Math 4317 (Prof. Swiech, S'18): HW #3

Peter Williams 3/20/2018

Section 14

- A. Let $b \in \mathbb{R}$, show $\lim \frac{b}{\eta} = 0$. B. Show that $\lim (\frac{1}{n} \frac{1}{n+1}) = 0$. D. Let $X = (x_n)$ be a sequence in \mathbb{R}^p which is convergent to x. Show that $\lim ||x_n|| = ||x||$. (Hint: use the Triangle Inequality.)
- G. Let $d \in \mathbb{R}$ satisfy d > 1. Use Bernoulli's Inequality to show that the sequence (d_n) is not bounded in \mathbb{R} . Hence it is not convergent.\$
- H. Let $b \in \mathbb{R}$ satisfy 0 < b < 1; show that $\lim(nb^n) = 0$. (Hint: use the Binomial Theorem as in Example 14.8(e).)
- I. Let $X = (x_n)$ be a sequence of strictly positive real numbers such that $\lim(\frac{x_{n+1}}{x_n}) < 1$. Show that for some r with 0 < r < 1 and some C > 0, then we have $0 < x_n < Cr^n$ for all sufficiently large $n \in \mathbb{N}$. Use this to show that $lim(x_n) = 0$
- J. Let $X=(x_n)$ be a sequence of strictly positive real numbers such that $\lim(\frac{x_{n+1}}{x_n})>1$. Show that X is not a bounded sequence and hence is not convergent.
- K. Give and example of a convergent sequence (x_n) of strictly positive real numbers such that $\lim_{x \to \infty} (\frac{x_n+1}{x}) = 1$. Give an example of a divergent sequence with this property. L. Apply the results of Exercises 14.I and 14.J to the following sequences. (Here 0 < a < 1, 1 < b, c > 0) (a) (a^n)
- (b) (na^n)
- (c) (b^n)

- (c) (b^n) (d) $(\frac{b^n}{n})$ (e) $(\frac{c^n}{n!})$ (f) $(\frac{2^{3n}}{3^{2n}})$

Section 15

C(a-e),E,F,L,N

Section 16

A,B,E,G,J,M(a)(c)(d),N

Section 17

A,B,D,E,L,M

Section 18

A(a-c),D,F,I