Домашнее задание №3

Андрей Козлов

6 марта 2015 г.

- 1. (a) $(\alpha \to \beta) \to \alpha \to \beta$
 - (b) $\alpha \to (\alpha \to \beta) \to \beta$
 - (c) $\alpha \to \alpha \to \alpha$ Это не наиболее общий тип
 - (d) $(\alpha \to \beta) \to ((\alpha \to \beta) \to \alpha) \to \beta$
 - (е) Терм не типизируется.

Рассмотрим предтерм (xy)x, пусть он является термом. Тогда $\exists \Gamma, \sigma \colon \Gamma \vdash (x(yx)) \colon \sigma$.

Тогда по лемме об инверсии правый подтерм x имеет некий тип τ , а левый подтерм xy тип $\tau \to \sigma$, то есть y: α, x : $\alpha \to \tau \to \sigma$. Таким образом, тип $\tau = \alpha \to \tau \to \sigma$ является подвыражением себя, что невозможно в силу конечности типа.

2.

- 3. Нужно использовать гес
 - (a) isZero :: Nat \rightarrow Bool isZero 0 = true isZero (suc n) = false

(b) fac :: Nat \rightarrow Nat fac 0 = suc 0fac (suc n) = mul (suc n) (fac n)

```
(c) f :: (Nat -> a) -> Nat -> a
f g 0 = g (suc 0)
f g (suc n) = g (f g n)

ack :: Nat -> Nat -> Nat
ack 0 = suc
ack (suc m) = f (ack m)
```

- 4. (a) $Pair_{\sigma,\tau}$
 - $\Gamma \vdash pair_{\sigma,\tau} : \sigma \to \tau \to Pair_{\sigma,\tau}$
 - $-\Gamma \vdash fst_{\sigma}: Pair_{\sigma,\tau} \to \sigma$ $-\Gamma \vdash snd_{\tau}: Pair_{\sigma,\tau} \to \tau$
 - $-\Gamma \vdash \text{fst (pair x y)} \rightarrow x$ $-\Gamma \vdash \text{snd (pair x y)} \rightarrow y$
 - (b) $List_{\sigma}$
 - $-\Gamma \vdash nil_{\sigma}: List_{\sigma}$ $-\Gamma \vdash cons_{\sigma}: \sigma \to List_{\sigma} \to List_{\sigma}$
 - $\Gamma \vdash rec_{List_{\sigma}} : \alpha \to (\sigma \to List_{\sigma} \to \alpha \to \alpha) \to List_{\sigma} \to \alpha$
 - $\begin{array}{lll} \bullet & \; \Gamma \vdash \mathtt{rec} \; _{List_{\sigma}} \; \mathtt{n} \; \; \mathtt{c} \; \; \mathtt{nil} \; \rightarrow \mathtt{n} \\ & \; \Gamma \vdash \mathtt{rec} \; _{List_{\sigma}} \; \mathtt{n} \; \; \mathtt{c} \; \; (\mathtt{cons} \; \mathtt{x} \; \mathtt{xs}) \; \rightarrow \mathtt{c} \; \mathtt{x} \; \mathtt{xs} \; \; (\mathtt{rec} \; \mathtt{n} \; \mathtt{c} \; \mathtt{xs}) \end{array}$

 $sort :: Ord a \Rightarrow [a] \rightarrow [a]$ sort = recList [] insert