

Part 2 IoT Architecture

Fabrice MULLER

Fabrice.Muller@univ-cotedazur.fr

2021 - 2022

Part 2 - IoT Architecture

Lab 1: ESP32 Architecture

- Main characteristics
- Real-Time Clock

Lab 2 : ESP32 Memory

- IRAM, DRAM
- Non-Volatile SRAM (NVS)
- SPI flash file system (SPIFFS)

Lab 3: GPIO

- Configuration I/O (push button, Led)
- Advanced GPIO configurations

Lab 4 : Interrupt

- GPIO interrupt
- Push button example

ESP32

Processor

Real-Time Clock

ESP32 processors

- Processors
 - Tensilica Xtensa 32-bit LX6 microprocessor
 - 1 or 2 Cores
 - PRO_CPU
 - APP_CPU
 - up to 240 MHz for clock frequency
 - up to 600 DMIPS (Dhrystone MIPS)
 - Ultra Low Power (ULP) Coprocessor
 - Phasor measurement unit (PMU)

ESP32

System Time - Real-Time Clock (RTC)

- Choose accuracy requirements for system time
 - 1 system time source
 - 2 system time sources simultaneously (default)
- RTC timer source
 - Allows keeping the system time during any resets and sleep modes
 - Depends on an RTC Clock Source (Component config/ESP32-specific/CONFIG_ESP32_RTC_CLK_SRC)
 - affects accuracy only in sleep modes (6.6667 us resolution)
- High-resolution timer source
 - Not available during any reset and sleep modes
 - uses the APB_CLK clock source (typically 80 MHz)
- Programming
 - Using settimeofday()/gettimeofday() POSIX functions
 - Using <time.h> library with standard C library functions
- More information: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/system-time.html#rtc-clock-source

Memories

IRAM/DRAM

Non-Volatile Flash (NVS)

SPI Flash File System (SPIFFS)

Memories

Internal memories

ROM: 448 KiB

SRAM: 520 KiB

RTC fast SRAM: 8 KiB

RTC slow SRAM: 8 KiB

• eFuse: 1 Kibit

• Embedded flash: 0/2/4 MiB

External memories

- Up to 16 MiB of external flash
- Up to 8 MiB of SRAM memory
- SPI (Serial Peripheral Interface) communication

ESP32

Memory Map

Non-Volatile Storage (NVS)

- Designed to store key-value pairs in flash
- Using a portion of main flash memory (from spi_flash_{read|write|erase})
- Using partitions with <u>type:data</u> and <u>subtype:nvs</u>
- Sequence
 - 1. nvs_flash_init()
 - nvs_open() / nvs_open_from_partition()
 - 3. nvs_get_*(), nvs_set_*()
 - 4. nvs_commit()
 - 5. nvs_close()

• More information: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/storage/nvs_flash.html

^{* =} u8, u16, u32, u64, i16, i32, i64, str (4000 bytes)

SPI Flash File System (SPIFFS)

- SPIFFS is a file system intended for SPI Flash memories
- SPI = Serial Peripheral Interface communication
- Store a full directory into flash
- Flat structure
 - Does not support directory structure but the file name is like a path
 - SPIFFS is mounted under /spiffs
 - File path: /spiffs/tmp/myfile.txt
 - Create a file called /tmp/myfile.txt
- Not a real-time stack
 - One write operation might take much longer than another
- No detection or handling bad blocks

More details: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/storage/spiffs.html

SPI Flash File System (SPIFFS)

- Size is configured in the partition table
 - my_storage,data,spiffs,0x110000,1M,
- Using a tool to convert a directory to a bin file.
 - spiffsgen.py 0x100000 spiffs_dir spiffs_dir.bin
- Using a tool to load the file into flash.
 - esptool.py --chip esp32 --port /dev/ttyUSB0 --baud 115200 write_flash -z 0x110000 spiffs_dir.bin
- How to handle file system?
 - Using common C file functions to create read/update/delete files

GPIO

Input/Output
Interrupt

General Purpose Input/Output (GPIO)

- Can be configure as input or output
- GPIO pins
 - GPIO1 (1), GPIO3-11 (9), GPIO16-19 (4), GPIO21-23 (3), GPIO25-27 (3), GPIO36-39 (4)
 - GPIO6-11 are usually used for SPI flash.
 - GPIO36-39 can only be set as input mode and do not have software pullup or pulldown functions.
 - Pins GPIO16, GPIO17, SD_CMD, SD_CLK, SD_DATA_0 and SD_DATA_1 are used for connecting the embedded flash
- RTC_GPIO pins
 - RTC GPIO0-17
 - can be used to trigger ESP32 from sleep mode
- Not all pins can be used at the same time!
- More information: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/gpio.html

GPIO / RTC_GPIO pins

GPIO 12 Hondor

J3 TE	1 eaaer		JPIU
No.	Name	Туре	Function
1	FLASH_CS (FCS)	1/0 💢	GPIO16 HS1_DATA4 (See 1) , U2RXD, EMAC_CLK_OUT
2	FLASH_SD0 (FSD0)	1/0 💢	GPIO17 HS1_DATA5 (See 1) , U2TXD, EMAC_CLK_OUT_180
3	FLASH_SD2 (FSD2)	1/0 💢	GPIO11 SD_CMD, SPICSO, HS1_CMD (See 1) , U1RTS
4	SENSOR_VP (FSVP)	ı IN	GPIO36 ADC1_CH0 RTC_GPIO0
5	SENSOR_VN (FSVN)	ı IN	GPIO39 ADC1_CH3 RTC GPIO3
6	IO25	1/0	GPIO25 DAC_1, ADC2_CH8 RTC_GPIO6 EMAC_RXD0
7	IO26	1/0	GPIO26 DAC_2, ADC2_CH9 RTC_GPIO7 EMAC_RXD1
8	IO32	1/0	32K_XP (See 2a), ADC1_CH4, TOUCH9, RTC_GPIO9
9	IO33	1/0	32K_XN (See 2b) , ADC1_CH5, TOUCH8 RTC_GPIO8
10	1027	1/0	GPIO27 ADC2_CH7, TOUCH7 RTC_GPIO17 RTC_GPIO
11	1014	1/0	ADC2_CH6, TOUCH6 RTC_GPIO16, MTMS, HSPICLK, HS2_CLK, SD_CLK, EI 1/AC_TXD2
12	IO12	1/0	ADC2_CH5, TOUCH5_RTC_GPIO15, MTDI (See 4) , HSPIQ, HS2_DATA2, SD_DATA2, EMAC_TX D3
13	IO13	1/0	ADC2_CH4, TOUCH4_RTC_GPIO14, MTCK, HSPID, HS2_DATA3, SD_DATA3, EMAC_RX_ER
14	1015	1/0	ADC2_CH3, TOUCH3 RTC_GPIO13, MTDO, HSPICS0 HS2_CMD, SD_CMD, EMAC_RXD3
15	102	I/O	ADC2_CH2, TOUCH2 RTC_GPIO12, HSPIWP, HS2_DATA0, SD_DATA0
16	104	1/0	ADC2_CH0, TOUCH0 RTC_GPIO10, HSPIHD, HS2_DATA1, SD_DATA1, EMAC_TX ER
17	100	1/0	ADC2_CH1, TOUCH1 RTC_GPIO11, CLK_OUT1 EMAC_TX_CLK
18	VDD33 (3V3)	Р	3.3V power supply RTC_GPIO
19	GND	Р	Ground
20	EXT_5V (5V)	Р	5V power supply

ESP32-PICO-D4

J2 Header

Header USB 3

No.	Name	Туре	Function
1	FLASH_SD1 (FSD1)	1/0 🗶	GPIO8, SD_DATA1, SPID, HS1_DATA1 (See 1), U2CTS
2	FLASH_SD3 (FSD3)	1/0 🗶	GPIO7, SD_DATA0, SPIQ, HS1_DATA0 (See 1) , U2RTS
3	FLASH_CLK (FCLK)	1/0 💢	GPIO6, SD_CLK, SPICLK, HS1_CLK (See 1) , U1CTS
4	IO21	1/0	GPIO21, VSPIHD, EMAC_TX_EN
5	1022	1/0	GPIO22, VSPIWP, UORTS, EMAC_TXD1
6	1019	1/0	GPIO19, VSPIQ, U0CTS, EMAC_TXD0
7	1023	1/0	GPIO23, VSPID, HS1_STROBE
8	IO18	1/0	GPIO18, VSPICLK, HS1_DATA7
9	105	1/0	GPIO5, V <mark>S</mark> PICSO, HS1_DATA6, EMAC_RX_CLK
10	IO10	1/0	GPIO10, 5D_DATA3, SPIWP, HS1_DATA3, U1TXD
11	109	I/O	GPIO9, SD_DATA2, SPIHD, HS1_DATA2, U1RXD
12	RXD0	1/0	GPIO3, L <mark>ORXD (See 3) , CLK_OUT2</mark>
13	TXD0	1/0	GPIO1, LOTXD (See 3) , CLK_OUT3, EMAC_RXD2
14	1035	ı IN	ADC1_CH7, RTC_GPIO5
15	1034	1 IN	ADC1_CHE RTC GPIO4 RTC GPIO
16	IO38	ı IN	GPIO38, ADC1_CH , RTC_GPIO2
17	1037	ı IN	GPIO37, ADC1_CHRTC GPIO1
18	EN	1	CHIP_PU
19	GND	Р	Ground
20	VDD33 (3V3)	Р	3.3V power supply

GPIO

^{3.} This pin is connected to the pin of the USB bridge chip on the board.

^{4.} The operating voltage of ESP32-PICO-KIT's embedded SPI flash is 3.3V. Therefore, the strapping pin MTDI should hold bit zero during the module power-on reset. If connected, please make sure that this pin is not held up on reset.

^{1.} This pin is connected to the flash pin of ESP32-PICO-D4.

^{2. 32.768} kHz crystal oscillator: a) input b) output

Interrupt

Polling mode

- CPU steadily checks whether the devices (GPIO ...) need attention
- CPU waste countless processor cycles by repeatedly checking devices!

Interrupt mode

- the devices notice the CPU that it requires its attention.
- CPU is simply disturbed once any device interrupts it.

Benefits

- No wasting CPU cycles
- Minimum latency (depends on priority)
- Save energy of the battery

Interrupt – GPIO example

• IRQ

- Interrupt ReQuest
- Manage various hardware operations
- Assign different IRQ addresses to different hardware devices

• ISR

- Interrupt Sub Routine
- Interrupt handler

Programming

- Handler function
- Initializer function for handler
 - Pass the handler function
 - How to trig handler ? (input, level)
- Enable/disable handler

