

STTH1R06

TURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIER

Table 1: Main Product Characteristics

I _{F(AV)}	1 A
V _{RRM}	600 V
I _R (max)	75 μ A
T _j	175°C
V _F (typ)	1.0 V
t _{rr} (max)	25 ns

FEATURES AND BENEFITS

- Ultrafast switching
- Low reverse recovery current
- Low thermal resistance
- Reduces switching & conduction losses

DESCRIPTION

The STTH1R06, which is using ST Turbo 2 600V technology, is specially suited as boost diode in power factor correction circuitry.

The device is also intended for use as a free wheeling diode in power supplies and other power switching applications.

Table 2: Order Codes

Part Number	Marking
STTH1R06	STTH1R06
STTH1R06RL	STTH1R06

Part Number	Marking
STTH1R06A	HR6
STTH1R06U	BR6

Table 3: Absolute Ratings (limiting values)

Symbol	Р	Value	Unit		
V_{RRM}	Repetitive peak reverse voltage	е		600	٧
I _{F(RMS)}	RMS forward voltage	DO-41		10	Α
		SMA / SMB		7	
I _{F(AV)}	Average forward current	DO-41	$Tc = 100^{\circ}C$ $\delta = 0.5$		
		SMA	$Tc = 125^{\circ}C$ $\delta = 0.5$	1	Α
		SMB	$Tc = 135^{\circ}C$ $\delta = 0.5$		
I _{FSM}	Surge non repetitive forward	DO-41	tp = 10ms sinusoidal	25	Α
	current	SMA / SMB	tp = Toms sinusoidai	20	
T _{stg}	Storage temperature range	-65 to + 175	°C		
T _j	Maximum operating junction temperature			175	°C

February 2005 REV. 3 1/9

STTH1R06

Table 4: Thermal Resistance

Symbol	Parameter			Value (max).	Unit
R _{th(j-l)}	Junction to lead	L = 10mm	DO-41	45	°C/W
			SMA	30	
			SMB	25	
R _{th(j-a)}	Junction to ambient (1)	L = 10mm	DO-41	70	°C/W

Note 1: $R_{th(j-a)}$ is measured with a copper area $S = Scm^2$ (see figure 12).

Table 5: Static Electrical Characteristics

Symbol	Parameter	Test conditions		Min.	Тур	Max.	Unit
I _R	Reverse leakage current	T _j = 25°C	$V_R = V_{RRM}$			1	μΑ
		T _j = 150°C			10	75	
V _F	Forward voltage drop	T _j = 25°C	I _F = 1A			1.7	V
		T _j = 150°C			1.0	1.25	

To evaluate the conduction losses use the following equation: $P = 1.03 \times I_{F(AV)} + 0.27 I_{F}^{2} (RMS)$

Table 6: Dynamic Characteristics

Symbol	Parameter	Test conditions			Тур	Max.	Unit
t _{rr}	Reverse recovery	T _j = 25°C	$I_F = 0.5A$ $Irr = 0.25A$ $I_R = 1A$			25	ns
	time		$I_F = 1A dI_F/dt = -50 A/\mu s V_R = 30V$		30	45	
t _{fr}	Forward recovery time	T _j = 25°C	$I_F = 1A$ $dI_F/dt = 100 A/\mu s$ $V_{FR} = 1.1 \times V_{Fmax}$			100	ns
V _{FP}	Forward recovery voltage	T _j = 25°C	$I_F = 1A$ $dI_F/dt = 100 A/\mu s$ $V_{FR} = 1.1 \times V_{Fmax}$			10	V

Figure 1: Conduction losses versus average forward current

Figure 3: Relative variation of thermal impedance junction to case versus pulse duration (DO-41)

Figure 5: Relative variation of thermal impedance junction to case versus pulse duration (SMB)

Figure 2: Forward voltage drop versus forward current

Figure 4: Relative variation of thermal impedance junction to case versus pulse duration (SMA)

Figure 6: Peak reverse recovery current versus dl_F/dt (typical values)

Figure 7: Reverse recovery time versus dl_F/dt (typical values)

Figure 9: Reverse recovery softness factor versus dl_F/dt (typical values)

Figure 11: Transient peak forward voltage versus dl_F/dt (typical values)

Figure 8: Reverse recovery charges versus dI_F/dt (typical values)

Figure 10: Relative variations of dynamic parameters versus junction temperature

Figure 12: Forward recovery time versus dI_F/dt (typical values)

Figure 13: Junction capacitance versus reverse voltage applied (typical values)

Figure 15: Thermal resistance junction to ambient versus copper surface under each lead (epoxy FR4, e_{CU} =35 μ m) (SMA)

Figure 14: Thermal resistance junction to ambient versus copper surface under each lead (epoxy FR4, e_{CU}=35µm) (DO-41, SMB)

Figure 16: SMA Package Mechanical Data

DIMENSIONS

Max.

2.03

0.20

1.65

0.41

5.60

4.60

2.95

1.60

Inches

Max.

0.080

0.008

0.065

0.016

0.220

0.181

0.116

0.063

Min.

0.075

0.002

0.049

0.006

0.189

0.156

0.089

0.030

Figure 17: SMA Foot Print Dimensions (in millimeters)

Figure 18: SMB Package Mechanical Data

		DIMEN	ISIONS	
REF.	Millin	neters	Inc	hes
	Min.	Max.	Min.	Max.
A1	1.90	2.45	0.075	0.096
A2	0.05	0.20	0.002	0.008
b	1.95	2.20	0.077	0.087
С	0.15	0.41	0.006	0.016
E	5.10	5.60	0.201	0.220
E1	4.05	4.60	0.159	0.181
D	3.30	3.95	0.130	0.156
L	0.75	1.60	0.030	0.063

Figure 19: SMB Foot Print Dimensions (in millimeters)

Figure 20: DO-41 Package Mechanical Data

	DIMENSIONS					
REF.	Millin	Millimeters		hes		
	Min.	Max.	Min.	Max.		
Α	4.07	5.20	0.160	0.205		
В	2.04	2.71	0.080	0.107		
С	28		1.102			
D	0.712	0.863	0.028	0.034		

Table 7: Ordering Information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
STTH1R06	STTH1R06	DO-41	0.34 g	2000	Ammopack
STTH1R06RL	STTH1R06	DO-41	0.34 g	5000	Tape & reel
STTH1R06A	AR6	SMA	0.068 g	5000	Tape & reel
STTH1R06B	BR6	SMB	0.11 g	2500	Tape & reel

■ Epoxy meets UL94, V0

Table 8: Revision History

Date	Revision	Description of Changes
Apr-2003	1	First issue
07-Sep-2004	2	DO-41 and SMA packages added
24-Feb-2005	3	SMA package dimensions update. Reference A1 max. changed from 2.70mm (0.106inc.) to 2.03mm (0.080).

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

