FIRST Sets FIRST Sets Objectives

Objectives

FIRST Sets

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign DEPARTMENT OF COMPUTER SCIENCE

► Compute the FIRST sets for the nonterminal symbols of a grammar.

FIRST Sets Objectives

Examples

Objectives

FIRST Sets

4日 → 4周 → 4 差 → 4 差 → 1 型 の 9 ○ ○

Examples

The Problem

- Given a grammar for a language *L*, how can we recognize a sentence in *L*?
- ► Solution: Divide and conquer: Given a symbol *E* ...
 - ▶ What symbols indicate that the symbol *E* is just starting? (FIRST Set)
 - ▶ What symbols should we expect to see after we have finished parsing an *E*?

Misleadingly simple example:
$$S \rightarrow xEy$$
 FIRST(E) = $\{z,q\}$
 $E \rightarrow zE$ FOLLOW(E)= $\{y\}$
 $E \rightarrow a$

▶ Important because a parser can see only a few tokens at once.

Algorithm

We can compute the FIRST set by a simple iterative algorithm. For each symbol *X*:

- 1. If *X* is a terminal, then $FIRST(X) = \{X\}$.
- 2. If there is a production $X \to \epsilon$, then add ϵ to FIRST(X).
- 3. If there is a production $X \to Y_1 Y_2 \cdots Y_n$, then add $FIRST(Y_1 Y_2 \cdots Y_n)$ to FIRST(X):
 - ▶ If $FIRST(Y_1)$ does not contain ϵ , then $FIRST(Y_1Y_2\cdots Y_n)=FIRST(Y_1)$.
 - ightharpoonup Otherwise, $FIRST(Y_1Y_2\cdots Y_n)=FIRST(Y_1)/\epsilon\cup FIRST(Y_2\cdots Y_n)$.
 - ▶ If all of $Y_1, Y_2, ... Y_n$ have ϵ then add ϵ to FIRST(X).

Diagram

$$X \rightarrow Y_0 Y_1 Y_2$$

▶ If there is a production $X \to Y_1 Y_2 \cdots Y_n$, then add $FIRST(Y_1 Y_2 \cdots Y_n)$ to FIRST(X):

FIRST Sets

- ▶ If $FIRST(Y_1)$ does not contain ϵ , then $FIRST(Y_1Y_2\cdots Y_n) = FIRST(Y_1)$.
- ▶ Otherwise, $FIRST(Y_1Y_2 \cdots Y_n) = FIRST(Y_1)/\epsilon \cup FIRST(Y_2 \cdots Y_n)$.
- ▶ If all of $Y_1, Y_2, ... Y_n$ have ϵ then add ϵ to FIRST(X).

Small Examples

Example 1

 $S \rightarrow x A B$

FIRST set of S is $\{x\}$.

Example 2

 $A \rightarrow \epsilon$

 $A \rightarrow y$

 $A \rightarrow z q$

FIRST set of A is $\{y, z, \epsilon\}$.

Example 3

 $B \rightarrow A q$

 $B \rightarrow r$

FIRST set of *B* is $\{y, z, q, r\}$.

Example 4

 $C \rightarrow A A$

 $C \rightarrow B$

FIRST set of *C* is $\{y, z, q, r, \epsilon\}$.

Objectives

FIRST Sets

4□ ト 4 億 ト 4 億 ト 4 億 ト 1 億 9 9 0 ○ Examples

FIRST Set Example

Objectives

Grammar

 $S \rightarrow \text{if } E \text{ then } S$;

 $S \rightarrow \mathtt{print}\, E$;

 $E \rightarrow E + E$ $E \rightarrow P \text{ id}$

 $P \rightarrow *P$

 $P \rightarrow \epsilon$

Result

S={} E={}

P={}

FIRST Set Example

Grammar

 $S \rightarrow \text{if } E \text{ then } S : \Leftarrow$ $S \rightarrow \text{print } E; \Leftarrow$ $E \rightarrow E + E$ $E \rightarrow P \text{ id}$

 $P \rightarrow *P \Leftarrow$

 $P \rightarrow \epsilon \Leftarrow$

Result

S={if, print } E={} P={*€*, *****}

Action

Step 1: Create a list of symbols.

Action

Step 2: Add terminals starting productions, and all ϵ .

FIRST Set Example

Grammar $S \rightarrow \text{if } E \text{ then } S;$ $S \rightarrow \text{print } E;$ $E \rightarrow E + E$ $E \rightarrow P \text{ id} \Leftarrow$ $P \rightarrow * P$

Result

```
S={if, print }
E={*, id}
P={\epsilon, *}
```

$P \rightarrow \epsilon$ Action

Step 3: Check productions. Add FIRST(Pid) to FIRST(E).

FIRST Set Example

Grammar

```
S \rightarrow \text{if } E \text{ then } S;

S \rightarrow \text{print } E;

E \rightarrow E + E \Leftarrow

E \rightarrow P \text{ id}

P \rightarrow * P

P \rightarrow \epsilon
```

Result

```
S={if, print}
E={*,id}
P={\epsilon,*}
```

Action

Step 4: Check productions: $E \rightarrow E + E$ adds nothing. We're done.

Objectives FIRST Sets Examples Objectives FIRST Sets Examples Objectives Obje

Another FIRST Set Example

Grammar

 $S \rightarrow Ax$ $S \rightarrow By$ $S \rightarrow z$ $A \rightarrow 1CB$ $A \rightarrow 2B$ $B \rightarrow 3B$ $B \rightarrow C$ $C \rightarrow 4$ $C \rightarrow \epsilon$

Result

S = {} A = {} B = {} C = {}

Another FIRST Set Example

Grammar

$$S \rightarrow Ax$$

$$S \rightarrow By$$

$$S \rightarrow z \Leftarrow$$

$$A \rightarrow 1CB \Leftarrow$$

$$A \rightarrow 2B \Leftarrow$$

$$B \rightarrow 3B \Leftarrow$$

$$B \rightarrow C$$

$$C \rightarrow 4 \Leftarrow$$

$$C \rightarrow \epsilon \Leftarrow$$

Result

S={z} A={1, 2} B={3} C={ ϵ , 4}

イロト イプト イミト イミト

Action

Create a chart.

Action

Add initial terminals and ϵ s.

Another FIRST Set Example

Grammar $S \rightarrow Ax$ $S \rightarrow By$ $S \rightarrow z$ $A \rightarrow 1CB$ $A \rightarrow 2B$ $B \rightarrow 3B$ $B \rightarrow C \Leftarrow$ $C \rightarrow 4$

Result $S = \{z, 1, 2, 3\}$ $A=\{1, 2\}$ B= $\{3, 4, \epsilon\}$ $C=\{\epsilon, 4\}$

$C \rightarrow \epsilon$ Action Add FIRST(C) to FIRST(B). At this point we should iterate again to see if anything changes.

Another FIRST Set Example

Grammar	
$S \rightarrow Ax \Leftarrow$ $S \rightarrow By$ $S \rightarrow z$ $A \rightarrow 1CB$ $A \rightarrow 2B$ $B \rightarrow 3B$ $B \rightarrow C$	
$egin{array}{c} C ightarrow 4 \ C ightarrow \epsilon \end{array}$	
Action	

Result		
$S = \{z, 1, 2, 3\}$		
A={1, 2}		
B = $\{3, 4, \epsilon\}$		
$C=\{\epsilon, 4\}$		

Add FIRST(Ax) to FIRST(S) again. Nothing happens ...

Objectives FIRST Sets Examples Objectives FIRST Sets Examples Objectives FIRST Sets Examples Objectives Objectives FIRST Sets Examples Objectives Objectiv

Another FIRST Set Example

Grammar

 $S \rightarrow Ax$

 $S \rightarrow By \Leftarrow$

 $S \rightarrow z$

A
ightarrow 1CB

 $A \rightarrow 2B$

 $B \rightarrow 3B$

 $B \rightarrow C$

 $C \rightarrow 4$ $C \rightarrow \epsilon$

Result

 $S = \{z, 1, 2, 3, 4, y\}$

 $A=\{1, 2\}$

 $B = \{3, 4, \epsilon\}$

 $C=\{\epsilon, 4\}$

Action

Add FIRST(By) to FIRST(S) again. The 4 gets propagated. Since B could be ϵ we need to add

Another FIRST Set Example

Grammar

 $S \rightarrow Ax$

 $\mathsf{S} o \mathsf{B} \mathsf{y}$

 $S \to z$

A
ightarrow 1CB

A
ightarrow 2B

B o 3B

 $B \rightarrow C \Leftarrow$

C o 4

 $C
ightarrow \epsilon$

Result

 $S = \{z, 1, 2, 3, 4, y\}$

 $A=\{1, 2\}$

 $B = \{3, 4, \epsilon\}$

 $C=\{\epsilon, 4\}$

Action

Add FIRST(C) to FIRST(B) again. We are done.

2000