

APM 236H-problem set 3 page 3 of 5 guien as the solution of part (a) are: 29.100 8.6) Basic 5,5,5 basic x, S, Gasic X,4 basic 4,5, basic Supplementary problems

1: The set of optimal solutions of any linear problem is convert. Exact suppose we have a problem in a decision variables, whose objective function is therefore of the form $Z=C\times W$ with $C\in \mathbb{R}^n$, $X\in \mathbb{R}^n$. The feasible region of the problem is a finite intersection of closed half-spaces, which is convex by theorems 1.1 and 1.3 on pages 80 and 81. Let 5 clenote the feasible region.

If the set of optimal solutions of the suchlem is empty, then it is convex (the empty set is convex ; by the defention on page 79). Otherwise the problem has an optimal solution whose objective value is also optimal. Let k denote the optimal objective value.

The set of optimal solutions is then the intersection of 5 with the hyperplane $\{x \in IR^n \leq 1 : c^{-1}x = k\}$; an intersection of two convex sets which is again convex by theorem 1.3.

APM 236H-problem set 3 page 4 of 5 Seyptementary problems (continued)

21 The set of objective values values which a linear programming problem attains over its feasible region is convex. Proof Let n, Z, C, and S be as in the stool of supplementary problem I and recall that the peacelle region of any linear programming problem is convex (See palagraph 2, proof of supplementary problem 1). Now pick two objective values, Z, and Z, which the linear programming problem takes over its feasible region, and only a Le LO, II. Then we may find x, x, ES such that z; = C'x; (i=1,2). = cT(\X, + (1-\)x), we have expressed the real anumber AZ, + (1-1) Z as the objective value the problem takes at the feasible point NX,+(1-N) X2 (using that S is convex). 3. Three examples of convex sets in 182 which are not line segments and which have [1] and [2] as their only extreme points are: $\begin{aligned} & \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \text{ s.t. } 2 \times y = 2, \times 20, \text{ and } y = 0 \right\}, \\ & \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \text{ s.t. } 2 \times y = 2, \times 21, \text{ and } y = 2 \right\}, \text{ and } \\ & \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \text{ s.t. } 2 \times y = 2, \text{ and } 0 \leq x \leq 1. \end{aligned} \end{aligned} \right\}$

APM 236H - problem set 3 page 5 of 5
Supplementary problems (continued)
4. The extreme points of
$S = \{ \{ X_i \} \in \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{ \{$
$S = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in [\mathbb{R}^3 \text{ s.t. } x_1 - x_2 + x_3 = -1, 3 \times_1 - 2 \times_2 + 4 \times_3 = 2, \\ x_3 \end{bmatrix} \times_1 + x_2 + 3 \times_3 = 9, x_1 \ge 0, x_2 \ge 0, \text{ and } x_3 \ge 0 \right\}$
$are \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$.
To see this note that x belongs to S only if
보고 있는 것이 되었다. 그는 것이 그렇게 하는 것이 되었다. 그는 것이 되었다. 전화자를 보고 있는 것이 되었다. 그는 것이 되었다. 그는 것이 되었다. 그는 것이 되었다. 그는 것이 되었다.
it is a solution of the system $3x_1 - 2x_2 + 4x_3 = 2$. $x_1 + x_2 + 3x_3 = 9$
This sextern has the one-parameter family of solutions x, = 4-2xz, x, = 5-xz, x & CIR.
(using [0] 1 -1 -1 1 -1 1 0 2 4) (now [3-2 4 2 = 0 0 1 5 = 0 1 1 5] (neduction, [1 1 3 9] 0 2 2 10 [0 0 0 0].
That is the solution set of the system of equations is
a line. The points on this line which satisfy $x; \ge 0$ for $i=1,2,3$ are precisely those points for which $0 \le x_3 \le 2$ (so that $x_1 = 4 - 2x_3 \ge 0$). S is a closed line segment
0 = x, = 2 (so that x, = 4-2x, ≥0). S is a closed line segment