Scientific Computing Lecture 4

Differential equations (part 1)
Nikolay Koshev
October 6, 2021

Skolkovo Institute of Science and Technology

Scientific Computing Lecture 4

Part 1: Differential operator Nikolay Koshev October 6, 2021

Skolkovo Institute of Science and Technology

Differential equations

Many Physical Problems can be described with use of Differential Equations

- A differential equation is an equation for an unknown function of one or several variables that relates the values of the function itself and of its derivatives of various orders.
- Ordinary Differential Equation: Function has 1 independent variable.
- ▶ Partial Differential Equation: At least 2 independent variables.

Differential operator

The operator equation for differential equations is often written as:

$$D\mathbf{u}=0,$$

where D represents both mathematical and the right-hand side (observed data); the function \mathbf{u} is an unknown function to be found.

▶ Ordinary differential equation (ODE): Let $x \in \mathbb{R}^1$. ODE of the k-th order can be represented with the operator:

$$D\mathbf{u} = F(x, u(x), u'(x), u''(x), ..., u^{(k)}(x)).$$

▶ Partial differential equation (PDE): Let $\mathbf{x} \in \mathbb{R}^n \equiv (x_1, x_2, ..., x_n)$. PDE of the k-th order can be represented with the following operator:

$$D\mathbf{u} = F\Big(\mathbf{x}, \mathbf{u}(\mathbf{x}), \frac{\partial \mathbf{u}}{\partial x_1}, ..., \frac{\partial \mathbf{u}}{\partial x_n}, ... \frac{\partial^2 \mathbf{u}}{\partial x_1^2}, ..., \frac{\partial^2 \mathbf{u}}{\partial x_n^2}, ... \frac{\partial^{(k)} \mathbf{u}}{\partial x_1^{(k)}}, \frac{\partial^{(k)} \mathbf{u}}{\partial x_n^{(k)}}\Big).$$

Differential operator

- The function F(...) usually satisfies the regularity conditions: measurability, differentiability, continuity etc.
- ► **Linear equations:** If the function *F* depends linearly on **u** and its derivatives, then the ODE/PDE is linear.
- ▶ **Quasi-linear equations:** the function *F* linearly depends on higher-order derivatives.
- Non-linear equations: the most complicated case. The function F depends non-linearly on higher order (and, maybe, all other) derivatives.

ODE: Problems

Ordinary Differential Equation (ODE) of p^{th} order can be written in as follows:

$$F(x, u'(x), u''(x), ..., u^{(p)}(x)) \equiv D\mathbf{u} = 0.$$

Rewrite it in the form:

$$u^{(p)}(x) = f(x, u, u', u'', ..., u^{(p-1)}).$$

We refer to the fact that with $u^{(k)}(x) \equiv u_k(x)$ and $u(x) = u_0(x)$, the latter equation may be represented with a system of the first-order ODEs:

$$u'_{k}(x) = u_{k+1}(x), \quad 0 \le k \le p-2,$$

 $u'_{p-1}(x) = f(x, u_0, u_1, ..., u_{p-1}),$

ODE: Three kinds of problems

By analogy, each system of differential equations of any order can be changed with equivalent system of the first-order ODE:

$$u'_{k} = f(x, u_{1}, u_{2}, ..., u_{p}),$$

or, using the vector form:

$$\mathbf{u}'(x) = \mathbf{f}(x, \mathbf{u}(x)), \quad u = \{u_1, ..., u_p\}, \mathbf{f} = \{f_1, ..., f_p\}.$$

There are three kinds of problem related to the ODEs

- ► The Cauchy problem
- Boundary value problem
- ► Eigenvalues problem

Scientific Computing Lecture 4

Part 2: Cauchy Problems Nikolay Koshev October 6, 2021

Skolkovo Institute of Science and Technology

ODE: The Cauchy problem

Vector form:

$$\mathbf{u}'(x) = \mathbf{f}(x, \mathbf{u}(x)), \quad x \in [\xi, X]$$

$$\mathbf{u}(\xi) = \eta, \quad \text{or } u_k(\xi) = \eta_k, 1 \le k \le p.$$

Or common form:

$$F(x, u(x), u'(x), ..., u^{(p)}(x)) \equiv D\mathbf{u} = 0.$$

 $u^{(k)}(\xi) = \eta_k, \quad 0 \le k < p$

The conditions may be considered as the definition of some initial point $(\xi, \eta_1, ..., \eta_p)$ for an integral curve in (p+1-dimensional space $(x, u_1, ..., u_p)$.

Augustin-Louis Cauchy 1789-1857

The simplest Cauchy problem

Consider a ball with mass m. Let this ball be thrown; we need to calculate its trajectory.

- ▶ m the mass of the ball
- $\mathbf{x}(t)$ the coordinate of the ball at the moment of time t; $\mathbf{x} \in \mathbb{R}^2$
- $\mathbf{v}(t)$ is a velocity of the ball; $\mathbf{v} \in \mathbb{R}^2$
- ► The governing equation:

$$\mathbf{x}'(t) = \mathbf{v}(t),$$

 $\mathbf{x}''(t) = \mathbf{g},$

$$\mathbf{x}(0) = \mathbf{x}_0; \mathbf{v}(0) = \mathbf{v}_0$$

The simplest Cauchy problem

The solution of the problem can be easily found using simple integration:

$$\mathbf{v}(t) = \mathit{Const} + \int\limits_0^t \mathbf{g} d au = \mathbf{v}_0 + \mathbf{g} t,$$
 $\mathbf{x}(t) = \mathit{Const} + \int\limits_0^t \mathbf{v}(au) d au = \mathbf{x}_0 + \mathbf{v}_0 t + \mathbf{g} t^2$

Since in our case **g** has no x-component ($\mathbf{g} = (0, -9.8)^T$), then, as we can see, the x component of the speed will be fixed. But...

- ▶ What if we have not only one body (ball)?
- ▶ What if we have air?
- ▶ What if we have other forces affecting the bodies?

N-body problem

Consider a number of point-bodies B_i , i = 1, ..., N, defined with the coordinates $x_i(t)$ at the moment of time t. Each body interacts with other bodies via the gravitation:

$$m_i\ddot{x}_i(t) = \sum_{j\neq i}^{N} Gm_j m_i \frac{x_j(t) - x_i(t)}{|x_j(t) - x_i(t)|^3}, \quad 1 \leq i, j \leq N.$$

In order to state the problem, we also need to define the initial body positions with known coordinates \tilde{x}_i :

$$x_i(t_0) = \tilde{x}_i,$$

and the initial velocities with known velocities:

$$v_i(t_0) \equiv \dot{x}_i(t_0) = \tilde{v}_i.$$

Thus, we have the Cauchy problem.

Solution of the Cauchy problem

The vector form:

$$\mathbf{u}'(x) = \mathbf{f}(x, \mathbf{u}(x)),$$

$$\mathbf{u}(\xi) = \eta, \text{ or } u_k(\xi) = \eta_k, 0 \le k \le p.$$

- 1. If the RHS $\mathbf{f}(x, \mathbf{u})$ are continuous and bounded in some neighborhood of the initial point, then the solution $\mathbf{u}(x)$ of a Cauchy problem exists (buy may be not unique!).
- If the RHS additionally Lipschitz-continuous with respect to u_k, i.e. if ∃K:

$$|\mathbf{f}(x, \mathbf{u}_1) - \mathbf{f}(x, \mathbf{u}_2)| \le K|\mathbf{u}_1 - \mathbf{u}_2|,$$

then the solution $\mathbf{u}(x)$ of a Cauchy problem is unique and stable, i.e. the Cauchy problem is well-posed.

3. If, additionally to the conditions above, the RHS has continuous derivatives by all arguments up to q^{th} order, then the solution $\mathbf{u}(x)$ of a Cauchy problem has continuous derivatives up to order q+1.

Solving the Cauchy problem

- **Exact methods:** the solution of the Cuachy problem may be represented with elementary functions. Rarely applicable even for simple equations. For example, the solution of the equation $u'(x) = x^2 + u^2(x)$ can not be presented with elementary functions (or just not reasonable).
- ▶ Approximate methods: the solution $\mathbf{u}(x)$ is representable as a limit of some sequence $y_n(x)$, members of which can be represented with elementary functions or with quadratures. Applicable only for relatively simple linear problems.
- Numerical solution: applicable for a wide class of Cauchy problems. The problem must be well-conditioned.

ODU: when the analytic solution is not reasonable

Consider the equation:

$$u'(x) = \frac{u-x}{u+x}$$

This equation can be integrated and we will find the equation for its solution:

$$\frac{1}{2}ln(x^2+u^2) + arctg\frac{u}{x} = const.$$

However, solution of the latter equation is even more complicated than just numerical solution of the initial problem.

ODU: ill-conditioned problem example

$$u'(x) = u - x$$
, $0 \le x \le 100$, $u(0) = 1$.

The solution contains the constant being defined with the boundary condition

$$u(x;c)=1+x+ce^x,$$

which is equal to zero with the boundary condition u(0)=1, and to u(100)=101. However, even changing the boundary condition with $u(0)=1+10^{-6}$ will change it to $c=10^{-6}$, which will result in $u(100)=2.7\cdot 10^{37}$.

Methods of solving the Cauchy problems

- The Picard method.
- Poincare method (small parameter method).
- Runge-Kutta methods.
- Linear Multistep method.
- Implicit schemes.
- And many others...

Runge-Kutta methods

- Numerical methods, being used with meshes.
- ▶ Explicit methods are commonly more accurate; there are some equations, however, which are not reasonable to solve with explicit schemes due to low stability/accuracy/performance. These equations called 'stiff equations'
 - Euler's method:
 - Runge-Kutta 4th order method;
- ▶ Implicit methods are less accurate and somewhat slower some ODE; however, due to better stability, implicit methods are capable for wider class of problems.

The Euler's method

The Cauchy problem:

$$u'(x) = f(x, u(x)), \quad \xi \le x \le X, \quad u(\xi) = \eta.$$

Let $\{x_n, 0 \le n \le N\}$ be some mesh covering the interval $[\xi, N]$. Using the Taylor's series for the interval $[x_n, x_{n+1}]$:

$$u_{n+1} = u_n + h_n u'_n + \frac{1}{2} h_n^2 u''_n + ..., \quad h_n = x_{n+1} - x_n$$

The equation states that u'(x) = f(x, u). Assuming the steps h are small and ignoring higher order derivatives multiplied with h_n^t , t > 1, we obtain the Euler's method. The accuracy of the method is $O(maxh_n)$.

4th order Runge-Kutta scheme

The Cauchy problem:

$$u'(x) = f(x, u(x)), \quad \xi \le x \le X, \quad u(\xi) = \eta.$$

Using the same mesh, $\{u_n\}$ can be calculated as follows:

$$u_{n+1} = u_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$

$$k_1 = f(x_n, u_n);$$

$$k_2 = f(x_n + \frac{h}{2}, u_n + \frac{h}{2}k_1);$$

$$k_3 = f(x_n + \frac{h}{2}, u_n + \frac{h}{2}k_2);$$

$$k_4 = f(x_n + h, y_n + hk_3).$$

The accuracy of the method is $O(h^4)$.

Implicit Runge-Kutta scheme

The Cauchy problem:

$$u'(x) = f(x, u(x)), \quad \xi \le x \le X, \quad u(\xi) = \eta.$$

Using the same mesh, $\{u_n\}$ can be calculated as follows:

$$u_{n+1} = u_n + h \frac{f(x_n, u_n) + f(x_{n+1}, u_{n+1})}{2}.$$

- ▶ The latter equation might not have a solution.
- ► The scheme will converge only with small *h*, which makes the method more computationally complicated.
- We need to bound the number of iterations.

Scientific Computing Lecture 4

Part 3: Boundary-Value Problems Eigenvalue Problems Nikolay Koshev

October 6, 2021

Skolkovo Institute of Science and Technology

Boundary value problems

The system of ODE:

$$u'_k(x) = f_k(x, u_1, u_2, ..., u_p), \quad 1 \le k \le p, \quad x \in [a, b]$$

In the Boundary Value problem, the conditions are being set both in points x = a and x = b.

- ▶ Possible with $p \ge 2$.
- Approximate methods: Fourier-based methods, Ritz methods, Galerkin methods.
- Numerical methods: Shooting method, Finite Differences.

Boundary value problem

Simulation of loaded string.

$$u''(x) = -f(x), \quad a \le x \le b, u(a) = u(b) = 0,$$

where f(x) is a deforming force.

Ballistic trajectory in space:

$$\mathbf{x}''(t) = \mathbf{g}, \quad \mathbf{x}(a) = \mathbf{x}_a, \mathbf{x}(b) = \mathbf{x}_b, |\mathbf{x}'(t)| = v_0.$$

Shooting method

Consider the second order ODE:

$$u''(x) = f(x, u(x), u'(x)), \quad u(a) = u_a, u(b) = u_b.$$

Instead, we are looking for a parametrized solution u(x, d):

$$u''(x) = f(x, u(x), u'(x)), \quad u(a) = u_a, u'(a) = d.$$

If we find d such that $u(b;d) = u_b$, than the problem is solved. Thus:

The boundary value problem is being reduced to the set of Cauchy problems

Shooting method

If the equation is linear: f(x, u, u') = p(x)u'(x) + q(x)u(x) + r(x), then

$$u(x) = u_{(1)}(x) + \frac{u_b - u_{(1)}(b)}{u_{(2)}(b)}u_{(2)}(x),$$

where $u_{(1)}$ and $u_{(2)}$ are the solutions of the following problems respectively:

$$u_{(1)}^{"}(x) = f(x, u_{(1)}, u_{(1)}^{'}), \quad u_{(1)}(a) = u_a, u_{(1)}(a) = 0,$$

 $u_{(2)}^{"}(x) = f(x, u_{(2)}, u_{(2)}^{'}), \quad u_{(2)}(a) = u_a, u_{(2)}(a) = 1,$

If the problem is non-linear, than we have to iterate in order to find a proper parameter d.

The Galerkin method

Consider the equation:

$$A(u(x)) = f(x), \quad a \leq x \leq b, u(a) = u_a, u(b) = u_b.$$

- Approximate the function $u(x) \approx y_n(x) = \varphi_0(x) + \sum_{k=1}^n c_k \varphi_k(x)$, where the continuous function $\varphi_0(x)$ satisfies the boundary conditions: $\varphi_0(a) = u_a, \varphi_0(b) = u_b$; the functions $\varphi_k(x), 1 \le k < \infty$ are linearly independent and vanish at points a and b: $\varphi_k(a) = \varphi_k(b) = 0$.
- ▶ The algebraic system of equations for the coefficients c_k :

$$\int_{a}^{b} \left(A(y_n(x)) - f(x) \right) \varphi_k(x) dx = 0, \quad 1 \le k \le n$$

After definition of the coefficients c_k , we construct the approximate solution of the BV problem.

Eigenvalue problems

The Eigenvalue problem:

$$\mathbf{u}'(x) = \mathbf{f}(x, \mathbf{u}; \lambda_r, r = 1, ..., q);$$

$$\mathbf{u} = \{u_1, u_2, ..., u_p\}, \quad \mathbf{f} = \{f_1, f_2, ..., f_p\}.$$

- Need to find both u_k and λ_r .
- Additional (boundary) conditions needed: p + q.
- ▶ The solution: u_k and λ_r eigenfunctions and eigenvalues.
- $\triangleright \lambda_k$ is also called **spectrum**.

Oscillations of the string

The wave (D'Alembert) equation:

$$\left(\Delta - \frac{1}{v^2} \frac{\partial^2}{\partial t^2}\right) u = 0, \quad a \le x \le b, u(a) = 0; \quad u(b) = 0.$$

Assume the solution can be presented in a form $u(x,t) = y(x) \cdot exp(i\omega t)$. After substitution to the equation above, we obtain the following ODE:

$$\frac{d}{dx}\left(p(x)\frac{dy(x)}{dx}\right) = -k^2q(x)y(x), \quad y(a) = 0, y(b) = 0.$$

where $k=\omega/v$ is a wavenumber, ω - its frequency, and v is the speed.

The Shooting method

Ignoring the right boundary condition, we have the Cauchy problem

$$\frac{d}{dx}\left(p(x)\frac{dy(x)}{dx}\right) = -k^2q(x)y(x), \quad y(a) = 0$$

the solution of which y(x; k) depends on the values of the parameter k.

The eigenvalues may be found then by finding the minimum of the function:

$$f(k)=f(1;k).$$

Here the parameter k represents the proper (eigen) frequency of the string.

Scientific Computing Lecture 4

Part 4: Partial differential equations of the first order Partial differential equations of the second order Nikolay Koshev

October 6, 2021

Skolkovo Institute of Science and Technology

Partial differential equations of the first order

The Partial differential equation of the first order:

$$D\mathbf{u} = F\left(\mathbf{x}, \mathbf{u}, \frac{\partial \mathbf{u}}{\partial x_1}, ..., \frac{\partial \mathbf{u}}{\partial x_n}\right)$$

- ► N-body problem (Hamilton's equations)
- The Hopf equation.
- Eikonal equation.
- ► Molecular dynamics method.

The N-body problem: potential energy

As we wrote before:

$$m_i\ddot{\mathbf{x}}_i = \sum_{j \neq i}^N Gm_im_jrac{\mathbf{x}_j - \mathbf{x}_i}{|\mathbf{x}_j - \mathbf{x}_i|^3}, \quad 1 \leq i, j \leq N.$$
 $\mathbf{x}_i(t_0) = \widetilde{\mathbf{x}}_i,$ $\mathbf{v}_i(t_0) \equiv \dot{\mathbf{x}}_i(t_0) = \widetilde{\mathbf{v}}_i.$

The equation, can be formulated in terms of the potential energy:

$$m_i\ddot{x}_i = \sum_{j\neq i}^N Gm_i m_j \frac{x_j - x_i}{|x_j - x_i|^3} = -\frac{\partial U}{\partial \mathbf{x}_i},$$

where $U(\mathbf{x})$ is self-potential energy:

$$U = -\sum_{1 \le i \le j \le n} \frac{Gm_i m_j}{|\mathbf{x}_j - \mathbf{x}_i|^3}.$$

The N-body problem: Hamiltonian's equations of motion

Defining the momentum $\mathbf{p}=m_i\frac{d\mathbf{x}_i}{dt}\Rightarrow$ Hamilton's equations.

The Molecular Dynamics (MD) method

Microcanonical ensemble: the system is isolated from changes in moles (N), volume (V), and energy (E): adiabatic process with no heat exchange.

Newton's law of motion:

$$F(X) = -\nabla U(X) = M\dot{V}(t)$$
$$V(t) = \dot{X}(t).$$

Here:

- X are the particle coordinates.
- V(X) is a potential energy of the system (comes from pair or many-body potentials).
- M mass of particles.
- V velocities of particles.

The Eikonal

► The eikonal equation:

$$|\nabla u(\mathbf{x})| = \frac{1}{f(\mathbf{x})}, \quad f(\mathbf{x}) > 0, \mathbf{x} \in \Omega, u(\mathbf{x})|_{\partial\Omega} = q(\mathbf{x});$$

► In electrostatics:

$$\mathbf{E} = -\nabla V$$
,

where V is electric potential, and \mathbf{E} is an electric field.

► In fluid dynamics:

$$\mathbf{v} = \nabla \varphi,$$

where v is potential flow velocity, and φ is a potential.

2nd order PDEs

Partial differential equations of second order

Most of PDE-driven problems can be described with PDEs of second order. The differential operator D can be represented as follows:

$$D\mathbf{u} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(\mathbf{x}) \frac{\partial^{2} \mathbf{u}}{\partial x_{i} \partial x_{j}} + F(\mathbf{x}, \mathbf{u}, \frac{\partial \mathbf{u}}{\partial x_{1}}, ..., \frac{\partial \mathbf{u}}{\partial x_{n}}) \equiv L\mathbf{u} + F(...).$$

The operator *L* is called the Principle Part. In dependence on it, the equations can be classified as:

- Elliptic equations;
- Parabolic equations;
- Hyperbolic and Ultrahyperbolic equations.

Elliptic equations

The equation

$$L\mathbf{u} + F(\dots) = 0 \tag{1}$$

is considered elliptic if the coefficient matrix $\{a_{ij}\}$ has all-positive or all-negative eigenvalues.

- ► The solution is as smooth as the coefficients and boundary conditions allow.
- Well suited to describe static (for example, equilibrium states).
- Less suitable for dynamic processes.

Parabolic equations

The equation

$$L\mathbf{u} + F(\dots) = 0 \tag{2}$$

is considered parabolic if the coefficient matrix $\{a_{ij}\}$ has one zero eigenvalue, while all others have the same sign (positive or negative)

- May be represented in form $u_t = -L\mathbf{u}$, where \mathbf{u} is an elliptic operator.
- Are well suited to describe the smoothly evolving processes such diffusion or heat transfers.
- ▶ The solution is generally smoother than the initial value.

Hyperbolic equations

The equation

$$L\mathbf{u} + F(\dots) = 0 \tag{3}$$

is considered parabolic if the coefficient matrix $\{a_{ij}\}$ has eigenvalues, the signs of which are the same excepting one of them, which is non-zero and has contrary sign.

- May be represented with elliptic operator: $L\mathbf{u} a^2 \frac{\partial^2 \mathbf{u}}{\partial t^2} = F(...)$, where L is an elliptic operator.
- Hyperbolic equations solutions retain discontinuities of initial data.
- Well-suited to describe wave processes.

Thank you for your attention!

