Lecture 2 Linear transformations and Diagonalization

카카오톡 단톡방 MATLAB KR

https://open.kakao.com/o/gKBr7Zde

1. Linear transformation

1.1 Standard matrix for a linear transformation

So, what is a matrix?

- Five perspectives on viewing matrices
 - Collection of data (numeric)
 - Collection of vectors (geometric)
 - A system of linear equations (algebraic)
 - A linear transformation (operational)
 - A tangent space of a function (differential)

Matrix as a linear transformation

$$egin{array}{cccc} A = egin{bmatrix} 2 & 1 \ 0 & 2 \ 1 & 1 \end{bmatrix}$$

$$A \left[egin{array}{c} x_1 \ x_2 \end{array}
ight] = \left[egin{array}{c} 2x_1 + 1x_2 \ 0x_1 + 2x_2 \ 1x_1 + 1x_2 \end{array}
ight]$$

The matrix A represents a function

$$T_A: \mathbb{R}^2 \to \mathbb{R}^3$$

• T_A is linear, i.e.,

$$T_A(u + v) = T_A(u) + T_A(v)$$
$$T_A(cu) = cT_A(u)$$

Matrix as a linear transformation

- In fact, we do not need a matrix.
- All we need is the *images of basis* vectors.
- Standard basis of \mathbb{R}^2

$$e_1 = \left[egin{array}{c} 1 \ 0 \end{array}
ight], e_2 = \left[egin{array}{c} 0 \ 1 \end{array}
ight]$$

Standard matrix

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \end{bmatrix} = x_1 egin{bmatrix} 1 \ 0 \end{bmatrix} + x_2 egin{bmatrix} 0 \ 1 \end{bmatrix}$$

$$egin{aligned} T(\mathbf{x}) &= x_1 T \left(egin{bmatrix} 1 \ 0 \end{bmatrix}
ight) + x_2 T \left(egin{bmatrix} 0 \ 1 \end{bmatrix}
ight) \ &= [T(\mathbf{e}_1) \quad T(\mathbf{e}_2)] egin{bmatrix} x_1 \ x_2 \end{bmatrix} \ &= A \qquad x \end{aligned}$$

- Every linear transformation from \mathbb{R}^n to \mathbb{R}^m is represented by
- The inverse also holds.

an $m \times n$ matrix.

• Standard matrix for T, denoted by $[T] \rightarrow T(x) = [T]x$

Examples of linear transformations

- Stretch / compression
- Shear
- Rotation
- Reflection

• lab: example_matrix_is_a_linear_transformation.m

• Q. Is translation a linear transformation? (cf. Affine transformation)

source: 공돌이의 수학 정리 노트

Invertibility of a square matrix

- An $n \times n$ matrix A is invertible if and only if
 - Ax = 0 has only a trivial solution, i.e., $ker(T_A) = \{0\}$.
 - $det(A) \neq 0$
 - A set of column (row) vectors of A forms a basis of \mathbb{R}^n , i.e., $\mathrm{Im}(T) = \mathbb{R}^n$.
 - rank(A) = n, nullity(A) = 0
 - T_A is 1-1 and onto.

• Q. Can an $m \times n$ matrix represent a bijective function?

Direction of stretching

• lab: example_matrix_is_a_linear_transformation.m

1.2 Projection and least square

Projection formula

• Projection of x onto v

$$\operatorname{proj}_{v} x = \frac{x \cdot v}{\|v\|^{2}} v$$

$$= (x \cdot v)v \qquad \text{if } ||v|| = 1$$

• Every vector x in \mathbb{R}^n is uniquely expressed as

$$x = \text{proj}_{v}x + \text{proj}_{v^{\perp}}x$$

Projection operator

• Projection operator onto $span\{v\}$

$$T(x) = \text{proj}_{v} x = \left(\frac{1}{v^{T} v} v v^{T}\right) x$$

Standard matrix for T

$$P = \frac{1}{v^T v} v v^T$$
 $(= v v^T \text{ if } ||v|| = 1)$

• Q. rank(P) = ?

Projection onto a subspace

• Projection of $x \in \mathbb{R}^n$ onto $W \leq \mathbb{R}^n$

$$\operatorname{proj}_{W} x = M(M^{T}M)^{-1}M^{T}x$$

 where the column vectors of M form a basis of W.

• lab: example projection operator.m

Least square and projection operation

Linear least squares [edit]

Main article: Linear least squares

A regression model is a linear one when the model comprises a linear combination of the parameters, i.e.,

$$f(x,oldsymbol{eta}) = \sum_{j=1}^m eta_j \phi_j(x),$$

where the function ϕ_i is a function of x.^[12]

Letting $X_{ij} = \phi_j(x_i)$ and putting the independent and dependent variables in matrices X and Y, respectively, we can compute the least squares in the following way. Note that D is the set of all data.^{[12][13]}

$$L(D, \boldsymbol{\beta}) = \|Y - X\boldsymbol{\beta}\|^2 = (Y - X\boldsymbol{\beta})^\mathsf{T}(Y - X\boldsymbol{\beta}) = Y^\mathsf{T}Y - Y^\mathsf{T}X\boldsymbol{\beta} - \boldsymbol{\beta}^\mathsf{T}X^\mathsf{T}Y + \boldsymbol{\beta}^\mathsf{T}X^\mathsf{T}X\boldsymbol{\beta}$$

= $Y^\mathsf{T}Y - X^\mathsf{T}Y\boldsymbol{\beta} - X^\mathsf{T}Y\boldsymbol{\beta} + X^\mathsf{T}X\boldsymbol{\beta}^2$

The gradient of the loss is:

$$rac{\partial L(D,oldsymbol{eta})}{\partial oldsymbol{eta}} = rac{\partial \left(Y^\mathsf{T} Y - X^\mathsf{T} Y oldsymbol{eta} - X^\mathsf{T} Y oldsymbol{eta} + X^\mathsf{T} X oldsymbol{eta}^2
ight)}{\partial oldsymbol{eta}} = -2 X^\mathsf{T} Y + 2 X^\mathsf{T} X oldsymbol{eta}$$

Setting the gradient of the loss to zero and solving for β , we get: [13][12]

$$egin{aligned} -2X^\mathsf{T}Y + 2X^\mathsf{T}Xoldsymbol{eta} &= 0 \Rightarrow X^\mathsf{T}Y = X^\mathsf{T}Xoldsymbol{eta} \ \hat{oldsymbol{eta}} &= \left(X^\mathsf{T}X
ight)^{-1}X^\mathsf{T}Y \end{aligned}$$

$$\operatorname{proj}_{W} x = M(M^{T}M)^{-1}M^{T}x$$

Ordinary Least Squares

$$egin{aligned} c_0 + c_1 x_1 + e_1 &= y_1 \ c_0 + c_1 x_2 + e_2 &= y_2 \ c_0 + c_1 x_3 + e_3 &= y_3 \end{aligned}$$

$$egin{bmatrix} 1 & x_1 \ 1 & x_2 \ 1 & x_3 \end{bmatrix} egin{bmatrix} c_0 \ c_1 \end{bmatrix} + egin{bmatrix} e_1 \ e_2 \ e_3 \end{bmatrix} = egin{bmatrix} y_1 \ y_2 \ y_3 \end{bmatrix}$$

$$A \quad x \quad + \quad e \quad = \quad y$$

- Least square method
 - \equiv To find x and \hat{y} that minimize $\|e\|$
 - \equiv Projecting y onto col(A) which is \hat{y}

$$\operatorname{proj}_{\operatorname{col}(A)} y = A(A^T A)^{-1} A^T y$$

• lab: example_least_square_is_projection.m

Linear regression example(?)

lab: example_triangle_game.m

Orthonormal basis

- $v \in \mathbb{R}^n$, ||v|| = 1
 - \rightarrow Projection operator onto span $\{v\}$

$$T(x) = (vv^T)x$$

Standard matrix for T

- M is an orthonormal basis of $W \leq \mathbb{R}^n$
 - \rightarrow Projection operator onto col(M)

$$T(x) = M(M^{T}M)^{-1}M^{T}x$$

$$= MM^{T}x$$
Standard matrix for T

Why do we care orthonormal bases?

• [Thm] If $\{v_1, ..., v_k\}$ is an orthonormal basis for $W \leq \mathbb{R}^n$, then the orthogonal projectin of a vector $x \in \mathbb{R}^n$ onto W is expressed as

$$\operatorname{proj}_{W} x = (x \cdot v_{1})v_{1} + (x \cdot v_{2})v_{2} + \dots + (x \cdot v_{k})v_{k}$$

• [Thm] If $\{v_1, \dots, v_k\}$ is an orthonormal basis for $W \leq \mathbb{R}^n$, then any $w \in W$ is expressed as

$$w = (w \cdot v_1)v_1 + (w \cdot v_2)v_2 + \dots + (w \cdot v_k)v_k$$

Gram-Schmidt and QR decomposition

- From a basis $\{w_1, ..., w_k\}$ for $W \leq \mathbb{R}^n$, an orthonormal basis of W can be constructed as follows:
 - 1. Normalize w_1 to u_1 such that $|u_1| = 1$.
 - 2. Calculate $v_2 = w_2 \text{proj}_{u_1} w_2$ and normalize to u_2 .
 - 3. Calculate $v_3 = w_3 \text{proj}_{\text{span}\{u_1,u_2\}} w_3$ and normalize to u_3 .
 - 4. Repeat to v_k and u_k .
- Rmk. span $\{w_1, \dots, w_l\}$ = span $\{u_1, \dots, u_l\}$ for any $l \le k$.

lab: example_Gram_Schmidt_and_qr_decomposition.m

2. Coordinate and change of basis

2.1 Vectors and coordinates

Making the familiar *Unfamiliar*

- What is a vector?
 - An arrow?
 - A tuple of numbers?
 - Something with magnitude and direction?
- Vector ≠ Coordinate

$$\begin{bmatrix} mg\sin heta \ -mg\cos heta \end{bmatrix}$$
 vs $\begin{bmatrix} 0 \ -mg \end{bmatrix}$ • Standard basis is not that *special*.

Coordinate of a vector

• [Def] If $B = \{v_1, \dots, v_k\}$ is an ordered basis for $W \leq \mathbb{R}^n$, and if

$$w = a_1 v_1 + \dots + a_k v_k$$

• then we call a_1, \dots, a_k the *coordinate* of w with respect to B, and

$$[w]_B = \begin{bmatrix} a_1 \\ \vdots \\ a_k \end{bmatrix}$$

• the coordinate matrix for w with respect to B.

Why do we care orthonormal bases?

• [Thm] If B is an orthonormal basis for a k-dim. $W \leq \mathbb{R}^n$, and if u, v, and w are vectors in W such that

$$[u]_B = \begin{bmatrix} u_1 \\ \vdots \\ u_k \end{bmatrix}, [v]_B = \begin{bmatrix} v_1 \\ \vdots \\ v_k \end{bmatrix}, [w]_B = \begin{bmatrix} w_1 \\ \vdots \\ w_k \end{bmatrix}$$

then

• (a)
$$||w|| = \sqrt{w_1^2 + w_2^2 + \dots + w_k^2} = ||[w]_B||$$

• (b)
$$u \cdot v = u_1 v_1 + u_2 v_2 + \cdots + u_k v_k = [u]_B \cdot [v]_B$$

Change of basis

- How to change from $[w]_B$ to $[w]_B$,?
- [Thm] Given $w \in \mathbb{R}^n$, two bases of \mathbb{R}^n $B = \{v_1, \dots, v_n\}$ and $B' = \{v_1', \dots, v_n'\}$,

$$[w]_{B'} = P_{B \to B'}[w]_B$$

• where $P_{B\to B'}$ is the coordinate change matrix from B to B'

$$P_{B \to B'} = [[v_1]_{B'}, \dots, [v_n]_{B'}]$$

- Rmk. $P_{B'\to B} = (P_{B\to B'})^{-1}$
- Q. $P_{R \to R} = ?$

Change of basis

• If S is the standard basis of \mathbb{R}^n , then $P_{B \to S} = \left[[v_1]_S, \dots, [v_n]_S \right] = [v_1, \dots, v_n]$.

• Rmk. Change of basis from B to B' = from B to S, and then from S to B'.

$$P_{B\to B'} = P_{S\to B'} P_{B\to S} = (P_{B'\to S})^{-1} P_{B\to S} = \left[[v_1']_S, \dots, [v_n']_S \right]^{-1} \left[[v_1]_S, \dots, [v_n]_S \right]$$

• [Thm] If B and B' are orthonormal bases for \mathbb{R}^n , then the coordinate change matrices $P_{B\to B'}$ and $P_{B'\to B}$ are orthogonal.

Change of basis - example

• How to interpret $V = [v_1, v_2]$?

•
$$V = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

- 1) Rotation matrix
- 2) Coordinate change matrix $P_{B\to S}$

Change of basis

2.2 Matrix representation of linear transformations

$$\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}_{S}$$

$$\begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}_{B}$$

$$\frac{1}{1+m^2} \begin{bmatrix} 1 - m^2 & 2m \\ 2m & m^2 - 1 \end{bmatrix}_{S}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}_B$$

$$x \stackrel{T}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} T(x)$$

$$[x]_B \stackrel{A}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} A[x]_B$$

- The coordinate of x depends on the basis.
- T transforms a vector to another vector.
- What does the matrix A transform?
 - Vectors?
 - Coordinates of vectors?
- Is the matrix A for T unique?

- A matrix represents a linear transformation with respect to a specific basis.
- Matrix representation of a linear transformation depends on the choice of basis.
- Standard matrix: Matrix representation of a linear transformation with respect to the *standard* basis.

$$egin{aligned} T(\mathbf{x}) &= x_1 T \left(egin{bmatrix} 1 \ 0 \end{bmatrix}
ight) + x_2 T \left(egin{bmatrix} 0 \ 1 \end{bmatrix}
ight) \ &= [T(\mathbf{e}_1) \quad T(\mathbf{e}_2)] egin{bmatrix} x_1 \ x_2 \end{bmatrix} \ &= A \qquad x \end{aligned}$$

Matrix representation of linear transformations

• [Thm] Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator, $B = \{v_1, ..., v_n\}$ be a basis for \mathbb{R}^n . Then $A = \begin{bmatrix} [T(v_1)]_B, ..., [T(v_n)]_B \end{bmatrix}$ is called the matrix for T with respect to the basis B, denoted by $[T]_B$, and satisfies

$$[T(x)]_B = A[x]_B = [T]_B[x]_B$$

- Q. What is a vector? (hint: not a tuple)
- Q. What is a matrix? (hint: not a rectangular arrangement of numbers)
- Q. What is a linear transformation? (hint: What is the linearity?)
- Q. How to get $[T]_B$ from $[T]_{B'}$?

$$P_{B\to S} = [v_1, \dots, v_n]$$

• Thus, the followings hold.

$$[x]_B \stackrel{[T]_B}{-\!-\!-\!-\!-\!-\!-\!-\!-} [T(x)]_B = [T]_B[x]_B$$

$$[T]_S = P[T]_B P^{-1}$$

 $[T]_B = P^{-1}[T]_S P$

Example

$$S = \{e_1, e_2\}, B = \left\{ egin{bmatrix} 1 \ 1 \end{bmatrix}, egin{bmatrix} -1 \ 1 \end{bmatrix}
ight\}$$

$$P_{B o S} = egin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix}$$

$$[T]_S = egin{bmatrix} 3 & 2 \ 2 & 3 \end{bmatrix} = egin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix} egin{bmatrix} 5 & 0 \ 0 & 1 \end{bmatrix} egin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix}^{-1}$$

Example

$$S = \{e_1, e_2\}, B = \left\{ egin{bmatrix} \cos heta \ \sin heta \end{bmatrix}, egin{bmatrix} -\sin heta \ \cos heta \end{bmatrix}
ight\}$$

$$P_{B o S} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

$$egin{aligned} [T]_S &= egin{bmatrix} \cos 2 heta & \sin 2 heta \ \sin 2 heta & -\cos 2 heta \end{bmatrix} \ &= egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix} egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} egin{bmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{bmatrix}^{-1} \ \end{aligned}$$

• For genelarlization, given a coordinate change matrix P from B to B', the followings hold.

$$[T]_{B'} = P[T]_B P^{-1}$$

 $[T]_B = P^{-1}[T]_{B'} P$

- Bases of domain and codomain of a linear transformation may be different.
- [Thm] Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, $B=\{v_1,\dots,v_n\}$ be a basis for \mathbb{R}^n , $B'=\{u_1,\dots,u_m\}$ be a basis for \mathbb{R}^m . Then

$$A = [[T(v_1)]_{B'}, ..., [T(v_n)]_{B'}]$$

• is the matrix for T with respect to the bases B and B', denoted by $[T]_B^{B'}$, and satisfies

$$[T(x)]_{B'} = A[x]_B = [T]_B^{B'}[x]_B$$

$$[T]_{B_1}^{B_1'} = U[T]_{B_2}^{B_2'} V^{-1} = [Id]_{B_2'}^{B_1'} [T]_{B_2}^{B_2'} [Id]_{B_1}^{B_2}$$

$$[T]_{B_1}^{B_1'}[x]_{B_1} = [Id]_{B_2'}^{B_1'}[T]_{B_2}^{B_2'}[Id]_{B_1}^{B_2}[x]_{B_1}$$

 Rmk. Since the matrix representation depends on the both bases of domain and codomain, an identity matrix may **not** represent an identity transformation.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

$$[T]_S^B = [\mathrm{Id}]_S^B [T]_S$$

3. Diagonalization

Some quote

• "This chapter begins the "second half" of linear algebra.

The first half was about Ax = b.

The new problem $Ax = \lambda x$ will still be solved making it *diagonal* if possible."

- Linear Algebra and Its Applications, Gilbert Strang.

• [Def] If A is an $n \times n$ matrix, then a scalar λ is called an eigenvalue of A if there is a **nonzero** vector x such that $Ax = \lambda$. Such a vector x is called an eigenvector of A corresponding to λ .

• Rmk. Eigenvalues are the solutions of $|\lambda I - A| = 0$.

• [Def] For an $n \times n$ matrix A, $|\lambda I - A|$ is called the *characteristic polynomial* of A.

• Q. Does a rotation matrix have eigenvalues?

Example

$$S = \{e_1, e_2\}, B = \left\{ egin{bmatrix} 1 \ 1 \end{bmatrix}, egin{bmatrix} -1 \ 1 \end{bmatrix}
ight\}$$

$$P_{B o S}=egin{bmatrix}1&-1\1&1\end{bmatrix}$$

$$[T]_S = egin{bmatrix} 3 & 2 \ 2 & 3 \end{bmatrix} = egin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix} egin{bmatrix} 5 & 0 \ 0 & 1 \end{bmatrix} egin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix}^{-1}$$

• What are the eigenvalues and eigenvectors of $[T]_S$?

$$S = \{e_1, e_2\}, B = \left\{ egin{bmatrix} 1 \ 0 \end{bmatrix}, egin{bmatrix} -1 \ 1 \end{bmatrix}
ight\}$$

$$P_{B o S} = egin{bmatrix} 1 & -1 \ 0 & 1 \end{bmatrix}$$

$$[T]_S = egin{bmatrix} 3 & 1 \ 0 & 2 \end{bmatrix} = egin{bmatrix} 1 & -1 \ 0 & 1 \end{bmatrix} egin{bmatrix} 3 & 0 \ 0 & 2 \end{bmatrix} egin{bmatrix} 1 & -1 \ 0 & 1 \end{bmatrix}^{-1}$$

lab: example_direction_of_eigenvectors.m

Linear independence of eigenvectors

• [Thm] If $v_1, ..., v_k$ are eigenvectors of a matrix A that corresponding to distinct eigenvalues $\lambda_1, ..., \lambda_k$, then the set $\{v_1, ..., v_k\}$ is linearly independent.

• [Cor] If an $n \times n$ matrix A has n distinct eigenvalues, then the set of eigenvectors of A forms a basis of \mathbb{R}^n .

• Q. What if an $n \times n$ matrix A have less than n eigenvalues?

Multiplicity of eigenvalues and eigenspaces

• [Def] If the characteristic polynomial of an $n \times n$ matrix A is factored as

$$|\lambda I - A| = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \dots (\lambda - \lambda_k)^{m_k}$$

- then m_i is called the **algebraic multiplicity** of the eigenvalue λ_i .
- [Def] If λ_0 is an eigenvalue of A, the solution space of

$$(\lambda_0 I - A)x = 0$$

- is called the **eigenspace** of A corresponding to λ_0 .
- The dimension of this eigenspace is called the **geometric multiplicity** of λ_0 .

Multiplicity of eigenvalues and eigenspaces

$$A = egin{bmatrix} 0 & 0 & -2 \ 1 & 2 & 1 \ 1 & 0 & 3 \end{bmatrix}$$

- Find the...
 - Characteristic polynomial of A
 - Eigenvalues and eigenvectors
 - Algebraic multiplicity and geometric multiplicity of each eigenvalue
 - Eigenspace for each eigenvalue
- lab: example_eigenvalue_problem.m

Invertibility of a square matrix

- An $n \times n$ matrix A is invertible if and only if
 - Ax = 0 has only a trivial solution, i.e., $ker(T_A) = \{0\}$.
 - $det(A) \neq 0$
 - A set of column (row) vectors of A forms a basis of \mathbb{R}^n , i.e., $\mathrm{Im}(T) = \mathbb{R}^n$.
 - rank(A) = n, nullity(A) = 0
 - T_A is 1-1 and onto.
 - 0 is not an eigenvalue of A.

3.2 Matrix similarity

What is the matrix similarity?

$$S = \{e_1, e_2\} \qquad \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$$

$$[x]_S \qquad \qquad [T]_S \qquad \qquad [T(x)]_S$$

$$P^{-1} \qquad \qquad P$$

$$[x]_B \qquad \qquad [T(x)]_B$$

$$[T]_B \qquad \qquad [T(x)]_B$$

$$B = \{\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \} \qquad \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}$$

Matrix similarity

• [Def] If A and C are square matrices with the same size, then we say that C is similar to A, denote $A \sim C$, if there exists an invertible matrix P such that $C = P^{-1}AP$.

• [Thm] If A and C are two matrix representations of the same linear operator, then A is similar to C. The inverse is also true.

• [Cor] If $A \sim C$, then $C \sim A$.

Similar matrices are *similar*

- [Thm] Similar matrices have similarity invariants such as:
 - the same determinant.
 - the same rank.
 - the same nullity.
 - the same trace.
 - the same characteristic polynomial.
 - the same eigenvalues with the same algebraic and geometric multiplicities.

- Q. Are the properties above for a matrix or a linear operator?
- Q. If two matrices have same properties above, are they similar?
- lab: example_similarity_check.m

3.3 Eigenvalue Decomposition

Motivation of Diagonalization

The Diagonalization Problem

• [Def] For a square matrix A, if there exists an invertible matrix P such that $P^{-1}AP$ is diagonal, then A is said to be **diagonalizable**, and P is said is to diagonalize A.

- [Thm] An $n \times n$ matrix A is diagonalizable
 - \Leftrightarrow A has n linearly independent eigenvectors.
 - \Leftrightarrow Eigenvectors of A form a basis of \mathbb{R}^n .

$$A = PDP^{-1}$$

Diagonalizability of matrices

• [Thm] An $n \times n$ matrix with n distinct real eigenvalues is diagonalizable.

- [Thm] If A is an $n \times n$ matrix, then
 - (a) The geometric multiplicity of an eigenvalue of A is less than or equal to its algebraic multiplicity.
 - (b) A is diagonalizable.
 - \Leftrightarrow The sum of the geometric multiplicities of its eigenvalues is n.
 - \Leftrightarrow The geometric multiplicity of each eigenvalue of A is the same as its algebraic multiplicity.

• Rmk. Diagonalizability does not mean distinct eigenvalues.

Diagonalizability of matrices: example

$$A = egin{bmatrix} 0 & 0 & -2 \ 1 & 2 & 1 \ 1 & 0 & 3 \end{bmatrix}$$

- Is A diagonalizable?
- If so, find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

lab: example_eigenvalue_problem.m

We still care the orthonormal bases

- It is almost always better to have an orthonormal basis.
 - When can a square matrix A be decomposed like this:

$$A = PDP^{T}$$

The Orthogonal Diagonalization Problem

• [Def] For a square matrix A, if there exists an *orthogonal* matrix P such that P^TAP is *diagonal*, then A is said to be **orthogonally diagonalizable**, and P is said is to orthogonally diagonalize A.

Orthogonal diagonalizability of matrices

- [Thm] An $n \times n$ matrix A is orthogonally diagonalizable.
 - \Leftrightarrow There exists an orthonormal set of n eigenvectors of A.
 - $\Leftrightarrow A$ is symmetric.

• [Thm] If a square matrix A is symmetric, then eigenvectors from different eigenspaces are orthogonal.

• Rmk. For any square matrix, eigenvectors from different eigenspaces are linearly independent.

Spectral decomposition

 \bullet If a matrix A is orthogonally diagonalizable, then

$$A = P$$
 D P^{T}

$$= \begin{bmatrix} | & | & | \\ p_{1} & \cdots & p_{n} \\ | & | \end{bmatrix} \begin{bmatrix} \lambda_{1} & | & | & | \\ & \ddots & | & | \end{bmatrix} \begin{bmatrix} - & p_{1}^{T} & - \\ & \vdots & | \\ - & p_{n}^{T} & - \end{bmatrix}$$

$$= \lambda_{1} p_{1} p_{1}^{T} + \cdots + \lambda_{n} p_{n} p_{n}^{T}$$

• which is called a spectral decomposition (or an eigenvalue decomposition).

Geometric interpretation of EVD

lab: example_geometric_interpretation_of_EVD.m

eigshow

- Q. Equation of the ellipse?
- Q. Direction of major/minor axes?

• lab: eigshow.m

Geometric interpretation of diagonalization

lab: example_diagonalization.m

3.4 Singular Value Decomposition

Motivation of SVD

- Even if a square matrix A is not symmetric, A may be decomposed as $A = PDP^{-1}$ where P is not orthogonal.
- However, an orthogonal matrix or an orthonormal basis is too good to abandon.
- What do we have to throw away?
 - 1) $A = PHP^T$ where P is orthogonal and H is upper-triangular. (Hessenberg, Schur)
 - 2) $A = U\Sigma V^T$ where U, V are orthogonal and Σ is diagonal. (SVD)

• Can we even decompose a non-square matrix in the form of $A = U\Sigma V^T$?

Singular Value Decomposition; SVD

• [Thm] If A is an $n \times n$ matrix of rank k, then A can be factored as

• where U and V are $n \times n$ orthogonal matrices and Σ is an $n \times n$ diagonal matrix whose main diagonal has k positive entries and n-k zeros.

Singular Value Decomposition; SVD

coordinate change from S to V, or $[\mathrm{Id}]_S^V$

coordinate change from U to S, or $[\mathrm{Id}]_U^S$

$$A = U\Sigma V^T$$

• Rmk. Domain and codomain of Σ have different bases.

eigshow

- Q. Equation of the ellipse?
- Q. Direction of major/minor axes?

• lab: eigshow.m

Geometric interpretation of SVD

• lab: example_SVD.m

Singular Value Decomposition; SVD

$$A=U\Sigma V^T=egin{bmatrix} ert & & ert \ u_1 & \cdots & u_n \ ert & & ert \ \end{matrix} egin{bmatrix} \sigma_1 & & & & \ & \ddots & & \ & & \sigma_k & & \ & & & 0 \ \end{matrix} egin{bmatrix} ert & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & & ert \ & & ert \ \end{matrix} egin{bmatrix} ert & & & & & ert \ & & & ert \ \end{matrix} egin{bmatrix} ert & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & &$$

- Rmk.
 - $A^TA = VDV^T$ where D is diagonal and diag $(D) \ge 0$.
 - $\Sigma^2 = D$.
 - Main diagonal of Σ are in nonincreading order.
 - σ_i : singular values of A
 - u_i : left singular vectors of A
 - v_i : right singular vectors of A

SVD of a general matrix

• [Thm] If A is an $m \times n$ matrix of rank k, then A can be factored as

$$A = U\Sigma V^T$$

 $m \times m$

 $m \times n$

 $n \times n$

Reduced SVD

$$m \times k$$

 $k \times k$

 $k \times n$

Reduced singular value expansion

$$A = U_1 \Sigma_1 V_1^T = \begin{bmatrix} \mid & \mid \mid \\ u_1 & \cdots & u_k \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \end{bmatrix} \begin{bmatrix} - & v_1^T & - \\ & \ddots & & \end{bmatrix} \begin{bmatrix} - & v_1^T & - \\ & \vdots & & \\ - & v_k^T & - \end{bmatrix}$$

$$= \sigma_1 u_1 v_1^T + \dots + \sigma_k u_k v_k^T$$

Image compression using SVD

• lab: example_cameraman_image_compression.m

- Data for height and weight
- What is the principal axis?
- How to divide into two groups?

height (cm)	weight (kg)
170	70
150	45
160	55
180	60
172	80
100	17
110	20
90	20
105	18
88	21

$$X_c = X - \text{mean}(X)$$

$$Y = X_c V$$

 $Y = X_{\mathcal{C}}V$ \rightarrow Covariance matrix of Y should be diagonal.

$$Y^TY = egin{bmatrix} ext{var}(y_1) & 0 \ 0 & ext{var}(y_2) \end{bmatrix}$$

$$egin{aligned} Y^TY &= V^TX_c^TX_cV = D \ X_c^TX_c &= VDV^T \end{aligned}$$

$$X_c = U \Sigma V$$

- Column vectors of V are principal axes.
- lab: example_PCA_simple.m

- 300 fruit images are given.
- Each image is 100 x 100.
- How to divide the fruit images into three groups?

 300×300

lab: example_PCA_fruit.m

3.5 Pseudoinverse

Inverse of a *non-square* matrix

- Let A be an $m \times n$ matrix A with full row rank (m < n).
 - Is there an $n \times m$ matrix B such that $BA = I_n$?
 - Is there an $n \times m$ matrix B such that $AB = I_m$?

Inverse of a *non-square* matrix

• Reversing the direction does not work because Σ is not square.

 Reversing the direction works for the reduced SVD because A has full row rank.

Inverse of a *non-square* matrix

- Let A be an $m \times n$ matrix, $A = U_1 \Sigma_1 V_1^T$ be the SVD of A, $A^+ = V_1 \Sigma_1^{-1} U_1^T$.
- If A is full row rank, $AA^+ = I_m$, which is called the right inverse of A.
- If A is full column rank, $A^+A = I_n$, which is called the left inverse of A.
- [Thm] If A is an $m \times n$ matrix with full column rank, then $A^+ = (A^TA)^{-1}A^T$
- If A has full row rank, then

$$A^+ = A^T (AA^T)^{-1}$$

Properties of pseudoinverse

- If A^+ is the pseudoinverse of an $m \times n$ matrix A, then:
 - (a) $AA^{+}A = A$
 - (b) $A^+AA^+ = A^+$
 - (c) $(AA^+)^T = AA^+$
 - (d) $(A^+A)^T = A^+A$
 - (e) $(A^T)^+ = (A^+)^T$
 - (f) $A^{++} = A$

Pseudoinverse solves the Least Square Prob.

$$egin{bmatrix} 1 & x_1 \ 1 & x_2 \ 1 & x_3 \end{bmatrix} egin{bmatrix} c_0 \ c_1 \end{bmatrix} + egin{bmatrix} e_1 \ e_2 \ e_3 \end{bmatrix} = egin{bmatrix} y_1 \ y_2 \ y_3 \end{bmatrix}$$

$$A \quad x \quad + \quad e \quad = \quad y$$

$$\operatorname{proj}_{\operatorname{col}(A)} y = A(A^T A)^{-1} A^T y$$

$$\hat{y} = Ax$$

$$x = (A^T A)^{-1} A^T y = A^+ y$$

- AA^+x is the projection of x onto col(A).
- Best fit is projecting y onto col(A).

lab: example_least_square_is_projection.m

Condition number

- What matters is Σ which stretches/compresses a vector in each direction.
- [Def] **Condition number** of a matrix *A* is the ratio of the largest singular value of *A* to the smallest singular value of *A*.

$$\operatorname{cond}(A) = \frac{\sigma_1}{\sigma_k}$$

- Condition number of A is too large.
 - \equiv Some dimension of Im(A) is negligible.
 - $\equiv A$ is near-singular.

lab: eigshow.m

Multibody vibration problem is an eigenvalue problem.

Compliant mechanisms

$$\delta_{x} = \frac{PL}{EA}$$

$$\delta_y = \frac{QL^3}{3EI} + \frac{ML^2}{2EI}$$

$$\theta_z = \frac{QL^2}{2EI} + \frac{ML}{EI}$$

$$egin{bmatrix} \delta_x \ \delta_y \ heta_z \end{bmatrix} = egin{bmatrix} rac{L}{EA} & 0 & 0 \ 0 & rac{L^3}{3EI} & rac{L^2}{2EI} \ 0 & rac{L^2}{2EI} & rac{L}{EI} \end{bmatrix} egin{bmatrix} P \ Q \ M \end{bmatrix}$$

$$x = Cf$$
 $f = Kx$

2-DOF system

$$m_1 \ddot{x}_1(t) + (k_1 + k_2) x_1(t) - k_2 x_2(t) = 0 \qquad x_1(t) = X_1 \cos(\omega t + \phi)$$

$$m_2 \ddot{x}_2(t) - k_2 x_1(t) + (k_2 + k_3) x_2(t) = 0 \qquad x_2(t) = X_2 \cos(\omega t + \phi)$$

2-DOF system

$$M\ddot{x} + Kx = 0$$

$$(K - \omega^2 M)x = 0$$

$$KM^{-1}x = \omega^2 x$$

```
[V, D] = eig(K*inv(M));
[V, D] = eig(inv(sqrt(M))*K*inv(sqrt(M)));
[V, D] = eig(K, M);
```

Multi-mass Compliant Mechanism

$$M\ddot{x} + Kx = 0$$

```
[V, D] = eig(K*inv(M));
[V, D] = eig(inv(sqrt(M))*K*inv(sqrt(M)));
[V, D] = eig(K, M);
```

See also.

https://ocw.snu.ac.kr/node/30658