Recitation 9

Alex Dong

CDS, NYU

Fall 2020

Convexity and Optimization

- \blacktriangleright We are temporarily stepping away from *Linearity*
- ► Two types of convexity
 - ► Convexity for functions (we care about this)
 - ► Convexity for sets
 - ► They are related! (see epigraph question)
- ▶ Convexity implies if a min exists, it must be a global min
 - ▶ Optimization is the process to find the minimum
- ► Convexity is a *global* property
- ► Contrast to differentiable, which is a *local* property

Questions: Convexity and Epigraph

Let $f: \mathbb{R}^n \to \mathbb{R}$.

Define the epigraph $epi(f) \subset \mathbb{R}^{n+1}$ to be set of all the points above the graph of f:

$$epi(f) = \{ [\vec{x}, c] \in \mathbb{R}^{n+1} \mid c \ge f(\vec{x}) \}$$

where $[\bullet, \bullet]$ denotes a vector concatentation

- 0. For the function $f: \mathbb{R}^2 \to \mathbb{R}$, s.t $f(x,y) = x^2 + y^2$, draw epi(f)
- 1. Prove that f is convex if and only if epi(f) is convex (Warning, this problem has $really\ tricky$ notation) (Hint \iff is easier than \implies)

Solutions 1: Convexity and Epigraph

Solution

```
epi(f) is convex \implies f is convex.
```

Assume epi(f) is convex. Let $\vec{x}, \vec{y} \in \mathbb{R}^n, t \in [0, 1]$. Consider $t(f(\vec{x}) + (1 - t)f(\vec{y}),$ convex combo of $f(\vec{x}), f(\vec{y})$ Since $[\vec{x}, f(\vec{x})], [\vec{y}, f(\vec{y})] \in epi(f)$, and epi(f) is convex, then,

$$\begin{array}{ll} t[\vec{x},f(\vec{x})]+(1-t)[\vec{y},f(\vec{y})]\in epi(f) & convexity \ of \ epi(f) \\ [t\vec{x}+(1-t)\vec{y} \ , \ tf(\vec{x})+(1-t)f(\vec{y})]\in epi(f) & add \ vectors \end{array}$$

Therefore, by definition of epi(f), we have $\forall x, y \in \mathbb{R}^n$, $t \in [0, 1]$ $tf(\vec{x}) + (1-t)f(\vec{y}) \ge t\vec{x} + (1-t)\vec{y}$ So f is convex.

Solutions 2: Convexity and Epigraph

Solution

```
f is convex \implies epi(f) is convex.
Assume f is convex.
Let [x, c], [y, d] \in epi(f), t \in [0, 1].
Since [\vec{x}, c], [\vec{y}, d) \in epi(f), then we have
   c > f(\vec{x}) and d > f(\vec{y})
and this directly implies
   tc > tf(\vec{x}) and (1-t)d > (1-t)f(\vec{y})
Now, consider t[\vec{x}, c] + (1 - t)[\vec{y}, d], convex combo of [\vec{x}, c], [\vec{y}, d]
From (*), we have
   t[\vec{x}, c] + (1 - t)[\vec{y}, d] \ge tf(\vec{x}) + (1 - t)f(\vec{y})
and since f is convex, then
   t[\vec{x}, c] + (1-t)[\vec{y}, d] \ge tf(\vec{x}) + (1-t)f(\vec{y}) \ge f(t\vec{x} + (1-t)\vec{y})
   t[\vec{x}, c] + (1 - t)[\vec{y}, d] \ge f(t\vec{x} + (1 - t)\vec{y})
```

Since this applies $\forall x, y \in \mathbb{R}^n$, $t \in [0, 1]$, epi(f) is convex.

So $t[\vec{x}, c] + (1 - t)[\vec{y}, d] \in epi(f)$.

Questions: True and False

- 1. If f has only 1 global min and no local min, then f is convex
- 2. Linear combination of two convex functions is convex
- 3. Convex functions are differentiable at all points
- 4. Norms are convex functions
- 5. If f is convex, then g(x) = f(Ax b) is also convex. $(A \in \mathbb{R}^{n \times n})$ $b \in \mathbb{R}^n$
- 6. Sum of a non-convex function w/ another function can never be convex
- 7. Union of convex sets is convex
- 8. Intersection of convex sets is convex
- 9. Maximum of two convex functions is convex
- 10. Every subspace is a convex set
- 11. Every convex set is a subspace

Questions: True and False

- 1. False, $cos(\theta)$, $\theta \in [0, \pi]$
- 2. False, negative of convex function is not convex
- 3. False, f(x) = -x
- 4. True, Triangle inequality (Prove it!)
- 5. True, convexity is a global property, so the Ax b doesn't matter.
- 6. False sum of f and -f is 0, which is a convex function.
- 7. False, Easy counter-example
- 8. True, True, intersection preserves convexity properties
- 9. True, Use epigraph proof
- 10. True, convex combinations are in the subspace by property of subspaces.
- 11. False, convex sets do not need to contain 0.

Questions: Quadratic Forms

Let $f: \mathbb{R}^n \to \mathbb{R}$ be given by $f(x) = x^T A x$ for some symmetric matrix $A \in \mathbb{R}^{n \times n}$.

1. Give conditions on A so that 0 is the global minimizer of f

Solutions: Quadratic Forms

Let $f: \mathbb{R}^n \to \mathbb{R}$ be given by $f(x) = x^T A x$ for some symmetric matrix $A \in \mathbb{R}^{n \times n}$.

1. Give conditions on A so that 0 is the global minimizer of f

Solution

Let A have spectral decomposition $A = U\Lambda U^T$.

Let $y \in \mathbb{R}^n$ s.t $y = U^T x$.

Then
$$f(x) = x^T A x = x^T U \Lambda U^T x = y^T \Lambda y$$
, and

$$y^T \Lambda y = \sum_{i=1}^n \lambda_i y_i^2$$

We can see that 0 will be the global minimzer of f if A is positive semi-definite.