DS n°8: Fiche de calculs

Durée : 60 minutes, calculatrices et documents interdits

Nom et prénom : Note :

Porter directement les réponses sur la feuille, sans justification.

Intégration.

On considère la fonction $g: x \to \int_{2x}^{x^2} \ln(xt) dt$. Alors pour tout $x \in \mathbb{R}_+^*$,

$$g'(x) = \boxed{ . (1)}$$

Calculer les intégrales suivantes.

$$\int_{1}^{2} x^{2} \ln x \, \mathrm{d}x = \tag{2}$$

$$\int_{1}^{4} \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x^3}} = \tag{3}$$

Une primitive de $t \mapsto \frac{1}{\sin(t)(1+3\cos t)}$ sur $]0,\pi/2]$ est :

 $x \mapsto \boxed{ . (4)}$

Donner un équivalent simple de chacune des suites de termes généraux suivants.

$$\sum_{k=1}^{n} \frac{k}{n^2 + k^2} \underset{n \to +\infty}{\sim} \tag{5}$$

$$\sum_{k=1}^{n} \tan\left(\frac{k}{n}\right) \underset{n \to +\infty}{\sim} \tag{6}$$

$$\prod_{k=1}^{n} \left(1 + \frac{k^2}{n^2} \right)^{1/n} \underset{n \to +\infty}{\sim} \tag{7}$$

Soit $\alpha = \frac{\pi}{2} - \frac{\pi^3}{48} + \frac{\pi^5}{3840} - \frac{\pi^7}{645120}$. Donner un nombre simple dont α est une valeur approchée à 10^{-2} près.
Dénombrement.
Un taupin a dans sa bibliothèque 4 livres de mathématiques, 5 livres de physique, deux livres d'informatique et un livre d'anglais ($H2G2$, of $course$). Combien a-t-il de manières de ranger sa bibliothèque en regroupant les livres matière par matière?
(9)
Et de la ranger en ne plaçant jamais les deux livres d'informatique côte à côte?
(10)
Soit $k \in \mathbb{N}$, combien y a-t-il d'entiers compris entre 1 et 10^k dont la somme des chiffres vaut 3?
(11)
Divers
On considère l'équation différentielle $(\mathscr{E}): y'+\operatorname{th}(x)y=x.$ L'ensemble des solutions homogènes de (\mathscr{E}) est
(12)
et une solution particulière de (\mathscr{E}) est
. (13)
L'unique solution de (\mathcal{E}) vérifiant $y(1) = 0$ est
. (14)
Combien les racines 93 ^{èmes} de l'unité ont-elles de parties réelles distinctes? (15)
— FIN —