Test Report of FCC CFR 47 Part 15 Subpart C

On Behalf of

Graupner GmbH & Co. KG

FCC ID: ZKZ-33565

Product Description: Slow Flyer Receiver Graupner/SJ HoTT

Model No.: GR-12SH+

Supplementary Model: N/A

Prepared for: Graupner GmbH & Co. KG.

Henriettenstr. 94-96 D-73230 Kirchheim/Teck GERMANY

Prepared by: Bontek Compliance Testing Laboratory Ltd

1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East

Road, Nanshan, Shenzhen, China

Tel: 86-755-86337020

Fax: 86-755-86337028

Report No.: BCT12HR-1344E-1

Issue Date: December 06, 2012

Test Date: August 15~29, 2012

Tested by: Reviewed by:

Lion Cai

Kendy Wang

Kendy Wang

Approved by:

Teny Wu

TABLE OF CONTENTS

1.	GENERAL INFORMATION	
	1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
2	SYSTEM TEST CONFIGURATION	
	2.1 EUT CONFIGURATION	
	2.2 EUT EXERCISE	<i>6</i>
	2.3 GENERAL TEST PROCEDURES	6
	2.4 MEASUREMENT UNCERTAINTY	6
3	SUMMARY OF TEST RESULTS	
	TEST OF HOPPING CHANNEL BANDWIDTH	
4.	4.1 APPLICABLE STANDARD	
	4.2 EUT SETUP	
	4.3 TEST EQUIPMENT LIST AND DETAILS	10
	4.4 TEST PROCEDURE	
	4.5 TEST RESULT	
5.	TEST OF HOPPING CHANNEL SEPARATION	
	5.1 APPLICABLE STANDARD	
	5.3 TEST EQUIPMENT LIST AND DETAILS	13
	5.4 Test Procedure	13
	5.5 TEST RESULT	
6.	TEST OF NUMBER OF HOPPING FREQUENCY	
	6.1 APPLICABLE STANDARD.	
	6.2 EUT SETUP	
	6.4 TEST PROCEDURE	
	6.5 TEST RESULT	16
7.	TEST OF DWELL TIME OF EACH FREQUENCY	18
	7.1 APPLICABLE STANDARD	
	7.2 EUT SETUP	18
	7.4 TEST PROCEDURE	
	7.5 TEST RESULT	
8.	TEST OF MAXIMUM PEAK OUTPUT POWER	23
	8.1 APPLICABLE STANDARD	
	8.2 EUT SETUP	
	8.4 TEST PROCEDURE	
	8.5 TEST RESULT	
9.	TEST OF BAND EDGES EMISSION	26
	9.1 APPLICABLE STANDARD	2e
	9.2 EUT SETUP	
	9.3 TEST EQUIPMENT LIST AND DETAILS	
	9.5 TEST RESULT	
10). TEST OF SPURIOUS RADIATED EMISSION	29
	10.1 APPLICABLE STANDARD	
	10.2 EUT SETUP	29
	10.3 TEST EQUIPMENT LIST AND DETAILS	
	10.5 Test Result	

11. ANTENNA REQUIREMENT	4(
11.1 STANDARD APPLICABLE	40
11.2 ANTENNA CONNECTED CONSTRUCTION	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Graupner GmbH & Co. KG

Address of applicant: Henriettenstr. 94-96 D-73230 Kirchheim/Teck GERMANY

Manufacturer: SJ TECHNOLOGY(SHENZHEN) CO.,LTD

Address of manufacturer: F6, 1 BLDG, A AREA, YINTIANXIFA INDUSTRIAL AREA, XIXIANG

TOWN, BAOAN DISTRICT SHENZHEN, GUANGDONG

PROVINCE, CHINA

General Description of E.U.T

Items	Description
EUT Description:	Slow Flyer Receiver Graupner/SJ HoTT
Model No.:	GR-12SH+
Trade Name:	HoTT
Supplementary Model:	N/A
Frequency Band:	2404 MHz ~ 2479 MHz
Channel Spacing:	1 MHz
Number of Channels:	75
Type of Modulation:	FHSS
Antenna Type:	Built-in Antenna
Rated Voltage:	DC 5V From Battery

Remark: * The test data gathered are from the production sample provided by the manufacturer.

1.2 Related Submittal(s) / Grant (s) and Test Methodology

The tests were performed based on the Electromagnetic Interference (EMI) tests performed on the EUT. Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 - 2003 Radiated testing was performed at an antenna to EUT distance 3 meters.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.207, 15.209 and 15.247 rules. Test was carried out according to the above mentioned FCC rules and the FCC publication notice DA 00-705: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

1.3 Test Facility

All measurement required was performed at laboratory of Bontek Compliance Testing Laboratory Ltd at 1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East Road, Nanshan, Shenzhen, China.

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 338263

BONTEK COMPLIANCE TESTING LABORATORY LTD. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 338263, March 03, 2011.

IC Registration No.: 7631A

The 3m alternate test site of BONTEK COMPLIANCE TESTING LABORATORY LTD. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 7631A on January 25, 2011.

CNAS - Registration No.: L3923

BONTEK COMPLIANCE TESTING LABORATORY LTD. to ISO/IEC 17025:25 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing. The acceptance letter from the CNAS is maintained in our files: Registration: L3923,March 22,2012.

TUV - Registration No.: UA 50203122-0001

BONTEK COMPLIANCE TESTING LABORATORY LTD. An assessment of the laboratory was conducted according to the "Procedures and Conditions for EMC Test Laboratories" with reference to EN ISO/IEC 17025 by a TUV Rheinland auditor. Audit Report NO. 17010783-002.

Report No.: BCT12HR-1344E-1 Page 5 of 40 FCC ID:ZKZ-33565

2. SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 3 or 10 meters from the leading edge of the turntable.

2.3 General Test Procedures

Conducted Emissions: The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 7.1 of ANSI C63.4-2003 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak detector mode.

Radiated Emissions: The EUT is a placed on as turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4-2003.

2.4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty	
Power Line Conducted Emission	+/- 2.3 dB	
Radiated Emission	+/- 3.4 dB	

Uncertainty figures are valid to a confidence level of 95%.

Report No.: BCT12HR-1344E-1 Page 6 of 40 FCC ID:ZKZ-33565

2.5Test Equipment List and Details

Test equipments list of Shenzhen Bontek Compliance Testing Laboratory Co., Ltd .

	Test equipments list of Shenzhen Bontek Compliance Testing Laboratory Co., Ltd .						
No.	Instrument no.	Equipment	Manufacturer	Model No.	S/N	Last Calculator	Due Calculator
1	BCT-EMC001	EMI Test Receiver	R&S	ESCI	100687	2012-4-17	2013-4-16
2	BCT-EMC002	EMI Test Receiver	R&S	ESPI	100097	2012-11-1	2013-10-31
3	BCT-EMC003	Amplifier	HP	8447D	1937A02492	2012-4-20	2013-4-19
4	BCT-EMC004	Single Power Conductor Module	R&S	NNBM 8124	242	2012-4-20	2013-4-19
5	BCT-EMC005	Single Power Conductor Module	R&S	NNBM 8124	243	2012-4-20	2013-4-19
6	BCT-EMC006	Power Clamp	SCHWARZBECK	MDS-21	3812	2012-11-5	2013-11-4
7	BCT-EMC007	Positioning Controller	C&C	CC-C-1F	MF7802113	N/A	N/A
8	BCT-EMC008	`Electrostatic Discharge Simulator	TESEQ	NSG437	125	2012-11-2	2013-11-1
9	BCT-EMC009	Fast Transient Burst Generator	SCHAFFNER	MODULA615 0	34572	2012-4-17	2013-4-16
10	BCT-EMC010	Fast Transient Noise Simulator	Noiseken	FNS-105AX	10501	2012-6-26	2013-6-25
11	BCT-EMC011	Color TV Pattern Genenator	PHILIPS	PM5418	TM209947	N/A	N/A
12	BCT-EMC012	Power Frequency Magnetic Field Generator	EVERFINE	EMS61000- 8K	608002	2012-4-17	2013-4-16
14	BCT-EMC014	Capacitive Coupling Clamp	TESEQ	CDN8014	25096	2012-4-17	2013-4-16
15	BCT-EMC015	High Field Biconical Antenna	ELECTRO- METRICS	EM-6913	166	2011-11-28	2013-11-27
16	BCT-EMC016	Log Periodic Antenna	ELECTRO- METRICS	EM-6950	811	2011-11-28	2013-11-27
17	BCT-EMC017	Remote Active Vertical Antenna	ELECTRO- METRICS	EM-6892	304	2011-11-28	2013-11-27
18	BCT-EMC018	TRILOG Broadband Test-Antenna	SCHWARZBECK	VULB9163	9163-324	2012-5-19	2014-5-18
19	BCT-EMC019	Horn Antenna	SCHWARZBECK	BBHA9120A	0499	2011-11-28	2013-11-27
20	BCT-EMC020	Teo Line Single Phase Module	SCHWARZBECK	NSLK8128	8128247	2012-11-1	2013-10-31
21	BCT-EMC021	Triple-Loop Antenna	EVERFINE	LLA-2	711002	2012-11-15	2013-11-14
22	BCT-EMC022	Electric bridge	Jhai	JK2812C	803024	N/A	N/A
23	BCT-EMC026	RF POWER AMPLIFIER	FRANKONIA	FLL-75	1020A1109	2012-4-17	2013-4-16
24	BCT-EMC027	CDN	FRANKONIA	CDN M2+M3	A3027019	2012-4-17	2013-4-16
25	BCT-EMC029	6DB Attenuator	FRANKONIA	N/A	1001698	2012-4-17	2013-4-16

26	BCT-EMC030	EM Injection clamp	FCC	F-203I-23mm	091536	2012-4-17	2013-4-16
27	BCT-EMC031	9kHz-2.4GHz signal generator 2024	MARCONI	10S/6625-99- 457-8730	112260/042	2012-4-17	2013-4-16
28	BCT-EMC032	10dB attenuator	ELECTRO- METRICS	EM-7600	836	2012-4-17	2013-4-16
29	BCT-EMC033	ISN	TESEQ	ISN-T800	30301	2012-11-15	2013-11-14
30	BCT-EMC034	10KV surge generator	SANKI	SKS-0510M	048110003E 321	2012-11-01	2013-10-31
31	BCT-EMC035	HRMONICS&FLICK RE ANALYSER	VOLTECH	PM6000	200006700433	2012-11-20	2013-11-19
32	BCT-EMC036	Spectrum Analyzer	R&S	FSP	100397	2012-11-1	2013-10-31
33	BCT-EMC037	Broadband preamplifier	SCH WARZBECK	BBV9718	9718-182	2012-4-20	2013-4-19

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.207	AC Power Line Conducted Emission	N/A, Without AC power supply
FCC §15.247(a)(1)	Hopping Channel Bandwidth	Pass
FCC §15.247(a)(1)	Hopping Channel Separation	Pass
FCC §15.247(a)(1)	Number of Hopping Frequency Used	Pass
FCC §15.247(a)(1)(iii)	Dwell Time of Each Frequency	Pass
FCC §15.247(b)(1)	Maximum Peak Output Power	Pass
FCC §15.247(d)	Band Edges Emission	Pass
FCC §15.247(d)	Spurious Radiated Emission	Pass
FCC §15.203/15.247(b)/(c)	Antenna Requirement	Pass

4. Test of Hopping Channel Bandwidth

4.1 Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

4.2 EUT Setup

4.3 Test Equipment List and Details

See section 2.5.

4.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 30KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is Auto.
- 4. The spectrum width with level higher than 20dB below the peak level.
- 5. Repeat above 1~3 points for the middle and highest channel of the EUT.

4.5 Test Result

Temperature (°C) : 22~23	EUT: Slow Flyer Receiver Graupner/SJ HoTT		
Humidity (%RH): 50~54	M/N: GR-12SH+		
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode		

Modulation Type	Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	Min. Limit (kHz)
FHSS	Low	2404.00	364	>25
FHSS	Middle	2440.00	360	>25
FHSS	High	2479.00	352	>25

Report No.: BCT12HR-1344E-1 Page 10 of 40 FCC ID:ZKZ-33565

Channel Low:

Channel Middle:

Channel High:

5. Test of Hopping Channel Separation

5.1 Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.2 EUT Setup

5.3 Test Equipment List and Details

See section 2.5.

5.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is Auto.
- 4. The Hopping Channel Separation is defined as the separation between 2 neighboring hopping frequencies.
- 5. Repeat above 1~3 points for the middle and highest channel of the EUT.

5.5 Test Result

Temperature ($^{\circ}$ C) : 22~23	EUT: Slow Flyer Receiver Graupner/SJ HoTT	
Humidity (%RH): 50~54	M/N: GR-12SH+	
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode	

Modulation Type Frequency (MHz)		Channel Separation (MHz)	Min. Limit (kHz)
FHSS	2404.0~2479.0	1	>25

Channel Low

Channel Mid

Channel High

6. Test of Number of Hopping Frequency

6.1 Applicable Standard

Section 15.247(a)(1)(iii): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 15 non-overlapping hopping channels. Frequency hopping system which use fewer than 75 hopping frequencies may employ intelligent hopping techniques to avoid interference to other transmissions. Frequency hopping system may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non-overlapping channels are used.

6.2 EUT Setup

Spectrum Analyzer

6.3 Test Equipment List and Details

See section 2.5.

6.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is Auto.
- 4. Observe frequency hopping in 2400MHz~2483.5MHz, there are at least 32 non-overlapping channels.
- 5. Repeat above 1~3 points for the middle and highest channel of the EUT.

6.5 Test Result

Temperature (°C) : 22~23	EUT: Slow Flyer Receiver Graupner/SJ HoTT	
Humidity (%RH): 50~54	M/N: GR-12SH+	
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode	

Modulation Type	Modulation Type Frequency (MHz)		Min. Limit	
FHSS	2404.0~2479.0	75	>15	

Report No.: BCT12HR-1344E-1 Page 16 of 40 FCC ID:ZKZ-33565

7. Test of Dwell Time of Each Frequency

7.1 Applicable Standard

Section 15.247(a)(1)(iii): For frequency hopping systems operating in the 2400-2483.5 MHz band The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

7.2 EUT Setup

7.3 Test Equipment List and Details

See section 2.5.

7.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 1000kHz and VBW to 1000kHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is more than once pulse time.
- 4. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- 5. Measure the maximum time duration of one single pulse.

7.5 Test Result

Temperature ($^{\circ}$ C) : 22~23	EUT: Slow Flyer Receiver Graupner/SJ HoTT				
Humidity (%RH): 50~54	M/N: GR-12SH+				
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode				

Modulation Type	Channel No.	Channel No. Frequency (MHz)		Limit (ms)
FHSS	Low	2404.00	10.15	400
FHSS	Middle	2440.00	10.10	400
FHSS	High	2479.00	10.08	400

A period time = 0.4 (ms) * 79 = 31.6 (s)

CH Low: Time slot = 41.5 (ms) Dwell time=31.6 (s)/(75*41.5 (ms))= 10.15 (ms)

CH Mid: Time slot = 41.7 (ms) Dwell time=31.6 (s)/(75*41.7 (ms))= 10.10 (ms)

CH High: Time slot = 41.8 (ms) Dwell time=31.6 (s)/(75*41.8 (ms))= 10.08 (ms)

Channel Low:

Channel Middle:

Channel High:

8. Test of Maximum Peak Output Power

8.1 Applicable Standard

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels and The maximum peak output power shall not exceed 1 watt. For all other frequency hopping systems in this frequency band, The maximum peak output power shall not exceed 0.125 watt.

8.2 EUT Setup

8.3 Test Equipment List and Details

See section 2.5.

8.4 Test Procedure

- 1. The transmitter output was connected to the peak power meter and recorded the peak value.
- 2. Peak power meter parameter set to auto attenuator and filter is the same as.
- 3. Repeated the 1 for the middle and highest channel of the EUT.

8.5 Test Result

Temperature (°C) : 22~23	EUT: Slow Flyer Receiver Graupner/SJ HoTT			
Humidity (%RH): 50~54	M/N: GR-12SH+			
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode			

Modulation Type	Channel No.	nel No. Frequency Output Power (MHz) (dBm)		Limits (dBm)	Margin (dB)
FHSS	Low	2404.00	1.12	30	28.88
FHSS	Middle	2440.00	6.26	30	23.74
FHSS	High	2479.00	5.39	30	24.61

Report No.: BCT12HR-1344E-1 Page 23 of 40 FCC ID:ZKZ-33565

Channel Low:

Channel Middle:

Channel High:

9. Test of Band Edges Emission

9.1 Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

9.2 EUT Setup

Radiated Measurement Setup

Conducted Measurement Setup

9.3 Test Equipment List and Details

See section 2.5.

9.4 Test Procedure

Conducted Measurement

- 1. The transmitter is set to the lowest channel.
- 2. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.
- 3. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100MHz bandwidth from lower band edge. Then detector set to peak and max hold this trace.
- 4. The lowest band edges emission was measured and recorded.
- 5. The transmitter set to the highest channel and repeated 2~4.

Radiated Measurement

- 1. Configure the EUT according to ANSI C63.4-2003
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For band edge emission, use 1MHz VBW and 1MHz RBW for reading under AV and use 1MHz VBW and 1MHz RBW for reading under PK.

9.5 Test Result

Temperature (°C) : 22~23	EUT: Slow Flyer Receiver Graupner/SJ HoTT			
Humidity (%RH): 50~54	M/N: GR-12SH+			
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode			

Radiated Test Result

Frequency (MHz)	Antenna Polarization	Emission Read Value (dBµV/m)	Limits (dBµV/m)	
<2400	Н	38.23	54	
>2483.5	Н	34.68	54	

Conducted Test Result

The worst frequency range of Low Channel

The worst frequency range of High Channel

10. Test of Spurious Radiated Emission

10.1 Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

10.2 EUT Setup

Radiated Measurement Setup

Figure 1: Frequencies measured below 1 GHz configuration

Report No.: BCT12HR-1344E-1 Page 29 of 40 FCC ID:ZKZ-33565

Figure 2: Frequencies measured above 1 GHz configuration

Conducted Measurement Setup

10.3 Test Equipment List and Details

See section 2.5.

10.4 Test Procedure

Radiated Measurement

- 1. Configure the EUT according to ANSI C63.4-2003
- 2. The EUT was placed on the top of the turntable 0.8 meter above ground.
- 3. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 4. Power on the EUT and all the supporting units.
- 5. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 6. The height of the broadband receiving antenna was varied between one meter and four meters

- above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 7. For each suspected emission, the antenna tower was scanned (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 8. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.

Conducted Measurement

- 1. For emission above 1GHz, conducted measurement method is used.
- 2. The transmitter is set to the lowest channel.
- 3. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.
- 4. Set RBW to 1 MHz and VBW to 3 MHz, Then detector set to peak and max hold this trace.
- 5. The lowest band edges emission was measured and recorded.
- 6. The transmitter set to the highest channel and repeated 2~4.

10.5 Test Result

Temperature (°C) : 22~23	EUT: Slow Flyer Receiver Graupner/SJ HoTT				
Humidity (%RH): 50~54	M/N: GR-12SH+				
Barometric Pressure (mbar): 950~1000	Operation Condition: Normal Operation				

Report No.: BCT12HR-1344E-1 Page 31 of 40 FCC ID:ZKZ-33565

Radiated Emission Test Data Below 1G:

EUT: Slow Flyer Receiver Graupner/SJ HoTT

M/N: GR-12SH+

Operating Condition: **Normal Operation** Test Site: 3m CHAMBER

Operator: Chen

Test Specification: DC 5V From Battery Comment: Polarization: Horizontal

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength
Start Stop Detector Meas. IF Transducer Bandw. Time

Frequency Frequency 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VULB9163 NEW

MEASUREMENT RESULT: "12HR-1344E H_red"

8/21/2012	19:25							
Frequenc MH		Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.46000	0 24.20	15.8	40.0	15.8	QP	100.0	0.00	HORIZONTAL
59.10000	0 22.90	14.6	40.0	17.1	QP	100.0	0.00	HORIZONTAL
97.90000	0 23.90	17.4	43.5	19.6	QP	300.0	0.00	HORIZONTAL
278.32000	0 25.80	18.1	46.0	20.2	QP	300.0	0.00	HORIZONTAL
546.04000	0 31.10	24.9	46.0	14.9	QP	100.0	0.00	HORIZONTAL
955.38000	0 36.20	29.6	46.0	9.8	QP	100.0	0.00	HORIZONTAL

Radiated Emission Test Data Below 1G:

EUT: Slow Flyer Receiver Graupner/SJ HoTT

M/N: GR-12SH+

Operating Condition: **Normal Operation** Test Site: 3m CHAMBER

Operator: Chen

Test Specification: AC 120V/60Hz Comment: Polarization: Vertical

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VULB9163 NEW

MEASUREMENT RESULT: "12HR-1344E V_red"

8/21/2012 19	9:20							
Frequency MHz	Level dBµV/m	Transd dB		Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.560000	27.50	15.8	40.0	12.5	QP	100.0	0.00	VERTICAL
70.740000	23.20	12.4	40.0	16.8	QP	100.0	0.00	VERTICAL
97.650000	23.60	17.4	43.5	19.9	QP	100.0	0.00	VERTICAL
297.720000	25.20	18.7	46.0	20.8	QP	100.0	0.00	VERTICAL
551.860000	31.30	25.0	46.0	14.7	QP	100.0	0.00	VERTICAL
912.700000	35.90	29.3	46.0	10.1	QP	100.0	0.00	VERTICAL

Radiated Spurious Emission Test Data Above 1G

Channel Low (Polarity: Horizontal)

No.	Frequency (MHz)	Reading (dBuV)	Correction factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree (deg.)	Height (cm)	Remark
1	1315.0000	48.66	-8.21	40.45	74.00	-33.55			peak
2	1315.0000	48.66	-8.21	40.45	54.00	-13.55			AVG
3	2815.0000	47.86	-4.98	42.88	74.00	-31.12			peak
4	2815.0000	47.86	-4.98	42.88	54.00	-11.12			AVG
5	3355.0000	46.64	-4.02	42.62	74.00	-31.38			peak
6	3355.0000	46.64	-4.02	42.62	54.00	-11.38			AVG
7	3760.0000	45.68	-2.59	43.09	74.00	-30.91			peak
8	3760.0000	45.68	-2.59	43.09	54.00	-10.91			AVG
9	4705.0000	44.96	0.00	44.96	74.00	-29.04			peak
10	4705.0000	44.96	0.00	44.96	54.00	-9.04			AVG
11	5170.0000	45.33	1.52	46.85	74.00	-27.15			peak
12	5170.0000	45.33	1.52	46.85	54.00	-7.15			AVG

Channel Low (Polarity: Vertical)

No.	Frequency (MHz)	Reading (dBuV)	Correction factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree (deg.)	Height (cm)	Remark
1	1300.0000	48.80	-8.28	40.52	74.00	-33.48			peak
2	1300.0000	48.80	-8.28	40.52	54.00	-13.48			AVG
3	2830.0000	47.83	-4.92	42.91	74.00	-31.09			peak
4	2830.0000	47.83	-4.92	42.91	54.00	-11.09			AVG
5	3775.0000	45.92	-2.55	43.37	74.00	-30.63			peak
6	3775.0000	45.92	-2.55	43.37	54.00	-10.63			AVG
7	4270.0000	46.24	-1.31	44.93	74.00	-29.07			peak
8	4270.0000	46.24	-1.31	44.93	54.00	-9.07			AVG
9	4810.0000	50.22	0.46	50.68	74.00	-23.32			peak
10	4810.0000	50.22	0.46	50.68	54.00	-3.32			AVG
11	5605.0000	45.63	1.95	47.58	74.00	-26.42			peak
12	5605.0000	45.63	1.95	47.58	54.00	-6.42			AVG

Note:

- 1. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos. The worst case data is recorded in the report.
- 2. Emission level (dBuV/m) =Raw Value (dBuV) + Correction Factor (dB/m)
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) -Pre-amplifier Factor
- 4. The other emission levels were very low against the limit.
- 5. Margin value = Limit value- Emission level.
- 6. The limit value is defined as per 15.247
- 7. " * ": Fundamental frequency

Channel Mid (Polarity: Horizontal)

No.	Frequency (MHz)	Reading (dBuV)	Correction factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree (deg.)	Height (cm)	Remark
1	3640.0000	45.77	-2.91	42.86	74.00	-31.14			peak
2	4300.0000	45.44	-1.20	44.24	74.00	-29.76			peak
3	4780.0000	45.89	0.32	46.21	74.00	-27.79			peak
4	5125.0000	45.13	1.46	46.59	74.00	-27.41			peak
5	6475.0000	45.23	4.47	49.70	74.00	-24.30			peak
6	6775.0000	45.02	5.42	50.44	74.00	-23.56			peak

Channel Mid (Polarity: Vertical)

No.	Frequency (MHz)	Reading (dBuV)	Correction factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree (deg.)	Height (cm)	Remark
1	2545.0000	49.18	-6.03	43.15	74.00	-30.85			peak
2	4165.0000	45.72	-1.75	43.97	74.00	-30.03			peak
3	4885.0000	47.41	0.80	48.21	74.00	-25.79			peak
4	5740.0000	45.29	2.52	47.81	74.00	-26.19			peak
5	6160.0000	45.40	3.56	48.96	74.00	-25.04			peak
6	6490.0000	44.52	4.51	49.03	74.00	-24.97			peak

Note:

- 1. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos. The worst case data is recorded in the report.
- 2. Emission level (dBuV/m) =Raw Value (dBuV) + Correction Factor (dB/m)
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) -Pre-amplifier Factor
- 4. The other emission levels were very low against the limit.
- 5. Margin value = Limit value- Emission level.
- 6. The limit value is defined as per 15.247
- 7. " * ": Fundamental frequency

Channel High (Polarity: Horizontal)

No.	Frequency (MHz)	Reading (dBuV)	Correction factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree (deg.)	Height (cm)	Remark
1	3460.0000	46.55	-3.70	42.85	74.00	-31.15			peak
2	3460.0000	46.55	-3.70	42.85	54.00	-11.15			AVG
3	3880.0000	46.04	-2.51	43.53	74.00	-30.47			peak
4	3880.0000	46.04	-2.51	43.53	54.00	-10.47			AVG
5	4465.0000	45.37	-0.70	44.67	74.00	-29.33			peak
6	4465.0000	45.37	-0.70	44.67	54.00	-9.33			AVG
7	5365.0000	44.95	1.53	46.48	74.00	-27.52			peak
8	5365.0000	44.95	1.53	46.48	54.00	-7.52			AVG
9	6220.0000	45.13	3.74	48.87	74.00	-25.13			peak
10	6220.0000	45.13	3.74	48.87	54.00	-5.13			AVG
11	6520.0000	44.31	4.60	48.91	74.00	-25.09			peak
12	6520.0000	44.31	4.60	48.91	54.00	-5.09			AVG

Channel High (Polarity: Vertical)

No.	Frequency (MHz)	Reading (dBuV)	Correction factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree (deg.)	Height (cm)	Remark
1	3235.0000	46.88	-4.07	42.81	74.00	-31.19			peak
2	3235.0000	46.88	-4.07	42.81	54.00	-11.19			AVG
3	3760.0000	45.89	-2.59	43.30	74.00	-30.70			peak
4	3760.0000	45.89	-2.59	43.30	54.00	-10.70			AVG
5	4570.0000	45.16	-0.51	44.65	74.00	-29.35			peak
6	4570.0000	45.16	-0.51	44.65	54.00	-9.35			AVG
7	4960.0000	47.11	1.14	48.25	74.00	-25.75			peak
8	4960.0000	47.11	1.14	48.25	54.00	-5.75			AVG
9	5875.0000	44.63	2.90	47.53	74.00	-26.47			peak
10	5875.0000	44.63	2.90	47.53	54.00	-6.47			AVG
11	6790.0000	44.62	5.47	50.09	74.00	-23.91			peak
12	6790.0000	44.62	5.47	50.09	54.00	-3.91			AVG

Note:

- 1. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos. The worst case data is recorded in the report.
- 2. Emission level (dBuV/m) =Raw Value (dBuV) + Correction Factor (dB/m)
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) -Pre-amplifier Factor
- 4. The other emission levels were very low against the limit.
- 5. Margin value = Limit value- Emission level.
- 6. The limit value is defined as per 15.247
- 7. " * ": Fundamental frequency

Conducted Spurious Emission Test Data Above 1G

Channel Low

Channel Mid

Channel High

11. ANTENNA REQUIREMENT

11.1 Standard Applicable

Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 15.247(b)/(c):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

11.2 Antenna Connected Construction

The antenna connector is designed with permanent attachment and no consideration of replacement. The antenna used in this product is complied with Standard. The maximum Gain of the antenna lower than 6.0dBi and have the definite antenna Specification.

Report No.: BCT12HR-1344E-1 Page 40 of 40 FCC ID:ZKZ-33565