Solution to Practice 1m

B6(a) Let
$$S = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$$
 be the standard basis for \mathbb{R}^3 , and let $\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 5\\1\\-3 \end{bmatrix} \right\}$ be another basis for \mathbb{R}^3 . To find the change of coordinates matrix O from \mathcal{B} -

be another basis for R^3 . To find the change of coordinates matrix Q from \mathcal{B} -coordinates to \mathcal{S} -coordinates, we need to find the coordinates of the vectors in \mathcal{B} with respect to the standard basis \mathcal{S} . But we immediately see that

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}_{\mathcal{S}} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}_{\mathcal{S}} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \quad \begin{bmatrix} 5 \\ 1 \\ -3 \end{bmatrix}_{\mathcal{S}} = \begin{bmatrix} 5 \\ 1 \\ -3 \end{bmatrix}$$

and so we have

$$Q = \left[\begin{array}{c} 1\\1\\0 \end{array} \right]_{S} \quad \left[\begin{array}{c} 1\\1\\-1 \end{array} \right]_{S} \quad \left[\begin{array}{c} 5\\1\\-3 \end{array} \right]_{S} \ \, \right] = \left[\begin{array}{ccc} 1&1&5\\1&1&1\\0&-1&-3 \end{array} \right]$$

To find the change of coordinates matrix P from S-coordinates to B-coordinates, we use Theorem 4.4.2, which tells us that $P = Q^{-1}$, and then we use the matrix inverse algorithm to find Q^{-1} :

$$\begin{bmatrix} 1 & 1 & 5 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & -1 & -3 & 0 & 0 & 1 \end{bmatrix} R_2 - R_1 \sim \begin{bmatrix} 1 & 1 & 5 & 1 & 0 & 0 \\ 0 & 0 & -4 & -1 & 1 & 0 \\ 0 & -1 & -3 & 0 & 0 & 1 \end{bmatrix} R_2 \updownarrow R_3$$

$$\sim \begin{bmatrix} 1 & 1 & 5 & 1 & 0 & 0 \\ 0 & -1 & -3 & 0 & 0 & 1 \\ 0 & 0 & -4 & -1 & 1 & 0 \end{bmatrix} (-1)R_2 \sim \begin{bmatrix} 1 & 1 & 5 & 1 & 0 & 0 \\ 0 & 1 & 3 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1/4 & -1/4 & 0 \end{bmatrix} R_1 - 5R_3$$

$$\sim \begin{bmatrix} 1 & 1 & 0 & -1/4 & 5/4 & 0 \\ 0 & 1 & 0 & -3/4 & 3/4 & -1 \\ 0 & 0 & 1 & 1/4 & -1/4 & 0 \end{bmatrix} R_1 - R_2 \sim \begin{bmatrix} 1 & 0 & 0 & 2/4 & 2/4 & 1 \\ 0 & 1 & 0 & -3/4 & 3/4 & -1 \\ 0 & 0 & 1 & 1/4 & -1/4 & 0 \end{bmatrix}$$

And so we see that $P = Q^{-1} = \begin{bmatrix} 2/4 & 2/4 & 1 \\ -3/4 & 3/4 & -1 \\ 1/4 & -1/4 & 0 \end{bmatrix}$.

B6(b) Let $S = \{1, x, x^2\}$ be the standard basis for P_2 , and let $B = \{-1 + 2x^2, 1 + x + x^2, 1 - x - 3x^2\}$ be another basis for P_2 . To find the change of coordinates matrix Q from B-coordinates to S-coordinates, we need to find the coordinates of the vectors in B with respect to the standard basis E. But we immediately see that

$$[-1+2x^2]_{\mathcal{S}} = \begin{bmatrix} -1\\0\\2 \end{bmatrix}, \quad [1+x+x^2]_{\mathcal{S}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad [1-x-3x^2]_{\mathcal{S}} = \begin{bmatrix} 1\\-1\\-3 \end{bmatrix}$$

and so we have

$$Q = \begin{bmatrix} [-1 + 2x^2]_{\mathcal{S}} & [1 + x + x^2]_{\mathcal{S}} & [1 - x - 3x^2]_{\mathcal{S}} \end{bmatrix} = \begin{bmatrix} -1 & 1 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & -3 \end{bmatrix}$$

To find the change of coordinates matrix P from S-coordinates to B-coordinates, we use Theorem 4.4.2, which tells us that $P = Q^{-1}$, and then we use the matrix inverse algorithm to find Q^{-1} :

Inverse algorithm to find
$$Q$$
:
$$\begin{bmatrix} -1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 2 & 1 & -3 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} (-1)R_1 \\ 0 & 1 & -1 \\ 2 & 1 & -3 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 2 & 1 & -3 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 3 & -1 & 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 2 & -3 & 1 \end{bmatrix} = \begin{bmatrix} 1/2)R_3 \\ -1/2 & -1/2 & 1/2 \\ 0 & 0 & 1 & 1 & -3/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & -1/2 & 1/2 \\ 0 & 0 & 1 & 1 & -3/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & -2 & 1 \\ 0 & 1 & 0 & 1 & -1/2 & 1/2 \\ 0 & 0 & 1 & 1 & -3/2 & 1/2 \end{bmatrix}$$

And so we see that $P = Q^{-1} = \begin{bmatrix} 1 & -2 & 1 \\ 1 & -1/2 & 1/2 \\ 1 & -3/2 & 1/2 \end{bmatrix}$.

B6(c) Let $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ be the standard basis for the vector space $\mathbb V$ of 2×2 diagonal matrices, and let $\mathcal B = \left\{ \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}, \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \right\}$ be another basis for $\mathbb V$. To find the change of coordinates matrix Q from $\mathcal B$ -coordinates to $\mathcal S$ -coordinates, we need to find the coordinates of the vectors in $\mathcal B$ with respect to the standard basis $\mathcal S$. But we immediately see that

$$\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}_{S} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \quad \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}_{S} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

and so we have

$$Q = \left[\begin{array}{cc} 3 & 0 \\ 0 & -2 \end{array} \right]_{S} \quad \left[\begin{array}{cc} 5 & 0 \\ 0 & 3 \end{array} \right]_{S} \quad \left[\begin{array}{cc} 3 & -2 \\ 5 & -3 \end{array} \right]$$

To find the change of coordinates matrix P from S-coordinates to B-coordinates,

we use Theorem 4.4.2, which tells us that $P = Q^{-1}$, and then we use the matrix inverse algorithm to find Q^{-1} :

$$\begin{bmatrix} 3 & 5 & 1 & 0 \\ -2 & 3 & 0 & 1 \end{bmatrix} R_1 + R_2 \sim \begin{bmatrix} 1 & 8 & 1 & 1 \\ -2 & 3 & 0 & 1 \end{bmatrix} R_2 + 2R_1$$

$$\sim \begin{bmatrix} 1 & 8 & 1 & 1 \\ 0 & 19 & 2 & 3 \end{bmatrix} (1/19)R_2 \sim \begin{bmatrix} 1 & 8 & 1 & 1 \\ 0 & 1 & 2/19 & 3/19 \end{bmatrix} R_1 - 8R_2$$

$$\sim \begin{bmatrix} 1 & 0 & 3/19 & -5/19 \\ 0 & 1 & 2/19 & 3/19 \end{bmatrix}$$

And so we see that $P = Q^{-1} = \begin{bmatrix} 3/19 & -5/19 \\ 2/19 & 3/19 \end{bmatrix}$.

D2 Suppose \mathbb{V} is a vector space with basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$. Then $\mathcal{C} = \{\mathbf{v}_3, \mathbf{v}_2, \mathbf{v}_4, \mathbf{v}_1\}$ is also a basis for \mathbb{V} . The matrix P such that $P[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{C}}$ is

$$\begin{bmatrix} [\mathbf{v}_1]_{\mathcal{C}} & [\mathbf{v}_2]_{\mathcal{C}} & [\mathbf{v}_3]_{\mathcal{C}} & [\mathbf{v}_4]_{\mathcal{C}} \end{bmatrix}$$

To find the columns of P, we note that:

$$\begin{aligned} \mathbf{v}_1 &= 0(\mathbf{v}_3) + 0(\mathbf{v}_2) + 0(\mathbf{v}_4) + 1(\mathbf{v}_1) \\ \mathbf{v}_2 &= 0(\mathbf{v}_3) + 1(\mathbf{v}_2) + 0(\mathbf{v}_4) + 0(\mathbf{v}_1) \\ \mathbf{v}_3 &= 1(\mathbf{v}_3) + 0(\mathbf{v}_2) + 0(\mathbf{v}_4) + 0(\mathbf{v}_1) \\ \mathbf{v}_4 &= 0(\mathbf{v}_3) + 0(\mathbf{v}_2) + 1(\mathbf{v}_4) + 0(\mathbf{v}_1) \end{aligned}$$

This means that

$$[\mathbf{v}_1]_{\mathcal{C}} = \left[egin{array}{c} 0 \ 0 \ 0 \ 1 \end{array}
ight] \quad [\mathbf{v}_2]_{\mathcal{C}} = \left[egin{array}{c} 1 \ 1 \ 0 \ 0 \end{array}
ight] \quad [\mathbf{v}_3]_{\mathcal{C}} = \left[egin{array}{c} 1 \ 0 \ 0 \ 0 \end{array}
ight] \quad [\mathbf{v}_4]_{\mathcal{C}} = \left[egin{array}{c} 0 \ 0 \ 1 \ 0 \end{array}
ight]$$

And so we have that $P = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$.