CSC373

Week 2: Greedy Algorithms

Nisarg Shah

Recap

Divide & Conquer

- > Master theorem
- \triangleright Counting inversions in $O(n \log n)$
- \succ Finding closest pair of points in \mathbb{R}^2 in $O(n \log n)$
- \succ Fast integer multiplication in $O(n^{\log_2 3})$
- > Fast matrix multiplication in $O(n^{\log_2 7})$
- > Finding k^{th} smallest element (in particular, median) in O(n)

Greedy Algorithms

- Greedy (also known as myopic) algorithm outline
 - \succ We want to find a solution x that maximizes some objective function f
 - \triangleright But the space of possible solutions x is too large
 - > The solution x is typically composed of several parts (e.g. x may be a set, composed of its elements)
 - \triangleright Instead of directly computing x...
 - Compute it one part at a time
 - Select the next part "greedily" to get maximum immediate benefit (this needs to be defined carefully for each problem)
 - May not be optimal because there is no foresight
 - O But sometimes this can be optimal too!

Problem

- \triangleright Job j starts at time s_j and finishes at time f_j
- > Two jobs are compatible if they don't overlap
- ➤ Goal: find maximum-size subset of mutually compatible jobs

Greedy template

- > Consider jobs in some "natural" order
- Take each job if it's compatible with the ones already chosen

What order?

- \triangleright Earliest start time: ascending order of s_i
- \triangleright Earliest finish time: ascending order of f_j
- \triangleright Shortest interval: ascending order of $f_i s_i$
- Fewest conflicts: ascending order of c_j , where c_j is the number of remaining jobs that conflict with j

Example

- Earliest start time: ascending order of s_i
- Earliest finish time: ascending order of f_i
- Shortest interval: ascending order of $f_i s_i$
- Fewest conflicts: ascending order of c_j , where c_j is the number of remaining jobs that conflict with j

Does it work?

earliest start time

shortest interval

fewest conflicts

- Implementing greedy with earliest finish time (EFT)
 - > Sort jobs by finish time. Say $f_1 \le f_2 \le \cdots \le f_n$
 - > When deciding whether job *j* should be included, we need to check whether it's compatible with all previously added jobs
 - \circ We only need to check if $s_i \geq f_{i^*}$, where i^* is the *last added job*
 - \circ This is because for any jobs i added before i^* , $f_i \leq f_{i^*}$
 - So we can simply store and maintain the finish time of the last added job

 \triangleright Running time: $O(n \log n)$

Optimality of greedy with EFT

- > Suppose for contradiction that greedy is not optimal
- > Say greedy selects jobs $i_1, i_2, ..., i_k$ sorted by finish time
- \triangleright Consider the optimal solution $j_1, j_2, ..., j_m$ (also sorted by finish time) which matches greedy for as long as possible
 - \circ That is, we want $j_1=i_1,\ldots,j_r=i_r$ for greatest possible r

Another standard method is induction

compatible with

both all future jobs and previous jobs,

- Optimality of greedy with EFT
 - > Both i_{r+1} and j_{r+1} were compatible with the previous selection $(i_1=j_1,\ldots,i_r=j_r)$
 - > Consider the solution $i_1, i_2, ..., i_r, i_{r+1}, j_{r+2}, ..., j_m$
 - \circ It should still be feasible (since $f_{i_{r+1}} \leq f_{j_{r+1}}$)
 - o It is still optimal
 - And it matches with greedy for one more step (contradiction!)

Greedy: i_1 i_2 i_r i_{r+1} OPT: j_1 j_2 j_r j_{r+1}

Problem

- \triangleright Job j starts at time s_j and finishes at time f_j
- > Two jobs are compatible if they don't overlap
- Goal: group jobs into fewest partitions such that jobs in the same partition are compatible

• One idea

- Find the maximum compatible set using the previous greedy EFT algorithm, call it one partition, recurse on the remaining jobs.
- Doesn't work (check by yourselves)

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 4 classrooms for scheduling 10 lectures

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 3 classrooms for scheduling 10 lectures

- Let's go back to the greedy template!
 - > Go through lectures in some "natural" order
 - Assign each lecture to a compatible classroom (which?), and create a new classroom if the lecture conflicts with every existing classroom
- Order of lectures?
 - \triangleright Earliest start time: ascending order of s_i
 - \triangleright Earliest finish time: ascending order of f_i
 - > Shortest interval: ascending order of $f_j s_j$
 - \triangleright Fewest conflicts: ascending order of c_j , where c_j is the number of remaining jobs that conflict with j

- At least when you
 assign each lecture to
 an arbitrary feasible
 classroom, three of
 these heuristics do not
 work.
- The fourth one works! (next slide)

EARLIESTSTARTTIMEFIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$

SORT lectures by start time so that $s_1 \le s_2 \le ... \le s_n$.

 $d \leftarrow 0$ — number of allocated classrooms

For j = 1 to n

IF lecture j is compatible with some classroom Schedule lecture j in any such classroom k.

ELSE

Allocate a new classroom d + 1.

Schedule lecture j in classroom d + 1.

$$d \leftarrow d + 1$$

RETURN schedule.

Running time

- Key step: check if the next lecture can be scheduled at some classroom
- > Store classrooms in a priority queue
 - o key = finish time of its last lecture
- > Is lecture *j* compatible with some classroom?
 - \circ Same as "Is s_i at least as large as the minimum key?"
 - \circ If yes: add lecture j to classroom k with minimum key, and increase its key to f_j
 - \circ Otherwise: create a new classroom, add lecture j, set key to f_i
- > O(n) priority queue operations, $O(n \log n)$ time

- Proof of optimality (lower bound)
 - » # classrooms needed ≥ maximum "depth" at any point
 o depth = number of lectures running at that time
 - We now show that our greedy algorithm uses only these many classrooms!

- Proof of optimality (upper bound)
 - \triangleright Let d = # classrooms used by greedy
 - \succ Classroom d was opened because there was a schedule j which was incompatible with some lectures already scheduled in each of d-1 other classrooms
 - \triangleright All these d lectures end after s_i
 - \triangleright Since we sorted by start time, they all start at/before s_i
 - \triangleright So at time s_i , we have d overlapping lectures
 - \gt Hence, depth $\ge d$
 - > So all schedules use $\geq d$ classrooms.

> QED!

Interval Graphs

 Interval scheduling and interval partitioning can be seen as graph problems

Input

- \triangleright Graph G = (V, E)
- > Vertices *V* = jobs/lectures
- \triangleright Edge $(i,j) \in E$ if jobs i and j are incompatible
- Interval scheduling = maximum independent set (MIS)
- Interval partitioning = graph colouring

Interval Graphs

- MIS and graph colouring are NP-hard for general graphs
- But they're efficiently solvable for interval graphs
 - Interval graphs = graphs which can be obtained from incompatibility of intervals
 - In fact, this holds even when we are not given an interval representation of the graph
- Can we extend this result further?
 - > Yes! Chordal graphs
 - Every cycle with 4 or more vertices has a chord

Problem

- > We have a single machine
- \triangleright Each job j requires t_j units of time and is due by time d_j
- \triangleright If it's scheduled to start at s_i , it will finish at $f_i = s_i + t_i$
- > Lateness: $\ell_i = \max\{0, f_i d_i\}$
- \triangleright Goal: minimize the maximum lateness, $L = \max_{j} \ell_{j}$
- Contrast with interval scheduling
 - > We can decide the start time
 - > All jobs must be scheduled on a single machine

Example

Input

	1	2	3	4	5	6
tj	3	2	1	4	3	2
dj	6	8	9	9	14	15

An example schedule

Let's go back to greedy template

- > Consider jobs one-by-one in some "natural" order
- Schedule jobs in this order (nothing special to do here, since we have to schedule all jobs and there is only one machine available)

Natural orders?

- \triangleright Shortest processing time first: ascending order of processing time t_i
- \triangleright Earliest deadline first: ascending order of due time d_i
- \triangleright Smallest slack first: ascending order of d_j-t_j

- Counterexamples
 - > Shortest processing time first
 - \circ Ascending order of processing time t_i

	' '	
tj	1	10
dj	100	10

- > Smallest slack first
 - \circ Ascending order of $d_j t_j$

	1	2
tj	1	10
dj	2	10

 By now, you should know what's coming...

 We'll prove that earliest deadline first works! EARLIEST DEADLINE FIRST $(n, t_1, t_2, ..., t_n, d_1, d_2, ..., d_n)$

SORT *n* jobs so that $d_1 \leq d_2 \leq ... \leq d_n$.

$$t \leftarrow 0$$

For j = 1 to n

Assign job *j* to interval $[t, t + t_j]$.

$$s_j \leftarrow t$$
; $f_j \leftarrow t + t_j$
 $t \leftarrow t + t_j$

RETURN intervals $[s_1, f_1], [s_2, f_2], ..., [s_n, f_n].$

- Observation 1
 - > There is an optimal schedule with no idle time

- Observation 2
 - > Earliest deadline first has no idle time
- Let us define an "inversion"
 - $\succ (i,j)$ such that $d_i < d_j$ but j is scheduled before i
- Observation 3
 - > By definition, earliest deadline first has no inversions
- Observation 4
 - > If a schedule with no idle time has an inversion, it has a pair of inverted jobs scheduled consecutively

Claim

Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces #inversions by one

Proof

- \triangleright Let ℓ and ℓ' denote lateness before/after swap
- \gt Clearly, $\ell_k = \ell_k'$ for all $k \neq i, j$
- \gt Also, clearly, $\ell_i' \leq \ell_i$

Claim

Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces #inversions by one

Proof

- Proof of optimality of earliest deadline first
 - > Suppose for contradiction that it's not optimal
 - \triangleright Consider an optimal schedule S^* which has fewest inversions among all optimal schedules
 - We can assume it has no idle time
 - \circ If S^* has zero inversions, it's exactly earliest deadline first
 - \circ So assume S^* has at least one inversion
 - \circ So it must have an adjacent inversion (i, j)
 - \circ But swapping these jobs doesn't increase lateness (so new schedule stays optimal) and reduces the number of inversions by 1
 - \circ Contradiction given that S^* has fewest inversions among all optimal schedules.

o QED!

Problem

- \triangleright We have a document that is written using n distinct labels
- > Naïve encoding: represent each label using $k = \log n$ bits
- > If the document has length m, this uses $m \log n$ bits
- > Say for English documents with no punctuations etc, we have n=26, so we can use 5 bits.

$$\circ a = 00000$$

$$0 b = 00001$$

$$c = 00010$$

$$0 d = 00011$$

O ...

- Is this optimal?
 - > What if a, e, r, s are much more frequent in the document than x, q, z?
 - > Can we assign shorter codes to more frequent letters?
- Say we assign...
 - > a = 0, b = 1, c = 01, ...
 - > See a problem?
 - O What if we observe the encoding '01'?
 - Is it 'ab'? Or is it 'c'?

- To avoid conflicts, we need prefix-free encoding
 - \triangleright Map each label x to a bit-string c(x) such that for all distinct labels x and y, c(x) is not a prefix of c(y)
 - > Then it's impossible to have a scenario like this

> So we can read left to right, find the first point where it becomes a valid encoding, decode the label, and continue

Formal problem

- \triangleright Given n symbols and their frequencies (w_1, \ldots, w_n) , find a prefix-free encoding with lengths (ℓ_1, \ldots, ℓ_n) assigned to the symbols which minimizes $\sum_{i=1}^n w_i \cdot \ell_i$
 - \circ Note that $\sum_{i=1}^{n} w_i \cdot \ell_i$ is the length of the compressed document

Example

- $(w_a, w_b, w_c, w_d, w_e, w_f) = (42,20,5,10,11,12)$
- > No need to remember the numbers ©

Observation: prefix-free encoding = tree

- Huffman Coding
 - \triangleright Build a priority queue by adding (x, w_x) for each symbol x
 - \rightarrow While |queue| ≥ 2
 - \circ Take the two symbols with the lowest weight (x, w_x) and (y, w_y)
 - \circ Merge them into one symbol with weight $w_x + w_y$
- Let's see this on the previous example

Final Outcome

Running time

- $> O(n \log n)$
- \succ Can be made O(n) if the labels are given to you sorted by their frequencies

Proof of optimality

- \triangleright Induction on the number of symbols n
- \triangleright Base case: For n=2, there are only two possible encodings, both are optimal, assign 1 bit to each symbol
- > Hypothesis: Assume it returns an optimal encoding with n-1 symbols

- Proof of optimality
 - > Consider the case of n symbols
 - ▶ Lemma 1: If $w_{\chi} < w_{\gamma}$, then $\ell_{\chi} \ge \ell_{\gamma}$ in any optimal tree.
 - Proof sketch: Otherwise, swapping x and y would strictly reduce the overall length (exercise!).
 - ▶ Lemma 2: There is an optimal tree T in which the two least frequent symbols are siblings.
 - Proof sketch: First prove that they must have the same longest length assigned to them. Then, if they're not siblings, chop and rearrange the tree to make them siblings (exercise!).
 - \succ Now, we can compare the tree H produced by Huffman vs such an optimal tree T

Proof of optimality

- > Let x and y be the two least frequency symbols
- > In Huffman, we combine them in the first step into "xy"
- > Let H' and T' be trees obtained from H and T by treating xy as one symbol with frequency $w_x + w_y$
- > Use induction hypothesis: Length(H') ≤ Length(T')
- > $Length(H) = Length(H') + (w_x + w_y) \cdot 1$
- > $Length(T) = Length(T') + (w_x + w_y) \cdot 1$
- > QED!

Other Greedy Algorithms

- If you aren't familiar with the following algorithms,
 spend some time checking them out!
 - > Dijkstra's shortest path algorithm
 - > Kruskal and Prim's minimum spanning tree algorithms