```
In [53]: import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
```

In [54]: df = pd.read_csv(r"Downloads\BostonHousingData.csv")

In [51]: df

Out[51]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
	•••													
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	9.67	22.4
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.08	20.6
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	5.64	23.9
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.48	22.0
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273	21.0	396.90	7.88	11.9

506 rows × 14 columns

```
In [47]: x = df.drop("MEDV", axis=1).values
y = df["MEDV"].values
```

```
In [30]: x.shape
Out[30]: (506, 13)
In [31]: y.shape
Out[31]: (506,)
In [32]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
In [33]: def shape():
             print("x_train Shape :",x_train.shape)
             print("x_test Shape :",x_test.shape)
             print("y_train shape :",y_train.shape)
             print("y test shape :",y test.shape)
         shape()
         x train Shape : (404, 13)
         x test Shape : (102, 13)
         y train shape : (404,)
         y test shape: (102,)
In [34]: mean=x train.mean(axis=0)
         std=x train.std(axis=0)
         x_train=(x_train-mean)/std
         x_test=(x_test-mean)/std
In [35]: x_train[0]
Out[35]: array([-0.40514967, -0.47664927, -1.30436293, -0.28828791, -0.59653159,
                 2.12316802, -0.56147089, -0.26583291, -0.75855792, -1.26661874,
                -0.30023431, 0.40005185, -1.14698031])
```

```
In [36]: y_train[0]
Out[36]: 50.0
In [37]: from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import Dense
In [38]: model=Sequential()
         model.add(Dense(128,activation='relu',input_shape=(x_train[0].shape)))
         model.add(Dense(64,activation='relu'))
         model.add(Dense(1,activation='linear'))
         model.compile(optimizer='adam', loss='mse', metrics=['mae'])
         model.summary()
```

Model: "sequential_1"

Layer (type)	Output Shape	Param #
dense_3 (Dense)	(None, 128)	1792
dense_4 (Dense)	(None, 64)	8256
dense_5 (Dense)	(None, 1)	65

Total params: 10,113 Trainable params: 10,113 Non-trainable params: 0

```
In [39]: |model.fit(x train, y train, epochs=100, batch size=1, verbose=1, validation data=(x test, y test))
     Epoch 1/100
     5 - val mae: 3.0602
     Epoch 2/100
     - val mae: 2.7586
     Epoch 3/100
     val mae: 2.5288
     Epoch 4/100
     val mae: 3.3892
     Epoch 5/100
     - val_mae: 2.6260
     Epoch 6/100
     - val mae: 2.5411
     Epoch 7/100
     404/404 F
In [40]: |x test[8]
Out[40]: array([-0.40366143, 1.49412257, -1.16192331, -0.28828791, -1.03117975,
         0.61426321, -1.38093798, 1.30369772, -0.52753085, -0.05411049,
        -1.49934504, 0.36777102, -1.11383419])
In [41]: test input=[[-0.42101827, -0.50156705, -1.13081973, -0.25683275, -0.55572682, 0.19758953, 0.20684755, -0.342]
     print("ActuaOutput :",y test[8])
     print("Predicted Output :",model.predict(test input))
     ActuaOutput : 30.5
     Predicted Output : [[21.41977]]
```

In [52]: df

Out[52]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	9.67	22.4
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.08	20.6
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	5.64	23.9
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.48	22.0
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273	21.0	396.90	7.88	11.9

506 rows × 14 columns

In []: