

Konzeption und Implementierung eines Sachwarmverhaltens von mobilen Kleinrobotern anhand eines Verfolgungsszenarios

PROJEKTMANAGEMENET

zur Studienarbeit

für die Prüfung zum

Bachelor of Science

des Studiengangs Informatik Studienrichtung Angewandte Informatik

an der

Dualen Hochschule Baden-Württemberg Karlsruhe

von

Simon Lang

18. Oktober 2016

Bearbeitungszeitraum 12 Wochen Matrikelnummer 6794837 Kurs TINF14B2

Ausbildungsfirma ifm ecomatic GmbH

Im Heidach 18

88079 Kressbronn am Bodensee

Betreuer M. Eng. Markus Fischer

Gutachter Michael Vetter

Erklärung

(gemäß §5(3) der "Studien- und Prüfungsordnung DHBW Technik" vom 29. 9. 2015) Ich versichere hiermit, dass ich meine Projektarbeit mit dem Thema: "Konzeption und Implementierung eines Sachwarmverhaltens von mobilen Kleinrobotern anhand eines Verfolgungsszenarios" selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Ort, Datum
Unterschrift

Inhaltsverzeichnis

1	Pro	jektdef	finition			4
	1.1	Gründ	lung des Projektes		•	4
	1.2	Festleg	gung des Projektziels			4
		1.2.1	Titel			4
		1.2.2	Kurzbeschreibung			4
2	Terr	minpla	nung			5
3	Qua	litätssi	icherung			6
4	\mathbf{Arb}	${f eitsmit}$	ttel			7
5	Pro	jektabs	schluss			8

1 Projektdefinition

Dieser Abschnitt beschäftigt sich mit der allgemeinen Definition der Studienarbeit.

1.1 Gründung des Projektes

Diese Studienarbeit wird sich mit dem Thema, Experimente zum Schwarmverhalten (Kooperation) von mobilen Kleinrobotern, beschäftigen. Bearbeiter dieser Studienarbeit sind hierbei Manuel Bothner und Simon Lang und wird von Prof. Hans-Jörg Haubner betreut.

1.2 Festlegung des Projektziels

Dieser Abschnitt beschäftigt sich mit dem Ziel der Studienarbeit und deren groben Verlauf.

1.2.1 Titel

Konzeption und Implementierung eines Sachwarmverhaltens von mobilen Kleinrobotern anhand eines Verfolgungsszenarios.

1.2.2 Kurzbeschreibung

Durch das Projekt soll gezeigt werden, in wie weit durch die Programmierung mehrerer interagierender, mobiler Kleinroboter verhaltenstypischer Situationen von natürlichen Schwärmen nachgestellt werden können. Dieses Studienarbeit zeigt dies anhand mehrerer Kleinroboter von LEGO Mindstorm, einer App zur Steuerung des Szenarios, sowie einer zu implementierenden Schnittstelle der beiden Komponenten.

Auf der App soll der Nutzer die Möglichkeit besitzen unter verschiedenen Varianten des Verfolgungsszenarios auszuwählen, dies beinhaltet als Beispiel eine direkte Steuerung eines Roboters über den Touchscreen, oder einer intelligenten autonomen Verfolgung. Die Schnittstelle zwischen beiden Komponenten dient der allgemeinen Steuerung des Szenarios, dass eine Erweiterung um mehrerer Clients, als auch Roboter ermöglichen soll, was das Verfolgungsszenario wesentlich interessanter für verschiedene Algorithmen macht. Die Roboter erhalten über eine drahtlose Schnittstelle entsprechende Daten zur Navigation, um sich in seiner Umgebung zu bewegen und am Verfolgungsszenario teilzunehmen.

2 Terminplanung

Folgend werden die Meilensteine und Termine dargestellt.

Name	Beschreibung	Datum	Status
Kickoff-Meeting	Start des Projektes mit Festlegung	14.10.2016	erledigt
	des Ziels, sowie Setzen der ersten		
	Meilensteine und der allgemeinen		
	Organisation		
Einarbeitung	Einarbeitung in die Studienarbeit,	28.10.2016	offen
	sowie Orientierung in der Entwick-		
	lungsumgebung mit ersten Imple-		
	mentierungen		
Literatur	Recherche und Einarbeitung von	04.11.2016	offen
	entsprechender Literatur mit erster		
	Dokumentation		
Softwarearchitektur	Konzeption einer geeigneten Softwa-	11.11.2016	offen
	rearchitektur mit ersten Implemen-		
	tierungen		
Kommunikation	Herstellung einer Kommunikation	18.11.2016	offen
	unter den verschiedenen Komponen-		
	ten mit einer geeigneten Schnittstel-		
	le		
Erste App	Erstellung einer ersten App zur	25.11.2016	offen
	Steuerung für einen Nutzer		
Autonome Fahrma-	Implementierung erster autonomer	02.12.2016	offen
növer	Fahrmanöver zur Abhandlung des		
	Verfolgungsszenarios		
Erste Tests	Erstellung erster Tests zur App und	25.11.2016	offen
	den bisher vorliegenden Algorith-		
	men		
Zwischenergebnis	Präsentation des Zwischenergebnis-	16.12.2016	offen
	ses der Studienarbeit anhand eines		
	Testats		

Die aktuellen Meilensteine, sowie Termine können über die folgenden Hyperlinks abgerufen werden.

3 Qualitätssicherung

4 Arbeitsmittel

Als Einsatzmittel für diese Studienarbeit, werden verschiedene Komponenten benötigt:

- Mobile Geräte (Tablet, Smartphone, ...) als Clients
- Raspberry PI als Schnittstelle zur allgemeinen Steuerung
- LEGO Mindstorm Roboter mit EV3

Da alle Komponenten von der DHBW Karlsruhe gestellt werden können, darunter auch ein Tablet mit Android, muss zunächst kein Geld für Material aufgewendet werden.

5 Projektabschluss

Anhang

Informatik

Themenmitteilung zur Studienarbeit

Studiengang Informatik, DHBW Karlsruhe Erzbergerstr. 121, 76133 Karlsruhe

Modul T2_3201, Theorie 5. + 6. Semester)

Studierende/r	Simon Lang
Kurs	TINF14B2
Zusammen mit	Manuel Bothner

Betreuer	Prof. Hans-Jörg Haubner
eMail	haubner@dhbw- karlsruhe.de

Titel der Arbeit	Konzeption und Implementierung eines Schwarmverhaltens von mobilen Kleinrobotern anhand eines Verfolgungsszenarios			
Typ der Arbeit	Studienarbeit			
Problemstellung, Erwartetes Ergebnis	Problemstellung: Durch das Projekt soll gezeigt werden, in wie weit durch die Programmierung mehrerer interagierender, mobiler Kleinroboter verhaltenstypische Situationen von natürlichen Schwärmen nachgestellt werden kann Erwartetes Ergebnis: Konzeption und Implementierung eines Verfolgungsszenarios mit LEGO Mindstorm Robotern, basierend auf einer drathlosen Kommunikation zwischen mehreren Kleinrobotern Entwicklung einer Anwendung zur Steuerung des Szenarios			
Geplantes Vorgehen	 Definition der Anforderungen Entwicklung eines Lösungsansatzes / einer Architektur Konzeption und Implementierung der einzelnen Anwendungen Testen, Analysieren, Bewerten Erstellen einer wissenschaftlichen Dokumentation 			
Entwicklungsumgebung	 LEGO Mindstorm: Eclipse, Java Backend: Eclipse, Java Steuernde Anwendung: Eclipse, Java; ggf. VisualStudio, Xamarin, C# Dokumentation: TeXstudio, LATEX 			
Literaturliste	 LEGO®-EV3-Roboter: Bauen und programmieren lernen mit LEGO® MINDSTORMS® EV3 Programmierung mit LEGO Mindstorms NXT: Robotersysteme, Entwurfsmethodik, Algorithmen Mobile Roboter: Eine Einführung aus Sicht der Informatik Schwarmintelligenz: Wie einfache Regeln Großes möglich machen 			