

NO	SHEAR AND BENDING IN BEAMS
	A. TRANSVERSE TEST
•	Objective: To find the modulus of elasticity of the given
	specimen.
•	Apparatus Required: > 10 tons Universal Testing Machine (UTM)
	Dist gauge to measure deflections
	→ Scale or measuring tape
•	Theoly: An axis in the cross-section of a beam at half along
	which there is no longitudinal stress or strain is called
	Neutral Axis. All layers on one side of the neutral axis
	are in a state of tension while those on the
	apposite side are in compression Radius of curvature of
	neuteral swiface of a beam subjected to pure bending,
	within elastic earge is
	L = M P EJ
	P EI
	Rodius of survature is also 1 = 028/dx2
	Rodius of curvature is also $1 = \frac{J^2y/dx^2}{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{3/2}}$
neer [©]	neglecting dy,2, we have
	$\frac{d^2y}{dx^2} = M$

Observation Table

TABLE:1 L	OADING
LOAD (KN)	DEFLECTION (mm)
g-810	0.050
14.715	0.070
19.620	0-090
24.525	0.110
29.430	0.130
34 . 335	0.150
39,240	0.170
44.145	0.195
49.050	0-220
53.955	0.240
58-860	0.255
63.765	0.270
68-670	0.300

TABLE:2	UNLOADING
LOAD	DEFLECTION
(KN)	(mm)
68.670	0.300
63.765	0-300
58-860	0-299
53.95 5	0-280
49.050	0.260
44.145	0-240
39.240	0.210
34-335	0-190
29-430	0.170
24.525	0.150
19-620	0-125
14-715	0.105
9.810	0-080
4.905	0-060
0	0-020

NO.	
_ -	Boundary conditions for a simply supported beam is st x=0, y=0
	and as $x=L$, $y=0$
	We get maximum deflection $y = PI^3$ where $f = mg$ $48EI$
	the maximum deflection is at the centre of the beam
	l → length of unsupported beam
	1 - second moment of area about neutral axis
	$E = ml^3$
	bd3
	m'→ slope of load vs. deflection geaph
	me angle age moves to augment of age
	Procedure:
17	Measured the dimensions of the specimen and held it on the
-	supports on the UTM. Made sure that the specimen is symmetrically
	placed
2)	Mounted the dial gauge so that it touched the mid section of
ments that yet the same	the beam.
3)	The motor was started and the load was applied gradually.
4)	The values of load and corresponding deflection on the dial
The second way	gauge was noted.
5.)	The care that the elastic limit is not exceeded was taken.
ncer®	
1	Observation:
	For the specimen, length = 300 mm
	hight = 55 mm
	width = 55 mm
_	

EXPT. NO. acalculations: $ly = \frac{1}{12} Wh^3 = \frac{1}{12} \times 55 \times (55)^3 mm^4$ = Jy = 7.626 x 10⁵ mm⁴ calculating & for both loading and unloading at P= 29.43 KN For loading fat 29.43 KN = 0.13 mm :. $E_1 = 29.43 \times 10^3 \times (300)^3 \times (10^{-3})^3$ 48 x 0-13 x10-3 x 7-626x 105 x (10-3)4 $= 16.7 \times 10^{10} \text{ N/m}^2$ For unloading, & st 29.43 KN = 0.17 mm $\therefore E_3 = 29.43 \times 10^3 \times (300)^3 \times (6^{-3})^3$ 48 x 0.17 x 10-3 x 7.626 x 105 x 10-12 = 12.769 × 1010 N/m2 E2 = 127.69 GPa $F_{average} = \frac{E_1 + E_2}{2}$ Envirage = 147.345 GIPa Result: The overage value of E 18 147.345 GiPa PIONEER® 1 Discussions: > The load should show linear relationship with displacement and out plot of lood is differement shows the linear

DATE		PAGE NO. 12
liolis		
XPT. NO.		
3	relationship too.	
>	From the table, Emild steel = 205 GiPa	
And the contract of the contra	From the table, Emild steel = 205 GPa :- % error = 205 - 147.345 x 100%	
a postalista	205	
	= 28.124%	

NO.

SHEAR	AND	BENDING	IN	BEAMS
- ^	la canada de la composição			1

B. SHEAR TEST

O Objective: To find the stear strength of the given material

@ apparatus Required: > 10 tons universal Testing Machine (UTM) I shear Jest attachments and specimen

P Micrometer.

Despecifications: In this experiment, the specimen provided was subjected to double shear. This increases the load which it can withstand. Balts are often used in double shear thus increasing safety.

Breaking load = P (found from experiment) shear strength = P

A - Acua of cross section.

Procedure:

1) Measurement of the diameter of the specimen using micrometer was taken.

2) The specimen was fitted in the shearing attachments.

The shearing attachments onto the UTM were installed.

4) The motor was started and the load was applied gradually 5) The lood was increased up to the failure of the specimen due

oudinieu by Cantocannei

3	The load swading was noted down when the specimen got		
	sheared roff.		
(Observations and calculations:		
	$d_{bottom} = 9.40 mm$		
	i diameter of the specimen 1 - 0 107 mm (during as)		
	: Diameter of the specimen, $d = 9.423 \text{ mm}$ (Average) Cross sectional area = $11d^2 = 71 \times (9.423)^2 \text{ mm}^2$ 4		
	= 69.738 mm ²		
	:. Shear strength = P 2A		
	Here, Break Load, P = 66.46275 KN		
	$\therefore \text{ shear strength} = \underline{66462.75} N$ $2 \times 60.770 mm^2$		
	2 × 69-+38		
	$= 476.517 N$ mm^2		
	= 476.517 MPa		
	D Robert :		
oneer®	The value of shear strength as obtained from the experiment is 476-517 MPa		
_	discussions:		

PAGE NO.

15

I. NO.

116

For shear test, the shear load was double shear thus the load The load should not be increased rafter fracture or every rafter yielding starts in the material.