8

•

Our higgest difficulty is producing enough native STNPEZ to produce monoclonal Als via intimunistria. Dethough We would prefer to use the lukaryotic Wersin of this protein, our 1929 transpectant (Clone 39) does not produce suggicient quantities. We will attempt at a later date, poweres, to purify the STUPR from the bulk supt that was AMSOF principitated (pgs 5-9) + once we have a TUT affinity column. In the mean time, me will attempt to make nature hotoper in E. Cili. The protein has been produced previously in E. cali using the pet 24a lypression Syptem (HIS- Jag Jusion preteins), but due to the extraordinary production by the recombinant protein, and due to the lextensure persondery structure of STNFRI much of the protein was found in inclusion hadies in enuch of the protein was denatured. We were not able to hensture this pratein. Dung, from Dr. Schweizer's lev, proposed that is the origin of replication in these pet vectors was changed out for one of a low copy runter planned, then the recombinant pratein would be produced at level conducine to retaining its nature conformation. Therefore, he madified one origin of replication was exchanged for the cole! origin of replication was exchanged for the p5C101. Origin of replication from pwsk29. The To promoter, multiple cloning pite, and other playences from the original pat 156 plasmid are conserved. This modified plasmid is now called pViet (4985bp).

We are going to subclone the KSTNPRI gene, as well as the Bords gene, previously Cloned into set 24a into privile so that we will have a headily purifiable source of these prateins.

NHI

ct

XX a cargon plap

							41	200	14	7								1			+	' -	 -	+	+	<u> </u> 	<u> </u> 	<u> </u>	!	-			-
]						- 72 	4.7	7	-	i								- i	$\frac{\perp}{1}$		+	+	+-	<u> </u>	 	<u>i</u> 1	<u> </u>	<u> </u>				<u>:</u>
			! !				M	U	to	1	Ш	it	1.	a	0,1	10	SME		ot			+-	+	┼	-	-	-	!	1		-	-	_i
	R		11	_				-	n	as	ni	72		a	2,70	1/15	F	- / +		L.D.	1/1	+	+-	n	1 -	11-	<u> </u>	_			-	#6	<u> </u>
	1			\perp		_		-	4	Y		h	571)[2]	77-7 2 T	ر لو		0+	השעת המבי	1			Z/	10	1-1	11/	2	烂	5	يان!	X.4 2.7#	#6	2
			<u> </u>		_ _	_	11	AL	le	B	N	Q	n	101	n	di	1		n A	546				1 4	(<u>//</u>			2	UP	m	27	8_	+
	1									• 🐧						0		1	u	W	ريع	i	<u>n</u>		1	ما	16	91	ne	-4	21	1	+
		771	ade	a	~		1	ملما	de		Du	a	se s	•	on	1	0	D	1	al	/	+-	U	ot		750		. ,			\dashv	,	\dotplus
		yey	eril	Sp)	ve_			DΥ		Ú	un	4	σ_{\parallel}			7		2		1		+			1	ZZ.	u	Z.		201	xib		+
		1 Qu	Viid	110		_	0	1			C	١,				\exists			T	1.	1	1						1		-+			+-
		Of	5%	2/4	19	1	De	ges	It.	#	1	ш	t	6	16	2 1	= :	1			\top	1	-		•				- 4	-	-	+	+
	1					1	1	0			Ī	I	Ì		T.				A. F	0	00	m	1				V FI	``					+-
				4		1	1	1.	_							T	B	me	SF			hsz				(1)	re	L	-	- .	+	10.2	+-
				+	-	1	ote	<u>Li</u>	le.	H	Ď	1						34			7	1	M				re	Z .	+	_	+	+-	+-
	11				+	10	<u> </u>	Bu	4	ei	(Re	al	t $=$	2)				5 u		T		1 -	im	7		6			十		+	+-	+-
			-	+	+	17		47	11/	UA				\perp			1	/	e		1	10				51		+			+		
			_	+	+	18	n	HO	xe.	110	W	UL.)			\perp	á	u				á	_	- 1		2	,1	7	1	\top	+	-	-
**************************************				+	-	+-	+	1	-	_	ľ	4	\perp	_	\perp	\perp	5	Du	e	· .			DU	2		b		1			\vdash	+-	
			-+-	+	+	-	+	+	1.	1.	13	1	\perp			1	ĺ				- 1	. 1									-		
				+	+-	10	24	419		LU	אנקבו	ŊΔ	MA	les	45	lhi		llo	lu	xe	-0	nc	щ	ากบ	71					.			
				+-	-	JU.	19	ea	9	DU	221	ML	gl	t_{\perp}	À		32	100	2	<u> </u>		. ;			£ (שעל	9	ese	k a	igeo	TT.	
				+-	-	-	Δ.	-	+	1	1	- (4	<u> </u>	1	1		Į.	1	0.0	15 JU	3		12	p	Vie	1	AM	55	hs	n Ae	C	
			-+-	╀	-	K	M	12 1		لصغ	6	Ш	تابع	t);	<i>t</i> o_	_		_	<u> </u>			<i>(</i> :	d e		r' e								
			-		<u> </u>		10	ny	oli	tu	M	+	+			-	+		1			120				5	1.73	4					
			+-	+		-		tie								+		-	-		Ų	7											
			1	-			1	rec	10	1	au	le	20	M 11	<u>(</u>	+-		+	!		5-0												.
	\mathbb{H}^-		Ť				u	74	M	M		M	9 6	91	20Y	We.	D	NA	•		11									7. 7			
			1					.1		1	1		1		1	ł	+	ī							2.0		r.			1			
	H		1			_ u	cycl 0 . I	nai	1	DU	10	<u>(/: </u>	u	<u>)</u>	ON	M	icu	U	u _	-	ر نو چوا					1942							
							CAU.	1 1		IL.	R_L	1.1	20	<u> </u>	He	3 ≟	Top	ga	ul_	-											13.		_
							- C	1/1	0.,	WA		A			10.10	2	as	1															
						- 0	760		4	ts.	KJ.	u u	11	ile.		00	f	_		- 1	HETEMAN Menne	-4. -4.	de i Na							, i			\perp
W. 34 32 4 4 1							/ 4	7		ب	ورت			1	1	1	-						~	an Egy Salama								+	_
	L						•						13							- S	~ Je		a distance	on colors in	-		********	er parazir	10		12:2 - 2:2-4 2:2-4 3:2-44	5 1 0	\dashv
						24	0	re	ut	de	21		-	1				-		-		- 3	× 10	7			1 300	-	-	-		-	-
						AK	ui		u.	n	184	09	111	20	-	150		n	t 4	101		-	+ '	D	ug,	uri	2	e 2	ger	e -		\dashv	
	I I					WA	sh		reli	et		J.	4	200	110			700		20	16	+	+-	+-	-	+	+	-	-		-	-	+
				_		Ĵοι	i	u	()	ni	120	Ju.	al	/		5-0	<i>y ; u</i>	e J.	+	اب موجود	10	00	+	+	+	+-	+	-	┼			-	
	I	_ _	$\downarrow \downarrow$			1						0	r			-/-			4	104	7	Ψ.	+	+-	+	+-	+-	-	+	-	\vdash		
	I	1	11	\perp	\perp													7	Ť	+	+	+	+	+-	+	+-	+-	 	+-	1		+	+
			 	_	\perp	_ _												<u></u>	i	Ť	1	+	+		1 .		\vdash	-	-		-		-
					_			\prod	$oxed{\mathbb{I}}$											\dagger	+	+-	+	-	+-	-	 -	-	-	-		-	+
	-	-		\perp			\perp										1	Ť	T	1	\dagger	+	+	+-	-	-	-	-	<u>i </u>			+	+
	. '	·.		1	ı	i	1	1	!		T	T	\neg	1			Ť	-		-	+	+-	+-	+-	+	!		!	<u> </u>	<u>!</u>		!-	

ropid

Digest #2 mith Blp I

oterile HD 43 µl
10x Buffer 4 5 µl
DN A pellet
Enzyme (10 u | µe) 2 µl
50 µl

Digest 2 hours at 37°C.

Run 2°10 agerose prop gel - 5 lares/double digest lambforhown (Wolume Capacity = 65 Ml) : Add 12 pl of 5x blue juice = 62 pl / digest.

By cutting Jug of the pet 242 constructs, the most

pet 24a + GMCSF => 5310bp + 450bp + 196bp/Lutra n.t. 1200 :. 646/ = 10.8% => 108ng (XBAIIBPOT AG)

pet 241 + hstniper => 5310bp + 500bp + 19bbp :. 69b/ = 11.5% => 115ng

Estimate from prep gel = 75 ng-100 ng total.

- Excised the DNA-containing hands from the gel.
 henellean per protocal-elute in 2x 5ul of otherice 42D.
- 301 the priet Weltos:

 + extract 1x lach in phenol/chloroform and chloroform/icoprop.

 + Precipitate at R.T. W/ 1/0 Use NaDAe (3M) and 2 volumes inqui
 for I hour Apin Domin at 4PC Wash W/ 70% BOH

 Estimate = 300mg -> Resuspend in 12M sterile 450 = 25mg/ul

BMESF = 646 - US- 4915 = 7: Ligation Reaction: NSTURKI = 696-45-4985= 1.6 Ratio of Prosent: Vector 2:1 4:1 enculiate of 498560-priet wellon DNA(50ng) 2111 2ul at 15°C Invert DUA 3 ul bul (Schweizer's las) 5x ligase luffer Jul 2ml sterile H2D TA MAIA VIADAO.(111/11) a me 1110 1 ul

digest

PSTURE

Ofter the lighton, prelipitated DNA with INE 3m NODAC, 25UL Absolute BOH, and 0.5 ul yeast tRNA at-70°C for Mosus.

were 4.5 sec

Elettropolate into XII-Blue (maintenance strain).
Recover inour let 37°C in ine LB5
Dilute 18D and plate on LB+ 25 401/me amp
(* note: pet 156" is amp resistant, not kan resistant
like pet 24a)

5/1199

Pilk individual Colonies for per amplification - Drop tip into 2ml LB+ Dug/ml amp for oin culture

PCR relations as per usual. Desplote is colony pick with 50 pmal lack of the appropriate primers.

GMCSF = MUGM 3' (H4MM) + T7 (H40MM)

hSTNIPEI = hSTNIPE 3' (206MM) + T7 (H40MM)

PROTINGEI = PCMV (14 MM) + PLNCK3'MCS (384MM)

used sile 86 with a 60°C annealing temperature (40 try to get a pacific bend from our Pac I mot I madified pencx - see pg. 48)

	•		•	,0	•
+ F. O M TOP	Lane #	1	angle 34	Lane#	Sample
tout per b	. 1	ØXIHHA	e II - O Zie 20110	m.)	ONTHINAL II - C
reaction on	ર ્	GMOSF	#1	Z	NOTNARI #1
a 2% agrisse	3	Н	#2	3	椒
gel.	4	ે મ	#3	4	#3
m. = 4.400.4	5	11	#4	5	#1
picks from 2:1	6	4	#5	lo	#5
hatio of Insut to)	1	. H	#6	7	Ħb
6-10 Calous pieces from +:1	8	н	#7	8	#7
Cratio of mourse)	9	н	#8	9	#8
	ID	H	#9	10	#9
	11	"	#10	71	#/1
	12 ·	pet 24a+	Emest clause	12:	IN IF A 150 dil. I pet 24a+ hstn
	13	_	MARK COULDNY	7) 12	•
	H	IN OF A. PROJINOTI	מאלעולוום לפני)4	HOWER M

HAINO ALL OF 2et 24a+ ASTAMET CLONEHS Had black 177/105TAMER[3] Hadblack of Pemv+ PUNCLOFINES

* no positives from BMCSF Clones

(Shak = 40 mg/ne)

\$6+ #9 are positive 401 horner Moiso

		6/2
		Alilute tessures 1/100 into 3ml N/n cultures for pricet + BMCSF - reconstinuate. Did triagen mini-preps on the priest + hstruker clones #6 and #9.
	-	Nulute rescues 1/00 unto sint of alletions for process to and to
- 1	_	Rid Diegen Muni-preps on the PVLET + 13/N/RET COMES HIS THAT
- 1	4	
		Morisin that Xba I and Bep I pites were degenerated by
		the limited
1		Verify that XbaI and BepI sites were begenerated by
·		Niscot #2
	원 분 : -	THEY IL NO 1641
		In the Allen And And And And And And And And And An
		10x Kinet a
		DNA 5ul
		x/01 7/104/11) 24l Sep 7/10/11) 211
1		20.10
•		Digest Mous at 30°C Digest Mous at 30°C
		Prenol/Chloroform and Run on gel 12% agarose
	· · · · · · /	Themsel Chloratorn and whattons a
٠ ٠	·	Chloroform/isopropanal extractions
		Dakl out 8 pl to hun on gel The rest to digest the
. :		The rust to dispers the
		1. And P. A. B. double discotor
		Leaded Jul of single digests and site of worker digests
		Loaded due a single digests and 8 Ml of dorble digests on a 2's approve gel - no hands!
10		10000 The diagon will be the control of the control
		and load as much as possible on the gel. Bug the double digests, just confirm that that I Blo I sites were rostored
		director mist popular that YbaI & Blo I sites dere rostored
		and that the recombinant plasmid is of the correct size.]
		who what the reconstruction pro-
		44 48
		Did Diegen press of the GMCSF/priet ligation rescues. The for any detectable recombinants is it
		Did Oiligen preps of the birtest price expension section of the se
i		for any determine resonance 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	<u> </u>	
		Reaction 272
	•	oterile 450 styl
		antes 32me
	. L	10x Pek Bugger I 40 Me
		16x mg (1) mabon 3' (144 um) 2.78 jul
	<u></u> ,	
		Deriplate (dieuted plasmid)
	:	287 (0.5 jull hun) 50 jull
		The style of the s
		sile 83 - Md sig- sile 86 (94C, 10°C, 72°C) & from Maine on the the line of the land
		3/10/12/20/20/20/20/20/20/20/20/20/20/20/20/20
~	, , , , , , , , , , , , , , , , , , , ,	I Amo. Montorination D AMMST in H.D blank but the 2:1(1/10) true phoned qually

Ment back to Marphelo notebook - difficult to determine the size of the Emest insert in pet 249, but my longituets peem to be shifted to the literat they should be on the gel - His ran a little above the 310 bp standard and rune run a little below the bo3 bp standard. .. size is okay.

- lould not per the recombinant plasmid bland on the gel, just the non-recombinant plasmid bland and it was very weak.

5/10/99 Dilute 2:1 hescue 1:100 in UB+ 50 µg/ml 150 ml eusture) to do another Diagen prep. - Use 500 tip and gullow the protocal for "very low lopey number" pleanies.

5/11/99 Resuspend final pellet in soul of TE PH 8.

5/10/99 Resolve plasmids on a 0.8% agarose get. Soud entire

Recolled tons or plasmid, but there was no distinction between a recombinant species and the non-recombinant plasmid just a large smeas.

No back and out more pet 24a+ BMCSF and religate

Digest #1

pterile H2D 54 pl

priA 30 pl

10x React & Buyges 10 pl

Xba I (10 n/ pl) 6 pl

digest lit 30°C for 4 hours
Reln 3 µl of digist on a 1°10 agarose gelAbout 85% linear. Add an additional
2 µl of enzyme + digest overnight.

Aligest #2
pthile #0 84 pel
DNA pulit
16 x Buffer 4 18 pel
Blp I (114/pe) 6 pel
180 pel
Sigest at 31°C
overnight

5/13/99

The next day POICHCH Ritract
CHICH Extract
EXOH precipitate -> digest #2 P

	5/14/99 - PVLET/BMCF Cloudy (Lont)
	Ligations pet up again like those on pg. 51 using 50 ng of vector.
:	Inculate of at 4°C.
	5/15/99 Sork ligations out of 150 lath + stored frozen
	5/16/199 Precipitate ligated BNA as per usual Electroporate into XLI-Blue. Plate 1/30 on LB+5D ugine AMP. Diluted rescue into 3 Ml LB/AMP 1/100 as well (back-ups)
	5/18/99 Piek individual blonies for PCR- Drop tip into 2nd of lutture. Pieks 1-10 Are from 2:1 Rescue and pilks 11-20 Are from 4.1 Sescue. Master Mix (1150 ML)
: -	pterile 420 805.4 Le 2 emplate is a Calory pick 10x PCR Buffer II 115 pl except for the positive Contral
 	10x Mglls 115 M (pet 242 + 6 MESF) Which is multim 3' #2 (135 MM) 8.5 M 1, M of A 1/50 dilution of the T7 (440 MM) 2.6 M Quegn-prepart on M
	2ag 11.5 11 11.5 11
:	Ran but of mulm 3; your wed mulm 3'#2 instead 3ile 83 - Ile 86 (94,55,72) - sele 88 (1 eyele = 94,60° (10min ea), 22° (10min)) * Next tome, Change the annealing in file 88 to 55° also.
. 	+ rest time, mange une unnealing in file 08 40 55 also.
	* Should have hun priet alme control
	Putetine Positines: 5, 8, 9, 10, 19
	We paw this ~ 800bp hand previously
	DO Diagn prepo on the putature
	with XbaI and BepI
:	14 15 16/7/17/9 20 \$3420 2% agarose ge

٠

re

. . .

le

£ 2

o styll pullet ful figure

31°C

Cut " Pul of each plasmid with xba I ON Bep I Reaction was 10 pl DNA + I pl 16x Buffer + I pl layone.
Digest at 37' c for 2 hours. Soad entire digest +
2 pl of 5x blading dife on 0.8% agarose gel.

-101-

The digits of priet are lompletely therlanded. It's hard to per the vissolop phist with the reliminant planneds. There does appear to be a slight phist between the ADLI digests

Set up 20 M digerts of lach plasmid:
18 Me of toNA (GMEST) OF 45 Me of DNA(hSTNPRI) + 3 Me sterice 430
2 M of enzyme

5/25/99

Digeot with xba I first - b/n at 30°C next day: Phenol/Chloroform entract Chloroform/ esopropanul Intract EtOH prelipitate Set up 2nd digeot as about (but in 10 µe)

Run total digest on 2% agarose gel. lould not see an insert on any of the relombinants, but the vector backbones were probably only about 100 ng blands. — So you the transformation into the host others.

6/6/99 Paripleation of MSTAPEI (under non-Denaturing Conditions) - State the I'me of polluble of osolie MSTNIRI and han on His-Binding resin according to the protocal. Feltered the paniple with a 0.45 um feter before applying to column.

- Mashed the Column as described and elicited in bonk of 1x elution suffer - Collected I'me Fractions. Stripped Otherson WI IX strip bluffer and callected b x 1 me fractions - Ran 31.5 ill departage reduced & unreduced on a 17.5% SDS/PAGE gel - Jaw no hands. *Potential problem with the 1.5M Dis pt 8-8 used for the Kessewing gel 6/9/99 - made a 12 culture to make now prop Process as described on pg. 57 - did 2 litractions a since with an additional 25 ml of mene o hugges. It was distilled to determine if the liposyme was espectful after the first extraction, so we elected to do a selected additional liposyme (100 yg/ne) and 3 yrees / than eyeles as hefore. Loin at 27,000 xg for 30 sin. Filter - about the pame viscosity. Combined the two, * diluted 5 haded 0.05% Nanz and ran over a charged Ho-bind resin. 1:1 with overnight ~ 24 hours total. Buffer + 0.05% HOW3 -Weshelt and eluted as described (in 1m imidazale). Dested gractions in BCA assay. changed the morking reagent to to to to the minimum of Blank = 200mm emidesele elution huffer. reagent to torigination Dilutions of fractions were made by diluting the neat pande 15 in d4,8, and then the 15 pample is in somm Inidagle elution Muffer. 361A . MAŁ Regrossim Line: y= -3.8522e-2 € + 1.0692 e-3x r=1.0 ALS. Estimate of protein Concentration: PR #1: neat = 100 /19/nl AR #2: Nest = 132/19/11 1/5= 1894g/nu 2=14/4g/ml

·ul) SPECT Ages

Silver Silver

paryple

deviding.

'lext

10 pelues Stain of STOTABE Gel-Purified rhsTWARI
- 20 Disesso relative purity & size

Lane PR#1 - 1'ng TNPBPI/R+D) = 0.9 µg reduced. low mw markers a. 5 mg JOE'S ABR SCAb - 5 Mg SDE'S 462 5C NO - 119 10 LOW MW markers - 2549 11 PR#2-5119 unreduced 13 PR#2 - 1 Mg PR#1 - 149 14 FR#1 - 5 Mg 15 TNFBPICETOS - 0.949

* quantities loaded represent the concentrations estimated from BEA DODAY. They apples to be may off.

*17.5% SDSIFABE gel Stained 15 muno. en pilles nitrate.

Contaminated? All the pamples on the lift are this luyers except for the markers and gor's samples (they were diluted in 2x luyers. Freetism #2 in the luyers w/o force (lane #12) Appears Javrly pure, but the lurresponding pample in the luyers w/ Bome (lane #13) has a lat of other proteins. Pathaps the Bome is reducing the Jaw proteins that are luident in lene #12 to multiple species of varying sizes. The protein that is our putatual rhs market is running a little smaller. Then oridited (estimated mw = 21,057Da). Need to run a western to consirm that we have this protein purified was this-tag and that it is of the Carrett pase. The samples are in midesple, so their relative magnation in the gel will be distincted.

17.5% rosolving gel - 3% stacking gel
Roaded 25 M b) lack test pariple al 25 M loading Muffert BRE.
(including the R+D Septems' TNPSPI : ~ 0.625 Mg).
Markers are 2.5 Mg for pilver stain and 1.5 Mg for Western French tx lacking Muffer at 12.5 Ml + 37.5 Ml + D.
KPL Conjugate Lyposphetese laseled Strephendin) at 1:1000

M PRI PRZ INFERS 4X AX

FT Re1 Re2 THROT M 43

3

* 4x leading lufter is not contaminated nuth protein

FT = How Skrough from His Column

The blands on the blostern marked with arrows (1) Came up within 10-20 seconds. Most of our protein appears to be in the "flow through" suggesting that it did not blind the this Culuan. There may be a slight hint of protein in TRI and FRE-blust the amount is very small (hand running at NIFKDA). Perhaps the his tag is indessable due to the plandary structure of the protein. Because the expression Cossette was isolated from the set sta Construct that we know has the tag, the possibility that the His tag is not made with this expression suptem seems remote. We make with this expression suptem seems remote. We make that the try to purify the protein via an — Intilledy to the TT- Curbony serminal tag. There does appear to be a lot of remote that was solubilized.

1 00 ln (2)

Ш

Loadel

eximited

7/7 Purification of MSTNIKI- Strep 2ag (Osyinitas Purification wa Strep Sachin agginitis Columno) industries +x Made phipliams from some of induced outlines as described 37'e for 3 hous of Ran all steps at room temps. (Nder protocal) * Ded not purify Clone 19 periplason of Mede SUS lipates form I'm of wave latture. Procedure 1) Remove top then lattom caps and allow storage luffer to drain 2) Equilibrate the Column with 5 me of Mugger W Com Dis PHR, IMACON 3) Ald periodesm to column. Let it hun Through completely. 4) Wash the Column 5x with Inc of lingger W. Callet the eluste in me gractions. 5) Elute the recondinant drotein with be 0.5ml hugger E (hugger w + 2.5 mm desthiolistin). Callet the electe in D. S. Me fractions. b) Regenerate the Column by Washing 3x with 5ml budges R (Bufges W + Inim HABA). The Color Change from yellow to red indicates regeneration - the interesty 1) had 2 × 4 me of lugger W. Hore column at Loc with 2ml of lugger w. * Ussume extinction carfficient is 1.5 (as published) Clone 7 = 0.0858mg/20nd => 4.21mg/L Clone 10 = 0.0198 mg/2020 => 1 mg/L Just Purified Gractions in standard ELISA 1.716 Ran standard Curue (R+D Systems rhsTNFRI) at 1.25 - 40 19/100 20 1.452 1.425 diluted in election lugger. 5 0.748 0.684 Ran the Weshes from lach periples m purification (i.e., 5 lach)
2.5 0.424 0.404 at 1/100 and the elution #3 from clone: 7 and the elution #4 from Clone 10 at 1/100 - 1/100,000 - Peripleson from Clone 19 at 1,000 - 1/100,000. SIBNAL FOR TEST WELLS * TFU? I used the Concentration of the Contined fractions to determine the dilutions to use in the ELISALIE; Houghout and 19.8 ug/me) - star Shese are too dilute: * Standard Purul did onice a sumal for 1.25 na/ml -> Clone #9 at

j

8/9/99

Expression + Arification of MSTNIRET Grow passion Instrument Close 7 clone #1 We are now going to attempt to isolate the MSTNACT from clone 10 pince it represents the nature, non-nutated form of the protein Procedure for Periplesmic Preparation 1) Subsultured a single bolony of clone 7 onto a fresh
1B plate + 50 yg/rd amp - grow at 30°C

2) Picked a single bolony and instrulated a some
onernight of 1B+ and - grow at 30°C

3) The next day, dilute overnight 1:50 into 11 of LB+ amp and grow to an ODSS = 0,5 - grow at 370 4) endule expression with 1mm TPTG brow an additional 6 hours at 37°C. 5) Harriest the Malteria at 4500 x g for 15 min at 100 Saul the culture pupernatant b) Resuspend the pellits in a fatal of 5ml of Buffer P. Inste Should have used some according to the tion 200 Race on see for 3 min **:3**.. Centrifuge at 16,000 kg for 15 min at 4°C Remove periplasm to a fresh tule. Delter through a 0.2 µm fitter before running on the Column Proledure for Stres Column purification Followed the manual for all procedures except the Column was eluted with 1x0.5me of lugger E (dostpiolisation lugger) Ussayed the Washes and elutions by beA Only the fust two washes had detectable pratein. This protein likely is non-specific lasterial proteins no protein detectable in the elutions. Io the strip tag inaccessible? From the sequence We need to Characterize the production of STRIPEI from alone ? further.

9/8 ELISA of Clone ? Peripleson Bending to TWF

Standard protocol:

Coat plate with a ug/me of TNF from either Pepro Sech (to be used to make the againsty Column) Or Chemican. Inculate on at 10°C.

2) Block plate w 200 pl g 2010 BBA in PBS. 3) Add test Darysle, Control, or standard 1100 pl/mell) diluted in 0.1% BERIPRE/ sween & wented to dilute out the puerose in the lufter P-containing pamples.

4) add SA-AP at 1:1000 (KPC)

5) add pripp pulistrate. L+D STNPRI IN Chemilon TNF=10 min - The host Mere somir.

Samples (Notes) 1) The " flow through" is that which was run Through the Otrep Column and callected.

2) E. Call pupt = the supernatant from a culture that goy grew - This serves as a negative Control for testing for any STNPRI in the sulfure supt. Of Clone 7 love the luigo were poin out) * Mark found a paper where the sixthers isolated recombinent single thain antibodies from the supernatant rather than the periplasm. They did an Amsoftut and then disliped and purified their protein. We just illested to know

3) Devin periplasm = the positive control that Biometra sent us a long time ago for use in assaip determining stress tag linding of it is assured the stress has attached. It serves as a periplasm regative Contral here.

* well 40 got clone 7 phiplasm by mistake.

TNF

(well)

te

moles.

ence leter leter rej know

	RHD STNARI ↓ 1	ilmu ⁿ priplesm ‡2	e+d 57NÆI ↓3	Supibi cesur curture 14	
A	Peprosi	CH THE	Chimel	M TUE	
Δ.	a.Siginu	1/2	2.Sname	1/2	1/8
В	Ś	1/4	5	114	TIN THE
C	10	1/8	10	\times	14
D	અ	Bugger	∂ (:	Buljer P	1/8
\mathbf{E}	40	poliplasm	40	Opelia porphism	Edoli Supt () Dentel

Absorbance Report Single Wavelength

Blank Mean. 0.295 Std.Dev. 0.000

-0.072 -0.178

1 2 3 4 5 -0.179 0.211 0.084 0.034 0.014 -0.166 0.073 0.271 0.008 0.311 -0.137 -0.034 0.355 0.055 0.155 -0.093 -0.181 1.936 0.000 0.099

-0.014 -0.010

Raw Data Report Single Wavelength

1 2 3 4 5
A 0.116 0.506 0.379 0.329 0.309
B 0.129 0.368 0.566 0.303 0.606
C 0.158 0.261 1.150 0.350 0.450
D 0.202 0.114 2.231 0.295 0.394
E 0.223 0.117 *.*** 0.281 0.285

This is the first real luidence that we have to support the notion that STNFRI is being secreted into the periplasm in a biologically altrice form (i.e. it lunds to TNF). Two sunds noth PeproSten's & Chemiem's TNF

the should probably so the induction optimization optimization of the person of close 10. This includes varying the temperature of growth and the suretion of the IPTG induction. We will stoke with a lowlesstration of 1mm IPTG.

* Mite: The RHD Suptem's STNFRI does not find to the Peprotech TNF.

- 9/8 Silver Stain + emnunoBest of Close 7 Periplasm
- 17.5% tresolving get hun oin Ran very severy. Do there a problem with the sucrose in the Bugger P?
- Spaded: 5 ul of markers (low mw) for the silver stain and \$1.5 ul for the western blots; leaded 31.5 ul of the RTD protein (rhs no FREZ); 31.5 ul of the Olone 1 periplasm: 10 ul of the office of the olone of the other tag columns.
- * The silver stain get was mw markers, the flow through I the RTD rhs more (Did not have enough of the starting Clone 7 periplasin to run).

Result: no proteins were visible in the 14-18 KERA range of the flow through. The R+D protein stained as per usual.

Immunoblot

Panel A Mw Markers How Hurough Ozyrin 49 Control

Panel B mw markers Close 1 periplesm Stow through R+D MSTAPRET

Inculation with pubstrate = 10 min

'asm

ily

21

o tag

2 nongh

-18KDA othered

.

h tin. The results are consistent with the ELTER data. ended, the rHSTNPRI being produced by most close 7 is being secreted in the periplasm where it is likely being folded properly (hence it binds to TNF).

The problem, however, is that me loved not purify this material of on the strep bolumn. No protein was detected in the elutions assayed my BCA. Perhaps the lives in these samples are helder the lower lives lives (i.l. 50 mg/me) of the BCA assay. I did not same these grations, so they lannet he assayed my FISA. The protein was not found in the flow-through tither. The bulunn: We len lonclude, however, that we cannot purify apprussed by the protein was not found in the steep column under these conditions.

Fortunately, the protein being produced by Clone 7 appears to be native and properly folded, so we lould potentially purify it on the TNF lowern.

we can also try to optimize protein production and scretcin into the periplasm

9/22 Depletion of STUPPI- spiked Plasma using • Immobilized TUF and x-STUPPI antivadies.

We need to demonstrate that we can deplete liological fluids
puch as plasma/perum and/or ultrafiltrate of STATET
by exposing the said fluid to despotassall departs, THE parameter and Antibadies to STATET. Duch depletion would justify
the development of matrices madigied to treat cancer
patients.

Indially, we will spike human slasma (nine) with STAIFET Since we know, blased on previous assays, that my blood contains no detectable STAIFET. This plasma will then be incubated with CABY-Activated sephenose conjugated to either THF, goat & histories, or an incubated modes (BioSource), or an irrelevent matrix (DT145 (& VBb No)). The samples will be assayed for a reduction in STAIFET levels relative to the original, "spiked" starting material.

Just by all, however, we need to determine if the plasme proteins are going to inhibit the assay in Drug way, and second, if the level of STATES that we have estimated in fraction 3 of the TMF assinity Column gives us a signal comparable to the R+D standard when deluted in plasma.

Hovery #1

Handeld STRIPEI ELISA With goat ~ notified polyphial As Cloture + detection.

Plot pamples are the R+D rhotupel delicted in plasma to the plasma diluted 1:10, 1:30, or 1:50 in PBS) sween (no BSAS) with 0.15% EDTA. The EDTA is at the pame concentration to that in the those in which the blood is drawn (private love) we are doing a dilution peries to determine under which plasma concentration we get the best standard during plasma concentration we get the best standard during plasma become balkground. All concentrations are in ng/me — we will start our hornire (fraction 3) at song/me in last our estimate by concentration was inaccurate. It cach row is, in science, a separate bosay that will be allowed to develop independently of the other rosos. To make the dilution peries, 20 ng/me of STNPRI is added to undiluted plasma, and then diluted in a two windiluted plasma, and then diluted in a two starts in the last of undiluted plasma, and then diluted in a two starts in the last of undiluted plasma.

1 stock)

ple.

it

m:

19/ml

From these standards, the following dilutions are made:

	A . A				asna				PBS,	Due	en.		
		etin	£	ample	from	ROW A		4	0.15%	DIA	_) \	,)	
ROW B	1	:10		, (28 jul				180	jel	K		
					,	. `			/ '	•			
								7			ı	/	
-						PL	asma	Samo	le fro	n Rose	2B /		
0 . 1		~				1 /	/		-			-	
ROW C):	30				mui			į	40 jul	R	1	
				,		a (.	To the state of th	•	A .	•		1	
						PLA	8Ml	samp	le fu	m Rs	W C		
nma h	. , ,	6 N				An .	A		•		/	,	
ROW. D) /: = 040	<i>ال</i> ا ا	ι Λ.	(a- M	0000	Due	0.	01.6.1		60 jil	. &	и ,	al a
Abs report .	Rea	a s	UL HA		Luch +1 D	row	Neph	ratel	of the	neing	א אמ	plaon	a alou
U	s.t	" Davi	NA-	15 ,14	iei u	ee u	ulls	MA	rueer	(NOTO	ppea	40	
	ger	Ran 100 7	Lotal	tini 6	, _ ,	015 N							
	p_{κ}	. ,							cont	THIMIT Nela Si	FROTA pur	ind taction	
		RA	D rn	JMFR.	L 3416	nama			M TH	F AFF.	bolunin	- tractil	3 3
	1	2	3	4	.5	6	7	8	9	10	11	12	
acet A										1	1	pusin	Ī
ALKE AL	ناند) È	5	え.ち	1.25	t. 655	1.3,25	1.15625	46	26	16	aion	<i>J</i>
· B								nor or				2681-	
.,,,	人	1	1.5	1.as	0.125	i.66/25	U.0005	t <i>17562</i> 5	4	2		acion	ļ.
:.31 C	1. <i>Li L</i>	1.33	t .166	68833	N 104-11-11-	أخكالا خارا	r tsiHik	0.10452163	1. 33 1. 33	1.26	0.33	BUSIL	
	V . U .	10. 2.2	1	0.000	0.07744	1 0 0 0 0 0 0	2 . 0 , - 1 , 2	υ·μ. 32»		1 00	1	illine	
. 57 D	ι.4	6.2	6.1	t.05	1.1.05	1.425	i.111.5	0.00305	t.8	i.4	t. 2	ULEK	
		iù :)		[<u> </u>	i action	
\mathbf{E}	Al-AP	in the											
!	1:15 5.				<u> </u>	!		!			!	L	
	K E	got	every	tung	try	mistal	ke!						
	1 A 1.9	2 81 1.82	3 8 1.78:	4	5 1,566	6 1.485	7 1.482	8 1.474 1	9 1 .876 1.		li 1 670 i.	2	
04.20.10	B 1.5	47 1.15	4 0.959	0.909	0.816	9.898	0.827	0.794 1	.948 1.	549 1.	277 1.	262	
RAW DATA	0 1.1 0 0.7	11 0.77 33 0.49	$\begin{bmatrix} 3 & 0.574 \\ 2 & 0.376 \end{bmatrix}$	9 0.324	0.292	0.443 0.279	0.420	0.418 2 0.268 1	.202 1. .597 0.	964 0.	947 0. 595 0.	847 521	
	E *.*	** 0.08	:5 -										
								٠					
1 2 4 0.684 0.5		4 2 0 341	5 0 297	6 0.217	7 0.205	8 0.176 (9.507 A			2 999	Mean.	Blank	150
4 0.684 0.5 1: 0.271 -0.0										999			l.1 <u>09</u> L.097
0.260 -0.0										000			9.767
1. 0.194 -0.0										999			a.475
													•

```
The "rest" pariples (in 100% human plasma) quie comparable
medi:
                     resulto:
                                                      our Hela-dorned STUTELT
                                   RHD STNIFEI
                                                             1.876 800 0.507
                                     1.981 20 0.684
                                                         1.65/ - 0.27+
                        20 ra/ne
                                      1.828 -0.541
                        10 rg/xl
                                                             1.670 - 0.340
                      We can use the plasma undiluted and just subtract
                      out the background.
                      * We have decided to use our Hela STMIRET for both
                        the standard curve and for spiking the plasma
                        for depletion. This allows the assay to be internally controlled.
Slasma alou
traction 3
              9/26/99
                      Dosay #2 - Depletion of STUPEI from Plasma
                   1) sove plasma and spiked it to song/ne STUPEI (uith
                      the protein purified on the TMF Column - graction #3)
desnu
alone
                  2) Dook out 0.5 ml of this spiked plasma to make standard curul. Made 2-fold dilutions in unspiked plasma (neat).
3) Do the remaining 4 ml, 4 ml of unspiked plasma was
dasma
alone
                      added to yield Gongime final STUFFET concentration.
plasnu
Une
                      * Removed 200 jul as the "starting material". Deluted this
Plisnu
                      2 told in PBS+ Julen + 0.15% EDTA (prevent longulation)
                     Dak NO. Sme of each resin and open on setting 3 for
                      10 min in the SER clinical centrifuge. Removed to much
                      of the PBS/azide oupt as possible and washed each
                     In some of fresh plos spin & decented out.
                   5) added 1.8 ml of spiked plasme to lack conical rube
                      containing the resins, and notated on the neutator
                     placed an the 37°C werm- from on the 4th floor
                   6) lefter 15 min., the tubos were placed upright, the
                      Meho allowed to settle, and 0.4 ml of supernatant
                      was removed.
Blank
   1.109
                   7) The residual bleas were removed by centryligation-
   1.097
                     on setting 5 (~ 2000 x g) on the nuero fuge (5000 morn).
   0.767
                     The oupt I was removed and deluted 9:1 with
```

PBS+ CHILDON + O.150h DOTA

0.475

We need to confirm those results. There also pleased to be a reduction in the overall concentration of STNAZI whom the plasma was incubated with the "wrelevent matrix" (x - VPB Ab). This bould reflect merely & delution effect Me reed to control for this variable as well. of some Universe is the fact that the TWF-Conjugated Weeks did mothing to reduce the level of STATET. Do this volumn dead they when of coupling the TNF to CNBr-actuated supported? We will repedt the assay with fresh plasma Belliuse there is endogenous STNIFEI in my plasma, there is really no need to quantify the levels to - and snort - the atment but hather to desine the overall depletion of STATES by including the plasma with the various matrices. We will define to by: pre- and post - treatment - mixing the bleads with plasma on ice

- spinning the sample immediately to remove the heads - take pumple from the supt.

* This will alcount for the dilution effect of the leaso.

* In this assay, use I'ml of plasma/0.25 ml of beads. The Last of the procedure is the same.

```
3
                           -, 4
          1
       Spiked!
                                                     Absorbance Report
                                                     Dual Wavelenath
       die
    В
                                                                9.314
                                                     Mean.
            Raw Data Report
                                                                0.000
                                                     Std.Dev.
            Dual Wavelength
                                      Mui.
                                            IRECLOV.
                                                                                0.608
                                                                                      0:664
                                                                          0.843
                                                       0.957 -0.303 0.939
                                     0.922
                                            0.978
                          1, 253 1, 157
                                                                    0.919 -0.198
                                                                                0.368
                                                      0.769 0.000
                                            015 يد
                                                      -0.303 -0.305 0.790 -0.201 0.984
                          1.233 9.116
              1.083 0.314
              0.011 0.009 1.104 0.113 1.298
0.010 0.009 1.311 0.109 0.755
                                                       -0.304 -0.305 0.997 -0.205 0.441 0.805
   * note: I loaded the samples in row & incorrectly:
     30 is altually the 30 min. sample for the Welevert matrix
                                                                monuclinal Ab matter;
      6c is
and 52 "
                                                                 THE Mitrix
```

correct. 40 NO

2 min. I realized it and washed the well wit PBS Lower and inculated et mith: PBS + 0.19/1 BSA + 0.05% sileen.

elen, 3 STURRET ted by the