Likelihood fitting and dynamic models II

Jonathan Dushoff, McMaster University MMED 2017

Summary

- Discuss theories and approaches behind fitting models to data
- Explain relationship between least squares and likelihood
- Discuss approaches to dealing with process error and observation error

Measles data

- Reconstruct the number of susceptibles
- Divide the data into generations
- Fit \mathcal{R}_0
- Predict

Measles reports from England and Wales

Why did I get the wrong answer?

- Model structure may be wrong
- Population structure may be wrong
- Stochasticity in disease observation and recording
- Stochasticity in transmission
- Multi-parameter estimation
 - There may be different parameter combinations that work equally well

_

1 Conceptual framework

- How do we assume our data relate to our model world?
 - No error: We could attempt to model everything we see, in exact detail
 - * Impractical
 - Observation error: we could assume that the world is perfectly deterministic, but our observations are imperfect
 - * Shooting
 - Process error: we could assume that we observe perfectly, but that the world is stochastic
 - * Stepping
 - Both kinds of error: the world is stochastic, and our observations are imperfect
 - * Modern methods

Observation error only

- Point your model at the target
- Give it starting conditions and parameters
- Let it go
- Compare final results to observations

Shooting

Process error only

- Look at each step separately.
- \bullet See how the model is doing for that step.
- \bullet Reset based on observed data before taking the next step

Stepping

Modern methods

- Is it better to ignore process error, or observation error?
- What if we have a small number of cases, and good reporting (Ebola in small villages)

_

• What if we have a large number of cases, and poor reporting (HIV in Harare)?

_

• What if we have a new epidemic and poor reporting (West African Ebola)?

_

2 Fitting

How to fit?

- Solving an equation
- By eye (fiddling with parameters)
- Minimizing a distance function
- Likelihood

Distance functions

$$D = \sum_{i} y_i - \hat{y}_i$$

Doesn't work

Distance functions

$$D = \sum_{i} |y_i - \hat{y}_i|$$

Not elegant

Distance functions

$$D = \sum_{i} (y_i - \hat{y}_i)^2$$

Simplest smooth approach

3 Likelihoods

• Assume that the difference between the estimate \hat{y}_i and the data point y_i is normally distributed. What is the log likelihood?

•

$$L = \prod_{i} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{-(\hat{y}_i - y_i)^2}{2\sigma^2}\right)$$

•

$$\ell = \sum_{i} -\log(\sigma\sqrt{2\pi}) - \sum_{i} \frac{(\hat{y}_i - y_i)^2}{2\sigma^2}$$

- We minimize the likelihood by minimizing the sum of squares
 - and then solving for σ

$Least\ squares \rightarrow likelihood$

- Attaching your least squares fit to a likelihood means:
 - You can use it for statistical inference (LRT)
 - You can *challenge* the assumptions

Mexican flu example

- ullet How fast is it growing? r
- How hard will it be to control? \mathcal{R}_0

A different perspective

- Log scale shows multiplicative differences
- We could make the normal assumption on either scale
- How much does it matter?

Normal assumption

- $\bullet\,$ Least squares on the linear scale
- 10:50 :: 980:1020
- \bullet Gives relatively too much weight to large observations

Lognormal assumption

- Least squares on the log scale
- 3:5 :: 300:500
- Gives relatively too much weight to small observations

A more realistic error distribution

• My case counts are *individuals*

• What distributions can I use to reflect that?

•

_

*

*

Reality is complicated

- Poisson and binomial reflect only individual-level variation
 - No temporal variation
 - No clustered sampling

- ...

Distribution diagram

Discrete distributions

- Negative binomial is a good general-purpose discrete distribution
 - Individual- and population-level variability
- Beta binomial takes size into account
 - Good when denominator is clear and important
 - For exampling, when sampling

Negative binomial fits

Comparison

- Realistic error distribution provides (apparently) better fits
- Confidence intervals
 - Normal: r = 0.96-0.97/wk
 - Lognormal: r = 0.64–1.29/wk
 - Negative binomial: r = 0.90-1.14/wk
- How would you test these methods?

Identifiability

• What if we tried to estimate \mathcal{R}_0 instead of r from Mexican flu data?

_

4 Modern approaches

- Why are people using model worlds with no observation error?
 - or no process error?
- Sometimes they are good enough (model validation)
- Combining both is *hard*

Filtering

- Filtering is a little like shooting
 - Simulate from beginning to end, but use *stochastic* simulations
- You need a lot of simulations, and often ways of selecting and refining them
- A popular, state-of-the-art method is implemented in the R package pomp

Latent variable methods

- Latent variable methods are a little like stepping
 - But we step to and from unknown values (our latent variables), so we need a way
 of exploring many possibilities
- Popular, state-of-the-art methods are available in the R packages rjags and rstan

Latent variables

- We model *observed* variables:
 - e.g., reported cases, estimated prevalence
- Using unobserved latent variables
 - true cases, true prevalence, true number of susceptibles

Reauires a framework that can address the fact that our latent variables have many possible values

Multi-parameter inference

- Modern methods are already hard, and when you consider various sources of uncertainty, you're really on the bleeding edge
- Many high-profile models for Ebola, for example failed to consider process error.
- The biggest paper talking about process error neglected uncertainty in generation intervals
- Once you do multi-parameter inference, you may find that confidence intervals are very large this may reflect the reality of knowledge, but may not make you look good

Assessing and reporting uncertainty

Sierra Leone

Sierra Leone

5 Paradigms

Likelihood

- Maximum likelihood and likelihood are not the same thing
- Bayesian approaches and frequentist approaches (including maximum likelihood) both depend on calculating (or approximating) likelihood

Frequentist inference

- To do frequentist inference on these complicated likelihoods, we need to:
 - estimate likelihoods
 - find the maximum likelihood
 - use the likelihood ratio test to find confidence intervals
- This is hard

Bayesian inference

- To do Bayesian inference on these complicated likelihoods, we need to:
 - construct prior distributions
 - estimate likelihoods
 - estimate the posterior
- Usually a little less hard
 - But still requires more assumptions

Summary

- We need **dynamics** to understand links between processes and outcomes
 - How do things work?
- We need **statistics** to understand uncertainty
 - What can we learn from data
- Combining these two is difficult, but progress is being made.

Summary

- Making your fit into a likelihood clarifies assumptions and creates a foundation for statistical inference
- Accounting for both process and observation error is hard
 - and not always necessary
- Stepping methods don't allow for observation error
 - filtering methods can address this
- Shooting methods don't allow for process error
 - latent variable methods can address this

c2015–2017, Jonathan Dushoff and the ICI3D faculty. May be reproduced and distributed, with this notice, for non-commercial purposes only