导数

所有教材概念

概念 几何意义 运算和基本公式 复合函数求导 应用

1. 导数的概念和意义

1.1 定义

定义:

$$y = f(x)$$
 x_0

$$f'(x_0) = \lim_{\Delta x o 0} rac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

工程学定义:

$$f(x_0+h)=f(x_0)+Lh+o(h)pprox f(x_0)+Lhx$$
 $L=f'(x)$ $o(h)$ $h o 0$ $o(h)$ h

思考

为什么要定义导数?

如果把函数与数列对应,一个函数的导数对应数列的什么成分?

导数存在的条件是什么?

导数值与自变量有关吗?

小知识:

- 左导数: $f'_{-}(x_0) = \lim_{\Delta x \to 0^{-}} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$ • 右导数: $f'_{+}(x_0) = \lim_{\Delta x \to 0^{+}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$
- Weierstrass函数和 Cantor函数:

$$f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$$

1.2 几何意义

• 切线: 函数 y = f(x) 在点 x_0 处的切线方程为 $y = f(x_0) + f'(x_0)(x - x_0)$ 。

小知识:

Newton's method
$$x_{n+1} = x_n - rac{f(x_n)}{f'(x_n)}$$

2. 导数的运算和基本公式

2.1 基本导数公式

(2)
$$(x^{\alpha})' = \alpha x^{\alpha-1}, \alpha$$
 为常数;

(3)
$$(e^x)' = e^x$$
;

(4)
$$(\ln x)' = \frac{1}{x};$$

(5)
$$(\sin x)' = \cos x$$
;

(6)
$$(\cos x)' = -\sin x$$
.

(7)
$$(f(x)\pm g(x))'=f'(x)\pm g'(x);$$

(8)
$$(f(x)g(x))'=f'(x)g(x)+f(x)g'(x);$$

(9)
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}, g(x) \neq 0.$$

例2.1.1

根据定义证明 $f(x)=x^2$ 的导数为 f'(x)=2x; f(x)=ln(x) 的导数为 $f'(x)=rac{1}{x}$ 。

例2.1.2

求函数 $y = x^3 - 2x^2 + 3x - 4$ 的导数。

例2.1.3

求函数 $y = \frac{1}{x}$ 的导数。

2.2 导数的运算法则

- 和差法则: $(u \pm v)' = u' \pm v'$
- 积法则: (uv)' = u'v + uv'• 商法则: $(\frac{u}{v})' = \frac{u'v uv'}{v^2}$
- 复合函数求导: (f(g(x)))' = f'(g(x))g'(x)

例2.2.1

证明复合函数求导公式。

例2.2.2

求函数 $y = (x^2 + 1)^3$ 的导数。