- Переменный ток
 - Действующее значения переменного тока
 - Сопротивления в цепи переменного тока
 - Активное (реальное) сопротивление в цепи АС
 - Реактивное сопротивление
 - Емкостное сопротивление
 - Частота
 - Циклическая (круговая) частота колебаний
 - Индуктивное сопротивление в цепи АС
 - Полное сопротивление цепи АС
 - Последовательное соединение реа и активного сопротивления
 - Задача 1
 - Полное сопротивление цепи с активным и емкостным сопротивлениями
 - Задача 2
 - Полное сопротивление цепи с активным, индукционным и емкостными сопротивлениями
 - Задача 3
 - Полное сопротивление цепи при параллельном соединении активного и индуктивного элементов
 - Полное сопротивление цепи при параллельном соединении активного и емкостного элементов
 - Резонанс токов и напряжений
 - Резонанс напряжений
 - Резонанс токов
 - Мощность в цепи переменного тока
 - Активная мощность
 - Реактивная мощность
 - Полная мощность
 - Коэффициента мощности АС
 - Закон Ома в цепи АС
- Расчетная работа № 8

Переменный ток

AC (Alternating Current) - электрический ток, который меняет направление и величину с течением времени.

Действующее значения переменного тока

$$I = \frac{I_m}{\sqrt{2}}$$

- I действующее значение переменного тока
- I_m амплитуда тока

$$U = \frac{U_m}{\sqrt{2}}$$

- ullet U действующее значение переменного напряжения
- U_m амплитуда напряжения

$$E = \frac{E_m}{\sqrt{2}}$$

- E действующее значение ЭДС
- E_m амплитуда ЭДС

Сопротивления в цепи переменного тока

Виды сопротивлений в цепи переменного тока:

- 1. Активные
- 2. Реактивные:
- Индуктивные
- Емкостные

Активное (реальное) сопротивление в цепи АС

Эл.устройства, преобразующие эл.энергию во тепловую:

- Лампочки
- Ресисторы

$$R = \rho \frac{l}{S}$$

- R активное сопротивление в омах (Ω).
- ρ удельное сопротивление материала, из которого сделан проводник, в омах на метр $(\Omega \cdot \mathbf{M})$.
- *l* длина проводника в метрах (м).
- S площадь поперечного сечения проводника в квадратных метрах (м²).

Реактивное сопротивление

Электрические элементы, которые не преобразуют электрическую энергию в тепловую энергию, а вместо этого сохраняют энергию в магнитном или электрическом поле

Емкостное сопротивление

Емкостное сопротивление Xc связано с конденсаторами, которые могут накапливать электрический заряд при прохождении через них переменного тока.

$$X_C = \frac{1}{\omega C} (\Omega)$$

- ω циклическая частота
- \bullet C электроемкость

Частотаf

$$f = \frac{N}{t}$$
 (Герц)

- N число полных колебаний
- *t* единицу времени (сек.)

Циклическая (круговая) частота колебаний

$$\omega = 2\pi f = \frac{2\pi}{T}$$
 (радин в сек.)

Индуктивное сопротивление в цепи АС

Индуктивное сопротивление связано с катушками индуктивности, которые создают магнитное поле при прохождении через них переменного тока.

$$X_L = \omega L = 2\pi f L$$
 (Гн - Генри)

• L - индуктивность катушки (Гн)

Полное сопротивление цепи АС

Последовательное соединение реа и активного сопротивления

$$Z = \sqrt{R^2 + (\omega L)^2}$$

- \bullet Z полное сопротивление цепи
- R активное сопротивление цепи
- ωL индуктивное сопротивление катушки

Задача 1

Дано:

- $R = 100\Omega$
- *f* = 50Гц
- $L=0,1\Gamma_{\rm H}$

Найти:

•
$$Z = ?$$

Решение:

1. т.к. у нас из реактивных сопротивлений есть только индуктивное, то будем считать по формуле:

$$X_L = 2\pi f L$$

2. Полное сопротивление катушки индуктивности Z в цепи переменного тока можно вычислить с использованием формулы:

$$Z = \sqrt{R^2 + (X_L - X_C)^2} X_L = 2\pi \times 50 \Gamma_{\text{II}} \times 0.1 \Gamma_{\text{H}} = 31.42 \Omega$$

$$Z = \sqrt{100^2 + (31.42 - 0)^2} Z = \sqrt{100^2 + 31.42^2} Z = \sqrt{10000 + 988.09} Z = \sqrt{10988.09} Z \approx 104.84 \Omega$$

Ответ: полное сопротивление катушки индуктивности цепи переменного тока составляет около $104.84\,\Omega$.

Полное сопротивление цепи с активным и емкостным сопротивлениями

 $Z=\sqrt{R^2+(rac{1}{\omega C})^2}~Z$ - полное сопротивление цепи R - реактивное сопротивление цепи $rac{1}{\omega C}$ - емкостное сопротивление конденсатора

Задача 2

Дано:

- $f = 50\Gamma$ ц
- $R = 10\Omega$
- $C = 0, 1\mu$

Найти:

• Z = ?

Решение:

1. X_{C} - Емкостное реактивное сопротивление конденсатора можно рассчитать по формуле:

$$X_C = \frac{1}{2\pi fC}$$

2. Переведем емкость конденсатора из микрофарад в фарады, учитывая, что $1 \, {
m MK} \Phi = 1 \, imes \, 10^{-6} \, \Phi$

$$C = 0.1 \times 10^{-6} \, \Phi$$

$$X_C = \frac{1}{2\pi \times 50 \,\Gamma_{\text{II}} \times 0.1 \times 10^{-6} \,\Phi} \approx 31830 \,\Omega$$

3. Теперь, используя формулу для
$$Z$$
: $Z = \sqrt{R^2 + X_C^2}$

$$Z = \sqrt{10^2 + 31830^2} \approx 31830 \,\Omega$$

Ответ: полное сопротивление цепи переменного тока составляет примерно $31830\,\Omega$

Полное сопротивление цепи с активным, индукционным и емкостными сопротивлениями

$$X = X_L - X_C = \omega L - \frac{1}{\omega C}$$

• X - общее реактивное сопротивление, в зависимости от преобладания, может иметь индуктивный или емкостный характер

$$Z = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}$$

- ωL индуктивное сопротивление катушки
- $\frac{1}{\omega C}$ емкостное сопротивление конденсатора

Задача 3

Дано:

- $f = 50\Gamma$ ц
- $R = 20\Omega$
- $L = 0, 1\Gamma_{\rm H}$
- $C = 0, 1\mu$

Найти:

Решение

1. Рассчитаем X_L : $X_L = 2\pi f L$

$$X_L = 2\pi \times 50 \Gamma$$
ц × 0.1 Γ H = 31.42 Ω

2. Рассчитаем X_C : $X_C = \frac{1}{2\pi f C}$

$$X_C = \frac{1}{2\pi \times 50 \,\Gamma_{\text{Ll}} \times 0.1 \times 10^{-6} \,\Phi} \approx 31830 \,\Omega$$

3. Найдем Z: $Z = \sqrt{R^2 + (X_L - X_C)^2}$ $Z = \sqrt{20^2 + (31.42 - 31830)^2} \approx 31798\Omega$

Полное сопротивление цепи при параллельном соединении активного и индуктивного элементов

$$Z = \frac{R\omega L}{\sqrt{R^2 + (\omega L)^2}}$$

Полное сопротивление цепи при параллельном соединении активного и емкостного элементов

$$Z = \frac{R\frac{1}{\omega C}}{\sqrt{R^2 + (\frac{1}{\omega C})^2}}$$

Резонанс токов и напряжений

Резонанс напряжений

Возникает в последовательной RLC цепи (Максимальный ток + перенапряжение)

$$\omega L = \frac{1}{\omega C}$$

Резонанс токов

Возникает в цепи с параллельно соединенными: катушкой, резистором и конденсатором (Теоретически бесконечное индуктивное сопротивление) Z - становится минимальным, а ток максимальным

$$I_m = \frac{U_m}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$$

Мощность в цепи переменного тока

$$S = \sqrt{P^2 + (Q_L - Q_C)^2}$$

- $Q = Q_L Q_C$ $\cos \phi = \frac{P}{S}$
- *S* полная мощность (ВА)
- Q реактивная мощность (ВАр)
- Q_L индуктивная мощность (ВАр)
- Q_C емкостная мощность (ВАр)
- P активная мощность (Вт)
- \bullet $\cos\phi$ коэффициент мощности

$$P = U \times I$$

Если между напряжением и силой тока СДВИГ ФАЗ, то:

$$P = U \times I \times \cos \phi$$

Виды мощности:

- 1. Активная
- 2. Реактивная
- 3. Полная

Активная мощность

$$P = U \times I \times \cos \phi$$
 (BT)

Реактивная мощность

 $Q = U imes I imes \sin \phi$ (Вар - Вольт амперы реактивные)

Полная мощность

$$S = \sqrt{P^2 + Q^2}$$
 (ВА - Вольт амперы)

Коэффициента мощности АС

$$\cos \phi = \frac{P}{S}$$
$$\sin \phi = \frac{Q}{S}$$

Закон Ома в цепи АС

$$I = \frac{U}{Z}$$

$$I = \frac{U}{\sqrt{R^2 + (X_L - X_C)^2}}$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

Расчетная работа № 8

Дано:

- $R = 100\omega$
- $L = 0,04\Gamma_{\rm H}$
- $C = 0, 2\mu$
- $f = 200\Gamma$ ц
- U = 50B

Найти:

- *X*_L
- \bullet X_C
- Z
- I
- $\cos \phi$

- P
- Q
- 5

Решение

1. Индуктивное сопротивление X_L :

$$X_L = 2\pi f L = 2\pi \times 200 \, \Gamma$$
ц $\times 0.04 \, \Gamma$ н $= 50.27 \, \Omega$

2. Емкостное сопротивление X_C :

$$X_C = \frac{1}{2\pi f C} = \frac{1}{2\pi \times 200 \,\Gamma_{\text{II}} \times 0.2 \times 10^{-6} \,\Phi} \approx 3987.87 \,\Omega$$

3. Полное сопротивление Z в цепи:

$$Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{100^2 + (50.27 - 3987.87)^2} \approx \sqrt{100^2 + (-3937.6)^2} \approx 3938.87 \,\Omega$$

4. Ток в цепи I:

$$I = \frac{U}{Z} = \frac{50 \,\mathrm{B}}{3938.87 \,\Omega} \approx 0.0127 \,\mathrm{A}$$

5. Коэффициент мощности $\cos \phi$:

$$\cos \phi = \frac{R}{Z} = \frac{100 \,\Omega}{3938.87 \,\Omega} \approx 0.0254$$

6. Активная мощность P:

$$P = U \cdot I \cdot \cos \phi = 50 \,\mathrm{B} \times 0.0127 \,\mathrm{A} \times 0.0254 \approx 0.0161 \,\mathrm{BT}$$

7. Реактивная мощность Q:

$$Q = U \cdot I \cdot \sin \phi = 50 \text{ B} \times 0.0127 \text{ A} \times \sqrt{1 - 0.0254^2} \approx 0.6348 \text{ BAp}$$

8. Полная мощность S:

$$S = U \cdot I = 50 \text{ B} \times 0.0127 \text{ A} \approx 0.635 \text{ BA}$$

Таблица ответов

Дано					Найти							
R	L	С	f	U	XI	Xc	Z	I	Р	Q	S	соsф
100	0,04	0,2	200	50	50,27	3987.87	3938,87	0,0127	0.0161	0,0348	0.635	0.0254