Assignment -2

Problem 1

The magnetization curve for a separately excited dc generator is shown in Figure 1. The generator is rated at 6 kW, 120 V, 50 A, and 1800 r/min and is shown in Figure 2. Its field circuit is rated at 5A. The following data are known about the machine:

$$R_A = 0.18 \Omega$$
 $V_F = 120 \text{ V}$
 $R_{\text{adj}} = 0 \text{ to } 30 \Omega$ $R_F = 24 \Omega$

 $N_F = 1000$ turns per pole

Figure 1

Figure 2

Answer the following questions about this generator, assuming no armature reaction.

- (a) If this generator is operating at no load, what is the range of voltage adjustments that can be achieved by changing R_{adj} ?
- (b) If the field rheostat is allowed to vary from 0 to 30 Ω and the generator's speed is allowed to vary from 1500 to 2000 r/min. what are the maximum and minimum noload voltages in the generator?

Problem 2

If the armature current of the generator in Problem 1 is 50 A, the speed of the generator is 1700 r/min, and the terminal voltage is 106 V, how much field current must be flowing in the generator?

Problem 3

Assuming that the generator in Problem 1 has an armature reaction at full load equivalent to 400 A-turns of magnetomotive force, what will the terminal voltage of the generator be when $I_F = 5 \text{ A}$, $n_m = 1700 \text{ r/min}$, and $I_A = 50 \text{ A}$?

Problem 4

A DC shunt motor shown in Figure 3 is having the following parameters:

$P_{\text{rated}} = 15 \text{ hp}$	$I_{L,\text{rated}} = 55 \text{ A}$
$V_T = 240 \text{ V}$	$N_F = 2700 \text{ turns per pole}$
$n_{\text{rated}} = 1200 \text{ r/min}$	$N_{\rm SE} = 27$ turns per pole
$R_A = 0.40 \Omega$	$R_F = 100 \Omega$
$R_S = 0.04 \Omega$	$R_{\rm adi} = 100 \text{ to } 400 \Omega$

Rotational losses are 1800 W at full load. Magnetization curve is as shown in Figure 4.

Figure 4

If the resistor $R_{\rm adj}$ is adjusted to 175 Ω , what is the rotational speed of the motor at no-load conditions?

Problem 5

In the above question, assuming no armature reaction, what is the speed of the motor at full load?

Problem 6

In Q 4, if the motor is operating at full load and if its variable resistance $R_{\rm adj}$ is increased to 250 Ω , what is the new speed of the motor? Compare the full-load speed of the motor with $R_{\rm adj} = 175 \Omega$ to the full-load speed with $R_{\rm adj} = 250 \Omega$. (Assume no armature reaction, as in the previous problem).

Problem 7

In Q 4, assume that the motor is operating at full load and that the variable resistor R_{adj} is again 175 Ω . If the armature reaction is 1200 A-turns at full load, what is the speed of the motor? How does it compare to the result for Problem 5?

Problem 8

If $R_{\rm adj}$ can be adjusted from 100 to 400 Ω , in Q.4, what are the maximum and minimum no load speeds possible with this motor?