МОДЕЛИРАНЕ И АНАЛИЗ НА СОФТУЕР

Павел Кюркчиев

Ас. към ПУ "Паисий Хилендарски"

https://github.com/pkyurkchiev

@pkyurkchiev

БИЗНЕС ПРАВИЛА

Физически модел на данни

UML Database Notation – физически модел на данни

Първичен ключ (Primary key)

- Първичен ключ е поле, което определя еднозначно запис в база от данни.
- Този тип ключове са използвани от OLTP схеми.

Представяне на първичен ключ на атрибути

Student <<PK>> ID **Last Name Faculty Number**

Алтернативен ключ атрибути (Attributes)

■ Показва, че една колона е част от алтернативен ключ, известен също като вторичен ключ, за таблица.

Представяне на алтернативни ключови атрибути

Student

First Name

Last Name

Faculty Number <<AK>>

Автоматично генерирани атрибути (Auto Generated Attributes)

 ■ Показва, че стойността на колоната се генерира автоматично от базата данни.

Представяне на автоматично генерирани атрибути

Student **First Name Last Name** <<Auto **Faculty Number** Generated>>

Задължителни/Незадължителни атрибути

- Задължителни Показва, че в колоната не може да има нулеви стойности.
- Незадължителни Показва, че колоната може да има нулеви стойности.

Представяне на задължителни/незадължителни атрибути

Student

First Name

<<Not Null>>

Last Name

<<Null>>

Faculty Number

Ключ заместител (Surrogate key)

- Ключ заместител е поле, което определя еднозначно запис в база от данни.
- Този тип ключове са използвани от OLAP схеми.
- Този тип ключове са прости числа. Не представляват сложни изрази докато първичните ключове могат да бъдат сложни изрази.

Представяне на ключ заместител на атрибути

Student <<Surrogate>> ID **Last Name Faculty Number**

Уникално ограничение на атрибути (Unique Constraint)

■ Уникалните ограничения спомагат за утвърждаването на уникалността на конкретни колони. Уникални ограничения могат да бъдат добавени към даден обект, за да се осигури невъзможност за въвеждане на дублирани стойности в конкретни колони. Уникалното ограничение може да се състои от една колона или комбинация от колони.

Представяне на уникално ограничение на атрибути

Student

First Name

Last Name

Faculty Number

<<Unique Identifier>>

Индексирани Атрибути (Index Attributes)

■ Индексът на базата данни е структура от данни, която подобрява скоростта на операциите за извличане на данни в таблица на база данни, за сметка на допълнителното пространство за запис и съхранение, за да се запази структурата на индексните данни.

Представяне на индексирани атрибути

Student

First Name

Last Name

Faculty Number <<Index>>

Изчислими колони (Calculated column)

■ Това са колони, които се изчисляват или обработват от бизнес логика, която е заложена в базата данни.

Представяне на изчислими колони

Student

First Name

Last Name

/ Faculty Number

Съхранени процедури (Stored Procedures)

Съхранена процедура е предварително написан код на процедура, който позволява да бъде изпълняван отново и отново за валидиране или бързо извличане на данни. Използването на съхранена процедура помага да се поддържа последователно внедряване на логиката в програмните модули и приложения. Той също така прави дизайна, кодирането и тестването полесни, защото логиката се поставя на едно място - съхранената процедура.

Описание на съхранени процедури

■ Съхранените процедури трябва да бъдат моделирани като част от един клас. Този клас е отбелязан със стереотип <<3апазени процедури>>.

Представяне на съхранена процедура

<<Stored Procedure>>
StudentDB

getAllStudents(...)
getStudentTotal(...)

Тригери (Triggers)

■ Тригерът в база данни е процедура, която автоматично се изпълнява в отговор на определени събития възникнали в таблица на базата данни. Обичайната употреба на тригери е за одитиране на база данни. Тригерът, който регистрира вмъкването, модифицирането и изтриването на важни данни, ще ви информира кога и защо е направена промяна в базата данни.

Описание на тригер

■ При описанието на тригера освен задавене на име на тригера трябва да бъде моделирано и събитието, което задейства метода. Например {събитие = преди вмъкване | след актуализация, цел на следене = име на колона}

Представяне на тригер

Student

InsertStudent(...)
<<Trigger>>

{event = after insert}

UpdateStudent(...)

<<Trigger>>

{event = after update}

Изгледи (Views)

■ В база данни изгледът представлява набор от резултати от запаметена заявка върху данните, които потребителите на базата данни могат да заявят, както биха направили заявка за извличане на информация от таблица.

Представяне на изгледи

<<View>>
StudentTaxes

Tax

Tax Unit

Tax Total

Acoциативни таблици (Associative Table)

 Асоциативните таблици са не основни таблици, на които първичния ключ е съвкупност от чужди ключове.

Представяне на Асоциативна таблица

<<Associative Table>>
StudentToMajor

SrudentID

MajorID

Таблици списъци (Lookup Table)

■ Този вид таблици съдържа в себе си номенклатури.

Представяне на таблица списък

<<Lookup Table>>
LevelOfEducation

LevelOfEducationID

Value

Диаграма 1

Диаграма 2

Стъпки

- Определяне на таблици
- Нормализиране на таблици
- Определяне на колони
- Определяне на съхранени процедури
- Прилагане конвенциите за именуване
- Определяне на връзките
- Прилагане на шаблони за моделиране на данни
- Определяне на ключове

Да се дефинират тригери Да се дефинират съхранени процедури Да се генерират изгледи

Допълване на Hospital модел

Модел на данни Hospital

ВЪПРОСИ?