Relative Motion. Consider two particles A and B moving in some plane Let ra and ra be the position rectors of points A and B respectively. Then, position vector of B co.r.t. point A is given as -> TB/ = TB- TA. $\hat{j}_{B/A} = \hat{j}_{B} - \hat{j}_{A}$ and $\hat{j}_{B/A} = \hat{j}_{B} - \hat{j}_{A}$ 0 This Gives i- r = T + TB/A, $\overline{V}_{R} = \overline{Y}_{A} + \overline{V}_{B/A}$ or $\overline{\Gamma}_{R} = \overline{\Gamma}_{A} + \overline{\Gamma}_{B/A}$ $\overline{Q_B} = \overline{Q_A} + \overline{Q_{B/A}} \quad \text{or} \quad \overline{V_B} = \overline{V_A} + \overline{V_{B/A}}.$ or $\frac{1}{r_R} = \frac{1}{r_A} + \frac{1}{r_{B/A}}$ TA, TB, VA, VB, a and aB + Absolute Properties (w.r.t. origin). r_{B/A}, $\overline{V}_{B/A}$ and $\overline{a}_{B/A}$ are relative properties of B w·r·t·A.

@ method of resolving vectors into i, j components and thereby determining the magnitude and direction of relative velocity can also be used Numericals: -Ship A is moving north-west at a speed of 18 kmph. ship is moving east at a speed of 9 kmph. Find the direction and magnitude of relative velocity of Bw.r.t) We have, VA = speed of ship A = 18 kmph = 18x 5 = 5 mlgVB = Speed of ship B = 9 kmph = 9 x 5 = 2.5 m/s. VA W .. YB/A = VXA2+ YB2-2 VA VB COSCISS) ~ magnitude. $V_{B/A} = (6.99) \, \text{m} \, \text{s}$ To find direction, sino : 0 = 14.65° :. oin0 = 2.5 x 0.707

6.99

Two ships leave the port at the same time. The first streams North-west at 82 kmph and second streams 40° south of west at 24 kmph. Determine relative velocity of second ship wit first North Given: V1 = 32 Kmph $V_1 = 32 \, \text{kmph.}$ V2 = 24 kmph. West + ---- $V_1 = (-32 \sin 45^\circ) \hat{i} + (32 \cos 45) \hat{i}$ = -22.6241+22.6241 $V_2 = \left(24 \cos 40 \right) \left(- (24 \sin 40) \right)$ V2 = 24 kmph south = -18.3851 -15.4271. Relative velocity of ship 2 wrt ship 1 >> V2/1 = V2 - V1 = [-18.385-(-22.624)] + -15.427 - 22.62471 = 4.239 î - 38.051 î kmph. $|\nabla_{2/1}| = \sqrt{(4.289)^2 + (38.051)^2}$ 38.286 Kmph.

11	II विश्वशान्तिपुर्व पुर्वा II । विश्वशान्ति अर्थाः स्थापनि अर्थाः स्थापनि अर्थाः स्थापनि अर्थाः स्थापनि अर्थाः
4	A passenger travelling in a train tries to ed hit a pale near the track by throwing a stone with horizontal
//	near the track by throwing a stone with horizontal
	relocity of 20 m/s relative to train, where pole is just
	across him. If the speed of train is 36 kmph, Determine.
	1) Direction in which the passenger should throw the stone
	2) Horizontal relocity of stone cort the ground.
	• Pole
	VS/T VS
	VS
	0
7	$MT = 86 cmph = 36 \times 5 = 10 m/s$.
	Let o be angle of relative velocity of stone with true $\sqrt{7} = 10 \hat{i}$
	7- = 10 î
	$V_{S/T} = -(20\cos 6)\hat{1} + (20\sin 6)\hat{1}$.
	$\overline{V_S} = V_S \hat{j}$.
	Now we have $\sqrt{b} = \sqrt{c} - \sqrt{T}$
	Now, we have, $\sqrt{s_{1T}} = \sqrt{s} - \sqrt{T}$: $(-200000)\hat{i} + (20000)\hat{j} = (\sqrt{s})\hat{i} - (10)\hat{i}$
	$(-200030)_{1} + (209100)_{2} = (vs)_{1} - (10)_{1}$
	: 20 (050 = 10
	$\therefore \cos 0 = \frac{1}{2} \therefore \boxed{0 = 60^{\circ}}$
	Also, 208100 = VS
	: Vs = 20 sin 60° = 17.32 m/s.
	:. Yelocity of stone wit ground (Absolute velocity
	= 17.32 m/s. www.mitwpu.edu
	- 17.32 10/5.