

# 相關 (Correlation)

#### 大數據分析

- R/Python/Julia/SQL程式設計與應用
   (R/Python/Julia/SQL Programming and Application)
- 資料視覺化 (Data Visualization)
- 機器學習 (Machine Learning)
- 統計品管 (Statistical Quality Control)
- 最佳化 (Optimization)





## 大綱

- 1.相關簡介
- 2.雙變數的相關係數
- 3.繪製散佈圖
- 4.偏相關





#### 相關

- 相關 (Correlation) 表示變數間相互發生之關聯,通常以線性相關為主。
- 分析兩組資料間之相關,稱之為簡單相關;若是分析多組資料間之相關,則稱之為複相關(Multiple Correlation)。
- 簡單相關有二種方式:1. 繪製資料散佈圖 2.計算簡單相關係數(包括相關程度大小及正負之數值)。
- 簡單相關係數之計算公式為:

• 樣本相關係數 
$$\gamma = \frac{S_{xy}}{S_x S_y} = \frac{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}} \sqrt{\frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}}} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}}$$



#### 相關係數特性

- 相關係數值介於-1到+1之間, $-1 \le \gamma \le 1$
- 相關係數值其情況可有下列三種:
  - 1.  $\gamma = 0$  無線性相關,可能有非線性關係
  - 2.  $\gamma > 0$  正相關
  - 3. γ<0 負相關
- 當相關係數之絕對值小於0.3 時,為低度相關。
- 絕對值介於 0.3~0.7時,為中度相關。
- 達到 0.7~0.8時,為高度相關。
- 若達到 0.8以上時,即為非常高度相關。





#### 雙變數的相關係數

- 考慮 marketing.csv 銷售資料集
- <a href="https://github.com/rwepa/DataDemo/blob/master/marketing.csv">https://github.com/rwepa/DataDemo/blob/master/marketing.csv</a>
- 計算相關係數並進行檢定,其虛無假設與對立假設為:
  - H<sub>0</sub>: ρ=0 (無關)
  - H<sub>1</sub>: ρ≠0 (相關)



8

#### 相關係數-SPSS

• 分析 \ 相關 \ 雙變數







### 相關係數-SPSS (續)

- 兩個星號 (\*\*)表示於 $\alpha=0.01$ 之顯著水準下兩者顯著相關,其顯著性為0.000。
- 一個星號 (\*) 而已,表示於 $\alpha$ =0.05之顯著水準下兩者顯著相關;若無星號則表示兩者無顯著相關。

|           |                  | youtube | facebook | newspaper | sales  |
|-----------|------------------|---------|----------|-----------|--------|
| youtube   | 皮爾森 (Pearson) 相關 | 1       | .062     | .057      | .782** |
|           | 顯著性(雙尾)          |         | .386     | .426      | .000   |
|           | N                | 200     | 199      | 200       | 200    |
| facebook  | 皮爾森 (Pearson) 相關 | .062    | 1        | .352***   | .582** |
|           | 顯著性(雙尾)          | .386    |          | .000      | .000   |
|           | N                | 199     | 199      | 199       | 199    |
| newspaper | 皮爾森 (Pearson) 相關 | .057    | .352**   | 1         | .228** |
|           | 顯著性(雙尾)          | .426    | .000     |           | .001   |
|           | N                | 200     | 199      | 200       | 200    |
| sales     | 皮爾森 (Pearson) 相關 | .782**  | .582**   | .228**    | 1      |
|           | 顯著性 (雙尾)         | .000    | .000     | .001      |        |
|           | N                | 200     | 199      | 200       | 200    |

<sup>\*\*.</sup> 相關性在 0.01 層上顯著(雙尾)。





#### 繪製資料散佈圖

- 散佈圖通常用以探討兩數值資料之相關情況。例:
  - 廣告費(X)與銷售量(Y)之關係
  - 年齡與所得之關係
  - 所得與購買能力之關係
  - 每月所得與信用分數之關係
- 在X軸之資料稱為自變數;Y軸之資料稱為因變數(依變數);
   利用散佈圖即可判讀出:當X軸資料變動後,對Y 軸資料之影響程度。例:隨廣告費逐漸遞增,銷售量將如何變化?



#### 散佈圖-SPSS

● 統計圖 \ 圖表建置器 \ 散佈圖 / 點形圖 \ 簡易散佈圖







#### 偏相關 (Partial Correlation)

- 真實世界的很多情況,不是簡單的兩個變數就能解釋清楚。且其間各變數相互牽扯,彼此間夾雜很多相互影響力。結果使得我們無法看清某兩個變數間的真正關係。
- 偏相關就是在其他變數固定的條件下(排除第三變數影響),而 去檢定兩組變數間是否有關係。由於排除了其他變數之影響,故 又稱為「淨相關」。
- 虛無假說(Null hypothesis) :  $H_0$ :  $\gamma = 0$  兩變數之間無淨相關 對立假說(Alternative hypothesis) :  $H_0$ :  $\gamma \neq 0$  兩變數之間有淨相關



#### 偏相關

- 下載: https://github.com/rwepa/DataDemo/blob/master/river\_temperature.csv
- 分析河水溫度與河水流量之間的相關關係,排除雨量變數。
- 在沒有控制任何變項,看單純兩個變項之間的關係時,稱為零階相關 (zero-order correlations)。
- 當控制第三個變項後,再看兩個變項之間的關係,稱為一階淨相關 (first-order correlation),即上述偏相關。



#### river\_temperature.csv





#### 偏相關-SPSS

• 分析 \ 相關 \ 偏相關





# 偏相關-SPSS (續)

相關

| 控制變數             |      |            | 平: | 均流量   | 平均溫度  | 平均雨量  |
|------------------|------|------------|----|-------|-------|-------|
| -無- <sup>a</sup> | 平均流量 | 相關         | Г  | 1.000 | .819  | .831  |
|                  |      | 顯著性(雙尾)    | l  |       | .001  | .001  |
|                  | 100  | df         |    | 0     | 10    | 10    |
|                  | 平均溫度 | 相關         |    | .819  | 1.000 | .848  |
|                  |      | 顯著性(雙尾)    | 1  | .001  |       | .000  |
|                  | 92   | df         |    | 10    | 0     | 10    |
|                  | 平均雨量 | 相關         |    | .831  | .848  | 1.000 |
|                  |      | 顯著性(雙尾)    | l  | .001  | .000  |       |
|                  |      | df         |    | 10    | 10    | 0     |
| 平均雨量             | 平均流量 | 相關         |    | 1.000 | .388  |       |
|                  |      | 顯著性(雙尾)    |    |       | .238  |       |
|                  |      | df         | \  | 0     | 9     |       |
|                  | 平均溫度 | 相關         | 1  | .388  | 1.000 |       |
|                  |      | 顯著性 ( 雙尾 ) | •  | .238  |       |       |
|                  |      | df         |    | 9     | 0     |       |

a. 儲存格包含零階皮爾森 (Pearson) 相關。



# 謝謝您的聆聽 Q&A



李明昌

alan9956@gmail.com

http://rwepa.blogspot.tw/