Mappings Lecture 12

OBJECTIVE

Using conformal mappings

OUTCOME

Will be able to construct conformal mappings between many kinds of domain

Geometrical Representation:

To draw curve of complex variable (x,y) we take two axes i.e., one real axis and the other imaginary axis. Several points (x,y) are plotted on z-plane, by taking different value of z (different value of x and y). The curve C is drawn by joining the plotted points. The diagram obtained is called **Argand diagram**.

Transformation:

For every point (x,y) in the z-plane, the relation w=f(z) defines a corresponding point (u,v) in the w-plane. We call this "transformation or mapping of z-plane into w-plane". If a point z_0 maps into the point w_0 , w_0 is known as the image of z_0 .

If the point P(x,y) moves along a curve C in z-plane, the point P'(u,v) will move along a corresponding curve C_1 in the w-plane. We, then, say that a curve C in the z-plane is mapped into the corresponding curve C_1 in the w-plane by the relation w = f(z).

Translation, Rotation and reflection are the standard transformations. Terms such as **translation**, **rotation** and **reflection** are used to convey dominant geometric characteristics of certain mappings.

Translation

$$w = z + C$$
,

where, C = a + ib z = x + iyw = u + iv

Hence,
$$u + iv = x + iy + a + ib$$

So, $u = x + a$ and $v = y + b$
 $x = u - a$ and $y = v - b$

On substituting the values of x and y in the equation of the curve to be transformed we get the equation of the image in the w —pane.

As an example the mapping w = z + 1 where z = x + iy, can be thought of as a translation of each point of z one unit to the right.

Example of Translation

Let the rectangular region R in z-plane which is bounded by the lines x = 0, y = 0, x = 2, y = 1. Determine the region R' of the w-plane into which R is mapped under the transformation w = z + 1.

Solution:

Given
$$\underline{w} = \underline{z} + 1 = x + iy + 1$$

or $\underline{u} + iy = (x + 1) + iy$.
Hence, $\underline{u} = x + 1$, and $\underline{v} = y$

when
$$x = 0 \Rightarrow u = 1$$
, \leftarrow
 $y = 0 \Rightarrow v = 0$, \leftarrow
 $x = 2 \Rightarrow u = 3$, \leftarrow
 $y = 1 \Rightarrow v = 1$. \leftarrow

$$W = z + (2+3i)$$

$$z - (1-i)$$

$$z - 2$$

Rotation:

The mapping w = iz where $z = re^{i\theta}$ and $i = e^{i\frac{\pi}{2}}$, can be thought of as a rotation of the radius vector for each non-zero-point z through a right angle about the origin in the counterclockwise direction.

Example of Rotation:

Let the rectangular region R in z-plane which is bounded by the lines x = 0, y = 0, x = 2, y = 1. Determine the region R' of the w-plane into which R is mapped under the transformation w = iz.

Solution:

Given
$$w = iz = i(x + iy)$$

or, $u + iv = -y + ix$.
Hence $u = -y$ and $v = x$.

Reflection:

The mapping $w = \bar{z}$ transforms each point of z = x + iy into its reflection in the real axis.

Example of Reflection:

Let the rectangular region R in z-plane which is bounded by the lines x = 0, y = 0, x = 2, y = 1. Determine the region R' of the w-plane into which R is mapped under the transformation $w = \bar{z}$.

Solution:

Given
$$w = \overline{z}$$

or, $u + iv = x - iy$.
Hence $u = x$ and $v = -y$.

when
$$x = 0 \Rightarrow u = 0$$
,
 $y = 0 \Rightarrow v = 0$,
 $x = 2 \Rightarrow u = 2$,
 $y = 1 \Rightarrow v = -1$.

Example:

(-1,2) (1,-2) (2,2)

Given triangle T in the z-plane with vertices at -1 + 2i, 1 - 2i and 1 + 2i. Determine the triangle T' of the w -plane into which T is mapped under the transformation $w = \sqrt{2} e^{\frac{\pi i}{4}} z$.

Solution:

Given
$$w = w = \sqrt{2} e^{\frac{\pi i}{4}} z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \underline{z} = \sqrt{2} \left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) \underline{z} = (1+i)(\underline{x+iy}) = \underline{x+ix+iy-y}$$
 or, $\underline{u+iv} = (\underline{x-y}) + i(x+y)$. Hence $\underline{u=x-y}$ and $\underline{v=x+y}$.

The vertices of the triangle are -1 + 2i, 1 - 2i, 1 + 2i. Vertices can also be written as: (-1,2), (1,-2) and (1,2).

At
$$(-1,2)$$
: $u = -1 - 2 = -3$ $v = -1 + 2 = 1 \Rightarrow (u,v) = (-3,1)$
At $(1,-2)$: $u = 1 + 2 = 3$ $v = 1 - 2 = -1 \Rightarrow (u,v) = (3,-1)$
At $(1,2)$: $u = 1 - 2 = -1$ $v = 1 + 2 = 3 \Rightarrow (u,v) = (-1,3)$.

w plane

Exercise Set

1. Let the rectangular region R in z-plane which is bounded by the lines x = 2, y = 0, x = 5 and y = 4. Determine the region R' of the w-plane into which R is mapped under the following transformations:

(i)
$$w = 2z - (2 + 3i)$$
,

(ii)
$$w = \frac{1}{2} e^{\frac{\pi i}{2}} z + 2i$$
,

(iii)
$$w = \sqrt{2} e^{\frac{\pi i}{4}} z - (1 - i),$$

(iv)
$$w = e^{i\pi}z + 3 + i$$
,

(v)
$$w = \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} z + 1 - 3i$$
.

2. Given triangle T in the z-plane with vertices at 1,1-3i and 3-i. Determine the triangle T' of the w-plane into which T is mapped under the following transformations:

(i)
$$w = 3z + 1 - 3i$$
,

(ii)
$$w = iz + 3 + 2i$$
,

(iii)
$$w = (1 + 2i)z - i$$
,

(iv)
$$w = \frac{1}{2} e^{\frac{\pi i}{2}} z - 4$$
.

Sample MCQ

1. Which of the following is the center of the region for the image of |z| = 2 under the transformation of w = z + 1 + i?

(a) (1,0)

(b) (0,0)

(c) (1,1) (d) (2,1)

2. Which is the image of the rectangular region of z(x,y) plane bounded by the line x=1 under the transformation w=z+(2-i)in w(u, v) plane?

(a) u = 2

(b) u = 3 (c) u = 1 (d) u = 0

3. What is the image of triangular region of z(x, y) plane bounded by the line x + y = 1 under the transformation w = z + (1 + i)in w(u, v) plane?

(a) u = 0

(b) u + v = 1 (c) u + v = 3 (d) v = 1

4. Which of the following expression gives us the transformation as rotation from $z \to w$ plane?

(a) w = z + 2 + i (b) $w = \sqrt{2} e^{i\frac{\pi}{4}z}$ (c) w = 2z (d) $w = \bar{z}$

5. Which of the following transformation happens with the expression $w = i \bar{z}$ from $z \to w$ plane?

(a) Rotation & reflection

- (b) Rotation & magnification
- (c) Reflection & magnification
- (d) Reflection & translation