Chapter 6 (这一章主要考 exterior flow)

只有这个是计算 local 的值

1.0 5.0 1.0 1.05 1.14 2.1

$$\text{Nu}(\theta) = \frac{h_c(\theta)D}{k} = 1.14 \left(\frac{\rho U_{\infty}D}{\mu}\right)^{0.5} \text{Pr}^{0.4} \left[1 - \left(\frac{\theta}{90}\right)^3\right]$$

- · Constant Surface Temperature
- Portion of surface to which a boundary layer adheres ($0 < \theta < 80^{\circ}$)

流体的 Pr 很小

Ishiguro et al.

Circular cylinder in a liquid metal

Liquid metal(一般 Pr 很小)

其余所有计算的都是 average 值

(流体垂直打入)

0.7

Zukauskas

短圆柱

Correlation Equation

Quarmby and Al-Fakhri

0.076

Short cylinder in a gas

L/D < 4Properties @ T_{film}

流体和接触面之间有一定角度

Groehn

McAdams

Achenbach

Correlation Equation

 $1 < \mathrm{Re}_{\mathrm{D}} < 25$

 $25 < Re_0 < 10^5$

Properties @ free-stream

 ${\rm Re}_{\rm D} < 1$

 $100 < \text{Re}_D < 2 \times 10^5$

 $4 \times 10^5 < Re_0 < 5 \times 10^6$

 Uniform surface temp Properties @ free-stream

这一段的适用条件	# → [ReN =	= 2500 , Recrit]		
$\overline{\text{Nu}}_D = 0.206 \text{ Re}_N^{0.63} \text{ Pr}^{0.36}$	θ	Re _{crit}		
	15°	2×10^4		
$Re_N = Re_D \sin \theta$	30°	8×10^4		
Re在 [2500/sin, Recrit之间]	45°	2.5×10^5		
	>45°	>2.5 × 10 ⁵		
$\overline{\text{Nu}}_D = 0.012 \text{ Re}_D^{0.85} \text{Pr}^{0.36}$	2×10^{5}	$< Re_D < 10^6$		
当Re较大的时候,便不受角度的影响了	 Uniform 	Uniform surface temp		

非圆形的柱体

Noncircular cylinder in a gas

Correla	tion Equa	tion			Restrictions
TABLE 6.2 Constan	$I_D = B Re$		on perpendicular		$00 < \text{Re}_{D} < 10^{5}$
noncircular tubes Flow Direction	R	te _D			Bo AUDI
and Profile	From	То	n	В	100 M
$\rightarrow \bigcirc \boxed{D}$	5,000	100,000	0.638	0.138	Jakob /
\rightarrow	5,000	19,500	0.638	0.144	
	19,500	100,000	0.782	0.035	
Ţ.	2,500	7,500	0.624	0.261	
	5,000	100,000	0.588	0.222	Properties @ T _{film}
- D	2,500	8,000	0.699	0.160	
	5,000	100,000	0.675	0.092	
→ <u> </u>	2,500	15,000	0.612	0.224	100 + TC
→ D	3,000	15,000	0.804	0.085	

· Properties @ free-stream

Restrictions

Sphere in a gas or a liquid

Correlation Equation	Restrictions
$\overline{\text{Nu}_{D}} = 2 + (0.4 \text{ Re}_{D}^{1/2} + 0.06 \text{ Re}_{D}^{2/3}) \text{ Pr}^{0}$	$(\mu/\mu_s)^{1/4}$ 3.5 < Re ₀ < 7.6 × 10 ⁴
	• Properties @ free-stream

Witte

Sphere in a liquid metal

Correlation Equation	Restrictions		
$\overline{Nu}_{D} = 2 + 0.386 (Re_{D}Pr)^{1/2}$	$3.6 \times 10^4 < Re_{D} < 2 \times 10^5$		
	Properties @ T _{film}		

特殊形状

下面两个公式都是计算的背面

下面两个公式都计算的正面 方形并且可以容忍倾斜角

 $\overline{N}u_D = \frac{\overline{h}_c D}{L} = Pr(2.2 + 0.48 \text{ Re}_D^{0.5})$

 $\overline{Nu}_D = 0.37 \text{ Re}_D^{0.6}$

 $\overline{\text{Nu}}_D = 2$

 $\overline{Nu}_D = 2 + \left(\frac{Re_D}{4} + 3 \times 10^{-4} \, Re_D^{1.6}\right)^{1/2}$

 $\overline{Nu}_D = 430 + 5 \times 10^{-3} \text{ Re}_D$

 $+ 0.25 \times 10^{-9} \text{ Re}_D^2 - 3.1 \times 10^{-17} \text{ Re}_D^3$

Tien and Sparrow

 $(\bar{h}_c/c_p \rho U_\infty) Pr^{2/3}$

ation Equation	Restrictions
$= 0.930 \text{ Re}_L^{-1/2}$	$2 \times 10^4 < Re_L < 10^5$ angles of pitch and attack
	from 25° to 90° yaw angle from 0° to 45°
	Properties @ free-stream

圆形

Sparrow and Geiger

Upstream face of a disk with axis aligned with flow, gas, or liquid

Correlation Equation	Restrictions		
$\overline{Nu}_D = 1.05 \text{ Re}^{1/2} \text{Pr}^{0.36}$	$5\times10^3 < Re_{\text{D}} < 5\times10^4$		
	Ddi @ fd		

Wedekind uniform temperature

Isothermal disk with axis perpendicular to flow, gas, or liquid

Correlation Equation Restrictions $\overline{Nu}_D = 0.591 \text{ Re}_D^{0.564} \text{Pr}^{1/3}$ $9\times10^2<Re_{D}<3\times10^4$

0.06 < t/D < 0.16

Properties @ T_{film}

Chapter 7 (这一章主要考 interior flow) 流体和面垂直的

Laminar flow of liquids and gases (Pr > 0.5) inside circular pipes: $\mathsf{f} = \frac{64}{\mathsf{Re}_{\mathcal{D}}} \phi \text{, where } \phi = \begin{cases} (\mu_{\mathsf{S}}/\mu_{b})^{0.14} & \text{for liquids} \\ (\mathit{T}_{\mathsf{S}}/\mathit{T}_{b})^{0.14} & \text{for gases} \end{cases}$ laminar flow

Pipes with
$$q_s^r = \text{uniform}$$
:
$$\overline{N}u_D = \psi \begin{cases} 1.953[L/(DRe_DPr)]^{-1/3} & \text{for } [L/(DRe_DPr)] < 0.03 \\ 4.364 + (0.0722DRe_DPr/L) & \text{for } [L/(DRe_DPr)] \ge 0.03 \end{cases}$$

$$\overline{N}u_{D} = \psi \begin{cases} 1.615[L/(DRe_{D}Pr)]^{-1/3} - 0.7 & \text{for } [L/(DRe_{D}Pr)] \leq 0.005 \\ 1.615[L/(DRe_{D}Pr)]^{-1/3} - 0.2 & \text{for } 0.005 < [L/(DRe_{D}Pr)] < 0.03 \\ 3.657 + (0.0499DRe_{D}Pr/L) & \text{for } [L/(DRe_{D}Pr)] \geq 0.03 \end{cases}$$

$$\psi = egin{cases} (\mu_b/\mu_{\rm S})^{0.14} & ext{for liquid heating/cooling} & ext{这个公式一般用不上} \ (T_b/T_{\rm S})^n & n = 0.25 ext{ for gas heating; } n = 0.08 ext{ for gas cooling} \end{cases}$$

Turbulent flow of liquids and gases (Pr > 0.5) in pipes and ducts^d:

$$f = (1.82 \log_{10} \operatorname{Re}_{D_h} - 1.64)^{-2}$$

$$\overline{\operatorname{Nu}}_{D_h} = \frac{(f/8)(\operatorname{Re}_{D_h} - 1000) \operatorname{Pr}}{1 + 12.7(f/8)^{1/2}(\operatorname{Pr}^{2/3} - 1)} \left[1 + \left(\frac{D_h}{L} \right)^{2/3} \right] K$$

$$K = \begin{cases} (\operatorname{Pr}_b/\operatorname{Pr}_s)^{0.11} & \text{for liquids} \\ (T_b/T_s)^{0.45} & \text{for gases} \end{cases}$$

Turbulent flow of liquid metals in smooth pipes (L/D > 30):

Pipes with
$$q_s'' = \text{constant}$$
:
$$\overline{N}u_D = \begin{cases} 4.82 + 0.0185(\text{Re}_D\text{Pr})^{0.827} & 100 < \text{Re}_D\text{Pr} < 10^4 \\ 3.0 & \text{Re}_D^{0.0833} & \text{Re}_D & \text{Pr} < 100 \end{cases}$$
Pipes with $T_s = \text{constant}$:

 $\overline{N}u_0 = 5.0 + 0.025(Re_0Pr)^{0.8} Re_0Pr > 100$

Re 的计算方式

$$D_H = \frac{4A_c}{P} \qquad \qquad \text{Re} = \frac{\rho \bar{U} D_H}{\mu} = \frac{\bar{U} D_H}{\nu}$$
 (7.6)

In long ducts, where the entrance effects are not important, the flow is laminar when the Reynolds number is below about 2100 * In the range of Reynolds numbers between 2100 and 10,000, a transition from laminar to turbulent flow takes place. The flow in this regime is called transitional. At a Reynolds number of about 10,000, the flow becomes fully turbulent

Fully developed 的计算

$$\left(\frac{x_{\text{fully developed}}}{D}\right)_{\text{lam}} = 0.05 \text{Re}_D \tag{7.7}$$

whereas the distance from the inlet at which the temperature profile approaches its fully developed shape is given by the relation [5]

$$\left(\frac{x_{\text{fully developed}}}{D}\right)_{\text{lam,thermal}} = 0.05 \text{Re}_D \text{ Pr}$$
 (7.8)

主要的计算步骤

$$q_c = \dot{m}c_p[(T_s - T_{b,\text{in}}) - (T_s - T_{b,\text{out}})] = \dot{m}c_p(\Delta T_{\text{in}} - \Delta T_{\text{out}})$$

Constant Temperature:

Constant flux:

$$\frac{\Delta T = T_s - T_b}{q_c = \overline{h}_c A_s} \left[\frac{\Delta T_{\text{out}} - \Delta T_{\text{in}}}{\ln(\Delta T_{\text{out}}/\Delta T_{\text{in}})} \right] \qquad \overline{h}_c = \frac{q_c}{A(T_s - T_b)}$$

Long plate with 0 from vertical (insulated the other)

Heated plate fixing down Cooled plate fixing upward

$$\overline{h}_c = \frac{q_c}{A(T_s - T_b)}$$

特殊横截面积的 Nu(需要达到 fully developed 区域) H1 是 flux 不变, T 是温度不变

TABLE 7.1 Nusselt number and friction factor for fully developed laminar flow $(L/D_h > 100)$ of a Newtonian fluid through a circular and some non-circular cross-section ducts^a

Geometry	$\alpha = (2b/2a)$	$\overline{N}u_{H1}$	$\overline{N}u_T$	$f \operatorname{Re}_{D_H}$	$\overline{N}u_{H1}/\overline{N}u_{T}$
2a 2b	0	8.235	7.541	94.00	1.092
2 <i>a</i>					
2b Insulation	0	5.385	4.861	96.00	1.108
	0.125	6.490	5.597	82.34	1.160
2a	0.25	5.331	4.439	72.93	1.201
2 <i>b</i>	0.5	4.123	3.391	62.19	1.216
	1	3.608	2.976	56.91	1.212
	-	4.364	3.658	64.00	1.193
2 <i>a</i>	0.8	4.387	3.669	64.39	1.196
†	0.5	4.558	3.742	67.29	1.218
2b	0.25	4.880	3.792	72.96	1.287
$\left\langle \begin{array}{c} a \\ a \\ a \end{array} \right\rangle$		4.011	3.436 ^b	60.22	1.167
2b	$\sqrt{3}/2$	3.111	2.470	53.33	1.260

Very short tubes and Rectangular Ducts Flow-over-flat-plate approximation

- · Initial uniform velocity and temp Distribution
- 0.7 < Pr < 15

Radiation Function

 $E_{b,\text{Amax}}(T) = \frac{C_1 T^5}{(0.002898)^5 (\sigma C_2/0.002898 - 1)} = 12.87 \times 10^{-6} T^5 \text{ W/}\mu \text{ m}^2$

Intensity of Radiation dw wir

 $I_b(\theta, \phi) = \frac{dq_r}{dA_1 \cos \theta \, d\omega} (W/m^2 \, sr)$

 $\sqrt{\frac{1}{b}} = \frac{dq_r}{dA_1} = I_b(\theta, \phi) \cos \theta \, d\omega$

(=),= Z=Z[b(W/m²)

Lambort posine Law

 $\left(\frac{q}{4}\right)r = \int_{-\pi}^{2\pi} \int_{-\pi/2}^{\pi/2} I_b(\theta, \phi) \cos\theta \sin\theta \, d\theta \, d\phi$

 $\frac{E_{b\lambda}(T)}{E_{b\lambda \max}(T)} = \left(\frac{2.898 \times 10^{-3}}{\lambda T}\right)^5 \left(\frac{e^{4.965} - 1}{e^{0.014388/\lambda T} - 1}\right)$

- L/D < 0.0048 Rep for tubes
- L/DH < 0.0021 Reph for flat ducts

$$\overline{\text{Nu}}_{D_H} = \frac{\text{Re}_{D_H} \text{Pr} D_H}{4L} \ln \left[\frac{1}{1 - (2.654/\text{Pr}^{0.167})(\text{Re}_{D_H} \text{Pr} D_H I L)^{-0.5}} \right]$$
(7.38)

Laminar
$$f = \frac{64}{Re}$$
 turb $f \propto roughnes$

Pumping Power
$$P_p = \frac{\Delta p \dot{Q}}{\eta_p}$$
 $\dot{Q} = \frac{\dot{m}}{\ell}$

Chapter 8

 $\overline{N}_{u_r} = 0.56 (Gr_1 Pr \cos \theta)^{1/4}$ 105 < Garpercoso < 10" 050 < 89" Horizontal Plate L = As Upper surface hot/lower surface cool $\overline{N}_{4} = 0.54 Ra_{1}^{V_{4}} \quad (0^{5} \le Ra_{2} \le 10^{7})$ $\overline{N}_{H_1} = 0.15 R_{01}^{1/3}$ $10^7 \le R_{01} \le 10^{10}$ Upper surface cool/ (ower surface hot $\overline{N}_{LL} = 0.27 Ra_{L}^{1/4} \quad (0^{5} \le Ra_{L} \le 10^{10})$ Coded circular horizontal Plate facing down in $\overline{Nup} = \frac{\overline{h_c}D}{L} = 0.26(Gr_0P_r^2)^{0.35}$ liquid metal Horizontal Cylinder local Nu. Nupa = 0.604 Gr. P(X) (Pr=0.71) Average Nu Nup=0.53 (GroPr)4 volid for fr>0.5

Nun = 0.53 (GroPr2)4 liquid metal

Chapter 11

$$\lambda_{\text{max}}T = 2.898 \times 10^{-3} \,\text{m K} \,(5216.4 \,\mu \,^{\circ}\text{R})$$

$$\frac{E_{b\lambda}(T)}{E_{b\lambda \max}(T)} = \left(\frac{2.898 \times 10^{-3}}{\lambda T}\right)^5 \left(\frac{e^{4.965} - 1}{e^{0.014388/\lambda T} - 1}\right)$$

$$E_b(T) = \frac{q_r}{4} = \sigma T^4$$

- q_r = total rate of radiant heat emitted, W (Btu/h)
- A = area of the blackbody emitting the radiation, m² (ft²)
- $T = \text{absolute temperature of the area } A \text{ in } K (^{\circ}R)$
- σ = Stefan-Boltzmann constant
- $= 5.60 \times 10^{-8} \text{ W/m}^2 \text{K}^4 (0.1714 \times 10^{-8} \text{ Btu/ft}^2 \circ \text{R}^4)$
- perature T,W/m² μ (Btu/h ft² μ) $\lambda = \text{wavelength}, \text{m}(\mu)$
 - T = absolute temperature of the body, K (degrees °R = 460 + °F)

 $E_{h\lambda}$ = monochromatic emissive power of a blackbody at absolute tem

- C_1 = first radiation constant
- = $3.7415 \times 10^{-6} \,\mathrm{W} \,\mathrm{m}^2 \,(1.1870 \times 10^8 \,\mathrm{Btu} \,\mu^4/\mathrm{h} \,\mathrm{ft}^2)$
- C_2 = second radiation constant
- = $1.4388 \times 10^{-2} \,\mathrm{m} \,\mathrm{K} \,(2.5896 \times 10^4 \,\mu \,^{\circ}\mathrm{R})$

- Turbulent: $Ra > 10^{10}$