Seminar 3 Serii de numere reale

Exerciții suplimentare

- 1. Să se stabilească natura seriilor următoare:
- (a) $\sum_{n} \frac{1}{n+\frac{1}{4}\sqrt{\ln(n+1)}}$ (D, necesar [Stolz + $a^b = e^{b \ln a}$]);
- (b) $\sum_{n} \frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(n+n)}$ (D, necesar + raport);
- (c) $\sum_{n} \sqrt{n^4 + 2n + 1} n^2$ (D, comparație 3 cu $\sum_{n=1}^{\infty}$);
- (d) $\sum_{n} \frac{1}{1+\sqrt{2}+\sqrt[3]{3}+\cdots+\sqrt[n]{n}}$ (D, comparație 3 cu $\sum_{n} \frac{1}{n}$ [Stolz]);
- (e) $\sum_{n} \frac{1}{\sqrt[n]{\ln n}}$ (D, comparație cu $\sum \frac{1}{\sqrt[n]{n}}$);
- (f) $\sum_{n} \frac{\alpha^{n}}{\sqrt[n]{n!}}$, $\alpha > 0$ (comparație [$\alpha = 1$] cu $\sum_{n} \alpha^{n}$, raport pentru $\alpha > 1$ și $\sum_{n} \frac{\alpha^{n}}{n!}$, apoi comparație);
- (g) $\sum_{n} a^{\ln n}$, a > 0 ([$a = \frac{1}{e}$], Raabe);
- (h) $\sum_{n\geq 2} \frac{1}{n \ln n}$ (D, integral);
- (i) $\sum_{n} (-1)^n \frac{\log_{\alpha} n}{n}$, $\alpha > 1$ (C, Leibniz: $f(x) = \frac{\log_{\alpha} x}{x}$ crescătoare pentru x > e);
- (j) $\sum_n \frac{(-1)^n \sqrt{n} + 1}{n}$ (D, spargem în două $\sum_n \frac{1}{n}$ D și restul C [Leibniz]);
- (k) $\sum_{n} \frac{1}{n^p \ln^q n}$, p, q > 0 (p > 1 C \forall q > 0 [comparație 1], p = 1 integral [C ddacă q > 1], p < 1 condensare $\frac{1}{n^q 2^n (p-1)} \ln^q 2$, D [raport]);
- (l) $\sum \frac{n!}{(\alpha+1)(\alpha+2)\cdots(\alpha+n)}$, $\alpha>0$ (Raabe: $\alpha>1$, C, $\alpha<1$, D, $\alpha=1$, D [direct]);
- (m) $\alpha + \sum_{n\geqslant 2} (2-\sqrt{e})(2-\sqrt[3]{e})\cdots(2-\sqrt[n]{e})\cdot \alpha^n$, $\alpha>0$ (raport: $\alpha<1$, C, $\alpha>1$, D, comparație pentru $\alpha=1$ cu s.a.);
- (n) $\sum \frac{1}{n^{\alpha}} \sin \frac{\pi}{n}$, $\alpha \in \mathbb{R}$ (comparație la limită, $\sum \frac{1}{n^{\alpha+1}}$);
- (o) $\sum \frac{\alpha^n(n!)^2}{(2n)!}$, $\alpha > 0$ (raport $\Rightarrow \frac{\alpha}{4}$, $\alpha = 4 \Rightarrow$ Raabe, D);
- (p) $\sum \frac{\cos n \cdot \cos \frac{1}{n}}{n}$ (Abel, $x_n = \frac{\cos n}{n}$, $y_n = \cos \frac{1}{n}$, C);
- (q) $\sum n^2 e^{-\sqrt{n}}$ (C, logaritmic);
- (r) $\sum n! \sin \alpha \cdot \sin \frac{\alpha}{2} \cdots \sin \frac{\alpha}{n}$, $\alpha \in (0,\pi)$. (raport, $\alpha = 1$ Raabe + L'Hospital).
 - 2. Arătați că seria $\sum_n (-1)^n \frac{2+(-1)^n}{n}$ este divergentă, dar șirul termenilor converge la 0.
 - 3. Studiați convergența seriei: $\sum_n \frac{\sin n \cdot \sin n^2}{\sqrt{n}}$ (Indicație: Abel pentru $\alpha_n = \frac{1}{\sqrt{n}}, \nu_n = \sin n \cdot \sin n^2$).
 - 4. Studiați convergența absolută a seriilor:
- (a) $\sum (-1)^n \sqrt[n]{n} \sin \frac{1}{n}$;

- (b) $\sum (-1)^{n+1} \frac{2^n \sin^{2n} \alpha}{n+1}$, $\alpha \in \mathbb{R}$ (radical + Leibniz);
- (c) $\sum \frac{\sin n \cdot \alpha}{n}$, $\alpha \in \mathbb{R}$ (comparație + Abel);
- (d) $\sum_{n} x_n$, unde $x_{2n-1} = \frac{1}{\sqrt{n+1}-1}$ și $x_{2n} = -\frac{1}{\sqrt{n+1}-1}$;
- (e) $\sum_{n} x_n$, unde $x_{2n-1} = \frac{1}{5n-3}$ și $x_{2n} = -\frac{1}{5n-3}$;
- 5. Fie seria de termen general $x_n = \frac{(-1)^{n+1}}{\sqrt{n}}$. Arătați că ea este semiconvergentă. Studiați seria obținută prin ridicarea ei la pătrat. Deduceți faptul că este posibil ca produsul a două serii semiconvergente să fie o serie convergentă.
 - 6. Considerați seriile:

$$S = 1 - \sum_{n} \left(\frac{3}{2}\right)^{n}, \quad T = 1 + \sum_{n} \left(\frac{3}{2}\right)^{n-1} \cdot \left(2^{n} + \frac{1}{2^{n+1}}\right).$$

Arătați că seriile sînt divergente, dar produsul lor este o serie absolut convergentă.