

PCI Express IP User Guide

(UG042004, V1.6) (10.01.2023)

Shenzhen Pango Microsystems Co., Ltd.
All Rights Reserved. Any infringement will be subject to legal action.

Revisions History

Document Revisions

Version	Date of Release	Revisions	Applicable IP and Corresponding Versions
V1.6	10.01.2023	Initial release.	V1.6

IP Revisions

IP Version	Date of Release	Revisions
V1.6	10.01.2023	Initial release.

(UG042004, V1.6)

About this Manual

Terms and Abbreviations

Terms and Abbreviations	Meaning
EP	Endpoint
RC	Root Complex
IPC	IP Compiler
PDS	Pango Design Suite

Related Documentation

The following documentation is related to this manual:

- 1. Pango_Design_Suite_Quick_Start_Tutorial
- 2. Pango_Design_Suite_User_Guide
- 3. IP_Compiler_User_Guide
- 4. Simulation_User_Guide
- 5. User_Constraint_Editor_User_Guide
- 6. Physical_Constraint_Editor_User_Guide
- 7. Route_Constraint_Editor_User_Guide
- 8. PCI Express®Base Specification Revision 2.1
- 9. PCI Local Bus Specification Revision 3.0
- 10. AMBA® 4 AXI4-Stream Protocol Version: 1.0
- 11. AMBA® APB Protocol Version: 2.0
- 12. PHY Interface for the PCI ExpressTM Architecture Version 2.00

(UG042004, V1.6) 2 / 74

Table of Contents

Revisions History	1
About this Manual	2
Table of Contents	3
Tables	5
Figures	8
Chapter 1 Preface	9
1.1 Introduction of the Manual	9
1.2 Writing Standards of the Manual	9
Chapter 2 IP User Guide	10
2.1 IP Introduction	10
2.1.1 Key Features	10
2.1.2 Applicable Devices	12
2.2 IP Block Diagram	
2.2.1 pcie_hard_ctrl	
2.2.2 pcie_soft_phy	
2.3 IP Generation Flow Steps	14
2.3.1 Module Instantiation	14
2.3.2 Constraint Configuration	21
2.3.3 Simulation Runs	21
2.3.4 Synthesis and Placement/Routing	21
2.3.5 Resources Utilization	22
2.4 Example Design	24
2.4.1 Design Block Diagram	25
2.4.2 Module Description	25
2.4.3 Module register description	26
2.4.4 Instance Configuration	30
2.4.5 Instance Simulation	30
2.5 IP Interface Description	30
2.5.1 Descriptions of Ports	31
2.5.2 1I/O Pin List Description	
2.5.3 APB Interface Timing	42
2.5.4 User Interface Timing	43
2.6 Description of the IP Register	47
2.6.1 Endpoint	47
2.6.2 Root Complex	67
2.7 Typical Applications	69
2.8 Descriptions and Considerations	69

2.8.1 Operating Modes	69
2.8.2 BAR Size Limitations	70
2.8.3 MSI-X Limitations	70
2.8.4 Lane Reversal Usage Instructions	70
2.8.5 PCIe Recommended and Supported Connection Methods	70
2.8.6 AXI-Stream Master Interface 3DW Usage Instructions	71
2.8.7 Resizable BAR Usage Instructions	71
2.8.8 Max_Read_Request_Size Limitations	72
2.8.9 Correspondence between AXI-Stream Interface and PCIe TLP	72
2.9 IP Debugging Methods	73
Disclaimer	74

Tables

Table 1-1 Description of Writing Standards	9
Table 2-1 Main Features of PCIe IP	10
Table 2-2 Applicable Devices for PCI Express IP	12
Table 2-3 PCIe IP Configuration Parameter Description	15
Table 2-4 Output Files after PCIe IP Generation	20
Table 2-5 Typical Resource Utilization Values for PCIe IP Based on Applicable Devices	22
Table 2-6 Example Design Register Configuration Table	26
Table 2-7 apb_cmd_reg (offset+0x140)	26
Table 2-8 apb_cmd_length (offset+0x150)	27
Table 2-9 apb_cmd_l_addr (offset+0x160)	27
Table 2-10 apb_cmd_h_addr (offset+0x170)	27
Table 2-11 apb_cmd_data (offset+0x180)	27
Table 2-12 dma_cmd_reg (bar1+0x100)	27
Table 2-13 dma_cmd_l_addr (bar1+0x110)	28
Table 2-14 dma_cmd_h_addr (bar1+0x120)	28
Table 2-15 CFG_CORE_REG0 (Offset+0x0)	28
Table 2-16 CFG_CORE_REG1 (Offset+0x4)	29
Table 2-17 CFG_CORE_REG2 (Offset+0x8)	29
Table 2-18 CFG_CORE_REG3 (Offset+0xc)	29
Table 2-19 CFG_CORE_REG4 (Offset+0x10)	29
Table 2-20 PCIe IP Pin List	32
Table 2-21 PCI Express IP Upstream Configuration Space Registers	47
Table 2-22 Device/Vendor ID REG (Offset = 000h)	49
Table 2-23 Command REG (Offset = 004h)	49
Table 2-24 Status REG (Offset = 006h)	49
Table 2-25 Class Code Revision ID REG (Offset = 008h)	50
Table 2-26 Header Type REG (Offset = 00eh)	50
Table 2-27 BAR0 REG (Offset = 010h)	50
Table 2-28 BAR1 REG (Offset = 014h)	50
Table 2-29 BAR2 REG (Offset = 018h)	51
Table 2-30 BAR3 REG (Offset = 01ch)	51
Table 2-31 BAR4 REG (Offset = 020h)	51
Table 2-32 BAR5 REG (Offset = 024h)	52
Table 2-33 SUB_ID REG (Offset = 02ch)	52
Table 2-34 EXP_ROM_INIT REG (Offset = 030h)	52
Table 2-35 CAP_PTR REG (Offset = 034h)	52
Table 2-36 INTR REG (Offset = 03ch)	53

N PANGO	Tables
Table 2-37 MSI_CAP_List REG (Offset = 050h)	53
Table 2-38 MSI_Control REG (Offset = 052h)	53
Table 2-39 MSI_CAP_REG1 (Offset = 054h)	54
Table 2-40 MSI_CAP_REG2 (Offset = 058h)	54
Table 2-41 MSI_CAP_REG3 (Offset = 05ch)	55
Table 2-42 MSI_CAP_REG4 (Offset = 060h)	55
Table 2-43 MSI_CAP_REG5 (Offset = 064h)	55
Table 2-44 PCIE_CAP_List REG (Offset = 070h)	55
Table 2-45 PCIE_CAP REG (Offset = 072h)	56
Table 2-46 Device_CAP REG (Offset = 074h)	56
Table 2-47 Device_Control REG (Offset = 078h)	57
Table 2-48 Device_Status REG (Offset = 07ah)	58
Table 2-49 Link_CAP REG (Offset = 07ch)	58
Table 2-50 Link_Control REG (Offset = 080h)	59
Table 2-51 Link_Status REG (Offset = 082h)	60
Table 2-52 Device_CAP2 REG (Offset = 094h)	60
Table 2-53 Device_Control2 REG (Offset = 098h)	61
Table 2-54 Device_Status2 REG (Offset = 09ah)	61
Table 2-55 Link_CAP2 REG (Offset = 09ch)	62
Table 2-56 Link_Control2 REG (Offset = 0a0h)	62
Table 2-57 Link_Status2 REG (Offset = 0a2h)	62
Table 2-58 MSI-X_CAP_List REG (Offset = 0b0h)	63
Table 2-59 Message_Control REG (Offset = 0b0h)	63
Table 2-60 MSI-X_Table_Offset REG (Offset = 0b4h)	63
Table 2-61 MSI-X_PBA_Offset REG (Offset = 0b8h)	64
Table 2-62 MSI-X_PBA_Offset REG (Offset = 0b8h)	64
Table 2-63 Shadow Register	64
Table 2-64 BAR0_MASK_REG (Offset = 011h)	65
Table 2-65 BAR1_MASK_REG (Offset = 015h)	65
Table 2-66 BAR2_MASK_REG (Offset = 019h)	65
Table 2-67 BAR3_MASK_REG (Offset = 01dh)	65
Table 2-68 BAR4_MASK_REG (Offset = 021h)	65
Table 2-69 BAR0_MASK_REG (Offset = 025h)	66
Table 2-70 EXP_ROM_BAR (Offset = 031h)	66
Table 2-71 Port Logic Register	66
Table 2-72 PORT_LINK_CTRL_OFF (Offset = 710h)	66
Table 2-73 GEN2_CTRL_OFF (Offset = 80ch)	67
Table 2-74 PCI Express IP Downstream Configuration Space Registers	
Table 2-75 Root Control REG (Offset = 08ch)	68

U PANGO	Tables
Table 2-76 Root Capabilities REG (Offset = 08eh)	69
Table 2-77 Recommended Connection Methods	71
Table 2-78 Supported Connection Methods	71
Table 2-79 Meaning of FMT[1:0] Field	71
Table 2-80 Resizable BAR Parameter Descriptions	72
Table 2-81 TLP Byte Position Description	72
Table 2-82 Correspondence Between AXI-Stream and 4DW Header TLP	73
Table 2-83 Correspondence Between AXI-Stream and 3DW Header TLP	73

(UG042004, V1.6) 7 / 74

Figures

Figure 2-1 Functional Diagram of PCI Express IP	13
Figure 2-2 PCI Express IP Selection Path Interface	14
Figure 2-3 Project Instantiation Interface	15
Figure 2-4 PCI Express Parameter Configuration Interface	15
Figure 2-5 PCIe IP Generation Report Interface	19
Figure 2-6 PCIe IP Example Design Block Diagram	25
Figure 2-7 PCIe IP Interface Description	31
Figure 2-8 Basic APB Read Timing	42
Figure 2-9 Basic APB Write Timing	42
Figure 2-10 4DW Posted Operation Timing	43
Figure 2-11 3DW Posted Operation Timing	43
Figure 2-12 4DW Non-Posted Operation Timing	43
Figure 2-13 3DW Non-Posted Operation Timing	44
Figure 2-14 Completion Operation Timing	44
Figure 2-15 Back to Back Non-Posted Operation Timing	44
Figure 2-16 4DW Posted Operation Timing	45
Figure 2-17 3DW Posted Operation Timing	45
Figure 2-18 4DW Non-Posted Operation Timing	45
Figure 2-19 3DW Non-Posted Operation Timing	45
Figure 2-20 Completion Operation Timing	46
Figure 2-21 Back to Back Non-Posted Operation Timing	46
Figure 2-22 MSI Operation Timing	46
Figure 2-23 MSI-X Operation Timing	47
Figure 2-24 PCI Express Endpoint Mode Diagram	69
Figure 2-25 Root Port of PCI Express Root Complex Mode Diagram	70

Chapter 1 Preface

This chapter describes the scope, structure, and writing standards of this manual to help users quickly find the information they need.

1.1 Introduction of the Manual

This manual serves as a user guide for the PCI Express IP, which is launched by Pango Microsystems. It is applicable to Logos2 Family FPGA products, mainly including the IP usage guidelines and relevant information. Through this manual, users can quickly understand the features and usage methods related to PCI Express IP.

1.2 Writing Standards of the Manual

Table 1-1 Description of Writing Standards

Text	Rules
Attention	If users ignore the attention contents, they may suffer adverse consequences or fail to operate successfully due to incorrect actions.
Description	Instructions and tips provided for users.

(UG042004, V1.6) 9 / 74

Chapter 2 IP User Guide

This chapter provides a guide on the use of PCI Express IP, including an introduction to IP, IP block diagram, IP generation process, Example Design, IP interface description, IP register description, and instructions and considerations. More details on the design process can be found in the following PDS help documentation.

- "Pango_Design_Suite_Quick_Start_Tutorial"
- "Pango_Design_Suite_User_Guide"
- > "IP_Compiler_User_Guide"
- "Simulation_User_Guide"

2.1 IP Introduction

PCI Express IP is designed to implement the PCIe protocol in the Logos2 family FPGA product. Users can configure and generate the IP module using the IPC (IP Compiler) tool within the PDS (Pango Design Suite).

2.1.1 Key Features

The PCI Express IP of the Logos2 family is implemented in accordance with the "PCI Express® Base Specification Revision 2.1" and the "PHY Interface for the PCI ExpressTM Architecture Version 2.00" (with the data path expanded to 32 bits) protocols. The main features are provided in Table 2-1.

Table 2-1 Main Features of PCIe IP

Features	Feature Description
	PCI Express Endpoint
Supports configuration of Device Type	Legacy PCI Express Endpoint
-74	Root Port of PCI Express Root Complex
	x1
Supports configuration of Max Link Width	x2
	x4
Supports configuration of Max Link	2.5GT/s
Speed	5GT/s

(UG042004, V1.6)

Chapter 2 IP User Guid		
Features	Feature Description	
Supports 100MHz Reference Clk	-	
Supports upconfigure Capability	-	
Supports selection of the number of AXI-Stream Slaves	1	
	2	
	3	
Supports Debug interface	-	
Supports dynamic configuration of	-	
PCIe Configuration Space via Apb Supports Receive Queue		
Management Queue		
Supports Lane Reversal	-	
Supports Force No Scrambling	-	
	Supports configuration of Vendor ID	
	Supports configuration of Device ID	
	Supports configuration of Revision ID	
Supports configuration of ID.	PCI Express Endpoint and Legacy PCI Express Endpoint support	
	configuration of Subsystem Vendor ID PCI Express Endpoint and Legacy PCI Express Endpoint support	
	configuration of Subsystem ID	
	Configuration of Classcode	
	PCI Express Endpoint and Legacy PCI Express Endpoint support configuration of 6 BARs	
	Root Port of PCI Express Root Complex only supports configuration of	
	BAR0 and BAR1 PCI Express Endpoint supports configuration as Memory BAR	
	Legacy PCI Express Endpoint and Root Port of PCI Express Root	
	Complex support configuration as Memory and IO BAR	
Configuration of BAR	Supports 32bit BAR	
Comigaration of Brite	32bit BAR supports configuration sizes from 256Bytes to 2GB	
	BAR0, BAR2, and BAR4 support 64bit BAR	
	64bit BAR supports being Prefetchable	
	64bit BAR supports configuration sizes from 256Bytes to 8EB	
	Supports Expansion ROM BAR	
	Expansion ROM BAR supports configuration sizes from 2KB to 16MB	
	128 Byte	
Supports configuration of Max	256 Byte	
Payload Size	512 Byte	
	1024 Byte	
Supports configuration of the Extended Tag Field and Extended Tag Default	-	
Supports Atomic transactions	-	
RC supports setting the Read Completion Boundary	-	
Supports configuration of Target Link Speed	-	

(UG042004, V1.6) 11/74

Features	Feature Description			
RC supports setting CRS Software Visibility	-			
Supports setting of ECRC Generation Capable	-			
ECRC Check Capable is enabled by default	-			
Supports INIT interrupt	PCI Express Endpoint and Legacy PCI Express Endpoint only support INTA Root Port of PCI Express Root Complex supports INTA, INTB, INTC, and INTD			
	Supports 64-bit Address MSI interrupt			
Supports MSI interrupt	Supports Multiple Message Capable: 1, 2, 4, 8, 16, or 32 Vectors			
	Supports Per Vector Masking Capable			
Supports MSIx interrupt	Supports configuration of Table Size, Offset, and BIR			
Supports Wistx Interrupt	Supports configuration of PBA Offset and BIR			

Note: "-" indicates that there is no description for the item.

2.1.2 Applicable Devices

Table 2-2 Applicable Devices for PCI Express IP

Applicable Devices	Supported Packages
PG2L200H	ALL
PG2L100H	ALL (except for MBG324)
PG2L100HX	ALL (except for MBG324)
PG2L50H	ALL (Except for FBG256/MBG324)
PG2L25H	ALL

(UG042004, V1.6) 12 / 74

2.2 IP Block Diagram

Figure 2-1 Functional Diagram of PCI Express IP

PCI Express IP primarily consists of two parts: pcie_hard_ctrl and pcie_soft_phy.

2.2.1 pcie_hard_ctrl

The pcie_hard_ctrl implements the main functions of the Transaction Layer, Data Link Layer, and Physical Layer (MAC) related to the protocol.

- external_ram: Implements RCV_HEAD_RAM, RCV_DATA_RAM, RETRY_DATA_RAM functions of PCIe;
- > GTP_PCIEGEN2: Implements the primary functions of PCIe.

2.2.2 pcie_soft_phy

pcie_soft_phy includes HSST and its corresponding reset sequence.

- hsst_rst4mcrsw: HSST reset sequence;
- hsst_top: HSST top level.

(UG042004, V1.6)

2.3 IP Generation Flow Steps

2.3.1 Module Instantiation

Users can customise the PCI Express IP and instantiate the required IP modules via the IPC tool. For detailed instructions on using the IPC tool, please refer to "IP_Compiler_User_Guide".

The main steps for instantiating the PCI Express IP module are described as follows.

2.3.1.1 Selecting IP

Open IPC and click File > Update in the main window to open the Update IP dialog box, where you add the corresponding version of the IP model.

After selecting the FPGAs device type, the Catalog interface displays the loaded IP models. Select the corresponding version of PCI Express under the "System/PCIe" directory. The IP selection path is shown in Figure 2-2. Then set the Pathname and Instance Name on the right side of the page. The project instantiation interface is shown in Figure 2-3.

Attention:

PG2L50H, PG2L25H: The software version must be 2022.1 or above.

PG2L100H: The software version must be 2021.1-SP7.2, 2021.4-SP1, 2022.1 or above.

PG2L200H: The software version must be 2022.2 or above.

PG2L100HX: The software version must be 2023.1 or above.

Figure 2-2 PCI Express IP Selection Path Interface

(UG042004, V1.6)

Figure 2-3 Project Instantiation Interface

2.3.1.2 IP parameter configuration

After selecting IP, click <Customize> to enter the PCI Express parameter settings interface, where the configuration window is as shown below. For IP configuration parameters, please refer to Table 2-3.

Figure 2-4 PCI Express Parameter Configuration Interface

Table 2-3 PCIe IP Configuration Parameter Description

Option Domain	Parameter/Configuration Options	Parameter Description	Default Value
	Device Type	Select PCIe device type	PCI Express Endpoint
	Maximum Link Width	Set the maximum link width supported by PCIe device	X1
PCIe Basic Settings	Maximum Link Speed	Configure the maximum link speed supported by PCIe device	2.5 GT/s
	Reference Clk	Select reference clock	100 MHz
	Number of AXI-Stream Slave	Select the number of AXI-Stream Slaves	3

(UG042004, V1.6) 15 / 74

Option Domain	Parameter/Configuration Options	Parameter Description	Default Value			
	Upconfigure Capable	Upconfigure Capable enable option Selected: Enable Upconfigure Capable function Cleared: Disable Upconfigure Capable function	Selected			
	Enable Lane Reversal	Lane Reversal enable option Selected: Enable automatic Lane Reversal function Cleared: Disable automatic Lane Reversal function	Cleared			
	Disable Scrambling	Scrambling and descrambling enable option Selected: Disable scrambling and descrambling Cleared: Enable scrambling and descrambling	Cleared			
	Dynamic Configuration for PCIe	PCIe configuration space register dynamic read/write interface (APB interface) enable option Selected: Enable dynamic read/write of PCIe configuration space registers Cleared: Disable dynamic read/write of PCIe configuration space registers	Selected			
	Enable Receive Queue Management	User interface receive Buffer management interface enable option Selected: Enable Receive Queue Management Cleared: Disable Receive Queue Management	Cleared			
	Enable Debug Ports	Debug interface enable option				
	Enable Configuration Out Ports	Configuration space information output interface enable option Only valid when Debug interface is enabled Selected: Enable Configuration Out interface Cleared: Disable Configuration Out interface	Selected			
	Enable Credit Ports	Peer Credit information enable option Only valid when Debug interface is enabled Selected: Enable Credit information interface Cleared: Disable Credit information interface				
	Vendor ID	Set Vendor ID	0755			
	Device ID	Set Device ID	0755			
PCIe ID	Revision ID	Set Revision ID	00			
Settings	Subsystem Vendor ID	Set Subsystem Vendor ID Invalid in RC mode	0000			
	Subsystem ID	Set Subsystem ID Invalid in RC mode	0000			

(UG042004, V1.6) 16 / 74

Option Domain	Parameter/Configuration Options	Parameter Description	Default Value
	Base Class Code	Set Base Class Code Fixed as 06 in RC mode	05
Class Code Settings	Sub Class Code	Set Sub Class Code Fixed as 00 in RC mode	80
_	Programming Interface	Set Programming Interface Fixed as 00 in RC mode	00
	BAR0 Enable	BAR0 enable option Selected: Enable BAR0 Cleared: Disable BAR0	Selected
	BAR0 Type	BAR0 type setting Options: 32bit Memory 32bit IO 64bit Prefetchable Memory 64bit Non-Prefetchable Memory 32bit IO cannot be selected in EP mode	32bit Memory
	BAR0 Size	BAR0 size setting For 32bit Memory and 32bit IO: The range is 256 Byte-2G Byte For 64bit Prefetchable Memory and 64bit Non-Prefetchable Memory: The range is 256 Byte-8E Byte	8 Kilobytes
	BAR1 Enable	BAR1 enable option Selected: Enable BAR1 Cleared: Disable BAR1	Selected
Base	BAR1 Type	BAR1 type setting Options: 32bit Memory 32bit IO 32bit IO cannot be selected in EP mode	32bit Memory
Address Registers	BAR1 Size	BAR1 size setting The range is 256Byte-2G Byte	4 Kilobytes
Settings	BAR2 Enable	BAR2 enable option Selected: Enable BAR2 Cleared: Disable BAR2	Selected
	BAR2 Type	BAR2 type setting Options: 32bit Memory 32bit IO 64bit Prefetchable Memory 64bit Non-Prefetchable Memory 32bit IO cannot be selected in EP mode	64bit Non-Prefetchable Memory
	BAR2 Size	BAR2 size setting: For 32bit Memory and 32bit IO: The range is 256Byte-2G Byte For 64bit Prefetchable Memory and 64bit Non-Prefetchable Memory: The range is 256Byte-8E Byte	8 Kilobytes
	BAR3 Enable	BAR3 enable option Selected: Enable BAR3 Cleared: Disable BAR3	Cleared
	BAR3 Type	BAR3 type setting Options: 32bit Memory 32bit IO 32bit IO cannot be selected in EP mode	32bit Memory

(UG042004, V1.6) 17 / 74

Option Domain	Parameter/Configuration Options	Parameter Description	Default Value	
	BAR3 Size	BAR3 size setting The range is 256 Byte-2G Byte	256 Bytes	
	BAR4 Enable	BAR4 enable option Selected: Enable BAR4 Cleared: Disable BAR4	Cleared	
	BAR4 Type	BAR4 type setting Options: 32bit Memory 32bit IO 64bit Prefetchable Memory 64bit Non-Prefetchable Memory 32bit IO cannot be selected in EP mode	32bit Memory	
	BAR4 Size	BAR4 size setting For 32bit Memory and 32bit IO: The range is 256 Byte-2G Byte For 64bit Prefetchable Memory and 64bit Non-Prefetchable Memory: The range is 256 Byte-8E Byte	256 Bytes	
	BAR5 Enable	BAR5 enable option Selected: Enable BAR5 Cleared: Disable BAR5	Cleared	
	BAR5 Type	BAR5 type setting Options: 32bit Memory 32bit IO	32bit Memory	
	BAR5 Size	32bit IO cannot be selected in EP mode BAR5 size setting The range is 256 Byte-2G Byte	256 Bytes	
	Expansion ROM Enable	Expansion ROM enable option Selected: Enable Expansion ROM Cleared: Disable Expansion ROM	Cleared	
	Expansion ROM Size	Expansion ROM size setting The range is 2KB-16MB	2 Kilobytes	
	Max Payload Size	Select Max Payload Size supported by PCIe	128 Bytes	
Device Capabilities Settings	Extended Tag Field	Extended Tag Field enable option Selected: Enable Extended Tag Field (IP supports up to 64 Tags) Cleared: Disable Extended Tag Field (IP supports up to 32 Tags)	Selected	
	Extended Tag Default	Extended Tag Default enable option Selected: Enable Extended Tag Field Cleared: Disable Extended Tag Field	Selected	
Device Capabilities 2 Settings	Atomic Enable	Atomic enable option Selected: Enable Atomic (AtomicOp supported) Cleared: Disable Atomic (AtomicOp not supported)	Cleared	
Link Control Settings	Read Completion Boundary	Configure Link Control Register[3] (only configurable in RC) The rest is fixed at 128Byte	128 byte	
Link Control2 Settings	Target Link Speed	Configure Link Control 2 Register[3:0] Only configurable at 5GT/s	2.5 GT/s	
Root Capabilities Settings	CRS Software Visibility	Configure Root Capabilities Register [0] Only configurable in RC	Cleared	

(UG042004, V1.6) 18 / 74

Option Domain	Parameter/Configuration Options	Parameter Description	Default Value
Advanced Error	ECRC Generation Capable	Configure Advanced Error Capabilities and Control Register[5]	Cleared
Capabilities Settings	ECRC Check Capable	Configure Advanced Error Capabilities and Control Register[7]	Selected
	INTX Enable	INTX enable option: Selected: Enable INTX Cleared: Disable INTX	Cleared
Legacy Interrupt Settings	Interrupt Pin	Select INTX Interrupt PIN (only valid when INTX Enable is enabled) EP and Legacy EP: Only INTA and INTB are supported RC: INTA, INTB, INTC, and INTD are supported	INTA
	MSI Enable	MSI Capability enable option Selected: Enable MSI Capability Cleared: Disable MSI Capability	Cleared
MSI	64bit Address Capable	MSI 64bit Address Capable enable option Selected: 64bit Address MSI supported Cleared: 64bit Address MSI not supported	Cleared
Interrupt	Multiple Message Capable	Select the number of supported MSI vectors	1 Vector
Settings	Per-Vector Masking Capable	MSI Per-Vector Masking Capable enable option Selected: Per-Vector Masking Capable supported Cleared: Per-Vector Masking Capable not supported	Cleared
	MSIx Enable	MSI-X Capability enable option Selected: Enable MSI-X Capability Cleared: Disable MSI-X Capability	Cleared
	Table Size	Configure MSI-X Table size	0x1
MSIx Interrupt	Table Offset	Configure MSI-X Table Offset	0x0
Settings	Table BIR	Configure MSI-X Table mapping BAR location	BAR0
	PBA Offset	Configure MSI-X PBA Offset	0x0
	PBA BIR	Configure MSI-X PBA mapping BAR location	BAR0

2.3.1.3 Generating IP

Upon completion of parameter configuration, click the <Generate> button in the top left corner to generate the PCIe IP set by the user. The information report interface for IP generation is shown in Figure 2-5.

Done: 0 error(s), 0 warning(s)

Figure 2-5 PCIe IP Generation Report Interface

(UG042004, V1.6) 19 / 74

Attention:

The .pds and .fdc files generated with the IP are for reference only; please modify the pin constraints according to the actual pin connections when in use.

Upon successful IP generation, the files indicated in Table 2-4 will be output under the Instance path specified in step 1.

Table 2-4 Output Files after PCIe IP Generation

Output File ¹	Description
\$instname.v	The top-level .v file of the generated IP.
\$instname.idf	The Configuration file of the generated IP.
/rtl/*.v	The RTL code file of the generated IP.
/rtl/ external_ram/*.v	The plaintext RTL file of the generated IP, which contains the RAM modules for implementing the PCIe functions RCV_HEAD_RAM, RCV_DATA_RAM, RETRY_DATA_RAM.
/rtl/ hsstlp/*.v	Plaintext RTL files of the generated IP. This folder stores the HSSTLP module.
/rtl/ hsst_pipe/*.v	Plaintext RTL file of the generated IP, which stores the HSSTLP reset sequence.
<pre><pre><pre><pre>project_path>/sim/modelsim/*.f</pre></pre></pre></pre>	The list of .v files required for ModelSim simulation of the generated Example Design.
/sim/modelsim/*.do	The do script files and do waveform files for ModelSim simulation of the generated Example Design.
/sim/modelsim/*.bat	The script for ModelSim simulation of the generated Example Design.
/example_design/bench/ pango_ pcie _top_tb.v	The tb file of the Example Design's top-level file.
/example_design/bench/ pango_pcie_top.v	The top-level file of the Example Design.
/example_design/bench/ pango_pcie_top_sim.v	The top-level file of the Example Design for simulation connection.
/example_design/bench/ ips2l_pcie_wrap_v1_3_sim.v	The IP top-level file for simulation connection.
/example_design/rtl/*.v	Some module files and top-level files used in Example Design. For detailed information, please refer to "2.4 Example Design".
/pnr/core_only/ <instance_name>.pds</instance_name>	The project file of the generated IP core.
/pnr/core_only/ <instance_name>.fdc</instance_name>	The constraint file of the generated IP core.
/pnr/example_design /pango_pcie_top.pds	The project file of the Example Design.
/pnr/example_design /pango_pcie_top.fdc	The constraint file of the generated Example_Design.
/rev_1	The default output path for synthesis reports. (This folder is generated only after specifying the synthesis tool)

(UG042004, V1.6) 20 / 74

^{1 &}quot;\$instname" is the instantiation name entered by the user; "*" is a wildcard character representing filenames of the same type.

Output File ¹	Description
readme.txt	The readme file describes the structure of the generation directory after the IP is generated.

2.3.2 Constraint Configuration

For the specific configuration method of constraint files, please refer to the relevant help documents in the PDS installation path: "User_Constraint_Editor_User_Guide", "Physical_Constraint_Editor_User_Guide", "Route_Constraint_Editor_User_Guide".

2.3.3 Simulation Runs

The simulation of the PCI Express IP is based on the Test Bench of the Example Design. For detailed information about Example Design, please refer to "2.4 Example Design".

For more details about the PDS simulation functions and third-party simulation tools, please consult the related help documents in the PDS installation path: "Pango_Design_Suite_User Guide", "Simulation_User_Guide".

2.3.4 Synthesis and Placement/Routing

The specific usage of PDS synthesis tools and placement/routing tools can be found in the help documents within the PDS installation path.

Attention:

Example Design project files .pds and pin constraint files .fdc generated with the IP are located in the "/pnr/ example_design" directory, and physical constraints need to be modified according to the actual devices and PCB trace routing. For details, please refer to "2.8 Descriptions and Considerations".

(UG042004, V1.6) 21 / 74

2.3.5 Resources Utilization

Table 2-5 Typical Resource Utilization Values for PCIe IP Based on Applicable Devices

D. C.	C C	Configuration Mode		Typical Resource Utilization Values						
Device	Configura			FF	DRAM	HSSTLP	GPLL	PCIE	USCM	
		Gen1, x1	506	694	8.5	0.5	1	1	3	
		Gen2, x1	500	683	8.5	0.5	1	1	3	
	PCI	Gen1, x2	651	810	8.5	0.5	0	1	1	
	Express Endpoint	Gen2, x2	635	810	8.5	0.5	0	1	1	
	1	Gen1, x4	862	1024	8.5	1	0	1	1	
		Gen2, x4	864	1024	8.5	1	0	1	1	
	Legacy	Gen1, x1	506	694	8.5	0.5	1	1	3	
		Gen2, x1	500	683	8.5	0.5	1	1	3	
DC21 20011	PCI	Gen1, x2	651	810	8.5	0.5	0	1	1	
PG2L200H	Express	Gen2, x2	635	810	8.5	0.5	0	1	1	
	Endpoint	Gen1, x4	862	1024	8.5	1	0	1	1	
		Gen2, x4	864	1024	8.5	1	0	1	1	
		Gen1, x1	498	683	8.5	0.5	1	1	3	
	PCI	Gen2, x1	500	683	8.5	0.5	1	1	3	
	Express Root	Gen1, x2	644	810	8.5	0.5	0	1	1	
		Gen2, x2	637	810	8.5	0.5	0	1	1	
	Complex	Gen1, x4	855	1024	8.5	1	0	1	1	
		Gen2, x4	857	1024	8.5	1	0	1	1	
		Gen1, x1	567	707	8	0.5	1	1	3	
		Gen2, x1	565	705	8	0.5	1	1	3	
	PCI	Gen1, x2	720	845	8	0.5	0	1	1	
	Express Endpoint	Gen2, x2	727	847	8	0.5	0	1	1	
		Gen1, x4	996	1101	8	1	0	1	1	
		Gen2, x4	996	1102	8	1	0	1	1	
		Gen1, x1	569	705	8	0.5	1	1	3	
	Legacy	Gen2, x1	570	704	8	0.5	1	1	3	
PG2L100H	PCI	Gen1, x2	741	842	8	0.5	0	1	1	
PG2L100H	Express	Gen2, x2	712	842	8	0.5	0	1	1	
	Endpoint	Gen1, x4	995	1102	8	1	0	1	1	
		Gen2, x4	995	1104	8	1	0	1	1	
		Gen1, x1	588	705	8	0.5	1	1	3	
	PCI	Gen2, x1	561	704	8	0.5	1	1	3	
	Express	Gen1, x2	725	842	8	0.5	0	1	1	
	Root	Gen2, x2	723	840	8	0.5	0	1	1	
	Complex	Gen1, x4	1001	1101	8	1	0	1	1	
		Gen2, x4	1001	1101	8	1	0	1	1	

(UG042004, V1.6) 22 / 74

Device	Configura	tion Mode	Typical Resource Utilization Values						
Device	Comigura	uon wioue	LUT	FF	DRAM	HSSTLP	GPLL	PCIE	USCM
		Gen1, x1	502	694	8.5	0.5	1	1	3
		Gen2, x1	494	683	8.5	0.5	1	1	3
	PCI Express	Gen1, x2	622	810	8.5	0.5	0	1	1
	Endpoint	Gen2, x2	617	810	8.5	0.5	0	1	1
		Gen1, x4	830	1024	8.5	1	0	1	1
		Gen2, x4	830	1024	8.5	1	0	1	1
		Gen1, x1	502	694	8.5	0.5	1	1	3
	Legacy	Gen2, x1	494	683	8.5	0.5	1	1	3
PG2L100HX	PCI	Gen1, x2	622	810	8.5	0.5	0	1	1
PG2L100HA	Express	Gen2, x2	617	810	8.5	0.5	0	1	1
	Endpoint	Gen1, x4	830	1024	8.5	1	0	1	1
		Gen2, x4	830	1024	8.5	1	0	1	1
		Gen1, x1	492	683	8.5	0.5	1	1	3
	PCI Express Root Complex	Gen2, x1	491	683	8.5	0.5	1	1	3
		Gen1, x2	619	810	8.5	0.5	0	1	1
		Gen2, x2	619	810	8.5	0.5	0	1	1
		Gen1, x4	838	1024	8.5	1	0	1	1
		Gen2, x4	842	1024	8.5	1	0	1	1
	PCI	Gen1, x1	567	707	8	0.5	1	1	3
		Gen2, x1	565	705	8	0.5	1	1	3
		Gen1, x2	720	845	8	0.5	0	1	1
	Express Endpoint	Gen2, x2	727	847	8	0.5	0	1	1
		Gen1, x4	996	1101	8	1	0	1	1
		Gen2, x4	996	1102	8	1	0	1	1
		Gen1, x1	569	705	8	0.5	1	1	3
	Legacy	Gen2, x1	570	704	8	0.5	1	1	3
PG2L50H	PCI	Gen1, x2	741	842	8	0.5	0	1	1
PG2L30H	Express	Gen2, x2	712	842	8	0.5	0	1	1
	Endpoint	Gen1, x4	995	1102	8	1	0	1	1
		Gen2, x4	995	1104	8	1	0	1	1
		Gen1, x1	588	705	8	0.5	1	1	3
	PCI	Gen2, x1	561	704	8	0.5	1	1	3
	Express	Gen1, x2	725	842	8	0.5	0	1	1
	Root	Gen2, x2	723	840	8	0.5	0	1	1
	Complex	Gen1, x4	1001	1101	8	1	0	1	1
		Gen2, x4	1001	1101	8	1	0	1	1

(UG042004, V1.6) 23 / 74

D. t.	Clare Character and a same		Typical Resource Utilization Values						
Device	Configura	Configuration Mode		FF	DRAM	HSSTLP	GPLL	PCIE	USCM
		Gen1, x1	567	707	8	0.5	1	1	3
		Gen2, x1	565	705	8	0.5	1	1	3
	PCI	Gen1, x2	720	845	8	0.5	0	1	1
	Express Endpoint	Gen2, x2	727	847	8	0.5	0	1	1
	1	Gen1, x4	996	1101	8	1	0	1	1
		Gen2, x4	996	1102	8	1	0	1	1
		Gen1, x1	569	705	8	0.5	1	1	3
	Lagory	Gen2, x1	570	704	8	0.5	1	1	3
DCOLOGII	Legacy PCI	Gen1, x2	741	842	8	0.5	0	1	1
PG2L25H	Express	Gen2, x2	712	842	8	0.5	0	1	1
	Endpoint	Gen1, x4	995	1102	8	1	0	1	1
		Gen2, x4	995	1104	8	1	0	1	1
		Gen1, x1	588	705	8	0.5	1	1	3
	PCI	Gen2, x1	561	704	8	0.5	1	1	3
	Express	Gen1, x2	725	842	8	0.5	0	1	1
	Root	Gen2, x2	723	840	8	0.5	0	1	1
	Complex	Gen1, x4	1001	1101	8	1	0	1	1
		Gen2, x4	1001	1101	8	1	0	1	1

2.4 Example Design

This section introduces the Example Design scheme for PCIe IP based on Root Complex and Endpoint connection. The scheme instantiates a Root Complex type PCIe IP and an Endpoint type PCIe IP, which auto-negotiation upon connection. After successful negotiation, the RC performs DMA or PIO operations by sending TLP packets.

(UG042004, V1.6) 24 / 74

2.4.1 Design Block Diagram

Figure 2-6 PCIe IP Example Design Block Diagram

2.4.2 Module Description

2.4.2.1 pcie_top module

The top level of the Example Design.

2.4.2.2 uart2apb module

Interface conversion module, converting serial port to standard APB interface.

2.4.2.3 pcie_cfg_ctrl module

Only effective in RC. It generates Cfg TLP packets that comply with the AXI-Stream interface timing based on the user's configuration through the APB interface, completing the configuration of the EP. For details on the specific register configuration, please refer to "2.4.3.3 CFG_CTRL (Offset = 0x9000)".

2.4.2.4 pcie_dma module

DMA control module, which generates TLP packets that comply with AXI-Stream interface timing based on the configuration, completing the DMA control function. For details on the specific register configuration, please refer to "2.4.3.2 DMA_CTRL (Offset=0x8000)".

(UG042004, V1.6) 25 / 74

2.4.2.5 pcie_wrap module

The top level of the PCIe IP.

2.4.3 Module register description

For module registers related to the Example Design, please refer to Table 2-6.

Table 2-6 Example Design Register Configuration Table

Base Addr	Register Name
0x7000	DBI_CORE_REG
0x8000	DMA_CTRL_REG
0x9000	CFG_CORE_REG

2.4.3.1 APB2DBI (Offset = 0x7000)

Convert APB interface to DBI interface, configuring the PCIe hard core function via the DBI interface.

2.4.3.2 DMA_CTRL (Offset=0x8000)

2.4.3.2.1 RC

Table 2-7 apb_cmd_reg (offset+0x140)

bit	Name	Access	Description
7:0	Reserved	Reserved	Must be 0
8	User_Data_Flag	W/R	Configure the source of Data in the MWr TLP packets 1: Use user-defined data packaging (only 1DW supported) 0: Use data packaging from the BAR Default: 0
15:9	Reserved	Reserved	None
16	ADDR_64	W/R	Configure the address length type 0: 32bit 1: 64bit Default: 0
23:17	Reserved	Reserved	None
24	FMT	W/R	Configure the type of TLP packets 0: MRd 1: MWr Default: 0
31:25	Reserved	Reserved	None

(UG042004, V1.6) 26 / 74

Table 2-8 apb_cmd_length (offset+0x150)

bit	Name	Access	Description
9: 0	Length	W/R	Configure the length of TLP packets ² Default: 0
31:10	Reserved	Reserved	None

Table 2-9 apb_cmd_l_addr (offset+0x160)

bit	Name	Access	Description
1:0	Reserved	Reserved	None
31:2	ADDR_L	W/R	The lower 30 bits of the MEM access address Default: 0

Table 2-10 apb_cmd_h_addr (offset+0x170)

bit	Name	Access	Description
31:0	ADDR_H	W/R	The upper 32 bits of the MEM access address Default: 0

Table 2-11 apb_cmd_data (offset+0x180)

bit	Name	Access	Description
31:0	USER_DATA	W/R	Configure user data, used for configuring the DMA REG of the EP

2.4.3.2.2 EP

Table 2-12 dma_cmd_reg (bar1+0x100)

bit	Name	Access	Description
9:0	Length	Reserved	P2P WR/RD Length ³
16	ADDR_64	W/R	Configures address length type 0: 32bit 1: 64bit Default: 0
23:15	Reserved	Reserved	None

(UG042004, V1.6) 27 / 74

² The actual effective length is {apb_cmd_length[9:0]+1} DW.

³ The actual effective length is { dma_cmd_reg [9:0]+1} DW.

bit	Name	Access	Description
		Configure the type of TLP packets	
24	EMT	W/R	0: MRd
24	FMT		1: MWr
			Default: 0
31:25	Reserved	Reserved	None

Table 2-13 dma_cmd_l_addr (bar1+0x110)

bit	Name	Access	Description
1:0	Reserved	Reserved	None
31:2	ADDR_L	W/R	The lower 30 bits of the MEM access address Default: 0

Table 2-14 dma_cmd_h_addr (bar1+0x120)

bit	Name	Access	Description
31:0	ADDR_H	W/R	The upper 32 bits of the MEM access address Default: 0

2.4.3.3 CFG_CTRL (Offset = 0x9000)

Table 2-15 CFG_CORE_REG0 (Offset+0x0)

bit	Name	Access	Description
0	FMT	W/R	Configure the type of TLP packets 0: RD FMT=3'b000 1: WR FMT=3'b010 Default: 0
1	ТҮРЕ	W/R	Configure Type 0: TYPE0 type=5'b00100 1: TYPE1 type=5'b00101 Default: 0
5:2	FBE	W/R	Configure First BE Default: 4'b0000
7:6	Reserved	Reserved	None
15:8	TAG	W/R	Configure TAG Default: 8'h0
16	CPL_RCV	W1C	Cpl receive Flag, indicates receipt of Cpl TLP
19:17	CPL_STATUS	W1C	Type of received Cpl 000: Successful Completion (SC) 001: Unsupported Request (UR) 010: Configuration Request Retry Status (CRS) 100: Completer Abort (CA) Others: Reserved
23:20	Reserved	Reserved	None

(UG042004, V1.6) 28 / 74

bit	Name	Access	Description
24	TX_EN	W/R	Cfg Request transmit enable Default: 0
31:25	Reserved	Reserved	None

Table 2-16 CFG_CORE_REG1 (Offset+0x4)

bit	Name	Access	Description
15:0	REQ_ID	W/R	Configure Requester ID Default: 15'h00
31:16	DES_ID	W/R	Configure destination ID field

Table 2-17 CFG_CORE_REG2 (Offset+0x8)

bit	Name	Access	Description
9:0	REG_NUM	W/R	Configure Cfg REG_NUM Default: 0x0
23:10	Reserved	Reserved	None
24	CFG_CTRL_EN	W/R	When this Bit is 1: CFG_CTRL can use axis_master interface
31:25	Reserved	Reserved	None

Table 2-18 CFG_CORE_REG3 (Offset+0xc)

bit	Name	Access	Description
31:0	DATA	W/R	Transmit the DATA field in the CFG write request default: 0x0

Table 2-19 CFG_CORE_REG4 (Offset+0x10)

bit	Name	Access	Description
31:0	RDATA	R	Receive the DATA field by sending CFG read request default: 0x0

(UG042004, V1.6) 29 / 74

2.4.3.4 Configuration Process

For the detailed configuration process of the Example Design, please refer to <instance_name>/example_design/bench/ pango_ pcie _top_tb.v⁴.

2.4.4 Instance Configuration

This scheme requires using APB to configure the configuration space registers, and there are requirements for the setting of BARs, which can be supported by using the default configuration of IPC.

2.4.5 Instance Simulation

In the Windows system, after IP generation, double-click the *.bat file⁴ under the ""roject_path>/sim/modelsim" path to run simulation.

2.5 IP Interface Description

Descirption:

All ports and parameters listed in this document are those applied to the Example Design and IP; for requirements on other functions, ports, or parameters, please contact FAE/AE.

(UG042004, V1.6) 30 / 74

⁴ For the output files after IP generation, please refer to Table 2-4.

2.5.1 Descriptions of Ports

Figure 2-7 PCIe IP Interface Description

(UG042004, V1.6) 31 / 74

2.5.2 1I/O Pin List Description

Table 2-20 PCIe IP Pin List

Port	I/O	Bit width	Description
pclk	О	1	PCIe core working clock (provided by HSST) 2.5GT/S: 125MHz 5GT/S: 250MHz
pclk_div2	О	1	User interface clock (provided by HSST) 2.5GT/S: 62.5MHz 5GT/S: 125MHz
button_rst_n	I	1	Reset signal, active low, asynchronous reset, button reset, for debugging only.
power_up_rst_n	I	1	Reset signal, active low, asynchronous reset, from slot PERST#.
perst_n	I	1	Reset signal, active low, asynchronous reset, from slot PERST#.
ref_clk	0	1	Bypass output of HSSTLP reference clock (for apb_clk)
core_rst_n	О	1	Hard core reset signal output, for user logic. pclk_div2 clock domain, active low.
System Control			
smlh_link_up	О	1	1: PHY Link up (pclk_div2 clock domain)
rdlh_link_up	О	1	1: DLL Link up (pclk_div2 clock domain)
smlh_ltssm_state	O	5	5'h00: DETECT_QUIET 5'h01: DETECT_ACT 5'h02: POLL_ACTIVE 5'h03: POLL_COMPLIANCE 5'h04: POLL_CONFIG 5'h05: PRE_DETECT_QUIET 5'h06: DETECT_WAIT 5'h07: CFG_LINKWD_START 5'h08: CFG_LINKWD_ACEPT 5'h09: CFG_LANENUM_WAI 5'h0A: FG_LANENUM_ACEPT 5'h0B: CFG_COMPLETE 5'h0C: CFG_IDLE 5'h0D: RCVRY_LOCK 5'h0E: RCVRY_SPEED 5'h0F: RCVRY_SPEED 5'h10: RCVRY_IDLE 5'h11: L0 5'h12: L08 5'h13: L123_SEND_EIDLE 5'h14: L1_IDLE 5'h15: L2_IDLE 5'h16: L2_WAKE 5'h17: DISABLED_ENTRY 5'h18: DISABLED_IDLE 5'h14: LPBK_ENTRY 5'h18: LPBK_ACTIVE 5'h1C: LPBK_EXIT 5'h1C: LPBK_EXIT 5'h1C: LPBK_EXIT_TIMEOUT 5'h1E: HOT_RESET_ENTRY 5'h1F: HOT_RESET_ENTRY

(UG042004, V1.6) 32 / 74

Port	I/O	Bit width	Description	
			Control HSST to conduct near-end loopback in PCS (bit 0~3	
pcs_nearend_loop	I	4	corresponds to lane 0~3 separately)	
			1: Enable 0: Disable	
			Control HSST to conduct near-end parallel loopback in PMA	
pma_nearend_ploop	I	4	(bit 0~3 corresponds to lane 0~3 separately)	
pina_nearena_pioop	1	4	1: Enable	
			0: Disable Control HSST to conduct near-end serial loopback in PMA (bit	
1 1	_		0~3 corresponds to lane 0~3 separately)	
pma_nearend_sloop	I	4	1: Enable	
			0: Disable	
Configuration Signals	1	ı	1	
cfg_pbus_num	0	8	Bus Num currently acquired by the device	
cfg_pbus_dev_num	0	5	Device Num currently acquired by the device	
cfg_max_rd_req_size	О	3	The value of the Max_Read_Request_Size field in the Device	
			Control register[14:12] The state of the bus master enable bit in the PCI-compatible	
cfg_bus_master_en	О	1	Command register	
cfg_max_payload_size	0	3	The value of the Max_Payload_Size field in the Device Control	
erg_max_payload_size		3	register[7:5]	
cfg_ext_tag_en	O	1	0: Devices must use the tag in the range of 0~31 1: Devices must use the tag in the range of 0~63	
cfg_rcb	0	1	The value of the RCB bit in the Link Control register[3]	
	0	1	The state of the Memory Space Enable bit in the PCI-compatible	
cfg_mem_space_en	О	1	Command register[1]	
cfg_pm_no_soft_rst	О	1	This is the value of the No Soft Reset bit in the Power Management Control and Status Register	
			Indicates the value of the CRS Software Visibility enable bit in	
cfg_crs_sw_vis_en	О	1	the Root Control register	
cfg_no_snoop_en	О	1	Contents of the "Enable No Snoop" field in the Device_ Control	
			register[11] Contents of the "Enable Relaxed Ordering" field in the Device_	
cfg_relax_order_en	О	1	Control register[4]	
cfg_tph_req_en	О	2	The 2-bit TPH Requester Enabled field of each TPH Requester	
			Control register.	
cfg_pf_tph_st_mode	О	3	Steering Tag Mode of Operation for Physical Function	
cfg_atomic_req_en	O	1	The AtomicOp Requester Enable field of the Device Control 2 register[6]	
-ft: 1-11-	0	1	The AtomicOp Egress Blocking field of the Device Control 2	
cfg_atomic_egress_block	0	1	register	
rbar_ctrl_update	О	1	Indicates that a resizable BAR control register has been updated	
PHY Diff Signals				
ref_clk_n	I	1	HSSTHP differential reference clock signal (100MHz)	
ref_clk_p	I	1	11551111 differential reference clock signal (1001vi112)	
rxn	I	4	HCCTID 4:ff	
rxp	I	4	HSSTHP differential receive signal	
txn	О	4		
txp	О	4	HSSTHP differential transmit signal	
r		<u> </u>		

(UG042004, V1.6) 33 / 74

Port	I/O	Bit width	Description		
APB Interface	APB Interface				
p_sel	I	1	Corresponding to standard APB protocol PSELx		
p_strb	I	4	Corresponding to standard APB protocol PSTRB		
p_addr	I	16	Corresponding to standard APB protocol PADDR		
p_wdata	I	32	Corresponding to standard APB protocol PWDATA		
p_ce	I	1	Corresponding to standard APB protocol PENABLE		
p_we	I	1	Corresponding to standard APB protocol PWRITE		
p_rdy	О	1	Corresponding to standard APB protocol PREADY		
p_rdata	О	32	Corresponding to standard APB protocol PRDATA		
AXI Master Interface	.	1			
axis_master_tvalid	О	1	Corresponding to standard AXI4-Stream protocol TVALID		
axis_master_tready	I	1	Corresponding to standard AXI4-Stream protocol TREADY		
axis_master_tdata	О	128	Corresponding to standard AXI4-Stream protocol TDATA		
axis_master_tkeep	О	4	DW enable signal ⁵ ("1" indicates the corresponding DW data is valid) axis_master_tkeep[3] control axis_master_tdata[127:96] axis_master_tkeep[2] control axis_master_tdata[95:64] axis_master_tkeep[1] control axis_master_tdata[63:32] axis_master_tkeep[0] control axis_master_tdata[31:0]		
axis_master_tlast	О	1	Corresponding to standard AXI4-Stream protocol TLAST		
axis_master_tuser	O	8	Sideband information transmitted alongside axis_master_tdata: 0: radm_trgt1_tlp_abort (Indicates to your application to drop the TLP because of malformed TLP on TRGT1, ECRC error, or completion lookup failures) 1: radm_trgt1_dllp_abort (Indicates to your application to drop the TLP on TRGT1 because of a Data Link Layer error such as LCRC or otherwise) 2: radm_trgt1_ecrc_err (Indicates to your application to drop the TLP because of an ECRC error in the received TLP on TRGT1) 3: radm_trgt1_cpl_last: Indicates the last completion TLP of a split completion transaction. [6:4]: radm_trgt1_in_membar_range[2:0] (Indicates which of the configured BARs contains the target address in the received TLP) 3'b0: bar0 3'b1: bar1 3'b2: bar2 3'b3: bar3 3'b4: bar4 3'b5: bar5 7: radm_trgt1_rom_in_range (Indicates that the target address in the received TLP in range of the expansion ROM)		

(UG042004, V1.6) 34 / 74

⁵ The difference from the AXIS standard is that here one Bit corresponds to the Enable of 4 Bytes.

Port	I/O	Bit width	Description
trgt1_radm_pkt_halt	I	3	Halts the transfer of packets from individual queues. There is one bit of trgt1_radm_pkt_halt for each TLP type for each configured VC: Bit 0: Halt posted TLPs for VC0 mwr Bit 1: Halt non-posted TLPs for VC0 mrd Bit 2: Halt CPL TLPs for VC0
radm_grant_tlp_type	О	6	Indicates that a particular VC and type transaction has been granted to output from the receive queue. There are two bits for each TLP type for each configured VC: Bit [1:0]: Grant posted TLPs for VC0 Bit [3:2]: Grant non-posted TLPs for VC0 Bit [5:4]: Grant CPL TLPs for VC0 Each 2-bit signal represents granted times in one cycle as follows: 2'b00: 0 granted 2'b10: 1 granted 2'b10: 1 granted 2'b11: 2 granted It is used together with trgt1_radm_pkt_halt to control the amount of dequeued transactions.
pm_xtlh_block_tlp	О	1	Indicates that your application must stop generating new outgoing request TLPs due to the current power management state
AXI Slave Interface			
axis_slave0/1/2_tready	О	1	Corresponding to standard AXI4-Stream protocol TVALID
axis_slave0/1/2_tvalid	I	1	Corresponding to standard AXI4-Stream protocol TREADY
axis_slave0/1/2_tdata	I	128	Corresponding to standard AXI4-Stream protocol TDATA
axis_slave0/1/2_tlast	I	1	Corresponding to standard AXI4-Stream protocol TLAST
axis_slave0/1/2_tuser	I	1	Sideband information transmitted alongside axis_slave_tdata: Bit 0: client0/1/2_tlp_bad_eot (Indicates that the current TLP must be nullified.)
Interrupt			
cfg_int_disable	О	1	When high a functions ability to generate INTx messages is Disabled
sys_int	I	1	When sys_int goes from low to high, the controller generates an Assert_INTx Message
inta_grt_mux	0	1	EP: 0->1: The signal indicates that the controller sent an Assert_INTA Message to the upstream device. 1->0: The signal indicates that the controller sent an Deassert_INTA Message to the upstream device. RC: 0->1: The signal indicates that the controller received an Assert_INTA Message from the downstream device 1->0: The signal indicates that the controller received an Deassert_INTA Message from the downstream device
intb_grt_mux	О	1	EP: Not used RC: 0->1: The signal indicates that the controller received an Assert_INTB Message from the downstream device 1->0: The signal indicates that the controller received an Deassert_INTB Message from the downstream device

(UG042004, V1.6) 35 / 74

Port	I/O	Bit width	Description	
			EP: Not used RC: 0->1: The signal indicates that the controller received an	
intc_grt_mux	О	1	Assert_INTC Message from the downstream device 1->0: The signal indicates that the controller received an	
			Deassert_INTC Message from the downstream device EP: Not used	
			RC: 0->1: The signal indicates that the controller received an	
intd_grt_mux	О	1	Assert_INTD Message from the downstream device 1->0: The signal indicates that the controller received an	
			Deassert_INTD Message from the downstream device	
ven_msi_req	I	1	Request from your application to send an MSI/MSI-X when MSI/MSI-X is enabled 1: MSI/MSI-X Request active 0: MSI/MSI-X Request inactive	
ven_msi_tc	I	3	Traffic Class of the MSI request, valid when ven_msi_req is asserted.	
ven_msi_vector	I	5	Used to modulate the lower five bits of the MSI Data register when multiple message mode is enabled	
ven_msi_grant	О	1	One-cycle pulse that indicates that the controller has accepted the request to send an MSI	
cfg_msi_pending	I	32	Indication from application about which functions have a pending associated message	
cfg_msi_en	О	1	Indicates that MSI is enabled (INTx message is not sent) 1: MSI Capability enable 0: MSI Capability disable	
msix_addr	I	64	The address value for the MSI-X	
msix_data	I	32	The data value for the MSI-X	
cfg_msix_en	О	1	The MSI-X Enable bit of the MSI-X Control register in the MSI-X Capability structure 1: MSI-X Capability enable 0: MSI-X Capability disable	
cfg_msix_func_mask	О	1	The function Mask bit of the MSI-X Control register in the MSI-X Capability structure	
cfg_link_auto_bw_mux	О	1	cfg_link_auto_bw_int when legacy int is used, cfg_link_auto_bw_msi when MSI is enabled. Only for RC	
cfg_bw_mgt_mux	О	1	cfg_bw_mgt_int when legacy int is used, cfg_bw_mgt_msi when MSI is enabled. Only for RC	
cfg_pme_mux	О	1	cfg_pme_int when legacy int is used, cfg_pme_msi when MSI is enabled.	
cfg_aer_rc_err_mux	О	1	cfg_aer_rc_err_int: when MSI is NOT enabled. Otherwise used as cfg_aer_rc_err_msi	
Error Handling	_			
radm_cpl_timeout	О	1	Indicates that the completion TLP for a request has not been received within the expected time window	
cfg_send_cor_err_mux	О	1	EP: cfg_send_cor_err Sent Correctable Error. RC: radm_correctable_err, One-clock-cycle pulse that indicates that the controller received an ERR_COR message.	
cfg_send_nf_err_mux	О	1	EP: radm_nonfatal_err, Sent Non-Fatal Error RC: One-clock-cycle pulse that indicates that the controller received an ERR_NONFATAL message	

(UG042004, V1.6) 36 / 74

Port	I/O	Bit width	Description		
			EP: radm_fatal_err, Sent Fatal Error		
cfg_send_f_err_mux	О	1	RC: One-clock-cycle pulse that indicates that the controller received an ERR_FATAL message.		
cfg_sys_err_rc	О	1	System error detected		
Debug Interface					
dyn_debug_info_sel	I	4	Dynamic debug_info_mux selection		
app_ras_des_sd_hold_lts sm	I	1	Hold and release LTSSM. For as long as this signal is '1', the controller stays in the current LTSSM.		
app_ras_des_tba_ctrl	I	2	Controls the start/end of time based analysis. You must only set the pins to the required value for the duration of one clock cycle. 2'b00: No action 2'b01: Start 2'b10: End. This setting is only used when the TIME_BASED_DU-RATION_SELECT field of TIME_BASED_ANALYSIS_CON-TROL_REG is set to "manual control". 2'b11: Reserved		
radm_idle	О	1	RADM activity status signal		
radm_q_not_empty	О	1	Level indicating that the receive queues contain TLP header/data.		
radm_qoverflow	О	1	Pulse indicating that one or more of the P/NP/CPL receive queues have overflowed		
diag_ctrl_bus	Ι	2	Diagnostic Control Bus, 01: Insert LCRC error by inverting the LSB of LCRC 10: Insert ECRC error by inverting the LSB of ECRC		
debug_info_mux	O	133	dyn_debug_info_sel = 0: MSI [31:0] cfg_msi_mask[31:0] [95:32] cfg_msi_addr[63:0] [127:96] cfg_msi_data[31:0] 128 cfg_msi_64 [131:129] cfg_multi_msi_en[2:0] 132 cfg_msi_ext_data_en dyn_debug_info_sel = 1: MSI-X [10:0] cfg_msix_table_size[10:0] [13:11] cfg_msix_table_bir[2:0] [42:14] cfg_msix_table_offset[28:0] [45:43] cfg_msix_pba_bir[2:0] [74:46] cfg_msix_pba_offset[28:0] dyn_debug_info_sel = 2: TX debug &DL debug 0 xadm_no_fc_credit[NVC-1:0] 1 xadm_tlp_pending 2 xadm_had_enough_credit[NVC-1:0] 3 xdlh_not_expecting_ack 4 xdlh_xmt_pme_ack 5 xdlh_nodllp_pending [14:6] rtfcgen_incr_amt[8:0] 15 rtfcgen_incr_enable [17:16] rtfcgen_fctype[1:0] 18 xdlh_xtlh_halt 19 xtlh_xdlh_badeot 20 xtlh_xdlh_badeot 20 xtlh_xdlh_eot 21 xtlh_xdlh_sot [26:22] active_grant[NCL+2-1:0]		

(UG042004, V1.6) 37 / 74

Port	I/O	Bit width	Description	
			[31:27] grant_ack[NCL+2-1:0]	
			[36:32] fc_cds_pass[(NCL+2)*NVC-1:0]	
			[41:37] arb_reqs[NCL+2-1:0]	
			42 xmlh_xdlh_halt	
			[44:43] xdlh_xmlh_sdp[1:0]	
			[46:45] xdlh_xmlh_stp[1:0]	
			[48:47] xdlh_xmlh_eot[1:0]	
			[60:49] rdlh_xdlh_req_acknack_seqnum[11:0]	
			61 rdlh_xdlh_req2send_nack	
			62 rdlh_xdlh_req2send_ack_due2dup	
			63 rdlh_xdlh_req2send_ack	
			[75:64] rdlh_xdlh_rcvd_acknack_seqnum[11:0]	
			76 rdlh_xdlh_rcvd_ack	
			77 rdlh_xdlh_rcvd_nack	
			78 cfg_link_retrain	
			79 rtlh_req_link_retrain	
			80 xdlh_smlh_start_link_retrain	
			81 rdlh_rtlh_tlp_dv	
			[83:82] rdlh_rtlh_tlp_eot[1:0]	
			[85:84] rdlh_rtlh_tlp_sot[1:0]	
			86 ecrc_err_asserted	
			87 lcrc_err_asserted	
			dyn_debug_info_sel =3:	
			0 unexpected_cpl_err	
			1 cpl_ca_err	
			2 cpl_ur_err	
			3 flt_q_cpl_last	
			4 flt_q_cpl_abort	
			5 cpl_mlf_err	
			[8:6] flt_q_header_cpl_status[2:0]	
			[10:9] flt_q_header_destination[1:0]	
			11 form_filt_ecrc_err	
			12 form_filt_malform_tlp_err	
			13 form_filt_dllp_err	
			14 form_filt_eot	
			[16:15] form_filt_dwen[NW-1:0]	
			17 form_filt_dv	
			18 form_filt_hv	
			[20:19] rmlh_rdlh_pkt_err[NW-1:0]	
			21 rmlh_rdlh_pkt_dv	
			[23:22] rmlh_rdlh_pkt_edb[NW-1:0]	
			[25:24] rmlh_rdlh_pkt_end[NW-1:0]	
			[27:26] rmlh_rdlh_tlp_start[NW-1:0]	
			[29:28] rmlh_rdlh_dllp_start[NW-1:0]	
			[31:30] rmlh_rdlh_nak[NW-1:0]	
			[35:32] smlh_lanes_rcving[NL-1:0]	
			36 rmlh_rcvd_eidle_set	
			37 rmlh_rcvd_idle0	
			38 rmlh_rcvd_idle1	
			39 smlh_rcvd_lane_rev	
			40 smlh_ts_link_num_is_k237	
			41 rmlh_deskew_alignment_err	
			42 smlh_ts_lane_num_is_k237	
			43 smlh_ts2_rcvd	
			44 smlh_ts1_rcvd	
		1	45 smlh_ts_rcv_err	

(UG042004, V1.6) 38 / 74

Port	I/O	Bit width	Description
			46 smlh_inskip_rcv
			dyn_debug_info_sel =4: [48:0] cxpl_debug_info[63:0] [64:49] cxpl_debug_info_ei[15:0] [67:65] pm_curnt_state[2:0] 68 pm_sel_aux_clk 69 en_muxd_aux_clk_g 70 en_radm_clk_g 71 link_req_rst_not 72 pm_req_core_rst 73 pm_req_phy_rst
			74 pm_req_sticky_rst
			75 pm_req_non_sticky_rst
			dyn_debug_info_sel =5: [7:0] cfg_int_pin[7:0] [43:8] cfg_rbar_size[35:0] 44 cfg_br_ctrl_serren 45 xdlh_replay_timeout_err 46 xdlh_replay_num_rlover_err 47 rdlh_bad_dllp_err 48 rdlh_bad_tlp_err 49 rdlh_prot_err 50 rtlh_fc_prot_err 51 rmlh_rcvd_err 52 int_xadm_fc_prot_err 53 radm_unexp_cpl_err 54 radm_rcvd_cpl_ur 55 radm_rcvd_cpl_ca 56 radm_rcvd_req_ca 57 radm_rcvd_req_ur 58 radm_ecrc_err 59 radm_mlf_tlp_err 60 radm_rcvd_wreq_poisoned 61 radm_rcvd_wreq_poisoned
			62 cfg_sys_err_rc_cor 63 cfg_sys_err_rc_nf
			64 cfg_sys_err_rc_f
			dyn_debug_info_sel =6: 0
			dyn_debug_info_sel =7: 0 smlh_eidle_inferred_in_l0: Level: Detect EI Infer 1 rmlh_rcvd_err: Pulse: Receiver Error 2 smlh_rx_rcvry_req: Level: Rx Recovery Request
			3 smlh_timeout_nfts: Level: FTS Timeout4 rmlh_framing_err: Pulse: Framing Error
			5 rmlh_deskew_alignment_err: Level: Deskew Error 6 rdlh_bad_tlp_err_pertlp : Pulse: BAD TLP
			7 rdlh_lcrc_tlp_err_pertlp : Pulse: LCRC Error 8 rdlh_bad_dllp_err_perdllp: Pulse: BAD DLLP

(UG042004, V1.6) 39 / 74

Port	I/O	Bit width	Description
			9 xdlh_replay_num_rlover_err: Pulse: Replay_Num Rollover
			10 xdlh_replay_timeout_err: Pulse: Replay Timeout
			11 rdlh_rcvd_nack_perdllp: Pulse: Rx Nak DLLP
			12 xdlh_nak_sent: Pulse: Tx Nak DLLP
			13 xdlh_retry_req: Pulse: Retry TLP
			14 rtlh_req_link_retrain: Level: FC Timeout
			[16:15] cfg_poisned_tlp: Pulse: Poisoned TLP
			[18:17] cfg_ecrc_tlp_err: Pulse: ECRC Error
			[20:19] cfg_ur_tlp: Pulse: Unsupported Request
			[22:21] cfg_ca_tlp: Pulse: Completer Abort
			[24:23] cfg_cpl_timeout[1:0]: Pulse: Completion Timeout
			25 smlh_l0_to_recovery: Pulse: L0 to Recovery Entry
			26 smlh_l1_to_recovery: Pulse: L1 to Recovery Entry
			27 smlh_in_l0s: Level: Tx L0s Entry
			28 smlh_in_rl0s: Level: Rx L0s Entry
			29 pm_asnak: Level: ASPM L1 reject
			30 smlh_in_11: Level: L1 Entry
			31 pm_in_l11: Level: L1.1 Entry
			32 pm_in_l12: Level: L1.2 Entry
			33 pm_in_l1_short: Level: L1 short duration
			34 pm_in_l1_cpm: Level: L1 Clock PM (L1 with REFCLK
			removal/PLL Off)
			35 pm_in_l1_abort: Level: L1.2 abort
			36 smlh_in_l23: Level: L2 Entry
			37 smlh_spd_change: Pulse: Speed Change
			38 smlh_lwd_change: Pulse: Link width Change
			39 xdlh_ack_sent: Pulse: Tx Ack DLLP
			40 xdlh_update_fc_sent: Pulse: Tx Update FC DLLP
			41 rdlh_rcvd_ack_perdllp: Pulse: Rx Ack DLLP
			42 rtlh_rcvd_ufc_perdllp: Pulse: Rx Update FC DLLP
			43 rdlh_nulified_tlp_err_pertlp : Pulse: Rx Nullified TLP 44 xtlh_xadm_restore_enable: Pulse: Tx Nullified TLP
			45 rdlh_duplicate_tlp_err_pertlp: Pulse: Rx Duplicate TLP
			46 xtlh_tx_memwr_evt: Pulse: Tx Memory Write
			47 xtlh_tx_memrd_evt: Pulse: Tx Memory Read
			48 xtlh_tx_cfgwr_evt: Pulse: Tx Config Write
			49 xtlh_tx_cfgrd_evt: Pulse: Tx Config Read
			50 xtlh_tx_iowr_evt: Pulse: Tx IO Write
			51 xtlh tx iord evt: Pulse: Tx IO Read
			52 xtlh_tx_cplwod_evt: Pulse: Tx Completion wo data
			53 xtlh_tx_cplwd_evt: Pulse: Tx Completion w data
			54 xtlh_tx_msg_evt: Pulse: Tx Message
			55 xtlh_tx_atmcop_evt: Pulse: Tx AtomicOp
			56 xtlh_tx_tlpwprefix_evt: Pulse: Tx TLP with Prefix
			57 rtlh_rx_memwr_evt: Pulse: Rx Memory Write
			58 rtlh_rx_memrd_evt: Pulse: Rx Memory Read
			59 rtlh_rx_cfgwr_evt: Pulse: Rx Config Write
			60 rtlh_rx_cfgrd_evt: Pulse: Rx Config Read
			61 rtlh_rx_iowr_evt: Pulse: Rx IO Write
			62 rtlh_rx_iord_evt: Pulse: Rx IO Read
			63 rtlh_rx_cplwod_evt: Pulse: Rx Completion wo data
			64 rtlh_rx_cplwd_evt: Pulse: Rx Completion w data
			65 rtlh_rx_msg_evt: Pulse: Rx Message TLP
			66 rtlh_rx_atmcop_evt: Pulse: Rx Atomic
			67 rtlh_rx_tlpwprefix_evt: Pulse: Rx TLP with Prefix
			68 xtlh_tx_ccix_tlp_evt: Pulse: Tx CCIX TLP
			69 rtlh_rx_ccix_tlp_evt: Pulse: Rx CCIX TLP

(UG042004, V1.6) 40 / 74

Port	I/O	Bit width	Description	
			82:70 cdm_ras_des_ec_info_10[12:0] 95:83 cdm_ras_des_ec_info_11[12:0] 108:96 cdm_ras_des_ec_info_12[12:0] 121:109 cdm_ras_des_ec_info_13[12:0] 128:122 cdm_ras_des_tba_info_common[6:0]	
			dyn_debug_info_sel =8: [4:0] pm_master_state[4:0]: Level: PM Internal State (Master) [8:5] pm_slave_state[3:0]: Level: PM Internal State (Slave) [15:9] rmlh_framing_err_ptr[6:0]: Pulse: 1st Framing Error Pointer [16] smlh_lane_reversed: Level: Lane Reversal Operation [17] pm_pme_resend_flag: Pulse: PME Re-Send flag [33:18] smlh_ltssm_variable [15:0]: Level: LTSSM Variable [36:34] ltssm_powerdown[1:0]: Level: PIPE: Power Down [44:37] latched_ts_nfts[7:0]: Level: Latched NFTS [46:45] rdlh_dlcntrl_state [1:0]: Level: DLCM [47] rdlh_vc0_initfc1_status: Level: Init-FC Flag1 VC0 [48] rdlh_vc0_initfc2_status: Level: Init-FC Flag2 VC0 [60:49] rdlh_curnt_rx_ack_seqnum[11:0]: Level: Rx ACK SEQ# [72:61] xdlh_curnt_seqnum [11:0]: Level: Tx TLP SEQ# 85:73 cdm_ras_des_sd_info_l0[12:0] 98:86 cdm_ras_des_sd_info_l1[12:0] 111:99 cdm_ras_des_sd_info_l3[12:0] dyn_debug_info_sel =9: 119:0 cdm_ras_des_sd_info_v0[239:120]	
MISC		1	119:0 cdm_ras_des_sd_info_v0[119:0]	
cfg_ido_req_en	0	1	ID-Based Ordering Requests Enabled	
cfg_ido_cpl_en	О	1	ID-Based Ordering Completions Enabled	
xadm_ph_cdts	О	8	The amount of posted header buffer space currently available at the receiver at the other end of the link	
xadm_pd_cdts	О	12	The amount of posted data buffer space currently available at the receiver at the other end of the link	
xadm_nph_cdts	О	8	The amount of non-posted header buffer space currently available at the receiver at the other end of the link	
xadm_npd_cdts	О	12	The amount of non-posted data buffer space currently available at the receiver at the other end of the link	
xadm_cplh_cdts	О	8	The amount of completion header buffer space currently available at the receiver at the other end of the link	
xadm_cpld_cdts	О	12	The amount of completion data buffer space currently available at the receiver at the other end of the link	

(UG042004, V1.6) 41 / 74

2.5.3 APB Interface Timing

2.5.3.1 APB Read Timing

Figure 2-8 Basic APB Read Timing

2.5.3.2 APB Write Timing

Figure 2-9 Basic APB Write Timing

(UG042004, V1.6) 42 / 74

2.5.4 User Interface Timing

2.5.4.1 AXI4-Stream Master operation timing

In the first cycle, axis_master_tdata is the TLP Header, and axis_master_tkeep is all 1s in the TLP Header field; for TLP format, please refer to "2.8.6 AXI-Stream Master Interface 3DW Usage Instructions".

Figure 2-10 4DW Posted Operation Timing

Figure 2-11 3DW Posted Operation Timing

Figure 2-12 4DW Non-Posted Operation Timing

(UG042004, V1.6) 43 / 74

Figure 2-13 3DW Non-Posted Operation Timing

Figure 2-14 Completion Operation Timing

Figure 2-15 Back to Back Non-Posted Operation Timing

(UG042004, V1.6) 44 / 74

2.5.4.2 AXI4-Stream Slave operation timing

Once data transfer starts, axis_slave0/1/2_tvalid must remain high until the final data transfer is complete (axis_slave0/1/2_tlast goes high).

Figure 2-16 4DW Posted Operation Timing

Figure 2-17 3DW Posted Operation Timing

Figure 2-18 4DW Non-Posted Operation Timing

Figure 2-19 3DW Non-Posted Operation Timing

(UG042004, V1.6) 45 / 74

Figure 2-20 Completion Operation Timing

Figure 2-21 Back to Back Non-Posted Operation Timing

2.5.4.3 MSI operation timing

Prior to initiating an MSI request, ensure the MSI Capability is enabled and cfg_msi_en is high.

Figure 2-22 MSI Operation Timing

(UG042004, V1.6) 46 / 74

2.5.4.4 MSI-X operation timing

Prior to initiating an MSI-X request, ensure the MSI-X Capability is enabled and cfg_msix_en is high.

Figure 2-23 MSI-X Operation Timing

2.6 Description of the IP Register

2.6.1 Endpoint

PCI Express Endpoint and Legacy PCI Express Endpoint related registers are described as follows.

2.6.1.1 Configuration space registers

Table 2-21 PCI Express IP Upstream Configuration Space Registers

PCI Express Configuration Space					
31	16	15	0	Address	
Device ID		Vendor ID		000h	
Status		Command		004h	
Class Code			RevID	008h	
BIST	Header	Lat Timer	Cache Ln	00Ch	
Base Address Re	egister 0		010h		
Base Address Register 1 014h					
Base Address Register 2 018h					
Base Address Register 3 01Ch					
Base Address Re	egister 4			020h	

(UG042004, V1.6) 47 / 74

Chapter 2 IP User Guide							
PCI Express C	onfiguration S	pace					
Base Address R	Base Address Register 5						
Cardbus CIS Po	028h						
Subsystem ID	Subsystem ID Subsystem Vendor ID						
Expansion ROM	I Base Address			030h			
Reserved			CapPtr	034h			
Reserved			·	038h			
Max Lat	Min Gnt	Intr Pin	Intr Line	03Ch			
				040h			
Dagamyad				044h			
Reserved				048h			
				04Ch			
MSI Control		Next Cap Pointer	Cap ID	050h			
Message Addres	ss [31:0]			054h			
Message Addres	ss [63:32]			058h			
Reserved		Message Data		05Ch			
Mask Bits				060h			
Pending Bits				064h			
Reserved				068h			
Reserved	06Ch						
PE Cap	PE Cap Next Cap Pointer Cap ID						
Device Capabili	074h						
Device Status	078h						
Link Capabilitie	es			07Ch			
Link Status		Link Control		080h			
				084h			
Reserved				088h			
Reserved				08Ch			
				090h			
Device Capabili	ties 2			094h			
Device Status 2		Device Control 2		098h			
Link Capabilitie	es 2			09Ch			
Link Status 2		Link Control 2		0A0h			
				0A4h			
Reserved				0A8h			
				0ACh			
Message Contro	ol	Next Pointer	Capability ID	0B0h			
Table Offset			Table BIR	0B4h			
PBA Offset			PBA BIR	0B8h			
Reserved	•••						

(UG042004, V1.6) 48 / 74

PCI Express Configuration Space	
Advanced Error Capabilities and Control Register	118h

2.6.1.1.1 Device/Vendor ID REG

Table 2-22 Device/Vendor ID REG (Offset = 000h)

Bits	Item	Reset Values	Access Type	Description
15:0	Vendor ID	0x 16C3	R/W	Vendor ID
31:16	Device ID	0x ABCD	R/W	Device ID

2.6.1.1.2 Command REG

Table 2-23 Command REG (Offset = 004h)

Bits	Item	Reset Values	Access Type	Description
0	IO Space Enable	0	R/W	1: Receive IO-type requests
Ů	10 Space Emasic	· ·	10 11	0: Does not receive IO-type requests
1	MEM Space Enable	0	R/W	1: Receive MEM-type requests
1	WIEW Space Enable	U	IC/ VV	0: Does not Receive MEM-type requests
2	Bus Master Enable	0	R/W	1: Can transmit MEM/IO-type requests
2	Dus Master Enable	0 R/W		0: Cannot transmit MEM/IO-type requests
9:3	Reserved	0x0	RO	Reserved
10	Interment Disable	0	R/W	1: Disable INTx interrupts
10	Interrupt Disable	U	IN/ VV	0: Enable INTx interrupts
15:11	Reserved	0x0	RO	Reserved

2.6.1.1.3 Status REG

Table 2-24 Status REG (Offset = 006h)

Bits	Item	Reset Values	Access Type	Description
2:0	Reserved	0	RO	Reserved
3	Interupt Status	0	RO	High indicates INTx interrupt triggered
4	Capabilities List	1	RO	Set to 1
15:5	Reserved	0x0	RO	Reserved

(UG042004, V1.6) 49 / 74

2.6.1.1.4 Class Code Revision ID REG

Table 2-25 Class Code Revision ID REG (Offset = 008h)

Bits	Item	Reset Values	Access Type	Description
7:0	Revision ID	0x01	R/W	Revision ID
31:8	Class Code	0x000000	R/W	Class Code

2.6.1.1.5 Header Type REG

Table 2-26 Header Type REG (Offset = 00eh)

Bits	Item	Reset Values	Access Type	Description
6:0	Header Type	0x00	RO	None
7	Multi-Function Device	0	RO	0: Only support single Function

2.6.1.1.6 BAR0 REG

Table 2-27 BAR0 REG (Offset = 010h)

Bits	Item	Reset Values	Access Type	Description
0	Memory Space Indicator	0	R/W	1: IO 0: MEM
2:1	Туре	2'b10	R/W	00: Allocates 32-bit address 10: Allocate 64-bit address 11,01: Reserved
3	Prefetchable	1	R/W	Set high to access memory space through BAR
31:4	Base Address	28'h000000	RO	Base address

2.6.1.1.7 BAR1 REG

Table 2-28 BAR1 REG (Offset = 014h)

Bits	Item	Reset Values	Access Type	Description
0	Memory Space Indicator	0	R/W	1: IO 0: MEM
2:1	Туре	2'b0	R/W	00: Allocates 32-bit address 10: Allocate 64-bit address 11,01: Reserved
3	Prefetchable	0	R/W	Set high to access memory space through BAR
31:4	Base Address	28'h000000	RO	Base address

(UG042004, V1.6) 50 / 74

2.6.1.1.8 BAR2 REG

Table 2-29 BAR2 REG (Offset = 018h)

Bits	Item	Reset Values	Access Type	Description
0	Memory Space Indicator	0	R/W	1: IO 0: MEM
2:1	Туре	2'b10	R/W	00: Allocates 32-bit address 10: Allocate 64-bit address 11,01: Reserved
3	Prefetchable	1	R/W	Set high to access memory space through BAR
31:4	Base Address	28'h000000	RO	Base address

2.6.1.1.9 BAR3 REG

Table 2-30 BAR3 REG (Offset = 01ch)

Bits	Item	Reset Values	Access Type	Description
0	Memory Space Indicator	0	R/W	1: IO 0: MEM
2:1	Туре	2'b00	R/W	00: Allocates 32-bit address 10: Allocate 64-bit address 11,01: Reserved
3	Prefetchable	0	R/W	Set high to access memory space through BAR
31:4	Base Address	28'h000000	RO	Base address

2.6.1.1.10 BAR4 REG

Table 2-31 BAR4 REG (Offset = 020h)

Bits	Item	Reset Values	Access Type	Description
0	Memory Space Indicator	0	R/W	1: IO 0: MEM
2:1	Туре	2'b00	R/W	00: Allocates 32-bit address 10: Allocate 64-bit address 11,01: Reserved
3	Prefetchable	0	R/W	Set high to access memory space through BAR
31:4	Base Address	28'h000000	RO	Base address

(UG042004, V1.6) 51/74

2.6.1.1.11 BAR5 REG

Table 2-32 BAR5 REG (Offset = 024h)

Bits	Item	Reset Values	Access Type	Description
0	Memory Space Indicator	1	R/W	1: IO 0: MEM
2:1	Туре	2'b00	R/W	00: Allocates 32-bit address 10: Allocate 64-bit address 11,01: Reserved
3	Prefetchable	0	R/W	Set high to access memory space through BAR
31:4	Base Address	28'h000000	RO	Base address

2.6.1.1.12 SUB_ID REG

Table 2-33 SUB_ID REG (Offset = 02ch)

Bits	Item	Reset Values	Access Type	Description
15:0	Subsystem Vendor ID	0x0000	R/W	Subsystem Vendor ID
31:16	Subsystem ID	0x0000	R/W	Subsystem ID

2.6.1.1.13 EXP_ROM_INIT REG

Table 2-34 EXP_ROM_INIT REG (Offset = 030h)

Bits	Item	Reset Values	Access Type	Description
0	E_ROM_enable	0	R/W	1: Expansion ROM available 0: Expansion ROM not available
10:1	Reserved	0	RO	Reserved
31:11	Base Address	0	RO	Base address

2.6.1.1.14 CAP_PTR REG

Table 2-35 CAP_PTR REG (Offset = 034h)

Bits	Item	Reset Values	Access Type	Description
7:0	CAP_POINT	0x40	RO	Capabilities Pointer

(UG042004, V1.6) 52 / 74

2.6.1.1.15 INTR REG

Table 2-36 INTR REG (Offset = 03ch)

Bits	Item	Reset Values	Access Type	Description
7:0	INTR_LINE	0xFF	RO	Store interrupt information
15:8	INTR_PIN	1	RO	0: Interrupt Pin not supported 1: INTA 2: INTB 3: INTC 4: INTD 5-FF: Reserved
23:16	Min Gnt	0	RO	PCIE protocol not used (set to 0)
31:24	Max Lat	0	RO	PCIE protocol not used (set to 0)

2.6.1.1.16 MSI_ CAP_List REG

Table 2-37 MSI_CAP_List REG (Offset = 050h)

Bits	Item	Reset Values	Access Type	Description
7:0	Capability ID	0x05	RO	Capability ID
15:8	Next Capability Pointer	0x70	RO	Next Capability Pointer

2.6.1.1.17 MSI_Control REG

Table 2-38 MSI_Control REG (Offset = 052h)

Bits	Item	Reset Values	Access Type	Description
0	MSI Enable	0	R/W	0: Disable MSI 1: Enable MSI
3:1	Multiple Message Capable	3'b101	R/W	Indicates how many Messages the EP supports 000b 1 001b 2 010b 4 011b 8 100b 16 101b 32 110b Reserved 111b Reserved

(UG042004, V1.6) 53 / 74

Bits	Item	Reset Values	Access Type	Description
6:4	Multiple Message Enable	3'ь0	R/W	Software allocate a specific number of Messages to the EP based on the value of Multiple Message Cap, with the number being less than or equal to Multiple Message Capable. 000b 1 001b 2 010b 4 011b 8 100b 16 101b 32 110b Reserved 111b Reserved
7	64-bit Address Capable	1	R/W	0: Only 32-bit Address supported 1: 64-bit Address supported
8	Per-Vector Masking Capable	1	RO	0: Masking and Pending not used 1: Masking and Pending used
15:9	Reserved	0	RO	Reserved

2.6.1.1.18 MSI_CAP_REG1

Table 2-39 MSI_CAP_REG1 (Offset = 054h)

Bits	Item	Reset Values	Access Type	Description
31:0	MSI_CAP_REG1	0x0	RO	Message Address[31:0]

2.6.1.1.19 MSI_CAP_REG2

Table 2-40 MSI_CAP_REG2 (Offset = 058h)

Bits	Item	Reset Values	Access Type	Description
				When MSI_Control REG[7] is 0:
				Only 32-bit Address supported
				[15:0]: Message Data
31:0	MSI_CAP_REG2	0x0	RO	[31:16]: Reserved
				When MSI_Control REG[7] is 1:
				64-bit Address supported
				[31:0] : Message Address[63:32]

(UG042004, V1.6) 54 / 74

2.6.1.1.20 MSI_CAP_REG3

Table 2-41 MSI_CAP_REG3 (Offset = 05ch)

Bits	Item	Reset Values	Access Type	Description
31:0	MSI_CAP_REG3	0x0	RO	When MSI_Control REG[7] is 0: Only 32-bit Address supported [31:0]: Mask Bits When MSI_Control REG[7] is 1: 64-bit Address supported [15:0]: Message Data [31:16]: Reserved

2.6.1.1.21 MSI_CAP_REG4

Table 2-42 MSI_CAP_REG4 (Offset = 060h)

Bits	Item	Reset Values	Access Type	Description
31:0	MSI_CAP_REG4	0x0	RO	When MSI_Control REG[7] is 0: Only 32-bit Address supported [31:0]: Pending Bits When MSI_Control REG[7] is 1: 64-bit Address supported [31:0]: Mask Bits

2.6.1.1.22 MSI_CAP_REG5

Table 2-43 MSI_CAP_REG5 (Offset = 064h)

Bits	Item	Reset Values	Access Type	Description
31:0	MSI_CAP_REG5	0x0	RO	When MSI_Control REG[7] is 0: Only 32-bit Address supported [31:0]: Reserved When MSI_Control REG[7] is 1: 64-bit Address supported [31:0]: Pending Bits

2.6.1.1.23 PCIE_CAP_List REG

Table 2-44 PCIE_CAP_List REG (Offset = 070h)

Bits	Item	Reset Values	Access Type	Description
7:0	Capability ID	0x10	RO	Capability ID
15:8	Next Capability Pointer	0xB0	RO	Next Capability Pointer

(UG042004, V1.6) 55 / 74

2.6.1.1.24 PCIE _CAP REG

Table 2-45 PCIE_CAP REG (Offset = 072h)

Bits	Item	Reset Values	Access Type	Description
3:0	Capability Version	02h	RO	Fixed value is 02h
7:4	Device/Port Type	0	RO	0000b: PCI Express Endpoint 0001b: Legacy PCI Express Endpoint 0100b: Root Port of PCI Express Root Complex 0101b: Upstream Port of PCI Express Switch 0110b: Downstream Port of PCI Express Switch Others: Reserved
8	Slot Implemented	0	RO	1: Connected to a Slot 0: Not Connected to a Slot
13:9	Interrupt Message Number	0	RO	Interrupt Message Number
15:14	Reserved	0	RO	Reserved

2.6.1.1.25 Device_CAP REG

Table 2-46 Device_CAP REG (Offset = 074h)

Bits	Item	Reset Values	Access Type	Description
2:0	Max_Payload_Size Supported	3'b011	RO	000b: 128 Byte 001b: 256 Byte 010b: 512 Byte 011b: 1024 Byte Others: Reserved
4:3	Phantom Functions Supported	2'b10	RO	00b: No Phantom Functions used 01b: The lowest bit of the Function Number is used for Phantom Functions 10b: The lowest two bits of the Function Number are used for Phantom Functions 11b: Function Number completely used for Phantom Functions
5	Extended Tag Field Supported	1	RO	0b: 5-bit Tag field supported 1b: 8-bit Tag field supported Others: Reserved
8:6	Endpoint L0s Acceptable Latency	3'b011	RO	000b: Maximum of 64 ns 001b: Maximum of 128 ns 010b: Maximum of 256 ns 011b: Maximum of 512 ns 100b: Maximum of 1 μs 101b: Maximum of 2 μs 110b: Maximum of 4 μs 111b: No Limit

(UG042004, V1.6) 56 / 74

Bits	Item	Reset Values	Access Type	Description
11:9	Endpoint L1 Acceptable Latency	3'b111	RO	000b: Maximum of 1 μs 001b: Maximum of 2 μs 010b: Maximum of 4 μs 011b: Maximum of 8 μs 100b: Maximum of 16 μs 101b: Maximum of 32 μs 110b: Maximum of 64 μs 111b: No Limit
31:12	Reserved	0x1	RO	Reserved

2.6.1.1.26 Device_Control REG

Table 2-47 Device_Control REG (Offset = 078h)

Bits	Item	Reset Values	Access Type	Description
0	Correctable Error Reporting Enable	0	RO	Control transmitting ERR_COR Messages
1	Non-Fatal Error Reporting Enable	0	RO	Control transmitting ERR_NONFATAL Messages
2	Fatal Error Reporting Enable	0	RO	Control transmitting ERR_FATAL Messages
3	Unsupported Request Reporting Enable	0	RO	Signaling of Unsupported Requests
4	Enable Relaxed Ordering	1	RO	Relaxed Ordering supported Relaxed Ordering not supported
7:5	Max_Payload_Size	3'b0	RO	000b: 128 Byte 001b: 256 Byte 010b: 512 Byte 011b: 1024Byte 100b: 2048 Byte 101b: 4096 Byte 110b: Reserved 111b: Reserved
8	Extended Tag Field Enable	1	RO	1: 8bit Tag can be used 0: 8bit Tag cannot be used
9	Phantom Functions Enable	0	RO	Phantom Functions can be used Phantom Functions cannot be used
10	AUX Power PM Enable	0	RO	1: AUX Power allowed 0: AUX Power not allowed
11	Enable No Snoop	0	RO	1: No Snoop allowed 0: No Snoop not allowed
14:12	Max_Read_Request_ Size	3'b10	RO	000b: 128 Byte 001b: 256 Byte 010b: 512 Byte 011b: 1024 Byte 100b: 2048 Byte 101b: 4096 Byte 110b: Reserved 111b: Reserved

(UG042004, V1.6) 57 / 74

Bits	Item	Reset Values	Access Type	Description
15	Bridge Enable	0	RO	1: Response to CRS allowed 0: Response to CRS not allowed

2.6.1.1.27 Device_Status

Table 2-48 Device_Status REG (Offset = 07ah)

Bits	Item	Reset Values	Access Type	Description
0	Correctable Error Detected	0	RO	1 indicates Correctable Errors detected
1	Non-Fatal Error Detected	0	RO	1 indicates Non-Fatal Error detected
2	Fatal Error Detected	0	RO	1 indicates Fatal Error detected
3	UR Detected	0	RO	1 indicates Unsupported Request detected
4	AUX Power Detected	1	RO	1 indicates AUX Power required
5	Transactions Pending	0	RO	1 indicates no CPL received corresponding to the transmitted NP
15:6	Reserved	0x0	RO	Reserved

$2.6.1.1.28\;Link_CAP\,REG$

Table 2-49 Link_CAP REG (Offset = 07ch)

Bits	Item	Reset Values	Access Type	Description
2.0		48.40	D 411	0001b: 2.5 GT/s
3:0	Supported Link Speeds	4'b10	R/W	0010b: 5.0 GT/s and 2.5 GT/s
				Others: Reserved
				000000b: Reserved
				000001b: x1
9:4	Maximum Link Width	6'b100	R/W	000010b: x2
				000100b: x4
				Others: Reserved
				00b: Reserved
11:10	A CDM C	2'b10	RO	01b: L0s
11.10	ASPM Support	2010	KO	10b: Reserved
				11b: L0s and L1
				000b: Less than 64 ns
				001b: 64 ns to less than 128 ns
				010b: 128 ns to less than 256 ns
14.12	LO- E-it I stores	25-111	DO.	011b: 256 ns to less than 512 ns
14:12	L0s Exit Latency	3'b111	RO	100b: 512 ns to less than 1 μs
				101b: 1 μs to less than 2 μs
				110b: 2 μs-4 μs
				111b: More than 4 μs

(UG042004, V1.6) 58 / 74

Bits	Item	Reset Values	Access Type	Description
17:15	L1 Exit Latency	3'b111	RO	000b: Less than 1μs 001b: 1 μs to less than 2 μs 010b: 2 μs to less than 4 μs 011b: 4 μs to less than 8 μs 100b: 8 μs to less than 16 μs 101b: 16 μs to less than 32 μs 110b: 32 μs-64 μs 111b: More than 64 μs
31:24	Port Number	0	RO	Port Number

2.6.1.1.29 Link_Control REG

Table 2-50 Link_Control REG (Offset = 080h)

Bits	Item	Reset Values	Access Type	Description
1:0	ASPM Control	0	RO	00b: Disabled 01b: L0s Entry Enabled 10b: L1 Entry Enabled 11b: L0s and L1 Entry Enabled
2	Reserved	0	RO	Reserved
3	RCB	0	RO	0b: 64 Byte 1b: 128 Byte
4	Link Disable	0	RO	Reserved on Endpoints
5	Retrain Link	0	RO	Reserved for Endpoints
6	Common Clock Configuration	0	RO	1: Common Reference Clock 0: Asynchronous Reference Clock
7	Extended Synch	0	RO	When Set, this bit forces the transmission of additional Ordered Sets when exiting the L0s state and when in the Recovery state
8	Enable Clock Power Management	0	RO	Ob: Clock power management is disabled and the device must hold CLKREQ# signal low 1b: When this bit is Set, the device is permitted to use CLKREQ# signal to power manage Link clock according to the protocol defined in the appropriate form factor specification
9	Hardware Autonomous Width Disable	0	RO	When Set, this bit disables hardware from changing the Link width
10	Link Bandwidth Management Interrupt Enable	0	RO	When Set, this bit disables hardware from changing the Link width
11	Link Autonomous Bandwidth Interrupt Enable	0	RO	When Set, this bit enables the generation of an interrupt to indicate that the Link Bandwidth Management Status bit has been Set
15:12	Reserved	0	RO	Reserved

(UG042004, V1.6) 59 / 74

$2.6.1.1.30\;Link_Status\;REG$

Table 2-51 Link_Status REG (Offset = 082h)

Bits	Item	Reset Values	Access Type	Description
3:0	Current Link Speed	4'b1	RO	0001b: 2.5GT/s 0010b: 5.0GT/s
				Others: Reserved
				000000b: Reserved
				000001b: x1
				000010b: x2
9:4	Link Width	6'b1	RO	000100b: x4
7.4	Link Width	001	RO	001000b: x8
				001100b: x12
				010000b: x16
				100000b: x32
10	Undefined	0	RO	Undefined
11	Link Traning	0	RO	1: LTSSM in Cfg/Recovery status
	Zimi Truming	Ŭ	RO	0: LTSSM exits Cfg/Recovery status
12	Slot Clock Cfg	1	RO	1: Use the platform-provided reference clock
	220 230 236			0: Use an independent clock.
13	DLL Link Active	0	RO	1: DLCMSM in DL_Active status.
				0: DLCMSM not in DL_Active status
14	Link Bandwidth Management Status	0	RO	This bit is reserved for Endpoint
15	Link Autonomous	0	RO	1 indicates automatic adjustment of rate or link
	Bandwidth Status			width.

2.6.1.1.31 Device_CAP2 REG

Table 2-52 Device_CAP2 REG (Offset = 094h)

Bits	Item	Reset Values	Access Type	Description
3:0	Completion Timeout Ranges Supported	4'hf	R/W	0000b: Completion Timeout programming not supported – the Function must implement a timeout value in the range 50 μs to 50 ms 0001b: Range A 0010b: Range B 0011b: Ranges A and B 0110b: Ranges B and C 0111b: Ranges A, B, and C 1110b: Ranges B, C and D 1111b: Ranges A, B, C, and D
4	Completion Timeout Disable Supported	1	R/W	When set to 1, the CPL timeout mechanism is not used
5	Reserved	0x0	RO	Reserved
6	AtomicOp Routing Supported	0x0	RO	1: AtomicOp Routing supported 0: AtomicOp Routing not supported
7	32-bit AtomicOp Completer Supported	0x1	RO	1: 32-bit AtomicOp Completer supported 0: 32-bit AtomicOp Completer not supported

(UG042004, V1.6) 60 / 74

Bits	Item	Reset Values	Access Type	Description
8	64-bit AtomicOp Completer Supported	0x1	RO	1: 64-bit AtomicOp Completer supported 0: 64-bit AtomicOp Completer not supported
9	128-bit CAS Completer Supported	0x1	RO	1: 128-bit CAS Completer supported 0: 128-bit CAS Completer not supported
31:10	Reserved	0x4	RO	Reserved

2.6.1.1.32 Device_Control2 REG

Table 2-53 Device_Control2 REG (Offset = 098h)

Bits	Item	Reset Values	Access Type	Description
3:0	CPL Timeout Value	4'h0	RO	0000b: 50 μs to 50 ms 0001b: 50 μs to 100 μs 0010b: 1 ms to 10 ms 0101b: 16 ms to 55 ms 0110b: 65 ms to 210 ms 1001b: 260 ms to 900 ms 1010b: 1 s to 3.5 s 1101b: 4 s to 13 s 1110b: 17 s to 64
4	CPL Timeout Disable	0	RO	When set to 1, the CPL Timeout mechanism is not used
5	ARI Forwarding Enable	0	RO	When set to 1, Enable ARI Forwarding
6	AtomicOp Requester Enable	0	RO	When set to 1, allows transmitting AtomicOp requests.
8	IDO Request Enable	0	RO	When set to 1, allows IDO Request
9	IDO Completion Enable	0	RO	When set to 1, allows IDO Completion
10	LTR Mechanism Enable	0	RO	When set to 1, allows the LTR mechanism
14: 11	Reserved	0x0	RO	Reserved
15	End-End TLP Prefix Blocking	0	RO	0: Forwarding Enabled 1: Forwarding Blocked

2.6.1.1.33 Device_Status2 REG

Table 2-54 Device_Status2 REG (Offset = 09ah)

Bits	Item	Reset Values	Access Type	Description
15:0	Reserved	0	RO	Reserved

(UG042004, V1.6) 61 / 74

2.6.1.1.34 Link_CAP2 REG

Table 2-55 Link_CAP2 REG (Offset = 09ch)

Bits	Item	Reset Values	Access Type	Description
31:0	Reserved	0x6	RO	Reserved

2.6.1.1.35 Link_Control2 REG

Table 2-56 Link_Control2 REG (Offset = 0a0h)

Bits	Item	Reset Values	Access Type	Description
				0001b: 2.5GT/s
3:0	Target Link Speed	0x2	R/W	0010b: 5GT/s
				Others: Reserved
4	Enter Compliance	0	RO	When the value is 1, it indicates the
4	Enter Compilance	U	KO	device is forced into Compliance mode
				When the value is 1, it means the PCIe
5	Hw. Auto Speed Disable	0	RO	device cannot change the existing
3	Hw_Auto Speed Disable	U	KO	negotiated PCIe link width unless to
				correct errors in the PCIe lanes
6	Salaatahla Da amphasis	0	RO	1b: -3.5 dB
U	Selectable De-emphasis	U	KO	0b: -6 dB
				When the value is 1, transmit Modified
10	Enter Modified Compliance	0	RO	Compliance Pattern while LTSSM state
				machine is in Polling
11	Compaliance SOS	0	RO	When the value is 1, LTSSM transmits
11	Compaliance SOS	U	KU	SKP Ordered Sets
12	Compliance De amphasia	0	DO.	1b: -3.5 dB
12	Compliance De-emphasis	U	RO	0b: -6 dB

2.6.1.1.36 Link_Status2 REG

Table 2-57 Link_Status2 REG (Offset = 0a2h)

Bits	Item	Reset Values	Access Type	Description
0	De-emphasis Level	1	RO	In the case of 5GT/s 1: -3.5dB 0: -6dB Remains 0 at 2.5GT/s
15:1	Reserved	0x0	RO	Reserved

(UG042004, V1.6) 62 / 74

2.6.1.1.37 MSI-X _CAP_List REG

Table 2-58 MSI-X_CAP_List REG (Offset = 0b0h)

Bits	Item	Reset Values	Access Type	Description
7:0	Capability ID	0x11	RO	Capability ID
15:8	Next Pointer	0x0	RO	Next Capability Pointer

2.6.1.1.38 Message_Control REG

Table 2-59 Message_Control REG (Offset = 0b0h)

Bits	Item	Reset Values	Access Type	Description
10:0	Table Size	0x80	RO	System software reads this field to determine the MSI-X Table Size N, which is encoded as N-1. For example, a returned value of "00000000011" indicates a table size of 4
13:11	Reserved	0x0	RO	Reserved
14	Function Mask	0x0	RO	1: All of the vectors associated with the function are masked, regardless of their per-vector Mask bit states 0: Each vector's Mask bit determines whether the vector is masked or not
15	MSI-X Enable	0x0	RO	0: Disable MSI-X 1: Enable MSI-X

2.6.1.1.39 MSI-X _Table_Offset REG

Table 2-60 MSI-X_Table_Offset REG (Offset = 0b4h)

Bits	Item	Reset Values	Access Type	Description
2:0	Table BIR	0x2	RO	Indicates which one of a function's Base Address registers, located beginning at 10h in Configuration Space, is used to map the function's MSI-X Table into Memory Space BIR Value Base Address register 0 10h 1 14h 2 18h 3 1Ch 4 20h 5 24h 6 Reserved 7 Reserved
31:3	Table Offset	0x0	RO	Used as an offset from the address contained by one of the function's Base Address registers to point to the base of the MSI-X Table. The lower 3 Table BIR bits are masked off (set to zero) by software to form a 32-bit QWORD-aligned offset

(UG042004, V1.6) 63 / 74

2.6.1.1.40 MSI-X _PBA_Offset REG

Table 2-61 MSI-X_PBA_Offset REG (Offset = 0b8h)

Bits	Item	Reset Values	Access Type	Description
2:0	PBA BIR	0x2	RO	Indicates which one of a function's Base Address registers, located beginning at 10h in Configuration Space, is used to map the function's MSI-X PBA into Memory Space The PBA BIR value definitions are identical to those for the MSI-X Table BIR
31:3	PBA Offset	0x800	RO	Used as an offset from the address contained by one of the function's Base Address registers to point to the base of the MSI-X PBA. The lower 3 PBA BIR bits are masked off (set to zero) by software to form a 32-bit QWORD-aligned offset.

2.6.1.1.41 MSI-X _PBA_Offset REG

Table 2-62 MSI-X_PBA_Offset REG (Offset = 0b8h)

Bits	Item	Reset Values	Access Type	Description
4: 0	Reserved	0x0	RO	Reserved
5	ECRC Generation Capable	0x0	RO	1: Device is capable of generating ECRC 0: Device is not capable of generating ECRC
6	ECRC Generation Enable	0x0	RO	1: Enable ECRC Generation 0: Disable ECRC Generation
7	ECRC Check Capable	0x0	RO	Device is capable of checking ECRC Device is not capable of checking ECRC
8	ECRC Check Enable	0x0	RO	1: Enable ECRC Check 0: Disable ECRC Check
31:9	Reserved	0x0	RO	Reserved

2.6.1.2 Shadow register

Table 2-63 Shadow Register

PCI Express Shadow Register						
31	16	15	0	Address		
BAR0_MASK_REG				011h		
BAR1_MASK_REG				015h		
BAR2_MASK_REG				019h		
BAR3_MASK_REG	01Dh					
BAR4_MASK_REG	021h					
BAR5_MASK_REG	025h					
EXP_ROM_BAR_MA	031h					

(UG042004, V1.6) 64 / 74

2.6.1.2.1 BAR0_MASK_REG

Table 2-64 BAR0_MASK_REG (Offset = 011h)

Bits	Item	Reset Values	Access Type	Description
0	BAR0_ENABLED	0x1	WO	BAR0 Enable
31:1	BAR0_MASK	0x7fff_ffff	WO	BAR0 MASK

2.6.1.2.2 BAR1_MASK_REG

Table 2-65 BAR1_MASK_REG (Offset = 015h)

Bits	Item	Reset Values	Access Type	Description
0	BAR1_ENABLED	0x1	WO	BAR1 Enable
31:1	BAR1_MASK	0x3f	WO	BAR1 MASK

2.6.1.2.3 BAR2_MASK_REG

Table 2-66 BAR2_MASK_REG (Offset = 019h)

Bits	Item	Reset Values	Access Type	Description
0	BAR2_ENABLED	0x1	WO	BAR2 Enable
31:1	BAR2_MASK	0x7fff_ffff	WO	BAR2 MASK

2.6.1.2.4 BAR3_MASK_REG

Table 2-67 BAR3_MASK_REG (Offset = 01dh)

Bits	Item	Reset Values	Access Type	Description
0	BAR3_ENABLED	0x1	WO	BAR3 Enable
31:1	BAR3_MASK	0x3f	WO	BAR3 MASK

2.6.1.2.5 BAR4_MASK_REG

Table 2-68 BAR4_MASK_REG (Offset = 021h)

Bits	Item	Reset Values	Access Type	Description
0	BAR4_ENABLED	0x1	WO	BAR4 Enable
31:1	BAR4_MASK	0x3fff_ffff	WO	BAR4 MASK

(UG042004, V1.6) 65 / 74

2.6.1.2.6 BAR5_MASK_REG

Table 2-69 BAR0_MASK_REG (Offset = 025h)

Bits	Item	Reset Values	Access Type	Description
0	BAR5_ENABLED	0x1	WO	BAR5 Enable
31:1	BAR5_MASK	0x7f	WO	BAR5 MASK

2.6.1.2.7 EXP_ROM_BAR_MASK

Table 2-70 EXP_ROM_BAR (Offset = 031h)

Bits	Item	Reset Values	Access Type	Description
0	ROM_BAR_ENABLED	0x1	WO	Expansion ROM Bar Mask Register Enabled
31:1	ROM_MASK	0x7fff_ffff	WO	Expansion ROM Mask

2.6.1.3 Port Logic register

Table 2-71 Port Logic Register

PCI Express Port Logic Registers					
31	16	15	0	Address	
PORT_LINK_CTRL_	710h				
GEN2_CTRL_OFF 80ch					

2.6.1.3.1 PORT_LINK_CTRL_OFF

Table 2-72 PORT_LINK_CTRL_OFF (Offset = 710h)

Bits	Item	Reset Values	Access Type	Description
0	Reserved	0x0	RO	Reserved
1	SCRAMBLE_DISABLE	0x0	R/W	Scramble Disable
15:2	Reserved	0x0	RO	Reserved
21:16	LINK_CAPABLE	0x7	R/W	0x1 (X1): x1 0x3 (X2): x2 0x7 (X4): x4
31:22	Reserved	0x0	RO	Reserved

(UG042004, V1.6) 66 / 74

2.6.1.3.2 GEN2_CTRL_OFF

Table 2-73 GEN2_CTRL_OFF (Offset = 80ch)

Bits	Item	Reset Values	Access Type	Description
7:0	Reserved	0x0	RO	Reserved
12:8	NUM_OF_LANES	0x4	R/W	0x1: 1 lane 0x2: 2 lanes 0x3: 3 lanes 0x4: 4 lanes
15:13	Reserved	0x0	RO	Reserved
16	AUTO_LANE_FLIP_CTRL_EN	0x1	R/W	Enable Auto Flipping of the Lanes
31:17	Reserved	0x0	RO	Reserved

2.6.2 Root Complex

PCI Express Root Complex related configuration space registers are described as follows.

Table 2-74 PCI Express IP Downstream Configuration Space Registers

PCI Express Config	guration Space			
31	16	15	0	Address
Device ID		Vendor ID		000h
Status		Command		004h
Class Code		•	RevID	008h
BIST Header Lat Timer Cache		Cache Ln	00Ch	
Base Address Regist	er 0	•	·	010h
Base Address Regist	er 1			014h
Secondary Latency Timer	Subordinate Bus Number	Secondary Bus Number	Primary Bus Number	018h
Secondary Status		I/O Limit	I/O Base	01Ch
Memory Limit		Memory Base		020h
Prefetchable Memory Limit		Prefetchable Memory Base		024h
Prefetchable Base U	pper 32 Bits	·		028h
Prefetchable Limit U	Upper 32 Bits			02Ch
I/O Limit Upper 16	Bits	I/O Base Upper 16	I/O Base Upper 16 Bits	
Reserved			CapPtr	034h
Expansion ROM Ba	se Address			038h
Bridge Control		Intr Pin	Intr Line	03Ch
				040h
Dagamyad	044h			
Reserved				048h
				04Ch

(UG042004, V1.6) 67 / 74

PCI Express Configuration Space			
MSI Control	Next Cap Pointer	Cap ID	050h
Message Address [31:0]	·		054h
Message Address [63:32]	058h		
Reserved	Message Data		05Ch
Mask Bits	•		060h
Pending Bits			064h
Reserved			068h
Reserved			06Ch
PE Cap	Next Cap Pointer	Cap ID	070h
Device Capabilities			074h
Device Status	Device Control		078h
Link Capabilities			07Ch
Link Status	Link Control		080h
Slot Capabilities			084h
Slot Status	Slot Control		088h
Root Capabilities	Root Control		08Ch
Root Status			090h
Device Capabilities 2			094h
Device Status 2	Device Control 2		098h
Link Capabilities 2			09Ch
Link Status 2	Link Control 2		0A0h
			0A4h
Reserved			0A8h
			0ACh
Message Control	Next Pointer	Capability ID	0B0h
Table Offset		Table BIR	0B4h
PBA Offset PBA BIR			0B8h
Reserved			
Advanced Error Capabilities and Co	ntrol Register		118h

2.6.2.1 Root Control REG

Table 2-75 Root Control REG (Offset = 08ch)

Bits	Item	Reset Values	Access Type	Description
3:0	Reserved	02h	RO	Reserved
4	CRS Software Visibility Enable	0	RO	1: enables the Root Port to return Configuration Request Retry Status (CRS) Completion Status to software

(UG042004, V1.6) 68 / 74

Bits	Item	Reset Values	Access Type	Description
15:5	Reserved	0	RO	Reserved

2.6.2.2 Root Capabilities REG

Table 2-76 Root Capabilities REG (Offset = 08eh)

Bits	Item	Reset Values	Access Type	Description
0	CRS Software Visibility	0	RO	1: indicates that the Root Port is capable of returning Configuration Request Retry Status (CRS) Completion Status to software
15:1	Reserved	0	RO	Reserved

2.7 Typical Applications

For typical applications of the PCIe IP, please refer to "2.4 Example Design".

2.8 Descriptions and Considerations

2.8.1 Operating Modes

2.8.1.1 PCI Express Endpoint and Legacy PCI Express Endpoint mode

Figure 2-24 PCI Express Endpoint Mode Diagram

(UG042004, V1.6) 69 / 74

2.8.1.2 Root Port of PCI Express Root Complex mode

Figure 2-25 Root Port of PCI Express Root Complex Mode Diagram

2.8.2 BAR Size Limitations

Due to address width limitations, the BAR Size is limited as follows:

- The total size of 32-bit Bars cannot exceed 4GB;
- The total size of 64-bit Bars cannot exceed 16EB;
- The combined total of 32-bit and 64-bit Bars cannot exceed 16EB.

2.8.3 MSI-X Limitations

When configuring MSI-X, since both Table Offset and PBA Offset are 29 bits, the configuration value cannot exceed 0x1FFF_FFFF.

2.8.4 Lane Reversal Usage Instructions

It is not recommended to use Lane Reversal with X1 and X2; if necessary, consult FAE/AE.

2.8.5 PCIe Recommended and Supported Connection Methods

PCIe IP defaults to the recommended connection method.

(UG042004, V1.6) 70 / 74

Table 2-77	Recommen	ded Conne	ction	Methods
	Necommen	uca Conne	CHOIL	Memous

PCIe Lane	X1	X2	X4
Lane0	Q3 LANE0	Q3 LANE0	Q3 LANE0
Lane1	-	Q3 LANE1	Q3 LANE1
Lane2	-	-	Q3 LANE2
Lane3	-	-	Q3 LANE3

Note: "-" indicates that there is no description for the item.

Table 2-78 Supported Connection Methods

PCIE Lane	X1	X2	X2	X2	X2	X4	X4
Lane0	Q3 Anylane	Q3 LANE0	Q3 LANE1	Q3 LANE2	Q3 LANE3	Q3 LANE0	Q3 LANE3
Lane1	-	Q3 LANE1	Q3 LANE0	Q3 LANE3	Q3 LANE2	Q3 LANE1	Q3 LANE2
Lane2	-	-	-	-	-	Q3 LANE2	Q3 LANE1
Lane3	-	-	-	-	-	Q3 LANE3	Q3 LANE0

Note: "-" indicates that there is no description for the item.

2.8.6 AXI-Stream Master Interface 3DW Usage Instructions

The AXI-Stream Master interface needs to determine the TLP format based on the FMT field in the TLP header.

Table 2-79 Meaning of FMT[1:0] Field

FMT[1:0]	Corresponding TLP format
000Ь	3 DW header, no data
001b	4 DW header, no data
010b	3 DW header, with data
011b	4 DW header, with data

2.8.7 Resizable BAR Usage Instructions

The IP supports manually modifying parameters to implement the Resizable BAR function. For parameter description, please refer to Table 2-80, with the following points to note:

➤ BAR_RESIZABLE and BAR_MASK_WRITABLE are exclusive. Both parameters need to be XORed to all 1;

(UG042004, V1.6) 71 / 74

- ➤ The IP supports up to 3 Resizable BARs;
- Apart from BAR_RESIZABLE and BAR_MASK_WRITABLE parameters, other parameters are consistent with the protocol. Detailed explanations are based on the protocol. If you have any questions, please contact FAE/AE.

Table 2-80 Resizable BAR Parameter Descriptions

Parameter	Description
BAR_RESIZABLE	6 bits correspond to 6 BARs, each bit meaning: 0: Resizable BAR function not enabled 1: Resizable BAR function enabled
BAR_MASK_WRITABLE	6 bits correspond to 6 BARs, each bit meaning: 0: Resizable BAR function enabled 1: Resizable BAR function not enabled
NUM_OF_RBARS	Number of Resizable BARs (up to 3 supported)
BAR_INDEX_0	Resizable BAR0 Index
BAR_INDEX_1	Resizable BAR1 Index
BAR_INDEX_2	Resizable BAR2 Index
RESBAR_BAR0_MAX_SUPP_SIZE	Maximum supported size for Resizable BAR0
RESBAR_BAR0_INIT_SIZE	Resizable BAR0 initial size
RESBAR_BAR1_MAX_SUPP_SIZE	Maximum supported size for Resizable BAR1
RESBAR_BAR1_INIT_SIZE	Resizable BAR1 initial size
RESBAR_BAR2_MAX_SUPP_SIZE	Maximum supported size for Resizable BAR2
RESBAR_BAR2_INIT_SIZE	Resizable BAR2 initial size
AER_CAP_NEXT_OFFSET	AER Capability next function offset 12'h0: Resizable BAR function not enabled 12'h2E4: Resizable BAR function enabled

2.8.8 Max_Read_Request_Size Limitations

The maximum value for Max_Read_Request_Size is 011b, which is 1024Bytes.

2.8.9 Correspondence between AXI-Stream Interface and PCIe TLP

2.8.9.1 Description of Byte Positions in TLP

Table 2-81 TLP Byte Position Description

Packet	TLP			
Header0	pcie_hdr_byte0	pcie_hdr_byte1	pcie_hdr_byte2	pcie_hdr_byte3
Header1	pcie_hdr_byte4	pcie_hdr_byte5	pcie_hdr_byte6	pcie_hdr_byte7
Header2	pcie_hdr_byte8	pcie_hdr_byte9	pcie_hdr_byte10	pcie_hdr_byte11
Header3	pcie_hdr_byte12	pcie_hdr_byte13	pcie_hdr_byte14	pcie_hdr_byte15
Data0	pcie_data_byte0	pcie_data_byte1	pcie_data_byte2	pcie_data_byte3

(UG042004, V1.6) 72 / 74

Packet	TLP			
Data1	pcie_data_byte4	pcie_data_byte5	pcie_data_byte6	pcie_data_byte7
Data2	pcie_data_byte8	pcie_data_byte9	pcie_data_byte10	pcie_data_byte11
Datan	pcie_data_byte <4n>	pcie_data_byte <4n+1>	pcie_data_byte <4n+2>	pcie_data_byte <4n+3>

2.8.9.2 Correspondence between AXI-Stream and 4DW Header TLP

Table 2-82 Correspondence Between AXI-Stream and 4DW Header TLP

AXI-Stream width	[127:96]	[95:64]	[63:32]	[31:0]
TLP	Н3	H2	H1	Н0
	D3	D2	D1	D0
ILP				
	Dn	D <n-1></n-1>	D <n-2></n-2>	D <n-3></n-3>

2.8.9.3 Correspondence between AXI-Stream and 3DW Header TLP

Table 2-83 Correspondence Between AXI-Stream and 3DW Header TLP

AXI-Stream width	[127:96]	[95:64]	[63:32]	[31:0]
TLP	X	H2	H1	Н0
	D3	D2	D1	D0
ILP				
	Dn	D <n-1></n-1>	D <n-2></n-2>	D <n-3></n-3>

2.9 IP Debugging Methods

By utilising DebugCore to capture signals related to smlh_ltssm_state, the working status of the PCIe IP link can be monitored. Different control commands are initiated through the serial port, and execute DebugCore to capture the Example Design's APB Interface and AXI-Stream Interface to verify the normal operation of the PCIe IP. For the list of signals, please refer to Table 2-20.

(UG042004, V1.6) 73 / 74

Disclaimer

Copyright Notice

This document is copyrighted by Shenzhen Pango Microsystems Co., Ltd., and all rights are reserved. Without prior written approval, no company or individual may disclose, reproduce, or otherwise make available any part of this document to any third party. Non-compliance will result in the Company initiating legal proceedings.

Disclaimer

- 1. This document only provides information in stages and may be updated at any time based on the actual situation of the products without further notice. The Company assumes no legal responsibility for any direct or indirect losses caused by improper use of this document.
- 2. This document is provided "as is" without any warranties, including but not limited to warranties of merchantability, fitness for a particular purpose, non-infringement, or any other warranties mentioned in proposals, specifications, or samples. This document does not grant any explicit or implied intellectual property usage license, whether by estoppel or otherwise.
- 3. The Company reserves the right to modify any documents related to its series products at any time without prior notice.

(UG042004, V1.6) 74 / 74