Tableau de bord / Mes cours / EIIN511B - ECUE Informatique theorique 1 / Logique ou pas

/ Training: Preuves en calcul des propositions

| Commencé le | mardi 26 octobre 2021, 13:38           |
|-------------|----------------------------------------|
| État        | Terminé                                |
| Terminé le  | mardi 26 octobre 2021, 14:12           |
| Temps mis   | 33 min 49 s                            |
| Points      | 8,00/8,00                              |
| Note        | <b>10,00</b> sur 10,00 ( <b>100</b> %) |

## Question 1

Correct

Note de 1,00 sur 1,00

Soit la formule suivante  $\phi_1$  où p1, p3 et p4 représentent 3 propositions :

$$\phi_1$$
 = [ (p1  $\land$  p3 )  $\lor$  ¬(p1  $\Rightarrow$  p4 ) ]  $\lor$  p4

Sélectionnez toutes les formules qui sont sous forme normale conjonctive (FNC) et équivalentes à  $\phi_1$ , et elles seulement.

- p4  $\wedge$  (p1  $\vee$  ¬p4 )  $\wedge$  (p1  $\vee$  p3 )  $\wedge$  (p3  $\vee$  ¬p4 )
- aucune des autres réponses
- $\square$  [(p1  $\land$  p3)  $\lor$  (p1  $\land$   $\neg$ p4)]  $\lor$  p1

Votre réponse est correcte.

Correct

| Question <b>2</b>                                                                                                                                                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Correct                                                                                                                                                                   |  |  |
| Note de 1,00 sur 1,00                                                                                                                                                     |  |  |
|                                                                                                                                                                           |  |  |
| Soit la formule suivante où p2 et p4 représentent 2 propositions : $ \phi_2 = \{ \neg [ (p2 \land p4) \lor (\neg p2 \land \neg p4) ] \} \Rightarrow (p2 \Rightarrow p4) $ |  |  |
| Sélectionnez toutes les formules (et elles seules) qui sont équivalentes à $\phi_2$ et qui sont sous forme normale conjonctive (FNC).                                     |  |  |
| aucune des autres réponses                                                                                                                                                |  |  |
|                                                                                                                                                                           |  |  |
|                                                                                                                                                                           |  |  |
| ☑ (¬p2 ∨ p4) <b>✓</b>                                                                                                                                                     |  |  |
| $ \bigcirc (\neg p2 \lor p4) \land p2 $                                                                                                                                   |  |  |
|                                                                                                                                                                           |  |  |
| Votre réponse est correcte.                                                                                                                                               |  |  |
| Correct  Note pour cet envoi : 1,00/1,00.                                                                                                                                 |  |  |



## Question 4

Correct

Note de 1,00 sur 1,00

Soit la formule  $\phi_3$  où p0, p2 et p4 représentent 3 propositions :

 $\phi_3 = [p0 \Rightarrow (p2 \land p4)] \Rightarrow [(p0 \Rightarrow p2) \land (p0 \Rightarrow p4)]$ 

On veut montrer que  $\phi_3$  est universellement valide, pour cela on commence par mettre

 $[p0 \Rightarrow (p2 \land p4)]$ 

sous forme de clauses C1, C2, C3, ...., ce qui donne :

- C1:p0  $\vee \neg p2$  , C2: p0  $\vee \neg p4$  , C3:  $\neg p0 \vee p4$
- aucune des autres réponses proposées
- C1:¬p0 , C2: p2 ∧ p4
- C1:p0 ∨ p2 , C2: p0 ∨ ¬p4 , C3: ¬p0 ∨ p4
- C1:¬p0 ∨ p2 , C2: ¬p0 ∨ p4
- C1:p0 ∨ ¬p2 , C2: p0 ∨ ¬p4

Votre réponse est correcte.

Correct

Note pour cet envoi: 1,00/1,00.

## Question **5**

Correct

Note de 1,00 sur 1,00

Soit la formule  $\varphi_3$  où p0, p2 et p4 représentent 3 propositions :

$$\phi_3 = [p0 \Rightarrow (p2 \land p4)] \Rightarrow [(p0 \Rightarrow p2) \land (p0 \Rightarrow p4)]$$

On veut montrer que  $\phi_3$  est universellement valide, et après avoir mis

 $[p0 \Rightarrow (p2 \land p4)]$  sous forme de clauses, on met ici

 $\neg[(p0 \Rightarrow p2) \land (p0 \Rightarrow p4)]$ 

sous forme de clauses C'1, C'2, C'3, ...., ce qui donne :

- aucune des autres réponses proposées
- C'1:p0 , C'2:p2 , C'3:¬p4
- C'1:p0 v p2, C'2:p0 v ¬p4, C'3:p2 v ¬p4, C'4:¬p0
- C'1:p0, C'2:¬p0 ∨ ¬p4, C'3:¬p0 ∨ p2
- © C'1:p0, C'2:p0 ∨ ¬p4, C'3:p0 ∨ ¬p2, C'4:¬p2 ∨ ¬p4
- $\bigcirc \quad C'1:p0 \ v \ p2 \ , \ C'2:p0 \ v \ \neg p2 \ , \ C'3:p2 \ v \ \neg p4 \ , \ C'4:\neg p4$

Votre réponse est correcte.

Correct

| 13:37                                                                                                           | Training: Preuves en calcul des propositions: relecture de tentative                                                                    |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Question <b>6</b>                                                                                               |                                                                                                                                         |
| Correct                                                                                                         |                                                                                                                                         |
| Note de 1,00 sur 1,00                                                                                           |                                                                                                                                         |
|                                                                                                                 |                                                                                                                                         |
| •                                                                                                               | $_3$ où p0, p2 et p4 représentent 3 propositions :<br>$_3$ p4 )] $\Rightarrow$ [(p0 $\Rightarrow$ p2 ) $\wedge$ (p0 $\Rightarrow$ p4 )] |
| On veut montrer $[p0 \Rightarrow (p2 \land p4)]$<br>$\neg[(p0 \Rightarrow p2) \land (p3)]$<br>sous forme de cla | $00 \Rightarrow p4$ )]                                                                                                                  |
| Combien de réso                                                                                                 | lutions faudra-t-il faire au minimum pour obtenir la clause vide ?                                                                      |
| <ul><li>3 </li><li>5</li><li>4</li></ul>                                                                        | pas obtenir la clause vide<br>autres réponses proposées                                                                                 |
| Votre réponse es                                                                                                | t correcte.                                                                                                                             |



Correct

Note pour cet envoi: 1,00/1,00.

Correct

Note de 1,00 sur 1,00

Soit la formule  $\phi_4$  où q1, q3, et q4, représentent 3 propositions :

$$\phi_4 = (\neg [q1 \lor (q3 \land q4)]) \Rightarrow [\neg q3 \lor \neg q4]$$

On veut montrer que  $\phi_4$  est universellement valide, pour cela on commence par mettre

 $(\neg [q1 \lor (q3 \land q4)])$ 

sous forme de clauses C1, C2, C3, ...., ce qui donne :

- C1:¬q1,C2:¬q3∨¬q4
- C1:¬q1,C2:¬q3,C3:¬q4
- o aucune des autres réponses
- C1: ¬q1 ∨ ¬q3 ∨ ¬q4

Votre réponse est correcte.

Correct

Question 8

Correct

Note de 1,00 sur 1,00

Soit la formule  $\phi_4$  où q1, q3, et q4, représentent 3 propositions :

 $\phi_4 = (\neg [q1 \lor (q3 \land q4)]) \Rightarrow [\neg q3 \lor \neg q4]$ 

On veut montrer que  $\phi_4$  est universellement valide, pour cela, à la question précédente, on a mis

 $(\neg [q1 \lor (q3 \land q4)])$ 

sous forme de clauses.

Après avoir mis  $\neg [\neg q3 \lor \neg q4]$  sous forme de clauses, Il est demandé ici, quelle suite de résolutions permet d'obtenir la clause vide.

- $\bigcirc$   $\neg q1 \lor \neg q3 \lor \neg q4$ , q1 donne  $\neg q3 \lor \neg q4$ ; puis q3,  $\neg q3 \lor \neg q4$  donne  $\neg q4$ ; puis q4,  $\neg q4$  donne la clause vide
- aucune des autres réponses
- ¬q3 ∨ ¬q4 , q3 donne ¬q4 ; puis q4, ¬q4 donne la clause vide
- □ ¬q4 , q4 donne la clause vide

Votre réponse est correcte.

Correct

| Training : Preuves en calcul des propositions : relecture | de tentative |
|-----------------------------------------------------------|--------------|
|                                                           |              |

■ Entrainement\_3\_QMC\_5oct2021

Aller à...

10/12/2021 13:37

Training : preuves en calcul des prédicats ►