Chapter 2

Weber Jakob

November 27, 2020

Contents

1	Sol	Solution Approach								
	1.1	Shape	-constraint P-splines							
		1.1.1	Monotonic increasing constraint							
		1.1.2	Monotonic decreasing constraint							
		1.1.3	Convex constraint							
		1.1.4	Concave constraint							
		1.1.5	Peak constraint							
		1.1.6	Valley constraint							
		1.1.7	Jamming constraint							
		1.1.8	Boundedness constraint							
	1.2	Univa	riate Function Approximation							

Chapter 1

Solution Approach

In this chapter we use the theory discussed in Chapter ?? to estimate uni- and bivariate functions using data and a priori domain knowledge. An overview of the different problems considered in this chapter is given in Table 1.1.

Univariate	Section	Bivariate	Section
B-splines		Tensor-product B-splines	
P-splines		Tensor-product P-splines	
SCP-splines		Tensor-product SCP-splines	

Table 1.1: Problem overview.

First, we are using B-splines, see Section ??, for the estimation of the unknown function y = f(x), i.e. we solve the optimization problem

$$\arg\min_{\beta} Q_1(\mathbf{y}, \beta) = \|\mathbf{y} - \mathbf{X}\beta\|, \tag{1.1}$$

using the B-spline or tensor-product B-spline basis matrix \mathbf{X} . Next, we use the concept of P-splines, see Section $\ref{eq:spline}$, to estimate smooth functions, i.e. we solve the optimization problem

$$\arg\min_{\beta} Q_2(\mathbf{y}, \boldsymbol{\beta}; \lambda) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\| + \lambda \cdot \text{pen}(\boldsymbol{\beta}), \tag{1.2}$$

where $pen(\beta)$ specifies a smoothness penalty term. Finally, we are going to incorporate a priori domain knowledge into the fitting process using shape-constrained P-splines (SCP-splines), i.e. we solve the optimization problem

$$\arg\min_{\beta} Q_3(\mathbf{y}, \beta; \lambda, \lambda_c) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\| + \lambda \cdot \operatorname{pen}(\boldsymbol{\beta}) + \lambda_c \cdot \operatorname{con}(\boldsymbol{\beta}), \tag{1.3}$$

where $pen(\beta)$ is again a smoothness penalty term and $con(\beta)$ specifies the user-defined shape-constraint to incorporate a priori domain knowledge with, see [?] and [?]. Various types a priori domain knowledge can be incorporated using the constraints listed in Table 1.2.

Constraint		Description	Section
Jamming		$f(x^{(M)}) \approx y^{(M)}$	1.1.7
Boundedness	lower	$f(x) \ge M$	1.1.8
Doundedness	upper	$f(x) \le M$	1.1.8
Monotonicity	increasing	$f'(x) \ge 0$	1.1.1
Monotonicity	decreasing	$f'(x) \le 0$	1.1.2
Curvature	convex	$f''(x) \ge 0$	1.1.3
Curvature	concave	$f''(x) \le 0$	1.1.4
	peak	$m = \arg\max_{x} f(x)$	1.1.5
		$f'(x) \ge 0$ if $x < m$	
Unimodality		$f'(x) \le 0$ if $x > m$	
Cilinodanty	valley	$m = \arg\min_{x} f(x)$	1.1.6
		$f'(x) \le 0$ if $x < m$	
		$f'(x) \ge 0$ if $x > m$	

Table 1.2: Overview of the considered constraints

The focus of this chapter is the definition and use of shape-constraint P-splines, which are characterize by their parametes β given by solving the optimization problem 1.3.

1.1 Shape-constraint P-splines

In Section ??, we enforced smoothness by penalizing the second-order derivative of the underlying B-spline using finite differences of adjacent parameters β over the whole input space to create the so-called P-splines. We will now utilize the same idea to create the shape-constrained penalty term $con(\beta)$ in 1.3. We motivate the approach using the example of monotonic increasing behavior. The descriptions for the other constraints listed in Table 1.2 follow later.

1.1.1 Monotonic increasing constraint

A function is monotonic increasing if it's first-order derivative is larger than or equal to zero for the whole input space. We therefore introduce a penalty of the form

$$\lambda_c \int (f(x)')^2 dx \quad \text{if } f'(x) < 0, \tag{1.4}$$

to penalize negative first-order derivatives of the estimated function. The penalty is weighted by the *constraint parameter* λ_c . Making use of the finite difference approximation, see Section ??, this time for the first-order derivative, leads to a penalty of the form

$$\lambda_c \cdot \text{con}(\boldsymbol{\beta}) = \lambda_c \boldsymbol{\beta}^{\mathrm{T}} \mathbf{K_c} \boldsymbol{\beta}, \tag{1.5}$$

with the shape-constraint penalty matrix $\mathbf{K}_c = \mathbf{D}_1^{\mathrm{T}} \mathbf{V}_c \mathbf{D}_1 \in \mathbb{R}^{d \times d}$. The first-order derivative is approximated using the matrix form of the first-order finite difference operator $\Delta^1 \beta_j = \beta_j - \beta_{j-1}$ given by

$$\mathbf{D}_{1}\boldsymbol{\beta} = \begin{bmatrix} -1 & 1 & & & \\ & -1 & 1 & & \\ & & \ddots & \ddots & \\ & & & -1 & 1 \end{bmatrix} \begin{bmatrix} \beta_{1} \\ \vdots \\ \beta_{d} \end{bmatrix}$$
 (1.6)

with the mapping matrix $\mathbf{D}_1 \in \mathbb{R}^{(d-1)\times d}$. The weighting matrix $\mathbf{V}_c \in \mathbb{R}^{(d-1)\times (d-1)}$ in 1.5 handles the "if"-condition in 1.4. It is a diagonal matrix with the diagonal elements v_i defined as

$$v_j(\boldsymbol{\beta}) = \begin{cases} 0, & \text{if } \Delta^1 \beta_j \ge 0\\ 1, & \text{if } \Delta^1 \beta_j < 0 \end{cases} \quad \text{for } j = 2, 3, \dots, d.$$
 (1.7)

Therefor, the weighting matrix $\mathbf{V} := \mathbf{V}(\boldsymbol{\beta})$ depends on the parameters $\boldsymbol{\beta}$ and we arrive at a formulation similar to Ridge regression with a parameter dependent, non-linear penalty matrix $\mathbf{K} := \mathbf{K}(\boldsymbol{\beta})$, see Section ??. The convex objective function is then of the form

$$Q_3(\mathbf{y}, \boldsymbol{\beta}; \lambda, \lambda_c) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\| + \lambda \boldsymbol{\beta}^{\mathrm{T}} \mathbf{K} \boldsymbol{\beta} + \lambda_c \boldsymbol{\beta}^{\mathrm{T}} \mathbf{K}_c \boldsymbol{\beta}, \tag{1.8}$$

see Appendix B for the proof of convexity. We use the iterative approach given in Algorithm 1 to estimate the optimal parameters $\hat{\beta}_{SCP}$ under the user-defined shape constraint.

Algorithm 1: Estimation of the shape-constraint P-spline coefficients.6

```
\begin{aligned} & \textbf{Result: } \hat{\boldsymbol{\beta}}_{SCP} \\ & \hat{\boldsymbol{\beta}}_{init} \leftarrow \textbf{Solution from} 1.1 \text{ or } 1.2; \\ & \textbf{V}_1 \leftarrow \textbf{V}_c(\hat{\boldsymbol{\beta}}_{init}); \\ & \textbf{V}_0 \leftarrow \textbf{0}; \\ & i \leftarrow 0; \\ & \textbf{while } \textbf{V}_i \neq \textbf{V}_{i+1} \textbf{ do} \\ & & \hat{\boldsymbol{\beta}}_{i+1} = (\textbf{X}^T\textbf{X} + \lambda \textbf{D}_2^T\textbf{D}_2) + \lambda_c \textbf{D}_1^T\textbf{V}_i \textbf{D}_1)^{-1} \textbf{X}^T\textbf{y}; \\ & & \textbf{V}_{i+1} \leftarrow \textbf{V}_c(\hat{\boldsymbol{\beta}}_i); \\ & & i \leftarrow i+1; \end{aligned}
& \textbf{end}
& \hat{\boldsymbol{\beta}}_{SCP} \leftarrow \hat{\boldsymbol{\beta}}_i \end{aligned}
```

In Algorithm 1 we use a Newton-Raphson scheme for the estimation of $\hat{\beta}_i$. For more information, see Appendix B and [?]. The approach described above incorporates the shape-constraint as soft constraint depending on the constraint parameter λ_c with the limits of no constraint for $\lambda_c \to 0$ and hard constraint for $\lambda_c \to \infty$. Therefor, λ_c should be set by hand reflecting the users confidence in the a priori domain knowledge.

1.1.2 Monotonic decreasing constraint

Monotonic decreasing behavior can be introduced by penalizing positive first-order derivatives. Therefor, we use the matrix form of the first-order finite

difference operator given in 1.6 as mapping matrix and define the diagonal elements of the weight matrix ${\bf V}$ as

$$v_j(\beta) = \begin{cases} 0, & \text{if } \Delta^1 \beta_j \le 0\\ 1, & \text{if } \Delta^1 \beta_j > 0 \end{cases} \quad \text{for } j = 2, 3, \dots, d.$$
 (1.9)

1.1.3 Convex constraint

Convex behavior can be introduced by penalizing negative second-order derivatives. Therefor, we use the matrix form of the second-order finite difference operator $\Delta_2\beta_j=\beta_j-2\beta_{j-1}+\beta_{j-2}$ given by

$$\mathbf{D}_{2}\boldsymbol{\beta} = \begin{bmatrix} 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} \beta_{1} \\ \vdots \\ \beta_{d} \end{bmatrix}, \tag{1.10}$$

as mapping matrix $\mathbf{D}_2 \in \mathbb{R}^{(d-2) \times d}$ and define the diagonal elements of the weighting matrix \mathbf{V} as

$$v_j(\beta) = \begin{cases} 0, & \text{if } \Delta^2 \beta_j \ge 0\\ 1, & \text{if } \Delta^2 \beta_j < 0 \end{cases} \quad \text{for } j = 3, 4, \dots, d.$$
 (1.11)

1.1.4 Concave constraint

Convex behavior can be introduced by penalizing negative second-order derivatives. Therefor, we use the matrix form of the second-order finite difference operator, see 1.10, as mapping matrix $\mathbf{D}_2 \in \mathbb{R}^{(d-2)\times d}$ and define the diagonal elements of the weighting matrix \mathbf{V} as

$$v_j(\beta) = \begin{cases} 0, & \text{if } \Delta^2 \beta_j \le 0\\ 1, & \text{if } \Delta^2 \beta_j > 0 \end{cases} \quad \text{for } j = 3, 4, \dots, d.$$
 (1.12)

1.1.5 Peak constraint

Peak behavior can be introduced by penalizing negative first-order derivatives for the increasing part and positive first-order derivatives for the decreasing part. Therefor, we use the matrix for of the first-order finite difference operator, see 1.6, as mapping matrix \mathbf{D} . The weighting matrix \mathbf{V} now has a special structure. First, we find the data point $x_{(textmax)}$ corresponding to the peak value in the data, i.e. $\max = \max_i y^{(i)}$, for $i=1,2,\ldots,n$. Next, we identify the dominant B-spline basis function $B_p^l(x)$ around $x^{(\max)}$, i.e. the B-spline basis function with the maximal value at $x^{(\max)}$, such that

$$B_p^l(x^{(\text{max})}) > B_j^l(x^{(\text{max})}), \quad \text{for } j = 1, 2, \dots, p - 1, p + 1, \dots, d.$$
 (1.13)

We now use the index p of the dominant B-spline basis function in the definition of the diagonal elements of the weighting matrix V as

$$v_j(\beta) = \begin{cases} 0, & \text{if } \Delta^1 \beta_j \ge 0 \\ 1, & \text{if } \Delta^1 \beta_j < 0 \end{cases}, \quad \text{for } j = 2, 3, \dots, p$$
 (1.14)

and

$$v_j(\beta) = \begin{cases} 0, & \text{if } \Delta^1 \beta_j \le 0 \\ 1, & \text{if } \Delta^1 \beta_j > 0 \end{cases}, \quad \text{for } j = p + 1, p + 2, \dots, d.$$
 (1.15)

1.1.6 Valley constraint

Valley behavior can be introduced by the same approach as above by multiplying the data with -1 or by always doing the inverse operation. Therefor, we use the matrix form of the first-order finite difference operator, see 1.6, as mapping matrix \mathbf{D} and define the diagonal elements of the weighting matrix \mathbf{V} as

$$v_j(\beta) = \begin{cases} 0, & \text{if } \Delta^1 \beta_j \le 0 \\ 1, & \text{if } \Delta^1 \beta_j > 0 \end{cases}, \quad \text{for } j = 2, 3, \dots, p$$
 (1.16)

and

$$v_j(\beta) = \begin{cases} 0, & \text{if } \Delta^1 \beta_j \ge 0 \\ 1, & \text{if } \Delta^1 \beta_j < 0. \end{cases}, \quad \text{for } j = p + 1, p + 2, \dots,$$
 (1.17)

for p being the index of the B-spline basis function $B_p^l(x)$ with the maximal value at $x^{(\min)}$ with $\min = \min_i y^{(i)}$ for $i = 1, 2, \dots, n$.

1.1.7 Jamming constraint

Jamming the function f(x) by some point $p = \{x^{(jamm)}, y^{(jamm)}\}$ means that the estimated function $f(x^{(jamm)}) \approx y^{(jamm)}$. This can be incorporated using the B-spline basis matrix $\mathbf{X} \in \mathbb{R}^{n \times k}$ as mapping matrix \mathbf{D}_c and a weighting matrix $\mathbf{V} \in \mathbb{R}^{n \times n}$ given by

$$v_j(\beta) = \begin{cases} 0, & \text{if } x^{(j)} \neq x^{(jamm)} \\ 1, & \text{if } x^{(j)} = x^{(jamm)} \end{cases} \quad \text{for } j = 1, 2, \dots, n.$$
 (1.18)

1.1.8 Boundedness constraint

The user-defined constraint for boundedness from below by M=0 uses as mapping matrix \mathbf{D} the B-spline basis matrix $\mathbf{X} \in \mathbb{R}^{n \times k}$. The weighting matrix $\mathbf{V} \in \mathbb{R}^{n \times n}$, with individual weights v_i , is specified as follows:

$$v_j(\beta) = \begin{cases} 0, & \text{if } f(x^{(j)}) \ge M \\ 1, & \text{if } f(x^{(j)}) < M \end{cases} \text{ for } j = 1, 2, \dots, n.$$
 (1.19)

Using different values of M allows us to bound from below from any number M. Switching the comparison operators in (1.19) enables us to bound functions from above.

1.2 Univariate Function Approximation