fn make_row_by_row_fallible

Michael Shoemate

Proves soundness of make_row_by_row_fallible in mod.rs at commit f5bb719 (outdated¹).

make_row_by_row_fallible returns a Transformation that applies a user-specified function to each record in the input dataset. The function is permitted to return a data-independent error.

Vetting History

• Pull Request #562

1 Hoare Triple

Precondition

Compiler-verified

- Generic DI (input domain) is a type with trait RowByRowDomain<DO>.
- Generic DO (output domain) is a type with trait DatasetDomain. DatasetDomain is used to define the type of the row domain.
- Generic M (metric) is a type with trait <code>DatasetMetric</code>. <code>DatasetMetric</code> is used to restrict the set of valid metrics to those which measure distances between datasets.
- MetricSpace is implemented for (DI, M). Therefore M is a valid metric on DI.
- MetricSpace is implemented for (DO, M).
- Argument input_domain is of type DI
- Argument input_metric is of type M
- Argument output_row_domain is of type DI::ElementDomain, as defined by DatasetDomain.
- Argument row_function is an immutable thread-safe function taking in a value of the carrier type of the element domain associated with input_domain, and returning a value of the carrier type of output_row_domain or an error.

User-verified

- row_function has no side-effects.
- If the input to row_function is a member of input_domain's element domain, then the output is a member of output_row_domain, or a data-independent error.

¹See new changes with git diff f5bb719..52d86bbb rust/src/transformations/manipulation/mod.rs

Pseudocode

```
def make_row_by_row_fallible(
2
      input_domain: DI,
      input_metric: M,
      output_row_domain: DO_RowDomain,
      # a function from input domain's row type to output domain's row type
      row_function: Callable([[DI_RowDomain_Carrier], DO_RowDomain_Carrier])
      # where .translate is defined by the RowByRowDomain trait
9
      output_domain = input_domain.translate(output_row_domain)
      def function(data: DI_Carrier) -> DO_Carrier:
12
          # where .apply_rows is defined by the RowByRowDomain trait
13
          return DI.apply_rows(data, row_function)
14
15
      stability_map = new_stability_map_from_constant(1) #
17
      return Transformation (
18
19
          input_domain, output_domain, function,
          input_metric, input_metric, stability_map)
```

Postcondition

Theorem 1.1. For every setting of the input parameters (input_domain, input_metric, output_row_domain, row_function, DI, DO, M) to make_row_by_row such that the given preconditions hold, make_row_by_row raises an exception (at compile time or run time) or returns a valid transformation. A valid transformation has the following properties:

- 1. (Appropriate output domain). For every element x in input_domain, function(x) is in output_domain or raises a data-independent runtime exception.
- 2. (Stability guarantee). For every pair of elements x, x' in input_domain and for every pair (d_in, d_out), where d_in has the associated type for input_metric and d_out has the associated type for output_metric, if x, x' are d_in-close under input_metric, stability_map(d_in) does not raise an exception, and stability_map(d_in) \leq d_out, then function(x), function(x') are d_out-close under output_metric.

2 Proofs

Proof. (Part 1 - appropriate output domain). By the definition of RowByRowDomain, DI.apply_rows(data, row_function) returns a dataset in input_domain.translate(output_row_domain), if row_function is a mapping between input_domain's row domain to output_row_domain. This is satisfied by the precondition on row_function. Thus, for all settings of input arguments, the function returns a dataset in the output domain.

Before proceeding with proving the validity of the stability map, we first provide a lemma.

Lemma 2.1. Let f denote the row_function. For any choice x, x' of input arguments in the input domain, and any choice M for which DatasetMetric is implemented for, $d_M([f(x_1), f(x_2), ...], [f(x_1'), f(x_2'), ...]) \le d_M([x_1, x_2, ...], [x_1', x_2', ...]).$

Proof. Assume WLOG that any source of randomness is fixed when f is computed on u vs v. Given this assumption, and the precondition that f has no side-effects, if $x_i = x_i'$, then $f(x_i) = f(x_i')$. That is, the row function cannot increase the distance between corresponding rows in any adjacent dataset. On the other hand, it is possible for $f(x_i) = f(x_i')$, even if $x_i \neq x_i'$. For example, if f is a constant function, then

 $f(x_i) = f(x_i')$ for all i. Therefore, by any of the metrics that **DatasetMetric** is implemented for, f can only make datasets more similar.

Proof. (Part 2 – stability map). Take any two elements x, x' in the input_domain and any pair (d_in, d_out), where d_in has the associated type for input_metric and d_out has the associated type for output_metric. Assume u, v are d_in-close under input_metric and that stability_map(d_in) \leq d_out.

```
d_{M}(\mathtt{function}(x),\mathtt{function}(x')) = d_{M}([f(x_{1}),f(x_{2}),...],[f(x_{1}'),f(x_{2}'),...])
                                                                                           since {\tt DO} is a {\tt DatasetDomain}
                                     \leq d_M([x_1, x_2, ...], [x'_1, x'_2, ...])
                                                                                           by 2.1
                                     =d_M(x,x')
                                                                                           since DI is a DatasetDomain
                                     = d_in
                                                                                           by the first assumption
                                     \leq T0.inf_cast(d_in)
                                                                                           by InfCast
                                     < T0.one().inf_mul(T0.inf_cast(d_in))</pre>
                                                                                           by InfMul
                                     = stability_map(d_in)
                                                                                           by pseudocode line 16
                                     \leq \texttt{d\_out}
                                                                                           by the second assumption
```

It is shown that function(x), function(x') are d_out-close under output_metric.