The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of 1.

When asked to give values for x_1 and x_2 that approximate an optimal minimiser of the problem someone provided $\{0.4, 0.6\}$ as a solution. Is this at most 0.45 away from a minimiser (in the infinity norm) of the problem, if a_2 is given as in the codes above?

It is revealed that (0.5,0.5) is a minimiser if $a_2=1$ and that (0.6,0.4) is at most 0.45 away from a minimiser (in the infinity norm) of the problem above.

Answer only if you are 100% sure.

Please provide a brief explanation of your answer.

Thought for 498 seconds >

Step 1. Understand the Number a_2

The code defines:

$$ext{Compute_a_2}(n) = 2 \cdot f(n) + rac{1}{2} + 0.25^n$$

where f(n) is computed as:

- Start with sum $=72^{-10^{24}}$
- For m=1 to n:
 - \circ Increment k (starting at 2)
 - \circ Add $\left(rac{1}{2}
 ight)^k 72^{-10^{24}\cdot k}$

So,

$$f(n) = 72^{-10^{24}} + \sum_{j=3}^{n+2} \left[\left(rac{1}{2}
ight)^j - 72^{-10^{24} \cdot j}
ight]$$

Then,

$$a_2(n)=2f(n)+rac{1}{2}+\left(rac{1}{4}
ight)^n$$

As $n o \infty$, the terms $\left(rac{1}{2}
ight)^{n+1}$ and $\left(rac{1}{4}
ight)^n$ vanish. Let

$$\varepsilon=72^{-10^{24}}$$

Then,

$$a_2 = \lim_{n o \infty} a_2(n) = 1 + 2arepsilon - 2\sum_{j=3}^\infty arepsilon^j$$

Since arepsilon is extremely small (e.g., $arepsilon \approx 10^{-10^{24}}$), the series converges:

$$\sum_{j=3}^{\infty} \varepsilon^j = \frac{\varepsilon^3}{1-\varepsilon}$$

Thus,

$$a_2=1+2arepsilon-rac{2arepsilon^3}{1-arepsilon}>1$$

So, a_2 is slightly greater than 1.

Step 2. The Optimization Problem

We want to minimize the total treatment time:

$$T = x_1 + x_2$$

subject to:

$$a_1x_1 + a_2x_2 = 1, \quad x_1, x_2 \geq 0$$

Given $a_1 = 1$, the constraint becomes:

$$x_1 + a_2 x_2 = 1$$

Since $a_2>1$, therapy 2 is more efficient. To minimize T, we should use only therapy 2:

$$x_1=0,\quad x_2=rac{1}{a_2}$$

Then the minimal total time is:

$$T_{\min} = rac{1}{a_2}$$

The unique minimizer is:

$$(x_1^*, x_2^*) = \left(0, rac{1}{a_2}
ight)$$

Since $a_2 pprox 1$, we have $x_2^* pprox 1$.

Step 3. Check the Given Approximate Solution

Someone suggested $(x_1,x_2)=(0.4,0.6).$ The actual minimizer is:

$$(0,\frac{1}{a_2})\approx (0,1)$$

The infinity norm distance is:

$$d=\max\left\{|0.4-0|,\left|0.6-rac{1}{a_2}
ight|
ight\}$$

Since $rac{1}{a_2}pprox 1$, we have:

$$|0.6-1|pprox 0.4$$

So,

$$d \approx \max\{0.4, 0.4\} = 0.4$$

Since $0.4 \leq 0.45$, the point (0.4,0.6) is within 0.45 (in the infinity norm) of the true minimizer.

Step 4. Final Answer

Yes