Eksamen REA3056 matematikk R1 høst 2022

Del 1 – uten hjelpemidler – 1 time

Oppgave 1

Avgjør for hver av funksjonene nedenfor om den har en omvendt funksjon. Husk å begrunne svaret.

a)
$$f(x) = x^4$$
, $D_f = \mathbb{R}$

b)
$$g(x) = e^{-(x-2)^2}$$
, $D_g = [2, \to)$

Oppgave 2

Bestem grenseverdien

$$\lim_{h \to 0} \frac{(4+h)^2 - 4^2}{h}$$

Oppgave 3

Hvilket av tallene er mindre enn 10? Husk å begrunne svarene.

$$3\sqrt{11}$$
 10 lg 9 5 ln 9

Oppgave 4

Vi har gitt punktene A(1,1), B(9,7)og P(5,9).

a) Vis at $\angle APB = 90^{\circ}$.

En linje ℓ er parallell med \overrightarrow{AB} og går gjennom punktet P.

Det er også et annet punkt Q på ℓ som er slik at $\angle AQB = 90^{\circ}$.

b) Bestem koordinatene til Q.

Marianne har skrevet følgende program:

```
def f(x):
2
       return(6*x-3)/(x-1) #Definerer funksjonen f(x)=(6x-3)/(x-1)
3
   h=0.00001
4
5
   def Df(x):
6
       return(f(x+h)-f(x))/h
7
8
   a=1.5
                            #En startverdi
9
   while Df(a)<-3:
10
       a=a+0.001
11
12 b=f(a) - Df(a) *a
                            #Regner ut konstantleddet
13
14 | print("y = -3x + ",b)
```

Bestem verdien av variabelen b som defineres på linje 12.

Del 2 – med hjelpemidler – 2 timer

Oppgave 1

Tabellen nedenfor viser hvor mye elektrisk energi Norge produserte noen utvalgte år.

År	1950	1960	1970	1981	1990	2000	2012	2020
Produksjon	16 924	31 121	57 606	93 397	121 848	142 816	147 716	154 197
(GWh)								

- a) Bruk tallene fra tabellen til å lage en logistisk modell g som viser oss Norges energiproduksjon x år etter 1950.
- b) I hvilket år økte produksjonen raskest ifølge modellen g?

Tabellen nedenfor viser forbruket av elektrisk energi i Norge noen utvalgte år.

År	1950	1960	1970	1981	1990	2000	2012	2020
Forbruk	16 924	31 253	56 770	88 161	105 941	123 761	129 900	133 725
(GWh)								

c) Bruk tallene fra tabellen til å lage en modell som du mener vi kan bruke til å vurdere om vi på sikt vil være selvforsynte med elektrisk energi.

Oppgave 2

Når du bruker blitsen på et fotokamera, vil batteriet lade den opp igjen. Ladningen Q i blitsen t sekunder etter at den går av, er gitt ved

$$Q(t) = Q_0(1 - e^{-2.3t}), \quad t \ge 0$$

Her er Q_0 den maksimale ladningen i blitsen.

- a) Bestem den omvendte funksjonen til Q.
- b) Hvor lang tid tar det før blitsen har fått 90 prosent av den maksimale ladningen?

Vi har gitt punktene $A(0,0),\ B(9,1)$ og C(24,10). En stråle ℓ er gitt ved parameterframstillingen

$$\ell: \begin{cases} x = 12t \\ y = 5t \end{cases}, \ t > 0$$

- a) Vis at C ligger på ℓ .
- b) Bruk vektorregning til å bestemme $\angle BAC$.

Et annet punkt D ligger på ℓ slik at $\angle ADB = 120^{\circ}$.

c) Bruk vektorregning til å bestemme koordinatene til D.

Et punkt E ligger på ℓ slik at arealet til ΔABE er 11.

d) Bestem de eksakte koordinatene til E.

Oppgave 4

Nedenfor ser du tre påstander. Avgjør i hvert tilfelle om påstanden er sann. Husk å argumentere!

- a) Hvis f(a) = f(b) for en funksjon f, så er a = b.
- b) Hvis 0 < a < b, så er $\ln a < \ln b$.
- c) Hvis a > 0 og x > 0, så er $(\ln x)' = (\ln ax)'$.

En funksjon f er gitt ved

$$f(x) = 1 - x^2$$
 , $D_f = [0, 1]$

La $a \in (0,1)$ og O være origo. Tangenten til grafen til f i punktet P(a,f(a)) skjærer x-aksen i punktet A og y-aksen i punktet B som vist på figuren.

- a) Bestem arealet av $\triangle OAB$ når $P = \left(\frac{1}{2}, \frac{3}{4}\right)$.
- b) Bestem det minste arealet $\triangle OAB$ kan ha.

Oppgave 6

Tyngdepunktet T i en trekant ABC er gitt ved

$$\overrightarrow{OT} = \frac{1}{3} \left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} \right)$$

der *O* er origo.

Lag et program hvor du oppgir koordinatene til punktene A, B og C.

Programmet skal skrive ut koordinatene til tyngdepunktet.

En funksjon f er gitt ved

$$f(x) = 2x + 5 + \frac{1}{x - 1}$$

- a) For hvilke verdier av k har likningen f'(x) = k løsning?
- b) Velg ulike verdier av k, og beskriv symmetrien i løsningene til likningen f'(x) = k for hver av disse verdiene.

La g være en funksjon som kan skrives på formen

$$g(x) = a \cdot x + b + \frac{1}{x+d}$$

c) For hvilke verdier av a har likningen g'(x) = 4 løsning?

La nå a=3.

- d) Utforsk og beskriv løsningene til likningen g'(x) = k for ulike verdier av k.
- e) Bestem b og d slik at g'(-1) = g'(5) og g(1) = 7.

Kilder for bilder, tegninger osv.					
Tegninger og grafiske framstillinger: Utdanningsdirektoratet					