T2. Representación de la información

1.1 De cualquier base a decimal:

 $n = n^{\circ}$ dígitos de la parte entera

 $\mathbf{k} = n^{\circ}$ dígitos de la parte decimal

d = número en la base original

$$\sum_{i=-k}^{n-1} d_i \ b^i$$

 $\mathbf{b} = base$

• Base 5 a decimal:

$$130.14 = 1 \cdot 5^2 + 3 \cdot 5^1 + 0 \cdot 5^0 + 1 \cdot 5^{-1} + 4 \cdot 5^{-2} = 25 + 15 + 0.2 + 0.16 = 40.36$$

1.2 Base decimal a binario

Se deben convertir la parte decimal y la entera por separado.

Parte entera:

Dividimos el número por la base hasta que el cociente sea 0. La parte entera será la sucesión de los restos de las divisiones, empezando por el último.

• Parte decimal:

Multiplicamos por la base hasta llegar a un número entero o alcanzar las cifras deseadas.

$$0.7 * 2 = 1.4$$

 $0.4 * 2 = 0.8$
 $0.8 * 2 = 1.6$
 $0.6 * 2 = 1.2$
 $0.2 * 2 = 0.4$
 $0.4 * 2 = 0.8$
 $0.8 * 2 = 1.6$

Parte decimal =
$$10\widehat{1100}$$

1.3 Hexadecimal

Los números en hexadecimal coinciden con su versión en decimal, sin embargo, del 10 al 15, usamos las primeras 6 letras:

Α	В	С	D	E	F
10	11	12	13	14	15

Es posible que tengamos que añadir 0 a la izquierda para agrupar los bits en 4 y pasar a hexadecimal. Siempre de derecha a izquierda: $100\ 1100\ \rightarrow\ 0100\ 1100\ =\ 0x4C$

1.4 Codificación de números enteros con signo Signo – magnitud

Los valores se representan mediante un bit de signo (0: positivo y 1: negativo) y tantos bits representando el número:

El rango de valores con n bits es $[-2^{(n-1)}+1,2^{(n-1)}-1]$ Entonces, los números posibles con 4 bits son:

Valor	0	1	2	3	4	5	6	7
Binario	0000	0001	0010	0011	0100	0101	0110	0111
Valor	-0	-1	-2	-3	-4	-5	-6	-7
Binario	1000	1001	1010	1011	1100	1101	1110	1111

Es importante no usar el último bit para otra cosa que no sea el signo. Además, existen 2 representaciones para el $\mathbf 0$

Complemento a-1

- Números **positivos**: igual que en signo–magnitud
- Números **negativos**: se invierten todos los bits del número positivo (cambiamos 1 por 0 y viceversa)

El rango de valores con *n* bits es $[-2^{(n-1)}+1,2^{(n-1)}-1]$

Valor	-3	-2	-1	-0	0	1	2	3
Binario	100	101	110	111	000	001	010	011

Operaciones (sumamos bit a bit):

$$1 + 2 = 001 + 010 = 011 = 3$$

 $3 - 2 = 3 + (-2) = 011 + 101 = {}^{1}000$ (nos llevamos 1)
 $000 + 1 = 001 = 1$
 $3 + 3 = 011 + 011 = 110 = -1$ (no es correcto por desbordamiento)

Si al sumar dos números positivos nos da un número negativo, ha habido desbordamiento. Esto tiene sentido porque 3 + 3 = 6 (110) pero con 3 bits solo podemos representar números en el intervalo [-3 , 3].

Para 4 bits:

Valor	0	1	2	3	4	5	6	7
Binario	0000	0001	0010	0011	0100	0101	0110	0111

Para los números negativos haríamos lo mismo, pero invirtiendo los bits:

Valor	-0	-1	-2	-3	-4	-5	-6	-7
Binario	1111	1110	1101	1100	1011	1010	1001	1000

Complemento a-2

- Números **positivos**: igual que en complemento a-1
- Números **negativos**: se invierten todos los bits del número positivo y le sumamos 1.

El rango de valores con n bits es $[-2^{(n-1)}, 2^{(n-1)} - 1]$. Ejemplo para 4 bits:

	Valo	r	0	1	2	3	4	5	6	7	_
	Binar	rio 0	000	0001	0010	0011	0100	0101	l 0110	0111	_
V	'alor	-0	-1	-2		-3	-4	-5	-6	-7	-8
Bi	nario	0000	1111	111	.0 1	101 1	100	1011	1010 1	.001 1	.000

Operaciones : (Ojo, se descarta el acarreo)

$$3 + 2 = 0011 + 0010 = 0101 = 5$$

 $3 - 2 = 3 + (-2) = 0011 + 1110 = {}^{1}0001 \rightarrow 0001 = 1$
 $-3 - 2 = (-3) + (-2) = 1101 + 1110 = {}^{1}1011 \rightarrow 1011 = -5$

Exceso a $2^{(n-1)}-1$

Se suma $2^{(n-1)}-1$ antes de pasarlo a binario. Números de 4 bits en exceso a 7:

Valor	-7	-6	-5	-4	-3	-2	-1	0
Binario	0000	0001	0010	0011	0100	0101	0110	0111
Valor	1	2	3	4	5	6	7	8
Binario	1000	1001	1010	1011	1100	1101	1110	1111

1.5 Codificación de números reales – IEEE745

En esta representación, se necesita almacenar una mantisa y un exponente. La mantisa se representa con signo-magnitud y el exponente en exceso a $2^{(E-1)}-1$, siendo E el número de bits dedicados al exponente. El número de bits para cada formato:

En la mantisa, solo se incluyen los dígitos de la parte fraccionaria

- 1. Convertimos el número a binario 23.25 = 10111.01
- 2. Lo normalizamos, dejando solo 1 a la izquierda de la coma: $\pm 1.M*2^e$ $\pm 1.0111.01 = 1.011101 * 2^4$
- 3. Representamos la mantisa (parte decimal del número normalizado) y rellenando 0
- 4. Al exponente (4) le añadimos un exceso, en FP32: $2^{8-1}-1 = 127$

$$4 + 127 = 131 = 10000011$$

El número final es:

En doble precisión, solo tenemos que sumar un exceso de $2^{11-1}-1 = 1023$ al exponente.

IEE754 a decimal

Calculamos el valor respecto a la expresión:

$$(-1)^S * 1.M * 2^{E-127}$$

Ejemplo:

- 1. $(-1)^0 = +1$
- 2. Exponente:

$$10000011 - 0111111111 (131 - 127) = 4$$

3. Mantisa:

$$X = +1.875 \cdot 2^4 = 30$$

Casos especiales

- **Cero**: todo 0 (bit de signo 0 o 1)
- Numeros desnormalizados: exponente todo 0, mantisa distinta de cero

$$(-1)^{S} \times 0. M \times 2^{-126}$$

- **Más o menos infinito:** exponente todo 1, mantisa todo 0
- **NaN:** exponente todo 1, mantisa distinta de 0

1.6 Codificación de caracteres

ASCII

ASCII es un esquema binario de codificación de caracteres basado en el orden del alfabeto en inglés.

ISO-8859

Es un esquema de codificación de caracteres. Utiliza 8 bits para codificar cada carácter.

UTF-8

Esquema basado en símbolos de longitud variable (1-4 bytes por carácter). Los bits más significativos del primer byte indican la longitud de la secuencia.

- Con 1 byte: caracteres incluidos en US-ASCII. Primer bit siempre a 0. Por tanto, tenemos 2⁷ = 128 caracteres.
- Con 2 bytes: el primer byte empieza por 110 y el segundo por 10. Por tanto, tenemos, $2^{(16-3-2)} = 2^{11}1 = 2048$ caracteres.
- Con 3 bytes: el primer byte empieza por 1110, segundo y tercero por 10. Tenemos $2^{(24-4-2-2)}$ = **655536** caracteres.
- Con 4 bytes: el primer byte empieza por 11110, segundo, tercer y cuarto byte por 10. Por tanto, tenemos $2^{(32-5-2-2-2)} = 2^{21} = 2097152$ caracteres.