Fourierova Transformacija

Nosilec

Naj bo $f: \mathbb{R} \to \mathbb{R}$ funkcija. **Nosilec** funkcije f je zaprtje množice:

$${x \in \mathbb{R}: f(x) \neq 0}$$

Nosilec za f po navadi označimo kot support:

$$\operatorname{supp} f = \overline{\{x \in \mathbb{R}; f(x) \neq 0\}}$$

Primeri:

- i) $\operatorname{supp} \chi_{(0,1)} = \overline{\{x \in \mathbb{R}; \chi_{(0,1)}(x) \neq 0\}} = \overline{(0,1)} = [0,1]$
- ii) polinom p

$$\operatorname{supp} p = \overline{\{x \in \mathbb{R}; p(x) \neq 0\}} = \mathbb{R}$$

 $\{x \in \mathbb{R}; p(x) \neq 0\}$ je končna (torej \mathbb{R} brez par pik recimo) ampak ko naredimo zaprtje grejo te manjkajoče pike zraven.

Funkcija f ima **kompaktni nosilec**, če je supp f kompakten. To pomeni, da obstaja interval [a, b], da je $f(x) \equiv 0$, ko je $x \in \mathbb{R} \setminus [a, b]$. Prostor zveznih funkcij na \mathbb{R} s kompaktnim nosilcem označimo z:

$$C_c(\mathbb{R})$$

Prostor vseh merljivih funkcij

Norma:

Za $f \in C_c(\mathbb{R})$ definirajmo:

$$||f||_1 = \int_{-\infty}^{\infty} |f(x)| dx$$

Ker je f ∈ $C_c(\mathbb{R})$ je supp f ⊆ [a,b]:

$$\Rightarrow ||f||_1 = \int_{-\infty}^{\infty} |f(x)| dx = \int_a^b |f(x)| dx$$

Tako smo dobili **Riemannov integral zvezne funkcije**, zato je $||f||_1$ dobro definiran.

Metrika:

Vpeljemo metriko d na $C_c(\mathbb{R})$:

$$d(f, g) = ||f - g||_1$$

Ta prostor ni poln iz dveh razlogov. Limitna funkcija morda nima kompaktnega nosilca, morda pa niti ni zvezna. Zato ta prostor napolnimo. Napolnitev prostora $(\mathcal{C}_c(\mathbb{R}), d)$ je $L^1(\mathbb{R})$. Dobljeni prostor je **prostor vseh merljivih funkcij na** \mathbb{R} za katere je:

$$\int_{\mathbb{D}} |f(x)| dm(x) < \infty$$

kjer je m(x) **Lebesguova mera**.

Elemente prostora $L^1(\mathbb{R})$ si bomo predstavljali kot Riemannovo absolutno integrabilne funkcije (to je posplošitev ker ne znamo Lebesguovega integrala).

Fourierova transformacija

Za $f \in L^1(\mathbb{R})$ definiramo \hat{f} s predpisom:

$$\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\xi x} dx$$

Funkcija \hat{f} se imenuje <u>Fourierova transformiranka</u> funkcije f. Preslikavo $\hat{}: L^1(\mathbb{R}) \to ?$ imenujemo <u>Fourierova transformacija</u>. Ker je $\left|e^{-i\xi x}\right| = 1$ in $f \in L^1(\mathbb{R})$ je zgornji integral absolutno konvergenten in zato \hat{f} obstaja.

Primer [Karakteristična funkcija]

Izračunajmo \hat{f} , kjer je $f = \chi_{[a,b]}$

$$\hat{\chi}_{[a,b]}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \chi_{[a,b]} e^{-i\xi x} dx = \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{-i\xi x} dx = \frac{1}{\sqrt{2\pi}} \frac{e^{-i\xi x}}{-i\xi} \Big|_{a}^{b} = \frac{1}{\sqrt{2\pi}} \frac{e^{-ia\xi} - e^{-ib\xi}}{i\xi}$$

$$\hat{\chi}_{[-c,c]}(\xi) = \frac{1}{\sqrt{2\pi}} \frac{e^{ic\xi} - e^{-ic\xi}}{i\xi} = \frac{1}{\sqrt{2\pi}} \frac{(\cos(c\xi) + i\sin(c\xi)) - (\cos(-c\xi) + i\sin(-c\xi))}{i\xi}$$

$$= \frac{1}{\sqrt{2\pi}} \frac{2i\sin(c\xi)}{i\xi} = \frac{\sqrt{2/\pi}\sin(c\xi)}{\xi}$$

Primer [Eksponentna funkcija]

Izračunajmo \hat{f} , kjer je $f(x) = e^{-|x|}$:

$$\begin{split} \hat{f}(\xi) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-|x|} e^{-i\xi x} dx = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-x} e^{-i\xi x} dx + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{x} e^{-i\xi x} dx \\ &= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-x(1+i\xi)} dx + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{x} (1-i\xi) dx \\ &= \frac{1}{\sqrt{2\pi}} \left(-\frac{1}{1+i\xi} e^{-x(1+i\xi)} \Big|_{0}^{\infty} + \frac{1}{1-i\xi} e^{x(1-i\xi)} \Big|_{-\infty}^{0} \right) = \frac{1}{\sqrt{2\pi}} \left(\frac{1}{1+i\xi} - \frac{1}{1-i\xi} \right) \\ &= \frac{2}{\sqrt{2\pi}} \frac{1}{1+\xi^{2}} = \sqrt{2/\pi} \frac{1}{1+\xi^{2}} \end{split}$$

Lastnosti Fouriereve transformacije

Naj bo $f \in L^1(\mathbb{R})$

- i) \hat{f} je zvezna in velja $\left|\hat{f}(\xi)\right| \le \frac{1}{\sqrt{2\pi}} \|f\|_1$
- ii) Za $t \in \mathbb{R}$ naj bo e_t definirana s predpisom $e_t(x) = e^{itx}$. Potem je:

$$\widehat{fe_t}(\xi) = \widehat{f}(\xi - t)$$

iii) Za a > 0 naj bo $f_{[a]}$ definirana s predpisom $f_{[a]}(x) = f(ax)$. Tedaj je:

$$\hat{f}_{[a]}(\xi) = \frac{1}{a}\hat{f}\left(\frac{\xi}{a}\right)$$

iv) Za $t \in \mathbb{R}$ definiramo premaknjeno funkcijo f_t s predpisom $f_t(x) = f(x-t)$. Tedaj velja: $\hat{f}_t(\xi) = e^{-it\xi}\hat{f}(\xi)$

v) Naj bo χ identična funkcija ($\chi(x)=x$). Ce je $\chi f\in L^1(\mathbb{R})$, potem je \hat{f} odvedljiva in velja:

$$(\hat{f})'(\xi) = -i\,\widehat{\chi f}(\xi)$$

vi) Ce je f zvezno odvedljiva in $f' \in L^1(\mathbb{R})$, potem je:

$$\widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

Dokaz [Lastnosti i), ii), iii), iv) in vi)]
i)

$$\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\xi x} dx$$

$$\Rightarrow \left| \hat{f}(\xi) \right| = \frac{1}{\sqrt{2\pi}} \left| \int_{-\infty}^{\infty} f(x) e^{-i\xi x} dx \right| \le \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(x)| dx = \frac{\|f\|_1}{\sqrt{2\pi}}$$

 \hat{f} zvezna v ξ

$$\begin{aligned} \left| \hat{f}(\xi + h) - \hat{f}(\xi) \right| &\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left| f(x) e^{-ix(\xi + h)} - f(x) e^{-i\xi x} \right| dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left| f(x) \right| \left| e^{-i\xi x} \right| \left| e^{-ixh} - 1 \right| dx \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left| f(x) \right| \left| e^{-ixh} - 1 \right| dx \end{aligned}$$

Ker je $\int_{-\infty}^{\infty} |f(x)| dx < \infty$ za vsak $\epsilon > 0$ obstaja tak A > 0, da je:

$$\int_{|x| \ge A} |f(x)| dx < \frac{\epsilon}{4} \sqrt{2\pi}$$

Naj bo $\delta > 0$ tako majhen, da je:

$$\left|e^{-ihx}-1\right|<\frac{\epsilon\sqrt{2\pi}}{2\|f\|_1}; \forall x\in(-A,A)$$

(zaradi zveznosti $x\mapsto e^{-ix}$). Ce je $|x|<\delta$ je $\left|e^{-ix}-1\right|<\frac{\epsilon\sqrt{2\pi}}{2\|f\|_1}$ za $|xh|< ah<\delta$, potem za $x\in (-A,A)$ velja:

$$\begin{aligned} \left| e^{-ihx} - 1 \right| &< \frac{\epsilon \sqrt{2\pi}}{2\|f\|_1} \\ \Rightarrow \left| \hat{f}(\xi + h) - \hat{f}(\xi) \right| &\leq \int_{-A}^{A} |f(x)| \left| e^{-ixh} - 1 \right| dx + \int_{|x| \geq A} |f(x)| \left| e^{-ixh} - 1 \right| dx \\ &\leq \epsilon \frac{\sqrt{2\pi}}{2\|f\|_1} \frac{1}{\sqrt{2\pi}} \int_{-A}^{A} |f(x)| dx + \frac{1}{\sqrt{2\pi}} \int_{|x| \geq A} |f(x)| 2 \, dx \\ &\leq \frac{\epsilon}{2\|f\|_1} \int_{-\infty}^{\infty} |f(x)| dx + \frac{2}{\sqrt{2\pi}} \frac{\epsilon}{4} \sqrt{2\pi} = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{aligned}$$

Dokaz funkcionira če $||f||_1 \neq 0$. Ce je $||f||_1 = 0$ je v tem primeru f zvezna in je $f \equiv 0$ na \mathbb{R} , če je $\hat{f}(\xi) = 0$ $\forall \xi \in \mathbb{R}$.

Podobno če f ni zvezna je $\hat{f}(\xi)=0$, vendar se sklicejo na dejstvo, da je $f\equiv 0$ (nekaj o Lebesguovi meri).

ii)

$$\widehat{fe_t}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{itx}e^{-i\xi x}dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ix(\xi-t)}dx = \widehat{f}(\xi-t)$$

iii)

$$\hat{f}_{[a]}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(ax)e^{-i\xi x} dx =$$

kjer uvedemo ax = y in adx = dy:

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y) e^{-\frac{iy}{a}\xi} \frac{dy}{a} = \frac{1}{a} \hat{f}\left(\frac{\xi}{a}\right)$$

iv) Uvedemo x - t = y

$$\hat{f}_{t}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-t)e^{-ix\xi} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{-i(y+t)\xi} dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{-iy\xi} e^{-it\xi} dy$$
$$= e^{-it\xi} \hat{f}(\xi)$$

vi) Uporabimo per partes

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(x)e^{-i\xi x} dx = \frac{1}{\sqrt{2\pi}} \left(f(x)e^{-ix\xi} \Big|_{-\infty}^{\infty} + i\xi \int_{-\infty}^{\infty} f(x)e^{-ix\xi} dx \right) = i\xi \widehat{f}(\xi) + 0$$

Zato ker je funkcija Lebesgueovo merljiva oz.:

$$\int_{-\infty}^{\infty} |f(x)| dx < \infty \Rightarrow \lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0$$
$$x \ge 0: f(x) = f(0) + \int_{0}^{x} f'(\xi) d\xi$$

Ker je $f' \in L^1(\mathbb{R})$ limita $\lim_{x \to \infty} f(x)$ obstaja in ker je $f \in L^1(\mathbb{R})$ je ta limita 0. Enako za $x \to -\infty$.

Konvolucija funkcij

Naj bosta $f, g: \mathbb{R} \to \mathbb{C}$. Konvolucija (f * g) funkcij je funkcija definirana s predpisom:

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - t)g(t)dt$$

kadar je zgornji integral absolutno konvergenten. To se zgodi zagotovo, ce sta $f,g\in L^1(\mathbb{R})$. Ta integral konvergira absolutno tudi v se bolj posebnih primerih. Npr. f,g sta odsekoma zvezni in ena od njiju pa ima kompakten nosilec. V posebnem primeru ima (f*g) smisel za $f,g\in C_c(\mathbb{R})$

Lastnosti konvolucije funkcij

Veljajo naslednje formule za f, g, $h \in L^1(\mathbb{R})$:

i)
$$(\alpha f + \beta g) * h = \alpha (f * h) + \beta (g * h)$$
 Distributivnost

ii)
$$f * h = g * f$$
 Komutativnost
iii) $f * (g * h) = (f * g) * h$ Asociativnost

Banachov prostor

 $(L^1(\mathbb{R}),*)$ je <u>algebra</u>. Ce $L^1(\mathbb{R})$ opremimo z $\|\cdot\|_1$, dobimo poln normiran prostor, torej <u>Banachov</u> prostor.

Za $f,g \in L^1(\mathbb{R})$ velja $||f * g||_1 \le ||f||_1 ||g||_1$. Iz tega sledi, da je $(L^1(\mathbb{R}),*)$ <u>komutativna Banachova algebra</u>.

Trditev [Fourierova trasformiranka konvolucije]

Za $f, g \in L^1(\mathbb{R})$ velja:

$$\widehat{f * g} = \sqrt{2\pi} \widehat{f} \widehat{g}$$

Dokaz

Naj bosta $f,g \in C_c(\mathbb{R})$ (funkciji s kompaktnim nosilcem). Zato ima funkcija $(t,x) \mapsto e^{-i\xi x} f(x-t)g(t)$ tudi kompaktni nosilec v \mathbb{R}^2 . Zaradi tega lahko uporabimo Fubinijev izrek:

$$\widehat{f * g} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (f * g) e^{-i\xi x} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} f(x - t) g(t) e^{-i\xi x} dt$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} f(x - t) g(t) e^{-i\xi x} dx =$$

Tu uvedemo novo spremenljivko y = x - t:

$$=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}g(t)dt\int_{-\infty}^{\infty}f(y)e^{-i\xi(y+t)}dy=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}g(t)e^{-i\xi t}dt\int_{-\infty}^{\infty}f(y)e^{-i\xi y}dy=\hat{g}\sqrt{2\pi}\hat{f}(y)e^{-i\xi y}dy$$

V splošnem upoštevamo dejstvo, da je $C_c(\mathbb{R})$ gost v $L^1(\mathbb{R})$ in $\left|\hat{f}(\xi)\right| \leq \frac{1}{\sqrt{2\pi}} \|f\|_1$. Ce $f_n \to f$ po točkah $\Rightarrow \hat{f}_n \to \hat{f}$ po točkah \blacksquare .

Odvod konvolucije funkcij

Za odvod si predstavljamo, da odvajamo pod integralom po x. Ce je f zvezno odvedljiva, integral:

$$\int_{-\infty}^{\infty} |f'(x-t)g(t)|dt$$

pa konvergira enakomerno na vsakem končnem intervalu glede na x, potem smemo odvajati po x in velja:

$$(f * g)'(x) = \int_{-\infty}^{\infty} f'(x - t)g(t)dt = (f' * g)(x)$$

Funkcija f je gladka, če je neskončnokrat (zvezno) odvedljiva. Ce ima se kompakten nosilec, dobimo:

$$(f*g)^{(n)}=f^{(n)}*g$$

Schwartzov razrez hitro padajočih funkcij

<u>Schwartzov prostor</u> $S(\mathbb{R})$ <u>hitro padajočih funkcij</u>, sestoji iz vseh neskončnokrat odvedljivih funkcij $f: \mathbb{R} \to \mathbb{C}$, za katere so vse funkcije oblike:

$$x \mapsto f^{(m)}(x) \cdot x^n; \quad \forall m, n \in \mathbb{N}_0$$

omejene.

Ker je funkcija $x \mapsto f^{(m)}(x) \cdot x^n$ omejena iz enakosti:

$$f^{(m)}x^{n+1} = x \cdot f^{(m)}(x) \cdot x^n$$

dobimo:

$$|f^{(m)}(x) \cdot x^n| = \frac{|f^{(m)}(x) \cdot x^{n+1}|}{|x|} \le \frac{M}{|x|} \to 0; (x \to \infty)$$

Zato je:

$$\lim_{x \to \infty} f^{(m)}(x)x^n = \lim_{x \to -\infty} f^{(m)}(x)x^n = 0; \ \forall m, n \in \mathbb{N}_0$$

Lema

$$\mathcal{S}(\mathbb{R}) \subseteq L^1(\mathbb{R})$$

Dokaz

Naj bo $f \in \mathcal{S}(\mathbb{R})$. Spomnimo se da $1/x^{\alpha}$ konvergira za $\alpha > 1$. Ker je $f \in \mathcal{S}(\mathbb{R})$ je funkcija:

$$x \mapsto f(x)(1+x^2)$$

tudi v $S(\mathbb{R})$. Enka pristeta zraven, je zato, da se izognemo polom. Tako potem obstaja $M \ge 0$, da je $|f(x)(1+x^2)| \le M \ \forall x \in \mathbb{R}$:

$$\Rightarrow \int_{-\infty}^{\infty} |f(x)| \le \int_{-\infty}^{\infty} \frac{M}{1 + x^2} dx = M\pi < \infty \quad \blacksquare$$

Katere funkcije so v Schwartzevem razredu?

[Konkretni primeri v zvezku]

Naj bo $f,g \in \mathcal{S}(\mathbb{R})$. Tedaj so naslednje funkcije tudi v $\mathcal{S}(\mathbb{R})$:

- i) $f_t: x \mapsto f(x-t)$
- ii) $f_{[a]}: x \mapsto f(ax); a \neq 0$
- iii) Odvod $f^{(n)} \forall n \in \mathbb{N}$
- iv) pf, kjer je p polinom
- v) f * g

Dokaz [Točke v)]

Preveriti moramo, da je f * g gladka in da je $x \mapsto (f * g)^{(m)} x^n$ omejena $\forall m, n \in \mathbb{N}_0$. [Dokaz naprej v zvezku]

Schwartzov razred za Fouriereve transformiranke

$$f \in \mathcal{S}(\mathbb{R}) \Rightarrow \hat{f} \in \mathcal{S}(\mathbb{R})$$

Dokaz

Dokazati moramo $\hat{f} \in C^{\infty}(\mathbb{R})$ in $\xi \mapsto (\hat{f})^{(n)} \xi^m$ omejena. Preverimo le da \hat{f}' obstaja:

Ker je $f \in \mathcal{S}(\mathbb{R}) \Rightarrow f \in L^1(\mathbb{R})$. Ker je $\chi f \in \mathcal{S}(\mathbb{R})$ je $\chi f \in L^1(\mathbb{R})$, kjer je χ identična funkcija. Po lastnosti Fouriereve transformacije sledi obstoj \hat{f}' .

Dokažimo se omejenost. Po lastnostih Fouriereve transformacije velja:

$$(\hat{f})'(\xi) = -i\widehat{\chi f}(\xi) = -i\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x \, f(x)e^{-i\xi x} dx$$

Predpostavke za to lastnost so $f \in L^1(\mathbb{R})$ in $x \mapsto xf(x)$. Ce uporabimo za isto lastnost funkcijo $x \mapsto xf(x)$ dobimo:

$$(\hat{f})''(\xi) = (-i)^2 \, \widehat{\chi^2 f}(\xi) = (-i)^2 \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^2 f(x) e^{-i\xi x} dx$$

Ker je $f \in \mathcal{S}(\mathbb{R})$, so vse funkcije $x \mapsto x^m f(x)$ tudi v $\mathcal{S}(\mathbb{R})$. Zato lahko naredimo zgornje. Po indukciji dobimo:

$$(\hat{f})^{(n)}(\xi) = (-i)^n \widehat{\chi^n} f(\xi) = (-i)^n \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^n f(x) e^{-i\xi x} dx$$

$$\xi^m (\hat{f})^{(n)} = \xi^m (-i)^n \widehat{\chi^n} f(\xi) = \xi^{m-1} (-i)^n \xi \widehat{\chi^n} f(\xi) = \xi^{m-1} (-i)^n \frac{1}{i} \widehat{\chi^n} f'(\xi) = \cdots$$

$$= \xi^{m-2} (-i)^n \frac{1}{i^2} (\widehat{\chi^n} f)''(\xi) = \cdots = (-i)^n (-i)^m (\widehat{\chi^n} f)^{(m)}$$

Ker je $\xi \mapsto \xi^m f^{(n)}(\xi)$ v $\mathcal{S}(\mathbb{R}) \subseteq L^1(\mathbb{R})$, je funkcija $\widehat{(\chi^n f)^{(n)}}$ omejena po prvi trditvi iz osnovnih lastnosti Fouriereve transformacije.

Inverzna Fouriereva transformacija

Eksponentna funkcija

Ključno vlogo igra funkcija $g_0 \colon \mathbb{R} \to \mathbb{R}; g_0(x) = e^{-x^2/2}$. Velja:

$$\hat{g}_0 = g_0 \quad \widehat{g}_{0[a]} = \frac{1}{a} e^{-\left(\frac{x^2}{2a^2}\right)}; a > 0$$

Dokaz

 $\hat{g}_{\Omega} = q_{\Omega}$

Integriramo funkcijo $z\mapsto e^{-\frac{z^2}{2}}$ po pozitivno orientiranem robu pravokotnika z oglišči $-A,A,A+i\xi,-A+i\xi$. Ker je $z\mapsto e^{-\frac{z^2}{2}}$ holomorfna na $\mathbb C$, je integral po sklenjeni poti po Cauchjevem izreku enak 0. Uporabimo trik.

Po definiciji je:

$$\hat{g}_0(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} e^{-i\xi x} dx = \frac{1}{\sqrt{2\pi}} \lim_{A \to \infty} \int_{-A}^{A} e^{-\frac{1}{2}(x+i\xi)^2} e^{-\frac{\xi^2}{2}} dx = (*)$$

Sedaj vpeljemo novo spremenljivko $z=x+i\xi$, potem integriramo $e^{-\frac{z^2}{2}}$. Ce integriramo teče integral od $-A+i\xi$ do $A+i\xi$. Ker je limita integralov po navpičnicah 0, ko gre $A\to\infty$ dobimo:

$$\lim_{A \to \infty} \int_{-A}^{A} e^{-\frac{1}{2}(x+i\xi)^{2}} dx = \lim_{A \to \infty} \int_{-A}^{A} e^{-\frac{x^{2}}{2}} dx = \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} dx = \sqrt{2\pi}$$

Torej:

$$(*) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\xi^2}{2}} \sqrt{2\pi} = e^{-\frac{\xi^2}{2}}$$

Sedaj se spomnimo da je $(g_0)_{[a]} = g_0(ax)$ in tako dobimo:

$$(\widehat{g_0})_{[a]}(\xi) = \frac{1}{a}\widehat{g}_0(\frac{\xi}{a}) = \frac{1}{a}g_0(\xi) = \frac{1}{a}e^{-(\frac{\xi^2}{2a^2})}$$

Aproksimacija s konvolucijami

Naj bo $g \in L^1(\mathbb{R})$ taka, da je $\int_{-\infty}^{\infty} g(x) dx = 1$. Za $\delta > 0$ definiramo:

$$g_{(\delta)} = \frac{1}{\delta} g\left(\frac{x}{\delta}\right)$$

Tedaj je (uvedemo spremenljivko $t = x/\delta$):

$$\int_{-\infty}^{\infty} g_{(\delta)}(x) dx = \frac{1}{\delta} \int_{-\infty}^{\infty} g\left(\frac{x}{\delta}\right) dx = \int_{-\infty}^{\infty} g(t) dt = 1$$

Ce je na primer $g(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ ima g zgornjo lastnost (Gaussova). Potem jo ima tudi funkcija $g_{(a)}(x)=\frac{1}{a}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2a^2}}$. Ce ima na primer g kompakten nosilec, ga ima tudi $g_{(\delta)}$.

Trditev [Aproksimacija s konvolucijami]

Naj bo $g \in L^1(\mathbb{R})$ taka, da je $\int_{-\infty}^{\infty} g(x) dx = 1$

- i) Tedaj za vsako omejeno zvezno funkcijo $f: \mathbb{R} \to \mathbb{C}$ konvergirajo funkcije $(f * g_{(\delta)})$ proti f enakomerno na vsakem koncnem intervalu [a,b], ko gre $\delta \to 0$.
- ii) Za vsako funkcijo $f \in L^1(\mathbb{R})$ konvergirajo funkcije $(f * g_{(\delta)})$ proti f v normi prostora $L^1(\mathbb{R})$, ko gre $\delta \to 0$.

V posebnem primeru vidimo, da funkcije $f * g_{(\delta)}$ konvergirajo proti f po točkah, ko gre $\delta \to 0$. Na intervalu je [a,b] konvergenca enakomerna in zato tudi po točkah.

Dokaz

[Mogoče ga dodaš, sicer v zvezku] Uporabi se lastnost enakomerne zveznosti, da se preveri enakomerna konvergenca $f * g_{(\delta)}$ proti f.

Posledica

Za vsako zvezno funkcijo z nosilcem v [a, b] in vsak $\epsilon > 0$ obstaja zaporedje gladkih funkcij f_n z nosilci v intervalu $[a - \epsilon, b + \epsilon]$, ki konvergirajo enakomerno proti f.

Weierstrassov aproksimacijski izrek

Za vsako zvezno funkcijo $f:[a,b]\to\mathbb{R}$ in vsak $\epsilon>0$ obstaja polinom $p\in\mathbb{R}[x]$, da $\forall x\in[a,b]$ velja:

$$|f(x) - p(x)| < \epsilon$$

Izrek pravi, da so polinomi gosti v $(C[a,b],d_{\infty})$, kjer je d_{∞} sup. metrika.

Dokaz [Ideja]

Uporabimo to prejšnjo trditev in za g vzamemo Gaussovo jedro $g(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, ki ga razvijemo v Taylorjevo vrsto in vzamemo dovolj pozno delno vsoto. Ta vsota je iskani polinom.

Inverzna formula za Fourierevo transformacijo

Za $f \in \mathcal{S}(\mathbb{R})$ velja:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\xi) e^{ix\xi} d\xi; \ \forall x \in \mathbb{R}$$

- i) To formulo lahko zapišemo kot $f(x) = \hat{f}(-x)$
- ii) S predpisom:

$$\check{f}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(\xi) e^{ix\xi} d\xi$$

za $f \in L^1(\mathbb{R})$ je podana inverzna Fouriereva transformacija.

iii) Zgornja formula ima smisel, ker je $f \in \mathcal{S}(\mathbb{R}) \Rightarrow \hat{f} \in \mathcal{S}(\mathbb{R}) \Rightarrow \hat{f} \in L^1(\mathbb{R})$

Opomba

Ce je tu $f \in L^1(\mathbb{R})$, ki ni nujno Schwartzeva funkcija in če je se $\hat{f} \in L^1(\mathbb{R})$, potem se vedno velja:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\xi) e^{i\xi x} d\xi$$

za <u>skoraj vse $x \in \mathbb{R}$.</u> To pomeni, da enakost ne velja na množici z Lebeguesovo mero 0 (npr. števne množice). Ce se funkciji ujemata povsod razen na množici z ničelno mero in sta obe v $L^1(\mathbb{R})$, potem se tudi integrala ujemata. To v praksi pomeni, da po navadi te funkcije enačimo.

Dokaz [Inverzne formule]

Glavna ideja: Iz \hat{f} pod integralom želimo dobiti f (brez strehe). Dodali bomo funkcijo g, na katero bo ta streha prešla (kot per partes, ki prestavi odvod, samo to ni per partes). Veljati mora $g \in L^1(\mathbb{R})$. Vzamemo:

$$g(\xi) = e^{-\frac{1}{2}a^2\xi^2}; a > 0$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\xi) e^{ix\xi} e^{-\frac{1}{2}\alpha^2\xi^2} d\xi = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\xi \int_{-\infty}^{\infty} f(t) e^{i(x-t)\xi} e^{-\frac{1}{2}\alpha^2\xi^2} dt =$$

ker sta integrala absolutno konvergentna, lahko zamenjamo vrstni red pri integraciji:

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)dt \int_{-\infty}^{\infty} e^{-i(t-x)\xi} e^{-\frac{1}{2}a^{2}\xi^{2}} d\xi = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \widehat{(g_{0})}_{[a]}(t-x) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \widehat{(g_{0})}_{[a]}(x-t) dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \frac{1}{a} e^{-\frac{(x-t)^{2}}{2a^{2}}} dt =$$

Uvedemo novo spremenljivko y = x - t:

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-y) \frac{1}{a} e^{-\frac{y^2}{2a^2}} dy = \int_{-\infty}^{\infty} f(x-y) (g)_{[a]}(y) dy = (f * g_{[a]})(x)$$

Torej smo dokazali:

$$(f * g_{[a]})(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\xi) e^{i\xi x} e^{-\frac{1}{2}a^2\xi^2} d\xi$$

Sedaj pošljemo $a \to 0$. Ker je $\hat{f} \in \mathcal{S}(\mathbb{R}) \subseteq L^1(\mathbb{R})$, se da dokazati, da desna stran konvergira proti:

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\hat{f}(\xi)e^{i\xi x}d\xi$$

Leva stran pa po trditvi o aproksimaciji s konvolucijami konvergira proti $f(x) \equiv$.

Riemann-Lebesgueova lema

Za funkcijo $f \in L^1(\mathbb{R})$ velja:

$$\lim_{|\xi| \to \infty} \hat{f}(\xi) = 0$$

Dokaz

Naj bo f najprej $f = \chi_{[a,b]}$. Tedaj je:

$$\left|\hat{f}(\xi)\right| = \left|\frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{-i\xi x} dx\right| = \left|\frac{e^{-ib\xi} - e^{-ia\xi}}{-\sqrt{2\pi}i\xi}\right| \le \frac{2}{\sqrt{2\pi}} \frac{1}{|\xi|} \to 0; (|\xi| \to \infty)$$

Ker je Fouriereva transformacija linearna, trditev velja tudi v primeru, ko je f oblike:

$$f = \lambda_1 \chi_{[a_1,b_1]} + \dots + \lambda_n \chi_{[a_n,b_n]}$$

Naj bo sedaj $f \in C_c(\mathbb{R})$. Tedaj je f ničelna izven [a,b]. Ker je f enakomerno zvezna na [a,b], za $\epsilon > 0$ obstaja taka delitev $a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$, da je:

$$|f(t) - f(t')| < \frac{\epsilon}{b - a}$$

če sta t in t' v istem delitvenem intervalu.

Izberemo $t_i \in [x_{i-1}, x_i]$ in definiramo:

$$s(x) = \sum_{j=1}^{n} f(t_j) \chi_{[x_{j-1}, x_j]}$$

Izračunajmo:

$$||f - s||_1 = \int_a^b |f(x) - s(x)| dx = \sum_{j=1}^n \int_{x_{j-1}}^{x_j} |f(x) - s(x)| dx = \sum_{j=1}^n \int_{x_{j-1}}^{x_j} |f(x) - f(t_j)| dx$$

$$\leq \sum_{j=1}^n \frac{\epsilon}{b - a} (x_j - x_{j-1}) = \frac{\epsilon}{b - a} ((x_1 - x_0) + (x_2 - x_1) + \dots + (x_n - x_{n-1})) = \epsilon$$

Zapišemo:

$$f = f - s + s$$

Ker je

$$\begin{aligned} \left| \hat{f}(\xi) \right| &= \left| (\widehat{f - s} + s)(\xi) \right| = \left| (\widehat{f - s})(\xi) + \hat{s}(\xi) \right| \le \left| (\widehat{f - s})(\xi) \right| + \left| \hat{s}(\xi) \right| \le \frac{1}{\sqrt{2\pi}} \|f - s\|_1 + \left| \hat{s}(\xi) \right| \\ &\le \frac{\epsilon}{\sqrt{2\pi}} + \left| \hat{s}(\xi) \right| \end{aligned}$$

Ker za s velja trditev, obstaja tak M > 0, da je $|\hat{s}(\xi)| < \epsilon$, ce je $|\xi| \ge M$. Za tak ξ velja:

$$\left|\hat{f}(\xi)\right| \le \epsilon \left(1 + \frac{1}{\sqrt{2\pi}}\right)$$

Zato tudi f zadošča Riemann-Lebesgueovi lemi. Ce je $f \in L^1(\mathbb{R})$ poljubna, najdemo tako funkcijo $s \in C_c(\mathbb{R})$, da je $\|f - s\|_1 < \epsilon$. Tedaj po zgoraj dokazanem obstaja tak M' > 0, da velja:

$$|\hat{s}(\xi)| < \epsilon; |\xi| \ge M'$$

To pomeni:

$$\left|\hat{f}(\xi)\right| \le \left|\left(\hat{f} - \hat{s}\right)(\xi)\right| + \left|\hat{s}(\xi)\right| \le \frac{\epsilon}{\sqrt{2\pi}} + \epsilon$$

Plancheretov izrek

Fouriereva transformacija $\mathcal{F}: L^1(\mathbb{R}) \to C_0(\mathbb{R})$ slika L^1 funkcije v zvezne funkcije, ki gredo proti 0 v neskončnosti (glej Riemann-Lebesgueovo lemo). Po drugi strani pa velja:

$$\mathcal{F}: \mathcal{S}(\mathbb{R}) \to \mathcal{S}(\mathbb{R}); \ f \in \mathcal{S}(\mathbb{R}) \Rightarrow \hat{f} \in \mathcal{S}(\mathbb{R})$$

Ce opremimo $\mathcal{S}(\mathbb{R})$ z $\|\cdot\|_1$, je zaradi $\mathcal{C}_c(\mathbb{R})\subseteq\mathcal{S}(\mathbb{R})\subseteq L^1(\mathbb{R})$ prostor $\mathcal{S}(\mathbb{R})$ gost v $L^1(\mathbb{R})$. Zato bi načeloma \mathcal{F} razsirili po zveznosti na $L^1(\mathbb{R})$ ampak s tem ne bi dobili nič novega. Radi bi razširili na nekaj drugega.

Lema

Fouriereva transformacija $\mathcal{F}: \mathcal{S}(\mathbb{R}) \to \mathcal{S}(\mathbb{R})$ je bijektivna.

Dokaz

Ce je $f \in \mathcal{S}(\mathbb{R}) \Rightarrow \hat{f}, \hat{\hat{f}}, \hat{\hat{f}}, ... \in \mathcal{S}(\mathbb{R})$. Inverzna formula pravi $\mathcal{F}^2(f)(x) = f(-x)$. Ce je $g = \mathcal{F}^2(f)$:

$$(\mathcal{F}^2 g)(x) = g(-x) \Rightarrow \mathcal{F}^4(f)(x) = \mathcal{F}^2(f)(-x) = f(-(-x)) = f(x)$$
$$\Rightarrow \mathcal{F}^4 = Id$$

Ce je $a \circ b = Id$ potem je a surjektivna in b injektivna. Iz tega sledita **surjektivnost** $\mathcal{F} \circ (\mathcal{F}^3)$ in **injektivnost** $\mathcal{F}^3 \circ \mathcal{F}$. Iz tega sledi, da je \mathcal{F} **bijektivna** \blacksquare .

Skalarni produkt na $\mathcal{S}(\mathbb{R})$

Definirajmo:

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx; \quad f, g \in \mathcal{S}(\mathbb{R})$$

Preslikava $\langle \cdot, \cdot \rangle$ je dobro definiran skalarni produkt na $\mathcal{S}(\mathbb{R})$.

Dokaz [Dobra definiranost]

Dokažimo, da integral konvergira absolutno. Upoštevamo, da sta $f,g \in \mathcal{S}(\mathbb{R})$ in sta torej omejeni:

$$|f(x)\overline{g(x)}| < \frac{1}{2}(|f(x)|^2 + |g(x)|^2) < \frac{M}{2}(|f(x)| + |g(x)|)$$

 $\operatorname{Ker} f, g \in \mathcal{S}(\mathbb{R}) \subseteq L^1(\mathbb{R})$ integral konvergira in zato nas integral konvergira absolutno \blacksquare .

Norma in pripadajoča metrika

Ker je $\langle \cdot, \cdot \rangle$ skalarni produkt na $\mathcal{S}(\mathbb{R})$ je:

$$||f||_2 = \sqrt{\langle f, f \rangle}$$

norma na $S(\mathbb{R})$. Pripadajoča metrika je definirana kot:

$$d_2(f,g) = ||f - g||_2$$

Trditev [Fouriereva transformacija ohranja skalarni produkt]

Za $f, g \in \mathcal{S}(\mathbb{R})$ velja:

$$\langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle$$

Ce je g = f dobimo:

$$||f||_2 = ||\hat{f}||_2$$
 $d_2(f,g) = ||f-g||_2 = ||\widehat{f-g}||_2 = ||\widehat{f}-\widehat{g}||_2 = d_2(\widehat{f},\widehat{g})$

Zato je Fouriereva transformacija na $\mathcal{S}(\mathbb{R})$ <u>bijektivna izometrija</u>.

Dokaz

Za dokaz uporabimo inverzno Fourierevo transformacijo:

$$\langle f,g\rangle = \int_{-\infty}^{\infty} f(x)\overline{g(x)}dx = \int_{-\infty}^{\infty} f(x)dx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \overline{\widehat{g}(\xi)}e^{ix\xi}d\xi = \int_{-\infty}^{\infty} \overline{\widehat{g}(\xi)}d\xi \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\xi x}dx$$
$$= \int_{-\infty}^{\infty} \widehat{f}(\xi)\overline{\widehat{g}(\xi)}d\xi = \langle \widehat{f},\widehat{g} \rangle \quad \blacksquare$$

Hilbertov prostor

Ce je $(V, \langle \cdot, \cdot \rangle)$ prostor s skalarnim produktom, potem ga opremimo z normo $||v|| = \langle v, v \rangle$ oz. metriko podano z normo d(u, v) = ||u - v||. Ce je (V, d) **poln metrični prostor**, potem je $(V, \langle \cdot, \cdot \rangle)$ **Hilbertov prostor**.

Unitarni operator

<u>Unitarni operator</u> $U: H \to H$, kjer je H Hilbertov prostor, je tak operator (linearna preslikava) za katero velja:

$$U^*U = UU^* = I_H$$

Oz. Ekvivalentno je, da je U surjektiven in $\langle Ux, Uy \rangle = \langle x, y \rangle$; $\forall x, y \in H$

Oz. Ekvivalentno je, da je U surjektiven in ||Ux|| = ||x||; $\forall x \in H$.

Prostor $L^2(\mathbb{R})$

Prostor $L^2(\mathbb{R})$ definiramo kot napolnitev prostora glede na d_2 definirano kot:

$$d_2(f,g) = \left[\int_{-\infty}^{\infty} |f(x) - g(x)|^2 dx \right]^{\frac{1}{2}}$$

Ali so Schwartzove funkcije vsebovane v $L^2(\mathbb{R})$?

Vemo $C_c(\mathbb{R}) \subseteq L^2(\mathbb{R})$. Kaj pa $C_c(\mathbb{R}) \subseteq \mathcal{S}(\mathbb{R}) \subseteq L^2(\mathbb{R})$?

 $f \in \mathcal{S}(\mathbb{R}) \Rightarrow \exists M > 0$, da je $|f(x)| \leq \frac{M}{1+x^2} \Rightarrow |f(x)|^2 \leq \frac{M^2}{(1+x^2)^2}$. Ker obstaja $\int_{-\infty}^{\infty} \frac{M^2}{(1+x^2)^2} dx < \infty$, je $f \in L^2(\mathbb{R})$. Torej so $\mathcal{S}(\mathbb{R})$ goste v $L^2(\mathbb{R})$.

Izrek: Plancheretov izrek

Fourierevo transformacijo lahko iz prostora $\mathcal{S}(\mathbb{R})$ enolicno razsirimo do unitarnega operatorja na Hilbertovem prostoru $L^2(\mathbb{R})$.

Dokaz [Plancheretov izrek]

Naj bo $f \in L^2(\mathbb{R})$. Definirajmo \hat{f} . Naj bo $(f_n)_{n \in \mathbb{N}}$ v $\mathcal{S}(\mathbb{R})$, ki konvergira proti f v $L^2(\mathbb{R})$. Zato je $(f_n)_{n \in \mathbb{N}}$ Cauchyjevo. Ker je :

$$||f_n - f_m|| = ||\hat{f}_n - \hat{f}_m||$$

je $(\hat{f}_n)_{n\in\mathbb{N}}$ Cauchyjevo v $\mathcal{S}(\mathbb{R})\subseteq L^2(\mathbb{R})$. Zato obstaja:

$$f_0 = \lim_{n \to \infty} \hat{f}_n$$

Definirajmo $\hat{f} = f_0$. Ali je ta definicija dobra?

Naj bo $(g_n)_{n\in\mathbb{N}}$ neko drugo zaporedje v $\mathcal{S}(\mathbb{R})$, ki konvergira proti f. Zato gre $(f_n-g_n)\to 0$. Ker je:

$$\|\hat{f}_n - \hat{g}_n\| = \|f_n - g_n\| \to 0$$

in ker je $\hat{f}_n \to f_0$, tudi $\hat{g}_n \to f_0$. Zato je f_0 neodvisen od izbire zaporedja (npr. $(f_n)_{n \in \mathbb{N}}$), ki konvergira k f. Tako je naša razširitev definirana s predpisom:

$$\hat{f} = \lim_{n \to \infty} \hat{f}_n$$

dobra. Skalarni produkt na $L^2(\mathbb{R})$ definiramo preko limite. Ce sta $f,g\in L^2(\mathbb{R})$, potem poiscemo zaporedji $(f_n)_{n\in\mathbb{N}}$ in $(g_n)_{n\in\mathbb{N}}$ v $\mathcal{S}(\mathbb{R})$ ali $\mathcal{C}_c(\mathbb{R})$ taki, da $f_n\to f$ in $g_n\to g$. Definiramo:

$$\langle f, g \rangle = \lim_{n \to \infty} \langle f_n, g_n \rangle$$

To je dobro definiran skalarni produkt na $L^2(\mathbb{R})$, ki porodi polno metriko d_2 . Iz tega sledi, da je $L^2(\mathbb{R})$ Hilbertov prostor.

Preverimo ali Fouriereva transformacija ohranja ta skalarni produkt:

$$\langle \hat{f}, \hat{g} \rangle = \langle f, g \rangle; \quad f, g \in L^2(\mathbb{R})$$

$$\langle \hat{f}, \hat{g} \rangle = \lim_{n \to \infty} \langle \hat{f}_n, \hat{g}_n \rangle = \lim_{n \to \infty} \langle f_n, g_n \rangle = \langle f, g \rangle$$

Preverimo se surjektivnost:

$$\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$$

Ce je $f\in L^2(\mathbb{R})$ obstaja zaporedje funkcij $(f_n)_{n\in\mathbb{N}}\subseteq\mathcal{S}(\mathbb{R})$, da $f_n\to f$. Tedaj velja:

$$\hat{f}_n \to \hat{f} \Rightarrow \hat{\hat{f}}_n \to \hat{\hat{f}} \Rightarrow \hat{\hat{f}}_n \to \hat{\hat{f}} \Rightarrow \hat{\hat{f}}_n \to \hat{\hat{f}} \Rightarrow \hat{\hat{f}}_n \to \hat{\hat{f}} = f_n \to f$$

Tako vidimo, da je $\mathcal{F}^4=Id$ na $L^2(\mathbb{R})$ in iz tega sledi, da je \mathcal{F} **surjektivna** na $L^2(\mathbb{R})$ **.**