MiniProj_2

Wenxiong Lu

 $\mathbf{Q}\mathbf{1}$

(a) The are 17 observations from region 1, 9 obs. from region 2 and 12 obs. from region 3. It seems obs. from region 3 have highest quality and obs. from region 2 and 1 are mixed.

(b): Yes. Quality is an approriate variable

(c):

P - Value	95%Confidence Interval
0.865	(-5.105130, 6.043584)
6.87 e - 07	$(0.8850212\ 1.787982)$
0.000361	$(1.159604 \ 1.984177)$
3.68e-09	$(1.159604\ 1.984177)$
0.779	$(-1.066083 \ 0.805353)$
2e-16	$(11.330893\ 12.6220486)$
0.00757	(-2.629298 -0.4347544)
7.01e-06	$(1.603271\ 3.6104546)$
	0.865 6.87e-07 0.000361 3.68e-09 0.779 2e-16 0.00757

Comments: As the results shown above, 'Clariy' and 'Oakiness' are not significantly associated to Quality per 95% confidence level. The rest of variables are associated to Quality.

- (d): Without considering interaction term, the remaining predictors are 'Flavor' and 'Region'. (The interaction terms will be tested in question e) We can reject H0 for the F test of these parameters. Firstly, fit a full model with all the parameters, then we can find out that Clarity has highest p-value '0.990736'. After removing Clarity, the next highest will be removed. The 'removing sequence' is Clarity (0.990736), Body (0.746249), Aroma (0.70489), Oakiness (0.128060).
- (e) Firstly, fit a full model (including all the posible interaction terms). Then remove terms with highest p-value and make anova for the updated model and find the next highest p-value and remove the predictor. By repeating this process we will remove the predictors in sequence: [Body:Flavor(interaction term between Body and Flavor), Aroma:Region, Flavor:Region, Aroma:Flavor:Region, Body:Flavor:Region, Aroma:Body:Region, Aroma:Body:Region, Aroma:Body:Flavor:Region, Aroma:Body:Flavor, Aroma:Body:Region]. The remaing predictors are Aroma, Body, Flavor, Region. Then, check the F test for multiple linear model and we can see that the p-value of Aroma and Body changed from significant to insignificant. This is due to Region is a qualitative data, both Aroma and Body have significant interaction to Region 1 and Region 2. The currently reasonably good model is: ###Quality = x0+Aromax1+Bodyx2+Flavorx3+Regionx4.

```
## Analysis of Variance Table
##
## Response: Quality
##
             Df Sum Sq Mean Sq F value
## Aroma
              1 77.442 77.442 91.2025 6.909e-11 ***
## Body
                5.703
                         5.703 6.7163
                                         0.01428 *
## Flavor
              1 18.878
                        18.878 22.2329 4.539e-05 ***
## Region
              2 25.593
                        12.797 15.0706 2.445e-05 ***
## Residuals 32 27.172
                         0.849
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = Quality ~ Aroma + Body + Flavor + Region, data = wine)
##
## Residuals:
##
                  1Q
                       Median
                                            Max
##
  -1.98279 -0.59142
                     0.02005
                               0.55790
                                        1.87722
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
               7.00195
                           1.11063
                                     6.304 4.51e-07 ***
## (Intercept)
## Aroma
               -0.01643
                           0.24448
                                    -0.067 0.946855
## Body
                0.05253
                           0.24509
                                     0.214 0.831664
## Flavor
                1.10027
                           0.24136
                                     4.559 7.13e-05 ***
## Region2
               -1.53977
                           0.38117
                                    -4.040 0.000313 ***
## Region3
                1.22420
                           0.47800
                                     2.561 0.015352 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9215 on 32 degrees of freedom
## Multiple R-squared: 0.8245, Adjusted R-squared: 0.797
## F-statistic: 30.06 on 5 and 32 DF, p-value: 3.341e-11
```

(f) By fiting a linear model for Aroma = RegionBody, we can find out the exact interaction term in (e) is of 1.(Region 1, Body, Region2:Body) and fit another model Body = AromaRegion we can see interaction term is of 2.(Aroma, Region2, Aroma:Region2). This indicates that there are interaction terms between Region1 and Aroma, Region and Body. So we should consider put back the interaction term between Region:Aroma and Region:Body.

Aroma:Region x5 + Body:Region x6

adm\$GPA

2(a). It is easy to see that group is related to GPA and GMAT. Group might be an important predictor. GPA and GMAT are related to each differently in different group.

```
## Call:
## lda(Group ~ GPA + GMAT, data = adm.train)
## Prior probabilities of groups:
             2
## 0.325 0.350 0.325
##
##
  Group means:
##
          GPA
                  GMAT
## 1 3.431538 569.8077
  2 2.482500 447.0714
## 3 2.992692 446.2308
##
## Coefficients of linear discriminants:
##
                 LD1
                              LD2
  GPA -5.300511724 1.91775603
  GMAT -0.009125023 -0.01438851
##
##
## Proportion of trace:
     LD1
           LD2
## 0.969 0.031
```



```
##
##
       1 2 3
    1 24 0 2
##
##
    2 0 26 2
    3 0 0 26
## [1] "confusion matrix for training data"
## [1] 0.05
## [1] "confusion matrix for test data"
##
##
      1 2 3
    1 2 0 3
##
    2 0 0 0
##
    3 0 0 0
## [1] 0.6
```

(b) The decision boundary seems sensible. The misclassification rate:p(training data) = 0.05,

p(test data) = 0.6 There is exist overfiting problem in this model.

```
##
##
        1
           2
               3
##
     1 26
           0
               0
        0 27
##
##
       1
           0 25
   [1] "confusion matrix for training data"
  [1] 0.05
   [1] "confusion matrix for test data"
##
##
##
       1 2 3
     1 4 0 1
##
##
     2 0 0 0
     3 0 0 0
##
## [1] 0.2
```

- (c) The decision boundary seems sensible. The misclassification rate:p(training data) = 0.025, p(test data) = 0.2 The model predicts the test data well.
- (d) Ingeneral, QDA performs better than LDA in this case. So QDA is recommend.
- 3 It seems BloodyPressure, Insulin, age, Glucose, are strongly related to Outcome.