Les Suites: Introduction

I – Définition

A – Définition d'une suite numérique

Une suite numérique (u_n) est une liste ordonnée de nombres réels telle qu'à tout entier n on associe un nombre réel noté u_n . u_n est appelé le terme de rang n de cette suite (ou d'indice n).

B - Créer une suite

1. Avec une formule explicite

Lorsqu'on génère une suite par une formule explicite, chaque terme de la suite est exprimé en fonction de n et indépendamment des termes précédents.

Si $u_n=3n$, alors les premiers termes de la suite sont :

```
u_0 = 3 \times 0 = 0
```

$$u_1 = 3 \times 1 = 3$$

$$u_2 = 3 \times 2 = 6$$

. . .

2. Par une relation de récurrence

Lorsqu'on génère une suite par une relation de récurrence, chaque terme de la suite s'obtient à partir d'un (ou plusieurs) des termes précédents. On ne peut pas obtenir u_5 sans connaître u_4 .

Si $u_0=4$ et que chaque terme de la suite est le double de son précédant, alors les premiers termes sont

```
u_0 = 4
```

$$u_1 = 8$$

 $u_2 = 16$

. . .

<u>C – Représentation graphique</u>

On représente une suite par un nuage de point de coordonnées $(n; u_n)$

II - Sens de variation

A - Définition

Soit un entier p et une suite numérique (u_n)

- La suite (u_n) est croissante à partir du rang p signifie que pour $n \ge p$, on a $u_{n+1} \ge u_n$

- La suite (u_n) est décroissante à partir du rang p signifie que pour $n \ge p$, on a $u_{n+1} \le u_n$

B - Propriété

Soit une fonction f définie sur [0 ; + ∞ [et une suite numérique (u_n) définie sur $\mathbb N$ par $u_n=f(n)$. Soit un entier p.

- Si f est croissante sur l'intervalle $[p; +\infty[$, alors la suite (u_n) est croissante à partir du rang p.
- Si f est décroissante sur l'intervalle $[p;+\infty[$ alors la suite (u_n) est décroissante à partir du rang p .