# Project STA 2023: Statistics I Spring 2023

## Descriptive Analysis and Hypothesis Testing

Submitted to
Dr./Mr. XXXX
Florida Polytechnic University

Submitted by
Shriraj Mandulapalli
Computer Science: Software Engineering
Florida Polytechnic University

April 26, 2023

## **Table of Contents (followed by)**

### 1. Introduction

Aim of this project. Include what is included in each of the sections 2-6.

#### 2. Data

Include description of data. Also include the descriptive statistics of the data (Q1 and Q2).

3. Distribution of Trips by Purpose

Q3

- 4. Distribution of Trips by Mode of Transportation Q4
  - 5. Time of Day Distribution

Q5

- 6. Trip Length Distributions (Time and Distance)
- 7. Statistical Significance or Hypothesis Testing Q7

## 8. Conclusion

Recap of the analysis done and highlight the conclusions.

## Introduction:

The aim of this project includes the analysis of given data that corresponds with different groups / parameters regarding taking trips. The data includes how different trips are made, regarding transportation methods, from home or from other places, the age of the person making the trip, the trip distance, the trip time, the amount of trips, the amount of workers, and the gender of the person.

These different events are compared with one another and information is taken and displayed using multiple graphs or statistical outputs. Conclusions can be inferred due to the information displayed, regarding the difference between groups (age, sex, working or not, etc).

#### Data:

#### **Statistics from Trip File:**

Auto-generated Statistics of specific variables (trip duration, trip distance, household size, household vehicle count, driver count, number of adults, number of workers and age)

#### **Statistics**

| Variable | Mean   | StDev  | Minimum | Q1     | Median | Q3     | Maximum |
|----------|--------|--------|---------|--------|--------|--------|---------|
| strhr    | 13.111 | 4.525  | 1.000   | 9.000  | 13.000 | 17.000 | 23.000  |
| trpmiles | 8.246  | 11.240 | 0.038   | 1.500  | 4.196  | 10.140 | 92.325  |
| hhsize   | 2.5338 | 1.2550 | 1.0000  | 2.0000 | 2.0000 | 3.0000 | 7.0000  |
| hhvehcnt | 2.2338 | 1.1186 | 0.0000  | 1.0000 | 2.0000 | 3.0000 | 6.0000  |
| drvrcnt  | 1.8845 | 0.6724 | 0.0000  | 1.0000 | 2.0000 | 2.0000 | 4.0000  |
| numadlt  | 1.9085 | 0.5782 | 1.0000  | 2.0000 | 2.0000 | 2.0000 | 3.0000  |
| wrkcount | 1.2803 | 0.8672 | 0.0000  | 1.0000 | 1.0000 | 2.0000 | 3.0000  |

Auto-generated frequency distributions (bar charts) of categorical variables Gender, educational level, race, trip purpose, travel day and trip mode.

Chart of educ









## Distribution of Trips by Purpose

Chart of travel purposes depending on whether the person works and their gender:



## Distribution of Trips by Mode of Transportation

Distribution of all trips by mode of transportation regarding gender:

1 = Walking

2 = Bicycling

3 = Car 4 = SUV

4 = 30 v 5 = Van

6 = Truck

7 = Golf Cart / Segway

11 = Public/Commuter Bus

97 = Other



Distribution of home based work by specific mode of transportation regarding gender:

- 3 = Car
- 4 = SUV
- 5 = Van
- 6 = Truck



Distribution of home based shopping by specific mode of transportation regarding gender:

- 2 = Bicycling
- 3 = Car
- 4 = SUV
- 5 = Van
- 6 = Truck
- 7 = Golf Cart / Segway



## Time of Day Distribution

Time of day distribution regarding Home Based Work (In intervals of 30 Min):



Time of day distribution regarding Home Based Shopping (In intervals of 30 Min):



Time of day distribution regarding Home Based Social Recreation (In intervals of 30 Min):



Time of day distribution regarding Non-Home Based (In intervals of 30 Min)::



## Trip Length Distributions (Time and Distance)

Trip length (time and distance) for home based work trips:

#### **Statistics**

| Variable | Mean  | StDev | Minimum | Q1    | Median | Q3    | Maximum |
|----------|-------|-------|---------|-------|--------|-------|---------|
| trpmiles | 15.68 | 13.14 | 0.46    | 5.43  | 13.21  | 22.33 | 92.33   |
| trvlcmin | 34.49 | 20.82 | 5.00    | 20.00 | 30.00  | 45.00 | 120.00  |

Trip length (time and distance) for all work trips:

#### **Statistics**

| Variable | Mean   | StDev  | Minimum | Q1     | Median | Q3     | Maximum |
|----------|--------|--------|---------|--------|--------|--------|---------|
| trpmiles | 8.246  | 11.240 | 0.038   | 1.500  | 4.196  | 10.140 | 92.325  |
| trvlcmin | 22.465 | 21.332 | 1.000   | 10.000 | 15.000 | 30.000 | 270.000 |

Trip length (time and distance) for non transit trips:

#### **Statistics**

| Variable | Mean   | StDev  | Minimum | Q1     | Median | Q3     | Maximum |
|----------|--------|--------|---------|--------|--------|--------|---------|
| trpmiles | 8.384  | 11.316 | 0.038   | 1.540  | 4.257  | 10.198 | 92.325  |
| trvlcmin | 22.511 | 21.218 | 2.000   | 10.000 | 15.000 | 30.000 | 270.000 |

Trip length (time and distance) for transit trips:

#### Statistics

| Variable | Mean  | StDev | Minimum | Q1    | Median | Q3    | Maximum |
|----------|-------|-------|---------|-------|--------|-------|---------|
| trpmiles | 1.828 | 2.159 | 0.183   | 1.067 | 1.097  | 1.312 | 8.850   |
| trvlcmin | 20.33 | 26.89 | 1.00    | 5.00  | 10.00  | 15.00 | 74.00   |

## Statistical Significance or Hypothesis Testing

Average daily trip frequencies (male vs female):

#### Method

 $\mu_1$ : population mean of trpcnt\_sum when r\_sex\_first\_1 = 1  $\mu_2$ : population mean of trpcnt\_sum when r\_sex\_first\_1 = 2 Difference:  $\mu_1 - \mu_2$ 

Equal variances are not assumed for this analysis.

## Descriptive Statistics: trpcnt\_sum

| r_sex_first_1 | N  | Mean | StDev | SE Mean |
|---------------|----|------|-------|---------|
| 1             | 80 | 4.28 | 2.39  | 0.27    |
| 2             | 83 | 4.43 | 2.60  | 0.29    |

## **Estimation for Difference**

#### Test

Null hypothesis  $H_0$ :  $\mu_1 - \mu_2 = 0$ Alternative hypothesis  $H_1$ :  $\mu_1 - \mu_2 \neq 0$ 

| T-Value | DF  | P-Value |
|---------|-----|---------|
| -0.41   | 160 | 0.685   |

#### Average daily travel time (workers vs non-workers):

## Method

 $\mu_1$ : population mean of trvlcmin\_sum when worker\_first\_1 = 1  $\mu_2$ : population mean of trvlcmin\_sum when worker\_first\_1 = 2 Difference:  $\mu_1 - \mu_2$ 

Equal variances are not assumed for this analysis.

## Descriptive Statistics: trvlcmin\_sum

| worker_first_1 | N   | Mean  | StDev | SE Mean |
|----------------|-----|-------|-------|---------|
| 1              | 112 | 96.2  | 62.1  | 5.9     |
| 2              | 51  | 101.5 | 75.2  | 11      |

## **Estimation for Difference**

#### Test

Null hypothesis  $H_0$ :  $\mu_1 - \mu_2 = 0$ Alternative hypothesis  $H_1$ :  $\mu_1 - \mu_2 \neq 0$ 

| T-Value | DF | P-Value |
|---------|----|---------|
| -0.43   | 82 | 0.665   |

Average daily travel distance (persons age 50+ vs rest of sample):

Note: Since The Age group was split between Above 50 and Below 50. Everyone that was older than 50 had their age set to 2, and everyone under had their age set to 1.

#### Method

 $\mu_1$ : population mean of trpmiles\_sum when r\_age\_first = 1  $\mu_2$ : population mean of trpmiles\_sum when r\_age\_first = 2 Difference:  $\mu_1$  -  $\mu_2$ 

Equal variances are not assumed for this analysis.

## Descriptive Statistics: trpmiles\_sum

| r_age_first | N  | Mean | StDev | SE Mean |
|-------------|----|------|-------|---------|
| 1           | 73 | 34.9 | 27.0  | 3.2     |
| 2           | 90 | 36.7 | 32.2  | 3.4     |

#### **Estimation for Difference**

#### Test

Null hypothesis  $H_0$ :  $\mu_1 - \mu_2 = 0$ Alternative hypothesis  $H_1$ :  $\mu_1 - \mu_2 \neq 0$ 

| T-Value | DF  | P-Value |
|---------|-----|---------|
| -0.39   | 160 | 0.694   |

## Conclusion:

In conclusion, the given data can be deciphered to show that the analysis of how trips change depending on specific groups like sex, age, working or not, etc, are all independent of trip time, distance, and method. That's it, there's my conclusion, nothing more to say. Enjoy the rest of your day / night (depending on when this is being graded). :)