

Olimpiada de Fizică Etapa pe județ 2 februarie 2013

Barem

Problema I

Nr. item	A. Post de radio local		Punctaj
a.	Pentru:		4,00p
	undele emise de antena A $\begin{cases} u_{dreapta}^{(A)} = \mathbf{a} \cdot \sin \left[2\pi \left(\frac{\mathbf{x}}{\lambda} - \frac{\mathbf{t}}{T} \right) \right] \\ u_{stånga}^{(A)} = \mathbf{a} \cdot \sin \left[2\pi \left(-\frac{\mathbf{x}}{\lambda} - \frac{\mathbf{t}}{T} \right) \right] \end{cases}$	0,40p	
	undele emise de antena B		
	$\begin{cases} u_{\text{dreapta}}^{(B)} = \mathbf{a} \cdot \sin \left[2\pi \left(\frac{\mathbf{x} - \mathbf{L}}{\lambda} - \frac{\mathbf{t} - \Delta t}{T} \right) \right] = \mathbf{a} \cdot \sin \left[2\pi \left(\frac{\mathbf{x}}{\lambda} - \frac{\mathbf{t}}{T} \right) + 2\pi \left(-\frac{\mathbf{L}}{\lambda} + \frac{\Delta t}{T} \right) \right] \\ u_{\text{stånga}}^{(B)} = \mathbf{a} \cdot \sin \left[2\pi \left(-\frac{\mathbf{x} - \mathbf{L}}{\lambda} - \frac{\mathbf{t} - \Delta t}{T} \right) \right] = \mathbf{a} \cdot \sin \left[2\pi \left(-\frac{\mathbf{x}}{\lambda} - \frac{\mathbf{t}}{T} \right) + 2\pi \left(\frac{\mathbf{L}}{\lambda} + \frac{\Delta t}{T} \right) \right] \end{cases}$	1,20p	
	$\begin{cases} \frac{u_{dreapta}^{compus}}{a} = \sin\left[2\pi\left(\frac{x}{\lambda} - \frac{t}{T}\right)\right] + \sin\left[2\pi\left(\frac{x}{\lambda} - \frac{t}{T}\right) + 2\pi\left(-\frac{L}{\lambda} + \frac{\Delta t}{T}\right)\right] \\ \frac{u_{stånga}^{compus}}{a} = \sin\left[2\pi\left(-\frac{x}{\lambda} - \frac{t}{T}\right)\right] + \sin\left[2\pi\left(-\frac{x}{\lambda} - \frac{t}{T}\right) + 2\pi\left(\frac{L}{\lambda} + \frac{\Delta t}{T}\right)\right] \end{cases}$	0,40p	
	$\begin{cases} u_{dreapta}^{compus} = 2 \cdot a \cdot \cos \left[\pi \left(-\frac{L}{\lambda} + \frac{\Delta t}{T} \right) \right] \cdot \sin \left[\pi \left(\frac{2x}{\lambda} - \frac{2t}{T} - \frac{L}{\lambda} + \frac{\Delta t}{T} \right) \right] \\ u_{stånga}^{compus} = 2 \cdot a \cdot \cos \left[\pi \left(\frac{L}{\lambda} + \frac{\Delta t}{T} \right) \right] \cdot \sin \left[\pi \left(-\frac{2x}{\lambda} - \frac{2t}{T} + \frac{L}{\lambda} + \frac{\Delta t}{T} \right) \right] \end{cases}$	0,40p	
	condițiile de interferență constructivă "la dreapta", respectiv distructivă "la stânga" $\begin{cases} \pi \left(-\frac{L}{\lambda} + \frac{\Delta t}{T} \right) = k \cdot \pi \\ \pi \left(\frac{L}{\lambda} + \frac{\Delta t}{T} \right) = \frac{\pi}{2} \left(2h + 1 \right) \end{cases}$ $h, k \in \mathbb{N}$	1,00p	

Barem de evaluare Problema I- Clasa a XII-a Pagina 1 din 8

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

	$\begin{cases} \frac{2L}{\lambda} = h + \frac{1}{2} - k \\ L = \frac{\lambda}{2} \cdot \left(h - k + \frac{1}{2} \right) \end{cases}$	0,20p	
	expresia celei mai mici distanțe dintre antene ($h=k=0$) $L=\frac{\lambda}{4}$	0,40p	
b.	Pentru:		0,50p
	expresia "întârzierii" $\Delta t = \frac{T}{4}$	0,50p	
C.	Pentru:		0,50p
	$L = 75 m$ $\Delta t = 0.25 \mu\text{s}$	0,50p	
Nr.	B. Dispozitiv pentru detecția obiectelor situate sub suprafața pământu	โบi	Punctaj
item a.	Pentru:		1,30p
	expresia coeficientului β , în condiția $\left(\frac{\sigma}{\omega\varepsilon}\right)^2 \langle \langle 1 \rangle \rangle = \omega \sqrt{\left(\frac{\mu\varepsilon}{2}\right) \cdot \left(\sqrt{1 + \frac{\sigma^2}{\varepsilon^2\omega^2}} + 1\right)} \cong \omega \sqrt{\left(\frac{\mu\varepsilon}{2}\right) \left(1 + \frac{\sigma^2}{2\varepsilon^2\omega^2} + 1\right)} \cong \omega \sqrt{\mu \cdot \varepsilon}$	0,50p	
	$\begin{cases} \beta = \frac{2\pi}{\lambda} \\ \beta = \frac{\omega}{v} \end{cases}$	0,30p	
	expresia vitezei de propagare a undei electromagnetice prin pământ $v = \frac{1}{\sqrt{\varepsilon \cdot \mu}}$	0,50p	
b.	Pentru:		1,10p
	condiția pentru determinarea adâncimii maxime h_{max} la care nu mai poate fi detectat un obiect situat în pământ $E_0 e^{-\alpha h_{max}} = \frac{E_0}{e}$	0,30p	

Barem de evaluare Problema I- Clasa a XII-a

Pagina 2 din 8

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

expresia coeficientului α , în condiția $\left(\frac{\sigma}{osc}\right)^2 \langle\langle 1 - \alpha \rangle \rangle = \omega \sqrt{\left(\frac{\mu \varepsilon}{2}\right)^2 \cdot \left(\sqrt{1+\frac{\sigma^2}{\varepsilon^2 o^2}} - 1\right)} = \omega \sqrt{\left(\frac{\mu \varepsilon}{2}\right) \left(1+\frac{\sigma^2}{2\varepsilon^2 o^2} - 1\right)} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}$ 0,50p expresia adâncimii maxime $h_{max} = \frac{2}{\sigma} \sqrt{\frac{\varepsilon}{\mu}}$ 0,30p 0,30p c. Pentru: 0,30p 0,30p 0,30p d. 0,30p 0,3				
$\alpha = \omega \sqrt{\left(\frac{\mu \mathcal{E}}{2}\right)} \cdot \left(\sqrt{1 + \frac{\sigma^2}{\varepsilon^2 \omega^2}} - 1\right) \equiv \omega \sqrt{\left(\frac{\mu \mathcal{E}}{2}\right)} \left(1 + \frac{\sigma^2}{2\varepsilon^2 \omega^2} - 1\right) \equiv \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}$ expresia adâncimii maxime $h_{max} \equiv 2 \frac{\sigma}{\sigma} \sqrt{\frac{\varepsilon}{\mu}}$ 0,30p c. Pentru: valoarea adâncimii maxime la care poate fi detectat un obiect în pământ $h_{max} \equiv 16 m$ 0,30p d. Pentru: 1,30 expresia diferenței de drum dintre semnalele emise de antena dispozitivului, reflectate de cele două conducte și recepționate de detector $\Delta x = 2 \left(\sqrt{\sigma^2 + r^2} - d \right)$ expresia diferenței de fază $\Delta \varphi = \frac{2 \cdot \pi \cdot \Delta x \cdot f}{v}$ 0,20p expresia frecvenței minime necesare pentru obținerea unei anumite rezoluții laterale $f_{min} = \frac{v}{4 \left(\sqrt{d^2 + r^2} - d \right)}$ 0,30p valoarea frecvenței minime a undelor electromagnetice, care este necesară pentru a se obține o rezoluție laterală de $r = 50 cm$ 0,30p $f_{min} \equiv 800 MHz$		expresia coeficientului $lpha$, în condiția $\left(rac{\sigma}{\omegaarepsilon} ight)^{\!2}\!$		
c. Pentru: valoarea adâncimii maxime la care poate fi detectat un obiect în pământ $h_{max} \equiv 16m$ 0,30p d. Pentru: 1,30 1,30p d. Pentru: 1,30 1,30p d. Pentru: 1,30 1,30p d. Pentru: 1,30p d.		$\alpha = \omega \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\sigma^2}{\varepsilon^2 \omega^2}} - 1\right)} \cong \omega \sqrt{\frac{\mu \varepsilon}{2} \left(1 + \frac{\sigma^2}{2\varepsilon^2 \omega^2} - 1\right)} \cong \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}$	0,50p	
valoarea adâncimii maxime la care poate fi detectat un obiect în pământ $h_{max} \cong 16m$ 0,30p 1,30 1,30 1,30 1,30 1,30 1,30 1,30 1,30		expresia adâncimii maxime $h_{max}\cong rac{2}{\sigma}\sqrt{rac{arepsilon}{\mu}}$	0,30p	
d. Pentru: 1,30 antena d represia diferenței de drum dintre semnalele emise de antena dispozitivului, reflectate de cele două conducte și recepționate de detector $\Delta x = 2\left(\sqrt{d^2+r^2}-d\right)$ expresia diferenței de fază $\Delta \varphi = \frac{2 \cdot \pi \cdot \Delta x \cdot f}{V}$ 0,20p expresia frecvenței minime necesare pentru obținerea unei anumite rezoluții laterale $f_{min} = \frac{V}{4\left(\sqrt{d^2+r^2}-d\right)}$ 0,30p valoarea frecvenței minime a undelor electromagnetice, care este necesară pentru a se obține o rezoluție laterală de $r = 50cm$ 0,30p $f_{min} \equiv 800MHz$	C.	Pentru:		0,30p
expresia diferenței de drum dintre semnalele emise de antena dispozitivului, reflectate de cele două conducte și recepționate de detector $\Delta x = 2\Big(\sqrt{d^2 + r^2} - d\Big)$ expresia diferenței de fază $\Delta \varphi = \frac{2 \cdot \pi \cdot \Delta x \cdot f}{V}$ 0,20p expresia frecvenței minime necesare pentru obținerea unei anumite rezoluții laterale $f_{min} = \frac{V}{4\left(\sqrt{d^2 + r^2} - d\right)}$ 0,30p valoarea frecvenței minime a undelor electromagnetice, care este necesară pentru a se obține o rezoluție laterală de $r = 50cm$ 0,30p $f_{min} \cong 800MHz$			0,30p	
expresia diferenței de drum dintre semnalele emise de antena dispozitivului, reflectate de cele două conducte și recepționate de detector $\Delta x = 2 \left(\sqrt{d^2 + r^2} - d \right)$ expresia diferenței de fază $\Delta \varphi = \frac{2 \cdot \pi \cdot \Delta x \cdot f}{v}$ 0,20p expresia frecvenței minime necesare pentru obținerea unei anumite rezoluții laterale $f_{min} = \frac{v}{4 \left(\sqrt{d^2 + r^2} - d \right)}$ 0,30p valoarea frecvenței minime a undelor electromagnetice, care este necesară pentru a se obține o rezoluție laterală de $r = 50cm$ 0,30p $f_{min} \equiv 800MHz$	d.	Pentru:		1,30
expresia frecvenței minime necesare pentru obținerea unei anumite rezoluții laterale $f_{min} = \frac{v}{4\left(\sqrt{d^2+r^2}-d\right)}$ 0,30p valoarea frecvenței minime a undelor electromagnetice, care este necesară pentru a se obține o rezoluție laterală de $r=50cm$ 0,30p $f_{min}\cong 800MHz$ 1,00p		conductă conductă expresia diferenței de drum dintre semnalele emise de antena dispozitivului, reflectate de cele două conducte şi recepționate de detector	0,50p	
laterale $f_{min} = \frac{v}{4\left(\sqrt{d^2+r^2}-d\right)}$ 0,30p valoarea frecvenței minime a undelor electromagnetice, care este necesară pentru a se obține o rezoluție laterală de $r=50cm$ 0,30p $f_{min}\cong 800MHz$ 1,00p		expresia diferenței de fază $\Delta \varphi = \frac{2 \cdot \pi \cdot \Delta x \cdot f}{v}$	0,20p	
a se obține o rezoluție laterală de $r=50cm$ 0,30p $f_{min}\cong 800MHz$ 1,00p			0,30p	
•		a se obține o rezoluție laterală de $r=50cm$	0,30p	
TOTAL Problema I 10p	Ofici	u		1,00p
	10p			

Barem de evaluare și de notare propus de:

Profesor Dr. Delia DAVIDESCU Conf. univ. dr. Adrian DAFINEI Facultatea de Fizică – Universitatea București

Barem de evaluare Problema I- Clasa a XII-a Pagina 3 din 8

1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Problema a 11-a Nr.				
item	A. Avioane care zboară la altitudine mică deasupra mării		Punctaj	
a.	Pentru: Coordonatele punctelor de interes pentru analiza diferenței de drum dintre unda detectată direct și cea detectată după reflexia pe suprafața apei $A(0,0)$, $B(d,0)$, $R(hd/(H+h),0)$, $P(0,h)$, $C(d,H)$ Observație:coordonatele sunt indicate în raport cu un sistem de axe	0,40p	1,00p	
b.	ortogonale xOy , având originea în punctul A explicație corectă	0,60p	3,00p	
	expresia drumului parcurs de unda detectată direct $\delta_1 = \sqrt{d^2 + \left(H - h'\right)^2}$ $\delta_1 \cong d \left(1 + \frac{\left(H - h'\right)^2}{2d^2}\right)$	0,40p		
	expresia drumului parcurs de unda detectată după reflexia pe suprafața apei $\delta_2 = \sqrt{d^2 + \left(H + h'\right)^2} - \frac{\lambda}{2}$ $\delta_2 \cong d \left(1 + \frac{\left(H + h'\right)^2}{2d^2}\right) - \frac{\lambda}{2}$	0,80p		
	expresia diferenței de drum $\begin{cases} \Delta \cong d \left(1 + \frac{(H+h')^2}{2d^2}\right) - \frac{\lambda}{2} - d \left(1 + \frac{(H-h')^2}{2d^2}\right) \\ \Delta \cong \frac{2Hh'}{d} - \frac{\lambda}{2} \end{cases}$	0,50p		

Barem de evaluare Problema a II-a Clasa a XII-a

Pagina 4 din 8

	condiția de obținere a unui maxim de interferență $\frac{2Hh'}{d} - \frac{\lambda}{2} = n\lambda$, $n \in N$	0,50p	
	$h'_n = \frac{d\lambda}{2H} \left(n + \frac{1}{2} \right)$	0,20p	
	valorile înălţimilor succesive la care se poate afla un avion, pentru a fi detectat cu ajutorul sistemul analizat $h' = 125 m; \ 375 m; \ 625 m; \ 875 m; \ 1125 m; 1375 m, \dots$	0,60p	
Nr. item	B. Nava stelară SS Enterprise		Punctaj
a.	Pentru:		1,20p
	expresiile coordonatelor care descriu pozițiile navelor la momentul t_0 , în sistemul de referință solidar cu nava Enterprise $\begin{cases} x_{1,AO_0} = x_{0,AO_0} + v_A \cdot t_0 \\ x_{1,BO_0} = x_{0,BO_0} + v_B \cdot t_0 \end{cases}$	0,40p	
	condiția ca distanța dintre navetele BS100 și BS200 să devină jumătate din distanța inițială $x_{1,BO_0} - x_{1,AO_0} = \frac{1}{2} \cdot \left(x_{0,BO_0} - x_{0,AO_0} \right)$	0,20p	
	expresia timpului scurs în sistemul O_0 , solidar cu SS Enterprise, până la înjumătățirea distanței $t_o = \frac{x_{0,BO_0} - x_{0,AO_0}}{v_A - v_B} \cdot \frac{1}{2}$	0,40p	
	$t_{o} = 1,00 \mathrm{s}$	0,20p	
b.	Pentru: coordonata punctului <i>A</i> în sistemul de referință solidar cu nava Enterprise		0,60p
	$x_{1,AO_0}=3,60\cdot 10^8 m$ coordonata punctului B în sistemul de referință solidar cu nava Enterprise	0,30p 0,30p	
	$x_{1,BO_0} = 5.10 \cdot 10^8 m$. · r	

Barem de evaluare Pagina 5 din 8 Problema a II-a Clasa a XII-a

 Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
 Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

C.	Pentru:		1,00p
	expresia intervalului de timp t_{s,O_o} în care, în sistemul O_0 , semnalul ajunge la		
	naveta BS100 $t_{s,O_0} = \frac{x_{0,BO_0} - x_{0,AO_0}}{v_A + c}$	0,70p	
	$t_{s,O_0} = 5,88 \cdot 10^{-1} s$	0,30p	
d.	Pentru:		1,00p
	coordonata (în sistemul O_0) a punctului în care are loc recepționarea semnalului luminos de către naveta BS100		
	$X_{s,O_0} = X_{0,AO_0} + V_A \cdot t_{s,O_0}$	0,70p	
	$\begin{vmatrix} sau \\ X_{s,O_0} = X_{0,BO_0} - c \cdot t_{s,O_0} \end{vmatrix}$		
	$\lambda_{s,O_0} = \lambda_{0,BO_0} \forall \iota_{s,O_0}$		
	valoarea coordonatei locului în care este recepționat semnalul de către naveta BS100 $x_{s,O_0} = 2,74 \cdot 10^8 m$	0,30p	
е.	Pentru:		1,20p
	expresia duratei evenimentului, în sistemul O_1 solidar cu naveta BS100		
	$\tau_{O_1} = \frac{\tau_{O_0}}{\sqrt{1 - (v_A/c)^2}}$	1,00p	
	valoarea intervalului de timp $\tau_{O_1} = 1,40s$	0,20p	
Ofici			1,00p
TOT	AL Problema a II-a		10p

Barem de evaluare şi de notare propus de:

Profesor Dr. Delia DAVIDESCU Conf. univ. dr. Adrian DAFINEI Facultatea de Fizică – Universitatea București

Barem de evaluare Problema a II-a Clasa a XII-a Pagina 6 din 8

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

	Interferometrul Michelson	Parțial	Punctaj
a.	Diferența de drum este		
	$\delta = 2x = 2m\frac{\lambda}{2},\tag{1}$	2 x 1 = 2	
	de unde		
	$x = m\frac{\lambda}{2} . \tag{2}$		2,50p
	Numeric		
	$x = 129 \times \frac{632,8 \cdot 10^{-9}}{2} = 4,08 \cdot 10^{-5} \text{ (m)}.$ (3)	0,5 p	
b.	$\delta = 2nd - 2d = 2(n-1)d, \qquad (4)$	1,0	
	Care, comparată cu (1), dă $n = 1 + \frac{m\lambda}{2d}. \tag{5}$	0,5	2,00p
	Numeric $n = 1 + \frac{129 \cdot 632,8 \cdot 10^{-9}}{2 \cdot 9.55 \cdot 10^{-2}} = 1 + 4,27 \cdot 10^{-4} = 1,000427. $ (6)	0,5	
C.	c1. Franjele de interferență dispar periodic deoarece maximele corespunzătoare unei radiații monocromatice se suprapun peste minimele celeilalte, în mod periodic. c2. La prima suprapunere a unui maxim peste un minim se poate scrie	0,5	
	$2x_1 = m_1\lambda_1 = \left(m_1 - \frac{1}{2}\right)\lambda_2,$	1,0	
	de unde $m_1 = \frac{\lambda_2}{2(\lambda_2 - \lambda_1)} \tag{7}$	0,25	
	şi $x_1 = \frac{\lambda_1 \lambda_2}{4(\lambda_2 - \lambda_1)} \tag{8}$	0,25	
	La a doua suprapunere $2x_2 = \left(m_2 + \frac{1}{2}\right)\lambda_1 = \left(m_2 - 1\right)\lambda_2,$	1,0	4,50p
	de unde $m_2 = \frac{2\lambda_2 + \lambda_1}{2(\lambda_2 - \lambda_1)} \tag{9}$	0,25	
	$x_2 = \frac{3\lambda_1\lambda_2}{4(\lambda_2 - \lambda_1)} \tag{10}$	0,25	
	$4(\lambda_2-\lambda_1)$ Prin urmare		
	$\Delta X = X_2 - X_1 = \frac{\lambda_1 \lambda_2}{2(\lambda_2 - \lambda_1)} $ (11)	0,5	
	Numeric $\Delta x = 2,894 \cdot 10^{-4} \ m$. (12)	0,5	

Barem de evaluare Problema a III-a Clasa a XII-a

Pagina 7 din 8

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Observatii: 1. Suprapunerile de maxime și minime de mai sus sunt parțiale și nu totale, că $m_1 = \frac{1474}{3} \cong 491,3$ şi (9) rezultă din (7) $m_2 = \frac{2947}{2} \cong 1473,5$. 2. În cazul suprapunerilor totale ale maximelor și minimelor $2x = s_1 \lambda_1 = \left(s_2 + \frac{1}{2}\right) \lambda_2$ Scriind $\boldsymbol{s}_2 = \boldsymbol{s}_1 - \boldsymbol{p}, \boldsymbol{unde} \; \boldsymbol{s}_1, \boldsymbol{s}_2, \boldsymbol{p} \in N$, atunci $\frac{s_1}{2p-1} = \frac{\lambda_2}{2(\lambda_2 - \lambda_1)} = \frac{1474}{3}.$ Asta înseamnă că prima suprapunere integrală de maxime și minime se face pentru $s_1 = 1474$ și p = 2. Acest lucru se realizează atunci când oglinda O_1 a parcurs distanța $x_1 = \frac{s_1 \lambda_1}{2} = 4.341 \cdot 10^{-4} \ m$. A doua suprapunere se va realiza atunci când $s_1 = 3 \times 1474 = 4422 \,$ și $\, p = 5 \,$, adică după ce oglinda $\, O_1 \,$ a parcurs distanța $x_2 = \frac{s_1 \lambda_1}{2} = 1{,}302 \cdot 10^{-3} \ m$. Prin urmare, distanța dintre două dispariții succesive ale franjelor de interferență se realizează după ce oglinda O_1 a parcurs distanța $x_2 - x_1 = 8,682 \cdot 10^{-4} \ m$, adică de 3 ori mai mare decât în cazul suprapunerii parțiale! Se va puncta oricare dintre cele două soluții de mai sus! 1,00p Oficiu TOTAL Problema a III-a 10p

Barem de evaluare şi de notare propus de:

Conf. univ. dr. Sebastian POPESCU, Facultatea de Fizică din Iași

Barem de evaluare Problema a III-a Clasa a XII-a Pagina 8 din 8

1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.