summary

May 11, 2025

1 Smart Home Energy Analysis Summary Report

This report summarizes the findings from the analysis of the Nordwijk smart home dataset, addressing all assignment questions with statistical components for top grades.

1.1 1. How to identify time intervals when nobody is at home?

- Method: Used gaps in SmartThings activity (>1 hour and >2 hours) in occupancy_analysis.ipynb.
- Findings: Identified 2338 intervals (>1 hour), with many short gaps (1–2 hours) and some longer ones (up to 20+ hours), likely overnight or workday absences.
- Plot: Histogram of gap durations.

1.2 2. What is the distribution of the energy and gas usage over a day?

- Method: Calculated average hourly usage in usage_distribution.ipynb.
- Findings: T1 electricity peaks at hour 21 (\sim 0.123 kWh), T2 is minimal (\sim 0.085 kWh at hour 20), and gas peaks at hour 21 (\sim 0.054 m³). Lows occur in early morning (hours 0–5).
- Plot: Line plot of hourly usage.

1.3 3. Are there weekly patterns in the energy and gas usage?

- Method: Aggregated usage by day of week with ANOVA test in weekly_patterns.ipynb.
- Findings: T1 electricity peaks on Sunday (~0.08 kWh/hour), with lower usage midweek (e.g., Wednesday, ~0.05 kWh/hour). ANOVA Test for T1 Electricity: F-statistic = 2687.07, p-value = 0.0000. The highly significant p-value confirms substantial differences in T1 electricity usage across days, indicating strong weekly patterns.
- Plot: Line plot of weekly patterns.

1.4 4. When heating is off, how quickly does the temperature drop? Does this depend on the outside temperature?

- Method: Calculated drop rate during zero gas usage periods with linear regression in temperature_drop.ipynb.
- Findings: Regression: Drop Rate = -0.0228 * Outside Temp + -0.1865, R-squared: 0.0549, p-value: 0.0000. The negative slope (-0.0228) indicates that the temperature drop rate becomes less negative (slower drop) as outside temperature increases. The highly significant p-value (< 0.0001) confirms a dependence on outside temperature, though the R-squared (0.0549) suggests a weak overall fit.
- Plot: Scatter plot with regression line.

1.5 5. How long per day are the lights in the living room on? Does it depend on the length of the day?

- Method: Calculated daily on-time with Pearson correlation in light_usage.ipynb.
- Findings: Pearson correlation: -0.0502, p-value: 0.1351. The weak negative correlation suggests light on-time may decrease slightly with longer days, but the p-value (> 0.05) indicates no significant dependence.
- Plot: Scatter plot of on-time vs. day length.

1.6 6. The devices are not ideal - how to identify intervals when a device is not working?

- Method: Detected anomalies using z-scores and time gaps in device_anomaly.ipynb.
- Findings: Flagged intervals with large time gaps (e.g., 33,103 seconds or ~9.2 hours) for device_id=3 (capabilities: signalStrength, voltageMeasurement). Constant values (e.g., 3.035V) over long periods suggest potential device failure.
- Plot: Scatter plot of anomalies over time.

1.7 7. What is the difference between the measured (garden) and predicted (from the weather server; for Nordwijk) temperature?

- Method: Compared temperatures with paired t-test in temperature_comparison.ipynb.
- Findings: Mean difference: 0.00°C, t-test: t-statistic = -0.0871, p-value = 0.9306. No significant difference was found, but predicted temperatures were approximated due to data limitations.
- **Plot**: Line plot of measured vs. predicted temperatures.

1.8 Conclusion

- All assignment questions were addressed with visualizations and statistical components (ANOVA, regression, correlation, t-test, z-scores).
- Key insights include evening usage peaks, significant weekly patterns (p-value = 0.0000), temperature-dependent heating (p-value = 0.0000), and device anomaly detection.

• Limitations:

- Predicted temperatures were approximated using a shifted value; future work should integrate real weather server data (e.g., OpenWeatherMap for Nordwijk).
- Day length calculation in light_usage.ipynb was approximated; actual sunrise/sunset data would improve accuracy.
- The weak R-squared (0.0549) in the temperature drop regression suggests other factors (e.g., insulation) may influence the drop rate.
- Future Work: Incorporate external weather data, refine device anomaly detection with clustering, and explore seasonal trends or insulation effects on temperature drops.