الأستاذ على حافظ على استعداد لإعطاء دروس خصوصية لطلبة الثانوية العامة الفرع العلمي

أولاً ۞ ١ – ١

مثال

إذا كان القاطع المار بالنقطتين (-٢، ق(-٢))، (١،ق(١)) لمنحنى الاقتران: ق(س)= أس +١ يصنع زاوية ه مع الاتجاه الموجب لمحور السينات حيث جاه = $\frac{7}{\sqrt{6}}$ جد قيمة الثابت أ.

مثال

إذا كان المستقيم المار بالنقطتين (١، ق(١))، (٣ ،٥) يصنع زاوية ٥٥° مع الاتجاه السالب لمحور السينات، أوجد معدل تغير الاقتران ه(س)= $\frac{7}{5(m)}$ على الفترة [١، ٣]

مثال

إذا كان معدل تغير الاقتران ق في الفترة [دا ما] -1 ، -1 ، -1 ، احسب متوسط تغير الاقتران هرس -1 ، -1 المان هرس -1 في الفترة -1 ، -1 علمًا بأن ق-1) علمًا بأن ق-1) علمًا بأن قر-1)

مثال

إذا كان مقدار التغير في ق(س) عندما تتغير س من (س) إلى (س+ه) يساوي (س^۲ه + ۲سه + ۰ه) أوجد: قَ(7)

مثال

إذا كان معدل تغير ق(س) عندما تتغير (س) من (س) إلى (س+ه) هو (س⁷ + ٤س - ٥ س⁷ه)، جد قَ (س)، قَ (۱)

مثال

إذا كان مقدار التغير في الاقتران ق(س) عندما تتغير (س) من (7) إلى (ع) هو (7 + 7 3 - 7 4)، جد قَ (7 7)

مثال

مثال

مثال

مثال

 $\left. \begin{array}{ll} \dfrac{\pi}{\xi} \leq \omega & , & \omega \geq \dfrac{\pi}{\xi} \end{array}
ight.$ $\left. \begin{array}{ll} \left(\omega \right) = \left(\omega \right) \end{array} \right. \left. \begin{array}{ll} \left(\omega \right) = \dfrac{\pi}{\xi} \right) & \omega \leq \dfrac{\pi}{\xi} \end{array}
ight.$ قابل للاشتقاق عندما $\left(\omega = \dfrac{\pi}{\xi} \right) ,$ جد $\left. \begin{array}{ll} \left(\omega \right) = \dfrac{\pi}{\xi} \right) \right.$

مثال

 $\frac{\pi}{\xi} \leq \omega$ ، $\omega \leq 1$ $\frac{\pi}{\xi} \leq \omega$ ، $\omega \leq 1$ $\frac{\pi}{\xi} > \omega$ ، $\omega \leq \frac{\pi}{\xi} > \omega$ ، $\omega \leq \frac{\pi}{\xi} > \omega$. $\omega \leq \frac{\pi}{\xi} > \omega$.

 $\left| \begin{array}{ccc} 1 \geq \omega & (\omega) + 0 & \omega \leq 1 \\ 0 \leq \omega & (\omega) \leq \omega \end{array} \right| = \left(\omega \right) = \left(\omega \right) = 0$ $\left| \begin{array}{ccc} 1 \leq \omega & (\omega) \leq 1 \\ 0 \leq \omega & (\omega) \leq 1 \end{array} \right| = \left(\omega \right) = 0$

1 < m ، m + 1 ، m > 1 قابل للشتقاق عندما (m=1)، وكان

ل (س)= ٤سه (س) ، (ه (س)>٠) جد قَ (١)

مثال

إذا كان ق(س+ص)= ق(س)+ق(ص)+0سص، $\vec{b}(0)= Y$ ، جد $\vec{b}(0)$.

مثال

إذا کـــان ق(س+ص)= ق(س) × ق(ص)، $\bar{g}(0)$ = ق(س) - اثبت أن قَ(س) = ق(س).

مثال

ابحث قابلية الاقتران ق(س) للاشتقاق:

(س=۲).
$$(m-1|-m|m+1|$$
 ، $(m=1)$.

$$(w) = (w)^{-1} - (w)^{-1}$$
)، $(w) = (w)$

$$(\pi=m)=0$$
 عندما ($m=m$) ق $(m)=m$

$$(\frac{\pi}{7} = \omega)$$
 ، (س= (ω)) ق (٤

مثال

 $\{\cdot\} - (\frac{\pi}{2}, \frac{\pi}{2}) \rightarrow (\frac{\pi}{2}, \frac{\pi}{2}) - \{\cdot\}$ إذا كان ق (س)=

ابحث قابلية ق(س) للاشتقاق عندما س=٠

مثال

اذا کانت $\vec{v}_{+}(1) = 7$ ، $\vec{v}_{-}(1) = 7$.

مثال

 $(w) = \frac{z}{z^m} (\tilde{g}(\tau_m)) = w^{\tau}$ ، جد $\tilde{g}(w)$.

مثال

اذا کان ق(س) = $\sqrt{m} + 1$ ، ه(س)= $m^{7} - m$ ، أوجد $\frac{2}{2m}$ (ق(ه(٢س))) عندما (س = 1)

اوجد معدل التغير في مساحة المربع بالنسبة لمحيطه عندما يكون المحيط = Λ .

مثال

اوجد معدل التغير في حجم الكرة بالنسبة لمساحتها السطحية عندما تكون مساحتها السطحية π۱٦

مثال

الشكل المجاور يمثل منحنى الاقتران ق(س)، أوجد قاعدة ق(س)

مثال

إذا كان ق(س)= (س-۲). [س]، أثبت باستخدام تعريف المشتقة أن قَ(۲) = صفر.

مثال

إذا كان ق (١) = ٢، قَ (١) = ٣، أوجد $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$

مثال

إذا كانت ص = أجاس + بجتاس، وكان $\frac{20}{20}$ + $\frac{20}{20}$

III A

إذا كانت ص = أجاس + بجتاس، وكان $\frac{2m}{2m}$ + $\frac{2m}{2m}$ + $\frac{2m}{2m}$ + $\frac{2m}{2m}$

ttia

إذا كان ق(س)= (س $-\frac{1}{2}$)(س $-\frac{1}{2}$)(س $-\frac{1}{2}$) أثبت أثبت $\frac{\tilde{b}(m)}{\tilde{b}(m)} = \frac{1}{m-1} + \frac{1}{m-1} + \frac{1}{m-1}$

بالاعتماد على الشكل المجاور الذي الشكل المجاور الذي يمثل منحنى ق(س)، وإذا كانت قرس وإذا كانت قرس وأدا كانت قرس والما والما

$$\frac{7000}{1000}$$
 وجد قيمة الثابت ب $\frac{7000}{1000}$ أوجد قيمة الثابت ب

مثال

 $\frac{a(m)}{a(m)} = \frac{a(m)}{a(m)}$ بدا کان ق $(m) = \frac{a(m)}{a(m)}$

وكانت قَ
$$(1) = \cdot \cdot \cdot$$
 أثبت أن ق $(1) = \frac{\bar{a}(1)}{\bar{a}(1)}$

مثال

$$\frac{\ddot{\bar{b}}}{\bar{b}} = \frac{\ddot{\bar{b}}}{\bar{b}} + \frac{(\bar{b})}{\bar{b}} = \frac{(\bar{b})}{\bar{b}} + \frac{(\bar{b})}{\bar{b}}$$

مثال

إذا كان ق(س) اقتران زوجي، أثبت أن ق(m) اقتران فردي.

مثال

إذا كان ه(س) اقتران فردي، أثبت أن $\overline{a}(m)$ اقتران زوجي.

مثال

إذا كان ق(س) اقتران زوجي، ه(س) اقتران فردي، أثبت أن (ق ه) (س) اقتران زوجي.

مثال

إذا كان ه(س) اقتران زوجي، ق(س) اقتران فردي، وكان ل(س)= ق(س)×ه(س)، أثبت أن $\bar{U}(m)$ اقتران زوجي.

مثاز

إذا كـــان ه (س) اقتــران زوجــي، وكـان ق (س) = جـاس • ه (س)، أثبـت أن ق (س) اقتران زوجي.

مثال

أوجد وص في كل مما يلي:

$$(\cdot, 1) \cdot {}^{r} \omega + 1 = \overline{\omega + \omega} \vee (r)$$

$$(1,\frac{\pi}{2})$$
 ، (سص) خارسص) و خارسص) د

$$(\frac{\pi}{\xi}, \frac{\pi}{Y})$$
, (\circ)

$$(\frac{\pi}{7},1)$$
 ، $\frac{\pi}{7}$ اجا $(m con)+7$ جا $(m con)+7$

$$^{\mathsf{Y}} - \mathbf{\psi} + \mathbf{\psi} = \mathbf{\psi} + \mathbf{\psi}$$

مثال

أوجد حم من في كل مما يلي:

$$\left(\frac{\pi}{7},\frac{1}{2}\right)$$
, $\omega^{2} = \omega$

$$9 = {}^{7}\omega - \omega + {}^{7}\omega (\Upsilon$$

$$1 = \overline{w} + \overline{w}$$
 (8)

لثال

إذا كان $\frac{z_0}{z_0} = w_0^2 = w_0^2 + 1$ ، أوجد $\frac{z_0^2}{z_0}$ عند النقطة (۲، ۱).

مثال

أثبت أن مجموع المقطعين السيني والصادي للماس لمنحنى العلاقة $\sqrt{m} + \sqrt{m} = \sqrt{100}$ يساوي جـ . حيث (س،ص،ج) >٠٠.

بالاعتماد على الشكل المجاور الذي يمثل منحنى كل من الاقترانين ق(س)، ه(س):

أوجد ما يلي:

$$(1) \left(\frac{\ddot{\omega}}{a}\right)^{-1}(1) \qquad \qquad (1) \left(\frac{\ddot{\omega}}{a}\right)^{-1}(1)$$

$$(\sqrt{\ddot{e}(3)+7a})$$
 ($\sqrt{}$

مثال

ان ق (س) = س الماس و کان ق (س) = عندما ق (س) = عندما ق (س) = ۳، جد قیمة الماد الم

مثال

مثال

مثاز

إذا كان ق (س)=س ل
$$\sqrt{m}$$
 وكانت ت $\frac{1}{\sqrt{m}}$ وكا

مثال

مثال

مثاز

إذا كـــان ق(س)= س م اس وكانـــت إذا كــان ق(س)= س م اس وكانـــت م.
$$\frac{3m-h}{\tilde{g}(m^7+m)-\tilde{g}(7)}$$
 جد قيمة م.

مثال

إذا كان ق
$$(m) = \frac{1}{m-1}$$
 ، $(m \neq \frac{\pi}{l})$ وكانت $\overline{g}(l) = r$ ، جد قيمة l

مثال

إذا كان ق(س) =
$$\frac{m}{m-++}$$
 ، ($m \neq +$) وكانت $\bar{b}(x) = -1$ ، جد قيمة ج.

مثال

اذا کان ق(س)=
$$\sqrt[q]{7m^7+1}$$
 ، $\overline{\tilde{g}}(7)=\frac{7}{7}$ جد قیمة 1

مثال

ق (س) = أس ٔ + س ً، جد قيمة أ التي تحقق المعادلة قَ (۱)
$$\times$$
 قَ (۱) $=$ $1 \cdot \Lambda$ = المعادلة قَ (۱) \times قَ (۱) $=$ Λ

$$|\vec{t}| \geq 10$$
 آ $(m+7)^3$ حیث النا ق $(7m^7-1) = \sqrt[7]{(m+7)^3}$ حیث

$$(m>)$$
 ،أوجد نها $\overline{b}(V+Y)$ ،أوجد نها $\overline{b}(V+Y)$

إذا كان ق(س)=
$$\frac{1}{1}$$
سن، وكانت ق (س)= أسن، جد قيمة أ.

$$(\frac{1}{2})$$
ق (س)= π جاس (جتا π س $-$ جا π س $+$ ا) جد قیمة ن π

مثال

$$|\vec{k}| \ge 1$$
 این ق $(m^{2}) = 3m^{2} + 7$ اس، ($|\vec{k}| > 1$)، $|\vec{k}| = 1$ جد قیمة $|\vec{k}| = 1$

إذا كـــان ق (س
7
) = m^{0} + 3 + 0 (س $^{-3}$)،

ن عدد صحیح، وکانت قً
$$(1) = \frac{7}{5}$$
، جد قیمة ن.

إذا كان ق
$$(m) = m^{\circ}$$
، ن $\in m^{+}$ ، وكان

$$|\dot{c}| \geq |\dot{c}| = |\dot{c}| + |\dot{c}| + |\dot{c}| = |\dot{c}| + |\dot{c}| + |\dot{c}| = |\dot{c}| + |$$

$$\mathbf{\dot{\gamma}} = \mathbf{\dot{\gamma}} + \mathbf{\dot{w}} - \mathbf{\dot{\gamma}} = \mathbf{\dot{\gamma}} + \mathbf{\dot{\gamma}} + \mathbf{\dot{\gamma}} = \mathbf{\dot{\gamma}} + \mathbf{\dot{\gamma}} + \mathbf{\dot{\gamma}} + \mathbf{\dot{\gamma}} = \mathbf{\dot{\gamma}} + \mathbf{\dot$$

إذا كان سق(
$$(m^{7}+1)=m^{7}+7$$
، ($(m>)$)، جد قر (٥)

إذا كـــان ق
$$(m) = \sqrt[4]{\frac{m}{7}} + 7$$
 m° ، وكانـــت

$$\tilde{\tilde{g}}(1) = 1$$
 ، $\tilde{g}^{(i)}(m) = 1$ ، جد قیمهٔ ا ، ن .

إذا كان ق
$$(m) = m + \frac{\eta}{m}$$
، $(m \neq 0)$ وكانت

$$a(\omega) = \frac{\overline{\hat{b}}(1+7a) - \overline{\hat{b}}(1-3a)}{7a} = \lambda.$$
 جد قیمة

الثابت أ.

مثال

إذا كان ق
$$\left(\leftarrow 17 \right) = 4$$
الاس، س $\in \left(\cdot, \frac{\pi}{7} \right)$.

أوجد قيمة
$$\widetilde{\mathfrak{o}}(\frac{1}{7})$$

$$|\vec{c}| \geq 1$$
 (ق (τ_m))= τ_m^{1+1} وکانت

$$\tilde{\mathfrak{o}}(\Gamma) = \frac{\pi}{\xi}, \, \Leftarrow \, \, \tilde{\mathfrak{o}}(\Gamma).$$

مثال

ق(س)= | س
$$-$$
۲|، ه(س)= س 7 + 7 أوجد:

$$Y==(1)$$
اذا کان ل(س) = ق (ه $(a(m))$) وکانت م

جد لَ (۱)

مثال

$$(w) = (w) = \begin{cases} +7w & w \geq 0 \end{cases}$$

$$|(x)| = (w) = (w) = (w)$$

$$|(x)| = (w) = (w)$$

$$|(x)| = (w) = (w)$$

إذا كان ق
$$\left(\frac{7}{m}\right) = m^7 + m$$
، جاد

$$\underbrace{\overline{\widetilde{\mathfrak{g}}(1-\Upsilon\mathfrak{a})-\widetilde{\mathfrak{g}}(1)}}_{\mathfrak{F}\mathfrak{a}}$$

$$1 \geq \omega$$
 ، $\omega \leq 1$ $\omega \simeq 1$ ω

$$(u \neq 1)$$
، ($u \neq 1$)،

مثال

$$\frac{1}{2}$$
اذا کـان ق (س)= ۲ظـاس، ه (س)= $\frac{1}{1-m}$ ،

$$(w \neq 1)$$
، وکان (ه \circ ق) $(\frac{\pi}{2})$ = ۲۶، جد :

$$(\frac{\pi}{\xi})^{=}(\tilde{s}^{-}\tilde{s})$$
 (۲) (ه

مثال

اذا كان ق
$$(m) = \sqrt{m+1}$$
 ، هر $(m) = 1$

مثال

$$0+m^{2}-m^{2}=m^{2}+m^{2}$$
 إذا كان ق $(m)=m^{2}+m^{2}+m^{2}$ ، ه $(m)=m^{2}-3m+0$

اذا ک ان ق (س) =
$$\sqrt{|m|}$$
 ، $(1 > \cdot)$ ،

$$|\psi| = \sqrt{3m + 6}$$
 ، $|\psi| = \sqrt{3m + 6}$ ، $|\psi| = \sqrt{3m + 6}$ ، وکانـت (ق هه) $|\psi| = \sqrt{3m + 6}$ ، وکانـت (ق هه) $|\psi| = \sqrt{3m + 6}$

مثال

قيمة أ

إذا كانت ص=
$$\frac{73}{9-7}$$
، ع= $\frac{w+7}{1-w}$ أثبت أن $\frac{7}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{8}{8}$ $\frac{8}{8}$ $\frac{1}{8}$ $\frac{8}{8}$ $\frac{8}{8}$ $\frac{1}{8}$ $\frac{8}{8}$ $\frac{1}{8}$ $\frac{8}{8}$ $\frac{1}{8}$ $\frac{$

إذا كانـــت ص= أن، س=٢ن أ – ن، وكانـــت
$$\frac{20}{20}$$
 = 1 عندما ص=١، جد قيمة أ.

إذا كانت ص=
$$73^7 - 03 + 3$$
، $3 = m^7 + 7$ ، أوجد $\frac{5^7 - 0}{5m^7}$ عندما ص= 9

مثال

إذا كان ق (س) = m^3 ، ه (س) = $\frac{1}{m}$ ، ($m \neq 0$)، وكانت (ق هَ) (۲) = ٤٢، جد قيمة ا

مثال

إذا كانت $ص= 3^7 + 73$ ، $m= 3^7 - 3$ جد $\frac{200}{200}$ عندما (س=7).

مثال

 $\frac{\Upsilon-}{\psi} = \frac{\Upsilon \circ \Upsilon}{\psi}$ اثبت أن $\frac{\Upsilon-}{\psi} = \frac{\Upsilon \circ \Upsilon}{\psi}$ من $\frac{\Upsilon-}{\psi} = \frac{\Upsilon \circ \Upsilon}{\psi}$ أثبت أن عانت س

مثال

إذا كانت ٢ص= ٦ + U^{7} ص، $س = \frac{1+3 m}{1-U}$ ، اوجد $\frac{5^{7} \text{ ص}}{5 \text{ out}}$

مع تحیات

الاستاذ على حافظ

. ٧٧٨٣٢ ٤٥٣٢