Université Denis Diderot
UFR de Mathématiques

Année 2015/2016 U1TC35

		Test	\mathbf{n}°	3	(durée : 30 m	n)
NOM:			_			

Question de cours

Soient (X, d_X) et (Y, d_Y) deux espaces métriques. Donner sans démonstration un exemple de distance d sur l'ensemble $X \times Y$ pour laquelle les ouverts de $X \times Y$ sont les réunions des parties de la forme $U \times V$, où U décrit les ouverts de X et V décrit les ouverts de Y.

Barème : Question de cours sur 4 points; 1) sur 4 points; 2) (a) sur 6 points; 3) sur 6 points.

Exercices

1) Soit (X, d) un espace métrique et soit Y un sous-ensemble de X. On munit Y de la distance induite par celle de X. Soit A un sous-ensemble de Y. On note $\mathrm{int}_X(A)$ l'intérieur de A dans X et $\mathrm{int}_Y(A)$ l'intérieur de A dans Y. Montrer que $\mathrm{int}_X(A) \subseteq \mathrm{int}_Y(A)$.

 2) Soient (X, d_X) et (Y, d_Y) deux espaces métriques. On dit qu'un élément x₀ de X est un de X s'il existe r > 0 tel que la boule ouverte de centre x₀ et de rayon r est égale à {x₀} a) On considère une application f: X → Y et un point isolé x₀ de X. 	
Démontrer que f est continue en x_0 .	
b) Question subsidiaire (hors barème). Soit $x_0 \in X$ tel que pour tout espace métrique toute application $f: X \to Z$, l'application f est continue en x_0 . Démontrer que x_0 est un point isolé de X .	(Z, d_Z) et

3) Soient (X, d_X) et (Y, d_Y) deux espaces métriques.

On considère une application $f\colon X\to Y$ et des fermés $F_1,\,...,\,F_n$ de X $(n\ge 1)$ tels que : $X = F_1 \cup \cdots \cup F_n$ et les restrictions $f|_{F_1} \colon F_1 \to Y$, ..., $f|_{F_n} \colon F_n \to Y$ sont continues. $x \mapsto f(x)$ $x \mapsto f(x)$

Démontrer que f est continue.