

Uvod

- elektronički uređaj sustav međusobno povezanih komponenti
- uređaj redovito dio nekog većeg sustava
- svaka komponenta sustav u malom
- projektiranje elektroničkih uređaja = projektiranje sustava (systems engineering)
- projektiranje rješavanje zadanog problema korištenjem ograničenih vremenskih, ekonomskih, ljudskih, tehnoloških i drugih resursa
- cilj plasiranje elektroničkog uređaja na tržište

Životni ciklus elektroničkog uređaja:

- 1. Razvoj
- 2. Verifikacija
- 3. Eksploatacija (instalacija i održavanje)
- 4. Odlaganje

Razvoj elektroničkog uređaja

- složeni proces:
 - specifikacije uređaja
 - funkcionalnost uređaja, sukladnost normama i standardima
 - studija izvodljivosti
 - odabir odgovarajućih tehnologija
 - koordiniranje ekipe stručnjaka različitih profila
 - klasična dilema: off-the-shelf komponente ↔ vlastiti razvoj
 - optimizacija troškova razvoja
 - optimizacija proizvodnih troškova
- cilj: izlazak na tržište ↔ konkurencija!

Tipična pitanja i ograničenja

- funkcionalnost: da li uređaj udovoljava namjeni?
- cijena: da li je proizvodna cijena minimalna?
- sigurnost: da li je uređaj siguran za uporabu?
- pouzdanost: kada se može očekivati pojava kvara?
- održavanje: u slučaju kvara, da li se uređaj može jednostavno popraviti?
- ergonomičnost: da li je uređaj jednostavan i ugodan za uporabu?
- vremenska ograničenja: koliko vremena treba za razvoj uređaja?
- itd.

Faktori uspjeha na tržištu

- tri bitna faktora za tržišni uspjeh uređaja:
 - funkcionalnost
 - uređaj mora pružiti očekivanu funkcionalnost, uz sukladnost s odgovarajućim normama
 - pouzdanost
 - srednje vrijeme do kvara (MTBF mean time between failures)
 - redundacija za kritične aplikacije
 - proizvodljivost (engl. producibility)
 - složenost i cijena proizvodnog postupka
 - pravilo: uređaj projektirati tako da se koristi najjednostavniji proizvodni postupak uz minimalnu proizvodnu cijenu
 - razmotriti dostupnost proizvodnih tehnologija

Dokumentacija

- kvalitetna dokumentacija nužan preduvjet uspjeha
- zapis cjelokupnog puta životnog ciklusa uređaja: ideja, ulazni zahtjevi, specifikacije, razvoj, troškovi i vremenski raspored, testiranje, proizvodnja, upute za uporabu, održavanje...
- percepcija kvalitete uređaja kroz kvalitetu dokumentacije
- opseg i sadržaj dokumentacije nastojati uskladiti s potrebama svakog konkretnog projekta – cijeni se jednostavnost i temeljitost

Koncept uređaja

- za rješavanje problema bitno je najprije razumjeti što je problem!
- kvalitetna specifikacija ↔ uspjeh projekta:
 - identifikacija zahtjeva naručitelja projekta
 - identifikacija potreba korisnika uređaja
 - područje primjene i svrha uređaja ("mission statement")
 - ograničenja
 - norme i standardi koje uređaj treba zadovoljiti
- specifikacija projekta: "tko-što-gdje-kada?"
- "kako?" inženjersko projektiranje
- "zašto?" to pitanje ne postavljaju razvojni inženjeri...

Koncept uređaja

Zahtjevi (specifikacije uređaja)

- rezultat razvoja koncepta uređaja
- opisuju potrebnu funkcionalnost i performanse uređaja
- definiraju točno "što" treba napraviti, ali ne i "kako"
- omogućavaju praćenje razvoja projekta:
 - vremenski raspored aktivnosti, kontrolne točke (*milestones*), rezultati (*deliverables*)
- oprez: u praksi, specifikacije su često podložne naknadnim promjenama!
 - nedovoljno razrađeni ulazni zahtjevi
 - naknadno dobivene informacije
 - "creeping freaturism problem"
 - "dodajte još samo ovu sitnicu, na kraju krajeva, u softveru se uvijek sve može, zar ne?"
 - važnost balansiranja kod usvajanja naknadnih zahtjeva

Specifikacije - primjer

Općeniti tipovi zahtjeva	Primjeri parametara
Karakteristike uređaja	Mjerna nesigurnost, frekvencijski opseg, brzina rada, dimenzije, masa, potrošnja, korisnost, izdržljivost u nepovoljnim uvjetima (temperatura, vlaga, vibracije, EMI), potrebne zaštite
Pouzdanost i održavanje	Srednje vrijeme do kvara (MTBF), učestalost kvarova, trajanje servisa (MTTPR)
Ljudski faktor i korisničko sučelje	Intuitivnost i lakoća korištenja, kašnjenje reakcije, broj operacija u sekvenci, da li je potreban stručnjak za rad s uređajem
Sigurnost i pojava kvara	Analiza mogućih kvarova i njihovih posljedica, načini uklanjanja kvarova
Režim rada i okoliš	Radni omjer, lokacija, temperatura okoline, raspon opterećenja (<i>stress range</i>)
Servisiranje	Interval servisiranja, razina osposobljenosti servisnog osoblja, postupak servisiranja

Razvoj uređaja

- odgovor na pitanje "kako":
 - na koji način riješiti pitanje "što" zadano specifikacijama
 - u kojem su međusobnom odnosu komponente unutar sustava?
- standardi smjernice procesa razvoja
- interdisciplinarna suradnja i timski rad (concurrent engineering)
- metodologije razvoja uređaja:
 - top-down razvoj vođen ulaznim zahtjevima i specifikacijama uređaja
 - bottom-up sinteza rješenja iz postojeće baze rješenja i dostupne tehnologije
 - outside-in sučelje sustava određuje razvoj
 - inside-out rješenje određeno razvojem posebne tehnologije
 - hybrid kombinacija ranije navedenih pristupa

Podjela uređaja na cjeline

- mehaničko projektiranje
 - kućište!
 - raspoloživost prostora, veze između modula
 - montaža tiskanih pločica
- električko projektiranje
 - podjela sklopova na tiskane pločice
 - podjela analognog i digitalnog sklopovlja, NF i VF sklopovlja itd.
 - mogućnost testiranja
- komadna, niskoserijska, visokoserijska proizvodnja

Razvoj uređaja

rapid prototyping

- brza povratna veza u fazi koncipiranja uređaja
- prototip djelomično implementira najbitnije mogućnosti konačnog proizvoda
- preispitivanje i nadopunjavanje specifikacija (validacija rješenja)
- cilj: donošenje ispravnih odluka o daljnjem smjeru razvoja već u ranoj fazi projekta

field testing

- u kasnijoj fazi razvoja, kada je prototip blizak konačnom rješenju
- ispitivanje da li uređaj pruža potrebnu funkcionalnost u specificiranim radnim uvjetima
- "beta testing"

Validacija, verifikacija i integracija

- formalno testiranje da li uređaj zadovoljava predviđenu namjenu
- validacija: u kolikoj su mjeri specifikacije usklađene s namjenom uređaja i ulaznim zahtjevima (kvalitativno)?
- verifikacija: u kojoj mjeri implementirano rješenje zadovoljava specifikacije (kvantitativno)?
- integracija:
 - postupak povezivanja komponenti i podsustava u cjelokupni, konačni sustav
 - testiranje (validacija i verifikacija) integriranog rješenja

Validacija - primjer

Test	Faza razvoja	Funkcija
Analiza sigurnosti uređaja	Rana i srednja faza projektiranja	Identificirati potencijalne probleme s gledišta sigurnosti korištenja uređaja
Stablo događaja (event-tree analysis)	Projektiranje, integracija, eksploatacija	Analiza događaja koji mogu nastati kao posljedica kvara ili neispravnog rada uređaja
Stablo pogrešaka (fault-tree analysis)	Projektiranje, integracija, eksploatacija	Dijagnostika neispravnosti uređaja na temelju uočenih posljedica (obrnut postupak od analize stabla događaja)
Oporavak od kvara i ispravljanje pogrešaka	Završna faza projektiranja, integracija	Analiza procedura oporavka uređaja od kvara ili procedura za ispravljanje pogrešaka, ako postoje
Utjecaj ljudskog faktora	Rana i srednja faza projektiranja	Identifikacija problema i rizika uslijed utjecaja ljudskog faktora
Analiza mogućih kvarova i kritičnosti u primjeni uređaja	Projektiranje, integracija, eksploatacija	Analiza utjecaja kvara pojedinih komponenata sustava i kritičnost svakog kvara u primjeni sustava

Verifikacija - primjer

Područje ispitivanja	Specifičnosti ispitivanja
Utjecaj radne okoline	Temperaturni opseg rada, vlaga, udarci, vibracije, korozija
Elektromagnetska kompatibilnost (EMC)	Razina generiranja elektromagnetskih smetnji (<i>conducted, radiated</i>) i osjetljivost na utjecaj vanjskih EM smetnji
Pouzdanost	Vijek trajanja uređaja, ubrzano ispitivanje (<i>burn-in</i>)
Održavanje	Učestalost i trajanje redovitog održavanja, oprema za testiranje i dijagnostiku kvara, procedure dijagnostike i popravka, osposobljavanje i edukacija servisera
Performanse i tehničke značajke uređaja	Mjerna nesigurnost, frekvencijski opseg, brzina rada, dimenzije, masa itd.
Programska podrška	Verifikacija funkcionalnosti, analiza iznimaka (tj. ponašanja u slučaju nepredviđenih okolnosti), ergonomija korisničkog sučelja

Testiranje

- minimizacija troškova razvoja: cijena promjene dizajna je to manja što se problem ranije uoči
- troškovi promjene dizajna u različitim fazama projekta:

Računalom podržano projektiranje elektroničkih uređaja

Održavanje i ukupni troškovi životnog ciklusa uređaja

- problematici održavanja uređaja se u fazi razvoja često posvećuje nedovoljna pažnja – izvor skrivenih troškova
- troškovi održavanja obuhvatiti u fazi planiranja projekta
- održavanje:
 - preventivno (redovito održavanje)
 - neplanirano (popravci)
 - obaveze popravka u jamstvenom roku i izvan njega
- pristupi održavanju uređaja:
 - sustavi s redundantnom arhitekturom (zamjenska jedinica uključuje se u slučaju kvara)
 - zamjena modula u kvaru
 - zamjena komponente u modulu koja je u kvaru
 - odlaganje uređaja bez popravka i nabavka novog

Održavanje i ukupni troškovi životnog ciklusa uređaja

dijagnostika:

- automatska (built-in test) ili ručna (potrebna posebna vanjska oprema)
- različite razine dijagnostike
- osposobljenost osoblja za održavanje
- dijagnostička oprema

dokumentacija:

- korisnička
- servisna
- administriranje i vođenje zapisa o održavanju proizvoda

Ukupni troškovi životnog ciklusa uređaja - primjer

Kategorija	Primjeri stavki troškova
Troškovi do isporuke (non-recurring costs, NRC)	Amortizacija troškova razvoja, materijal i utrošeni rad
Eksploatacija uređaja	Osoblje, potrošnja energije
Potrošni dijelovi i resursi	Baterije, gorivo, maziva, mehanički dijelovi, papir (npr. za pisače) i sl.
Edukacija	Korisnici, osoblje za održavanje
Održavanje i popravci	Utrošeni rad, rezervni dijelovi, zalihe, troškovi za korisnika zbog neraspoloživosti uređaja
Nadogradnje	Sklopovlje, programska podrška, razrada novih mogućnosti i povećanje složenosti uređaja

Neuspjeh, iteriranje i inženjersko prosuđivanje

"Nearly all engineering failures result from faulty judgements rather than faulty calculations"

 razvojni inženjer zapravo najviše može naučiti iz vlastitih pogrešaka i neuspjeha, kako bi u budućnosti mogao donositi kvalitetnije prosudbe u razvojnom procesu

"No one wants to learn by mistakes, but we cannot learn enough from successes to go beyond the state of the art"

(iz K.R. Fowler, "Electronic instrument design")