

Database Processing-Chapter 3 Study online at quizlet.com/_37g2f

 (T or F) 1)All relations are tables, but not all tables are relations. (T or F) 2) A relation is a three-dimensional 	TRUE Diff: 1 Page Ref: 96 FALSE	12. (T or F) 12) A row can be uniquely identified by a key.	TRUE Diff: 1 Page Ref: 104
table.	Diff: 2 Page Ref: 97-98 Fig 3-4	13. (T or F) 13) A key can be composed of a group of attributes taken together.	TRUE Diff: 1 Page Ref: 104
3. (T or F) 3) A characteristic of a relation is that the cells of the relation hold a single value.	TRUE Diff: 1 Page Ref: 97-98 Fig 3-4	14. (T or F) 14) It is possible to have a relation that does not have a key.	FALSE Diff: 3 Page Ref:
4. (T or F) 4) A characteristic of a relation is that the rows of a relation may hold identical values.	FALSE Diff: 2 Page Ref: 97-98 Fig 3-4	15. (T or F) 15) A relation can have only one candidate key.	FALSE Diff: 2 Page Ref:
5. (T or F) 5) The columns of a relation are sometimes called "tuples."	FALSE Diff: 1		104- 105
sometimes earlied tupies.	Page Ref: 98-99 Fig 3-9	16. (T or F) 16) Surrogate keys usually slow performance.	FALSE Diff: 2 Page
6. (T or F) 6) A tuple is a group of one or more columns that uniquely identifies a row.	FALSE Diff: 1 Page Ref: 98-98 Fig 3-9		Ref: 105
		17. (T or F) 17) Surrogate keys are normally not shown on forms or reports.	TRUE Diff: 1 Page
7. (T or F) 7) Attribute Y is functionally dependent on attribute X if the value of	TRUE Diff: 2 Page Ref:		Ref: 105
attribute X determines the value of Y.		18. (T or F) 18) A constraint that requires an instance of an entity to exist in one relation	FALSE Diff: 3
8. (T or F) 8) The functional dependency noted as A → B means that the value of A can be determined from the value of B.	FALSE Diff: 1 Page Ref: 100-101	before it can be referenced in another relation is called an insertion anomaly.	Page Ref: 105- 106
9. (T or F) 9) In the functional dependency shown as A → B, B is the determinant.	FALSE Diff: 2 Page Ref: 100	19. (T or F) 19) A referential integrity constraint limits the values of a foreign key.	TRUE Diff: 2 Page Ref: 105-
10. (T or F) 10) Functional dependencies can involve groups of attributes.	TRUE Diff: 1 Page Ref: 100-101		106
mvoive groups of attributes.		20. (T or F) 20) If a table meets the minimum definition of a relation, it has an effective or appropriate structure.	FALSE Diff: 2 Page
11. (T or F) 11) A determinant of a functional dependency may or may not be unique in a relation.	TRUE Diff: 2 Page Ref: 101-104	~	Ref: 107

 21. (T or F) 21) Undesirable consequences of changing the data in a relation are called "modification anomalies." 22. (T or F) 22) A deletion anomaly exists when deleting data about one entity results in the 	TRUE Diff: 2 Page Ref: 106-107 TRUE Diff: 1	32) In a relation A) entities in a column vary as to kind B) the order of the columns is important C) the order of the rows is unimportant D) more than one column can use the same name E) All of the above.	C Diff: 1 Page Ref: 96-98 Fig 3-4
loss of data about another entity.	Page Ref: 106-107	33. 33) A relation is also known as a(n) A) table	A Diff: 1 Page Ref:
23. (T or F) 23) Relations are classified into "normal forms" based on the types of modification anomalies that they are vulnerable to.	TRUE Diff: 3 Page Ref:	B) tuple C) relationship D) attribute E) field	98-99 Fig 3-9
	107-108 Fig 3-12	34. 34) A tuple is also known as a(n)	C Diff: 2
24. (T or F) 24) Any table that meets the definition of a relation is in 2NF.	FALSE Diff: 1 Page Ref: 107, 108	A) tableB) relationC) rowD) fieldE) file	Page Ref: 98-99 Fig 3-9
25. (T or F) 25) A relation is in Boyce-Codd Normal Form (BCNF) if every determinant is a candidate key.	TRUE Diff: 2 Page Ref: 109	35. 35) An attribute is also known as a(n) A) table B) relation C) row	D Diff: 2 Page Ref: 98-99 Fig 3-9
26. (T or F) 26) The essence of normalization is taking a relation that is not in BCNF and	TRUE Diff: 2	D) field E) file	
breaking it into multiple relations such that each one is in BCNF.	Page Ref: 110 Fig 3-13	36. 36) Saying that two entities are functionally dependent means that A) the entities are always connected by a	B Diff: 2 Page Ref:
27. (T or F) 27) Breaking a relation into two relations may create the need for a referential integrity constraint to be defined between the two relations.	TRUE Diff: 2 Page Ref: 110 Fig 3-13	mathematical equation B) for one of the entities, if we are given the value of that entity, we can determine the value of one other entity C) for both of the entities, if we are given the	100-101
28. (T or F) 28) A multivalued dependency exists when a determinant is matched to a set of values.	TRUE Diff: 3 Page Ref: 117	value of that entity, we can determine the value of one other entity D) the functional dependency will have to be removed through normalization E) All of the above.	
29. (T or F) 29) The multivalued dependency noted as A → → B, means that the value of A determines a set of values of B.	TRUE Diff: 1 Page Ref: 117	37. 37) Given the functional dependency A → (B, C), A is a(n) A) independent variable B) dependent variable	C Diff: 2 Page Ref: 100-101
30. (T or F) 30) A relation is in 4NF when multivalued dependencies are isolated in their own relation.	TRUE Diff: 2 Page Ref: 120	C) determinant D) composite determinant E) C and D	100-101
A) has rows containing data about an entity B) has columns containing data about attributes of the entity C) has cells that hold only a single value D) has no two identical rows E) All of the above.	E Diff: 1 Page Ref: 96- 98 Fig 3-4	38) Given the functional dependency (A, B) → C, (A, B) is a(n) A) independent variable B) dependent variable C) determinant D) composite determinant E) C and D	E Diff: 3 Page Ref: 100-101

 39. 39) Given the functional dependency (A, B) → C, then A) A → B B) A → C C) B → A D) B → C E) None of the above is correct. 40. 40) Which of the following is true about the functional dependency A → (X, Y)? 	E Diff: 2 Page Ref: 100- 101 E Diff: 3	46. 46) When designing a database, one of the candidate keys in a relation is selected as the A) composite key B) primary key C) foreign key D) surrogate key E) dependency 47. 47) An artificial column added to a relation to	B Diff: 1 Page Ref: 105
 A) X is functionally dependent on A. B) A determines Y. C) A is a determinant. D) X and Y are functionally dependent on A. E) All of the above. 	Page Ref: 100- 101	serve as the primary key is a(n) A) composite key B) candidate key C) foreign key D) surrogate key E) dependency	Diff: 1 Page Ref: 105
 41. 41) Which of the following is true about the functional dependency (A, B) → (C, D)? A) A is the determinant of C. B) A and B together are determined by C and D together. C) A and B together determine D. D) C and D together determine A. E) A determines B. 	C Diff: 3 Page Ref: 100- 101	48. 48) A key consisting of one or more columns that is a primary key in another relation is a(n) A) composite key B) candidate key C) foreign key D) surrogate key	C Diff: 1 Page Ref: 105- 106
 42. 42) The only reason(s) for having relations is to A) store instances of functional dependencies B) store equation components C) store equation results D) B and C E) A, B and C 	A Diff: 3 Page Ref: 101	E) dependency 49. 49) Referential integrity constraints are used to limit the possible values of a(n) A) composite key B) candidate key C) foreign key D) surrogate key E) dependency	C Diff: 1 Page Ref: 105- 106
 43) A combination of one or more columns used to identify particular rows in a relation is a(n) A) record B) field C) key D) tuple E) dependency 	C Diff: 1 Page Ref: 104	50. 50) A(n) is used to limit the possible values of a(n) foreign key. A) composite key B) surrogate key C) functional dependency D) referential integrity constraint E) normal form	D Diff: 2 Page Ref: 105- 106
44. 44) A combination of two or more columns used to identify particular rows in a relation is a(n) A) record B) field C) composite key D) foreign key E) surrogate key	C Diff: 1 Page Ref: 104	51. 51) Normalization is a process used to deal with which of the following modification anomalies? A) Insertion anomaly B) Update anomaly C) Deletion anomaly D) A and B E) A, B and C	E Diff: 1 Page Ref: 106- 107
45. 45) A determinant that determines all the other columns in a relation is a(n) A) record B) field C) foreign key D) candidate key E) surrogate key	D Diff: 1 Page Ref: 104- 105	52. 52) If the removal of facts about one entity results in the unintentional lose of data about another entity, this is referred to as a(n) A) normalization anomaly B) insertion anomaly C) update anomaly D) deletion anomaly E) removal anomaly	D Diff: 2 Page Ref: 106- 107

53. 53) Suppose that you need to update one value of the column SalesCost in a relation. The way the relation is constructed, this value actually needs to be changed in three different rows. However, you only change the value in two of the rows. You have just created an a(n) A) normalization anomaly B) insertion anomaly C) update anomaly D) deletion anomaly E) removal anomaly 54. 54) A table that meets the definition of a relation is in A) First Normal Form B) Second Normal Form	C Diff: 2 Page Ref: 106-107 A Diff: 1 Page Ref:	form if A) every key of the relation is a logical consequence of the definition of constraints and determinants B) every key of the relation is a logical consequence of the definition of constraints and domains C) every constraint on the relation is a logical consequence of the definition of keys and determinants D) every constraint on the relation is a logical consequence of the definition of keys and domains E) every domain of the relation is a logical consequence of the definition of keys and domains E) every domain of the relation is a logical consequence of the definition of keys and constraints	D Diff: 2 Page Ref: 120- 121	
C) Third Normal Form D) Boyce-Codd Normal Form E) Fourth Normal Form	A Diff: 2 Page Ref: 109-110 Fig 3-13 D Diff: 2 Page Ref: 109-110 Fig 3-13	60. 60) In general, each relation should have	A Diff: 1 Page	
55. 55) A relation is in Boyce-Codd normal form if A) every determinant is a candidate key B) every determinant is a primary key C) every attribute is a candidate key		A) one and only one themeB) one or more themesC) exactly two themesD) one or two themesE) exactly three themes	Ref: 112	
D) there is more than one candidate key E) there is more than one primary key 56. 56) If a table is designed so that every		Fig 3-13	61. 61) A(n) is a table composed of columns and rows.	relation Diff: 1 Page Ref: 96-98
determinant is a candidate key, then that relation is in A) First Normal Form B) Second Normal Form C) Third Normal Form D) Boyce-Codd Normal Form E) Fourth Normal Form		62. 62) In relational terms as defined by E.F. Codd, a row is called a(n)	Fig 3-4 tuple Diff: 1 Page Ref: 98	
		63. 63) In relational terms as defined by E.F. Codd, a column is called a(n)	attribute Diff: 1 Page Ref: 98	
57. 57) If a relation is in BCNF, and each multivalued dependency has been moved to a relation of its own, then the first relation is in A) First Normal Form B) Second Normal Form C) Third Normal Form D) Boyce-Codd Normal Form E) Fourth Normal Form	E Diff: 2 Page Ref: 117-120	64. 64) A(n) is a relationship between attributes such that if we know the value of one attribute, we can determine the value of the other attribute.	functional dependency Diff: 1 Page Ref: 100	
		117-120	65. 65) If by knowing the value of A we can find the value of B, then we would say that B is on A.	functionally dependent Diff: 2 Page Ref: 100
58. 58) A relation is in fourth normal form if it is in BCNF and it has no A) transitive dependencies B) multivalued dependencies C) partial dependencies D) deletion dependencies E) referential integrity conflicts	B Diff: 2 Page	referred to as the f: 67. 67) Given the functional dependency (A, E	determinant Diff: 2 Page Ref: 100	
	Ref: 117-120		composite determinant Diff: 2 Page Ref: 101	
		68. 68) Given the functional dependency A → (B, C), then it is true that and	$A \rightarrow B; A \rightarrow C$ Diff: 3 Page Ref: 101	

 69. 69) Given the functional dependency (A, B) → C, then it is not true that and 70. 70) Given the functional dependency A → B, it is not necessarily true that 71. 71) A(n) is a combination of one or more columns that is used to identify particular rows in a relation. 72. 72) A(n) is a group of attributes that uniquely identifies a row. 	A → C; B → C Diff: 3 Page Ref: 101 B → A Diff: 3 Page Ref: 101 key Diff: 1 Page Ref: 104 composite key Diff: 1 Page Ref: 104	82. 82) If a table is a relation then it is in 83. 83) A defining requirement for normal form is that every determinant must be a candidate key. 84. 84) A relation is in BCNF if every is a candidate key. 85. 85) A relation is in BCNF if every determinant is a(n)	1NF Diff: 1 Page Ref: 107, 108 Boyce-Codd Diff: 2 Page Ref: 109-110 Fig 3-13 determinant Diff: 2 Page Ref: 109-110 Fig 3-13 candidate key Diff: 2 Page Ref: 109-110
73. 73) A(n) is one of a group of keys that may serve as the primary key in a relation.	candidate key Diff: 1 Page Ref: 104-105	86. 86) Domain/key normal form requires that every be a logical consequence of the definition of domains	Fig 3-13 constraint Diff: 2 Page Ref: 120-121
74. 74) A(n) is a candidate key that has been selected to uniquely identify rows in a relation. 75. 75) A(n) relation or table has only one	primary key Diff: 1 Page Ref: 105 primary key	and keys. 87. 87) A relation that is in on the form is assured to be free from all anomalies. 88. 88) Every time we break up a relation during the normalization process, we may have to create constraints.	domain/key Diff: 2 Page
76. 76) A(n) is an artificial column that is added to a relation to be its primary key.	Diff: 1 Page Ref: 105 surrogate key Diff: 1 Page Ref: 105		Ref: 120-121 referential integrity Diff: 2 Page Ref: 110 Fig 3-13
77. 77) A(n) is one or more columns in one relation that also is the primary key in another table.	foreign key Diff: 1 Page Ref: 105-106	89. 89) A relation is in 4NF if it is in BCNF and it has no	multivalued dependencies Diff: 2 Page Ref: 117-120
78. 78) A(n) is used to make sure the values of a foreign key match a valid value of a primary key.	referential integrity constraint Diff: 1 Page Ref: 105-106	90. 90) When designing or normalizing relations, each relation should have only one	Fig 3-13 theme Diff: 1 Page Ref: 112
79. 79) For some relations, changing the data can have undesirable consequences called	modification anomalies Diff: 2 Page Ref: 106-107		
80. 80) Relations are categorized into where the categorization is based on the problems the relation has.	normal forms Diff: 2 Page Ref: 107- 108		
81. 81) Any table that meets the definition of a(n) is said to be in first normal form.	relation Diff: 1 Page Ref: 107, 108		