

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin

MATHEUS MELO SANTOS VELLOSO

OTIMIZAÇÃO ONLINE DA ABERTURA DINÂMICA DO SIRIUS

ONLINE OPTIMIZATION OF SIRIUS DYNAMIC APERTURE

MATHEUS MELO SANTOS VELLOSO

ONLINE OPTIMIZATION OF SIRIUS DYNAMIC APERTURE

OTIMIZAÇÃO ONLINE DA ABERTURA DINÂMICA DO SIRIUS

Dissertação apresentada ao Instituto de Física Gleb Wataghin da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de MESTRE EM FÍSICA, na Área de FÍSICA.

Thesis presented to the Gleb Wataghin Institute of Physics of the University of Campinas in partial fulfillment of the requirements for the degree of MASTER IN PHYSICS, in the area of PHYSICS.

Orientador: LIU LIN

Coorientador: ANTONIO RUBENS DE CASTRO BRITTO

ESTE TRABALHO CORRESPONDE À VER-SÃO FINAL DA TESE DEFENDIDA PELO ALUNO MATHEUS MELO SANTOS VEL-LOSO E ORIENTADA PELO PROF. DR. LIU

LIN.

FICHA CATALOGRÁFICA

FOLHA DA APROVAÇÃO

Acknowledgements

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Resumo

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Abstract

Beam accumulation into the SIRIUS storage ring occurs in the off-axis scheme, for which the efficiency depends on a sufficiently large dynamic aperture (DA) - the region comprising stable transverse oscillations. In the design phase, SIRIUS DA was numerically optimized in the accelerator model using various techniques and during commissioning the optimized lattice was implemented in the machine. Recent measurements indicate that SIRIUS DA, although sufficiently large for an injection efficiency of around 85%, can be yet increased upon fine-tuning of sextupole magnets strengths, which govern the beam nonlinear dynamics and determine the DA. In this master's project, the student will carry out online optimization experiments to tune the ring nonlinear lattice and improve the DA and injection efficiency into the storage ring.

List of Figures

2.1	Storage ring typycal configuration. From [?]	20
2.2	The Frenet-Serret coordinate system. From [?]	21
2.3	Betatron functions for the SIRIUS storage ring. Colored blocks represent the	
	magnets of the accelerator lattice: blue for dipoles, orange for quadrupoles	
	and green for sextupoles. The ring has a 5-fold symmetry, with the lattice	
	and betatron function repeating the same pattern shown above five times	
	up to $s=518 \text{ m} \dots $	24
2.4	Phase space ellipse traced by tur-by-turn (TbT) motion in the (x, p_x)	
	phase space. Optics functions determine the principal axes ratios and the	
	inclination of the ellipse at each longitudinal position along the ring. From [?].	25
2.5	Dispersion fucntion for SIRIUS superperiod	26
2.6	Resonance lines in tune space up to 2nd, 3rd and 4th order, respectively	30

List of Tables

4 1	SIRIUS sextupole families	Δt
+. ı		

Contents

1. Intr	oducti	on	12
1.1	Storag	ge ring-based synchrotron light sources	12
1.2	The S	IRIUS project	15
1.3	This o	lissertation problem	15
2. The	oretica	al Background	17
2.1	Motio	n of charged particles in magnetic fields	19
2.2	Storag	ge rings	19
2.3	The c	oordinate system	20
2.4	Hamil	tonian for the relativistic electron	21
2.5	Linear	r Dynamics	23
2.6	Nonlii	near Dynamics and Perturbations	28
3. Onl	ine Op	timization	31
3.1	Defini	ng Online Optimzation	31
3.2	Justif	ying Online Optimization	32
3.3	Robus	st Conjugate Direction Search	33
	3.3.1	Line methods	33
	3.3.2	Powell's conjugate direction set	34
4. Onl	ine Op	timzation of storage ring Dynamic Aperture	37
	4.0.1	Injection scheme for a cummulation at SIRIUS storage ring	37
	4.0.2	New working points	39
4.1	Online	e Optimization	39
	4.1.1	Dynamic Aperture Optimization	39
	4.1.2	Characterization of Sextupole Magnets Configurations	41
5. Exp	erimei	nts and Results	45
6. Rev	enge o	of the Sith	48
6.1	War!		48
Biblio	graphy		51
A. The	e Force	e Awakens	52
A 1	Luke	Skywalker has vanished	52

В.	The	Last Jedi	55
	B.1	The FIRST ORDER reigns	55
		Rise of Skywalker The dead speak!	58 58

Chapter 1

Introduction

This dissertation presents the optimization work performed on the SIRIUS storage ring sextupole mangets with the objective to improve the ring's Dynamic Aperture and injection efficiency. The text is organized as follows:

- Chapter 1 introduces syncrhotron light sources and the SIRIUS project
- Chapter 2 introduces the theoretical and scientific background of dynamics of particles in particle accelerators. Nonlinear dynamics is presented and its consequences are presented. Particular attention is drawn to the Dynamic Aperture.
- Chapter 3 reviews optimization algorithms, introduces online optimization in accelerators and the Robust Conjugate Direction Search (RCDS) algorithm.
- Chapter 4 describes the experimental methods and experiments carried out at the SIRIUS storage ring.
- Chapter 5 concludes this dissertation presenting some final remarks.

1.1 Storage ring-based synchrotron light sources

Synchrotron radiation (SR) refers to electromagnetic radiation emitted by charged relativistic particles as a result for being accelerated. The emitted intensity is the largest along the direction perpendicular to the that of the acceleration. In a circular accelerator, this implies the emission occurs along the curved trajectory's tangent.

The phenomenon was theoretically predicted in the early 1900's when Liénard and Wiechart calculated the retarded potentials—introduced by L. Lorenz—for point particles. Liénard calculated the energy lost by the electron due to the radiation emission and recovered Larmor's famous result . Synchrotron light was firts observed experimentally at a General Electric's 70 Mev synchrotron¹ accelerator. It was named *synchrotron radiation* for this reason.

Where's
Larmor
in all
of
this?

¹The term "synchrotron" refers to the accelerator technology based on the synchonicity between the charged particles period of revolution and the frequency of the electromagnetic fields exerting work on it to achieve and mantain high-energies.

For nuclear and particle physicists, whom the first accelerators served, SR was in fact a detrimental side-effect of achieving high-energies. But since the light is strongly colimated and covers a broad spectrum, from infrared to hard X-rays, its potential for imaging techniques in condensed matter physics, materials science, molecular biology and chemistry was soon realized.

The community interested in SR for these purposes first revolved around big high-energy and nuclear physics machines and obtained SR parasistically from them, in the early 1960's. These are the so-called first-generation synchrotron light sources. With the increase of experiments using SR, accelerators were built for this specific purpose, which ignaugurated the second-generation. In these machines, light was produced at the bending magnets.

A figure of merit measuring the quality of a SR source is its *brightness*, defined as the photon flux per unit area and per unit solid angle at the source

$$B(\omega) = \frac{F(\omega)}{\Omega_{xx'}\Omega_{yy'}\Delta\omega/\omega},\tag{1.1}$$

where $F(\omega)$ is the photon flux at energy $E = \hbar \omega$, $\Omega_{uu'}$ is the the (u, u') photon phasespace volumes, which depends on both the electron beam and photon beam distributions; $\Delta \omega/\omega$ is the frquency bandwith. The growing community based on spectroscopy and crystallography experiments soon started to require maximum flux within small phase space volume (brightness) to improve the spectral resolution and match the incident beam to the small crystal sizes

In the 1990's, the introduction of *insertion devices* (IDs) such as *wigglers* and *undulators* characterized the third-generation machines. These devices consists on arrays of alternating dipolar fields which introduce additional transverse accelerations to the beam for the light production. The additional radiation output increased radiative damping reducing emmittance and increasing brightness. IDs also allowed for control of radiation energy and polarization.

The 4th generation of SR sources was ignaugurated with the start of the comisioning of the MAX IV machine, in Lund, Sweden. The main advances with respect to the previous generation is the reduction by one to two orders of magnitude in the emmittance, which was made possibile due to the recent technological advances. Soon after, an upgrade of the European Synchrotron Facility (ESRF) machine redered it the second 4th generation machine in the world (when?). SIRIUS, in Campinas, is the third in the world, the first in the global-south.

what about FEL's? Why are you always making sure to clarify youre talking about storage rings?

Usually, the accelerators systems of a synchrotron light source facility consists on the following devices

• electron gun (eGun): from which electrons are obtained. At SIRIUS, a cathode is used, and the electrons are ejected by thermoionic emission, at 90 keV energy.

- linear accelerator (LINAC): consisting on a array of cavities along which RF fields propagate with increasing group velocity, carrying the electron along with it. SIRIUS' LINAC accelerates electrons to about 150 MeV.
- booster ring: syncrhotron accelerator in which the electron energy is ramped to the storage ring's nominal operating energy of 3 GeV.
- transport lines: along which the electron is transported from the linac to booster (LTB) and from the booster to the storage ring (LTS).
- storage ring: where ultra-relativistic electrons are kept stable during hours, oscillating around a closed orbit.

Synchrotron storage rings store ultra-relativistic electrons beams close to a reference design orbit. The orbit is determined by the deflection magnets strenthgs, the dipoles. The focusing towards the closed orbit is provided by gradient fields, mostly coming from quadrupole magnets at SIRIUS. Since focusing and deflection depends on the beam energy, small energy deviations in the beam's energy can lead to differential focusing. Using an analogy from geometric optics, the beam's focusing at the lens (quadrupoles) depends on its color (energy). To correct this chromatic aberration, "glasses" are necessary. They introduce geometric aberrations responsible for uniform, energy-independent focusing.

The accelerators are kept within concrete tunnels for radiation safety. Tangentially to the nominal orbits, optical beamlines direct the SR photon beams to the experimental cabins where the experiments in condensed matter physics, chemistry, molecular and celular biology are carried out. SIRIUS has X experimenta beamlines.

1.2 The SIRIUS project

SIRIUS is the 4th generation storage ring-based synchrotron light source. It was designed, built and it operated by the Brazilian Synchrotron Light Laboratory, at the campus of the Center of Resarch in Energy and Materials (CNPEM), at Campinas, Brazil. At the time of writing, SIRIUS in one of the three machines of its kind operating in the world.

SIRIUS has finished commissioning in 2022 and since 2023 is receiving its first users. It is currently operating for user's beam with a 100 mA current, but is designed to achieve 350 mA when the system of superconducting radio-frequency cavities, as well as the higher-oder-harmonic cavity are installed.

1.3 This dissertation problem

The persuit of low-emmittances and high-brightnes pushed the accelerator community towards the 4th generation of storage rings. The particular arrangement of bending magnets which allowed for such low-emmittances also requites intese gradient fields provided by quadrupole magnets. Strong focusing, in turn, demands strong sextupolar fields for compensating chromatic effects, such as focusing dependence on the beam's small energy fluctuations. Since sextupole provide nonlinear fields, the dyamics in 4th generation storage rings has become increasingly nonlinear.

A quasi-periodic nonlinear dynamics subject to the smallest perturbations, such as small fields errors arising from rotation, alignment or excitation errors, can become unstable at large oscillation amplitudes. The instabilities result in limitations to large transverse oscillation amplitudes the machine can support. This amplitude is known as the Dynamic Aperture of the ring.

In ordinary operation condition, the equillibrium beam distribution is much smaller than the DA. One situation in which the DA is important for operation is during the injection process. The beam is extracted from the booster accelerator and enters the storage ring after passing through a transport line. It is then deflected by pulsed nonlinear magnets to make it parallel to the storage ring, but with a horizontal offset of approximately x = -8 mm. If the DA is smaller than that, it limits the injection efficiency for beam accumulation.

The choice of placement, symmetry and strength of sextupoles was chosen based on the optimization of the simulated dynamic aperture and beam-lifetime in the machine computer model. The average performance of the configurations in the presence of several magnets errors (simulating the expected errors in the real machine) was optimized and the obtained optimized lattice was then implemented in the machine during the comissioning phase. The real machine, is basically a realization of such error configurations, and renders

the machine a certain performance.

Prior to the optimization work, the Dynamic Aperture was measured to be , which rendered an average of injection efficiency. The main difficulty was the typycal fluctuations in the effciency .

Since the lattice configuration implemented is in principle close to the optimum configuration, it is reasonable to assume that small nudges and adjustments on the sextupoles strengths could accommodate the lattice to the physically realized errors distribution, improving the nonlinear dynamics performance, the DA and ultimately, the injection efficiency and its stability. Online optimization consists on choosing computer-automated direct search strategies to seek the optimum sextupole configurations rendering the larges dynamic aperture.

get data

get data

get

data

Chapter 2

Theoretical Background

Ultra-relativistic beams of electrons are injected into the SIRIUS storage ring with the ring nominal operating energy of 3 GeV. The beam is injected in the form of electron bunches, with characteristic length, width and size.

The storage ring is designed to confine the bunches and steer them along a reference closed orbitm which is achieved by specifying dipolar magnetic fields along the orbit such that the integrated effect is an angular deviation of 2π in the beam's trajectory. Additionally, to keep electrons close to the closed orbit, it is also necessary to specify gradient magnetic fields with strengths proportional the the beam's transverse deviations. These fields provide alterating focusing and defocusing of the beam in such a manner that their overall effect is to restore the beam towards the design orbit.

To correct chromatic aberrations in the beam's motion, i.e. a dependence of focusing with the beam's energy, and guarantee correct focusing despite energy deviations from the nominal value, sextupolar magnetic fields are also introduced, providing fields depending quaratically on the deviations from the nominal orbit. These fields introduce strong nonlinearities in the dynamics.

When having its trajectory bent at the dipoles and insertion devices¹, the beam loses energy in the form of synchrotron radiation. To mantain the beam stored, the energy lost must be replenished. To this aim, radio-frequency (RF) cavities are placed along the ring to provide oscilating electric fields parallel to the longitudinal direction. The work done in the beam by the fields restore its energy.

The radiated photons are emitted in a narrow cone with angular aperture of $1/\gamma$, γ being the relativistic Lorentz factor (~ 6000 at SIRIUS storage ring). The photons carry away a fraction of the beam's energy and momentum, in both the longitudinal and transverse directions, but when passing through RF cavities, only momentum in the longitudinal direction is replenished. This leads to an overall damping of transverse amplitudes.

On the other hand, the quantum nature of the emitted radiation leads to the excitation of transverse oscillations, which is known as quantum excitation. When a

¹Insertion devices (IDs) consist on arrays of magnetic blocks arranged to provide additional deflection of the beam's trajectory for the production of synchrotron radiation. IDs allow for fine-tuning of the fields and as consequence of the characteristics of the emitted readiation, such as the energy and polarization.

photon carries away energy, it depletes the electrons energy by the same amount. It thus changes the reference orbit of the electron in certain regions of the ring (dispersive regions), inducing oscillations. Eventually, equillibrium between radiative damping and quantum excitation is achieved, leading the rms values of each electron's amplitudes to reach a stationary regime.

Each one of the beam's degrees of freedom defines an acceptance: limits that when exceeded can lead to instabilities and eventually beam losses. The most obvious acceptance is the transverse acceptance: the beam motion is bounded by a vacuum chamber and collisions with the chamber's physical apperture leads to losses. Additionally, the beam also has an energy acceptance: a tolerance for energy deviations from the nominal value that when exceeded can lead to a suboptimal energetic balance, deviations from the nominal orbit and eventually collisions with the vacuum chamber.

The beam is also subject to elastic and inelastic collisions with residual gas molecules within the chamber and also the collisions between electrons within the same bunch, and other kinds of interactions with wake-fields from other bunches. The losses and their ocurrence rates define the characteristic time scale at which a given electron current survives in the ring. This is the beam lifetime and determines the rate at which injections into the storage ring are required.

Because of the nonlinearities introduced by the sextupole magnets, the transverse acceptances can be limited not by the physical aperture but rather by the amplitudes above which motion is irregular, unstable and unbounded. This limiting amplitude is known as the dynamic aperture (DA), a term that can be used to refer to amplitudes in the transverse space x, y or to the phase space coordinates x, p_x and y, p_y .

Despite the complicated physics involving the transverse oscilations as well as the energy oscillations, the damping and the excitation of amplitudes, the collective effects and the instabilities, for the purpose of this dissertation, it is sufficient to model the motion of a single electron, neglecting radiation losses and any other collective interactions.

The electron travels along the ring at the speed of light and executes transverse oscillations in two orthogonal planes. The dynamics takes place in a 4-dimensional phase space which is the dynamics of two independent quasi-periodic oscillators. These simplifications are justified for our immediate purposes because:

- the linear, uncoupled dynamics it renders serves as a building block upon which ellaborate modeling can be carried out, incoporating coupling, nonlinearities and perturbations
- in the machine, the amplitudes are ultimately damped out and reach an equillibrium regime. Estimating maximum amplitudes accommodated by the dynamics neglecting radiative damping corresponds to an upper bound

- radiation losses/gains are only significant over a time scale of a couple of turns. Over this period, tens of transverse oscillations are carried out.
- collective instabilities?

Next, the single-particle dynamics is presented with the aim of defining quantitavely the dynamic aperture and the characteristics of the dynamics in electron strorage rings. Throghout the modelling, optical functions and parameter for the SIRIUS storage rings are also presented.

2.1 Motion of charged particles in magnetic fields

An electron of charge e and momentum p follows a circular orbit of radius ρ when interacting with an uniform and time-independent magnetic field of magnitude B, pointing along the perpendicular to the ortbit plane. In such conditions, Lorentz force law predicts that

$$R(p) \equiv B\rho = \frac{p}{e}.\tag{2.1}$$

Consider now an electron traveling along a curve parametrized by the arclength s with respect to an arbitrary reference point. The interaction with fields $B_x(x, y, s)$ and $B_y(x, y, s)$, both perpendicular to the electron's motion, results in deflections of the trajectory. The deflection angles are given by

$$d\theta_x = \frac{ds}{\rho_x(s)} = \frac{e}{p} B_y(x, y, s) ds = \frac{1}{R(p)} B_y(x, y, s) ds,$$

$$d\theta_y = \frac{ds}{\rho_y(s)} = \frac{e}{p} B_x(x, y, s) ds = \frac{1}{R(p)} B_y(x, y, s) ds.$$
(2.2)

Where (2.1) has been used to replace the p/e ratio by the magnetic rigity R(p), which is defined as the product of the uniform field strength needed for a beam with momentum p and charge e to perform circular orbit with radius ρ . The rigidity depends solely on the electron's momentum/energy and gives the appropriate normalization to evaluate the instantaneous angular deflections in the electron's trajectory caused by magnetic fields.

Add deflection figures

2.2 Storage rings

draw my onw figure

Figure 2.1 sketches the typical design of a storage ring. For the porpose of storing a beam of electrons in closed orbits, magnetic fields defining a closed orbit are necessary. The angular deflections should add up to 2π , and the specification of the

Figure 2.1: Storage ring typycal configuration. From [?]

beam's operating energy determines the integrated field required for causing the closed orbit deflections.

For providing stability, focusing towards the reference closed orbit is also needed, and can be attained with the introduction of gradient fields whose strengths depend linearly on the tranverse excursions from the reference orbit. Such fields are provided mainly by quadrupole magnets, which are physically realized by specifying magnetic poles with the shape of truncated hyperbolas.

Sextupole mangets are also usually included in the design of storage rings. The fields they produce is quadratic with transverse displacement and are needed for correction of chromatic errors in the dynamics.

add magnets and field profile figures

2.3 The coordinate system

A convinient coordinate frame to decribe the dynamics in storge rings can be constructed by imagining a reference particle traveling along a curve drawn by the tip of a vector \mathbf{r}_0 , as Fig. 2.2 shows. The particle travels a distance s along the ring, which can be used to parametrize the motion. The triad of direction vectors consists of a vector $\hat{\mathbf{s}}$, tangent to the trajectory, a vector $\hat{\mathbf{x}}$ normal to it, pointing in the direction at which $\hat{\mathbf{s}}$ changes and a vector $\hat{\mathbf{y}} = \hat{\mathbf{x}} \times \hat{\mathbf{s}}$, bi-normal to the trajectory. This construction leads to a Frenet-Serret reference frame.

Assuming no curvature in the y plane, i.e. that the accelerator defines a curve whose plane is parallel to the ground, then the unit vectors defining the frame can be calculated by [?]

$$\hat{\mathbf{s}} = \frac{\mathrm{d}\mathbf{r}_0}{\mathrm{d}s}, \quad \hat{\mathbf{x}} = -\rho \frac{\mathrm{d}\hat{\mathbf{s}}}{\mathrm{d}s}, \quad \hat{\mathbf{y}} = \hat{\mathbf{x}} \times \hat{\mathbf{s}}, \tag{2.3}$$

Figure 2.2: The Frenet-Serret coordinate system. From [?].

where $\rho(s) = \|d\hat{\mathbf{s}}/ds\|^{-1}$ is the local curvature radius². The vectors evolve along s as prescribed by the Frenet-Serret equations:

$$\frac{\mathrm{d}\hat{\mathbf{s}}}{\mathrm{d}s} = -\frac{1}{\rho(s)}\hat{\mathbf{x}}, \quad \frac{\mathrm{d}\hat{\mathbf{x}}}{\mathrm{d}s} = \frac{1}{\rho(s)}\hat{\mathbf{s}}, \quad \frac{\mathrm{d}\hat{\mathbf{y}}}{\mathrm{d}s} = 0, \tag{2.4}$$

The frame thus depends solely on the geometry of the specified path. Since the curvature is defined by the dipolar fields $B_0(s)$ in the y direction, then, eq. (2.2) leads to

$$G(s) \equiv \frac{1}{\rho(s)} = \frac{B_0(s)}{R_0},$$
 (2.5)

where R_0 is the rigidity for the beam at the nominal energy.

2.4 Hamiltonian for the relativistic electron

The dynamics of relativistic electrons influenced by electromagnetic fields (Φ, \mathbf{A}) is encapsulated by the Hamiltonian

$$H = \sqrt{m^2c^4 + (\mathbf{P} - q\mathbf{A})^2c^2} + e\Phi,$$

e being the elementary charge and $\mathbf{P} = \mathbf{p} + e\mathbf{A}$ the canonical momentum. The following steps are followed to obtain equations of motion for electrons in the storage ring:

• A canonical transformation to change coordinates is applied in order to describe the

For a circular trajectory, $\mathbf{r}_0 = (R\cos(s/R), R\sin(s/R), 0), 0 \le s \le L$ (check), in the cartesian laboratory frame. $\hat{\mathbf{s}} = (-\sin(s/R), \cos(s/R), 0), \, \mathrm{d}\hat{\mathbf{s}}/\mathrm{d}s = -R^{-1}(\cos(s/R), \sin(s/R), 0)$ and $\rho(s) = R$

motion in terms of the Frenet-Serret frame variables x, y;

- Instead of time t, the Hamiltonian and the dynamical variables are described as functions of s, the longitudinal position along the ring;
- Geometric quantities are used: canonical momenta are the angles x' = dx/ds and y' = dy/ds with respect to the nominal orbit;
- Paraxial approximation: transverse momenta are assumed to be way smaller than longitudinal momentum;

All of these steps are shown in detail in textbooks such as Refs. [?,?,?]. Neglecting RF cavities ($\Phi = 0$) and radiation losses, the energy is a constant parameter and the dynamics will consist solely on the transverse degrees of freedom. In this 4-dimensional dynamics, the set of canonical variables are (x, p_x, y, p_y) , where

$$\begin{cases} p_x = x'(1+\delta), \\ p_y = y'(1+\delta), \end{cases}$$
 (2.6)

and

$$\delta = \frac{P - P_0}{P_0} \approx \frac{E - E_0}{E_0} \tag{2.7}$$

where the ultra-relativistic approximation $E \approx pc$ was used.

Hamilton's equations for the Hamiltonian in the paraxial approximation lead to the equations of motion for 4D dynamics

$$x'' = -\frac{(1+Gx)^2}{1+\delta} \frac{B_y}{R_0} + G(1+Gx), \quad y'' = \frac{(1+Gx)^2}{1+\delta} \frac{B_x}{R_0}$$
 (2.8)

where $R_0 = p_0/e$ and G(s) defined as in Eq. (2.5).

Fields influencing the beam are those of dipoles, quadrupoles and sextupoles. Their functional forms are

• Horizontal Dipole:

$$B_x = 0$$
, $B_u = B_0$

• Normal quadrupole

$$B_x = B_1 y, \quad B_y = B_1 x$$

• Normal sextupole

$$B_x = B_2 xy$$
, $B_y = \frac{1}{2}B_2(x^2 - y^2)$

These are the so-called *normal multipole fields*. There also exists *skew multipole fields*, which couple the horizontal and vertical dynamics. We will neglect skew fields and coupling for now.

In the equations of motion, eqs. (2.8), the magnetic rigidity normalizes all the fields. We define the dipolar, quadrupolar and sextupolar functions by

$$G(s) = \frac{B_0(s)}{B\rho}, \quad K(s) = \frac{B_1(s)}{B\rho}, \quad S(s) = \frac{B_2(s)}{B\rho}.$$
 (2.9)

2.5 Linear Dynamics

Linear equations of motion

Expansion of eqs. (2.8) up to first order in the x, y, δ variables leads to [?]

$$x'' + (G^2 + K)x = G\delta, \quad y'' - Ky = 0.$$
(2.10)

For on-momentum particles, $\delta = 0$, both equations reduce to Hill's equations

$$u'' + K_u(s)u = 0, (2.11)$$

which are a pair of parametric oscillators for u = x, y, with s-dependent focusing functions

$$K_x(s) = G^2(s) + K(s), \quad K_y(s) = -K(s).$$

Motion in the linear approximation thus consists on oscillations around the closed orbit, known as betatron oscillations.

Pseudoharmonic description

The solutions for the equations of betatron motion can be cast in a amplitude-phase (WKB) form

$$u(s) = \sqrt{2\beta_u(s)J_u}\cos(\phi_u(s) + \phi_0), \qquad (2.12)$$

where $\beta_u(s)$ must satisfy the boundary value problem

$$\frac{1}{2}\beta_u'' + \beta_u K_u(s) - \frac{1}{\beta_u} \left(\frac{1}{4} \beta_u'^2 + 1 \right) = 0, \quad \begin{cases} \beta_u(0) = \beta_u(L) \\ \beta_u'(0) = \beta_u'(L) \end{cases}$$
(2.13)

and the phase advance must be

$$\phi_u(s) = \int_0^s \frac{1}{\beta_u(\sigma)} d\sigma. \tag{2.14}$$

The betatron functions for the SIRIUS storage ring are shown in Fig. 2.3.

Figure 2.3: Betatron functions for the SIRIUS storage ring. Colored blocks represent the magnets of the accelerator lattice: blue for dipoles, orange for quadrupoles and green for sextupoles. The ring has a 5-fold symmetry, with the lattice and betatron function repeating the same pattern shown above five times up to $s=518~\mathrm{m}$

An important feature of the dynamics is the *tune*: the phase advance per ring revolution

$$\nu_u = \frac{1}{2\pi} \int_s^{s+L} \frac{d\sigma}{\beta_u(\sigma)} \equiv \frac{1}{2\pi} \oint \frac{ds}{\beta_u(s)}.$$

The analysis of perturbations and nonlinearities shows that the tunes are a critical variables in determining the beam's response to perturbations. More specifically, the tunes impact over disturbances amplification factors, which are greatest when tunes are close to integer numbers.

Turn-by-turn motion

In the u, u' phase space, the quasi-periodic motion traces out ellipses. This can be verified by calculating the derivative

$$u'(s) = -\sqrt{\frac{2J_u}{\beta_u}} \left[\sin(\phi_u(s) + \phi_0) + \frac{1}{2}\beta_u'(s)\cos(\phi_u(s) + \phi_0) \right], \tag{2.15}$$

defining $\alpha_u = \frac{\beta_u'}{2}$ and $\gamma_u = \frac{(1+\alpha_u^2)}{\beta_u}$ and checking that u, u' satisfy the quadratic form

$$2J_u = \gamma_u u^2 + 2\alpha_u u u' + \beta_u u'^2. \tag{2.16}$$

The ellipse properties are defined by the $\beta(s)$, $\alpha(s)$ and $\gamma(s)$ functions, also known as Courant-Snyder (C-S) parameters or Twiss parameters. Tracking a particle's transverse position and momenta for several turns at some fixed point along the ring results in the ellipse with shape specified by the C-S parameters. Since the parameters are functions of the position s, then, at each point along the accelerator, the Poincaré Section u, u' displays a different ellipse for each point.

Since the phase advance over a turn is $2\pi\nu + \phi_0$, the phase advance after the j-th turn is $2\pi\nu j + \phi_0$, and thus sampling the transverse motion at a fixed $s = s_0$ position reveals a harmonic displacement

$$u_j(s_0) = \sqrt{2\beta_u(s_0)J_u}\cos(2\pi\nu_u j + \phi_u(s_0)). \tag{2.17}$$

Figure 2.4: Phase space ellipse traced by tur-by-turn (TbT) motion in the (x, p_x) phase space. Optics functions determine the principal axes ratios and the inclination of the ellipse at each longitudinal position along the ring. From [?].

Dispersion

The equation of motion for off-momentum particles in the horizontal plane is the non-homogeneous Hill's equation. The solution consists on the linear combination of the homogeneous solutions in the phase-amplitude form plus the particular solution: $x = x_{\beta} + x_{\delta} = x_{\beta} + \eta(s)\delta$ where $\eta(s)$ is the dispersion function, satisfying

$$\eta'' + (G^2 + K)\eta = G, \quad \begin{cases} \eta(0) = \eta(L), \\ \eta'(0) = \eta'(L). \end{cases}$$

The periodicity in the $\eta(s)$ function is required if we want to interpret η as closed orbit per momentum deviation. Thus, off-momentum particles perform betatron oscillations around a dispersive orbit. The dispersion function for the SIRIUS storage ring is shown in Fig. 2.5

Figure 2.5: Dispersion function for SIRIUS superperiod.

Field Errors

In the presence of additional dipolar and quadrupolar fields ΔG and ΔK , respectively, the orbit and focusing are changed. Assuming these are small perturbations and not strong enough to kill the beam, we can evhaute the disturbances to the unperturbed dynamics. The closed orbit distortion due to a single dipole error ΔG reads

$$x_{\rm co}(s) = \frac{\sqrt{\beta(s)\beta_0}}{2\sin\pi\nu} \Delta G\cos(|\phi(s) - \phi_0| - \pi\nu). \tag{2.18}$$

For a distribution $\Delta G(s)$ of dipolar perturbations along the ring, we sum over the contributions, and obtain the total disturbance

$$x_{\rm co}(s) = \frac{\sqrt{\beta(s)}}{2\sin\pi\nu} \int_{s}^{s+L} \Delta G(\sigma) \sqrt{\beta(\sigma)} \cos(\pi\nu + \phi(s) - \phi(\sigma)) d\sigma. \tag{2.19}$$

As for gradient errors, focusing is changed, which leads to changes in the beta function and phase advance. The tune-shift as a consequence of a gradient error present "during" a small extent Δs along the ring is

$$\Delta \nu \approx \frac{1}{4\pi} \beta_0 \Delta K \Delta s. \tag{2.20}$$

Again, for a distribution of errors we sum over the ring:

$$\Delta \nu \approx \frac{1}{4\pi} \oint \beta(s) \Delta K(s) ds.$$
 (2.21)

Is also possible to show that he the relative beta-function error, known as beta-beating, reads

$$\frac{\Delta\beta(s)}{\beta(s)} = -\frac{1}{2\sin(2\pi\nu_0)} \int_s^{s+L} \Delta K(\sigma) \cos(2\phi(\sigma) - 2\phi(s) - \phi_0) d\sigma. \tag{2.22}$$

Chromaticity

Energy deviations affect not only the closed orbit by means of the dispersion effect. A more/less energetic beam has higer/lower rigidity and thus is focused differently when passes through quadrupoles.

Expanding the equations of motion, (2.8), for off-energy particles up to the order of terms $u\delta$ (u = x, y) gives the additional higher-order gradient terms

$$\Delta K_x = -(K_1 + 2G^2)\delta \approx K_x \delta \tag{2.23}$$

$$\Delta K_y = K_1 \delta = -K_y \delta \tag{2.24}$$

This means there exists an energy-dependent tune-shift effect, which, using eq. (2.21), reads

$$\Delta \nu_i \approx -\frac{1}{4\pi} \oint \beta K_i \delta \, \mathrm{d}s \,,$$
 (2.25)

for the i = x, y planes.

We can define the *linear chromaticity* in the i=x,y direction as energy error-induced tune-shift $\Delta\nu_i$ per energy deviation δ

$$\xi_i = \frac{\mathrm{d}\nu_i}{\mathrm{d}\delta}.\tag{2.26}$$

This uncorrected chromaticity is also called natural chromaticity. Using expression (2.25) for the tune-shift, the natural chromaticity reads

$$\xi_{i,\text{nat}} \approx -\frac{1}{4\pi} \oint K_i \beta_i \, \mathrm{d}s \,.$$
 (2.27)

To correct this chromatic effect, we need to introduce sextupolar fields in the lattice, specifically in the dispersive regions. In such regions, off-energy particles should have a deviation from the design closed orbit. Their position reads $x(s) = x_{\beta}(s) + \eta(s)\delta$, where $x_{\beta}(s)$ consists on the betatron oscillations. Since sextupolar fields are of the form

$$B_x = B_2 xy$$
, $B_y = \frac{B_2}{2}(x^2 - y^2)$,

then, the off-momentum particles "see" the fields

$$B_x = B_2(x_\beta y + \eta \delta y), \quad B_y = \frac{B_2}{2}(x_\beta^2 - y^2) + B_2 x_\beta \eta \delta + \frac{B_2}{2}(\eta \delta)^2,$$

So, to lowest, order they feel a dipolar perturbation and the gradient error

$$\Delta K_{x,y}(\delta) = \pm S\eta \delta.$$

Considering both the energy deviation-induced gradient errors and the sextupole gradient effect, we have a total error $\Delta K = (K - S\eta)\delta$ in eq. (2.21). The chromaticity in a lattice with sextupoles thus reads

$$\xi_{x,y} = \mp \frac{1}{4\pi} \oint \beta_{x,y} (K_{x,y} - S\eta) ds,$$

which depends linearly on sextupole strengths, allowing for the correction of chromaticity to specified values. The cost of correcting chromaticity is the insertion of perturbations and nonlinearities in the dynamics.

2.6 Nonlinear Dynamics and Perturbations

Action-Angle Variables

Betatron motion of equation (2.11) can be obtained as Hamilton's equations for the effective, linear Hamiltonian

$$\mathcal{H} = \frac{1}{2}u^{2} + \frac{1}{2}K_{u}(s)u^{2}.$$
(2.28)

A transformation $(u, u') \to (\psi, J)$ to Action-angle variables is implicitly implemented by the type-1 generating function

$$F_1(u, \phi_u) = \int u' \, du = \frac{u^2}{2\beta_u} \left(\tan \phi_u - \frac{\beta_u'}{2} \right).$$
 (2.29)

The action variable reads

$$J_{u} = -\frac{\partial F_{1}}{\partial \phi_{u}} = \frac{u}{2\beta_{u}} \sec^{2} \phi_{u} = \frac{1}{2\beta_{u}} [u^{2} + (\beta_{u}u' + \alpha_{u}u^{2})], \qquad (2.30)$$

from which we recover the pseudo-harmonic form $u = \sqrt{2\beta_u J_u} \cos(\phi_u(s) + \phi_0)$.

In the J, ϕ variables, the new hamiltonian is $H_0(\phi, J)$, given by

$$H_0 = \mathcal{H} + \frac{\partial F_1}{\partial s} = \frac{J}{\beta}.$$
 (2.31)

Performing the change to action-angle variable in both the horizontal and vertical planes we find the new Hamiltonian for 4D dynamics

$$H_0 = \frac{J_x}{\beta_x} + \frac{J_y}{\beta_y},\tag{2.32}$$

and Hamilton's equations read

$$\phi'_u = \frac{1}{\beta_u(s)}, \qquad J'_u = 0.$$
 (2.33)

Perturbations and tune-shifts

Linear motion is integrable, since it can be written in terms of the action variable only (angle-independent Hamiltonian). This leads to the action variable being a constant of motion, and the phase advance behaving just as the pseudo-harmonic motion anticipated.

Linear motion, though, is only a useful first approximation. In reality, in an storage ring, there are higher order multipole magnets, such as sextupole magnets, and also multipole, alignement and excitation errors, all acting as perturbations to linear motion. Generically referring to perturbations as $V(J,\phi)$, we can write the perturbed motion Hamiltonian

$$H(J,\phi) = H_0 + V(J,\phi).$$
 (2.34)

Hamilton's equations read

$$\phi_u' = \frac{1}{\beta_u(s)} + \frac{\partial V(J, \phi)}{\partial J_u}, \quad J_u' = \frac{\partial V(J, \phi)}{\partial \phi_u}.$$
 (2.35)

Since the tunes consist on the phase advance per revolution, we immediately see that the presence of perturbations leads to tune-shifts. Generically thus, the tunes can be expressed in terms of the tune-shifts as

$$\nu_0 = \nu_{u0} + \xi_u(\delta)\delta + \alpha_{uu}J_u + \alpha_{uv}J_v$$

where ξ_u represents the energy-dependent tune-shifts (higher order generalization of linear chromaticity), and the other components consist on the amplitude-dependent tune-shifts, up to first order in the actions.

Ressonances

4D linear unperturbed motion consists on the motion of two uncoupled parametric oscillators. The phase-space is diffeomorphic to the 2-Torus, \mathbb{T}^2 , and there are an infinite number of such tori, corresponding to the different choices of initial conditions J_u .

Canonical perturbation theory applied to perturbed motion fails to converge whenever the ratio of tunes is sufficiently rational. The Poincare-Birkhoff theorem states that under such conditions, almost all the periodic phase-space orbits disappear. An even number of tori survives, half of which are stable and half unstable. Unstable motion in a storage ring can eventually lead to beam loss.

The condition for sufficiently rational tunes can be expressed as

$$m\nu_x + n\nu_y = \ell,$$

for $n, m, \ell \in \mathbb{Z}$. This condition defines lines in tune-space corresponding to the locus in which perturbation theory fails and motion can become unstable. These are resonance lines and |n| + |m| is the order of the resonance. Figure 2.6 shows resonance lines for the resonances up to second, third and fourth order respectively. First order resonances can be excited by dipolar fields, 2nd order resonances can be excited by quadrupole fields and 3rd order resonances can be driven by sextupolar fields.

Figure 2.6: Resonance lines in tune space up to 2nd, 3rd and 4th order, respectively.

Dynamic Aperture

Nonlinear dynamics can become sensitive to initial conditions when the amplitudes are large. Because of the tune-shfits, specially the amplitude-dependent tune shifts, the tunes can wander in tune space, eventually crossing resonance conditions that may lead to instabilities, chatotic motion and beam loss. The dynamics can impose limitations to the maximum transverse deviations in which the beam can oscillate while displaying regular and bounded motion. This is a dynamic restriction to the motion known as the dynamic aperture.

Exceeding the dynamic aperture eventually leads to beam loss. During injection of the beam, if the transverse offsets are larger than the dynamic aperture, the beam is not captured into the storage ring. This is specially important for off-axis injection, such as in the case for SIRIUS.

CHAPTER 3

Online Optimization

This chapter defines, introduces and justifies online optimization in the context of accelerators. A bief overview of optimization algorithms and their classifications is presented. The Robust Conjugate Direction Search (RCDS) algorithm is introduced as well as the other rountines from which it was derived from.

This chapter adds no novelty to the literature in optimization. It is just an overview for merely pedagogic purposes. It is mostly based on the disscussion presented by the classic Numerical Recipes, as well as Refs.

3.1 Defining Online Optimization

Suppose we have a machine (we do) in which there is some sort of figure of merit depending on the collective state of some set of relevent components, parts or operation modes—our parameters. There is no mechanistic/deterministic or probabilistic model for the dependence of the figure of merit on the reparameters state, but we do know the parameters affect the figure of merit. We may call these relevant parameters as knobs, since we can use them to tune the figure of merit.,

Now suppose we want to tune the knobs so the figure of merit reches a certain value, or so that it is minimized or maximized. This is an optimization problem, and we might as well call the figure of merit our objective function. Since the whole system is a black-box, to measure different values for the objective function, i.e., to sample it, we need to change the knobs and measure it again. The tuning procedure is thus based on trial-and-error.

If we are able to devise a computer-automated strategy to seek for the desired value or extremum of the objective function, then running this program while the machine is up and working is what we define as online optimization. The program must measure the objective function and read the current state of the knobs, calculate/decide and apply the changes on the knobs, measure the objective again and evaluate and judge the quality of the changes carried out. The process is iterated until the desired outcome is reached.

This black-box, heuristic optimization problem describes the Dynamic Aperture of otpimization problem very well. The DA is a figure of merit related to the nonlinear

dynamics—in SIRIUS' case, the sextupole magnets. There is no analytical/statistical¹ model prediciting DA changes given sextupole nudges so we cannot invert the problem and tune sextupoles to A desired DA value. The tuning procedure must be based on trial-and-error.

3.2 Justifying Online Optimization

Running online optimization in a machine will find the nearest extremum (minimium/maximum). In other words, if no stochacity element is brought into the routine to diversify the search along the parameter space, it will find local, not global extrema. How can we be sure the local minima are the best solution for the optimization problem?

It seems that we will never know, but it actually does not matter. A good-performing solution is all we care about as long as other operation parameters are not affected (more details on the next chapter). But there are reasons to believe the local minima found are actually the global ones and it has to do with how accelerators are designed and the origins of deterioration of the dynamic aperture in the machine.

Because there are correction schemes for the linear dynamics in accelerators, the Dynamic Aperture, i.e. limitations to the allowed oscillation amplitudes, arises because of perturbations acting in a nonlinear dynamics. Other than that, the only limitation would be the physical aperture². The strength and symmetry of the whole magnets lattice is decided based on simulating several possibile machine lattice configurations and evaluating parameters such as the dynamic aperture and the beam-lifetime. The best performing and viable solution (lattice) is implemented in the real machine.

In the real machine, additional errors arising from magnets misalignment or any fields deviations can (and will) introduce additional perturbations and can deteriorate the DA. The simulating procedure actually does take into consideration the existence of errors: they are introduced in the model during evaluation of the figure of merit parameters and the best performing lattice on average is chosen.

In the machine, a particular error configuration is physically realized, and we are thus dealing with one possible lattice realization, for which the optimum configuration is not that with the largest average DA or lifetime. But we expect it to be not too far from that reference configuration chosen and applied to the machine. Online optimization thus consists on adjusting the sextupole lattice to the physically realized machine lattice so that it reaches its best-performing configuration.

¹in principle, a surrogate model could be trained to reproduce dynamic aperture given the sextupole strengths as inputs. This is not what we have done so far

²Unperturbed nonlinear motion can display no limitations to oscillation amplitudes

3.3 Robust Conjugate Direction Search

In the literature, optimization routines and algorithms are usually classified according to whether they rely on the calculation of derivatives (gradient-based) or solely on the comparison of the objective function values (gradient-free). The latter can yet be classified into direct- or indirect-search methods, depending on whether the search of the extremum relies on direct comparisons of the objective function itself or from a mathematical model of it, respectively [?].

Both gradient-based and gradient-free strategies rely on the comparison of the objective function at different points of the parameter space. If the objective function suffers from noise this can significantly reduce the efficiency of the optimization routine [?,?]. In Chap. 7 of Ref. [?], a review of the most popular optimization algorithms shows how most of them suffer to find minima to, at least, the precision of the noise- σ the objective function is subjected to.

The Robust Conjugate Direction Search (RCDS) algorithm is a indirect-search, gradient-free optimization algorithm introduced in Ref. [?]. The algorithm consists of a main loop for constructing and managing optimal search directions along the knobs space (Powell's Method) and a one-dimensional optimizer responsible for a noise-aware search for the minimum along a given direction. The algorithm is capable of optimizing the objective function (find its local maximum/minimum) to at least the precision of the objective-function noise [?,?], being thus adequate for online optimization problems. Specifically, for accelerator controls and optimization, the algorithm has been successfully applied to optimize beam steering and optics matching during injection [?], reducing horizontal emittance [?,?] and optimization of dynamic aperture [?,?,?,?,?].

3.3.1 Line methods

Let $f(x) \in \mathbb{R}$ be the objective function depending on the single parameter $x \in \mathbb{R}$. The task of optimizing (minimizing or maximizing) f can be achieved by a direct search onver the possibile values of x. Since maximizing a function equals to minimizing the same function multipled by -1, in what follows, we shall refer to minimization only.

The search for the minimum is usually preceded by initially bracketing the minimum: finding a triplet of points a < b < c in the domain such that f(b) is smaller than both f(a) and f(c). If f is reasonably smooth, we are certain there will be a minimium in the interval (a, c). Standard bracket routines for well-behaved, noiseless objective functions can be found in the literature.

Given an intial bracketed interval, the most common line-search methods are

• Golden Section Search: which updates the brackets progressively shrinking it until spans only a small interval specified by the user. Usually the machine precision is

used. The miminum is then found to within this tolerance.

• Parabolic Interpolation: where a parabola is fitted to f(a), f(b), f(c). The parabola minimum takes us to the minimum or close to a it in a single leap.

For dealing with noisy objective functions, RCDS introduces a noise-aware bracketing routine and a parabolic interpolation scan over the bracket. We assume that what we measure is $y(x) = f(x) + \xi$, where $\xi \sim \mathcal{N}(\mu = 0, \sigma)$ is a random variable modeling the experimental noise. Instead of seeking for points a < b < c satisfying f(b) < f(a), f(b) < f(c), RCDS requires a more strict condition $f(b) < f(a) + 3\sigma, f(b) < f(c) + 3\sigma$, where σ is the expected noise $\sigma = \text{Var}[\xi]$.

During the line-search, the parabola is fitted within the brackets and its minimum is taken as the objective function minimum. There is also an additional comparison of the available points within the brackets used for the fitting. If any of them is considered an outlier, it is not used during the fitting.

3.3.2 Powell's conjugate direction set

With a line-optimizer at hand, optimization of the objective function $f(\mathbf{x}) \in \mathbb{R}$ depending on p parameters x_i (knobs) arranged as $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_p \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^p$ is a simple matter of iterating the one-dimensional minimization along the direction of each one of the p unit vectors $\hat{\mathbf{e}}_i$. That is, given an intial configuration \mathbf{x}_0 , and directions $\hat{\mathbf{n}}$, we have the one-dimensional problem to minimize $g(\delta) = f(\mathbf{x}_0 + \delta \hat{\mathbf{n}})$. The minimum is then $f(\mathbf{x}_0 + \delta_* \hat{\mathbf{n}})$, where $\delta_* = \arg\min_{\delta} g(\delta)$

As can be seen in figure, scanning along each orthogonal direction can be time consuming specially for some functions with long narrow valleys at some angle with the coordinates basis vectors. This strategy thus is suboptimial when evaluation of the objective function is expensive.

The reason why using basis vectors can be so inneficient is because optimizing along some basis vector spoils down minimization carried out in the any other of them one. So repetetion of the procedure is required. A more efficient strategy consists on constructing a set of special non-interfering direction vectors so that minimization carried at any given direction does not spoil the minimiation performed in any other of them. We quickly present the necessary condition these non-interfering directions must satisty.

Going back to the one-dimensional problem of minimizing along a direction \mathbf{u} , $\delta_* = \arg\min g(\delta) = f(\mathbf{x}_0 + \delta \hat{\mathbf{u}})$, we know that, at the minimum, we must have vanishing derivative: $g'(\delta_*) = \nabla f(\mathbf{x}_0 + \delta_* \hat{\mathbf{u}}) \cdot \hat{\mathbf{u}} = 0$. Therefore, the gradient is perpendicular to $\hat{\mathbf{u}}$ at δ_* .

Consider now the quadratic-form approximation for the objective function

around point \mathbf{x}_0 , taken as the origin.

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot \mathbf{x} + \frac{1}{2} \mathbf{x} \cdot \mathbf{H}(\mathbf{x}_0) \cdot \mathbf{x}, \tag{3.1}$$

where, as usual, $(\nabla f(\mathbf{x}_0))_i = \partial f(\mathbf{x}_0)/\partial x_i$ is the gradient, and $(\mathbf{H})_{ij} = \partial^2 f(\mathbf{x}_0)/\partial x_i \partial x_j$ is the Hessian matrix. Up to such approximation, differentiation of the previous expression reaveals the gradient can be approximated by

$$\nabla f(\mathbf{x}) = \nabla f(\mathbf{p}) + \mathbf{H} \cdot \mathbf{x} \tag{3.2}$$

and thus is changed by

$$\delta(\mathbf{\nabla}f) = \mathbf{H} \cdot \delta \mathbf{x}$$

upon a step $\delta \mathbf{x}$. Suppose we have optimzed along direction \mathbf{u} , so $\nabla f(\mathbf{u}) = \nabla f(\mathbf{x}_0) + \mathbf{H} \cdot \mathbf{u}$. Now, optimizing along \mathbf{v} will be non-interfering if the gradient stays orthogonal to \mathbf{v} , that its

$$\mathbf{v} \cdot \mathbf{H} \cdot \mathbf{u} = 0. \tag{3.3}$$

Let $\hat{\mathbf{u}}_i$ denote our directions set. Powell proved conjugate directions can be constructed as follows

- 1. Set the initial directions as the basis vectors: $\hat{\mathbf{u}}_i = \hat{\mathbf{e}}_i, i = 1, \dots, p$.
- 2. Save the starting point (initial parameters state) as \mathbf{x}_0 ;
- 3. For i = 1, ..., p minimize along $\hat{\mathbf{u}}_i$. Save the minimimum as \mathbf{x}_i .
- 4. For $i = 1, \dots p-1$ set $\mathbf{\hat{u}}_i \leftarrow \mathbf{\hat{u}}_{i+1}$
- 5. Set $\mathbf{u}_p = \mathbf{x}_p \mathbf{x}_0$. Normalize to obtain $\hat{\mathbf{u}}_p$.
- 6. Minimize along $\hat{\mathbf{u}}_p$. Name the found minimum as the new \mathbf{x}_0 and repeat the procedure until reaching a certain number of evaluations or until some stopping condition is reached.

Powell proved that repeating this procedure k times for a quadratic form produces a set of directions whose last k vectors are mutually, pairwise conjugate, in the sense of the Hessian matrix and that p iterations of the algorithm exactly minimizes the quadratic form.

There is a problem in throwing away for $\hat{\mathbf{u}}_1$ for $\mathbf{x}_p - \mathbf{x}_0$ every iteration : at some point the lines start to fold up on each other and lose linear independence. As a result the function can end up minimized only within a subspace of parameter space.

At each step, you can reinitialize directions to the basis vectors, or use any new set of orthogonal directions. The somewhat counterintuitive solution suggested by Powell

is to discard not necessarily $\hat{\mathbf{u}}_1$, but the direction along which f had its largest decrease. This is justified because this direction is likely have a largest component along the new proposed conjugate direction. When doing this, the resulting set of directions is no longer conjugate, but still adequate for functions with long and narrow valleys.

Investigate the following: for a simple quadratic form, does the conjugate directions match principal axis from PCA?

Chapter 4

Online Optimization of storage ring Dynamic Aperture

4.0.1 Injection scheme for acumulation at SIRIUS storage ring

Beam acummulation into the storage ring occurs in the off-axis scheme. The beam is delivered at $x \approx -8$ mm, and receives the kick from the nonlinear kicker field. The field profile is nonlinear, with zero field and gradient at the center of the axis, so that it does not disturb the stored beam. In the off-axis scheme, a sufficiently large dynamic aperture is desired to allow the beam to be captured into the storage ring. The predicted efficiency for SIRIUS setup, considering a dynamic aperture reaching x = -9 mm, was nearly 100%. What was observed during 2022 was an injection efficiency of about $88 \pm 8\%$. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis,

molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi.

Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

4.0.2 New working points

4.1 Online Optimization

This sction describes the experimental methods and analysis employed for optimizing the nonlinear dynamics and evaluating the quality of the configurations found.

4.1.1 Dynamic Aperture Optimization

Knobs

The dynamic aperture is determined by the quality of the dynamics in terms of perturbations and nonlinearities. Considering corrected quadrupoles and dipoles (linear optics), the main factors influencing SIRIUS DA are the nonlinearities introduced by the sextupoles and possibly their field's small errors and deviations from the design parameters. The goal, thus, is to search for the sextupole configurations rendering the largest DA.

The sextupoles are the parmeters which can be tuned, the knobs. SIRIUS

has 21 sextupole families: magnets powered by the same power supply. 6 of them are achromatic sextupoles. They are placed where the dispersion is zero. The 15 other families are chromatic families. Table 4.1 shows the 21 sextupole families names. In

Table 4.1: SIRIUS sextupole families

SFA0, SDA0, SFB0, SDB0,
SDP0, SFP0
SDA1, SFA1,
SDA2, SFA2,
SDA3,
SDB1, SFB1
SDB2, SFB2,
SDB3,
SFP1, SDP1,
SDP2, SFP2
SDP3

principle, thus, the optimization parameter space is 21-dimensional. In reality, we would like to change sextupoles without changing chromaticity. Since we need at least one degree of freedom for correcting chromaticity in the horizontal plane and one degree of freedom for correcting the chromaticity in vertical plane, there are 19 available knobs. The dimensionality of the search space can be further reduced by imposing additional constraints to certain families variations. The specific choices of knobs for optimization experiments are discussed in more details in the Results section.

Objective function

There is no analytical formula for relating the storage ring linear or nonlinear optics to the Dynamic Aperture. The optimization procedure must be a direct search procedure: changes are performed in the knobs and the effect over dynamic aperture is evaluated.

Also, we cannot measure dynamic aperture directly. We must choose an objective function to act as a probe to the DA: a figure of merit related to the dynamic aperture to represent it.

Two objectives usually adopted as probes are the injection efficiency and the beam's resilience to dipolar perturbations. The former is quite self-explanatory: the larger the dynamic aperture, the larger space for the beam to be captured during injection, and thus the larger the injection efficiency. The latter is related to the DA by the following: the larger the horizontal dipolar kicks the beam can survive, the larger the orbit distortions towards the positive or negative horizontal plane (depending on the kick direction). So the larger the amplitudes the beam explores as it oscillates, probing the DA borders. If

the beam survives to large kicks, it means the ring can accommodate larger orbit distortions because of an increased dynamic aperture.

In summary, the dynamic aperture optimization procedure must consist on the exploration of sextupole (knobs) configurations yielding the largest dynamic aperture as accessed by as objective function such as injection efficiency or beam kick-resiliency.

Noise-Robust Online Optimization

4.1.2 Characterization of Sextupole Magnets Configurations

Once a configuration of sextupoles (position in parameter space) is found, the nonlinear optics it provides the machine needs to be characterized. The characterizations consisted on evaluatig/measuring the followint figures of merit and desired features

- Injection efficiency in nominal off-axis conditions: this is the most desired characteristic. The sextupoles are to be optimized so the DA and the off-axis injection efficiency increase.
- Beam Kick resilience: a small current of 2 mA, concentrated in a single bucket is stored in the ring. The beam is kicked by the horizontal dipole kicker, which instantly provides a dipolar perturbation leading the beam to be displaced in the horizontal direction. The current before and after the kick is recorded by a current monitor (DCCT) and allows for the calculation of the fraction of the beam lost as a consequence of the kick and the transverse displacement. The procedure is repeated with progressively stronger kicks, and a curve of beam loss as a function of the kick can be constructed. The smaller the losses for larger kicks, the larger the resilience.
- Phase portrait area: it is expected that the optimization procedure increases the dynamic aperture of the machine, meaning it can accommodate larger oscillations and larger phase portraits x x'. Using beam position monitors (BPMs) at the two ends of a straight section, which record the positions of the beam centroid at each turn, we can calculate the position and angle of the beam in the middle of the straight section, and thus recostruct the phase-portrait from turn-by-turn (TbT) data.
- Beam lifetime: the lifetime at SIRIUS is dominated by losses due to electronelectron interactions leading to momentum transfers exceeding the energy/momentum acceptance (MA). Optimization of DA does not necessarily leads to improvements in the MA. If the MA is reduced, the rate at which the beam is lost can increase, reducing the total lifetime. It is desirable that the configurations found during DA otpimization do not worsen the MA and beam lifetime considerably.
- Chromaticity: Sextupoles are introduced in the storage ring for correction of focusing chromatic aberretions. When changing the sextupole settings, it is desired to do so

in such a manner that the chromaticity is unchanged. The methods for choosing the optimization knobs already take into account the need for keeping constant chromaticity. Still, after optimization is performed, we need to check whether chromaticity is unchanged.

The first two characterizations are quite similar to the two most immediate objective function candidates mentioned above. Indeed, in most nonlinear dynamics optimization experiments, optimization using injection efficiency or kick resilience as objectives seemed to be completely interchangable. Improvements in injection efficiency necessarily led to improvements in kick resilience, and vice-versa. As shown in more details in the results section, for the SIRIUS storage ring this appears not to be the case. The configurations can be specialized to improvements solely on injection efficiency or solely to kick resilience. This feature was observed during the characterization of the optimized sextupole settings with respect to these two figures of merit. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu,

libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Chapter 5

Experiments and Results

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio

placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam

elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Chapter 6

Revenge of the Sith

6.1 War!

The Republic is crumbling under attacks by the ruthless Sith Lord, Count Dooku. There are heroes on both sides. Evil is everywhere. In a stunning move, the fiendish droid leader, General Grievous, has swept into the Republic capital and kidnapped Chancellor Palpatine, leader of the Galactic Senate. As the Separatist Droid Army attempts to flee the besieged capital with their valuable hostage, two Jedi Knights lead a desperate mission to rescue the captive Chancellor [1–5].

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend

consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante

tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Bibliography

- [1] Kenobi, O.-W. The tao of the force. Journal of Philosophy 102, 167–180 (2005).
- [2] Skywalker, A. The tragedy of darth plague the wise. *Journal of Sith Studies* **12**, 45–57 (2005).
- [3] Amidala, P. Gender and politics in the galactic republic. *Journal of Political Science* 14, 77–94 (2005).
- [4] Yoda. The power of mindfulness: A jedi approach to meditation. *Journal of Mindfulness* 8, 123–136 (2005).
- [5] Vader, D. The dark side of leadership. Journal of Management 28, 213–229 (2005).
- [6] Snoke, S. L. The rise of the first order. Journal of Sith Studies 1, 13–27 (2015).
- [7] Îmwe, C. The force and the blind. Journal of Jedi Studies 10, 73–88 (2017).
- [8] Rey. The journey of a jedi. Journal of Jedi Studies 10, 1–15 (2017).
- [9] Rey. The power of belief: Jedi mindset for personal growth. *Journal of Personal Development* 43, 23–36 (2019).
- [10] Ren, K. The ethics of force use: A dark side perspective. *Journal of Ethics* **26**, 321–336 (2019).
- [11] Organa, L. Feminism and leadership in the resistance. *Journal of Women in Leadership* 7, 56–71 (2019).
- [12] Calrissian, L. The business of smuggling: Lessons from the millennium falcon. *Journal of Entrepreneurship* 14, 178–195 (2019).
- [13] Skywalker, L. Teaching the force: Pedagogy of the jedi order. *Journal of Education* **34**, 87–102 (2019).

APPENDIX A

The Force Awakens

A.1 Luke Skywalker has vanished

In his absence, the sinister FIRST ORDER has risen from the ashes of the Empire and will not rest until Skywalker, the last Jedi, has been destroyed. With the support of the REPUBLIC, General Leia Organa leads a brave RESISTANCE. She is desperate to find her brother Luke and gain his help in restoring peace and justice to the galaxy. Leia has sent her most daring pilot on a secret mission to Jakku, where an old ally has discovered a clue to Luke's whereabouts [6].

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend

A. The Force Awakens 53

consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante

A. The Force Awakens 54

tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Appendix B

The Last Jedi

B.1 The FIRST ORDER reigns

Having decimated the peaceful Republic, Supreme Leader Snoke now deploys his merciless legions to seize military control of the galaxy. Only General Leia Organa's band of RESISTANCE fighters stand against the rising tyranny, certain that Jedi Master Luke Skywalker will return and restore a spark of hope to the fight. But the Resistance has been exposed. As the First Order speeds toward the rebel base, the brave heroes mount a desperate escape [7,8].

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend

B. The Last Jedi 56

consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante

B. The Last Jedi 57

tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Appendix C

The Rise of Skywalker

C.1 The dead speak!

The galaxy has heard a mysterious broadcast, a threat of REVENGE in the sinister voice of the late EMPEROR PALPATINE. GENERAL LEIA ORGANA dispatches secret agents to gather intelligence, while REY, the last hope of the Jedi, trains for battle against the diabolical FIRST ORDER. Meanwhile, Supreme Leader KYLO REN rages in search of the phantom Emperor, determined to destroy any threat to his power [9–13].

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna.

Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing

quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accumsan

laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus. Pellentesque vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero vel turpis. Donec rutrum mauris et libero. Proin euismod porta felis. Nam lobortis, metus quis elementum commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Aenean nonummy magna non leo. Sed felis erat, ullamcorper in, dictum non, ultricies ut, lectus. Proin vel arcu a odio lobortis euismod. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est. Aliquam odio. Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus faucibus, augue.

Nulla mattis luctus nulla. Duis commodo velit at leo. Aliquam vulputate magna et leo. Nam vestibulum ullamcorper leo. Vestibulum condimentum rutrum mauris. Donec id mauris. Morbi molestie justo et pede. Vivamus eget turpis sed nisl cursus tempor. Curabitur mollis sapien condimentum nunc. In wisi nisl, malesuada at, dignissim sit amet, lobortis in, odio. Aenean consequat arcu a ante. Pellentesque porta elit sit amet orci. Etiam at turpis nec elit ultricies imperdiet. Nulla facilisi. In hac habitasse platea dictumst. Suspendisse viverra aliquam risus. Nullam pede justo, molestie nonummy, scelerisque eu, facilisis vel, arcu.

Curabitur tellus magna, porttitor a, commodo a, commodo in, tortor. Donec interdum. Praesent scelerisque. Maecenas posuere sodales odio. Vivamus metus lacus, varius quis, imperdiet quis, rhoncus a, turpis. Etiam ligula arcu, elementum a, venenatis quis, sollicitudin sed, metus. Donec nunc pede, tincidunt in, venenatis vitae, faucibus vel, nibh. Pellentesque wisi. Nullam malesuada. Morbi ut tellus ut pede tincidunt porta. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam congue neque id dolor.

Donec et nisl at wisi luctus bibendum. Nam interdum tellus ac libero. Sed sem justo, laoreet vitae, fringilla at, adipiscing ut, nibh. Maecenas non sem quis tortor eleifend fermentum. Etiam id tortor ac mauris porta vulputate. Integer porta neque vitae massa. Maecenas tempus libero a libero posuere dictum. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aenean quis mauris sed elit commodo placerat. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Vivamus rhoncus tincidunt libero. Etiam elementum pretium justo. Vivamus est. Morbi a tellus eget pede tristique commodo. Nulla nisl. Vestibulum sed nisl eu sapien cursus rutrum.

Nulla non mauris vitae wisi posuere convallis. Sed eu nulla nec eros scelerisque pharetra. Nullam varius. Etiam dignissim elementum metus. Vestibulum faucibus, metus

sit amet mattis rhoncus, sapien dui laoreet odio, nec ultricies nibh augue a enim. Fusce in ligula. Quisque at magna et nulla commodo consequat. Proin accumsan imperdiet sem. Nunc porta. Donec feugiat mi at justo. Phasellus facilisis ipsum quis ante. In ac elit eget ipsum pharetra faucibus. Maecenas viverra nulla in massa.

Nulla ac nisl. Nullam urna nulla, ullamcorper in, interdum sit amet, gravida ut, risus. Aenean ac enim. In luctus. Phasellus eu quam vitae turpis viverra pellentesque. Duis feugiat felis ut enim. Phasellus pharetra, sem id porttitor sodales, magna nunc aliquet nibh, nec blandit nisl mauris at pede. Suspendisse risus risus, lobortis eget, semper at, imperdiet sit amet, quam. Quisque scelerisque dapibus nibh. Nam enim. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nunc ut metus. Ut metus justo, auctor at, ultrices eu, sagittis ut, purus. Aliquam aliquam.