(19)日本国特許庁(JP)

H01L 21/027

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-215690

(P2001-215690A)

(43)公開日 平成13年8月10日(2001.8.10)

F I G 0 3 F 7/004 7/32 テーマコート*(参考) 5 0 4

H01L 21/30 569E

審査請求 有 請求項の数20 OL 外国語出願 (全 72 頁)

(21)出顧番号 特願2000-401767(P2000-401767)

(22) 出願日 平成12年12月28日(2000.12.28)

(31)優先権主張番号 09/477600

(32)優先日 平成12年1月4日(2000.1.4)

(33)優先権主張国 米国(US)

(71)出願人 591035368

エアー. プロダクツ. アンド. ケミカルス. インコーポレーテッド

AIR PRODUCTS AND CH

EMICALS INCORPORATE

アメリカ合衆国. 18195-1501. ペンシルパニア州. アレンタウン. ハミルトン. ブ

ールバード. 7201

(74)代理人 100077517

弁理士 石田 敬 (外4名)

最終頁に続く

(54) 【発明の名称】 アセチレン列ジオールエチレンオキシド/プロピレンオキシド付加物および現像剤におけるその 使用

(57)【要約】

【課題】 本発明は、平衡および動的表面張力を低下させる水性組成物、とくに塗料、インク、貯蔵溶液および 農業用組成物を提供する。

【解決手段】 構造

【化1】

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array}$$

(ここでrおよびもは1もしくば2、(n+m)は1~30そして(p+q)は1~30である)で表わされるアセチレン列ジオールエチレンオキシド/プロピレンオキシド付加物を、表面張力を低下させる量で配合してなる。フォトレジスト現像剤/エレクトロニクス洗浄用組成物における界面活性剤としてのこのような付加物使用は特に有利である。さらに、トリアルキルアミンもしく

はルイス酸の存在下にアセチレン列ジオールをEOおよび/またはPOと反応させることにより、アセチレン列ジオールのランダムおよびブロックEO/PO付加物を製造する方法も開示される。

10

30

【特許請求の範囲】

【請求項1】 界面活性剤として、一般式: 【化1】

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array}$$

1

(ここでrおよびtは1もしくは2、(n+m)は1~30、および(p+q)は1~30であり、そしてエチレンオキシド単位(nおよびm)およびプロピレンオキシド単位(pおよびq)はブロックもしくはランダム状態に分布されている。)で表わされるアセチレン列ジオールエチレンオキシド/プロピレンオキシド付加物を含む水性フォトレジスト現像剤組成物。

【請求項2】 アセチレン列ジオールエチレンオキシド /プロピレンオキシド付加物のエチレンオキシドおよび 20 プロピレンオキシド単位がランダムに分布されている請 求項1記載の組成物。

【請求項3】 アセチレン列ジオールエチレンオキシド /プロピレンオキシド付加物のエチレンオキシドおよび プロピレンオキシド単位がそれぞれの部分のブロックか らなる請求項1記載の組成物。

【請求項4】 (p+q)が1~10である請求項1記載の組成物。

【請求項5】 (n+m)が1.3~15である請求項1記載の組成物。

【請求項6】 (n+m)が1.3~10であり、そして(p+q)が1~3である請求項1記載の組成物。

【請求項7】 アセチレン列ジオールエチレンオキシド /プロピレンオキシド付加物のアセチレン列ジオール部 分が2,4,7,9ーテトラメチルー5ーデシンー4, 7ージオールから誘導される請求項1記載の組成物。

【請求項8】 アセチレン列ジオールエチレンオキシド /プロピレンオキシド付加物のアセチレン列ジオール部分が2,5,8,11-テトラメチルー6ードデシンー5,8-ジオールから誘導される請求項1記載の組成物。

【請求項9】 (n+m)が1.3~10であり、そして(p+q)が1~3である請求項7記載の組成物。

【請求項10】 (n+m)が $1.3\sim10$ であり、そして(p+q)が $1\sim3$ である請求項8記載の組成物。

【請求項11】 (p+q)が2である請求項9記載の 組成物。

【請求項12】 (p+q)が2である請求項10記載の組成物。

【請求項13】 水酸化テトラメチルアンモニウムを含 50

む請求項1記載の組成物。

【請求項14】 フォトレジスト表面に、表面張力を低下させる量の界面活性剤を含有する現像剤溶液を付着させることにより、露光後にフォトレジストを現像する方法において、界面活性剤として一般式:

【化2】

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array}$$

(ここで、rおよびもは1もしくは2、(n+m)は1 \sim 30および(p+q)は1 \sim 30であり、エチレンオキシド単位(nおよびm)およびプロピレンオキシド単位(pおよびq)はランダムもしくはブロック状態に分布されている。)で表わされるアセチレン列ジオールエチレンオキシド/プロピレンオキシド付加物を使用することを特徴とする現像方法。

【請求項15】 現像剤溶液が水酸化テトラメチルアン モニウムを含む請求項14の方法。

【請求項16】 (n+m)が1.3~10であり、そして(p+q)が1~3である請求項14記載の方法。 【請求項17】 アセチレンジオールエチレンオキシド/プロピレンオキシド付加物のアセチレン列ジオール部分が2,4,7,9ーテトラメチルー5ーデシンー4,7ージオールから誘導される請求項16記載の方法。

【請求項18】 アセチレンジオールエチレンオキシド /プロピレンオキシド付加物のアセチレン列ジオール部 分が2,5,8,11ーテトラメチルー6ードデシンー 5,8ージオールから誘導される請求項16記載の方 法。

【請求項19】 現像剤溶液が水酸化テトラメチルアン モニウムを含む請求項16記載の方法。

【請求項20】 水中に次の成分、

水酸化テトラメチルアンモニウム 0.1~3 wt% フェノール性化合物 0~4 wt%;およびアセチレン列ジ 40 オールエチレンオキシド/プロピレンオキシド付加物 1 0~10,000 ppm、を含む水性エレクトロニクス洗 浄組成物であり、アセチレン列ジオールエチレンオキシ ド/プロピレンオキシド付加物は一般式:

【化3】

20

(ここでrおよびtは1もしくは2、(n+m)は1~ 30、そして (p+q) は1~30、エチレンオキシド (nおよびm) およびプロピレンオキシド (pおよび q)はランダムもしくはブロック状態に分布されてい る)で表わされる分子構造を有する水性エレクトロニク ス洗浄組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、水にもとづく系 (water-based system)において表 面張力を低下させるためのアセチレン列ジオールアルキ レンオキシド付加物、その製造およびその使用に関す る。もう1つの態様において、本発明は水性のフォトレ ジスト現像剤における湿潤剤としてのこのような付加物 の使用に関する。

[0002]

【従来の技術】水の表面張力を低下させる能力は水性 (waterborne)塗料、インク、接着剤、およ び農業配合物において重要である。なぜなら、低下され た表面張力は、実際の配合物において、高められた基質 のぬれに表現しなおす (translate)からであ る。水にもとづく系において表面張力の低下は、通常、 界面活性剤の添加により得られる。界面活性剤の添加か 30 ら生じる性能の特質は、高められた表面被覆率、比較的 少い欠陥、および比較的均一な分布を含む、平衡表面張 力性能は、系が静止しているときに重要である。しか し、動的条件下で表面張力を低下させる能力は、高い表 面創出速度(surface creation ra tes)が利用される使用において非常に重要である。 そのような使用は、塗料の吹付け塗り、ローラ塗りおよ びはけ塗り、もしくは農業配合物の噴露、または高速グ ラビア印刷もしくはインクジェット印刷を含む。動的表 面張力は基本的な量(quantity)であり、表面 張力を低下させる界面活性剤の能力のものさしを与え、 そのような高速使用条件下でぬれを与える。

【0003】アルキルフェノールもしくはアルコールエ トキシラート、およびエチレンオキシド(EO) /プロ ピレンオキシド (PO) 共重合体のような従来のノニオ ン界面活性剤は、優れた平衡表面張力性能を有するが、 動的表面張力低下が不十分であると一般に特徴づけられ る。対照的に、ジアルキルスルホコハク酸ナトリウムの ような、あるアニオン界面活性剤は、良好な動的結果を 与えるが、それらは非常に泡立っており、水に仕上げコ 50 特性が検討され、さらにそのような塗料の動的表面張力

ーティングへの敏感さを与える。

【0004】2,4,7,9-テトラメチルー5-デシ ン-4,7-ジオールおよびそのエトキシレートのよう なアセチレン列グリコールにもとづく界面活性剤は、平 衡および動的な表面張力低下能の良好なバランスで知ら れており、従来のノニオンおよびアニオン界面活性剤の 否定的な特徴をほとんど有さない。多くの用途に関し て、代わりの性質を有するアセチレン列ジオール誘導体 を製造するのが望ましい。たとえば、優れた動的特性が 要求される用途において、比較的高い臨界凝集濃度(溶 解限度もしくは臨界ミセル濃度)を有する界面活性剤を 有するのが望ましいことが多い。なぜなら、比較的高い バルク界面活性剤濃度は、比較的高い界面活性剤拡散フ ラックスを与え、新たに創り出される表面、そしてつづ いて比較的低い動的表面張力をもたらすからである。 【0005】従来、比較的高い水溶解度を有するアセチ レン列ジオール界面活性剤は、母体をエチレンオキシド と反応させることにより得られている; 比較的大きいエ トキシ化度は比較的大きい水溶解度を与える。あいに く、エトキシ化の程度を増加させると、泡立つ傾向を招 き、配合時の非効率、付着時の欠陥、および他の用途で の工程上の問題を持ち込む。発泡の問題は半導体製造で 用いられるフォトレジスト現像剤において特に厄介であ る。

【0006】半導体製造の需要は、フォトレジス現像剤 配合において、高性能の界面活性剤および湿潤剤の使用 を要求する。商品の形態がもっと小さいサイズに縮み、 フォトレジストの基質材料が事実上もっと脂肪族になる につれて(すなわち、比較的低い表面エネルギーを有す る)、水性現像剤溶液は、表面張力低化剤とともに配合 されている。これらの現像剤に対するもう1つの要求 は、それらが泡立つ経口が少ないことである。これは比 較的大きなウェハのサイズへの動きにより強調される。 低い気泡生成は、スプレーパドル(spray-pud dle)法を用いるときに特に重要である。なぜならフ ォトレジスト表面にわたり溶液を拡げる間に微小気泡 (microbubble)の同体は欠陥を引起すから である。フォトレジストのぬれを増加させるために過去 に使用された界面活性剤は通常、比較的高い気泡生成を 導く。たいてい、産業は、コントラスト、臨界寸法およ び尖鋭度のようなフォトレジスト性能への界面活性剤の 効果に焦点を合わせた。基礎をなす基質の洗浄能力は通 常の界面活性剤により高められるが、気泡生成はいまだ 問題が残る。

【0007】低い動的表面張力は、水性塗料の使用にお いて非常に重要である。Schwarty, J. の「水 性塗料における低動的表面張力の重要性」(Joura lof Coatings Technology) (1992年9月)という論文で、水性塗料の表面張力

が検討されている。平衡および動的表面張力はいくつかの界面活性剤について評価された。低動的表面張力は、水性塗料において優れた膜形成を得るのに重要な因子であることが指摘されている。動的な塗料被覆法は、収縮(retraction)、クレータ(crater)および泡立ちのような欠陥を防止するために低動的表面張力の界面活性剤を要求する。

【0008】農業用製品の効率的な使用も、配合物の動的表面張力特性に大いに依存する。Wirth,W.;Storp,S.;Jacobsen,W.の「農業用スプレー溶液の葉での保持を制御するメカニズム」(Pestic.Sci.33,411~420頁)(1991)という論文において、農業用配合物の動的表面張力と葉の上に保持されるこれらの配合物の能力との間の関係が検討された。これらの研究者は、配合物の比較的有効な保持は低動的表面張力を示すという、保持値と動的表面張力との間の良好な相関を観察した。

【0009】さらに、低動的表面張力は、「Using Surfactants toFormulate VOC Compliant Waterbased 20 lnks」(Medina, S. W.; Sutovich, M. N. Am. InkMaker, 72(2), 32~38頁, 1994)という論文において検討されているように高速印刷においても重要である。この論文では、平衡表面張力(EST)は、静止したインク系(ink systems at rest)のみに関連すると述べられている。しかし、EST値は、インクが使用される動的な高速印刷環境における性能の良好な指標ではない。動的表面張力がもっと適切な特性である。この動的測定は、新たに創出されるインク/基質界面に移 30行し、高速印刷中に、ぬれを付与する界面活性剤の能力の指標である。

【0010】水酸化テトラメチルアンモニウム(TMAH)は、J.R.SheatsおよびB.M.Smithにより編集された「Microlithography,Sciense and Technology」(Marcel Dekker,Inc.)1998年、551~553頁によると、フォトレジストを現像するための水性アルカリ溶液において、より抜きの化学薬品である。界面活性剤は、水性TMAH溶液に添加され、現像時間およびスカミング(scumming)を減少させ、表面のぬれを改良する。

【0011】米国特許第5,098,478号明細書は、水、顔料、ノニオン界面活性剤およびノニオン活性剤のための可溶化剤を含む水にもとづくインク組成物を開示する。グラビア印刷出版のためのインク組成物における動的表面張力は印刷性の問題が生じないことを確実にするために約25~40dynes/cmの水準に減少されなければならない。

【0012】米国特許第5,562,726号明細書

は、水、溶解された染料および2つのポリエトキシラート置換基を有する3級アミンの水性ジェットインクを開示するが、低動的表面張力はインクジェット印刷に重要である。良好な動的特性および低発泡を要求する用途において、アセチレン列グリコールにもとづく表面活性剤は工業的に標準となった。下記の特許および論文は界面活性剤として種々のアセチレン列アルコールおよびそれらのエトキシレートを説明する:米国特許第3,268,593号明細書およびLeedsらのI&EC Product Research and Development 4,237頁(1965)は、構造式【0013】

【化4】

【0014】(ここでR1およびR4は炭素数3~10を有するアルキル基であり、R2 およびR3 はメチルもし20 くはエチルであり、そして×およびyは合計で3~60の範囲を含む)で示される3級アセチレン列アルコールのエチレンオキシド付加物を開示する。具体的なエチレンオキシド付加物は、3-メチル-1-ノニン-3-オール、7,10-ジメチル-8-ヘキサデシン-7,10-ジオール、2,4,7,9-テトラメチル-5-デシン-4,7-ジオールおよび4,7-ジメチル-5-デシン-4,7-ジオールのエチレンオキシド付加物を含む。好適には、エチレン-オキシド付加物は3~20単位に及ぶ。さらに、トリアルキルアミン触媒を用いて30この種類の物質を製造する方法が開示されている。

【0015】米国特許4,117,249号明細書は、 構造式

【0016】 【化5】

【0017】(ここでRは水素もしくはアニケニル基である)で示されるアセチレン列グリコールの3~30モルエチレンオキシド(EO)付加物を開示する。このアセチレン列グリコールは、界面活性剤、分散剤、ノニオン性消泡剤および粘度安定剤として有用であると認識されている。米国特許第5,650,543号明細書は、式

【0018】 【化6】

50

H(OCH2CH2)yO O(CH2CH2O)xH

7

【0019】(ここでxおよびyは整数であり、その合 計が2~50である)、のエトキシ化アセチレン列グリ コールを開示する。これらの界面活性剤は、高速使用が 10 ル、エチル、プロピルもしくはブチルを示し、そしてR できる塗料およびインク組成物を配合する能力を付与す るので注目に値する。日本特許第2636954号は、 尤

[0020] 【化7】

【0021】(ここでRはC1~8のアルキル、そして m+nは1~100の整数である)、のプロピレンオキ シド付加物を開示する。これらの化合物はBF3 のよう なルイス酸触媒の存在下にアセチレン列グリココールお よびプロピレンオキシドを反応させることにより製造さ れる。アミン触媒はプロピレンオキシドのアセチレン列 ジオールの付加に対して不活性であることが述べられて 30 9-150577号公報は、感熱層に、ロイコ染料およ いる。そのプロピレンオキシド付加物は、防錆オイル、 消泡剤、殺虫剤用展着剤および接着剤用の湿潤化剤のた めのぬれ向上剤として有用であるといわれている。それ らはオイル類のぬれを向上するために有効であり、改良 された消泡能力を有する。

【0022】日本特許2621662号は、式 [0023]

【化8】

【0024】(ここでR¹およびR²は-CH₃、-C₂H 5、-C4 H9; R3およびR4は - (OC H3 H4) m O H、もしくは-OHであり、mは1~10の整数であ る)、のアセチレン列ジオールのプロピレンオキシド (PO)誘導体を含有する感熱記録紙のための染料もし くは現像剤分散体を示す。特開平4-71894号公報 は、無色の電子供与性染料前駆体の分散体および現像剤 の分散体を含有する被覆用溶液を示す。それらの少くと 50

も1つは、少くとも60℃の融点を有する少くとも1つ の種類のワックスを含有し、そして式

[0025]

【化9】

【0026】(ここで、R1およびR2はそれぞれメチ ²およびR³はそれぞれー(OCH2H5)nOHもしくは $-(OC_3H_6)_nOH(nid1\sim10)$, stcioHある)、のアセチレン列ジオールの少くとも1つのEO もしくはPO誘導体が混合および分散される。

【0027】日本特許第2569377号は、実質的に 無色の電子供与性染料前駆体および現像剤の分散体を含 有する記録材料を開示する。これらの分散体の少くとも 1つが製造されるとき、化合物

[0028]

【化10】

【0029】(ここでR3およびR6はメチル、エチル、 プロピルもしくはブチル: そしてR4およびR5はー $(OCH₂H₄)_mOH, - (OC₃H₆)_mOH (m/<math>\sharp$ 1 ~10の整数、または-OH)、が添加される。特開平 び式

[0030]

【化11】

【0031】(ここでR1はメチル、エチル、プロピル もしくはブチル; R2は水素もしくはメチル; および n およびmは1~10である)、のアセチレン列グリコー ルのエトキシ化もしくはプロポキシ化物0.1~1.0 砒%を含有する感熱記録媒体を開示する。特開平4-9 1168号公報は、式・

[0032]

【化12】

【0033】(ここでR1 は炭素数1~8のアルキル、 Aは炭素数2~3のアルキレングリコール基、R1 およ び分子中のAは同一でも異っていてもよく、xおよびy はそれぞれ0~25の整数である)、の化合物で表面処 理されたシリカを開示する。特開平6-279081号 公報は、セメントモルタルーコンクリート硬化材料の製 10 造方法を開示し、それにはアセチレン列アルコールもし くはジオールアルコキシレート0.5~10wt%が、フ ッ素系界面活性剤および/またはケイ素系界面活性剤と ともに添加されている。そのアセチレン列物質は式 [0034]

【化13】

[0035] (CCCR the left of the latter of th 3) (O(AO)_nH); R²およびR³は炭素数1~8の アルキル基、Aは炭素数2~3のアルキレン基およびn は0~30である)で表わされうる。特開平3-631 87号公報は、オフセット印刷のための濃縮された水性 貯蔵溶液(fountain solution)組成 物におけるアセチレン列グリコールエチレンオキシドお よび/またはプロピレンオキシド付加生成物を使用する ことを開示する。1つの例において、3,5-ジメチル -4-オクチン-3,5-ジオールのエチレンオキシド 30 8~12モル/プロピレンオキシド1~2モル付加物が 貯蔵溶液に使用される。他の例はアセチレン列ジオール のエチレンオキシドのみの誘導体の使用を示す。

【0036】エチレンオキシド (EO) およびプロピレ ンオキシド (PO) の両方を含むアセチレン列ジオール 誘導体が材料の一般的分類として、通常エチレンオキシ ド誘導体とともに実施された研究の潜在的な延長とし て、教示されているが、2,4,7,9-テトラメチル -5-デシン-4, 7-ジオールもしくは2, 5, 8, 11-テトラメチル-6-ドデシン-5,8-ジオール 40 形成しやすい。 にもとづくアセチレン列ジオールEO/PO誘導体の実 際の実施例は何ら製造、評価されていない。この種の材 料を製造するのに使用されうるいかなる方法も開示され ていない。フォトレジスト現像剤組成物における界面活 性剤の使用は少くとも20年間知られている。

【0037】米国特許第4,374,920号明細書 は、ポジ型リソグラフ印刷版およびフォトレジストのた めの水性アルカリ現像剤組成物における非イオン界面活 性剤を使用することを開示する。界面活性剤はテトラメ チルデシンジオールもしくはエトキシ化テトラメチルデ 50 シンジオールであった。具体的な界面活性剤は、Air Products and Chemicals, In cの界面活性剤SURFYNOL(登録商標)440, 465および485であった。

【0038】米国特許第4,833,067号明細書 は、主要成分として水酸化テトラメチルアンモニウムお よびコリンのような、金属イオンを含まない有機塩基化 合物、およびアセチレン列アルコール50~5000pp π を含有するポジ型フォトレジスト組成物のための水性 現像剤溶液を開示する。これらの水性現像剤溶液は表面 のぬれを増加させ、泡立ちを減少させると述べられる。 【0039】米国特許第5,069,996号明細書 は、TMAH、ノボラック樹脂、エトキシ化テトラメチ ルデシンジオール界面活性剤、消泡剤および水を含有す るフォトレジスト現像剤組成物を開示する。米国特許第 5, 756, 267号明細書は、液晶ディスプレイの製 造において有用な現像剤溶液を開示する。これらの溶液 は、水、TMAHのような四級アンモニウム塩基、四級 アンモニウム塩界面活性剤、アルカノールアミンおよび 20 067特許に開示されるのと同一であるアセチレン列ア ルコールにもとづく界面活性剤を含有する。

【0040】米国特許第5,922,522号明細書 は、エトキシ化界面活性剤およびプロポキシ化界面活性 剤の混合物であるスカム防止剤を含有するフォトレジス ト用現像剤溶液を開示する。このような化合物の実施例 は与えられていないが、エチレンオキシド単位およびプ ロピレンオキシド単位は同一分子内の鎖に組み入れられ うることが述べられている。これらの界面活性剤は、好 適にはアニオン性であり、ノリルフェノール、オクチル フェノール、およびトリスチリルフェノールのようなア ルコールから形成される分子に疎水性末端を有すると述 べられている。

【0041】特開平10-319606号公報は水、ア ルカリ性物質および式HO-A-B-A-Hを有するブ ロック共重合体を含むフォトレジスト現像剤を開示し、 AおよびBはポリエチレンオキシド基もしくはポリプロ ピレンオキシド基であり、分子は両方の基を含む。しか し、これらのブロック共重合体はマイクロエレクトロニ ック用途における表面欠陥を引起しうるミセルを非常に

[0042]

【発明が解決しようとする課題】半導体製造のこの分野 におけるあらゆる進展にもかかわらず、泡生成を最小化 して露光されたフォトレジストに使用されるように、現 像剤において表面張力を効率的に低下させうる新規な界 面活性剤に対する必要性は継続する。

[0043]

【課題を解決するための手段】本発明は、次の構造 [0044]

【化14】

$$\begin{array}{c}
1 & 1 \\
 & \downarrow \\$$

【0045】(ここでrおよびtは、好ましくは同一であり、1もしくは2、(n+m)は1~30、そして(p+q)は1~30である)、の水にもとづく組成物に対する界面活性剤として作用するアルコキシ化アセチ 10レン列ジオールを提供する。EOおよびPO単位は、EOおよびPOのブロックのアルキレンオキシド鎖に沿って、もしくはランダムに分布されうる。

【0046】さらに本発明はあるアルコキシ化アセチレン列ジオールの製造方法に関する。本発明のもう1つの態様は、上述のアルコキシ化アセチレン列ジオールの有効量を配合することにより低下した平衡および動的表面張力を有し、有機もしくは無機化合物を含有する水にもとづく組成物、特に水性有機塗料、インク、農業用およびエレクトロニクス洗浄用組成物を提供する。

【0047】「水にもとづく」("water-based")、「水性」("aqueous")もしくは「水性媒体」("aqueous medium")は、本発明の目的に関して、少くとも90wt%、好ましくは95wt%の水を含む溶媒もしくは液体分散媒体を意味する。明らかに、そして最も好適には、すべてが水の媒体も含まれる。さらに本発明の目的のために、「フォトレジスト現像」および「エレクトロニクス洗浄」は交替可能である。

【0048】アルコキシ化したアセチレン列ジオールの 30 水性溶液は、23℃の水中で0.5 wt%以下の濃度で3 5 dynes/cmより小さい動的表面張力、ならびに最大一気泡圧力法による1気泡/秒、を示すのが望ましい。表面張力を測定する最大一気泡圧力法はLangmuir 1986,2,428~432頁に記載されており、引用により組み込まれる。

【0049】さらに、これらのアルコキシ化アセチレン列ジオール化合物を配合することにより水性組成物の平衡および動的表面張力を低下させる方法が提供される。さらに、表面を水にもとづく組成物で部分的にもしくは40全部被覆するために、水にもとづく無機もしくは有機化合物含有組成物の塗料を表面に塗布する方法が提供され、その組成物は、その水にもとづく組成物の動的表面張力を低下させるために、上記構造のアルコキシ化アセチレン列ジオール化合物を有効量含有する。

【0050】水にもとづく有機塗料、インク、グラビア 印刷法のための貯蔵溶液、農業用およびエレクトロニクス洗浄用組成物における、これらのアルコキシ化アセチレン列ジオールの使用に関連して、著しい利点があり、これらの利点は、下記のものを含む。

・水性組成物を配合する能力であり、その組成物は種々の基質に付着させ得、汚染された低エネルギー表面を含む基質表面に優れたぬれを与える;

、・オレンジピールおよび流動/水平化のような欠陥のよ うな、被覆もしくは印刷の欠陥を減少させる能力;

・低い揮発性有機含量を有する水性塗料、貯蔵溶液およびインク配合する能力であり、これらのアルコキシ化アセチレン列ジオール界面活性剤を環境上好ましくする;

高速塗布できる塗料、貯蔵液およびインク組成物を配合する能力;

・水にもとづく組成物の気泡形成特性を制御する能力;

・良好なぬれと非常に低い気泡を有する、半導体製造用 の低表面張力の、水性エレクトロニクス洗浄および処理 用溶液 (フォトレジスト現像溶液を含む)を配合する能 力:ならびに

アセチレン列ジオールエトキシレートを製造するのに 用いられるのと同様の化学的方法を用いるクラスのいく つかのメンバーを製造する能力。

【0051】優れた界面活性剤特性および気泡を制御する能力のために、これらの物質は、動的および平衡表面 張力の低下、ならびに低気泡が重要である多くの用途で 使用されそうである。このような使用は、繊維の染色、 繊維の酸性化およびキヤ(kier)煮沸のような、種 々の湿式処理繊維操作を含み、そこでは低気泡の特性は 特に有利である;さらに、それらは石けん、水にもとづく香水、シャンプー、および種々の洗済における適用性を有し得、そこでは同時に実質的に気泡を発生しないのに表面張力を低下させる著しい能力が非常に望まれる。 【0052】水性フォトレジスト現像剤配合物でのこれらの物質の使用は、表面張力を低下させ、加えて気泡の

[0053]

力のために特に重要である。

【発明の実施の形態】本発明は式AおよびBの化合物に 関し、

生成を減少させる著しい性能のすべての利点を与える能

[0054]

【化15】

【0055】ここで(n+m)および(p+q)はそれぞれ1 \sim 30の範囲でありうる。(n+m)は1.3 \sim 15が好適であり、最も好ましくは1.3 \sim 10である。(p+q)は1 \sim 10が好ましく、もっと好ましくは1 \sim 3、そして最も好ましくは2である。式Aにおいて、rおよびもは1もしくは2、特にr=t、すなわち

13

分子のアセチレン列ジオール部分は2,4,7,9ーテトラメチルー5ーデシンー4,7ージオールもしくは2,5,8,11ーテトラメチルー6ードデシンー5,8ージオールである。

【0056】(OC2H4)で表わされるアルキレンオキシド部分は(n+m)の重合エチレンオキシド(EO)単位であり、そして(OC3H6)で示される部分は(p+q)重合プロピレンオキシド(PO)単位である。EOおよびPO単位がそれぞれ分かれている生成物はブロックアルコキシ化誘導体といわれる。EOおよびPO単位がランダムに重合体鋭にそって分布している生成物は「ランダム」アルコキシ化誘導体といわれる。ランダム誘導体は式Bで表わされうる。

[0057]

【化16】

В

【0058】ここでRは、水素もしくはメチルであり、 化合物が少くとも1つのエチレンオキシド単位および少 くとも1つのプロピレンオキシド単位を含むことを条件 に、(n+m)は2~60であり;そしてrおよびtは 1もしくは2、特にr=tである。構造Aのブロック組 成物は、適切な触媒の存在下に2,4,7,9-テトラ メチルー5ーデシンー4,7ージオールもしくは2, 5,8,11-テトラメチル-6-ドデシン-5,8-ジオールを、エチレンオキシド、ついでプロピレンオキ シドの必要量と反応させることにより製造されうる。適 切な触媒は、トリアルキルアミンおよびルイス酸、特に BF3 を含む。あるいは、組成物は、適切な触媒の存在 下に、予め生成したアセチレン列ジオールエトキシレー トをプロピレンオキシドと反応させることによって製造 されうる。この予め生成したアセチレン列ジオールエト キシレートの場合には、もし添加されるエチレンオキシ ドの量が3級アルコール官能基の本質的にすべてにわた 40 るのに十分であれば、プロピレンオキシドとの反応に作 用するためにKOHもしくは他のアルカリ触媒を用いる ことが可能である。

【0059】アセチレン列ジオールアルコキシレートを 製造する好適な方法はBF3もしくはトリアルキルアミン触媒を使用する。BF3の使用は、比較的大量のプロ ピレンオキシドを含有する誘導体の急速な製造をもたら す。しかし、トリアルキルアミン、特にトリメチルアミンで製造される組成物は、いくつかの理由で好適である。それらは、重要な副生物化学なりにアセチレン列ジ オールエトキシレートの製造に用いられるの非常に類似した方法を用いて製造されうる。特に、トリアルキルアミン触媒は、非常に効率的な、ワンポット法を用いて高選択率で2モルのプロピレンオキシドを付加された誘導体の製造をもたらす。

14

【0060】アセチレン列ジオールEO/РO付加物の製造法に関して、3級アセチレン列ジオール出発原料は、米国特許第2、250、450号;2、106、180号および2、163、720号明細書に記述されるような種々の公知の方法で製造され得、それらは引用により組入れられる。そのアセチレン列ジオール出発原料は8~26の炭素を含有しうる。アセチレン列ジオール出発原料は14~16の炭素を含有するのが好適であり、もっとも好適には2、4、7、9ーテトラメチルー5ーデシンー4、7ージオールもしくは、2、5、8、11ーテトラメチルー6ードデシンー5、8ージオールである。

【0061】種々の塩基性触媒がアルキレンオキシドと アセチレン列3級グリコール間の反応を促進するのに用 いられ得、そこでヒドロキシル基は本発明によりアセチ レン列結合にα位で炭素原子に付加される。3級脂肪族 アミン、すなわちトリメチルアミン、トリエチルアミ ン、トリプロピルアミン、ジメチルエチルアミン、ジエ チルメチルアミン等のようなトリアルキルアミンは、反 応に対する特に有利な触媒である。このような3級脂肪 族アミンは、アセチレン列グリコールの開裂を引起さな いで、急速に、適度な低温および圧力で付加反応を触媒 する。トリメチルアミンは、その高触媒活性および反応 での長寿命のために好適である。

【0062】この分野で知られるように、水酸化ナトリ ウムのような強塩基触媒の、特に約150℃の高温での 使用は、アセチレン列3級グリコールの開裂を引起こ し、この理由のために、もし十分なエチレンオキシドが 3級アセチレン列アルコール官能基の実質的な分解を防 止するために当然に添加されないならば、避けられるべ きである。いったんアセチレン列グリコールの3級ヒド ロキシ基がエチレンオキシドを反応すると、得られる付 加物はエーテルの著しい安定を示す。 付加物が安定なの で、高温で水酸化ナトリウムのような濃い塩基とともに 加熱されうるが、初期のアセチレン列グリコールの同等 な処理が広範囲の劣化により達成される。したがって、 アルカリ金属水酸化物のような強塩基触媒は、いったん 初期付加物が形成され、分解に対して保護されると、ポ リアルキレンオキシド鎖長を増加させるのに使用されう る。アルカリ金属水酸化物は、さらに、十分に低い量の 残りの3級アセチレン列アルコール官能基とともに、初 期のEOもしくはPO付加物へのプロピレンオキシドの 付加を促進するために使用されうる。

ンで製造される組成物は、いくつかの理由で好適であ 【0063】トリアルキルアミン触媒による付加反応 る。それらは、重要な副生物化学なしにアセチレン列ジ 50 は、大気圧(15psig; 1bar) もしくは低~中位の超

大気圧(30~300psig; 2~20bar) で実施され うる。適度に低い超大気圧の使用は、未反応エチレンオ キシドおよびプロピレンオキシドを循環する必要性を除 去し、大気圧で実施される付加よりも速い速度で進行す るのが通常であるので、好適である。速度に対する圧力 の影響は、プロピレンオキシドとの反応において特に重 要であり、したがって、反応は30psig(2bar) を超 える圧力で行われるのが好ましい。反応は6 Opsig (4 bar) よりも大きい圧力で行われるのが特に好ましい。 圧力下で反応を実施するもう1つの利益は、そのような 10 反応は通常の効効の撹拌で達成されうるが、大気圧で行 なわれる反応は分散型撹拌器が用いられるときに最も良 く作用することが多いことである。反応は比較的低い圧 力で実施されうるが、反応速度、そしてしたがって反応 器の生産性は、損害を受ける。約300psig(20ba r)をはるかに超える圧力で反応を実施することは、周 辺的な利益をうけるにすぎず、製造に必要な設備のコス トを増大させる、100psig(6.7bar) で実施する のが好適である。

【0064】反応がトリアルキルアミンで触媒される反 20 応なわれる温度は、個々の系および触媒濃度に依存す る。通常、比較的高い触媒濃度で、反応は比較的低い温 度および圧力で実施されうる。反応温度は適切な速度で 反応させるに十分に高くなければならないが、試薬およ び生成物の分解を妨げるに十分に低くなければならな い。40~150℃の範囲の温度が適切であり、好適に は50~120℃、特に好適には70~90°である。 【0065】プロピレンオキシドがアセチレン列ジオー ルE〇付加物に添加される、トリアルキルアミンで触媒 される方法において、反応は各鎖とのPO末端キャップ 30 で停止し、すなわち得られる生成物は2つのPO末端を 含有するアセチレン列ジオールEO/PO付加物であ り、式Aにおいてpおよびqはそれぞれ1である。EO およびPOの混合物がアセチレン列ジオールもしくはジ オールEO付加物に添加されるとき、トリアルキルアミ ンで触媒される方法は、ランダムEOおよびPO単位を 有する付加物を与え、後者の場合には最初のEOブロッ クを超えて伸びる。

【0066】本発明のEO/PO付加物を製造するため にアセチレン列グリコールは溶融により液化され、触媒 40 は撹拌しながら添加される。エチレンオキシドおよび/ またはプロピレンオキシドは撹拌しながら液体として添 加され、そして反応は、所望のポリアルキレンオキシド 鎖長が、ゲルパーミェーションクロマトグラフィー (G PC)、高性能液相クロマトグラフィー(HPLC)、 核磁気共鳴(NBR)、曇り点(ASTMD2024-65)もしくはイソプロピルアルコール溶液の水滴定に より測定されて、達成されるときに、終了する。反応の 間、溶媒は不要であるが、芳香族炭化水素(ベンゼンお よびトルエン) およびエーテル (エチルエーテル) のよ 50 な有機化合物を含有する水性塗料、インク、貯蔵液溶

うな不活性溶媒は、取扱いを容易にするために用いられ うる。ある場合には、低モルエトキシ化アセチレン列ジ オールを使用するのが好都合である。なぜなら、これら の生成物は液体で、したがって取り扱い易いからであ

16

【0067】ルイス酸により触媒される反応において、 反応条件は、触媒の独自性および濃度により決定され る。ルイス酸の例は、BCl3, AlCl3, TiC 14, BF3, SnCl4, ZnCl2等を含む。好適なル イス酸触媒はBF3である。BF3触媒反応において、反 応の初期段階の間の温度制御は重要である。なぜなら、 あまりに高すぎる温度はアセチレン列ジオールの脱水を 引起こすからである。温度は好適には80℃未満、さら に好ましくは60℃未満、そして最も好ましくは50℃ 未満に維持される。反応圧力は大気圧から適度に低い超 大気圧、すなわち15~300psig(10~20bar) にわたることができる。BF3の高活性のために、トリ アルキルアミン触媒を用いて実施される反応よりも約1 bar 穏やかな圧力で良好な結果が得られる。

【0068】アセチレン列グリコールおよび触媒への液 体アルキレンオキシドの添加において、反応混合物にお いて過剰のアルキレンオキシドが存在するのを避けるよ うに留意されるべきである。なぜなら、反応は非常に発 熱性であり、そして非常に危険であるからである。制御 できない反応の危険は、アルキレンオキシドが反応混合 物に導入されるとすぐに本質的に反応するような方法お よび割合でアルキレンオキシドを添加することにより回 避されうる。ヘッドスペースでの可燃性混合物の形成 は、アルキレンオキシドが比較的低い爆発限界(LE L)未満にとどまるように、窒素のような不活性ガスで 十分な圧力に反応器ヘッドスペースを圧力印加すること により最もよく回避される。

【0069】ルイス酸触媒およびトリアルキルアミン触 媒法の両方において、触媒は、合計最終反応物量にもと づいて0.001~10xt%、好ましくは0.01~5 wt%、そして最も好ましくは0.1~1wt%で使用され うる。両方の場合において、不活性化はアルコキシ化の 間に生じうるので、特に大量のEOおよびPOが添加さ れると、反応を完結させるために追加の触媒を添加する ことが必要となりうる。

【0070】ランダムに分布されたEO/PO付加物を 製造する方法において、EOおよびPOは、別々の装入 物もしくは流れとして同時に反応に添加され得、または EOおよびPO混合物からなる単一装入物もしくは流れ として添加されうる。ブロックEO/PO付加物の製造 において、EOおよびPOはつづけて添加される。アル コキシ化アセチレン列ジオールは、有機化合物を含む水 に基づく組成物、特に重合体レジン、マクロ分子、有機 塩基、除草剤、殺菌剤、もしくは植物生長調節剤のよう

液、農業用およびエレクトロニクス用処理組成物におけ る平衡および動的表面張力を低下させるのに有用であ る。アルコキシ化アセチレン列ジオールは、23℃の水 中で0.5%以下の濃度で35dynes/cm より小さい動 的表面張力、ならびに最大気泡圧力法による1気泡/ 秒、を示すのが望ましい。表面張力を測定する最大気泡 圧力法は、Langmuir2,428~432頁(1 986)に記載されており、引用により組入れられる。 【0071】本発明の1つの態様において、上記の式の あるアルコキシ化アセチレン列ジオールは、実質的に気 10 泡を発生させないのに、平衡および動的表面張力を低下 させる優れた能力を示す。この挙動は、フォトレジスト 現像剤の配合に特に有利である。アルコキシ化アセチレ ン列ジオールは、水性組成物における使用に適する。組 成物は、鉱石もしくは顔料である無機化合物、または顔 料、付加、縮合およびビニルモノマーのような重合性モ ノマー、オリゴマーレジン、重合体レジン、アラビアゴ ムおよびカルボキシメチルセルロースのようなマクロ分 子、洗剤、苛性洗浄剤、水酸化テトラメチルアンモニウ ム (TMAH)のような溶解剤、除草剤、殺かび材、殺 20 しくは装飾用有機塗料組成物は、次の成分の塗料組成物 虫剤もしくは植物生長調節剤を含む。

17

*【0072】水にもとづく、有機もしくは無機化合物含 有組成物の平衡および動的表面張力を低下させるのに有 効な量のアルコキシ化アセチレン列ジオール化合物が添 加される。このような有効量は、水性組成物100mlに つき0.001~10g、好ましくは0.01~1g/ 100元、もっとも好ましくは0.05~0.5g/1 00 mでありうる。水にもとづくフォトレジスト現像剤 /エレクトロニクス洗浄用組成物について、有効量は 0.001~1g/100ml、好ましくは0.002~ 0.8/100mL、そして、最も好ましくは0.005 ~0.5g/100mlである。当然、最も有効な量は特 定のアルコキシ化アセチレン列ジオールの特定の適用お よび溶解度に依存する。

【0073】本発明によるアルコキシ化アセチレン列ジ オールを含む、次の水にもとづく有機塗料、インク、貯 蔵液、農業用組成物において、このような組成物の他の 記載された成分は、関連する分野の研究者に周知の材料 である。本発明のアルコキシ化アセチレン列ジオール界 面活性剤が添加されうる、典型的な水にもとづく保護も 30~80wt%を水性媒体中に含む:

水にもとづく有機塗料組成物

0~50wt% 顔料分散剤/粉砕レジン 着色顔料/体質顔料/さび止め顔料/他の顔料 0~80wt% 5~99. 9wt% 水性/水分散性/水溶性レジン 0~30wt% すべり添加剤/殺菌剤/処理助剤/泡消し剤 0~50wt% 集合(coalescing)もしくは他の溶媒

 $0.01 \sim 10 \text{ wt}\%$ 界面活性剤/湿潤剤/流動および水平化剤

0.01~5wt% アセチレン列ジオールEO/PO誘導体

本発明のアルコキシ化アセチレン列ジオール界面活性剤 30%は、次の成分20~60wt%を水性媒体中に含む: が添加されうる典型的な、水にもとづくインク組成物 ※

水にもとづくインク組成物

1~50wt% 顔料

0~50wt% 顔料分散剤/粉砕レジン

適切なレジン溶液ベクヒル中のクレー基剤 $0\sim50$ wt%

5~99. 9wt% 水性/水分散性/水溶性レジン

0~30wt% 集合溶媒

0. 01~10wt% 界面活性剤/湿潤剤

0. 01~10wt% 処理助剤/脱泡剤/可溶化剤

アセチレン列ジオールEO/PO誘導体 $0.01 \sim 5 \text{ wt}\%$

本発明のアルコキシ化アセチレン列ジオール界面活性剤 ★は、次の成分を0.1~80wt%水性媒体中に含む。 が添加されうる典型的な、水にもとづく農業用組成物 ★ [0074]

水にもとづく農業用組成物

 $0.1 \sim 50 \text{ wt}\%$ 殺虫剤、除草剤もしくは植物生長調節剤

0. 01~10wt% 界面活性剤

 $0\sim5wt\%$ 染料

0~20wt% 増粘剤/可溶化剤/共界面活性剤/ゲル阻害剤/

泡消し剤

 $0 \sim 25 \text{wt}\%$ 凍結防止剤

0.01~50wt% アルコキシ化アセチレン列ジオールEO/PO 19

誘導体

本発明のアルコキシ化したアセチレン列ジオールが添加 * む。 されうる、平版印刷のための典型的な水にもとづく貯蔵 【0075】 液組成物は、次の成分を30~70wt%水性媒体中に含*

平版印刷のための貯蔵液

0.05~30wt% フィルムを形成しうる、水溶性高分子

 $1\sim25$ wt% $2\sim12$ の炭素原子を有するアルコール、グリコー

ルもしくはポリオール (水溶性もしくは水溶性にさ

れうる)

0.01~20wt% 水溶性有機酸、無機酸、もしくはその塩

0.01~5wt% アルコキシ化アセチレン列ジオールEO/PO

秀導体

界面活性剤としてアセチレン列ジオールEO/PO付加物の使用が特に有利である、他の組成物は、半導体産産で使用されるフォトレジスト用現像剤である。このような現像剤およびその使用は、この分野で周知であり、詳細に説明する必要がない。実際に、本発明の開示の背景部分で指摘されるように、そのように配合におけるエトキシ化アセチレン列ジオール付加物の使用は公知であ

※改良は、予見され得なかったが、あるプロポキシ基をも 含む、あるアセチレン列ジオール付加物のこれらの現像 剤組成物における使用を含む。

【0076】本発明のアルコキシ化アセチレン列ジオール界面活性剤が添加されうる、典型的な水にもとづくフォトレジスト現像剤もしくはエレクトロニクス洗浄剤の組成物は、次の成分を含有する水性媒体を含む:

り、よく文献で裏づけられる。本発明により提供される※20

水にもとづくフォトレジスト現像剤組成物

 $0.1 \sim 3 \text{ wt}\%$

テトラメチルアンモニウム水酸化物

0~4wt%

フェノール化合物

 $10 \sim 10.000 \text{ppm}$

アルコキシ化アセチレン列ジオールEO/PO

誘導体

簡単にいえば、集積回路の製造法は、シリコンウェハの ような適切な基板にフォトレジスト組成物の膜の使用を することを含み、ついで基板は、フォトレジスト膜に形 成された設計パターンで、光活性の放射に露光する。フ ォトレジストがポジ型もしくはネガ型かに依存して、放 30 射は次に適用される現像剤溶液におけるその溶解度を増 大もしくは減少させる。したがって、ポジ型のフォトレ ジストにおいて、放射からマスキングされた領域は現像 後に残り、一方露光された領域は溶解除去される。ネガ 型のフォトレジストでは、その反対が生じる。本発明の 界面活性剤は、どちらの型のフォトレジストのための現 像剤にも使用されうる。現像剤の性格は、形成される回 路の品質を決定するのに非常に重要であり、現像の精密 な制御は必須である。現像剤によりさらに良好な界面ぬ れを得ることは、溶液の表面張力を減少させるために、 配合物に界面活性剤を添加するのは一般的であった。し かし、この添加は、回路欠陥に導く泡を現像剤に生じさ せうる。この泡立ちの問題も、この分野で認識され、産 業において、かなりの注意がその溶液にも向けられた。 【〇〇77】本発明の付加物の使用が好適な、現像剤、 もしくはエレクトロニクス洗浄、溶液はテトラメチルア ンモニウム水酸化物 (TMAH) の水性溶液である。こ れらの現像剤も、この分野で周知である。市販の現像剤 は、通常、50~1000ppm (質量で)オーダーの、

★液の所望の表面張力を得るのに要求される水準を超える べきでない。たとえば、約40~45dynes/cmの表面 張力は、ノボラックにもとづくフォトレジスト樹脂のた めに適切であろう。脂肪族基を度々配合する先端的な樹) 脂は現像剤に、ぬれを高めるために低い表面張力を要求 する。この発明の界面活性剤の利点の1つは、適切な表 面張力が他の湿潤剤で要求されるよりも低い水準で得ら れうることである。これは、本質的に、ミクロ回路要素 (microcircuitry)の製造における泡立 ちの問題を解決するほうへの第1歩である。

[0078]

【実施例】実施例1

この実施例は、トリアルキルアミン触媒を用いるときに、アセチレン列ジオールエトキシレートの2モルのプ40 ロボキシレートが高選択率で製造されうることを示す。この実施例において、2,4,7,9ーテトラメチルー4ーデシンー4,7ージオールの10モルエトキシレートであるSurfynol(登録商標)465の7モルのプロポキシレートの製造が試みられた。

【0077】本発明の付加物の使用が好適な、現像剤、 もしくはエレクトロニクス洗浄、溶液はテトラメチルア ンモニウム水酸化物(TMAH)の水性溶液である。こ れらの現像剤も、この分野で周知である。市販の現像剤 は、通常、50~1000pm(質量で)オーダーの、 界面活性剤の低い水準を含む。界面活性剤の水準は、溶★50 【0079】1000mLオートクレーブがSurfy nol(登録商標)465界面活性剤(300g、0. 45モル)およびジメチルエチルアミン(53.7g、 0.73モル)を装入された。反応器は、密封され、3 回の窒素圧力−排気サイクルで空気をパージし、ついで 窒素で100psig(6.7bar)まで加圧し、120℃

に加熱した。プロピレンオキシド(183g、3.15 モル)が、シリンジポンプにより70分間以上にわたり 添加された。添加が終了時すると、反応混合物は120 ℃でさらに12時間、加熱された。反応器の内容物は、 冷却され、そして排出された。生成物は、揮発分(未反 応POおよび触媒)を除去するために真空下に加熱され た;68gの物質が除去された。

【0080】マトリックスアシストレーザー脱着/イオ ン化質量分析法(MALD/I)は、生成物中のほとん どすべての個々のオリゴマーが3以上のPO単位を含有 10 する極少量の生成物をもつ1もしくは2のプロピレンオ キシド残渣を有することを示した。実質的な量のプロピ レンオキシドの結末は、ジメチルアミノ末端ポリプロピ レンオキシドの形成であるようにみえる。

【0081】これらの結果は、プロピレンオキシドとの 1級ヒドロキシの比較的容易な反応と一致するが、プロ ピレンオキシドの非常に不活発な反応が鎖を終結させる にすぎない。EO末端鎖がプロピレンオキシドと反応し た後、鎖の成長は本質的に停止するようにみえる。各出 発アセチレン列ジオールにはおおよそ2つのEO鎖があ 20 るので、2モルのプロポキシレートへの高い選択率が生 じる。この環境で、ジメチルアミノ末端ポリプロピレン オキシドを形成する、触媒の分解は顕著な反応である。

【0082】トリアルキルアミン触媒は、プロピレンオ キシドの反応を促進する効力を有するであろうことは日 本特許第2636954号の教示に基づいては予測され ないであろう。さらに、アセチレン列ジオールの2モル プロポキシレートへの高い選択率が得られうることも予 測されないであろう。

実施例2~5

実施例3は、トリメチルアミン触媒および予め形成され たエトキシレートを用いてプロピレンオキシド2モルで おおわれた2,4,7,9ーテトラメチルー5ーデシンー 4,7-ジオールの3.5モルエトキシレートの製造を 示す。2,4,7,9ーテトラメチルー5ーデシンー4,

*7-ジオールの3.5モルエトキシレートは、Air Products and Chemicals, In c.から商業的に入手し得、Surfynol(登録商 標)440界面活性剤として上市されている。

22

【0083】1000mlオートクレーブが窒素の下で 加熱して予め乾燥されたSurfynol(登録商標) 440界面活性剤(400g、1.05モル)を装入さ れた。反応器は、密封され、圧力をチェックされ、3回 の窒素圧力-排気サイクルで空気がパージされ、そして トリメチルアミン(2.7g、最終反応物の0.5%) がガス気密シリンジにより添加された。反応器は、窒素 で100psig(6.7bar)まで加圧され、100℃に 加熱され、そこにプロピレンオキシド(122g、14 7mL, 2.10モル)が、シリンジポンプにより1. 0 m L / 分の速度で添加された。添加が終了すると、反 応器の内容物は100℃で14.5時間、攪拌された。 反応器は冷却され、そしてその内容物は丸底フラスコに 排出され、真空下(0.25torr)に外気温(約2 3℃)で16時間、加熱されトリメチルアミン触媒が除 去された。生成物は、核磁気共鳴(NMR)スペクトロ メトリーで特徴付けられた。データは表1に要約され、 トリメチルアミン触媒を用いて製造されたアセチレン列 ジオール組成物を示す。

【0084】2,4,7,9ーテトラメチルー5ーデシン -4,7-ジオール(実施例2,4および5)の他のエ チレンオキシド/プロピレンオキシド誘導体が同様な方 法で製造された。その組成物も表1に要約される。日本 特許第2636954号は、アミンはプロピレンオキシ ドの付加に不活性であると述べているので、トリメチル 4, 7-ジオールEO/PO誘導体の製造のための有効

な触媒であることは予測されないであろう。

[0085]

【表1】

寒 1

	理	會值	NMRによる測定値		
実施例	EOモル	POモル	EOモル	POモル	
2	1.3	2. 0	1.5	1.9	
3	3. 5	2. 0	3. 9	1.8	
4	5. 1	2. 0	5. 9	2. 0	
5	10.0	2. 0	10.7	2. 0	

【0086】実施例6~21

これらの実施例は、BF3触媒を用いる、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール(S10 4という) および2,5,8,11-テトラメチル-6-デシン-5,8-ジオール(S124という)の製造を 示す。我々が知る限り、BF3のようなルイス酸を用い るアセチレン列ジオールのエチレンオキシド/プロピレ※50 【0087】1000mLオートクレーブが窒素の下で

※ンオキシド誘導体の製造方法は従来開示されていない。 その方法は、2,4,7,9-テトラメチルー5ーデシン -4, 7-ジオール (S104) の5モルエチレンオキ シドおよび2モルプロピレンオキシド付加物の製造を示 し、そこではEOおよびPO単位はアルキレンオキシド 鎖に沿ってランダムに位置される。

加熱して予め乾燥された2,4,7,9ーテトラメチルー 5-デシン-4, 7-ジオール(313g、1.1モル、AirProducts and Chemica ls, Inc. からのSurfynol S104 界 面活性剤)の1.3モルエチレンオキシド付加物を装入 された。反応器は、密封され、圧力をチェックされ、3 回の窒素圧力-排気サイクルで空気がパージされた。反 応器は、窒素で100psig(6.7bar)まで加圧さ れ、内容物は、40℃に加熱された。BF3ジエチルエ ーテル塩(1.3g)が添加され、エチレンオキシドお 10 ク」を意味する。 よびプロピレンオキシドが、シリンジポンプにより、そ れぞれ91.05mL/時間および68.95mL/時 間の速度で同時に添加された。エチレンオキシド(18 0g、204mL, 4. 08モル) およびプロピレンオ キシド (128g、155mL,2.2モル) の合計量 は、ジオール:EO:POが1:5:2であった。添加 が終了すると、O. 7gの追加のBF3ジエチルエーテ ル塩が添加され、そこでは45.5℃までの発熱が観察 された。この時点で、ガスクロマトグラフ分析は反応が*

*完結していることを示した。生成物 (実施例6)はNM RおよびMALD/Iで分析され、所望の構造と一致す る構造を有することが見出された。

24

【0088】16の類似の物質(実施例7~22)が、 ジオール構造、エチレンオキシドおよびプロピレンオキ シドの量、ならびにアルキレンオキシド鎖の構造要素を 変動させて製造された。表2は、BF3触媒を用いて製 造されたアセチレン列ジオール組成物を示す。表2にお いて、Rは「ランダム」を意味し、一方Bは「ブロッ

【0089】実施例22の組成物は、日本特許第306 3187号に開示されており(しかし、日本特許 '18 7はその製造法も付加物がブロックもしくはランダム重 合体かどうかも教示していない)、リソグラフ印刷のた めの貯蔵液として有効であることが示されている。その S82は3,6-ジメチル-4-ヘキシン-3,6-ジ オールに相当する。

[0090]

【表2】

			理論	A 値	NMRIE	よる測定値
実施例	ジオール	R/B	EOモル	POモル	EOモル	POモル
6	\$104	R	5	2	6. 5	2.9
7	S104	В	5	2	5.5	2. 2
8	S104	R	5	10	3. 2	11, 5
-						
9	\$104	В	5	10	3. 5	11.1
10	\$104	R	15	2	16. 2	2. 2
11	\$104	В	15	2	14.4	2. 1
12	S104	R	15	10	17. 3	8. 6
13	\$104	В	15	10	15. 0	9. 7
14	S124	R	5	2	6. 9	3. 2
15	S124	В	5	2	4. 8	2. 2
16	S124	R	5	10	8. 0	7. 6
17	S124	В	5	10	5. 1	10. 0
18	\$124	R	15	2	16.3	1. 9
19	S124	В	15	2	14. 9	2. 1
20	\$124	R	15	10	15.4	9. 3
2 1	\$124	В	15	10	13.6	8. 1
22	S82	В	10	2	9. 6	1. 9

【0091】次の実施例において、動的表面張力データ は0.1気泡/秒(b/s)~20b/sの気泡速度で 最大気泡圧力法を用いて、種々の化合物の水性溶液につ いて得られた。表面張力測定の最大気泡圧力法は、La ngmuir, 2, 428~432頁(1986)に記 載されている。これらのデータは、平衡(0.1b/ s) 近くから非常に高い表面創出速度までの条件で界面 活性剤の性能についての情報を提供する。実際の条件 で、高気泡速度はリソグラフ印刷における高印刷速度、 塗料の塗布における高いスプレーもしくはローラー速 度、ならびに農業生産物に対する急速使用速度に相当す※

×3.

比較例25

動的表面張力データは最大気泡圧力法を用いて、実施例 22 (S82/10EO/2PO/B) 組成物の水性溶 液について得られた。この物質は、日本特許第3063 187号に開示されており、水性貯蔵溶液組成物におけ る成分として教示されている。表面張力は0.1気泡/ 秒(b/s)~20b/sの気泡速度で測定された。そ のデータは表3に示される。

[0092]

【表3】

表3

26

動的表面張力(dyne/cm)一実施例22									
濃度 (wt%)	<u>0. 1b/s</u>	<u>1b/s</u>	<u>6b/s</u>	<u>15b/s</u>	<u>20b/s</u>				
0. 1	39, 1	42. 3	46. 5	51.6	53. 0				
1.0	34. 4	34. 9	35. 5	37. 7	38. 5				
5. 0	33. 8	34. 0	34. 7	36. 3	36. 4				

【0093】このデータは、この生成物が水の表面張力を低下させるのにかなり有効であることを示すが、比較的高濃度は相応の性能を得ることが望まれる。

実施例26

2, 4, 7, 9-テトラメチルー5-デシンー4, 7-ジオールの10モルEO/2モルPOブロック誘導体 *

* (実施例5)の蒸留水溶液が調製され、そして動的表面 張力特性が、上述の方法を用いて測定された。そのデー 10 夕は表4に示される。

[0094]

【表4】

表 4

			-							
	動的表面張力(dyne/cm)一実施例 5									
濃度										
(wt%)	<u>0. 1b/s</u>	<u>1b/s</u>	6b/s	15b/s	20b/s					
		•								
0. 1	40. 5	42. 0	44. 3	47. 1	48. 1					
0. 5	32. 4	33. 6	35. 1	36. 6	37. 2					
1.0	29. 8	30. 5	32. 1	33. 0	33, 7					

【0095】これらのデータは、本発明組成物が、従来技術の組成物に比較して表面張力を低下させる能力において著しく優れていることを示す。実施例5の界面活性剤のデータを、S82誘導体(実施例22)の5.0w t%溶液のそれと比較すると、本発明の化合物は20%の使用レベルで全ての表面創出速度で優れた性能を与えることがわかる。動的表面張力の低下は、水性貯蔵溶液が用いられる動的使用においてそのように重要であるので、従来技術の教示にもとづいて、疎水基(アセチレン列ジオール部分)の変更がそのような有利な効果を有す30ることは予測されないであろう。

比較例27~31

2, 4, 7, 9ーテトラメチルー5ーデシンー4, 7ージオールの1.3, 3.5, 5.1 および10モルエトキシレートの蒸留水溶液が調製された。1.3, 3.5 および10モルエトキシレートは、それぞれ、Surfynol(登録商標)420,440および465界面活性剤として、Air Products and Chemicals, Inc.より上市されている。それらの動的表面張力は上述の方法を用いて測定され、これ40らのデータは表5に示される量を決定するのに用いられた。

【0096】 ρ C20値は、測定が0.1b/sで実施されるとき、水性溶液の表面張力を52.1dyne/cm、すなわち純水のそれより20dyne/cm 低い、に低下させるのに必要な界面活性剤モル濃度の負の対数として定義される。この値は界面活性剤の能力の尺度である。一般に、 ρ C20値1.0 σ 0d0d1d10倍低い界面活性剤が ∞

※所定の効果を観察するのに要求されることを示す。

【0097】臨界凝集濃度(溶解度限界もしくは臨界ミセル濃度)は、多くのテキストに説明されているように限界表面張力を有する濃度曲線における表面張力の直線部分の交点により決定される。0.1および20気泡/砂(b/s)での限界表面張力は、水中の最も低い表面張力を示し、使用される界面活性剤の量にもかかわらず、所定の界面活性剤についての所定の表面創出速度で達成されうる。これらの値は、平衡に近い条件(0.1b/s)から非常に動的な条件(20b/s)まで表面欠陥を低下させる表面活性剤の相対的能力についての情報を与える。比較的低い表面張力は比較的低いエネルギー表面上で配合物の付着にもとづく欠陥を除去する。

【0098】従来技術の0.1 ut%溶液の泡立ち特性が、ASTM D1173-53にもとづく方法を用いて試験された。この試験において、界面活性剤の0.1 wt%溶液は高架の気泡ピペットから同一溶液を含む気泡受け器に添加される。気泡高さは添加の終了で測定され(「初期気泡高さ」)、そして消散される気泡に必要とされる時間が記録される(「気泡0までの時間」)。この試験は種々の界面活性剤溶液の泡立ち特性の間の比較を提供する。一般に、塗料、インクおよび農業用組成物において、気泡は望ましくない。なぜなら、複雑な取扱いを必要とし、塗料および印刷欠陥をもたらし、農業用材料の不十分な付着をもたらすからである。

【0099】 【表5】

			\ I .	,			1410112 0 0 1
27							28
			表 5				
構造	ρ C ₂₀	ゾル 限界	限	Pγ	γ (0.1	%溶液)	RM気泡初期
特坦	p C 20	限界	0.1b/s	20b/s	1b/s	6b/s	(0までのt)
実施例27							
,							
но							
HOS JOH	3. 74	0. 1	32. 1	40. 3	33. 1	36. 4	2. 0 (3s)
	i			İ			
Surfynol104	}		i				
実施例28							
×167720							
				1			
НО ОНе 1,3 БО	3.84	0. 18	28. 8	31.7	32.8	34. 2	0. 5 (3s)
/ - \			1	l		l	
(T)						1	
Surfyno 1420							
実施例29		Ī					
			1		ł		
HO 0K=35E0	3. 90	0. 29	26. 9	29.3	34. 3	36. 2	1.4(9s)
HO OK • 38 ED	0.00	0. 20	-0.0	-0.0	00	00.2	1. 1(00)
Surfynol440							
実施例30							
						ł	
HO. OH#61 EO							
HO OH# 6.1 EO	3. 95	0. 40	26. 9	29.8	36. 1	38. 3	1. 3 (32s)
, ,							
Surfyno1450							
実施例31			 		 		
2480701							
HO OH • 10 EO	3. 79	(0. 89)	29. 0	32.7	42. 5	44. 8	1. 5 (0. 6cm)
7							
					}		
Surfynol465							
実施例32							
\· ,.							
HO OHe SO EO	3. 43	(2. 91)	35. 7	39. 9	51.5	53. 2	1. 5 (O. 6cm)
		, , ,			•••		
r i					1		

【0100】実施例33~36

40*データは表6に示される。

表面張力および気泡データが、2,4,7,9ーテトラ

Surfynol485

[0101]

メチルー5ーデシンー4、7ージオールにもとづく実施

【表6】

例1~4の界面活性剤について同様な方法で得られた。*

表6

30

20								
構造	P C 20 Sol		限	ŀγ	γ(0.1%溶液)		RM気泡初期	
199 Mel.	2 020	²⁰ 限界	0.1b/s	20b/s	1b/s	6b/s	(0までのt)	
実施例33 1.3 EO/2 PO (実施例2)	3. 51	0. 07	31. 6	40. 6	33. 4	40. 6	1. 6 (3s)	
実施例34 3.5 EO/2 PO (実施例3)	4. 07	0. 21	29. 3	31. 4	33. 6	36. 6	1. 0 (10s)	
実施例35 5.1 EO/2 PO (実施例4)	4. 13	0. 32	27. 3	29. 9	35. 3	37. 6	0. 3 (6s)	
実施例36 10 EO/2 PO (実施例5)	4. 05	(0. 78)	29. 8	33. 7	42. 0	44. 3	2. 1 (1. 3)	

【0102】表6のデータは、トリメチリアミン存在下 で2モルのプロピレンオキシドとのプロポキシ化はその プロポキシ化していない対応物よりも高い能力を有する 界面活性をもたらしたことを示す。この効果は、ρC20 値(約0.2単位増加した)および、1b/sでの0.1 wt%溶液についての表面張力の結果(約1dyne/cm低下 した)の両方に反映される。加えて、界面活性剤の泡立 ち特性はプロピレンオキシドの変更の結果として、有意 20 価された。結果は表7に示される。 に変化する。この変化は比較的大きい気泡(たとえば1 0および30モルエトキシレートに関して)の方向に *

*も、比較的小さい気泡(5.1モルエトキシレートに関 して)にもなりうる。気泡を制御する能力は、塗料、イ ンク、接着剤、貯蔵溶液、農業用配合物、石けんおよび 洗剤を含む多くの用途において有利である。

実施例37~52

実施例37~52の物質の蒸留水溶液が調製され、これ らの表面張力および気泡性能が上述の実施例のように評

[0103] 【表7】

表7

	_		限男	2.7	r (0. 1	溶液)	RM 気泡 初期
構造	ρC ₂₀	CAGC	0.1b/s	20b/s	1b/s	6b/s	(0までのt)
実施例37						l	
104/5/2/R	4. 16	0.10	28. 6	31.2	30.0	37. 1	1. 1 (5s)
(実施例6) 実施例38		-				 	-
104/5/2/B	4.15	0.11	27. 9	33. 1	33. 6	38.4	1.9 (4s)
(実施例7)							
実施例39 104/5/10/R	4, 50	0.04	31.2	35. 0	33. 7	39, 9	0.5(15)
(実施例8)	4. 50	0.04	31.2	33. 0	33. 7	33, 3	0.3(15)
夹施例40							
104/5/10/B	4. 58	0.08	31.0	34. 1	37. 2	40.5	0. 5 (10s)
(実施例9) 実施例41							
104/15/2/R	.4. 20	0. 07	28. 3	30.7	36.0	43.8	4.5(1.1cm)
(実施例10)							
実施例42 104/15/2B	5. 04	0. 18	27. 6	31.7	36.8	42.9	5. 3 (0. 5cm)
(実施例11)	3.04	0. 10	27.0	31.7	30. 6	42. 3	3. 3 (b. 50lb
実施例43							
104/15/10/R (実施例12)	4. 42	0. 05	28. 8	30. 9	33. 8	44. 5	2. 8 (0. 7cm)
実施例44							
104/15/10/B	4. 35	0.09	28. 3	34. 4	35. 5	45. 6	4.0(0.4cm)
(実施例13)							
実施例45 124/5/2/R	4, 39	0.03	26. 5	30. 8	28. 2	33. 5	2. 4 (0. 2cm)
(実施例14)	1,00	0.00	20.0	44. 4	20.2	00.0	2.4(0.2000
実施例48							
124/5/2/B (実施例15)	4. 42	0.04	26. 9	29. 7	28. 5	32. 5	3. 0 (0. 3cm)
実施例47		-					
124/5/10/R	4. 57	0.02	30. 3	36.7	31.8	40.8	1.8 (O. 3cm)
(実施例16)							
実施例48 124/5/10/B	4, 58	0.02	31.3	36. 2	33. 4	40.3	1,4(128)
(実施例17)	7. 00	5. 52	01.0	20.2	00.7	70.0	7.7(120)
実施例49							
124/15/2/R (実施例18)	4. 36	0.06	27. 9	32. 2	30. 5	40.8	2.6(1.3cm)
実施例50							
124/15/2/B	4. 16	0. 02	27. 9	35. E	31.1	42. 5	2.5(1.2cm)
(実施例19)							
突施例51 124/15/10/R	4. 58	0.08	29. 1	32. 3	32. 8	43. 2	2.0(1.0cm)
12-1/ 10/ 10/ N]							

[0104]

30【表8】 表7(つづき)

	構造 ρC	٥.0	ρC ₂₀ CAG ⁸	腹界で		γ (0.1%溶液) *		RM気泡 [®] 初期	
		<i>p</i> 0 to		0.1b/s	20b/s	1b/s	6b/s	(0までのt)	
	(実施例20)								
	実施例52 124/15/10/B (実施例21)	4. 55	0. 05	28. 0	33. 3	33. 7	41.4	4. 8 (1. Dcm)	

- dyne/cm.
- ⁶ Ross-Miles気泡:cm(気泡Oまでの秒もしくは5分後のcm)
- 。 臨界凝集濃度 (wt%),

【0105】これらのデータは、これらの界面活性剤のアセチレン列ジオール構造、EOおよびPO含量、および構造要素の変動は特定の用途に界面活性剤の仕立てをさせることを示す。非常に低い気泡(実施例39および40)もしくは比較的高い気泡(実施例41および42)を有する界面活性剤が製造されうる。加えて、これらの物質の大部分は、20b/sでの限界表面張力値により示されるように、優れた動的表面張力性能を示す。特性の組み合わせは、塗料、インク、接着剤、貯蔵溶液、農業用配合物、石けんおよび洗剤を含む多くの用途において価値がある。

実施例53

- ※2,4,7,9ーテトラメチルー5ーデシンー4,7ー40 ジオールが、トリメチルアミン触媒および実施例2~5の方法と同様な方法を用いて5.1モルエトキシレートを製造するためにエトキシ化された。小さな試料が回収され、十分なプロピレンオキシドが0.4モルプロキシレートを製造するために添加された。再び試料が回収された。同様に、比較的多くのプロピレンオキシドが、0.9および1.4モルプロピレンオキシド付加物を製造するために添加された。別の実験で、5.1モルエトキシレートの2.0モルプロポキシレートが調製された。
- ※50 【0106】表面張力および気泡データが、上述のよう

に、2, 4, 7, 9-テトラメチルー5-デシンー4, *る。 7-ジオールの5. 1モルエトキシレートのプロポキシ レートについて得られた。そのデータは表8に示され * 【表9】

			-						
		γ (0.1wt%溶液) ⁴							
モルP0	0. lb/s	1b/s	6b/s	15b/s	20b/s	(0までのt)			
0	35. 1	38. 2	38. 1	42. 0	44. 4	1. 6 (0. 7cm)			
0. 4	34.8	35. 8	37. 9	42. 0	44. 4	1. 4 (0. 3cm)			
0. 9	34. 9	35. 9	38. 2	42. 7	45. 3	1. 4 (27s)			
1.4	34. 6	35. 9	38. 3	42. 0	44. 5	1.2(21s)			
2. 0	34.0	35. 3	37. 6	41.5	43. 3	0. 6 (6s)			

dyne/cm

【0108】表8のデータは、プロポキシ化は2,4, %7,9ーテトラメチルー5ーデシンー4、7ージオールの5.1モルエトキシレートの表面張力性能にほとんど影響しないが、気泡制御に有意の決定的な影響を有し、プロポキシ化を高度にすると、大きな制御がみられる。このような効果は、アセチレン列ジオールのアルコキシ 20 ル化誘導体では従来みられなかった。気泡を制御する能力は、多くの水性配合物の用途で重要である。なぜなら、気泡は欠陥を生じさせるのが通常であるからである。

実施例54

(a) ノボラック型クレゾール/ホルムアルデヒド樹脂 およびジアゾナフトキノン (DNQ) 感光剤 (SPR5 10A, Shipley) が製造者の指示に従って膜厚約1μmで4インチシリコンウェハに被覆された。ついで、レジストの異なる領域が、開口の下にウェハを置 30 き、シャッタを操作することにより種々の強度レベルで365nm (水銀iー線)を中心とするUV放射にさらされた。得られる露光ウェハは、現像剤の表面張力を42 dynes/cm に低下させるために十分なPO末端アセチレン列アルコール誘導体(実施例4付加物)を含有する0.262M水酸化テトラメチルアンモニウム (TMAH)のパドル中で現像された(60秒)。ついで、ウェハの種々の部分は、Filmetrics F20薄膜 測定システム(San Diego, CA)を用いて膜厚を試験され、その結果は露光及び現像前の膜厚と比較※40

※された。標準化膜厚は無次元の比であり、露光前の膜厚を現像後の膜厚で割って計算された。その結果は表9、 実施例54(a)に示される。

【0109】(b)同様に、フォトレジストは、透過レ ベルを変動するくさび形に分かれた石英プレート上の環 状領域からなる可変透過フィルター (Wilmingt on, MAのOpto-Line Associates から得られる)により露光された。その結果は表9、 実施例54(b)に示される。これらのデータは、中程 度に露光されたレジストに対する高度に露光されたレジ ストの溶解についての現像剤の著しい選択性を示す。 【0110】(c)もう1つの商業的に入手しうるフォ トレジスト (OCG 825 20cS, Olin C orporation)が、膜厚約1μmで4インチの シリコンウェハを被覆するのに使用された。このレジス 30 トは現像剤溶液にもっと溶解するように意図されてお り、O. 131MのTMAHとともに使用された。表9 の実施例54(c)は実施例4の付加物の0.0062 5wt% (62.5ppm)を含む0.131MのTMAH に、露光されたレジストを溶解するためのデータを示 す。 再び、 60秒の現像時間が用いられた。 そのデータ は、この非常に鋭敏なフォトレジスト配合でさえも、著 しい選択性を示す。

【0111】 【表10】

[▶] 初期気泡高さ(cm) (5分後の気泡高さ、もしくは気泡0までの時間)

36

表 9

実施例	54 (a)	実施例:	54 (b)	実施例	54 (c)
用量	標準化	用量	標準化	用量	標準化
(mJ/cm²)	膜厚さ	(mJ/cm²)	膜厚さ	(mJ/cm²)	膜厚さ
19. 42	0.98	2. 66	0. 998	0.81	0. 992
24. 28	0.96	2. 81	` 0. 997	0.86	0. 993
30. 35	0.83	3. 26	0. 996	0. 99	0. 990
38. 85	0. 61	9. 99	0. 994	3.05	0. 983
48. 56	0. 40	11.92	0. 994	3. 64	0. 979
60. 70	0. 20	17. 47	0. 988	5. 34	0. 962
95. 91	0.00	25. 39	0. 972	7. 75	0. 933
121. 40	0.00	36. 26	0. 707	11.1	0. 854
152. 96	0.00	52. 92	0. 204	16. 2	0. 697
191.81	0. 00	66. 39	0.096	20. 3	0. 561
242. 80	0.00	92. 44	0.001	28. 2	0. 345
304. 71	0. 00	117. 9	0.000	36. 0	0. 196
		152. 83	0.000	46. 7	0. 025
		196. 71	0.000	60. 1	0.000
			0.000	67. 8	0. 000

【0112】実施例55

0.262MのTMAH溶液における表面張力の減少に おいて、実施例4の付加物の有効性について従来技術の 20 エトキシ化付加物と比較された。表10のデータからわ かるように、有意に比較的多量の従来技術エトキシ化付 加物が、エトキシ化およびプロポキシ化されており、1 分子に5.1モルEOおよび2.0モルPOを含有する*

*実施例4の付加物に匹敵する表面張力を得るのに要求さ れた。従来技術の付加物は、比較例29,30および3 1について表5に示されたものであり、それぞれ1分子 にEO3.5、5.1および10モルを含有していた。 [0113]

【表11】

表10

湿潤剤	濃度(ppm)	表面張力 (dyne/cm)
実施例29(E0 3.5モル)	150	41. 9
実施例30(E0 5.1モル)	150	42. 7
実施例31(EO 10モル)	500	41.3
実施例4(5.1 EO, 2.0 PO)	125	41.9

【0114】実施例56

気泡試験は、界面活性剤として実施例4のEO/PO付 加物および実施例31のEO付加物、ならびに界面活性 剤を含有する6つの市販現像剤溶液を配合されたTMA H現像剤溶液においてなされた。データは気泡発生装置 を用いて集められ、それにより窒素ガスはフリットを通 過し、50mL/分で100mLの溶液を泡立たせた。 ※ ※受領したまま使用された市販現像液を除いて、すべての 溶液は、表面張力を41~43dyne/cmに低下させるの に十分な界面活性剤とともに水中に2. 4wt%TMAH を含んでいた。結果は表11に示される。

[0115]

【表12】

表 1 1

	気泡容積(mL)												
時間 (min)	実施例4	実施例31	934 3:2°	MF- 702 ^b	MF- 319 ^b	10R5°	17R2°	L31°					
0	0.0	0. 0	0.0	0.0	0.0	0.0	0.0	0.0					
1	7. 8	7. 5	15. 6	39. 5	51.1	20. 5	15. 4	20. 2					
2	7. 2	7.5	17. 2	72. 6	91.4	21.1	16. 2	20. 5					
3	7. 1	7.5	24. 2	107. 4	135. 3	22. 6	16. 7	21.4					
4	7. 2	7. 5	22. 9	156. 4	176. 8	21. 7	16. 9	21.1					
5	7. 2	7. 5	22. 3	172.8	237. 8	22. 3	16. 5	21.4					
6	7. 3	7. 5	22. 0	236. 2	275. 1	22. 6	16. 9	22. 3					
7	7.1	7. 5	25. 8	287. 0	321. 3	22. 6	16. 9	21.7					
8	7. 1	7. 5	25.8	307. 6	372. 6	22. 0	17. 4	22.0					
9	7. 1	7. 5	25. 5	326. 9	416. 7	22. 9	17. 2	22. 0					
10	7. 5	7. 5	26. 2	301.3	460. 6	22. 6	17. 4	22. 3					
11	7.7	7. 5	26. 5	340. 2	502. 0	22. 3	17. 6	22. 6					
12	7.9	7. 5	26. 9	404. 8	544. 9	22.0	17.4	22. 3					
1 3	7.8	7. 5	26. 9	438. 6	594. 7	22. 6	17. 6	22. 6					
14	7. 9	7. 5	26. 9	488. 6	647. 5	22. 0	17. 6	22. 3					
1 5	7.8	7. 5	27. 3	514.9	681. 1	22. 3	18. 1	22. 6					

- Commercial developer solution from Olin (now Arch Chemical)
- * Commercial developer marketed under Microposist(R) trademark by Shipley
- * Commercial surfactant marketed under Pluronic(R) trademark by BASF

【0116】上述のデータは、実施例4のEO/PO付 加物界面活性剤を含有するTMAHは現像剤溶液が、他 の種類の界面活性剤を含有する市販現像剤溶液よりもか なり少ない気泡をつくりだしたことを示す。実施例31 のEO付加物を含有する現像剤溶液についての気泡容積 は実施例4のEO/PO付加物を含有する現像剤のそれ に近いが、表10のデータは比較的にかなり少ないEO /PO付加物界面活性剤が表面張力において匹敵する低 下を達成するのに必要とすることを示す。

* 実施例57

さらなる実験が、実施例4,29、および30の界面活 性剤を含有するフォトレジスト現像剤の泡立ち傾向を試 験するために行われた。これらの測定はRoss-Mi les 法を用いてなされ、O. 262NのTMAH溶液 中で試験された。結果は表12に示される。

[0117]

【表13】

表12

30

湿潤剤	濃度(ppm)	RM気泡、初期 (Oまでの時間)
実施例29-3.5 EO付加物	150	1.7cm (15s)
実施例30-5.1 EO付加物	150	2. 7cm (27s)
実施例4-E0/P0付加物	125	1.5cm(6s)

【0118】表12の上述のデータは、低い気泡がエト キシ化ープロポキシ化付加物で達成されることを示す。 プロポキシ化はTMAH現像剤溶液において表面張力お よび泡立ち特性の両方を減少させるこれらの付加物の能 力を増大させるのに、フォトレジスト現像剤用途のため の良好なコントラストは維持するということは非常に驚 くべきことである。所望の表面張力を低下させるのに要 するアセチレン列アルコール誘導体の含量を低下させる のに、これらの目的は達成される。

【0119】要するに、平衡および動的条件の両方の下 で表面張力を低下させる界面活性剤の能力は、水性の塗 料、インク、接着剤、貯蔵溶液、農業用配合物およびフ※50 ロニクス洗浄組成物における使用は特に有利である。本

※ォトレジスト現像剤の実施に、きわめて重要である。低 い動的表面張力は動的条件下での使用で、向上したぬれ エトキシ化もされているアセチレン列アルコールの部分 40 および拡がりをもたらし、そしてもっと効率的な組成物 使用およびもっと少ない欠陥をもたらす。気泡制御も多 くの用途において重要な属性であるが、特に、フォトレ ジスト現像剤、もしくはエレクトロニクス洗浄用組成物 においてそうである。

> 【0120】本発明に開示される界面活性剤族は優れた 動的表面張力低下を与えるのに、気泡を制御する能力を 提供する。したがって、それらは、塗料、インク、接着 剤、貯蔵溶液、農業用組成物、石けんおよび洗剤のよう な用途に利用される。フォトレジスト現像剤/エレクト

39

発明は、水性の塗料、インク、貯蔵溶液、農業用および フォトレジスト現像剤/エレクトロニクス洗浄剤用の組 成物において、平衡および動的表面張力を低下させるの に好適な組成物を提供する。

フロントページの続き

(72)発明者 ケビン ロドニー ラッシラ アメリカ合衆国,ペンシルベニア 18062, マカンギー,ペリウィンクル ドライブ 7320 (72) 発明者 ポーラ アン アーリン アメリカ合衆国,ペンシルベニア 18104, アレンタウン,ウエスト リビングストン ストリート 2325

【外国語明細書】

- 1. Title of the Invention

 Acetylenic Diol Ethylene Oxide/Propylene Oxide Adducts

 and their Use in Photoresist Developers
- 2. Claims

An aqueous photoresist developer composition containing as a surfactant an acetylenic dial ethylene oxide/propylene oxide adduct represented by the general structure:

where r and t are 1 or 2, (n + m) is 1 to 30 and (p + q) is 1 to 30, and the ethylene oxide units (n and m) and the propylene oxide units (p and q) are distributed in either block or random order.

- The composition of Claim 1 in which the ethylene oxide and propylene oxide
 units of the acetylenic diol ethylene oxide/propylene oxide adduct are randomly
 distributed.
- The composition of Claim 1 in which the ethylene oxide and propylene oxide units of the acetylenic diol ethylene oxide/propylene oxide adduct comprise blocks of each molety.
 - 4. The composition of Claim 1 in which (p + q) is 1 to 10.
 - 5. The composition of Claim 1 in which (n + m) is 1.3 to 15.

- 6. The composition of Claim 1 in which (n+m) is 1.3 to 10 and (p+q) is 1 to 3.
- 7. The composition of Claim 1 in which the acetylenic dial moiety of the acetylenic dial ethylene oxide/propylene oxide adduct is derived from 2,4,7,9-tetramethyl-5-decyne-4,7-dial.
- The composition of Claim 1 in which the acetylenic diol moiety of the
 acetylenic diol ethylene oxide/propylene oxide adduct is derived from
 2,5,8,11-tetramethyl-6-dodecyne-5,8-diol.
 - 9. The composition of Claim 7 in which (n + m) is 1.3 to 10 and (p + q) is 1 to 3.
 - 10. The composition of Claim 8 in which (n + m) is 1.3 to 10 and (p + q) is 1 to 3.
 - 11. The composition of Claim 9 in which (p + q) is 2.
 - 12. The composition of Claim 10 in which (p + q) is 2.
 - 13. The composition of Claim 1 containing tetramethylammonium hydroxide.
- 14. In a process for developing a photoresist after exposure to radiation by applying to the photoresist surface a developer solution containing a surface tension lowering amount of a surfactant, the improvement which comprises using as the

surfactant an acetylenic dipl ethylene oxide/propylene oxide adduct having a molecular structure represented by the general formula:

where r and t are 1 or 2, (n+m) is 1 to 30 and (p+q) is 1 to 30, the units of ethylene oxide (n and m) and propylene oxide (p and q) being distributed in either random or block order.

- 15. The process of Claim 14 in which the developer solution contains tetramethylammonium hydroxide.
 - 16. The process of Claim 14 in which (n + m) is 1.3 to 10 and (p + q) is 1 to 3.
- 17. The process of Claim 16 in which the acetylenic diol molety of the acetylenic diol ethylene oxide/propylene oxide adduct is derived from 2,4,7,9-tetramethyl-5-decyne-4,7-diol.
- 18. The process of Claim 16 in which the acetylenic diol moiety of the acetylenic diol ethylene oxide/propylene oxide adduct is derived from 2,5,8,11-tetramethyl-8-dodecyne-5,8-diol.

- 19. The process of Claim 16 in which the developer solution contains tetramethylammonium hydroxide.
- 20. An aqueous electronics cleaning composition comprising in water the following components

0.1 to 3 wt% tetramethylammonium hydroxide,

0 to 4 wt% phenolic compound; and

10 to 10,000 ppm acetylenic diol ethylene oxide/propylene oxide adduct, the acetylenic diol ethylene oxide/propylene oxide adduct having a molecular structure represented by the general formula:

where r and t are 1 or 2, (n + m) is 1 to 30 and (p + q) is 1 to 30, the units of ethylene oxide (n and m) and propylene oxide (p and q) being distributed in either random or block order.

3. Detailed Description of the Invention

BACKGROUND OF THE INVENTION

The invention relates to acetylenic diol alkylene oxide adducts, their manufacture and their use to reduce the surface tension in water-based systems. In another aspect it relates to the use of such adducts as a wetting agent in aqueous photoresist developers.

The ability to reduce the surface tension of water is of great importance in waterborne coatings, inks, adhesives, and agricultural formulations because decreased surface tension translates to enhanced substrate wetting in actual formulations. Surface tension reduction in water-based systems is generally achieved through the addition of surfactants. Performance attributes resulting from the addition of surfactants include enhanced surface coverage, fewer defects, and more uniform distribution. Equilibrium surface tension performance is important when the system is at rest. However, the ability to reduce surface tension under dynamic conditions is of great importance in applications where high surface creation rates are utilized. Such applications include spraying, rolling and brushing of coatings or spraying of agricultural formulations, or high-speed gravure or ink-jet printing. Dynamic surface tension is a fundamental

quantity which provides a measure of the ability of a surfactant to reduce surface tension and provide wetting under such high-speed application conditions.

Traditional nonionic surfactants such as alkylphenol or alcohol ethoxylates, and ethylene oxide (EO)/propylene oxide (PO) copolymers have excellent equilibrium surface tension performance but are generally characterized as having poor dynamic surface tension reduction. In contrast, certain anionic surfactants such as sodium dialkyl sulfosuccinates can provide good dynamic results, but these are very foamy and impart water sensitivity to the finished coating.

Surfactants based on acetylenic glycols such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol and its ethoxylates are known for their good balance of equilibrium and dynamic surface-tension-reducing capabilities with few of the negative features of traditional nonionic and anionic surfactants.

For many applications it would be desirable to produce acetylenic diol derivatives which have alternative properties. For example, in applications in which excellent dynamic performance is required, it is often desirable to have a surfactant which has higher critical aggregation concentration (solubility limit or critical micelle concentration) because higher bulk surfactant concentrations lead to a higher diffusive flux of surfactant to newly created surface, and consequently lower dynamic surface tension.

Traditionally, acetylenic diol surfactants with higher water solubility have been obtained by reaction of the parent with ethylene oxide; greater degrees of ethoxylation provide greater water solubility. Unfortunately, increasing the level of ethoxylation also introduces a tendency to foam, introducing inefficiencies during formulation, defects during application, and process issues in other applications. The problem of foaming is particularly troublesome in photoresist developers used in semiconductor fabrication.

The demands of semiconductor manufacture have required the use of high performance surfactants and wetting agents in photoresist developer formulations. As line features shrink to smaller sizes and photoresist substrate materials become more aliphatic in nature (i.e. having lower surface energy), aqueous developer solutions are being formulated with surface tension reducing agents. Another requirement for these developers is that they have a low tendency to foam. This is accentuated by the movement toward larger wafer sizes. Low foam formation is particularly important when using spray-puddle techniques because microbubble entrainment during spreading of the solution over the photoresist surface can lead to defects. Surfactants that have been used in the past to increase wetting of the photoresist typically lead to higher foam formation. For the most part the industry has focused on the effect of surfactant on photoresist performance, such as contrast, critical dimension, and feature sharpness. Although the cleaning ability of underlying substrates is enhanced by typical surfactants, foam formation still remains a problem.

Low dynamic surface tension is of great importance in the application of waterborne coatings. In an article, Schwartz, J. "The Importance of Low Dynamic Surface Tension in Waterborne Coatings", Journal of Coatings Technology, September 1992, there is a discussion of surface tension properties in waterborne coatings and a discussion of dynamic surface tension in such coatings. Equilibrium and dynamic surface tension were evaluated for several surface-active agents. It is pointed out that low dynamic surface tension is an important factor in achieving superior film formation in waterborne coatings. Dynamic coating application methods require surfactants with low dynamic surface tensions in order to prevent defects such as retraction, craters, and foam.

Efficient application of agricultural products is also highly dependent on the dynamic surface tension properties of the formulation. In an article, Wirth, W.; Storp, S.; Jacobsen, W. "Mechanisms Controlling Leaf Relention of Agricultural Spray Solutions"; Pestic, Sci. 1991, 33, 411-420, the relationship between the dynamic surface tension of agricultural formulations and the ability of these formulations to be retained on a leaf was studied. These workers observed a good correlation between retention values and dynamic surface tension, with more effective retention of formulations exhibiting low dynamic surface tension.

Low dynamic surface tension is also Important In high-speed printing as discussed in the article "Using Surfactants to Formulate VOC Compliant Waterbased Inks", Medina, S. W.: Sutovich, M. N. Am. Ink Maker 1994, 72 (2), 32-38. In this article, it is stated that equilibrium surface tensions (ESTs) are pertinent only to link systems at rest. EST values, however, are not good indicators of performance in the dynamic, high speed printing environment under which the ink is used. Dynamic surface tension is a more appropriate property. This dynamic measurement is an indicator of the ability of the surfactant to migrate to a newly created ink/substrate interface to provide wetting during high-speed printing.

Tetramethylammonium hydroxide (TMAH) is the chemical of choice in aqueous alkaline solutions for developing photoresists according to *Microlithography, Science and Technology*, edited by J. R. Sheats and B. W. Smith, Marcel Dekker, Inc., 1998, pp 551-553. Surfactants are added to the aqueous TMAH solutions to reduce development time and scumming and to improve surface wetting.

US 5,098,478 discloses water-based ink compositions comprising water, a pigment, a nonionic surfactant and a solubilizing agent for the nonionic surfactant.

Dynamic surface tension in ink compositions for publication gravure printing must be

reduced to a level of about 25 to 40 dynes/cm to assure that printability problems will not be encountered.

US 5,562,762 discloses an aqueous jet ink of water, dissolved dyes and a tertiary amine having two polyethoxylate substituents and that low dynamic surface tension is important in link jet printing.

In applications which require good dynamic performance and low foaming, acetylenic glycol-based surfactants have become industry standards. The following patents and articles describe various acetylenic alcohols and their ethoxylates as surface-active agents:

US 3,268,593 and Leeds, et al. *I&EC Product Research and Development* 1965, 4, 237, disclose ethylene oxide adducts of tertiary acetylenic alcohols represented by the structural formula

wherein R₁ and R₄ are alkyl radicals having from 3-10 carbon atoms and R₂ and R₃ are methyl or ethyl and x and y have a sum in the range of 3 to 60, inclusive. Specific ethylene oxide adducts include the ethylene oxide adducts of 3-methyl-1-nonyn-3-ol, 7,10-dimethyl-8-hexadecyne-7,10-diol; 2,4,7,9-tetramethyl-5-decyne-4,7-diol and 4,7-dimethyl-5-decyne-4,7-diol. Preferably, the ethylene oxide adducts range from 3 to 20 units. Also disclosed is a process for the manufacture of materials of this type using trialkylamine catalysts.

US 4,117,249 discloses 3 to 30 mole ethylene oxide (EO) adducts of acetylenic glycols represented by the structural formula

wherein R is hydrogen or an alkenyl radical. The acetylenic glycols are acknowledged as having utility as surface-active agents, dispersants, antifoaming nonlonic agents, and viscosity stabilizers.

US 5,650,543 discloses ethoxylated acetylenic glycols of the form

where x and y are integers and the sum is from 2-50. These surfactants are notable because they impart an ability to formulate coating and ink compositions capable of high-speed application.

JP 2636954 B2 discloses propylene oxide adducts of formula

$$\begin{array}{c|c}
CH_3 & CH_3 \\
R & & R
\end{array}$$

$$\begin{bmatrix}
CH_2 \\
CH_2$$

where R = C1-8 alkyl; m+n = integer 1 to 100. These compounds are prepared by reacting acetylenic glycols and propylene oxide in the presence of Lewis acid catalysts

such as BF₃. It is stated that amine catalysts are inactive for the addition of propylene oxide to acetylenic diols. The propylene oxide adducts are said to be useful as wettability improvers for antirust oil, antifoamers, spreaders for pesticides, and wetting agents for adhesives. They are effective in improving wettability of oils and have improved antifoaming ability.

JP 2621662 B2 describes dye or developing agent dispersions for thermal recording paper containing propylene oxide (PO) derivatives of an acetylenic diol of the form

where R1 and R2 are -CH3, -C2H5, -C4H9; R3 and R4 are -(OC3H4)mOH, or -OH where m is an integer 1-10.

JP 04071894 A describes coating solutions containing a dispersion of a colorless electron donating dye precursor and a dispersion of developer. At least one of them contains at least one type of wax having a melting point of at least 60 °C and at least one EO or PO derivative of an acetylenic diol of the formula

where R1 and R4 each represent methyl, ethyl, propyl, or butyl and R2 and R3 are each -(OC2H5)nOH, or -(OC3H6)nOH (n is 1-10), or OH, mixed and dispersed.

JP 2569377 B2 discloses a recording material containing dispersions of a substantially colorless electron donating dye precursor and a developer. When at least one of these dispersions is prepared, at least one of the compounds

where R^3 and R^5 = methyl, ethyl, propyl or butyl; and R^4 and R^5 = -(OC₂H₄)_nOH, -(OC₂H₆)_nOH (where m = an integer of 1-10) or -OH is added.

JP 09150577 A discloses a heat sensitive recording medium which contains in the heat sensitive layer a leuco dye and 0.1-1.0 wt% of an ethoxylate or propoxylate of an acetylenic glycol of the form

where R^1 = methyl, ethyl, propyl or butyl; R^2 = hydrogen or methyl; and n and m = 1-10.

JP 04091168 A discloses silica which has been surface treated with compounds of the form

where R1= 1-8C alkyl, A=2-3C alkylene glycol residue, R1 and A in a molecule may be the same or different, x and y = each an integer of 0-25.

JP 06279081 A describes a manufacturing process for a cement mortar-concrete hardening material to which 0.5-10 wt. % an acetylenic alcohol or diol alkoxylate is added together with fluorine group surfactants and/or silicon group surfactants. The acetylenic material can be expressed by the formula

where R1 = H or -C(R2)(R3)(O(AO)nH); R2 and R3 = 1-8C alkyl radicals, A = 2-3C alkylene radicals and n = 0-30.

JP 03063187 A discloses the use of acetylenic glycol ethylene oxide and/or propylene oxide addition products in concentrated aqueous fountain solution compositions for offset printing. In one example, the 8 to 12 mole ethylene oxide/1 to 2 mole propylene oxide adduct of 3,5-dimethyl-4-octyne-3,5-diol is used in a fountain solution. Other examples illustrate the use of only ethylene oxide derivatives of acetylenic diols.

Although acetylenic diol derivatives containing both ethylene oxide (EO) and propylene oxide (PO) have been taught as a general class of materials, usually as potential extensions of work which had been performed with ethylene oxide derivatives, no actual examples of an acetylenic diol EO/PO derivative based upon 2,4,7,9-tetramethyl-5-decyne-4,7-diol or 2,5,8,11-tetramethyl-6-dodecyne-5,8-diol have been prepared and evaluated. There are no disclosures of any process that could be used to prepare materials of this type.

The use of surfactants in photoresist developer compositions has been known for at least two decades.

US 4,374,920 discloses using a non-ionic surfactant in an aqueous alkaline developer composition for positive-working lithographic printing plates and photoresists. The surfactant was tetramethyl decynedic or ethoxylated tetramethyl decynedic. The specific surfactants were SURFYNOL® 440, 465 and 485 surfactants of Air Products and Chemicals, Inc.

US 4,833,067 discloses aqueous developing solutions for positive-working photoresist compositions containing an organic basic compound free from metallic ions, such as tetramethylammonium hydroxide and choline, as the main ingredient and 50 to 5000 ppm of an acetylenic alcohol. These aqueous developing solutions are said to have increased surface wetting and decreased foaming.

US 5,069,996 discloses photoresist developer compositions containing TMAH, novolak resin, an ethoxylated tetramethyldecynediol surfactant, a defoamer and water.

US 5,756,267 discloses developing solutions useful in the manufacture of liquid crystal displays. These solutions contain water, a quaternary ammonium base such as TMAH, a quaternary ammonium salt surface active agent, an alkanolamine and an acetylenic alcohol based surface active agent which is the same as those disclosed by the '067 patent.

US 5,922,522 discloses developing solutions for photoresists containing an antiscum agent which is a mixture of an ethoxylate surfactant and a propoxylate surfactant. Although no example of such a compound is given, it is said that the ethylene oxide units and the propylene oxide units can be incorporated in a chain in the same molecule. These surfactants are said to be preferably anionic and have a hydrophobic end on the molecule formed from alcohols such as nonylphenol, octylphenol, and tristyrylphenol.

JP 10-319606 discloses a photoresist developer containing water, alkaline substance, and a block copolymer having the formula HO-A-B-A-H wherein A and B are a polyethylene oxide group or a polypropylene oxide group, the molecule containing both groups. These block copolymers, however, are very susceptible to forming micelles which can cause surface defects in microelectronic applications.

In spite of all the advances in this field of semiconductor manufacture, the need continues to exist for new surfactants which can efficiently lower surface tension in a developer as it is applied to an exposed photoresist while minimizing foam production.

SUMMARY OF THE INVENTION

This invention provides alkoxylated acetylenic diols that act as surfactants for water based compositions of the following structure:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ $

where r and t are, preferably the same, 1 or 2, (n + m) is 1 to 30 and (p + q) is 1 to 30. The EO and PO units may be distributed along the alkylene oxide chain in blocks of EOs and POs or randomly.

This invention also relates to processes for the manufacture of certain alkoxylated acetylenic diols.

Another embodiment of the Invention affords water-based compositions containing an organic or inorganic compound, particularly aqueous organic coating, ink, agricultural and electronics cleaning compositions, having reduced equilibrium and dynamic surface tension by incorporation of an effective amount of an alkoxylated acetylenic diol of the above structure.

By "water-based", "aqueous" or "aqueous medium" we mean, for purposes of this invention, a solvent or liquid dispersing medium which comprises at least about 90 wt%, preferably at least about 95 wt%, water. Obviously, an all water medium is also

included and is most preferred. Also for purposes of the present invention, the terms "photoresist developing" and "electronics cleaning" are interchangeable.

It is desirable that an aqueous solution of the alkoxylated acetylenic diol demonstrates a dynamic surface tension of less than 35 dynes/cm at a concentration of ≤0.5 wt% in water at 23 °C and 1 bubble/second according to the maximum-bubble pressure method. The maximum-bubble-pressure method of measuring surface tension is described in Langmuir 1986, 2, 428-432, which is incorporated by reference.

Also provided is a method for lowering the equilibrium and dynamic surface tension of aqueous compositions by the incorporation of these alkoxylated acetylenic diol compounds.

Also provided is a method for applying a water-based inorganic or organic compound-containing composition to a surface to partially or fully coat the surface with the water-based composition, the composition containing an effective amount of an alkoxylated acetylenic diol compound of the above structure for reducing the dynamic surface tension of the water-based composition.

There are significant advantages associated with the use of these alkoxylated acetylenic diols in water-based organic coatings, links, fountain solutions for gravure printing processes, agricultural and electronics cleaning compositions and these advantages include:

- an ability to formulate water-borne compositions which may be applied to
 a variety of substrates with excellent wetting of substrate surfaces
 including contaminated and low energy surfaces;
- an ability to provide a reduction in coating or printing defects such as orange peel and flow/leveling deficiencies;

- an ability to produce water-borne coatings, fountain solutions and inks
 which have low volatile organic content, thus making these alkoxylated
 acetylenic diol surfactants environmentally favorable;
- an ability to formulate coating, fountain solution and lnk compositions
 capable of high speed application;
- an ability to control the foaming characteristics of the water-based compositions;
- an ability to formulate low surface tension aqueous electronics cleaning and processing solutions, including photoresist developer solutions, for the semiconductor manufacturing industry with good wetting and extremely low foam; and
- an ability to produce some members of the class using a chemical process similar to that used to produce acetylenic diol ethoxylates.

Because of their excellent surfactant properties and the ability to control foam, these materials are likely to find use in many applications in which reduction in dynamic and equilibrium surface tension and low foam are important. Such uses include various wet-processing textile operations, such as dyeing of fibers, fiber souring, and kier boiling, where low-foaming properties would be particularly advantageous; they may also have applicability in soaps, water-based perfumes, shampoos, and various detergents where their marked ability to lower surface tension while simultaneously producing substantially no foam would be highly desirable.

The use of these materials in photoresist developer formulations is of particular importance because of their ability to provide all the advantages of surface tension lowering plus outstanding performance in reducing the formation of foam.

DETAILED DESCRIPTION OF THE INVENTION

This invention relates to compounds of the formulas A and B.

where (n + m) and (p + q) each can range from 1 to 30. It is preferred that (n + m) be 1.3 to 15 and most preferably 1.3 to 10. It is preferred that (p + q) be 1 to 10, more preferred 1-3 and most preferred 2. In Formula A, r and t are 1 or 2, especially r = t, i.e. the acetylenic diol portion of the molecule is 2,4,7,9-tetramethyl-5-decyne-4,7-diol or 2,5,8,11-tetramethyl-6-dodecyne-5,8-diol.

The alkylene oxide moieties represented by (OC2H4) are the (n + m) polymerized ethylene oxide (EO) units and those represented by (OC3H6) are the (p + q) polymerized propylene oxide (PO) units. Products in which the EO and PO units are each segregated together are referred to as "block" alkoxylate derivatives. The products in which the EO and PO units are randomly distributed along the polymer chain are referred to as "random" alkoxylate derivatives. Random derivatives can be represented by formula B

E

where R is hydrogen or methyl and (n+m) = 2 - 60 with the proviso that the compound contain at least one ethylene oxide and at least one propylene oxide unit; and r and t are 1 or 2, especially r = t.

The block compositions of structure A can be prepared by reaction of 2,4,7,9-tetramethyl-5-decyne-4,7-diol or 2,5,8,11-tetramethyl-6-dodecyne-5,8-diol with the requisite quantities of ethylene oxide followed by propylene oxide in the presence of a suitable catalyst. Suitable catalysts include trialkylamines and Lewis acids, particularly BF₃. Alternatively, the compositions may be prepared by reaction of a pre-formed acetylenic diol ethoxylate with propylene oxide in the presence of an appropriate catalyst. In this case of a pre-formed acetylenic diol ethoxylate, it may be possible to use KOH or other alkali catalysts to effect the reaction with propylene oxide, provided the amount of ethylene oxide which has been added is sufficient to cover essentially all of the tertlary alcohol functionality.

The preferred process for making the acetylenic diol alkoxylates uses BF₃ or trialkylamine catalysts. The use of BF₃ allows the rapid preparation of derivatives containing relatively large quantities of propylene oxide. However, compositions prepared with trialkylamine catalysts, especially trimethylamine, are preferred for several reasons. They can be prepared using a process very similar to that used for manufacture of acetylenic diol ethoxylates without significant byproduct chemistry. In

particular, trialkylamine catalysts allow for the preparation of 2 mole propylene oxide capped derivatives in high selectivity using a highly efficient, one pot process.

With respect to the processes for the preparation of acetylenic diol EO/PO adducts, the tertiary acetylenic diol starting materials can be prepared in various known manners such as those described in US 2.250,445; US 2,106,180 and US 2,163,720, which are incorporated by reference. The acetylenic diol starting material may contain from 8 to 26 carbons. It is preferred that the acetylenic diol starting material contain 14 to 16 carbons, and it is most particularly preferred that it be 2,4,7,9-tetramethyl-5-decyne-4,7-diol or 2,5,8,11-tetramethyl-6-dodecyne-5,8-diol.

Various basic catalysts can be used to promote the reaction between the alkylene oxide and the acetylenic tertiary glycols in which the hydroxyl groups are attached to a carbon atom in a position alpha to the acetylenic bonds according to this invention. Tertiary aliphatic amines, namely trialkylamines such as trimethylamine, triethylamine, tripropylamine, dimethylethylamine, diethylmethylamine and the like, are particularly advantageous catalysts for the reaction. Such tertiary aliphatic amines catalyze the addition reaction at a rapid rate at moderately low temperatures and pressures without inducing cleavage of the acetylenic glycol. Trimethylamine is preferred because of its high catalytic activity and longevity in the reaction.

As is known in the art, the use of strongly basic catalysts such as sodium hydroxide, especially at high temperatures of about 150°C, induces cleavage of the acetylenic tertiary glycols and for this reason should be avoided, unless of course, sufficient ethylene oxide has been added to prevent substantial decomposition of tertiary acetylenic alcohol functionality. Once the tertiary hydroxyl groups of the acetylenic glycol have reacted with ethylene oxide, the resultant adduct exhibits the marked stability of an ether. So stable are the adducts that they can be heated with

concentrated base such as sodium hydroxide at elevated temperatures, while comparable treatment of the initial acetylenic glycol is accompanied by extensive degradation. Consequently, strongly basic catalysts, such as the alkali metal hydroxides, can be used to increase the polyalkylene oxide chain length once the initial adducts have been formed and protected against decomposition. It is anticipated that alkali metal hydroxides could also be used to promote the addition of propylene oxide to initial EO or PO adducts with sufficiently low quantities of residual tertiary acetylenic alcohol functionality.

The trialkylamine-catalyzed addition reaction may be performed at either atmospheric (15 psig; 1 bar) or moderate to low superatmospheric pressures (30-300 psig; 2-20 bar). The use of moderate to low superatmospheric pressures is preferred since it obviates the necessity of recycling unreacted ethylene oxide and propylene oxide; and generally proceeds at faster rates than additions carried out at atmospheric pressures. The effect of pressure on rate is particularly important in the reaction with propylene oxide, and it is therefore preferred that reactions be performed at pressures in excess of 30 psig (2 bar). It is particularly preferred that the process be carried out at a pressure greater than 60 psig (4 bar). Another benefit of performing the reaction under pressure is that such reactions may be accomplished with ordinary efficient agitation, while reactions conducted at atmospheric pressure often work best when a dispersion type agitator is used. While the reaction can be carried out at lower pressure, reaction rates, and therefore reactor productivity, suffer. Performing the reaction at pressures much in excess of about 300 psig (20 bar) would likely have only marginal benefit, and would increase the cost of equipment required for manufacture. It is preferred to operate at 100 psig (6.7 bar).

The temperature at which the reaction is run for trialkylamine catalyzed reactions will depend upon the particular system and the catalyst concentration. Generally, at higher catalyst concentrations, the reactions can be run at lower temperatures and pressures. Reaction temperatures should be high enough to permit the reaction to proceed at a reasonable rate, but low enough to prevent decomposition of the reagents and products. Temperatures in the range of 40-150°C are suitable, 50-120°C preferred, and 70-90°C particularly preferred.

In the trialkylamine catalyzed process in which propylene oxide is added to an acetylenic diol EO adduct, the reaction stops at a PO end cap on each chain, i.e., the obtained product is an acetylenic diol EO/PO adduct containing two PO end caps, p and q each being 1 in Formula A. When a mixture of EO and PO is added to an acetylenic diol or diol EO adduct, the trialkylamine catalyzed process affords an adduct having random EO and PO units, in the latter case extending beyond the original EO block.

To prepare the EO/PO adducts of the Invention, the acetylenic glycol is liquefied by melting and the catalyst is added with stirring. Ethylene oxide and/or propylene oxide are added as liquids with stirring and the reaction is concluded when the desired polyalkylene oxide chain length is reached as determined by gel permeation chromatography (GPC), high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), cloud point (ASTM D2024-65) or water titration of an isopropyl alcohol solution. No solvents are necessary during the reaction, but inert solvents such as aromatic hydrocarbons (benzene and toluene) and ethers (ethyl ether) may be used to facilitate handling. In some instances it may be convenient to use a low mole ethoxylated acetylenic diol, since these products are liquids and are therefore easy to handle.

In reactions catalyzed by Lewis acids, the reaction conditions will be determined by the identity and concentration of the catalyst. Examples of Lewis acid catalysts include BCl₃, AICl₃, TiCl₄, BF₃, SnCl₄, ZnCl₂ and the like. The preferred Lewis acid catalyst is BF₃. In BF₃ catalyzed reactions, temperature control during the initial stages of the reaction is critical, since too high a temperature will result in dehydration of the acetylenic diol. It is preferred that the temperature be maintained below 80°C, preferably below 60°C, and most preferably below 50°C. The reaction pressure can range from atmospheric to low to moderate superatmospheric pressure, i.e., from 15 to 300 psig (1 to 20 bar). Because of the high activity of BF₃, good results can be obtained at more moderate pressures of about 1 bar than for those reactions performed using trialkylamine catalysts.

In adding liquid alkylene oxide(s) to the acetylenic glycol and the catalyst, care should be taken to avoid the presence of an excess of alkylene oxide(s) in the reaction mixture since the reaction is very exothermic and could prove to be very hazardous. The danger of an uncontrollable reaction can be avoided by adding the alkylene oxide(s) in a manner and at a rate such that the alkylene oxide(s) are reacted essentially as rapidly as they are introduced into the reaction mixture. The formation of a flammable mixture in the headspace is best avoided by pressuring the reactor headspace to a sufficient pressure with an inert gas such as nitrogen such that the alkylene oxide(s) remains below its lower explosive limit (LEL).

In the both the Lewis acid catalyzed and the trialkylamine catalyzed processes, the catalysts may be used at 0.001 to 10 wt%, preferably 0.01 to 5 wt%, and most preferably 0.1 to 1 wt%, based on total final reactant mass. In both cases, because deactivation may occur during the alkoxylation, it may be necessary to add additional

catalyst to complete the reaction, particularly if large amounts of EO and PO are being added.

In the processes for making the randomly distributed EO/PO adducts, the EO and PO may be added to the reaction concurrently as separate charges or streams, or added as a single charge or stream comprising a mixture of EO and PO. In making block EO/PO adducts the EO and PO are added consecutively.

The alkoxylated acetylenic diols are useful for the reduction of equilibrium and dynamic surface tension in water-based compositions containing an organic compound, particularly aqueous coating, ink, fountain solution, agricultural and electronics processing compositions containing organic compounds such as polymeric resins, macromolecules, organic bases, herbicides, fungicides, insecticides or plant growth modifying agents. It is desirable that an aqueous solution of the alkoxylated acetylenic diol demonstrates a dynamic surface tension of less than 35 dynes/cm at a concentration of <0.5 wt% in water at 23°C and 1 bubble/second according to the maximum-bubble-pressure method. The maximum-bubble-pressure method of measuring surface tension is described in *Langmuir* 1986, 2, 428-432, which is incorporated by reference.

In one aspect of the invention certain alkoxylated acetylenic diols of the above formula display excellent ability to reduce equilibrium and dynamic surface tension while producing substantially no foam. This behavior is particularly advantageous in photoresist developer formulations.

The alkoxylated acetylenic diols are suitable for use in an aqueous composition comprising in water an inorganic compound which is, for example, a mineral ore or a pigment or an organic compound which is a pigment, a polymerizable monomer, such as

addition, condensation and vinyl monomers, an oligomeric resin, a polymeric resin, a macromolecule such as gum arabic or carboxymethyl cellulose, a detergent, a caustic cleaning agent, a dissolution agent such as tetramethylammonium hydroxide (TMAH), a herbicide, a fungicide, an insecticide, or a plant growth modifying agent.

An amount of the alkoxylated acetylenic diol compound that is effective to reduce the equilibrium and/or dynamic surface tension of the water-based, organic or inorganic compound-containing composition is added. Such effective amount may range from 0.001 to 10 g/100 mL, preferably 0.01 to 1 g/100 mL, and most preferably 0.05 to 0.5 g/100 mL of the aqueous composition. For water-based photoresist developer/-electronics cleaning compositions effective amounts may range from 0.001 to 1 g/100 mL, preferably 0.002 to 0.8 g/100 mL, and most preferably 0.005 to 0.5 g/100 mL.

Naturally, the most effective amount will depend on the particular application and the solubility of the particular alkoxylated acetylenic diol.

In the following water-based organic coating, lnk, fountain solution and agricultural compositions containing an alkoxylated acetylenic diol according to the invention, the other listed components of such compositions are those materials well known to the workers in the relevant art.

A typical water-based protective or decorative organic coating composition to which the alkoxylated acetylenic diol surfactants of the invention may be added would comprise the following components in an aqueous medium at 30 to 80 wt% ingredients:

Wa	ter-Based Organic Coating Composition				
0 to 50 wt%	Pigment Dispersant/GrInd Resin				
0 to 80 wt%	Coloring Pigments/Extender Pigments/Anti-Corrosive				
	Pigments/Other Pigment Types				
5 to 99.9 wt%	Water-Borne/Water-Dispersible/Water-Soluble Resins				
0 to 30 w1% .	Slip Additives/Antimicrobials/Processing Aids/Defoamers				
0 to 50 w1%	Coalescing or Other Solvents				
0.01 to 10 wt%	Surfactant/Wetting Agent/Flow and Leveling Agents				
0.01 to 5 wt%	Acetylenic Dloi EO/PO Derivative				

A typical water-based ink composition to which the alkoxylated acetylenic diol surfactants of the invention may be added would comprise the following components in an aqueous medium at 20 to 60 wt% ingredients:

	Water-Based Ink Composition					
1 to 50 wt%	Pigment					
0 to 50 wt%	Pigment Dispersant/Grind Resin					
0 to 50 wt%	Clay base in appropriate resin solution vehicle					
5 to 99.9 wt%	Water-Borne/Water-Dispersible/Water-Soluble Resins					
0 to 30 wt%	Coalescing Solvents					
0.01 to 10 wt%	Surfactant/Wetting Agent					
0.01 to 10 wt%	Processing Aids/Defoamers/Solubilizing Agents					
0.01 to 5 wt% Acetylenic Diol EO/PO Derivative						

A typical water-based agricultural composition to which the alkoxylated acetylenic diol surfactants of the invention may be added would comprise the following components in an aqueous medium at 0.1 to 80 wt% Ingredients:

V	Water-Based Agricultural Composition					
0.1 to 50 wt%	Insecticide, Herbicide or Plant Growth Modifylng Agent					
0.01 to 10 wt%	Surfactant					
0 to 5 wt%	Dyes .					
0 to 20 wt%	Thickeners/Stabilizers/Co-surfactants/Gel					
	Inhibitors/Defoamers					
0 to 25 wt%	Antifreeze					
0.01 to 50 wt%	Acetylenic Diol EO/PO Derivative					

A typical fountain solution composition for planographic printing to which the alkoxylated acetylenic dial surfactants of the invention may be added would comprise the following components in an aqueous medium at 30 to 70 wt% ingredients:

Fo	untain Solution for Planographic Printing
0.05 to 30 wt%	Film formable, water soluble macromolecule
1 to 75 wt%	Alcohol, glycol, or polyol with 2-12 carbon atoms, water soluble or can be made to be water soluble
0.01 to 60 wt%	Water soluble organic acid, Inorganic acid, or a salt of thereof
0.01 to 50 wt%	Acetylenic Diol EO/PO Derivative

Other compositions in which use of the acetylenic diol EO/PO adduct as a surfactant is particularly advantageous are the developers for photoresists that are employed in the semiconductor industry. Such developers and their use are well known in the art and do not need to be described in detail. In fact, as pointed out in the background section of this disclosure, the use of ethoxylated acetylenic diol adducts in such formulations is known and well documented. The improvement provided by this invention, which could not have been foreseen, involves the use in these developer formulations of certain acetylenic diol adducts which also contain propoxy groups.

A typical water-based photoresist developer, or electronic cleaning, composition to which the alkoxylated acetylenic diol surfactants of the invention may be added would comprise an aqueous medium containing the following components:

Water-Base	Water-Based Photoresist Developer Composition						
0.1 to 3 wt%	Tetramethylammonium Hydroxide						
0 to 4 wt%	Phenolic Compound						
10 to 10,000 ppm Acetylenic Diol EO/PO Derivative							

Briefly, the process for manufacture of integrated circuits involves the application of a film of photoresist composition to a suitable substrate, such as a silicon wafer, which let then exposed to actinic radiation in a designed pattern that is imposed upon the photoresist film. Depending upon whether the photoresist is positive or negative-working, the radiation either increases or decreases its solubility in a subsequently applied developer solution. Consequently, in a positive-working photoresist the areas masked from the radiation remain after development while the exposed areas are dissolved away. In the negative-working photoresist the opposite occurs. The surfactant of this invention can be used in developers for either type of photoresist. The character of the developer is very important in determining the quality of the circuits formed and precise control of developing is essential. To achieve better surface wetting by the developer is has been common to add surfactant to the formulation in order to reduce surface tension of the solution. This addition, however, can cause the developer to foam which leads to circuit defects. This foaming problem is also recognized in the art and considerable attention in the industry has been directed toward its solution.

The developer, or electronics cleaning, solutions in which use of the adduct of the invention is preferred are the aqueous solutions of tetramethylammonium hydroxide (TMAH). These developers are also well known in the art. Commercial developers usually contain low levels of surfactant on the order of 50 to 1000 ppm by weight. Surfactant level should not exceed that required to achieve the desired surface tension of the solution. For example, surface tensions of about 40 to 45 dynes/cm would be

appropriate for novolac-based photoresist resins. Advanced resins that often incorporate allphatic groups might require a developer with lower surface tension to enhance wetting. One of the advantages of the surfactants of this invention is that suitable surface tensions can be obtained at lower levels than is required by other wetting agents. This in itself is a step toward solving the foaming problem in the manufacture of microcircuitry.

Example 1

This example illustrates that two mole propoxylates of acetylenic diol ethoxylates can be prepared with high selectivity when using trialkylamine catalysts. In this example, the preparation of the 7 mole propoxylate of Surfynol® 465 surfactant, which is the 10 mole ethoxylate of 2,4,7,9-tetramethyl-4-decyne-4,7-diol, was attempted.

A 1000 mL autoclave was charged with Surfynol® 465 surfactant (300 g, 0.45 moles) and dimethylethylamine (53.7 g, 0.73 moles). The reactor was sealed, purged free of air with three nitrogen pressure-vent cycles, then pressured to 100 psig (6.7 bar) with nitrogen and heated to 120°C. Propylene oxide (183 g, 3.15 moles) was added over a period of 70 minutes by means of a syringe pump. At the completion of the addition, the reaction mixture was heated for an additional 12 hr at 120°C. The reactor contents were cooled and discharged. The product was heated under vacuum to remove volatiles (unreacted PO and catalyst); 68 g of material were removed.

Matrix assisted laser desorption/ionization mass spectrometry (MALD/I) indicated that almost all the individual oligomers in the product possessed one or two propylene oxide residues with only very small amounts of product containing three or

more PO units. The fate of a substantial amount of the propylene oxide appeared to be formation of dimethylamino-terminated polypropyleneoxide.

These results are consistent with relatively facile reaction of primary hydroxyl with propylene oxide, but only very sluggish reaction of propylene oxide terminated chains. It appears that after EO-terminated chains react with one propylene oxide, chain growth essentially stops. Since there are approximately two EO chains for each starting acetylenic diol, high selectivity to the two-mole propoxylate results. In this environment, decomposition of the catalyst to form dimethylamino-terminated polypropylene oxide is the predominant reaction.

It would not be anticipated based on the teachings of JP 2636954 B2 that trielkylamine catalysts would have any efficacy for promoting the reaction of propylene oxide. It would also not be anticipated that high selectivity to the two mole propoxylates of an acetylenic diol could be achieved.

Examples 2-5

Example 3 illustrates the preparation of the 3.5 mole ethoxylate of 2,4,7,9-tetramethyl-5-decyne-4,7-diol capped with 2 moles of propylene oxide using trimethylamine catalyst and a preformed ethoxylate. The 3.5 mole ethoxylate of 2,4,7,9-tetramethyl-5-decyne-4,7-diol is commercially available from Air Products and Chemicals, Inc. and is marketed as Surfynol® 440 surfactant.

A 1000 mL autoclave was charged with Surfynol® 440 surfactant (400 g, 1.05 moles) which had previously been dried by heating under nitrogen. The reactor was sealed and pressure checked, the air was removed with three nitrogen pressure-vent cycles, and trimethylamine (2.7g, 0.5 wt% of final reaction mass) was added by means

of a gas tight syringe. The reactor was pressured to 100 psig (6.7 bar) with nitrogen and heated to 100°C whereupon propylene oxide (122 g, 147 mL, 2.10 moles) was added at a rate of 1.0 mL/min by means of a syringe pump. At the completion of the addition, the reactor contents were stirred at 100°C for 14.5 hours. The reactor was cooled and the contents were discharged into a round bottomed flask and heated under vacuum (0.25 torr) at amblent temperature (ca. 23°C) for 16 hours to remove the trimethylamine catalyst. The product was characterized by nuclear magnetic resonance (NMR) spectrometry. The data are summarized in Table 1 which shows acetylenic diol compositions prepared using trimethylamine catalysis.

Other ethylene oxide/propylene oxide derivatives of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Examples 2, 4 and 5) were prepared in a similar manner. The compositions are also summarized in Table 1.

Since JP 2636954 B2 states that amines are inactive for the addition of propylene oxide, it would not be anticipated that trimethylamine would be an effective catalyst for the preparation of an EO/PO derivative of 2,4,7,9-tetramethyl-5-decyne-4,7-diol.

Table 1

	Theo	Determined by NMR		
Example	EO Moles	PO Moles	EO Moles	PO Moles
2	1.3	2.0	1.5	1.9
3	3.5	2.0	3.9	1.8
4	5.1	2.0	5.9	2.0
5	10.0 2.0		10.7	2.0

Examples 6-21

These examples illustrate the preparation of ethylene oxide/propylene oxide derivatives of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (designated S104) and 2,5,8,11-tetramethyl-6-dodecyne-5,8-diol (designated S124) using 8F₃ catalyst. To our

knowledge a procedure for the preparation of ethylene oxide/propylene oxide derivatives of acetylenic diols using Lewis acids such as BF₃ has not previously been disclosed. The procedure is illustrated for the preparation of the 5 mole ethylene oxide, 2 mole propylene oxide adduct of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (S104) in which the EO and PO units are randomly situated along the alkylene oxide chain.

A 1000 mL autoclave was charged with the 1.3 mole ethylene oxide adduct of 2,4,7,9-tetremethyl-5-decyne-4,7-diol (313 g, 1.1 moles; Surfynol 104 surfactant from Air Products and Chemicals, Inc.) which had previously been dried by heating under vacuum. The reactor was sealed and pressure checked, the air was removed with three nitrogen pressure-vent cycles. The reactor was pressured to 100 psig (6.7 bar) with nitrogen, and the contents were heated to 40°C. BF₃ diethyl etherate (1.3 g) was added and ethylene oxide and propylene oxide were added simultaneously at rates of 91.05 mL/h and 68.95 mL/h, respectively, by means of two syringe pumps. The total amount of ethylene oxide (180 g, 204 mL, 4.08 moles) and propylene oxide (128 g, 155 mL, 2.2 moles) were such that the final mole ratio of diol:EO:PO was 1:5:2. After the completion of the addition, an additional 0.7 g of BF₃ diethyl etherate was added, whereupon an exotherm to 45.5°C was observed. At this point gas chromatographic analysis indicated that the reaction was complete. The product (Example 6) was analyzed by NMR and MALD/l and found to have a structure consistent with the desired structure.

Sixteen similar materials (Examples 7-22) were prepared by variation of the diol structure, the amounts of ethylene oxide and propylene oxide, and the structural motif of the alkylene oxide chain. Table 2 shows the acetylenic diol compositions prepared using BF₃ catalysis. In Table 2, R designates "random," while B designates "block."

The composition of Example 22 has been disclosed in JP 03063187 A (however, JP '187 does not teach a method for its preparation nor whether the adduct is a block or

random copolymer), and has been shown to have efficacy in fountain solutions for lithographic printing. The S82 designation corresponds to 3,6-dimethyl-4-hexyne-3,6-diol.

Table 2

			Theo	retical	Determine	d by NMR
Example	Diol	R/B	EO Moles	PO Moles	EO Moles	PO Moles
6	S104	R	5	2	6.5	2.9
7	\$104	В	5	2	5.5	2.2
8	S104	R	5	10	3.2	11.5
9	S104	В	5	10	3.5	11.1
10	S104	R	15	2	16.2	2.2
11	S104	В	15	2	14.4	2.1
12	S104	R	. 15	10	17.3	8.6
13	S104	₿	15	10	15.0	9,7
14	\$124	R	5 ·	2	6.9	3.2
15	\$124	В	5	2	4.8	2.2
16	S124	R	5	10	8.0	7.6
17	\$124	В	5	10	5:1	10.0
18	S124	R	15	2	16.3	1.9
19	\$124	8	15	2	14.9	2.1
20	\$124	R ·	15	10	15.4	9.3
21	\$124	8	15	10	13.6	8.1
22	S82	В	10	2	9.6	1.9

In the following Examples dynamic surface tension data were obtained for aqueous solutions of various compounds using the maximum bubble pressure method at bubble rates from 0.1 bubbles/second (b/s) to 20 b/s. The maximum bubble pressure method of measuring surface tension is described in *Lengmuir* 1986, 2, 428-432. These

data provide information about the performance of a surfactant at conditions from near-equilibrium (0.1 b/s) through extremely high surface creation rates (20 b/s). In practical terms, high bubble rates correspond to high printing speeds in lithographic printing, high spray or roller velocities in coating applications, and rapid application rates for agricultural products.

Comparative Example 25

Dynamic surface tension data were obtained for aqueous solutions of the composition of Example 22 (S82/10 EO/2PO/B) using the maximum bubble pressure technique. This material has been disclosed in JP 03063187 A and is taught as a component in an aqueous fountain solution composition. The surface tensions were determined at bubble rates from 0.1 bubbles/second (b/s) to 20 b/s. The data are presented in Table 3.

Table 3

	Dynamic Surface Tension (dyne/cm) – Example 22								
Concentration (wt%)	0.1 b/s	1 b/s	6 b/s	15 b/s	20 b/s				
0.1	39.1	42.3	46.5	51.6	53.0				
1.0	34.4	34.9	35.5	37.7	38.5				
5.0	33.8	34.0	34.7	36.3	36.4				

The data illustrate that this product is reasonably effective at reducing the surface tension of water, although relatively high concentrations are required to obtain reasonable performance.

Example 26

Solutions in distilled water of 10 mole EO/2 mole PO block derivative of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Example 5) were prepared and their dynamic surface tension properties were measured using the procedure described above. The data are set forth in the Table 4.

Table 4

Dynamic Surface Tension (dyne/cm) - Example 5								
Concentration (wt%)	0.1 b/s	1 b/s	<u>6 b/s</u>	15 b/s	20 b/s			
0.1	40.5	42.0	44.3	47,1	48.1			
0.5	32.4	33.6	35.1	36.6	37.2			
1.0	29.8	30.5	32.1	33.0	33.7			

These data illustrate that the composition of this invention is markedly superior in its ability to reduce surface tension relative to the composition of the prior art.

Comparison of the data for the 1.0 wt% solution of the Example 5 surfactant with that of the 5.0 wt% solution of the S82 derivative (Example 22) shows that the compound of the invention provides superior performance at all surface creation rates at 20% the use level. Since reduction of dynamic surface tension is of such importance in a dynamic application in which aqueous fountain solutions are utilized, it would not be anticipated based on the teachings of the prior art that modification of the hydrophobic group (the acetylenic diol moiety) would have such an advantageous effect.

Comparative Examples 27-31

Solutions in distilled water of the 1.3, 3.5, 5.1, and 10 mole ethoxylates of 2,4,7,9-tetramethyl-5-decyne-4,7-diol were prepared. The 1.3, 3.5, and 10 mole ethoxylates are marketed by Air Products and Chemicals, Inc. as Surfynol® 420, 440,

and 465 surfactants, respectively. Their dynamic surface tensions were measured using the procedure described above, and these data were used to determine the quantities provided in Table 5.

The ρC_{20} value is defined as the negative logarithm of the molar concentration of surfactant required to decrease the surface tension of an aqueous solution to 52.1 dyne/cm, that is, 20 dyne/cm below that of pure water when the measurement is performed at 0.1 b/s. This value is a measure of the efficiency of a surfactant. In general, an increase in ρC_{20} value of 1.0 indicates that 10 times less surfactant will be required to observe a given effect.

The critical aggregation concentrations (solubility ilmit or critical micelle concentration) were determined by intersection of the linear portion of a surface tension / In concentration curve with the limiting surface tension as is described in many textbooks. The limiting surface tensions at 0.1 and 20 bubbles/second (b/s) represent the lowest surface tensions in water which can be achieved at the given surface creation rate for a given surfactant regardless of the amount of surfactant used. These values give information about the relative ability to a surfactant to reduce surface defects under near-equilibrium condition (0.1 b/s) through very dynamic conditions (20 b/s). Lower surface tensions would allow the elimination of defects upon application of a formulation onto lower energy surfaces.

The foaming properties of 0.1 wt% solutions of the prior art surfactants were examined using a procedure based upon ASTM D 1173 - 53. In this test, a 0.1 wt% solution of the surfactant is added from an elevated foam pipette to a foam receiver containing the same solution. The foam height is measured at the completion of the addition ("Initial Foam Height") and the time required for the foam to dissipate is recorded ("Time to 0 Foam"). This test provides a comparison between the foaming

characteristics of various surfactant solutions. In general, in coatings, inks, and agricultural formulations, foam is undesirable because is complicates handling and can lead to coating and print defects, and to inefficient application of agricultural materials.

Table 5

		Sol	limiti		y (0,1%	solution)	RM Foem
Structure	pC20	Limit	0.1 b/s	20 b/s	1 b/s	6 b/s	initial (t to 0)
Example 27 HO OH Surfynol 104	3.74	0.1	32.1	40.3	33.1	36.4	2.0 (3 s)
Example 28 HO OH=13 E0 Surfynol 420	3.84	0.18	28.8	31.7	32.8	34.2	0.5 (3 s)
Example 29 HO ON \$3.5 EO Surfynol 440	3.90	0.29	26.9	29.3	34.3	36.2	1.4 (9 s)
Example 30 HO OH * 5.1 EO Surfynol 450	3.95	0.40	26.9	29.8	36.1	38.3	1.3 (32 s)
Example 31 HO OH •10 EO Surfynol 465	3.79	(0.89)	29.0	32.7	42.5	44.8	1.5 (0.6 cm)
Example 32 NO OH • 30 E0 Surfynol 485	3.43	(2.91)	35.7	39.9	51.5	53.2	1.5 (0.6 cm)

Examples 33-36

Surface tension and foam data were obtained in a similar manner for the surfactants of Examples 1-4 based on 2,4,7,9-tetramethyl-5-decyne-4,7-diol. The data are set forth in Table 6.

Table 6

		Sol	limiti			solution)	RM Foam
Structure	<i>p</i> C₂₀	Limit	0.1 b/s	20 b/s	1 b/s	6 b/s	Initial (t to 0)
Example 33 1.3 EO/2 PO (Example 2)	3.51	0.07	31.6	40.6	33.4	40.6	1.6 (3 s)
Example 34 3.5 EO/2 PO (Example 3)	4,07	0.21	29.3	31.4	33.6	36.6	1.0 (10 s)
Example 35 5.1 EO/2 PO (Example 4)	4.13	0.32	27.3	29.9	35.3	37.6	0.3 (6 s)
Example 36 10 EO/2 PO (Example 5)	4.05	(0.78)	29.8	33.7	42.0	44.3	2.1 (1.3)

The data in Table 6 illustrate that propoxylation with 2 moles of propylene oxide in the presence of trimethylamine resulted in surfactants with higher efficiencies than their unpropoxylated counterparts. This effect is reflected in both the ρC_{20} values, which increase by about 0.2 units, and the surface tension results for 0.1 wt% solutions at 1 b/s, which decrease by about a dyne/cm. In addition, the foaming characteristics of the surfactants change significantly as a result of modification with propylene oxide. This change can be either in the direction of greater foam (e.g. for the 10 and 30 mole ethoxylates) or to lesser foam (for the 5.1 mole ethoxylate). The ability to control foam

is advantageous in many applications, including coatings, links, adhesives, fountain solutions, agricultural formulations, soaps and detergents.

Examples 37-52

Solutions in distilled water of the materials of Examples 37-52 were prepared and their surface tension and foam performance were evaluated as in the example above.

The results are set forth in the Table 7.

. Table 7

			limitir	IO v ^a	v (O 1%	solution)*	RM Foam ^b
Structure	pC ₂₀	CAG	0.1 b/s	20 b/s	1 b/s	6 b/s	initial (t to 0)
Example 37	DC20	UNU I	0.10/5	20 5.0			<u> </u>
104/5/2/R	4.16	0.10	28,6	31.2	30.0	37.1	1.1 (5 s)
(Example 6)	7, 10	0		•	, , , ,		```
Example 38							
104/5/2/B	4.15	0.11	27.9	33.1	33.6	38.4	1.9 (48)
(Example 7)	''.'•			1			
Example 39							
104/5/10/R	4.50	0.04	31.2	35.0	33.7	39.9	0.5 (1 s)
(Example 8)							
Example 40							
104/5/10/B	4.58	0.08	31.0	34.1	37.2	40.5	0.5 (10 s)
(Example 9)							
Example 41							1
104/15/2/R	4.20	0.07	28.3	30.7	36.0	43.8	4.5 (1.1 cm)
(Exemple 10)							
Example 42							
104/15/2/B	5.04	0.18	27.6	31.7	36.8	42.9	5.3 (0.5 cm)
(Example 11)							
Example 43							
104/15/10/R	4.42	0.05	28.8	30.9	33.8	44.5	2.8 (0.7 cm)
(Example 12)	}						
Example 44							l
104/15/10/B	4.35	0.09	28.3	34.4	35.5	45.6	4.0 (0.4 cm)
(Example 13)	<u>i</u>	<u> </u>			<u> </u>		
Example 45							
124/5/2/R	4.39	0.03	26.5	30.8	28.2	33.5	2.4 (0.2 cm)
(Example 14)	<u> </u>	ļ		<u> </u>	ļ		
Example 46							00000
124/5/2/B	4.42	0.04	26.9	29.7	28.5	32.5	3.0 (0.3 cm)
(Example 15)	<u> </u>	ļ					
Example 47]	0.00	20.0	20-	24.0	40.8	100300
124/5/10/R	4.57	0.02	30.3	36.7	31.8	40.8	1.8 (0.3 cm)
(Example 16)	 		 		 		
Example 48	1.50	0.00	31.3	36.2	33.4	40.3	1.4 (12 s)
124/5/10/B	4.56	0.02	31.3	30.2	33.4	40.3	1.4 (12.5)
(Example 17)		 -	 	 	 	 	
Example 49 124/15/2/R	4.36	0.06	27.9	32.2	30.5	40.8	2.6 (1.3 cm)
	4.30	0.00	6.13	72.2	30.5	70.0	2.0 (1.0 011)
(Example 18) Example 50	+	 	 	-	+	 	
124/15/2/B	4.16	0.02	27.9	35.6	31.1	42.5	2.5 (1.2 cm)
(Example 19)	7.10	0.02	21.0	33.0	1 71.1	72.3	2.5 (1.2 5(11)
Example 51	 	+	 	 	+	 -	
124/15/10/R	4.58	0.06	29.1	32.3	32.8	43.2	2.0 (1.0 cm)
124/10/10/1	1 7.50	J. U.U.	23.1	, ,,,,	1	70.2	2.0 (1.0 011)

	1		limiting y		y (0.1% solution)*		RM Foam ^b
Structure	pC ₂₀	CAG	0.1 b/s	20 b/s	1 b/s	6 b/s	initial (t to 0)
(Example 20)							
Example 52 124/15/10/B (Example 21)	4.55	0.05	28.0	33.3	33.7	41.4	4.8 (1.0 cm)

a cyne/cm.

C Critical aggregation concentration (wt%).

These data illustrate variation of the acetylenic diol structure, the EO and PO content, and the structural motif of these surfactants allows tailoring of the surfactant properties to a specific application. Surfactants with very low foam (Examples 39 and 40) or relatively high foam (Examples 41 and 42) can be produced. In addition, most of these materials exhibit excellent dynamic surface tension performance, as shown by their limiting surface tension values at 20 b/s. The combination of properties will be of value in many applications, including coatings, links, adhesives, fountain solutions, agricultural formulations, soaps and detergents.

Example 53

2,4,7,9-Tetramethyl-5-decyne-4,7-diol was ethoxylated to produce the 5.1 mole ethoxylate using trimethylamine catalyst and a procedure similar to that of Examples 2-5. A small sample was withdrawn, and sufficient propylene oxide was added to produce the 0.4 mole propoxylate. Again a sample was withdrawn. Similarly, more propylene oxide was added to produce the 0.9 and 1.4 mole propylene oxide adducts. In a separate run, the 2.0 mole propoxylate of the 5.1 mole ethoxylate was prepared.

Surface tension and foam data were obtained for the propoxylates of 5.1 mole ethoxylate of 2,4,7,9-tetramethyl-5-decyne-4,7-diol as described above. The data are set forth in the Table 8.

b Ross-Miles foam: cm (time to 0 foam in seconds or cm after 5 minutes)

Table 8

		RM Foam®				
moles PQ	0.1 b/s	1 b/s	6 b/s	15 b/s	20 b/s	Initial (t to 0)
0	35.1	36.2	38.1	42.0	44.4	1.6 (0.7 cm)
0.4	34.8	35.8	37.9	42.0	44.4	1.4 (0.3 cm)
0.9	34.9	35.9	38.2	42.7	45.3	1.4 (27 s)
1.4	34.6	35.9	38.3	42.0	44.5	1.2 (21 s)
2.0	34.0	· 35.3	37.6	41.5	43.3	0.6 (5 s)

^adyne/cm

The data in Table 8 show that white propoxylation has little impact on the surface tension performance of the 5.1 mole ethoxylate of 2,4,7,9-tetramethyl-5-decyne-4,7-diol, it has a significant positive impact on foam control, with greater control observed with higher degrees of propoxylation. Such an effect has not previously been observed with alkoxylated derivatives of acetylenic diols. The ability to control foam is of crucial importance in the application of many waterborne formulations, because foam generally leads to defects.

Example 54

(a) A commercial photoresist based on a novolac-type cresol/formaldehyde resin and a diazonaphthoquinone (DNQ) photosensitive agent (SPR510A, Shipley) was coated on a 4 inch silicon wafer to a thickness of approximately 1 micron following the manufacturer's instructions. Different areas of the resist were then exposed to UV radiation centered at 365 nm (mercury i-line) at various levels of intensity by positioning the wafer under an aperture opening and operating a shutter. The resulting exposed wafer was developed (60 Seconds) in a puddle of 0.262 M tetramethylammonium hydroxide (TMAH) containing sufficient PO terminated acetylenic alcohol derivative (Example 4 adduct) to lower the surface tension of the developer to 42 dynes/cm. The

Initial foam heights in cm (foam height after 5 min, or time to 0 foam).

wafer was developed (60 Seconds) in a puddle of 0.262 M tetramethylammonium hydroxide (TMAH) containing sufficient PO terminated acetylenic alcohol derivative (Example 4 adduct) to lower the surface tension of the developer to 42 dynes/cm. The various portions of the wafer were then examined for film thickness using a Filmetrics F20 Thin-Film Measuring System (San Diego, CA) and the results were compared to the film thicknesses before exposure and developing. The Normalized Film Thickness is a dimensionless ratio and was calculated by dividing the pre-exposure film thickness by the post-development film thickness. The results are shown in Table 9, Example 54(a)

- (b) Similarly, the photoresist was exposed through a variable transmission filter (obtained from Opto-Line Associates, Wilmington MA) which consisted of a circular area on a quartz plate broken up into wedges of varying transmission levels. The results are shown in Table 9, Example 54(b). These data show outstanding selectivity of the developer solution for dissolution of the highly exposed resist vs. mildly exposed resist.
- (c) Another commercially available photoresist (OCG 825 20 cS, Olln Corporation) was used to coat a 4 inch silicon wafer with a film thickness of approximately 1 micron. This resist is designed to be much more soluble in developer solutions and was used with 0.131 M TMAH. Table 9, Example 54(c) shows data for the dissolution of exposed resist with 0.131 M TMAH containing 0.00625 wt% (52.5 ppm) of the adduct of Example 4. Again, a development time of 60 seconds was used. The data show outstanding selectivity, even with the highly sensitive photoresist formulation.

Table 9

Examp	Example 54(a)		ie 54(b)	Example 54(c)		
Dose (mJ/cm2)	Normalized Film Thickness	Dase (mJ/cm2)	Normalized Film Thickness	(mJ/cm2) ·	Normalized Film Thickness	
19.42	0.98	2.66	0.998	0.81	D.992	
24.28	0.96	2.81	0.997	0.86	0.993	
30.35	0.83	3.26	0.996	0.99	0.990	
38.85	0.61	9.99	D.994	3.05	0.983	
48.56	0.40	11.92	0.994	3,64	0.979	
60.70	0.20	17.47	0.988	5.34	0.962	
95.91	0.00	25.39	0.972	7.75	0.933	
121.40	0.00	36.26	0.707	11.1	0.854	
· 152.96	0.00	52.92	0.204	16.2	0.697	
191.81	0.00	66.39	0.096	20.3	0.561	
242.80	0.00	92.44	0.001	28.2	0.345	
304.71	0.00	117.9	0.000 -	36.0	0.196	
		152.83	0.000	46.7	0.025	
		196.71	0.000	60.1	0.000	
		221.8	0.000	67.8	0.000	

Example 55

Comparisons were made of the effectiveness of the Example 4 adduct with ethoxylated adducts of the prior art in reducing surface tension in 0.262 M TMAH solutions. As can be seen from the data of Table 10, significantly higher amounts of the prior art ethoxylated adducts were required to obtain surface tensions comparable to the adduct of Example 4 which was both ethoxylated and propoxylated, containing 5.1 moles of EO and 2.0 moles of PO per molecule. The prior art adducts were those described in Table 5 for Comparative Examples 29, 30 and 31 contained 3.5. 5.1 and 10 moles, respectively, of EO per molecule.

Table 10

Wetting Agent	Conc (ppm)	Surface Tension (dyne/cm)		
Ex 29 (EO 3.5 mol)	150	41.9		
Ex 30 (EQ 5.1 mal)	150	42.7		
Ex 31 (EO 10 mol)	500	41.3		
Ex 4 (5.1 EO, 2.0 PO)	125	41.9		

Example 56

Foam tests were made in TMAH developer solutions formulated with the EO/PO adduct of Example 4 and the EO adduct of Example 31 as surfactants and with six commercial developer solutions containing surfactants. Data were collected utilizing a foam generating apparatus whereby nitrogen gas was passed through a frit and bubbled through 100 mL of the solutions at 50 mL/min. Except for the commercial developer solutions which were used as received, all solutions contained 2.4 wt% TMAH in water with enough surfactant to lower surface tension to 41-43 dyne/cm. The results are given in Table 11.

Table 11

	Foam Volume (mL)							
Time (min)	Ex. 4	Ex. 31	OCG 934 3:2	MF- 702 ^b	MF- 319 ^b	10R5¢	17R2 ^c	L31 ^c
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	7.8	7.5	15.6	39.5	51.1	20.5	15.4	20.2
2	7.2	7.5	17.2	72.6	91.4	21.1	16.2	20.5
3	7,1	7.5	24.2	107.4	135.3	22.6	16.7	21.4
4	7.2	7.5	22.9	156.4	176.8	21.7	16.9	21.1
5	7.2	7.5	22.3	172.8	237.8	22.3	16.5	21.4
6	7.3	7.5	22.0	236.2	275.1	22.6	16.9	22.3
7	7.1	7.5	25.8	287.0	321.3	22.6	16.9	21.7
8	7.1	7.5	25.8	307.6	372.6	22.0	17.4	22.0
9	7.1	7.5	25.5	326.9	416.7	22.9	17.2	22.0
10	7.5	7.5	26.2	301.3	460.6	22.6	17.4	22.3
11	7.7	7.5	26.5	340.2	502.0	22.3	17.6	22.6
12	7.9	7.5	26.9	404.8	544.9	22.0	17.4	22.3
13	7.8	7.5	26.9	438.6	594.7	22.6	17.6	22.6
14	7.9	7.5	26.9	488.6	647.5	22.0	17.6	22.3
15	7.8	7.5	27.3	514.9	681.1	22,3	18.1	22.6

^{*} Commercial developer solution from Olin (now Arch Chemical)

The above data show that TMAH developer solutions containing the EO/PO adduct surfactant of Example 4 developed considerably less foam than the commercial developer solutions containing other types of surfactant. Although the foam volumes for the developer solution containing the Example 31 EO adduct were close to those for the developer containing the EO/PO adduct of Example 4, the data of Table 10 show that considerably less EO/PO adduct surfactant was required to achieve comparable reduction in surface tension.

^b Commercial developer marketed under Microposiste trademark by Shipley

^e Commercial surfactant marketed under Pluronic_e trademark by BASF

Example 57

Further runs were made to examine foaming tendencies of photoresist developers containing the surfactants of Example 4, 29 and 30. These measurements were made using the Ross-Miles technique and were determined in 0.262 N TMAH solutions. The results are given in Table 12.

Table 12

Wetting Agent	Conc (ppm)	RM Foam, initial (t to 0)
Ex 29 – 3.5 EO adduct	150	1.7 cm (15 s)
Ex 30 - 5.1 EO adduct	150	2.7 cm (27 s)
Ex 4 – EO/PO adduct	125	1.5 cm (6 s)

The above data in Table 12 show that low foam is achieved with the ethoxylated-propoxylated adduct. It is quite surprising that partial propoxylation of acetylenic alcohols which are also ethoxylated increases the ability of these adducts to reduce both surface tension and foaming tendency in TMAH developer solutions while maintaining good contrast for photoresist developing applications. These goals are achieved while lowering the level of acetylenic alcohol derivative required for a desired surface tension reduction.

In sum, the ability of a surfactant to reduce surface tension under both equilibrium and dynamic conditions is of great importance in the performance of waterbased coatings, inks, adhesives, fountain solutions, agricultural compositions, and photoresist developers. Low dynamic surface tension results in enhanced wetting and spreading under the dynamic conditions of application, resulting in more efficient use of the compositions and fewer defects. Foam control is also an important attribute in many

applications, but particularly so in photoresist developer, or electronics cleaning compositions.

The family of surfactants disclosed in this invention provides an ability to control foam while providing excellent dynamic surface tension reduction. They will therefore have utility in applications such as coatings, inks, adhesives, fountain solutions, agricultural compositions, soaps and detergents. Their use in photoresist developer/electronics cleaning compositions is especially advantageous.

STATEMENT OF INDUSTRIAL APPLICATION

The invention provides compositions suitable for reducing the equilibrium and dynamic surface tension in water-based coating, ink, fountain solution, agricultural, and photoresist developer/electronics cleaning compositions.

1. Abstract

ABSTRACT OF THE DISCLOSURE

This invention provides water-based compositions, particularly coating, lnk, fountain solution and agricultural compositions, manifesting reduced equilibrium and dynamic surface tension by the incorporation of a surface tension reducing amount of an acetylenic diol ethylene oxide/propylene oxide adduct of the structure

where r and t are 1 or 2, (n + m) is 1 to 30 and (p + q) is 1 to 30. Use of such adducts as surfactants in photoresist developer/electronics cleaning compositions is particularly advantageous.

Also disclosed is a method for making random and block EO/PO adducts of acetylenic diols by reacting an acetylenic diol with EO and/or PO in the presence of a trialkylamine or Lewis acid.

2. Representative Drawing None

PAT-NO:

JP02001215690A

DOCUMENT -

JP 2001215690 A

IDENTIFIER:

TITLE:

ACETYLENIC DIOL ETHYLENE OXIDE/PROPYLENE OXIDE ADDUCTS AND THEIR USE IN PHOTORESIS DEVELOPER

PUBN-DATE:

August 10, 2001

INVENTOR-INFORMATION:

NAME

COUNTRY

LASSILA, KEVIN RODNEY N/A UHRIN, PAULA ANN N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

AIR PROD AND CHEM INC N/A

APPL-NO: JP2000401767

APPL-DATE: December 28, 2000

PRIORITY-DATA: 2000477600 (January 4, 2000)

INT-CL (IPC): G03F007/004 , G03F007/32 , H01L021/027

ABSTRACT:

PROBLEM TO BE SOLVED: To provide an aqueous photoresist developer composition which lowers equilibrium and dynamic surface tension, particularly a coating material, ink, a storage solution and an agricultural composition.

SOLUTION: The aqueous photoresist developer composition contains an acetylenic diol ethylene oxide/propylene oxide adduct represented by formula 1 (where (r) and (t) are each 1 or 2; (n+m) is 1-30; and (p+q) is 1-30) in such an amount as to lower surface tension. The use of such an adduct as a surfactant in a photoresist developer or an electronics washing composition is particularly advantageous. The

method of producing random and block EO/PO adducts of an acetylenic diol by reacting the acetylenic diol with EO and/or PO in the presence of a trialkylamine or Lewis acid is also disclosed.

COPYRIGHT: (C) 2001, JPO