Math 582 Intro to Set Theory Lecture 24

Kenneth Harris

kaharri@umich.edu

Department of Mathematics University of Michigan

March 20, 2009

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 24

March 20, 2009

Introduction

Introduction

- This lecture defines the notions same size (equinumerous) and at least in large in size.
- Size is measured by the "number of elements", where all properties are stripped from the elements of the set except their distinctness.
- The central result is the Schröder-Bernstein Theorem (or Schröder-Bernstein-Cantor Theorem) which simplifies the task of comparing two sets for size.
- There are several examples to introduce techniques for comparing the size of sets, and to begin to see patterns for developing an arithmetic based upon the size of sets.
- These lectures correspond to H+J Section 4.1 and Section 5.1.

Equinumerous

Definition

 $X \approx Y$ iff there is a function $X \rightleftharpoons Y$.

 $X \leq Y$ iff there is a function $X \hookrightarrow Y$.

- When $X \approx Y$ we will say that the sets are equinumerous, or equipotent (H+J), or have the same cardinality or size.
- When $X \leq Y$ we will say the set X is less than or equal to Y in cardinality or size.

Note. H+J write |A| = |B| when they mean $X \approx Y$ and $|A| \leq |B|$ when they mean $X \leq Y$. In Chapters 4 and 5, |X| does not denote any set, and will not in H+J until chapter 7 when |X| will denote the cardinal number of X.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 24

March 20, 2009 5 / 1

Equinumerosity

Simple Examples

- **★** The only set equinumerous with \emptyset is \emptyset . But, $\emptyset \leq X$ for every set X.
- **★** The sets $3 = \{0, 1, 2\}$ and $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\$ are equinumerous with the correspondence f given by: $0 \mapsto \emptyset$ $1 \mapsto \{\emptyset\}$ $2 \mapsto \{\{\emptyset\}\}$

The following are believable, but some will require a fair amount of effort to show.

- \bullet *n* \preccurlyeq *ω* and *ω* \nleq *n* for every finite ordinal *n*.
- \bullet $\mathbb{N} \preceq \mathbb{Z}$ and $\mathbb{Q} \preceq \mathbb{R}$. by the trivial embedding. (That is, we have $\mathbb{N} \subseteq \mathbb{Z}$ and $\mathbb{Q} \subseteq \mathbb{R}$.)
- \bullet $\mathbb{N} \approx \mathbb{Z} \approx \mathbb{Q}$ by well-known mappings.
- \star $\mathbb{R} \not \prec \mathbb{Q}$ by Cantor's diagonal argument.

Relations

Lemma

- $\textcircled{1} \preccurlyeq \textit{is transitive and reflexive.}$
- ② $X \subseteq Y$ implies $X \preccurlyeq Y$.
- $3 \approx is$ an equivalence relation.

Proof.

① and ③ are by composing maps. ② is by the identity function on X(the "natural embedding" of X into Y.)

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 24

March 20, 2009 7 / 1

Equinumerosity

Schröder-Bernstein Theorem

We proved the Schröder-Bernstein Theorem in Lecture 7, and you can verify that we can carry-out the proof formally in set theory. HW6 will have another version of the proof due to Zermelo.

Theorem (Schröder-Bernstein Theorem)

 $A \approx B$ iff $A \leq B$ and $B \leq A$.

We can now unambigously define less than in size:

Definition

 $X \prec Y \text{ iff } X \preccurlyeq Y \text{ and } Y \not\preccurlyeq X.$

Equivalently (by SBT), $X \hookrightarrow Y$ but **NOT**- $(X \rightleftharpoons Y)$.

Cardinal number and Schröder-Bernstein Theorem

Informally, we will write

$$|A| \leq |B|$$
 to mean $A \leq B$

and

$$|A| = |B|$$
 to mean $A \approx B$

The Schröder-Bernstein Theorem then says that

$$|A| \leq |B| \leftrightarrow |A| \leq |B| \land |B| \leq |A|$$

Next week we will produce a representative set for |A|, a cardinal number.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 24

March 20, 2009 9 / 1

Comparing size of sets

Exercises in comparing size

Here are some simple exercises to test your comprehension:

- \implies When $A \cap B = \emptyset = C \cap D$: $A \leq C$ and $B \leq D$ implies $A \cup B \leq C \cup D$.
- $\implies A \preccurlyeq C \text{ and } B \preccurlyeq D \text{ implies } A \times B \preccurlyeq C \times D.$
- \implies 1 × $A \approx A$ for all sets A.
- \implies When $A_0 \approx A_1$ and $A_0 \cap A_1 = \emptyset$: $A_0 \cup A_1 \approx 2 \times A_0$. Generalize to any finite number.

Disjoint union behaves like addition of sizes: when $A \cap B = \emptyset$ we will define

$$|A|+|B|=|A\cup B|.$$

Cartesian product behaves like multiplication of sizes: we will define

$$|A| \cdot |B| = |A \times B|$$
.

Cantor's Theorem

Theorem (Cantor's Theorem)

 $A \prec \mathcal{P}(A)$ for every set A.

(See H+J Theorem 4.6.2 and Theorem 5.1.8.)

Proof Idea.

 $A \preccurlyeq \mathcal{P}(A)$: by $x \mapsto \{x\}$.

 $\mathcal{P}(A) \not \leqslant A$: define the Cantor diagonal set for any function

 $h: A \rightarrow \mathcal{P}(A)$ by

$$D_h := \{x \in A \mid x \notin h(x).\}$$

Then $D_h \notin \operatorname{ran}(h)$ ($\operatorname{\text{$\sim$}}$ verify.)

So, it is not possible that $h: A \rightarrow \mathcal{P}(A)$

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 24

March 20, 2009

12 / 1

Comparing size of sets

Powerset and Exponentiation

Lemma

 A 2 $pprox \mathcal{P}(A)$ for every set A.

So, $A \prec^{A} 2$ for every set A.

Proof.

Associate each $B \subseteq A$ by its characteristic function

$$\chi_B(x) = \begin{cases} 1 & x \in B \\ 0 & x \notin B \end{cases}$$

More Exercises in comparing size

Here are some simple exercises to test your comprehension:

- $\implies A \preccurlyeq C \text{ and } B \preccurlyeq D \text{ implies } {}^AB \preccurlyeq {}^CD.$
- \implies 2 \preccurlyeq *C* implies $\mathcal{A} \prec^{A} C$.
- $\Rightarrow A \approx {}^{1}A$
- $A \times A \approx {}^{2}A$. Generalize to any finite number.

Function spaces behave like exponentiation: we will define

$$|A|^{|B|}=|^BA|.$$

So, the last example show $|A|^{|2|} = |A| = |A| \cdot |A|$.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 24

March 20, 2009

14 /

Comparing size of sets

Function spaces like exponentiation

Lemma

For all A, B, C the following hold:

- (i) $C(BA) \approx C \times BA$.
- (ii) ${}^{B\cup C}A \approx {}^{B}A \times {}^{C}A$ when $B \cap C = \emptyset$.
- (iii) ${}^{A}(B \times C) \approx {}^{A}B \times {}^{A}C$

Proof.

- (i). Define $\Phi: {}^C({}^BA) \rightleftarrows {}^{C \times B}A$ by $\Phi(f)(c,b) = (f(c))(b)$ (Note that $f(c) \in {}^BA$.)
- (ii). Define $\Psi : {}^{B \cup C}A \rightleftharpoons {}^{B}A \times {}^{C}A$ by $\Psi(f) = (f \upharpoonright B, f \upharpoonright C)$.
- (iii). Define $\Gamma: {}^A(B \times C) \rightleftarrows {}^AB \times {}^AC$ by $\Gamma(f)(a) = (\text{first}(f(a)), \text{second}(f(a)))$, where first(x, y) = x and second(x, y) = y.