

Cloud Computing

Hardware virtualization-Part2

Seyyed Ahmad Javadi

sajavadi@aut.ac.ir

Fall 2022

Virtualization Techniques

• Full Virtualization using Binary Translation

Hardware Assisted Virtualization

• OS Assisted Virtualization or Paravirtualization

Full Virtualization using Binary Translation

Hardware-assisted Virtualization

Hardware-assisted Virtualization

- ➤ Architectural support for building a VMM able to run a guest operating system in complete isolation.
- ➤ This technique was originally introduced in the IBM System/370.

- Extensions to x86-64b architecture
 - Introduced with Intel-VT and AMD-V.

Hardware-assisted Virtualization (cont.)

https://thecustomizewindows.com/2014/09/hardware-assisted-virtualization/

Intel-VT and AMD-V

- New CPU execution mode feature
- This allows the VMM to run in a new root mode below ring 0
 - Ring OP: privileged root mode (VMM)
 - Ring 0D : de-privileged non-root mode (Guest OS)

- Sensitive calls are set **to automatically trap** to the hypervisor and handled by hardware
 - Removing the need for either binary translation or para-virtualization.

Intel-VT

➤ Main feature: inclusion of the new VMX mode of operation.

	all four IA-32 privilege levels (rings)	VMX instructions
VMX non-root operation		
VMX root operation		

VMX Instructions

"VMX" stands for Virtual Machine Extensions

13 new instructions

VMPTRLD	VMPTRST	VMCLEAR	VMREAD	VMWRITE
VMCALL	VMLAUNCH	VMRESUME	VMXOFF	VMXON
INVEPT	INVVPID	VMFUNC		

Permit entering and exiting a *virtual execution mode* where the *guest OS perceives* itself as running with full privilege (ring 0), but the *host OS remains protected*.

Hardware-assisted Virtualization

The behavior of the processor in **non-root operation is limited** in some respects from its behavior on a normal processor.

➤ Critical shared resources are kept under the control of a monitor running in VMX root operation.

- VMM is run in VMX root mode
- Virtual machine and the guest OS are run in non-root mode.

Examples of Hardware-assisted Virtualization

➤ VirtualBox

≻VMware

➤ Microsoft Hyper-V

Paravirtualization

Paravirtualization

➤ Paravirtualization refers to communication between the guest OS and the hypervisor to improve performance and efficiency.

Paravirtualization (cont.)

- ▶It is not a transparent virtualization solution
 - Allows implementing thin virtual machine managers.
 - Remapping the performance-critical operations through the virtual machine software interface.

- ➤ Expose a software interface to the virtual machine that is slightly modified from the host
 - As consequence, guests need to be modified.

Paravirtualization (cont.)

- Provide the capability to demand the execution of performance-critical operations directly on the host
 - Preventing performance losses that would otherwise be experienced in managed execution.

- > Allows a simpler implementation of virtual machine managers
 - VMM have to simply transfer the execution of performance-critical operations directly to the host.
 - These instructions were hard to virtualize

Paravirtualization (Cont.)

>Xen is the most popular implementation of paravirtualization.

- The guest operating systems need to be changed
- The sensitive system calls need to be re-implemented with *hypercalls*
 - Are specific calls exposed by the virtual machine interface of Xen.

Paravirtualization (Cont.)

- ➤ With the use of *hypercalls*, the Xen hypervisor is able to
 - catch the execution of all the sensitive instructions
 - manage them,
 - and return the control

to the guest operating system by means of a supplied handler.

Xen Hypervisor

Xen supports both Full virtualization and Para-virtualization

source:https://www.unixarena.com/2017/12/para-virtualization-full-virtualization-hardware-assisted-virtualization.html/

Paravirtualization (cont.)

- Open-source operating systems such as Linux can be easily modified
 - Their code is publicly available
 - Xen provides full support for their virtualization

Components of the Windows family are generally not supported by

Xen unless hardware-assisted virtualization is available.

Overview

Watching a video

System Virtualization Implementation

https://searchservervirtualization.techtarget.com/definition/hardware-assisted-virtualization

