FSA - Cheat Sheet für Klausur

Komplexität-Theorie

- · Algorithmen mit polynominaler Laufzeit gelten als handhabbar
- · Algorithmen mit exponentieller Laufzeit gelten als nicht handhabbar

Komplexitätsklassen

- P Problem kann in polynominaler Zeit von einem deterministischem System berechnet werden
- NP Problem kann in polynominaler Zeit von einem nichtdeterministischem System berechnet werden

Reguläre Bezeichnungen

Σ (Sigma)	Alphabet, bzw. Menge an Buchstaben
Σ^*	Die Menge aller Wörter im Alphabet Σ
$L\subseteq \Sigma^*$	L ist eine Teilmenge und heißt formale Sprache über dem Alphabet von Σ
w	Ein Wort, mit Buchstaben a die aus dem Alphabet Σ sind: $a \in \Sigma$
w^R	Inverses Wort, Beispiel: Ist $w = abb$ dann ist $w^R = bba$
w	Betrag des Wortes, Anzahl der Buchstaben im Wort
ϵ	Ein leeres Wort, anders gesagt "NULL"

Kleenesche Hülle

Der kleenesche Stern oder auch nur Stern sagt aus, dass ein Wort oder ein Buchstabe beliebig oft wiederholt werden kann.

Beispielsweise kann der Ausdruck R = 0*1 folgende Wörter bilden: 01, 0001, 000001, usw...

Regex arbeitet z.B. mit diesem System.

Grammatik

G	Eine Grammatik bestehend aus: $G = (\Sigma, N, P, S)$
Σ	Ein Alphabet
N	Eine Menge an Variablen, die angibt, wie die Zeichen aus dem Alphabet Σ kombiniert werden dürfen, meist durch Operator \mid (oder) getrennt
P	Eine Menge an Produktionsregeln, welche beschreiben, wie bzw. welche Wörter aus dem Alphabet Σ gebildet werden können
S	Eine Startvariable mit $S \in N$, also eine Menge, die angibt, in welcher Reihenfolge die Variablen drankommen dürfen. Beispiel: Wenn $A \to 1 \mid 2$ und $B \to 10 \mid 100$ und $S \to A \mid BA$ sind, dann heißt das, dass ein Wort nur in der Reihenfolge z.B. $A \Rightarrow 1$ oder $BA \Rightarrow 101$ gebildet werden darf.

Veranschaulichendes Beispiel:

Römische Zahlen von 1 bis 9: $A \rightarrow i |ii|iii|iv|v|vi|vii|viii|ix$

Römische Zahlen von 10 bis 90 (10er Schritte): $B \to x |xx|xxx|xl|l|lx|lxx|lxxx|xc$

Startsymbol-Regel: $S \rightarrow A \mid B \mid BA$

Bildet eine Grammatik wie folgt: $G = (\Sigma, N, P, S)$

 $G = (\{i, v, l, x, c\}, \{A, B, S\}, P, S)$ mit

 $P = \{A \rightarrow i \mid ii \mid \dots, B \rightarrow x \mid xx \mid \dots, S \rightarrow A \mid B \mid BA\}$

DEA Bezeichnungen

A	Automat bestehend aus: $A = (\Sigma, S, \delta, s_0, F)$
Σ	Eingabealphabet z.B. $\Sigma = \{0,1\}$
S	Eine endliche Menge von möglichen Zuständen z.B. $S = \{z_0, z_1, z_2\}$
δ (Delta)	Zustands-Übergangsfunktion, die einen einzelnen Zustandsübergang beschreibt, z.B.: $\delta(z_0,a)=z_2 \to \text{heißt, ist man im Zustand } z_0 \text{ und gibt ein } a \text{ ein, so gibt die Funktion den Zustand zurück, den man nach der Eingabe erreicht, in dem Fall } z_2$
s_0	Startzustand, welcher Teil der Menge der Zustände sein muss, also $s_0 \in S$
F	Teilmenge an Endzuständen, z.B. $F=\{z_2\}$, wobei der Endzustand aus S sein muss