ННГУ им. Н. И. Лобачевского, ВШОПФ Лабораторная работа "Маятник Обербека"

Приборы и оборудование:

- Штатив с закреплёнными на нём блоком и крестовиной маятника Обербека
- Набор грузов (грузы-цилиндры по 114 г, набор грузов-подвесов по 50, 20 15 г)
- Электронный тормоз с секундомером ($\Delta = 0.001 c$)

Теоретическая часть

Для описания движения маятника выберем ось z, совпадающую с осью вращения маятника и запишем уравнение динамики вращательного движения твёрдого тела относительно этой оси:

$$I \gamma_z = rT_1 - M_{mp.}$$

Далее запишем второй закон Ньютона для груза в проекции на ось х (рис.): $ma_x = mg - T_2$

Считая блок идеальным (невесомый и без трения), получаем:

$$T_1 = T_2$$

Также, т.к. нить нерастяжима и не проскальзывает, можно записать кинематическое соотношение:

$$a_x = \gamma_z r$$

Из записанных выше уравнений выражаем угловое ускорение маятника:

$$\gamma_z = \frac{mgr - M_{mp.}}{I + mr^2}$$

Обычно для маятника Обербека выполняется условие $mr^2 \ll I$, поэтому предыдущую формулу можно свести к виду:

$$\gamma_z = \frac{mgr - M_{mp.}}{I}$$

Угловое ускорение в эксперименте измеряется по следующей формуле:

$$\gamma_z = \frac{2h}{rt^2}$$

Практическая часть

1. Провести измерения при различных расстояниях грузов-цилиндров от оси вращения. Таблица результатов эксперимента:

R, см	6		10		14	
т, г	t, c	t cp, c	t, c	t cp, c	t, c	t cp, c
,	3,58	3,668333 333333333	2,114	2,118	1,753	1,756333 333333333
50	3,713		2,122		1,757	
	3,712		2,118		1,759	
	2,871	2,889333 333333333	1,718	1,728	1,411	1,417666 - 66666667
70	2,901		1,738		1,415	
	2,896		1,728		1,427	
	2,366	2,374333 333333333	1,425	1,424333 - 333333333	1,158	1,157
100	2,385		1,422		1,154	
	2,372		1,426		1,159	
	2,026	2,052	1,245	1,234666 66666667	0,984	0,984
130	2,087		1,222		0,985	
	2,043		1,237		0,983	
150	1,88	1,865333	1,153	1,154	0,927	0,922
	1,865	33333333	1,154		0,915	

	1.851	1,155	0,924	
	_,00	_,	0,5 = 1	

2. Построить график зависимости углового ускорения о массы подвешенного груза и по графику найти момент сил трения и момент инерции маятника.

Зависимость углового ускорения от массы

3. Постороить график зависимости момента инерции от $m_1 R^2$ и найти момент инерции маятника без грузов цилиндров.

Зависимость I от m1R^2

$$I_0 = 88,350[\text{e-cm}^2]$$

4. Момент инерции груза-цилиндра

 $I_{\it ep.} = \frac{1}{4} \it mr^2 + \frac{1}{12} \it ml^2$, где r — радиус груза-цидиндра, l — длина образующей грузацилиндра.

Момент инерции грузов-цилиндров относительно оси маятника

$$I = mr^2 + \frac{1}{3}ml^2 + 4mR^2$$

Теоретическая зависимость момент инерции:

$$I(R) = I_0 + mr^2 + \frac{1}{3}ml^2 + 4mR^2$$

5. Найти кинетическую энергию и работу сил трения за время движения до фотодатчика.

$$K(t) = \frac{I \omega^{2}}{2} + \frac{mV^{2}}{2} = \frac{I y^{2} t^{2}}{2} + \frac{mr^{2} y^{2} t^{2}}{2} = \frac{y^{2}}{2} (I + mr^{2}) t^{2} = 1,546 [MЭрг] = 0,155 [Дж]$$

$$A = M \cdot \phi = M \frac{h}{r} = 365550 [Эрг] = 0,037 [Дж]$$