Profa. Edith Ranzini

GABARITO EXERCÍCIOS SOBRE GRAMÁTICAS

- 1) Qual é a linguagem gerada pelas gramáticas abaixo:
 - a) $G_1 = \{ V, T, P, S \}$, com

 $V = \{ S, A \}, T = \{ a, b \}, S : símbolo inicial e$

 $P = \{ S \rightarrow bS | bA | b ; A \rightarrow aS | bA | a \}$

Solução: a) Como G₁ é regular, podemos construir o AF:

L (G₁) = { $w \in \Sigma = (a,b) \mid em w, cada \textbf{a} \notin precedido por pelo menos um \textbf{b} ou w <math>\notin constituída$ apenas por b's }

b) $G_2 = \{ V, T, P, S \}$, com

 $V = \{ S, A, B \}, T = \{ a, b \}, S : símbolo inicial e$

 $P = \{ S \rightarrow BAB \mid ABA ; A \rightarrow AB \mid aA \mid ab ; B \rightarrow BA \mid b \}$

Solução: b) Não fiz

c) $G_3 = \{ V, T, P, S \}$, com

 $V = \{ S, A, B \}, T = \{ a, b \}, S : símbolo inicial e$

 $P = \{ S \rightarrow aB \mid bA \mid \mathcal{E} ; A \rightarrow a \mid aB ; B \rightarrow b \mid bA \}$

Solução: c) G 3 é regular. O AF correspondente é:

2) As gramáticas abaixo descritas foram propostas para gerar todas as possíveis cadeias de $\Sigma = \{a, b\}$ que possuem número de a's = números de b's.

Verifique se este fato é verdadeiro; não sendo, apresente contra-exemplos. (obs: a cadeia vazia não precisa, necessariamente, ser gerada pela gramática)

a)
$$G_4 = \{ V, T, P, S \}$$
, com
 $V = \{ S \}, T = \{ a, b \}, P = \{ S \rightarrow aSb \mid bSa \mid \mathcal{E} \}$

Solução: a) G_4 não gera todas as possíveis cadeias com $|w|_a = |w|_b$. Por exemplo, com G_4 não é possível gerar a cadeia **abba**

b)
$$G_5 = \{ V, T, P, S \}$$
, com $V = \{ S \}$, $T = \{ a, b \}$, $P = \{ aSbS | bSaS | E \}$

Solução: b)
$$G_5 \rightarrow OK$$

c)
$$G_6 = \{ V, T, P, S \}$$
, com
 $V = \{ S \}$, $T = \{ a, b \}$, $P = \{ S \rightarrow aSb | bSa | SS | \mathcal{E} \}$

Solução: c)
$$G_6 \rightarrow OK$$

d)
$$G_7 = \{ V, T, P, S \}$$
, com
 $V = \{ S \}$, $T = \{ a, b \}$, $P = \{ S \rightarrow abS | baS | aSb | bSa | \mathcal{E} \}$

Solução: d) G₇ não gera todas as possíveis cadeias; por exemplo, não gera aabbabba

e)
$$G_8 = \{ V, T, P, S \}$$
, com
 $V = \{ S \}$, $T = \{ a, b \}$, $P = \{ S \rightarrow aSb | bSa | abS | baS | Sab | Sba | E \}$

f)
$$G_9 = \{ V, T, P, S \}$$
, com
 $V = \{ S, A, B \}$, $T = \{ a, b \}$, $S : \text{símbolo inicial e}$
 $P = \{ S \rightarrow aB \mid bA ; A \rightarrow a \mid SA ; B \rightarrow b \mid SB \}$

Solução: f) G $_9$ não gera todas as cadeias com $|w|_a = |w|_b$. Por exemplo, com G $_9$ não conseguimos gerar nenhuma cadeia iniciada e terminada pelo mesmo símbolo. Faça o teste, por exemplo, com a cadeia **abba**

3) Propor gramáticas para gerar as linguagens abaixo especificadas:

a)
$$L_1 = \{ w \in \{ a, b \}^* \mid |w|_a = 2 |w|_b \}$$

Solução: a)
$$L_1$$
 pode ser gerada por
$$G = \{ \{ S, A, B \}, \{ a, b \}, P, S \} \text{ com}$$

$$P = \begin{cases} S \rightarrow AAB \mid ABA \mid BAA; A \rightarrow a \mid BAAA \mid ABAA \mid AABA \mid AAAB; \\ B \rightarrow b \mid AABB \mid ABAB \mid ABBA \mid BAAB \mid BABA \end{cases}$$

b) $L_2 = \{ a^m b^n c^p | m, n, p > 0 \}$

Solução: b)
$$L_2$$
 pode ser gerada por $G = \{ \{ S, A, B, C \}, \{ a, b, c \}, P, S \} \text{ com}$
$$P = \{ S \Rightarrow ABC ; A \Rightarrow a | aA ; B \Rightarrow b | bB ; C \Rightarrow c | cC \} \text{ ou então, com}$$

$$P = \{ S \Rightarrow aA ; A \Rightarrow aA | bB ; B \Rightarrow bB | cC ; C \Rightarrow \varepsilon | cC \}$$

c) $L_3 = \{ w \in \{ a, b \}^* \mid w \text{ não possui dois } a \text{ 's consecutivos } \}$

Solução: c)
$$L_3$$
 pode ser gerada por $G = \{ \{ S, A, B \}, \{ a, b \}, P, S \} \text{ com}$ $P = \{ S \rightarrow aB | bS | b | E ; A \rightarrow bA | aB | b ; B \rightarrow bA | a \}$ (observe que L_3 é regular)

d) $L_4 = \{ w \in \{ a, b \}^* \mid w \text{ possui mais } a \text{ 's do que } b \text{ 's } \}$

Solução: d)
$$G = \{ \{ S \}, \{ a, b \}, P, S \} com P = \{ S \rightarrow aS | aSbS | bSaS | a \}$$

Obs: Na gramática proposta, as cadeias sempre terminam por a PENSEM **NUMA SOLUÇÃO MELHOR!**

e) $L_5 = \{ w \in \{ a, b \}^* | |w| \text{ \'e impar e o s\'embolo do meio \'e igual a } a \}$

Solução: e)
$$L_5$$
 pode ser gerada por $G = \{ \{ S, X \}, \{ a, b \}, P, S \} \text{ com}$
$$P = \{ S \rightarrow XSX | a ; X \rightarrow a | b \}$$

4) Seja $G = \{\{S, A\}, \{a, b\}, P, S\}, com P = \{S \rightarrow AA, A \rightarrow AAA \mid bA \mid Ab \mid a\}.$

Apresente 2 conjuntos de derivações distintos para gerar a cadeia *aba*.

Solução:

$$1^a$$
) $S \Rightarrow AA \Rightarrow aA \Rightarrow abA \Rightarrow aba$

$$2^a$$
) $S \Rightarrow AA \Rightarrow AbA \Rightarrow abA \Rightarrow aba$

Em "Teoria da Computação 2- TC2" vocês vão aprender que, quando isso ocorre, dizemos que a gramática é ambígua.

- 5) Construa uma gramática para cada uma das seguintes linguagens sobre o alfabeto { 0, 1} :
 - a) (0+1)*10*

Solução a)
$$G = \{ \{ S, A, B \}, \{ 0, 1 \}, P, S \} \text{ com}$$

$$P = \{ S \rightarrow A1B ; A \rightarrow 0A | 1A | \mathcal{E} ; B \rightarrow 0B | \mathcal{E} \}$$

b) palavras com a mesma quantidade de zeros e uns

Solução b)
$$G = \{ \{ S \}, \{ 0, 1 \}, P, S \} com$$

$$P = \{ S \rightarrow 0S1S \mid 1S0S \mid \mathcal{E} \}$$

c) palavras w tal que o comprimento de w é impar

Solução c)
$$G = \{ \{ S, A \}, \{ 0, 1 \}, P, S \} \text{ com}$$

$$P \begin{cases} S \to 0A | 1A | 0 | 1 \} \\ A \to 0S | 1S \} \end{cases}$$

d)
$$\{0^n 1^m \mid (n \le m) \land (n, m \in N)\}$$

Solução d)
$$G = \{ \{ S \}, \{ 0, 1 \}, P, S \} com$$

$$P = \{ S \rightarrow 0S1 | S1 | \epsilon \}$$

- 6) Descreva a linguagem aceita por cada uma das seguintes gramáticas:
 - a) $G_a = (\{R, S, T, X\}, \{a, b\}, P_a, R)$ tal que

$$P_a = \{ R \rightarrow XRX \mid S ; S \rightarrow aTb \mid bTa ; T \rightarrow XTX \mid X \mid \mathcal{E} ; X \rightarrow a \mid b \}$$

Solução a) As cadeias da linguagem gerada por G_a são do tipo:

$$\begin{array}{c} w \text{ a } (a+b) \text{ b } x \text{ ou} \\ w \text{ b } (a+b) \text{ a } x \end{array} \right\} \text{ com } |w| = |x| \geq 0 \text{ e } w \text{ e } x \text{ são cadeias do tipo } (a+b)^+$$

b) $G_b = (\{ S \}; \{ a, b \}, P_b, S) \text{ tal que }$

$$P_b = \{ S \rightarrow aSb \mid SS \mid \mathcal{E} \}$$

???Solução b) As cadeias da linguagem gerada têm $|w|_a = |w|_b$, são iniciadas por **a** e terminadas por **b** e qualquer prefixo sempre tem número de **a**'s \geq número de **b**'s. (???)

7) Construa uma gramática para a linguagem de todas as palavras sobre o alfabeto $\Sigma = \{a, b\}$ tais que a quantidade de a's é igual à quantidade de b's mais um, isto é

$$\boldsymbol{L} = \{ w \in \Sigma^* | |w|_a = |w|_b + 1 \}$$

Solução:

$$G = \{ \{ S, R \}, \{ a, b \}, P, S \} \text{ com }$$

$$P = \{ S \rightarrow R \ a R ; R \rightarrow aRbR | bRaR | \mathcal{E} \}$$