Объяснение рекомендаций: обзор подходов

Объяснение рекомендаций: обзор подходов

- А зачем что-то кому-то объяснять?..
-

Причины:

- 1. Тестирование (debug). Прозрачность и устойчивость результатов
- 2. Повышение доверия и понимания пользователя
- 3. Юридическая
- 4. Этическая

Типы подходов объяснения рекомендаций:

"This product you are looking at is similar to these other products you liked before" (Schafer et al., 1999) - > item-based CF.

"Explainable recommendations" (Zhang et al., 2014)

- 1. Источник информации или дисплей для объяснения пользователю (HCI)
- 2. Модель для объяснения рекомендаций (ML)
- 1. Model-intrinsic (обучение объяснения)
- 2. Model-agnostic (post-hoc объяснения)
- + global vs. local уровни интерпретируемости рекомендаций

Zhang Y, Chen X. (2020) **Explainable recommendation: A survey and new perspectives**. in Information Retrieval: Vol. 14, No. 1, pp 1–101.

Information/ style of the explanations		Methods for Explainable Recommendation											
	Neighbor- based	Matrix factorization	Topic modeling	Graph- based	Deep learning	Knowledge- based	Rule mining	Post- hoc					
Relevant user or item	Herlocker et al., 2000	Abdollahi and Nasraoui, 2017		Heckel et al., 2017	Chen et al., 2018c	Catherine $et \ al.,$ 2017	Peake and Wang 2018	Cheng et al., 2019a					
User or item features	Vig et al., 2009	Zhang et al., 2014a	McAuley and Leskovec, 2013	He et al., 2015	Seo et al., 2017	Huang et al., 2018	Davidson et al., 2010	McInerney et al., 2018					
Textual sentence explanation		Zhang et al., 2014a			Li et al., 2017	Ai et al., 2018	Balog et al., 2019	Wang et al., 2018d					
Visual explanation					Chen et al., 2019b								
Social explanation	Sharma and Cosley, 2013		Ren et al., 2017	Park et al., 2018									
Word cluster		Zhang, 2015	Wu and Ester 2015										

Подход	Пример объяснения	Типы объяснения
MF, CF, user/item similarity, rule based	Покупателю советуют товар, потому что: 1. он купил такие-то товары (похожие, комплиментарные, совстречаемые). Item-based. 2. похожие по истории покупок на него пользователи покупают эти товары / X% пользователей со схожими интересами оценили рекомендуемый товар. User-based. 3. конкретный признак товара важен для пользователя (EFM).	Есть список топ-к товаров, повлиявших на рекомендацию. Список соседей и их оценки. etc.
Content-based models, Knowledge-based graphs	Пользователю рекомендуют Титаник, потому что он посмотрел Forrest Gump, т.е. фильм с таким же свойством - например, жанром драма.	Объяснения через общие признаки по объектам, аггрегации на графе по к близким соседям

Подход	Пример объяснения	Типы объяснения
NN	Помимо примеров из предыдущих подходов: 1.Пользователю предлагается посетить ресторан, потому что в нем хорошая еда, вкусные стейки (пары (opinion-aspect) из отзывов ресторанов). 2. На основе сходства по общим предпочтениям похожих пользователей, их признаков и поведения (эмбеддинги) 3. Купите чехол для телефона, так как недавно вы купили Iphone 13.	Через контексты и паттерны, которые нельзя было уловить другими моделями (повторяемость, последовательность, частота, время).

Коллаборативная фильтрация

- Похожие на вас пользователи выбирают (покупают/смотрят...) это
- Похожие товары на те, которые вы выбирали (покупали/смотрели) до этого

Collaborative Filtering for Implicit Feedback Datasets

Hu Y., Koren Y., Volinsky C. 2008

- Вид объяснения: Покупателю советуют товар, потому что он купил такие-то товары (доступен список ТОР-К товаров, повлиявших на рекомендацию).
- Подход: Матричные разложения

Qingyao A., Vahid A., Xu C. et al. 2018

- Вид объяснения: Покупателю советуют iPad, потому что он уже покупал товар такого бренда (Apple)
- Подход: knowledge graph

Сущности (entities):

- Пользователи (users)
- Объекты (items)
- Слова (описания, отзывы)
- Бренды
- Категории

Бинарные отношения:

- Покупка (пользователь— объект)
- Упоминание (пользователь/объект— слово)
- Принадлежность (объект категория)
- Производство (объект бренд)
- Совстречаемость в одной заказе (объект объект)
- Совстречаемость у одного пользователя (объект объект)
- Последовательно просмотренные (объект объект)

$$S = \{(e_h, e_t, r)\}$$
 $\mathbf{e_t} = trans\left(e_h, r
ight) = \mathbf{e_h} + \mathbf{r}$

$$egin{aligned} S &= \{(e_h, e_t, r)\} \ & trans\left(e_h, r
ight) pprox oldsymbol{e_t} &= trans\left(e_h, r
ight) = oldsymbol{e_h} + oldsymbol{r} \ & trans\left(e_h, r
ight)
eq oldsymbol{e_t} & (e_h, e_t', r)
otin S \end{aligned}$$

$$egin{aligned} S &= \{(e_h, e_t, r)\} & trans\left(e_h, r
ight) pprox oldsymbol{e_t} & (e_h, e_t, r) \in S \ oldsymbol{e_t} &= trans\left(e_h, r
ight) = oldsymbol{e_h} + oldsymbol{r} & trans\left(e_h, r
ight)
eq oldsymbol{e_t} & (e_h, e_t, r)
otin S \ oldsymbol{e_t} & (e_h, e_t, r)
oti$$

$$egin{aligned} S &= \{(e_h, e_t, r)\} & trans\left(e_h, r
ight) pprox oldsymbol{e}_t &= trans\left(e_h, r
ight) = oldsymbol{e}_\mathbf{h} + \mathbf{r} & trans\left(e_h, r
ight)
eq oldsymbol{e}_t &= trans\left(e_h, r
ight)
eq oldsymbol{e}_h + oldsym$$

```
Algorithm 1: Recommendation Explanation Extraction
```

```
Input: S = \{(E_h, E_t, r)\}, e_u, e_i, \text{ maximum depth } z
    Output: e_x, R_\alpha, R_\beta
    Procedure Main()
         V_{\mu}, P_{\mu}, \mathcal{R}_{\mu} = BFS(S, e_{\mu}, z).
       V_i, P_i, \mathcal{R}_i = BFS(S, e_i, z).
    P \leftarrow \{\}.
        for e \in V_u \cap V_i do
          P[e] = P_u(e) \cdot P_i(e).
         end
         Pick up e_x \in V_u \cap V_i with the largest P[e].
                                                                                   e_u + \sum_{\alpha=1}^m r_\alpha = e_i + \sum_{\beta=-1}^n r_\beta
        R_{\alpha} = \mathcal{R}_{u}[e_{x}], R_{\beta} = \mathcal{R}_{i}[e_{x}].
         return e_x, R_\alpha, R_\beta
    Function BFS (S, e, z)
          V_e \leftarrow all entities in the entity set E_t within z hops from e.
         P_e \leftarrow the probability of each entity in V_e computed by Eq (10).
         \mathcal{R}_e \leftarrow the paths from e to the space of each entity in V_e.
11
         return V_e, P_e, \mathcal{R}_e;
12
```

```
Algorithm 1: Recommendation Explanation Extraction
    Input: S = \{(E_h, E_t, r)\}, e_u, e_i, \text{ maximum depth } z
    Output: e_x, R_\alpha, R_\beta
    Procedure Main()
          V_{\mu}, P_{\mu}, \mathcal{R}_{\mu} = BFS(S, e_{\mu}, z).
        V_i, P_i, \mathcal{R}_i = BFS(S, e_i, z).
        P \leftarrow \{\}.
         for e \in V_u \cap V_i do
           P[e] = P_u(e) \cdot P_i(e).
          end
          Pick up e_x \in V_u \cap V_i with the largest P[e].
         R_{\alpha} = \mathcal{R}_{u}[e_{x}], R_{\beta} = \mathcal{R}_{i}[e_{x}].
          return e_x, R_\alpha, R_\beta
                                                                                                                    P\left(e_{x}|trans\left(e_{u},R_{lpha}
ight)
ight) = rac{\exp\left(oldsymbol{e}_{x}\cdot trans\left(e_{u},R_{lpha}
ight)
ight)}{\sum_{e'\in E_{s}^{rm}}\,\exp\left(oldsymbol{e}'\cdot trans\left(e_{u},R_{lpha}
ight)
ight)}
    Function BFS (S, e, z)
          V_e \leftarrow all entities in the entity set E_t within z hops from e.
          P_e \leftarrow the probability of each entity in V_e computed by Eq (10).
10
                                                                                                                   P(e_x|e_u,R_\alpha,e_i,R_\beta) = P(e_x|trans(e_u,R_\alpha)) P(e_x|trans(e_i,R_\beta))
          \mathcal{R}_e \leftarrow the paths from e to the space of each entity in V_e.
11
          return V_e, P_e, \mathcal{R}_e;
```

12

Relations	C	Ds and	Vinyl			Clothi	ing	
Measures(%)	NDCG	Recall	HT	Prec	NDCG	Recall	HT	Prec
Purchase only	1.725	2.319	7.052	0.818	0.974	1.665	2.651	0.254
+Also_view	1.722	2.356	6.967	0.817	1.800	3.130	4.672	0.448
+Also_bought	3.641	5.285	12.332	1.458	1.352	2.419	3.580	0.343
+Bought_together	1.962	2.712	7.473	0.861	0.694	1.284	2.026	0.189
+Produced_by	1.719	2.318	6.842	0.792	0.579	1.044	1.630	0.155
+Belongs_to	2.799	4.028	10.297	1.200	1.453	2.570	3.961	0.376
+Mention	3.822	5.185	12.828	1.628	1.019	1.754	2.780	0.265
+all (our model)	5.563	7.949	17.556	2.192	3.091	5.466	7.972	0.763

Dataset		CDs ar	nd Vinyl		Clothing				Cell Phones				Beauty			
Measures (%)	NDCG	Recall	HR	Prec.	NDCG	Recall	HR	Prec.	NDCG	Recall	HR	Prec.	NDCG	Recall	HR	Prec.
BPR	2.009	2.679	8.554	1.085	0.601	1.046	1.767	0.185	1.998	3.258	5.273	0.595	2.753	4.241	8.241	1.143
BPR-HFT	2.661	3.570	9.926	1.268	1.067	1.819	2.872	0.297	3.151	5.307	8.125	0.860	2.934	4.459	8.268	1.132
VBPR	0.631	0.845	2.930	0.328	0.560	0.968	1.557	0.166	1.797	3.489	5.002	0.507	1.901	2.786	5.961	0.902
TransRec	3.372	5.283	11.956	1.837	1.245	2.078	3.116	0.312	3.361	6.279	8.725	0.962	3.218	4.853	9.867	1.285
DeepCoNN	4.218	6.001	13.857	1.681	1.310	2.332	3.286	0.229	3.636	6.353	9.913	0.999	3.359	5.429	9.807	1.200
CKE	4.620	6.483	14.541	1.779	1.502	2.509	4.275	0.388	3.995	7.005	10.809	1.070	3.717	5.938	11.043	1.371
JRL	5.378 *	7.545 *	16.774 *	2.085 *	1.735 *	2.989 *	4.634 *	0.442 *	4.364 *	7.510 *	10.940 *	1.096 *	4.396 *	6.949 *	12.776 *	1.546 *
Our model	5.563	7.949	17.556	2.192	3.091	5.466	7.972	0.763	5.370	9.498	13.455	1.325	6.399	10.411	17.498	1.986
Improvement	3.44	5.35	4.66	5.13	78.16	82.87	72.03	72.62	23.05	26.47	22.99	20.89	45.56	49.82	36.96	28.46

Hongwei W., Fuzheng Z., Jialin W. et al. Microsoft Research. 2018

- **Вид объяснения:** Пользователь посмотрел драму Forrest Gump. Модель советует посмотреть фильм того же жанра Титаник.
- Подход: knowledge graph

$$p_i = \operatorname{softmax} \left(\mathbf{v}^{\mathrm{T}} \mathbf{R}_i \mathbf{h}_i \right) = \frac{\exp \left(\mathbf{v}^{\mathrm{T}} \mathbf{R}_i \mathbf{h}_i \right)}{\sum_{(h,r,t) \in \mathcal{S}_u^1} \exp \left(\mathbf{v}^{\mathrm{T}} \mathbf{R} \mathbf{h} \right)}$$

$$p_i = \operatorname{softmax} \left(\mathbf{v}^{\mathrm{T}} \mathbf{R}_i \mathbf{h}_i \right) = \frac{\exp \left(\mathbf{v}^{\mathrm{T}} \mathbf{R}_i \mathbf{h}_i \right)}{\sum_{(h,r,t) \in S_u^1} \exp \left(\mathbf{v}^{\mathrm{T}} \mathbf{R} \mathbf{h} \right)}$$

$$\mathbf{o}_u^1 = \sum_{(h_i,r_i,t_i) \in S_u^1} p_i \mathbf{t}_i$$

$$\mathbf{u} = \mathbf{o}_u^1 + \mathbf{o}_u^2 + \dots + \mathbf{o}_u^H$$

$$\hat{y}_{uv} = \sigma(\mathbf{u}^{\mathrm{T}} \mathbf{v})$$

$$\sum_{\text{Knowledge graph}} \sum_{\text{graph}} \sum_{\text{propagation ripple set } S_u^1} \sum_{\text{propagation propagation propagation of the p$$

Algorithm 1 Learning algorithm for RippleNet

Input: Interaction matrix Y, knowledge graph G

Output: Prediction function $\mathcal{F}(u, v|\Theta)$

- 1: Initialize all parameters
- 2: Calculate ripple sets $\{S_u^k\}_{k=1}^H$ for each user u;
- 3: **for** number of training iteration **do**
- 4: Sample minibatch of positive and negative interactions from **Y**;
- 5: Sample minibatch of true and false triples from G;
- 6: Calculate gradients $\partial \mathcal{L}/\partial \mathbf{V}$, $\partial \mathcal{L}/\partial \mathbf{E}$, $\{\partial \mathcal{L}/\partial \mathbf{R}\}_{r \in \mathcal{R}}$, and $\{\partial \mathcal{L}/\partial \alpha_i\}_{i=1}^H$ on the minibatch by back-propagation according to Eq. (4)-(13);
- 7: Update V, E, $\{\mathbf{R}\}_{\mathbf{r}\in\mathcal{R}}$, and $\{\alpha_i\}_{i=1}^H$ by gradient descent with learning rate η ;
- 8: end for
- 9: **return** $\mathcal{F}(u, v|\Theta)$

Figure 5: Precision@K, Recall@K, and F1@K in top-K recommendation for MovieLens-1M.

Table 3: The results of AUC and Accuracy in CTR prediction.

Model	MovieI	ens-1M	Book-C	Crossing	Bing-News		
Model	AUC	ACC	AUC	ACC	AUC	ACC	
RippleNet*	0.921	0.844	0.729	0.662	0.678	0.632	
CKE	0.796	0.739	0.674	0.635	0.560	0.517	
SHINE	0.778	0.732	0.668	0.631	0.554	0.537	
DKN	0.655	0.589	0.621	0.598	0.661	0.604	
PER	0.712	0.667	0.623	0.588	-	-	
LibFM	0.892	0.812	0.685	0.639	0.644	0.588	
Wide&Deep	0.903	0.822	0.711	0.623	0.654	0.595	

^{*} Statistically significant improvements by unpaired two-sample t-test with p = 0.1.

Candidate news: Trump Announces Gunman Dead, Credits 'Heroic Actions' of Police

Figure 8: Visualization of relevance probabilities for a raidomly sampled user w.r.t. a piece of candidate news with l bel 1. Links with value lower than -1.0 are omitted.

Explainable Reasoning over Knowledge Graphs for Recommendation

Xiang W., Dingxian W., Canran X. al. eBay. 2018

• Вид объяснения: пользователю рекомендуют прослушать "Castle on the Hill", потому что он слушал другую песню ("Shape of you") этого исполнителя (Ed Sheeran).

Explainable Reasoning over Knowledge Graphs for Recommendation $\hat{y}_{ui} = \sigma(\frac{1}{K}\sum_{k=1}^{K}s_k) \\ s(\tau|\mathbf{p}_k) = \mathbf{W}_2^{\mathsf{T}} \operatorname{ReLU}(\mathbf{W}_1^{\mathsf{T}} \mathbf{p}_k)$

(Alice, Interact, I see Fire)? p_{k+1} LSTM_LLayer h_3 **Pooling Layer** Embedding Layer Alice Shape of You e_2 **Ed Sheeran** I see Fire e3 e_5 User e'2 e'2 Album e'A Item Person Item ContainSong <End> rnull

Figure 2: Schematic overview of our model architecture. The embedding layer contains 3 individual layers for entity, entity type, and relation type, respectively. The concatenation of the 3 embedding vectors is the input of LSTM for each path.

Explainable Reasoning over Knowledge Graphs for Recommendation

UniWalk: Explainable and Accurate Recommendation for Rating and Network Data

- Haekyu P., Hyunsik J., Junghwan K. 2017
- Вид объяснения: Рекомендуем вам X,Y,Z, потому что близкие к вам пользователи предпочли эти товары (один из них-ваш друг), и эти товары близки к тем, которые вы уже покупали: М,К,Р.
- Подход: knowledge graph

UniWalk: Explainable and Accurate Recommendation for Rating and Network Data

(3.2)
$$L = \sum_{(u,i)\in\mathcal{D}^R} \frac{1}{2} (r_{ui} - \hat{r}_{ui})^2 + \frac{\lambda_b}{2} ||\mathbf{b}||^2 + \frac{\lambda_z}{2} ||\mathbf{Z}||_F^2$$

$$(3.3) + \alpha \cdot \sum_{(v,w)\in\mathcal{D}^+} -\mathbf{z}_v^T \mathbf{z}_w + \beta \cdot \sum_{(v,w)\in\mathcal{D}^-} \mathbf{z}_v^T \mathbf{z}_w$$

 $\hat{r}_{ui} = \mu + b_u + b_i + \mathbf{z}_u^T \mathbf{z}_i$

— Friend

Low rating

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

- Вид объяснения: Windows Phone, потому что вы купили "Surface Pro" (планшет от Windows)
- Подход: knowledge graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Edge type: $e_1, e_2, e_5, e_7, e_9 \in r_1$ $P_1 = e_1 E_1 e_5$ $e_3, e_4 \in r_2$ $e_6, e_8 \in r_3$

 $P_2 = e_2 E_2 e_3 E_3 e_6 E_4 e_7$ $P_3 = e_2 E_2 e_4 E_5 e_8 E_6 e_9$

Paths between *a* and *b*: Related reasoning rules: Rules for P_1 : $R_1 = r_1 r_1$

Rules for P_2, P_3 : $R_2 = r_1 r_2 r_3 r_1$

Figure 4: An example of a graph between items a and b. r represents a edge type or a relation type.

Explanation Mining: Post Hoc Interpretability of Latent Factor Models for Recommendation Systems

Peake G., Wang J. 2018

- Вид объяснения: Если пользователь покупает кофе, он, вероятно, купит сливки.
- Подход: Матричные разложения

Explanation Mining: Post Hoc Interpretability of Latent Factor Models for Recommendation Systems

```
Algorithm 1 Approximate matrix factorisation using global association rules
```

Input: Matrix factorisation predictions \hat{R} ; training data

- 1: For each user *i*, generate a transaction list T_i of the index of top D matrix factorisation predictions, \hat{R}_i
- 2: Generate the set Z_i of rules (X ⇒ Y) that satisfy min_supp, min_conf, min_lift criteria from all transactions T.
 Rules generated by the apriori algorithm using the apyori [27] Python package
- 3: for all users, $i = 1 \dots N$ do
- Compute the list {unseen} of items Y where $X \Rightarrow Y$ if $X \in \{\text{train}\}$ and $Y \notin \{\text{train}\}$.
- 5: Order {unseen} by supp/conf/lift. Compute {recommended} = {unseen}[: top_n]
- Return list of recommended items, {recommended} and corresponding rules $X \Rightarrow Y$ as explanations.
- 7: end for

Output: {unseen}

Explainable Matrix Factorization for Collaborative Filtering

Abdollahi B., Nasraoui O. 2017

- Вид объяснения: доля пользователей X% с похожими предпочтениями оценили рекомендуемый объект.
- Оптимизируем объяснения совместно с предсказаниями
- Если товар ј объясним, то должен быть близок к вектору пользователя
- Подход: Матричные разложения

TEM: Tree-enhanced Embedding Model for Explainable Recommendation

• Вид объяснения: Про пользователя известно, что он стремится к тишине. Ему советуют достопримечательность N, потому у нее

Item_tag = "Walk_around".

• Подход: Деревья решений

$$\begin{cases} \mathbf{e}_{avg}(u, i, \mathcal{V}) = \frac{1}{|\mathcal{V}|} \sum_{\mathbf{v}_l \in \mathcal{V}} w_{uil} \mathbf{v}_l, \\ \mathbf{e}_{max}(u, i, \mathcal{V}) = max_pool_{\mathbf{v}_l \in \mathcal{V}}(w_{uil} \mathbf{v}_l), \end{cases}$$

$$\begin{cases} w'_{uil} &= \mathbf{h}^{\top} ReLU(\mathbf{W} ([\mathbf{p}_u \odot \mathbf{q}_i, \mathbf{v}_l]) + \mathbf{b}) \\ w_{uil} &= \frac{exp(w'_{uil})}{\sum_{(u, i, \mathbf{x}) \in O} exp(w'_{uil})} \end{cases}$$

Figure 2: Illustrative architecture of our TEM framework.