Sashwat Tanay

sashwat.tanay@obspm.fr

Laboratoire Univers et Theories (LUTH), Paris Observatory 5 place Jules Janssen, 92190 Meudon, France

sashwattanay.github.io/site ORCID: 0000-0002-2964-7102 Google Scholar, LinkedIn

EDUCATION

Ph.D. (Physics) University of Mississippi	2016-2022
Advisor: Prof. Leo C. Stein	
Dissertation: Post-Newtonian Dynamics of Eccentric, Spinning Binary	
Black Holes and the Associated Gravitational Waveforms	
B.Tech. (Mechanical Engineering) Indian Institute of Technology Ropar	2009-2013
EMPLOYMENT	
Postdoctoral Fellow LUTH, Paris Observatory - PSL University	2023-2025
Adjunct Instructor University of Mississippi	2022-2023
Teaching and Research Assistant University of Mississippi	2016-2022
Junior Research Fellow Tata Institute of Fundamental Research, Mumbai	2013-2015
AWARDS & FELLOWSHIPS	
PSL Postdoctoral Fellowship, Paris Observatory - PSL University	2023-2025
FGSA Travel Award for Excellence in Graduate Research, APS (\$500)	2022
Graduate School Honors Fellowship, Univ. of Mississippi (\$12,000 in total)	2016-2020
Junior Research Fellowship, Tata Institute of Fundamental Research, Mumbai	2013-2015
RESEARCH INTERESTS	

A total of 10 research papers (published and in prep.), plus 1 set of lecture notes, supplemented by computer

 \bullet Gravitational waves (GWs) \bullet Post-Newtonian (PN) dynamics of binary black holes (BBHs) \bullet Quasi-normal mode (QNM) ringdown of black holes (BHs) \bullet Hamiltonian dynamical systems \bullet Extreme mass ratio inspirals (EMRIs)

TEACHING EXPERIENCE

codes on GitHub.

Phys 211 Instructor of record

Summer 2023

(Adjunct Instructor, Univ. of Mississippi; course website here)

- Developed and taught a calculus-based undergraduate physics course
- Created course material, delivered lectures and assessed student performance

Phys 221, 222, 223, 224 Undergrad physics lab courses

2016-2022

(Teaching Assistant, Univ. of Mississippi)

- Assisted in undergraduate physics lab courses
- Conducted lab sessions, and graded assignments

MENTORING

Supervision of 3 mentees have resulted in 3 research papers (one published and two in prep.), and that of a 4^{th} mentee into an undergrad thesis.

Tom Colin (postgrad, Ecole Normale Supérieure, Paris) led to Publication (1)	Oct 2023-present
Manuel Alva (undergrad, Universidad Nacional de Trujillo, Peru) led to Publication (1)	Nov 2023-present
Rickmoy Samanta (postdoc, ISI Kolkata) led to Publication (4)	Sep 2021-Sep 2022
Pranav Kasetty (undergrad thesis co-advisor, IISc Bengaluru)	Oct 2021-Apr 2022

TECHNICAL SKILLS

- Numerical computing, analytical calculations, approximate solutions of differential equations using perturbative methods
- Machine learning & data with scikit-learn (GitHub portfolio)
- Computer: Mathematica (xAct), C/C++, Python (scikit-learn), Fortran, Matlab, Jekyll (web development), Bash

PROFESSIONAL SERVICE

Referee Physical Review & Physical Review Letters	Feb 2023-present
---	------------------

INVITED TALKS & LECTURES

York University, Toronto (Department Colloquium)	Dec 2024
Institut d'astrophysique de Paris (GReCO seminar)	Jan 2024
IISER Pune (Physics Seminar)	Jan 2024
Missouri University of Science and Technology (Department Colloquium)	Aug 2023
Northwestern University	Jul 2023
University of Illinois Urbana-Champaign (lecture workshop; lecture notes here)	Jun 2022
Montana State University (Relativity, Astrophysics and Space Science Seminar)	Apr 2022
Max Planck Institute for Gravitational Physics Potsdam (ACR Seminar, remote)	Jun 2021
Simon Fraser University (Cosmology Seminar, remote)	Sep 2020

OUTREACH & SERVICE

 \bullet Public talk in French (Journée du LUTH), Paris Observatory (2024) \bullet Public Talk on Astronomy - Univ. of MS (2023) \bullet Judge at The Speaker's Edge Competition 2022 - Univ. of MS \bullet Organized STEM Summer Camp - Univ. of MS (2018, 19) \bullet Organized Spooky Physics Night - Univ. of MS (2016, 17, 18) \bullet YouTube videos on research and popular science

LANGUAGES

Fluent: English, Hindi Elementary: French (A1-A2)

PUBLICATIONS AND RESEARCH ARTICLES

- 1. T. Colin, **S. Tanay**, and L. Bernard. Solutions of spinning, eccentric binary black holes at 2nd post-Newtonian order, *in prep.* 2024
- 2. T. Colin, **S. Tanay**, M. A. Morales, and L. Bernard. Orbit-averaged dynamics of spinning binary black holes in a Hamiltonian framework at 2nd post-Newtonian order, *in prep.* 2024
- 3. V. Witzany, V. Skoupý, L. C. Stein, and S. Tanay. Actions of spinning compact binaries: Spinning particle in Kerr matched to dynamics at 1.5 post-Newtonian order, 2024, arXiv:2411.09742 (submitted)
- 4. **S. Tanay**. Towards a more robust algorithm for computing the Kerr quasinormal mode frequencies, 2022, arXiv:2210.03657 (to be submitted)
- 5. R. Samanta, S. Tanay, and L. C. Stein. Closed-form solutions of spinning, eccentric binary black holes at 1.5 post-Newtonian order. *Phys. Rev. D*, 108(14):124039, 2023, arXiv:2210.01605
- S. Tanay. Integrability and action-angle-based solution of the post-Newtonian BBH system (lecture notes), 2022, arXiv:2206.05799
- S. Tanay, G. Cho, and L. C. Stein. Action-angle variables of a binary black hole with arbitrary eccentricity, spins, and masses at 1.5 post-Newtonian order. *Phys. Rev. D*, 107(26):103040, 2021, arXiv:2110.15351
- 8. G. Cho, **S. Tanay**, A. Gopakumar, and H. M. Lee. Generalized quasi-Keplerian solution for eccentric, nonspinning compact binaries at 4PN order and the associated inspiral-merger-ringdown waveform. *Phys. Rev. D*, 105(6):064010, 2022, arXiv: 2110.09608
- 9. S. Tanay, L. C. Stein, and J. T. Gálvez Ghersi. Integrability of eccentric, spinning black hole binaries up to second post-Newtonian order. *Phys. Rev. D*, 103(6):064066, 2021, arXiv: 2012.06586
- 10. **S. Tanay**, A. Klein, E. Berti, and A. Nishizawa. Convergence of Fourier-domain templates for inspiraling eccentric compact binaries. *Phys. Rev. D*, 100(6):064006, 2019, arXiv:1905.08811
- 11. **S. Tanay**, M. Haney, and A. Gopakumar. Frequency and time domain inspiral templates for comparable mass compact binaries in eccentric orbits. *Phys. Rev. D*, 93(6):064031, 2016, arXiv:1602.03081