Vectors and Matrices

Adam Kelly

December 17, 2020

This set of notes is a work-in-progress account of the course 'Vectors and Matrices', originally lectured by Dr. Jonathan Evans in Michaelmas 2020 at Cambridge. These notes are not a transcription of the lectures, but they do roughly follow what was lectured (in content and in structure).

These notes are my own view of what was taught, and should be somewhat of a superset of what was actually taught. I frequently provide different explanations, proofs, examples, and so on in areas where I feel they are helpful. Because of this, this work is likely to contain errors, which you may assume are my own. If you spot any or have any other feedback, I can be contacted at ak2316@cam.ac.uk.

Contents

0	Introduction	4
	0.1 Course Structure	4
	0.2 Differences to the Lecture Course	5
1	Complex Numbers	6

Introduction

Vectors and Matrices covers topics in both algebra and geometry, and the way in which they relate to one another. The course uses approaches that are quite varied in their nature (can be abstract or more concrete, conceptual or more computational, and so on). You will need to be able to fluently switch between these approaches.

The course assumes that you are vaguely familiar with Euclidean and coordinate geometry, along with the idea of geometric transformations.

§0.1 Course Structure

This course is divided into a number of chapters.

1. Complex Numbers

This chapter takes the point of view of thinking of points in the plane as pairs of real numbers, and defining 'multiplication' on it to turn it into the complex numbers.

2. Vectors in Three Dimensions

Here, we will recap on the relationship between three dimensional vectors and some of their geometrical applications, and we will discuss things like the dot and cross product. Towards the end of that discussion, we will introduce the 'index notation', a powerful and helpful notation for dealing with vectors. We will also introduce the 'summation convention', which is also incredibly useful.

3. Vectors in a General Setting

This chapter will discuss what vectors are in general, and different ways of looking at them. We will be particularly concerned with vectors in \mathbb{R}^n and \mathbb{C}^n , that is, vectors who's entries are in \mathbb{R} and \mathbb{C} respectively.

4. Matrices and Linear Maps

Picking up on the idea of generalizing vectors, this chapter will consider the idea of a 'linear map', an abstraction of matrices.

5. Determinants and Inverses

This chapter will detail how to define and compute determinants of general $n \times n$ matrices. This will take two points of view, in that we need to be able to compute them but we also must understand what they mean. The relation between determinants and finding inverses of matrices will also be considered.

6. Eigenvalues and Eigenvectors

This chapter also involves both geometry and algebra. The core question of this chapter is: given a linear map or matrix, what does it act on in a very straightforward way?

7. Changing Basis, Canonical Forms and Symmetries

In this final chapter, we will consider a set of far reaching results by trying to describing an arbitrary linear map. These ideas are far reaching, and immensely useful.

§0.2 Differences to the Lecture Course

This set of notes may diverge slightly from the lectures. If this occurs, I will attempt to describe the differences in this section. For now, while these notes are incomplete, I will leave it up to the reader to check themselves what is included or missing.

1 Complex Numbers

The complex numbers arose through the study of polynomials, but there is hardly an area of modern mathematics where they are not of use, with applications stretching from number theory to geometry to quantum mechanics.

We are going to construct the set of complex numbers, typically denoted by \mathbb{C} , from the real numbers \mathbb{R} by adjoining an element i with the property that $i^2 = -1$.

Definition 1.0.1 (Complex Numbers)

A **complex number** is a number $z \in \mathbb{C}$ of the form z = x + yi with $x, y \in \mathbb{R}$ such that $i^2 = -1$.

We call x = Re(z) is the **real part**, and y = Im(z) is the **imaginary part** of z.

The reals are a subset of the complex numbers, as for $x \in \mathbb{R}$, we have $x + 0i \in \mathbb{C}$. We can do add, subtract, multiply and divide complex numbers in a sensible way, and indeed they form a *field* (we will elaborate on this later).

Definition 1.0.2 (Addition and Subtraction)

We define addition and subtraction for two complex numbers $z_1 = x_1 + y_1 i$ and $z_2 = x_2 + y_2 i$ such that

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i$$

$$z_1 - z_2 = (x_1 - x_2) + (y_1 - y_2)i$$