# РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

# Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

# ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № <u>1</u>

дисциплина: Информационная безопасность

Студент: Петрова М.Е.

Группа: НФИбд-02-21

МОСКВА

2024 г.

#### Постановка задачи

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

## Теоретическое введение

Программа VirtualBox предоставляет широкий спектр возможностей для работы с виртуальными машинами. Это решение подходит для тестирования новых операционных систем, запуска старых приложений или изоляции потенциально опасного программного обеспечения. Благодаря интуитивно понятному интерфейсу и богатому функционалу, VirtualBox стал выбором многих пользователей по всему миру

### Выполнение работы

Запускаем виртуальную машину, нажимаем кнопку "создать" и выбираем скаченный образ ISO





Меняем контроллер на скаченный образ Rocky





Заходим в Network&Host Name и прописываем host name:



B Softwear Selection выбираем Server with GUI. В дополнительном ПО отмечаем Development Tools:









## В Installation Destination выбираем диск





- 1. Версия ядра Linux (Linux version).
- 2. Частота процессора (Detected Mhz processor).
- 3. Модель процессора (СРИ0).
- 4. Объем доступной оперативной памяти (Memory available).
- 5. Тип обнаруженного гипервизора (Hypervisor detected).
- 6. Тип файловой системы корневого раздела.
- 7. Последовательность монтирования файловых систем

```
| Recibiju@necibiju- | Recibiju@necibiju. | Recibiju. | Recibi
```











#### Заключение

Приобрели практические навыки установки операционной системы на виртуальную машину, настроили минимально необходимые для дальнейшей работы сервисы.

#### Ответы на вопросы

1. Какую информацию содержит учётная запись пользователя?

Учётная запись пользователя в Linux содержит следующую информацию:

- Имя пользователя (username) уникальное имя пользователя в системе.
- Идентификатор пользователя (UID) уникальный числовой идентификатор для каждого пользователя.

| - Идентификатор группы (GID) — идентификатор основной группы, к которой принадлежит пользователь.               |
|-----------------------------------------------------------------------------------------------------------------|
| - Домашний каталог (home directory) — директория, в которой пользователь хранит свои файлы и настройки.         |
| - Интерпретатор команд (shell) — программа, запускаемая по умолчанию при входе пользователя в систему.          |
| - Пароль пользователя — обычно хранится в хешированном виде в файле /etc/shadow.                                |
| Эти данные обычно содержатся в файле /etc/passwd, а зашифрованные пароли — в файле /etc/shadow.                 |
| <ul><li>2. Укажите команды терминала и приведите примеры:</li><li>– для получения справки по команде;</li></ul> |
| <ul> <li>для перемещения по файловой системе;</li> </ul>                                                        |
| <ul><li>для просмотра содержимого каталога;</li></ul>                                                           |
| <ul><li>для определения объёма каталога;</li></ul>                                                              |
| <ul><li>– для создания / удаления каталогов / файлов;</li></ul>                                                 |
| <ul><li>– для задания определённых прав на файл / каталог;</li></ul>                                            |
| <ul><li>– для просмотра истории команд.</li></ul>                                                               |

Для получения справки по команде: man <имя\_команды> Пример: man ls — получить справку по команде ls.

Для перемещения по файловой системе: cd <путь\_к\_каталогу> Пример: cd /home/user — перейти в каталог /home/user.

Для просмотра содержимого каталога: ls [опции] <путь к каталогу>

Пример: ls -la /home/user — показать все файлы и каталоги, включая скрытые, с подробной информацией.

Для определения объёма каталога: du -sh <путь\_к\_каталогу> Пример: du -sh /home/user — показать общий размер каталога /home/user.

Для создания / удаления каталогов / файлов:

mkdir <имя\_каталога> - Создание каталога

rmdir <имя\_каталога> - Удаление пустого каталога

touch <имя\_файла> - Создание пустого файла

rm <имя файла> - Удаление файла

rm -r <имя\_каталога> - Рекурсивное удаление каталога и его содержимого

Примеры:

mkdir new\_folder

touch new file.txt

rm new\_file.txt

rm -r new folder

Для задания определённых прав на файл / каталог: chmod <права> <имя\_файла\_или\_каталога>

Пример: chmod 755 script.sh — установить права rwxr-xr-х на файл script.sh.

Для просмотра истории команд: history

3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система — это метод и структура, по которым данные хранятся, организуются и управляются на носителе информации (жесткий диск, SSD, USB-накопитель и т.д.).

Примеры файловых систем:

EXT4 (Fourth Extended Filesystem): Одна из самых популярных файловых систем в Linux. Поддерживает журналирование, большие объемы данных, улучшенную производительность. Хорошо подходит для большинства стандартных Linux-установок.

NTFS (New Technology File System): Файловая система, используемая в операционных системах Windows. Поддерживает большие файлы, разрешения, шифрование и сжатие.

FAT32 (File Allocation Table 32): Универсальная файловая система, поддерживаемая практически всеми операционными системами.

Ограничение на размер файла — до 4 ГБ.

XFS: Журналируемая файловая система с высокой производительностью, разработанная для систем с большими объемами данных.

Хорошо подходит для серверных систем и больших файловых хранилищ.

ZFS: Передовая файловая система, поддерживающая большой объем данных, снапшоты, клонирование и защиту данных. Разработана для высоконадежных систем.

4. Как посмотреть, какие файловые системы подмонтированы в OC?

Чтобы посмотреть, какие файловые системы подмонтированы в операционной системе Linux, можно воспользоваться несколькими способами. Во-первых, можно использовать команду mount, которая выводит список всех текущих монтированных файловых систем, их устройства, точки монтирования, типы файловых систем и параметры монтирования. Например, при вводе команды mount в терминале вы получите информацию о том, какие файловые системы были смонтированы и в каком порядке.

Во-вторых, можно просмотреть содержимое файла /proc/mounts, который также содержит сведения о всех монтированных файловых системах, включая псевдо-файловые системы вроде proc и sysfs. Это можно сделать, выполнив команду cat /proc/mounts в терминале. Наконец, команду df -h можно использовать для отображения информации о свободном и занятом пространстве на смонтированных файловых системах, что может быть полезным для мониторинга состояния системы.

5. Как удалить зависший процесс?

Для удаления зависшего процесса в Linux сначала нужно определить его идентификатор (PID). Это можно сделать с помощью команды ps aux, которая выводит список всех запущенных процессов в системе вместе с их PID, или с помощью утилит top или htop, которые предоставляют интерактивный список процессов.

После того как PID зависшего процесса известен, можно использовать команду kill <PID> для отправки сигнала завершения процессу. Если процесс не реагирует на обычный сигнал завершения, его можно принудительно завершить, используя команду kill -9 <PID>. Этот сигнал (-9) немедленно завершает процесс, игнорируя любые попытки его сохранения или корректного завершения.