PERFORMANCE INDICATORS

Generic PIs:

- $x_{ss} = \lim_{t \to \infty} x(t)$ · Steady state value
- · Steady state error

e(t) = f(t) - x(t)

excitation response

ess = line elt).

Specific PIs

Specific PIs depend on nystem order

and on excitation type.

Examples of specific PIs:

- · rise time.
- · settling time
- . maximum overshoot
- . decay time / half-time

1st order system PIs

1st order System 755 and ess $T\dot{x}+x=f(t)$; $G(1)=\frac{1}{T_{3+1}}$ Step f(t)=1 f(t)=1, t>0 $x(t) = 1 - e^{-t/T}$; $x_{ss} = \lim_{t \to \infty} x(t) = 1$ $e(t) = 1 - (1 - e^{-t/T}) = e^{-t/T}$ steady state error ess = lim ett = lime e Impulse ftt) = 8(t) flt) = 8(t) $\alpha(t) = \frac{1}{4}e^{-t/T}$; $\chi_{ss} = 0$ $e(t) = \delta(t) - \frac{1}{7}e^{-t/7}$ $e_{ss} = \lim_{t \to \infty} e(t) = 0$ Ramp flt) = t $\chi(t) = t - T(1 - e^{-t/T})$ f(+)=t $e(t) = T(1 - e^{-t/T})$ ess = lin elt) =

129/523

Recoll: Final Value Theorem

$$SS = \lim_{A \to 0} A \times (A)$$

$$G(A) = \frac{1}{TA+1}$$

$$ESS = \lim_{A \to 0} A \times (A)$$

$$X(A) = G(A) F(A) = \frac{1}{TA+1} F(A)$$

$$E(A) = F(A) - X(A) = F(A) - G(A) F(A)$$

$$E(A) = (1 - G(A)) F(A) = \frac{TA}{TA+1} F(A)$$

$$Step F(A) = \frac{1}{A}$$

$$X(A) = \frac{1}{TA+1} \frac{1}{A}, \quad XSS = \lim_{A \to 0} A \frac{1}{TA+1} \frac{1}{A} = 1$$

$$F(A) = \frac{TB}{TA+1} \frac{1}{A} \quad eSS = \lim_{A \to 0} A \frac{1}{TA+1} = 0$$

$$Impulse F(A) = 1$$

$$X(A) = \frac{1}{TA+1}, \quad eSS = \lim_{A \to 0} A \frac{1}{TA+1} = 0$$

$$E(A) = \frac{TA}{TA+1}, \quad eSS = \lim_{A \to 0} A \frac{1}{TA+1} = 0$$

$$Ramp F(S) = \frac{1}{A^2}$$

$$X(A) = \frac{1}{TA+1} \frac{1}{A^2}, \quad eSS = \lim_{A \to 0} A \frac{1}{TA+1} = 0$$

$$Ramp F(S) = \frac{1}{A^2}$$

$$X(A) = \frac{1}{TA+1} \frac{1}{A^2}, \quad eSS = \lim_{A \to 0} A \frac{1}{TA+1} = 0$$

$$Ramp F(S) = \frac{1}{A^2}$$

$$X(A) = \frac{1}{TA+1} \frac{1}{A^2}, \quad eSS = \lim_{A \to 0} A \frac{1}{TA+1} \frac{1}{A^2} \to \infty$$

$$X(A) = \frac{1}{TA+1} \frac{1}{A^2}, \quad eSS = \lim_{A \to 0} A \frac{1}{TA+1} \frac{1}{A^2} \to \infty$$

$$X(A) = \frac{1}{TA+1} \frac{1}{A^2}, \quad eSS = \lim_{A \to 0} A \frac{1}{TA+1} \frac{1}{A^2} \to \infty$$

$$X(A) = \frac{1}{TA+1} \frac{1}{A^2}, \quad eSS = \lim_{A \to 0} A \frac{1}{TA+1} \frac{1}{A^2} \to \infty$$

$$X(A) = \frac{1}{TA+1} \frac{1}{A^2}, \quad eSS = \lim_{A \to 0} A \frac{1}{TA+1} \frac{1}{A^2} \to \infty$$

$$X(A) = \frac{1}{TA+1} \frac{1}{A^2}, \quad eSS = \lim_{A \to 0} A \frac{1}{TA+1} \frac{1}{A^2} \to \infty$$

$$X(A) = \frac{1}{TA+1} \frac{1}{A^2}, \quad eSS = \lim_{A \to 0} A \frac{1}{TA+1} \frac{1}{A^2} \to \infty$$

$$X(A) = \frac{1}{TA+1} \frac{1}{A^2}, \quad eSS = \lim_{A \to 0} A \frac{1}{TA+1} \frac{1}{A^2} \to \infty$$

$$X(A) = \frac{1}{TA+1} \frac{1}{A^2}, \quad eSS = \lim_{A \to 0} A \frac{1}{TA+1} = 0$$

$$X(A) = \frac{1}{TA+1} \frac{1}{A^2} \to \infty$$

$$X(A) = \frac{$$

3 1storder System

255 and ess by FVT

2016,023 1st order system specific Pis Specific PIs $\chi(t) = 1 - e^{-t/T}$ 63.2% Rise time, tr · rise to 95% of xss tn-95% = tr-98% ~ 4T 98% In general, $1-\bar{e}^{t/T}=x$ t =-Tlu(1-x). Delay time, td . Rise to 50% of xss $\chi(t) = 1 - e^{-t/T} = 0.5$ e-t/T=0.5 -> td=-Tlu0.5=0.6937 Settling time to Time to get within E% of Xss E1 = 2% t, = 4T E%=5% -TheE £5% = 37 131/523

Impulse response specific PI $\chi(t) = \frac{1}{\tau}e^{-t/\tau}$ 100% t/2 = -Tlu = ~ 0.693T Note: signal continues to decay by half of its value after each additional ty.

$$\chi_{ss} \left(1 - e^{-t/\overline{y}}\right) = \chi$$

$$e^{-t/T} = 1 - \chi/\chi_{ss}$$

$$-t/T = \ln\left(1 - \chi/\chi_{ss}\right)$$

$$t = -T \ln\left(1 - \frac{\chi}{\chi_{ss}}\right)$$

4.3 USE TRACE TO MEASURE PERFORMANCE INDICATORS

Press the 'Cursor Measurements' button to activate the cursors.

4.3.1 Delay time t_d measurement

Place the first cursor around the point where 'Value' measurement is closest to 0.5. x(t) = 0.5. Read the 'Time' value. This is estimate for t_d . It gives the value $t_d = 1.742$ sec.

4.3.2 Settling time t_s measurement

The second cursor can be used to get the settling time t_s . We are going to use the 2% definition of t_d . This means that the response should be around 0.98, or 9.8e-1. Reading the corresponding time value, we get $t_s = 9.774~{\rm sec}$.

2 d'order system PIs

Zudorder system Iss and Ess $\ddot{x} + 2 \int \omega_{n} \dot{x} + \omega_{n}^{2} x = \omega_{n}^{2} f(t) ; G(s) = \frac{\omega_{n}^{2}}{s^{2} + 2 \int \omega_{n}^{2} s + \omega_{n}^{2}}$ $x(t) = 1 - \frac{1}{\sqrt{1-r^2}} e^{-S\omega_n t} \sin(\omega_n t + \varphi)$ 9 = tou 11-52 = ru 11-52 ay = an /1- }= x_{ss} = lim x(t) = 1 - 1 lim = 5 wn (wdt+φ) $e(t) = f(t) - x(t) = \frac{1}{\sqrt{1-y^2}} e^{-Sun} \left(\omega_0 t + \varphi \right)$ ess = lim e(t) = lim e sin(cyt+4) = 0

Impulse f(t)=8(t) $x(t) = \frac{\omega_n}{\sqrt{1-r^2}} e^{-\frac{1}{2}\omega_n t} \sin \omega_n t$ $x_{ss} = \lim_{t \to \infty} \frac{\omega_n}{\sqrt{1-\gamma^2}} e^{-s\omega_n t} \sin \omega_n t$ $e(t) = f(t) - \chi(t) = \delta(t) - \frac{\omega_n}{\sqrt{1-r^2}} e^{-S_{min}\omega_n t} \omega_n t$ ess = line (Stt) - we - swit sin wit)

 $Z(t) = t - \frac{25}{\omega_n} \left[1 + \frac{1}{\sin \varphi} e^{-5\omega_n t} \sin (\omega_d t - \varphi_i) \right]$ 9= tau 2511-52 No fixed Iss value Grows continously! $x_{ss} = \lim_{t \to \infty} x(t) = t - \frac{2s}{\omega_n} \longrightarrow \infty$ e(t) = f(t) - z(t)= t - \t - 25 \[1 + \frac{1}{\sin \varphi} \end{are} \[1 + \frac{1}{\sin \varphi} \end{are} \] e(t) = 25 [1+ 1 = 5wnt [wat-4.)] $e_{ss} = \lim_{t \to \infty} e(t) = \frac{2s}{\omega_n}$ es= wn f(t) = t $x_{ss}=t-\frac{2s}{\omega}$ 138/523

Raup f(t)=t

$$\chi_{ss} = \lim_{s \to 0} system \chi_{ss} \text{ and } \xi_{ss} \text{ by } FVT$$

$$\chi_{ss} = \lim_{s \to 0} s \times (s)$$

$$\chi(s) = \frac{\omega_n^2}{s^2 + 2\tau \omega_n s + \omega_n^2} F(s)$$

$$E(s) = F(s) - X/s = \left(1 - \frac{\omega_n^2}{s^2 + 25\omega_n s + \omega_n^2}\right) F(s)$$

$$E(s) = \frac{s^2 + 25\omega_n s}{s^2 + 25\omega_n s + \omega_n^2} F(s)$$

Step
$$F(s) = \frac{1}{s}$$

$$x_{ss} = \lim_{s \to \infty} s = \frac{\omega_n^2}{s^2 + 2s + \omega_n^2} = \frac{\omega_n^2}{s} = \frac{1}{\omega_n^2} = 1$$

$$C_{SS} = \lim_{S \to 0} \frac{1^{2} + 25\omega_{u}}{1^{2} + 25\omega_{u}} \frac{1}{1} = \frac{0}{\omega_{u}^{2}} = 0$$

$$C_{SS} = \lim_{\Delta \to 0} \frac{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2}{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2} = \lim_{\Delta \to 0} \frac{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2}{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2} = \frac{25}{\omega_n} = \frac{25}{\omega_n}$$

$$= \lim_{\Delta \to 0} \frac{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2}{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2} = \frac{25}{\omega_n} = \frac{25}{\omega_n}$$

$$= \lim_{\Delta \to 0} \frac{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2}{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2} = \frac{25}{\omega_n}$$

$$= \lim_{\Delta \to 0} \frac{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2}{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2} = \frac{25}{\omega_n}$$

$$= \lim_{\Delta \to 0} \frac{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2}{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2} = \frac{25}{\omega_n}$$

$$= \lim_{\Delta \to 0} \frac{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2}{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2} = \frac{25}{\omega_n}$$

$$= \lim_{\Delta \to 0} \frac{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2}{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2} = \frac{25}{\omega_n}$$

$$= \lim_{\Delta \to 0} \frac{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2}{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2} = \frac{25}{\omega_n}$$

$$= \lim_{\Delta \to 0} \frac{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2}{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2} = \frac{25}{\omega_n}$$

$$= \lim_{\Delta \to 0} \frac{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2}{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2} = \frac{25}{\omega_n}$$

$$= \lim_{\Delta \to 0} \frac{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2}{\int_{\lambda^2 + 25}^{\lambda} \omega_n \Delta + \omega_n^2} = \frac{25}{\omega_n}$$

Ramp $F(s) = \frac{1}{s^2}$ $x_{ss} = \lim_{s \to 0} \frac{\omega_n^2}{s^2 + 2 \int \omega_n s + \omega_n^2} \cdot \frac{1}{s^2} = \lim_{s \to 0} \frac{1}{s} = \infty$ No ss value!

20161024

Impulse F(1)=1

 $\alpha_{SS} = \lim_{s \to 0} s \frac{\omega_n^2}{s^2 + 2\gamma \omega_n^3 + \omega_n^2} \cdot 1 = 0$

 $C_{SS} = \lim_{\Delta \to 0} \int \frac{\int_{-1}^{2} + 25\omega_{u}\Delta}{\int_{-1}^{2} + 25\omega_{u}\Delta + \omega_{u}^{2}} = 0$

2 order syst. Specific PIs Theory 0-100% tr = rise time < 5% - 95% MATLAB tp = peak time 2p = peak value Mp = max. percentage overtheat $M_{p} \equiv \left(\frac{\chi_{p}}{\chi_{ss}} - 1\right) 100\%$ ts = settly time for agricen E% td = delay time : time to rise to = 255 for the first time

2016 1025

1. Calculate

Given: 2nd order sys.
$$G(s) = \frac{\omega_n^2}{3^2 + 2\gamma \omega_n s + \omega_n^2}$$

Wn = frez \$ = dawyny.

 $\omega_d = \omega_u \sqrt{1-5^2}$

 $t_2 = \frac{\pi - \varphi}{\omega_d}$

 $x_p = 1 + e^{-\frac{3}{11 - 5^2}}$

ty ~ for

 $M_p = e^{-\frac{S}{\sqrt{1-p^2}}T}$

S <<1; ± 2%

142/523

9 = tau 1/1-52 = sin 1/1-52

2. Calculate performance vidicators:

20161025 Proof of 2 vd order sys. P.I. Recall the time response: $\chi(t) = 1 - \frac{1}{\sqrt{1-j^2}} e^{-j\omega_n t} \sin(\omega_n t + \varphi)$ $0 \longrightarrow 100\%$ $\chi(0)=0 \qquad \chi(t_2)=1$ · rise time to $x(t_r) = 0$ sni(wat+4) = 0 in Eg. (1). Need to have wat+ y=11 -> t= 1-9 wd • peak time to $\frac{dx}{dt} = 0$ $\frac{dx}{dt}\Big|_{t=t_p} = 0$ dx = 0 -> d e sin [wat+ p) = 0 -5wn = suit sin () + = ad cos() = 0 5 wn su (wat+4) = wd cos (wat+4) $tan(\omega_d t_p + \varphi) = \frac{\omega_d}{5\omega_n} = \frac{\sqrt{1-5^2}}{5} = tan\varphi$ Must find to made that tou (wit + 4) = tour 4

2016 1025 The function toud repeats rely after TI, 2TI, 3TI, --foud 0 toud = tou (x+11) = tou (d+211) autoty = 4 +JI = towa Hence: $+p = \frac{\pi}{\omega_d}$

Peak value, $\frac{x_p}{\sqrt{1-5^2}}$ $= 1 - \frac{1}{\sqrt{1-5^2}} = \frac{5\omega_n \frac{\pi}{\omega_d}}{\sin(-\varphi + \pi)}$ Xp = 1+ 1-52 (e - 1-52) 1-52 (sing = VI- p2) 2cp=1+e-11-52 / Max. overshoot, Mr. Mp = \(\frac{\chi_{p} - \chi_{ss}}{\chi} = \frac{1 + e^{-\frac{\chi_{p}}{\chi_{p}} \chi_{p}}}{\chi} - t Mp = e - 5 7/ 5=0.4 -> Mp = 25%

1.5%

0.4 < 5 < 0.8

25% < Mp < 1.5%

unual rauge

settling time, to $|x_{ss} - x(t_s)| < \Delta$ $|x_{ss}-x(t)t_{s}|<\Delta$ 1-ae-xt $\Delta = \mathcal{E} \cdot x_{ss}$ $\alpha(t) = 1 - \sqrt{1-g^2} e^{-s\omega_n t} sin(\omega_n t + \varphi)$ $x(t) = |-ae^{-\alpha t} \sin(\omega_0 t + \varphi)$; $x_{ss} = 1$ Euvelopes: 1 + ae Settling condition: $ae^{-\alpha t} = \Delta$ Approx. Calculation $a=|\sqrt{1-y^2}| \approx 1$ For $e^{-xt} = \frac{\triangle}{a} = \epsilon$ $\epsilon = 2\%$ $-xt = \ln 0.02 = -3.9 \approx -4$ $t_s = \frac{4}{\lambda} = \frac{4}{5\omega_n}$ Definition of settling time:
"Get within ± E's of x55 and + = /. 146/523 101025 Effect of g & wn on performance.

wn: shortens: rise time, tr

peak time, tr

settling time, tr

shortens max overshoot, Mr

shortens settling time

4.4 USE TRACE TO MEASURE PERFORMANCE INDICATORS

Release the 'Zoom' button and press the 'Cursor Measurements' button to activate the cursors. In the 'Cursor Measurements' Settings' check 'Snap to data' box.

4.4.1 Measurement of t_r, t_p, x_p, M_p

Zoom closer to the origin in the region t < 0.15.

Use the first cursor to find the first crossing of $x_{\rm ss}=1$. Read the time as $t_r=0.051~{\rm sec}$ Place the second cursor at peak value. Read the peak time $t_p=0.100~{\rm sec}$ and peak amplitude $x_p=1.893$. Calculate $M_p=89.3\%$.