

Machine Learning And Intelligent Systems

LECTURE SLIDES

PART 3

Prof. Bernard Merialdo

Fall 2017

Data ScienceDepartment EURECOM

Support Vector Machines	459
Machine Learning: VC Dimension	460
Soft-margin classifiers	502
Kernel trick	513
Dimensionality Reduction	541
Decision Trees	561
Information Gain	595
Binary Trees	632
Ensemble Methods	650

Support Vector Machines

(slides inspired from Martin Law, MSU and Andrew W. Moore, CMU)

MALIS 2017

(Vapnik-Chervonenkis dimension)

- ◆ Assume T training samples (x_i,y_i) i=1,...T
 - $x_i \in \mathbb{R}^n$, "label" $y_i \in \{-1,1\}$
- Assume the samples are iid from probability distribution P(x,y)
 - (independent and identically distributed)
- Consider a family of machines (classifiers) f(x,α)

$$f(x,\alpha): X \rightarrow \{-1,1\}$$

and try to learn the mapping $x_i \rightarrow y_i$

 Find the value for α which minimizes the error rate min #{i: f(x_i,α) ≠ y_i }

MALIS 2017 460

Machine Learning: VC Dimension

- Expected test error (risk): $R(\alpha) = \int_{-\frac{1}{2}}^{\frac{1}{2}} |y f(x, \alpha)| dP(x, y)$
 - This is the average error rate on all possible values (x,y)
 - This is also the probability of misclassification
 - This is ideal, but cannot be computed in practice
- ◆ Empirical risk:
 - We approximate by averaging only on the training data

$$R_{emp}(\alpha) = \frac{1}{2T} \sum_{i=1}^{T} |y_i - f(x_i, \alpha)|$$

• Less ideal, can be computed, but may lead to overfit

 Generally, we manage overfit by watching the error rate of the classifier on validation data

Idea of VC:

- Instead of using validation data, we look at the complexity of the classifier
- If the classifier is complex, it is easier to reduce the error rate on training and overfit
- If the classifier is simple, it is more difficult to reduce the error rate, but less chances to overfit
- VC tries to optimize a combination between error rate and classifier complexity

MALIS 2017 462

Machine Learning: VC Dimension

- ◆ N points can be labeled in 2^N ways
 - For each point, possible labels are -1, +1
- Let \mathcal{H} a set of machines $\{f(x, \alpha)\}$
- ♦ Definition: \mathcal{H} shat \mathcal{H} if there exists a set of N points such that for all 2^N possible labellings, there exists a consistent $f(x, \alpha) ∈ \mathcal{H}$
 - "Consistent" means: f(x_i,α)= y_i for all i=1,...N
 - \bullet This means that any learning problem definable by those N examples can be learned with no error by an element of $\mathcal H$

We only need to find one such set of N points

WARNING

- The definition is:
- \mathcal{H} shatters N if there exists a set of N points such that for all 2^N possible labellings, there exists a consistent $f(x, \alpha) \in \mathcal{H}$
- The definition is NOT:
- ♦ \mathcal{H} shatters N if for all sets of N points and for all 2^N possible labellings, there exists a consistent $f(x, \alpha) \in \mathcal{H}$
- Example: linear classifiers in the plane

There exists

I can select 3 non aligned points

For all

It has to be true for all sets, also for aligned points

MALIS 2017

- ◆ Definition: the maximum value for N that ℋ shatters is called the Vapnik-Chervonenkis dimension of ℋ;
 - $VC(\mathcal{H}) = N$
- For example:
 - $VC(\{\text{lines in } \mathbb{R}^2\}) = 3$
 - In general: $VC(\{hyperplanes in \mathbb{R}^d\}) = d+1$

The basic idea is that, when the VC is high, there are more chances to overfit to the training data, so we should try to find models with low VC

MALIS 2017 466

Machine Learning: VC Dimension

- Example: \mathcal{H} ={circles centered at origin in \mathbb{R}^2 }
 - $f(x, \alpha) = sign(||x||^2 \alpha)$ or $f(x, \alpha) = -sign(||x||^2 \alpha)$

♦ $VC(\mathcal{H}) = 2$

♦ $VC(\mathcal{H}) = 4$

MALIS 2017

468

Machine Learning: VC Dimension

 Let ε between 0 and 1. Vapnik (1995) showed that :

$$P\left(R(\alpha) \leq R_{emp}(\alpha) + \sqrt{\frac{h(\log(2T/h) + 1) - \log(\varepsilon/4)}{T}}\right) \geq 1 - \varepsilon$$

- With $VC(\mathcal{H}) = h$
- Note the bound is independent of P(x,y)

When choosing between models with different
 VC, select the one with minimum upper bound

MALIS 2017

Linearly Separable Sets Bad decision boundaries: high risk of misclassification for new data Class 2 Class 1 MALIS 2017 Linearly Separable Sets Class 1 A74

Hyperplane H equation:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{b} = \mathbf{0}$$

x' w $w^{T}x + b < 0$ MALIS 2017

- Distance to hyperplane:
 - x' projection of x over H:

$$x' = x - \lambda w$$
 λ real

x' belongs to H:

$$w^Tx'+b=0$$

so:
$$\lambda = \frac{\mathbf{w}^\mathsf{T} \mathbf{x} + \mathbf{b}}{\mathbf{w}^\mathsf{T} \mathbf{w}}$$

$$d(x,H) = ||x - x|| = |\lambda||w||$$
$$= \frac{|w^{T}x + b|}{||w||}$$

- Assume boundary B is given
- Equation: $w^Tx + b = 0$
- Distance from class to boundary:

$$d(C_1,B) = \min_{\substack{X_1 \in C_1 \\ |X_1| = C_1}} \frac{|\mathbf{w}^T \mathbf{x}_1 + \mathbf{b}|}{|\mathbf{w}|}$$

Margin m:

$$m = \min_{x_1, x_2} \frac{|w^T x_1 + b| + |w^T x_2 + b|}{|w|}$$

MALIS 2017

476

Linearly Separable Sets: best boundary

- Theorem (Vapnik, 1982)
 - Given N data points $X=\{x_1, \ldots, x_N\}$ in \mathbb{R}^d , with $||x_i|| \le A$
 - $\mathcal{H}\gamma$ =set of linear classifiers in \mathbb{R}^d with margin γ on X

• Then, the VC dimension of $\mathcal{H}\gamma$ is bounded by:

$$VC(\mathcal{H}_{\gamma}) \leq \min \left\{ d, \left[\frac{4A^2}{\gamma^2} \right] \right\}$$

◆ The larger is the margin, the lower is the upper bound on the VC dimension

477

MALIS 2017

Linearly Separable Sets: best boundary

◆The two classes should be at the same distance (no bias):

$$d(C_1,B) = \min_{x_1 \in C_1} \frac{|w^T x_1 + b|}{\|w\|} = d(C_2,B) = \min_{x_2 \in C_2} \frac{|w^T x_2 + b|}{\|w\|}$$

Let
$$c = \min_{x_1 \in C_1} \left| w^T x_1 + b \right| = \min_{x_2 \in C_2} \left| w^T x_2 + b \right|$$

The margin should be maximal:

$$m = \underset{w,b}{max} \underset{x_1,x_2}{min} \frac{\left| \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_1 + \boldsymbol{b} \right| + \left| \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_2 + \boldsymbol{b} \right|}{\left\| \boldsymbol{w} \right\|} = \underset{w,b}{max} \frac{2c}{\left\| \boldsymbol{w} \right\|}$$

MALIS 2017 478

Best Boundary: simplification

- We can assume c = 1: (just use $w' = \frac{w}{c}$, $b' = \frac{b}{c}$, this is the same boundary)
- Then, the classes verify:

$$(1)\begin{cases} \forall x_1 \in C_1 & w^T x_1 + b \le -1 \\ \forall x_2 \in C_2 & w^T x_2 + b \ge +1 \end{cases}$$

◆ The best marginal verifies:

with w, b which verify (1)

MALIS 2017

Best Boundary: how to find it?

- ◆ Let {x₁, ..., x_n} be the sample points
- ♦ Let $y_i \in \{-1,1\}$ be the class label of x_i
- The best boundary verifies:

 This is an problem of optimization with constraints

The objective function is quadratic
The constraints are linear

QP Optimization

◆ A Quadratic Programming problem can be solved by standard techniques and softwares

It is a convex problem, so we can guarantee a global minimum

MALIS 2017 482

QP Optimization

min f(x) without constraints

$$g_{\scriptscriptstyle 1}(x) = 0$$

$$g_2(x)=0$$

$$g_3(x)=0$$

MALIS 2017

QP Optimization

• min f(x) with constraints

 $g_1(x) \le 0$ $g_2(x) \le 0$

 $g_3(x) \leq 0$

MALIS 2017

486

Lagrange optimization

- Optimization without constraints
- Let f(x): $\mathbb{R}^n \to \mathbb{R}$ differentiable
- ♦ How to find min f(x) ?
 - 1. Compute $\frac{\partial f(x)}{\partial x_i}$
 - 2. Find x such that $\frac{\partial f(x)}{\partial x_i} = 0$ for all i=1,2...n
 - 3. Check if x is a minimum or a maximum

- Optimization with one equality constraint
- How to find min f(x) with constraint g(x) = 0?

MALIS 2017

488

Lagrange optimization

- Optimization with one equality constraint
- How to find min f(x) with constraint g(x) = 0?
 - In A, it is possible to decrease f and keep the constraint
 - In B, it is not possible because:

$$\nabla \mathbf{f} = -\lambda \nabla \mathbf{g}$$

Define Lagrangian:

$$L(x, \lambda) = f(x) + \lambda g(x)$$

• Then, in B we have: $\left(\frac{\partial L(x,\lambda)}{\partial x}\right) = 0$

$$\begin{cases} \frac{\partial L(x,\lambda)}{\partial x_i} = 0\\ \frac{\partial L(x,\lambda)}{\partial \lambda} = 0 \end{cases}$$

489

MALIS 2017

- Optimization with several equality constraints
- How to find min f(x) with constraints $g_i(x) = 0$?

1. Define Lagrangian
$$L(x, \lambda) = f(x) + \sum_{i} \lambda_{i} g_{i}(x)$$

 λ_{i} Lagrange multipliers

2. Find (x, λ) such that:

$$\begin{cases} \frac{\partial L(x,\lambda)}{\partial x_i} = 0\\ \frac{\partial L(x,\lambda)}{\partial \lambda_j} = 0 \end{cases}$$

3. Check if x is a minimum or a maximum

MALIS 2017 490

Lagrange optimization

- Optimization with one inequality constraint $g(x) \le 0$
- Lagrangian: $L(x, \alpha) = f(x) + \alpha g(x)$
- If x satisfies the constraint and $\alpha \ge 0$:

$$\max_{\alpha \ge 0} L(x, \alpha) = f(x)$$

◆ The original problem is:

$$\frac{\min \max_{\alpha \geq 0} L(x, \alpha)}{\sum_{\alpha \geq 0} L(x, \alpha)}$$

◆ The dual problem is :

$$\max_{\alpha > 0} \min_{\mathbf{x}} \mathsf{L}(\mathbf{x}, \alpha)$$

• Under certain conditions, both problems are equivalent

- Optimization with one inequality constraint
- We look for a saddle point of $L(x,\alpha)$
- ♦ So: $\begin{cases} \frac{\partial L(x,\alpha)}{\partial x} = 0\\ \frac{\partial L(x,\alpha)}{\partial \alpha} = 0 \end{cases}$

- And x should verify the constraint
- Idea for solving:
 - Step 1: minimize in x: $\nabla f(x) + \alpha \nabla g(x) = 0 \rightarrow x = \varphi(\alpha)$
 - Step 2: maximize in α : $f(\phi(\alpha)) + \alpha g(\phi(\alpha))$ with $\alpha \ge 0$
 - Step 3: deduce value of x and check constraint

MALIS 2017 492

Lagrange optimization

- Optimization with several inequality constraints
- ♦ How to find min f(x) with constraints $g_i(x) \le 0$?
 - Define Lagrangian $L(x,\alpha) = f(x) + \sum \alpha_j g_j(x)$
 - α_i ≥0 Lagrange multipliers
 - Find (x, α) such that:

$$\begin{cases} \frac{\partial L(x,\alpha)}{\partial x_{i}} = 0\\ g_{j}(x) \leq 0\\ \alpha_{j} \geq 0\\ \alpha_{j} g_{j}(x) = 0 \end{cases}$$
 (Karush-Kuhn-Tucker conditions)

Check if min or max

• min f(x) with constraints: $g_1(x) \le 0$ $g_2(x) \le 0$

 $g_1(x) \le 0$ $g_2(x) \le 0$

MALIS 2017

494

Best Boundary: Lagrange Optimization

- min $\frac{1}{2} \|\mathbf{w}\|^2$ with constraints: $\forall i \ \mathbf{y}_i (\mathbf{w}^T \mathbf{x}_i + \mathbf{b}) \ge 1$
- $L(w,b,\alpha) = \frac{1}{2} ||w||^2 \sum_{i} \alpha_{i} [y_{i}(w^{T}x_{i} + b) 1]$
- Step 1: $\begin{cases} \frac{\partial L(w,b,\alpha)}{\partial w_{j}} = w_{j} \sum_{i} \alpha_{i} y_{i} x_{ij} = 0 \\ \frac{\partial L(w,b,\alpha)}{\partial b} = -\sum_{i} \alpha_{i} y_{i} = 0 \end{cases}$

• so
$$w = \sum_{i} \alpha_{i} y_{i} x_{i}$$
 $\sum_{i} \alpha_{i} y_{i} = 0$

MALIS 2017

Best Boundary: Lagrange Optimization

$$w = \sum_{i} \alpha_{i} y_{i} x_{i} \qquad \sum_{i} \alpha_{i} y_{i} = 0$$

◆ Step 2:

$$L(w,b,\alpha) = \frac{1}{2} \|w\|^2 - \sum_{i} \alpha_{i} [y_{i}(w^{T}x_{i} + b) - 1]$$

$$= \frac{1}{2} \|w\|^2 - w^{T} \sum_{i} \alpha_{i} y_{i} x_{i} - b \sum_{i} \alpha_{i} y_{i} + \sum_{i} \alpha_{i}$$

$$= \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}$$

MALIS 2017

496

Best Boundary: Lagrange Optimization

Dual problem:

$$\begin{cases} \max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\mathsf{T}} x_{j} \\ \text{with } \sum_{i} \alpha_{i} y_{i} = 0, \quad \alpha_{i} \ge 0 \end{cases}$$

 Should also satisfy Karush-Kuhn-Tucker conditions:

$$\alpha_i [y_i (\mathbf{w}^\mathsf{T} \mathbf{x}_i + \mathbf{b}) - 1] = 0 \quad \forall i$$

• Note that $\alpha_i > 0$ iff x_i is a support vector \bigcirc

Best Boundary: Summary

- Given samples {x₁, ..., x_n} we want to find the best separator
- Solve the Dual problem:

$$\begin{cases} \max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\mathsf{T}} x_{j} \\ \text{with } \sum_{i} \alpha_{i} y_{i} = 0, \quad \alpha_{i} \ge 0 \end{cases}$$

- This gives the values of α_i
- When α_i >0 then x_i is a support vector (lies on the margin)
- When $\alpha_i = 0$ then x_i is outside the margin

MALIS 2017

498

Best Boundary: Summary

• We can then compute w and b:

$$\mathbf{w} = \sum_{i} \alpha_{i} \mathbf{y}_{i} \mathbf{x}_{i}$$
 (linear combination of support vectors)

- b is computed from $\alpha_i [y_i (w^T x_i + b) 1] = 0 \quad \forall i$
 - If x_i is a support vector:

$$y_i (w^T x_i + b) = 1$$
$$b = y_i - w^T x_i$$

• In practise, it is better to average:

$$\mathbf{b} = \frac{1}{\#\{\mathbf{i} : \alpha_i > 0\}} \sum_{\mathbf{i}: \alpha > 0} (\mathbf{y}_{\mathbf{i}} - \mathbf{w}^\mathsf{T} \mathbf{x}_{\mathbf{i}})$$

Remarks

• A new point z can be easily classified:

$$w^Tz + b < 0$$
 class 1

$$w^Tz + b > 0$$
 class 2

 Note that data points are used through inner product only:

• Training:
$$x_i^T x_j$$
 in $\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j$

• Test:
$$\mathbf{w}^\mathsf{T}\mathbf{z} = \textstyle\sum_{i} \alpha_i y_i \mathbf{x}_i^\mathsf{T}\mathbf{z}$$

(This will allow generalization to non-linear case)

- What if the sets are not linearly separable?
 - We want to minimize the number of errors (points on the wrong side of the margin)
 - We still want to maximize the margin
 - Solution: combine

$$\min_{\mathbf{w}} \left[\frac{1}{2} |\mathbf{w}|^2 + C \times \#\{errors \ on \ training\} \right]$$

 But this is no longer a QP problem, so instead of counting the errors, we minimize their distance to the margin

502

MALIS 2017

Soft-margin classifiers

 If the sets are not linearly separable, try to minimize the "error" ξ_i in classification

• New constraints: $\begin{cases} w^\mathsf{T} x_i + b \ge 1 - \xi_i & \text{if } y_i = 1 \\ w^\mathsf{T} x_i + b \le -1 + \xi_i & \text{if } y_i = -1 \\ \xi_i \ge 0 \end{cases}$

 ξ_i =0 if no error for x_i

Maximize margin and minimize error:

$$\begin{cases} \min_{\mathbf{w}, \xi_i} \left(\frac{1}{2} \| \mathbf{w} \|^2 + \mathbf{C} \sum_i \xi_i \right) \\ \text{constraints} : \forall i \quad \mathbf{y}_i (\mathbf{w}^\mathsf{T} \mathbf{x}_i + \mathbf{b}) \ge 1 - \xi_i, \quad \xi_i \ge 0 \end{cases}$$

• C is a tradeoff parameter between error and margin

MALIS 2017 504

Soft-margin classifiers

Lagrangian:

$$L(\mathbf{w}, \mathbf{b}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} \xi_i - \sum_{i} \alpha_i \left[\mathbf{y}_i \left(\mathbf{w}^\mathsf{T} \mathbf{x}_i + \mathbf{b} \right) - 1 + \xi_i \right] - \sum_{i} \beta_i \xi_i$$

We have to solve:

$$\min_{\mathbf{w}, \mathbf{b}, \boldsymbol{\xi}} \max_{\alpha_i \geq 0, \beta_i \geq 0} \left\{ \frac{1}{2} \left\| \mathbf{w} \right\|^2 + C \sum_i \xi_i - \sum_i \alpha_i \left[y_i \left(\mathbf{w}^\mathsf{T} \mathbf{x}_i + \mathbf{b} \right) - 1 + \xi_i \right] - \sum_i \beta_i \xi_i \right\}$$

Which (under conditions) is equivalent to:

$$\max_{\alpha_i \geq 0, \beta_i \geq 0} \min_{\mathbf{w}, \mathbf{b}, \xi} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i \zeta_i - \sum_i \alpha_i \left[\mathbf{y}_i \left(\mathbf{w}^\mathsf{T} \mathbf{x}_i + \mathbf{b} \right) - 1 + \zeta_i \right] - \sum_i \beta_i \zeta_i \right\}$$

Lagrangian:

$$L(w,b,\xi,\alpha,\beta) = \frac{1}{2} ||w||^2 + C \sum_{i} \xi_{i} - \sum_{i} \alpha_{i} [y_{i}(w^{T}x_{i} + b) - 1 + \xi_{i}] - \sum_{i} \beta_{i}\xi_{i}$$

We have to solve:

$$\min_{\mathbf{w}, \mathbf{b}, \boldsymbol{\xi}} \max_{\alpha_i \geq 0, \beta_i \geq 0} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i \xi_i - \sum_i \alpha_i [\mathbf{y}_i (\mathbf{w}^\mathsf{T} \mathbf{x}_i + \mathbf{b}) - 1 + \xi_i] - \sum_i \beta_i \xi_i \right\}$$

Which (under conditions) is equivalent to:

$$\max_{\alpha_i \geq 0, \beta_i \geq 0} \min_{\mathbf{w}, \mathbf{b}, \boldsymbol{\xi}} \left\{ \frac{1}{2} \left\| \mathbf{w} \right\|^2 + C \sum_i \boldsymbol{\xi}_i - \sum_i \alpha_i \left[\mathbf{y}_i \left(\mathbf{w}^\mathsf{T} \mathbf{x}_i + \mathbf{b} \right) - 1 + \boldsymbol{\xi}_i \right] - \sum_i \boldsymbol{\beta}_i \boldsymbol{\xi}_i \right\}$$

MALIS 2017 506

Soft-margin classifiers

◆ Step 1: set partial derivatives of L to zero

$$\begin{cases} \frac{\partial L(w,b,\xi,\alpha,\beta)}{\partial w_{j}} = w_{j} - \sum_{i} \alpha_{i} y_{i} x_{ij} = 0 \\ \frac{\partial L(w,b,\xi,\alpha,\beta)}{\partial b} = -\sum_{i} \alpha_{i} y_{i} = 0 \\ \frac{\partial L(w,b,\xi,\alpha,\beta)}{\partial b} = C - \alpha_{j} - \beta_{j} = 0 \end{cases}$$
 so:
$$\begin{cases} w_{j} = \sum_{i} \alpha_{i} y_{i} x_{ij} \\ \sum_{i} \alpha_{i} y_{i} = 0 \\ \alpha_{j} = C - \beta_{j} \end{cases}$$

Also with KKT conditions:

$$\alpha_i \left[y_i \left(w^T x_i + b \right) - 1 + \zeta_i \right] = 0$$

$$\beta_i \xi_i = 0$$

Step 2: replace in L

$$L(\mathbf{w}, \mathbf{b}, \xi, \alpha, \beta) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} \xi_{i} - \sum_{i} \alpha_{i} [\mathbf{y}_{i} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + \mathbf{b}) - 1 + \xi_{i}] - \sum_{i} \beta_{i} \xi_{i}$$

$$= \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i} (C - \beta_{i}) \xi_{i} - \sum_{i} \alpha_{i} \mathbf{y}_{i} \mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - \mathbf{b} \sum_{i} \alpha_{i} \mathbf{y}_{i} + \sum_{i} \alpha_{i} \left(\sum_{i} \alpha_{i} \xi_{i}\right)$$

$$= 0$$

$$= \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \mathbf{y}_{i} \mathbf{y}_{j} \mathbf{x}_{i}^{\mathsf{T}} \mathbf{x}_{j}$$

MALIS 2017

Soft-margin classifiers

 The dual problem for soft margin is identical to the one for hard margin, with the exception of the upper bound C on α :

$$\begin{cases} \max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\mathsf{T}} x_{j} \\ \text{with } \sum_{i} \alpha_{i} y_{i} = 0, \quad C \ge \alpha_{i} \ge 0 \end{cases}$$

When solved in α, w is again computed as

$$\mathbf{w} = \sum_{i} \alpha_{i} \mathbf{y}_{i} \mathbf{x}_{i}$$

Non-linear decision boundary

Sometimes the decision boundary is not linear

 But it may become if the set is projected in a higher dimension space

MALIS 2017 510

Non-linear decision boundary

- Idea: move data into a higher dimension space and search for a linear separator
- ◆ 1D problem:

 not linearly separable
- 1D-2D transform: $x \rightarrow \varphi(x) = (x, x^2)$
- ◆ 2D problem:

linearly separable

MALIS 2017

Non-linear decision boundary

• Idea: define a transform $\overline{\phi}$ from input space to feature space: $x \to \phi(x)$

- Solve a linear problem in the feature space
- This gives a non-linear classifier in the input space

MALIS 2017 512

Kernel trick

- Remember: to solve the dual problem, we only need to know the scalar product x_i^Tx_i
- In the feature space, we only need to know $K(x_i,x_i) = \phi(x_i)^T \phi(x_i)$
 - K is a kernel, a similarity measure between x_i and x_i
- If we define K, when can we be sure that K is a kernel (that a suitable φ exist)?
- ♦ Mercer's theorem: every Positive Semi-Definite symmetric function K is a kernel
 - (PSD = no negative eigenvalues)
- Kernel Trick: we never have to compute φ

Kernel trick

The dual problem becomes:

$$\begin{cases} \max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j}) \\ \text{with } \sum_{i} \alpha_{i} y_{i} = 0, \quad C \ge \alpha_{i} \ge 0 \end{cases}$$

- \bullet Solving provides the values for α_{i}
- Weight vector w is:

$$w = \sum_i \alpha_i y_i \varphi(x_i)$$

 But we don't need to know w, just to be able to compute w^Tx

MALIS 2017 514

Kernel trick

◆ Decision function: $f(x) = w^{T} \varphi(x) + b$ $= \sum_{i} \alpha_{i} y_{i} \varphi(x_{i})^{T} \varphi(x) + b$ $= \sum_{i} \alpha_{i} y_{i} K(x_{i}, x) + b$

- No need to know φ
- New data point z can be classified by:

$$\sum_{i} \alpha_{i} y_{i} K(x_{i}, z) + b < 0$$
 class 1

$$\sum_{i} \alpha_{i} y_{i} K(x_{i}, z) + b > 0$$
 class 2

Kernel Examples

- $\bullet x = (x_1, x_2)$
- ♦ $K(x_i, x_j) = (1 + x_i^T x_j)^2$ = $1 + x_{i1}^2 x_{j1}^2 + 2x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2x_{i1} x_{j1} + 2x_{i2} x_{j2}$
- We can check that:

$$\mathsf{K}(\mathsf{x}_{\scriptscriptstyle i},\mathsf{x}_{\scriptscriptstyle j}) = \varphi(\mathsf{x}_{\scriptscriptstyle i})^{\top} \varphi(\mathsf{x}_{\scriptscriptstyle j})$$

with:

$$\varphi(x) = (1, x_1^2, \sqrt{2}x_1x_2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2)$$

◆ This defines a linear classifier in a feature space of dim 6, which corresponds to a nonlinear classifier in the input space of dim 2

MALIS 2017 516

Kernel Examples

d-th degree polynomial:

$$K(x, x') = (1 + x^T x')^d$$

If the input space is dim n, the feature space is dim

Radial basis:

$$K(x,x') = \exp(-\frac{1}{2\sigma^2}||x-x'||^2)$$

The feature space is of infinite dimension

• Sigmoid with parameters α and β :

$$K(x, x') = \tanh(\alpha x^T x' + \beta)$$

Kernel Examples

- ♦ A linear combination of kernels is a kernel
- ◆ The product of two kernels is a kernel
- Kernel can be defined for other objects than vectors:
 - Trees
 - Strings
 - ...

MALIS 2017

518

Kernel Example: RBF

- ♦ Decision function: $f(x) = \sum_{i} \alpha_{i} y_{i} K(x_{i},x) + b$
- RBF kernel: $K(x,x') = \exp(-\frac{1}{2\sigma^2}||x-x'||^2)$

MALIS 2017

SVM Example 1

- ◆Suppose we have 5 data points in 1D space:
 - Class 1: $x_1=1$, $x_2=2$, $x_5=6$,
 - Class 2: x₃=4, x₄=5,
 - So $y_1=1$, $y_2=1$, $y_3=-1$, $y_4=-1$, $y_5=1$

- ◆We use the polynomial kernel of degree 2
 - $K(x,y) = (xy+1)^2$
 - C is set to 100

MALIS 2017

SVM Example 1

•We need to find α_i (i=1, ..., 5):

$$\begin{cases} \max_{\alpha} \sum_{i=1}^{5} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} x_{j} + 1)^{2} \\ \text{with } \sum_{i=1}^{5} \alpha_{i} y_{i} = 0, \quad 100 \ge \alpha_{i} \ge 0 \end{cases}$$

- ◆Using a QP solver, we get:
 - $\bullet \; \alpha_1 {=} 0, \; \alpha_2 {=} 2.5, \; \alpha_3 {=} 0, \; \alpha_4 {=} 7.333, \; \alpha_5 {=} 4.833$
 - Support vectors are $\{x_2=2, x_4=5, x_5=6\}$

521

SVM Example 1

◆Discriminant function :

$$f(x) = \sum_{i} \alpha_{i} y_{i} K(x_{i}, x) + b$$

$$=2.5(2x+1)^2+7.3(-1)(5x+1)^2+4.8(6x+1)^2+b$$

- ◆How to find b?
 - Solve f(2)=1 or f(5)=-1 or f(6)=1
 - Result: b=9
- ◆Discriminant function:

$$f(x) = 0.667 x^2 - 5.333 x + 9$$

SVM Example 2: XOR

- XOR:
 - Class 1: $x_1=(1,-1)$, $x_2=(-1,1)$
 - Class 2: $x_3=(1,1)$, $x_4=(-1,-1)$

- Kernel:
 - $K(x,y) = (x^Ty + 1)^2 = (x_1y_1 + x_2y_2 + 1)^2$
 - Corresponds to: $\phi(x) = (1, x_1^2, \sqrt{2} x_1 x_2, x_2^2, \sqrt{2} x_1, \sqrt{2} x_2)$
- QP problem: $\max_{\alpha} \sum_{i=1}^{4} \alpha_i \frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_i \alpha_j y_i y_j (x_i^\mathsf{T} x_j + 1)^2$

with
$$\alpha_{i} \ge 0$$
, $\sum_{i=1}^{4} \alpha_{i} y_{i} = \alpha_{1} + \alpha_{2} - \alpha_{3} - \alpha_{4} = 0$

MALIS 2017

SVM Example 2: XOR

$$\max_{\alpha} \sum_{i=1}^{4} \alpha_{i} - \frac{1}{2} \alpha^{T} H \alpha \quad \text{with } H = \begin{bmatrix} 9 & 1 & -1 & -1 \\ 1 & 9 & -1 & -1 \\ -1 & -1 & 9 & 1 \\ -1 & -1 & 1 & 9 \end{bmatrix}$$

Derivative:

$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ -1 - 1 \\ -1 - 1 \\ -1 - 1 \\ -1 - 1 \\ 1 \end{bmatrix} \alpha = 0$$

- Solution: $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0.125$
 - Satisfies the constraints

SVM Example 2: XOR

Weight vector:

$$W = \sum_{i=1}^{4} \alpha_i y_i \varphi(x_i) = \frac{1}{4} (\varphi(x_1) + \varphi(x_2) - \varphi(x_3) - \varphi(x_4))$$
$$= \begin{bmatrix} 0 & 0 & -\sqrt{2} & 0 & 0 & 0 \end{bmatrix}$$

Discriminant function:

$$f(x) = w^{T} \varphi(x) + b = -2x_{1}x_{2} + b$$

• With b = 0 because of support vectors

$$f(x) = -2x_1x_2$$

MALIS 2017 526

SVM Example 2: XOR

• $f(x) = -2x_1x_2$

Non-linear boundaries

Linear boundaries

SVM Example 3: Pedestrian detection

Positive examples

Negative data

MALIS 2017 528

SVM Example 3: Pedestrian detection

Histogram of Oriented Gradients

16 x 8 cells x 8 orientations Feature dimension: 1024

SVM Example 3: Pedestrian detection

- SVM Training:
 - Training examples: $\{x_i, y_i\}$ $x_i \in \mathbb{R}^{1024}$ $y_i \in \{-1, +1\}$
 - Positive: y_i=+1, negative y_i=-1
 - Linear SVM: f(x) = w.x + b
 - ullet Training algorithm: o values for w and b
- Detection: sliding window

window $\rightarrow x \in \mathbb{R}^{1024}$

if f(x) = w.x + b > 0: person detected if f(x) = w.x + b < 0: no person detected

MALIS 2017 530

SVM Example 3: Pedestrian detection

f(x) = w.x + b

SVM Issues

- Choice of kernel
 - Radial Basis or polynomial are standard
 - For very large problems: linear kernel
 - Large dimension
 - Large number of samples
- ◆ Choice of hyper-parameters C (+ Kernel par.)
 - By grid search:
 - Train SVM for several values
 - Keep values with best performance on validation data

MALIS 2017 534

SVM Multi-class classification

SVM is a binary classifier

- No easy large-margin generalization
- 2 common approaches:
 - 1 versus all
 - 1 versus 1

SVM Multi-class classification

◆ 1 versus all (requires N classifiers)

- Build one classifier for each class
- Assign to class with largest score

MALIS 2017

SVM Multi-class classification

◆ 1 versus 1 (requires N(N-1)/2 classifiers)

- Build one classifier for each pair of classes
- Assign to class by majority vote

MALIS 2017 537

SVM Summary	ry
--------------------	----

Margin	Primal	Dual
Hard	$\begin{cases} \min_{w} \frac{1}{2} w ^2 \\ with: \forall i \ y_i(w^T x_i + b) \ge 1 \end{cases}$	$\begin{cases} \max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{ij} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \\ with: \sum_{i} \alpha_{i} y_{i} = 0 \text{ and } \alpha_{i} \geq 0 \end{cases}$ $then: w = \sum_{i} \alpha_{i} y_{i} x_{i}$
Soft	$\min_{w} \begin{cases} \frac{1}{2} w ^{2} + \\ C. \sum_{i} max(0,1 - y_{i}(w^{T}x_{i} + b)) \end{cases}$ $C \text{ is an hyper-parameter}$	$\begin{cases} \max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{ij} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \\ with: \sum_{i} \alpha_{i} y_{i} = 0 \text{ and } C \ge \alpha_{i} \ge 0 \end{cases}$ $then: w = \sum_{i} \alpha_{i} y_{i} x_{i}$

538 **MALIS 2017**

SVM Summary

• With kernel K(x, x'):

• Dual:
$$\begin{cases} \max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{ij} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j}) \\ with: \sum_{i} \alpha_{i} y_{i} = 0 \ and \ C \geq \alpha_{i} \geq 0 \end{cases}$$

Classification:

$$f(x) = \sum_{i} \alpha_{i} y_{i} K(x_{i}, x) + b > 0$$
 class 1
$$f(x) = \sum_{i} \alpha_{i} y_{i} K(x_{i}, x) + b < 0$$
 class 2

$$f(x) = \sum_{i} \alpha_{i} y_{i} K(x_{i}, x) + b < 0$$
 class 2

539 **MALIS 2017**

SVM vs NN

- Optimization:
 - SVM: quadratic programming (efficient, convex, global optimum)
 - NN: non-linear optimization (local optimum)
- Feature map:
 - SVM: via kernel
 - NN: via hidden layer neurons
- Generalization capability:
 - SVM: based on largest margin principle
 - NN: try and test

MALIS 2017 540

Dimensionality Reduction

Dimensionality Reduction

- ◆ We often handle vectors in R^d with d large
 - Requires lot of storage
 - · Requires lot of computation
 - Requires models with lot of parameters
- But sometimes the true dimensionality of the data is smaller than d
- So it is useful to reduce dimension:
 - We save storage
 - We save computation
 - We can use models with less parameters, easier to estimate
- We can reduce the dimensionality exactly, but also approximately

MALIS 2017 542

Dimensionality Reduction

- ◆ The first idea is Feature Selection
 - Select a subset of the dimensions

- Two possible strategies (generally supervised):
 - Uni-variate: independent selections, fast but ignore correlations
 - Multi-variate: subset selection, more accurate but computationally expensive

Dimensionality Reduction

- Uni-variate selection
 - Several criteria, for example:
 - Mutual Information I(Y; x_i)
 - Correlation between Y et x_i
- Multi-variate selection
 - Several strategies, for example:
 - Greedy growing: add one dimension with high correlation with Y and low correlation with subset
 - Backward reduction: remove dimension one by one
 - Floating search: start with subset of right size, replace one dimension by a better one

MALIS 2017 544

Dimensionality Reduction

• Sometimes the data lies in a sub-space

 If we rotate the axes, one dimension would be enough

Dimensionality Reduction

◆ Sometimes the data almost lies in a sub-space

 If we rotate the axes, one component would provide a good approximation of the data

MALIS 2017

546

Dimensionality Reduction - PCA

- ◆ PCA Principal Component Analysis
 - Idea: find a sub-space which best approximates the data

 Choose the sub-space which minimizes the distortion with the data

MALIS 2017

Dimensionality Reduction - PCA

Approximation of dimension 0:

$$\underset{\mu \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i} ||\mathbf{x}_i - \mu||^2 = \frac{1}{|X|} \sum_{i} \mathbf{x}_i$$

♦ Center dataset: $x_i \rightarrow x_i - \mu$

MALIS 2017

548

Dimensionality Reduction - PCA

Approximation of dimension 1:

$$\begin{aligned} &\|\mathbf{x}_{i}\|^{2} = (\mathbf{v}.\mathbf{x}_{i})^{2} + d(\mathbf{x}_{i},\mathbf{v})^{2} \\ &\sum_{i} \|\mathbf{x}_{i}\|^{2} = \sum_{i} (\mathbf{v}.\mathbf{x}_{i})^{2} + \sum_{i} d(\mathbf{x}_{i},\mathbf{v})^{2} \\ &\underset{\mathbf{v}}{\operatorname{argmin}} \sum_{i} d(\mathbf{x}_{i},\mathbf{v})^{2} = \underset{\mathbf{v}}{\operatorname{argmax}} \sum_{i} (\mathbf{v}.\mathbf{x}_{i})^{2} \end{aligned}$$

X matrix nxd, X^TX is symetric, positive, so diagonalizable:

$$X^TX = U^TDU$$
 with $U^TU = UU^T = I$, D diagonal $\sum_i (v.x_i)^2 = (Xv)^TXv = v^TX^TXv = v^TU^TDUv = (Uv)^TDUv$

Dimensionality Reduction - PCA

If $D = diag(\lambda_1, \lambda_2, ... \lambda_d)$ with $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_d \ge 0$

• $\sum_{i} (\mathbf{v}.\mathbf{x}_{i})^{2} = (\mathbf{U}\mathbf{v})^{\mathsf{T}} \mathbf{D} \mathbf{U}\mathbf{v} = \sum_{i} \lambda_{j} \mathbf{u}_{j}^{2}$

is maximum when Uv=(1,0,0,...,0)

- v is the eigenvector of X^TX for the largest eigenvalue
- The sub-space of dimension 1 which best approximates X is the first principal axis
- The sub-space of dimension k which best approximates X is defined by the k first principal axes

MALIS 2017 550

Dimensionality Reduction - PCA

♦ How to use PCA?

- \bigcirc
- Compute covariance matrix X^TX
- Compute eigenvectors u_i for k largest eigenvalues
- Project on sub-space:

$$(x.u_1, x.u_2, ..., x.u_k)$$

- How to choose k?
 - $|X|_2^2 = \sum_j \lambda_j$ is the total energy (or variance, information, volume)
 - Choose the smallest k such that:

$$\frac{\sum_{j=1}^{k} \lambda_j}{\sum_{j=1}^{d} \lambda_j} \ge \theta$$

MALIS 2017

Dimensionality Reduction - PCA

- ◆ Example: EigenFaces [Turk, Pentland 1991]
 - Face database

Represented with 15 eigenvectors

MALIS 2017 552

Dimensionality Reduction - PCA

Example: EigenFaces [Turk, Pentland 1991]

Dimensionality Reduction - PCA - Example: Stock market - 357 stocks, 253 values (full year) FRO00017687 60,00 61,00 61,00 61,00 61,01 61,01 61,05 62,00 62,05 62,00 62,05 62,00 62,05 63,00 63,00 63,01 66,05 65,00 6

MALIS 2017

Decision Trees

MALIS 2017

560

Decision Trees

- Powerful mechanism to analyse large amounts of data:
 - To describe the main characteristics of the data
 - To classify data into disjoints classes
 - To generalize for predicting new data
- Widely used in data mining applications, because of the possibility to extract humanreadable rules
- Now a basic technique in Machine Learning

Decision tree applications

- Existing applications:
 - Financial: fraud detection
 - Language: statistical parser
 - Medicine: automated diagnosis
 - Biology: Genome analysis
 - Pharmacology: classification of drugs
 - Games
 - ...

MALIS 2017

562

MasterMind Game

MALIS 2017

Guess who is X by asking questions

Name	Gender	Size	Eyes	Hair
Arthur	Male	Tall	Blue	Black
Bob	Male	Medium	Green	Black
Charlie	Male	Short	Brown	Red
Denis	Male	Tall	Brown	Blond
Edmond	Male	Medium	Brown	Black
Frida	Female	Medium	Green	Blond
Georgia	Female	Short	Blue	Blond
Helen	Female	Short	Blue	Blond
Irene	Female	Tall	Green	Black
Jane	Female	Medium	Brown	Black

564

MALIS 2017

Identification Game

♦ Who is X?

Name	Gender	Size	Eyes	Hair
Arthur	?	?	?	?
Bob	?	?	?	?
Charlie	?	?	?	?
Denis	?	?	?	?
Edmond	?	?	?	?
Frida	?	?	?	?
Georgia	?	?	?	?
Helen	?	?	?	?
Irene	?	?	?	?
Jane	?	?	?	?

◆ What is X's gender ? X is male

Name	Gender	Size	Eyes	Hair
Arthur	Male	?	?	?
Bob	Male	?	?	?
Charlie	Male	?	?	?
Denis	Male	?	?	?
Edmond	Male	?	?	?
Frida	Female	?	?	?
Georgia	Female	?	?	?
Helen	Female	?	?	?
Irene	Female	?	?	?
Jane	Female	?	?	?

MALIS 2017

566

Identification Game

◆ What is X's size ? X is tall

Name	Gender	Size	Eyes	Hair
Arthur	Male	Tall	?	?
Bob	Male	Medium	?	?
Charlie	Male	Short	?	?
Denis	Male	Tall	?	?
Edmond	Male	Medium	?	?
Frida	Female	Medium	?	?
Georgia	Female	Short	?	?
Helen	Female	Short	?	?
Irene	Female	Tall	?	?
Jane	Female	Medium	?	?

MALIS 2017

♦ What is X's eyes color ? X has blue eyes

Name	Gender	Size	Eyes	Hair	
Arthur	Male	Tall	Blue	?	
Bob	Male	Medium	Green	?	
Charlie	Male	Short	Brown	?	
Denis	Male	Tall	Brown	?	
Edmond	Male	Medium	Brown	?	
Frida	Female	Medium	Green	?	
Georgia	Female	Short	Blue	?	
Helen	Female	Short	Blue	?	
Irene	Female	Tall	Green	?	
Jane	Female	Medium	Brown	?	

What to ask for first?

Name Gender		Gender Size		Hair	
Arthur	Male	Tall	?	?	
Bob	Male	Medium	?	?	
Charlie	Male	Short	?	?	
Denis	Male	Tall	?	?	
Edmond	Male	Medium	?	?	
Frida	Female	Medium	?	?	
Georgia	Female	Short	?	?	
Helen	Female	Short	?	?	
Irene	Female	Tall	?	?	
Jane	Female	Medium	?	?	

Decision Trees: Expressive Power

Decision trees can implement any boolean function:

• Example $[A(x) \wedge B(x)] \vee C(x)$

 Several trees implement the same function

 Logical formulas with the same value table

MALIS 2017

Decision Trees: Expressive Power

 Decision trees can implement any boolean function:

 But may need an exponential number of nodes n predicates → O(2ⁿ) nodes

MALIS 2017 574

Decision Trees: Efficiency

- Some trees are more efficient than others
 - Number of questions to ask before getting result
 - We should prefer trees with minimum mean depth
 - This means enumerating a lot of possible trees to find the best one
- Unfortunately, the problem of finding the best tree is NP-complete
 - We have to use heuristics to try to find "good" trees rather than the best one

Decision Trees: Efficiency

- How many distinct decision trees with n binary attributes?
 - It is the number of boolean functions = 2^{2^n}

```
1 2 4
2 4 16
3 8 256
4 16 65536
5 32 4,29E+09
6 64 1,84E+19
```

 And this does not count trees with different structures and same output...

MALIS 2017 576

Decision Trees Construction

- We assume that we have a lot of data
 - Real world data
 - It may not contain all cases
 - There might be no simple model
- We want to construct a good decision tree to model this data
 - Efficient, but not necessarily perfect
 - Performance on test data
 - Not too expensive to build
 - Small tree: number of nodes, depth

Probabilistic Formalisation

- ◆ Random variables: X₁, X₂, ... X_n, Y
 - Finite values (for now)
 - possibly non-comparable: (X₁ = color, Y=name)
 - X_i are the attributes
 - Y is the class to predict
- ◆ Goal:
 - Predict the value of Y based on the values of $X_1, X_2, \dots X_n$
- Approach:
 - Use training examples to estimate probabilities

$$(x_{1}^{j}, x_{2}^{j}, \dots x_{n}^{j}, y_{n}^{j})$$
 $j = 1,2...T$

MALIS 2017 578

Identification game

Υ	\mathbf{X}_1	\mathbf{X}_2	\mathbf{X}_3	X_4
Name	Gender	Size	Eyes	Hair
Arthur	Male	Tall	Blue	Black
Bob	Male	Medium	Green	Black
Charlie	Male	Short	Brown	Red
Denis	Male	Tall	Brown	Blond
Edmond	Male	Medium	Brown	Black
Frida	Female	Medium	Green	Blond
Georgia	Female	Short	Blue	Blond
Helen	Female	Short	Blue	Blond
Irene	Female	Tall	Green	Black
Jane	Female	Medium	Brown	Black

j=T=10

j=1 j=2

MALIS Grades

- MALIS started in 2015 (previously IS)
- 190 students passed the exam
 - Y = grade(MALIS)
- They also passed other exams
 - X_i = grade(course_i)
- ◆ Goal: predict Y=grade(MALIS) from X_i
- Grades are quantized:

```
A for grade \geq 17 B for grade \geq 13
C for grade \geq 10 D for grade \geq 5
E for grade > 0 F for grade = 0
```

NA: student did not attend

MALIS 2017 580

MALIS Grades

MALIS	Clouds	SoftDev	Manag Intro	MMIR	ADST	Optim	WebSem	SecAppli	
Е	NA	F	С	E	NA	NA	NA	NA	
В	В	Α	NA	NA	NA	NA	NA	NA	
В	Α	Α	NA	NA	NA	NA	NA	NA	
D	Α	Α	NA	NA	NA	NA	NA	NA	
В	D	NA	NA	NA	Α	NA	В	В	
F	NA	NA	NA	NA	NA	NA	NA	NA	
F	NA	NA	NA	NA	NA	F	NA	NA	
С	Α	Α	NA	NA	Α	NA	NA	NA	
С	Α	Α	В	NA	NA	NA	NA	NA	
С	NA	NA	NA	NA	В	NA	NA	С	
В	В	В	NA	NA	В	NA	NA	NA	
В	NA	NA	NA	NA	NA	NA	NA	NA	
С	В	NA	NA	В	С	С	NA	NA	
С	Α	Α	Α	NA	NA	NA	NA	NA	
D	Α	NA	В	D	NA	NA	NA	NA	
D	В	NA	NA	В	NA	NA	NA	NA	

$$F(t) = -t Log_2(t)$$
 $H(p,1-p)=-p.log_2(p)-(1-p)log_2(1-p)$

$$H(X) = \log_2(n)$$

•
$$P(X=x) = \delta_a(x)$$

$$H(X) = 0$$

MALIS 2017

Entropy: identification game

Name	Gender	Size	Eyes	Hair
Arthur	Male	Tall	Blue	Black
Bob	Male	Medium	Green	Black
Charlie	Male	Short	Brown	Red
Denis	Male	Tall	Brown	Blond
Edmond	Male	Medium	Brown	Black
Frida	Female	Medium	Green	Blond
Georgia	Female	Short	Blue	Blond
Helen	Female	Short	Blue	Blond
Irene	Female	Tall	Green	Black
Jane	Female	Medium	Brown	Black

$$p(Y = Arthur) = p(Y = Bob) = ... = \frac{1}{10}$$

H(Name) =
$$-\sum_{y} \frac{1}{10} \log_2 \frac{1}{10} = \log_2 10 = 3.32$$

MALIS 2017 584

MALIS Grades: Entropy

◆ MALIS: 190 students:

Grade	Α	В	С	D	Е	F	NA
Nb students	13	70	70	20	6	11	0
Probability	0,07	0,37	0,37	0,11	0,03	0,06	0

Entropy:

$$\begin{split} \text{H(MALIS)=-} \frac{13}{190} \text{Log}_2\left(\frac{13}{190}\right) - \frac{70}{190} \text{Log}_2\left(\frac{70}{190}\right) - \frac{70}{190} \text{Log}_2\left(\frac{70}{190}\right) \\ - \frac{20}{190} \text{Log}_2\left(\frac{20}{190}\right) - \frac{6}{190} \text{Log}_2\left(\frac{6}{190}\right) - \frac{11}{190} \text{Log}_2\left(\frac{11}{190}\right) \\ - \frac{0}{190} \text{Log}_2\left(\frac{0}{190}\right) \\ = 2.06 \end{split}$$

MALIS 2017

- Assume we know that X₁ = a₁
 - Random variable $Y|X_1 = a_1$

$$\begin{split} p\big(Y = y \big| X_1 = a_1\big) &= \frac{card\Big\{i : x^i_1 = a_1, y^i = y\Big\}}{card\Big\{i : x^i_1 = a_1\Big\}} \\ H\big(Y \big| X_1 = a_1\big) &= -\sum_y p\big(Y = y \big| X_1 = a_1\big) log_2 p\big(Y = y \big| X_1 = a_1\big) \end{split}$$

Example: 3 persons with blue eyes

$$H(Name|Eyes = blue) = -\sum_{y} \frac{1}{3} log_2 \frac{1}{3} = log_2 3$$

586 **MALIS 2017**

Conditional Entropy

- Assume that we know the value of X₁
 - average entropy H(Y|X₁)

$$\begin{split} H\!\!\left(Y\big|X_1\right) &= \sum_{a} \! p(X_1 = a) H\!\!\left(Y\big|X_1 = a\right) \\ &= -\! \sum_{a} \! p(X_1 = a) \! \sum_{y} \! p\!\!\left(Y = y\big|X_1 = a\right) \! \log_2 \! p\!\!\left(Y = y\big|X_1 = a\right) \\ &= -\! \sum_{ay} \! p\!\!\left(X_1 = a, Y = y\right) \! \log_2 \! p\!\!\left(Y = y\big|X_1 = a\right) \end{split}$$

Warning: this is not $p(Y = y|X_1 = a)$

$$p(Y = y | X_1 = a)$$

• Conditioned on the event $X_1 = a_1$

$$H(Y|X_1 = a_1) = -\sum_{y} p(Y = y|X_1 = a_1) log_2 p(Y = y|X_1 = a_1)$$

Conditioned on the random variable X₁

$$H(Y|X_1) = -\sum_{ay} p(X_1 = a, Y = y) log_2 p(Y = y|X_1 = a)$$

MALIS 2017 588

Conditional Entropy

Names example, eyes attribute:

Name	Eyes
Arthur	Blue
Bob	Green
Charlie	Brown
Denis	Brown
Edmond	Brown
Frida	Green
Georgia	Blue
Helen	Blue
Irene	Green
Jane	Brown

Name	Blue	Green	Brown
Arthur	1	0	0
Bob	0	1	0
Charlie	0	0	1
Denis	0	0	1
Edmond	0	0	1
Frida	0	1	0
Georgia	1	0	0
Helen	1	0	0
Irene	0	1	0
Jane	0	0	1
	3	3	4

$$p(Eyes = Blue, Name = Arthur) = \frac{1}{10}$$
 $p(Name = Arthur|Eyes = Blue) = \frac{1}{3}$

Names example:

• Eyes color: 3 blue, 3 green, 4 brown

$$H(Name) = log_2 10 = 3.32$$

$$H(Name|Eyes = blue) = log_2 3 = 1.58$$

$$H(Name|Eyes = green) = log_2 3 = 1.58$$

$$H(Name|Eyes = brown) = log_2 4 = 2$$

$$H(Name|Eyes) = 2x \frac{3}{10}log_2 3 + \frac{4}{10}log_2 4 = 1.75$$

590 **MALIS 2017**

MALIS Grades: Conditional Entropy

Grades example, Clouds course:

MALIS/Clouds	Α	В	С	D	Е	F	NA
Α	3	5	2	0	0	1	2
В	16	28	7	1	0	0	18
С	6	27	9	2	0	0	26
D	2	8	3	0	0	0	7
E	1	2	0	0	0	0	3
F	0	0	0	0	0	0	11
total	28	70	21	3	0	1	67

$$\begin{aligned} & \text{H(MALIS|Clouds)=-} \sum_{a,b} \text{p(M=a,C=b)} \text{Log}_2 \text{ p(M=a|C=b)} \end{aligned}$$

$$p(M=A,C=A) = \frac{3}{190} \qquad p(M=A|C=A) = \frac{3}{28}$$

$$p(M=A,C=B) = \frac{5}{190} \qquad p(M=A|C=B) = \frac{5}{70}$$

$$p(M=A|C=A) = \frac{3}{28}$$

$$p(M=A,C=B) = \frac{5}{190}$$

$$p(M=A|C=B) = \frac{5}{70}$$

591 **MALIS 2017**

Proof of $H(Y) \ge H(Y|X)$

$$\begin{split} & \frac{1}{H(Y) - H(Y|X) = -\sum_{y} p(Y = y)log_{2}p(Y = y) + \sum_{a,y} p(X = a, Y = y)log_{2}p(Y = y|X = a)} \\ & = -\sum_{a,y} p(X = a, Y = y)log_{2}p(Y = y) + \sum_{a,y} p(X = a, Y = y)log_{2}p(Y = y|X = a) \\ & = -\sum_{a,y} p(X = a, Y = y)log_{2} \frac{p(Y = y)}{p(Y = y|X = a)} \\ & = -\sum_{a} p(X = a)\sum_{y} p(Y = y|X = a)log_{2} \frac{p(Y = y)}{p(Y = y|X = a)} \\ & \geq -\sum_{a} p(X = a)log_{2} \left(\sum_{y} p(Y = y|X = a) \frac{p(Y = y)}{p(Y = y|X = a)}\right) \end{aligned} \quad \text{(convexity of log)} \\ & = -\sum_{a} p(X = a)log_{2} \left(\sum_{y} p(Y = y) = 0\right) = 0$$

MALIS 2017 592

Conditional Entropy

- Property:
 - it is always true that: $H(Y|X_1) \le H(Y)$
 - SO: $H(Y|X_1, X_2,...X_{n-1}, X_n) \le H(Y|X_1, X_2,...X_{n-1}) \le H(Y)$
- Knowing the answer to questions always improves our knowledge on Y
- By asking many questions, we get more and more knowledge about Y

Asking Questions

- We start with uncertainty H(Y)
- We can ask about the value of X₁

- ◆ When we know the value of X₁, we have uncertainty H(Y|X₁)
- ◆ The best question to ask is:

 $\hat{i} = argmin H(Y|X_i)$

MALIS 2017

594

Information Gain

Information gain for question i:

$$G(i) = H(Y) - H(Y|X_i) = I(Y;X_i)$$

Best question: $\hat{i} = \operatorname{argmin} H(Y|X_i) = \operatorname{argmax} G(i)$

$$G(\hat{i}) = H(Y) - H(Y|X_i) \ge H(Y) - H(Y|X_i) = G(i)$$

Example

- Identification game:
 - H(name) = log 10 = 3.3

H(name|gender) = 2.3

H(name|size) = 1.75

H(name|eyes) = 1.75

H(name|hair) = 1.96

- Best question: size or eyes
 - entropy is reduced from 3.3 to 1.75
 - entropy gain is 3.3 1.75 = 1.55

MALIS 2017 596

MALIS Grades

MALIS grades

Grade	Α	В	С	D	E	F	NA
Nb students	13	70	70	20	6	11	0
Probability	0,07	0,37	0,37	0,11	0,03	0,06	0

$$H(MALIS) = -\sum p(MALIS = a) log_2 p(MALIS = a) = 2.06$$

Most informative course:

$$H(MALIS|X) = -\sum_{a,b} p(MALIS = a, X = b) \log_2 p(MALIS = a|X = b)$$

course X	SoftDev	Clouds	Optim	SecAppli	ImSecu	MMIR	ImProc	Forensics	Stat	ImCod
H(MALIS X)	1,88	1,90	1,91	1,91	1,92	1,93	1,95	1,95	1,95	1,96

Second Best Question

◆ We have asked question X₁, which question to ask next?
→ Y₂

What is the best second question to ask?

$$\hat{i} = \underset{i}{\text{argmin}} H(Y|X_1 = a_1, X_i)$$

MALIS 2017 598

MALIS Grades

- Most informative course: SoftDev
- Second most informative course X:

$$\begin{split} & \text{H(MALIS|SD} = \alpha, \text{X)} = \\ & - \sum_{\text{ax}} \text{p(MALIS} = \text{a}, \text{X} = \text{x|SD} = \alpha) \text{log}_2 \, \text{p(MALIS} = \text{a|X} = \text{x,SD} = \alpha) \end{split}$$

$\alpha = A$	MALIS SD=A, Clouds	Α	В	С	D	Е	F	NA
X=Clouds	Α	0	0	0	0	0	0	0
	В	6	5	1	0	0	0	2
	С	4	3	0	0	0	0	2
	D	1	0	0	0	0	0	0
	Е	0	0	0	0	0	0	1
	F	0	0	0	0	0	0	0
	total	11	8	1	0	0	0	5

MALIS Grades

- Most informative course: SoftDev
- Second most informative courses:

	Students	Entropy	Best course
H(MALIS SD=A,X)	25	1,37	ESP_Deb
H(MALIS SD=B,X)	35	1,66	ManagIntro
H(MALIS SD=C,X)	19	1,43	Entrep
H(MALIS SD=D,X)	3	0,00	*
H(MALIS SD=E,X)	2	0,00	*
H(MALIS SD=F,X)	2	1,00	ManagIntro
H(MALIS SD=NA,X)	104	2,27	ImSecu

MALIS 2017 600

MALIS Success

- Predict success S or failure F to MALIS
 - Instead of grade A, B, C, D, E, F

MALIS success	MALIS grade	Clouds	SoftDev	Manag Intro	MMIR	ADST	Optim	WebSe m	SecAppl i	
F	Е	NA	F	С	E	NA	NA	NA	NA	
S	В	В	Α	NA	NA	NA	NA	NA	NA	
S	В	Α	Α	NA	NA	NA	NA	NA	NA	
F	D	Α	Α	NA	NA	NA	NA	NA	NA	
S	В	D	NA	NA	NA	Α	NA	В	В	
F	F	NA	NA	NA	NA	NA	NA	NA	NA	
F	F	NA	NA	NA	NA	NA	F	NA	NA	
S	С	Α	Α	NA	NA	Α	NA	NA	NA	
S	С	Α	Α	В	NA	NA	NA	NA	NA	
S	С	NA	NA	NA	NA	В	NA	NA	С	
S	В	В	В	NA	NA	В	NA	NA	NA	
S	В	NA	NA	NA	NA	NA	NA	NA	NA	

MALIS Success: Entropy

◆ MALIS: 190 students:

Grade	S	F
Nb students	153	37
Probability	0,81	0,19

Entropy:

$$H(MALIS) = -\frac{153}{190} Log_2 \left(\frac{153}{190}\right) - \frac{37}{190} Log_2 \left(\frac{37}{190}\right) = 0.71$$

MALIS 2017

602

MALIS Success: Conditional Entropy

• Success example, Clouds course:

MALIS/Clouds	Α	В	С	D	Е	F	NA
S	25	60	18	3	0	1	46
F	3	10	3	0	0	0	21
total	28	70	21	3	0	1	67

$$\label{eq:halls} \begin{aligned} & \text{H(MALIS|Clouds)=-} \sum_{a,b} p(\text{M=a,C=b}) \text{Log}_2 \ p(\text{M=a|C=b}) \end{aligned}$$

$$p(M=S,C=A) = \frac{25}{190} \qquad p(M=S|C=A) = \frac{25}{28}$$

$$p(M=S,C=B) = \frac{60}{190} \qquad p(M=S|C=B) = \frac{60}{70} \dots$$

H(MALIS|Clouds)= 0.67

MALIS Success

MALIS grades

Grade	S	F							
Nb students	153	37							
Probability	0,81	0,19							

$$H(MALIS) = -\sum p(MALIS = a) log_2 p(MALIS = a) = 0.71$$

Most informative course:

$$H(MALIS|X) = -\sum_{ab} p(MALIS = a, X = b) log_2 p(MALIS = a|X = b)$$

course X	ImProc	Optim	ImCod	InfoTheo	ImSecu	SoftDev	MMIR	SecAppli	FRA_ Ele_1	Clouds
H(MALIS X)	0,63	0,64	0,65	0,66	0,66	0,66	0,67	0,67	0,67	0,67

MALIS 2017 604

MALIS Success

◆ Most informative course: ImProc

MALIS IP	Α	В	С	D	Е	F	NA
S	4	5	0	0	0	0	144
F	0	1	4	2	0	0	30
total	4	5	4	2	0	0	174

- H(MALIS|IP)=0.63
- Second most informative course X:

$$H\big(\!\mathsf{MALIS}|\mathsf{IP}=\alpha,\mathsf{X}\big) = -\sum_{\mathsf{ax}} \mathsf{p}\big(\!\mathsf{MALIS}=\mathsf{a},\mathsf{X}=\mathsf{x}\big|\mathsf{IP}=\alpha\big) \mathsf{log_2}\, \mathsf{p}\big(\!\mathsf{MALIS}=\mathsf{a}\big|\mathsf{X}=\mathsf{x},\mathsf{IP}=\alpha\big)$$

$\alpha = A$
X=Clouds
H(MALIS IP = A, CI) = 0

MALIS IP=A, Clouds	Α	В	С	D	Ш	F	NA
S	2	1	1	0	0	0	0
F	0	0	0	0	0	0	0
total	2	1	1	0	0	0	0

MALIS 2017

605

MALIS Success

- Most informative course: ImProc
- Second most informative courses:

	Students	Entropy	Best course
H(MALIS IP=A,X)	4	0,00	*
H(MALIS IP=B,X)	6	0,00	Entrep
H(MALIS IP=C,X)	4	0,00	*
H(MALIS IP=D,X)	2	0,00	*
H(MALIS IP=E,X)	0	0,00	
H(MALIS IP=F,X)	0	0,00	
H(MALIS IP=NA,X)	174	0,60	ImSecu

Tree Growing

- Algorithm:
 - $T(0) = \{root\}$
 - choose an unmarked leaf L
 - find best question for L: Q
 - if Q improves entropy, then
 - T(t+1) = T(t) extended by question Q on L
 - else mark L, T(t+1) = T(t)
 - t=t+1, iterate _

608 **MALIS 2017**

Tree Growing

609 **MALIS 2017**

Decision Tree Example

	Left Sensor	Right Sensor	Forward Sensor	Back Sensor	Previous Action	Action
E1	Obstacle	Free	Obstacle	Free	Forward	TurnRight
E2	Free	Free	Obstacle	Free	TurnLeft	TurnLeft
E3	Free	Obstacle	Free	Free	Forward	Forward
E4	Free	Obstacle	Free	Obstacle	TurnLeft	Forward
E5	Obstacle	Free	Free	Free	TurnRight	Forward
E6	Free	Free	Free	Obstacle	TurnRight	Forward

MALIS 2017

611

Decision Tree Example

```
• H(A) = -1/6 \log_2(1/6) - 1/6 \log_2(1/6) - 4/6 \log_2(4/6) = 1.25
```

♦
$$H(A|FS)$$
 = $2/6*H(A|FS=O) + 4/6*H(A|FS=F)$
= $2/6*1 + 4/6*0$ = .333

MALIS 2017 612

Decision Tree Example

 ForwardSensor provides the highest information gain:

MALIS 2017

613

Decision Tree Example

	Left Sensor	Right Sensor	Forward Sensor	Back Sensor	Previous Action	Action
E1	Obstacle	Free	Obstacle	Free	Forward	TurnRight
E2	Free	Free	Obstacle	Free	TurnLeft	TurnLeft
E3	Free	Obstacle	Free	Free	Forward	Forward
E4	Free	Obstacle	Free	Obstacle	TurnLeft	Forward
E5	Obstacle	Free	Free	Free	TurnRight	Forward
E6	Free	Free	Free	Obstacle	TurnRight	Forward

MALIS 2017 614

Decision Tree Example

```
\bullet H(A|FS=O) = -1/2*log<sub>2</sub>(1/2) -1/2*log<sub>2</sub>(1/2) = 1
```

· Select either LS or PA

From Trees to Rules

- Note: we have discovered the rules:
 - if ForwardSensor=Free then Action=Forward
 - if ForwardSensor=Obstacle and LeftSensor=Free then Action=TurnLeft
 - if ForwardSensor=Obstacle and LeftSensor=Obstacle then Action=TurnRight

Tree Growing

- Tree gorwing is an iterative process, when do we stop splitting?
 - Data at current node: $(x^{j}_{1}, x^{j}_{2}, \dots x^{j}_{n}, y^{j})$
 - If the values of y^j are all equal
 - We can be sure that Y is equal to yⁱ, at least for the training data
 - If every attribute has only one value
 - We cannot ask any further question
 - What if all attributes have zero information gain?

MALIS 2017 618

Tree Growing

- What if all attributes have zero information gain?
- ◆ Example : XOR
 - H(Y) = 1
 - $H(Y|X_1) = H(Y|X_2) = 1$
 - No information gain

X ₁	X_2	Υ
0	0	0
0	1	1
1	0	1
1	1	0

But XOR can be represented by a tree of depth 2

(Hopefully this does not happen so often in practise)

Tree Growing

- Limitations of growing:
 - Splitting on x1 or x2 does not improve classification of A and B
 - Splitting on both at the same time would be optimal
 - Solution cannot be found by growing one node at a time only

MALIS 2017

620

Tree Entropy

 Each leaf of the tree corresponds to elements verifying conditions such as:

$$\begin{matrix} X_{i1} {=} a_1 \wedge X_{i2} {=} a_2 \wedge \ldots \wedge \\ X_{ik} {=} a_k \end{matrix}$$

MALIS 2017

Tree Entropy

Entropy of the leaf:

$$p(Y = y | leaf) = \frac{card\{i : (x_1^i, x_2^i, ... x_n^i) \in leaf, y^i = y\}}{card\{i : (x_1^i, x_2^i, ... x_n^i) \in leaf\}}$$

$$H(Y|leaf) = -\sum_{y} p(Y = y|leaf) log_2 p(Y = y|leaf)$$

Average entropy of the tree:

$$H(Y|tree) = \sum_{leaf} p(leaf) H(Y|leaf)$$

MALIS 2017 622

When to stop growing?

- Property: $H(Y|T(t+1)) \le H(Y|T(t))$
- Stop when no question improves entropy on any leaf:
 - case 1: Y value is certain

Arthur	Male	Tall	Blue	Black

• case 2: there remains an inherent uncertainty

Georgia	Female	Short	Blue	Blond
Helen	Female	Short	Blue	Blond

but entropy is computed on training data...

Training and Test data

Assume we have other test data:

$$(x_{1}^{j}, x_{2}^{j}, \dots x_{n}^{j}, y_{n}^{j})$$
 $j = 1,2...T_{test}$

What happens?

$$p_{test}\big(Y=y\big|leaf\big) = \frac{card\Big\{\,j: \big(x^j_1, x^j_2, ... x^j_n\big) \in leaf, y^j=y\Big\}}{card\Big\{\,j: \big(x^j_1, x^j_2, ... x^j_n\big) \in leaf\Big\}}$$

$$H_{test}\big(Y|leaf\big) = - \sum_{y} p_{test}(Y = y|leaf) \, log_2 p_{test}(Y = y|leaf)$$

$$H_{test}\big(Y|tree\big) = \sum_{leaf} p_{test}\big(leaf\big)\,H_{test}\big(Y|leaf\big)$$

◆ How do H_{test}(Y|T(t)) compare to H(Y|T(t)) ?

Overfitting

- Intuitive:
 - At the beginning of the tree, we have enough data at nodes to find good "general" questions
 - As we go down the tree, we have less data, and we find too "specific" questions
 - If we end up asking too specific questions, it might be that entropy on test data will not decrease!
- This is a problem of statistical significance and insufficient data
- How can we grow a tree on training data that will be good on test data?

MALIS 2017 626

Overfitting

- Two strategies:
 - Pre-pruning: decide to stop growing at some point
 - Post-pruning: grow the full tree and remove "bad" nodes
- Many criteria:
 - Use some validation data, separate from training data
 - Use statistical significance tests
 - Set bounds (number of nodes, size of node, information gain…)

Pre-pruning Criteria

- ◆ 1: stop when H_{valid}(Y|T(t)) does not improve
 - (or does not improve enough)
- 2: require a minimum improvement

$$H(Y|T(t)) - H(Y|T(t+1)) > \theta$$

3: use Minimum Description Length MDL:

$$\min_{t} \left[size(T(t)) + \lambda . H(Y|T(t)) \right]$$

trade-off between accuracy and complexity

MALIS 2017 628

Post-pruning

- Grow the tree at maximal size (using only training data)
- Start using validation data:
 - For all nodes N in tree:
 - replace subtree from N by a leaf : new tree T_N
 - compute classification accuracy of T_N on validation data
 - Prune node N that gives greatest improvement
 - Continue until no improvements

Binary Trees

- Problem:
 - X_i has k possible values
 - H(Y) H(Y|X) = H(X) H(X|Y)
 - Maximum entropy gain: log₂k (upper bound)

- Questions about attributes which have many values are likely to be more effective
- But data is split very rapidly
- Solution:
 - Restrict to binary (Yes/No) questions

632 **MALIS 2017**

Binary Tree

- Interest of binary questions:
 - All attributes have equal chances to produce good questions
 - Data is fragmented less rapidly
- Which binary questions:
 - If attribute X has a set of value S, a binary question is characterized by a subset S'⊂S
 - Question: X∈S'?
 - Answer is yes or no
 - There are 2^k subsets, 2^{k-1}-1 different questions.

633 **MALIS 2017**

Binary Questions

- How to find binary questions?
 - if X_i has k possible values:
 - there are 2^k possible subsets S_i
 - there are 2^{k-1}-1 different questions (removing symetries and empty question)
 - if k is small:
 - Enumerate and select the best one

```
k = 3 2^{k-1}-1=3 k = 26 2^{k-1}-1=33,554,431
```


- if k is large:
 - Use predefined questions built by hand
 - Try to find an algorithm to build good questions

MALIS 2017 634

Fixed Questions Example

Phonetization rules:

X_{-k}		X ₋₁	X_0	X_1	X_2		X_k	Υ
			g	r	е	е	n	G
	а	u	g	h				F

- X₀ character to be pronounced
- X_{-i}, X_i context characters
- Y phoneme pronounced
- Possible questions:
 - Singletons {a}, {b},{c}...{z}
 - Vowels $S_1 = \{a, e, i, o, u, y\}$
 - Fricatives $S_2 = \{f, v, s, z, j\} \dots$

Optimal Binary Splitting

- ♦ Optimal subset $H(Y|X \in S?) = \underset{S'}{\operatorname{argmin}} H(Y|X \in S'?)$
- ◆ Theorem (Breiman 1984):
 - if Y is binary (values 0 and 1) and X has finite values, then there exists an optimal subset S such that:

$$\forall x_1 \in S, \forall x_2 \notin S \qquad p(Y = 1 | X = x_1) \le p(Y = 1 | X = x_2)$$

$$x_i \in S \qquad x_i \notin S$$

$$p(Y = 1 | X = x_i)$$

MALIS 2017 636

Optimal Binary Splitting

- Consequence:
 - renumber x_i by increasing $p(Y=1|X=x_i)$

• there is an optimal subset among:

$$S_i = \{x_1, x_2, \dots, x_i\}$$
 $i=1, 2, \dots k-1$

S₂

S_i _____

search k-1 subsets instead of 2^{k-1}-1

Optimal Binary Splitting

k	k-1	2 ^{k-1} -1
2	1	1
3	2	3
4	3	7
5	4	15
10	9	511
15	14	16,383
20	19	524,287
25	24	16,777,215
26	25	33,554,431

 \bigcirc

MALIS 2017 638

Optimal Binary Splitting

	Y=1	Y=0	p(Y=1 X=x)
X=a	1	6	0.14
X=b	5	3	0.63
X=c	0	5	0

- ◆ Ordering: c a D
 - $H(Y|X \in \{c\}?)$ = 0.73
 - $H(Y|X \in \{c, a\}?)$ = **0.63**
- Check:
 - $H(Y|X \in \{c,b\}?)$ = 0.83

Flip-Flop Algorithm

- ◆ (Nadas 1991)
- Heuristic: when Y has more than 2 values
 - choose random subset S₀ of X values, set i=0
 - → $X'_i = (X \in S_i?)$ is binary
 - find optimal subset V_i for Y based on X'_i
 - $Y'_i = (Y \in V_i?)$ is binary
 - find optimal subset S_{i+1} for X based on Y'_i
 - i=i+1, and iterate ¬

MALIS 2017 640

Flip-flop Example

- $X = \alpha$, β , γ , δ
- → Y = a, b, c, d, e, f

N(X,Y)	Χ=α	Х=β	Х=γ	Χ=δ
Y=a	1	0	5	0
Y=b	2	0	0	0
Y=c	2	0	0	1
Y=d	1	0	2	1
Y=e	0	0	1	2
Y=f	1	0	0	1

Flip-flop Example

- Initial subset on x values(random)
 - $S_0 = {\alpha}$
- Initial entropy
 - $H(Y \mid X \in S_0?) = 2.13$

	α	β, γ, δ
Y=a	1	5
Y=b	2	0
Y=c	2	1
Y=d	1	3
Y=e	0	3
Y=f	1	1

MALIS 2017

642

Flip-flop Example

• Optimal binary split on Y for subset $S_0 = \{\alpha\}$

	α	β, γ, δ	$p(X \in S_0? Y=y)$	$H(X \in S_0? Y \in \{y_1,y_i\}?)$
е	0	3	0.	0.83
а	1	5	0.17	0.77
d	1	3	0.25	0.70
f	1	1	0.5	0.72
С	2	1	0.67	0.77
b	2	0	1.0	

- Best subset
 - $V_0 = \{e, a, d\}$

MALIS 2017

643

Flip-flop Example

◆ Optimal binary split on X for subset V₀={e,a,d}

	ead	fcb	$p(Y \in V_0? X=x)$	$H(Y \in V_0? X \in \{x_1,x_i\}?)$
β	0	0	0.	0.93
α	2	5	0.29	0.70
δ	3	2	0.6	0.59
γ	8	0	1.	

- ◆ Best subset S₁ for X
 - $S_0 = {\alpha}$
 - $S_1 = \{\alpha, \beta, \delta\}$

MALIS 2017

644

Flip-flop Example

• $S_1 = \{\alpha, \beta, \delta\}$

	α, β, δ	γ
а	1	5
b	2	0
С	3	0
d	2	2
е	2	1
f	2	0

- New entropy:
 - $H(Y \mid X \in S_1?) = 2.03 < H(Y \mid X \in S_0?) = 2.13$

MALIS 2017

Numerical Values

- ♦ When X_i has numerical (infinite) values
 - example: size, duration, length, grade, ...
- Possible questions: $X_i < \theta_i$?
- How to find questions?
 - Training data $(x_1^j, x_2^j, ... x_n^j, y^j)$ j = 1, 2... T
 - Order the different values of { x_i }: { v_i } with $v^j_i < v^{j+1}_i$
 - Choose $\theta_i = (v_i^j + v_i^{j+1})/2$ j = 1,2... V-1

• try these V-1 questions and keep best one

MALIS 2017 646

MALIS Entropy per grade

				ManagInt				
	MALIS	Clouds	SoftDev	ro	MMIR	ADST	Optim	
s1	E	NA	0	10.5	2.5	NA	NA	
s2	В	16	19	NA	NA	NA	NA	
s3	В	17	19	NA	NA	NA	NA	
s4	D	17	18	NA	NA	NA	NA	
s5	В	8	NA	NA	NA	16.5	NA	
s6	F	NA	NA	NA	NA	NA	NA	
s7	F	NA	NA	NA	NA	NA	0	
s8	С	18	18	NA	NA	17	NA	
s9	С	17	19	16	NA	NA	NA	
s10	С	NA	NA	NA	NA	14.5	NA	
s11	В	14	13	NA	NA	15.5	NA	
s12	В	NA	NA	NA	NA	NA	NA	
s13	С	15	NA	NA	13	10	12	
s14	С	17	18	16.5	NA	NA	NA	
s15	D	18	NA	14.5	7.5	NA	NA	
s16	D	14	NA	NA	14	NA	NA	
s17	F	NA	NA	NA	NA	NA	NA	

Ensemble Methods

MALIS 2017

650

Ensemble Methods

- A classifier depends on the training data and the model
 - It may have different performance on different test sets
 - If we build another classifier using a different training data and/or a different model, it will have different performance (than the first one) on test sets
- Idea: build several classifiers and combine them
 - Pro: generally better performance
 - Cons: more expensive computation

Ensemble Methods

- Assume binary classifiers h_i: X → {-1,+1}
 - Sometimes h_i : $X \to \mathbb{R}$ classified by sign($h_i(x)$)
- Combination techniques:
 - Majority vote: $sign(\sum_i h_i(x))$
 - Weighted combination: $sign(\sum_i w_i h_i(x))$
 - Useful if some classifiers are better than others
- Classifier construction:
 - Use different models
 - Use different parameters
 - Use different training sets

MALIS 2017 652

Ensemble Methods - Bagging

- Idea: different training sets
- Generate new training sets by randomly sampling with replacement

Training	1	2	3	4	5	6	7	
Sample1	7	5	2	2	5	7	5	
Sample2	2	7	4	3	5	7	6	
Sample3	4	7	3	7	3	4	3	
Sample4	1	5	4	5	2	4	7	

- Build a classifier for each new training set
- Average predictions

Ensemble Methods - Bagging

Advantages of bagging:

- Simple to implement: no need to change the training algorithm
- Reduces the risk of overfitting
 - Each classifier may overfit, but on different samples, so the average is less prone to overfitting
- Drawbacks:
- Requires more computation

MALIS 2017 654

- ♦ Idea: sequentially construct a new classifier to correct the errors of the previous ones
- Weight the examples instead of sampling
- Strong learner:
 - algorithm which, given ε <1/2, δ <1/2, can produce a classifier with a probability >1- δ that the error is < ε

- Weak learner:
 - algorithm which can produce a classifier with a probability >1- δ_0 that the error is $<\epsilon_0$ for some ϵ_0 <1/2, δ_0 <1/2
- Boosting can produce a strong learner from a weak learner

MALIS 2017 656

Ensemble Methods - Boosting

- Idea of boosting:
 - Train weak classifier h₁
 - Train weak classifier h2 to correct errors from h1
 - Train weak classifier h₃ to correct errors from h₂
 - ...
 - Then combine all classifiers
- Idea of Adaboost (adaptive boosting)
 - [Freund-Schapire 1995]
 - Weight each training sample
 - · Update weights after each classifier

- Use: 1(true) = 1, 1(false) = 0
- Adaboost:
 - Training samples (x_i, y_i) i=1,2,...T $y_i \in \{-1, +1\}$
 - Initial weights w_i = 1/T
 - Weighted error: $E(h) = \sum_i w_i \mathbf{1}(h(x_i) \neq y_i)$
 - For k=1, 2, ...K
 - Train a classifier h_k with currents weights
 - Choose $\alpha_k \in \mathbb{R}$, $\alpha_k \ge 0$
 - Update $w_i \rightarrow \frac{w_i \ exp(-\alpha_k \ y_i \ h_k(x_i))}{Z_k}$ (Z_k for normalization)
 - Final classifier: $H(x) = sign(\sum_{k} \alpha_{k} h_{k}(x))$

MALIS 2017 658

Ensemble Methods - Boosting

- Choice of α_k :
 - Weighted training error:

$$\epsilon_k = \mathsf{E}(\mathsf{hk}) = \sum_i \mathsf{w}_i \; \mathbf{1}(\mathsf{h}_k(\mathsf{x}_i) \neq \mathsf{y}_i) \qquad \text{assume } \epsilon_k \leq \mathbf{\epsilon} < 1/2$$

- $\alpha_k = \frac{1}{2} ln \left(\frac{1 \varepsilon_k}{\varepsilon_k} \right)$
- Then:
 - Bound on the final error (theorem):

$$\begin{split} \mathsf{E}(\mathsf{H}) &= \frac{1}{\mathsf{T}} \sum_{i} \mathbf{1}(\mathsf{H}(\mathsf{x}_i) \neq \mathsf{y}_i) \ \leq \exp\left(-2 \sum_{\mathsf{k}} \left(\frac{1}{2} - \varepsilon_{\mathsf{k}}\right)^2\right) \\ &\leq \exp\left(-2 \left(\frac{1}{2} - \varepsilon\right)^2 \mathsf{K}\right) \end{split}$$

Error decreases exponentially with K

- Proof:
 - Let $f(x) = \sum_{k} \alpha_{k} h_{k}(x)$ so H(x) = sign(f(x))
 - · Weights:

$$\begin{split} \frac{1}{T} & \to \frac{1}{T} \frac{exp\left(-\alpha_1 \, y_i \, h_1(x_i)\right)}{Z_1} \\ & \to \frac{1}{T} \frac{exp\left(-\alpha_1 \, y_i \, h_1(x_i)\right)}{Z_1} \frac{exp\left(-\alpha_2 \, y_i \, h_2(x_i)\right)}{Z_2} \end{split}$$

$$\rightarrow \frac{1}{T} \frac{\exp(-y_i f(x_i))}{\prod_k Z_k} \quad \triangleright$$

• Weights sum to 1, so: $\frac{1}{T} \sum_{i} \exp(-y_i f(x_i)) = \prod_{k} Z_k$

MALIS 2017

660

Ensemble Methods - Boosting

•
$$H(x_i) \neq y_i \Rightarrow y_i f(x_i) \leq 0 \Rightarrow \exp(-y_i f(x_i)) \geq 1$$

So $\mathbf{1}(H(x_i) \neq y_i) \leq \exp(-y_i f(x_i))$

$$\mathsf{E}(\mathsf{H}) = \frac{1}{\mathsf{T}} \sum_{i} \mathbf{1}(\mathsf{H}(\mathsf{x}_i) \neq \mathsf{y}_i) \ \leq \ \frac{1}{\mathsf{T}} \sum_{i} \mathsf{exp} \big(-\mathsf{y}_i \, \mathsf{f}(\mathsf{x}_i) \big) = \prod_{\mathsf{k}} \mathsf{Z}_\mathsf{k}$$

•
$$Z_k = \sum_i w_i \exp(-\alpha_k y_i h_k(x_i))$$

 $= \sum_{y_i \neq h_k(x_i)} w_i \exp(\alpha_k) + \sum_{y_i = h_k(x_i)} w_i \exp(-\alpha_k)$
 $= \varepsilon_k \exp(\alpha_k) + (1 - \varepsilon_k) \exp(-\alpha_k)$

• $\alpha_k = \frac{1}{2} ln \left(\frac{1 - \epsilon_k}{\epsilon_k} \right)$ is chosen to minimize Z_k

$$Z_k = 2\sqrt{\epsilon_k(1-\epsilon_k)} = \sqrt{1-4\left(\frac{1}{2}-\epsilon_k\right)^2} \leq \exp\left(-2\left(\frac{1}{2}-\epsilon_k\right)^2\right)$$

MALIS 2017

- ♦ 5K face images, 350 M non-face
- ◆ 180,000 possible filters
- Adaboost with 38 iterations
- First features selected:

- Very good performance and very fast
- Implemented in OpenCV