Network Problem Models

Author | Ishank Juneja

May 27, 2018

1 Introduction

Some of the problems modelled as Network problems are :

- 1. Transportation Problem
- 2. Assignment Problem
- 3. Minimum Spanning Problem
- 4. Shortest path problem
- 5. Maximum flow problem
- 6. Min cost flow problem

The commonality as they are all associated with an underlying Graph.

2 Minimum Spanning Tree Problem

To obtained a spanning tree for a given undirected, connected graph such that sum of edge weights is minimum.

Prim's Algorithm

The algorithm maintains two arrays $S_1 = \{ \text{Set of nodes which have been added to spanning tree} \}$ and $S_2 = \{ \text{Rest of the nodes} \}$.

To start off, we put the arc with minimum weight into the spanning tree.

In every subsequent Iteration the aim is to add nodes from S_2 to S_1 . We do so by checking for all possible connection from nodes in S_1 to those in S_2 .

From all these possible connections we pick the one with the least edge weight and move the corresponding end point node from S_2 to S_1 . Ties in edge weights are broken arbitrarily.

1.
$$S_1 = \{1, 2\}, S_2 = \{3, 4, 5\}$$

2.
$$S_1 = \{1, 2, 3\}, S_2 = \{4, 5\}$$

3.
$$S_1 = \{1, 2, 3, 5\}, S_2 = \{4\}$$

4.
$$S_1 = \{1, 2, 3, 4, 5\}, S_2 = \{\}$$

Figure 1: Prim's Algorithm Illustration

Kruskals Algorithm

- 1. Arrange edge weights in non decreasing order
 - 1-25
 - 3-56
 - 1-36
 - 2-56
 - 2-37
 - 4-58
 - 2-48
 - 3-48
- 2. Follows roughly the same procedure. Go down the list, any edge encountered is added to the spanning tree if the addition does not create a cycle (Thereby breaking the Tree property).
- 3. Like Prim's we will get one of the optimal spanning trees.

Reasoning

Cut Optimality Theorem For every edge $i-j \in T^*$, the minimal spanning tree, $c_{ij} \leq c_{kl} \quad \forall \quad k, l$ in the cut obtained by deleting i-j from the tree.

Prim's is a direct implementation of Cut Optimality.

Path Optimality Theorem For every non tree edge (k,l), $c_{ij} \leq c_{kl}$, $(i,j) \in T^*$. Kruskals method is a direct implementation of Path Optimality.

3 Shortest path Problem: Dijkstra's Algorithm

Find Shortest path from node 1 to node 7.

Figure 2: Prim's Algorithm Illustration

- 1. Start from node 1, cost = 0. Node 1 will now not be visited again. Jump to the next destination with minimum total cost starting from node 1. In this case node 2.
- 2. At node 2, cost incurred = 15, node 2 will not be visited again, options 3 (d = 20), 4 (d = 25), 5 (d = 40). Hence go to node 3 next.

3. At 3, discover better path for 5, discover 6 and move to 4 next. And so on...

An assumption in the algorithm is that edge weights $c_{ij} \geq 0$

Extensions of Dijkstra's Algorithm

The algorithm solves

- Fixed source to fixed destination (std. case)
- Fixed source to any destination (already solved)
- Any source to given destination (Applying Algorithm in reverse i.e on destination)
- Any source to any destination (N-1 iterations of Algorithm)

Formulation as Programming Problem

We are trying to formulate the original 1 -> 7 shortest path problem as a programming problem.

 $X_{ij} = 1$ if arc i-j lies in the shortest path, = 0 otherwise.

Minimize $\sum c_{ij}X_{ij}$ subject to the constraints

 $X_{12} + X_{13} = 1$. At least one of them must be true for there to be a path.

$$-X_{12}+X_{24}+X_{25}=0$$
 Like a KCL on node 2

$$-X_{13} + X_{34} + X_{36} = 0$$

$$-X_{24} - X_{34} + X_{45} + X_{46} + X_{47} = 0$$

$$-X_{25} - X_{45} + X_{57} = 0$$

$$-X_{36} - X_{46} + X_{67} = 0$$

$$X_{47} - X_{57} - X_{67} = 1$$

Uni-modularity Property: Even if we relax Binary assumption solutions will still be (0,1).

3.1 Negative Edge Weights

Solved using Bellman-Ford Algorithm. CS213 course.

4 References

1. Advanced OR NPTEL, G Srinivasan IIT Madras