Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Лабораторная работа № 1

по дисциплине

«Математические модели»

Выполнил: Ферапонтов М.В. Группа: гр. 3530904/01004

Проверил: Дед Пихто

Содержание

1	Вступление	2
	1.1 Постановка задачи	2
	1.2 Используемое ПО	2
2	Основная часть	3
	2.1 Интегро-интеполяционный метод (метод баланса)	3
	2.2 Метод прогонки	
3	Заключение	7
	3.1 Вывод	7
	3.2 Кол	7

1 Вступление

1.1 Постановка задачи

Вариант СР. Используя интегро-интерполяционный метод (метод баланса), разработать программу для моделирования стационарного распределения температуры в полом цилиндре, описываемого математической моделью вида:

$$\left[\frac{1}{r}\frac{d}{dr}\left(rk(r)\frac{du}{dr}\right) - q(r)u\right] = f(r), \ r \in [R_L, \ R_R], \ R_L > 0,$$

$$0 < c_1 \le k(r) \le c_2, \ 0 \le q(r)$$

Граничные условия:

$$k \left. \frac{du}{dt} \right|_{r=R_L} = -\nu_1 \qquad -k \left. \frac{du}{dt} \right|_{r=R_R} = -\nu_2$$

1.2 Используемое ПО

1. Boost library - библиотека для тестирования и других функций

2 Основная часть

2.1 Интегро-интеполяционный метод (метод баланса)

Введем основную сетку, где N - число разбиений.

$$r_0 < r_1 < \dots < r_N, \ r_i \in [R_L, R_R], \ r_0 = R_L, \ r_N = R_R$$

$$h_i = r_i - r_{i-1}, \ i = 1, 2, \dots, N$$

$$r_{r-0.5} = \frac{r_i - r_{i-1}}{2}, \ i = 1, 2, \dots, N$$

Введем дополнительную сетку:

$$\hbar_i = \begin{cases} \frac{h_i + 1}{2}, & i = 0\\ \frac{h_i + h_{i+1}}{2}, & i = 1, 2, \dots, N - 1\\ \frac{h_i}{2}, & i = N \end{cases}$$

Проведем аппроксимацию начального уравнения. Для $\mathbf{i} = \mathbf{0}$

$$-\int_{r_{i}}^{r_{i+0.5}} \left[\frac{d}{dr} \left(rk(r) \frac{du(r)}{dr} \right) - rq(r)u(r) \right] dr = \int_{r_{i}}^{r_{i+0.5}} rf(r) dr,$$

$$-\left[rk(r) \left. \frac{du(r)}{dr} \right|_{r=r_{i+0.5}} - rk(r) \left. \frac{du(r)}{dr} \right|_{r_{i}} - \int_{r_{i}}^{r_{i+0.5}} rq(r)u(r) dr \right] = \int_{r_{i}}^{r_{i+0.5}} rf(r) dr,$$

Формула центральных разностей:

$$\frac{du(r)}{dr}|_{r=r_{i+0.5}} \approx \frac{v_{i+1} - v_i}{h_{i+1}},$$

Граничное условие:

$$k(r) \left. \frac{du(r)}{dr} \right|_{r=R_r} = -\nu_1,$$

Формула левых прямоугольников:

$$\int_{r_i}^{r_{r+0.5}} r\varphi_i \, dr = \hbar_i r_i \varphi_i$$

Получаем разностную схему для i = 0:

$$-\left[r_{i+0.5} \cdot k_{i+0.5} \frac{v_{i+1} - v_i}{h_{i+1}} - r_i \cdot (-\nu_1) - \hbar r_i q_i v_i\right] = \hbar_i r_i f_i$$

Для i = 1, 2, ..., N-1

$$-\int_{r_{i-0.5}}^{r_{i+0.5}} \left[\frac{d}{dr} \left(rk(r) \frac{du(r)}{dr} \right) - rq(r)u(r) \right] dr = \int_{r_{i-0.5}}^{r_{i+0.5}} rf(r) dr,$$

$$-\left[rk(r)\frac{du(r)}{dr}\Big|_{r=r_{i+0.5}} - rk(r)\frac{du(r)}{dr}\Big|_{r_{i-0.5}} - \int_{r_{i-0.5}}^{r_{i+0.5}} rq(r)u(r) dr\right] = \int_{r_{i-0.5}}^{r_{i+0.5}} rf(r) dr,$$

$$\frac{du(r)}{dr}\Big|_{r=r_{i-0.5}} \approx \frac{v_i - v_{i-1}}{h_i}$$

$$\int_{r_{i-0.5}}^{r_{r+0.5}} r\varphi_i dr = \hbar_i r_i \varphi_i$$

Получаем разностную схему для $i=1,\,2,\,\ldots,\,N-1$:

$$-\left[r_{i+0.5} \cdot k_{i+0.5} \frac{v_{i+1} - v_i}{h_{i+1}} - r_{i-0.5} k_{i-0.5} \frac{v_i - v_{i-1}}{h_i} - \hbar r_i q_i v_i\right] = \hbar_i r_i f_i$$

Для i = N:

$$-\int_{r_{i-0.5}}^{r_i} \left[\frac{d}{dr} \left(rk(r) \frac{du(r)}{dr} \right) - rq(r)u(r) \right] dr = \int_{r_{i-0.5}}^{r_i} rf(r) dr,$$

$$-\left[rk(r) \left. \frac{du(r)}{dr} \right|_{r=r_i} - rk(r) \left. \frac{du(r)}{dr} \right|_{r_{i-0.5}} - \int_{r_{i-0.5}}^{r_i} rq(r)u(r) dr \right] = \int_{r_{i-0.5}}^{r_i} rf(r) dr,$$

$$\frac{du(r)}{dr} \Big|_{r=r_{i-0.5}} \approx \frac{v_i - v_{i-1}}{h_i},$$

$$-k(r) \left. \frac{du(r)}{dr} \right|_{r=R_R} = -\nu_2$$

$$\int_{r_{i-0.5}}^{r_i} r\varphi(r) dr \approx \hbar_i r_i \varphi_i$$

Получаем разностную схему для i=N:

$$-\left[-r_i \cdot (-\nu_2) - r_{i-0.5}k_{i-0.5} \cdot \frac{v_i - v_{i-1}}{h_i} - \hbar_i r_i q_i u_i\right] = \hbar_i r_i f_i$$

После аппроксимации уравнения можно представить в виде системы из трёхдиагональной матрицы где $a,\,c,\,b$ - диагонали матрица A и вектора g. Элементы матрицы: Для i=0

$$c_{i} = r_{i+0.5} \frac{k_{i+0.5}}{h_{i+1}} + h_{i} r_{i} q_{i}$$

$$b_{i} = -r_{i+0.5} \cdot \frac{k_{i+0.5}}{h_{i+1}}$$

$$g_{i} = h_{i} r_{i} f_{i} + r(-\nu_{1})$$

Для i = 1, 2, ..., N-1

$$a_{i} = -r_{i-0.5} \frac{k_{i-0.5}}{h_{i}}$$

$$c_{i} = r_{i-0.5} \frac{k_{i-0.5}}{h_{i}} + r_{i+0.5} \frac{k_{i+0.5}}{h_{i+1}} + h_{i} r_{i} q_{i}$$

$$b_{i} = -r_{i+0.5} \frac{k_{i+0.5}}{h_{i+1}}$$

$$g_{i} = h_{i} r_{i} f_{i}$$

Для i = N:

$$a_{i} = -r_{i-0.5} \frac{k_{i-0.5}}{h_{i}}$$

$$c_{i} = r_{i-0.5} \frac{k_{i-0.5}}{h_{i}} + h_{i}r_{i}q_{i}$$

$$q_{i} = h_{i}r_{i}f_{i} + r_{i} \cdot (-\nu_{2})$$

2.2 Метод прогонки

Метод прогонки это простой способ решать трёхдиагональные системы.

Этап 1

Строка 1. Разделим первую строку на c_1 :

$$c_1 x_1 + b_1 x_2 = g_1$$

 $x_1 + \gamma_1 x_2 = \rho_1, \ \gamma_1 = \frac{b_1}{c_1}, \ \rho_1 = \frac{g_1}{c_1}$

Строки от 2 до N-1. Здесь представлена общая формула для всех строк в промежутке

$$a_n x_{n-1} + c_n x_n + b_n x_{n+1} = g_n, \ n = 2, 3, \dots, N - 1$$

Умножим n-1 строку на a_n и вычтем из строки под номером n. Получим строку

$$(c_n - a_n \cdot \gamma_{n-1})x_n + c_n x_{n+1} = g_n - a_n \rho_{n-1}$$

Разделим на $(c_n - a_n \cdot \gamma_{n-1})$

$$x_n + \frac{b_n}{c_n - a_n \gamma_{n-1}} x_{n+1} = \frac{g_n - a_n \rho_{n-1}}{c_n - a_n \gamma_{n-1}}$$

$$x_n + \frac{\gamma_n x_{n+1}}{c_n - a_n \gamma_{n-1}}, \ \rho_n = \frac{g_n - a_n \rho_{n-1}}{c_n - a_n \gamma_{n-1}},$$

Строка N.

$$a_n x_{n-1} + c_n x_n = g_n$$

 $x_n = \rho_n, \ \rho_n = \frac{r_n - a_n \rho_{n-1}}{c_n - a_n \gamma_{n-1}}$

Этап 2

Чтобы узнать значения вектора х нам нужно "подняться" по уже вычисленным значеням.

$$x_n = \rho_n$$

 $x_i = \rho_i - \gamma_i x_{i+1}, i = n - 1, n - 2, \dots, 1$

- 3 Заключение
- 3.1 Вывод
- 3.2 Код

/* tma.hpp */