IN THE CLAIMS

Please amend the claims as follows:

1. (Currently Amended) A method for positioning of an audio signal comprising steps of: selecting a set of spatial functions, each having an associated scaling factor; providing a first set of amplifiers and a second set of amplifiers, the gains of the amplifiers being a function of the scaling factors;

receiving a first audio signal;

providing a direction representing the direction of the source of the first audio signal; adjusting the scaling factors depending on the direction;

applying the first set of amplifiers to the first audio signal to produce first encoded signals to provide a left-channel audio output;

delaying the first audio signal to produce a delayed audio signal; and applying the second set of amplifiers to the delayed audio signal to produce second encoded signals to provide a right-channel audio output, the left-channel audio output excluding the second encoded signals and the right-channel audio output excluding the first encoded signals.

- 2. (Original) The method of claim 1 wherein the spatial functions are spherical harmonic functions.
- 3. (Original) The method of claim 2 wherein the spherical harmonic functions include at least the first-order harmonics.
- 4. (Original) The method of claim 1 wherein the spatial functions are discrete panning functions.
- 5. (Currently Amended) The method of claim 1 wherein for each of the first and second sets of amplifiers, the gain of each amplifier is based on [[the]] a B-format encoding scheme.

6. (Original) The method of claim 1 further including:

providing a third set of amplifiers and a fourth set of amplifiers, the gains of the amplifiers being a function of the scaling factors;

receiving a second audio signal;

providing a direction representing the direction of the source of the second audio signal; adjusting the scaling factors depending on the direction;

applying the third set of amplifiers to the second audio signal to produce third encoded signals;

delaying the second audio signal to produce a second delayed audio signal;

applying the fourth set of amplifiers to the second delayed audio signal to produce fourth encoded signals;

mixing the first and the third encoded signals, or the first and the fourth encoded signals; and

mixing the second and the fourth encoded signals, or the second and the third encoded signals.

- 7. (Original) The method of claim 6 wherein the second signal is a synthesized audio signal.
- 8. (Currently Amended) The method of claim 1 further <u>including</u>: including a decoding the encoded signals, the decoder comprising filters defined based on the spatial functions.
- 9-19. (Canceled)
- 20. (Currently Amended) A method of producing an audio signal from directionally encoded audio signals comprising steps of:

selecting a set of spatial functions;

receiving directionally encoded audio signals according to a set of spatial functions; generating a set of spectral functions based on the spatial functions;

receiving a first set of directionally encoded audio signals encoded according to the set of spatial functions;

receiving a second of set directionally encoded audio signals encoded according to the set of spatial functions;

providing a first set of decoding filters defined by [[left]] the set of spectral functions; providing a second set of decoding filters defined by [[right]] the set of spectral functions;

applying the first set of decoding filters to the <u>first set of directionally</u> encoded audio signals to produce a <u>first set of filtered signals</u> left channel audio signal; and

applying the second <u>set of</u> decoding filters to the <u>second set of directionally</u> encoded audio signals to produce a <u>second set of filtered signals</u> right-channel audio signal; and

providing the first set of filtered signals to a left-channel audio signal and providing the second set of filtered signals to a right-channel audio signal, the left-channel audio signal excluding the second set of filtered signals and the right-channel audio signal excluding the first set of filtered signals.

- 21. (Currently Amended) The method of claim 20 wherein the set of spatial functions is defined by $\{g_i(\theta, \phi), i = 0, 1, ... N-1\}$ and the step of generating the spectral functions includes providing $L_i(f)$ and $R_i(f)$ such that $\Sigma_{\{i=0, ... N-1\}}$ $g_i(\theta_p, \phi_p)$ $L_i(f)$ approximates $\underline{L}(\theta_p, \phi_p, f)$ and $\Sigma_{\{i=0, ... N-1\}}$ $g_i(\theta_p, \phi_p)$ $R_i(f)$ approximates $\underline{R}(\theta_p, \phi_p, f)$, where $\underline{L}(\theta_p, \phi_p, f)$ is a set of left-ear HRTFs and $\underline{R}(\theta_p, \phi_p, f)$ is a set of right-ear HRTFs, where $\{[[\theta_p, \phi_p)]]$ $[(\theta_p, \phi_p)]$, $p = 1, 2, ... P\}$ is a set of directions and f is frequency.
- 22. (Original) The method of claim 21 wherein $\underline{L}(\theta_p, \phi_p, f)$ and $\underline{R}(\theta_p, \phi_p, f)$ are delay-free HRTFs.
- 23. (Currently Amended) The method of claim 21 wherein providing $L_i(f)$ includes solving, at each frequency f, the vector equation $\underline{L} \cong GL$, where:

the set of left-ear HRTFs $\underline{L}(\theta_p, \phi_p, f)$ define a [[Px1]] $\underline{Px1}$ vector \underline{L} , \underline{G} is a PxN matrix whose columns are Px1 vectors [[G_i ,]] \underline{G}_i , i = 0, 1, ..., N-1

Title: METHOD AND APPARATUS FOR THREE-DIMENSIONAL AUDIO DISPLAY

each of the [[N]] \underline{N} spatial functions $g_i(\theta_p, \phi_p, f)$ defines the vector $G_{i,}$ and the set of $[[L_i(f)]] L_i(f)$ defines the Nx1 vector L.

- 24. (Currently Amended) The method of claim 23 wherein providing $[[L_i(f)]] L_i(f)$ is obtained by pseudo-inversion of the matrix G, resulting in $L = (G^T G)^{-1} G^T L$.
- 25. (Currently Amended) The method of claim 24 wherein providing $[[L_i(f)]] \underline{L_i(f)}$ includes projecting [[a]] the Px1 vector [[L]] \underline{L} formed by the set of left-ear HRTFs $\underline{L}(\theta_p, \phi_p, f)$ over each of the Px1 vectors G_i formed by the spatial functions $[[g_i]] g_i(\theta_p, \phi_p)$ to compute the scalar product $[[L_i]] \underline{L}_i$.
- (Original) The method according to claim 25 wherein an Nx1 vector L formed by the 26. scalar products L_i is multiplied by the inverse of the Gram matrix G^TG .
- (Original) The method of claim 23 wherein providing $L_i(f)$ is obtained by $L = (G^T \Delta G)^T$ 27. ${}^{1}G^{T}\Delta \underline{L}$ where Δ is a diagonal PxP matrix where the P diagonal elements are weights applied to the individual directions (θ_p, ϕ_p) , p = 1, 2, ... P.
- 28. (Currently Amended) The method of claim [[20]] 27 where each weight is proportional to a solid angle associated with the corresponding direction.
- 29. (Currently Amended) The method of claim [[28]] 20 wherein the spatial functions are spherical harmonic functions.
- 30. (Currently Amended) The method of claim [[21]] 29 wherein the spherical harmonic functions include at least zero- and first-order harmonics.
- 31. (Currently Amended) The method of claim [[20]] 30 wherein the spectral functions define filters $L_W(f)$, $L_X(f)$, $L_Y(f)$, and $L_Z(f)$ effective for decoding binaural B-format encoded signals W_L , X_L , Y_L , Z_L W_R , X_R , Y_R , and Z_R , wherein the left-channel audio signal is defined by W_L

 $L_W(f) + X_L L_X(f) + Y_L L_Y(f) + Z_L L_Z(f)$ and the right-channel audio signal is defined by $W_R L_W(f) + X_R L_X(f) - Y_R L_Y(f) + Z_R L_Z(f)$; whereby the left- and right-channel audio signals are suitable for playback with headphones.

- 32. (Currently Amended) The method of claim [[20]] 30 wherein the spectral functions define filters $L_W(f)$, $L_X(f)$, $L_Y(f)$, and $L_Z(f)$ effective for decoding binaural B-format encoded signals W_L , X_L , Y_L , Z_L W_R , X_R , Y_R , and Z_R ; wherein the left-channel audio signal comprises two signals
 - a first signal $LF = 0.5\{[W_L + X_L][L_w(f) + L_X(f)] + Y_L L_Y(f) + Z_L L_Z(f)\}$ and
 - a second signal $LB = 0.5\{[W_L X_L][L_W(f) L_X(f)] + Y_L L_Y(f) + Z_L L_Z(f)\};$

and wherein the right-channel audio signal comprises two signals

- a first signal $RF = 0.5\{[W_R + X_R][L_W(f) + L_X(f)] + Y_R L_Y(f) + Z_R L_Z(f)\}$ and
- a second signal $RB = 0.5\{[W_R X_R][L_W(f) L_X(f)] Y_R L_Y(f) + Z_R L_Z(f)\};$

whereby the left- and right- channel audio signals are suitable for playback over a pair of front speakers and a pair of rear speakers.

33. (Original) The method of claim 32 further including:

performing a first cross-talk cancellation on the LF and RF signals to feed the front speakers; and

performing a second cross-talk cancellation on the *LB* and *RB* signals to feed the rear speakers.

- 34. (Original) The method of claim 20 wherein the spatial functions are discrete panning functions having a direction, called a principal direction, where the spatial function is maximum and wherein all other spatial functions are zero.
- 35. (Original) The method of claim 34 wherein the spectral function associated with each spatial function is the delay-free HRTF for the corresponding principal direction.

Page 7 Dkt: 2045.114US1

- 36. (Currently Amended) The method according to claims 34 or 35 wherein one or more of the spatial functions have their principal direction corresponding to [[the]] <u>a</u> direction of one of the loudspeakers.
- 37. (Original) The method according to claims 33 or 36 including performing cross-talk cancellation of the left and right audio signals before feeding the loudspeakers.
- 38. (Original) The method of claims 34 or 35 further including:

 producing left-front and left-back signals based on the left-channel audio signal;

 producing right-front and right-back signals based on the right-channel audio signal; and

 combining the left-front, left-back, right-front, and right-back signals to produce outputs

 suitable for playback with a pair of front speakers and a pair of rear speakers.
- 39. (Original) The method of claim 38 further including:

 performing a first cross-talk cancellation on the left-front and right-front signals to feed the front speakers; and

performing a second cross-talk cancellation on the left-back and right-back signals to feed the rear speakers.

- 40. (Currently Amended) The method of claim 39 wherein one or more of the spatial functions have their principal direction corresponding to the direction of [[the]] a loudspeaker.
- 41-49. (Canceled)