Measure Theory

Sofonias Alemu Korsaye

July 22, 2019

1. Exercise 1.3

- If $A \in \mathcal{G}_1$ and is different from empty set and the whole set, then A^c is closed and and doe not belong to \mathcal{G}_1 . Thus, \mathcal{G}_1 is not an algebra.
- If a = b then $\emptyset \in \mathcal{G}_2$. If $b \leq a$, then $\mathbb{R} \in \mathcal{G}_2$. Thus by definition of G_2 , it is an algebra.
- If a = b then $\emptyset \in \mathcal{G}_2$. If $b \leq a$, then $\mathbb{R} \in \mathcal{G}_2$. Thus by definition of G_2 , it is an σ -algebra.

2. Exercise 1.7

- \mathcal{A} is a σ -algebra. Thus, by definition it contains $\{\emptyset, X\}$
- \mathcal{A} is a σ -algebra. By definition it is a family of subsets of X, thus, $\mathcal{A} \subset \mathcal{P}(X)$.

3. Exercise 1.10

- $\emptyset \in \mathcal{S}_{\alpha} \ \forall \alpha \Rightarrow \emptyset \in \cap_{\alpha} \mathcal{S}_{\alpha}$
- If $A \in \cap_{\alpha} \mathcal{S}_{\alpha}$, then $A \in \mathcal{S}_{\alpha}$ and $A^c \in \mathcal{S}_{\alpha} \ \forall \alpha$, hence, $A^c \in \cap_{\alpha} \mathcal{S}_{\alpha}$
- If $A_n \in \cap_{\alpha} S_{\alpha}$, then then $A_n \in S_{\alpha}$ and $\bigcup_n A_n \in S_{\alpha} \ \forall \alpha$, hence, $\bigcap_n A_n \in \bigcup_{\alpha} S_{\alpha}$

4. Exercise 1.22

- $A \subset B \Rightarrow B = A \cup (B \cap A^c)$. Since A and $B \cap A^c$ are disjoint, $\mu(B) = \mu(A) + \mu(B \cap A^c)$. Thus, $\mu(A) \leq \mu(B)$.
- $A = (A \cap B^c) \cup (A \cap B)$ and $B = (B \cap A^c) \cup (B \cap A)$. $\mu(A) + \mu(B) = \mu(A \cap B) + \mu(A \cap B) + \mu(A \cap B) + \mu(A \cap B) = \mu(A \cap B) + \mu(A \cap B)$. Thus, $\mu(A) + \mu(B) \ge \mu(A \cup B)$.

5. Exercise 1.23

- $\lambda(\emptyset) = \mu(\emptyset \cap B) = \mu(\emptyset) = 0.$
- $\lambda(\cup_n \mathcal{A}_n) = \mu((\cup_n \mathcal{A}_n) \cap B) = \mu(\cup_n (\mathcal{A}_n \cap B)) = \sum_n \mu(\mathcal{A}_n \cap B) = \sum_n \lambda(\mathcal{A}_n).$ ({ \mathcal{A}_n }) disjoint $\to {\mathcal{A}_n \cap B}$ disjoint.)

6. Exercise 1.26

• $\mu(\cap_n \mathcal{A}_n) = \mu((\cup_n \mathcal{A}_n^c)^c) = \mu(X) - \mu(\cup_n \mathcal{A}_n^c) = \mu(X) - \lim_{n \to \infty} \mu(\mathcal{A}_n^c) = \mu(X) - \lim_{n \to \infty} \mu(\mathcal{A}_n^c) = \mu(X) - \lim_{n \to \infty} \mu(\mathcal{A}_n) = \lim_{n \to \infty} \mu(\mathcal{A}_n)$. By (i).

7. Exercise **2.10**

8. Exercise 2.14

• By Theorem 2.12, $\sigma(\mathcal{A}) \subset \mathcal{M}$. In order to show that $\mathcal{B}(\mathbb{R}) \subset \mathcal{M}$, it is sufficient to prove that $\sigma(\mathcal{O}) \in \sigma(\mathcal{A})$. $(a,b) = \bigcup_n (a,b-1/n]$.

9. Exercise 3.1

• Let B be a countable subset of \mathbb{R} . Then the Lebesgue outer measure given by $\mu^*(B) := \inf \sum_{n=1}^{\infty} (b_n - a_n) : B \subset \bigcup_{i=1}^{\infty} (a_i, b_i]$, achieves the infimum for the partition given by the set B, with $a_i = b_i = B_i$, where B_i is the i - th element of the set B. Hence, the result.

10. Exercise 3.7

• $\sigma(\{(-\infty, a), \forall a \in \mathbb{R}\}) = \sigma(\{(-\infty, a], \forall a \in \mathbb{R}\}) = \sigma(\{(a, \infty), \forall a \in \mathbb{R}\}) = \sigma(\{[a, \infty), \forall a \in \mathbb{R}\}) = \mathcal{B}(\mathbb{R}).$

11. Exercise **3.10**

- $\max(f,g)$, $\min(f,g)$ and $|f| = \max(f,-f)$ are measurable by (2).
- f + g and f g are measurable by (4).

12. Exercise **3.17**

Similarly to the proof for (1), we define N such that $N \ge M$ and $\frac{1}{2^N} < \epsilon$. Since f is bounded M doesnot depend on x, hence we have uniform convergence.

13. Exercise **4.13**

• $0 \le |f| < M$, by proposition 4.5, $\int_E |f| d\mu < M\mu(E) < \infty$.

14. Exercise 4.14

• Let $A \subset E$ denote the subset where f is not finite. By contrast, let's assume that $E \lor B : A \subset B \subset E$, we have that $\mu(B) > 0$. by the properties of the monotonocity of μ and by the definition of Lebesgue integral, $\int_{E} |f| d\mu > \int_{B} |f| d\mu = \infty$. This would mean that $f \notin \mathcal{L}^{1}(\mu, E)$.

15. Exercise 4.15

• If $f \leq g$, then $0 \leq f_+ \leq g_+$ and $0 \leq -f_- \leq -g_-$. By Proposition 4.7, $\int_E f_+ d\mu \leq \int_E g_+ d\mu$ and $-\int_E f_- d\mu \leq -\int_E g_- d\mu$. Hence, $\int_E f_+ d\mu - \int_E g_- d\mu \leq \int_E g_+ - \int_E g_-$. Then by definition $\int_E f d\mu \leq \int_E g d\mu$.

16. Exercise **4.16**

 $A\subset E$, by definition of Lebesgue integral, $\int_A |f|d\mu\leq \int_E |f|d\mu<\infty$. Hence, $f\in\mathcal{L}^1(\mu,A)$.

17. Exercise **4.21**

$$\tilde{\mu}(A):=\int_A f d\mu.$$
 $\tilde{\mu}(A)=\tilde{\mu}(B)+\tilde{\mu}(A-B).$ $\int_A f d\mu=\int_{A-B} f d\mu+\int_B f d\mu.$ Since $\mu(A-B)=0,$ $\int_A f d\mu=\int_B f d\mu.$