

Modul: Telekomunikacije i informatika

Višemedijske usluge

Završni pregled predmeta

Ak.g. 2007./2008.

znanja i vještine u području višemedijskih usluga, uslužnih arhitektura i komunikacijskih protokola u Internetu, s naglaskom na World Wide Web i strujanje višemedijskog sadržaja

> temeljni koncepti i praktično iskustvo na odabranim primjerima

zašto problem koji se rješava

što funkcionalnost

<mark>kako izvedba</mark>

Pregled predavanja

1.	Predstavljanje organizacije i sadržaja kolegija. Uvod u višemedijske usluge. (Podsjetnik: Komunikacijske mreže i Teorija informacije)
2.	Kodiranje višemedijskih sadržaja I: audio
3.	Kodiranje višemedijskih sadržaja II: slika, video
4.	Kodiranje višemedijskih sadržaja III: sintetički sadržaji, animacija Sinkronizacija višemedijskih sadržaja (SMIL)
5.	Distribuirani sustavi i modeli distribuiranog procesiranja
6.	Internetske usluge: World Wide Web – terminologija, standardi i protokoli (HTML, HTTP, URI)
7.	Internetske usluge: World Wide Web – tehnologije, korisnički aspekti, uporabivost
8.	Pretraživanje višemedijskih sadržaja na WWW-u
9.	Arhitektura višemedijskog komunikacijskog sustava Strujanje višemedijskog sadržaja (RTP, RTSP)
10.	Opis i upravljanje višemedijskom sjednicom (SDP, SIP). Internetska telefonija, VoIP
11.	Mreže ravnopravnih čvorova (peer-to-peer, P2P) i primjeri usluga.
12.	Završni pregled gradiva i priprema za ispit

Ocjenjivanje

Komponente ocjene:

Sudjelovanje u nastavi 10 % (nazočnost + aktivnost)

Domaće zadaće 10 % (4 zadaće u semestru)

1. Međuispit (90 min.) 20 % (prva trećina gradiva)

2. Međuispit (90 min.) 20 % (druga trećina gradiva)

Laboratorijske vježbe 15 % (sve obvezne)

Završni ispit (90 min.) 25 %

- pismeni (sve, s naglaskom na zadnju trećinu)

- usmeni

Prolazna ocjena:

Ukupno >50 %, uz obavljene lab.vježbe

Modul: Telekomunikacije i informatika

Višemedijske usluge

Kodiranje zvuka

Ak.g. 2007./2008.

codec, coder + decoder = uređaj koji kodira i dekodira, odn. komprimira i dekomprimira, audio i video

Kriteriji usporedbe codec-a

- brzina, izlaz, bitrate (bit/s)
- kvaliteta
 - objektivna mjerila ("klasične" metode, izobličenje signala i SNR, nisu dobra mjerila za ljudsku percepciju rekonstruiranog signala)
 - subjektivna mjerila (često važnija od objektivnih!)
- kašnjenje
 - algoritamsko kašnjenje u koderu na izvoru koliko traje kodiranje
 - kod dekodiranja koliko traje dekodiranje?
 - sinkronizacija s ostalim medijima u višemedijskoj aplikaciji
- otpornost na gubitke
 - posebno važno za prijenos preko mreže
- primjena na ostale zvukove koji nisu govor, npr. fax i modemske signale, te glazbu
- složenost (hw/sw)
- cijena izvedbe

Koderi valnog oblika

- Veće brzine, dobra kvaliteta, razvijeni za fiksnu i (kasnije dorađeni) za mobilnu telefoniju
- Pulsno-kodna modulacija (PCM)
 - preporuka *ITU-T G.711* Pulse Code Modulation for voice frequencies (PCM)
- Adaptivni diferencijalni PCM (ADPCM)
 - preporuka ITU-T G.726 Adaptive Differential Pulse Code Modulation (ADPCM);
 sadrži zastarjelu preporuku G.721 (originalni standard)
 - proširenje je ITU-T G.727 5-, 4-, 3- and 2 bits per sample embedded Adaptive Differential Pulse Code Modulation (ADPCM)

Koderi zasnovani na modelu

- Ideja: koder i dekoder imaju isti (parametrizirani) model govornog trakta
 - Parametri modela se računaju za okvire uzoraka govora
 - Dekoderu se prenose parametri modela (a ne uzorci govora) te se govor sintetizira na odredištu
 - Princip analize/sinteze
- postižu se vrlo male brzine
- prvi koderi, npr. LPC-10, su bili lošije kvalitete, razvijeni za sustave ograničene namjene, npr. robotika, sigurna telefonija
- noviji koderi, npr. CELP na malim brzinama postižu dobru kvalitetu, ali su računski složeniji

Percepcijski koder

Shema kodera

Shema dekodera

Modul: Telekomunikacije i informatika

Višemedijske usluge

Kodiranje nepomične slike

Ak.g. 2007./2008.

Računalni prikaz slike

- slika se promatra kao matrica obojanih točaka, odn. pixela
- pixel = picture element
 - razlikujemo pixel slike od "pixela uređaja" (device pixel, dot)!! Npr:
 - printer 600 dpi: kvadrat sa stranicom 1/600"
 - video monitor 72 dpi: kvadrat sa stranicom 1/72"
- rezolucija slike = dimenzije matrice pixela N₁xN₂
- dubina slike = broj bita (d) za opis pixela (odn. boju)

- boja = varijabla koja opisuje pixel
 - modeli boje za sliku: RGB, CMY, HSB, HSI, ...
 - modeli boje za video: YUV, YIQ, ...

Kodiranje slike zasniva se na:

- Statističkim karakteristikama slike: kodiranje bez gubitaka
- Karakteristikama ljudskog sustava vida: kodiranje s neprimjetnim gubicima
- Sažimanju manje važnih elemenata slike prema nekom kriteriju: kodiranje s vidljivim gubicima
- Obično se radi o kombinaciji ovih ideja

Kodiranje bez gubitaka

- Koriste se metode entropijskog kodiranja (vidi prethodna predavanja)
- Slijedno kodiranje
 - Telefax (starija verzija)
- Huffman kodiranje
 - Telefax
- LZW metoda (metode rječnika)
 - GIF (Graphics Interchange Format) bez gubitaka ako se koristi do 256 boja; pogodan za računalnu grafiku

Kodiranje s gubicima

- Diferencijalno (prediktivno) kodiranje
- Transformacijsko kodiranje
 - JPEG
- Kodiranje valićima (wavelets)
 - JPEG 2000
- Fraktalno kodiranje
- Osnovna ideja:

Diferencijalno (prediktivno) kodiranje

 Princip: vrijednost slijedećeg signala (pixela) predviđa se iz dosadašnjih vrijednosti, te se kodira razlika stvarnog i predviđenog

 Raspon amplituda diferencijalnog signala je povoljniji za kodiranje od originalne slike

Transformacijsko kodiranje

- Signal se transformira u prostorno frekvencijske komponente, te se one kodiraju
- Neke frekvencijske komponente slike pojavljuju se puno više od ostalih, što rezultira dobrim kodiranjem
- Metoda razvijena 70-tih godina
- Široka primjena kroz JPEG standard
- JPEG Joint Photographic Experts Group

Modul: Telekomunikacije i informatika

Višemedijske usluge

Kodiranje videa

Ak.g. 2007./2008.

Video

- Video odn. "pokretna slika" se sastoji od niza nepomičnih slika (okvira), prikazanih dovoljno brzo
- Frekvencija promjene slike je brzina osvježavanja okvira (engl. frame rate) izražena u okvirima u sekundi [fps]
 - Opažamo gibanje kao neprekinuto ako je brzina osvježavanja slike od 15 fps (npr. za animaciju) do 25-30 fps (npr. za full-motion video)
 - Posebne primjene, npr. 3D simulacija leta, do 60-75 fps

2

Digitalni video

- ◆ Okvir videa → digitalna nepomična slika
- Video telefonija, telekonferencija
 - Simetrična primjena, koder i dekoder jednako složeni
 - Osjetljivost na kašnjenje
- Digitalna TV, filmovi, DVD
 - Asimetrična primjena, jedan koder služi puno dekodera, dakle može biti složeniji
 - Uključivanje u struju videa u bilo kojem trenutku
- Video preko interneta i mobilnih mreža
 - Relativno male brzine prijenosa
 - Osjetljivost na greške

-2

Kompenzacija gibanja (1)

SLIKA n-1

SLIKA n

RAZLIKA

- Premda su slike vrlo slične, zbog pomaka ih ne možemo direktno diferencijalno kodirati: razlika sadrži više informacije od same slike!
- Različiti dijelovi slike imaju različite pomake

Kompenzacija gibanja (2)

- Za svaki blok u slici, traži se najsličniji blok u prethodnoj slici
- Razlika položaja (u pixelima) između ova dva bloka je vektor pomaka
- Vektori pomaka za sve blokove šalju se dekoderu; tako se konstruira slika slična prethodnoj, te se na njoj vrši diferencijalno kodiranje

Diferencijalno kodiranje slika s kompenziranim gibanjem, te transformacijsko kodiranje signala razlike

- Ovo je najčešći princip kodiranja videa
 - Koristi se u svim standardima koje ćemo spominjati
 - Ostalo su detalji ②

Hibridno kodiranje s kompenzacijom gibanja

ME: Procjena gibanja (motion estimation)

Strategija predikcije (I, P, B okviri/blokovi)

- Diferencijalno (predikcijsko) kodiranje akumulira pogrešku
- Potrebno je s vremena na vrijeme poslati puni okvir, tzv. Iokvir (inter-kodiran)
- Prvi koderi uvode I- i P-okvire
- Bolja predikcija ako se koriste elementi iz prethodnih i idućih okvira
 - **B-okviri** s predikcijom/kompenzacijom gibanja u odnosu na prethodni i idući okvir
 - višestruke referentne slike (AVC/H.264)

Norme i njihove primjene

Modul: Telekomunikacije i informatika

Višemedijske usluge

Kodiranje sintetičkih sadržaja i animacije

Ak.g. 2007./2008.

MPEG-4

- MPEG-4 V1 postaje IS 1999, V2 2000
- Standard za kodiranje višemedijskih objekata na raznim brzinama
- Fokus više nije na kompresiji, nego na novim funkcijama i sadržajima
- Jedinice za kodiranje nisu više okviri, nego audio-vizualni objekti
 - Video, audio, tekst, slika, grafika...
- AV objekti se na dekoderu slažu u scenu
 - Opis scene određuje prostorni i vremenski raspored

Primjer kodiranja scene

MPEG-4 opis scene

Modul: Telekomunikacije i informatika

Višemedijske usluge

Prostorno i vremensko usklađivanje višemedijskog sadržaja

Ak.g. 2007./2008.

Problemi usklađivanja medija

- sadržajni odnos
 - npr. prikaz podataka tablicom i grafom u Excelu
- prostorni odnos
 - npr. prevedeni tekst, u obliku "titlova" ispod slike;
 raspored slika i teksta na Web stranici
- vremenski odnos (sinkronizacija)
 - sinkronizacija unutar jedinica jednog (kontinuiranog) medija
 - sinkronizacija između više medija, gdje je barem jedan kontinuiran

Načini sinkronizacije

- sinkronizacija uživo
 - rekonstrukcija vremenskih odnosa uspostavljenih na izvoru (prilikom snimanja medija)
 - npr. televizijski prijenos
- umjetna (sintetička) sinkronizacija
 - vremenski odnosi između objekata ne postoje "sami po sebi", već se uvode eksplicitno, putem specifikacije
 - npr. 3D animirani lik i govor, prezentacija uz slideove

Specifikacija sinkronizacije

- pojam medijskog objekta
 - audio struja, video struja, animacija, ... (vremenski ovisni mediji)
 - nepomična slika, tekst, ... (vremenski neovisni mediji)
- specifikacija mora sadržavati:
 - specifikaciju sinkronizacije unutar medijskog objekta (intra-sinkronizacija)
 - npr. okviri videa
 - opis kvalitete usluge za sinkronizaciju unutar medijskog objekta
 - npr. 30 fps
 - specifikaciju sinkronizacije između dvaju ili više medijskih objekata (intersinkronizacija)
 - npr. animacija i zvuk
 - opis kvalitete usluge za sinkronizaciju između medijskih objekata
 - npr. razilaženje +/-80 ms

Ideja intervalne i osne specifikacije

- intervalna specifikacija: definira se trajanje i usklađenost (međusobni odnos) vremenskih intervala prikaza medija
- osna specifikacija: na vremenskoj osi se definiraju točke pokretanja i zaustavljanja prikaza medija

Kvaliteta usluge

- osim specifikacije sinkronizacije unutar svakog i između zadanih medijskih objekata, specifikacija sinkronizacije mora sadržavati i opis kvalitete usluge
- 1. za pojedini medijski objekt
 - ovisi o vrsti medija i načinu kodiranja
 - objektivna i subjektivna mjerila (prema poznatim parametrima za pojedine medije)
 - npr. vremenski interval između LDU 1/30 s, dopušteno kolebanje +/-2 ms i sl.
- 2. između medijskih objekata
 - kvaliteta usluge ovisi o uspješnosti usklađivanja međusobnog odnosa medija
 - npr. razilaženje +/-80 ms

SMIL

- W3C Recommendation: Synchronized Multimedia Integration Language (SMIL 2.0)
- http://www.w3.org/AudioVideo/
- SMIL je format za objedinjavanje i sinkronizaciju skupa neovisnih višemedijskih elemenata u zajedničku višemedijsku prezentaciju
 - deklarativni jezik parovi atribut/vrijednost
 - medijski elementi (tekst, grafika, audio, video...) referiraju se preko URI-ja (URI -Uniform Resource Identifier)
 - sinkronizacija
 - paralelno ili sekvencijalno izvođenje
- aplikacije RealPlayer, Helio SOJA,
 GRiNS, QuickTime player, IE 5.5+

Modul: Telekomunikacije i informatika

Višemedijske usluge

Distribuirani sustavi i modeli distribuiranog procesiranja

Ak.g. 2007./2008.

Distribuirani sustav (1)

Definicija

- Distribuirani (raspodijeljeni) sustav je skup računala povezanih mrežom koji djeluje kao jedinstveni sustava te krajnjem korisniku pruža definiranu uslugu
- Sastoji se od:
 - sklopovlja = (autonomna) računala + mreža
 - programske opreme (omogućuje razvoj jedinstvenog distribuiranog sustava)
- Sa stajališta korisnika riječ je o jedinstvenom sustavu

Sadržaj predavanja

- Distribuirani sustav
 - definicija i svojstva
 - međuoprema
 - karakteristike komunikacijske međuopreme
- Komunikacijska međuoprema
 - komunikacija korištenjem priključnica (socket)
 - poziv udaljene procedure/metode
 - komunikacija porukama
 - model objavi-pretplati

Komunikacija pomoću socketa

korisnički procesi

> kontrolira operativni sustav

Poziv udaljene procedure (RPC)

Poziv metode udaljenog objekta (RMI)

Izvođenje komunikacije porukama (1)

1 izvor : 1 odredište

Model objavi-pretplati (1)

Modul: Telekomunikacije i informatika

Višemedijske usluge

Internetske usluge: World Wide Web – terminologija, formati i protokoli

Ak.g. 2007./2008.

Sadržaj predavanja

- osnove World Wide Weba
- nastanak World Wide Weba
- izvedba usluge u mreži i programska podrška
- pojam Uniform Resource Identifier (URI)
- zapis sadržaja na Webu (HTML)
- protokol Hypertext Transfer Protocol (HTTP)
- posrednički poslužitelji i priručna spremišta

Izvedba usluge WWW u mreži

- model klijent-poslužitelj
- resurs identificiran putem URI

Uniform Resource Identifier - URI

URI – Uniform Resource Identifier
(uniformni identifikator resursa)

- uniformni: jednoobrazni način zapisa propisan je oblik
- identifikator: sadrži informaciju nužnu za razlikovanje identificiranog resursa od svih ostalih (≠ identitet!)
- resurs: informacijski izvor; "bilo što" što se može identificirati URI-jem

Pojam URI-ja je središnji pojam u arhitekturi World-Wide Weba. World Wide Web Consortium (W3C) definira WWW kao "informacijski prostor u kojem su predmeti od interesa identificirani URI-jima".

Hypertext Markup Language - HTML

- prva verzija HTML-a 1992. godine; verzija 4.01 iz 1999. (preporuka W3C-a), osnovica za Extensible Hypertext Markup Language XHTML

Protokol Hypertext Transfer Protocol (HTTP)

- internetski protokol aplikacijskog sloja
- definira format i način razmjene poruka
 - tekstualan zapis, sličan formatu e-mail poruke i MIME standarda
- vrste poruka:
 - zahtjev ("metoda") definira operaciju (metodu), resurs, protokol naziv "metoda" potječe od terminologije iz područja objektno-orijentiranog programiranja
 - odgovor (ishod zahtjeva i rezultat) ishod zahtjeva (uspjeh, neuspjeh, greška,...) opisan statusnim kôdom za neke vrste zahtjeva, kao rezultat uspješnog ishoda, u tijelu odgovora dostavlja se sadržaj zatraženog resursa

Komunikacija HTTP klijenta i poslužitelja

Web kao distribuirani sustav

- parametri kvalitete Web usluga
 - raspoloživost
 - propusnost
 - vrijeme čekanja
- pristupi poboljšanju performansi
 - povećanje kapaciteta u infrastrukturi povećava se propusnost i raspoloživost
 - uravnotežavanje opterećenja povećava se propusnost, smanjuje vrijeme čekanja
 - uvođenje priručnih spremišta (engl. cache) povećava se propusnost, smanjuje vrijeme čekanja
- postoje i softverska i hardverska rješenja

Smještaj cachea (1)

ISP - Internet Service Provider

POP - Point of Presence

Modul: Telekomunikacije i informatika

Višemedijske usluge

Pretraživanje informacija na WWW-u

Ak.g. 2007./2008.

Sadržaj predavanja

- Pretraživanje informacija
 - sustavi za pretraživanje informacija
 - modeli i ocjena kvalitete modela
 - odziv i preciznost
- Pretraživanje tekstualnog sadržaja
 - Booleov model
 - vektorski prostorni model

Sustav za pretraživanje informacija

Sustav za pretraživanje tekstualnog sadržaja

Booleov model

- prethodni primjer koristi Booleov model koji se temelji na Boolevoj algebri
- dokument se promatra kao logička tvrdnja
 - 1 riječ se pojavljuje u dokumentu
 - 0 riječ se ne pojavljuje u dokumentu
- upit se formira kao Booleov izraz koristeći Booleove operatore (AND, OR, NOT)
 - dokument odgovara zadanom upitu samo onda kada su svi uvjeti upita ispunjeni
- nema rangiranja dokumenata
 - dokument ili zadovoljava upit ili ne (nema rangiranja vezano uz relevantnost dokumenta za zadani upit)

Vektorski prostorni model

- dokumenti i upiti prikazuju se kao težinski vektori u mdimenzionalnom vektorskom prostoru (m je veličina rječnika kolekcije)
- sličnost upita i dokumenta
 - mjera kojom se određuje relevantnost dokumenta za neki upit
 - u odgovoru se mogu pojaviti i dokumenti koji ne sadrže sve riječi iz upita
- rangiranje dokumenata na temelju izračunate sličnosti
- danas jedan od najraširenijih modela

Arhitektura Web tražilice

Modul: Telekomunikacije i informatika

Ak.g. 2007./2008.

Višemedijske usluge

Arhitektura višemedijskog komunikacijskog sustava

- Protokoli za podršku sjednice
- Protokoli za prijenos i kontrolu prikaza višemedijskog sadržaja

Pregled tema do kraja semestra

- arhitektura višemedijskog komunikacijskog sustava
 - arhitektura klijent poslužitelj
 - višeodredišna arhitektura
- protokolna arhitektura
 - koncepcijski model
 - primjeri stvarnih arhitektura Internet
- aplikacijski podsustav
 - protokoli za podršku sjednice
- transportni podsustav
 - višeodredišna komunikacija
 - strujanje višemedijskog sadržaja
 - kvaliteta usluge

Protokolna arhitektura: Internet (1)

Izvor: http://www.cs.columbia.edu/~hgs/internet/

Oznake:

RTP – Real-time Transport Protocol

RTCP - RTP Control Protocol

RTSP - Real Time Streaming Protocol

RSVP- Resource Reservation Protocol

SDP - Session Description Protocol

TCP - Transmission Control Protocol

UDP - User Datagram Protocol

IP - Internet Protocol

PPP - Point-to-Point Protocol

ATM - Asynchronous Transfer Mode

AAL – ATM Adaptation Layer

Protokolna arhitektura: Internet (2)

primjer protokolne arhitekture za audio-video konferenciju i strujanje

Oznake:

RTP – Real-time Transport Protocol

RTCP - RTP Control Protocol

RTSP - Real Time Streaming Protocol

SDP - Session Description Protocol

SAP - Session Announcement Protocol

SIP – Session Initiation Protocol

Aplikacijski podsustav

- obuhvaća više slojeve (iznad sloja transporta) arhitekture višemedijskog komunikacijskog sustava
- zanimaju nas tri komponente:
 - podrška za suradničke aplikacije
 - skupni naziv za "računalno-podržani zajednički rad" (engl. Computer Supported Collaborative Work, CSCW)
 - npr. zajedničko uređivanje dokumenata, teksta, slike, dizajn
 - podrška za konferencijske aplikacije
 - npr. audio konferencija, video konferencija, distribuirane igre
 - podrška za upravljanje sjednicom

Model podrške grupne komunikacije

Protokoli za podršku sjednice

- Protokol za opis sjednice (engl. Session Description Protocol, SDP)
 - obuhvaća propisani skup parametara koji služi za opis sjednice
 - standardni format za opis medija koji sudjeluju u sjednici, podataka o protokolima i formatima koji će se koristiti u sjednici i sl.
- Protokol za objavu sjednice (engl. Session Announcement Protocol, SAP)
 - služi za objavu sjednice svim zainteresiranim sudionicima
- Protokol za pokretanje sjednice (engl. Session Initiation Protocol, SIP)
 - služi za pokretanje sjednice, modifikaciju parametara sjednice u tijeku i raskid sjednice
 - služi za razmjenu podataka o sjednici
 - služi kao poziv određenom korisniku za sudjelovanje u sjednici

Protokol SDP

- Definiran od strane standardizacijskog tijela IETF (dokument: RFC 4566)
- SDP specificira format za opis sjednice
- Format je neovisan o vrsti transporta kojom se prenosi opis sjednice
 - npr., koriste se SAP, SIP, usluga E-mail + MIME dodaci, RTSP ili HTTP
- Opis sjednice SDP-om je kratak, strukturiran (niz parova atributa i vrijednosti) te u obliku "čistog" teksta

Protokol SIP

- Definiran od strane standardizacijskog tijela IETF (dokument: RFC 3261)
- SIP je protokol aplikacijskog sloja koji služi za uspostavu, promjenu i raskid sjednica između dvaju ili više sudionika
 - primjeri sjednica: poziv u internetskoj telefoniji, višemedijska konferencija
- Osnovna ideja: omogućiti pozivanje *osobe* u sjednicu putem *jedinstvene* (neovisno o trenutnom "položaju")

 Osob

[sip:]<user>@(<host>I<domain>)

- SIP koristi posredničke (proxy) poslužitelje za preusmjeravanje poziva prema trenutnom "položaju" pozivane osobe
- SIP je neovisan o transportnom protokolu i vrsti sjednice
- SIP je odabran kao glavni signalizacijski protokol u naprednim mrežama 3. generacije (zasnovanima na podsustavu IMS, IP Multimedia Subsystem)

SIP mrežni entiteti

SIP definira mrežne entitete i njihovu funkcionalnost:

- SIP klijent, odnosno korisnički agent (engl. User Agent, UA)
 - krajnja točka koja koristi SIP za uspostavu i raskid sjednica
 - nalazi se na korisničkim uređajima uglavnom u obliku aplikacija
 - dijeli se na klijentski UA (engl. UA Client, UAC) i poslužiteljski UA (engl. UA Server, UAS)

SIP poslužitelji:

- Registar (engl. Registrar) entitet kojem korisnički agenti prijavljuju trenutni položaj (trenutnu IP adresu) s ciljem ispravnog usmjeravanja zahtjeva
- Poslužitelj preusmjeravanja (engl. Redirect server) prima odgovarajuće zahtjeve, na koje odgovara s popisom svih mogućih adresa korisnika (na temelju podataka iz Registra)
- Posrednički poslužitelj (engl. Proxy server) usmjerava zahtjeve (i odgovore) do trenutnog položaja korisnika (korisničkih agenata) koristeći podatke iz Registra

Real-time Transport Protocol

specifikacija u RFC 3550, RTP: A Transport Protocol for Real-Time Applications, uključuje:

- Real-time Transport Protocol (RTP), koji pruža uslugu prijenosa podataka sa stvarno-vremenskim svojstvima (npr. audio i video) s kraja na kraj, koristeći pojedinačno (unicast) ili višeodredišno (multicast) razašiljanje na mrežnom sloju
 - RTP definira osnovni format paketa, ali ne i kontrolu
- RTP Control Protocol (RTCP), kontrolni protokol koji nadzire kvalitetu usluge i prenosi podatke o sudionicima u tekućoj sjednici

Primjer: RTP prijenos podataka i kontrole

Oznake:

_____ podaci

----- kontrola

Real Time Streaming Protocol

- specifikacija u RFC 2326, "Real Time Streaming Protocol (RTSP)"
- aplikacijski protokol za upravljanje dostavom podataka sa stvarno-vremenskim svojstvima
- izvori podataka: prijenos uživo ili već snimljeni podaci
- referenciranje podataka putem URL-a (rtsp:// ...)
- neovisan o transportnom protokolu; mogući izbori su npr. RTP, UDP/IP, TCP/IP, UDP/IP-multicast
- može se koristiti i za pojedinačne korisnike i za velike multicast grupe

Primjer aplikacije

primjer iz RFC-a (RTSP-example-Media on Demand.pdf)

Modul: Telekomunikacije i informatika

Višemedijske usluge

Arhitektura višemedijskog komunikacijskog sustava

Prijenos govora Internetom (VoIP)

Ak.g. 2007./2008.

Primjer međudjelovanja SIP mrežnih entiteta

Osnovni tok poziva (VoIP, SIP)

- Uspostava veze između dva uređaja može se provesti izravno, bez posredstva SIP poslužitelja
 - model telefonskog poziva

Uspostava veze (VoIP, H.323)

