

Devoir surveillé n°10

07/05/24 – 3h – calculatrices interdites

La rédaction et le soin seront pris en compte dans l'évaluation.

Exercice 1 5 points

Les questions sont indépendantes les unes des autres.

- 1. Calculer $I = \int_1^e \frac{\sqrt{\ln x}}{x} dx$ en cherchant une primitive.
- 2. Calculer $K = \int_0^1 2t \arctan t dt$ à l'aide d'une intégration par parties.
- 3. Calculer $L = \int_0^4 \frac{1}{\sqrt{x+1}} dx$ à l'aide d'un changement de variable.
- 4. En utilisant une somme de Riemann, déterminer la limite lorsque n tend vers $+\infty$ de $\sum_{k=0}^{n-1} \frac{1}{n+k}.$

Exercice 2 4,5 points

On pose $I_n = \int_1^e (\ln x)^n dx$ pour tout entier naturel n.

- 1. Calculer I_0 et I_1 .
- 2. (a) Soient un réel $1 \le x \le e$ et un entier naturel n. Prouver que

$$0 \le (\ln x)^{n+1} \le (\ln x)^n.$$

- (b) En déduire que $(I_n)_{n \in \mathbb{N}}$ est décroissante et minorée.
- 3. (a) Établir que pour tout entier naturel $n: I_{n+1} = e (n+1)I_n$.
 - (b) Déterminer la limite de la suite $(I_n)_{n \in \mathbb{N}}$

Exercice 3 2 points

Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ l'application linéaire définie par

$$f(x, y, z) = (x - y, x + y - z).$$

- 1. Déterminer Ker(f).
- 2. En déduire la dimension de Im(f), puis Im(f).

Page 1/2

Exercice 4 4 points

Soit $g: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$, $P \mapsto P(X) + (1 - X)P'(X)$.

- 1. Prouver que g est linéaire.
- 2. (a) Soit $P(X) = aX^3 + bX^2 + cX + d$ un polynôme de $\mathbb{R}_3[X]$. Prouver que

$$g(P) = -2aX^{3} + (-b + 3a)X^{2} + 2bX + c + d.$$

- (b) Déterminer le noyau de g.
- 3. (a) Prouver que le rang de g est égal à 3.
 - (b) Calculer g(1), $g(X^2)$ et $g(X^3)$. En déduire une écriture de Im(g) sous la forme $Vect(\cdots)$.

Exercice 5 4,5 points

Dans l'espace $E = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$, on considère le sous-espace

$$H = \left\{ f \in E \mid \int_0^1 f(t) dt = 0 \right\}.$$

- 1. Démontrer que H est un sous-espace vectoriel de E.
- 2. Prouver que $u: H \to E$, $f \mapsto f'$ est une application linéaire.
- 3. (a) *H* contient-il des fonctions constantes? Si oui, lesquelles?
 - (b) Démontrer que u est injective.
- 4. (a) Déterminer une fonction f telle que u(f) = g, où g est la fonction $t \mapsto t^2$.
 - (b) (a) En vous inspirant du raisonnement de la question 4.(a), prouver que u est un isomorphisme.

Exercice 6 2 points

Soit E un espace vectoriel et soit $u \in \mathcal{L}(E)$ tel que $u^2 = u$.

1. Soit $x \in E$. En écrivant x = x - u(x) + u(x), prouver que

$$E = \text{Ker}(u) + \text{Im}(u)$$
.

2. Démontrer que la somme est directe dans la question précédente.