高清晰度多媒体接口规范 1.4

2009年6月5日

前言

注意

文献版本历史

目录

前言 注意 文献版本历史 知识产权说明 联系方式 发布 声明

1 介绍

- 1.1 目的和范围
- 1.2 语法参考
- 1.3 参考规范
- 1.4 文档组织
- 1.5 使用范例

2 定义

- 2.1 一致性分级
- 2.1 术语
- 2.3 缩略词

3 概述

4 物理层

4.1 连接器和线缆

- 4.1.1 连接器和线缆概述
- 4.1.2 连接器要求
- 4.1.3 双向连接
- 4.1.4 连接器管脚分配
- 4.1.5 线序

- 4.1.6 连接器机械性能
- 4.1.7 连接器电气特性
- 4.1.8 连接器环境特性
- 4.1.9 连接器图形一配合接口尺寸
- 4.1.10 线缆适配器规范

4.2 电气规范

- 4.2.1 TMDS 概述
- 4.2.2 TMDS 系统操作条件
- 4.2.3 TMDS 标准和测试概述
- 4.2.4 HDMI 发端的 TMDS 特性
- 4.2.5 HDMI 收端的 TMDS 特性
- 4.2.6 组装线缆的 TMDS 特性
- 4.2.7 5V 电压信号
- 4.2.8 DDC
- 4.2.9 热插拔监测信号(HPD)
- 4.2.10 CEC 线
- 4.2.11 应用线
- 4.2.12 鲁棒性要求

5 信号及编码

5.1 概述

- 5.1.1 链接架构
- 5.1.2 操作模式概述

5.2 操作模式

- 5.2.1 控制周期
- 5.2.2 视频数据周期
- 5.2.3 数据岛周期
- 5.3 数据岛数据包的定义
- 5.3.1 报文头

5.3.2 空包

- 5.3.3 音频时钟重构报文
- 5.3.4 音频采样报文
- 5.3.5 信息帧报文
- 5.3.6 通用控制报文

- 5.3.7 音频内容保护报文(ACP)
- 5.3.8 ISRC 报文
- 5.3.9 单比特音频采样报文
- 5.3.10 DST 音频报文
- 5.3.11 高比特率(HBR)音频流报文
- 5.3.12 GAMA 媒体数据报文

5.4 编码

- 5.4.1 串行化
- 5.4.2 控制周期编码
- 5.4.3 TERC4 编码
- 5.4.4 视频数据编码

6 视频

6.1 概述

6.2 视频格式支持

- 6.2.1 格式支持要求
- 6.2.2 视频控制信号: HSYNC, VSYNC
- 6.2.3 像素编码要求
- 6.2.3 色深要求

6.3 视频格式时序要求

- 6.3.1 基本视频格式时序
- 6.3.2 辅助视频格式时序

6.4 像素重复

6.5 像素编码及色深

- 6.5.1 像素编码
- 6.5.2 深颜色像素封装
- 6.5.3 深颜色模式 / 周期指示
- 6.5.4 像素重复

6.6 视频量化区间

6.7 比色法

- 6.7.1 默认比色法
- 6.7.2 应用比色标准
- 6.7.3 GAMA 相关媒体数据

7 音频

7.1 和 IEC 60958/IEC61937 的关系

7.2 音频采样时钟捕获和重建

- 7.2.1 参数 N
- 7.2.2 参数 CTS
- 7.2.3 推荐的 N 和期望的 CTS 值
- 7.2.4 L-PCM 和 IEC61937 压缩音频的 ACR
- 7.2.5 单比特音频 ACR
- 7.2.6 DST 和音频 ACR

7.3 音频采样率和支持要求

- 7.3.1 单比特音频采样率要求
- 7.3.2 DST 音频擦了要求
- 7.3.3 视频依赖

7.4 通道/扬声器分配

7.5 音频视频同步

7.6 音频数据封装

- 7.6.1 单比特音频封装
- 7.6.2 高比特音频流封装
- 7.6.3 DST 封装

7.7 错误处理(信息)

7.8 报文传递规则

- 7.8.1 音频采样报文
- 7.8.2 音频时钟重建报文
- 7.9 单比特音频使用概述
- 7.10 DST 使用概述
- 7.11 音频速率控制概述
- 7.12 音频返回通道概述
- 8 控制和配置
- 8.1 概述
- 8.2 信息帧
- 8.2.1 辅助视频信息(AVI)信息帧
- 8.2.2 音频信息帧
- 8.2.3 HDMI 供应商信息帧

8.3 E-EDID 数据结构

- 8.3.1 CEA 扩展
- 8.3.2 HDMI 供应商相关数据块(HDMI VSDB)
- 8.3.3 比色数据块
- 8.3.4 视频容量数据块
- 8.3.5 DVI/HDMI 设备辨别

8.4 增强的 DDC

- 8.4.1 时序
- 8.4.2 数据传输协议
- 8.4.3 段指针
- 8.4.4 增强的 DDC 受端

- 8.4.5 增强的 DDC 源端
- 8.5 热插拔监测信号
- 8.6 客户电子控制
- 8.7 物理地址
- 8.7.1 概述
- 8.7.2 物理地址发现
- 8.7.3 发现算法
- 8.7.4 HDMI 受端查找
- 8.8 ISRC 处理
- 8.9 音频口唇同步矫正特征
- 8.9.1 EDID 潜在信息
- 8.9.2 补偿
- 8.9.3 动态潜在变化支持
- 8.9.4 分离音频和视频路径

9 内容保护

- 9.1 建议
- 9.2 HDCP 实现
- 9.3 使用音频内容保护报文(ACP)
- 9.3.1 受端要求
- 9.3.2 转发要求
- 9.3.3 用于普通音频
- 9.3.4 用于 IEC60958-标识的音频
- 9.3.5 用于 DVD-音频
- 9.3.6 用于超级音频 CD

附录 A 再发送器

- A.1 在发送器功能
- A.2 E-EDID 读时序(信息)

附录 BB型连接器使用

- B.1 音频格式支持要求例外
- B.2 HDMI 双链接架构

附录 C 和 DVI 的兼容性

- C.1 对 DVI 兼容的需求
- C.2 HDMI 源端要求
- C.3 HDMI 受端要求
- C.4 A 型到 DVI 适配器线缆
- C.5 B 型到 DVI 适配器线缆

附录 D 色深附加细节

- D.1 状态机
- D.2 建议的 N 和期望的 CTS 值

附录 E 全局相关数据

- E.1 概述
- E.2 发送配置信息
- E.3 全局边界描述
- E.4 数据封装
- E.5 PO 数据结构范例

附录 F 视频缩放自动配置

附录 G 保留

附录 H 3D 视频格式扩展

- H.1 HDMI 供应商相关信息扩展
- H.2 3D 视频格式结构扩展
- H.3 HDMI 供应商相关数据块(HDMI VSDB)扩展

补充 1 用户电子控制 (CEC)

参见补充文件的目录

补充 2 HDMI 以太网和音频返回通道(HEAC)

参见补充文件的目录

3 概述

HDMI 系统架构由信源端和接收端组成。某个设备可能有一个或多个 HDMI 输入,一个或多个 HDMI 输出。这些设备上,每个 HDMI 输入都应该遵循 HDMI 接收端规则,每个 HDMI 输出都应该遵循 HDMI 信源端规则。

如图 3-1 所示,HDMI 线缆和连接器提供四个差分线对,组成TMDS数据和时钟通道。这些通道用于传递视频,音频和辅助数据。另外,HDMI 提供一个 VESA DDC 通道。DDC 是用于配置和在一个单独的信源端和一个单独的接收端交换状态。可选择的 CEC 在用户的各种不同的音视频产品中,提供高水平的控制功能。可选择的 HDMI 以太网和音频返回(HEAC),在连接的设备中提供以太网兼容的网络数据和一个和 TMDS 相对方向的音频回返通道。

音频,视频和辅助数据在三个 TMDS 数据通道中传输。一个 TMDS 时钟,典型地是以视频像素速率,在 TMDS 时钟通道中传输,它被接收端做为一个频率参考,用于对三个 TMDS 数据通道的数据复原。在信源端,TMDS 编码将每个 TMDS 数据的 8 比特数据转换成 10 位的DC-平衡的最小变换序列,串行地,以每个 TMDS 时钟周期 10 位地,在差分线对上发送。视频数据,一个像素可以是 24,30,36,48 比特。视频的默认 24 比特色深,在等于像素时钟的 TMDS 时钟上传递。更高的色深使用相应的更高的 TMDS 时钟率。视频格式 TMDS时钟率低于 25M(比如 13.5M 的 480i/NTSC)可以使用重复像素发送的策略。视频像素可以用 RGB, YCbCr4:4:4, YCbCr4:2:2 格式编码。

为了在 TMDS 通道上发送音频和辅助数据,HDMI 使用一个报文结构。为了得到音频和控制数据所需要的高可靠性,这个数据报文用 BCH 纠错码,使用特殊的差错矫正,对发送的 10 位数据编码。

基本的音频功能,由单一的 IEC 60958 LOPCM 音频流组成,采样率为 32KHz, 44.1KHz, 48kHz. 这可以解决任何标准立体声。可选择地,HDMI 可以传输采样率为 192KHz 的音频流,使用 3 到 8 个通道。HDMI 可以传递 IEC61937 压缩音频流,比特率为 24.57 Mbps。HDMI 也

可以传递 2-8 通道的单比特音频和一个压缩形式的单比特音频(DST).

DDC 用于信源端,读取接收端的扩展显示标识数据(E-EDID),为了发现接收端配置和性能。

应用线用于扩展选择性的特征比如补充 2 所定义的 HEAC。

4 物理层

4.1 连接器和线缆

4.1.1 连接器和线缆概述

一个设备对外的 HDMI 连接可以通过以下五连接器之一: A 型, B型, C型, D型和 E型。这个连接器可以直接和设备相连,也可以通过和设备一起发布的线缆适配器相连。

这五种连接器都需要 HDMI 信号,包括 TMDS 连接。B 型连接器稍微大些,并且具有第二个 TMDS 连接,这对于使用双连接的高清显示是必要的。C 型连接器和 A 型连接器的信号相同,但是更加紧凑,适用于移动设备。D 型连接器的信号和 A 型连接器相同,但是比 C 型连接器更加小巧。E 型连接器的信号和 A 型相同,为汽车应用而设计。

根据所支持的时钟频率,线缆可以分为两类。除了汽车应用,这里提到的两类线缆在实现补充规范 2 的线缆规定后,都支持 HEAC 应用。

表 4-1 线缆种类和所支持的功能(不包括 B 型接口)

线缆种类	最大时钟频率	线缆适配器	电气性能	市场名称
1 类	74.25 MHz	A型 A/C/D型	见 4.2.6	标准型
		C 型 - C 型		
2 类	340MHz	A型 A/C/D型	见 4.2.6	高速型
		C 型 - C 型		
具有 HEAC 功能	74.25 MHz	A型 A/C/D型	见 4.2.6 和补充	标准以太网型
1类		C 型 - C 型	协议 2	
具有 HEAC 功能	340MHz	A型 A/C/D型	见 4.2.6	高速以太网型
2 类		C 型 - C 型		
汽车型1类	74.25 MHz	E 型 -E型	见 4.2.6	仅用于汽车厂商
		E 型 - A 中继	见 4.2.6	
		A 型 -A型	见 4.2.6	标准汽车型

4.1.2 连接器支持要求

除了B型和E型连接器外,所有连接器都有相同的特征和功能。

4.1.3 双连接

为了支持 DVI 信号大于 165M 像素每秒的速率,可采用接口类型 B 连接器的双连接性能。 DVI 信号小于 165M 像素每秒的速率,可以采用单连接。

为了支持更高速的 HDMI 信号,采用 B 类型连接器。单连接到双连接的交叉频率,将在未来的 HDMI 协议中定义,会大于 340M 像素率。在交叉频率以下,不能采用双连接。

4.1.4 连接器管脚定义

表 4-2A 类连接器, E 类连接器管脚定义

PIN	信号定义
1	TMDS DATA2+
3	TMDS DATA2-
5	TMDS DATA1 Shield
7	TMDS DATA0+
9	TMDS DATA0-
11	TMDS Clock Shield
13	CEC
15	SCL
17	DDC/CEC Ground
19	Hot Plug Detect

PIN	管脚定义
2	TMDS DATA2 屏蔽
4	TMDS DATA1+
6	TMDS DATA1-
8	TMDS DATA0 屏蔽
10	TMDS Clock+
12	TMDS Clock-
14	应用
16	SDA
18	+5V

表 4-3 B 类连接器管脚定义

PIN	管脚定义
1	TMDS DATA2+
3	TMDS DATA2-
5	TMDS DATA1 屏蔽
7	TMDS DATA0+
9	TMDS DATA0-
11	TMDS CLOCK 屏蔽
13	TMDS DATA5+
15	TMDS DATA5-
17	TMDS DATA4 屏蔽
19	TMDS DATA3+
21	TMDS DATA3-
23	保留(NC)
25	SCL
27	DDC/CEC GND
29	热插拔监测

PIN	管脚定义		
2	TMDS DATA2 屏蔽		
4	TMDS DATA1+		
6	TMDS DATA1-		
8	TMDS DATAO 屏蔽		
10	TMDS CLOCK+		
12	TMDS CLOCK-		
14	TMDS DATA5 屏蔽		
16	TMDS DATA4+		
18	TMDS DATA4-		
20	TMDS DATA3 屏蔽		
22	CEC		
24	保留(NC)		
26	SDA		
28	+5V		

表 4-4 C 类连接器管脚定义

TO TO SOLONIA DIVINO		
PIN	管脚定义	
1	TMDS DATA2 屏蔽	
2	TMDS DATA2+	
3	TMDS DATA2-	
4	TMDS DATA1 屏蔽	
5	TMDS DATA1+	
6	TMDS DATA1-	
7	TMDS DATA0 屏蔽	
8	TMDS DATA0+	
9	TMDS DATA0-	

10	TMDS CLOCK 屏蔽
11	TMDS CLOCK+
12	TMDS CLOCK-
13	DDC/CEC GND
14	CEC
15	SCL
16	SDA
17	Utility
18	+5V
19	热插拔监测

表 4-5 D 类连接器管脚定义

	2 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
PIN	管脚定义		
1	热插拔监测		
3	TMDS DATA2+		
5	TMDS DATA2-		
7	TMDS DATA1 屏蔽		
9	TMDS DATA0+		
11	TMDS DATA0-		
13	TMDS CLOCK 屏蔽		
15	CEC		
17	SCL		
19	+5V		

PIN	管脚定义
2	应用
4	TMDS DATA2 屏蔽
6	TMDS DATA1+
8	TMDS DATA1-
10	TMDS DATA0 屏蔽
12	TMDS CLOCK+
14	TMDS CLOCK-
16	DDC/CEC GND
18	SDA

4.1.5 接线顺序

表 4-6 连接器接线顺序

连接	信号			
	A类&C类连接器	B类连接器	D类连接器	E类连接器
首先	连接器壳体	连接器壳体	连接器壳体	连接器壳体
其次	PIN1-17, PIN19	PIN1-27, PIN29	PIN1-18	PIN1-19
最后	PIN18(+5V)	PIN28(+5V)	PIN19(+5V)	

4.1.6 连接器机械性能

4.1.7 连接器电气特性

4.1.7.1 电气特性

表 4-10 电气性能

项目	测试条件	要求
接触电阻	配合的连接器,	
按 照电阻		初始接触电阻不包括导体电阻:最大 10 毫欧
	触点:使用干燥情况下,20mV,最大10mA	
		姆(沿江中标传)
/ <i>b</i> / / <i>b</i> 35 Fb:	(ANSI/EIA-364-06B)	(设计目标值)
绝缘强度	未配合的连接器,施加	不能击穿
	A/B/C/E: 500 伏 交流(RMS)	
	D: 250 伏 交流 (RMS)	
	在地或者相邻的终端	
	 配合的连接器: 施加	
	A/B/C/E: 300 伏 交流(RMS)	
	D: 150 伏 交流(RMS)	
	在地或者相邻的终端	
	(ANSI/EIA-364-20C, 方法 A)	
绝缘电阻	未连接的连接器,施加 500 伏 DC ,	最小 100M 欧姆
	在地或者相邻的终端	
	(ANSI/EIA-364-21C)	
	连接的连接器,施加 150 伏 DC ,	最小 10M 欧姆
	在地或者相邻的终端	
	(ANSI/EIA-364-21C)	
接触电流	55 摄氏度,最大	A/B/C/E 类: 最小 0.5A
	85 摄氏度,	D 类: 最小 0.3A
	(ANSI/EIA-364-70A)	
使用电压范围	信号针脚可承受相对壳体最大40V 交流电压	不能被击穿
静电放电	测试方式: 未连接的连接器从 1KV 到 8KV,	在 8KV 时,每个针脚没
	以 1KV 步长渐进,使用 8mm 球形探针	有静电放电现象
	E 类连接器的测试方法: 未连接的连接器从	E类连接器:在15KV时,
	1KV 到 8KV, 以 1KV 步长渐进, 和使用 15KV	每个针脚没有静电放电
	静电压,使用 8mm 球形探针	现象
	(IEC-801-2)	
TMDS 信号时域阻	上升时间< 200 psec(10%-90%).	连接器区域:
抗	每个 HDMI 设备的信号对地电压	A/E 类: 100 欧姆 上下
	差分测量环境电阻=100 欧姆	偏差 15%
	信源端接收连接器固定安装在 PCB 板上	C/D 类: 100 欧姆 上下
	(ANSI/EIA-364-108)	偏差 25%
		转换区域:
		A/C/D: 100 欧姆 上下
		偏差 15%
		E 类连接器: 100 欧姆

		上下偏差 25%
TMDS 信号时域串	上升时间 < 200 psec(10%-90%) .	A 类连接器:最大 5%
扰 FEXT	每个 HDMI 设备的信号对地电压	
	差分测量环境电阻=100 欧姆	C/D/E 类: 最大 10%
	信源端接收连接器固定安装在 PCB 板上	
	驱动线对和被干扰线对	
	(ANSI/EIA-364-90)	

4.1.8 连接器环境特性

4.1.8.1 环境性能

表 4-11 连接器环境操作性能

表 4-11 连接器环境操作性能										
项目	测试条件	要求								
热冲击	做如下 10 个循环:	外观	没有损坏							
	a) -55度 30 分钟	接触电	触点:							
	b) +85度 30 分钟	阻	从初始值最大变							
	(ANSI/EIA-364-32C,条件 I)		化 30 毫欧							
			壳体:							
			从初始值最大变							
			化 50 毫欧							
湿度	A 将连接器连接到一起,做如下测试:	外观	没有损坏							
热耐受性	温度 +25 度到+85 度	接触电	触点:							
	相对湿度 80 到 95%	阻	从初始值最大变							
	持续时间 4个周期(96小时)		化 30 毫欧							
	测试过程中,样品被环境围绕 24 /	`	壳体:							
	时, 之后进行特定的测量	1	从初始值最大变							
	(ANSI/EIA-364-31B)		化 50 毫欧							
热冲击	B 未连接情况下,做如下测试:	外观	没有损坏							
湿度	温度 +25 度到+85 度	容忍电	符合关于容忍电							
	相对湿度 80 到 95%	压 和 绝	压和绝缘电阻的							
	持续时间 4个周期(96小时)	缘电阻	项目条款							
	测试过程中,样品被环境围绕 24 /	`								
	时, 之后进行特定的测量									
	(ANSI/EIA-364-31B)									
热耐受性	连接器连接,暴露在105度到250度环境中		没有损坏							
	测试样品在环绕的环境中放置1到2小时	12, 7,	触点:							
	之后进行相关测试。	阻	从初始值最大变							
	(ANSI/EIA-364-17B, 条件 4, 方法 A)		化 30 毫欧							
			壳体:							
			从初始值最大变							

				化 50 毫欧
M. S. L L.			/ I →⊏	
热冲击	-	如下周期:	外观	
	-	度 30 分钟	触点电	触点:
	-)度 30 分钟	阻	从初始值最大变
	(SAE/	(USCAR-2 5.6.1)		化 30 毫欧
				壳体:
				从初始值最大变
				化 50 毫欧
湿度	A 连	连接器连接在一起,如下测试:	外观	没有损坏
	温	温度: -40 度到+100 度	触点电	触点:
	相	目对湿度: 0 到 80%	阻	从初始值最大变
	臣	寸间: 40周期(320小时)		化 30 毫欧
	((SAE/USCAR-2 5.6.2		壳体:
				从初始值最大变
				化 50 毫欧
	B já		外观	未损坏
		温度: -40 度到+100 度	电压容	符合关于容忍电
		目对湿度: 0 到 80%		压和绝缘电阻的
		付间: 40 周期(320 小时)	绝缘电	项目条款
44 71 55 bl		(SAE/USCAR-2 5.6.2)	阻	+ 10 lz
热耐受性	连接的	连接器,处于 100 度,1008 小时	外观	未损坏
			触点电	触点:
	(SAE/	(USCAR-2 5.6.3)	阻	从初始值最大变
				化 30 毫欧
				壳体:
				从初始值最大变
				化 50 毫欧

4.1.9 连接器绘图一配合接口尺寸 所以的尺寸为毫米。

4.1.9.1 A 类接收器

4.1.9.2 A 类插头

4.1.9.3 B 类接收器

4.1.9.4 B 类插头

4.1.9.5 C 类接收器	
4.1.9.6 C 类插头	
4.1.9.7 D 类接收器	
4.1.9.8 D 类插头	
4.1.9.9 E 类接收器	
4.1.9.10 E 类插头	
4.1.10 线缆适配器规范	

4.2 电气规范

第五章 信号和编码

5.1 概述

5.1.1 连接架构

如图 5-1 所示,一个 HDMI 连接包括三个 TMDS 数据通道,一个 TMDS 时钟通道。TMDS 时钟通道以某种定常的速率运行,该速率和视频的像素率成比例。在每个 TMDS 时钟通道周期中,三个 TMDS 数据通道每个都发送 10 比特数据。这个 10 位的字被编码,采用某种不同的编码技术。

输入到信源端的输入流,包含视频像素,数据包,和控制数据。数据包包括音频数据和 辅助以及相关的纠错码。

这些数据项被不同地处理,在每个 TMDS 通道的 TMDS 编码器中表示为或者 2 比特控制数据,或者 4 比特报文数据,或者 8 比特视频数据。信源端在每个时钟周期内,对这些数据类型进行编码或者对某个边界字符编码。

5.1.2 操作模式概述

HDMI 连接可以处于三种操作模式之一:视频数据周期,数据岛周期,控制周期。在视频数据周期,活跃的视频线中发送视频像素。在数据岛周期中,音频和辅助数据使用一系列数据包来发送。在两个非控制周期之间是控制周期。

下图示例各周期的关系:

图 5-2 在 720*480 视频帧中 TMDS 周期

视频数据周期采用变化最少的编码方式,每通道8位或每像素24位。

数据岛周期使用相同的最小化差分编码, TMDS 纠错编码, 每通道每 TMDS 时钟传输 4 比特,或者 12 比特。

在控制周期中,每通道每个 TMDS 周期,对 2 位,或者 6 位进行编码。这 6 位是 HSYNC, VSYNC, CTL0, CTL1, CTL2, CTL3。在每个控制周期的末尾,一个报文头,使用 CTLx 位,指示下一个数据周期是视频周期还是数据岛周期。

每个视频数据周期和数据岛周期起始于一个前导保护边界,设计目标是提供从控制周期到数据周期转化的鲁棒决策。这个前导保护边界办好两个特殊字符。

数据岛周期也提供一个后置保护边界,设计目的是向控制周期转化的鲁棒决策。下表展示在数据传输中每种操作模式的编码类型。

Table 5-1 Encoding Type and Data Transmitted

Period	Data Transmitted	Encoding Type		
Video Data	Video Pixels	Video Data Coding (8 bits converted to 10 bits)		
	(Guard Band)	(Fixed 10 bit pattern)		
Data Island	Packet Data - Audio Samples - InfoFrames HSYNC, VSYNC	TERC4 Coding (4 bits converted to 10 bits)		
	(Guard Band)	(Fixed 10 bit pattern)		
Control	Control - Preamble - HSYNC, VSYNC	Control Period Coding (2 bits converted to 10 bits)		

5.2 操作模式

5.2.1 控制周期

控制周期是用于发送报文头的。控制周期也在接收端使用,以对字符进行同步。 DHCP 相关的增强算法状态信号 ENC_EN 码(CTL0:3=1001)将不使用,除非在 HDCP 相关的窗口机会中做为矫正 ENC_EN 出现。

5.2.1.1 报文头

在视频数据周期和数据岛周期的之前是报文头。这是 8 位序列,标识控制字符,用来指示随后的数据是视频数据还是数据岛数据。值 CTL0, CTL1, CTL2, CTL3 指示随后的数据周期类型。其他的控制信号, HSYNC 和 VSYNC 可以在这序列中变化。

只有两种合法的报文头:

表 5-2 数据周期的报文头

CTL0	CTL1	CTL2	CTL3	数据周期类型
1	0	0	0	视频数据周期
1	0	1	0	数据岛周期

视频数据周期类型表示随后的数据含有视频数据,起始于视频保护边界(Video Guard Band)。

数据岛类型表示随后的数据周期是 HDMI 兼容的数据岛,起始于数据岛保护边界。 序列中从 TMDS 控制字符到保护边界的转换,表明数据周期的开始。

数据岛报文头控制码(CTL0:3=1010)不应被发送,除非在报文头周期中做为矫正码。

5.2.1.2 字符同步

在串行流中,TMDS 接收端需要确定字符的边界。一旦所有通道的字符边界建立,接收端要同步串行流,可能会从数据通道中恢复 TMDS 字符用以解码。 TMDS 数据流提供解码器同步的周期性线索。

在视频数据周期和数据岛周期中的 TMDS 字符,包含 5 个或者更少的状态,而在控制周期中包含 7 个或者更多的状态。在控制周期中发送的含有较多状态的字符,在解码器中形成边界同步的基础。这些字符不是孤立地在串行流中存在的,他们数目足够,解码器能够在发送同步间隙中,监测到他们的连续存在。这种监测的精确算法是个具体的实现细节,不在本文中讨论,单身接收端的同步的最小条件还是本文的内容。

在控制周期大于或者等于 12 字符长度时,接收端要建立数据流的同步。 信源端也要求时常地发送扩展扩展周期,见表 5-4.

Table 5-3 TMDS Link Timing Parameters

Parameter	Description	Value	Unit
t _{S,min}	Minimum duration Control Period	12	T _{PIXEL}

Table 5-4 Extended Control Period Parameters

Parameter	Description	Value	Unit
t _{EXTS,max_delay}	Maximum time between Extended Control Periods	50	msec
t _{EXTS,min}	Minimum duration Extended Control Period	32	T _{PIXEL}

5.2.2 视频数据周期

视频数据周期用来传输视频线的像素。

每个视频数据周期以报文头为前导,如上所述。

在报文头之后,视频数据周期以两个字符开始,做为视频前导保护边界。对于数据周期,没有末尾保护边界。

在活跃的视频周期中,一个 TMDS 时钟周期内,像素的 24 位数据采用 TMDS 最小差分 传输编码来编码。

5.2.2.1 视频保护边界

见表 5-5 视频前导保护边界数值:

```
Table 5-5 Video Leading Guard Band Values

case (TMDS Channel Number):
0: q_out[9:0] = 0b1011001100;
1: q_out[9:0] = 0b0100110011:
```

2: q out[9:0] = 0b1011001100;

endcase

5.2.3 数据岛周期

5.2.3.1 数据岛概述

数据岛用来携带音频和辅助数据的报文。辅助数据包括信息帧和描述活动视频或者音频流或者信源端的信息。

每个数据岛由前导头起始,如上所述。

报文头之后,是数据岛的起始保护边界。然后开始第一个数据岛报文。

在数据岛的每个 TMDS 时钟周期,包括保护边界,比特 0 和比特 1 ,TMDS 通道 0 发送一个 HYSNC 和 VSYNC 的编码。

TMDS 通道 0 的 Bit2 用来发送数据包头。TMDS 通道 1 和 2 的 4 个比特全部用来做数据包的数据,如图 5-3 所示。每个数据包是 32 像素长,由 BCH ECC 进行差错纠正和错误监测。

在数据岛周期中,三个 TMDS 通道每个通道都发送一系列 10 比特的字符,该字符由输入的 4 比特字编码而成,使用 TMDS 差错纠正编码(TERC4). TERC4 大大降低了差错率,通个在链路上采用 10 比特具有高度内聚防差错的编码。

数据岛的最后两个字符,在最后数据包之后,是结尾保护段。在数据岛之后,三个通道都转化到发送控制字符状态。

5.2.3.2 数据岛位置和长度

信源端需要确定数据岛的位置和长度,相对于视频信号的水平和垂直消隐周期和同步信号。它将采用下面的规则。

所有的 TMDS 控制周期至少是 12 个字符(像素)长。

数据岛应该包含至少一个数据包, 最小为 36 个像素。

数据岛应该包含整数个数据包。为了保证数据岛内数据的稳定性,应该等于或者少于 18 个数据包。

0,1或者更多个数据岛可能会在视频周期后出现。

当发送视频的时候,每两个视频域之间最少发送一个数据岛。

5.2.3.3 数据岛保护段

数据岛的前两个字符是前导保护段,最后两个字符是末尾保护段。

在数据岛的保护段中,通道 0 是编码为 TERC4,这些 TERC4 的值(D[3:0])为 Oxc, OXd, OXE, OXF, 根据 HSYNC 和 VSYNC 的值变化。

Table 5-6 Data Island Leading and Trailing Guard Band Values

case (TMDS Channel Number):

0: q out[9:0] = n.a.;

1: q out[9:0] = 0b0100110011;

2: q_out[9:0] = 0b0100110011;

endcase

5.2.3.4 数据岛包构造

所有的数据岛内的数据包含在 32 个时钟包内。 包包括一个报文头,报文体(包含 4 个子包),和相关的差错纠正位。每个子包,包含 56 比特的数据,这些数据由附加的 8 比特 BCH ECC 奇偶校验位。

子包 0 加上它的奇偶校验位构成 BCH 块 0. 这个块映射到通道 1 和通道 2 的比特 0。这样,BCH 块 0 的 64 比特在 32 个像素中发送。同样地,BCH 块 1 (子包 1 加上它的奇偶校验位)映射到通道 1 和通道 2 的比特 1 上。

在下面的表中,报文头数据用 HB0, HB1, HB2 表示。子包用 SB0 到 SB7 表示。

子包 0 的第 0 到 6 (SB0-SB6) 也被设计成报文数据 0 到 6 (PB0-PB6)。

子包 1 的第0到6(SB0-SB6)也被设计成报文数据7到13(PB7-PB13)。

子包 2 的第0到6(SB0-SB6)也被设计成报文数据14到20(PB14-PB20)。

子包 3 的第0到6(SB0-SB6)也被设计成报文数据21到27(PB21-PB27)。

5.2.3.5 数据岛差错纠正

为了增加数据可靠性和差错纠正,差错校验码 ECC 添加到每个数据包的末尾。GCH(64,56) 和 BCH(32,24) 由图 5-5 的多项式 G(X)生成。

5.3 数据岛包定义

5.3.1 报文头

报文头包含 24 个数据位,附加 8 位 BCH(32,24) ECC 奇偶校验。这些校验是对 24 数据位的计算得来。

报文头包括8位的报文类型和16位的报文相关数据。

接收端将能够接收,没有反作用的,HDMI 1.0 规范中定义的任何报文,包括任何的在 CEA-861-D 中定义的信息帧。

Table 5-7 Packet Header										
Byte \ Bit #	7	6	5	4	3	2	1	0		
НВ0	Packet Type									
HB1				packet-sp	ecific data					
HB2		packet-specific data								

Table 5-8 Packet Types

Packet Type Value	Packet Type	Described in Section
0×00	Null	5.3.2
0x01	Audio Clock Regeneration (N/CTS)	5.3.3
0x02	Audio Sample (L-PCM and IEC 61937 compressed formats)	5.3.4
0x03	General Control	5.3.6
0x04	ACP Packet	5.3.7
0x05	ISRC1 Packet	5.3.8
0×06	ISRC2 Packet	u
0×07	One Bit Audio Sample Packet	5.3.9
0×08	DST Audio Packet	5.3.10
0x09	High Bitrate (HBR) Audio Stream Packet (IEC 61937)	5.3.11
0x0A	Gamut Metadata Packet	5.3.12
0x80+InfoFrame Type		
0x81	Vendor-Specific InfoFrame	8.2.3
0x82	AVI InfoFrame*	8.2.1
0x83	Source Product Descriptor InfoFrame	
0x84	Audio InfoFrame*	8.2.2
0x85	MPEG Source InfoFrame	

^{*} See Section 8.2 for the packet layout for these InfoFrames

5.3.2 空包

信源端可以在任何时候使用空包。空包的字节是未定义的,应该都是 0 值。HDMI 接收端忽略空包的包头 HB1 和 HB2,以及空包中的全部字节。

Table 5-9 Null Packet Header

<u> </u>								
Byte \ Bit #	7	6	5	4	3	2	1	0
НВ0	0	0	0	0	0	0	0	0
HB1	0	0	0	0	0	0	0	0
HB2	0	0	0	0	0	0	0	0

5.3.3 音频时钟重生成包

音频时钟重生成包包含 N 和 CTS 值,该值在音频时钟重新生成过程中使用。4 个子包每个也包含相同的音频时钟重生成包。一个 HDMI 接收端会忽略音频时钟重生成包的头部的 HB1 和 HB2 字节。

Table 5-10 Audio Clock Regeneration Packet Header

Byte \ Bit #	7	6	5	4	3	2	1	0
HB0	0	0	0	0	0	0	0	1
HB1	0	0	0	0	0	0	0	0
HB2	0	0	0	0	0	0	0	0

Table 5-11 Audio Clock Regeneration Subpacket

η.									
	Byte \ Bit #	7	6	5	4	3	2	1	0
	SB0	0	0	0	0	0	0	0	0
	SB1	0	0	0	0	CTS.19	-	-	CTS.16
	SB2	CTS.15	-	-	-	-	-	-	CTS.8
	SB3	CTS.7	-	-	-	-	-	-	CTS.0
	SB4	0	0	0	0	N.19	-	-	N.16
	SB5	N.15	-	-	-	-	-	-	N.8
	SB6	N.7	-	-	-	-	-	-	N.0

- N [20 bits] value of audio clock regeneration "N"
- CTS [20 bits] Cycle Time Stamp

CTS 值为 0表示没有新的 CTS 值。

5.3.4 音频采用包

音频采样包携带 L-PCM 和 IEC61937 压缩音频格式的数据。音频包包括 1 到 4 个音频采样。这些音频采样可能是不同的音频,也可能是同一音频的不同部分(比如 6 声道的 2 个声道数据)。子包的配置是由层和包头中的 sample_present 比特位决定的。这在 7.6 节中详细的描述。

Table 5-12 Audio Sample Packet Header

80	<u> </u>								
,	Byte \ Bit #	7	6	5	4	3	2	1	0
	HB0	0	0	0	0	0	0	1	0
	HB1	0	0	0	layout	sample_ present.sp3	sample_ present.sp2	sample_ present.sp1	sample_ present.sp0
	HB2	B.3	B.2	B.1	B.0	sample_flat .sp3	sample_flat .sp2	sample_flat .sp1	sample_flat .sp0

- layout: [1 bit] indicates which of two possible Subpacket/audio sample layouts are used. See Section 7.6, *Audio Data Packetization*.
- sample_present.spX [4 fields, 1 bit each] indicates if Subpacket X contains audio sample(s).
- sample_flat.spX [4 fields, 1 bit each] indicates if Subpacket X represents a "flatline" sample. Only valid if "sample_present.spX" is set.
- B.X [4 fields, 1 bit each] B.X = 1 if Subpacket X contains the first frame in a 192 frame IEC 60958 Channel Status block; B.X = 0 otherwise

Table 5-13 Audio Sample Subpacket

Byte \ Bit #	7	6	5	4	3	2	1	0
SB0	L.11	-	-	-	-	-	-	L.4
SB1	L.19	,	•	-	-	-	-	L.12
SB2	L.27	-	-	-	-	-	-	L.20
SB3	R.11	-	-	-	-	-	-	R.4
SB4	R.19	-	-	-	-	-	-	R.12
SB5	R.27	-	-	-	-	-	-	R.20
SB6	PR	C _R	U _R	V _R	PL	CL	UL	VL

- L.X: [24 fields, 1 bit each] Bit corresponding to Time Slot X from first ("left") sub-frame per IEC 60958-1, page 15
- R.X: [24 fields, 1 bit each] Bit corresponding to Time Slot X from second ("right") sub-frame per IEC 60958-1, page 15
- V_L: [1 bit] Valid bit from first sub-frame
- V_R: [1 bit] Valid bit from second sub-frame
- U_L: [1 bit] User Data bit from first sub-frame
- U_R: [1 bit] User Data bit from second sub-frame
- . CL: [1 bit] Channel Status bit from first sub-frame
- C_R: [1 bit] Channel Status bit from second sub-frame
- P_L: [1 bit] Parity bit from first sub-frame (even parity)
- P_R: [1 bit] Parity bit from second sub-frame (even parity)

5.3.5 信息帧

CEA-861-D 定义的所有的信息帧都可以在 HDMI 的信息帧中传输。本规范和 CEA-861-D 以外定义的信息帧不能传输。

每个 HDMI 信息帧携带一个 CEA 信息帧,如下所示。注意,HDMI 对于不在 CEA-861-D 中定义的信息帧提出了附加的要求。对于这些附加的约束要求,参见 8.2 节。

Table 5-14 InfoFrame Packet Header

Byte \ Bit #	7	6	5	4	3	2	1	0			
НВ0	1			In	foFrame Ty	ре					
HB1			InfoFrame_version								
HB2	0	0	0 0 InfoFrame_length								

- InfoFrame Type CEA-861-D.
- [7 bits] least significant 7 bits of the InfoFrame type code as per
- InfoFrame_version [1 byte] version number of InfoFrame as per CEA-861-D.
- InfoFrame_length [5 bits] InfoFrame length in bytes as per CEA-861-D. This length does not include any of the bytes in the Packet Header nor the checksum byte. The maximum value for this field is 27 (0x1B).

Table 5-15 InfoFrame Packet Contents

Byte \ Bit #	7	6	5	4	3	2	1	0
PB0				Chec	ksum			
PB1				Data	Byte 1			
PB2				Data	Byte 2			
PB3PB26					-			
PB27				Data E	Syte 27			

- Checksum [1 byte] Checksum of the InfoFrame. The checksum shall be calculated such
 that a byte-wide sum of all three bytes of the Packet Header and all valid bytes of the
 InfoFrame Packet contents (determined by InfoFrame_length), plus the checksum itself,
 equals zero.
- Data Byte x [27 fields, 1 byte each] Data Byte X of the InfoFrame as defined in CEA-861-D.
 See [HDMI Specification] Section 8.2 for more information.

5.3.6 通用控制包

通用控制包的包头不包含数据。HB1 HB2 字节可以被接收端忽略。通用控制包的包体可以包含 4 个相同的子包,如表 5-17 定义。

Table 5-16 General Control Packet Header

Byte \ Bit #	7	6	5	4	3	2	1	0
HB0	0	0	0	0	0	0	1	1
HB1	0	0	0	0	0	0	0	0
HB2	0	0	0	0	0	0	0	0

Table 5-17 General Control Subpacket

Byte \ Bit #	7	6	5	4	3	2	1	0
SB0	0	0	0	Clear_AVMUTE	0	0	0	Set_AVMUTE
SB1	PP3	PP2	PP1	PP0	CD3	CD2	CD1	CD0
SB2	0	0	0	0	0	0	0	Default_Phase
SB3	0	0	0	0	0	0	0	0
SB4	0	0	0	0	0	0	0	0
SB5	0	0	0	0	0	0	0	0
SB6	0	0	0	0	0	0	0	0

- Set_AVMUTE [1 bit] Set the AVMUTE flag. (See description below).
- Clear_AVMUTE [1bit] Clear the AVMUTE flag. (See description below).
- PP [4 bits] Pixel Packing Phase. (See description in section 6.5.3.)
- CD [4 bits] Color Depth. (See description in section 6.5.3.)
- Default Phase [1 bit] Default Phase. (See description in section 6.5.3.)

通用控制包包含数据域以指示 AVMUTE 和颜色深度或者不包含任何信息(所有的域都为 0)。

指示 SET_AVMUTE 或者 CLEAR_AVMUTE 的通用控制包只可以在 VSYNC 的活跃边缘和随后的 384 像素之间发送。信源端不可以发送同时带有 CLEAR_AVMUTE 和 SET_AVMUTE 指示标识的包。

信源端对于发送通用控制包是可选的。接收端可以可选择地解释通用控制包的内容。接收端可以接收任何的通用控制包。

通用控制包的 SET_AVMUTE 和 CLEAR_AVMUTE 标志,可以被信源端用以减少接收端 TMDS 时钟变化或者中断的负面影响。 使用 AVMUTE 功能可以阻止时钟变化可能造成的音频噪声或者跳动。

当 AVMUTE 设置后,接收端可以假设没有音频和视频数据被接收到。接收端对音频数据可以选择地使用静音功能,对于视频可以选择地使用空白功能。

5.3.7 音频内容保护报文

下表表示 ACP 报文:

Packet 7 6 5 4 3 2 1 0

PB0-PB27 ACP_Type_Dependent (Dependent upon ACP_Type value)

• ACP_Type_Dependent See Section 9.3 for usage. [28 bytes] Contents are dependent upon ACP_Type field.

5.3.8 ISRC 报文

信源端可以使用 ISRC 报文来发送 UPC/EAN 或者 ISRC 码。参见 8.8 节,关于使用 ISRC 报文的规则。

ლTable 5-20 ISRC1 Packet Header

1											
Byte \ Bit #	7	6	5	4	3	2	1	0			
HB0		Packet Type = 0x05									
HB1	ISRC_ Cont	ISRC_ Valid		Reserved (0))		ISRC_Statu	ıs			
HB2				Reser	ved (0)						
• ISRC_	Cont	[1 bit]	bit] ISRC Continued (in next packet). See Section 8.8 for usage.								
 ISRC_ 	Status	[3 bits]	See Sec	tion 8.8 for u	ısage.						

ISRC Valid [1 bit]: This bit is set only when data located in ISRC_Status field and UPC_EAN_ISRC_xx field are valid. When Source cannot obtain complete data for these fields, ISRC_Valid may be 0.

Table 5-21 ISRC1 Packet contents

Packet Byte #	7	6	5	4	3	2	1	0
PB0				UPC_E	N_ISRC_0			
PB1				UPC_E	AN_ISRC_1			
PB2				UPC_E	AN_ISRC_2			
PB3				UPC_E	AN_ISRC_3			
PB4				UPC_EA	AN_ISRC_4			
PB5				UPC_EA	AN_ISRC_5			
PB6				UPC_EA	AN_ISRC_6			
PB7				UPC_EA	AN_ISRC_7			
PB8				UPC_E	AN_ISRC_8			
PB9				UPC_EA	AN_ISRC_9			
PB10				UPC_EA	N_ISRC_10)		
PB11				UPC_EA	N_ISRC_11	ı		
PB12				UPC_EA	N_ISRC_12	2		
PB13				UPC_EA	N_ISRC_13	3		
PB14				UPC_EA	N_ISRC_14	1		
PB15				UPC_EA	N_ISRC_15	5		
PB16-PB27				Rese	erved (0)			

 UPC_EAN_ISRC_xx [16 fields, 1 byte each] UPC/EAN or ISRC byte xx. See Section 8.8 for usage.

Bytes PB16-PB27 shall be set to a value of 0.

Table 5-22 ISRC2 Packet Header

Byte \ Bit #	7	6	5	4	3	2	1	0
HB0				Packet Ty	pe = 0x06			
HB1				Reser	ved (0)			
HB2				Reser	ved (0)			

Table 5-23 ISRC2 Packet contents

Packet Byte #	7	6	5	4	3	2	1	0
PB0				UPC_EA	N_ISRC_16	3		
PB1				UPC_EA	N_ISRC_17	,		
PB2				UPC_EA	N_ISRC_18	3		
PB3				UPC_EA	N_ISRC_19)		
PB4				UPC_EA	N_ISRC_20)		
PB5				UPC_EA	N_ISRC_21	ı		
PB6				UPC_EA	N_ISRC_22	2		
PB7				UPC_EA	N_ISRC_23	3		
PB8				UPC_EA	N_ISRC_24	ŀ		
PB9				UPC_EA	N_ISRC_25	5		
PB10				UPC_EA	N_ISRC_26	3		
PB11				UPC_EA	N_ISRC_27	,		
PB12				UPC_EA	N_ISRC_28	3		
PB13				UPC_EA	N_ISRC_29)		
PB14				UPC_EA	N_ISRC_30)		
PB15				UPC_EA	N_ISRC_31			
PB16-PB27				Rese	rved (0)			

UPC_EAN_ISRC_xx [16 fields, 1 byte each] UPC/EAN or ISRC byte xx.

Bytes PB16-PB27 shall be set to a value of 0.

5.3.9 单比特音频采样报文

单比特音频流是通过单比特音频采样报文来发送的。

一个单比特音频报文可以包含 1 到 4 个单比特音频子包。这些子包可以是不同的采样,也可以是同一音频的不同组成部分(比如 6 声道中的 2 个声道)。子包的配置是由层和包头的 samples_present 位决定的。详细参见 7.6 节,音频数据包。

除了信源端,接收端和转发器也支持单比特音频包。

₹ Table 5-24 One Bit Audio Packet Header

Byte \ Bit #	7	6	5	4	3	2	1	0
НВ0	0	0	0	0	0	1	1	1
HB1	Rsvd (0)	Rsvd (0)	Rsvd (0)	layout	samples_ present.sp3	samples_ present.sp2	samples_ present.sp1	samples_ present.sp0
HB2	Rsvd (0)	Rsvd (0)	Rsvd (0)	Rsvd (0)	samples_ invalid.sp3	samples_ invalid.sp2	samples_ invalid.sp1	samples_ invalid.sp0
• layout				are used	which of two po			
• samples	_preser				nch] indicates i present.spX =			

samples_invalid.spX

else = 0.

[4 fields, 1 bit each] indicates if Subpacket X represents invalid samples. Samples_invalid = 1 if the samples in Subpacket X are invalid; else = 0. This bit is only valid if the relevant "samples_present.spX" is set.

注意,对于单比特音频,采样频率信息在音频信息帧中包含。

Table 5-25 One Bit Audio Subpacket

Byte \ Bit #	7	6	5	4	3	2	1	0
SB0	ChA.7	-	-	-	-	-	-	ChA.0
SB1	ChA.15	-	-	-	-	-	-	ChA.8
SB2	ChA.23	-	-	-	-	-	-	ChA.16
SB3	ChB.7	-	-	-	-	-	-	ChB.0
SB4	ChB.15	-	-	-	-	-	-	ChB.8
SB5	ChB.23	-	-	-	-	-	-	ChB.16
SB6	ChB.27	ChB.26	ChB.25	ChB.24	ChA.27	ChA.26	ChA.25	ChA.24

- ChA.X: [28 fields, 1 bit each] indicates consecutive One Bit Audio samples of the first channel. The most significant bit (ChA.27) is the first sampled bit of the consecutive 28-bit part in the One Bit Audio stream.
- ChB.X: [28 fields, 1 bit each] indicates consecutive One Bit Audio samples of the second channel. The most significant bit (ChB.27) is the first sampled bit of the consecutive 28-bit part in the One Bit Audio stream.

5.3.10 DST 音频报文

DST(压缩的 DSD) 音频流使用 DST 音频包传输。

一个 DST 音频包包含一个 DST 音频包体,该包体由音频数据填充。所有的频道标识和 其他数据都嵌在流中。DST 音频包的详细描述在 7.6.3 节, DST 报文。

对于信源端,接收端和转发器,是否支持 DST 音频包是可选择的。

_{գոր}Table 5-26 DST Audio Packet Header

Byte \ Bit #	7	6	5	4	3	2	1	0
НВ0	0	0	0	0	1	0	0	0
HB1	frame_ start	samples_ invalid	Rsvd (0)	DST_normal _double				
HB2	Rsvd (0)	Rsvd (0)	Rsvd (0)	Rsvd (0)	Rsvd (0)	Rsvd (0)	Rsvd (0)	Rsvd (0)

• frame_start [1 bit] =1 indicates that this packet is the start of a DST frame; =0 otherwise.

samples_invalid [1 bit] = 1 if the samples are not valid; = 0 if the samples are valid.

DST_Normal_Double [1 bit] =0 ("DST_Normal") indicates that the sample rate equals the transfer rate. =1 ("DST_Double") indicates that the transfer rate is twice the sample rate. DST_Double rate is used when normal does

not have sufficient bandwidth.

注意,对于 DST,采样频率信息是在音频信息帧中携带的(参见 8.2.2 节)。

每个 DST 音频 报文体包含 224 比特(28 字节)的 DST 数据。DST 流数据以字节顺序,打包在 DST 音频报文体中,如表 5-27 所示。

Table 5-27 DST Audio Packet Body

Byte \ Bit #	7	6	5	4	3	2	1	0
PB0	D.7	D.6	D.5	D.4	D.3	D.2	D.1	D.0
PB1	D.15	D.14	D.13	D.12	D.11	D.10	D.9	D.8
-	-	-	-	-	-	-	-	-
PB26	D.215	D.214	D.213	D.212	D.211	D.210	D.209	D.208
PB27	D.223	D.222	D.221	D.220	D.219	D.218	D.217	D.216

D.X [224 fields, 1 bit each] DST bitstream, beginning with D.0.

5.3.11 高比特率(HBR)音频流报文

符合 IEC61937 的高比特率(大于 6.144Mbps)压缩音频流,使用 HBR 音频流报文。每个报文携带 4 个连续的 IEC60958 协议帧,对应于 IEC61937 的(4*2*16=)128 连续的比特。这在 7.6.2 节有更详细的描述。

Table 5-28 HBR Audio Stream Packet Header

Byte \ Bit #	7	6	5	4	3	2	1	0
HB0	0	0	0	0	1	0	0	1
HB1	Rsvd (0)							
HB2	B.3	B.2	B.1	B.0	Rsvd (0)	Rsvd (0)	Rsvd (0)	Rsvd (0)

• B.X [4 fields, 1 bit each] B.X =1 if Subpacket X contains the first frame in a 192 frame IEC 60958 Channel Status block; B.X = 0 otherwise

HBR 音频流报文使用 4 个子包,和表 5-13 所表示的音频采样子包相同。

5.3.12 伽玛报文

伽玛边界描述(GBD) 和其他伽玛相关的媒体数据使用伽玛报文来携带。伽玛报文在附录 E中进一步描述。

可以使用几种传输策略(P0,P1,P2等等),采样伽玛报文,以发送 GBD 信息。这几种传输策略的区别只在于传输速率上不同。

5.4 编码

5.4.1 串行化

000000

5.4.2 控制周期编码

000000

5.4.3 TERC4 编码

000000

5.4.4 视频数据编码

00000

5.4.4.1 视频数据编码

下面是视频数据发送时的编码算法的描述。编码器的详细描述给出。其他的实现也是可以的,但对于相同的输入序列,必须产生和下面编码器相同的输出(10 比特)序列。

0 0 0 0 0 0

5.4.4.2 视频数据解码

TMDS 解码如 5-8 图所示。其他的实现方法也是可以的,但对于相同的输入数据流, 必须生成相同的输出数据流。

