MARKOV CHAIN MOMENT FORMULAS FOR REGENERATIVE SIMULATION

by

James M. Calvin

TECHNICAL REPORT No. 35

June 1989

Of
U.S. Army Research Contract
DAAL 88-K-0063

Approved for public release: distribution unlimited.

Reproduction in whole or in part is permitted for any purpose of the United States government.

DEPARTMENT OF OPERATIONS RESEARCH STANFORD UNIVERSITY STANFORD, CALIFORNIA

UNCL	ASSI	FIED			
ECURITY	CLASS	FICATION	Ō۶	HIS	PAGE

REPORT DOCUMENTATION PAGE								
1a REPORT SECURITY CLASSIFICATION			16. RESTRICTIVE MARKINGS					
	lassified			2 OSTRIBUTION		0500	0.7	
				3 DISTRIBUTION / AVAILABILITY OF REPORT				
26 DECLASSII	CATION / DOW	VNGRADING SCHEDU	LÉ	Approved for public release; distribution unlimited.				
4 PERFORMIN	IG ORGANIZAT	ION REPORT NUMBE	R(S)	5 MONITORING ORGANIZATION REPORT NUMBER(S)				
Т	echnical F	Report No. 35		ARO 25839.8-MA				
6a. NAME OF	NAME OF PERFORMING ORGANIZATION 66 OFFICE SYMBOL			78. NAME OF MONITORING ORGANIZATION				
Dept. o	f Operatio	ons Research	(If applicable)	U. S. Army Research Office				
6c. ADDRESS	City, State, and	d ZIP Code)		7b. ADDRESS (City, State, and ZIP Code)				
Stanfor	d, CA 943	305-4022			Box 12211			
				Resear	ch Triangle P	ark	, NC 27	7709-2211
	FUNDING / SPO	NSORING	86. OFFICE SYMBOL	9. PROCUREMEN	T INSTRUMENT IDE	NTIFIC	ATION NUI	MBER
ORGANIZA U. S. A		rch Office	(If applicable)	۸.	AALO3-88-K	- 44	143	
	City, State, and		<u> </u>		FUNDING NUMBERS	_	703	
	ox 12211	•		PROGRAM ELEMENT NO	PROJECT	TASK		WORK UNIT
Researc	h Triangle	e Park, NC 27	7709-2211	ELEMENT NO	NO.	NO.		ACCESSION NO
11 TITLE (Inci	ude Security C	lassification)			-tt		 -	<u> </u>
Mark	ov Chain M	foment Formula	s for Regenerati	ve Simulati	on			
12 PERSONAL								
12 PERSONAL	AUTHOR(S)	James M. Cal	vin					
13a TYPE OF	_	13b. TIME CO		14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT				
	nical NTARY NOTAT	FROM		June 198	9		13	
		The view,	opinions and/or					
or the a			be construed a					
FIELD	GROUP	SUB-GROUP	18. SUBJECT TERMS (C	(Continue on reverse if necessary and identify by block number)				
	G.100.	300 611007	Regenerative simulation, moment formulas, Markov chains.					i
			<u> </u>					
'9 ABSTRACT	(Continue on	reverse if necessary	and identify by block n	umber)				
	Lat (V)	->0)						
			erative Markov chain					
function. Let $ au$ and Z be random variables that have the distribution of a regeneration cycle length and the								
sum of $f(X_k)$ over a cycle, respectively. This paper derives expressions for moments of the form $E(\tau^j Z^k)$.								
which are then used to gain insight into the qualities of regenerative estimators based on different regeneration								
points.								
NO DISTRICT	(108) / 4 - / 4 11 6 - 1	11 TV OF ARCTAGE		134 ABCTTA 677 67	CURITY C. ACCIOCA	TICA:		
l	rion / Availabi Sified/Unlimit	ILITY OF ABSTRACT ED SAME AS F	RPT DTIC USERS		CURITY CLASSIFICA	HON		
	F RESPONSIBLE				(include Area Code)	22c	OFFICE SY	MBOL
L				L		1		

8. References

- [1] Billingsley, P., "Convergence of Probability Measures," John Wiley and Sons, 1968.
- [2] Chung, K.L., "Markov Chains with Stationary Transition Probabilities," Springer-Verlag, Berlin-New York-Heidelberg, 1960.
- [3] Cogburn, R., "A Uniform Theory for Sums of Markov Chain Transition Probabilities," The Annals of Probability 3, No.2, 1975 191-214.
- [4] Cogburn, R., "The Central Limit Theorem for Markov Processes," Proc. Sixth Berkeley Symp. Math. Statist. Prob. 2 485-512.
- [5] Glynn, P.W. and D.L. Iglehart, "A Joint Central Limit Theorem for the Sample Mean and Regenerative Variance Estimator," Annals of Operations Research 8, 1987, 41-55.
- [6] Malinovskii, V.K., "Limit Theorems for Harris Chains, I,", Siam Journal Probability.
- [7] Orey, S., "Recurrent Markov Chains," Pacific J. Math 9 (1959), 805-827.
- [8] Orey, S., "Lecture Notes on the Limit Theorems for Markov Chain Transition Probabilities," ,Van Nostrand, New York, 1971.
- [9] Dellacherie, C., and P. Meyer, "Probabilities and Potential C", North-Holland, 1988.
- [10] Selby, S. (ed.), "Standard Mathematical Tables, 23rd edition," CRC Press.

Markov Chain Moment Formulas for Regenerative Simulation

Abstract

Let $\{X_n : n \geq 0\}$ be a regenerative Markov chain on a general state space, and f a real-valued bounded function. Let τ and Z be random variables that have the distribution of a regeneration cycle length and the sum of $f(X_k)$ over a cycle, respectively. This paper derives expressions for moments of the form $E(\tau^j Z^k)$, which are then used to gain insight into the qualities of regenerative estimators based on different regeneration points.

Keywords

Regenerative simulation, moment formulas, Markov chains.

1. Introduction

The regenerative method of simulation output analysis uses the fact that the interblocks of a regenerative stochastic process are independent and identically distributed to construct a consistent estimator of the variance constant used to derive confidence intervals. If a process has more than one regeneration point, the estimator will have the same limiting value no matter which point is used to block the observations. While all such estimators have the same limit, different regeneration points may yield variance estimators with different variances. A common rule of thumb for obtaining an estimator with low variance is to choose the regeneration point that has the least mean regeneration time.

Glynn and Iglehart ([5]) proved a bivariate central limit theorem for the regenerative point estimator and the standard deviation estimator. Numerical calculations presented in the paper showed that the off-diagonal element in the covariance matrix appeared to be independent of the return state used to delimit regenerative cycles. The purpose of this paper is to derive an expression for the covariance matrix that appears in the central limit theorem in the case of class of Markov chains. The expressions derived show that the off-diagonal term is independent of the recent state. Some insight is gained into the nature of the variance of the variance estimators for different return states. An example is given where the state that yields the least variable variance estimator has the greatest mean regeneration time.

2. Notation

Let (S, S) be a measurable space, where the σ -field S is countably generated (for example, S could be a metric space and S its Borel σ -field). Let P be a Markov kernel on (S, S), and put $P^0(x, \cdot) = \delta_x$, and for n > 1,

$$P^{n}(x,A) = \int_{S} P^{n-1}(x,dy)P(y,A).$$

For any initial probability φ , the Markov kernel P determines a probability measure P_{φ} on the product measurable space $\prod_{n=0}^{\infty} (S^n, S^n)$, where each $(S^n, S^n) = (S, S)$, through the relations

$$P_{\varphi}(X_0 \in A_0, \dots, X_n \in A_n) = \int_{A_0} \varphi(dx_0) \int_{A_1} P(x_0, dx_1) \cdots \int_{A_{n-1}} P(x_{n-2}, dx_{n-1}) P(x_{n-1}, A_n)$$

where X_k is the projection of $\prod_{n=0}^{\infty} (S^n, S^n)$ onto (S^k, S^k) . We write E_{φ} for the expectation with respect to the probability P_{φ} , and if $\varphi = \delta_x$, then we write P_x and E_x .

For $A \in \mathcal{S}$, s_A will denote the first return time of the chain to the set A and τ_A will denote the first hitting time of the set A (s and τ coincide unless the chain starts in A, in which case $s_A = 0$). We will write s_x and τ_x instead of $s_{\{x\}}$ and $\tau_{\{x\}}$.

For $A \in \mathcal{S}$ and $x \in \mathcal{S}$ let

$$P_{xz}^{n}(A) = P_{x}\{X_{n} \in A; X_{k} \neq z, 0 < k < n\},\$$

and define the kernels

$$Q_k(x,A) = \sum_{n=1}^{\infty} n^k P_{xx}^n(A), \quad k = 0, 1, \cdots.$$

 $Q_0(x,A)$ is the expected amount of time the chain spends in A before absorption at z.

We will consider only chains that are uniformly φ -recurrent; that is, there exists a σ -finite measure φ such that if $\varphi(A) > 0$, then $P_x[\tau_A \ge n] \to 0$ uniformly in $x \in S$. Uniformly φ -recurrent chains have a unique invariant probability measure, which will be denoted by π . We assume that the chain is aperiodic.

Throughout the paper z will denote a fixed return state with $\pi(\{z\}) > 0$. When subscripts are omitted the state will be understood to be z: e.g. $E(\tau) = E_z(\tau_z)$.

A consequence of the uniform recurrence is that for every $x \in S$, $E_x(\tau_x^2) < \infty$, and therefore $Q_0(x, \cdot)$ and $Q_1(x, \cdot)$ are finite measures for each x, with respective variations

$$Q_0(x,S) = \sum_{n=1}^{\infty} P_x \{ \tau_z \ge n \} = E_x(\tau_z)$$

and

$$Q_1(x,S) = \sum_{n=1}^{\infty} n P_x \{ \tau_x \ge n \} = \sum_{n=1}^{\infty} \left(\frac{n+n^2}{2} \right) P_x \{ \tau_x = n \}$$
$$= \frac{1}{2} E_x(\tau_x) + \frac{1}{2} E_x(\tau_x^2).$$

Note that $Q_1(z,\{z\}) = E(\tau)$.

For the chain to be Harris recurrent (also called φ -recurrent) requires only that there exist a σ -finite measure φ such that

$$\varphi(A) > 0 \Rightarrow P_x[\tau_A < \infty] = 1$$

for every $x \in S$. Thus we are considering a sub-class of Harris recurrent Markov chains.

Let F(S) denote the Banach space of bounded measurable functions from S to R with supremum norm. and denote by M(S) the Banach space of finite signed measures on (S, \mathcal{S}) with total variation norm. We will use the same notation $\|\cdot\|$ for both norms, the context making clear which one applies.

There is a natural bilinear functional connecting F(S) and M(S), given by

$$(\mu, f) \to \mu f \stackrel{\Delta}{=} \int_{\mathcal{S}} f(x) \mu(dx)$$

where $\mu \in M(S)$ and $f \in F(S)$. If N is a kernel, $\mu \in M(S)$, and $f \in F(S)$, we obtain a measure μN and a bounded function Nf given by

$$\mu N(A) = \int_{S} \mu(dx) N(x, A),$$

and

$$Nf(x) = \int_{S} N(x, dy) f(y).$$

An expression such as $\mu N f$ is unambiguous, since

$$\mu(Nf) = (\mu N)f$$
.

If N and M are kernels, we define the composition of M and N, MN, by

$$MN(x,A) = \int_{S} M(x,dy)N(y,A).$$

Composition is associative, so we can write an expression such as $\mu NMQf$ without parentheses. To avoid excessive use of parentheses we adopt the convention that functions are multiplied first in an expression; for example, if $f, g, h \in F(S)$, then

$$\mu N f M g h = \mu N (f(M(gh))).$$

Let f be a bounded real valued function on S, with $E_{\pi}f(X) = 0$.

3. Transition Probability Lemmas

The purpose of the lemmas in this section is to give expressions for Q_k in terms of the n-step transition probabilities for the Markov chain.

We will make use of the following fact (Theorem 6.1 in [8]).

Lemma 1: Consider a chain on (S, S) which is uniformly φ -recurrent. If the chain is aperiodic, there exist $a < \infty$ and $\rho < 1$ such that

$$||(\lambda_1 - \lambda_2)P^n|| \le a\rho^n ||\lambda_1 - \lambda_2||$$

for any two probability measures λ_1 and λ_2 on (S, S).

Proof: See [8].

Define the kernels

$$\Pi(x,dy) \stackrel{\triangle}{=} \pi(dy), \quad G \stackrel{\triangle}{=} \sum_{n=1}^{\infty} (P^n - \Pi), \quad H_k(x,A) \stackrel{\triangle}{=} E_x \{\tau_z^k\} P(z,A), \quad k \geq 0,$$

$$H_0(x,A) \stackrel{\triangle}{=} P(z,A) - P(x,A),$$

and let

$$g(x) \stackrel{\triangle}{=} E_x(\tau_z).$$

The function g is measurable and by assumption is bounded. We will use the notation G_z to denote the measure $G(z,\cdot)$.

By Lemma 1, expressions such as

$$(\mu-\nu)G$$
, $(\mu-\nu)Q_1$

denote finite measures for any probability measures μ and ν .

Lemma 2:

$$Q_{k} = Q_{k} \Pi - \left(\sum_{j=1}^{k} {k \choose j} (-1)^{j} Q_{k-j} + H_{k} \right) (I+G).$$

In particular, for all $A \in S$ and $x \in S$

$$Q_0(x, A) = g(x)\pi(A) + G(x, A) - G(z, A)$$

and

$$Q_1(x,A) = Q_1(x,S)\pi(A) + G(x,A) - G(x,A) + GG(x,A) - GG(x,A) - g(x)G_x(A).$$

Note that $Q_0(z,\cdot) = E(\tau)\pi(\cdot)$.

Proof: By definition

$$\int_{S\setminus\{z\}} n^k P_{xz}^n(dy) P(y,A) = n^k P_{xz}^{n+1}(A)$$

$$= (n+1)^k P_{xz}^{n+1}(A) + \sum_{i=1}^k \binom{k}{j} (-1)^j (n+1)^{k-j} P_{xz}^{n+1}(A).$$

Summing over n gives

$$\int_{S\setminus\{z\}} Q_k(x,dy) P(y,A) = Q_k(x,A) - P_{xz}(A) + \sum_{j=1}^k {k \choose j} (-1)^j \{Q_{k-j}(x,A) - P_{xz}(A)\}$$

$$=Q_{k}(x,A)+\sum_{i=1}^{k} {k \choose j} (-1)^{j} Q_{k-j}(x,A)-P_{xz}(A) 1_{\{k=0\}}$$

and so

$$\int_{S} Q_{k}(x,dy)P(y,A) = Q_{k}(x,A) + \sum_{j=1}^{k} {k \choose j} (-1)^{j} Q_{k-j}(x,A) + Q_{k}(x,\{z\})P(z,A) - P_{xz}(A)1_{\{k=0\}}.$$

We can write the last equation as

$$Q_k P = Q_k + \sum_{j=1}^k {k \choose j} (-1)^j Q_{k-j} + H_k,$$

or

$$Q_{k} = Q_{k}P - \sum_{j=1}^{k} {k \choose j} (-1)^{j} Q_{k-j} - H_{k}.$$

Iterating the last equation gives

$$Q_k = Q_k P^n - \sum_{i=1}^k \binom{k}{i} (-1)^j Q_{k-j} \sum_{l=0}^n P^l - H_k \sum_{l=0}^n P^l.$$

Letting $n \to \infty$ and using bounded convergence gives

$$Q_{k} = Q_{k} \Pi - \left(\sum_{j=1}^{k} {k \choose j} (-1)^{j} Q_{k-j} + H_{k} \right) (I+G),$$

which is the result.

4. Moment Calculations

Let τ and Z be random variables that have the same distributions as τ_z and

$$\sum_{n=1}^{\tau_n} f(X_n),$$

respectively, under P2.

In this section we will derive expressions for moments of the form $E(\tau^i Z^j)$. These moments will be expressed in terms of the following quantities:

$$\chi_1 = \pi f g,$$

$$\chi_2 = \pi f^2 g + 2\pi f G f g,$$

$$\eta_1 = -(\delta_z + G_z) f,$$

and

$$\eta_2 = -(\delta_z + G_z)f^2 - 2(\delta_z + G_z)fGf.$$

We begin by determining expressions for $E(Z^k)$. Below we define several quantities that depend on the transition probability of the chain, but not on the return state z. For consistency of notation, we will use m_2 to denote the quantity usually called σ^2 (both notations will be used). Let

$$\sigma^{2} = m_{2} \stackrel{\triangle}{=} \pi f^{2} + 2\pi f G f$$

$$= E_{\pi} f(X_{0})^{2} + 2 \sum_{n=1}^{\infty} E_{\pi} [f(X_{0}) f(X_{n})],$$

$$m_{3} = E_{\pi} f(X_{0})^{3} + 3 \sum_{n=1}^{\infty} E_{\pi} [f(X_{0})^{2} f(X_{n})] + 3 \sum_{n=1}^{\infty} E_{\pi} [f(X_{0}) f(X_{n})^{2}]$$

$$+6 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} E_{\pi} [f(X_{0}) f(X_{n}) f(X_{n+m})],$$

and

$$m_{4} = E_{\pi} f(X_{0})^{4} + 4 \sum_{n=1}^{\infty} E_{\pi} [f(X_{0})^{3} f(X_{n})] + 4 \sum_{n=1}^{\infty} E_{\pi} [f(X_{0}) f(X_{n})^{3}]$$

$$+6 \sum_{n=1}^{\infty} \{ E_{\pi} [f(X_{0})^{2} f(X_{n})^{2}] - E_{\pi} [f(X_{0})^{2}] E_{\pi} [f(X_{n})^{2}] \}$$

$$+12 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \{ E_{\pi} [f(X_{0})^{2} f(X_{n}) f(X_{n+m})] - E_{\pi} [f(X_{0})^{2}] E_{\pi} [f(X_{n}) f(X_{n+m})] \}$$

$$+12 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} E_{\pi} [f(X_{0}) f(X_{n})^{2} f(X_{n+m})] + 12 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} E_{\pi} [f(X_{0}) f(X_{n}) f(X_{n+m})^{2}]$$

$$+24 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{k=1}^{\infty} E_{\pi} [f(X_{0}) f(X_{n}) f(X_{n+m}) f(X_{n+m+k})],$$

and in general

$$m_n = \sum_{k=1}^n \sum_{p_1, \dots, p_k} \binom{n}{p_1} \binom{n-p_1}{p_2} \cdots \binom{n-p_1-\dots-p_{k-1}}{p_k} \pi f^{p_1} G f^{p_2} G \cdots G f^{p_k},$$

where the second sum is over all positive p_i that sum to n.

Lemma 3: If the series in the definitions of m_2 , m_3 , and m_4 converge absolutely, then

$$E\left(Z^2\right)=E(\tau)m_2,$$

$$E(Z^3) = E(\tau) (m_3 + 3m_2 (\chi_1 + \eta_1)),$$

and

$$E(Z^4) = E(\tau) \Big(m_4 + 4m_3(\chi_1 + \eta_1) + 6m_2 \Big((\chi_1 + \eta_1)^2 + \chi_1^2 + \eta_1^2 + \chi_2 + \eta_2 \Big) \Big).$$

Proof: Add to S a new state Δ with $f(\Delta) = 0$, and define random variables $\{\xi_n\}$ taking values in $S \cup \{\Delta\}$ by

$$\xi_n = \begin{cases} \Delta, & \text{if } X_k = \mathbf{z} \text{ for some } 0 < k < n, \\ X_n, & \text{otherwise.} \end{cases}$$
 (1)

According to the definition, $\xi_0 = X_0$ and $\xi_{\tau_s} = z$.

We will establish the third moment result. Using the random variables defined in (1),

$$E_{z}\left(\sum_{n=1}^{\tau_{z}}f(X_{n})\right)^{3} = E_{z}\left(\sum_{n=1}^{\infty}f(\xi_{n})\right)^{3}$$

$$= E_{z}\left(\sum_{n=1}^{\infty}f(\xi_{n})^{3} + 3\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}f(\xi_{n})^{2}f(\xi_{n+m}) + 3\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}f(\xi_{n})f(\xi_{n+m})^{2} + 6\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\sum_{l=1}^{\infty}f(\xi_{n})f(\xi_{n+m})f(\xi_{n+m+l})\right)$$

$$= \sum_{n=1}^{\infty}E_{z}\left[f(\xi_{n})^{3}\right] + 3\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}E_{z}\left[f(\xi_{n})^{2}f(\xi_{n+m})\right] + 3\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}E_{z}\left[f(\xi_{n})f(\xi_{n+m})^{2}\right] + 6\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\sum_{l=1}^{\infty}E_{z}\left[f(\xi_{n})f(\xi_{n+m})f(\xi_{n+m+l})\right]$$

where the interchange is allowed because of the assumed absolute convergence of m_3

$$= \sum_{n=1}^{\infty} \int_{S} P_{zz}^{n}(dx) f(x)^{3} + 3 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \int_{S \setminus \{z\}} P_{zz}^{n}(dx) f(x)^{2} \int_{S} P_{xz}^{m}(dy) f(y)$$

$$+ 3 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \int_{S \setminus \{z\}} P_{zz}^{n}(dx) f(x) \int_{S} P_{xz}^{m}(dy) f(y)^{2}$$

$$+ 6 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{l=1}^{\infty} \int_{S \setminus \{z\}} P_{zz}^{n}(dx) f(x) \int_{S \setminus \{z\}} P_{xz}^{m}(dy) f(y) \int_{S} P_{yz}^{l}(dv) f(v)$$

$$\begin{split} &=Q_0(z,\cdot)f^3+3Q_0(z,\cdot)f^2Q_0f+3Q_0(z,\cdot)fQ_0f^2+6Q_0(z,\cdot)fQ_0fQ_0f\\ &-3f(z)Q_0(z,\cdot)f^2-6f(z)Q_0(z,\cdot)fQ_0f\\ &=E(\tau)\left[\pi f^3+3\pi f^2Q_0f+3\pi fQ_0f^2+6\pi fQ_0fQ_0f\right]\\ &-3f(z)Q_0(z,\cdot)f^2-6f(z)Q_0(z,\cdot)fQ_0f\\ &=E(\tau)m_3+3m_2(\chi_1+\eta_1). \end{split}$$

and the result follows from Lemma 2.

The second and fourth moment results follow from similar arguments.

The next lemma gives expressions for some of the mixed moments.

Lemma 4: If

$$E_z\left(\tau_z\sum_{n=1}^{\tau_z}|f(X_n)|\right)<\infty$$

then

$$E[\tau Z] = E(\tau) \left(\chi_1 + \eta_1 \right).$$

Also

$$E[\tau Z^{2}] = \frac{1}{2}\sigma^{2}[E(\tau) + E(\tau^{2})] + 2E(\tau)\pi fGf + +2E(\tau)\pi fGGf$$
$$+E(\tau)((\chi_{1} + \eta_{1})^{2} + \chi_{1}^{2} + \eta_{1}^{2} + \chi_{2} + \eta_{2}).$$

Proof: Using the random variables defined by (1),

$$E_z\left(\tau_z\sum_{n=1}^{\tau_z}f(X_n)\right) = E_z\left(\sum_{n=1}^{\infty}\tau_zf(\xi_n)\right)$$
$$= \sum_{n=1}^{\infty}E_z\left(\tau_zf(\xi_n)\right)$$

(where the interchange is allowed by the lemma's hypothesis)

$$= \sum_{n=1}^{\infty} E_{z} [f(\xi_{n}) (n + s_{\xi_{n}z})] = \sum_{n=1}^{\infty} n \cdot E_{z} [f(\xi_{n})] + \sum_{n=1}^{\infty} E_{z} [f(\xi_{n}) s_{\xi_{n}z}]$$

$$= \sum_{n=1}^{\infty} n \cdot E_{z} [f(\xi_{n})] + \sum_{n=1}^{\infty} E_{z} E[f(\xi_{n}) s_{\xi_{n}z} | \xi_{n}] = \sum_{n=1}^{\infty} n E_{z} [f(\xi_{n})] + \sum_{n=1}^{\infty} E_{z} [f(\xi_{n}) E[s_{\xi_{n}z} | \xi_{n}]]$$

$$= \sum_{n=1}^{\infty} n \int_{S} P_{zz}^{n} (dx) f(x) + \sum_{n=1}^{\infty} \int_{S} P_{zz}^{n} (dx) f(x) E_{z}(s_{z})$$

$$= \int_{S} \sum_{n=1}^{\infty} n P_{zz}^{n} (dx) f(x) + \int_{S} \sum_{n=1}^{\infty} P_{zz}^{n} (dx) f(x) E_{z}(s_{z})$$

$$= \int_{S} Q_{1}(z, dx) f(x) + \int_{S} Q_{0}(z, dx) f(x) E_{z}(s_{z})$$

(the interchange is justified since $\sum_{n=1}^{\infty} n P_{zz}^n(\cdot)$ converges absolutely)

$$= Q_1(z, \cdot)f + Q_0(z, \cdot)fg - Q_0(z, \{z\})f(z)E_z(\tau_z)$$

$$= -g(z)G_zf + g(z)\pi fg - g(z)f(z)$$

$$= E(\tau)(\eta_1 + \chi_1),$$

which is the desired result.

Proceeding similarly for the second equation,

$$\begin{split} E(\tau Z^2) &= \sum_{n=1}^{\infty} E_x \left[f^2(\xi_n)(n+s_{\xi_n x}) \right] + 2 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} E_x \left[(n+m+s_{\xi_{n+n} x})f(\xi_n)f(\xi_{n+m}) \right] \\ &= \sum_{n=1}^{\infty} n E_x \left[f^2(\xi_n) \right] + \sum_{n=1}^{\infty} E_x \left[f^2(\xi_n)s_{\xi_n x} \right] \\ &+ 2 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} n E_x [f(\xi_n)f(\xi_{n+m})] \\ &+ 2 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} m E_x [f(\xi_n)f(\xi_{n+m})] + 2 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{m=1}^{\infty} E_x [f(\xi_n)f(\xi_{n+m})s_{\xi_n x}] \\ &= \sum_{n=1}^{\infty} n \int_{S} P_{xx}^{n}(dx)f^2(x) + \sum_{n=1}^{\infty} \int_{S} P_{xx}^{n}(dx)f(x)^2 E_x(s_x) + 2 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} n \int_{S\backslash\{x\}} P_{xx}^{n}(dx)f(x) \int_{S} P_{xx}^{m}(dy)f(y) \\ &+ 2 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \int_{S\backslash\{x\}} P_{xx}^{n}(dx)f(x) \int_{S} P_{xx}^{m}(dy)f(y) E_y(s_x) \\ &= Q_1(z, \cdot)f^2 + Q_0(z, \cdot)f^2 g - g(z)f(z)^2 + 2Q_1(z, \cdot)fQ_0f + 2Q_0(z, \cdot)fQ_1f - 2f(z)Q_1(z, \cdot)f \\ &+ 2Q_0(z, \cdot)fQ_0fg - 2f(z)g(z)\pi fg + 2f(z)^2 g(z) \\ &= \left[Q_1(z, S)\pi - g(z)G_2 \right]f^2 + g(z)\pi f^2 g + 2\left[Q_1(z, S)\pi - g(z)G_x \right]f[g\pi + G - G_x \right]f \\ &+ 2g(z)\pi f[Q_1(x, S)\pi + G - G_x + GG - GG_x - gG_x \right]f + 2g(z)\pi f[g\pi + G - G_x]fg \\ &+ g(z)f(z)^2 - 2f(z)g(z)\pi fg - 2f(z)\left[Q_1(z, S)\pi - g(z)G_x \right]f \\ &= Q_1(z, S)\pi f^2 - g(z)G_x f^2 + g(z)\pi f^2 g + 2Q_1(z, S)\pi fGf + 2g(z)(\pi fg)^2 + 2g(z)\pi fGfg \\ &+ 2g(z)\pi fGf + 2g(z)\pi fGGf - 2g(z)(\pi fg)(G_x f) + 2g(z)(\pi fg)^2 + 2g(z)\pi fGfg \\ &+ g(z)f(z)^2 - 2f(z)g(z)\pi fg + 2f(z)g(z)fg \\ &= Q_1(z, S)m_2 + 2E(\tau)\pi fGf + 2E(\tau)\pi fGGf \\ &+ E(\tau)[-G_x f^2 + \pi f^2 g + 2(G_x f)^2 - 2G_x fGf - 2(\pi fg)(G_x f) + 2(\pi fg)^2 \\ &+ 2\pi fGfg + f(z)^2 - 2f(z)\pi fGGf + E(\tau) \left[\eta_2 + 2\eta_1^2 + 2\chi_1 \eta_1 + 2\chi_1^2 + \chi_2 \right], \end{aligned}$$

as desired.

5. Estimator Covariance Matrix

Let $S_0 = 0$, and $S_n = f(X_0) + \cdots + f(X_{n-1})$. Under the assumptions on the chain given in section 2,

$$\frac{1}{n}E\left(S_n^2\right)\to\sigma^2$$

as $n \to \infty$, and

$$n^{-1/2}S_n \Rightarrow \mathcal{N}(0,\sigma^2)$$

as $n \to \infty$. We are interested in estimating σ^2 in order to obtain confidence intervals. In the regenerative method, S_n is divided up into independent blocks by starting a new block whenever a regeneration point is reached. If Z_i is the *ith* block and K_n is the number of regenerative cycles in the first n observations, then

$$\sigma^2 = \lim_{n \to \infty} \frac{1}{n} E \left(Z_1 + \dots + Z_{K_n} \right)^2 = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{K_n} E \left(Z_j^2 \right)$$

as $n \to \infty$. Choosing different regeneration points will in general give different estimator variances.

Let r(n) and s(n) denote the regenerative mean and standard deviation estimators, respectively, based on observation of the chain up to time n:

$$r(n) = \frac{1}{n} \sum_{j=1}^{K_n} f(X_j), \quad s(n)^2 = \frac{1}{n} \sum_{j=1}^{K_n} (Z_j - r(n)\tau_j)^2.$$

It is shown in [5] (for general regenerative processes) that

$$n^{1/2}(r(n)-r,s(n)-\sigma) \Rightarrow \mathcal{N}(0,D),$$

where

$$D_{11} = E(Z^2)/E(\tau),$$

$$D_{12} = \frac{E(Z^3) - 3\sigma^2 E(\tau Z)}{2\sigma E(\tau)},$$

and

$$D_{22} = \left(E(Z^4) - 2\sigma^2 E(\tau Z^2) + \sigma^4 E(\tau^2) - E(\tau)^{-1} \left(4E(\tau Z)E(Z^3) - 8\sigma^2 [E(\tau Z)]^2 \right) \right) / \left(4\sigma^2 E(\tau) \right) .$$

Using the formulas from Lemmas 3 and 4, the covariance matrix can be written

$$D = \begin{bmatrix} \sigma^2 & \frac{m_3}{2\sigma} \\ & & \\ & c + \chi_1^2 + \eta_1^2 \\ \frac{m_3}{2\sigma} & + \chi_2 + \eta_2 \end{bmatrix},$$

where

$$c \stackrel{\triangle}{=} \frac{m_4}{4\sigma^2} - \frac{\sigma^2}{4} - \pi f G f - \pi f G G f$$

is independent of the return state. Notice that the diagonal term is also independent of the return state z, since as previously mentioned, σ^2 and m_3 are independent of the return state.

Let

$$\sqrt{n}(r(n)-r) \Rightarrow a$$

$$\sqrt{n}(s(n) - \sigma) \Rightarrow b$$

where we view a and b as elements of the Hilbert space L_2 with inner product

$$(x,y)=E(xy).$$

Then

$$(a,a) = \sigma^2, \quad (b,b) = D_{22}, \quad (a,b) = \frac{m_3}{2\sigma}.$$

It follows that we can write

$$b=\frac{m_3}{2\sigma^3}a+q,$$

where (a, q) = 0 and

$$(q,q) = \frac{1}{4\sigma^{2}E(\tau)}E(Z^{2} - \sigma^{2}\tau)^{2} - \frac{1}{4\sigma^{2}(E(\tau))^{2}}(E(Z^{3} - \sigma^{2}\tau Z))^{2}.$$

For a random variable X with finite third moment define the coefficient of momental skewness ([10]) of X by

$$\frac{E(X-EX)^3}{2\text{var}(X)^{3/2}}.$$

Let κ_n be the coefficient of momental skewness for the random variable $\sqrt(n)S_n$ under the initial distribution π . Clearly κ_n is defined independently of the return state, and

$$\kappa \stackrel{\triangle}{=} \lim_{n \to \infty} \kappa_n = \frac{m_3}{2\sigma^3}.$$

With this notation, $D_{12} = \kappa \sigma^2$, and the orthogonal decomposition is

$$b = \kappa a + q$$
.

For any symmetrical chain, for example a birth and death process on $\{-N, \dots, 0, \dots, N\}$ for which the birth and death parameters as well as the values of the function f are symmetrical about $0, \kappa = 0$ and so a and b are orthogonal.

Choosing a return state to minimize variance of the standard deviation estimator is equivalent to choosing a return state to maximize correlation between the estimators for the mean and the standard deviation.

6. Example

Consider the Markov chain with state space $S = \{1, 2, 3\}$ and transition matrix

$$P = \begin{bmatrix} 1 - \epsilon & \epsilon & 0 \\ 1/2 & 0 & 1/2 \\ 0 & \epsilon & 1 - \epsilon \end{bmatrix},$$

for $0 < \epsilon < 1$. The stationary distribution is

$$\pi = \left(\frac{1}{2+2\epsilon}, \frac{2\epsilon}{2+2\epsilon}, \frac{1}{2+2\epsilon}\right).$$

Let f = (-M, 0, M) for some M > 0; then $E_{\pi}f = 0$. The values of the quantities that vary with state are given below (the values for state 3 are the same as for state 1).

State	η_1^2	χ_1^2	η_2	λ2
1,3	$\frac{M^2}{\epsilon^2}$	$\frac{M^2(1-\epsilon)^2}{\epsilon^2}$	$\frac{M^2(2-\epsilon)}{\epsilon^2}$	$\frac{M^2\epsilon(2-\epsilon)}{(1+\epsilon)^2}$
2	0	0	$\frac{M^2(2-\epsilon)}{\epsilon^2(1+\epsilon)}$	$-\frac{M^2(2-\epsilon)}{(1+\epsilon)^2}$

The difference in variances is

$$D_{22}(1) - D_{22}(2) = 2\left(\frac{M}{\epsilon}\right)^2$$

while

$$E_1(\tau_1) = E_3(\tau_3) = 2 + 2\epsilon \to 2, \qquad E_2(\tau_2) = \frac{1+\epsilon}{\epsilon} \to \infty$$

as $\epsilon \downarrow 0$. Therefore, while the mean regeneration time for state 2 grows without bound as $\epsilon \downarrow 0$, it gives the least variable estimator, with the difference going to ∞ as $\epsilon \downarrow 0$. Essentially all of the difference is accounted for by the η_1^2 and χ_1^2 terms.

In this example, the kurtosis of S_n increases as M increases or ϵ decreases, so the variance of all 3 standard deviation estimators increases as $\epsilon \downarrow 0$.

7. Conclusion

The covariance matrix that appears in the central limit theorem for the regenerative mean and standard deviation estimators has been expressed in a form so that several conclusions could be reached. First, the off-diagonal term is independent of the return state chosen for blocking. Second, the expression for the variance of the standard deviation estimator shows that the variance is increased by kurtosis in the partial sum process. The variance does depend on the return state used for blocking, and an example showed that the state with the shortest mean return time can give the most variable standard deviation estimator.