

Rechenregeln für Differentialquotienten

SCAN ME

Funktionen und ihre Darstellung

Funktion	$f = f\left(x, y, z\right)$		
Differential von f	$df = \left(\frac{\partial f}{\partial x}\right)_{y,z} dx + \left(\frac{\partial f}{\partial y}\right)_{x,z} dy + \left(\frac{\partial f}{\partial z}\right)_{x,y} dz$		
Funktion	$x_4 = x_4(x_1, x_2, x_3)$		
Differential von x_4	$dx_4 = \left(\frac{\partial x_4}{\partial x_1}\right)_{x_2, x_3} dx_1 + \left(\frac{\partial x_4}{\partial x_2}\right)_{x_1, x_3} dx_2 + \left(\frac{\partial x_4}{\partial x_3}\right)_{x_1, x_2} dx_3$		
Funktion	u = u(v, w, x)		
Differential von u	$du = \left(\frac{\partial u}{\partial v}\right)_{w,x} dv + \left(\frac{\partial u}{\partial w}\right)_{v,x} dw + \left(\frac{\partial u}{\partial x}\right)_{v,w} dx$		

Rechenregeln

$$\left(\frac{\partial u}{\partial v}\right)_{w,x} = \frac{1}{\left(\frac{\partial v}{\partial u}\right)_{w,x}}$$

Erweitern
$$\left(\frac{\partial u}{\partial v}\right)_{w,x} = \left(\frac{\partial u}{\partial w}\right)_{w,x} \cdot \left(\frac{\partial w}{\partial v}\right)_{w,x}$$

Einschieben
$$\left(\frac{\partial u}{\partial v}\right)_{w,x} = -\left(\frac{\partial u}{\partial w}\right)_{v,x} \cdot \left(\frac{\partial w}{\partial v}\right)_{u,x}$$

Index Ändern
$$\left(\frac{\partial u}{\partial v}\right)_{w,x} = -\left(\frac{\partial u}{\partial w}\right)_{v,x} \cdot \left(\frac{\partial w}{\partial v}\right)_{u,x}$$

Stürzen				
1.	Energiepaare bilden	$dE = X_1 \cdot dY_1 + X_2 \cdot dY_2 + \cdots$	$dE = -p \cdot dV + T \cdot dS$	
2.	Zähler und Nenner tauschen	$\left(\frac{\partial Y_1}{\partial X_2}\right)_{X_1,n} $	$\left(\frac{\partial V}{\partial T}\right)_{p,n} \nearrow \left(\frac{\partial T}{\partial V}\right)$	
3.	Hauptgrößen durch Partner ersetzen	$\left(\frac{\partial X_2}{\partial Y_1}\right) \rightarrow \left(\frac{\partial Y_2}{\partial X_1}\right)$	$\left(\frac{\partial T}{\partial V}\right) \rightarrow \left(\frac{\partial S}{\partial (-p)}\right)$	
4.	Vorzeichenwechsel wenn Zähler und Nenner zwei intensive oder extensive Größen sind			
5.	alle im ursprünglichen Ausdruck ungepaarten Größen an Klammer anfügen	$\left(\frac{\partial Y_2}{\partial X_1}\right) \rightarrow \left(\frac{\partial Y_2}{\partial X_1}\right)_{X_2,n}$	$\left(\frac{\partial S}{\partial (-p)}\right) \rightarrow \left(\frac{\partial S}{\partial (-p)}\right)_{T,n}$	
6	Ergebnis	$\left(\frac{\partial Y_1}{\partial X_2}\right)_{X_1,n} \Leftrightarrow \left(\frac{\partial Y_2}{\partial X_1}\right)_{X_2,n}$	$\left(\frac{\partial V}{\partial T}\right)_{p,n} \Leftrightarrow \left(\frac{\partial S}{\partial (-p)}\right)_{T,n}$	

Beweis Regel "Einschieben"

Wenn u = u(v, w, x) = const. dann sind v, w, x nicht unabhängig. Man setze du = 0 bei dx = 0

$$0 = \left(\frac{\partial u}{\partial v}\right)_{w,x} dv + \left(\frac{\partial u}{\partial w}\right)_{v,x} dw \quad - > \quad \left(\frac{\partial u}{\partial v}\right)_{w,x} = -\left(\frac{\partial u}{\partial w}\right)_{v,x} \cdot \left(\frac{\partial w}{\partial v}\right)_{u,x}$$