Answer all questions. Each question carries 10 marks.

A rod DE of mass m and length L is mounted on a massless shaft AB which rotates about the x axis at a constant rate α (Fig. B1). Color the x-z plane. The bearing at A does not provide any axial constraint, and the bearings do not provide any rotational constraint. rotational constraint.

- A three bladed rotor rotates at rates ω_3 , $\dot{\omega}_3$ relative to forked arm 2 which rotates at rates ω_2 , $\dot{\omega}_2$ relative to a vertical shaft 1 rotating at rates ω_1 , $\dot{\omega}_1$ about a fixed vertical axis (see Fig. P2). The mass of the rotor is m. The axial torque applied by the motor about the z axis to the rotor is T N-m. The axial and transverse moments of inertia of the rotor including the blade are I_{xx} and $I_{xx} = I_{yy}$. The blades are in the x-y plane.
 - 1. Write down the expressions for the angular velocity and angular acceleration of the rotor with respect
 - to the ground, ω_{3IG} , ω_{3IG} .

 Is $H_B = M_B$ correct? Determine the angular acceleration ω_3 of the rotor w.r.t. arm 2 and also the moment reactions M_{λ} and M_{ν} by the frame on the rotor (note that $M_{\lambda} = T$, the motor torque).
 - Determine the acceleration a_B of B w.r.t. the ground frame G. And hence determine the force reaction \mathbf{F}_{R} by the forked arm on the rotor.

Fig. P2

A satellite is in elliptic orbit with eccentricity 0.5 around the earth (G,M) with its maximum distance from the when G with its maximum distance from the satellite G. A satellite is in elliptic oron with earth's centre being r_o . Find, (i) the speed of the satellite whe_h it is at the maximum distance and (ii) the time