

## planetmath.org

Math for the people, by the people.

## substitution theorem for propositional logic

 ${\bf Canonical\ name} \quad {\bf Substitution Theorem For Propositional Logic}$ 

Date of creation 2013-03-22 19:33:08 Last modified on 2013-03-22 19:33:08

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 17

Author CWoo (3771)

Entry type Result
Classification msc 03B05

 $Related\ topic \qquad Axiom System For Propositional Logic$ 

Defines substitution theorem

In this entry, we will prove the substitution theorem for propositional logic based on the axiom system found http://planetmath.org/AxiomSystemForPropositionalLogic Besides the deduction theorem, below are some additional results we will need to prove the theorem:

- 1. If  $\Delta \vdash A \to B$  and  $\Gamma \vdash B \to C$ , then  $\Delta, \Gamma \vdash A \to C$ .
- 2.  $\Delta \vdash A$  and  $\Delta \vdash B$  iff  $\Delta \vdash A \land B$ .
- $3. \vdash A \leftrightarrow A.$
- 4.  $\vdash A \leftrightarrow \neg \neg A$  (law of double negation).
- 5.  $\perp \rightarrow A$  (ex falso quodlibet)
- 6.  $\Delta \vdash A$  implies  $\Delta \vdash B$  iff  $\Delta \vdash A \rightarrow B$ .

The proofs of these results can be found http://planetmath.org/SomeTheoremSchemasOfProposi

**Theorem 1.** (Substitution Theorem) Suppose  $p_1, \ldots, p_m$  are all the propositional variables, not necessarily distinct, that occur in order in A, and if  $B_1, \ldots, B_m, C_1, \ldots, C_m$  are wff's such that  $\vdash B_i \leftrightarrow C_i$ , then

$$\vdash A[B_1/p_1, \dots, B_m/p_m] \leftrightarrow A[C_1/p_1, \dots, C_m/p_m]$$

where  $A[X_1/p_1, ..., X_m/p_m]$  is the wff obtained from A by replacing  $p_i$  by the wff  $X_i$  via simultaneous substitution.

*Proof.* We do induction on the number n of  $\rightarrow$  in wff A.

If n=0, A is either a propositional variable, say p, or  $\bot$ , which respectively means that  $A[B/p] \leftrightarrow A[C/p]$  is either  $B \leftrightarrow C$  or  $\bot \leftrightarrow \bot$ . The former is the assumption and the latter is a theorem.

Suppose now A has n+1 occurrences of  $\rightarrow$ . We may write A as  $X \rightarrow Y$  uniquely by unique readability. Also, both X and Y have at most n occurrences of  $\rightarrow$ .

Let  $A_1$  be  $A[B_1/p_1, \ldots, B_m/p_m]$  and  $A_2$  be  $A[C_1/p_1, \ldots, C_m/p_m]$ . Then  $A_1$  is  $X_1 \to Y_1$  and  $X_2 \to Y_2$ , where  $X_1$  is  $X[B_1/p_1, \ldots, B_k/p_k]$ ,  $Y_1$  is  $Y[B_{k+1}/p_{k+1}, \ldots, B_m/p_m]$ ,  $X_2$  is  $X[C_1/p_1, \ldots, C_k/p_k]$ , and  $Y_2$  is  $Y[C_{k+1}/p_{k+1}, \ldots, C_m/p_m]$ .

Then

| by induction                                  | $\vdash X_1 \leftrightarrow X_2 \tag{1}$                   |
|-----------------------------------------------|------------------------------------------------------------|
| by 2 above                                    | $\vdash X_1 \to X_2 \text{ and } \vdash X_2 \to X_1$ $(2)$ |
| by induction                                  | $\vdash Y_1 \leftrightarrow Y_2 \tag{3}$                   |
| by 2 above                                    | $\vdash Y_1 \to Y_2 \text{ and } \vdash Y_2 \to Y_1$ $(4)$ |
| since $A_1$ is $X_1 \to Y_1$                  | $A_1 \vdash X_1 \to Y_1 \tag{5}$                           |
| by applying 1 to $\vdash X_2 \to X_1$ and (5) | $A_1 \vdash X_2 \to Y_1$ $(6)$                             |
| by applying 1 to (6) and $\vdash Y_1 \to Y_2$ | $A_1 \vdash X_2 \to Y_2 \tag{7}$                           |
| by the deduction theorem                      | $ \vdash A_1 \to A_2 \\ (8) $                              |
| by a similar reasoning as above               | $ \vdash A_2 \to A_1 \\ (9) $                              |
| by applying 2 to (8) and (9)                  | $\vdash A_1 \leftrightarrow A_2 \tag{10}$                  |
|                                               |                                                            |

As a corollary, we have

**Corollary 1.** If  $\vdash B \leftrightarrow C$ , then  $\vdash A[B/s(p)] \leftrightarrow A[C/s(p)]$ , where p is a propositional variable that occurs in A, s(p) is a set of positions of occurrences of p in A, and the wff A[X/s(p)] is obtained by replacing all p that occur in the positions in s(p) in A by wff X.

*Proof.* For any propositional variable q not being replaced, use the corresponding theorem  $\vdash q \leftrightarrow q$ , and then apply the substitution theorem.

**Remark**. What about  $\vdash B[A/p] \leftrightarrow C[A/p]$ , given  $\vdash B \leftrightarrow C$ ? Here, B[A/p] and C[A/p] are wff's obtained by uniform substitution of p (all occurrences of p) in B and C respectively. Since  $B[A/p] \leftrightarrow C[A/p]$  is just

 $(B \leftrightarrow C)[A/p]$ , an instance of the schema  $B \leftrightarrow C$  by assumption, the result follows directly if we assume  $B \leftrightarrow C$  is a theorem schema.

Using the substitution theorem, we can easily derive more theorem schemas, such as

7. 
$$(A \to B) \leftrightarrow (\neg B \to \neg A)$$
 (Law of Contraposition)

8. 
$$A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$$

9. 
$$((A \to B) \to A) \to A$$
 (Peirce's Law)

- *Proof.* 7. Since  $(\neg B \to \neg A) \to (A \to B)$  is already a theorem schema, we only need to show  $\vdash (A \to B) \to (\neg B \to \neg A)$ . By law of double negation (4 above) and the substitution theorem, it is enough to show that  $\vdash (\neg \neg A \to \neg \neg B) \to (\neg B \to \neg A)$ . But this is just an instance of an axiom schema. Combining the two schemas, we get  $\vdash (A \to B) \leftrightarrow (\neg B \to \neg A)$ .
  - 8. First, observe that  $A, A \to B \vdash B$  by modus ponens. Since  $\vdash B \leftrightarrow \neg \neg B$ , we have  $A, A \to B \vdash \neg \neg B$  by the substitution theorem. So  $A, A \to B, \neg B \vdash \bot$  by the deduction theorem, and  $A, \neg B \vdash (A \to B) \to \bot$  by the deduction theorem again. Apply the deduction two more times, we get  $\vdash A \to (\neg B \to \neg (A \to B))$ .
  - 9. To show  $\vdash ((A \to B) \to A) \to A$ , it is enough to show  $\vdash \neg A \to \neg((A \to B) \to A)$  by 7 and modus ponens, or  $\neg A \vdash \neg((A \to B) \to A)$  by the deduction theorem. Now, since  $\vdash X \land Y \leftrightarrow \neg(X \to \neg Y)$  (as they are the same thing, and because  $C \leftrightarrow C$  is a theorem schema), by the law of double negation and the substitution theorem,  $\vdash X \land \neg Y \leftrightarrow \neg(X \to Y)$ , and we have  $\vdash (A \to B) \land \neg A \leftrightarrow \neg((A \to B) \to A)$ . So to show  $\neg A \vdash \neg((A \to B) \to A)$ , it is enough to show  $\neg A \vdash (A \to B) \land \neg A$ , which is enough to show that  $\neg A \vdash A \to B$  and  $\neg A \vdash \neg A$ , according to a meta-theorem found http://planetmath.org/SomeTheoremSchemasOfPropositionalLogichere. To show  $\neg A \vdash A \to B$ , it is enough to show  $\{\neg A, A\} \vdash B$ , and  $A, \neg A, \bot , \bot \to B$ , B is such a deduction. The second statement  $\neg A \vdash \neg A$  is clear.

As an application, we prove the following useful meta-theorems of propositional logic:

**Proposition 1.** There is a wff A such that  $\Delta \vdash A$  and  $\Delta \vdash \neg A$  iff  $\Delta \vdash \bot$ 

*Proof.* Assume the former. Let  $\mathcal{E}_1$  be a deduction of A from  $\Delta$  and  $\mathcal{E}_2$  a deduction of  $\neg A$  from  $\Delta$ , then

$$\mathcal{E}_1, \mathcal{E}_2, \perp$$

is a deduction of  $\bot$  from  $\Delta$ . Conversely, assume the later. Pick any wff A (if necessary, pick  $\bot$ ). Then  $\bot \to A$  by ex falso quodlibet. By modus ponens, we have  $\Delta \vdash A$ . Similarly,  $\Delta \vdash \neg A$ .

**Proposition 2.** If  $\Delta$ ,  $A \vdash B$  and  $\Delta$ ,  $\neg A \vdash B$ , then  $\Delta \vdash B$ 

*Proof.* By assumption, we have  $\Delta \vdash A \to B$  and  $\Delta \vdash \neg A \to B$ . Using modus ponens and the theorem schema  $(A \to B) \to (\neg B \to \neg A)$ , we have  $\Delta \vdash \neg B \to \neg A$ , or

$$\Delta$$
,  $\neg B \vdash \neg A$ .

Similarly,  $\Delta \vdash \neg B \to \neg \neg A$ . By the law of double negation and the substitution theorem, we have  $\Delta \vdash \neg B \to A$ , or

$$\Delta, \neg B \vdash A$$
.

By the previous proposition,  $\Delta, \neg B \vdash \bot$ , or  $\Delta \vdash \neg \neg B$ . Applying the substitution theorem and the law of double negation, we have

$$\Delta \vdash B$$
.