CS669-Pattern Recognition

Assignment - 1

Bayes Classifier

Group 6

Team:

Akhilesh Devrari (B16005) Aman Jain (B16044) Yash Agrawal (B16120)

Table of Contents:

Objective	2
Artificial datasets	2
Linearly separable dataset	2
Non-linearly separable dataset	2
Real world dataset	2
Procedure	3
Observations	4
Dataset I : Linearly Separable Data	4
Case 1 : Covariance matrix for all the classes is the same and is σ^2	5
Case 2 : Full Covariance matrix for all classes is the same and is $\boldsymbol{\Sigma}$	6
Case 3 : Covariance matrix is diagonal & is different for each class	7
Case 4 : Full Covariance matrix for each class is different	8
Dataset II : Non-Linearly Separable Data	9
Case 1 : Covariance matrix for all the classes is the same and is σ^2	10
Case 2 : Full Covariance matrix for all classes is the same and is Σ	11
Case 3 : Covariance matrix is diagonal & is different for each class	12
Case 4 : Full Covariance matrix for each class is different	13
Dataset III : Real World Data	14
Case 1 : Covariance matrix for all the classes is the same and is σ^2	15
Case 2 : Full Covariance matrix for all classes is the same and is Σ	16
Case 3 : Covariance matrix is diagonal & is different for each class	17
Case 4 : Full Covariance matrix for each class is different	18
Conclusion	19

1. Objective:

- 1.1. Build Bayes classifier for classification of following datasets into three classes:
 - 1.1.1. Artificial datasets
 - 1.1.1.1. Linearly separable dataset
 - 1.1.1.2. Non-linearly separable dataset
 - 1.1.2. Real world dataset
- 1.2. Find confusion matrix for each case (for different datasets).
- 1.3. Calculate classification accuracy, precision for every class, mean precision, recall for every class, mean recall, F-measure for every class and mean F-measure.
- 1.4. Plot density contour for each class with data points superposed.
- 1.5. Plot decision region for each pair of classes and together for all classes.

2. Procedure:

- 2.1. Separate given data files of each class into training and test data files. Training data consists of 75% and test data consists of 25% of given data set.
- 2.2. To apply Bayesian classification, assume that data of all classes -follow Gaussian distribution.
- 2.3. Plot each training data point and density contour for each class.
- 2.4. Calculate discriminant function (g(x)) for each of the following cases:
 - 2.4.1. Covariance matrix for all the classes is the same and is σ^2 I.
 - 2.4.2. Full Covariance matrix for all the classes is the same and is Σ .
 - 2.4.3. Covariance matrix is diagonal and is different for each class.
 - 2.4.4. Full Covariance matrix for each class is different.
- 2.5. For each point in X-Y plane calculate its discriminant function for each class and color that point according to the class with maximum value of discriminant function.
- 2.6. Use test data (25% of total class data) to test the classifier for each case and calculate the confusion matrix, accuracy, recall, precision and F-measure.-

3. Observations:

3.1. Dataset I: Linearly Separable Data

Fig 1: Contour plot for linearly separable dataset. Contour plot between: (a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2, class3 together

a) Case 1: Covariance matrix for all the classes is the same and is σ^2 I

Fig 2: Class decision boundary plot for case 1, implying on dataset 1. Decision boundary plot between (a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2, class3 together.

Accuracy: 100 %

Confusion Matrix

	Class 1	Class 2	Class 3
Class 1	125	0	0
Class 2	0	125	0
Class 3	0	0	125

	Class 1	Class 2	Class 3	Mean
Recall	1.0000	1.0000	1.0000	1.0000
Precision	1.0000	1.0000	1.0000	1.0000
F-Measure	1.0000	1.0000	1.0000	1.0000

b) Case 2 : Full Covariance matrix for all classes is the same and is Σ

Fig 3: Class decision boundary plot for case 2, implying on dataset 1. Decision boundary plot between (a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2, class3 together.

Accuracy: 99.73 %

Confusion Matrix

	Class 1	Class 2	Class 3
Class 1	125	0	0
Class 2	0	125	0
Class 3	0	1	124

	Class 1	Class 2	Class 3	Mean
Recall	1.0000	1.0000	0.9920	0.9973
Precision	1.0000	0.9921	1.0000	0.9973
F-Measure	1.0000	0.9960	0.9960	0.9973

c) Case 3: Covariance matrix is diagonal & is different for each class

Fig 4: Class decision boundary plot for case 3, implying on dataset 1. Decision boundary plot between (a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2, class3 together.

Accuracy : 99.73 %

0

Class 1

Class 2

Class 3

Confusion Matrix

Class 1 Class 2 Class 3 125 0 0 0 125 0

1

124

	Class 1	Class 2	Class 3	Mean
Recall	1.0000	1.0000	0.9920	0.9973
Precision	1.0000	0.9921	1.0000	0.9973
F-Measure	1.0000	0.9960	0.9960	0.9973

d) Case 4: Full Covariance matrix for each class is different.

Fig 5: Class decision boundary plot for case 4, implying on dataset 1. Decision boundary plot between (a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2, class3 together.

Accuracy: 100 %

Confusion Matrix

	Class 1	Class 2	Class 3
Class 1	125	0	0
Class 2	0	125	0
Class 3	0	0	125

	Class 1	Class 2	Class 3	Mean
Recall	1.0000	1.0000	1.0000	1.0000
Precision	1.0000	1.0000	1.0000	1.0000
F-Measure	1.0000	1.0000	1.0000	1.0000

3.2. Dataset II: Non-Linearly Separable Data

Fig 6: Contour plot for Non-linearly separable dataset. Contour plot between:
(a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2,
class3 together

a) Case 1: Covariance matrix for all the classes is the same and is σ^2 I

Fig 7: Class decision boundary plot for case 1, implying on dataset 1. Decision boundary plot between (a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2, class3 together.

Accuracy: 26.4 % Confusion Matrix

Class 1 Class 2 Class 3 Class 1 66 0 59 Class 2 0 6 119 Class 3 109 81 60

	Class 1	Class 2	Class 3	Mean
Recall	0.5280	0.0480	0.2400	0.2720
Precision	0.3771	0.0690	0.2521	0.2327
F-Measure	0.4400	0.0566	0.2459	0.2475

b) Case 2: Full Covariance matrix for all classes is the same and is Σ

Fig 8: Class decision boundary plot for case 2, implying on dataset 1. Decision boundary plot between (a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2, class3 together.

Accuracy: 22.4 %

Confusion Matrix

	Class 1	Class 2	Class 3
Class 1	0	0	125
Class 2	0	0	125
Class 3	89	49	112

	Class 1	Class 2	Class 3	Mean
Recall	0.0000	0.0000	0.4480	0.1493
Precision	0.0000	0.0000	0.3094	0.1031
F-Measure	0.0000	0.0000	0.3660	0.1220

c) Case 3: Covariance matrix is diagonal & is different for each class

Fig 9: Class decision boundary plot for case 3, implying on dataset 1. Decision boundary plot between (a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2, class3 together.

Accuracy: 94.8 % Confusion Matrix

	Class 1	Class 2	Class 3
Class 1	116	4	5
Class 2	6	112	7
Class 3	4	0	246

	Class 1	Class 2	Class 3	Mean
Recall	0.9280	0.8960	0.9840	0.9360
Precision	0.9206	0.9655	0.9534	0.9465
F-Measure	0.9243	0.9294	0.9685	0.9407

d) Case 4: Full Covariance matrix for each class is different.

Fig 10: Class decision boundary plot for case 4, implying on dataset 1. Decision boundary plot between (a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2, class3 together.

Accuracy: 94.4 %

Confusion Matrix

	Class 1	Class 2	Class 3
Class 1	115	5	5
Class 2	4	111	10
Class 3	4	0	246

	Class 1	Class 2	Class 3	Mean
Recall	0.920	0.8880	0.9840	0.9306
Precision	0.9349	0.9568	0.9425	0.9447
F-Measure	0.9274	0.9211	0.9628	0.9371

3.3. Dataset III: Real World Data

Fig 11: Contour plot for Real World dataset. Contour plot between: (a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2, class3 together

a) Case 1: Covariance matrix for all the classes is the same and is σ^2 I

Fig 12: Class decision boundary plot for case 1, implying on dataset 1. Decision boundary plot between (a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2, class3 together.

Accuracy : 83.3896 %

Confusion Matrix

	Class 1	Class 2	Class 3
Class 1	572	43	7
Class 2	172	397	44
Class 3	24	5	512

	Class 1	Class 2	Class 3	Mean
Recall	0.9196	0.6476	0.9463	0.8378
Precision	0.7447	0.8921	0.9094	0.8487
F-Measure	0.8230	0.7504	0.9275	0.8336

b) Case 2: Full Covariance matrix for all classes is the same and is Σ

Fig 13: Class decision boundary plot for case 2, implying on dataset 1. Decision boundary plot between (a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2, class3 together.

Accuracy : 84.6846 %

Confusion Matrix

Class 1 Class 2 Class 3 Class 1 602 13 7 Class 2 202 392 19 Class 3 26 5 510

	Class 1	Class 2	Class 3	Mean
Recall	0.9678	0.6394	0.9426	0.8500
Precision	0.7253	0.9560	0.9514	0.8776
F-Measure	0.8292	0.7663	0.9470	0.8475

c) Case 3: Covariance matrix is diagonal & is different for each class

Fig 14: Class decision boundary plot for case 3, implying on dataset 1. Decision boundary plot between (a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2, class3 together.

Accuracy: 82.5450 %

Confusion Matrix

n Matrix Analysis

	Class 1	Class 2	Class 3
Class 1	546	69	7
Class 2	185	410	18
Class 3	15	16	510

	Class 1	Class 2	Class 3	Mean
Recall	0.8778	0.6688	0.9426	0.8297
Precision	0.7319	0.8282	0.9532	0.8378
F-Measure	0.7982	0.7400	0.9479	0.8287

d) Case 4: Full Covariance matrix for each class is different.

Fig 15: Class decision boundary plot for case 4, implying on dataset 1. Decision boundary plot between (a) class1 & class2, (b) class2 & class3, (c) class3 & class1 (d) class1, class2, class3 together.

Accuracy: 81.0810 %

Confusion Matrix

	Class 1	Class 2	Class 3
Class 1	531	84	7
Class 2	208	400	5
Class 3	13	19	509

	Class 1	Class 2	Class 3	Mean
Recall	0.8536	0.6525	0.9408	0.8156
Precision	0.7061	0.7952	0.9769	0.8261
F-Measure	0.7729	0.7168	0.9585	0.8161

4. Conclusion

- 1) For linearly separable artificial data, Bayes classifier works excellent with very high accuracy (close to 100%) for all cases.
- 2) For non-linearly separable artificial data, Bayes classifier fails for case 1 and case 2 but works well for case 3 and case 4.
- 3) For real-world data results were good for all cases but not as good as given artificial data because of overlapping data.
- 4) For case 1(covariance matrix = σ^2 I) & case 2(covariance matrix = Σ), the decision boundary is linear for all datasets because the discriminant function will be a linear equation.
- 5) For case 3 and case 4, the decision boundary is non-linear for all datasets because the discriminant function will be a hyper quadratic equation.
- 6) As it can be seen, performance of classifier changes with change in choice of covariance matrix. For the same dataset, accuracy is different for different choice of covariance matrix.