Cite as: D. Miao et al., Science 10.1126/science.aan5951 (2018).

Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma

Diana Miao, 1,2 Claire A. Margolis, 1,2 Wenhua Gao, 1 Martin H. Voss, 3,4 Wei Li, 5 Dylan J. Martini, 1 Craig Norton, 1 Dominick Bossé,¹ Stephanie M. Wankowicz,¹,² Dana Cullen,6 Christine Horak,6 Megan Wind-Rotolo,6 Adam Tracy,2 Marios Giannakis,1,2 Frank Stephen Hodi,1 Charles G. Drake,7 Mark W. Ball,8 Mohamad E. Allaf,8 Alexandra Snyder,3* Matthew D. Hellmann,34 Thai Ho,9 Robert J. Motzer,34 Sabina Signoretti,1 William G. Kaelin Jr., 1,10 Toni K. Choueiri, 1+ Eliezer M. Van Allen 1,2+ #

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. 3 Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 4 Weill Cornell Medical College, New York, NY 10065, USA. 5 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. 6Bristol-Myers Squibb, New York, NY 10154, USA. 7Columbia University Medical Center, New York, NY 10032, USA. 8 James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. 9Mayo Clinic, Scottsdale, AZ 85259, USA. 10Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA 02215, USA.

*Present address: Adaptive Biotechnologies, Seattle, WA 98102, USA.

†These authors contributed equally to this work.

‡Corresponding author. Email: eliezerm vanallen@dfci.harvard.edu (E.M.V.); toni choueiri@dfci.harvard.edu (T.K.C.)

Immune checkpoint inhibitors targeting the programmed cell death-1 receptor (PD-1) improve survival in a subset of patients with clear cell renal cell carcinoma (ccRCC). To identify genomic alterations in ccRCC that correlate with response to anti-PD-1 monotherapy, we performed whole exome sequencing of metastatic ccRCC from 35 patients. We found that clinical benefit was associated with loss-of-function mutations in the PBRM1 gene (p=0.012), which encodes a subunit of a SWI/SNF chromatin remodeling complex (the PBAF subtype). We confirmed this finding in an independent validation cohort of 63 ccRCC patients treated with PD-(L)1 blockade therapy alone or in combination with anti-CTLA-4 therapies (p=0.0071). Gene expression analysis of PBAF-deficient ccRCC cell lines and PBRM1-deficient tumors revealed altered transcriptional output in JAK/STAT, hypoxia, and immune signaling pathways. PBRM1 loss in ccRCC may alter global tumor cell expression profiles to influence responsiveness to immune checkpoint therapy.

Immune checkpoint inhibitors such as nivolumab extend the survival of a subset of patients with metastatic ccRCC (1). Whether specific genomic features of ccRCC are associated with clinical benefit is unclear. In contrast to other human tumor types that respond to immunotherapy, such as nonsmall cell lung cancer (NSCLC), melanoma, and microsatellite-unstable colorectal adenocarcinoma, ccRCC harbors a low burden of somatic mutations (2-5). Melanoma and NSCLC typically harbor 10 to 400 mutations per megabase (Mb) and these genetic variants can generate tumor-specific antigens (neoantigens) that stimulate a strong anti-tumor immune response (1-4). In contrast, ccRCC harbors an average of only 1.1 mutations/Mb (6, 7) yet it ranks highly among tumor types in terms of immune cytolytic activity (8), immune infiltration score, and T cell infiltration score in the tumor microenvironment (9). These observations led us to hypothesize that distinct molecular mechanisms underlie the immumicroenvironment active tumor responsiveness to immune checkpoint therapy in patients with ccRCC.

As part of a prospective clinical trial (10), we first analyzed pre-treatment tumors from 35 patients with metastatic ccRCC on a clinical trial of anti-programmed cell death-1 receptor (anti-PD-1) therapy (nivolumab). Whole exome sequencing (WES) from paired tumor/normal tissue was performed to identify genetic correlates of clinical benefit. To validate the findings, we analyzed an independent cohort of 63 patients with metastatic ccRCC treated with therapies blocking PD-1 (e.g., nivolumab) or its ligand PD-L1 (e.g., atezolizumab) (Fig. 1A and table S1A) (11).

Baseline clinical and demographic features in the discovery cohort have been previously described (10). The subset of patients with complete pre-treatment molecular profiling did not differ substantially in clinical or demographic features from patients whose data did not meet technical quality control standards (fig. S1, A and B, and Supplemental Methods) or from the larger published cohort (10). Given previous evidence suggesting that refined clinical stratifications are necessary to assess clinical benefit from immune checkpoint

blockade (12), we defined a composite response endpoint incorporating RECIST (Response Evaluation Criteria In Solid Tumors) (13), radiographic tumor shrinkage, and progression-free survival (PFS) (Fig. 1B and table S1B). Clinical benefit (CB) included patients with complete response (CR) or partial response (PR) by RECIST 1.1 (i.e., tumor shrinkage >30% from baseline) (13) or stable disease (SD) if they had any objective reduction in tumor burden lasting at least 6 months. This modification to include some patients with SD is intended to differentiate those patients with naturally indolent disease (i.e., slow tumor growth not surpassing 20% of baseline tumor size) from those with tumor response to immune checkpoint inhibitors (14). No clinical benefit (NCB) patients experienced progressive disease (PD) by RECIST 1.1 and were discontinued from immunotherapy within three months. All other patients were termed "intermediate benefit" (IB). One patient in the discovery cohort was classified as CB despite PFS < 6 months because there was continued tumor shrinkage (-67% of baseline tumor size) after an initial period of minor tumor progression, and the patient had overall survival exceeding 32 months (fig. S2, A and B). Consistent with prior observations (1), the dose of nivolumab, patient gender, and baseline PD-L1 immunohistochemical staining from metastatic biopsies did not predict patient overall survival (OS) following initiation of anti-PD-1 therapy (p>0.05 for all; log-rank test) (fig. S3).

Mean exome-wide target coverage in the discovery cohort was 128-fold for tumor sequencing and 91-fold for matched germline sequencing (tables S1A and S2A). Overall nonsynonymous mutation burden was moderate in the discovery cohort (median 82 per exome, range 45-157). The tumors of patients with CB and those with NCB showed similar mutation burdens and intratumoral heterogeneity (Fig. 1, C and D, and table S1, C and D). Mutations and copy number alterations affecting antigen presentation machinery and HLA class I alleles were uncommon and were present in tumors of both CB and NCB patients (fig. S4, A and B).

We next focused our analysis on the mutations most likely to be functionally important. We applied MutSig2CV (*15*) to identify genes recurrently mutated in the discovery cohort. Of these genes, we limited our search to highly deleterious variants, meaning known hotspot or putative truncating (frameshift insertion or deletion, nonsense mutation, or splice-site) mutations. Of the seven recurrently mutated genes (Fig. 2A and table S1E) (*6*), *PBRM1* was the only gene in which truncating, or loss-of-function (LOF) (*11*), mutations were enriched in tumors from patients in the CB vs. NCB group (9/11 vs. 3/13; Fisher's exact p=0.012, q=0.086, odds ratio for CB=12.93, 95% C.I. 1.54-190.8) (Fig. 2B and table S1F). In this cohort, all truncating *PBRM1* alterations co-occurred with deletion of the non-mutated allele on chromosome 3p (Fig. 2A), resulting in complete LOF of *PBRM1*, and most of

the mutations were predicted to be clonal (present in all tumor cells) (table S1F). Prior large-scale sequencing studies have shown that *PBRM1* LOF alterations occur in up to 41% of ccRCC tumors (*16*) and are commonly clonal events present in all or nearly all tumor cells (*17*). Patients whose tumors showed biallelic *PBRM1* loss had significantly prolonged OS and PFS compared to patients without *PBRM1* LOF (log-rank p=0.0074 and p=0.029, respectively) (Fig. 2C and fig. S5), and they experienced sustained reductions in tumor burden (Fig. 2D).

To evaluate the reproducibility of this finding, we then examined matched pre-treatment tumor and germline genomic data from an additional 63 patients treated with anti-PD-(L)1 therapy, either alone or in combination with anti-CTLA-4 therapy. Of these 63 patients, *PBRM1* mutation status was derived from WES in 49 and panel sequencing in 14 patients (Fig. 3, A and B, and table S2, A and B) (11). Tumors from CB patients were more likely to harbor truncating alterations in PBRM1 (17/27 vs. 4/19, Fisher's exact p=0.0071, odds ratio for CB=6.10, 95% C.I. 1.42-32.64) (Fig. 3, C and D, and table S2C). Although we could not assess copy number alterations in all samples in the validation cohort, the PBRM1 LOF mutations likely represented biallelic loss, as chromosome 3p deletions are nearly ubiquitous in ccRCC (6). Notably, one of the four NCB patients whose tumor showed a *PBRM1* LOF mutation also had an alteration in B2M, which codes for a protein important in antigen presentation. This provides a potential explanation for the patient's lack of clinical benefit from immune checkpoint blockade therapy despite having a truncating PBRM1 mutation.

While primary analyses excluded patients with intermediate benefit (IB) due to the unclear effect of immune checkpoint blockade therapy on patient outcomes in this group, the observed trend between PBRM1 mutation status and clinical benefit persisted with the inclusion of these patients as an intermediate phenotype. In both the discovery and validation cohorts, patients in the IB group had intermediate rates of PBRM1 LOF (82%, 64%, 23% for CB, IB, NCB in the discovery cohort and 63%, 41%, 21% for CB, IB, NCB in the validation cohort; Fisher-Freeman-Halton Exact p = 0.017 and 0.017). Additionally, while no difference in clinical benefit was observed between treatment-naive and previously-treated patients in the discovery cohort (fig. S2), the progression-free survival benefit conferred by PBRM1 LOF was more prominent in tumors from previously-treated patients compared to those from patients receiving anti-PD-1 therapy as their first cancer therapy (p=0.009) (fig. S6 and tables S1 and S2).

The *PBRM1* gene codes for BAF180, a subunit of the PBAF subtype of the SWI/SNF chromatin remodeling complex. The PBAF complex suppresses the hypoxia transcriptional signature in $VHL^{-/-}$ ccRCC (18, 19) but its effects on tumor-immune interactions have not been thoroughly studied. To explore the

potential impact of this complex on the immunophenotype of ccRCC, we analyzed previously reported whole transcriptome sequencing (RNA-seq) data from A704 ccRCC cell lines with perturbations in the PBAF complex (19). Loss of BAF180 or the related PBAF subunit BRG1, encoded by the gene SMARCA4, prevent formation of the intact PBAF complex (19). We performed gene expression analyses of BAF180-null (A704^{BAF180-/-}) cell lines vs. PBAF-wildtype (A704^{BAF180wt}) cell lines, as well as BRG1-null (A704BAF180wt, BRG1-/-) cell lines vs. PBAF-wildtype (A704^{BAF180wt}) cell lines (Fig. 4A). Differential gene expression analysis showed substantial overlaps (~50%) between the top 100 genes differentially expressed in A704^{BAF180-/-} vs. A704^{BAF180wt} and A704^{BAF180wt}, BRG1-/-A704^{BAF180wt} (table S4). This reflects the fact that BAF180 is essential to the PBAF but not the BAF complex, while BRG1 is a required subunit of both. Thus, the BAF180-null and BRG1-null cell lines have some shared characteristics but are also biologically and phenotypically distinct.

Gene set enrichment analysis (GSEA) on 50 "hallmark" gene sets representing major biological processes (20) revealed five gene sets whose expression was significantly enriched in cell lines that were PBAF-deficient. These included genes linked to IL6/JAK-STAT3 signaling, TNF-α signaling via NF-kB, and IL2/STAT5 signaling (Fig. 4A and table S5, A and B). As expected, the hallmark hypoxia gene set was upregulated in A704^{BAF180-/-} vs. A704^{BAF180wt} cell lines (family-wise error rate - FWER q=0.071) (table S5A) (19). Across the more refined "founder" gene sets describing these five significantly enriched hallmark gene sets, the most strongly enriched gene set in PBAF-deficient cell lines was the KEGG cytokine-cytokine receptor interaction gene set (FWER q=0.0020 for A704^{BAF180-/-} vs. A704^{BAF180wt} and q=0.023 for A704^{BAF180wt, BRG1-/-} vs. A704^{BAF180wt}) (Fig. 4A and table S5, C to L). This gene set includes both immune-stimulatory (e.g., IL12, CCL21) and immune-inhibitory (e.g., IL10) genes, but Gene Ontology term analysis (11) showed that the genes most strongly enriched in PBAF-deficient cell lines were immune-stimulatory (table S6). Previously reported GSEA analysis of untreated ccRCC from The Cancer Genome Atlas (TCGA) and a murine model of PBRM1 loss also show amplified transcriptional outputs of HIF1 and STAT3, involved in hypoxia response and JAK-STAT signaling respectively, in *PBRM1*-mutant vs. *PBRM1*wildtype states (18). GSEA analysis of RNA-seq from pretreatment tumors in the discovery and validation cohorts of this study (n = 18 PBRM1-LOF vs. n = 14 PBRM1-intact) confirmed increased expression of the hypoxia and IL6/JAK-STAT3 gene sets in the *PBRM1*-LOF tumors (Fig. 4B and tables S7, A and B, and S8). Given JAK-STAT3 pathway gene involvement in the interferon gamma (IFN-y-) signaling pathway and IFN-y-dependent cancer immunostimulation (21), differential expression of these genes may impact PBRM1-LOF patients' response to anti-PD-(L)1 therapy.

In addition to assessing tumor-intrinsic gene expression with GSEA, we further characterized the quality of the tumorimmune microenvironment in PBRM1-LOF vs. PBRM1-intact ccRCC in three independent cohorts: TCGA (6), an independent cohort of untreated ccRCC tumors (Sato) (22), and patient tumors from this study (table S8). In all three cohorts, tumors harboring LOF mutations in *PBRM1* showed lower expression of immune inhibitory ligands (e.g., CD276 and BTLA) (23) than those without *PBRM1* mutations. This finding was somewhat unexpected, as high PD-L1 staining is associated with increased responsiveness to anti-PD-1 and anti-PD-L1 agents in other cancer types (24, 25). However, the magnitudes of these differences were small and potentially confounded by differing degrees of tumor-stromal admixture (fig. S7, A to C) (9). We also examined LOF mutations in VHL, the most commonly-mutated gene in the TCGA ccRCC cohort. VHL mutation status did not correlate with immune-related gene expression (fig. S8), suggesting that observed differences in immune gene expression in the context of PBRM1 LOF may be specific to the *PBRM1* gene.

In summary, we have shown that patients with metastatic ccRCC harboring truncating mutations in *PBRM1* experienced increased clinical benefit from immune checkpoint therapy. This may be due to distinct immune-related gene expression profiles in *PBRM1*-mutant or PBAF-deficient tumor cells compared to their PBAF-intact counterparts, as shown by RNA-seq analyses in this study, though further in vivo studies will be needed to further explore these findings. Given the high prevalence of *PBRM1* LOF in ccRCC and of SWI/SNF alterations across all cancer types (more than 20%) (26), this finding has important implications as a molecular tool for considering immunotherapy-responsiveness in ccRCC and across cancer types.

In vivo studies of mice harboring tumor clones with inactivation of PBRM1 - or the related essential PBAF complex components ARID2 or BRD7 - show that cells with PBAF loss are more sensitive to T-cell-mediated cytotoxicity compared to their PBAF-intact counterparts (27). This finding lends a mechanistic basis to the results observed here, and helps explain the conflicting results regarding PBRM1 mutation status as a prognostic variable in ccRCC (in the absence of immunotherapy) in prior studies (28-36). PBRM1 also previously has been linked to longer PFS with VEGF-targeted therapies (37). The observed interaction between PBRM1 status, prior treatment (largely with VEGF inhibitors), and response to immune checkpoint therapy in this study argues for further investigation of patient outcomes from sequential and combination treatment regimens that include anti-PD-(L)1. The relationship between PBRM1 LOF and clinical benefit from anti-PD-(L)1 therapies in ccRCC, as well as the immunological significance of PBAF loss in other cancer types, merit further preclinical and prospective clinical validation.

REFERENCES AND NOTES

- R. J. Motzer, B. Escudier, D. F. McDermott, S. George, H. J. Hammers, S. Srinivas, S. S. Tykodi, J. A. Sosman, G. Procopio, E. R. Plimack, D. Castellano, T. K. Choueiri, H. Gurney, F. Donskov, P. Bono, J. Wagstaff, T. C. Gauler, T. Ueda, Y. Tomita, F. A. Schutz, C. Kollmannsberger, J. Larkin, A. Ravaud, J. S. Simon, L.-A. Xu, I. M. Waxman, P. Sharma, CheckMate 025 Investigators, Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015). doi:10.1056/NEJMoa1510665 Medline
- A. Snyder, V. Makarov, T. Merghoub, J. Yuan, J. M. Zaretsky, A. Desrichard, L. A. Walsh, M. A. Postow, P. Wong, T. S. Ho, T. J. Hollmann, C. Bruggeman, K. Kannan, Y. Li, C. Elipenahli, C. Liu, C. T. Harbison, L. Wang, A. Ribas, J. D. Wolchok, T. A. Chan, Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014). doi:10.1056/NE.IMoa1406498 Medline
- N. A. Rizvi, M. D. Hellmann, A. Snyder, P. Kvistborg, V. Makarov, J. J. Havel, W. Lee, J. Yuan, P. Wong, T. S. Ho, M. L. Miller, N. Rekhtman, A. L. Moreira, F. Ibrahim, C. Bruggeman, B. Gasmi, R. Zappasodi, Y. Maeda, C. Sander, E. B. Garon, T. Merghoub, J. D. Wolchok, T. N. Schumacher, T. A. Chan, Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. *Science* 348, 124–128 (2015). doi:10.1126/science.aaa1348 Medline
- D. T. Le, J. N. Uram, H. Wang, B. R. Bartlett, H. Kemberling, A. D. Eyring, A. D. Skora, B. S. Luber, N. S. Azad, D. Laheru, B. Biedrzycki, R. C. Donehower, A. Zaheer, G. A. Fisher, T. S. Crocenzi, J. J. Lee, S. M. Duffy, R. M. Goldberg, A. de la Chapelle, M. Koshiji, F. Bhaijee, T. Huebner, R. H. Hruban, L. D. Wood, N. Cuka, D. M. Pardoll, N. Papadopoulos, K. W. Kinzler, S. Zhou, T. C. Cornish, J. M. Taube, R. A. Anders, J. R. Eshleman, B. Vogelstein, L. A. Diaz Jr., PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015). doi:10.1056/NEJMoa1500596 Medline
- E. M. Van Allen, D. Miao, B. Schilling, S. A. Shukla, C. Blank, L. Zimmer, A. Sucker, U. Hillen, M. H. G. Foppen, S. M. Goldinger, J. Utikal, J. C. Hassel, B. Weide, K. C. Kaehler, C. Loquai, P. Mohr, R. Gutzmer, R. Dummer, S. Gabriel, C. J. Wu, D. Schadendorf, L. A. Garraway, Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. *Science* 350, 207–211 (2015). doi:10.1126/science.aad0095 Medline
- C. J. Creighton et al., Cancer Genome Atlas Research Network, Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013). doi:10.1038/nature12222 Medline
- G. de Velasco, D. Miao, M. H. Voss, A. A. Hakimi, J. J. Hsieh, N. M. Tannir, P. Tamboli, L. J. Appleman, W. K. Rathmell, E. M. Van Allen, T. K. Choueiri, Tumor mutational load and immune parameters across metastatic renal cell carcinoma risk groups. Cancer Immunol. Res. 4, 820–822 (2016). doi:10.1158/2326-6066.CIR-16-0110 Medline
- M. S. Rooney, S. A. Shukla, C. J. Wu, G. Getz, N. Hacohen, Molecular and genetic properties of tumors associated with local immune cytolytic activity. *Cell* 160, 48– 61 (2015). doi:10.1016/j.cell.2014.12.033 Medline
- Y. Şenbabaoğlu, R. S. Gejman, A. G. Winer, M. Liu, E. M. Van Allen, G. de Velasco, D. Miao, I. Ostrovnaya, E. Drill, A. Luna, N. Weinhold, W. Lee, B. J. Manley, D. N. Khalil, S. D. Kaffenberger, Y. Chen, L. Danilova, M. H. Voss, J. A. Coleman, P. Russo, V. E. Reuter, T. A. Chan, E. H. Cheng, D. A. Scheinberg, M. O. Li, T. K. Choueiri, J. J. Hsieh, C. Sander, A. A. Hakimi, Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. *Genome Biol.* 17, 231 (2016). doi:10.1186/s13059-016-1092-z Medline
- T. K. Choueiri, M. N. Fishman, B. Escudier, D. F. McDermott, C. G. Drake, H. Kluger, W. M. Stadler, J. L. Perez-Gracia, D. G. McNeel, B. Curti, M. R. Harrison, E. R. Plimack, L. Appleman, L. Fong, L. Albiges, L. Cohen, T. C. Young, S. D. Chasalow, P. Ross-Macdonald, S. Srivastava, M. Jure-Kunkel, J. F. Kurland, J. S. Simon, M. Sznol, Immunomodulatory activity of nivolumab in metastatic renal cell carcinoma. Clin. Cancer Res. 22, 5461–5471 (2016). doi:10.1158/1078-0432.CCR-15-2839 Medline
- 11. Materials and methods are available as supplementary materials.
- J. D. Wolchok, A. Hoos, S. O'Day, J. S. Weber, O. Hamid, C. Lebbé, M. Maio, M. Binder, O. Bohnsack, G. Nichol, R. Humphrey, F. S. Hodi, Guidelines for the evaluation of immune therapy activity in solid tumors: Immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009). doi:10.1158/1078-0432.CCR-09-1624 Medline

- E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, J. Verweij, New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009). doi:10.1016/j.ejca.2008.10.026 Medline
- O. N. Gofrit, V. Yutkin, K. C. Zorn, M. Duvdevani, E. H. Landau, G. Hidas, D. Pode, The growth rate of "clinically significant" renal cancer. Springerplus 4, 580 (2015). doi:10.1186/s40064-015-1385-9 Medline
- M. S. Lawrence, P. Stojanov, P. Polak, G. V. Kryukov, K. Cibulskis, A. Sivachenko, S. L. Carter, C. Stewart, C. H. Mermel, S. A. Roberts, A. Kiezun, P. S. Hammerman, A. McKenna, Y. Drier, L. Zou, A. H. Ramos, T. J. Pugh, N. Stransky, E. Helman, J. Kim, C. Sougnez, L. Ambrogio, E. Nickerson, E. Shefler, M. L. Cortés, D. Auclair, G. Saksena, D. Voet, M. Noble, D. DiCara, P. Lin, L. Lichtenstein, D. I. Heiman, T. Fennell, M. Imielinski, B. Hernandez, E. Hodis, S. Baca, A. M. Dulak, J. Lohr, D.-A. Landau, C. J. Wu, J. Melendez-Zajgla, A. Hidalgo-Miranda, A. Koren, S. A. McCarroll, J. Mora, B. Crompton, R. Onofrio, M. Parkin, W. Winckler, K. Ardlie, S. B. Gabriel, C. W. M. Roberts, J. A. Biegel, K. Stegmaier, A. J. Bass, L. A. Garraway, M. Meyerson, T. R. Golub, D. A. Gordenin, S. Sunyaev, E. S. Lander, G. Getz, Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013). doi:10.1038/nature12213 Medline
- I. Varela, P. Tarpey, K. Raine, D. Huang, C. K. Ong, P. Stephens, H. Davies, D. Jones, M.-L. Lin, J. Teague, G. Bignell, A. Butler, J. Cho, G. L. Dalgliesh, D. Galappaththige, C. Greenman, C. Hardy, M. Jia, C. Latimer, K. W. Lau, J. Marshall, S. McLaren, A. Menzies, L. Mudie, L. Stebbings, D. A. Largaespada, L. F. A. Wessels, S. Richard, R. J. Kahnoski, J. Anema, D. A.Tuveson, P. A. Perez-Mancera, V. Mustonen, A. Fischer, D. J. Adams, A. Rust, W. Chan-on, C. Subimerb, K. Dykema, K. Furge, P. J. Campbell, B. T. Teh, M. R. Stratton, P. A. Futreal, Exome sequencing identifies frequent mutation of the SWI/SNF complex gene *PBRM1* in renal carcinoma. *Nature* 469, 539–542 (2011). doi:10.1038/nature09639 Medline
- 17. M. Gerlinger, S. Horswell, J. Larkin, A. J. Rowan, M. P. Salm, I. Varela, R. Fisher, N. McGranahan, N. Matthews, C. R. Santos, P. Martinez, B. Phillimore, S. Begum, A. Rabinowitz, B. Spencer-Dene, S. Gulati, P. A. Bates, G. Stamp, L. Pickering, M. Gore, D. L. Nicol, S. Hazell, P. A. Futreal, A. Stewart, C. Swanton, Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. *Nat. Genet.* 46, 225–233 (2014). doi:10.1038/ng.2891 Medline
- A. M. Nargund, C. G. Pham, Y. Dong, P. I. Wang, H. U. Osmangeyoglu, Y. Xie, O. Aras, S. Han, T. Oyama, S. Takeda, C. E. Ray, Z. Dong, M. Berge, A. A. Hakimi, S. Monette, C. L. Lekaye, J. A. Koutcher, C. S. Leslie, C. J. Creighton, N. Weinhold, W. Lee, S. K. Tickoo, Z. Wang, E. H. Cheng, J. J. Hsieh, The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma. *Cell Reports* 18, 2893–2906 (2017). doi:10.1016/j.celrep.2017.02.074 Medline
- W. Gao, W. Li, T. Xiao, X. S. Liu, W. G. Kaelin Jr., Inactivation of the PBRM1 tumor suppressor gene amplifies the HIF-response in VHL^{-/-} clear cell renal carcinoma. *Proc. Natl. Acad. Sci. U.S.A.* 114, 1027–1032 (2017). doi:10.1073/pnas.1619726114 Medline
- A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, J. P. Mesirov, Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci. U.S.A.* 102, 15545–15550 (2005). doi:10.1073/pnas.0506580102 Medline
- P. Sharma, S. Hu-Lieskovan, J. A. Wargo, A. Ribas, Primary, adaptive, and acquired resistance to cancer immunotherapy. *Cell* 168, 707–723 (2017). doi:10.1016/j.cell.2017.01.017 Medline
- Y. Sato, T. Yoshizato, Y. Shiraishi, S. Maekawa, Y. Okuno, T. Kamura, T. Shimamura, A. Sato-Otsubo, G. Nagae, H. Suzuki, Y. Nagata, K. Yoshida, A. Kon, Y. Suzuki, K. Chiba, H. Tanaka, A. Niida, A. Fujimoto, T. Tsunoda, T. Morikawa, D. Maeda, H. Kume, S. Sugano, M. Fukayama, H. Aburatani, M. Sanada, S. Miyano, Y. Homma, S. Ogawa, Integrated molecular analysis of clear-cell renal cell carcinoma. *Nat. Genet.* 45, 860–867 (2013). doi:10.1038/ng.2699 Medline
- A. G. Ramsay, Immune checkpoint blockade immunotherapy to activate antitumour T-cell immunity. Br. J. Haematol. 162, 313–325 (2013). doi:10.1111/bjh.12380 Medline
- 24. J. E. Rosenberg, J. Hoffman-Censits, T. Powles, M. S. van der Heijden, A. V. Balar, A. Necchi, N. Dawson, P. H. O'Donnell, A. Balmanoukian, Y. Loriot, S. Srinivas, M.

- M. Retz, P. Grivas, R. W. Joseph, M. D. Galsky, M. T. Fleming, D. P. Petrylak, J. L. Perez-Gracia, H. A. Burris, D. Castellano, C. Canil, J. Bellmunt, D. Bajorin, D. Nickles, R. Bourgon, G. M. Frampton, N. Cui, S. Mariathasan, O. Abidoye, G. D. Fine, R. Dreicer, Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinumbased chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 387, 1909-1920 (2016). doi:10.1016/S0140-6736(16)00561-4 Medline
- 25. S. L. Topalian, F. S. Hodi, J. R. Brahmer, S. N. Gettinger, D. C. Smith, D. F. McDermott, J. D. Powderly, R. D. Carvajal, J. A. Sosman, M. B. Atkins, P. D. Leming, D. R. Spigel, S. J. Antonia, L. Horn, C. G. Drake, D. M. Pardoll, L. Chen, W. H. Sharfman, R. A. Anders, J. M. Taube, T. L. McMiller, H. Xu, A. J. Korman, M. Jure-Kunkel, S. Agrawal, D. McDonald, G. D. Kollia, A. Gupta, J. M. Wigginton, M. Sznol, Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443-2454 (2012). doi:10.1056/NEJMoa1200690 Medline
- 26. C. Kadoch, D. C. Hargreaves, C. Hodges, L. Elias, L. Ho, J. Ranish, G. R. Crabtree, Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592-601 (2013). doi:10.1038/ng.2628 Medline
- 27. D. Pan, A. Kobayashi, P. Jiang, L. Ferrari de Andrade, R. E. Tay, A. Luoma, D. Tsoucas, X. Qiu, K. Lim, P. Rao, H. W. Long, G.-C. Yuan, J. Doench, M. Brown, S. Liu, K. W. Wucherpfennig, A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 10.1126/science.aan5951 (2018).
- 28. B. Beuselinck, S. Job, E. Becht, A. Karadimou, V. Verkarre, G. Couchy, N. Giraldo, N. Rioux-Leclercq, V. Molinié, M. Sibony, R. Elaidi, C. Teghom, J.-J. Patard, A. Méjean, W. H. Fridman, C. Sautès-Fridman, A. de Reyniès, S. Oudard, J. Zucman-Rossi, Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting. Clin. Cancer Res. 21, 1329-1339 (2015). doi:10.1158/1078-0432.CCR-14-1128 Medline
- 29. A. P. Fay, G. de Velasco, T. H. Ho, E. M. Van Allen, B. Murray, L. Albiges, S. Signoretti, A. A. Hakimi, M. L. Stanton, J. Bellmunt, D. F. McDermott, M. B. Atkins, L. A. Garraway, D. J. Kwiatkowski, T. K. Choueiri, Whole-exome sequencing in two extreme phenotypes of response to VEGF-targeted therapies in patients with metastatic clear cell renal cell carcinoma. J. Natl. Compr. Canc. Netw. 14, 820-824 (2016). doi:10.6004/inccn.2016.0086 Medline
- 30. A. A. Hakimi, I. Ostrovnaya, B. Reva, N. Schultz, Y.-B. Chen, M. Gonen, H. Liu, S. Takeda, M. H. Voss, S. K. Tickoo, V. E. Reuter, P. Russo, E. H. Cheng, C. Sander, R. J. Motzer, J. J. Hsieh, ccRCC Cancer Genome Atlas (KIRC TCGA) Research Network investigators, Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: A report by MSKCC and the KIRC TCGA research network. Clin. Cancer Res. 19, 3259-3267 (2013). doi:10.1158/1078-0432.CCR-12-3886 Medline
- 31. J. J. Hsieh, D. Chen, P. I. Wang, M. Marker, A. Redzematovic, Y.-B. Chen, S. D. Selcuklu, N. Weinhold, N. Bouvier, K. H. Huberman, U. Bhanot, M. S. Chevinsky, P. Patel, P. Pinciroli, H. H. Won, D. You, A. Viale, W. Lee, A. A. Hakimi, M. F. Berger, N. D. Socci, E. H. Cheng, J. Knox, M. H. Voss, M. Voi, R. J. Motzer, Genomic biomarkers of a randomized trial comparing first-line everolimus and sunitinib in patients with metastatic renal cell carcinoma. Eur. Urol. 71, 405-414 (2017). doi:10.1016/j.eururo.2016.10.007 Medline
- 32. P. Kapur, S. Peña-Llopis, A. Christie, L. Zhrebker, A. Pavía-Jiménez, W. K. Rathmell, X.-J. Xie, J. Brugarolas, Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: A retrospective analysis with independent validation. Lancet Oncol. 14, 159-167 (2013). doi:10.1016/S1470-2045(12)70584-3 Medline
- 33. D. J. Kwiatkowski, T. K. Choueiri, A. P. Fay, B. I. Rini, A. R. Thorner, G. de Velasco, M. E. Tyburczy, L. Hamieh, L. Albiges, N. Agarwal, T. H. Ho, J. Song, J.-C. Pignon, P. M. Barrios, M. D. Michaelson, E. Van Allen, K. M. Krajewski, C. Porta, S. Pal, J. Bellmunt, D. F. McDermott, D. Y. C. Heng, K. P. Gray, S. Signoretti, Mutations in TSC1. TSC2, and MTOR are associated with response to rapalogs in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 22, 2445-2452 (2016). doi:10.1158/1078-0432.CCR-15-2631 Medline
- 34. S. J. Nam. C. Lee, J. H. Park, K. C. Moon, Decreased PBRM1 expression predicts unfavorable prognosis in patients with clear cell renal cell carcinoma. Urol. Oncol. 33, 340.e9-340.e16 (2015). doi:10.1016/j.urolonc.2015.01.010 Medline
- 35. R. Pawłowski, S. M. Mühl, T. Sulser, W. Krek, H. Moch, P. Schraml, Loss of PBRM1 expression is associated with renal cell carcinoma progression. Int. J. Cancer 132,

First release: 4 January 2018

- E11-E17 (2013). doi:10.1002/ijc.27822 Medline
- 36. M. Uhlen, C. Zhang, S. Lee, E. Sjöstedt, L. Fagerberg, G. Bidkhori, R. Benfeitas, M. Arif, Z. Liu, F. Edfors, K. Sanli, K. von Feilitzen, P. Oksvold, E. Lundberg, S. Hober, P. Nilsson, J. Mattsson, J. M. Schwenk, H. Brunnström, B. Glimelius, T. Sjöblom, P.-H. Edqvist, D. Djureinovic, P. Micke, C. Lindskog, A. Mardinoglu, F. Ponten, A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017). doi:10.1126/science.aan2507 Medline
- 37. M. I. Carlo, B. Manley, S. Patil, K. M. Woo, D. T. Coskey, A. Redzematovic, M. Arcila, M. Ladanyi, W. Lee, Y. B. Chen, C. H. Lee, D. R. Feldman, A. A. Hakimi, R. J. Motzer, J. J. Hsieh, M. H. Voss, Genomic alterations and outcomes with VEGF-targeted therapy in patients with clear cell renal cell carcinoma. Kidney Cancer 1, 49-56 (2017). doi:10.3233/KCA-160003
- 38. E. M. Van Allen, N. Wagle, P. Stojanov, D. L. Perrin, K. Cibulskis, S. Marlow, J. Jane-Valbuena, D. C. Friedrich, G. Kryukov, S. L. Carter, A. McKenna, A. Sivachenko, M. Rosenberg, A. Kiezun, D. Voet, M. Lawrence, L. T. Lichtenstein, J. G. Gentry, F. W. Huang, J. Fostel, D. Farlow, D. Barbie, L. Gandhi, E. S. Lander, S. W. Gray, S. Joffe, P. Janne, J. Garber, L. MacConaill, N. Lindeman, B. Rollins, P. Kantoff, S. A. Fisher, S. Gabriel, G. Getz, L. A. Garraway, Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat. Med. 20, 682-688 (2014). doi:10.1038/nm.3559 **Medline**
- 39. A. Gnirke, A. Melnikov, J. Maguire, P. Rogov, E. M. LeProust, W. Brockman, T. Fennell, G. Giannoukos, S. Fisher, C. Russ, S. Gabriel, D. B. Jaffe, E. S. Lander, C. Nusbaum, Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182-189 (2009). doi:10.1038/nbt.1523 Medline
- 40. S. Fisher, A. Barry, J. Abreu, B. Minie, J. Nolan, T. M. Delorey, G. Young, T. J. Fennell, A. Allen, L. Ambrogio, A. M. Berlin, B. Blumenstiel, K. Cibulskis, D. Friedrich, R. Johnson, F. Juhn, B. Reilly, R. Shammas, J. Stalker, S. M. Sykes, J. Thompson, J. Walsh, A. Zimmer, Z. Zwirko, S. Gabriel, R. Nicol, C. Nusbaum, A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol. 12, R1 (2011). doi:10.1186/gb-2011-12-1-r1 Medline
- 41. M. Reich, T. Liefeld, J. Gould, J. Lerner, P. Tamayo, J. P. Mesirov, GenePattern 2.0. Nat. Genet. 38, 500–501 (2006). doi:10.1038/ng0506-500 Medline
- 42. K. Cibulskis, A. McKenna, T. Fennell, E. Banks, M. DePristo, G. Getz, ContEst: Estimating cross-contamination of human samples in next-generation sequencing data. **Bioinformatics** 27, 2601-2602 (2011).doi:10.1093/bioinformatics/btr446 Medline
- 43. K. Cibulskis, M. S. Lawrence, S. L. Carter, A. Sivachenko, D. Jaffe, C. Sougnez, S. Gabriel, M. Meyerson, E. S. Lander, G. Getz, Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213-219 (2013). doi:10.1038/nbt.2514 Medline
- 44. C. T. Saunders, W. S. W. Wong, S. Swamy, J. Becq, L. J. Murray, R. K. Cheetham, Strelka: Accurate somatic small-variant calling from sequenced tumor-normal sample pairs. **Bioinformatics** 28. 1811-1817 doi:10.1093/bioinformatics/bts271 Medline
- 45. D. Bell et al., Cancer Genome Atlas Research Network, Integrated genomic analyses of ovarian carcinoma. *Nature* **474**, 609–615 doi:10.1038/nature10166 Medline
- 46. M. Costello, T. J. Pugh, T. J. Fennell, C. Stewart, L. Lichtenstein, J. C. Meldrim, J. L. Fostel, D. C. Friedrich, D. Perrin, D. Dionne, S. Kim, S. B. Gabriel, E. S. Lander, S. Fisher, G. Getz. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res. 41, e67 (2013). doi:10.1093/nar/gks1443 Medline
- 47. M. D. Stachler, A. Taylor-Weiner, S. Peng, A. McKenna, A. T. Agoston, R. D. Odze, J. M. Davison, K. S. Nason, M. Loda, I. Leshchiner, C. Stewart, P. Stojanov, S. Seepo, M. S. Lawrence, D. Ferrer-Torres, J. Lin, A. C. Chang, S. B. Gabriel, E. S. Lander, D. G. Beer, G. Getz, S. L. Carter, A. J. Bass, Paired exome analysis of Barrett's esophagus and adenocarcinoma. Nat. Genet. 47, 1047-1055 (2015). doi:10.1038/ng.3343 Medline
- 48. H. Thorvaldsdóttir, J. T. Robinson, J. P. Mesirov, Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013). doi:10.1093/bib/bbs017 Medline

- A. B. Olshen, E. S. Venkatraman, R. Lucito, M. Wigler, Circular binary segmentation for the analysis of array-based DNA copy number data. *Biostatistics* 5, 557–572 (2004). doi:10.1093/biostatistics/kxh008 Medline
- 50. P. K. Brastianos, S. L. Carter, S. Santagata, D. P. Cahill, A. Taylor-Weiner, R. T. Jones, E. M. Van Allen, M. S. Lawrence, P. M. Horowitz, K. Cibulskis, K. L. Ligon, J. Tabernero, J. Seoane, E. Martinez-Saez, W. T. Curry, I. F. Dunn, S. H. Paek, S.-H. Park, A. McKenna, A. Chevalier, M. Rosenberg, F. G. Barker II, C. M. Gill, P. Van Hummelen, A. R. Thorner, B. E. Johnson, M. P. Hoang, T. K. Choueiri, S. Signoretti, C. Sougnez, M. S. Rabin, N. U. Lin, E. P. Winer, A. Stemmer-Rachamimov, M. Meyerson, L. Garraway, S. Gabriel, E. S. Lander, R. Beroukhim, T. T. Batchelor, J. Baselga, D. N. Louis, G. Getz, W. C. Hahn, Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. *Cancer Discov.* 5, 1164–1177 (2015). doi:10.1158/2159-8290.CD-15-0369 Medline
- S. L. Carter, K. Cibulskis, E. Helman, A. McKenna, H. Shen, T. Zack, P. W. Laird, R. C. Onofrio, W. Winckler, B. A. Weir, R. Beroukhim, D. Pellman, D. A. Levine, E. S. Lander, M. Meyerson, G. Getz, Absolute quantification of somatic DNA alterations in human cancer. *Nat. Biotechnol.* 30, 413–421 (2012). doi:10.1038/nbt.2203 Medline
- D. Tamborero, A. Gonzalez-Perez, C. Perez-Llamas, J. Deu-Pons, C. Kandoth, J. Reimand, M. S. Lawrence, G. Getz, G. D. Bader, L. Ding, N. Lopez-Bigas, Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci. Rep. 3, 2650 (2013). doi:10.1038/srep02650 Medline
- 53. V. Anagnostou, K. N. Smith, P. M. Forde, N. Niknafs, R. Bhattacharya, J. White, T. Zhang, V. Adleff, J. Phallen, N. Wali, C. Hruban, V. B. Guthrie, K. Rodgers, J. Naidoo, H. Kang, W. Sharfman, C. Georgiades, F. Verde, P. Illei, Q. K. Li, E. Gabrielson, M. V. Brock, C. A. Zahnow, S. B. Baylin, R. B. Scharpf, J. R. Brahmer, R. Karchin, D. M. Pardoll, V. E. Velculescu, Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. *Cancer Discov.* 7, 264–276 (2017). doi:10.1158/2159-8290.CD-16-0828 Medline
- 54. A. Liberzon, C. Birger, H. Thorvaldsdóttir, M. Ghandi, J. P. Mesirov, P. Tamayo, The Molecular Signatures Database (MSigDB) hallmark gene set collection. *Cell Syst.* 1, 417–425 (2015). doi:10.1016/j.cels.2015.12.004 Medline
- A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, T. R. Gingeras, STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). doi:10.1093/bioinformatics/bts635 Medline
- B. Li, C. N. Dewey, RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics* 12, 323 (2011). doi:10.1186/1471-2105-12-323 Medline
- 57. W. E. Johnson, C. Li, A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods. *Biostatistics* **8**, 118–127 (2007). doi:10.1093/biostatistics/kxj037 Medline

ACKNOWLEDGMENTS

This project was supported by the Bristol-Myers Squibb II-ON consortium, the American Association for Cancer Research Kurelt Grant for Kidney Cancer Research (EMV, TKC), and the Cancer Immunologic Data Commons (NIH U24CA224316). DM is a Howard Hughes Medical Institute Medical Research Fellow. TKC is supported in part by the Dana-Farber/Harvard Cancer Center Kidney SPORE, the Kohlberg chair at Harvard Medical School and the Trust Family, Michael Brigham, and Loker Pinard Funds for Kidney Cancer Research at the Dana-Farber Cancer Institute. THH is supported by the Gerstner Family Career Development Award, the National Cancer Institute (K12CA90628), and the Department of Defense (W81XWH-17-1-0546). Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense. This study makes use of data generated by the Department of Pathology and Tumor Biology, Kyoto University (Sato cohort). WGK is a paid consultant for Agios, Fibrogen, Nextech Ventures, Peloton Therapeutics, Tracon, Third Rock Ventures, and serves on the Lilly Pharmaceuticals Board of Directors. EMV is a paid consultant for Third Rock Ventures, Genome Medical Inc., and Tango Therapeutics and receives research support from Bristol-Myers Squibb and Novartis. TKC is a paid advisor for AstraZeneca, Bayer, Bristol-Myers Squibb, Cerulean, Foundation Medicine, Genentech, GlaxoSmithKline, Merck, Novartis, Peloton, Pfizer, Prometheus Labs, Roche, and Eisai. TKC receives institutional research funding from AstraZeneca, Bristol-Myers Squibb, Exelixis, Genentech, GSK, Merck, Novartis, Peloton, Pfizer, Roche, Tracon, and Eisai (for clinical trials). S.S. is a paid consultant for Merck and Bristol-Myers Squibb. R.J.M is a paid consultant for Pfizer, Genentech/Roche, Novartis, Exelixis, and Eisai. T. H. is a paid consultant for Pfizer, Exelixis, and Roche. F.S. H. is a paid consultant for Bristol-Myers Squibb, Merck, Genentech, Novartis, Amgen, and EMD Serono. M.D.H. is a paid consultant for Bristol-Myers Squibb, Merck, Genentech/Roche, AstraZeneca, Mirati, Janssen, and Novartis. E.M.V., T.K.C. and D.M. are inventors on patent application submitted by Dana-Farber Cancer Institute that covers PBRM1 mutational status in tumors and response to immunotherapy. The sequencing data are deposited in dbGap (accession number phs001493.v1.p1). The cell line transcriptome data are deposited in GEO (accession number PRJNA371283). DM, CAM, MB, MEA, and EMV performed genomic analyses. WL and WG performed the cell line experiments and generated the cell line genomic data. MG, TKC, DC, CH, MWR, MV, and RJM gathered the discovery cohort clinical and biological materials. SS contributed to immunohistochemistry. SMW, DJM, DB, MHV, AS, MDH, THH, and CN collected the biological materials and clinical annotations for the validation cohort. AT contributed to project management. DM, CAM, EMV, and TKC prepared the initial draft of the manuscript. FSH, WGK, DC, CH, MWR, AS, MHV, RJM, TKC and EMV supervised the study.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/cgi/content/full/science.aan5951/DC1 Materials and Methods Figs. S1 to S8 Tables S1 to S8 References (38–57)

15 May 2017; resubmitted 30 October 2017 Accepted 15 December 2017 Published online 4 January 2018 10.1126/science.aan5951

Fig. 1. Cohort consolidation and clinical characteristics of the discovery cohort.(A) Sample inclusion/exclusion criteria and computational workflow. (B) Clinical stratification by degree of objective change in tumor burden (y-axis) and duration of progression-free survival (x-axis). One patient (RCC_99) not shown due to lack of tumor response data. *Patient RCC_50 was classified as clinical benefit despite PFS<6 months because there was continued tumor shrinkage after an initial period of minor tumor progression (see fig. S2). (C) Mutation burden in the discovery cohort by response group. (D) Ratio of subclonal to clonal mutations, as estimated by ABSOLUTE, by response group. ns = not significant. Abbreviations: CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.

Fig. 2. Analysis of tumor genome features in discovery cohort reveals a correlation between *PBRM1* LOF mutations and clinical benefit from anti-PD-1 therapy. (A) Mutations in the discovery cohort. Patients are ordered by response category, with tumor mutation burden in decreasing order within each response category. Shown are the genes that were recurrently mutated at a significant frequency, as assessed by MutSig2CV analysis (table S1E). CNA = copy number alteration. (B) Enrichment of truncating mutations in tumors from patients in the CB vs. NCB groups. Red dashed line denotes q<0.1 (Fisher's exact test). Mutations in genes above the black dotted line are enriched in tumors of patients with CB from anti-PD-1 therapy and mutations in genes below the line are enriched in tumors of patients with NCB. (C) Kaplan-Meier curve comparing overall survival of patients treated with anti-PD-1 therapy whose tumors did or did not harbor LOF mutations in *PBRM1*. See also fig. S5 for Kaplan-Meier curve comparing progression-free survival of these patients. (D) Spider plot showing objective decrease in tumor burden in *PBRM1*-LOF (blue) vs. *PBRM1*-intact (yellow) tumors. Three patients with early progression on anti-PD-1 therapy and truncating mutations in *PBRM1* (dark blue) had long and/or censored OS.

Fig. 3. *PBRM1* LOF mutations correlate with clinical benefit in a validation cohort of ccRCC patients treated with immune checkpoint inhibitors. (A) Selection of the validation cohort. (B) Clinical outcomes in the validation cohort. Ten patients without post-treatment re-staging scans (eight with clinical PD, two with SD, and one with PR) as well as 14 patients with targeted panel sequencing are not shown. (C) Proportion of tumors harboring *PBRM1* LOF mutations in patients in the CB vs. NCB groups. Error bars are S.E. *Fisher's exact p<0.05. (D) Truncating alterations in *PBRM1* and response to anti-PD-(L)1 therapies by sample. Colored boxes indicate samples with truncating mutations in *PBRM1* while gray denotes samples without *PBRM1* truncating mutations. Missense LOF denotes a missense mutation detected by targeted sequencing that was confirmed to be LOF by PBRM1 immunohistochemistry (see Supplemental Methods).

Fig. 4. PBRM1 mutational status in ccRCC influences immune gene expression. (A) GSEA was performed on PBAF-deficient (A704BAF180-/- and A704BAF180wt, BRG1-/-) vs. PBAF-proficient (A704BAF180wt) kidney cancer cell lines using both Hallmark and corresponding Founder gene sets. GSEA enrichment plot shown for the KEGG cytokine-cytokine receptor interaction gene set in A704BAF180-/- vs. A704BAF180wt (PBRM1 null vs. wildtype). Enrichment plot is similar for A704BAF180wt, BRG1-/- vs. A704BAF180wt (BRG1 null vs. wildtype); see table S4. (B) GSEA was also performed on RNA-seq from pre-treatment tumors in the discovery and validation cohorts of this study (n = 18 PBRM1-LOF vs. n = 14 PBRM1-intact) using the Hallmark gene sets. Enrichment plots show increased expression of the hypoxia and IL6/JAK-STAT3 gene sets in the PBRM1-LOF tumors.

Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma

Diana Miao, Claire A. Margolis, Wenhua Gao, Martin H. Voss, Wei Li, Dylan J. Martini, Craig Norton, Dominick Bossé, Stephanie M. Wankowicz, Dana Cullen, Christine Horak, Megan Wind-Rotolo, Adam Tracy, Marios Giannakis, Frank Stephen Hodi, Charles G. Drake, Mark W. Ball, Mohamad E. Allaf, Alexandra Snyder, Matthew D. Hellmann, Thai Ho, Robert J. Motzer, Sabina Signoretti, William G. Kaelin Jr., Toni K. Choueiri and Eliezer M. Van Allen

published online January 4, 2018

ARTICLE TOOLS http://science.sciencemag.org/content/early/2018/01/03/science.aan5951

SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2018/01/03/science.aan5951.DC1

RELATED content http://science.sciencemag.org/content/sci/early/2018/01/03/science.aao1710.full

REFERENCES This article cites 55 articles, 14 of which you can access for free

http://science.sciencemag.org/content/early/2018/01/03/science.aan5951#BIBL

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service