<u>Lecture 4:</u> Linear transformations, Matrix algebra (book: 1.0, 1.q, 2.1).

Previous lecture: homogeneous /nonhomogeneous SUE + linear independence.

Recall the matrix-vector product:

$$\begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 13 \\ 21 \end{bmatrix}$$

$$A \qquad \underline{\times} \qquad \underline{b}$$

And recall the properties: * A(u+v) = Au+Av * A(c y) = c(Ay)

Multiplication by A transforms & ento b.

Schematic

Transformation/function/mapping

T($\frac{\times}{\times}$) = $\frac{4}{5}$ < output the cirput transformation operator.

A transformation is linear if: $*T(\underline{u}+\underline{v})=T(\underline{u})+T(\underline{v})$ $*T(\underline{c}\cdot\underline{u})=c.T(\underline{u}).$

image: T(z)
range: set of all images. $(c \cdot \underline{u} + d \cdot \underline{v}) = c \cdot T(\underline{u}) + d \cdot T(\underline{v}).$

If Tis linear, then T(0)=0.

$$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$$

$$T(x) = \begin{cases} x^{2} \\ y^{2} \end{cases}$$

$$Y = \begin{bmatrix} y \\ y \end{bmatrix}$$

$$T(y) = \begin{bmatrix} y \\ y \end{bmatrix}$$

Example: rotation about the origin through an argle φ T(u+v)

T(u)

Example: reflection in a line through the origin. T(y+y)=T(u)+T(y).

The second of the origin T(y+y)=T(y)+T(y).

Example: reflection in a line not through the origin

not a linear transformation because $T(e) \neq e$.

Let's go back to the transformation of a matrix-vector product.

$$A \underline{u} = \underline{b}$$

$$\mathbb{R}^n \to \mathbb{R}^m$$

Is a matrix transformation linear? *Tu+y) = A(u+y) = Au+Ay = T(u)+T(v) $*T(c\cdot u) = A(c\cdot u) = c\cdot T(u)$.

tolow from the properties of a matrix-vector product.

=> Every matrix transformation is a linear transformation. The opposite is also true (at least, in the context: R^n - R^n)

Theorem: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. There is a unique matrix A such that for $\underline{x} \in \mathbb{R}^n$ $T(\underline{x}) = A\underline{x}$. $= \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ Then, T(x)= T(x,e,+x,e2+x3.e3+....+xn.en) linearity = $T(x_1e_1) + T(x_2e_2) + T(x_2e_3) + \cdots + T(x_ne_n)$ linearity = x, T(e,) + x2 T(e2) + x3 T(e3) + + xnT(en). $= \left(\begin{array}{c|c} & & & \\ \hline T(e_1) & T(e_2) & T(e_3) \\ \hline \end{array} \right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ \vdots \\ \vdots \\ x_n \end{array} \right) = Ax$ \Box Uniqueness of A? DIY (exc. 4, Ch.1, q). Standard matrix for the linear transformation $T: [T(e_1) - ... T \not\in N]$

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ Example: rotation about the origin through an angle ρ

So,
$$T(e_1) = \begin{bmatrix} \cos \varphi \\ \sin \varphi \end{bmatrix}$$
 So, $T(e_2) = \begin{bmatrix} -\sin \varphi \\ \cos \varphi \end{bmatrix}$

So,
$$A = [T(e_1) T(e_2)] = [\cos \varphi - \sin \varphi]$$

$$-\sin \varphi$$

So,
$$T(e_z) = \begin{bmatrix} -\sin \varphi \\ \cos \varphi \end{bmatrix}$$

$$-\sin \varphi$$
 $\int \cos \varphi$

Now it's easy to get the image of x=[2], namely $T(2])=[2\cos\varphi+3\sin\varphi]$

Example: Suppose the standard matrix is A=50 17.

What is the geometric interpretation?

$$T(e_1) = [0 \ 1][0] = [0] = e_2$$
 $T(e_2) = [0 \ 1][0] = [1] = e_1$

Hence, the transformation is a reflection in the line y=x.

Example: Projection onto the x-axis

This is a linear transformation (DIY!) with standard matrix

with standard matrix
$$A = \left[T\left(\begin{bmatrix} i \\ 0 \end{bmatrix}\right) T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)\right] = \left[\begin{bmatrix} i & 0 \\ 0 & 0 \end{bmatrix}.$$

So, indeed $T([2]) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.

Surjectivity: A transformation T: R^->R^m is surjective/anto if each be 1R^m is the image of at least one x e 1R^n (range = codomain).

Injectivity: A transformation T: 1R^->R^n is injective/one-to-one if each be 1R^m is the image of at most one x e 1R^n.

Theorem: Let 1R^->1R^m be a linear transformation.

T is injective (=>) T(x) = 0 has only the trivial solution.

Hoad:

Since T is vinear, we have T(e) = 0.

Since T is vinear, we have T(e) = 0.

Since T is injective.

So, T(x) = 0 has only the trivial solution.

Assume T is not injective.

Assume T is not injective.

So, there is a be 1R^m that is the image of at least two vectors in R^n.

So, T(x) = b and T(x) = b with x + x.

So, T(x-x) = T(x) - T(x) = b - b = 0

because T

is vinear

Note x-x + 0 because x + y.

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix A.

 \Box

T is injective $\Rightarrow T(x) = 0$ has only the trivial solution. $\Rightarrow Ax = 0$ has only the trivial solution. $\Rightarrow A$ has a pivot in every column.

Hence, $T(\infty) = 0$ has also a nontrivial solution.

T is surjective R^m , T(x) = b has a solution. (\Rightarrow) for each $b \in R^m$, Ax = b has a solution. (\Rightarrow) A has a pivot in every row.

Each column of AB is a linear combination of the columns of A with the entries of the corresponding column of B being the weights.

$$\begin{bmatrix} 11 \\ -1 \end{bmatrix} = 4 \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 1 \cdot \begin{bmatrix} 3 \\ -5 \end{bmatrix}$$

Note: we need # columns of A = # rows of B.

A: man 3 C = AB mxp

In general AB = BA.

Transpose: $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ A matrix is symmetric if $A^T = A$ $\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 14 & 5 \\ 4 & 26 \\ 5 & 6 & 3 \end{bmatrix}$ identity matrix $T_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $T_4 = \begin{bmatrix} 1 & 00 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ ATy = A $T_4 A = A$

Power of a square (rxn) matrix $A^{k} = A \cdot A \cdot A \cdot ... \cdot A$ $A^{\circ} = I_{n}$.

Letimes. Composition of linear transformation.

T: IRn -> IRn
Tz IRm -> R9
With sbandard matrix A mxn
B 9xm

 $T = T_2 \circ T_1 = T_2(T_1)$

Then, $T: \mathbb{R}^n \to \mathbb{R}^q$ with standard matrix $\leq q \times n$ where c = BA

Let A, B, and C be matrices of the same size, and let r and s be scalars.

a.
$$A + B = B + A$$

d.
$$r(A + B) = rA + rB$$

b.
$$(A + B) + C = A + (B + C)$$

e.
$$(r+s)A = rA + sA$$

c.
$$A + 0 = A$$

f.
$$r(sA) = (rs)A$$

Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.

a.
$$A(BC) = (AB)C$$

(associative law of multiplication)

b.
$$A(B+C) = AB + AC$$

(left distributive law)

c.
$$(B+C)A = BA + CA$$

(right distributive law)

d.
$$r(AB) = (rA)B = A(rB)$$

for any scalar r

e. $I_m A = A = A I_n$

(identity for matrix multiplication)

WARNINGS:

- 1. In general, $AB \neq BA$.
- **2.** The cancellation laws do *not* hold for matrix multiplication. That is, if AB = AC, then it is *not* true in general that B = C. (See Exercise 10.)
- **3.** If a product AB is the zero matrix, you *cannot* conclude in general that either A = 0 or B = 0. (See Exercise 12.)

Let A and B denote matrices whose sizes are appropriate for the following sums and products.

a.
$$(A^{T})^{T} = A$$

b.
$$(A + B)^T = A^T + B^T$$

c. For any scalar
$$r$$
, $(rA)^T = rA^T$

d.
$$(AB)^T = B^T A^T$$

The transpose of a product of matrices equals the product of their transposes in the *reverse* order.