Economics 6400: Econometrics

Lecture 6: Interaction terms and revision

CSU, East Bay

October 31, 2017

In the past few weeks...

We introduced Multiple Regression Analysis:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

• Key assumption that is required to obtain unbiased estimates of $\beta_1, \beta_2, \ldots, \beta_k$ is:

$$\mathrm{E}(u|x_1,x_2,\ldots,x_k)=0$$

which implies that *all* of the independent variables are not correlated with the error term

- Estimate of β_j is $\hat{\beta}_j$
 - $\Delta \hat{y} = \hat{\beta}_j \Delta x$

In the past few weeks...

• We also derived the **estimated** variation of $\hat{\beta}_j$:

$$\widehat{Var}(\hat{\beta}_j) = \frac{\hat{\sigma}^2}{SST_j(1 - R_j^2)}$$

where

- $\hat{\sigma}^2 = \frac{SSR}{n-k-1} = \frac{\sum_{i=1}^n \hat{u}_i^2}{n-k-1}$
- $SST_j = \sum_{i=1}^n (x_{ij} \overline{x}_j)^2$ is the sample variation in right-hand side variable x_j
- R_j^2 is the R^2 from a regression of x_j on the other right-hand side variables (including a constant)
- The standard error is $se(\hat{\beta}_j) = \sqrt{\widehat{Var}(\hat{\beta}_j)} = \sqrt{\frac{\hat{\sigma}^2}{SST_j(1-R_j^2)}}$

In the past few weeks...

- We then used the standard error for hypothesis testing
- Suppose we wish to test whether β_j is equal to some value (usually zero):

$$H_0: \beta_j = a_j$$

 $H_1: \beta_j \neq a_j$

Test statistic is:

$$t_{\hat{eta}_j} \equiv rac{\hat{eta}_j - \mathsf{a}_j}{\mathsf{se}(\hat{eta}_j)} \sim t_{n-k-1} = t_{\mathsf{df}}$$

■ The smallest significance level at which the null hypothesis is still rejected is called the *p*-value of the hypothesis test

Interaction terms

- Sometimes it makes sense for the effect of a right-hand side variable to depend on another right-hand side variable
- For example, consider the house pricing equation:

$$price = \beta_0 + \beta_1 sqrft + \beta_2 bdrms + \beta_3 sqrft \cdot bdrms + \beta_4 bthrms + u$$

such that the partial effect of another bedroom on price is:

$$\frac{\Delta price}{\Delta bdrms} = \beta_2 + \beta_3 sqrft$$

which implies that if $\beta_3 > 0$ then an additional bedroom yields a higher increase in house price in larger houses

 There is an interaction effect between square footage and the number of bedrooms

Interaction terms

$$\frac{\Delta \textit{price}}{\Delta \textit{bdrms}} = \beta_2 + \beta_3 \textit{sqrft}$$

- β_2 is equal to the effect of an additional bedroom for a house with zero square footage (!?)
- Need to use sensible values of *sqrft*, e.g. mean (μ)
- Consider the following model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + u$$

which can be re-parameterized as

$$y = \alpha_0 + \delta_1 x_1 + \delta_2 x_2 + \beta_3 (x_1 - \mu_1)(x_2 - \mu_2) + u$$

■ This implies that $\delta_2 = \beta_2 + \beta_3 \mu_1$

Interaction terms

If we expand the last equation:

$$y = \alpha_0 + \delta_1 x_1 + \delta_2 x_2 + \beta_3 (x_1 - \mu_1)(x_2 - \mu_2) + u$$

= $\alpha_0 + \delta_1 x_1 + \delta_2 x_2 + \beta_3 x_1 x_2 - \beta_3 \mu_1 x_2 - \beta_3 \mu_2 x_1 + \beta_3 \mu_1 \mu_2 + u$
= $(\alpha_0 + \beta_3 \mu_1 \mu_2) + (\delta_1 - \beta_3 \mu_2) x_1 + (\delta_2 - \beta_3 \mu_1) x_2 + \beta_3 x_1 x_2 + u$

and compare it to the original equation (before adjustment):

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + u$$

you can see that the coefficient on x_2 implies:

$$\delta_2 - \beta_3 \mu_1 = \beta_2 \Rightarrow \delta_2 = \beta_2 + \beta_3 \mu_1$$

Model of standardized final exam performance:

$$stndfnI = \beta_0 + \beta_1 atndrte + \beta_2 priGPA + \beta_3 ACT + \beta_4 priGPA^2 + \beta_5 ACT^2 + \beta_6 priGPA \cdot atndrte + u$$

where atndrte is attendance rate, and priGPA is prior GPA

• What is $\frac{\Delta stndfnl}{\Delta atndrte} = \beta_1 + \beta_6 priGPA$?

- . gen priGPA_sq=priGPA*priGPA
- . gen ACT_sq=ACT*ACT
- . gen priGPA_atndrte=priGPA*atndrte
- . reg stndfnl atndrte priGPA ACT priGPA_sq ACT_sq priGPA_atndrte

Source	SS	df	MS
Model Residual	152.001032 512.762536	_	25.3335053 .761905701
Total	664.763568	679	.979033237

Number of obs =	680
F(6, 673) =	33.25
Prob > F =	0.0000
R-squared =	0.2287
Adj R-squared =	0.2218
Root MSE =	.87287

stndfnl	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
atndrte	0067129	.0102321	-0.66	0.512	0268035	.0133777
priGPA	-1.62854	.4810025	-3.39	0.001	-2.572986	6840939
ACT	1280394	.098492	-1.30	0.194	321428	.0653492
priGPA_sq	.2959046	.1010495	2.93	0.004	.0974945	.4943148
ACT_sq	.0045334	.0021764	2.08	0.038	.00026	.0088068
priGPA_atndrte	.0055859	.0043174	1.29	0.196	0028913	.0140631
_cons	2.050293	1.360319	1.51	0.132	6206863	4.721272

- Coefficient on *atndrte* is negative (?!) but recall this is only relevant when *priGPA* is zero and the lowest GPA in the sample is 0.86
- Though t statistics for the coefficients on the atndrte variables are both small, an F test that both are zero is easily rejected at 5% level
- The mean value of *priGPA* is 2.59 so the effect of *atndrte* on stndfnI is $-0.0067 + 0.0056 \cdot 2.59 \approx 0.0078$
 - So a 10 percentage point increase in atndrte increases stndfnl by 0.078 standard deviations from the mean final exam score
- Is this estimate statistically different from zero?
 - Use technique from Lecture 5 to test linear restrictions!

- We want to test if $\theta = \beta_1 + \beta_6 2.59 = 0$
- Rearranging: $\beta_1 = \theta \beta_6 2.59$
- Substituting this into the original equation gives:

$$stndfnI = \beta_0 + \beta_1 atndrte + \beta_2 priGPA + \beta_3 ACT + \beta_4 priGPA^2 \\ + \beta_5 ACT^2 + \beta_6 priGPA \cdot atndrte + u \\ = \beta_0 + (\theta - \beta_6 2.59) atndrte + \beta_2 priGPA + \dots \\ + \dots + \beta_6 priGPA \cdot atndrte + u \\ = \beta_0 + \theta atndrte + \dots + \beta_6 (priGPA - 2.59) \cdot atndrte + u$$

- Coefficient on atndrte is the estimated effect of attendance at priGPA = 2.59
 - Standard error of $\hat{\theta}=\hat{\beta}_1+\hat{\beta}_6$ 2.59 = 0.0078 is 0.0026 and t statistic is $\frac{0.0078}{0.0026}\approx 3$

- . replace priGPA_atndrte=(priGPA-2.59)*atndrte
 (680 real changes made)
- . reg stndfnl atndrte priGPA ACT priGPA_sq ACT_sq priGPA_atndrte

Source	SS	df	MS
Model Residual	152.001032 512.762536	6 673	25.3335053 .7619057
Total	664.763568	679	.979033237

N	lumb	oer	of	obs	=	680
F	(6,	(573)	=	33.25
F	rol	>	F		=	0.0000
F	l-sc	quar	red		=	0.2287
A	dj	R-s	qua	ared	=	0.2218
F	loot	t MS	SΕ		=	.87287

stndfnl	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
atndrte	.0077546	.0026393	2.94	0.003	.0025723	.0129368
priGPA	-1.62854	.4810025	-3.39	0.001	-2.572986	6840939
ACT	1280394	.098492	-1.30	0.194	321428	.0653492
priGPA_sq	.2959046	.1010495	2.93	0.004	.0974945	.4943148
ACT_sq	.0045334	.0021764	2.08	0.038	.00026	.0088068
priGPA_atndrte	.0055859	.0043174	1.29	0.196	0028913	.0140631
_cons	2.050293	1.360319	1.51	0.132	6206861	4.721273

1 The following table contains the box office revenue (rev) and production budgets (bdgt) for three movies.

Movie	rev (y _i)	bdgt (x _i)
1	10	8
2	11	9
3	12	12

Estimate the intercept and slope coefficients in the equation:

$$\widehat{rev}_i = \hat{\beta}_0 + \hat{\beta}_1 bdgt_i.$$

- Compute the fitted values and residuals for each observation, and verify that the residuals (approximately) sum to zero.
- How much of the variation in rev for these three movies is explained by bdgt?
- Verify that $\sum_{i=1}^{3} bdgt_i \hat{u}_i = 0$.

The model to be estimated is:

$$\log(rev) = \beta_0 + \beta_1 \log(bdgt) + u.$$

Stata output is provided in the following slides!

- Interpret the coefficient on log(bdgt). Be specific.
- List three factors (or omitted variables) that are likey to be contained in u? Explain if they are negatively or positively correlated with bdgt.
- Based on your answer above, is the coefficient on log(bdgt) reported in the Stata output likely to be an unbiased estimate of the ceteris paribus effect of log(bdgt) on (the logarithm of) rev? Explain.

■ Suppose the "true" model includes one omitted variable, violence (*viol*, score between 0 and 10). The model is:

$$\log(rev) = \beta_0 + \beta_1 \log(bdgt) + \beta_2 viol + u.$$

Derive an expression that relates the coefficient on $\log(bdgt)$ from the first model, $\tilde{\beta}_1$, to the coefficient on $\log(bdgt)$ from the true model, $\hat{\beta}_1$. Show your workings.

- Is $\tilde{\beta}_1$ likely to be biased upward or downward?
- Perform an F test to determine if $\beta_2 = 0$ against the alternative hypothesis.

. reg lrev lbdgt viol

Source	SS	df		MS		Number of obs		1501
Model Residual	799.573466 1629.69742	2 1498		786733 0879155		F(2, 1498) Prob > F R-squared	=	
Total	2429.27088	1500		1951392		Adj R-squared Root MSE	=	
lrev	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
lbdgt viol _cons	.7033798 .0034669 14.87872	.026 .012 .107	L618	26.85 0.29 138.75	0.000 0.776 0.000	.6519956 020389 14.66838		.754764 0273228 .5.08906

. reg lrev lbdgt

Source	SS	df		MS		Number of obs		1501
Model Residual	799.485061 1629.78582	1 1499		485061 724871		F(1, 1499) Prob > F R-squared	=	0.0000 0.3291
Total	2429.27088	1500	1.61	951392		Adj R-squared Root MSE	=	0.3287 1.0427
lrev	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
lbdgt _cons	.7043321 14.89336	.0259		27.12 158.25	0.000	.6533831 14.70875		7552811 5.07797

The model to be estimated is:

$$\log(rev) = \beta_0 + \beta_1 bdgt + \beta_2 viol + \beta_3 sex + u.$$

Stats output is provided in the following slides!

- Interpret the coefficient on viol. Be specific.
- Which variables are statistically significant at the 5% level?
- Formally test the null hypothesis that viol has no effect on lrev against the alternative that viol has a positive effect. Carry out the test at the 5% significance level.
- What is the standard error of $\hat{\beta}_3$? What is its estimated variance, $\widehat{Var}(\hat{\beta}_3)$?
- Confirm that $\widehat{Var}(\hat{\beta}_3) = \frac{\hat{\sigma}^2}{SST_3(1-R_3^2)}$ using the attached Stata output.

. reg lrev bdgt viol sex

Source	SS	df	MS		Number of obs	
Model Residual	806.23221 1623.03867		B.74407 B419417		F(3, 1497) Prob > F R-squared Adj R-squared	= 0.0000 = 0.3319
Total	2429.27088	1500 1.6	1951392		Root MSE	= 1.0412
lrev	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
bdgt	.0155791	.0006446	24.17	0.000	.0143147	.0168436
viol	.0208567	.0123909	1.68	0.093	0034487	.0451621
sex	0549841	.0126499	-4.35	0.000	0797975	0301706
_cons	16.707	.0878678	190.14	0.000	16.53464	16.87936

. reg sex bdgt viol

SS df

						F(2, 1498)		96.96
Model	877.087353	2	438	.543676		Prob > F	=	0.0000
Residual	6775.35235	1498	4.52	2293215		R-squared	=	0.1146
						Adj R-squared	=	0.1134
Total	7652.43971	1500	5.10	0162647		Root MSE	=	2.1267
sex	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
bdgt	0151214	.0012	2573	-12.03	0.000	0175876		0126551
viol	.2054019	.0247	7454	8.30	0.000	.1568625		2539413
_cons	4.011978	.146	5505	27.38	0.000	3.724601	4	.299354

MS

Number of obs =

1501

Next week

■ Midterm exam