Hierarchical Clustering

Son Nguyen

Hierarchical clustering - Centroid Linkage

cluster	х1	х2
А	0.0	6.0
В	2.0	7.0
С	5.0	9.5
D	9.0	2.5
Е	10.0	3.0
F	5.5	9.0
G	10.0	4.0

Hierarchical clustering - Centroid Linkage

Label the Points

Pair with the smallest distance.

Group the pair

Pair with the smallest distance.

Group the pair

_

Pair with the smallest distance.

Group the pair

_

Pair with the smallest distance.

Group the pair

Pair with the smallest distance.

Group the pair

_

Pair with the smallest distance.

Group the pair

_

• The original data

cluster	х1	х2
А	0.0	6.0
В	2.0	7.0
C (5.0	9.5
D	9.0	2.5
Е	10.0	3.0
F	5.5	9.0
G	10.0	4.0

~

• Calculate all the possible pair distances

	A	В	С	D	E	F	G
Α	0.00	2.24	6.10	9.66	10.44	6.26	10.20
В	2.24	0.00	3.91	8.32	8.94	4.03	8.54
С	6.10	3.91	0.00	8.06	8.20	0.71	7.43
D	9.66	8.32	8.06	0.00	1.12	7.38	1.80
Ε	10.44	8.94	8.20	1.12	0.00	7.50	1.00
F	6.26	4.03	0.71	7.38	7.50	0.00	6.73
G	10.20	8.54	7.43	1.80	1.00	6.73	0.00

- Example: $AB = \sqrt{(0-2)^2 + (6-7)^2} = 2.24$
- The minimum distance is 0.71
- CF has the minimum distance
- Thus, group CF into one cluster

• The updated data after merging C and F

cluster	х1	х2
А	0.00	6.00
В	2.00	7.00
D	9.00	2.50
Е	10.00	3.00
G	10.00	4.00
CF	5.25	9.25

• Notice that
$$CF = \left(rac{5+5.5}{2}, rac{9.5+9.0}{2}
ight) = (5.25, 9.25)$$

• Calculate all the possible pair distances

	A	В	D	E	G	CF
Α	0.00	2.24	9.66	10.44	10.20	6.17
В	2.24	0.00	8.32	8.94	8.54	3.95
D	9.66	8.32	0.00	1.12	1.80	7.72
Ε	10.44	8.94	1.12	0.00	1.00	7.85
G	10.20	8.54	1.80	1.00	0.00	7.08
CF	6.17	3.95	7.72	7.85	7.08	0.00

- The minimum distance is 1
- EG has the minimum distance
- Thus, group EG together

• The updated data after merging EG together

cluster	х1	х2
А	0.00	6.00
В	2.00	7.00
D	9.00	2.50
CF	5.25	9.25
EG	10.00	3.50

• Calculate all the possible pair distances

	A	В	D	CF	EG
Α	0.00	2.24	9.66	6.17	10.31
В	2.24	0.00	8.32	3.95	8.73
D	9.66	8.32	0.00	7.72	1.41
CF	6.17	3.95	7.72	0.00	7.46
EG	10.31	8.73	1.41	7.46	0.00

- The minimum distance is 1.41
- D EG has the minimum distance
- Thus, group D-EG together

• The updated data after merging D-EG together

cluster	х1	х2
А	0.00	6.00
В	2.00	7.00
CF	5.25	9.25
DEG	9.50	3.00

• Calculate all the possible pair distances

	A	В	CF	DEG
А	0.00	2.24	6.17	9.96
В	2.24	0.00	3.95	8.50
CF	6.17	3.95	0.00	7.56
DEG	9.96	8.50	7.56	0.00

- The minimum distance is 2.24
- AB has the minimum distance
- Thus, group AB together

• The updated data after merging AB together

х1	x2
5.25	9.25
9.50	3.00
1.00	6.50
	5.25 9.50

• Calculate all the possible pair distances

	CF	DEG	AB
CF	0.00	7.56	5.06
DEG	7.56	0.00	9.19
АВ	5.06	9.19	0.00

- The minimum distance is 5.06
- CF-AB has the minimum distance
- Thus, group CF-AB together

• The updated data after merging CF-AB together

cluster	х1	х2
DEG	9.500	3.000
CFAB	3.125	7.875

- There are only two clusters left
- Just need to group them together

cluster	х1	x2
DEGCFAB	6.3125	5.4375

Dendrogram

Problem

Point	х1	x2
А	0	6
В	2	7
С	5	9
D	9	2
Е	1	3

• Calculate H-Clustering for the data and plot the Dendrogram

Linkages

Linkage	Description
Complete	Maximal intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the <i>largest</i> of these dissimilarities.
Single	Minimal intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the <i>smallest</i> of these dissimilarities. Single linkage can result in extended, trailing clusters in which single observations are fused one-at-a-time.
Average	Mean intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the <i>average</i> of these dissimilarities.
Centroid	Dissimilarity between the centroid for cluster A (a mean vector of length p) and the centroid for cluster B. Centroid linkage can result in undesirable $inversions$.

(i) Centroid Unkose: Distance (A,B) = C,C2 cluster A

single Un Kose

cluster B

Chuster B

Conylete

Un konsel

