

Informe Tarea 3 Arquitectura y Organización de Computadores

MCD

En primer lugar se dejó al principio en .data espacio para modificar inputs para probar máximos común divisores. El problema en sí se resolvió usando el Algoritmo de Euclides, para ello en primer lugar se identificó el menor de ambos números (almacenados en a_0 y a_1), intercambiándolos de ser necesario, de modo que el menor de ellos quede en a_0 .

Luego se creó un loop mcd que va buscando el resto de la división de ambos para aplicar el Algoritmo, en caso de ser 0 el resto significa que terminó el proceso; de no ser así, se vuelve a iterar usando como nuevos valores el menor de los antes divididos y el resto calculado.

No es necesario hacer caso base, ya que en caso de no encontrar, simplemente el resto llegará a 1, el cual debe entregar como resto 0.

Al ser 0 el resto, el beq dentro del loop lo dirige hacia el final, donde para facilitar la visualización se imprime el valor encontrado (que también queda en t_0) y se almacena en la salida creada al principio.

Lucas

Para comenzar se creó el label enésimo para recibir el término de la serie que se quiere calcular, el cual almacenamos en a_0 .

Para continuar, definimos los dos primeros términos en s_0 y s_1 , respectivamente y tanmbien se define s_3 el cual almacena la suma de los numeros vistos. A continuación se realizan saltos para entregar el resultado en caso de que los terminos s_0 o s_1 sean los términos que se busquen.

Luego se utilizó t_0 como un contador, el cual usaremos para verificar si se llegó al término enésimo y t_1 como auxiliar para ir moviendo los terminos de la suma inmediata $(L_{s-1} \ y \ L_{s-2})$

A continuación, en el loop se guarda en variable auxiliar el termino s0 y se mueve s_1 a s_0 para finalmente mover el valor de t_1 a s_1 y realizar la suma de s_2 con s_1 .

Finalmente al finalizar el loop se imprime el valor, el cual queda en a_0 y se guarda en la salida definida al principio.

Fibonacci

Para comenzar se creó el label enésimo para recibir el término de la serie que se quiere calcular, el cual almacenamos en a_0 .

Para continuar, definimos los dos primeros términos en s_0 y s_1 , respectivamente y se realizan saltos para entregar el resultado en caso de que esos sean los términos que se busquen.

Luego se utilizó t_0 como un contador, el cual usaremos para verificar si se llegó al término enésimo y t_1 como auxiliar para ir calculando la suma de los términos actuales, para poder así actualizar s_0 y s_1 a los siguientes elementos de la serie.

Finalmente al finalizar el loop se imprime el valor, el cual también queda en s_0 y se guarda en la salida definida al principio.

Cabe destacar que como el MIPS trabaja en 32 bits y para enteros, utiliza el primer bit para el signo, el máximo término que puede calcular es cuando n = 46, ya que es el último que cabe en $2^{31} - 1$.

Factorial

Para comenzar se creó el label enésimo para recibir el término de la serie que se quiere calcular, el cual almacenamos en a_0 .

Para continuar, definimos el primer termino s_0 se realizan saltos para entregar el resultado en caso de que los terminos que se busquen sean 0 o 1.

Luego se utilizó t_0 como un contador, el cual usaremos para verificar si se llegó al término enésimo y ademas para realizar la multiplicacion por el siguiente termino.

Finalmente al finalizar el loop se imprime el valor, el cual también queda en s_0 y se guarda en la salida definida al principio.

Extra

Se utilizó hexadecimal para las entradas para tener una mejor representación de los bits que se ingresan (comparado con decimal).

En primer lugar se usa un contador s_0 y se crean dos binarios con el valor dos (0b10), donde en s_1 se va almacenando una potencia de dos y s_2 se utiliza dos como constante. La idea es crear en s_1 un binario con un uno en el MSB seguido de la cantidad de ceros correspondiente a la cantidad bits que se quieren intercambiar.

Con esta potencia guardada en s_1 se dividirán los números, para que en LO y en HI (cuociente y resto) queden: la parte que se quiere incluir en el otro número y la parte que se desea guardar del número actual, dependiendo de cuál término estoy dividiendo. Estos resultados se van guardando entre t_0 y t_4 .

A continuación se amplifica por la potencia la parte que corresponde dejar a la izquierda y se suma la parte que se desea dejar a la derecha de cada número, quedando así los resultados en a_0 y a_1 respectivamente. Específicamente, el cuociente obtenido del primer término es lo que se va sumar al segundo término y el resto se mantiene tal cual. Por otro lado, el cuociente obtenido del segundo término se guarda, se amplifica por la potencia y se le suma lo antes ya mencionado; y el resto de éste se amplifica, pero éste es sumado al resto guardado del primero, para obtener así ambos términos requeridos. Dichos valores quedan en a_0 y a_1 y también se almacenan en las salidas creadas al inicio, en los datos.

Es importante ver que al realizar este proceso se pueden producir problemas con los ceros a la izquierda del número, ya que son ignorados cuando se encuentran al principio del resultado, es por esto que analizaremos los casos posibles. Primero vemos que para los LSB no se generan problemas, ya que el número amplificado llena los dígitos para incluir los ceros que falten (como si se estuviera haciendo extensión de 0 hasta tener los dígitos deseados). Por otro lado cuando haya ceros al comienzo del número en los MSB, la rutina simplemente los ignorará y guardara el resultado con menos dígitos de lo deseado. Es por esto que por ejemplo, si el resultado esperado de un número es 0b0000, en cambio se entrega 0b0, lo que corresponde hacer es solamente una extensión de 0 al momento de leerlo hasta tener el tamaño que se requiere.

Además, se decidió para esta ocasión no imprimir el resultado, ya que QtSpim no cuenta con impresión binaria y en su lugar lo muestra como decimal, ésto no ayuda a ver los bits que se intercambian. Entonces se recomienda verificar usando a_0 y a_1 .