CYK分析算法

D.H.Younger, 1967, Recognition of context-free language in time n³, Information Control, vol. 10, no.2.

詹卫东

http://ccl.pku.edu.cn/doubtfire

CYK分析算法

- CYK算法: Cocke-Younger-Kasami算法
- CYK算法的描述基于Chomsky范式的CFG规则
 - Chomsky范式的规则只有两种形式:

 $A \rightarrow BC$

 $A\rightarrow x$ 这里A,B,C是非终结符,x是终结符

- 由于任何一个上下文无关语法都可以转化成符合 Chomsky范式的语法,因此CYK算法可以应用于任 何一个上下文无关语法

CYK算法分析结果示意

CYK算法一数据结构

- 一个二维矩阵: { P(i,j) }
 - 每一个元素P(i,j)对应于输入句子中某一个跨度(Span) 上所有可能形成的短语的非终结符的集合
 - 横坐标 i: 该跨度左侧第一个词的位置
 - 纵坐标j: 该跨度包含的词数
- P(3,1)={NP,N}表示"县长"可以归约成N和NP 3表示从第3个词位置开始,1表示NP,N覆盖1个词。
 - P(3,3)={CS}表示"县长+派+来"可以规约成CS 3表示从第3个词位置开始,3表示CS覆盖3个词

CYK算法: 算法描述

i 从1到n的循环

- 1. 对i=1...n,j=1(填写第一行,跨度为1) 对于每一条规则A \rightarrow Wi, 将非终结符A加入集合P(i,j);
- 2. 对j = 2...n (填写第2到n行,跨度为j) 对i = 1...n j + 1 (对于所有起点i) 对k = 1...j 1 (对于一个跨度内所有分割点k) 对每一条规则A \rightarrow BC,如果B $\in P(i,k)$ 且C $\in P(i+k,j-k)$ 那么将非终结符A加入集合P(i,j)
- 3. 如果S∈P(1,n),那么分析成功,否则分析失败

.

CYK算法示例-填写第1行

- (1) $S \rightarrow NP VP$
- (2) NP \rightarrow N
- (3) NP → CS 的
- (4) $CS \rightarrow NP V'$
- (5) $VP \rightarrow V NP$
- (6) $V' \rightarrow V V$

CYK算法示例-填写第1行(续)

- (1) $S \rightarrow NP VP$
- (2) NP \rightarrow N
- (3) NP → CS 的
- (4) $CS \rightarrow NP V'$
- (5) $VP \rightarrow V NP$
- (6) $V' \rightarrow V V$

CYK算法示例-填写第1行(续)

- (1) $S \rightarrow NP VP$
- (2) NP \rightarrow N
- (3) NP → CS 的
- (4) $CS \rightarrow NP V'$
- (5) $VP \rightarrow V NP$
- (6) $V' \rightarrow V V$

CYK算法示例-填写第2行

- (1) $S \rightarrow NP VP$
- (2) $NP \rightarrow N$
- (3) NP → CS 的
- (4) $CS \rightarrow NP V'$
- (5) $VP \rightarrow V NP$
- (6) $V' \rightarrow V V$

CYK算法示例-填写第2行(续)

- (1) $S \rightarrow NP VP$
- (2) NP \rightarrow N
- (3) NP → CS 的
- (4) $CS \rightarrow NP V'$
- (5) $VP \rightarrow V NP$
- (6) $V' \rightarrow V V$

CYK算法示例-填写第2行(续)

- (1) $S \rightarrow NP VP$
- (2) NP \rightarrow N
- (3) NP → CS 的
- (4) $CS \rightarrow NP V'$
- (5) $VP \rightarrow V NP$
- (6) $V' \rightarrow V V$

CYK算法示例-填写第3行

- (1) $S \rightarrow NP VP$
- (2) $NP \rightarrow N$
- (3) NP → CS 的
- (4) $CS \rightarrow NP V'$
- (5) $VP \rightarrow V NP$
- (6) $V' \rightarrow V$ V

CYK算法示例-填写第3行(续)

- (1) $S \rightarrow NP VP$
- (2) NP \rightarrow N
- (3) NP → CS 的
- (4) $CS \rightarrow NP V'$
- (5) $VP \rightarrow V NP$
- (6) $V' \rightarrow V V$

CYK算法示例-填写第4行

- (1) $S \rightarrow NP VP$
- (2) NP \rightarrow N
- (3) NP → CS 的
- (4) $CS \rightarrow NP V'$
- (5) $VP \rightarrow V NP$
- (6) $V' \rightarrow V V$

跨度	6					j =4, i=			
/义	5					<u> </u>	=P(3,3)=C	!	
]	P(i+k,j	P(i+k,j-k) = P(6,1) = de		
	4			NP		=> P(i,	=> P(i,j) = P(3,4) = NP		
	3	S		CS			_		
	2		VP		V '				
	1	NP,N	V	NP,N	V	V	de		
		1	2	3	4	5	6	一 位置	
		张三	是	县长	派	来	的		

CYK算法示例-填写第5行

- (1) $S \rightarrow NP VP$
- (2) NP \rightarrow N
- (3) NP → CS 的
- (4) $CS \rightarrow NP V'$
- (5) $VP \rightarrow V NP$
- (6) $V' \rightarrow V V$

跨 度 6			1		j=5, i=		,	
5		VP	P(i,k) =P(2,1)=V P(i+k,j-k) = P(3,4)=N			!		
4			NP		_	=> P(i,j) = P(2,5) = VP		
3	S		CS					
2		VP		V '				
1	NP,N	V	NP,N	V	V	de		
	1	2	3	4	5	6	一 位置	
	张三	是	县长	派	来	的		

CYK算法示例-填写第6行

- (1) $S \rightarrow NP VP$
- (2) NP \rightarrow N
- (3) NP → CS 的
- (4) $CS \rightarrow NP V'$
- (5) $VP \rightarrow V NP$
- (6) $V' \rightarrow V V$

跨 度 6	S				j=6, i=		D	
5		VP			1	=P(1,1)=N (-k) = P(2,5)	i	
4			NP			=> P(i,j) = P(1,6)=S		
3	S		CS			_		
2		VP		V '				
1	NP,N	V	NP,N	V	V	de]	
	1	2	3	4	5	6	一 位置	
	张三	是	县长	派	来	的		

CYK算法: 特点

- 是一种自底向上分析法;
- 采用广度优先的搜索策略;
- 采用并行算法,不需要回溯,没有冗余的操作;
- 时间复杂度O(n³);
- 由于采用广度优先搜索,在歧义较多时,必须分析到最后才知道结果,无法采用启发式策略进行改进。