Amendments to the Claims

1. (currently amended) A composition condensation aerosol for delivery of indomethacin
consisting of a condensation acrosol a drug selected from the group consisting of indomethacin,
ketoprofen, celcoxib, rofecoxib, meclofenamic acid, fenoprofen, diflunisal, tolfenamic acid, naproxen,
ibuprofen, flurbiprofen and nabumetone
a. wherein the condensation aerosol is formed by volatilizing a coating of indomethacin
heating a thin layer containing the drug, on a solid support, having the surface texture of a metal foil, to a
temperature sufficient to produce a heated vapor of indomethacin the drug, and condensing the heated
vapor of indomethacin to form a condensation aerosol particles,
b. wherein said condensation aerosol particles are characterized by less than 5%
indomethacin 10% drug degradation products by weight, and
c. the condensation acrosol has an MMAD of less than 3-microns 5 microns.

- 2. (currently amended) The composition condensation acrosol according to Claim 1, wherein the condensation acrosol particles are is formed at a rate of at least greater than 10° particles per second.
- 3. (currently amended) The composition condensation aerosol according to Claim 2, wherein the condensation aerosol particles are is formed at a rate of at least greater than 10¹⁰ particles per second.

4.-33. (cancelled)

- 34. (currently amended) A method of producing indomethacin a drug selected from the group consisting of indomethacin, ketoprofen, celcoxib, rofecoxib, meclofenamic acid, fenoprofen, diflunisal, tolfenamic acid, naproxen, ibuprofen, flurbiprofen and nabumetone in an aerosol form comprising:
- a. heating a coating of indomethacin thin layer containing the drug, on a solid support, having the surface texture of a metal foil, to a temperature sufficient to volatilize the indomethacin to form a heated to produce a vapor of the indomethacin drug, and
- b. during said heating, passing air providing an air flow through the heated vapor to produce to form a condensation aerosol particles of the indomethacin comprising characterized by less than 5% indomethacin 10% drug degradation products by weight, and an aerosol having an MMAD of less than 3 microns 5 microns.

- 35. (currently amended) The method according to Claim 34, wherein the <u>condensation</u> aerosol particles are is formed at a rate of greater than 10⁹ particles per second.
- 36. (currently amended) The method according to Claim 35, wherein the <u>condensation</u> aerosol particles are is formed at a rate of greater than 10^{10} particles per second.

37.-72. (cancelled)

- 73. (new) The condensation aerosol according to Claim 1, wherein the condensation aerosol is characterized by an MMAD of 0.2 to 5 microns.
- 74. (new) The condensation aerosol according to Claim 1, wherein the condensation aerosol is characterized by an MMAD of less than 3 microns.
- 75. (new) The condensation aerosol according to Claim 73, wherein the condensation aerosol is characterized by an MMAD of 0.2 and 3 microns.
- 76. (new) The condensation aerosol according to Claim 1, wherein the condensation aerosol is characterized by less than 5% drug ester degradation products by weight.
- 77. (new) The condensation aerosol according to Claim 76, wherein the condensation aerosol is characterized by less than 2.5% drug ester degradation products by weight.
- 78. (new) The condensation aerosol according to Claim 1, wherein the solid support is a metal foil.
 - 79. (new) The condensation aerosol according to Claim 1, wherein the drug is indomethacin.
 - 80. (new) The condensation aerosol according to Claim 1, wherein the drug is ketoprofen.
 - 81. (new) The condensation aerosol according to Claim 1, wherein the drug is celcoxib.
 - 82. (new) The condensation aerosol according to Claim 1, wherein the drug is rofecoxib.

- 83. (new) The condensation aerosol according to Claim 1, wherein the drug is meclofenamic acid.
 - 84. (new) The condensation aerosol according to Claim 1, wherein the drug is fenoprofen.
 - 85. (new) The condensation aerosol according to Claim 1, wherein the drug is diflunisal.
- 86. (new) The condensation aerosol according to Claim 1, wherein the drug is tolfenamic acid.
 - 87. (new) The condensation aerosol according to Claim 1, wherein the drug is naproxen.
 - 88. (new) The condensation aerosol according to Claim 1, wherein the drug is ibuprofen.
 - 89. (new) The condensation aerosol according to Claim 1, wherein the drug is flurbiprofen.
 - 90. (new) The condensation aerosol according to Claim 1, wherein the drug is nabumetone.
- 91. (new) The method according to Claim 34, wherein the condensation aerosol is characterized by an MMAD of 0.2 to 5 microns.
- 92. (new) The method according to Claim 34, wherein the condensation aerosol is characterized by an MMAD of less than 3 microns.
- 93. (new) The method according to Claim 91, wherein the condensation aerosol is characterized by an MMAD of 0.2 to 3 microns.
- 94. (new) The method according to Claim 34, wherein the condensation aerosol is characterized by less than 5% drug ester degradation products by weight.
- 95. (new) The method according to Claim 94, wherein the condensation aerosol is characterized by less than 2.5% drug ester degradation products by weight.

- 96. (new) The method according to Claim 34, wherein the solid support is a metal foil.
- 97. (new) The method according to Claim 34, wherein the drug is indomethacin.
- 98. (new) The method according to Claim 34, wherein the drug is ketoprofen.
- 99. (new) The method according to Claim 34, wherein the drug is celcoxib.
- 100. (new) The method according to Claim 34, wherein the drug is rofecoxib.
- 101. (new) The method according to Claim 34, wherein the drug is meclofenamic acid.
- 102. (new) The method according to Claim 34, wherein the drug is fenoprofen.
- 103. (new) The method according to Claim 34, wherein the drug is diflunisal.
- 104. (new) The method according to Claim 34, wherein the drug is tolfenamic acid.
- 105. (new) The method according to Claim 34, wherein the drug is naproxen.
- 106. (new) The method according to Claim 34, wherein the drug is ibuprofen.
- 107. (new) The method according to Claim 34, wherein the drug is flurbiprofen.
- 108. (new) The method according to Claim 34, wherein the drug is nabumetone.
- 109. (new) A condensation aerosol for delivery of indomethacin, wherein the condensation aerosol is formed by heating a thin layer containing indomethacin, on a solid support, to produce a vapor of indomethacin, and condensing the vapor to form a condensation aerosol characterized by less than 5% indomethacin degradation products by weight, and an MMAD of 0.2 to 3 microns.
- 110. (new) A condensation aerosol for delivery of ketoprofen, wherein the condensation aerosol is formed by heating a thin layer containing ketoprofen, on a solid support, to produce a vapor of

ketoprofen, and condensing the vapor to form a condensation aerosol characterized by less than 5% ketoprofen degradation products by weight, and an MMAD of 0.2 to 3 microns.

- 111. (new) A condensation aerosol for delivery of celcoxib, wherein the condensation aerosol is formed by heating a thin layer containing celcoxib, on a solid support, to produce a vapor of celcoxib, and condensing the vapor to form a condensation aerosol characterized by less than 5% celcoxib degradation products by weight, and an MMAD of 0.2 to 3 microns.
- 112. (new) A condensation aerosol for delivery of rofecoxib, wherein the condensation aerosol is formed by heating a thin layer containing rofecoxib, on a solid support, to produce a vapor of rofecoxib, and condensing the vapor to form a condensation aerosol characterized by less than 5% rofecoxib degradation products by weight, and an MMAD of 0.2 to 3 microns.
- 113. (new) A condensation aerosol for delivery of meclofenamic acid, wherein the condensation aerosol is formed by heating a thin layer containing meclofenamic acid, on a solid support, to produce a vapor of meclofenamic acid, and condensing the vapor to form a condensation aerosol characterized by less than 5% meclofenamic acid degradation products by weight, and an MMAD of 0.2 to 3 microns.
- 114. (new) A condensation aerosol for delivery of fenoprofen, wherein the condensation aerosol is formed by heating a thin layer containing fenoprofen, on a solid support, to produce a vapor of fenoprofen, and condensing the vapor to form a condensation aerosol characterized by less than 5% fenoprofen degradation products by weight, and an MMAD of 0.2 to 3 microns.
- 115. (new) A condensation aerosol for delivery of diflunisal, wherein the condensation aerosol is formed by heating a thin layer containing diflunisal, on a solid support, to produce a vapor of diflunisal, and condensing the vapor to form a condensation aerosol characterized by less than 5% diflunisal degradation products by weight, and an MMAD of 0.2 to 3 microns.
- 116. (new) A condensation aerosol for delivery of tolfenamic acid, wherein the condensation aerosol is formed by heating a thin layer containing tolfenamic acid, on a solid support, to produce a vapor of tolfenamic acid, and condensing the vapor to form a condensation aerosol characterized by less than 5% tolfenamic acid degradation products by weight, and an MMAD of 0.2 to 3 microns.

- 117. (new) A condensation aerosol for delivery of naproxen, wherein the condensation aerosol is formed by heating a thin layer containing naproxen, on a solid support, to produce a vapor of naproxen, and condensing the vapor to form a condensation aerosol characterized by less than 5% naproxen degradation products by weight, and an MMAD of 0.2 to 3 microns.
- 118. (new) A condensation aerosol for delivery of ibuprofen, wherein the condensation aerosol is formed by heating a thin layer containing ibuprofen, on a solid support, to produce a vapor of ibuprofen, and condensing the vapor to form a condensation aerosol characterized by less than 5% ibuprofen degradation products by weight, and an MMAD of 0.2 to 3 microns.
- 119. (new) A condensation aerosol for delivery of flurbiprofen, wherein the condensation aerosol is formed by heating a thin layer containing flurbiprofen, on a solid support, to produce a vapor of flurbiprofen, and condensing the vapor to form a condensation aerosol characterized by less than 5% flurbiprofen degradation products by weight, and an MMAD of 0.2 to 3 microns.
- 120. (new) A condensation aerosol for delivery of nabumetone, wherein the condensation aerosol is formed by heating a thin layer containing nabumetone, on a solid support, to produce a vapor of nabumetone, and condensing the vapor to form a condensation aerosol characterized by less than 5% nabumetone degradation products by weight, and an MMAD of 0.2 to 3 microns.
 - 121. (new) A method of producing indomethacin in an aerosol form comprising:
- a. heating a thin layer containing indomethacin, on a solid support, to produce a vapor of indomethacin, and
- b. providing an air flow through the vapor to form a condensation aerosol characterized by less than 5% indomethacin degradation products by weight, and an MMAD of 0.2 to 3 microns.
 - 122. (new) A method of producing ketoprofen in an aerosol form comprising:
- a. heating a thin layer containing ketoprofen, on a solid support, to produce a vapor of ketoprofen, and
- b. providing an air flow through the vapor to form a condensation aerosol characterized by less than 5% ketoprofen degradation products by weight, and an MMAD of 0.2 to 3 microns.
 - 123. (new) A method of producing celcoxib in an aerosol form comprising:
 - a. heating a thin layer containing celcoxib, on a solid support, to produce a vapor of

celcoxib, and

- b. providing an air flow through the vapor to form a condensation aerosol characterized by less than 5% celcoxib degradation products by weight, and an MMAD of 0.2 to 3 microns.
 - 124. (new) A method of producing rofecoxib in an aerosol form comprising:
- a. heating a thin layer containing rofecoxib, on a solid support, to produce a vapor of rofecoxib, and
- b. providing an air flow through the vapor to form a condensation aerosol characterized by less than 5% rofecoxib degradation products by weight, and an MMAD of 0.2 to 3 microns.
 - 125. (new) A method of producing meclofenamic acid in an aerosol form comprising:
- a. heating a thin layer containing meclofenamic acid, on a solid support, to produce a vapor of meclofenamic acid, and
- b. providing an air flow through the vapor to form a condensation aerosol characterized by less than 5% meclofenamic acid degradation products by weight, and an MMAD of 0.2 to 3 microns.
 - 126. (new) A method of producing fenoprofen in an aerosol form comprising:
- a. heating a thin layer containing fenoprofen, on a solid support, to produce a vapor of fenoprofen, and
- b. providing an air flow through the vapor to form a condensation aerosol characterized by less than 5% fenoprofen degradation products by weight, and an MMAD of 0.2 to 3 microns.
 - 127. (new) A method of producing diflunisal in an aerosol form comprising:
- a. heating a thin layer containing diflunisal, on a solid support, to produce a vapor of diflunisal, and
- b. providing an air flow through the vapor to form a condensation aerosol characterized by less than 5% diffunisal degradation products by weight, and an MMAD of 0.2 to 3 microns.
 - 128. (new) A method of producing tolfenamic acid in an aerosol form comprising:
- a. heating a thin layer containing tolfenamic acid, on a solid support, to produce a vapor of tolfenamic acid, and
- b. providing an air flow through the vapor to form a condensation aerosol characterized by less than 5% tolfenamic acid degradation products by weight, and an MMAD of 0.2 to 3 microns.

- 129. (new) A method of producing naproxen in an aerosol form comprising:
- a. heating a thin layer containing naproxen, on a solid support, to produce a vapor of naproxen, and
- b. providing an air flow through the vapor to form a condensation aerosol characterized by less than 5% naproxen degradation products by weight, and an MMAD of 0.2 to 3 microns.
 - 130. (new) A method of producing ibuprofen in an aerosol form comprising:
- a. heating a thin layer containing ibuprofen, on a solid support, to produce a vapor of ibuprofen, and
- b. providing an air flow through the vapor to form a condensation aerosol characterized by less than 5% ibuprofen degradation products by weight, and an MMAD of 0.2 to 3 microns.
 - 131. (new) A method of producing flurbiprofen in an aerosol form comprising:
- a. heating a thin layer containing flurbiprofen, on a solid support, to produce a vapor of flurbiprofen, and
- b. providing an air flow through the vapor to form a condensation aerosol characterized by less than 5% flurbiprofen degradation products by weight, and an MMAD of 0.2 to 3 microns.
 - 132. (new) A method of producing nabumetone in an aerosol form comprising:
- a. heating a thin layer containing nabumetone, on a solid support, to produce a vapor of nabumetone, and
- b. providing an air flow through the vapor to form a condensation aerosol characterized by less than 5% nabumetone degradation products by weight, and an MMAD of 0.2 to 3 microns.