Our notation for the Eilenberg–Moore category already ascribes a certain "terminal" quality to it; see Theorem 2.23. **Remark 2.13.** For any monad T, the T-algebras and their morphisms form a category: the *Eilenberg–Moore category of T*. We shall denote it by \mathcal{C}^T .

The Eilenberg–Moore category of T is also often called the *category of* T-algebras or, following for example [BV07], the *category of modules* over T. We use all three terminologies interchangeably.

A monad is intimately connected to its Eilenberg–Moore category.

Example 2.14. There is a 2-category $Mon(\mathbb{C}at)$ of monads in $\mathbb{C}at$, [Str72, § 1]. The inclusion 2-functor maps a category to its identity monad:

$$\mathbb{C}at \longrightarrow \mathbb{M}on(\mathbb{C}at), \qquad \mathscr{C} \longmapsto (Id_{\mathscr{C}}, id_{Id_{\mathscr{C}}}, id_{Id_{\mathscr{C}}}).$$

By assumption, Cat *admits the construction of algebras*: there exists a right adjoint to the above functor:

$$Mon(\mathbb{C}at) \longrightarrow \mathbb{C}at$$
, $(T: \mathscr{C} \longrightarrow \mathscr{C}, \mu, \eta) \longmapsto \mathscr{C}^T$,

where $\mathscr{C}^T \in \mathbb{C}$ at is the Eilenberg–Moore category of T. Using the previous **2**-adjunction, one proves that to every monad (T, μ, η) on \mathscr{C} there exist an *Eilenberg–Moore adjunction* $F^T : \mathscr{C} \longrightarrow \mathscr{C}^T$ and $U^T : \mathscr{C}^T \longrightarrow \mathscr{C}$, such that

$$T = U^T F^T$$
, $\mu = F^T \varepsilon U^T$, $\eta = \eta$,

where $\eta: 1_{\mathscr{C}} \Longrightarrow U^T F^T$ and $\varepsilon: F^T U^T \Longrightarrow 1_{\mathscr{C}^T}$ are the unit and counit of the Eilenberg–Moore adjunction. We shall call F^T and U^T the *free* and *forgetful* functor *associated to T*, respectively.

For the following definition, we follow [BV07; TV17].

Definition 2.15. Suppose that T and S are two monads on the category \mathscr{C} . A *morphism of monads* between T and S is a natural transformation $f: T \Longrightarrow S$, such that the following diagrams commute

Remark 2.16. The terminology of Theorem **2.15** is slightly non-standard. What we call a morphism of monads is often called a *oplax* (or colax) monad morphism, see for example [Str72, § 1].

Remark 2.17. One can define a monad in any bicategory \mathbb{B} by considering (C, t, η, μ) , where $C \in \mathbb{B}$ is an object, $t: C \longrightarrow C$ is a 1-cell, and $\eta: \mathrm{Id}_C \Longrightarrow t$ and $\mu: tt \Longrightarrow t$ are 2-cells, satisfying relations analogous to Theorem 2.9. An oplax morphism of monads from (C, t, η^t, μ^t) to (D, s, η^s, μ^s) then consists of a 1-cell $u: C \longrightarrow D$ and a 2-cell $\phi: ut \Longrightarrow su$, subject to identities reminiscent of Diagram (2.2.1). A *lax morphism of monads* involves a 1-cell $u: C \longrightarrow D$ and a 2-cell $\phi: su \Longrightarrow ut$, satisfying similar properties.

The following example sheds some additional light on this terminology.

Example 2.18. Monads can alternatively be defined as lax functors—in the sense of Theorem 2.5—from the terminal 2-category \heartsuit to \mathbb{C} at. Unravelling this definition, a lax functor $\mathfrak{T}: \heartsuit \longrightarrow \mathbb{C}$ at consists of:

- an object assignment ∑: Ob ♡ → Ob Cat, sending the unique object *
 to a category C;
- a functor $\mathfrak{T}(*,*)\colon \nabla(*,*)\longrightarrow \mathbb{C}at(\mathscr{C},\mathscr{C})$ from the terminal 1-category $\nabla(*,*)$ to the category of endofunctors on \mathscr{C} , sending the unique 1-morphism $\mathrm{id}_*\colon *\longrightarrow *$ to $T\colon \mathscr{C}\longrightarrow \mathscr{C}$ and the unique 2-morphism $1_{\mathrm{id}_*}\colon \mathrm{id}_*\Longrightarrow \mathrm{id}_*$ to the identity natural transformation $T\Longrightarrow T$;
- a 2-cell \mathfrak{T}_2 : $\mathfrak{T}id_* \otimes \mathfrak{T}id_* \Longrightarrow \mathfrak{T}id_*$, which we write as μ : $TT \Longrightarrow T$; and
- a 2-cell \mathfrak{T}_0 : $1_{\mathfrak{T}(*)} \Longrightarrow \mathfrak{T}id_*$ that we write as η : $Id_{\mathscr{C}} \Longrightarrow T$.

Recall that \otimes is the horizontal composition in \mathbb{B} .

The properties of Theorem 2.5 for \mathfrak{T}_2 and \mathfrak{T}_0 translate to the associativity and unitality properties of μ and η . In this setting, a morphism of monads becomes an oplax transformation in the sense of Theorem 2.6.

Example 2.19. A monad T on \mathscr{C} has another canonical category associated to it: its *Kleisli category* \mathscr{C}_T . On objects, it is given by $Ob(\mathscr{C}_T) := Ob(\mathscr{C})$, and for $x, y \in \mathscr{C}_T$ we have $\mathscr{C}_T(x, y) := \mathscr{C}(x, Ty)$. Composition is defined by

$$\circ : \mathscr{C}_{T}(y,z) \times \mathscr{C}_{T}(x,y) \longrightarrow \mathscr{C}_{T}(x,z)$$

$$(g,f) \longmapsto \left(x \xrightarrow{f} Ty \xrightarrow{Tg} T^{2}z \xrightarrow{\mu_{z}} Tz\right).$$

Proposition 2.20. Let T be a monad on a category C. There exists an adjunction

$$\mathscr{C} \xrightarrow{\frac{\Gamma}{L}} \mathscr{C}_{T}$$

where F_T is identity on objects and sends $f \in \mathcal{C}(x, y)$ to $\eta_y \circ f$, and U_T sends x to Tx and $f \in \mathcal{C}(x, y)$ to $\mu_y \circ Tf$.