

Goal :To identify the same real world entity in different tables Other names:

- Record Linkage
- Entity Resolution
- Deduplication (Link to self)
- Merge / Purge

Hye-Chung Kum

Population Informatics Research Group http://research.tamhsc.edu/pinformatics/http://pinformatics.web.unc.edu/

License:

Data Science in the Health Domain by Hye-Chung Kum is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Course URL:

http://pinformatics.tamhsc.edu/phpm672

Assign 3

- Average: 5.6 (no 8)
- Average so far
 - Two groups
- Issues
 - None or incorrect readme (-1)
 - Incorrect or no while loop: (2/4)
 - No descriptive analysis
 - tot2010= sum (of dc20101-dc20104);
 - Missing files v1-v3
- Folder location
 - Pwd
- Review code

Record Linkage Example

EISID : E1	EISID : E2	EISID : E3	EISID : E4
ssn: 085-66-9980	ssn : 143-25-9304	ssn : 354-563-2343	ssn: 532-34-9183
first name : Sally	first name : Emily	first name : Mary	first name : David
last name : Hill	last name : Brown	last name : Johnson	last name : Ford
MI : L	MI:K	MI:G	MI : J

DOB: 6/2/2004

DOB: 5/13/1983

DOB: 10/2/1990

DOB: 3/4/1999

SISID : S1	SISID : S2	SISID : S3	SISID : S4
ssn : 085-66-9980	ssn : 143-52-9304	ssn : 354-563-2343	ssn: 532-34-9183
first name : Sally	first name : Emily	first name : Mary	first name : David
last name : Hill	last name : Brown	last name : Hawkins	last name : Ford
MI : L	MI : K	MI: J	MI : J
DOB: 3/4/1999	DOB: 6/2/2004	DOB: 5/13/1983	DOB: 2/10/1990

Inherent Nature of Real Data

- Data are expressed differently
 - nick names
- Data change over time
 - person's last name
- Data are not unique attributes
 - John Smith
- Missing Data
 - ssn are often missing
- Errors in Data
 - Rule of thumb: 5% error in administrative data

Record Linkage Example

EISID : E1	EISID : E2	EISID : E3	EISID : E4
ssn: 085-66-9980	ssn : 143- <mark>25</mark> -9304	ssn: 354-563-2343	ssn : 532-34-9183
first name : Sally	first name : Emily	first name : Mary	first name : David
last name : Hill	last name : Brown	last name : Johnson	last name : Ford
MI · I	MI·K	MI · G	MI · .I

DOB: 3/4/1999

DOB: 6/2/2004

DOB: 5/13/1983

DOB: 10/2/1990

<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	1
	•	•	•
	<u> </u>	_	<u> </u>
L			
	V		
SISID: S1	SISID: S2	SISID : S3	SISID : S4

ssn: 143-52-9304 ssn: 085-66-9980 ssn: 354-563-2343 first name : Sally first name : Emily first name : Mary last name: Hill last name: Brown

MI:L

DOB: 3/4/1999

MI:K

DOB: 6/2/2004

last name : Hawkins

MI:J

DOB: 5/13/1983

ssn: 532-34-9183

first name: David last name: Ford

MI:J

What does this mean?

- Exact match will not work
 - Only 60% to 70% with exact match
 - Privacy protection through one way hash
 - Privacy preserving using set union
- Must have approximate match!
 - Probably will require some manual review of "uncertain region"

- Capture as many of the false negatives
- While introducing as little of the false positives
- Probabilistic Methods
 - Naïve Bayes : Probabilistic Record Linkage
 - Newcombe (1959)
 - by Fellegi and Sunter (1969)
 - Other Machine learning models
 - Actively learning
- Deterministic Methods

Probabilistic Record Linkage

- Block/Score
- D = <dist_{SSN}, dist_{NAME}, dist_{DOB} >
- Train model: Need test data
- Estimate the two threshold
- Resolve the uncertain region manually
- Naïve Bayes Model

$$(\mathbf{R_A},\mathbf{R_B}) \in \begin{cases} M & \text{if } l(\underline{s}) = \frac{p\left(\underline{\underline{s}}\middle|M\right)}{p(\underline{\underline{s}}\middle|U)} \geq \frac{p(U)}{p(M)} \text{ , } & \text{where } l(\underline{\underline{s}}) = \frac{p(\underline{\underline{s}}\middle|M)}{p(\underline{\underline{s}}\middle|U)} \text{ is } t \text{ } \textbf{\textit{h}e} \text{ } likelihood \ ratio } \\ & U \text{ } otherwise \end{cases}$$

where
$$l(\underline{s}) = \frac{p(\underline{s}|M)}{p(\underline{s}|U)}$$
 is the likelihood ratio

Deterministic Matching Methods

Rule Based : iterative

- Exact Matching
 - Only when data is clean.
 - Great when it works, but doesn't work in many situations
 - Example: SSN, County FIPS Code
- Deterministic Approximate Matching
 - Easier to interpret/control
 - Can manage complexity to levels desired
 - More difficult to fine tune for complex data
- Probabilistic Approximate Matching
 - Can handle more complex data
 - Depends on the data being linked
 - Difficult to interpret what is being linked or not.

Example from papers

SEER

 Boscoe FP, Schrag D, Chen K, et al. Building capacity to assess cancer care in the Medicaid population in New York State. *Health Services Research* 2011;46(3):805-20.

Vital records

Bronstein J, Lomatsch C, Fletcher D, Wooten T, Lin TM, Nugent R, Lowery C. Issues and Biases in Matching Medicaid Pregnancy Episodes to Vital Records Data: The Arkansas Experience. *Maternal and Child Health Journal*, 2009;13(2):250-259

- Nothing complex
- But must do some sort of approximate linkage
- OR find the "different" data, and clean it

Cleaning Data Example

EISID : E1	EISID : E2	EISID : E3	EISID : E4
ssn: 085-66-9980	ssn: 143-25-9304	ssn: 354-563-2343	ssn: 532-34-9183
first name: Sally	first name: Emily	first name: Mary	first name: David
last name: Hill	last name: Brown	last name: Johnson	last name: Ford
MI: L	MI: K	MI: G	MI: J
DOB: 3/4/1999	DOB: 6/2/2004	DOB: 5/13/1983	DOB: 10/2/1990

- * Note that you do not know which is correct;
- * But you have to sync it to one value;
- if ssn= '532-34-9183' then dob=mdy (10, 2, 1990);

ssn: 085-66-9980 first name : Sally last name: Hill $MI \cdot I$

DOB: 3/4/1999

ssn: 143-52-9304 first name : Emily

last name: Brown

 $MI \cdot K$

DOB: 6/2/2004

ssn: 354-563-2343

first name: Mary last name : Hawkins

MI · .

DOB: 5/13/1983

ssn: 532-34-9183

first name: David

last name: Ford

MI:J

Finding duplicate records

```
* Both tables are sorted by county;
* If need to find duplicates in multiple vars;
* Combine the multiple vars into one variable
first, then run same code;
data duponty;
merge tab1 tab2;
by county;
if !(first.county & last.county);
```


Approximate Matching Example standardize on caps

EISID : E1	EISID : E2	EISID : E3	EISID : E4
ssn: 085-66-9980 first name: Sally last name: Hill MI: L DOB: 3/4/1999	ssn: 143-25-9304 first name: Emily last name: Brown MI: K DOB: 6/2/2004	ssn: 354-563-2343 first name: Mary last name: Johnson MI: G DOB: 5/13/1983	ssn: 532-34-9183 first name: David last name: ford MI: J DOB: 10/2/1990

* Create a new standardize variable to link on; linklname=lowcase(lname);

ssn: 085-66-9980 first name: Sally last name: Hill MI: I

DOB: 3/4/1999

ssn: 143-52-9304 first name: Emily last name: Brown

MI:K

DOB: 6/2/2004

ssn : 354-563-2343 first name : Mary

last name : Hawkins

MI: J

DOB: 5/13/1983

ssn: 532-34-9183

first name: David

last name: Ford

MI:J

Approximate Matching Example standardize on space

EISID : E1	EISID : E2	EISID : E3	EISID : E4
ssn: 085-66-9980 first name: Sally last name: Hill MI: L DOB: 3/4/1999	ssn: 143-25-9304 first name: Emily last name: Brown MI: K DOB: 6/2/2004	ssn: 354-563-2343 first name: Mary last name: Johnson MI: G DOB: 5/13/1983	ssn: 532-34-9183 first name: David last name: fordJr MI: J DOB: 10/2/1990
000 . 3/4/ 1999	000.0/2/2004	000.3/13/1903	10/2/1990

* Create a new standardize variable to link on;

linkIname=compress(lowcase(lname));

ssn: 085-66-9980 first name: Sally last name: Hill

MI:L

DOB: 3/4/1999

ssn : 143-**52**-9304 first name : Emily

last name : Brown

MI:K

DOB: 6/2/2004

ssn: 354-563-2343

first name : Mary last name : Hawkins

MI: J

DOB: 5/13/1983

ssn: 532-34-9183

first name : David

last name: Ford Jr

MI : J

Approximate Matching Example standardize on space

EISID : E1	EISID : E2	EISID : E3	EISID : E4
ssn : 085-66-9980	ssn : 143- <mark>25</mark> -9304	ssn : 354-563-2343	ssn : 532-34-9183
first name : Sally	first name : Emily	first name : Mary	first name : David
last name : Hill	last name : Brown	last name : Johnson	last name : ford
MI : L	MI : K	MI : G	MI : J
DOB: 3/4/1999	DOB: 6/2/2004	DOB: 5/13/1983	DOB: 10/2 /1990

* Create a new standardize variable to link on;

linkIname=compress(lowcase(Iname);

linkIname=tranwrd(linkname, 'jr', '');

ssn: 085-66-9980 first name: Sally last name: Hill

MI : L

DOB: 3/4/1999

ssn: 143-<mark>52</mark>-9304 first name: Emily last name: Brown

MI:K

DOB: 6/2/2004

ssn : 354-563-2343 first name : Mary

last name : Hawkins

MI: J

DOB: 5/13/1983

ssn: 532-34-9183

first name : David last name : Ford Jr

MI: J

Other useful functions

Appendix 2 (p59) of ARHQ Report

```
vto=translate(vfrom, ' ', "()', -. ");
vto=lowcase(compress(vto,,'t'));
vto=tranwrd(vto, "ctr", "center");
vto=tranwrd(vto, "medical", "med");
* vto=tranwrd(vto, "med", "medical");
* medical center = ?;
vto=tranwrd(vto, "texas", "tx");
vto=tranwrd(vto, "hospital", "hosp");
```


Validate your approximate link

```
data table1;
linkv=compress(lowcase(lname));
data table2:
linkv=compress(lowcase(lname));
data linked; * approximate link;
merge table1 table2 (rename=(Iname=Iname2));
by linkv;
proc print data=infn(obs=100);
where Iname<sup>2</sup>=Iname2;
```


- When merging data
 - Use numeric codes whenever possible
 - Remember to use uniform formatting
 - Use string functions to standardize variables
 - Check if the key provides unique rows
 - 1-to-1 or 1-to-N mapping
- Pay attention to what rows link and what do not
- Consider how many rows should link
 - Example: 20% expected 18% achieved
- Validate by printing
 - Links made
 - Links not made

Lab 4

- Answer posted on website
- Look at how I compared using excel

```
proc transpose data=append2 out=data.tappend prefix=week;
   id week;

proc transpose data=append2 out=data.tappend prefix=week;
proc transpose data=append2 out=data.tappend;
   id week;
```


- Run through computer code on paper
 - Basically write variables
 - Track how it is changing

What you learned so far...

- Assignment 1
 - Setup work environment
 - Use the SAS software
 - SAS programming basics
 - data step & proc step
 - libname
 - Writing code & Reading logs
- Assignment 2
 - Understand variables (names, types, labels)
 - To write conditional logic codes
 - Subset columns (variables) from a table
 - Subset rows (observations) from a table
 - Recode, rename variables and calculate new variables
 - Label variables and values

What you learned so far...

- Assignment 3
 - use for loops (iterative loops)
 - use while loops (conditional loops)
 - SAS: use one dimensional arrays
- Assignment 4
 - Append multiple tables (more rows)
 - stack tables on top of each other to increase the number of rows
 - using Set

What you learned so far...

- Assignment 4 continued
 - Link up multiple tables using a shared key (more columns)
 - align the rows using the shared key, and link multiple tables to increase the number of variables in the tables
 - using merge
 - Be sure to understand the different behavior given different situations (i.e. what happens to shared vars? What happens to not shared vars?)
 - What is a 1-to-1 link
 - What is a 1-to-N link
 - What is a N-to-N link (you will not be doing this, but need to understand what this is.
 This must be done with proc sql in SAS)
 - Combine multiple rows into one row
 - by group processing Proc summary
 - Reshape table to flip rows & columns
 - using proc transpose
 - Also transpose (flip rows & columns) by groups or row

Table Operations: 1 table → 1 table (reshaping)

Proc Transpose

1	2
а	d
b	е
С	f

1	а	b	С
2	d	е	f

Proc Summary

A B C

Where D=function(A,B,C)

Examples of function are

Sum(A,B,C) Mean(A,B,C) Max(A,B,C) Min(A,B,C)

Table Operations: multiple table → 1 table

set (Append)

Table A

Table B

 \rightarrow

Table A

Table B

merge (link)

Table A

Table B

 \rightarrow

Table A

Table B

