R Notebook

Code ▼

Cleaning the grounds raw data

Hide

```
library(dplyr)
```

```
Warning: package 'dplyr' was built under R version 4.2.3
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union
```

Hide

library(lubridate)

```
Warning: package 'lubridate' was built under R version 4.2.3
Attaching package: 'lubridate'

The following objects are masked from 'package:base':

date, intersect, setdiff, union
```

```
# Define the paths to the CSV files
file_paths <- c("perth.csv", "adilade.csv", "brisbane.csv",
                 "geelong.csv", "melbourne.csv", "hobart.csv",
                 "sydney.csv")
# Initialize an empty list to store the dataframes
cleaned_dataframes <- list()</pre>
# Loop through each file
for (i in 1:length(file_paths)) {
  file_path <- file_paths[i]</pre>
 # Read the CSV file
  df <- read.csv(file_path)</pre>
df <- df %>%
  mutate(Date = format(mdy(Start.Date), "%d/%m/%Y")) %>%
  select(-Start.Date)
  # Chnage coloumn name of the team
  names(df) [names(df)== "Team"] <- "Team 1"</pre>
  # Change column name 'Opposition' to 'Team2'
  names(df)[names(df) == "Opposition"] <- "Team2"</pre>
  # Remove "v " from each row of the column 'Team2'
  df$Team2 <- gsub("v ", "", df$Team2)</pre>
  # Add a new column 'Decision'
  df$Decision <- ifelse(df$Toss == "won" & df$Bat == "1st", "Elected to bat", "Elected to bowl")</pre>
  # Remove rows where 'Result' is 'aban', 'n/r', or 'tied'
    filter(!(Result %in% c("aban", "n/r", "tied")))
  # Remove the entire 'BR' column
  df$BR <- NULL
  # Remove columns named 'X', 'X.1', and 'X.2'
 # Check if columns 'X', 'X.1', and 'X.2' exist in the dataframe and remove them if they do
 columns_to_remove <- c("X", "X.1", "X.2")</pre>
  existing_columns <- intersect(columns_to_remove, names(df))</pre>
if (length(existing_columns) > 0) {
  df <- df %>%
    select(-all_of(existing_columns))
}
  # Remove rows where 'Team 1' is empty
  # Remove rows where 'Team 1' is empty and there is data in 'Decision'
df <- df %>%
  filter(!(is.na(`Team 1`) | `Team 1` == "") | is.na(Decision))
```

```
# Store the cleaned dataframe in the list
cleaned_dataframes[[i]] <- df

# Save the cleaned data (optional, uncomment the next line to save)
write.csv(df, file = gsub(".csv", "_cleaned.csv", file_path), row.names = FALSE)
}

# Check for any NA dates that failed to parse
sapply(cleaned_dataframes, function(df) sum(is.na(df$Date)))

[1] 0 0 0 0 0 0 0</pre>
```

Cleaning the T20 data

```
library(dplyr)
#1.Read the CSV file (make sure to use the correct file path)
df <- read.csv("t20 data.csv")</pre>
# 2. Rename columns
names(df)[names(df) == "Team"] <- "Team1"</pre>
names(df)[names(df) == "Opposition"] <- "Team2"</pre>
df$Team2 <- gsub("v ", "", df$Team2) # Remove the 'v' from Team2 names
#3. Make decision coloumns
df <- df %>%
  mutate(Decision = ifelse(Toss == "won" & Bat == "1st", "Elected to bat", "Elected to bowl"))
# 4. Remove consecutive rows with same Team2 name
df <- df %>%
  mutate(prev_team2 = lag(Team2)) %>% # Create a temporary column for the previous row's Team2
  filter(Team1 != prev_team2 | is.na(prev_team2)) %>% # Filter out the second row of the pair
  select(-prev_team2) # Remove the temporary column
#5. Remove the last row
df <- df[-nrow(df), ]</pre>
#6. Remove BR coloumn no need unneccasary
df <- select(df, -BR)</pre>
# Find the indices of rows where 'Margin' is '-'
hyphen_indices <- which(df$Margin == "-")
# Check if there are any '-' values, then update 'Result' accordingly
if (length(hyphen_indices) > 0) {
 # For the first '-' in 'Margin', set 'Result' to "No result"
  df$Result[hyphen_indices[1]] <- "No result"</pre>
  # For the rest of the '-' in 'Margin', if any, set 'Result' to "Match abandoned"
  if (length(hyphen_indices) > 1) {
    df$Result[hyphen_indices[-1]] <- "Match abandoned"</pre>
  }
}
# Remove rows where result is "match abandoned" or "no result"
df <- df[!(df$Result %in% c("Match abandoned", "No result")), ]</pre>
 # Save the cleaned data
write.csv(df, "cleaned_t20.csv", row.names = FALSE)
View(df)
```

Visualising which teams won the matches by choosing any of the decisons

```
# Load the necessary library
library(dplyr)
library(ggplot2)
install.packages("readr")
```

WARNING: Rtools is required to build R packages but is not currently installed. Please download and install the appropriate version of Rtools before proceeding:

https://cran.rstudio.com/bin/windows/Rtools/
Installing package into 'C:/Users/asus/AppData/Local/R/win-library/4.2'
(as 'lib' is unspecified)
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/readr_2.1.4.zip'
Content type 'application/zip' length 1151374 bytes (1.1 MB)

package 'readr' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

C:\Users\asus\AppData\Local\Temp\RtmpEXtQcg\downloaded_packages

Hide

library(readr)

downloaded 1.1 MB

Warning: package 'readr' was built under R version 4.2.3

Hide

Load the dataset
df <- read_csv("cleaned_t20.csv")</pre>

Rows: 40 Columns: 9— Column specification

Delimiter: ","

chr (9): Team1, Result, Margin, Toss, Bat, Team2, Ground, Start.Date, Decision

i Use `spec()` to retrieve the full column specification for this data.

 ${f i}$ Specify the column types or set `show_col_types = FALSE` to quiet this message.

```
# Add a column to indicate if the winning team batted first or second
df <- df %>%
      mutate(WinningSide = ifelse(Result == "won" & Bat == "1st", "Batting First",
                                   ifelse(Result == "won" & Bat == "2nd", "Bowling First", "No Re
sult")))
ground_wins <- df %>%
 group_by(Ground, WinningSide) %>%
  summarise(Wins = sum(WinningSide != "No Result"),
            .groups = 'drop') # Ensure groups are dropped after summarising
unique_grounds <- unique(df$Ground)</pre>
for (ground in unique_grounds) {
 ground_data <- filter(ground_wins, Ground == ground)</pre>
 p \leftarrow ggplot(ground_data, aes(x = "", y = Wins, fill = WinningSide)) +
    geom_bar(stat = "identity", width = 1) +
    coord_polar("y", start = 0) +
    geom_text(aes(label = Wins), position = position_stack(vjust = 0.5)) +
    labs(title = paste("Win Distribution at", ground),
         fill = "Winning Side") +
    theme_void() +
    theme(legend.position = "bottom")
 print(p) # Print the pie chart for the current ground
}
```

Win Distribution at Geelong

Win Distribution at Hobart

Win Distribution at Sydney

Win Distribution at Perth

Win Distribution at Melbourne

Win Distribution at Brisbane

Win Distribution at Adelaide

Hide

NA NA

Visualising all the Venue ground and anlysing what decison has the most win percentage

```
# Load necessary libraries
library(ggplot2)
library(dplyr)
# List of your dataset file paths
file_paths <- c("perth_cleaned.csv", "adilade_cleaned.csv", "brisbane_cleaned.csv",
                 "geelong_cleaned.csv", "melbourne_cleaned.csv", "hobart_cleaned.csv",
                 "sydney cleaned.csv")
# Function to process each dataset and create a pie chart
process_and_plot <- function(file_path) {</pre>
  # Read the data
  data <- read.csv(file_path)</pre>
  # Assuming the ground name is consistent across each dataset
  ground_name <- unique(data$Ground)[1]</pre>
  # Create a new column to indicate if the team that made the decision won
  data$DecisionOutcome <- ifelse(data$Decision == "Elected to bat" & data$Result == "won", "Elec</pre>
ted to Bat and Won",
                                  ifelse(data$Decision == "Elected to bowl" & data$Result == "wo
n", "Elected to Bowl and Won", "Lost"))
  # Filter out the "Lost" decisions
  win_data <- filter(data, DecisionOutcome != "Lost")</pre>
  # Count the occurrences of each decision and match outcome
  decision_result_counts <- table(win_data$DecisionOutcome)</pre>
  # Convert the table to a dataframe for ggplot
  decision_result_df <- as.data.frame(decision_result_counts)</pre>
  colnames(decision_result_df) <- c("DecisionOutcome", "Count")</pre>
  # Number of matches in the dataset
  num_matches <- nrow(data)</pre>
  # Create a pie chart
  pie_chart <- ggplot(decision_result_df, aes(x = "", y = Count, fill = DecisionOutcome)) +</pre>
    geom_bar(stat = "identity", width = 1) +
    coord_polar("y", start = 0) +
    theme_void() +
    geom_text(aes(label = paste(DecisionOutcome, "\n", Count)), position = position_stack(vjust
= 0.5)) +
    ggtitle(paste("Decision Outcome at", ground_name, "- Total Matches:", num_matches))
  # Print the pie chart
  print(pie_chart)
}
# Apply the function to each file
for (file_path in file_paths) {
```

```
process_and_plot(file_path)
}
```

Decision Outcome at Perth - Total Matches: 14

Decision Outcome at Adelaide - Total Matches: 24

Decision Outcome at Brisbane - Total Matches: 20

Decision Outcome at Geelong - Total Matches: 14

Decision Outcome at Melbourne - Total Matches: 36

Decision Outcome at Hobart - Total Matches: 22

Decision Outcome at Sydney - Total Matches: 32

Hide

NA NA

Showing win percentage of eachground with their decisions

```
# Load necessary library
library(dplyr)
# Read the CSV file
df <- read.csv("cleaned_t20.csv")</pre>
# Process the data to determine the outcome based on decision and toss
df <- df %>%
 mutate(DecisionWon = case_when(
   Toss == "won" & Decision == "Elected to bowl" & Result == "won" ~ TRUE,
    Toss == "lost" & Decision == "Elected to bowl" & Result == "lost" ~ TRUE,
    Toss == "won" & Decision == "Elected to bat" & Result == "won" ~ TRUE,
   Toss == "lost" & Decision == "Elected to bat" & Result == "lost" ~ TRUE,
   TRUE ~ FALSE
 ))
# Counting the number of wins based on the decision for each ground
wins_df <- df %>%
 group_by(Ground, Decision) %>%
  summarise(Wins = sum(DecisionWon))
```

`summarise()` has grouped output by 'Ground'. You can override using the `.groups` argument.

Hide

```
# Counting the total matches played on each ground for each decision
total_matches_df <- df %>%
  group_by(Ground, Decision) %>%
  summarise(Total_Matches = n())
```

`summarise()` has grouped output by 'Ground'. You can override using the `.groups` argument.

```
# Merging the wins and total matches dataframes
merged_df <- merge(wins_df, total_matches_df, by = c("Ground", "Decision"))

# Adding a column for win percentage
merged_df$Win_Percentage <- (merged_df$Wins / merged_df$Total_Matches) * 100

# Ordering the final dataframe by Ground and Win Percentage
final_df <- merged_df[order(merged_df$Ground, -merged_df$Win_Percentage),]

# Display the final dataframe
print(final_df)</pre>
```

	Ground <chr></chr>	Decision <chr></chr>	Wins <int></int>	Total_Matches <int></int>	Win_Percentage <dbl></dbl>
1	Adelaide	Elected to bowl	1	7	14.28571

Ground <chr></chr>	Decision <chr></chr>	Wins <int></int>	Total_Matches <int></int>	Win_Percentage <dbl></dbl>
2 Brisbane	Elected to bat	2	2	100.00000
3 Brisbane	Elected to bowl	0	2	0.00000
4 Geelong	Elected to bat	2	2	100.00000
5 Geelong	Elected to bowl	0	4	0.00000
6 Hobart	Elected to bat	1	1	100.00000
7 Hobart	Elected to bowl	0	7	0.00000
8 Melbourne	Elected to bat	1	1	100.00000
9 Melbourne	Elected to bowl	1	2	50.00000
10 Perth	Elected to bat	1	1	100.00000
1-10 of 13 rows			Pi	revious 1 2 Next

Hide

NA

NA NA

Time series anlysis on each ground

```
# Load necessary libraries
library(dplyr)
library(lubridate)
library(ggplot2)
# Define the paths to the CSV files
file_paths <- c("perth_cleaned.csv", "adilade_cleaned.csv", "brisbane_cleaned.csv",</pre>
                "geelong_cleaned.csv", "melbourne_cleaned.csv", "hobart_cleaned.csv",
                "sydney cleaned.csv")
# Loop through each file
for (file_path in file_paths) {
  # Read the CSV file
  data <- read.csv(file_path)</pre>
  # Process the data
  data <- data %>%
    mutate(Decision.Maker = ifelse(Toss == "lost", "Team2", "Team1"),
           Match.Winner = ifelse(Result == "won", "Team1", "Team2"),
           Success = Decision.Maker == Match.Winner) %>%
    mutate(Date = dmy(Date),
           Year = year(Date))
  # Time series analysis for the most taken decisions yearly
yearly_decisions <- data %>%
  group_by(Year, Decision) %>%
  summarise(Count = n(), .groups = 'drop') %>% # Added .groups argument here
  arrange(Year, desc(Count))
# Plotting the line graph for decisions
  plot_decision <- ggplot(yearly_decisions, aes(x = Year, y = Count, group = Decision, color = D</pre>
ecision)) +
    geom_line() +
    geom_point() +
    theme minimal() +
    labs(title = paste("Yearly Decisions in Cricket Matches -", basename(file_path)),
         x = "Year",
         y = "Count of Decisions",
         color = "Decision")
  # Print the plot
  print(plot_decision)
}
```


2012

2008

2016

2020

Successful decisons made on each ground

```
# Load necessary libraries
library(dplyr)
library(lubridate)
# Define the paths to the CSV files
file_paths <- c("perth_cleaned.csv", "adilade_cleaned.csv", "brisbane_cleaned.csv",
                "geelong_cleaned.csv", "melbourne_cleaned.csv", "hobart_cleaned.csv",
                "sydney cleaned.csv")
# Initialize an empty list to store the dataframes
results <- list()
# Loop through each file
for (i in 1:length(file_paths)) {
 file_path <- file_paths[i]</pre>
 # Read the CSV file
 data <- read.csv(file_path)</pre>
 # Extract ground name from file name
 ground_name <- gsub("_cleaned.csv", "", basename(file_path))</pre>
 # Adding the 'Decision Maker' and 'Match Winner' columns
  data <- data %>%
    mutate(Decision.Maker = ifelse(Toss == "lost", "Team2", "Team1"),
           Match.Winner = ifelse(Result == "won", "Team1", "Team2"),
           Success = Decision.Maker == Match.Winner)
 # Ensure that 'Date' is in Date format
 data$Date <- dmy(data$Date)</pre>
 # Extract year from Date
 data$Year <- year(data$Date)</pre>
 # Calculate the total number of decisions and successful decisions per year
 yearly_stats <- data %>%
    group_by(Year) %>%
    summarise(Total.Decisions = n(),
              Successful.Decisions = sum(Success, na.rm = TRUE))
 # Calculate the success ratio
 yearly_stats$Success.Ratio <- (yearly_stats$Successful.Decisions / yearly_stats$Total.Decision</pre>
s) * 100
 # Add the ground name to the results table
 yearly_stats$Ground <- ground_name</pre>
 # Store the result in the list with ground name as key
  results[[ground_name]] <- yearly_stats
}
# Display the results with ground name included in each table
```

```
for (ground in names(results)) {
  print(results[[ground]])
}
```

Year <dbl></dbl>	Total.Decisions <int></int>	Successful.Decisions <int></int>	Success.Ratio Ground <dbl> <chr></chr></dbl>
2019	2	2	100 perth
2022	12	6	50 perth
2 rows			

Year <dbl></dbl>	Total.Decisions <int></int>	Successful.Decisions <int></int>	Success.Ratio <dbl></dbl>	
2011	2	0	0.00000	adilade
2014	2	0	0.00000	adilade
2016	2	0	0.00000	adilade
2017	2	0	0.00000	adilade
2019	2	0	0.00000	adilade
2022	14	2	14.28571	adilade
6 rows				

Year <dbl></dbl>	Total.Decisions <int></int>	Successful.Decisions <int></int>	Success.Ratio <dbl></dbl>	Ground <chr></chr>
2006	2	2	100	brisbane
2009	2	0	0	brisbane
2013	2	2	100	brisbane
2018	2	0	0	brisbane
2019	2	0	0	brisbane
2022	10	4	40	brisbane
6 rows				

Year <dbl></dbl>	Total.Decisions <int></int>	Successful.Decisions <int></int>	Success.Ratio <dbl></dbl>	Ground <chr></chr>
2017	2	2	100.00000	geelong
2022	12	4	33.33333	geelong
2 rows				

Year <dbl></dbl>	Total.Decisions <int></int>	Successful.Decisions <int></int>	Success.Ratio <dbl></dbl>	Ground <chr></chr>
2008	2	0	0.00000	melbourne
2009	2	2	100.00000	melbourne
2010	2	2	100.00000	melbourne
2011	2	2	100.00000	melbourne
2012	2	0	0.00000	melbourne
2013	2	0	0.00000	melbourne
2014	4	0	0.00000	melbourne
2016	2	0	0.00000	melbourne
2017	2	2	100.00000	melbourne
2018	2	2	100.00000	melbourne
1-10 of 12 rows			Previous	1 2 Nex

Year <dbl></dbl>	Total.Decisions <int></int>	Successful.Decisions <int></int>	Success.Ratio <dbl></dbl>	Ground <chr></chr>
2010	2	2	100.0	hobart
2014	2	2	100.0	hobart
2018	2	2	100.0	hobart
2022	16	2	12.5	hobart
rows				

Year <dbl></dbl>	Total.Decisions <int></int>	Successful.Decisions <int></int>	Success.Ratio <dbl></dbl>	Ground <chr></chr>
2007	2	2	100	sydney
2009	2	2	100	sydney
2010	2	0	0	sydney
2016	2	0	0	sydney
2018	4	2	50	sydney
2020	4	2	50	sydney
2022	16	8	50	sydney
7 rows				

NA			
NA			