Chapter 8: Equations of Lines and Planes

Section 8.1 - Vector + Parametric Equations of a line in R2

Review: In R3,

Equation in Standard Form: Ax + By + C = 0 (also called scalar equation)

Slope y-interest form: y=mx+b

* Vectors can be used to define a line in R2.

ex: consider $-x + 2y - 10 = 0 - y = \frac{1}{2}x + 5$

Slope: x-component right 2 y-component up 1

Direction Vector: a nonzero vector $\vec{m} = (a_1b)$ parallel (collinear) to the given line. Vector always has its tail at the origin and head points at the point (a_1b)

direction numbers

Expressing Equations of Lines Using Vectors:

* Need either 2 points
or one point and a direction Vector.

Examining DORP; $\overrightarrow{OP} = \overrightarrow{OP}_0 + \overrightarrow{PoP}$ but $\overrightarrow{PoP} = \overrightarrow{tm}$, $\overrightarrow{OP}_0 = \overrightarrow{r_0}$, $\overrightarrow{OP} = \overrightarrow{r}$ $\therefore \overrightarrow{r} = \overrightarrow{r_0} + \overrightarrow{tm}$, $+ \varepsilon R$ — vector form

In component form, $(x,y) = (x_0,y_0) + t(a,b), t \in \mathbb{R}$ or $(x,y) = (x_0,y_0) + (t_a,t_b)$

: X = Xo + ta } Parametric Equations

(A)

ex: Write a vector equation for the line passing through the points A(1,4) & B(3,1)

Solution:

$$\overrightarrow{AB} = (3-1,1-4)$$

 $\overrightarrow{AB} = (2,-3) \leftarrow \text{direction vector}$

* choose one of the points, Aor B, to be the position vector.

$$(x,y) = (x_0,y_0) + t \vec{x}$$

= (3,1) + t(2,-3)

b) Defermine 2 more points on the line.

Since
$$(x_1y) = (3,1) + t(2,-3)$$

let parameter t equal 1.

$$(x_{1}y) = (3,1) + 1(2,1-3)$$

$$= (3,1) + (2,1-3)$$

$$= (5,-2)$$

or 1(t t= 2

c) Determine if the point (2,3) lies on the line.

Since
$$(x,y) = (3,1) + t(2,-3)$$

 $(2,3) = (3,1) + t(2,-3)$

$$X$$
-coordinate y -coordinate
 $Q = 3 + 2t$ $3 = 1 - 3t$
 $-1 = 2t$ $2 = -3t$
 $\frac{1}{2} = t$ $\frac{-2}{3} = t$

.. Since t values are not the same, the point (2,3) does not lie on the line.

ex2: Consider line &,

li: { x = 3+2t } parametric equations

- a) Find the coordinates of 2 points on the line.
- b) Write a vector equation of the line
- c) Write a scalar equation of the line ie) standard form (grade 9)
- d) Determine if l, is parallel to l2 if l2: SX=1+3t
 y=8+12t
 - a) let t=0 : x=3, y=-5, $P_1(3,-5)$ let t=1 : x=5, y=-1, $P_2(5,-1)$
- b) (x,y) = (3,-5)+t(2,4)
- c) $\chi = 3+2t$ y = -5+4t $\chi - 3 = 2t$ y + 5 = 4t $\chi - 3 = t$ y + 5 = t
 - $\frac{x-3}{a} = \frac{y+5}{4}$ 4(x-3) = 2(y+5) $4x-1\lambda = 2y+10$ 4x-2y-22=0 2x-y-11=0
- d) direction vectors of parallel (ines are scalar multiples of each other.

 $\therefore \ \beta_1, \ \vec{m} = (3,14) \qquad \beta_2 : \ \vec{m} = (3,12)$

If they are 11, (2,4) = K(3,12)

2=3K and 4=1aK $\frac{3}{3}=K$

Since K values are not equal, the lines I and I are not parallel. ex3: Determine the vector equation for the line that is perpendicular to points A(-1,5) and B(6,11) and passes through E(7,8)Solution: