페이지 1 / 1

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-234737

(43) Date of publication of application: 22.08.2003

(51)Int.CI.

H04L 9/32

(21)Application number : 2002-372602

(71)Applicant: CANON INC

(22)Date of filing:

24.12.2002

(72)Inventor: TONISSON ALAN VALEV

(30)Priority

Priority number: 2001 PR9703

Priority date : 21.12.2001

Priority country: AU

(54) CONTENT AUTHENTICATION FOR DIGITAL MEDIA BASED RECORDING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an enhanced digital file authentication device.

SOLUTION: A method, in a data processing system provided with a recording apparatus and a certificate authority terminal, of determining whether a file is modified, comprises the steps of generating a first public key and a first private key by the recording apparatus, of transferring the first public key to the certificate authority terminal by the recording apparatus, encrypting a certificate including the first public key by using a second private key by the certificate authority terminal, transferring the encoded certificate to the recording apparatus by the certificate authority terminal, hashing the file to provide a digital signature by using the first private key in the recording apparatus, attaching the certificate received from the certificate authority terminal and the digital signature to the file in the recording apparatus, and distributing to a client terminal the file as a communication package assimilated the file,

the digital signature and the certificate by the recording apparatus.

117 - 128 - 409 - 419 -

Fig. 4

(19)日本国特許庁 (J P)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-234737 (P2003-234737A)

(43)公開日 平成15年8月22日(2003.8.22)

(51) Int.Cl.7 HO4L 9/32 識別記号

FΙ H04L 9/00 テーマコード(参考)

675D 5J104

675B

請求項の数10 OL 外国語出願 (全 42 頁) 審査請求 有

(21)出願番号

特膜2002-372602(P2002-372602)

(22) 出願日

平成14年12月24日(2002.12.24)

(31)優先権主張番号 PR9703

(32)優先日

平成13年12月21日(2001.12.21)

(33)優先権主張国

オーストラリア (AU)

(71) 出頭人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72) 発明者 アラン パレプ トニソン

オーストラリア国 2113 ニュー サウス ウェールズ州, ノース ライド, ト ーマス ホルト ドライブ 1 キヤノン インフォメーション システムズ リサ ーチ オーストラリア プロプライエタリ ー リミテツド内

(74)代理人 100076428

弁理士 大塚 康徳 (外3名)

Fターム(参考) 5J104 AA09 LA03 LA06 NA02

(54) 【発明の名称】 記録装置をはじめとするデジタル媒体のための内容認証

(57)【要約】

(修正有) 【課題】改良型のデジタルファイル認証装置を提供す

【解決手段】記録装置と認証局端末とを備えるデータ処 理システムであり、フアイルが修正されるかを判定する 方法であって、前記記録装置によって第一の公開鍵と第 一の秘密録を生成する行程と、前記記録装置により前記 第一の公開鍵を前記認証局端末に転送する行程と、前記 認証局端末によって第二の秘密鍵を使用して前記第一の 公開鍵を含む証明書を暗号化する行程と、前記暗号化し た証明書を前記認証端末によって前記記録装置に転送す る行程と、前記記録装置内の前記第一の秘密鍵を使用し て、前記フアイルをハッシングしてデジタル署名を提供 する行程と、前記認証端末局から受信した証明書と前記 デジタル署名とを前記記録装置内の前記フアイルに添付 する行程と、前記記録装置によって前記フアイルとデジ タル署名と証明書とを含む通信パッケージとして前記フ アイルをクライアント端末に配信する行程を備える。

Fig. 4

【特許請求の範囲】

【請求項1】 記録装置と認証局端末とを備えるデータ 処理システムにおいて、ファイルが修正されるかどうか を判定する方法であって、

前記記録装置によって第1の公開鍵と第1の秘密鍵とを 生成する工程と、

前記記録装置によって前記第1の公開鍵を前記認証局端 末に転送する工程と、

前記認証局端末によって第2の秘密鍵を使用して、前記 記録装置から受信した前記第1の公開鍵を含む証明書を 暗号化する工程と、

前記暗号化した証明書を前記認証局端末によって前記記 録装置に転送する工程と、

前記記録装置内の前記第1の秘密鍵を使用して、前記ファイルをハッシングしてデジタル署名を提供する工程

前記認証局端末から受信した証明書と前記デジタル署名とを前記記録装置内の前記ファイルに添付する工程と、前記記録装置によって少なくとも前記ファイルとデジタル署名と証明書とを含む通信パッケージとして前記ファイルをクライアント端末に配信する工程とを備えることを特徴とする方法。

【請求項2】 前記クライアント端末は、

前記認証局端末から受信した第2の公開鍵を使用して前 記証明書から前記第1の公開鍵を取得する工程と、

前記第 1 の公開鍵を使用してデジタル署名を復号化する 工程と、

前記ファイルをハッシングしてハッシュを提供する工程 -

前記ハッシュと前記デジタル署名との比較に応じて、前記ファイルが修正されるかどうかを判定する工程とを更に構えることを特徴とする請求項1記載の方法。

【請求項3】 メタデータを生成する工程と、

前記デジタル署名がさらに該メタデータに依存するよう に該メタデータを前記ファイルと関連付ける工程とを更 に備えることを特徴とする請求項1記載の方法。

【請求項4】 前記記録装置のユーザが入力した付加データを受信し、前記付加データを前記メタデータの一部 として記憶する工程を更に備えることを特徴とする請求 項3記載の方法。

【請求項5】 前記デジタル署名はDSS方法に準拠することを特徴とする請求項1記載の方法。

【請求項6】 記録装置と認証局端末とを備え、ファイルが修正されるかどうかを判定する処理システムであって、

前記記録装置は、

第1の公開鍵と第1の秘密鍵とを生成する生成器と、 前記第1の公開鍵を前記認証局端末に転送する第1の転送器とを備え、

前記認証局端末は、

第2の秘密鍵を使用して、前記記録装置から受信した前 記第1の公開録を含む証明書を暗号化する暗号器と、 前記暗号化した証明書を前記記録装置に転送する第2の

転送器とを備え、 前記記録装置は、

前記第1の秘密鍵を使用して、前記ファイルをハッシン グしてデジタル署名を提供する提供器と、

前記認証局から受信した証明書と前記デジタル署名とを 前記ファイルに添付する添付手段と、

少なくとも前記ファイルとデジタル署名と証明書を含む 通信パッケージとして前記ファイルをクライアント端末 に配信する配信器とを備えることを特徴とする処理シス テム。

【請求項7】 少なくとも秘密鍵と秘密鍵に対応する公開鍵とを備える暗号化鍵対とデジタル証明書とを記憶する第1の記憶媒体と、

イベントデータを記録する記録装置と、

少なくとも前記記録されたイベントデータを記憶する第 2の記憶媒体と、

少なくとも前記記憶された秘密鍵と前記記録されたイベントデータとを使用して、デジタル署名を生成する署名プロセッサと。

- (i) 前記記憶した公開鍵を証明書生成局に供給し、
- (ii) 前記公開鍵を使用して形成され、前記証明書生成局から供給された前記デジタル証明書を、少なくとも前記第2の記憶媒体に記憶し、
- (iii) イベントデータを記録し、前記署名ブロセッ サによって生成されたデジタル署名と前記イベントデー タとを関連付けるコントローラとを備えることを特徴と する装置。

【請求項8】 認証するデータを処理するデバイスであって、

認証局の秘密鍵から生成したデジタル証明書を受信し、 前記デバイスの公開鍵を組み込む手段と、

前記デバイスの公開鍵を補足してデバイス鍵対をひとま とめに形成する前記デバイスの秘密鍵と、前記データ用 のデジタル署名とを生成する手段と、

前記データと前記証明書と前記デジタル署名とを前記デ バイスからの転送用の通信パッケージとして関連付ける 手段とを備えることを特徴とするデバイス。

【請求項9】 記録装置においてファイルが修正される かどうかを判定する方法であって、

第1の公開鍵と第1の秘密鍵とを生成する工程と、

前記第1の公開鍵を認証局端末に転送する工程と、

前記第1の秘密鍵を使用して、前記ファイルをハッシン グしてデジタル署名を提供する工程と、

前記認証局端末から受信した証明書と前記デジタル署名 とを前記ファイルに添付する工程と、

前記記録装置によって少なくとも前記ファイルとデジタ ル署名と証明書とを含む通信パッケージとして前記ファ イルをクライアント端末に配信する工程と、を備え、 前記認証局端末から受信した証明書は前記第1の公開鍵 を含み、前記認証局端末で生成された第2の秘密鍵を使 用して暗号化されることを特徴とする方法。

【請求項10】 ファイルが修正されるかどうかを判定 するプロセスを実行するためのプログラムを記憶する記 憶媒体であって、

前記ブログラムは、

第1の公開鍵と第1の秘密鍵とを生成する工程と、 前記第1の公開鍵を認証局端末に転送する工程と、 前記第1の秘密鍵を使用して、前記ファイルをハッシン グしてデジタル署名を提供する工程と、

前記認証局端末から受信した証明書と前記デジタル署名 とを前記ファイルに添付する工程と、

前記記録装置によって少なくとも前記ファイルとデジタル署名と証明書とを含む通信バッケージとして前記ファイルをクライアント端末に配信する工程と、を備え、前記認証局端末から受信した証明書は前記第1の公開鍵を含み、前記認証局端末で生成された第2の秘密鍵を使用して暗号化されることを特徴とする記憶媒体。

【発明の詳細な説明】

【0001】 [発明の属する技術分野] 本発明は、画像 及びノ又は音声を記録するための記録装置等のデジタル 媒体に関し、特に、デジタル記録されたデータとそのデ ータに関連したメタデータの認証におけるデジタル署名 に関する。

【0002】 [従来の技術] 高品質のデジタル画像や音声を記録するための記録装置等のデジタル媒体が普及している。現在、デジタル媒体に画像や音声を記録する装置には数多くの種類がある。この中には、デジタルスチルカメラやデジタルビデオカメラやデジタル音声記録装置が含まれる。これらの装置の相違は、時と共に次第に曖昧になってきている。例えば、最近のデジタルスチルカメラの多くは短いモーションシーケンスや音声を記録できるし、デジタルビデオカメラの多くは現在では静止画像を記録できる。

【OOO3】一般にデジタルカメラでは、電荷結合素子(CCD) センサアレイを撮影場面に露出することでデジタル画像を作成し、通常カメラ内で、CCDが生成したデータをデジタル画像データに変換し、それを記憶媒体に記憶する。デジタルビデオレコーダは、動画を静止画像のシーケンスとして記録するが、記憶する前に圧縮するのが一般的である。音声はマイクを使用して記録し、A/D変換器を使用してデジタルデータに変換する。その後、1つ以上のデジタル媒体ファイルとして送しい記憶されたデジタルデータは、パーソナルコンビュータや、印刷出カ用、音声出カ用、表示用、送信用などの他の固定記憶装置に転送されうる。

【〇〇〇4】しかし、デジタル記録されたデータの1つの問題は、このようなデータは簡単な操作や修正によ

り、本来の場面や出来事に対して偽の表現を作成できて しまうことである。このような問題は、画像や記録音声 の正当性を証明することが不可欠な法廷や法施行分野な どのある種の分野では、特に深刻になっている。デジタ ル画像や音声を変更して本来の記録を見かけ上ゆがめる ことが簡単であるために、正当性を証明することが困難 であることが多く、ときには不可能になってしまうこと もある。

【0005】デジタルデータの正当性を証明する従来の 手法として、「非対称鍵暗号法」としても知られる公開 鍵/秘密鍵暗号法に基づくデジタル署名が使用されてい る。デジタル署名は、秘密健を使用してデジタルデータ から生成する。ここでは、通常、秘密鍵によるデータの ハッシュを暗号化し、暗号化されたハッシュがデジタル 署名を構成する。デジタル署名は、秘密鍵を知らなけれ ば実際に生成することは不可能となるように設計されて いる。その後は、秘密鍵を知らなくても、対応する公開 鍵を使用してデジタル署名を検証することができる。通 常、公開鍵を使用して署名を復号化し、その結果として 得られたハッシュ値を、署名されたデータから算出され たハッシュと比較することで検証が遂行される。これら のハッシュ値が一致すれば、署名は有効となり、データ が署名された際に秘密鍵の所有者が署名されたデータを 所有していたことを証明する。

【0006】デジタル署名を検証する場合、使用中の公開鍵が、請求された署名者に実際に属していることを確認する必要がある。鍵の所有者を確認する一手段として、デジタル証明書を使用する。デジタル証明書は、特定の鍵が特定の署名者に属することを表明する認証局

(CA) と呼ばれる信頼できる機関によって発行された電子文書である。証明書には、鍵の所有者を識別する情報や、公開鍵そのものや、認証局のデジタル署名が含まれる。デジタル証明書には、シリアル番号や有効期限などの他の情報が含まれていることが多い。多くの場合、デジタル署名は標準フォーマット(例えば、X.509)に準じており、又、認証中のユーザが署名者の公開鍵を参照できるようにレジストリに保持されうる。

【〇〇〇7】記録装置等のデジタル媒体へのデジタル署名の適用例の1つが、米国特許第6、269、446号(Schumacherら)に記載されており、ここではデジタルカメラに適用されている。Schumacherらは、米国特許第5、499、294号(Friedman)に記載された先行技術に改良を加えた。Schumacherらの手法では、デジタルカメラで埋込み秘密鍵を使用し、この秘密鍵を使用して、画像データと関連のメタデータとのメッセージダイジェストに基づくデジタル署名を作成する。この場合、メタデータは、時間と衛星(GPS)位置情報とから違出される。その後、画像データとそれに関連したメタデータの認証を行いたいユーザは、埋込み秘密鍵に対応する公開鍵を取得する。公開鍵を使用することで、Schuma

、 cherらのシステムのユーザは、最初にデジタルカメラで 記録されて以来、デジタル画像データが修正されたかど うかを判断することができる。

【〇〇〇8】Schumacherらのシステムの1つの欠点は、認証中のソフトウェアが、認証が必要とされる画像を有する各カメラの公開鍵を事前に知る必要があるということである。ソフトウェアアブリケーションが多数のカメラからの画像を認証しなければならない場合、このアブリケーションのユーザは、各カメラからの画像を認証する前に、各カメラの公開鍵をソフトウェアに供給しなければならない。このため、多数のカメラや多数の認証ソフトウェアのインスタンスがある場合はSchumacherらのシステムは実用的ではない。多くのアブリケーションにおいて、認証ソフトウェアのユーザが全てのカメラの鍵を取得することは使い勝手が悪い。

【0009】1つの解決策として、全てのカメラが同じ 秘密鍵/公開鍵対を備える方法もあるが、システムの機 密保証が著しく損なわれてしまう。どれか1つのカメラでもその秘密鍵を漏洩してしまうと、システム全体が 秘密鍵が漏洩してしまうため、通常、この解決策を採用することはできない。他の解決策として、健と証明書の 認証局と公開データベースをそれぞれ1つ以上含むネットワーク化公開鍵インフラストラクチャ (PKI)を明書データベースにアクセスしなければならないという欠点がある。更に、この解決策では、第三者である認証 局が介入する必要があるため、アプリケーションによっては不便なものとなる。

【0010】 [発明の概要] 本発明の目的は、デジタル 媒体ファイルなどのデジタルファイルに対して改良型の 認証装置を提供することによって、既存の装置の1つ以 上の欠点を実質的に解決する、また少なくとも改善する ことである。

【0011】この意味で認証とは、媒体ファイル中のデータが、記録装置で記録されて以来、修正されていないことを立証することを意味する。ここでは、「媒体ファイル」という用語を使用して、デジタルスチルカメラ、デジタルビデオカメラ、デジタル録音装置、又は他のデジタル記録装置によって記録されたデータに含及する。 媒体ファイルは、記録されたデータに関連したメタデータを含むこともある。かかるメタデータは、原始データとそのキャプチャに関する情報を記述又は提供するデータである。また、メタデータも認証されうる。

【〇〇12】本発明の第1の側面によると、記録装置と認証局端末とを備えるデータ処理システムにおいて、ファイルが修正されるかどうかを判定する方法であって、前記記録装置によって第1の公開鍵と第1の秘密鍵とを生成する工程と、前記記録装置によって前記第1の公開鍵を前記認証局端末に転送する工程と、前記認証局端末によって第2の秘密鍵を使用して、前記記録装置から受

信した前記第1の公開鍵を含む証明書を暗号化する工程と、前記暗号化した証明書を前記認証局端末によって前記記録装置に転送する工程と、前記記録装置内の前記第1の秘密鍵を使用して、前記ファイルをハッシングしてデジタル署名を提供する工程と、前記認証局端末から受信した証明書と前記デジタル署名とを前記記録装置内の前記ファイルに添付する工程と、前記記録装置によって少なくとも前記ファイルとデジタル署名と証明書とを含む通信バッケージとして前記ファイルをクライアント端末に配信する工程とを備えることを特徴とする方法を提供する。

【〇〇13】本発明の他の側面によると、記録装置と認 証局端末とを備え、ファイルが修正されるかどうかを判 定する処理システムであって、前記記録装置は、第1の 公開鍵と第1の秘密鍵とを生成する生成器と、前記第1 の公開鍵を前記認証局端末に転送する第1の転送器とを 備え、前記認証局端末は、第2の秘密鍵を使用して、前 記記録装置から受信した前記第1の公開鍵を含む証明書 を暗号化する暗号器と、前記暗号化した証明書を前記記 録装置に転送する第2の転送器とを備え、前記記録装置 は、前記第1の秘密鍵を使用して、前記ファイルをハッ シングしてデジタル署名を提供する提供器と、前記認証 局から受信した証明書と前記デジタル署名とを前記ファ イルに添付する添付手段と、少なくとも前記ファイルと デジタル署名と証明書を含む通信バッケージとして前記 ファイルをクライアント端末に配信する配信器とを備え ることを特徴とする処理システムを提供する。

【0014】本発明の他の側面によると、少なくとも秘密鍵と秘密鍵に対応する公開鍵とを備える暗号化鍵対とデジタル証明書とを記憶する第1の記憶媒体と、イベントデータを記録する記録装置と、少なくとも前記記録されたイベントデータを記憶する第2の記憶媒体と、ペントデータとを使用して、デジタル署名を生成する署名プロセッサと、(i)前記公開鍵を使用して形成され、前記証明書生成局から供給された前記デジタル証明書を、の記憶媒体に記憶し、(|i|)前記公開鍵を使用して形成され、前記証明書生成局から供給された前記デジタル証明書を、なくとも前記第2の記憶媒体に記憶し、(|i|)かべなくとも前記第2の記憶媒体に記憶し、(|i|)かべなくとも前記第2の記憶媒体に記憶し、(|i|)かべなくとも前記第2の記憶媒体に記憶し、(|i|)かべないたデータを記録し、前記署名プロセッサによって生成されたデジタル署名と前記イベントデータとを関連付けるコントローラとを備えることを特徴とする表置を提供する。

【0015】本発明の他の側面によると、認証するデータを処理するデバイスであって、認証局の秘密健から生成したデジタル証明書を受信し、前記デバイスの公開鍵を組み込む手段と、前記デバイスの開鍵を補足してデバイスは対をひとまとめに形成する前記デバイスの秘密健と、前記データ用のデジタル署名とを生成する手段と、前記データと前記証明書と前記デジタル署名とを前記デバイスからの転送用の通信バッケージとして関連付

ける手段とを備えることを特徴とするデバイスを提供す る.

【0016】本発明の他の側面によると、記録装置においてファイルが修正されるかどうかを判定する方法であって、第1の公開鍵と第1の秘密鍵とを生成する工程と、前記第1の秘密鍵を使用して、前記ファイルをハッシグしてデジタル署名を提供する工程と、前記認証局端末に転送する工程と、前記認証局端末で少ない。 がいるというでは、前記記録装置によって少ないでは、前記ファイルをデジタル署名と証明書と前記記録装置によって少ないとデジタル署名と証明書とを含む通信パケージとして前記ファイルをクライアント端末に配信する工程と、を備え、前記認証局端末から受信した証明書は前記第1の公開鍵を含み、前記認証局端末で生成された第2の秘密鍵を使用して暗号化されることを特徴とする方法を提供する。

【0017】本発明の他の側面によると、ファイルが修正されるかどうかを判定するブロセスを実行するためのブログラムを記憶する記憶媒体であって、前記ブログラムは、第1の公開鍵と認証局端末に転送する工程と、前記第1の秘密鍵を使用して、前記ファイルをハッシグしてデジタル署名を提供する工程と、前記認証局端末がら受信した証明書と前記デジタル署名とを前記ファイルとデジタル署名と証明書とを含む通信がよって少なくとも前記ファイルとデジタル署名と証明書とを含む通信がカージとして前記ファイルをクライアント端末に配信する工程と、を備え、前記認証局端末から受信した証明書は前記第1の公開鍵を含み、前記認証局端末で生成された第2の秘密鍵を使用して暗号化されることを特徴とする記憶媒体を提供する。

【〇〇18】本発明の他の側面も開示されている。

【〇〇19】有利な実施形態では、デジタル記録装置 は、あとで送信するために内部媒体に記憶された、又は 外部デジタル記憶媒体に直接送信された媒体ファイルを 生成する手段だけでなく、まず、媒体ファイル中の全て 又は一部のデータのデジタル署名を生成して、デジタル 証明書を記憶する手段をも備えている。装置が生成した デジタル署名は、デジタル記録装置に記憶された秘密鍵 に依存する。秘密鍵は、デジタル記録装置のメーカー以 外は誰も知らない。媒体ファイル中のデータを認証する ために、ユーザは、記録装置の秘密鍵に対応する公開鍵 を知らなければならない。ソフトウェアが公開鍵を取得 して、公開鍵自体が正規のものであることを確認できる ためには、公開鍵と、公開鍵の正当性を証明するデジタ ル証明書とを、デジタル記録装置が生成した媒体ファイ ルに付加する。証明書は、供給された公開鍵がデジタル 記録装置に記憶された秘密鍵に対応する有効な公開鍵で あることを証明する他のデジタル署名を含む。

【〇〇2〇】 [最良の態様を含む詳細な説明] 図1A

は、記録要の画像、音声、又はその両方を取り込むため のセンサ150を含むデジタル記録装置100を示す。 装置100は、更に、処理装置(又はCPU)160を 介して装置100の動作を制御するプログラム命令を記 憶するための読出し専用メモリ (ROM) 109などの 不揮発性記録媒体を含む。CPU160は、ROM10 9から得られた命令を読み込んで実行する。CPU16 Oは、取り込んだ画像や音声情報をセンサ150から抽 出し、例えば、磁気ディスクドライブ、光磁気ドライ ブ、又はフラッシュROMなどにより構成される不揮発 性デジタル大容量記憶媒体108に同一形式で保存する ように動作する。ROM109の機能を記憶媒体108 に内蔵する実施形態もある。ランダムアクセスメモリ (RAM) 180も図示されており、鍵や署名や証明書 を処理するための(揮発性の)中間記憶容量をCPU1 60に提供する。有線ケーブル、光ケーブル、又は無線 周波数や赤外線リンクなどの無線方法で形成される外部 接続195に対して、取り込まれた画像や音声データ を、記録装置100から通信モジュール190を介して 出力してもよい。部品160~190を1つの集積回路 チップ装置に形成する実施形態もある。

【0021】図1Bは、記録装置100の主要な機能部 品と、接続195を介して出力するデジタル媒体ファイ ル120を生成するためにどのようにこれらの部品を使 用するのかを示す。デジタル記録装置100は、記録要 の画像や音声をそれぞれ検出するための画像センサ10 1とマイク102を内蔵しており、図示された構成で は、画像センサ101とマイク102が図1Aのセンサ 150を形成している。通常、装置100はセンサ10 1に光を集光するためにレンズ(不図示)も含み、セン サ101は一時的に画像データバッファ103に記憶す るデジタル輝度データを生成するように動作する。通 常、輝度データは、赤と緑と青の成分からなる。その 後、JPEG、JPEG2000、又はMPEGなどの 適切な圧縮機能105を使用して輝度データを圧縮する のが好ましく、その結果得られた圧縮データ112を、 デジタル記憶媒体108中のデジタル媒体ファイル12 0の一部として記憶する。図示のように、音声情報をマ イク102によって同時に検出し、音声データバッファ 104に一時的に記憶する前にA/D変換器(ADC) 121によってデジタル音声データに変換することがで きる。音声データも、MP3などの適切な圧縮機能10 5を使用して圧縮し、記録済みのデータ112にデジタ ル媒体ファイル120の一部として付加する。パッファ 103と104をRAM180や専用のメモリを使用し て実現してもよいし、圧縮機能をCPU160や特定の ハードウェア装置 (不図示) で適切に行ってもよい。他 の実施形態として、画像バッファ103又は音声バッフ ア104は存在せず、音声や画像データを圧縮して直 接、デジタル記憶媒体108に書き込んでもよい。更な る実施形態では、記録済みのデータ112を非圧縮音声及び/又は画像データで形成するように圧縮機能105を省略してもよい。マイク102と、ADC121と、音声データバッファ104とが存在しない実施形態もあるし、画像センサ101と画像データバッファ103とが存在しない実施形態もある。

【0022】図18に示すように、記録装置100は、記録済みのデータ112に関連したメタデータ111を生成するように構成されたモジュール106を含む。メタデータ111は、データが記録された日時や、記録が行われたGPS位置座標の他、露出設定やテキストデータ入力などのユーザが特定したデータを含んでもよい。メタデータ111はデジタル媒体ファイル120の一部として記憶される。この機能を省略し、デジタル媒体ファイル120にメタデータを記憶しない実施形態もある。

【0023】秘密鍵113と公開鍵114とデジタル証 明書115とは、フラッシュROMなどの不揮発性審換 え可能記憶装置に記憶するのが好ましく、この記憶装置 は記憶媒体108やその一部を形成するように使用して もよい。代わりに、そのデータをROM109に記憶し てもよく、その場合、データが改竄されたり変更された りすることはないが、認証局において変更ができず、ユ ーザがローカル認証局を維持できないという欠点があ る。また、メーカーには鍵の管理に対する責任が生じ、 ユーザは鍵の生成するメーカーを信用しなければならな い。これらの理由から、要求に応じて記録装置100に 新しい鍵を生成させるのが好ましいが、これは鍵113 と114及び証明書115の書き換えを必要とする。秘 密鍵 1 1 3 は、高性能で安全性の高いアプリケーション における改竄防止ハードウェアにオプションとして記憶 してもよい。公開鍵114は、通常、証明書115に含 まれているので、図1Bの114に示されるように、公 開鍵のコピーを別に記憶する必要は厳密にはない。しか し、証明書115とは別に公開鍵114を記憶すること で、デジタル証明書115を使用しない可能性も見込め る。このように、証明書115の使用は任意であり、記 録装置100が証明書115の形式を知らなくてもよく なる。

【0024】また、図1日に示すように、署名生成サブプロセス117で秘密鍵113を使用してデジタル署名118を生成し、デジタル媒体ファイル120の一部として記憶するプロセス107を実行するようにCPU160が動作する。デジタル署名プロセス107は、米国国立標準技術研究所(NJST)によって特定された既知のデジタル署名標準(DSS)に準拠するのが好ましい。プロセス107では、CPU160が、署名するデータのSHA-1ハッシュ機能116を計算し、それによってハッシュ結果130を提供する。SHA-1ハッシュ機能116の後に署名生成プロセス117を実行

し、具体的にはハッシュ結果130を秘密壁113で暗号化する。図示の構成では、署名されたデータには、データ131としてまとめて図示された記録済みのデータ112と関連のメタデータ111とが含まれている。他の実施形態では、署名されたデータ131が記録済みのデータ112を全て含んでいなくてもよいし、関連のメタデータ111を全て含んでいなくてもよい。

【0025】また、図1Bに示すように、生成した署名118をデジタル媒体ファイル120に付加するのと同様に、CPU160は証明書挿入機能110に従って、証明書115のコピー119をデジタル媒体ファイル120に付加する。

【0026】通常の物理的な実施形態では、圧落機能105とSHA-1ハッシュ機能116をアブリケーション特有の集積回路で行うのが好ましく、残りの機能は便宜的にCPU160で実現してもよい。

【0027】デジタル媒体ファイル120が記録装置100によってひとたび形成されると、メタデータ111と記録済みのデータ112と署名118と証明書119とを備えたデジタル媒体ファイル120は、CPU160によって装置100から出力されうる。これによって、図5に示すように、ファイル120を記憶装置108から通信モジュール190とリンク195とを介してカンピュータシステム500に転送することができる。図示のように、リンク195は、(破隷のラインを介して)直通でもよいし、コンピュータネットワーク520を介していてもよい。

【〇〇28】記録済みのデータ112とメタデータ11 1の認証は、汎用のコンピュータシステム500上で動 作するソフトウェアアプリケーションによって行うのが 好ましい。ここでは、認証プロセスを、コンピュータシ ステム500内で実行するアプリケーションプログラム などのソフトウェアとして実現する。実際、ブロセスの ステップは、コンビュータが実行するソフトウェアの命 令によって達成される。命令は、各々が1つ以上の特定 のタスクを行うための1つ以上のコードモジュールから なる。ソフトウェアを2つ別々の部分に分割してもよ く、その場合、第1の部分が認証方法を行い、第2の部 分が第1の部分とユーザとの間のユーザインタフェース を管理する。ソフトウェアを、後述の記憶装置などを含 むコンピュータ可読媒体に記憶してもよい。ソフトウェ アは、コンピュータからコンピュータ可続媒体に続み込 まれた後、コンピュータによって実行される。このよう なソフトウェアやコンピュータブログラムが記録された コンピュータ可読媒体は、コンピュータプログラム製品 である。コンピュータでコンピュータプログラム製品を 使用することによって、記録済みのデータを認証するた めの有利な装置を達成するのが好ましい。

【0029】コンピュータシステム500は、コンピュ ータモジュール501と、キーボード502やマウス5 03などの入力装置と、ブリンタ515を含む出力装置と、表示装置514と、スピーカー517とを具備する。変調復調モデムトランシーバ装置516は、コンピュータモジュール501が、例えば、電話線521や他の機能媒体を介して接続可能なコンピュータネットワーク520と通信するために使用する。モデム516を使用してインターネットや、ローカルエリアネットワーク(LAN)や広域ネットワーク(WAN)などの他のネットワークシステムにアクセスすることができる。適切な場合には、ネットワークカード(不図示)で、コンピュータモジュール501とLANやWANとの間を直接接続する1/Oインタフェース508の一部を形成してもよい。

【0030】図示のように、コンピュータモジュール5 01は、通常、少なくとも1つのプロセッサ505と、 例えば、半導体ランダムアクセスメモリ(RAM)や読 出し専用メモリ(ROM)からなるメモリ装置506 と、表示装置514やスピーカー517のためのオーデ ィオ・ビデオ・インタフェース507とキーボード50 2やマウス503やオブションとしてのジョイスティッ ク (不図示) のための1/0インタフェース513とを 含む入出力 (I/O) インタフェースと、モデム516 や直接デバイス接続のためのインタフェース508とを 含む。記憶装置509が提供されており、通常、ハード ディスクドライブ510とフロッピィディスクドライブ 5 1 1 とを含む。磁気テープドライブ(不図示)を使用 してもよい。CD-ROMドライブ512は、通常、不 揮発性のデータソースとして提供される。コンピュータ モジュール501の部品505~513は、関連技術で 既知のコンピュータシステム500の動作の従来のモー ドが得られるように、通常、相互接続されたパス504 を介して通信する。前述の構成を実施できるコンピュー タの例としては、IBMのPCやその互換機、SunS parcstationsやそこから発展した同等のコ ンピュータシステムを含む。

【0031】通常、アプリケーションプログラムは、ハードディスクドライブ510に常駐し、実行する際にプロセッサ505によって読み出されて制御される。ブログラムや、ネットワーク520から取り込まれたデータの一時的な記憶は、半導体メモリ506を使用してで、の一時的な記憶は、半導体メモリ506を使用して逐分してもよい。場合によっては、アプリケーションプロと協力してブログでは、対応するドライブ512や511から読み出してもよいし、又は、ユーザがネットワークら読み出してもよいし、又は、ユーザがネットワーク520からモデム装置516を介して読み出してもよい。更に、ソフトウェアを、他のコンピュータ可読媒体からコンピュータシステム500に読み込むこともできる。ここで使用する「コンピュータ可読媒体」という用語は、実行及びノ又は処理を行うために、命令及びノ又は

データをコンピュータシステム500に提供することに関わる記憶装置や伝送媒体を含む。記憶媒体の例としては、記憶媒体がコンピュータモジュール501の内部にあるのか外部にあるのかに関わらず、フロッピィディスク、磁気テープ、CD-ROM、ハードディスクドライブ、ROM又は集積回路、光磁気ディスク、PCMC1Aカードなどのコンピュータ可読カードが挙げられる。伝送媒体の例としては、他のコンピュータやネットワーク化装置へのネットワーク接続と同様に無線伝送路や、ドメール送信とウェブ上などに記録された情報を含むインターネットやイントラネットとが挙げられる。

【0032】代わりに、認証方法を、認証の機能やサブ機能を行う1つ以上の集積回路などの専用ハードウェアで実現してもよい。このような専用ハードウェアは、図形プロセッサ、デジタル信号ブロセッサ、又は1つ以上のマイクロプロセッサと関連のメモリを含んでもよい。【0033】デジタル媒体ファイル120をコンビュータモジュール501にダウンロードし、例えばHDD510に記憶することで、データ111と112を記録した装置100の公開鍵114を事前に知らなくても、証明書119によって認証アプリケーションが、データ11と112を含むデジタル媒体ファイルを認証することができる。

【0034】これを達成する最も簡単な方法は、ある認証者によって画像を認証する全ての記録装置に対して証明書を生成するのに同じ認証局を使用することである。その後、認証局の公開鍵のみを使用して認証を行うことができる。単一の認証局を使用することが実用的でない場合であっても、証明書を使用することで、認証者(すなわち、コンピュータ500や、認証アプリケーションや、そのユーザ)が信用しなければならない公開鍵の数を削減することができる。好適な実施形態では、1つよの認証局の公開鍵を、認証に使用するソフトウェアに記憶する。例えば、認証局560によって操作され、且つ、ネットワーク520に接続されたサーバコンピュータシステム500のユーザが、ソフトウェアを努ウンロードすることで、このようなソフトウェアを認証局から取得することができる。

【0035】図2は、公開鍵と秘密鍵と証明書の作成に関わるステップを示す。図2に示すように、記録装置100は、公開鍵114と秘密鍵113とからなる暗号化/復号化鍵対を生成する機能201を更に有する。鍵13と114は、2048ビット以上の長さを有するRSA秘密鍵/公開鍵対を構成するのが好ましい。代わりに、他の暗号化アルゴリズムの鍵を使用してもよい。例えば、RSAの代わりに、楕円曲線暗号化アルゴリズムを使用してもよい。他の実施形態では、鍵113と114は装置100のメーカーが生成し、製造過程で証明書115と共に装置100に埋め込んでもよい。しかし、

駐113と114は、記録装置100が生成し、不揮発性記憶装置109に記憶するのが好ましい。【0036】図2に示すように、ユーザが公開壁114

のコピー207を認証局560に証明用に送ることがで

きるように、記録装置100は、記憶された公開鍵11 4にアクセスする手段をユーザに提供する。認証局56 0は、例えば、サーバコンピュータ550で機能211 を操作し、記録装置100の証明書インボート機能21 9を使用してユーザに供給した後に、前述の証明書 1 1 5として記憶することができるデジタル証明書217を 生成する。証明書217は、認証局560の秘密鏈21 5を使用して作成する。また、証明書217はX.50 9標準に準拠するのが好ましい。有利な点として記録装 置100は、インボートの際に証明書217を解析した りチェックしたりしないため、記録装置100を修正し なくとも想定していなかった形式を含む1つ以上の証明 書の形式をサポートしうる。記録装置100のユーザ は、通常、公開鍵114又は207に関連した情報21 3も認証局560に供給する。この点に関して、証明書 217は、証明書217が作成された時間などの、鍵1 14又は207のオーナーに関する種々の情報を含んで もよい。鍵114又は207のオーナーは、証明書21 7が証明する情報は正しいものであり、特に、公開鍵1 14又は207はユーザが所有する秘密鍵113に対応 していることを認証局560に証明しなければならな い。前述の実施例の場合、このことは、装置100のオ ーナーが、装置100を認証局560に示し、装置10 0が与える公開鍵114又は207を示すことによって 達成してもよい。鍵114又は207に関連した「オー ナー」という用語は、「装置」そのものか、装置を有す る「人物」のどちらかを意味するものであってもよい。 これは、証明書217が何を証明しようとしているかに 依存する。アプリケーションの中には、どちらを使って もよいものがある。情報213は、少なくとも記録装置 100の固有シリアル番号(又はデバイス 10)を含 み、公開鍵207は供給されたシリアル番号を使って装 置100が生成したという証明を認証局560に与える のが好ましい。このため、前述のように、紀録装置10 0のシリアル番号を証明書217に含めることができ る。他の実施形態では、他の情報を供給して公開鍵20 7のオーナーを識別してもよい。鍵207と情報213 を転送するために、記録装置100は、コンピュータシ ステム500を利用しても、あるいは例えば1/Oイン タフェース508への直接接続195を使用する媒介の ような異なるコンピュータネットワークを利用してもよ い。代わりに、通信モジュール190の高度化レベルに 応じて、装置100とサーバ550との間の通信を、ネ ットワーク520を介して直接、確立してもよい。代わ りに、鍵を手動でサーバ550に入力してもよい。 【0037】装置100が、証明書115として証明書 2 1 7のコピーをひとたび記憶すると、記録装置 1 O O は認証可能なデータを記録する準備が整う。

【0038】図3は、鍵と証明書の生成とインストール とに関わる方法300をフローチャートとしてまとめた ものである。方法300は、通常、可能であればコンビ ュータシステム500と協力して記録装置100やCA サーバ550上で動作する多数のソフトウェアプログラ ムとして実現してもよく、これらは種々のユーザアクシ ョンに応じて動作し、開始ステップ301より処理が開 始される。その後のステップ303において、ユーザ は、鍵対を生成するように装置100に信号を送る。こ れは、図1Aに示すように、装置100に配置された適 切なユーザインタフェース185を使用することで行わ れる。ステップ305において、記録装置100は健対 113と114を生成するが、これは、図2に示す機能 201を使用して遂行される。ステップ307におい て、生成した公開鍵114をユーザ配布用に供給するよ うに、ユーザはユーザインタフェース185を操作して 記録装置100に再度、信号を送る。これに応じて、ス テップ309において、装置100は、公開鍵114の コピー207をユーザに受け渡す。これは、パーソナル コンピュータ500を介して供給してもよいし、例え ば、装置100のRAM180のユーザアクセス可能位 置に供給してもよい。 ステップ311において、ユーザ は公開鍵のコピー207を付加情報213と共にコンビ ュータ500又はRAM180から認証局560に、例 えばサーバ550経由で供給する。ステップ313にお いて、認証局560は、図2の機能215を使用して証 明書217を生成し、ステップ315において、証明書 217をユーザに供給する。また、コンピュータ500 を介して供給してもよいし、装置100のRAM180 に直接供給してもよい。ステップ317において、ユー ザは、インタフェース185を介して装置100に証明 書217を証明書115として記憶するように指示を出 すが、これは、図2の証明書インボート機能219を介 して行われる。ステップ319において、装置100は 証明書115を記憶し、ステップ321でこの方法を終 **てする。**

【0039】図4は、好適な実施形態によるデジタル媒体ファイル120の認証に関わるデータとステップを示す。これらのステップは、パーソナルコンピュータシステム500上で動作するソフトウェアアプリケーション400によって行われるのが好ましく、例えば、前述のように、コンピュータシステム500に適用された、デジタル媒体ファイル120の検証に関わる独立した2つの主要なプロセスを含む。第1のプロセスでは、デジタル署名118が有効な署名であることを検証する。第2のプロセスでは、ファイル120に含まれる証明書119が本物であることを検証する。好適な実施形態では、署名検証プロセスはデジタル署名標準(DSS)に準拠

する。他の実施形態では、他のデジタル**署**名方式を使用 してもよい。

【0040】デジタル署名118を検証する第1のプロ セスでは、まず、ファイル120に記憶されたメタデー タ111と記録済みのデータ112とのハッシュを算出 する。このハッシュは、DSSが特定するSHA-1ア ルゴリズム409を使用して算出する。ハッシュ結果4 10を、記録装置100の公開鍵114の抽出パージョ ン413と共に、DSS署名検証プロセス411への入 カとして使用する。抽出公開鍵413は、デジタル媒体 ファイル120に記憶された証明書119から取得し、 これから、公開鍵 1 1 4 (2 0 7) が証明書 2 1 7 、 1 15、又は119の一部として保存されていたことが再 現される。署名の検証は、再生された公開鍵413を使 用して署名118を復号化し、復号化した署名をハッシ ュ結果410と比較するように動作する機能411によ って行われる。両者が同じであれば、ファイル120は 正規なものとなる。最後の検証ステップも、DSS署名 検証方法に応じて行うのが好ましい。

【0041】証明書119を検証する第2のプロセスでは、認証局560の公開鍵415を使用して証明書119のデジタル署名を検証する機能417を使用する。ここでは、装置の公開鍵413は必要ない。証明書の公開鍵が、ファイルを認証するのに使用する公開鍵と一致することをチェックしたいだけだからである。しかし、前述の構成では、公開鍵(413)を証明書119から取得しているため、鍵413に別にアクセスする必要はない,証明書119は、認証局560の公開鍵415を使用して検証され、装置100の公開鍵114(413)は証明書119のデータの一部にすぎない。証明書119はX、509認証形式に準じるのが好ましいが、X、509証明書での使用に適したデジタル署名方式を使用してもよい。

【〇〇42】 [産業への適用性] このことから、認証の 検証が望まれるデータの取り込みと記録に前述の構成を 適用できることは明らかである。これは、コンピュータ 産業やデータ処理産業に普及しており、特に、コンピュ ータネットワークに接続される可能性のあるカメラなど の携帯型データ取り込み装置に関連している。

【0043】本発明のいくつかの実施形態を説明してきたが、本発明の範囲から逸脱することなく修正と変更とのうち少なくともいずれかが可能であり、前述の実施形態は例示的なものであり限定的なものではない。

【〇〇44】本発明者と本出願人は、従来例の開示に関連した [従来の技術] の記載が、単に公知の知識としての開示に関するものであり、この記載が、この関示がオーストリアなどで周知の一般的な知識の全て又は一部を示しているということを本発明者や本出願人が承認しているとして構成されるものではないということを特筆しておく。

【図面の簡単な説明】

【図1A】本実施形態に係る記録装置の構造を表す概略 ブロック図である。

【図1B】図1Aの記録装置を表す機能ブロック図である。

【図2】図1A及び1Bの記録装置の公開鍵と秘密鍵と 証明書の作成とインストールに関するデータとステップ を示す図である。

【図3】鍵と証明書の生成とインストールに関するステップをより詳細に示す図である。

【図4】図1A及び1Bのデジタル記録装置によって生成されたデジタル媒体ファイルを認証するブロセスを示す図である。

【図5】図1A及び1Bの記録装置と通信するために前述の鍵と証明書を生成することができるコンピュータシステムの概略ブロック図である。

Fig. 1B

Fig. 2

Fig. 4

