

INDEX

CAU

- INTRODUCTION
- NOISE CONTRASIVE ESTIMATION
- RELATED WORKS: SAMPLING METHODS
- RELATED WORKS: LOSS FUNCTION
- OUR APPROACH
- DISCUSSIONS

session 2

- What is a knowledge graph(KG)?
 - ☐ A hetrogeneous graph that consists of entities(nodes) and relations(edges)
 - □ Stores information in triples → (subject entity, relation, object entity)
 - ☐ Applied in various domains

 (recommendation, drug prediction, GraphRAG, information retrieval, question-answering, etc.)

Knowledge Graph Completion(KGC)

- ☐ Despite its power, KG suffers from sparsity [1, 2] issue
- ☐ For example, in Freebase and DBpedia more than 66% of the person entries are missing a birthplace [1]
- ☐ Thus building KGC models to automatically fill in(connect) missing links has been extensively studied
- □ Normally two task exists, link prediction(entity prediction) and relation prediction link prediction: (h, r, l) or (l, r, t) → predict "?" relation prediction: (h, r, t) → predict "?" we only deal with link prediction for this work

- "Big 3" paradigm of KGC models(2013 ~ 2025)
 - ☐ Embedding base, Rule base, GNN base
 - □ Each paradigm has its own learning method to predict links

[3] Liang, Ke, et al. "A survey of knowledge graph reasoning on graph types: Static, dynamic, and multi-modal." IEEE Transactions on Pattern Analysis and Machine Intelligence (2024).

- Generlized training phase of Emb base and GNN base
 - ☐ Similarity: create embeddings for each entity and relation to minimize distance function
 - □ Difference: how the embeddings are produced

learning only positive links... is that it?

- Contrastive learning approach in both Emb base and GNN base
 - ☐ Training a model to be able to contrast between true and false
 - ☐ In other words, minimizing the positive samples(PS) loss and maximizing the negative samples(NS) loss
 - ☐ Thus the model learns like a magnet, pulling and pushing at the same time

- Using negative samples: crucial part for model performance
 - ☐ KGC, CV, RS, NLP rely heavily on NS for training a robust model
 - ☐ Below figures show the power of NS

Figure 2. Downstream classification accuracy of contrastively learnt representations on CIFAR-10 improves with increasing the number of negative examples k.

[4]

Recent concerns in the KGC feild

- ☐ Despite the high value, negative sampling methods are not well explored
- ☐ Random or heuristic NS methods are still widely adopted and they are questionable in quality
- ☐ Thus providing better(harder) negatives to the model has huge potential

i) Zhang, Honggen, June Zhang, and Igor Molybog. "HaSa: Hardness and Structure-Aware Contrastive Knowledge Graph Embedding." Proceedings of the ACM Web Conference 2024. 2024.

Our objective and goal

- □ Build a sub-model(NS Generator) that learns how to generate hard NS
- ☐ Feed hard NS to the main-model(Emb base or GNN base, etc.) to enhance performance
- ☐ Sub-model should be applicable to any main-model that uses NS
- ☐ Make the sub-model and main-model to help each other(similar machanism to GAN)

Composition of todays seminar

Noise Contrasive Estimation(NCE) : the birth of negative sampling(NS)	-
why NS is important(theoretical proof) and its dilemma	$\mathbb{E}[\ (\theta_T - \theta^*)_u\ ^2] = \frac{1}{T}(\frac{1}{p_d(u v)} - 1 + \frac{1}{kp_n(u v)} - \frac{1}{k})$
recent works on NS methods	
recent works on loss function design from the perspective of NS	$\frac{p_d(y x)/p_n(y x)}{\sum_{y' \in Y} \left(p_d(y' x)/p_n(y' x)\right)} \mathcal{L}_{\mathrm{N}} = -\frac{v}{\chi} \left[\log \frac{f_k(x_{t+k}, c_t)}{\sum_{x_j \in X} f_k(x_j, c_t)} \right]$
our approach to find better negative samples	100 (a. a. a
future questions and plans	

- Lets discuss 'training' from a lower level(feat. distribution)
 - \square Data distribution($p_d(.)$): underlying distribution of the true patterns
 - ☐ Idealy, we wish a ML model to model a certain data distribution

 (left fig) data distribution in NLP / (right fig) data distribution in link prediction

The antagonist "partition"

☐ If we want to model the data distribution directly(itself an impossible thing), below distribution should be calculated

$$p_d(u|v) = \frac{s_\theta(u|v)}{\sum\nolimits_i s_\theta(u_i|v)}$$
 partition function(normalization constant)

- ☐ The partition function is impossible to calculate for real life data
- \Box Even worse, we only have samples(=training data, $\hat{p_d}$) from the data distribution
- ☐ How can we make a model learn without needing to calculate the partition function?

■ NCE : A new perspective to mitigate from partition

- "The basic idea is to estimate the parameters by learning to discriminate between the data **x** and some artificially generated noise $\mathbf{y}'' = \mathbf{v} \sim \hat{\mathbf{p}}$, $\mathbf{v} \sim \mathbf{p}$.
- □ Distribution modeling → binary classification
- ☐ No need for huge partitions

Noise-contrastive estimation: A new estimation principle for unnormalized statistical models

Michael Gutmann
Dept of Computer Science
and HIIT, University of Helsinki
michael.outmann@helsinki.fi

Aapo Hyvärinen
Dept of Mathematics & Statistics, Dept of Computer
Science and HITT, University of Helsinki
aano hyvarinee@helsinki fi

However, noise distribution is unknown

Figure 1: The SampledNCE framework. Positive pairs are sampled implicitly or explicitly according to the graph representation methods, while negative pairs are from a pre-defined distribution, both composing the training data of contrastive learning.

define an unknown distribution

Dilemma of designing noise distribution

□ [9] proved theoretical background of graph representation learning under SampledNCE

Theorem 2. The random variable $\sqrt{T}(\theta_T - \theta^*)$ asymptotically converges to a distribution with zero mean vector and covariance matrix

$$Cov(\sqrt{T}(\theta_T - \theta^*)) = diag(m)^{-1} - (1 + 1/k)\mathbf{1}^{\top}\mathbf{1},$$

 $where \ m = \left[\frac{kp_d(u_0|v)p_n(u_0|v)}{p_d(u_0|v) + kp_n(u_0|v)}, ..., \frac{kp_d(u_{N-1}|v)p_n(u_{N-1}|v)}{p_d(u_{N-1}|v) + kp_n(u_{N-1}|v)}\right]^\top \ and \\ 1 = [1, ..., 1]^\top.$

$$\mathbb{E}\big[\|(\theta_T - \theta^*)_u\|^2\big] = \frac{1}{T}(\frac{1}{\underline{p_d(u|v)}} - 1 + \frac{1}{k\underline{p_n(u|v)}} - \frac{1}{k}) \qquad \text{dilemma occurs between } p_{d}, p_n \\ \text{we can't maximize both at once}$$

 θ ": optimum parameters when trained by NCE θ_{τ} : optimum parameters when trained by SampledNCE k: # negative samples per 1 positive sample

Compensation is required when modeling noise distribution

- □ We would like the noise distribution to be similar to the data distribution
- ☐ At the same time, don't want them to be that similar(false negative might be generated)
- ☐ Building negative generator needs a different perspective & approach
- ☐ The definition and nature of negative samples are scarcely studied compared to positive samples

positive samples

negative samples

- · just static data that are fed to the model
- relative quality is not defined(no one cares)

- imaginary data
- relative quality is not defined(definition is required)
- the effect of one self can only be seen indirectely

how did recent works treat NS and combine them into training?

- On generating harder negatives(generally two types of work)
 - □ Negative sample method as a **side kick** → explored quite a bit since 2017
 - □ Negative sample method as a **module** → **hardely explored**

- On generating harder negatives(generally two types of work)
 - ☐ Both have different ways of showing their contributions

<side kick>

	FB15k-237		WN18		WN18RR	
Method	MRR	H@10	MRR	H@10	MRR	H@10
TRANSE	-	42.8 [†]	-	89.2	-	43.2
TRANSD	-	45.3	-	92.2	-	42.8
DISTMULT	24.11	41.91	82.2	93.6	42.5	49.1
COMPLEX	24.01	41.9^{\ddagger}	94.1	94.7	44.41	50.7 [‡]
TRANSE (pre-trained)	24.2	42.2	43.3	91.5	18.6	45.9
KBGAN (TRANSE + DISTMULT)	27.4	45.0	71.0	94.9	21.3	48.1
KBGAN (TRANSE + COMPLEX)	27.8	45.3	70.5	94.9	21.0	47.9
TRANSD (pre-trained)	24.5	42.7	49.4	92.8	19.2	46.5
KBGAN (TRANSD + DISTMULT)	27.8	45.8	77.2	94.8	21.4	47.2
KBGAN (TRANSD + COMPLEX)	27.7	45.8	77.9	94.8	21.5	46.9

sE	FB13			FB15K237		
	MRURT	MRJ	Hing 107	MRR†	MRĮ	18kg/101
em .	0.0820	4472	15.69	0.2188	282	38.48
illiro	0.2460	5638	36.53	0.2257	268	39.56
sching	0.3087	3804	40.12	0.3067	158	48.05

Uniform	0.0820	4472	15.69	0.2188	282	38.48
Bernoulli	0.2460	5638	36.53	0.2257	268	39.56
NSCaching	0.3087	3804	40.12	0.3067	1.88	48.05
GN+DN	0.3137	4752	40.62	0.2895	190	47.45
DF-N25	0.3219	4870	42.22	0.3095	174	48.85
TransH	FB13			FB15K237		
	MRR†	MRJ	Hitg10	MRIRT	MRI	18b@101
Uniform	0.1041	12315	16.49	0.2212	283	39.18
Bernoulli	0.2375	4802	35.35	0.2363	200	40.08
NSCaching	0.2891	3163	39.58	0.2931	199	47.81
GN+DN	0.3022	4585	40.15	0.2925	196	47.89
IF-NS	0.3058	4010	40.79	0.3089	180	48.93
TransD	FB13			FB15K237		
	MRR†	MRJ	Hings107	MRR↑	MRI	19bg/10†
Uniform	0.1495	13 033	22.29	0.2175	295	38.10
Bernoulli	0.2468	4341	36.06	0.2354	240	40.73
NSCaching	0.3124	3817	41.30	0.3071	187	48.17
GN+DN	0.3145	4920	40.99	0.2907	198	47.54
IF-NS	0.3282	5064	42.25	0.3109	167	49.05

- On generating harder negatives(SIDEKICK/heuristic)
 - □ Random: assume noise distribution is uniform
 - □ Batch NS: only pick negative entities from the same mini-batch(memory efficient)
 - □ K-hop: assume hard negative is arround k-hop of the target entity
 - □ NMiss: selects negative candidates that are ranked higher than positive entity

- On generating harder negatives(SIDEKICK/model)
 - ☐ KBGAN(arxiv'17): although proposed as a predictor model, generator can be used as a module

- On generating harder negatives(module/model)
 - □ HaSa(WWW'24): introduces a false negative aware loss function and detection method

- On generating harder negatives(deviating from false negatives)
 - □ Use the nature of relation cardinality to mitigate from generating false negatives
 - □ A relation is either 1-1. 1-N. N-1. N-N
 - □ Only change the '1' side when generating negatives
 - ☐ Effective, but 1) 1-1 relations are minority, 2) can't change 1 side if target entity is on the other side

Relation cardinality of FR15k237 tail side N 7.17 10.97 36.28 45.56

ead side

if tail-batch → 'N' part should be negative sampled

- On generating harder negatives(deviating from false negatives)
 - Regardless of relation cardinality, entity type can be used to deviate from generating false negatives
 - ☐ If a relation is given, head and tail's type is restricted
 - ☐ By not sampling the same nature entity for negative, false negative is prevented
 - ☐ Flexible than cardinality aware approach, but is the generated negative even hard?

- On generating harder negatives(deviating from false negatives)
 - ☐ A more novel and reasonable approach would be to train the NS generator to handle this issue
 - ☐ We haven't dove into this topic that much, lets discuss it next time

- General form of NS incorporated loss function
 - □ 1 positive and k negatives
 - ☐ Negative part is usually meaned to prevent underfitting

Distance based loss function with margin terms

PS loss

- $\hfill\Box$ Margin(y) defines the boundary between 'right' and 'wrong'
- ☐ One of the most commonly used loss function in KGC feild

$$L = -\log \sigma(\gamma - d_r(\mathbf{h}, \mathbf{t})) - \sum_{i=1}^{n} \frac{1}{k} \log \sigma(d_r(\mathbf{h}'_i, \mathbf{t}'_i) - \gamma)$$

NS loss(usually k=n)

●∈ PS

●∈ NS

- InfoNCE(Information Noise Contrasive Estimation)
 - ☐ A softmax form loss function
 - \Box A temperature hyper-parameter τ to control the distribution sharpness some view τ as a learnable parameter

- InfoNCE(Information Noise Contrasive Estimation)
 - ☐ Why doesn't InfoNCE calculate the mean over the negative part?
 - \Box τ is usually set to a small value(0.07~0.1)

- SANS(Self-Adversarial Negative Sampling)
 - ☐ Weighted mean over NS
 - ☐ Weight is determined by the current model's state
 - \Box α is the temperature hyper-parameter(similar role with InfoNCE's τ)

$$p(h'_j, r, t'_j | \{(h_i, r_i, t_i)\}) = \frac{\exp \alpha f_r(\mathbf{h}'_j, \mathbf{t}'_j)}{\sum_i \exp \alpha f_r(\mathbf{h}'_i, \mathbf{t}'_i)}$$
$$L = -\log \sigma(\gamma - d_r(\mathbf{h}, \mathbf{t})) - \sum_{i=1}^n p(h'_i, r, t'_i) \log \sigma(d_r(\mathbf{h}'_i, \mathbf{t}'_i) - \gamma)$$

OUR APPROACH

NS generator

- □ Several criteria for "good hard negative generator"
- □ 1) improve the main model performance
- □ 2) mitigate from false negatives
- □ 3) efficiency
- □ 4) generalizability(model & dataset)

OUR APPROACH

- (1) Should we always give hard negatives to the model?
 - □ Will hard negative help even in the early stage of training(when the model is still dumb)? □ If we think from a human perspective...

- (2) 'Diversity vs Hard negative' (tradeoff)
 - ☐ Random sampling provides diverse negatives for the model
 - ☐ Hard negative sampling sacrifices diversity over harder samples
 - ☐ However, can we catch both diversity and hard negative?

(3) New loss function

- □ Conventional loss functions restrict the influence of negative loss part
- ☐ This was a reasonable technique when negatives were too easy to discriminate
- ☐ However, as importance of negative sampling grows, the loss function must change as well
- ☐ From the perspective of NCE, what is the idle loss function?

$$L = -\log \sigma(\gamma - d_r(\mathbf{h}, \mathbf{t})) - \sum_{i=1}^{n} \frac{1}{k} \log \sigma(d_r(\mathbf{h}_i', \mathbf{t}_i') - \gamma)$$

$$\mathcal{L}_{InfoNCE} = -\log \frac{exp(s_{\theta}(h,r,t)/\tau)}{exp(s_{\theta}(h,r,t)/\tau) + \sum_{i=1}^{n} exp(s_{\theta}(h,r,t_{i})/\tau)}$$

(4) When will 'good negative sample generator' prevail?

- ☐ Good NS generator's contribution might prevail when the dataset is
 - □ **Difficult**: low quality negatives won't help the model that much
 - ☐ Huge in volume: where neg batch size is restricted, quality of each NS will be more important

ICLR'24 reviewer comment on negative sample generator paper [11]

"Moreover, the study should use datasets that are so large that negative sampling is actually needed."

Contact: Sooho Moon (Email: moonwalk725@cau.ac.kr)