

Derivatives of Standard Functions 2

A-level Maths Topic Summaries - Calculus

Complete the table of derivatives for these useful standard functions.

In these functions a and k are constants.

Function, $y(x)$	Derivative, $rac{\mathrm{d}y}{\mathrm{d}x}$		
ax^n			
$a\sin kx$			
$a\cos kx$			
a an kx			
$a\mathrm{e}^{kx}$			
$a \ln kx$			
Items: $ \frac{a}{x} \frac{ak}{x} ak \sec^2 kx anx^{n-1} ak \cos kx ake^{kx} ae^{kx} -ak \sin kx $			

Created for isaacphysics.org by Jonathan Waugh

The Chain Rule

A-level Maths Topic Summaries - Calculus

Fill in the blanks below to complete the summary notes on the chain rule.

Part A

Example calculation

The chain rule is used to differentiate a function of a function. If y is a function of u, and u is a function of x, then

$$rac{\mathrm{d}y}{\mathrm{d}x} = rac{\mathrm{d}y}{\mathrm{d}x}$$

For example, we can write the function $y=(4x^2+7)^5$ as $y=u^5$, where $u=4x^2+7$. Then

$$\frac{\mathrm{d}y}{\mathrm{d}u} = \boxed{}$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \boxed{}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 5u^4 \times 8x$$

u is a variable we have introduced to help with the calculation. After carrying out the differentiation, we back substitute to write the answer in terms of x only.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \boxed{}$$

Items:

Part B

The chain rule in practice

The chain rule is useful in practical situations. A common scenario is that the amount of liquid in a container is changing, either because it is being filled up or because it is leaking. The volume of liquid in the container V is a function of the height of the liquid in the container h, and h changes with time t. The chain rule gives a relationship between the rate of change of the volume and the rate of change of the height.

$$rac{\mathrm{d}V}{\int} = rac{\mathrm{d}V}{\int} rac{\mathrm{d}h}{\int}$$

Another useful relation is the relationship between $\frac{\mathrm{d}y}{\mathrm{d}x}$ and $\frac{\mathrm{d}x}{\mathrm{d}y}$:

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{1}$$

Items:

Created for isaacphysics.org by Jonathan Waugh

Question deck:

Powers Using Chain Rule 1

Pre-Uni Maths for Sciences J4.6

Part A

Differentiate
$$w = (4s+3)^3$$

Find
$$\frac{\mathrm{d}w}{\mathrm{d}s}$$
 if $w=(4s+3)^3$.

The following symbols may be useful: s

Part B

First derivative of
$$z=(b-aw)^4$$

Find
$$\frac{\mathrm{d}z}{\mathrm{d}w}$$
 when $z=(b-aw)^4$, where a and b are constants.

The following symbols may be useful: a, b, w

Part C

Second derivative of $z=(b-aw)^4$

Find $rac{\mathrm{d}^2 z}{\mathrm{d}w^2}$ when $z=(b-aw)^4$, where a and b are constants.

The following symbols may be useful: a, b, w

Created for isaacphysics.org by Julia Riley

Question deck:

Differentiating Exponentials 1

Pre-Uni Maths for Sciences J4.4

Part A

Differentiate $\beta \mathrm{e}^{-\alpha t}$

Differentiate $\beta \mathrm{e}^{-\alpha t}$ with respect to t, where α and β are constants.

The following symbols may be useful: alpha, beta, e, t

Part B

Differentiate $C\mathrm{e}^{eta m}+D$

Differentiate $C\mathrm{e}^{\beta m}+D$ with respect to m, where β , C and D are constants.

The following symbols may be useful: C, D, beta, e, m

Created for isaacphysics.org by Julia Riley

Question deck:

Differentiating Trig Functions 2

Pre-Uni Maths for Sciences J4.2

Part A

Differentiate $s=r\sin(lpha heta)$

Find $\frac{\mathrm{d}s}{\mathrm{d}\theta}$ if $s=r\sin(\alpha\theta)$, where r and α are constants.

The following symbols may be useful: alpha, cos(), r, sin(), tan(), theta

Part B

Differentiate $q=l\cos(\alpha-2eta heta)$

Find $\dfrac{\mathrm{d}q}{\mathrm{d}\theta}$ if $q=l\cos(lpha-2eta heta)$, where l, lpha and eta are constants.

The following symbols may be useful: alpha, beta, cos(), 1, sin(), tan(), theta

Created for isaacphysics.org by Julia Riley

Question deck:

Differentiating Natural Logs

Pre-Uni Maths for Sciences J4.10

Part A

Differentiate $u=\ln{(2v+3)}$

Find
$$rac{\mathrm{d}u}{\mathrm{d}v}$$
 if $u=\ln{(2v+3)}$.

The following symbols may be useful: v

D-		
22	ГТ	н

Stationary point of $p=2\ln{(2q)}-3q$

Find the coordinates and nature of the stationary point of the function $p=2\ln{(2q)}-3q$.

Give the q-coordinate of the stationary point.

The following symbols may be useful: q

Give the p-coordinate of the stationary point.

The following symbols may be useful: p

Determine the nature of the stationary point.

Minimum

Maximum

Created for isaacphysics.org by Julia Riley

Question deck:

Differentiation: Chain Rule 1ii

Subject & topics: Maths Stage & difficulty: A Level P2

The volume, $V\,\mathrm{m}^3$, of liquid in a container is given by

$$V=\left(3h^2+4
ight)^{rac{3}{2}}-8$$

where $h \, \mathrm{m}$ is the depth of the liquid.

Part A

Rate of Change (a)

Find the value of $rac{\mathrm{d}V}{\mathrm{d}h}$ when h=0.6, giving your answer to four significant figures.

Part B

Rate of Change (b)

Liquid is leaking from the container. It is observed that, when the depth of the liquid is $0.6\,\mathrm{m}$, the depth is decreasing at a rate of $0.015\,\mathrm{m}$ per hour. Find the rate at which the volume of liquid in the container is decreasing at the instant when the depth is $0.6\,\mathrm{m}$. Answer to four significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

Differentiating Exponentials 3

Pre-Uni Maths for Sciences J4.7

Part A

Tangent to
$$y = e^{2x} - e^{-2x}$$

Find the equation of the tangent to the curve $y = e^{2x} - e^{-2x}$ at the point $x = \frac{1}{2}$.

The following symbols may be useful: e, x, y

Part B

Stationary point of $u=2\mathrm{e}^{3v}-3v$

Find the coordinates and nature of the stationary point of the function $u=2\mathrm{e}^{3v}-3v.$

Find the \boldsymbol{v} coordinate of the stationary point.

The following symbols may be useful: v

Find the \boldsymbol{u} coordinate of the stationary point.

The following symbols may be useful: u

Determine the nature of the stationary point.

Minimum

Maximum

Created for isaacphysics.org by Julia Riley

Question deck:

Chain Rule 2

Pre-Uni Maths for Sciences J6.2

Part A

Differentiate $E=B\sin^2(\omega t)$.

Find
$$rac{\mathrm{d}E}{\mathrm{d}t}$$
 if $E=B\sin^2(\omega t)$, where B and ω are constants.

The following symbols may be useful: B, E, cos(), omega, sin(), t, tan()

Part B

Differentiate $y=\mathrm{e}^{-\frac{x^2}{2\sigma^2}}$

Find
$$rac{\mathrm{d}y}{\mathrm{d}x}$$
 if $y=\mathrm{e}^{-rac{x^2}{2\sigma^2}}$, where σ is a constant.

The following symbols may be useful: e, sigma, x

Created for isaacphysics.org by Julia Riley

Question deck:

Further Derivatives of Exponentials and Logarithms

Subject & topics: Maths | Calculus | Differentiation Stage & difficulty: A Level P3, Further A P1

This question uses the chain rule to find the derivatives of several functions involving exponentials and logarithms.

Part A

Rewriting a^x

Use the rules for exponentials and logarithms to write $y=a^x$, where a is a positive constant, in the form $y=e^{bx}$, where b is a constant. Enter an expression for b in terms of a.

The following symbols may be useful: a, ln(), log()

Part B

Differentiating a^x

Using your answer to part A, use the chain rule to find an expression for $\frac{dy}{dx}$ for the function $y=a^x$. Give your answer in the form $f(a)a^x$, where f(a) is a function of a to be determined.

The following symbols may be useful: a, ln(), log()

Part C

Differentiating $\log_a(x)$

Use the chain rule to find an expression for $\dfrac{\mathrm{d}y}{\mathrm{d}x}$ for the function $y=\log_a(x)$.

The following symbols may be useful: a, ln(), log()

Part D

Differentiate e^{e^x}

Use the chain rule to find an expression for $\dfrac{\mathrm{d}y}{\mathrm{d}x}$ for the function $y=\mathrm{e}^{\mathrm{e}^x}$.

The following symbols may be useful: e, x

Part E

Differentiate $\ln(\ln(x))$

Use the chain rule to find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ for the function $y=\ln{(\ln{x})}$.

The following symbols may be useful: ln(), log(), x

Created for isaacphysics.org by Jonathan Waugh