Dunya Oguz 40181540 Hugo Joncour 40139230 Sarabraj Singh 29473858 John Purcell 27217439

Assignment 1

Theoretical Part:

1) What is the largest size n of problem which can be solved in one second by an algorithm with the following running time functions, in microseconds (1 second = 1,000,000 microseconds)?

A: $log_2(n)$

$$log_2(n) = 1000000$$

$$n = 2^{1000000}$$

B: \sqrt{n}

$$\sqrt{n} = 1000000$$

$$n^{(1/2)} = 1000000$$

$$n = (10^6)^2$$

$$n = 10^1 2$$

C: n

$$n = 1\,000\,000$$

 $D: n^2$

$$n^2 = 1 \ 000 \ 000$$

$$n^2 = 10^6$$

$$n = 10^{3}$$

E Option 1: $log_2 n^{\left(log_2(n)\right)}$

$$log_2 n^{\left(log_2(n)\right)} = 10^6$$

$$log_2n * log_2n = 10^6$$

$$(log_2n)^2 = 10^6$$

$$log_2 n = 10^3$$

$$2^{10^3} = n$$

$$n = 1.07151 * 10^{301}$$

Dunya Oguz 40181540 Hugo Joncour 40139230 Sarabraj Singh 29473858 John Purcell 27217439 E Option 2: $log_2(n)^{(log_2(n))}$

$$log_2(n)^{(log_2(n))} = 1000000$$
$$(log_2(n))^{(log_2(n))} = 10^6$$

Let's assume $log_2(n) = y$, then $y^y = 10^6$

Solving for y: $y = \frac{log_e(10^6)}{LambertW(log_e(10^6))}$

But
$$y = log_2(n)$$
 so $log_2(n) = \frac{log_e(10^6)}{LambertW(log_e(10^6))}$

so
$$n = 2^{\left(\frac{12.8155}{1.9552}\right)}$$

so $n \approx 133.973$

2) Justify the following statements using the "big-Oh" definition:

A: $(n + 25)^2$ is $O(n^2)$

$$n^2 + 2 * 25 * n + 25^2$$
 is $O(n^2)$
 $n^2 + 50n + 625 \le (1 + 50 + 625)n^2 = cn^2$

A: n^2 is $O((n+25)^2)$

$$O((n+25^2)) = O(n^2)$$

$$n^2 \quad \text{is } O(n^2)$$

B: n^3 is not $O(n^2)$

Proof by contradiction:

Let us assume that $n^3 = O(n^2)$ for all $n \ge 1$ then there is a c that exists in $[c < \infty]$ such that $n^3 \le cn^2$

$$\frac{n^3}{n^2} \le c \to n \le c$$

This inequality should hold for all (n) but it can be easily broken when n > c

Thus
$$(n^3) \neq O(n^2)$$
 or (n^3) is not $O(n^2)$

C: Given:

-
$$f_1(n) = (n + 25)^2$$

- $f_2(n) = n^3$

$$- f_2(n) = n^3$$

What is the big-Oh for $f_1(n) \times f_2(n)$?

$$n^3 * (n^2 + 50n + 625) = n^5 + 50n^4 + 625n^3$$

 $\rightarrow f_1(n) \times f_2(n) \text{ is } O(n^5)$

```
Dunya Oguz 40181540
Hugo Joncour 40139230
Sarabraj Singh 29473858
John Purcell 27217439

3) Give the asymptotic ("big-Oh") running time complexity of the following algorithm, show all the work you have done.
```

```
Algorithm: ArrayMangle(A[], int n)
Input: an array A, an integer n
                                                // This operation z is executed in O(1)
\mathbf{x} = \mathbf{0}:
                                                // The loop "i" has n iterations
for (i=0; i<=n-1; i++) {
                                                // The loop "j" has n-i iterations
      for (j=i; j<=n-1; j++) {
                                                // This operation a is executed in O(1)
             x = x + A[j];
       }
                                                // The loop "k" has n iterations
      for (k=0; k \le n-1; k++)
                                                // The loop "j" has n iterations
             for (j=0; j < n-1; j++) {
                    x = x + A[j]*A[k];
                                                // This operation b is executed in O(1)
              }
       }
}
```

The time complexity of this algorithm is given by the number of operations:

The operation a is executed (n-i) times inside the j loop. The j loop is inside the i loop, so the operation a is executed $n*(\Sigma(n-i))$ times.

The operation b is executed n times in the j loop, which is executed n times in the k loop, which is executed n times in the i loop.

So, our algorithm's complexity is given by: $n*(\Sigma(n-i))+n*n*n$ By linearity of the sum we get: n*(n-i)+n*n*n So: $n*(n-i)+n^3$

The big-Oh notation of the complexity is $O(n^3)$