Normalisasi Tabel

Bentuk Normalisasi

- Bentuk tidak normal (Unnormalized Form)
- ☐ Bentuk Normal Kesatu (1NF)
- ☐ Bentuk Normal Kedua (2NF)
- ☐ Bentuk Normal Ketiga (3NF)
- ☐ Boyce-Codd Normal Form (BCNF)
- ☐ Bentuk Normal Ke Empat (4NF)
- ☐ Bentuk Normal Ke Lima (5NF)

First Normal Form (1NF)

Tabel: Sales

IDSales	NamaSales	Telepon ←
ADN006	Yeni, SE	3517261, 3520165
ADN007	Memey	4744621,08122861427
ADN008	Tina	08566241521
ADN009	Ir. Yanto	7265122, 7123910
ADN010	Made	6722102

IDSales	NamaSales	Telepon			
ADN006	Yeni, SE	3517261			
ADN006	Yeni, SE	3520165			
ADN007	Memey	4744621			
ADN007	Memey	08122861427			
ADN008	Tina	08566241521			
ADN009	Ir. Yanto	7265122			
ADN009	Ir. Yanto	7123910			
ADN010	Made	6723192			

Unnormalized Not 1NF

First Normal Form (1NF)

Tabel: Buku

repeated

ISBN	Thn_Terbit	ID_Pengarang	Nama_Pengarang	ID_Pengarang	Nama_Pengarang
12-1202-19222	1992	K0121	Aris M	K1021	Kosim P
11-1090-29101	2001	K1021	Kosim P		
11-1090-29102	2001	K2091	K Odelia	K0121	Aris M
12-1201-90871	2002	K2092	Renaldi	K2091	K Odelia
13-2089-12910	2001	K2019	Samsuri J		

ISBN	Thn_Terbit	ID_Pengarang	Nama_Pengarang
12-1202-19222	1992	K0121	Aris M
12-1202-19222	1992	K1021	Kosim P
11-1090-29101	2001	K1021	Kosim P
11-1090-29102	2001	K2091	K Odelia
11-1090-29102	2001	K0121	Aris M
12-1201-90871	2002	K2092	Renaldi
12-1201-90871	2002	K2091	K Odelia
13-2089-12910	2001	K2019	Samsuri J

1NF

- Suatu relasi disebut memenuhi bentuk normal kedua (2NF) jika dan hanya jika :
 - 1. memenuhi 1NF
 - 2. setiap atribut yang bukan kunci utama tergantung secara fungsional terhadap semua atribut kunci dan bukan hanya sebagian atribut kunci (fully functionally dependent).
- Untuk normalisasi ke bentuk 2NF, maka tabel 1NF didekomposisi menjadi beberapa tabel yang masing-masing memenuhi 2NF.
- Bila terdapat ketergantungan parsial maka : eliminate.
- Tujuan membentuk 2NF :
 - :: semantik tabel 2NF menjadi lebih eksplisit (fully FD)
 - :: mengurangi update anomali yang masih mungkin terjadi pada 1NF

Diketahui Workshop = $(\underline{NIM}, \underline{Modul}, \underline{Biaya}, \underline{Grade})$

Peserta Workshop

NIM	<u>Modul</u>	Biaya	Grade
		<u> </u>	(E

Key: NIM+Modul

FD : Modul → Biaya

(Biaya ditentukan oleh Modul yang diambil mahasiswa)

Tabel biaya peserta workshop

<u>NIM</u>	Modul	Biaya	Grade
P11.2004.0129	VB.Net	250000	Α
P11.2004.0130	Prolog	100000	Α
P11.2004.0129	Prolog	100000	В
P11.2004.0201	Delphi 6	150000	Α
P11.2004.0250	VB.Net	250000	В

- 1NF
- Not 2NF
 Sebab dalam tabel ini,
 Biaya tidak bergantung penuh pada atribut kunci (NIM,Modul)

(NIM,Modul) = key (Modul) → Biaya (partial) (NIM,Modul) → Grade (full)

Eliminate

Make Decomposition:

Works1 = (NIM, Modul, Grade)

Works2 = (Modul, Biaya)

Fully Dependency

Workshop

NIM	<u>Modul</u>	Biaya	Grade
P11.2004.0129	VB.Net	250000	Α
P11.2004.0130	Prolog	100000	Α
P11.2004.0129	Prolog	100000	В
P11.2004.0201	Delphi 6	150000	Α
P11.2004.0250	VB.Net	250000	В

Better Then 1NF

NIM	Modul	Grade
P11.2004.0129	VB.Net	Α
P11.2004.0130	Prolog	Α
P11.2004.0129	Prolog	В
P11.2004.0201	Delphi 6	6 A
P11.2004.0250	VB.Net	В

Works1

	
Modul	Biaya
VB.Net	250000
Prolog	100000
Delphi 6	150000

Works2

- Suatu relasi disebut memenuhi bentuk normal ketiga (3NF) jika dan hanya jika :
 - 1. memenuhi 2NF
 - 2. setiap atribut yang bukan kunci tidak tergantung secara fungsional terhadap atribut bukan kunci yang lain dalam relasi tsb (tidak terdapat ketergantungan transitif pada atribut bukan kunci).

Another Definition:

- Suatu relasi disebut memenuhi bentuk normal ketiga (3NF) jika dan hanya jika setiap FD nontrivial : X → A, dimana X dan A atribut (atau kompositnya), memenuhi salah satu kondisi :
 - 1. X adalah superkey <u>atau</u>
 - 2. A merupakan anggota candidate key

- Jika suatu relasi sudah memenuhi 2NF tapi tidak memenuhi 3 NF, maka untuk normalisasi ke bentuk 3NF, tabel 2NF didekomposisi menjadi beberapa tabel hingga masing-masing memenuhi 3NF.
- Tujuan membentuk 3NF :
 - :: semantik tabel 3NF menjadi lebih eksplisit (fully FD hanya pada primary key).
 - :: menghindari update anomali yang masih mungkin terjadi pada 2NF.

Note:

Jika suatu relasi memenuhi 2NF dan hanya memiliki tepat satu atribut yang bukan kunci utama maka relasi tsb memenuhi 3NF

Misal diketahui struktur informasi dari suatu dokumen supplier :

S	Status	City	F	Q
			Р	Qty
S1	20	LONDON	P1	300
			P2	200
			Р3	400
			P4	200
			P5	100
			P6	100
S2	10	PARIS	P1	300
			P2	400
S3	10	PARIS	P2	200
S4	20	LONDON	P2	200
			P4	399
			P5	400

Akan dibentuk suatu tabel dengan skema TPS=(S,Status,City,P,Qty) dengan (S,P) = primary key dan berlaku FD:

S→Status

S→City

City→Status

Lakukan normalisasi dari 1NF hingga 3NF.

TPS

<u>S</u>	Status	City	<u>P</u>	Qty
S1	20	LONDON	P1	300
S1	20	LONDON	P2	200
S1	20	LONDON	P3	400
S1	20	LONDON	P4	200
S1	20	LONDON	P5	100
S1	20	LONDON	P6	100
S2	10	PARIS	P1	300
S2	10	PARIS	P2	400
S3	10	PARIS	P2	200
S4	20	LONDON	P2	200
S4	20	LONDON	P4	399
S4	20	LONDON	P5	400

- 1NF
- Not 2NF

Problem:

- Redundansi → inconsistency low speed process
- Anomaly:
 S→(Status,City) tapi kita tidak bisa insert data (S5,30,JAKARTA) tanpa diikuti data P (khususnya) dan Q. Menghapus 1 baris data akan jg merusak keutuhan informasi.
- Solusi : Dekomposisi menjadi : TPS1 dan TPS2

TPS1

<u>S</u>	Status	City
S1	20	LONDON
S2	10	PARIS
S3	10	PARIS
S4	20	LONDON

- 1NF
- 2NF
- Not 3NF (trans.)S→CityCity→Status
- Sekarang kita dapat menambah data (S5,30,JAKARTA) dgn aman
- Tapi masih ada anomaly : Karena City→Status maka kita tidak bisa entry data City baru sebelum Status punya nilai. Penghapusan 1 baris sebagian data City juga bisa merusak keutuhan informasi S.
- Selain itu, masih ada redundansi pada Status dan City

TPS2

<u>S</u>	<u>P</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	399
S4	P5	400

- 1NF
- 2NF
- 3NF redundansi partial
 - → not potensial
 - → better then
 previous redundant
 We may not eliminate
 all redundant but we
 make its minimize

TPS1-1

S City

S1 LONDON

S2 PARIS

S3 PARIS

S4 LONDON

- 1NF
- 2NF
- 3NF

TPS1-2
City Status
LONDON 20
PARIS 10

- 1NF
- 2NF
- 3NF

	T	P,	Ŋ	2

S	РΙ	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	399
S4	P5	400

- 1NF
- 2NF
- 3NF

Boyce Codd Normal Form (BCNF)

Contoh:

Diketahui tabel R=(A,B,C) dengan FD : AB → C dan C → B. Apakah :

- 3NF ?
- BCNF?
- R memenuhi 3NF karena :

AB→C; maka AB → ABC, atau A → R. Jadi AB superkey dari R
C→B; maka AC → AB, atau AC → ABC dan AC → R.
Jadi AC juga superkey (sekaligus juga candidate key) dari R
Karena AB superkey dan C subset candidate key maka
R memenuhi 3NF

R bukan BCNF karena :
 AB superkey tetapi C bukan superkey.

Boyce Codd Normal Form (BCNF)

Students

sid	name	age
53666	Jones	18
53668	Smith	18
53669	Melissa	17
53670	Hilden	19

Students=(sid, name, age)

FD : sid \rightarrow name, age

• BCNF, sebab sid superkey

Pinjam

idpinjam	sid	bid	date
P-01	53666	B002	10/11/2005
P-02	53668	B001	10/11/2005
P-03	53668	B004	11/12/2005
P-04	53670	B002	14/11/2005

Books

bid	title	year
B001	MySQL	2002
B002	Algorithm	2003
B003	Visual Foxpro 6.0	2003
B004	Visual basic 6.0	2005

Books=(bid, title, year)

FD : bid → title, year

• BCNF, sebab bid superkey

Pinjam=(idpinjam, sid, bid, date)

FD : idpinjam → bid, date

Bukan BCNF, sebab idpinjam bukan superkey idpinjam sid

Boyce Codd Normal Form (BCNF)

Pinjam

idpinjam	sid	bid	date
P-01	53666	B002	10/11/2005
P-02	53668	B001	10/11/2005
P-03	53668	B004	11/12/2005
P-04	53670	B002	14/11/2005

Didekomposisi menjadi:

Pinjam1

idpinjam	sid
P-01	53666
P-02	53668
P-03	53668
P-04	53670

Pinjam2

idpinjam	bid	date
P-01	B002	10/11/2005
P-02	B001	10/11/2005
P-03	B004	11/12/2005
P-04	B002	14/11/2005

FD trivial

→ BCNF

idpinjam → bid, date idpinjam superkey

→ BCNF

Form Peminjaman Alat

Nomor:.....

Identitas Mahasiswa

Nama :

NIM :

Tanggal Lahir :

Angkatan:

Jenis Kelamin :

Agama :

Alamat :

Kota : Propinsi: Kode Pos:

Alat yang dipinjam

Tanggal Pinjam : Kondisi : Tanggal Kembali: Kondisi :

Keperluan :

Nama Lab :

Jurusan :

Fakultas:

Universitas :

Semarang, / /

Mahasiswa Ketua Laboratorium

Nama dan Tanda tangan tangan

Nama dan Tanda

Berdasarkan formulir tersebut,

- Rancanglah tabel penyimpanan datanya
- Lakukan normalisasi hingga 3NF atau BCNF

SELESAI