MA1057: INTRODUCTION TO ABSTRACT ALGEBRA NORMAL SUBGROUPS AND HOMOMORPHISMS

LECTURER: ARUNDHATHI KRISHNAN

3. NORMAL SUBGROUPS AND HOMOMORPHISMS

3.1. Cosets.

Definition 3.1.1. Let G be a group and H be a subgroup of G. For any $a \in G$, the set $\{ah \mid h \in H\}$ is denoted by aH and is called the left coset of H in G containing a. Similarly, Ha denotes the set $\{ha \mid h \in H\}$ and is called the right coset of H in G containing a.

Notation 3.1.2. The set of all (left) cosets of H in G denoted by $G/_H := \{aH \mid a \in G\}$ and is called the quotient of the group G by H.

Example 3.1.3.

(i) Let $G = S_3, H = \{(1), (13)\}$. The left cosets of H in S_3 are: (1)H = H $(12)H = \{(12)(1), (12)(13)\} = \{(12), (132)\}$ $(132)H = \{(132)(1), (132)(13)\} = \{(132), (12)\} = (12)H$ $(13)H = \{(13), (13)(13)\} = \{(13), (1)\} = H$ $(23)H = \{(23), (23)(13)\} = \{(23), (123)\}$ $(123)H = \{(123), (123)(13)\} = \{(123), (23)\} = (23)H.$

Hence $G_{H} = \{H, (12)H, (23)H\}$. So the quotient of G by H has 3 elements (each of these elements is a set).

(ii) Let $G = \mathbb{Z}$ and $H = 3\mathbb{Z}$. The (left and right) cosets of H in \mathbb{Z} are:

$$0 + H = \{3z \mid z \in \mathbb{Z}\} = [0] = H + 0$$

$$1 + H = \{3z + 1 \mid z \in \mathbb{Z}\} = [1] = H + 1$$

$$2 + H = \{3z + 2 \mid z \in \mathbb{Z}\} = [2] = H + 2,$$

where [0], [1], [2] are the congruence classes in \mathbb{Z}_3 that we encountered in Subsection 2.8. Hence $G_H = \{H, 1+H, 2+H\} = \{[0], [1], [2]\} = \mathbb{Z}_3$.

(iii) Let $G = D_4$ be the dihedral group and $H = \{r_0, r_1, r_2, r_3\}$. The cosets of H in D_4 are:

$$r_0H = \{r_0, r_1, r_2, r_3\} = H = r_1H = r_2H = r_3H$$

 $s_0H = \{s_0, s_1, s_2, s_3\} = s_1H = s_2H = s_3H$

Hence
$$G_{/H} = \{H, s_0 H\}.$$

Remark 3.1.4.

• Cosets are not subgroups except for the coset containing the identity.

• Cosets of a subgroup H corresponding to different elements $a, b \in G$ can be the same. That is, it may happen that aH = bH even if $a \neq b$.

Lemma 3.1.5. Let H be a subgroup of G and let $a, b \in G$. Then

- (i) Either aH = bH or $aH \cap bH = \emptyset$.
- (ii) $aH = bH \iff a^{-1}b \in H$.
- (iii) |aH| = |bH| (that is, the cardinalities of all cosets of H are the same).

Proof.

- (i) Suppose $x \in aH \cap bH$. Then $x = ah_1 = bh_2$ for some $h_1, h_2 \in H$. This in turn implies that $ah = b(h_2h_1^{-1}h) \in bH$ for all $h \in H$. Similarly, $bh = a(h_1h_2^{-1}h) \in aH$ for all $h \in H$. This implies that if $aH \cap bH \neq \emptyset$, then aH = bH.
- (ii) aH = bH if and only if for each $h \in H$, there exists $h', h'' \in H$ such that ah = bh' and bh = ah''. This in turn is true if and only $a^{-1}b = h(h')^{-1} \in H$, or $a^{-1}b = h''h^{-1} \in H$.
- (iii) The map $ah \mapsto bh$ from aH to bH is one-to-one and onto, and hence the two sets have the same cardinality.

3.2. Lagrange's Theorem.

Theorem 3.2.1. If G is a finite group and H is a subgroup of G, then |H| divides |G|. The number of distinct left cosets of H in G is $\frac{|G|}{|H|}$.

Proof. Let a_1H, \ldots, a_rH denote the distinct left cosets of H in G (there are only finitely many because G is finite). Then for each $a \in G$, $aH = a_iH$ for some i, and hence $a \in aH = a_iH$. This means that each $a \in G$ belongs to a coset a_iH and so $G = a_1H \cup \ldots \cup a_rH$. This union is disjoint by part (i) of Lemma 3.1.5, hence $|G| = |a_1H| + \cdots + |a_rH| = r|H|$ (by part (iii) of Lemma 3.1.5). Hence |H| divides |G| and further, $\frac{|G|}{|H|}$ is equal to the number of left cosets of H in G.

Example 3.2.2. Consider (i) of Example 3.1.3. The group $G = S_3$ can be partitioned into the three cosets of $H = \{(1), (13)\}$ in G thus:

$$S_3 = H \sqcup (1\,2)H \sqcup (2\,3)H.$$

The number of cosets of H in G is $\frac{|S_3|}{|H|} = \frac{6}{2} = 3$.

Another example would be to consider the subgroup $K = A_3$ and write down its cosets in $G = S_3$. We would then get (verify!)

$$S_3 = A_3 \sqcup (12)A_3 = \{\text{even permutations}\} \sqcup \{\text{odd permutations}\}$$

The number of cosets of K in G is $\frac{|S_3|}{|A_3|} = \frac{6}{3} = 2$.

Definition 3.2.3. The index of a subgroup H in G is the number of distinct left cosets of H in G, denoted by |G:H|.

A straightforward corollary of Lagrange's Theorem 3.2.1 is the following.

Corollary 3.2.4. If G is a finite group and H is a subgroup of G, then $|G:H| = \frac{|G|}{|H|}$.

Definition 3.2.5. Let G be a group and $a \in G$. Then the *order* of the element a is defined as the smallest positive integer m such that $a^m = e$, the identity element of the group. If no such positive integer exists, then the element is said to be of *infinite order*.

Proposition 3.2.6. *Let* G *be a group and* $a \in G$. *Then* $|a| = |\langle a \rangle|$.

Proof. If a has finite order $m \in \mathbb{N}$, then it can be seen that $\langle a \rangle = \{e, a, \dots, a^{m-1}\}$, which clearly has m elements. On the other hand, if a is of infinite order, then $a^j \neq a^i$ for distinct i and j in \mathbb{Z} . Hence the group $\langle a \rangle = \{e, a, a^2, \dots, \}$ is of infinite order.

Corollary 3.2.7. In a finite group, the order of each element of the group divides the order of the group.

Proof. Let G be a finite group and $a \in G$. Then $\langle a \rangle$, the cyclic subgroup generated by a, is a subgroup of G, hence $|a| = |\langle a \rangle|$ divides the order of G.

Corollary 3.2.8. Let G be a finite group and let $a \in G$. Then $a^{|G|} = e$.

Proof. By Corollary 3.2.7, there exists $n \in \mathbb{N}$ such that $n \mid a \mid = \mid G \mid$. Hence $a^{\mid G \mid} = a^{n \mid a \mid} = e$.

Exercise 3.2.9. A group of prime order is cyclic. (Hint: Let G be a group of prime order p and let $a \in G$, $a \neq e$. Then the order of the cyclic subgroup $\langle a \rangle$ divides p.)

3.3. Normal subgroups. Let G be a group and H be a subgroup of G. Consider cosets aH and bH in the quotient G/H. Can we define a binary operation on them to obtain a new coset, say (ab)H? For this binary operation to be well-defined, we would require (ab)H = (a'b')H whenever aH = a'H and bH = b'H.

Consider for example, $G = S_3$ and $H = \{(1), (13)\}$ as in (i) of 3.1.3. Then

$$(12)H = (132)H$$

and

$$(2\,3)H = (1\,2\,3)H.$$

But

$$((12)(23)) H = (123) H \neq H = ((132)(123)) H.$$

It turns out that the property of the subgroup H we require for this binary operation on (left) cosets to be satisfied is the following:

$$aH = Ha, \ \forall a \in A.$$

Definition 3.3.1. A subgroup H of a group G is called a normal subgroup of G if aH = Ha for all $a \in G$. This is denoted by $H \subseteq G$.

Proposition 3.3.2. A subgroup H of G is normal if and only if $xHx^{-1} \subseteq H$ for all $x \in G$.

Proof. If H is normal, then for each $x \in G$ and $h \in H$, xh = h'x for some $h' \in H$. Hence $xhx^{-1} = h' \in H$, so that $xHx^{-1} \subseteq H$.

For the converse, suppose $xHx^{-1} \subseteq H$ for all $x \in G$. Then for each $a \in G$ and $h \in H$, there exists $h' \in H$ such that $xhx^{-1} = h'$, so that xh = h'x and $xH \subseteq Hx$. On the other hand, as $x^{-1} \in G$, for each $h \in H$, there exists $h'' \in H$ such that $x^{-1}hx = h''$, so that hx = xh'' and $Hx \subseteq xH$.

Proposition 3.3.3. Let G be a group and let H be a normal subgroup of G. The set of all (left) cosets of H in G denoted by $G'_{H} := \{aH \mid a \in G\}$ is a group under the operation (aH)(bH) = abH.

Proof. We first show that the operation is well-defined. Suppose aH = a'H and bH = b'H. Then there exist $h_1, h_2 \in H$ such that $a' = ah_1$ and $b' = bh_2$, so that

$$a'b'H = ah_1bh_2H = ah_1bH$$

= ah_1Hb as H is normal
= $aHb = abH$ as H is normal.

Clearly eH is the identity element of the quotient group, and $a^{-1}H$ is in the inverse of aH for each $a \in G$. Finally, associativity follows because for $a, b, c \in G$, (aHbH)cH = (abH)(cH) = (ab)cH = aH(bcH) = aH(bHcH).

Definition 3.3.4. Let H be a normal subgroup of a group G. Then the group G/H is called the quotient group of G by H.

An element of the quotient group G_H , that is, a coset aH is sometimes written as [a]. Indeed, $a \sim b$ if and only if aH = bH gives an equivalence relation on the group G, and the left cosets are precisely the equivalence classes for this relation.

Clearly, the order of the quotient group $G_{/H}$ is the number of left cosets of H in G, which is the index of H in G, |G:H|. If the order of G is finite, and H is normal, then as a consequence of Lagrange's Theorem 3.2.1, the order of the quotient group $G_{/H}$ is given by

$$\left| \begin{array}{c} G_{H} \end{array} \right| = \frac{|G|}{|H|}.$$

Exercise 3.3.5. Show that for every $n \geq 2$, the subgroup of even permutations A_n is a normal subgroup of the symmetric group S_n . Also find the cardinality of the quotient group S_n/A_n .

3.4. Group Homomorphisms.

Definition 3.4.1. A homomorphism φ from a group G to a group G' is a mapping from G to G' such that $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in G$.

Definition 3.4.2. A group homomorphism which is also bijective is called a group isomorphism. If there exists a group isomorphism from G onto G', we say that the groups G and G' are isomorphic. This is denoted by

$$G \cong G'$$
.

Proposition 3.4.3. Let $\varphi: G \to G'$ be a group homomorphism. Then the following are true:

- (i) $\varphi(e_G) = e_{G'}$, where e_G and $e_{G'}$ denote the identity elements of G and G' respectively.
- (ii) $\varphi(x^{-1}) = \varphi(x)^{-1}$, where x^{-1} is the inverse element of x in G and $\varphi(x)^{-1}$ is the inverse element of $\varphi(x)$ in G' for each $x \in G$.

Proof.

- (i) By the group homomorphism property, we have $\varphi(e_G) = \varphi(e_G e_G) = \varphi(e_G) \varphi(e_G)$. By cancellativity in the group G', we get $\varphi(e_G) = e_{G'}$.
- (ii) By the group homomorphism property and part (i), we have $\varphi(x)\varphi(x^{-1}) = \varphi(xx^{-1}) = \varphi(e_G) = e_{G'}$. Similarly, $\varphi(x^{-1})\varphi(x) = e_{G'}$. By the uniqueness of inverse elements, we get $\varphi(x^{-1}) = \varphi(x)^{-1}$.

We now define an important set associated to a group homomorphism.

Definition 3.4.4. The kernel of a homomorphism $\varphi : G \to G'$ is the set $\{x \in G \mid \varphi(x) = e_{G'}\}$. It is denoted by Ker φ .

Let us now consider some examples of homomorphisms and their kernels.

Example 3.4.5.

- (i) $\varphi: \mathbb{R}^* \to \mathbb{R}^*$ defined as $\varphi(x) = |x|$ is a homomorphism with $\operatorname{Ker} \varphi = \{1, -1\}$.
- (ii) $\varphi: \mathbb{Z} \to \mathbb{Z}_n$ given by $\varphi(m) = m \mod n$ is a group homomorphism with $\operatorname{Ker} \varphi = n\mathbb{Z} = \langle n \rangle$.
- (iii) Let $\varphi: G \to G'$ be a group isomorphism. Then $\operatorname{Ker} \varphi = \{e_G\}$.
- (iv) $\varphi: \mathbb{R}^* \to \mathbb{R}^*$ given by $\varphi(x) = x^2$ is a group homomorphism with $\operatorname{Ker} \varphi = \{1, -1\}$.
- (v) Consider the sign function on the symmetric group given by

$$\operatorname{sign}(\alpha) = \prod_{\substack{i < j, \\ i, j \in \{1, \dots, n\}}} \frac{\alpha(i) - \alpha(j)}{i - j}.$$

Then $\{-1,+1\}$ is a group with respect to ordinary multiplication, and for $n \geq 2$, sign : $(S_n, \circ) \to (\{-1,+1\}, \cdot)$ is a surjective (but not injective, in general) group homomorphism with

$$Ker(sign) = A_n$$
.

- (vi) Let G be the group of real numbers with addition and \overline{G} be the set of positive real numbers with multiplication. Then G and \overline{G} are isomorphic under the mapping $\varphi(x)=2^x$. Let us check that φ is indeed an isomorphism. First $\varphi(x+y)=2^{x+y}=2^x2^y=\varphi(x)\varphi(y)$ so it is indeed a group homomorphism. Suppose $2^x=2^y$, then $\log_2 2^x=\log_2 2^y$ so that x=y. Hence φ is injective. Finally, that it is surjective follows by noting that for every positive real number $y, x=\log_2(y)$ is the pre-image of y under φ .
- (vii) $\varphi: GL_2(\mathbb{R}) \to \mathbb{R}^*$ defined as $\varphi(A) = \det A$ is a group homomorphism with $\operatorname{Ker} \varphi = SL_2(\mathbb{R})$.
- (viii) Let $\mathbb{R}[x]$ be the group of real polynomials in one variable, with pointwise addition. Then $\varphi : \mathbb{R}[x] \to \mathbb{R}[x]$ defined as $\varphi(f) = f'$ (the first derivative) is a group homomorphism with Ker φ given by the set of constant polynomials.
- (ix) $\varphi: (\mathbb{R}, +) \to (\mathbb{R}, +)$ defined as $\varphi(x) = x^2$ is not a homomorphism as $(x+y)^2 \neq x^2 + y^2$ in general.

Proposition 3.4.6. If H is a normal subgroup of a group G, then the mapping $G \to G/H$ given by

$$a \mapsto aH$$

is a group homomorphism with kernel H.

Proof. We know by Proposition 3.3.3 that G_{H} is a group with binary operation given by

$$(aH)(bH) := abH.$$

Hence if $a \mapsto aH$ and $b \mapsto bH$, it is clear that $ab \mapsto abH = (aH)(bH)$, so the given map is a group homomorphism.

The identity element of the quotient group is H, so the kernel of the map is given by

$${a \in G \mid aH = H = eH} = {a \in G \mid ae^{-1} = a \in H} = H.$$

The following result is an important one in group theory, often called the first isomorphism theorem.

Theorem 3.4.7 (The fundamental theorem of group homomorphisms). Let $\varphi : G \to G'$ be a group homomorphism. Then the following holds:

- (i) $\operatorname{Ker} \varphi$ is a normal subgroup of G.
- (ii) $\varphi(G) = \{ \varphi(g) \mid g \in G \}$ is a subgroup of G'.
- (iii) The mapping ψ from $G_{\text{Ker }\varphi} \to \varphi(G)$ given by $\psi(g \text{ Ker }\varphi) = \varphi(g)$ is an isomorphism. That is,

 $G_{\text{Ker }\varphi} \cong \varphi(G).$

Proof.

- (i) We first show that $\operatorname{Ker} \varphi$ is a subgroup of G. Let us denote the identities of G and G' by e_G and $e_{G'}$ respectively. Note that $e_G \in \operatorname{Ker} \varphi$, so the kernel is non-empty. Further, if $x, y \in \operatorname{Ker} \varphi$, then $\varphi(xy^{-1}) = \varphi(x)\varphi(y)^{-1} = e_{G'}$, so the kernel is a subgroup. To show that $\operatorname{Ker} \varphi$ is a normal subgroup, let $g \in G$ and $x \in \operatorname{Ker} \varphi$. Then $\varphi(gxg^{-1}) = \varphi(g)\varphi(x)\varphi(g)^{-1} = \varphi(g)e_{G'}\varphi(g)^{-1} = e_{G'}$, so $gxg^{-1} \in \operatorname{Ker} \varphi$. Hence $g(\operatorname{Ker} \varphi)g^{-1} \subseteq \operatorname{Ker} \varphi$ for every $g \in G$, and so $\operatorname{Ker} \varphi$ is a normal subgroup of G.
- (ii) As $e_G \in G$, $e_{G'} = \varphi(e_G) \in \varphi(G)$, so $\varphi(G)$ is a non-empty subset of G'. Next, suppose $a = \varphi(x), b = \varphi(y) \in \varphi(G)$ for $x, y \in G$. Then $ab^{-1} = \varphi(x)\varphi(y)^{-1} = \varphi(xy^{-1}) \in \varphi(G)$ by the properties of group homomorphisms. Hence $\varphi(G)$ is a subgroup of G'.
- (iii) We first show that $g \operatorname{Ker} \varphi = h \operatorname{Ker} \varphi$ if and only if $\varphi(g) = \varphi(h)$. Indeed,

$$g \operatorname{Ker} \varphi = h \operatorname{Ker} \varphi \iff gh^{-1} \in \operatorname{Ker} \varphi \text{ (by part (ii) of Lemma 3.1.5)}$$

 $\iff \varphi(gh^{-1}) = e_{G'}$
 $\iff \varphi(g) = \varphi(h).$

Hence we have that $\psi(g \operatorname{Ker} \varphi) = \psi(h \operatorname{Ker} \varphi)$ if and only if $\varphi(g) = \varphi(h)$, implying that ψ is well-defined and injective.

The mapping ψ is clearly surjective onto $\varphi(G)$. It remains to show that ψ is multiplicative. This is true as $\psi((g \operatorname{Ker} \varphi)(h \operatorname{Ker} \varphi)) = \psi(g h \operatorname{Ker} \varphi) = \varphi(g h) = \varphi(g)\varphi(h) = \psi(g \operatorname{Ker} \varphi)\psi(h \operatorname{Ker} \varphi)$.

Altogether we have shown that ψ is a well-defined isomorphism between the quotient group $G/_{\operatorname{Ker}\varphi}$ and the group $\varphi(G)$.

Example 3.4.8. Recall the map $\varphi : \mathbb{Z} \to \mathbb{Z}_n$ in part (ii) of Example 3.4.5 given by $\varphi(m) = m \mod n$. We saw that $\operatorname{Ker} \varphi = \langle n \rangle$. The map φ is clearly onto \mathbb{Z}_n (verify!). Hence by Theorem 3.4.7 $\mathbb{Z}/\langle n \rangle \cong \mathbb{Z}_n$.

As an exercise, consider other examples of homomorphisms from part (ii) of Example 3.4.5 and apply the fundamental theorem of group homomorphisms.

Note that Proposition 3.4.6 is a converse of Theorem 3.4.7 as it shows that every normal subgroup of a group G is the kernel of some homomorphism.

REFERENCES

- [1] Course notes of Anca Mustata, Lecturer, University College Cork.
- [2] Chapters 7, 8, 9 and 10. Gallian, Joseph. Contemporary abstract algebra. Nelson Education, 2012.