

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID:SSSPTA1653HXP

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * * * * Welcome to STN International * * * * * * * * * * *

| | | | |
|------|----|--------|---|
| NEWS | 1 | | Web Page for STN Seminar Schedule - N. America |
| NEWS | 2 | NOV 21 | CAS patent coverage to include exemplified prophetic substances identified in English-, French-, German-, and Japanese-language basic patents from 2004-present |
| NEWS | 3 | NOV 26 | MARPAT enhanced with FSORT command |
| NEWS | 4 | NOV 26 | CHEMSAFE now available on STN Easy |
| NEWS | 5 | NOV 26 | Two new SET commands increase convenience of STN searching |
| NEWS | 6 | DEC 01 | ChemPort single article sales feature unavailable |
| NEWS | 7 | DEC 12 | GBFULL now offers single source for full-text coverage of complete UK patent families |
| NEWS | 8 | DEC 17 | Fifty-one pharmaceutical ingredients added to PS |
| NEWS | 9 | JAN 06 | The retention policy for unread STNmail messages will change in 2009 for STN-Columbus and STN-Tokyo |
| NEWS | 10 | JAN 07 | WPIDS, WPINDEX, and WPIX enhanced Japanese Patent Classification Data |

NEWS EXPRESS JUNE 27 08 CURRENT WINDOWS VERSION IS V8.3,
AND CURRENT DISCOVER FILE IS DATED 23 JUNE 2008.

NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS LOGIN Welcome Banner and News Items
NEWS IPC8 For general information regarding STN implementation of IPC 8

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 07:25:38 ON 21 JAN 2009

=> file medline, biosis

COST IN U.S. DOLLARS

| SINCE FILE
ENTRY | TOTAL
SESSION |
|---------------------|------------------|
| 0-23 | 0-23 |

FULL ESTIMATED COST

FILE 'MEDLINE' ENTERED AT 07:26:27 ON 21 JAN 2009

FILE 'BIOSIS' ENTERED AT 07:26:27 ON 21 JAN 2009

Copyright (c) 2009 The Thomson Corporation

=> s graft rejection
L1 58350 GRAFT REJECTION

=> s11 and prevent
SL1 IS NOT A RECOGNIZED COMMAND

The previous command name entered was not recognized by the system.
For a list of commands available to you in the current file, enter
"HELP COMMANDS" at an arrow prompt (=>).

=> s l1 and prevent
L2 2462 L1 AND PREVENT

=> s l2 and (method of preventing rejection)
L3 0 L2 AND (METHOD OF PREVENTING REJECTION)

=> s l2 and (prevent rejection)
L4 257 L2 AND (PREVENT REJECTION)

=> s l4 and (copolymers-1)
L5 0 L4 AND (COPOLYMER-1)

=> s l4 and (heteropolymer)
L6 0 L4 AND (HETEROPOLYMER)

=> s l4 and (arginine or lysine)
L7 2 L4 AND (ARGININE OR LYSINE)

=> d 17 ti abs ibib tot

L7 ANSWER 1 OF 2 MEDLINE on STN
TI Pancreatic islet transplantation using the nonhuman primate (rhesus) model predicts that the portal vein is superior to the celiac artery as the islet infusion site.
AB We've established a nonhuman primate islet allotransplant model to address questions such as whether transplanting islets into the gut's arterial system would more safely and as effectively support long-term islet allograft survival compared with the traditional portal vein approach. We reasoned that islets make up <2% of pancreatic cell mass but consume an estimated 20% of arterial blood flow, suggesting an advantage for the arterial site. Access to the arterial system is also easier and safer than the portal system. Pancreatectomized rhesus macaques were transplanted with allogeneic islets infused into either the portal vein (n = 6) or the celiac artery (n = 4). To prevent rejection, primates were given daclizumab, tacrolimus, and rapamycin. In five of six portal vein experiments, animals achieved normoglycemia without exogenous insulin. In contrast, none of the animals given intra-arterial islets showed even transient insulin independence ($P = 0.048$). Two of the latter animals received a second islet transplant, this time to the portal system, and both achieved insulin independence. Thus, intraportal islet transplantation under conventional immunosuppression is feasible in primates and can result in long-term insulin independence when adequate immunosuppression is maintained. Arterial islet injection, however, does not appear to be a viable islet transplantation technique.

ACCESSION NUMBER: 2002347868 MEDLINE

DOCUMENT NUMBER: PubMed ID: 12086943

TITLE: Pancreatic islet transplantation using the nonhuman primate (rhesus) model predicts that the portal vein is superior to the celiac artery as the islet infusion site.

AUTHOR: Hirshberg Boaz; Montgomery Sean; Wysoki Michael G; Xu He;

CORPORATE SOURCE: Tadaki Doug; Lee Janet; Hines Kenneth; Gaglia Jason;
Patterson Noelle; Leconte John; Hale Douglas; Chang
Richard; Kirk Alan D; Harlan David M
National Institute of Diabetes and Digestive and Kidney
Diseases/Navy Transplantation & Autoimmunity Branch, NIH,
Building 10 Rm. 11S219, 10 Center Drive, Bethesda, MD
10889, USA.. boazh@intra.niddk.nih.gov
SOURCE: Diabetes, (2002 Jul) Vol. 51, No. 7, pp. 2135-40.
Journal code: 0372763. ISSN: 0012-1797.
PUB. COUNTRY: United States
DOCUMENT TYPE: (COMPARATIVE STUDY)
Journal; Article; (JOURNAL ARTICLE)
(RESEARCH SUPPORT, U.S. GOV'T, P.H.S.)
LANGUAGE: English
FILE SEGMENT: Abridged Index Medicus Journals; Priority Journals
ENTRY MONTH: 200207
ENTRY DATE: Entered STN: 2 Jul 2002
Last Updated on STN: 27 Jul 2002
Entered Medline: 26 Jul 2002

L7 ANSWER 2 OF 2 MEDLINE on STN
TI Nutritional immunomodulation enhances cardiac allograft survival in rats
treated with donor-specific transfusion and cyclosporine.
AB The aim of this study was to assess the efficacy of an enteral diet
fortified with arginine, RNA, and fish oil (Impact), alone and
in combination with cyclosporine (CsA) and donor-specific transfusion
(DST) on allograft survival in the ACI:Lewis rat cardiac transplant model.
Animals were fed ad libitum with either standard rat chow or Impact diet.
Six groups were studied; these consisted of untreated recipients fed
either standard diet or Impact diet; recipients treated with CsA 10 mg/kg
on the day prior to engraftment (day-1) followed by 2.5 mg/kg/d, day
0-->day+13 and fed with either standard diet or Impact; and animals given
a DST (1 ml) on day-1, CsA as described previously and fed either standard
diet or Impact. Untreated animals standard diet (group 1, n = 8) rejected
their allografts at 7.0 +/- 0.0 days, while those fed Impact (group 2, n =
9) had graft survival of 12.8 +/- 2.1 days, (P = .01 versus group 1).
Animals treated with CsA alone and standard diet (group 3, n = 9) rejected
at 30.3 +/- 4.8 days, while the combination of CsA and Impact diet (group
4, n = 8) rejected at 33.0 +/- 9.5 days--minimally improved survival
compared with group 3. Animals treated with DST/CsA and standard diet
(group 5, n = 7) rejected at 72.1 +/- 6.8 days, while the substitution of
Impact for standard diet (group 6, n = 8) led to a significant graft
prolongation to 275 +/- 53 days, n = 8 (P < .015 vs. groups 1-5). These
data suggest that Impact diet alone can have potent immunomodulatory
properties but may require the addition of DST/CsA to realize its
potential. These findings underscore the potential of dietary
immunomodulatory therapy to prevent rejection and
promote tolerance to solid organ allografts.

ACCESSION NUMBER: 1996042355 MEDLINE
DOCUMENT NUMBER: PubMed ID: 7482740
TITLE: Nutritional immunomodulation enhances cardiac allograft
survival in rats treated with donor-specific transfusion
and cyclosporine.
AUTHOR: Levy A E; Alexander J W
CORPORATE SOURCE: Department of Surgery, University of Cincinnati Medical
Center, OH 45267-0558, USA.
CONTRACT NUMBER: HL 38479 (United States NHLBI)
SOURCE: Transplantation, (1995 Oct 27) Vol. 60, No. 8, pp. 812-5.
Journal code: 0132144. ISSN: 0041-1337.
PUB. COUNTRY: United States
DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

(RESEARCH SUPPORT, NON-U.S. GOV'T)
(RESEARCH SUPPORT, U.S. GOV'T, P.H.S.)
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 199512
ENTRY DATE: Entered STN: 24 Jan 1996
Last Updated on STN: 24 Jan 1996
Entered Medline: 6 Dec 1995

=> e aharoni,r
E1 26 AHARON/BI
E2 14 AHARONI/BI
E3 0 --> AHARONI,R/BI
E4 22 AHARONII/BI
E5 1 AHARONIS/BI
E6 2 AHARONOFF/BI
E7 133 AHARONOV/BI
E8 4 AHARONOWITZ/BI
E9 6 AHARONSON/BI
E10 2 AHARONY/BI
E11 1 AHAROVO/BI
E12 1 AHAROVOHO/BI

=> e arnon, r/au
E1 1 ARNON Z/AU
E2 1 ARNON ZAHI/AU
E3 0 --> ARNON, R/AU
E4 1 ARNONDEL J/AU
E5 1 ARNONE/AU
E6 169 ARNONE A/AU
E7 34 ARNONE ALBERTO/AU
E8 1 ARNONE ANDRE D/AU
E9 1 ARNONE ANTONIO CARLOS/AU
E10 24 ARNONE ARTHUR/AU
E11 7 ARNONE B/AU
E12 1 ARNONE BARON/AU

=> e sela, m/au
E1 8 SELA Y/AU
E2 1 SELA YAEL/AU
E3 0 --> SELA, M/AU
E4 2 SELABE S GLORIA/AU
E5 1 SELABUURLAGE M B/AU
E6 1 SELACKOVA M/AU
E7 1 SELAENNE H/AU
E8 4 SELAES H/AU
E9 1 SELAG V/AU
E10 1 SELAH A/AU
E11 1 SELAH B A/AU
E12 3 SELAH BEN AMI/AU

=>