Deep Learning e **Machine Learning** são subáreas da inteligência artificial (IA), mas diferem em termos de complexidade, estrutura e aplicação:

1. Machine Learning (ML)

- **Definição**: É um campo da IA que ensina computadores a aprender padrões a partir de dados sem serem explicitamente programados para cada tarefa.
- **Funcionamento**: Utiliza algoritmos que treinam modelos para fazer previsões ou classificações com base nos dados fornecidos.

Algoritmos comuns:

- Regressão linear e logística
- Árvores de decisão
- K-Nearest Neighbors (KNN)
- o Support Vector Machines (SVM)
- Random Forests

Aplicações:

- o Detecção de fraudes
- o Análise preditiva
- o Sistemas de recomendação (como Netflix ou Amazon)

2. Deep Learning (DL)

- **Definição:** É um subcampo do ML inspirado no funcionamento do cérebro humano. Utiliza redes neurais artificiais profundas (com várias camadas) para aprender representações mais complexas e abstratas dos dados.
- Funcionamento: As redes neurais consistem em múltiplas camadas (neurônios) que processam informações em etapas sucessivas. Cada camada extrai características mais complexas do que a anterior.

• Arquiteturas comuns:

- o Redes Neurais Convolucionais (CNNs) usadas em visão computacional
- Redes Neurais Recorrentes (RNNs) usadas em processamento de linguagem natural
- o Redes Generativas Adversárias (GANs) usadas para gerar novos dados

Aplicações:

- o Reconhecimento de imagem e voz
- o Tradução automática

- o Diagnóstico médico assistido por IA
- o Carros autônomos

Principais Diferenças

Aspecto	Machine Learning	Deep Learning
Estrutura	Algoritmos simples (regressão, árvores)	Redes neurais profundas
Complexidade	Requer menos dados e poder computacional	Requer grandes volumes de dados e GPU
Interpretação	Mais fácil interpretar resultados	Funciona como "caixa-preta", menos interpretável
Automação de features	Requer extração manual de características	Aprende características automaticamente
Desempenho	Melhor em dados estruturados	Superior em dados complexos como imagens e vídeos

Em resumo, **Machine Learning** funciona bem para tarefas mais simples e com dados tabulares, enquanto **Deep Learning** é mais adequado para problemas complexos e com dados massivos como imagens, áudio e texto.