

#### AU OPTRONICS CORPORATION

# () Preliminary Specifications (v) Final Specifications

| Module     | 10.1 Inch Color TFT-LCD |
|------------|-------------------------|
| Model Name | G101EVN03.1             |

| Customer Date            | Approved by Date                                         |
|--------------------------|----------------------------------------------------------|
|                          |                                                          |
| Checked &<br>Approved by | Prepared by                                              |
|                          |                                                          |
|                          | General Display Business Unit / AU Optronics corporation |



# Product Specification AU OPTRONICS CORPORATION

## **Contents**

| 1. Operating Precautions               | 4  |
|----------------------------------------|----|
| 2. General Description                 | 5  |
| 2.1 Display Characteristics            | 5  |
| 2.2 Optical Characteristics            | 6  |
| 3. Functional Block Diagram            | 9  |
| 4. Absolute Maximum Ratings            | 10 |
| 4.1 Absolute Ratings of TFT LCD Module | 10 |
| 4.2 Absolute Ratings of Environment    | 10 |
| 5. Electrical Characteristics          | 11 |
| 5.1 TFT LCD Module                     | 11 |
| 5.2 Backlight Unit                     | 13 |
| 6. Signal Characteristic               | 14 |
| 6.1 Pixel Format Image                 | 14 |
| 6.2 Signal Description                 | 15 |
| 6.3 The Input Data Format              | 17 |
| 6.4 Interface Timing                   | 18 |
| 6.5 Power ON/OFF Sequence              | 19 |
| 7. Reliability Test Criteria           | 20 |
| 8. Mechanical Characteristics          | 21 |
| 8.1 Outline Dimension (Front View)     | 21 |
| 8.2 Outline Dimension (Rear View)      |    |
| 9. Label and Packaging                 | 23 |
| 9.1 Shipping Label                     | 23 |
| 9.2 Carton/Pallet Package              | 23 |
| 10 Safety                              | 25 |
| 10.1 Sharp Edge Requirements           | 25 |
| 10.2 Materials                         | 25 |
| 10.3 Capacitors                        | 25 |
| 10.4 National Test Lab Requirement     | 25 |



G101EVN03.1

#### AU OPTRONICS CORPORATION

| Version and Date | Page | Old description           | New Description |
|------------------|------|---------------------------|-----------------|
| 0.1 2018/12/15   | All  | First draft specification | -               |



#### AU OPTRONICS CORPORATION

#### 1. Operating Precautions

- 1) Since front polarizer is easily damaged, please be cautious and not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or soft cloth.
- 5) Since the panel is made of glass, it may be broken or cracked if dropped or bumped on hard surface.
- 6) To avoid ESD (Electro Static Discharde) damage, be sure to ground yourself before handling TFT-LCD Module.
- 7) Do not open nor modify the module assembly.
- 8) Do not press the reflector sheet at the back of the module to any direction.
- 9) In case if a module has to be put back into the packing container slot after it was taken out from the container, do not press the center of the LED light bar edge. Instead, press at the far ends of the LED light bar edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) TFT-LCD Module is not allowed to be twisted & bent even force is added on module in a very short time. Please design your display product well to avoid external force applying to module by end-user directly.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Severe temperature condition may result in different luminance, response time and lamp ignition voltage.
- 14) Continuous operating TFT-LCD display under low temperature environment may accelerate lamp exhaustion and reduce luminance dramatically.
- 15) The data on this specification sheet is applicable when LCD module is placed in landscape position.
- 16) Continuous displaying fixed pattern may induce image sticking. It's recommended to use screen saver or shuffle content periodically if fixed pattern is displayed on the screen.
- 17) In order not to damage the touch panel, please remove the protected film as slow as possible in an environment with a humidity range from 60% to 80%



#### AU OPTRONICS CORPORATION

#### 2. General Description

G101EVN03.1 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel and LED backlight system. The screen format is intended to support the 16:10 WXGA, 1280(H) x800(V) screen and 16.2M colors with LED backlight driving circuit. All input signals are LVDS interface compatible.

### 2.1 Display Characteristics

The following items are characteristics summary under 25 °C condition:

| Items                                               | Unit    | Specifications                               |
|-----------------------------------------------------|---------|----------------------------------------------|
| Screen Diagonal                                     | [inch]  | 10.1"                                        |
| Active Area                                         | [mm]    | 216.96(H) x 135.6(V)                         |
| Pixels H x V                                        |         | 1280 x 800                                   |
| Pixel Pitch                                         | [mm]    | 0.1695 X 0.1695                              |
| Pixel Arrangement                                   |         | R.G.B. Vertical Stripe                       |
| Display Mode                                        |         | MVA, Normally Black                          |
| Nominal Input Voltage VDD                           | [Volt]  | 3.3 (Typical)                                |
| Power Consumption (Max)                             | [Watt]  | Logic: 0.89W Backlight: 7.4W (For reference) |
| Weight (Max.)                                       | [Grams] | 350g                                         |
| Physical Size (Max.)                                | [mm]    | 227.69 x 148.31 x 7.75 (PCBA side)           |
| Electrical Interface                                |         | LVDS                                         |
| Surface Treatment                                   |         | Glare                                        |
| Support Color                                       |         | 262K (6bits)/16.2M (8bits) colors            |
| Temperature Range Operating Storage (Non-Operating) | [°C]    | -20 to +60<br>-30 to +70                     |
| RoHS Compliance                                     |         | RoHS Compliance                              |



#### AU OPTRONICS CORPORATION

#### 2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25 °C (Room Temperature):

| Item                      | Unit                      | Conditions                              | Min.  | Тур.  | Max.  | Note |
|---------------------------|---------------------------|-----------------------------------------|-------|-------|-------|------|
| White Luminance           | [cd/m2]                   | ILED= 70mA<br>(5p average)              | 800   | 1000  |       |      |
| Uniformity                | %                         | 5 points                                | 70%   |       |       |      |
| Contrast Ratio            |                           |                                         | 1000  | 1300  |       |      |
| Response Time             | [msec]                    | Rising + Falling                        |       | 25    | 35    |      |
|                           | [degree]                  | Horizontal (Right)                      | 80    | 85    |       |      |
| Viewing Angle             | [degree]                  | CR = 10 (Left)                          | 80    | 85    |       |      |
| Viewing Angle             | [degree] Vertical CR = 10 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 80    | 85    |       |      |
|                           |                           | CR = 10 (Lower)                         | 80    | 85    |       |      |
|                           |                           | Red x                                   | 0.513 | 0.563 | 0.613 |      |
|                           |                           | Red y                                   | 0.278 | 0.328 | 0.378 |      |
|                           |                           | Green x                                 | 0.281 | 0.331 | 0.381 |      |
| Color / Chromaticity      |                           | Green y                                 | 0.527 | 0.577 | 0.627 |      |
| Coordinates<br>(CIE 1931) |                           | Blue x                                  | 0.109 | 0.159 | 0.209 |      |
|                           |                           | Blue y                                  | 0.083 | 0.133 | 0.183 |      |
|                           |                           | White x                                 | 0.263 | 0.313 | 0.363 |      |
|                           |                           | White y                                 | 0.279 | 0.329 | 0.379 |      |
| Color Gamut               | %                         |                                         |       | 45    |       |      |

Note 1: Measurement method

Equipment Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter (SR\_3 or equivalent)

Aperture Field angle 2° with 50cm measuring distance

Test Point Follow Note 2 position

Environment < 1 lux



Module Driving Equipment



#### AU OPTRONICS CORPORATION

Note 2: Definition of 5 points position



Note 3: The luminance uniformity of 5 points is defined by dividing the minimum luminance values by the maximum test point luminance

$$\delta$$
 ws = 
$$\frac{\text{Minimum Brightness of five points}}{\text{Maximum Brightness of five points}}$$

Note 4: Definition of contrast ratio (CR):

Note 5: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "White" to "Black" (falling time) and from "Black" to "White" (rising time), respectively. The response time interval is between 10% and 90% of amplitudes. Please refer to the figure as below.





#### AU OPTRONICS CORPORATION

Viewing angle is the measurement of contrast ratio  $\ge 10$ , at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as below: 90° ( $\theta$ ) horizontal left and right, and 90° ( $\Phi$ ) vertical high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated to its center to develop the desired measurement viewing angle.





AU OPTRONICS CORPORATION

#### 3. Functional Block Diagram

The following diagram shows the functional block of the 10.1 inch color TFT/LCD module:





#### AU OPTRONICS CORPORATION

### 4. Absolute Maximum Ratings

### 4.1 Absolute Ratings of TFT LCD Module

| Item                     | Symbol              | Min  | Max     | Unit   |
|--------------------------|---------------------|------|---------|--------|
| Logic/LCD drive Voltage  | VDD                 | -0.3 | +4.0    | [Volt] |
| LCD Input Signal Voltage | V <sub>SIGNAL</sub> | -0.3 | VDD+0.3 | [Volt] |

#### 4.2 Absolute Ratings of Environment

| Item                  | Symbol | Min | Max | Unit  |  |  |
|-----------------------|--------|-----|-----|-------|--|--|
| Operating Temperature | TOP    | -20 | +60 | [°C]  |  |  |
| Humidity              | HOP    | 5   | 90  | [%RH] |  |  |
| Storage Temperature   | TST    | -30 | +70 | [°C]  |  |  |

Note 1: Permanent damage to the device may occur if exceed maximum values

Note 2: Maximum wet-bulb temperature is less than 39 °C and no condensation





#### AU OPTRONICS CORPORATION

#### 5. Electrical Characteristics

#### **5.1 TFT LCD Module**

#### 5.1.1 Power Specification

The power specification are measured under 25°C and frame frenquency under 60Hz

| Symbol      | Parameter                  | Min | Тур    | Max  | Units  | Remark              |
|-------------|----------------------------|-----|--------|------|--------|---------------------|
| VDD         | Logic/LCD Drive<br>Voltage | 3.0 | 3.3    | 3.6  | [Volt] |                     |
| IDD         | VDD Current                | _   | 192    | 270  | [mA]   | All Black Pattern   |
| VDD Current |                            | _   | 132    | 270  | ردانا  | (VDD=3.3V, at 60Hz) |
| Irush       | LCD Inrush Current         | -   | -      | 1500 | [mA]   | Note 1              |
| PDD         | VDD Power                  | _   | 0.63   | 0.89 | [Watt] | All Black Pattern   |
| 1 00        | VDD I OWCI                 |     | - 0.03 |      | [watt] | (VDD=3.3V, at 60Hz) |
| \/DDrn      | Allowable Logic/LCD        |     |        | 100  | [mV]   | All Black Pattern   |
| VDDrp       | Drive Ripple Voltage       | -   | -      | 100  | р-р    | (VDD=3.3V, at 60Hz) |

Note 1: Maximum Measurement Condition: White Pattern at 3.3V driving voltage. (P<sub>max</sub>=V<sub>3.3</sub> x I<sub>white</sub>)

Note 2: Measure Condition



**VDD** rising time



#### AU OPTRONICS CORPORATION

**5.1.2 Signal Electrical Characteristics**Input signals shall be low or Hi-Z state when VDD is off.

Signal electrical characteristics are as follows;

| Symbol | Item                                      | Min. | Тур. | Max. | Unit | Remark          |
|--------|-------------------------------------------|------|------|------|------|-----------------|
| VTH    | Differential Input High Threshold         |      |      | 100  | [mV] | VCM=1.2V        |
| VTL    | Differential Input Low Threshold          | -100 |      |      | [mV] | VCM=1.2V        |
| VID    | Input Differential Voltage                | 100  |      | 600  | [mV] |                 |
| VICM   | Differential Input Common Mode<br>Voltage | 0.7  |      | 1.6  | [V]  | VTH/VTL=+-100mV |

Note: LVDS Signal Waveform.





G101EVN03.1

#### AU OPTRONICS CORPORATION

#### 5.2.1 Parameter guideline for LED

Following characteristics are measured under a stable condition using an inverter at 25°C (Room Temperature):

| Symbol         | Parameter           | Min.   | Тур. | Max. | Unit   | Remark                         |
|----------------|---------------------|--------|------|------|--------|--------------------------------|
| VLED           | Input Voltage       | 25.2   | 28.8 | 32.4 | [Volt] | Note 2                         |
| I <sub>F</sub> | LED Forward Current |        | 70   |      | [mA]   | Ta = 25°C                      |
| Operation Life |                     | 50,000 |      |      | Hrs    | I <sub>F</sub> =70mA (Ta=25°ℂ) |

Note 1: Ta means ambient temperature of TFT-LCD module.

Note 2: VLED typical value is defined for LED backlight (100% duty of PWM dimming)

Note 3: If G101EVN03.1 module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.

Note 4: Operating life means brightness goes down to 50% initial brightness. Minimum operating life time is estimated data.



#### AU OPTRONICS CORPORATION

### 6. Signal Characteristic

### 6.1 Pixel Format Image

Following figure shows the relationship between input signal and LCD pixel format.





#### AU OPTRONICS CORPORATION

#### **6.2 Signal Description**

The module uses a LVDS receiver embedded in AUO's ASIC. LVDS is a differential signal technology for LCD interface and a high-speed data transfer device.

#### 6.2.1 LVDS Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

| Connector Name / Designation | For Signal Connector     |
|------------------------------|--------------------------|
| Manufacturer                 | JAE or compatible        |
| Type                         | HD1S040HA1 or compatible |

#### 6.2.2 LVDS Pin Assignment

LVDS is a differential signal technology for LCD interface and high speed data transfer device.

| Pin No | Symbol | Function                                               |  |  |
|--------|--------|--------------------------------------------------------|--|--|
| 1      | NC     | No Connection (Reserved)                               |  |  |
| 2      | VDD    | Power Supply +3.3V                                     |  |  |
| 3      | VDD    | Power Supply +3.3V                                     |  |  |
| 4      | VDD    | Power Supply +3.3V                                     |  |  |
| 5      | NC     | No Connection (Reserved)                               |  |  |
| 6      | NC     | No Connection (Reserved)                               |  |  |
| 7      | NC     | No Connection (Reserved)                               |  |  |
| 8      | Rin0-  | -LVDS differential data input(R0-R5,G0)                |  |  |
| 9      | Rin0+  | +LVDS differential data input(R0-R5,G0)                |  |  |
| 10     | GND    | Ground                                                 |  |  |
| 11     | Rin1-  | -LVDS differential data input(G1-G5,B0-B1)             |  |  |
| 12     | Rin1+  | +LVDS differential data input(G1-G5,B0-B1)             |  |  |
| 13     | GND    | Ground                                                 |  |  |
| 14     | Rin2-  | -LVDS differential data input(B2-B5,DE)                |  |  |
| 15     | Rin2+  | +LVDS differential data input(B2-B5,DE)                |  |  |
| 16     | GND    | Ground                                                 |  |  |
| 17     | ClkIN- | -LVDS differential clock input                         |  |  |
| 18     | ClkIN+ | +LVDS differential clock input                         |  |  |
| 19     | GND    | Ground-Shield                                          |  |  |
| 20     | Rin3-  | -LVDS differential data input(R6-R7,G6-G7,B6-B7)       |  |  |
| 21     | Rin3+  | +LVDS differential data input(R6-R7,G6-G7,B6-B7)       |  |  |
| 22     | GND    | Ground-Shield                                          |  |  |
|        |        | Selection for either 6bit or 8bit LVDS input:          |  |  |
| 23     | SEL68  | SEL68 = " High" or "NC", accepts 6bit LVDS data input; |  |  |
|        |        | SEL68 = " Low", accepts 8bit LVDS data input.          |  |  |



#### AU OPTRONICS CORPORATION

| 24 | NC   | No Connection (Reserved)               |
|----|------|----------------------------------------|
| 25 | VOUT | Positive voltage to connection LED BLU |
| 26 | VOUT | Positive voltage to connection LED BLU |
| 27 | VOUT | Positive voltage to connection LED BLU |
| 28 | NC   | No Connection (Reserved)               |
| 29 | LB3  | Constant current feedback signal 3     |
| 30 | LB3  | Constant current feedback signal 3     |
| 31 | LB3  | Constant current feedback signal 3     |
| 32 | LB2  | Constant current feedback signal 2     |
| 33 | LB2  | Constant current feedback signal 2     |
| 34 | LB2  | Constant current feedback signal 2     |
| 35 | LB1  | Constant current feedback signal 1     |
| 36 | LB1  | Constant current feedback signal 1     |
| 37 | LB1  | Constant current feedback signal 1     |
| 38 | NC   | No Connection (Reserved)               |
| 39 | GND  | Ground                                 |
| 40 | GND  | Ground                                 |

Note 1: Input signals shall be low or High-impedance state when VDD is off.

Note 2: High stands for "3.3V", Low stands for "0V", NC means "No Connection".





AU OPTRONICS CORPORATION

#### 6.3 The Input Data Format

#### SEL68 = "H" or NC for 6 bits LVDS Input



#### SEL68 ="L" for 8 bits LVDS Input



| Signal Name | Description        |                                                               |
|-------------|--------------------|---------------------------------------------------------------|
| R7          | Red Data 7 (MSB)   | Red-pixel Data                                                |
| R6          | Red Data 6         |                                                               |
| R5          | Red Data 5         | For 8Bits LVDS input                                          |
| R4          | Red Data 4         | MSB: R7; LSB: R0                                              |
| R3          | Red Data 3         |                                                               |
| R2          | Red Data 2         | For 6Bits LVDS input                                          |
| R1          | Red Data 1         | MSB: R5 ; LSB: R0                                             |
| R0          | Red Data 0 (LSB)   |                                                               |
| G7          | Green Data 7 (MSB) | Green-pixel Data                                              |
| G6          | Green Data 6       |                                                               |
| G5          | Green Data 5       | For 8Bits LVDS input                                          |
| G4          | Green Data 4       | MSB: R7 ; LSB: R0                                             |
| G3          | Green Data 3       |                                                               |
| G2          | Green Data 2       | For 6Bits LVDS input                                          |
| G1          | Green Data 1       | MSB: R5 ; LSB: R0                                             |
| G0          | Green Data 0 (LSB) |                                                               |
| B7          | Blue Data 7 (MSB)  | Blue-pixel Data                                               |
| B6          | Blue Data 6        |                                                               |
| B5          | Blue Data 5        | For 8Bits LVDS input                                          |
| B4          | Blue Data 4        | MSB: R7 ; LSB: R0                                             |
| B3          | Blue Data 3        |                                                               |
| B2          | Blue Data 2        | For 6Bits LVDS input                                          |
| B1          | Blue Data 1        | MSB: R5 ; LSB: R0                                             |
| B0          | Blue Data 0 (LSB)  |                                                               |
| RxCLKIN     | Data Clock         | The signal is used to strobe the pixel data and DE signals.   |
|             |                    | All pixel data shall be valid at the falling edge when the DE |
|             |                    | signal is high.                                               |
| DE          | Display Timing     | This signal is strobed at the falling edge of                 |
|             |                    | RxCLKIN. When the signal is high, the pixel data shall be     |
|             |                    | valid to be displayed.                                        |

Note: Output signals from any system shall be low or High-impedance state when VDD is off.



#### AU OPTRONICS CORPORATION

#### 6.4 Interface Timing

#### **6.4.1 Timing Characteristics**

| Signa           | ıl       | Symbol                | Min. | Тур.  | Max. | Unit               |
|-----------------|----------|-----------------------|------|-------|------|--------------------|
| Clock Frequency |          | 1/ T <sub>Clock</sub> | 64   | 68.93 | 85   | MHz                |
|                 | Period   | Tv                    | 808  | 816   | 1023 |                    |
| Vertical        | Active   | $T_VD$                | 800  |       |      | T <sub>Line</sub>  |
| Section         | Blanking | T <sub>VB</sub>       | 8    | 16    | 223  |                    |
|                 | Period   | Тн                    | 1330 | 1408  | 2047 |                    |
| Horizontal      | Active   | $T_{HD}$              |      | 1280  |      | T <sub>Clock</sub> |
| Section         | Blanking | Тнв                   | 50   | 128   | 767  |                    |
| Frame Rate      |          | F                     |      | 60    |      | Hz                 |

Note : DE mode.

#### **6.4.2 Input Timing Diagram**





AU OPTRONICS CORPORATION

#### 6.5 Power ON/OFF Sequence

VDD power and lamp on/off sequence is as below. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.



Power ON/OFF sequence timing

|           | <del></del> | ,     | cquerice |      |
|-----------|-------------|-------|----------|------|
| Danamatan |             | Units |          |      |
| Parameter | Min.        | Тур.  | Max.     |      |
| T1        | 0.5         |       | 10       | [ms] |
| T2        | 0           |       | 50       | [ms] |
| Т3        | 200         |       | -        | [ms] |
| T4        | 200         |       | -        | [ms] |
| T5        | 0           |       | 50       | [ms] |
| Т6        | 0           |       | 10       | [ms] |
| T7        | 500         |       | -        | [ms] |
| Т8        | 10          |       | -        | [ms] |
| Т9        | 0           |       | 180      | [ms] |
| T10       | 0           |       | 180      | [ms] |
| T11       | 10          |       | -        | [ms] |
| T12       | 0.5         |       | 10       | [ms] |

The above on/off sequence should be applied to avoid abnormal function in the display. Please make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.



### AU OPTRONICS CORPORATION

#### 7. Reliability Test Criteria

| Items                        | Required Condition                                                               | Note   |
|------------------------------|----------------------------------------------------------------------------------|--------|
| Temperature<br>Humidity Bias | 40 °C /90%,300Hr                                                                 |        |
| High Temperature Operation   | 60 °C, 300Hr (center point of panel surface)                                     |        |
| Low Temperature<br>Operation | -20 °C, 300Hr                                                                    |        |
| Hot Storage                  | 70 °C, 300Hr                                                                     |        |
| Cold Storage                 | -30 °C, 300Hr                                                                    |        |
| Thermal Shock<br>Test        | -30 °C /30 min , 70 °C /30 min , 20cycles                                        |        |
| Hot Start Test               | 70 °C /1 Hr min. power on/off per 5 minutes, 5 times                             |        |
| Cold Start Test              | -20 °C /1 Hr min. power on/off per 5 minutes, 5 times                            |        |
| On/off test                  | On/10 sec, Off/10 sec, 30,000 cycles                                             |        |
| ESD                          | Contact: ±8KV/ operation, Class B Air: ±15KV / operation, Class B                | Note 1 |
| Shock test                   | 220G,2ms, Half-sine wave, 1 times for each direction (±X, ±Y, ±Z), non-operation |        |
| Vibration test               | 1.5G, (10~500Hz, random), 30 mins / axis (X, Y, Z), non-operation                |        |

Note1: According to EN61000-4-2 , ESD class B: Some performance degradation allowed. No data lost

. Self-recoverable. No hardware failures.

#### Note2:

- Water condensation is not allowed for each test items.
- Each test is done by new TFT-LCD module. Don't use the same TFT-LCD module repeatedly for reliability test.
- The reliability test is performed only to examine the TFT-LCD module capability.
- To inspect TFT-LCD module after reliability test, please store it at room temperature and room humidity for 24 hours at least in advance.





AU OPTRONICS CORPORATION

- 8. Mechanical Characteristics
- 8.1 Outline Dimension (Front View)



G101EVN03.1

AU OPTRONICS CORPORATION



### 8.2 Outline Dimension (Rear View)





#### AU OPTRONICS CORPORATION

### 9. Label and Packaging

### 9.1 Shipping Label



### 9.2 Carton/Pallet Package







#### AU OPTRONICS CORPORATION





#### AU OPTRONICS CORPORATION

#### 10.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

#### 10.2 Materials

#### 10.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible AUO toxicologist.

#### 10.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

### 10.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

#### 10.4 National Test Lab Requirement

The display module will satisfy all requirements for compliance to:

UL 60950-1 second edition

U.S.A. Information Technology Equipment