CS225: Switching Theory.

NAME: - Agrya Vorat Joshi

Roll No: 1801C501

Sign > Soup Date: 14/07/2020

A2) Finite State machine por performing a special Combo ina a GAME.

=> Problem Statement:

While playing the gome we have a meter. When the meter is full the user con perform a special move by pressing the following Sequence of keys in the keyboard.

- 1) Meter is full
- 2) fress (W+A) once, 1f(5+0) is pressed see the combo is backen.
- 3) Paess (s+0), 1 (W+A) is pressed again combo is
- 4) Perform the special move and go back to the initial state.

Step () Representation of FSM. Meter is FULL [Press (W+A) once S₂
Pricy (S+D) 153) Perform Special MOVE.

Step 9: Simplification Using K-Mops.

Step @ Create Combinational logic

* Refer to the concret in the image given below:

Finite State Machine Circuit Diagram

A3) Aim of the Experiment

→ To design a 12-HOUR CLOCK Using counters

Method

-> Digital Clocks are usually set up to start at 12:00, and they count 12:01, 12:02, 12:03 --- 12:58, 12:59,1:00, and so on. The one's place of the Minutes (the sight-most digit) counts. 0,1,2,3 --- 9 ond then prepeats, and a circuit that county in that way is called a mod- to counter. The ten's place of the minutes (second digit from the night) counts 0,1,2,3,4,5, and then orepeats, which is called a mod-6 counter. The hour counter countres 12,1,2, 3, 4, ---- 9, 10, 11, and repeats. One way to design the clock is given below:

- * The output from each counter is a binory coded decimal (BCD) number that preparements one of the digits in time, and BCD-to-Seven segment decoders are used to drive the seven segment displays.
 - The circuit is a clocked synchronous circuit where all the flip-flops howe the some clock signal. If the clock signal is set to have one pulse per minute, the mod-10 counter will increament every minute and needs to have on output Z that indicates when it is at the monimum count (1001). Since the mod-6 counter only increaments every 10 minutes, it needs to have on enable input which is connected to the mon. count indicator Z that is I when the mod-6 counter is at the mox-count (0101) and that it is enabled. The hour counter needs to have an enable input which is connected fo the mox. count indicator from the wood-6 counter.

K	State	Table	fo	r Mod-	lo cour	iter.
	001	9-00-1-00-1-00-1-00-1-	20-0-0-0-0-0-0-0-	90000000000000XXXXXXXXXXXXXXXXXXXXXXXX	10100011000XXXXXXXXXXXXXXXXXXXXXXXXXXX	NOOOOOOOOTXXXXXX

Ciorcuit >

Mod-10 Counter

The hour counter has 12 states, and so it requires four flip-flops, Since the hour counter has four-flip flops and one input, the encitation equations four-flip flops and one input, the encitation equations are functions of five variables. In order to awaid are functions of five variable k. Maps, the enable was requiring five-variable k. Maps, the enable was implemented reparately by using a flip-flops with implemented reparately by using a flip-flops with enable.

Therefore the hour counter was designed without on emobile input so that enalthion equations are functions of only four variables, but it was constructed using per plays with enable.

> State Table for Hour Counter.

State Tame 10
939200000000000000000000000000000000000

* The clock signal, which needs to have one pulse every minute, con be generaled, by dividing the signal from a crystal oscillation down to the required prequency. The time con be set by having a button that allows the user to temporority select a dock that has a higher frequency so that the clock Countr quicker thon normal.

Conclusion:

Ne are able to implent a 12-HOUR CLOCK

Using Counters.

The Circuit diagram is given below:

Memory Types	Year of Introduction	Application	Power Consumption		Memory Capacity		Speed		Technology Used		Number of tarnsisitors	Price	
			Past	Present	Past	Present	Past	Present	Past	Present		Past	Present
DRAM	1959	DRAM is the main memory (called the "RAM") in modern computers and graphics cards (where the "main memory" is called the graphics memory).	less amount of power due to lesser nuber of transisitors and resistors	Nearly 3 Watts	128 Mbits	16GBs	Bus rate 66MHz	Bus rate 400Mhz	Bipolar Transistors were used	MOS Technology	Single DRAM is composed of only two components, a transitor and a capacitor. DRAM can be made in high densities		
SRAM	1965	Hard Disk Buffers, Cache Memory, etc	Very low power consuming device	82nW per bit.	In Bytes	1MB to 16MB	3200Mbps	19200Mbps	16-bit silicon memory chip based on the Farber-Schlig cell, with 80 transistors, 64 resistors, and 4 diodes	MOSFETs.	Each bit is stored on 4 transistors	\$/Mbyte : 411,041,792	\$/Mbyte : 0.0035
EEPROM	1972	Storing BIOS of the computer	Negligible		In order of Bytes	32 KB		Write access times in the area of 10ns	Antifuse bit cells dependent on a capacitor between crossing conductive lines	One thin Oxide Transistor per bit cell	2 transistors per bit	13\$ for 2Kbit	2\$ for 1024Kb
PROM	1956	Video Game consoles,Old Cell Phones	Negligible		PROM comes with all bits reading as 1. Burning a Fuse bit during programming cause the bit to read as zero		The breakdown of a bit occurs in 100 micro seconds or less		PMOS	CMOS	1 Transistor per bit cell	\$66 for 2Kbit	\$24 for 16Kbit
CAM	2007	Netowrking Devices, databas engines, artificial neural networks etc	Negligible		Can store Binary or Ternary		It is able to hit speeds of about 100Mhz in network devices		Cryptograhic Hash Function		4 n type Transistors	\$/Mbyte : 411,041,792	\$/Mbyte : 0.0035
EPROM	1971	In integrated Circuits and boards,Computer BIOS	Negligible		2 Kbit	32 Mbit	256Kbitps	8Mbitps	PMOS	CMOS	Two Transistors		
USB/FLash	1972	Storing small amount of data	Large amount of Power due to mechanical systems	A write takes about 60 mA at 3V for upto 3msec	256KBs	1TB	12 Mbit/s	5 Gbit/s	Floating Gate MOSFET transistors memory Cells	NAND FLash Memry Chips, Crystal Oscilator, USB Mass Storage Controller	16 GB flash drive consists of 64 Billion Transistors	US\$/MB: 0.258	US\$/MB: 0.000214
Registers	1944	buffer storage, I/O of different kinds	Negligible		Binary 1 or 0	Upto 64bit registers or even more		100GBps in processor Cache (L3)	Basic Gates using mechanical equipments	MOSFETs Semiconductors	Variable		
HDD	1956	Storing Large amount of data, One of the basic components of computers	High power consumption due to mechanical glass platters	10Watts	3.75 MB on a stack of 50 disks.	Upto 16TB on a single disk.	1Mbit/s	200 MBps	Reels of Magnetic tape	Modern HDD records data by magnetixing a thin film of ferrmagnetic material		US\$/MB: 9200	US\$/MB: 0.0000190
een		As a fast storage device in various computing devices lik servers, gaming		Nearly 4	20MD			·	DRAM volatile	NAND FLash Non	800 Billion	PCEO for OVD	#20 for 24005
SSD Tape Drives	1991	pcs,etc Used for Offline and archival Data Storage	High amount of power consumption due to mechanical components	Watts Only about 200 Watts for 140TB tape drive. Significantly less than the same sized HDD	20MB	100TB	0.65GBps In order of KBps	15GBps 200MBps	First computer tape drive, used 1/2" nickel-plated phosphor bronze tape	Volatile Memory Linear Tape File System (LTFS)	transistors	\$650 for 8KB	\$30 for 240GE