JVC

MODEL
KD-A66 A/B/C/E/J/U
STEREO CASSETTE DECK

Contents

Page	Page
Specifications2	Wiring (1) \sim (3)
Features	Enclosure Assembly and Electrical Parts List 30
Controls and Connections	Enclosure Assembly and Electrical Parts
Main Parts Location4	Mechanical Component Parts34
Description on New Technology	Mechanical Component Parts List
Maintenance	Main Amp P.W. Board Parts
Removal of the Main Parts	Computer P.W.B., Mechanical Control P.W.B 38
Main Adjustments	Main Amp P.W. Board Parts List
Block Diagram	Computer P.W. Board Parts List
Instruction of ICs	Mecha Control P.W. Board Parts
Standard Schematic Diagram	Mecha Control P.W. Board Parts List46
(Main Amp Circuit)	Other P.W. Board Parts
(Mechanical Control Circuit)	Other P.W. Board Parts List
(Computer Circuit)	Packing, Packing Material List, Accessories49

Specifications

Туре	: Component stereo cassette deck		: 65dB (1kHz)
	: 4-track, 2-channel	Harmonic distortion	: K3; 0.4%, THD; 1.0% (metal tape, 1kHz 0VU)
Tape speed	: 1-7/8 inch/sec (4.8 cm/sec)	Bias	: AC bias
Frequency response		E 1445	: AC bias : AC erasure
(-20 VU recording	g) *1 15 10 00011		
Metal tape	*1;15 – 18,000Hz	Heads	: 2SA (Sen-Alloy) heads
0.4.701	25 – 16,000Hz (±3dB)		X-cut head for recording and playback
SA/Chrome tape	*2 15 – 18,000Hz		2-Gap head for erasing
+ - 1 · · ·	25 – 16,000Hz (±3dB)	Motors	: Electronic governed DC motor (for
SF/Normal tape	*3 15 – 17,000Hz		Capstan)
	25 — 15,000Hz (±3dB)		DC motor (for Reel)
(O VU recording)			: 85 sec. with C-60 cassette
Metal tape	25 — 12,500Hz (±3dB)		: 85 sec. with C-60 cassette
SA/Chrome tape	25 — 8,000Hz (±3dB)	Semiconductors	: 18 ICs, 77 transistors, 1 FET
SF/Normal tape	25 — 8,000Hz (±3dB)		52 diodes, 12 LEDs
	Frequency response when using the	Input terminals	:
	computer B.E.S.T. tuning system	Mic jack x 2	; Max. sensitivity; 0.2mV (-72dBs)
(-20 VU recording	g)		Matching impedance;
Metal tape	40 - 12,500Hz (±1dB)		$600\Omega\sim 10 \mathrm{k}\Omega$
SA/Chrome tape	40 — 12,500Hz (±1dB)	Input jack x 2	; Min. input level; 80mV (-20dBs)
SF/Normal tape	40 — 12,500Hz (±1dB)	, ,	Input impedance; 100 k Ω
	Those values are almost the same for	Output terminals	:
	all types of tapes when the computer		; Output level; $0 \sim 500 \text{mV}$
	B.E.S.T. tuning system is used.	, ,	Output impedance; $5k\Omega$
Note: *1 SC	OTCH METAFINE or Equivalent	Phones jack x 1	; Output level; 0 ~ 0.5mV
*2 TD	K SA or Equivalent	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Matching impedance;
	XELL UD or Equivalent		$8\Omega\sim 1$ k Ω
S/N ratio	: 60dB (from peak level, weighted,	Power requirement	: AC 240V, 50Hz (KD-A66A)
• • • • • • • • • • • • • • • • • • • •	Metal tape)		AC 120V, 60Hz
	The S/N is improved by 5dB at 1 kHz		(KD-A66C/J)
	and by 10dB above 5kHz with ANRS		AC 240/220/120V, 50/60Hz
	on.		(KD-A66B/E)
	(DIN 45 500 weighted)		AC 240/220/120/100V,
Effect of Super ANR			50/60Hz (KD-A66U)
(Normal tape)	Improvement of S/N:	Power consumption	
(Teomatape)	the same as with ANRS		: 17-3/4"(450mm)W
	Improvement of frequency response:	2	4-5/8" (118mm)H
	0 VU recording; 6dB at 10kHz		13" (331mm)D
	+5 VU recording; 12dB at 10kHz		(with feet, buttons, switches)
	Improvement of distortion:	Weight	: 17.4 lbs (7.9 kg)
	0 VU recording; 3% or less at 10kHz		
	+5 VU recording; 3% or less at		
	10kHz		
Moss, and Elization	. O O40/ (M/DMC)	Desire and secular	tana ang katalang pangkan ang atalah ang katalang at ang

Wow and flutter

: 0.04% (WRMS),

0.14% (DIN 45 500)

Design and specifications subject to change without notice.

Features

- Built-in computer B.E.S.T. Tuning System for automatic adjustment of Bias, Equalization and Sensitivity of Tape.
- 2. Metal tape compatibility having 4 tape select positions.
- Full-logic control operation with 2 motor ID (Independent Drive) mechanism.
- X-cut SA (SEN-ALLOY) record/play head for an improved frequency response over Permalloy yet as durable as ferrite.
- SA (SEN-ALLOY) erase head for perfect compatibility with Metal Tape.
- LED indication for cassette operation buttons (REC, PLAY, PAUSE) light for the respective operation mode so as to make checking easier.

- ANRS, and Super ANRS for decreasing hiss-noise and improving linearity at high frequency.
- 8. 5 LED multi-peak level indicators for easy check of the recording level.
- Continuous TIMER STAND-BY mechanism for recording when you are not at home using the REC-OFF-PLAY select switch.
- REC MUTE button for making a non-recorded section on the tape program.
- Memory switch for listening to the same program repeatedly.
- 12. Remote control terminal (R-50E optional)

Controls and Connections

- POWER switch
- 2 VU meter (left channel)
- 3 VU meter (right channel)
- 4 Indicators (see to page 4)
- 6 Computer START button
- **6** Computer PRESET button
- Cassette holder
- Tape COUNTER/counter reset button
- MEMORY/AUTO REW switch
- **1** TIMER STANDBY switch
- Headphone jack [PHONES]
- Microphone jack (Left channel) [MIC-L]
- Microphone jack (right channel) [MIC-R]
- ANRS switch
- TAPE SELECT switch
- INPUT LEVEL controls

forward knob — left channel rearward knob — right channel

- OUTPUT LEVEL control
- Cassette operation button
 - ■■ REW (Rewind) button
 - ▶▶ FF (fast-forward) button
 - PLAY button
 - STOP button
 - O REC (recording) button
 - PAUSE button
 - REC MUTE button
- EJECT button
- Voltage selector (KD-A66B/C/E/J/U)
- Remote control socket
- LINE IN terminals
- LINE OUT terminals.
- Power cord

- Super ANRS indicator
 - (The LED lights when super ANRS or ANRS is ON)
- 2 ANRS indicator
- 3 RUN (wink)/READY (glow) indicator
- 4 ERROR (wink)/PRESET (glow) indicator
- 6 Multi-peak level indicator

Main Parts Location

- Front panel assembly
- 2 DC solenoid
- 3 Reel motor
- Output level control
- 6 Input level control
- 6 VU meter (right channel)
- 7 VU meter (left channel)
- Meter cover
- Remote bar (for power switch)
- Computer P.W. Board assembly
- Power switch
- Power transformer
- Power supply integrant circuit P.W.B assembly
- Remote control socket
- Pin jack assembly

(Mechanical parts)

- Switch holder (left switch)
- Supply reel assembly
- (B) Idler assembly
- Reel motor pully
- Take-up reel assembly
- ② Connector wire (for slide base)
- 2 Counter belt
- Slide base assembly
- ② Erase head
- TEC/PB head
- Pinch roller assembly
- Capstan

Description on New Technology

Computer B.E.S.T. System

Introduction

The B.E.S.T. (Bias Equalizer Sensitivity Tuning) system which is employed in the KD-A66 is basically the same as the preceding KD-A8 version and has also been provided with various improvements for an enhanced performance. The B.E.S.T. system employs a microcomputer for the purpose of setting the proper optimum bias current and sensitivity for tape.

1. Bias

As seen in Fig. 1 (the relationship between distortion rate and bias current at the 1 kHz to 7 kHz signals), the output level decreases when a larger bias current is applied. In this case especially, the 7 kHz signal is sharply attenuated.

Further, when the bias current is decreased, the threedimensional distortion increases. Accordingly, the bias current is an important factor for determining the frequency response and the distortion rate.

It is therefore desirable that an optimum bias current is set for each tape.

2. Equalizer

As seen in Fig. 2 (with each tape having its optimum bias current set), this bias current is determined by taking into account the high-band molecular characteristic and distortion rate of the particular tape. Equalization level must then be set to obtain a flat molecular

characteristic corresponding to that bias current.

Until now, the equalization level has been determined by ear and an accurate tuning can only be performed by experience.

With this tuning system, the equalization level is automatically set by a microcomputer.

3. Sensitivity

In tapes, the recording and reproduction levels do not necessarily coincide with each other. The difference between the recording and reproduction levels appears as a beat in the frequency response of a noise reduction circuit such as the ANRS circuit, the Super ANRS circuit, etc.

In this tuning system, the difference between these levels is limited within 1 dB.

Features:

- Automatic setting of the optimum bias current for the tape.
- 2. Automatic setting of the level difference to within ±1 dB, in the case of 10 kHz high-band frequency which tends to differ between the recording and reproduction levels.
- Automatic setting of the tape sensitivity to within a ±1 dB error by the ANRS circuit.
- For tapes which cannot be automatically adjusted, its sensitivity is indicated, thus permitting normal recording in the state in which respective values have been preset.

Fig. 3

Operation

The operation is described in accordance with Fig. 3 (operational timing chart).

- Press the START button.
 At this time, the READY LED in the display section flickers, indicating that the computer is in operation.
- 2. The tape is rapidly fed at 1.6 sec to avoid the use of the leader tape section.
- 3. The recorder enters the recording mode. In this mode, a blank recording (no-signal recording) is performed for 2.8 sec to stabilize the mechanical and electrical systems. Subsequently, two marker signals and eight pairs of 1 and 7 kHz test signals are recorded. At this time, the bias current is varied 8 steps every 60 msec by +10% to -30% more than the preset value. (The bias current, equalization level and tape sensitivity values are preset, each determined by using a standard tape.) (Fig. 4)

Fig. 4

- The tape is rewound to return to the position at the 1.6 sec lapse point from the beginning of the previous blank recording.
- 5. Data on the tape is reproduced, and the reproduction levels of the 1 and 7 kHz test signals are compared in order to properly determine their coinciding step.
- 6. The microcomputer detects these coincident steps. At this time, the recorder initiates recording and performs a blank recording for 2.8 sec. Subsequently, the recorder records the markers, and enters the 12.5 kHz signal recording state after recording the 1 kHz reference level, and increasingly varies the equalization level of the right channel by 8 steps very 60 msec.

Further, after recording the 1 kHz reference signal of the left channel, the recorder increasingly varies the equalization level. Next, to adjust the tape sensitivity, the recorder increasingly varies the 1 kHz recording level by 8 steps every 60 msec. The difference between the smallest and largest levels is ±4 dB. (Fig. 5)

7. As shown in Fig. 2, the tape is rewound to the position at the 1.5 sec lapse from the beginning of recording; see item 6.

Fig. 5

 The recorder enters the reproduction mode, and the microcomputer first compares the reproduction levels of the 1 kHz reference signal and the 12.5 kHz signal of the right channel.

In recording, since the 12.5 kHz signal is increasingly varied by the right equalizer, its reproduction level will coincide with that of the 1 kHz reference signal. Subsequent to storing this coincident point, the same operation is also performed on the left channel.

Next, the tape sensitivity is adjusted. Prior to this, the recorder stores the reproduction level of the 1 kHz reference signal of the right channel during recording (item 6), and during reproducing, seeks its coincident point with the 8-step level varied tape sensitivity adjusting signal.

Fig. 6

 Upon completion of tuning the equalizer and the tape sensitivity (item 8), the tape is rewound to return to the position as described in item 1. Then, the flickering READY LED lights continuously.

The above-mentioned operation is shown in Fig. 6.

The basic operation is as previously described. In addition, the microcomputer is provided for the functioning of the tape deck.

Upon application of power, the microcomputer is automatically reset, thus resulting in a temporary stoppage of all output.

SERVICE switch

This switch is used to adjust the tape deck.

The microcomputer with 7 adjustment program checks the generation of the test signals, the variation of the bias current, the variation of the equalization level, the variation of the tape sensitivity, the operation of the electronic mechanism, and the like.

When the SERVICE switch is at the OFF position, the microcomputer confirms that the B.E.S.T. system is functioning. At this time, the microcomputer emits those auto set values when the B.E.S.T. system completes operation and emits the preset values even if an error occurs during the operation. Thus, even when the auto setting of the respective values is impossible, normal recording is possible since the preset values are emitted.

Subsequently, the microcomputer waits for the START switch to be pressed. When this switch is pressed, the microcomputer sets bias current, equalization level and tape sensitivity values.

In this process, when auto setting is impossible, the microcomputer returns to the bias setting mode to re-tune. At this time, when an error recurs, the red PRESET LED flickers and the preset values are emitted.

In addition, irrespective of presence or absence of error, the tape is rewound to its starting position. As a result of this, the tape is effectively used. In normal auto setting of the respective values, the rewinding time is about 25 sec.

Operating Principle of Respective Sections

Fig. 7

1. Setting of bias current

Fig. 7 represents the bias current varying circuit employed in the KD-A66.

The bias oscillation circuit consisting of transistors X701 and X702 supplies current to the erase head and also activates the bias amplifier consisting of transistors X703 and X704. As the supply voltage for this bias amplifier is changed in 8 steps by a control signal from the microcomputer, the bias current is changed in 8 steps.

When the binary control signal from pins 2, 3 and 4 of microcomputer (ICK01) is applied to IC701 which includes 8 electronic ON/OFF switches of 8 circuits, any one circuit alone is turned on. At this point, the base current passes across a specific one of transistors X709 — X716 turning it on.

Concerning transistor X708 which controls the supply voltage for the bias amplifier, its base voltage is determined by a divided voltage by R728 and the associated collector resistance of X709 to X716.

The bias oscillation circuit, which is turned on/off by the BMUTE signal from pin 304 on the computer circuit board, is also turned on/off by the NSTOP signal (the control signal of the brake and solenoid) from pin 512 on the same board when stopping the bias oscillator circuit operation during the PAUSE mode.

Fig. 8

Setting of equalization level and tape sensitivity Fig. 8 represents the recording amplifier section employed in the KD-A66.

The input signal is attenuated by resistor R0 and any of resistors R1 - R16 and entered into the specific transistor. At this time, a tape sensitivity select signal emitted from the microcomputer causes the respective resistor in the group of R1 - R16 to be grounded, thus determining the attenuation level. The select signal is transmitted in the form of 4 binary bits and converted into decimal bits. In addition, a CMOS IC incorporating analog switches is used in the select switch unit to protect the audio signal against distortion. This select switch unit permits the change in recording level of ± 4 dB.

The LC resonance peaking circuit mounted in parallel with the emitter resistor of the recording amplifier transistor boosts the high frequency of the recording amplifier transistor. With a normal tape, the output level of a 10 kHz signal is higher by about 9 dB than that of a 1 kHz signal.

To avoid this problem, the selection of the capacitor in the peaking circuit is performed to vary the compensation of high frequencies. In this case, the microcomputer emits a 3 binary bit signal, decodes it in 8 steps and switches the appropriate analog switch in the CMOS IC. Thus, the recording level is selected in the range of ± 4 dB.

Fig. 9

3. Peak hold A/D converting circuit

In the KD-A66, a 12.5 kHz frequency is selected as the equalizer tuning frequency to improve high band frequency response. In a cassette tape deck with high frequencies, the changes in levels such as are caused by dropout, etc. are enlarged due to the base material of the cassette tape and/or the wound state of the cassette tape. If the optimim state is decided by the reproduction level such as in the B.E.S.T. system, this level change causes incorrect setting of the respective values. To avoid this problem in the KD-A66, a peak hold A/D converter has been developed by the combination of a peak hold circuit and a charge/discharge circuit.

The peak hold A/D converting circuit permits stable level detection even against high frequency dropout. Block diagram is shown in Fig. 9 and timing chart in Fig. 10.

The input signal is classified into a left or right channel signal in IC801 by the Lch signal from the microcomputer, amplified by IC802A and entered into the peak hold circuit consisting of IC802B, C802, D802 and X805, which in turn detects the negative component of the input signal accumulating at capacitor C802.

In the KD-A66, upon completion of the 40 msec operation of the peak hold circuit, S3 and S4 in IC801 are turned on by the ADC signal from the microcomputer. Since S3 functions to apply +5V to the positive input side of IC802B, the output of IC802B is clipped to +5V and the loop in the peak hold circuit is opened by diode D802.

At the same time S4 is turned on and capacitor C802 is charged from the constant current source I1. Since a constant current is supplied to this capacitor, the voltage in it linearly increases in the form of V=I1 x Time/c + Vo (initial voltage).

Since capacitor C802 has been supplied with the negative component of the input signal, when the voltage in it rises with the constant current charge, IC803A detects the moment that this voltage exceeds 0V, and transmits that detection signal as an ADT signal to the microcomputer.

The microcomputer measures the time from when the 40 msec peak hold operation is completed to when the above voltage exceeds 0V, to measure the signal level. Fig. 10 is the timing chart. Here the input signal is subject to peak holding during the 40 msec period and the constant current discharge is performed and the state of 0V excess is shown. AD1 is a normal signal, but this indicates that stable measuring is possible should level change (decrease) occur halfway as in AD2 and AD3.

Fig. 10

4. Marker signal detection

When recording while tuning the bias current, equalization level and tape sensitivity, marker signals first enter as shown in Figs 4 and 5. A 40 msec signal of 1 kHz ± 50 dB is recorded two time as the marker signals with a 40 msec blank between.

In the B.E.S.T. system, when the tape is rewound after recording the test signals, it returns to its starting position while counting the pulses from the tape counter. This counting is not as accurate as when locating a 60 msec signal. For more accurate counting, the deck waits for the said marker signals to appear in the reproduction state after rewinding the tape.

After the input signal is amplified by IC802A in Fig. 9, it is compared with -0.5V of IC803B in Fig. 5.

When this signal is entered, the output from IC803B is inverted from +5V to -5V, thus transmitting the arrival of the marker signals to the microcomputer.

After detecting the marker signals, the microcomputer chekcs their pattern to discriminate the test signals, thereby preventing faulty operation due to external noise and ensuring accurate signal location.

Fig. 11

Microcomputer

In the KD-A66, the tuning function is controlled by the 42-pin LSI microcomputer which stores instructions of about 2000 steps and processes normal instructions at 10 msec. The connection diagram is shown in Fig. 11. In addition, its incorporated timer controls the timing of the entire deck. The process is performed in the P-channel MOSFET and the output is used in the form of an open drain type pull-down.

The clock circuit stably operates because it consists of an LC resonance circuit. Since the microcomputer is provided with an interruption function, the pulse from the tape counter is counted with interruption.

6. Auto-stop

The rotation pulse signal from the Hall IC is waveform rectified and differentiated at its leading and trailing edges. Then, the monostable multiple circuit generates a pulse of about 20 msec which is in turn applied to the interrupt terminal $\overline{\text{INT}}$ of the microcomputer.

The microcomputer detects the tape position by the rotation pulse signal and also generates an auto-stop signal if no signal is applied for 1.5 sec or more.

7. Auto-rewind circuit

In the KD-A66, when an auto-stop signal is emitted from the microcomputer (ICK0I) at the tape end during playback or record, the tape is automatically rewound to the beginning and the deck enters the PLAY or STOP mode by switching the MEMORY switch (SW55).

If the tape counter displays "999" halfway, since the deck also enters the PLAY or STOP mode, the data in the tape can be repeatedly reproduced between "0" and "999". To describe this operation, the MEMORY switch (SW55) is set in the PLAY mode. AT first, when an auto-stop signal is emitted from the microcomputer at the tape end during playback, transistor XK06 goes on, thus lowering the voltage at the auto terminal (pin 5) of mechanism control IC51. At this time, the auto-rewind instruction is emitted from IC51.

When the tape is rewound to the beginning by this instruction, the auto-stop instruction is emitted from pin 12 of the microcomputer. Likewise, when the voltage at the AUTO terminal (pin 5) of IC51 is lowered, the PLAY instruction is automatically emitted from the microcomputer.

Next, to describe this operation, the MEMORY switch is set in the STOP mode. At first, when an auto-stop signal is emitted from the microcomputer at the tape end during playback, transistor XK06 goes on, thus lowering the voltage at the said AUTO terminal. At this time, the auto-rewind instruction is emitted from IC51. When the tape is rewound to the beginning by this instruction, the auto-stop instruction is emitted from pin 12 of the microcomputer. However, since the base voltage of tansistor X63 is kept to about 1V during the REW instruction, the emitter voltage of transistor X63 is lowered to 0.2V when transistor XK06 goes on. At the same time, transistor X63 goes on and functions to pull the STOP terminal (pin 1) of IC51, thus entering the deck into the STOP mode.

In addition, with the MEMORY switch in the OFF state, the auto-stop signal from the microcomputer, when transistor XK06 goes on, passes across diode D63 and also functions to pull the STOP terminal (pin 1) of IC51, thus entering the deck into the STOP mode.

Since the MEMORY STOP/PLAY function can be performed even during the auto-rewind operation by the auto-rewind circuit, the data in the tape can be repeatedly reproduced between "999" in the tape counter and the tape end.

Fig. 12

Maintenance

To get long, trouble-free service, maintenance is important. Do not forget cleaning and demagnetizing.

Cleaning

After long use, the heads and tape part — capstan, pinch roller, etc. — will become dirty with dust or magnetic particles. Dirty heads cause imperfect erasing or high frequency drop-off. A dirty capstan and pinch roller will cause unstable tape speed, leading to increased wow and flutter. Always keep them clean by following the procedure below.

1. Heads

- 1) Push Eject button to open the cassette holder.
- 2) Use the head cleaning stick-provided to wipe the surface where the tape comes into contact with the head.
 (It is effective to moisten the cotton with alcohol.)

2. Pinch roller and capstan

Do the same method as heads.

3. Cabinet

When the cabinet becomes dirty, wipe it with a soft cloth soaked with a neutral cleaning solution of a polishing cloth.

* Do not use thinner or benzine.

Demagnetizing

The heads are made from a material resistant to magnetization but after long use they may become magnetized.

A magnet brought into their vicinity can magnetize the heads, causing excess noise. If noise seems to have increased, demagnetize the heads with a head demagnetizer through the following procedure.

- 1. Turn the POWER switch OFF.
- 2. Wrap the tip of the demagnetizer with vinyl tape or soft cloth so as not to damage the head surface. Switch on the demagnetizer and bring it close to the head.
- 3. Move the tip of the demagnetizer slowly first to the left and right, then up and down in front of the head. Gradually move it away from the head and switch it off at a distance of more than 30 cm (12").
- 4. The erase head need not be demagnetized. The capstan shaft and tape guide should be demagnetized in the same way as the record/playback head.
- * Do not bring a magnetized metallic object (a screw-driver, for example) near the head as this will increase noise.

Removal of the Main Parts

Observe care in handling the parts since the parts are small in size and the distance between them are short due to a deck design aimed mainly at compactness and high performance.

ENCLOSURE ASSEMBLY PARTS

 Cassette door Depress the EJECT button to open the cassette door

Slide off the cassette door upwards (about 5 mm) to unlock its pawls of both sides.

Remove the cassette door forward.

Fig. 13

- Top cover Remove 4 screws fastening the top cover.
- Control knobs (INPUT LEVEL, OUTPUT LEVEL) and Lever Knobs (ANRS, TAPE SELECT)

. Pull off them forward.

Fig. 14

- Bottom cover Remove 5 screws fastening the bottom cover.
- Mecha. control switches assembly

(When adjusting or replacing REC/PB heads or Erase head)

Remove 3 screws positioned below the mecha. control switches (on the bottom of the deck) and pull the control section forwards — no need of removing the front panel assembly.

- Front plate assembly
 - Remove a screw fastening the bracket to mechanical assembly.

 Remove 4 screws (3 screws on upper side and a screw on bottom side.) fastening the front plate assembly.

ELECTRICAL PARTS

- Mechanical control P.W. board assembly
 Remove a screw fastening mecha control P.W. board after removed the mechanical assembly.
- Main amp P.W. board assembly
 - Remove 2 screws fastening the lever switches (ANRS, TAPE SELECT)
 - Remove 2 washers and 2 nuts fastening variable resistors for INPUT LEVEL and OUTPUT LEVEL.

3) Remove 4 screws fastening the main amp P.W. board. (on bottom side)

Fig. 19

- Computer P.W. board assembly
 - Remove 3 screws fastening the Computer P.W. Board
 - 2) Remove the pawl (P.W.B holder) and open the computer P.W. Board on the front side.

Fig. 20

MECHANICAL ASSEMBLY

- 1. Remove a screw fastening the bracket of mechanical ass'y. (See Fig. 15 of page 10)
- Remove 2 screws 1 fastening the front bracket. (upper side)
- Remove a screw ② fastening the front bracket. (right side)
- 4. Remove 4 screws 3 fastening the amp chassis. (2 screws each)
- 5. Pull out the mechanical assembly to rear side, pushing the shift arm from upper side. (holding the shift lever tip to upper side for not touch it to the counter belt.)

Note:

When assembly the mechanical ass'y Insert the mechanical ass'y to front bracket from rear side, pushing the shift arm from upper side (holding the shift lever tip to upper side) and sliding the mechanical ass'y on the amp chassis, and then, fasten each screws in the same method as at removing, after to check the shift lever tip position to front of the eject bracket.

When fastening the shift arm, push the eject button to check the switch (left side of shift arm) operation.

Fig. 23

MECHANICAL PARTS

1. REC/PB head

Remove a screw (1).

Work loose a screw ② for adjustment.

2. Erase head

Remove a screw (3).

Remove a screw 4 for adjustment.

3. Pinch roller arm ass'y

Remove an E-ring 5 holding its assembly.

Pull it off from the shaft.

4. Supply reel disc

Pull out the reel disc stopper (6) and pull out its disc from shaft.

5. Take-up reel disc

Pull out the reel disc stopper ⑦ and remove the counter belt, pull out its disc from shaft.

Note

- (1) Remove the reel disc stoppers with a piece of sheet metal inserted between the reel disc and stopper, when assembling the reel disc, the stopper need a new parts (the stopper cannot use again).
- (2) Be careful not to stain the counter belt.
- 7. Reel motor

Remove 3 screws (8) fastening the reel motor.

- Capstan motor
 - 1) Remove a screw (9) fastening the rubber stopper.
 - 2) Remove the capstan belt from the motor pulley.
 - 3) To remove the motor, turn it in counterclockwise direction and pull it out backward (with 3 cushions and 3 screws for fastening the motor).

Note:

When replacing the motor, check the following points.

- Is the motor placed in correct position?
 (Don't make the motor's position deflective.)
- (2) Does the capstan belt run in the center of the motor pulley?

Fig. 24

(Rear View)

Fig. 25

Main Adjustments

[1] Equipment and measuring instruments used for adjustment

1. Electrical adjustment

- 1) Electronic voltmeter
- 2) Audio frequency oscillator (range: 50–20 kHz and output 0 dB with impedance 600 Ω)
- 3) Attenuator
- 4) Standard tapes for REC/PB
 Maxell UD SF tape
 TDK SA SA tape
 SCOTCH METAFINE Metal tape
- 5) Reference tapes for playback (JVC Test Tape)
 VTT-658 (for head azimuth adj.)
 VTT-656 (for motor speed, wow flutter adj.)
 VTT-664 (for Reference Level 1 kHz)
 VTT-675N (for playback frequency response)
- 6) Resistors 100Ω (for measurement of the bias current) 600Ω (for attenuator matching)

2. Mechanical adjustment

- 1) Gauge for checking the head position.
- 2) Torque gauge
- 3) Blank tape (C-120) for tape running checker.

[II] Adjustment and repair of the mechanism TROUBLESHOOTING HINTS

1. Azimuth adjustment and head replacement

- 1) Remove the wires of the control switches from the wire clamps after having removed the top cover.
- Remove 3 screws positioned below the control switches (on the bottom of the deck) and pull the control section forwards.
- 3) With the control section pulled out, azimuth adjustment and/or head replacement can be performed. With the JVC cassette deck series of KD-A6, KD-A5 and KD-A8 models, the adjustment of replacement can be performed more easily than with conventional cassette decks which require removal of the entire mechanical section for the adjustments and/or replacements.

KD-A66

2. Tape-to-head contact adjustment

 Turn the adjusting screw for aligning the erase head until it stops. Then, turn the screw in the reverse direction by 225° (a 5/8 revolution).

- Check the tape-to-head contact using a C-120 tape having pads.
- Check it again with a Metal tape.
 Checking method:
 Record a 400 Hz or 1 kHz signal with 0 VU + 20 dB.
 Erase the recording. Checking if the erasing is satisfactorily performed.
- 4) After adjustment, apply screw bond on the adjusting screw to prevent its loosening.

(Adjust the mechanism or confirm that it is in normal operating condition prior to the adjustment of the electrical circuit.)

Item	Adjustment	Adjusting point	Standard value	Remarks
Adjusting record/playback head position A B	 Connect an electronic voltmeter to the LINE OUT terminals. Playback the VTT-658 test tape. Adjsut the head angle with the screw (a) until the reading of the electronic voltmeter becomes maximum for both channels. After adjusting, set the screw with screw bond. 	Screw (A)	Maximum	If the head is worn, disconnected or exceedingly magnetized so as not to provide the necessary characteristics, replace it with a new one. After replacement, the head position adjustment as well as the playback level adjustment, the bias current adjustment and the recording level adjustment are all necessary. If the output difference between the left and right channels exceeds 3—4 dB, the head is defective. Replace it with a new one.

Item	Adjustment	Adjusting point	Standard value	Remarks
Adjusting erase head height	Employ a special cassette (C-120) from which parts of the casing, where the erase head, record/playback head and capstan engage, has been cut away. Perform tape transport with the cassette tape. Adjust the screw © until the tape runs in the center of the erase head tape guide. (See "Troubleshooting hints" aforesaid.) Incorrect Correct Tape guide Tape guide Tape guide Tape	Screw ©		Be sure to perform this adjust- ment after replacing the erase head.
Adjusting motor speed	Connect a speed meter (an electronic counter) to the LINE OUT terminals. Playback the VTT-656 test tape. Adjust the semi-fixed resistor in the motor until the reading of the speed meter is 3000 Hz.	Semi- fixed resistor in the motor	3000 Hz	If the speed meter functions as a wow and flutter meter, also, connect the deck to the INPUT terminals of the meter.
Checking play- back torque	Employ a torque testing cassette tape for the checking, or remove the cassette cover and use a torque gauge.		40–70 gr-cm	If the standard torque is not obtained, replace the take-up disc assembly.
Checking fast forward torque	Measure the torque in the fast forward mode in the same manner as in the above.		More than 70gr-cm	If the standard torque is not obtained, perform the following. 1. Clean the capstan belt, the idler circumference, the motor pulley, the take-up reel disc circumference, the flywheel circumference, etc. 2. Replace the belt and idler.
Checking rewind torque	Measure the torque in the rewind mode in the same manner as in the above.		More than 70gr-cm	If the standard torque is not obtained, clean the capstan belt, idler, motor pulley, flywheel circumference, rewinding idler circumference, left reel disc circumference, etc.
Checking wow and flutter	Connect a wow and flutter meter to LINE OUT terminals. Playback the VTT-656 test tape. Check to see if the reading of the meter is within 0.05% (WRMS).			If the reading becomes moving value even if conforming to the standard, a re-claim may be raised. Repairs are necessary.

[III] Repair of wow flutter

If wow and flutter increase, check the following points. If there is defect in revolving parts, the wow and flutter generated will increase in proportion to the number of revolutions.

Play a 300 Hz test tape, and defective part can be detected from the sound.

Section	Trouble	Repair
Capstan and flywheel	Capstan shaft has excessive run-out. Flywheel turns heavily. (shaft seisure, thrust play, etc.)	Replace flywheel. Clean the capstan shaft and the groove in the flywheel. Apply oil to the metal position. Replace the capstan assembly.
Pinch roller	Rough rotation (Deformation scratches, or dust) The angular position of the pinch roller is not correct. The pinch roller pressure is not correct.	Replace pinch roller, or pinch roller spring. Clean the pinch roller or apply oil to the rotary shaft. Adjust the pinch roller so that it is parallel with the capstan shaft. Replace the pinch roller spring.
Belt	Belt has undue run-out. Belt is dirty or slippery.	Clean the belt. Replace the belt.
Back tension	Back tension is irregular, or back tension is too strong.	Replace back tension spring (under supply disc).
Motor	Motor shaft has undue run-out. Motor pulley is oily and dusty.	Replace the motor. Clean the motor pulley.

[IV] Electrical adjustment location

Main Amp P.W. Board

[V] Electrical circuit adjustment procedure

In th steps marked by an asterisk (*), adjustment should be performed, however, only checking is sufficient with steps other than those.

Adjustment should be performed in the order of steps 1,2, 3, ... Perform this adjustment with the ANRS switch set to OFF and output level control set to maximum.

Step	Item	Adjustment	Adjusting point	Standard value	Remarks
1*	Adjusting playback level	 Play back the VTT-664 Reference tape (1 kHz) with the tape select switch set to the SF/NORM position. Adjust VR102 and VR202 until the LINE OUT becomes about -4 dBs. 	VR102, 202	−4 dBs (0.5V)	This adjustment becomes necessary when a change in playback level results (for example, due to head replacement).
2*	Playback frequency response	Playback test tape VTT-675N (1 kHz, 10 kHz) for following adjustment. 1) Adjsut VR101 and VR201 so that 10 kHz signal and 1 kHz signal gains become flat response.	VR101, 201	Reference frequency IkHz 0±2dB at 10kHz	
3*	Adjusting VU meter deflection	 Set the cassette deck to its recording mode. Apply a 1 kHz, approx10 dBs signal to the LINE IN terminals. Adjust the recording level controls until the signal is available at -4 dBs at the LINE OUT terminals. Adjust VR105 and VR205 until the VU meters deflect to 0. 	VR105, 205	0 VU	Perform the adjustment when the parts are replaced.
4*	Checking record/ playback frequency response	Record 1 kHz, 50 Hz and 12.5 kHz signals at an input level of 0 VU to -20 dB. Playback the tape. Check to see that the 50 Hz and 12.5 kHz singal output deviations fall within the standard range, using the 1 kHz singal output as a reference.	For SF/ NORM tape; VR301, 401 For SA/ CrO2 tape; VR302,	Reference frequency; 1 kHz 0 ± 3 dB at 50 Hz 0 ± 3 dB at 12.5 kHz	This checking should be perform ed for normal, chrome and meta tapes and for both right and left channels. 1. Bias current adjustment for a cassette deck should generally be performed referring to the record/playback frequency response. This is because
	Response (dB)	Increase in high frequencies (with a small bias current) Optimum level Decrease in high frequencies (with a larger bias current) 1kHz 12.5kHz Frequency (Hz)	402 For Metal tape; VR303, 403		the frequency response of a cassette deck depends more greatly upon the bias current than does that of an open reel deck. The current measuring method described below is ar alternative one. 2. If the bias current is not properly adjusted, the record and playback characteristics becomes as shown left.
5	Adjusting recording level	 Apply a 1 kHz, approx10 dB Signal to the LINE IN terminals. Adjust the recording level controls until the signal is available at -4dBs at the LINE OUT termianls. After checking to see if the VU meters become to 0, record the signal applied to both left and right channels using normal tape. Play back the recording part. Perform the recording signal adjustment with VR501 and VR601 so that the VU meters become to 0. 	VR501, 601	0 VU	The level difference between left and right channels for SF/NORM tape, chrome tape and metal tape should be less than 1 dB (1 VU). Perform the adjust ment usign a normal tape, level difference between recording and playback for SA/CrO2 and metal tapes, should be less than 1.5dB, and that between left and right channels shold also be less than 1 dB.

Step	Item	Adjustment	Adjusting point	Standard value	Remarks
6	Checking record/ playback distortion	 Record a 1 kHz, -4 dBs signal to LINE IN terminals and perform re- cording with the VU meter becomes to 0. Play back the recorded part. Check the output with a distortion meter to see if the value conforms to the standard value. 		SF/NORM tape; Less than 2.5% SA/CrO2 tape; Less than 3% Metal tape; Less than 2%	Be sure to perform this adjust- ment following bias curret and recording level adjustments.
7	Checking signal to noise ratio in recording/ playback	 Record a 1 kHz, 0 VU signal. Stop the input by disconnecting from the terminal to perform nonsignal recording. Playback the recorded part. Measure the 0 VU recording output and the non-signal recording output for comparison using an electronic voltmeter. Check to see if the value conforms to the standard value. 		SF/NORM, SA/CrO2 and Metal tapes; More than 42 dB	Apply an output (-72 dBs) to the MIC terminals with the recording level controls set to maximum so that the VU meter becomes to 0.
8	Checking erasing coefficient	 Apply a 1 kHz signal to the LINE IN terminals. Adjust the recording level controls until the VU meter becomes to 0. Perform recording with the signal enhanced by 20 dB. Erase a part of the recording. Measure the output difference between the erased part and nonerased part to compare with an electronic voltmeter. 		More than 65 dB	For the measuring, connect a band pass filter between the deck and the electronic voltmeter. Input (1kHz 0VU + 20dB) Tape deck (recording, erasing) Band pass filter Electronic voltmeter

Computer P.W. Board

Adjustment by Computer Tester

Tester for KD-A8 plus Relaying Connection (Using the same quality assurance of the radio cassette recorder)

Step	Item	Adjusting method	Adjustment point (s)	Standard value (s)	Remarks
1	Computer clock	Adjust coil LK01 with a counter connected to CLI on the computer circuit board so that this clock pulse is 400 kHz.	LK01	400 kHz ±5 kHz	
2	Computer oscillation	 Set the computer tester to the TEST and MANUAL modes. Set the TEST MODE switch S3 of the computer tester ON, press the PRESET switch, then set the OPERATION switch to REC PAUSE. Obtain the switchable output of 1 kHz—7 kHz—12.5 kHz by pressing the START switch. With the switchable output set to I kHz, adjust VRF03 on the computer circuit board so that the input level is -37 dB. With the switchable output set to 7 kHz adjust VRF02 on the computer circuit board so that the input level is -36.5 dB. With the switchable output set to 12.5 kHz, adjust VRF0I on the computer circuit board so that the input level is -36.5 dB. 	Computer circuit board 307 Test point VRF03 VRF02 VRF01	-37 dB at 1kHz -36.5dB -36.5dB at 12.5kHz	Test program: 0

Step	Item	Adjusting method	Adjustment point (s)	Standard value (s)	Remarks
	Analog/ digital regulation	 Set the computer tester to the TEST and MANUAL modes, set the test program (TEST PRO) switch S3 to ON, then set both S4 and S5 to ON. Press the PRESET switch, then set the OPERATION swtich to REC PAUSE. Adjust VR801 so that "58" is displayed on the LEVEL DETECT indicator of the computer tester. After the above Adjustment, confirm that the A/D conversion time is about 8 msec in the A/D converted waveform at test point TP. 	VR801	OV Appro	Test program: 3 -15V±03V -2x. 8m sec (Test point: A/D)
4	Tape sensitivity regulation	 Set the computer tester to the TEST and MAN PRO) switch S3 to ON, then set the both S4 ar Set the OPERATION switch to REC PAUSE, t Set the test program swtich S1 to +5V and appl outut level of this signal at LINE OUT is set to 205 on the computer circuit board as shown in Confirm that the output level increases in steps against the preset value. 	nd S5 to ON. hen draw out the y a 1 kHz signal 8 dB, it shall var n the diagram be in the range of a	e post pin. to LINE IN T y at test pins low.	hen, when the 105 and 105 to +4 dB
5	Equalization level selec- tion operation	 Set the computer tester to the TEST and MAN PRO) switch S3 to ON, then set S4 to ON. Press the PRESET switch, set the OPERATIO post pin H and set S1 to +5V. Apply a 10 kHz signal to LINE IN. Then, when is set to 8 dB, it shall vary as shown in the diagrent at the record/playback head. With a norm in the same increment in the range of about -4 (10 kHz, steps 0 - 7) 	N switch to REC n the output leve gram below when al tape, confirm	PAUSE, ther I of this signal measuring th that the output	n draw out I at LINE OUT e signal cur-
6	Bias current regulation	 Connect a 100Ω resistor between the blue wire terminal, then insert a recordable tape. Set the frequency to 82 kHz ± 1 kHz by turning in the REC/PLAY mode. Raise the output to maximum by turning coil Reduce the bias current leakage at test points 1 L104 and L204. Set the computer tester to the TEST and MAI PRO) switch S3 to on, and set S5 to ON. Next deck to the REC/PLAY mode. Confirm that the bias current varies in the range 	ng the oscillation L702. TP 201 and 101 r NUAL modes, set , press the PRES	coil L701 with the test proget the test proget switch, the of the initial v	th the deck set 30 dB by coils ram (TEST en set the

Block Diagram

Recording system

Playback system

Mecha control circuit

Computer circuit

Instruction of ICs

V- 4

(Top view)

A₁ 1 14 V_{CC}

B₁ 2 13 B₄

Y₁ 3 10 B₄

A₄ 4 11 Y₄

B₁ 5 9 A₄

GND 7 8 Y₁

5 Inz

Standard Schematic Diagram of KD-A66

(Main amp circuit)

apacitor lar capacitor electrolytic

e capacitor

−01)−

- Transistor -

use the specified one.

23

Standard Schematic Diagram of KD-A66

308 (CPU PWB)

(Mechanical control circuit)

ecified, all resistors are 1/4W, ±5%

re 50 V fixed ceramic capacitors or ors.

ble carbon resistor resistor

tal film resistor

solid electrolytic capacitor leak current electrolytic capacitor PP – Polypropylene capacitor

PS — Polystyrene capacitor

MM - Metallized mylar capacitor

 Non-polarized electrolytic capacitor

3. Red lines show +B circuits.

Blue line shows the signal at playback.

4. parts are safety assurance parts. When replacing those parts, make sure to use the specified one.

Standard Schematic Diagram of KD-A66

(Computer circuit)

Wiring (1)

5 6 7 8 9 10

Wiring (2)

Wiring (3)

AN7362N

Block diagram

M54886P

Enclosure Assembly and Electrical Parts List (Except P.W. Board Parts)

 \triangle parts are safety assurance parts.

When replacing those parts, make sure to use the specified one.

Ref. No.	Parts No.	Parts Name	Remarks	Q'ty
1	VKS3122-001	Remote Bar		1
2	VYTS404-001	Lock Plate		1
3	VKL4730-00A	Bar Bracket Ass'y		1
(4~9)	ZCKDA66Y-CBF	Front Panel Sub Ass'y		1 set
4	VJC1113-001	Front Panel		1
5	VJK4120-001	Counter Lens		1
6	VJK4121-001	Finder		1
7	VJD4349-001	Disk Plate		1
8	VJD4348-001	Tape Indicator		1
9	VYTN402-001	Sheet		1
10	VXP3051-002	Push Knob		1
11	VKW3001-045	Compression Spring		1
12	VYSA2R6-004	Spacer		1
13	VKL4669-002	Eject Arm		1
14	VKH3013-001	Flange Collar		1
15	VKS4245-001	Lock Lever		1
16	VKH4261-002	Shaft		1
17	VKW4196-001	Torsion Spring		1
18	VKW4195-001	Wire		1
19	VKL3248-00A	Bracket (R) Ass'y		11
20	VKL4822-00A	Eject Lever Ass'y		1
21	VKL4796-002	Eject Arm		1
22	VKW4230-001	Wire		1
23	VKW3002-017	Tension Spring		1
24	VKL4752-002	Lever		11
25	VKH3013-001	Flange Collar		1
26	VKZ4128-001	Special Screw		1
27	VMW4566-001	P.W. Board		1
28	QLP3601-003	Back Light		1
29	QLP3104-333SN	Lamp	Meter display	4
30	VYH4335-002	Lamp Holder		4
32	VKL4754-001	Bracket		1
33	VKZ4011-001	Sheet		l i
34	VJT2038-002	Cassette Holder		
35	VKY4173-002	Cassette Spring		2
36	VKL3228-00B	Holder Arm Ass'y		1
37	VKW4194-004	Holder Spring		i
38	VKL4700-001	Bracket (L)	for Front Panel	li
39	VKZ4012-001	Sheet	101 1 TOTTE I WITCH	li
40	VXP4069-001	Push Knob		2
41	VKW4227-001	Spring		2
42	VJK3154-002	Indicator Lens		1
43	VJK4122-002	Indicator Panel		li
44	VKS3123-002	Indicator Holder		li
45	VKS4002-00A	Air Dump Ass'y		1
46	TFB313563-01	Plate Nut		3
47	VGM0420-003	Level Meter		2
48	VKS3121-001	Lamp Hood		1
49	VKL4713-001	Bracket		1 1
50	*VJC1114-002	Front Plate		1 1
51	VJD4373-001	Lever Escutcheon		1 1
52	VYTA453-001	Blind		1 1
53	VXS4031-001	Slide Knob	for Timer & Memory	2
54	VJD2154-001	Button Case		1
55	VXP3046-001	Push Button	for Rew	1 1
56	" -002	"	for FF	i
57	′′ -003	"	for Play	l i
58	′′ -004	"	for Stop	1
	′′ -005	"	for Rec	i
59		<u> </u>		-
59 60	′′ -006	"	for Pause	1
		" "	for Pause for R. Mute	1 1

IRef. No.	Parts No.	Parts Name	Remarks	'Q'ty
63	VKL4695-001	Bracket		1
64	VXP4070-00A	Push Knob Ass'y	for Eject	1
65	VKW3001-028	Compression Spring		1
66	VKL4728-002	Knob Bracket		1
(67~69)	ZCKDA66Y-CCA	Cassette Lid Sub Ass'y		1 set
	VJT3049-001	Cassette Lid odb 733 y		1
67				1
68	VJT3050-001	Lid Plate	V 0	1
69	VJD4226-001	Head Mark	X Cut	1
70	VXL4114-00A	Knob (L) Ass'y	for Rec	1
71	VXL4115-00A	Knob (R) Ass'y		1
72	VXL4116-00A	Knob Ass'y	for Output	1
73	VXQ4030-001	Lever Knob	,	2
74	VJC1115-001	Top Cover		1
75	VKZ3001-002	Special Screw	for Top Cover	4
			Tot Top Cover	1
76	VJC1116-001	Bottom Cover		
77	VJF4003-001	Foot		4
78	VYN2058-003KA	Name Plate	KD-A66A	1
	" -002KA	ti .	KD-A66B	1
	" -004KA	"	KD-A66C	1
	" -005KA	"	KD-A66E	1
	-002KV	,,		
1	-000KA	"	KD-A66J	1 1
	′′ -007KA		KD-A66U	1
79	E48729-002	Plastic Rivet		2
91	VKL1168-00B	Amp Chassis Ass'y		1
92	VKL4729-001	Power Bracket		1
93	VKZ4001-011	Wire Holder		8
		Power Transformer	KD-A66B	ĭ
94	VTP66C7-012KBS	Power i ransformer		1
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	KD-A66A	1
		n n	KD-A66C/J	1
		"	KD-A66E	1
		"	KD-A66U	1
95	F4932-002	Special Washer	11371000	2
			KD ACCC/I	2
96	TAW000504-01	Connector	KD-A66C/J	
97	E46651-001	Wrapping Terminal		11
98	*VJC1117-002	Rear Panel		1
99	QMP9017-008BS	Power Cord	KD-A66B	1
		"	KD-A66A	1
		"	KD-A66C	1
		"	KD-A66E	1
		· "		1
		"	KD-A66J	1
			KD-A66U	1
100	QHS3876-162BS	Strain Relief		1
101	VMJ3003-001	Pin Jack Ass'y		1
102	QMC0888-008	Jack Ass'y (8P DIN Socket)	for Remote	1
		P.C.B. Holder	for Computer P.W.B	1
104	VKS3108-001		101 Compater 1.77.D	3
105	VKS3000-001	P.W.B. Holder	KD ACCD	ľ
106	QSS2325-011BS	Voltage Selector Switch	KD-A66B	1
1		"	KD-A66A/C/J	1
l		"	KD-A66U	1
107	VKL4275-001	Bracket	KD-A66U	1
108	VKL4873-001	Shield Plate		1 1
115	REE2000	E Ring	Air Dumper Ass'y	1
	REE2500		Lock Lever x 1	 ' 5
116	REE2500	E Ring		၂
			Eject Lever (1) Ass'y x 1	
I			Joint Cam Ass'y x 1	
			Eject Arm x 1	
			Cassette Holder x 1	
121	DPSP3010ZS	Screw	Transistor	3
122	DPSP4012ZS	,,	Power Transformer	2
		,,		
123	LPSP2604Z		Memory Switch x 2	4
			Timer Switch x 2	
124	LPSP2606C	"	Front Panel	2_
125	LPSP2606Z	"	Front Panel	2
126	LPSP2608Z	"	Front Panel	2
126		,,		4
1//	LPSP3006ZS		Power Switch x 2	
'-'		1	Voltage Select Switch x 2 (KD-A66)	11
128	SBSB2606Z	,,	P.W.B.	4

Ref. No.	Parts No.	Parts Name	Remarks	Q'ty
129	SBSB2608Z	Screw	Indicator Escutcheon x 2	4
			Knob bracket x 2	
130	SBSB3006C	"	for Mecha.	4
131	SBSB3006Z	"	Bar Bracket Ass'y x 1	12
			Power Bracket x 2	
			Wire Holder x 8	
			Wrapping Terminal x 1	
132	SBSB3012Z	"	Heat Sink	2
133	SDSB3008R	"	Rear Cover	1
134	SDSB3006Z	,,	Rear Cover	4
135	SDSB3008Z	"	Bottom Cover x 5	7
			Jack x 2	
136	SSSB3010Z	"	Front Panel	4
137	SDSP2605R	"	Remote Socket	2
138	SSSB3008Z	"	Front Panel	5
139	SSSB3012Z	"	"	1
140	VKZ4143-001	Special Screw	Eject Arm	1
141	SSSP2605R	"	Bracket (R) x 2	12
			Holder Arm Ass'y x 4	
			Bracket (L) x 3	
1			Button Case x 3	
142	SSSP2606C	"	Bracket	1 1
143	SSSP3008CS	"	Counter	1
144	SBSB3008Z	"	Lamp Holder	2
145	SDSP3006RS	"	for Voltage Select Sw.	2

Enclosure Assembly and Electrical Parts

(Except P.W. Board Parts) KD-A66U

Mechanical Component Parts

Mechanical Component Parts List

Ref. No.	Parts No.	Parts Name	Remarks	Q'ty
1	VKL1118-00D	Chassis Base Ass'y		1
2	VKL4361-002	Brake Bar		1
3	VYSF101-012	Spacer		2
4	VKW4145-002	Brake Bar Spring	for Brake Bar	1
5	VKL4362-001	Lock Bar		111
6	VKZ4005-001	Stopper	for Brake Bar	1
8	VKS4166-001	Cassette SW. Lever		1
9	VKS4135-00A	Lock Lever Ass'y		1
10	VKL4366-00A	Play Arm Ass'y		1
11	VKY4174-001	Cassette Spring		1
12	VKS3109-001	Switch Holder (L)		i
13	VMW4522-001	P.W. Board (L)		1
14	QSP0029-001	Slide Switch		2
15	QMV5004-004	Connector		1
16	VKH4264-001	Shaft		1
17	VKS4136-002	Switch Lever		1
18	VKW4138-001	Pressure Lever Spring		1
19	VKL4399-002	Eject Safety Lever		1
20	VKW4142-001	Connecting Wire		1
21	VKW3002-004	Spring		1
22	VKW3002-004 VKH3001-027	Collar		i
23	VKZ3003-001	Rubber Tube		3
24	*VKL4676-00B	Slide Base Ass'y		1
2 4 25	VKP4108-00A	Pinch Roller Arm Ass'y		li
26	VKW3002-044	Tension Spring	for Slide Base	1
27	TJN265559-02	Silencer	"	i
28	*VKS2102-001	Head Mount Base		i
29	ZMM089401-0D	R/P Head Ass'y		li
30	ZMM090414-0A	E Head Ass'v		i
31	VKW3001-020	Compression Spring	for R/P and E Heads	2
32	VKW3001-020 VKH4215-001	Head Collar	10) Tiji una E Tidads	1
33	VMZ0008-00A	Wire Ass'y		1 1
34	VKL3155-00A	Reel Disk Bracket Ass'y		i
35	VKR4113-00B	Take-up Reel Ass'y		i
36	VKR4118-00A	Supply Reel Ass'y		1
37	VKS4130-001	Back Tension Base		1 1
38	VKW3001-026	Compression Spring	for Back Tension	1
39	VKS4131-001	Reel Stopper		2
40	VKS4151-00B	Idler Ass'y Unit		1
41	VKW4134-001	Idler Spring		1
42	MDN-7V1-2	Reel Motor		1
43	VKR4121-001	Motor Pulley		1
44	YRS2603B	Screw	for Motor Pulley	1
45	VKF3107-00B	Flywheel Ass'y	To wotor rancy	i
46	VKF3107-00B VKF3103-00B	Capstan Metal		- i -
47	T30301-137	Spring		i
48	VKB3001-007	Capstan Belt	+	i
46 49	VKL4684-00A	Hold Base Ass'y		i
50	VKW3001-046	Compression Spring		i
51	VKU3001-046 VKL4368-002	Play Solenoid Lever		
51 52	VKU4306-002 VKW4137-001	Connecting Wire	·	i
53	TEP357456-01	Thrust Screw		li
53 54	VKL4398-002	Play Solenoid Bracket		1 i
54 55	VGP0301-004	D.C. Solenoid Ass'y	for Play	li
56	MMC-6A2HS	D.C. Motor	for Capstan	 i
50 57	VKS4139-002	Motor Pulley	101 Supotan	li
58	TER357465-03	Cushion Rubber		3
56 59	VKZ4109-001	Motor Screw		3
	TFB345469-01	Rubber Stopper		1 1
יוח		Wire Holder		
60	VΚ/ΔΩΩΤ.ΩΤΤ	1 11/10 1101001	1 .	
61	VKZ4001-011 VGP0201-007	D.C. Solenoid Ass'v	l for Brake	1
61 62	VGP0201-007	D.C. Solenoid Ass'y	for Brake	1 1
61 62 63	VGP0201-007 VKL4363-002	Lock Solenoid Lever	for Brake	1
61 62	VGP0201-007		for Brake	

Ref. No.	Parts No.	Parts Name	Remarks	Q'ty
67	*VKL3249-001	Side Bracket (R)		1
68	VKL4403-00B	Shift Arm Ass'y		1 1
69	VKH3001-033	Flange Collar		1
70	VKL4682-001	Side Bracket (L)		1
71	VKW4156-001	Shift Arm Spring		1
72	VKL4701-002	Shift Lever		1
73	VKH3001-027	Flange Collar		1 1
74	VKW3602-044	Tension Spring		li
75	VKL4757-001	Shaft Holder		1
76	VKW4202-001	Pinch Roller Spring		1
77	THC037417-02	Head Plate	SA for E Head	1 1
78	VND4012-001	Head Plate	X cut for REC/PB Head	li
79	VKZ4001-010	Wire Holder	X 302 107 112 3/1 B 710 dd	i
81	VMW4530-002	P.W. Board		i
82	DN6835	Hall IC		l i
83	QMV5005-003	Connector		1
110	REE2000	E Ring	Pinch Roller	1
111	REE2500	"	Lock Lever Ass'y x 1	3
			Play Solenoid Lever x 1	
			Lock Solenoid Lever x 1	
112	Q03093-522	Washer	Flywheel	1
113	·· -621	"		1
114	" -827	"	"	1
115	WNB2600N	"	Slide Base Ass'y	1
116	DPSP2608V	Screw	Mecha. Con. P.W. Board	1
117	GPSA2608Z	Tapping Screw	Eject Safety Lever	1
118	GPSA2612Z	<i>"</i>	Slide Base	4
119	LPSP2604Z	Screw	Reel Motor x 3	7
			Play Solenoid Bracket x 3	
			Rubber Stopper x 1	
120	LPSP2605Z	"	Shaft Holder x 1	9
			Hold Base x 2	
			Side Bracket x 2	
İ			Shift Arm ~ Side Bracket x 3	
			Shift Lever x 1	
121	LPSP2606Z	Screw	Capstan Metal x 1	3
			Wire Holder x 2	
122	SPSP2606Z	Screw	Head Mount Base x 1	8
	O. O. 20002	301011	Switch Holder x 3	
			Reel Ass'y Unit x 4	
124	SPSP3003ZS	"	Solenoid x 2	4
	3. 0. 000020		Solenoid x 2	4
125	SPSX2010N	"	REC/PB Head x 2	4
0	5. 57.251011		E Head x 2	•
126	SBSB2006Z	"	Cassette Spring	2
127	SBSB2610Z	"	Hold Base	2
128	SSSP3006ZS	n .	Counter Ass'y	2
129	SDSP2605Z	"	Hall IC P.W. Board	
130	SSSB3006C	Screw	for Mecha.	1 4
130	333530000	SCIEVV	TOT Wecha.	4

Main Amp. P.W. Board Parts

			5					. 6			
5	6	7	8	9	10	11	12	13	14	15	. 16
9.3	9.3	9.1	9.2	9.0	19.0	1.5	9.0	9.4	9.4	9.4	0.7
9.2	9.2	9.0	9.1	9.2	18.5	1.5	9.0	9.2	9.2	9.2	0.7
3.7(7.5)	12	12	23								
10.7	11.3	11.3	22.7								
2.8	0	0	13.5	0	0	0	0	0	0		
2.7	0	0	13.5	0	0	0	0	0	0		

Voltage values are measured by the following meter without input signal at playback mode.

8

- C. Tester = Circuit Tester (20 $k\Omega$ impedance)
- E. Voltmeter = Electronic Voltmeter

7

	С	. Tes	ter	E. \	/oltn	neter
	В	С	E	В	С	E
X101	0.3	1.7	0	0.55	1.7	0
102	1.7	15	1.1	1.7	14.5	1.1
103	0.7	0	0	0.6	0	0
104	0	0	0	0	0	0
105	2.0	7.5	1.4	1.9	7.6	1.1
106	3.1	2.7	2.7	4.2	3.6	3.6
107	0	0	2.7	0	0	3.6
108	0	0	0	0	0	0
109	0	0	0	0	0	0
110	10.4	21.5	9.1	10.7	22.5	10.1
111	1.2	6.5	1.0	1.55	7.3	1.0
XC01	0	1.2	0	0	1.2	0
X301	0	22	0	0	22	0
302	0	2.8	0	0	28	0
303	0.8	0	0	0.75	0.1	0
304	0	22	0	0	22.5	0
305	22.5	0	22.5	22.7	0	22.4
306	22.5	0	22	22.5	0	22.4

10

Computer P.W. Board Parts

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
10501	C. Tester	0	0	0	0	0	0	-4.7	0	-0.7	4.6	4.6	0	0	0	0	4.7
IC501	E. Voltmeter	0	0	0	0	0	0	-4.7	0	-0.7	4.7	4.7	0	0	0	0	4.7
10500	C. Tester	0	0	1	0	0	0	-4.7	0	-0.8	4.6	4.6	1	0	0	0	4.7
IC502	E. Voltmeter	0	0	4.9	0	0	0	-4.7	0	-0.7	4.6	4.6	-0.9	0	0	0	4.7
	C. Tester	0	0	0.7	0	0	0	-4.7	0	-0.6	4.6	4.6	0.7	0	0	0	4.7
IC701	E. Voltmeter	0	0	0.8	0	0	0	-4.7	0	-0.7	4.7	4.7	0.7	0	0	0	4.7
10004	C. Tester	0	0	0	0	4.2	4.2	-4.7	-4.5	4.6	0	4.6	-4.2	4.5	4.7		
IC801	E. Voltmeter	0	0	0	0	-4.7	-4.7	-4.7	-4.7	0.7	0	4.7	-4.7	4.5	4.7		
10000	C. Tester	0	0	0	-4.7	0	0	(3.0)	4.7								
IC802	E. Voltmeter	0	0	0	-4.7	0	0	(-4.7)	4.7								
10000	C. Tester	4.1	-0.4	0	-4.7	0	0	4.1	4.7								
IC803	E. Voltmeter	4.1	-0.4	0	-4.7	-0.1	0	-3.3	4.7							_	
101400	C. Tester	0	0	3.4	3.4	3.4	0	0	(2.0)	(2.5)	(1.9)	0	4.4	1.6	4.7		
ICK02	E. Voltmeter	0	0	3.6	3.6	4.7	0	0	(2.0)	(2.5)	(1.9)	0	4.7	1.7	4.7	l	
101400	C. Tester	1.9	0	0.3	4.4	(2)	(2.3)	0	4.5	0	3.5	-0.5	0.1	4.0	4.7]	
ICK03	E. Voltmeter	2.2	0	0.4	4.7	(2)	(2.3)	0	4.7	0	3.7	-0.5	0.1	+4.1	4.7		

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
ICKOI	C. Tester	1.6	4.6	4.6	-0.8	3.1	4.3	-3.2	2.1	2.1	0	0	0	-3.7	0	0	4.6	4.6	-0.7	4.0	4.0	4.7	4.6
ICK01	E. Voltmeter	1.6	4.7	4.7	-0.7	3.1	4.7	-4.7	2.4	2.4	-0.1	-0.1	-0.1	-3.7	0	0	4.7	4.7	-0.7	4.1	4.7	4.7	4.7
		23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42		
	C. Tester	4.6	-0.8	-4.2	4.6	4.6	-0.8	-4.2	4.5	0	0	4.5	4.1	4.3	-3.4	4.1	4.1	4.1	4.1	-4.7	1.6		
	E. Voltmeter	4.7	-0.7	-4.7	4.7	4.7	-0.7	-4.7	4.6	0	-0.5	4.7	4.2	4.7	-3.3	4.7	4.7	4.7	4.7	-4.7	1.7		

		Test	or	E V	oltm	oter		<u> </u>	Teste		E 1/	oltm	otor		С	Test	er	E. V	oltm	eter
															_					
	В	С	Е	В	С	E		В	С	E	В	С	E		В	С	E	В	С	E
X1	24	31	23.5	24	31	23.5	X701	-1.3	20	0.5	-1.5	20	0.5	X801	-4.2	4.5	-4.7	-4.7	4.7	-4.7
X2	22.5	31	23.2	22.5	31	23.2	702	-1.3	20	0.5	-1.5	20	0.5	802	0.6	0	0	0.6	0	0
Х3	5.3	15.5	4.7	5.3	15.5	4.7	703	-2.2	16.5	0.3	-2.7	16.5	0.3					•		
X4	0.6	4.4	0	0.6	4.4	0	704	-2.2	16.5	0.3	-2.7	16.5	0.3	804	4.3	-0.3	4.3	4.5	-0.3	4.7
							705	0.6	0	0	0.6	0	0	805	0.3	3.4	0	0.3	0	4.5
							706	0	6.2	0	0	6.5	0							
X501	2.7	13	3.3	3.9	13	3.3	707	0.6	0.1	0	0.6	0.1	0							
502	0.6	0	0	0.6	0	0	708	19.0	22.7	18.5	19.2	22.7	18.5							
503	0	0	0	0	0	0	709	0	18.5	0	0	19.2	0							
							710	0.7	0	0	0.7	0.1	0							
							711	0	18.5	0	0	19.2	0							
XK01	-4.1	-4.7	-4.7	-4.1	-4.7	-4.7	712	0	19.0	0	0	19.2	0							
K02	-4.3	4.6	-4.7	-4.7	4.6	-4.7	713	0	18.8	0	0	19.2	0							
K03	0.7	0	0	0.7	0	0	714	0	19.0	0	0	19.2	0							
K04	0	2.1	0	0	2.4	0	715	0	17.5	0	0	19.2	0							
K05	0	2.1	0	0	2.4	0								-						
K06	0	4.3	0	0	4.7	0]													
K07	0	2.0	0	0	2.2	0	1													

	C.	Test	er	E. V	oltm	eter
	В	С	Е	В	С	E
X51	0.7	0.1	0	0.7	0.1	0
52	0.1	26.5	0	0	26.7	0
53	1.4	0.8	0.7	1.4	8.0	8.0
54	0.7	0	0	0.8	0.1	0
55	0	0.8	0	0.1	4.1	0
56	0	6.3	0	0	6.3	0
57	0.7	0	0	0.7	0	0
58	6.3	13	5.7	6.3	13	5.7
59	0	5.7	0	0	5.7	0
60	0.1	13	0.1	0.1	13	0.1
61	0.7	0.1	0	0.7	0.1	0
62	0.7	0.1	0	0.7	0.1	0
63	0	1.9	4.3	0	2.2	4.7
64	0	0	0	0	0.1	0
_	52 53 54 55 56 57 58 59 60 61 62 63	B X51 0.7 52 0.1 53 1.4 54 0.7 55 0 56 0 57 0.7 58 6.3 59 0 60 0.1 61 0.7 62 0.7	B C X51 0.7 0.1 52 0.1 26.5 53 1.4 0.8 54 0.7 0 55 0 0.8 56 0 6.3 57 0.7 0 58 6.3 13 59 0 5.7 60 0.1 13 61 0.7 0.1 62 0.7 0.1 63 0 1.9	X51 0.7 0.1 0 52 0.1 26.5 0 53 1.4 0.8 0.7 54 0.7 0 0 55 0 0.8 0 56 0 6.3 0 57 0.7 0 0 58 6.3 13 5.7 59 0 5.7 0 60 0.1 13 0.1 61 0.7 0.1 0 62 0.7 0.1 0 63 0 1.9 4.3	B C E B X51 0.7 0.1 0 0.7 52 0.1 26.5 0 0 53 1.4 0.8 0.7 1.4 54 0.7 0 0 0.8 55 0 0.8 0 0.1 56 0 6.3 0 0 57 0.7 0 0 0.7 58 6.3 13 5.7 6.3 59 0 5.7 0 0 60 0.1 13 0.1 0.1 61 0.7 0.1 0 0.7 62 0.7 0.1 0 0.7 63 0 1.9 4.3 0	B C E B C X51 0.7 0.1 0 0.7 0.1 52 0.1 26.5 0 0 26.7 53 1.4 0.8 0.7 1.4 0.8 54 0.7 0 0 0.8 0.1 55 0 0.8 0 0.1 4.1 56 0 6.3 0 0 6.3 57 0.7 0 0 0.7 0 58 6.3 13 5.7 6.3 13 59 0 5.7 0 0 5.7 60 0.1 13 0.1 0.1 13 61 0.7 0.1 0 0.7 0.1 62 0.7 0.1 0 0.7 0.1 63 0 1.9 4.3 0 2.2

		ICS	51 M	54886F	>		
ОИТРИТ	PAUSE	MUTE *	REC	PLAY	BRK *	MOTOR(F)	MOTOR(R
PIN mode	14	9	15	13	10	12	11
STOP	н	н	н	н	L	н	н
FF	н	н	н	н	н	L	н
REW	н	н	н	н	н	н	L
PLAY	н	L	н	L	н	L	н
REC	н	L	L	L	н	L	н
REC / PAUSE	L	L `	L	н	L	н	н
PAUSE	L	н	н	н	L	н	н

Main Amp. P.W. Board Parts List

 $\underline{\Lambda}$ parts are safety assurance parts. When replacing those parts, make sure to use the specified one.

Main Amp. P.W. Board P Ref. No.	Parts No.	Parts Name	1	narks	Q'tv
nei, No.	VMW1538-003	P.W. Board	11611	101113	
R101,201	QRD141J-224SL	C. Resistor (Low Noise)	220kΩ	1/4W	1 2
R101,201 R102,202,117,217,151,	" -823SL	C. Hesistor (Low Noise)	82kΩ	1/400	6
251	-0233L		02/32		0
R103,203,124,224	" -820SY	C. Resistor	82_{Ω}	"	4
R104,204,160,260	" -273SY	0. 1103/3101	27kΩ	"	4
R105,205	QRD147J-184S	"	180kΩ	"	2
R106,206,317,322,328	QRD141J-682SY	"	6.8kΩ	"	5
R107,207,170,270	" -101SY	"	100Ω	"	4
R108,208,329,C05	" -681SY	"	680Ω	"	4
R109,209,134,234,316,	" -102SY	"	1kΩ	"	6
338					
R110,210,114,214,142,	" -103SY	"	10k Ω	"	12
242,301,302,303,321,					
325,336					
R111,211,141,241,148,	'' -472SY	"	4.7kΩ	"	11
248,171,271,A01,B01,					
C04					
R112,212,330	" -562SY	"	5.6kΩ	"	3
R113,213,118,218,126,	" -104SY	"	10kΩ	"	21
226,132,232,133,233,	1				
136,236,137,237,149,					
249,157,257,162,262,					
C01				,,	
R115,215,164,264	" -152SY	"	1.5kΩ		4
R116,216,123,223,145,	" -222\$Y	"	2.2kΩ	"	12
245,163,263,307,323,	1				
A02,B02	" 022CV	,,	0.01 =	,,	
R119,219	-02231	"	8.2kΩ	,,	2
R120,220,A03,B03	-00031		Ω80	,,	4
R121,221	-3343L	C. Resistor (Low Noise)	330kΩ		2
R122,222	-4/33L	C. Resistor	47kΩ	"	2 7
R125,225,138,238,150,	" -332SY	C. Resistor	3.3kΩ		/
250,304 P127,227,140,240	" 302CV	"	3.9kΩ	"	4
R127,227,140,240 R130,230,143,243,305	" -392SY " -473SY	,,	3.9k34 47kΩ	"	4 5
R131,231	QRD147J-394S	"	390kΩ	"	2
R135,235,318,320,C06	QRD141J-153SY		15kΩ	.,	5
R139,239	" -103SY	<i>''</i>	10kΩ	"	2
R144,244	" -224SY	,,	220kΩ	• 11	2 2
R147,247,309~313	" -151SY	"	150kΩ	"	7
R152,252	" -334SY	"	330kΩ	"	2
R153,253	QRD147J-684S	n n	680kΩ	"	2
R154,254	QRD141J-273SY	"	27kΩ	"	2
R155,255	" -154SY	"	150kΩ	**	2
R156,256	" -563SY	"	56kΩ	"	2
R158,258,314,315	" -683SY	"	68kΩ	"	4
R159,259,324	" -222SY	"	2.2kΩ	"	3
R161,261	QRD147J-125S	"	1.2MΩ	"	2
R165,265,167,267,C14,15	QRD141J-331SY	"	330 Ω	,,	6
R166,266	" -561SY	"	560 Ω	"	2
R168,268	" -471SY		470Ω	"	2
R306,337	△ QRD149J-181S	Unflammable Resistor	180Ω	"	2
R308	QRD141J-562SY	C. Resistor	5.6kΩ	"	1
R319	QRD147J-272S	",	2.7kΩ		1
R326	QRD147J-271S		270Ω 15kΩ		1
R327	QRD141J-153SY		15kΩ	"	1
R331	△ QRD149J-681S △ "-561S	Unflammable Resistor	680Ω 560Ω	,,	1
R332 R333	∆ " -561S ∆ " -391S	,,	390v	"	1 1
R334	△ " -390S	,,	39Ω	"	1 1
R335	QRD141J-332SY	C. Resistor	3.3kΩ	· · · · · · · · · · · · · · · · · · ·	1
RA04,B04	QRD147J-155S	C. nesistor	3.3K32 1.5MΩ	"	
RA05,B05	" -122S	"	1.3ivis2 1.2kΩ	,,	2 2 2
RA06,B06	QRD149J-221S	Unflammable Resistor	220Ω	,,	5
RA08,B08	QWY123-019	Wire			2
RC02,C03	QRD147J-123S	C. Resistor	12kΩ	"	2
.,002,000	QWY123-019	Bus Wire	10 mm		23
	477 120 010	Day 11110	1 .5		

Ref. No.	Parts No.	Parts Name	Rem	Q'ty	
C101,201	QEB41EM-106M	E. Capacitor (Low Leak)	10μ F	25V	2
C102,202,143,243	QCS11HJ-391	F.C. Capacitor	390pF	50V	4
C103,203	QEE51EM-475	E. Capacitor (Tantal)	4.7μ F	25V	2
C104,204,146,246	QCS11HJ-101	F.C. Capacitor	100pF	50V	4
C105,205	QFM41HJ-183	Mylar Capacitor	0.018μ F	50V	2
C106,206	QCS11HJ-680	F.C. Capacitor	68pF	50V	2
C107,207	QET40JR-227N	E. Capacitor	220μ F	6.3V	2
C108,208,120,220,125	QET41HR-475N	",	4.7μF	50V	13
225,301,303,305,C14	CC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			•	'
B14,127,227					
C109,209	QET41ER-336N	,,	33μ F	25V	2
C110,210	QFM41HJ-153	Mylar Capacitor	0.015μ F	50V	2
C111,211,131,231	QFM41HJ-152	","	0.0015μ F	50V	8
132,232,A02,B02	Q1 W41113-132		0.0010μ1	001	
	QEB41HM-105M	E. Capacitor (Low Leak)	1μ F	50V	6
C112,212,118,218,122,222	QCY41HK-681	F.C. Capacitor	680pF	50V	2
C113,213		r.c. Capacitor	10pF	50V 50V	2 _
C114,214	OCS11HJ-100	F. Caracitan (1 and 1 and)			2
C115,215	QEB41EM-335M	E. Capacitor (Low Leak)	3.3μF	25V	2
C116,216	QCS11HJ-471	F.C. Capacitor	470pF	50V	2
C117,217	QET41AR-107N	E. Capacitor	100μF	10V	2
C119,219	QET41ER-107N	"	100μ F	25V	2
C121,221,123,223,129,	QET41HR-105N	l "	1μF	50V	11
229,133,233,141,241,02					
		,,			
C124,224	QET41ER-225N	" "	2.2μF	25V	2
C126,226,302,307,A11,B11	QET41HR-335N	"	$3.3\mu\mathrm{F}$	50V	6
				==	
C130,230,140,240	QFM41HJ-182	Mylar Capacitor	0.0018μF	50V	4
C134,234	QFM41HJ-104		0.1μF	50V	2
C135,235,A01,B01	QCS11HJ-201	F.C. Capacitor	200pF	50V	4
C136,236	QFM41HJ-822	Mylar Capacitor	$0.0082 \mu F$	50V	2
C137,237,A05,B05	QFM41HJ-332	"	$0.0033 \mu F$	50V	4
C138,238,139,239	′′ -562	"	0.0056μF	50V	4
C144,244	QCS12HJ-201	F.C. Capacitor	200pF	50V	2
C145,245	QCY12HK-221	"	220pF	50V	2
C150	QEE41EM-105B	E. Capacitor (Tantal)	1μF	25V	1
C304,C01	QET41HR-106N	E. Capacitor	10μ F	50V	2
C306	QET41ER-476N	"	47μF	25V	1
C308,310	QET41AR-476N	"	47µF	10V	1
C309	QET41ER-477N	E. Capacitor	470μ F	25V	1
CA03,B03	QFM41HJ-273	Mylar Capacitor	$0.027_{\mu}F$	50V	2
CA04,B04	QFM41HK-222	"	$0.0022_{\mu}{\sf F}$	50V	2
CA06,B06	QFM41HJ-103	"	0.01μ F	50V	2
CA07,B07,A08,B08	QEB41HM-105M	E. Capacitor (Low Leak)	1μ F	50V	4
CA09,B09	" -334M	"	0.33µF	50V	2
CA 10, B10	QEB41EM-475M	"	4.7µ F	25V	2
CA12,B12	QET41ER-107N	E. Capacitor	100µ F	25V	2
CA 13, B13	" -477N	"	470µ F	25V	2
C C02	QET41HR-105N	,,	1µF,	50V	1
VR101,201	QVP8A0B-024	V. Resistor	20 kΩ		2
VR 102,202	" -054	"	50 kΩ		2
VR 105,205	′′ -023	"	$3k\Omega$		2
VR301,401	QVP4A0B-224	"	220kΩ		2 2 2
VR302,402,303,403	′′ -104	"	100kΩ .		4
L101,201,102,202	VQP0001-183S	Inductor	• = = •		4
L103,203	VQP001-682S	"			2
L104,204	TAC00320-01	"	18mH		2 2
- · O-1,20 r	E43727-002	Tab			36
	QMV5005-006	Plug Ass'y			1
	VMZ0005-001	Post Pin	Mute off		2
	1112000-001	1	1710 00 011		

Ref. No.	Parts No.	Parts Name	Remarks	Q'ty
X101,201,102,202,105	2SC1845 (E.U)	Si. Transistor		6
205	2SC945L (QA,PA)	"		8
X103,203,106,206,107 207,110,210	250945L (QA,FA)			
X104,204,109,209	2SC2001 (K.L)	"		4
X108,208	2SC945L (PA,KA)	"		2
X111,211	2SC923 (U)	"		2
X301,303,C01	2SC945L (QA,PA)	"		3
X302,304	2SC945L (PA,KA)	"		4
X305,306	2SA733A (P.K)	"		2
ICA01,B01	AN7362N	Super ANRS IC		2
IC301		IC		1
1C302	LB1436	IC (MPI)		1
D103,203,104,204	0A90	Ge Diode		4
D301,303~312,313	MA150	Si. Diode		12
D302	RD5,6E (B)	Zener Diode		1
	VSK5D24-211	Relay		1
	VMJ5002-001	Mic & HP Jack Ass'y		1
S102	QSL2309-002	Lever SW	ANRS	1 1
S101	QSL8409-001		Tape Select	1
VR103	QVL6A7A-054VA	V. Resistor	REC	1
VR104	QVD8A2A-014V	<i>"</i>	PB	1

Computer P.W. Board Parts List

 $\ensuremath{\underline{\wedge}}$ parts are safety assurance parts. When replacing those parts, make sure to use the specified one.

Ref. No.	Parts No.	Parts Name		narks	Q'ty
(Reset)					
	OBD14114736V	C Pasiatan	471.0	1 /4141	
RK01	QRD141J-473SY	C. Resistor	47kΩ	1/4W	1
RK02	" -103SY		10 kΩ	"	1
RK03	" -183SY	"	18kΩ	"	1
RK04	" -392SY	"	3.9kΩ	"	1
RK05	" -104SY	"	100kΩ	"	1
CK01	QET41CR-336N	E.Capacitor	33µF	16V	1
CK02	QET41HR-335N	z.oupacitoi	3.3μF	50V	
		,,		5U V	1
CK03	10014		1μF		1
DK01	MA150	Ge Diode			1
DK02	RD6,2E (B3)	Si, Diode			1
XK01,02	2SC945L (PA,KA)	Si, Transistor			2
RK06,K07,K09,K10,K11		C. Resistor	30kΩ	1/4W	5
				.,	
RK08	" -471SY	"	470Ω	"	1
	-4/101	,,		"	1
RK12	QRD141J-682SY	"	6.8kΩ		1
RK13	-50151		560Ω		1
R K 14	" -102SY	"	1kΩ	"	1
RK15~K17	" -273SY	"	27kΩ	"	3
RK39	" -222S	"	2.2kΩ	"	1
RK20	" -562SY	,,	5.6kΩ	"	1
RK21		"			<u> </u>
	-10131		100Ω		1
CK11	QCF11HP-102	C. Capacitor	0.001μF	50V	1
CK04	QFM41HK-104	Mylar Capacitor	0.1μF	50V	1
CK05,K06	QCS11HK-101	Ceramic Capacitor	100pF	50V	2
CK07	QFM41HK-103	Mylar Capacitor	0.01μF	50V	1
DK03,K04,K05,K07	MA150	Si. Diode	υ.υ ιμι		6
	WIA 130	Ji. Diode			0
K08,K09	00544110 400		0.04.5	5 a) (
CK09,K10,K12	OCF11HP-103	C. Capacitor	0.01µF	50V	3
ICK02	HD7400	IC			1
ICK03	HD7404	"			1
(Power)					
R1	QRD141J-822SY	C. Resistor	8.2kΩ	1/4W	1
		C. Nesistor		1/400	1
R2	△ QRD149J-330S	,,	33Ω	"	1
R3	QRD141J-102SY		1kΩ		1
R4	△ QRD149J-151S	"	150Ω	"	1
C1~C4,7,8		F.C. Capacitor	0.01µF	50V	6
C5,6	△ QET41ER-108N	E. Capacitor	1000µF	25V	2
C9	△ QET41HR-477N	","	470µF	50V	1 1
C10	QET41ER-107N	,,	100μF	25V	i
		0.00			
C11	QCF11HP-102	C. Capacitor	0.001μF	50V	1
C12	△ QET41HR-106N		10μF	"	1
C13,15	QET41CR-477N	"	470μF	16V	2
C14,16,17	QET41AR-477N	"	470μF	10V	3
D1~D4,D5~D8	△ 10E2-B	Si. Diode			8
D9	⚠ RD24E (B3)	Zener Diode			1
D10.11	RD5,6E (B)	"			2
X1		C: Transister			4
	↑ 2SC945L (PA,KA)	Si. Transistor	4.04		1
F1,F2	△ QMF51A2-IR6BS	Fuse	1.6A		2
F3,F4	⚠ QMF51A2-R50BS	"	500mA		2 2 8
	TAZ000331-02	Fuse Holder			8
(Mecha. Control)					
RK22,23	QRD141J-332SY	C. Resistor	3.3 k Ω	1/4W	2
RK24,25	" -272SY	"	3.3kΩ 2.7kΩ	1/4 VV	2
	-2/231	,,		"	
RK26,K27	-33131	"	330 Ω	,,	2 3
RK28,K30,K37	-4/131		470Ω		3
RK31,32,33,38	" -682SY	"	6.8kΩ		4
RK34	" -273SY	"	27kΩ	"	1
RK35	" -102SY	"	1kΩ	"	1
RK36	" -104SY	"	100kΩ	"	1
RK27	" -271SY	"	270Ω	"	li
	-27 13 1		27032		
LK01	VQZ0010-001	OSC Coil			1 1
CK08	QLS11HK-681	C. Capacitor	680pF	50V	1
CK 13	QEW21HA-335	E. Capacitor	3.3µF	"	1
ICK01	UPD546C-132	IC .			1
	2SC945L(QA,PA)	Si. Transistor			5
XK03~K07					

Ref. No.	Parts No.	Parts Name	Rem	arks	Q'ty
(Bias Control)					
R701,708	△ QRD149J-100S	C. Resistor	10μ F	1/4W	2
R702~707	QRD141J-473SY	"	47kΩ	"	6
R709	△ ORD149J-331S	Unflammable Resistor	330 Ω	"	1
R710	QRD141J-332SY	C. Resistor	3.3 k Ω	"	1
R711~713,718,737	" -103SY	"	10kΩ	"	5
R714	" -101SY	"	100Ω	"	1
R715,720	" -472SY	"	4.7kΩ	"	2
R716,729	" -333SY	,,	33kΩ	"	2
	-33351 '' -223SY	,,	22kΩ	"	
R717	-22331	,,		,,	1
R719,733	-00231	,,	6.8kΩ	,,	2
R721	-10001	,,,	15kΩ	,,	1
R722~727,730,731,	" -273SY		27 kΩ	••	10
732,734					
R728	" -222SY	"	2.2kΩ	"	1
R735	" -683SY	"	68kΩ	"	1
R736	△ QRD149J-470S	Unflammable Resistor	47Ω	"	1
R738	QRD143J-103S	C. Resistor	10kΩ	"	1
R739	" -562S	"	5.6kΩ	"	1
	VMZ0005-001	Tab	Bias		1
C701,711	QFP82AJ-682	Polypropylene Capacitor	0.0068μF		2
C702	QET41ER-226N	E. Capacitor	22 _µ F		1
			0.022μF		1
C703	QFP82AJ-223	Polypropylene Capacitor		FOV.	
C704,707,708	QFM41HK-103	M. Capacitor	0.01μF	50V	3
C705,706	QFM41HJ-472	M. Capacitor	0.0047µF	,,	2
C709	QFP82AJ-223	Polypropylene Capacitor	0.022µF		1
C710	QFM41HK-104	M. Capacitor	0.1μF	50V	1
C714	QET41HR-105N	E. Capacitor	1μF	50V	1
C715	QET41CR-227N	"	220μF	16V	1
L701	VQH1009-011	OSC Coil			1
L702	VQH1009-003	"			1
L703,704	VQP0001-102	Inductor			2
D704	RD4.3E (B3)	Zener Diode			1
D701,702,703	△ MA150	Si. Diode	 		3
X701~707	2SC945L (PK,KA)	Si. Transistor			7
X701~ 707 X708		Si, Transistor			í
	△ 2SD471 (LA,KA)	Si. Transistor			
X709~715	2SC945L (QA,PA)				7
IC701	UPD4051BC or	IC			1
	MSM4051				
(Filter)					_
RF01,F04,F05,F07,	QRD141J-223SY	C. Resistor	22 kΩ	1/4W	6
F10,F11					
RF02,F06	" -103SY	"	10kΩ	"	2
RF03,F08	" -562SY	"	5.6kΩ	"	2
RF05	" -223SY	""	22 kΩ	` <i>H</i>	1
RF09	" -102SY	"	1kΩ	,,	1
RF13,14,15	" -272SY	"	2.7kΩ	"	3
CF01	QFM41HJ-822	Mylar Capacitor	0.0082µF	50V	1
CF02	" ·102	"	0.0002µ1	30 v	li
CF03		"		"	
	-2/3	"	0.027μF	,,	1 1
CF04	QFM41HK-474		0.47μF,		1
LF01,F02	VQP0001-183S	Inductor			2
LF03	" -473				1
VRF01,F02,F03	QVP8A0B-014	V. Resistor			3
(A/D Convertor)					
R801	QRD141J-273SY	C. Resistor	27kΩ	1/4W	1
R802	" -562SY	C. Nesistoi	5.6kΩ	1/400	1
	-30231	"		"	6
D002 004 042 040	// 1000\/				
R803,804,812,818,	" -103SY	,,	10kΩ		0
820,824	-10331			.,	
820,824 R805	" -124SY	"	120 kΩ	,,	1
820,824	-10331			11 11	

Ref. No.	Parts No.	Parts Name	Rem	arks	Q'ty
R810,821	QRD141J-392SY	C. Resistor	3.9kΩ	1/4W	2
R811	" -153SY	"	15kΩ	"	1
R813	" -223SY	"	22kΩ	<i>n</i>	1
R814	" -681SY	" "	680 ₪	"	1
R815,819	" -392SY	"	3.9kΩ	"	2
R816	-2/35Y	,,	27kΩ	"	1 1
R817	-10131	,,	100Ω	"	1 1
R822 R823	" -563SY QRD147J-122S	,,	56kΩ 1. 2 kΩ	"	1 1
R827	QRD147J-334S	"	330kΩ	"	'1
C801	QEB41HM-334M	E. Capacitor	0.33 _µ F	50V	 i -
C802	QFM41HJ-224	M. Capacitor	0.22μF	3,,,	l i
C803	QET41HR-105N	E. Capacitor	1μF	"	1 1
C804	" -475N	"	4.7μF	"	1
VR801	QVP8A0B-014	V. Resistor	10kΩ	"	1
IC801	UPD4066C	IC			1
IC802,803	AN6552	"			2
D801	1S2075K-23	Si. Diode			1
X801,802	2SC945L (QA,PA)	Si. Transistor			2
X804	2SA733A (P,K)	"			1
X805	2SK 105H	,			1
D802	MA150	Si. Diode			1 1
(Rec Amplifier)					
R501,601,510,610	QRD141J-472SY	C. Resistor	4.7kΩ	1/4W	6
517,617	4110 47201	0. 1103/3001	1,7,1,42	.,	*
R502,602,521	" -223SY	,,	22 kΩ	"	3
R503,603,518,519	" -562SY	"	5.6kΩ	"	4
R504,604,516,616	" -123SY	"	12kΩ	"	4
R505,605	" -393SY	"	39 kΩ	"	4 2
R506,606	" -822SY	"	8.2kΩ	"	2
R507,607	" -392SY	"	3.9 k Ω	"	2 2 2
R508,608	" -272SY	"	2.7kΩ	"	2
R509,609,525,625	" -222SY	"	2.2kΩ	"	4
R513~515	" -273SY	"	27kΩ	"	3
R520	" -222SY	"	2.2kΩ	"	1
R522,622	10431	" "	180kΩ	"	2
R523,623	-50451	"	560kΩ 1kΩ	,,	2 2
R524,624	" -102SY	,,	330Ω	"	1 1
R526 R527	QRD141J-101SY	+ "	100Ω	77	1 1
VR501,601	QVP8A0B-024	V. Resistor	20kΩ		2
C501,601,502,602	QET41HR-475N	E. Capacitor	4.7μF	50V	4
C503	QET41ER-107N	"	100µF	25V	1 i
C504	QET41HR-106N	"	10μF	50V	1 1
IC501,601	UPD4051BC	IC			2
	or MSM4051				
X501,601	2SC945L (PA,KA)	Si, Transistor			2
X502	2SC945L (QA,PA)	"			1
X503,603	2SC2001 (K.L)	"			2
D501	RD6.2E (B3)	Zener Diode			1
D502,503	MA150	Si. Diode			2
(Equalizer Control)					
R550,650	QRD141J-181SY	C. Resistor	180Ω	1/4W	2
R551,651,552,652	" -273SY	"	27kΩ	"	6
553,653		l			1 _
C510,610	QFM41HJ-682	M. Capacitor	0.0068μF	50V	2
C511,611	" -103 " 123	",	0.01μF	"	2 2 2
C512,612	123	" "	0.012µF	"	2 2
C513,613	-022	"	0.0082μF	"	2
C514,614	" -472 " -332	"	0.0047µF 0.0033µF	"	2
C515,615	-332 " -102	"	0.0033μF 0.001μF	"	2
C516,616	" -562	"	0.001μF 0.0056μF	"	2
C517,617	-502	1	0.0030μ1		<u> </u>

Ref. No.	Parts No.	Parts Name	Remarks	Q'ty
IC502,602	UPC4051BC or MSM4051	IC		2
	VKS3108-001 VKS3000-001	P.W.B. Holder	for CPU	1 3
	E43727-002	Tab		54
CN501 CN-B	QMV5005-003 "-009	Connector	E. Headwires (EQ ~ BIAS)	1
CN-A CN-C	" -004 QMV5005-008	"	(SENS) (TEST)	1 1
	QWY123-019 V44611-006	BUS WIRE BUS WIRE	10 mm 7.5 mm	66 1

Mecha Control P.W. Board Parts

Mechanical Control P.W. Board Parts List

 $\ensuremath{\underline{\Lambda}}$ parts are safety assurance parts. When replacing those parts, make sure to use the specified one.

Ref. No. Parts No. Parts Name Remarks O'Ty R51 ORD147J-2235 P.W. Eoard 1 R52 ORD147J-2235 C. Resistor 33km 1/4m 11 1 R53,89,87~89 ORD147J-2235 47km 11 1 R64,65 ORD147J-22331 2709 2 R65 ORD147J-2735 3209 2 R67,60,70,74 ORD147J-1025 47km 11 6 R61,65,97 ORD147J-1025 47km 11 6 R61,65,97 ORD147J-1025 47km 11 6 R62,97 ORD147J-1625 7km 11 1km 11 R63 ORD147J-1625 7km 11 1km 11 R64,66,67 ORD147J-1635 7km 1000 2km 11 R71,75 ORD147J-1635 7km 500 1km 11 R79 A ORX099J-391 7km 11 1km 11 1km 11 R79 A ORX099J-391 1km 11 1km 11 1km 11 R82,84,85 ORD147J-1245 1km 11 1km 11 1km 11 <th></th> <th></th> <th></th> <th>ui is, make sule t</th> <th>o use the spe</th> <th>ecitiea one</th>				ui is, make sule t	o use the spe	ecitiea one
A VMWS26-0-003	Ref. No.	Parts No.	Parts Name	Rema	arks	Q'tv
R51 QRD1471-223S C. Resistor 33kΩ 1/4W 1 R52 69.87~89 QRD1471-473S " 2.2kn " 5 R54,65 QRD1471-271S " 2.20m " 5 R66 QRD1473-331S " 3300 " 1 R67,60,70,74 QRD1471-102S " 4.7km " 6 R61,65,97 QRD1471-102S " 4.7km " 6 R62 QRD1471-1273S " 27km " 1 R63 QRD1471-162S " 1.5km " 1 R63 QRD1471-162S " 1.5km " 1 R64 GF QRD1471-162S " 1.5km " 1 R68 QRD1471-162S " 1.0km " 3 3 R79 MGR01471-162S " 1.0km " 3 3 1 1 1 1 1 1 1 1		△ VMW2526-003	P.W. Board			
R52 GRD147J-473S 34Rm 14Mm 1 R53,69,87~89 GRD147J-22S 22Km 1 2 R56 GRD147J-271S 22Km 2 2 R66 GRD147J-271S 300m 1 2 R61,65,97 GRD147J-122S 47Km 6 6 R62 GRD147J-12S 7 47Km 3 R63 GRD147J-12S 7 47Km 3 R63 GRD147J-16S 7 15Km 1 R64 GR GRD147J-16IS 7 10km 3 R68 GRD147J-16IS 7 10km 3 R77,796 GRD147J-16IS 7 10km 3 R77,796 GRD147J-16SS 7 10km 3 R79 A ORX039J-931 OMF Resistor 22n 1/2W R80 A ORX039J-931 OMF Resistor 12m 1 R81 A ORD147J-16SS 7 12km 3 R82						'
R52, 89, 87-89		I	C. Resistor	33kΩ	1/4W	1
R54,55						1 -
R85				2.2kΩ	"	
R57-60.70,74				270Ω	"	
R61,65,97 GRD147J-102S " 4,7kΩ " 6 862 GRD141J-273S " 1kΩ " 3 3 3 3 3 3 3 3 3			"	330 Ω	"	1
R62			"			
R63 GR01471-823S GR01471-162S GR01471-163					"	
R64,66,67	1					1
R68 R71,75 R76,77,96 R74,1-101S R71,75 R76,77,96 R74,1-561S R76,77,96 R78 A GRX393-391 A			i e	82kΩ		1
R71,75						3
R76,77,96			i			
N/O						2
R79						
R80		△ QRX039J-391				1
R82,84,85 ORD147J-882S ORD147J-122S V44611-008 U44611-008 U744611-008 U744611-008 U744611-008 U744611-008 U744611-008 U744611-008 U74611-108 U744611-008 U74611-108 U7461		A ORD14011F00	Fusible Resistor			
R83						
R90,91			C. Resistor			3
R80,91	1.00		,,	1.2kΩ	"	1
R92	R90.91			4.01		1
R93			Eusible Posietas		1/4W	
R94					4 (414)	
R95						
CSD,51,52,53,56,64 OCF11HP-103 OCF11H			"			1
C54		1	F.C. Capacitor			1
C55			Non-polarized E. Capacita	U.U ΙμΓ 1Ε		
C57 C58 C58 CET41UR-476N C59 CET41VR-108N C60 CET41VR-108N C60 CET41VR-108N C61 CET41HR-105N C62 CET41CR-476N C63 CET41HR-105N C65 CET41VR-105N C66 CET41HR-105N C66 CET41HR-105N C67 C68 CET41HR-106N C68 CET41HR-106N C69 CET41HR-106N C69 CET41HR-106N C60 CET41HR-106N C60 CET41HR-106N C61 CET41HR-106N C62 CET41CR-476N C63 CET41HR-106N C64 CET41HR-106N C65 CET41CR-476N C65 CET41CR-476N C66 CET41HR-106N C67 C67 C68 CET41HR-106N C68 CET41HR-106N C69 CET41HR-105N C69 CF1 CF1 CF1 CF1 CF2 CF2 CF2 CF3	C55		F Canacitor			
C58 OET4QJR-476N QET41VR-108N QET41VR-108N QET41HR-105N E. Capacitor 47μ F 1000μ F 220μ F 220μ F 6.3V 1000μ F 35V 1 C61 QET41HR-105N QET41HR-105N " 1μ F 47μ F 35V 1 C62 QET41HR-105N QET41HR-105N " 47μ F 47μ F 35V 1 C65 QET41HR-106N QET11HP-103 " 1μ F 50V 1 C66 QET41HR-106N QCF11HP-103 F.C. Capacitor 0.01μ F 50V 1 L51,52 X51,53,55>~57, 62,64 T41572-001 2SC945L (PA,KA) Inductor Si Transistor 2 X52,54 X58,60 Δ 2SD571 (LA,KA) Δ 2SD571 (LA,KA) " 2 X59,61 Δ 2SC2001 (L,K) " 2 X63 2SC945L (PA,KA) " " 1 VMW2526-003B VMW2526-003C P.W. Board " Mecha. Con. Reel Motor 1 IC51 IC52 DN6835 MA150 Si Diode 1 D52,53,54,55,56,61, A22,65 D57 RD6.2E (B3) Si Diode 3 D544 RD6.2E (B3) Zener Diode 1 CPN53 QMV5004-007 (CPU) " (Knob SW) 1	C57		", Capacitor			1 -
C59 C60 C61 C61 C62 C62 C62 C63 C64 C65 C65 C65 C65 C66 C66 C66 C67 C67 C66 C67 C67 C68 C69 C69 C69 C69 C69 C60	C58		E. Capacitor			1 -
C60 QET41ER-227N " 220μF 25V 1 C61 QET41HR-105N " 1μF 50V 1 C62 QET41CR-476N " 47μF 35V 1 C63 QET41HR-105N " 1μF 50V 1 C65 QET41HR-106N " 10μF 50V 1 C66 QCF11HP-103 F.C. Capacitor 0.01μF 50V 1 L51,52 T41572-001 Inductor 2 1 2 2 2 2 2 2 2 2 2 2 4 2 <t< td=""><td>C59</td><td></td><td></td><td></td><td></td><td></td></t<>	C59					
C61 C62 C62 C63 CET41HR-105N C65 C65 CET41HR-106N C66 C66 CET41HP-103 CFC66 CC67 CC67 CC67 CC67 CC68 CET41HP-103 CC68 CC67 CC69 CC69 CC69 CC69 CC69 CC69 CC69			"			1
C62 C63 C64 C65 C65 C65 C66 C66 C66 C66 C66 C66 C67 C67 C67 C67			"			
C63 QET41HR-105N " 1μF 50V 1 C66 QET41HR-106N " 10μF 50V 1 L51,52 T41572-001 Inductor 2 2 7 50V 1 X51,53,55~57, 62,64 2SC945L (PA,KA) Si Transistor 2 7 2 X52,54 Δ 2SD471 (LA,KA) " 2 2 2 2 X59,61 Δ 2SC2001 (L,K) " " 2 2 X59,61 Δ 2SC2001 (L,K) " 2 2 X63 2SC945L (PA,KA) " " 2 X63 2SC945L (PA,KA) " " 1 VMW2526-003B P.W. Board Mecha. Con. Reel Motor 1 IC51 M54886P IC 1 IC52 DN6835 Hall IC 1 Si Diode 8 8 62,65 MA150 Si Diode D57 RD6.2E (B3) Si Diode D64		QET41CR-476N	"			1 '
C66 C66 QET41HR-106N QCF11HP-103 " F.C. Capacitor 10μ F 0.01μ F 50V 50V 1 0.01μ F 50V 1 50V L51,52 X51,53,55~57, 62,64 X52,54 2SC945L (PA,KA) 2SD571 (LA,KA) X58,60 Inductor 2SC945L (PA,KA) X59,61 7 X52,54 2SD571 (LA,KA) X59,61 3 X59,61 2 X52001 (L,K) X63 " 2 X63 2SC945L (PA,KA) X63 " 1 VMW2526-003B VMW2526-003C MVW2526-003C MS4886P P.W. Board YMW2526-003C Hall IC Mecha. Con. Reel Motor 1 X62 1 X62 D52,53,54,55,56,61, 62,65 D57 MA150 Si Diode 1 X62 1 X63 1 X64 X62 X63 X64 X64 <td< td=""><td></td><td></td><td>"</td><td>•</td><td></td><td></td></td<>			"	•		
C66 QCF11HP·103 F.C. Capacitor 0.01μF 50V 1 L51,52 X51,53,55~57, 62,64 T41572-001 Inductor 2 X51,53,55~57, 62,64 Δ 2SC945L (PA,KA) Si Transistor 2 X58,60 Δ 2SD471 (LA,KA) " 2 X59,61 Δ 2SC2001 (L,K) " 2 X63 2SC945L (PA,KA) " Mecha. Con. 1 VMW2526-003B VMW2526-003C " Reel Motor 1 IC51 M54886P IC 1 Reel Motor 1 IC52 DN6835 Hall IC 1 1 D52,53,54,55,56,61, MA150 Si Diode 1 8 D57 RD6.2E (B3) Si Diode 1 3 D64 RD6.2E (B3) Si Diode 3 3 7P CN51 QMV5004-007 Connector (R.C+1) 1 1 9P CN53 QMV5005-009 " (Knob SW) 1 5P CN54 Tab (MEx.) Tab (MEx.) " (Memory S			"			
L51,52			F.C. Capacitor			
X51,53,56~57, 62,64			Inductor			2
X52,54			Si Transistor			
X59,61			Si Transistor			
X63 ZSC2001 (L,K)		△ 2SD471 (LA,KA)	"			2
VMW2526-003B		△ 2SC2001 (L,K)				
C51	X63	2SC945L (PA,KA)	"			
C51) //M///0500 0000				
C51			P.W. Board			
DISSUMPTION	LC51		"	Reel Motor		1
D52,53,54,55,56,61, MA150 Si Diode 8 D57 RD6.2E (B3) Si Diode 1 D58,59,60 10E1-B Si Diode 3 D64 RD6.2E (B3) Zener Diode 1 7P CN51 QMV5004-007 Connector (R.C+1) 1 8P CN52 QMV5004-008 " (CPU) 1 9P CN53 QMV5005-009 " (Knob SW) 1 5P CN54 QMW5004-005 " (Memory SW) 1						1
62,65 D57 RD6.2E (B3) Si Diode 1 D58,59,60 D64 RD6.2E (B3) Si Diode Zener Diode 7P CN51 QMV5004-007 Connector (R.C+1) 8P CN52 QMV5004-008 PCN53 QMV5005-009 W(Knob SW) The (Micro) Si Diode 1 Connector (R.C+1) (CPU) (CPU) (Knob SW) 1 F40130 001 Tel (Micro)						1
D57 RD6.2E (B3) Si Diode 1 D58,59,60 10E1-B Si Diode 3 D64 RD6.2E (B3) Zener Diode 1 7P CN51 QMV5004-007 Connector (R.C+1) 1 8P CN52 QMV5004-008 " (CPU) 1 9P CN53 QMV5005-009 " (Knob SW) 1 5P CN54 QMW5004-005 " (Memory SW) 1		WA 150	9i Diode			8
D58,59,60 10E1-B Si Diode D64 RD6.2E (B3) Zener Diode 1 7P CN51 QMV5004-007 Connector (R.C+1) 1 8P CN52 QMV5004-008 " (CPU) 1 9P CN53 QMV5005-009 " (Knob SW) 1 5P CN54 QMW5004-005 " (Memory SW) 1		BD6 2E (B3)	Si Diada			
D64 RD6.2E (B3) Zener Diode 1 7P CN51 QMV5004-007 Connector (R.C+1) 1 8P CN52 QMV5004-008 " (CPU) 1 9P CN53 QMV5005-009 " (Knob SW) 1 5P CN54 QMW5004-005 " (Memory SW) 1						
7P CN51 QMV5004-007 Connector (R.C+1) 1 8P CN52 QMV5004-008 " (CPU) 1 9P CN53 QMV5005-009 " (Knob SW) 1 5P CN54 QMW5004-005 " (Memory SW) 1						
8P CN52 QMV5004-008 " (CPU) 1 9P CN53 QMV5005-009 " (Knob SW) 1 5P CN54 QMW5004-005 " (Memory SW) 1			1 - 1			1
9P CN53 QMV5005-009 " (Knob SW) 1 5P CN54 QMW5004-005 " (Memory SW) 1						
5P CN54 QMW5004-005 " (Memory SW) 1						
E40120 001 T-b (Wish)					-	
E40130-001 Tab (Wire) 5			(Memory 3vv)			1
	E40130-001	Tab (Wire)				5

Other P.W. Board Parts

Capstan motor

Power transistors

LED indicators

Slide switch

Hall IC

Start switch

Power switch

Reel motor

Timer switch

Back light

Memory switch

Other P.W. Board Parts List

Ref. No.	Parts No.	Parts Name	Remarks	Q'ty
(Power St	witch)			
S1 S1 S1 CS1 CS1	⚠ VMW4577-001 ⚠ QSP1110-222 ⚠ QSP1110-221 ⚠ QSP1110-226 ὧ QCZ9014-103 ⚠ QCZ9015-103 E40130-001	P.W. Board Power Switch Power Switch Power Switch C. Capacitor C. Capacitor Tap	KD-A66J KD-A66B KD-A66U KD-A66J 0.01μF	1 1 1 1 1
(Memory D63	Switch) VMW4580-002 MA150 QSS2301-102	P.W.B. Si Diode Slide Switch		1 1
(Timer Sw	vitch) VMW1537-003C QSS2301-102	P.W.B Slide Switch		1 1
(Power Su X2,3 X4	pply Transistors) VMW1537-003B 2SD743 (Q.R) 2SD882 (P.Q) VYH4519-001 VYH4520-001	P.W.B Si. Transistor ,,, Heat Sink (1) Heat Sink (2)		1 2 1 1
(Back Ligh	nt) VMW4566-001 QLP3601-003	P.W.B Lamp		1 1
(Mecha. C	ontrol Switch) — Touch VST0005-002 SLP-114BV SLP-214BV	Switch Ass'y — Switch Unit Ass'y LED LED	REC Play, Pause	1 1 2
(Start Swi	tch) VMW4582-001	P.W.B		1
(Display) LD1~5,7~	VMW1537-003E ⁄9 GL-9PR2	P.W.B LED	Rec x 1 Multi-peak Level x 5 Computer (Error) x 1	1 9
LD6	GL-9NG2	LED	ANRS x 2 Green Computer (Run)	1
(Hall IC) IC52	VMW2526-003B DN6835	P.W.B Hall IC		1 1
(Reel Moto	or) VMW2526-003C T41572-001 QET41HR-105N	P.W.B Inductor E. Capacitor		1 2 1
(Slide Swit	ch) VMW4522-001 QSP0029-001 QMV5004-004	P.W.B (L) Slide Switch Connector		1 2 1

Packing

Positions of Controls and Switch Knobs at Renew Packing

Power Switch : OFF
Timer Switch : OFF
ANRS Switch : ON
Tape Select Switch : SA/CrO2
Input Level Control : min.
Output Level Control : max.
Memory Switch : OFF

Packing Material Parts List

Ref. No.	Parts No.	Parts Name	Remarks	Q'ty
1~2	VPA3137-00B	Packing Case Ass'y	KD-A66A/B/E/J/U	1 set
· ,, ⁻	" -00C	"	KD-A66C	1 set
1	VPA3137-004	Case	KD-A66A/B/E/J/U	1
i 1	·· -005	n	KD-A66C	1
<i>i</i>	VPH1205-001	Cushion	Left	1
2	VPH1206-001	,,	Right	1
_	OPGA060-06505	Envelope	for Set	1
	AP4056A-036	"	for Power Cord, Provided Cord	2
3	QPGB024-03404	"	for Instruction Book	1
	TKS000501-01	Sheet	for Set	1

Accessories

Parts No.	Parts Name	Remarks	Q'ty
VMP0002-00A	PIN Cord	KD-A66A/C/J/U	2
CN-201	DIN Cord	KD-A66B/E	1
VYA4001-00A	Head Cleaning Stick		1
VNN0055-301	Instruction Book		1
BT20029B	Warranty Card	KD-A66A	1
VND4013-001	Warning Label	for Disconnection, KD-A66A	1
T46328-003	Caution Label	for Voltage Selector, KD-A66A	1
BT20013C	Guarantee Certificate	KD-A66B	1
TLJ000443-01	Seal	Made in Japan, KD-A66B	1
1	BEAB Label	KD-A66B	1
VND4013-001	Warning Label	for Disconnection, KD-A66B/E	11
QZL1002-003BS	",	for 2-pin Power Cord, KD-A66B	1
T46328-003	Caution Label	for Voltage Selector, KD-A66B	1
VNC5004-001	Mark Sticker	DIN45 500, KD-A66B/E	1
BT20025C	Warranty Card	KD-A66C	1
T44362-001	CSA Marker	KD-A66C	1
TLT000505-01	UL/CSA Caution Label	KD-A66C/J	2
T46328-004	Caution Label	for Voltage Selector, KD-A66E	1
BT20032B	Warranty Card	KD-A66J/U for PX, EES	1
BT20042	Special Reply Card	KD-A66J	1
E7795-1	EP Mark	KD-A66U for PX, EES	1
V04062-001	Siemens Plug	KD-A66U	1
T46328-001	Caution Label	KD-A66U	1