Ziplt! Merging Models from Different Tasks without Training

Содержание

- 2. Zip Operation.
- 3. Ziplt! Extensions.
- 4. Results. CIFAR-10/CIFAR-100.
- 5. Results. ImageNet-1k (200+200).
- 6. Results. Multiple datasets.
- 7. <u>Hyperparameter analysis.</u>
- 8. Ziplt! for SinGANs.
- **9.** <u>Итоги доклада.</u>

Какую проблему решаем

- Хотим объединять несколько моделей в одну.
- Умеем переобучать модель с одного домена данных на другой, но при этом наблюдается эффект забывания первоначального домена.
- Умеем с помощью Git Re-Basin и REPAIR объединять модели, обученные на одном датасете, но с разными инициализациями.
- Умеем объединять модели finetuned с разных инициализаций на одном датасете.
- Zipit!

 Linch

 Canary

 Macaw

 Finch

 Gold. Retr.

 Shiba Inu

 Poodle

 Beagle
- <u>Не умеем</u> объединять модели, обученные под разные задачи. Хотим делать это без дополнительного обучения.

Ziplt! Zip operation

$$f_i^* = M_i \left(f_i^A \| f_i^B
ight) \qquad \qquad U_i = 2 M_i^T$$

$$U_i = 2M_i{}^T$$

$$M_{i[p,j]} = M_{i[p,k]} = 1/2$$

Merge matrix

$$f_{i+1}^A = L_{i+1}^A (U_i^A f_i^*)$$

$$f_{i+1}^B = L_{i+1}^B (U_i^B f_i^*)$$

 $M_{i[p,j]} = M_{i[p,k]} = 1/2$ $f_{i+1}^A = L_{i+1}^A(U_i^A f_i^*)$ $f_{i+1}^B = L_{i+1}^B(U_i^B f_i^*)$ $W_i^* = M_i^A W_i^A U_{i-1}^A + M_i^B W_i^B U_{i-1}^B$

Unmerge matrix

Merged weights

The **Zip** Operation

(a) Two **Disjoint** Layers

(b) Find **Redundant** Features

(c) Merge and Unmerge

(d) Propagate M and U

(e) Apply **M** and **U** to **Weights**

(f) **Result:** One **Zipped** Layer

Extensions

- Операцию Zip можно применять не ко всем слоям модели, а только к первым нескольким.
- Если моделей больше 2, при merge заменяем каждую пару признаков на их комбинацию и определяем корреляцию комбинации пары признаков с другими признаками как $lpha\cdot$ min(корреляция каждого признака из пары).
- Коэффициент β регулирует долю признаков, которые допускается комбинировать внутри одной модели.

(a) **Stop** zipping

(b) Unmerge (c) Result is Multi-Head

Results. CIFAR-10/CIFAR-100

- ResNet-20х4 для CIFAR-10 / ResNet-20х8 для CIFAR-100.
- Обучали модели в каждом датасете на двух непересекающихся наборах из 5 (50 для CIFAR-100). После чего делали Zip.

	FLOPs	Joint	P	er-Task (%)		FLOPs	Joint	P	er-Task (%)
Method	(G)	Acc (%)	Task A	Task B	Avg	Method	(G)	Acc (%)	Task A	Task B	Avg
Model A	0.68	48.2±1.0	97.0±0.6	45.1±8.6	$71.0{\scriptstyle\pm}_{4.4}$	Model A	2.72	41.6 ±0.3	82.9 ±0.7	24.8 ±0.4	53.9 ±0.5
Model B	0.68	$48.4 \!\pm\! 3.8$	49.1 ±9.3	$96.1 \!\pm\! 1.1$	$72.6{\scriptstyle\pm4.9}$	Model B	2.72	$41.6 {\scriptstyle \pm 0.2}$	25.1±1.2	$82.8 \!\pm\! \scriptscriptstyle{0.2}$	$54.0{\scriptstyle\pm0.6}$
W. Avg (Eq. 1)	0.68	43.0±1.6	54.1 ±1.4	67.5±1.2	60.8±4.5	W. Avg (Eq. 1)	2.72	17.0±1.7	23.8±6.9	24.8 ±5.9	24.3 ±1.9
Git Re-Basin [2]	0.68	$46.2 {\scriptstyle\pm0.8}$	76.8 ±8.9	$82.7{\scriptstyle\pm5.1}$	$79.8{\scriptstyle\pm6.5}$	Git Re-Basin [2]	2.72	$40.9 \scriptstyle{\pm 0.2}$	57.3±1.5	56.7 ± 0.7	$57.0 {\pm} 0.8$
Permute (Eq. 2)	0.68	$58.4 \!\pm\! 6.8$	86.6 ±2.1	$87.4 \scriptstyle{\pm 1.1}$	87.4 ± 1.4	Permute (Eq. 2)	2.72	$42.8 {\scriptstyle\pm0.7}$	61.6±1.4	60.5 ± 0.5	$61.0 {\pm} 0.8$
ZipIt! _{20/20}	0.68	79.1 \pm 1.1	92.9 _{±1.1}	91.2 ±1.4	92.1 ±1.0	ZipIt! _{20/20}	2.72	$\textbf{54.9} \!\pm\! {\scriptstyle 0.8}$	68.2±0.8	$\textbf{67.9} \scriptstyle{\pm 0.6}$	$68.0 \!\pm\! 0.4$
Ensemble	1.37	87.4 ± 2.6	$97.0_{\pm 0.6}$	96.1±1.1	96.6 ± 0.4	Ensemble	5.45	$73.5{\scriptstyle\pm0.4}$	82.9 ± 0.7	$82.8 \pm {\scriptstyle 0.2}$	82.8 ± 0.4
ZipIt! _{13/20}	0.91	83.8 ±3.1	95.1 ±0.7	$\textbf{94.1} {\scriptstyle\pm1.5}$	$94.6 {\scriptstyle \pm 0.6}$	ZipIt! _{13/20}	3.63	$\textbf{70.2} \!\pm\! {\scriptstyle 0.4}$	80.3 ±0.8	$\textbf{80.1} \!\pm\! 0.7$	$\textbf{80.2} \!\pm\! 0.6$

⁽a) CIFAR-10 (5+5). Using ResNet-20 ($4 \times$ width).

Результаты (accuracy) сравнения метода ZipIt! с другими методами объединения моделей. ZipIt! 13 из 20 слоев модели показывает лучшее качество среди аналогов, немного отстает от качества метода ансамблирования.

⁽b) CIFAR-100 (50+50). Using ResNet-20 ($8 \times$ width).

Results. ImageNet-1k (200+200)

- Разбили датасет на 5 непересекающихся подмножеств классов (по 200 классов).
- Обучали 5 ResNet-50: по одной на каждом подмножестве.
- Для каждой пары подмножеств делали Zip соответствующих моделей и замеряли качество на 400 классах.

	FLOPs	Joint	Per-Task (%)		
Method	(G)	Acc (%)	Task A	Task B	Avg
Model A	4.11	$37.2{\scriptstyle\pm2.0}$	74.3±4.0	0.5 ± 0.1	37.4±2.0
Model B	4.11	$35.3 \!\pm\! 1.6$	0.5 ± 0.1	$70.5{\scriptstyle\pm3.2}$	$35.5 {\scriptstyle\pm1.6}$
W. Avg (Eq. 1)	4.11	0.3 ±0.1	0.6 ±0.1	0.7 ±0.1	0.6 ±0.1
Git Re-Basin [2]	4.11	$3.1 \pm {\scriptstyle 1.2}$	5.3±2.6	$5.7{\scriptstyle\pm2.4}$	5.5 ± 1.7
Permute (Eq. 2)	4.11	$\textbf{8.6} \!\pm \! 5.8$	10.1 ±4.4	$\textbf{15.3} \scriptstyle{\pm 11.1}$	$\boldsymbol{12.7} \pm 7.7$
ZipIt! _{50/50}	4.11	8.6 ± 4.7	12.4±5.9	$\boldsymbol{14.7} \!\pm\! 7.8$	$\textbf{13.5} \!\pm\! \textbf{6.6}$
Ensemble	8.22	63.3 ± 4.9	74.3±4.0	$70.5{\scriptstyle\pm3.2}$	$72.4{\scriptstyle\pm2.5}$
ZipIt! _{22/50}	6.39	$55.8 \scriptstyle{\pm 4.1}$	65.9±2.5	64.1 ± 3.0	$65.0{\scriptstyle\pm2.3}$
ZipIt! _{10/50}	7.43	$\textbf{60.9} \scriptstyle{\pm 4.1}$	70.7 ±3.0	$69.0 \scriptstyle{\pm 2.9}$	$\textbf{69.9} \scriptstyle{\pm 1.9}$

Результаты (accuracy) сравнения метода ZipIt! с другими методами объединения моделей. ZipIt! 10 из 50 слоев показывает лучшее качество среди аналогов, немного отстает от качества метода ансамблирования.

Results. Multiple datasets

- 4 датасета: Stanford Dogs (SD), Oxford Pets (OP), CUB200 (CUB), and NABirds (NAB).
- Обучали ResNet-50 на каждом.
- Делали Zip всех 4 моделей в одну и 6 попарных Zip операций.

	FLOPs	Per-Task (%)					
Method	(G)	SD	OP	CUB	NAB	Avg	
Merging Pairs							
W. Avg (Eq. 1)	4.11	15.1	23.8	11.8	2.1	13.2	
Permute (Eq. 2)	4.11	51.3	64.7	36.7	15.5	42.1	
ZipIt! _{49/50}	4.11	51.2	67.7	40.6	15.6	43.8	
Ensemble	8.22	72.7	83.2	71.0	77.2	76.0	
ZipIt! _{37/50}	4.92	56.8	73.8	54.6	37.9	55.8	
ZipIt! _{22/50}	6.39	65.3	79.7	64.8	61.2	67.7	
Merging All 4							
W. Avg (Eq. 1)	4.12	0.7	3.4	0.4	0.2	1.2	
Permute (Eq. 2)	4.12	34.2	55.4	13.4	5.7	27.2	
ZipIt! _{49/50}	4.12	32.1	55.3	14.7	6.9	27.3	
Ensemble	16.44	72.7	83.2	71.0	77.2	76.0	
ZipIt! _{37/50}	6.5	39.9	66.4	44.3	24.6	43.8	
ZipIt! _{22/50}	11.0	58.2	78.5	58.6	55.1	62.6	

Результаты (accuracy) сравнения метода Ziplt! с другими методами объединения моделей. Ziplt! всех моделей в одну показывает результат хуже, чем попарный Ziplt!, но все еще лучше остальных методов (кроме ансамблирования).

Hyperparameter analysis

Зависимость качества работы моделей от количества слоев, к которым применили Zip операцию.

Зависимость качества работы моделей от значения гиперпараметра β .

Algorithm	$A \leftrightarrow A/B \leftrightarrow B$?	Acc	Time	
Identity (Eq. 1)	×	43.0±3.1	1.8 ms	
Permute (Eq. 2)	×	$58.4 \!\pm\! 1.3$	28 ms	
K-Means	\checkmark	$29.1{\scriptstyle\pm5.5}$	19 sec	
	Zip (Eq. 7)			
Optimal Match	\checkmark	$\textbf{79.6} {\pm} \textbf{1.7}$	11 min	
Greedy Match	\checkmark	$\textbf{79.0} {\pm} \textbf{1.8}$	1.1 sec	
Greedy, α =0.1	\checkmark	79.1±2.1	1.2 sec	

Сравнение качества и времени работы моделей, сжатых с использованием разных алгоритмов сжатия признаков.

Зависимость качества работы моделей, сжатых с помощью разных алгоритмов, от размеров этих моделей.

Ziplt! for SinGANs

Результат работы модели SinGAN, сжатых до определенного слоя (верхняя строка), обученных на картинках (левый столбец).

Итоги

- С помощью ZipIt! научились объединять модели одной архитектуры, обученные под разные задачи.
- Объединять модели с помощью ZipIt! можно как полностью, так и частично, оставляя раздельные головы.
- **Ziplt!** не требует дополнительного обучения.
- По результатам экспериментов, описанных в статье, Ziplt! показывает более высокое качество, чем аналогичные методы (Git Re-Basin, Permute).
- Ziplt! может быть использован с любыми типами задач, однако большинство экспериментов в статье проводилось на задачах классификации изображений.

Stoica G. et al. Ziplt! Merging Models from Different Tasks without Training //arXiv preprint arXiv:2305.03053. – 2023.