Rede de Referência

Topologia física da rede

Tabela de Valores

Equipment	Cost
OLT without transponders	15000 €
Transponder	5000 € /Gb
Optical Amplifier	4000 €
EXC	10000 €
OXC	20000€
EXC Port	1000 €/Gb/s
OXC Port	2500 €/porto

6
8
2.667
500
1.533
2.467
0.5 Tbits/s

CAPEX

Nesta fase do projeto vamos calcular o CAPEX mas desta vez usando ILP e MatLab.

Utilizando a fórmula seguinte:

$$C_C = C_L + C_N$$
 $C_C = L\langle c_l \rangle + N\langle c_n \rangle$

Custo dos Links

$$\langle c_l \rangle = 2 \langle \gamma_0^{OLT} \rangle + 2 \langle \gamma_1^{OLT} \rangle \tau \langle w \rangle + \langle n^R \rangle \langle c^R \rangle$$

Já sabemos os valores de algumas variáveis, tais como, $<\gamma_0^{OLT}>$, $<\gamma_1^{OLT}>$, $< c^R>$ e T .

Vamos calcular o valor de $\langle n^R \rangle$ utilizando a formula do (len/span) -1 sendo ele 3.

Faltando assim apenas o cálculo de **<w>**, sendo que este valor varia no caso de ser **Opaco** ou **Transparente** para isso usamos os valores obtidos no MatLab.

Opaco Pouco Trafego:

$$<_{\rm W}>=\frac{24}{8}=3$$

Transparente Pouco Trafego:

$$<_{\rm W}>=\frac{44}{8}=5,5$$

Valor do custos dos Links

Como obtivemos dois valores diferentes vamos obter dois valores de custo diferentes.

Para o caso **Opaco** o valor é:

$$<$$
C1> = $2x15000 + 2x5000x100x3 + $3x4000 = 3$ **042 000** €$

Para o caso **Transparente** o valor é:

$$<\gamma_0^{OLT}>= 15000 \, €$$
 $<\gamma_1^{OLT}>= 5000 \, €/\text{Gb}$ $\tau=100\text{Gbits/s}$ $<\boldsymbol{c^R}>= 4000 \, €$ $<\boldsymbol{n^R}>=3$ $<\mathbf{w}>=5,5$ $<\mathbf{Cl}>= 2x15000 + 2x5000x100x5,5 + 3x4000 = 5 542 000 $€$$

Custo dos Nós

$$C_n = C_{EXC} + C_{OXC}$$

Assim sendo apenas temos de calcular este dois valores.

Sendo que no caso **Opaco** apenas necessitamos do primeiro valor, pois neste caso o custo dos nós é proporcional ao trafego total que entra nos nós.

Opaco Pouco Trafego:

Neste caso vou utilizar os valores totais por isso efetuo já a multiplicação pelo número de nós aqui.

$$C_{EXC} = N \times \gamma_{e0} + \gamma_{e1} \times (T_1 + 2 \times w^0 \times \tau)$$

Os valores de γ_{e0} γ_{e1} já nos são fornecidos na tabela da pagina (1) assim como o valor de τ . O valor de w^0 é o numero de canais ópticos e também já foi calculado anteriormente sendo ele **24.** Por fim temos o valor de T_1 que é o trafego total que entra na rede sendo ele 2xT = 1 Tbits/s = 1000 Gbtis/s

$$\gamma_{e0} = 10.0006$$
 $\gamma_{e1} = 1.000 \text{ (fb/s)}$

$$C_{EXC} = 6 \text{ x } 10000 + 1000 \text{ x } (1000 + 2\text{x}24\text{x}100) = 5 \text{ 860 000 } \text{ (fig. 1000)}$$

Transparente Pouco Trafego:

Neste caso já é necessário calcular os dois valores pois é necessário o custo da parte elétrica e o custo da parte ótica e mais uma vez, vou utilizar os valores totais por isso efetuo já a multiplicação pelo número de nós aqui.

$$\begin{split} C_{EXC} &= \text{N x } \gamma_{e0} + \gamma_{e1} \text{ x } (2 \text{ x } T_1) \\ C_{OXC} &= \text{N x } \gamma_{o0} + \gamma_{o1} \text{ x } (\text{P_ADD} + \text{P_LINE}) \\ \gamma_{e0} &= 10.000 \varepsilon \qquad \gamma_{e1} = 1.000 \, \text{€/Gb/s} \qquad \gamma_{o0} = 20.000 \varepsilon \qquad \gamma_{o1} = 2.500 \, \text{€/Gb/s} \end{split}$$

Mais uma vez já possuímos todos os valores a exceção de P_ADD e P_LINE mas podemos obter esses valores através do MatLab.

$$ADD_Ports = 47$$

$$LINE_Ports = 87$$

$$C_{EXC} = 6 \times 10000 + 1000 \times (2 \times 1000) = 2060000$$

$$C_{OXC}$$
 = 6 x 20000 + 2500 x (47 + 87) = **455 000** €

Valor do custo dos Nós

Como obtivemos dois valores diferentes vamos obter dois valores de custo diferentes.

Para o caso **Opaco** o valor é:

$$Cn = C_{EXC} = 5860000$$
€

Para o caso **Transparente** o valor é:

$$Cn = C_{EXC} + C_{OXC} = 2060000 + 455000 = 2515000$$

Valor do CAPEX

$$C_C = L\langle c_l \rangle + N\langle c_n \rangle$$

Custo do CAPEX Pouco Trafego

Opaco	30 196 000 €
Transparente	46 851 000 €