

MR-PET

A new module for the EduGATE Project

part two: ion sources

Mirjam Lenz, Uwe Pietrzyk

Institute of Neurosciences and Medicine (INM) Research Center Juelich, Germany

Department of Mathematics and Natural Sciences University of Wuppertal, Germany

Contact: u.pietrzyk@fz-juelich.de or uwe.pietrzyk@uni-wuppertal.de

Basic Paper

"Zeitschrift für Medizinische Physik" (Z. Med. Phys. 23 (2013) 65-70)

- Long is the way of theory,

short and effective by examples -

(Lucius Annaeus <u>Seneca</u> (the Younger), Epistulae morales)

MR-PET

- Introduces to the basic physical effects in MR-PET hybrid imaging
 - Provides with GATE-macros
- Provides programme code for ROOT to visualize basic behaviour of charged particles in the magnetic field of a MR System

general setup of the MR-PET module

- ion source emits charged particles or photons
- particles interact with surounding medium (impact ionisation, compton scattering, annihilation of positrons with electrons...)
- additional deviation due to magnetic field (B₀)
- detection of particles in surrounding medium

orientation of the coordinate system

point-like source at center (x = y = z = 0)

shapes of surounding medium

cube

particles interact immediately within medium

cylinder

initial deviation due to magnetic field visible (if enabled), followed by interaction within medium

Please note:

- Within GATE ,crystal' denomiates the volume in which particles are detected
- it does not have to be a crystal (like a scintillator) but consists of air, water or lung tissue, etc.
- to prevent misunderstanding the 'crystal' is called ,medium' in this macro

- type
 "./config_starter_mac_70.csh"
 in a terminal window
- specify parameters like source type, source activity, medium etc.
- choose point of view if visualisation is enabled
- generate configuration and start simulation

 take a look at the scene under different angles by changing (θ,φ)

○ ○ ○ EduGate MR_PET Configuration	
Visualisation	disabled
ViewPointThetaPhi	0 90
Source_Type	O15 <u>•</u>
Annihilation	disabled
SourceActivity	10
Camera_Type	cube
Medium	Air 💌
B0_x	0.0
В0_у	0.0
B0_z	0.0
Generate configuration.mac and Start	

selection presets can be modified in "MR_PET.txt"

```
Visualisation: disabled; enabled;
ViewPointThetaPhi: 0 90; 30 30; 90 0; -90 0; 89 90; 15 30; 30 30; 45 45; 60 60;
Source_Type: O15; C11; F18; Mn52; I124;
Annihilation: disabled; enabled;
SourceActivity: 10; 50; 100; 500; 1000; 10000; 20000; 100000;
Camera_Type: cube; cylinder;
Medium: Air; Water; Lung; Liver; Vacuum;
B0_x: 0.0; 0.1; 0.2; 0.3; 0.4; 0.5; 1.0; 3.0; 7.0; 9.4; 12.0; 15.0; 20.0;
B0_y: 0.0; 0.1; 0.2; 0.3; 0.4; 0.5; 1.0; 3.0; 7.0; 9.4; 12.0; 15.0; 20.0;
B0_z: 0.0; 0.1; 0.2; 0.3; 0.4; 0.5; 1.0; 3.0; 7.0; 9.4; 12.0; 15.0; 20.0;
```


- use "MR_PET.C" to evaluate a specific .root file (file browser opens automatically after simulation)
- further information in terminal window

example: ⁵²Mn source in water

- camera type: cube

- medium: Water

- source activity: 100 Bq

- B : 0.0 T - B^{0,x}: 0.4 T - B^{0,y}: 0.0 T - positron annihilation: disabled

source position

Mitglied der Helmholtz-Gemeinschaft

troubleshooting

Error: illegal pointer to class object hi_energy 0x0 157 MR_PET.C:172

The leaves of the branch you are investigating seem to have no content.

Check your simulation settings: can particles be stopped within the medium or can they leave the medium without being detected?

Example: electron source (100 keV) within a cylindrical medium (Air), magnetic field in z direction (0.3 T). The electrons can't even enter the medium due to deviation caused by presence of magentic field.