場效電晶體放大電路

National Taiwan Normal University

講師:趙婉芝

常用於MOSFET的電路符號有多種形式,最常見的設計是以一條垂直線代表通道(Channal),兩條和通道平行的接線代表源極(Source)與汲極(Drain),左方和通道垂直的接線代表閘極(Gate)。

N-channel

與JFET做比較

增強型MOSFET

FET放大原理

當輸入信號Vgs電壓夠小時,其放大區域線段 a、b兩點近似於直線,屬於線性放大特性, 輸出為不失真之放大信號id電流。

FET等效電路

公式: Id = gmVgs

閘極-源極間的內部阻抗以r_{gs}表示,汲極與源極之間有一個電流源g_mV_{gs},另外,包含汲極-源極間內部阻抗r_{ds}。其中將r_{gs}假設成無限大值,使得閘極與源極間變成開路電路,也假設r_{ds}足夠大到可以忽略。

完整等效電路

簡化等效電路

FET小信號互導增益gm

下圖為增強型MOSFET工作於夾止 飽和區時,輸入輸出V_{gs}-I_d特性曲線。

輸入電壓
$$V_{gS} = V_{GSQ} + v_{gS}$$
 輸出電流 $I_d = I_{DQ} + i_d$
$$I_d = k \times (V_{gs} - V_{GS(t)})^2 \cdot 代入 I_d = I_{DQ} + i_d \not D V_{gs} = V_{GSQ} + v_{gs} \cdot 得$$

$$I_{DQ} + i_d = k \times (V_{GSQ} + v_{gs} - V_{GS(t)})^2 = k \times [(V_{GSQ} - V_{GS(t)}) + v_{gS}]^2$$

$$= k \times (V_{GSQ} - V_{GS(t)})^2 + 2k \times (V_{GSQ} - V_{GS(t)}) v_{gs} + k \times v_{gs}^2$$

$$= I_{DQ} + 2k \times (V_{GSQ} - V_{GS(t)}) v_{gs} + k \times v_{gs}^2$$

$$\Rightarrow i_d = 2k \times (V_{GSQ} - V_{GS(t)}) v_{gs}$$
 可得增强型MOSFET的小信號互導增益
$$g_m = \frac{\Delta I_d}{\Delta V_{gs}} = \frac{i_d}{v_{gs}} = 2k \times (V_{GSQ} - V_{GS(t)})$$

已知N通道增強型MOSFET工作於夾止飽和區,輸入偏壓 $V_{GSQ}=3V$,臨界電壓 $V_{GS(t)}=1V$,參數 $k=0.5mA/V^2$,試求輸出直流偏壓電流 $I_{DQ}=?$ 小信號互導增益 $g_m=?$

輸出直流偏壓電流:

小信號互導增益:

$$g_{m} = 2k \times (V_{GSQ} - V_{GS(t)}) = 2 \times 0.5 \times (3-1) = 2(mA/V)$$
 或

$$g_{m} = 2\sqrt{k \times I_{DQ}} = 2\sqrt{0.5 \times 2} = 2(mA/V)$$

FET電壓增益

理想FET等效電路加上外接汲極交流電阻

交流電壓增益 =
$$\frac{V_{out}}{V_{in}}$$

所以電壓增益公式:
$$A_{v} = rac{ extsf{V}_{ds}}{ extsf{V}_{gs}}$$

從等效電路可以得出 $V_{ds} = I_d R_d$

根據互導的定義 $V_{gs} = \frac{I_d}{g_m}$

$$\Rightarrow A_{v} = \frac{I_{d}R_{d}}{\frac{I_{d}}{g_{m}}} = \frac{g_{m}I_{d}R_{d}}{I_{d}}$$

$$\Longrightarrow A_v = g_m R_d$$

外接交流汲極電阻時 的簡化FET等效電路

某FET的 $g_m=5mS$ 。如果外接交流汲極阻抗是 $1.2k\Omega$,則理想狀況下的電壓增益為多少?

r_{ds}對增益的影響

如果考慮FET汲極-源極間內部阻抗,它將與Ra並聯。

如果rds沒有比Rd大很多(至少大10倍以上),

電壓增益將降低為
$$A_v = g_m \left(\frac{R_d r_{ds}}{R_d + r_{ds}} \right)$$

包含汲極-源極內部阻 抗r_{ds}的FET等效電路, r_{ds}與R_d並聯 G

FET的 g_m =5mS,外接交流汲極阻抗是 1.2kΩ, r_{ds} =10kΩ,試求考慮 r_{ds} 影響的 電壓增益。

外接源極電阻對增益的影響

在FET源極端與接地端間加入外部電阻

閘極對地的總輸入電廳 $V_{in} = V_{gs} + I_d R_s$

 R_d 兩端取得的輸出電壓爲 $V_{out} = I_dR_d$

所以電壓增益公式

$$\Rightarrow A_{v} = \frac{V_{out}}{V_{in}} = \frac{I_{d}R_{d}}{V_{gs} + I_{d}R_{s}} = \frac{g_{m}V_{gs}R_{d}}{V_{gs} + g_{m}V_{gs}R_{s}}$$

$$= \frac{g_{m}V_{gs}R_{d}}{V_{gs}(1+g_{m}R_{s})} = \frac{g_{m}R_{d}}{1+g_{m}R_{s}}$$

FET的 $g_m=5mS$,外接交流汲極阻抗是 $1.2k\Omega$,試求以 R_d 影為輸出電壓時的電壓增益, $R_s=500\Omega$,省略 r_{ds} 。

小訊號模型

諾頓等效模型

戴維寧等效模型

FET的低頻小訊號模型

註:諾頓與戴維寧等效電路的轉換規則可知:VTh=INRTh,

戴維寧電壓源的正端就是諾頓電流源的箭頭位置。

共源極放大器

以閘極端為輸入端、汲極端為輸出端、源極端共接端之放大組態,稱為共源極(CS)放大。

◆ 顯示n通道JFET共源極自己偏壓電路, 交流信號源以電容耦合到閘極。

◆ 電阻R_G:

1、維持閘極電壓值約為直流0V (因為I_{GSS}相當小)

2、通常具有數MΩ電阻值,避免 對交流信號源造成負載效應。

- ◆ R_s兩端的電壓降可作為偏壓電壓
- ◆ 電容Cs保持FET源極端實際上交流接地

直流分析

要分析JFET共源極放大器,首先必須決定直流偏壓值,要完成此項工作,可以將所有的電容器視為開路,得出直流等效電路。

交流等效電路

依據信號頻率 $X_c \cong 0$ 的假設,將電容器短路。 基於電壓源沒有內阻的假設,將直流電源以 接地端取代。 V_{DD} 端為交流零電位,所以視 同交流接地

電壓增益

由FET電壓增益公式,可應用在共源極放大電路上

交流負載對電壓增益的影響

- ◆ 當負載經由耦合電容器連接到放大器輸出端, 汲極交流阻抗可以實際上視為R_D和R_L的並聯值,因為R_D的上端是交流接地。
- ◆ 汲極交流總電阻公式: $R_{d} = \frac{R_{D}R_{L}}{R_{D} + R_{L}}$

如果將4.7K Ω 的負載電阻交流耦合 放大器的輸出端, $(R_D=3.3$ k $\Omega)$ 則輸出電壓的有效值為多少?

交流汲極阻抗為:

$$R_{\rm d} = \frac{R_D R_L}{R_D + R_L} = \frac{(3.3 \text{k}\Omega)(4.7 \text{k}\Omega)}{8 \text{k}\Omega}$$

 $=1.94k\Omega$

