Circular #2

Reference Data	
Mass of Earth	$5.98 \times 10^{24} \mathrm{kg}$
Mass of Sun	$1.99 \times 10^{30} \mathrm{kg}$
Radius of Earth	$6.38 \times 10^6 \mathrm{m}$

1. Find the force of gravity between the Earth and the Sun. The distance between the two is 1.496×10^{11} m. The masses are given above.

$$\longleftarrow$$
 1.496 × 10¹¹ m \longrightarrow

- 2. There is the force of gravity between your desk ($m=37~{\rm kg}$) and your head ($m=5~{\rm kg}$). They are separated by a distance of 0.65 m,
 - (a) Calculate this force.

(b) Why is it so small?

Reference Data	
Mass of Earth	$5.98 \times 10^{24} \mathrm{kg}$
Mass of Sun	$1.99 \times 10^{30} \mathrm{kg}$
Radius of Earth	$6.38 \times 10^6 \mathrm{m}$

3. A satellite orbits the earth at a distance $1{,}120~\mathrm{km}~(1.12\times10^6~\mathrm{m})$ above the Earth's surface. If the force of gravity acting on the satellite is $2100~\mathrm{N}$, what is the mass of the satellite? (*Hint:* think carefully about what the radius is.)

- 4. A person has a mass of 92 kg.
 - (a) What is the force of gravity between the person and the earth? (Use $F_G = Gm_1m_2/d^2$.)

(b) Let's try it a different way. What is the person's weight on earth using the equation $F_G = mg$?

(c) Do your two answers agree?