Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 17

02 de Junio MAT1106 - Introducción al Cálculo

- 1) Considere la sucesión $x_n = \frac{n^j + 1}{n^k + 1}$. Pruebe que si j > k (con $j, k \in \mathbb{N}$), entonces $x_n \to \infty$.
- 2) Sea x_n una progresión aritmética (distinta de 0 infinitas veces). ¿A qué converge $\frac{x_{n+1}}{x_n}$?
- 3) Demuestre sin usar álgebra de límites que si $x_n \to L_x$ y $y_n \to L_y$, entonces $x_n y_n \to L_x L_y$.
- 4) Considere la sucesión definida como $x_1 = \sqrt{2}, x_{n+1} = \sqrt{2 + x_n}$. Pruebe que x_n converge y use esto para calcular su límite.
- 5) Sean $a, b \in \mathbb{R}$ tales que 0 < a < b. Se definen de manera recursiva las sucesiones $\{x_n\}$ e $\{y_n\}$ como

$$x_1 = \sqrt{ab}$$
 $y_1 = \frac{a+b}{2}$ $x_{n+1} = \sqrt{x_n y_n}$ $y_{n+1} = \frac{x_n + y_n}{2}$

Pruebe que ambas sucesiones convergen al mismo límite.