

SESA2025 Mechanics of Flight Background knowledge & definitions

Lecture 0.3: Aerodynamics

Aerodynamics background

Building on SESA2022

Introduction

Just a note before we start

- We look at the effect of aerodynamic forces on the motion (trim, static stability, response to perturbations) of the aircraft (Mechanics of Flight)
- We make use of aerodynamic tools/concepts/equations from SESA2022
- We do not rederive these tools, but you need to know:
 - where they come from
 - when they can be used

Wings/Airfoils

Nomenclature

- Airfoils (Aerofoils) are 2D sections
 - 2D simulations or theory
 - wall-to-wall wind tunnel models
 - infinite span
- Wings have ends
 - finite-span
 - new flow physics
- Different aerodynamic performance, but ...
- For this module, we need to understand the impact on the aircraft performance

Downwash effect III

As known from aero the lift follows an ellipticish distribution, both on the main wing and tailplane

These wing tip vortices induce a downwash on the wing itself and in its wake.

The effective downwash velocity for the complete wing can be obtained by using lifting line theory.

Olivier Cleynen on Wikimedia [accessed 22 July 2018] licensed under <u>CC BY-SA 3.0</u>

Downwash effect on lift

For a 2D (infinite) wing:

$$C_l = C_{l_{\alpha}}(\alpha - \alpha_0) = \alpha_0(\alpha - \alpha_0)$$

$$C_{l_{\alpha}} = \frac{\mathrm{d}C_{l}}{\mathrm{d}\alpha} \stackrel{\mathrm{def}}{=} a_{0}$$

Downwash effect on lift

For a finite wing, the (average) downwash changes the effective angle of attack:

$$\alpha_{eff} = \alpha - \alpha_0 - \varepsilon$$

which in turn affects the lift generated by the finite wing:

$$C_L = C_{l_{\alpha}} \alpha_{eff} = C_{l_{\alpha}} (\alpha - \alpha_0 - \varepsilon)$$

Downwash effect on lift I

Given the downwash angle:

$$\varepsilon = \varepsilon_{\alpha}(\alpha - \alpha_0) = \frac{C_L}{\pi A e}$$

Since downwash is caused by lift (conservation of momentum) we can tell (using small angle approxiamtions) that epsilon will be somewhat proportional to C L

e is the oswold thingy

e could be larger than one if you account for the effect of winglets

Aircraft body axis

Main wing zero-lift line

epselon alpha = d epsilon/d alpha

The wing lift coefficient is: Plug ^ into lift equation to

$$C_L = C_{l_{\alpha}} \alpha_{eff} = a_0 (\alpha - \alpha_0 - \varepsilon) = a_0 \left(\alpha - \alpha_0 - \frac{C_L}{\pi A e} \right)$$

Rearranging for C L^ becomes V

Therefore:

$$C_L = a_0 \frac{\pi A e}{\pi A e + a_0} (\alpha - \alpha_0) = C_{L_\alpha} (\alpha - \alpha_0)$$

$$C_{L_{\alpha}} = \frac{\mathrm{d}C_L}{\mathrm{d}\alpha}$$

Downwash effect on lift II

Due to downwash, a finite (3D) wing's lift, C_L , is related to that of an infinite (2D) wing C_l , by:

$$C_l = a_0(\alpha - \alpha_0)$$

$$C_L = a_0 \frac{\pi A e}{\pi A e + a_0} (\alpha - \alpha_0)$$

Downwash effect on lift II

Due to downwash, a finite (3D) wing's lift, C_L , is related to that of an infinite (2D) wing C_l , by:

$$C_l = a_0(\alpha - \alpha_0)$$

As predicted by theory, increasing aspect ratio tends closed to a_0

$$C_L = a_0 \frac{\pi A e}{\pi A e + a_0} (\alpha - \alpha_0)$$

Analogy with materials

 $C_{L_{\alpha}}$ analogy with Young's modulus

just an analogy

Impact on longitudinal static stability

Look at changes of net pitching moment with changes in angle of attack (from lecture 0.1)

+ve nose up $C_{M_{CG}}$ $+\Delta C_{M_{CG}}$ α $+\Delta\alpha$ Statically unstable

Impact on longitudinal static stability

Effect of the aspect ratio

Pitching moment around CG

$$M_{CG} = L \times (x_{AC} - x_{CG}) + M_0 + \dots$$

• Differentiate w.r.t. α

$$\frac{dM_{CG}}{d\alpha} = \frac{dL}{d\alpha} \times (x_{AC} - x_{CG}) + \dots \qquad AC$$

· Tail plane contribution is also affected by downwash!

Downwash effect on drag I

Given the downwash angle due to the trailing vortices:

$$\varepsilon = \varepsilon_{\alpha}(\alpha - \alpha_0) = \frac{C_L}{\pi A e}$$

The effective lift force gets tilted backwards and this induces additional drag; for small angles: $\sin \varepsilon \approx \varepsilon$, therefore this vortexinduced drag is:

$$C_{D_i} = C_L \varepsilon = \frac{C_L^2}{\pi A e}$$

