

ONLINE FOOD ORDERING SYSTEM - HACKATHON SUBMISSION

Use Case Title:
Online Food Ordering System
Student Name:
N.Yadavakrishnan
Register Number:
C2S27531
Institution:
Theni kammavar sangam college of arts and science
Department:
Bachelor of computer application
Date of Submission:
19.03.2025

1.Problem Statement

Restaurants require an efficient system to manage online food orders, track inventory, and handle customer transactions. The challenge is to design a relational database that supports an online food ordering platform, ensuring seamless order management, real-time inventory tracking, and accurate sales reporting.

1. Proposed Solution

The proposed solution is to develop an **Online Food Ordering System Database** that allows restaurants to:

- Manage a menu, including food items, categories, and prices.
- Handle customer orders, including order status, payment details, and delivery tracking.
- Track inventory to update ingredient stock when orders are placed.
- Generate reports for sales, top-selling items, and customer order history.

3. Technologies & Tools Considered

- Database: MySQL / Oracle Database
- SQL for query execution and data retrieval
- Stored Procedures for calculating order amounts with taxes and discounts
- ERD for database relationship visualization

4. Database Schema & Data Flow

The system will have the following tables:

- Customers: Customer ID (Primary Key), Name, Email, Phone, Address
- Menu: Item ID (Primary Key), Name, Category, Price
- Orders: Order ID (Primary Key), Customer ID (Foreign Key), Order Status, Order Date, Payment ID (Foreign Key)
- Order Details: Detail ID (Primary Key), Order ID (Foreign Key), Item ID (Foreign Key), Quantity, Subtotal
- **Payments**: Payment ID (Primary Key), Order ID (Foreign Key), Payment Method, Total Amount, Status
- **Inventory**: Item ID (Primary Key), Ingredient Name, Quantity Available

Data Flow:

- 1. Customers browse the menu and place an order.
- 2. The order details are recorded and linked to the respective restaurant.
- 3. Payment is processed, and order status is updated accordingly.
- 4. Inventory is automatically adjusted based on ordered items.

5. Sales reports and top-selling items are generated for analysis.

6.Feasibility & Challenges

Feasibility:

- Practical as online food ordering is a booming industry.
- Can be easily integrated with existing restaurant management systems.

Challenges:

- Managing concurrent user requests efficiently.
- Ensuring data consistency and security in online transactions.
- Handling real-time inventory updates to prevent order issues.

6. Expected Outcome & Impact

The Online Food Ordering System will:

- Improve restaurant order management and efficiency.
- Enhance customer convenience with easy ordering and payment.
- Provide accurate sales analysis and reporting for business growth.
- Ensure better inventory tracking to reduce food waste.

7. Future Enhancements

- AI-based food recommendations for personalized customer experience.
- Mobile app integration for a seamless ordering experience.
- Loyalty programs and discount coupons for frequent customers.
- Voice-based ordering system for smart assistants.

GitHug Link: https://github.com/YADAV0309/Hackathon-Online-Food-Ordering.git