ThinkDSP. Лабораторная 3. Апериодические сигналы.

Шерепа Никита 28 апреля 2021 г.

Содержание

1	Упражнение 3.1	5
2	Упражнение 3.2	7
3	Упражнение 3.3	9
4	Упражнение 3.4	11
5	Упражнение 3.5	12
6	Упражнение 3.6	14
7	Вывод	19

Список иллюстраций

1	Визуализация утечки	5
2		6
3	Спектрограмма звука	8
4	Спектр	9
5	Спектрограмма глиссандо	.1
6		3
7		4
8		5
9		5
10		6
11		7
12		7
13	Спектр буквы и	8

Листинги

1	Пример утечки	5
2	Создание 4х новых окон	6
3	Класс $SawtoothChirp$	7
4	Генерация пилообразного сигнала	7
5	Построение спектрограммы звука	8
6	Чирп и сигнал	6
7	Создание спектра	S
8	Воспроизведение глиссандо и построение спектрограммы .	11
9	Класс $TromboneGliss$	12
10	Создание убывающей части звука	12
11	Создание возрастающей части звука	13
12	Соединение двух частей	13
13	Создание спектрограммы получившегося звука	13
14	Построение спектрограммы гласных звуков	14
15	Спектр буквы а	14
16	Спектр буквы у	15
17	Спектр буквы о	16
18	Спектр буквы ы	16
19	Спектр буквы э	17
20	Спектр буквы и	17

1. Задание

Запустите и прослушайте примеры из блокнота chap 03.ipynb. В примере с утечкой замените окно Хэмминга одним из окон, предоставляемых NumPy, и посмотрите, как они влияют на утечку.

2. Ход работы

Для начала создадим утечку

```
from thinkdsp import decorate
from thinkdsp import SinSignal

signal = SinSignal(freq=440)
duration = signal.period * 30.25
wave = signal.make_wave(duration)
spectrum = wave.make_spectrum()

spectrum.plot(high=880)
decorate(xlabel='Frequency (Hz)')
Листинг 1: Пример утечки
```


Рис. 1: Визуализация утечки

Теперь заменим окно Хэмминга на другие 4 окна из *NumPy*

Рис. 2: Сравнение 4х новых окон с окном Хэмминга

Из графика видно, что все 4 окна успешно справляются с уменьшением утечки.

1. Задание

Напишите класс, называемый SawtoothChirp, расширяющий Chirp и переопределяющий evaluate для генерации пилообразного сигнала с линейно увеличивающейся (или уменьшающейся) частотой. Подсказка: надо совместить функции evaluate из Chirp и SawtoothSignal Нарисуйте эскиз спектрограммы этого сигнала, а затем распечатайте ее. Эффект биений должен быть очевиден, а если сигнал внимательно прослушать, то биения можно и услышать.

2. Ход работы

Напишем класс Sawtooth Chirp

```
from thinkdsp import Chirp
          from thinkdsp import normalize, unbias
          PI2 = 2 * np.pi
          class SawtoothChirp(Chirp):
          def evaluate(self, ts):
          freqs = np.linspace(self.start, self.end, len(ts))
          dts = np.diff(ts, prepend=0)
1.0
          dphis = PI2 * freqs * dts
11
          phases = np.cumsum(dphis)
          cycles = phases / PI2
          frac, _ = np.modf(cycles)
1.4
          ys = normalize(unbias(frac), self.amp)
          return ys
16
                Листинг 3: Класс Sawtooth Chirp
```

Теперь попробуем с помощью него сгенерировать пилообразный сигнал

```
signal = SawtoothChirp(start=10, end=1000)
wave = signal.make_wave(duration=1, framerate=10000)
wave.apodize()
wave.make_audio()
```

Листинг 4: Генерация пилообразного сигнала

Получился возрастающий электронный звук, похожий на какойнибудь электрический эффект из советского кино.

Теперь построим спектрограмму звука

```
sp = wave.make_spectrogram(512)
sp.plot()
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
Листинг 5: Построение спектрограммы звука
```


Рис. 3: Спектрограмма звука

Как видим, идет четкое повышение частоты со временем, как и в записи.

1. Задание

Создайте пилообразный чирп, меняющийся от 2500 до 3000 Γ ц, и на его основе сгенерируйте сигнал длительностью 1 с и частотой кадров 20 к Γ ц. Нарисуйте, каким примерно будет Spectrum. Затем распечатайте Spectrum и посмотрите, правы ли вы.

2. Ход работы

Создадим пилообразный чирп и на его основе сгенерируем сигнал

```
signal = SawtoothChirp(start=2500, end=3000)
wave = signal.make_wave(duration=1, framerate=20000)
wave.make_audio()
```

Листинг 6: Чирп и сигнал

Получился очень острый нарастающий звук, который можно было бы использовать в каком нибудь старом советском фильме про космос.

Теперь посмотрим на его спектр

```
wave.make_spectrum().plot()
decorate(xlabel='Frequency (Hz)')
```

Листинг 7: Создание спектра

Рис. 4: Спектр

Видно, что частота отчеливо меняется, что и слышно в записи зву-ка.

1. Задание

В музыкальной терминологии глиссандо - это нота, меняющаяся от одной высоты до другой, то есть своеобразный чирп. Найдите или запишите звук глиссандо и распечатайте спектрограмму первых нескольких секунд.

2. Ход работы

В выбрал фрагмент из одного из выступлений Витаса.

```
wave = read_wave('res/vitas.wav')
wave.make_audio()

wave.make_spectrogram(512).plot(high=5000)
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
```

Листинг 8: Воспроизведение глиссандо и построение спектрограммы

Рис. 5: Спектрограмма глиссандо

Четко видно резкое повышение частоты.

1. Задание

Тромбонист играет глиссандо, непрерывно дуя в мундштук и двигая кулису тромбона. При этом общая длина турбы меняется, а играемая нота обратно пропорциональна этой длине.

Если предположить, что музыкант двигает кулису с постоянной скоростью, как будет меняться во времени частота?

Напишите класс, называемый TromboneGliss, расширяющий Chirp и предоставляющий evaluate. Создайте сигнал, имитирующий глиссандо на тромбоне от C3 до F3, и обратно до C3. C3 - 262 Γ ц F3 - 349 Γ ц

Напечатайте спектрограмму полученного сигнала. На что похоже глиссандо на тромбоне - на линейный или же экспоненциальный чирп?

2. Ход работы

Напишем класс TromboneGliss

```
class TromboneGliss(Chirp):

def evaluate(self, ts):

11, 12 = 1.0 / self.start, 1.0 / self.end

lengths = np.linspace(l1, l2, len(ts))

freqs = 1 / lengths

dts = np.diff(ts, prepend=0)

dphis = PI2 * freqs * dts

phases = np.cumsum(dphis)

ys = self.amp * np.cos(phases)

return ys

Листинг 9: Класс TromboneGliss
```

Теперь создадим первую, убывающую, часть звука

```
low = 262
high = 349
signal = TromboneGliss(high, low)
wave1 = signal.make_wave(duration=1)
wave1.apodize()
```

```
wave1.make_audio()
Листинг 10: Создание убывающей части звука
```

Теперь создадим вторую, возрастающую, часть звука

```
signal = TromboneGliss(low, high)
wave2 = signal.make_wave(duration=1)
wave2.apodize()
wave2.make_audio()
```

Листинг 11: Создание возрастающей части звука

Теперь соединим две части

```
wave = wave1 | wave2
wave.make_audio()
Листинг 12: Соединение двух частей
```

И построим спектрограмму получившегося звука

```
sp = wave.make_spectrogram(1024)
sp.plot(high=1000)
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
```

Листинг 13: Создание спектрограммы получившегося звука

Рис. 6: Спектрограмма получившегося звука

Четко видно убывание и возрастание. Также получившийся сигнал похож на линейный чирп.

1. Задание

Сделайте или найдите запись серии гласных звуков и посмотрите на спектрограмму. Сможете ли вы различить разные глассные?

2. Ход работы

Я взял звуки из како-то детской передачи по изучению гласных. Построим спектрограмму.

```
wave = read_wave('res/vowels.wav')
wave.make_audio()

wave.make_spectrogram(1024).plot(high=1000)
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
```

Листинг 14: Построение спектрограммы гласных звуков

Рис. 7: Спектрограмма гласных звуков

Видно, что участки некоторых глассных темнее, а некоторых - светлее.

Посмотрим на спектры каждой гласной.

```
high = 1000
segment = wave.segment(start=0, duration=2)
```

segment.make_spectrum().plot(high=high) Листинг 15: Спектр буквы а

Рис. 8: Спектр буквы а

segment = wave.segment(start=2, duration=2)
segment.make_spectrum().plot(high=high)
decorate(xlabel='Frequency (Hz)')
Листинг 16: Спектр буквы у

Рис. 9: Спектр буквы у

```
segment = wave.segment(start=4, duration=2)
segment.make_spectrum().plot(high=high)
decorate(xlabel='Frequency (Hz)')
Листинг 17: Спектр буквы о
```

5000 - 4000 - 3000 - 2000 - 400 - 600 - 800 - 1000 - Frequency (Hz)

Рис. 10: Спектр буквы о

segment = wave.segment(start=6, duration=2)
segment.make_spectrum().plot(high=high)
decorate(xlabel='Frequency (Hz)')

Листинг 18: Спектр буквы ы

Рис. 11: Спектр буквы ы

segment = wave.segment(start=8, duration=2)
segment.make_spectrum().plot(high=high)
decorate(xlabel='Frequency (Hz)')

Листинг 19: Спектр буквы э

Рис. 12: Спектр буквы э

segment = wave.segment(start=10, duration=2)
segment.make_spectrum().plot(high=high)
decorate(xlabel='Frequency (Hz)')

Листинг 20: Спектр буквы и

Рис. 13: Спектр буквы и

Из графиков видно, что спектр каждой гласной имеет разную высоту. Чем выше спектр, тем темнее спектрограмма.

7 Вывод

В результате выполнения лабораторной работы получены навыки работы с апериодическими сигналами - сигналами, частотные компоненты которых изменяются во времени, чирпами - сигналами с переменной частотой. Также получены навыки построения спектрограмм и их анализ.