FOI 2023 B 班 Day1 练习题 (基础算法)

BY Bardisk

(请选手仔细阅读此页内容)

比赛时间: 2023-7-9

一、试题列表

试题名称	取舍	RMQ	滑窗	建筑
每个测试点时限	2000ms	2000ms	2000ms	2000ms
运行内存上限	512MB	512MB	32MB	512MB
评测方式	Special Judge	全文比较	全文比较	全文比较
测试点数目	20	20	20	20
测试点分值	照约定安排	照约定安排	照约定安排	照约定安排
试题类型	传统	传统	传统	传统

二、注意事项

- 1. 有问题找出题人。
- 2. 若文档和 0J 题面有冲突,以 0J 为准。
- 3. 附带 D 题的大样例和快速读入、最大公约数程序的模板。
- 4. 题和数据都水,轻 D。

A:取舍

【题目背景】

「鱼,我所欲也;熊掌,亦我所欲也。二者不可得兼,舍鱼而取熊掌者也。」 ——《孟子·告子上》

人生在世就要不断做出选择。一般来说,选择牵涉着不止一个方面的利益,在不同的利益方面,一个选项的影响也可以或正或负。比如,选择参加本次夏令营,你将付出一定的金钱和时间,同时以算法能力的提升作为回报。为了做出最优化的选择,人们投入了大量资源研究并应用各种运筹(Operations Research)理论和算法。各种规划问题同样也是算法竞赛的重要组成部分,并将在此次夏令营的最后两次课详细介绍。在本次练习中我们关注一个较为简单,可以使用搜索解决的简单 01 规划问题。

【题目描述】

我们定义两种价值(下称金钱和精力)。你初始具有 0 的金钱和 W 单位的精力。

有 n 个物品,第 i 个物品具有一个字符串表示的名字,并可以提供 u_i 单位的金钱和 v_i 单位的精力(u_i , v_i 都可以是负的,详见数据范围),对于每个物品你有两种选择:选取或丢弃,且**不能选取多次**。

你的任务是给出一种选择方案,使得选择结束以后,你拥有的精力非负且 金钱尽可能大。

【输入格式】

第一行两个正整数 n, W, 含义如题。

接下来 n 行,第 i 行具有一个字符串 s_i 和两个正整数 u_i , v_i , 表示一个物品的**唯一**名字和能提供的两种价值的量。

【输出格式】

第一行一个非负整数,表示最大能获得的金钱的量。

接下来若干行字符串,按照**输入顺序**输出你选择的每个物品的名字,有多种方案的话,请输出**任意一种**。

【样例输入】

4 100

wonder -50 -50

miracle -50 10

dream 100 -55

responsibility 230 -55

【样例输出】

280

miracle

dream

responsibility

【数据范围与约定】

对于前 10% 的数据, $v_i >= 0$,这个部分分考察**贪心**。 对于前 40% 的数据,n <= 20,这个部分分考察**搜索**。 对于另外 40% 的数据, $|v_i| <= 5000$,你会的话,可以用 DP 得分。 对于 100 % 的数据,n <= 40, $|u_i| <= 10^{\circ}9$, $|v_i| <= 10^{\circ}9$, $|s_i| <= 20$, $\mathbb{W} <= 10^{18}$,字符串由小写字母构成。

本题考察搜索和前缀和。

不要忘记开 long long。

部分分没有对 W 的范围做出任何保证。

B:RMQ

【题目背景】

RMQ 问题,全称为 Range Maximum/Minimum Query,表示区间最大/最小值查询。

顾名思义,本题要求解决 RMQ 问题,具体来说,要求解决区间静态最大值查询问题。

【题目描述】

给出一个长为 n 的整数序列 a 和 q 个询问,每个询问给出一个区间 [1, r], 对于每个询问,你需要给出 a_1 , … $,a_r$ 之中的最大值 mod 11 的值。

【输入格式】

第一行两个正整数 n, id, 其中 id 意义此后将给出。

第二行 n 个正整数,表示序列中的数。

第三行一个整数 q。

接下来 q 行, 第 i 行两个整数 1, r, e

以上未特殊说明变量的含义均如题所述。

【输出格式】

输出 q 行, 第 i 行表示第 i 个询问的答案。

【样例输入】

5 1

2 4 9 10 4

3

2 3

1 4

1 2

【样例输出】

9

10

4

【数据范围与约定】

对于前 15% 的数据, n <= 2000, q <= 10000, id = 1, 这个部分分考察 **暴力**。

对于前 50% 的数据, n <= 100000, q <= 5000000, id = 1, 这个部分分考察**倍增**。

对于另外 25% 的数据, $r_i - 1_i + 1 >= [n/2]$, id = 2,这个部分分考察**前缀和**。

对于另外 25% 的数据,q <= 100000, a_i <= 32, id = 3, 这个部分分可能考察二分使用。

对于 100% 的数据, n <= 1000000, q <= 1000000 (特殊规定除外), a_i <= 10^9 , 1_i <= r_i <= n_{\circ}

你可能需要组合一种以上的算法来通过本题。

C:滑窗

【题目背景】

两正整数的最大公约数是能同时整除两数的最大正整数。

同理,多个数的最大公约数是能同时整除它们每个数的最大正整数。

【题目描述】

给出一个长为 n 的正整数序列 a 和 q 个询问,每个询问给出一个区间 [1, r],对于每个询问,你需要给出 $gcd(a_1,\ ...,\ a_r)$ 。

保证给出的询问满足一种滑窗性质,详见数据范围与约定部分。

【输入格式】

第一行一个正整数 n。

第二行 n 个正整数,表示序列中的数。

第三行一个整数 q。

接下来 q 行, 第 i 行两个整数 1, , r, 。

以上未特殊说明变量的含义均如题所述。

【输出格式】

输出 q 行, 第 i 行表示第 i 个询问的答案 mod 11 的值。

【样例输入】

5

2 4 9 10 25

2

2 3

4 5

【样例输出】

1

5

【数据范围与约定】

对于 30% 的数据, n <= 100, q <= 100。

对于 100% 的数据,n <= 1000000,q <= 1000000, a_i <= 10^{18} , 1_{i-1} <= 1_i <= n 且 r_{i-1} <= r_i <= n_s

D:建筑

【题目背景】

Bardisk 和 Barisore 喜欢玩 Minecraft。

【题目描述】

这天 Bardisk 收集了 n 种建筑方块,第 i 种建筑方块有 u_i 个,Bardisk 想把这些方块铺成一个宽度为 k 的长方形,起初他把相似的方块铺在一起,但是 Barisore 嫌太丑了,她要求每行(即沿着宽度的方向)的 k 个方块种类都是不同的。

Bardisk 是建筑白痴,所以他想问问聪明的你,使用现有的材料,他最多可以按这样的要求铺多少行?

【输入格式】

第一行两个正整数 n,k, 意义如题。

第二行 n 个正整数,表示序列 u,意义如题。

【输出格式】

输出一个正整数,表示答案。

【样例输入】

6 5

191986

【样例输出】

2

【数据范围与约定】

对于前 60% 的数据, u; <= 64。

对于 100% 的数据, k <= n <= 500000, u; <= 10^9。

本题考察贪心和二分。

【样例解释】

一共可以堆两行,第一行选择第 1、2、4、5、6 种方块各一个,第二行选择第 2、3、4、5、6 种方块各一个,这之后只剩下四种方块了,无法堆出新的一行,故答案为 2。