

Motivation

- ☐ Extensive spread of fake news on various media platforms both social and news websites
- ☐ Hot area in text processing (NLP)
- □ Recent spread of fake news on topics like Kashmir Article 370, Ayodhya Verdict, etc of national importance.
- ☐ Scope of improvement, basic techniques are not able to cope up with changing nature of fake news.
- ☐ Personal opportunity to get hands on ML, Web Scrapping and python.

Data collection

- ☐ Kashmir Article 370
- ☐ Ayodhya Verdict
- ☐ Indian Elections
- Maharashtra Elections
- ☐ GST
- Demonetization
- ☐ CAA or NRC
- ☐ Corona Virus
- Pulwama Balakot Attack
- Pre Delhi Election
- ☐ Triple Talaq

News API

Classification in Machine Learning: Fake News Detection (True/Fake)

Input (Data points) ---- Output (Labels)

Pure Feature Based

Pure Vector Based

Amalgamation

Text ----- [Text Vectorization] ----- Numerical Text ----- [Features] ----- Numerical

Different vectorization algorithms will give different end results

FAKE NEWS FAKE N

Text Representation In Vector Space

TF-IDF is a measure of originality of a word by comparing the number of times a word appears in a doc with the number

Number of times term t

appears in a doc, d

Document frequency of the term

Word2Vec

Doc2Vec Model

- ☐ Based on Word2Vec model
- ☐ Preserves word order information.
- ☐ Extracts Word2Vec features and adds additional "document vector" with information about the entire document.

Linguistic Features:

Linguistics is the scientific study of language.

Involves analysis based on:

- Language form
- Language meaning
- Language Context

Features we have used as of now

x	Accuracy
TF - IDF	96.25%
Doc2Vec	91.58%
Sentiment Score	61%
Punctuation Count	64%
Readability	65%
All 3 Linguistic Features	69%

LOGISTIC REGRESSION

X	Accuracy
TF - IDF	95.13%
Doc2Vec	90.10%
Sentiment Score	57%
Punctuation Count	57%
Readability	66%
All 3 Linguistic Features	66%

x	Accuracy
TF - IDF	86.03%
Doc2Vec	86.77%
Sentiment Score	57%
Punctuation Count	58%
Readability	60%
All 3 Linguistic Features	68%

DECISION TREE

X	Accuracy
TF - IDF	90.43%
Doc2Vec	77.74%
Sentiment Score	59%
Punctuation Count	63%
Readability	65%
All 3 Linguistic Features	63%

RANDOM FOREST

x	Accuracy
TF - IDF	90.00%
Doc2Vec	88.79%
Sentiment Score	59%
Punctuation Count	62%
Readability	65%
All 3 Linguistic Features	70%

NAIVE BAYES

x	Accuracy
TF - IDF	78.18%
Doc2Vec	74.32%
Sentiment Score	57%
Punctuation Count	57%
Readability	61%
All 3 Linguistic Features	61%

ARTIFICIAL NEURAL NETWORK

x	Accuracy
TF - IDF	95.6%
Doc2Vec	92.62%
All 3 Linguistic Features	71.53%

ROAD BLOCKS FACED

- ☐ Lack of fake news data on Indian News Websites
- ☐ Difficult to self annotate data from twitter due to a lot of scientific and specific jargon involved
- ☐ High cost of data annotation and little quality work in India
- ☐ AMT (Amazon Mechanical Turk) not available in India as of now

REFERENCES

□ Kaggle - datasets
□ Udemy A-Z ML course, and A-Z Deep Learning Course
□ towardsdatascience.com
□ Research Papers
□ mentioned in the Report
□ python.org
□ Stack overflow

