实验报告

实验有称: 双芽电桥 实际门门门: 2023 作 上 川 14 川 下午 课程资称: 教学班级:

一、主题目的

李司和 事 程 您 电 阻 测 量 的 原 理 与 方 法

二、英基农型

QJ一世界以習电槽、以路稳压稳流电源,电阻四端接口架,铜棒,铝棒、铅 楼等、复线若干

三、实验原理

上"母嫡接口"方法

这种方法可以彻底排降接触电阻和引线电阻的干扰、把电流接头和电压接头 7年把电流接头处的接触电阻归入电源回路中,不对电压值的测量泛定成形 te

2. 惠新顿电桥

是3个已知电阻和一个传测电阻Rx可以构成和图惠斯顿电桥。当检流计G中没有 主流无过好电格达到平衡状态,可得: Rx=管R,

差断疑包括的测量范围是10~108.

3. 开华文电桥

开个久也将是"四端接口"法与惠斯顿电桥的结合,是专门设计用率测量低电阻的

指导教师签字:

粉光月光:

所以几一个包裹接头鬼处舒展就电阻、防止的五世董寶到电压每头的司法 避谷智能电阻之知,从为可谓高精度标准电阻,十方跨接两个管闭的导致 电阻 电导致把似如双连接起来,凡以凡以中以西路的电流每头是到接触 制度、不以风叫为及西路的电压接头列则重臂的引发电阻和强制电阻之和

等程序对于中电流力量的。且四个等的电阻超频隔之是一些,这只要到 包建设设计算公司为 凡二一管。凡以

文程为强 有音知方案

學差多差等無行

两分又三万件条 满节风和平尺可改克尺k. 尺k=RN-RT

工系解釋的主題及其电阻率

的连续先

例成繁之贫色在多头和电流接头,绝横上的电压接头和电流接头——对三福袋。 横上外移电路的一带得发柱与稳压稳定电源的正使极强程

特殊應色原行失矣"B"。"旋转"调整"旋钮 使发流计指针指"B"、顺时针过转 复数度"旋短使按流计处于不太灵敏状态。打开稳正稳定电源开关,按FQJ-针 将上的"B"按键、海鞍"电流调节"碰钮、使额出电流为生马点。全信试于"B"

Rx = Rx Rx = R5 (RN+ RJ)

指导的师客字:	
到到上午下上下 。	

课程名称:	实验名称:	实验11切:			
班 级:	教学: JE级:	学 号:	好		EI
m zh i n	n n		XJ.	A1:	

m 确定 Rs. RN. RT

①确定 Rs

把RN置于0.01.把RT置于最小处,名把Rs置于"0.01"档。然后同时点击"8"。 "6"按键,如检流计指针不转,则这时针方向稍微转写动一点灵敏度按钮。 如检流计指针打向右边,表示Rx小于正确值,增大比例旋钮,直到Rs进到某一档时,检流计指针开始打向左边,表示Rx小于正确值,增大比例旋钮,直到Rs进 Rs例退回一档,为所求Rs值

日确定KN

同时按下"B"和"G"键,将RT放钮从最小开始缓缓增大直到检流计指针置于"O",再把检流计的灵敏度调节到最大,再调节到 RT.使检流计指针再次指向"O",放开"B".G",确定RT.Rs.RN即为所求

- (3)按下B"改变电源输出电流为2.5A,重复上述步骤
- 4)测量铜棒直往,电压接头间和电流接头间的距离
- (5) 与出电阻率户的不确定度 u(p)的表达式。写出直径 d 的不确定度 u(d)表达式 并求值。写出长度 L 的不确定定度 u(L)表达式,并求值,写出 R 的不确定度表达 式, 开求值, 写出 P(u(p))
- (6) 沉量铜棒与接线端的接触电阻

把铜棒每端上的两根接线同时接到电压接头上发电流接头上,测量电流为 2.0 A 和 2.5 A 时的电阻值

.用同样的方法测量-根铁棒和-根铅棒的电阻及其电阻率 注: 炙羟气华后, 别忘了把开兴关B.断开

指导教师签字:	

铝棒: RS=0.1 RN=0.02 RT=0.00145

直径 do = -0.328 mm

 $d_1 = 3.310 \, \text{mm}$ $d_2 = 3.309 \, \text{mm}$ $d_3 = 3.309 \, \text{mm}$

电流接头问距离: 上1.85 cm

电压接头间距离 45.00 cm

铜棒: Rs=0.1 RN=0.02 RT=0.00398

直登 $d_0 = -0.328 \, \text{mm}$ $d_1 = 3.316 \, \text{mm} \qquad d_2 = 3.318 \, \text{mm} \qquad d_3 = 3.315 \, \text{mm}$

铜棒与接线端电压按头

 $R_{S}=1$ $R_{N}=0.02$ $R_{T}=0.00320$

铜棒与接线端电流接头

 $R_{5}=1$ $R_{N}=0.02$ $R_{T}=0.00670$

指导教师签字:_____

:
$$d = \frac{(d_1 - d_0) + (d_2 - d_0) + (d_3 - d_0)}{3} = 3.637333 \text{ mm}$$

$$d: u_B = \frac{0.004}{\sqrt{3}} = 0.0023094 mm$$

$$R_{x} = \frac{0.1 \times (0.02 + 0.00145)}{\times} = 0.002145 \Omega$$

$$Rx = P\frac{L}{5}$$

$$P = \frac{\pi d^{2}R_{0}}{4L} = 4.95 \times 10^{-8} \Omega \cdot m$$

$$W = \frac{1}{4}$$

$$UL = \frac{1}{\sqrt{3}} = 0.57735$$
 mm

$$UR = \frac{\Delta ins}{\sqrt{3}} = 6.192 \times 10^{-6}$$

铜棒·
$$d = \frac{(d_1 - d_0) + (d_2 - d_0) + (d_3 - d_0)}{3} = 3.6443333 mm$$

$$d: U_3 = \frac{0.004}{\sqrt{3}} = 0.0023094 \text{ mm}$$

指导教师签字:_____

课程名称:	OF HA ST EA				
	实验名称:	美统门则:	华		E
班 级:	数学所级:	学 号:	WE	21:	

指导教师签字:

课程名称:	实验名称:	3			_
班 级:	教学班级:	学 号:	年 姓 4	四月	EI

电阻测量

	Ks	RN	RT	00	
铝棒	0.12	0.022		Rx=Rc×(RN+RT)	P(u)
ea +±		0.0-12	0.00 1450	0.0021452	4.950 (0.017) × 28-m
铜棒	0.152	0.0252	0.003982		
				1032	1.158(0.019)408

直结 di= 3.310mm

指棒 da= 3.309 mm

d3 = 3.309 mm

平均值d=3.637mm

直径 di= 3.346 mm

铜棒 d2 = 3.318 mm

d3 = 3.315mm

平均值 d = 3.644 mm

雕尼测量电流接头之间的距离 Li= 518 mm 电压接头之间的距离 Li= 450 mm

千分尺的零误差=-0.3284

铜棒电压接头和电流接头的接触电阻测量

	Rs	RN	RT	Ru = Rox (RN+RT)
电压接头	12	0.0252	0.003202	0.023252
电流接头	.12	0.021	0.0067052	0.02872

分别与出电压接头和电流接头的接触电阻的计算公式和结果

R电压接头接触电阻= Rx-Rx钢=0.0208020

R电流接头接触电阻= Rx - Px铜芒=0.02394.12

指导教师签字:	
---------	--

大 迤 报 告

星名称:	实验名称:	实验日期:	/x=
级:	教学班级:	当 口	—— 年———月_
		于 写:	姓名:

思多题

Dins = A% x Rsx(RN+RT)

发肥 Rs置于最小档,可使dins 较小,从而使不确定度较小

R20=Rs×(RN+RT),因为RT 《RN, RX=Rx×RT, 为段RT起作用,Rs的值处须很大,应避免这种情况, 同时,也会造成 dins 增大,使误差增大