7주차 캡스톤 연구진행 보고서

Handong Global University

School of Mechanical & Control Engineering

21800226 Yun-Ki Noh

Date: 2024.10.10 (Week 7)

지난 연구목표

	목표	성취여부	설명		
	3d scan 임시 뼈대 제작	0	임시로 카메라 및 레이저 고정		
기본장비로	Microsoft 카메라로 레이저 검출	Δ	레이저 두께 및 산란 문제		
3d scan 구축	픽셀 검출	X	레이저 장비의 한계로 시도 X		
	삼각법 적용 및 3d scan	Δ	2d Camera의 배율 문제 발견		
레이저와 구동장치 검토	레이저 선정 및 주문	X	기존 카메라의 한계로 인한 보류		
	카메라 슬라이더 선정 및 주문	X	카메라,렌즈 선정 이후 검토		

[기존]2D Camera를 통한 3d Scanning Concept

픽셀당실제거리,
$$d_p = \frac{L}{N} \rightarrow$$
실제거리 = $N2 * d_p \rightarrow h = (N2 * d_p) * \tan(\theta)$

기존 방식의 한계

높이에 따라 같은 물체가 다른 크기로 이미지 센서에 상이 맺힘 → 픽셀당 실제 거리가 달라짐

대안: Telecentric Lens

Source: Edmund Optics, "The Advantages of Telecentricity"

Source: Canrill Optics, "Design Principle and Technical Advantages of Telecentric Lens"

Telecentric Lens를 통해 배율을 고정 → 높이가 달라도 같은 길이로 상이 맺힘

Telecentric Lens & 2D Camera

TCL0.3X-130I-HR

Specification	Value			
MAG(배율)	0.3X			
W.D(Working Distance)	130mm			
Resolution	17.7um			
D.O.F	7mm			

GRS3-USB3

Specification	Value				
Sensing Area	11.26mm x 11.26mm				
Pixel Size	5.5um x 5.5um				
Resolution	2048 x 2048				
Interface	USB 3.0				

Telecentric Lens & 2D Camera

$$Horizontal\ FOV[mm] = rac{orall Horizontal\ FOV[mm]}{rac{PMAG}{PMAG}} = rac{11.26}{0.3} = 37.5mm,$$
 $Vertical\ FOV[mm] = rac{rac{VMMG}{M}}{VMG} = rac{11.26}{0.3} = 37.5mm$

Specification	Value				
Horizontal FOV	37.5mm				
Vertical FOV	37.5mm(??)				

Laser Problem & Searching

Problem: Laser의 산란 및 두꺼운 두께 → 레이저 검출 장애

'TCL0.3X-130I-HR'의 Working Distance가 13cm인 것을 감안했을 때, 레이저의 Working Distance는 대략 20cm로 설정

→ 20cm distance에서 Line Width가 1mm 미만인 제품 탐색 및 선정

Specification	원하는 값
Working Distance	20cm 근처
Line Width	1mm 미만
Wavelength	Visible Light

Laser Problem & Searching

Drawing

PICOTRONIC, LI650-5-5(8x26)45DEG-F250

Specification	Value					
Wavelength	620nm					
Focus(fixed)	250mm					
Line Thickness	Under 0.5mm					
Fan Angle	45°					
Area	Almost 500mm					
Output Power	5mW					
Operating Voltage	4.5-5.5V DC					
Price	제품(52,86유로[77,921.45원]) + 배송(74,90유로 [110,410.84원]) = 187,298원					

3D Scanning System 개요

400mm 변위 400mm -400mm-

카메라/렌즈 및 레이저 위치

전체 뼈대 도식도

전동장치구상

카메라 슬라이더 제작영상

슬라이더 구입 및 서보모터 구동 고려 문제: 배송기간(10/28도착예정)

가격: 15,400원

링크: <u>Andoer 50 센치 메터 / 20 인치 알루미늄 합금 카메라 트랙 슬라이더 비디오 안정제 레일 DSLR 카메라 캠코더 DV 필름 사진 최대 11Lbs - 액션캠액세서리 | 쿠팡 (coupang.com)</u>

11

7~8주차 계획

지난 연구 요약:

- 1. Telecentric Lens 도입 및 2d 카메라 선정
- 2. 슬라이더의 필요성

7-8주차 연구 목표:

- 레이저 도착 전까지 하드웨어(전동장치x) 및 소프트웨어 구축
- a. 전체 뼈대구축: 카메라,렌즈,기본레이저 고정하기
- b. 슬라이더 선정 및 구입
- c. 뼈대 구축이후 높이 계산

카테고리	목표	10/10	10/11	10/12	10/13(일)	10/14	10/15	10/16	10/17(목)	10/18	10/19
메인 카메라와 기본 레이저로 뼈대 구축	케이스 설계			4일					-		
	카메라 및 레이저 고정장치 설계			4일					-		
	출력 및 조립			-				4일		-	
	슬라이더 선정 및 주문			4일							
메인 카메라와 기본 레이저로 스캔 시도	레이저 주문	29	길					-			
	기본 레이저로 삼각 측량법 시도				-				4일		