- 1- For a given wing-body combination, the aerodynamic center lies 0.05, chord length ahead of the center of gravity. The moment coefficient about the aerodynamic center is -0.016. If the lift coefficient is 0.45, calculate the moment coefficient about the center of gravity.
- 2- A wing-body model is tested in a subsonic wind tunnel. The lift is found to be zero at a geometric angle of attack = -1.5° . At $\alpha = 5^{\circ}$, the lift coefficient is measured as 0.52. Also, at $\alpha = 1.0^{\circ}$ and 7.88°, the moment coefficients about the center of gravity are measured as -0.01 and 0.05, respectively. The center of gravity is located at 0.35c.
 - a) Calculate the location of the aerodynamic center and the value of $C_{M,ac_{wb}}$
 - b) The area and chord of the wing are $0.1 \ m^2$ and $0.1 \ m$, respectively. Now assume that a horizontal tail is added to this model. The distance from the airplane's center of gravity to the tail's aerodynamic center is $0.17 \ m$, the tail area is $0.02 \ m^2$, the tail-setting angle is $i_H = 2.7^\circ$, the tail lift slope is $0.1 \ \text{per degree}$, and from experimental measurement, $\varepsilon_0 = 0$ and $\partial \varepsilon / \partial \alpha = 0.35$. If $\alpha = 7.88^\circ$, calculate $C_{M,cq}$ for the airplane model.
 - c) Does this model have longitudinal static stability and balance?
- **3-** An airplane has a wing and a horizontal tail of identical platform geometry (i.e. similar aspect ratio, taper ratio, sweep angle, thickness ratio and airfoils). Assume $S_H = \frac{1}{4}S_W$. Assuming the wing has 3 degrees of dihedral, how much dihedral must the tail have to compensate for the wing dihedral effect $C_{l_{\beta_w}}$?