Principal Component Analysis

CSC 461: Machine Learning

Fall 2022

Prof. Marco Alvarez University of Rhode Island

Dimensionality reduction

- ▶ Basically ...
 - √ mapping high-dimensional data into low dimensional data
 - ✓ can be as simple as dropping some features or using a combination of all features
- For Given $\mathcal{D} = \{\mathbf{x_1}, ..., \mathbf{x_n}\}$ with $\mathbf{x_i} \in \mathbb{R}^d$, find a representation $\mathcal{Z} = \{\mathbf{z_1}, ..., \mathbf{z_n}\}$ with $\mathbf{z_i} \in \mathbb{R}^{d'}$ and $d' \ll d$
 - ✓ properties should be preserved (e.g., variance, distances, neighborhood)

Why dimensionality reduction?

- ▶ Data visualization (2-d or 3-d)
- Preprocess data before machine learning
 - ✓ algorithms can focus on important features/patterns
 - ✓ training can be more efficient
- Removing noise and redundant information
- Data compression

Principal component analysis

eigendecomposition of the covariance matrix

Principal component analysis

- Find projections of the data onto directions that maximize variance
 - ✓ directions are **orthogonal** to each other

https://www.dataschool.io/15-hours-of-expert-machine-learning-videos/

Preliminaries

The **vector projection** of vector **a** onto a nonzero vector **b** is the orthogonal projection of **a** onto a straight line parallel to **b**:

$$\mathbf{a_1} = a_1 \hat{\mathbf{b}}$$

where a_1 is a scalar, called the **scalar projection** of **a** onto **b**, and $\hat{\mathbf{b}}$ is the unit vector in the direction of **b**. The scalar projection is defined as:

$$a_1 = \mathbf{a} \cdot \hat{\mathbf{b}}$$

https://en.wikipedia.org/wiki/Vector_projection

Data projection on a line

PCA idea is finding a line that maintains as much variance (spread) as possible when the data is projected.

Mathematics for Machine Learning

What is the best line? — maximize variance The state of the line of the scalar projections of t

Disclaimer

- ► The following slides contain figures adapted from:
 - ✓ Unsupervised Learning SERRANO.AC Learning the art of understanding
 - ✓ https://serrano.academy/unsupervised-learning/
- Video:
 - ✓ https://www.youtube.com/watch?v=g-Hb26agBFg

The variance

Variance =
$$\frac{1^2 + 0^2 + 1^2}{3} = 2/3$$

Variance =
$$\frac{5^2+0^2+5^2}{3} = 10/3$$

"biased" estimator default in numpy

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

Variance and data

Doesn't always help

x-variance =
$$\frac{2^2+0^2+2^2}{3}$$
 = 8/3

y-variance =
$$\frac{1^2+0^2+1^2}{3}$$
 = 2/3

Covariance

$$\operatorname{cov}(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Eigenvectors and eigenvalues

Eigenvectors and eigenvalues

- ➤ The decomposition of a square matrix A into eigenvalues and eigenvectors is known as eigen decomposition
 - ✓ for **real symmetric matrices** eigenvectors can be chosen real and orthonormal

$$A = V \Lambda V^T \quad A \mathbf{v} = \lambda \mathbf{v}$$

columns of V are the eigenvectors of A and Λ is a diagonal matrix whose entries are the eigenvalues of A

Principal component analysis (PCA)

Principal component analysis (PCA)

Principal component analysis (PCA)

Principal component analysis (PCA)

More formally

- ▶ Given $\mathcal{D} = \{\mathbf{x_1}, ..., \mathbf{x_n}\}$ with $\mathbf{x_i} \in \mathbb{R}^d$ ✓ find $\mathcal{Z} = \{\mathbf{z_1}, ..., \mathbf{z_n}\}$ with $\mathbf{z_i} \in \mathbb{R}^{d'}$ and $d' \ll d$
- Example from 3-d to 2-d

$$\mathbf{v_1} \in \mathbb{R}^3, \mathbf{v_2} \in \mathbb{R}^3$$

$$\mathbf{z_i} = [\mathbf{v_1}^T \mathbf{x_i}, \mathbf{v_2}^T \mathbf{x_i}]^T, \mathbf{z_i} \in \mathbb{R}^2$$

PCA

- ► Input
 - ✓ data must be centered

$$X = \begin{bmatrix} | & & | \\ \mathbf{x_1} & \dots & \mathbf{x_n} \\ | & & | \end{bmatrix}_{d \times n}$$

$$\frac{1}{n}\sum_{i=1}^{n}c_{i}=0, \text{ for all rows } \mathbf{c} \text{ in } X$$

- → Output
 - \checkmark orthonormal eigenvectors $v_1, \dots v_k$ (principal components)

First principal component

$$\|\mathbf{v_1}\|_2 = 1 \qquad \underset{\mathbf{v_1}}{\text{arg max}} \qquad \sum_{i=1}^n (\mathbf{x_i}^T \mathbf{v_1})^2$$

$$\underset{\mathbf{v_1}}{\operatorname{arg \, max}} \quad \mathbf{v_1}^T \left[\sum_{i=1}^n \mathbf{x_i} \mathbf{x_i}^T \right] \mathbf{v_1}$$

$$XX^T = \Sigma$$

construct lagrangian and set derivative to zero

PCA algorithm

- ▶ Assuming **X** and **K** as inputs
 - ✓ Center the data in X
 - ✓ Compute **eigendecomposition** $(V\Lambda V^T)$ of XX^T
 - ✓ Return the **top K eigenvectors** from V
- Eigenvectors can then be used for **projecting** the data into lower dimensions

Second principal component

$$\begin{aligned} \|\mathbf{v_2}\|_2 &= 1 \\ \mathbf{v_2}^T \mathbf{v_1} &= 0 \end{aligned} \quad \underset{\mathbf{v_2}}{\text{arg max}} \quad \sum_{i=1}^n (\mathbf{x_i}^T \mathbf{v_2})^2$$

$$\underset{\mathbf{v_2}}{\operatorname{arg\,max}} \quad \mathbf{v_2}^T \left(XX^T \right) \mathbf{v_2}$$

solution $\mathbf{v_2}$ is the second eigenvector of XX^T

Other principal components will follow the same idea

Remarks

- ▶ The larger the eigenvalue, the more important the corresponding eigenvector
 - ✓ that's why we **sort** eigenvalues (and corresponding eigenvectors) in **decreasing order**
- All eigenvalues of a positive semidefinite matrix are non-negative
 - ✓ **covariance matrix** is always symmetric and p.s.d.
- For <u>dimensionality reduction</u>, we can ignore eigenvectors that are "less important"
 - ✓ how many? ... see explained variance next

Explained variance

- The variance of each principal component is equal to their corresponding eigenvalues
 - ✓ variance is often presented as a percentage, i.e., eigenvalues divided by the total sum of eigenvalues
- The sum of percentages of the top-k principal components is usually referred as the "explained variance" (cumulative variance)
 - ✓ often used to select how many components to keep for a reduced dataset

Google colab

https://colab.research.google.com/drive/
1qOXOFEC3EdOZA1ONLvH-50Foqpel5wzw?
usp=sharing

Explained variance

PC	Eigenvalue	Variance (%)	Cumulative Variance
10	Eigenvalue	variance (70)	Cumulative variance
1st	23.31800	59.072%	59.072%
2nd	7.01200	17.764%	76.835%
3rd	4.61800	11.699%	88.534%
4th	1.98100	5.018%	93.553%
5th	1.00100	2.536%	96.089%
6th	0.82100	2.080%	98.168%
7th	0.64100	1.624%	99.792%
8th	0.03100	0.079%	99.871%
9th	0.02900	0.073%	99.944%
10th	0.02200	0.056%	100.000%