Def A,B are two sets. A function (or a mapping) f is a correspondence $A \rightarrow B$; for each $x \in A$, f associates to an element $f(x) \in B$. A is called the closurain of f $f \in B$. Be a mapping of A into B. If $f \in A$, f(f) is called the image of f (under f(f)). f(f) is called the range of f.

We call f is outo if f(A) = B

If $E \subset B$, $f^{-1}(E) = \{x \in A : f(x) \in E\}$. If $y \in B$, $f^{-1}(y) = \{x \in A : f(x) = y\}$. We call f is 1-1 of for $\forall y \in f(x)$, $f^{-1}(y)$ has exactly 1 element.

or for any $x_1 \neq x_2 \in A$, $f(x_1) \neq f(x_2)$.

Metric spaces

Def. A set X, whose elements we shoul only pass, is said to be a <u>netric space</u> if with any two pass, there is a nonnegative real number d(p,q), called the distance from p to q such that (a) d(p,q)>0 if $p\neq q$ (b) d(p,q)=d(q,p) (c) $d(p,q)\leq d(p,r)+d(q,r)$ for any $r\in X$. (Triangle inequality)

Such function $d: X \times X \longrightarrow X$ is called a distance function (or metric). Example \mathbb{R}^K , $d(\vec{x}, \vec{y}) = |\vec{x} - \vec{y}|$. Runk: Every subset E of a metric space X is a metric space in its own right, with the same distance function.

Def For $a,b \in \mathbb{R}$, a < b, $(a,b) = \beta \times \in \mathbb{R}$ $\{a < x < b\}$ called segment. $[a,b] = \beta \times \in \mathbb{R} | a < x \le b\} \text{ called interval.}$ $(a,b] = \beta \times \in \mathbb{R} | a < x \le b\} \text{ called half-open interval.}$ $[a,b] = \beta \times \in \mathbb{R} | a < x < b\}$

For aichi, i=1,2,...,k, the set of all pts of such that aicx=bi is called x-cell.

The open ball B centered at \hat{x} with radius r is $g \in \mathbb{R}^k$: |y-x| < r. (closed) $|y-x| \le r$

Def X= Metric space

- (a) A neighborhood (nbd) of p is a set $N_{r(p)} = \{q \in X : d(p,q) < r\}$.
- (b) A point p is ralled a <u>limit</u> pt of the set E if every upd of p contains a $E \ni 2 \neq p$.
- cc) $p \in E$ is an isolated point of E if p is not a limit pt.

- (d) E is closed if every limit pt of E is in E.
- (e) PEE is an interior pet if I a nod NDP s,t. NCE.
- (f) E is open if every p∈E is an interior pt.
- (g) The complement E' of E is fpEX: p& E).
- (h) E is bounded if ∃M>O and a point & such that d(p, 2) <M for P∈ E.
- (i) \sqsubseteq is deax in X if every point $p \in X$ is a limit point of E, or a pi of E.

 Sxample (a,b)=nbd in \mathbb{R}^1 $\bigcirc=nbd$ in \mathbb{R}^2 .

Then Every nbd is open.

Proof (2°)

Thin If p is a limit pt of E, then any hhl of p contains infinitely many pts of E.

 $\frac{Thm}{Ea}$ is a collection of sets. Then $(UE_a)^c = (IE_a^c)$.

Proof If $x \notin UE_a$, $x \notin E_a$. If $x \notin E_a$, then $x \in (UE_a)^c$. E

Thm A set E is open : ff E is closed.

Proof Assure E is open. If x is a limit pt of E^c , and $x \in E$, when $\exists nbd \ N \ni x$.

in E containing no pts of E^c . x cannot be a limit pt of E^c .

Assure E^c is closed and $x \in E$. Then x is not a limit pt of E. Then \exists and $N \ni x$ is contain of in E.

Thin (a) For any collection {Ga} of open sets, UGa is open.

(b) For any collection PFa) of closed sets, a Fa is closed.

(c) For any finite collection opens (Ga), (Ga is open (d) (UFa is closed)

Def The closure of is $\overline{E} = \overline{E} \cup E'$ where E' = set of limit pts. \overline{T}_{YM}^{L} (a) \overline{E} is closed (b) E is closed iff \overline{E} is closed.

The ESR non-emply bounded above, Then supy EE.

Example: Subsets in 182

	Closed	Open	Bound
x, +h, =1	X	\checkmark	\checkmark
$\chi^2 + y^2 \leq 1$	\checkmark	X	\checkmark
non-energy Fixite sel	\checkmark	X	\checkmark
Z x 90)	\checkmark	×	X
\mathbb{R}^2	\checkmark	\checkmark	X
{\langle \(\frac{1}{4}, \) : N=(\langle \langle \rangle \) . \(\)	X	X	\checkmark
$\{(x,0): x\in (a,b)\}$	×		\