Note méthodologique : preuve de concept

I- Dataset retenu

Nous utilisons le dataset du **P6** Classification automatique des produits en catégories en utilisant le texte (**sentence_lem**) et la catégorie cible (**Categ_A**).

Statistiques générales

Nombre total d'échantillons : 1050

Variables:

- sentence_lem : Texte nettoyé décrivant le produit
- Categ_A : Catégorie attribuée au produit
- **Autres colonnes utiles**: product_name, description, brand, retail_price, discounted_price, etc.

Qualité des données

- Valeurs manquantes : sentence_lem (5 valeurs), Categ_A (aucune).
- Classes cibles : Les catégories de produits.

** Utilisation pour le Benchmark BERT vs ModernBERT

- Entrée modèle : ["sentence_lem"]
- Label à prédire : ["Categ A"]
- Prétraitement : Nettoyage des données et encodage des catégories avant fine-tuning des modèles.

II- Les concepts de ModernBERT

1. Introduction

ModernBERT est une version optimisée de **BERT** (Bidirectional Encoder Representations from Transformers), conçue pour améliorer l'efficacité et la rapidité des modèles de traitement du langage naturel (**NLP**) tout en conservant des performances compétitives sur diverses tâches. Il repose sur le mécanisme des transformers, une architecture qui a révolutionné le NLP en capturant efficacement les dépendances contextuelles entre les mots.

2. Architecture et Optimisations

C'est un modèle conçu pour remplacer de manière transparente toute architecture de type BERT(110M ou 340M de paramètres). Il existe en deux configurations : un modèle de base avec 139 millions de paramètres et un grand modèle avec 395 millions de paramètres.

2.1. Structure générale

ModernBERT conserve la structure de BERT classique, avec plusieurs couches d'encodeurs basés sur l'auto-attention multi-tête et les feed-forward networks. Cependant, il apporte plusieurs modifications pour améliorer son efficacité.

2.2. Principales améliorations

1 Réduction du nombre de paramètres

- Contrairement à BERT, il utilise des variantes plus légères (comme DistilBERT, TinyBERT, ALBERT).
- Compression du modèle via distillation de connaissances (knowledge distillation).

2 Optimisation de l'attention

- Remplacement de l'auto-attention classique par des versions plus rapides
- Réduction du coût en calcul de O(n²) à O(n log n) ou O(n) selon les implémentations.

3 Factorisation et décomposition des matrices

• Techniques comme la factorisation des embeddings pour limiter l'explosion du nombre de paramètres.

4 Pré-entraînement plus efficace

- Utilisation de masquage dynamique au lieu du masquage statique de BERT.
- Génération de faux tokens pour entraîner le modèle à détecter des erreurs, ce qui réduit le besoin de données et accélère l'apprentissage.

III- La modélisation

Prétraitement des Données

- Nettoyage : Suppression des valeurs manquantes, normalisation du texte (minuscule, suppression des caractères spéciaux).
- Encodage des catégories : Conversion des labels "Categ_A" en indices numériques.
- Tokenisation : Utilisation des tokenizers propres à chaque modèle.

Modèles Utilisés

- BERT ('bert-base-uncased'): Modèle de référence, puissant mais coûteux en calcul.
- ModernBERT ("answerdotai/ModernBERT-base") : version plus rapide et plus légère.

Métrique retenue :

Accuracy : Indicateur global.

Matrice de confusion : Analyse fine des erreurs de classification.

Optimisation des Hyperparamètres

Les hyperparamètres suivants sont ajustés avec **GridSearchCV**:

- Learning rate: Test de valeurs entre 1e-5 et 5e-5.
- **Batch size**: Comparaison entre 8, 16 et 32 pour un bon compromis entre convergence et temps d'entraînement.
- Nombre d'époques : Entre 3 et 5, avec early stopping pour éviter l'overfitting.

IV- Une synthèse des résultats

1- BERT

1-1- Rapport de classification

Rapport de classification :

nappore de classificación .	precision	recall	f1-score	support
Baby Care	0.75	0.67	0.71	27
Beauty and Personal Care	0.80	0.95	0.87	21
Computers	0.94	0.87	0.90	38
Home Decor & Festive Needs	0.82	0.93	0.88	30
Home Furnishing	0.83	0.86	0.85	35
Kitchen & Dining	0.90	0.73	0.81	26
Watches	0.94	1.00	0.97	33
accuracy			0.86	210
macro avg	0.86	0.86	0.85	210
weighted avg	0.86	0.86	0.86	210

Précision globale : 0.86

Les résultats obtenus avec BERT montrent une bonne performance globale (accuracy de 86 % et F1-score macro de 85 %), avec des variations selon les catégories : certaines classes comme "Watches" et "Computers" sont très bien reconnues (F1-score > 90 %), tandis que d'autres, comme "Baby Care" et "Kitchen & Dining", ont un rappel plus faible, indiquant une certaine difficulté à identifier correctement tous les exemples de ces catégories.

1-2 - Matrice de confusion

La matrice de confusion, ci-dessous, montre que le modèle classe globalement bien les catégories, notamment "Watches".

Cependant, on observe quelques erreurs de classification :

• "Home Furnishing" est parfois confondu avec "Kitchen & Dining" (4 erreurs).

• "Beauty and Personal Care" est confondu dans 6 cas (5 erreurs avec "Kitchen & Dining" et 1 avec "Baby Care").

2- ModernBERT

2-1- Rapport de classification

Rapport de classification :

precision	recall	f1-score	support
0.47	0.56	0.51	27
0.83	0.71	0.77	21
0.89	0.89	0.89	38
0.66	0.77	0.71	30
0.81	0.71	0.76	35
0.67	0.62	0.64	26
1.00	0.97	0.98	33
		0.76	210
0.76	0.75	0.75	210
0.77	0.76	0.77	210
	0.47 0.83 0.89 0.66 0.81 0.67 1.00	0.47 0.56 0.83 0.71 0.89 0.89 0.66 0.77 0.81 0.71 0.67 0.62 1.00 0.97	0.47 0.56 0.51 0.83 0.71 0.77 0.89 0.89 0.89 0.66 0.77 0.71 0.81 0.71 0.76 0.67 0.62 0.64 1.00 0.97 0.98 0.76 0.76 0.75

Précision globale : 0.76

On remarque une baisse du F1-score moyen (75 % contre 85 % pour BERT), avec des performances plus faibles sur certaines catégories comme "Baby Care" (F1-score = 0.51 contre 0.71 avec BERT) et "Home Furnishing" (0.76 contre 0.85). En revanche, la catégorie "Watches" reste très bien classée avec un F1-score de 0.98.

Cela indique que **ModernBERT**, bien que plus léger et rapide, **compromet la performance de classification par rapport à BERT** sur ce dataset.

2-2 - Matrice de confusion

Comparée à BERT, ModernBERT montre :

- Plus d'erreurs pour "Home Furnishing", qui est souvent confondu avec "Kitchen & Dining" et "Home Decor & Festive Needs".
- Une légère amélioration pour "Watches" (34 bonnes prédictions sur 35).
- Une baisse de performance pour "Home Decor & Festive Needs" (23 bonnes prédictions sur 30, contre 28 pour BERT).
- Une plus grande confusion entre "Beauty and Personal Care" et d'autres catégories.

Globalement, **ModernBERT** semble légèrement **moins performant que BERT** sur ces catégories, ce qui correspond à la baisse de l'accuracy observée (**0.76** contre **0.86** pour **BERT**).

V- L'analyse de la feature importance globale et locale du nouveau modèle

1- Feature importance globale

Analyse des Features

- **a- "Beauty and Personal Care"** a une dispersion plus forte que les autres. Cela signifie qu'elle influence plus fortement les prédictions du modèle.
 - Les valeurs élevées (en rose) tendent à avoir un effet positif ou négatif significatif selon les points.
 - Cela peut signifier que cette catégorie est bien différenciée dans le modèle.
- **b- "Kitchen & Dining" et "Computers"** ont aussi une distribution large des valeurs SHAP, ce qui indique qu'elles influencent bien la classification.
- c- "Watches", "Baby Care", "Home Furnishing" et "Home Decor & Festive Needs" semblent avoir moins d'impact sur les décisions du modèle.
 - Leur distribution est plus resserrée autour de zéro, ce qui signifie que le modèle ne se base pas fortement sur ces features pour la classification.

2- Feature importance locale

Le **feature important locale** montre comment les features influencent la prédiction d'un échantillon donné.

Feature 213 = 0.1682 Feature 420 = 0.153 Feature 696 = -0.09378

- Feature 213 et 420 sont les plus influentes pour pousser la prédiction vers le haut.
- Feature 696 réduit la prédiction.
- Mais globalement, l'effet des features annule presque totalement la prédiction, qui reste proche de 0.

VI- Les limites et les améliorations possibles

1- Perte de précision dans certains cas :

- Si l'optimisation a réduit la capacité du modèle, il peut être moins performant sur des tâches complexes nécessitant un fort pouvoir de généralisation.
- ModernBERT peut sacrifier un peu de précision au profit de la rapidité.

2- Moins de ressources et de communauté

 Contrairement à BERT, qui a une énorme communauté et des milliers de variantes sur Hugging Face, ModernBERT est moins documenté et moins compatible avec certains frameworks.

3 - Adaptation aux datasets spécifiques

- Les trainsets de **ModernBERT** sont principalement en anglais et en code, les performances peuvent donc être inférieures pour d'autres langues.
- Comme tout modèle LLM, ModernBERT peut produire des représentations qui reflètent les biais présents dans ses données d'entraînement. Il faut vérifier les résultats critiques ou sensibles avant de vous y fier.

4- Peu d'avantages si l'on a du GPU puissant

- ModernBERT est surtout utile pour des ressources limitées (CPU, TPU edge...).
- Si tu as un GPU performant, BERT classique peut être tout aussi rapide et plus précis après fine-tuning.

Sources bibliographiques

- Arxiv: https://arxiv.org/pdf/2412.13663
- Warner, B., Chaffin, A., Clavié, B., Weller, O., Hallström, O., Taghadouini, S., ... & Poli, I. (2024). Smarter, better, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context finetuning and inference. arXiv preprint arXiv:2412.13663.
- Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing Systems.