UNIT- 4 COMBINATIONAL CIRCUITS

Topics

- Combinational circuit for different code converter
- Binary Adder (talf & Full Adder)
- Binary subtractor (Half & Full Sub)
- Parallel Adder
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- De coder,
- Encoder
- Multiplexer
- Demultiplexer.

" Combinational circuits A combinational circuit has 'n'input combination & 'm' output combinations

(combinations) = C.C = m olp combinations

* Proceduce to design a C.C:

Determine number of variables

Draw the truth table Simplify expression in either SOP (or) POS form

Drow logic circuit for minimised expression. using K-map. (G)

Code Conventers ×

They are used for providing encryption to data. *

Few of the basic code converters are *

(i) Binary to Grey Code (B2G)

(ii) Grey Code to Binary (G2B)

(iii) Excess-3 code ...

NOTE: BCD (Binary Coded Decimal)

* Binary Codes for decimal numbers occapiones minimum of 4 bits.

most common BCD code is 8421 code in which each decimal digit is represented by a 4-bit binary number.

(i) BCD to crey code

Crrey Code:

- > It is a special case of unit distance code.
- -> Bit patterns for any 2 numbers differ in only 1-bit position.
- Each grey code bit is obtained by applying exclusive OR (XDR) operation to the corresponding binary code bit & the next higher bit.
- Expression for grey code.

for 0 sis n-1 gi = bi @ bi+1 for MSB 9n-1 = bn-1

Truth Table

decimal	bin	ary	CO	de	31	rey	0.00	1e		
number	b3	b2	ы	bo	93	92	91	90	4	
0	0	0	0	0	,0	0	0	0	1	
1	0	0	0	1	0	0	0	1		
2	0	0	١	0	0	0	- (1		
3 4	0	0	1	1 -	0	0	1	0		
4	0	1	0	0	0	ī	1	0		
5	0	1	0	1	0	1	1	1	4. 0	
6	0	1	1	0	0	١'	c	1 0		
٦	0	- 1	1	1	0	١.	0	0.	177	
8	1	D	0	0	1	1	0			
9	1	D	0	١	1	1	0	1	6.11	
10	1	0	1	0	1	1	1	1		
- 11	- 1	0	1	1	1	1	1	0		
12	1	(0	0	1	0	11:	0	3.4	
13	1	-1-	0	1	1	0	1	1		
14	1	1	1	D	1	0	D	1	100	E9.6
15	1	1	1	1	1	0	0	0	1	Vite.
Nat sale	19.0				21		U		1	

- arey code is a non-weighted, reflective code.

3 4

> From the truth table determine the min terms

93 = Em (8,9, 10, 11, 12, 13, 14, 15)

92= 2m (4,5,6,7,8,9,10,11)

91 = Em (2,3,4,5,10,11,12,13)

go = Em (1,2,5,6,9,10,13,14)

> K-map for above SOP expressions are obtained as below.

93 k-map is me, ma, mio, mi, miz, miz, miy, mis

Mathematical expression in $g_3 = b_3$ Circuit for $g_3 b_3 g_3$

92 K-map is mu, ms, me, ma, me, ma, ma, ma

Mathematical expression is $g_2 = \overline{b_3} b_2 + b_3 \overline{b_2}$ $g_2 = b_3 \oplus b_2$ circuit for g2

91 k-map m21 m3, m4, m5, m10, m11, m12, m13

Mathematical expression for $g_1 = b_2 \overline{b_1} + \overline{b_2} b_1$ circuit for g_1 $b_2 - \overline{y_1}$

go k-map m1, m2, m5, m6, m9, m10, m13, m14

mathematical expression for go= 5,50+ 50 bi
circuit for go

C.C for Binary to arey conventes

Grey Code to Binary (11)

except for MSB. for Osisn-1 bi = bi+1 ⊕ 9i Expression for binary code from grey code.

Touth table

decimal	1 gre	y c	000	2	bi	nar	9 0	nupe
number	111100	92 0		30	b3	b2	bı	bo
0	0	0	0	0	0	D	0	0
ĭ	0	0	0	1	0	0	0	- 1
2	0	0	1	0	0	0	1	•
3	0	0	Υ.	1.	0	0	1	0
4	0	ĭ	0	0	0	1	1	1
5	0	1	0	1	0	1	1	0
6	0	١	1	0	0	1	0	0
7	0	1	1	1	0	1	0	1
8	1	0	0	0	1	0	1	1
9	1 =	00	0	1	1	1	1	0
10	- 1	0	1	0	1	1	0	0
- 11	1	0	1	1	1	1	0.0.0.0	1
12	1	١	0	0	1	0	0	- 0
13	1	- 1	0	1	1	0	0	١
14	1	1	١	0	1	0	1	1
15	1 2	1	,		1	0	-1	0

> From troth table determine the min terms

$$\rightarrow$$
 $b_3 = \leq m(8,9,10,11,12,13,14,15)$

$$b_0 = 9_3 \oplus 9_2 \oplus 9_1 \oplus 9_0.$$

$$b_0 = b_1 \oplus g_0 \rightarrow \bigcirc$$

C.C for Circy to Binary Conventes

Addess :

Adders are of two types

1 Hay. Adder, @ Full Adder.

tay Adder: It has two inputs and two outputs.

TRUTH

3		2011)	
A	В	5	C
0	0	0,	0
0	١.	\ .'	0
1-1	0	1	0
- t	1	0	1 . 1
-			

consider k-map q two variable.

Sum
$$A = 0$$
 $O = 1$ $O = 0$ $O = 0$

circuit

Top Module. A Sum

Enll Ungger (***):

a) Design a full adder con design a full adders using 2 half adders.

of: Full Adden:

4	B	Cin 1	(S) (Carry
0	0	0 /.	60	0
0	0	1	1	0
0	1	0	1	0
O	1	1-	0	_ ,
١	0	D	1 =-	0
1	0	1	0	1
.1	1	0	0	
1	1	1	1	1 '

Sum K-map

B	Cin	01	. '11	10
1.	00	11	3	2
0	4	5	7	6
1	1		1	

Carry K-map

C. AB+BCPD+ ACPD.

Som K-map Logic Circuit Diagram:

Corry K-map Logic Circuit Diogram:

Design a full adder using two half adders:

Let us consider three variables ABC

SUBTRACTER: 9 2 types

1 Half Subtractor

1 Full Subtractor

it has two inputs & two outputs

10	B	Difference	Borrow	
0		0	0	
0	1	1	1	
1	0	1	0	1
\	١	0	0	
L			-	4

- 1 Determine variables
- (2) Touth trable
 - (3) Simplify SOP (or) POS
 - @ · Logic circuit

=> HALF SUBTRACTOR CIRCUIT.

= TOP MODULE

	B	CD	to	Exce	ess-3	COD	vert	52.g.	4
	~	BCI				xcess	; - 3	3 →	0011
	Bo	-	B ₂	Bg	×6	×I	K,	×3	
0	0	0	0	0	0	0	1	1	
1	0.	0	0	ı	. 0	Q	. 0	. 0	
2	0	0	1	0	0	1	Ö	1	
3	0	0	1	1	0	1	. 1	0	
4	9	1	0	0	0	1	٦.	.1	
5	0	1	O	1	1	0	0	ō	
Ь	O	1	1	0	1.1	0	0	1	
7	0	12	1	ĺ	t	0	1	0	
8	ŧ	0	0	0 .		0	1	3	
9	1	0	0	1	1	1	0	0	
10	1	D	1	0	. >	< ×	\times	×	
11	1	0	1	1	>	< ×	×	×	1.4
12	1	1	0	0	1				
13	1	1	0	1	>		×		
14)	3	1	6			·×		
15	1	1	1	1		< ×	٠.٠		
>	<o =<="" td=""><td>2m (</td><td>5,0</td><td>81710</td><td>19) +</td><td>d(10</td><td>, 11, 1</td><td>2,18,1</td><td>4,15)</td></o>	2m (5,0	81710	19) +	d(10	, 11, 1	2,18,1	4,15)
			Sec. 103		19) +				The second second
					1,8) +	1,1			
	3=	5 m	V	and the second	(8)	100			1 2 2 3 3 1 7
BOB1	00	01 1	1 1	6	oct	et	ies	pos	sible.
	014	1		1	B0 B	-	W	3 ch	THE STATE OF THE S
	10 12 X	13/19	7 14	x	- 1 1		cì)	Во.	
t t	D 8 1	1110	XID	x 1	10			Uii	

Excess - & to BCD Code Convertor;

X6 X1 X2 X3	80 B, 82 B3	
00000	××××	€80= Em (11,12)+d(0,11,2,
10001	× × × × × ×	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
20010	200 200 200 200	13,14,15)
30011	0000	B1= Em (7,8,9,10)
40100	0001	(40///19)
50 10 1	0010	+ d (011, 2,13,14,15)
66 11 0	0011	
40,11	0100	B2= 5m (5,6,9,10,12)
\$ 1 0 00	0 101	
91001	0110	+d (0,1,2,13,14,15)
101010	70111	
11011	11001	B3= 2m (4,6,8,10,11)
121 1 00	116	The second secon
On the last of the last of	1,010	+ 2 (01112113,14)15)
	/××××	
19110	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
15 1 1 1 1	XXXX	

Box $X_0X_1 + X_0X_2X_3$ B1= $\overline{X_1}X_2 + X_1X_2X_3 + X_0X_2\overline{X_3}$ B2 = $X_0X_1 + X_2 \oplus X_3$ B3 = $\overline{X_3} + X_0X_2$

FULL SUBTRACTOR

- * A full subtractor is a combinational circuit that perform subtraction of 2 bits, one is minuend and other is subtrahend, taking into account the borrow of the previous adjacent lower minuend bit.
- * This circuit has 3 ilps & 20/ps.
- * The 3 ips A, B & Bin, denotes minuend; subtrahend & previous borrow respectively. The 2 ops D& Bout prepresent the deference and oppositions respectively. Although subtraction is usually achieved by adding the complement of subtraction operation.

Troth Table

(0)19	4	В	Bin	D	Bout
0	0	O	0	0	0
2	0	0	1	11	1
2	0.	1	0	11	١
1	D	1	١	10	1
191	1	0	0	11	0
121	1	O	1	to.	0.
6	1	١	O	0	0
7	1	1	1	1	-1

From above T.T we can draw k-map for D&Bout A BBin

D= ABBin + ABBin+ ABBin+ABBin

Bout = A Bin + AB + BBin

Logical Expression for Difference.

D = ABBin + ABBin + ABBin + ABBin

some de le live a del son de la la como de la la como de la como dela como de la como de

Logical Expression for Borrow Bout = BA Bin + A BATABBin + ABBin = ABBin+ ABBin + ABBin+ ABBin+ABB ABin (B+B)+ AB (Bin+Bin)+BBin(A+A A Bin + AB + BBin (va). Bout = ABBin + ABBin + ABBin Bin (AB+AB) + AB (Bin+Bin) Bin (ABB) + AB Bin (AOB) + FB Logical circuit for foll subtractor Implementation of full subtractor using 2 subtractors & an OR gate

* BINARY ADDER (Parallel Binary Adder)

* Addition of multiple bit binary numbers can be accomplished multiple bit binary numbers can be

* The 4-bit adder using full adders is cuits is capable of adding two 4-bit numbers occaviting in a 4-bit sum and a carry output as shown below in figure.

* Since and a carry output as shown below in ted unto

* Since all bits of augend & addend are fed into the additions. the adder circuit simultaneously and the additions in each position are taking place at same time, the circuit is called parallel adder.

4-bit parallel adder

Addition operation is illustrated below.

Let A4A3A2A1=11110 B3B2B1B0=D011

Significant Place 4 3 2 1

Input Carry 1 1 1 0

Augend word A: 1 1 1 1

Augend word B: 0 0 1 1

Cout (output carry)

- * In a 4-bit possible birrory added circuit, the ile do each full added will be Ai, Bi & Ci and Ole will be Si & Ci+1 where i vocice from 0 to 3.
- Also, the Coul of lower order in counted forward to next higher order state. Hence, this type of adder in catted ripple carry adder.
- Disadvantage Though the provided binory addorte said to generate of immediately after the the ilps are applied, its speed of operation is limited by the carry propagation delay through all stages.
- the time difference between the instants at which of the inputs (Ai, Bi and Ci) are applied and the instant at which its offic (Si and Ci+1) are generated instant at which its offic (Si and Ci+1) are generated only after the office in the second stage will be generated only after the tends of the seconds of the seconds
 - To overcome this disadvantage we go for carry look ahead adder.

* BINARY MULTIPLIER

* Multiplication operation can be carried out by

(i) multiplieses using partial product addition and shifting

: & (ii) Parallel multipliers.

(i) Multiplier Using Shift Method

-> Consider, the multiplication of 2 4-bit binary no. 1010 & 1011, as an example.

- ->. From above multiplication process. if multiplier bit = 1, -then multiplicand = partial pred. = 0, then packal prod = 0.
- -> Whenever a P.P is obtained, it is shifted one bit to the left of the previous P.P. This process is continued until all the multiplies bits are checked, & then the p.p are added.
- -> Implementation:

- In above above diagram, the 4-bit multiplies is stored in segister Y (43424, 40); the 4-bit multiplicand is stored should in segister M (M3 M2 M, M0) of the x register.

 (X4, X3, X2, X1, X0) is initially cleared to 00000.
- → Here, the LSB of multiplies bit 40 is checked.

 If 40 = 1 => the number is M is added with the LSB of X register and the combined X & 4 register is shifted to the right by 1 bit.

If 40=0=0 the combined X dY register is shifted to right by a bit without performing addition. This process is repeated 4 times to perform a 4-bit multiplication.

The multiplication result (RT, R6, R5, R4 R3 R2 R, R0) will be available in X & Y registers.

Parallel Multiplies

of addition of shifting operations, but it requires only a single 4-bit parallel addler.

The requires 3 4-bit parallel binary addore & 16 numbers of 2-ilp AND gates: Here, each group of 4 AND gates is used to obtain p.p while 4-bit parallel addore are used to add the P.P. Since, the generation of p.P & their additions are performed in parallel in group of AND gates and 4-bit addore respectively, the multiplication result (P7 Pb Ps Pv P3 P2 P1 P6) will be available at the olp sespectively immediately after the propogation delay in the multiplies wiwiit.

4- bit parallel multiplier.

* BCD Adden

* A BCD adder is a circuit that adds & BCD oligits in parallel & produces a sum digit which is also BCD.

x A BCD adder must include the correction logic in its internal construction.

A This adder has & 4-bit BCD i/ps X3, X3, X1, X0, Y31 Y2, Y1, Yo and a carry ilp cin. It also has a 4. bit & sum ofp 23 5, 5, 50 and a carry ofp cout.

_	5 Cin	•
Augend X2		-> Cout
Ŷ.	Decimal	\rightarrow $\not z_3$
Addend 73	adder .	→ Zz Bum
7, 7		→ €,

Block	diagram	af	BUD	Addes.
1	,)			

Decimal digit	Uncorrected BCD SUM Cin So So So So	Corrected BCD Sum Cout \$3 S2 S, So	
0123456789	000000000000000000000000000000000000000	00000101000	No correction orequired
10 11 12 13 14 15 16 17	100000000000000000000000000000000000000	1 0 0 1 0 1 1 1 1 1 1 1 1	Correction Required 535; 3332 00 01 11/11
then -	111 0 0 1 1	1 000	11 115 10 Cin=1.

om olp (53 S2 S1 S0) is greater than 9, add 535 0110 to get BCD nesult. So the correction can be written as an expression as follows Cn = S3 S2 + S3 Sp + Cin.

- * A BCD adder circuit must be able to do following following:

 1. Add two 4-bit BCD numbers using straight binary
- addition. 2. If the 4-bit sum is =< 9, the sum is in proper BCD form and no correction is sequerced.
- 3. If the 4-bit sum is >9 900) if a carry is generated from the sum, the sum is not in BCD form.

 Then, the digit 6(0110) should be added to the sum to produce the BCD results. The carry maybe produced due to this addition and it is added to reset decimal position.

Ciscuit diagram for BCD adder using full adders

(Istage) FA (1 S) (2 S) (2 S) (2 S) (3 Stage)

Cout | FA | HA (II stage)

* The first stage adde the 24-bit BCD and its Sum and cassy are checked to accertain whether the scesult exceeds by 9 by AND-DR gate combinations. If the olp of OR gate (3) is equal to 1, then correction is required of this is accomplished by adding 0110 in the second stage of adders.

COMPARATOR

which compares the magnitude of two

1) One-bit comparator

A	B .	A B	AZB	4=B
0	0	.0	0	L -1 -
0	1	1 1	0	0
'	0	a	1 .	0
\ 1		1 0	0	1 1

A B = ABA B

Two- bit comparatori:

7			A= B
AB	A< B	H > B	K - D
90 B1 B0			1 -> mo
100	0	0	
	1	0	0 m1
0 0	day	0	0 m2
0 0 1		0	0 m3
0 0 1 1	1	\ .	0 my
0 100	.0	10 10	
	0	0	1 ms
	1	0	0 mb
0 1 10	1	0	0 W3
0 1 1 1	01		0 mg
1 000	0	1	0 m8
* = 1	0	1-1-1	0 Mg
1 001	149	0.	1 mio
1 0/10	0	1 0	O MII
101	1	1 7	0 m12
3 1 1 0	0 0	1, :	O MIS
0/00/1	110	1.	
5 , 11	0 0	1	O MIL
16 1 1 1	110		/ W.

comparing	cascad	TP				
Elp B	I(428)	I (8/8) I	(A= B)	MTB	AKB	0=4
478			×	1	6	0
	1	.0	0	1	0	0
A=B	, ×	1	×	D	1	0
	0	0	1	0	0	1
	0	0	0	1	0	1
	-1	0	1	0	0	0
AKB	×	×	×	0	. 0	١

MULTIPLEXER

MUX (data selector)

* sharing et data through a single common line

* Multiplexing means all dota lines are combined ers punched together.

and a select lines.

* 2XI MUX

Sol: n=4 2^n

=) 2 inputs; l'output , l'sentect line

2 Y (T₁)

(Troth table).

+ 4 XI MUX.

4 = \$ \$, \$ T p + \$ 0 SI I, + 50 \$ I I 2 + 50 SI I 3.

a) Implement the following for using multiplexes. f= Zm (013,5,6,7).

 $\frac{M}{2}$: When n=3 $2^n = 2^3 = 8 \times 1$ MUX

select lines

(Uranuse or gate (08) 2X1 MUX),

obtain expression for y'

Selections 11.

DE MULTIPLEXER (Dmox) (Data Distribution)

opposite of Maltiplacer.

IX 2° I input 2° outputs. n select lines

THP (X) Cordd 9n new book.

DE- MULTIPLEXER (Down) (Data Distribution)

It is the opposite of a multiplexer. It has

1 X2ⁿ ie. I input 2ⁿ outputs; in selections.

sched lines

S	40	Yı	10.0
0	I	0	
١	0	I ;	.1.
2015/20	UTH FBL		
Y=	<u> 3</u> 7	+5	T
10	_ 6	5	

BLOCK DIAGRAM:

(D) B	1 × 8	dmux
10	1 42	. So
->	3 73	, 0
-	4 74	0
	6 46	, 0

lines

BLOCK	
DIAG	RAM

. So	S1 S2	Yo	4, 4	12 43, 44-45 46 44
	0 0	I	0 .	0 0 0 0 0 0
. 0	0 0	10000	~	0 0 0 0 0 0
0	01	9.	I	- 000
0	10	0	0	1_ 0 0
10	1 1		0	0 I 0 000
1	0.0	1 -		000I
1	0.0	0	0	OOTOO
5	0 1	0	,0	OTOO
1 1	10	0	, 0	0 0 0 0 DI.
	A	400	^	()

Yo = \$\overline{S_0} \overline{S_1} \overline{S_2} \overline{T} + \overline{S_0} \overline{S_1} \overline{S_1} \overline{S_2}

$$Y = \overline{S_0} \, \overline{S_1} \, \overline{T} \left[\, \overline{S_2} \, \pm \, \overline{S_2} \, \right] + \, \overline{S_0} \, S_1 \, \overline{T} \left[\, \overline{S_2} \, + \, S_2 \, \right] + \, S_0 \, \overline{S_1} \, \overline{T} \left[\, \overline{S_2} \, + \, S_2 \, \right] + \, S_0 \, S_1 \, \overline{T} \left[\, \overline{S_2} \, + \, S_2 \, \right]$$

$$= \overline{S_0} \, \overline{S_1} \, \overline{T} + \, \overline{S_0} \, S_1 \, \overline{T} + \, S_0 \, \overline{S_1} \, \overline{T} + \, S_0 \, S_1 \, \overline{T}$$

$$= \overline{T} \, \overline{S_0} \left[\, \overline{S_1} \, + \, S_1 \, \right] + \, \overline{T} \, S_0 \, \left[\, \overline{S_1} \, + \, S_1 \, \right]$$

$$= \overline{T} \, \cdot \left[\, \overline{S_0} \, + \, S_1 \, \right] + \, \overline{T} \, S_0 \, \left[\, \overline{S_1} \, + \, S_1 \, \right]$$

$$= \overline{T} \, \cdot \left[\, \overline{S_0} \, + \, S_1 \, \right]$$

$$= \overline{T} \, \cdot \left[\, \overline{S_0} \, + \, S_1 \, \right]$$

$$= \overline{T} \, \cdot \left[\, \overline{S_0} \, + \, S_1 \, \right]$$

* ENCODER:

Coding data into other format is called encoder (Given the docta is in alcimal) (ie decimal to binary (20) any other like guey coole etc).

Note: for DECODER!

$$\bigcap_{n \in \mathbb{N}} \left\{ \begin{array}{c} \xrightarrow{n} \\ \xrightarrow{n} \end{array} \right\} \left\{ \begin{array}{c} \xrightarrow{n} \end{array} \right\} \left\{ \begin{array}{c} \xrightarrow{n} \\ \xrightarrow{n} \end{array} \right\} \left\{ \begin{array}{c} \xrightarrow{n} \end{array} \right\} \left\{ \begin{array}{c} \xrightarrow{n} \\ \xrightarrow{n} \end{array} \right\} \left\{ \begin{array}{c} \xrightarrow{n} \end{array} \right$$

	To	I, I2 I3	: 40 h
_	1	000	0 0
	0	100	01
	0	010	1.10
	0	001	111
			5 m

DEGENERATE FORM OF GATES:

AND gate

condition () [When one of input is equal to logic o we get output as o]

condition @ [When one of the import is togic!

the output will be equal to 1]

the output will be equal to 1]

other input

other input

... We can use AND gate as a "Buffer!

MAND gate:

P.	B	C
٥	0	1
0	١.	1
١.	0	1
1		0

condition (): When one of input is a we output as logic "1".

condition (1): When one of input is equal to logic 1 output is invested.

... NAND gate can be used as "investor" Where one of input is equal to logic 1.

OR gate:

A	B	4	
0	0	0	2 Buffer
0	1	•	7
١	0	1	2 1000
1 1	11	1	& logic

condition(): When one of input is 0 we get the imput of other (ie. Buffer)

condition @! When one of the import us 1 the output is 1.

ed modern in

4. 19

N	OR	ga	te:	about the second		Y a
Ī	•	8	c	To an ina	5/	7
1	0	0	1	& inverter =	>	c
La	0	1	0	1511 15 343		
	1	0	0	4 logic 0		117
	1	1.	0	1 G ware o	1000	

condition () When one of input its logic o we get output as inventor (hence we can use as inverta)

condition@ When the input is equal b we get output as logic o.

EX-OR gate (ANTI COINCEDENT GATE)

Tol	3	c	
00	0	0	} Buffer
1	0	10	3 inventor

condition ①: When one of import is O, we get buffer EX-OR gate can be used as buffer condition②: When one of imput. is 11 we can use EX-OR gate is inventor.

EX-NOR gate (COINCEDENT GATE)

Ī	A	B	C		end.
	00	0	0	3	invector
	1	0	0	3	buffer

condition (): when A=0, we can use

EX-NOR as invertor.

condition (): when A=1, we can use ex-NOR as buffer.

```
Implement the following using decode
 fr(x1912) = x19121+ x=>.
f2 (M1412) = xy21+x2.
301). If given for is not in standard form
  then convert It into standard from (so,
  -" 1 f1 (x1412) = x'y' = 1 + x =
             = x'y'z' + 22 (4+4)
= x'y'= + xy 2+ xy' 2
= x'y' 2' + xy 2+ xy' 2
               000 11110000
tom francisca
             programy with
      $ = 3 (01715) 3
12 (x1417) = xyz1 + x12
               = xyz1 +x12 (y+y1)
           = xy2 + x'y 2 + x'y'2
               1,00 #1011 6011 CE
           fz= , 2m (6,3,1)
         number is 8 23 >
   ス
           3 40 8
           W . 40 3
  Note: In case of Idecoder (or) encoder f(x14)
  are imput lines but in case of Multiplexer
```

Demoutipexer of (a,b,c) are select lines] a) Implement the following logic using moltiplexer: [using 8x1 Mux] f(a1b1c) = Zm (0,2,3,5,4) a) nere we have 3 select lines for mux we should have only 1. 2 = 230 g logic 1 using only single 4x1 MUX. f (a1b,c) = 2m (0,213,5(A) logic1 bc

