Regression Analysis Model Selection

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Introduction

About This Lesson

Objectives

- High Dimensionality: When we have a very large number of predicting variables to consider, it can be difficult to interpret and work with the fitted model.
- Multicolliearity: When the predicting variables are correlated, it is important
 to select variables in such a way that the impact of multicolliearity is
 minimized.
- Prediction vs Explanatory Objective: The variables selected for the two
 objectives will most often be different.
- → Variable Selection addresses all these concerns.

Georgia Tech

Implications and Words of Caution

- Confounding vs. Explanatory Variables
 - Consider research hypothesis as well as potential confounding variables
- Targeted Predicting Variables
 - Include target variable in model if specified by research hypothesis
- Over-Interpretation
 - Selected variables are not necessarily special!
 - Highly influenced by correlations between variables
 - Interpretation of regression coefficients
 - · Causality vs. Association

Georgia Tech

No Magic Bullet

- Variable selection for large number of predicting variables is an "unsolved" problem in statistics
- In some sense, model selection is "data mining"
- Data miners / machine learners often work with many predictors
- There are no magic procedures to get you the "best model"

"All models are wrong, but some are useful." —George Box

Georgia Tech

Notation

Given

 $S \subset \{1, ..., p\}$ a subset of indices

and

 $(x_i \text{ for } j \in S)$ the subset of predicting variables with indices in S:

- $\widehat{\beta}(S)$ is the vector of estimated regression coefficients for the submodel with $X_S = (x_i \text{ for } j \in S)$ predicting variables
- $\widehat{Y}(S)$ is the vector of fitted values for the submodel with $X_S = (x_j \text{ for } j \in S)$ predicting variables
 - E.g., for regression assuming normality, $\widehat{Y}(S) = X_S \widehat{\beta}(S)$
- → I will refer to this model as the S submodel.

Georgia Tech

