Secondary Spectrum

Lens Design OPTI 517

Secondary Spectrum

The quadratic difference between the F and C wavefronts is:

$$\delta_{\lambda}W_{020} = \frac{1}{2}\sum \frac{y_m^2}{f\nu}$$

V- number

$$v = \frac{n_d - 1}{n_F - n_C}$$

$$\delta_{\lambda} W_{020} = \frac{1}{2} \sum_{m} \frac{y_{m}^{2}}{f \nu} = \frac{1}{2} \sum_{m} \frac{y_{m}^{2}}{f} \frac{n_{F} - n_{C}}{n_{d} - 1}$$

The quadratic difference between λ and F wavefronts is:

$$\begin{split} & \mathcal{S}_{\lambda} W_{020} = \frac{1}{2} \sum \frac{y_m^2}{f} \frac{n_{\lambda} - n_F}{n_d - 1} = \frac{1}{2} \sum \frac{y_m^2}{f} \frac{n_{\lambda} - n_F}{n_d - 1} \frac{n_F - n_C}{n_F - n_C} = \\ & = \frac{1}{2} \sum \frac{y_m^2}{f v} \frac{n_{\lambda} - n_F}{n_F - n_C} = \frac{1}{2} \sum \frac{y_m^2}{f v} P_{\lambda F} \end{split}$$

Where $P_{\lambda F}$ is the partial dispersion ratio from λ to F

For a system of thin lenses we have:

$$\mathcal{S}_{\lambda}W_{020} = \frac{1}{2}\sum \frac{y_m^2}{f\nu}P_{\lambda F}$$

Thin doublet

For a thin achromatic doublet:

$$f_a \cdot v_a = f_b \cdot v_b = F \cdot (v_a - v_b)$$

$$\delta_{\lambda} W_{020} = \sum \frac{y_m^2}{f v} P_{\lambda F} = \frac{y_m^2}{F} \frac{P_a - P_b}{v_a - v_b}$$

For zero secondary spectrum:

$$Tan(\varphi) = \frac{P_a - P_b}{\nu_a - \nu_b}$$

Partial Dispersion ratio vs. Abbe number

College of Optical Sciences

Prof. Jose Sasian

THREE-LENS APOCHROMAT

$$\sum vc\Delta n = \phi$$
 Power
$$c = \frac{1}{R_1} - \frac{1}{R_2}$$
 $\sum c\Delta n = 0$ Achromatism Secondary Spectrum where:

Or:

$$\begin{aligned} V_a & \left(c_a \Delta n_a \right) + V_b \left(c_b \Delta n_b \right) + V_c \left(c_c \Delta n_c \right) = \phi \\ & \left(c_a \Delta n_a \right) + \left(c_b \Delta n_b \right) + \left(c_c \Delta n_c \right) = 0 \\ & P_a & \left(c_a \Delta n_a \right) + P_b & \left(c_b \Delta n_b \right) + P_c & \left(c_c \Delta n_c \right) = 0 \end{aligned}$$

The solution to these equations is:

$$c_a = \frac{1}{FE(V_a - V_c)} \left\{ \frac{P_b - P_c}{\Delta n_a} \right\} \quad c_b = \frac{1}{FE(V_a - V_c)} \left\{ \frac{P_c - P_a}{\Delta n_b} \right\} \quad c_c = \frac{1}{FE(V_a - V_c)} \left\{ \frac{P_a - P_b}{\Delta n_c} \right\}$$

where F is the focal length of the triplet and E is:

$$E = \frac{V_a (P_b - P_c) + V_b (P_c - P_a) + V_c (P_a - P_b)}{(V_a - V_c)}$$

In the P-V diagram E is the 'sag' of the triangle defined by the points (Pa, Va), (Pb, Vb), and (Pc, Vc).

E is the 'sag' of the triangle defined by the points (Pa, Va), (Pb, Vb), and (Pc, Vc).

P-V Glass diagram Geometrical meaning of E

Single glass achromats

- Huyghenian eyepiece
- Maksutov meniscus
- Houghton corrector
- Field flattener
- Shupmann: dialytes (Kingslake p. 89-92)
- Shupmann medial telescope

Single glass achromats

$$\delta_{\lambda}W_{111} = \sum \frac{\overline{y}y}{fv} = 0$$

$$\delta_{\lambda} W_{020} = \frac{1}{2} \sum_{\nu} \frac{y^2}{f \nu} = 0$$

Shupman

Other forms are possible

See Kingslake

Patent literature on micro-lithographic

lenses

USP 5,835,275

Field correctors

Prof. Jose Sa

Sciences

Chromatic correction techniques

- Achromatize all elements
- Create two effective degrees of correction to correct two aberrations
- Phantom stop technique
- Symmetry of transverse color
- Change glasses with same Nd but different Abbe number
- Buried surface

Buried surface

- Paul Rudolph 1890
- Monochromatic design
- Split lens into a cemented doublet
- Chose second lens to have same index at nd but
 - different dispersion than first lens
- Monochromatic properties remain the same
- Change cemented interface radius to correct color
- SK-16 and F-9

Phantom stop

- Stop shift
- $\Delta\delta\lambda$ W020 = 0; $\Delta\delta\lambda$ W111 = 2 (δ yc/ ym) $\delta\lambda$ W020
- In the presence of axial color lateral color can be modified
- Correct lateral color by moving the stop
- Correct axial color at that stop position
- Move the stop back to the original position
- Color correction will be maintained

Achromatization of the Monochromatic Quartet

1990 International Optical Design conference problem
Note Aldis arrangement for controlling spherical aberration
Positive air lens
Example of optimization

Shupmann medial telescope

Single glass achromat

Mangin mirror

Field lens

Tilted components

Jim Daley
Designs in the US
See his book
Willmann-Bell

Chromatic aberration

- Monochromatic correction (may prepare for color correction)
 Chromatic correction
- Phantom stop to nullify lateral chromatic and find location to nullify axial chromatic
- Buried surface
- Use of a second interface to move location of phantom stop
- Use of the principle of symmetry to correct lateral color
- Chromatic aberrations as a black box: two aberrations; two degrees of freedom
- Chromatic variation (induced) of aberrations and use of multiple interfaces
- Sphero-chromatism
- Extreme case: all lenses are achromatic.

Sag comparison with new achromat

V-number for flint increases V-number for crown decreases

N for crown increases N for flint decreases

$$f_a \cdot v_a = f_b \cdot v_b = F \cdot (v_a - v_b)$$

F=100 mm

SSKN5-LF5 P=-219 mm

Chromatic performance

1000.000

Achromatic doublet

20 inch diameter

F/12

BK7

F4

Apochromatic doublet

20 inch diameter

F/12

FPL53

F4

Broken apochromat

20 inch diameer

F/12

BK7

KzFS1

Tlf2

Abbe number vs wavelength

V-number

$$v = \frac{n_d - 1}{n_F - n_C}$$

Example of double relay system

Relays for photography

Chromatic correction

Actual system

From Ronchigram simulation

From changing the Abbe mumberibys dences

Summary

- Glass properties
- Secondary spectrum
- Single glass achromats
- Phantom stop position
- Buried surface
- New achromat
- Apochromats

