The Dark Side of the ForSSHe

A landscape of OpenSSH backdoors

Gaspare Ferraro

ICT Risk Assessment

University of Pisa Master Degree in Computer Science

Pisa, July 19, 2019

1/34

Part I

Introduction

SSH

Secure Shell, protocol for secure remote login and other secure network services over an insecure network.

Developed in 1995 in response to a hacking incident, today standard protocol for secure operations.

Simplified setup flow (source: ssh.com)

Pisa. July 19, 2019

OpenSSH suite

Suite of secure networking utilities based on SSH protocol.

Coming by default in a large number of operating systems

Utilities:

- SCP, secure copy of files between two different hosts
- SFTP, secure file transfer program
- SSH, secure shell client
- SSHD, ssh server daemon
- keys utilities (SSH-ADD, SSH-AGENT, SSH-KEYGEN, SSH-KEYSCAN)

Operation Windigo

Large and sophisticated operation started in 2011 and discovered after 3 years.

The operation has compromised linux servers in order to steal SSH credentials, redirect web traffic and send spam message.

Three different components of the operations:

- Ebury, OpenSSH backdoor used to gain full access, steal credentials and keep control of the servers.
- Cdorked, an HTTP backdoor used to redirect traffic and a modified DNS server to resolve arbitrary IP addresses.
- Calfbot, a Perl script used to send spam.

Results:

 highly portable malicious modules were developed in order to cover as many system as possibile.

The Dark Side of the ForSSHe

- 25,000 unique servers compromised.
- 500,000 visitors per day redirected to malicious websites.
- 35,000,000 spam email sent.

Post-operation analysis

Post-operation analysis lead ESET to extend coverage about OpenSSH backdoors. After months of research and data collection, ESET grouped a series of samples in 21 different OpenSSH malware families, 12 of them undocumented at the time of the paper.

ESET - IT security company

Malware were divided according to common features.

Part II

Common features of OpenSSH backdoors

7/34

Strings and code obfuscation

Attackers need a way to obfuscate strings and code of backdoor (such as filenames or directories).

XOR cipher: simplest method, encrypt the strings by xor the string with a key.

String stacking: construct strings directly in the stack in order to bypass simple string searched.

String stacking in a binary

4 0 > 4 70 > 4 75 > 4

Credential stealing

Various methods to steal users credential on both sides.

Client

Modify functions on client to log password on log-in such:

USERAUTH_PASSWD, Authenticates a session with username and password.

SSH_ASKPASS, Pass-phrase dialog.

Server

Modify functions on server to log password on request such:

AUTH_PASSWORD, Tries to authenticate the user using password.

SSHPAM_RESPOND, Tries to authenticate the user with PAM (Pluggable authentication modules).

Pisa. July 19, 2019

Exfiltration methods

Once credentials are stealed, attackers need to exfiltrate them:

Exfiltration by local file

Easy method: credentials are stored inside a file in the server,

hidden in filesystem (e.g.: .SO in /USR/BIN or .H in /USR/LOCAL/INCLUDE).

Problem: attackers needs to have a way back into the system.

Exfiltration by C&C server

Complex method: send credentials over the network instead of local file.

Problem: network communications are logged.

Some backdoor encrypt communication with a symmetric key.

Exfiltration by email

In some rare cases credentials are sent by email.

Problem: hardcode email address in the binary.

Pisa. July 19, 2019

Backdoor mode

Permanent Method to connect back to the compromised machine,

with the following features:

Hardcoded password, compare client password with a hardcoded password.

Configuration and log, change daemon configuration to permit full access and disable logging features in order to not leave traces on the system.

Environment variables, change environment variables such as HISTFILE.

Hooked functions, modify all functions for loggin and debugging.

Backdoor password verification

Part III

Backdoors families

The Dark Side of the ForSSHe

OpenSSH backdoor galaxy

4 中 × 4 部 × 4 差 × 4 差

Chandrila

Bonadan

Kessel

Kamino

Part IV

Honeypot

Definition and goals

Honeypot structure and strategy

Observed interaction: Mimban

Observed interaction: Borleias

Part V

Compromission

Linux server market share

Operation Windigo summary

Operation Windigo damage

Part VI

Mitigation

Pisa, July 19, 2019

Preventing compromise of SSH servers

Correct OpenSSH configuration

Check logs

Analyze network traffic

Detect compromised SSH tools

Conclusion

References

