Lecture 10: 0-1 Quadratic Program and Lower Bounds

(2 units)

Outline

- Problem formulations
- ▶ Reformulation: Linearization & continuous relaxation
- Branch & Bound Method: Bounds and variable fixation
- Simple bounds and LP bound

Problem formulation

► Standard form with 0-1 variables:

(0-1QP)
$$\min_{x \in \{0,1\}^n} f(x) = \frac{1}{2} x^T Q x + c^T x$$

where Q is an $n \times n$ symmetric matrix and $c \in \mathbb{R}^n$.

► Homogenous form:

$$(0-1QP_h) \quad \min_{x \in \{0,1\}^n} x^T Q x.$$

▶ Binary variables:

(BQP)
$$\min_{x \in \{-1,1\}^n} x^T Q x + c^T x.$$

Transformation: $x_i = \frac{1}{2}(y_i + 1)$.

► Homogenous form with binary variables:

$$(BQP_h) \quad \min_{x \in \{-1,1\}^n} x^T Q x,$$

▶ (BQP) \Rightarrow (BQP_h) with $Q := \begin{pmatrix} 0 & \frac{1}{2}c^T \\ \frac{1}{2}c & Q \end{pmatrix}, \quad x := (\pm 1, x^T) \in \{-1, 1\}^{n+1}.$

Max-Cut problem

- ▶ Consider a graph G = (E, V) with vertex set $V = \{1, ..., n\}$ and edge set $E = \{ij \mid 1 \le i < j \le n\}$. For every edge $ij \in E$, there is an associated weight w_{ij} .
- ▶ Cut: For a given set $S \subseteq V$, a $cut \, \delta(S)$ is the set of all edges with one endpoint in S and the other in $V \setminus S$, and the weight of cut $\delta(S)$ is $\sum_{ij \in \delta(S)} w_{ij}$.
- ▶ Max-Cut: find a cut $\delta(S)$ with maximum weight.
- Binary quadratic problem:

(Max-Cut)
$$\max \frac{1}{2} \sum_{1 \le i < j \le n} w_{ij} (1 - x_i x_j)$$
s.t. $x \in \{-1, 1\}^n$.

Linearization Method

▶ 0-1 Quadratic problem:

(P)
$$\min_{x \in \{0,1\}^n} Q(x) = \sum_{i=1}^n c_i x_i + \sum_{1 \le i < j \le n} q_{ij} x_i x_j.$$

▶ For x_i , $x_j \in \{0, 1\}$, $y_{ij} = x_i x_j$ iff

$$y_{ij} = \max\{x_i + x_j - 1, 0\}, \ y_{ij} \in \{0, 1\},$$

or

$$y_{ij} = \min\{x_i, x_j\}, \ y_{ij} \in \{0, 1\}.$$

▶ (P) is equivalent to the following 0-1 linear integer program:

$$\min_{x,y} \sum_{i=1}^{n} c_i x_i + \sum_{(i,j) \in I^+} q_{ij} y_{ij} + \sum_{(i,j) \in I^-} q_{ij} y_{ij}
s.t. \quad y_{ij} \le x_i, \quad y_{ij} \le x_j, \quad (i,j) \in I^- \quad (q_{ij} < 0)
\quad y_{ij} \ge x_i + x_j - 1, \quad (i,j) \in I^+ \quad (q_{ij} \ge 0),
\quad x_i \in \{0,1\}, \quad i = 1, \dots, n,
\quad y_{ij} \in \{0,1\}, \quad 1 \le i < j \le n.$$

▶ A polynomially solvable case: $q_{ij} \le 0$:

$$\min_{x,y} \sum_{i=1}^{n} c_i x_i + \sum_{1 \le i < j \le n} q_{ij} y_{ij}
\text{s.t.} y_{ij} \le x_i, 1 \le i < j \le n
 y_{ij} \le x_j, 1 \le i < j \le n
 x_i, x_i, y_{ij} \in \{0,1\}, 1 \le i < j \le n.$$

The constraint matrix is totally unimodular! Can we use transformation: $z_i = 1 - x_i$ for $q_{ii} > 0$?

Continuous relaxation

Consider the continuous relaxation of (P):

$$(\bar{P})$$
 $\min_{x \in [0,1]^n} Q(x) = \sum_{i=1}^n c_i x_i + \sum_{1 \le i < j \le n} q_{ij} x_i x_j.$

Then, at least one of the optimal solutions of (\bar{P}) is located at an extreme point of $[0,1]^n$. Therefore $v(P) = v(\bar{P})$.

- ▶ Unfortunately, the objective function of (\bar{P}) is nonconvex and nonconcave.
- Define

$$Q_p(x) = \sum_{i=1}^n c_i x_i + x^T Q x - p x^T x + p e^T x.$$

 $Q_p(x) = Q(x)$ for $x \in \{0,1\}^n$. For large p, $Q_p(x)$ is a concave function. Thus, (P) is equivalent to the concave minimization problem:

$$(P_c) \quad \min_{x \in [0,1]^n} \ Q_p(x)$$

Branch and Bound Framework

- Computing lower bound;
- ▶ Branching on $x_i = 0$ or $x_i = 1$;
- Fixing variable by certain optimality condition.

Basic lower bounding methods

- Simple lower bounds
- Continuous relaxation
- ▶ LP relaxation
- ► Lagrangian relaxation & SDP relaxation

Simple bounds

Lower bound 1. An obvious lower bound of Q(x) is:

$$LB_s^1 = \frac{1}{2} \sum_{i=1}^n \sum_{j \neq i} \min(q_{ij}, 0) + \sum_{i=1}^n \min(c_i + \frac{1}{2}q_{ii}, 0).$$

Lower bound 2. An improved simple lower bound is derived by noting that: since $x \ge 0$, if $\tilde{Q}x \ge a$, then $\frac{1}{2}x^T\tilde{Q}x \ge \frac{1}{2}a^Tx$. Let \tilde{Q}_i denote the *i*th row of \tilde{Q} . Then

$$a_i = \min_{x \in \{0,1\}^n} \tilde{Q}_i x = \sum_{j \neq i} \min(q_{ij}, 0).$$

So

$$\min_{x \in \{0,1\}^n} \frac{1}{2} x^T \tilde{Q} x + \tilde{c}^T x$$

$$\geq \min_{x \in \{0,1\}^n} (\frac{1}{2} a + \tilde{c})^T x$$

$$= \sum_{i=1}^n \min\{c_i + \frac{1}{2} q_{ii} + \frac{1}{2} \sum_{j \neq i} \min(q_{ij}, 0), 0\}$$

$$= LB_s^2.$$

It is easy to show that LB_s^2 is better than LB_s^1 , i.e.,

$$LB_s^2 \geq LB_s^1$$
.

Continuous relaxation

▶ Since $\tilde{Q}(x) = \frac{1}{2}x^T(Q + diag(u))x + (c - \frac{1}{2}u)^Tx$ takes the same value on $\{0,1\}^n$ as Q(x), it is natural to compute a lower bound via solving the continuous relaxation:

$$(\bar{P})$$
 $\beta(u) = \min_{x \in [0,1]^n} \frac{1}{2} x^T (Q + diag(u)) x + (c - \frac{1}{2}u)^T x.$

- Some observations:
 - ▶ If u_i 's are large enough, then $\tilde{Q} = Q + diag(u)$ will be diagonally dominant (thus positive definite).
 - $u = \lambda_{min}e$ is an obvious choice to make \tilde{Q} positive semidefinite (but not necessarily the best one).
 - ▶ The optimal solution to (\bar{P}) tends to $(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2})^T$ as u_i 's are increased.

Consider a small example of (P) where

$$Q = \left(\begin{array}{cc} 1 & -3 \\ -3 & -1 \end{array} \right), \ c = \left(\begin{array}{c} 1 \\ 1 \end{array} \right).$$

- ▶ For this example, we have $x^* = (1,1)^T$ with $Q(x^*) = -1$. The two simple bounds for this problem are: $LB_s^1 = -3$ and $LB_s^2 = -1$.
- ▶ The eigenvalues of Q is (-2,4).

Figure: The figure of Q(x) over $[0,1]^2$, which is nonconvex

Figure: $u = \lambda_{min}e$, $x_u = (0.8604, 1)^T$, $\beta(u) = -1.0406$.

Figure: u = 20e, $x_u = (0.5077, 0.5538)^T$, $\beta(u) = -4.7769$.

Figure: u = 100e, $x_u = (0.5003, 0.5101)^T$, $\beta(u) = -24.7551$.

 \blacktriangleright Another way of choosing u is to find a u^* such that

$$\beta(u^*) = \max\{\beta(u) \mid (Q - diag(u)) \succeq 0, \ u \in \mathbb{R}^n\}.$$

► The above problem is equivalent to a semidefinite quadratic program which can be solved efficiently (polynomially).

LP relaxation

▶ The continuous relaxation of the 0-1 linearized problem is a linear program $(y_{ij} = x_i x_j)$:

$$\min_{\substack{x,y \\ x,y}} \sum_{1 \leq i < j \leq n} q_{ij} y_{ij} + \sum_{i=1}^{n} (c_i + \frac{1}{2} q_{ii}) x_i
\text{s.t.} \quad y_{ij} \leq x_i, \ y_{ij} \leq x_j, \ 1 \leq i < j \leq n, \ q_{ij} < 0,
x_i + x_j - 1 \leq y_{ij}, \ 1 \leq i < j \leq n, \ q_{ij} > 0,
0 \leq x_i \leq 1, \ i = 1, \dots, n,
y_{ij} \geq 0, \ 1 \leq i < j \leq n.$$