Alex Psomas: Lecture 18.

Random Variables: Variance

- 1. Variance
- 2. Distributions

Variance

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let Y be the RV indicating how much money you make. E(Y) = 0.

Any other measures???
What else that's informative

What else that's informative can we say?

Variance

The variance measures the deviation from the mean value.

Definition: The variance of *X* is

$$\sigma^2(X) := var[X] = E[(X - E[X])^2].$$

 $\sigma(X)$ is called the standard deviation of X.

Variance and Standard Deviation

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

Indeed:

$$var(X) = E[(X - E[X])^2]$$

= $E[X^2 - 2XE[X] + E[X]^2]$
= $E[X^2] - E[2XE[X]] + E[E[X]^2]$ by linearity
= $E[X^2] - 2E[X]E[X] + E[X]^2$,
= $E[X^2] - E[X]^2$.

Example

Consider X with

$$X = \begin{cases} -1, & \text{w. p. } 0.99 \\ 99, & \text{w. p. } 0.01. \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$

 $E[X^2] = (-1)^2 \times 0.99 + (99)^2 \times 0.01 \approx 100.$
 $Var(X) \approx 100 \Longrightarrow \sigma(X) \approx 10.$

A simple example

This example illustrates the term 'standard deviation.'

Consider the random variable X such that

$$X = \begin{cases} \mu - \sigma, & \text{w.p. } 1/2\\ \mu + \sigma, & \text{w.p. } 1/2. \end{cases}$$

Then, $E[X] = \mu$ and $E[(X - E[X])^2] = \sigma^2$. Hence,

$$var(X) = \sigma^2$$
 and $\sigma(X) = \sigma$.

Properties of variance.

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

Proof:

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

$$= E((X+c-E(X)-c)^{2})$$

$$= E((X-E(X))^{2}) = Var(X)$$

Variance of sum of two independent random variables

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$Var(X) = E(X^2), Var(Y) = E(Y^2).$$

Hence,

$$var(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$
= $var(X) + var(Y)$.

Variance of sum of independent random variables

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

Hence,

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^{2})$$

$$= E(X^{2} + Y^{2} + Z^{2} + \cdots + 2XY + 2XZ + 2YZ + \cdots)$$

$$= E(X^{2}) + E(Y^{2}) + E(Z^{2}) + \cdots + 0 + \cdots + 0$$

$$= var(X) + var(Y) + var(Z) + \cdots$$

Distributions

- Bernoulli
- Binomial
- Uniform
- Geometric

Bernoulli

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

Distribution:

$$X = \begin{cases} 1 & \text{w.p. } p \\ 0 & \text{w.p. } 1 - p \end{cases}$$
$$E[X] = p$$

$$E[X^2] = 1^2 \times p + 0^2 \times (1 - p) = p$$

$$Var[X] = E[X^2] - (E[X])^2 = p - p^2 = p(1-p)$$

Notice that:

$$p = 0 \implies Var(X) = 0$$

 $p = 1 \implies Var(X) = 0$

Jacob Bernoulli

Binomial

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

How many sample points in event "X = i"? i heads out of n coin flips $\implies \binom{n}{i}$

Sample space: $\Omega = \{\textit{HHH}...\textit{HH}, \textit{HHH}...\textit{HT}, \ldots\}$

What is the probability of ω if ω has i heads?

Probability of heads in any position is p.

Probability of tails in any position is (1 - p).

So, we get $Pr[\omega] = \rho^{i}(1-\rho)^{n-i}$.

Probability of "X = i" is sum of $Pr[\omega]$, $\omega \in "X = i$ ".

$$Pr[X = i] = \binom{n}{i} p^i (1-p)^{n-i}, i = 0, 1, \dots, n : B(n, p)$$
 distribution

Expectation of Binomial Distribution

Indicator for the *i*-th coin:

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover $X = X_1 + \cdots X_n$ and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

Variance of Binomial Distribution.

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } \emph{i} ext{th flip is heads} \ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

 $Var(X_i) = p - (E(X_i))^2 = p - p^2 = p(1 - p).$

$$X=X_1+X_2+\ldots X_n.$$

 X_i and X_j are independent: $Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1]$.

$$Var(X) = Var(X_1 + \cdots X_n) = np(1-p).$$

Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1,2,\ldots,n\}$ if Pr[X=m]=1/n for $m=1,2,\ldots,n$. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n} = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Variance of Uniform

$$E[X]=\frac{n+1}{2}.$$

Also,

$$E[X^{2}] = \sum_{i=1}^{n} i^{2} Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^{2}$$
$$= \frac{1 + 3n + 2n^{2}}{6}, \text{ as you can verify.}$$

This gives

$$var(X) = \frac{1+3n+2n^2}{6} - \frac{(n+1)^2}{4} = \frac{n^2-1}{12}.$$

Geometric Distribution

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$. Also,

$$Pr[X = n] = (1 - p)^{n-1}p, \ n \ge 1.$$

Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X=n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^{n}.$$

We want to analyze $S := \sum_{n=0}^{\infty} a^n$ for |a| < 1. $S = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1-a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} Pr[X=n] = p \, \frac{1}{1-(1-p)} = 1.$$

Geometric Distribution: Expectation

$$X \sim Geom(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p$, $n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p + 2(1-p)p + 3(1-p)^{2}p + 4(1-p)^{3}p + \cdots$$

$$(1-p)E[X] = (1-p)p + 2(1-p)^{2}p + 3(1-p)^{3}p + \cdots$$

$$pE[X] = p + (1-p)p + (1-p)^{2}p + (1-p)^{3}p + \cdots$$
by subtracting the previous two identities

$$= \sum_{n=1}^{\infty} (1-p)^{n-1}p = \sum_{n=1}^{\infty} Pr[X=n] = 1.$$

Hence,

$$E[X] = \frac{1}{p}$$
.

Coupon Collectors Problem.

Experiment: Get coupons at random from *n* until collect all *n* coupons.

Outcomes: {123145...,56765...}

Random Variable: *X* - length of outcome.

Before: $Pr[X \ge n \ln 2n] \le \frac{1}{2}$.

Today: E[X]?

Time to collect coupons

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second (distinct) coupon after getting first.

 $Pr["get second distinct coupon"]"got first coupon"] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

Pr["getting ith distinct coupon|"got i - 1 distinct coupons"]

$$=\frac{n-(i-1)}{n}=\frac{n-i+1}{n}$$

$$E[X_i] = \frac{1}{n} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)$$

Review: Harmonic sum

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

.

A good approximation is

 $H(n) \approx \ln(n) + \gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend H(n) to the right of the table. As n increases, you can go as far as you want!

Stacking

The cards have width 2. Induction shows that the center of gravity after n cards is H(n) away from the right-most edge.

Geometric Distribution: Memoryless

Let *X* be Geom(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n + m}}{(1 - p)^n} = (1 - p)^m$$

$$= Pr[X > m].$$

Geometric Distribution: Memoryless - Interpretation

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

The coin is memoryless, therefore, so is X.

Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

[See later for a proof.]

If X = Geom(p), then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1-p)^{i-1} = \sum_{i=0}^{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{p}.$$

A side step: Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i (Pr[X \ge i] - Pr[X \ge i + 1])$$

$$= \sum_{i=1}^{\infty} (i \times Pr[X \ge i] - i \times Pr[X \ge i + 1])$$

$$= \sum_{i=1}^{\infty} i \times Pr[X \ge i] - \sum_{i=1}^{\infty} i \times Pr[X \ge i + 1]$$

$$= \sum_{i=1}^{\infty} i \times Pr[X \ge i] - \sum_{i=1}^{\infty} (i - 1) \times Pr[X \ge i] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

Theorem: For a r.v. X that takes values in $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \ge 1$. Recall E[X] = 1/p.

$$E[X^{2}] = p+4p(1-p)+9p(1-p)^{2}+...$$

$$-(1-p)E[X^{2}] = -[p(1-p)+4p(1-p)^{2}+...]$$

$$pE[X^{2}] = p+3p(1-p)+5p(1-p)^{2}+...$$

$$= 2(p+2p(1-p)+3p(1-p)^{2}+...) E[X]!$$

$$-(p+p(1-p)+p(1-p)^{2}+...) 1.$$

$$pE[X^{2}] = 2E[X]-1$$

$$= 2(\frac{1}{p})-1 = \frac{2-p}{p}$$

$$\implies E[X^{2}] = (2 - p)/p^{2} \text{ and} var[X] = E[X^{2}] - E[X]^{2} = \frac{2 - p}{p^{2}} - \frac{1}{p^{2}} = \frac{1 - p}{p^{2}}. \sigma(X) = \frac{\sqrt{1 - p}}{p} \approx E[X] \text{ when } p \text{ is small(ish)}.$$

Review: Distributions

```
▶ Bern(p) : Pr[X = 1] = p;
  E[X] = p:
  Var[X] = p(1-p);
► Bin(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0, ..., n;
  E[X] = np;
  Var[X] = np(1-p);
```

►
$$U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$$

 $E[X] = \frac{n+1}{2};$

$$E[X] = \frac{n^2 - 1}{2},$$

$$Var[X] = \frac{n^2 - 1}{12};$$

►
$$Geom(p) : Pr[X = n] = (1 - p)^{n-1}p, n = 1, 2, ...;$$

 $E[X] = \frac{1}{p};$
 $Var[X] = \frac{1-p}{p^2};$

Today's gig: Two envelopes problem.

Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox.
- 5. Simpson's paradox.

Today: Two envelopes problem.

Two envelopes

I put x dollars in an envelope, and 2x dollars in another envelope, and seal both envelopes.

You pick one at random (you don't know which is which).

Before you open it you think: What will happen if I switch?

Well, if I picked the one I picked has y dollars, then the other either 2y or $\frac{y}{2}$.

In the first case, I win y. In the second case, I lose $\frac{y}{2}$.

Therefore, in expectation, my net gain is: $\frac{1}{2}y - \frac{1}{2}\frac{y}{2} = \frac{y}{2}$.

Therefore, I should switch.

Before you open the new envelope you think: What will happen if I switch?

Summary

Random Variables

- Variance.
- Distributions.