danger of confusion. We fix a character χ of order ℓ . Then we have

(5)
$$N_g = q + \sum_{1 \le j,k \le \ell - 1} \chi^j (-g^{-2}) \chi^k (-g^{-1}) J(\chi^j, \chi^k)$$

where

$$J(\boldsymbol{\chi}^{j}, \boldsymbol{\chi}^{k}) = \sum_{a \in \mathbb{F}_{q}} \boldsymbol{\chi}^{j}(a) \boldsymbol{\chi}^{k} (1 - a)$$

is a *Jacobi sum* with respect to χ^j and χ^k . The following properties of Jacobi sums are useful.

Lemma 2.2 ([LN97] Theorem 5.19, 5.21, 5.22]). Let λ , ψ be two extended characters of \mathbb{F}_q .

- (i) $J(\lambda, \psi) = J(\psi, \lambda)$;
- (ii) $J(\varepsilon, \varepsilon) = q$;
- (iii) $J(\lambda, \varepsilon) = 0$ if $\lambda \neq \varepsilon$;
- (iv) $J(\lambda, \lambda^{-1}) = -\lambda(-1)$ if $\lambda \neq \varepsilon$;
- (v) $|J(\lambda, \psi)| = \sqrt{q}$ if λ, ψ and $\lambda \psi$ are all nontrivial.

Note that $|\chi^i(a)| = 1$ for all $a \in \mathbb{F}_q^{\times}$. By (iv) and (v) of Lemma 2.2 one has the following estimate of N_g from (5)

$$|N_g - q| \le M_0 + M_1 \sqrt{q}$$

where M_0 (resp. M_1) is the number of pairs (j,k) with $\chi^j \chi^k = \varepsilon$ (resp. $\chi^j \chi^k \neq \varepsilon$). Observe that $M_0 = \ell - 1$ and $M_1 = (\ell - 1)(\ell - 2)$. Thus, if

(6)
$$q > (\ell - 1) + (\ell - 1)(\ell - 2)\sqrt{q},$$

then $N_g > 0$. Consequently, for q large enough (for example $q > (\ell - 1)^4$), one has $N_g > 0$ for any $g \in \mathbb{F}_q^{\times}$.

For the numbers of rational solutions to equations over finite fields, the Hasse-Weil bound [Wei48] provides more precise information than the crude estimate given above.

Theorem 1 (Hasse-Weil bound). Let \mathscr{C} be a non-singular, absolutely irreducible projective curve over \mathbb{F}_q and let $N_{\mathscr{C}} = |\mathscr{C}(\mathbb{F}_q)|$ be the number of \mathbb{F}_q -rational points of \mathscr{C} . Then,

$$|N_{\mathscr{C}} - (q+1)| \le 2\mathfrak{g}\sqrt{q}$$

where g is the genus of \mathscr{C} .

Applying the Hasse-Weil bound to $\widetilde{\mathscr{C}_{g}}$, we see that

$$|\widetilde{N_g} - (q+1)| \le (\ell-1)(\ell-2)\sqrt{q}$$

since the genus of $\widetilde{\mathscr{C}_g}$ is $\mathfrak{g}_\ell = (\ell-1)(\ell-2)/2$ by the degree-genus formula [Har77]. Consequently, $\widetilde{N_g} > 0$ for any generator g of \mathbb{F}_q^\times provided that $q+1 > (\ell-1)(\ell-2)\sqrt{q}$ and therefore $\widetilde{\mathscr{C}_g}(\mathbb{F}_q)$ is non-empty if $q \geq (\ell-1)^2(\ell-2)^2$.