

CMT216xA Register Introduction

Overview

This document discusses CMT216xA register details for users to query and view CMT216xA register details.

The product models covered in this document are shown in the table below.

Table 1. Product Models Covered in This Document

Product	Single-end	Differential	12-Bit	Operational	Low-frequency	External	Dookoging
Model	PA	PA	ADC	Amplifier	Wakeup	32.768 kHz	Packaging
CMT2160A		•	4-ch				SOP14
CMT2162A	•		8-ch		•		SSOP20
CMT2163A	•	•	9-ch		•	•	TSSOP28
CMT2165A	•		12-ch	•		•	TSSOP28
CMT2168A	•		12-ch	•	•	•	QFN32

Notes: The performance and parameter details as well as the package size, silk screen and ordering information of each chip model are NOT covered in this document, please refer to the datasheet document of each chip model for details. For specific function details of the CMT216xA series, please refer to CMT216xA User Guide.

Table of Contents

O۱	verview	1
1	Register Introduction	3
2	Register Details	5
	2.1 Block 0 Area Register Details	5
	2.2 Block 1 Area Register List	10
	2.2.1 Bank 0 Sub-area Register List	10
	2.2.2 Bank 1 Sub-area Register List	14
3	Register Details	
	3.1 T8051 XC3 Core Register Set	17
	3.2 Timer1 Register Set	
	3.3 GPIO Register Set	
	3.4 LED Module	
	3.5 S3S Programming Interface	
	3.6 LBD Module	
	3.7 SPI Register Set	
	3.8 UART Register Set	
	3.9 16-Bit TimeA and TimerB Register Set	
	3.10 3D Low-frequency Wakeup Register Set	
	3.11 Sub-1G Transmiter Module Register Set	
	3.12 Analog Front End(AFE)register Set	
	3.13 Constant Current Source Driver Register Set	
	3.14 True Random Number Generation Module	
	3.15 Watchdog (WDT) Register Set	91
	3.16 Sleep Timer Module Register Set	
	3.17 Interrupt Related Register Set	
	3.18 System Related register Set	
4	Revise History	
_		102
	Contacts	102

1 Register Introduction

The register sets of the CMT216xA series SoC chip are located in 2 areas, Block 0 and Block 1, which have different functions and operation methods.

• Block 0: the access address range of this area is 0x00 ~ 0x7F, partially inaccessible to users. The inaccessible part is used to store on-chip system key parameters. Users are prohibited from accessing and modifying this part, which is Indicated in gray in Section 2.1 Block0 Area Register Detailed List in this document. For the accessible part of Block 0, users can access it through the API functions rather than access through direct addressing.

Function Name	Description
sys_write_hv_reg	Write by address
sys_read_hv_reg	Read by address
sys_set_hv_reg	Set by bit address (set bit value)

Notes:

- 1. These 3 functions provide direct operations on Block 0 area (directly access via API functions). See AN282 CMT216xA API Library Usage Guide for details.
- 2. The associated API functions of the CMT216xA peripheral modules will access the corresponding inperipheral registers in Block 0 as well, which is invisible to users.
- Block 1: this area contains two sub-areas, Bank 0 and Bank 1 with an access address range of 0x80 ~ 0xFF, which is partially accessible to users as well. The inaccessible part is used to store on-chip system key parameters. Users are prohibited from accessing and modifying this part, which is Indicated in gray in Section 2.2 Block 1 Area Register Detailed List in this document. For the accessible part of Block 1, users can access it th rough direct addressing, however, users need to ensure that the correct switching between Bank0 and Bank1 before accessing, otherwise it will result in incorrect access to the sub-areas.

Notes:

- 1. In the Block 1 area, Bank 0 and Bank 1 switching is performed by calling the API function sys_set_sfr_bank.
- 2. When operating Block1 directly in the software, it is highly recommended to switch the target bank of the corresponding register, since the CMT216xA API functions will perform corresponding bank switch as required during function call, however there's no bank switching back operation to save function execution time. Fortunately, users rarely access Block 1 registers directly, in fact most of the registers are accessed through API function calling.
- 3. The registers related to the 8051 core in Bank0 of Block1 (marked in orange in Section 2.2.1 Bank0 Sub-Registrar Register Detailed List) can be accessed directly at any time without concerning bank switching.

The CMT216xA register area arrangement is shown in the below figure.

Figure 1. CMT216xA Register Area Arrangement

Notes:

- 1. The Block 0 SFR registers in the high-voltage domian do not change with the operating state of the CMT216xA (operating, sleep, etc.). So it just needs to be configured once upon first power-up with no need for repeated configurations for saving software initialization time.
- 2. The Block 1 SFR registers in the main domian will be lost when CMT216xA entering Shut Down (short for SDN, by calling the API function sys_shutdown), namely the register contents will be restored to default values. They need to be configured again upon next wake-up (code loading). Therefore, every time the program re-runs, they need to be configured again, rather than just be configure once upon the first power-up.
- 3. For more details on the terms of ShutDown, first power-up, etc, please see CMT216xA Datasheet or related AN documents.

2 Register Details

2.1 Block 0 Area Register Details

Addr	TYP	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x00	RW	CUS_AFE1								
0x01	RW	CUS_AFE2								
0x02	RW	CUS_AFE3								
0x03	RW	CUS_AFE4	AFE_IA2	_GX[1:0]						
0x04	RW	CUS_AFE5								
0x05	RW	CUS AFE6				AFE_IA1_GX[2:0]				
0x06	RW	CUS AFE7							AFE_SEN_CHX[2:0]	
0x07	RW	CUS AFE8				HFOSC_C	:LK_EN[1:0]	LFOSC_LFXO_SEL	PD_LFXO	PD_LFOSC
0x08	RW	CUS_AFE9	LPOA0_VCM_DIS	LPOA1_VCM_DIS	AFE_IA_VCMX	AFE_OA_	VCMX[1:0]	AFE_OA_	OUTX[1:0]	AFE_IA1_CX
0x09	RW	CUS AFE10	AFE_OA0_OX	AFE_OA	0_NX[1:0]		AFE_OA0_PX[2:0]		AFE_OA0_N	A_GX[1:0]
0x0A	RW	CUS AFE11	SAR_DIRECT_DIS	AFE_OA	1_OX[1:0]	AFE_OA	1_NX[1:0]		AFE_OA1_PX[2:0]	
0x0B	RW	CUS AFE12	LDO_PIR_RAILB	AFE_OA	2_OX[1:0]	AFE_OA	2_NX[1:0]		AFE_OA2_PX[2:0]	
0x0C	RW	CUS AFE13	LDO_PIR_V	/O_SEL[1:0]		SAR_I	NX[3:0]		SAR_REI	FX[1:0]
0x0D	RW	CUS_AFE14	PD_AFE_OACMI	PIR_ST	PD_AFE_OSADJ	PD_AFE_IACMO	PD_SAR	PD_AFE_OA2	PD_AFE_OA1	PD_AFE_OA0
0x0E	RW	CUS AFE15	LDO_SAR_\	/O_SEL[1:0]	LDO_SAR_RAILB	PD_BG	SAR_LBD_DIS	SAR_REF_DIS	PD_LDO_SAR	PD_AFE_VTR
0x0F	RW	CUS AFE16	SAR_MBC0	SAR_MBC1	SAR_S	TM[1:0]	PD_LDO_PIR	PD_PIR_VTR	PD_LPOA1	PD_LPOA0
0x10	RW	CUS AFE17			HDRV_SEL[4:0]			DRV_ENH	DRV_MAN_EN	PD_DRV
0x11	RW	CUS_AFE18			NDRV_SEL[3:0]			NDRV_EN	HDRV_EN	LDO_PIR_OE
0x12	RW	CUS_LFRX3	PD_P25	PD_P50	LFRX_AG	GC_IN[1:0]	LFRX_AGC_VHREF[3:0]			
0x13	RW	CUS_LFRX4		PD_PULLUP2	LFRX_AG0	_AGC_CNT[1:0] LFRX_AGC_VLREF[3:0]				
0x14	RW	CUS_LFRX5	LFRX_CADE	ET_WIN[1:0]	LFRX_CADET	_OK_CNT[1:0]	LFRX_PEAK	LFRX_PEAKDET_CLK[1:0] LFRX_DATA_CLK[1:0]		

Rev 0.5E | 5/102 www.cmostek.com

Addr	TYP	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x15	RW	CUS_LFRX6	LFRX_DA	TA_R0[1:0]	LFRX_DA	TA_R1[1:0]	LFRX_PEAR	(DET_C[1:0]		
0x16	RW	CUS_LFRX7		LFRX_DA	TA_C1[3:0]			LFRX_DATA	A_C0[3:0]	
0x17	RW	CUS_LFRX8		LFRX_DA	TA_C3[3:0]			LFRX_DATA	A_C2[3:0]	
0x18	RW	CUS_LFRX9	LFRX_CMP_NOISE_ MASK	LFRX_CMP_SW	L	.FRX_RSSIAMP_IBIAS[2:0	oj		LFRX_PGA_IBIAS[2:0]	
0x19	RW	CUS LFRX10		LFRX_CMI	P_REF[3:0]		LFRX_DEMOD_TH_H OLD	LF	RX_RSSIREC_IBIAS[2:0]	
0x1A	RW	CUS_LFRX11	LFRX_SNRDET_I	NVALID_WIN[1:0]	LFRX_SNRDET	_VALID_WIN[1:0]	10	LFRX_SNRDE	T_SNR[3:0]	
0x1B	RW	CUS_LFRX12	LFRX_MEAS_SOURCE	LFRX_OSC	_VREF[1:0]	LFRX_CH_Z	LFRX_CH_Y	LFRX_CH_X	LFRX_STARTUP	_MANUAL[1:0]
					0x1C ~ 0x1D, ina	ccessible to users				
0x1E	RW	CUS_SNOOZE1				SNOOZE_TIMER_	_M_SLEEP[7:0]			
0x1F	RW	CUS_SNOOZE2	SNOOZE	_UTH[9:8]	SNOOZE	_DTH[9:8]		SNOOZE_TIMER_	_R_SLEEP[3:0]	
0x20	RW	CUS_SNOOZE3				SNOOZE_U	JTH[7:0]			
0x21	RW	CUS_SNOOZE4				SNOOZE_D	OTH[7:0]			
0x22	RW	CUS SNOOZE5	SAR_C	KX[1:0]			DWTH_WK_EN	UPTH_WK_EN	WOUT_WK_EN	WIN_WK_EN
0x23	R	CUS SNOOZE6	GPIO HOLD				DWTH_WK_INT	UPTH_WK_INT	WOUT_WK_INT	WIN_WK_INT
0x24	RW	CUS_PADCTL1	GPIO3_M	ODE[1:0]	GPIO2_N	1ODE[1:0]	GPIO1_M	ODE[1:0]	GPIO0_MC	DDE[1:0]
0x25	RW	CUS PADCTL2	GPIO7_M	ODE[1:0]	GPIO6_N	1ODE[1:0]	GPIO5_M	ODE[1:0]	GPIO4_MC	DDE[1:0]
0x26	RW	CUS PADCTL3	GPIO11_N	MODE[1:0]	GPIO10_I	MODE[1:0]	GPIO9_M	1ODE[1:0	GPIO8_MC	DDE[1:0]
0x27	RW	CUS PADCTL4	GPIO15_N	MODE[1:0]	GPIO14_I	MODE[1:0]	GPIO13_N	MODE[1:0]	GPIO12_M	ODE[1:0]
0x28	RW	CUS PADCTL5	GPIO7_CNF	GPIO6_CNF	GPIO5_CNF	GPIO4_CNF	GPIO3_CNF	GPIO2_CNF	GPIO1_CNF	GPIO0_CNF
0x29	RW	CUS_PADCTL6	GPIO15_CNF	GPIO14_CNF	GPIO13_CNF	GPIO12_CNF	GPIO11_CNF	GPIO10_CNF	GPIO9_CNF	GPIO8_CNF
0x2A	RW	CUS PADCTL7	GPIO7_IOC	GPIO6_IOC	GPIO5_IOC	GPIO4_IOC	GPIO3_IOC	GPIO2_IOC	GPIO1_IOC	GPIO0_IOC
0x2B	RW	CUS PADCTL8	GPIO15_IOC	GPIO14_IOC	GPIO13_IOC	GPIO12_IOC	GPIO11_IOC	GPIO10_IOC	GPIO9_IOC	GPIO8_IOC
0x2C	RW	CUS PADCTL9	GPIO7_IDR	GPIO6_IDR	GPIO5_IDR	GPIO4_IDR	GPIO3_IDR	GPIO2_IDR	GPIO1_IDR	GPIO0_IDR
0x2D	RW	CUS_PADCTL10	GPIO15_IDR	GPIO14_IDR	GPIO13_IDR	GPIO12_IDR	GPIO11_IDR	GPIO10_IDR	GPIO9_IDR	GPIO8_IDR
0x2E	RW	CUS_PADCTL11	GPIO7_ODR	GPIO6_ODR	GPIO5_ODR	GPIO4_ODR	GPIO3_ODR	GPIO2_ODR	GPIO1_ODR	GPIO0_ODR

Rev 0.5E | 6/102 www.cmostek.com

Addr	TYP	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x2F	RW	CUS_PADCTL12	GPIO15_ODR	GPIO14_ODR	GPIO13_ODR	GPIO12_ODR	GPIO11_ODR	GPIO10_ODR	GPIO9_ODR	GPIO8_ODR	
					0x30 ~ 0x33, ina	ccessible to users					
0x34	RW	CAL_LFRX_TCAP2						LFRX_TCAP_Z[4:0]			
0x35	RW	CAL_LFRX_TCAP1						LFRX_TCAP_Y[4:0]			
0x36	RW	CAL_LFRX_TCAP0						LFRX_TCAP_X[4:0]			
0x37	RW	CAL_LFRX_OSC_CO			LEDY ODG IDMOR OF						
0,07	1444	<u>DE</u>			LFRX_OSC_IBIAS[6:0]						
					0x38 ~ 0x43, inac	ccessible to users					
0x44	RW	INT_SYSCTL3			S3S_DISABLE						
0x45	RW										
0x46	RW	CUS SYSCTL1		TIMER_M_SLEEP[7:0]							
0x47	RW	CUS_SYSCTL2		TIMER_M_S	SLEEP[11:8]			TIMER_R_SI	_EEP[3:0]		
					0x48 ~ 0x4F, 8 Byt	es HVRAM for user					
0x50	RW	CUS_SYSCTL3	<u>LED_INV</u>	AFE_IR_EN	SNOOZE_EN	SNOOZE DEBUG EN	LFRX_DEBUG_EN	LFRX_EN	SLPT_WAKEUP <u>MODE</u>	SLEEP_TIMER_E	
0x51	RW	CUS_SYSCTL4	LFRX_M	ODE[1:0]	LFRX_SIGNAL _OK_TYPE	LFRX_TIMER_EX	TEND_MODE[1:0]	DUTY_CYCLE _METHOD	LFRX_DUTY_ CYCLE_EN	ALWAYS_LFRX	
0x52	RW	CUS SYSCTL5		L	FRX_TIMER_M_RX_T1[4:	0]		LFF	RX_TIMER_R_RX_T1[2:0]		
0x53	RW	CUS_SYSCTL6		L	FRX_TIMER_M_RX_T2[4:	0]		LFF	RX_TIMER_R_RX_T2[2:0]		
0x54	RW	CUS_SYSCTL7				LFRX_TIMER_M	_SLEEP[7:0]				
0x55	RW	CUS_SYSCTL8			LFRX_WAKEUP_ AUTOCLR_DIS	LFRX_WAKE	JP_MODE[1:0]	LFF	RX_TIMER_R_SLEEP[2:0]		
0x56	RW	CUS SYSCTL9	LFRX_RSSI_MEAS_ DIS	LFRX_DBUF_DIS					LFRX_MEAS_WIN[2:0]		
0x57	RW	CUS_SYSCTL10				GO_LFRX_DECODE GO_LFRX_LISTEN GO_LFS			GO_LFSLEEP		
0x58	RW	CUS LFRX15	L	FRX_DBUF_LENGTH[2:0	RX_DBUF_LENGTH[2:0] LFRX_WKID_EN LFRX_WKID_LENGTH[1:0] LFRX_SYNC_LENGTH[1:0]			ENGTH[1:0]			
0x59	RW	CUS_LFRX16	LFRX_ANT_	_MODE[1:0]	LFRX_HOLD_RST_S	LFRX_SNRDET_REF	LFRX_MAN_TYPE	LFRX_WKID_MAN_E	LFRX_DIG_DATAOU	LFRX_DATA_MA	

Rev 0.5E | 7/102 www.cmostek.com

AN286

Addr	TYP	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
					EL	IN_SEL		N	T_SEL	N_EN	
0x5A	RW	CUS_LFRX17				LFRX_SYNC_	VALUE[7:0]				
0x5B	RW	CUS_LFRX18				LFRX_SYNC_\	/ALUE[15:8]				
0x5C	RW	CUS_LFRX19				LFRX_SYNC_V	ALUE[23:16]				
0x5D	RW	CUS_LFRX20		LFRX_SYNC_VALUE[31:24]							
0x5E	RW	CUS_LFRX21				LFRX_WKID_	VALUE[7:0]	V			
0x5F	RW	CUS LFRX22				LFRX_WKID_\	/ALUE[15:8]				
0x60	RW	CUS LFRX23				LFRX_WKID_V	ALUE[23:16]				
0x61	RW	CUS_LFRX24				LFRX_WKID_V	ALUE[31:24]				
0x62	RW	CUS_LFRX25	LFRX_DATAOUT _SEL	LFRX_DECODE _SEQ	LFRX_SIGNAL_OK_ AUTOCLR_DIS	LFRX_AGC_EN	LFRX_AGC_STEP	u	FRX_AGC_CNT_TH[2:0]		
0x63	RW	CUS_LFRX26		LFRX_D0	QRES[3:0]		LFRX_AGC_MIN_INDEX[3:0]				
0x64	RW	CUS_LFRX27		LFRX_DF	R_SEL[3:0]			LFRX_ENABLE_ MODE		LFRX_AGC_ START_SEL	
0x65	RW	CUS LFRX28				LFRX_CADET	_TH_H[7:0]	I			
0x66	RW	CUS LFRX29				LFRX_CADET	_TH_L[7:0]				
0x67	RW	CUS_LFRX30				LFRX_SIGNAL_OI	K_CLR_TH[7:0]				
0x68	RW	CUS SYSCTL11	SLPT MANU RSTN			SNOOZE MANU_CLR	LBD MANU CLR	LFRX MANU CLR	SLPT MANU CLR	BUT MANU CLR	
0x69	R	CUS_SYSCTL12		SNOOZE_WAKEUP		WKID_PASS	SYNC_PASS	LFRX_SIGNAL_OK	SLEEP_TIMESUP	KEY_LAUNCH	
0x6A	RW	CUS_SYSCTL13	LBD_STATUS(IN)	LBD_FINISH(IN)	LBD_AVG_SEL	LBD_ENABLE	SAR_DATA_UPDATE	SAR_MSTART	SAR_TRIGGER	SAR_CLK_EN	
0x6B	R	CUS_SYSCTL14				SAR_DAT	A[11:4]				
0x6C	R	CUS_SYSCTL15		SAR_DATA[3:0]							
0x6D	RW	CUS_SYSCTL16				LBD_TF	1[7:0]				
0x6E	R	CUS_SYSCTL17				LBD_RESU					
0x6F	RW	CUS_SYSCTL18					PAD_GROUP2_EN	PAD_GROUP1_EN	LFOSC_CLKOUT_EN	HFOSC_CLKOUT _EN	

Rev 0.5E | 8/102 www.cmostek.com

Addr	TYP	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x70	RW	CUS_SYSCTL19	LFRX_OSC_OUT_EN	IRLED_DOUT_EN							
0x71	RW	CUS_SYSCTL20		OTP_CP_VC	P_VCC_SELN[1:0]						
0x72	RW	CUS_LFRX31			LFRX_AGC_INDEX[5:0](IN)						
0x73	RW	CUS_LFRX32	MAN_DECODE		LEDY MEAS OUT(2:0)		LFRX_IBIAS_	LEDY T	CARS/4/0 CAL OVES EL	A.C.	
0x/3	KVV	CUS_LFRX32	_ERR_FLAG		LFRX_MEAS_OUT[2:0] LFRX_TCAP2/1/0_CAL_OVTS_FLAG CAL_OVTS_FLAG						
0x74	RW	CUS_LFRX33		LFRX_DATA_LENGTH[7:0]							
0x75	RW	CUS_RESV0									
0x76	RW	CUS_RESV1				Reserved, can be use a	as HVRAM for user				
0x77	RW	CUS_RESV2									
0x78	RW	CUS_RESV3				inaccessible	to users				
0x79	RW	CUS_RESV4				inaccessible	to users				
0x7A	RW	CUS_RESV5	LPOA0_PIN_DIS	LPOA1_PIN_DIS	WDT_REFRESH	WDT_START		WDT_RESET_TH[2:0]		WDT_DIS	
	0x7B ~ 0x7F,inaccessible to users										

Notes:

This color indicates inaccessible areas

This color indicates it can be used to store variables that cannot be lost, namely it supports to save variable values in ShutDown mode and they can be read again upon next wake-up.

Rev 0.5E | 9/102 www.cmostek.com

2.2 Block 1 Area Register List

2.2.1 Bank 0 Sub-area Register List

Addr	TYP	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
			Bit/	ыто	ыю			BILZ	ып	Bittu		
0x80	RW	P0				P0_IN[7:0] or P0	_OUT[7:0]					
0x81	RW	SP				SP[7:0	1					
0x82	RW	DPL				DPTR[7	:0]					
0x83	RW	DPH				DPTR[15	5:8]					
					0x84 ~ 0x86, ir	naccessible to users						
0x87	RW	<u>PCON</u>	SMOD1	SMOD0			GF1	GF0	STOP	IDLE		
0x88	RW	TCON	TF1	TR1			IE1	IT1	IE0	IT0		
0x89	RW	<u>TMOD</u>	GATE1	C_T1	M1[1	:0]						
0x8A	RW					inaccessible to users						
0x8B	RW	<u>TL1</u>				TL1[7:0)]					
0x8C	RW			inaccessible to users								
0x8D	RW	TH1				TH1[7:0	0]					
0x8E	RW					inaccessible to users						
0x8F	RW	CLK_SYS_DIV		LFRX_MCU_RCLK	LFRX_MCU_RDATA			CLK_SYS	S_DIV[3:0]			
0x90	RW					inaccessible to users						
0x91	RW	SPI_CTL1_H	BIDI_MODE	BIDI_OE	RX_ONLY	DFF	TXDMAEN	SSOE	SSM	SSI		
0x92	RW	SPI_CTL1_L	LSB_FIRST	SPE		BR[2:0]		MSTR	CPOL	СРНА		
0x93	RW	SPI CTL2 H										
0x94	RW					inaccessible to users						
0x95	RW	<u>SPI DATA H</u>		SPI_TXDATA[15:8]								
0x96	RW	SPI_DATA_L		SPI_TXDATA[7:0]								
0x97	RW	USART CTL		-						USART_SEL		
0x98	RW	SCON0	FE0/SM00	SM10	SM20	REN0	TB80	RB80	TIO	RI0		

Rev 0.5E | 10/102 www.cmostek.com

AN286

Addr	TYP	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x99	RW	SBUF0				SBUF0[7:	0]				
0x9A	RW	TACLK_DIV_H				TACLK_DIV	[15:8]		>		
0x9B	RW	TACLK_DIV_L				TACLK_DIV	[7:0]				
0x9C	RW	<u>TACH</u>						TA_START	TACCI3	TACCI2	
0x9D	RW	TACL				TA_CNT_N	MODE[1:0]	TA_CLR	TMR_IE	TMR_IFG	
0x9E	R	TACNT_H				TIMERA_CN	Γ[15:8])			
0x9F	R	TACNT L				TIMERA_CN	T[7:0]				
0xA0	RW					inaccessible to users					
0xA1	RW	TACCR0H				TACCR0[1	5:8]				
0xA2	RW	TACCR0L				TACCR0[7	7:0]				
0xA3	RW	TACCTL0H		TACCR0_CCI	TACCR0_SCCI	TACCR0_	CM[1:0]	TACCR0_	_CCIS[1:0]	TACCR0_CAP	
0xA4	RW	TACCTL0L	TACCR0_SCS		TACCR0_OUTMODE[2:0]		TACCR0_IE	TACCR0_OUT	TACCR0_COV	TACCR0_IFG	
0xA5	RW	TACCR1H				TACCR1[1	5:8]				
0xA6	RW	TACCR1L				TACCR1[7	7:0]				
0xA7	RW					inaccessible to users					
0xA8	RW	<u>IEN0</u>	EA			ES0	ET1	EX1		EX0	
0xA9	RW	TACCTL1H		TACCR1_CCI	TACCR1_SCCI	TACCR1_	_CM[1:0]	TACCR1_	_CCIS[1:0]	TACCR1_CAP	
0xAA	RW	TACCTL1L	TACCR1_SCS		TACCR1_OUTMODE[2:0]		TACCR1_IE	TACCR1_OUT	TACCR1_COV	TACCR1_IFG	
0xAB	RW	TACCR2H				TACCR2[1	5:8]				
0xAC	RW	TACCR2L				TACCR2[7	7:0]	<u>, </u>			
0xAD	RW	TACCTL2H		TACCR2_CCI	TACCR2_SCCI	TACCR2_	_CM[1:0]	TACCR2_	_CCIS[1:0]	TACCR2_CAP	
0xAE	RW	TACCTL2L	TACCR2_SCS		TACCR2_OUTMODE[2:0]		TACCR2_IE	TACCR2_OUT	TACCR2_COV	TACCR2_IFG	
0xAF	RW	IRQ0_SEL		IRQ_SW[0]	IRQ0_SEL[5:0]						
0xB0	RW	IRQ1_SEL		IRQ_SW[1]			IRQ1_S	EL[5:0]			
0xB1	RW	IRQ2_SEL		IRQ_SW[2]			IRQ2_S	EL[5:0]			
0xB2	RW	IRQ3_SEL		IRQ_SW[3]			IRQ3_S	EL[5:0]			
0xB3	RW	IRQ4_SEL		IRQ_SW[4] IRQ4_SEL[5:0]							

Rev 0.5E | 11/102 www.cmostek.com

AN286

Addr	TYP	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0xB4	RW	IRQ5_SEL		IRQ_SW[5]			IRQ5_SE	EL[5:0]				
0xB5	RW	IRQ6_SEL		IRQ_SW[6]			IRQ6_SE	EL[5:0]	>			
0xB6	RW	IRQ7_SEL		IRQ_SW[7]		IRQ7_SEL[5:0]						
0xB7	RW	TIMER_IN_SEL		T1_GPIO_	SEL[3:0]			RXD0_IN_G	PIO_SEL[3:0]			
0xB8	RW	<u>IPL0</u>				IPL0.4	IPL0.3	IPL0.2	IPL0.1	IPL0.0		
0xB9	RW	TACCI_SEL		TACCI1_GPI	O_SEL[3:0]			TACCI0_GF	PIO_SEL[3:0]			
0xBA	RW	SPI IN SELO		SCK_IN_S	SEL[3:0]			NSS_IN_	_SEL[3:0]			
0xBB	RW	SPI IN SEL1		MOSI_IN_	SEL[3:0]			MISO_IN	_SEL[3:0]			
0xBC	RW	P0_IN_SEL0		PORT01_IN_G	PIO_SEL[3:0]			PORT00_IN_0	GPIO_SEL[3:0]			
0xBD	RW	P0 IN SEL1		PORT03_IN_G	PIO_SEL[3:0]			PORT02_IN_0	GPIO_SEL[3:0]			
0xBE	RW	P0 IN SEL2		PORT05_IN_G	PIO_SEL[3:0]		PORT04_IN_GPIO_SEL[3:0]					
0xBF	RW	P0 IN SEL3		PORT07_IN_G	PIO_SEL[3:0]			PORT06_IN_0	GPIO_SEL[3:0]			
0xC0	RW	GPIO IN R H				GPIO_IN_R[1	5:8](IN)					
0xC1	RW	GPIO IN R L				GPIO_IN_R[7	7:0](IN)					
0xC2	RW	GPIO OUT R H				GPIO_OUT_	R[15:8]					
0xC3	RW	GPIO OUT R L				GPIO_OUT_	_R[7:0]					
0xC4	RW	GPIO OUT SELO		GPIO1_OUT	T_SEL[3:0]			GPIO0_OL	JT_SEL[3:0]			
0xC5	RW	GPIO_OUT_SEL1		GPIO3_OUT	Γ_SEL[3:0]			GPIO2_OL	JT_SEL[3:0]			
0xC6	RW	GPIO_OUT_SEL2		GPIO5_OUT	Γ_SEL[3:0]			GPIO4_OL	JT_SEL[3:0]			
0xC7	RW	GPIO_OUT_SEL3		GPIO7_OUT	Γ_SEL[3:0]			GPIO6_OL	JT_SEL[3:0]			
0xC8	RW	GPIO_OUT_SEL4		GPIO9_OUT	Γ_SEL[3:0]			GPIO8_OL	JT_SEL[3:0]			
0xC9	RW	GPIO_OUT_SEL5		GPIO11_OU	T_SEL[3:0]			GPIO10_OI	JT_SEL[3:0]			
0xCA	RW	GPIO_OUT_SEL6		GPIO13_OU	T_SEL[3:0]			GPIO12_OI	JT_SEL[3:0]			
0xCB	RW	GPIO_OUT_SEL7		GPIO15_OU	I5_OUT_SEL[3:0] GPIO14_OUT_SEL[3:0]							
0xCC	RW	LED_CTL	SAR_DATA_UPDATE	LED_ON	LED_OUT_SEL	PWM_RATE_SEL		PWM_INTER	VAL_SEL[3:0]			
					0xCD ~ 0xCF,	naccessible to users						
0xD0	RW	<u>PSW</u>	CY	AC	F0	RS[[1:0]	OV	F1	Р		

Rev 0.5E | 12/102 www.cmostek.com

Addr	TYP	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
					0xD1 ~ 0xDC,	inaccessible to users					
0xDD	RW	GPIO_IN_R_D1								GPIO_IN_R[16]	
0xDE	RW	GPIO_OUT_R_D1								GPIO_OUT_R[16]	
0xDF	RW		inaccessible to users								
0xE0	RW	ACC				ACC[7:	0]				
	0xE1 ~ 0xE5, inaccessible to users										
0xE6	RW	<u>IEN1</u>	EX7	EX6	EX5	EX4	EX3	EX2			
					0xE7 ~ 0xEF,	inaccessible to users					
0xF0	RW	В				B[7:0]					
0xF1	RW	IRCON1	IE7	IE6	IE5	IE4	IE3	IE2			
					0xF2 ~ 0xF5,	inaccessible to users					
0xF6	RW	<u>IPL1</u>	<u>IPL1</u> IPL1.7 IPL1.6 IPL1.5 IPL1.4 IPL1.3 IPL1.2								
					0xF7 ~ 0xFE,	inaccessible to users					
0xFF	RW	SYS CTL	SFR CLK GATE EN								

Notes:

This color indicates inaccessible areas.

This color indicate the original 8051 core register, supporting bit range and direct access (with no need for register bank switching)

Rev 0.5E | 13/102 www.cmostek.com

2.2.2 Bank 1 Sub-area Register List

Addr	TYP	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
					0x80 ~ 0x	8D, inaccessible				
0x8E	RW	PA_POWER_TH_9	PA_POWER_TH_9[6:							
0x8F	RW	PA POWER TH 8				F	PA_POWER_TH_8[6:0]			
0x90	RW	PA POWER TH 7				F	PA_POWER_TH_7[6:0]			
0x91	RW	PA POWER TH 6				F	PA_POWER_TH_6[6:0]			
0x92	RW	PA_POWER_TH_5				(PA_POWER_TH_5[6:0]			
0x93	RW	PA_POWER_TH_4				į	PA_POWER_TH_4[6:0]			
0x94	RW	PA_POWER_TH_3					PA_POWER_TH_3[6:0]			
0x95	RW	PA_POWER_TH_2					PA_POWER_TH_2[6:0]			
0x96	RW	PA_POWER_TH_1					PA_POWER_TH_1[6:0]			
0x97	RW	PA_POWER_TH_0		PA_POWER_TH_0[6:0]						
					0x98 ~ 0x	A8, inaccessible				
0xA9	RW	TX_SYM_GROUP				TX_SYM_GROUP[7:0] /	TX_DIRECT_DATA[0]			
0xAA	RW	TX_SYM_CTL		TX_DIRECT_EN		TX_GROUP_WIDTH[2:0]		TX_SYM_ENDIAN TX_SYM_CTRL[1:0]		
0xAB	RW	TX_PKT_CTL					RAMP_EN	TX_MODU	FREQ_DEV_INV	GUASS_ON
0xAC	RW	SYMBOL_TIME_H				SYMBOL_1	TME[15:8]			
0xAD	RW	SYMBOL_TIME_L				SYMBOL_	TIME[7:0]			
0xAE	RW	FREQ DEV H				FREQ_DI	EV[15:8]			
0xAF	RW	FREQ DEV L				FREQ_D	EV[7:0]			
0xB0	RW	RAMP STEP TIME H				R	AMP_STEP_TIME[14:8]			
0xB1	RW	RAMP_STEP_TIME_L				RAMP_STEF	P_TIME[7:0]			
0xB2	RW					inaccessible				
0xB3	RW	PA IDAC CODE					PA_IDAC_0	CODE[5:0]		
0xB4	RW	PA CTL0				PA_DIFF_SEL	PA_RCRAMP_SELB		PA_RAMP_RSEL[2:0]	
0xB5	RW					inaccessible				

Rev 0.5E | 14/102 www.cmostek.com

Addr	TYP	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0xB6	RW	VCO_CTL0				,	VCO_GAIN_CODE[2:0] PLL_BW_SEL[1:0]					
0xB7	RW	VCO_CTL1	VCO_HBAND	PDCPLF_CPBIAS_CODE	DIVX_CC	DDE[1:0]		DIVX	SEL[3:0]			
0xB8	RW					inaccessible						
0xB9	RW	PLLN		PLLN_CFG[7:0]								
0xBA	RW	PLLK_H		PLLK_CFG[15:8]								
0xBB	RW	PLLK_L				PLLK_CI	FG[7:0]					
0xBC	RW					inaccessible						
0xBD	RW					inaccessible						
0xBE	RW	RNG_CTL				RNG_SUM_VLD				RNG_START		
0xBF	RW	RNG SUM				RNG_SU	UM(IN)					
0xC0	RW	LBD CTL					LBD_FLAG	LBD_VTH_SEL	LBD_POR_EN	LBD_ON		
0xC1	RW	LFRX IF TH H						LFRX_TBCCI0_SEL	LFRX_TACCI1_SEL	LFRX_TACCI0_SEL		
0xC2	RW					inaccessible						
0xC3	RW	LFRX IF TH L				LFRX_ANT	_REF[7:0]					
					0xC4 ~ 0xE	06, inaccessible						
0xD7	RW	TBCLK DIV H				TBCLK_D	DIV[15:8]					
0xD8	RW	TBCLK DIV L				TBCLK_[DIV[7:0]	1		T		
0xD9	RW	TBCH						TB_START	TBCCI3	TBCCI2		
0xDA	RW	<u>TBCL</u>				TB_CNT_M	1ODE[1:0]	TB_CLR	TMRB_IE	TMRB_IFG		
0xDB	RW	TBCCR0H				TBCCR	0[15:8]					
0xDC	RW	TBCCR0L				TBCCR	80[7:0]	1		T		
0xDD	RW	TBCCTL0H		TBCCR0_CCI	TBCCR0_SCCI	TBCCR0_	_CM[1:0]	TBCCR0	_CCIS[1:0]	TBCCR0_CAP		
0xDE	RW	TBCCTL0L	TBCCR0_SCS		TBCCR0_OUTMODE[2:0]		TBCCR0_IE	TBCCR0_OUT	TBCCR0_COV	TBCCR0_IFG		
0xDF	RW	TBCCR1H				TBTACCF	R1[15:8]					
0xE0	RW					inaccessible						
0xE1	RW	TBCCR1L		1		TBTACC	R1[7:0]	1		T		
0xE2	RW	TBCCTL1H		TBCCR1_CCI	TBCCR1_SCCI	TBCCR1_	_CM[1:0]	TBCCR1	_CCIS[1:0]	TBCCR1_CAP		

Rev 0.5E | 15/102 www.cmostek.com

Addr	TYP	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xE3	RW	TBCCTL1L	TBCCR1_SCS		TBCCR1_OUTMODE[2:0]		TBCCR1_IE	TBCCR1_OUT	TBCCR1_COV	TBCCR1_IFG
0xE4	RW	TBCCR2H				TBTACCF	R2[15:8]			
0xE5	RW	TBCCR2L				TBTACC	R2[7:0]			
0xE6	RW					inaccessible				
0xE7	RW	TBCCTL2H		TBCCR2_CCI	TBCCR2_SCCI	TBCCR2_	CM[1:0]	CM[1:0] TBCCR2_CCIS[1:0]		TBCCR2_CAP
0xE8	RW	TBCCTL2L	TBCCR2_SCS		TBCCR2_OUTMODE[2:0]		TBCCR2_IE	TBCCR2_OUT	TBCCR2_COV	TBCCR2_IFG
0xE9	RW	TBCCI SEL		TBCCI1_G	PIO_SEL[3:0]		• • • • • • • • • • • • • • • • • • •	TBCCI0_G	PIO_SEL[3:0]	
0xEA	R	TBCNT H				TIMERB_C	CNT[15:8]			
0xEB	R	TBCNT_L		TIMERB_CNT[7:0]						
		0xEC ~ 0xFF, inaccessible								

Notes:

This color indicates inaccessible areas.

Rev 0.5E | 16/102 www.cmostek.com

3 Register Details

3.1 T8051 XC3 Core Register Set

Table 2. 8051 Core Register Set

Name	Storage Area	Sub-area	Address	Reset	Function
P0	Block1	Bank0	0x80	0x00	Port0 register, support bit access, corresponding to the 8 core ports, P0.0–P0.7 [1].
SP	Block1	Bank0	0x81	0x00	Stack pointer register
DPL	Block1	Bank0	0x82	0x00	Data pointer (DPTR) register lower 8 bits
DPH	Block1	Bank0	0x83	0x00	Data pointer (DPTR) register higher 8 bits
<u>PCON</u>	Block1	Bank0	0x87	0x00	Power control register
TCON	Block1	Bank0	0x88	0x00	Timer1 control register (see Section 3.2 Timer1 Register Set for details)
TMOD	Block1	Bank0	0x89	0x00	Timer1 operating mode register (see Section 3.2 Timer1 Register Set for details)
TL1	Block1	Bank0	0x8B	0x00	The lower 8 bits of the Timer1 register (see Section 3.2 Timer1 Register Set for details)
TH1	Block1	Bank0	0x8D	0x00	The Timer1 register higher 8 bits (Section 3.2 Timer1 Register Set for details).
SCON0	Block1	Bank0	0x98	0x00	Serial port 0 control register (see Section 3.8 UART Register Set for deails)
SBUF0	Block1	Bank0	0x99	0x00	Serial 0 data buffer register (see Section 3.8 UART Register Set for deails)
IEN0	Block1	Bank0	0xA8	0x00	Interrupt enabling register 0
IPL0	Block1	Bank0	0xB8	0x00	Interrupt priority register 0
<u>PSW</u>	Block1	Bank0	0xD0	0x00	Program status/flag register
ACC	Block1	Bank0	0xE0	0x00	Accumulator register
IEN1	Block1	Bank0	0xE6	0x00	Interrupt enabling register 1
В	Block1	Bank0	0xF0	0x00	B register
IRCON1	Block1	Bank0	0xF1	0x00	Peripheral interrupt request flag register
IPL1	Block1	Bank0	0xF6	0x00	Interrupt priority register 1

Notes: Here, P0 is the core port0, the mapping between P0 and CMT216xA GPIOs is configurable. Other words, P0.0 does not nessessary refer to GPIO0. For the mapping between GPIO and P0, see CMT216xA User Guide for more details.

• PCON Register

 PCON
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 SMOD1
 SMOD0
 - - GF1
 GF0
 STOP
 IDLE

N	lame	Decription	Туре
7	SMOD1	Serial port 0 double baud rate control bit. Setting to 1 valid when serial port 0 operates in mode 1/2/3.	R/W
6	SMOD0	Serial port 0 frame error (FE) selection bit: When set to 1, read/write SCON0.7 as the FE flag bit. When set to 0, read/write SCON0.7 as the SM0 flag bit.	R/W
5:4		Unused, read as 0	Ř
3	GF1	General flag 1	R/W
2	GF0	General flag 0	R/W
1	STOP	STOP mode control bit [1]	R/W
0	IDLE	IDLE mode control bit [1]	R/W

Note: The STOP or IDLE mode only makes the 8051 core enter the power saving mode, but does not mean the whole CMT216xA SoC system enters the power saving mode. If it is required the entire system to enter power saving, the API function sys_shutdown should be called.

PSW Register

PSW Reset value: 0x00 3 7 6 5 4 2 1 0 CY AC F0 RS1 RS0 OV F1 Ρ

N	ame	Decription	Туре
7	CY	Carrying flag	R/W
6	AC	Assisting carrying flag	R/W
5	F0	General flag 0, user operable	R/W
4:3	RS[1:0]	Operating register set selection: 2'b00: 0x00-0x07 2'b01:0x08-0x0F 2'b10:0x10-0x17 2'b11: 0x18-0x1F	R/W
2	OV	Signed calculation overflow bit	R/W
1	F1	General flag 1, user operable	R/W
0	Р	ACC parity indication bit	R

IRCON1 register

 IRCON1
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 IE7
 IE6
 IE5
 IE4
 IE3
 IE2
 -

Name		Decription	Туре
7	IE7	External interrupt 7 request flag	R/W
6	IE6	External interrupt 6 request flag	R/W
5	IE5	External interrupt 5 request flag	R/W

Na	ame	Decription				
4	IE4	External interrupt 4 request flag				
3	IE3 External interrupt 3 request flag		R/W			
2	IE2 External interrupt 2 request flag		R/W			
1:0		Unused, read as 0	R			

IEN0 register

IEN0 Reset value:						Reset value: 0x00	
7	6	5	4	3	2	1	0
EA			ES0	ET1	EX1	-	EX0

N	ame	Decription	Туре
7	EA	General interrupt enabling bit. It is valid when setting to 1.	R/W
6:5	-	Unused, read as 0.	R
4	ES0	Serial port 0 interrupt enabling bit. It is valid when setting to 1.	R/W
3	ET1	Timer 1 interrupt enabling bit. It is valid when setting to 1.	R/W
2	EX1	External interrupt 1 enabling bit. It is valid when setting to 1.	R/W
1	-	Unused, read as 0.	R/W
0	EX0	External interrupt 0 enabling bit. It is valid when setting to 1.	R

IEN1 register

IEN1							F	Reset value: 0x00
	7	6	5	4	3	2	1	0
	EX7	EX6	EX5	EX4	EX3	EX2		

Name		Decription	Туре			
7:2	Exn	Exn External interrupt n enabling bit. It is valid when setting to 1.				
1:0	-	Unused, read as 0.	R			

Notes: The interrupt is different from the ShutDown (SDN) mode wakeup. Please refer to CMT216xA User Guide for more details.

IPL0 Register IPL0 Reset value: 0x00 6 5 3 2 0 4 IPL0.4 IPL0.3 IPL0.2 IPL0.0

N	ame	Decription				
7:5	-	Unused, read as 0.				
4	IPL0.4	Series port 0 priority. Setting to 1 represents the highest priority.				
3	IPL0.3	Timer 1 priority. Setting to 1 represents the highest priority.				
2	IPL0.2	External interrupt 1 priority. Setting to 1 represents the highest priority.	R/W			
1	-	Unused, read as 0.				
0	IPL0.0	External interrupt 0 priority. Setting to 1 represents the highest priority.				

• IPL1 register

IPL1 Reset value: 0x00

7	6	5	4	3	2	1	0
IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2		

Name		ame	Decription	Туре
7	7:2	IPL1[7:2]	External interrupt 7~2 priority. Setting to 1 represents the highest priority.	R/W
	1:0	-	Unused, read as 0.	R

3.2 Timer1 Register Set

Table 3. Timer1 Module Register Set List

Name	Area	Sub-area	Address	Reset	Function
<u>TCON</u>	Block1	Bank0	0x88	0x00	Timer1 control register
<u>TMOD</u>	Block1	Bank0	0x89	0x00	Timer1 operating mode register
<u>TL1</u>	Block1	Bank0	0x8B	0x00	Timer1 register lower 8 bits
<u>TH1</u>	Block1	Bank0	0x8D	0x00	Timer1 register higher 8 bits
TIMER IN SEL	Block1	Bank0	0xB7	0x00	Timer1 input selection register

• TCON Register

 TCON
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 TF1
 TR1
 - - IE1
 IT1
 IE0
 IT0

N	lame	Decription					
7	TF1	Timer 1 overflow bit. Set to 1 by the hardware when Timer1 timer/counter overflows.					
6	TR1	Timer 1 timer/counter enabling and operating bit	R/W				
5:4	-	Unused, read as 0.					
3	IE1	External interrupt 1 enabling bit.					
2	IT1 ^[1]	External interrupt 1 enabling bit. External interrupt 1 triggering mode. Set to 0, level triggering R Set to 1, edge triggering					
1	IE0	External interrupt 0 enabling bit.	R/W				
0	IT0 ^[1]	External interrupt 0 enabling bit. External interrupt 0 triggering mode. Set to 0, level triggering Set to 1, edge triggering					

Notes: The triggering mode of external interrupt 0 and external interrupt 1 is other than the one of traditional 51 core, namely, the level and edge modes are supported. See the IRQn_SEL register description in Section 3.16 IRQn_SEL for details.

• TMOD register

TMOD Reset value: 0x00
7 6 5 4 3 2 1 0
GATE1 C/T1 M1[1] M1[0] -- -- -- -- --

	Name	Decription	Туре		
7	GATE1	Timer 1 gate bit. When set to 1, the T1 input source is valid only when Timer1 operates in	DAM		
,	GATET	the counting mode.	R/W		
	Timer 1 count / timing selection bit.				
6	C/T1	C/T1 Set to 0, select the up-count mode of the internal clock source.			
		Set to 1, select the up-count mode triggered by T1 falling edge input			
		Timer1 operating mode selection:			
5:4	M1[1:0]	M1[1:0] 2'b00: Mode 0, 8-bit timing/counting mode with 5-bit prescaler.			
		2'b01: Mode 1, 16-bit timing/counting mode.			

1	Name	Decription	Туре			
		2'b10: Mode 2, 8-bit timing/counting mode with reloading.				
		2'b11: Mode 3, unused, Timer 1 stops.				
3:0	-	Unused, read as 0.	R			

• TL1/TH1, timer1 counter register

TL1	& TH1						Re	eset value: 0x00, 0x00
	7	6	5	4	3	2	1	0
Н		TH1[7:0]						
L	TL1[7:0]						•	

Name	Decription	Туре
TH1	Timer1 higher 8-bit count value	R/W
TL1	Timer1 lower 8-bit count value	R/W

TIMER_IN_SEL register

TIMER_IN_SEL						Reset value: 0x00
7	6	5	4	3 2	1	0
	T1_GPIO_S	SEL[3:0]		RXD0_I	N_GPIO_SEL[3:0]]

Name		Decription	Type
7:4	T1_GPIO_SEL	Timer1 external input signal selection. Can map to GPIO[15:0]. 4'b0000, corresponding to GPIO0, namely A0 pin. 4'b0001, corresponding to GPIO1, namely A1 pin. 4'b01114'b0001, corresponding to GPIO7, namely A7 pin. 4'b1000, corresponding to GPIO8, namely A8 pin. 4'b1001, , corresponding to GPIO9, namely A9 pin. 4'b1111, , corresponding to GPIO15, namely B7 pin.	R/W

3.3 GPIO Register Set

Table 4. GPIO Register Set List

Name	Area	Sub-area	Address	Reset	Function
CUS_PADCTL1	Block0		0x24	0xFF	GPIO0 ~ GPIO15 port mode has the following 3 methods:
CUS_PADCTL2	Block0		0x25	0xFF	Push-pull output mode or open-drain output mode.
CUS_PADCTL3	Block0		0x26	0x7F	2. Digital input mode (configurable pull-up/ pull-down) or
CHE DADCTI 4	PlackO		0v27	0xFF	3. Analog input and output mode.
CUS_PADCTL4	Block0	-	0x27	UXFF	4. Floating (default).
CUS_PADCTL5	Block0		0x28	0x00	GPIO0 ~ GPIO15 port mode configuration register 1,
CUS PADCTL6	Block0		0x29	0x00	responsible for input pull-up/pull-down selection or output push-pull/open-drain configuration
CUS_PADCTL7	Block0		0x2A	0x00	GPIO0 ~ GPIO15 port IO change interrupt/wake-up enabling
CUS_PADCTL8	Block0		0x2B	0x00	register
CUS_PADCTL9	Block0		0x2C	0x00	GPIO0 ~ GPIO15 input status saving register, used for IOC
CUS_PADCTL10	Block0		0x2D	0x00	function port status transition comparison
CUS_PADCTL11	Block0		0x2E	0x00	GPIO0 ~ GPIO15 port mode configuration register 2,
CUE DADCTI 12	PlackO		0x2F	0x00	responsible for input pull-up/pull-down enabling and output
CUS_PADCTL12	Block0	-	UXZF	UXUU	status saving (output mode)
CUS_SYSCTL11	Block0	-	0x68	0x80	System control register 11.
CUS_SYSCTL12	Block0		0x69	0x00	System control register 12.
CUS_SYSCTL20	Block0		0x71	0x13	System control register 20
CUS_LFRX3	Block0		0x12	0x2A	Low frequency wake-up receiving register 3
CUS_LFRX4	Block0	-	0x13	0x55	Low frequency wake-up receiving register 3
CUS_SNOOZE6	Block0	-	0x23	0x00	SNOOZE configuration register 6
P0	Block1	Bank0	0x80	0x00	8051 core Port 0 register
TIMER IN SEL	Block1	Bank0	0xB7	0x00	Timer1 input and GPIO mapping registers, see Section 3.2 for details.
TACCI_SEL	Block1	Bank0	0xB9	0x00	Timer A capture module CCI and GPIO mapping, see Section 3.9 for details.
SPI IN SELO	Block1	Pank0	0xBA	0x00	SPI input signal and GPIO mapping configuration register 0,
SFT IIV SLLO	DIOCKT	Bank0	UXDA	0,000	see Section 3.7 for details.
SPI IN SEL1	Block1	Bank0	0xBB	0x00	The SPI input signal and GPIO mapping configuration register 1, see Section 3.7 for details.
PO_IN_SELO	Block1	Bank0	0xBC	0x00	
P0_IN_SEL1	Block1	Bank0	0xBD	0x00	GPIO[15:0] mapping selection configuration register, when
P0_IN_SEL2	Block1	Bank0	0xBE	0x00	Port0[7:0] is used as the input mode.
PO_IN_SEL3	Block1	Bank0	0xBF	0x00	
GPIO_IN_R_H	Block1	Bank0	0xC0	0x00	GPIO0 ~ GPIO15 input read register
GPIO_IN_R_L	Block1	Bank0	0xC1	0x00	(Note: this register does not support bit access mode)
GPIO OUT R H	Block1	Bank0	0xC2	0x00	GPIO0 ~ GPIO15 output control register
GPIO OUT R L	Block1	Bank0	0xC3	0x00	(Note: this register does not support bit access mode)
GPIO OUT SELO	Block1	Bank0	0xC4	0x00	Function selection register when GPIO0 ~ GPIO15 is used

Name	Area	Sub-area	Address	Reset	Function
GPIO OUT SEL1	Block1	Bank0	0xC5	0x00	as output function
GPIO_OUT_SEL2	Block1	Bank0	0xC6	0x00	
GPIO_OUT_SEL3	Block1	Bank0	0xC7	0x00	
GPIO_OUT_SEL4	Block1	Bank0	0xC8	0x00	
GPIO_OUT_SEL5	Block1	Bank0	0xC9	0x00	
GPIO_OUT_SEL6	Block1	Bank0	0xCA	0x00	
GPIO_OUT_SEL7	Block1	Bank0	0xCB	0x00	
LED_CTL	Block1	Bank0	0xCC	0x00	LED module control register, see section 3.4 for details.
GPIO IN R D1	Block1	Bank0	0xDD	0x00	GPIO16 (namely D1) input access register
GPIO OUT R D1	Block1	Bank0	0xDE	0x00	PIO16 (namely D1) output access register
TROOL SEL	Block1	Bank1	0xE9	0x00	TimerB capture module CCI and GPIO mapping, see section
TBCCI_SEL	DIOCKI	Dankı	UXE9	0,000	3.9 for details.

Notes: This document focuses on the function description of each register. As the CMT216xA SoC on-chip GPIO configuration quite is flexible and rich, it is recommended that users read GPIO realted sections in CMT216xA User Guide and to better understand the function of the above registers.

• CUS_PADCTL1 ~ CUSPADCTL4 register set

CUS	S_PADCTL1 ~ 4)	Reset value: 0xFF, 0xFF, 0xF7, 0xFF		
	7	6	5	4	3	2	1	0	
1	GPIO3_MC	DE[1:0]	GPIO2_M	ODE[1:0]	GPIO1_N	/IODE[1:0]	GPIC	00_MODE[1:0]	
2	GPIO7_MODE[1:0]		GPIO6_MODE[1:0]		GPIO5_MODE[1:0]		GPIC	GPIO4_MODE[1:0]	
3	GPIO11_M	DDE[1:0]	GPIO10_N	1ODE[1:0]	GPIO9_N	MODE[1:0]	GPIC	08_MODE[1:0]	
4	GPIO15_M	DDE[1:0]	GPIO14_N	1ODE[1:0]	GPIO13_	MODE[1:0]	GPIO	12_MODE[1:0]	

Name	Decription	Туре
	GPIOn operating mode selection.	
	2'b00: analog input/output	
GPIOn_MODE	2'b01: digital input	R/W
	2'b10: digital output	
	2'b11: floating internally, high impedance (default value except GPIO9)	

Notes: When the power supply voltage of the chip is lower than the lower limit of the operating voltage (less than 2.0 V), the GPIO configuration is restored to the default state, namely the floating internally, and the high impedance state externally. However, for $B0 \sim B4$ specially as simulation and programming pins, the status is different. In this case, B0, B1, B2, and B4 show a pull-up high state and B3 shows a pull-down low state.

● CUS_PADCTL5 ~ CUSPADCTL6 register set

CUS_PADCTL5 ~ 6 Reset value: 0x00, 0x00

	7	6	5	4	3	2	1	0
5	GPIO7_CNF	GPIO6_CNF	GPIO5_CNF	GPIO4_CNF	GPIO3_CNF	GPIO2_CNF	GPIO1_CNF	GPIO0_CNF
6	GPIO15_CNF	GPIO14_CNF	GPIO13_CNF	GPIO12_CNF	GPIO11_CNF	GPIO10_CNF	GPIO9_CNF	GPIO8_CNF

Name	Decription Type
	When GPIOn_MODE[1:0] = 2'b01 and GPIO is in digital input mode,
	- GPIOn_CNF = 0, it provides a pull-up resistor.
GPIOn CNF	- GPIOn_CNF = 1, it provides a pull-down resistor.
GFIOII_CINF	When GPIOn_MODE[1:0] = 2'b10 and GPIO is in digital output mode,
	- GPIOn_CNF= 0, it provides push-pull output.
	- GPIOn_CNF= 1, it provides open-drain output

• CUS_PADCTL7 ~ CUSPADCTL8 register set

CUS_PADCTL7 ~ 8 Reset value: 0x00, 0x00

	7	6	5	4	3	2	1	0
7	GPIO7_IOC	GPIO6_ IOC	GPIO5_IOC	GPIO4_IOC	GPIO3_IOC	GPIO2_IOC	GPIO1_IOC	GPIO0_IOC
8	GPIO15_ IOC	GPIO14_ IOC	GPIO13_ IOC	GPIO12_IOC	GPIO11_IOC	GPIO10_IOC	GPIO9_IOC	GPIO8_IOC

Name	Decription	Туре
0010 - 100	Set to 0 to disable the IOC interrupt/wake-up function of the GPIOn port.	DAM
GPIOn_IOC	Set to 1 to enable the IOC interrupt/wake-up function of the GPIOn port.	R/W

• CUS_PADCTL9 ~ CUSPADCTL10 register set

CUS_PADCTL9 ~ 10 Reset value: 0x00, 0x00

	7	6	5	4	3	2	1	0
9	GPIO7_IDR	GPIO6_IDR	GPIO5_ IDR	GPIO4_ IDR	GPIO3_ IDR	GPIO2_IDR	GPIO1_ IDR	GPIO0_ IDR
10	GPIO15_ IDR	GPIO14_IDR	GPIO13_ IDR	GPIO12_ IDR	GPIO11_ IDR	GPIO10_IDR	GPIO9_ IDR	GPIO8_ IDR

Name	Decription	Туре
	GPIOn input status saving register	
GPIOn_IDR	Set to 0, input is 0, generate interrupt or wake up the chip when input is detected changing to 1.	R/W
	Set to 1, input is 1, generate interrupt or wake up the chip when input is detected changing to 0.	

● CUS_PADCTL11 ~ CUSPADCTL12 register set

CUS PADCTL11 ~ 12 Reset value: 0x00, 0x00 7 6 5 4 3 2 0 9 GPIO7_ODR GPIO6_ODR GPIO5_ODR GPIO4_ ODR GPIO3_ODR GPIO2_ODR GPIO1_ODR GPIO0_ODR 10 GPIO15_ODR GPIO14_ ODR GPIO13_ODR GPIO12_ODR GPIO11_ ODR GPIO10_ODR GPIO9_ODR GPIO8_ODR

Name	Decription	Туре
	GPIOn mode configuration 2.	
	When GPIOn_MODE[1:0] = 2'b01 and GPIO is in digital input mode:	
	 GPIOn_ ODR = 0, it provides a pull-up resistor. 	
GPIOn_ODR	 GPIOn_ ODR = 1, it provides a pull-down resistor. 	R/W
	When GPIOn_MODE[1:0] = 2'b10 and GPIO is in digital output mode:	
	 GPIOn_ ODR = 0, both push-pull output and open-drain output output 0^[1]. 	
	 GPIOn_ ODR = 1, push-pull output outputs 1, open-drain output has no output^[1]. 	

Notes

[1]. When the CMT216xA enters the Shut Down mode, part of the Block1 register will be reset, so the GPIO status can only be saved through the GPIO associated register in Block0, such as the output high/low state, the input with pull-up/pull-down. GPIOn_ODR is responsible for the function that, in Shut Down mode, it retains the status of whether the input port is with pull-up or pull-down, or whether the port outputs high or low. See CMT216xA User Guide for more details.

• CUS_SYSCTL11 Register

CUS SYSCTL11 Reset value: 0x80 5 SLPT_MAN LBD_MANU LFRX_MAN SLPT_MAN SNOOZE_M **BUT_MANU** Reserved Reserved U_RSTN ANU_CLR CLR U_CLR U_CLR _CLR

	Name	Decription	Туре
0	BUT_MANU_CLR	In SDN mode, the IOC interrupt manual clearing bit. When it is set to 1, it is automatially cleared.	R/W

CUS_SYSCTL12 Register

CUS_SYSCTL12 Reset value: 0x00 2 7 5 3 1 0 SNOOZE_W SYNC_PAS LFRX_SIGN SLEEP_TIM KEY_LAUNC Reserved WKID_PASS **AKEUP** S AL_OK **ESUP** Н

Name		Decription		
0	KEY_LAUNCH	IOC triggering being active flag. It is active when being read as 1.	R	

• CUS_SYSCTL20 Register

	Name	Decription	Туре
3	GPIO16_ODR	For GPIO16 ODR configuration, please refer to GPIO[15:0] ODR configuration.	R/W
2	GPIO16_CNF	For GPIO16 CNF configuration, please refer to GPIO[15:0] CNF configuration.	R/W
1:0	GPIO16_MODE	For GPIO16 mode configuration, please refer to GPIO[15:0] mode configuration.	R/W

• CUS_LFRX3 Register

	Name	Decription				
7	DD D05	Configure the output port load capacity. It is a common configuration of GPIO[16:0]:	DAM			
'	PD_P25	2'b00, high speed (default).	R/W			
		2'b01, meduim speed.				
6	PD_P50	2'b10, low speed.	R/W			
		2'b11, super-low speed.				

• CUS_LFRX4 Register

 CUS_LFRX4
 Reset value: 0x55

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 PD_PULLUP2
 LFRX_AGC_CNT[1:0]
 LFRX_AGC_VLREF[3:0]

	Name	Decription	Туре
		Valid for all GPIO[16:0].	
6	PD_PULLUP2	Set to 0 to enable the 500 kΩ pull-up resistor ^[1]	R/W
		Set to 1 to disable 500 kΩ pull-up resistor	

Notes [1]:

- 1. The 500 k Ω is a weak pull-up, which is disabled by default. The pull-up mentioned above is a standard pull-up, which is about 47 k Ω ;
- 2. The difference is that the standard pull-up supports independent enabling/disabling per each GPIOn, however the weak pull-up is enabled or disabled as a whole.
- 3. If both the 2 types of pull-ups are enabled at the same time, they are in parallel.

• CUS_SNOOZE6 Register

CUS SNOOZE6 Reset value: 0x00 7 2 1 6 5 4 3 0 GPIO_HOLD DWTH_WK_INT UPTH_WK_INT WOUT_WK_INT WIN_WK_INT Reserved Reserved Reserved

	Name	Decription	Туре
7	GPIO_HOLD	GPIO[16:0] output mapping value selection ^[1] : Se to 0, output the digital output mapping value. Se to 1, output the value of GPIOn_ODR register.	R/W

Notes[1]. It is recommended to configure the output port status that is required to be retained in GPIOn_ODR before entering Shut Down mode, then set GPIO to 1 and enter the Shut Down mode. Upon waking-up (to Active mode), clear this bit for operation convenience. See the CMT216xA User Guide for details.

• P0_IN_SEL0 ~ P0_IN_SEL3 register set

 P0_IN_SEL0/1/2/3
 Reset value: 0x00/0x00/0x00/0x00

 7
 6
 5
 4
 3
 2
 1
 0

 0
 PORT01_IN_GPIO_SEL[3:0]
 PORT00_IN_GPIO_SEL[3:0]
 PORT02_IN_GPIO_SEL[3:0]

 1
 PORT03_IN_GPIO_SEL[3:0]
 PORT04_IN_GPIO_SEL[3:0]

 2
 PORT07_IN_GPIO_SEL[3:0]
 PORT06_IN_GPIO_SEL[3:0]

 3
 PORT07_IN_GPIO_SEL[3:0]
 PORT06_IN_GPIO_SEL[3:0]

Name	Decription	Туре
	When 8051core Port0 is input port, the mapping with GPIOn is:	
	4'b0000, map to GPIO0 input, corresponding to the A0 pin.	
	4'b0001, map to GPIO1 input, corresponding to the A11pin.	
	4'b0010, map to GPIO2 input, corresponding to the A2 pin.	
PORTOn IN GPIO SEL		R/W
1 31(161)_11(_61 16_622	4'b0111, map to GPIO7 input, corresponding to the A7 pin.	1,7,7
	4'b1000, map to GPIO8 input, corresponding to the B0 pin.	
	4'b1110, map to GPIO14 input, corresponding to the B6 pin.	
	4'b1111, map to GPIO15 input, corresponding to the B7 pin.	

• GPIO_IN_R_H/GPIO_IN_R_L register set

GPIO_IN_R_H/L Reset value: 0x00/0x00

7 6 5 4 3 2 1 0

H GPIO_IN_R[15:8](IN)
L GPIO_IN_R[7:0](IN)

Name	Decription	Туре
GPIO_IN_R[15:0]	GPIOn input mode mapping register. The range of n is 0 ~ 15.	R/W

• GPIO_OUT_R_H/GPIO_OUT_R_L register set

GPIC	_OUT_R_H/L						Reset valu	ue: 0x00/0x00
	7	6	5	4	3	2	1	0
Н	GPIO_OUT_R[15:8](IN)							
L	GPIO_OUT_R[7:0](IN)							

Name	Decription	Туре
GPIO_OUT_R[15:0]	GPIOn output mode mapping register. The range of n is 0 ~ 15.	R/W

• GPIO_IN_R_D1

 GPIO_IN_R_D1
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 GPIO_IN_R[16]

Name	Decription	Туре
GPIO_IN_R[16]	GPIO16 (namely D1) input mode mapping register	R

• GPIO_OUT_R_D1

 GPIO_OUT_R_D1
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 GPIO_OUT_R[16]

Name	Decription	Туре
GPIO_OUT_R[16]	GPIO16 (namely D1) output mode mapping register.	R/W

● GPIO_OUT_SEL0 ~ GPIO_OUT_SEL7 register set

 ${\sf GPIO_OUT_SEL0}{\sim}{\sf GPIO_OUT_SEL7}$ Reset value: all 0x00 7 0 6 3 2 1 4 0 GPIO1_OUT_SEL[3:0] GPIO0_OUT_SEL[3:0] 1 GPIO3_OUT_SEL[3:0] GPIO2_OUT_SEL[3:0] 2 GPIO5_OUT_SEL[3:0] GPIO4_OUT_SEL[3:0] GPIO7_OUT_SEL[3:0] 3 GPIO6_OUT_SEL[3:0] 4 GPIO9_OUT_SEL[3:0] GPIO8_OUT_SEL[3:0] GPIO11_OUT_SEL[3:0] GPIO10_OUT_SEL[3:0] 5 GPIO13_OUT_SEL[3:0] GPIO12_OUT_SEL[3:0] 6 7 GPIO15_OUT_SEL[3:0] GPIO14_OUT_SEL[3:0]

Name	Decription 1					
	The man	pina confia	uration of GPIOn when it operates as output:			
	Value	Binary	Function Description			
			Map to GPIO_OUT_R[15:0], namely control input status through			
			the 2 registers, GPIO_OUT_R_H/L with one-to-one			
	0	4'b0000	correspondence. For example, GPIO1 is corresponding to			
			GPIO_OUT_R_L Bit1. This is the default value of GPIOn output.			
			Map to Port0 output. Both GPIO[7:0] and GPIO[15:8] can be			
			configured to the corresponding Port0[7:0] with one-to-one			
			correspondence. For example, GPIO7 or GPIO15 can be mapped			
	1	4'b0001	to Port0.7, and GPIO10 or GPIO2 can be mapped to Port0.2. When			
			this value is selected, GPIOn can be controlled through Port0.n			
			output control.s			
	2	4'b0010	Map to TB_OUT0, TimerB captures/compares module 0 output.			
GPIOn_OUT_SEL	3	4'b0011	Map to TB_OUT1, TimerB capture/compare module 1 output.	R/W		
	4	4'b0100	Map to TB_OUT2, TimerB capture/compare module 2 output.			
	5	4'b0101	Map to NSS_OUT, SPI module master mode chip selection output.			
	6	4'b0110	Map to SCK_OUT, SPI module master mode clock output.			
	7	4'b0111	Map to MISO_OUT, SPI module Slave mode data output.			
	8	4'b1000	Map to MOSI_OUT, SPI module Master mode data output.			
	9	4'b1001	Map to RxD0_OUT, UART module output enabling signal.			
	10	4'b1010	Map to TxD_OUT, UART module clock or data output.			
	11	4'b1011	Map to TA_OUT0, TimerA captures/compares module 0 output.			
	12	4'b1100	Map to TA_OUT1, TimerA capture/compare module 1 output.			
	13	4'b1101	Map to TA_OUT2, TimerA capture/compare module 2 output.			
	14	4'b1110	Map to LED_OUT_LV, the PWM output generated by LED module.			
	15	4'b1111	Map to T1_OV, overflow flag of Timer1 module.			
	L			1		

3.4 LED Module

Table 5. LED Module Register Set List

Name	Area	Sub-area	Address	Reset	Function
CUS_SYSCTL3	Block0		0x50	0x00	System control register 3
LED_CTL	Block1	Bank0	0xCC	0x00	LED control register

• CUS_SYSCTL3 Register

CUS_SYSCTL3 Reset value: 0x00

7	6	5	4	3	2	1 0
LED INV	AFE_IR_EN	SNOOZE_E	SNOOZE_D	LFRX_DEBU	LFRX_EN	SLPT_WAK SLEEP_TIM
LED_IIIV	/(L_II_LIV	Ν	EBUG_EN	G_EN	LI TOX_LIV	EUP_MODE ER_EN

	Name	Decription	Туре
		LED module output direction enabling	
7	LED_INV	Set to 0, high level is normal state and low level drives LED.	R/W
		Set to 1, low level is normal state and high level drives LED.	

LED_CTL Register

 LED_CTL
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 SAR_DATA_UPDATE
 LED_ON
 LED_OUT_SEL
 PWM_RATE_SEL
 PWM_INTERVAL_SEL[3:0]

Name		Decription	Туре		
6	LED_ON	LED module enabling. 0: disable. 1, enable.			
		LED module output mode selection:			
5	LED_OUT_SEL	Set to 0, output TX baseband data.	R/W		
		Set to 1, output PWM signal.			
		PWM frequency selection (if LED_OUT_SEL selects the PWM signal as valid			
4	PWM RATE SEL	signal):	R/W		
4	FWW_RATE_SEL	Set to 0, PWM is 3.34 kHz.	K/VV		
		Set to 1, PWM is 6.68 kHz.			
3:0	DWM INTEDVAL SEL	PWM duty cycle selection, ranging from 0 to 15 with 16 levels of duty cycle, each	R/W		
3.0	PWM_INTERVAL_SEL	level increasing by 1 / 16.	17/77		

3.5 S3S Programming Interface

Table 6. SPI Module Register Set List

Name	Area	Sub-area	Address	Reset	Function
INT_SYSCTL3	Block0		0x44		INT system control register 3

INT_SYSCTL3 register

INT_SYSCTL3 Reset value: 0xC4 6 Reserved Reserved S3S_DISABLE Reserved

Name		Decription				
		S3S debug port function enabling control (control PB1 ~ PB4, namely GPIO9 ~ GPIO12).				
5	S3S_DISABLE	Set to 0, the S3S debug port is used as a programming port.	R/W			
		Set to 1, S3S is used as GPIO.				

3.6 LBD Module

Table 7. LBD Module Register Set List

	Name	Area	Sub-area	Address	Reset	Function
I	CUS_SYSCTL11	Block0		0x68	0x80	System control register 11
	CUS_SYSCTL13	Block0		0x6A	0x00	System control register 13
I	CUS_SYSCTL16	Block0		0x6D	0x00	System control register 16
ĺ	CUS_SYSCTL17	Block0		0x6E	0x00	System control register 17
Ī	LBD_CTL	Block1	Bank1	0xC0	0x24	LBD control register

• CUS_SYSCTL11 register

U_RSTN

CUS_SYSCTL11 Reset value: 0x80 7 2 SLPT_MAN SLPT_MAN SNOOZE_M LBD_MANU LFRX_MAN BUT_MANU Reserved Reserved _CLR

U_CLR

U_CLR

CLR

ANU_CLR

Name	Name Decription			
3 LBD MANU CLR	When the low voltage detection is completed, it needs clear the end flag manually.	R/W		
3 LBD_IVIANO_CLK	When set to 1, the system clears it automatically.	IN/VV		

• CUS_SYSCTL13 register

CUS_SYSCTL13 Reset value: 0x00 7 2 5 3 1 0 6 LBD_STATUS LBD FINISH LBD_AVG_SEL LBD_ENABLE Reserved SAR MSTART SAR TRIGGER SAR CLK EN

	Name	Decription	Туре
		Low voltage detection results.	
7	LBD_STATUS	Read as 0, the power supply voltage is higher than the set threshold.	R
		Read as 1, the power supply voltage is lower than the set threshold.	
6	LBD_FINISH	Low voltage detection end flag.	R
		Low voltage detection result (LBD_RESULT) sampling times selection.	
5	LBD_AVG_SEL	Set to 0, average the the results of 8 successive samplings	R/W
		Set to 1, sample once for measurement.	
4	LBD ENABLE	Set to 0, LBD module is disabled.	R/W
4	LBD_ENABLE	Set to 1, LBD module is enabled.	IT/VV

• CUS_SYSCTL16 register

CUS_SYSCTL16 Reset value: 0x00
7 6 5 4 3 2 1 0

LBD_TH[7:0]

Name	Decription	Туре
LBD_TH	Low voltage detection comparison threshold	R/W

• CUS_SYSCTL17 register

CUS_SYSCTL17 Reset value: 0x00
7 6 5 4 3 2 1 0

LBD_RESULT[7:0]

Name	Decription	Туре
LBD_RESULT	Low voltage detection result	R

Note: The low-voltage detection module uses VBG (1.2V) as the reference voltage and measures VBAT / 4 (VDD / 4), so setting LBD_TH or reading LBD_RESULT is calculated according to the following formulas.

$$LBD_TH = \frac{V_{LBD_{TH}}}{4.8} \times 255$$

$$V_{BAT} = \frac{LBD_RESULT}{255} \times 4.8V$$

LBD_CTL register

 LBD_CTL
 Reset value: 0x24

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 Reserved
 LBD_FLAG
 LBD_VTH_SEL
 LBD_POR_EN
 LBD_ON

	Name	Decription	Туре		
		Voltage monitoring flag.			
3	LBD_FLAG	Read as 0, in normal.			
		Read as 1, voltage is lower than the monitoring threshold.			
		Voltage monitoring threshold selection.			
2	LBD_VTH_SEL	Set to 0, the monitoring threshold is 1.8 V.	R/W		
		Set to 1, the monitoring threshold is 2.0 V.	0		
		Whether the power supply resets the chip when the power supply voltage is			
	LBD_POR_EN	lower than the monitoring threshold (LBD_VTH_SEL selection).	D.444		
1		Set to 0, not reset.	R/W		
		Set to 1, reset (this reset is equivalent to re-poweron).			
	LDD ON	Set to 0, the power supply voltage monitoring is disabled.	DAM		
0	LBD_ON	Set to 1, the power supply voltage monitoring is enabled.	R/W		

Notes:

- 1. Suggest users call the API sys_start_stop_supply_voltage_supervision to configure of LBD monitoring rather than configure this register directly since the LBD voltage monitoring function still requires other related configurations.
- 2. Users can either read LBD_FLAG or call the API call the API function sys_read_result_from_supply_voltage_supervision to query the voltage monitoring status.

3.7 SPI Register Set

Table 8. SPI Module Register Set List

Name	Area	Sub-area	Address	Reset	Function
SPI_CTL1_H	Block1	Bank0	0x91	0x00	SPI module control register1 higher byte
SPI_CTL1_L	Block1	Bank0	0x92	0x00	SPI module control register1 lower byte
SPI_CTL2_H	Block1	Bank0	0x93	0x02	SPI module control register2 higher byte
SPI_DATA_H	Block1	Bank0	0x95	0x00	SPI module data higher byte
SPI_DATA_L	Block1	Bank0	0x96	0x00	SPI module data lower byte
SPI_IN_SEL0	Block1	Bank0	0xBA	0x00	SPI input signal and GPIO mapping register0
SPI_IN_SEL1	Block1	Bank0	0xBB	0x00	SPI input signal and GPIO mapping register1

• SPI_CTL1_H register

Reset value: 0x00 SPI_CTL1_H 7 6 5 4 3 0 BIDI_MODE BIDI_OE $\mathsf{RX}_\mathsf{ONLY}$ DFF **TXDMAEN** SSOE SSM SSI

Name		Decription	Туре
7	BIDI_MODE	SPI module bidirectional data mode selection:	R/W
		Set to 0, select 2-wire bidirectional mode, namely, 4-wire SPI mode.	
		Set to 1, select single line bidirectional mode, namely, 3-wire SPI mode.	
6	BIDI_OE	Data line output direction in the single line bidirectional mode (BIDI_MODE = 1):	R/W
		Set to 0, the output is disabled (receiving-only mode).	
		Set to 1, the output is enabled (sending-only mode).	
		Note: in the single line bidirectional mode, on the host side, if the host is the sender,	
		the data line is mosi. Otherwise, the data line is miso. On the slave side, if the slave is	
		the sender, the data line is miso. Otherwise, the data line is mosi	
	RX_ONLY	In the 2-line bidirectional mode (BIDI_MODE = 0), for multiple slave configuration, set	
		this bit to 1 to let only the accessed slave devices output, so that no data conflicts will	
5		occur in the data line.	R/W
		Set to 0, full duplex (transmiting and receiving);	
		Set to 1, disable output (receiving-only);	
	DFF	Data frame format selection.	
4		Set to 0, transmit or receive using a 8-bit data frame format.	R/W
		Set to 1, transmit or receive using a 16-bit data frame format.	
	TXDMAEN	SPI DMA function enabling bit:	R/W
3		Set to 0, disable the DMA function.	
		Set to 1, enable the DMA function.	
	SSOE	SS output enabling:	
2		Set to 0 to disable SS output in the master mode. The device can operate in the	
		multi-master mode.	R/W
		Set to 1,enable SS output in the master mode, the device can not operate in the	
		multi-master mode.	

Name		Decription	Туре
1	SSM	Software slave device management. When set to 1, the level on the NSS pin is determined by the value of the SSI bit. Set to 0, disable software slave device management. Set to 1, enable software slave device management.	R/W
0	SSI	Internal slave device selection. Valid when SSM = 1. It determines the level on the NSS. The IO operation on the NSS pin is invalid in this case.	R/W

SPI_CTL1_L register

 SPI_CTL1_L
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 LSB_FIRST
 SPE
 BR[2:0]
 MSTR
 CPOL
 CPHA

Name		Decription	Туре
		Frame format selection.	
7	LSB_FIRST	Set to 0, transmit MSB first. Data shifts to the left.	R/W
		Set to 1, transmit LSB first. Data shifts to the right.	
		SPI module enabling bit:	
6	SPE	Set to 0, disable SPI module.	R/W
		Set to 1, enable SPI module.	
5:3	BR[2:0]	SPI baud rate selection (F _{PCLK} system clock, detault as 24 MHz). 3'b000, baud rate is F _{PCLK} /2. 3'b001, baud rate is F _{PCLK} /8. 3'b010, baud rate is F _{PCLK} /16. 3'b011, baud rate is F _{PCLK} /24. 3'b100, baud rate is F _{PCLK} /32. 3'b101, baud rate is F _{PCLK} /64. 3'b110, baud rate is F _{PCLK} /128. 3'b111, baud rate is F _{PCLK} /256.	R/W
2	MSTR	Master and slave mode selection. Set to 0, configure as slave mode. Set to 1, configure as master mode.	R/W
1	CPOL	SPI clock polarity. Set to 0, in the idle state, SCK remains low. Set to 1, in the idle state, SCK remains high.	R/W
0	SSOE	SPI clock phase. Set to 0, data sampling begins on the first clock edge. Set to 1, data sampling begins on the second clock edge.	R/W

Notes: When data communication is ongoing, cannot modify this register's value.

• SPI_CTL2_H register

 SPI_CTL2_H
 Reset value: 0x02

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 SPI_BUSY
 SPI_TXE
 SPI_RXNE

	Name	Decription	Туре
		SPI busy flag.	
		Read as 0, SPI not busy.	
2	SPI_BUSY	Read as 1, SPI busy in communication, or tranmission buffer not empty.	R/W
		Notes: This bit is set or reset by the hardware. In the master mode with	
		receiving-only (single line bidirectional), it is forbidden to check the flag.	
		SPI transmitting buffer not empty.	
1	SPI_TXE	Read as 0, transmitting buffer not empty.	R/W
		Read as 1, transmitting buffer empty.	
		SPI receiving buffer not empty.	
0	SPI_RXNE	Read as 0, receiving buffer not empty.	R/W
		Read as 1, receiving buffer empty.	

• SPI_DATA_H/SPI_DATA_L register set

 SPI_CTL2_H/L
 Reset value: 0x00/0x00

 7
 6
 5
 4
 3
 2
 1
 0

 H
 SPI_DATA[15:8]

 L
 SPI_DATA[7:0]

Name	Decription	Туре
SPI_TXDATA	SPI data register, buffering data to be sent or received. The data register has two buffers, one for writing (sending buffer), the other for reading	R/W
	(receiving buffer). A write operation writes data to the sending buffer; a read operation returns the data in the receiving buffer.	

SPI_IN_SEL0/SPI_IN_SEL1 register set

 SPI_IN_SEL0/1
 Reset value: 0x00/0x00

 7
 6
 5
 4
 3
 2
 1
 0

 0
 SCK_IN_SEL[3:0]
 NSS_IN_SEL[3:0]
 NSS_IN_SEL[3:0]

 1
 MOSI_IN_SEL[3:0]
 MISO_IN_SEL[3:0]

Name	Decription	Туре
NSS_IN_SEL	In SPI bus slave mode, chip selection input signal maps to GPIO[15:0]	R/W
SCK_IN_SEL	In SPI bus Slave mode, clock input signal maps to GPIO[15:0]	R/W
MISO_IN_SEL	In SPI bus Master mode, data input signal maps GPIO[15:0]	R/W
MOSI_IN_SEL	In SPI bus Slave mode, data input signal maps to GPIO[15:0]	R/W

Notes:

The selection mapping is as follows.
4'b0000, mapping to GPIO0 input, corresponding to A0 pin.
4'b0001, mapping to GPIO1 input, corresponding to A1 pin.
-4'b0010, mapping to GPIO2 input, corresponding to A2 pin.
...
4'b0111, mapping to GPIO7 input, corresponding to A7 pin.
4'b1000, mapping to GPIO8 input, corresponding to B0 pin.
...
4'b1110, mapping to GPIO14 input, corresponding to B6 pin.
4'b1111, mapping to GPIO15 input, corresponding to B7 pin.

3.8 UART Register Set

Table 9. UART Register Set List

Name	Area	Sub-area	Address	Reset	Function
SCON0	Block1	Bank0	0x98	0x00	Series port 0 control register.
<u>PCON</u>	Block1	Bank0	0x87	0x00	Power consumption control register, refer to Section 3.1 for details.
SBUF0	Block1	Bank0	0x99	0x00	Port 0 data buffer register.
USART_CTL	Block1	Bank0	0x97	0x00	UART control register.
TIMER IN SEL	Block1	Bank0	0xB7	0x00	Timer1 input selection register.

SCON0 Register

 SCON0
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 FE0/SM00
 SM10
 SM20
 REN0
 TB80
 RB80
 TI0
 RI0

N	ame				Decription	Туре			
7	FE0	•			flag. When PON.6 = 1, access is valid. When an incorrect STOP bit is ne hardware automatically.	R/W			
7	SM00	·		_	uration Bit0. When PCON.6 = 0, access is valid. Cooperate with SM10 perating mode configuration.	R/W			
Series port 0 mode configuration bit1:									
		SM00	SM10	Mode	Description				
		0	0	0	Synchronous shift register. Fix to F _{PCLK} /12 baud rate.				
6	SM10	0	1	1	8-bit UART, configurable baud rate and clock generated by Timer1.	R/W			
		1	0	2	9-bit UART, F _{PCLK} /64 or F _{PCLK} /32 baud rate.				
		1	1	3	9-bit UART, baud rate is configurable and clock is generated by Timer1.				
5	SM20	Series po	ort 0 mod	le configu	uration bit2, namely multimachine control bit.	R/W			
		Serial re	ceiving e	nabling b	it. In the UART mode, set to 1 to enable receiving.				
4	REN0	In mode	0, set to	start data	a input transfer. Must clear it to 0 to enable data output transfer (write to	R/W			
		SBUF0)							
3	TB80	The 9 th b	The 9 th bit of 9-bit transmitting mode.						
2	RB80	The 9 th b	The 9 th bit of 9-bit receiving mode.						
1	TIO	Series po	ort 0 trans	smitting i	nterrupt flag.	R/W			
0	RI0	Series po	ort 0 rece	iving inte	errupt flag.	R/W			

• SBUF0 register

 SBUF0
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 SBUF0[7:0]

Name	Decription	Туре
SBUF0	Series port 0 data buffer	R/W

USART_CTL register

USART_CTL Reset value: 0x00 7 6 5 4 3 2 Reserved Reserved Reserved Reserved Reserved Reserved Reserved UART_SEL

Name		Name	Decription	Туре
	0	UART_SEL	UART baud rate ehancement control bit. Set to 0, disable. Set to 1, enable.	R/W

Notes: When this bit is set, the preset frequency division by 12 of timer1 is closed. In this case, for UART1 and UART3 modes, it can fulfill multiple more accurate baud rates. Refer to CMT216xA User Guide for more details.

• TIMER_IN_SEL register

 TIMER_IN_SEL
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 T1_GPIO_SEL[3:0]

RXD0_IN_GPIO_SEL[3:0]

Name	Decription	Туре
3:0 RXD0_IN_GPIO_SEL	UART0 external input signal selection, with configurably mapping to GPIO[15:0]. 4'b0000, corresponding to GPIO0, namely A0 pin. 4'b0001, corresponding to GPIO1, namely A1 pin 4'b0111, corresponding to GPIO7, namely A7 pin. 4'b1000, corresponding to GPIO8, namely B0 pin. 4'b1001, corresponding to GPIO9, namely B1 pin 4'b1111, corresponding to GPIO15, namely B7 pin.	R/W

3.9 16-Bit TimeA and TimerB Register Set

Table 10. 16-Bit TimerA and TimerB Register Set

Name Area Sub-area Address I				Reset	Function	
TACLK_DIV_H	Block1	Bank0	0x9A	0x00		
TACLK_DIV_L	Block1	Bank0	0x9B	0x00	TimerA clock source frequency division register	
TACH	Block1	Bank0	0x9C	0x00	To a A control or district	
TACL	Block1	Bank0	0x9D	0x00	TimerA control register	
TACNT_H	Block1	Bank0	0x9E	0x00	Times A 4C his week size a count register	
TACNT_L	Block1	Bank0	0x9F	0x00	TimerA 16-bit real-time count register	
TACCR0H	Block1	Bank0	0xA1	0x00	TimorA contura/compare module 0 register	
TACCR0L	Block1	Bank0	0xA2	0x00	TimerA capture/compare module 0 register	
TACCTL0H	Block1	Bank0	0xA3	0x40	TimerA centure/compare module 0 central register	
TACCTLOL	Block1	Bank0	0xA4	0x00	TimerA capture/compare module 0 control register	
TACCR1H	Block1	Bank0	0xA5	0x00	TimerA capture/compare module 1 register	
TACCR1L	Block1	Bank0	0xA6	0x00	TimerA capture/compare module i register	
TACCTL1H	Block1	Bank0	0xA9	0x40	TimorA contura/compare module 1 control register	
TACCTL1L	Block1	Bank0	0xAA	0x00	TimerA capture/compare module 1 control register	
TACCR2H	Block1	Bank0	0xAB	0x00	TimerA centura/compare modulo 2 register	
TACCR2L	Block1	Bank0	0xAC	0x00	TimerA capture/compare module 2 register	
TACCTL2H	Block1	Bank0	0xAD	0x40	TimerA capture/compare module 2 control register	
TACCTL2L	Block1	Bank0	0xAE	0x00	TimerA capture/compare module 2 control register	
TACCI SEL	Block1	Bank0	0xB9	0x00	TimerA capture module CCI and GPIO mapping	
TBCLK_DIV_H	Block1	Bank1	0xD7	0x00	TimerB clock source frequency division register	
TBCLK_DIV_L	Block1	Bank1	0xD8	0x00	Time D clock source frequency division register	
<u>TBCH</u>	Block1	Bank1	0xD9	0x00	TimerB control register	
<u>TBCL</u>	Block1	Bank1	0xDA	0x00	Time D control register	
TBCCR0H	Block1	Bank1	0xDB	0x00	TimerB capture/compare module 0 register	
TBCCR0L	Block1	Bank1	0xDC	0x00	Timero capture/compare module o register	
TBCCTL0H	Block1	Bank1	0xDD	0x40	TimerB capture/compare module 0 control register	
TBCCTL0L	Block1	Bank1	0xDE	0x00	Timore supraire/compare module o control register	
TBCCR1H	Block1	Bank1	0xDF	0x00	TimerB capture/compare module 1 register	
TBCCR1L	Block1	Bank1	0xE1	0x00	Timero capture/compare module i register	
TBCCTL1H	Block1	Bank1	0xE2	0x40	TimerB capture/compare module 1 control register	
TBCCTL1L	Block1	Bank1	0xE3	0x00	Timero capture/compare module i control register	
TBCCR2H	Block1	Bank1	0xE4	0x00	TimerR cantura/compare modulo 2 register	
TBCCR2L	Block1	Bank1	0xE5	0x00	TimerB capture/compare module 2 register	
TBCCTL2H	Block1	Bank1	0xE7	0x40	TimorP contura/compare module 2 central register	
TBCCTL2L	Block1	Bank1	0xE8	0x00	TimerB capture/compare module 2 control register	
TBCCI_SEL	Block1	Bank1	0xE9	0x00	TimerB capture module CCI and GPIO mappin, see Section 3.7 for details.	
TBCNT_H	Block1	Bank1	0xEA	0x00	TimerB 16-bit real-time count register	

Name	Area	Sub-area	Address	Reset	Function
TBCNT_L	Block1	Bank1	0xEB	0x00	

• TACLK_DIV, TimerA clock source division register

TACLK_DIV_H & TACLK_DIV_L Reset value: 0x00,									
	7	6	5	4	3	2	1	0	
Н	TACLK_DIV[15:8]								
L	TACLK_DIV[7:0]								

Name	Decription	Туре
TAOLK DIV	TimerA clock source division factor. TACLK = FPCLK/TACLK_DIV, FPCLK is system	DAM
TACLK_DIV	clock, defualt as 24MHz. The TACLK_DIV range is 1 \sim 65535.	R/W

• TACH, TimerA control register higher byte

TACH Reset value: 0x00 7 6 5 4 3 0 TACCI2 Reserved Reserved Reserved Reserved Reserved TA_START TACCI3

	Name	Decription	Туре
		TimerA enabling bit.	
2	TA_START	Set to 1, enable the TimerA module.	R/W
		Set to 0, disable the TimerA module.	
1	TACCI3	Software configurable capture source input 3.	R/W
0	TACCI2	Software configurable capture source input 2.	R/W

• TACL and TimerA control register lower byte

 TACL
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 Reserved
 TA_CNT_MODE[1:0]
 TA_CLR
 TMRA_IE
 TMRA_IFG

	Name	Decription	Туре
		TimerA count mode selection.	
		2'b00, Stop mode, TimerA stopping count mode.	
4:3	TA_CNT_MODE	2'b01, Up mode, TimerA up count mode.	R/W
		2'b10, Continuous mode, TimerA continuous count mode.	
		2'b11, Up / Down mode, Timer up and down count mode.	
		TimerA clearing control bit.	
2	TA_CLR	When set, it will reset TACNT, count direction, TACLK_DIV_H, TACLK_DIV_L, and TimerA	R/W
		related registers except register TACH/TACL.	
1	TMRA_IE	TimerA interrupt enabling bit. When set to 1, run TimerA count interrupt request.	R/W
0	TMRA_IFG	TimerA counts the interrupt flag, which is set when the TACNT count returns to 0 again.	R/W

• TACNT_H/TACNT_L, TimerA real-time count register

TACNT_H & TACNT_L Reset value: 0x00, 0x00

7 6 5 4 3 2 1 0

H TACNT[15:8]
L TACNT[7:0]

Name	Decription	Туре
TACNT	TimerA's real-time count value, read-only register, can be cleared by TA_CLR	R

• TACCR0H/TACCR0L, TimerA capture/compare module 0 register

 TACCR0H & TACCR0L
 Reset value: 0x00, 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 H
 TACCR0[15:8]

 L
 TACCR0[7:0]

Name	Decription	Туре
TACCDO	TimerA capture/compare module 0 register. In compare mode, it saves the data that TACNT needs to	DAM
TACCR0	compare with. In capture mode, it saves the count value of Timer A upon successful capture.	R/W

• TACCTL0H, TimerA capture/compare module 0 control register higher byte

 TACCTL0H
 Reset value: 0x40

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 TACCR0_CCI
 TACCR0_CM[1:0]
 TACCR0_CCIS[1:0]
 TACCR0_CAP

	Name	Decription	Туре
6	TACCR0_CCI	The value of the selected capture source, which can be read by the software.	R
5	TACCR0_SCCI	When EQUx is valid, the selected captured value is stored and can be read by software.	R
		Capture mode selection.	
		2'b00, not captured.	
4:3	TACCR0_CM	2'b01, capture the rising edg.	R/W
		2'b10, capture the falling edge.	
		2'b11, capture double edges.	
		Capture source selection.	
		2'b00, TACCI0.	
		2'b01, TACCI1.	
2:1	TACCR0_CCIS	2'b10, TACCI2.	R/W
		2'b11, TACCI3.	
		Among them, TACCI0 and TACCI1 are from GPIO mapping (see	
		TACCI_SELregister), TACCCI2 and TACCI3 are from register (see TACHregister);	
0	TACCEO CAE	Set to 0 to select the comparison mode.	R/W
U	TACCR0_CAP	Set to 1, select the capture mode.	F/VV

TACCTL0L, TimerA capture/compare module 0 control register lower byte

TACCTL0L Reset value: 0x00 7 5 4 2 1 0 6 3 TACCR0_SCS TACCR0_OUTMODE[2:0] TACCR0_IE TACCR0_OUT TACCR0_COV TACCR0_IFG

Name		Decription	Туре
7 TACCR0_SCS		Set to 0, the selected capture source is not synchronized with the system clock.	R/W
,	TACCRU_SCS	Set to 1, the selected capture source is synchronized with the system clock.	IN/VV
		Output mode selection:	
		3'b000, direct output mode.	
		3'b001, set output mode.	
		3'b010, reverse/reset output mode.	
		3'b011, set/reset output mode;	
6:4	TACCOO OUTMODE	3'b100, reverse output mode.	DAM
6.4	TACCR0_OUTMODE	3'b101, reset output mode.	R/W
		3'b110, reverse /set output mode.	
		3'b111, reset /set output mode.	
		Note: The function is explained in detail in the Section TimerA / B in CMT16xA User	
		Guide.	
3	TACCR0_IE	TimerA capture/compare module 0 interrupt enabling bit	R/W
2	TACCEDO OLIT	Can only be used in output mode 0 (TACCR0_OUTMODE=0), get throught directly	DAV
2	TACCR0_OUT	to the corresponding output signal	R/W
		Capture overflow flag. Reading as 1 means that the previous capture source	
1	TACCR0_COV	triggering result is not read yet, the current trigger source is captured currently, and	R/W
		software clearing is required.	
0	TACCR0_IFG	TimerA capture/compare 0 interrupt flag	R/W

TACCR1H/TACCR1L, TimerA capture/compare module1 register

TACCR1H & TACCR1L Reset value: 0x00, 0x00

7 6 5 4 3 2 1 0

H TACCR1[15:8]
L TACCR1[7:0]

Name	Decription	Туре
TACCR1	TimerA capture/compare module1 register. In compare mode, it saves the data required to	R/W
TACCRT	be compared with TACNT. In capture mode, it saves the current count value of Timer A.	K/VV

• TACCTL1H, TimerA capture/compare module1control register higher byte

 TACCTL1H
 Reset value: 0x40

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 TACCR1_CCI
 TACCR1_SCCI
 TACCR1_CM[1:0]
 TACCR1_CCIS[1:0]
 TACCR1_CAP

	Name	Decription	Туре
6	TACCR1_CCI	The selected capture source value. Can be read by the software.	R
5	TACCR1_SCCI	When EQUx is valid, it saves the selected capture value. Can be read by the software.	R
		Capture mode selection.	
		2'b00, not capture.	
4:3	TACCR1_CM	2'b01, capture on the rising edge.	R/W
		2'b10, capture on the falling edge.	
		2'b11, capture on both edges.	
	TACCR1_CCIS	Capture source selection.	
		2'b00, TACCI0.	
		2'b01, TACCI1.	
2:1		2'b10, TACCI2.	R/W
2.1		2'b11, TACCI3.	IX/VV
		Among them, TACCI0 and TACCI1 come from GPIO mapping (see TACCI_SEL	
		register for details). TACCCI2 and TACCI3 come from register (see TACH register for	
		details).	
0	TACCR1_CAP	Set to 0, select compare mode.	R/W
U	TACCRI_CAP	Se to 1, select capture mode.	F\/VV

• TACCTL1L, Timer A capture/compare module1 control register lower byte

 TACCTL1L
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 TACCR1_SCS
 TACCR1_OUTMODE[2:0]
 TACCR1_IE
 TACCR1_OUT
 TACCR1_COV
 TACCR1_IFG

	Name	Decription	Туре
7	TACCR1_SCS	Set to 0, the selected capture source is not be synchronized with the system clock.	R/W
'	TACCRT_SCS	Set to 1, the selected capture source is synchronized with the system clock.	R/VV
		Output mode selection:	
		3'b000, direct output mode.	
		3'b001, set output mode.	
		3'b010, reverse/reset output mode.	
		3'b011, set/reset output mode;	
6:4	TACCR1_OUTMODE	3'b100, reverse output mode.	R/W
		3'b101, reset output mode.	
		3'b110, reverse /set output mode.	
		3'b111, reset /set output mode.	
		Note: The function is explained in detail in the Section TimerA / B in CMT16xA User	
		Guide.	

	Name	Decription	Туре
3	TACCR1_IE	TimerA capture/compare module 1 interrupt enabling bit.	R/W
2	2 TACCR1_OUT	Can only be used in output mode 0 (TACCR1_OUTMODE=0), get through directly to	R/W
		the corresponding output signal.	
		Capture overflow flag. Reading as 1 means that the previous capture source	
1	TACCR1_COV	triggering result is not read yet, the current trigger source is captured currently, and	R/W
		software clearing is required.	
0	TACCR1_IFG	TimerA capture/compare 1 interrupt flag	R/W

• TACCR2H/TACCR2L, TimerA capture/compare module 2 register

 TACCR2H & TACCR2L
 Reset value: 0x00, 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 H
 TACCR2[15:8]

 L
 TACCR2[7:0]

	Name	Decription	Туре	
	TACCR2	TimerA capture/compare module 2 register, in compare mode, saves the data that TACNT needs	R/W	
		to compare with. In capture mode, saves the count value of Timer A upon successful capture.		ı

• TACCTL2H, Timer A capture/compare module 2 control register higher byte

 TACCTL2H
 Reset value: 0x40

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 TACCR2_CCI
 TACCR2_SCCI
 TACCR2_CM[1:0]
 TACCR2_CCIS[1:0]
 TACCR2_CAP

	Name	Decription	Туре
6	TACCR2_CCI	The value of the selected capture source, which can be read by the software.	R
5	TACCR2_SCCI	When EQUx is valid, the selected captured value is stored and can be read by the software.	R
		Capture mode selection.	
		2'b00, not captured.	
4:3	TACCR2_CM	2'b01, capture the rising edge.	R/W
		2'b10, capture the falling edge.	
		2'b11, capture double edges.	
	TACCR2_CCIS	Capture source selection.	
		2'b00, TACCI0.	
2:1		2'b01, TACCI1.	R/W
2.1		2'b10, TACCI2.	17/ / /
		2'b11, TACCI3. Among them, TACCI0 and TACCI1 are from GPIO mapping (see	
		TACCI_SEL register), TACCCI2 and TACCI3 are from register (see TACHregister).	
0	TACCR2_CAP	Set to 0, select the comparison mode.	R/W
	TAGGITZ_GAF	Set to 1, select the capture mode.	11/ 44

TACCTL2L, Timer A capture/compare module 2 control register lower byte

 TACCTL2L
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 TACCR2_SCS
 TACCR2_OUTMODE[2:0]
 TACCR2_IE
 TACCR2_OUT TACCR2_COV
 TACCR2_IFG

	Name	Decription	Туре
7	TACCR2_SCS	Set to 0, the selected capture source is not be synchronized with the system clock.	R/W
/	TACCR2_SCS	Set to 1, the selected capture source is synchronized with the system clock.	FC/VV
		Output mode selection:	
		3'b000, direct output mode.	
		3'b001, set output mode.	
		3'b010, reverse/reset output mode.	
	TACCR2_OUTMODE	3'b011, set/reset output mode;	
6:4		3'b100, reverse output mode.	R/W
		3'b101, reset output mode.	
		3'b110, reverse /set output mode.	
		3'b111, reset /set output mode.	
		Note: The function is explained in detail in the Section TimerA / B in CMT16xA User	
		Guide.	
3	TACCR2_IE	TimerA capture/compare module 2 interrupt enabling bit.	R/W
2	TACCED OUT	Can only be used in output mode 0 (TACCR1_OUTMODE=0), get through directly to	R/W
2	TACCR2_OUT	the corresponding output signal.	R/VV
		Capture overflow flag. Reading as 1 means that the previous capture source triggering	
1	TACCR2_COV	result is not read yet, the current trigger source is captured currently, and software	R/W
		clearing is required.	
0	TACCR2_IFG	TimerA capture/compare 2 interrupt flag	R/W

• TACCI_SEL, TimerA input signal Selection

TACCI_SEL Reset value: 0x00 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 TACCI1_GPIO_SEL [3:0] TACCI0_GPIO_SEL[3:0]

Name	Decription	Туре
TACCIO_GPIO_SEL[3:0]	TACCI0 input signal mapping to GPIO[15:0]	R/W
TACCI1_GPIO_SEL[3:0]	TACCI1 input signal mapping to GPIO[15:0]	R/W

Notes: TACCI0 and TACCI1 input signals are mapped as follows.

 $4\ensuremath{^{\prime}}\xspace b0000$, corresponding to GPIO0, namely A0 pin.

4'b0001, corresponding to GPIO1, namely, A1 pin.

...

4'b0111, corresponding to GPIO7, namely A7 pin.

4'b1000, corresponding to GPIO8, namely B0 pin.

4'b1001, corresponding to GPIO9, namely B1 pin.

...

4'b1111, corresponding to GPIO15, namely B7 pin.

• TBCLK_DIV, TimerB clock source frequency division register

TBCI	TBCLK_DIV_H & TBCLK_DIV_L Reset value: 0x00, 0x00							
	7	6	5	4	3	2	1	0
Н	TBCLK_DIV[15:8]							
L	TBCLK_DIV[7:0]							

Name	Decription	Туре
TROLK DIV	TimerB clock source division factor. TBCLK = FPCLK / TBCLK_DIV, FPCLK is the system	R/W
TBCLK_DIV	clock, the default is 24 MHz. The TBCLK_DIV range is 1 ~ 65535.	F/VV

TBCH, TimerB control register higher byte

 TBCH
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 Reserved
 Reserved
 TB_START
 TBCCI3
 TBCCI2

Name		Decription	Туре
2	TB_START	TimerB enabling bit. Set to 1 to enable the TimerB module. Set to 0 to disable the TimerB module;	R/W
1	TBCCI3	Software configurable capture source input 3	R/W
0	TBCCI2	Software configurable capture source input 2	R/W

• TBCL, TimerB control register lower byte

TBCL Reset value: 0x00 7 6 5 4 3 2 0 1 Reserved Reserved Reserved TB_CNT_MODE[1:0] TB_CLR TMRB_IE TMRB_IFG

	Name	Decription	Туре
		TimerB counting mode selection.	
		2'b00, stop mode, namely TimerB stoping count mode.	
4:3	TB_CNT_MODE	2'b01, count up mode, namely TimerB up counting mode.	R/W
	- / -	2'b10, continuous mode, namely TimerB continuous counting mode.	
		2'b11, up/down mode, namely TimerB up and down counting mode.	
		TimerB clearing control bit.	
2	TB_CLR	When set to 1, resets TBCNT, count direction, TBCLK_DIV_H, TBCLK_DIV_L, and	R/W
		other TimerB related registers except registerTBCH/TBCL.	
1	TMRB_IE	TimerB interrupt enabling bit. When set to 1, run TimerB count interrupt request	R/W
0	TMDD IEC	TimerB count interrupt flag, which is set to 1 when the TBCNT count returns to 0	R/W
0	TMRB_IFG	again.	rx/VV

• TBCNT_H/TBCNT_L, TimerB realtime count register

 TBCNT_H & TBCNT_L
 Reset value: 0x00, 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 H
 TBCNT[15:8]

 L
 TBCNT[7:0]

Name	Decription	Туре
TBCNT	TimerB real-time count value, read-only register, can be cleared by TB_CLR	R

• TBCCR0H/TBCCR0L, TimerB capture/compare module 0 register

TBCCR0H & TBCCR0L Reset value: 0x00, 0x00

7 6 5 4 3 2 1 0

H TBCCR0[15:8]
L TBCCR0[7:0]

Name	Decription	Туре
	TimerB capture/compare module 0 register. In compare mode, it saves the data that TBCNT	
TBCCR0	needs to compare with. In capture mode, it saves the count value of Timer B opun successful	R/W
	capture.	

• TBCCTL0H, TimerB capture/compare module 0 control register higher byte

 TBCCTL0H
 Reset value: 0x40

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 TBCCR0_CCI
 TBCCR0_CM[1:0]
 TBCCR0_CCIS[1:0]
 TBCCR0_CAP

	Name	Decription	Туре
6	TBCCR0_CCI	The value of the selected capture source, which can be read by the software.	R
5	TBCCR0_SCCI	When EQUx is valid, the selected captured value is stored and can be read by the software;	R
4:3	TBCCR0_CM	Capture mode selection. 2'b00, not captured. 2'b01, capture the rising edge. 2'b10, capture the falling edge. 2'b11, capture both edges.	R/W
2:1	TBCCR0_CCIS	Capture source selection. 2'b00, TBCCI0. 2'b01, TBCCI1. 2'b10, TBCCI2. 2'b11, TBCCI3. Among them, TBCCI0 and TBCCI1 are from GPIO mapping (see TBCCI_SEL register), TBCCCI2 and TBCCI3 are from register (see TBCH register).	R/W
0	TBCCR0_CAP	Set to 0 to select the compare mode. Set to 1, select the capture mode.	R/W

TBCCTL0L, TimerB capture/compare module 0 control register lower byte

 TBCCTL0L
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 TBCCR0_SCS
 TBCCR0_OUTMODE[2:0]
 TBCCR0_IE
 TBCCR0_OUT
 TBCCR0_COV
 TBCCR0_IFG

	Name	Decription	Туре
7	TBCCR0_SCS	Set to 0, the selected capture source is not synchronized with the system clock. Set to 1, the selected capture source is synchronized with the system clock.	R/W
6:4	TBCCR0_OUTMODE	Output mode selection: 3'b000, direct output mode. 3'b001, set output mode. 3'b010, reverse/reset output mode. 3'b011, set/reset output mode; 3'b100, reverse output mode. 3'b101, reset output mode. 3'b110, reverse /set output mode. 3'b111, reset /set output mode. Note: The function is explained in detail in the Section TimerA / B in CMT16xA User Guide.	R/W
3	TBCCR0_IE	TimerB capture/compare module 0 interrupt enabling bit	R/W
2	TBCCR0_OUT	Can only be used in output mode 0 (TBCCR0_OUTMODE=0), get through directly to the corresponding output signal	R/W
1	TBCCR0_COV	Capture overflow flag. Reading as 1 means that the previous capture source triggering result is not read yet, the current trigger source is captured currently, and software clearing is required.	R/W
0	TBCCR0_IFG	TimerB capture/compare 0 interrupt flag.	R/W

TBCCR1H/TBCCR1L, TimerB capture/compare module 1 register

Name	Decription	Туре
	TimerB capture/compare module 1 register. In compare mode, it saves the data that	
TBCCR1	TACNT needs to compare with. In capture mode, it saves the count value of Timer B	R/W
	upon successful capture.	

• TBCCTL1H, TimerB capture/compare module 0 control register higher byte

 TBCCTL1H
 Reset value: 0x40

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 TBCCR1_CCI
 TBCCR1_CM[1:0]
 TBCCR1_CCIS[1:0]
 TBCCR1_CAP

	Name	Decription	Туре
6	TBCCR1_CCI	The value of the selected capture source, which can be read by the software.	R
5	TBCCR1_SCCI	When EQUx is valid, the selected captured value is stored and can be read by software.	R
4:3	TBCCR1_CM	Capture mode selection. 2'b00, not captured. 2'b01, capture the rising edge. 2'b10, capture the falling edge. 2'b11, capture both edges.	R/W
2:1	TBCCR1_CCIS	Capture source selection. 2'b00, TACCI0. 2'b01, TACCI1. 2'b10, TACCI2. 2'b11, TACCI3. Among them, TACCI0 and TACCI1 are from GPIO mapping (see TACCI_SELregister), TACCI2 and TACCI3 are from register (see TACHregister);	R/W
0	TBCCR1_CAP	Set to 0 to select the comparison mode. Set to 1, select the capture mode.	R/W

• TBCCTL1L, TimerB capture/compare module 1 control register lower byte

 TBCCTL1L
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 TBCCR1_SCS
 TBCCR1_OUTMODE[2:0]
 TBCCR1_IE
 TBCCR1_OUT
 TBCCR1_COV
 TBCCR1_IFG

	Name	Decription	Туре					
7	TDCCD4 CCC	Set to 0, the selected capture source is not synchronized with the system clock.	DAA					
7	TBCCR1_SCS	Set to 1, the selected capture source is synchronized with the system clock.						
		Output mode selection:						
		3'b000, direct output mode.	R/W R/W User Guide. R/W Rectly to the					
		3'b001, set output mode.						
		3'b010, reverse/reset output mode.						
0.4	TBCCR1_OUT MODE	3'b011, set/reset output mode;	DAA					
6:4		3'b100, reverse output mode.	R/VV					
		3'b101, reset output mode.						
		3'b110, reverse /set output mode.						
		3'b111, reset /set output mode.						
		Note: The function is explained in detail in the Section TimerA / B in CMT16xA User Guide.						
3	TBCCR1_IE	TimerB capture/compare module 1 interrupt enabling bit	R/W					
2	TBCCR1_OUT	Can only be used in output mode 0 (TACCR1_OUTMODE=0), get through directly to the	R/W					
	15001(1_001	corresponding output signal	17/ 7 7					
1	TROOP1 COV	Capture overflow flag. Reading as 1 means that the previous capture source triggering	DAM.					
'	TBCCR1_COV	result is not read yet, the current trigger source is captured currently, and software clearing	R/W					

Name			Decription					
			is required.					
	0	TBCCR1_IFG	TimerB capture/compare 1 interrupt flag.	R				

• TBCCR2H/TBCCR2L, TimerB capture/compare module 2 register

TBC	TBCCR2H & TBCCR2L Reset v							
	7	6	5	4	3	2	1	0
Н	TBCCR2[15:8]							
L	TBCCR2[7:0]							

Name	Decription							
TBCCR2	TimerB capture/compare module 2 register. In compare mode, saves the data that TACNT needs to							
	compare with. In capture mode, saves the count value of Timer B upon successful capture.	R/W						

• TBCCTL2H, TimerB capture/compare module 2 control register higher byte

 TBCCTL2H
 Reset value: 0x40

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 TBCCR2_CCI
 TBCCR2_CM[1:0]
 TBCCR2_CCIS[1:0]
 TBCCR2_CAP

Name		Decription					
6	TBCCR2_CCI	The selected capture source value. Can be read by the software.	R				
5	TBCCR2_SCCI	hen EQUx is valid, it saves the selected capture value. Can be read by the software.					
4:3	TBCCR2_CM	Capture mode selection. 2'b00, not capture 2'b01, capture on the rising edge. 2'b10, capture on the falling edge. 2'b11, capture on both edges.	R/W				
2:1	TBCCR2_CCIS	Capture source selection. 2'b00, TBCCI0. 2'b01, TBCCI1. 2'b10, TBCCI2. 2'b11, TBCCI3. Among them, TBCCI0 and TBCCI1 come from GPIO mapping (see TACCI_SELregister for details). TBCCCI2 and TBCCI3 come from register (See TBCHregister for details.	R/W				
0	TBCCR2_CAP	Set to 0 to select the comparison mode. Set to 1, select the capture mode.	R/W				

• TBCCTL2L, Timer B capture/compare module2 control register lower byte

 TBCCTL2L
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 TBCCR2_SCS
 TBCCR2_OUTMODE[2:0]
 TBCCR2_IE
 TBCCR2_OUT
 TBCCR2_COV
 TBCCR2_IFG

	Name	Decription	Туре
7	TBCCR2 SCS	Set to 0, the selected capture source is not be synchronized with the system clock.	R/W
		Set to 1,the selected capture source is synchronized with the system clock	-
		Output mode selection:	
		3'b000, direct output mode.	
		3'b001, set output mode.	R/W
6:4		3'b010, reverse/reset output mode.	
	TBCCR2_OUT	3'b011, set/reset output mode;	DAM
0.4	MODE	3'b100, reverse output mode.	IN/VV
		3'b101, reset output mode.	
		3'b110, reverse /set output mode.	
		3'b111, reset /set output mode.	
		Note: The function is explained in detail in the Section TimerA / B in CMT16xA User Guide.	
3	TBCCR2_IE	TimerB capture/compare module 2 interrupt enabling bit	R/W
2	TBCCR2_OUT	Can only be used in output mode 0 (TBCCR2_OUTMODE=0) ,pass directly to the	R/W
		corresponding output signal	
		Capture overflow flag. Reading as 1 means that the previous capture source triggering	
1	TBCCR2_COV	result is not read yet, the current trigger source is captured currently, and software clearing	R/W
		is required.	
0	TBCCR2_IFG	TimerB capture/compare 2 interrupt flag	R/W

• TBCCI_SEL, TimerB input signal selection

 TBCCI_SEL
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 TBCCI1_GPIO_SEL [3:0]
 TBCCI0_GPIO_SEL[3:0]

Name	Decription	Туре
TBCCI0_GPIO_SEL[3:0]	TBCCI0 input signal mapping to GPIO[15:0]	R/W
TBCCI1_GPIO_SEL[3:0]	TBCCI1 input signal mapping to GPIO[15:0]	R/W

Notes:

Timer1 external input signal selection. Can map to GPIO[15:0].

4'b0000, corresponding to GPIO0, namely A0 pin.

4'b0001, corresponding to GPIO1, namely A1 pin.

.

4'b01114'b0001, corresponding to GPIO7, namely A7 pin.

4'b1000, corresponding to GPIO8, namely A8 pin.

4'b1001, , corresponding to GPIO9, namely A9 pin.

.

4'b1111, , corresponding to GPIO15, namely B7 pin.

3.10 3D Low-frequency Wakeup Register Set

Table 11. 3D Low-frequency Wakeup Register Set

	I		•		
Name	Storage Area	Sub-area	Address	Reset	Function
CUS_LFRX3	Block0		0x12	0x2A	Low-frequency wakeup configuration register3
CUS_LFRX4	Block0		0x13	0x55	Low-frequency wakeup configuration register4
CUS_LFRX5	Block0		0x14	0x8F	Low-frequency wakeup configuration register5
CUS_LFRX6	Block0		0x15	0xFE	Low-frequency wakeup configuration register6
CUS_LFRX7	Block0		0x16	0x61	Low-frequency wakeup configuration register7
CUS_LFRX8	Block0		0x17	0xB3	Low-frequency wakeup configuration register8
CUS_LFRX9	Block0		0x18	0xE4	Low-frequency wakeup configuration register9
CUS_LFRX10	Block0		0x19	0xEF	Low-frequency wakeup configuration register10
CUS_LFRX11	Block0		0x1A	0x15	Low-frequency wakeup configuration register11
CUS_LFRX12	Block0		0x1B	0x13	Low-frequency wakeup configuration register12
CAL LFRX TCAP2	Block0		0x34	0x10	Low-frequency wakeup Internal matching capacitor register2 (Z-axis antenna)
CAL LFRX TCAP1	Block0		0x35	0x10	Low-frequency wakeup Internal matching capacitor
CAL_LFRX_TCAP0	Block0		0x36	0x10	register1 (Y-axis antenna) Low-frequency wakeup Internal matching capacitor
	Biooko		0,00	OXIO	register0 (X-axis antenna)
CAL_LFRX_OSC_CODE	Block0		0x37	0x00	NA
CUS_SYSCTL3	Block0		0x50	0x00	System control register3
CUS_SYSCTL4	Block0		0x51	0x01	System control register4
CUS_SYSCTL5	Block0		0x52	0x00	System control register5, low-frequency receiving duty-cycle receiving T1 setting
CUS_SYSCTL6	Block0		0x53	0x00	System control register6, low- frequency receiving duty-cycle receiving T2 setting
CUS_SYSCTL7	Block0		0x54	0x00	System control register7, low-frequency receiving duty-cycle sleepint time setting 1
CUS_SYSCTL8	Block0		0x55	0x10	Low- frequency receiving duty-cycle sleepint time setting 2
CUS_SYSCTL9	Block0		0x56	0x29	System control register9
CUS SYSCTL10	Block0		0x57	0x00	System control register10, Low- frequency receiving manual control state register
CUS_LFRX15	Block0		0x58	0x72	Low-frequency wakeup configuration register15
CUS_LFRX16	Block0		0x59	0xAD	Low-frequency wakeup configuration register16
CUS LFRX17	Block0		0x5A	0x59	Low-frequency wakeup configuration register17, SyncValue[7:0]
CUS_LFRX18	Block0		0x5B	0x5A	Low-frequency wakeup configuration register18, SyncValue[15:8]
CUS LFRX19	Block0		0x5C	0xA5	Low-frequency wakeup configuration register19, SyncValue[23:16]
CUS LFRX20	Block0		0x5D	0x00	Low-frequency wakeup configuration register20, SyncValue[31:24]
CUS LFRX21	Block0		0x5E	0x23	Low-frequency wakeup configuration register21, WakeupID[7:0]
CUS_LFRX22	Block0		0x5F	0x00	Low-frequency wakeup configuration register22, WakeupID[15:8]
CUS_LFRX23	Block0		0x60	0x00	Low-frequency wakeup configuration register23, WakeupID[23:16]

Name	Storage Area	Sub-area	Address	Reset	Function
CUS_LFRX24	Block0		0x61	0x00	Low-frequency wakeup configuration register24, WakeupID[31:24]
CUS_LFRX25	Block0		0x62	0x1C	Low-frequency wakeup configuration register25
CUS_LFRX26	Block0		0x63	0x50	Low-frequency wakeup configuration register26
CUS_LFRX27	Block0		0x64	0x31	Low-frequency wakeup configuration register27, low-frequency rate section
CUS_LFRX28	Block0		0x65	0x7C	Low-frequency wakeup configuration register28
CUS_LFRX29	Block0		0x66	0x65	Low-frequency wakeup configuration register29
CUS_LFRX30	Block0		0x67	0x1E	Low-frequency wakeup configuration register30
CUS_SYSCTL11	Block0		0x68	0x80	System control register11
CUS_SYSCTL12	Block0		0x69	0x00	System control register12
CUS_SYSCTL18	Block0		0x6F	0x00	System control register18
CUS_LFRX31	Block0		0x72	0x00	Low-frequency wakeup configuration register31
CUS_LFRX32	Block0		0x73	0x00	Low-frequency wakeup configuration register32
CUS_LFRX33	Block0		0x74	0x00	Low-frequency wakeup configuration register33
CLK SYS DIV	Block1	Bank0	0x8F	0x00	System clock division register
LFRX IF TH H	Block1	Bank1	0xC1	0x00	Calibration frequency output capturing channel selection
LFRX_IF_TH_L	Block1	Bank1	0xC3	0x7D	Target frequency of Calibration

CUS_LFRX3 register

 CUS_LFRX3
 Reset value: 0x3F

 7
 6
 5
 4
 3
 2
 1
 0

 PD_P25
 PD_P50
 LFRX_AGC_IN[1:0]
 LFRX_AGC_VHREF[3:0]

	Name	Decription	Туре					
5:4	LFRX_AGC_IN	AGC input source select, generated by CMT216xA RFPDK	R/W					
3:0	LFRX_AGC_VHREF	AGC reference upper threshold, generated by CMT216xA RFPDK	R/W					

CUS_LFRX4 register

CUS_LFRX4 Reset value: 0x68

7	6	5	4	3	2	1	0
Reserved	PD_PULLUP2	LFRX_AG	C_CNT[1:0]		LFRX_	AGC_VLREF[3:	0]

	Name	Decription	Туре
5:4	LFRX_AGC_CNT	AGC detection count related to threshold, automatically generated by CMT216xA RFPDK.	R/W
3:0	LFRX_AGC_VLREF	AGC reference upper threshold, automatically generated by CMT216xA RFPDK	R/W

• CUS_LFRX5 register

 CUS_LFRX5
 Reset value: 0x8F

 7
 6
 5
 4
 3
 2
 1
 0

 LFRX_CADET_WIN[1:0]
 LFRX_CADET_OK_CNT[1:0]
 LFRX_PEAKDET_CLK[1:0]
 LFRX_DATA_CLK[1:0]

	Name	Decription	Туре
7:6	LFRX_CADET_WIN	Related to carrier frequency detection time window, automatically generated by CMT216xA RFPDK	R/W
5:4	LFRX_CADET_OK_CNT	Related to carrier frequency detection time window, automatically generated by CMT216xA RFPDK.	R/W
3:2	LFRX_PEAKDET_CLK	Related to carrier frequency detection time window, automatically generated by CMT216xA RFPDK.	R/W
1:0	LFRX_DATA_CLK	Demodulation data filter related configuration, automatically generated by CMT216xA RFPDK.	R/W

• CUS_LFRX6 register

CUS_LFRX6 Reset value: 0xFE 7 6 5 4 3 2 1 0

Name		Decription	Туре
7:6	LFRX_DATA_R0	Demodulation data filter related configuration, automatically generated by CMT216xA RFPDK.	R/W
5:4	LFRX_DATA_R1	Demodulation data filter related configuration, automatically generated by CMT216xA RFPDK.	R/W
3:2	LFRX_PEAKDET_C	Peak detection related configuration, automatically generated by CMT216xA RFPDK.	R/W

CUS_LFRX7 register

CUS_LFRX7 Reset value: 0x61

7 6 5 4 3 2 1 0 LFRX_DATA_C1[3:0] LFRX_DATA_C0[3:0]

	Name	Decription	Туре
7:4	LFRX_DATA_C1	Demodulation data filter related configuration, automatically generated by CMT216xA RFPDK.	R/W
3:0	LFRX_DATA_C0	Demodulation data filter related configuration, automatically generated by CMT216xA RFPDK.	R/W

CUS_LFRX8 register

CUS_LFRX8 Reset value: 0xB3

7 6 5 4 3 2 1 0 LFRX_DATA_C3[3:0] LFRX_DATA_C2[3:0]

	Name	Decription	Туре
7:4	LFRX DATA C3	Demodulation data filter related configuration, automatically generated by	R/W
7.4	LI KX_DATA_C3	CMT216xA RFPDK.	17/00

	Name	Decription	Туре
3:0	LFRX_DATA_C2	Demodulation data filter related configuration, automatically generated by CMT216xA RFPDK.	R/W

• CUS_LFRX9 register

 CUS_LFRX9
 Reset value: 0xE4

 7
 6
 5
 4
 3
 2
 1
 0

 LFRX_CMP_NOISE_MASK
 LFRX_CMP_SW
 LFRX_RSSIAMP_IBIAS[2:0]
 LFRX_PGA_IBIAS[2:0]

	Name	Decription	Туре
7	LFRX_AGC_CNT	Related to carrier frequency detection threshold configuration, automatically generated by CMT216xA RFPDK.	R/W
6	LFRX_AGC_VLREF	Related to carrier frequency detection threshold configuration, automatically generated by CMT216xA RFPDK.	R/W
5:3	LFRX_RSSIAMP_IBIAS	Related to signal link power configuration configuration, automatically generated by CMT216xA RFPDK.	R/W
2:0	LFRX_PGA_IBIAS	Signal link power configuration related configuration, automatically generated by CMT216xA RFPDK.	R/W

• CUS_LFRX10 register

	Name	Decription	Туре
7:4	LFRX_CMP_REF	Related to carrier frequency detection threshold, automatically generated by CMT216xA REPDK	R/W

7:4	LFRX_CMP_REF	Related to carrier frequency detection threshold, automatically generated by CMT216xA RFPDK.	R/W
3	LFRX_DEMOD_TH_HOLD	NA, fixed to 1.	R/W
2:0	LFRX_RSSIREC_IBIAS	Related to signal link power configuration, automatically generated by CMT216xA RFPDK.	R/W

CUS_LFRX11 register

CUS_LFRX11 Reset value: 0x15

7 6 5 4 3 2 1 0

LFRX_SNRDET_INVALID_WIN[1:0] LFRX_SNRDET_VALID_WIN[1:0] LFRX_SNRDET_SNR[3:0]

	Name	Decription	Туре
7.0	LEDY CAIDDET INVALID WIN	SNR detection, invalid-window setting, automatically generated	DAM
7:6	LFRX_SNRDET_INVALID_WIN	by CMT216xA RFPDK.	R/W
- A	LEDY CNIDDET VALID WIN	SNR detection, effective-window setting, automatically generated	DAM
5:4	LFRX_SNRDET_VALID_WIN	by CMT216xA RFPDK.	R/W
0.0	LEDY ONDEET OND	SNR detection, signal-to-noise ratio setting, automatically	DAM
3:0	LFRX_SNRDET_SNR	generated by CMT216xA RFPDK.	R/W

• CUS_LFRX12 register

 CUS_LFRX12
 Reset value: 0x03

 7
 6
 5
 4
 3
 2
 1
 0

 LFRX_MEAS_SOURCE
 LFRX_OSC_VREF[1:0]
 LFRX_CH_Z
 LFRX_CH_Y
 LFRX_CH_X
 LFRX_STARTUP_MANUAL[1:0]

	Name	Decription	Туре
7	LFRX_MEAS_SOURCE	Related to RSSI measurement, automatically generated by CMT216xA RFPDK	R/W
6:5	LFRX_OSC_VREF	Internal parameter, automatically generated by CMT216xA RFPDK	R/W
4	LFRX_CH_Z	In normal mode, channel Z enabling control. Set to 1 to enable.	R/W
3	LFRX_CH_Y	In normal mode, channel Y enabling control. Set to 1 to enable.	R/W
2	LFRX_CH_X	In normal mode, channel X enabling control. Set to 1 to enable.	R/W
1:0	LFRX_STARTUP_MANUAL	Internal parameter, users can ignore it. The default value is 3.	R/W

• CUS_LFRX_TCAP2 register

CUS_LFRX_TCAP2 Reset value: 0x10

7 6 5 4 3 2 1 0

Reserved Reserved Reserved LFRX_TCAP_Z[4:0]

Name		Decription	Туре
4:0	LFRX_TCAP_Z	Low-frequency wakeup tuning load capacitance in Z-axls antenna, ranging from 0 to 31 with 1.2 pF/Step.	R/W

• CUS_LFRX_TCAP1 register

CUS_LFRX_TCAP1 Reset value: 0x10

7 6 5 4 3 2 1 0

Reserved Reserved Reserved LFRX_TCAP_Y[4:0]

	Name	Decription	Туре
4:0	LFRX_TCAP_Y	Low-frequency wakeup tuning load capacitance in Y-axls antenna, ranging from 0 to 31 with 1.2 pF/Step.	R/W

CUS_LFRX_TCAP0 register

CUS_LFRX_TCAP0 Reset value: 0x10

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 Reserved
 LFRX_TCAP_X[4:0]

Name		Name	Decription	Туре
	4:0	LEDY TOAD V	Low-frequency wakeup tuning load capacitance in X-axls antenna, ranging from	R/W
	4:0	LFRX_TCAP_X	0 to 31 with 1.2 pF/Step.	K/VV

• CUS_LFRX_OSC_CODE register

 CUS_LFRX_TCAP0
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 LFRX_OSC_IBIAS[6:0]

Name		Name	Decription	Туре
	6:0	LEDY OSC IDIAS	Internal parameter. The configuration value is generated by CMT216xA	R/W
	6:0	LFRX_OSC_IBIAS	RFPDK.	R/VV

• CUS_SYSCTL3 register

CUS_SYSCTL3 Reset value: 0x00 7 6 5 2 SLPT_WAKEUP_M SLEEP_TIMER LED_I AFE_IR_ SNOOZE_ SNOOZE_DEBU LFRX_DEBUG LFRX_ NV ΕN ΕN G_EN ΕN ODE _EN

	Name	Decription	Туре
3	LFRX_DEBUG _EN	Low-frequency wakeup module simulating mode enabling. Set to 0 to disable the low frequency module simulating mode. Set to 1 to enable the low frequency mode simulating mode (used when performing online debugging).	R/W
2	Low frequency wake-up module enabling control. 2 LFRX_EN Set to 0 to disable the low-frequency wakeup module. Set to 1 to enable the low-frequency wakeup module.		R/W

• CUS_SYSCTL4 register

 CUS_SYSCTL4
 Reset value: 0x01

 7
 6
 5
 4
 3
 2
 1
 0

 LFRX_MODE
 LFRX_SIGNAL_OK
 LFRX_TIMER_EXTEND_M
 DUTY_CYCLE_M
 LFRX_DUTY_CYC
 ALWAYS_L

 [1:0]
 _TYPE
 ODE[1:0]
 ETHOD
 LE_EN
 FRX

	Name	Decription	Туре
7:6	LFRX_MODE	Low-frequency wakeup mode selection. 2'b00, LFRX_WAKEUP is only used to wake up the core. 2'b01, LFRX_WAKEUP is only used to wake up the external MCU, and the internal MCU can be uses asother functions. 2'b10, LFRX_WAKEUP is only used to wake up the external MCU, the internal MCU is not used. 2'b11, invalid configuration, unavailable.	R/W
5	LFRX_SIGNAL_OK_TYPE	Low-frequency signal detection method. Set to 0, use carrier (carrier duration) detection mode. Set to 1, use signal to noise ratio (SNR) detection mode.	R/W
4:3	LFRX_TIMER_EXTEND_MODE	In low-frequency duty cycle delay mode, the condition selection for T1 time being extended to T2 (pre-condition is DUTY_CYCLE_METHOD=0). 2'b00, signal detection being satisfied (lfrx_signal_ok). 2'b01, sync word matching (sync_pass). 2'b10, wakeup ID matching (wkid_pass.; 2'b11, signal strength being satisfied (dbmdet_ok).	R/W
2	DUTY_CYCLE_METHOD	Low-frequency receiving duty cycle mode selection (pre-condition is LFRX_DUTY_CYCLE_EN=1) Set to 0, adopt automatic delay mode (need to set T1 and T2 for low-frequency receiving). Set to 1, adopt fixed duty cycle mode (only need to set T1 for low-frequency receiving)	R/W
1	LFRX_DUTY_CYCLE_EN	Set to 0, disable the duty cycle mode of low frequency receiving. Set to 1, enable the duty cycle mode of low frequency receiving.	R/W
0	ALWAYS_LFRX	Set to 0, adopt non-long-receiving mode for low-frequency receiving. Set to 1, adopt long-receiving mode for low-frequency receiving.	R/W

• CUS_SYSCTL5 register

CUS_SYSCTL5 Reset value: 0x00

 7	 6	5	4	3	2	1	0
		IMER_M_RX_T	1[4:0]		LFR	X HIMER R R	X_T1[2:0]

	Name	Decription	Туре
7:3	LFRX TIMER M RX T1	In low-frequency receiving duty cycle mode, receive the M value of the	R/W
		T1 window with a configuration range of 0-31.	•
2:0	LFRX_TIMER_R_RX_T1	In low-frequency receiving duty cycle mode, receive the R value of the	R/W
2.0	LINA_IIIVIEN_R_NA_II	T1 window with a configuration range of 0-7.	IN/VV

Notes:

1. The T1 window of low-frequency receiving duty cycle mode meets the below calculation formular.

$$LFRX_{T1} = M \times 2^{(R+1)} \times 500 \ us$$

In above, M is the value of LFRX_TIMER_M_RX_T1, R is the value of LFRX_TIMER_R_RX_T1. 500 us corresponds to the internal 32 kHz clock. When external 32.768 kHz crystal oscillator is used, the time unit is 488 us.

CUS_SYSCTL6 register

	Name	Decription	Туре
7:3	LFRX_TIMER_M_RX_T2	In low-frequency receiving duty cycle mode, receive the M value of the T2 window with a configuration range of 0-31.	R/W
2:0	LFRX_TIMER_R_RX_T2	In low-frequency receiving duty cycle mode, receive the R value of the T2 window with a configuration range of 0-7.	R/W

Notes:

1. The T2 window of low-frequency receiving duty cycle mode meets the below calculation formular.

$$LFRX_{T2} = M \times 2^{(R+1)} \times 500 \ uS$$

In above, M is the value of LFRX_TIMER_M_RX_T2, R is the value of LFRX_TIMER_R_RX_T2. 500 us corresponds to the internal 32 kHz clock. When external 32.768 kHz crystal oscillator is used, the time unit is 488 us.

• CUS_SYSCTL7 register

	Name	Decription	Туре		
7:0	LFRX TIMER M SLEEP	In low-frequency receiving duty cycle mode, the M value of the sleep	DΛΛ		
7:0	LI IXA_TIMEK_IM_SEEEF	window with a configuration range of 0-255.			

Notes:

1. The sleep window of low-frequency receiving duty cycle mode meet the below calculation formular.

$$LFRX_{SLEEP} = M \times 2^{(R+1)} \times 500 \, uS$$

In above, M is the value of LFRX_TIMER_M_SLEEP, R is the value of LFRX_TIMER_R_SLEEP. 500 us corresponds to the internal 32 kHz clock. When external 32.768 kHz crystal oscillator is used, the time unit is 488 us.

• CUS_ SYSCTL8 register

 CUS_SYSCTL8
 Reservation of the section of the s

	Name	Decription	Туре	
		After LFRX_WAKEUP is valid, namely, wakeup is valid, the signal_ok		
		auto-clear function is automatically disabled.	<u> </u> 	
		Set to 0, once the set time window of Signal_Ok Auto Clear Time is		
	n	met, automatic clearing will be performed immediately, and it will return		
		from Decode state to Listen state;	2.111	
5	LFRX_WAKEUP_AUTOCLR_DIS	Set to 1, that is, namely the MCU is wakened, the function of	R/W	
		automatically clearing signal_ok is immediately disabled, and let the		
	MCU set the clearing signal LFRX_MANU_CLR to 1 at an appropriate time. If the MCU is not woken up yet, the automatic clearing function is	MCU set the clearing signal LFRX_MANU_CLR to 1 at an appropriate		
		always effective.		
		Mode selection for low-frequency wakeup.		
		2'b00, signal detection being satisfied (lfrx_signal_ok).		
4:3	LFRX_WAKEUP_MODE	2'b01, sync word matching (sync_pass).	R/W	
		2'b10, wakeup ID matching (wkid_pass).		
		2'b11, invalid configuration.		
2:0	LEDY TIMED D SLEED	The R value of low-frequency receiving duty cycle mode with a	R/W	
2:0	LFRX_TIMER_R_SLEEP	configuration range of 0-7.	r./VV	

Notes:

The sleep window of low-frequency receiving duty cycle mode meet the below calculation formular.

$$LFRX_{SLEEP} = M \times 2^{(R+1)} \times 500 \ us$$

M is the value of LFRX_TIMER_M_SLEEP, R is the value of LFRX_TIMER_R_SLEEP. 500 us corresponds to the internal 32 kHz clock. When external 32.768 kHz crystal oscillator is used, the time unit is 488 us.

CUS_ SYSCTL9 register

CUS_SYSCTL9 Reset value: 0x29

7	6	5	4	3	2	1	0
LFRX_RSSI_MEAS_DIS	LFRX_DBUF_DIS	LFRX_	SNRDET_W	IN[2:0]	LI	FRX_MEAS_\	WIN[2:0]

	Name	Decription	Туре
7	LFRX_RSSI_MEAS_DIS	RSSI measurement related settings. The configurations are generated by RFPDK.	R/W
6	LFRX_DBUF_DIS	Set to 0, enable data stream output delay fucntion after low-frequency wakeup [1] (default); Set to 1, disable data stream output delay fucntion after low-frequency wakeup.	R/W
5:3	LFRX_SNRDET_WIN	SNR detection related settings. The configurations are generated by RFPDK.	R/W
2:0	LFRX_MEAS_WIN	RSSI measurement related settings. The configurations are generated by RFPDK.	R/W

Notes: The data stream output delay fucntion after wakeup is required to match the OTP code loading time when waking up, to

make sure the code has been loaded and running upon data stream output (the software can receive from the first data bit correctly). When this feature is enabled, users can set the buffer depth of the delay, namely the delay time (time converted according to the low-frequency data rate).

CUS_ SYSCTL10 register

 CUS_SYSCTL10
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 Reserved
 Reserved
 GO_LFRX_DECODE
 GO_LFRX_LISTEN
 GO_LFSLEEP

	Name	Decription	Туре
2	CO LEBY DECODE	In decode-only mode (namely LFRX_ENABLE_MODE = 1), setting this bit to 1	R/W
	GO_LFRX_DECODE	indicates a jump to (LFRX) DECODE mode.	R/VV
1	GO_LFRX_LISTEN	Setting this bit to 1 indicates a jump to the (LFRX) LISTEN state.	R/W
0	GO_LFSLEEP	Setting this bit to 1 indicates a jump to the (LFRX) SLEEP state.	R/W

Note: This register provides a manual control of the low-frequency state mode (ie user software control). This manual mode is not recommended for normal use of low frequency module. If users need to manually control the low-frequency module per specific requirements, please contact CMOSTEK engineers.

• CUS_LFRX15 register

 CUS_LFRX15
 Reset value: 0x72

 7
 6
 5
 4
 3
 2
 1
 0

 LFRX_DBUF_LEGNTH[2:0]
 LFRX_WKID_EN
 LFRX_WKID_LENGTH[1:0]
 LFRX_SYNC_LENGTH[1:0]

Name		Decription	Туре
7:5	LFRX_DBUF_LENGTH	The depth of output delay after wakeup (precondition is LFRX_DBUF_DIS=0) with a range of 0-7. The unit is byte, namely, the conversion of the delay time according to the set data rate.	R/W
4	LFRX_WKID_EN	Set to 0, disable ID matching function. Set to 1, enable ID matching function.	R/W
3:2	LFRX_WKID_LENGTH	The length selection of matching ID: 2'b00, 1-Byte 2'b01, 2-Byte 2'b10, 3-Byte 2'b11, 4-Byte	R/W
1:0	LFRX_SYNC_LENGTH	The length selection of sync word. 2'b00, 1-Byte is valid. LF_SYNC_VALUE[7:0]. 2'b01, 2-Byte is valid. LF_SYNC_VALUE[15:0]. 2'b10, 3-Byte is valid. LF_SYNC_VALUE[23:0]. 2'b11, 4-Byte is valid . LF_SYNC_VALUE[31:0].	R/W

• CUS_LFRX16 register

CUS_LFRX16 Reset value: 0xAD 7 6 3 0 LFRX_DIG_DAT LFRX_ANT_M LFRX_HOLD_ LFRX_SNRDET_ LFRX_MAN LFRX_WKID_ LFRX_DATA_ ODE[1:0] RST_SEL REFIN_SEL TYPE MAN_EN AOUT_SEL MAN_EN

Name		Decription	Туре
7:6	LFRX_ANT_MODE	The mode selection of low-frequency wake-up antenna: 2'b00 and 2'b01, non-scanning antenna modes (X, Y, and Z-axis antennas can be individually enabled and controlled). 2'b10, X and Y-axis scanning antenna pattern. 2'b11, X, Y and Z-axis scanning antenna patterns.	R/W
5	LFRX_HOLD_RST_SEL	The configuration is generated by RFPDK. Not suggest users change them.	R/W
4	LFRX_SNRDET_REFIN_SEL	The SNR detection related settings. The configuration is generated by RFPDK. Not suggest users change them.	R/W
3 LFRX_MAI	LFRX_MAN_TYPE	The polarity selection when the low-frequency data Manchester code is valid (LFRX_DATA_MAN_EN=1). Set to 0, 01 represents logic 1, and 10 represents logic 0. Set to 1, 10 represents logic 1, and 01 represents logic 0.	R/W
2	LFRX_WKID_MAN_EN	Set to 0, the low-frequency wakeup ID is not encoded (namely adopt NRZ code by default). Set to 1, the low-frequency wakeup ID is Manchester coded.	R/W
1	LFRX_DIG_DATAOUT_SEL	Low-frequency demodulation data stream output stage selection. Set to 0, the low frequency demodulated data stream is output after waking up. Set to 1, the low frequency demodulated data code stream is output upon invalid signal detection(carrier detection) Note: this setting is valid when LFRX_DATAOUT_SEL=0.	R/W
0	LFRX_DATA_MAN_EN	Set to 0, the low-frequency payload data is not encoded (namely adopt NRZ encoding by default). Set to 1, the low frequency load data is Manchester coded.	R/W

CUS_LFRX17 - CUS_LFRX20 register set

CUS_LFRX17 - 20 Reset value: 0x59, 0x5A, 0xA5, 0x00 7 6 5 4 3 2 1 0

17	LFRX_SYNC_VALUE[7:0]
18	LFRX_SYNC_VALUE[15:8]
19	LFRX_SYNC_VALUE[23:16]
20	LFRX_SYNC_VALUE[31:24]

Name	Decription	Туре
LFRX_SYNC_VALUE	Low frequency data sync word configuration value, can configure as 8/16/24/32 Symbols. Note: only the NRZ encoding format is used.	R/W

CUS_LFRX21 - CUS_LFRX24 register set

CUS_LFRX21 - 24					Reset value:	0x23, 0x00, 0x00, 0x00		
	7	6	5	4	3	2	1	0
21				LFRX_W	KID_VALUE[7:0	0]		
22	LFRX_ WKID _VALUE[15:8]							
23	LFRX_ WKID _VALUE[23:16]							
24	LFRX_ WKID _VALUE[31:24]							

Name	Decription	Туре
LFRX_WKID_VALUE	The low-frequency data wakeup ID configuration value, can configure as 8/16/24/32 bits. Note: Manchester encoding can be used with LFRX_WKID_MAN_EN configuration. NRZ is used by default. If Manchester encoding is used, the above value is the value after Manchester encoding.	R/W

• CUS_LFRX25 register

CUS_LFRX25 Reset value: 0x1C 7 1 6 5 0 LFRX_SIGNAL_OK_AUTO LFRX_AGC LFRX_DATAOUT LFRX_DECODE LFRX_AGC_S LFRX_AGC_CNT_T CLR_DIS TEP _SEL _SEQ EN H[2:0]

	Name	Decription	Туре
7	LFRX_DATAOUT_SEL	Low-frequency demodulation data output mode selection. Set to 0, the output as data rate clock synchronization mode (default). Set to 1, output as RAW DATA mode.	R/W
6	LFRX_DECODE_SEQ	The matching sequence of wakeup IDs. Set to 0, higher bit data first in (data shift to the left) (default). Set to 1, lower bit data first in (data shift to the right).	R/W
5	LFRX_SIGNAL_OK_AUTOC LR_DIS	Set to 0, enable automatic LFRX_SIGNAL_OK clearing. Set to 1, disable automatic LFRX_SIGNAL_OK clearing.	R/W
4	LFRX_AGC_EN	Set to 0, disable low-frequency demodulation AGC. Set to 1, enable low-frequency demodulation AGC.	R/W
3	LFRX_AGC_STEP	AGC adjustment step selection (when LFRX_AGC_EN=1). Set to 0, the adjustment step is 3 dB / Step. Set to 1, the adjustment step is 6 dBm / Step.	R/W
2:0	LFRX_AGC_CNT_TH	AGC restoring time. The configuration is generated by RFPDK.	R/W

• CUS_LFRX26 register

 CUS_LFRX26
 Reset value: 0x50

 7
 6
 5
 4
 3
 2
 1
 0

 LFRX_DQRES[3:0]
 LFRX_AGC_MIN_INDEX[3:0]

Name		Decription	Туре
7:4	LFRX_DQRES	Antenna's Q-factor reducing resistor configuration. The configuration is generated by RFPDK.	R/W
3:0	LFRX_AGC_MIN_INDEX	The minimum AGC gain configuration. The configuration is generated by RFPDK.	R/W

• CUS_LFRX27 register

 CUS_LFRX27
 Reset value: 0x31

 7
 6
 5
 4
 3
 2
 1
 0

 LFRX_DR_SEL[3:0]
 Reserved
 LFRX_ENABLE_MODE
 Reserved
 LFRX_AGC_START_SEL

	Name	Decription	Туре
7:4	Name LFRX_DR_SEL	Decription Low-frequency rate selection. - 4'b1111: 1.00 kbps. - 4'b1110: 1.07 kbps. - 4'b1101: 1.14 kbps. - 4'b1100: 1.23 kbps. - 4'b1011: 1.33 kbps. - 4'b1010: 1.45 kbps. - 4'b1001: 1.60 kbps. - 4'b1000: 1.78 kbps. - 4'b0110: 2.29 kbps. - 4'b0110: 2.67 kbps. - 4'b0100: 3.20 kbps.	Type R/W
		 4'b0011: 4.00 kbps (default). 4'b0010: 5.33 kbps. 4'b0001: 8.00 kbps. 4'b0000: cannot be used. 	
2	LFRX_ENABLE_MODE	Low-frequency module operating mode. Set to 0, Listen & Decode mode (default). Set to 1, Decode-only mode.	R/W
0	LFRX_AGC_START_SEL	Low-frequency module AGC startup selection. Set to 0, start in Listen mode. Set to 1, start in Decode mode.	R/W

CUS_LFRX28 register

Name	Decription	Туре
LFRX CADET TH H	The upper limit value of carrier frequency detection tolerance window. The unit is	R/W
LFRX_CADE1_IH_H	the time of a carrier frequency cycle.	FC/VV

• CUS_LFRX29 register

Name	Decription	Туре
LEDY CADET TILL	The lower limit value of carrier frequency detection tolerance window. The unit is the	DAM
LFRX_CADET_TH_L	time of a carrier frequency cycle.	R/W

Notes:

LFRX_CADET_TH_H and LFRX_CADET_TH_L are a pair of carrier detection upper/lower window values. For instance, when the 125 kHz carrier detection window is configured as 906.25 us, the unit time is 8 us, reserving a margin of 10% for upper and lower window values.

$$LFRX_CADET_TH_H = \frac{906.25us}{8us} \times 110\% = 124$$

$$LFRX_CADET_TH_L = \frac{906.25us}{8us} \times 90\% = 101$$

• CUS_LFRX30 register

CUS_LFRX30 Reset value: 0x1E
7 6 5 4 3 2 1 0

LFRX_SIGNAL_OK_CLR_TH[7:0]

Name	Decription	Type
LEDY CIONAL OK OLD TH	The perodic auto-reset window time value of the low-frequency module. The	R/W
LFRX_SIGNAL_OK_CLR_TH	configuration is generated by RFPDK.	

Notes:

This item is valid when the low-frequency auto-reset function is enabled. It is used to automatically reset the low-frequency module at regular intervals. After resetting, the low-frequency module retrieves the preset detection mode (carrier or SNR), synchronization word matching, wake-up ID matching, and so on.

CUS_SYSCTL11 register

CUS_SYSCTL11 Reset value: 0x80

7	6	5	4	3	2	1	0
SLPT_MAN	Doggrand	Dogoryad	SNOOZE_M	LBD_MANU	LFRX_MAN	SLPT_MAN	BUT_MANU
U_RSTN	Reserved	Reserved	ANU_CLR	_CLR	U_CLR	U_CLR	_CLR

Name		Name	Decription				
	2	LEDY MANUE OLD	Low-frequency wakeup manual clearing flag. Set to 1, the system automatically	R/W			
	2	LFRX_MANU_CLR	clears.	K/VV			

• CUS_SYSCTL12 register

CUS_SYSCTL12 Reset value: 0x00
7 6 5 4 3 2 1 0

,	U	9	7	3	_		U
Decembed	SNOOZE_W		WKID PASS	SYNC PASS	LFRX_SIGNAL_	SLEEP_TIME	KEY_LAUNC
Reserved	AKEUP		WKID_PASS	STNC_PASS	OK	SUP	Н

Name		Decription	Туре
4	WKID_PASS	Flag for matching ID detection valid In low-frequency data, valid when reading as 1.	R
3	SYNC_PASS	Flag for synch word detection valid In low-frequency data, valid when reading as 1.	R
2	LFRX_SIGNAL_OK	Flag for low-frequency carrier detection valid, valid when reading as 1.	R

• CUS_LFRX31 register

CUS_LFRX31 Reset value: 0x00

7	6	5	4	3	2	1	0
Reserved	Reserved			LFRX AG			

	Name	Decription	Туре	
5:0	LFRX_AGC_INDEX	Low-frequency signal strength indication value, which is used to calculte RSSI value. See Section 4.4 in AN280 CMT216xA Low-frequency Receiving Function User Guide for details.	R	

• CUS_LFRX32 register

CUS_LFRX32 Reset value: 0x00

7	6 5 4	3	2	1	0
MAN_DECODE	LFRX_MEAS_	LFRX_IBIAS_CAL	LFRX_TCAP2_CAL	LFRX_TCAP1_CAL	LFRX_TCAP0_CAL
_ERR_FLAG	OUT[2:0]	_OVTS_FLAG	_OVTS_FLAG	_OVTS_FLAG	_OVTS_FLAG

	Name	Decription	Туре
7	MAN_DECODE_ERR_FLAG	Low-frequency demodulation data error indication, valid when reading as	
	W/W_BEGODE_EMC_TEMO	1 (valid when Manchester is enabled).	R
6:4	LFRX_MEAS_OUT	NA, internal parameter. Users can ignore it.	R
3	LFRX_IBIAS_CAL_OVTS_FLAG	NA, internal parameter. Users can ignore it.	R
2	LFRX_TCAP2_CAL_OVTS_FLAG	Low-frequency Z-axis antenna tuning overflow flag	R
1	LFRX_TCAP1_CAL_OVTS_FLAG	Low-frequency Y-axis antenna tuning overflow flag	R
0	LFRX_TCAP0_CAL_OVTS_FLAG	Low-frequency X-axis antenna tuning overflow flag	R

• CUS_LFRX33 register

CUS_LFRX33 Reset value: 0x01

7	6	5	4	3	2	1	0
			LFRX_DATA	A_LENGTH[7:0]			

Name	Decription	Туре
LFRX_DATA_LENGTH	Low-frequency data receiving length	R/W

• CLK_SYS_DIV register

 CLK_SYS_DIV
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 LFRX_MCU_RCLK
 LFRX_MCU_RDATA
 Reserved
 CLK_SYS_DIV[3:0]

Name		Decription				
6	LFRX_MCU_RCLK	Low-frequency demodulation data synchronization clock flag, software accessible.	R			
5	LFRX_MCU_RDATA	Low-frequency demodulation data flag, software accessible.	R			

Notes:

- 1. Both LFRX_MCU_RCLK and LFRX_MCU_RDATA can generate interrupts. Refer to the interrupt related sections CMT216xA User Guide for more details.
- 2. Suggest users use interrupt mode to collect low-frequency data bit by bit, especially for LFRX_MCU_RCLK. Since the synchronous clock is output at a preset rate, interrupt mode can respond in a timely manner. If the software query method is used, users should pay attention to the period of the software query interval to avoid asynchrony causing data loss.

• LFRX_IF_TH_H register

LFRX_IF_TH_H Reset value: 0x00 5 3 7 6 LFRX_TBCCI1_S LFRX_TBCC0_S LFRX_TACCI1_S Reserve Reserve Reserve Reserve LFRX_TACCI0_S d d d d EL EL EL EL

Name		Decription	Туре
		Select CCI1 for outputting low-frequency resonance frequency to TimerB.	
3	LFRX_TBCCI1_SEL	Set to 1, select output.	R/W
		Set to 0, close.	
		Select CCI0 for low-frequency resonance frequency output to TimerB.	
2	LFRX_TBCCI0_SEL	Set to 1, select output.	R/W
		Set to 0, close.	
		Select CCI1 for outputting low-frequency resonance frequency to TimerA:	
1	LFRX_TACCI1_SEL	Set to 1, select output.	R/W
		Set to 0, close.	
		Select CCI0 for low-frequency resonance frequency output to TimerA.	
0	LFRX_TACCI0_SE	Set to 1, select output.	R/W
		Set to 0, close.	

• LFRX_IF_TH_L register

 LFRX_IF_TH_L
 Reset value: 0x7D

 7
 6
 5
 4
 3
 2
 1
 0

 LFRX_ANT_REF[7:0]

Name	Decription	Туре
LFRX_ANT_REF	The target frequency of antenna calibration. The default value is 125, namely 125 kHz.	R/W

3.11 Sub-1G Transmiter Module Register Set

Table 12. Sub-1G Transmiter Module Register List

Name	Storage Area	Sub-area	Address	Reset	Function
PA_POWER_TH_9	Block1	Bank1	0x8E	0x7F	Transmission power threshold register9
PA_POWER_TH_8	Block1	Bank1	0x8F	0x7F	Transmission power threshold register8
PA_POWER_TH_7	Block1	Bank1	0x90	0x7F	Transmission power threshold register7
PA_POWER_TH_6	Block1	Bank1	0x91	0x7F	Transmission power threshold register6
PA POWER TH 5	Block1	Bank1	0x92	0x7F	Transmission power threshold register5
PA POWER TH 4	Block1	Bank1	0x93	0x7F	Transmission power threshold register4
PA_POWER_TH_3	Block1	Bank1	0x94	0x7F	Transmission power threshold register3
PA_POWER_TH_2	Block1	Bank1	0x95	0x7F	Transmission power threshold register2
PA POWER TH 1	Block1	Bank1	0x96	0x7F	Transmission power threshold register1
PA POWER TH 0	Block1	Bank1	0x97	0x7F	Transmission power threshold register0
TX SYM GROUP	Block1	Bank1	0xA9	0x00	Transmission symbol register
TX SYM CTL	Block1	Bank1	0xAA	0x00	Transmission symbol control register
TX_PKT_CTL	Block1	Bank1	0xAB	0x40	Transmission mode control register
SYMBOL TIME H	Block1	Bank1	0xAC	0x00	Transmission data rate configuration register higher 8 bits
SYMBOL_TIME_L	Block1	Bank1	0xAD	0x00	Transmission data rate configuration register lower 8 bits
FREQ_DEV_H	Block1	Bank1	0xAE	0x00	Frequency deviation register higher 8 bits
FREQ_DEV_L	Block1	Bank1	0xAF	0x00	Frequency deviation register lower 8 bits
RAMP_STEP_TIME_H	Block1	Bank1	0xB0	0x00	RAMP configuration register higher 8 bits
RAMP STEP TIME L	Block1	Bank1	0xB1	0x00	RAMP configuration register lower 8 bits
PA IDAC CODE	Block1	Bank1	0xB3	0x00	Transmission power configuration register
PA_CTL0	Block1	Bank1	0xB4	0x00	PA configuration/control register0
VCO_CTL0	Block1	Bank1	0xB6	0x0F	VCO control register0
VCO_CTL1	Block1	Bank1	0xB7	0x20	VCO control register1
PLLN	Block1	Bank1	0xB9	0x42	Phase-locked loop N value configuration register
PLLK_H	Block1	Bank1	0xBA	0xC1	Phase-locked loop K value register higher 8 bits
PLLK_L	Block1	Bank1	0xBB	0xC5	Phase-locked loop K value register lower 8 bits

• PA_POWER_TH_0-9 register set

 PA_POWER_TH_0-9
 Reset value: 0x7F for all 0x7

Name	Decription	Туре
	Transmission power configuration according to each voltage level.	
	When n = 0, transmit power configuration value at a voltage of 1.8 V.	
	When n = 1, transmit power configuration value at a voltage of 2.0 V.	
	When n = 2, transmit power configuration value at a voltage of 2.2 V.	
	When n = 3, transmit power configuration value at a voltage of 2.4 V.	
PA POWER THn	When n = 4, transmit power configuration value at a voltage of 2.6 V.	R/W
17 <u>-</u> 1 0W21 <u>-</u> 11111	When n = 5, transmit power configuration value at a voltage of 2.8 V.	1000
	When n = 6, transmit power configuration value at a voltage of 3.0 V.	
	When n = 7, transmit power configuration value at a voltage of 3.2 V.	
	When n = 8, transmit power configuration value at a voltage of 3.4 V.	
	When n = 9, transmit power configuration value at a voltage of 3.6 V.	

Note: The transmission power configuration value is related to users' target power value. It is recommended that users assign values according to the configuration values provided by the official configuration tool (software). Using improper values may affect transmission performance.

• TX_SYM_GROUP register

	Name	Decription	Туре
7:0	TX_SYM_GROUP	Register for buffer of data to be transmitted. In the packet mode, transmit data according to bit width defined by	R/W
		TX_GROUP_WIDTH.	
		In the direct mode, the direct transmission is performed through setting Bit0 to 0 or 1.	

TX_SYM_CTL register

 TX_SYM_CTL
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 TX_DIRECT_EN
 TX_GROUP_WIDTH[2:0]
 TX_SYM_ENDIAN
 TX_SYM_CTRL[1:0]

Name		Decription	Туре
		Direct mode enabling control.	
6	TX_DIRECT_EN	Set to 0, adopt packet mode.	R/W
	Set to 1, adopt direct mode.		
5:3	TX_GROUP_WIDTH	Determine the TX_SYM_GROUP transmission bit width with a range of 1 - 8 bits.	R/W
		Transmission data little/large endian mode selection.	
2	TX_SYM_ENDIAN	3'b000, Bit0 of TX_SYM_GROUP is valid.	R/W
		3'b001, Bit1-Bit0 of TX_SYM_GROUP is valid.	

	Name	Decription	Туре
		3'b010, Bit2-Bit0 of TX_SYM_GROUP is valid.	
		3'b011, Bit3-Bit0 of TX_SYM_GROUP is valid.	
		3'b100, Bit4-Bit0 of TX_SYM_GROUP is valid.	
		3'b101, Bit5-Bit0 of TX_SYM_GROUP is valid.	
		3'b110, Bit6-Bit0 of TX_SYM_GROUP is valid.	
		3'b111, Bit7-Bit0 of TX_SYM_GROUP is valid.	
		Transmission end mode selection.	
		2'b00, close transmission after the last bit transmission completes.	
1:0	TX_SYM_CTRL	2'b01, keep transmitting the last bit after the last bit transmission completes.	R/W
		2'b10, keep transmitting 0.	
		2'b11, keep transmitting 1.	

Notes:

- 1. The main difference between packet mode and direct mode is that the former needs to define the transmission buffer array in the code, transmission is done through relevant API functions, and transmission rate follows the set rate; while the direct mode does not need to define the transmission buffer data, and it is not limited to use the set transmission rate (suggest users fill a rate greater than the actual transmission rate in the configuration tool software), instead the transmission time is adjusted by software. Please refer to the Datasheet specifications and related AN documents for more details.
- 2. When using the API function tx_sym_transmit to implement the transmission function, the TX_SYM_CTRL setting is invalid, and it is processed according to the 2'b00 option, that is, the transmission function is closed after the transmission is completed.

• TX_PKT_CTL register

 TX_PKT_CTL
 Reset value: 0x40

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 Reserved
 Reserved
 RAMP EN TX MODU
 FREQ DEV INV
 GUASS ON

	Name	Decription	Туре
3	RAMP_EN	Set to 0, disable the RAMP function.	R/W
		Set to 1, enable the RAMP function.	
		Modulation mode selection.	
2	TX_MODU	Set to 0, OOK modulation mode.	R/W
		Set to 1, FSK modulation mode.	
		FSK mode data modulation polarity.	
1	FREQ_DEV_INV	Set to 0, +FDEV is 1, -FDEV is 0 (FDEV is the transmission frequency deviation).	R/W
		Set to 1, +FDEV is 0, -FDEV is 1.	
0	GUASS_ON	Set to 0, disable FSK data Gaussian filtering.	R/W
		Set to 1, enable FSK data Gaussian filtering.	

• SYMBOL_TIME_H / L register set

 SYMBOL_TIME_H/L
 Reset value: 0x00/0x00

 7
 6
 5
 4
 3
 2
 1
 0

 H
 SYMBOL_TIME[15:8]

 L
 SYMBOL_TIME[7:0]

Name	Decription	Туре
	Transmission data rate configuration.	
SYMBOL_TIME[15:0]	FSK modulation, with a configurable range of 0.5 - 200 kbps.	R/W
	OOK modulation with a data rate range of 0.5 - 40 kbps.	

Notes:

The rate calcualtion formula is as follows.

$$SYMBOL_TIME = \frac{BR \times 2^{21}}{F_{XTAL}}$$

In above, FXTAL is crystal frequency, namely 26 MHz. In addition, users do not need to do te calculatation. The official configuration tool software can be used to automatically generate the target parameter results just by setting the target rate..

• FREQ_DEV_H / L register set

Name	Decription	Туре	l
FREQ_DEV[15:0]	FSK transmission frequency deviation configuration.	R/W	l

• RAMP_STEP_TIME_H / L register set

 RAMP_STEP_TIME_H/L
 Reset value: 0x00/0x00

 7
 6
 5
 4
 3
 2
 1
 0

 H
 RAMP_STEP_TIME[14:8]

 L
 RAMP_STEP_TIME[7:0]

Name	Decription	Туре
RAMP STEP TIME[14:0]	PA RAMP step time register. The minimum step size is 76.9 ns, and the	R/W
10 tivii _0121 _11tii2[14:0]	maximum step size is 20 us.	14, 44

PA_IDAC_CODE register

 PA_IDAC_CODE
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 Reserved
 PA_IDAC_CODE[5:0]
 FRAIDAC_CODE[5:0]

	Name	Decription	Туре
5:0	PA_IDAC_CODE	The transmit power IDAC configuration, co-working with the PA_POWER_TH_0-9	R/W
5.0	PA_IDAC_CODE	register set to determine the transmission power;	Ft/VV

Note: The above register configuration values need to be set by the configuration tool (XLS file or GUI software) through set target parameters (such as operating frequency, rate, frequency diviation) by users then the tools will automatically convert them into register configurations.

PLL_BW_SEL[1:0]

PA _CTL0 register

 PA_CTL0
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 Reserved
 PA_DIFF_SEL
 PA_RCRAMP_SELB
 PA_RAMP_RSEL[2:0]

Name		Decription	Туре
		PA operating mode selection.	
4	PA_DIFF_SEL	Set to 0, select the single-ended PA output.	R/W
		Set to 1, select the differential PA output.	
		PA RAMP RC filter enabling selection.	
3	PA_RCRAMP_SELB	Set to 0, enable the RC filter.	R/W
		Set to 1, disable the RC filter.	
2:0	PA_RAMP_RSEL	PA RAMP RC filter parameter selection.	R/W

• VCO _CTL0 register

VCO_CTL0 Reset value: 0x0F 7 6 5 4 3 2 1 0

VCO_GAIN_CODE[2:0]

Name		Decription	Туре
4:2	VCO_GAIN_CODE	The VCO gain configuration value.	R/W
		PLL bandwidth selection.	
1:0	PLL_BW_SEL	Set to 0, select 210 kHz.	R/W
		Set to 1, select 150 kHz.	

VCO _CTL1 register

VCO _CTL1 Reset value: 0x20

VCO_HBAND | PDCPLF_CPBIAS_CODE | DIVX_CODE[1:0] | DIVX_SEL[3:0]

	Name	Decription		
7	VCO_HBAND	VCO frequency band selection. Set to 0, select low frequency band. Set to 1, select high frequency band.	R/W	
6	PDCPLF_CPBIAS_CODE	PDCPLF current control	R/W	
5:4	DIVX_CODE	The two parameters determine the PLL frequency division ratio	R/W	
3:0	DIVX_SEL	DIV_VALUE, and the VCO frequency is divided by the DIV_VALUE to the PA output frequency.	R/W	

• PLLN / PLLK_H / PLLK_L register set

PLLN / PLLK_ H/ PLLK_L Reset value: 0x42 / 0xC1 / 0xC5 7 6 5 4 3 2 1 0

	,	U	3	4	3	 ı	<u> </u>
Ν				F	PLLN [7:0]		
K_H				PL	LK_H [15:8]		
K_L				Pl	LLK_L [7:0]		

Name	Decription	Туре
PLLN[7:0]	N value and K value of PLL configuration. This parameter is related to	R/W
PLLK[15:0]	transmission power.	R/W

Notes:

- 1. The above register configuration values need to be set by the configuration tool (XLS file or GUI software) through set target parameters (such as operating frequency, rate, frequency diviation) by users then the tools will automatically convert them into register configurations..
- 2. The PLL_K and PLL_N values in the phase-locked loop are calculated as follows:

$$PLL_N = INT \left(\frac{F_{RF} \times DIV_VALUE}{F_{XO}} \right)$$

$$PLL_K = \left(\frac{F_{RF} \times DIV_VALUE}{F_{XO}} - PLL_N\right) \times 2^{16}$$

In above,

- DIV_VALUE is the frequency division from VCO frequency to PA output. It is determined by DIVX_CODE and DIVX_SEL in VCO_CTL1 register. Please refer to CMT216xA User Guide for details.
- FXO is the crystal oscillator frequency, which is 26 MHz;
- FRF is the target operating frequency.

PLL_N is the integer part of the phase-locked loop, which is calculated and rounded according to the target frequency, the VCO frequency division value and the crystal frequency. Then calculate the PLL_K, the decimal part of the phase-locked loop.

3.12 Analog Front End (AFE) register Set

ULPOA & HSOA, SAR-ADC and SNOOZE are the 3 core analog front end parts.

Table 13. Analog Front End Register Set List

Name	Storage Area	Address	Reset	Function
CUS_AFE4	Block0	0x03	0x00	Gain Configuration Register-1
CUS AFE6	Block0	0x05	0x80	Gain Configuration Register-2
CUS_AFE7	Block0	0x06	0x80	Bridge sensor interface configuration register
CUS_AFE9	Block0	80x0	0xC1	DC bias configuration register
CUS_AFE10	Block0	0x09	0x00	HSOA0 configuration register
CUS_AFE11	Block0	0x0A	0x00	HSOA1 configuration register
CUS_AFE12	Block0	0x0B	0x00	HSOA2 configuration register
CUS_AFE13	Block0	0x0C	0x84	Micro-power regulator output and ADC input configuration register
CUS_AFE14	Block0	0x0D	0xFF	AFE control register-1
CUS_AFE15	Block0	0x0E	0xB7	AFE control register-2
CUS_AFE16	Block0	0x0F	0x07	ADC conversion time configuration and LPOAs control register
CUS_AFE17	Block0	0x10		Constant current source drive control register-1
CUS_AFE18	Block0	0x11		Constant current source drive control register-2
CUS_SNOOZE1	Block0	0x1E	0x00	SNOOZE configuration register-1 (sleep cycle configuration 1)
CUS_SNOOZE2	Block0	0x1F	0x00	SNOOZE configuration register-2 (sleep cycle configuration 2)
CUS SNOOZE3	Block0	0x20	0x00	SNOOZE interrupt threshold register-1 (trigger window upper limit configuration)
CUS SNOOZE4	Block0	0x21	0x00	SNOOZE Interrupt Threshold Register-2 (trigger Window Lower Limit Configuration)
CUS_SNOOZE5	Block0	0x22	0x00	SNOOZE interrupt enabling and ADC clock frequency select register
CUS_SNOOZE6	Block0	0x23	0x00	SNOOZE interrupt flag register
CUS_SYSCTL3	Block0	0x50	0x00	System control register 3 (SNOOZE mode control register)
CUS_SYSCTL11	Block0	0x68	0x80	System control register 11 (software clearing flag control register)
CUS_SYSCTL12	Block0	0x69	0x00	System control register 12 (SNOOZE interrupt wake-up flag)
CUS_SYSCTL13	Block0	0x6A	0x00	ADC control register
CUS SYSCTL14	Block0	0x6B	0x00	ADC data register-1
CUS_SYSCTL15	Block0	0x6C	0x00	ADC data register-2
CUS SYSCTL19	Block0	0x70	0x70	System control register 19 (constant current source drive pulse output port control)
CUS RESV5	Block0	0x7A	0x7A	LPOAs non-inverting input port configuration register

Reserved

CUS_AFE4 register

AFE_IA2_GX[1:0]

Reserved

CUS_AFE4 Reset value: 0x00
7 6 5 4 3 2 1 0

Reserved

Reserved

Reserved

Reserved

Name		Decription	Туре
7:6	AFE_IA2_GX	Gain selection for internal HSOA0 used as a second amplifier or non-inverting amplifier of general-purpose instrumentation. 00, the gain is x1.0. 01, the gain is x1.5. 10, the gain is x2.0.	R/W

CUS_AFE6 register

CUS_AFE6 Reset value: 0x80

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 Reserved
 AFE_IA1_GX[2:0]
 Reserved
 Reserved
 Reserved

Name		Decription	Туре
5:3	AFE_IA1_GX	Gain selection for internal HSOA1 and HSOA2 used as a first amplifier or a non-inverting amplifier of general-purpose instrumentation. 3'b000, no gain setting, disabled when the amplifier is operating. 3'b001, the gain is x2. 3'b010, the gain is x8. 3'b101, the gain is x16. 3'b101, the gain is x24. 3'b111, the gain is x32.	R/W

CUS_AFE7 register

CUS_AFE7 Reset value: 0x80

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 Reserved
 Reserved
 Reserved
 AFE_SEN_CHX[2:0]

Name		Decription	Туре
2:0	AFE_SEN_CHX	Sensor channel selection: 3'b000, no channel selection. 3'b001, select external sensor channel 1, A1 and A2 pins as bridge sensor input, ASN and ASP pins as sensor power source; 3'b010, select external sensor channel 2, A3 and A4 pins as bridge sensor input, PSN and PSP pins as sensor power supply excitation source. 3'b011, select the internal temperature sensor channel. 3'b1xx, cannot use.	R/W

CUS_AFE9 register

 CUS_AFE9
 Reset value: 0xC1

 7
 6
 5
 4
 3
 2
 1
 0

 ULPOA0_VCM_DIS
 ULPOA1_VCM_DIS
 AFE_IA_VCMX
 AFE_OA_VCMX[1:0]
 AFE_OA_OUTX[1:0]
 AFE_IA1_CX

Name		Decription	Туре
		ULPOA0 internal 0.6V selection configuration.	
		Set to 0, connect the internal 0.6V reference to the non-inverting input of	
7	ULPOA0_VCM_DIS	ULPOA0.	R/W
		Set to 1, not select.	
		ULPOA1 internal 0.6V selection configuration.	
	111 DO A 4 NOM DIO	Set to 0, connect the internal 0.6V reference to the non-inverting input of	
6	ULPOA1_VCM_DIS	ULPOA0.	R/W
		Set to 1, not select.	
		HSOAn reference voltage selection.	
5	AFE_IA_VCMX	Set to 0, select VDDA/10;	R/W
		Set to 1, select VDDA/2;	
		HSOAn non-inverting input DC bias voltage voltage selection:	
		2'b00, select VDDA/20.	
4:3	AFE_OA_VCMX	2'b01, select VDDA/10.	R/W
		2'b10, select VDDA/4.	
		2'b11, select VDDA/2.	
		Selection for HSOAn connecting ADC.	
		2'b00, no connection;	
2:1	AFE_OA_OUTX	2'b01, connect HSOA0;	R/W
		2'b10, connect HSOA1;	
		2'b11, connect HSOA2;	
		HSOA1 and HSOA2 internal function selection:	
0	AEE IA1 CV	Set to 0, HSOA1 and HSOA2 are both as internal non-inverting amplifier	R/W
0	AFE_IA1_CX	amplifiers;	K/VV
		Set to 1, HSOA1 and HSOA2 compose the internal instrument amplifier.	

CUS_AFE10 register

	Name	Decription				
		HSOA0 output channel selection.				
_		Set to 0, select channel 0 output. A gain amplification mode with configuring	D 444			
	AFE_OA0_OX	AFE_IA2_GX and AFE_OA0_NA_GX.	R/W			
		Set to 1, select channel 1 output for floating mode.				
		HSOA0 reverse input channel selection.				
		2'b00, no channel selection.				
6:5	AFE_OA0_NX	2'b01, select channel 1, namely no input connection.	R/W			
	2'b10, select channel 2.	2'b10, select channel 2. A gain amplification mode with configuring AFE_IA2_GX and				
		AFE_OA0_NA_GX.				

	Name	Decription	Туре
		2'b11, select channel 3, connect HSOA0 output as buffer amplifier.	
		HSOA0 non-inverting input channel selection.	
		3'b000, no channel selection.	
		3'b001, select channel 1, connect OA0_IP, selecting sampling channel through	
		configuring SAR_INX.	
4.0	455 040 BV	3'b010, select channel 2, with HSOAs forming instrument amplifier.	DAA
4:2	AFE_OA0_PX	3'b011, select channel 3, connect HSOA1 output.	R/W
		3'b100, select channel 4, connect HSOA2 output.	
		3'b101, select channel 5, connect power supply battery sensor (VDD/ 4).	
		3'b110, select channel 6, internal signal, unavailable to users.	
		3'b111, select channel 7, connect internal DC bias voltage OA_VCMI.	
		HSOA0 non-inverting amplification gain selection, co-working with AFE_IA2_GX.	
		2'b00, inverting amplification.	
1:0	AFE_OA0_NA_GX	2'b01, small gain non-inverting amplification.	R/W
		2'b10, medium gain non-inverting amplification.	
		2'b11, high gain non-inverting amplification.	

• CUS_AFE11 register

 CUS_AFE11
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 SAR_DIRECT_DIS
 AFE_OA1_OX[1:0]
 AFE_OA1_NX[1:0]
 AFE_OA1_PX[2:0]

	Name	Decription	Type
7	SAR_DIRECT_DIS	ADC internal test control bit. When the ADC is used normally, it must be set to 1. Set to 0, internal test mode, for internal test only, unavailable to users. Set to 1, ADC normal operation mode.	R/W
6:5	AFE_OA1_OX	HSOA1 output channel selection. 2'b00, no channel selection. 2'b01, select channel 1, which can form non-inverting amplifier or instrument amplifier. 2'b10, select channel 2, connecting to the ASN pin. 2'b11, connect channel 1 and channel 2 at the same time, namely, map the HSOA1 output to the ASN pin and use it as the reverse input signal of HSOA0.	R/W
4:3	AFE_OA1_NX	HSOA1 inverting input channel selection. 2'b00, no channel selection. 2'b01, select channel 1, connecting to A4 pin (GPIO4). 2'b10, select channel 2, which can form non-inverting amplifier instrument amplifier. 2'b11, select channel 3, connecting HSOA1 output, using HSOA1 as buffer amplifier.	R/W
2:0	AFE_OA1_PX	HSOA1 non-inverting input channel selection. 3'b000, no channel selection. 3'b001, select 1 channel and connect to A3 pin (GPIO3)3'b010, select 2 channels, connect to PSN pin3'b011, unavailable to users3'b100, select 3 channels, internal DC bias voltage OA_VCMI3'b101, select channel 1 and channel 3 at the same time. The A3 pin is connected to the internal OA_VCMI, connecting to the HSOA1 non-inverting input3'b110, select channel 2 and channel 3 at the same time. The PSN pin is connected to the internal OA_VCMI, connecting to the HSOA1 non-inverting input;	R/W

Name	Decription	Туре
	3'b111, unavailable to users.	

• CUS_AFE12 register

CUS_AFE12 Reset value: 0x00

/	б	5	4	3	2	1	U
LDO_ULPOA_RAILB	AFE_OA	2_OX[1:0]	AFE_OA	2_NX[1:0]		AFE_OA2_PX	([2:0]

Name		Decription	Туре
		Bypass function selection of micro-power LDO_PIR regulator.	
7	LDO_ULPOA_RAILB	Set to 0, bypass is enabled.	R/W
		Set to 1, bypass is disabled.	
		HSOA2 output channel selection.	
		2'b00, no channel selection.	
6:5	AFE_OA2_OX	2'b01, select channel 1, forming instrument amplifier or non-inverting amplifier.	R/W
0.5	AFE_UAZ_UX	2'b10, select channel 2, connecting to the ASP pin.	IX/VV
		2'b11, connect channel 1 and channel 2 at the same time, namely, map the HSOA2	
		output to the ASN pin and use it as the non-inverting input signal of HSOA0.	
		HSOA2 inverting input channel selection.	
	AFE_OA2_NX	2'b00, no channel selection.	
4:3		2'b01, select channel 1, connecting to A2 pin (GPIO2).	R/W
		2'b10, select channel 2, forming non-inverting amplifier or instrument amplifier.	
		2'b11, select channel 3, connecting HSOA2 output as buffer amplifier.	
		HSOA2 non-inverting input channel selection.	
		3'b000, no channel selection.	
		3'b001, select channel 1, connecting to A1 pin (GPIO1).	
		3'b010, select channel 2, connecting to ASN pin.	
		3'b011, unavailable to users.	
2:0	AFE_OA2_PX	3'b100, select channel 3, connect to internal DC bias voltage OA_VCMI.	R/W
		3'b101, connect channel 1 and channel 3 at the same time. A1 is connected to internal	
		OA_VCMI, connecting to HSOA2 non-inverting input.	
		3'b110, connect channel 2 and channel 3 at the same time. ASN is connected to internal	
		OA_VCMI, connecting to HSOA2 non-inverting input.	
		3'b111, unavailable to users.	

• CUS_AFE13 register

CUS_AFE13 Reset value: 0x80

7	6	5	4	3	2	1	0
LDO_ULPOA_	VO_SEL[1:0]		SAR_II	NX[3:0]		SAR_	REFX[1:0]

Name		Decription	Туре
		Selection of micro-power consumption LDO_PIR regulator output voltage VREG.	
		2'b00, select 1.8 V.	
7:6	LDO_ULPOA_VO_SEL	ULPOA_VO_SEL 2'b01, select 2.0 V.	
		2'b10, select 2.2 V.	
		2'b11, select 2.4 V.	
		HSOA0 non-inverting input channel selection:	
		4'b0000, no connection;	
		4'b0001, connect to A1 channel.	
		4'b0010, connect to A2 channel.	
		4'b0011, connect to A3 channel.	
		4'b0100, connect to A4 channel.	
		4'b0101, connect to A5 channel.	
	SAR_INX	4'b0110, connect to A6 channel.	
5:2		4'b0111, connect to A7 channel.	R/W
		4'b1000, connect to B7 channel.	
		4'b1001, connect to B6 channel.	
		4'b1010, connect to B5 channel.	
		4'b1011, connect to ASN channel, or LPOA0 output channel.	
		4'b1100, connect to PSN channel, or LPOA1 output channel. 4'b1101, unavailable to users.	
		4'b1110, unavailable to users.	
		4'b1111, unavailable to users.	
		ADC reference voltage selection.	
		2'b00, select VDDA, which is the output of LDO_SAR regulator.	
1:0	SAR_REFX	2'b01, select 1.2 V band gap reference (VBG), driving ADC with internal buffer;	R/W
	0/11_1\E1/\	2'b10, select to input external reference voltage from port B6, driving ADC with	
		internal buffer.	
		2'b11, unavailable to users.	

• CUS_AFE14 register

CUS_AFE14 Reset value: 0xBF

7 6	5	4	3	2	1	0
PD_AFE_OACMI PIR_ST	PD_AFE_OSADJ	PD_AFE_IACMO	PD_SAR	PD_AFE_OA2	PD_AFE_OA1	PD_AFE_OA0

Name		Decription	Туре
		HSOAn non-inverting input DC bias voltage output enabling.	
7	PD_AFE_OACMI	Set to 0, enable DC bias voltage output.	R/W
		Set to 1, disable DC bias voltage output.	
		Micro-power regulator DC bias circuit startup control bit:	
6	ULPOA_ST	Set to 0, enable (default).	R/W
		Set to 1, disable.	
		Instrumentation amplifier output reference voltage enabling.	
4	PD_AFE_IACMO	Set to 0, enable.	R/W
		Set to 1, disable.	

	Name	Decription	Туре
		SAR-ADC enabling control.	
3	PD_SAR	Set to 0, enable.	R/W
		Set to 1, disable.	
		HSOA2 enabling control.	
2	PD_AFE_OA2	Set to 0, enable.	R/W
		Set to 1, disable.	
		HSOA1 enabling control.	
1	PD_AFE_OA1	Set to 0, enable.	R/W
		Set to 1, disable.	
		HSOA0 enabling control.	
0	PD_AFE_OA0	Set to 0, enable.	R/W
		Set to 1, disable.	

• CUS_AFE15 register

LDO_SAR_VO_SEL[1:0] LDO_SAR_RAILB PD_BG SAR_LBD_DIS SAR_REF_DIS PD_LDO_SAR PD_AFE_VTR

	Name	Decription	Type
		Internal LDO_SAR regulator output voltage selection.	
		2'b00, output 1.8 V.	
7:6	LDO_SAR_VO_SEL	2'b01, output 2.0 V.	R/W
		2'b10, output 2.2 V.	
		2'b11, output 2.4 V.	
		Bypass internal LDO_SAR regulator output.	
_	100 040 04110	Set to 0, bypass the internal LDO regulator.VDDA supplies power for the chip	DAM
5	LDO_SAR_RAILB	in this case.	R/W
		Set to 1, do not bypass the internal I LDO_SAR regulator.	
		Built-in BandGap reference source (VBG) enabling control.	
4	PD_BG	Set to 0, enable BandGap (1.2 V).	R/W
		Set to 1, disable BandGap.	
		Supply power detection enabling.	
3	SAR_LBD_DIS	Set to 0, enable the LBD function.	R/W
		Set to 1, disable the LBD function.	
		ADC reference voltage enabling.	
2	SAR_REF_DIS	Set to 0, enable.	R/W
		Set to 1, disable.	
		Internal LDO_SAR regulator enabling control.	
1	PD_LDO_SAR	Set to 0, enable.	R/W
		Set to 1, disable.	
		AFE DC bias enabling. When HSOAs or ADC in operating, it must be set to 0.	
0	PD_AFE_VTR	Set to 0, enable.	R/W
		Set to 1, disable.	

CUS_AFE16 register

 CUS_AFE16
 Reset value: 0x0F

 7
 6
 5
 4
 3
 2
 1
 0

 SAR_MBC0
 SAR_MBC1
 SAR_STM[1:0]
 PD_LDO_ULPOA
 PD_ULPOA_VTR
 PD_ULPOA1
 PD_ULPOA0

	Name	Decription	Туре
		SAR-ADC second high bit conversion time selection.	
7	SAR_MBC0	Set to 0, 1 ADC clock.	R/W
		Set to 1, 2 ADC clocks.	
		SAR-ADC highest bit conversion time selection.	
6	SAR_MBC1	Set to 0, 2 ADC clocks.	R/W
		Set to 1, 4 ADC clocks.	
		SAR-ADC sampling time selection.	
		2'b00, 2 ADC clocks.	
5:4	SAR_STM	2'b01, 4 ADC clocks.	R/W
		2'b10, 6 ADC clocks.	
		2'b11, 8 ADC clocks.	
		Micro-power LDO_PIR regulator enabling.	
3	PD_LDO_ULPOA	Set to 0, enable ULPOA's LDO Regulator output.	R/W
		Set to 1, disable ULPOA's LDO Regulator output.	
		Micro-power circuit bias current enabling control.	
2	PD_ULPOA_VTR	Set to 0, enable. When LDO_PIR Regulator or LPOAs are in operating, must set it to 0.	R/W
		Set to 1, disable.	
	DD III DOM	Set to 0, enable ULPOA1.	DAM
1	PD_ULPOA1	Set to 1, disable ULPOA1.	R/W
_	DD 111 DO 40	Set to 0, enable ULPOA0.	D 444
0	PD_ULPOA0	Set to 1, disable ULPOA0.	R/W

• CUS_SNOOZE1 register

Name	Decription	Туре
SNOOZE_TIMER_M_SLEEP	In SNOOZE mode, the sleep timer calculates the M value periodcally.	R/W

Notes: The SNOOZE sleep time calculation formular is as below.

$$T_{SNOOZE} = M \times 2^{(R+1)} \times T_{CLK}$$

In above, TCLK is provided by the system LFOSC module. By default, the LFOSC clock source comes from the internal LPOSC, namely a 32 kHz low-power RC clock with TCLK as 31.25us. If the LFOSC clock selects external LXOSC, namely a 32.768 kHz crystal oscillator, the TCLK is is 30.5176 us.

• CUS_SNOOZE2 register

CUS_SNOOZE2 Reset value: 0x00

7	6	5	4	3	2	1	0
SNOOZE_I	JTH[9:8]	SNOOZE	_DTH[9:8]		SNOOZE_T	MER_R_SLEEP	P[3:0]

	Name	Decription	Туре
7:6	SNOOZE_UTH	The higher 2 bits of the upper limit interrupt threshold of ADC detection window interrupt.	R/W
5:4	SNOOZE_DTH	The higher 2 bits of the lower limit interrupt threshold of ADC detection window interrupt.	R/W
3:0	SNOOZE_TIMER_M_SLEEP	In SNOOZE mode, the sleep timer calculates the R value periodically.	R/W

• CUS_SNOOZE3 / 4 register set

CUS_SNOOZE3 / 4 Reset value: 0x00 / 0x00

	7	6	5	4	3	2	1	0
3				SNO	OZE_UTH[7:0]			
4				SNO	OZE_DTH[7:0]			

Name	Decription	Туре
SNOOZE_UTH	The lower 8 bits of upper limit interrupt threshold of ADC detection window interrupt.	R/W
SNOOZE_DTH	The lower 8 bits of lower limit interrupt threshold of ADC detection window interrupt.	R/W

Note: SNOOZE_UTH and SNOOZE_DTH are 10-bit values, which will be compared to the upper 10 bits of the SAR-ADC sample.

• CUS_SNOOZE5 register

CUS_SNOOZE5 Reset value: 0x40

/	5	4	3	2	1	U
SAR_CKX[1:0]	Reserved	Reserved	DWTH_WK_EN	UPTH_WK_EN	WOUT_WK_EN	WIN_WK_EN

	Name	Decription	Туре
		ADC clock frequency selection: (recommend to use default frequency)	
		2'b00, select 0.5 MHz.	
7:6	SAR_CKX	2'b01, select 1.0 MHz (default setting).	R/W
		2'b10, select 1.5 MHz.	
		2'b11, select 2.0 MHz.	
		Lower-limit interrupt enabling.	
3	DWTH_WK_EN	Set to 0, disable.	R/W
		Set to 1, enable the interrupt wakeup when SAR_DATA[11:2] < SNOOZE_DTH.	
		Upper-limit interrupt enabling.	
2	UPTH_WK_EN	Set to 0, disable.	R/W
		Set to 1, enable the interrupt wakeup when SAR_DATA[11:2] > SNOOZE_UTH.	
		Out-of-window interrupt enabling.	
1	WOUT WK EN	Set to 0, disable.	R/W
'	VVOUI_VVK_EIN	Set to 1 to enable the interrupt wakeup whenSAR_DATA[11:2] > SNOOZE_UTH or	FK/VV
		SAR_DATA[11:2] < SNOOZE_DTH.	

	Name	Decription	Туре
0	WIN_WK_EN	In-window interrupt enabling. Set to 0, disable. Set to 1 to enable the interrupt wakeup when tSNOOZE_DTH < SAR_DATA[11:2] < SNOOZE_UTH.	R/W

CUS_SNOOZE6 register

 CUS_SNOOZE6
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 GPIO_HOLD
 Reserved
 Reserved
 DWTH_WK_INT
 UPTH_WK_INT
 WOUT_WK_INT
 WIN_WK_INT

Name		Decription		
3	DWTH WK INT	Lower-limit interrupt enabling. Read as 0, no interrupt occurs.	R	
3	DWIH_WK_INI	Read as 0, no interrupt occurs. Read as 1, interrupt is generated for SAR_DATA[11:2] < SNOOZE_DTH.	K	
		Upper-limit interrupt enabling.		
2	UPTH_WK_INT	Read as 0, no interrupt occurs.	R	
		Read as 1, interrupt is generated for SAR_DATA[11:2] > SNOOZE_UTH.		
		Out-of-window interrupt enabling.		
1	WOUT_WK_INT	Read as 0, no interrupt occurs.	R	
'		Read as 1, interrupt is generated for when SAR_DATA[11:2] > SNOOZE_UTH or	IX	
		SAR_DATA[11:2] < SNOOZE_DTH.		
		In-window interrupt enabling.		
0	WIN_WK_INT	Read as 0, no interrupt occurs.	R	
		Read as 1, interrupt is generated for SNOOZE_DTH < SAR_DATA[11:2] < SNOOZE_UTH.		

• CUS_SYSCTL3 register

ΕN

ΕN

G_EN

NV

 CUS_SYSCTL3
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 LED_I
 AFE_IR_
 SNOOZE_
 SNOOZE_DEBU
 LFRX_DEBUG
 LFRX_
 SLPT_WAKEUP_M
 SLEEP_TIMER

EN

ΕN

ODE

	Name	Decription	Туре
6	AFE_IR_EN	In SNOOZE mode, the constant current source drive synchronous pulse output enabling Set to 0, disable Set to 1, enable.	R/W
5	SNOOZE_EN	SNOOZE mode enabling. Set to 0, disable the SNOOZE function. Set to 1, enable the SNOOZE function.	R/W
4	SNOOZE_DEBUG_EN	SNOOZE simulation debugging mode enabling. Set to 0, disable Set to 1, enable.	R/W

ΕN

• CUS_SYSCTL11 register

CUS_SYSCTL11 Reset value: 0x00

7	6	5	4	3	2	1	0
SLPT_MANU_	Reserv	Reserv	SNOOZE_MANU	LBD_MANU_	LFRX_MANU_	SLPT_MANU_	BUT_MANU_
RSTN	ed	ed	_CLR	CLR	CLR	CLR	CLR

Name		Decription				
		When the system enables the SNOOZE function and it is woken up, it needs to				
4	SNOOZE_MANU_CLR	manually set the bit to 1, which clears the interrupt flag processing, then the	R/W			
		system resets the bit to 0 automatically.				

• CUS_SYSCTL12 register

CUS_SYSCTL12 Reset value: 0x00

7	6	5	4	3	2	1	0
Reserved	SNOOZE_ WAKEUP		WKID_PASS	SYNC_PASS	LFRX_SIGNAL_OK	SLEEP_TIMESUP	KEY_LAUNCH

Name		Decription				
6	SNOOZE_WAKEUP	SNOOZE interrupt flag (namely wakeup/interrupt flag). Valid when read as 1.	R			

• CUS_SYSCTL13 register

CUS_SYSCTL13 Reset value: 0x00

7	6	5	4	3	2	1	0
LBD_STAT	LBD_FINI	LBD_AVG_S	LBD_ENAB	SAR_DATA_UPD	SAR_MSTA	SAR_TRIGG	SAR_CLK_
US	SH	EL	LE	ATE	RT	ER	EN

	Name	Decription	Туре
		ADC conversion end flag:	
	040 0474 1100475	Read as 0, ADC conversion is not completed.	_
3	SAR_DATA_UPDATE	Read as 1, the ADC conversion is completed, and it will be automatically	R
		cleared by hardware 3 ADC clock cycles afterit taking effect.	
		ADC continuous conversion software trigger control.	
2	SAR_MSTART	Set to 0, disable the ADC continuous conversion function.	R/W
		Set to 1, enable the ADC continuous conversion function.	
		ADC one-shot conversion software trigger control.	
1	SAR_TRIGGER	Set to 0, disable the ADC single conversion function.	R/W
		Set to 1, enable the ADC single conversion function.	
		ADC clock enabling.	
0	SAR_CLK_EN	Set to 0, disable the ADC conversion function.	R/W
		Set to 1, enable the ADC conversion function.	

• CUS_SYSCTL14 register

CUS_SYSCTL14 Reset value: 0x00

7	6	5	4	3	2	1	0
			SAR ADC	DATA[11:4]			

Name	Decription	Туре
SAR_ADC_DATA	Higher 8 bits of SAR-ADC sample value.	R/W

CUS_SYSCTL15 register

CUS_SYSCTL15 Reset value: 0x00

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved		SAR_AD	C_DATA[3:0]	

Name		Decription	Туре
3:0	SAR_ADC_DATA	lower 4 bits of SAR-ADC sample value.	R/W

CUS_RESV5 register

CUS_RESV5 Reset value: 0xC1

7	6	5	4	3	2 1	0
LPOA0_PIN_DIS	LPOA1_PIN_DIS	WDT_REFRESH	WDT_START	W	DT_RESET_TH[2:0]	WDT_DIS

	Name	Decription	Туре
		LPOA0 non-inverting input port connection control。	
7	LPOA0_PIN_DIS	Set to 0, LPOA0 non-inverting input is connected to A6 pin.	R/W
		Set to 1, the LPOA0 non-inverting input is disconnected from the A6 pin.	
		LPOA1 non-inverting input port connection control.	
6	LPOA1_PIN_DIS	Set to 0, the non-inverting input of LPOA1 is connected to the B7 pin.	R/W
		Set to 1, LPOA1 non-inverting input is disconnected from B7 pin.	

3.13 Constant Current Source Driver Register Set

Table 14. Constant Current Source Driver Register Set List

Name	Storage Area	Sub-area	Address	Reset	Function
CUS_AFE17	Block0		0x10	0x01	Constant current source driver register 1
CUS_AFE18	Block0		0x11		Constant current source driver register 2
CUS_SYSCTL19	Block0		0x70	0x03	System control register 19 (constant current
CUS_SYSCTL19	Block0		0x70	0x03	source driver pulse output port

• CUS_AFE17 register

 CUS_AFE17
 Reset value: 0x01

 7
 6
 5
 4
 3
 2
 1
 0

 HDRV_SEL[4:0]
 DRV_ENH
 DRV_MAN_EN
 PD_DRV

	Name					De	cri	ption			Туре
		Enhanced cons	stant (cur	rent source	driver cu	ırre	ent selection,	valid wh	en HDRV_EN is 1,	
		Value r	mA		Value	mA		Value	mA		
		5'b00000 (0.0		5'b01011	94.3		5'b10110	187.8		
		5'b00001 8	8.5		5'b01100	103.2		5'b10111	195.6		
		5'b00010 1	7.0		5'b01101	111.3		5'b11000	207.3		
7:3 HDR\	LIDDV OF	5'b00011 2	25.4		5'b01110	120.0		5'b11001	215.4		D 444
7:3	HDRV_SEL	5'b00100 3	34.5		5'b01111	128.2		5'b11010	223.6		R/W
		5'b00101 4	2.9		5'b10000	138.5		5'b11011	231.4		
		5'b00110 5	1.2		5'b10001	146.7		5'b11100	240.3		
		5'b00111 5	9.2	•	5'b10010	155.0		5'b11101	248.1		
		5'b01000 6	9.5		5'b10011	163.0		5'b11110	256.0		
		5'b01001 7	7.8		5'b10100	171.8		5'b11111	263.7		
		5'b01010 8	6.2		5'b10101	179.8					
2	DRV_ENH	Enhanced con 10%). Set to 0, disabl Set to 1, enable	le.	Cl	urrent sourc	e driver	Cl	urrent refere	nce enh	ancement enabling (by	R/W
		Constant curre		urc	e current dr	ving stag	ge (enabling.			
1	DRV_MAN_EN	Set to 0, disabl	le.			- '		-			R/W
	110	Set to 1, enable	e.								
		Constant curre	nt sou	urc	e current re	ference o	irc	uit enabling.			
0	PD_DRV	Set to 0, enable	e.								R/W
		Set to 1, disabl	le.								

• CUS_AFE18 register

 CUS_AFE18
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 NDRV_SEL[3:0]
 NDRV_EN
 HDRV_EN
 LDO_PIR_OE

	Name				Decri	ption		Туре
		Ordinary co	nstant current s	ource o	driver currer	nt selection, valid	d when NDRV _EN is 1,	
		Value	Current(mA)		Value	Current(mA)		
		4'b0000	0.0		4'b1000	22.0		
		4'b0001	2.8		4'b1001	24.8		
7:3	NDRV_SEL	4'b0010	5.6		4'b1010	27.6		R/W
		4'b0011	8.4		4'b1011	30.4		
		4'b0100	11.3		4'b1100	33.3		
		4'b0101	14.1		4'b1101	36.0		
		4'b0110	17.0		4'b1110	38.8		
		4'b0111	19.7		4'b1111	41.5	* (A)	
		Ordinary co	nstant current s	ource c	driving stage	e enabling.	64.0	
2	NDRV_EN	Set to 0, dis	sable.					R/W
		Set to 1, en	able.					
		Enhanced of	constant current	source	driving stag	ge enabling.		
1	HDRV_EN	Set to 0, dis	sable.					R/W
		Set to 1, enable. Micro-power LDO_PIR regulator output enabling. Set to 0, disable. The output of the micropower LDO_PIR regulator is disconnected from						
			-	out of th	ne micropov	ver LDO_PIR re	gulator is disconnected from	
0	LDO_PIR_OE		OUT / D3 pin;					R/W
				nicro-po	wer LDO_	PIR regulator of	outputs voltage through the	
		REG_OUT	/ D3 pin.					

CUS_SYSCTL19 Register

CUS_SYSCTL19					Rese	t value: 0x00	
7	6	5	4	3	2	1	0
LFRX_OSC_OUT_EN	IRLED_DOUT_EN	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

	Name	Decription	Туре
6	IRLED_CLK_EN	constant current source drive pulse output port enabling In SNOOZE mode (namely ADC sampling operating window enabling) Set to 0, disable Set to 1, enable. The synchronization pulse generated by the hardware is output through the B5 pin.	R/W

3.14 True Random Number Generation Module

Table 15. True Random Number Module Register Set List

Name	Storage Area	Sub-area	Address	Reset	Function
RNG_CTL	Block1	Bank1	0xBE	0x04	True Random Number Generation control register.
RNG_SUM	Block1	Bank1	0xBF	0x00	8-bit random number generation result.

• RNG_CTL register

 RNG_CTL
 Reset value: 0x04

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 Reserved
 RNG_SUM_VLD
 Reserved
 Reserved
 RNG_START

	Name	Decription	Туре
4	RNG_SUM_VLD	The valid flag of random number generation.	R
0	RNG_START	The start flag of random number generation.	R/W

RNG_SUM register

RNG_SUM
7 6 5 4 3 2 1 0

RNG_SUM[7:0]

Name	Decription	Туре
RNG_SUM	8-bit random number result	R

Notes: Whe using true random number function, users only need to call API sys_get_random_data. Refer to AN282 CMT216xA API Function Library User Guide for more details.

3.15 Watchdog (WDT) Register Set

Table 16 Watchdog (WDT) Register Set List

Name	Storage Area	Sub-area	Address	Reset	Function
CUS_RESV5	Block0		0x7A	0x01	Watchdog control register

CUS_RESV5 register

CUS_RESV5						Rese	t value: 0xC1
7	6	5	4	3	2	1	0
ULPOA0_PIN_DIS	ULPOA1_PIN_DIS	WDT_REFRESH	WDT_START	WDT_	RESET_	TH[2:0]	WDT_DIS

	Name	Decription	Туре
5	WDT_REFRESH	Set to 0, invalid.	R/W
		Set to 1, clear the watchdog circuit (feed dog).	
4	WDT_START ^[1]	Set to 0, stop/pause watchdog.	R/W
	WD1_01/1((1	Set to 1, start watchdog.	17,44
		Watchdog timer threshold.	
		000, 32 ms.	
		001, 64 ms.	
		010, 128 ms.	
3:1	WDT_RESET_TH	011, 256 ms.	R/W
		100, 512 ms.	
		101, 1s.	
		110, 2s.	
		111, 4s.	
0	WDT_DIS ^[2]	Set to 0, enable the watchdog module .	R/W
	WD1_DI3	Set to 1, disable the watchdog module	IX/VV

Notes:

- [1]. When the watchdog module is enabled, the watchdog counting can be started or stopped by WDT_START. It can also be paused during the counting and resumed to continue counting.
- [2]. When the watchdog module is enabled, namely WDT_DIS = 0, the watchdog module clock is still running and consumes power even if the watchdog counting is paused by WDT_START.
- [3]. The clock source of the watchdog is provided by LFOSC, please enable LFOSC when using the watchdog function.

3.16 Sleep Timer Module Register Set

Table 17. Sleep Timer Module Register Set List

Name	Storage Area	Sub-area	Address	Reset	Function		
CUS AFE8	Block0		0x07	0x53	Analog front end configuration register 8 , clock configuration register		
CUS_SYSCTL1	Block0		0x46	0x00	Sleep timer counting period register1		
CUS SYSCTL2	Block0	-	0x47	0x00	Sleep timer counting period register2		
CUS SYSCTL3	Block0		0x50	0x00	System control register3		
CUS_SYSCTL11	Block0		0x68	0x80	System control register11		
CUS SYSCTL12	Block0		0x69	0x00	System control register12		

CUS_AFE8 register

 CUS_AFE8
 Reset value: 0x53

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 Reserved
 HFOSC_CLK_SEL[1:0]
 LFOSC_LFXO_SEL
 PD_LFXO
 PD_LFOSC

	Name	Decription	Туре
		Sleep timer clock source selection.	
2	2 LFOSC_LFXO_SEL	Set to 0, select the internal 32 kHz low power oscillator.	R/W
		Set to 1, select the external 32.768 kHz crystal oscillator.	
_	DD LEVO	Set to 0, open 32.768 kHz crystal oscillator.	DAM
1	PD_LFXO	Set to 1, close 32.768 kHz crystal oscillator.	R/W
	DD 15000	Set to 0, open 32 kHz internal low-power crystal oscillator.	DAM
0	PD_LFOSC	Set to 1, close 32 kHz internal low-power crystal oscillator.	R/W

CUS_SYSCTL1 register

CUS_SYSCTL1 Reset value: 0x00
7 6 5 4 3 2 1 0

TIMER_M_SLEEP[7:0]

Name	Decription	Туре
TIMER_M_SLEEP	The lower 7 bits of sleep timer's M value. See CUS_SYSCTL2 below for details.	R/W

CUS_SYSCTL2 register

 CUS_SYSCTL2
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 TIMER_M_SLEEP[11:8]
 TIMER_R_SLEEP[3:0]

Name	Туре	
TIMER_M_SLEEP	The higher 4 bits of sleep timer's M value.	R/W
TIMER_R_SLEEP	The R value of sleep timer count period.	R/W

Notes: The sleep time timing period formula is as below.

$$T_{SLEEP} = M \times 2^{(R+1)} \times 31.25 us$$

M is the value of TIMER_M_SLEEP, R is the value of TIMER_R_SLEEP, 31.25 us corresponds to the internal 32 kHz clock.

CUS_SYSCTL3 register

 CUS_SYSCTL3
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 LED_I
 AFE_IR_
 SNOOZE_
 SNOOZE_DEBU
 LFRX_DEBUG
 LFRX_
 SLPT_WAKEUP_M
 SLEEP_TIMER

 NV
 EN
 EN
 ODE
 _EN

	Name	Decription	Туре
		Sleep timer operating mode selection[1].	
1	SLPT_WAKEUP_MODE	Set to 0, select RTC mode.	R/W
		Set to 1, select WAKEUP (wakeup only) mode.	
		Sleep timer enabling bit.	
0	SLEEP_TIMER_EN	Set to 0, disable sleep timer.	R/W
		Set to 1, enable sleep timer.	

Notes: The difference between RTC mode and WAKEUP mode is as follows.

RTC is a continuous timing mode and generates a flag when reaching period end regardless of system status. If the system is running, an interrupt can be generated (if the corresponding interrupt is enabled). However, if the system is in ShutDown mode, it awakes the system first, then after code laoding, it has processing according to the system software (such as re-entering the corresponding interrupt service). Therefore, the RTC mode is suitable for application senarios where strict timing is required. Generally, an external 32.768 kHz is recommended to produce a more accurate timing period in this case.

In WAKEUP mode (also known as wakeup-only mode), it only has timing when the system is in ShutDown mode. when the system is in non-ShutDown mode, it stops timing. Therefore, the main purpose is to wake up the system from ShutDown mode. The operation of WAKEUP mode is relatively simple with no interrupt service required. As the main function is to wakeup, It's more suitable for senarios with non-strict timing requirement, namely, it only needs to wake up the system winthin a certain period.

CUS_SYSCTL11 register

CUS_SYSCTL11 Reset value: 0x80

	6	5	4	3	2	1	0
SLPT_MANU_	Reserv	Reserv	SNOOZE_MANU	LBD_MANU_	LFRX_MANU_	SLPT_MANU_	BUT_MANU_
RSTN	ed	ed	_CLR	CLR	CLR	CLR	CLR

Name		Decription				
7	SLPT_MANU_RSTN	When the system needs to reconfigure the sleep timer parameters, users need to reset the sleep timer. The specific operation is: set this bit to 0 first, and then set it to 1. This bit is set to 1 by default.	R/W			
1	SLPT_MANU_CLR	When the system is woken up by the sleep timer (in RTC or WAKEUP mode), this bit needs to be manually set to 1, that is, the interrupt flag is cleared, then system automatically resets the bit to 0.	R/W			

CUS_SYSCTL12 register

CUS_SYSCTL12 Reset value: 0x00

7	6	5	4	3	2	1	0
December	SNOOZE_		WIZID DACC	CVNC DACC	LFRX_SIGNA	SLEEP_TIMES	KEY_LAUNC
Reserved	WAKEUP		WKID_PASS	SYNC_PASS	L_OK	UP	Н

Name		Name	Decription					
Ī	1	SLEEP_TIMESUP	Sleep timer timing period full flag (namely wake/interrupt flag). Valid when reading as 1.	R				

3.17 Interrupt Related Register Set

Table 18. Interrupt Related Register Set List

Name	Storage Area	Sub-area	Address	Reset	Function
TCON	Block1	Bank0	0x88	0x00	Timer1 control register (see Section 3.2 Timer1 register set for details)
<u>IENO</u>	Block1	Bank0	0xA8	0x00	Interrupt enabling register0 (see Section 3.1 8051 core register set for details)
IPL0	Block1	Bank0	0xB8	0x00	Interrupt priority register0 (see Section 3.1 8051 core register set for details)
IEN1	Block1	Bank0	0xE6	0x00	Interrupt enabling register1 (see Section 3.1 8051 core register set for details)
IRCON1	Block1	Bank0	0xF1	0x00	Peripheral interrupt request flag register (see Section 3.1 8051 core register set for details)
IPL1	Block1	Bank0	0xF6	0x00	Interrupt priority register1 (see Section 3.1 8051 core register set for details)
IRQ0_SEL	Block1	Bank0	0xAF	0x00	external interrupt 0 configuration register
IRQ1_SEL	Block1	Bank0	0xB0	0x00	external interrupt 1 configuration register
IRQ2 SEL	Block1	Bank0	0xB1	0x00	external interrupt 2 configuration register
IRQ3_SEL	Block1	Bank0	0xB2	0x00	external interrupt 3 configuration register
IRQ4 SEL	Block1	Bank0	0xB3	0x00	external interrupt 4 configuration register
IRQ5 SEL	Block1	Bank0	0xB4	0x00	external interrupt 5 configuration register
IRQ6_SEL	Block1	Bank0	0xB5	0x00	external interrupt 6 configuration register
IRQ7_SEL	Block1	Bank0	0xB6	0x00	external interrupt 7 configuration register

• IRQn_SEL register (n=[7:0])

IRQn_SEL Reset value: 0x00

7	6	5	4	3	2	1	0
Reserved	IRQ_SW[n]			IRQn	_SEL[5:0]		

	Name			Decription		Туре				
6	IRQ_SW[n]	Interrupt polarity selection of external interrupt source n ^[1] Set to 0, the falling edge triggers the interrupt. Set to 1, the rising edge triggers the interrupt.								
		External Interrupt triggering selection.								
		Value	Interrupt Source Signal	Polarity	Description					
		0x0F - 0x00	GPIO_IN_[15:0]	Depending on different port	GPIO[15:0] interrupt					
		0x10	SLEEP_TIMESUP	Rising edge	Sleep timer interrupt signal					
		0x11	LFRX_MCU_RCLK	Rising edge	Low frequency data clock interrupt signal					
		0x12	LFRX_MCU_RDATA	Depending on different data	Low frequency data interrupt signal					
		0x13	GPIO_IN_16	Depending on different port	GPIO16 port interrupt					
		0x14	WKID_PASS	Rising edge	Successful low frequency wakeup ID matching					
		0x15	SYNC_PASS	Rising edge	Successful low frequency sync word matching					
		0x16	SAR_DATA_UPDATE	Rising edge	ADC conversion complete interrupt					
5.0	المام والما	0x17	LFRX_SIGNAL_OK	Rising edge	Valid Low frequency carrier detection interrupt	DAM				
5:0	5:0 IRQn_SEL	0x18	TMRA_IFG	Rising edge	TimerA interrupt signal	R/W				
		0x19	TACCR0_IFG	Depending on different input	TimerA capture 0 interupt signal					
		0x1A	TACCR1_IFG	Depending on different input	TimerA capture 1 interupt signal					
		0x1B	TACCR2_IFG	Depending on different input	TimerA capture 2 interupt signal					
		0x1C	TX_SYM_EMPTY	Rising edge	High frequency transmission complete interrupt					
	M	0x1D	SPI_TXE	Rising edge	SPI bus transmission empty interrupt					
		0x1E	SPI_RXNE	Rising edge	SPI bus receiving non-empty interrupt					
`		0x1F	TMRB_IFG	Rising edge	TimerB interrupt signal					
		0x20	TBCCR0_IFG	Depending on different input	TimerB capture 0 interrupt signal					
		0x21	TBCCR1_IFG	Depending on different input	TimerB capture 1 interrupt signal					
		0x22	TBCCR2_IFG	Depending on different input	TimerB capture 2 interrupt signal					

Note [1]:

- For external interrupt 2-7, it only supports the edge triggering mode and the interrupt polarity selection is matched according to the polarity in the interrupt source signal table.
- For external interrupts 0 and 1, when the edge-triggered interrupt is selected, the polarity selection is the same as that of the external interrupt 2-7. If the level triggering interrupt mode is selected, when IRQ_SW[0/1] = 0, it's ative low; when IRQ_SW[0/1] = 1, it's active high.

3.18 System Related register Set

Table 19. System Related register Set

Name	Storage Area	Sub-area	Address	Reset	Function
CUS AFE8	Block0		0x07	0x53	Analog front end configuration register8, clock configuration
COS_AI LO	DIOCKO		0.07	0,00	register
CUS_SYSCTL18	Block0		0x6F	0x00	System clock control register18, clock ourput control register
CUS_SYSCTL20	Block0		0x70		System control register19
CLK SYS DIV	Block0		0x71	0x13	System control register20
SYS_CTL	Block0		0x79		X

CUS_AFE8 register

 CUS_AFE8
 Reset value: 0x53

 7
 6
 5
 4
 3
 2
 1
 0

 Reserved
 Reserved
 HFOSC_CLK_SEL[1:0]
 LFOSC_LFXO_SEL
 PD_LFXO
 PD_LFOSC

	Name	Decription	Туре
4:3	HFOSC_CLK_SEL ^[1]	Internal high speed RC (HFOSC) frequency selection. 2'b00, HFOSC = 3 MHz.	R/W
	555_52.1522	2'b01, HFOSC = 12 MHz. 2'b10 and 11, HFOSC = 24 MHz (default) .	. 4
2	LFOSC_LFXO_SEL	Sleep timer clock source selection. Set to 0, select the internal 32 kHz low power oscillator. Set to 1, select the external 32.768 kHz crystal oscillator.	R/W
1	PD_LFXO	Set to 0, open the 32.768 kHz cryatal oscillator. Set to 1, close the 32.768 kHz cryatal oscillator.	R/W
0	PD_LFOSC	Set to 0, open the 32 kHz low-power oscillator. Set to 1, close the 32 kHz low-power oscillator.	R/W

Notes:

- 1. The system current consume is different for HFOSC when different frequencies are selected. For example, the current consumption of 24 MHz is greater than that of 12 MHz and the 12 MHz consumption current is greater than that of 3 MHz similarly. Please refer to the data sheet document for specific current consumption. In addition, HFOSC supports frequency switching during operating, which can be set by calling the API function sys_set_hfosc_clk_sel. Moreover, it should be noted that HFOSC also serves as the clock source for some peripherals (such as Timer1, TimerA/B, etc.), so the modification will also affect the operating time of the associated peripherals.
- 2. After the clock frequency switching through HFOSC_CLK_SEL (or using the API function sys_set_hfosc_clk_sel), it is recommended to use the clock calibration function cal_hfosc_clk_high_coase_calibration to calibrate the clock.

CUS_SYSCTL18 register

CUS_SYSCTL18 Reset value: 0x00 3 2 1 Reserve PAD_GROUP2_ PAD_GROUP1_ LFOSC_CLKOUT_ HFOSC_CLKOUT_ Reserve Reserve Reserve ΕN ΕN ΕN ΕN

	Name	Decription	Туре
3	PAD_GROUP2_EN	Co-work with LFOSC_CLKOUT_EN and HFOSC_CLKOUT_EN, refer to	DAM
2	PAD_GROUP1_EN	the below table for details.	R/W
1	LFOSC_CLKOUT_EN	Low speed clock(intrnal 32 kHz or exteral 32.768 kHz) output enabling control. Set to 0, low speed clock does not output. Set to 1, low speed clock outputs. Refer to below table for the GPIO mapping.	R/W
0	HFOSC_CLKOUT_EN	High speed clock output (HFOSC) enabling control. Set to 0, high speed clock does not output. Set to 1, high speed clock outputs. Refer to below table for the GPIO mapping.	R/W

When LFOSC_CLKOUT_EN=1 or HFOSC_CLKOUT_EN=1,

PAD_GROUP1_EN	PAD_GROUP2_EN	Low Speed Clock GPIO Mapping
0	0	GPIO8, namey B0 pin (default)
1	0	GPIO4, namely A4 pin.
0	1	GPIO15, , namely B7pin.

Notes: Cannot set LFOSC_CLKOUT_EN and HFOSC_CLKOUT_EN to 1 at the same time.

• CUS_SYSCTL20 register

	Name	Decription	Туре
		The Charge Pump selection when loading the OTP code.	
		2'b00, using the internal Charge Pump each time.	
6:5	OTP_CP_VCC_SELN ^[1]	2'b01, smart mode, having VTH comparison to determine whether to use	R/W
0.5	OTP_CP_VCC_SELIN	Charge Pump.	FC/VV
		2'b10, Reserved, the user cannot select this item.	
		2'b11, disable the internal Charge Pump.	
		VTH threshold selection in smart mode (OTP_CP_VCC_SELN=01).	
4	OTP_CP_VTH_SEL	Set to 0, VTH is 2.4 V.	R/W
		Set to 0, VTH is 2.8 V.	

Notes: After waking up from ShutDown mode, it loads the running code from OTP into PRAM. This loading process requires reliable power supply, therefore a ChargePump is provided internally. By default, Charge Pump operates upon each code loading. The loading process consumes extra Charge Pump current compared with current consumption of the operating state. If smart

mode is selected, it will compared VCC with the VTH setting. If it is higher than VTH, ChargePump is not used when loading code. Otherwise if it is lower than VTH, ChargePump will be used. If the internal ChargePump is disabled, it will use VCC power supply for each code loading, which is not recommended generally. This register will affect the system operation. Recommend users adopt the default settings. If the product has special requirements on power consumption, please verify the settings carefully!

• CLK_SYS_DIV register

CLK_SYS_D	IV					R	eset value: 0x00
7	6	5	4	3	2	1	0
Reserved	LFRX_MCU_RCLK	LFRX_MCU_RDATA	Reserved		CLK_S	YS_DIV[3:0]	

	Name			Decription		Туре
		System clock	division ratio sel	ection (HFOSC div	vision).	
		Value	DIV	Value	DIV	>
	0114 0140 0114	0xxx	1	1000	2	544
3:0	CLK_SYS_DIV ^[1]	1001	4	1010	8	R/W
		1011	16	1100	32	
		1101	64	1110	128	
		1111	256			

Note [1]: The HFOSC frequency division can be set by calling the API function sys_set_system_clk_divider.

SYS_CTL register

 SYS_CTL
 Reset value: 0x00

 7
 6
 5
 4
 3
 2
 1
 0

 SFR_CLK_GATE_EN
 Reserved
 Reserved
 Reserved
 Reserved
 Reserved
 Reserved
 Reserved

Name		Decription	Туре
		SFR regisster clock threshold control.	
7	SFR_CLK_GATE_EN	Set to 0, enable.	R/W
		Set to 1, disable.	

Notes:

- 1. This control bit is used to control the SFR register clock. If it is set to 1, the SFR register clock is stopped. At the same time, the access operation of the SFR register can no longer be performed, but it can save some power consumption during operation. For non-special scenarios, users are advised to use it with caution!
- 2. SFR mainly refers to the SFR registers in the Block0 and Block1 areas, but does not include the 8051 core register set (see Table 2 for details).

4 Revise History

Table 20. Revise History Records

Version No.	Chapter	Description	Date
0.5	All	Initial version	2019-06-05
0.5E	All	Modify/add info	2019-12-25

5 Contacts

CMOSTEK Microelectronics Co., Ltd. Shenzhen Branch

Address: 2/F Building 3, Pingshan Private Enterprise S.T. Park, Xili, Nanshan District, Shenzhen, Guangdong, China

Tel: +86-755-83231427

Post Code: 518071

 Sales:
 sales@cmostek.com

 Supports:
 support@cmostek.com

 Website:
 www.cmostek.com

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.