

Models

Kasper Schou Telkamp

Section for Dynamical Systems

DTU Compute

Department of Applied Mathematics and Computer Science

Outline

- Data exploration
 - VTEC / STEC
- Hierachical Poisson Normal model
 - Fomulation
 - Implementation
- Hierachical Poisson Gamma model
 - Formulation

Data exploration VTEC / STEC

Date	ageGroup	у
2008-01-01 2008-01-01	<1 year 1-4 years	2
2008-01-01	5-14 years	2
2008-01-01	15-24 years	1
2022-12-01	55-64 years	2
2022-12-01	65-74 years	5
2022-12-01	75-84 years	4
2022-12-01	85+ years	3

Data exploration

DTU

VTEC / STEC

Shiga- og veratoxin producerende E. coli.

DTU

Fomulation

$$Y_i|u_i \sim \text{Pois}(\lambda_i \exp(u_i))$$
 (1a)

$$u_i \sim N(0, \sigma^2)$$
 (1b)

Implementation - Objective function in C++

```
#include <TMB.hpp>
                               // Links in the TMB libraries
template<class Type>
Type objective function Type :: operator() ()
 DATA VECTOR(v):
                                      // Data vector transmitted from R
 DATA_FACTOR(ageGroup); // Data factor transmitted from R
 PARAMETER VECTOR(u):
                                   // Random effects
 // Parameters
 PARAMETER VECTOR(lambda):
                             // Parameter value transmitted from R
 PARAMETER(log_sigma_u);
                                      // Parameter value transmitted from R
 Type sigma_u = exp(log_sigma_u);
 int nobs = v.size();
 Type mean ran = Type(0):
 int j;
 Type f = 0;
                          // Declare the "objective function" (neg. log. likelihood)
 for(int i=0; i < nobs; i++){
   f -= dnorm(u[i],mean_ran,sigma_u,true);
   j = ageGroup[i];
   f -= dpois(v[i],lambda[j]*exp(u[i]),true);
 return f;
```


Implementation - Call from R

```
# Import libraries
library(readr)
library(dplvr)
library(TMB)
# Import the data
dat <- read rds(file = "../../data/processed/dat.rds")</pre>
# Only consider some of the data
v <- dat %>%
  filter(caseDef == "Shiga- og veratoxin producerende E. coli.") %>%
  group_by(Date, ageGroup) %>%
  summarize(v = sum(cases))
compile(file = "PoissonLognormal.cpp") # Compile the C++ file
dvn.load(dvnlib("PoissonLognormal")) # Dunamically link the C++ code
# Function and derivative
PoisLN <- MakeADFun(
 data = list(y = y$y, ageGroup = y$ageGroup),
 parameters = list(u = rep(1, length(y$y)),
                    lambda = rep(1, nlevels(y$ageGroup)),
                    log_sigma_u = log(1)),
  random = "u",
  DLL = "PoissonLognormal"
opt <- nlminb(start = PoisLN$par, PoisLN$fn, PoisLN$gr, lower = c(0.01, 0.01))
```

Hierachical Poisson Normal model

Results

Parameter	Estimate	Std. Error
$\lambda_{<1year}$	0.83	0.09
$\lambda_{1-4years}$	3.39	0.29
$\lambda_{5-14 years}$	1.73	0.16
$\lambda_{15-24years}$	1.78	0.17
$\lambda_{25-34years}$	1.38	0.14
$\lambda_{35-44years}$	1.02	0.11
$\lambda_{45-54 years}$	1.29	0.13
$\lambda_{55-64 years}$	1.25	0.12
$\lambda_{65-74 years}$	1.31	0.13
$\lambda_{75-84 years}$	0.90	0.10
$\lambda_{85+years}$	0.31	0.04
$\log(\sigma_u)$	0.01	0.03

Hierachical Poisson Normal model

Results

Shiga- og veratoxin producerende E. coli.

Formulation

$$Y_i|u_i \sim \operatorname{Pois}(\lambda_i u_i)$$
 (2a)
 $u_i \sim \operatorname{G}(1,\phi)$ (2b)

$$u_i \sim \mathrm{G}(1,\phi)$$
 (2b)

DTU

Probability function for Y

$$P[Y = y] = g_Y(y; \lambda, \phi)$$

$$= 1234$$
(3)

DTU

Proof

The probability function for the conditional distribution of Y for given \boldsymbol{u}

$$f_{Y|u}(y;\lambda,u) = \frac{(\lambda u)^y}{y!} \exp(-\lambda u)$$
(4)

and the probability density function for the distribution of \boldsymbol{u} is

$$f_u(u;\phi) = \frac{1}{\phi} \exp(-u/\phi) \tag{5}$$

Proof

Given (4) and (5), the probability function for the marginal distribution of Y is determined from

$$g_Y(y;\lambda,\phi) = \int_{u=0}^{\infty} f_{Y|u}(y;\lambda,u) f_u(u;\phi) du$$

$$= \int_{u=0}^{\infty} \frac{(\lambda u)^y}{y!} \exp(-\lambda u) \frac{1}{\phi} \exp(-u/\phi) du$$

$$= \frac{1}{y!\phi} \int_{u=0}^{\infty} (\lambda u)^y \exp(-u(\lambda + 1/\phi)) du$$
(6)