Uczenie maszynowe dla szeregów czasowych

kodo/amacz

Ros Apostol

Agenda

- 1. Dlaczego szeregi czasowe są ważne?
- 2. Czym się różni uczenie maszynowe dla szeregów czasowych od regresji?
- 3. Czy jesteśmy pewni, że nasze dane to szeregi czasowe?
- 4. Co robić, jak nasze dane to nie szeregi czasowe, a muszą być?
- 5. Feature Engineering jak wzbogacić nasze dane?
- 6. Naiwna prognoza czy nasz model uczenia maszynowego w ogóle ma sens?
- 7. Dlaczego walidacja krzyżowa nie działa?
- 8. Czy tradycyjne metody statystyczne już do niczego?
- Kiedy lepiej się już nie da?

Po co nam szeregi czasowe?

- Prognozy gospodarcze
- Prognozy sprzedażowe
- Analizy rynku akcji / surowców / nieruchomości
- Prognozy plonów
- Prognozowanie zużycia gazu
- Monitorowanie działanie sprzętu technologicznego

Podstawa kluczowych i strategicznych decyzji

Po co nam ML dla szeregów czasowych?

Zalety

- 1. Wyższa dokładność prognoz
- 2. Nieliniowe zależności
- 3. Duża ilość danych, wiele wymiarów
- 4. Wydajność obliczeń

Wady

- 1. ML nie zawsze ma sens
- 2. Problem z tłumaczeniem modeli (tzw. modele czarne skrzynki)

Szeregi czasowe vs. Regresja

Czas jest wszystkim.

Napoleon I

Czas się nie śpieszy - to my nie nadążamy. Lew Tolstoj

Z naprawdę wielkich, posiadamy tylko jednego wroga - czas.

Joseph Conrad

Znane są tysiące sposobów zabijania czasu, ale nikt nie wie, jak go wskrzesić.

Albert Einstein

Szeregi czasowe

Kolejność jest kluczowa

Czy nasze dane to szeregi czasowe?

- Dane zawierają zmienną odzwierciedlająca czas lub kolejność indeks czasowy.
- 2. Dane są posortowane.
- Indeks czasowy ma stabilną częstotliwość.

Tabela 1		Tabela 2		Tabela 3	
Data	Wartość	Data	Wartość	Data	Wartość
2020-01-01	100	2020-01-01	120	2020-01-01	100
2020-01-02	200	2020-01-10	140	2020-01-02	130
2020-01-05	120	2020-01-05	160	2020-01-03	150
2020-01-09	170	2020-01-03	150	2020-01-04	140
2020-01-03	170	2020-01-00	100	2020-01-04	

Jak zmusić dane do bycia szeregiem czasowym?

- 1. Wprowadzić sztuczną kolumnę z kolejnością 1,2,3,4,....
- 2. Posortować indeks czasowy.
- 3. Ponowne próbkowanie resampling z potrzebną częstotliwością.

Resampling - wkładamy brakujące indeksy

Tabela 1			Tabela 2	
Data	Wartość		Data	Wartość
2020-01-01	100		2020-01-01	100
2020-01-02	200		2020-01-02	200
2020-01-04	120	\longrightarrow	2020-01-03	
2020-01-07	170		2020-01-04	120
			2020-01-05	
			2020-01-06	
			2020-01-07	170

Z pustego i Salomon nie naleje - wartości brakujące

- 1. Fill forward wartość brakująca taka jak poprzednia
- 2. Backfilling wartość brakująca tak jak następna
- 3. Interpolacja wartości pośrodku pomiędzy istniejącymi wartościami
- 4. Wartość średnia / mediana

Data	Wartość	Fill Forward	Backfilling	Interpolacja	Srednia
2020-01-01	100	100	100		100
2020-01-02	200	200	200	200	200
2020-01-03		200	120	160	148
2020-01-04	120	120	120	120	120
2020-01-05		120	170	137	148
2020-01-06		120	170	154	148
2020-01-07	170	170	170	170	170

Feature Engineering

"Stosowane uczenia maszynowe to w zasadzie inżynieria zmiennych"

- Andrew Ng, profesor

Wzbogacamy nasze dane

- 1. Opóźnione wartości co było wczoraj, tydzień temu, miesiąc temu?
- 2. **Kroczące statystyki** średnia, mediana, odchylenie standardowe, suma itd. o różnych wartościach "rolling window"
- 3. Trend i sezonowość
- 4. Zmienne związane z datą
 - Miesiąc
 - Dzień tygodnia
 - Czy to weekend?
 - Czy to dzień wolny od pracy?
 - Czy to początek miesiąca / kwartału?
- 5. Różnicowanie

Wartości opóźnione

Kroczące statystyki

Rozkład na trend i sezonowość

Różnicowanie szeregu czasowego

Feature Engineering - Przykład

Data	Wartość	Lag_1	Lag_3	Srednia_3	Dzień tyg.	Weekend
2020-01-01	100	1	-	_	3	C
2020-01-02	200	100	-	-	4	C
2020-01-03	200	200	-	166.7	5	C
2020-01-04	120	200	100	173.3	6	1
2020-01-05	120	120	200	146.7	0	1
2020-01-06	120	120	200	120	1	C
2020-01-07	170	120	120	136.7	2	(

Naiwna Prognoza

Jutro będzie tak jak dzisiaj.

I pojutrze też ...

80

95

Naiwna prognoza - walidacja

Naiwna prognoza najlepszym rozwiązaniem

Naiwna prognoza będzie najlepszym rozwiązaniem, jeżeli szereg czasowy jest błądzeniem losowym (random walk).

- 1) Stopniowo zapadająca autokorelacja
- 2) Niestacjonarność
- Prognoza naiwna najlepszą prognozą

Jak przygotować dane do trenowania?

Data	Wartość	Lag_1	Lag_3	Srednia_3
2020-01-01	100	100	100	166.7
2020-01-02	200	100	100	166.7
2020-01-03	200	200	100	166.7
2020-01-04	120	200	100	173.3
2020-01-05	120	120	200	146.7
2020-01-06	120	120	200	120
2020-01-07	170	120	120	136.7

Data	Wartość				
2020-01-01	100	Wartość	Lag 1	Lag 3	Srednia 3
2020-01-02	200	100	100	100	166.7
2020-01-03	200	200	100	100	166.7
2020-01-04	120	200	200	100	166.7
2020-01-05	120	120	200	100	173.3
2020-01-06	120	120	120	200	146.7
2020-01-07	170	120	120	200	120
	?	170	120	120	136.7

ata	Wartość	Lag_1	Lag_3	Srednia_3	Data	Wartość				
2020-01-01	100	100	100	166.7	2020-01-01	100				
2020-01-02	200	100	100	166.7	2020-01-02	200	Wartość	Lag_1	Lag_3	Sı
2020-01-03	200	200	100	166.7	2020-01-03	200	100	100	100	
2020-01-04	120	200	100	173.3	2020-01-04	120	200	100	100	
2020-01-05	120	120	200	146.7	2020-01-05	120	200	200	100	
2020-01-06	120	120	200	120	2020-01-06	120	120	200	100	
2020-01-07	170	120	120	136.7	2020-01-07	170	120	120	200	
							120	120	200	
						?	170	120	120	

Dlaczego walidacja krzyżowa nie działa?

Główny powód - randomizacja

Metody walidacji modeli dla szeregów czasowych

- 1. Train-test split
- 2. Multiple train-test split
- 3. Walkforwad validation

Od czego zależy?

Czy tradycyjne metody już do niczego?

Spyros Markidakis - profesor Uniwersytetu w Nikozji, Cypr, 2018

Algorytmy: 8 tradycyjnych + 10 ML

Zestawy danych: 1045 jednowymiarowych szeregów czasowych, częstotliwość - od godzinowych do rocznych.

Przygotowanie danych: różne kombinacje

Walidacja: walk forward, 18 ostatnich obserwacji

Wyniki badań - błędy prognozowania

Algorytmy do spróbowania

- 1. Prognoza Naiwna (Naive, Naive 2)
- 2. Modele auto regresyjne (AR, ARIMA, SARIMA)
- 3. Wygładzanie wykładnicze (Holta, Wintersa)
- 4. ML modele liniowe (Linear, Ridge, Lasso, ElasticNet)
- 5. ML modele nieliniowe (KNN, SVR, drzewa decyzyjne)
- 6. ML Ensemble Learning (lasy losowe, XGBoost)
- 7. Głębokie uczenie (MLP, CNN, LSTM, hybrydy)

Kiedy lepiej się już nie da?

- Błędy prognozowania są białym szumem.
- Średnia błędów 0.
- Normalny rozkład

Podsumowanie - Proces ML dla szeregów czasowych

Dziękuję!

Pytania?