6000	State space = 261
	Transition by selecting any 2 positions out of 26 and swapping
	the letter at those positions
	No. of ways = $26C_2 = \frac{26 \times 25}{2}$
	: Probability of transitioning from per mutation of to specific
	permutation h by a single unique swap is:
	$P(q,h) = \frac{1}{26c_2} = \frac{1}{325}$
	If h cannot be obtained from g by a single swap, then
	P(g,h) = 0
	Jotal no. of permutation = state space = 26!
	: Station arry distribution T(g) for any permutation g is
	$\pi(g) = \frac{1}{26!}$
	Chain represents a random walk on symmetric group 526
	Randon walks on Sinite groups have uniform stationary
	dutibutions.
(<i>b</i>)	To mow reveled bility, we need to prove:
	$\pi_{\mathfrak{g}}(g) \ q(g,h) = \mathfrak{g}(h) \ q(h,g) \ \forall \ g \neq h$
	\Rightarrow $as(g) P(g,h) = se(h) P(h,g) + g \neq h$ [z in normaliza" centant] Z $A(g,h)$ Z $A(h,g)$
	transition probability q(g,h) consists of:
	Ly P of proposing h from g: P(g,h) = 1/2 is one transposition
	La P of accepting proposal: A(g,h) = 12
	P(g,h) = P(n,g), so equ reducer to
	=> Sa(g) A(g,h) = sa(h) A(h,g)
	Page No.

A
$$(g,h) := min(1, \frac{s(h)}{s(g)})$$
 $\Rightarrow s(g) min(1, \frac{s(h)}{s(g)}) = s(h) min(1, \frac{s(g)}{s(h)})$
 $\Rightarrow min(s(g), s(h)) = min(s(h), s(g))$

LHS = RHS, hence proved

The standard distribution is proportional to the scares

 $\pi(g) = s(g)$
 $\sum s(h)$