DL 3 : une suite de tirages aléatoires avec/sans remise pour le jeudi 13 octobre

Une urne contient initialement - une boule blanche et

• deux boules rouges.

On effectue dans cette urne une succession de tirages d'une boule selon le protocole suivant :

- si la boule tirée est blanche, elle est remise dans l'urne.
- si la boule tirée est rouge, elle n'est pas remise dans l'urne.

Pour tout entier $n \ge 1$, on considère les événements suivants :

- $B_n =$ « on obtient une boule **blanche** lors du $n^{\grave{e}me}$ tirage »,
- $R_n =$ « on obtient une boule **rouge** lors du $n^{\grave{e}me}$ tirage »,

et X_n le nombre de boules rouges contenues dans l'urne à l'issue du $n^{\grave{e}me}$ tirage.

1. Le début de l'expérience

- a) Justifier que l'on a $X_1(\Omega) = \{1, 2\}$. Donner la probabilité de chaque valeur (la loi de X_1).
- b) Justifier que l'on pose $X_0 = 2$.

2. Étude de $\mathbb{P}(X_n=2)$

- a) Soit $n \in \mathbb{N}^*$. À quelles conditions sur le $n^{\text{ième}}$ tirage : le contenu précédent de l'urne le résultat du tirage
 - restera-t-il 2 boules rouges à son issue?
- **b)** En déduire l'égalité d'événements : $\forall n \ge 1, \ [X_n = 2] = [X_{n-1} = 2] \cap B_n$.
- c) Quelle est la probabilité conditionnelle $\mathbb{P}_{[X_{n-1}=2]}(B_n)$?
- d) En déduire que la suite $(\mathbb{P}(X_n=2))_{n\in\mathbb{N}}$ est géométrique et donner son terme général.

3. Étude de $\mathbb{P}(X_n=1)$

- a) Pour $n \in \mathbb{N}^*$, écrire l'événement $[X_n = 1]$ en terme de $[X_{n-1} = 1]$, $[X_{n-1} = 2]$, B_n , R_n .
- b) En appliquant soigneusement la formule des probabilités totales, déduire pour $n\geqslant 1$:

$$\mathbb{P}(X_n = 1) = \frac{1}{2}\mathbb{P}(X_{n-1} = 1) + \frac{2}{3}\mathbb{P}(X_{n-1} = 2)$$

Pour $n \in \mathbb{N}$, on note $u_n = \mathbb{P}(X_n = 1)$. On a donc : $u_0 = 0$, et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{2} u_n + \frac{2}{3^{n+1}}$.

- c) Montrer que la suite (v_n) définie par : $\forall n \in \mathbb{N}, \ v_n = u_n + \frac{4}{3^n}$, est géométrique.
- **d)** En déduire $\forall n \in \mathbb{N}$, l'expression $\mathbb{P}(X_n = 1) = \frac{4}{2^n} \frac{4}{3^n}$.
- 4. On note T le rang du tirage où l'on tire une boule rouge pour la deuxième fois.

(après ce tirage, il ne reste donc plus dans l'urne que la boule blanche.)

- a) Montrer que $\forall n \in \mathbb{N}$, on a l'égalité d'événements $[T \leqslant n] = [X_n = 0]$.
- **b)** En déduire que $\forall n \in \mathbb{N}^*$, $\mathbb{P}(T=n) = \mathbb{P}(X_n=0) \mathbb{P}(X_{n-1}=0)$.
- c) (Variante) Montrer que $\forall n \in \mathbb{N}^*, \ \mathbb{P}(T=n) = \frac{1}{2}\mathbb{P}(X_{n-1}=1).$
- **d)** En déduire l'expression de la probabilité $\forall n \geqslant 1$, $\mathbb{P}(T=n) = 2\left[\frac{1}{2^{n-1}} \frac{1}{3^{n-1}}\right]$.
- e) Vérifier que $\sum_{n=1}^{\infty} \mathbb{P}(T=n) = 1$.
- f) (Bonus) Établir: $\mathbb{E}[T] = \frac{7}{2}$ $\mathbb{E}[T(T-1)] = \frac{37}{2}$ $\operatorname{Var}(T) = \frac{39}{4}$.