#linear_algebra

A **subspace** of \mathbb{R}^n is any set H in \mathbb{R}^n that has three properties:

- a. The zero vector is in H.
- b. For each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u} + \mathbf{v}$ is in H.
- c. For each \mathbf{u} in H and each scalar c, the vector $c\mathbf{u}$ is in H.

In words, a subspace is closed under addition and scalar multiplication

FIGURE 1

Span $\{v_1, v_2\}$ as a plane through the origin.

EXAMPLE 2 A line L not through the origin is not a subspace, because it does not contain the origin, as required. Also, Fig. 2 shows that L is not closed under addition or scalar multiplication.

FIGURE 2

EXAMPLE 3 For $\mathbf{v}_1, \dots, \mathbf{v}_p$ in \mathbb{R}^n , the set of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$ is a subspace of \mathbb{R}^n . The verification of this statement is similar to the argument given in Example 1. We shall now refer to Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ as **the subspace spanned** (or **generated**) by $\mathbf{v}_1, \dots, \mathbf{v}_p$.

Note that \mathbb{R}^n is a subspace of itself because it has the three properties required for a subspace. Another special subspace is the set consisting of only the zero vector in \mathbb{R}^n . This set, called the **zero subspace**, also satisfies the conditions for a subspace.

column space and Null space of a matrix

Subspaces of \mathbb{R}^n usually occur in applications and theory in one of two ways. In both cases, the subspace can be related to a matrix.

DEFINITION

The **column space** of a matrix A is the set Col A of all linear combinations of the columns of A.

If $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$, with the columns in \mathbb{R}^m , then $\operatorname{Col} A$ is the same as $\operatorname{Span} \{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$. Example 4 shows that the **column space of an** $m \times n$ **matrix is a subspace of** \mathbb{R}^m . Note that $\operatorname{Col} A$ equals \mathbb{R}^m only when the columns of A span \mathbb{R}^m . Otherwise, $\operatorname{Col} A$ is only part of \mathbb{R}^m .

EXAMPLE 4 Let
$$A = \begin{bmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 3 \\ 3 \\ -4 \end{bmatrix}$. Determine whether \mathbf{b} is

in the column space of A.

SOLUTION The vector **b** is a linear combination of the columns of A if and only if **b** can be written as A**x** for some **x**, that is, if and only if the equation A**x** = **b** has a solution. Row reducing the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$,

$$\begin{bmatrix} 1 & -3 & -4 & 3 \\ -4 & 6 & -2 & 3 \\ -3 & 7 & 6 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & -4 & 3 \\ 0 & -6 & -18 & 15 \\ 0 & -2 & -6 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & -4 & 3 \\ 0 & -6 & -18 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

we conclude that $A\mathbf{x} = \mathbf{b}$ is consistent and \mathbf{b} is in Col A.

THEOREM 12

Col A

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions of a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

Basis for Subspace

Becasue a subspace typically contains an infinite number of vectors, some problems involving a subspace are handled best be working with a small finite set of vectors that span the subspace. The smaller the set ,the better. It can be shown that the smallest possible spanning set must be linearly independent.

A *basis* for a subspace H of \mathbb{R}^n is a linearly independent set in H that spans \mathbb{R}^n

FIGURE 3

The standard basis for \mathbb{R}^3 .

EXAMPLE 6 Find a basis for the null space of the matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

SOLUTION First, write the solution of $A\mathbf{x} = \mathbf{0}$ in parametric vector form:

$$\begin{bmatrix} A & \mathbf{0} \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad \begin{aligned} x_1 - 2x_2 & - & x_4 + 3x_5 = 0 \\ x_3 + 2x_4 - 2x_5 = 0 \\ 0 = 0 \end{aligned}$$

The general solution is $x_1 = 2x_2 + x_4 - 3x_5$, $x_3 = -2x_4 + 2x_5$, with x_2 , x_4 , and x_5 free.

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

$$= x_2 \mathbf{u} + x_4 \mathbf{v} + x_5 \mathbf{w}$$
 (1)

Equation (1) shows that Nul A coincides with the set of all linear combinations of \mathbf{u} , \mathbf{v} , and \mathbf{w} . That is, $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ generates Nul A. In fact, this construction of \mathbf{u} , \mathbf{v} , and \mathbf{w} automatically makes them linearly independent, because equation (1) shows that $\mathbf{0} = x_2\mathbf{u} + x_4\mathbf{v} + x_5\mathbf{w}$ only if the weights x_2 , x_4 , and x_5 are all zero. (Examine entries 2, 4, and 5 in the vector $x_2\mathbf{u} + x_4\mathbf{v} + x_5\mathbf{w}$.) So $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a *basis* for Nul A.

Theorem 13:

The pivot columns of a matrix A form a basis for the column space of A

Warning: Be careful to use *pivot columns of A itself* for the basis of Col A. The columns of an echelon form B are often not in the column space of A. (For instance, in Examples 7 and 8, the columns of B all have zeros in their last entries and cannot generate the columns of A.)