

1 Unbekannte Impedanz

Es sei: $R = 5\Omega$; $X_L = 8\Omega$; $U_0 = 50V \angle 45^\circ$, $I_0 = 2.5A \angle -15^\circ$.

Bestimmen sie \underline{Z}_x .

[Lösung: $10.56\Omega \angle 61,7^{\circ}$]

2 Frequenz bestimmen

Es sei R = 8 Ω und C = 30 μ F. Bei welcher Frequenz f eilt der Strom \underline{I}_1 der Spannung \underline{U}_1 um 30° voraus.

[f = 1149 Hz]

3 Bestimmung der Werte von Bauelementen

Eine Schaltung habe eine Impedanz \underline{Z} = 6.22 k Ω \angle -64.2° bei einer Frequenz f = 3 MHz.

Bestimmen Sie die Werte der Komponenten

- a) wenn Sie aus einer Serienschaltung besteht und
- b) wenn Sie aus einer Parallelschaltung besteht.

[Lösung: a) $2,71k\Omega$, 9,47pF; b) 70μ S, 7,67pF]

4 Belasteter Spannungsteiler

 a) Bestimmen Sie die Gleichung für die Gesamtimpedanz des belasteten Spannungsteilers in allgemeiner Form.

Für b) und c) sei: \underline{U} = 100V; R = 10 Ω ; L = 0,10H; f = 50Hz.

- b) Bestimmen Sie den Strom I.
- c) Bestimmen Sie das Verhältnis <u>Up/U</u>.
- d) Eilt Up voraus oder folgt es U?

[Lösung a) \underline{Z} =(2R²+j3 ω LR)/(2R+j ω L) b) 3.86A \angle -20.5° c) 0.65 \angle 11.98°]

5 Induktivitätsmessung

Zur Bestimmung der Induktivität L und des ohmschen Widerstandes R einer Drossel bauen Sie eine Wechselstrom-Messbrücke mit Hilfe von zwei Festwiderständen von jeweils $100~\Omega$, einem Drehkondensator und einem Potentiometer auf. Sie verwenden einen Sinusgenerator mit einer Frequenz von 800~Hz zur Anregung der Messbrücke und nehmen die Ausgangsspannung der Brückenschaltung mit einem Kopfhörer ab. Der deutlich vernehmbare Ton verschwindet, wenn der Wert des Drehkondensators 470~nF und der Wert des Potentiometers $189~\Omega$ beträgt.

Aufgabe:

- a) Benennen und skizzieren Sie die Messbrückenschaltung.
- b) Ermitteln Sie die Induktivität L und den Widerstand R der Spule.
- c) Welchen Einfluss hat die Frequenz auf das Ergebnis?
- d) Wie beeinflusst der angeschlossene Kopfhörer das Messergebnis?

[Lösung: a) Maxwell-Wien-Brücke, b) L = 4,7 mH, R = 52,9 Ω , c) unabhängig von f, d) gar nicht]

6 Kapazitätsmessung

Ein kapazitiver Drucksensor besteht aus einer kreisförmigen metallischen Membran mit dem Radius r = 13 mm, die sich im Ruhezustand (Differenzdruck $\Delta p = 0$) in einem Abstand von d = 0.1 mm von einer ebensogroßen festen Elektrode befindet. Die Membran bildet mit der Elektrode den Plattenkondensator C1. Die Membran bewegt sich proportional zum Differenzdruck um den Abstand x von der Ausgangslage auf die feste Elektrode zu. Bei $\Delta p = 10$ Pa beträgt die Auslenkung x = 33 μm .

Es stehen Ihnen neben einem Sinusgenerator, den sie auf eine Ausgangsamplitude von $\hat{U}=10$ V einstellen, ein Oszilloskop (hochohmig), zwei identische Widerstände und ein Kondensator mit der Kapazität von $C_2=47$ pF zur Verfügung. Die parasitären Elemente der Kondensatoren sollen vernachlässigt werden. Es gilt $\epsilon_T=1$ und damit $\epsilon=\epsilon_0=8,854$ 10^{-12} F/m.

Aufgabe:

- a) Bestimmen Sie die Kapazität des Plattenkondensators C_1 für $\Delta p = 0$ und für $\Delta p = 10$ Pa.
- b) Skizzieren Sie die Brückenschaltung zur Messung des Druckes.
- c) Wie groß ist die Amplitude der Ausgangsspannung \hat{U}_a der Messbrücke bei $\Delta p = 0$ und bei $\Delta p = 10$ Pa?
- d) Wie hoch ist die Empfindlichkeit der Messbrücke Û_a/Δp

[Lösung: a) Mit $C_1 = \epsilon$ A/(d-x) folgt für $\Delta p = 0 \Leftrightarrow x = 0$: $C_1 = 47.0$ pF und für $\Delta p = 10$ Pa $\Leftrightarrow x = 33$ µm $C_1 = 70.2$ pF. b) Kapazitätsmessbrücke, aber ohne R_1 und R_2 , c) bei $\Delta p = 0$ $\hat{U}_a = 0$ und bei $\Delta p = 10$ Pa $\hat{U}_a = 0.99$ V, d) Empfindlichkeit beträgt $\hat{U}_a/\Delta p = 0.099$ V/Pa]