GATE: CE - 29.2022

EE22BTECH11219 - Rada Sai Sujan

QUESTION

Consider the following recursive iteration scheme for different values of variable P with the initial guess $x_1 = 1$:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{P}{x_n} \right), \qquad n = 1, 2, 3, 4, 5$$

For P = 2, x_5 is obtained to be 1.414, rounded off to 3 decimal places. For P = 3, x_5 is obtained to be 1.732, rounded off to 3 decimal places.

If P = 10, the numerical value of x_5 is ___ (round of f to three decimal places)

Solution:

Applying $A.M \ge G.M$ inequality,

$$\frac{x_n + \frac{P}{x_n}}{2} \ge \sqrt{P} \tag{1}$$

$$\implies x_{n+1} \ge \sqrt{P}$$
 (2)

Solving the equation,

$$2x_{n+1}x_n - x_n^2 - P = 0 (3)$$

Applying Z-transform we get,

$$X(z) * X(z) = \frac{PZ^{-1}}{(1 - z^{-1})(2 - z^{-1})}$$
(4)

$$=P\left(\frac{z^{-1}}{1-z^{-1}}-\frac{z^{-1}}{2-z^{-1}}\right)$$
 (5)

From the transformation pairs,

$$x_{n-a} \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-a} X(z)$$
 (6)

$$x_{n_1} \times x_{n_2} \stackrel{\mathcal{Z}}{\longleftrightarrow} X_1(z) * X_2(z)$$
 (7)

$$\frac{u(n-1)}{a^n} \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{a-z^{-1}} \tag{8}$$

Now, applying inverse Z-tranform,

$$x_n^2 = P\left(u(n-1) - \frac{u(n-1)}{2^n}\right)$$
 (9)

$$\implies x_n^2 = P\left(1 - \frac{1}{2^n}\right) \quad [\because n \ge 1] \tag{10}$$

Similarly,

$$x_{n+1}^2 = P\left(1 - \frac{1}{2^{n+1}}\right) \tag{11}$$

$$\implies \lim_{n \to \infty} x_{n+1} - x_n = P - P \quad (= 0) \tag{12}$$

Hence, the system is convergent.

Now finding the limit of the sequence,

$$x^2 = \lim_{x \to \infty} P\left(1 - \frac{1}{2^n}\right) \tag{13}$$

$$\implies x = \pm \sqrt{P} \tag{14}$$

From (2) and (14),

$$x_{n+1} = \sqrt{P} \tag{15}$$

Therefore, for P = 10 the value of x_5 is,

$$x_5 = \sqrt{10} \tag{16}$$

$$\therefore x_5 = 3.162$$
 (17)