Def: Произведение операторов (композиция)

 \mathcal{AB} - произведение, $\mathcal{A}: V \to W; \ \mathcal{B}: U \to V$

 $(\mathcal{AB})x = \mathcal{A}(\mathcal{B}x); \quad x \in U$

Свойства: <u>Lab</u> доказать

 $1^* \lambda(\mathcal{AB}) = (\lambda \mathcal{A})\mathcal{B}$

 $2^* (\mathcal{A} + \mathcal{B})C = \mathcal{A}C + \mathcal{B}C$

 $3^* \mathcal{A}(\mathcal{B} + \mathcal{C}) = \mathcal{A}\mathcal{B} + \mathcal{A}\mathcal{C}$

 $4^* \mathcal{A}(\mathcal{B}C) = (\mathcal{A}\mathcal{B})C$

Nota: Можно обобщить 4^* на n равных \mathcal{A}

 $Def \colon \mathcal{A}^n = \mathcal{A} \cdot \mathcal{A} \dots \mathcal{A}$ - n раз, степень оператора

Свойства: $\mathcal{A}^{m+n} = \mathcal{A}^n \cdot \mathcal{A}^m$

2.3 Обратимость оператора

 $Def \colon \mathcal{A} \colon V \to W \text{ так, что } \mathcal{A}V = W \text{ и } \forall x_1 \neq x_2(x_1, x_2 \in V) \qquad \begin{cases} y_1 = \mathcal{A}x_1 \\ y_2 = \mathcal{A}x_2 \end{cases} \implies y_1 \neq y_2$

Тогда $\mathcal A$ называется взаимно-однозначно действующим

Nota: Проще сказать «линейный изоморфизм»

 $\mathit{Th.}\ \{x_i\}$ - линейно независима $\stackrel{\mathcal{A}x=y}{\longrightarrow} \{y_i\}$ - линейно независима

В обратную сторону, если $\mathcal A$ - взаимно-однозначен

 $\square \sqsupset \mathcal{A}: V \to W$ и $\mathsf{0}_V, \mathsf{0}_W$ - нули V и W соответственно

1. $\mathcal{A}(0_V) = \mathcal{A}(\sum_{i=1}^k 0 \cdot e_i) = \sum_{i=1}^k 0 \cdot \mathcal{A}e_i = 0_W$

2. Докажем, что если $x_i \subset V$ - лин. нез., то $y_i \subset W$ - лин. нез.

Составим $\Sigma_{i=1}^m \lambda_j y_j = 0_W$ (От противного) $\exists \{y_i\}$ - лин. зав., тогда $\exists \lambda_k \neq 0$

При этом $\forall j$ $y_j = \mathcal{A}x_j$ (т. к. \mathcal{A} - вз.-однозн., то n' = m': кол-во x_i и y_i равно)

 $\Sigma_{j=1}^{m'} \lambda_j \mathcal{A} x_j \stackrel{\text{линейность}}{=} \mathcal{A}(\Sigma_{j=1}^{m'} \lambda_j x_j) = 0_W$

Так как $\mathcal{A}0_V=0_W$, то 0_W - образ $x=0_V$, но так как \mathcal{A} - вз.-однозн., то $\nexists x'\neq x\mid \mathcal{A}(x')=0_W$

Значит $\Sigma_{j=1}^{m'}\lambda_j x_j = 0_V$, но $\exists \lambda_k \neq 0 \Longrightarrow \{x_j\}$ - лин. зав. - <u>противоречие</u>

3. \sqsupset теперь $\{y_i\}$ - л. нез., а $\{x_i\}$ (по предположению от противного) - лин. зав.

$$\sum_{i=1}^{n'} \lambda_i x_i \stackrel{\exists \lambda_k \neq 0}{=} 0_V \quad | \mathcal{A}$$

$$\sum_{i=1}^{n'} \lambda_i \mathcal{A} x_i = 0_W$$

При этом $\exists \lambda_k \neq 0 \Longrightarrow \{y_i\}$ - лин. зав. - противоречие

Следствие: $\dim V = \dim W \longleftarrow \mathcal{A}$ - лин. изоморфизм

 $Def \colon \mathcal{B} : W \to V$ называется обратным оператором для $\mathcal{A} : V \to W$

если $\mathcal{B}\mathcal{A} = \mathcal{A}\mathcal{B} = I$ (обозначается $\mathcal{B} = \mathcal{A}^{-1}$)

Следствие: $\mathcal{A}\mathcal{A}^{-1}x = x$

$$Th. \ \mathcal{A}x = 0$$
 и $\exists \mathcal{A}^{-1}$, тогда $x = 0$

$$\square \mathcal{A}^{-1} \mathcal{A} x = \mathcal{A}^{-1} (\mathcal{A} x) = \mathcal{A}^{-1} 0_W = 0_V \Longrightarrow x = 0$$

 Th . H. и Д. условия существования \mathcal{A}^{-1}

 $\exists \mathcal{A}^{-1} \Longleftrightarrow \mathcal{A}$ - вз.-однозн.

$$\square \Longrightarrow \exists \mathcal{A}^{-1}$$
, но $\square \mathcal{A}$ - не вз.-однозн., то есть $\exists x_1, x_2 \in V(x_1 \neq x_2) \mid \mathcal{A}x_1 = \mathcal{A}x_2 \Longleftrightarrow \mathcal{A}x_1 - \exists \mathcal{A}^{-1}$

 $\mathcal{A}x_2=0 \Longleftrightarrow \mathcal{A}(x_1-x_2)=0_W \stackrel{\exists \mathcal{A}^{-1}}{\Longrightarrow} x=0_V \Longleftrightarrow x_1=x_2$ - противоречие

 \Leftarrow Так как \mathcal{A} - изоморфизм (не учитывая линейность), то $\exists \mathcal{A}'$ - обратное отображение (не обязат. линейное)

Докажем, что $\mathcal{A}':W\to V$ - линейный оператор

?
$$\mathcal{A}'(\Sigma \lambda_i y_i) = \Sigma \lambda_i \mathcal{A}' y_i = \Sigma \lambda_i x_i$$

$$\mathcal A$$
 - вз.-однозн. $\Longleftrightarrow \forall x_i \longleftrightarrow y_i \quad \Big| \cdot \lambda_i, \Sigma$

 $\mathcal{A}(\Sigma \lambda_i x_i) = \mathcal{A} x = y = \Sigma \lambda_i y_i$ и y имеет только один прообраз x

Применим \mathcal{H}' к $y = \Sigma \lambda_i y_i$ $\mathcal{H}' y = x = \Sigma \lambda_i x_i$ - единственный прообраз y

Таким образом, \mathcal{A}' переводит лин. комбинацию в такую же лин. комбинацию прообразов, то есть \mathcal{A}' - линейный: $\mathcal{A}' = \mathcal{A}^{-1}$

2.4 Матрица ЛО

 $\mathcal{A}: V^n \to W^m$

Возьмем вектор $x \in V^n$ и разложим по какому-либо базису $\{e_i\}_{i=1}^n$

$$\mathcal{A}x = \mathcal{A}(\Sigma_{j=1}^n c_j e_j) = \Sigma_{j=1}^n c_j \mathcal{A}e_j$$

$$\mathcal{A}x = \mathcal{A}(\Sigma_{j=1}^{n}c_{j}e_{j}) = \Sigma_{j=1}^{n}c_{j}\mathcal{A}e_{j}$$

$$\mathcal{A}e_{j} \stackrel{\text{oбраз базисного вектора}}{=} y_{j} \stackrel{\{f_{i}\}-\text{ базис }W^{m}}{=} \Sigma_{i=1}^{m}a_{ij}f_{i}$$

$$\mathcal{A}x = \Sigma_{j=1}^{n}c_{j}\mathcal{A}e_{j} = \Sigma_{j=1}^{n}c_{j}\Sigma_{i=1}^{m}a_{ij}f_{i} = \Sigma_{j=1}^{n}\Sigma_{i=1}^{m}c_{j}a_{ij}f_{i} = \Sigma_{j=1}^{m}\Sigma_{j=1}^{n}c_{j}a_{ij}f_{i}$$

Иллюстрация:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Def: Матрица $A=a_{ij}{}_{i=1..m,\,j=1..n}$ называется матрицей оператора $\mathcal{H}:V^n\to W^m$ в базисе $\{e_j\}_{j=1}^n$ пространства V^n

Вопросы:

- 1) \forall ? \mathcal{A} $\exists A$
- 2) ∀?*A* ∃*A*
- 3) если $\exists A$ для \mathcal{A} , то единственная?
- 4) если $\exists \mathcal{A}$ для A, то единственная?

Ответы:

- 1) При выбранном базисе $\{e_i\} \ \forall \mathcal{A} \ \exists A \ (алгоритм выше)$
- 3) такая A единственная \Longrightarrow в разных базисах матрицы ЛО \mathcal{A} $A_e \neq A_{e'}$
- 2) $\forall A_{m\times n}$ можно взять пару ЛП V^n, W^m и определить $\mathcal{A}: V^n \to W_n$ по правилу $\mathcal{A}e_V = e'_W$
- 4) Lab

Nota: Далее будем решать две задачи

- 1) преобразование координат как действие оператора
- 2) поиск наиболее простой матрицы в некотором базисе

2.5 Ядро и образ оператора

 $Def\colon \mathsf{Ядро}$ оператора - $Ker\mathcal{A}\stackrel{def}{=}\{x\in V\ |\ \mathcal{A}x=\mathtt{O}_W\}$

 $Def\colon$ Образ оператора - $Im\mathcal{A}\stackrel{def}{=}\{y\in W\ |\ \mathcal{A}x=y\}$

 $Nota : Ker \mathcal{A}$ и $Im \mathcal{A}$ - подпространства