Electric circuits

Non-assessed Problem Sheet 5, Solution

- 1. In the circuit shown below:
 - (a) What is the initial battery current immediately after the switch is closed?
 - (b) What is the battery current a long time after the switch is closed?
 - (c) What is the maximum voltage across the capacitor?
 - (d) If the switch has been closed for a long time and is then opened, deduce an expression for the current through the 600 k Ω resistor as a function of time.
 - (e) What is the energy dissipated in the 600 k Ω resistor after the switch is opened? (*Note* that 1 k Ω = 10³ Ω ; 1 M Ω = 10⁶ Ω ; 1 μ F = 10⁻⁶ F.)

Solution

- 1. (a) Initially, the capacitor acts like a short-circuit, bypassing the 600 k Ω resistor. I = V/R = 50 V/ 1.2M Ω = 41.7 μ A
 - (b) A long time after the switch is closed, the capacitor is fully charged and acts like an open-circuit.

$$I = V/R = 50 \text{ V}/(1.2 + 0.6)\text{M}\Omega = 50 \text{ V}/1.8\text{M}\Omega = 27.8 \text{ }\mu\text{A}$$

- (c) At this stage, the potential difference across the capacitor is $50 \text{ V} \times 0.6/1.8 = 16.7 \text{ V}$, by the potential divider rule.
- (d) Total response = Final Value + (Initial Value Final Value) $e^{-t/\tau}$ The final value of the current will be zero, as the capacitor is discharging. The total response is therefore, $I = I_0 e^{-t/RC}$, where $I_0 = V/R = 16.7 \text{ V} / 600 \text{ k}\Omega = 27.8 \text{ }\mu\text{A}$ and $\tau = RC = 1.5 \text{ s}$.
- (e) The energy dissipated is equal to the energy stored in the capacitor. $E = 1/2 \text{ CV}^2 = 0.5 \text{ (} 2.5 \text{ x } 10^{-6} \text{ x } (16.7)^2 \text{)= } 3.5 \text{ x } 10^{-4} \text{ Joules.}$