Задача А. Роллы для всех

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Мила решила отпраздновать свой день рождения в кругу N друзей. Она хочет заказать роллы для всех, поэтому нашла большой сет из T роллов. Про i-го друга она знает, что чтобы насытиться, он должен съесть не менее a_i роллов, и что максимальное количество роллов, которое он может съесть, равно b_i .

Мила попросила вас посчитать, хватит ли T родлов, чтобы все наелись и при этом не осталось лишних родлов.

Формат входных данных

В первой строке даны целые числа N и T. $(1 \leqslant N \leqslant 10^5; 0 \leqslant T \leqslant 10^{14})$

Во второй и третьей строках даны N целых чисел a_i и N целых чисел b_i соответственно. $(0 \le a_i \le b_i \le 10^9)$

Формат выходных данных

Выведите 'YES', если выбранный сет роллов подходит, или 'NO', если не подходит.

Система оценки

В этой задаче одна группа тестов стоимостью 10 баллов.

Пример

стандартный ввод	стандартный вывод
4 8	YES
1 2 1 2	
4 5 3 6	

Замечание

В примере каждый из 4-х друзей может съесть по 2 ролла, чтобы все наелись и не осталось лишних роллов.

Задача В. Некрасивый подарок

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

На свой день рождения Мила получила строку S, состоящую из символов '0' и '1'. Но Мила не считает эту строку $\kappa pacusoù$, поэтому решила ее исправить!

Мила определяет красоту строки следующим образом:

- 1. Разобьем строку на максимально длинные подстроки, состоящие из одинаковых символов.
- 2. Если все эти подстроки получились одинаковой длины, исходная строка считается *красивой*, а иначе *некрасивой*.

Например, строка '010101' разбивается на подстроки '0', '1', '0', '1', '0', '1' и поэтому является $\kappa pacusoŭ$, а строка '000101' разбивается на подстроки '000', '1', '0', '1' и поэтому является $\mu e \kappa pacusoŭ$. Другие примеры $\kappa pacusoux$ строк: '1', '110011', '00001111', '00000000'. Другие примеры $\mu e \kappa pacusoux$ строк: '011', '010011', '00110100'.

Мила просит вас посчитать, сколько минимум символов нужно изменить в строке S, чтобы сделать ее $\kappa pacuso \check{u}.$

Формат входных данных

В единственной строке дана строка S, состоящая из символов '0' и '1'. Длина S лежит в пределах от 1 до 10^5 .

Формат выходных данных

Выведите минимальное количество изменений в строке S, чтобы она стала красивой.

Система оценки

В этой задаче 2 группы тестов.

Первая группа тестов стоит 5 баллов, в ней длина S не превышает 10^3 .

Вторая группа тестов стоит 5 баллов, в ней длина S не превышает 10^5 .

Примеры

стандартный ввод	стандартный вывод
000101	1
00110100	3

Замечание

В первом примере можно заменить второй символ на единицу — получится красивая строка '010101'.

Во втором примере можно заменить все единицы на нули — получится *красивая* строка '00000000'.

Задача С. Компоненты связности

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Дана шахматная доска $N \times N$ и Q запросов на добавление или удаление ладьи с этой доски. После каждого запроса необходимо вывести количество компонент связности клеток, **не** находящихся под боем ладьи. Компонентами связности называются множества клеток, где любые две соседние по стороне клетки, не находящиеся под боем ладьи, лежат в одном множестве (для лучшего понимания смотрите пояснение к примеру).

Клетка находится под боем ладьи, если на одной вертикали или горизонтали с ней стоит ладья.

Формат входных данных

В первой строке даны целые числа N и Q. $(1 \leqslant N, Q \leqslant 2 \cdot 10^5)$

В следующих Q строках даны описания изменений шахматной позиции в одном из следующих форматов:

- $+ x_i y_i$ добавление ладьи в клетку на вертикали x_i и горизонтали y_i . Гарантируется, что на момент выполнения этого запроса в этой клетке нет ладьи. $(1 \le x_i, y_i \le N)$
- — $x_i \ y_i$ удаление ладьи с клетки на вертикали x_i и горизонтали y_i . Гарантируется, что на момент выполнения этого запроса в этой клетке стоит ладья. $(1 \le x_i, y_i \le N)$

Изначально на доске нет ни одной ладьи.

Формат выходных данных

После каждого запроса выведите количество компонент связности клеток, не находящихся под боем ладьи.

Система оценки

В этой задаче 3 группы тестов.

Первая группа тестов стоит 4 балла, для нее выполняется ограничение $N, Q \leq 2 \cdot 10^2$.

Вторая группа тестов стоит 3 балла, для нее выполняется ограничение $N, Q \leq 2 \cdot 10^3$.

Третья группа тестов стоит 3 балла, для нее выполняется ограничение $N, Q \leq 2 \cdot 10^5$

Пример

стандартный ввод	стандартный вывод
5 4	4
+ 2 2	6
+ 4 5	2
+ 5 1	1
- 2 2	

Замечание

Изначально вся доска представляет собой одну компоненту связности.

После первой операции доска разделится на 4 компоненты связности.

После второй операции на доске будут 6 компонент связности, представленных следующими множествами клеток: $\{(1,1)\}, \{(3,1)\}, \{(5,1)\}, \{(1,3), (1,4)\}, \{(3,3), (3,4)\}, \{(5,3), (5,4)\}$

После третьей операции компонентами будут являться следующие множества клеток: $\{(1,3),(1,4)\},\{(3,3),(3,4)\}.$

Задача D. Прибавления на строке

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Мила учится складывать числа с... подстроками! А точнее она Q раз последовательно выполняет следующие операции: выбирает подотрезок с l_i -го по r_i -й символ исходной строки S и ко всем символам прибавляет число x_i .

Прибавление числа x к символу c эквивалентно прибавлению к нему единицы x раз. Прибавление единицы к символу c выполняется по следующим правилам:

- Если символ c символ нижнего регистра (от 'a' до 'z'), то он меняет свой регистр на верхний;
- Если символ c символ верхнего регистра (от 'A' до 'Z'), то он становится следующим по алфавиту символом в нижнем регистре;
- \bullet Если символ c равен 'Z', то он становится символом 'a'.

Но Мила поняла, что операций слишком много и сама с этой задачей она не справится, поэтому просит вас помочь вычислить строку, которая получится после выполнения всех операций.

Формат входных данных

В первой строке дана строка S, состоящая из латинских букв в нижнем и верхнем регистре. $(1 \le |S| \le 10^5; 3 decb \ u \ danee \ |S| \ of oshavaem \ danhy \ cmpoku \ S)$

Во второй строке дано целое число Q. $(1 \le Q \le 10^5)$

В *i*-й из следующих Q строк даны целые числа l_i , r_i и x_i . $(1 \le l_i \le r_i \le |S|; 1 \le x_i \le 10^5)$

Формат выходных данных

Выведите строку, которая получится после выполнения всех операций.

Система оценки

В этой задаче 4 группы тестов.

Первая группа тестов стоит 3 балла, для нее выполняется ограничение $1 \leqslant |S|, Q \leqslant 10^2; x_i = 1$. Для ее выполнения **необязательно** прохождение тестов из условия.

Вторая группа тестов стоит 3 балла, для нее выполняется ограничение $1 \leq |S|, Q, x_i \leq 10^3$. Для ее выполнения необходимо прохождение тестов из условия и первой группы тестов.

Третья группа тестов стоит 2 балла, для нее выполняется ограничение $1 \leqslant |S|, Q \leqslant 10^5; x_i = 1$. Для ее выполнения необходимо прохождение только первой группы тестов и **необязательно** прохождение тестов из условия.

Четвертая группа тестов стоит 2 балла, для нее выполняется ограничение $1 \leqslant |S|, Q, x_i \leqslant 10^5$. Для ее выполнения необходимо прохождение первой, второй и третьей группы тестов.

Примеры

стандартный ввод	стандартный вывод
aAbBzZ	AbBcZa
1	
1 6 1	
IKJqrq	Kontur
3	
2 3 1	
1 5 4	
2 6 2	

Задача Е. Малыш-робот

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 256 мегабайт

Малыш-робот еще только учится передвигаться самостоятельно, а пока он двигается по заранее написанной разработчиками программе.

Программа состоит из Q последовательных команд вида dir, k, означающих, что робот должен проехать k клеток в направлении dir, где dir — одно из четырех направлений: вниз, вверх, вправо или влево.

Но выяснилось, что разработчики не учли препятствий, которые могут располагаться на пути робота, поэтому вас просят узнать, насколько безопасна данная программа.

Изначально робот находится в позиции (0,0). Если после выполнения какой-то команды робот столкнется с препятствием, выведите номер этой команды.

Формат входных данных

В первой строке дано целое число N — количество препятствий на поле. ($1 \le N \le 10^5$)

В каждой из следующих N строк даны целые числа x_i, y_i — позиция i-го препятствия. $(-10^9 \leqslant x_i, y_i \leqslant 10^9)$

В следующей строке дано целое число Q — количество команд. ($1 \le Q \le 10^5$)

В каждой из следующих Q строк дано описание команд: $dir_i k_i$ — сделать k_i шагов в направлении dir_i , где dir_i является символом 'U', 'D', 'R' или 'L', означающий движение робота вверх, вниз, вправо или влево соответственно. ($1 \le k_i \le 10^4$)

Формат выходных данных

Выведите 'Complete', если робот выполнит всю программу, не столкнувшись с препятствиями. Иначе выведите 'Stop T', где T — номер первой команды, во время выполнения которой робот столкнется с препятствием. ($1 \le T \le Q$)

Система оценки

В этой задаче 3 группы тестов.

Первая группа тестов стоит 4 балла, для нее выполняется ограничение $N, Q, k_i \leq 10^2$.

Вторая группа тестов стоит 4 балла, для нее выполняется ограничение $N\leqslant 10^5;\ Q\leqslant 10^3;\ k_i\leqslant 10^4.$

Третья группа тестов стоит 2 балла, для нее выполняется ограничение $N, Q \leq 10^5$; $k_i \leq 10^4$.

Отбор на летнюю стажировку в Контур 2024 Онлайн, 22 – 25 марта

Примеры

стандартный ввод	стандартный вывод
3	Complete
1 2	
3 2	
2 1	
4	
U 2	
L 1	
D 2	
R 3	
3	Stop 3
1 1	
2 1	
1 3	
3	
U 2	
R 2	
D 1	