Part III – Functional Analysis (Incomplete)

Based on lectures by Dr András Zsák Notes taken by Yaël Dillies

Michaelmas 2023

Contents

0	Introduction	2
1	Hahn-Banach extension theorems 1.1 Bidual	3
	1.2 Dual operators	7
	1.3 Quotient spaces	
2	The dual of $L_p(\mu)$ and $C(K)$	14

0 Introduction

Prerequisites

- some basic functional analysis
- a bit of measure theory
- a bit of complex analysis

Books

Books relevant to the course are:

- $\bullet\,$ Bollobás, $Linear\,Analysis$
- Murphy, C^* -algebras
- Rudin
- Graham-Allan

Notation

We will use \mathbb{K} to mean "either \mathbb{R} or \mathbb{C} ".

For X a normed space, we define

$$B_X = \{x \in X | ||x|| \le 1\}$$

$$S_X = \{x \in X | ||x|| = 1\}$$

$$D_X = \{x \in X | ||x|| < 1\}$$

For X,Y normed spaces, we write $X\sim Y$ if X,Y are isomorphic, ie there exists a linear bijection $T:X\to Y$ such that T and T^{-1} are continuous. We write $X\cong Y$ if X,Y are isometrically isomorphic, ie there exists a surjective linear map $T:X\to Y$ such that $\|Tx\|=\|x\|$ for all x.

1 Hahn-Banach extension theorems

Lecture 1

Let X be a normed space. The **dual space** of X is the space X^* of bounded linear functionals on X. X^* is always a Banach space in the operator norm: for $f \in X^*$,

$$||f|| = \sup_{x \in B_X} |f(x)|$$

Example. For $1 < p, q < \infty, p^{-1} + q^{-1} = 1, \ell_p^* \cong \ell_q$.

We also have $\ell_1^* \cong \ell_\infty$, $c_0^* \cong \ell_1$.

If H is a Hilbert space, then $H^* \cong H$ (the isomorphism is conjugate-linear in the complex case).

For $x \in X, f \in X^*$, we write $\langle x, f \rangle = f(x)$. Note that

$$\langle x, f \rangle = |f(x)| \le ||f|| \, ||x||$$

Definition. Let X be a *real* vector space. A functional $p: X \to \mathbb{R}$ is

- positive homogeneous if p(tx) = tp(x) for all $x \in X$, $t \ge 0$
- subadditive if $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$

Definition. Let P be a preorder, $A \subseteq P, x \in P$. We say

- x is an **upper bound** for A if $\forall a \in A, a \leq x$.
- A is a **chain** if $\forall a, b \in A, a \leq b \lor b \leq a$.
- x is a maximal element if $\forall y \in P, x \not< y$

Fact (Zorn's lemma). A nonempty preorder in which all nonempty chains have an upper bound has a maximal element.

Theorem 1.1 (Hahn-Banach, positive homogeneous version). Let X be a real vector space and $p: X \to \mathbb{R}$ be positive homogeneous and subadditive. Let Y be a subspace of X and $g: Y \to \mathbb{R}$ be linear such that $\forall y \in Y, g(y) \leq p(y)$. Then there exists $f: X \to \mathbb{R}$ linear such that $f \upharpoonright_Y = g$ and $\forall x \in X, f(x) \leq p(x)$.

Proof. Let P be the set of pairs (Z,h) where Z is a subspace of X with $Y \subseteq Z$ and $h: Z \to \mathbb{R}$ linear, $h \upharpoonright_Y = g$ and $\forall z \in Z, h(z) \leq p(z)$. P is nonempty since $(Y,g) \in P$, and is partially ordered by

$$(Z_1, h_1) \leq (Z_2, h_2) \iff Z_1 \subseteq Z_2 \wedge h_2 \upharpoonright_{Z_1} = h_1$$

If $\{(Z_i, h_i)|i \in I\}$ is a chain with I nonempty, then we can define

$$Z:=\bigcup_{i\in I}Z_i, h\restriction_{Z_i}=h_i$$

The definition of h makes sense thanks to the chain assumption. $(Z, h) \in P$ is therefore an upper bound for the chain.

Hence find by Zorn a maximal element (Z,h) of P. If Z=X, we won. So assume there is some $x\in X$ Z. Let $W=\mathrm{Span}(Z\cup\{x\})$ and define $f:W\to\mathbb{R}$ by

$$f(z + \lambda x) = h(z) + \lambda \alpha$$

for some $\alpha \in \mathbb{R}$. Then f is linear and $f \upharpoonright_{Z} = h$. We now look for α such that $\forall w \in W, f(w) \leq p(w)$. We would then have $(W, f) \in P$ and (Z, h) < (W, f), contradicting maximality of (Z, h).

We need

$$h(z) + \lambda \alpha \le p(z + \lambda x) \forall z \in Z, \lambda \in \mathbb{R}$$

Since p is positive homogeneous, this becomes

$$h(z) + \alpha \le p(z+x)h(z) - \alpha \le p(z-x) \tag{1}$$

ie

$$h(z) - p(z - x) \le \alpha \le p(z + x) - h(z) \forall z \in Z$$

The existence of α now amounts to

$$h(z_1) - p(z_1 - x) \le \alpha \le p(z_2 + x) - h(z_2) \forall z_1, z_2 \in Z$$

But indeed

$$h(z_1) + h(z_2) = h(z_1 + z_2) \le p(z_1 + z_2) \le p(z_1 - x) + p(z_2 + x)$$

Definition. Let X be a \mathbb{K} -vector space. A **seminorm** on X is a functional $p: X \to \mathbb{R}$ such that

- $\forall x \in X, p(x) \ge 0$
- $\forall x \in X, \lambda \in \mathbb{K}, p(\lambda x) = |\lambda| p(x)$
- $\forall x, y \in X, p(x+y) < p(x) + p(y)$

Remark.

 $norm \implies seminorm \implies positive homogeneous$

Lecture 2

Theorem 1.2 (Hahn-Banach, absolute homogeneous version). Let X be a real of complex vector space and p a seminorm on X. Let Y be a subspace of X, g a linear functional on Y such that $\forall y \in Y, |g(y)| \leq p(y)$. Then there exists a linear functional f on X such that $f \upharpoonright_Y = g$ and $\forall x \in X, |f(x)| \leq p(x)$.

Proof.

Real case

$$\forall y \in Y, g(y) \le |g(y)| \le p(y)$$

By Theorem 1.1, there exists $f: X \to \mathbb{R}$ such that $f \upharpoonright_Y = g$ and $\forall x \in X, f(x) \leq p(x)$. We also have

$$\forall x \in X, -f(x) = f(-x) < p(-x) = p(x)$$

Hence $|f(x)| \le p(x)$

Complex case

 $\operatorname{Re} g: Y \to \mathbb{R}$ is real-linear.

$$\forall y \in Y, |\operatorname{Re} g(y)| \le |g(y)| \le p(y)$$

By the real case, find $h: X \to \mathbb{R}$ real-linear such that $h \upharpoonright_Y = \operatorname{Re} g$

Claim. There exists a unique complex-linear $f: X \to \mathbb{C}$ such that $h = \operatorname{Re} f$.

Proof.

Uniqueness

If we have such f, then

$$f(x) = \operatorname{Re} f(x) + i \operatorname{Im} f(x)$$
$$= \operatorname{Re} f(x) - i \operatorname{Re} f(ix)$$
$$= h(x) - ih(ix)$$

Existence

Define f(x) = h(x) - ih(ix). Then f is real-linear and f(ix) = if(x), so f is complex-linear with Re f = h.

We now have $f: X \to \mathbb{C}$ such that $\operatorname{Re} f = h$.

$$\operatorname{Re} f \upharpoonright_{Y} = h \upharpoonright_{Y} = \operatorname{Re} g$$

So, by uniqueness, $f \upharpoonright_Y = g$. Given $x \in X$, find λ with $|\lambda| = 1$ such that

$$|f(x)| = \lambda f(x)$$

$$= f(\lambda x)$$

$$= \operatorname{Re} f(\lambda x)$$

$$= h(\lambda x)$$

$$\leq p(\lambda x)$$

$$= p(x)$$

Remark. For a complex vector space X, if we write $X_{\mathbb{R}}$ for X considered as a real vector space, the above proof shows that

$$\operatorname{Re}:(X^*)_{\mathbb{R}}\to X_{\mathbb{R}}^*$$

is an isometric isomorphism.

Corollary 1.3. Let X be a K-vector space, p a seminorm on X, $x_0 \in X$. Then there exists a linear functional f on X such that $f(x_0) = p(x_0)$ and $\forall x \in X, |f(x)| \leq p(x)$.

Proof. Let $Y = \text{Span}(x_0)$,

$$g: Y \to \mathbb{K}$$
$$\lambda x_0 \mapsto \lambda p(x_0)$$

We see that $\forall y \in Y, g(y) \leq p(y)$. Hence find by Theorem 1.2 a linear functional f on X such that $f \upharpoonright_Y = g$ and $\forall x \in X, |f(x)| \leq p(x)$. We check that $f(x_0) = g(x_0) = p(x_0)$. \square

Theorem 1.4 (Hahn-Banach, existence of support functionals). Let X be a real or complex normed space. Then

- 1. If Y is a subspace of X and $g \in Y^*$, then there exists $f \in X^*$ such that $f \upharpoonright_Y = g$ and ||f|| = ||g||.
- 2. Given $x_0 \neq 0$, there exists $f \in S_{X^*}$ such that $f(x_0) = ||x_0||$.

Proof.

1. Let p(x) = ||g|| ||x||. Then p is a seminorm on X and

$$\forall y \in Y, |g(y)| \le ||g|| \, ||y|| = p(y)$$

Find by Theorem 1.1 a linear functional f on X such that $f \upharpoonright_Y = g$ and $\forall x \in X, |f(x)| \le p(x) = ||g|| \, ||x||$. So $||f|| \le ||g||$. Since $f \upharpoonright_Y = g$, we also have $||g|| \le ||f||$. Hence ||f|| = ||g||.

2. Apply Corollary 1.3 with p(x) = ||x|| to get $f \in X^*$ such that

$$\forall x \in X, |f(x)| \le ||x|| \text{ and } f(x_0) = ||x_0||$$

It follows that ||f|| = 1.

Remarks.

- Part 1 is a sort of linear version of Tietze's extension theorem: Given K compact Hausdorff, $L \subseteq K$ closed, $g: L \to \mathbb{K}$ continuous, there exists $f: K \to \mathbb{K}$ such that $f \upharpoonright_{L} = g$ and $\|f\|_{\infty} = \|g\|_{\infty}$.
- Part 2 shows that for all $x \neq y$ in X there exists $f \in X^*$ such that $f(x) \neq f(y)$, namely X^* separates points of X. This is a sort of linear version of Urysohn: C(K) separates points of K.
- The f in part 2 is called a **norming functional**, aka **support functional**, for x_0 . The existence of support functionals shows that

$$x_0 = \max_{g \in B_{X^*}} \langle x_0, g \rangle$$

Assuming X is a real normed space and $||x_0|| = 1$, we have $B_X \subseteq \{x \in X | f(x) \le 1\}$. Visually, TODO: insert tangency diagram

1.1 Bidual

Let X be a normed space. Then X^{**} is called the **bidual** or **second dual** of X.

For $x \in X$, define $\hat{x}: X^* \to \mathbb{K}$, the **evaluation at** x, by $\hat{x}(f) = f(x)$. \hat{x} is linear and $|\hat{x}(f)| = |f(x)| \le ||f|| \, ||x||$, so $\hat{x} \in X^{**}$ and $||\hat{x}|| \le ||x||$.

The map $x \mapsto \hat{x}: X \to X^{**}$ is called the **canonical embedding** of X into X^{**} .

Theorem 1.5. The canonical embedding is an isometric embedding.

Proof.

Linearity

$$\widehat{\lambda x}(f) = f(x+y) = f(x) + f(y) = \hat{x}(f) + \hat{y}(f)$$

$$\widehat{\lambda x}(f) = f(\lambda x) = \lambda f(x) = \lambda \hat{x}(f)$$

Isometry

If $x \neq 0$, there exists a support functional f for x. Then

$$\|\hat{x}\| \ge |\hat{x}(f)| = |f(x)| = \|x\|$$

Remarks.

- In bracket notation, $\langle f, \hat{x} \rangle = \langle x, f \rangle$
- Let \hat{X} be the image of X in X^{**} . Theorem 1.5 says

$$X\cong \hat{X}\subseteq X^{**}$$

We often identify \hat{X} with X and think of X as living isometrically inside X^{**} . Note that

$$X$$
 complete $\iff \hat{X}$ closed in X^{**}

• More generally, \hat{X} is a Banach space containing an isometric copy of X as a dense subspace. We proved that normed spaces have completions!

Definition. A normed space X is **reflexive** if the canonical embedding $X \to X^{**}$ is surjective.

Example.

- Some reflexive spaces are Hilbert spaces, finite-dimensional spaces, ℓ_p and $L_p(\mu)$ for 1 .
- Some non-reflexive spaces are $c_0, \ell_1, \ell_{\infty}, L_1[0, 1]$.

Remarks.

- If X is reflexive, then $X \cong X^{**}$, so X is complete.
- There are Banach spaces X such that $X \cong X^{**}$ but X is not reflexive, eg **James'** space. Any isomorphism to the bidual is then necessarily not the canonical embedding.

1.2 Dual operators

Lecture 3

Let X, Y be normed spaces. Recall

$$\mathcal{B}(X,Y) = \{T : X \to Y | T \text{ linear, bounded} \}$$

This is a normed space in the operator norm:

$$||T|| = \sup_{x \in B_X} ||Tx||$$

If Y is complete, then so is $\mathcal{B}(X,Y)$. For $T \in \mathcal{B}(X,Y)$, the **dual operator** of T is the map $T^*: Y^* \to X^*$ given by $T^*g = g \circ T$. In bracket notation $\langle x, T^*g \rangle = \langle Tx, g \rangle$ for $x \in X, g \in Y^*$.

 T^* is linear

$$\langle x, T^*(g+h) \rangle = \langle Tx, g+h \rangle$$

$$= \langle Tx, g \rangle + \langle Tx, h \rangle$$

$$= \langle x, T^*g \rangle + xT^*h$$

$$= \langle x, T^*g + T^*h \rangle$$

$$\begin{array}{rcl} \langle x, T^*(\lambda g) \rangle & = & \langle Tx, \lambda g \rangle \\ & = & \lambda \, \langle Tx, g \rangle \\ & = & \lambda \, \langle x, T^*g \rangle \\ & = & \langle x, \lambda T^*g \rangle \end{array}$$

 T^* is bounded

$$\begin{split} \|T^*\| &= \sup_{g \in B_{Y^*}} \|T^*g\| \\ &= \sup_{g \in B_{Y^*}} \sup_{x \in B_X} |\langle x, T^*g \rangle| \\ &= \sup_{x \in B_X} \sup_{g \in B_{Y^*}} |\langle Tx, g \rangle| \\ &= \sup_{x \in B_X} \|Tx\| \text{ by Theorem 1.4 (ii)} \\ &= \|T\| \end{split}$$

Remarks.

- Hahn-Banach is crucial here. Without it, the dual could be 0.
- $\langle \cdot, \cdot \rangle$ is linear in both arguments. This contrasts with the Hilbert space case where $\langle \cdot, \cdot \rangle$ is conjugate-linear in one of the arguments. This comes from the conjugate-linearity of the identification $H^* \cong H$.
- If X, Y are Hilbert spaces and we identify X, Y with X^*, Y^* , respectively, then T^* is the adjoint of T.

Example. Let $1 < p, q < \infty, p^{-1} + q^{-1} = 1$ and define $R : \ell_p \to \ell_p$ to be the **right shift operator** $(x_0, x_1, \dots) \mapsto (0, x_0, \dots)$. Then $R^* : \ell_q \to \ell_q$ is the **left shift operator** $(x_0, x_1, \dots) \mapsto (x_1, x_2, \dots)$.

Some properties of the dual operator are

- 1. $id_X^* = id_{X^*}$
- 2. $(S+T)^* + S^* + T^*, (\lambda T)^* = \lambda T^*$
- 3. $(ST)^* = T^*S^*$
- 4. $T \mapsto T^* : \mathcal{B}(X,Y) \to \mathcal{B}(Y^*,X^*)$ is an *into* isomorphism.
- 5. The double dual of an operator commutes with the double dual embedding. TODO: Insert commutative diagram For all x,

$$\langle g, T^{**}\hat{x}\rangle = \langle T^*g, \hat{x}\rangle = \langle x, T^*g\rangle = \langle Tx, g\rangle = \left\langle g, \hat{Tx}\right\rangle$$

So
$$T^{**}\hat{x} = \widehat{Tx}$$
.

Remark. From the above properties, if $X \sim Y$, then $X^* \sim Y^*$. Interestingly, if X and Y are reflexive, then we can deduce $X \sim Y$ from $X^* \sim Y^*$.

1.3 Quotient spaces

Let X be a normed space and Y be a *closed* subspace. Then the quotient space X/Y becomes a normed space in the quotient norm:

$$||x + Y|| = d(x, Y) = \inf_{y \in Y} ||x + y||$$

The quotient map $q: X \to X/Y$ is linear and bounded: $||q(x)|| \le ||x||$, so $||q|| \le 1$.

q maps the open unit ball D_X onto $D_{X/Y}$. Indeed, if $x \in D_X$, then $\|q(x)\| \le \|x\| < 1$. Reciprocally, if $q(x) \in D_{X/Y}$, then there exists $y \in Y$ such that $\|x+y\| < 1$. So $x+y \in D_X$ and q(x+y)=q(x). It follows that q is an open map and $\|q\|=1$.

If Z is another normed space, $T \in \mathcal{B}(X,Z)$ and $Y \subseteq \ker T$, then there exists a unique map \tilde{T} is linear and $\tilde{T}(D_{X/Y}) = \tilde{T}(q(D_X)) = T(D_X)$. It follows that $\|\tilde{T}\| = \|T\|$.

Theorem 1.6. Let X be a normed space. If X^* is separable, then so is X.

Remark. The converse is false, as $X = \ell_1, X^* = \ell_\infty$ shows.

Proof. Since X^* is separable, so is S_{X^*} . Let f_n be a dense subset of S_{X^*} . For every n, find $x_n \in B_X$ such that $f_n(x_n) > \frac{1}{2}$. Let

$$Y = \overline{\operatorname{Span}\{x_n | n \in \mathbb{N}\}}$$

Claim. Y = X

Then we're done since Y is separable via $Y = \overline{\operatorname{Span}_{\mathbb{Q}}\{x_n|n \in \mathbb{N}\}}$.

Proof. Assume not. Then we can pick $g \in (X/Y)^*$, ||g|| = 1 (by Theorem 1.4 (ii)). Let $f = g \circ q$. Then ||f|| = ||g|| = 1, ie $f \in S_{X^*}$. Thus find n such that $||f - f_n|| < \frac{1}{4}$, so that

$$\frac{1}{4} > ||f - f_n|| \, ||x_n|| \ge |(f - f_n)(x_n)| = |f_n(x_n)| > \frac{1}{2}$$

contradiction.

Theorem 1.7. Let X be a separable normed space. Then X embeds isometrically into ℓ_{-1}

Proof. Let $\{x_n|n\in\mathbb{N}\}$ be dense in X. For every n, find $f_n\in S_{X^*}$, $f_n(x_n)=\|x_n\|$ (assuming $X\neq\{0\}$). Define $T:X\to\ell_\infty$ by $(Tx)_n=f_n(x)$.

Well definition

$$|(Tx)_n| = |f_n(x)| \le ||f_n|| \, ||x|| = ||x||$$

Hence $||Tx||_{\infty} \leq ||x|| < \infty$.

Linearity

$$(T(x+y))_n = f_n(x+y) = f_n(x) + f_n(y) = (Tx+Ty)_n$$
$$(T(\lambda x))_n = f_n(\lambda x) = \lambda f_n(x) = (\lambda Tx)_n$$

so $T(x+y) = Tx + Ty, T(\lambda x) = \lambda Tx$.

Isometry

We already know $||Tx||_{\infty} \leq ||x||$. On the other hand, find f a supporting functional for x and f_{n_k} a subsequence converging to f. Then

$$||Tx||_{\infty} \ge \sup_{k} (Tx)_{n_k} = \sup_{k} |f_{n_k}(x)| \ge |f(x)| = ||x||$$

Remarks.

- The result says that ℓ_{∞} is isometrically universal for the class \mathcal{SB} of separable Banach spaces.
- There is a dual result: Every separable Banach space is a quotient of ℓ_1 .

Theorem 1.8 (Vector-valued Liouville). Lex X be a complex Banach space, $f: \mathbb{C} \to X$ holomorphic and bounded. Then f is constant.

Proof. Find $M \geq 0$ such that $\forall z \in \mathbb{C}, |f(z)| \leq M$. Fix $\phi \in X^*$. $\phi \circ f : \mathbb{C} \to \mathbb{C}$ is

bounded

$$|\phi(f(z))| \le ||\phi|| \, ||f(z)|| \le M \, ||\phi||$$

holomorphic

$$\frac{\phi(f(z)) - \phi(f(w))}{z - w} = \phi\left(\frac{f(z) - f(w)}{z - w}\right) \to \phi(f'(z))$$

By scalar Liouville, $\phi \circ f$ is constant. For every $z \in \mathbb{C}$, $\phi \in X^*$, $\phi(f(z)) = \phi(f(0))$. Since X^* separates points of X, f(z) = f(0).

Remark. This is a typical example of how to transfer a scalar result to a vector-valued one: Prove the result once composed with any functional, then go back using Hahn-Banach.

1.4 Locally convex spaces

Definition. A locally convex space is a \mathbb{K} -vector space such that there exists a family \mathcal{P} of seminorms on X that separate points of X in the sense that for all $x \neq 0$ there exists $p \in \mathcal{P}$ such that $p(x) \neq 0$.

The family \mathcal{P} defines a topology on X:

$$U \subseteq X$$
 open $\iff \forall x \in U, \exists s \subseteq \mathcal{P}$ finite, $\varepsilon > 0, \{y \in X | \forall p \in s, p(x) < \varepsilon\} \subseteq U$

Remarks.

- 1. Addition and scalar multiplication are continuous.
- 2. The topology is Hausdorff as \mathcal{P} separates points.
- 3. $x_n \to x \iff \forall p \in \mathcal{P}, p(x_n x) \to 0$
- 4. Let Y be a subspace of X and $\mathcal{P}_Y = \{p \mid_Y | p \in \mathcal{P}\}$. Then (Y, \mathcal{P}_Y) is a LCS and its topology is the subspace topology.
- 5. Let \mathcal{P}, \mathcal{Q} be two families of seminorms on X both separating points of X. We say \mathcal{P}, \mathcal{Q} are **equivalent**, write $\mathcal{P} \sim \mathcal{Q}$, if they induce the same topology on X. One interesting result is that

$$(X, \mathcal{P})$$
 metrisable $\iff \mathcal{P}$ equivalent to some countable family

6. We make \mathcal{P} part of the data here out of simplicity, but in grown up mathematics we instead assume that X already comes with a topology and that this topology coincides with the one induced by \mathcal{P} .

Definition. A Fréchet space is a complete metrisable LCS.

Example.

- 1. A normed space is a LCS with $\mathcal{P} = \{\|\cdot\|\}$.
- 2. Let $U \subseteq \mathbb{C}$ nonempty open. Let $\mathcal{O}(U) = \{f : U \to \mathbb{C} | f \text{ holomorphic} \}$. For compact $K \subseteq U$, define $p_K(f) = \sup_{z \in K} |f(z)|$. Let $\mathcal{P} = \{p_K | K \subseteq U \text{ compact} \}$ Then $(\mathcal{O}(U), \mathcal{P})$ is a LCS. If we replace $\{K \subseteq U \text{ compact} \}$ by a compact exhaustion of U, then we get a countable separating family equivalent to \mathcal{P} . So $(\mathcal{O}(U), \mathcal{P})$ is metrisable. However it is not normable: no norm on $\mathcal{O}(U)$ induces the topology of $(\mathcal{O}(U), \mathcal{P})$, which is the topology of uniform convergence. This is a consequence of Montel's theorem.
- 3. Fix $d \in \mathbb{N}, \Omega \subseteq \mathbb{R}^d$ a nonempty open set. Let

$$C^{\infty}(\Omega) = \{ f : \Omega \to \mathbb{R} | f \text{ infinitely differentiable} \}$$

Given a multi-index $\alpha \in \mathbb{Z}^d$, α defines a differential operator

$$D^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \dots \left(\frac{\partial}{\partial x_d}\right)^{\alpha_d}$$

For a compact $K \subseteq \Omega, \alpha \in \mathbb{Z}^d$, define

$$p_{K,\alpha}(f) = \sup_{z \in K} |D^{\alpha}f(z)|$$

Let

$$\mathcal{P} = \{ p_{K,\alpha} | K \subseteq U \text{ compact}, \alpha \in \mathbb{Z}^d \}$$

Then $(C^{\infty}, \mathcal{P})$ is a LCS. It is in fact a non-normable Fréchet space.

Lemma 1.9. Let $(X, \mathcal{P}), (Y, \mathcal{Q})$ be LCS, $T: X \to Y$ linear. TFAE

- 1. T is continuous
- 2. T is continuous at 0
- 3. $\forall q \in \mathcal{Q}, \exists s \subseteq \mathcal{P} \text{ finite}, C \geq 0, \forall x \in X, q(Tx) \leq C \max_{p \in s} p(x)$

Proof.

$$(i) \iff (ii)$$

Translation is continuous.

$$(ii) \implies (iii)$$

Given $q \in \mathcal{Q}$, let $V = \{y \in Y | q(y) \le 1\}$. Then V is a neighborhood of 0 in Y. So there exists U neighborhood of 0 in X such that $T(U) \subseteq V$. WLOG

$$U = \{ x \in X | \forall p_K \in s, p_K(x) \le \varepsilon \}$$

Let $p = \max_{p_K \in s} p_K(x)$. If p(x) = 1, then $p(\varepsilon x) = \varepsilon$, so $\varepsilon x \in U$ and

$$q(T(\varepsilon x)) < 1$$

By homogeneity, $q(Tx) \leq \frac{1}{\varepsilon}p(x)$ for all x such that p(x) > 0. If p(x) = 0, then $p(\lambda x) = 0$ for all scalar λ . So $q(T(\lambda x)) \leq 1$ for all λ . Hence $q(Tx) = 0 \leq \frac{1}{\varepsilon}p(x)$.

$$(iii) \implies (ii)$$

Assume $t \subseteq \mathcal{Q}$ is finite, $\varepsilon > 0$, and let $V = \{y \in Y | \forall q \in t, q(y) \leq \varepsilon \text{ the corresponding } \}$

neighborhood of 0. For each $q \in t$, find $s_q \subseteq \mathcal{P}$ finite and C_q so that $\forall x \in X, q(Tx) \le C_q \max_{p \in s_q} p(x)$. Let

$$U = \left\{ x \in X | \forall q \in \mathcal{Q}, p \in s_q, p(x) \le \frac{\varepsilon}{C_q} \right\}$$

Then U is a neighborhood of 0 and $T(U) \subseteq V$.

Definition. Let (X, \mathcal{P}) be a LCS. The **dual space** of X is the space of continuous linear functionals $X \to \mathbb{K}$.

Lecture 5

Lemma 1.10. Let f be a linear functional on a LCS (X, \mathcal{P}) . Then

$$f \in X^* \iff \ker f \text{ closed}$$

Proof.

 \Longrightarrow

 $\ker f = f^{-1}(0)$ is closed since f is continuous.

 \Leftarrow

If ker f = 0, then f = 0 is continuous. Else fix some $x_0 \notin \ker f$. Since $(\ker f)^c$ is open, find $s \subseteq \mathcal{P}$ finite, $\varepsilon > 0$ such that

$$\underbrace{\{x \in X | \forall p \in s, p(x - x_0) < \varepsilon\}}_{U} \subseteq (\ker f)^{c}$$

Then U is a neighborhood of 0 and $(x_0 + U) \cap \ker f =$. Note that U is convex and **balanced** $(x \in U, |\lambda| \le 1 \implies \lambda x \in U)$, hence so is f(U) as f is linear.

If f(U) is unbounded, then it is the whole scalar field, hence so is $f(x_0 + U) = f(x_0) + f(U)$. But $0 \in \ker f$, contradicting disjointness.

So find M such that |f(x)| < M for all $x \in U$. For all $\delta > 0$, $\frac{\delta}{M}U$ is a neighborhood of 0 and $f\left(\frac{\delta}{M}U\right) \subseteq \{\lambda \in \mathbb{K} | |\lambda| < \delta\}$. Thus f is continuous.

Theorem 1.11 (Hahn-Banach). Let (X, \mathcal{P}) be a LCS.

- 1. Given a subspace Y of X and $g \in Y^*$, there exists $f \in X^*$ such that $f \upharpoonright_Y = g$.
- 2. Given a closed subspace Y of X and $x_0 \notin Y$, there exists $f \in X^*$ such that $f \upharpoonright_Y = 0, f(x_0) \neq 0$.

Remark. This means that X^* separates points of X.

Proof.

1. By Lemma 1.9, find $s \subseteq \mathcal{P}$ finite, $C \geq 0$ such that

$$\forall y \in Y, |g(y)| \le C \max_{p \in s} p(y)$$

Let $p(x) = C \max_{p \in s} p(x)$. Then p is a seminorm on X and $\forall y \in Y, |g(y)| \le p(y)$. By Theorem 1.2, find a linear functional f on X such that $f \upharpoonright_Y = g, \forall x \in X, |f(x)| \le p(x)$. By Lemma 1.9, $f \in X^*$.

2. Let $Z = \operatorname{Span}(Y \cup \{x_0\})$ and define a linear functional g on Z by

$$g(y + \lambda x_0) = \lambda, y \in Y, \lambda \in \mathbb{K}$$

Then $g \upharpoonright_Y = 0, g(x_0) = 1 \neq 0$ and $\ker g = Y$ is closed, so $g \in Z^*$ by Lemma 1.10. By part (i), find $f \in X^*$ such that $f \upharpoonright_Z = g$. This works.

2 The dual of $L_p(\mu)$ and C(K)

Let $(\Omega, \mathcal{F}, \mu)$ be measure space.

$$1 \le p < \infty$$

$$L_p(\mu) = \{ f : \Omega \to \mathbb{K} | f \text{ measurable and } \int_{\Omega} |f|^p d\mu < \infty \}$$

This is a normed space in the L_p -norm:

$$\left\|f\right\|_{p} = \left(\int_{\Omega} \left|f\right|^{p} d\mu\right)^{\frac{1}{p}}$$

$$p = \infty$$

A measurable function $f: \Omega \to \mathbb{K}$ is **essentially bounded** if there exists $N \in \mathcal{F}$ such that $\mu(N) = 0$ and $f \upharpoonright_{N^c}$ is bounded.

$$L_p(\mu) = \{f : \Omega \to \mathbb{K} | f \text{ measurable and essentially bounded} \}$$

This is a normed space in the L_{∞} -norm:

$$||f||_{\infty} = \operatorname{esssup} |f| = \inf_{|f| \le k \text{ ae}} k$$

The inf is attained: there exists some $N \in \mathcal{F}$, $\mu(N) = 0$ such that $||f||_{\infty} = \sup_{N^c} |f|$. In all cases, we identify functions up to almost everywhere equality.

Theorem 2.1. $L_p(\mu)$ is complete for $1 \le p \le infty$.

Definition (Complex measures). A **complex measure** on \mathcal{F} is a countably additive set function $\nu : \mathcal{F} \to \mathbb{C}$.

The **total variation measure** $|\nu|$ is defined by

$$\left| \nu \right| (A) = \sup_{\substack{A_1, \dots, A_n \text{ measurable} \\ \text{partition of } A}} \sum_k \left| \nu(A_k) \right|$$

 $|\nu|: \mathcal{F} \to [0, \infty]$ is a positive measure. Later we'll see that $|\nu|$ is a finite measure. The **total variation** of ν is $\|\nu\|_1 = |\nu|(\Omega)$.

Proposition. If ν is a complex measure on \mathcal{F} and $A_n \in \mathcal{F}$ for all n, then

- If A is monotone, then $\nu(\bigcup_n A_n) = \lim_{n \to \infty} \nu(A_n)$.
- If A is antitone, then $\nu(\bigcap_n A_n) = \lim_{n \to \infty} \nu(A_n)$.

Definition (Signed measures). A signed measure on \mathcal{F} is a countably additive set function $\nu : \mathcal{F} \to \mathbb{R}$.

Theorem 2.2. If ν is a signed measure, then there exists a measurable partition $\Omega = P \cup N$ such that for all $A \in \mathcal{F}$

$$\begin{array}{ccc} A \subseteq P & \Longrightarrow & \nu(A) \geq 0 \\ A \subseteq N & \Longrightarrow & \nu(A) \leq 0 \end{array}$$

Remarks.

1. This decomposition is called the **Hahn decomposition** of ν .

- 2. Define $\nu^+(A) = \nu(A \cap P), \nu^-(A) = -\nu(A \cap N)$. Then ν^+, ν^- are finite positive measures such that $\nu = \nu^+ \nu^-$. This determines ν^+, ν^- uniquely and the decomposition composition $\nu = \nu^+ \nu^-$ is called the **Jordan decomposition** of ν .
- 3. If ν is a complex measure on \mathcal{F} , then Re ν , Im ν are signed measures with Jordan decomposition $\nu_1 \nu_2, \nu_3 \nu_4$ respectively. Hence $\nu = \nu_1 \nu_2 + i\nu_3 i\nu_4$ is the Jordan decomposition of ν .

$$|\nu_1, \nu_2, \nu_3, \nu_4 \le |\nu| \le |\nu_1 + \nu_2 + \nu_3 + \nu_4|$$

So $|\nu|$ is a finite measure.

Sketch. Define $\nu^+(A) = \sup_{\substack{B \in \mathcal{F} \\ B \subseteq A}} \nu(B)$. ν^+ is nonnegative and finitely additive.

Key step: $\nu^+(\Omega) < \infty$

By contradiction, construct inductively sequences A_n, B_n such that

$$\nu^+(A_n) = \infty, \nu(B_n) > n$$

by taking $A_0 = \Omega$, $B_{n+1} \subseteq A_n$ such that $\nu(B_n) > n$ (exists by continuity) and $A_{n+1} = B_{n+1}$ or $A_n \setminus B_{n+1}$. This contradicts countable additivity.

Now find a sequence A_n such that $\nu(A_n) > \nu^+(\Omega) - 2^{-n}$ and set $P = \liminf_n A_n, N = P^c$. Check that this works.

Lecture 6