Indonesia_used_car

2025-06-12

by: Aldo Gadra P.S.

Introduction

Indonesia used car market have been growing fast in the last few years. In 2025, used car sold twice as much as new car. This new market shift is caused by the rise of new online used vehicle-oriented marketplace and economic downturn.

Goal: - Identify variables that significantly contribute to the used car's and its relevant contribution. - Furthermore, to make machine learning model to predict used car price.

Data & Package Preparation

```
## Data reading
library(readr)
## Warning: package 'readr' was built under R version 4.3.3
## Data Handling
library(tidyverse)
## Warning: package 'dplyr' was built under R version 4.3.3
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
             1.1.4
                        v purrr
                                    1.0.1
## v forcats 1.0.0
                        v stringr
                                    1.5.0
## v ggplot2 3.4.2
                        v tibble
                                    3.2.1
## v lubridate 1.9.2
                        v tidyr
                                    1.3.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                 masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(stringi)
```

Warning: package 'stringi' was built under R version 4.3.3

library(dplyr)

About the dataset: - The dataset is uploaded by Indra in Kaggle. (https://www.kaggle.com/datasets/indraputra21/used-car-listings-in-indonesia/data). - The dataset made up of various listings scraped from https://www.carsome.id/.

Initial data checking

glimpse(df)

```
## Rows: 609
## Columns: 20
                        <chr> "AYLA X 1.2", "AGYA TRD SPORTIVO 1.0", "X-TR~
## $ car.name
## $ brand
                        <chr> "Daihatsu", "Toyota", "Nissan", "Toyota", "T~
## $ year
                        <int> 2018, 2015, 2015, 2020, 2019, 2021, 2022, 20~
## $ mileage..km.
                        <dbl> 10.508, 112.888, 118.429, 15.945, 30.404, 17~
                        <chr> "Jakarta Utara", "Bogor", "Surabaya", "Tange~
## $ location
## $ transmission
                        <chr> "Manual", "Manual", "Automatic", "Automatic"~
                        <chr> "even plate", "even plate", "odd plate", "od~
## $ plate.type
                        ## $ rear.camera
## $ sun.roof
                        <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, ~
## $ auto.retract.mirror
                        <int> 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, ~
                       <int> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ~
## $ electric.parking.brake
                        ## $ map.navigator
## $ keyless.push.start
                        <int> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ sports.mode
                        ## $ X360.camera.view
                        <int> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ power.sliding.door
                        ## $ auto.cruise.control
                        <int> 101000000, 82000000, 169000000, 218000000, 1~
## $ price..Rp.
## $ instalment..Rp.Monthly.
                       <int> 2060000, 1670000, 3440000, 4440000, 2380000,~
```

The dataframe has 20 variables and 609 observations.

head(df, 5)

```
##
                               brand year mileage..km.
                                                                  location
                  car.name
                AYLA X 1.2 Daihatsu 2018
## 1
                                                 10.508
                                                            Jakarta Utara
## 2 AGYA TRD SPORTIVO 1.0
                              Toyota 2015
                                                112.888
                                                                     Bogor
## 3
               X-TRAIL 2.5
                              Nissan 2015
                                                118.429
                                                                  Surabaya
## 4
           YARIS S TRD 1.5
                              Toyota 2020
                                                 15.945 Tangerang Selatan
## 5
                AGYA G 1.2
                              Toyota 2019
                                                 30.404
                                                            Jakarta Barat
##
    transmission plate.type rear.camera sun.roof auto.retract.mirror
           Manual even plate
## 1
                                        0
                                                  0
                                                                       0
## 2
                                        0
                                                  0
                                                                       0
           Manual even plate
## 3
        Automatic odd plate
                                        0
                                                  0
                                                                       0
## 4
        Automatic odd plate
                                        Λ
                                                  0
                                                                       0
                                        0
                                                  0
## 5
           Manual odd plate
     electric.parking.brake map.navigator vehicle.stability.control
```

```
## 1
                            0
                                           0
                                                                       0
## 2
                            0
                                           0
                                                                       0
                            0
## 3
                                           0
                                                                       0
## 4
                            0
                                           0
                                                                       0
## 5
                            0
                                           0
##
     keyless.push.start sports.mode X360.camera.view power.sliding.door
## 1
                                    0
                                                       0
                                    0
                                                       0
                                                                            0
## 2
                       0
## 3
                        1
                                    0
                                                       1
                                                                            0
## 4
                       0
                                    0
                                                       0
                                                                            0
## 5
                        0
                                     0
                                                       0
                                                                            0
##
     auto.cruise.control price..Rp. instalment..Rp.Monthly.
                        0 101000000
## 1
                                                        2060000
## 2
                             82000000
                                                        1670000
## 3
                        0
                           169000000
                                                        3440000
## 4
                        0
                            218000000
                                                        4440000
## 5
                           117000000
                                                        2380000
```

I need to rename some of the columns to ease further analysis process.

```
df <- df %>%
  rename(
    price = price..Rp.,
    instalment_month = instalment..Rp.Monthly.,
    mileage_km = mileage..km.
)
```

Data Cleaning

```
all_cols <- colnames(df)
```

Data format checking & grouping

Format checking

Before data analysis, I must check for variable entry for correct formatting and additional info. But first, I need to check the columns' uniqueness level to identify for observation identifier (non continuous column who have high degree of uniqueness).

```
sapply(df, function(x) {
  distinct_count <- n_distinct(x)
  row_count <- nrow(df)
  result <- (distinct_count / row_count) * 100
  result <- round(result, 5)
  return(result)
})</pre>
```

```
## car.name brand year
## 28.24302 2.13465 2.29885
```

##	${\tt mileage_km}$	location	transmission
##	100.00000	2.13465	0.32841
##	plate.type	rear.camera	sun.roof
##	0.32841	0.32841	0.32841
##	auto.retract.mirror	electric.parking.brake	map.navigator
##	0.32841	0.32841	0.32841
##	vehicle.stability.control	keyless.push.start	sports.mode
##	0.32841	0.32841	0.32841
##	X360.camera.view	power.sliding.door	auto.cruise.control
##	0.32841	0.32841	0.32841
##	price	instalment_month	
##	33.49754	33.49754	

There is no identifier column found (as "mileage $_$ km" is a continuous variable despite it high level of uniqueness).

Checking columns entry

sample(df)

##		location	price	<pre>auto.retract.mirror</pre>	transmission	rear.camera
##	1	Jakarta Utara	101000000	0	Manual	0
##	2	Bogor	82000000	0	Manual	0
##	3	Surabaya	169000000	0	Automatic	0
##	4	Tangerang Selatan	218000000	0	Automatic	0
##	5	Jakarta Barat	117000000	0	Manual	0
##	6	Tangerang Selatan	180000000	1	Manual	0
##	7	Surabaya	211000000	1	Manual	0
##	8	Bekasi	190000000	1	Automatic	0
##	9	Bandung	140000000	0	Manual	0
##	10	Malang	248000000	1	Automatic	0
##	11	Bandung	117000000	0	Manual	0
##	12	Depok	114000000	0	Manual	0
##	13	Bekasi	110000000	0	Manual	0
##	14	Jakarta Selatan	115000000	0	Automatic	0
##	15	Jakarta Utara	118000000	0	Manual	0
##	16	Malang	198000000	1	Automatic	0
##	17	Depok	141000000	1	Manual	0
##	18	Bekasi	117000000	0	Manual	0
##	19	Jakarta Timur	155000000	0	Manual	0
##	20	Bogor	108000000	0	Manual	0
##	21	Jakarta Timur	105500000	0	Manual	0
##	22	Bogor	111000000	0	Manual	0
##	23	Bogor	190000000	0	Manual	0
##	24	Tangerang Selatan	114000000	0	Manual	0
##	25	Jakarta Utara	34000000	0	Automatic	0
##	26	Malang	101500000	0	Manual	0
##	27	Jakarta Timur	202000000	1	Automatic	0
##	28	Tangerang Selatan		1	Automatic	0
##	29	•	138000000	1	Automatic	0
##		•	135000000	0	Manual	0
##	31	Bekasi	193000000	1	Manual	0

##	32	Surabaya	127000000	0	Manual	0
##	33	Bogor	208000000	1	Automatic	0
##	34	Jakarta Utara		1	Automatic	0
	35	Bandung	204000000	1	Automatic	0
##	36	Tangerang Selatan	89000000	0	Manual	0
##	37	Depok	123000000	0	Manual	0
##	38	Bekasi	107000000	0	Manual	0
##	39		133000000	1	Manual	0
##	40	Jakarta Timur	248000000	0	Automatic	0
##	41	Jakarta Timur	228000000	1	Automatic	1
##	42	Jakarta Utara		0	Automatic	0
##	43	Bandung	142000000	0	Manual	0
##	44	Jakarta Barat	143000000	0	Manual	0
##	45	Bogor	195000000	1	Automatic	0
##	46	Bekasi	254000000	1	Automatic	0
##	47	Bandung	199000000	0	Automatic	1
##	48	Bandung	111500000	0	Manual	1
##	49	Bandung	203000000	0	Automatic	1
##	50	Jakarta Pusat	117000000	0	Automatic	0
##	51	Bogor	193000000	1	Manual	0
##	52	Bogor	213000000	1	Automatic	0
##	53	Jakarta Selatan	335000000	1	Automatic	0
##	54	Tangerang Selatan	255000000	1	Automatic	0
##	55	Jakarta Barat	242000000	0	Manual	0
##	56	Bogor	155000000	0	Automatic	1
##	57	Tangerang Selatan		0	Automatic	0
##	58	Bekasi	122000000	0	Manual	0
##	59	Tangerang Selatan	233000000	0	Automatic	0
##	60		110000000	0	Manual	0
##	61	Bogor	143000000	1	Manual	0
##	62	•	123000000	0	Manual	0
##	63	Tangerang Selatan		0	Manual	0
##	64	Bekasi	106000000	0	Manual	0
##	65	Depok	207000000	0	Automatic	1
##	66		147000000	0	Manual	0
##	67	Tangerang Selatan		1	Automatic	0
##	68	Jakarta Barat		0	Automatic	0
##	69	Bogor	180000000	1	Automatic	0
##	70	Jakarta Selatan		1	Automatic	0
##	71	Tangerang Selatan	426000000	1	Automatic	0
##	72	Jakarta Utara		0	Automatic	1
##	73	Tangerang Selatan	163000000	0	Manual	0
##	74	Bogor	99000000	0	Manual	0
##	75	Jakarta Utara	128000000	0	Automatic	0
##	76	Bekasi	148000000	1	Manual	0
##	77	Jakarta Timur	231000000	1	Automatic	0
##	78	Surabaya	168000000	1	Automatic	0
##	79	Tangerang Selatan		0	Automatic	0
##	80	Jakarta Barat		0	Manual	0
	81		100000000	0	Manual	0
	82		204000000	1	Automatic	0
	83		117000000	0	Manual	0
	84	Jakarta Utara		1	Automatic	0
	85		87000000	0	Manual	1
	- •	2		ŭ		-

##		Jakarta Timur		1	Automatic	0
##		_	160000000	1	Manual	0
##		Tangerang Selatan		0	Manual	0
##		•	20900000	1	Automatic	0
##		Jakarta Barat		1	Automatic	0
##		Jakarta Utara		0	Manual	0
	92	Tangerang Selatan		1	Automatic	1
##		Jakarta Barat		1	Automatic	0
	94	Jakarta Utara		0	Manual	0
##		-	214000000	1	Automatic	0
	96	•	219000000	1	Manual	0
	97		142000000	0	Manual	0
	98		261000000	1	Automatic	0
##		•	198000000	1	Automatic	0
##	100	Jakarta Utara	96000000	0	Manual	0
	101	Jakarta Utara		1	Automatic	0
##	102	Bogor	116000000	0	Manual	0
##	103	•	135000000	0	Automatic	0
##		Tangerang Selatan		1	Automatic	0
##	105	•	136000000	0	Manual	0
##	106	•	160000000	1	Manual	0
##		Tangerang Selatan		0	Automatic	1
##	108	Jakarta Utara		1	Automatic	0
##	109	_	203000000	1	Automatic	0
##		Tangerang Selatan		1	Automatic	0
##	111		365000000	1	Automatic	0
##	112	Jakarta Timur		1	Automatic	0
##	113	•	246000000	1	Manual	0
##	114		201000000	1	Automatic	0
##	115	Jakarta Utara		1	Automatic	0
##	116	Jakarta Utara	100000000	0	Manual	0
##	117		156000000	0	Automatic	0
	118	_	172000000	0	Automatic	1
	119	Jakarta Barat		0	Automatic	0
##	120		212000000	1	Automatic	0
##	121	•	145000000	0	Automatic	1
	122		201000000	1	Manual	0
	123	Jakarta Utara		1	Automatic	0
	124	_	163000000	0	Manual	0
	125	Jakarta Selatan		1	Automatic	1
	126	•	248000000	1	Automatic	0
	127	_	154000000	0	Automatic	0
	128	_	266000000	1	Automatic	0
	129	Jakarta Barat		0	Manual	0
		Tangerang Selatan		1	Automatic	0
	131	-	218000000	1	Automatic	0
	132		216000000	1	Automatic	0
	133		129000000	0	Manual	0
	134	_	336000000	1	Automatic	0
		Tangerang Selatan		0	Automatic	0
	136	Jakarta Timur		0	Manual	0
	137	_	232000000	1	Automatic	0
	138		24000000	1	Automatic	0
##	139	Tangerang Selatan	241000000	0	Automatic	0

##	140	Jakarta Timur	115000000	0	Manual	0
##	141	Jakarta Timur	9500000	0	Manual	0
##	142	Jakarta Pusat	9300000	0	Manual	0
##	143	Bekasi	9800000	0	Manual	0
##	144	Bandung	12400000	0	Manual	0
##	145	Depok	207000000	1	Automatic	0
##	146	Jakarta Timur	178000000	0	Automatic	0
##	147	Tangerang Selatan	19800000	1	Manual	1
##	148	Jakarta Timur	211000000	1	Automatic	0
##	149	Jakarta Timur	119000000	0	Manual	0
##	150	Tangerang Selatan	126000000	0	Automatic	0
##	151	Jakarta Selatan	152000000	1	Manual	0
##	152	Bekasi	105000000	0	Manual	0
##	153	Bogor	113000000	0	Manual	0
##	154	Bogor	355000000	1	Automatic	0
##	155	Bekasi	15900000	0	Automatic	0
##	156	Tangerang Selatan	15400000	1	Automatic	0
##	157	Bekasi	136000000	0	Automatic	0
##	158	Jakarta Barat	211000000	1	Automatic	0
##	159	Tangerang Selatan	19400000	1	Manual	0
##	160	Jakarta Timur	192000000	0	Manual	1
##	161	Jakarta Utara	21000000	1	Automatic	0
##	162	Tangerang Selatan	211000000	1	Automatic	0
##	163	Bogor	255000000	0	Automatic	0
##	164	${\tt Tangerang \ Selatan}$	18400000	1	Automatic	0
##	165	${\tt Tangerang \ Selatan}$	219000000	1	Automatic	0
##	166	Malang	248000000	0	Automatic	1
##	167	Bandung	12000000	0	Manual	0
##	168	${\tt Tangerang \ Selatan}$	121000000	0	Manual	0
##	169	Tangerang Selatan		0	Automatic	0
##	170	-	236000000	1	Automatic	0
##	171	Depok	213000000	1	Manual	1
##	172	Tangerang Selatan	183000000	1	Automatic	1
##	173	Tangerang Selatan		1	Automatic	0
##	174	•	149000000	1	Manual	0
	175	Jakarta Timur		1	Automatic	1
	176	Depok		1	Automatic	0
	177	Jakarta Barat		1	Automatic	0
	178	_	127000000	1	Manual	0
	179	-	169000000	1	Automatic	0
	180		211000000	1	Automatic	0
		Tangerang Selatan		1	Automatic	0
	182	Jakarta Pusat		1	Automatic	0
	183	•	111000000	0	Automatic	1
	184	•	102000000	0	Manual	0
		Tangerang Selatan		1	Automatic	0
		Tangerang Selatan		0	Manual	1
	187		256000000	1	Automatic	0
	188	Jakarta Barat		1	Automatic	0
	189	Jakarta Selatan		1	Automatic	0
	190	Jakarta Utara		1	Automatic	0
		Tangerang Selatan		1	Automatic	0
	192	•	261000000	0	Automatic	1
##	193	Bandung	120000000	0	Automatic	0

##	194	Bandung	151000000	1	Automatic	0
##	195	Bandung	162000000	0	Automatic	0
##	196	Jakarta Timur	258000000	1	Automatic	0
##	197	Bekasi	262000000	1	Automatic	0
##	198	Bandung	261000000	1	Automatic	0
##	199	Bekasi	162000000	1	Automatic	0
##	200	Jakarta Timur	166000000	1	Automatic	0
##	201	Jakarta Selatan	136000000	1	Manual	0
##	202	Jakarta Barat	212000000	1	Automatic	1
##	203	Tangerang Selatan	213000000	1	Automatic	1
##	204	Jakarta Pusat		1	Automatic	1
##	205	Bogor	221000000	1	Automatic	0
##	206	Jakarta Utara		1	Automatic	0
##	207		203000000	1	Automatic	0
##	208	•	106000000	0	Automatic	1
##	209		182000000	0	Automatic	0
	210		129000000	0	Manual	0
	211	•	100000000	0	Automatic	0
	212	Bandung		0	Manual	0
	213	•	224000000	1	Automatic	0
	214		139000000	0	Automatic	0
	215		101000000	0	Manual	0
	216		118000000	0	Automatic	0
	217	•	101000000	0	Manual	0
	218	•	161000000	0	Automatic	0
		•		0		
	219	•	111000000	0	Automatic	0
	220	Bogor	77000000		Manual	0
	221	_	112000000	0	Automatic	0
		Tangerang Selatan		1	Manual	0
	223	Jakarta Selatan		0	Manual	0
	224	•	216000000	1	Automatic	0
	225		314000000	1	Automatic	0
	226	•	157000000	0	Manual	0
		Tangerang Selatan		0	Manual	0
	228		157000000	0	Automatic	1
	229		201000000	1	Automatic	1
	230	Jakarta Timur		1	Automatic	0
	231	Jakarta Barat		1	Automatic	0
	232	Jakarta Pusat		0	Automatic	0
	233	Jakarta Timur		0	Automatic	1
	234	•	278000000	1	Automatic	0
	235	-	186000000	1	Manual	0
	236	•	145000000	1	Automatic	0
		Tangerang Selatan		1	Automatic	0
		Tangerang Selatan		1	Automatic	0
##	239	Jakarta Barat		1	Automatic	0
##	240		255000000	1	Automatic	0
	241	Jakarta Utara		1	Automatic	1
##	242	Tangerang Selatan	220000000	1	Automatic	0
##	243	Jakarta Pusat		0	Automatic	1
##	244	Bandung	319000000	0	Automatic	0
##	245	Bogor	194000000	0	Automatic	0
##	246	Jakarta Timur	224000000	1	Automatic	0
##	247	Tangerang Selatan	255000000	1	Automatic	1

	248		154000000	1	Manual	0
		Tangerang Selatan		1	Automatic	0
##	250	Jakarta Barat		1	Automatic	0
##		Tangerang Selatan		1	Automatic	0
	252	Jakarta Selatan		0	Automatic	0
	253	_	169000000	1	Automatic	1
##		Tangerang Selatan		1	Automatic	0
##		Tangerang Selatan		0	Automatic	1
	256		417000000	0	Automatic	0
	257	_	212000000	1	Automatic	0
	258	Jakarta Timur		0	Automatic	0
	259	Jakarta Barat		0	Automatic	0
	260	Jakarta Timur		0	Automatic	0
	261	Jakarta Barat		0	Manual	0
	262	Jakarta Barat		1	Automatic	0
	263	•	110000000	0	Automatic	0
	264	Jakarta Utara		1	Automatic	0
	265		162000000	0	Automatic	0
	266	Jakarta Utara	203000000	1	Automatic	0
	267			1	Automatic	0
	268	Jakarta Selatan		1	Manual	0
	269	O	181000000	1	Automatic Automatic	0
	270	=	212000000	0	Automatic	0
##	271	Tangerang Selatan Jakarta Barat		1	Automatic	0
	273		179000000	0	Automatic	1
	274	Jakarta Utara		0	Automatic	0
	275	Jakarta Timur		1	Automatic	0
	276	Jakarta Barat		1	Automatic	0
	277	Jakarta Utara		0	Automatic	0
	278		324000000	1	Automatic	1
##		Tangerang Selatan		1	Manual	1
##		Tangerang Selatan		1	Manual	1
##	281		317000000	1	Automatic	0
##	282	-	228000000	1	Automatic	0
	283	Jakarta Utara		0	Automatic	0
	284	Jakarta Barat		1	Automatic	0
	285		183000000	1	Automatic	1
##	286	Jakarta Timur		1	Automatic	0
##	287	Tangerang Selatan		1	Automatic	0
	288		185000000	1	Automatic	0
##	289	Jakarta Pusat		0	Automatic	0
##	290	Jakarta Selatan	210000000	1	Automatic	0
##	291	Tangerang Selatan	270000000	1	Automatic	0
##	292	Jakarta Barat	282000000	1	Automatic	0
##	293	Bogor	120000000	1	Manual	0
##	294	Bogor	210000000	1	Automatic	0
##	295	Bogor	158000000	1	Automatic	0
##	296	Tangerang Selatan	223000000	1	Automatic	0
##	297	Bogor	116000000	0	Manual	0
##	298	Tangerang Selatan	278000000	1	Automatic	0
##	299	Bogor	214000000	1	Automatic	0
##	300	Bandung	121000000	0	Automatic	1
##	301	Jakarta Utara	138000000	0	Automatic	0

```
## 302
                   Bekasi 197000000
                                                               Automatic
                                                                                     0
## 303
                   Bekasi 197000000
                                                         1
                                                               Automatic
                                                                                     0
   304 Tangerang Selatan 156000000
                                                         0
                                                               Automatic
                                                                                     1
   305 Tangerang Selatan 179000000
                                                         1
                                                               Automatic
                                                                                     0
   306
       Tangerang Selatan 156000000
                                                         0
                                                               Automatic
                                                                                     0
   307
            Jakarta Timur 105000000
                                                         0
                                                                  Manual
##
                                                                                     1
   308
       Tangerang Selatan 187000000
                                                         0
                                                               Automatic
                                                                                     0
## 309
            Jakarta Timur 141000000
                                                         0
                                                               Automatic
                                                                                     0
##
   310
                    Bogor 158000000
                                                         0
                                                               Automatic
                                                                                     0
##
  311
                                                                                     0
            Jakarta Timur 203000000
                                                         1
                                                               Automatic
   312
       Tangerang Selatan 138000000
                                                         0
                                                               Automatic
                                                                                     1
  313
                                                         0
##
                    Depok 168000000
                                                               Automatic
                                                                                     1
   314
##
            Jakarta Timur 212000000
                                                         1
                                                               Automatic
                                                                                     0
                                                         0
## 315
                                                               Automatic
                                                                                     0
                    Bogor 124000000
## 316
                    Bogor 126000000
                                                         0
                                                               Automatic
                                                                                     0
## 317
            Jakarta Timur 212000000
                                                         1
                                                               Automatic
                                                                                     0
## 318
                                                         0
                                                                                     0
                    Bogor 124000000
                                                               Automatic
  319
##
            Jakarta Timur 542000000
                                                         1
                                                               Automatic
                                                                                     0
## 320
            Jakarta Pusat 315000000
                                                         1
                                                               Automatic
                                                                                    1
## 321
                   Bekasi 205000000
                                                         1
                                                               Automatic
                                                                                     0
##
  322
                   Bekasi 177000000
                                                         1
                                                                  Manual
                                                                                    0
## 323
                    Depok 319000000
                                                         0
                                                               Automatic
                                                                                     1
## 324
            Jakarta Barat 132000000
                                                         0
                                                               Automatic
                                                                                     0
##
  325
                    Bogor 145000000
                                                         0
                                                               Automatic
                                                                                     0
##
  326
                                                         0
                                                                                     0
            Jakarta Timur 180000000
                                                               Automatic
   327
       Tangerang Selatan 129000000
                                                         1
                                                               Automatic
                                                                                     0
##
  328
            Jakarta Utara 222000000
                                                         1
                                                               Automatic
                                                                                    0
   329
            Jakarta Timur 204000000
                                                         0
                                                               Automatic
##
                                                                                     1
  330
                                                         0
                                                                                     0
##
                    Bogor 135000000
                                                               Automatic
   331
                                                         0
            Jakarta Utara 146000000
                                                               Automatic
                                                                                     0
## 332
                   Bekasi 203000000
                                                         1
                                                               Automatic
                                                                                     0
##
   333
                   Bekasi 214000000
                                                         1
                                                               Automatic
                                                                                     0
                                                                                     0
##
   334
         Jakarta Selatan 215000000
                                                         1
                                                               Automatic
   335
                                                         1
                                                               Automatic
                                                                                     0
##
                    Bogor 224000000
       Tangerang Selatan 223000000
                                                         1
                                                               Automatic
                                                                                     0
       Tangerang Selatan 285000000
                                                         1
                                                               Automatic
                                                                                    0
##
   337
##
   338
                   Bekasi 161000000
                                                         1
                                                               Automatic
                                                                                     0
##
   339
       Tangerang Selatan 277000000
                                                         1
                                                               Automatic
                                                                                     1
  340
##
                    Bogor 180000000
                                                         0
                                                               Automatic
                                                                                     0
  341
##
                   Bekasi 198000000
                                                         1
                                                               Automatic
                                                                                     0
##
   342
            Jakarta Pusat 206000000
                                                         1
                                                               Automatic
                                                                                     0
##
  343
                    Bogor 211000000
                                                         1
                                                               Automatic
                                                                                    0
            Jakarta Pusat 132000000
                                                         0
                                                               Automatic
                                                                                     0
   344
##
   345
            Jakarta Timur 326000000
                                                               Automatic
                                                                                     0
                                                         1
   346
                    Bogor 213000000
                                                         1
                                                               Automatic
                                                                                     1
                                                         0
                                                                                     0
  347
            Jakarta Timur 124000000
                                                                  Manual
##
                                                         0
##
   348
       Tangerang Selatan 96000000
                                                               Automatic
                                                                                     0
                                                         1
   349
            Jakarta Barat 141000000
                                                               Automatic
                                                                                     1
   350
       Tangerang Selatan 380000000
                                                         0
                                                               Automatic
                                                                                     1
                                                                                     0
   351
       Tangerang Selatan 180000000
                                                         1
                                                               Automatic
##
   352
                                                         0
                                                               Automatic
                    Bogor 188000000
                                                                                     1
   353
                                                         1
                                                                                     0
       Tangerang Selatan 211000000
                                                               Automatic
##
  354
                    Bogor 154000000
                                                         1
                                                               Automatic
                                                                                    1
## 355 Tangerang Selatan 170000000
                                                               Automatic
                                                                                     0
```

	356		213000000	1	Automatic	0
##	357	Jakarta Utara	166000000	0	Automatic	0
	358	Jakarta Utara		1	Automatic	0
##	359	Bekasi	317000000	0	Automatic	1
##	360	Jakarta Timur	217000000	1	Automatic	0
##	361	Bogor	152000000	1	Automatic	0
	362	Bekasi	139000000	0	Automatic	0
##	363		201000000	1	Automatic	0
##	364	-	102000000	0	Manual	0
##	365		155000000	0	Automatic	0
##	366	Jakarta Selatan		0	Automatic	1
##	367	-	211000000	1	Automatic	0
##	368		213000000	1	Automatic	0
##	369	-	148000000	1	Automatic	0
##	370	•	152000000	0	Manual	0
	371	Jakarta Barat		0	Automatic	0
##	372		242000000	0	Automatic	0
##	373	Jakarta Barat	390000000	1	Automatic	0
##	374	Jakarta Selatan		0	Automatic	0
	375		131000000	0	Automatic	0
##	376	Tangerang Selatan		0	Automatic	0
	377	•	164000000	0	Automatic	0
##	378	Jakarta Utara		0	Automatic	1
##	379		201000000	1	Automatic	0
##	380	•	172000000	0	Automatic	0
##	381	-	223000000	1	Automatic	0
##	382	Depok	130000000	0	Automatic	0
	383		190000000	1	Automatic	0
	384	-	263000000	1	Automatic	1
	385	•	213000000	1	Automatic	0
	386	=	160000000	0	Automatic	1
	387		129000000	1	Manual	0
	388		159000000	0	Automatic	0
	389	·	121000000	0	Automatic	0
	390		209000000	0	Automatic	0
	391		132000000	0	Automatic	0
	392		224000000	0	Automatic	0
	393		200000000	0	Automatic	0
	394		177000000	0	Automatic	0
	395		209000000	0	Automatic	0
	396		105000000	0	Automatic	0
	397		144000000	0	Automatic	0
	398		141000000	0	Automatic	0
	399		209000000	0	Automatic	0
	400		235000000 137000000	0	Automatic	0
	401		135000000	0	Automatic	0
	402			0	Automatic	0
	403		148000000	0	Automatic	0
	404		156000000	0	Automatic	0
	405		109000000	0	Manual	0
	406		258000000 443000000	0	Automatic	0
	407		141000000	0	Automatic	0
	408		161000000	0	Manual	0
##	409	Unknown	101000000	0	Automatic	0

##	410	IInknoun	160000000	0	Automatic	0
	411		159000000	0	Automatic	0
	412		185000000	0	Automatic	0
	413		175000000	0	Automatic	0
	414		197000000	0	Manual	0
	415		212000000	0	Automatic	0
	416		212000000	0	Automatic	0
	417		212000000	0	Automatic	0
	418		212000000	0	Automatic	0
	419		122000000	0		0
			161000000		Automatic	
	420			0	Automatic	0
	421		181000000	0	Automatic	0
	422		182000000	0	Automatic	0
	423		256000000	0	Manual	0
	424		124000000	0	Automatic	0
	425		171000000	0	Automatic	0
	426		339000000	0	Automatic	0
	427		210000000	0	Automatic	0
	428	Unknown	212000000	0	Automatic	0
##	429	Unknown	174000000	0	Automatic	0
##	430	Unknown	186000000	0	Automatic	0
##	431	Unknown	221000000	0	Automatic	0
##	432	Unknown	199000000	0	Automatic	0
##	433	Unknown	109000000	0	Manual	0
##	434	Unknown	120000000	0	Manual	0
##	435	Unknown	210000000	0	Automatic	0
##	436	Unknown	178000000	0	Manual	0
##	437	Unknown	281000000	0	Automatic	0
##	438	Unknown	78000000	0	Manual	0
##	439	Unknown	187000000	0	Automatic	0
##	440	Tangerang Selatan	210000000	0	Automatic	0
	441	Jakarta Timur		0	Automatic	1
##	442	Tangerang Selatan	202000000	1	Automatic	0
	443		151000000	0	Automatic	0
##	444	Jakarta Selatan		0	Automatic	0
##	445	Jakarta Pusat	187000000	0	Automatic	0
		Tangerang Selatan		1	Automatic	0
	447	Jakarta Pusat		0	Manual	0
	448	Jakarta Timur		1	Automatic	0
		Tangerang Selatan		1	Manual	0
	450	Jakarta Utara		1	Automatic	0
	451	Jakarta Timur		1	Manual	0
	452	Jakarta Timur		1	Automatic	0
	453		195000000	1	Manual	1
	454	Jakarta Utara		0	Automatic	0
	455		129000000	0	Automatic	0
		•				
	456 457		144000000 128000000	0	Automatic	1
				0	Automatic	0
	458	•	92000000	0	Manual	0
	459	Jakarta Utara		1	Manual	0
		Tangerang Selatan		0	Manual	0
	461	Jakarta Utara		0	Manual	0
	462	_	142000000	1	Automatic	0
##	463	Tangerang Selatan	282000000	1	Automatic	0

```
## 464
                    Bogor 370000000
                                                               Automatic
                                                                                     0
##
  465
            Jakarta Pusat 282000000
                                                         1
                                                               Automatic
                                                                                     1
## 466
            Jakarta Timur 197000000
                                                         1
                                                               Automatic
                                                                                     0
            Jakarta Utara 126000000
                                                         0
                                                                                     0
##
  467
                                                                  Manual
##
   468
            Jakarta Barat 192000000
                                                         1
                                                               Automatic
                                                                                     0
##
  469
            Jakarta Barat 92000000
                                                         0
                                                                  Manual
                                                                                     0
## 470
                   Malang 160000000
                                                         1
                                                               Automatic
                                                                                     1
## 471 Tangerang Selatan 108000000
                                                         0
                                                                                     0
                                                                  Manual
##
  472
            Jakarta Timur 141000000
                                                         1
                                                                  Manual
                                                                                     1
## 473
         Jakarta Selatan 131000000
                                                         0
                                                                                     0
                                                               Automatic
## 474
            Jakarta Barat 203000000
                                                         1
                                                               Automatic
                                                                                     0
## 475
                                                         0
                                                                                     0
                    Bogor 116000000
                                                                  Manual
                                                         0
                                                                                     0
##
   476
                    Depok 111000000
                                                                  Manual
       Tangerang Selatan 262000000
                                                                                     0
                                                         1
                                                               Automatic
## 478
                    Bogor 194000000
                                                         1
                                                               Automatic
                                                                                     0
## 479
                    Bogor 113000000
                                                         0
                                                                  Manual
                                                                                     0
##
  480
            Jakarta Utara 192000000
                                                         1
                                                                                     0
                                                               Automatic
                                                         0
   481
                    Bogor 126000000
                                                               Automatic
                                                                                     0
##
   482
       Tangerang Selatan 106000000
                                                         0
                                                                  Manual
                                                                                     1
##
   483
                    Depok 209000000
                                                         1
                                                               Automatic
                                                                                     0
##
   484
                  Bandung 19700000
                                                         1
                                                                  Manual
                                                                                     0
##
  485
                    Depok 222000000
                                                         1
                                                               Automatic
                                                                                     0
                                                         0
## 486
            Jakarta Barat 164000000
                                                               Automatic
                                                                                     0
##
   487
            Jakarta Pusat 141000000
                                                         1
                                                               Automatic
                                                                                     0
            Jakarta Utara 219000000
                                                               Automatic
## 488
                                                         1
                                                                                     0
  489
                    Bogor 164000000
                                                         0
                                                                  Manual
                                                                                     0
## 490
            Jakarta Utara 122000000
                                                         0
                                                                  Manual
                                                                                     0
   491
         Jakarta Selatan 183000000
                                                         1
                                                                  Manual
                                                                                     0
## 492
                                                         1
                                                                                     0
            Jakarta Barat 207000000
                                                               Automatic
## 493
                    Bogor 199000000
                                                         1
                                                               Automatic
                                                                                     0
## 494
                    Bogor 224000000
                                                         1
                                                               Automatic
                                                                                     0
##
  495
                   Malang 113000000
                                                         0
                                                               Automatic
                                                                                     0
                                                         0
                                                                                     0
##
  496
                    Bogor 128000000
                                                                  Manual
            Jakarta Utara 164000000
## 497
                                                         0
                                                               Automatic
                                                                                     1
## 498
            Jakarta Utara 265000000
                                                         1
                                                               Automatic
                                                                                     0
##
  499
                   Bekasi 200000000
                                                         1
                                                                  Manual
                                                                                     0
## 500
                    Bogor 154000000
                                                         0
                                                               Automatic
                                                                                     0
## 501
            Jakarta Barat 234000000
                                                         1
                                                                  Manual
                                                                                     0
## 502
            Jakarta Barat 151000000
                                                         1
                                                                  Manual
                                                                                     0
                                                         0
##
  503
                 Surabaya 130000000
                                                                  Manual
                                                                                     1
   504
         Jakarta Selatan 242000000
                                                         1
                                                               Automatic
                                                                                     0
   505
       Tangerang Selatan 188000000
                                                         0
                                                               Automatic
                                                                                     1
##
                                                               Automatic
                                                                                     0
   506
                    Bogor 208000000
                                                         1
       Tangerang Selatan 128000000
                                                         0
                                                               Automatic
                                                                                     0
   507
   508
                                                         0
                                                                  Manual
                                                                                     0
            Jakarta Barat 126000000
## 509
                                                         0
                                                                                     0
                    Depok 160000000
                                                               Automatic
   510
                    Depok 173000000
                                                         1
                                                               Automatic
                                                                                     0
                                                         1
                                                                                     0
   511
       Tangerang Selatan 151000000
                                                               Automatic
                  Bandung 99000000
## 512
                                                         0
                                                                  Manual
                                                                                     0
## 513
                                                                                     0
                   Bekasi 13700000
                                                         1
                                                               Automatic
## 514
                                                         1
                                                               Automatic
                                                                                     0
                    Depok 142000000
## 515
                                                         1
                                                                                     0
            Jakarta Timur 178000000
                                                               Automatic
## 516
         Jakarta Selatan 219000000
                                                         1
                                                               Automatic
                                                                                     0
## 517
                   Bekasi 146000000
                                                               Automatic
                                                                                     1
```

##	518	Jakarta Timur	127000000	0	Automatic	0
	519	Jakarta Timur		1	Automatic	0
	520	Bekasi	141000000	0	Manual	0
	521		108000000	0	Manual	0
		Tangerang Selatan	84000000	0	Manual	0
	523	Jakarta Selatan		1	Automatic	0
	524	Jakarta Barat		1	Automatic	0
	525		145000000	0	Manual	0
	526	•	164000000	0	Automatic	1
		Tangerang Selatan		1	Automatic	0
	528		130000000	0	Automatic	0
	529	Jakarta Barat		0	Automatic	0
	530	Bogor	91000000	0	Manual	0
	531	Jakarta Utara		0	Automatic	0
	532		154000000	0	Automatic	0
	533	Jakarta Timur		1	Automatic	0
	534			0	Automatic	0
		•	340000000	0	Automatic	0
		Tangerang Selatan		0	Automatic	0
		Tangerang Selatan		1	Manual	1
	537	Jakarta Barat		1		
	538	-	184000000		Automatic	1
		Tangerang Selatan		1	Automatic	0
	540		213000000	1	Automatic	1
	541	-	274000000	1	Automatic	0
	542	•	112000000	0	Automatic	0
		Tangerang Selatan		1	Automatic	1
		Tangerang Selatan		1	Automatic	0
	545	Jakarta Pusat		1	Automatic	0
	546	Jakarta Utara		0	Manual	0
		Tangerang Selatan		0	Automatic	0
	548	•	220000000	1	Automatic	1
	549	-	112000000	0	Automatic	0
	550	Jakarta Timur		0	Manual	0
	551	Bogor	95000000	0	Automatic	0
		Tangerang Selatan		1	Automatic	0
	553	Jakarta Barat		0	Automatic	1
##	554	Jakarta Pusat		1	Automatic	0
	555		204000000	0	Automatic	0
	556	•	209000000	1	Automatic	0
	557	Jakarta Utara		0	Manual	0
	558	Jakarta Selatan		1	Automatic	0
	559		132000000	0	Automatic	0
		Tangerang Selatan		0	Automatic	0
		Tangerang Selatan		1	Automatic	0
		Tangerang Selatan		0	Automatic	1
	563	Jakarta Barat		0	Automatic	0
##	564	•	433000000	1	Automatic	0
	565	-	163000000	0	Automatic	1
##	566	Jakarta Utara	109000000	0	Manual	0
	567	Jakarta Pusat		0	Manual	1
	568	Jakarta Pusat		0	Manual	0
	569	Jakarta Utara		0	Automatic	0
	570	Jakarta Utara		1	Automatic	0
##	571	Jakarta Barat	147000000	1	Automatic	0

```
## 572
                    Bogor 131000000
                                                          0
                                                               Automatic
            Jakarta Barat 199000000
## 573
                                                          1
                                                               Automatic
                                                                                     0
## 574
         Jakarta Selatan 382000000
                                                          0
                                                               Automatic
                                                                                     0
                                                          0
## 575
                   Bekasi 122000000
                                                                  Manual
                                                                                     0
## 576
         Jakarta Selatan 446000000
                                                          0
                                                               Automatic
                                                                                     0
## 577
            Jakarta Utara 113000000
                                                          1
                                                                  Manual
                                                                                     0
## 578
                   Bekasi 118000000
                                                          0
                                                                  Manual
                                                                                     1
## 579
                  Bandung 100000000
                                                          0
                                                               Automatic
                                                                                     0
## 580
            Jakarta Utara 145000000
                                                          0
                                                               Automatic
                                                                                     1
## 581
            Jakarta Barat 122000000
                                                          0
                                                                                     0
                                                                  Manual
## 582
                    Bogor 278000000
                                                          0
                                                               Automatic
                                                                                     1
## 583
                                                          0
                                                                                     0
            Jakarta Barat 101000000
                                                                  Manual
            Jakarta Pusat 102000000
                                                          0
  584
                                                                  Manual
                                                                                     0
## 585
                   Bekasi 117000000
                                                          0
                                                                                     0
                                                                  Manual
##
   586
            Jakarta Barat 222000000
                                                          1
                                                               Automatic
                                                                                     0
   587 Tangerang Selatan 100000000
                                                          0
                                                                  Manual
                                                                                     0
       Tangerang Selatan 142000000
                                                                                     0
                                                          1
                                                               Automatic
   588
   589
##
                   Bekasi 155000000
                                                          1
                                                               Automatic
                                                                                     0
##
  590
            Jakarta Utara 159000000
                                                          0
                                                               Automatic
                                                                                     1
## 591
                    Bogor 224000000
                                                          1
                                                               Automatic
                                                                                     0
##
  592
            Jakarta Timur 191000000
                                                          1
                                                               Automatic
                                                                                     0
## 593
                    Depok 121000000
                                                          0
                                                               Automatic
                                                                                     0
                                                          0
## 594
            Jakarta Utara 192000000
                                                               Automatic
                                                                                     1
   595 Tangerang Selatan 165000000
                                                          0
                                                               Automatic
                                                                                     0
   596
                                                          1
                                                               Automatic
                                                                                     0
         Jakarta Selatan 210000000
   597
                    Depok 110000000
                                                          0
                                                                  Manual
                                                                                     0
## 598
            Jakarta Utara 131000000
                                                          1
                                                               Automatic
                                                                                     0
                                                          1
                                                               Automatic
                                                                                     0
   599
       Tangerang Selatan 184000000
                                                                                     0
   600
           Jakarta Timur 218000000
                                                          1
                                                               Automatic
            Jakarta Timur 202000000
   601
                                                          1
                                                               Automatic
                                                                                     0
   602 Tangerang Selatan 158000000
                                                          0
                                                               Automatic
                                                                                     0
   603
                    Bogor 122000000
                                                          0
                                                               Automatic
                                                                                     0
## 604
                    Bogor 204000000
                                                          1
                                                               Automatic
                                                                                     1
## 605
                                                               Automatic
                                                                                     0
                    Bogor 234000000
                                                          1
                                                          0
##
  606
            Jakarta Utara 136000000
                                                               Automatic
                                                                                     0
##
  607
                                                          1
                                                               Automatic
                                                                                     0
                    Bogor 246000000
## 608
            Jakarta Utara 116000000
                                                          0
                                                                  Manual
                                                                                     0
##
  609
                    Bogor 149000000
                                                          0
                                                                  Manual
                                                                                     1
##
       year plate.type electric.parking.brake X360.camera.view power.sliding.door
                                                                   0
                                                                                       0
## 1
       2018 even plate
                                                0
       2015 even plate
                                                0
                                                                   0
                                                                                       0
##
   3
       2015
              odd plate
                                                0
                                                                   1
                                                                                       0
                                                0
                                                                   0
                                                                                       0
##
       2020
              odd plate
       2019
                                                0
                                                                   0
                                                                                       0
##
              odd plate
                                                0
                                                                   0
                                                                                       0
##
       2021 even plate
                                                0
                                                                   0
                                                                                       0
## 7
       2022 even plate
                                                                   0
## 8
       2016 even plate
                                                0
                                                                                       0
## 9
       2019
                                                0
                                                                   0
                                                                                       0
              odd plate
              odd plate
## 10
       2021
                                                1
                                                                   0
                                                                                       0
                                                                   0
##
   11
       2018 even plate
                                                0
                                                                                       0
##
  12
       2019 even plate
                                                0
                                                                   0
                                                                                       0
       2019
                                                0
                                                                   0
                                                                                       0
## 13
              odd plate
              odd plate
## 14
       2017
                                                0
                                                                   0
                                                                                       0
## 15
       2019
              odd plate
                                                0
                                                                   0
                                                                                       0
```

##	16	2019 even	plate	0	0	0
##	17	2015 odd	plate	0	0	0
##	18	2018 odd	plate	0	0	0
##	19	2018 odd	plate	0	0	0
##	20	2018 odd	plate	0	0	0
##	21	2017 odd	plate	0	0	0
##	22	2018 odd	plate	0	0	0
##	23	2022 even	plate	0	0	0
##	24	2019 odd	plate	0	0	0
##	25	2017 even	plate	1	0	0
##	26	2020 even	plate	0	0	0
##	27	2019 odd	plate	0	0	0
##	28	2019 even	plate	0	0	0
##	29	2021 even	plate	0	0	0
##	30	2018 even	plate	0	0	0
##	31	2019 even	plate	0	0	0
##	32	2015 odd	plate	0	0	0
##	33	2018 even	plate	1	0	0
##	34	2019 even	plate	0	0	0
##	35	2018 odd	plate	0	0	0
##	36	2016 odd	plate	0	0	0
##	37	2020 even	plate	0	0	0
##	38	2019 odd	plate	0	0	0
##	39	2020 even	plate	0	0	0
##	40	2019 odd	plate	1	0	0
##	41	2018 odd	plate	0	0	0
##	42	2014 odd	plate	0	0	0
##	43	2019 odd	plate	0	0	0
##	44	2016 even	plate	0	0	0
##	45	2016 odd	plate	0	0	0
##	46	2018 even	plate	0	0	0
##	47	2019 even	plate	1	0	0
##	48	2018 odd	plate	0	0	0
##	49	2019 odd	plate	0	0	0
##	50	2018 odd	plate	0	0	0
##	51	2019 even	=	0	0	0
##	52	2019 even	-	0	0	0
	53	2017 odd		0	0	0
	54	2018 even	-	0	0	0
	55	2017 even		0	0	0
	56	2016 even	-	0	0	0
	57		plate	0	0	0
	58	2019 even		0	0	0
	59		plate	0	0	0
	60	2017 even		0	0	0
	61	2022 even	-	0	0	0
	62		plate	0	0	0
	63	2014 even	-	0	0	0
	64		plate	0	0	0
	65		plate	0	0	0
	66		plate	0	0	0
	67	2018 even		0	0	0
	68		plate	0	0	0
##	69	2020 odd	plate	0	0	0

##	70	2016	even	plate	0	0	0
##	71	2019	even	plate	0	0	0
##	72	2018	odd	plate	0	0	0
##	73	2019	even	plate	0	0	0
##	74	2017	even	plate	0	0	0
##	75	2019	even	plate	0	0	0
##	76	2021	odd	plate	0	0	0
##	77	2019	even	plate	0	0	0
##	78	2019	odd	plate	0	0	0
##	79	2021	odd	plate	0	1	0
##	80	2019	even	plate	0	0	0
##	81	2019	even	plate	0	0	0
##	82	2019	odd	plate	0	1	0
##	83	2019	odd	plate	0	0	0
##	84	2017	even	plate	0	0	0
##	85	2014	even	plate	0	0	0
##	86	2019	odd	plate	0	0	0
##	87	2019	even	plate	0	0	0
##	88	2018	odd	plate	0	0	0
##	89	2018	even	plate	0	0	0
##	90	2018	even	plate	0	0	0
##	91	2018	even	plate	0	0	0
##	92	2020	odd	plate	0	0	0
##	93	2019	even	plate	0	0	0
##	94	2015	even	plate	0	0	0
##	95	2019	even	plate	0	0	0
##	96	2022	even	plate	0	0	0
##	97	2019	odd	plate	0	0	0
##	98	2021	even	plate	0	0	0
##	99	2015	even	plate	0	0	0
##	100	2017	odd	plate	0	0	0
##	101	2022	even	plate	0	0	0
##	102	2018	even	plate	0	0	0
##	103	2017	odd	plate	0	0	0
##	104	2020	even	plate	0	0	0
##	105	2016	even	plate	0	0	0
##	106	2019	odd	plate	0	0	0
##	107	2021	even	plate	0	0	0
##	108	2021	even	plate	0	0	0
##	109	2019	odd	plate	0	1	0
##	110	2018	odd	plate	0	0	0
##	111	2016	even	plate	0	0	0
				plate	0	0	0
##	113	2021	odd	plate	0	0	0
##	114	2017	even	plate	0	0	0
##	115	2020	odd	plate	0	0	0
##	116	2020	odd	plate	0	0	0
##	117	2019	odd	plate	0	0	0
##	118	2019	even	plate	0	0	0
				plate	0	0	0
				plate	0	0	0
##	121	2016	even	plate	0	0	0
				plate	0	0	0
				plate	1	0	0

		2020		plate	0	0	0
		2021		plate	0	0	0
##	126	2017	odd	plate	0	0	0
##	127	2019	odd	plate	0	0	0
##	128	2019	odd	plate	1	0	0
##	129	2019	odd	plate	0	0	0
##	130	2017	even	plate	0	0	0
##	131	2019	odd	plate	0	0	0
##	132	2021	even	plate	0	0	0
		2016		plate	0	0	0
##	134	2020		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
		2021		plate	0	0	0
		2021		plate	0	0	0
		2019		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
		2018		plate	0	0	0
		2019		plate	1	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0		0
		2017		=	0	0	0
				plate plate	0	0	0
				=		0	
		2020		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
		2018		plate	0	0	0
				plate	0	0	0
		2019		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	1	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	1	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
##	177	2018	even	plate	0	0	1

				plate	0	0	0
		2017		plate	0	0	0
				plate	0	0	0
		2019		plate	0	0	0
			even	plate	0	0	0
		2016		plate	0	0	0
##	184	2019	even	plate	0	0	0
		2016	odd	plate	0	0	0
		2018		plate	0	0	0
			even	plate	0	0	0
		2018		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
##	193	2018	even	plate	0	0	0
##	194	2018	even	plate	0	0	0
##	195	2020	even	plate	0	0	0
##	196	2018	even	plate	1	0	0
##	197	2021	even	plate	0	0	0
##	198	2019	even	plate	0	0	0
##	199	2015	even	plate	0	0	0
##	200	2015	even	plate	0	0	0
##	201	2022	odd	plate	0	0	0
##	202	2018	even	plate	0	0	0
##	203	2018	even	plate	0	0	0
##	204	2019	odd	plate	0	0	0
##	205	2019	even	plate	0	0	0
##	206	2019	odd	plate	0	0	0
##	207	2019	even	plate	0	1	0
##	208	2013	even	plate	0	0	0
##	209	2018	even	plate	0	0	0
##	210	2010	even	plate	0	0	0
##	211	2014	even	plate	0	0	0
##	212	2017	odd	plate	0	0	0
		2018		plate	1	0	0
##	214	2015	even	plate	0	0	0
##	215	2016	even	plate	0	0	0
##	216	2019	odd	plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
##	223	2012		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
		2016		plate	0	0	0
		2017		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
			- 44	r	-	-	-

			2016		plate	0	0	0
					plate	0	0	0
					plate	0	0	0
			2019		plate	0	0	0
					plate	0	0	0
					plate	0	0	0
			2018		plate	0	0	0
					plate	0	0	0
					plate	0	0	0
					plate	0	0	0
			2021		plate	1	0	0
					plate	0	0	0
					plate	0	0	0
			2018		plate	0	0	0
			2021		plate	0	0	0
			2016		plate	0	0	0
					plate	0	0	0
			2017		plate	0	0	0
			2019		plate	0	0	0
			2017		plate	0	0	0
			2019		plate	0	0	0
			2017		plate	0	0	0
			2016		plate	0	0	0
				even	plate	0	0	0
			2018		plate	1	0	0
					plate	0	0	0
#	#	258	2015	odd	plate	0	1	0
				even	plate	0	0	0
			2019	odd	plate	0	0	0
			2014		plate	0	0	0
			2019		plate	0	0	0
			2015		plate	0	0	0
			2020		plate	0	0	0
			2020		plate	0	0	0
			2021		plate	0	0	0
					plate	0	0	0
			2019		plate	0	0	0
			2020		plate	0	0	0
			2018		plate	0	0	0
			2019		plate	0	0	0
			2013		plate	0	0	0
			2021		plate	0	0	0
			2020		plate	0	0	0
			2017		plate	0	0	0
			2017		plate	0	0	0
			2018		plate	0	0	0
					plate	0	0	0
					plate	0	0	0
			2018		plate	0	0	0
					plate	0	0	0
					plate	0	0	0
			2016		plate	0	0	0
			2018		plate	0	0	0
#	#	285	2019	even	plate	0	0	0

				plate	0	0	0
##	287	2017	odd	plate	0	0	0
##	288	2020	even	plate	0	0	0
##	289	2020	odd	plate	0	0	0
##	290	2019		plate	0	0	0
				plate	0	0	0
		2020		plate	1	0	0
				plate	0	0	0
				plate	0	0	0
		2016		plate	0	0	0
				plate	0	0	1
		2015		=	0	0	0
				plate			
		2018		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
		2017		plate	0	0	0
		2017		plate	0	0	0
				plate	0	0	0
		2018	odd	plate	0	0	0
##	305	2019	odd	plate	0	0	0
##	306	2019	even	plate	0	0	0
##	307	2018	even	plate	0	0	0
##	308	2019	even	plate	0	0	1
##	309	2018	even	plate	0	0	0
##	310	2019	odd	plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	1
				plate	0	0	0
		2018		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				=			_
				plate	0	0	0
		2022		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
##	326	2014	even	plate	0	0	0
##	327	2017	even	plate	0	0	0
##	328	2019	odd	plate	0	0	0
##	329	2020	odd	plate	0	0	0
##	330	2019	odd	plate	0	0	0
##	331	2018	odd	plate	0	0	0
##	332	2018	odd	plate	0	0	0
		2018		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
πт	509	2011	ouu	P-700			0

				plate	0	0	0
				plate	0	0	1
##	342	2019	even	plate	0	0	0
##	343	2018	even	plate	0	0	0
##	344	2018	odd	plate	0	0	0
##	345	2019	even	plate	0	0	0
##	346	2018	even	plate	0	0	0
		2014		plate	0	0	0
##	348	2013		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
		2019		plate	0	0	0
				plate	0	0	0
		2018		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
		2018		plate	0	0	0
		2020		plate	0	0	0
				plate	0	0	0
		2018		=	0	0	0
				plate	0		
		2020		plate	0	1	0
				plate		0	0
				plate	0	0	0
				plate	0	0	0
		2021		plate	0	0	0
		2018		plate	0	0	0
		2018		plate	0	0	0
		2017		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
		2020		plate	0	0	0
		2016		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
		2014		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
			odd	plate	0	0	0
			odd	plate	0	0	0
##	385	2019	odd	plate	0	0	0
##	386	2019	odd	plate	0	0	0
##	387	2020	even	plate	0	0	0
##	388	2019	even	plate	0	0	0
##	389	2014	odd	plate	0	0	0
##	390	2017	even	plate	0	0	0
##	391	2015	odd	plate	0	0	0
##	392	2016	even	plate	0	0	0
##	393	2022	even	plate	0	0	0

##	394	2021	even	plate	0	0	0
		2019		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
		2016		plate	0	0	0
		2018	odd	plate	0	0	0
		2019	odd	plate	0	0	0
		2014	odd	plate	0	0	0
		2016		plate	0	0	0
				plate	0	0	0
			even	plate	0	0	0
##	405	2020	odd	plate	0	0	0
		2015	odd	plate	0	0	0
		2019		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
##	410	2019	even	plate	0	0	0
		2019		plate	0	0	0
##	412	2020	even	plate	0	0	0
##	413	2017	even	plate	0	0	0
##	414	2018	even	plate	0	0	0
##	415	2018	even	plate	0	0	0
##	416	2018	even	plate	0	0	0
##	417	2018	even	plate	0	0	0
##	418	2018	odd	plate	0	0	0
##	419	2014	odd	plate	0	0	0
##	420	2018	odd	plate	0	0	0
##	421	2019	even	plate	0	0	0
##	422	2019	even	plate	0	0	0
##	423	2016	odd	plate	0	0	0
##	424	2018	odd	plate	0	0	0
##	425	2013	odd	plate	0	0	0
##	426	2019	even	plate	0	0	0
##	427	2021	odd	plate	0	0	0
##	428	2018	even	plate	0	0	0
##	429	2016	odd	plate	0	0	0
##	430	2018	even	plate	0	0	0
##	431	2019	even	plate	0	0	0
##	432	2017	even	plate	0	0	0
##	433	2019	odd	plate	0	0	0
##	434	2019	even	plate	0	0	0
##	435	2018	odd	plate	0	0	0
##	436	2019	odd	plate	0	0	0
##	437	2019	odd	plate	0	0	0
##	438	2016	even	plate	0	0	0
##	439	2016	even	plate	0	0	0
##	440	2017	odd	plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
		2016		plate	1	0	0
		2018		plate	0	0	0
##	446	2021		plate	0	0	0
				plate	0	0	0

				plate	0	0	0
##	449	2018	even	plate	0	0	0
##	450	2018	even	plate	0	0	0
##	451	2018	even	plate	0	0	0
##	452	2019	odd	plate	1	0	0
##	453	2019	odd	plate	0	0	0
##	454	2018	odd	plate	0	0	0
##	455	2014	even	plate	0	0	0
		2016	odd	plate	0	0	0
##	457	2019	odd	plate	0	0	0
##	458	2019	odd	plate	0	0	0
##	459	2014	odd	plate	0	0	0
##	460	2019	odd	plate	0	0	0
				plate	0	0	0
##	462	2021	even	plate	0	0	0
		2021		plate	0	0	0
##	464	2021	even	plate	0	0	0
		2014		plate	0	0	0
				plate	0	0	0
##	467	2019	even	plate	0	0	0
##	468	2019	odd	plate	0	0	0
##	469	2017	odd	plate	0	0	0
##	470	2018	odd	plate	0	0	0
##	471	2016	odd	plate	0	0	0
##	472	2014	even	plate	0	0	0
##	473	2020	even	plate	0	0	0
##	474	2019	odd	plate	0	1	0
##	475	2014	even	plate	0	0	0
##	476	2018	odd	plate	0	0	0
##	477	2021	even	plate	0	0	0
##	478	2019	even	plate	0	0	0
##	479	2017	odd	plate	0	0	0
##	480	2019	odd	plate	0	0	0
##	481	2018	odd	plate	0	0	0
##	482	2016	even	plate	0	0	0
##	483	2018	odd	plate	0	0	0
##	484	2020	odd	plate	0	0	0
##	485	2021	odd	plate	0	0	0
##	486	2021	even	plate	0	0	0
				plate	0	0	0
			odd	plate	0	0	0
##	489	2020	odd	plate	0	0	0
		2019		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
##	495	2016	even	plate	0	0	0
##	496	2018	odd	plate	0	0	0
				plate	0	0	0
				plate	0	0	0
			even	plate	0	0	0
			odd	plate	0	0	0
##	501	2020	odd	plate	0	0	0

		2017		plate	0	0	0
				plate	0	0	0
##	504	2021	even	plate	0	0	0
		2020		plate	0	0	0
		2021		plate	0	0	0
		2019		plate	0	0	0
				plate	0	0	0
		2020		plate	0	0	0
		2014		plate	0	0	0
				plate	0	0	0
		2018		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
		2019		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
		2018		plate	0	0	0
		2019		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
			even	plate	0	0	0
		2021		plate	0	0	0
			even	plate	0	0	0
##	526	2017		plate	0	0	0
		2019	odd	plate	0	0	0
		2018	odd	plate	0	0	0
##	529	2017	odd	plate	0	0	0
##	530	2018	even	plate	0	0	0
		2012	odd	plate	0	0	0
##	532	2017	odd	plate	0	0	0
				plate	1	0	0
				plate	0	0	0
		2017	odd	plate	0	0	0
		2019		plate	0	0	0
		2019		plate	0	0	0
		2018		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	1
				plate	0	0	0
				plate	0	0	0
		2021		plate	0	0	0
		2018		plate	0	0	0
		2016		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
##	555	2019	odd	plate	1	1	0

				plate	0	0	0
		2022		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	1	0	0
##	561	2010		plate	0	0	1
		2022		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	1
				plate	0	0	0
##	567	2022	even	plate	0	0	0
##	568	2016	odd	plate	0	0	0
##	569	2018	odd	plate	0	0	0
##	570	2019	even	plate	0	0	0
##	571	2021	even	plate	0	0	0
##	572	2015	odd	plate	0	0	0
##	573	2016	odd	plate	0	0	0
##	574	2018	odd	plate	0	0	0
##	575	2014	odd	plate	0	0	0
##	576	2019	even	plate	0	0	0
##	577	2015	even	plate	0	0	0
##	578	2021	odd	plate	0	0	0
##	579	2015	even	plate	0	0	0
##	580	2019	odd	plate	0	0	0
##	581	2019	even	plate	0	0	0
##	582	2019	odd	plate	0	0	0
##	583	2016		plate	0	0	0
##	584	2012		plate	0	0	0
##	585	2018		plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
##	589	2018	even	plate	0	0	0
##	590	2017	even	plate	0	0	0
##	591	2019	even	plate	0	0	0
		2017		plate	0	0	1
##	593	2017	even	plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
				plate	0	0	0
			2.011	r	-	-	-

##		brand	sports.mode	sun.roof	instalment_month
##	1	Daihatsu	0	0	2060000
##	2	Toyota	0	0	1670000
##	3	Nissan	0	0	3440000
##	4	Toyota	0	0	4440000
##	5	Toyota	0	0	2380000
##	6	Toyota	0	0	3670000
##	7	Toyota	0	0	4300000
##	8	Mitsubishi	0	1	3870000
##	9	Honda	0	0	2850000
##	10	Honda	0	0	5050000
##	11	Toyota	0	0	2380000
##	12	Daihatsu	0	0	2320000
##	13	Daihatsu	0	0	2240000
##	14	Daihatsu	0	0	2340000
##	15	Toyota	0	0	2400000
##	16	Wuling	0	1	4030000
##	17	Daihatsu	0	0	2870000
##	18	Toyota	0	0	2380000
##	19	Honda	0	0	3160000
##	20	Daihatsu	0	0	2200000
##	21	Daihatsu	0	0	2150000
##	22	Daihatsu	0	0	2260000
##	23	Suzuki	0	0	3870000
##	24	Daihatsu	0	0	2320000
##	25	Honda	0	0	6930000
##	26	Wuling	0	0	2069999
##	27	Wuling	0	1	4120000
##	28	Nissan	0	0	4010000
##	29	Toyota	0	0	2810000
##	30	Honda	0	0	2750000
##	31	Daihatsu	0	0	3930000
##	32	Toyota	0	0	2590000
##	33	Honda	0	0	4240000
##	34	Mitsubishi	0	0	4400000
##	35	Mitsubishi	0	0	4160000
##	36	Daihatsu	0	0	1810000
##	37	Toyota	0	0	2510000
##	38	Daihatsu	0	0	2180000
##	39	Toyota	0	0	2710000
##	40	Honda	0	0	5050000
##	41	Mitsubishi	0	0	4650000
##	42	Mitsubishi	1	0	3200000
##	43	Honda	0	0	2890000
##	44	Toyota	0	0	2910000
##	45	Mitsubishi	0	1	3970000
##	46	Honda	0	0	5180000
##	47	Wuling	0	0	4050000
##	48	Suzuki	0	0	2270000
##	49	Wuling	1	0	4139999
##	50	Daihatsu	0	0	2380000
##	51	Daihatsu	0	0	3930000
##	52	Mitsubishi	0	0	4340000
##	53	Honda	0	0	6830000

##	54	Honda	0	0	5200000
##	55	Toyota	1	0	4930000
##	56	Honda	1	0	3160000
##	57	Toyota	0	0	3930000
##	58	Toyota	0	0	2490000
##	59	Toyota	1	0	4750000
##	60	Suzuki	0	0	2240000
##	61	Toyota	0	0	2910000
##	62	Daihatsu	0	0	2510000
##	63	Honda	0	0	2590000
##	64	Daihatsu	0	0	2160000
##	65	Daihatsu	0	0	4220000
##	66	Honda	0	0	3000000
##	67	Honda	0	0	5240000
##	68	Honda	1	0	
			1		2830000
##	69	Honda		0	3670000
##	70	Toyota	0	0	7440000
##	71	Mazda	0	0	8680000
##	72	Nissan	0	0	3020000
##	73	Suzuki	0	0	3320000
##	74	Toyota	0	0	2020000
##	75	Toyota	0	0	2610000
##	76	Suzuki	0	0	3020000
##	77	Honda	0	0	4710000
##	78	Wuling	0	0	3420000
##	79	Wuling	0	1	5560000
##	80	Wuling	0	0	2120000
##	81	Daihatsu	0	0	2040000
##	82	Wuling	0	0	4160000
##	83	Daihatsu	0	0	2380000
##	84	Toyota	1	0	6440000
##	85	Toyota	0	0	1770000
##	86	Suzuki	0	0	3590000
##	87	Suzuki	0	0	3260000
##	88	Daihatsu	0	0	2320000
##	89	Mitsubishi	0	0	4260000
##	90	Mitsubishi	0	0	4280000
##	91	Daihatsu	0	0	2040000
##	92	Daihatsu	0	0	2770000
##	93	Wuling	0	1	4139999
##	94	Daihatsu	0	0	3020000
##	95	Wuling	0	1	4360000
##	96	Toyota	0	0	4460000
##	97	Honda	0	0	2890000
##	98	Honda	0	0	5320000
##	99	Honda	0	0	4030000
##	100	Daihatsu	0	0	1960000
##	101	Toyota	0	0	7330000
##	102	Daihatsu	0	0	2360000
##	103	Toyota	0	0	2750000
##	104	Toyota	0	0	4560000
##	105	Honda	0	0	2770000
##	106	Daihatsu	0	0	3260000
##	107	Wuling	1	0	3670000
		0			

##	108	Wuling	0	1	4200000
##	109	Wuling	0	0	4139999
##	110	Honda	0	0	4730000
##	111	Toyota	0	0	7440000
##	112	Mitsubishi	0	1	7950000
##	113	Honda	0	0	5010000
##	114	Mitsubishi	0	0	4099999
##	115	Suzuki	0	0	4280000
##	116	Daihatsu	0	0	2040000
##	117	Honda	1	0	3180000
##	118	Honda	1	0	3500000
##	119	Toyota	1	0	3890000
##	120	Toyota	0	0	4320000
##	121	Honda	1	0	2950000
##	122	Toyota	0	0	4099999
##	123	Honda	0	0	4730000
##	124	Daihatsu	0	0	3320000
##	125	Toyota	0	0	4870000
##	126	Honda	0	0	5050000
##	127	Honda	1	0	3140000
##	128	Honda	0	0	5420000
##	129	Daihatsu	0	0	2340000
##	130	Honda	0	0	6850000
##	131	Toyota	0	0	4440000
##	132	Daihatsu	0	0	4400000
##	133	Suzuki	0	0	2630000
##	134	Toyota	1	0	6850000
##	135	Honda	1	0	2890000
##	136	Daihatsu	0	0	2380000
##	137	Toyota	0	0	4730000
##	138	Toyota	0	0	4890000
##	139	Wuling	0	1	4910000
##	140	Daihatsu	0	0	2340000
##	141	Toyota	0	0	1940000
##	142	Daihatsu	0	0	1890000
##	143	Daihatsu	0	0	2000000
##	144	Toyota	0	0	2530000
##	145	Toyota	0	0	4220000
##	146	Wuling	0	1	3630000
##		Mitsubishi	0	0	4030000
##		Mitsubishi	0	0	4300000
##	149	Suzuki	0	0	2420000
##	150	Toyota	0	0	2570000
##	151	Suzuki	0	0	3100000
##	152	Toyota	0	0	2140000
##	153	Daihatsu	0	0	2300000
##		Mitsubishi	0	1	7230000
##	155	Honda	1	0	3240000
##	156	Toyota	0	0	3140000
##	157	Daihatsu	0	0	2770000
##			0	0	
##	158 159	Toyota Daihatsu	0	0	4300000 3950000
##	160	Dainatsu	0	0	3910000
##		Honda	0		
##	161	попа	0	0	4280000

##	162	Honda	0	0	4300000
##	163	Honda	0	0	5200000
##	164	Mazda	0	0	3750000
##	165	Toyota	0	0	4460000
##	166	Toyota	1	0	5050000
##	167	Toyota	0	0	2440000
##	168	Toyota	0	0	2470000
##	169	Nissan	0	0	3870000
##	170	Honda	0	0	4810000
##	171	Toyota	0	0	4340000
##	172	Honda	0	0	3730000
##	173	Honda	0	0	3080000
##	174	Suzuki	0	0	3040000
##	175	Daihatsu	0	0	4440000
##	176	Toyota	0	0	4340000
##	177	Toyota	0	0	4050000
##	178	Wuling	0	0	2590000
##	179	Suzuki	0	0	3440000
##	180	Mitsubishi	0	0	4300000
##	181	Suzuki	0	0	3990000
##	182	Suzuki	0	0	2630000
##	183	Daihatsu	0	0	2260000
##	184	Daihatsu	0	0	2080000
##	185	Mazda	0	0	3550000
##	186	Daihatsu	0	0	3770000
##	187	Honda	0	0	5220000
##	188	Honda	0	0	5260000
##	189	Mitsubishi	0	0	4280000
##	190	Honda	1	0	3340000
##	191	Honda	0	0	4179999
##	192	Toyota	1	0	5320000
##	193	Daihatsu	0	0	2440000
##	194	Honda	1	0	3080000
##	195	Honda	1	0	3300000
##	196	Honda	0	0	5260000
##	197	Honda	0	0	5340000
##	198	Honda	0	0	5320000
##	199	Mazda	0	0	3300000
##	200	Mazda	0	0	3380000
##	201	Toyota	0	0	2770000
##	202	Mitsubishi	0	0	4320000
##	203	Mitsubishi	0	0	4340000
##	204	Nissan	0	0	4050000
##	205	Toyota	0	0	4500000
##	206	Toyota	0	0	4460000
##	207	Daihatsu	0	0	4139999
##	208	Daihatsu	0	0	2160000
##	209	Honda	0	0	3710000
##	210	Toyota	0	0	2630000
##	211	Nissan	0	0	2040000
##	212	Daihatsu	0	0	2000000
##	213	Honda	0	0	4560000
##	214	Honda	0	0	2830000
##	215	Toyota	0	0	2060000

##	216	Daihatsu	0	0	2400000
##	217	Daihatsu	0	0	2060000
##	218	Toyota	0	0	3280000
##	219	Suzuki	0	0	2260000
##	220	Datsun	0	0	1570000
##	221	Toyota	0	0	2280000
##	222	Daihatsu	0	0	3850000
##	223	Daihatsu	0	0	2080000
##	224	Toyota	0	0	4400000
##	225	Toyota	1	0	6400000
##	226	Suzuki	0	0	3200000
##	227	Toyota	0	0	2830000
##	228	Honda	1	0	3200000
##	229	Mitsubishi	0	0	4099999
##	230	Mitsubishi	0	0	4260000
##	231	Mazda	0	0	6580000
##	232	Honda	0	0	2670000
##	233	Mitsubishi	0	0	8720000
##	234	Toyota	1	0	5660000
##	235	Suzuki	0	0	3790000
##	236	Toyota	0	0	2950000
##	237	Suzuki	0	0	4500000
##	238	Suzuki	0	0	3360000
##	239	Honda	0	0	5340000
##	240	Toyota	1	0	5200000
##		Mitsubishi	0	0	4340000
##	241	Wuling	0	0	4480000
##	243	Suzuki	0	0	2550000
##	243	Hyundai	0	1	650000
##		Mitsubishi	0	0	3950000
	245				
##	246	Toyota	0	0	4560000
##	247	Toyota	0	0	5200000
##	248	Suzuki	0	0	3140000
##	249	Suzuki	0	0	3160000
##	250	Suzuki	0	0	3690000
##	251	Honda	1	0	2910000
##	252	Honda	1	0	3180000
##	253	Honda	0	0	3440000
##	254	Suzuki	0	0	3220000
##	255	Honda	1	0	2970000
##	256	Hyundai	0	1	8500000
##		Mitsubishi	0	0	4320000
##	258	Nissan	0	0	4050000
##	259	Honda	1	0	2790000
##	260	Honda	1	0	3180000
##	261	Honda	0	0	2160000
##	262	Mazda	0	0	8640000
##	263	Toyota	0	0	2240000
##	264	Honda	1	0	3930000
##	265	Honda	1	0	3300000
##	266	Suzuki	0	0	4260000
##		Mitsubishi	0	0	4139999
##	268	Suzuki	0	0	3810000
##	269	Honda	1	0	3690000

##		Mitsubishi	0	0	4320000
##	271	Toyota	0	0	2690000
##	272	Toyota	0	0	3630000
##	273	Wuling	0	0	3650000
##	274	Honda	1	0	3320000
##	275	Mazda	0	0	7600000
##	276	Toyota	0	0	3790000
##	277	Honda	1	0	3040000
##	278	Toyota	0	0	6600000
##	279	Wuling	0	0	2420000
##	280	Mitsubishi	0	0	3890000
##	281	Toyota	0	0	6460000
##	282	Toyota	0	0	4650000
##	283	Honda	1	0	2590000
##	284	Mitsubishi	0	0	4030000
##	285	Suzuki	0	0	3730000
##	286	Toyota	0	0	5110000
##	287	Toyota	0	0	3550000
##	288	Honda	1	0	3770000
##	289	Honda	1	0	3300000
##	290	Honda	0	0	4280000
##	291	Honda	0	0	5500000
##	292	Honda	0	0	5750000
##	293	Suzuki	0	0	2440000
##	294	Nissan	0	0	4280000
##	295	Suzuki	0	0	3220000
##	296	Mazda	0	0	4540000
##	297	Nissan	0	0	2360000
##	298	Mazda	0	0	5660000
##		Mitsubishi	0	0	4360000
##	300	Nissan	0	0	2470000
##	301	Daihatsu	0	0	2810000
##		Mitsubishi	0	0	4010000
##	303	Suzuki	0	0	4010000
##	304	Daihatsu	0	0	3180000
##	305	Toyota	0	0	3650000
##	306	Honda	1	0	3180000
##	307	Wuling	0		2140000
##	308	•	1	0	3810000
##	309	Toyota Honda	1		
##	310	Honda	1	0	2870000
		нопаа Honda		0	3220000
##	311		1	0	4139999
##	312	Honda	1	0	2810000
##	313	Toyota	0	0	3420000
##		Mitsubishi	0	0	4320000
##	315	Daihatsu	0	0	2530000
##	316	Nissan	0	0	2570000
##	317	Toyota	0	0	4320000
##	318	Nissan	0	0	2530000
##	319	Toyota	0	0	11040000
##	320	Toyota	0	0	6420000
##		Mitsubishi	0	0	4179999
##	322	Toyota	0	0	3610000
##	323	Toyota	1	0	6500000

##	324	Honda	1	0	2690000
##	325	Suzuki	0	0	2950000
##	326	Toyota	0	0	3670000
##	327	Suzuki	0	0	2630000
##	328	Mitsubishi	0	0	4520000
##	329	Daihatsu	0	0	4160000
##	330	Toyota	0	0	2750000
##	331	Honda	1	0	2970000
##	332	Mitsubishi	0	0	4139999
##	333	Mitsubishi	0	0	4360000
##	334	Mitsubishi	0	0	4380000
##	335	Mitsubishi	0	0	4560000
##		Mitsubishi	0	0	4540000
##	337	Toyota	1	0	5810000
##	338	Suzuki	0	0	3280000
##	339	Toyota	0	0	5640000
##	340	Honda	0	0	3670000
##	341	Toyota	0	0	4030000
##		Mitsubishi	0	0	4200000
##		Mitsubishi	0	0	4300000
##	344	Toyota	0	0	2690000
##	345	Nissan	0	0	6640000
##	346	Toyota	0	0	4340000
##	347	Daihatsu	0	0	2530000
##	348	Nissan	0	0	1960000
##	349	Honda	0	0	2870000
##	350	Toyota	1	0	7740000
##	351	Honda	1	0	3670000
##	352	Honda	0	0	3830000
##	353	Toyota	0	0	4300000
##	354	Daihatsu	0	0	3140000
##	355	Toyota	0	0	3460000
##	356	Toyota	0	0	4340000
##	357	Honda	0	0	3380000
##		Mitsubishi	0	0	8740000
##	359		1	0	6460000
##	360	Toyota Daihatsu	0	0	4420000
	361	Honda	1	0	3100000
##	362	Chevrolet	0	0	2830000
##	363		0		
	364	Nissan Suzuki	0	0	4099999 2080000
##	365	Honda	1	0	3160000
##	366 367	Honda Mitsubishi	1 0	0	2930000 4300000
##					
##		Mitsubishi	0	0	4340000
##	369	Toyota	0	0	3020000
##	370	Toyota	0	0	3100000
##	371	Toyota	0	0	3500000
##	372	Toyota	1	0	4930000
##	373	Toyota	0	0	7950000
##	374	Toyota	0	0	5320000
##	375	Honda	1	0	2670000
##	376	Honda	0	0	2470000
##	377	Honda	1	0	3340000

##	378	Mazda	0	1	4080000
##	379	Suzuki	0	0	4099999
##	380	Honda	1	0	3500000
##	381	Toyota	0	0	4540000
##	382	Suzuki	1	0	2650000
##	383	Mazda	0	0	3870000
##	384	Toyota	0	0	5360000
##	385	Honda	1	0	4340000
##	386	Honda	0	0	3260000
##	387	Daihatsu	0	0	2630000
##	388	Honda	0	0	3240000
##	389	Ford	0	0	2470000
##	390	Mitsubishi	0	0	4260000
##	391	Nissan	0	0	2690000
##	392	Nissan	0	0	4560000
##	393	Daihatsu	0	0	4080000
##	394	Daihatsu	0	0	3610000
##	395	Daihatsu	0	0	4260000
##	396	Datsun	0	0	2140000
##	397	Honda	0	0	2930000
##	398	Honda	0	0	2870000
##	399	Mitsubishi	0	0	4260000
##	400	Mitsubishi	0	0	4790000
##	401	Nissan	0	0	2790000
##	402	Nissan	0	0	2750000
##	403	Nissan	0	0	3020000
##	404	Nissan	0	0	3180000
##	405	Suzuki	0	0	2220000
##	406	Mazda	0	0	5260000
##	407	Mitsubishi	0	0	9030000
##	408	Suzuki	0	0	2870000
##	409	Honda	0	0	3280000
##	410	Honda	0	0	3260000
##	411	Honda	0	0	3240000
##	412	Honda	0	0	3770000
##	413	Honda	0	0	3570000
##	414	Mitsubishi	0	0	4010000
##	415	Mitsubishi	0	0	4320000
##		Mitsubishi	0	0	4320000
##	417	Mitsubishi	0	0	4320000
##	418	Mitsubishi	0	0	4320000
##	419	Toyota	0	0	2490000
##	420	Toyota	0	0	3280000
##	421	Toyota	0	0	3690000
##	422	Toyota	0	0	3710000
##	423	Toyota	0	0	5220000
##	424	Toyota	0	0	2530000
##	425	Toyota	0	0	3480000
##	426	Toyota	0	0	6910000
##	427	Toyota	0	0	4280000
##	428	Toyota	0	0	4320000
##	429	Toyota	0	0	3550000
##	430	Toyota	0	0	3790000
##	431	Toyota	0	0	4500000
11.11	101	ioyota	U	U	4000000

##		Mitsubishi	0	0	4050000
##	433	Wuling	0	0	2220000
##	434	Toyota	0	0	2440000
##	435	Mitsubishi	0	0	4280000
##	436	Suzuki	0	0	3630000
##	437	Toyota	0	0	5730000
##	438	Datsun	0	0	1590000
##	439	Mazda	0	0	3810000
##	440	Honda	0	0	4280000
##	441	Nissan	0	0	3650000
##	442	Toyota	0	0	4120000
##	443	Honda	1	0	3080000
##	444	Honda	0	0	3970000
##	445	Daihatsu	0	0	3810000
##	446	Toyota	0	0	3550000
##	447	Toyota	1	0	4810000
##	448	Nissan	0	0	4200000
##	449	Honda	0	0	2730000
##	450	Honda	1	0	3520000
##	451	Toyota	0	0	4030000
##	452	Honda	0	0	5260000
##	453	Daihatsu	0	0	3970000
##	454	Honda	1	0	2770000
##	455	Suzuki	0	0	2630000
##	456	Honda	1	0	2930000
##	457	Toyota	0	0	2610000
##	458	Suzuki	0	0	1870000
##	459	Toyota	0	0	3060000
##	460	Daihatsu	0	0	2360000
##	461	Toyota	0	0	2490000
##	462	Toyota	0	0	2890000
##	463	Honda	0	0	5750000
##	464	Toyota	0	0	7540000
##	465	Toyota	0	0	5750000
##	466	Honda	0	0	4010000
##	467	Toyota	0	0	2570000
##	468	Suzuki	0	0	3910000
##	469	Suzuki	0	0	1870000
##	470	Suzuki	0	0	3260000
##	471	Toyota	0	0	2200000
##	472	Daihatsu	0	0	2870000
##	473	Daihatsu	0	0	2670000
##	474	Wuling	0	0	4139999
##	475	Daihatsu	0	0	2360000
##	476	Daihatsu	0	0	2260000
##	477	Honda	0	0	5340000
##	478	Honda	1	0	3950000
##	479	Toyota	0	0	2300000
##	480	Suzuki	0	0	3910000
##	481	Suzuki	1	0	2570000
##	482	Toyota	0	0	2160000
##	483	Mazda	0	0	4260000
##	484	Toyota	0	0	4010000
##	485	Toyota	0	0	4520000
rπ	100	Toyota	U	O	-1020000

##	486	Honda	1	0	3340000
##	487	Suzuki	1	0	2870000
##	488	Honda	0	0	4460000
##	489	Honda	0	0	3340000
##	490	Toyota	0	0	2490000
##	491	Toyota	0	0	3730000
##	492	Mitsubishi	0	0	4220000
##	493	Honda	0	0	4050000
##	494	Toyota	0	0	4560000
##	495	Toyota	0	0	2300000
##	496	Honda	0	0	2610000
##	497	Honda	1	0	3340000
##	498	Honda	0	0	5400000
##	499	Mitsubishi	0	0	4080000
##	500	Honda	1	0	3140000
##	501	Toyota	0	0	4770000
##	502	Suzuki	0	0	3080000
##	503	Toyota	0	0	2650000
##	504	Toyota	0	0	4930000
##	505	Suzuki	0	0	3830000
##	506	Suzuki	0	0	4240000
##	507	Toyota	0	0	2610000
##	508	Honda	0	0	2570000
##	509	Honda	1	0	3260000
##	510	Nissan	0	0	3520000
##	511	Toyota	0	0	3080000
##	512	Daihatsu	0	0	2020000
##	513	Toyota	0	0	2790000
##	514	Toyota	0	0	2890000
##	515	Honda	1	0	3630000
##	516	Honda	0	0	4460000
##	517	Nissan	0	0	2970000
##	518	Toyota	0	0	2590000
##	519	Toyota	0	0	4360000
##	520	Honda	0	0	2870000
##	521	Toyota	0	0	2200000
##	522	Daihatsu	0	0	1710000
##	523	Mitsubishi	0	0	4340000
##	524	Daihatsu	0	0	3890000
##	525	Honda	0	0	2950000
##	526	Toyota	0	0	3340000
##	527	Suzuki	0	0	2730000
##	528	Toyota	0	0	2650000
##	529	Daihatsu	0	0	2530000
##	530	Daihatsu	0	0	1850000
##	531	Daihatsu	0	0	1790000
##	532	Honda	1	0	3140000
##	533	Honda	0	0	5380000
##	534	Toyota	0	0	6930000
##	535	Toyota	0	0	2440000
##	536	Honda	1	0	3180000
##	537	Daihatsu	0	0	3420000
##	538	Honda	0	0	3750000
##		Mitsubishi	0	0	4520000

##	540	Mitsubishi	0	0	4340000
##	541	Toyota	0	0	5580000
##	542	Nissan	0	0	2280000
##	543	Suzuki	0	0	3750000
##	544	Toyota	0	0	4970000
##	545	Toyota	0	0	3810000
##	546	Toyota	0	0	2470000
##	547	Suzuki	0	0	1750000
##	548	Daihatsu	0	0	4480000
##	549	Datsun	0	0	2280000
##	550	Honda	0	0	2280000
##	551	Nissan	0	0	1940000
##	552	Honda	1	0	4360000
##	553	Mazda	0	0	3690000
##	554	Mitsubishi	0	0	4280000
##	555	Wuling	0	0	4160000
##	556	Nissan	0	0	4260000
##	557	Mitsubishi	0	0	3610000
##	558	Suzuki	0	0	3260000
##	559	Honda	1	0	2690000
##	560	Mitsubishi	0	1	8230000
##	561	Honda	0	0	2630000
##	562	Suzuki	0	0	4910000
##	563	Toyota	0	0	3260000
##	564	Mazda	0	1	8820000
##	565	Toyota	0	0	3320000
##	566	Daihatsu	0	0	2220000
##	567	Daihatsu	0	0	2770000
##	568	Honda	0	0	2400000
##	569	Honda	1	0	2890000
##	570	Mazda	0	0	4480000
##	571	Toyota	0	0	3000000
##	572	Nissan	0	0	2670000
##	573	Nissan	0	0	4050000
##	574	Honda	0	1	7780000
##	575	Toyota	0	0	2490000
##	576	BMW	1	0	9090000
##	577	Nissan	0	0	2300000
##	578	Suzuki	0	0	2400000
##	579	Toyota	0	0	2040000
##	580	Suzuki	0	0	2950000
##	581	Daihatsu	0	0	2490000
##	582	Toyota	1	0	5660000
##	583	Nissan	0	0	2060000
##	584	Honda	0	0	2080000
##	585	Daihatsu	0	0	2380000
##		Mitsubishi	0	0	4520000
##	587	Toyota	0	0	2040000
##	588	Honda	1	0	2890000
##	589	Honda	1	0	3160000
##	590	Honda	1	0	3240000
##	590	Toyota	0	0	4560000
##	591	Toyota	0	0	3890000
##	593	Daihatsu	0	0	2470000
##	JJJ	חפווומופון	U	U	2410000

```
## 594
            Suzuki
                              0
                                        0
                                                    3910000
## 595
            Honda
                              1
                                        0
                                                    3360000
## 596
            Toyota
                              0
                                        0
                                                    4280000
## 597
            Suzuki
                              0
                                        0
                                                    2240000
## 598
                              0
                                        0
            Suzuki
                                                    2670000
## 599
            Mazda
                              0
                                        0
                                                    3750000
## 600
                              0
            Suzuki
                                        0
                                                    4440000
## 601
            Nissan
                              0
                                        0
                                                    4120000
## 602
            Honda
                              0
                                        0
                                                    3220000
## 603
            Toyota
                              0
                                        0
                                                    2490000
                              0
## 604
            Toyota
                                        0
                                                    4160000
## 605
            Toyota
                              0
                                        0
                                                    4770000
## 606
            Toyota
                              0
                                        0
                                                    2770000
## 607
                              0
                                        0
           Hyundai
                                                    5010000
## 608
            Toyota
                              0
                                        0
                                                    2360000
## 609
                                        0
          Daihatsu
                              0
                                                    3040000
##
                                             car.name vehicle.stability.control
## 1
                                          AYLA X 1.2
## 2
                              AGYA TRD SPORTIVO 1.0
                                                                                 0
## 3
                                         X-TRAIL 2.5
                                                                                 0
## 4
                                     YARIS S TRD 1.5
                                                                                 0
## 5
                                          AGYA G 1.2
                                                                                 0
## 6
                                        AVANZA G 1.3
                                                                                 0
## 7
                                        AVANZA G 1.5
                                                                                 0
                             OUTLANDER SPORT PX 2.0
## 8
                                                                                 0
## 9
                                    BRIO SATYA E 1.2
                                                                                 0
## 10
                                          HR-V S 1.5
                                                                                 0
## 11
                                      AGYA G TRD 1.2
                                                                                 0
## 12
                                          AYLA R 1.2
                                                                                 0
## 13
                                          AYLA R 1.2
                                                                                 0
## 14
                                      AYLA R DLX 1.2
                                                                                 0
## 15
                                      AGYA G TRD 1.2
                                                                                 0
## 16
                                    ALMAZ LT LUX 1.5
                                                                                 0
## 17
                                       TERIOS TX 1.5
                                                                                 0
## 18
                                      AGYA G TRD 1.2
                                                                                 0
## 19
                                       MOBILIO E 1.5
                                                                                 0
## 20
                                          AYLA R 1.2
                                                                                 0
## 21
                                          AYLA R 1.2
                                                                                 0
## 22
                                          AYLA R 1.2
                                                                                 0
## 23
                                       ERTIGA GL 1.5
                                                                                 0
## 24
                                          AYLA R 1.2
                                                                                 0
## 25
                                      CR-V TURBO 1.5
                                                                                 0
## 26
                                     CONFERO 2WD 1.5
                                                                                 0
## 27
                                    ALMAZ LT LUX 1.5
                                                                                 0
## 28
                                       LIVINA VL 1.5
                                                                                 1
## 29
                                         CALYA G 1.2
                                                                                 0
## 30
                                    BRIO SATYA E 1.2
                                                                                 0
## 31
                                        TERIOS R 1.5
                                                                                 1
## 32
                                        AVANZA G 1.3
                                                                                 0
## 33
                                          HR-V S 1.5
                                                                                 0
## 34
                               XPANDER ULTIMATE 1.5
                                                                                 0
## 35
                               XPANDER ULTIMATE 1.5
                                                                                 1
## 36
                                          AYLA X 1.0
                                                                                 0
## 37
                                      AGYA G TRD 1.2
                                                                                 0
```

##	38	AYLA X	1.2	()
##	39	CALYA G		(
##	40	HR-V E		(
##		OUTLANDER SPORT PX		(
##		OUTLANDER SPORT GLS		(
##		BRIO SATYA E		(
##		AVANZA G		(
##		OUTLANDER SPORT PX		(
##		HR-V SE		(
##		ALMAZ S+T		(
## ##		IGNIS GL ALMAZ S+T		(
##		ALMAZ STI AYLA R		(
##		TERIOS R		(
##		XPANDER ULTIMATE		(
##		CR-V TURBO		(
##		HR-V SE		(
##		KIJANG INNOVA REBORN G		(
##		MOBILIO RS			
##		KIJANG INNOVA V			
##		AGYA G TRD			
##	59	KIJANG INNOVA G	2.0		
##	60	IGNIS GL			
##	61	AGYA GR SPORT	1.2	(
##	62	AYLA R	1.2	(
##	63	MOBILIO E	1.5	(C
##	64	AYLA R	1.2	(C
##	65	TERIOS X DLX	1.5	(C
##	66	BRIO SATYA E	1.2		C
##	67	HR-V SE	1.5	()
##	68	BRIO SATYA E	1.2	()
##	69	BRIO RS	1.2	()
##	70	FORTUNER VRZ	2.4	(
##	71	CX-5 ELITE		(
##		GRAND LIVINA XV		(
##		ERTIGA GL			
##		AGYA G		(
##		AGYA G TRD			0
##		IGNIS GX		(
##		HR-V S			1
##		CORTEZ C T LUX			1
##		ALMAZ RS LT LUX + SC CVT		(
## ##		CONFERO S AYLA X		(
##		ALMAZ L TURBO		(
##		ALMAZ L TORBO AYLA R		(
##		KIJANG INNOVA REBORN VENTURER GASOLINE		(
##		AGYA G		(
##		BALENO HATCHBACK		(
##		BALENO HATCHBACK		(
##		AYLA R DLX		(
##		XPANDER ULTIMATE			1
##		XPANDER ULTIMATE			1
##		AYLA X		(

##	92	AYLA R	1.2	C
##	93	ALMAZ LT LUX	1.5	C
##	94	TERIOS X	1.5	C
##	95	ALMAZ LT LUX + SC CVT	1.5	C
##	96	AVANZA G	1.5	1
##	97	BRIO SATYA E	1.2	C
##	98	CITY RS HATCHBACK		C
##	99	HR-V E		C
	100	AYLA X ELEGANT		C
	101	KIJANG INNOVA G		1
	102	AYLA R DLX		C
	103	AVANZA E		C
	104	RUSH S TRD SPORTIVO		1
	105	MOBILIO E		C
	106	XENIA R STD		C
	107	CORTEZ S T LUX		C
	108	CORTEZ L T LUX		C
	109	ALMAZ LT LUX		C
	110	HR-V E		C
	111	FORTUNER VRZ		0
	112	PAJERO SPORT DAKAR 4X2		C
	113	CITY RS HATCHBACK		C
	114	XPANDER ULTIMATE		1
	115	XL7 ALPHA		1
	116	AYLA X		0
	117	BRIO SATYA E		0
	118	MOBILIO E		1
	119 120	YARIS G RUSH S TRD SPORTIVO		1
	120	MOBILIO E		0
	121	RUSH S		1
	123	HR-V E		C
	123	XENIA X		C
	125	RUSH S GR SPORT		C
	126	CR-V		C
	127	BRIO SATYA E		C
	128	HR-V SE		C
	129	AYLA R		C
	130	CR-V TURBO		C
	131	YARIS S TRD		C
	132	ROCKY R		1
	133	ERTIGA GL		C
	134	KIJANG INNOVA REBORN V		C
	135	BRIO SATYA E		C
	136	AYLA R		C
	137	RUSH S TRD SPORTIVO		1
	138	YARIS S TRD		C
	139	ALMAZ LT LUX CVT		C
	140	AYLA R DLX		C
	141	AGYA G		C
	142	AYLA X		C
	143	AYLA X		C
	144	CALYA G		C
	145	RUSH S TRD SPORTIVO		1
			-	-

##	146	CORTEZ T LUX	1.5	0
##	147	XPANDER EXCEED	1.5	0
##	148	XPANDER ULTIMATE	1.5	1
##	149	IGNIS GL		0
##	150	AGYA G TRD		0
	151	BALENO HATCHBACK		0
	152	AGYA G TRD		0
	153	AYLA R		0
	154	ECLIPSE CROSS ULTIMATE		0
	155	BRIO SATYA E		0
	156	AGYA GR SPORT		0
	157	AYLA R		0
	158	RUSH S TRD		1
	159	TERIOS R		1
	160	TERIOS X DLX		0
	161	HR-V E		0
	162	HR-V E		0
	163	HR-V E PLUS		0
	164	2 GT SKYACTIV		0
	165	RUSH S TRD SPORTIVO		0
	166	KIJANG INNOVA REBORN G		0
	167 168	AGYA G TRD		0
	169	AGYA G TRD X-TRAIL		0
	170	A-TRAIL HR-V E		0
	171	RUSH S TRD SPORTIVO		0
	172	BRIO RS		0
	173	BRIO RS		0
	174	ERTIGA GX		0
	175	ROCKY R		0
	176	RUSH S TRD SPORTIVO		1
	177	SIENTA Q		0
	178	CONFERO S L LUX		0
	179	SX4 S-CROSS		0
	180	XPANDER ULTIMATE		1
	181	ERTIGA SPORT GT		1
	182	IGNIS GX		0
	183	SIGRA R DLX		0
	184	SIGRA D		0
	185	2 R SKYACTIV		1
	186	TERIOS X DLX		0
	187	HR-V E PLUS		0
	188	HR-V E PLUS		0
	189	XPANDER SPORT		0
	190	BR-V E		0
	191	CITY E		0
	192	KIJANG INNOVA REBORN G		0
	193	AYLA R		0
	194	BRIO RS		0
	195	BRIO SATYA E		0
	196	HR-V E PLUS		0
##	197	CITY RS HATCHBACK		0
##	198	HR-V E		0
##	199	2 R SKYACTIV	1.5	1

##	200	2 R SKYACTIV	.5	1
##	201	AGYA G	.2	0
##	202	XPANDER ULTIMATE	.5	0
##	203	XPANDER ULTIMATE	.5	0
##	204	LIVINA VL	.5	0
##	205	RUSH S TRD SPORTIVO	.5	1
##	206	RUSH S TRD SPORTIVO		1
	207	TERIOS R DLX		0
	208	XENIA R DLX		0
	209	BR-V E PRESTIGE		0
	210	KIJANG INNOVA G LUX		0
	211	GRAND LIVINA XV		0
	212	SIGRA R DLX		0
	213	HR-V E		0
	214	MOBILIO RS		0
	215	CALYA G		0
	216	AYLA R DLX		0
	217	SIGRA R STD		0
	218	RUSH G ERTIGA GL		0
	219			0
	220 221	GO+ PANCA T CALYA G		0
	221	ROCKY R		1
	223	XENIA X STD		0
	224	RAIZE TURBO G		0
	225	KAIZE TORBO G KIJANG INNOVA Q		0
	226	ERTIGA GX		0
	227	AVANZA VELOZ		0
	228	MOBILIO E		0
	229	XPANDER SPORT		0
	230	XPANDER ULTIMATE		1
	231	CX-3 GT		0
	232	BRIO E		0
	233	PAJERO SPORT DAKAR ULTIMATE 4X2		0
##	234	KIJANG INNOVA REBORN V	.0	0
##	235	ERTIGA SPORT GT	.5	0
##	236	AGYA G TRD SPORTIVO	.2	0
##	237	XL7 ALPHA	.5	1
##	238	BALENO HATCHBACK	.4	0
##	239	CITY RS HATCHBACK	.5	0
##	240	KIJANG INNOVA REBORN G	.0	0
##	241	XPANDER ULTIMATE	.5	0
##	242	ALMAZ S+T SMART ENJOY	.5	0
##	243	IGNIS GX AGS	.2	0
##	244	CRETA PRIME	.5	0
##	245	XPANDER EXCEED	.5	0
##	246	RAIZE GR SPORT	.0	0
##	247	KIJANG INNOVA V	.0	0
##	248	ERTIGA GX	.4	0
##	249	ERTIGA DREZA	.4	0
	250	BALENO HATCHBACK	.4	0
	251	BRIO RS		0
	252	BRIO SATYA E		0
##	253	BR-V E	.5	0

	254	SX4 S-CROSS	
	255	MOBILIO RS	
	256	SANTA FE CRDI	
##	257	XPANDER ULTIMATE	1.5
##	258	X-TRAIL	2.5 0
##	259	BRIO SATYA E	1.2
##	260	BRIO SATYA E	1.2
##	261	BRIO SATYA E	1.2 0
##	262	CX-5 GT	2.5 0
##	263	AGYA G	1.0 0
##	264	MOBILIO RS	1.5
##	265	BRIO SATYA E	1.2
##	266	XL7 BETA	1.5
	267	XPANDER ULTIMATE	
	268	ERTIGA SPORT GT	
	269	BRIO RS	
	270	XPANDER ULTIMATE	
	271	CALYA G	
	272	KIJANG INNOVA V	-:-
	273	CORTEZ S T LUX	
	274	BRIO SATYA E	
	275	CX-5 ELITE	
	276	SIENTA Q	
		BRIO SATYA E	
	277		
	278	KIJANG INNOVA VENTURER	
	279	CONFERO S L	
	280	XPANDER EXCEED KIJANG INNOVA REBORN VENTURER GASOLINE	
	282	YARIS S TRD BRIO SATYA E	
	283	XPANDER SPORT	
	284 285		
		ERTIGA GX	
	286	KIJANG INNOVA REBORN G	
	287	SIENTA V	
	288	BRIO RS	
	289	BRIO SATYA E	
	290	BR-V PRESTIGE	
	291	CITY RS HATCHBACK	
	292	HR-V E PLUS	
	293	IGNIS GX	
	294	X-TRAIL	
	295	ERTIGA DREZA GS	
	296	BIANTE SKYACTIV	
	297	GRAND LIVINA SV	
	298	CX-3 TOURING	
	299	XPANDER ULTIMATE	
	300	MARCH	
	301	XENIA R	
	302	XPANDER SPORT	
	303	ERTIGA GX	
	304	XENIA R SPORTY	
	305	AVANZA G	
	306	BRIO SATYA E	
##	307	CONFERO S	1.5

##	308	SIENTA G	1.5
##	309	BRIO SATYA E	1.2
	310	BRIO SATYA E	
	311	BR-V E	
	312	MOBILIO E PRESTIGE	
	313	SIENTA G	
	314	XPANDER ULTIMATE	
	315	AYLA R	
	316	MARCH	
	317	RUSH S TRD SPORTIVO	
	318	MARCH	
	319	FORTUNER VRZ GR SPORT	
	320	KIJANG INNOVA REBORN V	
	321 322	XPANDER EXCEED AVANZA G	
	323	KIJANG INNOVA G	
	324	MOBILIO E	
	325	S-PRESSO	
	326	KIJANG INNOVA G	
	327	IGNIS GX	
	328	XPANDER ULTIMATE	
	329	TERIOS X DLX	
	330	AGYA G TRD	
	331	BRIO SATYA E	
	332	XPANDER SPORT	
	333	XPANDER ULTIMATE	
	334	XPANDER ULTIMATE	
	335	XPANDER ULTIMATE	
	336	XPANDER ULTIMATE	
##	337	KIJANG INNOVA Q	
##	338	BALENO HATCHBACK	
##	339	KIJANG INNOVA REBORN V	
##	340	BRIO RS	1.2
##	341	SIENTA V	1.5
##	342	XPANDER EXCEED	1.5
##	343	XPANDER ULTIMATE	1.5
##	344	AGYA G TRD	1.2
##	345	SERENA HIGHWAY STAR	2.0 0
##	346	RUSH S TRD SPORTIVO	1.5
##	347	XENIA R DLX	1.3
##	348	MARCH	1.2
##	349	MOBILIO E	1.5
##	350	FORTUNER VRZ 4X2	2.4
##	351	BRIO RS	1.2
##	352	BRIO RS	1.2
##	353	YARIS S TRD	1.5
##	354	TERIOS ADVENTURE R	1.5
##	355	AVANZA VELOZ	1.3
##	356	RUSH S TRD SPORTIVO	
##	357	BRIO SATYA E	
	358	PAJERO SPORT DAKAR 4X2	
	359	KIJANG INNOVA Q	
	360	TERIOS R DLX	
##	361	BRIO RS	1.2

##	362	SPARK PREMIER 1.4	1
##	363	LIVINA VL 1.5	1
##	364	CARRY PICK UP 1.5	0
##	365	BRIO SATYA E 1.2	0
##	366	BRIO SATYA E 1.2	0
##	367	XPANDER ULTIMATE 1.5	0
##	368	XPANDER ULTIMATE 1.5	1
##	369	AGYA G TRD SPORTIVO 1.2	0
##	370	AVANZA G 1.3	0
##	371	AVANZA E 1.3	0
##	372	KIJANG INNOVA G 2.0	0
##	373	FORTUNER VRZ 4X2 2.4	0
##	374	KIJANG INNOVA REBORN G 2.0	0
##	375	BRIO SATYA E 1.2	0
##	376	BRIO E 1.2	0
##	377	BRIO SATYA E 1.2	0
##	378	CX-5 HIGH 2.5	0
##	379	ERTIGA SPORT GT 1.5	1
##	380	BRIO SATYA E 1.2	0
##	381	RAIZE GR 1.0	0
##	382	IGNIS GL 1.2	0
##	383	2 R SKYACTIV 1.5	0
##	384	KIJANG INNOVA G 2.0	0
##	385	BR-V PRESTIGE 1.5	0
##	386	BRIO SATYA E 1.2	0
##	387	SIGRA R STD 1.2	0
##	388	BRIO SATYA E 1.2	0
##	389	ECOSPORT TITANIUM 1.5	0
##	390	XPANDER ULTIMATE 1.5	0
##	391	GRAND LIVINA HIGHWAY STAR 1.5	0
##	392	SERENA HIGHWAY STAR 2.0	0
##	393	ROCKY X 1.2	0
##	394	SIRION 1.3	0
##	395	TERIOS R 1.5	0
##	396	GO PANCA T LIVE 1.2	0
##	397	MOBILIO E PRESTIGE 1.5	0
##	398	BRIO RS 1.2	0
##	399	XPANDER ULTIMATE 1.5	0
##	400	XPANDER CROSS 1.5	0
	401	GRAND LIVINA HIGHWAY STAR AUTECH 1.5	0
	402	GRAND LIVINA X-GEAR 1.5	0
	403	GRAND LIVINA HIGHWAY STAR AUTECH 1.5	0
	404	GRAND LIVINA HIGHWAY STAR AUTECH 1.5	0
	405	CARRY PICK UP 1.5	0
	406	CX-5 GT 2.5	0
	407	PAJERO SPORT DAKAR ULTIMATE 4X2 2.4	0
	408	ERTIGA GL 1.4	0
	409	BRIO SATYA E 1.2	0
	410	BRIO SATYA E 1.2	0
	411	BRIO SATYA E 1.2	0
	412	BRIO RS 1.2	0
	413	BR-V E 1.5	0
	414	XPANDER EXCEED 1.5	0
##	415	XPANDER ULTIMATE 1.5	0

##	416	XPANDER ULTIMATE	.5	0
##	417	XPANDER ULTIMATE		0
##	418	XPANDER ULTIMATE	.5	0
	419	AVANZA G	.3	0
	420	AVANZA G		0
	421	AVANZA G		0
	422	AVANZA G		0
	423	KIJANG INNOVA V		0
	424	CALYA G		0
	425	KIJANG INNOVA DEDORN G		0
	426 427	KIJANG INNOVA REBORN G RAIZE TURBO G		0
	427	RUSH S TRD SPORTIVO		0
	429	SIENTA V		0
	430	SIENTA V		0
	431	YARIS S TRD		0
	432	XPANDER SPORT		0
	433	CONFERO S		0
	434	CALYA E		0
	435	XPANDER ULTIMATE		0
	436	ERTIGA GX		0
##	437	KIJANG INNOVA REBORN G		0
##	438	GO+ PANCA T		0
##	439	2 GT	.5	0
##	440	JAZZ RS	.5	0
##	441	LIVINA VL	.5	0
##	442	YARIS S TRD	.5	0
##	443	BRIO SATYA E	.2	0
##	444	HR-V E	.5	0
##	445	TERIOS R	.5	1
##	446	AVANZA G	.3	0
##	447	KIJANG INNOVA REBORN G	.0	0
##	448	LIVINA VL	.5	0
##	449	BRIO RS	.2	0
##	450	MOBILIO RS		0
	451	RUSH S TRD SPORTIVO		0
	452	HR-V SE		0
	453	TERIOS R		0
	454	BRIO SATYA E		0
	455	ERTIGA GX		0
	456	MOBILIO E		0
	457	AGYA G TRD		0
	458	CARRY PICK UP		0
	459	RUSH S AYLA R		0
	460 461	AGYA G TRD		0
	462	CALYA G		0
	462	HR-V E		0
	464	KIJANG INNOVA V		0
	465	FORTUNER G TRD		0
	466	HR-V S		1
	467	CALYA G		0
	468	SX4 S-CROSS		0
	469	KARIMUN GS		0

##	470	ERTIGA GX	1.4	(0
##	471	CALYA G	1.2	(0
	472	TERIOS TX			0
	473	SIGRA X			0
	474	ALMAZ LT LUX			0
	475	XENIA R			0
	476	AYLA R			0
	477	CITY RS HATCHBACK			0
	478	BR-V E			0
	479	CALYA G			0
	480 481	ERTIGA SPORT GT IGNIS GL			1
	482	CALYA G			0
	483	2 GT SKYACTIV			0
	484	AVANZA VELOZ			0
	485	AVANZA VELOZ AVANZA VELOZ			0
	486	BRIO SATYA E			0
	487	IGNIS GX			0
	488	HR-V E			0
	489	MOBILIO S			0
	490	CALYA G			0
	491	YARIS S TRD			1
	492	XPANDER ULTIMATE			1
##	493	CIVIC FB2	1.8	(0
##	494	RAIZE GR TWO TONE	1.0		0
##	495	CALYA G	1.2	(0
##	496	BRIO SATYA E	1.2	(0
##	497	MOBILIO E	1.5	(0
##	498	HR-V E	1.5	(0
##	499	XPANDER SPORT	1.5		1
##	500	BRIO SATYA E	1.2	(0
##	501	RUSH S TRD SPORTIVO	1.5	(0
##	502	ERTIGA DREZA	1.4		0
##	503	AGYA G TRD		(0
##	504	RUSH S GR SPORT			1
	505	XL7 ZETA GL			0
	506	XL7 BETA			1
	507	AGYA G			0
	508	BRIO SATYA E			0
	509	BRIO SATYA E			0
	510	X-TRAIL URBAN SELECTION			0
	511	CALYA G			0
	512 513	AYLA X CALYA G			0
	514	CALYA G			0
	515	BRIO RS			0
	516	HR-V E			0
	517	JUKE			0
	518	AGYA G TRD			0
	519	RUSH S TRD SPORTIVO			1
	520	BRIO SATYA E			0
	521	CALYA G			0
	522	AYLA X			0
	523	XPANDER ULTIMATE			0
		111.5-11	-	· ·	-

##	524	ROCKY X	1.2
##	525	MOBILIO S	1.5
##	526	AVANZA VELOZ	1.5
##	527	IGNIS GX	
	528	AVANZA E	
	529	SIRION M602RS	
	530	AYLA X	
	531	SIRION M602RS	
	532	MOBILIO E	
	533	HR-V E	
	534	KIJANG INNOVA REBORN G	
	535	CALYA G	
	536	BRIO SATYA E	
	537	XENIA R STD	
	538	BR-V E	
	539	XPANDER ULTIMATE	
	540	XPANDER ULTIMATE FORTUNER G	
	541 542	MARCH L	
	543	SX4 S-CROSS	
	544	YARIS S TRD	
	545	SIENTA Q	
	546	CALYA G	
	547	KARIMUN GL	
	548	ROCKY R	
	549	CROSS	
	550	BRIO SATYA S	
	551	GRAND LIVINA SV	
	552	BR-V PRESTIGE	
	553	2 GT SKYACTIV	
	554	XPANDER ULTIMATE	
##	555	ALMAZ LT LUX	
##	556	X-TRAIL	
##	557	COLT L300 PICK UP	2.5
##	558	SX4 S-CROSS	1.5
##	559	BRIO SATYA E	1.2 0
##	560	PAJERO SPORT DAKAR 4X2	2.4 0
##	561	FREED E	1.5 0
##	562	SX4 S-CROSS	1.5 0
##	563	AVANZA G	1.3 0
##	564	CX-5 ELITE	2.5 0
##	565	SIENTA G	1.5
##	566	SIGRA M	
##	567	SIGRA R	
	568	BRIO SATYA E	
##	569	BRIO SATYA E	
	570	2 R	
	571	AGYA G TRD SPORTIVO	
	572	GRAND LIVINA HIGHWAY STAR	
	573	X-TRAIL	
	574	CR-V TURBO PRESTIGE	
	575	AVANZA G	
	576	3 20I (CKD)	
##	577	MARCH	1.5

```
## 578
                                  CARRY PICK UP 1.5
## 579
                                         AGYA G 1.0
## 580
                                       IGNIS GX 1.2
## 581
                                    SIGRA R STD 1.2
## 582
                       KIJANG INNOVA REBORN G 2.0
                                          MARCH 1.2
## 583
## 584
                                         BRIO E 1.3
                                    SIGRA R STD 1.2
## 585
## 586
                              XPANDER ULTIMATE 1.5
## 587
                                       AVANZA G 1.3
## 588
                                        BRIO RS 1.2
## 589
                                        BRIO RS 1.2
## 590
                                      MOBILIO E 1.5
## 591
                          RUSH S TRD SPORTIVO 1.5
## 592
                                       SIENTA Q 1.5
## 593
                                    SIGRA R DLX 1.2
## 594
                                    XL7 ZETA GL 1.5
## 595
                                   BRIO SATYA E 1.2
## 596
                          RUSH S TRD SPORTIVO 1.5
## 597
                                  CARRY PICK UP 1.5
## 598
                                       IGNIS GX 1.2
## 599
                                           2 GT 1.5
## 600
                                      XL7 ALPHA 1.5
## 601
                                      LIVINA VL 1.5
                                        FREED S 1.5
## 602
## 603
                                         AGYA G 1.2
## 604
                                   AVANZA VELOZ 1.5
## 605
                           RAIZE GR SPORT TSS 1.0
## 606
                                     AGYA G TRD 1.2
                                STARGAZER PRIME 1.5
## 607
## 608
                                        CALYA G 1.2
## 609
                                 XENIA R SPORTY 1.3
##
       mileage_km auto.cruise.control keyless.push.start map.navigator
## 1
           10.508
                                      0
                                                          0
## 2
          112.888
                                      0
                                                          0
                                                                         0
## 3
          118.429
                                      0
                                                          1
                                                                         0
## 4
           15.945
                                      0
                                                          0
## 5
           30.404
                                      0
                                                          0
                                                                         0
## 6
           17.306
                                      0
                                                          0
                                                                         0
## 7
           12.211
                                      0
                                                          0
                                                                         0
## 8
          126.885
                                      0
                                                          0
                                                                         0
## 9
                                      0
           33.464
                                                          0
                                                                         0
## 10
           33.364
                                      0
                                                          0
                                                                         0
## 11
           44.969
                                      0
                                                          0
                                                                         0
## 12
           43.292
                                      0
                                                          0
## 13
           57.385
                                      0
                                                          0
                                                                         0
## 14
                                      0
                                                          0
                                                                         0
           53.151
## 15
           46.182
                                      0
                                                          0
                                                                         0
                                      0
## 16
           58.152
                                                          0
                                                                         0
## 17
                                      0
                                                          0
          118.704
                                                                         1
## 18
           78.385
                                      0
                                                          0
                                                                         0
## 19
                                      0
                                                                         0
           45.376
                                                          0
## 20
           37.343
                                      0
                                                          0
                                                                         0
## 21
           61.937
                                      0
                                                          0
                                                                         0
```

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

##	22	47.085	0	0	0
	23	178.000	0	0	0
	24	10.301	0	0	0
	25	75.302	0	1	0
	26	18.298	0	0	0
		50.387			
	27		0	0	0
	28	64.235	0	0	0
	29	44.473	0	0	0
	30	24.577	0	0	0
	31	42.320	0	0	0
	32	81.158	0	0	0
	33	64.753	0	0	0
##	34	72.887	1	0	0
##	35	77.425	0	0	0
##	36	63.175	0	0	0
##	37	43.689	0	0	0
##	38	85.583	0	0	0
##	39	54.512	0	0	0
##	40	35.177	0	1	0
	41	57.230	0	0	0
	42	133.127	0	0	0
##		34.815	0	0	0
	44	98.478	0	0	0
	45	91.926	0	0	0
	46	62.209	0	0	0
	47	76.950	0	0	
	48	43.945			0
			0	0	
	49	27.804	0	0	0
	50	85.184	0	0	0
	51	40.717	0	1	0
	52	63.130	1	0	0
	53	64.558	0	0	0
	54	43.740	0	0	0
	55	51.254	0	0	0
	56	84.060	0	0	0
	57	87.616	0	0	0
	58	53.576	0	0	0
##		74.730	0	0	0
##		79.289	0	0	0
##	61	5.751	0	0	0
##	62	15.552	0	0	0
##	63	84.575	0	0	0
##	64	8.691	0	0	0
##	65	29.897	0	0	0
##	66	15.855	0	0	0
##	67	83.286	0	0	0
##	68	36.455	0	0	0
##		46.441	0	0	0
##		94.919	0	0	0
##		45.271	0	0	0
##		98.416	0	0	0
##		49.988	0	0	0
##		78.175	0	0	0
##		56.303	0	0	0
πĦ	, 0	00.000	V	V	U

	76	27.044	0	1	0
	77	60.978	0	0	0
##	78	55.534	0	0	0
	79	38.223	0	0	0
	80	32.630	0	0	0
	81	73.528	0	0	0
	82	43.439	0	0	0
##		25.400	0	0	0
	84	89.898	0	0	0
	85	95.007	0	0	0
	86	72.458	0	1	0
	87	41.091	0	1	0
##	88	21.880	0	0	0
	89	66.471	0	0	0
	90	57.815	0	0	0
	91	28.113	0	0	0
	92	54.801	0	0	0
##		41.998	0	0	0
##		115.866	0	0	0
##		64.335	0	0	0
##		7.835	0	0	0
##		42.586	0	0	0
##		18.936	0	0	0
##		122.090	0	0	0
	100	34.014	0	0	0
	101	25.226	0	0	0
	102	6.011	0	0	0
	103	70.052	0	0	0
	104	53.096	0	0	0
	105	66.129	0	0	0
	106	34.359	0	0	0
	107	42.302	0	0	0
	108	32.320	0	0	0
	109	55.346	0	0	0
	110	85.936	0	0	0
	111	112.148	0	0	0
	112	95.178	0	0	0
	113	25.160	1	0	0
	114	53.266	0	0	0
	115	51.694	0	0	0
	116	56.960	0	0	0
	117	48.434	0	0	0
	118 119	52.561 65.003	0 0	0	0
	120	74.934	0	0 1	0
	121	82.350	0	0	0
	122	86.251	0	0	0
	123	41.320	0	0	0
	123	36.205	0	0	0
	125	58.598	0	0	0
	126	104.079	0	0	0
	127	81.726	0	0	0
	128	95.389	0	0	0
	129	57.138	0	0	0
пπ	120	01.100	V	J	J

	130	117.511	0	0	1
##	131	30.898	0	0	0
##	132	21.304	0	0	0
##	133	132.270	0	0	0
##	134	67.327	0	0	0
##	135	55.240	0	0	0
##	136	17.916	0	0	0
##	137	69.785	0	0	0
##	138	39.191	0	0	0
##	139	9.775	0	0	0
##	140	33.635	0	0	0
##	141	76.931	0	0	0
##	142	93.445	0	0	0
##	143	86.462	0	0	0
##	144	40.358	0	0	0
##	145	47.810	0	0	0
##	146	72.650	0	0	0
	147	34.947	0	0	0
	148	98.742	0	0	0
##	149	26.233	0	0	0
##	150	55.010	0	0	0
##	151	24.032	0	1	0
##	152	10.656	0	0	0
##	153	78.944	0	0	0
	154	42.516	0	0	0
	155	64.684	0	0	0
	156	22.803	0	1	0
	157	42.587	0	0	0
	158	67.595	0	0	0
	159	28.869			
			0	0	0
	160	70.234	0	0	0
	161	65.219	0	0	0
	162	74.516	0	0	0
	163	71.135	1	0	0
	164	94.312	0	0	0
##	165	66.029	0	1	0
##	166	103.601	0	0	0
##	167	30.738	0	0	0
##	168	45.824	0	0	0
##	169	117.889	0	0	0
##	170	54.437	0	0	0
##	171	51.860	0	0	0
##	172	28.884	0	0	0
##	173	21.701	0	0	0
	174	110.889	0	0	0
	175	22.709	0	0	0
	176	51.410	0	0	0
	177	64.808	0	0	0
	178	12.790	0	0	0
	179	96.199	0	0	
					0
	180	67.803	0	0	0
	181	78.472	0	0	0
	182	103.106	0	1	0
##	183	99.317	0	0	0

##	184	29.119	0	0	0
##	185	83.081	0	0	0
##	186	41.027	0	0	0
##	187	73.712	0	0	0
##	188	27.308	0	0	0
##	189	70.969	0	1	0
##	190	119.436	0	0	0
##	191	61.556	0	0	0
##	192	74.520	0	0	0
##	193	81.739	0	0	0
##	194	83.538	0	0	0
##	195	52.723	0	0	0
##	196	94.946	0	0	0
##	197	22.670	0	0	0
##	198	68.990	0	0	0
##	199	126.721	0	0	0
##	200	117.682	0	0	0
##	201	9.881	0	0	0
##	202	61.532	0	0	0
##	203	47.180	0	0	0
##	204	83.691	0	0	0
##	205	76.928	0	0	0
##	206	57.056	0	0	0
##	207	72.957	0	0	0
##	208	140.903	0	0	0
##	209	85.650	0	0	0
##	210	169.237	0	0	0
##	211	142.175	0	0	0
##	212	122.574	0	0	0
##	213	92.961	0	0	0
##	214	73.033	0	0	0
##	215	59.581	0	0	0
##	216	80.201	0	0	0
##	217	140.428	0	0	0
##	218	89.405	0	0	0
##	219	77.093	0	0	0
##	220	46.497	0	0	0
##	221	169.351	0	0	0
##	222	24.619	0	0	0
##	223	44.746	0	0	0
##	224	19.489	0	0	0
##	225	53.528	0	0	0
##	226	79.198	0	0	0
##	227	172.865	0	0	0
##	228	59.147	0	0	0
##	229	58.752	0	0	0
##	230	93.142	0	0	0
	231	32.130	0	1	0
	232	48.751	0	0	0
	233	73.296	0	1	0
	234	34.960	0	0	0
	235	18.426	0	0	0
	236	36.037	0	1	0
	237	26.534	0	0	0

##	238	79.665	0	1	0
##	239	46.694	0	0	0
##	240	80.809	0	0	0
##	241	82.596	0	0	0
##	242	39.239	0	0	0
##	243	125.114	0	1	0
##	244	28.896	0	1	0
##	245	51.387	0	0	0
##	246	18.599	0	0	0
##	247	104.055	0	0	0
##	248	28.466	0	0	0
##	249	77.648	0	0	0
##	250	44.979	0	1	0
##	251	61.782	0	0	0
##	252	46.912	0	0	0
##	253	109.995			
			0	0	0
##	254	91.268	0	0	0
##	255	120.026	0	0	0
##	256	52.497	0	0	0
##	257	51.925	0	0	0
##	258	92.536	0	0	1
##	259	24.658	0	0	0
##	260	55.430	0	0	0
##	261	40.516	0	0	0
##	262	16.763	0	0	0
##	263	48.952	0	0	0
##	264	70.213	0	0	0
##	265	22.059	0	0	0
##	266	42.044	0	0	0
##	267	68.413	0	0	0
##	268	25.127	0	1	0
##	269	55.434	0	0	0
##	270	50.764	0	0	0
##	271	90.659	0	0	0
##	272	158.669	0	0	0
##	273	26.527	0	1	0
##	274	22.928	0	0	0
	275	44.889	0	0	0
	276	112.207	0	0	0
	277	35.961	0	0	0
	278	97.032	0	0	0
##	279	67.690	0	0	0
##	280	81.128	0	0	0
##	281	79.013	0	1	0
##	282	61.487	0	0	0
##	283	97.128	0	0	0
##	284	80.941	0	0	0
##	285	78.531	0	0	0
##	286	89.457	0	0	0
##	287	111.609	0	1	0
##	288	50.261	0	0	0
##	289	43.337	0	0	0
##	290	41.412	0	0	0
##	291	30.492	0	0	0

##	292	42.850	0	0	0
##	293	88.669	0	1	0
##	294	110.956	0	0	0
##	295	95.539	0	0	0
##	296	48.097	0	0	0
##	297	104.054	0	0	0
##	298	73.975	0	0	0
##	299	60.960	1	0	0
	300	57.201	0	0	0
	301	109.214	0	0	0
	302	58.277	0	1	0
	303	35.385	0	1	0
	304	70.926	0	0	1
	305	78.434	0	0	0
	306	79.325	0	0	0
	307	91.501	0	0	0
	308	35.480	0		
		81.964		0	0
	309		0	0	0
	310	34.001	0	0	0
	311	21.707	0	0	0
	312	96.773	0	0	0
	313	94.182	0	0	0
	314	98.215	1	0	0
	315	74.372	0	0	0
	316	74.562	0	1	0
	317	30.977	0	0	0
	318	19.223	0	0	0
	319	15.713	0	0	0
	320	65.076	0	0	0
	321	56.425	0	0	0
	322	58.385	0	0	0
	323	32.582	0	0	0
	324	91.739	0	0	0
	325	245.000	0	0	0
	326	139.609	0	0	0
##	327	113.568	0	1	0
	328	71.110	1	0	0
	329	38.952	0	0	0
	330	34.243	0	0	0
	331	40.661	0	0	0
	332	89.474	0	1	0
	333	85.438	0	1	0
	334	65.729	0	0	0
	335	66.213	1	0	0
	336	76.021	1	0	0
	337	91.500	0	0	0
	338	91.044	0	1	0
	339	97.991	0	0	0
	340	77.208	0	0	0
	341	43.520	0	0	0
	342	64.707	0	0	0
	343	98.408	0	0	0
	344	44.496	0	0	0
##	345	31.620	0	1	0

##	346	77.776	0	0	0
##	347	48.788	0	0	0
##	348	135.982	0	0	0
##	349	112.025	0	0	0
##	350	95.495	0	0	0
##	351	64.136	0	0	0
##	352	11.320	0	0	0
##	353	32.892	0	1	0
##	354	110.660	0	0	0
##	355	62.536	0	0	0
##	356	66.337	0	0	0
##	357	28.648	0	0	0
##	358	60.880	0	1	0
##	359	64.583	0	0	0
##	360	68.981	0	0	0
##	361	41.984	0	0	0
##	362	16.685	0	0	0
##	363	30.482	0	0	0
##	364	1.699	0	0	0
##	365	69.603	0	0	0
##	366	43.996	0	0	0
##	367	41.790	0	1	0
##	368	84.753	0	0	0
##	369	40.040	0	1	0
	370	88.066	0	0	0
##	371	52.800	0	0	0
##	372	119.413	0	0	0
##	373	51.475	0	0	0
##	374	46.010	0	0	0
##	375	15.393	0	0	0
##	376	30.466	0	0	0
##	377	11.054	0	0	0
##	378	81.916	0	0	0
##	379	56.760	0	0	0
	380	3.574	0	0	0
##	381	19.809	0	0	0
	382	60.258	0	0	0
	383	72.706	0	1	0
	384	71.225	0	0	0
	385	67.177	0	0	0
	386	18.602	0	0	0
	387	11.448	0	0	0
	388	56.645	0	0	0
	389	123.661	0	0	0
	390	87.660	0	0	0
	391	63.625	0	0	0
	392	108.956	0	0	0
	393	19.031	0	0	0
	394	13.371	0	0	0
	395	66.848	0	0	0
	396	40.119	0	0	0
	397	88.166	0	0	0
	398	65.321	0	0	0
	399	109.127	0	0	0
ππ	555	100.121	V	•	J

##	400	40.631	0	0	0
##	401	107.143	0	0	0
##	402	116.892	0	0	0
	403	117.692	0	0	0
	404	72.181	0	0	0
##	405	12.639	0	0	0
##	406	133.948	0	0	0
##	407	43.295	0	0	0
##	408	56.500	0	0	0
##	409	38.479	0	0	0
##	410	44.459	0	0	0
##	411	68.667	0	0	0
##	412	39.029	0	0	0
##	413	102.450	0	0	0
##	414	39.319	0	0	0
##	415	44.905	0	0	0
##	416	46.354	0	0	0
##	417	57.312	0	0	0
##	418	47.160	0	0	0
##	419	99.455	0	0	0
##	420	48.183	0	0	0
##	421	58.620	0	0	0
##	422	38.337	0	0	0
##	423	104.396	0	0	0
##	424	87.820	0	0	0
	425	135.311	0	0	0
	426	28.368	0	0	0
	427	38.998	0	0	0
##	428	78.657	0	0	0
	429	84.583	0	0	0
	430	104.099	0	0	0
	431	58.435	0	0	0
	432	41.420	0	0	0
	433	50.614	0	0	0
	434	77.701	0	0	0
	435	60.933	0	0	0
##	436	58.082	0	0	0
	437	86.381	0	0	0
##	438	24.909	0	0	0
	439	82.938	0	0	0
	440	83.487	1	0	0
	441	71.142	0	1	0
	442	78.114	0	0	0
##	443	51.347	0	0	0
	444	93.048	0	0	0
	445	93.935	0	1	0
	446	40.655	0	0	0
	447	63.309	0	0	0
	448	51.618	0	1	0
	449	80.163	0	0	0
	450	36.060	0	0	0
	451	60.929	0	1	0
	452	59.647	0	0	0
	453	53.125	0	0	0
11 11	100	00.120	Ŭ	V	J

##	454	71.172	0	0	0
##	455	121.801	0	0	0
##	456	82.137	0	0	0
##	457	98.857	0	0	0
##	458	17.670	0	0	0
##	459	74.334	0	0	0
##	460	32.662	0	0	0
	461	16.097	0	0	0
	462	18.150	0	0	0
	463	38.935	1	0	0
	464	10.962	0	0	0
	465	89.433	0	0	0
	466	70.953	0	0	0
	467	71.766	0	0	0
	468	35.009	0	0	0
	469	93.534	0	0	0
	470	85.331	0	0	0
	471	84.104	0	0	0
	472	101.930	0	0	0
	473	38.327	0	0	0
	474	53.501	0	0	0
	475	94.869	0	0	0
	476	60.702	0	0	0
	477	41.113	0	0	0
	478	74.754	0	0	0
	479	67.611	0	0	0
	480	96.327	0	0	0
	481	30.115	0	0	0
	482	74.535	0	0	0
	483	45.975	1	0	0
	484	28.514	0	1	0
	485	61.458	0	1	0
	486	49.424	0	0	0
	487	64.346	0	0	0
	488	61.785	0	0	0
	489	50.241	0	0	0
	490	54.702	0	0	0
	491	68.648	0	0	0
	492	59.729	0	0	0
	493	57.589	0	0	0
	494	15.274	0	0	0
	495	103.238	0	0	0
	496	69.956	0	0	0
	497	51.833	0	0	0
	498	39.444	0	0	0
	499	50.068	0	0	0
	500	40.564	0	0	0
	501	9.823	0	0	0
	502	28.515	0	0	0
	503	21.982	0	0	0
	504	34.441	0	0	0
	505	37.694	0	0	0
	506	55.142	0	0	0
##	507	68.632	0	0	0

##	508	50.958	0	0	0
##	509	55.045	0	0	0
##	510	79.564	0	1	0
##	511	4.994	0	0	0
##	512	64.067	0	0	0
##	513	46.550	0	0	0
##	514	36.219	0	0	0
##	515	48.518	0	0	0
##	516	73.730	0	0	0
##	517	107.104	0	0	0
##	518	45.947	0	0	0
##	519	34.555	0	0	0
##	520	16.469	0	0	0
##	521	65.073	0	0	0
##	522	100.418	0	0	0
##	523	80.976	1	0	0
##	524	40.066	0	0	0
##	525	34.932	0	0	0
##	526	93.580	0	0	0
##	527	54.231	0	0	0
##	528	128.262	0	0	0
	529	86.506	0	0	0
	530	72.413	0	0	0
	531	87.631	0	0	0
	532	63.267	0	0	0
	533	58.950	0	0	0
	534	57.910	0	0	0
##	535	92.204	0	0	0
##	536	46.521	0	0	0
##	537	33.937	0	0	0
##	538	66.961	0	0	0
	539	28.437	1	0	0
##	540	54.260	0	0	0
	541	95.458	0	0	0
	542	89.734	0	0	0
	543	93.404	0	0	0
	544	14.736	0	1	0
	545	58.365	0	0	0
	546	53.807	0	0	0
	547	67.265	0	0	0
	548	37.472	0	0	0
	549	48.865	0	0	0
	550	28.625	0	0	0
	551	109.026	0	0	0
	552	43.749	0	0	0
	553	66.182	0	0	1
	554	63.203	0	0	0
	555	49.088	0	0	0
	556	67.756	0	0	0
	557	1.065	0	0	0
	558	76.606	0	1	0
	559	64.556	0	0	0
	560	28.906	0	0	0
	561	170.021	0	0	0
ππ	501	110.021	O .	J	J

##	562	10.206	0	0	0
##	563	24.873	0	0	0
##	564	29.440	0	0	0
##	565	70.529	0	0	0
##	566	18.826	0	0	0
##	567	8.817	0	0	0
##	568	97.829	0	0	0
##	569	61.043	0	0	0
##	570	37.929	1	0	0
##	571	39.599	0	1	0
##	572	60.480	0	0	0
##	573	62.427	0	1	0
##	574	84.641	0	0	0
##	575	104.117	0	0	0
	576	47.554	0	0	1
	577	37.414	0	1	0
	578	12.191	0	0	0
	579	57.783	0	0	0
	580	20.613	0	0	0
	581	40.938	0	0	0
	582	44.322	0	0	0
	583	72.140	0	0	0
	584	88.614	0	0	0
	585	12.934	0	0	0
	586	51.777	1	0	0
	587	66.609	0	0	0
	588	40.559	0	0	0
	589	54.763	0	0	0
	590	93.915	0	0	0
	591	39.522	0	1	0
	592	66.910	0	0	0
	593	58.351	0	0	0
	594	35.449	0	0	0
	595	19.331	0	0	0
	596	81.269	0	0	0
	597	14.081	0	0	0
	598	81.783	0	1	0
	599	53.270	0	1	0
##	600	52.960	0	1	0
	601	39.145	0	0	0
##	602	91.567	0	0	0
	603	60.588	0	0	0
	604	50.137	0	0	0
	605	32.288	0	0	0
	606	26.474	0	0	0
	607	2.651	0	0	0
	608	34.349	0	0	0
	609	90.740	0	0	0

The name variable has additional information about the car engine capacity (for example 1.5 means 1.500 cc engine capacity). I choose to extract the engine capacity into a new column considering that it might influenced the used car's listing price.

```
df$engine_cap <- str_sub(df$car.name, start= -3)

df$engine_cap <- as.numeric(df$engine_cap)</pre>
```

Based on the data dictionary, The "year" variable holds the information about the manufactured year of the car. This can be easily used to generate the "rough" age of the car (based on the latest year specify).

```
unique(df$year)
```

[1] 2018 2015 2020 2019 2021 2022 2016 2017 2014 2013 2010 2012 2023 2011

```
df$age <- 2023 - df$year
```

Variables grouping

To ease the cleaning and further EDA process, I group up the variables based on their data type and characteristic.

```
num_cols <- names(df)[sapply(df,is.numeric)]
char_cols <- names(df)[sapply(df,is.character)]
print("Columns who are numeric")</pre>
```

[1] "Columns who are numeric"

```
print(num_cols)
```

```
##
   [1] "year"
                                    "mileage_km"
## [3] "rear.camera"
                                    "sun.roof"
   [5] "auto.retract.mirror"
                                     "electric.parking.brake"
##
## [7] "map.navigator"
                                    "vehicle.stability.control"
  [9] "keyless.push.start"
                                    "sports.mode"
## [11] "X360.camera.view"
                                    "power.sliding.door"
## [13] "auto.cruise.control"
                                    "price"
## [15] "instalment month"
                                    "engine_cap"
## [17] "age"
```

```
print("Columns who are character")
```

```
## [1] "Columns who are character"
```

```
print(char_cols)
```

```
## [1] "car.name" "brand" "location" "transmission" "plate.type"
```

Group up numeric data

```
get_disc <- function(data, col_names) {
    match_cols <- character(0)
    for (col_name in col_names) {
        if(col_name %in% names(data)) {
            num_unique <- length(unique(data[[col_name]]))
            if (num_unique > 2 && num_unique < 20) {
                match_cols <- c(match_cols, col_name)
            }
        }
    }
    return(match_cols)
}

disc_cols <- get_disc(df, num_cols)
print("Discrete variables:")</pre>
```

[1] "Discrete variables:"

```
print(disc_cols)
```

```
## [1] "year" "engine cap" "age"
```

The year variable holds the same information as the age variable, hence the "year" variable needs to be excluded to avoid multicollinearity.

```
remove_var <- "year"

# Remove from the list
num_cols <- num_cols[!(num_cols %in% remove_var)]
disc_cols <- disc_cols[!(disc_cols %in% remove_var)]</pre>
```

```
get_dum <- function(data, col_names) {
  match_cols <- character(0)
  for (col_name in col_names) {
    if (col_name %in% names(data)) {
        if (length(unique(data[[col_name]])) == 2) {
            match_cols <- c(match_cols, col_name)
        }
    }
  }
  return(match_cols)
}

dum_cols <- get_dum(df, num_cols)
  print("Dummy variables:")</pre>
```

[1] "Dummy variables:"

```
print(dum_cols)
```

```
## [1] "rear.camera"
                                      "sun.roof"
## [3] "auto.retract.mirror"
                                      "electric.parking.brake"
                                      "vehicle.stability.control"
## [5] "map.navigator"
## [7] "keyless.push.start"
                                      "sports.mode"
## [9] "X360.camera.view"
                                      "power.sliding.door"
## [11] "auto.cruise.control"
get_cont <- function(data, col_names) {</pre>
 match_cols <- character(0)</pre>
 for (col_name in col_names) {
    if (col_name %in% names(data)) {
      if (length(unique(data[[col_name]])) > 20) {
        match_cols <- c(match_cols, col_name)</pre>
      }
    }
 }
 return(match_cols)
cont_cols <- get_cont(df, num_cols)</pre>
print("Continuous variables:")
## [1] "Continuous variables:"
print(cont_cols)
## [1] "mileage_km"
                           "price"
                                               "instalment_month"
```

Group up character variable

```
get_cat <- function(data, col_names) {
   match_cols <- character(0)
   for (col_name in col_names) {
      if(col_name %in% names(data)) {
        num_unique_values <- length(unique(data[[col_name]]))
        if (num_unique_values > 2 && num_unique_values <= 20) {
            match_cols <- c(match_cols, col_name)
        }
    }
   return(match_cols)
}

cat_cols <- get_cat(df, char_cols)
print("Category columns:")</pre>
```

[1] "Category columns:"

```
print(cat_cols)
## [1] "brand"
                   "location"
get_desc <- function(data, col_names) {</pre>
  match_cols <- character(0)</pre>
  for (col_name in col_names) {
    if (col_name %in% names(data)) {
      if (length(unique(data[[col_name]])) > 20) {
        match_cols <- c(match_cols, col_name)</pre>
    }
  }
  return(match_cols)
desc_cols <- get_desc(df, char_cols)</pre>
print("Description columns:")
## [1] "Description columns:"
print(desc_cols)
## [1] "car.name"
bin_cols <- get_dum(df, char_cols)</pre>
print("Binary columns:")
## [1] "Binary columns:"
print(bin_cols)
## [1] "transmission" "plate.type"
```

Data Transformation: Prepare numerical matrices

The OLS and machine learning model can't handle processing character column as they only accept numerical matrices. Therefore, I need to convert categorical and discrete character column into numerical value first.

```
for (col in cat_cols){
  print(pasteO(col, " unique values"))
  print(unique(df[[col]]))
}
## [1] "brand unique values"
   [1] "Daihatsu"
                     "Toyota"
                                   "Nissan"
                                                "Mitsubishi" "Honda"
##
  [6] "Wuling"
                     "Suzuki"
                                   "Mazda"
                                                "Datsun"
                                                              "Hyundai"
## [11] "Chevrolet"
                     "Ford"
                                   "BMW"
```

```
## [1] "location unique values"
## [1] "Jakarta Utara" "Bogor" "Surabaya"
## [4] "Tangerang Selatan" "Jakarta Barat" "Bekasi"
## [7] "Bandung" "Malang" "Depok"
## [10] "Jakarta Selatan" "Jakarta Timur" "Jakarta Pusat"
## [13] "Unknown"
```

First, there are 2 columns that are categorical: 1. Car brand: There are too many brand values to be converted to dummies through one hot encoding. The OLS model would not be able to handle too many brand variable if I change it to dummies. In the other hand, the car brand may still influence the car price through the brand popularity and its subsequent quality recognition. To capture the effect of a brand popularity, I choose to make new "brand_popularity" column that contains the popularity percentage of the brand in the dataset: - brand_popularity = (brand count / total rows)* 100% 2. Location: The selling location can affected the price of used car by through the location preferability. But, it would be more appropriate to use model that incorporates them as geo points like GWR to analyze the "location" effect rather than converting it to dummies. Therefore, I choose to omit the "location" column for now.

```
df_ols = data.frame(df)
```

```
#Convert the brand into brand popularity
df_ols <- df_ols %>%
  group_by(brand) %>%
  mutate(brand_popularity_count = n()) %>% # Count of each brand
  ungroup() %>%
  mutate(brand_popularity = brand_popularity_count / nrow(.)*100)

# Remove the category columns from df_ols
df_ols <- df_ols %>% select(-any_of(c("brand_popularity_count")))
```

Beside the category columns, there is still binary columns that is characterized by only having 2 unique values. These columns can be easily converted into dummy variable (1 and 0).

```
df_ols$is.manual <- ifelse(df_ols$transmission == "Manual",1,0)
df_ols$is.odd_plate <- ifelse(df_ols$plate.type == "odd plate",1,0)</pre>
```

```
remove_char <- c(cat_cols,bin_cols)

## Remove from cols selection
all_cols <- all_cols[!(all_cols %in% remove_char)]
char_cols <- char_cols[!(char_cols %in% remove_char)]

## Input new dummy variables into the list
num_cols <- names(df_ols)[sapply(df_ols,is.numeric)]
dum_cols <- get_dum(df_ols, num_cols)</pre>
```

Checking duplicates

```
sum(duplicated(df))
```

```
## [1] 0
```

There is no duplicated entry (row) found.

Checking missing data (NA, empty string (""), and "NULL" entry)

```
sum(is.na(df))
## [1] 0
#Checking for empty string
print("Columns with empty string value")
## [1] "Columns with empty string value"
for (col in all_cols) {
 n_empty <- sum(df[[col]]=="", na.rm = TRUE)</pre>
  if (n_empty > 0) {
 print(paste0("Number and percentages of empty string value in ", col))
 print(n_empty)
 print((n_empty/(nrow(df)))*100)
}
print("Columns with NULL string value")
## [1] "Columns with NULL string value"
for (col in all_cols) {
 n_null <- sum(is.null(df[[col]]))</pre>
 if (n_null > 0) {
 print(paste0("Number and percentages of NULL value in ", col))
 print(n_null)
 print((n_null/(nrow(df)))*100)
}
```

There is no entry containing NA, empty string (""), or"NULL" entry.

Exploratory Data Analysis (EDA)

```
## For plotting
library(ggplot2)
library(patchwork)
```

Warning: package 'patchwork' was built under R version 4.3.3

Continuous Data's summary

```
summary(df_ols[cont_cols])
```

```
price
                                           instalment_month
##
      mileage_km
                                                  : 1570000
##
           : 1.065
                      Min.
                              :7.70e+07
                                          Min.
    1st Qu.: 39.145
                       1st Qu.:1.32e+08
                                           1st Qu.: 2690000
   Median: 58.365
                      Median :1.77e+08
                                          Median: 3610000
##
    Mean
           : 61.686
                       Mean
                              :1.83e+08
                                          Mean
                                                  : 3728292
##
    3rd Qu.: 81.726
                       3rd Qu.:2.12e+08
                                           3rd Qu.: 4320000
##
    Max.
           :245.000
                       Max.
                              :5.42e+08
                                           Max.
                                                  :11040000
```

The max value of the continuous columns seems to extremely far from the 3rd quartile and mean. This can indicates outliers problem.

One of the goal in this analysis is to make a machine learning model to predict the used car price. Outliers can lower the model's accuracy, so I need to check for outliers first before EDA and model training.

```
for (col in cont_cols){
    var <- df_ols[[col]]
    #Calculate IQR, Upper, and Lower Bound
    iqr <- IQR(var)
    q1 <- quantile(var, 0.25)
    q3 <- quantile(var, 0.75)

# Calculate Upper and lower bound
    lower_bound <- q1 - (1.5*iqr)
    upper_bound <- q3 + (1.5*iqr)

# Count character that is outside the bounds
    outliers <- which(var < lower_bound | var > upper_bound)

# Count percentages
    print(col)
    res = (length(outliers) / length (df[[col]]))*100
    print(res)
}
```

```
## [1] "mileage_km"
## [1] 1.149425
## [1] "price"
## [1] 4.269294
## [1] "instalment_month"
## [1] 4.269294
```

But all of the variables' outliers are less than 5% of the total data points, which is still in the acceptable range. But since I aim to make a prediction model, I choose to impute extreme outliers (more or less than 3 standard deviation from the mean).

```
## Duplicate Dataframe
df2 <- data.frame(df_ols)

## Remove outliers</pre>
```

```
for (col in cont_cols){
  avg <- mean(df2[[col]], na.rm = TRUE)</pre>
  std <- sd(df2[[col]], na.rm = TRUE)</pre>
 upper_limit <- avg + (3*std)</pre>
 lower_limit <- avg - (3*std)</pre>
 df2 <- df2[which(df2[[col]] <= upper_limit & df2[[col]] >= lower_limit),]
}
print("With outliers")
## [1] "With outliers"
print(dim(df_ols))
## [1] 609 25
print("Without outliers")
## [1] "Without outliers"
print(dim(df2))
## [1] 582 25
Imputed 12 rows of outliers.
print("With outliers")
## [1] "With outliers"
print(summary(df_ols[cont_cols]))
##
     mileage_km
                         price
                                        instalment_month
## Min. : 1.065 Min. :7.70e+07 Min. : 1570000
## 1st Qu.: 39.145 1st Qu.:1.32e+08 1st Qu.: 2690000
## Median : 58.365 Median :1.77e+08 Median : 3610000
## Mean : 61.686 Mean :1.83e+08 Mean : 3728292
## 3rd Qu.: 81.726
                     3rd Qu.:2.12e+08 3rd Qu.: 4320000
## Max. :245.000 Max. :5.42e+08 Max. :11040000
print("Without outliers")
```

[1] "Without outliers"

print(summary(df2[cont_cols]))

```
##
      mileage_km
                          price
                                          instalment_month
                           : 77000000
##
          : 1.065
                                          Min.
                                                 :1570000
                     Min.
   1st Qu.: 39.058
                      1st Qu.:132000000
                                          1st Qu.:2690000
  Median : 58.358
                      Median :172500000
                                          Median :3510000
##
         : 60.537
##
   Mean
                      Mean
                             :175755155
                                          Mean
                                                 :3581134
##
   3rd Qu.: 80.908
                      3rd Qu.:211000000
                                          3rd Qu.:4300000
           :142.175
                             :340000000
                                                 :6930000
   Max.
                      Max.
                                          Max.
```

The min and 1st quartile value doesn't change after I imputed the outliers. The outliers removed are the value exceeding the over the 3 standard deviation of the mean on the positive side. Moreover, the continuous data seems to be still positively skewed since the media value is less than the mean.

Numerical Variables

Continuous variable

```
summary(df2[cont_cols])
```

Univariate analysis

```
##
     mileage_km
                         price
                                         instalment_month
         : 1.065
                                                :1570000
##
   Min.
                     Min. : 77000000
                                         Min.
   1st Qu.: 39.058
                     1st Qu.:132000000
                                         1st Qu.:2690000
  Median : 58.358
                     Median :172500000
                                         Median :3510000
  Mean
         : 60.537
                     Mean
                           :175755155
                                         Mean
                                                :3581134
   3rd Qu.: 80.908
##
                     3rd Qu.:211000000
                                         3rd Qu.:4300000
          :142.175
                     Max.
                            :340000000
                                         Max.
                                                 :6930000
```

The mileage's min value of only 1 km is odd, but it is still possible for a barely used car to be sold.

```
for (col in cont_cols) {
  hist_plot <- ggplot(df2, aes(x = .data[[col]])) +
    geom_histogram(bins = 60, fill = '#FF9999', color = 'black') + # Added color for bin outlines
  labs(title = paste("Histogram of", col), x = col, y = "count") +
    theme_minimal()

# Boxplot

box_plot <- ggplot(df2, aes(y = .data[[col]])) +
    geom_boxplot(fill = '#4DE5B1', color = 'black') + # Added color for boxplot outlines
  labs(title = paste("Boxplot of", col), y = "") +
    theme_minimal()

# Combine and print the plots
  print(hist_plot + box_plot)
}</pre>
```


Insights: - All of the continuous variables are positively skewed. - Boxplot revealed that the skewness is caused by outliers in the right side.

```
dep_var <- "price"

# Prepare independent variables
num_cols <- num_cols[num_cols != dep_var]
cont_cols <- cont_cols[cont_cols != dep_var]</pre>
```

```
for (col in cont_cols){
  plot <- ggplot(df2, aes(x =.data[[col]], y =price, na.rm =TRUE)) +
    geom_smooth(formula = y ~ x, method = "lm")+
    geom_point(color='#f00000')+
    labs(title= paste("Prive and ", col))+
    theme_minimal()
    print(plot)
}</pre>
```


Bivariate analysis

Insights: - The milage_km seems to have low relationship with price, as the correlation line is almost horizontal. - Meanwhile, monthly installment has a perfect linear relationship with price. This is most likely caused by the monthly installment value being determined from price value. Therefore, I will omit "instalment_month" from further analysis to avoid multicollinearity.

```
remove_var <- c("instalment_month")

# Remove from list
num_cols <- num_cols[num_cols != remove_var]
cont_cols <- cont_cols[cont_cols != remove_var]

cont_cols <- c(cont_cols, "price")</pre>
```

Discrete Variable

```
for (col in disc_cols) {
  options(repr.plot.width = 20, repr.plot.height = 8)
  # Histogram
 hist_plot <- ggplot(df2, aes(x = .data[[col]])) +
    geom bar(fill = '#FF9999', color = 'black') +
    labs(title = paste("Count of", col), y = "Count") +
    xlab(col) + # Keep xlab here, but we'll blank it out in theme
    theme minimal() +
    theme(
      # Hide x-axis title, text (labels), and ticks for the top plot
      axis.title.x = element blank(), # Hides the "xlab(col)" title
      axis.text.x = element_blank(),  # Hides the tick labels (A, B, C, etc.)
axis.ticks.x = element_blank(),  # Hides the small tick marks
      plot.margin = margin(b = 0, unit = "pt") # Reduce bottom margin to minimize space between plots
    )
  # Bar plot (dependent variable)
  data <- df2 %>%
    group_by(.data[[col]]) %>%
    summarise(Avg.Price = mean(price), .groups = 'drop')
  price_plot <- ggplot(data, aes(x = .data[[col]], y = Avg.Price)) +</pre>
    geom_bar(stat = 'identity', fill = 'blue', color = 'white') +
    labs(title = paste(col, "vs average price")) +
    xlab(col) + # This plot will keep its x-axis label
    theme_minimal() +
    theme(
      axis.text.x = element_text(hjust = 1, vjust = 1, size = 10),
      plot.margin = margin(t = 0, unit = "pt") # Reduce top margin to minimize space between plots
 print(hist_plot / price_plot + plot_layout(guides = "collect", axis_titles = "collect"))
```


Insights: - Most of the car in the dataframe are 4 and 5 year old. - Furthermore, the average price tends to increase as it gets older. - To test this, I need to take a closer look at the car models. - Most of the car listed have engine capacity 1.500cc and lower. - As the engine capacity gets higher, the price tends to increase.

Let's see a detailed look on yearly effect based on specific car model.

```
model_count <- aggregate(data.frame(count = df2$car.name), list(value = df2$car.name), length) %>%
    arrange(desc(count))

model_count
```

```
##
                                               value count
                                   BRIO SATYA E 1.2
## 1
                                                         48
## 2
                               XPANDER ULTIMATE 1.5
                                                         38
## 3
                                         CALYA G 1.2
                                                         20
                                          AYLA R 1.2
## 4
                                                         19
                           RUSH S TRD SPORTIVO 1.5
## 5
                                                         18
## 6
                                         BRIO RS 1.2
                                                         17
## 7
                                     AGYA G TRD 1.2
                                                         16
## 8
                                          HR-V E 1.5
                                                         15
## 9
                                        AVANZA G 1.3
                                                         14
## 10
                                      MOBILIO E 1.5
                                                         12
                                                          9
## 11
                                          AYLA X 1.0
## 12
                        KIJANG INNOVA REBORN G 2.0
                                                          9
                                                          9
## 13
                                    YARIS S TRD 1.5
## 14
                                        IGNIS GX 1.2
                                                          8
                                  XPANDER SPORT 1.5
                                                          7
## 15
```

##	16	ALMAZ LT LUX	1.5	6
##	17	BALENO HATCHBACK	1.4	6
##	18	BR-V E	1.5	6
##	19	CITY RS HATCHBACK		6
##	20	KIJANG INNOVA G	2.0	6
##	21	LIVINA VL	1.5	6
##	22	SX4 S-CROSS	1.5	6
##	23	TERIOS R	1.5	6
##	24	XPANDER EXCEED	1.5	6
##	25	AGYA G	1.0	5
##	26	AYLA R DLX	1.2	5
##	27	CARRY PICK UP	1.5	5
##	28	ERTIGA GX		5
##	29	ERTIGA SPORT GT		5
##	30	HR-V E PLUS	1.5	5
##	31	HR-V SE		5
	32	IGNIS GL		5
	33	MOBILIO RS		5
	34	2 R SKYACTIV		4
	35	AGYA G		4
	36	AVANZA VELOZ		4
	37	HR-V S		4
	38	KIJANG INNOVA REBORN V		4
	39	MARCH		4
	40	ROCKY R		4
	41	SIENTA Q		4
	42	SIENTA V		4
	43	SIGRA R STD		4
	44 45	TERIOS X DLX X-TRAIL		4
	46	2 GT SKYACTIV		3
	47	AGYA G TRD SPORTIVO		3
	48	AVANZA E		3
	49	BR-V PRESTIGE		3
	50	CONFERO S		3
	51	CR-V TURBO		3
	52	ERTIGA GL		3
	53	ERTIGA GX		3
	54	GRAND LIVINA HIGHWAY STAR AUTECH		3
	55	KIJANG INNOVA Q		3
	56	KIJANG INNOVA V		3
	57	OUTLANDER SPORT PX		3
	58	SIENTA G	1.5	3
	59	SIGRA R DLX		3
##	60	XL7 ALPHA	1.5	3
##	61	2 GT	1.5	2
##	62	AGYA GR SPORT	1.2	2
##	63	ALMAZ S+T	1.5	2
##	64	AVANZA G	1.5	2
##	65	AYLA X	1.2	2
##	66	BRIO E	1.2	2
##	67	CORTEZ S T LUX	1.5	2
##	68	ERTIGA DREZA	1.4	2
##	69	GO+ PANCA T	1.2	2

##	70	GRAND LIVINA HIGHWAY STAR		2
##	71	GRAND LIVINA SV	1.5	2
##	72	GRAND LIVINA XV	1.5	2
##	73	KIJANG INNOVA REBORN G	2.4	2
##	74	KIJANG INNOVA REBORN VENTURER GASOLINE	2.0	2
##	75	MARCH	1.5	2
##	76	MOBILIO E PRESTIGE	1.5	2
##	77	MOBILIO S	1.5	2
##	78	RAIZE TURBO G		2
	79	ROCKY X		2
	80	RUSH S		2
	81	RUSH S GR SPORT		2
	82	SERENA HIGHWAY STAR		2
				2
	83	SIRION M602RS		
	84	TERIOS R DLX		2
	85	TERIOS TX		2
	86	X-TRAIL		2
##	87	XENIA R	1.3	2
##	88	XENIA R DLX	1.3	2
##	89	XENIA R SPORTY	1.3	2
##	90	XENIA R STD	1.3	2
##	91	XL7 BETA	1.5	2
##	92	XL7 ZETA GL	1.5	2
##	93	2 R	1.5	1
##	94	AGYA G TRD	1.0	1
	95	AGYA TRD SPORTIVO		1
	96	ALMAZ L TURBO		1
	97	ALMAZ LT LUX + SC CVT		1
	98	ALMAZ LT LUX CVT		1
		ALMAZ RS LT LUX + SC CVT		
	99			1
##	100	ALMAZ S+T SMART ENJOY		1
##	101	AVANZA VELOZ		1
##	102	AYLA X ELEGANT		1
##	103	BIANTE SKYACTIV		1
##	104	BR-V E PRESTIGE	1.5	1
##	105	BRIO E	1.3	1
##	106	BRIO SATYA S	1.2	1
##	107	CALYA E	1.2	1
##	108	CITY E	1.5	1
##	109	CIVIC FB2	1.8	1
##	110	COLT L300 PICK UP	2.5	1
##	111	CONFERO 2WD	1.5	1
##	112	CONFERO S L		1
	113	CONFERO S L LUX		1
	114	CORTEZ C T LUX		1
	115	CORTEZ L T LUX		1
	116	CORTEZ T LUX		1
	117	CR-V		1
	118	CRETA PRIME		1
	119	CROSS		1
	120	CX-3 GT		1
	121	CX-3 TOURING		1
	122	CX-5 GT		1
##	123	CX-5 HIGH	2.5	1

```
## 124
                             ECOSPORT TITANIUM 1.5
## 125
                               ERTIGA DREZA GS 1.4
## 126
                                     ERTIGA GL 1.5
## 127
                                    FORTUNER G 2.5
                                                        1
## 128
                                FORTUNER G TRD 2.5
## 129
                                       FREED S 1.5
                                                        1
## 130
                               GO PANCA T LIVE 1.2
## 131
                          GRAND LIVINA X-GEAR 1.5
## 132
                                  IGNIS GX AGS 1.2
## 133
                                       JAZZ RS 1.5
                                                        1
## 134
                                          JUKE 1.5
## 135
                                    KARIMUN GL 1.0
## 136
                                    KARIMUN GS 1.0
                      KIJANG INNOVA VENTURER 2.0
## 137
## 138
                                       MARCH L 1.2
## 139
                           OUTLANDER SPORT GLS 2.0
## 140
                                      RAIZE GR 1.0
                                                        1
## 141
                                RAIZE GR SPORT 1.0
                           RAIZE GR SPORT TSS 1.0
## 142
## 143
                             RAIZE GR TWO TONE 1.0
## 144
                                        RUSH G 1.5
                                                        1
## 145
                                    RUSH S TRD 1.5
## 146
                                       SIGRA D 1.0
                                                        1
## 147
                                       SIGRA M 1.0
## 148
                                       SIGRA R 1.2
                                                        1
## 149
                                       SIGRA X 1.2
## 150
                                        SIRION 1.3
                                                        1
## 151
                                 SPARK PREMIER 1.4
## 152
                               STARGAZER PRIME 1.5
## 153
                            TERIOS ADVENTURE R 1.5
## 154
                                      TERIOS X 1.5
                      X-TRAIL URBAN SELECTION 2.5
## 155
                                                        1
## 156
                                       XENIA X 1.3
## 157
                                   XENIA X STD 1.3
                                                        1
## 158
                                 XPANDER CROSS 1.5
                                       YARIS G 1.5
## 159
# Filter based on models
df_brio <- filter(df2, car.name=='BRIO SATYA E 1.2')</pre>
df_xpander <- filter(df2, car.name=='XPANDER ULTIMATE 1.5')</pre>
# Plot
a <- ggplot(df_brio, aes(x= age, y =price)) +
 geom_point(color='red')+
  geom_smooth(formula = y ~ x, method = "lm")+
 labs(title= 'Brio Yearly Price') +
 theme minimal()
b <- ggplot(df_xpander, aes(x= age, y =price)) +</pre>
  geom_point(color='purple')+
  geom_smooth(formula = y ~ x, method = "lm")+
 labs(title= 'Xpander Yearly Price') +
  theme_minimal()
```


Insight: - Yes, the specified investigation shows that the price of a car decrease as it get older.

Dummy variable

```
for (col in dum_cols) {
  options(repr.plot.width = 20, repr.plot.height = 8)

# Histogram
hist_plot <- ggplot(df2, aes(x = .data[[col]])) +
  geom_bar(fill = '#FF9999', color = 'black') +
  labs(title = paste("Histogram of", col), y = "Count") +
    xlab(col) + # Keep xlab here, but we'll blank it out in theme
  theme_minimal() +
  theme(
    # Hide x-axis title, text (labels), and ticks for the top plot
    axis.title.x = element_blank(), # Hides the "xlab(col)" title
    axis.text.x = element_blank(), # Hides the tick labels (A, B, C, etc.)
    axis.ticks.x = element_blank(), # Hides the small tick marks
    plot.margin = margin(b = 0, unit = "pt") # Reduce bottom margin to minimize space between plots
)</pre>
```

```
# Bar plot (dependent variable)
data <- df2 %>%
    group_by(.data[[col]]) %>%
    summarise(Avg.Price = mean(price), .groups = 'drop')

price_plot <- ggplot(data, aes(x = .data[[col]], y = Avg.Price)) +
    geom_bar(stat = 'identity', fill = 'blue', color = 'white') +
    labs(title = paste(col, "vs average price")) +
    xlab(col) + # This plot will keep its x-axis label
    theme_minimal() +
    theme(
        axis.text.x = element_text(hjust = 1, vjust = 1, size = 10),
        plot.margin = margin(t = 0, unit = "pt") # Reduce top margin to minimize space between plots
    )

print(hist_plot / price_plot + plot_layout(guides = "collect", axis_titles = "collect"))
}</pre>
```


Categorical Variables EDA

```
cat_cols
## [1] "brand"
                  "location"
for (col in cat_cols) {
  options(repr.plot.width = 20, repr.plot.height = 8)
  # Histogram
  hist_plot <- ggplot(df2, aes(x = fct_infreq(.data[[col]]))) +
    geom_bar(fill = '#FF9999', color = 'black') +
    labs(title = paste("Count of", col), y = "Count") +
    xlab(col) +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1, size = 10),
      plot.margin = margin(t = 0, unit = "pt"))
  # Bar plot (dependent variable)
  data <- df2 %>%
    group_by(.data[[col]]) %>%
    summarise(Avg.Price = mean(price), .groups = 'drop') %>%
```

```
arrange(desc(Avg.Price)) %>%
  mutate(!!sym(col) := forcats::fct_reorder(!!sym(col), Avg.Price, .desc = TRUE))

price_plot <- ggplot(data, aes(x = .data[[col]], y = Avg.Price)) +
    geom_bar(stat = 'identity', fill = 'blue', color = 'white') +
    labs(title = paste(col, "vs average price")) +
    xlab(col) +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1, size = 10),
        plot.margin = margin(t = 0, unit = "pt"))

print(hist_plot / price_plot + plot_layout(guides = "collect", axis_titles = "collect"))
}</pre>
```


Insights: - Toyota, Daihatsu, and Hyundai are the most common brand listed in the website. But interestingly, they don't hold the top highest average price. Hyundai, Mazda, and Mitsubishi are the top 3 brand with the highest average price despite their relatively low listing popularity. This can indicate that the aforementioned brands are the luxury brands. - The location variable doesn't seems to be affected the local price, as there isn't highly noticeable disparities of average car price based on locations.

Hedonic Model (Regression)

```
## For multicolinearity check
library(corrplot)

## Warning: package 'corrplot' was built under R version 4.3.3

## corrplot 0.94 loaded

library(reshape2)

## Attaching package: 'reshape2'

## The following object is masked from 'package:tidyr':

## smiths
```

```
## For assumption check
library(lmtest)
## Loading required package: zoo
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
# For error distribution check
library("ggpubr")
## Warning: package 'ggpubr' was built under R version 4.3.3
For the hedonic model and machine learning, the dependent or predicted variable will be the "price" column.
# Prepare dependent variable
dep_var <- "price"</pre>
# Remove excluded numeric columns
remove_var <- c("instalment_month", "year")</pre>
# Prepare independent variables
ind_vars <- num_cols[num_cols != dep_var]</pre>
ind_vars <- ind_vars[!(ind_vars %in% remove_var)]</pre>
# For variable collection
reg_vars <- c(dep_var, ind_vars)</pre>
ind_vars
## [1] "mileage_km"
                                      "rear.camera"
## [3] "sun.roof"
                                      "auto.retract.mirror"
## [5] "electric.parking.brake"
                                      "map.navigator"
## [7] "vehicle.stability.control" "keyless.push.start"
## [9] "sports.mode"
                                      "X360.camera.view"
## [11] "power.sliding.door"
                                      "auto.cruise.control"
## [13] "engine_cap"
                                      "age"
                                      "is.manual"
## [15] "brand_popularity"
## [17] "is.odd_plate"
```

Checking Correlation

```
ind_df <- df2 %>%
   as.data.frame() %>% dplyr :: select(all_of(ind_vars))

res1 <- cor.mtest(ind_df, conf.level=0.95)
corrmatrix <-cor(ind_df)</pre>
```

```
melted_corr <- melt(corrmatrix)
colnames(melted_corr) <- c("Variable1", "Variable2", "Correlation")

filtered_corr <- subset(melted_corr, abs(Correlation) > 0.5 & abs(Correlation) < 1)
sorted_corr <- filtered_corr[order(-abs(filtered_corr$Correlation)), ]

print(sorted_corr)</pre>
```

```
## Variable1 Variable2 Correlation
## 14     age mileage_km     0.6346377
## 222 mileage_km     age     0.6346377
```

The age and mileage variable are highly correlated, which is understandable as both variable can be a proxy for car use. I choose to keep the mileage variable as it is a more accurate variable to reflect car use.

```
remove_var <- c("age")
ind_vars <- ind_vars[!(ind_vars %in% remove_var)]
reg_vars <- c(dep_var, ind_vars)</pre>
```

Model selection using regression subset method

```
## Variable Selection
library(olsrr)
## Warning: package 'olsrr' was built under R version 4.3.3
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
##
##
       rivers
library(leaps)
## Warning: package 'leaps' was built under R version 4.3.3
get_ols <- function(dataframe, vars, dep) {</pre>
    df1 <- dataframe[vars]</pre>
    fml <- as.formula(paste0(dep, " ~ ."))</pre>
    ols_res <- lm(data = df1, fml)
    return(ols_res)
}
ols_1 <- get_ols(df2, reg_vars, dep_var)</pre>
ols regress(ols 1)
```

##			Model Su	mmar	У						
## ##	R R-Squared Adj. R-Squared Pred R-Squared MAE	2073	0.843 0.710 0.702 0.677	1 (RMSE MSE Coef. Var AIC SBC		28607393.1 8.183829e+ 16.5 21672.5 21751.1	14 20 65			
## ## ## ## ## ##	RMSE: Root Mean MSE: Mean Squan MAE: Mean Abson AIC: Akaike In: SBC: Schwarz B	re Error lute Error formation Cri	teria								
## ##			ANOVA								
## ## ##		Sum of Squares 	DF	M•	ean Square	F	Sig	•			
## ##	Residual 4 Total 1	.166826e+18 .762989e+17 .643125e+18	16 565 581		292662e+16 430069e+14	86.	508 0.000	0			
## ##						aramet	er Estimates				
## ## ##		model		Beta	Std. E	 rror 	Std. Beta	t		Sig	
## ##	(Intercept) mileage_km	16347002. -401796.		7940841 43532		-0.223	2.0 -9.2	059 230	0.040 0.000	749 -48
##		ear.camera sun.roof	5851665. 20178651.	858	3587997 8917743	.888	0.039 0.054	1.6	631 263	0.103 0.024	-119! 266:
## ##	auto.retra electric.par	act.mirror	28408413. 44966344.	571	2844986 7295819	.008	0.267 0.143	9.9	985 163	0.000	22820 30630
##	-	.navigator	23833040. 10406505.	279	13299964 4436621	. 484	0.041	1.7	792 346	0.074 0.019	-2290 1691
## ##	keyless.	push.start ports.mode	738803. -3600669.	613	4562749 3834892	.505	0.004 -0.024	-0.9		0.871 0.348	-8223 -11133
## ## ##	power.sl	amera.view iding.door se.control	1139100. -20585814. 30728799.	250 318	9745015 10499068 7717187	.617 .341	0.003 -0.045 0.095	-1.9 3.9	982	0.907 0.050 0.000	-1800 -4120 1557
## ## ##	brand_	engine_cap popularity is.manual	107410702. 1276021. -31480460.	735 010	4975927 151846 3109348	. 491 . 295	0.551 0.212 -0.265	-10.3	403 124	0.000 0.000 0.000	9763° 97° -3758°
##	ıs	.odd_plate	-2015523.	343	2445100	. 043	-0.019	-0.8	5∠4	0.410	-681

Insights: - The initial model using all of the selected variable can explain for 72% of the total price variation. - Not all of the independent variable is significant to the price variable, which raises the concern of the model effectiveness.

Regression model selection - One of the main goal of this analysis is to make a prediction model using the hedonic model (OLS) and machine learning model, so I need to choose model with the best variable combination to predict the price variable. - I will use the best subsets regression using the exhaustive method; since the data is still relatively small (< 5000 rows) and the independent variables is still acceptable for an

exhaustive search (<20 variables). - Because the goal is to make a prediction model, I choose to select the model best the highest adjusted R squared value.

```
df_reg <- df2[reg_vars]</pre>
best_subset <-
 regsubsets(price~., data = df_reg, nbest = 1, nvmax = length(ind_vars),
            method="exhaustive")
summary best subset <- summary(best subset)</pre>
as.data.frame(summary_best_subset$outmat)
            mileage_km rear.camera sun.roof auto.retract.mirror
## 1
     (1)
## 2
     (1)
## 3
     (1)
## 4
     (1)
## 5 (1)
## 6
     (1)
## 7
     (1)
## 8
     (1)
## 9
     (1)
## 10
      (1)
## 11
      (1)
## 12
      (1)
## 13
      (1)
## 14
      (1)
## 15
      (1)
## 16
      (1)
##
            electric.parking.brake map.navigator vehicle.stability.control
## 1
     (1)
## 2
     (1)
## 3 (1)
## 4
     (1)
## 5
     (1)
## 6
     (1)
## 7
     (1)
## 8
     (1)
## 9
     (1)
## 10
      (1)
## 11
      (1)
## 12
      (1)
## 13
      (1)
## 14
      (1)
## 15
      (1)
## 16
      (1)
##
            keyless.push.start sports.mode X360.camera.view power.sliding.door
## 1 (1)
## 2 (1)
## 3
     (1)
## 4
     (1)
## 5 (1)
## 6 (1)
```

7 (1)

```
## 8 (1)
## 9
     (1)
## 10
     (1)
## 11
## 13
      (1)
## 14
      (1)
## 15
      (1)
## 16 (1)
##
            auto.cruise.control engine_cap brand_popularity is.manual
## 1
     (1)
## 2
     (1)
## 3
     (1)
## 4
     (1)
## 5
     (1)
## 6
     (1)
## 7
     (1)
## 8
     (1)
## 9
     (1)
## 10
## 11
      (1)
## 12
## 13
      (1)
## 14
      (1)
## 15
      (1)
## 16
      (1)
##
            is.odd_plate
## 1
     (1)
## 2 (1)
## 3
     (1)
## 4
     (1)
## 5
     (1)
## 6
     (1)
## 7
     (1)
## 8
## 9
     (1)
## 10
     (1)
## 11
      (1)
## 12
      (1)
## 13
      (1)
## 14
      (1)
## 15
      (1)
## 16
      (1)
which.max(summary_best_subset$adjr2)
## [1] 12
summary_best_subset$which[12,]
                (Intercept)
                                                                rear.camera
##
                                         mileage_km
##
                      TRUE
                                               TRUE
                                                                       TRUE
##
                  sun.roof
                                 auto.retract.mirror
                                                      electric.parking.brake
```

```
##
                        TRUE
                                                   TRUE
                                                                             TRUE
##
               map.navigator vehicle.stability.control
                                                               keyless.push.start
##
                        TRUE
                                                   TRUE
                                                                            FALSE
##
                 sports.mode
                                     X360.camera.view
                                                               power.sliding.door
##
                       FALSE
                                                 FALSE
                                                                             TRUE
##
         auto.cruise.control
                                            engine cap
                                                                 brand_popularity
                                                                             TRUE
##
                        TRUE
                                                   TRUE
##
                   is.manual
                                          is.odd_plate
##
                        TRUE
                                                  FALSE
best_vars <- c("price", "mileage_km", "rear.camera", "sun.roof",</pre>
               "auto.retract.mirror", "electric.parking.brake", "map.navigator",
               "vehicle.stability.control", "power.sliding.door",
                "auto.cruise.control", "engine_cap", "brand_popularity", "is.manual")
best_model1 <- (price ~ mileage_km + rear.camera</pre>
                  + sun.roof + auto.retract.mirror + electric.parking.brake
                  + map.navigator + vehicle.stability.control
                  + power.sliding.door + auto.cruise.control + engine_cap
                  + brand_popularity + is.manual)
best_reg1 <- lm(df2, formula = price ~ mileage_km + rear.camera
                  + sun.roof + auto.retract.mirror + electric.parking.brake
                  + map.navigator + vehicle.stability.control
                  + power.sliding.door + auto.cruise.control + engine_cap
                  + brand_popularity + is.manual)
```

Checking for BLUE assumption

```
## Warning: package 'tseries' was built under R version 4.3.3

## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo

## Pooled model regression
library(plm)

## Warning: package 'plm' was built under R version 4.3.3

## ## Attaching package: 'plm'
## The following objects are masked from 'package:dplyr':
## ## between, lag, lead
```

Linearity

```
ggplot(df2, aes(x=fitted(best_reg1), y= residuals(best_reg1)))+
  geom_point() +
  geom_smooth(method = "loess", se = FALSE)
```

```
## 'geom_smooth()' using formula = 'y ~ x'
```


The residuals dispersion have an U concave pattern; This suggest non-linearity between the dependent and independent variables's relationship.

```
resettest(best_reg1, power=2:3, type="fitted")

##
## RESET test
##
## data: best_reg1
## RESET = 12.691, df1 = 2, df2 = 567, p-value = 4.058e-06
```

The test shows that th relationship between the dependent and independent variables is not linear.But the test result could be caused by other BLUE violation and not because of linearity.

Multicollinearity check

```
car::vif(best_reg1)
##
                  mileage_km
                                             rear.camera
                                                                            sun.roof
##
                     1.125649
                                                 1.074461
                                                                            1.096639
##
         auto.retract.mirror
                                  electric.parking.brake
                                                                       map.navigator
##
                     1.261161
                                                1.025654
                                                                            1.023198
   vehicle.stability.control
##
                                      power.sliding.door
                                                                 auto.cruise.control
##
                     1.191824
                                                 1.022036
                                                                            1.063158
##
                   engine_cap
                                        brand_popularity
                                                                           is.manual
##
                     1.241499
                                                 1.117748
                                                                            1.195983
```

There is no variable with VIF value > 5, so it can be concluded that there is no multicollinearity.

Homoskedasticity

```
ggplot(df2, aes(x=fitted(best_reg1), y= residuals(best_reg1)))+
  geom_point() +
  geom_smooth(method = "loess", se = FALSE)
```

```
## 'geom_smooth()' using formula = 'y ~ x'
```


Insights: - There residuals distribution is not constant along the fitted value. - There is a down concave

pattern of the residuals and fitted value correlation. - The models residuals seems to increase in the relatively low and high fitted price.

```
ols_test_breusch_pagan(best_reg1, rhs = TRUE, multiple = TRUE)
```

D

```
##
##
   Breusch Pagan Test for Heteroskedasticity
   ______
##
  Ho: the variance is constant
##
##
   Ha: the variance is not constant
##
##
   ______
##
##
   Response : price
##
   Variables: mileage_km rear.camera sun.roof auto.retract.mirror electric.parking.brake map.navigator
##
##
                 Test Summary (Unadjusted p values)
##
   ______
                                           df
##
    Variable
                                 chi2
##
   ______
                               0.10720062 1 7.433540e-01
##
    mileage km
                               0.02541785 1 8.733303e-01
##
    rear.camera
##
    sun.roof
                             65.98746303 1 4.538003e-16
    auto.retract.mirror 1.31532534 1 2.514327e-01 electric.parking.brake 2.73675725 1 9.806358e-02
##
##

      map.navigator
      50.60662575
      1
      1.128634e-12

      vehicle.stability.control
      14.29135435
      1
      1.565824e-04

##
##
                             3.61932648 1 5.711199e-02
5.64246442 1 1.753055e-02
##
    power.sliding.door
    auto.cruise.control
                           5.64246442 1 1.753055e-02
128.13458395 1 1.048841e-29
##
##
    engine_cap
##
    brand_popularity
                              4.54774923 1 3.296205e-02
                             15.17130596 1 9.818412e-05
##
    is.manual
##
   -----
                        -----
                              268.55382508 12 1.825811e-50
##
    simultaneous
```

• The p value is less than 0.05, which means the null hypothesis (homoscedasticity) is rejected and therefore the model have a heteroscedasticity problem.

Conclusion and Method Selection

ols_regress(best_reg1)

##		Model Summary					
##							
## R	0.842	RMSE	28649295.236				
## R-Squared	0.709	MSE	8.207821e+14				
## Adj. R-Squared	0.703	Coef. Var	16.486				
## Pred R-Squared	0.684	AIC	21666.269				
## MAE	20783773.203	SBC	21727.399				
##							

RMSE: Root Mean Square Error ## MSE: Mean Square Error ## MAE: Mean Absolute Error AIC: Akaike Information Criteria ## SBC: Schwarz Bayesian Criteria ## ## AVOVA ## ## Sum of Mean Square ## Squares DF Sig. 12 0.0000 ## Regression 1.16543e+18 9.711914e+16 115.682 ## Residual 4.776952e+17 569 8.395346e+14 1.643125e+18 ## Total 581 ## ## Parameter Estimates ## model Beta Std. Error Std. Beta Sig ## ______ ## (Intercept) 14889178.724 7779713.422 1.914 0.056 -39 -397208.337 43237.269 -0.220 0.000 -48 ## mileage_km -9.187 ## rear.camera 5561032.522 3525237.413 0.037 0.115 -1361.577 ## sun.roof 20653135.804 8850840.541 0.055 2.333 0.020 326 ## auto.retract.mirror 29197176.119 2703965.670 0.274 10.798 0.000 2388 ## electric.parking.brake 45501429.112 7223247.750 0.144 6.299 0.000 3131 ## -165map.navigator 24198955.560 13163992.343 0.042 1.838 0.067 2.494 ## vehicle.stability.control 10674936.424 4280584.852 0.062 0.013 226 ## power.sliding.door -19664019.571 10428286.297 -0.043-1.8860.060 -4014## 31193800.914 7573757.787 0.096 0.000 1631 auto.cruise.control 4.119 ## engine_cap 107236668.392 4907160.860 0.550 21.853 0.000 9759 ## brand_popularity 1242257.577 0.207 8.651 0.000 96 143591.798 ## -30616286.240 2941894.255 -0.257-10.4070.000 -3639is.manual

Insights: - The model can explain 73% of the total data variations. - The non - significant variable is rear.camera - rear.camera

From the BLUE assumption checking, I conclude that the model have: - Non-linear Relationship - Heteroscedasticity - Heteroscedasticity don't affect the coefficient value.

Regression Option: - Variable transformation - WLS

Alternative Model

Double Log Model

best_vars

[5] "auto.retract.mirror" "electric.parking.brake"

```
## [7] "map.navigator"
                                      "vehicle.stability.control"
## [9] "power.sliding.door"
                                     "auto.cruise.control"
## [11] "engine cap"
                                     "brand popularity"
## [13] "is.manual"
for (col in cont cols){
  if (col %in% best_vars == TRUE){
    print(paste0(col, "'s summary"))
    print(summary(df[[col]]))
    cat("\n")
 }else{
    print(pasteO(col, "is not in the model"))
    cat("\n")
  }
}
## [1] "mileage_km's summary"
##
     Min. 1st Qu. Median
                               Mean 3rd Qu.
##
     1.065 39.145 58.365 61.686 81.726 245.000
##
## [1] "price's summary"
       Min. 1st Qu.
                      Median
                                   Mean 3rd Qu.
## 7.70e+07 1.32e+08 1.77e+08 1.83e+08 2.12e+08 5.42e+08
There is only 2 variable in the variable that is continuous: "mileage_km's summary" + "price's summary"
and both: - doesn't have 0 - not a percentage
Which means that they are eligible for natural log transformation.
## Set dataframe
df_log <- data.frame(df_reg)</pre>
## Prepare log variable model
dbl_log_vars <- best_vars</pre>
dbl_log_vars
##
   [1] "price"
                                      "mileage_km"
##
   [3] "rear.camera"
                                      "sun.roof"
##
  [5] "auto.retract.mirror"
                                      "electric.parking.brake"
  [7] "map.navigator"
                                      "vehicle.stability.control"
  [9] "power.sliding.door"
                                      "auto.cruise.control"
## [11] "engine_cap"
                                      "brand_popularity"
## [13] "is.manual"
for (col in cont_cols){
  if (col %in% best_vars == TRUE){
    ## Natural Log transformation
    new_var <- paste0("ln_", col)</pre>
    ## Load to new dataframe
    df_log[[new_var]] <- log(df_log[[col]])</pre>
    df_log %>% select(-any_of(c(col)))
```

print(paste0(col, "'transformed to ", new_var))

```
## Input to new model variable
   dbl_log_vars <- c(dbl_log_vars, new_var)</pre>
   dbl_log_vars <- dbl_log_vars[dbl_log_vars != col]</pre>
   cat("\n")
  }else{
   print(pasteO(col, "is not in the model"))
   cat("\n")
 }
}
## [1] "mileage_km'transformed to ln_mileage_km"
## [1] "price'transformed to ln_price"
# Prepare dependent variable
ln_dep_var <- "ln_price"</pre>
# Prepare independent variables
ln_ind_vars <- dbl_log_vars[!(dbl_log_vars %in% ln_dep_var)]</pre>
## Combine vars
ln_vars <- c(ln_dep_var, ln_ind_vars)</pre>
ln_ols <- get_ols(df_log, dbl_log_vars, ln_dep_var)</pre>
ols_regress(ln_ols)
                       Model Summary
## R
                                   RMSE
                        0.848
                                                           0.161
                       0.720 MSE
0.714 Coef. Var
0.701 AIC
0.123 SBC
## R-Squared
                                                         0.026
## Adj. R-Squared
                                                          0.860
## Pred R-Squared
                                                       -446.161
## MAE
                                                        -385.030
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
## AIC: Akaike Information Criteria
## SBC: Schwarz Bayesian Criteria
##
##
##
                Sum of
                Squares DF Mean Square F Sig.
##
## -----
## Regression 38.721
## Residual 15.088
## Total 53.809
                           12
569
581
                                           3.227 121.689 0.0000
                                           0.027
                53.809
                             581
##
                                           Parameter Estimates
```

##	model	Beta	Std. Error	Std. Beta	t	Sig	lower	uppe
##								
##	(Intercept)	18.286	0.058		317.281	0.000	18.172	18.3
##	rear.camera	0.043	0.020	0.050	2.162	0.031	0.004	0.0
##	sun.roof	0.136	0.050	0.064	2.744	0.006	0.039	0.2
##	auto.retract.mirror	0.190	0.015	0.312	12.557	0.000	0.160	0.2
##	electric.parking.brake	0.239	0.041	0.132	5.881	0.000	0.159	0.3
##	map.navigator	0.109	0.074	0.033	1.478	0.140	-0.036	0.2
##	vehicle.stability.control	0.085	0.024	0.085	3.520	0.000	0.037	0.1
##	power.sliding.door	-0.065	0.059	-0.025	-1.110	0.267	-0.180	0.0
##	auto.cruise.control	0.189	0.043	0.102	4.435	0.000	0.105	0.2
##	engine_cap	0.546	0.027	0.490	20.142	0.000	0.493	0.6
##	brand_popularity	0.007	0.001	0.207	8.832	0.000	0.006	0.0
##	is.manual	-0.203	0.017	-0.298	-12.198	0.000	-0.236	-0.1
##	$ln_{mileage_km}$	-0.080	0.011	-0.171	-7.355	0.000	-0.102	-0.0
##								

The double log model can explain about 72% of the data. The double logarithmic model accuracy decreases about 10% from the ols. The non significant variables are: - map.navigator - power sliding door

```
ols_test_breusch_pagan(ln_ols, rhs = TRUE, multiple = TRUE)
```

```
##
## Breusch Pagan Test for Heteroskedasticity
## -----
## Ho: the variance is constant
## Ha: the variance is not constant
###
```

##

##

Response : ln_price
Variables: rear.camera sun.roof auto.retract.mirror electric.parking.brake map.navigator vehicle.st

Test Summary (Unadjusted p values)

Variable	chi2	df	р					
rear.camera	0.06546925	1	7.980515e-01					
sun.roof	30.94859828	1	2.649534e-08					
auto.retract.mirror	5.30181905	1	2.130317e-02					
electric.parking.brake	0.18183007	1	6.698052e-01					
map.navigator	6.04722873	1	1.392814e-02					
vehicle.stability.contro	ol 13.85108062	1	1.978829e-04					
power.sliding.door	3.49694779	1	6.148204e-02					
auto.cruise.control	6.61813314	1	1.009456e-02					
engine_cap	41.08808954	1	1.455204e-10					
brand_popularity	14.60382143	1	1.326453e-04					
is.manual	0.15122787	1	6.973647e-01					
ln_mileage_km	13.47687925	1	2.415212e-04					
simultaneous	137.23971447	12	2.158642e-23					

Although Reduced, there is still a heteroskedasticity problem.

```
resettest(ln_ols, power=2:3, type="fitted")
```

```
##
## RESET test
##
## data: ln_ols
## RESET = 18.429, df1 = 2, df2 = 567, p-value = 1.762e-08
```

Moreover, the RESET test showed that the relationship between the independent and dependent variable is still non-linear. But this could be a result of heteroskedasticity.

Conclusion

##

The double log model improves the model accuracy, but it still has heteroskedasticity and non linearity.

Alternative Model: - Weighted Least Squares (WLS) - Robust Standard Errors (RBS)

Weighted Least Squares (WLS) Regression

```
## Define Weight
wt <- 1 / lm(abs(ln_ols$residuals) ~ ln_ols$fitted.values)$fitted.values^2

df_1 <- df_log[dbl_log_vars]

#perform weighted least squares regression
wls_model <- lm(ln_price ~ ., data = df_1, weights=wt)

summary(wls_model)</pre>
```

```
## Call:
## lm(formula = ln_price ~ ., data = df_1, weights = wt)
##
## Weighted Residuals:
##
      Min
              1Q Median
                            30
                                  Max
## -4.0869 -0.8277 0.0204 0.7432 4.7458
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
                         ## (Intercept)
## rear.camera
                          0.0423550 0.0198593 2.133 0.033373 *
                                             2.929 0.003533 **
## sun.roof
                          0.1541410 0.0526193
## auto.retract.mirror
                          ## electric.parking.brake
                          0.2403460 0.0442277
                                              5.434 8.17e-08 ***
## map.navigator
                          0.1089611 0.0760995
                                             1.432 0.152743
## vehicle.stability.control 0.0857689 0.0249902
                                             3.432 0.000642 ***
## power.sliding.door
                         -0.0663132  0.0602876  -1.100  0.271820
                      0.1876771 0.0457142
## auto.cruise.control
                                             4.105 4.63e-05 ***
## engine_cap
                         0.5716018  0.0286411  19.957  < 2e-16 ***
## brand_popularity
                          0.0071417 0.0008016 8.909 < 2e-16 ***
```

The model can explain 72% of the data variance.

The non significant variables are: - map navigator - power sliding doors.

##	Variable	chi2	df	n
	Valiable	CHIZ	αı	Р
## ##		0.09506431	1	7.578350e-01
	rear.camera		_	
##	sun.roof	34.59175702	1	4.066245e-09
##	auto.retract.mirror	4.45433742	1	3.481272e-02
##	electric.parking.brake	0.14629461	1	7.021018e-01
##	map.navigator	7.08560872	1	7.770542e-03
##	vehicle.stability.control	13.75758001	1	2.079799e-04
##	power.sliding.door	3.49645000	1	6.150053e-02
##	auto.cruise.control	6.66247056	1	9.846431e-03
##	engine_cap	51.69194733	1	6.492851e-13
##	brand_popularity	16.76108054	1	4.239397e-05
##	is.manual	0.20848716	1	6.479557e-01
##	ln_mileage_km	14.25276529	1	1.598258e-04
##				
##	simultaneous	154.57404609	12	6.678311e-27
##				

Hedonic Model Recap

```
get_rmse <- function(model) {
  ssr <- sum(residuals(model)^2)
  df_residual <- model$df.residual
  rmse <- sqrt(ssr/df_residual)</pre>
```

```
return(rmse)
print(paste0("Initial model's adj.R2: ", summary(ols_1)$adj.r.squared))
## [1] "Initial model's adj.R2: 0.701917367781985"
print(paste0("Best model's adj.R2: ", summary(best_reg1)$adj.r.squared))
## [1] "Best model's adj.R2: 0.70314513539943"
print(paste0("Double log + best model's adj.R2: ", summary(ln_ols)$adj.r.squared))
## [1] "Double log + best model's adj.R2: 0.713689473676195"
print(paste0("WLS + Double log + Best OLS Model's adj.R2: ", summary(wls_model)$adj.r.squared))
## [1] "WLS + Double log + Best OLS Model's adj.R2: 0.724565499658563"
print(paste0("Initial model's MSE: ", get_rmse(ols_1)))
## [1] "Initial model's MSE: 29034580.34404"
print(paste0("Best model's MSE: ", get_rmse(best_reg1)))
## [1] "Best model's MSE: 28974723.6186467"
print(paste0("Double log + best model's MSE: ", get_rmse(ln_ols)))
## [1] "Double log + best model's MSE: 0.162838182708786"
print(paste0("WLS + Double log + Best OLS Model's MSE: ", get_rmse(wls_model)))
## [1] "WLS + Double log + Best OLS Model's MSE: 0.163010223967787"
```

The best performing model is WLS model using log transformed's best variable selection. But all of the model have these problems: - Heteroskedasticity - Non Linear Relationship

Machine Learning

Train test split

```
set.seed(1111)
### Shuffle the dataframe
df3 <- df_log[ln_vars]

df3 <- df3[sample(1:nrow(df3)), ]
## Split to test and train
sample <- sample(c(TRUE, FALSE), nrow(df3), replace=TRUE, prob=c(0.8,0.2))
train <- df3[sample, ]
test <- df3[!sample, ]</pre>
```

Regression Tree

```
library(MASS)
## Attaching package: 'MASS'
## The following object is masked from 'package:olsrr':
##
##
       cement
## The following object is masked from 'package:patchwork':
##
##
       area
## The following object is masked from 'package:dplyr':
##
##
       select
## Regression Tree
library(rpart)
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.3.3
#For parameter tuning
library(caret)
## Warning: package 'caret' was built under R version 4.3.3
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
```

```
## Set seed
set.seed(1111)
## Pre pruning
tree_1 <- rpart(ln_price ~ ., data = train, method = "anova",</pre>
                control = rpart.control(cp = 0.01, minsplit = 20, maxdepth=30))
summary(tree_1)
## Call:
## rpart(formula = ln_price ~ ., data = train, method = "anova",
       control = rpart.control(cp = 0.01, minsplit = 20, maxdepth = 30))
##
##
    n = 462
##
              CP nsplit rel error
##
                                     xerror
## 1 0.43479397
                      0 1.0000000 1.0035593 0.05372238
                      1 0.5652060 0.5675610 0.04314683
## 2 0.07405191
## 3 0.05698300
                      2 0.4911541 0.5192641 0.04188884
                      3 0.4341711 0.4845430 0.03644664
## 4 0.04448144
## 5 0.03103467
                      4 0.3896897 0.4104847 0.03118646
## 6 0.02050210
                      5 0.3586550 0.3880502 0.02971467
## 7 0.02033584
                      6 0.3381529 0.3727853 0.02803416
## 8 0.01814884
                     8 0.2974812 0.3606252 0.02735292
## 9 0.01534137
                     9 0.2793324 0.3417444 0.02567744
                     10 0.2639910 0.3270809 0.02603548
## 10 0.01322525
## 11 0.01225727
                     11 0.2507658 0.3150886 0.02572817
## 12 0.01086730
                     12 0.2385085 0.3025617 0.02551938
                     13 0.2276412 0.3028684 0.02578135
## 13 0.01000000
##
## Variable importance
##
            engine_cap
                                 is.manual auto.retract.mirror
                                                                   brand_popularity
##
                    42
                                        19
                                                             15
                                                                                  13
##
         ln_mileage_km
##
                    11
##
## Node number 1: 462 observations,
                                       complexity param=0.434794
##
     mean=18.93294, MSE=0.09143041
##
     left son=2 (206 obs) right son=3 (256 obs)
##
     Primary splits:
##
                                               to the left, improve=0.43479400, (0 missing)
         engine_cap
                                    < 1.45
##
                                    < 0.5
                                               to the left, improve=0.30401790, (0 missing)
         auto.retract.mirror
                                               to the right, improve=0.29498020, (0 missing)
##
                                    < 0.5
         is.manual
                                               to the left, improve=0.04685959, (0 missing)
##
         vehicle.stability.control < 0.5</pre>
##
         electric.parking.brake
                                               to the left, improve=0.03702442, (0 missing)
                                   < 0.5
##
     Surrogate splits:
                                         to the left, agree=0.693, adj=0.311, (0 split)
##
         auto.retract.mirror < 0.5</pre>
##
         is.manual
                             < 0.5
                                        to the right, agree=0.658, adj=0.233, (0 split)
##
                             < 11.90476 to the right, agree=0.643, adj=0.199, (0 split)
         brand_popularity
##
         ln_mileage_km
                             < 3.891338 to the left, agree=0.617, adj=0.141, (0 split)
##
## Node number 2: 206 observations,
                                       complexity param=0.07405191
##
     mean=18.71067, MSE=0.04811162
##
     left son=4 (90 obs) right son=5 (116 obs)
     Primary splits:
##
```

```
##
         is.manual
                              < 0.5
                                         to the right, improve=0.31561070, (0 missing)
##
         auto.retract.mirror < 0.5</pre>
                                         to the left, improve=0.26490930, (0 missing)
##
         ln mileage km
                             < 4.039576 to the right, improve=0.10600460, (0 missing)
                              < 18.63711 to the left, improve=0.09261388, (0 missing)
##
         brand_popularity
##
         engine_cap
                              < 1.25
                                         to the left, improve=0.03529204, (0 missing)
##
     Surrogate splits:
                              < 18.63711 to the left, agree=0.612, adj=0.111, (0 split)
##
         brand_popularity
                              < 1.1
                                                       agree=0.602, adj=0.089, (0 split)
##
         engine_cap
                                         to the left,
                              < 3.530127 to the left, agree=0.587, adj=0.056, (0 split)
##
         ln mileage km
##
                                         to the left, agree=0.573, adj=0.022, (0 split)
         auto.retract.mirror < 0.5</pre>
##
## Node number 3: 256 observations,
                                        complexity param=0.056983
     mean=19.11179, MSE=0.05454605
##
     left son=6 (42 obs) right son=7 (214 obs)
##
##
     Primary splits:
##
         is.manual
                              < 0.5
                                         to the right, improve=0.17237520, (0 missing)
##
                              < 10.26273 to the left, improve=0.15997790, (0 missing)
         brand_popularity
##
         auto.retract.mirror < 0.5</pre>
                                         to the left, improve=0.12688950, (0 missing)
##
                                         to the left,
                                                       improve=0.10616260, (0 missing)
         engine_cap
                              < 1.9
##
         ln mileage km
                              < 2.892815 to the left, improve=0.05319086, (0 missing)
##
     Surrogate splits:
##
         ln_mileage_km < 2.927414 to the left, agree=0.863, adj=0.167, (0 split)</pre>
##
## Node number 4: 90 observations.
                                       complexity param=0.0205021
     mean=18.57078, MSE=0.03023072
##
##
     left son=8 (79 obs) right son=9 (11 obs)
##
     Primary splits:
         auto.retract.mirror < 0.5</pre>
                                         to the left, improve=0.31830240, (0 missing)
##
##
                                                       improve=0.20068530, (0 missing)
         engine_cap
                              < 1.25
                                         to the left,
                              < 4.077198 to the right, improve=0.09042888, (0 missing)
##
         ln_mileage_km
##
         brand_popularity
                              < 18.63711 to the left, improve=0.03873248, (0 missing)
##
     Surrogate splits:
                                to the left, agree=0.9, adj=0.182, (0 split)
##
         engine_cap < 1.35</pre>
##
## Node number 5: 116 observations,
                                        complexity param=0.03103467
     mean=18.81921, MSE=0.03501908
##
##
     left son=10 (108 obs) right son=11 (8 obs)
##
     Primary splits:
##
         engine_cap
                                         to the right, improve=0.322713400, (0 missing)
                              < 1.1
##
                              < 4.381183 to the right, improve=0.223371400, (0 missing)
         ln_mileage_km
##
                                         to the left, improve=0.182815100, (0 missing)
         auto.retract.mirror < 0.5</pre>
                              < 11.82266 to the left, improve=0.070881780, (0 missing)
##
         brand_popularity
                                         to the left, improve=0.006980555, (0 missing)
##
         rear.camera
                              < 0.5
##
                                       complexity param=0.04448144
## Node number 6: 42 observations,
     mean=18.89292, MSE=0.08176673
##
##
     left son=12 (15 obs) right son=13 (27 obs)
##
     Primary splits:
##
         brand_popularity
                              < 10.26273 to the left, improve=5.471237e-01, (0 missing)
##
         auto.retract.mirror < 0.5</pre>
                                         to the left, improve=1.456307e-01, (0 missing)
##
                                                       improve=9.547085e-02, (0 missing)
         ln_mileage_km
                              < 2.892815 to the left,
##
         rear.camera
                              < 0.5
                                         to the left, improve=3.707127e-05, (0 missing)
##
     Surrogate splits:
                              < 3.069509 to the left, agree=0.738, adj=0.267, (0 split)
##
         ln mileage km
```

```
##
         auto.retract.mirror < 0.5</pre>
                                         to the left, agree=0.667, adj=0.067, (0 split)
##
## Node number 7: 214 observations,
                                        complexity param=0.02033584
     mean=19.15475, MSE=0.03795596
##
##
     left son=14 (71 obs) right son=15 (143 obs)
     Primary splits:
##
                                < 0.5
                                                          improve=0.10565850, (0 missing)
##
         auto.retract.mirror
                                            to the left,
                                            to the left,
                                                          improve=0.10435160, (0 missing)
##
         engine cap
                                 < 1.9
                                                          improve=0.10370360, (0 missing)
##
         brand_popularity
                                 < 10.26273 to the left,
                                 < 4.645246 to the right, improve=0.08136821, (0 missing)
##
         ln_mileage_km
##
         electric.parking.brake < 0.5
                                            to the left, improve=0.02123946, (0 missing)
##
     Surrogate splits:
                          < 4.589163 to the right, agree=0.696, adj=0.085, (0 split)
##
         ln_mileage_km
                          < 0.5
                                      to the right, agree=0.678, adj=0.028, (0 split)
##
         rear.camera
##
         brand_popularity < 1.80624 to the left, agree=0.678, adj=0.028, (0 split)
##
                          < 2.2
                                      to the right, agree=0.673, adj=0.014, (0 split)
         engine_cap
##
## Node number 8: 79 observations,
                                       complexity param=0.01225727
##
     mean=18.53417, MSE=0.02071521
##
     left son=16 (15 obs) right son=17 (64 obs)
##
     Primary splits:
##
                                      to the left,
                                                    improve=0.31638090, (0 missing)
         engine_cap
                          < 1.1
##
                                                    improve=0.10358930, (0 missing)
         brand_popularity < 18.63711 to the left,
                          < 4.038295 to the right, improve=0.05122813, (0 missing)
##
         ln mileage km
##
## Node number 9: 11 observations
##
     mean=18.83366, MSE=0.01983977
##
## Node number 10: 108 observations,
                                         complexity param=0.01534137
##
     mean=18.79028, MSE=0.02540657
##
     left son=20 (23 obs) right son=21 (85 obs)
##
     Primary splits:
##
         ln_mileage_km
                              < 4.381183 to the right, improve=2.361712e-01, (0 missing)
##
                              < 18.63711 to the left, improve=1.242778e-01, (0 missing)
         brand_popularity
##
         auto.retract.mirror < 0.5</pre>
                                         to the left,
                                                       improve=1.035239e-01, (0 missing)
##
                              < 1.25
                                                       improve=4.473439e-02, (0 missing)
         engine_cap
                                         to the left,
##
         rear.camera
                              < 0.5
                                         to the left,
                                                       improve=1.955941e-05, (0 missing)
##
## Node number 11: 8 observations
     mean=19.20981, MSE=0.0009215885
##
##
## Node number 12: 15 observations
     mean=18.60915, MSE=0.04069782
##
##
## Node number 13: 27 observations
     mean=19.05057, MSE=0.03499266
##
##
## Node number 14: 71 observations,
                                        complexity param=0.02033584
##
     mean=19.06488, MSE=0.05924149
##
     left son=28 (55 obs) right son=29 (16 obs)
##
     Primary splits:
##
         ln_mileage_km
                                < 3.864961 to the right, improve=0.20441200, (0 missing)
##
         engine_cap
                                 < 1.75
                                            to the left, improve=0.13931970, (0 missing)
                                 < 25.94417 to the left, improve=0.07224559, (0 missing)
##
         brand popularity
```

```
##
         electric.parking.brake < 0.5
                                            to the left, improve=0.05464403, (0 missing)
##
                                            to the right, improve=0.01716920, (0 missing)
         rear.camera
                                 < 0.5
##
     Surrogate splits:
##
         sun.roof < 0.5</pre>
                             to the left, agree=0.789, adj=0.062, (0 split)
##
                                         complexity param=0.01814884
## Node number 15: 143 observations,
     mean=19.19937, MSE=0.02138609
##
     left son=30 (72 obs) right son=31 (71 obs)
##
##
     Primary splits:
                                    < 18.63711 to the left, improve=0.25067670, (0 missing)
##
         brand_popularity
##
         engine_cap
                                    < 1.9
                                               to the left, improve=0.14471810, (0 missing)
                                    < 4.659475 to the right, improve=0.03627974, (0 missing)
##
         ln_mileage_km
##
         vehicle.stability.control < 0.5</pre>
                                               to the right, improve=0.02831441, (0 missing)
                                               to the left, improve=0.01857159, (0 missing)
##
         electric.parking.brake
                                    < 0.5
##
     Surrogate splits:
##
         ln_mileage_km
                                    < 3.728114 to the right, agree=0.587, adj=0.169, (0 split)
##
                                               to the right, agree=0.566, adj=0.127, (0 split)
         auto.cruise.control
                                    < 0.5
##
                                    < 0.5
                                               to the right, agree=0.545, adj=0.085, (0 split)
         sun.roof
##
         vehicle.stability.control < 0.5</pre>
                                               to the right, agree=0.545, adj=0.085, (0 split)
##
         engine cap
                                    < 1.65
                                               to the left, agree=0.545, adj=0.085, (0 split)
##
## Node number 16: 15 observations
     mean=18.36695, MSE=0.004950495
##
##
## Node number 17: 64 observations
##
     mean=18.57337, MSE=0.0163201
##
## Node number 20: 23 observations
     mean=18.64137, MSE=0.01841116
##
##
## Node number 21: 85 observations
##
     mean=18.83058, MSE=0.01967554
##
## Node number 28: 55 observations,
                                        complexity param=0.0108673
##
     mean=19.00553, MSE=0.05068436
     left son=56 (43 obs) right son=57 (12 obs)
##
##
     Primary splits:
##
                                      to the left, improve=0.16467120, (0 missing)
         engine_cap
                           < 1.75
##
         brand_popularity < 25.94417 to the left, improve=0.07506844, (0 missing)
##
                           < 4.407041 to the right, improve=0.06419887, (0 missing)
         ln_mileage_km
##
                                      to the right, improve=0.01498974, (0 missing)
         rear.camera
                           < 0.5
##
     Surrogate splits:
##
         ln_mileage_km < 4.768907 to the left, agree=0.836, adj=0.25, (0 split)
##
## Node number 29: 16 observations
     mean=19.26891, MSE=0.03491998
##
##
## Node number 30: 72 observations
##
     mean=19.12667, MSE=0.007021014
##
## Node number 31: 71 observations,
                                        complexity param=0.01322525
##
     mean=19.27311, MSE=0.025156
##
     left son=62 (58 obs) right son=63 (13 obs)
##
    Primary splits:
```

```
to the left, improve=0.3127782000, (0 missing)
##
         engine_cap
                                    < 1.9
##
                                    < 4.363891 to the left, improve=0.0834965200, (0 missing)
         ln_mileage_km
         vehicle.stability.control < 0.5
##
                                               to the right, improve=0.0474577100, (0 missing)
##
         rear.camera
                                    < 0.5
                                               to the left, improve=0.0460286900, (0 missing)
                                    < 25.94417 to the left, improve=0.0009718159, (0 missing)
##
         brand_popularity
##
     Surrogate splits:
##
         rear.camera
                       < 0.5
                                   to the left, agree=0.859, adj=0.231, (0 split)
         ln_mileage_km < 4.363891 to the left, agree=0.831, adj=0.077, (0 split)</pre>
##
##
  Node number 56: 43 observations
##
##
     mean=18.95726, MSE=0.04807941
##
  Node number 57: 12 observations
##
     mean=19.17846, MSE=0.0217651
##
##
## Node number 62: 58 observations
##
     mean=19.23111, MSE=0.01900195
##
## Node number 63: 13 observations
     mean=19.46047, MSE=0.009639761
```

plotcp(tree_1)

prp(tree_1)

rpart.plot(tree_1)

plotcp(tree_1)


```
pred1 <- predict(tree_1, test)
rmse1 <- RMSE(pred1, test$ln_price)</pre>
```

Post-pruning

```
min_cp = tree_1$cptable[which.min(tree_1$cptable[,"xerror"]),"CP"]
min_cp
```

[1] 0.0108673

```
tree_pruned <- prune(tree_1, cp = min_cp)
rpart.plot(tree_pruned)</pre>
```


The regression tree uses: - engine_cap - is.manual - bran_popularity - ln_milage_km - auto.retract mirror From this regression tree, it seems that engine capacity has the highest information in predicting car price.

```
pred2 <- predict(tree_pruned, test)
rmse2 <- RMSE(pred2, test$ln_price)

print(paste0("Pre-pruned regression tree: ", rmse1))

## [1] "Pre-pruned regression tree: 0.219521928561908"

print(paste0("Post-pruned regression tree: ", rmse2))</pre>
```

[1] "Post-pruned regression tree: 0.229030298725043"

Preprunning regression tree have lower RMSE score and thus is better at predicting the price value. This is an interesting result as it is rare to see preprunning regression tree version do better than postprunning.

Random Forest

```
library(randomForest)
```

Warning: package 'randomForest' was built under R version 4.3.3

```
## randomForest 4.7-1.2

## Type rfNews() to see new features/changes/bug fixes.

##
## Attaching package: 'randomForest'

## The following object is masked from 'package:dplyr':

##
## combine

## The following object is masked from 'package:ggplot2':

##
## margin
```

Parameter tuning

```
p <- ncol(df3) - 1
p</pre>
```

```
## [1] 12
```

The standard size of random subspace subset for a random forest regression is p/3 so 4 variables is the middle range. To be safe, I'm gonna set the range to 2:6.

```
grid_rf <- expand.grid( mtry=c(2:6) )
grid_rf</pre>
```

```
## 1 2 4 3 4 4 4 5 6
```

```
ntree = 501,
                       keep.forest=TRUE,
                       importance=TRUE
                       )
model_cv_grid
## Random Forest
##
## 462 samples
##
  12 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 417, 414, 417, 415, 415, 416, ...
## Resampling results across tuning parameters:
##
##
     mtry RMSE
                     Rsquared
                                 MAE
##
     2
          0.1635922 0.7484645
                                0.12619148
##
     3
          0.1449922 0.7851546 0.11036160
          0.1366772  0.8036694  0.10232767
##
    5
          0.1324781 0.8130378 0.09772935
##
          0.1312407 0.8154400 0.09598864
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was mtry = 6.
rt1 <- randomForest(ln_price~., data = train, mtry = 6, importance = TRUE, ntrees = 501)
summary(rt1)
##
                   Length Class Mode
## call
                          -none- call
## type
                     1
                          -none- character
## predicted
                   462
                          -none- numeric
                  500
## mse
                         -none- numeric
## rsq
                  500
                         -none- numeric
## oob.times
                   462
                         -none- numeric
## importance
                   24
                         -none- numeric
## importanceSD
                   12 -none- numeric
## localImportance 0 -none- NULL
## proximity
                     0
                         -none- NULL
## ntree
                     1
                         -none- numeric
## mtry
                    1
                         -none- numeric
## forest
                         -none- list
                   11
## coefs
                   0
                          -none- NULL
                   462
## y
                         -none- numeric
## test
                     0
                          -none- NULL
## inbag
                     0
                          -none- NULL
## terms
                     3
                          terms call
varImpPlot(rt1, type=1)
```

rt1

engine_cap
is.manual
brand_popularity
auto.retract.mirror
In_mileage_km
electric.parking.brake
power.sliding.door
vehicle.stability.control
sun.roof
auto.cruise.control
rear.camera
map.navigator

The top 3 variables are - engine_cap - is.manual - brand_popularity

```
print(rt1)
##
## Call:
                                                                          importance = TRUE, ntrees = 501)
    randomForest(formula = ln_price ~ ., data = train, mtry = 6,
                   Type of random forest: regression
##
##
                         Number of trees: 500
## No. of variables tried at each split: 6
##
             Mean of squared residuals: 0.01715234
##
##
                        % Var explained: 81.24
pred2 <- predict(rt1, test)</pre>
rmse3 <- RMSE(pred2, test$ln_price)</pre>
rmse3
```

[1] 0.1534842

The random forest method is more accurate (lower RMSE).

Conclusion

```
print("Regression")
## [1] "Regression"
print(paste0("Initial OLS: ", get_rmse(ols_1)))
## [1] "Initial OLS: 29034580.34404"
print(paste0("Best performanced OLS: ", get_rmse(best_reg1)))
## [1] "Best performanced OLS: 28974723.6186467"
print(paste0("Double Log Model: ", get_rmse(ln_ols)))
## [1] "Double Log Model: 0.162838182708786"
print(paste0("WLS model: ", get_rmse(wls_model)))
## [1] "WLS model: 0.163010223967787"
print("Machine Learning")
## [1] "Machine Learning"
print(paste0("Pre-pruned regression tree: ", rmse1))
## [1] "Pre-pruned regression tree: 0.219521928561908"
print(paste0("Post-pruned regression tree: ", rmse2))
## [1] "Post-pruned regression tree: 0.229030298725043"
print(paste0("Random Forest: ", rmse3))
## [1] "Random Forest: 0.153484179682873"
```

Random forest have the lowest RMSE score, which means that it is the best performing machine learning

Surprisingly, the double log and wls model outperformed regression tree.