Exercice 1 /3

À l'aide d'un tableau de congruences, déterminer l'ensemble des entiers x tels que $x^2 \equiv 3x$ [5].

Exercice 2 /4

- **1. a.** Vérifier que $9^2 \equiv -4$ [17].
 - **b.** En déduire que $9^8 \equiv 1$ [17].
- **2.** Montrer que $2015^{2015} 2$ est divisible par 17.

Exercice 3 /4

Pour tout $n \in \mathbb{N}$, on pose $A_n = 6^n + 13^{n+1}$.

- 1. Vérifier que A_0 est divisible par 7.
 - **2.** En utilisant les congruences, démontrer que, pour tout $n \in \mathbb{N}$, A_n est divisible par 7.

Exercice 4 /6

On considère l'équation (E) : $x^2 + y^2 - 8z = 6$ où x, y et z sont des entiers.

On suppose que $(a; b; c) \in \mathbb{Z}^3$ est solution de (E).

- **1.** Montrer que $a^2 + b^2 \equiv 6$ [8].
- **2.** a. Soit $n \in \mathbb{Z}$. Compléter (directement sur l'énoncé) le tableau suivant :

$n \equiv \dots [8]$	0	1	2	3	4	5	6	7
$n^2 \equiv \dots [8]$								

- **b.** Déduire de la question précédente les restes possibles dans la division euclidienne de $a^2 + b^2$ par 8.
- c. Que peut-on conclure des questions précédentes à propos de l'équation (E)?

Exercice 5 /3

On pose $A = 7^{7^{7^7}}$

Le but de l'exercice est de déterminer le chiffre des unités dans l'écriture décimale de A.

- 1. a. Quel est le reste de 7⁴ modulo 10?
 - **b.** En déduire, suivant les valeurs de $n \in \mathbb{N}$, le reste dans la division euclidienne de 7^n par 10.
- **2.** Déterminer, pour tout $m \in \mathbb{N}$, le reste de 7^m modulo 4 en fonction de la parité de m. Vous distinguerez donc les deux cas : m pair et m impair.
- **3.** On pose $B = 7^{7^7}$. Quelle est la parité de B?
- 4. Déduire des questions précédentes le chiffre des unités dans l'écriture décimale de A.