Sinais e Sistemas Electrónicos

Materiais e Equipamento do Laboratório de Electrónica

Sumário

- Placa Branca;
- Fonte de alimentação;
- Multímetro;
- Gerador de Sinal;
- Osciloscópio.

Usada para montar circuitos em fase de teste

Ligações internas

Placa standard com 830 contactos;

CUIDADO! - Em cada orifício da placa introduzir apenas <u>um único</u> terminal de componente;

Fonte de alimentação

Fonte de Alimentação

- Fonte DC de tensão/corrente constante;
- 3 saídas independentes: duas variáveis (0-30V, com limitação de corrente); uma fixa (5V/3A);
- Protecção contra curto-circuitos.

Axiomet AX 3005L-3

Multimetro

Multimetro

- Multímetro LCD com 3 1/2 dígitos
- Tensões DC: 0-200m-2-20-200V $\pm 0.5\%$
- Tensões AC: 0-200m-2-20-200V ±1.2%
- Correntes DC: 0-2m-20m-200m-10A ±2.0%
- Correntes AC: 0-2m-20m-200m-10A ±3.0%
- Resistências: 0-200-2k-20k-2M-20M Ω ±1.0%
- $-200M\Omega \pm 5.0\%$

Multimetro

• Multímetro LCD com 3 1/2 dígitos;

• Tensões DC: $200m-2-20-200V \pm 0.5\%$;

• Tensões AC: $2-20-200V \pm 0.8\%$;

• Correntes DC: 0.2m-2m-20m-200m-10A

 $\pm 0.8\%$;

Correntes AC: 2m-20m-200m-10A ±1.0%;

• Resistências: 200-2k-20k-2M-20M Ω ±0.8% -

 $200M\Omega \pm 5.0\%$

Medição de tensões eléctricas

- Tensão (em Volts) é medida com um Voltímetro;
- A tensão é sempre <u>entre dois pontos</u>... por isso o Voltímetro é ligado entre esses pontos, ou seja, <u>em paralelo</u>.

Medição de correntes eléctricas

- Corrente (em Ampéres) é medida com um Amperímetro;
- A corrente passa <u>através de</u>... por isso o Amperímetro é sempre ligado em série no circuito.

Amperimetro

Simbolo ———

Mede a corrente no circuito, ou seja, I_S

Tensões em circuitos série e paralelo

- Num circuito paralelo a tensão é a mesma em todos os elementos.
- Num circuito série a tensão divide-se por cada um dos elementos.

As tensões em cada uma das lâmpadas podem ser diferentes ou iguais.

Correntes em circuitos série e paralelo

- Num circuito série a corrente é a mesma em qualquer ponto.
- Num circuito paralelo a corrente divide-se por cada um dos ramos.

Circuito simples

Medição da tensão

- Tensão (em *Volt*) é medida com um Voltímetro;
- A tensão é sempre <u>entre dois pontos</u>... por isso o Voltímetro é ligado entre esses pontos, ou seja, em paralelo.

Multimetro configurado para medir *Volts*

Medição da tensão

Para a Fonte de Alimentação

Atenção às ligações!!

Comutador na gama V--- (20V)

Medição da corrente

- Corrente (em Ampére) é medida com um Amperímetro;
- A corrente passa <u>através de</u>... por isso o Amperímetro é sempre ligado em série no circuito.

Medição da corrente

- Corrente (em Ampére) é medida com um Amperímetro;
- A corrente passa <u>através de</u>... por isso o Amperímetro é sempre ligado em série no circuito.

Medição da corrente

00000 00000 00000 00000 00000

Medição do valor de uma resistência

• Resistência (em *Ohm*) é medida com um *Ohmimetro*;

Medição de uma resistência

Gerador de sinal

Gerador de sinal

- Formas de onda: sinusoidal, triangular e quadrada;
- Frequências de 0.1Hz a 3MHz;
- Saída: 2mVp-p a 10Vp-p;
- Offset DC: -5 a +5V.

GW Instek SFG-1013

Utilização do gerador de sinal

EXEMPLO: Ajustar gerador para saída sinusoidal de frequência 2KHz e 3V de amplitude:

1. Seleccionar forma de onda:

2. Introduzir frequência:

3. Ligar saída:

4. Ajustar amplitude:

• Amplitude pode ser vista no display usando:

Para introduzir offset: puxar o botão para fora e rodar.

Cabo do gerador de sinal

Osciloscópio – o que é?

Instrumento que permite observar e caracterizar sinais eléctricos (tensões) variáveis no tempo.

Osciloscópio – o que podemos caracterizar?

- Forma de onda;
- Valores das amplitudes;
- Período e frequência;
- Diferença de fase entre dois sinais;
- ...

Osciloscópio digital

 Amostra a amplitude dos sinais analógicos em instantes discretos no tempo;

 Valores de amplitude são convertidos para um formato digital e armazenados em memória.

Osciloscópio digital - vantagens

- Visualização de sinais em tempo real e captura de eventos (sinais não repetitivos);
- Medição, armazenamento e processamento dos sinais adquiridos;
- Facilidades de utilização: autoset, autorange, medição automática, cursores para medição, memorização de configurações, etc.

Tektronix TBS 1052B

Pontas de prova

Cabo coaxial para reduzir ruído electromagnético;

• Elevada impedância para minimizar a influência na tensão a medir.

Pontas de prova

Atenuação X1:

- Impedância não é muito elevada;
- Indicada para sinais muito pequenos.

Atenuação X10:

- Minimiza o efeito de carga no circuito a testar;
- Adequado para sinais com conteúdo de alta frequência (ponta compensada).

