Synthesealgorithmus

Überführen Sie das Relationenschema mit Hilfe des Synthesealgorithmus in die 3. Normalform!

```
R(A, B, C, D, E, F, G, H)
```

```
FA = \{ \{ F \} \rightarrow \{ E \}, \\ \{ A \} \rightarrow \{ B, D \}, \\ \{ A, E \} \rightarrow \{ D \}, \\ \{ A \} \rightarrow \{ E, F \}, \\ \{ A, G \} \rightarrow \{ H \}, \} \}
```

(a) Kanonische Überdeckung

(i) Linksreduktion

— Führe für jede funktionale Anhängigkeit $\alpha \to \beta \in F$ die Linksreduktion durch, überprüfe also für alle $A \in \alpha$, ob A überflüssig ist, d. h. ob $\beta \subseteq AttrHülle(F, \alpha - A)$.

Wir betrachten nur die zusammengesetzten Attribute:

-
$$\{A, E\} \rightarrow \{D\}$$
:
AttrHülle $(F, \{A\}) = \{A, E, F, B, D\}$
AttrHülle $(F, \{E\}) = \{E\}$
- $\{A, G\} \rightarrow \{H\}$:
AttrHülle $(F, \{A\}) = \{A, E, F, B, D\}$
AttrHülle $(F, \{G\}) = \{G\}$
FA = $\{\{F\} \rightarrow \{E\}, \{A\} \rightarrow \{B, D\}, \{A\} \rightarrow \{B, D\}, \{A\} \rightarrow \{E, F\}, \{AG\} \rightarrow \{H\}, \}$

(ii) Rechtsreduktion

— Führe für jede (verbliebene) funktionale Abhängigkeit $\alpha \to \beta$ die Rechtsreduktion durch, überprüfe also für alle $B \in \beta$, ob $B \in AttrH\"{u}lle(F - (\alpha \to \beta) \cup (\alpha \to (\beta - B)), \alpha)$ gilt. In diesem Fall ist B auf der rechten Seite überflüssig und kann eleminiert werden, d. h. $\alpha \to \beta$ wird durch $\alpha \to (\beta - B)$ ersetzt.

Nur die Attribute betrachten, die rechts doppelt vorkommen:

E:

AttrHülle(
$$F - \{F \rightarrow E\}, \{F\}$$
) = $\{F\}$
AttrHülle($F - \{A \rightarrow E\}, \{A\}$) = $\{A, B, D, F, E\}$
D:
AttrHülle($F - \{A \rightarrow D\}, \{A\}$) = $\{A, B, D, F, E\}$

 $A\to D$ kann wegen der Armstrongschen Dekompositionsregel weggelassen werden. Wenn gilt $A\to B, D,$ dann gilt auch $A\to B$ und $A\to D$

FDs

```
FA = \{ \\ \{ F \} \rightarrow \{ E \}, \\ \{ A \} \rightarrow \{ B, D \}, \\ \{ A \} \rightarrow \{ \emptyset \}, \\ \{ A \} \rightarrow \{ F \}, \\ \{ AG \} \rightarrow \{ H \}, \}
```

(iii) Löschen leerer Klauseln

— Entferne die funktionalen Abhängigkeiten der Form $\alpha \to \emptyset$, die im 2. Schritt möglicherweise entstanden sind.

```
FA = \{ \\ \{ F \} \rightarrow \{ E \}, \\ \{ A \} \rightarrow \{ B, D \}, \\ \{ A \} \rightarrow \{ F \}, \\ \{ AG \} \rightarrow \{ H \}, \}
```

(iv) Vereinigung

— Fasse mittels der Vereinigungsregel funktionale Abhängigkeiten der Form $\alpha \to \beta_1, \ldots, \alpha \to \beta_n$, so dass $\alpha \to \beta_1 \cup \cdots \cup \beta_n$ verbleibt. —

```
FA = \{ \{ F \} \rightarrow \{ E \}, \\ \{ A \} \rightarrow \{ B, D, F \}, \\ \{ AG \} \rightarrow \{ H \}, \}
```

Jetzt die weiteren Hauptschritte:

(b) Neues Relationenschema

— Erzeuge für jede funktionale Abhängigkeit $\alpha \to \beta \in F_c$ ein Relationenschema $\mathcal{R}_\alpha := \alpha \cup \beta$.

- R1(F, E)
- R2(A, B, D, F)
- R3(A, G, H)

(c) Hinzufügen einer Relation

— Falls eines der in Schritt 2. erzeugten Schemata R_{α} einen Schlüsselkandidaten von \mathcal{R} bezüglich F_c enthält, sind wir fertig, sonst wähle einen Schlüsselkandidaten $\mathcal{K} \subseteq \mathcal{R}$ aus und definiere folgendes zusätzliche Schema: $\mathcal{R}_{\mathcal{K}} := \mathcal{K}$ und $\mathcal{F}_{\mathcal{K}} := \emptyset$

Schlüsselkandidaten hinzufügen, falls nicht vorhanden: R4(A, C, G)

- R1(F, E) R2(A, B, D, F) R3(A, G, H) R4(A, C, G)

(d) Entfernung überflüssiger Teilschemata

— Eliminiere diejenigen Schemata R_{α} , die in einem anderen Relationenschema $R_{\alpha'}$ enthalten sind, d. h. $R_{\alpha} \subseteq R_{\alpha'}$.

 $\ensuremath{\square}$ Nichts zu tun