Tables from BN A implies C

	A	$\neg A$	
$\overline{\mathbf{C}}$	0.048	0.617	0.665
$\neg C$	0.003	0.332	0.335
	0.051	0.949	1

Table 1

Figure 1: Speaker distribution for Table 1 for state: [0.048, 0.617, 0.003, 0.332]. The speaker does not say If A, C although its probability is very high.

	P(A)	P(C)
P(C)	0.502	0.278
$P(\neg C$	0.0247	0.195

Table 2: mean all tables (granularity 30) with P(C|A) >= 0.9

Tables from BN C implies A

				P(A C)	0.7
				$P(A \neg C)$	0.03
	I A	$\neg A$	l	$P(\neg A C)$	0.3
	A			$P(\neg A \neg C)$	0.97
\mathbf{C}	0.677	0.29	$\boldsymbol{0.967}$	(- /	
$\neg \boldsymbol{C}$	0.001	0.032	0.033	D(C A)	0.000
	0.678	0.322	1	P(C A)	0.999
	0.010	0.022	1	$P(C \neg A)$	0.901
				$P(\neg C A)$	0.001
				$P(\neg C \neg A)$	0.099

Table 3: Table

	P(A)	P(C)
P(C)	0.195	0.278
$P(\neg C$	0.0246	0.502

Table 4: mean all tables (granularity 30) with $P(\neg A|\neg C) >= 0.9$

Figure 2: Speaker distribution for Table 3. The speaker does not say If not C, not A although its probabilit is very high. The speaker table looks very different from the average table of the literal listener (C,not A) that makes the utterance If not C, not A true.

Figure 3: Speaker distribution for Table 5 . Now the speaker does say $\mathit{If}\ not\ C,\ not\ A.$ This speaker's table looks much more like the average from table 4 .

				P(A C)	0.632
				$P(A \neg C)$	0.034
	Α	$\neg A$	I	$P(\neg A C)$	0.368
			0.100	$P(\neg A \neg C)$	0.966
\mathbf{C}	0.274	0.159	0.433	(
$\neg C$	0.019	0.548	0.567	D/(C 4)	0.005
	0.293	0.707	1	P(C A)	0.935
	0.293	0.707	1	$P(C \neg A)$	0.225
				$P(\neg C A)$	0.065
				$P(\neg C \neg A)$	0.775

Table 5: Table