6.7 Richards Transformation, Stepped impedance

Module:6 Microwave Passive circuits

Course: BECE305L – Antenna and Microwave Engineering

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: richards.stanislaus@vit.ac.in

Module:6 Microwave Passive circuits <u>7</u> hours

• T junction and resistive power divider, Wilkinson power divider, branch line coupler (equal & unequal), Rat Race Coupler, Filter design: Low pass filter (Butterworth and Chebyshev) - Richards transformation and stepped impedance methods.

Source of the contents: Pozar

4.1 Filter implementation: Problems

- The lumped-element filter designs discussed (binomial, chebychev) generally work well at low frequencies,
- but two problems arise at higher RF and microwave frequencies.
 - 1) <u>lumped-element</u> inductors and capacitors are generally available <u>only for a limited range of values</u> are difficult to implement at microwave frequencies.

Distributed elements, such as open-circuited or short-circuited transmission line stubs, are often used to approximate ideal lumped elements.

2) At microwave frequencies the <u>distances between filter</u> <u>components is not negligible</u>.

4.1 Filter implementation: Solution

- The first problem is treated with <u>Richards' transformation</u>, used to <u>convert lumped elements to transmission line sections</u>.
- Kuroda's identities can then be used to physically separate filter elements by using transmission line sections.
- Because such additional transmission line sections do not affect the filter response, this type of design is called redundant filter synthesis.
 - improve the filter response; such non-redundant synthesis does not have a lumped-element counterpart.

4.2 Richards' Transformation $\Omega = \tan \beta \ell = \tan \left(\frac{\omega \ell}{v_n}\right)$

- Frequency ω is mapped to Ω plane
- Ω repeats itself at a period of $\frac{\omega l}{v_p}=2\pi$
- This was introduced to synthesize LC network using open- and short- circuited transmission line stubs
- Impedance in Ω plane is obtained by replacing ω with $\Omega = \tan \beta l$
- Reactance of inductor: $jX_L = jL\Omega = jL \tan \beta l$ (Replace inductor with short circuited stub of length βl and characteristic impedance L)
- Susceptance of capacitor: $jB_C = jC\Omega = jC \tan \beta l$ (Replace capacitor with open circuit stub of length βl and characteristic impedance C)
- Unity filter impedance is assumed.

4.2 Richards' Transformation $\Omega = \tan \beta \ell = \tan \left(\frac{\omega \ell}{v_p}\right)$

• Reactance of inductor: $jX_L = jL\Omega = jL \tan \beta l$ (Replace inductor with short circuited stub of length βl and characteristic impedance L)

4.2 Richards' Transformation $\Omega = \tan \beta \ell = \tan \left(\frac{\omega \ell}{v_p}\right)$

• Susceptance of capacitor: $jB_C = jC\Omega = jC \tan \beta l$ (Replace capacitor with open circuit stub of length βl and characteristic impedance C)

4.2 Richards' Transformation $\Omega = \tan \beta \ell = \tan \left(\frac{\omega \ell}{v_p}\right)$

- At cut-off frequency ω_c in ω plane, with λ is wavelength at ω_c $\Omega = 1 = \tan \beta l$ which means $\beta l = \pi/4$ or the stub length of $\lambda/8$. Electrical lengths of all the stubs are same.
 - Hence, they are known as commensurate lines.
- At frequency $\omega_0 = 2\omega_c$, the stub length will be $\lambda/4$ and attenuation pole occurs ($\beta l = \pi/2$ and $\tan \beta l = \infty$)
- The response away from ω_c will be different and not same.
- In addition, the response will be periodic in frequency, repeating every $4\omega_c$.

4.3 Kuroda's identities

- The four Kuroda identities use redundant transmission line sections to achieve a more practical microwave filter implementation by performing any of the following operations
 - Physically separate transmission line stubs
 - Transform series stubs into shunt stubs, or Transform shunt stubs into series stubs
 - Change impractical characteristic impedances into more realizable values
 - The additional transmission line sections are called unit elements and are λ/8 long at ωc;
- The unit elements are thus commensurate with the stubs used to implement the inductors and capacitors of the prototype design

4.3 Kuroda's identities

• Each box represents a unit element, or transmission line, of the indicated characteristic impedance and length ($\lambda/8$ at ω_c)

The inductors and capacitors represent short-circuit stub and open-

circuit stubs respectively.

 $n^2 = 1 + Z_2/Z_1$ Z_1 Z_1 n^2

1

2

4.3 Kuroda's identities

• Each box represents a unit element, or transmission line, of the indicated characteristic impedance and length ($\lambda/8$ at ω_c)

The inductors and capacitors represent short-circuit stub and open-

circuit stubs respectively.

$$n^2 = 1 + Z_2/Z_1$$

4.3 Kuroda's identity - 1

5. Stepped impedance LPF

- A relatively easy way to implement low-pass filters in microstrip or stripline: use alternating sections of very high and very low characteristic impedance lines. (stepped-impedance, or hi-Z, low-Z filters)
- Popular because they are easier to design and take up less space than a similar low-pass filter using stubs.
- Because of the approximations involved, however, their electrical performance is not as good, so the use of such filters is usually limited to applications where a sharp cutoff is not required (for instance, in rejecting out-of-band mixer products).

5. Stepped impedance LPF

 Approximate equivalent circuits for short sections of transmission lines.

Used for $\beta l \ll \pi/2$:

Equivalent circuit for small βI and large Z0

$$\beta \ell = \frac{LR_0}{Z_h} \quad \text{(inductor)}$$

Equivalent circuit for small β l and small Z0 $\beta \ell = \frac{CZ_{\ell}}{R_0} \quad \text{(capacitor)}$

$$\frac{\omega}{\omega_c} - 1 = \frac{4.0}{2.5} - 1 = 0.6$$

Stepped impedance implementation

Microstrip layout of the final filter

$$\frac{\omega}{\omega_c} - 1 = \frac{4.0}{2.5} - 1 = 0.6$$

N = 6 should give the required attenuation at 4.0 GHz

$$\frac{\omega}{\omega_c} - 1 = \frac{4.0}{2.5} - 1 = 0.6 \frac{1}{100}$$
TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes ($g_0 = 1$), $g_0 = 1$, $g_0 = 1$

N = 6 should give the required attenuation at 4.0 GHz

ive the required												
ive the required 4.0 GHz	N	<i>g</i> ₁	g_2	<i>g</i> ₃	<i>g</i> ₄	<i>g</i> 5	g 6	g 7	<i>g</i> ₈	g 9	<i>g</i> ₁₀	<i>g</i> ₁₁
	1	2.0000	1.0000									
	2	1.4142	1.4142	1.0000								
	3	1.0000	2.0000	1.0000	1.0000							
	4	0.7654	1.8478	1.8478	0.7654	1.0000						
	5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
	6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
	7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
	8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
	9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
Dr Richards Joe Stanis	10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000

$$\frac{\omega}{\omega_c} - 1 = \frac{4.0}{2.5} - 1 = 0.6$$
TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes $(g_0 = 1, N = 1 \text{ to } 10)$

N = 6 should give the required

N = 6 should give the required attenuation at 4.0 GHz

attenuation at 4.0 GHz
$$g_1=0.517=C_1,\ g_2=1.414=L_2,\ g_3=1.932=C_3,\ g_4=1.932=L_4,\ g_5=1.414=C_5,\ g_6=0.517=L_6.$$
 Joe Stanis

	N	<i>g</i> ₁	<i>g</i> ₂	<i>g</i> ₃	<i>g</i> ₄	<i>g</i> 5	g 6	g 7	<i>g</i> ₈	g 9	<i>g</i> ₁₀	<i>g</i> ₁₁
	1	2.0000	1.0000									
	2	1.4142	1.4142	1.0000								
	3	1.0000	2.0000	1.0000	1.0000							
	4	0.7654	1.8478	1.8478	0.7654	1.0000						
	5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
>	6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
	7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
	8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
	9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
nisl	10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000

 $g_6=0.517=L_6$. Joe Stanislaus

Design a stepped-impedance low-pass filter having a maximally flat response and a cutoff frequency of 2.5 GHz. It is desired to have more than 20 dB insertion loss at 4 GHz. The filter impedance is 50 Ω ; the highest practical line impedance is 120 Ω , and the lowest is 20 Ω . Consider the effect of losses when this filter is implemented with a microstrip substrate having d = 0.158 cm, $\epsilon_r = 4.2$, $\tan \delta = 0.02$, and copper conductors of 0.5 mil thickness.

\sim 4.0					
$\frac{\omega}{\omega} - 1 = \frac{4.0}{2.5} - 1 = 0.6$	Section	$Z_i = Z_\ell \text{ or } Z_h(\Omega)$	$\beta \ell_i \text{ (deg)}$	W_i (mm)	ℓ_i (mm)
ω_c 2.5	1	20	11.8	11.3	2.05
N = 6 should give the required	2	120	33.8	0.428	6.63
attenuation at 4.0 GHz	3	20	44.3	11.3	7.69
$g_1 = 0.517 = C_1$	4	120	46.1	0.428	9.04
0-1	5	20	32.4	11.3	5.63
$g_2 = 1.414 = L_2,$	6	120	12.3	0.428	2.41
$g_3 = 1.932 = C_3$,					
$g_4 = 1.932 = L_4$	LR_0	(: 1 · ·) R1	$-CZ_{\ell}$ (capacitor)		
$g_5 = 1.414 = C_5,$	$\beta \ell = \frac{ZR_0}{Z_h}$	(inductor) $\beta \ell$	$= \frac{CZ_{\ell}}{R_0} \text{(capacitor)}$,	

Very important

