Opracowanie danych pomiarowych

Tymoteusz Chmielecki Mateusz Bałuch

02.03.2020

1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie sie z metodami opracowywania i wykorzystywania wyników pomiarowych, w tym celu użyte zostało wahadło proste.

2 Wstep teoretyczny

2.1 Niepewność pomiarowa

Niepewność pomiaru to parametr zwiazany z wynikiem pomiaru, charakteryzujacy rozrzut wyników, które można w uzasadniony sposób przypisać wartości mierzonej. Charakteryzuje ona rozrzut wartości (szerokość przedziału), wewnatrz którego można z zadowalajacym prawdopodobieństwem usytuować wartość wielkości mierzonej. Z definicji niepewności pomiarowej wynika, że nie może być ona wyznaczona doskonale dokładnie.

2.2 Wahadło matematyczne

Wahadłem matematycznym jest punktowa masa zawieszona na nieważkiej nici. Na potrzeby ćwiczenia użyliśmy kuli zawieszonej na cienkiej nici. Wychylamy wahadło z położenia równowagi i wprowadzamy je w ruch drgajacy prosty. Dana zależność opisuje okres jego drgań:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Po przekształceniu otrzymujemy wzór na przyśpieszenie ziemskie jako funkcji okresu i długości nici:

$$g = \frac{4\pi^2 l}{T^2}$$

3 Układ pomiarowy

Do przeprowadzenia pomiarów użyliśmy wahadła matematycznego złożonego z obciażnika zawieszonego na cienkiej nici przyczepionej do statywu. Jako przyrzadow pomiarowych użyliśmy stopera oraz przymiaru milimetrowego.

4 Wykonanie ćwiczenia

Na ćwiczenie złożyły sie 2 cześci.

4.1 Wyznaczenie g na podstawie pomiaru 6 serii 20 wahań

4.2 Badanie zależności T od l

5 Wyniki

Table 1: Table Title

Pomiar	Liczba okresów k	Czas t dla k okresów $[s]$	Okres $T_i = {}^t/{}_k[s]$
1	20	25.00	1.25
2	20	25.16	1.258
3	20	25.22	1.261
4	20	25.28	1.264
5	20	25.31	1.2655
6	20	25.37	2.2685

Pomiary okresu drgań przy ustalonym l=0.404m