4. Дискретные структуры. Связанные графы. компоненты связности, вершинная и реберная связность. Двухсвязные графы. Виды и операции

Теория графов — раздел дискретной математики, изучающий свойства графов. Родоначальником теории графов считается Леонард Эйлер

Пусть V - непустое конечное множество,

 $V^{(2)} = V \times V = \{ \{v_1, v_2\} : v_1 \in V, v_2 \in V, v_1 \neq v_2 \}.$

Пара (V, E), где $E \subseteq V^{(2)}$, называется неориентированным рафом.

Элементы множества V называются вершинами графа, элементы множества E – ребрами.

Т.о., граф – это конечное множество V вершин и множество E ребер.

Обозначение: V_G и E_G .

Граф называется *связным*, если любые две его несовпадающие вершины соединены цепью.

Пример.

(цепь- марштур где все ребра различны)

Всякий максимально связный подграф графа G называется *компонентой связности* графа G.

«максимально» означает, что он не содержится в связном подграфе с большим числом элементов.

Множество вершин компоненты связности называется областью связности графа.

Пример.

Компоненты связности {1, 2, 3}, {4}, {5, 6}

Теорема 1. Для любого графа либо он сам, либо его дополнение является связным.

Теорема 2. Пусть G – связный граф, $e \in E_G$. Тогда

- 1. если ребро е принадлежит какому-нибудь циклу графа G, то граф G-e связен; 2. если ребро е не входит ни в один цикл, то граф
- G-e имеет ровно две компоненты;

Теорема 3. (О числе ребер в графе) Если число компонент связности графа G равно k, то $n-k \le m \le \frac{(n-k)(n-k+1)}{2}$

$$n-k \le m \le \frac{(n-\kappa)(n-\kappa)}{2}$$

где m – число ребер, n – порядок графа G

Числом вершинной связности к(G) (каппа) графа G называется наименьшее число вершин, удаление которых приводит к несвязному или одновершинному графу. Если граф несвязный, то $\kappa(G)=0$.

Пример.

Пусть G — граф порядка n > 1. Числом реберной связности $\lambda(G)$ графа G называется наименьшее число ребер, удаление которых приводит к несвязному графу. Если граф одновершинный или несвязный, то $\lambda(G) = 0$.

Пример.

Вершина v графа G называется точкой сочленения (или разделяющей вершиной), если граф G-V имеет больше компонент связности, чем G

Ребро е графа G называется мостом, если его удаление увеличивает число компонент связности.

Пример.

Точки сочленения: 4, 5, 6 Мосты: e₆, e₇.

Неориентированный граф называется *двусвязным*, если он связен и не содержит точек сочленения.

Произвольный максимально возможный двусвязный подграф графа *G* называется *блоком* (компонентой двусвязности) этого графа.

Пример.

граф G₁ является двусвязным

Блоки: {1, 2, 4, 3} {5, 6, 7} {5, 8, 9} {4, 5}

Неориентированный ребернограф называется

овусвязным, если он связный и не содержит мостов.

Произвольный максимально возможный ребернодвусвязный подграф графа *G* называется *листом* этого графа. *Пример.*

Граф G_1 является реберно-двусвязным

Листы: {2, 1, 3, 4, 5, 6} {7} {9, 10, 11} {8}

Пустой граф G – граф, в котором ребра отсутствуют.

 O_n – пустой граф порядка n

Пример

Полный граф G – граф, в котором любые две его вершины смежны.

 K_n – полный граф порядка n

Число ребер: $m = |E_G| = \frac{n(n-1)}{2}$

Пример

Граф G(V, E) называется двудольным, если множество его вершин можно разбить так, что $V = V_1 \cup V_2, \quad V_1 \cap V_2 = \emptyset.$ При этом каждое ребро $e \in E$ соединяет вершины из разных множеств.

Пример.

Граф G(V, E) называется *полным двудольным*, если любая вершина из одной доли смежны со всеми вершинными из другой доли.

Обозначение: K_{n_1,n_2} , если | $V_1 \models n_1$, | $V_2 \models n_2$.

Пример.

Объединение. Граф H называется *объединением* графов F и G, если $V_H = V_F \cup V_G$, $E_H = E_F \cup E_G$. Обозначение $H = F \cup G$. <u>Пример</u>

Дополнение графа до полного графа. Граф \overline{G} называется *дополнением графа G до полного*, если у него $V_{\overline{G}}=V_{\overline{G}}$, а $E_{\overline{G}}$ определяется следующим образом: вершины u и v смежны, если они не являются смежными в графе G.

$$\frac{n(n-1)}{2} = \frac{5 \cdot 4}{2} = 10 \quad 10 - 5 = 5$$

Дополнение подграфа F до графа G. Пусть F — подграф графа G. Граф H называется дополнением F до G, если у него $V_H = V_G$, а E_H определяется следующим образом: вершины U и V смежны, если они не смежны в графе F, но смежны в G.

Соединение. Граф H называется соединением графов Fи G, если $V_H = V_F \cup V_G$, $E_H = E_F \cup E_G \cup E_{FG}$, где E_{FG} — множество всех дуг, соединяющих вершины из разных графов. Обозначение: H = F + G Пример.

Произведение. Пусть $G_1=(V_1,E_1),\ G_2=(V_2,E_2)$ — два графа. Произведением этих графов называется граф $G=G_1\times G_2$, для которого $V_G=V_1\times V_2$ — декартово произведение множеств вершин исходных графов, E_G определяется следующим образом: вершины (u_1,u_2)

u (v_1, v_2) смежны в графе $_{\sigma}$ тогда и только тогда, когда 1) $u_1 = v_1$, а u_2 и v_2 смежны в G_2 , 2) $u_2 = v_2$, а u_1 и v_1 смежны в G_1 .

Пример.

