COA 690/790 GIS in Marine Science

# **Lecture 6 Digital Data Sources**

March 6, 2017

## **Digital spatial data**

Many spatial data currently exist in digital formats

Data are increasingly collected in digital formats.

Web delivered, from government and to a lesser extent private sources.



## **Digital Sources (NGDC, USGS National Map)**

Focus on eight nationwide datasets:

- •NLCD National Land Cover Datasets
- •USGS Digital Raster Graphics (DRG)
- USGS Digital Line Graphs (DLG)
- USGS Digital Orthophoto Quadrangles (DOQ)
- USFWS National Wetlands Inventory (NWI)
- Digital Soil Data (National & State)
- USGS Digital Elevation Models (DEMs)
- USDOC Census/TIGER Files

#### **NLCD – National Land Cover Data** 10-year repeat cycle, 1992, 2001, 2010 based on satellite images, 30 meter cell size Non-natural Woody 61 orchard/vineyard/other Water 11 open water 12 perennial ice/snow Herbaceous Upland Natural 71 grassland/herbaceous Developed 21 low intensity residential 22 high intensity residential 23 commercial/industrial/ transportation Herbaceous Planted/ Cultivated 81 pasture/hay 82 row crop 83 small grains 84 fallow 85 urban/recreational grasses Barren 31 bare rock/sand/clay 32 quarries/strip mines/ gravel pits 33 transitional Wetlands 91 woody wetlands Forested Upland 41 deciduous forest 42 evergreen forests 43 mixed forests 92 emergent herbaceous wetlands Shrubland







# Digital Raster Graphic (DRG)

If scanned at 250 dpi from a 1:24,000 scale source, what is the approximate ground resolution? Low Resolution Representation of a Digital Raster Graphic

Secretary of the Control of the Contr

Source:http://mcmcweb.er.usgs.gov/drg/

# Digital Raster Graphic (DRG)

If scanned at 250 dpi from a 1:24,000 scale source, what is the approximate ground resolution?

1/250 in\* 24,000 in/in \* 1ft/12 in

= 8 feet

Source:http://mcmcweb.er.usgs.gov/drg/



USGS Digital Raster Graphics (DRG) A georeferenced raster image of a scanned USGS map



## **Digital Line Graphs (DLG)**

Point and line locations from 1:24,000 and 1:100,000 maps, e.g., county and state boundaries, road locations, structure locations, etc.

Digitized by USGS using standard methods, little accuracy lost in conversion, available at well below their production cost

Available by map series, ie. 1:24,000, 1:100,000, 1:2 million

### **Digital Line Graphs (DLG)**

Separate themes provided (4 for 1:100,000, 11 for 1:24,000)

- •Boundaries (political & administrative
- Hydrography (lakes, rivers, glaciers)
- •Roads
- Hypsography (elevation contours)
- Transportation
- •Vegetation & non Vegetation features (sand, gravel)
- Monuments & Control points
- Public Land Survey System
- Man-made features

Delivered as text or binary files, use conversion utilities to convert to vendor-specific data files







#### **Digital Line Graphs (DLG)**

Data is often edge matched along map seams (though sometimes one map series has been updated and not the adjoining maps so manual edge matching is required)

Delivered as text or binary files (use conversion utilities to convert to vendor-specific data files)

Most often in UTM coordinate system

Several formats are provide such as DLG-3 or SDTS (Spatial Data Transfer Standard)

DLG's provide limited attribute data but conveys important topological and categorical relationships (road type; major/minor road, unpaved)

Data is often edge matched along map seams

#### **USGS Digital Orthophoto Quadrangles (DOQ)**

- •Orthophotos corrected for distortions due to camera tilt, terrain displacement, and other factors.
- Nationwide availability (nearly)



#### USGS Digital Orthophoto Quadrangles (DOQ)

As most features larger than 1 meter are visible these images are the basis of many types of analysis and other data layers, for example:

Establishing ground control points.
Creating or updating roads data layers
Vegetation data layers
Time series analysis (temporal changes such as urban expansion)

- Data on the location and condition of wetlands throughout much of the United States
- National Inventory, created by the US Fish and Wildlife Service



Maps depict wetlands as interpreted from photos taken on a single (usually Spring or Summer) date.

Photo-interpreted, surface water and wetland vegetation are keys to identification.

Ephemeral wetlands (e.g., floodplain forests, vernal pools) and those with sub-surface water tables often missed, particularly if vegetation structure similar (e.g., "fresh" meadows).

#### **National Wetlands Inventory (NWI)**

Typical minimum mapping unit (MMU) are between .5 and 2 hectares (vary by vegetation, source, region, etc.)

NWI depict wetland by type with a hierarchical classification scheme with modifiers

Wetlands codes are typically a string of characters, each corresponding to an attribute in a hierarchy. For example, a wetland might be labeled L1UBG, indicating it is:

- L for lacustrine (system)
- 1 for limnetic (subsystem)
- UB for unconsolidated Bottom (Class)
- G intermittently exposed (a modifier) G





- •<u>Systems</u> are Marine, Estuarine, Riverine, Lacustrine, and Palustrine
- •<u>Subsystems</u> subtidal, intertidal, tidal, perennial, intermittent, limnetic (away from shore) and littoral (near shore)
- •<u>Class</u> defines general bottom or vegetation conditions (e.g., rock bottom, scrub-shrub wetland).

There are at least two shortened designators which may appear on wetlands maps,

U = Uplands, and OUT = out of the mapped area.







- •<u>Systems</u> are Marine, Estuarine, Riverine, Lacustrine, and Palustrine
- •<u>Subsystems</u> subtidal, intertidal, tidal, perennial, intermittent, limnetic (away from shore) and littoral (near shore)
- •<u>Class</u> defines general bottom or vegetation conditions (e.g., rock bottom, scrub-shrub wetland).

There are at least two shortened designators which may appear on wetlands maps,

U = Uplands, and OUT = out of the mapped area.

Wetlands codes are typically a string of characters, each corresponding to an attribute in a hierarchy. For example, a wetland might be labeled L1UBG, indicating it is:

L for lacustrine (system)

for limnetic (subsystem)

UB for unconsolidated Bottom (Class)

G intermittently exposed (a modifier) G

#### **Digital Soils Data**

#### **National**

Natural Resource Conservation Service (NRCS) (Digital soil data sets at different scales and extents)

<u>National Soil Geography (NATSGO</u>), national coverage, small scale.

#### State Level

<u>State Soil Geographic (STATSGO)</u> data intermediate scale and resolution. (1:250,000)

<u>Soil Survey Geographic (SSURGO)</u> data at a very large scale provides the most spatial and categorical detail. (used by land owners, farmers, planners – county level)







#### **Digital Soils Data**

SSURGO data are developed from soil surveys (field and photo measurements)

Soil Surveys are digitized and have positional accuracy similar to the 1:24,000 quad maps. (< 13m for 90% of points)

Extensive detail (other data files) about individual soil series can be linked via a unique identifier. (soil chemistry, physical properties, suitability for building, depth to bedrock, etc.)



#### **Digital Elevation Models**

- Raster data sets of elevation
- Usually developed using photogrammetric surveys
- Useful for slope, aspect, visibility calculations





#### **Digital Elevation Models (DEMs)**

May be defined as digital representations of earth's surface

Typically point fields in layer (may be raster or vector, note this can't represent overhangs)

- •Represent elevation using a raster data model
- •As with the DLGs they are available from several origins and accuracies.
- The most useful for most natural resource applications are based on the 1:24,000 USGS topographic map series

DEMs produced using any one of several methods:

- -Gestalt photomapper, parallax on photopairs
- -Interpolated from digitized contours
- -Interpolated from points (low relief)

Data delivered with a 30-meter grid cell size.

| DEM       | 1065 | 1068 | 929  | 864  | 960  | 1113 | 974  | 896  | 890  | 841  | 759  | 719 | 705  | 696        | 720 | 708 |  |
|-----------|------|------|------|------|------|------|------|------|------|------|------|-----|------|------------|-----|-----|--|
|           | 1038 | 963/ | 947  | 950  | 999  | 1021 | 1011 | 1015 | 995  | 1044 | 870  | 773 | 734  | 703        | 676 | 684 |  |
| Raster    | 1142 | 1005 | 1151 | 1044 | 1117 | 1056 | 1007 | 1002 | 902  | 954  | 935  | 913 | 789  | 756        | 724 | 700 |  |
| Grid      | 1116 | 1114 | 1270 | 1165 | 1097 | 1025 | 922  | 917  | 821  | 829  | 860  | 838 | 807  | 810        | 758 | 760 |  |
|           | 1275 | 1170 | 1295 | 1114 | 1009 | 942  | 953  | 847  | 835  | 729  | 738  | 797 | 723  | 718        | 694 | 670 |  |
| Cells     | 1441 | 1263 | 1196 | 1055 | 913  | 869  | 829  | 771  | 736  | 765  | 766  | 688 | 694  | 676        | 684 | 698 |  |
| contain   | 1348 | 1200 | 1056 | 969  | 948  | 951  | 940  | 867  | 818  | 863  | 784  | 732 | 704  | 733        | 776 | 804 |  |
| elevation | 1377 | 1238 | 1122 | 1019 | 1089 | 950  | 956  | 896  | 950  | 800  | 760  | 698 | 779  | 867        | 896 | 744 |  |
| values    | 1489 | 1320 | 1188 | 1152 | 1050 | 942  | 822  | 952  | 845  | 841  | 721  | 780 | 852  | 928        | 845 | 738 |  |
|           | 1432 | 1415 | 1196 | 1100 | 1001 | 974  | 924  | 911  | 914  | 756  | 809  | 861 | 898  | 830        | 746 | 710 |  |
| Streams   | 1412 | 1474 | 1240 | 1100 | 1001 | 982  | 873  | 835  | 829  | 853  | 931  | 937 | 845  | <b>Z06</b> | 685 | 680 |  |
| show      | 1493 | 1368 | 1201 | 1090 | 1064 | 970  | 902  | 902  | 958  | 952  | 1015 | 841 | 782  | 803        | 786 | 711 |  |
| valley    | 1437 | 1407 | 1188 | 1145 | 1070 | 1107 | 982  | 1047 | 1077 | 1052 | 954  | 884 | 944  | 940        | 828 | 771 |  |
| locations | 4340 | 1360 | 1267 | 1247 | 1194 | 1196 | 1077 | 1214 | 1145 | 999  | 906  | 894 | 1024 | 1046       | 923 | 862 |  |







#### **Topology**

An explicit definition of the spatial relationships among features.

#### Main components:

- •Adjacency e.g., polygons are adjacent
- •Connectivity e.g., arcs connect
- •Containment one polygon contains another, a set of arcs contain a polygon
- •<u>Direction</u> e.g., an arc has a direction, with a left and right side defined

#### TIGER/Census data come in two parts:

- •Line files, depicting county, state, census tract, or other areas or boundaries
- •Data files, containing attributes on population, age, income, race, housing, or other important variables for the areas

#### TIGER/Line files define features with:

- <u>ENTITY POINTS</u> points identifying the location of 0-dimensional features
- •<u>COMPLETE CHAINS</u> a sequence of nonintersecting line segments, with a start, end, left, and right defined
- •NODES Points that start, stop, or join chains
- •<u>GT-POLYGONS</u> Elementary polygons that are mutually exclusive and completely exhaust the surface

#### TIGER Line files contain data on:

Line features, e.g., roads, railroads, hydrography

Landmark features, e.g., schools (point), churches (point), parks (Polygon)

Polygon features, e.g., counties, census tracts





Points, lines, and polygons in TIGER/line files are identified and indexed via a complex but well-defined set of codes.

Records contain information about features, plus indices to other records

Various <u>types of records</u> are used to specify feature properties

TIGER/Census data are used to define polygons, and summary attributes for those polygons. Census data may be summarized at several nested levels:

- State
- Counties
- Tracts
- Block groups
- •Or, Census data may also be summarized by Congressional districts
- •FIPS zones (Federal Information Processing Standard zones)

# Only a partial list today. There are also:

- Floodplain data (FEMA)
- Federal managed lands (e.g., USFS, BLM)
- State road networks through DOT
- EPA watershed boundary and river reach data
- National Aerial Imagery Program (NAIP)
- Data sources for Mississippi: MARIS, NOAA CSC