TCP/IP Networks

CSC 348-648

Spring 2013

Network Review

- Physical layer
 - Concerns the physical transmission bits
 - Example digital encoding is +5 volts for a 1 and -5 volts for a 0
- Data link layer
 - Frames data and controls line access
 - Assumes all computers are *local* (**no** forwarding)
 - Example data link protocol is CSMA/CD
- Network layer
 - Allows datagrams (packets) to be forwarded to other networks
 - A router receives packets on one line and transmits on another
 - Example network layer is Internet Protocol (IP)

IP Operation

Assume a user has data to send over the network

- IP receives data from upper layer
- Creates packets containing data
- Sends packets to *next-hop* (forward to next machine)
- Process repeats until the destination is reached

How does the next-hop (router) know who the packet belongs to and who is the next hop?

E. W. Fulp CSC 348-648 Spring 2013 2

IP Protocol Datagrams

• Datagram (packet) consists of a header and data

• Header consists of: 20 byte fixed part and an optional part

- Header contains different control fields
- We will focus on the address

IPv4 Addresses

- Every host or router (actually interface) has a unique IP address
 - IP addresses are 32 bits long (IP version 4)
- Dotted-decimal notation is used to represent an address
 - Each byte is represented via a decimal number
 - $-193.32.216.9 \Rightarrow [11000001 00100000 11011000 00001001]$
- Addresses are hierarchical and encode two numbers
 - Network identifies the network
 - **Host** identifies the machine in the network

E. W. Fulp CSC 348·648 Spring 2013 4

IP Network Example

Consider one router and seven hosts (one address per interface)

- Three hosts at bottom have similar addresses, 223.1.1.x
 - The leftmost 24 bits they share is the **network** portion
 - Remaining 8 bits is the **host** portion
- Hosts of 223.1.1.x form a network, interconnected via a LAN
 - The network address is 223.1.1.0/24

- The /24 is also called the **network mask** or **network prefix** (indicates the leftmost 24 bits are the network address)
- Any additional host attached to this network must have a unique address of the form 223.1.1.x
- Other networks have a similar structure

- N.B. the router interconnects different networks

E. W. Fulp CSC 348-648 Spring 2013 6

IPv4 Address Classes

The original Internet architecture defined 5 different IP address classes

- This is also know as classful addressing
- Given an IP address you can determine the network mask

IP Addresses with Special Meanings

- 0.0.0.0 only used by a host when booting
- All zeroes for the network number, refers to the local network
 - If 223.1.1.0/24 is the network and I am 223.1.1.52, locally I can be reached using 0.0.0.52
- Address of all ones is the broadcast address for the local network
 What is the dotted-decimal address?

E. W. Fulp CSC 348-648 Spring 2013 8

- Address with the proper network number, and all ones for the host number allows host to broadcast to a different network
 - If 223.1.1.0/24 is a distant network, then 223.1.1.255 broadcasts to all hosts at the network
 - This will be used to create a simple Denial of Service (DoS) attack
- 127.x.y.z is reserved for loop-back testing
 - Packet is never placed on the network, processed locally

Routing Tables

How does a source host send a datagram to a destination host?

- The IP layer maintains a **routing table** in memory
 - Remember, routing tables are next hop oriented
 - Multiple hop paths are not recorded
- Each entry in the routing table has the following information^a
 - 1. Destination address, either host or network address
 - 2. IP address of the next-hop router
 - 3. Flags specifying if next hop is host or network
 - 4. Identification of the interface the datagram should be passed to (e.g. multiple Ethernet cards attached)

E. W. Fulp CSC 348-648 Spring 2013 10

Example Routing Tables

- In the diagram, each interface (Ethernet card) is labeled (in red)
- For example, the router has 3 interfaces (eth0, eth1, and eth2)
 - Each interface must be uniquely identified, since it attaches a unique network

^aAbbreviated list of items, more later.

• An abbreviated routing table for host A would be

Routing Table for A			
Destination	Next Hop	Interface	
223.1.1.0/24		eth0	
223.1.2.0/24	223.1.1.4	eth0	
223.1.3.0/24	223.1.1.4	eth0	

- First entry indicates 223.1.1.0/24 is the local network
- The second and third entries indicate datagrams for destinations on network 223.1.2.0/24 or 223.1.3.0/24 must be sent to 223.1.1.4
- eth0 is the Ethernet interface (only one card on A)

Each network is represented with one entry, how many would be required if each host had a separate entry?

E. W. Fulp CSC 348-648 Spring 2013 12

• An abbreviated routing table for the router would be

Routing Table for Router			
Destination	Next Hop	Interface	
223.1.1.0/24		eth0	
223.1.2.0/24		eth1	
223.1.3.0/24		eth2	

- First entry indicates 223.1.1.0/24 is local on eth0
- Second entry indicates 223.1.2.0/24 is local on eth1
- Third entry indicates 223.1.3.0/24 is local on eth2

IP Routing Steps

- IP routing performs the following actions
 - 1. Search routing table for complete destination address, if found send packet to the next-hop entry
 - 2. Search routing table for an entry that matches the destination network number, if found send packet to the next-hop entry
 - Must take into account possible subnet mask
 - 3. Search for default entry, if found send to next-hop router
- ullet IP search order is, host address o host network o default
- If all the steps fail, then the datagram is not deliverable

E. W. Fulp CSC 348-648 Spring 2013 14

Routing Example: $A \rightarrow B$

Assume A (223.1.1.1) sends datagram to B (223.1.1.3)

- There is no host entry for 223.1.1.3
- There is a network entry for 223.1.1.0/24
- A link layer frame (containing the datagram) is created and addressed to the link layer address of 223.1.1.3

We are at layer 3, how do we get a layer 2 address?

Ethernet frame is sent and received by host B

Routing Example: $A \rightarrow E$

Assume A (223.1.1.1) sends datagram to E (223.1.2.2)

Routing Table for A		
Destination	Next Hop	Interface
223.1.1.0/24		eth0
223.1.2.0/24	223.1.1.4	eth0
223.1.3.0/24	223.1.1.4	eth0

Routing Table for Router			
Destination	Next Hop	Interface	
223.1.1.0/24		eth0	
223.1.2.0/24		eth1	
223.1.3.0/24		eth2	

- Host A finds entry for 223.1.2.0/24 network
 - Requires sending packet to 223.1.1.4
- Host A creates and sends link-layer frame (containing datagram) addressed to the link-layer address of 223.1.1.4
 - Therefore, the next-hop entry is used for the link-layer address
 - IP destination address remains unchanged

E. W. Fulp CSC 348-648 Spring 2013 16

- Router 223.1.1.4 receives frame and removes datagram
 - Destination address is 223.1.2.2
 - Router is allowed to forward datagrams
- Router finds entry for 223.1.2.0/24 network
 - This is directly connected via eth1
 - Datagram will be forwarded
- Router creates and sends link-layer frame (containing datagram) addressed to the link-layer address of 223.1.2.2 on eth1
- Frame received by host E, datagram removed and processed
- N.B. operation of host and router are equivalent, except routers are allowed to forward datagrams

E. W. Fulp CSC 348-648 Spring 2013 18

Static versus Dynamic IP Routing

- Already know how IP packets are routed using routing tables
 - How were the entries generated... statically or dynamically?
- In static routing entries are manually adjusted
 - Acceptable for small networks
- For larger networks, dynamically change table entries
 - Routes should change based on network conditions
 - Allow routers to pass route information to one another
 - Use variations of Bellman-Ford and Dijkstra's
- N.B. This will **not** change the way IP datagrams are routed, just how/when the routing table contents change

Layer 3 Addresses versus Layer 2 Addresses

- Sending IP datagrams requires knowledge of the link-layer address
 - The IP datagram is placed inside a link-layer frame then sent

- Hosts are attached to the network via an interface card
 - The interface card is a layer 1 and 2 device
 - Can only understand LAN addresses (also called hardware address or MAC address)

E. W. Fulp CSC 348-648 Spring 2013 20

- For example, every Ethernet board has a 48-bit Ethernet address
 - In DOS run winipcfg to determine the Ethernet address
 - Card manufacturers given a *block* of Ethernet addresses
 - Assignments given in RFC 1700 or a more up-to-date at http://standards.ieee.org/develop/regauth/oui/public.html
- Similar to IP, hardware address of all 1's is for broadcast

 How do IP addresses get mapped to data-link addresses?

Address Resolution

- Address resolution Mapping between two different address forms
 - IP addresses and data-link addresses
- Two different protocols in IP
 - Address Resolution Protocol (ARP)
 - Reverse Address Resolution Protocol (RARP)

E. W. Fulp CSC 348-648 Spring 2013 22

ARP

- Dynamic mapping of IP address → hardware address [RFC 826]
- Assume A needs the hardware address of host B

- Host A broadcasts an ARP request
 - Ethernet address of all 1's is the broadcast address
 - Host asks "Who owns IP address 160.1.1.2?"
- Host B would reply with its hardware address

- ARP is intended for broadcast (shared medium) networks
 - Not needed for point-to-point links
- Broadcast at boot-time
 - When a machine connects, broadcast its mapping (ARP reply)
 - All other hosts on network (or subnet) will know the IP and hardware address of the new machine

E. W. Fulp CSC 348-648 Spring 2013 24

ARP Optimization

There are various ways to improve the efficiency of ARP

- ARP Tables
 - Keep an ARP table for most recently used IP addresses
 - Entries can time-out
- Hey, this is lots of fun...
 - When your laptop is first connected to the network,
 enter the DOS command, arp -a
 - Ping a machine on our network, ping www.wfu.edu
 - Issue the arp command again, should see hardware (physical) address for the machine

This may be a proxy ARP, how can you tell?

- Wait a few minutes and issue the arp command again

ARP Security

- ARP introduces a security problem
 - How could this protocol be used to obtain important information from users?
- A common way around this security issue is to use static ARP
 - Permanent ARP table created
 - So what is ARPish about this solution...

E. W. Fulp CSC 348-648 Spring 2013 26

Transport Layer

- Reliable, cost-effective data transport from source to destination
 - End-to-end protocol, only implemented at hosts
- Transport entity provides services to upper layers
 - Type of service, QoS, data transfer, connection management, and flow control
- Two types of service available
 - Connection-oriented Establishment, maintenance, and termination of connection
 - Connectionless Unreliable service (delivery not guaranteed),
 reduces the overhead associated with transport layer

Network layer also has connection-oriented and connectionless, why do we specify it here?

Network and Transport Layers

- The network layer is part of the communication subnet
 - What if the network-layer is connection-oriented but unreliable?
 - What happens if a router crashes?
 - Provide a reliable service over an unreliable network

E. W. Fulp CSC 348-648 Spring 2013 28

Transport Addressing

- When an application process wishes to set-up a connection to a remote application process, it must specify which one
 - 152.17.140.92 provides http and ssh services
 - Therefore network layer address is **not** sufficient
- In the Internet, transport services identified using port numbers
 - Some port numbers are well-known, 80 is for http
 - DOS command netstat -a shows ports in use So what is a port scan?

Internet Transport Layer

- There are two distinct Internet transport-layer protocols
 - User Datagram Protocol (UDP)
 - Transmission Control Protocol (TCP)

- UDP provides unreliable connectionless service
- TCP provides reliable connection-oriented service

E. W. Fulp CSC 348-648 Spring 2013 30

Transport Layer Packets

- Packets have a header and data
 - Headers for TCP and UDP are different

TCP header

UDP header

• At the physical layer the data looks like

When is UDP Preferred

UDP has the following benefits, making it better for some applications

- No connection establishment
 - TCP requires a three-way handshake before sending data
 - UDP sends data immediately, no initial connection delay
- No connection state
 - TCP requires state information about send/receive buffers, congestion-control, sequence numbers... per connection
 - UDP does not require any of this state information
- Small packet header overhead
 - UDP only adds 8 bytes of header information
- Unregulated send rate
 - Send as quickly as desired
 - Has introduced the idea of TCP friendly applications

E. W. Fulp CSC 348-648 Spring 2013 32

When is TCP Preferred

- Transport Control Protocol (TCP) provides connection-oriented, reliable service [RFC 793, 1122, 1323, 2018, 2581]
- All connections TCP connections are full-duplex, point-to-point
 - Requires three-way handshake to establish connection
- Reliable transport service
 - Deliver all data without error and proper order
- Congestion control mechanism
 - Attempts to limit each connection to fair share of bandwidth (Crouse says "très bon, l'equitabilité est tout")
 - No minimum bandwidth guaranteed
- TCP connection is a byte stream, not a message stream
 - Message boundaries are not preserved
 - Data is buffered before sent (additional delay)

Port Numbers

- Transport addresses are used to identify processes
 - For Internet transport layers, this called a **port number**
 - Both source and destination processes have a port number
- Source and destination ports together uniquely identify a process

 Do we really need source and destination port numbers to identify a process (single process at one end)?
- Port numbers are 16 bits, ranging from 0 to 65535
- Numbers ranging from 0 to 1023 are well-known port numbers
 - Reserved for use by well-known protocols
 - http is 80, ftp is 21, complete list at RFC 1700

E. W. Fulp CSC 348-648 Spring 2013 34

Web Server Example

• Consider a web server and two stations connected via the Internet

- Web server runs http over port 80
 - Any station wishing to connect will use the IP address
 152.140.12.25 and port 80
- Let station A connect to the web server
 - A free port is used for source (> 1023), for example 1123
 - Destination port is 80

- Web server creates a new process for each request (Unix fork)
 - Allows server to connect to multiple users simultaneously

What happens if station B connects to the web server? Station B will use the same destination port 80, how does the web server differentiate between station A and station B requests?

What happens if station B connects to the web server and happens to select the same source port number as A? How does the web server differentiate between station A and station B requests?

E. W. Fulp CSC 348-648 Spring 2013 36

Domain Name System

- We can always use IP (network) addresses to refer to hosts
 - IP addresses are difficult to remember, pluf@152.17.48.111
 What happens if the machine address changes?
 - However, the network only understands IP addresses
 - Need a method to map *names* to IP addresses
- Domain Name System (DNS) provides this mapping service
 - Hierarchical, domain naming scheme
 - Given a text (ASCII) name provides the correct IP address
 - DNS protocol uses UDP for small queries and TCP for queries where the answer is over 512 bytes (any security issues?)

IP Address	Machine Name
152.17.48.111	mail.wfu.edu
152.17.48.77	www.wfu.edu

E. W. Fulp CSC 348·648 Spring 2013 38

DNS Name Space

- Hierarchical scheme of names, can be depicted as a tree
 - 200 top-level domains, each domain covers many hosts
 - Two categories, generic and countries
- The domain manager registers new names, for example .wfu.edu

Name Servers

- DNS name server provides the name and IP mapping
 - A server could store the entire database, but it is not scalable
 - Will use the name hierarchy to provide scalability
- DNS is divided into non-overlapping zones
 - Zone is part of the overall tree and contains name servers
 - Name servers know about names in their zones

E. W. Fulp CSC 348-648 Spring 2013 40

Name Resolution

- Assume flits.cs.vu.nl needs to resolve linda.cs.yale.edu
 - 1. flits.cs.vu.nl first searches local file/cache first
 - 2. If not found, asks its local name server cs.vu.nl
 - 3. If cs.vu.nl does not know, it asks edu-server.net
 - 4. If edu-server.net does not know, it asks cs.yale.edu
 - 5. edu-server.net should know and sends the IP

- Once flits.cs.vu.nl gets the IP it stores it in cache
 - This is an example of a recursive query, where searhes are performed on behalf of the original requester
 - Alternatively, IP of the next server to ask could have been sent

DNS Caching

- DNS requests are cached
 - Quick response for repeated translations
 - Other queries may reuse parts of lookup records for domains
- DNS negative queries are cached
 - Do not have to repeat past mistakes (misspellings)
- Cached data periodically times out
 - Lifetime (TTL) of data controlled by owner of data
 - TTL passed with every record