T.I.P.E: Rubik's Cube 2x2x2

I) Définitions des constantes et opérations de bases.

Les constantes sont en principe écrites tout en majuscule, à l'exception des plus usitées qui sont alors tout en minuscule.

*On charge tout d'abord le module utilisé:

A) Les couleurs

- *Tableau (C) des 6 couleurs utilisées dans le cube (version officielle):
- *Attributions des couleurs à chaque indice de C (initiales anglaises pour éviter les confusions bleu/blanc):

▼ <u>B) Le Rubik's Cube</u>

Le Rubik's Cube est un tableau composé par chacun de ses 8 petits cubes.

Les petits cubes sont eux même des tableaux composé de leurs coordonnées et des couleurs de leurs 3 faces.

Les coordonnees sont eux aussi des tableaux donnée par 3 chiffres (d'après les notations adopté). Les couleurs sont finallement toujours des tableaux donnée par les 3 couleurs des faces du petit cube concerné.

- *Definition d'un entier max (pour la fréquence max de BougerRubix plus loin):
- *<u>Péfinitions des 8 cubes d'un Rubik's Cube fini:</u>
- *Notations du premier tableau d'un cube (les coordonnées) et du second (les couleurs):
- *Définitions du Rubik's Cube fini:
- ***Fonction de correspondance n° Petit Cube ⇒ Coordonnée:**
- ***Fonction de correspondance Coordonnée ⇒ n° Petit Cube:**
- ***Fonction de correspondance Couleurs** ⇒ n° Petit Cube:
- *Fonction de correspondance Couleurs $\Leftarrow n^{\bullet}$ Petit Cube:

*Fonction de rafraîchissement du Rubik's cube, qui le place dans sa notation standard:

C) Les etats du Rubik's Cube

α) La finitude

*Fonction testant si le Rubik's Cube considéré est fini:

Β) La faisabilité

Comme il existe une suite de mouvement permettant de interchanger 2 petits cubes quelconques sans changer leur orientation, on ne considère que les orientations des petits cubes.

Il est alors nécesaire et suffisant d'avoir:

- ∀Cube1,Cube2∈Rubix,{Cube1[coul]}≠{Cube2[coul]}
- • \forall Cube \in Rubix, \exists CUBE.FINI \in RUBIX.FINI $|\exists$ n \in N| Cube[coul]=

 $c^{n}(CUBE.FINI[coul])$: où c(E) est un cycle de l'ensemble E

- • Σ n = 0 [3]
- *Fonction qui vérifie l'axiome 1:
- *Fonction qui vérifie si un triplet de couleur est cycle du rubix fini:
- *Fonction qui vérifie l'axiome 2 et 3:
- *Fonction qui vérifie si un cube est faisable:

▼ II)Les 12 mouvements possibles

▼ <u>A)Selon la face gauche</u>

- *Fonction qui change les données d'un petit cube ayant subi une rotation du bloc L(left) (dans le sens direct):
- *Fonction qui applique celle qui précède à tous les petit cube du rubik's cube et renvoie le nouveau:
- *Fonction qui fait cette fois ci l'opération dans le sens indirect:
- *Notation:

▼ B)Selon la face droite

- *Fonction qui change les données d'un petit cube ayant subi une rotation du bloc R (right) (dans le sens direct):
- *Fonction qui applique celle qui précède à tous les petit cube du rubik's cube et renvoie le nouveau:
- *Fonction qui fait cette fois ci l'opération dans le sens indirect:
- *Notation:

▼ C)Selon la face basse

- *Fonction qui change les données d'un petit cube ayant subi une rotation du bloc B (basse) (dans le sens direct):
- *Fonction qui applique celle qui précède à tous les petit cube du rubik's cube et renvoie le nouveau:
- *Fonction qui fait cette fois ci l'opération dans le sens indirect:
- *Notation:

▼ **D)Selon la face haut**

- *Fonction qui change les données d'un petit cube ayant subi une rotation du bloc H(haut) (dans le sens direct):
- *Fonction qui applique celle qui précède à tous les petit cube du rubik's cube et renvoie le nouveau:
- *Fonction qui fait cette fois ci l'opération dans le sens indirect:
- *Notation:

E)Selon la face posterieur

- *Fonction qui change les données d'un petit cube ayant subi une rotation du bloc P (posterieur) (dans le sens direct):
- *Fonction qui applique celle qui précède à tous les petit cube du rubik's cube et renvoie le nouveau:
- *Fonction qui fait cette fois ci l'opération dans le sens indirect:
- *Notation:

▼ F)Selon la face avant

- *Fonction qui change les données d'un petit cube ayant subi une rotation du bloc A (avant) (dans le sens direct):
- *Fonction qui applique celle qui précède à tous les petit cube du rubik's cube et renvoie le nouveau:
- *Fonction qui fait cette fois ci l'opération dans le sens indirect:
- *Notation:

III)Les outils

▼ <u>A)Le patron</u>

- *Fonction qui dessine un petit carre:
- *Fonction qui trace le patron d'un Rubix:

▼B)Le volume

- *Fonction qui renvoie les plot d'un petit cube donnée:
- *Fonction qui dessine un rubick's cube donnée:

▼ C)La création d'un rubix cube

- *Fonction qui creer un rubik's cube à partir de ses couleurs donnée dans l'ordre de référence:
- *Fonction qui creer aléatoirement un rubik's cube:

▼ D)Changement d'origine

*Fonction qui change le petit cube n°1 avec celui donné comme origine:

▼ E)Deplacement du Rubick's Cube

*Fonction qui execute une série de mouvement sur un rubick's cube:

▼IV)La résolution

A)Les mouvements clefs

- *Mouvement de base:
- *Mouvement d'échange:
- *Mouvement d'orientation:

▼ B)Echange de 2 petits cubes

- *Mouvement pour échanger un seul petit cube avec le n°1:
- *Mouvement pour échanger n'importe quel cube entre eux:

▼ C)Changement de l'orientation de 2 petits cubes

- *Mouvement pour changer l'orientation d'un petit cube et du n°1:
- *Mouvement pour échanger n'importe quel cube entre eux:

D)Résolution

- *Fonction qui place les petits cubes au bon endroit selon leur couleur:
- *Fonction qui oriente les petits cubes correctement:
- *Fonction tant attendu de résolution du rubick's cube:
- *Fonction finale de résolution d'un rubix crée:

▼ E)Tentative (vaine) de simplification

Vu le nombre d'opération neccessaire pour résoudre le rubick's cube avec la méthode précédent, on tente de faire un programme qui les simplifirait.

- *Fonction de teste de l'égalité de deux rubick's cube:
- *Fonction de simplification d'une suite de mouvement:

▼ V)Autre méthode de résolution

Cette nouvelle méthode se base sur un tri progressifs des principaux cas rencontré dans la résolution du rubick's cube (selon le guide officielle). Error, missing operator or `;`

A)Préliminaires

A nouvelles méthodes, nouveaux outils. Ceci est une suite d'amélioration apporté aux outils de la 1ère partie. En revanche, il faut en user avec parcimonie, nottament de bougerII qui a une facheuse tendance (depuis maple 13) à vite faire planter le système...

- *Déclarations des coordonées références (en vue des les faires "roter"):
- *Fonction effectuant une rotation d'une face et d'un angle donné (renvoie des coordonnées):
- *Nouvelle version de DessineCube pour la rendre compatible avec les rotations:
- *Et donc de même une nouvelle version de DessineVolume:
- *Pour finallement amélioré BougerRubix afin d'aficher les rotations (pas en abuser):

▼ B)Phase 1

Elle consiste a faire la première face du cube

*Fonction qui donne la position d'un petit cube dans un rubick's cube donné à partir de ses couleurs

α)Phase 1-a

Elle consiste a placer côte à côte les deux premiers carrés

- *Fonction qui place le 1er cube voulu à l'endroit voulu:
- *Nouvelle fonction de cycle:

- *Fonction qui oriente le cube précédent:
- *Fonction qui execute la phase 1-a:

В)*Phase 1-b*

Elle consiste a placer côte à côte le troisièle carré à coté des deux premiers carrés

*Fonction qui execute la phase 1-b:

y)*Phase 1-c*

Elle consiste a placer côte à côte le troisièle carré à coté des deux premiers carrés

- *Fonction qui execute la phase 1-c:
- *Fonction qui execute la phase 1:

▼ <u>C)Phase 2</u>

Elle consiste à bien placé les autres petits cubes.

- *Fonction annexe de test d'orientation:
- *Fonction annexe de test de position:
- *Fonction annexe de test de position 2:
- *Fonction annexe de test de position 3:
- *<u>Définition des mouvements clef:</u>
- *Bijections utilisées dans l'étape 2:
- *Alignement après l'étape 2:
- ***Fonction qui fait l'étape 2:**

▼ <u>C)Phase 3</u>

- <u>*Mouvement clef de l'étape 3:</u>
- *Décalage préliminaire pour calculer le cycle:
- *Nouvelle fonction de cycle spécifique à l'étape 3:
- *Fonction de scan:
- *Fonction annexes d'éliminations:
- Fonction annexes d'éliminations:
- Fonction annexes d'éliminations

D) Résolution

*Fonction de résolution d'un rubick's cube:

ResoudreII(CreerRubixAleatoire());

Ce Rubick's cube a été résolue en 64 coups

Représentation 3D du cube n = 0

