Winter 11 **Instructor:** Mihir Bellare January 3, 2011

An example of a NP-completeness proof

In class I stress the intuitive aspects of the reductions and skim over the proof. It would be good if you had an example of how a reduction is written up in detail so that you can use it as a template for your own solutions. Here is one, for the set-cover problem. We begin with relevant definitions.

The Set-Cover problem is:

Input: $\langle U, A, k \rangle$ where A is a set whose members are subsets of U, and $k \in \mathbb{N}$

Question: Does U have an A-cover of size k?

An \mathcal{A} cover of U is a subset \mathcal{B} of \mathcal{A} such that for every point $u \in U$ there exists a set $B \in \mathcal{B}$ such that $u \in B$.

The Vertex-Cover problem is:

Input: $\langle G, K \rangle$ where G is a graph and $K \in \mathbb{N}$

Question: Does G have a vertex cover of size K?

A vertex cover of G = (V, E) is a subset W of V such that for every edge $\{i, j\} \in E$ either $i \in W$ or $j \in W$.

Claim 1: Set-Cover is in NP.

Proof: The following verifier for Set-Cover runs in time polynomial in the length of its first input:

Verifier $V(\langle U, \mathcal{A}, k \rangle, \langle \mathcal{B} \rangle)$

If all the following are all true then accept else reject:

- \mathcal{B} is a subset of \mathcal{A}
- $|\mathcal{B}| \le k$
- $\quad \forall u \in U \ \exists B \in \mathcal{B} \ [u \in B]$

The NP-hardness of Set-Cover is implied by the following.

Claim 2: Vertex-Cover \leq_p Set-Cover.

Proof: Define function f to take input $\langle G, K \rangle$, where G = (V, E), and output $\langle E, A, K \rangle$ where $A = \{A_w : w \in V\}$ and $A_w = \{e \in E : w \in e\}$ for all $w \in V$. We now show that f is a poly-time reduction of VERTEX-COVER to SET-COVER.

Suppose G has a vertex cover W of size K, and let $\mathcal{B} = \{A_w : w \in W\}$. Then $|\mathcal{B}| = K$. Furthermore \mathcal{B} is a \mathcal{A} -cover of E. To justify this claim, suppose $e = \{u, v\} \in E$. Then e is in both

2 Bellare

 A_u and A_v . But since W is a vertex cover, at least one of u or v is in W and hence at least one of the sets A_u or A_v is in \mathcal{B} .

Conversely, suppose E has a \mathcal{A} -cover \mathcal{B} of size K, and let $W = \{w \in V : A_w \in \mathcal{B}\}$. Then |W| = K. Furthermore W is a vertex cover of G. To justify this claim, suppose $e \in E$. Since \mathcal{B} is a \mathcal{A} -cover of E, there is a set $A_w \in \mathcal{B}$ such that $e \in A_w$. The definition of W then says that $w \in W$ and the definition of A_w says that $w \in e$.