This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-188250

(43)Date of publication of application: 04.07.2000

(51)Int.CI.

H01L 21/027 G03F 7/26 H01L 21/02 H01L 23/12 H01L 21/68 H05K 1/02

(21)Application number: 10-362716

(71)Applicant:

OKI ELECTRIC IND CO LTD

(22)Date of filing:

21.12.1998

(72)Inventor:

MINAMI AKIYUKI

MACHIDA TETSUSHI

(54) RESIST MARKS, AND MANUFACTURE OF SEMICONDUCTOR DEVICE USING THE MARKS

PROBLEM TO BE SOLVED: To provide resist marks which can be less deformed under influences of thermal flow to provide an improved positioning accuracy, and also to provide a method for manufacturing a semiconductor device which uses such marks.

SOLUTION: An interlayer film, such as a silicon dioxide film 520, is formed on a base film such as a polysilicon film 510, having an opening acting as a base mark 510a. Resist marks 530 and 540 are formed on the interlayer film. The resist marks are made of first and second patterns 540 and 530 of predetermined-shaped frames. The second pattern is formed inside the first frame-as_spaced therefrom, and the width of the second pattern directed from its inner side to outer side is smaller than that of the first pattern. An absolute positional relationship between a resist pattern formed through light exposure and a water can be confirmed with the use of an overlap accuracy measuring apparatus for measuring shifts between the resist marks and a base mark 510.

LEGAL STATUS

[Date of request for examination]

25.02.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公別番号 特開2000-188250 (P2000-188250A)

(43)公開日 平成12年7月4日(2000.7.4)

(51) Int.Cl. ⁷		識別記号		FΙ				テーマコート*(参考)
H01L	21/027			H01L	21/30		502M	2H096
G03F	7/26	5 1 1		G03F	7/26		511	5 E 3 3 8
H01L	21/02			H01L	21/02			5 F O 3 1
	23/12				21/68		F	5 F O 4 6
// H01L	21/68			H05K	1/02		R	
			審査請求	有 請求	R項の数 15	OL	(全 8 頁)	最終頁に続く

(21)出願番号

特願平10-362716

(22)出願日

平成10年12月21日(1998.12.21)

(71)出願人 000000295

沖電気工業株式会社

東京都港区虎ノ門1丁目7番12号

(72)発明者 南 章行

東京都港区虎ノ門1丁目7番12号 沖電気

工業株式会社内

(72)発明者 町田 哲志

東京都港区虎ノ門1丁目7番12号 沖電気

工業株式会社内

(74)代理人 100089093

弁理士 大西 健治

最終買に続く

(54) 【発明の名称】 レジストマーク及びそれを用いた半導体装置の製造方法

(57)【要約】 (修正有)

【課題】サーマルフローの影響によるレジストマークの 変形を抑制し、位置合わせ精度の向上するレジストマー ク及びそれを用いた半導体装置の製造方法を提供する。

【解決手段】層間膜、例えば二酸化シリコン膜520が、 下地マーク510aとして働く開口部を有する下地膜、例え ばポリシリコン膜510の上に形成される。層間膜の上に は、レジストマーク530、540が形成されている。このレ 「ジストマークは、第1のパターン540と第2のパターン530 からなる。両パターンは、所定形状の枠からなる。第2 のパターンは、第1の枠の内側に離間して形成され、か. つ、内側から外側に向かう方向の幅が第1のパターンの 寸法より小さい。露光により形成されたレジストパター ンとウエハとの絶対的な位置関係の確認は、レジストマ ークと、下地マーク510とのずれ量を重ね合わせ精度測 定機により測定することにより行う。

【特許請求の範囲】

【請求項1】所定形状の第1の枠からなり、かつこの第1 の枠の内側から外側に向かう方向の幅が第1の寸法であ る第1のパターンと、

前記第1の枠の内側で前記第1のパターンから離間して形 成され、所定形状の第2の枠からなり、かつこの第2の枠 の内側から外側に向かう方向の幅が第1の寸法より小さ い第2の寸法からなる第2のパターンとからなることを特 徴とするレジストマーク。

【請求項2】前記第2の寸法が0. 3 μm~10 μmで あることを特徴とする請求項1記載のレジストマーク。

【請求項3】前記第1のパターンは、前記第2のパターン と少なくとも一部で接続されていることを特徴とする請 求項1記載のレジストマーク。

【請求項4】前記第1及び第2のパターンは、四角いリン グ状からなることを特徴とする請求項1記載のレジスト

【請求項5】前記第1及び第2のパターンは、前記四角い リング状の角部で接続されていることを特徴とする請求 項4記載のレジストマーク。

【請求項6】位置計測用マークを有する下地膜を準備す る工程と、

所定形状の第1の枠からなり、かつこの第1の枠の内側か ら外側に向かう方向の幅が第1の寸法である第1のパター ンと、前記第1の枠の内側で前記第1のパターンから離間 して形成され、所定形状の第2の枠からなり、かつこの 第2の枠の内側から外側に向かう方向の幅が第1の寸法よ り小さい第2の寸法からなる第2のパターンとからなるレ ジストマークを前記位置計測用マーク上方に形成する工 程と、

前記位置計測用マークと前記レジストマークとの相互位 置を計測する工程とを有することを特徴とする半導体装 置の製造方法。

【請求項7】前記第2の寸法が0. 3 μm~10 μmで あることを特徴とする請求項6記載の半導体装置の製造 方法。

【請求項8】前記第1のパターンは、前記第2のパターン と少なくとも一部で接続されていることを特徴とする請 求項6記載の半導体装置の製造方法。

【請求項9】前記第1及び第2のパターンは、四角いリン 40 グ状からなることを特徴とする請求項6記載の半導体装 置の製造方法。

【請求項10】前記第1及び第2のパターンは、前記四角 いリング状の角部で接続されていることを特徴とする請 求項9記載の半導体装置の製造方法。

【請求項11】下地膜を準備する工程と、

所定形状の第1の枠からなり、かつこの第1の枠の内側か ら外側に向かう方向の幅が第1の寸法である第1のパター ンと、前記第1の枠の内側で前記第1のパターンから離間 して形成され、所定形状の第2の枠からなり、かつこの

第2の枠の内側から外側に向かう方向の幅が第1の寸法よ り小さい第2の寸法からなる第2のパターンとからなるレ ジストマークを前記下地膜上に形成する工程と、

前記レジストマークを用いて前記下地膜をエッチングす る工程と、

エッチングされた前記下地膜を用いてウエハの位置を検 出する工程とを有することを特徴とする半導体装置の形

【請求項12】前記第2の寸法が0.3μm~10μm 10 であることを特徴とする請求項11記載のレジストマー ク。

【請求項13】前記第1のパターンは、前記第2のパター ンと少なくとも一部で接続されていることを特徴とする 請求項11記載のレジストマーク。

【請求項14】前記第1及び第2のパターンは、四角いり ング状からなることを特徴とする請求項11記載のレジ. ストマーク。

【請求項15】前記第1及び第2のパターンは、前記四角 いリング状の角部で接続されていることを特徴とする請 求項14記載の半導体装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体装置の製造 において、重ね合わせ精度測定のためのレジストマーク 及びそれを用いた半導体装置の製造方法に関する。

[0002]

【従来の技術】一般に、半導体集積回路装置のパターン 形成工程として、フォトリソグラフィ技術が用いられて いる。このフォトリソグラフィ技術は、ガラス基板上に 30 **| 露光光に対して遮光性を有するクロム等で集積回路パタ** ンを形成したフォトマスクを用いて、半導体基板(以) 下、ウエハと称す。)上に形成されたレジストを選択的 に露光及び感光させる。

【0003】次に、このレジストをアルカリ現像するこ とによって、集積回路パターンが転写されたレジストパ ターンを得ることができる。このレジストパターンの形 成過程において、ウエハとレジストパターンとの高精度 の位置合わせが必要不可欠となる。この位置合わせを行 うため、露光機においては、フォトマスク上に形成され たフォトマスクの位置計測マークと、ウエハ上に予め形 成されたウエハの位置計測マークとの相互の位置関係を 検知及び計測した後、露光を行う。この露光により形成 されたレジストパターンとウエハとの絶対的な位置関係 の確認は、集積回路パターンと同時に転写、形成された 重ね合わせ精度測定用のレジストマークと、ウエハ上に 予め形成されたウエハの位置計測マークとのずれ量を重 ね合わせ精度測定機により測定することにより行われ

【0004】図3は、ウエハの位置計測マークの形成工 50 程を説明するための断面工程図。

20

【0005】図4は、重ね合わせ精度測定用のレジスト マークの形成工程を説明するための断面工程図。これら 図3及び図4を用いて、ウエハの位置計測マーク及び重ね 合わせ精度測定用のレジストマークの形成工程を説明す る。

【0006】先ず、図3(a)及び図4(a)に示すように、例 えば、ポリシリコンの下地膜11を成膜したウエハ上にレ ジスト12を塗布した状態である。このレジスト12を露光 かつ、現像することにより、図3(b)及び図4(b)に示すウ エハの位置計測マークのレジストパターン13、及び重ね 10 合わせ精度測定用のレジストマーク13を得る。図3(c) は、レジストパターン13をエッチングマスクとして下地 膜を選択除去することにより得られた下地膜の段差構造 14を示し、図4(c)は、レジストパターン13をエッチング マスクとして下地膜を選択除去することにより得られた 下地マーク14を示す。図3(d)及び図4(d)は、ウエハ全面 のレジストを除去した後の状態を示す。図3(e)及び図4 (e)は、例えば酸化珪素15をウエハ全面に成膜した状態 を示しており、図3(f)及び図4(f)は、レジストを塗布し た状態を示している。図3(f)は、露光装置において使用 するウエハの位置計測用マークの最終的な断面構造図で ある。図4(g)は、レジスト16を露光及び現像をすること により得られた重ね合わせ精度測定用のレジストマーク の最終的な断面構造図である。

【0007】 露光装置におけるウエハの位置検出は、図 3(f)における下地膜の段差構造14のエッジ位置の検出を することにより行われる。同様に重ね合わせ精度測定 は、図4(g)における下地マーク14とレジストマーク17の エッジ位置の検出をすることにより行われる。ウエハの 位置検出マークと重ね合わせ精度測定マークの両マーク におけるエッジ位置の検出方法は同様であるので、重ね 合わせ精度測定マークのエッジ位置の検出方法を例に取 り、その説明を以下行う。

【0008】図5(a)は、重ね合わせ精度測定マーク100 の平面図であり、図5(b)は、図5(a)中のA-A'線に沿って 切った時の重ね合わせ精度測定マーク100の断面図であ る。図5(a)及び図5(b)は、下地マーク110が、膜厚の厚 い酸化珪素膜120に覆われており、その上にレジストマ -ク130が形成されている重ね合わせ精度測定マーク100 を示している。ここで、レジストマーク130の抜き領域 幅である寸法(a)は15μm~35μmであり、レジスト領 域の幅である寸法(b)は数10μmである。

【0009】図6(a)はCCDカメラ等により取り込まれ た重ね合わせ精度測定マーク100の画像データ200の説明 図である。エッジ位置の検出は、どの場所のエッジで行 っても同様であるため、画像データ200におけるレジス トマークのエッジ210のX-X'方向を例にとって説明す る。先ず、画像データ200をX-X 方向に沿った明暗強度 の波形信号へと変換する。図6(b)は、 X-X'方向に沿っ た明暗強度の波形信号211の説明図である。この波形信。

号211において極大、極小により挟まれた波形区間212を 設定し、波形信号髙さの半分となる位置213を求める。 この位置213がエッジ認識位置となる。

[0010]

【発明が解決しようとする課題】しかしながら、上述し た従来の半導体装置の製造方法では、レジストパターン の形成は、レジスト膜中に過剰に残留している有機溶媒 を飛ばすため、または高分子の架橋反応によりレジスト パターンを硬化させるために100℃を超える温度での 熱処理を行う必要がある。しかしながら、この熱処理を 行うことにより、サーマルフローと言われるレジストパ ターンのエッジ部の変形が起こる。このレジストパター ンのエッジ部の変形は、寸法の大きなレジストパター ン、つまり延在方向でのエッジ間の距離が長いレジスト パターンほど応力が大きいため顕著に起こる。ここで、 例えば、エッジ間の距離は、20m~30mである。

【0011】図7は重ね合わせ精度測定マークのサーマ ルフローによる影響を示す説明図であって、図7(a)は重 ね合わせ精度測定マーク300の上面からの説明図、図7 (b)は図7(a)をA-A '線に沿って切った断面図であ る。図7(a)及び図7(b)には、下地マーク310が、二酸化 珪素膜320により全面を覆われたウエハ (図示せず) に、レジストマーク330を形成した重ね合わせ精度測定 マークを示している。レジストマーク330のエッジ部 は、サーマルフローの影響により変形している。

【0012】図8は、レジストマーク330のエッジ位置の 検出におけるサーマルフローの影響を示す説明図であ る。図8(a)はCCDカメラなどにより取り込まれた重ね合 わせ精度測定マーク300の上面からの画像データ400の説 明図である。図8(b)は、画像データ400におけるレジス トマーク、紙面上左側のエッジ410のX-X'方向に沿った 明暗強度の波形信号411の説明図である。この波形信号4 11において極大、極小により挟まれた波形区間412を設 定し、波形信号高さの半分となる位置413を求めること により、レジストマーク330のエッジ位置を認識する。 位置413は変形したレジストマーク330のエッジ部の波形 信号411から算出されるため、もし、サーマルフローの 影響により変形したレジストマーク330のエッジ部を用 いて位置検出すれば、位置合わせ精度が下がることは言 うまでもない。

【0013】本発明は、上記問題を解決し、サーマルフ ローの影響によるレジストマークの変形を抑制し、位置 合わせ精度の向上するレジストマーク及びそれを用いた 半導体装置の製造方法を提供する。

【課題を解決するための手段】上記目的を達成するため に、本発明のレジストマークは、所定形状の第1の枠か らなり、かつこの第1の枠の内側から外側に向かう方向 の幅が第1の寸法である第1のパターンと、前記第1の枠 50 の内側で前記第1のパターンから離間して形成され、所

20

5

定形状の第2の枠からなり、かつこの第2の枠の内側から 外側に向かう方向の幅が第1の寸法より小さい第2の寸法 からなる第2のパターンとからなることを特徴とする。

【0015】本発明の半導体装置の製造方法は、位置計測用マークを有する下地膜を準備する工程と、所定形状の第1の枠からなり、かつこの第1の枠の内側から外側に向かう方向の幅が第1の寸法である第1のパターンと、前記第1の枠の内側で前記第1のパターンから離間して形成され、所定形状の第2の枠からなり、かつこの第2の枠の内側から外側に向かう方向の幅が第1の寸法より小さい第2の寸法からなる第2のパターンとからなるレジストマークを前記位置計測用マーク上方に形成する工程と、前記位置計測用マークと前記レジストマークとの相互位置を計測する工程とを有することを特徴とする。

【0016】さらに、本発明の半導体装置の製造方法は、下地膜を準備する工程と、所定形状の第1の枠からなり、かつこの第1の枠の内側から外側に向かう方向の幅が第1の寸法である第1のパターンと、前記第1の枠の内側で前記第1のパターンから離間して形成され、所定形状の第2の枠からなり、かつこの第2の枠の内側から外側に向かう方向の幅が第1の寸法より小さい第2の寸法からなる第2のパターンとからなるレジストマークを前記下地膜上に形成する工程と、前記レジストマークを用いて前記下地膜をエッチングする工程と、エッチングされた前記下地膜を用いてウエハの位置を検出する工程とを有することを特徴とする。

[0017]

【発明の実施の形態】以下、本発明の第1の実施形態について図面を参照しながら説明する。図1は本発明の第1の実施形態のレジストマークの説明に供する図であり、図1(a)は第1の実施形態の重ね合わせ精度測定マーク500の平面図であり、図1(b)は、図1(a)中のA-A'線に沿って切った時の第1の実施形態の重ね合わせ精度測定マーク500の断面図である。

【0018】図1(a) 及び図1(b) に示すように、層間膜、 例えば二酸化シリコン膜520が、下地マーク510aとして 働く開口部を有する下地膜、例えばポリシリコン膜510 の上に形成される。このポリシリコン膜520の上には、 レジストマーク530、540が形成されている。このレジス トマーク530、540は、第1のパターン540と第2のパター ン530からなる。 第1のパターン540は、所定形状の第1 の枠からなり、かつこの第1の枠の内側から外側に向か う方向の幅が第1の寸法である。第2のパターンは、第1 の枠の内側で第1のパターンから離間して形成され、所 定形状の第2の枠からなり、かつこの第2の枠の内側から 外側に向かう方向の幅が第1の寸法より小さい第2の寸法 からなる第2のパターンとからなる。ここで、第1の実施 形態では第1及び第2の枠を四角形状のものを用いる。こ こで、第1のパターン540の第1の寸法は20m~30mで、第2 のパターンの第2の寸法(図中、a)は0.3m ~10.0m、第 50 精度も向上する。

1及び第2のパターン間の寸法(図中、b)は0.3m~10.0mである。

【0019】露光により形成されたレジストパターンとウエハとの絶対的な位置関係の確認は、集積回路パターンと同時に転写、形成された重ね合わせ精度測定用のレジストマーク、つまり第1のパターン540と第2のパターン530からなるレジストマークと、ウエハ上に予め形成されたウエハの位置計測マーク、つまり下地膜に形成された下地マーク510とのずれ量を重ね合わせ精度測定機10により測定することにより行われる。 具体的には、重ね合わせ精度測定は、下地マーク510aと、第2のパターン530の内側の両エッジ位置を検出することによって行われる。

【0020】図1(c)、(d)は本発明の第1の実施形態の変形例のレジストマークの説明に供する図であり、図1(c)は第1の実施形態の変形例の重ね合わせ精度測定マーク500の平面図であり、図1(d)は、図1(c)中のA-A・線に沿って切った時の第1の実施形態の変形例の重ね合わせ精度測定マーク500の断面図である。

【0021】本発明の第1の実施形態の変形例のレジストマークは、第2のパターン530の枠内の二酸化シリコン膜520上に第3のパターン550を有することを特徴とする。本発明の第1の実施形態の変形例のレジストマークは、第3のパターン550を有するので、位置合わせ後のレジストパターンをマスクとするエッチング工程により、重ね合わせ精度測定マーク500部における不要な二酸化シリコン膜520のエッチングを防止することができる。

【0022】上述した本発明のレジストマーク530、540 は、第1のパターン540と第2のパターン530からなり、位 30 置検出の際には第2のパターン530のエッジを使用する。 サーマルフローによるエッジ部の変形は、レジストマー クのエッジ間、つまり幅の寸法に依存する。従って、こ の第2のパターン530は、サーマルフローの影響を受けな い程度の幅、例えば0.3m~10.0mに設定されているた め、エッジ部の変形が起きづらく、さらにマスクしたい 部分は、第2のパターン530から所定距離離れた所に形成 された、幅の広い第1のパターン540で二酸化シリコン膜 520が覆われているので、不要なエッチングが避けられ る。 このように、本発明のレジストマークは、サーマ 40 ルフローの影響によるレジストマークの変形を低減し、 かつ本来のレジストパターンのマスクとしての機能も保 持される。これによって位置合わせ精度が向上するレジ ストマーク530、540が得られる。また、本発明のレジス トマークを用いた半導体装置の製造方法は、上述したレ ジストマークを用いて行われるため、半導体製造工程全 体における位置合わせ精度を向上することができ、これ に伴ない、歩留まりを向上させることが可能になる。ま た、このレジストマークを用いて下地膜に形成される位 置計測マークも精度良く、形成されるため、位置計測の 7

【0023】以下、本発明の第2の実施形態について図面を参照しながら説明する。図2は本発明の第2の実施形態のレジストマークの説明に供する図であり、図2(a)は第2の実施形態の重ね合わせ精度測定マーク600の平面図であり、図2(b)は、図2(a)中のA-A 線に沿って切った時の第2の実施形態の重ね合わせ精度測定マーク600の断面図である。

【0024】図2(a)及び図2(b)に示すように、層間膜、例えば二酸化シリコン膜620が、下地マーク610aとして働く開口部を有する下地膜、例えばポリシリコン膜610の上に形成される。この二酸化シリコン膜620の上には、レジストマーク630、640が形成されている。

【0025】本発明の第2の実施形態のレジストマークは、レジストマークを構成する第1のパターン640と第2のパターン630を各枠の隅で接続した構成660を特徴とする。

【0026】露光により形成されたレジストパターンとウエハとの絶対的な位置関係の確認は、集積回路パターンと同時に転写、形成された重ね合わせ精度測定用のレジストマーク、つまり第1のパターン640と第2のパターン630からなるレジストマークと、ウエハ上に予め形成されたウエハの位置計測マーク、つまり下地膜に形成された下地マーク610aとのずれ量を重ね合わせ精度測定機により測定することにより行われる。 具体的には、重ね合わせ精度測定は、下地マーク610aと、第2のパターン630の内側の両エッジ位置を検出することによって行われる。

【0027】本発明の第2の実施形態の変形例のレジストマークは、第2のパターン630の枠内の二酸化シリコン膜上に第3のパターン650を有することを特徴とする。本発明の第2の実施形態の変形例のレジストマークは、第3のパターン650を有するので、位置合わせ後のレジストパターンをマスクとするエッチング工程により、重ね合わせ精度測定マーク600部における不要な二酸化シリコン膜のエッチングを防止することができる。

【0028】上述した本発明のレジストマーク630、640 は、第1のパターン640と第2のパターン630からなり、位置検出の際には第2のパターン630のエッジを使用する。サーマルフローによるエッジ部の変形は、レジストマークのエッジ間、つまり幅の寸法に依存する。従って、こ 40の第2のパターン630は、サーマルフローの影響を受けない程度の幅、例えば0.3m~10.0mに設定されているため、エッジ部の変形が起きづらく、さらにマスクしたい部分は、第2のパターン630から所定距離離れた所に形成された、幅の広い第1のパターン640で二酸化シリコン膜620が複われているので、不要なエッチングが避けられる。このように、本発明のレジストマークは、サーマルフローの影響によるレジストマークの変形を低減し、かつ本来のレジストパターンのマスクとしての機能も保持される。これによって位置合わせ精度が向上するレジス50

トマーク630、640が得られる。

【0029】また、本発明の第2の実施形態のレジストマークは、レジストマークを構成する第1のパターン640と第2のパターン630を各枠の隅で接続した構成660であるため、第2のパターン630が、二酸化シリコン膜620から剥がれる、つまり膜剥がれの問題を防止することができる。また、本発明のレジストマークを用いた半導体装置の製造方法は、上述したレジストマークを用いて行われるため、半導体製造工程全体における位置合わせ精度を向上することができ、これに伴ない、歩留まりを向上させることが可能になる。また、このレジストマークを用いて下地膜に形成される位置計測マークも精度良く、形成されるため、位置計測の精度も向上する。

[0030]

【発明の効果】本発明のレジストマークは、サーマルフローの影響によるレジストマークの変形を低減し、かつ本来のレジストパターンのマスクとしての機能も保持される。これによって位置合わせ精度が向上するレジストマークを用いた半導体装置の製造方法は、上述したレジストマークを用いて行われるため、半導体製造工程全体における位置合わせ精度を向上することができ、これに伴ない、歩留まりを向上させることが可能になる。また、このレジストマークを用いて下地膜に形成される位置計測マークも精度良く、形成されるため、位置計測の精度も向上する。

【図面の簡単な説明】

【図1】図1(a)は第1の実施形態の重ね合わせ精度測定マークの平面図であり、図1(b)は、図1(a)中のA-A線に沿って切った時の第1の実施形態の重ね合わせ精度測定マークの断面図である。

【図2】図2(a)は第2の実施形態の重ね合わせ精度測定マークの平面図であり、図2(b)は、図2(a)中のA一A、線に沿って切った時の第2の実施形態の重ね合わせ精度測定マークの断面図である。

【図3】図3は、ウエハの位置計測マークの形成工程を 説明するための断面工程図。

【図4】図4は、重ね合わせ精度測定用のレジストマークの形成工程を説明するための断面工程図。

) 【図5】図5(a)は、重ね合わせ精度測定マークの平面図であり、図5(b)は、図5(a)中のA-A'線に沿って切った時の重ね合わせ精度測定マークの断面図である。

【図6】図6(a)はCCDカメラ等により取り込まれた重ね合わせ精度測定マークの画像データの説明図である。図6(b)は、X-X'方向に沿った明暗強度の波形信号の説明図である。

【図7】図7(a)は重ね合わせ精度測定マーク300の上面からの説明図、図7(b)は図7(a)をA-A 線に沿って切った断面図である。

【図8】図8は、レジストマークのエッジ位置の検出に

おけるサーマルフローの影響を示す説明図である。図8 (a)はCCDカメラなどにより取り込まれた重ね合わせ精度 測定マークの上面からの画像データの説明図である。図8(b)は、画像データにおけるレジストマーク、紙面上左側のエッジのX-X'方向に沿った明暗強度の波形信号の説明図である。

【符号の説明】

【図1】

500: 重ね合わせ精度測定マーク500

510:ポリシリコン膜510 510a:下地マーク510a 520:二酸化シリコン膜520

530:第2のパターン530 (レジストマーク) 540:第1のパターン540 (レジストマーク)

【図2】

[図8]

フロントページの続き

H05K 1/02

(51) Int. C1. 7

識別記号

4231111 3

HO1L 23/12

FΙ

テーマコード(参考)

Z

Fターム(参考) 2H096 AA25 LA16

5E338 AA18 DD11 DD16 DD32 EE44

5F031 CA02 JA38

5F046 AA25 EA04 EA12 EA15 EA18

EB01 EC05 FA17 FC03