- 1. Which of the following is a proposition?
 - a. 2 + 5 = 19
 - b. the difference of two primes
 - c. for some positive integer n, n * 17 = 19340
- 2. Given the proposition p is false, proposition q is true and the proposition r is false, determine whether each of the following proposition is true or false.
 - a. $\neg p \lor \neg (q \land r)$
 - b. $(p \lor \neg r) \land \neg ((q \lor r) \lor \neg (r \lor p))$
 - c. $(p \lor q) \land (\neg p \lor q) \land (p \lor \neg q) \land (\neg p \lor \neg q)$
- 3. Represent the given propositions symbolically by letting

- a. it is not the case that (5 < 9 and 9 < 7)
- b. 5 < 9 or it is not the case that (9 < 7 and 5 < 7)
- 4. Formulate the following symbolic expression in words using: P: lee takes computer science q: lee takes
 Mathematics
 - a. ¬p∧¬q
 - b. p∧¬q
- 5. Formulate the symbolic expression in words using:
 - P: today is Monday
 - q: it is raining
 - r: it is hot
 - a. $(p \land q) \land \neg (r \lor p)$
 - b. $(p\Lambda(qVr))\Lambda(rV(qVp))$
- 6. Represent the proposition symbolically by letting P: you run

10 laps daily q: you are healthy r: you take multivitamins

- a. you run 10 laps daily, but you are not healthy
- b. you do not run 10 laps daily, you do not take multi-vitamins and you are not healthy
- 7. State the meaning of each sentence if "or" is interpreted as inclusive-or(V) then state the meaning of each sentence. If "or" is interpreted as exclusive-or(⊕)
 - a. to enter Utopia you must have a driver's license or a passport
 - b. the car comes with a cup holder that heats or cools your drink
 - c. do you want fries or salad with your burger
- 8. Assuming that p and r are false and that q and s are true, find the truth value for each of the propositions:
 - a) $p \rightarrow q$
 - b) ¬p→¬q

	c) $(p \rightarrow q) \land (q \rightarrow r)$
	d) $(s \rightarrow (p \land \neg r) \land ((p \rightarrow (r \lor p) \land s)$
9.	represent the given propositions symbolically
	P: 4 < 2, q: 7 < 10, r: 6 < 6 a.
	a. if 4 < 2 then 7 < 10
	b. it is not true that ($6 < 6$ and 7 is not less than 10) then $6 < 6$
	formulate the symbolic expression in words using P: today is Monday q: it is raining r: it is
	hot
	$a) \neg (p \lor q) \leftrightarrow r$
	$b) \neg p \rightarrow (q \lor r)$
	Write each conditional proposition symbolically. Write the converse, contrapositive for
	each proposition symbolically and in words. You need to assign a letter (p, q, r,) to each
	proposition to write it symbolically
	a) if 4 < 6, then 9 > 12 b) 141 < 3 if -3 < 4 < 3
12	Formulate the arguments of the following symbolically and determine whether each is valid
	P: I study hard q: I got A's r: I get rich
	I study hard q. I got A's if I
	on't get rich, then I don't get A's
···I	get rich
b. it	I study hard, then I get A's, or I get
	ch
I	don't get A's and I don't get rich
	don't study hard
	Write the given argument in words and determine whether each argument is valid using the
	s of inference megabytes is better than no memory at all
	e will buy more memory r: we will buy a
	computer a. p→r V q
	ompater a. p → q
1	, d
··p	\r_
• Þ	71
b. p	→r
r → (
∵q	
1	

C. ¬r→¬q r 14. Determine whether each argument is valid a. (p→q)∧(r→s) p∨r ∴q∨s b. p →(q→r) q→(p→r) ∴(p∨q)→r 15. Given an argument using rules of inference show that conclusion follows the hypothesis a. Hypothesis: if there is gas in the car, then I will go to the store, then I will get a soda. I
 ∴q 14. Determine whether each argument is valid a. (p→q) ∧ (r→s) p ∨ r ∴q ∨ s b. p → (q→r) q→(p→r) ∴ (p ∨ q) → r 15. Given an argument using rules of inference show that conclusion follows the hypothesis
14. Determine whether each argument is valid a. (p→q) ∧ (r→s) p ∨ r ∴ q ∨ s b. p → (q→r) q → (p→r) ∴ (p ∨ q)→r 15. Given an argument using rules of inference show that conclusion follows the hypothesis
14. Determine whether each argument is valid a. (p→q) ∧ (r→s) p ∨ r ∴ q ∨ s b. p → (q→r) q → (p→r) ∴ (p ∨ q)→r 15. Given an argument using rules of inference show that conclusion follows the hypothesis
a. (p→q)∧(r→s) p∨r ··q∨s b. p →(q→r) q→(p→r) ··(p∨q)→r 15. Given an argument using rules of inference show that conclusion follows the hypothesis
p \forall r ∴ q \forall s b. p \rightarrow (q \rightarrow r) q \rightarrow (p \rightarrow r) ∴ (p \forall q) \rightarrow r 15. Given an argument using rules of inference show that conclusion follows the hypothesis
 b. p →(q→r) q→(p→r) ∴ (p ∨ q)→r 15. Given an argument using rules of inference show that conclusion follows the hypothesis
 b. p →(q→r) q→(p→r) ∴ (p ∨ q)→r 15. Given an argument using rules of inference show that conclusion follows the hypothesis
q→(p→r) (p ∨ q)→r 15. Given an argument using rules of inference show that conclusion follows the hypothesis
q→(p→r) (p ∨ q)→r 15. Given an argument using rules of inference show that conclusion follows the hypothesis
15. Given an argument using rules of inference show that conclusion follows the hypothesis
15. Given an argument using rules of inference show that conclusion follows the hypothesis
a. Hypothesis: if there is gas in the car, then I will go to the store, then I will get a soda. I
do not get a soda.
Conclusion: there is no gas in the car, or the car's transmission is defective
b. Hypothesis: if Jill can sing or Jack can play, then I will buy the compact disk. Jill can sing. I will buy the compact disk player
Conclusion: I will by the compact disk and I will buy the compact disk player

```
VIGOMAR KIM ALGADOR
```

HOMEWORK 01

1. q,c

2. p=F, q=T, r=F

a. ¬pV¬(q∧r)

= ~F V ~(T∧F)

= T V ~F

ヨTVT 〓 T

b. $(\rho \vee \neg r) \wedge \neg ((q \vee r) \vee \neg (r \vee \rho))$ $\equiv (F \vee \sim F) \wedge \sim ((T \vee F) \vee \sim (F \vee F))$ $T \wedge \sim (T \vee T) \equiv T \wedge F \equiv F$

C. (p∨q)∧(¬p∨q)∧(p∨¬q)∧(¬p∨¬q) ≡ (F∨T)∧(T∨T)∧(F∨F)∧(T∨F) ≡ T∧T∧F∧T ≡ F

3. q. ~ (p ∧q)

b. p ∨~(q ∧r)

- 4.a. Lee didn't take computer science and didn't take Mathematics.
 - b. Lee takes computer science but didn't take Mathematics.
- 5.a. Today is Monday and it is raining,
 but it is not hot nor today is Monday.
 - b. Today is Monday and it is raining or hot,
 but it is hot or it is raining or today is Monday.
- 6. a. p ~ q
 - b. ~ (p / r / q)
- 7. a. inclusive-or (y): you can show driver license or a passport or both. It is better to show both.

exclusive-or (1): you can show either driver license or

a passport but not both.

b. inclusive-or(v): It means the cup holder can heat and cool at once.

exclusive-or(\oplus): It means the cup holder can only perform heat or

only cool, but not both

```
exclusive -or ( ): It means you can only choose between fries or salad
                                but not both.
8.a. \rho \rightarrow q \equiv F \rightarrow T \equiv T
   b. \sim \rho \rightarrow \sim q \equiv T \rightarrow F \equiv F
    c. (\rho \rightarrow q) \land (q \rightarrow r) \equiv (F \rightarrow T) \land (T \rightarrow F) \equiv F
   d. (s \rightarrow (\rho \land \sim r) \land ((\rho \rightarrow (r \lor \rho) \land s) \equiv (T \rightarrow (F \land T) \land ((F \rightarrow (F \lor F) \land T)))
        \equiv (T \rightarrow F \land ((F \rightarrow T)))
        \equiv (T \longrightarrow F \land T) \equiv F
q. q. p \rightarrow q
    b. \sim (r \wedge q) \longrightarrow r
10. a. Today is not monday or not raining if and only if it is hot.
    b. If today is Monday, then it is raining or not.
11. a. p: 4<6, q: 9>12
              \rho \rightarrow q
                                  converse: • q → p
                                                 • if 9>12, then 4<6
                                  CONTRAPOSITIVE: . ~q -> ~p
                                                         • if 9≤12, then 4≥6
   b. r: -3<4<3 , S: 141<3
                               CONVERSE: • S \rightarrow r
             r \rightarrow s
                                               • if 141<3, +hen -3<4<3
                               CONTRAPOSITIVE: .~S ->~ F
                                                     · if 141 ≥3, then -3≥4 ≥3
12. Q. \rho \rightarrow q
                                                CONCJ
                                                             PREMISE
                                                                    2
                                        P
                                       T
                                              Т
                                                                   T
                                                                 F
                                       T
                                                           T
    from the highlight,
                                       Τ
                                                                  T
    premises are true
    but conclusion is faire
                                                                  T
                                                           T
   therefore invalid.
                                        F
                                                           Τ
                                                                  F
                                        F
                                                                  T
                                                           T
                                        F
```

c. inclusive - or (v): It means that you can have fries or salad or both.

b .ρ→(q∨r)				PREMISE		CONCL.	STEPS:	
~q ^~r	P	ਰੇ	٢	1	2	~ p	① ~q ^~r	
 ∴ ~ρ	т	۲	т	т	F	F	"~r	
•	T	٣	F	Т	F	F	∵~q ⊙ qvr	
the highlight shows	τ	F	т	+	F	F	<u></u>	
that the premises are	τ	F	P	F	Т	F	(3) p→ F	
true and conclusion is	F	Τ	τ	τ	F	τ	∵ ~p	
true. Therefore,	F	Т	F	Τ	F	τ		
valid argument.	F	F	τ	Τ	F	Т		
, , , , , , , , , , , , , , , , , , ,	F	F	F	7	τ	т		

- 13. a. · If 4 megabytes is better than no memory at all, then we will buy a new computer or more memory.
 - · If we will buy a new computer, then we will not buy more memory.
 - if 4 megabytes is better than no memory at all, then we will buy a new computer.

- b. If 4 megabytes is better than no memory at all, then we will buy a new computer.
 - · If we will buy a new computer, then we will buy more memory.
 - . we will buy more memory.

SYLLOGISM:	MODUS PONENS:	
$\rho \rightarrow r$	$ ho \longrightarrow q$	inyalid
r → q	∵ q	argument
<u></u> ρ → d	•	

- c. If we will not buy a new computer, then we will not buy more memory.

we will buy a new computer.

we will buy more memory

CONTRAPOSITIVE : ~r -> ~q = q -> r

modus ponens; q → r

valid argument

14.a. (p → q) ∧ (r → s	:)				PREMISE		
p∨r	ρ	9,	r	S	1	2	CONCL.
`` q v s	т	τ	۲	т	T	7	7
	Т	т	Т	F	F	т	т
	τ	τ	F	τ	Т	τ	т
valid argument	τ	τ	F	F	T	τ	τ
J	т	F	τ	τ	F	т	Т
	т	F	Т	F	F	т	F
	τ	F	F	т	F	τ	Τ
b → d	τ	۴	F	F	F	τ	F
③ (b→d)v(r→c)	F	Т	т	т	Ŧ	T	Т
∵ r→s	F	т	т	F	F	τ	т
3 pyr = ~p→r	F	τ	F	т	Τ	F	τ
	F	τ	F	F	T	F	τ
$r \rightarrow s$	F	F	τ	τ	₹—	7	T
③ "~p→s = ~ε→p	F	F	τ	F	F	τ	F
	F	F	F	τ	τ	F	τ
P → q	F	F	F	F	+	F	F
3 ~s→q = svq = qvs						-	-

$q \rightarrow (p \rightarrow r)$				PR	EMISE	
$(p \vee q) \rightarrow r$	P	Q*	r	1	2	CONCL.
,	τ	٣	т	Т	T	Т
	T	٣	F	F	F	F
invalid	τ	F	т	Τ	Т	τ
argument	τ	F	F	Τ	F	F
J	F	τ	τ	τ	Τ	T
	F	τ	F	Τ—	Τ	F
	F	F	Т	T	7	Т
	F	F	F	Τ	Τ	τ

$$\rho \rightarrow q$$

$$q \rightarrow r$$

$$\rho \longrightarrow q$$

$$q \longrightarrow r$$

$$\sim r$$

$$\sim r$$

$$\sim \rho \vee s$$

$$\rho \rightarrow q$$
 $\rho \rightarrow r$

$$\rho \rightarrow r$$

Argument : Valid

$$(\rho \vee q) \longrightarrow r$$

16.0. If he studios he will once the every
16. a. If he studies, he will pass the exam
p: he studies
q:he will pass the exam