Key to Midterm Exam S2 Computer Architecture

Duration: 1 hr. 30 min.

Answer on the answer sheet <u>only</u>.

Do not show any calculation unless you are explicitly asked.

Do not use red ink.

Exercise 1 (5 points)

Answer on the answer sheet. Let us consider the following 11-bit binary number: 10111101010₂.

- 1. Write down its hexadecimal representation.
- 2. Assuming that it is an unsigned integer, write down its decimal representation.
- 3. Assuming that it is a signed integer, write down its decimal representation.
- 4. Write down the 12-bit binary representation of the following signed number: -94_{10} .
- 5. Write down the 12-bit binary representation of the following signed number: -2,048₁₀.
- 6. Determine the minimum number of bits required to encode the following unsigned number: 2^{17} ?
- 7. Determine the minimum number of bits required to encode the following signed number: 2^{17} ?
- 8. Determine the minimum number of bits required to encode the following signed number: -2^{17} ?
- 9. How many bytes does the value 2 Kib contain? Use a power-of-two notation.
- 10. How many bits does the value **256 KiB** contain? Use binary prefixes (Ki, Mi or Gi) and choose the most appropriate prefix so that the integer numerical value will be as small as possible.

Exercise 2 (7 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the following form: $k \times 2^n$ where k and n are integers (either positive or negative).

Exercise 3 (4 points)

1. Give the type of each flip-flop below (answer on the answer sheet).

2. Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for a gated RS latch (Q0), a positive-edge-triggered RS flip-flop (Q1), a negative-edge-triggered RS flip-flop (Q2) and a master-slave RS flip-flop (Q3).

Exercise 4 (4 points)

Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for the following circuits.

Figure 1

Figure 2

Computer Architecture – EPITA – S2 – 2016/2017

Last name: Group: Group:

ANSWER SHEET

Exercise 1

1. 5EA ₁₆	6. 18 bits
2. 1,514 ₁₀	7. 19 bits
3534_{10}	8. 18 bits
4. 1111 1010 0010 ₂	9. 256 bytes
5. 1000 0000 0000 ₂	10. 2 Mib

Exercise 2

1.

Number	S	E	M
43	0	10000100	01011000000000000000000
-203.75	1	10000110	10010111100000000000000
0.171875	0	01111100	0110000000000000000000

2.

IEEE-754 Representation	Associated Representation
403D 4000 0000 0000 ₁₆	117×2^{-2}
FFF0 0000 0000 0000 ₁₆	$-\infty$
FFFF 0000 0000 0000 ₁₆	NaN
0002 8000 0000 0000 ₁₆	$5 \times 2^{-1,027}$

Exercise 3

1.

Flip-Flop	Type of Flip-Flop
1	Positive-edge-triggered RS flip-flop
2	Master-slave RS flip-flop
3	Gated RS latch
4	Negative-edge-triggered RS flip-flop

2.

Exercise 4

Figure 2

Feel free to use the blank space below if you need to:

