Tensor Methods & Deep Learning

A modern love story

Traditional approaches

- DATA => CONV => RELU => POOL => Activation tensor
- Flattening looses information
- Can we leverage directly the activation tensor before the flattening?
- Potential space savings
- Performance improvement

Deep neural nets architectures

	Total params	Params in FC	%params in FC
AlexNet	61,100,840	58,631,144	96%
VGG-19	143,667,240	123,642,856	86%
ResNet-50	25,557,032	2,049,000	8%
RestNet-101	44,549,160	2,049,000	4.6%

Tensor contraction

 Apply tensor contraction along each mode to obtain a low-rank tensor

Tensor contraction

- Take activation tensor as input
- Feed it through a TCL
- Output a low-rank activation tensor

Tensor contraction layers

Trained end-to-end

- On ImageNet with VGG:
 - 65.9% space savings
 - performance drop of 0.6% only

- On ImageNet with AlexNet:
 - 56.6% space savings
 - Performance improvement of 0.5%

SPACE savings : $1 - \frac{n_{\text{compressed}}}{n_{\text{original}}}$

Traditional Architectures

Tensor Regression Networks

Tensor Regression Networks

Performance of the trl

TRL rank	Performance (in %)			
	Top-1	Top-5	Space savings	
baseline	77.1	93.4	0	
(200, 1, 1, 200)	77.1	93.2	68.2	
(150, 1, 1, 150)	76	92.9	76.6	
(100, 1, 100)	74.6	91.7	84.6	
(50, 1, 1, 50)	73.6	91	92.4	

Performance of the TRL

- 92.4% space savings, 4% decrease in Top-1 accuracy
- 68.2% space savings, no decrease in Top-1 accuracy

Performance of the TRL

TRL vs Linear

Structure in the Regression Weights

Any questions?

