Análisis II – Análisis matemático II – Matemática 3.

Segundo Cuatrimestre de 2025

Práctica 0 - Repaso de integración y cambio de variables.

1. Principio de Cavalieri.

Ejercicio 1. Considerar un cuerpo que ocupa una región Ω en el espacio comprendida entre los planos z = a y $z = \ell$. Deduzca que el volumen del cuerpo se puede calcular como

$$V = \int_{a}^{\ell} A(t) \, dt,$$

donde A(t) es el área de la sección del cuerpo obtenido al intersecarlo con el plano z = t.

Ejercicio 2. Calcular el volumen de una región cilindríca. Verificar que la fórmula resultante coincide con la fórmula empírica superficie de la base por altura.

Ejercicio 3. Calcular el volumen de la región encerrada por el paraboloide de ecuación $z = x^2 + y^2$ y el plano z = 2.

2. Fubini.

Ejercicio 4. Enunciar el Teorema de Fubini.

Ejercicio 5. Sea R el rectángulo $R = [-1; 1] \times [0; 1]$. Evaluar las siguientes integrales dobles:

$$\begin{array}{ll} (a) & \iint_{R} x^{2}y \, dA, \\ (b) & \iint_{R} x \cos(xy) \, dA, \end{array} \\ (c) & \iint_{R} \frac{xy}{1+x^{2}} \, dA, \\ (d) & \iint_{R} \frac{y^{n}}{(1-\frac{x^{2}}{4})^{-\frac{1}{2}}} \, dA. \end{array}$$

Ejercicio 6. Sea R el rectángulo arbitrario $[a;b] \times [c;d]$. Expresar mediante integrales simples la integral doble $\iint_R F(x,y) dA$ cuando F(x,y) está dada por

1

(a)
$$F(x,y) = f(x)g(y)$$
.

(b)
$$F(x,y) = f(x) + g(y)$$
.

3. Descripción de Regiones.

Ejercicio 7. Sea T el triángulo de vértices (0;0), (2;3) y (3;5). Describirlo como una región de tipo 1. Describirlo como una región de tipo 2. Hallar el área.

Ejercicio 8. Para cada una de las siguientes descripciones, graficar la región correspondiente y calcular el área respectiva.

- (a) $-1 \le x \le 1 + y$; $-1 \le y \le 1$, (b) $0 \le y \le \sqrt{1 x^2}$; $0 \le x \le 1$,

Ejercicio 9. Sea \mathcal{P} la pirámide cuyos vértices son (0;0;0),(1;0;0),(0;1;0) y (0;0;1). Describirla analíticamente. Hallar el volumen.

4. Aplicaciones de la integral.

Recuerdo: El valor medio de una función escalar f(x) en una región $D \subseteq \mathbb{R}^n$ se define como:

$$M.V(f) = \frac{1}{\operatorname{Vol}(D)} \int_{D} f(x) dx,$$

si una región D tiene una densidad $\rho(x)$ que varía en el espacio, la masa M de la región se puede calcular integrando la densidad sobre D. Esto se expresa como:

$$M = \int_D \rho(x) \, dx.$$

Ejercicio 10. Valor medio: hallar el valor medio de la función $f(x,y) = x^2y$ en la región triangular de vértices (1;1); (2;0) y (0;1).

Ejercicio 11. Masa: hallar la masa de la región esférica $x^2 + y^2 + (z - R)^2 = R^2$ sabiendo que la densidad de masa es proporcional a la componente z, digamos $\rho = \lambda z$.

5. Cambio de Variables.

Ejercicio 12. Enunciar el Teorema de Cambio de Variable.

Ejercicio 13. Sean $T(u,v) = T(x(u,v),y(u,v)) = (a_{11}u + a_{12}v,a_{21}u + a_{22}v)$ con $a_{ij} \in \mathbb{R}$. Sea D^* el rectángulo $[0,3] \times [1,3]$.

- (a) Hallar $D = T(D^*)$. ¿Es biyectiva T? Observar que D es un paralelogramo y hallar su área.
- (b) Describir el área de D en términos de una integral sobre D^* . Indicar que función hay que integrar y que relación tiene con T.

Ejercicio 14. Sea D el paralelogramo de vértices (1,2), (5,3), (2,5), (6,6). Calcular

- (a) $\int_D xy \, dx dy$ (b) $\int_D (x-y) \, dx dy$

Ejercicio 15. Sean $D^* = \{(r, \theta) : 0 \le r \le 1; \ 0 \le \theta \le 2\pi\}, \ D = \{(x, y) : x^2 + y^2 \le 1\}$ y P la transformación de coordenadas polares a cartesianas, es decir, $P(r,\theta) = (x(r,\theta), y(r,\theta)) = (r\cos\theta, r\sin\theta)$.

- (a) Demostrar que $P(D^*) = D$. ¿Es biyectiva P?
- (b) ¿En qué transforma P el rectángulo $[r, r + \Delta r] \times [\theta, \theta + \Delta \theta]$?
- (c) Calcular la matriz $DP(r,\theta)$. ¿En qué transforma la aplicación dada por esta matriz al rectángulo dado en b)? ¿Y en el caso r = 0?

Ejercicio 16. Sean $D_1 = \{(r, \theta) : 0 \le r \le 1, 0 \le \theta \le 4\pi\}$ y P la transformación del ejercicio anterior.

- (a) Hallar $D = P(D_1)$.
- (b) Calcular $\int_D (x^2 + y^2) dxdy$ y $\int_{D_1} r^2 J drd\theta$ siendo J el jacobiano de la transformación polar. ¿Dan igual las dos integrales? ¿Por qué?

Ejercicio 17. Hallar el área acotada por la curva dada por la ecuación $(x^2 + y^2)^2 = 2a^2(x^2 - y^2)$. Esta curva se llama lemniscata.

Ejercicio 18. Sea B la región sobre el plano xy dentro del cilindro dado por $x^2 + y^2 \le 1$ y debajo del cono dado por $z = (x^2 + y^2)^{1/2}$.

- (a) Describir B por ecuaciones.
- (b) Calcular $\int_B z \, dx \, dy \, dz$

Ejercicio 19. Sea $E = \{(x, y, z) \in \mathbb{R}^3 \mid (x^2/a^2) + (y^2/b^2) + (z^2/c^2) \le 1\}.$

- (a) Dibujar E y hallar su volumen. ¿Qué es E? (b) Calcular $\int_E [(x^2/a^2) + (y^2/b^2) + (z^2/c^2)] \, dx dy dz$.

Ejercicio 20. Sea R la región del primer cuadrante acotada por las hipérbolas $y = \frac{1}{x}$, $y = \frac{4}{x}$, y las rectas $y = \frac{x}{3}$, y = 5x. Calcular

$$\iint_{R} \left(x^2 - y^2 \right) dA.$$

Ejercicio 21. Sea $f:[0,1]^2\to\mathbb{R}$ continua tal que $f(x,y)=f(y,x)\,\forall x,y\in[0,1].$ Probar que:

$$\int_0^1 \left(\int_0^x f(x,y) \, dy \right) dx = \int_0^1 \left(\int_0^y f(x,y) \, dx \right) dy = \frac{1}{2} \int_{[0,1]^2} f(x,y) \, dx \, dy.$$