Chapter 11 Even Answers

4.
$$v_{\rm disk} = \sqrt{\frac{4gh}{3}}$$
 , $v_{\rm ring} = \sqrt{gh}$, the disk

- 6. $x_{\text{max}} = 3.19 \text{ m}$
- **8.** (a) 2.38 m/s (b) 4.31 m/s (c) The ball does not reach the top of the loop.
- **10.** (a) 740 cm² (b) 59.5 cm
- **12.** (a) 168° (b) 11.9° (c) Only the first method gives unambiguous results.
- **14.** No; the cross product vector must be perpendicular to the known vector.
- **16.** (a) -7.00**k** N·m (b) 11.0**k** N·m
- **18.** $F_3 = F_1 + F_2$, No
- **20.** -22.0**k** kg · m²/s
- **24.** (a) $3.14 \text{ N} \cdot \text{m}$ (b) 0.400 V (c) 7.85 m/s^2
- **26.** (a) $9.03 \times 10^9 \text{ kg} \cdot \text{m}^2/\text{s}$ (south) (b) No (c) zero
- **28.** 103 N·m
- **30.** (a) $0.360 \text{ kg} \cdot \text{m}^2/\text{s}$ (b) $0.540 \text{ kg} \cdot \text{m}^2/\text{s}$
- 32. $1.20 \text{ kg} \cdot \text{m}^2/\text{s}$
- **34.** 7.14 rev/min
- **36.** (a) 9.20 rad/s (b) 9.20 rad/s
- **38.** (a) $7.20 \times 10^{-3} \text{ kg} \cdot \text{m}^2/\text{s}$ (b) 9.47 rad/s
- **40.** 12.3 m/s^2
- **42.** $\sim 10^{-13} \, \text{rad/s}$
- **44.** (a) $\frac{7}{3}$ md^2 (b) $(mgd)\mathbf{k}$ (c) $\frac{3g}{7d}$ counterclockwise (d) $\frac{2g}{7}$ upward

(e)
$$mgd$$
 (f) $\sqrt{\frac{6g}{7d}}$ (g) $m\sqrt{\frac{14gd^3}{3}}$ (h) $\sqrt{\frac{2gd}{21}}$

- **46.** (a) (0.00589 W)t (b) $2.59 \text{ N} \cdot \text{m}$ (c) (0.0925 W/s)t (d) 40.7 W
 - (e) (3.70 N/s)t (f) 8.96 kJ (g) -4.48 kJ (h) 4.48 kJ
- **48.** 0.910 km/s
- **50.** (a) zero (b) The monkey and the bananas move upward with the same speed. He will not reach the bananas.
- **52.** (a) 7.35i N (b) -3.68i N (c) 0.827 m from the top

54. (a)
$$\frac{6mv_i}{(M+3m)d}$$
 (b) $\frac{M}{M+m}$

56.
$$\sim 10^1 \, \mathrm{m}$$

58. (a)
$$\sqrt{\frac{3gh}{4}}$$
 (b) $\sqrt{\frac{3gh}{4}}$

60. (a)
$$Mvd$$
 (b) Mv^2 (c) Mvd (d) $2v$ (e) $4Mv^2$ (f) $3Mv^2$

62. (a)
$$\sqrt{\frac{4g(R^3-r^3)}{3r^2}}$$
 (b) 5.31×10^4 m/s (c) It goes into internal energy.

64. (a)
$$\frac{\omega_i}{3}$$
 (b) $\frac{2}{3}$

66.
$$4\left[\frac{ga(\sqrt{2}-1)}{3}\right]^{1/2}$$

68. F_1 clockwise torque, F_2 zero torque, F_3 and F_4 counterclockwise torque

2 Chapter 11 Even Answers