The infrastructure for figures in INSPIRE

Piotr Praczyk,

CERN 02/02/2012

Usage of graphics in scholarly communication

- Describe experiments
- Summarise large amounts of data
- Illustrate relations between results
- Present ideas in a schematic manner

Usage of Plots in Inspire

Extracting data from PDF

PDF:

- Stream of instructions
- Embeded objects
 - Fonts
 - External objects
- Meta-description

FIG. 1. Effective quark mass induced by domain-walls for the free field configuration D_8 is the

In the presence of a realistic gauge potential, the effective quark mass result from the finite wall separation may depend on how it is defined. Different definitions shall yield results consistent up to a factor of order unity. One approach is to exploit the explicit quark mass dependence in chiral Ward identities such as the Gell-Mann-Oakes-Renner (GMOR) relation as done in Ref. [7]. Here we explore the effective mass in an alternative way. In continuum field theory, the Atiyah-Singer theorem [8] states that the Dirac operator has a zero eigenvalue in the presence of an external background with topological charge [2] \equiv 1.7 The explicit form of the solution was found by 't Hooft in 1976 [9]. On the lattice, however, the notion of topological charge is ill defined: any gauge configuration can be continuously deformed into a null gauge field. Moreover, the discretization of an instanton field can introduce finite lattice-spacing effects lifting any exact zero eigenvalue. Therefore, a test of the Atiyah-Singer theorem on lattice is usually complicated with various lattice artifacts

There exists, however, a definition of lattice topology and fermion zero mode which largely avoids this complication. In the overlap formalism, the Dirac operator is constructed from the overlap of two many-fermion ground states [3]. According to their recipe, one starts from a four-dimensional Wilson-Dirac operator with a negative Wilson mass m_0 and calculates its eigenvalues. For m_0 small and positive, the number of positive eigenvalues is equal to that of negative ones. When m_0 increases, a level might cross from positive to negative or vice versa. When this happens, the gauge field is regarded to have a net topological charge [Q] = 1. Then the overlap determinant is exactly zero by construction. This definition of lattice topology and zero mode do depend on for instance, the Wilson parameters v and m_0 . However, the zero eigenvalue is exact, independent of the lattice spacing v and volume v.

Intermediate steps of the algorithm

FIG. 14: Projections of $\Delta \chi^2$ as a function of the mixing angles for the $m_4 \gg m_3$ model. The solid line is obtained for the case of null ν_e appearance whereas the dashed line represents solutions with ν_e appearance at the CHOOZ limit. The range of values allowed at 68% and 90% condidence levels lie within contours below the horizontal dashed lines.

FIG. 15: Contours representing 90% confidence level for the $m_4 \gg m_0$ model. The solid line and best-fit point (solid symbol) are obtained for the case of null ν_e appearance, wherea the dashed line and corresponding best-fit point (open symbol) is obtained with ν_e appearance included with θ_{13} at the

Hisappearance probability is a maximum. The determination of the limit follows the procedure described above but with the addition of selecting a value of θ_{24} for each test case as well. At 10% confidence level $f_s < 0.52$ (0.55 for $E_p = 1.4$ GeV in this model. Thus, in either model approximately 50% of the disappearing ν_{μ} can convert to ν_{μ} at 90% confidence level as long as the amount of ν_{τ} appearance is less than the limit presented by the CHOOZ subhavoration

IX. OSCILLATIONS WITH DECAY

It was noted more than a decade ago that neutrinc locay, as an alternative or companion process to neutrino oscillations, offers some capability for reproducing neutrino disappearance trends [18]. The model investigated here [36] includes neutrino oscillations occurring in parallel with neutrino decay. Norman neutrino-mass ordering is assumed, and the mass eigenstates ν_1 , ν_2 are approximately degenerate, so that $m_2 \gg m_1$. The heaviest neutrino-mass state ν_2 is allowed to decay into an invisible final state. With these assumptions, and neglecting the small contributions from ν_e mixing, only the two neutrino flavor states ν_e , and ν_e , and the corresponding mass states ν_2 and ν_2 , are considered. The evolution of the neutrino flavor states is given by [36]:

where τ_3 is the lifetime of the ν_3 mass state and θ is th mixing angle governing oscillations between ν_μ and ν_τ Solving Eq. (16) one obtains probabilities for ν_μ survivi or decay:

$$\begin{array}{c|c} \mathbb{P}_{10} & = \cos^4 \theta + \sin^4 \theta e^{-\frac{m_{11}}{22L}} \boxplus \\ & 2\cos^2 \theta \sin^2 \theta e^{-\frac{m_{11}}{2r_{10}L}} \cos \left(\frac{\Delta m_{22}^2 L}{2E}\right) \end{array} \quad \boxed{17} \\ \mathbb{P}_{\text{decay}} & = \left(1 - e^{-\frac{m_{11}}{2r_{10}L}}\right) \sin^2 \theta. \quad \boxed{18}$$

The limits $\tau_3 \to \infty$ and $\Delta m_{32}^2 \to 0$ correspond to scillations or a pure decay scenario, respectively.

In a conventional neutrino oscillations scenario, the ratio of the predicted charged-current spectrum in the fardetector with the null-oscillation expectation displays the characteristic "dip" at the assumed Δm_{ϕ}^2 , value that is

- Regions of graphics (blue)
 - Clustered graphic operations
- Regions of text (green)
 - Clustered text operations
- Elements of page layout (red)

Extraction of figures from PDF

LaTeX extraction

Most of documents are written using LaTeX

 Source file is parsed and attached figure files are converted to a standard format

Automatic extraction of figures

EUROPEAN ORGANIZATION FOR NUCLEAR RISEARCH

CRIN 1879-0-138

***Line 780

**Consistent Measurements of \$\alpha_s\$ from Precise Oriented Event Shape Distributions

Distributions

DELPHI Calibration

DELPHI Calibration

Abstract

As updated action was about \$1.5 million creats enough of \$\alpha_s\$ for \$1.6 million trained theorem \$1.5 million creates around a \$\alpha_s\$ for \$1.6 million trained theorem \$1.5 million creates (highest button of an oldinar rate of the \$1.5 million creates (highest button of an oldinar rate of the \$1.5 million creates (highest button of \$1.5 million creates) (highest button of \$1.5

•Evaluation of the extraction quality

Merging of results

•Acquisition of additional data

Meta-data

Vector + Raster images

(in the future)
Semantic description

Types of extracted meta-data

- Boundaries of figures
- Boundaries of captions
- Text of captions
- Graphics in PNG and SVG formats
- Places, where figure is referenced
- Name of the figure inside a document
- Text present inside the figure

Select Your Figures

Extraction based on metadata

 User has already provided position of figures in the document, we need to produce graphical files and upload them

Figures from scientific publications

can be minagened as applying a caccinory by in house products of the minagened as applying a caccinory by in house products of the minagened by GFRRA.

The managened by GFRRA are to minage which could be applyed to the minagened without our become a contraction of the minagened without our become a contraction of the minagened position. The minagened without our become a contraction of the minagened position of the minagened posit

Extracted from

Figure 2 (extracted from different publication)

Questions?