Author: Mehwar Raza

Big Integer Factorization

It is a well-known fact that every natural number has a unique prime factorization. That is, you can uniquely express each natural number $\bf N$ as:

$$N = P_1^{M_1} \times P_2^{M_2} \times \dots \times P_K^{M_K}$$

Where $P_1 < P_2 < ... < P_K$ are prime numbers. For example, $28 = 2^2x7$ and $3645 = 3^6x5$.

In general, finding the prime factorization of large numbers is difficult to do (and serves as a basis for many cryptographic systems). However, in some special cases it is easy to find a number's prime factorization.

One such case is when a number is a power of a smaller number. Given a number N, can you figure out the prime factorization of N^N ?

Input

Each test case contains one integer **N** ($2 \le N \le 2^{57}$).

Output

For each test case, output, on one line, prime factorization of the number.

Sample Input 1:

6

Sample Output 1:

2^6 * 3^6

Sample Input 2:

197538393501504

Sample Output 2 (Wrapped to two lines - actual output is one line):

2^1185230361009024 * 3^790153574006016 * 11^592615180504512 * 31^987691967507520