Лекция 6

Случайные величины

Примеры случайных величин:

 $Ex.\ 1.$ Бросаем кость, может выпасть 6 граней, здесь случайная величина ξ - число выпавших очков

 $Ex.\ 2.\ \xi$ - время работы микросхемы, в этом случае время может быть:

- а) дискретным $\xi \in \{0, 1, 2, \dots\}$
- б) непрерывным $\xi \in [0; \infty)$
- *Ex. 3.* Температура за окном: $\xi \in (-50, +50)$

Def. На вероятностном пространстве (Ω, \mathcal{F}, p) функция $\xi : \Omega \to \mathbb{R}$ называется \mathcal{F} -измеримой, если $\forall x \in \mathbb{R}$ $\{\omega \in \Omega \mid \xi(\omega) < x\} \in \mathcal{F}$ (то есть $\xi^{-1}(y) \in \mathcal{F}$, где $y \in (-\infty; x)$)

Def. Случайной величиной, заданной на вероятностном пространстве (Ω, \mathcal{F}, p) , называется \mathcal{F} -измеримая функция $\xi: \Omega \to \mathbb{R}$, которая сопоставляет каждому элементарному исходу некоторое вещественное число

Nota. Не все функции являются \mathcal{F} -измеримыми

Ex. Koctb: $\Omega = \{1, 2, 3, 4, 5, 6\}; \mathcal{F} = \{\emptyset, \Omega, \{2, 4, 6\}, \{1, 3, 5\}\}$

Пусть $\xi(\omega)=i$ - число выпавших очков. Тогда при $x=4:\{\omega\in\Omega\mid\xi(\omega)<4\}=\{1,2,3\}\notin\mathcal{F}\Longrightarrow$ случайная величина не является \mathcal{F} -измеримой

В данном случае следует сделать ξ таким, что $\xi(2) = \xi(4) = \xi(6) = 1$, $\xi(1) = \xi(3) = \xi(5) = 0$

Nota. Смысл измеримости: если задана случайная величина ξ , то мы можем задать вероятность попадания случайной величины в интервал $(-\infty; x)$: $p(\xi \in (-\infty; x)) = p(\{\omega \in \Omega \mid \xi(\omega) < x\})$

А из интервалов $(-\infty; x)$ с помощью операций пересечения, объединения и дополнения можно получить все другие интервалы (включая точки) и также приписать им вероятности

Из матанализа известно, что мера из интервалов однозначно продолжается до меры на всей Борелевской σ -алгебры на $\mathbb R$ и, таким образом, с помощью случайной величины каждому Борелевскому множеству B также приписывается вероятность $p(\xi \in B)$

Итак, пусть ξ задана на вероятностном пространстве (Ω, \mathcal{F}, p) , с помощью нее получаем новой вероятностное пространство $(\mathbb{R}, \mathcal{B}(\mathbb{R}), p_{\xi})$

Получая новое вероятностное пространство, мы упрощаем и формализуем работу, так как можем не учитывать природу и структуру исходного пространства

Def. Функция $p(B), B \in \mathcal{B}(\mathbb{R})$, ставящая в соответствие каждому Борелевскому множеству

вероятность, называется распределением случайной величины ξ

Основные типы распределения

- а) Дискретное
- b) Абсолютно непрерывное
- с) Сингулярное
- d) Смешанное

Дискретная случайная величина

Def. Случайная величина ξ имеет дискретное рапределение, если она принимает не более, чем счетное число значений. То есть существует конечный или счетный набор чисел $\{x_1, x_2, \ldots, x_n, \ldots\}$ такой, что $p(\xi = x_i) = p_i > 0$ и $\sum_{i=0}^{\infty} p_i = 1$

Таким образом, дискретная случайная величина (ДСВ) задается законом распределения:

$$(\sum_{i=0}^{\infty} p_i = 1$$
 - условие нормировки)

 $\mathit{Ex.}\ 1.\ \mathrm{кость},\ \xi(\omega)=i$ - число выпавших очков

 $Ex.\ 2.$ все распределения из предыдущих лекций (биномиальное, геометрическое, гипергеометрическое, Пуассона)

Ex. 3. индикатор события
$$A$$
: $I_A(\omega) = \begin{cases} 0, & \omega \notin A \text{ - событие } A \text{ не происходит} \\ 1, & \omega \in A \text{ - событие } A \text{ происходит} \end{cases}$

Числовые характеристики дискретных случайных величин

І. Математическое ожидание (среднее значение, полезность)

Def. Математическим ожиданием $E\xi$ случайной величины ξ называется число

$$E\xi = \sum_{i=1}^{\infty} x_i p_i$$

при условии, что данный ряд сходится абсолютно

Nota. Если $E\xi = \sum_{i=1}^{\infty} x_i p_i = \infty$, то говорят, что матожидание не существует

При условной сходимости ряда при перестановке членов сумма изменяется, поэтому необходима абсолютная

Физический смысл: Среднее значение - число, вокруг которого группируются значения случайной величины, центр тяжести точек x_i с весами p_i

Статистический смысл: среднее арифметическое наблюдаемых значений случайной величины при большом числе реальных экспериментов

II. Дисперсия

Def. Дисперсией $D\xi$ случайной величины ξ называют среднее квадратов ее отклонения от математического ожидания:

$$D\xi = E(\xi - E\xi)^2$$
 или $D\xi = \sum_{i=0}^{\infty} (x_i - E\xi)^2 p_i$ при условии, что данный ряд сходится

В противном случае говорится, что дисперсии не существует

Nota. Дисперсию обычно удобно считать по формуле $D\xi = E\xi^2 - (E\xi)^2 = \sum_{i=1}^n x_i^2 p_i - E\xi^2$

Смысл - квадрат среднего разброса (рассеивания) значения случайной величины относительно ее математического ожидания

III. Среднее квадратическое отклонение

Def. Средним квадратическим отклонением (СКО) σ_{ξ} называется величина $\sigma_{\xi} = \sqrt{D\xi}$ Смысл - средний разброс

$$\frac{\xi \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6}{p \mid \frac{1}{6} \mid \frac{1}{6} \mid \frac{1}{6} \mid \frac{1}{6} \mid \frac{1}{6} \mid \frac{1}{6} \mid \frac{1}{6}}$$

$$E\xi = \sum_{i=1}^{6} x_i p_i = 3.5 \text{ (в данном случае ср. арифм.)}$$

$$D\xi = \sum_{i=1}^{6} (x_i - E\xi)^2 p_i = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + 3^2 \cdot \frac{1}{6} + 4^2 \cdot \frac{1}{6} + 5^2 \cdot \frac{1}{6} + 6^2 \cdot \frac{1}{6} - 3.5^2 = \frac{35}{12}$$

$$\sigma_{\xi} = \sqrt{D\xi} \approx 1.79$$

$$Ex.\ 2.$$
 Индикатор события $A:\ I_A(\omega)= egin{cases} 0,\omega \not\in A \ -\ \text{событие } A \ \text{не происходит} \\ 1,\omega \in A \ -\ \text{событие } A \ \text{происходит} \\ \end{matrix}$

$$\begin{array}{c|cc} \xi & 0 & 1 \\ \hline p & 1 - P(A) & P(A) \\ E\xi = 0 \cdot (1 - P(A)) + 1 \cdot P(A) = P(A) \end{array}$$

$$D\xi = 0^2 \cdot (1 - P(A)) + 1^2 P(A) - P(A)^2 = P(A)(1 - P(A)) = pq$$

$$\sigma_{\xi} = \sqrt{pq}$$

Свойства матожидания и дисперсии

Th. 1. Случайная величина ξ имеет вырожденное распределение, если $\xi(\omega)=\mathrm{const}\ \forall \omega\in$

$$\begin{array}{c|c}
\Omega \\
\xi & C \\
\hline
p & 1 \\
E\xi = C & D\xi = 0
\end{array}$$

Th. 2. Свойство сдвига:
$$E(\xi + C) = E\xi + C; D(\xi + C) = D\xi$$

Th. 3. Свойство растяжения:

$$E(C\xi) = CE\xi$$
$$D(C\xi) = C^2D\xi$$

Lab. 2-3 доказать

Th. 4. $E(\xi + \eta) = E\xi + E\eta$ (из третьего свойства матожидание - линейная функция)

 $\Box x_i, y_i - \text{ значения случайных величин } \xi, \eta, \text{ а } p_i \text{ и } q_i - \text{ их соответствующие вероятности}$ $E(\xi + \eta) = \sum_{i,j} (x_i + y_j) p(\xi = x_i \text{ и } \eta = y_j) = \sum_i x_i \sum_j p(\xi = x_i \text{ и } \eta = y_j) + \sum_j y_j \sum_i p(\xi = x_i \text{ и } \eta = y_j)$ $= \sum_i x_i p(\xi = x_i) + \sum_j y_j p(\eta = y_j) = E\xi + E\eta$ \Box

Def. Дискретные случайные величины ξ и η независимы, если $p(\xi = x_i, \eta = y_i) = p(\xi = x_i) \cdot p(\eta = y_i) \ \forall i, j$

То есть случайные величины принимают свои величины независимо друг от друга

Th. 5. Если случайные величины ξ и η независимы, то $E(\xi\eta) = E\xi \cdot E\eta$; обратное неверно

$$\Box E(\xi \eta) = \sum_{i,j} x_i y_i p(\xi = x_i, \eta = y_j) = \sum_i x_i \sum_j y_j p(\xi = x_i, \eta = y_j) = \sum_i x_i \sum_j y_j p(\xi = x_i) p(\eta =$$

$$\sum_{i} x_{i} p(\xi = x_{i}) \sum_{j} y_{j} p(\eta = y_{j}) = E \xi \cdot E \eta$$

Th. 6.
$$D\xi = E\xi^2 - (E\xi)^2$$

$$\Box$$

$$D\xi = E(\xi - E\xi)^2 = E(\xi^2 - 2\xi E\xi + (E\xi)^2) = E\xi^2 - 2E\xi E\xi + E((E\xi)^2) = E\xi^2 - 2(E\xi)^2 + (E\xi)^2 = E\xi^2 - (E\xi)^2$$

$$\Box$$

Def. $D(\xi + \eta) = D\xi + D\eta + 2\text{cov}(\xi, \eta)$, где $\text{cov}(\xi, \eta) = E(\xi\eta) - E\xi E\eta$ - ковариация случайных величин (равна 0 при независимых величинах) - индикатор наличия связи между случайными величинами

$$\Box$$

$$D(\xi + \eta) = E(\xi + \eta)^{2} - (E(\xi + \eta))^{2} = E\xi^{2} + 2E(\xi\eta) + E\eta^{2} - (E\xi + E\eta)^{2} = E\xi^{2} + E\eta^{2} + 2E(\xi\eta) - (E\xi)^{2} - (E\eta)^{2} - 2E\xi E\eta = D\xi + D\eta + 2\text{cov}(\xi, \eta)$$

Th. 7. Если случайные величины ξ и η независимы, то $D(\xi + \eta) = D\xi + D\eta$

 \Box Если ξ и η независимы, то $\mathrm{cov}(\xi,\eta)=0$ и $D(\xi+\eta)=D\xi+D\eta$ \Box

Th. 8. Общая формула дисперсии суммы:
$$D(\xi_1 + \xi_2 + \dots + \xi_n) = \sum_{i=1}^n D\xi_i + 2\sum_{i,j(i\neq j)} \text{cov}(\xi_i,\xi_j)$$

Другие числовые характеристики

Моменты старших порядков

- а) $m_k = E \xi^k$ момент k-ого порядка случайной величины ξ (также называют начальным моментом)
- б) $\mu_k = E(\xi E\xi)^k$ центральный момент k-ого порядка

 $E\xi=m_1$ - момент первого порядка

 $E\xi^2=m_2$ - момент второго порядка

 $D\xi = E(\xi - E\xi)^2$ - центральный момент второго порядка

Nota. Центральные моменты можно выразить через обычный момент:

$$\mu_2 = D\xi = E\xi^2 - (E\xi)^2 = m_2 - m_1^2$$

$$\mu_3 = m_3 - 3m_2m_1 + 2m^3$$

$$\mu_4 = m_4 - 4m_3m_2 + 6m_2m_1^2 - 3m_1^4$$

Ex. Разберем задачу Бюффона с точки зрения матожидания (для простоты l - ширина доски): пусть p(A) - пересечет стык, $\xi = I_A$ - число пересечений. Тогда матожидание $E\xi = EI_A = P(A)$ Заметим, что при изменении длины иглы с l до 2l матожидание пересекаемых стыков увеличивается в два раза. Помимо этого можно составить из k игл ломаную, матожидание стыков которой будет равно $kE\xi$

Заметим, что такое работает и в обратную сторону: при уменьшении иглы в k раз матожидание равно $\frac{E\xi}{k}$

Теперь сделаем замкнутый многоугольник из игл, получим, что матожидание в таком случае $P\frac{E\xi}{I}$, где P - периметр

В пределе строим круг диаметра l - он всегда пересечет линии стыка 2 раза, значит матожидание $E_o = P_o \frac{E\xi}{l} = 2$

Длина окружность $P_o=\pi l$, получаем $E\xi=\frac{2l}{P_o}=\frac{2l}{\pi l}=\frac{2}{\pi}$