

Problem R-85C ($C_7H_{10}O$). IR spectrum.	Determine the structure of the compound from the ¹ H and ¹³ C NMR spectra, and the
(a) DBE?	
(b) Define part structures or reasoning.	or functional groups from examination of the various spectra. Briefly explain your
(i) IR spectrum:	
(ii) 130 AMAD	
(ii) ¹³ C NMR spectrum:	
(iii) ¹ H NMR spectrum	
(c) Structure of R-86C .	

Problem R-85C ($C_7H_{10}O$). Determine the structure of the compound from the 1H and ^{13}C NMR spectra, and the IR spectrum.

- (a) DBE?_ ³
- (b) Define part structures or functional groups from examination of the various spectra. <u>Briefly</u> explain your reasoning.
 - (i) IR spectrum:
 - Carbonyl at 1680 cm⁻¹, 1640 cm⁻¹ cunjugated ketone/aldehyde, double bond
 - 2830 cm⁻¹ CH stretch of aldehyde
 - 960 cm⁻¹ CH bend of trans HC=CH
 - no OH
 - no 700 cm⁻¹ for cis HC=CH
 - (ii) ¹³C NMR spectrum:
 - O 193.8 H-C, probably conjugated (unconjugated are near 200 ppm)
 - two peaks at 150, two at 130: probably two double bonds HC=CH, likely conjugated from downfield shift
 - 12.7 (CH₃) 26.2 (CH₂). ¹³C NMR does not tell us they are connected (as in CH₂-CH₃), but ¹H does.

This accounts for all carbons, hydrogens and the oxygen

(iii) ¹H NMR spectrum

1.09 (t,
$$J = 7$$
)

CH₃—CH₂—CH

vinyl proton

H

2.25 approximate dq,
 $J = 7, 5 \text{ Hz}$
 H

Multiplets at 6.32 and 7.10 are 3 more vinyl protons, with a lot of second order coupling

(c) Structure of R-86C

The first double bond stereochemistry is well defined as *trans* by the 15 Hz coupling of the dd at δ 6.08 (H²). The other double bond is not so simple to define from the NMR spectra (the IR gives a hint), but probably also *trans*, from the large AB-coupling in the multiplet at δ 6.32. These are H⁴ and H⁵, which form an **AB**MX2 pattern with J_{AB} ca 15 Hz. A at ca δ 6.35 is coupled to the CH₂, B at ca 6.30 coupled the neighboring HC=. It requires computer simulation to define this with more confidence.

The multiplets at 2.25 (H⁶) and 7.10 (H³) show second order effects because they are coupled to the close-coupled protons at 6.32 (H⁴ and H⁵)