$$\frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\frac{\mathrm{d}y}{\mathrm{d}x} + y$$

s.o.i. e.g. $2x \frac{dy}{dx} + y$

$$\frac{\mathrm{d}}{\mathrm{d}x}(y^2) = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$$

B1

B1

Substitute (1,2) into their differentiated equation

M1 dep at Or attempt to solve their diff equation for $\frac{dy}{dx}$

and attempt to solve for $\frac{dy}{dx}$. [Allow subst of (2,1)] least 1 x **B1**

and then substitute (1,2)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -2$$

A1

(i) $1 + (-2)(-3x) + \frac{(-2)(-3)}{12}(-3x)^2 + \dots$ ignore)

State or imply; accept $-3x^2 & -9x^2$ **M1**

B1 Correct first 2 terms

(ii) $(1+2x)^2(1-3x)^{-2}$

A1 3 Correct third term

Attempt to expand $(1+2x)^2$ & select (at least) 2 relevant products and add

M1

Selection may be after multiplying out

For changing into suitable form, seen/implied

(Accept $55x^2$) 55

A2√

M1

4 If (i) is $a + bx + cx^2$, f.t. 4(a+b)+c

SR 1 For expansion of $(1+2x)^2$ with 1 error, A1 $\sqrt{ }$

<u>SR 2</u> For expansion of $(1+2x)^2$ & > 1 error, A0

Alternative Method

For correct method idea of long division

1 +10x $+55x^2$

A1,A1,A1(4)

 $\frac{A}{x} + \frac{B}{3-x}$ & c-u rule or $A(3-x) + \overline{Bx} = 3-2x$

M1 Correct format + suitable method

3

A1 seen in (i) or (ii)

3 ditto; $\frac{1}{x} - \frac{1}{3-x}$ scores 3 immediately **A1**

(ii) $\int \frac{1}{x} (dx) = \ln x \text{ or } \ln |x|$

B1

 $\int \frac{1}{3-x} (dx) = -\ln(3-x) \text{ or } -\ln|3-x|$

Check sign carefully; do not allow ln(x-3)

Correct method idea of substitution of limits

If ignoring PFs, $\ln x(3 - x)$ immediately

M1

B1

Dep on an attempt at integrating

 $\ln 2 (+ \ln 1 - \ln 1) - \ln 2 = 0$

A1

4 Clearly seen; WWW

Alternative Method

B2

 $\ln x(x-3) \rightarrow 0$

As before

M1,A1 (4)

(iii) Suitable statement or clear implication e.g. Equal amounts (of area) above and below (axis) or graph crosses axis or there's a root

B1

1

(Be lenient)

4	(i) Working out $\mathbf{b} - \mathbf{a}$ or $\mathbf{a} - \mathbf{b}$ or $\mathbf{c} - \mathbf{a}$ or $\mathbf{a} - \mathbf{c}$ $= \pm (-3\mathbf{i} - \mathbf{j} - \mathbf{k}) \text{or } \pm (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Method for finding magnitude of <u>any</u> vector Method for finding scalar product of <u>any</u> 2 vectors Using $\cos \theta = \frac{ab}{ a b }$ AEF for <u>any</u> 2 vectors	 M1) Irrespective of label A1) If not scored ,these 1st 3 marks can be M1) awarded in part (ii) M1
	[Alternative cosine rule method $ \overrightarrow{BC} = \sqrt{6}$	B1
	Cosine rule used	M1 'Recognisable' form
	$45.3^{\circ}, 0.79(0), \frac{\pi}{3.97}$ (45.289378, 0.7904487)	A1 6 Do not accept supplement (134.7 etc)
	(ii) Use of $\frac{1}{2} \overrightarrow{AB} \overrightarrow{AC} \sin \theta$	M1 Accept $\left \frac{1}{2} \overrightarrow{AB} \times \overrightarrow{AC} \right $
	3.54 (3.5355) or $\frac{5\sqrt{2}}{2}$	A1 2 Accept from correct supp (134.7 etc)
5	(i) $\frac{dA}{dt}$ or kA^2 seen	M1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = kA^2$	A1 2
	(ii) Separate variables + attempt to integrate	*M1 Accept if based on $\frac{dA}{dt} = kA^2$ or A^2
	$-\frac{1}{A} = kt + c$ or $-\frac{1}{kA} = t + c$ or $-\frac{1}{A} = t + c$	A1
	Subst one of $(0,0)$, $(1,1000)$ or $(2,2000)$ into eqn. Subst another of $(0,)$, $(1,1000)$ or $(2,2000)$ into eqr. Substitute $A = 3000$ into eqn with k and c subst	dep*M1Equation must contain k and/or c dep*M1This equation must contain k and c dep*M1
	$t = \frac{7}{3}$ ISW	A1 6 Accept 2.33, 2h 20 m
6	(i) Attempt to connect du and dx e.g. $\frac{du}{dx} = e^x$	M1 But not $du = dx$
	Use of $e^{2x} = (e^x)^2$ or $(u-1)^2$ s.o.i.	A1
	Simplification to $\int \frac{u-1}{u} (du)$ WWW	A1 3 AG
	(ii) Change $\frac{u-1}{u}$ to $1-\frac{1}{u}$ or use parts	M1 If parts, may be twice if $\int \ln x dx$ is involved
	$\int \frac{1}{u} du = \ln u$	A1 Seen anywhere in this part
	Either attempt to change limits or resubstitute Show as $e + 1 - \ln(e + 1) - \{2 \text{ or } (1 + 1)\} + \ln 2$	M1 (indep) Expect new limits e+1 & 2 A1
	WWW show final result as $e-1-ln\left(\frac{e+1}{2}\right)$	A1 5 AG

$3\lambda = -8 + \mu, -2 + \lambda = 2 - 2 \mu$
N. C. I
any format No f.t. here
26
$s^2 6x$ as the subject of the formula
Accept $\frac{1}{2}\left(x + \frac{1}{12}\sin 12x\right)$
$+/-2\cos^2 6x + /-1$
expression only
dication somewhere in this part
() (-0)
imp exp. Accept 12x24,sin π here

S.R. If final marks are A0 + A0, allow SR A1 for

+A1 6 Tolerate e.g. $\frac{2}{288}$ here

0.01/0.010/0.0101/0.0102/0.0101902

(i)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$$

M1

Used, not just quoted

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -4\sin t$$
 or $\frac{\mathrm{d}y}{\mathrm{d}t} = 3\cos t$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3\cos t}{4\sin t} \text{ or } \frac{3\cos t}{-4\sin t}$$
 ISW

dep*A1 3 Also $\frac{-3\cos t}{4\sin t}$ provided B0 not awarded

SR: M1 for Cartesian eqn attempt + B1 for $\frac{d}{dx}(y^2) = 2y\frac{dy}{dx}$ + **A1** as before(must be in terms of t)

(ii) $y-3\sin p = \left(\operatorname{their} \frac{\mathrm{d}y}{\mathrm{d}x}\right)(x-4\cos p)$

M1

Accept p or t here

or
$$y = \left(\text{their } \frac{dy}{dx}\right)x + c$$
 & subst cords to find c

Ditto

$$4y\sin p - 12\sin^2 p = -3x\cos p + 12\cos^2 p$$

A1

Correct equation cleared of fractions

$$\underline{\text{or }} c = \frac{12\sin^2 p + 12\cos^2 p}{4\sin p}$$

 $3x \cos p + 4y \sin p = 12$ WWW

A1

A1

3 AG Only *p* here. Mixture earlier \rightarrow A0

(iii) Subst x = 0 and y = 0 separately in tangent eqn

Produce $\frac{3}{\sin p}$ and $\frac{4}{\cos p}$

to find R & S **M1**

Accept $\frac{12}{4 \sin p}$ and/or $\frac{12}{3 \cos p}$

Use
$$\Delta = \frac{1}{2} \left(\frac{3}{\sin p} \cdot \frac{4}{\cos p} \right) = \frac{12}{\sin 2p}$$
 WWW

A1

3 AG

(iv) Least area = 12

B1

B2

3 These B marks are independent.

S.R. [-12 and e.g. $-\pi/4 \rightarrow B1$]

 $p = \frac{1}{4}\pi$ as final or only answer

S.R. $45^{\circ} \rightarrow B1$;