Tutorial on Topological Data Analysis

Kunlin

July 15, 2020

1 Metric Topology

1.1 Motivation

Question: How to do "smooth deformation" of an object.

Definition 1.1. Smooth deformation will not change the shape of an object.

If we define a shape by counting the number of holes in the object...

You cannot change a ball into a donut, because a ball has no holes a donut has one hole.

In TDA:

- Start from a data set
- Construct topological objects
- ullet Study their properties that are not changed by smooth deformation

Challenges:

- How to define shapes (number of holes)?
- How to count holes when dimension $n = 2, 3, 4, \cdots$

Idea: dimension reduction while maintaining homology.

1.2 Open Sets

Definition 1.2. Let (X, d) be a metric space. For each element $a \in X$ and each $r \in (0, \infty) \subseteq \mathbb{R}$, the open ball with a center a and radius r is the subset

$$B_{a,r} = \{ x \in X | d(a,x) < r \} \subseteq X \tag{1}$$

Example 1.3. Let (X, d) be a metric space. If r > 0, then

$$B_{a,r} = \{ x \in X | d(a,x) < r \} \subseteq X \tag{2}$$

is open.

Solution. If $y \in B(a,r)$, then $\delta = r - d(a,y) > 0$ and, whenever $d(z,y) < \delta$, the triangle inequality gives us

$$d(a, z) \le d(a, y) + d(y, z) < r$$

so $z \in B(a, r)$. Thus B(a, r) is open.

Theorem 1.4. If (X, d) is a metric space, then the following statements are true.

- (i) The empty set \emptyset and the space X are open.
- (ii) If U_{α} is open for all $\alpha \in A$, then $\bigcup_{\alpha \in A} U_{\alpha}$ is open. (In other words, the union of open sets is open.)
 - (iii) If U_j is open for all $1 \leq j \leq n$, then $\bigcap_{i=1}^n U_j$ is open.

Proof. (i) Since there are no points e in \emptyset , the statement

$$x \in \emptyset$$
 whenever $d(x, e) < 1$

holds for all $e \in \emptyset$. Since every point x belongs to X, the statement

$$x \in X$$
 whenever $d(x, e) < 1$

holds for all $e \in X$.

(ii) If $e \in \bigcup_{\alpha \in A} U_{\alpha}$, then we can find a particular $\alpha_1 \in A$ with $e \in U_{\alpha_1}$. Since U_{α_1} is open, we can find a $\delta > 0$ such that

$$x \in U_{\alpha_1}$$
 whenever $d(x, e) < \delta$.

Since $U_{\alpha_1} \subseteq \bigcup_{\alpha \in A} U_{\alpha}$,

$$x \in \bigcup_{\alpha \in A} U_{\alpha}$$
 whenever $d(x, e) < \delta$.

Thus $\bigcup_{\alpha \in A} U_{\alpha}$ is open.

(iii) If $e \in \bigcap_{j=1}^n U_j$, then $e \in U_j$ for each $1 \le j \le n$. Since U_j is open, we can find a $\delta_j > 0$ such that

$$x \in U_j$$
 whenever $d(x, e) < \delta_j$.

Setting $\delta = \min_{1 \le j \le n} \delta_j$, we have $\delta > 0$ and

$$x \in U_i$$
 whenever $d(x, e) < \delta$

for all $1 \le j \le n$. Thus

$$x \in \bigcap_{j=1}^{n} U_j$$
 whenever $d(x, e) < \delta$

and we have shown that $\bigcap_{j=1}^{n} U_j$ is open.

Example 1.5. Here is an example of how property (iii) faiuls when we consider the intersection of an infinite family of open subsets. Let $X = \mathbb{R}$ with the Euclidean metric, d(x,y) = |x-y|, and let $U_i = (-\frac{1}{i}, \frac{1}{i})$ for all i > 1. Then, $\bigcap_{i=1}^{\infty} U_i = \{0\}$, which is not open.

Example 1.6. If we work in \mathbb{R}^n with the Euclidean metric, then the one point set $\{\mathbf{x}\}$ is not open.

Proof. Choose $\mathbf{e} \in \mathbb{R}^n$ with $\|\mathbf{e}\|_2 = 1$. (We could take $\mathbf{e} = (1, 0, 0, \dots, 0)$.) If $\delta > 0$, then, setting $\mathbf{y} = \mathbf{x} + (\delta/2)\mathbf{e}$, we have $\|\mathbf{x} - \mathbf{y}\|_2 < \delta$, yet $\mathbf{y} \notin \{\mathbf{x}\}$. Thus $\{\mathbf{x}\}$ is not open.

1.3 Continuous functions between metric spaces

Definition 1.7. Lext (X, d_X) and (Y, d_Y) be metric spaces. A map $f: X \to Y$ such that

$$d_Y(f(x), f(x')) = d_X(x, x')$$
(3)

for all $x, x' \in X$ is called isometry between X and Y.

Definition 1.8. Isometry is a distance-preserving transformation between metric spaces, usually assumed to be bijective.

Example 1.9. Consider the sets \mathbb{R}^2 and \mathbb{C} , both with Euclidean metric. Then, the map $f: \mathbb{C} \to \mathbb{R}^2$ defined by f(a+bi) = (a,b), which is isometry.

Example 1.10. Is $f(x) = x^2$ an isometry on Euclidean distance? $d(3,4) = \sqrt{9+16} = 5$ but $d(f(3), f(4)) = d(9,16) = \sqrt{81+256} = \sqrt{337}$

Theorem 1.11. Let (X,d) and (Y,ρ) be metric spaces. A function $f:X \to Y$ is continuous if and only if $f^{-1}(U)$ is open in X whenever U is open in Y.

Proof. Suppose first that f is continuous and that U is open in Y. If $x \in f^{-1}(U)$, then we can find a $y \in U$ with f(x) = y. Since U is open in Y, we can find an $\epsilon > 0$ such that

$$z \in U$$
 whenever $\rho(y, z) < \epsilon$.

Since f is continuous, we can find a $\delta > 0$ such that

$$\rho(y, f(w)) = \rho(f(x), f(w)) < \epsilon \text{ whenever } d(x, w) < \delta.$$

Thus

$$f(w) \in U$$
 whenever $d(x, w) < \delta$.

In other words,

$$w \in f^{-1}(U)$$
 whenever $d(x, w) < \delta$.

We have shown that $f^{-1}(U)$ is open.

We now seek the converse result. Suppose that $f^{-1}(U)$ is open in X whenever U is open in Y. Suppose $x \in X$ and $\epsilon > 0$. We know that the open ball

$$B(f(x), \epsilon) = \{ y \in Y : \rho(f(x), y) < \epsilon \}$$

is open. Thus $x \in f^{-1}\big(B(f(x),\epsilon)\big)$ and $f^{-1}\big(B(f(x),\epsilon)\big)$ is open. It follows that there is a $\delta > 0$ such that

$$w \in f^{-1}(B(f(x), \epsilon))$$
 whenever $d(x, w) < \delta$,

so, in other words,

$$\rho(f(x), f(w)) < \epsilon$$
 whenever $d(x, w) < \delta$.

Thus f is continuous.

Theorem 1.12. If (X,d), (Y,ρ) , (Z,σ) are metric spaces and $g:X\to Y$, $f:Y\to Z$ are continuous, then so is the composition f*g

Proof. If U is open in Z, then, by continuity, $f^{-1}(U)$ is open in Y and so, by continuity, $(fg)^{-1}(U) = g^{-1}(f^{-1}(U))$ is open in X. Thus f * g is continuous.