Formal Methods - End Sems

- Chapter 0 6:00 7:00
- Chapter 1 7:00 12:00
- Chapter 2 12:00 6:00

Chapter 1

- Finite Automata < Q, ∑, ∂, q, F >
- (Regular) Language
- Proof of Union, Concatenation, Star Languages
- DFA vs NFA
- NFA to DFA
- Regular Expressions start -> concat -> union
- Regular Expression to NFA
- NFA to GNFA to Regular Expression
 - GNFA+ 3 rules
- DFA -> GNFA -> Regular Expression
- Non-regular Languages
- Pumping Lemma for Regular Languages

Chapter 2

- CFG is a 4 tuple : < V , ∑ , R , S >
 - V is a set of variables
 - Σ is a set of terminals DISJOINT from V
 - R is a set of rules.
 - **S** is the start state.
- Rule of Unions
- Rule of Memory
- CFG Construction
- DFA to CFG
- Ambiguity
- Leftmost Derivation
- Inherently Ambiguous Grammar
- Chomsky Normal Form
- CFG to CNF Rules
 - Add new start state

- Remove e rules unless start
- Remove unit rules
- Further Conversion
- Pushdown Automata is a 6 tuple < Q, Σ , tau, ∂ , q, F>
 - Q is a set of states
 - $-\sum$ is the set of alphabets
 - Tau is the set of stack
 - ∂ is the transition table
 - F is the set of accepted states
- Nondeterministic PDA
- Deterministic PDA
- PDA Construction
- Pumping Lemma for CFL
- Proof of PL for CFL