11) \(\times (\times q \times r)

р	q	r	q -> r	p ∧ q	p -> (q -> r)	(p ∧ q) -> r	$(p -> (q -> r)) < -> ((p \land q) -> r)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	F	F	Т
Т	F	Т	Т	F	Т	Т	Т
Т	F	F	Т	F	Т	Т	Т
F	Т	Т	Т	F	Т	Т	Т
F	Т	F	Т	F	Т	Т	Т
F	F	Т	Т	F	Т	Т	Т
F	F	F	Т	F	Т	Т	Т

13b) The statements prove logical equivalence. I basically just built the chart and found the truth values for $(p \rightarrow q)$ and tested $(p \rightarrow q)$ against $(p \rightarrow q)$ which is just the opposite values of the former. I then tested the $(p \land q)$ against $(p \rightarrow q)$. It essentially looks at the truth values of p and $(p \rightarrow q)$ and checks to see if both values evaluate to T. If not, then the cell is F because both values need to evaluate to T.

evaluate to 1.								
р	q	~q	(b -> d)	~(p -> q)	(p ∧ ~q)			
Т	Т	F	Т	F	F			
Т	F	Т	F	Т	Т			
F	Т	F	Т	F	F			
F	F	Т	Т	F	F			

15) Not Logically Equivalent - refer to last two columns to see why.

р	q	r	(q -> r)	(p -> q)	p -> (q -> r)	(p ->q) -> r
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	F	F
Т	F	Т	Т	F	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	Т	Т	Т	Т
F	Т	F	F	Т	Т	F
F	F	Т	Т	Т	Т	Т
F	F	F	Т	Т	Т	F

- **20a)** p is a square and p is not a rectangle.
- 20b) Today is NYE and tomorrow isn't January
- **20c)** The decimal expansion of r is terminating, and r is not rational.
- **20d)** n is prime and n is neither odd nor 2.
- **20e)** x is non-negative and x is neither positive nor 0.
- **20f)** Tom is Ann's father, and either Jim is not her Uncle or Sue is not her Aunt.
- 20g) n is divisible by 6 and either n is not divisible by 2 or n is not divisible by 3.
- 43) If Jim wants to pass the course, then he needs to do his homework regularly.
- **45)** If this computer program is correct, then it will not produce errors messages during translation.