Apresentação do Projeto

Optimização e Algoritmos

Instituto Superior Técnico

Grupo: 28

Francisco Melo, 84053 Rodrigo Rego, 89213

18 de dezembro de 2018

Visão Geral

- Parte 1
 - Formulação do Problema
 - Regularizador ℓ_2^2
 - Regularizador ℓ_2
 - Regularizador ℓ_1
 - Formulação com discos ℓ_2
 - Passagem exata pelos pontos
 - Mudança de Pesos Iterativa
- Parte 2
 - Regressão Logística Método do Gradiente
 - Regressão Logística Método de Newton
 - Localização em rede Levenberg-Marquardt
- Parte 3
 - KKT Tarefa 1
 - KKT Tarefa 2

Formulação do Problema

Principais objetivos

- Navegação: de uma posição inicial para uma final tendo em conta a dinâmica do robot;
- **Q** Controlo limitado: forças aplicadas ao motor são menores que $U_{m\acute{a}\times}$;
- **3 Waypoints:** posição do robot em instantes τ_k deve estar próxima dos *waypoints*;
- Controlo simples: sinal de controlo com poucas mudanças ao longo do tempo.

Regularizador ℓ_2^2

minimize
$$\sum_{k=1}^{K} \|Ex(\tau_k) - w_k\|_2^2 + \lambda \sum_{t=1}^{T-1} \|u(t) - u(t-1)\|_2^2$$
 (subject to $x(0) = x_{\text{initial}}$ $x(T) = x_{\text{final}}$ $\|u(t)\|_2 \le U_{\text{max}}$, for $0 \le t \le T - 1$ $x(t+1) = Ax(t) + Bu(t)$, for $0 < t < T - 1$.

Regularizador ℓ_2^2 - Resultados (1)

λ	Mudanças do Sinal	Desvio Médio
10^{-3}	79	0.1257
10^{-2}	79	0.8242
10^{-1}	79	2.1958
1	79	3.6826
10	79	5.6317
100	79	10.9042
1000	79	15.3304

Tabela: Mudanças do sinal de controlo e desvio médio com ℓ_2^2 .

Regularizador ℓ_2^2 - Resultados (2)

Figura: Caso $\lambda = 10^{-1}$.

Regularizador ℓ_2

minimize
$$\sum_{k=1}^{K} \|Ex(\tau_k) - w_k\|_2^2 + \lambda \sum_{t=1}^{T-1} \|u(t) - u(t-1)\|_2$$
 (subject to $x(0) = x_{\text{initial}}$ $x(T) = x_{\text{final}}$ $\|u(t)\|_2 \le U_{\text{max}}$, for $0 \le t \le T - 1$ $x(t+1) = Ax(t) + Bu(t)$, for $0 \le t \le T - 1$.

Regularizador ℓ_2 - Resultados (1)

λ	Mudanças do Sinal	Desvio Médio
10^{-3}	10	0.0075
10^{-2}	8	0.0747
10^{-1}	11	0.7021
1	4	2.8876
10	4	5.3689
100	4	12.5914
1000	1	16.2266

Tabela: Mudanças do sinal de controlo e desvio médio com ℓ_2 .

Regularizador ℓ_2 - Resultados (2)

Figura: Caso $\lambda = 10^{-1}$.

Regularizador ℓ_1

minimize
$$\sum_{k=1}^{K} \|Ex(\tau_k) - w_k\|_2^2 + \lambda \sum_{t=1}^{T-1} \|u(t) - u(t-1)\|_1$$
(3) subject to
$$x(0) = x_{\text{initial}}$$
$$x(T) = x_{\text{final}}$$
$$\|u(t)\|_2 \le U_{\text{max}}, \quad \text{for } 0 \le t \le T - 1$$
$$x(t+1) = Ax(t) + Bu(t), \quad \text{for } 0 \le t \le T - 1.$$

Regularizador ℓ_1 - Resultados (1)

λ	Mudanças do Sinal	Desvio Médio
10^{-3}	13	0.0107
10^{-2}	12	0.1055
10^{-1}	14	0.8863
1	11	2.8732
10	5	5.4362
100	3	13.0273
1000	2	16.0463

Tabela: Mudanças do sinal de controlo e desvio médio com ℓ_1 .

Regularizador ℓ_1 - Resultados (2)

Figura: Caso $\lambda = 10^{-1}$.

Conclusões - Impacto do parâmetro λ (1)

Trajetória

Figura: Evolução da trajetória para valores extremos de λ (ℓ_2).

Conclusões - Impacto do parâmetro λ (2)

Sinal de Controlo

Figura: Evolução do sinal de controlo para valores extremos de λ (ℓ_2).

Conclusões - Regularizador (3)

$$\|d\|_{2}^{2} = \sum_{k=1}^{K} d_{k}^{2} \quad \|d\|_{2} = \sqrt{\sum_{k=1}^{K} d_{k}^{2}} \quad \|d\|_{1} = \sum_{k=1}^{K} |d_{k}|$$
 (4)

Figura: Operações dos diferentes regularizadores.

Conclusões - Regularizador (4)

Conclusões chave

- ℓ_2^2 : penaliza sobretudo grandes desvios e diminui o peso de pequenos desvios;
- ℓ_2 : normaliza o peso de grandes e pequenos desvios (penalização mais uniformemente distribuída);
- \bullet ℓ_1 : considera de uma forma linear o peso dos desvios na penalização
- \therefore Com ℓ_2 obteve-se melhores resultados (sinal de controlo mais simples).

Forma fechada de d(p, D(c, r))

$$d(p, D(c, r)) = ||p - c||_{2} - r$$
 (5)

Figura: Figura auxiliar da distância mínima ao ponto p.

ℓ_2 Discos

minimize
$$\sum_{k=1}^{K} d(Ex(\tau_k), D(c_k, r_k))^2 + \lambda \sum_{t=1}^{T-1} \|u(t) - u(t-1)\|_2$$

subject to $x(0) = x_{\text{initial}}$
 $x(T) = x_{\text{final}}$
 $\|u(t)\|_2 \le U_{\text{max}}, \quad \text{for } 0 \le t \le T-1$
 $x(t+1) = Ax(t) + Bu(t), \quad \text{for } 0 \le t \le T-1.$ (6)

ℓ_2 Discos - Resultados (1)

λ	Mudanças de Sinal	Desvio Médio
10^{-3}	13	2.0055
10^{-2}	11	2.05414
10^{-1}	7	2.44833
1	5	3.51969
10	5	5.7842
100	2	13.2397
1000	2	16.227

Tabela: Mudanças do sinal de controlo e desvio médio com ℓ_2 e discos.

ℓ_2 Discos - Resultados (2)

Figura: Caso $\lambda = 10^{-1}$.

ℓ_2 Discos - Comentários

ℓ_2 Discos

- Para todos os casos de λ a trajetória é mais suave;
- O número de mudanças do sinal de controlo é semelhante;
- O desvio médio aos waypoints é maior.

ℓ_2 Pontos

- ullet Para valores de λ pequenos a trajetória é menos suave;
- O número de mudanças do sinal de controlo é semelhante;
- O desvio médio aos waypoints é inferior.

Trajetória - ℓ_2 Discos vs. ℓ_2 Pontos ($\lambda=10^{-3}$)

Figura: Caso $\lambda = 10^{-3}$.

Problema de Viabilidade

Efeito da redução de $U_{max}=15$

- A redução do valor desta restrição reduz o espaço de soluções;
- Para $U_{max}=15$ concluiu-se que não há solução que cumpra com todas as restrições do problema.

Passagem exata pelos pontos - ℓ_2^2

minimize
$$\sum_{k=1}^{K} \|Ex(\tau_k) - w_k\|_2^2$$
subject to
$$x(0) = x_{\text{initial}}$$

$$x(T) = x_{\text{final}}$$

$$\|u(t)\|_2 \le U_{\text{max}}, \quad \text{for } 0 \le t \le T - 1$$

$$x(t+1) = Ax(t) + Bu(t), \quad \text{for } 0 < t < T - 1.$$

Passagem exata pelos pontos - ℓ_2

minimize
$$\sum_{k=1}^{K} \|Ex(\tau_k) - w_k\|_2$$
 subject to
$$x(0) = x_{\text{initial}}$$

$$x(T) = x_{\text{final}}$$

$$\|u(t)\|_2 \le U_{\text{max}}, \quad \text{for } 0 \le t \le T - 1$$

$$x(t+1) = Ax(t) + Bu(t), \quad \text{for } 0 < t < T - 1.$$

Passagem exata pelos pontos - ℓ_2^2 vs. ℓ_2 (1)

Figura: Comparação da trajetória: (a) ℓ_2^2 e (b) ℓ_2 .

Passagem exata pelos pontos - ℓ_2^2 vs. ℓ_2 (2)

Figura: Comparação do sinal de controlo: (a) ℓ_2^2 e (b) ℓ_2 .

Passagem exata pelos pontos - ℓ_2^2 vs. ℓ_2 (3)

Regularizador	Waypoints Capturados
$-\ell_2^2$	6
ℓ_2	1

Tabela: Número de pontos capturados.

Mudança de Pesos Iterativa

minimize
$$\sum_{k=1}^{K} \frac{1}{\|Ex^{(m)}(\tau_{k}) - w_{k}\|_{2} + \epsilon} \|Ex(\tau_{k}) - w_{k}\|_{2}$$
 (9) subject to
$$x(0) = x_{\text{initial}}$$

$$x(T) = x_{\text{final}}$$

$$\|u(t)\|_{2} \leq U_{\text{max}}, \quad \text{for } 0 \leq t \leq T - 1$$

$$x(t+1) = Ax(t) + Bu(t), \quad \text{for } 0 < t < T - 1.$$

Mudança de Pesos Iterativa - Resultados (1)

m	N.º de <i>waypoints</i> capturados
1	1
2	2
3	2
4	3
5	3
6	3
7	3
8	3
8	3
10	3

Tabela: N.º de pontos capturados com a mudança de pesos iterativa.

Mudança de Pesos Iterativa - Resultados (2)

Figura: Comparação da trajetória para m = 1 vs. m = 10.

Mudança de Pesos Iterativa - Resultados (3)

Figura: Comparação do sinal de controlo para m = 1 vs. m = 10.

Mudança de Pesos Iterativa - Comentários (3)

Peso:

$$\frac{1}{\left\|E_{X}^{(m)}(\tau_{k})-w_{k}\right\|_{2}+\epsilon}\tag{10}$$

• Quando a distância entre o robot (nos instantes τ_k) e os waypoints (mais ϵ) é menor que $1 \implies$ pesos maiores.

Isto implica que sempre o que robot estiver perto de um *waypoint* a sua posição vai ser capturada pelo mesmo numa região de raio 1.

Quando o robot se encontra distante, os pesos são pequenos e atribui-se menos penalização à passagem por *waypoints*, considerando-se mais a chegada à posição final.

Método do Gradiente

Algoritmo line search, iterações evoluem segundo:

$$x_{k+1} = x_k + \alpha_k d_k \tag{11}$$

- Onde $d_k = -\nabla f(x_k)$: $\nabla f(x_k)^T d_k = -||\nabla f(x_k)||^2 < 0$
- $\alpha_k > 0$, calculado pela subrotina backtracking

Figura: Métdodo do gradiente - line search.

Método do Gradiente - data1.mat

Figura: Resultados do método do gradiente para data1.mat.

$$s = (1.3495, 1.0540)$$
 $r = 4.8815$

Método do Gradiente - data2.mat

Figura: Resultados do método do gradiente para data2.mat.

$$s = (0.7402, 2.3577)$$
 $r = 4.5553$

Método do Gradiente - data3.mat

Figura: Resultados do método do gradiente para data3.mat.

$$s = (-1.3082, 1.4078)$$
 $r = 0.8049$

Método do Gradiente - data4.mat

Figura: Resultados do método do gradiente para data4.mat.

$$s = (0.1098, -0.6423)$$
 $r = 0.1019$

Método de Newton

Iterações evoluem segundo:

$$x_{k+1} = x_k - (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$
 (12)

- Onde $d_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$
- Se $\nabla^2 f(x_k) \succ 0$ (valores próprios positivos), então

$$\nabla f(x_k)^T d_k < 0$$

significa que d_k tem direção descendente

Parece-se com uma iteração line search...

$$x_{k+1} = x_k + \alpha_k d_k$$

$$\alpha_k = 1 \text{ e } d_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Método de Newton - data1.mat

Figura: Resultados do método de Newton para data1.mat.

$$s = (1.3496, 1.0540)$$
 $r = 4.8817$

Método de Newton - data2.mat

Figura: Resultados do método de Newton para data2.mat.

$$s = (0.7402, 2.3577)$$
 $r = 4.5554$

Método de Newton - data3.mat

Figura: Resultados do método de Newton para data3.mat.

$$s = (-1.3083, 1.4079)$$
 $r = 0.8049$

Método de Newton - data4.mat

Figura: Resultados do método de Newton para data4.mat.

$$s = (0.1099, -0.6424)$$
 $r = 0.1019$

Método do Gradiente vs. Newton

	Método do Gradiente			Método de Newton		
	Tempo (ms)	Iterações	Tempo/Iter. (ms)	Tempo (ms)	Iterações	Tempo/Iter (ms)
data1.mat	76,1	1 126	0,0676	16,9	8	2,113
data2.mat	87,7	1 363	0,0643	16,4	9	1,822
data3.mat	776,2	3 437	0,2258	39,9	12	7,492
data4.mat	656 847,4	19 893	33,0190	3 673,1	12	306,092
Custo por Iteração		$\mathcal{O}(n)$			$\mathcal{O}(n^3)$	

Tabela: Avaliação do desempenho.

- O método de Newton converge em menos iterações (geralmente próximo de 10 iterações), mas com mais custo por iteração;
- O método do Gradiente converge em muitas mais iterações, mas com um custo muito menor por iteração.

Método de Levenberg-Marquardt

Considera problemas de mínimos quadrados não lineares:

minimize
$$f_1(x)^2 + f_2(x)^2 + \dots + f_P(x)^2$$
. (13)

 $f_p: \mathbf{R^n} \to \mathbf{R}$ são diferenciáveis

• Se todas f_p forem funções afim, o problema traduz-se num problema de mínimos quadrados, cuja solução advém de $A \setminus b$

$$\hat{x}_{k+1} = \underset{x \in \mathbf{R}^n}{\operatorname{argmin}} \quad \sum_{p=1}^{P} (f_p(x_k) + \nabla f_p(x_k)^T (x - x_k))^2 + \lambda_k \|x - x_k\|^2$$

Pontos chave

- ullet cada f_p é substituída pela sua linearização em x_k
- λ_k penaliza desvios em relação a x_k $(\lambda_k > 0)$

Método de LM - 1mdata1.mat

Figura: Resultados do método de LM para 1mdata1.mat.

Método de LM - 1mdata2.mat

Figura: Resultados do método de LM (inicialização aleatória) para 1mdata2.mat.

- Escolheu-se a inicialização que resultou no mínimo custo = 4.4945;
- Diferentes inicializações podem convergir para diferentes mínimos locais.

Formulação do Problema - Tarefa 1

minimize
$$\|p - y\|_2$$
 (14) subject to $y \in D(c, r)$.

minimize
$$\frac{1}{y \in \mathbb{R}^n} \|p - y^*\|_2^2$$
 (15) subject to $\|y^* - c\|_2^2 - r^2 \le 0$

Condições KKT

$$\begin{cases} \nabla F(y^*) + \mu \nabla g(y^*) = 0 \\ g(y^*) \le 0 \\ \mu \ge 0 \\ \mu g(y^*) = 0 \end{cases}$$

Soluções - Tarefa 1

Diferentes soluções

$$y^* = c \pm \frac{(p-c)}{\|p-c\|_2} r \quad \lor \quad y^* = p$$
 (16)

Solução (p no exterior do disco)

$$y^* = c + \frac{(p-c)}{\|p-c\|_2} r \tag{17}$$

Tentativa de Resolução do Problema - Tarefa 2

$$\begin{aligned} & \underset{x,u}{\text{minimize}} \sum_{k=1}^{K} \| Ex(\tau_{k}) - w_{k} \|_{2}^{2} + \lambda \sum_{t=1}^{T-1} \| u(t) - u(t-1) \|_{2}^{2} = \\ & = \underset{x,u}{\text{minimize}} \sum_{k=1}^{K} (Ex(\tau_{k}) - w_{k})^{T} (Ex(\tau_{k}) - w_{k}) + \lambda \sum_{t=1}^{T-1} (u(t) - u(t-1))^{T} (u(t) - u(t-1)) \\ & = \underset{X}{\text{minimize}} \quad \frac{1}{2} (X - P)^{T} A_{m} (X - P) \\ & A_{m} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \lambda & & \\ & & & \lambda \end{bmatrix} \quad X = \begin{bmatrix} Ex(\tau_{1}) & & & \\ Ex(\tau_{K}) & & \\ u(1) & & \\ \vdots & & & \\ u(T-1) & & & \\ & & & & \\ u(T-2) & & & \\ \end{bmatrix} \end{aligned}$$

Forma Fechada - Tarefa 2

Reformulação das restrições

Formulação das restrições
$$\underbrace{\begin{bmatrix} 0_1 & \dots & 0_K & A^{T-1}B & \dots & B \end{bmatrix}}_{C} \underbrace{\begin{bmatrix} Ex(\tau_1) \\ \vdots \\ Ex(\tau_K) \\ u(1) \\ \vdots \\ u(T-1) \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} P_2 \\ V_2 \end{bmatrix} - A^T \begin{bmatrix} P_1 \\ V_1 \end{bmatrix}}_{d}$$
 ema fechada

Forma fechada

$$X = P - A_m^{-1} C^T (CA_m^{-1} C^T)^{-1} (CP - d)$$