BCM0504

Natureza da Informação

Aritmética Booleana

Prof. Alexandre Donizeti Alves

Bacharelado em Ciência e Tecnologia

Bacharelado em Ciências e Humanidades

Terceiro Quadrimestre - 2018

Aritmética Booleana

Operação de Adição

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 10$$

$$1 + 1 = 10$$
, que é o número 2 em binário

0 com transporte de 1 para a posição imediatamente seguinte (à esquerda)

Aritmética Booleana

Operação de Adição

Adição

Exemplo: 1011 + 0011

```
1011 +
1110
          1 + 1 = 0 e vai 1
     1 + 1 + 1 = 1 e vai 1
  1 + 0 + 0 = 1
1 + 0 = 1
```

OBS: $1011 = (11)_{10}$ $\underline{0011} = (3)_{10}$ $1110 = (14)_{10}$

Exercícios

a) 11 + 11

b) 100 + 10

c) 111 + 11

d) 110 + 100

Respostas

a) 11 + 11 = 110

b) 100 + 10 = 110

c) 111 + 11 = 1010

d) 110 + 100 = **1010**

Aritmética Booleana

Operação de Subtração

10 - 1 = 1, e não 9

$$0 - 0 = 0$$

$$0 - 1 = 11$$

$$1 - 0 = 1$$

$$1 - 1 = 0$$

= e subtrai um do seguinte

1 com transporte de 1 para a posição imediatamente seguinte (à esquerda)

Aritmética Booleana

Operação de Subtração

Decimal	Binário	Decimal	Binário
9	1001	16	10000
<u>- 5</u>	<u>- 101</u>	<u>- 3</u>	<u>- 11</u>
4	100	13	1101

Subtração

- Como na subtração decimal, quando o número que está sendo subtraído for menor do que o que subtrai, teremos que fazer o empréstimo do dígito seguinte
 - Exemplo: subtração decimal:

$$\frac{10005}{69}$$
 <

Como 5 é menor do que 9, ele precisa emprestar 1 do seguinte. Como o seguinte é 0, o processo de emprestar 1 do seguinte continua até atingir um número diferente de 0

Quando um número diferente de 0 for atingido, este número é diminuído em uma unidade e o número que está recebendo este empréstimo é somado o valor da base (10)

O processo continua até atingir o primeiro número que pediu o empréstimo

Receberam a base (10), mas emprestaram 1, por isso ficou 9

Subtração

- O caso Booleano é idêntico ao decimal, mas a base é 2
 - Exemplo: subtrair 1110₂ de 10001₂

Receberam a base (2), mas emprestaram 1, por isso ficou 1

Exercícios

 Efetue a subtração de 1011 a partir de 11001

Efetue a subtração: 101 – 11

Efetue a subtração: 1010 – 111

Respostas

- Efetue a subtração de 1011 a partir de 11001
 - □ 11001 − 1011 = **1110**

■ Efetue a subtração: 101 – 11 = 10

Efetue a subtração: 1010 – 111 = 11

Aritmética Booleana

Operação de Multiplicação

$$0 \cdot 0 = 0$$
 $\frac{111}{x \cdot 110}$ (decimal 7)
 $0 \cdot 1 = 0$ $\frac{x \cdot 110}{000}$ (decimal 6)
 $1 \cdot 0 = 0$ $\frac{111}{101010}$ + $\frac{111}{101010}$ (decimal 42)

Pode ser realizada da mesma forma que multiplicação decimal

Exercícios

a) 11 x 11

b) 101 x 111

Respostas

- a) 11 x 11 = **1001**
 - $3 \times 3 = 9$

- b) 101 x 111 = **100011**
 - $-7 \times 5 = 35$

Aritmética Booleana

Operação de Divisão

$$0 \div 1 = 0$$

$$1 \div 1 = 1$$

$$0 \div 0 = x$$

$$1 \div 0 = x$$

Também pode ser feita de maneira similar a decimal;

se fosse menor do que o divisor colocava um "0" no quociente e baixava o seguinte

Exercícios

■ a) 110 ÷ 11

■ b) 110 ÷ 10

c) 11001 ÷ 10

■ d) 110111 ÷ 101

Respostas

a) $110 \div 11 = 10$, resto 0

b) $110 \div 10 = 11$, resto 0

 \bullet c) 11001 \div 10 = **1100**, resto **1**

d) $110111 \div 101 = 1011$, resto 0

Aritmética Booleana

- Complemento de 1: simplesmente inverte os bits
 - Exemplo: complemento de 1 de 11010 é 00101
- Complemento de 2: soma 1 ao complemento de 1
 - Exemplo: complemento de 2 de 11010 é 00101 + 00001

11010
$$\rightarrow$$
 complemento de 1 = 00101
Complemento de 2 = 00110

Exercícios

- Determine o complemento de 1 de cada número binário a seguir:
 - □ a) 00011010
 - □ b) 11110111

- Determine o complemento de 2 de cada número binário a seguir:
 - □ a) 00010110
 - □ b) 11111100

Números sinalizados

 Os sistemas digitais, como o computador, têm que ser capazes de operar com números positivos e negativos

Um número binário sinalizado é constituído de duas informações: sinal e magnitude

 O sinal indica se um número é positivo ou negativo e a magnitude é o valor do número

Números sinalizados

- Existem três formas por meio das quais os números inteiros podem ser representados em binário:
 - sinal-magnitude
 - complemento de 1
 - complemento de 2

Forma Sinal-Magnitude

Quando um número binário sinalizado é representado na forma sinal-magnitude, o bit mais à esquerda é o bit de sinal e os bits restantes são os bits de magnitude

 Os bits de magnitude estão na forma de binário verdadeiro (não-complementado) tanto para números positivos quanto para negativos

Exemplo

Por exemplo, o número decimal +25 é expresso como um número binário sinalizado de 8 bits usando a forma sinalmagnitude como a seguir:

O número decimal -25 é expresso como

10011001

Forma do Complemento de 1

Números positivos na forma do complemento de 1 são representados da mesma forma que números positivos expressos como sinal-magnitude

 Entretanto, os números negativos estão na forma do complemento de 1 do número positivo correspondente

Exemplo

Por exemplo, usando oito bits, o número decimal −25 é expresso como o complemento de 1 de +25 (00011001) como a seguir:

11100110

 Na forma do complemento de 1, um número negativo é o complemento de 1 do número positivo correspondente

Forma do Complemento de 2

 Os números positivos na forma do complemento de 2 são expressos da mesma forma que as representações sinalmagnitude e complemento de 1

 Os números negativos são expressos em complemento de 2 dos números positivos correspondentes

Exemplo

 Exemplificando novamente, usando 8 bits, vamos tomar o número decimal −25 e expressá-lo como complemento de 2 de +25 (00011001)

11100111

 Na forma do complemento de 2, um número negativo é o complemento de 2 do correspondente número positivo

Exercício

Expresse o número decimal –39 como um número de 8 bits nas formas sinalmagnitude, complemento de 1 e complemento de 2

Resposta

Expresse o número decimal –39 como um número de 8 bits nas formas sinal-magnitude, complemento de 1 e complemento de 2.

Solução

Primeiro escreva o número de 8 bits para +39.

00100111

Na forma sinal-magnitude, -39 é gerado alterando o bit de sinal para 1 e deixando os bits de magnitude como estavam. O número é

10100111

Na forma do complemento de 1, -39 é gerado tomando o complemento de 1 de +39 (00100111).

11011000

Na forma do complemento de 2, -39 é gerado tomando o complemento de 2 de +39 (00100111) como a seguir:

11011000		Complemento de 1	
+	1		
11011001		Complemento de 2	

Exercício

Expresse +19 e −19 nas formas sinalmagnitude, complemento de 1 e complemento de 2

O valor decimal de números sinalizados

Sinal-magnitude

- Os valores decimais de números positivos e negativos na forma sinal-magnitude são determinados somando os pesos de todos os bits de magnitude que são 1s e ignorando aqueles que são zeros
- O sinal é determinado pela análise do bit de sinal

Exemplo

 Determine o valor decimal do número binário que vem a seguir expresso na forma sinalmagnitude:10010101

Os sete bits de magnitude e os pesos em potências de dois são:

$$2^6$$
 2^5 2^4 2^3 2^2 2^1 2^0 0 0 1 0 1

Somando os pesos dos bits que são 1s temos:

$$16 + 4 + 1 = 21$$

O bit de sinal é 1; portanto, o número decimal é
 –21

Exercício

Determine o valor decimal do número
 01110111 dado na forma sinal-magnitude

Complemento de 1

- Valores decimais de números positivos na forma do complemento de 1 são determinados somando os pesos de todos os bits 1s e ignorando os pesos relativos aos zeros
- Os valores decimais de números negativos são determinados atribuindo um valor negativo ao peso do bit de sinal, somando os pesos relativos aos bits 1s e somando 1 ao resultado

Exemplo

Determine os valores decimais dos números binários sinalizados expressos em complemento de 1:

- a) 00010111
- b) 11101000

(a) Os bits e os respectivos pesos em potências de dois são:

Somando os pesos correspondentes aos bits 1, temos:

$$16 + 4 + 2 + 1 = +23$$

(b) Os bits e os respectivos pesos em potências de dois para o número negativo são mostrados a seguir. Observe que o bit de sinal negativo tem um peso de −2⁷ ou −128.

-2^{7}	2^{6}	2^{5}	2^4	2^{3}	2^2	2^1	2^{0}
1	1	1	0	1	0	0	0

Somando os pesos em que os bits são 1s, temos:

$$-128 + 64 + 32 + 8 = -24$$

Somando 1 ao resultado, o número decimal final é

$$-24 + 1 = -23$$

Exercício

Determine o valor decimal do número 11101011 dado na forma do complemento de 1

Complemento de 2

Valores decimais de números positivos e negativos na forma do complemento de 2 são determinados somando os pesos das posições de todos os bits 1s e ignorando as posições em que os bits são zeros

 O peso do bit de sinal em números negativos é dado com um valor negativo

Determine os valores decimais dos números binários sinalizados a seguir expressos na forma do complemento de 2:

- a) 01010110
- b) 10101010

(a) Os bits e seus respectivos pesos em potências de dois para números positivos são:

$$-2^{7}$$
 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} 0 1 0 1 1 0

Somando-se os pesos relativos aos bits 1s, temos:

$$64 + 16 + 4 + 2 = +86$$

(b) Os bits e seus respectivos pesos em potências de dois para números positivos são os seguintes. Observe que o bit de sinal negativo tem um peso de −2⁷ ou −128.

$$-2^{7}$$
 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} 1 0 1 0

Somando-se os pesos relativos aos bits 1s, temos:

$$-128 + 32 + 8 + 2 = -86$$

Exercício

Determine o valor decimal do número 11010111 dado na forma do complemento de 2

Considerações

A partir desses exemplos, podemos ver por que a forma do complemento de 2 é a preferida para representar números inteiros sinalizados: para converter para decimal, é necessário simplesmente somar os pesos independente se o número é positivo ou negativo

Considerações

O sistema do complemento de 1 requer somar 1 ao resultado da soma dos pesos para números negativos, porém não para números positivos

 Além disso, a forma do complemento de 1 não é muito usada porque existem duas representações possíveis para o zero (00000000 ou 11111111)

- Os dois números de uma adição são 1ª parcela e 2ª parcela. O resultado é a soma. Existem quatro casos que podem ocorrer quando dois números binários sinalizados são somados.
 - 1. Os dois números são positivos
- 2. O número positivo com magnitude maior que o número negativo
- 3. O número negativo com magnitude maior que o número positivo
 - 4. Os dois números são negativos

1. Ambos os números são positivos

- A soma é positiva estando portanto em binário verdadeiro (não complementado)
- A adição de dois números positivos resulta em um número positivo

 2. Número positivo com magnitude maior que a do número negativo

$$\begin{array}{c} 00001111 & 15 \\ + 111111010 & +-6 \end{array}$$
 Carry descartado \longrightarrow 1 00001001 9

O bit de carry (transporte) final é descartado.
 A soma é positiva e portanto é um binário verdadeiro (não complementado)

 3. Número negativo com magnitude maior que a do número positivo

$$000100000$$
 16
+ 111010000 + -24
1111110000 --8

 A soma é negativa e portanto na forma de complemento de 2

4. Ambos os números são negativos

O bit de carry (transporte) final é descartado.
 A soma é negativa e portanto na forma do complemento de 2

Considerações

- Em um computador, os números negativos são armazenados na forma do complemento de 2
- Assim, o processo de adição é muito simples: somar os dois números e descartar o bit de carry (transporte) final

Condição de Overflow

Quando dois números são somados e o número de bits necessário para representar a soma excede o número de bits nos dois números, resulta em um **overflow** (transbordamento de capacidade) conforme indicado por um bit de sinal incorreto

- Um overflow pode ocorrer apenas quando os dois números são positivos ou ambos negativos
- O exemplo a seguir com números de 8 bits ilustra essa condição

Sinal incorreto

Magnitude incorreta

- Nesse exemplo a soma de 183 requer oito bits de magnitude
- Como existem sete bits de magnitude nos números (um bit é o sinal), existe um bit de carry (transporte) no lugar do bit de sinal que produz a indicação de overflow

Subtração (Complemento de 2)

- A subtração é um caso especial da adição
- Por exemplo, a subtração de +6 (o subtraendo) de +9 (o minuendo) é equivalente à soma de −6 com +9

Basicamente, <u>a operação de subtração</u> troca o sinal do subtraendo e o soma ao minuendo. O resultado da subtração é denominado de diferença

A subtração é uma soma com o sinal do subtraendo trocado

Subtração (Complemento de 2)

Como a subtração é simples, uma adição com o subtraendo de sinal trocado, o processo é descrito da seguinte forma:

Para subtrair dois números sinalizados, tome o complemento de 2 do subtraendo e faça uma soma. Descarte qualquer bit de carry (transporte) final

Realize cada uma das seguintes subtrações de números sinalizados:

- a) 00001000 00000011
- b) 00001100 11110111
- c) 11100111 00010011
- d) 10001000 11100010

(a) Neste caso, 8 - 3 = 8 + (-3) = 5.

(b) Neste caso, 12 - (-9) = 12 + 9 = 21

```
(c) Neste caso, -25 - (+19) = -25 + (-19) = -44

\begin{array}{c}
11100111 & \text{Minuendo } (-25) \\
+ 11101101 & \text{Complemento de 2 do subtraendo } (-19)
\end{array}

Carry descartado \longrightarrow 1 11010100 Diferença (-44)

(d) Neste caso, -120 - (-30) = -120 + 30 = -90

\begin{array}{c}
10001000 & \text{Minuendo } (-120) \\
+ 00011110 & \text{Complemento de 2 do subtraendo } (+30) \\
\hline
10100110 & \text{Diferença } (-90)
\end{array}
```

Exercício

Subtraia 01000111 de 01011000

Bibliografia

Capítulo 2