Übung 01

Grundlagen & Standortplanung

Aufgabe 1 - Standortplanung ohne Kapazitätsbeschränkung

Ein Unternehmen plant die Belieferung von drei Abnehmern $(j \in \{1,2,3\})$ von potentiellen Standorten $(i \in \{A,B,C\})$ mit unbegrenzter Kapazität. Folgende Daten sind gegeben:

Transportkosten c_{ij} [\in /ME] und Fixkosten f_i [\in]:

Standort i	Abnehmer 1	Abnehmer 2	Abnehmer 3	Fixkosten f_i
А	10	20	30	1.000
В	50	40	50	2.000
С	80	30	40	2.500

Bedarfe: $d_1=100~\mathrm{ME},\,d_2=150~\mathrm{ME},\,d_3=200~\mathrm{ME}$

- a) Bestimmen Sie den/die kostenminimalen Standort(e) unter der Annahme, dass jeder Abnehmer vollständig vom günstigsten Standort beliefert wird.
- b) Wie viele Kombinationsmöglichkeiten müssten theoretisch geprüft werden, wenn Sie alle möglichen Standortkombinationen untersuchen wollten?
- c) Interpretieren Sie Ihr Ergebnis aus a). Warum ist diese Lösung in der Praxis möglicherweise nicht optimal?

O Caution

Lösung:

a) Bestimmung der kostenminimalen Standorte:

Schritt 1: Berechnung der Gesamtkosten für jeden einzelnen Standort (vollständige Belieferung):

- Standort A: $K_A = f_A + c_{A1} \cdot d_1 + c_{A2} \cdot d_2 + c_{A3} \cdot d_3$ $K_A = 1.000 + 10 \cdot 100 + 20 \cdot 150 + 30 \cdot 200 = 1.000 + 1.000 + 3.000 + 6.000 = 11.000 €$
- Standort B: $K_B = 2.000 + 50 \cdot 100 + 40 \cdot 150 + 50 \cdot 200$ $K_B = 2.000 + 5.000 + 6.000 + 10.000 = 23.000$ €
- Standort C: $K_C = 2.500 + 80 \cdot 100 + 30 \cdot 150 + 40 \cdot 200$ $K_C = 2.500 + 8.000 + 4.500 + 8.000 = 23.000$ €

Ergebnis: Standort A ist mit 11.000 € die kostenminimale Lösung.

b) Anzahl der Kombinationsmöglichkeiten:

Bei 3 Standorten gibt es $2^3 - 1 = 7$ nicht-leere Kombinationen:

- Einzelstandorte: {A}, {B}, {C}
- Zweierkombinationen: {A,B}, {A,C}, {B,C}
- Alle drei: {A,B,C}
- c) Interpretation:

Die Lösung mit nur Standort A minimiert zwar die Kosten, birgt aber Risiken:

- Keine Redundanz: Bei Ausfall von A bricht die gesamte Versorgung zusammen
- Keine Flexibilität: Keine Reaktionsmöglichkeit auf Nachfrageschwankungen
- Transportrisiken: Alle Transporte gehen von einem Punkt aus
- In der Praxis würde man möglicherweise einen zweiten Standort als Backup in Betracht ziehen

Aufgabe 2 - Mathematische Modellierung

Gegeben sei ein Standortplanungsproblem mit I potentiellen Standorten und J Abnehmern.

- a) Formulieren Sie die vollständige mathematische Modellierung des Standortplanungsproblems mit Kapazitätsbeschränkungen (Zielfunktion und alle Nebenbedingungen).
- b) Erläutern Sie, aus welchen zwei Teilproblemen das Standortplanungsproblem besteht.
- c) Formulieren Sie explizit die Zielfunktion für eine konkrete Instanz mit 3 Standorten (A, B, C) und 3 Abnehmern (1, 2, 3) mit folgenden Daten:
 - Fixkosten: $f_A = 1.000$, $f_B = 1.200$, $f_C = 900$

- Transportkosten: $c_{A1}=1,\,c_{A2}=2,\,c_{A3}=3,\,c_{B1}=4,\,c_{B2}=5,\,c_{B3}=6,\,c_{C1}=7,\,c_{C2}=8,\,c_{C3}=9$
- d) Welche Nebenbedingung stellt sicher, dass Standorte nur genutzt werden können, wenn sie auch errichtet wurden? Formulieren Sie diese für Standort B.

Caution

Lösung:

- a) Siehe Vorlesung:
- b) Die zwei Teilprobleme:
- 1. Standortauswahlproblem: Welche Standorte sollen errichtet werden? (Entscheidung über γ_i)
- 2. Transportproblem: Wie sollen die Abnehmer von den gewählten Standorten beliefert werden? (Entscheidung über x_{ij})

Diese Probleme sind gekoppelt, da die Transportentscheidung von der Standortwahl abhängt.

c) Explizite Zielfunktion:

$$\begin{split} Z &= 1.000 \cdot \gamma_A + 1.200 \cdot \gamma_B + 900 \cdot \gamma_C \\ &\quad + 1 \cdot x_{A1} + 2 \cdot x_{A2} + 3 \cdot x_{A3} \\ &\quad + 4 \cdot x_{B1} + 5 \cdot x_{B2} + 6 \cdot x_{B3} \\ &\quad + 7 \cdot x_{C1} + 8 \cdot x_{C2} + 9 \cdot x_{C3} \end{split}$$

d) Kapazitätsbeschränkung für Standort B:

$$x_{B1} + x_{B2} + x_{B3} \le b_B \cdot \gamma_B$$

Diese Nebenbedingung stellt sicher, dass:

- Wenn $\gamma_B=0$ (Standort B nicht errichtet): $x_{B1}+x_{B2}+x_{B3}\leq 0$, d.h. keine Lieferung möglich
- Wenn $\gamma_B=1$ (Standort B errichtet): $x_{B1}+x_{B2}+x_{B3}\leq b_B$, d.h. Kapazität begrenzt Lieferungen

Aufgabe 3 - Standortplanung mit Kapazitätsbeschränkung Betrachten Sie folgendes Standortplanungsproblem:

Daten:

Standort i	c_{i1}	c_{i2}	c_{i3}	${\sf Fixkosten}\ f_i$	Kapazität \boldsymbol{b}_i	
Α	1	2	3	1.000	400	
В	4	5	6	1.200	400	
С	7	8	9	900	400	

Bedarfe: $d_1 = 200$, $d_2 = 300$, $d_3 = 250$

a) Gegeben sei folgende Lösung: $\gamma_A=1$, $\gamma_B=1$, $\gamma_C=0$

- Abnehmer 1 wird vollständig von A beliefert: $x_{A1}=200\,$
- Abnehmer 2 wird je zur Hälfte von A und B beliefert: $x_{A2}=150$, $x_{B2}=150$
- Abnehmer 3 wird vollständig von B beliefert: $x_{B3}=250$ Berechnen Sie den Zielfunktionswert dieser Lösung.
- b) Prüfen Sie die Zulässigkeit dieser Lösung bezüglich aller Nebenbedingungen.
- c) Ist folgende alternative Belieferung zulässig: Abnehmer 2 wird vollständig von A beliefert ($x_{A2}=300$)? Begründen Sie.
- d) Schlagen Sie eine verbesserte Lösung vor und begründen Sie Ihre Wahl.

Lösung:

a) Berechnung des Zielfunktionswerts:

Fixkosten:
$$f_A \cdot \gamma_A + f_B \cdot \gamma_B + f_C \cdot \gamma_C = 1.000 \cdot 1 + 1.200 \cdot 1 + 900 \cdot 0 = 2.200$$

Transportkosten:

- Von A: $c_{A1} \cdot x_{A1} + c_{A2} \cdot x_{A2} = 1 \cdot 200 + 2 \cdot 150 = 500$
- Von B: $c_{B2} \cdot x_{B2} + c_{B3} \cdot x_{B3} = 5 \cdot 150 + 6 \cdot 250 = 2.250$

Gesamtkosten: Z = 2.200 + 500 + 2.250 = 4.950

b) Prüfung der Zulässigkeit:

Bedarfsdeckung (NB 1):

- Abnehmer 1: $x_{A1} + x_{B1} + x_{C1} = 200 + 0 + 0 = 200 = d_1 \checkmark$
- Abnehmer 2: $x_{A2} + x_{B2} + x_{C2} = 150 + 150 + 0 = 300 = d_2$ \checkmark
- Abnehmer 3: $x_{A3} + x_{B3} + x_{C3} = 0 + 250 + 0 = 250 = d_3$ \checkmark

Kapazitätsbeschränkung (NB 2):

- Standort A: $x_{A1} + x_{A2} + x_{A3} = 200 + 150 + 0 = 350 \le 400 = b_A \cdot 1 \checkmark$
- Standort B: $x_{B1} + x_{B2} + x_{B3} = 0 + 150 + 250 = 400 \le 400 = b_B \cdot 1 \checkmark$
- Standort C: $x_{C1} + x_{C2} + x_{C3} = 0 + 0 + 0 = 0 \le 0 = b_C \cdot 0 \checkmark$

Ergebnis: Die Lösung ist zulässig.

c) Alternative mit vollständiger Belieferung von Abnehmer 2 durch A:

Bei
$$x_{A2}=300$$
 wäre die Auslastung von A: $x_{A1}+x_{A2}+x_{A3}=200+300+0=500>400=b_A$

Nein, diese Lösung ist nicht zulässig, da die Kapazität von Standort A überschritten wird.

d) Verbesserte Lösung:

Bei den geöffneten Standorten A und B kann die Belieferung optimiert werden:

Optimale Belieferungsstrategie:

- Abnehmer 1: vollständig von A beliefern (da $c_{A1}=1 < c_{B1}=4$)
- Abnehmer 2: möglichst viel von A beliefern (da $c_{A2} = 2 < c_{B2} = 5$)
- Abnehmer 3: von B beliefern

Verbesserte Lösung: $\gamma_A = 1$, $\gamma_B = 1$, $\gamma_C = 0$

- $x_{A1} = 200$ (Abnehmer 1 vollständig von A)
- $x_{A2} = 200$ (maximale Belieferung von Abnehmer 2 durch A)
- $x_{B2} = 100$ (Restbedarf von Abnehmer 2)
- $x_{B3} = 250$ (Abnehmer 3 vollständig von B)

Gesamtkosten: Z = 2.200 + 600 + 2.000 = 4.800

Verbesserung: Die ursprüngliche Lösung kostete 4.950, die verbesserte Lösung kostet 4.800, was eine Ersparnis von 150 bedeutet.

Begründung: Durch die stärkere Nutzung des günstigeren Standorts A für Abnehmer 2 (200 statt 150 Einheiten) werden die Transportkosten reduziert, während

Aufgabe 4 - Heuristiken zur Standortplanung

Ein mittelständisches Unternehmen plant die Versorgung von drei regionalen Abnehmern. Folgende Daten liegen vor:

Transportkosten c_{ij} [€/ME], Fixkosten und Kapazitäten:

Standort i		Ab- nehmer 2	Ab-	Fixkosten f_i	Kapazität \boldsymbol{b}_i
	nenmer i	nenmer z	nenmer 3		
Α	4	4	9	60	25
В	8	7	2	60	20
С	6	3	5	70	25

Bedarfe: $d_1 = 20$, $d_2 = 10$, $d_3 = 10$

- a) Wenden Sie die Add-Heuristik an, um eine Lösung zu bestimmen. Dokumentieren Sie jeden Schritt.
- b) Sind heuristische Lösungen optimal? Begründen Sie Ihre Antwort.
- c) Auf welcher Managementebene sind Standortentscheidungen angesiedelt und warum?

Caution

Lösung:

a) Add-Heuristik:

Schritt 1: Bestimme den besten Einzelstandort für vollständige Belieferung aller Abnehmer:

- Standort A: Fixkosten 60 + Transportkosten $(4 \cdot 20 + 4 \cdot 10 + 9 \cdot 10) = 60 + 210 =$
- Standort B: Fixkosten 60 + Transportkosten $(8 \cdot 20 + 7 \cdot 10 + 2 \cdot 10) = 60 + 250 =$ 310€
- Standort C: Fixkosten 70 + Transportkosten $(6 \cdot 20 + 3 \cdot 10 + 5 \cdot 10) = 70 + 200 =$ 270 €

Start mit Standort A (270 €, willkürlich)

Schritt 2: Prüfe Vorteilhaftigkeit eines zweiten Standorts:

Zusätzlich Standort B:

- Abnehmer 3: Wechsel von A zu B \rightarrow Einsparung: $(9-2) \cdot 10 = 70 \in$
- Zusätzliche Fixkosten: 60 €
- Nettovorteil: $70 60 = 10 \in \checkmark$

Zusätzlich Standort C:

- Abnehmer 2: Wechsel von A zu C \rightarrow Einsparung: $(4-3) \cdot 10 = 10 \in$
- Abnehmer 3: Wechsel von A zu C \rightarrow Einsparung: $(9-5) \cdot 10 = 40 \in$
- Zusätzliche Fixkosten: 70 €
- Nettovorteil: $50-70=-20 \in X$

Wähle Standort B zusätzlich

Schritt 3: Prüfe dritten Standort C (mit A und B bereits gewählt):

- Abnehmer 2: Wechsel von A zu C \rightarrow Einsparung: $(4-3) \cdot 10 = 10 \in$
- Zusätzliche Fixkosten: 70 €
- Nettovorteil: $10-70=-60 \in X$

Ergebnis Add-Heuristik:

- Standorte: A und B
- Zuordnung: Abnehmer 1 und 2 von A, Abnehmer 3 von B
- Kosten: $60 + 60 + 4 \cdot 20 + 4 \cdot 10 + 2 \cdot 10 = 120 + 80 + 40 + 20 = 260$ €
- b) Optimalität:

Heuristische Lösungen sind nicht notwendigerweise optimal, da:

- Sie nur lokale Verbesserungen betrachten
- Nicht alle Kombinationen systematisch geprüft werden

Die Inträchlich aptimalguberungimüssterdurch vallständige Enumeration oder Opstandortentscheidungen. sind auf der strategischen Managementebene angetimierungsverfahren ermittelt werden. _

c) Managementebene:
Langfristige Auswirkungen haben (mehrere Jahre bis Jahrzehnte)