Theorem (Expected value rule) Given a random variable X and a Properties (Properties of joint PMF) function $q: \mathbb{R} \to \mathbb{R}$, we construct the random variable Y = q(X). Then

$$\sum_{y} y p_{Y}(y) = \mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_{x} g(x) p_{X}(x).$$

Remark (PMF of Y = q(X)) The PMF of Y = q(X) is $p_Y(y) = \sum_{x:g(x)=y} p_X(x).$

Remark In general $g(\mathbb{E}[X]) \neq \mathbb{E}[g(X)]$. They are equal if a(x) = ax + b.

Variance, conditioning on an event, multiple r.v.

Definition (Variance of a random variable) Given a random variable X with $\mu = \mathbb{E}[X]$, its variance is a measure of the spread of the random variable and is defined as

$$\operatorname{Var}(X) \stackrel{\triangle}{=} \mathbb{E}\left[(X - \mu)^2\right] = \sum_{x} (x - \mu)^2 p_X(x).$$

$$\sigma_X = \sqrt{\operatorname{Var}(X)}.$$

Properties (Properties of the variance)

- $Var(aX) = a^2 Var(X)$, for all $a \in \mathbb{R}$.
- Var(X + b) = Var(X), for all $b \in \mathbb{R}$.
- $\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X)$.
- $\operatorname{Var}(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2$.

Example (Variance of known r.v.)

- If $X \sim \text{Ber}(p)$, then Var(X) = p(1-p).
- If $X \sim \text{Uni}[a,b]$, then $\text{Var}(X) = \frac{(b-a)(b-a+2)}{12}$.
- If $X \sim \text{Bin}(n, p)$, then Var(X) = np(1 p).
- If $X \sim \text{Geo}(p)$, then $\text{Var}(X) = \frac{1-p}{2}$

Proposition (Conditional PMF and expectation, given an event) Given the event A, with $\mathbb{P}(A) > 0$, we have the following

- $p_{X|A}(x) = \mathbb{P}(X = x|A)$.
- If A is a subset of the range of X, then: $p_{X|A}(x) \stackrel{\triangle}{=} p_{X|\{X \in A\}}(x) = \begin{cases} \frac{1}{P(A)} p_X(x), & \text{if } x \in A, \\ 0, & \text{otherwise.} \end{cases}$
- $\sum_{x} p_{X|A}(x) = 1$.
- $\mathbb{E}[X|A] = \sum_{x} x p_{X|A}(x)$.
- $\mathbb{E}[g(X)|A] = \sum_{x} g(x) p_{X|A}(x)$.

Proposition (Total expectation rule) Given a partition of disjoint events A_1, \ldots, A_n such that $\sum_i \mathbb{P}(A_i) = 1$, and $\mathbb{P}(A_i) > 0$,

$$\mathbb{E}[X] = \mathbb{P}(A_1)\mathbb{E}[X|A_1] + \dots + \mathbb{P}(A_n)\mathbb{E}[X|A_n].$$

Definition (Memorylessness of the geometric random variable)

When we condition a geometric random variable X on the event X > n we have memorylessness, meaning that the "remaining time" X-n, given that X>n, is also geometric with the same parameter. Formally,

$$p_{X-n|X>n}(i) = p_X(i).$$

Definition (Joint PMF) The joint PMF of random variables $X_1, X_2, ..., X_n$ is $p_{X_1,X_2,...,X_n}(x_1,...,x_n) = \mathbb{P}(X_1 = x_1,...,X_n = x_n).$

- $\bullet \sum_{x_1} \cdots \sum_{x_n} p_{X_1, \dots, X_n} (x_1, \dots, x_n) = 1.$
- $p_{X_1}(x_1) = \sum_{x_2} \cdots \sum_{x_n} p_{X_1,...,X_n}(x_1,x_2,...,x_n).$
- $p_{X_2,...,X_n}(x_2,...,x_n) = \sum p_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n)$.

Definition (Functions of multiple r.v.) If $Z = g(X_1, \ldots, X_n)$, where $g: \mathbb{R}^n \to \mathbb{R}$, then $p_Z(z) = \mathbb{P}(g(X_1, \dots, X_n) = z)$.

Proposition (Expected value rule for multiple r.v.) Given

$$\mathbb{E}[g(X_1,...,X_n)] = \sum_{x_1,...,x_n} g(x_1,...,x_n) p_{X_1,...,X_n}(x_1,...,x_n).$$

Properties (Linearity of expectations)

- $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$.
- $\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$

Conditioning on a random variable, independence

Definition (Conditional PMF given another random variable)

Given discrete random variables X, Y and y such that $p_Y(y) > 0$ we define

$$p_{X|Y}(x|y) \stackrel{\triangle}{=} \frac{p_{X,Y}(x,y)}{p_Y(y)}.$$

Proposition (Multiplication rule) Given jointly discrete random variables X, Y, and whenever the conditional probabilities are defined,

$$p_{X,Y}(x,y) = p_X(x)p_{Y|X}(y|x) = p_Y(y)p_{X|Y}(x|y).$$

Definition (Conditional expectation) Given discrete random variables X, Y and y such that $p_Y(y) > 0$ we define

$$\mathbb{E}[X|Y = y] = \sum_{x} x p_{X|Y}(x|y)$$

Additionally we have

$$\mathbb{E}\left[g(X)|Y=y\right] = \sum_{x} g(x) p_{X|Y}(x|y).$$

Theorem (Total probability and expectation theorems) If $p_Y(y) > 0$, then

$$p_X(x) = \sum_{y} p_Y(y) p_{X|Y}(x|y),$$

$$\mathbb{E}[X] = \sum_{y} p_{Y}(y) \mathbb{E}[X|Y = y].$$

Definition (Independence of a random variable and an event) A discrete random variable X and an event A are independent if $\mathbb{P}(X = x \text{ and } A) = p_X(x)\mathbb{P}(A), \text{ for all } x.$

Definition (Independence of two random variables) Two discrete random variables X and Y are independent if $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ for all x,y.

Remark (Independence of a collection of random variables) A collection X_1, X_2, \dots, X_n of random variables are independent if

$$p_{X_1,...,X_n}(x_1,...,x_n) = p_{X_1}(x_1) \cdots p_{X_n}(x_n), \forall x_1,...,x_n.$$

Remark (Independence and expectation) In general, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$. An exception is for linear functions: $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y].$

Proposition (Expectation of product of independent r.v.) If X and Y are discrete independent random variables,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$$

Remark If X and Y are independent, $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[h(Y)].$

Proposition (Variance of sum of independent random variables) IF X and Y are discrete independent random variables.

$$Var(X + Y) = Var(X) + Var(Y).$$

Continuous random variables

PDF. Expectation. Variance. CDF

Definition (Probability density function (PDF)) A probability density function of a r.v. X is a non-negative real valued function f_X that satisfies the following

- $\bullet \int_{-\infty}^{\infty} f_X(x) dx = 1.$
- $\mathbb{P}(a \le X \le b) = \int_{a}^{b} f_X(x) dx$ for some random variable X.

Definition (Continuous random variable) A random variable X is continuous if its probability law can be described by a PDF f_X . Remark Continuous random variables satisfy:

- For small $\delta > 0$, $\mathbb{P}(a \le X \le a + \delta) \approx f_X(a)\delta$.
- $\mathbb{P}(X = a) = 0, \forall a \in \mathbb{R}.$

Definition (Expectation of a continuous random variable) The expectation of a continuous random variable is

$$\mathbb{E}[X] \stackrel{\triangle}{=} \int_{-\infty}^{\infty} x f_X(x) \mathrm{d}x.$$

assuming $\int_{0}^{\infty} |x| f_X(x) dx < \infty$.

Properties (Properties of expectation)

- If $X \ge 0$ then $\mathbb{E}[X] \ge 0$.
- If $a \le X \le b$ then $a \le \mathbb{E}[X] \le b$.
- $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$.
- $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$.

Definition (Variance of a continuous random variable) Given a continuous random variable X with $\mu = \mathbb{E}[X]$, its variance is

$$\operatorname{Var}(X) = \mathbb{E}\left[(X - \mu)^2\right] = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx.$$

It has the same properties as the variance of a discrete random variable.

Example (Uniform continuous random variable) A Uniform continuous random variable X between a and b, with a < b, $(X \sim \text{Uni}(a,b))$ has PDF

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a < x < b, \\ 0, & \text{otherwise.} \end{cases}$$

We have $\mathbb{E}[X] = \frac{a+b}{2}$ and $\operatorname{Var}(X) = \frac{(b-a)^2}{12}$.