|                                                                                                                                                                                    | Note             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                                                                    |                  |
|                                                                                                                                                                                    | III              |
| Name Vorname                                                                                                                                                                       | 1                |
|                                                                                                                                                                                    |                  |
| Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)                                                                                                                    |                  |
|                                                                                                                                                                                    | 3                |
|                                                                                                                                                                                    |                  |
| Unterschrift der Kandidatin/des Kandidaten                                                                                                                                         |                  |
|                                                                                                                                                                                    | 5                |
| TECHNISCHE UNIVERSITÄT MÜNCHEN                                                                                                                                                     |                  |
| Fakultät für Mathematik                                                                                                                                                            | 6                |
| Klausur                                                                                                                                                                            | 7                |
| Mathematik für Physiker 4                                                                                                                                                          |                  |
| (Analysis 3)                                                                                                                                                                       | 8                |
| Prof. Dr. M. Wolf                                                                                                                                                                  |                  |
| 25. Februar 2014, 11:00 – 12:30 Uhr                                                                                                                                                | $\sum$           |
| Hörsaal: Platz:                                                                                                                                                                    | I Erstkorrektur  |
| Hinweise:<br>Überprüfen Sie die Vollständigkeit der Angabe: <b>8</b> Aufgaben                                                                                                      | IIZweitkorrektur |
| Bearbeitungszeit: 90 min                                                                                                                                                           | Zwelokoffektuf   |
| Hilfsmittel: Ein selbsterstelltes Din A4 Blatt                                                                                                                                     |                  |
| Bei Multiple-Choice-Aufgaben sind <b>genau</b> die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate <b>in diesen Kästchen</b> berücksichtigt. |                  |
| Nur von der Aufsicht auszufüllen:                                                                                                                                                  | _                |
| Hörsaal verlassen von bis                                                                                                                                                          |                  |
| Vorzeitig abgegeben um                                                                                                                                                             |                  |

 $Musterl\ddot{o}sung \hspace{0.5cm} ({\rm mit\; Bewertung})$ 

Besondere Bemerkungen:

## 1. Volumenberechnung

[6 Punkte]

Berechnen Sie das Volumen der Menge  $S = \{x \in \mathbb{R}^3 \mid 1 \ge x_1 \ge x_2 \ge x_3 \ge 0\}.$ 

LÖSUNG:

 $x \in S$  genau dann, wenn  $x_1 \in [0,1], x_2 \in [0,x_1]$  und  $x_3 \in [0,x_2]$ . Somit ist S ein Normalbereich und mit Fubini ist [1]

$$\int_{S} d^{3}x = \int_{0}^{1} dx_{1} \int_{0}^{x_{1}} dx_{2} \int_{0}^{x_{2}} dx_{3} = \int_{0}^{1} dx_{1} \int_{0}^{x_{1}} x_{2} dx_{2} = \int_{0}^{1} \frac{x_{1}^{2}}{2} dx_{1} = \frac{1}{6}.$$

[5]

#### 2. Transformationsformel

[13 Punkte]

Sei  $\Phi : \mathbb{R}^2 \to (\mathbb{R}^+)^2$  gegeben durch  $\Phi(u, v) = (e^{u+v}, e^{u-v})$ .

(a) Geben Sie die Jacobi-Determinante von  $\Phi$  auf  $(\mathbb{R}^+)^2$  an:

[3]

$$\det J_{\Phi}(u,v) = -2e^{2u}$$

(b) Wie lautet die Umkehrabbildung von  $\Phi$  auf  $(\mathbb{R}^+)^2$ ?

[2]

$$\Phi^{-1}(x,y) = \qquad \left(\tfrac{1}{2}\ln(xy),\tfrac{1}{2}\ln\tfrac{x}{y}\right)$$

(c) Skizzieren Sie die Menge  $M := \Phi([0,1]^2)$ .

[3]



(d) Wie lautet die Transformationsformel für das Integral einer stetigen Funktion  $f:(\mathbb{R}^+)^2\to\mathbb{R}$  über die Menge  $M\subseteq(\mathbb{R}^+)^2$  mit der Transformation  $\Phi$ ?

$$\int_{M} f(x) d^{2}x = \int_{[0,1]^{2}} f(\Phi(u,v)) |\det J_{\Phi}(u,v)| d(u,v)$$

(e) Geben Sie den Wert von  $\int_M f(x) d^2x$  für  $f(x,y) = \ln(\frac{y}{x})$  an. [3]

$$\int_{M} f(x,y) dx dy = -(e^{2} - 1)$$

LÖSUNG:

(a)-(d) s.o., (e)  $\int_{M} f(x,y) dx dy = \int_{0}^{1} du \int_{0}^{1} dv \ln(e^{u-v-(u+v)}) \cdot 2e^{2u} = \int_{0}^{1} 2e^{2u} du \int_{0}^{1} (-2v) dv = [e^{2u}]_{0}^{1} \cdot (-1) = -(e^{2}-1).$ 

# 3. Oberflächenintegrale

[10 Punkte]

Gegeben ist die Abbildung  $\Phi: \mathbb{R}^2 \to \mathbb{R}^3, \ \Phi(u,v) = \begin{pmatrix} u^2 + 2u \\ 2uv \\ v^2 + 2v \end{pmatrix}.$ 

(a) Für welche Werte von u und v ist  $\Phi'(u,v)$  surjektiv?

[3]

Für 
$$(u,v) \in \mathbb{R}^2 \setminus \{(-1,-1)\}$$

(b) Geben Sie für  $(u,v) \in B_1(0) \subseteq \mathbb{R}^2$  jeweils eine Basis des Tangential- und des Normalraums für das Flächenstück  $M := \Phi(B_1(0))$  im Punkt  $\Phi(u, v)$  an. [3]

$$T_{\Phi(u,v)}M = \operatorname{span}\left(\begin{pmatrix} 2u+2\\2v\\0 \end{pmatrix}, \begin{pmatrix} 0\\2u\\2v+2 \end{pmatrix}\right) \qquad N_{\Phi(u,v)}M = \operatorname{span}\left(\begin{pmatrix} v(v+1)\\(u+1)(v+1)\\u(u+1) \end{pmatrix}\right)$$

$$N_{\Phi(u,v)}M = \operatorname{span}\left(\begin{pmatrix} v(v+1) \\ (u+1)(v+1) \\ u(u+1) \end{pmatrix}\right)$$

(c) Sei nun  $F: \mathbb{R}^3 \to \mathbb{R}^3$  ein  $C^1$ -Vektorfeld mit rot  $F(x) \in T_xM$  für alle  $x \in M$ . Begründen Sie, warum das Wegintegral von F entlang der Randlinie von M gleich Null ist.

LÖSUNG:

- (a)  $J_{\Phi}(u,v) = \begin{pmatrix} 2u+2 & 0 \\ 2v & 2u \\ 0 & 2v+2 \end{pmatrix}$ . Die beiden Spalten sind linear abhängig genau dann, wenn 2u+2=0
- (b)  $\partial_u \Phi(u,v)$  und  $\partial_v \Phi(u,v)$  spannen den Tangentialraum auf und  $\partial_u \Phi(u,v) \times \partial_v \Phi(u,v)$  den Normalraum.
- (c) Mit dem Satz von Stokes:  $\int\limits_{\partial A}F\cdot dr=\int\limits_{A}\langle\operatorname{rot} F,n\rangle dS=0,$  da rot F im Tangentialraum liegt und somit immer senkrecht zu n steht. Denn das bedeutet  $\langle \operatorname{rot} F, n \rangle = 0$ .

### 4. Komplexe Kurvenintegrale

[8 Punkte]

Gegeben ist die Menge  $G := \{z \in \mathbb{C} \mid \operatorname{Re} z \geq \operatorname{Im} z, (\operatorname{Re} z)^2 + (\operatorname{Im} z - 1)^2 \leq 1\}.$ 

(a) Skizzieren Sie die Menge G

[2]



(b) Geben Sie unter Beachtung der Umlaufrichtung eine Parametrisierung von  $\partial G$  durch zwei Kurvenstücke an. [2]

$$\gamma_1(t) = -t - it, t \in [-1, 0]$$

$$\gamma_2(t) = i + \cos t + i \sin t, \ t \in \left[ -\frac{\pi}{2}, 0 \right]$$

(c) Berechnen Sie (mit kurzer Begründung) den Wert des Integrals  $\int_{\partial G} \frac{e^z}{6z-3-2i} dz$ . [4]

 $\int\limits_{\partial G} \frac{e^z}{6z-3-2i} \mathrm{d}z = 2\pi i \mathrm{Res}_{\frac{1}{2}+\frac{1}{3}i}(\frac{e^z}{6z-3-2i}) = \pi i \frac{e^{\frac{1}{2}+\frac{1}{3}i}}{3} \text{ , we$  $gen Residuensatz,}$  denn der Integrand ist holomorph bis auf  $\frac{1}{2}+\frac{1}{3}i$ .  $\partial G$  umschließt  $\frac{1}{2}+\frac{1}{3}i \in G^\circ$ .

| 5. | Residuen | [9 Punkte] |
|----|----------|------------|
|    |          |            |

Sei  $f(z) = \frac{\tan z}{z}$  für  $z \in \mathbb{C} \setminus \{n\pi + \frac{\pi}{2} \mid n \in \mathbb{Z}\}.$ 

(a) 
$$f$$
 hat bei  $z = 0$ 

- □ keine Singularität, □ eine hebbare Singularität, □ einen Pol erster Ordnung,
- □ einen Pol höherer Ordnung, □ eine wesentliche Singularität.

(b) Bestimmen Sie das Residuum von 
$$f$$
 bei  $z = \frac{\pi}{2}$ . [2]

$$\operatorname{Res}_{\frac{\pi}{2}}(f) = -\frac{2}{\pi}$$

(c) Wie lautet der Hauptteil  $H_{f,\frac{\pi}{2}}(z)$  der Laurententwicklung von f in einer Umgebung von  $z=\frac{\pi}{2}$ ? [2]

$$H_{f,\frac{\pi}{2}}(z) = -\frac{2}{\pi z}$$

(d) Welchen Konvergenzbereich  $B\subset\mathbb{C}$  hat die Laurentreihenentwicklung von f im Entwicklungspunkt  $z=\frac{\pi}{2}$ ?

$$B = \{ z \in \mathbb{C} \, | \, 0 < |z - \pi| < \pi \}$$

(e) Welchen Wert hat das komplexe Wegintegral  $\int\limits_{\gamma} f(z) dz$  entlang der Kurve  $\gamma:[0,4\pi]\to\mathbb{C},$ 

$$\gamma(t) = 2 + 2e^{-it}$$
? [2]

$$\int_{\gamma} f(z) \mathrm{d}z = 8i$$

LÖSUNG:

- (a) 0 ist isolierte Singularität von f. Wegen  $\lim_{z\to 0} f(z) = \lim_{z\to 0} \frac{\sin z}{z} \cos z = 1$  ist sie hebbar.
- (b)  $\operatorname{Res}_{\frac{\pi}{2}}(f) = \frac{\sin\frac{\pi}{2}}{\frac{\pi}{2}} \operatorname{Res}_{\frac{\pi}{2}}(\frac{1}{\cos z}) = \frac{2}{\pi} \frac{1}{-\sin\frac{\pi}{2}} = -\frac{2}{\pi}.$
- (c) Da dort ein Pol erster Ordnung ist, s.o.
- (d) 0 ist hebbar, die nächsten Pole liegen bei  $-\frac{\pi}{2}$  und  $\frac{3\pi}{2}$ , also ist der Konvergenzbereich die oben angegebene Kreisscheibe.
- (e) Die Kurve umkreist den Pol bei  $\frac{\pi}{2}$  zweimal im Uhrzeigersinn, also ist  $\int\limits_{\gamma}f(z)\mathrm{d}z=-2\cdot 2\pi i\mathrm{Res}_{\frac{\pi}{2}}(f)=8i.$

| $^{\circ}$ | n.  |          | luen] | - 1 |          |
|------------|-----|----------|-------|-----|----------|
| n          | R C | $\alpha$ | 111AN | ZOL | 12 1 1 I |
|            |     |          |       |     |          |

[11 Punkte]

Sei  $f(z) = \frac{z}{z^2 + c^2}$  mit c > 0.

- (a) Wo in der komplexen Ebene verläuft der Hilfsweg zur Berechnung des Integrals  $\int_{-\infty}^{\infty} f(x)e^{ix}dx$ ? [2]
  - $\square$  In der rechten Halbebene.  $\square$  In der oberen Halbebene.
  - $\Box$  In der linken Halbebene.  $\Box$  In der unteren Halbebene.
- (b) Welchen Wert hat das Integral  $I_1 := \int_{-\infty}^{\infty} f(x)e^{ix} dx$ ? [3]

$$I_1 = \pi i e^{-c}$$

(c) Welchen Wert hat das Integral  $I_2 := \int_{-\infty}^{\infty} f(x)e^{-ix}dx$ ? [3]

$$I_2 = -\pi i e^{-c}$$

(d) Berechnen Sie nun das Integral  $\int_{0}^{\infty} \frac{x \sin x}{x^2 + c^2} dx$ . [3]

LÖSUNG:

- (a)  $e^{iz}$  fällt für positive Imaginärteile von z exponentiell ab.
- (b)  $I_1 = 2\pi i \text{Res}_{ic} \left(\frac{e^{iz}}{z^2 + c^2}\right) = 2\pi i \frac{ice^{-c}}{2ic} = \pi i e^{-c}$ .
- (c) Jetzt wird untenrum integriert,  $I_2 = -2\pi i \mathrm{Res}_{-ic} \left(\frac{e^{-iz}}{z^2 + c^2}\right) = -2\pi i \frac{-ice^{-c}}{-2ic} = -\pi i e^{-c}.$
- (d) Der Integrand  $\frac{x \sin x}{x^2 + c^2}$ ist eine gerade Funktion. Also gilt

$$\int_{0}^{\infty} \frac{x \sin x}{x^{2} + c^{2}} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{x \sin x}{x^{2} + c^{2}} dx = \frac{1}{4i} \left( \int_{-\infty}^{\infty} \frac{x e^{ix}}{x^{2} + c^{2}} dx - \int_{-\infty}^{\infty} \frac{x e^{-ix}}{x^{2} + c^{2}} dx \right)$$
$$= \frac{1}{4i} (I_{1} - I_{2}) = \frac{\pi}{4} (e^{-c} + e^{-c}) = \frac{\pi}{2} e^{-c}.$$

#### 7. Fouriertransformation

[10 Punkte]

- (a) Wie wurde in der Vorlesung die Faltung f \* g zweier Funktionen  $f, g \in L^1(\mathbb{R})$  definiert?
- (b) Wie lautet die Fouriertransformierte der Gauß-Kurve  $x\mapsto \exp(-\frac{x^2}{2t}),\ x\in\mathbb{R},\ t>0?$  [2]
- (c) Beweisen Sie, dass die Faltung  $f_1 * f_2$  zweier Gauß-Kurven,  $f_j(x) = \exp(-\frac{x^2}{2t_j}), t_j > 0, j = 1, 2,$  wieder eine Gauß-Kurve ist. [4]
- (d) Sei nun  $h := f_1 * f_2$ .
  - (i) Welche Aussagen gelten für h? [2]

 $\boxtimes h \in \mathcal{S}(\mathbb{R}), \qquad \boxtimes h \text{ ist stetig}, \qquad \boxtimes h \in L^1(\mathbb{R}), \qquad \boxtimes h \in L^2(\mathbb{R}).$ 

(ii) Welche Aussagen gelten für  $\hat{h}$ ? [1]

 $\boxtimes \widehat{h} \in \mathcal{S}(\mathbb{R}), \qquad \boxtimes \widehat{h} \text{ ist stetig}, \qquad \boxtimes \widehat{h} \in L^1(\mathbb{R}), \qquad \boxtimes \widehat{h} \in L^2(\mathbb{R}).$ 

LÖSUNG:

- (a)  $f * g(x) = \int_{\mathbb{R}} f(x y)g(y)dy$ .
- (b) Allgemein ist für  $f(x) = \exp(\frac{1}{2}\langle x, Ax \rangle)$  die Fouriertransformierte  $\hat{f}(k) = (\det A)^{-1/2} \exp(-\frac{1}{2}\langle k, A^{-1}k \rangle)$  mit  $x, k \in \mathbb{R}^n$ . Hier ist n = 1 und  $A = \frac{1}{t} \in \mathbb{R}^{1 \times 1}$ . Also ist  $\hat{f}(k) = \sqrt{t} \exp(-\frac{1}{2}tk^2), k \in \mathbb{R}$ .
- (c) Hier gilt der Faltungssatz  $\widehat{f*g} = \sqrt{2\pi} \widehat{f} \widehat{g}$ , d.h.

$$\widehat{f * g}(k) = \sqrt{2\pi} \sqrt{t_1 t_2} \exp(-\frac{1}{2}(t_1 + t_2)k^2)$$

also eine Gaußkurve. Ihre Rücktransformation ist also wieder eine Gaußkurve,

$$f * g(x) = \frac{1}{\sqrt{2\pi}} \int e^{ikx} \widehat{f * g}(k) dk = \sqrt{2\pi \frac{t_1 t_2}{t_1 + t_2}} \exp\left(-\frac{1}{2} \frac{x^2}{t_1 + t_2}\right).$$

| 8. Hilbertraum | [8 Punkte] |
|----------------|------------|
|----------------|------------|

In der gesamten Aufgabe ist  $\{b_n\}_{n\in\mathbb{N}}$  eine orthonormale Folge von Vektoren im Hilbertraum  $\mathcal{H}$ .

- (a) Zeigen Sie, dass  $b_n$  für  $n \to \infty$  keinen Grenzwert haben kann. [3]
- (b) Geben Sie mindestens eine der vier in der Vorlesung behandelten Charakterisierungen dafür an, dass  $\{b_n\}_{n\in\mathbb{N}}$  eine ONB (orthonormale Basis) von  $\mathcal{H}$  ist.
- (c) Geben Sie explizit ein Beispiel für einen Hilbertraum  $\mathcal{H}$  und eine orthonormale Folge  $\{b_n\}_{n\in\mathbb{N}}$ , die **keine** ONB von  $\mathcal{H}$  ist und beweisen dies mit Hilfe von (b).

#### LÖSUNG:

(a) Annahme  $b_n \to b \in \mathcal{H}$ . Dann ist  $b_n$  eine Cauchy-folge, also  $\sup_{n,m \geq N} \|b_n - b_m\| \to 0$  für  $N \to \infty$ . Dies steht im Widerspruch zu

$$||b_{n+1} - b_n||^2 = ||b_{n+1}||^2 - \langle b_{n+1}, b_n \rangle - \langle b_n, b_{n+1} \rangle + ||b_n||^2 = 1 + 0 + 0 + 1 = 2.$$

- (b) die orthonormale Folge  $\{b_n\}_{n\in\mathbb{N}}$  ist ONB des Hilbertraums  $\mathcal{H}$  genau dann wenn eine der folgenden Bedingungen erfüllt ist:
  - (i)  $\forall \phi \in \mathcal{H} : (\forall n \in \mathbb{N} : \langle b_n, \phi \rangle = 0) \Longrightarrow \phi = 0,$
  - (ii)  $\forall \phi \in \mathcal{H} : \phi = \sum_{n \in \mathbb{N}} \langle b_n, \phi \rangle b_n$ ,
  - (iii)  $\forall \phi_1, \phi_2 \in \mathcal{H} : \langle \phi_1, \phi_2 \rangle = \sum_{n \in \mathbb{N}} \langle \phi_1, b_n \rangle \langle b_n, \phi_2 \rangle,$
  - (iv)  $\forall \phi \in \mathcal{H} : \|\phi\|^2 = \sum_{n \in \mathbb{N}} |\langle b_n, \phi \rangle|^2$ .
- (c)  $\mathcal{H} = \ell^2(\mathbb{N})$ . Dann ist  $b_n := (0, \dots, 1, \dots)$  mit der 1 an der n-ten Stelle eine ONB.  $\{b_{2n}\}_{n \in \mathbb{N}}$  ist immernoch orthonormal, aber keine ONB, da  $b_1 \neq 0$ , aber  $\langle b_{2n}, b_1 \rangle = 0$  für alle  $n \in \mathbb{N}$ , siehe (b) Punkt (i).