International Olympiad in Informatics 2015

26th July - 2nd August 2015 Almaty, Kazakhstan Day 2

sorting

Language: zh-TW

排序

Aizhan 有一個 N 個整數的數列 $S[0], S[1], \ldots, S[N-1]$. 數列由 0 到 N-1 的數字組成且 互不相同。他試著透過數字的兩兩調換,將數列由小到大排序。他的朋友Ermek也會把幾對數字做兩兩調換,只是那未必是有幫助的。

Ermek 和 Aizhan 會進行幾輪的數列變換。在每一輪當中,Ermek先調換一次,然後Aizhan再調換一次。說得更明確點,每次進行互換的人選出兩個有效的索引編號,並將該編號指向的元素互換。注意,這兩個索引編號有可能相同,當兩個索引編號相同,此人將元素和本身互換,也就不會改變數列。

Aizhan 知道 Ermek 並不在乎數列 S 的排序。他也知道 Ermek 會選的索引編號是哪個。Ermek 預計參與 M 輪的互換,我們將這幾輪編號為 0 到 M-1,對 0 到 M-1 之間的任一個 i, Ermek 在第 i 輪將會選擇索引編號 X[i] 和 Y[i]。

Aizhan 要將數列 S 排序。每一輪開始之前,如果 Aizhan 看到數列已經是由小到大排好,他將會終止整個過程。給定原來的數列 S 和 Ermek 會選擇的索引編號,你的任務是找出一系列的互換,幫助 Aizhan 完成排序。還有,在某些 subtasks 中,你找到的一系列互換必須愈短愈好。你可以假設數列 S 可以在 M 或更少次互換後完成排序。

注意,如果 Aizhan 看到 Ermek 的互換後,數列 S 已經依序排好,他可以選擇兩個相同的索引編號做互換(例如 0 和 0),結果就是這輪結束後,數列 S 也是依序排好,Aizhan 達到目的。並且注意,如果一開始數列 S 就已經依序排好,排序所需的輪數最小值為 0。

Example 1

假設:

- 起始序列是 S = 4, 3, 2, 1, 0.
- Ermek 願意做 M = 6 次互換。
- 代表 Ermek 將選擇的索引編號序列 X 和 Y 是 X = 0, 1, 2, 3, 0, 1 和 Y = 1, 2, 3, 4, 1, 2,换句話說,Ermek 打算選擇的各對索引編號是 (0, 1), (1, 2), (2, 3), (3, 4), (0, 1), 和 <math>(1, 2).

在這情況下,Aizhan 可以用三輪把數列 S 排序成 0,1,2,3,4. 他可以選擇索引編號 (0,4), (1,3) 然後 (3,4)。

下表顯示 Ermek 和 Aizhan 如何更改數列。

第幾輪	參與者	互換的索引編號	數列	
開始時			4, 3, 2, 1, 0	
0	Ermek	(0,1)	3, 4, 2, 1, 0	
0	Aizhan	(0,4)	0, 4, 2, 1, 3	

第幾輪	參與者	互換的索引編號	數列
1	Ermek	(1,2)	0, 2, 4, 1, 3
1	Aizhan	(1,3)	0, 1, 4, 2, 3
2	Ermek	(2,3)	0, 1, 2, 4, 3
2	Aizhan	(3,4)	0, 1, 2, 3, 4

Example 2

假設:

- 起始序列是 S = 3, 0, 4, 2, 1.
- Ermek 願意做 M = 5 次互換。
- Ermek 打算選擇的各對索引編號是 (1,1), (4,0), (2,3), (1,4), 和 (0,4).

在這情況下,Aizhan 可以用三輪把數列 S 排序成例如,他可以選擇索引編號 (1,4), (4,2) 然 後 (2,2)。下表顯示 Ermek 和 Aizhan 如何更改數列。

第幾輪	參與者	互換的索引編號	數列
開始時			3, 0, 4, 2, 1
0	Ermek	(1,1)	3,0,4,2,1)
0	Aizhan	(1,4)	3, 1, 4, 2, 0
1	Ermek	(4,0)	0, 1, 4, 2, 3
1	Aizhan	(4,2)	0, 1, 3, 2, 4
2	Ermek	(2,3)	0, 1, 2, 3, 4
2	Aizhan	(2,2)	0, 1, 2, 3, 4

Task

你會拿到數列 S, 數目 M, 和索引編號序列 X 和 Y。計算出一個 Aizhan 用來完成排序的互換序列。在 subtasks S 和 G, 你找到的互換序列必須愈短愈好。

你必須實作函數 findSwapPairs:

- findSwapPairs (N, S, M, X, Y, P, Q) 這個函數會被grader評分程式呼叫一次。
 - N: 數列 S 的長度。
 - S: 整數陣列,代表起始數列 S。
 - M: Ermek 打算做互換的次數。
 - X, Y: 長度 M 的整數陣列。For $0 \le i \le M-1$, 在第 i 輪,Ermek 打算互換在索引編號 X 和 Y 的數字。
 - P, Q:整數陣列。用這些陣列來回報一個 Aizhan 可能用來排序 S 的互換序列。R 代表你的程式找到的互換序列長度,對於 0 到 R-1 之間的任一個 i , Aizhan 在 第 i 輪所選擇的索引編號,必須存放在 P[i] 和 Q[i] 。你可以假設 P 和 Q 陣列已

經各配置了 M 個元素。

■ 這個函數必須回傳 R 的值(定義如上)。

Subtasks

subtask	points	N	M	X, Y 的額外限制	R 須符合
1	8	$1 \le N \le 5$	$M=N^2$	X[i]=Y[i]=0	$R \leq M$
2	12	$1 \le N \le 100$	M = 30N	X[i]=Y[i]=0	$R \leq M$
3	16	$1 \le N \le 100$	M = 30N	X[i]=0, Y[i]=1	$R \leq M$
4	18	$1 \le N \le 500$	M = 30N	無	$R \leq M$
5	20	$1 \le N \le 2000$	M=3N	無	愈小愈好
6	26	$1 \leq N \leq 200,000$	M=3N	無	愈小愈好

你可以假設只需要 M 或更少輪的解法是存在的。

Sample grader

Sample grader 以下列格式從 sorting.in 檔案中讀入資料:

- line 1: N
- line 2: S[0] ... S[N 1]
- line 3: M
- lines 4, ..., M + 3: X[i] Y[i]

Sample grader 印出下列輸出。

- line 1: findSwapPairs的回傳值 R。
- line 2+i, for $0 \le i < R$: P[i] Q[i]