notes de correction

Ces exercices ne sont pas très difficiles , c'est pourquoi les résultats sont donnés avec le minimum d'explications. Ce document sert seulement à vérifier que le résultat trouvé est juste. Les corrections sont faites de façon succincte , nous espérons néanmoins qu'il ne reste aucune erreur.

Il n'a pas été jugé indispensable de détailler le cheminement du raisonnement pour obtenir les résultats.

Si un exercice n'est pas compris il faut se reporter au cours.

modalités

L'exercice est rappelé et le résultat est noté en *italique*.

ex.

1) faire: 2 + 2 = 4

1) Faire:

modulo noté §		division euclidienne		résultat avec virgule	
17 § 3	2	17 / 3	5	17 / 3	5.6666
249 § 7	4	249 / 7	35	249 / 7	35.5714
2 § 3	2	2/3	0	2/3	0.6666

2) Décomposer en facteurs premiers les nombres , et s'il y en a qui sont premiers les indiquer : 87 , 1547 , 247 , 127 , 1279 , 4096 , 6561

87	1547	247	127	1279	4096	6561
3 x 29	7 x 13 x 17	13 x 19	premier	premier	212	<i>3</i> 8

3) Par décomposition en facteurs premiers trouver le P.G.C.D. (plus grand commun diviseur) des 4 nombres suivants :

120, 280, 728, 1672

,	, ,
120	2 x 2 x 2 x 3 x 5
280	2 x 2 x 2 x 5 x 7
728	2 x 2 x 2 x 7 x 13
1672	2 x 2 x 2 x 11 x 19

le P.G.C.D. est donc
$$2 \times 2 \times 2 = 8$$

<i>120 / 8 = 15</i>
280 / 8 = 35
728 / 8 = 91
1672 / 8 = 209

4) Classer par taux d'accroissement les fonctions suivantes :

Le taux d'accroissement c'est la vitesse à laquelle une fonction augmente, on parle de pente.

Pour avoir la pente d'une fonction
$$f(x)$$
, on calcule $f'(x) = pt = \frac{f(b) - f(a)}{b - a}$

ex: entre
$$y = x$$
 et $z = 2x$ $y = f'(x) = \frac{1-2}{1-2} = 1$ $z = f'(x) = \frac{2-4}{1-2} = 2$ donc z a un taux d'accroissement 2 fois plus important que y (z va 2 fois plus vite que y) entre 1 et 2.

$$f_1(x) = \frac{1}{x} \; ; \; f_2(x) = x^{10} \; ; \; f_3(x) = x^2 \; ; \; f_4(x) = \sqrt{x} \; ; \; f_5(x) = \log x \; ; \; f_6(x) = 2^x$$
 (on prend ici : b = 1 et a = 2 donc b - a = -1)

Par ordre >	f(b)	f(a)	f(b) - $f(a)$	pt
f_1	1	0,5	0.5	-0.5
f_4	1	1.414	-0.414	0.414
f_5	0	0.3011	-0.699	0.699
f_6	2	4	-2	2
f_3	1	4	-3	3
f_2	1	1024	-1023	1023

En faisant un calcul un peu moins sommaire c.a.d. en développant le taux d'accroissement on a :

Le taux d'acroissement est :
$$p = \frac{1}{h}(f(x_0 + h) - f(x_0))$$

Si $h \rightarrow 0$ et p existe, alors on a la dérivée p = f'(x)

¹ (On a pris ici le log népérien, ce qui ne change rien aux résultats généraux).

$$\Delta f_6 = \frac{1}{h} (2^{x_0+h} - 2^{x_0}) = \frac{1}{h} (2^{x_0} * 2^h - 2^{x_0}) = \frac{1}{h} 2^{x_0} (2^h - 1) = 2^x \frac{f(1) - f(0)}{1} = 2^x$$

$$\Delta f_2 = \frac{1}{h} ((x_0 + h)^{10} - x_0^{10}) \approx x^9 \cdot \lambda^9$$

Si on prend $\lambda = 1$ on a:

$$\Delta f_{6} = 2^{x} \qquad \Delta f_{2} \approx x^{9}$$

En prenant un ordre de grandeur numérique, pour un x assez grand (ex. x = 100), on a:

$$\Delta f_6 = 2^{100} \approx 10^{30} \qquad \Delta f_2 = 100^9 \approx 10^{18}$$

Pour x > 1, i > 1 le taux d'accroissement de $f(x) = x^i$ est inférieur à $g(x) = i^x$.

En reprenant les dernières lignes du tableau on obtient :

fonction	pente	<i>λ</i> = 1	ordre de grandeur (x=100)
f_3	$f'(x) = 2x + \lambda$	2x + 1	10^{2}
f_2	$f'(x) \approx x^9 \cdot \lambda^9$	$\approx x^9$	1018
f_6	$f'(x)=2^x$	2^x	1030

Il faut donc faire un calcul plus précis. Celui-ci se fait avec les dérivées des fonctions.

On a le classement des fonctions dans l'ordre suivant :
$$\frac{1}{x} < \log x < \sqrt{x} < x^2 < x^{10} < 2^x$$

Par la méthode itérative la plus rapide calculer $\sqrt{5}$, vous stopperez les calculs à la 6ème itération et vous comparerez votre résultat à la valeur 2,236067977

$$x = \frac{1}{2} \left(x + \frac{A}{x} \right)$$
: on part de x = 1 et A = 5.

$$\begin{array}{l} x_0 = 1/2 \;.\; (1+5) = 3 \\ x_1 = 1/2 \;.\; (3+5/3) = 1/2 \;.\; (3+1.6666...\;) = 2.33333... \\ x_2 = 1/2 \;.\; (2.3333...\; + 5/2.3333...\;) = 1/2 \;.\; (2.3333...\; + 2.142857143\;) = 2.238095238 \\ x_3 = 1/2 \;.\; (2.23809...\; + 5/2.23809...\;) = 1/2 \;.\; (2.23809...\; + 2.234042553\;) = 2.236068896 \\ x_4 = 1/2 \;.\; (2.23606...\; + 5/2.23606...\;) = 1/2 \;.\; (2.23606...\; + 2.236067059\;) = 2.236067977 \end{array}$$

5 itérations de calcul pour obtenir une précision de 9 chiffres après la virgule. La 6ème itération n'apporte qu'une précision plus grande.

Le critère d'arrêt des itérations c'est quand la différence entre 2 itérations est inférieure à une borne donnée.

6) Calculer au moyen d'une calculette scientifique :

$$\log_2 32$$
 $\log_2 1024$ $\log_2 4096$ $\log_2 65536$
 2^5 2^{10} 2^{12} 2^{16}

Comparer avec les nombres suivants que vous calculerez à la main :

$$log_2 2^x = x$$

a) Avec le tableau de toutes les puissances de 2 ci-dessous.

Combien font $2^0 + 2^1 + 2^2 + 2^3 + 2^4$? Que pouvez-vous dire? Trouver une relation générale.

$$1 + 2 + 4 + 8 + 16 = 31$$

$$\sum_{n=0}^{n=i} 2^n = 2^{i+1} - 1$$

b) Représenter dans toutes les bases (binaire, octale, hexa.) les nombres décimaux suivants : 3 394, 1 000, 16, 147 520, 635, 1 048 576, 1 048 575

décimale	binaire	octale	héxa.
3 394	1101 0100 0010	6502	D42
1 000	11 1110 1000	1750	3E8
16	1 0000	20	10
147 520	10 0100 0000 0100 0000	440100	24040
635	10 0111 1011	1173	27B
1 048 576	1 0000 0000 0000 0000 0000	4000000	100000
1 048 575	1111 1111 1111 1111 1111	3777777	FFFFF

c) Convertir en toutes les bases (binaire, octale, hexa., décimale) les nombres suivants : 10b, 10o, 10h, 500h, 10111000b, 1000000d, FF FF FF FFh

décimale	binaire	octale	héxa.
2	10	2	2
8	100	10	8
16	1 000	20	10
1280	101 0000 0000	2400	500
376	1 0111 1000	570	178
1 000 000	1111 0100 0010 0100 0000	3641100	F4240
4 294 967 295	1111 1111 1111 1111 1111 1111 1111 1111	377 7777 7777	FF FF FF FF

d) Convertir en BCD (les bits groupés en 4) les nombres décimaux suivants : 458 , 1 024 , 56 , 1 054 836 489 789 999 145

458	0100 0101 1000
1 024	0001 0000 0010 0100
56	0101 0110
1 054 836 489 789 999 145	0001 0000 0101 0100 1000 0011 0110 0100 1000 1001
1 03 1 030 107 707 777 1 13	0111 1000 1001 1001 1001 1001 0001 0100 0101

a) Faire les conversions de : 1896d, 1256d, 478d, 18914d, 573d

1 896	0111 0110 1000	768h
1 256	0100 1110 1000	4E8h
478	0001 1101 1110	1DEh
18 914	0100 1001 1110 0010	49E2h
573	0010 0011 1101	23Dh

b) Faire, avec les conversions du (a):

1896d * F2h

1256d - 478d

18914*d* / 573*d*

768h	0111 0110 1000	1896d
F2h	1111 0010	* 242d
70050h	0111 0000 0000 0101 0000	458 832d

4E8h	0100 1110 1000	1256d
1DEh	0001 1101 1110	- 478d
<i>30Ah</i>	0011 0000 1010	778d

49E2h	0100 1001 1110 0010	18914d
23Dh	0010 0011 1101	/ 573d
21h	0010 0001	33d

c) Faire, et expliquer l'action finale:

010101100 | 01

010101100 & 111111101

010101100 ^ 111111111

010101100 000000001 010101101

& 010101100 & 111111101 010101100 ^ <u>010101100</u> ^ <u>1111111111</u> <u>101010011</u>

met le bit 0 à 1

met le bit 1 à 0

inverse les bits

d) Faire, et dire ce que représente le résultat : 0010010 ^ 0100100

0010010 ^ 0100100

0110110

C'est une addition

- e) Soit X un nombre binaire de 9 bits. Nous voulons positionner à 0 ou 1 certains bits de X . Donner les opérations booléennes nécessaires :
 - i) Le 3ème bit à 1, et le 6ème à 0. Ce que l'on note par :

- ii) 111 00 -
- iii) 01111 0000
- iv) 00- - 0101
- v) Inverser les 4 bits de poids faibles. Inversion que l'on note!

- vi) 0 !! 1-!
- $\alpha \mid 1$: met le bit à 1 $\alpha \& 0$: met le bit à 0 $\alpha \land 1$: inverse le bit
- *i)* X / 0 0000 0100 X & 1 1101 1111
- *ii)* X / 0 1110 0000 X & 1 1111 0011
- iii) X / 0 1111 0000 X & 0 1111 0000

- *iv)* X / 0 0000 0101 X & 0 0111 0101
- *v) X* ^ 0 0000 1111
- vi) X ^ 0 0011 0001 X / 0 0000 0100 X & 1 0111 1111

Dans tous les exercices on s'efforcera de donner (par son numéro) la règle ou relation utilisée pour trouver le résultat (comme fait dans l'ex. de résolution partielle de (13)).

```
1) Donner le résultat de : \sim (a | b | c) et de \sim (a \& b \& c) que peut-on en déduire ? \sim (a | b | c) = \sim ((a | b) | c) [ par simple regroupement de termes ] \sim (X | c) = [18] = \sim X \& \sim c = \sim (a | b) \& \sim c = [18] = \sim a \& \sim b \& \sim c \sim (a \& b \& c) = [17] = \sim a | \sim b | \sim c \sim (A_1 | ... | A_n) = \sim A_1 \& ... \& A_n \sim (A_1 \& ... \& A_n) = \sim A_1 | ... | A_n
```

- 2) Donner le résultat de : $(a \& b) | (\sim a \& \sim b)$ quelle est cette opération ? $SI(a \ et \ b = 1) \ ou \ (a \ et \ b = 0) \ ALORS \ le résultat = 1 \ SINON \ le résultat = 0$ $(a \& b) | (\sim a \& \sim b) = \sim (a \land b)$
- 3) Donner le résultat de :
 - i) ~a | (~b & (a & b))
 - ii) $((a|b) & (a|c) & (\sim b & \sim c)) & (\sim a|(\sim a & \sim b))$
 - iii) $((a \& \sim b) | (\sim a \& b)) \& (a \& b)$
- (a & (a & b)) = (a & (a & b)
- ii) $((a/b) \& (a/c) \& (\sim b \& \sim c)) \& (\sim a/(\sim a \& \sim b)) = X \& (\sim a/(\sim a \& \sim b)) = [13] = X \& \sim a = [8] = \sim a \& ((a/b) \& (a/c) \& (\sim b \& \sim c)) = (a \& ((a/b) \& (a/c) \& \sim b \& \sim c) = [12] = (a \& (((a \& \sim b)/(b \& \sim b)) \& \sim c) \& (((a \& \sim c)/(c \& \sim c)) \& \sim b)) = [15] = (a \& (((a \& \sim b)/(b) \& \sim c) \& (((a \& \sim c)/(b) \& \sim b))) = [1] = (a \& (((a \& \sim b) \& \sim c) \& ((a \& \sim c) \& \sim b))) = (a \& ((a \& \sim b) \& \sim c) \& (a \& \sim c \& \sim b)) = (a \& X \& X = \sim a \& (X \& X)) = [8] = (a \& X = \sim a \& a \& \sim b \& \sim c = [15] = 0)$
- iii) $((a \& \sim b)/(\sim a \& b)) \& (a \& b) = [12] = \{ \text{voir 2}) (a \& \sim b) | (\sim a \& b) = (a \land b) \}$ $((a \& \sim b) \& (a \& b))/((\sim a \& b) \& (a \& b) = [9] =$ $(a \& a \& \sim b \& b)/(b \& b \& a \& \sim a) = [5] \text{ et } [15] \text{ et } [1] = 0$

- On peut réduire la phrase suivante "Le train peut rouler si le signal est vert et les portes ne sont pas ouvertes" à la relation : x = a & ~b
 (ne - pas , ni , pas , etc. vaut la négation donc ~).
 faire de même pour :
 - a) Les voitures s'arrêtent si elles n'ont plus d'essence ou le feu n'est pas vert ou il y a un bouchon.
 - b) Les avions volent s'ils ont des moteurs et des pilotes à l'intérieur ou des systèmes de commandes au sol et des opérateurs.
 - c) Le signal est bon si la valeur_1 est bonne et la valeur_2 est bonne mais pas la valeur_3 ni la valeur_4.
 - d) La lampe s'éclaire si la lampe est bonne et l'interrupteur est fermé et le compteur est ouvert et la centrale n'est pas en panne et l'EDF n'est pas en grève ou , la pile est bonne et le boîtier est bien fermé et la lampe est bonne et l'interrupteur est fermé. Simplifier l'expression obtenue.
 - e) La fusée peut partir si il n'y a pas de fuite et pas de défaillance du matériel et pas de problème météo.

Donner l'inverse de cette phrase et vérifier que cela correspond aux relations trouvées.

Maintenant, après le SI dans la phrase, on associe à chaque verbe "être" ou "avoir" le signe = (test d'égalité), et "ne pas être" ou "ne pas avoir" à != (test d'inégalité).

```
ex : "Un homme est instruit s'il a été à l'école et n'a pas oublié"

=> x = (x = = a) | (x != b)
```

Reprendre et résoudre (a), (b), (c), (d) et (e)

 $x = \neg a / \neg b / c = \neg (a \& b \& \neg c)$

```
b)
      x = (a \& b)/(c \& d)
      x = a \& b \& \sim c \& \sim d
c)
      A = (a \& b \& c \& \neg d \& \neg e) / (f \& g \& a \& b) = (a \& b) \& ((c \& \neg d \& \neg e) / (f \& g))
d)
      x = -a \& -b \& -c = -(a | b | c) = la fusée ne peut pas partir s'il y a une fuite ou une
e)
                                         défaillance du matériel ou un problème météo.
      x = (x! = a) / (y! = b) / (z = c)
a)
b)
      x = (x = a) & ((y = b) / ((z = c) & (w = d)))
      x = (v1 = B) \& (v2 = B) \& (v3! = B) \& (v4! = B)
c)
             ((l = B) \& (i = F) \& (c = O) \& (C! = P) \& (E! = g))
d)
             ((p = = B) \& (b = = F) \& (l = = B) \& (i = = F))
             (l = B) & (i = F) & ((c = O) & (C! = P) & (E! = g))
                                         ((p = = B) & (b = = F))
e)
      x = (c1! = a) & (c2! = b) & (c3! = c) = \sim ((c1 = a) / (c2 = b) / (c3 = c))
```

a)

On a 2 objets, un triangle plein dans un rectangle (voir dessin).

Les coordonnées sont données en (x,y)

Donner la (ou les) matrice qui permet de :

2) idem, mais par rapport à l'axe des X.
$$0 -1 = 0$$

3) idem, mais par rapport à l'axe des X et des Y.
$$\begin{vmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{vmatrix}$$

4) Faire tourner le rectangle autour du triangle d'1/4 de tour.

Il faut i) Translater le rectangle afin que son isobarycentre (centre) soit en 0.

ii) Lui appliquer une rotation de $\pi/2$.

iii) Translater en sens contraire.

Transl (5; 4,5)
$$\begin{vmatrix} 1 & 0 & -5 \\ 0 & 1 & -4,5 \\ 0 & 0 & 1 \end{vmatrix}$$
 Rot $\pi/2$ $\begin{vmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ Transl (-5; -4,5) $\begin{vmatrix} 1 & 0 & 5 \\ 0 & 1 & 4,5 \\ 0 & 0 & 1 \end{vmatrix}$

Les matrices ne s'appliquent qu'aux points du rectangle. Le triangle, lui, ne bouge pas.

5) Agrandir le triangle pour qu'au moins 1 sommet touche un des côtés du rectangle.

Il faut:

- *i)* Calculer l'isobarycentre du triangle.
- ii) Translater le triangle afin que son isobarycentre soit en 0.
- iii) Lui appliquer un facteur d'échelle pour qu'un des points soit à la grandeur voulue.
- iv) Translater en sens contraire.
- i) isobarycentre d'un triangle $G = (\frac{\sum_{i=1}^{n} X_{i}}{n}; \frac{\sum_{i=1}^{n} Y_{i}}{n})$ $\sum_{i=1}^{n} X_{i} = (5 + 4 + 6)/3 = 5; \sum_{i=1}^{n} Y_{i} = (5 + 4 + 4)/3 = 4,33...$ G = (5, 4,33...)
- (ii) Transl (5; 4,33...) [1,0,-5,0,1,-4,33...,0,0,1]
- iii) Pour que le sommet (5,5) passe à (5,6) il faut un facteur d'échelle de 5/3
- *iv)* Transl (-5; -4,33...) [1,0,5,0,1,4,33...,0,0,1]

Les matrices ne s'appliquent qu'aux points du triangle. Le, rectangle lui, ne bouge pas.

- A partir de la figure de départ, rétrécir le rectangle pour qu'un au moins de ses côtés touche un des sommets du triangle.
 - Il faut i) Translater le rectangle afin que son isobarycentre (centre) soit en 0.
 - ii) Lui appliquer un facteur d'échelle 2/3.
 - iii) Translater en sens contraire.
- i) Transl(5; 4,5) [1, 0, -5, 0, 1, -4,5, 0, 0, 1]
- ii) Ech de 2/3. La hauteur doit diminuée de 3 à 2
- iii) Transl (-5; -4,5) [1, 0, 5, 0, 1, 4,5, 0, 0, 1]

Les matrices ne s'appliquent qu'aux points du rectangle. Le triangle, lui, ne bouge pas.

table des matières

notes de correction	1
modalités	
corrigé 1	2
corrigé 2	4
corrigé 3	5
corrigé 4	7
COITIGE 4	······································
corrigé 5	9
<u> </u>	
table des matières	1

Corrections des exercices du cours de Mathématique