- **94** Escreva na forma trigonométrica o complexo $z = \frac{1+i}{i}$.
- **95** Escreva na forma trigonométrica o complexo $z = \frac{1}{1 + i\sqrt{3}}$
- 97 Qual é a forma algébrica de cada um dos seguintes números complexos?

a)
$$z = 4\left(\cos\frac{11\pi}{6} + i \operatorname{sen}\frac{11\pi}{6}\right)$$

- b) $z = \cos 0 + i \sin 0$
- c) $z = \sqrt{3} \left(\cos \frac{\pi}{2} + i \operatorname{sen} \frac{\pi}{2} \right)$
- d) $z = 4 (\cos 270^{\circ} + i \sin 270^{\circ})$
- **98** Obtenha a forma trigonométrica do número complexo $z = \frac{(1+i)^2}{1-i}$.
- **99** Qual é a forma trigonométrica de $z = \left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^2$?
- 100) Qual é a forma algébrica do número complexo representado abaixo?

101

Na figura, o ponto P é afixo de z. Determine a forma algébrica de \overline{z} .

102 A figura seguinte representa um octógono regular inscrito numa circunferência.

Se a medida de \overline{BF} é de 8 unidades, determine:

- a) a forma trigonométrica dos números complexos z_2 e z_4 , cujos afixos são os pontos B e D, respectivamente.
- b) a forma algébrica de \overline{z}_2 e de \overline{z}_4 .

103 Sejam os números complexos
$$z_1 = 2\left(\cos\frac{2\pi}{3} + i \sin\frac{2\pi}{3}\right)$$
,

$$z_2 = 4 \left(\cos \frac{\pi}{6} + i \operatorname{sen} \frac{\pi}{6} \right) e \ z_3 = \cos \frac{\pi}{2} + i \operatorname{sen} \frac{\pi}{2} \ . \ \text{Determine:}$$

- a) $z_1 \cdot z_2$ b) $z_2 \cdot z_3$ c) $\frac{z_1}{z_3}$ d) $\frac{z_1}{z_2}$

104 Sejam os números complexos
$$z_1 = \cos 0 + i \sin 0$$
, $z_2 = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$ e $z_3 = 2\left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right)$. Determine:

- a) $z_1 \cdot z_2 \cdot z_3$ b) $\frac{z_1 \cdot z_2}{z_2}$
- c) $z_1 \cdot \overline{z}_2$

- **112** Calcule $(-1 + i)^6$.
- 113 Qual é o valor de $\left(\frac{\sqrt{3}}{2} \frac{i}{2}\right)^{100}$?
- **114** Mostre que $(\sqrt{2} + i\sqrt{2})^8$ é um número real.
- **115** a) Determine $z, z \in \mathbb{C}$, que verifica a equação $z + 2\overline{z} = 3\sqrt{3} + i$.
 - b) Usando o item a, calcule z^{60} .
- **116** Sendo $z = -\frac{5\sqrt{3}}{2} + \frac{5}{2}i$, obtenha o valor de z^{-12} .
- 118 (Fuvest-SP) Dado o número complexo $z = \sqrt{3} + i$, qual é o menor valor do inteiro n ≥ 1 para o qual z^n é um número real?
- ✓ 122 Calcule as raízes quadradas de −2. Represente seus afixos no plano e interprete geometricamente.
 - 123 Encontre as raízes quadradas de -4i, representando seus afixos no plano. Qual é a conclusão?
- **125** Sejam z_0 , z_1 e z_2 as raízes cúbicas de -64. Calcule o valor de $z_0 + z_1 + z_2$.
- **126** Calcule, em \mathbb{C} , $(-i)^{\frac{1}{3}}$.
- 128 Calcule as raízes quartas de $-8 + i 8\sqrt{3}$.
- 129 a) Encontre as raízes sextas de 8.
 - b) Represente seus afixos no plano. Qual é a medida de cada um dos arcos determinados pelos afixos? Qual é a conclusão?
- 131 (Fuvest-SP) No plano complexo, cada ponto representa um número complexo. Nesse plano, considere um hexágono regular, com centro na origem, tendo i, a unidade imaginária, como um de seus vértices.
 - 'a) Determine os vértices do hexágono.

Respostas:

94
$$\sqrt{2} \left(\cos \frac{7\pi}{4} + i \operatorname{sen} \frac{7\pi}{4} \right)$$

95
$$\frac{1}{2} \left(\cos 5 \frac{\pi}{3} + i \operatorname{sen} 5 \frac{\pi}{3} \right)$$

97 a)
$$2\sqrt{3} - 2i$$
 c) $\sqrt{3} i$ b) 1 d) $-4i$

98
$$\sqrt{2} \left(\cos \frac{3\pi}{4} + i \operatorname{sen} \frac{3\pi}{4} \right)$$

99
$$\cos \frac{2\pi}{3} + i \sec \frac{2\pi}{3}$$

100
$$-3 + i\sqrt{3}$$

101
$$(\sqrt{2} - \sqrt{6}) + i(-\sqrt{2} - \sqrt{6})$$

102 a)
$$z_2 = 4 (\cos 45^\circ + i \sin 45^\circ)$$

 $z_4 = 4 (\cos 135^\circ + i \sin 135^\circ)$

b)
$$\overline{z_2} = 2\sqrt{2} - i 2\sqrt{2}$$

 $\overline{z_4} = -2\sqrt{2} - i 2\sqrt{2}$

103 a)
$$8 \left(\cos \frac{5\pi}{6} + i \operatorname{sen} \frac{5\pi}{6} \right)$$

b)
$$4\left(\cos\frac{2\pi}{3} + i \operatorname{sen}\frac{2\pi}{3}\right)$$

c)
$$2\left(\cos\frac{\pi}{6} + i \operatorname{sen}\frac{\pi}{6}\right)$$

d)
$$\frac{1}{2} \left(\cos \frac{\pi}{2} + i \operatorname{sen} \frac{\pi}{2} \right)$$

104 a)
$$2\left(\cos\frac{2\pi}{3} + i \sin\frac{-2\pi}{3}\right)$$

b)
$$\frac{1}{2} \left(\cos \frac{\pi}{3} + i \operatorname{sen} \frac{\pi}{3} \right)$$

c)
$$\cos \frac{3\pi}{2} + i \operatorname{sen} \frac{3\pi}{2}$$

112 8i

113
$$-\frac{1}{2} - \frac{\sqrt{3}}{2}$$
 i

114 De fato,
$$(\sqrt{2} + i\sqrt{2})^8 = 256 \in \mathbb{R}$$
.

115 a)
$$\sqrt{3}$$
 – i

116 5-12

1186

131a)
$$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$
, $(0, 1)$, $\left(\frac{-\sqrt{3}}{2}, \frac{1}{2}\right)$, $\left(\frac{-\sqrt{3}}{2}, \frac{-1}{2}\right)$, $(0, -1)$ e $\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$

b)
$$z^6 + 1 = 0$$

122 $\sqrt{2}$ i e $-\sqrt{2}$ i

 P_0 e P_1 são extremidades de um diâmetro de uma circunferência de centro na origem e raio $\sqrt{2}$.

123 $-\sqrt{2} + i\sqrt{2} e \sqrt{2} - i\sqrt{2}$

Os afixos são extremidades de um diâmetro de uma circunferência de centro (0, 0) e raio $\sqrt{4} = 2$.

125 zero

126 i,
$$\frac{-\sqrt{3}}{2} - \frac{1}{2}$$
 i e $\frac{\sqrt{3}}{2} - \frac{1}{2}$ i

128
$$\sqrt{3} + i$$
, $-1 + i\sqrt{3}$, $-\sqrt{3} - i$ e $1 - i\sqrt{3}$

129 a)
$$\sqrt{2}$$
, $\frac{\sqrt{2}}{2} + i \frac{\sqrt{6}}{2}$, $\frac{-\sqrt{2}}{2} + i \frac{\sqrt{6}}{2}$, $\frac{-\sqrt{2}}{2} - i \frac{\sqrt{6}}{2} - i \frac{\sqrt{6}}{2}$ e $\frac{\sqrt{2}}{2} - i \frac{\sqrt{6}}{2}$

Cada arco mede $\frac{2\pi}{6} = \frac{\pi}{3}$.

Os afixos são vértices de um *hexá-gono regular* inscrito em uma circunferência de centro na origem e raio $\sqrt[6]{8} = \sqrt{2}$.