

Conditional Random Fields and structured prediction

CS-585

Natural Language Processing

Sonjia Waxmonsky

HMMs, MEMMs and CRFs

- Hidden Markov Models (HMM)
 - Generative sequence labeling models
- Maximum Entropy Markov Models (MEMM)
 - Like HMMs, but discriminative
 - Logistic regression
- Conditional Random Fields (CRF)
 - Like MEMMs, but in structured prediction paradigm

MAXIMUM ENTROPY MARKOV MODELS

Maximum Entropy

- In NLP, logistic regression models are often called maximum entropy (or maxent) models
- Idea
 - When selecting a probability distribution to model observed data, we want the distribution to model the statistics of the data
 - Model should be as uncertain as possible, while still capturing the data
 - Uncertainty=entropy, so select the model with maximal entropy subject to data-fitting constraints

Maximum Entropy

• In a supervised learning context, the data fitting constraints have to do with the frequencies of feature functions $f_k(X,Y)$ in the training data:

$$\sum_{n} f_k(X_n, Y_n) P(X_n, Y_n) = c_k$$

• It can be shown that the distribution $P(Y_n|X_n)$ with maximum entropy subject to these constraints has the form

$$P(Y_n|X_n) = \frac{e^{\sum_k \lambda_k f_k(X_n, Y_n)}}{Z}$$

- Where Z is a normalizing constant
- Just logistic regression....

Maximum Entropy Markov Models (MEMMs)

- Cousins of HMMs
 - Still based on the Markov assumption:

$$P(T|W) = \prod_{i} P(T_i|T_{i-k..i-1}, W)$$

- Because they are discriminative, MEMMs cannot be trained in an unsupervised way like HMMs
 - HMMs are generative (model P(W,T))
 - MEMMs are discriminative (model P(T|W))
- Based on maximum entropy (logistic regression) models to predict tag for each word given local context
 - Can be trained using gradient descent or model-specific algorithms (GIS, IIS)

Maximum Entropy Markov Models (MEMMs)

Estimate conditional probability of tags given text

$$P_m(T|W) = \prod_i P(T_i|T_{i-k..i-1}, W)$$

(Markov assumption)

$$= \prod_{i} \frac{e^{\sum_{k} \lambda_{k} f_{k}(W, T_{i-k..i})}}{\sum_{t \in \mathfrak{T}} e^{\sum_{k} \lambda_{k} f_{k}(W, T_{i-k..i-1}, t)}}$$

Locally normalized

(maxent)

- Can be trained using gradient descent
 - Either maximum-likelihood estimation or penalized likelihood (regularization)
- Similar dynamic programming tricks to HMMs for efficiently computing sum across all labelings

MEMMs: POS feature functions

Maxent feature functions

Condition	Features	
w_i is not rare	$w_i = X$	$\& t_i = \overline{T}$
w_i is rare	X is prefix of w_i , $ X \leq 4$	$\& t_i = T$
	X is suffix of w_i , $ X \leq 4$	$\& t_i = T$
	w_i contains number	$\& t_i = T$
	w_i contains uppercase character	$\& t_i = T$
	w_i contains hyphen	$\& t_i = T$
$\forall w_i$	$t_{i-1} = X$	& $t_i = T$
	$t_{i-2}t_{i-1} = XY$	$\& t_i = T$
	$w_{i-1} = X$	& $t_i = T$
	$w_{i-2} = X$	$\& t_i = T$
	$w_{i+1} = X$	& $t_i = T$
	$w_{i+2} = X$	& $t_i = T$

Table 1: Features on the current history h_i

MEMMs: POS feature functions

Word	the	stories	about	well-heeled	communities	and	developers
Tag	DT	NNS	IN	JJ	NNS	CC	NNS
Position	1	2	3	4	5	6	7

$w_i = about$	$\wedge t_i = IN$
$w_{i-1} = stories$	$\wedge t_i = IN$
$w_{i-2} = $ the	$\wedge t_i = IN$
$w_{i+1} = well-heeled$	$\wedge t_i = IN$
$w_{i+2} = \texttt{communities}$	$\wedge t_i = IN$
$t_{i-1} = \mathtt{NNS}$	$\wedge t_i = IN$
$t_{i-2}t_{i-1}=\mathtt{DT} \ \mathtt{NNS}$	$\wedge t_i = IN$

MEMMs: POS feature functions

Word	the	stories	about	well-heeled	communities	and	developers
Tag	DT	NNS	IN	JJ	NNS	CC	NNS
Position	1	2	3	4	5	6	7

$prefix(w_i) = w$	$\wedge t_i = JJ$
$prefix(w_i) = we$	$\wedge t_i = JJ$
$prefix(w_i) = wel$	$\wedge t_i = JJ$
$prefix(w_i) = well$	$\wedge t_i = JJ$
$suffix(w_i) = d$	$\wedge t_i = JJ$
$suffix(w_i) = ed$	$\wedge t_i = JJ$
$suffix(w_i) = led$	$\wedge t_i = JJ$
$suffix(w_i) = eled$	$\wedge t_i = JJ$
w_i contains hyphen	$\wedge t_i = JJ$

$\wedge t_i = JJ$
$\wedge t_i = JJ$

Viterbi Tagging for MEMMs

Most probable tag sequence given text:

$$T^* = \underset{T}{\operatorname{argmax}} P_m(T|W)$$
$$= \underset{T}{\operatorname{argmax}} \prod_i P(T_i|T_{i-k..i-1}, W)$$

(Markov assumption)

$$= \underset{T}{\operatorname{argmax}} \prod_{i} \frac{e^{\sum_{k} \lambda_{k} f_{k}(W, T_{i-k..i})}}{\sum_{t \in \mathfrak{T}} e^{\sum_{k} \lambda_{k} f_{k}(W, T_{i-k..i-1}, t)}}$$

(maxent)

$$= \underset{\tau}{\operatorname{argmax}} \sum_{i} \left(\sum_{k} \lambda_{k} f_{k}(W, T_{i-k..i}) - \log \sum_{t \in \mathfrak{T}} e^{\sum_{k} \lambda_{k} f_{k}(W, T_{i-k..i-1}, t)} \right)$$

Viterbi algorithm

$-\log P(t_i|t_{i-1},w_i,w_{i-1})$

t _{i-1}	t	.0		t ¹								t^2									
Wi	w^1	w^2		\mathbf{w}^1			\mathbf{w}^2			\mathbf{w}^3		w^1			w^2			w^3			
W_{i-1}			\mathbf{w}^1	w^2	w^3	\mathbf{w}^1	w^2	w^3	\mathbf{w}^1	w^2	w^3	\mathbf{w}^1	w^2	w^3	\mathbf{w}^1	w^2	w^3	\mathbf{w}^1	w^2	w^3	
$t_i=t^1$	1.0	1.1	2	4	2	2	2	3	2	4	5	2	2	2	3	2	4	5	2	4	
$t_i=t^2$	1.1	2.1	3	5	3	3	2	4	2	4	3	3	3	2	4	2	4	3	4	5	

Viterbi algorithm

$$-\log P(t_i|t_{i-1},w_i,w_{i-1})$$

t_{i-1}	t	0		t ¹								t^2									
Wi	\mathbf{w}^1	w^2		\mathbf{w}^{1}			\mathbf{w}^2			w^3		w^1			w^2			w^3			
W_{i-1}			\mathbf{w}^1	w^2	w^3	\mathbf{w}^1	w^2	w^3	\mathbf{w}^1	w^2	w^3	\mathbf{w}^1	w^2	w^3	\mathbf{w}^1	w^2	w^3	\mathbf{w}^{1}	w^2	w^3	
$t_i=t^1$	1.0	1.1	2	4	2	2	2	3	2	4	5	2	2	2	3	2	4	5	2	4	
$t_i=t^2$	1.1	2.1	3	5	3	3	2	4	2	4	3	3	3	2	4	2	4	3	4	5	

Viterbi algorithm

$$-\log P(t_i|t_{i-1},w_i,w_{i-1})$$

t_{i-1}	t	0		t ¹								t^2								
$\mathbf{w}_{\mathbf{i}}$	w^1	w^2		w^1			w^2			w^3		w^1			w^2			w^3		
W_{i-1}			w^1	w^2	w^3	\mathbf{w}^1	w^2	w^3	\mathbf{w}^1	w^2	w^3	\mathbf{w}^1	w^2	w^3	\mathbf{w}^1	w^2	w^3	\mathbf{w}^1	w^2	w^3
t _i =t ¹	1.0	1.1	2	4	2	2	2	3	2	4	5	2	2	2	3	2	4	5	2	4
$t_i=t^2$	1.1	2.1	3	5	3	3	2	4	2	4	3	3	3	2	4	2	4	3	4	5

Viterbi Algorithm

```
D(0, START) = 0

for each tag t != START do:

D(0, t) = -\infty

for i \leftarrow 1 to N do:

for each tag t^j do:

D(i, t^j) \leftarrow \max_k (D(i-1, t^k) + \log P(t_i | t_{i-1} = t^k, W))

\log P(T|W) = \max_j D(N, t^j)
```

MEMM Limitations

- Locally normalized
 - MEMM assumes that the probability distribution over a tagging T can be *factored* into the product of conditional probabilities with limited history for each tag location in a sentence

 This limits the flexibility of the model. Only paths from the same prior state can "compete" against one another for probability mass

CONDITIONAL RANDOM FIELDS

Structured prediction

- CRFs fall into a predictive modeling framework called structured prediction
 - When we have some complex structured object over which we want to make predictions...
 - pixels within an image, tag sequences or syntactic trees for a text
 - We try to estimate a probability distribution over the whole output space, rather than distributions over subparts

Structured prediction

Structured prediction for sequence labeling: predict optimal tagging T^* using a scoring function over the output space:

$$\widehat{T} = \operatorname*{argmax}_{T} \Psi(T, W)$$

In a probabilistic framework:

$$\widehat{T} = \operatorname*{argmax}_{T} P(T|W)$$

Specifically using logistic regression:

$$\widehat{T} = \underset{T}{\operatorname{argmax}} \frac{\prod_{i} e^{\lambda_{i} f_{i}(T,W)}}{\sum_{T'} \prod_{i} e^{\lambda_{i} f_{i}(T',W)}}$$

Feature functions for CRFs

- Essentially the same as for MEMMs: can incorporate left and right context for observations (words)
- For tags, the probabilistic framework theoretically could encompass features built on arbitrary tag dependencies
 - E.g., first and last tag in sentence
 - But we need dynamic programming to make inference tractable. Therefore, in practice, tag dependencies are limited to adjacent tags
- "Linear chain CRF"

The partition function

 Remember our expression for the probability of a tag sequence under a CRF:

$$P(T|W) = \frac{\prod_{i} e^{\lambda_{i} f_{i}(T,W)}}{\sum_{T'} \prod_{i} e^{\lambda_{i} f_{i}(T',W)}}$$

The denominator is called the partition function. It involves a sum over all possible tag sequences for the sentence and is expensive to compute

But note that we don't need to compute it in order to predict the best tagging; the numerator is sufficient

Inference in CRFs: the Viterbi algorithm

$$\operatorname{argmax}_{T} P(T|W) = \operatorname{argmax}_{T} \frac{\prod_{i} e^{\lambda_{i} f_{i}(T,W)}}{\sum_{T'} \prod_{i} e^{\lambda_{i} f_{i}(T',W)}}$$

$$= \operatorname{argmax}_{T} \prod_{i} e^{\lambda_{i} f_{i}(T,W)}$$

$$= \operatorname{argmax}_{T} \sum_{i} \lambda_{i} f_{i}(T,W)$$

Notebook – CONLL with CRF-Suite library

Training of CRFs: the forward recurrence

The conditional log likelihood of the training data under the model is

$$\log P_m(T^*|W) = \sum_{k=1}^N \log \frac{\prod_i e^{\lambda_i f_i (T_k^*, W_k)}}{\sum_{T'} \prod_i e^{\lambda_i f_i (T', W_k)}}$$
$$= \sum_{k=1}^N \left(\sum_i \lambda_i f_i (T_k^*, W_k) - \log \sum_{T'} \prod_i e^{\lambda_i f_i (T', W_k)} \right)$$

We want to compute gradients of this so that we can use gradient descent for optimization

Training of CRFs: the forward recurrence

Training of CRFs: the forward recurrence

Define forward variable $a_i(t^j)$ as the sum of scores of all paths ending up with tag t^j at word w_i :

MEMMs and CRFs: Key Points

- MEMMs and CRFs incorporate complex features for sequence labeling in a probabilistic framework
- MEMMs and CRFs are based on logistic regression (a.k.a. maximum entropy)
- CRFs improve on MEMMs by using globally, rather than locally normalized probabilities
- CRFs excel at incorporating global constraints on wellformedness of label sequences
- As with logistic regression, we can apply L1 and L2 regularization