Algoritmo 2. PC-SMOTE multiclase (one-vs-rest con factor de equilibrio y topes)

- 1: Entrada: $X, y \in \{1, ..., K\}$, parámetros del binario; $factor_equilibrio \in (0, 1]$; $max_total_multiplier$ (opcional); $max_sint_por_clase$ (opcional).
- 2: Salida: X^*, y^* .

- Salida: X , y .
 Inicializar X* ← X, y* ← y; contar n_c = |{y = c}| y n_{max} = max_c n_c; fijar t_c = |factor_equilibrio · n_{max}|.
 for cada clase c = 1,..., K do
 Definir y^(c) = ⊮[y = c], a_c = ∑ y^(c), f_c = max(0, t_c a_c). Si f_c = 0, continue.
 Tope por clase: si max_sint_por_clase existe, f_c ← min(f_c, max_sint_por_clase).
 Tope global: si max_total_multiplier existe, N_{max} = |max_total_multiplier |y||, m_{glob} = N_{max} |y*|; si $m_{\text{glob}} \leq 0$ continue; en caso contrario $f_c \leftarrow \min(f_c, m_{\text{glob}})$.
- Instanciar PC-SMOTE binario y ejecutar $(\hat{X}, \hat{y}) \leftarrow \text{PCSMOTE_binario.fit_resample}(X, y^{(c)}, max_sint=f_c)$
- Calcular $n_{\text{new}} = |\hat{X}| |X|$. Si $n_{\text{new}} = 0$, continue.
- 10: Tomar las últimas n_{new} filas \hat{X}_{new} y etiquetarlas con c; concatenar a X^*, y^* .
- 11: end for
- 12: **return** (X^*, y^*) .