Introduction to Electrical Engineering

Course Code: EE 103

Department: Electrical Engineering

Instructor Name: B. G. Fernandes

E-mail id: bgf@ee.iitb.ac.in

Review:

Asynchronous (Ripple) Counter

Outputs of all the Flip-Flops do not change simultaneously. Hence Asynchronous or ripple (Flip-Flops respond one after another).

*All J and K inputs assumed to be 1.

Synchronous Counter (Parallel Counter):

- All Flip-Flops receive clock simultaneously.
- Some means must be used to control when an Flip-Flop should toggle and when it remains unaffected by a clock pulse.

Design Procedure: Mod-8 Synchronous Counter

1. Determine the desired number of bits (Flip-Flops) and the possible states .

Q_2	Q_1	Q_0		
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		
0	0	0		

Design Procedure: Mod-8 Synchronous Counter

2. Prepare a table that lists all the <u>present states</u> and their <u>next state</u>.

Q_2	Q_1	Q_0	Q_{2+}	Q_{1+}	Q_{0+}		
0	0	0	0	0	1		
0	0	1	0	1	0		
0	1	0	0	1	1		
0	1	1	1	0	0		
1	0	0	1	0	1		
1	0	1	1	1	0		
1	1	0	1	1	1		
1	1	1	0	0	0		
0	0	0	0	0	1		

N th state	(N+1) th state	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

<u>Design Procedure</u>: Mod-8 Synchronous Counter

3. Add two column per Flip-Flop (one for each J and K). There will be six columns for each 'PRESENT' state, indicate the levels requires at each J and K input in order to produce the transition to the 'NEXT' state

Q_2	Q_1	Q_0	Q_{2+}	Q_{1+}	Q_{0+}	J_0	K_0	J_1	K_1	J_2	K_2
0	0	0	0	0	1	1	X	0	X	0	X
0	0	1	0	1	0	X	1	1	X	0	X
0	1	0	0	1	1	1	X	X	0	0	X
0	1	1	1	0	0	X	1	X	1	1	X
1	0	0	1	0	1	1	X	0	X	X	0
1	0	1	1	1	0	X	1	1	X	X	0
1	1	0	1	1	1	1	X	X	0	X	0
1	1	1	0	0	0	X	1	X	1	X	1
0	0	0	0	0	1						

N th state	(N+1) th state	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

Design Procedure: Mod-8 Synchronous Counter

4. Design the logic circuit needed to generate the levels required at each J&K input

$$J_0=1$$
 (or $J_0=\overline{Q_0}$)

$$J_1 = Q_0$$

$$J_2 = Q_0 Q_1$$

$$K_0 = 1 \text{ (or } K_0 = Q_0)$$

$$K_1 = Q_0$$

Problem:

The figure shown is used for generating a magnetic field rotating in steps of 90° by selectively switching the currents in 4 coils by means of switches S_1 , S_2 , S_3 & S_4 .

$$S_1$$
 ON & S_3 OFF if $Q_1 = 0$.

$$S_1 ext{ OFF & } S_3 ext{ ON if } Q_1 = 1.$$

$$S_2$$
 ON & S_4 OFF if $Q_2 = 0$.

$$S_2$$
 OFF & S_4 ON if $Q_2 = 1$.

The sequence for rotating the field in counter clockwise direction is given below

Q_2	Q_1	Direction of field
0	0	←
0	1	\downarrow
1	1	\rightarrow
1	0	\uparrow

E	XCITATIO	ON TAB	LE	PRESE	NT STATE	NEXT :	STATE				
Q_N	Q_{N+1}	J	K	Q_2	Q_1	Q ₂₊	Q_{1+}	J ₁	K_1	J ₂	
0	0	0	X	0	0	0	1	1	Χ	0	•
0	1	1	X	0	1	1	1	Х	0	1	
1	0	X	1	1	1	1	0	Х	1	Χ	
1	1	Х	0	1	0	0	0	0	Χ	Х	

for J1 $Q_{1}^{Q_{2}} \quad 0 \quad 1$ $0 \quad 1 \quad 0$ $1 \quad X \quad X$

 $J_1 = \overline{Q_2}$

for K1

$$\begin{array}{c|cccc}
Q_2 & 0 & 1 \\
\hline
0 & X & X \\
1 & 0 & 1
\end{array}$$

$$K_1 = Q_2$$

for J2

$$\begin{array}{c|cccc}
Q_2 & 0 & 1 \\
0 & 0 & X \\
1 & 1 & X
\end{array}$$

$$J_2 = Q_1$$

for K2

$$\begin{array}{c|cccc}
Q_2 & 0 & 1 \\
\hline
0 & X & 1 \\
\hline
1 & X & 0
\end{array}$$

$$K_2 = \overline{Q_1}$$

Logic Realisation:

$$K_1 = Q_2$$

$$K_2 = \overline{Q_1}$$

Interfacing with the Analog World

Most physical variables are analog in nature.

Transducer ⇒ Convert the physical variable to an electrical variable (solar cell, photodiode).

Analog to Digital Converter

ADC \Rightarrow Electrical output of transducer is converted to equivalent digital value.

8 bit ADC \Rightarrow output is digital code of 8 bits.

12 bit ADC \Rightarrow output is digital code of 12 bits.

ADCs and DACs

Functions as an interface between computer(digital) and the real(analog) world.

D/A Conversion: It is the process of taking a value represented in digital code and converting it to a voltage or current that is proportional to the digital value.

- \Rightarrow Input for a voltage reference. V_{ref}
- ⇒ This is used to determine full scale output or maximum value that D/A can produce.

For each input number ⇒ unique output

V . - 8 V

$v_{ref} = o v$							
Most Significar	nt Bit						
D MSB							
Digital C Digital	D/A converter (DAC)	V _{OUT} —● analog output					
east Significant Bit							

D	С	В	A	V_{OUT}
0	0	0	0	0 V
0	0	0	1	0.5 V
•		•		
•	•	•	•	
•	•	•	•	
1	1	1	1	7.5 V

D/A Conversion

• $V_{ref} \rightarrow$ used to define full scale reading (FSR)

```
0000 \rightarrow 0V

1111 \rightarrow 7.5V } 16 different binary numbers \rightarrow 16 different analog values

MAX \rightarrow 7.5 V
```

Example:

If $10100 \rightarrow \text{gives output of } 10 \text{ mV}$, Then $11101 \rightarrow ???$

10100 → (20)_{decimal} → 10 mV
11101 → (29)_{decimal} →
$$\frac{29}{20}$$
 10 mV
→ 14.5 mV

D/A Conversion Resolution

- Output changes in steps ⇒ Not strictly analog
- If the no. of bits \uparrow , step size \downarrow , \Rightarrow Resolution can be improved

Resolution: Smallest change that can occur in the analog output for a change in digital input.

For an N-bit DAC
$$\Rightarrow$$
 there are 2^N different levels \Rightarrow No. of steps is $(2^N - 1)$

Resolution =
$$\frac{FSR}{2^N - 1}$$

Simple D/A circuit

Inputs – 0 or 1, 0 or 5 V

Input resistors are binary weighted!

For 12 bit DAC: If MSB =
$$1k\Omega$$

 \Rightarrow LSB > $2M\Omega$

$$V_{out} = -\left(V_D + \frac{V_C}{2} + \frac{V_B}{4} + \frac{V_A}{8}\right)$$

What happens if feedback resistor R_F is reduced?

- Resolution of the D/A \Rightarrow weights of LSB = $\frac{1}{8}$ 5 V = 0.625 V

R-2R Ladder D/A

2R

Total current due to all bits

$$= \frac{I}{2} + \frac{I}{4} + \frac{I}{8} + \frac{I}{16}$$

$$= \frac{I}{2} \left[1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} \right]$$

$$= V_O = \frac{-R_F I}{2} \left[1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} \right]$$

Assume all left nodes to be at GND and calculate the current through each of the bits individually using R equivalent and add all of them in the end.

 V_{out}

 R_{F}

Simple ADC

System on a Chip

- Apply SOC =1 ⇒ Reset the Counter. Also the clock gets disabled for a short duration.
- All Outputs of the converter = 0
- $V_{AX} = 0$
- D/A output connected to ve input of comparator $\Rightarrow EOC = 1$, till $V_{AX} < V_{A}$.
- Output of 3-input AND is CLOCK signal
- At every CLOCK signal, counter output
 ↑, 000...0 000...1
- D/A output 个 in steps
- If $V_{AX} < V_A$, EOC = +ve (1)
- As soon as $V_{AX} > V_A$, EOC = -ve(0)

Successive Approximation ADC

Most widely used.

Much shorter conversion time than precision

ADC.

Analog input

Successive Approximation ADC

