Monte Carlo simulations of (quasi) constrained ensembles

Victor Martin-Mayor

Universidad Complutense de Madrid

in collaboration with

L.A. Fernández, A. Gordillo, J.J. Ruiz-Lorenzo, B. Seoane, P. Verrochio, and D. Yllanes,

Phys. Rev. Lett. 98, 137207, (2007)

Phys. Rev. Lett. 100, 057201, (2008)

Nucl. Phys. B 807, 424-454, (2009)

Phys. Rev. E 80, 015701(R), (2009)

Phys. Rev. E, in press. arXiv:0910.4924

Monte Carlo Algorithms, Melbourne, July 2010

- Introduction
- Quasi constrained statistical ensembles
- Local simulation algorithm
- 4 Cluster methods
- First order phase transitions
- Metastability in disordered systems
- Conclusions

Outline

- Introduction
- Quasi constrained statistical ensembles
- Local simulation algorithm
- Cluster methods
- First order phase transitions
- Metastability in disordered systems
- Conclusions

 Metastability is ubiquitous in Physics. In particular, first-order phase transitions and/or glassy behaviour.

- Metastability is <u>ubiquitous</u> in Physics. In particular, <u>first-order</u> phase transitions and/or <u>glassy</u> behaviour.
- Even more challenging than critical behaviour $\tau \propto L^z$, (τ) : characteristic time, L: system size, $z \sim 2$.)

- Metastability is <u>ubiquitous</u> in Physics. In particular, <u>first-order</u> phase transitions and/or <u>glassy</u> behaviour.
- Even more challenging than critical behaviour $\tau \propto L^z$, (τ) : characteristic time, L: system size, $z \sim 2$.)
- For metastable systems (and maybe structural glasses),
 Exponential Critical Slowing Down

$$au \propto \mathrm{e}^{\varSigma L^{D-1}}\,, \quad (\varSigma: \mathrm{\,\,surface\,\,tension,\,\,} D\mathrm{:\,\,space\,\,dimension}).$$

Spin glasses in 3D: $z \approx 6.7 \frac{T_c}{T}$.

- Metastability is <u>ubiquitous</u> in Physics. In particular, <u>first-order</u> phase transitions and/or <u>glassy</u> behaviour.
- Even more challenging than critical behaviour $\tau \propto L^z$, (τ) : characteristic time, L: system size, $z \sim 2$.)
- For metastable systems (and maybe structural glasses),
 Exponential Critical Slowing Down

$$\tau \propto \mathrm{e}^{\varSigma L^{D-1}}\,, \quad (\varSigma: \text{ surface tension, D: space dimension)}.$$

Spin glasses in 3D: $z \approx 6.7 \frac{T_c}{T}$.

Random-walks on reaction coordinate alleviate but do not cure.
 Reaction coordinate: temperature (Simulated Annealing, Parallel Tempering), energy (Wang-Landau, multicanonical), spin overlap (multioverlap), etc.

Metastability

Discontinuity in intensive quantity (*reaction coordinate*) as a function of temperature, pressure,... in large N limit ($N = L^D$: number of degrees of freedom)

Metastability

Discontinuity \longrightarrow two-peaked pdf. Minimum $\sim \exp[-2\Sigma L^{D-1}]$.

Metastability

Idea: go microcanonical, and reconstruct the gentle function $\langle T \rangle_e$ from

Fluctuation-Dissipation Theorem. Without random-walk. Microcanonical MC: Lustig 98', FDT: Martin-Mayor 07' (see also de Pablo 03')

Advantages of micro *analysis* (even with canonical data!): Janke 98'.

Metastability

Idea: go microcanonical, and reconstruct the gentle function $\langle T \rangle_e$ from

Fluctuation-Dissipation Theorem. Without random-walk. Microcanonical MC: Lustig 98', FDT: Martin-Mayor 07' (see also de Pablo 03')

Advantages of micro analysis (even with canonical data!): Janke 98'.

Sometimes not enough: feed extra information Tethered Monte Carlo.

Outline

- Introduction
- Quasi constrained statistical ensembles
- Local simulation algorithm
- Cluster methods
- 5 First order phase transitions
- Metastability in disordered systems
- Conclusions

This talk' toy models

Ising and Potts models

- Standard benchmark for MC simulation methods.
- Square or cubic lattice, periodic boundary conditions.
- Partition function and main observables ($N = L^D$):

$$\begin{split} Z &= \sum_{\{\sigma_{\pmb{x}}\}} \exp \left[\beta \sum_{\langle \pmb{x}, \pmb{y} \rangle} \sigma_{\pmb{x}} \sigma_{\pmb{y}} + h \sum_{\pmb{x}} \sigma_{\pmb{x}} \right], \quad \ \sigma_{\pmb{x}} = \pm 1, \\ U &= \textit{N} u = - \sum_{\langle \pmb{x}, \pmb{y} \rangle} \sigma_{\pmb{x}} \sigma_{\pmb{y}}, \quad \quad \textit{M} = \textit{N} m = \sum_{\pmb{x}} \sigma_{\pmb{x}}. \end{split}$$

• We denote canonical averages by $\langle \cdots \rangle_{\beta}$:

$$C = N[\langle u^2 \rangle_{\beta} - \langle u \rangle_{\beta}^2], \qquad \qquad \chi = N[\langle m^2 \rangle_{\beta} - \langle m \rangle_{\beta}^2].$$

This talk' toy models

Ising and Potts models

- Standard benchmark for MC simulation methods.
- Square or cubic lattice, periodic boundary conditions.
- Partition function and main observables ($N = L^D$):

$$\begin{split} Z &= \sum_{\{\sigma_{\boldsymbol{x}}\}} \exp \left[\beta \sum_{\langle \boldsymbol{x}, \boldsymbol{y} \rangle} \sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}} + h \sum_{\boldsymbol{x}} \sigma_{\boldsymbol{x}} \right], \quad \sigma_{\boldsymbol{x}} = \pm 1, \\ U &= Nu = -\sum_{\langle \boldsymbol{x}, \boldsymbol{y} \rangle} \sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}, \quad M = Nm = \sum_{\boldsymbol{x}} \sigma_{\boldsymbol{x}}. \end{split}$$

• We denote canonical averages by $\langle \cdots \rangle_{\beta}$:

$$\mathbf{C} = \mathbf{N} \big[\langle \mathbf{u}^{\mathbf{2}} \rangle_{\beta} - \langle \mathbf{u} \rangle_{\beta}^{\mathbf{2}} \big], \qquad \quad \chi = \mathbf{N} \big[\langle \mathbf{m}^{\mathbf{2}} \rangle_{\beta} - \langle \mathbf{m} \rangle_{\beta}^{\mathbf{2}} \big].$$

• Variation: Q-states Potts model, $\sigma_{\mathbf{x}} = 1, 2, \dots, Q$.

The problem

Standard thermodynamic hand-waving:

$$\begin{split} Z(\beta) &= \int \mathrm{d} u \, \mathrm{e}^{N[s(u) - \beta u]} \approx \mathrm{e}^{N[s(u^*) - \beta u^*]} \quad , \quad \beta = \left. \frac{\mathrm{d} s}{\mathrm{d} u} \right|_{u = u^*} \\ Z(\beta, h) &= \int \mathrm{d} m \, \mathrm{e}^{N[\Omega_\beta(m) - hm]} \approx \mathrm{e}^{N[\Omega_\beta(m^*) - hm^*]} \quad , \quad h = \left. \frac{\partial \Omega_\beta}{\partial m} \right|_{m = m^*} \end{split}$$

The problem

Standard thermodynamic hand-waving:

$$\begin{split} Z(\beta) &= \int \mathsf{d} u \, e^{N[s(u) - \beta u]} \approx e^{N[s(u^*) - \beta u^*]} \quad , \quad \beta = \left. \frac{\mathsf{d} s}{\mathsf{d} u} \right|_{u = u^*} \\ Z(\beta, h) &= \int \mathsf{d} m \, e^{N[\Omega_\beta(m) - hm]} \approx e^{N[\Omega_\beta(m^*) - hm^*]} \quad , \quad h = \left. \frac{\partial \Omega_\beta}{\partial m} \right|_{m = m^*} \end{split}$$

Yet, m and u discretized variables for finite N:

$$\Delta m, \Delta u \sim \frac{1}{N}$$
.

 $s(u), \Omega_{\beta}(m)$: comb-like sums of Dirac's delta functions. Smooth effective potentials require coarse-graining.

The construction of the entropy density s(e)

• Artificially add conjugate momenta $\{\sigma_{\mathbf{X}}\} \longrightarrow \{\sigma_{\mathbf{X}}, \pi_{\mathbf{X}}\}$ $\pi_{\mathbf{X}}$: decoupled Gaussian bath that multiply $Z(\beta)$ by trivial factor.

- Artificially add conjugate momenta $\{\sigma_{\mathbf{X}}\} \longrightarrow \{\sigma_{\mathbf{X}}, \pi_{\mathbf{X}}\}$ $\pi_{\mathbf{X}}$: decoupled Gaussian bath that multiply $Z(\beta)$ by trivial factor.
- Original Hamiltonian \longrightarrow potential energy U = uN. $K = \frac{1}{2} \sum_{\mathbf{x}} \pi_{\mathbf{x}}^2 = N\kappa$. Total Energy: $\mathcal{H} = U + K = Ne$.

- Artificially add conjugate momenta $\{\sigma_{\mathbf{X}}\} \longrightarrow \{\sigma_{\mathbf{X}}, \pi_{\mathbf{X}}\}$ $\pi_{\mathbf{X}}$: decoupled Gaussian bath that multiply $Z(\beta)$ by trivial factor.
- Original Hamiltonian \longrightarrow potential energy U = uN. $K = \frac{1}{2} \sum_{\mathbf{x}} \pi_{\mathbf{x}}^2 = N\kappa$. Total Energy: $\mathcal{H} = U + K = N\epsilon$.

$$\tilde{Z}(\beta) = \sum_{\{\sigma_{\boldsymbol{x}}\}} \int \prod_{\boldsymbol{x}} d\pi_{\boldsymbol{x}} e^{-\beta \mathcal{H}} = \frac{(2\pi)^{N/2}}{\beta^{N/2}} Z(\beta),$$

- Artificially add conjugate momenta $\{\sigma_{\mathbf{X}}\} \longrightarrow \{\sigma_{\mathbf{X}}, \pi_{\mathbf{X}}\}$ $\pi_{\mathbf{X}}$: decoupled Gaussian bath that multiply $Z(\beta)$ by trivial factor.
- Original Hamiltonian \longrightarrow potential energy U = uN. $K = \frac{1}{2} \sum_{\mathbf{x}} \pi_{\mathbf{x}}^2 = N\kappa$. Total Energy: $\mathcal{H} = U + K = N\epsilon$.

$$\begin{split} \tilde{Z}(\beta) &= \sum_{\{\sigma_{\boldsymbol{x}}\}} \int \prod_{\boldsymbol{x}} \mathrm{d}\pi_{\boldsymbol{x}} \, \mathrm{e}^{-\beta\mathcal{H}} = \frac{(2\pi)^{N/2}}{\beta^{N/2}} Z(\beta) \,, \\ \exp\left[N \, s(\boldsymbol{e}, N)\right] &= \sum_{\{\sigma_{\boldsymbol{x}}\}} \int \prod_{\boldsymbol{x}} \mathrm{d}\pi_{\boldsymbol{x}} \, \delta \left(\mathcal{H} - \boldsymbol{e} N\right) \,, \end{split}$$

- Artificially add conjugate momenta $\{\sigma_{\mathbf{X}}\} \longrightarrow \{\sigma_{\mathbf{X}}, \pi_{\mathbf{X}}\}$ $\pi_{\mathbf{X}}$: decoupled Gaussian bath that multiply $Z(\beta)$ by trivial factor.
- Original Hamiltonian \longrightarrow potential energy U = uN. $K = \frac{1}{2} \sum_{\mathbf{x}} \pi_{\mathbf{x}}^2 = N\kappa$. Total Energy: $\mathcal{H} = U + K = N\epsilon$.

$$\begin{split} \tilde{Z}(\beta) &= \sum_{\{\sigma_{\boldsymbol{x}}\}} \int \prod_{\boldsymbol{x}} \mathrm{d}\pi_{\boldsymbol{x}} \, \mathrm{e}^{-\beta\mathcal{H}} = \frac{(2\pi)^{N/2}}{\beta^{N/2}} Z(\beta) \,, \\ \exp\left[N \, s(\boldsymbol{e}, N)\right] &= \sum_{\{\sigma_{\boldsymbol{x}}\}} \int \prod_{\boldsymbol{x}} \mathrm{d}\pi_{\boldsymbol{x}} \, \delta \left(\mathcal{H} - \boldsymbol{e} N\right) \,, \\ \tilde{Z}(\beta) &= \int \mathrm{d}\boldsymbol{e} \, \mathrm{e}^{N(\, s(\boldsymbol{e}, N) \, - \, \beta \boldsymbol{e})} \,. \end{split}$$

- Artificially add conjugate momenta $\{\sigma_{\mathbf{X}}\} \longrightarrow \{\sigma_{\mathbf{X}}, \pi_{\mathbf{X}}\}$ $\pi_{\mathbf{X}}$: decoupled Gaussian bath that multiply $Z(\beta)$ by trivial factor.
- Original Hamiltonian \longrightarrow potential energy U = uN. $K = \frac{1}{2} \sum_{\mathbf{x}} \pi_{\mathbf{x}}^2 = N\kappa$. Total Energy: $\mathcal{H} = U + K = N\epsilon$.
- Canonical pdf:

$$ho_eta(e) = rac{\mathrm{e}^{N(\,s(e,N)\,-\,eta\,e)}}{ ilde{Z}(eta)}\,.$$

The construction of the entropy density s(e)

- Artificially add conjugate momenta $\{\sigma_{\mathbf{X}}\} \longrightarrow \{\sigma_{\mathbf{X}}, \pi_{\mathbf{X}}\}$ $\pi_{\mathbf{X}}$: decoupled Gaussian bath that multiply $Z(\beta)$ by trivial factor.
- Original Hamiltonian \longrightarrow potential energy U = uN. $K = \frac{1}{2} \sum_{\mathbf{x}} \pi_{\mathbf{x}}^2 = N\kappa$. Total Energy: $\mathcal{H} = U + K = N\epsilon$.
- Canonical pdf:

$$ho_eta(e) = rac{\mathsf{e}^{ extit{N}(\,s(e,N)\,-\,eta\,e)}}{ ilde{Z}(eta)}\,.$$

• $p_{\beta}(e)$ is a convolution (κ and u independent!):

$$p_{\beta}(e) = \int \int d\kappa du \ p_{\beta,u}(u) p_{\beta,\kappa}(\kappa) \, \delta(e-u-\kappa)$$
.

$$\kappa=rac{1}{2eta}\left[1+\zeta\sqrt{rac{2}{N}}
ight],$$
 $\zeta\sim1$ and (almost) Gaussian distributed.

 $p_{\beta,u}(u)$ gets shifted by $\frac{1}{2\beta}$ and smoothed.

Tethered effective potential $\Omega_N(\hat{m}, \beta)$, analogue to s(e, N)

• Conjugate momenta now leave unchanged $Z(\beta)$

$$Z(\beta) = \sum_{\{\sigma_{\mathbf{x}}\}} \int \prod_{\mathbf{x}} \frac{\mathsf{d}\pi_{\mathbf{x}}}{\sqrt{2\pi}} \mathsf{e}^{-\beta U - \sum_{\mathbf{x}} \frac{\pi_{\mathbf{x}}^2}{2}}.$$

Tethered effective potential $\Omega_N(\hat{m}, \beta)$, analogue to s(e, N)

• Conjugate momenta now leave unchanged $Z(\beta)$

$$Z(\beta) = \sum_{\{\sigma_{\mathbf{x}}\}} \int \prod_{\mathbf{x}} \frac{\mathsf{d}\pi_{\mathbf{x}}}{\sqrt{2\pi}} \mathsf{e}^{-\beta U - \sum_{\mathbf{x}} \frac{\pi_{\mathbf{x}}^2}{2}}.$$

• We couple $\pi_{\mathbf{x}}$ with order parameter:

$$p_{\beta}(\hat{\boldsymbol{m}}) = \frac{1}{Z} \sum_{\{\sigma_{\boldsymbol{x}}\}} \int \prod_{\boldsymbol{x}} \frac{\mathsf{d}\pi_{\boldsymbol{x}}}{\sqrt{2\pi}} e^{-\beta U} \delta(N\hat{\boldsymbol{m}} - Nm - \sum_{\boldsymbol{x}} \frac{\pi_{\boldsymbol{x}}^2}{2}) = e^{N\Omega_{N}(\hat{\boldsymbol{m}},\beta)}$$

Tethered effective potential $\Omega_N(\hat{m}, \beta)$, analogue to s(e, N)

ullet Conjugate momenta now leave unchanged Z(eta)

$$Z(\beta) = \sum_{\{\sigma_{\mathbf{x}}\}} \int \prod_{\mathbf{x}} \frac{\mathsf{d}\pi_{\mathbf{x}}}{\sqrt{2\pi}} e^{-\beta U - \sum_{\mathbf{x}} \frac{\pi_{\mathbf{x}}^2}{2}}.$$

• We couple $\pi_{\mathbf{x}}$ with order parameter:

$$p_{\beta}(\hat{\mathbf{m}}) = \frac{1}{Z} \sum_{\{\sigma_{\mathbf{x}}\}} \int \prod_{\mathbf{x}} \frac{d\pi_{\mathbf{x}}}{\sqrt{2\pi}} e^{-\beta U} \delta(N\hat{m} - Nm - \sum_{\mathbf{x}} \frac{\pi_{\mathbf{x}}^2}{2}) = e^{N\Omega_{N}(\hat{m},\beta)}$$

• Again, $r = \frac{1}{N} \sum_{\mathbf{X}} \frac{\pi_{\mathbf{X}}^2}{2} = \frac{1}{2} + \frac{\zeta}{\sqrt{N}}$, with $\zeta \sim 1$.

Tethered effective potential $\Omega_N(\hat{m}, \beta)$, analogue to s(e, N)

ullet Conjugate momenta now leave unchanged Z(eta)

$$Z(\beta) = \sum_{\{\sigma_{\mathbf{x}}\}} \int \prod_{\mathbf{x}} \frac{\mathsf{d}\pi_{\mathbf{x}}}{\sqrt{2\pi}} e^{-\beta U - \sum_{\mathbf{x}} \frac{\pi_{\mathbf{x}}^2}{2}}.$$

• We couple $\pi_{\mathbf{x}}$ with order parameter:

$$p_{\beta}(\hat{\boldsymbol{m}}) = \frac{1}{Z} \sum_{\{\sigma_{\boldsymbol{x}}\}} \int \prod_{\boldsymbol{x}} \frac{\mathrm{d}\pi_{\boldsymbol{x}}}{\sqrt{2\pi}} \mathrm{e}^{-\beta U} \delta(N\hat{\boldsymbol{m}} - N\boldsymbol{m} - \sum_{\boldsymbol{x}} \frac{\pi_{\boldsymbol{x}}^2}{2}) = \mathrm{e}^{N\Omega_{N}(\hat{\boldsymbol{m}},\beta)}$$

- Again, $r = \frac{1}{N} \sum_{\mathbf{X}} \frac{\pi_{\mathbf{X}}^2}{2} = \frac{1}{2} + \frac{\zeta}{\sqrt{N}}$, with $\zeta \sim 1$.
- $\hat{m} \approx m + \frac{1}{2}$: $p_{\beta}(\hat{m})$ is a convolution of $p_{\beta,m}$ and $p_{\beta,r}$.

(β and e reverse their roles)

$$\exp\left[N s(\mathbf{e}, \mathbf{N})\right] = \sum_{\{\sigma_{\mathbf{x}}\}} \int \prod_{\mathbf{x}} d\pi_{\mathbf{x}} \, \delta\left(\frac{1}{2} \sum_{\{\sigma_{\mathbf{x}}\}} \pi_{\mathbf{x}}^2 + u\mathbf{N} - e\mathbf{N}\right),$$

$$= constant \times \sum_{\{\sigma_{\mathbf{x}}\}} (e - u)^{\frac{N-2}{2}} \theta(e - u).$$

$$\langle O \rangle_{e} = rac{\sum_{\{\sigma_{\mathbf{x}}\}} O(e; \{\sigma\}) \, \omega^{\mathsf{mic}}(\{\sigma\})}{\sum_{\{\sigma_{\mathbf{x}}\}} \, \omega^{\mathsf{mic}}(\{\sigma\})} \,, \quad \omega^{\mathsf{mic}} = (e - u)^{\frac{N-2}{2}} \theta(e - u) \,.$$

(β and e reverse their roles)

$$\langle O \rangle_{m{e}} = rac{\sum_{\{\sigma_{m{x}}\}} O(m{e}; \{\sigma\}) \, \omega^{\mathsf{mic}}(\{\sigma\})}{\sum_{\{\sigma_{m{x}}\}} \, \omega^{\mathsf{mic}}(\{\sigma\})} \,, \quad \omega^{\mathsf{mic}} = (m{e} - m{u})^{\frac{N-2}{2}} \theta(m{e} - m{u}) \,.$$

$$\bullet \ \ \hat{\beta} = \frac{N-2}{2N} \frac{1}{e-u} \quad , \quad \ \frac{\mathrm{d}s(\underline{e},N)}{\mathrm{d}e} = \langle \hat{\beta} \rangle_{\underline{e}} \, .$$

(β and e reverse their roles)

$$\langle O \rangle_{e} = \frac{\sum_{\{\sigma_{\mathbf{x}}\}} O(e; \{\sigma\}) \, \omega^{\mathsf{mic}}(\{\sigma\})}{\sum_{\{\sigma_{\mathbf{x}}\}} \, \omega^{\mathsf{mic}}(\{\sigma\})}, \quad \omega^{\mathsf{mic}} = (e - u)^{\frac{N-2}{2}} \theta(e - u).$$

- $\bullet \ \ \hat{\beta} = \frac{N-2}{2N} \frac{1}{e-u} \quad , \quad \ \frac{\mathrm{d} s(\underline{e},N)}{\mathrm{d} \underline{e}} = \langle \hat{\beta} \rangle_{\underline{e}} \, .$
- Canonical pdf: $\log P_{\beta}(e_2) \log P_{\beta}(e_1) = N \int_{e_1}^{e_2} de \left(\langle \hat{\beta} \rangle_{e} \beta \right)$.

(β and e reverse their roles)

$$\langle O \rangle_{e} = rac{\sum_{\{\sigma_{\mathbf{x}}\}} O(e; \{\sigma\}) \, \omega^{\mathsf{mic}}(\{\sigma\})}{\sum_{\{\sigma_{\mathbf{x}}\}} \, \omega^{\mathsf{mic}}(\{\sigma\})} \,, \quad \omega^{\mathsf{mic}} = (e - u)^{\frac{N-2}{2}} \theta(e - u) \,.$$

- $\bullet \ \ \hat{\beta} = \frac{N-2}{2N} \frac{1}{e-u} \quad , \quad \ \frac{\mathrm{d}s(\underline{e},N)}{\mathrm{d}e} = \langle \hat{\beta} \rangle_{\underline{e}} \, .$
- Canonical pdf: $\log P_{\beta}(e_2) \log P_{\beta}(e_1) = N \int_{e_1}^{e_2} de \left(\langle \hat{\beta} \rangle_e \beta \right)$.
- Maximum (actually extrema) of canonical pdf: $\langle \hat{\beta} \rangle_{e} = \beta$.

(β and e reverse their roles)

$$\langle O \rangle_{e} = rac{\sum_{\{\sigma_{\mathbf{x}}\}} O(e; \{\sigma\}) \, \omega^{\mathsf{mic}}(\{\sigma\})}{\sum_{\{\sigma_{\mathbf{x}}\}} \, \omega^{\mathsf{mic}}(\{\sigma\})} \,, \quad \omega^{\mathsf{mic}} = (e - u)^{\frac{N-2}{2}} \theta(e - u) \,.$$

- $\bullet \ \ \hat{\beta} = \frac{N-2}{2N} \frac{1}{e-u} \quad , \quad \ \frac{\mathrm{d}s(\underline{e},N)}{\mathrm{d}e} = \langle \hat{\beta} \rangle_{\underline{e}} \, .$
- Canonical pdf: $\log P_{\beta}(e_2) \log P_{\beta}(e_1) = N \int_{e_1}^{e_2} de \left(\langle \hat{\beta} \rangle_e \beta \right)$.
- Maximum (actually extrema) of canonical pdf: $\langle \hat{\beta} \rangle_{e} = \beta$.
- Similar to Creutz's microcanonical daemon but

(β and e reverse their roles)

$$\langle O \rangle_{e} = rac{\sum_{\{\sigma_{\mathbf{x}}\}} O(e; \{\sigma\}) \, \omega^{\mathsf{mic}}(\{\sigma\})}{\sum_{\{\sigma_{\mathbf{x}}\}} \, \omega^{\mathsf{mic}}(\{\sigma\})} \,, \quad \omega^{\mathsf{mic}} = (e - u)^{\frac{N-2}{2}} \theta(e - u) \,.$$

- $\bullet \ \ \hat{\beta} = \frac{N-2}{2N} \frac{1}{e-u} \quad , \quad \ \frac{\mathrm{d}s(\underline{e},N)}{\mathrm{d}e} = \langle \hat{\beta} \rangle_{\underline{e}} \, .$
- Canonical pdf: $\log P_{\beta}(e_2) \log P_{\beta}(e_1) = N \int_{e_1}^{e_2} de \left(\langle \hat{\beta} \rangle_e \beta \right)$.
- Maximum (actually extrema) of canonical pdf: $\langle \hat{\beta} \rangle_{e} = \beta$.
- Similar to Creutz's microcanonical daemon but
 - We have an extensive number of daemons.
 - Daemons are continuous variables.
 - We integrate them out.

The tethered ensemble

Integrating demons out in the *constrained* (fixed \hat{m}) partition function \rightarrow tethered expectation values:

$$\langle \textit{O} \rangle_{\hat{\textit{m}},\beta} = \frac{\sum_{\{\sigma_{\textit{\textbf{x}}}\}} \textit{O}(\hat{\textit{m}}; \{\sigma_{\textit{\textbf{x}}}\}) \omega^{\text{teth}}(\beta, \hat{\textit{m}}, \textit{\textbf{N}}; \{\sigma_{\textit{\textbf{x}}}\})}{\sum_{\{\sigma_{\textit{\textbf{x}}}\}} \omega^{\text{teth}}(\beta, \hat{\textit{m}}, \textit{\textbf{N}}; \{\sigma_{\textit{\textbf{x}}}\})},$$

The tethered ensemble

• Integrating demons out in the *constrained* (fixed \hat{m}) partition function \rightarrow tethered expectation values:

$$\begin{split} \langle \textit{O} \rangle_{\hat{\textit{m}},\beta} &= \frac{\sum_{\{\sigma_{\textit{\textbf{X}}}\}} \textit{O}(\hat{\textit{m}}; \{\sigma_{\textit{\textbf{X}}}\}) \omega^{\text{teth}}(\beta, \hat{\textit{m}}, \textit{\textbf{N}}; \{\sigma_{\textit{\textbf{X}}}\})}{\sum_{\{\sigma_{\textit{\textbf{X}}}\}} \omega^{\text{teth}}(\beta, \hat{\textit{m}}, \textit{\textbf{N}}; \{\sigma_{\textit{\textbf{X}}}\})}, \\ \omega^{\text{teth}}(\beta, \hat{\textit{m}}, \textit{\textbf{N}}; \{\sigma_{\textit{\textbf{X}}}\}) &= e^{-\beta \textit{U} + \textit{M} - \textit{N}\hat{\textit{m}}} (\hat{\textit{m}} - \textit{m})^{(\textit{N} - 2)/2} \; \theta(\hat{\textit{m}} - \textit{m}). \end{split}$$

The tethered ensemble

• Integrating demons out in the *constrained* (fixed \hat{m}) partition function \rightarrow tethered expectation values:

$$\begin{split} \langle \textit{O} \rangle_{\hat{\textit{m}},\beta} &= \frac{\sum_{\{\sigma_{\textit{\textbf{x}}}\}} \textit{O}(\hat{\textit{m}}; \{\sigma_{\textit{\textbf{x}}}\}) \omega^{\text{teth}}(\beta, \hat{\textit{m}}, \textit{\textbf{N}}; \{\sigma_{\textit{\textbf{x}}}\})}{\sum_{\{\sigma_{\textit{\textbf{x}}}\}} \omega^{\text{teth}}(\beta, \hat{\textit{m}}, \textit{\textbf{N}}; \{\sigma_{\textit{\textbf{x}}}\})}, \\ \omega^{\text{teth}}(\beta, \hat{\textit{m}}, \textit{\textbf{N}}; \{\sigma_{\textit{\textbf{x}}}\}) &= \mathrm{e}^{-\beta \textit{U} + \textit{M} - \textit{N}\hat{\textit{m}}} (\hat{\textit{m}} - \textit{m})^{(\textit{N} - 2)/2} \; \theta(\hat{\textit{m}} - \textit{m}). \end{split}$$

• The canonical Ω_N follows from Fluctuation-Dissipation

$$\hat{h}(\hat{m}; \{\sigma_{\mathbf{x}}\}) = -1 + \frac{N/2 - 1}{\hat{M} - M} \implies \langle \hat{h} \rangle_{\hat{m}, \beta} = \frac{\partial \Omega_{N}(\hat{m}, \beta)}{\partial \hat{m}}.$$

The tethered ensemble

Integrating demons out in the *constrained* (fixed \hat{m}) partition function \rightarrow tethered expectation values:

$$\begin{split} \langle \textit{O} \rangle_{\hat{\textit{m}},\beta} &= \frac{\sum_{\{\sigma_{\textit{\textbf{x}}}\}} \textit{O}(\hat{\textit{m}}; \{\sigma_{\textit{\textbf{x}}}\}) \omega^{\text{teth}}(\beta, \hat{\textit{m}}, \textit{\textbf{N}}; \{\sigma_{\textit{\textbf{x}}}\})}{\sum_{\{\sigma_{\textit{\textbf{x}}}\}} \omega^{\text{teth}}(\beta, \hat{\textit{m}}, \textit{\textbf{N}}; \{\sigma_{\textit{\textbf{x}}}\})}, \\ \omega^{\text{teth}}(\beta, \hat{\textit{m}}, \textit{\textbf{N}}; \{\sigma_{\textit{\textbf{x}}}\}) &= \mathrm{e}^{-\beta \textit{U} + \textit{M} - \textit{N}\hat{\textit{m}}}(\hat{\textit{m}} - \textit{m})^{(\textit{N} - 2)/2} \, \theta(\hat{\textit{m}} - \textit{m}). \end{split}$$

• The canonical Ω_N follows from Fluctuation-Dissipation

$$\hat{h}(\hat{m}; \{\sigma_{\mathbf{x}}\}) = -1 + \frac{N/2 - 1}{\hat{M} - M} \implies \langle \hat{h} \rangle_{\hat{m}, \beta} = \frac{\partial \Omega_{N}(\hat{m}, \beta)}{\partial \hat{m}}.$$

• Tethered mean values $\langle O \rangle_{\hat{m},\beta} \leftrightarrow$ canonical mean values $\langle O \rangle_{\beta}(h)$, for any external field h:

$$\langle {\it O}
angle_{eta}({\it h}) = \int {
m d}\hat{m} \; \langle {\it O}
angle_{\hat{m},eta} \exp[{\it N}(\Omega_{\it N}(\hat{m},eta) + {\it h}\hat{m})].$$

Result:
$$\langle u \rangle_{\beta_c} = -0.330\,983\,1(15)$$

(Ising, $L=128,\,D=3$)

Steps

Select a mesh of m̂ values.

Result:
$$\langle u \rangle_{\beta_{\rm c}} = -0.330\,983\,1(15)$$
 (Ising, $L=128,\,D=3$)

- Select a mesh of m̂ values.
- 2 Independent simulation for each \hat{m} . Get $\langle O \rangle_{\hat{m},\beta}$.

Result:
$$\langle u \rangle_{\beta_{\rm c}} = -0.330\,983\,1(15)$$
 (Ising, $L=128,\,D=3$)

- \bigcirc Select a mesh of \hat{m} values.
- 2 Independent simulation for each \hat{m} . Get $\langle O \rangle_{\hat{m},\beta}$.
- ③ $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).

Result:
$$\langle u \rangle_{\beta_{\rm c}} = -0.330\,983\,1(15)$$
 (Ising, $L=128,\,D=3$)

- \bigcirc Select a mesh of \hat{m} values.
- 2 Independent simulation for each \hat{m} . Get $\langle O \rangle_{\hat{m},\beta}$.
- ③ $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
- **3** Numerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.

Result:
$$\langle u \rangle_{\beta_{\rm c}} = -0.330\,983\,1(15)$$
 (Ising, $L=128,\,D=3$)

- Select a mesh of m̂ values.
- Independent simulation for each \hat{m} . Get $\langle O \rangle_{\hat{m},\beta}$.
- ③ $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
- Numerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.
- Seconstruct canonical $\langle O \rangle_{\beta}$ from $p(\hat{m})$ and $\langle O \rangle_{\hat{m},\beta}$.

Result:
$$\langle u \rangle_{\beta_{\rm c}} = -0.330\,983\,1(15)$$
 (Ising, $L=128,\,D=3$)

- Select a mesh of m̂ values.
- Independent simulation for each \hat{m} . Get $\langle O \rangle_{\hat{m},\beta}$.
- ③ $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
- Numerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.
- Seconstruct canonical $\langle O \rangle_{\beta}$ from $p(\hat{m})$ and $\langle O \rangle_{\hat{m},\beta}$.
- Statistical errors: jackknife.

Result:
$$\langle u \rangle_{\beta_{\rm c}} = -0.330\,983\,1(15)$$
 (Ising, $L=128,\,D=3$)

- Select a mesh of m̂ values.
- Independent simulation for each \hat{m} . Get $\langle O \rangle_{\hat{m},\beta}$.
- ③ $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
- Numerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.
- The secondary struct canonical $\langle O \rangle_{\beta}$ from $p(\hat{m})$ and $\langle O \rangle_{\hat{m},\beta}$.
- Statistical errors: jackknife.
- Systematic errors: refine m̂ mesh.

Outline

- Introduction
- Quasi constrained statistical ensembles
- Local simulation algorithm
- Cluster methods
- First order phase transitions
- Metastability in disordered systems
- Conclusions

Metropolis algorithm

Start from your working Monte Carlo (canonical) program:

• Try a spin-flip, (or to displace a particle, or whatever local move).

Metropolis algorithm

Start from your working Monte Carlo (canonical) program:

- Try a spin-flip, (or to displace a particle, or whatever local move).
- Accept the move with Metropolis probability:

$$p_{
m accept} = \min \left[1, rac{\omega_{
m new}}{\omega_{
m old}}
ight] \,, \quad \omega = \omega^{
m mic}, \omega^{
m teth} \,.$$

Metropolis algorithm

Start from your working Monte Carlo (canonical) program:

- Try a spin-flip, (or to displace a particle, or whatever local move).
- Accept the move with Metropolis probability:

$$p_{
m accept} = \min \left[1, rac{\omega_{
m new}}{\omega_{
m old}}
ight] \,, \quad \omega = \omega^{
m mic}, \omega^{
m teth} \,.$$

• Discrete spin sistems: p_{accept} takes a finite number of values \implies Look-up-table provide significant speed-up.

Autocorrelation times for Metropolis

- τ_{int}: dramatic dependence on observable, and on m̂.
- Functions of m (e.g. h):
 no measurable critical
 slowing down.
- Energy or propagator's Fourier transform $(\vec{k} \neq 0)$ $\tau_{\rm int}(\hat{m}=0.5) \approx L^2$ Worst case: $m \sim 0$ or $\hat{m}=\frac{1}{2}$.

Outline

- Introduction
- Quasi constrained statistical ensembles
- Local simulation algorithm
- Cluster methods
- First order phase transitions
- Metastability in disordered systems
- Conclusions

Nothing really new: Fortuyn-Kasteleyn.

- Nothing really new: Fortuyn-Kasteleyn.
- Microcanonic case straightforward:

- Nothing really new: Fortuyn-Kasteleyn.
- Microcanonic case straightforward:
 - $\omega^{\text{mic}} = [\omega^{\text{mic}} e^{kU}] e^{-kU}$, k: tunable parameter.

- Nothing really new: Fortuyn-Kasteleyn.
- Microcanonic case straightforward:
 - $\omega^{\text{mic}} = [\omega^{\text{mic}} e^{kU}] e^{-kU}$, k: tunable parameter.
 - Apply Fortuyn-Kasteleyn to $e^{-kU} \implies$ trace clusters as canonical.

- Nothing really new: Fortuyn-Kasteleyn.
- Microcanonic case straightforward:
 - $\omega^{\text{mic}} = [\omega^{\text{mic}} e^{kU}] e^{-kU}$, k: tunable parameter.
 - Apply Fortuyn-Kasteleyn to $e^{-kU} \implies trace$ clusters as canonical.
 - Choose spin-values for clusters at random.

- Nothing really new: Fortuyn-Kasteleyn.
- Microcanonic case straightforward:
 - $\omega^{\text{mic}} = [\omega^{\text{mic}} e^{kU}] e^{-kU}$, k: tunable parameter.
 - Apply Fortuyn-Kasteleyn to $e^{-kU} \implies \text{trace clusters as canonical.}$
 - Choose spin-values for clusters at random.
 - Accept spin assignment with Metropolis probability.

$$p_{\text{accept}}^{\text{cluster}} = \min \left[1, \frac{\omega_{\text{new}}^{\text{mic}} \mathrm{e}^{k U_{\text{new}}}}{\omega_{\text{old}}^{\text{mic}} \mathrm{e}^{k U_{\text{old}}}} \right] \,.$$

- Nothing really new: Fortuyn-Kasteleyn.
- Microcanonic case straightforward:
 - $\omega^{\text{mic}} = [\omega^{\text{mic}} e^{kU}] e^{-kU}$, k: tunable parameter.
 - Apply Fortuyn-Kasteleyn to $e^{-kU} \implies$ trace clusters as canonical.
 - Choose spin-values for clusters at random.
 - Accept spin assignment with Metropolis probability.

$$p_{\text{accept}}^{\text{cluster}} = \min \left[1, \frac{\omega_{\text{new}}^{\text{mic}} \mathrm{e}^{kU_{\text{new}}}}{\omega_{\text{old}}^{\text{mic}} \mathrm{e}^{kU_{\text{old}}}} \right].$$

• $k = \langle \hat{\beta} \rangle_e \longrightarrow$ Potts model: $p_{\text{accept}}^{\text{cluster}} \approx 60\%$.

- We can follow the Fortuin-Kasteleyn construction.
- Edwards-Sokal: introduce bond-occupation variables n_{xy} (= 0, 1)

$$\exp[\beta(\sigma_x \sigma_y - 1)] = \sum_{n_{xy} = 0, 1} [(1 - p)\delta_{n_{xy}, 0} + p\delta_{\sigma_x, \sigma_y} \delta_{n_{xy}, 1}], \quad p = 1 - e^{-2\beta}.$$

these bonds form N_C clusters.

- We can follow the Fortuin-Kasteleyn construction.
- Edwards-Sokal: introduce bond-occupation variables n_{xy} (= 0, 1)

$$\exp[\beta(\sigma_x \sigma_y - 1)] = \sum_{n_{xy} = 0, 1} [(1 - p)\delta_{n_{xy}, 0} + p\delta_{\sigma_x, \sigma_y} \delta_{n_{xy}, 1}], \quad p = 1 - e^{-2\beta}.$$

these bonds form N_C clusters.

• Combine this identity with $\omega(\beta, \hat{m}; \{\sigma_x\})$:

$$\omega(\beta, \hat{m}; \{\sigma_{\mathbf{X}}\}) = e^{-\beta U + M - N\hat{m}} (\hat{m} - m)^{(N-2)/2} \theta(\hat{m} - m).$$

- We can follow the Fortuin-Kasteleyn construction.
- Edwards-Sokal: introduce bond-occupation variables n_{xy} (= 0, 1)

$$\exp[\beta(\sigma_{x}\sigma_{y}-1)] = \sum_{n_{xy}=0,1} [(1-p)\delta_{n_{xy},0} + p\delta_{\sigma_{x},\sigma_{y}} \delta_{n_{xy},1}], \quad p = 1 - e^{-2\beta}.$$

these bonds form N_C clusters.

• Combine this identity with $\omega(\beta, \hat{m}; \{\sigma_x\})$:

$$\omega(\beta, \hat{m}; \{\sigma_{\mathbf{X}}\}) = e^{-\beta U + M - N\hat{m}} (\hat{m} - m)^{(N-2)/2} \theta(\hat{m} - m).$$

- We have the following conditional probabilities:
 - Given $\{\sigma_x\}$, just as in the canonical case, bonds are independent and n_{xy} is 1 with probability $p\delta_{\sigma_x,\sigma_y}$.

- We can follow the Fortuin-Kasteleyn construction.
- Edwards-Sokal: introduce bond-occupation variables n_{xy} (= 0, 1)

$$\exp[\beta(\sigma_x \sigma_y - 1)] = \sum_{n_{xy} = 0, 1} [(1 - p)\delta_{n_{xy}, 0} + p\delta_{\sigma_x, \sigma_y} \delta_{n_{xy}, 1}], \quad p = 1 - e^{-2\beta}.$$

these bonds form N_C clusters.

• Combine this identity with $\omega(\beta, \hat{m}; \{\sigma_x\})$:

$$\omega(\beta, \hat{m}; \{\sigma_{\mathbf{X}}\}) = e^{-\beta U + M - N\hat{m}} (\hat{m} - m)^{(N-2)/2} \theta(\hat{m} - m).$$

- We have the following conditional probabilities:
 - Given $\{\sigma_x\}$, just as in the canonical case, bonds are independent and n_{xy} is 1 with probability $p\delta_{\sigma_x,\sigma_y}$.
 - Given $\{n_{xy}\}$, the spins within cluster i are equal to $S_i = \pm 1$. Not all $\{S_i\}$ configurations have the same probability:

$$p(\{S_i\}) \propto e^{M-\hat{M}}(\hat{M}-M)^{(N-2)/2} \theta(\hat{M}-M).$$

- a) Cluster tracing
- b) Cluster flipping:

- a) Cluster tracing (as in canonical SW)
- b) Cluster flipping:

- a) Cluster tracing (as in canonical SW)
- b) Cluster flipping: It is impossible to consider all 2^{N_c} cluster orientations

- a) Cluster tracing (as in canonical SW)
- b) Cluster flipping: We perform a dynamic MC
 - Select $N_C' \ll N_C$ clusters (for instance $N_C' \approx 5$).

- a) Cluster tracing (as in canonical SW)
- b) Cluster flipping: We perform a dynamic MC
 - Select $N_C' \ll N_C$ clusters (for instance $N_C' \approx 5$).
 - ② Heat bath among the $2^{N'_C}$ configurations with $N_C N'_C$ clusters fixed.

- a) Cluster tracing (as in canonical SW)
- b) Cluster flipping: We perform a dynamic MC
 - Select $N_C' \ll N_C$ clusters (for instance $N_C' \approx 5$).
 - ② Heat bath among the $2^{N'_C}$ configurations with $N_C N'_C$ clusters fixed.
 - Take measurements.

Steps 1–3 are repeated N_{REP} times, without retracing the clusters.

- a) Cluster tracing (as in canonical SW)
- b) Cluster flipping: We perform a dynamic MC
 - Select $N_C' \ll N_C$ clusters (for instance $N_C' \approx 5$).
 - ② Heat bath among the $2^{N'_C}$ configurations with $N_C N'_C$ clusters fixed.
 - Take measurements.

Steps 1–3 are repeated N_{REP} times, without retracing the clusters.

We consider the overlap

$$o = \frac{\left\langle \sum_{\textbf{x}} [\sigma_{\textbf{x}}^{t=0} \sigma_{\textbf{x}}^{t=N_{\mathsf{rep}}} - \langle \textit{m} \rangle_{\hat{\textit{m}},\beta}^2] \right\rangle_{\hat{\textit{m}},\beta}}{\textit{N}(1 - \langle \textit{m} \rangle_{\hat{\textit{m}},\beta}^2)}$$

Our N_{REP}: Tracing time ≈ Flipping time

- a) Cluster tracing (as in canonical SW)
- b) Cluster flipping: We perform a dynamic MC
 - Select $N_C' \ll N_C$ clusters (for instance $N_C' \approx 5$).
 - ② Heat bath among the $2^{N'_C}$ configurations with $N_C N'_C$ clusters fixed.
 - Take measurements.

Steps 1–3 are repeated N_{REP} times, without retracing the clusters.

We consider the overlap

$$o = \frac{\left\langle \sum_{\boldsymbol{x}} [\sigma_{\boldsymbol{x}}^{t=0} \sigma_{\boldsymbol{x}}^{t=N_{\mathsf{fep}}} - \langle \boldsymbol{m} \rangle_{\hat{\boldsymbol{m}},\beta}^2] \right\rangle_{\hat{\boldsymbol{m}},\beta}}{N(1 - \langle \boldsymbol{m} \rangle_{\hat{\boldsymbol{m}},\beta}^2)}$$

- Our N_{REP} : Tracing time \approx Flipping time
- Measuring \hat{h} at each of the N_{REP} steps reduces errors by up to a factor 25

Results at the critical point

Integrated autocorrelation times

- The slowest observable is E.
- τ_{int} largest at $\hat{m} = 0.5$ ($m \simeq 0$).

Results at the critical point

Integrated autocorrelation times

- The slowest observable is E.
- τ_{int} largest at $\hat{m} = 0.5$ ($m \simeq 0$).
- We fit to $\tau_{int} = AL^z$:

•
$$D = 2 \longrightarrow z = 0.241(7)$$

Results at the critical point

Integrated autocorrelation times

- The slowest observable is E.
- $\tau_{\rm int}$ largest at $\hat{m}=0.5~(m\simeq0)$.
- We fit to $\tau_{int} = AL^z$:

•
$$D = 2 \longrightarrow z = 0.241(7)$$

•
$$D = 3 \longrightarrow z = 0.472(8)$$

Results at the critical point

Integrated autocorrelation times

- The slowest observable is E.
- $\tau_{\rm int}$ largest at $\hat{m}=0.5~(m\simeq0)$.
- We fit to $\tau_{int} = AL^z$:

•
$$D = 2 \longrightarrow z = 0.241(7)$$

•
$$D = 3 \longrightarrow z = 0.472(8)$$

 D = 3, z compatible with that of canonical Swendsen-Wang (data from Ossola and Sokal, 2001)

Results at the critical point

Integrated autocorrelation times

- The slowest observable is E.
- τ_{int} largest at $\hat{m} = 0.5$ ($m \simeq 0$).
- We fit to $\tau_{int} = AL^z$:

•
$$D = 2 \longrightarrow z = 0.241(7)$$

•
$$D = 3 \longrightarrow z = 0.472(8)$$

 D = 3, z compatible with that of canonical Swendsen-Wang (data from Ossola and Sokal, 2001)

Canonical averages for L = 128, D = 3

(۵/ ۵

	IVIOO	$-\langle \mathbf{c}/\beta$	O	X	ζ
SW	48×10^{6}	0.3309822(16)	22.155(18)	21193(13)	82.20(3)
TMC	50×10^6	0.3309831(15)	22.174(13)	21202(13)	82.20(5)

MACC

Outline

- Introduction
- Quasi constrained statistical ensembles
- Local simulation algorithm
- Cluster methods
- First order phase transitions
- Metastability in disordered systems
- Conclusions

Use cluster method

- Use cluster method
- At phase coexistence $\langle \hat{\beta} \rangle_e$ non decreasing,

$$\langle \hat{eta} \rangle_{\mathbf{e}} = eta_{\mathbf{c}}$$
 at

e_d: disordered phase,

 e^* : saddle-point,

e_o: ordered phase.

- Use cluster method
- At phase coexistence $\langle \hat{\beta} \rangle_e$ non decreasing,

$$\langle \hat{eta} \rangle_{\mathbf{e}} = eta_{\mathbf{c}}$$
 at

e_d: disordered phase,e*: saddle-point,

 e_0 : ordered phase.

β_c from Maxwell rule
 6 significant digits, on L = 1024.

- Use cluster method
- At phase coexistence $\langle \hat{\beta} \rangle_e$ non decreasing,

$$\langle \hat{\beta} \rangle_{e} = \beta_{c}$$
 at

e_d: disordered phase,e*: saddle-point,

e_o: ordered phase.

- β_c from Maxwell rule
 6 significant digits, on L = 1024.
- Surface tension:

$$\Sigma_{L} = \frac{L}{2} \int_{e^{*}}^{e_{d}} de \left(\langle \hat{\beta} \rangle_{e} - \beta_{c} \right)$$

Geometric transitions

Geometric transitions

Outline

- Introduction
- Quasi constrained statistical ensembles
- Local simulation algorithm
- Cluster methods
- 5 First order phase transitions
- Metastability in disordered systems
- Conclusions

 Two types of variables, dynamical (i.e. spins) and quenched (geologically slow: atomic impurities, vacancies, etc.).

- Two types of variables, dynamical (i.e. spins) and quenched (geologically slow: atomic impurities, vacancies, etc.).
- Impurities \longrightarrow random Hamiltonian H_J . Site-dependent coupling constants (sample), extracted from some pdf P(J).

- Two types of variables, dynamical (i.e. spins) and quenched (geologically slow: atomic impurities, vacancies, etc.).
- Impurities \longrightarrow random Hamiltonian H_J . Site-dependent coupling constants (sample), extracted from some pdf P(J).
- Quenched approximation: fast variables (spins) allowed no backreaction on slow ones. In practice:

- Two types of variables, dynamical (i.e. spins) and quenched (geologically slow: atomic impurities, vacancies, etc.).
- Impurities \longrightarrow random Hamiltonian H_J . Site-dependent coupling constants (sample), extracted from some pdf P(J).
- Quenched approximation: fast variables (spins) allowed no backreaction on slow ones. In practice:
 - **1** Take *J*-dependent thermal average $\langle ... \rangle_J$.

- Two types of variables, dynamical (i.e. spins) and quenched (geologically slow: atomic impurities, vacancies, etc.).
- Impurities \longrightarrow random Hamiltonian H_J . Site-dependent coupling constants (sample), extracted from some pdf P(J).
- Quenched approximation: fast variables (spins) allowed no backreaction on slow ones. In practice:
 - **1** Take *J*-dependent thermal average $\langle \ldots \rangle_J$.
 - 2 Average $\langle \ldots \rangle_J$ with P(J).

- Two types of variables, dynamical (i.e. spins) and quenched (geologically slow: atomic impurities, vacancies, etc.).
- Impurities \longrightarrow random Hamiltonian H_J . Site-dependent coupling constants (sample), extracted from some pdf P(J).
- Quenched approximation: fast variables (spins) allowed no backreaction on slow ones. In practice:
 - **1** Take *J*-dependent thermal average $\langle ... \rangle_J$.
 - **2** Average $\langle \ldots \rangle_J$ with P(J).
- Metastability in single sample already bad enough, yet even worse...

- Two types of variables, dynamical (i.e. spins) and quenched (geologically slow: atomic impurities, vacancies, etc.).
- Impurities \longrightarrow random Hamiltonian H_J . Site-dependent coupling constants (sample), extracted from some pdf P(J).
- Quenched approximation: fast variables (spins) allowed no backreaction on slow ones. In practice:
 - **1** Take *J*-dependent thermal average $\langle ... \rangle_J$.
 - **2** Average $\langle \ldots \rangle_J$ with P(J).
- Metastability in single sample already bad enough, yet even worse...

Sample-to-sample variance of specific-heat, magnetic susceptibility, etc., expressed in natural units, is diverging in large L limit (long-tailed $P(\chi_J/\overline{\chi_J})$, Berche et al. 05)

- Two types of variables, dynamical (i.e. spins) and quenched (geologically slow: atomic impurities, vacancies, etc.).
- Impurities \longrightarrow random Hamiltonian H_J . Site-dependent coupling constants (sample), extracted from some pdf P(J).
- Quenched approximation: fast variables (spins) allowed no backreaction on slow ones. In practice:
 - **1** Take *J*-dependent thermal average $\langle ... \rangle_J$.
 - 2 Average $\langle ... \rangle_J$ with P(J).
- Metastability in single sample already bad enough, yet even worse...

Sample-to-sample variance of specific-heat, magnetic susceptibility, etc., expressed in natural units, is diverging in large L limit (long-tailed $P(\chi_J/\overline{\chi_J})$, Berche et al. 05)

 \implies need **huge** number of samples.

Why rare events (Berche et al' 05)?

• Phase-coexistance: specific heat is $C \sim L^D \propto N$ $(T - T_c \sim \frac{1}{N})$

Why rare events (Berche et al' 05)?

- Phase-coexistance: specific heat is $C \sim L^D \propto N$ $(T T_c \sim \frac{1}{N})$
- Critical region $T-T_{\rm c}\sim \frac{1}{\sqrt{N}}$ Probability of phase coexistance $\sim \frac{1}{\sqrt{N}}$

Why rare events (Berche et al' 05)?

- Phase-coexistance: specific heat is $C \sim L^D \propto N$ $(T T_c \sim \frac{1}{N})$
- Critical region $T T_{\rm c} \sim \frac{1}{\sqrt{N}}$ Probability of phase coexistance $\sim \frac{1}{\sqrt{N}}$
- Rare events dominated: $\overline{C} \propto N \times \frac{1}{\sqrt{N}} = \sqrt{N}$, (saturates Chayes bound)

The microcanonical cure

 Disorder-averaged entropy (rather than free-energy)

The microcanonical cure

- Disorder-averaged entropy (rather than free-energy)
- $\langle \hat{\beta} \rangle_e$ self-averaging

The microcanonical cure

- Disorder-averaged entropy (rather than free-energy)
- ullet $\langle \hat{eta} \rangle_e$ self-averaging
- Scaling analysis: survival of first-order transition (Gordillo et al. 08).

Outline

- Introduction
- Quasi constrained statistical ensembles
- Local simulation algorithm
- Cluster methods
- First order phase transitions
- Metastability in disordered systems
- Conclusions

• (Quasi) constrained ensembles (for energy or other reaction coordinate) can be simulated easily.

- (Quasi) constrained ensembles (for energy or other reaction coordinate) can be simulated easily.
- We visit crucial parts of phase space, with exponentially small canonical probabilities.

- (Quasi) constrained ensembles (for energy or other reaction coordinate) can be simulated easily.
- We visit crucial parts of phase space, with exponentially small canonical probabilities.
- Fluctuation-Dissipation formalism allows to perform a fully canonical analysis.

- (Quasi) constrained ensembles (for energy or other reaction coordinate) can be simulated easily.
- We visit crucial parts of phase space, with exponentially small canonical probabilities.
- Fluctuation-Dissipation formalism allows to perform a fully canonical analysis.
- Cluster methods effective, even for first-order phase transitions.

- (Quasi) constrained ensembles (for energy or other reaction coordinate) can be simulated easily.
- We visit crucial parts of phase space, with exponentially small canonical probabilities.
- Fluctuation-Dissipation formalism allows to perform a fully canonical analysis.
- Cluster methods effective, even for first-order phase transitions.
- It is crucial to find useful reaction coordinate, see talk by B.
 Seoane on hard-spheres crystallization.

- (Quasi) constrained ensembles (for energy or other reaction coordinate) can be simulated easily.
- We visit crucial parts of phase space, with exponentially small canonical probabilities.
- Fluctuation-Dissipation formalism allows to perform a fully canonical analysis.
- Cluster methods effective, even for first-order phase transitions.
- It is crucial to find useful reaction coordinate, see talk by B.
 Seoane on hard-spheres crystallization.
- Geometric transitions: metastability remains.

- (Quasi) constrained ensembles (for energy or other reaction coordinate) can be simulated easily.
- We visit crucial parts of phase space, with exponentially small canonical probabilities.
- Fluctuation-Dissipation formalism allows to perform a fully canonical analysis.
- Cluster methods effective, even for first-order phase transitions.
- It is crucial to find useful reaction coordinate, see talk by B.
 Seoane on hard-spheres crystallization.
- Geometric transitions: metastability remains.
 Angioletti-Uberti et al. 2010: promising cure, order parameters defined in half the simulation box.

- (Quasi) constrained ensembles (for energy or other reaction coordinate) can be simulated easily.
- We visit crucial parts of phase space, with exponentially small canonical probabilities.
- Fluctuation-Dissipation formalism allows to perform a fully canonical analysis.
- Cluster methods effective, even for first-order phase transitions.
- It is crucial to find useful reaction coordinate, see talk by B.
 Seoane on hard-spheres crystallization.
- Geometric transitions: metastability remains.
 Angioletti-Uberti et al. 2010: promising cure, order parameters defined in half the simulation box.
- For disordered systems, these methods allow for a redefinition of the quenched averaged: we cured the rare events syndrome.