Assignment 5

Nishan Dhoj Karki

10/05/2022

1 3.16 c)Show that the collection of Turing-recognizable languages is closed under the operation of star.

Proof by Construction:

Claim: The collection of Turing-recognizable languages is closed under the operation of star.

Proof (by construction):

Let us assume that the language L is Turing-recognizable. If L is Turing-recognizable then there exists a recognizer for L. Let M be such recognizer for L. We will now construct a Turing Machine(TM) M_1 such that it recognizes L^* , which is the star closure of L.

 M_1 = "On an input string w:

- 1. If $w = \epsilon$, accept.
- 2. For all possible ways to split w, non-deterministically split w into parts such that $w = w_1, w_2, \dots, w_n$ are the sub-strings of w.
- 3. If M accepts all strings $w_1, w_2..., w_n$, then accept.
- 4. If M does not accept all sub-strings, then reject.
- 5. If M loops, then M_1 also loops.

Here, we have split w in all possible ways into sub-strings and run all such splits on M non-deterministically. If M accepts all the possible sub-string of w from a split, then M_1 will accept. When M rejects any of the sub-string, M_1 also rejects. When M loops, M_1 also loops. Here we have constructed a recognizer for L^* . So, By our construction, we can say that collection of Turing-recognizable languages is closed under the operation of star.

2 4.7) Let \mathcal{B} be the set of all infinite sequences over $\{0,1\}$. Show that \mathcal{B} is uncountable using a proof by diagonalization.

Proof by Contradiction: Diagonalization

Claim: \mathcal{B} is uncountable

From Definition 4.14, we have, A set \mathcal{A} is countable if either it is finite or it has the same size as \mathcal{N} .

For the sake of obtaining contradiction, let us assume that \mathcal{B} is countable, and a correspondence f exists between \mathcal{N} and \mathcal{B} . Let, $f: \mathcal{N} \to \mathcal{B}$ be such correspondence from \mathcal{N} to \mathcal{B} .

Let us make an assumption for an illustration, that a correspondence defined in the table below exists.

$n \in \mathcal{N}$	$f(n) \in \mathcal{B}$
1	1010
2	1001
3	0011
	•
	•

For it to be a correspondence, f must pair all the members of \mathcal{N} with all the members of \mathcal{B} . To obtain a contradiction, Let us try to create a binary sequence z in \mathcal{B} , such that it has no correspondence to \mathcal{N} . We construct z by selecting the i^{th} digit in z to be different from i^{th} digit of f(i), such that $z \neq f(i)$. We select i^{th} digit z to be = 1 if i^{th} digit of f(i) = 0 or vice versa. As we continue creating z as described, using diagonalization method we can see that for some z in \mathcal{B} there is no pairing with some $n \in \mathcal{N}$ as n^{th} digit of z is different from n^{th} digit of f(n). Thus, $z \in \mathcal{B}$ does not have any correspondence in \mathcal{N} which contradicts our initial assumption. Hence, \mathcal{B} is uncountable.

3 4.13) Let $A = \{\langle R, S \rangle \mid \mathbf{R} \text{ and } \mathbf{S} \text{ are regular expressions and } L(R) \subseteq L(S)\}$. Show that A is decidable.

Proof by Construction:

Claim: A is decidable

We have R and S regular expressions that generate the regular languages L(R) and L(S) respectively. If L(R) and L(S) are regular languages then they have corresponding DFA's that recognize them. Let M_R and M_S be the corresponding DFA's.

From the definition of M_R and M_S , let us create a DFA M_Q such that it accepts the strings accepted by M_S but not by M_R . Since, $L(R) \subseteq L(S)$, M_S recognizes all the languages that M_R recognizes. Hence, M_Q is not accepting anything, the language of M_Q will be empty. The language L(Q) can be defined as: $L(Q) = L(R) \cap \overline{L(S)}$.

We can deduce from the above conclusions that L(Q) is empty when $L(R) \subseteq L(S)$.

We have, Theorem 4.4 $E_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset.\}$ E_{DFA} is a decidable language.

Let us use the above conclusions to build a Turing machine B that decides A.

B = "On input of $\langle R, S \rangle$, where R and S are regular expressions:

- 1. Construct DFA's M_R and M_S such that they recognize L(R) and L(S) respectively.
- 2. Construct M_Q such that it recognizes L(Q) such that $L(Q) = L(R) \cap \overline{L(S)}$
- 3. Run a TM T for E_{DFA} on M_T .
- 4. If T accepts, accept.
- 5. If T rejects, reject.

Since E_{DFA} is a decidable language T will always accept or reject. Here, we have created a decider for A. Hence, A is decidable.