

Real-world Translator Retrieval Framework

Navid Rekabsaz (rekabsaz@ifs.tuwien.ac.at)
Mihai Lupu (lupu@ifs.tuwien.ac.at)

Agenda

- Motivation
- Translation Expert Retrieval Platform
- Proficiency Estimator
 - Document Aggregation Methods
 - Experimental Results
- Translator Search
 - Data Annotation
 - Learning to Rank Methods
 - Experimental Results
- Conclusion

TU

Motivation

- A real-world, unmet, need:
 - Translation expert retrieval
 - Specific issues:
 - Proficiency estimation
 - Factor in other real-world aspects
- Context:
 - Existing online platform
 - Freelance translators

Proficiency Estimator

- 10 language combinations
- 20 to 30 potential translators for each order
- Using Lucene for document similarity
- How to aggregate the documents in order to estimate translator's proficiency?

Document Aggregation Methods

- Top1
 - The most related document

Document Aggregation Methods

- Top1
 - The most related document
- Top5
 - Aggregate the top five relevant documents
 - Usually by averaging

Document Aggregation Methods

- Top1
 - The most related document
- Top5
 - Aggregate the top five relevant documents
 - Usually by averaging
- GP2
 - Cummins et al. (2010)
 - Study on expert search task of TREC
 - GP2 formula achieved by Genetic Programming
 - Effect of document's rank among all

Aggregation Methods – Golden Data

- 181 purchased orders
- The quality of each translation is assessed by a proof-reader
- Assessment from 1 (very poor) to 5 (great) from different translation aspects

Aggregation Methods – Golden Data

- 181 purchased orders
- The quality of each translation is assessed by a proof-reader
- Assessment from 1 (very poor) to 5 (great) from different translation aspects
- Proof-readers' assessments as golden-data

Aggregation Methods – Golden Data

- 181 purchased orders
- The quality of each translation is assessed by a proof-reader
- Assessment from 1 (very poor) to 5 (great) from different translation aspects
- Proof-readers' assessments as golden-data
- Comparing the correlation of each algorithm with the golden-data
- Correlation coefficient
 - Pearson rho
 - Kendall tau

Aggregation Methods – TOP1

- Example of five purchased orders
- Proof-readers' assessments vs. TOP1

Purchased Order ID	TOP1	Assessment
O1	14.291	4.8
O2	0.765	4.6
O3	0.339	4.4
O4	1.345	3.8
O5	9.588	4
•••		

Aggregation Methods – TOP5

- Example of five purchased orders
- Proof-readers' assessments vs. TOP5

Purchased Order ID	TOP5	Assessment
O1	11.284	4.8
O2	0.615	4.6
O3	0.133	4.4
O4	1.232	3.8
O5	8.083	4
•••		

Aggregation Methods – GP2

- Example of five purchased orders
- Proof-readers' assessments vs. GP2

Purchased Order ID	GP2	Assessment
O1	0.101	4.8
O2	0.11	4.6
O3	0.088	4.4
O4	0.081	3.8
O5	0.91	4
•••		

Proficiency Estimator - Results

		Top1	Top5	GP2
r	Correlation Test	0.052	0.089	0.145
$ r_s $	p-Value	0.4866	0.2295	0.05038
au	Correlation Test	0.034	0.059	0.102
	p-Value	0.5157	0.2562	0.05263

Proficiency Estimator - Results

		Top1	Top5	GP2
r_s	Correlation Test	0.052	0.089	0.145
	p-Value	0.4866	0.2295	0.05038
τ	Correlation Test	0.034	0.059	0.102
	p-Value	0.5157	0.2562	0.05263

- Both measures show similar behaviors
- GP2 is least likely to be independent of proofreaders' assessments
- GP2 has the best correlation though still weak

Data Annotation

- Annotation system presents three translators, randomly
- Each with four criteria (price, delivery time, proficiency and number of cooperations)
- Translators' pictures and names are removed
- 8 annotators familiar with company's business
- Annotators rank the three translators
- 400 annotated lists (1200 records)
- Annotated data available on github

Data Annotation

Learning to Rank

- Pointwise: linear regression
- Pairwise: RankNet, RankBoost, LambdaRank, LambdaMART
- Listwise: AdaRank, ListNet

Learning to Rank

- Pointwise: linear regression
- Pairwise: RankNet, RankBoost, LambdaRank, LambdaMART
- Listwise: AdaRank, ListNet
- Evaluation
 - NDCG
 - ERR
- 5-Fold Cross Validation

Learning to Rank

- Pointwise: linear regression
- Pairwise: RankNet, RankBoost, LambdaRank, LambdaMART
- Listwise: AdaRank, ListNet
- Evaluation
 - NDCG
 - ERR
- 5-Fold Cross Validation
- Two baselines
 - Random generated data
 - Random ranker

Linear Regression shows the best performance

- Linear Regression shows the best performance
- Feature comparison based on linear regression coefficients

Feature	Value
Price	2.002
Duration	0.057
Proficiency	-0.048
Number of Cooperation Times	-0.313

- Linear Regression shows the best performance
- Feature comparison based on linear regression coefficients

Feature	Value
Price	2.002
Duration	0.057
Proficiency	-0.048
Number of Cooperation Times	-0.313

- Price and duration much more important
- Proficiency not effective, maybe because it's guaranteed by the company

TU

Conclusion

- Expert-Translator Retrieval
 - Price
 - Duration
 - Proficiency
 - Number of cooperation times
- Proficiency estimator
 - Document aggregation
 - GP2 algorithm
- Ranking model
 - Linear Regression
- Price and time more important

Thank you! Questions?