What threshold-based boolean attribute should be defined based on Temperature? Clearly, we would like to pick a threshold, c, that produces the greatest information gain. By sorting the examples according to the continuous attribute A, then identifying adjacent examples that differ in their target classification, we can generate a set of candidate thresholds midway between the corresponding values of A. It can be shown that the value of c that maximizes information gain must always lie at such a boundary (Fayyad 1991). These candidate thresholds can then be evaluated by computing the information gain associated with each. In the current example, there are two candidate thresholds, corresponding to the values of Temperature at which the value of PlayTennis changes: (48 + 60)/2, and (80 + 90)/2. The information gain can then be computed for each of the candidate attributes, Temperature>54 and Temperature>85, and the best can be selected (Temperature>54). This dynamically created boolean attribute can then compete with the other discrete-valued candidate attributes available for growing the decision tree. Fayyad and Irani (1993) discuss an extension to this approach that splits the continuous attribute into multiple intervals rather than just two intervals based on a single threshold. Utgoff and Brodley (1991) and Murthy et al. (1994) discuss approaches that define features by thresholding linear combinations of several continuous-valued attributes.

3.7.3 Alternative Measures for Selecting Attributes

There is a natural bias in the information gain measure that favors attributes with many values over those with few values. As an extreme example, consider the attribute Date, which has a very large number of possible values (e.g., March 4, 1979). If we were to add this attribute to the data in Table 3.2, it would have the highest information gain of any of the attributes. This is because Date alone perfectly predicts the target attribute over the training data. Thus, it would be selected as the decision attribute for the root node of the tree and lead to a (quite broad) tree of depth one, which perfectly classifies the training data. Of course, this decision tree would fare poorly on subsequent examples, because it is not a useful predictor despite the fact that it perfectly separates the training data.

What is wrong with the attribute *Date*? Simply put, it has so many possible values that it is bound to separate the training examples into very small subsets. Because of this, it will have a very high information gain relative to the training examples, despite being a very poor predictor of the target function over unseen instances.

One way to avoid this difficulty is to select decision attributes based on some measure other than information gain. One alternative measure that has been used successfully is the gain ratio (Quinlan 1986). The gain ratio measure penalizes attributes such as Date by incorporating a term, called split information, that is sensitive to how broadly and uniformly the attribute splits the data:

$$SplitInformation(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$
(3.5)

where S_1 through S_c are the c subsets of examples resulting from partitioning S by the c-valued attribute A. Note that SplitInformation is actually the entropy of S with respect to the values of attribute A. This is in contrast to our previous uses of entropy, in which we considered only the entropy of S with respect to the target attribute whose value is to be predicted by the learned tree.

The Gain Ratio measure is defined in terms of the earlier Gain measure, as well as this SplitInformation, as follows

$$GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$$
(3.6)

Notice that the SplitInformation term discourages the selection of attributes with many uniformly distributed values. For example, consider a collection of n examples that are completely separated by attribute A (e.g., Date). In this case, the SplitInformation value will be $\log_2 n$. In contrast, a boolean attribute B that splits the same n examples exactly in half will have SplitInformation of 1. If attributes A and B produce the same information gain, then clearly B will score higher according to the Gain Ratio measure.

One practical issue that arises in using GainRatio in place of Gain to select attributes is that the denominator can be zero or very small when $|S_i| \approx |S|$ for one of the S_i. This either makes the GainRatio undefined or very large for attributes that happen to have the same value for nearly all members of S. To avoid selecting attributes purely on this basis, we can adopt some heuristic such as first calculating the Gain of each attribute, then applying the GainRatio test only considering those attributes with above average Gain (Quinlan 1986).

An alternative to the GainRatio, designed to directly address the above difficulty, is a distance-based measure introduced by Lopez de Mantaras (1991). This measure is based on defining a distance metric between partitions of the data. Each attribute is evaluated based on the distance between the data partition it creates and the perfect partition (i.e., the partition that perfectly classifies the training data). The attribute whose partition is closest to the perfect partition is chosen. Lopez de Mantaras (1991) defines this distance measure, proves that it is not biased toward attributes with large numbers of values, and reports experimental studies indicating that the predictive accuracy of the induced trees is not significantly different from that obtained with the Gain and Gain Ratio measures. However, this distance measure avoids the practical difficulties associated with the Gain Ratio measure, and in his experiments it produces significantly smaller trees in the case of data sets whose attributes have very different numbers of values.

A variety of other selection measures have been proposed as well (e.g., see Breiman et al. 1984; Mingers 1989a; Kearns and Mansour 1996; Dietterich et al. 1996). Mingers (1989a) provides an experimental analysis of the relative effectiveness of several selection measures over a variety of problems. He reports significant differences in the sizes of the unpruned trees produced by the different selection measures. However, in his experimental domains the choice of attribute selection measure appears to have a smaller impact on final accuracy than does the extent and method of post-pruning.