

Machine Learning

Recommen der Systems Problem

formulation

Example: Predicting movie ratings

User rates movies using one to five stars

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	
Love at last					
Romance forever					
Cute puppies of love					
Nonstop car chases					
Swords vs. karate					

 $n_u = \text{no. users}$ $n_m = \text{no. movies}$ r(i,j) = 1 if user ha
rated movie $y^{(i,j)} = \text{rating given}$ by user to imovie $y(i,j) = x_i + y_j$ $y(i,j) = x_j + y_j$ y(i

In our notation, r(i,j)=1 if user j has rated movie i, and $y^{(i,j)}$ is his rating on that movie. Consider the following example (no. of movies $n_m=2$, no. of users $n_u=3$):

	User 1	User 2	User 3
Movie 1	0	1	?
Movie 2	?	5	5

What is r(2,1)? How about $y^{(2,1)}$?

$$r(2,1) = 0, y^{(2,1)} = 1$$

$$r(2,1) = 1, y^{(2,1)} = 1$$

$$r(2,1) = 0, y^{(2,1)} =$$
undefined

Correct Response

$$r(2,1) = 1, y^{(2,1)} =$$
undefined

Machine Learning

Recommen der Synterti-based recommendati ons

Content-based recommender systems

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	
Love at last	5	5	0	0	
Romance forever	5	?	?	0	
Cute puppies of love	?	4	0	?	
For _{ch} each u		l . '	parame	ter ⁴	0.1 . Predict
USS⊕ frd £vaS r karate	ating n	iovie	with	?	stars. 0.9

Problem formulation

```
r(i,j) = 1 if user has rated movie (0 otherwise) y^{(i,j)} = rating by user on movie (if defined)
```

```
\begin{array}{ll} \theta^{(j)} &= \text{parameter vector for user} \\ x^{(i)} &= \text{feature vector for movie} \\ \text{For use} \text{\it for movie} \\ \text{\it optimizer} \end{array}, \\ \text{movie} \\ \text{\it optimizer} \end{array}, \\ \text{\it predicted} (\text{\it predicted}) \end{array}
```

 $m^{(j)}$ = no. of movies rated by user To learm^(j) :

Optimization objective:

To lear $\mathbf{n}^{(j)}$ (parameter for user):

$$\min_{\theta^{(j)}} \frac{1}{2} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{i=1}^{n_u} \sum_{i: r(i, i)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i, j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

Machine Learning

Recommen der Systems Collaborati ve filtering

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (roman ce)	(action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	?	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (roman ce)	x_2 (action
Love at last	5	5	0	0	?	?
Romance forever	5	?	?	0	?	?
Cute puppies of love	?	4	0	?	?	?
Nonstop car chases	0	0	5	4	?	?
Swords vs. karate $_{1)}$ $=$	$\begin{bmatrix} 0 \\ 5 \end{bmatrix}, \theta^{(2)}$	$=\begin{bmatrix} 0 \\ 5 \end{bmatrix}$	$ \begin{array}{ccc} 5 & \boxed{0} \\ \theta^{(3)} & = \boxed{0} \end{array} $	$\theta^{(4)} =$	[0]?	?
	$\left 0 \right '$	$\left 0 \right ^{2}$		5 '	5	

Consider the following movie ratings:

	User 1	User 2	User 3	(romance)
Movie 1	0	1.5	2.5	?

Note that there is only one feature x_1 . Suppose that:

$$heta^{(1)} = egin{bmatrix} 0 \ 0 \end{bmatrix}, \ heta^{(2)} = egin{bmatrix} 0 \ 3 \end{bmatrix}, \ heta^{(3)} = egin{bmatrix} 0 \ 5 \end{bmatrix}$$

What would be a reasonable value for $x_1^{(1)}$ (the value denoted "?" in the table above)?

.5

Correct Response

- 0 1
- 0 2
- Any of these values would be equally reasonable.

Optimization algorithm

Given
$$\theta^{(1)}, \dots, \theta^{(n_u)}$$
 , to lead θ :

$$\min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Given
$$\theta^{(1)}, \dots, \theta^{(n_u)}$$
, to lead $\theta, \dots, x^{(n_m)}$

$$\min_{x^{(1)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

Give $n^{(1)}, \dots, x^{(n_m)}$ (and movie ratings), can estimate $\theta^{(1)}, \dots, \theta^{(n_u)}$

```
Give\mathbf{m}^{(1)},\dots,\mathbf{\theta}^{(n_u)} , can estimate x^{(1)},\dots,x^{(n_m)}
```

Suppose you use gradient descent to minimize:

$$\min_{x^{(1)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Which of the following is a correct gradient descent update rule for $i \neq 0$?

$$x_k^{(i)} := x_k^{(i)} + lpha \Big(\sum_{j: r(i,j)=1} \Big((heta^{(j)})^T (x^{(i)}) - y^{(i,j)} \Big) heta_k^{(j)} \Big)$$

$$x_k^{(i)} := x_k^{(i)} - lpha \Big(\sum_{j: r(i,j) = 1} \Big((heta^{(j)})^T (x^{(i)}) - y^{(i,j)} \Big) heta_k^{(j)} \Big)$$

$$x_k^{(i)} := x_k^{(i)} + lpha \Big(\sum_{j: r(i,j)=1} \Big((heta^{(j)})^T (x^{(i)}) - y^{(i,j)} \Big) heta_k^{(j)} + \lambda x_k^{(i)} \Big)$$

$$x_k^{(i)} := x_k^{(i)} - lpha \Big(\sum_{j: r(i,j) = 1} \Big((heta^{(j)})^T (x^{(i)}) - y^{(i,j)} \Big) heta_k^{(j)} + \lambda x_k^{(i)} \Big)$$

Correct Response

Machine Learning

Recommen der Systems filtering algorithm

Collaborative filtering optimization objective

$$\begin{aligned} \textbf{Given}^{(1)}, \dots, x^{(n_m)} &, \textbf{estimate}..., \theta^{(n_u)}.\\ & \min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta^{(j)}_k)^2 \end{aligned}$$

$$\begin{aligned} & \theta^{(1)}, \dots, \theta^{(n_u)} \ 2 \sum_{j=1}^{n} \sum_{i:r(i,j)=1}^{n_m} (1) \sum_{j=1}^{n_m} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1}^{n_m} (1) \sum_{j=1}^{n_m} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1}^{n_m} (1) \sum_{j=1}^{n_m} (1) \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1}^{n_m} (1) \sum_{j=1}^{n_m} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1}^{n_m} (1) \sum_{j=1}^{n_m} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1}^{n_m} (1) \sum_{j=1}^{n_m} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1}^{n_m} (1) \sum_{j:$$

Minimizing (x_1, \dots, x_m) and (x_m, \dots, θ) imultaneously:

 $\theta^{(1)},\ldots,\theta^{(n_u)}$

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

$$\min_{x^{(1)}, \dots, x^{(n_m)}} J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})$$

Collaborative filtering algorithm

- 1. Initialize $(1), \ldots, x^{(n_m)}, \theta^{(1)}, \ldots t \theta^{(s)}$ mall random values.
- 2. Minimize $f(x^{(1)}, \dots, x^{(n_m)}, \theta)$ in g radient descent (or an advanced optimization algorithm). E.g. for every $f(x^{(1)}, \dots, x^{(n_m)}, \theta)$ every $f(x^{(1)}, \dots, x^{(n_m)}, \theta)$ every $f(x^{(1)}, \dots, x^{(n_m)}, \theta)$ in $f(x^{(1)}, \dots, x^{(n_m)}, \theta)$ every $f(x^{(1)}, \dots, x^{(n_m)}, \theta)$ in $f(x^{(1)}, \dots, x^{(n_m)}, \theta)$ every $f(x^{(1)}, \dots, x^{(n_m)}, \theta)$ in $f(x^{(1)}, \dots, x^{(n_m)}, \theta)$ i

$$\begin{aligned} & \text{every} j = 1, \dots, n_u, i = 1, \dots, n_m \\ & x_k^{(i)} := x_k^{(i)} - \alpha \left(\sum_{j: r(i,j) = 1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right) \\ & \theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i: r(i,j) = 1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \end{aligned}$$

3. For a user with parameters and a movie with (learned) features , predict a star rating of

In the algorithm we described, we initialized $x^{(1)},\ldots,x^{(n_m)}$ and $\theta^{(1)},\ldots,\theta^{(n_u)}$ to small random values. Why is this?

- This step is optional. Initializing to all 0's would work just as well.
- Random initialization is always necessary when using gradient descent on any problem.
- igcup This ensures that $x^{(i)}
 eq \theta^{(j)}$ for any i,j.
- This serves as symmetry breaking (similar to the random initialization of a neural network's parameters) and ensures the algorithm learns features $x^{(1)}, \ldots, x^{(n_m)}$ that are different from each other.

Correct Response

Machine Learning

Recommen der

Low rank matrix factorization

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

Collaborative filtering

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

Predicted

```
Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix} \qquad \begin{bmatrix} \text{rotingst}) & (\theta^{(2)})^T(x^{(1)}) & \dots & (\theta^{(n_u)})^T(x^{(1)}) \\ (\theta^{(1)})^T(x^{(2)}) & (\theta^{(2)})^T(x^{(2)}) & \dots & (\theta^{(n_u)})^T(x^{(2)}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\theta^{(1)})^T(x^{(n_m)}) & (\theta^{(2)})^T(x^{(n_m)}) & \dots & (\theta^{(n_u)})^T(x^{(n_m)}) \end{bmatrix}
```

Let
$$X = \begin{bmatrix} -& (x^{(1)})^T & - \ & dots & \ -& (x^{(n_m)} & - \end{bmatrix}, \; \Theta = \begin{bmatrix} -& (heta^{(1)})^T & - \ & dots & \ -& (heta^{(n_u)} & - \end{bmatrix}.$$

What is another way of writing the following:

$$\begin{bmatrix} (x^{(1)})^T (\theta^{(1)}) & \dots & (x^{(1)})^T (\theta^{(n_u)}) \\ \vdots & \ddots & \vdots \\ (x^{(n_m)})^T (\theta^{(1)}) & \dots & (x^{(n_m)})^T (\theta^{(n_u)}) \end{bmatrix}$$

- \circ $X\Theta$
- $\bigcirc X^T \Theta$
- $\bullet X\Theta^T$

Correct Response

 $\Theta^T X^T$

Finding related movies

For each product , we learn a feature e^{i} vertor

How to find movies related to imovie ?

5 most similar movies to movie : Find the 5 movies with the shallest ||

Machine Learning

Recommen der

Inpotentiation nal detail:
Mean normalization

Users who have not rated any movies

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)		[5	5	0	0	?]
Love at last	5	5	0	0	?		5	?	?	0	?
Romance forever	5	?	?	0	?	Y =	$\begin{vmatrix} ? \\ 0 \end{vmatrix}$	$\frac{4}{0}$	0 5	$\frac{?}{4}$?
Cute puppies of love	?	4	0	?	?		0	0	5	0	?
Nonstop car chases 1 Swords v_s 2 $\theta^{(1)}$ karate v_s	$\sum_{i,j):r(i,j)=1}^{0}$	$\begin{matrix} 0 \\ ((\theta^{(j)})^T x^0 \\ 0 \end{matrix}$	$\frac{5}{i} - y^{(i,j)})^2 \\ 5$	$+\frac{\lambda}{2}\sum_{i=1}^{n_m}\sum_{k=1}^r$	$(x_k^{(i)})^2 + 1$	$\frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n$	/\ n	$(1)^{2}$			

Mean Normalization:

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 & ? \\ 5 & ? & ? & 0 & ? \\ ? & 4 & 0 & ? & ? \\ 0 & 0 & 5 & 4 & ? \\ 0 & 0 & 5 & 0 & ? \end{bmatrix} \qquad \mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2.25 \\ 1.25 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 2.5 & 2.5 & -2.5 & -2.5 & ? \\ 2.5 & ? & ? & -2.5 & ? \\ ? & 2 & -2 & ? & ? \\ -2.25 & -2.25 & 2.75 & 1.75 & ? \\ -1.25 & -1.25 & 3.75 & -1.25 & ? \end{bmatrix}$$

For use not on movie predict:

User 5 (Eve):

We talked about mean normalization. However, unlike some other applications of feature scaling, we did not scale the movie ratings by dividing by the range (max – min value). This is because:

- This sort of scaling is not useful when the value being predicted is real-valued.
- All the movie ratings are already comparable (e.g., 0 to 5 stars), so they are already on similar scales.

Correct Response

- Subtracting the mean is mathematically equivalent to dividing by the range.
- This makes the overall algorithm significantly more computationally efficient.