi(1) = 1$$
 because $\{ (1,1)=1 \longrightarrow counter = 1 \}$

$$\phi(2) = 1 \text{ because } \begin{cases} (1,2)=1 \longrightarrow counter = 1\\ (2,2)=2 \end{cases}$$

$$\phi(3) = 2 \text{ because } \begin{cases} (1,3)=1 \longrightarrow counter = 1\\ (2,3)=1 \longrightarrow counter = 2\\ (3,3)=3 \end{cases}$$

$$\phi(1) = 1 \text{ because } \left\{ \begin{array}{l} (1,1) = 1 \longrightarrow counter = 1 \\ (2,2) = 2 \end{array} \right.$$

$$\phi(2) = 1 \text{ because } \left\{ \begin{array}{l} (1,2) = 1 \longrightarrow counter = 1 \\ (2,2) = 2 \end{array} \right.$$

$$\phi(3) = 2 \text{ because } \left\{ \begin{array}{l} (1,3) = 1 \longrightarrow counter = 1 \\ (2,3) = 1 \longrightarrow counter = 2 \\ (3,3) = 3 \end{array} \right.$$

$$\phi(4) = 2 \text{ because } \left\{ \begin{array}{l} (1,4) = 1 \longrightarrow counter = 1 \\ (2,4) = 2 \\ (3,4) = 1 \longrightarrow counter = 2 \\ (4,4) = 4 \end{array} \right.$$

$$\phi(5) = 4 \text{ because } \begin{cases} (1,5) = 1 \longrightarrow counter = 1\\ (2,5) = 1 \longrightarrow counter = 2\\ (3,5) = 1 \longrightarrow counter = 3\\ (4,5) = 1 \longrightarrow counter = 4\\ (5,5) = 5 \end{cases}$$

Factorial: a!

Description: Calculates the $a! = 1 \times 2 \times 3 \times \cdots \times a$.

Input: a, where $a \in \mathbb{Z}$ with a > 0

Output: a!

Next probable prime:

Description: The next probable prime to a number.

Input: a, where $a \in \mathbb{Z}$ with $a \ge 2$ **Output:** next probable prime to a

Next twin prime to a:

Description: The next probable twin prime pair to a.

Input: a, where $a \in \mathbb{Z}$ with a > 2

Output: next probable twin prime pair to a

References

[1] "Class BigInteger." java.math.BigInteger