CHAPTER

TEN

GROUPS AND RINGS

$$a \star (b \star c) = a \star b = a$$

 $(a \star b) \star c = a \star c = a$

(b) Only if *A* has only one element.

10.3
$$(a \star b) \star (a \star c) = (a \star a) \star (b \star c) = a \star (b \star c)$$

10.4 (a)

	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

(b) Closure is obvious. Associativity can be seen from

$$(a \odot b) \odot c = r_1 \odot c$$
 where r_1 = reminder of ab/n ,
= r_2 where r_2 = remainder of r_1c/n
= remainder of abc/n
= $a \odot (b \odot c)$ since this is also the remainder of abc/n .

10.5
$$(x \Box y) \Box z = (x * a * y) * a * z = x * a * (y * a * z)$$

 $x \Box (y * z) = x * a * (y * a * z)$

10.6 (a)
$$(a * a) * a = a * (a * a)$$

Thus,
$$a * a = a$$

(b)
$$(a * b * a) * a = a * b * (a * a) = a * b * a$$

= $(a * a) * b * a = a * (a * b * a)$

Thus,
$$a * b * a = a$$

(c)
$$(a * b * c) * (a * c) = a * b * (c * a * c) = a * b * c$$

= $(a * c * a) * b * c = (a * c) * (a * b * c)$
Thus, $a * b * c = a * c$.

10.7
$$(a * b) * c = a * (b * c) = a * (c * b)$$

= $(a * c) * b = (c * a) * b$
= $c * (a * b)$

- 10.8 (a) a * (a * a) = a * b (a * a) * a = b * a
 - (b) If b * b = a, then a * (b * b) = a * a = b. Suppose a * b = a, (a * b) * b = a * b = a. Suppose a * b = b, (a * b) * b = b * b = a. Thus, $b * b \ne a$, and we must have b * b = b.

10.9
$$(a * b) * (a * b) = a * (b * a) * b$$

= $(a * a) * (b * b)$
= $a * b$

- 10.10 Use induction on |A|. The result is trivially true for |A| = 1. Assume |A| = n and the result holds for all smaller semigroups. Let $a \in A$ and consider a, a^2 , a^3 ,..., a^{n+1} . These are not all distinct, so $a^i = a^j$, for some i < j. Then $a^{i+1} = a^{j+1}$ for all l and the sequence a^i , a^{i+1} ,..., a^{j-1} repeats. Hence $(\{a^i, ..., a^{j-1}\}, *\}$ is a semigroup. If j i < |A|, then by induction there is an $a^k \in \{a^i, ..., a^{j-1}\} \subseteq A$ satisfying the result. If j i = n, then (A, *) is isomorphic to the integers modulo n under addition and a^{j-i} is the identity element.
- 10.11 For a, there exist u_1 and v_1 such that $a*u_1=v_1*a=a$. It follows that $v_1*a*u_1=a$. For any x, $x=a*u_1=v_1*a*u_1=v_1*x$. Thus, v_1 is a left identity.

For any
$$x, x = v_1 * a = v_1 * a * u_1 = x * u_1$$
.

Thus, u_1 is a right identity.

It follows that $v_1 = u_1$ and is the identity.

10.12 (a) a * b = a * c

$$\hat{a} * a * b = \hat{a} * a * c$$

 $e * b = e * c$
 $b = c$

(b)
$$\hat{x} * x * (\hat{x} * x) = \hat{x} * x * e$$

Also, $(\hat{x} * x) * \hat{x} * x = e * \hat{x} * x = \hat{x} * x$
Thus, $\hat{x} * x * e = \hat{x} * x$
According to (a), $x * e = x$
Thus, e is also a right identity.

10.13 (a)
$$a \star (a \star b) = [(a \star b) \star a] \star (a \star b) = a \star b$$
.

(b)
$$a \star a = [(a \star b) \star a] \star a$$
 (by (i))[†]

$$= [a \star (a \star b)] \star (a \star b)$$
 (by (ii))

$$= (a \star b) \star (a \star b)$$
 (by part (a))

(c)
$$a \star a = (a \star b) \star (a \star b)$$
 (by part (b))

=
$$[(a \star b) \star b] \star [(a \star b) \star b]$$
 (by part (b))

$$= [(b \star a) \star a] \star [(b \star a) \star a] \qquad \text{(by (ii))}$$

$$= b \star b$$
 (by (i))

(d)
$$(a \star a) \star a = a$$
 (by (i))

$$a \star (a \star a) = a \star a = e$$
 (by part (a))

(e) If $a \star b = b \star a$

$$a = (a \star b) \star a \tag{by (i)}$$

$$=(b \star a) \star a$$

$$= (a \star b) \star b \tag{by (ii)}$$

$$= (b \bigstar a) \bigstar b$$

$$= b$$
 (by (i))

a = b then obviously,

$$a \star b = b \star a$$

(f)
$$a \star a = (a \star a) \star a = a$$

 $a \star b = (a \star b) \star b = (b \star a) \star a = b \star a$

10.14 (a)
$$((a \star a) \star (a \star b)) \star ((a \star b) \star c) = a \star b$$

$$((a \star a) \star (a \star b)) \star ((a \star b) \star c) = a \star ((a \star b) \star c)$$

Thus,
$$a \star b = a \star ((a \star b) \star c)$$

The other equality can be proved in a similar fashion.

(b) Since
$$(a \star ((d \star (b \star c)) \star d)) \star ((b \star c) \star d) = b \star c$$

$$(b \star c) \star (c \star d) = ((a \star (d \star (b \star c)) \star d)) \star ((b \star c) \star d)) \star (c \star d) = c$$

(d) Consider the path

We must have $(a \star b) \star (b \star c) = c$

[†](i) and (ii) refer to the two given conditions.

(e) We show first there is an edge (c, b) in E if and only if $c = a \star b$ for some a. If (c, b) is in E, $b = c \star d$ for some d, hence $(c \star c) \star b = (c \star c) \star (c \star d) = c$. Conversely, if $a \star b = c$, then there is an edge from c to $(a \star b) \star (b \star b)$ which is b. Now, for any two vertices, there is a path

To show that this path is unique, we note that if we have a path then $a = d_1 \star c$ and $b = c \star d_2$ for some d_1 and d_2 .

Thus, $a \star b = (d_1 \star c) \star (c \star d_2) = c$.

(f) For any c in L(b) there is a unique d in R(a) such that there is a path

Therefore, there is a one to one correspondence between the elements in R(a) and L(b).

(g) The sets $R(b_1)$, $R(b_2)$,..., $R(b_m)$ are mutually disjoint and their union contains all the elements in A.

$$10.15 b \star d = b \star (c \star c^{-1}) \star (a^{-1} \star a) \star d$$

$$= (b \star c) \star (a \star c)^{-1} \star (a \star d)$$

$$= (b_1 \star c_1) \star (a_1 \star c_1)^{-1} \star (a_1 \star d_1)$$

$$= (b_1 \star c_1) \star (c_1^{-1} \star a_1^{-1}) \star (a_1 \star d_1)$$

$$= b_1 \star d_1$$

- 10.16 (a) Let a be the non-identity element of the group. Then $a^2 \neq a$, so $a^2 = e$, the identity, and G is cyclic of order 2. The function $f: \{a, e\} \rightarrow \{0, 1\}$ for which f(a) = 1, f(e) = 0 is an isomorphism.
 - (b) Similar to the argument in (a), any non-identity element a must generate the whole group, and the function f(a) = 1, $f(a^2) = 2$, f(e) = 0 is the isomorphism. ($a^2 \ne a$. $a^2 \ne e$. Since if $a^2 = e$, ab = b implies a = e.)
 - (c) There are 2, the cyclic group of order 4 and the group all of whose non-indentity elements have order 2.

$$((a_1, b_1) \Box (a_2, b_2)) \Box (a_3, b_3)$$

= $(a_1 \star a_2, b_1 * b_2) \Box (a_3, b_3) = ((a_1 \star a_2) \star a_3, (b_1 * b_2) * b_3)$
= $(a_1 \star (a_2 \star a_3), b_1 * (b_2 * b_3)) = (a_1, b_1) \Box ((a_2, b_2) \Box (a_3, b))$
So, it is associative.

112

If a_A and e_B are identities of A and B, then (e_A, e_B) is the identity of A $\times B$ and the inverse of (a, b) is (a^{-1}, b^{-1}) .

- 10.18 (a) (ab) $(b^{-1} a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = e$
 - (b) By induction: $((a_1... a_{r-1})a_r)^{-1} = a_r^{-1}(a_1... a_{r-1})^{-1}$
 - $= a_r^{-1} a_{r-1}^{-1} \dots a_1^{-1}$ (c) Follows from (b) setting a_1, \dots, a_i to a and a_{i+1}, \dots, a_r to b, with r = i
- Clearly, $x^{-1} = x$. Commutativity follows from 10.19

$$(x * y)^{-1} = y^{-1} * x^{-1} = y * x$$

 $(x * y)^{-1} = x * y$

- 10.20 (i) *H* is non-empty. For $a \in H$, $a \star a^{-1} = e$ is in *H*.
 - (ii) For $a \in H$, $e \star a^{-1} = a^{-1}$ is in H.
 - (iii) \star is closed. Since for $a, b \in H$, $a \star (b^{-1})^{-1} = a \star b$ is in H.
- 10.21 Let a be a generator of the group G and let a^i be the smallest power, i > 0, of a such that a^i is in the subgroup H. If a^i does not generate H, let a^j be an element of H which is not a power of a^i . The g. c. d. of i and j is not i since if j = hi, then $a^j = (a^i)^h$. Hence d = (j, i) < i. But d = mj + ni for some integers m and n. Thus $a^d = (a^j)^m (a^i)^n \in H$ but d < i contradicting our assumption that i was minimal.
- $10.22 \{a, a^2, \dots a^m\}$ is a subgroup of the group. Thus, according to Theorem 11.3 *m* divides the order of the group.
- 10.23 There exists a_1 that is in H_1 but not in H_2 . There exists a_2 that is in H_2 but not in H_1 . We claim that $a_1 a_2$ is not in H_1 . Suppose $a_1 a_2$ is in H_1 . Because a_1^{-1} is in H_1 , a_2 will be in H_1 , which is a contradiction. Similarly, a_1 a_2 is not in H_2 .
- If $x \in N$ and $y \in N$, then $xy \in N$ since $xyHy^{-1}x^{-1} =$ 10.24 (i) Closure: $xHx^{-1} = H$.
 - $eHe^{-1} = H$. (ii) Identity:
 - If $xHx^{-1} = H$, $H = x^{-1}Hx$. (iii) Inverse:
- 10.25 If x is the inverse of y, then y is the inverse of x. Since e is the inverse of e, there exists an element $a, a \neq e$, such that a is the inverse of itself. (Because we can pair off the elements x and x^{-1} , and the number of elements is even.)
- 10.26 Consider the set $C = \{a \star b^{-1} | b \in B\}$. Since |C| = |B|, there is an element that is in both B and C. That is, $b_1 = a \star b_2^{-1}$, or $a = b_1 \star b_2$.

10.27 Suppose that HK = KH, that is, for $h \in H$ and $k \in K$ there exist $h_1 \in H$ and $k_1 \in K$ such that $hk = k_1h_1$. To show that HK is closed, we note that h(kh') $k' = h(h_1k_1)k'$ which is in HK. To show that if x is in HK then so is x^{-1} , we note $(hk)^{-1} = k^{-1} h^{-1} \cdot k^{-1} h^{-1}$ is in KH which is equal to HK.

Suppose that HK is a subgroup. For any $h \in H$ and $k \in H$, $h^{-1}k^{-1}$ is in HK. Thus, $kh = (h^{-1}k^{-1})^{-1}$ is in HK. We have $KH \subseteq HK$. Also, if x is in HK, $x^{-1} = hk$ is also in HK. $x = k^{-1}h^{-1}$ is in KH. Therefore, we have $HK \subseteq KH$.

10.28 If (A, \star) is abelian, then $(a \star b) \star (a \star b) = (a \star a) \star (b \star b)$

If
$$(a \star b)^2 = a^2 \star b^2 = a \star a$$
, then
$$a \star b \star a \star b = a \star a \star b \star b$$

$$a^{-1} \star (a \star b \star a \star b) \star b^{-1} = a^1 \star (a \star a \star a \star b \star b) \cdot b^{-1}$$

$$b \star a = a \star b$$

10.29 $a^3 \star b^3 = (a \star b)^3$ implies that

$$a^2 \star b^2 = b \star a \star b \star a \tag{1}$$

 $a^4 \star b^4 = (a \star b)^4$ implies that

$$a^4 \star b^3 = b \star a \star b \star a \star b \star a \tag{2}$$

Combining (1) and (2), we obtain

$$a^3 \star b^3 = a^2 \star b^2 \star b \star a$$

which implies that $a \star b^3 = b^3 \star a$ (3)

$$a^5 \star b^5 = (a \star b)^5$$
 implies that

$$a^{4} \star b^{4} = b \star a \star b \star a \star b \star a \star b \star a \tag{4}$$

Combining (2) and (4), we obtain

$$a^{4} \star b^{4} = a^{3} \star b^{3} \star b \star a$$
$$a \star b^{4} = b^{4} \star a \tag{5}$$

Combining (3) and (5), we obtain

$$b^3 \star a \star b = b^4 \star a$$

which implies that $a \star b = b \star a$

- 10.30 *G* is partitioned into *H* and $a \star H$. *G* is also partitioned into *H* and $H \star a$. Thus, we must have $a \star H = H \star a$.
- 10.31 Suppose *H* is normal. Then $a \star H = H \star a$.

If
$$x \in a \star H \star a^{-1}$$
, then $x = a \star h \star a^{-1}$
= $h_1 \star a \star a^{-1} = h_1 \in H$

Conversely, if $a \star H \star a^{-1} \subseteq H$ for all a, then

$$a \star h \star a^{-1} = h_1 \in H$$
.

Hence,
$$a \star h = h_1 \star a$$
 and $a \star H \subseteq H \star a$
Also, for $h \in H, a^{-1} \star h \star a = h_1 \in H,$
so $h \star a = a \star h_1$ and $H \star a \subseteq a \star H.$

- 10.32 *H* is closed since $a, b \in H$ and $c \in G$ implies that $(a \star b) \star c = a \star c \star b = c \star (a \star b)$. Clearly, $e \in H$. If $a \in H$, then $(a^{-1} \star b)^{-1} = b^{-1} \star a = a \star b^{-1} = (b \star a^{-1})^{-1}$, so $a^{-1} \star b = b \star a^{-1}$.
- 10.33 (a) Since $e \in H$ and $e \in K$, $H \cap K \neq \emptyset$. For $a, b \in H \cap K$, $a \neq b^{-1} \in H \cap K$ since both H and K contain inverse and are closed.
 - (b) Consider the coset $a \star (H \cap K) = \{a \star x | x \in H \cap K\}$. For $a \star x \in a \star (H \cap K)$, $a \star x \in a \star H$ so $a \star x \in H \star a$. Similarly, $a \star x \in K \star a$. Since $a \star x = y \star a$ for a unique y, we have $y \in H$ and $y \in K$. Thus, $a \star x \in (H \cap K) \star a$. The same reasoning shows that if $x \star a \in (H \cap K) \star a$ then $x \star a \in a \star (H \cap K)$.
- 10.34 Suppose (1), (2), and (3) hold. Then

$$f((a_1, b_1) \Box (a_2, b_2)) = f(a_1 \star a_2, b_1 \star b_2)$$

= $a_1 \star a_2 \star b_1 \star b_2$

Since H and K are both normal, $a_2 \star b_1 \star a_2^{-1} \star b_1^{-1} \in H \cap K(a_2 \star b_1 \star a_2^{-1} \in K, b_1 \star a_2^{-1} \star b_1^{-1} \in H)$. Since $H \cap K = \{e\}$, $(a_2 \star b_1)^{-1} = a_2^{-1} \star b_1^{-1} = b_1^{-1} \star a_2^{-1}$. It follows that for any two elements $a \in H$, $b \in K$, $a \star b = b \star a$. Thus

$$a_1 \star a_2 \star b_1 \star b_2 = a_1 \star b_1 \star a_2 \star b_2$$

= $f(a_1, b_1) \star f(a_2, b_2)$

and f is a homomorphism.

$$f(a, b) = e \leftrightarrow a \star b = e \leftrightarrow a = b^{-1} \Rightarrow a \in H \cap K.$$

Since $H \cap K = \{e\}$, $f(a, b) = e \Rightarrow a = b = e$ and f is one-to-one. Since $G = \{h \bigstar k | h \in H, k \in K\}$, for any $g \in G$, $g = h \bigstar k = f(h, k)$ so f in onto

Suppose f is an isomorphism. Then for any $g \in G$, $g = f(h, k) = h \star k$ so (2) is satisfied. If $a \in H \cap K$, then $a^{-1} \in H \cap K$ and $(a, a^{-1}) \in H \times K$. $f(a, a^{-1}) = e$ so $(a, a^{-1}) = (e, e)$ since f is one-to-one. Hence, a = e and $H \cap K = \{e\}$. Finally, if $h \in H$, $k \in K$ then $f((h, k) (h, k)) = (h \star h) \star (k \star k) = f(h, k) \star f(h, k) = h \star k \star h \star k$, so $h \star k = k \star h$. Thus, for any $g = h \star k \in G$

$$g \star H = h \star k \star H = \{h \star k \star a | a \in H\} = \{h \star a \star k | a \in H\}$$
$$= \{a \star k | a \in H\}$$
$$= \{a \star h \star k | a \in H\}$$
$$= H \star h \star k$$

so H, and similarly K, are normal.

10.35 If $a \star b \star a^{-1} \star b^{-1} \in H$ for all $a, b \in G$, then $(a \star H) \star (b \star H) = a \star b \star H$, while $b^{-1} \star a^{-1} \star b \star a \in H$. Hence, $a \star b \star b^{-1} \star a^{-1} \star b \star a \star H = a \star b \star H$ and $b \star a \star H = a \star b \star H$. Thus G/H is abelian. If G/H is abelian, then $b^{-1} \star a^{-1} \star H = a^{-1} \star b^{-1} \star H$ and $b^{-1} \star a^{-1} \star H = a^{-1} \star b^{-1}$ and for all $a, b \in G$, $a \star b \star a^{-1} \star b^{-1} \in H$.

10.36 (a)
$$(a \star b) \star c = a \star (b \star c)$$

$$f((a \star b) \star c) = f(a \star b) * f(c) = (f(a) * f(b)) * f(c)$$

 $f(a \star (b \star c)) = f(a) * f(b \star c) = f(a) * (f(b) * f(c))$

Note that given x, y, z in B, there exist a, b, c in A such that

$$f(a) = x, f(b) = y, f(c) = z$$
(b) $a \star e = a \implies f(a) * f(e) = f(a)$

$$e \star a = a \implies f(e) * f(a) = f(a)$$
(c) $a \star b = e \implies f(a) * f(b) = f(e)$

10.37
$$g(a \star b) = f_1(a \star b) * f_2(a \star b)$$

= $f_1(a) * f_1(b) * f_2(a) * f_2(b)$
= $f_1(a) * f_2(a) * f_1(b) * f_2(b)$
= $g(a) * g(b)$

Hence, g is a homomorphism from (A, \bigstar) to B, *).

10.38 (1)
$$f(e) = g(e) = \text{identity of } (H, *)$$

Thus, $e \in C$.

(2) If
$$f(a) = g(a) = a'$$

then $f(a^{-1}) = g(a^{-1}) = (a')^{-1}$

(3) If
$$f(a) = g(a)$$
 and $f(b) = g(b)$,
then $f(a \star b) = f(a) * f(b) = * g(a) * g(b) = g(a \star b)$

Hence, (C, \bigstar) is a subgroup of (G, \bigstar) .

$$10.39 \ \frac{1}{2} (4^6 + 4^3) = 160$$

$$10.40 \ \frac{1}{4} (3^8 + 3^2 + 3^4 + 3^2) = 1665$$

10.41 (a)
$$\frac{1}{4}(2^4 + 2 + 4 + 2) = 6$$

(b)
$$\frac{1}{4} (2^{16} + 2^4 + 2^8 + 2^4) = 16,456$$

+

10.42 (a)
$$p < \frac{1}{2} \Rightarrow \frac{p}{1-p} < 1$$

Thus, for $t_1 < t_2$, $\left(\frac{p}{1-p}\right)^{t_1} > \left(\frac{p}{1-p}\right)^{t_2}$
or $(1-p)^n \left(\frac{p}{1-p}\right)^{t_1} > (1-p)^n \left(\frac{p}{1-p}\right)^{t_2}$

(b) Similar to (a)

- (b) To show that (G, \oplus) is a group, we note that (i) associativity is obvious, (ii) 0000000 is the identity, and (iii) every word is its own inverse. Closure follows from the observation that
- (1) $1101000 \oplus$ a cyclic shift of 1101000 = a cyclic shift of 0010111
- (2) $1101000 \oplus 11111111 = 00101111$.

10.44 We show first
$$e_1 = e_1 * e_2$$

 $= e_1 * (e_2 \bigstar e_1)$
 $= (e_1 * e_2) \bigstar (e_1 * e_1)$
 $= e_1 \bigstar (e_1 * e_1)$
 $= e_1 * e_1$
Now $x = x \bigstar e_1 = x \bigstar (e_1 * e_1) = (x \bigstar e_1) * (x \bigstar e_1)$
 $= x * x$

That $x = x \star x$ can be proved in a similar fashion.

 \perp

 $10.45 \ a * (b \star c) = a * b$

$$(a*b) \bigstar (a*c) = a*b$$

- 10.46 (a) $(a + a) \cdot (a + a) = a \cdot a + a \cdot a + a \cdot a + a \cdot a = a + a + a + a = a + a$ Thus, a + a = 0
 - (b) $(a + b) \cdot (a + b) = a \cdot a + a \cdot b + b \cdot a + b \cdot b = a + a \cdot b + b \cdot a + b$ = a + b

Thus, $a \cdot b + b \cdot a = 0$. Since $a \cdot b + a \cdot b = 0$, we have $a \cdot b = b \cdot a$.

10.47 Let $x_1, x_2, ..., x_n$ denote the elements in the integral domain. Let $a \ne 0$ be one of the elements in the integral domain. We note that $x_1 \cdot a, x_2 \cdot a, ..., x_n \cdot a$ are all distinct. (If not, we have $x_i \cdot a - x_j \cdot a = 0$ implying that $(x_i - x_j) \cdot a = 0$ or $x_i = x_j$.) Thus, every element y in the integral domain can be written as $x_i \cdot a$ for some x_i . In particular, we have $a = x_j \cdot a$ for some x_j . Thus, $a = x_j \cdot a = a \cdot x_j$. We claim that x_j is a multiplicative identity, since for any element y in the integral domain, $y \cdot x_j = (x_i \cdot a) \cdot x_j = x_i \cdot (a \cdot x_j) = x_i \cdot a = y$.

Now, for any $a \ne 0$, there exists an x_k such that $x_k \cdot a = x_i$. Thus, x_k is the multiplicative inverse of a.

- 10.48 (a) 0 2 3 4
 - 1230
 - 2 3 0 1
 - 3012
 - (b) 0 1 2 0 1 2
 - 120 201
 - 201 120
- 10.49 (a) Since the ideal *H* will be the additive identity (0) in the homomorphic image, according to the definition of a prime ideal, in the homomorphic image, the product of two cosets is equal to *H* only if one of them is *H*.
 - (b) Suppose H is a maximal ideal. Let b be any element in A but not in H. The set of all elements $c + b \cdot x$ for any c in H and any x in A can be shown to be an ideal. Since this ideal contains b which is not in H, and since H is a maximal ideal, it must be the whole ring A. In particular, 1 (the multiplicative identity) is in the ideal. That is, for some a, $1 = c + b \cdot a$. Note that 1 will be in the coset which is the multiplicative identity of the homomorphic image. Thus, the coset containing a is the multiplicative inverse of the coset containing b in the homomorphic image. The converse can be proved in a similar manner.

Solutions Manual of Elements of Discrete Mathematics

10.50 (a)

A	0	1	х	1+x
0	0	1	х	1+x
1	1	0	1 + x	X
x	X	1 + x	0	1
1+x	1+x	X	1	0

A	0	1	х	1+x
0	0	0	0	0
1	0	1	X	1 + x
x	0	X	1 + x	1
1+x	0	1 + x	1	X

(b)

A	0	1	2	х	1+x	2+x	2 <i>x</i>	1 + 2x	2+2x
0	0	1	2	х	1+x	2 + x	2 <i>x</i>	1 + 2x	2+2x
1	1	2	0	1 + x	2 + x	X	1+2x	2 + 2x	2x
2	2	0	1	2 + x	X	1+x	2 + 2x	2x	1+2x
x	x	1 + x	2 + x	2x	1+2x	2 + 2x	0	1	2
1 + x	1+x	2 + x	x	1+2x	2 + 2x	2x	1	2	0
2+x	2+x	X	1+x	2 + 2x	2x	1+2x	2	0	1
2 <i>x</i>	2x	1+2x	2 + 2x	0	1	2	X	1 + x	2 + x
1+2x	1+2x	2 + 2x	2x	1	2	0	1 + x	2 + x	X
2+2x	2+2x	2x	1 + 2x	2	0	1	2 + x	X	1 + x

Δ	0	1	2	х	1+x	2 + x	2 <i>x</i>	1 + 2x	2 + 2x
0	0	0	0	0	0	0	0	0	0
1	0	1	2	X	1+x	2 + x	2x	1 + x	2 + 2x
2	0	2	1	2x	2 + 2x	1+2x	X	2 + x	1+x
x	0	X	2x	1 + x	1 + 2x	1	2 + 2x	2	2+x
1+x	0	1 + x	2 + 2x	1+2x	2	X	2 + x	2x	1
2+x	0	2 + x	1+2x	1	X	2 + 2x	2	1 + x	2x
2x	0	2x	X	2 + 2x	2 + x	2	1 + x	1	1 + 2x
1+2x	0	1+2x	2 + x	2	2x	1 + x	1	2 + 2x	x
2+2x	0	2 + 2x	1 + x	2 + x	1	2x	1 + 2x	X	2

10.51 (a) $(a + bx) \triangle (c + dx) = (a + c) + (b + d)x$ $(a + bx) \triangle (c + dx) = (ac - bd) + (ad + bc)x$

(b) $(R_2[x], \Delta, \Delta)$ is isomorphic to the field of complex numbers.