AutoMLP-GA: Automating MLP Optimization with GA Global and Multi-objective Optimization project

Valeria Insogna Università di Trieste

January 19 2024

Outline

- Introduction
- 2 Methodology
- Implementation
- Results
- Conclusion

Introduction

Project Context and Goals

Project Motivation

Automating MLP design for classification problems using Genetic Algorithms.

Goal

Optimizing MLP topology, type of activation function, and some hyperparameters on MNIST dataset.

Methodology

Discrete GA Framework

Genetic Representation

Individuals in GA population represented by 8 genes that take discrete values.

Parameter	Values
Number of Neurons	128, 256, 384, 512, 640, 768, 896, 1024
Number of Layers	1, 2, 3, 4, 5, 6
Activation Function	ReLU, ELU, Tanh, LeakyReLU, Sigmoid
Optimizer	adam, adamw, sgd, rmsprop
Learning Rate Scheduler	cosine, exponential, linear, none
Initial Learning Rate	0.1, 0.01, 0.001, 0.0003, 0.0001
Batch Size	32, 64, 128, 256
Dropout	0, 0.1, 0.2, 0.3, 0.4

Table: Search Space for GA Parameters

Methodology

Fitness Function

Maximization problem

The objective is to maximize classification accuracy on the MNIST test set, reflecting the performance of each MLP:

$$Accuracy = \frac{Number of Correct Predictions}{Total Number of Predictions}$$
 (1)

Methodology **GA** Operators

Selection

- Truncated Selection: 40% of the top networks are retained each generation.
- Random Selection: 10% of others are uniformly at random selected.

Crossover

- Uniform Crossover: Child networks randomly inherit each parameter from one of the two parents, treating each gene independently.
- $p_{cross} = 100\%$

Mutation

• Random Mutation: uniformly at random alternate one of the network's parameters within its range with $p_{mut} = 20\%$

Methodology

Limitations of Brute-Force in MLP Optimization

Why Brute-Force is Impractical

The total number of combinations in the search space is calculated as follows. Options for:

- Number of Neurons: 8
- Number of Layers: 6
- Activation Functions: 5
- Optimizers: 4
- Learning Rate Schedulers: 4
- Initial Learning Rates: 5
- Batch Sizes: 4
- Dropout: 5

Total Combinations = $8 \times 6 \times 5 \times 4 \times 4 \times 5 \times 4 \times 5 = 384,000$

Methodology

Limitations of Brute-Force in MLP Optimization

Advantages of Genetic Algorithm

- Efficiently navigates the vast search space.
- Balances exploration and exploitation.
- Takes less time.

Dataset

MNIST

- Dataset Type: Collection of handwritten digits.
- Purpose: Widely used for training and testing in ML.
- Image Specifications:
 - Size: 28x28 pixels (784 flattend).
 - Color: Grayscale.
 - Format: Each pixel value is a grayscale intensity between 0 and 255.
- Training Set: 60,000 samples.
- Test Set: 10,000 samples.
- Classes: 10 (Digits 0 to 9).

Files and Their Roles

Github repo AutoMLP-GA:

- main.py: Entry point for running the GA-based MLP optimization.
- network.py: Defines the Network class, representing the MLPs.
- optimizer.py: Implements the Optimizer class for managing the GA.
- train.py: Contains functions for training the MLPs using PyTorch.
- utils.py: Provides utility functions for result visualization and data management.
- process.py: Processes and visualizes results from the baseline algorithm.
- random gen.py: Implements the baseline algorithm by generating and evaluating random networks.

main.py

Execution Command

```
python main.py -gen 10 -pop 20
```

where -gen specifies the number of generations, and -pop sets the population size.

```
nn_param_choices = {
   'nb_neurons': [128, 256, 384, 512, 640, 768, 896, 1024],
   'nb_layers': [1, 2, 3, 4, 5, 6],
   'activation': ['ReLU', 'ELU', 'Tanh', 'LeakyReLU', 'Sigmoid'],
   'optimizer': ['adam', 'adamw', 'sqd', 'rmsprop'].
   'lr_scheduler': ['cosine', 'exponential', 'linear', 'none'],
   'initial lr': [0.1, 0.01, 0.001, 0.0003, 0.0001],
   'batch size': [32, 64, 128, 256].
   'dropout': [0, 0.1, 0.2, 0.3, 0.4]
```

Figure: Visualization of neural network parameters.

Network Class

Network Class

Defines the NN architecture in PyTorch, configurable by genetic encoding.

```
lass Network():
  This is designed for a simple feedforward neural network MLP.
  def __init__(self, nn_param_choices=None):
              nb_neurons (list): [128, 256, 512, 768, 1024]
      self.accuracy = 0.
      self.nn_param_choices = nn_param_choices
      self.network = {} # (dict): represents MLP network parameters
       self.model = None
  def create random(self):
       """Create a random network."""
      for key in self.nn param choices:
           self.network[key] = random.choice(self.nn param choices[key])
      self.create_network()
```

```
create network(self):
input size = 784 # MNIST images are 28x28 pixels
    layers.append(nn.Linear(input size, self.network['nb neurons']))
   layers.append(getattr(nn. self.network('activation'l)())
    layers.append(nn.Dropout(self.network['dropout'])) # Fixed dropout value
    input size = self.network['nb neurons']
layers.append(nn.Linear(self.network['nb_neurons'], 10)) # 10 classes for MNIST
self.model = nn.Sequential(*lavers)
```

Figure: Left: Code structure of Network class. Right: Schematic of MLP architecture.

Optimizer Class

Optimizer Class

- Manages the GA evolutionary process.
- create_population initiates the population with diverse network configurations.
- Handles breeding (breed method) and mutation (mutate method).

```
def init (self, nn param choices, retain=0.4,
            randomly mutated
    self.mutate chance = mutate chance
    self.random select = random select
    self.retain = retain
    self.nn param choices = nn param choices
```

Figure: Optimizer class.

Optimizer Class

```
for individual in graded[retain_length:]:
    if self.random select > random.random();
       parents.append(individual)
   male = random.randint(0, parents_length-1)
   female = random.randint(0, parents length-1)
       male = parents[male]
       babies = self.breed(male, female)
               children.append(baby)
```

```
mutation = random.choice(list(self.nn.param.choices.keys()))
network.network[nutation] = random.choice(self.nn param choices[mutation])
```

```
mother (Network): Network object
for param in self.nn_param_choices:
   child(param) = random.choice(
        [mother.network[param], father.network[param]
network = Network(self.nn param choices)
network.create_set(child)
if self.mutate chance > random.random():
children.append(network)
```

Figure: From left to right: selection, mutation and crossover

Training and Evaluation

Training

- Training and evaluation are conducted using the MNIST dataset.
- Performance is measured by accuracy during training iterations.

```
network.network['optimizer'] == 'adam';
   optimizer = optim.Adam(model.parameters(), lr=network.network['initial lr'])
 if network.network['optimizer'] == 'adamw':
   optimizer = optim.AdamW(model.parameters(), lr=network.network['initial lr'])
 if network.network['optimizer'] == 'sqd';
  optimizer = optim.SGD(model.parameters(), lr=network.network('initial lr'), momentum=0.9
if network.network['optimizer'] == 'rmsprop':
  optimizer = optim.RMSprop(model.parameters(), lr=network.network('initial_lr'))
 network.network['lr_scheduler'] == 'cosine':
   scheduler = CosineAnnealingLR(optimizer, T max=100)
elif network.network['lr_scheduler'] == 'exponential':
   scheduler = ExponentialLR(optimizer, gamma=0.9)
lif network.network['lr scheduler'] == 'linear':
```

```
for epoch in range(10): # Loop over the dataset multiple times
       print(f"Epoch {epoch+1}/10")
   for , data in enumerate(train loader, 0):
           print(f"Batch { +1}/{len(train loader)}")
       inputs, labels = data
       inputs = inputs.view(inputs.size(0), -1) # Flatten the images
       optimizer.zero grad()
       outputs = model(inputs)
       loss = criterion(outputs, labels) # CrossEntropyLoss
       loss.backward()
       optimizer.step()
       if scheduler:
           scheduler.step()
```

Figure: Left: Training parameters visualization. Right: Training process visualization.

First Run

Evolution Summary

Over 10 generations with a population of 50. GA showed consistent improvement in network accuracy over successive generations.

Generation	Average Accuracy
1	59.03%
2	88.92%
3	91.09%
4	93.87%
5	97.09%
6	97.36%
7	97.37%
8	97.42%
9	97.10%
10	97.23%

First Run

Results First Run

Top Networks

Configurations of the top 10% performing networks along with their achieved accuracies.

#	Neurons	Layers	Activ	Optimizer	Sched	Accuracy
1	1024	1	ReLU	adamw	cosine	97.94%
2	1024	3	ReLU	rmsprop	cosine	97.90%
3	1024	3	Sigmoid	adam	none	97.79%
4	1024	1	Sigmoid	rmsprop	cosine	97.78%
5	1024	1	Sigmoid	rmsprop	cosine	97.77%

Table: Configuration details of the top 5 networks.

First Run

Computation Time

On MacBook M1 it took on average 40s for each network to train.

```
valeriainsogna@MacBook-Air-di-Valeria AutoMLP-GA % python main.py --gen 7 --pop 50
```

Second Run

Evolution Summary

Over 7 generations with a population of 100, the GA demonstrated significant improvement in network accuracy, with the final generation achieving an average accuracy of 97.63

Generation	Average Accuracy
1	64.58%
2	91.36%
3	95.39%
4	95.13%
5	93.82%
6	95.10%
7	97.63%

Table: Generation-wise average accuracy.

Second Run

Second Run

Top Performing Networks

The top 10% networks from the final generation showcased impressive accuracies, with the best network achieving 98.26%.

Neurons	Layers	Activation	Optimizer	Scheduler	Initial LR	Batch Size	Dropout	Accuracy
1024	3	LeakyReLU	adamw	linear	0.0001	64	0	98.26%
1024	3	LeakyReLU	adam	linear	0.0001	32	0	98.23%
768	3	LeakyReLU	adamw	none	0.0001	32	0	98.22%
768	3	LeakyReLU	adamw	none	0.0001	32	0	98.20%
768	2	LeakyReLU	adam	cosine	0.0003	32	0	98.14%
768	3	LeakyReLU	adamw	cosine	0.0001	32	0	98.09%
896	3	LeakyReLU	adamw	cosine	0.0001	32	0	98.07%
768	3	ReLU	adamw	linear	0.0003	32	0	98.06%
896	1	LeakyReLU	sgd	linear	0.01	32	0	98.06%
768	3	LeakyReLU	adamw	linear	0.0001	32	0	98.06%

Table: Specifications of the top-performing networks.

Second Run

Fitness distribution in final population:

Mean: 0.9763, Median: 0.9791, Std: 0.0096

Second Run

Second Run

Initial Ir distribution

Second Run

Computation Time

On MacBook M1 it took on average 40s for each network to train.

```
valeriainsogna@MacBook-Air-di-Valeria AutoMLP-GA % python main.py --gen 7 --pop 100
                                                                                                                               100/100 [1:08:31<00:00, 41.11s/it]
valeriainsogna@MacBook-Air-di-Valeria AutoMLP-GA % [
```

Baseline Run

Baseline Comparison

Compare results with random creation of same number of gen * pop = 700 networks.

Fitness distribution:

Mean: 0.6043, Median: 0.8015, Std: 0.3775

Baseline Run

Top 10 Networks by Accuracy

Accuracy	Neurons	Layers	Activ	Optimizer	LR Sched	Initial LR	Batch	Dropout
98.25%	640	2	LeakyReLU	adam	none	0.0003	32	0
98.03%	1024	3	LeakyReLU	rmsprop	none	0.0001	32	0.1
98.02%	384	3	LeakyReLU	adam	none	0.0003	32	0
98.02%	512	3	LeakyReLU	rmsprop	cosine	0.0003	32	0
98.02%	768	1	Tanh	adam	none	0.0003	32	0
97.93%	768	1	LeakyReLU	adam	cosine	0.001	128	0
97.93%	1024	4	ELU	sgd	none	0.01	32	0
97.92%	1024	2	ReLU	adamw	linear	0.001	256	0.1
97.91%	1024	3	ReLU	rmsprop	linear	0.0001	64	0.1
97.90%	256	6	LeakyReLU	rmsprop	cosine	0.0003	32	0

Table: Top 10 Networks sorted by Accuracy

Flexible MLP Version

Innovative Approach

- Configure the network by selecting a random number of layers within the maximum limit defined in nb_max_layers, a new gene.
- It assigns a number of neurons for each of these layers.
- Parameters neurons_per_layer_i that are not used (for inactive) layers) are set to None.

```
nn param choices (dict): Parameters for the network, includes:
   nb_max_layers (list): [1, 2, 3, ..., n] # Example values
   neurons per layer 1 (list): [64, 128, 256, ...]
   neurons_per_layer_2 (list): [64, 128, 256, ...]
   neurons_per_layer_n (list): [64, 128, 256, ...]
```

Figure: Flexible configuration of neural network layers.

Creating Random Configurations

Dynamic Layer Configuration

The create_random function will now configure the network with a variable number of layers and assign neurons to each layer within the maximum limit defined by nb_max_layers.

```
def create random(self):
   num_layers = random.choice(self.nn_param_choices['nb_max_layers'])
   for i in range(1, max(self.nn param choices['nb max layers']) + 1):
       if i <= num lavers:
           self.network[f'neurons_per_layer_{i}'] = random.choice(self.nn_param_choices[f'neurons_per_layer_{i}'])
           self.network[f'neurons per layer {i}'] = None
   for param in self.nn_param_choices:
       if 'neurons_per_layer' not in param and param != 'nb_max_layers':
           self.network[param] = random.choice(self.nn param choices[param])
   self.create_network()
```

Figure: Dynamic selection of layers and neurons in the create_random method.

Network Layer and Neuron Flexibility

Network Layer Variability

Each network can have a random number of layers with the number of neurons per layer also being randomly assigned, leading to a more diverse set of network architectures, potentially exploring more complex solutions.

```
create network(self):
layers = []
for i in range(1, max(self.nn_param_choices['nb_max_layers']) + 1):
    if self.network[f'neurons per layer {i}']:
        layers.append(nn.Linear(input_size, self.network[f'neurons_per_layer_{i}']))
        if 'activation' in self.network:
            layers.append(get activation(self.network['activation'])())
            layers.append(nn.Dropout(self.network['dropout']))
        input size = self.network[f'neurons per layer {i}']
output classes = 10 # Ad esempio. 10 classi per MNIST
layers.append(nn.Linear(input_size, output_classes))
self.model = nn.Sequential(*lavers)
```

Figure: Construction of a PyTorch network with flexible layer and neuron counts.

Enhanced Genetic Breeding

Adaptive Breeding Process

The breeding process will be enhanced to handle the dynamic structures, ensuring that children networks inherit the adaptable traits of their parents.

```
lef breed(self, mother, father):
   child = {}
   for param in self.nn param choices:
       child[param] = random.choice([mother.network[param], father.network[param]])
  child_nb_layers = child['nb_max_layers']
   for i in range(1, max(self.nn_param_choices['nb_max_layers']) + 1):
       param name = f'neurons per laver {i}'
       if i > child nb lavers:
           child[param name] = None
       elif child[param name] is None:
           child(param_name) = random.choice(self.nn_param_choices(param_name))
   return Network(self.nn_param_choices).create_set(child)
```

Figure: Adaptive breeding function accommodating flexible network structures.

Future Improvements

- epoch as a discrete gene
- add dropout only between some layers
- univariate EDA (PBIL) with mix of discrete/real values for genes.