## 問題

n-ch MOSFET: 
$$I_D = \frac{\beta_n}{2} (V_{GS} - V_{Tn})^2$$
 p-ch MOSFET:  $I_D = -\frac{\beta_p}{2} (V_{GS} - V_{Tp})^2$ 

- 1. 図1の小信号等価回路を示しなさい。
- 2. 電圧利得 $G(\omega)$ を求めなさい。 $g_m$ 、 $r_{ds}$ 、 $C_{gs}$ 、 $C_{ds}$ のうち必要なものを用いて式で表すこと。
- 3. コーナ角周波数 $\omega_n$ を求めなさい。
- 4. 角周波数  $\omega << \omega_{D}$  における、電圧利得のデシベルと位相を求めなさい。
- 5. コーナ角周波数における、電圧利得のデシベルと位相を求めなさい。
- 6. 電圧利得のボーデ線図の概略を描きなさい。 $\omega << \omega_p, \ \omega = \omega_p, \ \omega >> \omega_p$ における電圧利得 $G_0$ と位相、特性の傾きも記入すること。
- 7. ユニティゲイン周波数fuと利得帯域幅積GBWを求めなさい。
- 8.  $\omega << \omega_p$ における|電圧利得|、コーナ周波数 $f_c$ 、利得帯域幅積GBWのそれぞれについて、基準バイアス電流 $I_0$ に対する依存性を $\beta_n$ 、 $V_{Tn}$ 、 $C_{gs}$ 、 $C_{ds}$ のうち必要なものを用いて表しなさい。ただし、ドレイン-ソースコンダクタンス $g_{ds}$ は、 $g_{ds} = \lambda |I_D|$ のドレイン電流依存性をもつ。

## 回路図

