How to select best split point in Decision Trees?

Node 1 Node 2 Node 3

Information required to describe the node

Analytics Vidhya
Learn everything about analytics

Information Gain = 1 - Entropy

$$-p_1*log_2p_1 - p_2*log_2p_2 - p_3*log_2p_3 - - p_n*log_2p_n$$

$$-p_1*log_2p_1 - p_2*log_2p_2 - p_3*log_2p_3 - - p_n*log_2p_n$$

$$-p_1*log_2p_1 - p_2*log_2p_2 - p_3*log_2p_3 - - p_n*log_2p_n$$

$$% Play = 0.50$$

% Not play =
$$0.50$$

$$-p_1*log_2p_1 - p_2*log_2p_2 - p_3*log_2p_3 - - p_n*log_2p_n$$

$$% Play = 0.50$$

% Not play =
$$0.50$$

Entropy =
$$-(0.5) * log2(0.5) - (0.5) * log2(0.5)$$


```
-p_1*log_2p_1 - p_2*log_2p_2 - p_3*log_2p_3 - .... - p_n*log_2p_n
```


% Not play =
$$0.50$$

Entropy =
$$-(0.5) * log2(0.5) - (0.5) * log2(0.5)$$

$$-p_1*log_2p_1 - p_2*log_2p_2 - p_3*log_2p_3 - - p_n*log_2p_n$$

$$%$$
 Play = 0

% Not play =
$$1$$

Entropy =
$$-(0) * log2(0) - (1) * log2(1)$$

$$= 0$$

$$-p_1*log_2p_1 - p_2*log_2p_2 - p_3*log_2p_3 - \dots - p_n*log_2p_n$$

$$% Play = 0.50$$

% Not play =
$$0.50$$

Entropy
$$= 1$$

$$% Play = 0$$

% Not play =
$$1$$

$$Entropy = 0$$

Properties of Entropy

- Works only with categorical targets
- Lesser the Entropy, higher the homogeneity of nodes

Calculate the entropy of the parent node

- Calculate the entropy of each child node
- Calculate the weighted average entropy of the split

Split on Performance in Class

Split on Class

Split on Performance in Class

Split on Performance in Class

- Entropy for Parent node:-(0.5)*log₂(0.5) -(0.5)*log₂(0.5) = 1
- Entropy for sub-node Above Average: $-(0.57)*log_2(0.57) (0.43)*log_2(0.43) = 0.98$
- Entropy for sub-node Below Average: Students = 14 $-(0.33)*log_2(0.33) -(0.67)*log_2(0.67) = 0.91$ Play Cricket =
- Weighted Entropy: Performance in Class: (14/20)*0.98 + (6/20)*0.91 = 0.959

Stu Play Do % % % N Above Below Average Average

Students = 20 Play Cricket = 10 Do not play = 10 % play = 0.5 % Not play = 0.5

Students = 14 Play Cricket = 8 Do not play = 6 % play = 0.57 % Not play = 0.43

Students = 6 Play Cricket = 2 Do not play = 4 % play = 0.33 % Not play = 0.67

Split on Class

Split on Class

- Entropy for Parent node:
 -(0.5)*log₂(0,5) -(0.5)*log₂(0.5) = 1
- Entropy for sub-node Class IX: $-(0.8)*log_2(0.8) -(0.2)*log_2(0.2) = 0.722$
- Entropy for sub-node Class X: $-(0.2)*\log_2(0.2) (0.8)*\log_2(0.8) = 0.722$
- Weighted Entropy: Class: (10/20)*0.722 + (10/20)*0.722 = 0.722

Students = 20 Play Cricket = 10 Do not play = 10 % play = 0.5 % Not play = 0.5

Class IX

Students = 10 Play Cricket = 8 Do not play = 2 % play = 0.8 % Not play = 0.2 Class X

Students = 10 Play Cricket = 2 Do not play = 8 % play = 0.2 % Not play = 0.8

Split	Entropy	Information Gain
Performance in Class	0.959	0.041
Class	0.722	0.278

Split	Entropy	Information Gain
Performance in Class	0.959	0.041
Class	0.722	0.278

Thank You!

