Some results about C(K).

The goal of this set of exercises is to give show how some of the topics we have covered (the Stone-Weierstrass Theorem, weak topologies) can be combined to prove some results about C(K), the algebra of continuous real valued functions on a compact Hausdorff space K.

Let K be a compact Hausdorff space and C(K) the set of continuous functions $f: K \to \mathbf{R}$. We define norm on C(K) by

$$||f||_{L^{\infty}} = \sup_{x \in K} |f(x)|.$$

Then C(K) is a complete metric space with the distance between f and g being $||f - g||_{L^{\infty}}$. The space C(K) is also an algebra with the usual pointwise product of functions. Note that

$$||fg||_{L^{\infty}} \leq ||f||_{L^{\infty}} ||g||_{L^{\infty}}.$$

Recall from algebra that an **ideal** in C(K) is a subset I such that $f_1, f_2 \in I$, then so is $f_1 + f_2 \in I$. And if $f \in I$ and $g \in C(K)$, then $fg \in I$. That is I is close under addition and by multiplication by elements of C(K). Note that as C(K) contains the constants we have that if $c_1, c_2 \in \mathbf{R}$ and $f_1, f_2 \in I$ then $c_1 f_1 + c_2 f_2 \in I$. Therefore I vector subspace of C(K). It is therefore a subalgebra of C(K). Also recall that I is a **maximal ideal** of C(K) if it is an idea, $I \neq C(K)$, and if J is any ideal of C(K) with C(K) with $J \supseteq I$ and $J \neq I$, then J = C(K).

Proposition 1. Let $x_0 \in K$. Then $I_{x_0} := \{ f \in C(K) : f(x_0) = 0 \}$ is a maximal idea in C(K).

These are all the only maximal ideals of C(K):

Theorem 2. If I is a maximal ideal in C(K), then there is a unique point $x_0 \in K$ such that $I = I_{x_0}$.

Problem 2. Prove this. HINT: If there is no point of K where all functions of I vanish, then use the form of the Stone-Weierstrass given in class to show that the closure of I is all of C(K). That would mean that there is an $f \in K$ such that $||f-1||_{L^{\infty}} < 1/2$. But then f does not vanish and therefore $1/f \in C(K)$. This implies that $1 = f(1/f) \in I$ which in turn implies I = C(K), which is impossible. Therefore there is at least one point x_0 such that $f(x_0) = 0$ for all $f \in I$. That is $I \subseteq I_{x_0}$. Now use the maximality of I.

A multiplicative linear functional on C(K) is a linear map $\alpha: C(K) \to \mathbf{R}$ such that $\alpha(fg) = \alpha(f)\alpha(g)$. As an example of such a function show that if $x_0 \in K$, then the evaluation map $\alpha(f) = f(x_0)$ is a nonzero linear multiplicative linear functional. We now show this is all of them.

Theorem 3. Let $\alpha: C(K) \to \mathbf{R}$ be a nonzero linear multiplicative linear functional on C(K). Then there is a unique $x_{\alpha} \in K$ such that α is given by $\alpha(f) = f(x_{\alpha})$. That is all the nonzero linear multiplicative linear functionals are given by evaluations at points.

Problem 3. Prove this. Hint: Show the kernel, $\ker(\alpha) := \{f : \alpha(f) = 0\}$, is a maximal idea in C(K). Therefore by, Theorem 2, there is an x_0 so that $\ker(\alpha) = I_{x_0}$. Then show that $\alpha(f) = f(x_0)$.

Recall that a map $F: C(K_2) \to C(K_1)$ is an **algebra homomorphism** iff F is linear and F(fg) = F(f)F(g) for all $f, g \in C(K_2)$. Now let K_1 and K_2 be two compact Hausdorff spaces and $\varphi: K_1 \to K_2$ a continuous map. Define $\varphi^*: C(K_2) \to C(K_1)$ by

$$\varphi^*(f) = f \circ \varphi.$$

(Note the reverse of order: $\varphi \colon K_1 \to K_2$ but $\varphi^* \colon C(K_2) \to C(K_1)$.)

Proposition 4. The map $\varphi^* \colon C(K_2) \to C(K_1)$ is an algebra homomorphism that satisfies $\varphi^* 1 = 1$ and $\|\varphi^* f\|_{L^{\infty}} \leq \|f\|_{L^{\infty}}$.

Problem 4. Prove this. □

We now show that the converse of this is true. The fist step is:

Proposition 5. Let K be a compact Hausdorff space and let \mathcal{T} be the topology of K. Let \mathcal{T}_{wk} be the weak topology on K generated by the functions C(K). Then $\mathcal{T} = \mathcal{T}_{wk}$.

Problem 5. Prove this. \Box

Proposition 6. Let K_1 and K_2 be compact Hausdorff spaces and $\varphi \colon K_1 \to K_2$ a function. Then φ is continuous if and only if $f \circ \varphi \in C(K_1)$ for all $f \in C(K_2)$. (That is φ is continuous if and only if for all continuous functions $f \in K_2 \to \mathbf{R}$ the function $f \circ \varphi$ is a continuous function on K_1 .)

Problem 6. Prove this. HINT: The topology on K_2 is the weak topology generated by the functions in $C(K_2)$. Now use the second proposition on page 35 of the class notes.

Theorem 7. Let $F: C(K_2) \to C(K_1)$ be an algebra homomorphism. Then show there is a unique continuous map $\varphi: K_1 \to K_2$ such that $F(f) = \varphi^* f$.

Problem 7. Prove this. HINT: For each $x \in K_1$ define a map $\beta_x \colon C(K_2) \to \mathbf{R}$ by $\beta_x(f) = (F(f))(x)$. Show this is a nonzero multiplicative linear functional. By Theorem 3 there is a unique $\varphi(x) \in K_2$ such that $\beta_x(f) = f(\varphi(x))$. This defines a function $\varphi \colon K_1 \to K_2$ and form the definition $(F(f))(x) = f(\varphi(x))$. That is $F(f) = f \circ \varphi = \varphi^* f$. It remains to show that φ is continuous (use Proposition 6) and unique.