Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ» Кафедра информатики

Отчет по лабораторной работе №12 Решение краевых задач методом разностных аппроксимаций

> Выполнил: студент гр. 953501 Кореневский С. А.

Руководитель: доцент Анисимов В. Я

Содержание

1. Цель работы	
2. Теоретические сведения	3
3. Программная реализация	5
4. Выводы	12

Цель работы:

• изучить метод разностных аппроксимаций, составить алгоритм метода

и программу их реализации, получить численное решение заданной краевой задачи;

- составить алгоритм решения краевых задач указанными методами, применимыми для организации вычислений на ПЭВМ;
- составить программу решения краевых задач по разработанному алгоритму;
- выполнить тестовые примеры и проверить правильность работы программ.

Краткие теоретические сведения:

Разностный метод решения краевых задач

Рассмотрим краевую задачу

$$\begin{cases} y'' = f(x, y, y'), & x \in [a, b], \\ y(a) = A, \\ y(b) = B. \end{cases}$$
 (2.6)

Разобьем отрезок [a, b] на n одинаковых частей с шагом $h = \frac{b-a}{n}$ точками:

$$a = x_0 < x_1 < ... < x_n = b$$
.

Заменим производные на разностные отношения

$$y'(x_k) \approx \frac{y_{k+1} - y_k}{2h},$$

 $y''(x_k) \approx \frac{y_{k+1} - 2y_k + y_{k-1}}{h^2},$ $k = \overline{1, n-1},$

где $y_k = y(x_k)$.

Получим для любого внутреннего узла x_k , $k=\overline{1,n-1}$ уравнение

$$\frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} = f\left(x_k, y_k, \frac{y_{k+1} - y_{k-1}}{2h}\right)$$
 2.7)

и для граничных узлов

$$y_0 = A, y_n = B.$$

То есть, мы имеем систему из (n+1) уравнений с (n+1) неизвестными y_k . Ее решение дает нам приближенное решение краевой задачи. Рассмотрим частный случай линейной краевой задачи:

$$y'' - p(x)y = f(x),$$
 $p(x) > 0,$ $a \le x \le b,$ (2.8)

$$y(a) = A$$
 , $y(b) = B$.

В этом случае получаем

$$\frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} - p(x_k)y_k = f(x_k), \qquad k = \overline{1, n-1},$$
 (2.9)

$$y_0 = A, y_n = B.$$

Домножая (2.9) на h^2 , получим трехдиагональную систему линейных уравнений

$$y_{k-1} - (2 + h^2 p(x_k)) y_k + y_{k+1} = h^2 f(x_k),$$
 $k = \overline{1, n-1},$

в которой выполнено условие преобладания диагональных элементов

$$2 + p(x_k) > 1 + 1$$
.

Такая система легко решается методом прогонки.

3. Программная реализация

Задача 1. Составить разностную схему и получить численное решение краевой задачи с точностью 10^{-3}

$$ay'' + (1 + bx^2)y = -1,$$
 $-1 \le x \le 1,$

Исходные данные:

$$a = \sin(k), b = \cos(k),$$

где k-номер варианта.

Граничные условия выбрать однородными:

$$y(-1) = 0,$$
$$y(1) = 0.$$

Задача 2. Найти приближенное решение краевой задачи методом конечных разностей:

$$\begin{cases} u'' + p(x)u' + q(x)u = f(x), & x \in (a,b), \\ u(a) = UA, & u(b) = UB. \end{cases}$$

с заданной точностью є и построить его график. Исходные данные указаны в таблице 2.1.

порядок решения

- 1. Составить разностную схему второго порядка точности и выписать коэффициенты матрицы системы уравнений и коэффициенты правой части.
- 2. Подготовить тестовый пример и провести расчет для него. Построить на одном чертеже графики приближенного и точного решений для тестового примера. После проверки правильности работы программы перейти к решению основной задачи.
- 3. Для отыскания решения задачи с заданной точностью произвести расчет с начальным шагом h, затем уменьшить шаг вдвое. Вывести на экран два соседних приближенных решения и сравнить результаты. Если заданная точность не достигнута, то продолжить уменьшение шага.
- 4. Построить график найденного решения и указать шаг, при котором заданная точность достигается.

Задача 3. Методом конечных разностей найти приближенное решение указанной в индивидуальном варианте краевой задачи смотри таблицу 2.4 с точностью ε и построить его график. Решение системы разностных уравнений найти, используя метод прогонки.

порядок решения

1. Использовать разностную схему второго порядка точности. Для аппроксимации производных в граничных условиях воспользоваться разностными отношениями:

$$y_0' = \frac{-y_2 + 4y_1 - 3y_0}{2h}$$
 и $y_n' = \frac{3y_n - 4y_{n-1} + y_{n-2}}{2h}$.

- 2. Организовать компактное хранение ненулевых элементов трехдиагональной матрицы системы разностных уравнений.
- 3. Подготовить самостоятельно тестовый пример и провести расчет для него. Построить на одном чертеже графики приближенного и точного решений для тестового примера. После проверки правильности работы программы перейти к решению основной задачи.

Задача 4. Методом конечных разностей найти приближенное решение краевой задачи с тремя верными значащими цифрами. Решение системы разностных уравнений найти, используя метод прогонки. Исходные данные указаны в таблице 2.3.

$$\begin{cases} -(k(x)u')' + q(x)u = f(x), & x \in (a,b), \\ -k(a)u'(a) + 0.5u(a) = 0, \\ k(b)u'(b) + 0.5u(b) = 0. \end{cases}$$

порядок решения

- а. 1.Использовать разностную схему второго порядка точности.
- b. 2.При аппроксимации производных в граничных условиях использовать метод баланса.

Исходные данные к задаче № 2

№ задания	p(x)	q(x)	f(x)	а	b	U_A	U_B	ε
2.2.5	ln(1+x)	10/(1+x)	x+9/(1+x)	0	2	5	0	0.01

Исходные данные к задаче № 3

№ задания	Задача	ε
2.3.3	u'' - 0.5u' + 0.5xu = 2x $u'(1) = 0.5$ $2u(3) - u'(3) = 2$	0.05

Исходные данные к задаче № 4

№				k(:	(x)	q (x)		
задания	a	b	c	a <x<c< td=""><td>c<x<b< td=""><td>a<x<c< td=""><td>c<x<b< td=""><td>f(x)</td></x<b<></td></x<c<></td></x<b<></td></x<c<>	c <x<b< td=""><td>a<x<c< td=""><td>c<x<b< td=""><td>f(x)</td></x<b<></td></x<c<></td></x<b<>	a <x<c< td=""><td>c<x<b< td=""><td>f(x)</td></x<b<></td></x<c<>	c <x<b< td=""><td>f(x)</td></x<b<>	f(x)
2.4.5	0	2.5	1.875	1.2	0.5	8.3	3.5	$9/(1+0.5x^2)$

Результат работы программы:

Решение задачи №1

Функции для инициализации решения примут вид

$$p(x) = 0$$
, $q(x) = \frac{1 + b * x^2}{a} = \frac{1 + \cos 5 * x^2}{\sin 5}$, $f(x) = \frac{-1}{a} = \frac{-1}{\sin 5}$

Точность ϵ = 0.001; Шаг h = 0.2; Ошибка err = 0.0007782670165997208

Решение задачи №2

Тестовый пример

$$x^2y''-2xy'+2y=x^2+1, x\in (2,5)$$
 $y(2)=1.3$ $y(5)=2.4$

$$y(x) = -1.227x^2 + 3.468x + x^2(\ln x - 1) + rac{1}{2}$$

График аналитического решения и решения разностной схемой

Ошибка для тестового примера 9.587405519007053e-05

Решение задания

$$p(x) = \ln(1+x) \ q(x) = rac{10}{rac{1}{9}+x} \ f(x) = rac{1}{1+x} + x \ a = 0, b = 2 \ U_a = 5, U_b = 0$$

Графики решения задачи разностной схемой при шаге сетки h=0.1 и h=0.2

Результат решения уравнения методом конечных разностей с точностью 0.0

Шаг, при котором достигается точность порядка 0.01, равен h=0.04799999999999376, при этом ошибка равна error=0.00928656915896268

Решение задачи №3

$$y_0'=rac{-y_2+4y_1-3y_0}{2h} \ y_n'=rac{3y_n-4y_{n-1}+y_{n-2}}{2h}$$

Тестовый пример

$$(x-1)y'' - xy' + y = (x-1)^2, 2 \le x \le 4$$
 $y'(2) = 2$ $y'(4) + 2y(4) = 5$ $y(x) = -0.072e^x + 7.532x - x^2 - x - 1$

График аналитического решения и решения разностной схемой

Ошибка для тестового примера 0.0010788749297834244

Теперь рассмотрим краевую задачу третьего рода указанного в задании.

$$u'' - u' + 2x^2u = x + 1$$
 $u(1.3) = 1$ $u(2.4) + u'(2.4) = 3.2$

Шаг, при котором достигается точность порядка 0.01, равен h=0.1019999999999954, при этом ошибка равна error=0.009969148690432306

Решение задачи №4

$$a = 0, b = 2.5, c = 1.875$$

$$k(x) = egin{cases} 1.2, x \in (a,c) \ 0.5, x \in (c,b) \end{cases}$$

$$q(x) = egin{cases} 8.3, x \in (a,c) \ 3.5, x \in (c,b) \end{cases}$$

$$f(x) = 9/(1 + 0.5x^2)$$

4. Выводы

В ходе лабораторной работы мы изучили методы разностных аппроксимаций с вторым порядком точности для краевых задач первого и третьего рода. В результате чего получили численно решение заданных краевых задач с заданными точностями и посчитали ошибку. Рассмотрев решения с различным шагом h, удостоверились что порядок решения данных разностных схем $O(h^2)$.

Сравнив результат работы программы с аналитическим решением на тестовых примерах, можно сделать вывод, что программный продукт работает корректно.