THE UNIVERSITY OF CHICAGO

Booth School of Business

Business 41912, Spring Quarter 2016, Mr. Ruey S. Tsay

Solutions to Midterm

Part One. Basic concepts.

Problem A.

1. Bivariate normal as with mean μ_z and covariance Σ_z given by

$$\mu_z = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \quad \Sigma_z = \begin{bmatrix} 6 & -2 \\ -2 & 4 \end{bmatrix}.$$

- 2. Univariate normal with mean and variance 17 and 21, respectively.
- 3. Bivariate normal with mean and covariance given by

$$\left[\begin{array}{c} 2.5\\ 2.0 \end{array}\right], \quad \left[\begin{array}{cc} 5 & 3\\ 3 & 9 \end{array}\right].$$

- 4. Yes, because their covariance is zero. Let $\mathbf{c}_1 = (1, -1, 1)'$ and $\mathbf{c}_2 = (2, 1, -1)'$. Then, $\mathbf{c}_1' \Sigma \mathbf{c}_2 = 0$.
- 5. χ_s^2 .

Problem B.

- 1. 5-dimensional normal with mean zero and covariance matrix Σ .
- 2. χ_5^2
- 3. χ_5^2
- 4. No longer χ_5^2 because $\text{cov}(\bar{X})$ is not consistently estimated by S/n.
- 5. $\frac{n-1}{n}\Sigma$.

Problem C:

- 1. ϵ_i are independent with mean zero and covariance matrix Σ , which is time-invariant. Also, $E(\epsilon_i|\mathbf{Z}_i) = \mathbf{0}$.
- 2. $(Z'Z)^{-1}(Z'Y)$.

- 3. Because \mathbf{Z}_i contains the constant 1 as one of its elements.
- 4. $\sqrt{n}[\operatorname{vec}(\widehat{\boldsymbol{\beta}}) \operatorname{vec}(\boldsymbol{\beta})]$ is normally distributed with mean zero and covariance matrix $\Sigma \otimes (\boldsymbol{Z}'\boldsymbol{Z})^{-1}$.
- 5. $\operatorname{cov}(\hat{\boldsymbol{\epsilon}}_{(i)}) = \sigma_{ii}(\boldsymbol{I} \boldsymbol{H})$, where σ_{ii} is the *i*-th diagonal element of Σ and $\boldsymbol{H} = \boldsymbol{Z}(\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}'$.

Problem D.

- 1. The data consist of a random sample from a multivariate distribution when the sample size is large. For small sample size, the population distribution is multivariate normal.
- 2. Yes, because the test statistic is both mean-adjusted and scale-adjusted. Simple derivation is available in the lecture note.
- 3. X_1 and X_2 are uncorrelated (or independent).
- 4. The data consist of random samples from the two populations. The sample size n_1 and n_2 are sufficiently large (compared with dimension). If the sample sizes are not sufficiently large, then one also assumes that the two populations have the same covariance matrix.
- 5. (1) Sample size is less than the number of explanatory variables. (2) The underlying model is sparse.

Problem E.

- 1. The EM algorithm and Markov chain Monte Carlos methods
- 2. The data are missing at random.
- 3. Transform the data into χ^2 random variates and compare the transformed data with quantiles of χ^2 distribution.

Part Two: Data analysis

Problem F. (21 points) Japanese Seishu wine.

1. The sample mean and sample variance of each explanatory variable are given below

- 2. The maximum Pearson correlation (in magnitude) between \boldsymbol{Y} and \boldsymbol{X} is 0.239 between "y2" and "x6".
- 3. Find the maximum Kendall's tau (in magnitude) between \boldsymbol{Y} and \boldsymbol{X} is 0.194 also between "y2" and "x6".
- 4. Use stepwise and AIC, the selected model is

$$y_{1i} = -7.48 + 1.29x_{1i} + 0.92x_{3i} + 0.08x_{4i} + 0.66x_{5i} - 0.005x_{8i} + \epsilon_t.$$

5. The $\hat{\beta}$ is

Most of the estimates are not statistically significant, however.

- 6. The likelihood ratio test is 3.19 with p-value 0.53. Thus, the regressor X_3 can be dropped.
- 7. The likelihood ratio test is 10.87 with p-value 0.028. Thus, at the 5% level, the regressor X_1 contributes significantly to the regression.

Problem G. (10 points) This is a simulated example, the data generating model is

$$y_i = 5x_{30,i} - 5x_{50,i} + 2x_{1,i}x_{10,i} + \epsilon_i.$$

1. The LASSO results are shown in Figure 1 and 2. From the plots and cross-validation result, it seems that a fraction of $s \in [0.6, 1.0]$ would be fine. Thus, the solution is not unique. However, the dominating regressors are x_{30} and x_{50} . Since the interaction is not allowed in the design matrix, other variables might appear as a proxy.

Figure 1: Output of LASSO for Problem G.

- 2. The glmnet results with $\alpha = 0.5$ are shown in Figures 3 and 4. Similar to part 1, the solution is not unique. For λ with $\ln(\lambda) \in [-2, 0]$ seems reasonable.
- 3. The LASSO results when interactions are allowed are shown in Figures 5 and 6. The data generating model should be included in the selected model. The fraction s seems to be between 0.8 and 1.0.

Problem H. Cell-phone data

1. The analysis is given below:

```
> fac1 <- factor(da[,1])</pre>
> fac2 <- factor(da[,2])
> fac3 <- factor(da[,3])</pre>
> Y <- as.matrix(da[,4:5])</pre>
> n1 <- manova(Y~fac1+fac2+fac3+fac1*fac2+fac1*fac3+fac2*fac3)</pre>
> summary(n1)
               Pillai approx F num Df den Df
                                                    Pr(>F)
            1 0.94651
                                       2
                                               8 8.189e-06 ***
fac1
                         70.774
                                       2
fac2
            1 0.98541
                        270.173
                                               8 4.530e-08 ***
                                       2
fac3
            1 0.96983
                        128.573
                                               8 8.287e-07 ***
                                       2
fac1:fac2
            1 0.72226
                         10.402
                                                  0.005951 **
                                       2
fac1:fac3
            1 0.18169
                          0.888
                                               8
                                                  0.448407
fac2:fac3
            1 0.22326
                          1.150
                                       2
                                                  0.363995
Residuals
            9
> summary(n1,test="Wilks")
```


Figure 2: Cross-validation of LASSO for Problem G.

Figure 3: Output of glmnet for Problem G.

Figure 4: Cross-validation of glmnet for Problem G.

Figure 5: Output of LASSO for Problem G with interaction terms.

Figure 6: Cross-validation of LASSO for Problem G with interaction terms.

	Df	Wilks	approx F	num Df	den Df	Pr(>F)	
fac1	1	0.05349	70.774	2	8	8.189e-06	***
fac2	1	0.01459	270.173	2	8	4.530e-08	***
fac3	1	0.03017	128.573	2	8	8.287e-07	***
fac1:fac2	1	0.27774	10.402	2	8	0.005951	**
fac1:fac3	1	0.81831	0.888	2	8	0.448407	
fac2:fac3	1	0.77674	1.150	2	8	0.363995	
Residuals	9						

Based on Pillai or Wilks test, the interaction between severity and complexity and the three main effects are significant.

- 2. There are several ways to perform the analysis. I simply use the full model that includes main effects and all two-way interactions to form test. The result shows that the main effects are significant with likelihood ratio test 45.2 with *p*-value close to zero.
- 3. No, because the three possible dependent variables are linear combinations of two given. [You can perform the analysis to confirm it, but not required.]

Problem I. Monthly simple returns of IBM, MSFT (Microsoft), and the S&P composite index.

1. The sample means and covariance matrices are given below:

```
> x1 <- as.matrix(da[1:72,2:4])
> dim(da)
[1] 192  4
```

```
> x2 <- as.matrix(da[121:192,2:4])
> apply(x1,2,mean)
        msft
                      ibm
                                     sp
-0.002916167
             0.001442736 -0.001305014
> cov(x1)
            msft
                         ibm
msft 0.012959379 0.007089793 0.002925037
     0.007089793 0.009818525 0.003105217
     0.002925037 0.003105217 0.001924248
> apply(x2,2,mean)
       msft
                    ibm
                                  sp
0.012797889 0.003497875 0.009153069
> cov(x2)
            msft
                           ibm
                                         sp
msft 0.004580680 0.0010307783 0.0015974864
     0.001030778 0.0020466945 0.0008785111
     0.001597486 0.0008785111 0.0014300346
sp
```

- 2. Based on the Box-M test statistic, the null hypothesis of equal covariance matrices is rejected. The test statistic is 59.5 with p-value close to zero.
- 3. Based on Hotelling T^2 test (with un-equal covariances), one cannot reject the null hypothesis of equal mean vectors at the 5% level. The test statistic is 3.65 with p-value 0.31.