

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

ЛАБОРАТОРНАЯ РАБОТА №5 ПРЕДМЕТ «ЧАСТОТНЫЕ МЕТОДЫ» ТЕМА «СВЯЗЬ НЕПРЕРЫВНОГО И ДИСКРЕТНОГО»

Лектор: Перегудин А. А. Практик: Пашенко А. В. Студент: Румянцев А. А. Поток: ЧАСТ.МЕТ. 1.3

Факультет: СУиР Группа: R3241

Содержание

1	Зад	ание 1. Непрерывное и дискретное преобразование Фурье	2
	1.1	Истинный Фурье-образ	2
	1.2	Численное интегрирование	2
	1.3	Использование DFT	4
	1.4	Выводы о trapz и fft	4
	1.5	Приближение непрерывного с помощью DFT	5

1 Задание 1. Непрерывное и дискретное преобразование Фурье

Рассмотрим прямоугольную функцию $\Pi: \mathbb{R} \to \mathbb{R}$:

$$\Pi(t) = \begin{cases} 1, & |t| \le 1/2, \\ 0, & |t| > 1/2. \end{cases}$$

1.1 Истинный Фурье-образ

Найдем аналитическое выражение для Фурье-образа прямоугольной функции

$$\hat{\Pi}(\nu) = \int_{-\infty}^{+\infty} \Pi(t)e^{-2\pi i\nu t} dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-2\pi i\nu t} dt = -\frac{e^{-\pi i\nu} - e^{\pi i\nu}}{2\pi i\nu} = \frac{\sin(\pi\nu)}{\pi\nu} = \operatorname{sinc}(\nu)$$

Построим графики $\Pi(t)$ и $\hat{\Pi}(\nu)$

Рис. 1: Исходный сигнал и его Фурье-образ

1.2 Численное интегрирование

Зададим функцию $\Pi(t)$ в Python. Найдем ее Фурье-образ с помощью численного интегрирования (функция trapz). Вновь используя численное интегрирование, выполним обратное преобразование Фурье от найденного Фурье-образа с целью восстановить исходную функцию. Схематично наши действия будут выглядеть так:

$$\Pi(t) \xrightarrow{\text{trapz}} \hat{\Pi}(\nu) \xrightarrow{\text{trapz}} \Pi(t)$$

Построим график найденной функции $\hat{\Pi}(\nu)$ и восстановленной функции $\Pi(t)$. Сравним результат с истинной функцией и Фурье-образом. Исследуем влияние величины шага интегрирования и размера промежутка, по которому вычисляется интеграл, на результат. Сделаем выводы о точности и быстродействии метода.

Далее приведены соответствующие графики. Оранжевым цветом выделены оригинальные функции, синим – найденные через преобразования. Каждый график подписан сверху. Под временной шкалой также указаны рассматриваемый промежуток времени или частот и шаг дискретизации во временной или частотной областях.

(a) $\Pi(t)$, восстановленная **trapz**

(b) $\hat{\Pi}(t)$ восстановленной trapz $\Pi(t)$

Рис. 2: Интеграл по всей области определения функции от -100 до 100

(a) $\Pi(t)$, восстановленная **trapz**

(b) $\hat{\Pi}(t)$ восстановленной trapz $\Pi(t)$

Рис. 3: Интеграл на увеличенном промежутке от -150 до 150

(a) $\Pi(t)$, восстановленная trapz

(b) $\hat{\Pi}(t)$ восстановленной trapz $\Pi(t)$

Рис. 4: Интеграл на уменьшенном промежутке от -1 до 1

(a) $\Pi(t)$, восстановленная trapz

(b) $\Pi(t)$ восстановленной trapz $\Pi(t)$

Рис. 5: Увеличение шага интегрирования dt = 0.1, интеграл аналогично рис. 2

Рис. 6: Уменьшение шага интегрирования dt = 0.005, интеграл аналогично рис. 2

1.3 Использование DFT

Найдем Фурье-образ функции $\Pi(t)$ с помощью дискретного преобразования Фурье (конструкция fftshift(fft())), используя его так, чтобы преобразование было унитарным. Выполним обратное преобразование от найденного Фурье-образа с помощью обратного дискретного преобразования (конструкция ifft(ifftshift())). Схематично наши действия можно представить так:

$$\Pi(t) \xrightarrow{\text{fftshift(fft())}} \hat{\Pi}(\nu) \xrightarrow{\text{ifft(ifftshift())}} \Pi(t)$$

Для того, чтобы преобразование было унитарным, необходимо домножить ряд дискретного преобразования Фурье на коэффициент $1 \div \sqrt{N}$. Аналогично для обратного преобразования Фурье. Таким образом, формулы DFT и IDFT будут иметь вид:

$$\mathcal{F}_m = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} f_n e^{-2\pi i \frac{mn}{N}}, \quad f_n = \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} \mathcal{F}_m e^{2\pi i \frac{mn}{N}}$$

Далее приведены сравнительные графики найденной $\hat{\Pi}(\nu)$ и восстановленной $\Pi(t)$ функций с исходными. Цвета и обозначения аналогичны предыдущему пункту.

Рис. 7: Унитарное быстрое преобразование Фурье ufft

1.4 Выводы о trapz и fft

объяснить

1.5 Приближение непрерывного с помощью DFT