SP015/2
Physics
Paper 2
Semester I
Session 2023/2024
2 hours

SP015/2 Fizik Kertas 2 Semester I Sesi 2023/2024 2 jam

KOLEJ MATRIKULASI PERAK

PRA-PSPM

FIZIK Kertas 2 2 jam

JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU.

DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO.

 ! !	
Name:	
Matric. No.:	
Class:	

NO.	MARKS	
1	2	
2	10	
3	13	
4	8	
5	5	
6	23	
7	8	
8	11	
TOTAL	80	

INSTRUCTION TO CANDIDATE:

This question paper consists of **8** questions. Answer **all** the questions. The use of electronic calculator is permitted.

SULIT SP015/2

LIST OF SELECTED CONSTANT VALUES

Speed of light in vacuum	c	$= 3.00 \times 10^8 \text{ m s}^{-1}$
Permeability of free space	$\mu_{ m o}$	$=4\pi\times10^{\text{-}7}\;H\;m^{\text{-}1}$
Permittivity of free space	\mathcal{E}_0	$= 8.85 \times 10^{-12} \text{ F m}^{-1}$
Elementary charge magnitude	e	$= 1.60 \times 10^{-19} \text{ C}$
Planck constant	h	$= 6.63 \times 10^{-34} \text{ J s}$
Electron mass	m_e	$= 9.11 \times 10^{-31} \text{ kg}$ $= 5.49 \times 10^{-4} \text{ u}$
Neutron mass	$m_{ m n}$	$= 1.674 \times 10^{-27} \text{ kg}$ $= 1.008665 \text{ u}$
Proton mass	$m_{ m p}$	$= 1.672 \times 10^{-27} \text{ kg}$ $= 1.007277 \text{ u}$
Deuteron mass	$m_{ m d}$	$= 3.34 \times 10^{-27} \text{ kg}$ = 2.014102 u
Molar gas constant	R	= 8.31 J K ⁻¹ mol ⁻¹
Rydberg constant	$R_{ m H}$	$= 1.097 \times 10^7 \text{ m}^{-1}$
Avogadro constant	$N_{\rm A}$	$= 6.02 \times 10^{23} \text{mol}^{-1}$
Boltzmann constant	k	$= 1.38 \times 10^{-23} \text{ J K}^{-1}$
Gravitational constant	G	$= 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Free-fall acceleration	g	$= 9.81 \text{ m s}^{-2}$
Atomic mass unit	1 u	$= 1.66 \times 10^{-27} \text{ kg}$
		$=931.5 \frac{\text{MeV}}{c^2}$
Electron volt		$= 1.6 \times 10^{-19} \text{ J}$
Constant of proportionality for Coulomb's law	$k = \frac{1}{4\pi\varepsilon_{\rm o}}$	$= 9.0 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
Atmospheric pressure	1 atm	$= 1.013 \times 10^5 \text{ Pa}$
Density of water	$ ho_{\scriptscriptstyle m W}$	$= 1000 \text{ kg m}^{-3}$

SULIT

Answer all question.

A girl push a box across the floor and causes it to undergo two displacement A and B.
 Displacement A is 1.5 m along the positive x-axis, while displacement B is 1.4 m along the positive y-axis. Determine the *magnitude* and *direction* of the displacement.

[2 marks]

- 2. (a) A bullet is shot from a gun at a speed of 345 m s⁻¹ towards a piece of box with 5.5 cm thickness and emerges with speed of 260 m s⁻¹. Calculate the
 - (i) deceleration through the box.
 - (ii) time taken to get through the box.

[4 marks]

- (b) A water rocket is launched upward from ground at speed u. The rocket returns to the ground 8 seconds later. Determine
 - (ii) the value of u?
 - (ii) maximum height can be achieved by the rocket.
 - (iii) velocity of the rocket just before it hits the ground.

[6 marks]

3. (a)

FIGURE 1

An estimated force-time curve for a baseball struck by a bat is shown in **FIGURE 1**. From this curve, determine

- (i) the impulse delivered to the ball,
- (ii) the average force exerted on the ball.

[4 marks]

SULIT SP015/2

(b) An object **P** of mass 8 kg moving at 4 m s⁻¹ collides with a second object **Q** of mass 6 kg moving at 5 m s⁻¹ in the opposite direction. After collision, object **P** moves in opposite direction at 1 m s⁻¹. Determine the velocity of object **Q** after the collision

[2 marks]

(c)

FIGURE 2

A 8 kg box is held in equilibrium on a rough slope by a horizontal force F as shown in **FIGURE 2**. The coefficient of friction between the box and the slope is 0.15. The magnitude of force F may vary from a certain minimum value to a maximum value.

- (i) Sketch a free body diagram for the box when force F has its minimum value. Label all forces.
- (ii) Determine the minimum magnitude of the force F **and** the normal force act on the box.

[7 marks]

- 4. (a) A block of mass 2 kg is pushed 1.5 m along a frictionless horizontal table by a constant 10 N force directed 30° above the horizontal. Calculate the work done by
 - (i) the applied force.
 - (ii) the force of gravity.

[3 marks]

(b)

FIGURE 3

In **FIGURE 3**, a small cart of mass 8 kg moves on the frictionless track with a speed of 20 m s⁻¹ along **AB** and down to **C**. Calculate the

- (i) kinetic energy of the cart as it moves along **AB**.
- (ii) potential energy of the cart at point **B**.
- (iii) speed of the cart at point C.

[5 marks]

- 5. A ball of a mass 4.0 kg is attached to the end of a 1.2 m long string and whirled around in a circle that describes a **vertical plane**.
 - (a) Calculate the minimum speed that the ball can be moving at and still maintain a circular path? Sketch a **free body diagram**.
 - (b) At this speed, calculate the maximum tension in the string?

[5 marks]

6. (a)

FIGURE 4

FIGURE 4 shows the displacement versus time graph for an object performing a simple harmonic motion. Based on the graph,

- (i) determine the angular frequency.
- (ii) determine the maximum velocity
- (iii) write the simple harmonic motion equation.

[5 marks]

- (b) A 50 g object connected to a spring with a spring constant 35 N m⁻¹ oscillates with amplitude 4 cm on a horizontal frictionless surface. Calculate the
 - (i) total energy of the system.
 - (ii) speed of the object at displacement 1.6 cm.
 - (iii) change in the period of oscillation if a load of 6 g is added to the object.

[7 marks]

SULIT SP015/2

(c) A progressive wave is represented by equation,

$$y(x, t) = 1200 \sin (314t - 0.42x)$$

where x and y are in cm and t is in second. Determine the

- (i) velocity of the wave.
- (ii) maximum velocity of the particle.

[4 marks]

- (d) A mechanical wave propagates at 550 m s⁻¹ along a string stretched to a tension of 800 N. The string oscillates at fundamental frequency 440 Hz. Calculate the
 - (i) mass per unit length of the string.
 - (ii) length of the string.
 - (iii) frequency of the second overtone **and** sketch the waveform of the overtone.

[5 marks]

(e) A car is traveling at 25 m s^{-1} emits a sound of frequency 1100 Hz approaches a stationary observer. Calculate the apparent frequency of the sound heard by the observer. The speed of sound is 340 m s^{-1} .

[2 marks]

7. (a) A metal wire of length 75 cm and diameter 0.13 cm stretches by 0.035 cm when a load of 8 kg is hung on its end. Calculate the Young's modulus of the wire.

[2 marks]

- (b) A 55 m² composite wall of a building consists of brick and concrete with the thickness of 12.0 cm and 24.0 cm respectively. The temperature of the outer surface of the brick and concrete is 40 °C and 20 °C respectively. (Given coefficient of thermal conductivity of brick and concrete are 0.6 W m⁻¹ °C⁻¹ and 0.8 W m⁻¹ °C⁻¹ respectively.)
 - (i) Determine the temperature of the interface between the brick and the concrete.
 - (ii) How much heat flows through the concrete in 1 hour?

[6 marks]

SULIT

- 8. (a) The temperature in outer space is about 3.5 K and it is estimated that there is about one hydrogen molecule per cm³. The mass of a hydrogen molecule is 3.346×10^{-27} kg. Calculate the
 - (i) rms speed of the hydrogen molecules.
 - (ii) hydrogen density in outer space.
 - (iii) pressure of hydrogen gas at the outer space.
 - (iv) mean translational kinetic energy of the hydrogen molecules.

[8 marks]

(b)

FIGURE 5

FIGURE 5 shows the p-V graph of the thermodynamics processes experienced by an ideal gas. The values of p and V are 2 x 10^5 Pa and 3 x 10^{-2} m³ respectively. Calculate the heat transferred during the whole thermodynamics processes.

[3 marks]