kandi työotsikkko

Topias Karjalainen

9. maaliskuuta 2020

Sisältö

1	Johdanto	2
2	Yleisiä tuloksia	3
	2.1 Perusmääritelmiä	3
	2.2 Markovin ketjut	3
3	Metropolis-Hastings algoritmi	4

Luku 1 Johdanto

Luku 2

Yleisiä tuloksia

2.1 Perusmääritelmiä

Määritellään ensiksi todennäköisyys.

Määritelmä 2.1. σ -algebra. Olkoot Ω mielivaltainen epätyhjä joukko. Sigma-algebra perusjoukolla Ω on sen osajoukkojen joukkoperhe \mathcal{F} , joka toteuttaa ehdot:

- 1. $\emptyset \in \mathcal{F}$
- 2. jos $A \in \mathcal{F}$, $niin A^c \in \mathcal{F}$
- 3. jos $A_k \in \mathcal{F}$, kaikilla $k \in K$, missä K on numeroituva joukko, niin $\bigcup_{k \in K} A_k \in \mathcal{F}$

2.2 Markovin ketjut

Luku 3 Metropolis–Hastings algoritmi

Kirjallisuutta