

Linux For Embedded Systems

For Frabs

Course 102: Understanding Linux

Ahmed ElArabawy

Lecture 21: Networking in Linux (Applications)

Utility Applications

\$ ping <remote machine Address>

This command is used to check connectivity to the remote machine

- When you ping a destination,
 - A message ICMP_ECHO_REQUEST is sent to this destination
 - And a reply ICMP_ECHO_RESPONSE should be received from the remote destination
- This continues every N second period for a number of times, or until it is interrupted with a Ctrl-C
- Ping can also be used if you want to check the round trip delay to the destination
- You can specify destination by the <u>IP address</u> or by the <u>Domain name</u>
- If you have a network problem, check the following
 - Ping the gateway to make sure it is accessible
 - Ping the DNS Server
 - Ping the destination by name and/or by address

```
paul@paul-ubuntu-10-4: ~
File Edit View Terminal Help
paul@paul-ubuntu-10-4:~$ ping 4.2.2.1
PING 4.2.2.1 (4.2.2.1) 56(84) bytes of data.
64 bytes from 4.2.2.1: icmp seq=1 ttl=48 time=35.4 ms
64 bytes from 4.2.2.1: icmp seq=2 ttl=48 time=35.6 ms
64 bytes from 4.2.2.1: icmp seq=3 ttl=48 time=34.9 ms
64 bytes from 4.2.2.1: icmp seq=4 ttl=48 time=35.1 ms
64 bytes from 4.2.2.1: icmp seq=5 ttl=48 time=36.4 ms
64 bytes from 4.2.2.1: icmp seq=6 ttl=48 time=35.2 ms
--- 4.2.2.1 ping statistics ---
6 nackets transmitted 6 received 0% nacket loss time 5008ms
rtt min/avg/max/mdev = 34.924/35.488/36.467/0.494 ms
paul@paul-ubuntu-10-4:~$
```

```
paul@paul-ubuntu-10-4: ~
File Edit View Terminal Help
paul@paul-ubuntu-10-4:~$ ping 4.2.2.1
PING 4.2.2.1 (4.2.2.1) 56(84) bytes of data.
64 bytes from 4.2.2.1: icmp seq=1 ttl=48 time=35.4 ms
64 bytes from 4.2.2.1: icmp seq=2 ttl=48 time=35.6 ms
64 bytes from 4.2.2.1: icmp seq=3 ttl=48 time=34.9 ms
64 bytes from 4.2.2.1: icmp seq=4 ttl=48 time=35.1 ms
64 bytes from 4.2.2.1: icmp seq=5 ttl=48 time=36.4 ms
64 bytes from 4.2.2.1: icmp seq=6 ttl=48 time=35.2 ms
--- 4.2.2.1 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5008ms
rtt min/avg/max/mdev = 34.924/35.488/36.467/0.494 ms
paul@paul-ubuntu-10-4:~$
```


Tracing the Route

Tracing the Route (traceroute Command)

\$ traceroute < destination Address>

 Same as ping, but this time, you get the whole route of the packet

\$ traceroute www.google.com

Sometimes, certain nodes in the route remain hidden

```
mandar@mandar: ~

mandar@mandar: ~$ traceroute www.google.com -n

traceroute to www.google.com (74.125.236.116), 30 hops max, 60 byte packets

1 10.10.6.2 0.124 ms 0.121 ms 0.111 ms

2 49.248.247.53 39.869 ms * *

3 202.149.208.68 39.818 ms 63.501 ms *

4 115.113.165.9 41.625 ms * *

5 121.240.1.42 41.586 ms * *

6 209.85.241.52 41.562 ms * 64.430 ms

7 216.239.48.177 41.652 ms 43.881 ms *

8 74.125.236.116 42.676 ms 42.652 ms 49.782 ms

mandar@mandar: ~$ ■
```

Collecting Network Statistics (netstat Command)

\$ netstat [Options]

This command displays various network related information such as network connections, routing tables, interface statistics, etc.,

To display the routing table information

```
$ netstat -r
```

To list network interfaces on the machine

```
$ netstat -i
$ netstat -ie (output similar to ifconfig)
```

To list statistics on sockets of different protocols

```
$ netstat -s
$ netstat -st (only for TCP Protocol)
$ netstat -su (only for UDP Protocol)
```

Collecting Network Statistics (netstat Command)

```
🙉 🖨 📵 🛮 mandar@mandar: ~
mandar@mandar:~$ netstat -a
Active Internet connections (servers and established)
Proto Recv-O Send-O Local Address
                                              Foreign Address
                                                                       State
                   0 localhost:mysql
                                              * • *
                                                                       LISTEN
tcp
tcp
                   0 localhost:http
                                                                       LISTEN
                  0 localhost:domain
                                                                       LISTEN
tcp
                   0 *:ftp
                                                                       LISTEN
tcp
                                              * • *
                                                                       LISTEN
tcp
                   0 *:ssh
                   0 localhost:ipp
                                                                       LISTEN
tcp
                                              * * *
tcp
                   0 *:telnet
                                                                       LISTEN
                   0 localhost:5943
                                                                       LISTEN
tcp
                                              * * *
                   0 localhost:46266
                                              * • *
                                                                       LISTEN
tcp
                  0 localhost:38590
                                              * • *
tcp
                                                                       LISTEN
                   0 *:902
                                                                       LISTEN
tcp
tcp
                   0 mandar.local:53751
                                              ec2-23-21-236-70.c:http ESTABLISHED
                   0 mandar.local:45815
                                              server13803.teamvi:5938 ESTABLISHED
tcp
                   0 mandar.local:53753
                                              ec2-23-21-236-70.c:http TIME WAIT
tcp
                   0 mandar.local:55472
                                              a23-63-101-34.dep:https TIME WAIT
tcp
                                              bom03s01-in-f5.1e:https ESTABLISHED
                   0 mandar.local:35490
tcp
tcp
                   0 mandar.local:58209
                                              channel-ecmp-06-f:https ESTABLISHED
                   0 mandar.local:34693
                                              bom04s02-in-f22.1:https ESTABLISHED
tcp
                   0 mandar.local:35489
                                              bom03s01-in-f5.1e:https TIME WAIT
tcp
                   0 localhost:49615
                                              localhost:46266
                                                                       ESTABLISHED
tcp
                                              bom04s02-in-f22.1:https ESTABLISHED
                   0 mandar.local:34591
tcp
```

Collecting Network Statistics (Indux4 (netstat Command)

alok@legacy:~\$ netstat -rnC							
Kernel IP routing cache							
Source	Destination	Gateway	Flags	MSS	Window		Iface
192.168.0.253	122.160.120.155			1500			wlan0
192.168.0.254	224.0.0.251	224.0.0.251	ml	16436			lo
192.168.0.253	122.160.89.24	192.168.0.1		1500			wlan0
192.168.0.253	209.85.175.125	192.168.0.1		1500			wlan0
192.168.0.253	74.125.236.24	192.168.0.1		1500			wlan0
192.168.0.253	74.125.236.0	192.168.0.1		1500	0		wlan0
192.168.0.253	204.246.165.117			1500			wlan0
192.168.0.253	74.125.236.3	192.168.0.1		1500			wlan0
192.168.0.253	199.16.83.72	192.168.0.1		1500			wlan0
192.168.0.253	199.16.83.72	192.168.0.1		1500			wlan0
192.168.0.253	204.246.165.50	192.168.0.1		1500			wlan0
74.125.236.31	192.168.0.253	192.168.0.253	ι	16436			lo
192.168.0.253	74.125.236.0	192.168.0.1		1500			wlan0
192.168.0.253	209.85.175.125	192.168.0.1		1500			wlan0
192.168.0.253	199.7.54.190	192.168.0.1		1500			wlan0
192.168.0.253	74.125.236.14	192.168.0.1		1500			wlan0
192.168.0.253	174.121.83.47	192.168.0.1		1500			wlan0
192.168.0.253	74.125.236.8	192.168.0.1		1500			wlan0
192.168.0.253	199.47.216.144	192.168.0.1		1500			wlan0
192.168.0.253	74.125.236.5	192.168.0.1		1500			wlan0
192.168.0.253	204.246.165.13	192.168.0.1		1500			wlan0
192.168.0.253	174.121.83.47	192.168.0.1		1500			wlan0
192.168.0.253		192.168.0.1		1500			wlan0
192.168.0.253	122.160.89.18	192.168.0.1		1500			wlan0
192.168.0.253		192.168.0.1		1500			wlan0
192.168.0.253	74.125.236.5	192.168.0.1		1500	0	192	wlan0

Network Applications

General Structure

- The different network applications described in this lecture share the following structure
 - The user accesses a remote machine for different purposes
 - Copy files to/from the remote machine
 - Access a terminal in the remote machine
 - Access the GUI of the remote machine
 - In all cases, the user runs a <u>client</u> application on his local machine
 - The remote machine will be running a <u>server</u> application
 - The server application will be running on a <u>Daemon process</u> waiting for a connection from the client side
 - Both the Client and the Daemon are <u>user plane applications</u> that communicate with the <u>TCP/IP stack</u> residing in the kernel

Remote Access of a Machine (telnet Protocol)

\$ telnet <destination Address>

 The telnet is a protocol to enable the user at the client side to access a remote machine by opening a terminal on it

```
$ telnet 192.168.101.27
$ telnet bob@192.168.101.27
```

- The User will need to enter his login info
- A server application must be running on the destination machine to accept client connections
- Once connection is established, a <u>tty terminal</u> will be established on the remote machine that is controlled via the <u>Telnet session</u>
- Anything the user types is sent to the remote machine as if the user is using it

Remote Access of a Machine (telnet Protocol)

 After log-in is complete successfully, the user can perform any action that is done on normal terminal

Telnet

Client Process

TCP/IP Stack

Network Driver

Daemon Process

TCP/IP Stack

Network Driver

Logging in Using a Telnet Session Linux 4 Embedded Systems

Logging in Using a Telnet Session.

Linux 4
Embedded Systems

Transporting files (ftp protocol)

Client Process

TCP/IP Stack

Network Driver

Daemon Process

TCP/IP Stack

Network Driver

Transporting files (ftp protocol)

\$ ftp <Remote Machine Addrress>

 This protocol enables the client to move files from/to the remote machine

```
$ ftp 192.168.101.12
$ ftp bob@192.168.101.12
```

Sometimes an FTP server can allow anonymous login. In this case use,

Username: anonymous Password: your email

Once you login, you will be able to get/put files

```
$ get myfile.txt
$ mget *.exe
$ put my_picture.png
$ mput *.jpg
```

To exit

```
$ bye
```

Security Concern

- Both Telnet and FTP do not use a secured connection
- Information travel between the local machine and the remote one in clear text
- This can be a big problem. A hacker can,
 - Listen to the message being sent
 - Modify the messages being sent
 - Send its own messages with false identity
- Sometimes, this is not a problem
 - Connecting to a machine in a secured environment
 - Connecting to an embedded platform within a isolated network
 - You don't care about security
- Other times, this is not acceptable

Secure login to remote machines (ssh protocol)

\$ ssh <destination Address>

- This is similar to the telnet protocol except for that the connection will be secured (traffic will be encrypted)
- To login securely to a machine,

```
$ ssh 192.168.101.100
$ ssh bob@ 192.168.101.100
$ ssh bob@tom-machine
```

- In the first time to connect to this machine, some confirmation will be requested to install the required keys for encryption
- Once connection is established, a <u>tty terminal</u> will be established on the remote machine that is controlled via the SSH session

Secure File Copy (scp Command)

\$ scp <local filename> <user>@<remoteServer>:<remote-filename>
\$ scp <user>@<remoteServer>:<remote-filename> <local filename>

- This command copies files from/to a remote machine
- It uses a secure channel similar to that of SSH
- Usage is similar to the ordinary copy command "cp" with the exception:
 - Remote filename is preceded by the remote server name, and optionally the user name
 - A username / password may need to be entered to complete the command

```
The scp performs secure copy,
$ scp 192.168.101.13:my-doc.pdf ./my-docs/
$ scp bob@192.168.101.13:my-doc.pdf ./my-docs/
$ scp ./my-docs/*.pdf bob@remoteServer:.
$ scp -r ./documents bob@202.11.1.20:.
```

Secure File Transfer (sftp Command)

\$ sftp <remote Address>

- This command has a similar usage as the normal ftp command
- However, it uses an SSH connection to secure the file transfer

```
$ sftp 192.168.1.103
$ sftp bob@192.168.1.103
```

- It has the same interface as ftp
- Note that sftp does not require an <u>ftp daemon</u> on the remote machine since it uses the <u>ssh</u> connection

Downloading file from the Web (wget Command)

\$ wget <URL of the file>

 Very useful tool for downloading files from the web from the command line

\$ wget http://www.my-web-site.com/file.xml

Very useful in scripts that perform a download from the web

Remote Access the Desktop

- The access methods mentioned so far (Telnet and SSH)
 provide access to a text terminal in the remote machine
- However, sometimes we need to have remote access to the remote machine GUI
- We will need to access the GUI using our mouse and keyboard
- This can be achieved using two ways,
 - Running the X-server on the local machine, and connecting to the x-clients (applications) on the remote machine
 - Running a VNC Client-Server model

Using X-Server on the Local Machine

Using X-Server on the Local Machine

Using X-Server on the Local Machine

Using X-Server on the Local Machine (ssh –X Command)

\$ ssh -X <remote machine address>

 To establish SSH connection, along with X-Server running on the local machine, and the X-clients (applications) running on the remote machine

\$ ssh -X bob@192.168.101.13

 This tunnels the X-Protocol massaging between the X-server, and the X-Clients in the SSH connection

Linux4

VNC client computer X server VNC server computer X client (user program) VNC X server/ VNC X server/ VNC server

Comparison

