Université d'Ottawa Faculté de génie

École de science d'informatique et de génie électrique

University of Ottawa Faculty of Engineering

School of Electrical Engineering and Computer Science

CSI2372A Advanced Programming Concepts with C++

Canada's university

MIDTERM EXAMINATION A

Professor: Jochen Lang Page 1 of 10

Family Name:	 	
Other Names:	 	
Student Number:		
Signature		

You are allowed **ONE TEXTBOOK** as a reference. No calculators or other electronic devices are allowed.

Please answer the questions in this booklet. The marks for each question are marked in the booklet with [].

At the end of the exam, when time is up: Stop working and turn your exam upside down. Remain silent.

Question	Marks	Maximum
A.1-A.8		8
B.1		4
B.2		5
C.1		2
C.2		3
C.3		4
Total		26

PART A: SHORT QUESTIONS (8 MARKS)

1. Given the following declaration [1]

```
bool copyWord( const char* in, char* out);
call the function copyWord with the arguments

char in[]{"Hello"};
char* out = new char[128]{};
bool result;
```

2. What is printed by the following? [1]

```
std::string s;
s+="1x";
s+='2';
s[1] = '0';
cout << s.c_str() << endl;</pre>
```

3. What is printed by the following? [1]

```
double d = 3.0;
int i = 2;
char c = 1;
double r = d/i+c;
cout << r << endl;</pre>
```

4. What is printed by the following? [1]

```
class AC {
  int d_i{23};
  int d_j;
public:
  AC( int k=15 ) : d_i{k}, d_j{k} {}
  void print() {
    cout << d_i << " " << d_j << endl;
  }
};

AC ac{10};
ac.print();</pre>
```

5. What is printed by the following? [1]

```
int ras = 8;
int rbs = 2;
int rcs = 3;
int rcd = ras >> --rcs << rbs/2;
cout << rcd << endl;</pre>
```

6. What is printed by the following? [1]

```
int a[]{2,4,6};
int *pA = &a[0];
int **pB = &pA;
++pA;
cout << **pB << endl;</pre>
```

7. Rewrite the following definition of **a** using auto to define exactly the same type: [1]

```
int x=0;
int &a = x;
```

8. Rewrite the following definition of **b** using auto to define exactly the same type: [1]

```
int x=0;
const int *b = &x;
```

PART B: Short Programs (9 MARKS)

1. The following program does not compile. Mark the lines were an error occurs and state the reason for the error [4]

```
using std::cout;
using std::endl;
class Bear {
 int d_age;
public:
 Bear( int age ) : d_age(age) {}
  void print() {
   cout << d_age << endl;</pre>
 }
};
class Cave {
  double d_depth{3.0};
  Bear d_b;
public:
  Cave( Bear b ) : d_b{b} { d_b.d_age = 0; }
  bool hasOldBear() {
    if (d_b.d_age>10) return true;
    else return false;
 Bear getBear() { return d_b; }
} ;
int main() {
 Cave c;
  Bear b;
  if ( c.hasOldBear() ) {
   b = c.getBear();
   b.print();
  } else {
    cout << "Young Bear!" << endl;</pre>
 return 0;
}
```

2. Consider the following definition of the function matrix and the corresponding main routine:

```
int* matrix( int nRows, int nCols ) {
  int *numbers = new int[nRows*nCols];
  int *element = numbers;
  for (int r=0; r < nRows; ++r) {
      for (int c=0; c<nCols; ++c) {
          *(element++) = r*nCols+c;
  return numbers;
int main() {
  int nRows, nCols;
  cout << "Number of rows: "; cin >> nRows; cout << endl;</pre>
  cout << "Number of cols: "; cin >> nCols; cout << endl;</pre>
  auto numbers = matrix(nRows, nCols);
  for (int r=0; r < nRows; ++r) {
      for(int c=0; c<nCols; ++c) {</pre>
        cout << numbers[r*nCols+c] << " ";</pre>
      cout << endl;</pre>
  }
  return 0;
```

a. What is printed by the program if the user enters 2 as "number of rows" and 3 as "number of columns"? [1]

b.	Rewrite the function matrix to have the prototype			
	<pre>std::vector<int> matrix(int nRows, int nCols). The main function will still work as is [3].</int></pre>			
С.	Could you use std::array instead of std::vector in the redefinition of the function matrix instead? Explain why in one sentence. [1]			

PART C: PROGRAMMING QUESTIONS (9 MARKS)

Consider the following main program:

```
#include <iostream>
#include <cmath>
using namespace std;
int main() {
  double a[]{ 2.0, -3.0, 2.0 };
  double b[]{ -1.0, -1.0, 2.0, 1.0 };
  print( a, end(a)-begin(a) );
  print( b, end(b)-begin(b) );
  cout << length(a,end(a)-begin(a)) << endl;</pre>
  cout << length(b,end(a)-begin(a)) << endl;</pre>
  auto c = append(a, end(a) - begin(a), b, end(b) - begin(b));
  print( c, static_cast<size_t>(end(a)-begin(a)) +
               static_cast<size_t>(end(b)-begin(b)));
  return 0;
}
Program Output:
2 -3 2
-1 -1 2 1
4.12311
2.44949
2 -3 2 -1 -1 2 1
```

1. Implement the function print [2].

2.	Implement the function length that calculates the 2-norm or magnitude/length of a vector. The vector length is defined as $ \vec{x} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$ [3].		

3.	Implement the function append [4].