Section 4

Models with penalty

Subsection 1

Ridge Regression

Introduction

- Why multivariate linear models still insufficient to solve the regression problem?
- Consider the case $\exists i, j, s. t. \beta_i, \beta_i$ are linear dependent.
- WLOG, assume $\beta_1 = 2\beta_2$, what happens?
 - Multicollinearity!
 - Unable to explain and unable to solve $\hat{\beta}$ for $\mathbf{X}^T\mathbf{X}$ is not full-ranked. XTX不夠秩 了不能计算
- Models with penalty.

Ridge Regression

Definition 4: Ridge Regression Estimator

We denote $\hat{\beta}(k) = (\mathbf{X}^T\mathbf{X} + kI)^{-1}\mathbf{X}^T\mathbf{Y}$ the Ridge Regression Estimator.

Ridge Regression Objective

$$\hat{\beta} = \arg\min_{\beta} \{ \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \}$$

Obviously, $\lambda \sum_{j=1}^{p} \beta_j^2$ is the penalty. (Meaning?)

Ridge Regression

Theorem 9

Prove the equivalence in the last page.

Proof

Let
$$f(\beta) = (\mathbf{Y} - \mathbf{X}\beta)^T (\mathbf{Y} - \mathbf{X}\beta) + \lambda \beta^T \beta$$
, then we have $\frac{\partial f}{\partial \beta} = -2\mathbf{X}^T (\mathbf{Y} - \mathbf{X}\beta) + 2\lambda \beta$, FOC and SOC lead to the result. \square

Ridge Regression is one kind of Shrinkage Methods.

Why Shrinkage?

We use several theorems and an important tool to explain this term.

Theorem 10

$$\hat{\beta}(k) = A_k \hat{\beta}$$
, where $A_k = (\mathbf{X}'\mathbf{X} + kI)^{-1}\mathbf{X}'\mathbf{X}$

Proof

$$\hat{\beta}(k) = (X'X + kI)^{-1} X'Y = (X'X + kI)^{-1} \left[(X'X) (X'X)^{-1} \right] X'Y, \Box$$

Prerequisite: Reduced-Rank Singular Value Decomposition

(纸铁5VD)

- For each matrix X, we have $X = U_p \Sigma_p V_p^T$, where U_p , V_p are two orthonormal matrix with size $n \times p$, $p \times p$ and Σ is a squared diagonal matrix.
- For each σ_i in $\Sigma_p = \text{diag}(\sigma_1, \dots, \sigma_p)$, we call it singular value.
- Tightly correlated with eigenvalue.

Why Shrinkage?

Theorem 11

For all k > 0, we have $\|\hat{\beta}(k)\| < \|\hat{\beta}\|$.

Proof

By Theorem 10, we only need to compute $(\mathbf{X}'\mathbf{X} + kI)^{-1}\mathbf{X}'\mathbf{X}$.

By Reduced-Rank SVD and note that

$$(\mathbf{X}'\mathbf{X} + kI)^{-1}\mathbf{X}'\mathbf{X} = U(\Sigma^2 + \lambda I)^{-1}\Sigma^2V^T$$
, we have

$$\|\hat{\beta}(k)\| = \|(\Sigma^2 + \lambda I)^{-1}\Sigma^2\hat{\beta}\| \le \|(\Sigma^2 + \lambda I)^{-1}\Sigma^2\|\|\hat{\beta}\|$$

 Σ is diagonal leads to the result. \square

Why Shrinkage?

Compare two estimators

$$\hat{y}_1 = X\hat{\beta}(k) = U\Sigma(\Sigma^2 + \lambda I)^{-1}\Sigma U^T \mathbf{Y} = \sum_{j=1}^p u_j \underbrace{\frac{\sigma_j^2}{\sigma_j^2 + k}} u_j^T \mathbf{Y}$$

$$\hat{y}_2 = X\hat{\beta} = UU^T\mathbf{Y} = \sum_{j=1}^p u_j u_j^T\mathbf{Y}$$

So we could find that, for smaller σ_j , the shrinkage will be greater (why?).

Behavior

几何意义

Consider the geometric properties of SVD. (Or PCA)

The two values of an SVD are the maximum and the minimum length of two diameters.

Behavior

Behavior

- Because $\mathbf{X}^T\mathbf{X} = V\Sigma^2V^T$ is the <u>eigen decomposition</u> of $\mathbf{X}^T\mathbf{X}$, and $\mathbf{X}v_1$ has the largest sample variance, which leads to the longest diameter of the ellipse.
- More information about PCA will be mentioned later.

FYI

In fact, there are many other properties about Ridge Regression in Statistics. More information could be seen in https://zhuanlan.zhihu.com/p/51431045.

Subsection 2

LASSO

Introduction

- Could we change the penalty? Obviously could!
- From 2-norm to 1-norm
 - Least Absolute Selection and Shrinkage Operator
 (LASSO) 最小で対 近洋 ち収値算さ
 - Have some unexpected properties.

LASSO Objective

$$\hat{\beta} = \arg\min_{\beta} \{ \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \}$$

Comparison with Ridge Regression

Here $df(\lambda) = tr[\mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda I)^{-1}\mathbf{X}^T]$ be the effective degree freedom $\lambda \lambda \lambda \lambda$, $\lambda \lambda \lambda$

Discussion

• What is the difference?

• Shrinkage and Subset Selection.

Why?

入个 到防毒数不仅收缩, 具含重接不成在

Discussion

FYI

In fact, there are many other properties about LASSO in Statistics. More information could be seen in https://zhuanlan.zhihu.com/p/53764089.

