AMENDMENTS TO THE CLAIMS

1. (previously presented) A method implemented in a computer system, for clustering a string, the string including a plurality of characters, the method including:

identifying R unique n-grams $T_{1...R}$ in the string; for every unique n-gram T_S :

if the frequency of T_S in a set of n-gram statistics is not greater than a first threshold:

clustering the string with a cluster associated with T_S; otherwise:

for every other n-gram T_V in the string $T_{1...R, except S}$:

concluding that the frequency of n-gram $T_{\rm V}$ is greater than the first threshold, and in response:

if the frequency of n-gram pair T_S - T_V is not greater than a second threshold:

clustering the string with a cluster associated with the ngram pair T_S - T_V ;

otherwise:

for every other n-gram T_X in the string $T_{1...R, \text{ except S and V}}$:

clustering the string with a cluster associated with the n-gram triple T_S - T_V - $T_{X;}$

where $T_{1...R}$ is a set of n-grams, R is the number of elements in $T_{1...R}$, and T_S , T_V , and T_X are members of $T_{1...R}$, and S, V, and X are integer indexes to identify members of $T_{1...R}$.

2. (original) The method of claim 1 further including compiling n-gram statistics.

- 3. (original) The method of claim 1 further including compiling n-gram pair statistics.
- 4. (canceled)
- 5. (canceled)
- 6. (previously presented) A method implemented in a computer system, for clustering a string, the string including a plurality of characters, the method including:

identifying R unique n-grams $T_{1...R}$ in the string; for every unique n-gram T_S :

if the frequency of T_S in a set of n-gram statistics is not greater than a first threshold:

clustereing the string with a cluster associated with T_S ; otherwise:

for i = 1 to Y:

for every unique set of i n-grams T_U in the string $T_{1...R, \, except \, S}$:

if the frequency of the n-gram set T_S - T_U is not greater than a second threshold:

clustering the string with a cluster associated with the n-gram set T_S - T_U ;

if the string has not been associated with a cluster with this value of T_S : for every unique set of Y+1 n-grams T_{UY} in the string $T_{1...R, \, except \, S}$: clustering the string with a cluster associated with the Y+2 n-gram group T_{S} - T_{UY} ,

where T_{1...R} is a set of n-grams, R is the number of elements in

 $T_{1...R}$, and T_S , T_V , and T_X are members of $T_{1...R}$, and S, V, and X are integer indexes to identify members of $T_{1...R}$.

- 7. (original) The method of claim 6 where Y = 1.
- 8. (original) The method of claim 6 further including compiling n-gram statistics.
- 9. (original) The method of claim 6 further including compiling n-gram group statistics.
- 10. (currently amended) A computer program, stored on a tangible storage medium, for use in An article comprising a computer-readable storage medium having a computer program stored thereon for clustering a string, the program including executable instructions that cause a computer to:

identify R unique n-grams $T_{1...R}$ in the string;

for every unique n-gram T_S:

if the frequency of T_S in a set of n-gram statistics is not greater than a first threshold:

clustering the string with a cluster associated with T_S; otherwise:

for every other n-gram T_V in the string $T_{1...R, \text{ except } S}$:

concluding that the frequency of n-gram T_V is greater than the first threshold and in response:

if the frequency of n-gram pair T_S - T_V is not greater than a second threshold:

clustering the string with a cluster associated with the ngram pair T_S - T_V ;

otherwise

for every other n-gram T_X in the string $T_{1...R, \, except \, S \, and \, V}$: cluster the string with a cluster associated with the n-gram triple T_S - T_V - T_X ; where $T_{1...R}$ is a set of n-grams, R is the number of elements in $T_{1...R}$, and T_S , T_V , and T_X are members of $T_{1...R}$, and S, V,

and X are integer indexes to identify members of T_{1...R}.

- 11. (currently amended) The emputer program article of claim 10 further including executable instructions that cause a computer to compile n-gram statistics.
- 12. (currently amended) The eomputer program article of claim 10 further including executable instructions that cause a computer to compile n-gram pair statistics.