

TECNOLÓGICO NACIONAL DE MÉXICO INSTITUTO TECNOLÓGICO DEL SUR DE NAYARIT

Probabilidad y Estadísticas

Tema 4

Distribuciones

INGENIERÍA EN TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIONES

ALUMNOS:

Elías Soto Carlos Daniel

Ramos Rosas Deisi Jacqueline

DOCENTE:

Sifuentes Ponce Jael Angelica

20 SEMESTRE

FECHA:

9 de mayo de 2020

INSTITUTO TECNOLÓGICO DEL SUR DE NAYARIT

Índice

Formulario de las Distribuciones	. 3
Distribución Binomial	. 4
Distribución Geométrica	
Distribución Hipergeométrica	. 7
Distribución de Poisson	C

INSTITUTO TECNOLÓGICO DEL SUR DE NAYARIT

Formulario de las Distribuciones.

Distribución Binomial

$$\mathbf{P}(\mathbf{X}) = nCxP^{x}(1-P)^{n-x}$$

Distribución Geométrica

$$P(X) = P(1-P)^{X-1}$$

Distribución Hipergeométrica

$$P(X \mid N, xt, n) = \frac{[(N-xt) C(n-x)] [xtCx]}{NCn}$$

Distribución de POISSON

$$P(X) = \frac{L^X e^{-L}}{X!}$$

Donde:

L (Lambda) = Promedio de éxitos para la dimensión específica del tiempo y espacio.

e = Logaritmo natural → 2.7183

X = #. Designado de éxitos.

INSTITUTO TECNOLÓGICO DEL SUR DE NAYARIT

Distribución Binomial

1. En México se realizó un estudio sobre "Consumidores de Tabaco" de los cuales, se determinó que 80 de cada 10 personas fuman. Estime la probabilidad de que, de cada 10 personas, 9 NO fumen.

$$P = .80 \qquad \qquad P(X) = (10C9) \ (.80) \ ^9 \ (1-P) \ ^10-9$$

$$n = 10 \qquad \qquad P(X) = (10) \ (0.134217728) \ (.20)$$

$$X = 9 \qquad \qquad P(X) = 0.268435456 \ \text{probabilidad de que, de cada 10}$$

$$1 - P = .20 \qquad \qquad \text{personas, 9 NO fumen.}$$

2. La serie de Netflix "Lucifer" ha tenido un gran éxito a tal grado de que el 90% de los usuarios ya la han visto. Un grupo de 4 amigos son aficionados a las series ¿Cuál es la probabilidad de que 2 de los amigos ya hayan visto la serie?

$$P = .90 \qquad P(X) = (4C2) (.90) ^2 (1-P) ^4-2$$

$$n = 4 \qquad P(X) = (6) (0.81) (0.01)$$

$$X = 2 \qquad P(X) = 0.0486 \text{ probabilidad de que 2 de los amigos ya hayan visto la serie.}$$

3. La probabilidad de que un alumno de 1° semestre de la carrera de Ingeniería en Tecnologías de la Información y las Comunicaciones, repita curso es de 0.23; si se eligen 23 alumnos al azar. ¿Cuál es la probabilidad de que haya 5 alumnos repetidores?

$$P = .23 \qquad \qquad P(X) = (23C5) \ (.23) \ ^5 \ (1-P) \ ^23-5$$

$$n = 23 \qquad \qquad P(X) = (33,649) \ (0.0006436343) \ (0.009053844957)$$

$$X = 5 \qquad \qquad P(X) = 0.19608501 \ \text{probabilidad de que haya 5 alumnos repetidores.}$$

INSTITUTO TECNOLÓGICO DEL SUR DE NAYARIT

4. Un examen de probabilidad consta de 15 preguntas cuyas respuestas son SI o NO suponiendo que a las personas que se les aplica no estudiaron por ende contestan al azar, hallar la probabilidad de obtener 5 aciertos.

Р-	= .5	P(X) =	(15C5)	(5) ^5	(1-P)	^15-5
Г-)	1 (//) —	110001	1.01	\ I = I .	1 10-0

$$n = 15$$
 $P(X) = (3,003) (0.03125) (0.0009765625)$

$$X = 5$$
 $P(X) = 0.091644287$ probabilidad de obtener 5 aciertos.

$$1 - P = .5$$

INSTITUTO TECNOLÓGICO DEL SUR DE NAYARIT

Distribución Geométrica

1. Con los datos del ejercicio 1 de distribución binomial, calcule la probabilidad de que la primera persona en hacer el estudio, sea una de las cuales no fume.

$$P(X) = (.80) (.20) ^9-1$$

$$P = .80$$
 $P(X) = 0.000002048$ probabilidad de que, la primera persona

$$1 - P = .20$$
 sea una de las cuales No fuma.

2. Con los datos del ejercicio 2 de distribución binomial, calcule la probabilidad de que el tercer amigo sea el primero en ver la serie.

$$P(X) = (.90) (.10) ^3-1$$

$$P = .90$$
 $P(X) = 0.009$ probabilidad de que el 3 amigo sea el primero

$$1 - P = .10$$
 en ver la serie.

3. Con los datos del ejercicio 3 de distribución binomial, calcular la probabilidad de que el alumno 22 sea el primero en repetir.

$$P(X) = (.23) (.77) ^22-1$$

$$P = .23$$
 $P(X) = 0.0009506771699$ probabilidad de que el alumno 22

$$1 - P = .77$$
 sea el primero en repetir.

4. Con los datos del ejercicio 4 de distribución binomial, calcule la probabilidad de que la quinta pregunta sea la primera correctamente contestada.

$$P(X) = (.5) (.5) ^5-1$$

$$P = .5$$
 $P(X) = 0.03125$ probabilidad de que la quinta pregunta sea la

INSTITUTO TECNOLÓGICO DEL SUR DE NAYARIT

Distribución Hipergeométrica

1. En un torneo de futbol; 10 de los 32 equipos son elegidos al azar para ir al mundial, si se seleccionan 5 de ellos al azar, que 3 de los seleccionados vayan al mundial.

$$\begin{array}{ll} N=32 & P\ (X\mid N,\,xt,\,n)=[(32\text{-}10)\ C\ (5\text{-}3)]\ [10C3]\,/\,32C5 \\ \\ n=5 & P\ (X\mid N,\,xt,\,n)=(23)\ (120)\,/\,201,\,376 \\ \\ xt=10 & P\ (X\mid N,\,xt,\,n)=0.137652947\ probabilidad\ de\ que,\,3\ de\ los\ seleccionados\ vayan\ al\ mundial \\ X=3 & \end{array}$$

2. Si se extraen 10 canicas sin remplazo de una urna que contiene 15 rojas y 10 azules. ¿Cuál es la posibilidad de que haya 5 canicas rojas dentro de las 10 que se extrajeron?

$$\begin{array}{ll} N=25 & P \; (X \mid N, \, xt, \, n) = [(25\text{-}15) \; C \; (10\text{-}5)] \; [15\text{C5}] \, / \; 25\text{C}10 \\ \\ n=10 & P \; (X \mid N, \, xt, \, n) = (252) \; (3,003) \, / \; 3,268,760 \\ \\ Xt=15 & P \; (X \mid N, \, xt, \, n) = 0.231511643 \; posibilidad \; de \; que \; haya \; 5 \\ \\ canicas \; rojas \; dentro \; de \; las \; 10 \; que \; se \; extrajeron. \\ \\ X=5 & \end{array}$$

3. En la florería "Conchita" hay 25 variedades de flores, de las cuales 9 son diferentes clases de Gerberas. ¿Qué probabilidad hay de que, al extraer una muestra al azar de 7 flores, se incluyan 3 clases de Gerberas?

$$\begin{array}{ll} N=25 & P\;(X\mid N,\,xt,\,n)=[(25\text{-}9)\;C\;(7\text{-}3)]\;[9\text{C}3]\,/\,25\text{C}7 \\ \\ n=7 & P\;(X\mid N,\,xt,\,n)=(1,820)\;(84)\,/\,480,\,700 \\ \\ xt=9 & P\;(X\mid N,\,xt,\,n)=0.318036197\;probabilidad\;de\;que\;se\;\\ \\ x=3 & \text{incluyan}\;3\;clases\;de\;Gerberas\;en\;una\;muestra\;de\;7\;flores.} \end{array}$$

INSTITUTO TECNOLÓGICO DEL SUR DE NAYARIT

4. En el Instituto Tecnológico del Sur de Nayarit, hay 8 de 20 maestros que han trabajado en el Tecnológico durante 5 o más años, si se eligen 5 maestros al azar. ¿Cuál es la probabilidad de que 2 de ellos tengan una antigüedad de 5 o más años?

N = 20	P (X N, xt, n) = [(20-8) C (5-2)] [8C2] / 25C5
n = 5	P (X N, xt, n) = (220) (28) / 15, 504
Xt = 8	P (X N, xt, n) = 0.397316821 probabilidad de que 2 de ellos tengan una antigüedad de 5 o más años.
X = 2	tengan una antiguedad de 5 0 mas anos.

SEP SECRETARIA DE EDUCACION PUBLICA

TECNOLÓGICO NACIONAL DE MÉXICO

INSTITUTO TECNOLÓGICO DEL SUR DE NAYARIT

Distribución de Poisson

1. El equipo del Real Madrid participa en la liga alemana, en promedio; cada temporada pierde 4 partidos. ¿Qué probabilidad existe de que en una temporada cualquiera pierda 7 partidos?

$$L = 4$$
 $P(X) = (4) ^7 (2.7183) ^-4 / 7!$

$$e = 2.7183$$
 $P(X) = 0.0595404$ probabilidad de que el equipo Real Madrid

$$X = 7$$
 pierda 7 partidos en una temporada cualquiera.

2. En el Instituto Tecnológico del Sur de Nayarit, en promedio cada año desertan 7 alumnos. ¿Qué probabilidad hay que en un año escolar cualquiera, deserten 10 alumnos?

$$L = 7$$
 $P(X) = (7) ^10 (2.7183) ^-7 / 10!$

$$e = 2.7183$$
 $P(X) 0.0709833$ probabilidad de que en un año cualquiera

$$X = 10$$
 deserten 10 alumnos

3. En la heladería "La Michoacana" el sabor menos vendido es de menta, en promedio se ven 6 helados al mes. ¿Qué probabilidad existe que en un mes cualquiera se vendan 13 helados?

$$L = 6$$
 $P(X) = (6) ^13 (2.7183) ^-6 / 13!$

$$e = 2.7183$$
 $P(X) = 0.00519899$ probabilidad de que en un mes

$$X = 13$$
 cualquiera se vendan 13 helados.

4. En el parque "Un sueño en 4 patas" en promedio se reciben 3 caninos al mes, ¿Cuál es la probabilidad de que en un mes cualquiera se reciban a 5 perritos?

$$L = 3$$
 $P(X) = (3) ^5 (2.7183) ^-3 / 5!$

$$P(X) = 0.156293$$
 probabilidad de que en un mes cualquiera

se reciban 5 perritos en el parque "Un sueño en 4 patas".
$$X = 5$$