Theory of Computation, SPRING 2015 Mid Term

Author: Tawheed Abdul-Raheem

1. Please provide an example of a regular expression, contating union, concatenation and at least two occurrences of Klene star (*), draw or define a finite automaton corresponding to this expression.

$$(a \cup b^*)c^*$$

2. Please show that the language containing all strings of 1's and 0's except those strings that have equal number of of 1's and 0's is not regular.

$$\{1^n 0^n \mid n \in N\} \text{ is not regular }$$

Proof:

$$let L = \{1^n 0^n \mid n \in N\}$$

Assume L is regular, let m be the number from the pumping lemma

Let
$$s = 1^m 0^m$$

Since $s \in L$ and $|s| \ge m$ the lemma must apply, specifically

$$s = xyz \text{ where } y = \lambda \text{ and } |xy| \le m$$

$$y = 1^k \text{ where } 0 < k \le m$$

$$x = 1^q \text{ where } 0 \le q < m$$

$$z = 1^{m-k-q} 0^m$$

 $the \ pumping \ lemma \ says \ xyyz \ \in \ L$

$$xyyz = 1^{q} 1^{k} 1^{k} 1^{m-k-q} 0^{m}$$
$$= 1^{q+k+k+m-k-q} 0^{m}$$
$$= 1^{k+m} 0^{m} \notin L$$

Given our contradiction, L is regular must not be true Thus a string containing equal numbers of 1's and 0's must not be regular

- 3. Please prove (using Pumping Lemma) that the language containing all strings of the form w#w' (where w has only 1's and 0',s and w' is a reverse of w,for instance, w=100 and w'=001) is not regular.
 - **Proof.** Suppose the language were regular. Then there would be some pumping lemma constant p. Surely a 1^p $00 \in L$. The pumping lemma tells us that there is a prefix of a p001p which is of length $0 < k \le p$, part of which can be pumped in L. But since any prefix of $1 \cdot 1^p \cdot 00$ of length $\le p$ must consist entirely of 1s, pumping any substring of length k would imply that a $1^{p+k} \cdot 00 \in L$. Suppose that we could decompose $1^{p+k} \cdot 00$ as some string w followed by its reversal. If $|w| \le p + k$, then w contains no 0s; but clearly the remainder of the string contains two 1s, and thus w cannot be followed by its reversal. Similarly, if $|w| \ge p + k + 2$, then w contains two 1s, while the remainder of the string contains no 1s, and thus w cannot be followed by its reversal for the same reason. Thus |w| = p + k + 1 if it exists; but this implies that $w = 0^{p+k} \cdot 1$ and $w^R = 1 \cdot 0^p$, which is clearly impossible for k > 0. Thus we have a contradiction and we conclude that the language cannot be regular.
- 4. Please create Push Down Automaton with four states (you can have empty transitions if you wish). Describe the language (what strings)would be generated by your automaton?

