Introdução à Arquitetura de Computadores Exercícios Complementares às Aulas Teórico-Práticas

Bloco 2 - Álgebra de Boole

Considere as seguintes tabelas de verdade:

	a)			b))				c)			(d)					e)
Α	В	Υ	Α	В	Υ	Α	В	С	Υ	Α	В	С	Υ	Α	В	С	D	Υ
0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1
0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	1	1
1	0	1	1	0	1	0	1	0	0	0	1	0	1	0	0	1	0	1
1	1	1	1	1	1	0	1	1	0	0	1	1	0	0	0	1	1	1
						1	0	0	0	1	0	0	1	0	1	0	0	0
						1	0	1	0	1	0	1	1	0	1	0	1	0
						1	1	0	0	1	1	0	0	0	1	1	0	0
						1	1	1	1	1	1	1	1	0	1	1	1	0
														1	0	0	0	1
														1	0	0	1	0
														1	0	1	0	1
														1	0	1	1	0
														1	1	0	0	0
														1	1	0	1	0
														1	1	1	0	1
														1	1	1	1	0

- 1. Escreva a equação booleana na forma canónica de soma de produtos (mintermos) para as tabelas de verdade a), b), c) e d).
- 2. Escreva a equação booleana na forma canónica de produto de somas (maxtermos) para as tabelas de verdade a), b) e e).
- 3. Usando os teoremas da Álgebra de Boole minimize as equações que obteve na pergunta 1.
- 4. Represente o circuito de lógica combinatória que implementa a função representada na tabela de verdade a) e que corresponde à forma canónica obtida na questão 1. Compare o circuito que obteve com o circuito que corresponde à forma simplificada da equação que obteve na questão 3.
- 5. Usando um mapa de Karnaugh determine uma equação simplificada que represente a função da tabela e).
- 6. Usando os teoremas da Álgebra de Boole, simplifique as funções seguintes:
 - a. $Y = AC + \bar{A}\bar{B}C$
 - b. $Y = \overline{A}\overline{B} + \overline{A}B\overline{C} + \overline{(A + \overline{C})}$
 - c. $Y = \bar{A}BC + \bar{A}B\bar{C}$
 - d. $Y = \overline{ABC} + A\overline{B}$
- 7. Usando a tabela de verdade verifique a correção das simplificações que obteve na questão anterior.
- 8. Usando mapas de Karnaugh verifique as simplificações que obteve na questão 6.
- 9. Usando o método da indução perfeita mostre que $\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$.
- 10. Escreva a equação lógica implementada no circuito da figura seguinte.

- a. Simplifique a equação que obteve e implemente o circuito correspondente à equação simplificada.
- 11. Usando um mapa de karnaugh simplifique ao máximo a função representada na tabela e) e de seguida esboce o circuito que implementa essa equação.

Soluções

1. a)
$$Y = \overline{A}\overline{B} + A\overline{B} + AB$$

b)
$$Y = A\overline{B} + AB$$

c)
$$Y = \bar{A}\bar{B}\bar{C} + ABC$$

d)
$$Y = \bar{A}\bar{B}\bar{C} + \bar{A}B\bar{C} + A\bar{B}\bar{C} + A\bar{B}C + ABC$$

2. a)
$$Y = A + \overline{B}$$

b)
$$Y = (A+B)(A+\bar{B})$$

e)
$$Y = (A + \bar{B} + C + D)(A + \bar{B} + C + \bar{D})(A + \bar{B} + \bar{C} + D)(A + \bar{B} + \bar{C} + \bar{D})$$

$$(\bar{A}+B+C+\bar{D})(\bar{A}+B+\bar{C}+\bar{D})(\bar{A}+\bar{B}+C+D)(\bar{A}+\bar{B}+C+\bar{D})(\bar{A}+\bar{B}+\bar{C}+\bar{D})$$

3. a)
$$Y = A + \overline{B}$$

b)
$$Y = A\overline{B} + AB = A$$

c) Não é simplificável.

d)
$$Y = \bar{A}\bar{C} + A\bar{B} + AC$$

4.

5.
$$Y = \overline{A}\overline{B} + AC\overline{D} + \overline{B}\overline{D}$$

AB CI	00	01	11	10
00	(1)	1	1	Θ
01	0	0	0	Q
11	0	0	0	(1)
10	1	0	0	(1)

6. a)
$$Y = AC + \overline{B}C$$

b)
$$Y = \bar{A}$$

c)
$$Y = \bar{A}B$$

$$Y = \bar{A} + \bar{B} + \bar{C}$$

10.
$$Y = \bar{A}\bar{B}\bar{C} + A\bar{B}\bar{C} + A\bar{B}C$$

$$Y = \bar{B}\bar{C} + A\bar{B}$$

11. Ver resposta 5.

