Devoir à la maison n°11 : corrigé

Problème 1 — EPITA 2010

Partie I -

- **a.** On a clairement deg $P_k = k$ pour tout $k \in \mathbb{N}$. La famille $(P_k)_{0 \leqslant k \leqslant n}$ est donc une famille de polynômes de $\mathbb{R}_n[X]$ à degrés étagés : elle est libre. De plus, elle comporte n+1 éléments et $\dim \mathbb{R}_n[X]=n+1$, c'est donc une base de $\mathbb{R}_n[X]$.
 - **b.** Soient m et k deux entiers naturels.

Si $\mathfrak{m} < k$, on a $P_k(\mathfrak{m}) = 0$ car \mathfrak{m} est une racine de P_k . Si $\mathfrak{m} \geqslant k$, $P_k(\mathfrak{m}) = {\mathfrak{m} \choose k}$.

$$P_k(-m) = \frac{1}{k!} \prod_{i=0}^{k-1} (-m-i) = \frac{(-1)^k}{k!} \prod_{i=0}^{k-1} (m+i) = \frac{(-1)^k}{k!} \frac{(m+k-1)!}{(m-1)!} = (-1)^k \binom{k+m-1}{k}$$

Comme les coefficients binomiaux sont des entiers, $P_k(m)$ et $P_k(-m)$ sont des entiers pour tous $m, k \in \mathbb{N}$.

c. Notons (a_0,\ldots,a_n) les coordonnées de P dans la base $(P_k)_{0\leqslant k\leqslant n}$. Si les a_i sont des entiers, alors pour tout $m\in\mathbb{Z}$, $P(m)=\sum_{i=0}^n a_iP_i(m)\in\mathbb{Z}$ d'après la question précédente. Supposons maintenant que pour tout $m\in\mathbb{Z}$, $P(m)\in\mathbb{Z}$. Montrons par récurrence finie que $a_i\in\mathbb{Z}$ pour

On a $P(0) = a_0$ puisque 0 est racine de P_i pour $i \ge 1$.

Supposons avoir montré que $a_0, \ldots, a_k \in \mathbb{Z}$ pour un certain entier k tel que $0 \le k \le n-1$. Pour i > k, $P_i(k) = 0$ donc

$$P(k) = \sum_{i=0}^{k} \alpha_{i} P_{i}(k) = \sum_{i=0}^{k-1} \alpha_{i} P_{i}(k) + \alpha_{k} P_{k}(k)$$

 $\text{Or } P_k(k) = 1, P_i(k) \in \mathbb{Z} \text{ pour } 0 \leqslant i \leqslant k-1 \text{ et } P(k) \in \mathbb{Z} \text{ par hypothèse. Ainsi } \alpha_k = P(k) - \sum_{i=0}^{k-1} \alpha_i P_i(k) \in \mathbb{Z}.$ Par récurrence finie, $a_0, \ldots, a_n \in \mathbb{Z}$.

- 2. a. Evident.
 - **b.** $\Delta(P_0) = 1 1 = 0$.

$$\Delta(P_{n+1}) = \frac{1}{(n+1)!} \left(\prod_{k=0}^{n} (X+1-k) - \prod_{k=0}^{n} (X-k) \right) = \frac{1}{(n+1)!} \left(\prod_{k=-1}^{n-1} (X-k) - \prod_{k=0}^{n} (X-k) \right)$$

$$= \frac{1}{(n+1)!} \left(\prod_{k=0}^{n-1} (X-k) \right) \left((X+1) - (X-n) \right) = P_n$$

c. Si d=0, on a clairement $\Delta(P)=0$ et donc $\deg \Delta(P)=-\infty$. Supposons maintenant $d\geqslant 1$ et posons $P = \sum_{k=0}^d \alpha_k X^k$ avec $\alpha_0, \dots, \alpha_d \in \mathbb{R}$ et $\alpha_d \neq 0$. Alors

$$\Delta(P) = \sum_{k=0}^d \alpha_k \sum_{l=0}^k \binom{k}{l} X^l - \sum_{k=0}^d \alpha_k X^k = \sum_{l=0}^d \left(\sum_{k=l}^d \alpha_k \binom{k}{l}\right) X^l - \sum_{l=0}^d \alpha_l X^l$$

On remarque en particulier que le coefficient de X^d est nul et que celui de X^{d-1} vaut $da_d \neq 0$. On en déduit que deg $\Delta(P) = d - 1$.

En itérant, on obtient $\deg \Delta^d(P) = \deg P - d = 0$. D'après ce qui précède, $\Delta^{d+1}(P) = 0$

- **d.** Si P est un polynôme constant, $\Delta(P) = 0$. Si deg P ≥ 1, alors deg $\Delta(P) = \deg P 1 \ge 0$ donc $\Delta(P)$ n'est pas nul. Ainsi Ker $\Delta = \mathbb{R}_0[X]$. En particulier, Δ n'est pas injective. Soit P ∈ $\mathbb{R}[X]$. Si P = 0, P admet un antécédent, à savoir 0. Sinon, notons n = deg P. Ainsi P ∈ $\mathbb{R}_n[X]$ et il existe donc $\alpha_0, \ldots, \alpha_n \in \mathbb{R}$ tels que P = $\sum_{k=0}^n \alpha_k P_k$. Or on a vu plus haut que $\Delta(P_{k+1}) = P_k$ donc P = $\Delta(\sum_{k=0}^n \alpha_k P_{k+1}) \in \text{Im } \Delta$. Ainsi Δ est surjectif.
- 3. a. D'après la question I.2.b, $\Delta^k(P_j) = P_{j-k}$ pour $0 \le k \le j$ et $\Delta^k(P_j) = 0$ pour k > j. On en déduit que $\Delta^k(P_j)(0) = P_{j-k}(0) = 0$ si $0 \le k < j$ et que $\Delta^k(P_j)(0) = 0$ si k > j. Enfin, $\Delta^k(P_k) = P_0 = 1$ donc $\Delta^k(P_k)(0) = 1$.
 - **b.** Considérons l'application Φ l'endomorphisme de $\mathbb{R}_n[X]$ qui à P associe $\sum_{k=0}^n \Delta^k(P)(0)P_k$ (Φ est clairement linéaire et bien définie puisque deg $P_k = k \leqslant n$ pour $0 \leqslant k \leqslant n$). D'après la question précédente, $\Phi(P_k) = P_k$ pour tout $0 \leqslant k \leqslant n$. Or $(P_k)_{0 \leqslant k \leqslant n}$ est une base de $\mathbb{R}_n[X]$ donc $\Phi = \mathrm{Id}_{\mathbb{R}_n[X]}$. Ainsi $\Phi(P) = P$ pour tout $P \in \mathbb{R}_n[X]$.

Partie II -

1. Notons \mathcal{P}_n la formule à établir. Supposons la vraie pour un certain $n \in \mathbb{N}$. Alors, par linéarité de Δ :

$$\begin{split} \Delta^{n+1}(P) &= \sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} \Delta(P(X+j)) = \sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} P(X+j+1) - \sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} P(X+j) \\ &= P(X+n+1) + \left[\sum_{j=1}^{n} \binom{n}{j-1} (-1)^{n-j+1} P(X+j) \right] - (-1)^{n} P(X) - \left[\sum_{j=1}^{n} \binom{n}{j} (-1)^{n-j} P(X+j) \right] \\ &= P(X+n+1) - (-1)^{n} P(X) + \sum_{j=1}^{n} (-1)^{n+1-j} \left(\binom{n}{j-1} + \binom{n}{j} \right) P(X+j) \\ &= \sum_{j=0}^{n+1} \binom{n+1}{j} (-1)^{n+1-j} P(X+j) \end{split}$$

Ainsi \mathcal{P}_{n+1} est vraie. Par récurrence, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$. On peut également raisonner directement sur les endomorphismes. Introduisons l'endomorphisme

$$D: \left\{ \begin{array}{ccc} \mathbb{R}[X] & \longrightarrow & \mathbb{R}[X] \\ P & \longmapsto & P(X+1) \end{array} \right.$$

de sorte que $\Delta = D - Id_{\mathbb{K}[X]}$. Puisque $Id_{\mathbb{K}[X]}$ commute avec D, on a d'après la formule du binôme

$$\Delta^{n} = \sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} D^{j}$$

Donc pour tout $P \in \mathbb{R}[X]$,

$$\Delta^n(P) = \sum_{i=0}^n \binom{n}{j} (-1)^{n-j} D^j(P) = \sum_{i=0}^n \binom{n}{j} (-1)^{n-j} P(X+j)$$

2. **a.** Posons $X^n = \sum_{k=0}^n \alpha_k P_k$. On sait que pour $0 \leqslant k < n$, deg $P_k < n$ et que deg $P_n = n$. Ainsi le coefficient de X^n dans $\sum_{k=0}^n \alpha_k P_k$ est le produit de α_n par le coefficient dominant de P_n , à savoir $\frac{1}{n!}$. En identifiant les coefficients des monômes de degré n, on a donc $1 = \frac{\alpha_n}{n!}$ i.e. $\alpha_n = n!$. Puisque $\Delta^n(P_k) = 0$ pour k < n et $\Delta_n(P_n) = 1$ d'après la question **I.3.a**, on a $\Delta^n(X^n) = \alpha_n = n!$. En appliquant la formule de la question précédente à X^n , on a donc

$$n! = \sum_{i=0}^{n} {n \choose j} (-1)^{n-j} (X+j)^n$$

Il suffit alors d'évaluer cette égalité en 0 pour avoir la relation demandée.

b. Il suffit d'appliquer à nouveau la formule de la question **II.1** mais cette fois-ci à X^k pour $0 \le k < n$. D'après la question **I.2.c**, $\Delta^n(X^k) = 0$ puisque deg $X^k = k < n$. On a donc

$$0 = \sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} (X+j)^{k}$$

et il suffit à nouveau d'évaluer cette égalité en 0.

3. a. On rappelle la formule de Taylor-Young

$$f(a+h) \underset{h\to 0}{=} \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} h^{k} + o(h^{n})$$

On en déduit pour $0 \le j \le n$:

$$f(a+jh) \underset{h\to 0}{=} \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} j^{k} h^{k} + o(h^{n})$$

b. On utilise la question précédente et la question II.2

$$\begin{split} h^n A_n(h) &= \sum_{j=0}^n \binom{n}{j} (-1)^{n-j} f(\alpha + jh) \\ &= \sum_{k=0}^n \sum_{k=0}^n \binom{n}{j} (-1)^{n-j} \frac{f^{(k)}(\alpha)}{k!} j^k h^k + o(h^n) \\ &= \sum_{k=0}^n \left(\sum_{j=0}^n \binom{n}{j} (-1)^{n-j} j^k \right) \frac{f^{(k)}(\alpha)}{k!} h^k + o(h^n) \\ &= \sum_{k=0}^n f^{(n)}(\alpha) h^n + o(h^n) \end{split}$$

On en déduit que $A_n(h) \underset{h \to 0}{=} f^{(n)}(a) + o(1)$ i.e. $A_n(h) \underset{h \to 0}{\longrightarrow} f^{(n)}(a)$.

Partie III -

- **1. a.** Télescopage évident.
 - **b.** On calcule aisément $P_0 = 1$, $P_1 = X$, $P_2 = \frac{1}{2}X(X 1)$ et $P_3 = \frac{1}{6}X(X 1)(X 2)$.

Il existe $a_0, a_1, a_2 \in \mathbb{R}$ tels que $X^2 = a_0 P_0 + a_1 P_1 + a_2 P_2$. En évaluant en 0, on trouve $a_0 = 0$. En évaluant ensuite en 1, on trouve $a_1 = 1$. En évaluant enfin en 2, on trouve $2a_1 + a_2 = 4$ i.e. $a_2 = 2$. Ainsi $X^2 = P_1 + 2P_2$.

Il existe b_0 , b_1 , b_2 , $b_3 \in \mathbb{R}$ tels que $X^3 = b_0 P_0 + b_1 P_1 + b_2 P_2 + b_3 P_3$. En évaluant en 0, on trouve $b_0 = 0$. En évaluant en 1, on trouve $b_1 = 1$. En évaluant en 2, on trouve $2b_1 + b_2 = 8$ i.e. $b_2 = 6$. En évaluant enfin en 3, on trouve $3b_1 + 3b_2 + b_3 = 27$ i.e. $b_3 = 6$. Ainsi $X^3 = P_1 + 6P_2 + 6P_3$.

En vertu de la question **I.2.b**, il suffit donc de choisir $Q_1 = P_2$, $Q_2 = P_2 + 2P_3$ et $Q_3 = P_2 + 6P_3 + 6P_4$.

c. D'après les deux questions précédentes :

$$\begin{split} \sum_{k=0}^{p} k &= Q_1(p+1) - Q_1(0) = P_2(p+1) - P_2(0) = \frac{p(p+1)}{2} \\ \sum_{k=0}^{p} k^2 &= Q_2(p+1) - Q_2(0) = P_2(p+1) - P_2(0) + 2P_3(p+1) - 2P_3(0) \\ &= \frac{p(p+1)}{2} + \frac{(p+1)p(p-1)}{3} = \frac{p(p+1)(2p+1)}{6} \\ \sum_{k=0}^{p} k^3 &= Q_3(p+1) - Q_3(0) = P_2(p+1) - P_2(0) + 6P_3(p+1) - 6P_3(0) + 6P_4(p+1) - 6P_4(0) \\ &= \frac{p(p+1)}{2} + (p+1)p(p-1) + \frac{(p+1)p(p-1)(p-2)}{4} \\ &= \frac{p(p+1)\left(2 + (p-1)(4+p-2)\right)}{4} = \left(\frac{p(p+1)}{2}\right)^2 \end{split}$$

- 2. a. Evident.
 - **b.** \triangleright Pour $n \geqslant 1$,

D'après la question III.2.a, on a bien

$$\Delta(B_{n+1}^{\,\prime}-nB_n)=\Delta(B_{n+1}^{\,\prime})-n\Delta(B_n)=\left(\Delta(B_{n+1})\right)^{\,\prime}-\Delta(B_n)=(X^n)^{\prime}-nX^{n-1}=0$$

- ▶ $\Delta(B_{n+1}) = X^n$ signifie $B_{n+1}(X+1) B_n(X) = X^n$. En substituant 0 à X dans cette égalité, on a $B_{n+1}(1) B_{n+1}(0) = 0$ (car n non nul).
- ▶ On doit avoir $\Delta(B_1) = 1$. D'après la question **I.2.c**, on doit avoir $\deg B_1 = 1 + \deg 1 = 1$. On a vu précédemment que si P était un polynôme de degré d et de coefficient dominant a_d , le coefficient dominant de $\Delta(P)$ était da_d . En appliquant ceci à $P = B_1$ et donc d = 1, on voit que le coefficient dominant de B_1 doit être 1. Autrement dit, B_1 doit être unitaire.
- c. Soit $(B_n)_n\geqslant 1$ une suite satisfaisant aux trois conditions précédentes. B_1 est unitaire de degré 1 donc de la forme $X+\alpha$ avec $\alpha\in\mathbb{R}$. Il est alors clair que $\Delta(B_1)=1=X^0$. Supposons que l'on ait $\Delta(B_{n+1})=X^n$ pour un certain entier naturel n. On a alors $\Delta(B_{n+2})'=(n+1)\Delta(B_{n+1})$ puisque $B'_{n+2}-(n+1)B_{n+1}\in \operatorname{Ker}\Delta$. D'où $\Delta(B_{n+2})'=(n+1)X^n$. Il existe donc $\alpha\in\mathbb{R}$ tel que $\Delta(B_{n+2})=X^{n+1}+\alpha$. En substituant 0 à X dans cette égalité, on obtient $\alpha=B_{n+2}(1)-B_{n+2}(0)=0$. Par récurrence, $\Delta(B_{n+1})=X^n$ pour tout $n\in\mathbb{N}$.

$$\sum_{k=0}^{p} k^{n} = \sum_{k=0}^{p} \Delta(B_{n+1})(k) = B_{n+1}(p+1) - B_{n+1}(0)$$

3. a. Supposons que (A), (B), (C) soient vérifiées. (A') et (B') sont donc vérifiées. De plus, pour tout $n \ge 1$:

$$\int_0^1 B_n(t) dt = \frac{1}{n} \int_0^1 B'_{n+1}(t) dt = \frac{1}{n} \left(B_{n+1}(1) - B_{n+1}(0) \right) = 0$$

Réciproquement, supposons que (A'), (B'), (C') soient vérifiées. Alors (A) et (B) sont vérifiées. Pour $n \geqslant 1$,

$$B_{n+1}(1) - B_{n+1}(0) = \int_0^1 B'_{n+1}(t) dt = n \int_0^1 B_n(t) dt = 0$$

- **b.** B_1 est unitaire de degré 1 donc de la forme $X+\alpha$ avec $\alpha\in\mathbb{R}$. La condition (B') fournit alors $\alpha=-\frac{1}{2}$. Ainsi $B_1=X-\frac{1}{2}$.
 - $B_2'=B_1$ donc B_2 est de la forme $\frac{1}{2}X^2-\frac{1}{2}X+\alpha$ avec $\alpha\in\mathbb{R}$. La condition (B') fournit alors $\alpha=\frac{1}{12}$. Ainsi $B_2=\frac{1}{2}X^2-\frac{1}{2}X+\frac{1}{12}$.
 - $B_3'=2B_2$ donc B_3 est de la forme $\frac{1}{3}X^3-\frac{1}{2}X^2+\frac{1}{6}X+\alpha$ avec $\alpha\in\mathbb{R}$. La condition (B') fournit alors $\alpha=0$. Ainsi $B_3=\frac{1}{3}X^3-\frac{1}{2}X^2+\frac{1}{6}X$.
 - $B_4'=3B_3$ donc B_4 est de la forme $\frac{1}{4}X^4-\frac{1}{2}X^3+\frac{1}{4}X^2+\alpha$ avec $\alpha\in\mathbb{R}.$ La condition (B') fournit alors $\alpha=-\frac{1}{120}.$ Ainsi $B_4=\frac{1}{4}X^4-\frac{1}{2}X^3+\frac{1}{4}X^2-\frac{1}{120}.$
 - On laisse au lecteur le soin de mener les calculs et la factorisation de $B_2(p+1) B_2(0)$, $B_3(p+1) B_3(0)$ et $B_4(p+1) B_4(0)$.
- c. On a déjà montré l'existence et l'unicité de B_1 à la question précédente. De plus, on voit que $B_1 \in \mathbb{Q}[X]$. Supposons l'existence et l'unicité de B_1, \ldots, B_n et le fait que $B_1, \ldots, B_n \in \mathbb{Q}[X]$ pour un certain $n \geqslant 1$. Soit P une primitive de nB_n (il en existe toujours). L'unique choix possible pour B_{n+1} est alors $P \int_0^1 P(t) \, dt$. D'où l'existence et l'unicité de B_{n+1} . De plus, P est à coefficients rationnels, puisque B_n l'est. Ceci prouve que $\int_0^1 P(t) \, dt \in \mathbb{Q}$ (quitte à décomposer P dans la base canonique). Ainsi $B_{n+1} \in \mathbb{Q}[X]$. On prouve ainsi par récurrence l'existence et l'unicité de la suite $(B_n)_{n\geqslant 1}$ et le fait que $B_n \in \mathbb{Q}[X]$ pour
- **d.** On peut par exemple écrire l'algorithme suivant en Python. On représente un polynôme $\sum_{k=0}^{n} \alpha_k X^k$ par la liste $[\alpha_0, \dots, \alpha_n]$.

```
def bernoulli(n) :
b=[-1/2,1]
s=[b]
for k in range(1,n) :
b=[k*a/(i+1) for (i,a) in enumerate(b)]
b.insert(0,-sum(a/(i+2) for (i,a) in enumerate(b)))
s.append(b)
return s
```

On peut utiliser le module fractions si on veut les coefficients sous forme exacte.

```
from fractions import Fraction

def bernoulli(n) :
b=[Fraction(-1,2),Fraction(1)]
s=[b]
for k in range(1,n) :
b=[k*a/(i+1) for (i,a) in enumerate(b)]
b.insert(0,-sum(a/(i+2) for (i,a) in enumerate(b)))
s.append(b)
return s
```