Développement. La décomposition polaire

Lemme 1. Soit $A \in \mathscr{S}_n^{++}(\mathbf{R})$ une matrice symétrie réelle définie positive. Alors il existe une unique matrice réelle symétrique positive $S \in \mathscr{S}_n^{++}(\mathbf{R})$ telle que $A = S^2$.

Preuve Montrons l'existence. Comme la matrice A est symétrique réelle, le théorème spectrale assure qu'elle est diagonalisable en base orthonormée : on peut écrire

$$A = P \operatorname{diag}(\lambda_1, \dots, \lambda_n) P^{-1}$$

pour une matrice $P \in O(n)$ et des réels $\lambda_i > 0$. La matrice

$$S := P \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}) P^{-1}$$

convient alors.

Passons à l'unicité. On reprend la matrice S définie précédemment. Soit $\tilde{S} \in \mathscr{S}_n^+(\mathbf{R})$ une autre telle matrice. Soit $Q \in \mathbf{R}[X]$ un polynôme tel que

$$\forall i \in [1, n], \qquad Q(\lambda_i) = \sqrt{\lambda_i}.$$

Alors $S=Q(A)=Q(\tilde{S}^2)$. De cette égalité, on en déduit que les matrices S et \tilde{S} commutent et qu'elles sont donc codiagonalisables puisque les deux sont diagonalisables. Notons $P_0\in \mathrm{GL}_n(\mathbf{R})$ une matrice et $\mu_1,\ldots,\mu_n>0$ des réels tels que

$$S = P_0 \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}) P_0^{-1}$$
 et $\tilde{S} = P_0 \operatorname{diag}(\mu_1, \dots, \mu_n) P_0^{-1}$.

Soit $i \in [1, n]$ un indice. Comme $S^2 = \tilde{S}^2$, les deux dernières égalités donnent $\lambda_i = \mu_i^2$. Comme la matrice \tilde{S} est définie positive, ceci assure que $\mu_i = \sqrt{\lambda_i}$. D'où $S = \tilde{S}$.

Théorème 2 (décomposition polaire). L'application

$$\begin{array}{c}
O(n) \times \mathscr{S}_n^{++}(\mathbf{R}) \longrightarrow \mathrm{GL}_n(\mathbf{R}), \\
(O, S) \longmapsto OS
\end{array}$$

est un homéomorphisme.

Preuve Cette application est bien définie et elle est continue. Il reste à vérifier qu'elle est bijective et que sa réciproque est continue.

• C'est une bijection. Montrons sa surjectivité. Soit $M \in GL_n(\mathbf{R})$ une matrice inversible. La matrice ${}^t\!MM$ est alors symétrique réelle définie positive. D'après le lemme, il existe une matrice $S \in \mathscr{S}_n^{++}(\mathbf{R})$ telle que $S^2 = {}^t\!MM$. La matrice $O := MS^{-1}$ vérifie M = OS et elle est orthogonale puisque

$${}^{t}OO = {}^{t}S^{-1} {}^{t}MMS^{-1} = S^{-1}S^{2}S^{-1} = I_{n}.$$

Ceci conclut la surjectivité.

Montrons son injectivité. Soient $O, \tilde{O} \in \mathcal{O}(n)$ et $S, \tilde{S} \in \mathscr{S}_n^{++}(\mathbf{R})$ quatre matrices vérifiant $M := OS = \tilde{O}\tilde{S}$. Alors

$${}^{\mathsf{t}}MM = {}^{\mathsf{t}}(OS)OS = {}^{\mathsf{t}}S {}^{\mathsf{t}}OOS = S^2$$
 et ${}^{\mathsf{t}}MM = \tilde{S}^2$.

L'unicité dans le lemme fournit alors $S=\tilde{S}$ ce qui donne ensuite $O=\tilde{O}.$ Finalement, l'application est une bijection.

• Sa réciproque est continue. Soit $(M_k)_{k\in\mathbb{N}}$ une suite de $\mathrm{GL}_n(\mathbb{R})$ qui converge vers une matrice $M\in\mathrm{GL}_n(\mathbb{R})$. Notons $M_k=O_kS_k$ et M=OS les décompositions polaires des matrices M_k et O_k . Il faut montrer que $(O_k,S_k)\longrightarrow (O,S)$. Le groupe $\mathrm{O}(n)$ est compact. Soit alors $\varphi\colon \mathbb{N}\longrightarrow \mathbb{N}$ une extraction telle que la suite $(O_{\varphi(k)})_{k\in\mathbb{N}}$ converge vers une matrice $\tilde{O}\in\mathrm{O}(n)$. Comme $S_{\varphi(k)}={}^{\mathrm{t}}O_{\varphi(k)}M_{\varphi(k)}$ et comme le produit et la transposée sont continus, la suite $(S_{\varphi(k)})_{k\in\mathbb{N}}$ converge vers la matrice $\tilde{S}:={}^{\mathrm{t}}\tilde{O}M$. Mais on peut écrire

$$\tilde{S} \in \mathrm{GL}_n(\mathbf{R}) \cap \overline{\mathscr{S}_n^{++}(\mathbf{R})} = \mathrm{GL}_n(\mathbf{R}) \cap \mathscr{S}_n^{+}(\mathbf{R}) = \mathscr{S}_n^{++}(\mathbf{R})$$

Finalement, on a écrit $M = \tilde{O}\tilde{S}$ pour une matrice orthogonale \tilde{O} et une matrice symétrique définie positive \tilde{S} . Par l'unicité montrée précédemment, on en déduit que $O = \tilde{O}$. Ainsi la suite $(O_k)_{k \in \mathbb{N}}$ n'admet qu'une seule valeur d'adhérence qui est la matrice O. Comme le groupe O(n) est compact, elle converge vers cette dernière. Par suite, la suite $(S_k)_{k \in \mathbb{N}}$ converge vers la matrice S ce qui conclut.

Philippe Caldero et Jérôme Germoni. Nouvelles histoires hédonistes de groupes et de géométries. T. Tome premier. Calvage & Mounet, 2017.