CHAPTER 05

Data Definition Language (DDL)

Basic SQL

SQL language

 Considered one of the major reasons for the commercial success of relational databases

SQL

- The origin of SQL is relational predicate calculus called tuple calculus.
- SQL Actually comes from the word "SEQUEL" which was the original term used in the paper: "SEQUEL TO SQUARE" by Chamberlin and Boyce. Now popularly known as "Structured Query language".
- SQL is a practical rendering of the relational data model with syntax

SQL Data Definition, Data Types, Standards

- Terminology:
 - Table, row, and column used for relational model terms relation, tuple, and attribute
- CREATE statement
 - Main SQL command for data definition
- The language has features for : Data definition, Data Manipulation, Transaction control (Transact-SQL, Ch. 20), Indexing (Ch.17), Security specification (Grant and Revoke- see Ch.30), Active databases (Ch.26), Distributed databases (Ch.23) etc.

SQL Standards

- SQL has gone through many standards: starting with SQL-86 or SQL 1. SQL-92 is referred to as SQL-2.
- Later standards (from SQL-1999) are divided into core specification and specialized extensions. The extensions are implemented for different applications such as data mining, data warehousing, etc.
- In 2008 they added Object-oriented features (Ch.12).
- SQL-3 is the current standard which started with SQL-1999. It is not fully implemented in any RDBMS.

Schema and Catalog Concepts in SQL

- We cover the basic standard SQL syntax there are variations in existing RDBMS systems
- SQL schema
 - Identified by a schema name
 - Includes an authorization identifier and descriptors for each element
- Schema elements include
 - Tables, constraints, views, domains, and other constructs
- Each statement in SQL ends with a semicolon

Schema and Catalog Concepts in SQL (cont'd.)

- CREATE SCHEMA statement
 - CREATE SCHEMA COMPANY AUTHORIZATION'Jsmith';

Catalog

 Named collection of schemas in an SQL environment

The CREATE TABLE Command in SQL

- Specifying a new relation
 - Provide name of table
 - Specify attributes, their types and initial constraints
- Can optionally specify schema:
 - CREATE TABLE COMPANY.EMPLOYEE ...

 or
 - CREATE TABLE EMPLOYEE ...

The CREATE TABLE Command in SQL (cont'd.)

- Base tables (base relations)
 - Relation and its tuples are actually created and stored as a file by the DBMS
- Virtual relations (views)
 - Created through the CREATE VIEW statement. Do not correspond to any physical file.

COMPANY relational database schema (Fig. 5.7)

One possible database state for the COMPANY relational database schema (Fig. 5.6)

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX		30000	333445555	5
Franklin	T	Wong	333445555	1955-12-08	638 Voss, Houston, TX		40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX		25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date		
Research	5	333445555	1988-05-22		
Administration	4	987654321	1995-01-01		
Headquarters	1	888665555	1981-06-19		

DEPT_LOCATIONS

105		
Dlocation		
Houston		
Stafford		
Bellaire		
Sugarland		
Houston		

Slide 6- 12

One possible database state for the COMPANY relational database schema – continued (Fig. 5.6)

WORKS_ON

Essn	<u>Pno</u>	Hours	
123456789	1	32.5	
123456789	2	7.5	
666884444	3	40.0	
453453453	1	20.0	
453453453	2	20.0	
333445555	2	10.0	
333445555	3	10.0	
333445555	10	10.0	
333445555	20	10.0	
999887777	30	30.0	
999887777	10	10.0	
987987987	10	35.0	
987987987	30	5.0	
987654321	30	20.0	
987654321	20	15.0	
888665555	20	NULL	

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

SQL CREATE TABLE data definition statements for defining the COMPANY schema from Figure 5.7 (Fig. 6.1)

```
CREATE TABLE EMPLOYEE
       (Fname
                                   VARCHAR(15)
                                                                NOT NULL.
        Minit
                                   CHAR.
        Lname
                                   VARCHAR(15)
                                                                NOT NULL,
        Ssn
                                   CHAR(9)
                                                                NOT NULL.
        Bdate
                                   DATE.
        Address
                                   VARCHAR(30),
        Sex
                                   CHAR.
        Salary
                                   DECIMAL(10,2),
        Super_ssn
                                   CHAR(9),
        Dno
                                   INT
                                                                NOT NULL.
       PRIMARY KEY (Ssn),
CREATE TABLE DEPARTMENT
       (Dname
                                   VARCHAR(15)
                                                                NOT NULL.
        Dnumber
                                   INT
                                                                NOT NULL,
        Mgr ssn
                                   CHAR(9)
                                                                NOT NULL.
        Mgr_start_date
                                   DATE.
       PRIMARY KEY (Dnumber),
       UNIQUE (Dname),
       FOREIGN KEY (Mgr ssn) REFERENCES EMPLOYEE(Ssn) ):
CREATE TABLE DEPT LOCATIONS
       ( Dnumber
                                   INT
                                                                NOT NULL.
        Dlocation
                                   VARCHAR(15)
                                                                NOT NULL.
       PRIMARY KEY (Dnumber, Dlocation),
                                                                            continued on next slide
       FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) );
```

SQL CREATE TABLE data definition statements for defining the COMPANY schema from Figure 5.7 (Fig. 6.1)-continued

```
CREATE TABLE PROJECT
       (Pname
                                   VARCHAR(15)
                                                               NOT NULL,
        Pnumber
                                   INT
                                                               NOT NULL.
        Plocation
                                   VARCHAR(15),
        Dnum
                                   INT
                                                               NOT NULL,
       PRIMARY KEY (Pnumber),
       UNIQUE (Pname),
       FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber) );
CREATE TABLE WORKS ON
                                   CHAR(9)
       (Essn
                                                               NOT NULL,
        Pno
                                   INT
                                                               NOT NULL.
                                   DECIMAL(3,1)
                                                               NOT NULL,
        Hours
       PRIMARY KEY (Essn, Pno),
       FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn),
       FOREIGN KEY (Pno) REFERENCES PROJECT(Pnumber) ):
CREATE TABLE DEPENDENT
                                   CHAR(9)
       (Essn
                                                               NOT NULL.
        Dependent_name
                                   VARCHAR(15)
                                                               NOT NULL,
                                   CHAR,
        Sex
                                   DATE,
        Bdate
                                   VARCHAR(8),
        Relationship
       PRIMARY KEY (Essn, Dependent_name),
       FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn) );
```

The CREATE TABLE Command in SQL (cont'd.)

- Some foreign keys may cause errors
 - Specified either via:
 - Circular references
 - Or because they refer to a table that has not yet been created
 - DBA's have ways to stop referential integrity enforcement to get around this problem.

Attribute Data Types and Domains in SQL

Basic data types

- Numeric data types
 - Integer numbers: INTEGER, INT, and SMALLINT
 - Floating-point (real) numbers: FLOAT or REAL, and DOUBLE PRECISION
- Character-string data types
 - Fixed length: CHAR (n), CHARACTER (n)
 - Varying length: VARCHAR (n), CHAR VARYING (n), CHARACTER VARYING (n)

Attribute Data Types and Domains in SQL (cont'd.)

- Boolean data type
 - Values of TRUE or FALSE or NULL
- DATE data type
 - Ten positions
 - Components are YEAR, MONTH, and DAY in the form YYYY-MM-DD
 - Multiple functions available in RDBMSs to change date formats

Attribute Data Types and Domains in SQL (cont'd.)

- Additional data types
 - Timestamp data type

Includes the DATE and TIME fields

- Plus a minimum of six positions for decimal fractions of seconds
- Optional WITH TIME ZONE qualifier
- INTERVAL data type
 - Specifies a relative value that can be used to increment or decrement an absolute value of a date, time, or timestamp
- DATE, TIME, Timestamp, INTERVAL data types can be cast or converted to string formats for comparison.

Specifying Constraints in SQL

Basic constraints:

- •Relational Model has 3 basic constraint types that are supported in SQL:
 - Key constraint: A primary key value cannot be duplicated
 - Entity Integrity Constraint: A primary key value cannot be null
 - Referential integrity constraints: The "foreign key " must have a value that is already present as a primary key, or may be null.

Specifying Attribute Constraints

Other Restrictions on attribute domains:

CHECK clause

```
•Dnumber INT NOT NULL CHECK (Dnumber >
0 AND Dnumber < 21);</pre>
```

Specifying Key and Referential Integrity Constraints

- PRIMARY KEY clause
 - Specifies one or more attributes that make up the primary key of a relation
 - Dnumber INT PRIMARY KEY;
- UNIQUE clause
 - Specifies alternate (secondary) keys (called CANDIDATE keys in the relational model).
 - Dname VARCHAR (15) UNIQUE;

Specifying Key and Referential Integrity Constraints (cont'd.)

- FOREIGN KEY clause
 - Default operation: reject update on violation
 - Attach referential triggered action clause
 - Options include SET NULL, CASCADE, and SET DEFAULT

Giving Names to Constraints

- Using the Keyword CONSTRAINT
 - Name a constraint
 - Useful for later altering

Default attribute values and referential integrity triggered action specification (Fig. 6.2)

```
CREATE TABLE EMPLOYEE
              INT
                          NOT NULL
                                       DEFAULT 1.
    Dno
   CONSTRAINT EMPPK
    PRIMARY KEY (Ssn).
   CONSTRAINT EMPSUPERFK
    FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
                 ON DELETE SET NULL
                                         ON UPDATE CASCADE.
   CONSTRAINT EMPDEPTFK
    FOREIGN KEY(Dno) REFERENCES DEPARTMENT(Dnumber)
                 ON DELETE SET DEFAULT ON UPDATE CASCADE);
CREATE TABLE DEPARTMENT
                         NOT NULL
                                       DEFAULT '888665555',
    Mgr_ssn CHAR(9)
   CONSTRAINT DEPTPK
    PRIMARY KEY (Dnumber),
   CONSTRAINT DEPTSK
    UNIQUE (Dname),
   CONSTRAINT DEPTMGRFK
    FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn)
                 ON DELETE SET DEFAULT ON UPDATE CASCADE):
CREATE TABLE DEPT LOCATIONS
   PRIMARY KEY (Dnumber, Dlocation),
   FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber)
                                         ON UPDATE CASCADE);
               ON DELETE CASCADE
```

Specifying Constraints on Tuples Using CHECK

- Additional Constraints on individual tuples within a relation are also possible using CHECK
- CHECK clauses at the end of a CREATE TABLE statement
- Apply to each tuple individually
- CHECK (Dept_create_date <=
 Mgr start date);</pre>