Automatic construction and description of nonparametric models

James Robert Lloyd, David Duvenaud, Roger Grosse, Josh Tenenbaum, Zoubin Ghahramani

November 29, 2013

MOTIVATION

- ► Models today built by hand, or chosen from a fixed set.
 - ► Example: Scikit-learn

- ▶ Just being nonparametric sometimes isn't good enough
- Building by hand requires expertise, understanding of the dataset.

MOTIVATION

- ► Models today built by hand, or chosen from a fixed set.
 - Building by hand requires expertise, understanding of the dataset.
 - Follows cycle of: propose model, do inference, check model fit
 - Propose new model
 - ▶ Do inference
 - Check model fit
 - ► for high-dimensional data, this can silently fail
- ▶ Andrew Gelman asks: How would an AI do statistics?
- ► It would need a language for describing arbitrarily complicated models, a way to search over those models, nad a way of checking model fit.

MOTIVATION

- ▶ Andrew Gelman asks: How would an AI do statistics?
- ► It would need a language for describing arbitrarily complicated models, a way to search over those models, nad a way of checking model fit.
- ▶ We built such a language over regression models, a procedure to search over them, and a method to describe in english language the properties of the resulting models.

EXAMPLE

entire signal

A very smooth monotonically increasing function

An approximately periodic function with a period of 1.0 years and with approximately linearly increasing amplitude

An exactly tion with a years but v creasing ar

KERNEL CHOICE IS IMPORTANT

- ► Kernel determines almost all the properties of the prior.
- ► Many different kinds, with very different properties:

KERNELS CAN BE COMPOSED

► Two main operations: adding, multiplying

KERNELS CAN BE COMPOSED

► Can be composed across multiple dimensions

SPECIAL CASES

Bayesian linear regression
Bayesian polynomial regression
Generalized Fourier decomposition
Generalized additive models
Automatic relevance determination
Linear trend with deviations
Linearly growing amplitude

LIN $LIN \times LIN \times ...$ PER + PER + ... $\sum_{d=1}^{D} SE_d$ $\prod_{d=1}^{D} SE_d$ LIN + SE $LIN \times SE$

APPROPRIATE KERNELS ARE NECESSARY FOR EXTRAPOLATION

- ▶ SE kernel \rightarrow basic smoothing.
- ▶ Richer kernels means richer structure can be captured.

KERNELS ARE HARD TO CHOOSE

- ► Given the diversity of priors available, how to choose one?
- Standard GP software packages include many base kernels and means to combine them, but no default kernel
- ► Software can't choose model for you, you're the expert (?)

KERNELS ARE HARD TO CONSTRUCT

- Carl devotes 4 pages of his book to constructing a custom kernel for CO2 data
- requires specialized knowledge, trial and error, and a dataset small and low-dimensional enough that a human can interpret it.
- ► In practice, most users can't or won't make custom kernel, and SE kernel became *de facto* standard kernel through inertia.

RECAP

- ▶ GP Regression is a powerful tool
- ► Kernel choice allows for rich structure to be captured different kernels express very different model classes
- ► Composition generates a rich space of models
- Hard & slow to search by hand
- ► Can kernel specification be automated?

COMPOSITIONAL STRUCTURE SEARCH

- ▶ Define grammar over kernels:
 - $K \rightarrow K + K$
 - $K \to K \times K$
 - $K \rightarrow \{SE, RQ, Lin, Per\}$
- Search the space of kernels greedily by applying production rules, checking model fit (approximate marginal likelihood).

COMPOSITIONAL STRUCTURE SEARCH

EXAMPLE SEARCH: MAUNA LUA CO₂

EXAMPLE DECOMPOSITION: MAUNA LOA CO₂

COMPOUND KERNELS ARE INTERPRETABLE

Suppose functions f_1, f_2 are draw from independent GP priors, $f_1 \sim \mathcal{GP}(\mu_1, k_1), f_2 \sim \mathcal{GP}(\mu_2, k_2)$. Then it follows that

$$f := f_1 + f_2 \sim \mathcal{GP}(\mu_1 + \mu_2, k_1 + k_2)$$

Sum of kernels is equivalent to sum of functions. Distributivity means we can write compound kernels as sums of products of base kernels:

$$SE \times (RQ + Lin) = SE \times RQ + SE \times Lin.$$

EXAMPLE DECOMPOSITION: AIRLINE

EXAMPLE: SUNSPOTS

CHANGEPOINT KERNEL

Can express change in covariance:

Periodic changing to SE

CHANGEPOINT KERNEL

Can express change in covariance:

SE changing to linear

SUMMARY

- ► Choosing form of kernel is currently done by hand.
- ► Compositions of kernels lead to more interesting priors on functions than typically considered.
- ► A simple grammar specifies all such compositions, and can be searched over automatically.
- ► Composite kernels lead to interpretable decompositions.

CONCLUSIONS

- ► Model-building is currently done mostly by hand.
- ► Grammars over composite structures are a simple way to specify open-ended model classes.
- ► Composite structures often imply interpretable decompositions of the data.
- Searching over these model classes is a step towards automating statistical analysis.

CONCLUSIONS

- ► Model-building is currently done mostly by hand.
- ► Grammars over composite structures are a simple way to specify open-ended model classes.
- ► Composite structures often imply interpretable decompositions of the data.
- Searching over these model classes is a step towards automating statistical analysis.

Thanks!