[CLT] The ${f chi}$ -squared ${f distribution}$ with parameter n is the distribution of the sum of the squares of n independent standard normal random variables.

Let S_k be the sum of k independent chi-squared random variables with parameter 8. Find the limit as $k o \infty$ of

$$P(8k \le S_k \le 8.01k).$$

$$S_{1} = X_{1}^{2} + \cdots + X_{N}^{2} \quad X_{1} \quad N(0,1)$$

$$S_{k} = k \cdot C \quad X_{1}^{2} + \cdots + X_{N}^{2} \quad K^{2} \mid K^{$$

The mean of the chi-squared distribution is

$$E[Z_1^2 + \cdots + Z_8^2],$$

where Z_i 's are independent standard normals. Applying linearity and using the fact that $E[Z_i^2] = VarZ_i = 1$, we find that the mean of the chi-squared distribution is 8. The variance of the chi-squared distribution is not as straightforward to calculate explicitly; let's call it σ^2 .

The sum S_k has mean 8k and variance $k\sigma^2$. Therefore, its typical values are close to 8k, with fluctuations on the order of $\sigma\sqrt{k}$. Since 0.01k is much larger than $\sigma\sqrt{k}$ when k is large (and since the normal distribution is symmetric), approximately $\boxed{\frac{1}{2}}$ of the mass is between 8k and 8k+0.01k.

Theorem (Central Limit theorem) Suppose that X_1, X_2, \ldots , are independent, identically distributed random variables with mean μ and finite standard deviation σ , and defined the normalized sums $S_n^* = (X_1 +$ $\cdots + X_n - n\mu)/(\sigma\sqrt{n})$ for $n \geq 1$. For all $-\infty \le a < b \le \infty$, we have

 $\lim_{n \to \infty} \mathbb{P}(a < S_n^* < b) = \mathbb{P}(a < Z < b),$

where
$$Z \sim \mathcal{N}(0,1)$$
. In other words, the sequence S_1, S_2, \ldots converges in distribution to Z .

$$U_n = \sqrt{n} \left(\frac{\overline{Y} - \mu}{\sigma} \right)$$

$$1 \left(\sum_{i=1}^n Y_i \right)$$

Finally,

$$= \frac{1}{\sqrt{n}} \left(\frac{\sum_{i=1}^{n} Y_i - n\mu}{\sigma} \right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} Z_i, \quad \text{where } Z_i = \frac{Y_i - \mu}{\sigma}.$$
Because the random variables Y_i 's are independent and identically distributed, Z_i , $i = 1, 2, \ldots, n$, are independent, and identically distributed with $E(Z_i) = \frac{1}{2} \sum_{i=1}^{n} Z_i$

$$Z_i$$
, $i = 1, 2, ..., n$, are independent, and identically distributed with $E(Z_i) = 0$ and $V(Z_i) = 1$.
Since the moment-generating function of the sum of independent random variables is the product of their individual moment-generating functions,

$$m_{\sum Z_i}(t)=m_{Z_1}(t) imes m_{Z_2}(t) imes \cdots imes m_{Z_n}(t)=[m_{Z_1}(t)]^n$$
 and

and
$$m_{U_n}(t) = m_{\sum Z_i} \left(\frac{t}{\sqrt{n}}\right) = \left\lceil m_{Z_1} \left(\frac{t}{\sqrt{n}}\right) \right\rceil^n.$$

$$m_{U_n}(t) = m \sum_i \left(\frac{1}{\sqrt{n}} \right) = \lfloor m_{Z_1} \left(\frac{1}{\sqrt{n}} \right) \rfloor$$
.
By Taylor's theorem, with remainder (see your *Calculus II* text)

By Taylor's theorem, with remainder (see your *Calculus II* text)
$$m_{Z_1}(t) = m_{Z_1}(0) + m'_{Z_1}(0)t + m''_{Z_1}(\xi)\frac{t^2}{2}, \quad \text{where } 0 < \xi < t,$$

$$m_{Z_1}(t) = m_{Z_1}(0) + m'_{Z_1}(0)t + m''_{Z_1}(\xi)\frac{t^2}{2},$$
 where $0 < t$

and because
$$m_{Z_1}(0) = E(e^{0Z_1}) = E(1) = 1$$
, and $m'_{Z_1}(0) = E(Z_1) = 0$,
 $m_{Z_1}(t) = 1 + \frac{m''_{Z_1}(\xi)}{t^2} t^2$, where $0 < \xi < t$.

$$m_{Z_1}(t) = 1 + \frac{m_{Z_1}''(\xi)}{2} t^2, \quad \text{ where } 0 < \xi < t.$$
 Therefore,

$$m_{U_n}(t) = \left[1 + \frac{m_{Z_1}''(\xi_n)}{2} \left(\frac{t}{\sqrt{n}}\right)^2\right]^n$$

$$= \left[1 + \frac{m_{Z_1}''(\xi_n)t^2/2}{n}\right]^n, \quad \text{where } 0 < \xi_n < \frac{t}{\sqrt{n}}.$$

$$= \left[1 + \frac{m_{Z_1}''(\xi_n)t^2/2}{n}\right]^n, \quad \text{where } 0 < \xi_n < \frac{t}{\sqrt{n}}.$$

Notice that as $n\to\infty$, $\xi_n\to 0$ and $m_{Z_1}''(\xi_n)t^2/2\to m_{Z_1}''(0)t^2/2=E(Z_1^2)t^2/2=t^2/2$ because $E(Z_1^2)=V(Z_1)=1$. Recall that if

$$= \left[1 + \frac{m_{Z_1}(\xi_n)^{1/2}}{n}\right], \quad \text{where } 0 < \xi_n < \frac{t}{\sqrt{n}}.$$

 $\lim_{n\to\infty} b_n = b \quad \text{ then } \quad \lim_{n\to\infty} \left(1 + \frac{b_n}{n}\right)^n = e^b.$

 $\lim_{n\to\infty} m_{U_n}(t) = \lim_{n\to\infty} \left[1 + \frac{m_{Z_1}''(\xi_n)t^2/2}{n} \right]^n = e^{t^2/2},$

$$m_{U_n}(t) = \left[1 + \frac{m_{Z_1}(\varsigma_n)}{2} \left(\frac{t}{\sqrt{n}}\right)\right]$$

$$=E(Z_1)=0,$$

measure with density f_n . Show that u_n converges to the probability measure u which puts of all its mass at the origin. Suppose I = Co,b) i> a continous interval. if I contains the origin, then the terms of sequence $V_1(I)$, $V_2(I)$ one equal to I for large enough N, since all of probability mess of V_1 is in the interval [0, 1] and countually [0, 1] EI, If I does not contain the origin, then the terms of sequence V(CT), v2(I) are eventually, equal to 0, for the same reason. Vn(1) converges to V(1) => Vn converges

Define $f_n(x)$ to be n when $0 \le x \le 1/n$ and 0 otherwise, and let u_n be the probability

Definition (Convergence of probability measures on \mathbb{R})

®Exercise

A sequence $u_1,
u_2, \dots$ of probability measures on $\mathbb R$ converges to a probability measure u on $\mathbb R$ if $u_n(I) o
u(I)$ whenever I is an interval satisfying $u(\{a,b\}) = 0$, where a and b are the endpoints of I.