Sequential Circuit Design

3-bit asynchronous (ripple) binary counter

4-bit asynchronous (ripple) binary counter (negative edge triggered)

2-bit synchronous binary counter

4-bit synchronous binary counter

(negative edge triggered)

 The number of flip-flops determines the count limit or number of states.

$$(STATES = 2 * of flip flops)$$

- Number of states used is called the MODULUS
- A Modulus-12 counter would count from 0 (0000) to 11 (1011) and requires four flip-flops (16 states 12 used).

Modulo-6 counter (truncated counter)

Decade counters (or BCD counters)

Up and down counter

3-bit binary down counter

Sequential Circuit Design

- The most general model of a sequential circuit has inputs, outputs, and internal states.
- Mealy model and Moore model
 - They differ in the way the output is generated.
 - In the Mealy model, the output is a function of both the present state and input.
 - Outputs have immediate reaction to inputs
 - As inputs change, so does next state, doesn't commit until clocking event
 - In the Moore model, the output is a function of the present state only.
 - Output does not react immediately to input change

Specifying Outputs for a Moore Machine Output is only function of state

- ☐ Specify in state bubble in state diagram
- ☐ Example: sequence detector for 01 or 10

		current	next	
reset	input	state	state	output
1	_	_	Α	
0	0	Α	В	0
0	1	Α	С	0
0	0	В	В	0
0	1	В	D	0
0	0	С	E	0
0	1	С	С	0
0	0	D	Е	1
0	1	D	С	1
0	0	Е	В	1
0	1	E	D	1

Specifying Outputs for a Mealy Machine

Output is function of state and inputs

- ☐ Specify output on transition arc between states
- ☐ Example: sequence detector for 01 or 10

		current	next	
reset	input	state	state	output
1	_	_	Α	0
0	0	Α	В	0
0	1	Α	С	0
0	0	В	В	0
0	1	В	С	1
0	0	C	В	1
0	1	С	С	0

Moore FSM General Block Diagram

Mealy FSM Block Diagram and State Equations

Comparison of Mealy and Moore Machines

- Mealy Machines tend to have less states
 - Different outputs on arcs (n^2) rather than states (n)
- Moore Machines are safer to use
 - Outputs change at clock edge (always one cycle later)
 - In Mealy machines, input change can cause output change as soon as logic is done a big problem when two machines are interconnected
- Mealy Machines react faster to inputs
 - React in same cycle don't need to wait for clock
 - In Moore machines, more logic may be necessary to decode state into outputs more gate delays after