DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR ET DE L'INSERTION PROFESSIONNELLE (**DGESIP**)

Concours A2GPsession 2018

Composition: **Mathématiques 5** (algèbre, analyse)

Durée : 3 Heures

Consignes pour les candidats

Merci de ne rien marquer sur le sujet.

Pour chaque question de l'épreuve, une seule bonne réponse possible. Répondez sur la grille séparée qui comporte 27 questions (Q1 à Q27). Seules les grilles correctement remplies seront corrigées.

NB. : Dans cette épreuve, on demande d'indiquer, pour chaque question, la bonne réponse parmi celles qui sont proposées.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur la grille de réponse (au verso) et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Partie I : ANALYSE

EXERCICE 1

n est un nombre entier non nul.

On considère la fonction numérique f_n définie sur $\left[0,1\right]$ par :

$$\begin{cases} f_n(x) = x^2 (\ln x)^n \text{ si } x \in]0,1] \\ f_n(0) = 0 \end{cases}$$

Question 1) f_n est-elle dérivable à droite en 0 ?

- A) oui
- B) non

Question 2) $\forall x \in [0,1]$, Calculer $f_n'(x)$.

A)
$$f'_n(x) = -2x(\ln x)^{n+1} \left(\ln x + \frac{n}{2}\right)$$

B)
$$f'_n(x) = 2x(\ln x)^{n-1} \left(\ln x + \frac{n}{2}\right)$$

C)
$$f'_n(x) = x(\ln x)^n \left(\ln x + \frac{n}{2}\right)$$

t désigne un réel élément de $\left[0,1\right]$

On pose $I_n(t) = \int_t^1 f_n(x) dx$ et $L_n = \int_0^1 f_n(x) dx$.

On suppose que $L_n = \underset{t \to 0}{\lim} I_n(t)$

Question 3) Trouver une primitive F de f_1 sur [0,1].

A)
$$\begin{cases} F(x) = \frac{x^3}{3} \ln x - \frac{x^3}{9} \text{ si } x \in [0,1] \\ F(0) = 0 \end{cases}$$

B)
$$\begin{cases} F(x) = \frac{x^3}{3} \ln x + \frac{x^3}{9} \text{ si } x \in]0,1] \\ F(0) = 0 \end{cases}$$

C)
$$\begin{cases} F(x) = -\frac{x^3}{3} \ln x - \frac{x^3}{9} \text{ si } x \in]0,1] \\ F(0) = 0 \end{cases}$$

D)
$$\begin{cases} F(x) = \frac{x^3}{3} \ln x - \frac{x^2}{9} \text{ si } x \in [0,1] \\ F(0) = 0 \end{cases}$$

Question 4) Calculez L_1 .

A)
$$L_1 = -\frac{1}{9}$$

B)
$$L_1 = -\frac{2}{9}$$

C)
$$L_1 = -1$$

Soit ϕ_n la fonction définie sur]0,1] par $\phi_n(t) = -\frac{1}{3}t^3(\ln t)^n$

Question 5) Calculer la limite de φ_n en 0

- A) La limite de φ_n en 0 est -1
- B) La limite de φ_n en 0 est $+\infty$
- C) La limite de on en 0 est 0

Question 6) A l'aide d'une intégration par parties, calculer In+1(t).

A)
$$\forall t \in [0,1], I_{n+1}(t) = \varphi_{n+1}(t) - \frac{n+1}{3}I_n(t)$$

B)
$$\forall t \in [0,1], I_{n+1}(t) = -\varphi_{n+1}(t) - \frac{n-1}{3}I_n(t)$$

C)
$$\forall t \in [0,1], I_{n+1}(t) = \varphi_{n+1}(t) + \frac{n+1}{3}I_n(t)$$

D)
$$\forall t \in [0,1], I_{n+1}(t) = \varphi_{n+1}(t) - \frac{n+1}{6}I_n(t)$$

Question 7) En déduire L_{n+1}.

A)
$$L_{n+1} = -\frac{n-1}{3}L_n$$

B)
$$L_{n+1} = \frac{n+1}{3}L_n$$

C)
$$L_{n+1} = -\frac{n+1}{3}L_n$$

D)
$$L_{n+1} = -\frac{n+1}{6}L_n$$

Trouver en utilisant la récurrence, $\forall n \ge 1$ L

A)
$$L_n = -(-1)^n \frac{n!}{3^n}$$

B)
$$L_n = (-1)^n \frac{n!}{3^{n+1}}$$

C)
$$L_n = (-1)^{n+1} \frac{n!}{3^{n+1}}$$

EXERCICE 2

On désire trouver la dérivée n-ième de la fonction réelle f : $x \mapsto \cos(x)e^x$.

Question 9) De ces trois propositions, donnez le résultat correct.

A)
$$\cos(x)e^x = Re(e^{(1+i)x})$$

B)
$$\cos(x)e^{x}=e^{(1+i)x}$$

C)
$$\cos(x)e^{x} = Im(e^{(1+i)x})$$

Re et Im représentent respectivement la partie réelle et imaginaire

Question 10) Trouver le module et l'argument de (1+i)ⁿ.

A)
$$(1+i)^n = (\sqrt{2})^{n/2} e^{in\pi/4}$$

B)
$$(1+i)^n = 2^n e^{in\pi/4}$$

C)
$$(1+i)^n = 2^{n/2}e^{in\pi/4}$$

Calculer la dérivée n-ième de la fonction f.

A)
$$\left(\cos(x)e^{x}\right)^{(n)} = 2^{n/2}e^{x}\left(\sin(x+n\pi/4)\right)$$

B)
$$(\cos(x)e^{x})^{(n)} = 2^{n/2}e^{x}(\cos(x+n\pi/4))$$

C)
$$\left(\cos(x)e^{x}\right)^{(n)} = 2^{n/2}e^{x}\left(\cos(x+n\pi/4)+i\sin(x+n\pi/4)\right)$$

D)
$$(\cos(x)e^{x})^{(n)} = 2^{n}e^{x}(\cos(x+n\pi/4)+i\sin(x+n\pi/4))$$

E)
$$\left(\cos(x)e^{x}\right)^{(n)} = \left(\sqrt{2}\right)^{n/2} e^{x} \left(\cos(x + n\pi/4)\right)$$

EXERCICE 3

On considère la fonction numérique f définie sur IR, paire, périodique π , telle que $f(t)=-t+\pi/2$ si t ϵ [- π ,(5 π

1/a_n et b_n désignent les coefficients de Fourier réels de f. Question 12) Quelle est la valeur de b_n

A)
$$b_n = 0 \forall n \in IN$$

B)
$$b_n = \frac{2}{n} ((-1)^n - 1) \ \forall n \in IN$$

C)
$$b_n = \frac{2}{\pi(2n+1)^2} \forall n \in IN$$

Ouestion 13) Calculer a₀ et an (On précisera la valeur de a_n suivant la parité de l'entier non nul n).

Calcul de ao

A)
$$a_0 = \frac{\pi}{2}$$

B)
$$a_0 = \frac{\pi}{4}$$

C)
$$a_0 = \pi$$

Question 14) Calcul de a_n

$$A) \begin{cases} \text{Pour } n = 2p \big(p \in IN \big) \text{ , } a_{2p} = 0 \\ \text{Pour } n = 2p + 1 \big(p \in IN \big) \text{ , } a_{2p+1} = \frac{2}{\pi \big(2p + 1 \big)^2} \end{cases}$$

Pour
$$n = p(p \in IN)$$
, $a_{2p} = 0$

B)
$$\begin{cases} \text{Pour } n = p(p \in IN) \text{ , } a_{2p} = 0 \\ \text{Pour } n = p + 1(p \in IN) \text{ , } a_{2p+1} = \frac{2}{\pi(p+1)^2} \end{cases}$$

Pour
$$n = 2p(p \in IN)$$
, $a_{2p} = 0$

$$\pi(p+1)^{2}$$
Pour $n = 2p(p \in IN)$, $a_{2p} = 0$

$$Pour n = 2p+1(p \in IN)$$
, $a_{2p+1} = -\frac{2}{\pi(2p+1)^{2}}$

$$Pour n = 2p(p \in IN)$$
, $a_{2p} = -2$

$$Pour n = 2p+1(p \in IN)$$
, $a_{2p+1} = \frac{2}{\pi(2p+1)^{2}}$

$$\left[\text{Pour } n = 2p \left(p \in \text{IN} \right), \ a_{2p} = -2 \right]$$

Pour
$$n = 2p + 1(p \in IN)$$
, $a_{2p+1} = \frac{2}{\pi(2p+1)^2}$

On suppose que la fonction f vérifie les conditions

d'application du théorème de Dirichlet.

Ouestion 15) Soit S(t) le développement en série de f au point d'abscisse t. Trouver S(t).

A)
$$S(t) = \frac{\pi}{2} + \frac{2}{\pi} \left[\sum_{p=0}^{+\infty} \cos \frac{[2(2p+1)t]}{(2p+1)^2} \right]$$

B)
$$S(t) = \pi + \frac{2}{\pi} \left[\sum_{p=0}^{+\infty} \cos \frac{[2(2p+1)t]}{(2p+1)^2} \right]$$

C)
$$S(t) = \frac{\pi}{4} + \frac{2}{\pi} \left[\sum_{p=0}^{+\infty} \cos \frac{[(2p+1)t]}{2(2p+1)^2} \right]$$

D)
$$S(t) = \frac{\pi}{4} + \frac{2}{\pi} \left[\sum_{p=0}^{+\infty} \cos \frac{[2(2p+1)t]}{(2p+1)^2} \right]$$

E)
$$S(t) = \frac{\pi}{4} + 2 \left[\sum_{p=0}^{+\infty} \cos \frac{[2(2p+1)t]}{(2p+1)^2} \right]$$

Question 16) Pour une valeur de t convenablement

choisie, calculer la somme de la série $\sum_{p=0}^{+\infty} \frac{1}{(2n+1)^2}$

A)
$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} = \frac{\pi^2}{4}$$

B)
$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} = \frac{\pi^2}{8}$$

C)
$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} = \frac{\pi}{8}$$

D)
$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} = \frac{\pi^2}{2}$$

$$E) \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} = \frac{\pi}{4}$$

Question 17) Déterminer l'expression de S(t) sur $\left| -\frac{\pi}{2}; 0 \right|$

A)
$$S(t) = t + \frac{\pi}{2}$$

B)
$$S(t) = -t + \frac{\pi}{2}$$

C)
$$S(t) = -t - \frac{\pi}{2}$$

Pour une fonction f périodique de période T, écrire l'identité de PARSEVAL.

A)
$$\frac{1}{T} \int_{-T/2}^{T/2} f^2(t) dt = a_0^2 + \sum_n a_n^2 + b_n^2$$

B)
$$\frac{1}{2T} \int_{-T}^{T} f^{2}(t) dt = a_{0}^{2} + \frac{1}{2} \sum a_{n}^{2} + b_{n}^{2}$$

C)
$$\frac{1}{T} \int_{-T/2}^{T/2} f^2(t) dt = a_0^2 + \frac{1}{2} \sum a_n^2 + b_n^2$$

D)
$$\frac{2}{T} \int_{-T/2}^{T/2} f^2(t) dt = a_0^2 + \sum_n a_n^2 + b_n^2$$

Ouestion 19) En appliquant cette formule, calculer la somme de la série $\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4}$

A)
$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4} = \frac{\pi^4}{96}$$

B)
$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4} = \frac{\pi^4}{48}$$

C)
$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4} = \frac{\pi^2}{96}$$

D)
$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4} = \frac{\pi^3}{36}$$

Partie II: ALGEBRE

On considère l'espace vectoriel IR³, muni de sa base canonique $B=(e_1, e_2, e_3)$.

Soit θ un réel fixé, et f_{θ} l'endomorphisme de IR³ dont la matrice dans la base est

$$\mathbf{A}_{\theta} = \begin{pmatrix} 0 & -1 & -\sin\theta \\ -1 & 0 & \cos\theta \\ -\sin\theta & \cos\theta & 0 \end{pmatrix}$$

Question 20) Trouver le polynôme caractéristique de A₀.

- A) $P_{\theta}(X) = -X^3 + 2X + \sin 2\theta$
- B) $P_{\theta}(X) = -X^3 2X + \sin 2\theta$
- C) $P_{\theta}(X) = -X^3 + 2X + \sin\theta \cdot \cos\theta$
- D) $P_{\theta}(X) = -X^3 + 2X + \cos 2\theta$

En calculant $P_{\theta}(0)$, déterminer pour quelles Question 21) valeurs de $\theta \in IR$ f_{θ} n'est pas un automorphisme de IR^3 .

- A) $P_{\theta}(0) = \sin\theta \cdot \cos\theta$
- B) $P_{\theta}(0) = \cos 2\theta$
- C) $P_{\theta}(0) = \sin 2\theta$

Question 22)

A)
$$\theta = k \frac{\pi}{4}$$
; $k \in \mathbb{Z}$

B)
$$\theta = k\pi$$
: $k \in \mathbb{Z}$

C)
$$\theta = k \frac{\pi}{2}$$
; $k \in \mathbb{Z}$

Question 23) Déterminer alors le noyau N et l'image I de f_{π} . f_{π} désigne f_{θ} pour $\theta = \pi$ (On précisera une base de chacun de ces sous espaces vectoriels).

A)
$$N = \{x(1;0;-1)\}, x \in IR$$
 et une base est $N = \langle (1;0;-1) \rangle$

B)
$$N = \{x(1;1;-1)\}, x \in IR$$
 et une base est $N = \langle (1;1;-1) \rangle$

C) $N = \{x(0;0;0)\}, x \in IR$ et une base est $N = \langle (0;0;0) \rangle$

Question 24) Image

A)
$$I = \langle \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix} \rangle$$

B)
$$I = \left\langle \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}; \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} \right\rangle$$

C)
$$I = \left\langle \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}; \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix} \right\rangle$$

D)
$$I = \left\langle \begin{pmatrix} -1\\0\\-1 \end{pmatrix}; \begin{pmatrix} 0\\-1\\-1 \end{pmatrix} \right\rangle$$

E)
$$I = \left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}; \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix} \right\rangle$$

On pose $\theta=\pi/4$ et $f_{\pi/4}=f$ puis on considère les vecteurs $e'_1=e_1\cos\theta+e_2\sin\theta$; $e'_2=f(e2)$ et $e'_3=f(e_3)$

Question 25) Le système B'=(e'₁, e'₂, e'₃) est-il une base de IR³?

- A) oui
- B) non

Question 26) Trouver la matrice de passage Q de la base B' à la base B.

A)
$$Q = \frac{-\sqrt{2}}{2} \begin{pmatrix} 1 & 1 & \sqrt{2} \\ 0 & 0 & 2 \\ -1 & 1 & -\sqrt{2} \end{pmatrix}$$

B)
$$Q = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 & \sqrt{2} \\ 0 & 0 & 2 \\ -1 & 1 & -\sqrt{2} \end{pmatrix}$$

C)
$$Q = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 & \sqrt{2} \\ 0 & 0 & 2 \\ -1 & 1 & -\sqrt{2} \end{pmatrix}$$

D)
$$Q = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 & \sqrt{2} \\ 0 & 0 & 2 \\ 1 & 1 & -\sqrt{2} \end{pmatrix}$$

Question 27) Préciser la matrice A' de f dans la base B'.

A)
$$A' = \frac{\sqrt{2}}{2} \begin{pmatrix} -\sqrt{2} & 2 & \sqrt{2} \\ 0 & \sqrt{2} & 2 \\ 0 & 1 & 0 \end{pmatrix}$$

B)
$$A' = \frac{\sqrt{2}}{2} \begin{pmatrix} -\sqrt{2} & 2 & -\sqrt{2} \\ 0 & \sqrt{2} & 2 \\ 0 & 1 & 0 \end{pmatrix}$$

C) A'=
$$\frac{\sqrt{2}}{2}\begin{pmatrix} -\sqrt{2} & 2 & \sqrt{2} \\ 0 & \sqrt{2} & 2 \\ 1 & 1 & 0 \end{pmatrix}$$

D) A'=
$$\frac{\sqrt{2}}{2} \begin{pmatrix} -\sqrt{2} & 2 & \sqrt{2} \\ 0 & \sqrt{2} & 2 \\ 0 & 0 & 0 \end{pmatrix}$$