SUPERVISED MACHINE LEARNING: CLASSIFICATION

MODULE 1:

LOGISTIC REGRESSION

TABLE OF CONTENTS

Supervised Learning Overview	2
What's Needed for Classification	2
Common Classification Models	3
Logistic Regression	4
Multi-Class Classification	4
Logistic Regression in Python (Scikit-learn)	
Real-World Applications	6
Confusion Matrix	6
Key Metrics	6
ROC & Precision–Recall Curves	7
Multi-Class Metrics	8
Kev Takeawavs	

Supervised Learning Overview

- Two types of supervised learning:
 - **Regression:** predicts a *continuous value* (e.g., house price).
 - Classification: predicts a *category or class* (e.g., fraud detection).
- Use **regression** for "how much" questions, **classification** for "which class / yes-no" problems.

Examples:

- Regression: house price, event attendance.
- o Classification: fraud detection, customer churn, loan default.

What's Needed for Classification

- Feature space (không gian đặc trung) numerical representation of data (e.g., petal color, shape).
- Labeled data (dữ liệu có nhãn) known class for training.
- Similarity measure (độ tương đồng) used to compare new samples to past examples.

Common Classification Models

- Logistic Regression
- K-Nearest Neighbors (KNN)
- Support Vector Machines (SVM)
- Decision Trees
- Neural Networks
- Random Forests
- Boosting / Ensemble Methods

Note: All (except logistic regression) can be used for both regression and classification.

Logistic Regression

- Extends linear regression for classification.
- Models **probability** of belonging to a class using the **logistic (sigmoid)** function:

- Always outputs between 0 and 1.
- Decision boundary: probability = $0.5 \rightarrow \text{class } 0 \text{ or } 1.$
- Converts linear output into **odds** and **log-odds (logit)**:

$$logit(p) = \ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x$$

• Each unit increase in x changes log-odds by β_1 .

Multi-Class Classification

Uses One-vs-All approach:

- Build a separate logistic model for each class vs. the rest.
- Choose the class with the highest probability.

Logistic Regression in Python (Scikit-learn)

```
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(C=1.0, penalty='12')
lr.fit(X_train, y_train)
pred = lr.predict(X_test)
lr.coef_
```

- C is the inverse of regularization strength (λ) .
- For statistical inference (e.g., p-values), use statsmodels.
- For parameter tuning, use GridSearchCV or cross-validation.

Real-World Applications

- Predicting customer churn, fraud detection, loan default, or top spenders.
- Useful for both **prediction** and **interpretation** coefficients show how features influence outcome (tác động của đặc trưng đến kết quả).

Confusion Matrix

Key Metrics

Metric	Formula	Meaning
Accuracy	(TP + TN) / Total	Overall correctness
Precision	TP/(TP+FP)	How often "positive" predictions are correct
Recall (Sensitivity)	TP / (TP + FN)	How many actual positives were caught

Specificity	TN / (TN + FP)	How well negatives are identified
F1 Score	2 × (Precision × Recall) / (Precision + Recall)	Balances precision and recall

ROC & Precision-Recall Curves

- ROC (Receiver Operating Characteristic) plots:
 - o y-axis: True Positive Rate (Recall)
 - x-axis: False Positive Rate (1 Specificity)
- AUC (Area Under Curve): higher = better model.
- Precision-Recall Curve:
 - Better for imbalanced datasets.
 - Shows trade-off between detecting positives and avoiding false alarms.

Rule of thumb:

- Balanced classes \rightarrow use **ROC AUC**.
- Imbalanced classes \rightarrow use **Precision–Recall**.

Multi-Class Metrics

- Extend confusion matrix to $n \times n$.
- Compute **precision**, **recall**, **F1** for each class (one-vs-all).
- Evaluate based on **misclassification cost** which class matters more.

from sklearn.metrics import accuracy_score,
precision_score, recall_score, f1_score,
roc_auc_score, confusion_matrix

Key Takeaways

- Regression \rightarrow continuous values; Classification \rightarrow discrete classes.
- Logistic Regression uses sigmoid to map predictions to probabilities.
- One-vs-All extends binary logistic regression to multi-class problems.
- Choosing the right metric (accuracy, recall, precision, F1, ROC, etc.) depends on the business goal and data balance.
- Scikit-learn provides efficient tools for model fitting and evaluation.