Math 395 Homework 1

Neel Gupta

January 17, 2023

Problem 1. Prove that $\sqrt{2}$ is irrational.

Answer:

Assume that $\sqrt{2}$ is rational in the form $\frac{p}{q}$ where $p, q \in \mathbb{Z}$ and share no common factors.

$$(\frac{p}{q})^2 = (\sqrt{2})^2$$
$$\frac{p^2}{q^2} = 2$$
$$p^2 = 2q^2$$

which implies that p^2 is even. If p^2 is even, then p is even, which implies that p^2 is divisible by 4. Hence q^2 is even, so q is even. Since p,q are even, they share a common factor which is a contradiction. Thus, $\sqrt{2}$ is irrational. \square

Problem 7. Prove that $\forall n \in \mathbb{N}$ and $\forall x \in \mathbb{R}$, $|\sin nx| \le n |\sin x|$.

Answer:

Let P(n): $|\sin nx| \le n |\sin x|$. For P(1): $|\sin x| = |\sin x| : P(1)$ is true. Let I_0H_0 : Assume P(k) for some $k \in \mathbb{N}$. For P(k+1):

$$|\sin((k+1)x)| = |\sin(kx+x)|$$

$$= |\sin kx \cos x + \cos kx \sin x|$$

$$\leq |\sin kx| |\cos x| + |\cos kx| |\sin x|$$

$$\leq |k| \sin x| |*|\cos x| + |\cos kx| |\sin x| \quad \text{(by } I_0 H_0)$$

$$\leq k|\sin x| + |\sin x| \quad \text{(\because |\cos x| \le 1$ and } |\cos kx| \le 1)$$

$$= (k+1)|\sin x|$$

$$\therefore P(k+1) \text{is true.}$$

By mathematical induction, P(n) is true $\forall n \in \mathbb{N}$ and $\forall x \in \mathbb{R}$. \square

Problem 8. Prove that $\forall n \in \mathbb{N}, n^n \leq (n!)^2$.

Answer:

$$n^n = \prod_{i=1}^n n$$

Similarly,

$$(n!)^{2} = (1 * 2 * ... * n)(1 * 2 * ... * n)$$

$$= (1 * 1)(2 * 2)...(n * n)$$

$$= (1 * n)(2 * (n - 1))(3 * (n - 2))...((n - 1) * 2)(n * 1)$$

$$= \prod_{i=1}^{n} i(n + 1 - i) \qquad (\because Gauss' Trick)$$

$$\prod_{i=1}^{n} n \leq \prod_{i=1}^{n} i(n + 1 - i)$$

Problem 9. Prove that $\forall n \in \mathbb{N}$

$$1+2+...+n=\frac{n(n+1)}{2}.$$

Answer:

Let $P(n): 1+2+...+n = \frac{n(n+1)}{2}$.

For $P(1): \frac{1(1+1)}{2} = 1$. P(1) is true.

Let I_0H_0 : Assume P(k) is true for some $k \in \mathbb{N}$.

For P(k+1):

$$1 + 2 + \dots + k + (k+1) = \frac{k(k+1)}{2} + k + 1$$
 (by I_0H_0)
$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{k^2 + k + 2k + 2}{2}$$

$$= \frac{k^2 + 3k + 2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

$$\therefore P(k+1) \text{ is true.}$$

By mathematical induction, P(n) is true $\forall n \in \mathbb{N}$.

Problem 10. Prove that $\forall n \in \mathbb{N}$

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Answer:

Let $P(n): 1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$.

For P(1): $\frac{1(2)(2+1)}{6} = 1 = 1^2 = 1$. P(1) is true.

Let I_0H_0 : Assume P(k) is true for some $k \in \mathbb{N}$.

For P(k+1):

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$
 (by $I_{0}H_{0}$)
$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k^{2} + k)(2k+1) + 6(k^{2} + 2k + 1)}{6}$$

$$= \frac{2k^{3} + 3k^{2} + k + 6k^{2} + 12k + 6}{6}$$

$$= \frac{2k^{3} + 9k^{2} + 13k + 6}{6}$$

 $\pm \frac{1}{2}$, 1, $\frac{3}{2}$, 2, 3, 6 are the possible zeros of $2k^3 + 9k^2 + 13k + 6$ by Rational Root Theorem.

$$= \frac{(k+1)(2k^2+7k+6)}{6}$$

$$= \frac{(k+1)(k+2)(2(k+1)+1)}{6}$$

$$\therefore P(k+1) \text{ is true.}$$

By mathematical induction, P(n) is true $\forall n \in \mathbb{N}$.