Integer Arrays

5	8	73	16	12	43	99	28	64	50	37
		2								

Time Complexity

Time Complexity

Linear

Time Complexity

Linear Random

Time Complexity

Linear 11 Random

Time Complexity

Linear **n** Random

Time Complexity

Linear n Random 11

Time Complexity

Linear n
Random n

5	8	73	16	12	43	99	28	64	50	37
0	1	2	3	4	5	6	7	8	9	10

Where is 12?

Where is 12?

$$\frac{0+10}{2}=1$$

Where is 12?

$$\frac{0+10}{2}=1$$

Where is 12?

$$\frac{0+10}{2}=1$$

Where is 12?

$$\frac{0+4}{2} = 2$$

Where is 12?

$$\frac{0+4}{2} = 2$$

Where is 50?

Where is 50?

$$\frac{0+10}{2}=1$$

Where is 50?

$$\frac{0+10}{2}=5$$

Where is 50?

$$\frac{0+10}{2}=5$$

Where is 50?

$$\frac{6+10}{2}=8$$

Where is 50?

$$\frac{6+10}{2}=8$$

Where is 50?

$$\frac{6+10}{2}=8$$

Where is 50?

$$\frac{6+7}{2} = 6.5$$

Where is 50?

$$\frac{6+7}{2} = 6$$

Where is 50?

$$\frac{6+7}{2}=\epsilon$$

Where is 50?

Where is 25?

Where is 25?

$$\frac{0+10}{2}=5$$

Where is 25?

$$\frac{0+10}{2}=5$$

Where is 25?

$$\frac{0+10}{2}=5$$

Where is 25?

$$\frac{0+4}{2} = 2$$

Where is 25?

$$\frac{0+4}{2} = 2$$

Where is 25?

$$\frac{0+4}{2} = 1$$

Where is 25?

$$\frac{3+4}{2} = 3.5$$

Where is 25?

$$\frac{3+4}{2} = 4$$

Where is 25?

$$\frac{3+4}{2} = 4$$

Where is 25?

$$\frac{3+4}{2} = 4$$

Where is 25?

$$\frac{3+4}{2} = 4$$

Time Complexity

Time Complexity

Time Complexity

In each step, the number of elements becomes half.

n

Time Complexity

$$n \to \frac{n}{2}$$

Time Complexity

$$n \to \frac{n}{2} \to \frac{n}{2^2}$$

Time Complexity

$$n \to \frac{n}{2} \to \frac{n}{2^2} \to \frac{n}{2^3}$$

Time Complexity

$$n \to \frac{n}{2} \to \frac{n}{2^2} \to \frac{n}{2^3} \to \cdots$$

Time Complexity

$$n \to \frac{n}{2} \to \frac{n}{2^2} \to \frac{n}{2^3} \to \cdots \to 1$$

Time Complexity

$$n \to \frac{n}{2} \to \frac{n}{2^2} \to \frac{n}{2^3} \to \cdots \to 1 = \frac{n}{2^i} (i \text{ steps})$$

Time Complexity

$$\frac{n}{2i} = \frac{1}{2}$$

Time Complexity

$$\frac{n}{2^i} = 1 \implies i = \log_2 n$$

Time Complexity

Binary Search takes $\operatorname{atmost} \log_2 n$ steps

Strategy

Select the smallest element

Strategy

Select the smallest element – Linear Search

Strategy

Select the smallest element – Linear Search

Strategy

Select the smallest element – Linear Search

Strategy

Select the smallest element – Linear Search

Strategy

Strategy

Strategy

Strategy

Strategy

Strategy

Strategy

Strategy

Strategy

Select the smallest element – Linear Search

Strategy

Select the smallest element – Linear Search

Strategy

Strategy

Strategy

Strategy

Select the smallest element – Linear Search

Strategy

Select the smallest element – Linear Search

Strategy

Strategy

Strategy

Strategy

Strategy

Strategy

Strategy

Select the smallest element – Linear Search

Strategy

Time Complexity

n

Time Complexity

$$n + (n - 1)$$

Time Complexity

n + (n-1) + (n-2)

Time Complexity

n + (n-1) + (n-2) + (n-3)

$$n + (n-1) + (n-2) + (n-3) + \dots$$

n + (n-1) + (n-2) + (n-3) + ... + 1

$$n + (n-1) + (n-2) + (n-3) + ... + 1 = n(n+1)/2$$

Space Complexity

 \mathfrak{n}

Space Complexity

Sorting Integer Arrays

Sorting Integer Arrays

Space Complexity

Constant

Sorting Integer Arrays - Selection Sort

Time Complexity

Sorting Integer Arrays - Selection Sort

Time Complexity

Does it change?

Sorting Integer Arrays - Selection Sort

Time Complexity

Does it change? - Thought Experiment

Sorting Integer Arrays

Round 1 complete .'

Any guess as to how many rounds are required?

Round 2 complete . !

Any guess as to how many rounds are required?

Round 3 complete . !

Any guess as to how many rounds are required?

Round 4 complete . !

Any guess as to how many rounds are required?

Any guess as to how many rounds are required?

$$n-1$$

Round 5 complete . !

Nothing changed .'

Nothing changed .'

Complexity

Space Complexity

Space Complexity

Constant

$$(n-1)$$

$$(n-1) + (n-2)$$

$$(n-1) + (n-2) + (n-3)$$

$$(n-1) + (n-2) + (n-3) + \dots$$

$$(n-1) + (n-2) + (n-3) + \dots + 1$$

$$(n-1)+(n-2)+(n-3)+\ldots +1 \leq \frac{n(n+1)}{2}$$

Sorting Integer Arrays - Radix Sort

5	8	73	16	12	43	99	28	64	50	37
0	1	2	3	4	5	6	7	8	9	10

Sorting Integer Arrays - Radix Sort

0 1 2 3 4 5 6 7 8 9

0	1	2	3	4	5	6	7	8	9

0	1	2	3	4	5	6	7	8	9

Round 1

5 8

0	1	2	3	4	5	6	7	8	9
		12	73		5	16		8	

0	1	2	3	4	5	6	7	8	9
		12	73		5	16		8	99
			43					28	

0	1	2	3	4	5	6	7	8	9
		12	73	64	5	16		8	99
			43					28	

0	1	2	3	4	5	6	7	8	9
50		12	73	64	5	16		8	99
			43					28	

0	1	2	3	4	5	6	7	8	9
50		12	73	64	5	16	37	8	99
			43					28	

0	1	2	3	4	5	6	7	8	9
50		12	73	64	5	16	37	8	99
			43					28	

0	1	2	3	4	5	6	7	8	9
50		12	73	64	5	16	37	8	99
			43					28	

0	1	2	3	4	5	6	7	8	9
50		12		64					
			43					28	

0	1	2	3	4	5	6	7	8	9
50		12	73	64	5	16	37	8	99
			43					28	

0	1	2	3	4	5	6	7	8	9
50		12	73	64	5	16	37	8	99
			43					28	

0	1	2	3	4	5	6	7	8	9
50		12	73	64	5	16	37	8	99
			43					28	

0	1	2	3	4	5	6	7	8	9
50		12	73	64	5	16	37	8	99
			43					28	

0	1	2	3	4	5	6	7	8	9
50		12	73	64	5	16	37	8	99
			43					28	

0	1	2	3	4	5	6	7	8	9
50		12	73	64	5	16	37	8	99
			43					28	

0	1	2	3	4	5	6	7	8	9
50		12	73	64	5	16	37	8	99
			43					28	

0	1	2	3	4	5	6	7	8	9
50		12	73	64	5	16	37	8	99
			43					28	

0	1	2	3	4	5	6	7	8	9
50		12	73	64	5	16	37	8	99
			43					28	

0	1	2	3	4	5	6	7	8	9

Round 2

0 1 2 3 4 5 6 7 8 9

Round 2

0	1	2	3	4	5	6	7	8	9

12 50

0	1	2	3	4	5	6	7	8	9
	12				50		73		

0	1	2	3	4	5	6	7	8	9
	12			43	50		73		

0	1	2	3	4	5	6	7	8	9
	12			43	50	64	73		

0	1	2	3	4	5	6	7	8	9
5	12			43	50	64	73		

0	1	2	3	4	5	6	7	8	9
5	12 16			43	50	64	73		

0	1	2	3	4	5	6	7	8	9
	12 16		37	43	50	64	73		

0	1	2	3	4	5	6	7	8	9
5	12		37	43	50	64	73		
8	16								

0	1	2	3	4	5	6	7	8	9
5	12	28	37	43	50	64	73		
8	16								

5 12 8 16		43	50	64	73	99

0	1	2	3	4	5	6	7	8	9
5	12	28	37	43	50	64	73		99
8	16								

0	1	2	3	4	5	6	7	8	9
5	12	28	37	43	50	64	73		99
8	16								

0	1	2	3	4	5	6	7	8	9
5	12	28	37	43	50	64	73		99
8	16								

0	1	2	3	4	5	6	7	8	9
5	12	28	37	43	50	64	73		99
8	16								

0	1	2	3	4	5	6	7	8	9
5	12	28	37	43	50	64	73		99
8	16								

0	1	2	3	4	5	6	7	8	9
5	12	28	37	43	50	64	73		99
8	16								

0	1	2	3	4	5	6	7	8	9
5	12	28	37	43	50	64	73		99
8	16								

0	1	2	3	4	5	6	7	8	9
5	12	28	37	43	50	64	73		99
8	16								

0	1	2	3	4	5	6	7	8	9
5	12	28	37	43	50	64	73		99
8	16								

0	1	2	3	4	5	6	7	8	9
5	12	28	37	43	50	64	73		99
8	16								

0	1	2	3	4	5	6	7	8	9
5	12	28	37	43	50	64	73		99
8	16								

5 12 28 37 43 50 64 73	0	1	2	3	4	5	6	7	8	9
8 16					43	50	64	73		99

a < b

$$a = a_1 a_2 a_3 a_4$$

$$a = a_1 a_2 a_3 a_4$$

$$b = b_1 b_2 b_3 b_4$$

$$a = a_1 a_2 a_3 a_4$$

$$b = b_1 b_2 b_3 b_4$$

$$\alpha \ = \ \alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4$$

$$b = b_1 b_2 b_3 b_4$$

$$\alpha_2 < b_2$$

$$a < b$$
 $a = a_1 a_2 a_3 a_4$
 $b = b_1 b_2 b_3 b_4$
 $a = a_2 < b_2$
 $a_1 == b_1$

Can we do it from the other end?

$$a = a_1 a_2 a_3 a_4$$

$$b = b_1 b_2 b_3 b_4$$

$$a_2 < b_2$$

$$a_1 == b_1$$

5 12 28 37 43 50 64 73	0	1	2	3	4	5	6	7	8	9
8 16					43	50	64	73		99

Round 2

Time Complexity

Round 2

Time Complexity

Number of rounds

Round 2

Time Complexity

Number of rounds * Time for each round

Round 2

Time Complexity

Round 2

Space Complexity

Round 2

Space Complexity