It follows from (2.25) and (2.26) that for $\lambda > \|\Psi\| - R(\lambda, A_{\psi})$ exists and satisfies $\|R(\lambda, A_{\psi})\| \le \lambda/(\lambda - \|\Psi\|) \cdot 1/\lambda = 1/(\lambda - \|\Psi\|)$. Then the Hille-Yosida Theorem (A-II,Thm.1.7) implies that A_{ψ} generates a semigroup (T(t)) satisfying $\|T(t)\| \le \exp(\|\Psi\|t)$. Moreover, this semigroup is eventually norm continuous (see B-IV,Cor.3.3). By B-II,Ex.1.22 we have the following equivalence:

(2.29) A $_{\Psi}$ generates a positive semigroup if and only if $\Psi \,+\, r\,\delta_{\,\Omega} \,\geq\, 0 \quad \text{for some} \quad r\,\in\,\mathbb{R} \ .$

Thus Cor.2.12 is applicable if $\psi+r\delta_{0}\geq0$ for some $r\in\mathbb{R}$. Since every eigenvalue of A_{ψ} is an eigenvalue of A_{m} and since $\ker(\lambda-A_{m})=\{\alpha e_{\lambda}:\alpha\in\mathbb{C}\}$, the spectral bound $s(A_{\psi})$ is determined by the (unique) real $\lambda\in\mathbb{R}$ such that $e_{\lambda}\in D(A_{\psi})$ or equivalently, λ is a solution of the so-called characteristic equation

(2.30)
$$\lambda = \Psi(e_{\lambda})$$
 , $\lambda \in \mathbb{R}$.

(The assumption $\Psi+r_{\delta_{O}}\geq 0$ implies that the function $\lambda \rightarrow \Psi(e_{\lambda})$ is strictly decreasing and $\lim_{\lambda \rightarrow \infty} \langle e_{\lambda}, \Psi \rangle > -\infty$, $\lim_{\lambda \rightarrow -\infty} \langle e_{\lambda}, \Psi \rangle = \infty$ unless $\Psi=r_{O}\delta_{O}$ for some $r_{O}\in\mathbb{R}$.)

We conclude this section with some additional remarks related to Thm.2.9 and its corollaries.

Remarks 2.15.(a) If s(A) is a pole of the resolvent, then for generators of positive semigroups one has the following equivalences:

- (i) s(A) is a first order pole.
- (ii) For every $0 < f \in \ker(s(A) A)$ there exists $0 \le \Psi \in \ker(s(A) A^1)$ such that $\langle f, \Psi \rangle > 0$.
- (iii) For every $0 < \Psi \in \ker(s(A) A')$ there exists $0 \le f \in \ker(s(A) A)$ such that $\langle f, \Psi \rangle > 0$.

In particular, if ker(s(A) - A) contains a strictly positive function or if ker(s(A) - A') contains a strictly positive measure, then s(A) is a first order pole.