Classroom Exercises

- 1. Draw, if possible, a triangle in which the perpendicular bisectors of the sides intersect in a point with the location described.
 - a. A point inside the triangle
- b. A point outside the triangle

- c. A point on the triangle
- 2. Repeat Exercise 1, but work with angle bisectors.
- 3. Is there some kind of triangle such that the perpendicular bisector of each side is also an angle bisector, a median, and an altitude?
- **4.** $\triangle JAM$ is a right triangle.
 - **a.** Is \overline{JM} an altitude of $\triangle JAM$?
 - b. Name another altitude shown.
 - **c.** In what point do the three altitudes of $\triangle JAM$ meet?
 - **d.** Where do the perpendicular bisectors of the sides of $\triangle JAM$ meet?
 - e. Does your answer to (d) agree with Theorem 10-2?
- **5.** The medians of $\triangle DEF$ are shown. Find the lengths indicated.
 - **a.** $EP = \frac{?}{}$

- **b.** $PR = \frac{?}{}$
- c. If FT = 9, then $PT = \frac{?}{}$ and $FP = \frac{?}{}$.
- **6.** Given: \overline{RJ} and \overline{SK} are medians of $\triangle RST$;
 - X and Y are the midpoints of \overline{RG} and \overline{SG} .
 - **a.** How are \overline{XY} and \overline{RS} related? Why?
 - **b.** How are \overline{KJ} and \overline{RS} related? Why?
 - c. How are \overline{KJ} and \overline{XY} related? Why?
 - d. What special kind of quadrilateral is XYJK? Why?
 - e. Why does XG = GJ?
 - **f.** Explain why $RG = \frac{2}{3}RJ$.

Written Exercises

- A 1. Draw a triangle such that the lines containing the three altitudes intersect in a point with the location described.
 - a. A point inside the triangle
- b. A point outside the triangle

c. A point on the triangle

Exercises 2-5 refer to the diagram in which the medians of a triangle are shown.

- 2. Find the values of x and y.
- 3. If AB = 6, then $BP = \frac{?}{}$ and $AP = \frac{?}{}$
- 4. If AB = 7, then $BP = \frac{?}{}$ and $AP = \frac{?}{}$.
- 5. If PB = 1.9, then $AP = \frac{?}{}$ and $AB = \frac{?}{}$.

