数学(80分)

【コース1(基本, Basic)・コース2(上級, Advanced)】

※ どちらかのコースを一つだけ選んで解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

II 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 3. 1-21 $\pm 1 \sim 13$ ~ -5 , 1-2 $\pm 15 \sim 27$ ~ -5 ~ 10 ~ 10
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

III 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれ-(マイナスの符号)、または、0から9までの数が一つずつ入ります。あてはまるものを選び、解答用紙(マークシート)の対応する解答欄にマークしてください。
- 3. 同一の問題文中に A , BC などが繰り返し現れる場合, 2 度目以降 は, A , BC のように表しています。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは, $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し, $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) A \sqrt{B} に $-\sqrt{3}$ と答える場合は、下のようにマークしてください。
- (4) DEx に-x と答える場合は、De-、Ee1とし、下のようにマークしてください。

【解答用紙】

Α	0	0	1	2	3	4	(5)	6	0	8	9
В	Θ	0	1	2	0	4	(5)	6	0	8	9
С	Θ	0	1	2	3	0	(5)	6	0	8	9
D		0	1	2	3	4					9
E	0	0	0	2	3	4	(5)	6	7	8	9

4. 解答用紙に書いてある注意事項も必ず読んでください。

※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*	*	
名 前		132	

数学 コース 2

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを一つだけ選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の「解答コース」の「コース2」を〇で囲み、その下のマーク欄をマークしてください。

選択したコースを正しくマークしないと、採点されません。

2つの放物線 問1

$$\ell: \quad y = ax^2 + 2bx + c$$

$$m: y = (a+1)x^2 + 2(b+2)x + c + 3$$

を考える。点 A, B, C, D が右図のような位置関係に あるとする。このとき、この2つの放物線のうち、 一方は, 3点A,B,Cを通り,もう一方は,3点B, C, D を通るとする。

- (1) 3 点 A, B, C を通る放物線は **A** である。ただし, **A** には, 次の ① か ① の どちらか適するものを選びなさい。
 - - 放物線 ℓ ① 放物線 m
- (2) 2 つの放物線 ℓ , m は、どちらも 2 点 B, C を通るので、点 B, C の x座標は、2 次方程式 $x^2 +$ **B** x + **C** = 0

の解である。よって、点 B の
$$x$$
座標は DE , 点 C の x 座標は FG である。

(3) 特に、AB = BC、CO = OD のとき、a, b, c の値を求めよう。

2点 C, D は y軸に関して対称であるから、b = H である。また、AB = BC より、 直線 $x = \begin{bmatrix} \mathbf{IJ} \end{bmatrix}$ が $\begin{bmatrix} \mathbf{A} \end{bmatrix}$ の軸である。したがって, $a = -\frac{\begin{bmatrix} \mathbf{K} \end{bmatrix}}{\begin{bmatrix} \mathbf{I} \end{bmatrix}}$ である。よって,

$$c = \frac{M}{N}$$
 $c \to 3$.

- 問 2 2 つの袋 A, B がある。A の袋には白球が 4 個,赤球が 1 個入っており,B の袋には白球が 2 個,赤球が 3 個入っている。はじめに A の袋から同時に 2 個の球を取り出し,続いて,B の袋から同時に 2 個の球を取り出す。
 - (1) A から 2 個の白球を取り出し、B からは白球と赤球をそれぞれ 1 個ずつ取り出す確率 は **O** である。
 - (2) 取り出した 4 個の球の中に, 3 個の白球と 1 個の赤球が入っている確率は **R** である。
 - (3) 取り出した 4 個の球がすべて同じ色である確率は **T** である。
 - (4)
 取り出した 4 個の球の中に含まれる白球が 2 個以下である確率は
 WX
 マある。

II

問 1 2 つのベクトル \overrightarrow{a} と \overrightarrow{b} のなす角は 60° であり, $|\overrightarrow{a}|=1$, $|\overrightarrow{b}|=2$ とする。また,実数 x に対して, $\overrightarrow{u}=x\overrightarrow{a}+\overrightarrow{b}$, $\overrightarrow{v}=x\overrightarrow{a}-\overrightarrow{b}$ とする。x>1 のとき, \overrightarrow{u} と \overrightarrow{v} のなす角が 30° となるような x の値を求めよう。以下, $\overrightarrow{u}\cdot\overrightarrow{v}$ は \overrightarrow{u} と \overrightarrow{v} の内積を表し, $\overrightarrow{a}\cdot\overrightarrow{b}$ は \overrightarrow{a} と \overrightarrow{b} の内積を表す。

まず、ベクトル \overrightarrow{u} と \overrightarrow{v} のなす角は 30° であるから

$$\left(\overrightarrow{u}\cdot\overrightarrow{v}\right)^2 = \frac{\left(\overrightarrow{a}\right)}{\left(\overrightarrow{a}\right)^2} \left|\overrightarrow{v}\right|^2$$

を得る。 $\overrightarrow{a} \cdot \overrightarrow{b} = \mathbf{C}$ であることに注意して、この式を x で表すと

$$x^4 - \boxed{\textbf{DE}} x^2 + \boxed{\textbf{FG}} = 0$$

となる。これを変形して

$$\left(x^2 - \boxed{\mathbf{H}}\right)^2 = \left(\boxed{\mathbf{I}}x\right)^2$$

を得る。

したがって、x > 1 に注意して、これを解くと

$$x = \boxed{\mathbf{J}} + \sqrt{\mathbf{KL}}$$

となる。

- 問 2 複素数平面上で、 z^3 が実数となるような複素数 z を考える。
 - (1) 上の条件を満たす複素数 z = x + iy が描く図形を C とする。その複素数 z の偏角は

を満たすので、図形 C は x,y の方程式

$$y = \begin{bmatrix} \mathbf{N} \end{bmatrix}, \quad y = \sqrt{\begin{bmatrix} \mathbf{O} \end{bmatrix}} x, \quad y = -\sqrt{\begin{bmatrix} \mathbf{P} \end{bmatrix}} x$$

で表される3直線である。

(2) C上に |z-1-i|=r を満たす複素数 z がただ 1 個だけ存在するとする。このとき、r の値は

$$r = \frac{\sqrt{\mathbf{Q} - \mathbf{R}}}{\mathbf{S}}$$

となる。また、そのときの z の値は

$$z \, = \, \frac{ \boxed{ \ \ } \ \ }{ \boxed{ \ \ } \ \ } \, \left(\, 1 + \sqrt{ \boxed{ \ \ } \ \, i \, } \, \right)$$

である。

III

3 次関数

$$f(x) = \frac{1}{3}x^3 - \frac{t+2}{2}x^2 + 2tx + \frac{2}{3}$$

の区間 $x \le 4$ における最大値が 6 より大きくなるような実数 t の値の範囲を求めよう。

まず、f(x) の導関数は

$$f'(x) = (x - \boxed{\mathbf{A}})(x - t)$$

であるから, tの値の範囲を次のように分けて考える。

- (i) t> A のとき、f(x) は x= A で極大、x=t で極小となる。 また、f(4)= B であるから、f(A)>6 となる t の値の範囲を求めればよい。
- (ii) t = **A** のとき,区間 $x \le 4$ における f(x) の最大値は f(**C**) = **D** となり、条件は満たされない。
- (iii) t< **A** のとき、f(x) は x=t で極大、x= **A** で極小となる。 また、f(4)= **B** であるから、f(t)>6 となる t の値の範囲を求めれば よい。

ここで

$$f(t) - 6 = -\frac{1}{6} \left(t + \boxed{\mathbf{E}} \right) \left(t - \boxed{\mathbf{F}} \right)^2$$

であることに注意する。

以上より、求める t の値の範囲は

である。

関数

$$f(x) = \frac{\sin x}{3 - 2\cos x} \quad (0 \le x \le \pi)$$

を考える。

f(x) の導関数は

$$f'(x) = \frac{\mathbf{A} \cos x - \mathbf{B}}{\left(\mathbf{C} - \mathbf{D} \cos x\right)^2}$$

である。したがって、関数 f(x) が極値をとる x の値を α とおくと

$$\cos \alpha = \frac{\mathbf{E}}{\mathbf{F}}$$

である。

(2) 関数 y = f(x) のグラフと x軸によって囲まれる部分は直線 $x = \alpha$ によって 2 つの部分 に分けられる。その左側の部分の面積を S_1 とおくと

$$S_1 = \int_{\boxed{\mathbf{G}}}^{\boxed{\mathbf{I}}} \frac{dt}{\boxed{\mathbf{J}} - \boxed{\mathbf{K}} t} = \frac{\boxed{\mathbf{L}}}{\boxed{\mathbf{M}}} \log \frac{\boxed{\mathbf{N}}}{\boxed{\mathbf{O}}}$$

である。

また、右側の部分の面積を S_2 とおくと

$$S_2 = \frac{\mathbf{P}}{2} \log \mathbf{Q}$$

である。

この問題冊子を持ち帰るさとはできません。

〈数 学〉Mathematics

		ス1 Cou	rse 1		
F	問 Q.	解答番号 row	正解 A.		
I		ABCD	5723		
	問 1	EFGH	5435		
		1	2		
	問 2	JKL	925		
		MN	25		
	[L] Z	OPQ	350		
		RSTU	2750		
		Α	1		
	問 1	ВС	43		
		DE	-3		
		FG	-1		
		Н	0		
I		IJ	-3		
П		KL	13		
		MN	13		
	問 2	OPQR	2469		
		STUV	9246		
		WX	46		
		YZ	15		
ш		AB	11		
		CDEF	2257		
		GHI	319		
		JKL	311		
N		AB	37		
		CDE	932		
		F	1		
		G	3		
		Н	27		
		JK	60		
		L	2		
		MNO	737		

		ス2 Coul	
F	問 Q.	解答番号 row	正解 A.
		А	1
I	問 1	ВС	43
		DE	-3
		FG	-1
		Н	0
		IJ	-3
		KL	13
		MN	13
		OPQ	925
	問 2	RS	25
	10] 2	TUV	350
		WXYZ	2750
	問 1	AB	34
		C	1
		DEFG	4416
		HI	46
I		JKL	313
		M	3
	問 2	NOP	033
		QRS	312
		TUVW	1343
Ш		Α	2
		В	6
		CD	46
		EF	24
		GHI	103
		JK	-2
IV		ABCD	3232
		EF	23
		GHI	231
		JK	32
		LMNO	1253
		PQ	13