

Polymers

Recap of Basic Concepts

- Long chain molecules that consists of many covalently linked repeating units
- □ Extraordinary range of properties

- □ Consider this chain of beads as Polyethylene where each bead represents an ethylene unit
- \Box There are 200 beads in this chain What is the molecular weight of this polymer?

Polymers – Various Architectures

Polymers – Various Architectures

I	п	ш	IV
Linear	Cross-Linked	Branched	Dendritic
SE .	2 gr	23/2/2	(a) x + + + + + + + + + + + + + + + + + +
Flexible Coil Rigid Rod	Lightly Cross-Linked	Random Short Branches	(6)
Cyclic (Closed Linear)	珠珠	3 Brown	,
0,000 (0,0000 2,000)	Densely Cross-Linked	Random Long Branches	**************************************
sages		where	" Property
Polyrotaxane	Interpenetrating Networks	Regular Comb-Branched	Dendrigratis
THE		-V	(c)
Ladder	A State	7	ALVER A
` .	2-D Lightly Cross-Linked	Regular Star-Branched	Dendrans Dendrimers
1930's -	1940's -	1960's -	1980's -

Source: R. Esfand, D.A. Tomalia, A.E. Beezer, J.C. Mitchell, M. Hardy, C. Orford, Polymer Preprints, 41 (2), 1324 (2000)

Types and Broad Categories of Synthetic Polymers

Based on flow and deformation behavior

(a) Linear
(b) Branched
Thermoplastics

Types and Broad Categories of Synthetic Polymers

Based on transition temperature

Polymers – Some Examples

Polyethylene Poly(methylene)

Poly(propylene)

Poly(1-chloroethylene)

Poly(1-hydroxyethylene)

Poly(1-phenylethylene)

Poly(oxyethylene)

Poly(oxy-1,4-phenylene)

Poly[imino(1-oxohexamethylene)]

Poly[oxy(1-oxohexamethylene)]

Poly[(1-methoxycarbonyl)-1-methylethylene]

Poly(iminohexamethyleneiminoadipoyl)

Poly(oxyethyleneoxyterephthaloyl)

Polymer Functionality

Polymer IUPAC Nomenclature - Copolymers

Copolymers are named by the arrangement of the comonomers

Type of	Connection	Name
,	<u> </u>	_ , , , , _ ,

Unspecified Poly(A-co-B)

Obeys statistical laws Poly(A-stat-B)

Random Poly(A-ran-B)

Alternating Poly(A-alt-B)

Block Poly(A-block-B)

Graft Poly(A-graft-B)

Isomerism in Polymers

Sequence Isomerism

Isomerism in Polymers

Structural Isomerism

$$H_{2}C$$
 $H_{3}C$
 $H_{2}C$
 $H_{3}C$
 $H_{3}C$
 $H_{4}C$
 $H_{2}C$
 $H_{3}C$
 $H_{4}C$
 $H_{4}C$
 $H_{5}C$
 H

Stereoisomerism

Degree of Polymerization (DP)

Degree of polymerization (DP) = Number of SU

Chain vs. Step Growth Polymerization

Chain Length and Molecular Weight - Molar Mass of Polymer

Molecular weight (or strictly, Molar Mass) – Mass of 1 mole of polymer and usually quoted in units of g/mol

Molecular weight of a chain = [Degree of Polymerization (DP)] x [Molecular weight of average RU]

Where M_0 = Molecular weight of average RU

Polymers – Molecular Weight

All synthetic and most of natural polymers have molecular weight distribution – WHY?

Example

Ethylene

$$M = 28 \text{ g/mol}$$

$$n = 1000$$

$$M=28\ 000\ g/mol$$

$$n = 5000$$

$$n = 100,000$$

$$M = ?????? g/mol$$

Molecular weights are presented as average values

Number Average Molecular Weight

Number average molecular weight, $\overline{\mathbf{M}}_{\mathbf{n}}$

- □ Each capsule contains a polymer molecule
- □ All capsules are of same size independent of the size of polymer molecule
- □ All polymer molecules have same chance to be picked up to determine molecular weight

Colligative properties

- □ Vapour-phase and membrane osmometry
- □ Depression in freezing point
- □ Elevation in boiling point
- □ End group analysis
- □ MALDI

Number Average Molecular Weight

Common arithmatic average value

Example 1 mol
$$P_1$$
 $M = 1 \times 10^5 \text{ g/mol}$
1 mol P_2 $M = 2 \times 10^5 \text{ g/mol}$
1 mol P_3 $M = 3 \times 10^5 \text{ g/mol}$

$$\overline{M}_n = \frac{1x(1x10^5) + 1x(2x10^5) + 1x(3x10^5)}{3} = \frac{6x10^5}{3} = 2x10^5 \, g \, / \, mol$$

 M_n = total weight of samples / number of molecules

$$\overline{M}_{n} = \frac{w}{\sum_{i=1}^{\infty} N_{i}} = \frac{\sum_{i=1}^{\infty} M_{i} N_{i}}{\sum_{i=1}^{\infty} N_{i}}$$

Weight Average Molecular Weight

Weight average molecular weight, $\overline{\mathbf{M}}_{\mathbf{w}}$

- □ Capsules having longer polymer chains are bigger than those having small polymer chains
- □ Bigger polymer molecules have high chance to be picked up to determine molecular weight

- □ Light scattering
- Ultracentrifugation
- □ MALDI

Weight Average Molecular Weight

- □ Individual polymer chains are considered
- \square \overline{M}_w is more dependent on high molecular weight polymer chains than \overline{M}_n , which just looks at number of polymer chains

Example 1 mol
$$P_1$$
 $M = 1 \times 10^5 \text{ g/mol}$
1 mol P_2 $M = 2 \times 10^5 \text{ g/mol}$
1 mol P_3 $M = 3 \times 10^5 \text{ g/mol}$

$$\overline{M}_{w} = \frac{1x(1x10^{5})^{2} + 1x(2x10^{5})^{2} + 1x(3x10^{5})^{2} + 1x(3x10^{5})^{2}}{1x(1x10^{5}) + 1x(2x10^{5}) + 1x(3x10^{5})} = \frac{14x10^{10}}{6x10^{5}} = 2.33x10^{5} g / mol$$

$$\overline{M}_{w} = \frac{\sum_{i=1}^{\infty} M_{i}^{2} N_{i}}{\sum_{i=1}^{\infty} M_{i} N_{i}}$$

Z-Average Molecular Weight

Z-average molecular weight, \overline{M}_z

- □ Even more statistical weight to high molecular weight chains
- □ Ultracentrifugation

Example 1 mol
$$P_1$$
 $M = 1 \times 10^5 \text{ g/mol}$
1 mol P_2 $M = 2 \times 10^5 \text{ g/mol}$
1 mol P_3 $M = 3 \times 10^5 \text{ g/mol}$

$$\overline{M}_{z} = \frac{1x(1x10^{5})^{3} + 1x(2x10^{5})^{3} + 1x(3x10^{5})^{3} + 1x(3x10^{5})^{3}}{1x(1x10^{5})^{2} + 1x(2x10^{5})^{2} + 1x(3x10^{5})^{2}} = \frac{36x10^{15}}{14x10^{10}} = 2.57x10^{5} \, g \, / \, mol$$

$$\overline{M}_z = \frac{\sum_{i=1}^{\infty} M_i^3 N_i}{\sum_{i=1}^{\infty} M_i^2 N_i}$$

Polydispersityindex (PDI) or Molecular weight distribution (MWD)

$$PDI = \frac{M_{w}}{\overline{M}_{n}}$$

 \Box Globular proteins PDI = 1

□ Random polymerization PDI ~ 2

 \Box Living anionic polymerization PDI < 1.1