(12) SOLICITUD INTERNACIONAL PUBLICADA EN VIRTUD DEL TRATADO DE COOPERACIÓN EN MATERIA DE PATENTES (PCT)

(19) Organización Mundial de la Propiedad Intelectual

Oficina internacional

T (BRID BUILDEN NEURON BUILD BUILD (BUILD BUILD BUILD

(43) Fecha de publicación internacional 11 de Diciembre de 2003 (11.12.2003)

PCT

(10) Número de Publicación Internacional WO 03/102128 A1

(51) Clasificación Internacional de Patentes⁷:

(21) Número de la solicitud internacional: PCT/ES03/00247

(22) Fecha de presentación internacional:

23 de Mayo de 2003 (23.05.2003)

(25) Idioma de presentación:

español

C12N

(26) Idioma de publicación:

español

- (30) Datos relativos a la prioridad: P200201253 31 de Mayo de 2002 (31.05.2002) ES
- (71) Solicitante (para todos los Estados designados salvo US): CONSEJO SUPERIOR DE INVESTIGA-CIONES CIENTÍFICAS [ES/ES]; C/Serrano, 117, 28006 MADRID (ES).
- (72) Inventores; e
- (75) Inventores/Solicitantes (para US solamente): TORNÉ
 CUBIRÓ, José, María [ES/ES]; INSTO. BIOLOGIA MOLECULAR DE BARCELONA, CONSEJO
 SUPERIOR DE INVESTIGACIONES CIENTÍFICAS, C/JORGE GIRONA SALGADO, 18-26, 08034
 BARCELONA (ES). SANTOS LOZANO, María, Asunción [ES/ES]; INSTO. BIOLOGIA MOLECULAR DE
 BARCELONA, CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS, C/JORGE GIRONA SALGADO, 18-26, 08034 BARCELONA (ES). TALAVERA
 BARO, David [ES/ES]; INSTO. BIOLOGIA MOLECULAR DE BARCELONA, CONSEJO SUPERIOR
 DE INVESTIGACIONES CIENTÍFICAS, C/JORGE
 GIRONA SALGADO, 18-26, 08034 BARCELONA

(ES). VILLALOBOS AMADOR, Enrique [ES/ES]; INSTO. BIOLOGIA MOLECULAR DE BARCELONA, CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS, C/JORGE GIRONA SALGADO, 18-26, 08034 BARCELONA (ES). RIGAU LLOVERAS, Juan [ES/ES]; INSTO. BIOLOGIA MOLECULAR DE BARCELONA, CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS, C/JORGE GIRONA SALGADO, 18-26, 08034 BARCELONA (ES).

- (74) Mandatario: REPRESA SÁNCHEZ, Domingo; CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS, OFICINA DE TRANSFERENCIA DE TECNOLOGÍA, C/Serrano, 113, 28006 MADRID (ES).
- (81) Estados designados (nacional): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Estados designados (regional): patente ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), patente euroasiática (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), patente europea (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), patente OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publicada:

- con informe de búsqueda internacional

[Continúa en la página siguiente]

(54) Title: MAIZE NUCLEOTIDE SEQUENCE CODING FOR A PROTEIN WITH TRANSGLUTAMINASE ACTIVITY AND USE THEREOF

(54) Título: SECUENCIA DE NUCLEOTIDOS DE MAIZ CODIFICANTE DE UNA PROTEINA CON ACTIVIDAD TRANS-GLUTAMINASA, Y SU USO

(57) Abstract: The invention relates to a DNA molecule from maize which codes for a protein with TGase activity and to a gene expression vector comprising said DNA molecule. The invention also relates to the use of the aforementioned DNA molecule or vector in order to produce transformed cells capable of expressing recombinant proteins with TGase activity, and to introduce the sequence coding for a protein with TGase activity into plant cells. In addition, the invention relates to the resulting transgenic plants and cells of micro-organisms. Furthermore, the proteins with TGase activity expressed from the above-mentioned DNA sequences can be used, for example, in food manipulation, processing and transformation.

(57) Resumen: La invención proporciona una molécula de ADN proveniente de maiz y codificante de una proteína con actividad TGasa, asícomo un vector de expresión génica que comprende esta molécula de ADN. Un objeto adicional de esta invención lo constituye el empleo de dicha molécula de ADN o vector para producir células transformadas capaces de expresar proteínas recombinantes con actividad TGasa, o para introducir dicha secuencia codificante de una proteína con actividad TGasa en células de plantas. Las células de microorganismos y las plantas transgénicas resultantes también constituyen objetos adicionales de esta invención. Además, estas proteínas con actividad TGasa expresadas a partir de dichas secuencias de ADN pueden ser empleadas, entre otros usos, en la manipulación, procesamiento y transformación de alimentos.

Para códigos de dos letras y otras abreviaturas, véase la sección "Guidance Notes on Codes and Abbreviations" que aparece al principio de cada número regular de la Gaceta del PCT.

SECUENCIA DE NUCLEOTIDOS DE MAIZ CODIFICANTE DE UNA PROTEINA CON ACTIVIDAD TRANSGLUTAMINASA, Y SU USO.

5

10

15

20

25

30

SECTOR DE LA TECNICA

La invención se relaciona con la identificación de nuevas proteínas de origen vegetal con actividad TGasa y su uso en el campo de la manipulación, procesamiento y transformación de alimentos y en el desarrollo de plantas transgénicas con nuevas capacidades.

ESTADO DE LA TECNICA

Las transglutaminasas (TGasa; EC2.3.2.13) (R-glutaminil-peptido-aminasa-γ-glutamil transferasa) catalizan uniones amidas entre un grupo amino primario de una poliamina o de una lisina (donador amino) y un grupo γ-carboxiamida de un residuo glutamil de algunas proteínas (amino receptor), mediante una reacción intermedia por la que el enzima se une al sustrato por reacción entre el grupo γ-carboxiamida del residuo glutamil de la proteína y un grupo sulfidrilo de un residuo de cisteína del centro activo del enzima (Serafini-Fracassini, D., Del Duca, S., & Beninati, S. 1995. Plant Transglutaminases. Phytochemistry 40: 355-365). El resultado de la actividad de la TGasa es: a) la modificación de la conformación de la propia proteína y b) otros cambios de conformación más extensos como resultado de uniones entre la misma proteína y entre proteínas diferentes para formar conjugados de elevado peso molecular.

Existen estudios con TGasas en humanos, también en animales, plantas, vertebrados inferiores, algunas bacterias, algas y levaduras (Makarova, K.S., Aravind, L. & Koovin, E.V. 1999. A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein Science 8:1714-1719; Bergamini, C.M., Dean, M., Tanfani, F., Ferrari, C. & Scatturin. 1999. Conformational stability of human erythrocyte transglutaminase: patterns of thermal unfolding at acid and alkaline pH. Eur. J.Biochem. 266:575-582.; Cariello, L., Ristoratore, F. & Zanitti, L. 1997. A new transglutaminase-like from ascidian Ciona intestinalis. FEBS Lett 408:171-176; Lorand, L. & Conrad, S.M. 1984. Transglutaminases. Mol Cell Biochem 58:9-35; Serafini-Fracassini, D., Del Duca S. & Beninati S. 1995. Plant Transglutaminases.

2

Phytochemistry 40:355-365; Tokunaga, F., Muta, T., Iwanaga, S., Ichinose, A., Davie, EW, Kuma, K. & Miyata, T. 1993. Limulus hemocyte transglutaminase. cDNA cloning, amino acid sequence and tissue localization. J Biol Chem 268:262-268).

5

10

15

20

25

30

Las TGasas más conocidas son: el factor XIII de la coagulación de la sangre, que es una proteína del plasma, y la TGasa K implicada en la formación de la capa córnea de la epidermis. Por otro lado, ya han sido clonados algunos de los genes responsables de algunas de las TGasas citadas y se va conociendo la implicación de las TGasas en importantes procesos como la diferenciación celular, la estabilización de tejidos o la muerte celular programada (Ichinose, A., Bottenus, R.E. & Davie E.W. 1990. Structure of transglutaminases. J. of Biol. Chemistry. 265(23): 13411-13414; Bergamini, C.M., Dean, M., Tanfani, F., Ferrari, C. & Scatturin. 1999. Conformational stability of human erythrocyte transglutaminase: patterns of thermal unfolding at acid and alkaline pH. Eur. J.Biochem. 266: 575-582; Nemes ,Z., Marekov, L.N. & Steinert, P.M. 1999. Involucrin cross-linking by transglutaminase 1. J. of Biol. Chemistry. 274(16): 11013-11021). También estas enzimas parecen estar implicadas en enfermedades neurodegenerativas, tumores, enfermedades celíacas, etc, por ello son un grupo de enzimas de alto interés en los estudios clínicos. En torno a estos estudios clínicos existen diferentes patentes relacionadas con TGasas: US5,736,132 "Method of promoting adhesion between tissue surfaces" solicitada por Orthogene, Inc. 1998; US 5,726,051 "Transglutaminase gene" solicitada por Oklahoma Medical Research Foundation, 1998.

La función de las TGasas vegetales es menos conocida aunque los primeros datos sobre su existencia se publicaron hace ya unos años (Icekson I. & Apelbaun, A. 1987. Evidences for transglutaminase activity in plant tissue. Plant Physiol. 84. 972-974; Serafini-Fracassini D., Del Duca S., & D'Orazi D. 1988. First evidence for polyamine conjugation mediated by an enzyme activity in plants. Plant Physiol. 87:757). Los estudios en plantas se han centrado sobre todo en aspectos bioquímicos relacionados con la actividad, sustratos sobre los que actúa y tejidos donde abunda, pero no se ha estudiado su papel funcional en los muchos procesos en que se tienen datos parciales sobre su intervención, como son: crecimiento y desarrollo, morfogénesis en general, fotosíntesis y muerte celular (Margosiak, S.A., Drama, A., Bruce-Carver, M.R., Gonzalez, A.P. Louie, D. & Kuehn. 1990. Identification of the large subunit of

3

ribulose1,5-bisphosphate carboxylase/oxigenase as a substrate for transglutaminase in Medicago sativa L. (Alfalfa). Plant Physiol. 92: 88-96; Del Ducca, S., Tidu, V., Bassi, R., Exposito, C., & Serafini-Fracassini, D. 1994. Identification of chlorophyll-a/b proteins as substrates of transglutaminase activity in isolated chloroplasts of *Helianthus tuberosus L.* Planta 193: 283-289; Del Ducca, S., Della Mea, M., Muñoz de Rueda, P. & Serafini-Fracassini, D. 2000 Factors affecting transglutaminase activity catalizing polyamine conjugation to endogenous substrates in the entire chloroplast. Plant Physiol Biochem 38:429-439)

5

10

15

20

25

30

Además, se ha de destacar que la transglutaminasa tiene un valor añadido para finalidades biotecnológicas. Esta nueva faceta suplementaria como metabolito de interés, proviene de su capacidad de crear uniones covalentes entre proteínas distintas. Esta propiedad se ha usado por ejemplo para mantener la textura de alimentos como pescado y carnes, reduciendo la necesidad de utilizar sales (surimi, etc). Para la formulación de gelatinas de distinta densidad etc. Para preparar cocinados con menos grasas (tofú). También es capaz de mantener la consistencia, elasticidad, humedad o viscosidad de un producto en diferentes temperaturas. Se usa asimismo en distintos procesados lácticos: quesos, yogures, helados, etc. Tanto es así, que actualmente se usa como "aditivo" en muchos procesados bioalimentarios, siendo la dosis recomendada en USA para este uso de 65 ppm.

Todas estas posibilidades de la TGasa han generado la formulación de diferentes patentes sobre: métodos de obtención, utilización etc. y han hecho de esta substancia un producto comercial como por ejemplo los que viene distribuyendo la empresa Ajinomoto, con el nombre de: Activa TG®. Las empresas que comercializan el producto son Ajinomoto Co. Inc de Tokio (extendida también en Norteamérica) y Rohm Enzyme de USA (www.skidmoresales.com/whatsnew/newsletter/summer2001.pdf). Sin embargo, en España no se ha localizado ninguna empresa que se dedique a la producción industrial de TGasa.

La primera TGasa que se ha sobreexpresado para fines comerciales como los antes indicados, se realizó en bacterias (*Streptoverticillium sp.*) por la empresa Ajinomoto, quién patentó el procedimiento y las diferentes mejoras posteriores de este protocolo inicial (US5,156,956 "Transglutaminase" (1992)). Asimismo esta misma empresa tiene patentado, otro sistema similar, pero mediante la transformación de

4

Crassostrea gigas (US5,736,356 "Transglutaminase originating from Crassostrea gigas" (1998)) y de Bacillus subtilus (US5,948,662 "Bacillus-derived transglutaminase" (1999)).

En los últimos años, el grupo de investigación autor de la presente invención ha realizado asimismo trabajos previos a nivel bioquímico, sobre la implicación de la TGasa en la morfogénesis de callos de maíz y su relación con la luz (Bernet, E., Claparols, I., Dondini, L., Santos, M.A., Serafini-Fracassini, D. & Torné, J.Mª. 1999. Changes in polyamine content, arginine and ornithine decarboxylases and transglutaminase activities during light/dark phases (of initial differentiation) in maize calluses and their chloroplast. Plant Physiol Biochem. 37(12): 899-909). Además, recientemente se ha publicado la inmunolocalización de este enzima en distintos sistemas celulares de maíz, en relación con el desarrollo de los cloroplastos (Villalobos, E., Torné, J.M., Ollés, C., Claparols, I. & Santos, M.A. 2001. Subcellular localization of a transglutaminase related to grana development in different maize cell types. Protoplasma. 216: 155-163). Sin embargo, no se han encontrado resultados sobre la identificación molecular y actividad funcional con transglutaminasas vegetales, por lo que es de alto interés comercial nuevos conocimientos sobre dichas transglutaminasas.

20 DESCRIPCIÓN DE LA INVENCIÓN

Descripción breve

5

10

15

25

30

La invención se enfrenta con el problema asociado con la escasez de TGasas de origen vegetal necesarias en el campo de la manipulación y transformación de alimentos y en el desarrollo de plantas transgénicas con nuevas capacidades.

La solución proporcionada por esta invención se basa en que los inventores han identificado unas secuencias de ADN con actividad TGasa (TGasa; EC2.3.2.13) a partir del maiz. La actividad TGasa de las proteínas codificadas a partir de dichas secuencias de ADN se ha puesto de manifiesto en experimentos a partir de extractos de estas proteínas.

Por tanto, un objeto de esta invención lo constituyen dichas moléculas de ADN.

Otro objeto adicional de esta invención lo constituye un vector que comprende, al menos, una de dichas moléculas de ADN.

5

Un objeto adicional de esta invención lo constituye el empleo de dichas moléculas de ADN o de dichos vectores, para producir células transformadas capaces de expresar proteínas recombinantes con actividad TGasa, o para introducir dicha secuencia codificante de una proteína con actividad TGasa en células de plantas. Las células de microorganismos y las plantas transgénicas resultantes también constituyen objetos adicionales de esta invención.

Un objeto adicional de la presente invención lo constituye las proteínas con actividad TGasa expresadas a partir de dichas secuencias de ADN y su empleo en la manipulación y transformación de alimentos.

Descripción Detallada de la invención

5

10

15

20

25

30

La invención proporciona una molécula de ADN, en adelante molécula de ADN de la invención, proveniente de plantas y codificante de una proteína con actividad TGasa que comprende una secuencia de nucleótidos seleccionada entre:

- a) la secuencia de nucleótidos identificada como SEQ ID NO 1, SEQ ID NO 3 o un fragmento de la misma; y
- b) una secuencia de nucleótidos análoga a la secuencia definida en a),

En el sentido utilizado en esta descripción, el término "análoga" pretende incluir a cualquier secuencia de ADN que pueda ser aislada o construida en base a la secuencia de nucleótidos mostrada en la SEC. ID. NO 1 ó a la SEQ ID NO 3, por ejemplo, mediante la introducción de sustituciones de nucleótidos conservativas o no conservativas, incluyendo la inserción de uno o más nucleótidos, la adición de uno o más nucleótidos en cualquiera de los extremos de la molécula o la deleción de uno o más nucleótidos en cualquier extremo o en el interior de la secuencia.

En general, una molécula de ADN análoga es sustancialmente homóloga a la secuencia de nucleótidos identificada como la SEQ. ID. NO: 1 ó SEQ ID NO 3. En el sentido utilizado en esta descripción, la expresión "sustancialmente homóloga" significa que las secuencias de nucleótidos en cuestión tienen un grado de identidad, a nivel de nucleótidos, de, al menos, un 60%, preferentemente de, al menos un 85%, o más preferentemente de, al menos, un 95%.

La molécula de ADN de la invención procede de maíz y puede encontrarse en formas parecidas en otras especies de plantas superiores, entre otras: arroz, trigo,

6

Arabidopsis, etc, donde pueden estar de forma natural o en otro caso, también podrían estar como resultado de un proceso de transformación génica en el que el organismo transformado reproduzca dichas moléculas de ADN. La molécula de ADN de la invención puede ser aislada, mediante técnicas convencionales, a partir del ADN de cualquier planta que la contenga, mediante el empleo de sondas o de oligonucleótidos, preparados gracias a la información de la secuencia de nucleótidos de dicha molécula de ADN, proporcionada en esta invención.

5

10

15

20

25

30

La molécula de ADN de la invención incluye los fragmentos de la misma que presentan dicha actividad GTasa.

En una realización particular, la molécula de ADN de la invención es una molécula de ADN de maiz de SEQ ID NO 1 ó de SEQ ID NO 3.

La molécula de ADN de la invención puede ser utilizada, en general, en la generación de un vector de expresión, en adelante vector de expresión de la invención, que permite la expresión de estas proteínas con actividad TGasa en una amplia gama de células huésped. En general, el vector de expresión de la presente invención comprende, al menos, una secuencia de ADN de la invención y, al menos, un promotor que dirige la transcripción del gen de interés, al que está operativamente enlazado, y otras secuencias necesarias o apropiadas para la transcipción del gen de interés y su regulación adecuada en tiempo y lugar, por ejemplo, señales de inicio y terminación, sitios de corte, señal de poliadenilación, origen de replicación, activadores transcripcionales (enhancers), silenciadores transcripcionales (silencers), etc. Ejemplos de vectores de expresión apropiados pueden seleccionarse acuerdo con las condiciones y necesidades de cada caso concreto entre plásmidos, cromosomas artificiales de levadura (YACs), cromosomas artificiales de bacteria (BACs), cromosomas artificiales basados en el bacteriófago P1 (PACs), cósmidos o virus, que pueden contener, además, un origen bacteriano o de levadura de replicación para que pueda ser amplificado en bacterias o levaduras, así como un marcador utilizable para seleccionar las células transfectadas diferente al gen o genes de interés. Por tanto, la invención también se refiere a un vector que comprende una molécula de ADN de la invención. La elección del vector dependerá de la célula hospedadora en la que se va a introducir posteriormente. A modo de ejemplo, el vector donde se introduce dicha secuencia de ADN puede ser un plásmido

7

que, cuando se introduce en una célula hospedadora, se integra en el genoma de dicha célula y se replica junto con el cromosoma de la célula huésped.

El vector de la invención puede ser obtenido por métodos convencionales conocidos por los técnicos en la materia (Kovesdi et al. 1997. Curr Opin Biotech 8:583-589 Transgenic Res. 10:83-103; Coffin et al. 1998. Retroviruses, CSHLP; Robbins et al. 1998. Trends Biotech. 16:35-40; Anderson. 1998. Nature 392:25-30; Schindelhauer. 1999. BioEssays 21:76-83). Un objeto particular de la presente invención lo constituye los plásmidos pGEMT15 y el pGEMT21 que contienen las SEQ ID NO 1 y SEQ ID NO 3, respectivamente.

5

10

15

20

25

30

La invención también proporciona una célula que comprende una molécula de ADN o vector de expresión de la invención. Las células hospedadoras que se pueden transformar con dicho vector de expresión pueden ser, por ejemplo, células bacterianas y levaduras GRAS. Estas células que contienen el vector de expresión de la presente invención pueden ser utilizadas para la sobreproducción de las proteínas con actividad TGasa codificadas por la molécula de ADN de la presente invención. Un objeto particular de la presente invención lo constituye una proteína con actividad TGasa, entre otras, con una secuencia de aminoácidos según se describe en la SEQ ID NO 2 y SEQ ID NO 4.

Estos resultados permiten abrir nuevas posibilidades de transformar un sistema bacteriano GRAS (Generally Recognized as Safe) o una levadura que serviría, a través de la expresión heteróloga, para producir las mencionadas nuevas proteínas TGasas. Como se ha indicado anteriormente una proteína con actividad TGasa puede ser utlizada en múltiples procesos de manipulación, procesamiento y transformación de alimentos gracias a su capacidad de crear uniones covalentes entre proteínas distintas. Esta propiedad se ha usado por ejemplo para mantener la textura de alimentos como pescado y carnes, reduciendo la necesidad de utilizar sales vease patente US5928689 "Method for treating PSE meat with transglutaminase", WO0162888 "Improved composition of marine product"; para la formulación de gelatinas de distinta densidad; para preparar cocinados con menos grasas (tofú) vease US 6342256 "Tofu products excellent in freeze resistance and process for producing the same", US6042851 "Process for producing packed tofu". También es capaz de mantener la consistencia, elasticidad, humedad o viscosidad de un producto en diferentes temperaturas. Se usa asimismo en

10

15

30

distintos procesados lácticos: quesos (US6270814 "Incorporation of whey into process cheese", solicitud US20010053398 "Cheese whey protein having improved texture process for producing the same and use thereof "), yogures, helados, mayonesas, salsas y en la producción de fideos (EP0948905 "Enzyme preparations comprising transglutaminase and process for producing noodles", US6106887 "Process for obtaining a modified cereal flour"), de chocolate (US6063408 "Process for producing chocolate"), de productos derivados a partir de patata (solicitud US20020004085 "Methods for producing potato products"), de azúcar (JP2000354498 "Production of sugar from cereal flour material by transglutaminase treatment"). Los distintos usos, entre otros, descritos en las patentes anteriores para las TGasas son ejemplos de los potenciales usos de las TGasas de la presente invención. Por lo tanto, un objeto particular de la presente invención es la utilización de las proteínas con actividad TGasa de la presente invención, entre otras, las proteínas SEQ ID NO 2 y SEQ ID NO 4, o soluciones que las contengan, en la manipulación, preparación y transformación de alimentos. A continuación se indica como ejemplo de las aplicaciones de las proteínas con actividad TGasa de la presente invención la revisión de Chiya Kuraishi et al, 2001 (Transglutaminase: Its utilization in the food industry Food Reviews International 17 (2): 221-246).

Finalmente, existen otras aplicaciones distintas de las comentadas anteriormente de las proteínas con actividad TGasa de la presente invención y de las que se indican como ilustración de dichas aplicaciones las siguientes patentes, entre otras:

- -"Method for enzymatic treatment of wool" Patente USA. Appl. Nº 161824 (1998) MacDevitt et al, April 2000.
- 25 "Enzymatically protein encapsulating oil particles by complex coacervation" Appl. № 791953 (1997). Soper, Jon C. Et al. March 2000.
 - -" Cross-linked gelatin gels and methods of making them" Appl. Nº 641463 (1996) Bishop, P.D. et al. ZymoGenetics, Inc.(Seattle, WA. USA).
 - -"Process for obtaining a modified cereal flour" Appl. N° 977575 Ajinomoto Co. Inc (Tokyo JP). Yamazaki et al. August 2000.
 - -"Microbial transglutaminase, their production and use" Appl. N° 294565, (1999). NovoNordisk A/S (Bagsvaerd, DK) Bech et al. Feb. 2001.

20

PCT/ES03/00247

Además, la molécula de ADN o vector de expresión de la invención pueden emplearse en procedimientos de transformación genética de plantas con finalidades tanto de investigación fundamental y en el desarrollo de plantas transgénicas con nuevas capacidades provocadas por la manipulación de las funciones atribuidas a dicha TGasa (crecimiento y desarrollo de la planta, morfogénesis, fotosíntesis y muerte celular) mediante la alteración de la expresión de dichas proteínas.

DESCRIPCION DE LAS FIGURAS

Figura 1.- Actividad TGasa (medida en pmol de Put incorporada) de un extracto proteico correspondiente a cada uno de los productos de lisis fágica descrito en el apartado de metodología, correspondientes a los fagos positivos fl y f2 (que contienen un distinto cDNA de TGasa de maíz: fl= SEQ 1D NO 1 y f2= SEQ 1D NO 3) y al fago negativo f3 (que no contiene ningún cDNA de TGasa). Además, se muestra el efecto de distintos factores que influyen sobre la actividad TGasa de los extractos, descritos como propios de dicha actividad enzimática TGasa en otros sistemas: Calcio= el extracto proteico y en ausencia de calcio. GTP= adición de 1 mM de GTP. MDC= adición de 1 mM de MDC.

Figura 2.- Actividad de los dos extractos proteicos correspondientes a los dos fagos independientes que contienen los dos cDNA de la TGasa (f1= SEQ 1D Nº 1; f2= SEQ 1D Nº 2), frente a un fago que no contiene ninguno de estos cDNA (f3), con respecto a la cantidad de proteína del ensayo. La actividad se mide en miliunidades (mU) de TGasa, por incorporación de biotincadaverina, como se describe en el apartado de metodología.

25 a= 40 mg proteina/ml. b= 60 mg prot/ml. c= 80 mg prot./ml.

EJEMPLOS DE LA INVENCION

Ejemplo 1.- Aislamiento y clonaje de dos cDNA que codifican para dos proteínas de la familia de transglutaminasas de maíz mediante inmunocribado.

5 Banco de expresión.

10

15

20

30

Los cDNA de la presente invención, fueron aislados a partir de un banco de expresión de cDNA, en Lambda-ZAP II ®, construida con las dianas EcoRI y XhoI, partiendo de ARN mensajero de plántulas de dos semanas de edad de Zea mays subsp. mays, cultivar homocigoto B73, creciendo bajo condiciones de invernadero (donada por la Dra. Alice Barkan, de la Universidad de Oregon, USA).

Anticuerpo utilizado en el inmunocribado

Se utilizó como antígeno una transglutaminasa vegetal de 58 kDa purificada a partir de extractos de cloroplastos de hojas de *Helianthus tuberosus*. Se obtuvo un anticuerpo policlonal en gallina (Villalobos, E., Torné, J.M., Ollés, C., Claparols, I. & Santos, M.A. 2001. Subcellular localization of a transglutaminase related to grana development in different maize cell types. Protoplasma. 216: 155-163). La especificidad del anticuerpo se determinó por la técnica de "dot blot", utilizando transglutaminasa comercial de hígado de cerdo, así como por western blot con proteína purificada (Dondini, L. 1998. Poliammine legate e transglutaminasi nelle plante. PhD tesis. Universidad de Bolonia. Italia). La titulación se realizó mediante la técnica de western blot. (La metodología completa se detalla en nuestro trabajo: Villalobos, E., Torné, J.M., Ollés, C., Claparols, I. & Santos, M.A. 2001. Subcellular localization of a transglutaminase related to grana development in different maize cell types.

25 Inmunocribado del banco.

Protoplasma. 216: 155-163).

Una vez conocido el título del banco utilizado, se inocula una colonia de la cepa XL-Blue® en medio LB líquido conteniendo MgSO4 (1M) y maltosa al 20%.

Después de cultivar las bacterias hasta alcanzar una DO de 2,0 (600 nm), se realiza la mezcla del cultivo bacteriano con 4,5 x 10 ⁴ pfu de la librería, a la que se añade IPTG 10 mM. Después de la infección e inoculación en placas con el medio LB + 10 mM de MgSO4, se coloca sobre ellas un disco de nitrocelulosa saturado con 10 mM de IPTG. Después de incubar las placas con el filtro durante 4 horas, se enfrían y se lava el filtro con PBS. Finalmente, una vez bloqueada la membrana con leche desnatada o BSA, se

procede al revelado y marcado con anticuerpo. Para detectar las lisis donde se encuentran los fagos positivos que han de interaccionar con el anticuerpo contra la Transglutaminasa de H. tuberosus, se realiza un análisis western blot de dicha membrana y se revela en placa fotográfica, mediante el reactivo ECL.

Excisión in vivo de los fagémidos en pBluescript SK- y selección de colonias positivas. Una vez aislados y purificados los dos fagos, que contienen los cDNAs que codifican respectivamente para una proteína que interacciona con el anticuerpo, se procede a su excisión mediante el sistema "ExAssistTM Interference-Resistant Helper Phage (Stratagene)". La coinfección se realizó en cepas XL1-Blue y la infección en cepas XLOLR®. El plaqueo se realiza en un medio selectivo que determina el vector utilizado (pBluescript). En nuestro caso, el medio de cultivo que selecciona las colonias transformantes es LB-agar adicionado con Ampicilina (50 μg/ml), IPTG 1 mM y el sustrato X-Gal (40 μg/ml), del enzima β-galactosidasa, cuyo gen es interrumpido por el inserto o cDNA.

Aislamiento de plásmidos a pequeña escala (MINIPREP).

5

10

15

20

25

30

Para cada excisión, el aislamiento del ADN plasmídico, que contiene el cDNA de interés, se realiza mediante la técnica de MINIPREP a pequeña escala de la lisis bacteriana utilizando SDS y NaOH, neutralizada con acetato de potasio, y purificada con una mezcla de fenol:cloroformo:isoamil-alcohol (25:24:1) y precipitando con etanol. Posteriormente se resuspende en Tampón TE 1X adicionado con el enzima ARNasa.

Comprobación de la presencia de cDNA en el vector pBluescript.

En cada caso, la comprobación de la presencia del inserto en el pBluescript se realiza mediante digestiones de una muestra del ADN plasmídico, obtenido con las mismas enzimas endonucleasas con las que se construyó el banco (EcoRI y XhoI). La digestión se realiza según los requerimientos de cada enzima de restricción (Tampón y temperatura). Una vez realizada la digestión, el cDNA o inserto ha quedado liberado del vector. Esto se verifica con una electroforesis convencional en gel de agarosa 0.5 % en Tampón TBE 1X o TAE 1X.

Secuenciación (Servicio de Secuenciación del IBMB, CSIC de Barcelona).

Una vez identificadas las muestras de las minipreparaciones que contienen los cDNA de interés, que resultaron ser dos en nuestro caso, se precipitan y purifican mediante el uso

12

de la mezcla de fenol, cloroformo y alcohol isoamílico y cloroformo puro antes del proceso de secuenciación. Las muestras a secuenciar se disovieron en agua.

Determinación de la secuencia codificante completa mediante la técnica de RACE

5

10

15

20

25

30

Las excisiones de los dos fagos en pBluescript SK-, permitieron obtener dos cDNA parciales cuya secuencia codificante completa se definió mediante la técnica de RACE. Para ello, a partir de ARN total extraído de hoja de maíz, se obtiene el ARN mensajero purificado por columna de polydT, el cual se emplea como molde para la síntesis de ADN de cadena sencilla. Para ello, se utiliza un oligonucleótido específico deducido de la secuencia de cDNA conocida (el oligo E1, 3'-5': GATTCTCCCTGATAAG, SEQ ID NO 5) y el enzima transcriptasa inversa. Después de añadir al ADN de cadena sencilla una cola de poliT mediante el enzima "terminal deoxytransferase" (TdT), se procede a obtener la segunda cadena de ADN. Esto se realiza mediante la técnica de PCR utilizando el oligonucleótido 5' RACE Abridged Anchor Primer (GIBCO BRL®), (oligo ANCHOR de poliT cola específico para ADN con GGCCAGGCGTCGACTAGTACGGGIIGGGIIGGGIIG, SEQ ID NO 6) y un segundo oligonucleótido específico del cDNA parcial de secuencia conocida, detallado anteriormente, y que corresponde al oligo E2 3'-5': GTTCTCCAGCATCTCCAG, SEQ ID NO 7).

Con los subsiguientes ciclos de PCR se amplifica dicho ADN. La secuencia de los ciclos fue la siguiente: primero 2 minutos a 94°C y seguidamente 34 ciclos de: 30 segundos a 94°C, 30 segundos a 46°C para el oligo nº1, pero 30 segundos a 60°C para el oligo nº2, seguidos en ambos casos de 7 minutos a 72 °C. Finalmente se deja unas horas a 5°C.

El producto de PCR se clona en un vector adecuado (como es el pGEMT), utilizando el enzima ligasa. A continuación, se transforman cepas de *E. coli* del tipo DH5-alfa y se crecen las bacterias en un medio selectivo. Se extrae el ADN plasmídico mediante la técnica de Miniprep, ya descrita, se purifica y se secuencia el fragmento obtenido. En nuestro caso, para ambas secuencias parciales de cDNA, el fragmento necesario para completar la secuencia codificante resultó ser de solo cuatro nucleótidos. Las secuencias codificantes completas de nucleótidos, incluyendo los cuatro nucleotidos obtenidos con la técnica RACE, se encuentran descritas en la SEQ ID NO 1 y SEQ ID NO 3, respectivamente. Los vectores de expresión conteniendo las secuencias SEQ ID

NO 1 y SEQ ID NO 3 y utilizados para la transformación de las células huésped son el plásmido pGEMT15 y el pGEMT21, respectivamente.

5

10

15

20

25

30

Las secuencias de aminoácidos obtenidas a partir de las secuencias de nucleótidos presentan homologías con los dominios del centro activo tipo transglutaminasa de otros sistemas descritos, no vegetales, en la zona correspondiente a los aminoácidos: 431-474 para la proteína de SEQ ID NO 2 (60,97 kDa) y 485-528 para la proteína de SEQ ID NO 4 (67 kDa). En estas zonas se encuentra en ambos casos una cisteína (Cys) descrita como aminoácido esencial para la actividad del enzima (Cys439 en SEQ ID NO 2 y Cys493 en SEQ ID NO 4). Base de Datos consultada: www.ncbi.nlm.nih/). Además, como se indican en las secuencias SEQ ID NO 1 y SEQ ID NO 3 se observan unas regiones de 27 nucleótidos repetidas en tandem en ambas secuencias, SEQ ID NO 1 y SEQ ID NO 3, aunque en número distinto, de 15 y 21 repeticiones, respectivamente y con pequeñas variaciones de nucleotidos entre algunas de ellas. Hay que destacar que estas mencionadas regiones repetidas no se han descrito anteriormente en las TGasas conocidas, por lo que son características de la molécula de ADN de la presente invención.

Ejemplo 2.- Comprobación de la actividad transglutaminasa de las proteínas expresadas por dichos cDNA.

Determinación de la actividad TGasa de la proteína expresada por el cDNA.

Con cada uno de los dos clones de los fagos conteniendo los cDNA de interés, se infecta un cultivo de E. coli (cepa XL-Blue), en medio de cultivo LB líquido, al que se añade IPTG 10 mM. Después de la lisis a 37°C, se cuantifica por el método de Lowry la concentración de proteína total del extracto (Lowry OH, Rosebrough NJ, Farr, AL& Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J.Biol. Chem. 193:265-275) y con él se realizan los ensayos descritos a continuación, para determinar su actividad transglutaminasa frente a un extracto de lisis con un fago que no contiene el cDNA de interés.

1.- Método de detección de actividad TGasa mediante determinación de las proteínas marcadas con putrescina tritiada.

Se prepara un extracto enzimático con cada uno de los extractos de lisis obtenidos con ambos fagos (f1 que contiene la TGasa de SEQ ID NO 2 y f2 que contiene la TGasa de SQ ID NO 4), en una concentración de proteínas totales de 600

14

μg, y se realiza un ensayo enzimático a 30°C durante 30 minutos. La mezcla enzimática contiene, además del extracto proteico, 0.6 mM de putrescina, 185 kBq de putrescina tritiada (0.85 TBq/nmol), 20 mM de tampón Tris.ClH pH 8 y 3 mM de CaCl₂. La reacción se bloquea con ácido tricloracético al 10% conteniendo 2 mM de putrescina. Las muestras se precipitan repetidamente y se mide la radioactividad del pellet (Bernet, E., Claparols, I., Dondini, L., Santos, M.A., Serafini-Fracassini, D. & Torné, J.M^a. 1999). Changes in polyamine content, arginine and ornithine decarboxylases and transglutaminase activities during light/dark phases (of initial differentiation) in maize calluses and their chloroplast. Plant Physiol Biochem. 37(12): 899-909). La actividad TGasa se mide en pmols de putrescina por miligramo de proteína y por hora y fue mayor en los extratos proteicos obtenidos de los fagos f1 y f2 con respecto al extracto a partir de un fago que no contiene ninguno de los cDNA de estas TGasa.

5

10

15

20

25

30

2. Método de detección de la actividad TGasa mediante ensayo tipo Elisa, utilizando CBZ-Gln-Gly como primer sustrato y biotincadaverina como segundo.

Este ensayo consiste en un kit suministrado por la empresa Covalab®, que determina, a partir de pequeñas cantidades de proteína total, la actividad TGasa de la muestra, frente a la de una TGasa comercial de hígado de cerdo. El método detecta los glutamil-derivados formados a partir del péptido y de la poliamina sustrato, por actividad TGasa de la muestra, mediante un ensayo colorimétrico. La actividad se mide en Unidades de TGasa (U), considerando que 0.6 mU de TGasa comercial corresponde a un valor de absorbancia a 450 nm de $1 \pm 0.05 \text{ OD}$.

Los dos extractos proteicos correspondientes a los dos productos de lisis, muestran actividad tipo TGasa en los dos métodos de detección de dicha actividad utilizados y descritos anteriormente (fl y f2) en comparación con el extracto proveniente de un fago que no contiene ninguno de estos cDNA (f3). Los datos se muestran en las Figuras 1 y 2.

Además, en la Figura 1 se muestra el efecto de distintos factores sobre la actividad TGasa de los extractos, descritos como propios de dicha actividad enzimática TGasa en otros sistemas. Así, la actividad de la proteína expresada disminuye significativamente: a] en ausencia de calcio, b] en presencia de 1 mM de GTP, c] en presencia de 1 mM denodansilcadaverina (MDC) y d] en el extracto de lisis con un fago que no posee el cDNA de interés (f3).

15

Un par cultivos de la bacteria derivada de Escherichia coli, tipo dH5a, transformadas con un plásmido (pBlueScript) que contiene un cDNA de maíz y portadoras de un plásmido que contiene el gen que codifica la proteína de secuencia SEQ ID NO 2 y SEQ ID NO 4 de maíz respectivamente, identificados como 15TGZM02 y 21TGZM02, han sido depositados en la Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Edificio de Investigación, Campus de Burjasot, 46100 Burjasot, Valencia, España, el ¿7? de Mayo de 2002, correspondiéndoles el número de depósito CECT: 5705 para 15TGZM02 y 5706 para 21TGZM02, respectivamente.

5

REIVINDICACIONES

15

30

1.- Secuencia de nucleótidos codificante de una proteína con actividad TGasa caracterizada porque proviene del maiz.

- 2.- Secuencia de nucleótidos según la reivindicación 1 caracterizada por la SEQ ID NO
 1.
 - Secuencia de nucleótidos según la reivindicación 1 caracterizada por la SEQ ID NO
- 4.- Secuencia de nucleótidos caracterizada porque presenta, con respecto a una secuencia de nucleótidos según una cualquiera de las reivindicaciones 1 a la 3, un grado de identidad, a nivel de nucleótidos, de, al menos, un 60%, preferentemente de, al menos un 85%, o más preferentemente de, al menos, un 95%.y porque codifica una proteína con actividad Tgasa.
 - 5.- Vector de expresión caracterizado porque contiene una secuencia de nucleótidos según una cualquiera de las reivinidacciones 1 a la 4.
 - 6.- Vector de expresión según la reivinidacción 5 caracterizado porque pertenece, entre otros, al siguiente grupo: plásmido pGEMT15 y el pGEMT21.
 - 7.- Proteína con actividad TGasa caracterizada porqué está codificada por una secuencia de nucleótidos según una cualquiera de las reivindicaciones 1 a la 4.
- 20 8.- Proteína con actividad TGasa según la reivindicación 7 caracterizada porque pertenece, entre otras, al siguiente grupo: SEQ ID NO 2 y SEQ ID NO 4.
 - 9.- Célula transformada caracterizada porque contiene un vector de expresión según una cualquiera de las reivinidicaciones 5 y 6 y porque permite la expresión de proteínas con actividad TGasa, entre otras, las cepas *E. coli* CECT 5705 y 5706.
- 25 10.- Uso de la célula transformada según la reivindicación 9 en procedimientos para la producción de proteína recombinante con actividad TGasa según una cualquiera de las reivindicaciones 7 y 8.
 - 11.- Uso de la proteína con actividad TGasa según una cualquiera de las reivindicaciones 7 y 8 en la manipulación, procesamiento y transformación de alimentos, entre otros procesos, para mantener o mejorar la textura, consistencia, elasticidad, humedad o viscosidad de alimentos como pescado, queso, yogures, helados, mayonesas y carnes, para la formulación de gelatinas de distinta densidad y para preparar cocinados con menos grasas.

17

12.- Uso de los vectores de expresión según las reivindicaciones 5 y 6 en el desarrollo de plantas transgénicas con nuevas capacidades provocadas por la manipulación de las funciones atribuidas a dicha TGasa, entre otras, crecimiento y desarrollo de la planta, morfogénesis, fotosíntesis y muerte celular.

1/1

Figura 1

Figura 2

10

1

LISTA DE SECUENCIAS

<110> CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS Torné Cubiró, José María Santos Lozano, María Asunción Talavera Baro, David Villalobos Amador, Enrique Rigau LLoveras, Juan

- 10 <120> SECUENCIA DE NUCLEOTIDOS DE MAIZ CODIFICANTE DE UNA PROTEINA CON ACTIVIDAD TRANSGLUTAMINASA, Y SU USO
 - <130> transglutaminasa de maiz
- 15 <160> 4

- <170> PatentIn version 3.1
- <210> 1
- 20 <211> 1748
 - <212> DNA
 - <213> Zea mays L
 - <220>
- 25 <221> repeat_region
 - <222> (823)..(1228)
 - <223> rpt unit (823).. (849) number rpt: 15 repeats
 - <220>
- 30 <221> 3'UTR
 - <222> (1606)..(1729)
 - <223>
 - <220>
- 35 <221> polyA_site
 - <222> (1730)..(1748)
 - <223>
 - <220>
- 40 <221> polyA_site

```
(1730) . . (1748)
    <222>
    <223>
     <220>
5
           CDS
    <221>
            (1)..(1605)
     <222>
     <223>
     <300>
10
     <308> AJ421525
     <309> 2001-12-06 confidencial hasta el 2002-12-06
     <400> 1
     atg gct cat cgt gga cat cta gat gga ctg act ggc caa gct cct gct
                                                                           4 B
     Met Ala His Arg Gly His Leu Asp Gly Leu Thr Gly Gln Ala Pro Ala
15
                                          10
     ctt atg cgc cat ggt tcc ttc gct gca ggc agc ctc tct agc cgc tca
                                                                           96
     Leu Met Arg His Gly Ser Phe Ala Ala Gly Ser Leu Ser Ser Arg Ser
                                                           30
                 20
     cct ttg cag tct tca tcc aca ctg gag atg ctg gag aac aag ctt gcc
                                                                          144
20
     Pro Leu Gln Ser Ser Ser Thr Leu Glu Met Leu Glu Asn Lys Leu Ala
                                                       45
              35
     atg caa act aca gaa gtg gaa aag ctt atc acg gag aat cag cgg tta
                                                                          192
     Met Gln Thr Thr Glu Val Glu Lys Leu Ile Thr Glu Asn Gln Arg Leu
25
                              55
     gca tca agc cat gtg gtc ttg agg cag gac att gtt gat acg gag aaa
                                                                          240
     Ala Ser Ser His Val Val Leu Arg Gln Asp Ile Val Asp Thr Glu Lys
                          70
     65
     gag atg caa atg atc cgc acc cac cta ggt gaa gtt cag aca gag act
                                                                           288
     Glu Met Gln Met Ile Arg Thr His Leu Gly Glu Val Gln Thr Glu Thr
30
                                                               95
                                           90
                      85
      gat ttg cag att aga gat ttg ttg gag aga atc aga tta atg gag gta
      Asp Leu Gln Ile Arg Asp Leu Leu Glu Arg Ile Arg Leu Met Glu Val
                                                           110
                                       105
                  100
      gat ata cat agt ggt aat gta gtg aac aag gag ctt cac caa atg cat
                                                                           384
 35
      Asp Ile His Ser Gly Asn Val Val Asn Lys Glu Leu His Gln Met His
                                   120
              115
      atg gag gca aag aga ctt att act gaa agg cag atg cta acc ctt gag
                                                                           432
      Met Glu Ala Lys Arg Leu Ile Thr Glu Arg Gln Met Leu Thr Leu Glu
                               135
                                                   140
 40
          130
```

																	400
				gtg													480
	Ile	Glu	Asp	Val	Thr	Lys	Glu	Leu	Gln	Lys	Leu	Ser	Ala	Ser	Gly		
	145					150					155					160	
				ctt													528
5	Asn	Lys	Ser	Leu	Pro	Glu	Leu	Leu	Ser	Glu	Leu	Asp	Arg	Leu	Arg	Lys	
					165					170					175		
				aat													576
	Glu	His	His	Asn	Leu	Arg	Ser	Gln	Phe	Glu	Phe	Glu	Lys	Asn	Thr	Asn	
				180					185					190			
10				gtt													624
	Val	Lys	Gln	Val	Glu	Gln	Met	Arg	Thr	Met	Glu	Met	Asn	Leu	Ile	Thr	
			195					200					205				
	atg	acc	aaa	caa	gct	gag	aag	tta	cgt	gtt	gat	gtg	gca	aat	gct	gaa	672
	Met	Thr	Lys	Gln	Ala	Glu	Lys	Leu	Arg	Val	Asp	Val	Ala	Asn	Ala	Glu	
15		210					215					220					
	aga	cgg	gca	caa	gca	gct	gcg	gct	caa	gca	gca	gca	cat	gca	gct	ggt	720
																Gly	
	225					230					235					240	
	gca	cag	gtg	aca	gct	tcg	cag	cct	gga	cag	ctc	aag	cta	cca	cgg	ttt	768
20																Phe	
					245					250					.255		
	caq	cag	cag	g cag	cca	cag	act	cat	atg	cag	gtg	cat	ata	cca	gct	acc	816
																Thr	
				260					265					270			
25	ccc	ctc	cat	ato	ago	agg	gag	ccc	agg	ctg	ggg	cat	ato	ago	agg	g gtg	864
																y Val	
			27!					280					285				
	cto	aqq	ı cto	999	tat	ato	ago	agg	g gag	g ccc	agg	cto	g ggg	cat	t at	e agc	912
																e Ser	
30		290		-	_		295					30					
	ago			c aq	a cto	g 999	g cat	at	c ago	agg	g ggg	g gc	c ago	at	g gg	g cat	960
																y His	
	30				•	31					31!					320	
			r ac	a aa	a cto			a aa	g cat	t ato	c age	c ag	g gag	g cc	c ag	g ctg	1008
35																g Leu	
55				J	32		_		-	33					33		
	aa	വ വര	t at	c ao			g cc	c ag	g ct	g gg:	g ca	t at	c ago	c ag	g gt	g ctc	1056
																l Leu	
				34		_			34					35			
40	ао	g ct	g ga	g ca	t at	c ag	c ag	g ga	g cc	c ag	g ct	g gg	g ca	t at	c ag	c agg	1104

4

	Arg	Leu	Gly	His	Ile	Ser	Arg	Glu	Pro	Arg	Leu	Gly		Ile	Ser	Arg	
			355					360					365				
				ctg													1152
	Gly	Pro	Ser	Leu	Gly	His	Ile	Ser	Arg	Gly	Pro	Arg	Leu	Gly	His	Ile	
5		370					375					380					
				ccc													1200
	Ser	Arg	Glu	Pro	Arg	Met	Gly	His	Ile	Ser	Arg	Glu	Pro	Arg	Met	Gly	
	385					390					395					400	
				agg													1248
10	His	Ile	Ser	Arg	Val	Leu	Arg	Leu	Glu	His	Thr	Thr	Met	Leu	Met	Met	
					405					410					415		
				ctt													1296
	Leu	Ala	Arg	Leu	Met	His	Met	Gln	Val	Thr	Leu	Ala	Ile	Gln	Leu	Gln	
				420					425					430			
15				aaa													1344
	Ala	Thr	Arg	Lys	Val	Gln	Cys	Pro	Thr	Ile	Pro	Met	Leu	His	Leu	Arg	
			435					440					445				
																atg	1392
	Ser	Gln	Gln	Ala	Ala	Val	Gln	Leu	. Arg	Thr	Pro	Gln	Glu	Ala	Ser	Met	
20		450					455					460	ı				
	999	cag	ttg	gta	gtg	ctg	gat	ato	cta	ctg	ggo	aag	ttc	ago	cga	gca	1440
	Gly	Gln	Leu	Val	Val	Leu	Asp	Ile	Leu	Leu	Gly	г	Phe	Ser	Arg	Ala	
	465					470					475	i				480	
	gtg	gca	ctg	caa	atg	cag	cgc	aag	cac	cto	cto	cto	cac	cac	cac	: cgg	1488
25	Val	Ala	Lev	Gln	Met	Gln	Arg	Lys	His	Leu	Let	ı Lev	ı His	His	His	arg	
					485	;				490)				495	5	
	cag	cac	cat	ato	ccc	cca	gca	ı cat	atg	acc	aaa	a cca	a gag	gag	g ccc	aga	1536
	Glr	His	His	: Ile	Pro	Pro	Ala	. His	Met	Thr	Lys	Pro	Gli	ı Glı	Pro	Arg	
				500)				505	5				510)		
30	gat	aaa	ato	tgg	gat	gta	aac	cag	gate	g gat	gtt	tg:	c cat	gca	a cat	ttg	1584
	Asp	ь Гра	: Ile	Trp	Asp	val	Ası	ı Glı	n Met	. Ası	va.	l Cy	s His	a Ala	a His	s Leu	
			519	5				520)				52	5			
	ttg	g ago	aga	a caa	ata	a tgg	g tga	a aat	tctgg	ggat	gtaa	aaac	cag a	atgg	ctgt	ct	1635
	Let	ı Se	r Arg	g Glr	ıle	e Tr	þ										
35		53	0														
	gt	gcct	ccat	ccca	attga	act a	aggg	cgtai	tt ti	tcac	caat	a tt	gtgc	ctcc	agt	gcaattt	1699
				atat													1748
	-2	10-	2														

<210> 2

40 <211> 534

<212> PRT <213> Zea mays L

	<400															_
5	Met	Ala	His	Arg	Gly	His	Leu	qaA	Gly	Leu	Thr	Gly	Gln	Ala		Ala
	1				5					10					15	
	Leu	Met	Arg	His	Gly	Ser	Phe	Ala	Ala	Gly	Ser	Leu	Ser	Ser	Arg	Ser
				20					25					30		
	Pro	Leu	Gln	Ser	Ser	Ser	Thr	Leu	Glu	Met	Leu	Glu	Asn	ГÀЗ	Leu	Ala
10			35					40					45			
	Met	Gln	Thr	Thr	Glu	Val	Glu	Lys	Leu	Ile	Thr	Glu	Asn	Gln	Arg	Leu
		50					55					60				
	Ala	Ser	Ser	His	Val	Val	Leu	Arg	Gln	Asp	Ile	Val	Asp	Thr	Glu	Lys
	65					70					75					80
15	Glu	Met	Gln	Met	Ile	Arg	Thr	His	Leu	Gly	Glu	Val	Gln	Thr	Glu	Thr
					85					90					95	
	Asp	Leu	Gln	Ile	Arg	Asp	Leu	Leu	Glu	Arg	Ile	Arg	Leu	Met	Glu	Val
	_			100					105					110		
	Asp	Ile	His	Ser	Gly	Asn	Val	Val	Asn	Lys	Glu	Leu	His	Gln	Met	His
20	_		115					120					125			
	Met	Glu	Ala	Lys	Arg	Leu	Ile	Thr	Glu	Arg	Gln	Met	Leu	Thr	Leu	Glu
		130					135					140				
	Ile	Glu	. Asp	Val	Thr	Lys	Glu	Leu	Gln	Lys	Leu	Ser	Ala	Ser	Gly	Asp
	145					150					155					160
25	Asn	Lys	Ser	Leu	Pro	Glu	Leu	Leu	Ser	Glu	ı Lev	ı Asp	Arg	Leu	Arg	l FÀa
		•			165					170					175	
	Glu	His	His	. Asn	Lev	Arg	, Ser	Gln	Phe	e Glu	ı Phe	e Glu	ι Ьув	Asn	Thr	Asn
				180					185					190		
	Val	Lvs	. Glr	ı Val		ı Glr	n Met	Arg	, Thr	. Met	: Glu	ı Met	: Asr	ı Lev	ıle	: Thr
30		_	195					200					205			
	Met	: Thi		s Glr	ı Ala	a Glı	ı Lys	. Lev	ı Arç	y Vai	l Asj	y Val	L Ala	a Asr	a Ala	a Glu
		210					215					220				
	Arc			a Glr	ı Ala	a Ala	a Ala	a Ala	a Gli	n Ala	a Ala	a Ala	a His	s Ala	a Ala	a Gly
	225		,			230					23					240
35			ı Vai	l Thi	. Ala	a Se:	r Glı	ı Pro	o Gly	y Gl	n Le	u Ly:	s Lei	ı Pro	Ar	g Phe
33	2200				24!					25					25	
	Gla	ı Glı	a Gli	n Glı			n Thi	r His	s Met	t Gl:	n Va	l Hi	s Ile	e Pro	Ala	a Thi
				260					26					270		
	Pro	o Le	u Hi:	s Ile		r Ar	g Gl	u Pro	o Arg	g Le	u Gl	y Hi	s Il	e Se:	c Ar	g Val
40			27			•	-	28					28			

	Leu	Arg	Leu	Gly	Tyr	Ile	Ser	Arg	Glu	Pro	Arg	Leu	Gly	His	Ile	Ser	
		290					295					300					
	Arg	Glu	Pro	Arg	Leu	Gly	His	Ile	Ser	Arg	Gly	Ala	Arg	Met	Gly	His	
	305					310					315					320	
5	Ile	Ser	Arg	Gly	Leu	Arg	Leu	Gly	His	Ile	Ser	Arg	Glu	Pro	Arg	Leu	
					325					330					335		
	Gly	His	Ile	Ser	Arg	Glu	Pro	Arg	Leu	Gly	His	Ile	Ser	Arg	Val	Leu	
				340					345					350			
	Arg	Leu	Gly	His	Ile	Ser	Arg	Glu	Pro	Arg	Leu	Gly	His	Ile	Ser	Arg	
ľO			355					360					365				
	Gly	Pro	Ser	Leu	Gly	His	Ile	Ser	Arg	Gly	Pro	Arg	Leu	Gly	His	Ile	
		370					375					380					
	Ser	Arg	Glu	Pro	Arg	Met	Gly	His	Ile	Ser	Arg	Glu	Pro	Arg	Met	Gly	
	385					390					395					400	
15	His	Ile	ser	Arg	Val	Leu	Arg	Leu	Glu	His	Thr	Thr	Met	Leu	Met	Met	
					405					410					415		
	Leu	Ala	Arg	Leu	Met	His	Met	Gln	٧al	Thr	Leu	Ala	Ile	Gln	Leu	Gln	
				420					425					430			
	Ala	Thr	Arg	Lys	Val	Gln	Сув	Pro	Thr	Ile	Pro	Met	Leu	His	Leu	Arg	
20			435					440					445				
	Ser	Gln	Gln	Ala	Ala	Val	Gln	Leu	Arg	Thr	Pro	Gln	Glu	Ala	Ser	Met	
		450					455					460					
	Gly	Gln	Leu	Val	Val	Leu	Asp	Ile	Leu	Leu	Gly	Lys	Phe	Ser	Arg	Ala	
	465					470					475					480	
25	Val	Ala	Leu	Gln	Met	Gln	Arg	_L Lys	His	Leu	Leu	Leu	. His	His		Arg	
					485					490					495		
	Gln	His	His	Ile	Pro	Pro	Ala	His			. PÀs	Pro	Glu			Arg	
				500					505			_	•	510			
	Asp	. PAs			Asp	Val	Asn			Asp	Val	. Cys			HIS	Leu	
30			515			_		520)				525	•			
	Lev		_	g Gln	Ile	Trp	•										
		530)														
			_														
25	<21		3														
35	<21 <21		1910	,													
			DNA	m 0.7.r.c	т.								`				
	~2.	L3>	ചടമ	mays	, ц												
	<22	20>															
40		21>	repe	eat_r	egio	on											

```
<222>
          (823)..(1389)
     <223> rpt unit (823).. (849) number rpt: 21 repeats
     <220>
5
    <221> CDS
           (1)..(1764)
     <222>
     <223>
     <220>
10
    <221> polyA_site
     <222>
           (1892)..(1910)
     <223>
     <220>
15
    <221> 3'UTR
     <222> (1765)..(1891)
     <223>
     <400> 3
20
     atg gct cat cgt gga cat cta gat gga ctg act ggc caa gct cct gct
                                                                          48
     Met Ala His Arg Gly His Leu Asp Gly Leu Thr Gly Gln Ala Pro Ala
     1
                                         10
                                                              15
     ctt atg cgc cat ggt tcc ttc gct gca ggc agc ctc tct agc cgc tca
                                                                          96
     Leu Met Arg His Gly Ser Phe Ala Ala Gly Ser Leu Ser Ser Arg Ser
25
                 20
     cct ttg cag tct tca tcc aca ctg gag atg ctg gag aac aag ctt gcc
                                                                         144
     Pro Leu Gln Ser Ser Thr Leu Glu Met Leu Glu Asn Lys Leu Ala
     atg caa act aca gaa gtg gaa aag ctt atc acg gag aat cag cgg tta
                                                                         192
30
     Met Gln Thr Thr Glu Val Glu Lys Leu Ile Thr Glu Asn Gln Arg Leu
         50
                             55
                                                  60
     gca tca agc cat gtg gtc ttg agg cag gac att gtt gat acg gag aaa
                                                                         240
     Ala Ser Ser His Val Val Leu Arg Gln Asp Ile Val Asp Thr Glu Lys
                         70
     65
                                              75
                                                                  80
35
     gag atg caa atg atc cgc acc cac cta ggt gaa gtt cag aca gag act
                                                                         288
     Glu Met Gln Met Ile Arg Thr His Leu Gly Glu Val Gln Thr Glu Thr
                     85
                                                              95
     gat ttg cag att aga gat ttg ttg gag aga atc aga tta atg gag gta
                                                                         336
     Asp Leu Gln Ile Arg Asp Leu Leu Glu Arg Ile Arg Leu Met Glu Val
40
                                      105
                                                          110
                 100
```

	gat	ata	cat	agt	ggt	aat	gta	gtg	aac	aag	gag	ctt	cac	caa	atg	cat	384
	Asp	Ile	His	Ser	Gly	Asn	Val	Val	Asn	Lys	Glu	Leu	His	Gln	Met	His	
			115					120					125				
	atg	gag	gca	aag	aga	ctt	att	act	gaa	agg	cag	atg	cta	acc	ctt	gag	432
5	Met	Glu	Ala	Lys	Arg	Leu	Ile	Thr	Glu	Arg	Gln	Met	Leu	Thr	Leu	Glu	
		130					135					140					
	ata	gag	gat	gtg	act	aaa	gaa	tta	cag	aaa	ctc	tct	gcc	tct	aaa	gac	480
	Ile	Glu	Asp	Val	Thr	Lys	Glu	Leu	Gln	Lys	Leu	Ser	Ala	Ser	Gly	Asp	
	145					150					155					160	
10	aat	aaa	agc	ctt	cct	gaa	ttg	ctt	tct	gag	cta	gat	agg	cta	cgg	aaa	528
	Asn	Lys	Ser	Leu	Pro	Glu	Leu	Leu	Ser	Glu	Leu	Asp	Arg	Leu	Arg	Lys	
					165					170					175		
	gag	cat	cat	aat	tta	cga	tct	cag	ttt	gaa	ttt	gag	aaa	aat	aca	aac	576
	Glu	His	His	Asn	Leu	Arg	Ser	Gln	Phe	Glu	Phe	Glu	ГЛВ	naA	Thr	Asn	
15				180					185					190			
	gtc	aag	caa	gtt	gag	cag	atg	cgg	aca	atg	gaa	atg	aac	ttg	ata	acc	624
	Val	Lys	Gln	Val	Glu	Gln	Met	Arg	Thr	Met	Glu	Met	Asn	Leu	Ile	Thr	
			195					200					205				
	_				_	gag	_		_	_	-		_		_	_	672
20	Met	Thr	Lys	Gln	Ala	Glu	Lys	Leu	Arg	Val	Asp	Val	Ala	Asn	Ala	Glu	
		210					215					220					
	aga	cgg	gca	caa	gca	gct	aca	gct	caa	gca	gca	gca	cat	gca	gct	ggt	720
	Arg	Arg	Ala	Gln	Ala	Ala	Ala	Ala	Gln	Ala	Ala	Ala	His	Ala	Ala	Gly	
	225					230					235					240	
25	_	_			_	tcg	_			_		_					768
	Ala	Gln	Val	Thr	Ala	Ser	Gln	Pro	Gly	Gln	Leu	Lys	Leu	Pro	Arg	Phe	
					245					250					255		
	_	_	_	_		cag			_	_					_		816
•	Gln	Gln	Gln		Pro	Gln	Thr	His		Gln	Val	His	Ile		Ala	Thr	
30				260					265					270			
		_				agg	_			_							864
	Pro	Leu		Ile	Ser	Arg	Glu		Arg	Leu	Gly	His		Ser	Arg	Val	
			275					280					285				
2.5						atc											912
35	Leu	_	Leu	GLY	Tyr	Ile		Arg	Glu	Pro	Arg		СТА	His	Ile	Ser	
		290			_ •		295					300					
						999			_			_		_			960
	_	GIu	Pro	arg	ьeu	Gly	Hls	TTE	ser	Arg	_	АТа	arg	Met	GТЪ		
40	305				_4	310					315					320	
40	atc	agc	agg	ggg	CTC	agg	ctq	qqq	cat	atc	agc	agg	gag	CCC	agg	cta	1008

	Ile	Ser	Arg	Gly	Leu	Arg	Leu	Gly	His	Ile	Ser	Arg	Glu	Pro	Arg	Leu	
					325					330					335		
				agc													1056
	Gly	His	Ile	Ser	Arg	Glu	Pro	Arg	Leu	Gly	His	Ile	Ser	Arg	Val	Leu	
5				340					345					350			
		_		cat													1104
	Arg	Leu	_	His	Ile	Ser	Arg		Leu	Arg	Leu	Gly		Ile	Ser	Arg	
			355					360					365				1150
10	_			ctg													1152
10	Glu		Arg	Leu	Gly	His		ser	Arg	GIu	Pro		ьeu	GIĀ	HIS	TTE	
		370					375		-4-			380	ata	200	ata	aaa	1200
				gcc													1200
		Arg	GTÅ	Ala	Arg	390	GTĀ	нта	TIE	SET	395	GLY	пеп	Arg	пец	400	
15	385	a t a	200	agg	~ >~		200	ata	aaa	cat		aac	add	gag	ccc		1248
1,5			_	Arg	_												
	nis	110	261	nrg	405	110	****9	200	017	410			3		415		
	cta	aaa	cat	atc		agg	aaa	ccc	aqt		aaa	cat	atc	agc	agg	ggg	1296
•	_			Ile	_												
20				420			_		425		_			430			
	ccc	agg	ctg	9 99	cat	atc	agc	agg	gag	ccc	agg	atg	999	cat	atc	agc	1344
				Gly													
			435					440					445				
	agg	gag	ccc	agg	atg	999	cat	atc	agc	agg	gtg	ctc	agg	ctg	gag	cat	1392
25	Arg	Glu	Pro	Arg	Met	Gly	His	Ile	Ser	Arg	Val	Leu	Arg	Leu	Glu	His	
		450					455					460					
	aca	act	atg	ctt	atg	atg	ctg	gca	cgg	ctt	atg	cat	atg	cag	gtt	act	1440
	Thr	Thr	Met	Leu	Met	Met	Leu	Ala	Arg	Leu	Met	His	Met	Gln	Val	Thr	
	465					470					475					480	
30	_	_		cag													1488
	Leu	Ala	Ile	Gln	Leu	Gln	Ala	Thr	Arg	Lys	Val	Gln	Сув	Pro	Thr	Ile	
					485					490					495		
		_		cac													1536
	Pro	Met	Leu	His	Leu	Arg	Ser	Gln		Ala	Ala	Val	Gln		Arg	Thr	
35				500					505	_				510		_+	1504
	_	_		gcc													1584
	Pro	Gln		Ala	ser	met	GIY			vai	val	ьeu		тте	ьeu	ьец	
			515	agc	~~~	~ ~~	~+~	520			2+~		525	220	Cac	ctc	1632
40		_		Ser													1032
+0	дТΆ	пλg	FIIC	Set	ary	ATG	val	ATG	שבע	للتدى	145 L		9	~y &			

	53	0				535					540					
	ctc ct	c cac	cac	cac	cgg	cag	cac	cat	atc	ccc	cca	gca	cat	atg	acc	1680
	Leu Le	u His	His	His	Arg	Gln	His	His	Ile	Pro	Pro	Ala	His	Met	Thr	
	545				550					555					560	
5	aaa cc	a gag	gag	ccc	aga	gat	aaa	atc	tgg	gat	gta	aac	cag	atg	gat	1728
	Lys Pr	o Glu	Glu	Pro	Arg	Asp	Lys	Ile	\mathtt{Trp}	Asp	Val	Asn	Gln	Met	Asp	
				565					570					575		
	gtt tg	c cat	gca	cat	ttg	ttg	agc	aga	caa	ata	tgg	tgaa	aatct	gg		1774
	Val Cy	s His	Ala	His	Leu	Leu	Ser	Arg	Gln	Ile	Trp					
10			580					585								,
	gatgta	aaac (cagat	tggct	g to	ctgt	gccto	cat	ccca	attg	acta	aggg	gt a	atttt	cacca	1834
	atattg	tgcc	tcca	gtgca	aa ti	tctt	tctgt	gtt	atat	tatc	acca	accat	tt q	gttgg	ggcaaa	1894
	aaaaaa	aaaa a	aaaa	aa												1910
15	<210>	4														
	<211>	588														
	<212>	PRT														
	<213>	Zea 1	mays	L												
20																-
20	<400>	4 •	_			_	_		_		~-3			_		
	Met Al	a His	Arg		His	Leu	Asp	GIA		Thr	GIY	GIn	Ala		Ala	
	1		***	5		D1	n1 -	77-	10	0	T	0	~	15	G	
	Leu Me	t Arg		GIÀ	ser	рпе	ALA		GIY	ser	ьeu	ser		Arg	ser	
25	Dwo To	(1)	20	Co	Com	mb	T	25	Mon	T	~ 1	7 ~~	30	T	אות	
23	Pro Le	u GIII 35	ser	ser	ser	THE	11eu 40	GIU	Mec	ьец	GIU		пÀв	Бец	Ala	
	Mot C3		The	Cl.	₹7 ~]	C1		Lon	T1.	mb	<i>C</i> 1	45	~1 n	7 ~~	T 011	
	Met Gl 50		1111	Gru	vaı	55	цуь	цец	TIE	7.17.	60	ASII	GIII	Arg	ьеu	
	Ala Se		His	Val	Val		Δra	Gln	Δen	Tle		Δαη	Thr	Glu	Tare	
30	65	1 501	1110	Val	70	Dea	AL 9	0111	App	75	Vai	veb	1111	GIU	80	
50	Glu Me	t Gln	Met	Tle		Thr	Hie	T.A.11	Glv		\7a1	Gln	ሞክ r	Glu		
	014	0 0111		85	9		1110	пси	90	Giu	VUI	OIII	1111	95	1111	
	Asp Le	u Gln	Tle		Δgn	Len	T.e.ii	Glu		Tle	Δτα	T.e.ii	Met		Val	
	nop 20		100	9	пор	Lou	Lea	105	mg	110		LCu	110	014	vai	
35	Asp Il	e His		Glv	Asn	Val	Val		Live	Glu	Len	His		Met	His	
		115		1			120		-,5	O1u	204	125				
	Met Gl			Ara	Leu	Ile		Glu	Ara	Gln	Met		Thr	Leu	Glu	
	13		-	- J		135			3		140					
	Ile Gl		Val	Thr	Lys		Leu	Gln	Lys	Leu		Ala	Ser	Gly	Asp	
40	145				150			_	4 =	155				-	160	

	Asn	Lys	Ser	Leu	Pro	Glu	Leu	Leu	Ser	Glu	Leu	Asp	Arg	Leu	Arg	Lys
					165					170					175	
	Glu	His	His	Asn	Leu	Arg	Ser	Gln	Phe	Glu	Phe	Glu	Lys	Asn	Thr	Asn
				180					185					190		
5	Val	Lys	Gln	Val	Glu	Gln	Met	Arg	Thr	Met	Glu	Met	Asn	Leu	Ile	Thr
			195					200					205			
	Met	Thr	Lys	Gln	Ala	Glu	Lys	Leu	Arg	Val	Asp	Val	Ala	Asn	Ala	Glu
		210					215					220				
	Arg	Arg	Ala	Gln	Ala	Ala	Ala	Ala	Gln	Ala	Ala	Ala	His	Ala	Ala	Gly
10	225					230					235					240
	Ala	Gln	Val	Thr	Ala	Ser	Gln	Pro	Gly	Gln	Leu	Lys	Leu	Pro	Arg	Phe
					245					250					255	
	Gln	Gln	Gln	Gln	Pro	Gln	Thr	His	Met	Gln	Val	His	Ile	Pro	Ala	Thr
				260					265					270		
15	Pro	Leu	His	Ile	Ser	Arg	Glu	Pro	Arg	Leu	Gly	His	Ile	Ser	Arg	Val
			275					280					285			
	Leu	Arg	Leu	Gly	Tyr	Ile	Ser	Arg	Glu	Pro	Arg	Leu	Gly	His	Ile	Ser
		290					295					300				
	Arg	Glu	Pro	Arg	Leu	${\tt Gly}$	His	Ile	Ser	Arg	Gly	Ala	Arg	Met	Gly	His
20	305					310					315					320
	Ile	Ser	Arg	Gly	Leu	Arg	Leu	Gly	His	Ile	Ser	Arg	Glu	Pro	Arg	Leu
					325					330					335	
	Gly	His	Ile	Ser	Arg	Glu	Pro	Arg	Leu	Gly	His	Ile	Ser	Arg	Val	Leu
				340					345					350		
25	Arg	Leu	Gly	His	Ile	Ser	Arg	Val	Leu	Arg	Leu	Gly	Tyr	Ile	Ser	Arg
			355					360					365			
	Glu	Pro	Arg	Leu	Gly	His	Ile	Ser	Arg	Glu	Pro	Arg	Leu	Gly	His	Ile
		370					375					380				
	Ser	Arg	Gly	Ala	Arg	Met	Gly	His	Ile	Ser	Arg	Gly	Leu	Arg	Leu	Gly
30	385					390					395					400
	His	Ile	Ser	Arg	Glu	Pro	Arg	Leu	Gly	His	Ile	Ser	Arg	Glu	Pro	Arg
					405					410					415	
	Leu	Gly	His	Ile	Ser	Arg	Gly	Pro	Ser	Leu	Gly	His	Ile	Ser	Arg	Gly
				420					425					430		
35	Pro	Arg	Leu	Gly	His	Ile	Ser	Arg	Glu	Pro	Arg	Met	Gly	His	Ile	Ser
			435					440					445			
	Arg		Pro	Arg	Met	Gly	His	Ile	Ser	Arg	Val	Leu	Arg	Leu	Glu	His
		450					455					460				
		Thr	Met	Leu	Met	Met	Leu	Ala	Arg	Leu	Met	His	Met	Gln	Val	Thr
40	465					470					475			•		480

	Leu	Ala	Ile	Gln	Leu	Gln	Ala	Thr	Arg	Lys	Val	Gln	Cys	Pro	Thr	Ile	
					485					490					495		
	Pro	Met	Leu	His	Leu	Arg	Ser	Gln	Gln	Ala	Ala	Val	Gln	Leu	Arg	Thr	
				500					505					510			
5	Pro	Gln	Glu	Ala	Ser	Met	Gly	Gln	Leu	Val	Val	Leu	Asp	Ile	Leu	Leu	
			515					520					525				
	Gly	Lys	Phe	Ser	Arg	Ala	Val	Ala	Leu	Gln	Met	Gln	Arg	ГÀв	His	Leu	
		530					535					540					
	Leu	Leu	His	His	His	Arg	Gln	His	His	Ile	Pro	Pro	Ala	His	Met	Thr	
10	545					550					555					560	
	Lys	Pro	Glu	Glu	Pro	Arg	Asp	ГÀв	Ile	Trp	Asp	Val	Asn	Gln	Met	Asp	
					565					570					575		
	Val	Cys	His	Ala	His	Leu	Leu	Ser	Arg	Gln	Ile	Trp					
				580					585								
15																	
	<210)> !	5														
	<211	.> :	16														
	<212	?> I	ANC														
	<213	S > 1	Arti:	fici	al s	eque	nce										
20																	
	<220)>															
	<223	3> (Olig	onuc.	leot	ido 1	E1										
	<400		5														
25	gatt	ctc	cct 9	gata	ag												16
			_														
	<210		6														
	<211		36														
20	<212		DNA	<u> </u>	_	_											
30	<213	3> .	Artı	IlCl	aı s	eque	nce										
	.004							•									
	<220		01 ł ~		7	مالد د	አ አ ፕሮሚያ	OΒ									
	<223	>	orra	onuc	Teor	ido .	ANCH	OK									
35	-400)>	6														
33			_	caac	taat	ac g	aaii	aaai	i aa	aiia							36
	2200	-~33	-9-	-540	cago	g	J 5	3554	- 33	J9							
	<210)>	7														
	<21		18														
40	-011																

13

<213> Artificial sequence

<220>

<223> Oligonucleotido E2

5

<400> 7

gttctccagc atctccag

INTERNATIONAL SEARCH REPORT

International application No. PCT/ ES 03/00247

CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N1,A23L According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N15/54, C12N9/10, A23L1/0562 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CIBEPAT, EPODOC, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category* $\overline{\mathbf{Y}}$ EP 0693556 A1 (AJINOMOTO Co.) 24.01.1996 1 1-12 page 5, lines 24-42, page 7 lines 20-38. Y Villalobos E. et al. IMMUNOGOLD LOCALIZATION OF 1 1-12 A TRANSGLUTAMINASE RELATED TO GRANA DEVELOPMENT IN DIFFERENT MAIZE CELL TYPES. Protoplasma 2001 Vol 316 (3-4), pages 155-163. A EP 555649 A2. (AJINOMOTO Co) 18.08.1993 1 1-12 See patent family annex. Further documents are listed in the continuation of Box C. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance; the claimed invention cannot be earlier document but published on or after the international filing date considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art document published prior to the international filing date but later than "&" document member of the same patent family the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 21 JUL 2003 (21.08.03) 10 JUL 2003 (10.07.03) Name and mailing address of the ISA/ Authorized officer

Telephone No.

Facsimile No.

S.P.T.O.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/ ES 03/00247

Patent document cited in search report	Publication date	Patent familiy member(s)	,	Pu	iblication date
EP0693556A		24.01.1996			
			WO952	20662A	03.08.1995
			US573	6356A	07.04.1998
EP0555649A		18.08.1993			
			JP622	5775A	16.08.1994
	· • • • • • • • • • • • • • • • • • • •		US551	4573A	07.05.1996
,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, in all allers = 1200 = 1200		US560	7849A	04.03.1997

INFORME DE BÚSQUEDA INTERNACIONAL

Solicitud internacional nº

PCT/ ES 03/00247

A. CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD CIP7 C12N1, A23L De acuerdo con la Clasificación Internacional de Patentes (CIP) o según la clasificación nacional y la CIP. B. SECTORES COMPRENDIDOS POR LA BÚSQUEDA CIP7 C12N15/54, C12N9/10, A23L1/0562 Otra documentación consultada, además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda Bases de datos electrónicas consultadas durante la búsqueda internacional (nombre de la base de datos y, si es posible, términos de búsqueda utilizados) CIBEPAT EPODOC BIOSIS C. DOCUMENTOS CONSIDERADOS RELEVANTES Relevante para las Documentos citados, con indicación, si procede, de las partes relevantes Categoria* reivindicaciones nº 1-12 EP 0693556 A1 (AJINOMOTO Co.) 24.01.1996 1 Ÿ pagina 5, lineas 24-42, pagina 7 lin 20-38. Villalobos E. et al. IMMUNOGOLD LOCALIZATION OF 1 1-12 Y A TRANSGLUTAMINASE RELATED TO GRANA DEVELOPMENT IN DIFFERENT MAIZE CELL TYPES. Protoplasma 2001 Vol 316 (3-4), paginas 155-163. 1-12 EP 555649 A2. (AJINOMOTO Co) 18.08.1993 1 Α X Los documentos de familias de patentes se indican en el En la continuación del recuadro C se relacionan otros documentos anexo documento ulterior publicado con posterioridad a la fecha de Categorías especiales de documentos citados: presentación internacional o de prioridad que no pertenece al documento que define el estado general de la técnica no considerado estado de la técnica pertinente pero que se cita por permitir la como particularmente relevante. comprensión del principio o teoría que constituye la base de la solicitud de patente o patente anterior pero publicada en la fecha de "E" invención. presentación internacional o en fecha posterior. documento particularmente relevante; la invención reivindicada no documento que puede plantear dudas sobre una reivindicación de "L" puede considerarse nueva o que implique una actividad inventiva prioridad o que se cita para determinar la fecha de publicación de otra por referencia al documento aisladamente considerado. cita o por una razón especial (como la indicada). documento particularmente relevante; la invención reivindicada no documento que se refiere a una divulgación oral, a una utilización, a "O" puede considerarse que implique una actividad inventiva cuando el una exposición o a cualquier otro medio. documento se asocia a otro u otros documentos de la misma documento publicado antes de la fecha de presentación internacional naturaleza, cuya combinación resulta evidente para un experto en pero con posterioridad a la fecha de prioridad reivindicada. documento que forma parte de la misma familia de patentes. Fecha de expedición del informe de búsqueda internacional Fecha en que se ha concluido efectivamente la búsqueda internacional. (10.07.2003)10 Julio 2003 Nombre y dirección postal de la Administración encargada de la Funcionario autorizado J. Manso Tomico Búsqueda internacional C/Panamá 1, 28071 Madrid, España. Nº de teléfono + 34 91 3495583 Nº de fax +34 91 3495304 Formulario PCT/ISA/210 (segunda hoja) (julio 1998)

INFORME DE BÚSQUEDA INTERNACIONAL

Información relativa a miembros de familias de patentes

Solicitud internacional nº

PCT/ ES 03/00247

Documento de patente citado en el informe de búsqueda	Fecha de publicación	Miembro(s) de la familia de patentes	Fecha de publicación
EP0693556A	24.01.1996		
		WO9520662A	03.08.1995
		US5736356A	07.04.1998
EP0555649A	18.08.1993		
		JР6225775A	16.08.1994
		US5514573A	07.05.1996
		US5607849A	04.03.1997