

$L2\ 2020\hbox{-}2021$

Algo induction 23 nov 2020 - 5mn

Le sujet comporte ?? pages.

Nom et prénom :
Y Y

Soit E' une partie d'un ensemble ordonné (E, \leq) . $x \in E$ est un majorant de E' si $\forall y \in E, y \leq x.$ Un élément $y \in E'$ qui n'a aucun majorant dans E' est dit : un élément minimal un élément maximal un majorant un minorant Question 2 Un ensemble ordonnée (E, \leq) est bien fondé si l'une des conditions suivantes est vérifiée : \Box Il n'y a pas de suite infinie strictement décroissante d'éléments de E. Toute partie de E admet au moins un élément maximal. Toute partie de E admet au moins un élément minimal. \rfloor Il existe une suite $(xi)_{i \in \mathbb{N}}$ telle que, pour tout $i, x_{i+1} < x_i$ Question 3 < est un ordre bien fondé sur : les entiers naturels \mathbb{N} les entiers relatifs \mathbb{Z} les réels positifs \mathbb{R}^+ Question 4 De quels sous-ensembles de \mathbb{R} , 1 est-il un **élément minimal** ? $]1,+\infty[$ [2,10] $\boxed{[1,10]}$ [0, 10]Question 5 Soit (E, \leq) un ensemble bien fondé et P une proposition. Selon le principe d'induction, si la propriété (I') est vérifiée, alors $\forall x \in E, P(x)$, avec (I') $\exists x \in E, \, \big((\forall y_{\in E} < x, P(y)) \Rightarrow P(x) \big)$