Hackathon Project Phases

Project Title:

Shikshak Mahoday: Palm-Powered Data Science Tutor.

Team Name:

DataGuru

Team Members:

- M.Laxmi Namitha
- G.Navya Sree
- A.Sai Tejasri
- K.Girija Sanjana Rani

Phase-1: Brainstorming & Ideation

Objective:

Develop an Al-based personalization expert tool using the application of Google's PaLM (Pathways Language Model) to help users to explore an adaptive learning pathways and interactive engagement to reinforce learning through feedback and follow-up questions.

Key Points:

1. Problem Statement:

 Many users struggle to explore themselves to new technologies, up-to-date information about emerging courses and doesn't have proper idea of how to start the learning path of those trending technologies. Users also need guidance on how to start their learning journey and clarify their doubts during their journey. Users provide the topic area where they have doubt such that we analyse their understanding level and provide a text or video solution for that.

2. Proposed Solution:

- Shikshak Mahoday aims to revolutionize learning in data science using a
 personalized, adaptive learning process. With the application of **Google's PaLM**, it
 dynamically adjusts learning streams based on learner input and progression,
 making learning relevant yet challenging.
- The platform also leverages up-to-the-minute arXiv and Google Scholar research, keeping learners up to date on current industry trends. Interactive simulations and AR-based data visualizations give a more tangible learning experience to abstract concepts.

3. Target Users:

- Students & Aspiring Data Scientists.
- Working Professionals & Researchers.
- Educators & Institutions.

4. Expected Outcome:

 A functional Al-powered Shikshak Mahoday app that provides lessons based on real-time solution in the form of texts and video lectures to the user queries.

Phase-2: Requirement Analysis

Objective:

Define the technical and functional requirements for the Shikshak Mahoday App.

Key Points:

1. Technical Requirements:

Programming Language: Python

Backend: JavaScript (Node.js with Express) OR Python (Django)

o Frontend: Streamlit Web Framework

Database: SQL (PostgreSQL) + NoSQL (MongoDB)

2. Functional Requirements:

User authentication (OAuth 2.0, JWT-based login).

- Display latest research in data science, generate learning topic and voice interactions(coverting speech to text) in an intuitive UI.
- Provide real-time learning tips based on doubts of users.
- Allow users to search their queries on the lectures.

3. Constraints & Challenges:

- Ensuring Al accuracy, seamless research integration, and handling high computational demands.
- Overcoming resistance to Al-based learning, accessibility issues, and device/internet limitations.
- Providing a smooth UI experience with Streamlit.

Phase-3: Project Design

Objective:

Develop the architecture and user flow of the application.

Key Points:

1. System Architecture:

- User enters data science related query via UI.
- Query is processed using Google's PaLM.
- Al model fetches and processes the data.
- The frontend displays the text and audio lecture of the user queries.

2. User Flow:

- Step 1: User enters a query.
- Step 2: The backend calls the Google's PaLM to retrieve the data.

 Step 3: The app processes the data and displays results in an easy-to-read format.

3. UI/UX Considerations:

- o Minimalist, user-friendly interface for seamless navigation.
- Filters for level of difficulty of doubts.
- o **Dark & light mode** for better user experience.

Phase-4: Project Planning (Agile Methodologies)

Objective:

Break down development tasks for efficient completion.

Sprint	Task	Priority	Duration	Deadline	Assigned To	Dependencies	Expected Outcome
Sprint 1	Environment Setup & API Integration	High	6 hours (Day 1)	End of Day	Sanjana	Google API Key, Python, Streamlit setup	API connection established & working
Sprint 1	Basic UI Development	Medium	2 hours (Day 1)	End of Day 1	Member 2	Wireframe design finalized	Basic learning dashboard ready
Sprint 2	Adaptive Learning Engine	High	3 hours (Day 2)	Mid-Day 2	Sai Tejasri	Google PaLM API, User Progress Data	Dynamic content recommendations
Sprint 2	Research Integration (arXiv & Scholar)	High	1.5 hours (Day 2)	Mid-Day 2	Member 1&4	API Access, Parsing Scripts	Real-time research updates visible
Sprint 3	AR & Interactive Simulations	Medium	1.5 hours (Day 2)	Mid-Day 2	Laxmi Namitha	3D Model Assets, AR Framework	Immersive learning modules
Sprint 4	Final Presentation & Deployment	• Low	2 hour (Day 2)	End of Day 2	Entire Team	Working prototype,hosting setup	Demo-ready project

Sprint Planning with Priorities

Sprint 1 – Setup & Integration (Day 1)

- High Priority: Set up the environment & install dependencies.
- High Priority: Integrate Google PaLM API for adaptive learning.
- Medium Priority: Develop a basic UI with user authentication & dashboard.

Sprint 2 – Core Features & Debugging (Day 2)

- High Priority: Implement adaptive learning streams based on user progress.
- High Priority: Integrate real-time research updates from arXiv & Google Scholar.
- High Priority: Debug API issues & improve system response time.

Sprint 3 – Enhancements & Immersive Learning (Day 2)

- Medium Priority: Implement AR-based data visualizations & interactive simulations.
- Medium Priority: Integrate sentiment analysis for emotional adaptation in learning.
- Low Priority: Enhance peer collaboration tools & mentorship simulation.

Sprint 4 – Testing, Refinements & Deployment (Day 2)

- Medium Priority: Test Al-generated learning pathways, Ul responsiveness & bug fixes.
- Low Priority: Final demo preparation, documentation, and deployment.

Phase-5: Project Development

Objective:

Implement core features of the Shikshak Mahoday App.

Key Points:

1. Technology Stack Used:

• Frontend: Streamlit

Backend: JavaScript (Node.js with Express) OR Python (Django)

o **Programming Language:** Python

2. **Development Process:**

Implement API key authentication and Google's PaLM.

Develop solutions and tips logic in answer to the users queries.

Optimize search queries for performance and relevance.

3. Challenges & Fixes:

o Challenge: Delayed API response times.

Fix: Implement **caching** to store frequently queried results.

o Challenge: Limited API calls per minute.

Fix: Optimize queries to fetch only necessary data.

Phase-6: Functional & Performance Testing

Objective:

Ensure that the Shikshak Mahoday App works as expected.

Test					
Case ID	Category	Test Scenario	Expected Outcome	Status	Tester
		Query "Latest research	Relevant & recent		
	Functional	on deep learning from	research papers should		
TC-001	Testing	arXiv"	be displayed.	Passed	Sanjana
		Query "Explain Gradient	AR-based visualization		
	Functional	Descent with an AR	should load & explain		Sai
TC-002	Testing	visualization"	the concept.	Passed	Tejasri
			Al should generate		
	Performance	API response time under	adaptive learning paths		
TC-003	Testing	500ms	within time	Optimization	Tester 3
	Bug Fixes &	Fixed incorrect research	Data accuracy should		Develop
TC-004	Improvements	paper citations	be improved.	Fixed	er
	Final	Ensure UI is responsive	UI should work on	X Failed - UI	
TC-005	Validation	across devices.	mobile & desktop.	broken on mobile	Tester 2
	Deployment	Host the app using	App should be		
TC-006	Testing	Streamlit Sharing	accessible online.	🚀 Deployed	DevOps

Final Submission

- 1. Project Report Based on the templates
- 2. Demo Video (3-5 Minutes)
- 3. GitHub/Code Repository Link
- 4. Presentation