CONTENTS 1

Linear Regression

Yifei Sun

Contents

Simple linear regression	3
Multiple linear regression: a small experiment	4
Prediction interval vs. confidence interval	5
Model selection	5

CONTENTS 2

In this example, we assess the association between high density lipoprotein (HDL) cholesterol and body mass index, blood pressure, and other demographic factors (age, gender, race) using the NHANES data (https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/Default.aspx?BeginYear=2001).

```
library(RNHANES)
library(tidyverse)
library(summarytools)
library(stargazer)
library(leaps)
```

The data can be downloaded using functions in the package RNHANES.

```
dat <- nhanes_load_data("l13_B", "2001-2002")

dat = dat %>%
  left_join(nhanes_load_data("BMX_B", "2001-2002"), by="SEQN") %>%
  left_join(nhanes_load_data("BPX_B", "2001-2002"), by="SEQN") %>%
  left_join(nhanes_load_data("DEMO_B", "2001-2002"), by="SEQN")

dat = dat %>%
  select(SEQN, RIAGENDR, RIDRETH1, RIDAGEYR, BMXBMI, BPXSY1, LBDHDL)

colnames(dat) <- c("ID", "gender", "race", "age", "bmi", "sbp", "hdl")

dat$race <- as.factor(dat$race)

dat <- na.omit(dat)</pre>
```

We first look at the summary statistics of the predictors and the response.

Data Frame Summary

dat

Dimensions: 6434×6

Duplicates: 0

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Valid	Missing
1	gender [numeric]	Min: 1 Mean: 1.5	1: 3108 (48.3%) 2: 3326 (51.7%)	IIIIIIIII	6434 (100%)	0 (0%)
2 race		Max : 2 1. 1	1593 (24.8%)	IIII	6434	0
	[factor]	2. 2 3. 3 4. 4	262 (4.1%) 2910 (45.2%) 1448 (22.5%)	IIIIIIIII IIII	(100%)	(0%)
		5. 5	221 (3.4%)	1111		

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Valid	Missing
3	age	Mean (sd) : 35.3	79 distinct values	:	6434	0
	[numeric]	(22.1)		. :	(100%)	(0%)
		$\min < \max < \max$:		::		
		5 < 29 < 85		::::::		
		IQR (CV) : 36 (0.6)		::::::::		
4	$_{ m bmi}$	Mean (sd) : 26 (6.5)	2266 distinct	.:	6434	0
	[numeric]	$\min < \max < \max$:	values	::	(100%)	(0%)
		13.4 < 25.3 < 64.2		:::		
		IQR (CV) : 8.2 (0.2)		.:::		
				:::::.		
5	sbp	Mean (sd) : 119.5	73 distinct values	:	6434	0
	[numeric]	(20.1)		:	(100%)	(0%)
		$\min < \max < \max$:		::.		
		74 < 116 < 228		:::		
		IQR (CV) : 22 (0.2)		::::.		
6	hdl	Mean (sd): 51.6	102 distinct	: .	6434	0
	[numeric]	(14.5)	values	::	(100%)	(0%)
		$\min < \max < \max$:		::		
		19 < 49 < 160		:::		
		IQR (CV) : 17 (0.3)		::::.		

Simple linear regression

Table 2:

	Dependent variable:
	hdl
bmi	-0.495^{***}
	(0.027)
Constant	64.502***
	(0.731)
Observations	6,434
\mathbb{R}^2	0.049
Adjusted R ²	0.048
Residual Std. Error	14.153 (df = 6432)
F Statistic	$328.634^{***} (df = 1; 6432)$
Note:	*p<0.1; **p<0.05; ***p<0.01

```
ggplot(dat, aes(bmi, hdl)) +
  geom_point(alpha = 0.05, size = 0.5, color = "black") +
  geom_smooth(method = "lm") +
  labs(x = "BMI", y = "HDL cholesterol")
```


Multiple linear regression: a small experiment

 ${\tt bmi}$

-0.6649902

```
coef(fit3)["r2"]
```

r2

-0.6649902

Prediction interval vs. confidence interval

Model selection

