

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO

Prova Escrita de Matemática A

12.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho

Prova 635/Época Especial

14 Páginas

Duração da Prova: 150 minutos. Tolerância: 30 minutos.

2016

Nos termos da lei em vigor, as provas de avaliação externa são obras protegidas pelo Código do Direito de Autor e dos Direitos Conexos. A sua divulgação não suprime os direitos previstos na lei. Assim, é proibida a utilização destas provas, além do determinado na lei ou do permitido pelo IAVE, I.P., sendo expressamente vedada a sua exploração comercial.

——— Página em branco ————	

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

Apresente apenas uma resposta para cada item.

A prova inclui um formulário.

As cotações dos itens encontram-se no final do enunciado da prova.

Página em branco	

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

 $\frac{\alpha r^2}{2}(\alpha-\text{amplitude},\text{em radianos},\text{do ângulo ao centro};\ r-\text{raio})$

Área lateral de um cone: $\pi r g (r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3$ (r - raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

 $tg(a+b) = \frac{tga + tgb}{1 - tga \ tgb}$

Complexos

 $(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$

 $\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n} \right) \quad (k \in \{0, ..., n-1\} \quad \mathbf{e} \quad n \in \mathbb{N})$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se $X \in N(\mu, \sigma)$, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

——— Página em branco ———	

GRUPO I

Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

1. C	onsidere.	num referencial o.n.	xOv.	os pontos	A(-1,3)) e	B(2,4	F)
------	-----------	----------------------	------	-----------	---------	-----	----	-----	----

Qual das seguintes equações define uma reta paralela à reta AB?

(A)
$$y = -\frac{1}{3}x$$

(B)
$$y = \frac{1}{3}x$$
 (C) $y = 3x$ (D) $y = -3x$

(C)
$$y = 3x$$

(D)
$$y = -3x$$

2. Uma pessoa lança um dado cúbico, com as faces numeradas de 1 a 6, e regista o número da face que ficou voltada para cima.

Uma outra pessoa lança um dado com a forma de um tetraedro regular, com as faces numeradas de 1 a 4, e regista o número da face que ficou voltada para baixo.

Admita que ambos os dados são equilibrados.

Qual é a probabilidade de, pelo menos, uma dessas pessoas registar o número 4?

(A)
$$\frac{3}{8}$$

(B)
$$\frac{5}{8}$$

(C)
$$\frac{5}{12}$$

(B)
$$\frac{5}{8}$$
 (C) $\frac{5}{12}$ (D) $\frac{7}{12}$

3. Seja X uma variável aleatória com distribuição normal de valor médio 2 e desvio padrão 0.5

Qual é o valor, arredondado às centésimas, de P(X > 2,5) ?

(D)
$$0.16$$

4. Sejam $a \in b$ dois números reais superiores a 1, tais que $a = b^3$

Qual dos valores seguintes é igual a $\log_a b + \log_b a$?

(A)
$$\frac{4}{3}$$

(c)
$$\frac{10}{3}$$

5. Seja f a função, de domínio [-3,3], cujo gráfico está representado na Figura 1.

Tal como a figura sugere, todos os objetos inteiros têm imagens inteiras.

Seja g a função, de domínio \mathbb{R}^+ , definida por $g(x) = \ln x$

Quais são as soluções da equação $(f \circ g)(x) = 0$?

(o símbolo o designa a composição de funções)

(B)
$$e ; e^2$$

Figura 1

6. Para um certo número real k, é contínua em $\mathbb R$ a função f definida por

$$f(x) = \begin{cases} \frac{\operatorname{sen}(3x+3)}{4x+4} & \text{se } x \neq -1\\ k+2 & \text{se } x = -1 \end{cases}$$

Qual é o valor de k?

(A)
$$-\frac{5}{3}$$

(B)
$$-\frac{5}{4}$$
 (C) $\frac{5}{4}$

(C)
$$\frac{5}{4}$$

(D)
$$\frac{5}{3}$$

7. Considere em \mathbb{C} , conjunto dos números complexos, a condição

$$0 \le \arg z \le \frac{\pi}{4} \quad \land \quad 1 \le \operatorname{Re} z \le 5$$

Esta condição define uma região no plano complexo.

Qual dos seguintes números complexos tem a sua imagem geométrica nesta região?

(A)
$$3 + 4i$$

(B)
$$6 + 2i$$

(C)
$$2 \operatorname{cis} \frac{13\pi}{6}$$
 (D) $\operatorname{cis} \frac{\pi}{6}$

(D)
$$cis \frac{\pi}{6}$$

8. Considere as sucessões convergentes (a_n) e (b_n) , de termos gerais

$$a_n = \left(1 + \frac{1}{n}\right)^{3n}$$
 e $b_n = \ln(1 - 2e^{-n})$

Sejam a e b os números reais tais que $a=\lim \left(a_n\right)$ e $b=\lim \left(b_n\right)$

Qual das afirmações seguintes é verdadeira?

(A)
$$a = 3e$$
 e $b = 0$

(B)
$$a = e^3$$
 e $b = 0$

(C)
$$a = 3e$$
 e $b = 1$

(C)
$$a = 3e$$
 e $b = 1$ **(D)** $a = e^3$ e $b = 1$

	- Página em branco	

GRUPO II

Na resposta aos itens deste grupo, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Em \mathbb{C} , conjunto dos números complexos, seja $z = \frac{2i}{1-i} + 2i^{23}$

Determine, sem recorrer à calculadora, os números complexos w tais que $w^3 = \overline{z}$

Apresente os valores pedidos na forma trigonométrica.

- **2.** Um saco contém n bolas, indistinguíveis ao tato, numeradas de 1 a n, sendo n um número par maior do que 3
 - **2.1.** Retiram-se, em simultâneo e ao acaso, três bolas do saco.

Escreva uma expressão, em função de n, que dê a probabilidade de, dessas três bolas, duas terem número par e uma ter número ímpar.

Não simplifique a expressão que escrever.

2.2. Admita agora que n = 8

Ao acaso, extraem-se sucessivamente duas bolas do saco (primeiro uma e depois outra) e observa-se o número de cada uma delas.

Sejam A e B os acontecimentos:

A: «A primeira bola extraída tem número par.»

B: «A segunda bola extraída tem número par.»

Determine o valor de $P(A \cap B)$ no caso em que a extração é feita com reposição e no caso em que a extração é feita sem reposição.

Justifique a sua resposta, tendo em conta que $P(A \cap B) = P(A) \times P(B|A)$

Na sua resposta:

- interprete o significado de $P(A \cap B)$, no contexto da situação descrita;
- indique o valor de P(B|A), no caso de a extração ser feita com reposição;
- indique o valor de P(B|A), no caso de a extração ser feita sem reposição;
- apresente o valor de $P(A \cap B)$, em cada uma das situações (designe esse valor por a no caso de a extração ser feita com reposição e por b no caso de a extração ser feita sem reposição).

3. Na Figura 2, está representado, num referencial o.n. Oxyz, o prisma quadrangular regular [OABCDEFG]

Sabe-se que:

• os pontos C, A e E pertencem aos eixos coordenados Ox, Oy e Oz, respetivamente;

• o plano
$$OFB$$
 é definido pela equação $3x + 3y - z = 0$

Figura 2

3.2. Defina a reta
$$OB$$
 por uma condição cartesiana.

3.3. Seja P o ponto de cota igual a 1 que pertence à aresta [BG]Seja R o simétrico do ponto P relativamente à origem.

Determine a amplitude do ângulo RAP

Apresente o resultado em graus, arredondado às unidades.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

4. Seja f a função, de domínio $\left|-\frac{3\pi}{2}, +\infty\right|$, definida por

$$f(x) = \begin{cases} \frac{1}{4}x^2 + \cos x & \text{se } -\frac{3\pi}{2} < x < 0\\ \ln(e^x + x) & \text{se } x \ge 0 \end{cases}$$

Resolva os itens 4.1. e 4.2. recorrendo a métodos analíticos, sem utilizar a calculadora.

4.1. Determine $\lim_{x \to +\infty} \left[f(x) - x \right]$

Interprete o valor obtido em termos de assíntotas do gráfico de f

4.2. Estude a função f quanto ao sentido das concavidades e quanto à existência de pontos de inflexão do seu gráfico, no intervalo $\left[-\frac{3\pi}{2}, 0\right]$

Na sua resposta, indique:

- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para cima;
- a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de f

- 4.3. Na Figura 3, estão representados:
 - parte do gráfico da função f
 - ullet um ponto A, pertencente ao gráfico de f, de abcissa a
 - ullet a reta t, tangente ao gráfico da função f no ponto A

Sabe-se que:

- $a \in [0, 1[$
- a reta t tem declive igual a 1,1

Determine, recorrendo à calculadora gráfica, a abcissa do ponto ${\cal A}$

Na sua resposta:

- equacione o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) que visualizar na calculadora, que lhe permite(m) resolver a equação;
- apresente a abcissa do ponto $\it A$ arredondada às centésimas.
- **5.** O movimento de uma nave espacial é um movimento de propulsão provocado pela libertação de gases resultantes da queima e explosão de combustível.

Um certo tipo de nave tem por função o transporte de carga destinada ao abastecimento de uma estação espacial.

Designemos por x a massa, em milhares de toneladas, da carga transportada por uma nave desse tipo e por V a velocidade, em quilómetro por segundo, que essa mesma nave atinge no instante em que termina a queima do combustível.

Considere que V é dada, em função de x, por $V(x) = 3 \ln \left(\frac{x + 300}{x + 60} \right)$ $(x \ge 0)$

Nos itens **5.1.** e **5.2.**, a calculadora só pode ser utilizada em cálculos numéricos; sempre que proceder a arredondamentos, use duas casas decimais.

5.1. Admita que uma nave do tipo referido transporta uma carga de 25 mil toneladas.

Determine quanto tempo demora essa nave a percorrer 200 quilómetros a partir do instante em que termina a queima do combustível, sabendo que a velocidade da nave se mantém constante a partir desse instante.

Apresente o resultado em segundos, arredondado às unidades.

5.2. Determine qual deve ser a massa da carga transportada por uma dessas naves, de modo que atinja, após a queima da totalidade do combustível, uma velocidade de 3 quilómetros por segundo.

Apresente o resultado em milhares de toneladas, arredondado às unidades.

6. Seja k um número real positivo.

Considere a função g, de domínio]-k, $+\infty[$, definida por $g(x)=\ln(x+k)$

$$\text{Mostre que: se } g(0) \times g(k) \! < \! 0, \text{ então } k \! \in \! \left] \! \frac{1}{2}, 1 \right[$$

Na resolução deste item, não utilize a calculadora.

FIM

COTAÇÕES

Grupo						Ite	m						
Grupo		Cotação (em pontos)											
T		1. a 8.											
1	8 × 5 pontos								40				
II	1.	2.1.	2.2.	3.1.	3.2.	3.3.	4.1.	4.2.	4.3.	5.1.	5.2.	6.	
11	15	15	15	10	5	15	15	15	15	15	15	10	160
TOTAL													200