INTRODUCTION TO KNOWLEDGE GRAPHS

UNIVERSIDAD DE MURCIA

Structure

Labels

unlabeled graph

edge-labeled graph

vertex-labeled graph

Directionality

Topology

Cycles

OG

Cycles

Directed Acyclic Graph

Bipartite Graph

DG

Data structure

The web as a graph

The semantic web as a graph

UNIVERSIDAD DE

Some graphs

Protein interactions as graphs

Some graphs

Is this a graph or a tree?

Label Property Graphs (LPG)

- Vertices:
 - Nodes with identifier + set of key-value pairs
- Edges:
 - Relations with identifier + type + set of key-value pairs

ID: "12345" Label: "Person"

name: "Alice"

dateOfBirth: "1975-10-22"

height: 1.70

hasDriversLicense: true

ID: "24680"

Label: "Married"

date: "2004-09-19"

ID: "67890"

Label: "Person"

name: "Bob"

dateOfBirth: "1976-01-07"

height: 1.75

hasDriversLicense: true

Semantic graphs (RDF)

- Statements or RDF triples (subject, predicate, object): combination of:
 - The resource described (Subject)
 - The property or relation between the subject and the object (Predicate)
 - Value of the property (Object), which is a resource or a literal
 - Each resource or property has an identifier (URI)

UNIVERSIDAD DE MURCIA

Types of graph databases

- There are different types of graph databases.
- The difference is in how graph are modeled what can be associated with a node, with an edge, how each element in the graph is interpreted
- Types
 - Labeled Property Graph (LPG)
 - Resource Description Framework Graph (RDF Graph)

Labeled property graph

F

Nodes, edges, properties and labels

Labeled property graph

- Node (Vertex): identifier, label (type), set of properties <attribute, value>
- Relations (Edges): identifier, label (type), set of properties <attribute, value>

RDF graph

RDF is a W3C recommendation for data exchange

RDF graph

- Formal model based on RDF statements: triples <Subject, Property, Object>
- Resources and properties have universal identifiers (URI/IRI)
- RDF provides a set of standardized properties and resources to facilitate interoperability across graphs and data machine understanding

旱

Natural integration with ontologies, which proivide the terms for concepts and properties

UNIVERSIDAD DE MURCIA

Example of RDF graph

Properties do not have attributes, only annotations (metadata)

Comparison LPG-RDF

Aspect	LPG	RDF
Data model	Nodes, edges and properties	Triples <s,p,o></s,p,o>
Schema definition	Schema-less, schema-flexible	Not oriented to be schema-les. Schema based on RDFS and OWL.
Query language	Database-dependent	SPARQL, W3C recommendation
Formats	Database-dependent	Formats based on standards: XML, JSON, Turtle
Data integration	Do it yourself!	Formalism oriented to data exchange and interoperability
Federated queries	No native support	Native support for distributed queries
Scalability	Database-dependent	Designed for billions of data relations
Expressiveness	Allows attributes for properties	Explicit meaning of data
Graph processing	Facilitates graph analysis, paths finding (Property Path Discovery)	No native support

Stardog

- https://www.stardog.com/platform
- Oriented to RDF knowledge graphs
- Query language: SPARQL
- Cloud support and deployment
- API, multiple programming connectors

Amazon Neptune

- https://aws.amazon.com/es/neptune/
- LPG and RDF graphs

- Query languages: Gremlin (Apache TinkerPop) and Cypher (Neo4J) for LPG, SPARQL for RDF
- AWS Cloud support and deployment
- API for the use of the database

UNIVERSIDAD DE MURCIA

Neo4J

- https://neo4j.com
- LPG graphs, with plugins to import RDF graphs
- Query language: Cypher
- Free, Enterprise and cloud versions(AuraDB)
- API and connectors for big data processing tools: Kafka, Spark, etc.

BioCypher: https://biocypher.org

Questions, comments...

