DECT	ADI	nro	clodow	ání	nasazení	žol	lozničn	ích	vozidol
KESI	ALI	hro	Siedor	alli	IIa3aZEIII	Lei	EZIIICII	ICII	VUZIUEI

https://github.com/55p/train-locator

http://train-locator.appspot.com/

Motivace:

Oběhy železničních vozidel jsou pravidelné, respektive definované jako pravidelné. Tohoto faktu využívají fotografové vozidel (galerie např. www.trainweb.cz aj., diskuze zejména www.k-report.net), kteří na základě pozorování dokáží odhadnout, na kterých vlacích bude dané vozidlo jezdit v příštích dnech. V obězích je např. dáno, že souprava (lokomotiva, motorová jednotka, ...), která například jede v pondělí na vlaku 783, přejde na vlak 792, poté na vlaky 789, 786 atd. Z toho lze také předvídat, že bude v úterý jezdit na vlacích 781, 794, 787 atd. Na základě pozorování z pondělka tak mohou lidé přizpůsobit svůj program na úterý, aby vyfotili nebo naopak věděli, že nemá smysl daný vlak fotit.

Volnou inspirací je systém používaný na adrese http://55p.8u.cz/sledovani/, který byl vytvořen v jazyce PHP. Možnosti tohoto systému jsou ovšem omezené, například definice oběhů je možná pouze ve zdrojovém kódu.

Popis entit:

Vlaky jezdí v tzv. turnusových dnech (TD), několik TD tvoří tzv. turnusovou skupinu (TS). V jedné sledovací tabulce může být více příbuzných TS, např. na základě stejných vozidel nebo jedné lokality výskytu. Kardinality všech vztahů jsou definováné **0** .. **n** – **1**.

Dělení aplikace:

Zdroje aplikace lze rozdělit na část **definiční** a **datovou.** Definiční část obsahuje zdroje pro CRUD operace sledovaček, TS, TD a vlaků. Datová část zahrnuje vkládání a přístup k informacím o vložených záznamech.

Podobně existují i dvě klientské verze: Jedna pro definice oběhů a druhá pro zobrazování uložených dat.

Míchání jazyků

Pro všechny proměnné jsou použity anglické názvy, vyjma označení druhu lokomotivy na vlaku. Odborné termíny označení "vlaková", "přípřež", "postrk" a "řídicí vůz" byly ponechány česky.

Filozofie aplikace

Jednotlivé záznamy nejsou mazány nebo upravovány, lze je pouze přepsat později vloženým. Zobrazovací aplikace pak mají zobrazit nejnovější záznam. Starší záznamy mohou být zobrazeny v administraci tabulky pro kontrolu.

Grafické rozhraní

Všechny zdroje podporují CORS, tedy Cross-Origin Resource Sharing. Díky tomu je možné vytvořit AJAXového klienta. Veškerá komunikace s REST API probíhá ve formátu JSON.

Entity v systému:

Zdroje - část definiční

/

GET: Vrátí odkazy na zdroje

/observation

GET: Vrátí sledovačky

POST: Nová sledovačka

/observation/{idSledovačky}

GET: Vrátí sledovačku

PUT: Úprava sledovačky

DELETE: Odstraní sledovačku

/observation/{idSledovačky}/group

GET: vrátí skupiny ve sledovačce

/observation/{idSledovačky}/data

GET: vrátí skupiny, dny a vlaky ve sledovačce

/group

GET: Vrátí všechny TS

POST: Vytvoří novou TS

/group/{idTS}

GET: Vrátí údaje o turnusové skupině

DELETE: Odstraní TS

PUT: Úprava TS

/group/{idTS}/day

GET: Vrátí TD v TS

/day

GET: Vrátí všechny TD

POST: Vytvoří nový TD

/day/{idTD}

GET: Vrátí údaje o TD

DELETE: Odstraní TD

PUT: Úprava TD

/day/{idTD}/train

GET: Vrátí vlaky v TD.

/day/{idTD}/data

GET: Vrátí sledovačku, její skupiny, dny a vlaky, ve které je den s idTD

/train

GET: Vrátí všechny vlaky.

POST: Vytvoří nový vlak.

/train/multiple

POST: Vytvoří více vlaků, přijímá list.

/train/{idVlaku}

GET: Vrátí vlak.

PUT: Upraví vlak.

DELETE: Smaže vlak.

/train/{idVlaku}/data

GET: Vrátí sledovačku, její skupiny, dny a vlaky, ve které je vlak s idVlaku.

/train/find/{čísloVlaku}

GET: Vyhledá vlaky se zadaným číslem.

Zdroje - část datová

/record/

POST: Vloží nový záznam, vlak je třeba specifikovat v datech.

/record/multiple

POST: Vloží více nových záznamů, přijímá list.

/train/{idVlaku}/add

POST: Vloží nový záznam pro zvolený vlak.

/record/observation/{idSledovačky}/

GET: Vrátí pozorování ve sledovačce pro dnešek.

/record/observation/{idSledovačky}/{year}/{month}

GET: Vrátí pozorování ve sledovačce pro zadaný měsíc.

/record/observation/{idSledovačky}/{year}/{month}/{day}

GET: Vrátí pozorování ve sledovačce pro zadané datum.

/record/group/{idTS}/

GET: Vrátí pozorování v TS pro dnešek.

/record/group/{idTS}/{year}/{month}

GET: Vrátí pozorování v TS pro zadaný měsíc.

/record/group/{idTS}/{year}/{month}/{day}
GET: Vrátí pozorování v TS pro zadané datum.

/record/day/{idTD}/

GET: Vrátí pozorování v TD pro dnešek.

/record/day/{idTD}/{year}/{month}

GET: Vrátí pozorování v TD pro zadaný měsíc.

/record/day/{idTD}/{year}/{month}/{day}

GET: Vrátí pozorování v TD pro zadané datum.

/record/train/{idVlaku}/

GET: Vrátí pozorování zadaného vlaku pro dnešek.

/record/train/{idVlaku}/{year}/{month}

GET: Vrátí pozorování zadaného vlaku pro zadaný měsíc.

/record/train/{idVlaku}/{year}/{month}/{day}

GET: Vrátí pozorování zadaného vlaku pro zadané datum.

JSON požadavky a odpovědi

Veškeré typy, které nejsou uvedeny, jsou řetězce. Při vytváření nebo úpravě zdrojů není nutné vyplňovat ID, toto je buď vygenerováno automaticky, nebo předáno v adrese.

Sledovačka:

id ID sledovačky name jméno sledovačky

Turnusová skupina:

id ID skupiny name jméno skupiny

observationID ID sledovačky, v níž je tato turnusová skupina

Turnusový den:

id ID dne

groupID ID turnusové skupiny, v níž je tento turnusový den

name označení dne

Vlak:

id ID vlaku

dayld ID turnusového dne limits omezení jízdy vlaku number číslo vlaku [číslo]

track trasa vlaku

type typ vlaku (Os/R/Sp/...)

Záznam:

id ID pozorování

day den pozorování **[číslo: 1-31]** month měsíc pozorování **[číslo: 1-12]**

year rok pozorování **[číslo]**

trainNumber číslo pozorovaného vlaku **[číslo]**

trainId ID pozorovaného vlaku

 vlakova
 vlaková lok. [číslo: 100000-999999]

 ridiciVuz
 řídicí vůz vlaku [číslo: 100000-999999]

 priprez
 přípřežní lok. [číslo: 100000-999999]

 postrk
 postrková lok. [číslo: 100000-999999]

comment poznámka k záznamu

insertDate datum vložení záznamu [timestamp]

Při vložení záznamu není nutné vyplnit všechna pole:

- Pokud není vyplněno datum, považuje se datum odeslání za aktuální den.
- Pokud není vyplněn rok, považuje se rok za letošní
- Můžete zadat buď číslo vlaku, nebo ID vlaku. Pokud je nalezeno více vlaků daného čísla, budete vyzváni k upřesnění pomocí ID vlaku.
- Jednotlivá pole vlakova, ridiciVuz, priprez a postrk vyplňte, jen když jsou pro daný záznam potřeba. Pokud nejsou zadána, předpokládá se nulová hodnota, tj. nepřítomnost na vlaku.
- Datum vložení záznamu bude nastaveno automaticky při přijetí záznamu.
- Pokud není zadána poznámka, předpokládá se prázdný text.

Klientská část

Klientskou část tvoří AJAXový klient kompletně vytvořený v JavaScriptu. Ten se skládá z několika souborů:

- Listener.js, objekt Listener jeho funkce slouží jako controllery na akce, obsahuje funkce pro práci s historií, onclick eventy, ...
- Memory.js, objekt Memory paměť používaná za běhu aplikace.
- Server.js, objekt Server třída sloužící pro načtení dat, která nejsou dostupná v třídě Memory. Odpovědi serveru ukládá též do lokální paměti.
- Storage.js, objekt Storage obalení API WebStorage.
- UI.js, objekt UI funkce pro vypsání uživatelského rozhraní
- Object.js, objekty Observation, Group, Day, Train, Record a RecordMap. Třída RecordMap obsahuje pouze proměnné posílané v JSONu na server při vložení nového záznamu. Ostatní třídy slouží pro reprezentaci dat o oběhu a jejich instance jsou navzájem propojené.
- Canvas.js, objekt Canvas funkce pro kreslení jezdící lokomotivy do elementu Canvas.
- Notify.js, objekt Notify zobrazování notifikací, pokud nejsou povoleny, zobrazuje chyby alertem.

Ke klientské části patří ještě tři soubory: style.css s kaskádovými styly, prototype.js zajišťující doplnění funkcí do stávajících objektů a index.html obsahující kostru stránky a mikrodata.

Popis funkčnosti

Popis funkčnosti klientské části lze shrnout do několika bodů, které platí napříč celou aplikací:

- Třídy UI, Listener a Server pracují s instancí Memory.
- Třída Listener volá metody třídy Server a UI.
- Pokud jsou dostupná data v třídě Memory, zavolá Listener přímo UI. Jinak zavolá server a funkci třídy UI předá jako referenci. Tento callback je zavolán až po načtení a zpracování dat.
- Objekty Observation, Group, Day, Train, Record jsou obousměrně propojené, čehož se hojně využívá při výpisu tabulek sledování
- Aby byl i po stisku klávesy F5 načten předchozí stav aplikace, jsou potřebné údaje ukládány do URL. V URL jsou navzájem odděleny rozděleny znakem "!".
- Všichni posluchači navěšení na události jsou ze třídy Listener (vyjma zpracování XHR, ty jsou ze třídy Server)

Další rozvoj

Aby mohla být aplikace považována za plnohodnotnou, je nutné doplnit mnoho částí rozhraní. Jedná se například o definici časové platnosti sledovaček, neboť oběhy se zpravidla mění každý rok při změně jízdního řádu. Trasy vlaků by měly být zadávány ve strojově zpracovatelném formátu. Stejná situace je i u omezení jízdy vlaků, neboť není výjimkou, že o víkendu platí úplně jiné oběhy, než v pracovní dny. Díky tomu by v daný den bylo možné zobrazit jen příslušné vlaky nebo zakázat vložení záznamu k vlaku, který v daný den nejede.

Další možnost rozvoje je výpočet předpokladů. Stroje zpravidla přecházejí do následujících TD, tj. z prvního do druhého apod., nalezneme ovšem nemnoho výjimek. Zde je situace s obtížnou definicí vstupních dat podobná jako u omezení jízdy:

Definice předpokladů a omezení jízdy vyžaduje velmi důkladnou přípravu, omezení mohou být složitá s mnoha vnitřními závislostmi. Příklad skutečného omezení jízdy vlaku v oběhu může být následující:

```
jede v úterý až pátek, nejede 22.IV., 1., 2., 8., 9.V., 1.VII. - 29.VIII., 28., 29.X. a 18.XI.
```

nebo

```
jede v pondělí, 22.IV., 2., 9.V., 29.X., 18.XI., nejede 21.IV., 30.VI. až 25.VIII. a 17.XI.
```

Lze také zvažovat možnost definice pořadí turnusových skupin a turnusových dní ve sledovačce, zde ale v naprosté většina případů stačí lexikografické řazení. Vlaky lze (v případě strojového zadávání trasy) řadit dle času odjezdu z výchozí stanice.