数学(80分)

【コース1(基本, Basic)・コース2(上級, Advanced)】

※ どちらかのコースを<u>一つだけ</u>選んで解答してください。

Ⅰ 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

Ⅱ 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 4. 足りないページがあったら手をあげて知らせてください。
- 5. 問題冊子には、メモや計算などを書いてもいいです。

III 解答用紙に関する注意

- 1. 解答は、解答用紙に鉛筆 (HB) で記入してください。
- 2. 問題文中のA, B, C, …には、それぞれ- (マイナスの符号), または, 0 から 9 までの数が一つずつ入ります。あてはまるものを選び、解答用紙 (マークシート) の対応する解答欄にマークしてください。

解答方法に関する注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{12}$ のときは、 $2\sqrt{3}$ と答えます。)
- (2) 符号は分子につけ、分母・分子は既約分数 (reduced fraction) にして 答えてください。

(例:
$$\frac{2}{6}$$
は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と有理化してから約分し, $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) $\boxed{ A \sqrt{B} }$ に $\frac{-\sqrt{3}}{4}$ と答える場合は、以下のようにマークしてください。
- (4) $\boxed{\mathsf{DE}} x$ を -x とするとき、 $\mathsf{De}-$, $\mathsf{Ee} 1$ とし、以下のようにマークしてください。

【解答用紙】

Α	•	0	1	2	3	4	(5)	6	7	8	9
В	Θ	0	1	2	•	4	5	6	0	8	9
С	Θ	0	1	2	3	•	5	6	0	8	9
D		0	1	2	3	4	(5)	6	7	8	9
E	Θ	0	•	2	3	4	(5)	6	7	8	9

- 3. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*		*			
名 前						

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを一つだけ選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の左上にある「解答コース」の「コース2」を〇で囲み、その下のマーク欄をマークしてください。選択したコースを正しくマークしないと、採点されません。

Ι

問 1 放物線 $y=2x^2+4x+5$ を x 軸方向に 4, y 軸方向に b だけ平行移動して得られる放物線 を C とする。x の値の範囲が $a \le x \le 2$ のとき,C をグラフとする 2 次関数の最小値が 1 で最大値が 49 となるような定数 a, b を求めよう。

 $y = 2x^2 + 4x + 5$

$$y = 2(x + \boxed{\mathbf{A}})^2 + \boxed{\mathbf{B}}$$

と変形できる。したがって、Сをグラフとする2次関数は

$$y = 2(x - \boxed{\mathsf{C}})^2 + \boxed{\mathsf{B}} + b$$

である。この関数が $a \le x \le 2$ において最小値 1 と最大値 49 をもつから

$$b = \boxed{\mathsf{DE}}$$

であり、aは

を満たす。これより

$$a = \begin{bmatrix} HI \end{bmatrix}$$

を得る。

数学-16

問 2 整式 $P = a^4 - 2a^2 + 1$ に対して、整式 Q は

$$3P + 2Q = 3a^4 + 6a - 9$$

を満たす。このとき

(2) P, Q はそれぞれ

$$P = (a - \boxed{\mathsf{M}})^2 (a + \boxed{\mathsf{N}})^2, \quad Q = \boxed{\mathsf{O}}(a - \boxed{\mathsf{P}})(a + \boxed{\mathsf{Q}})$$

と因数分解できる。

(3) 集合 A, B をそれぞれ

$$A = \Big\{ \big| a - \boxed{\ \ \ } \ \big|, \ \big| a + \boxed{\ \ \ \ } \ \big| \Big\}, \quad B = \Big\{ \big| a - \boxed{\ \ \ \ \ } \ \big|, \ \big| a + \boxed{\ \ \ \ } \ \big| \Big\}$$

とする。集合 X に含まれる異なる要素の個数を n(X) で表すとき

(ii)
$$a=0$$
 ならば、 $n(A\cup B)=$ U 、 $n(A\cap B)=$ である。

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{W}$ \sim $oxed{Z}$ には何も書かないでください。

II

等差数列 $\{a_n\}$ $(n=1,2,3,\cdots)$ において $a_5=-27,\ a_{16}=28$ とする。

(1) 公差をdとすると、与えられた2つの条件式より

$$a_1+$$
 $oxed{A} d=$ $oxed{BCD}$, a_1+ $oxed{EF} d=$ $oxed{GH}$ を得る。これより, $a_1=$ $oxed{IJK}$, $d=$ $oxed{L}$ である。

(2) 初項から第n項までの和 S_n をnの式で表すと

$$S_n = \frac{n}{2} \left(\boxed{\mathbf{M}} n - \boxed{\mathbf{NO}} \right)$$

となる。

(3) $T_n = 2^{a_1} + 2^{a_2} + \cdots + 2^{a_n}$ を n の式で表すと

$$T_n = \frac{1}{2^{\boxed{PQ}}} \cdot \frac{\boxed{RS}^n - \boxed{T}}{\boxed{UV}}$$

となる。

注) 等差数列: arithmetic progression, 公差: common difference

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{W}$ \sim $oxed{Z}$ には何も書かないでください。

原点を O とする xy 平面上に 3 点

$$A(-2, 1), B(2, -2), C(1, 4)$$

をとり、 $\triangle ABC$ を考える。x 軸上に点 P、第 1 象限内に点 Q をとり、 $\triangle OPQ$ が $\triangle ABC$ と合同になるようにしたい。ベクトルを用いて、点 P,Q の座標を求めよう。

ベクトル \overrightarrow{AB} , \overrightarrow{AC} の成分はそれぞれ

であるから、 \overrightarrow{AB} , \overrightarrow{AC} の内積の値は

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \boxed{\mathbf{C}}$$

である。また

$$|\overrightarrow{AB}| = \boxed{D}, |\overrightarrow{AC}| = \boxed{E} \sqrt{\boxed{F}}$$

であるから、 $\angle BAC = \theta$ とおくと

$$\cos \theta = \frac{\sqrt{G}}{HI}$$
, $\sin \theta = \frac{J\sqrt{K}}{LM}$

である。

したがって, 点 P, Q の座標は, それぞれ

$$(N, 0), (P, \overline{R})$$

である。

注) 第1象限: first quadrant, 合同な: congruent, 内積: inner product

III の問題はこれで終わりです。III の解答欄 T \sim Z には何も書かないでください。

$\overline{\text{IV}}$

問 1 a, b を定数, t を正の数とする。 x の 3 次関数

$$f(x) = 4x^3 + 4ax^2 + bx$$

は、x = t で極小値 0 をとるとする。

このとき, a, b を t で表すと

$$a = \begin{bmatrix} \mathbf{A} \mathbf{B} \end{bmatrix} t, \quad b = \begin{bmatrix} \mathbf{C} \end{bmatrix} t^2$$

である。

曲線 y = f(x) と x 軸によって囲まれた部分の面積を S_1 とすると

$$S_1 = \begin{array}{|c|c|c|} \hline \textbf{D} & t \\ \hline \hline \textbf{E} & t \end{array}$$

である。

一方、曲線 y=f(x) の原点における接線の方程式は

$$y = \boxed{\mathsf{G}} t^2 x$$

$$S_2 = \frac{\boxed{\text{IJ}}}{\boxed{\text{K}}} t^{\boxed{\text{L}}}$$

である。

したがって, $\frac{S_2}{S_1}$ は t の値によらず,一定の値 $\boxed{\textbf{MN}}$ をとる。

問 2 x の関数 f(x) を

$$f(x) = xe^{-x^2}$$

とする。ただし、e は自然対数の底である。

- (2) 関数 y = f(x) のグラフと x 軸、および、直線 x = a によって囲まれる部分の面積を S とすると

$$S = \frac{1}{\boxed{\mathbf{R}}} - \frac{1}{\boxed{\mathbf{S}}\sqrt{e}}$$

である。

(3) t>0 とする。関数 y=f(x) のグラフと x 軸,および,直線 x=t によって囲まれる 部分の面積を S(t) とすると

$$\lim_{t\to\infty}S(t)=\frac{1}{\boxed{T}}$$

である。

注) 自然対数の底: the base of the natural logarithm

IV の問題は	これで終わりです。	IV の解答欄	U ~	Z	【には何も書かないでください。
]	ス2の問題はこ	れですべて	終わりで	す。
	解答用紙	の V の欄に	は何も書かれ	ないでく	ださい。

この問題冊子を持ち帰ることはできません。

〈数学〉

コース1

		I												
問	問 1					問 2								
解答欄	AB	С	DE	FG	HI	JKL	MN	OPQ	RST	U	V			
正解	13	3	-4	25	-2	336	11	312	-12	2	1			

						I							
問	問 1					問 2							
解答欄	ABC	DEFG	HIJKL	MNO	Р	QRS	TU	٧	W	Х			
正解	421	4105	73105	415	4	264	11	7	1	7			

問		II												
解答欄	AB	CDE	FGH	IJ	KL	М	NO	PQ	R	ST	UV	WXY		
正解	27	357	125	28	16	2	56	40	0	27	27	210		

問	N										
解答欄	AB	CDE	FG	Н							
正解	43	244	13	3							

コース 2

		I												
問	問 1					問 2								
解答欄	AB	С	DE	FG	HI	JKL	MN	OPQ	RST	U	٧			
正解	13	3	-4	25	-2	336	11	312	-12	2	1			

問		I											
解答欄	ABCD	EFGH	IJK	L	MNO	PQ	RSTUV						
正解	4-27	1528	-47	5	599	47	32131						

問		11											
解答欄	Α	В	С	D	EF	GHI	JKLM	N	OP	QRS			
正解	4	3	3	5	32	210	7210	5	35	215			

		IV .											
問		問 1											
解答欄	AB	С	DEF	G	Н	IJKL	MN	OP	Q	RS	T		
正解	-2	4	134	4	2	1634	16	22	2	22	2		