CS 601 - Advanced Algorithms Gale Shaply Termination Assignment

Gale Shaply Termination Algorithm:

```
Initialize each person to be free.

while(some man is free and hasn't proposed to every woman) {
    m= Choose such a man
    w = 1st women on m's list to whom m has not yet proposed
    if (w is free)
        assign m and w to be engaged
    else if (w prefers m to her fiance m')
        assign m and w to be engaged and m' to be free
    else
        w rejects m
}
```

Given Men, Women and their preference lists:

NAME	1ST	2ND	3RD	4TH	5TH
Victor	Α	В	С	D	Ε
Wyatt	В	С	D	Α	Ε
Xavier	С	D	Α	В	Ε
Yancey	D	Α	В	С	Ε
Zeus	Α	В	С	D	Ε

NAME	1ST	2ND	3RD	4TH	5TH
Amy	W	X	Υ	Z	V
Bertha	X	Υ	Z	V	W
Clare	Υ	Z	V	W	X
Diane	Z	V	W	X	Υ
Erika	V	W	X	Υ	Z

```
Algorithm Tracing:
Initially all men and women are free
freeMen = [V, W, X, Y, Z]
stablePairs = {} // empty
```

numberOfProposals = 0

Each and every men propose to all the women according to preference list:

'V' proposes to 'A', as 'A' is the first preference and is free it gets engaged Then, freeMen = [W, X, Y, Z], stablePairs = {(V,A)} numberOfProposals = 1

'W' proposes to 'B', as 'B' is the first preference and is free it gets engaged Then,freeMen = [X, Y, Z], stablePairs = {(V,A), (W, B)} numberOfProposals = 2

'X' proposes to 'C', as 'C' is the first preference and is free it gets engaged Then, freeMen = [Y, Z], stablePairs = {(V,A), (W, B), (X, C)} numberOfProposals = 3

'Y' proposes to 'D', as 'D' is the first preference and is free it gets engaged Then, freeMen = [Z], stablePairs = {(V,A), (W, B), (X, C), (Y, D)} numberOfProposals = 4

'Z' proposes to 'A', but as 'A' is not free and 'A' prefers 'Z' more than 'V' Therefore 'V' gets free and 'Z' engages with 'A'
Then, freeMen = [V], stablePairs = {(W, B), (X, C), (Y, D), (Z, A)}
numberOfProposals = 5

NAME	1ST	2ND	3RD	4TH	5TH
Victor	Α	В	С	D	E
Wyatt	В	С	D	Α	E
Xavier	С	D	Α	В	Е
Yancey	D	Α	В	С	Е
Zeus	Α	В	С	D	Е
NAME	1ST	2ND	3RD	4TH	5TH
Amy	W	X	Υ	Z	V
Bertha	Χ	Υ	Z	V	W
Clare	Υ	Z	V	W	X

Diane	Z	V	W	X	Υ
Erika	V	W	Χ	Υ	Z

'V' proposes to its **next preference** 'B', but as 'B' is not free and 'B' **prefers** 'V' more than 'W'

Therefore 'W' gets free and 'V' engages with 'B'

Then, freeMen = [W], stablePairs = {(X, C), (Y, D), (Z, A), (V, B)} numberOfProposals = 6

'W' proposes to its **next preference** 'C', but as 'C' is not free and 'C' **prefers** 'W' more than 'X'

Therefore 'X' gets free and 'W' engages with 'C'

Then, freeMen = [X], stablePairs = {(Y, D), (Z, A), (V, B), (W, C)} numberOfProposals = 7

'X' proposes to its **next preference 'D'**, but as 'D' is not free and 'D' **prefers 'X'** more than 'Y'

Therefore 'Y' gets free and 'X' engages with 'D'

Then, freeMen = [Y], stablePairs = {(Z, A), (V, B), (W, C), (X, D)} numberOfProposals = 8

'Y' proposes to its **next preference 'A'**, but as 'A' is not free and 'A' **prefers 'Y'** more than 'Z'

Therefore 'Z' gets free and 'Y' engages with 'A'

Then, freeMen = [Z], stablePairs = {(V, B), (W, C), (X, D), (Y, A)} numberOfProposals = 9

'Z' proposes to its **next preference** 'B', but as 'B' is not free and 'B' **prefers** 'Z' more than 'V'

Therefore 'V' gets free and 'Z' engages with 'B'

Then, freeMen = [V], stablePairs = {(W, C), (X, D), (Y, A), (Z, B)} numberOfProposals = 10

NAME	1ST	2ND	3RD	4TH	5TH
Victor	Α	В	С	D	Ε
Wyatt	В	С	D	Α	E
Xavier	С	D	Α	В	Е

Yancey	D	Α	В	С	E
Zeus	Α	В	С	D	Ε
NAME	1ST	2ND	3RD	4TH	5TH
Amy	W	X	Υ	Z	V
Bertha	Χ	Υ	Z	V	W
Clare	Υ	Z	V	W	Χ
Diane	Z	V	W	X	Υ
Erika	V	W	X	Υ	Z

'V' proposes to its **next preference** 'C', but as 'C' is not free and 'C' **prefers** 'V' more than 'W'

Therefore 'W' gets free and 'V' engages with 'C'

Then, freeMen = [W], stablePairs = {(X, D), (Y, A), (Z, B), (V, C)} numberOfProposals = 11

'W' proposes to its **next preference 'D'**, but as 'D' is not free and 'D' **prefers 'W'** more than 'X'

Therefore 'X' gets free and 'W' engages with 'D'

Then, freeMen = [X], stablePairs = {(Y, A), (Z, B), (V, C), (W, D)} numberOfProposals = 12

'X' proposes to its **next preference 'A'**, but as 'A' is not free and 'A' **prefers 'X'** more than 'Y'

Therefore 'Y' gets free and 'X' engages with 'A'

Then, freeMen = [Y], stablePairs = {(Z, B), (V, C), (W, D), (X, A)} numberOfProposals = 13

'Y' proposes to its **next preference 'B'**, but as **'B'** is not free and **'B' prefers 'Y'** more than **'Z'**

Therefore 'Z' gets free and 'Y' engages with 'B'

Then, freeMen = [Z], stablePairs = {(V, C), (W, D), (X, A), (Y, B)} numberOfProposals = 14

'Z' proposes to its **next preference** 'C', but as 'C' is not free and 'C' **prefers** 'Z' more than 'V'

Therefore 'V' gets free and 'Z' engages with 'C'

Then, freeMen = [V], stablePairs = {(W, D), (X, A), (Y, B), (Z, C)}

NAME	1ST	2ND	3RD	4TH	5TH
Victor	Α	В	С	D	Е
Wyatt	В	С	D	Α	Ε
Xavier	С	D	Α	В	Ε
Yancey	D	Α	В	С	Е
Zeus	Α	В	С	D	Ε
NAME	1ST	2ND	3RD	4TH	5TH
Amy	W	X	Υ	Z	V
Bertha	X	Υ	Z	V	W
Clare	Υ	Z	V	W	Χ
Diane	Z	V	W	X	Υ
Erika	V	W	Χ	Υ	Z

'V' proposes to its **next preference 'D'**, but as 'D' is not free and 'D' **prefers 'V'** more than 'W'

Therefore 'W' gets free and 'V' engages with 'D'

Then, freeMen = [W], stablePairs = {(X, A), (Y, B), (Z, C), (V, D)} numberOfProposals = 16

'W' proposes to its **next preference 'A'**, but as 'A' is not free and 'A' **prefers 'W'** more than 'X'

Therefore 'X' gets free and 'W' engages with 'X'

Then, freeMen = [X], stablePairs = {(Y, B), (Z, C), (V, D), (W, A)} numberOfProposals = 17

'X' proposes to its **next preference 'B'**, but as **'B'** is not free and **'B' prefers 'X'** more than **'Y'**

Therefore 'Y' gets free and 'X' engages with 'B'

Then, freeMen = [Y], stablePairs = {(Z, C), (V, D), (W, A), (X, B)} numberOfProposals = 18

'Y' proposes to its **next preference** 'C', but as 'C' is not free and 'C' **prefers** 'Y' more than 'Z'

Therefore 'Z' gets free and 'Y' engages with 'C'

Then, freeMen = [Z], stablePairs = {(V, D), (W, A), (X, B), (Y, C)} numberOfProposals = 19

'Z' proposes to its **next preference 'D'**, but as 'D' is not free and 'D' **prefers 'Z'** more than 'V'

Therefore 'V' gets free and 'Z' engages with 'D'
Then, freeMen = [V], stablePairs = {(W, A), (X, B), (Y, C), (Z, D)}
numberOfProposals = 20

'V' proposes to its next preference 'E', as 'E' is free it gets engaged freeMen = [] stablePairs = {(W, A), (X, B), (Y, C), (Z, D), (V, E)} numberOfProposals = 21

NAME	1ST	2ND	3RD	4TH	5TH
Victor	Α	В	С	D	Ε
Wyatt	В	С	D	Α	Е
Xavier	С	D	Α	В	Е
Yancey	D	Α	В	С	Е
Zeus	Α	В	С	D	Е
NAME	1ST	2ND	3RD	4TH	5TH
Amy	W	X	Υ	Z	V
Bertha	X	Υ	Z	V	W
Clare	Υ	Z	V	W	X
Diane	Z	V	W	X	Υ
Erika	V	W	X	Υ	Z

Therefore, now there are no free men, these are the final stable pairs obtained

Stable Pairs: {(W, A), (X, B), (Y, C), (Z, D), (V, E)}

Total number of proposals made(numberOfProposals) = 21 (which is: n(n-1) + 1 = 5(4) + 1 = 21)