19CSE311 Computer Security

Jevitha KP

Department of CSE

- Prime numbers play a critical role in number theory
- Asymmetric-key cryptography uses primes extensively.
- The positive integers can be divided into three groups: the number 1, primes, and composites

- A positive integer is a prime if and only if it is exactly divisible by two integers, 1 and itself.
- A composite is a positive integer with more than two divisors.

- The smallest prime is 2, which is divisible by 2 (itself) and 1.
- Integer 1 is not a prime according to the definition, because a prime must be divisible by two different integers, no more, no less.
- The integer 1 is divisible only by itself; it is not a prime.

- Four primes less than 10: 2, 3, 5, and 7
- Percentage of primes in the range 1 to 10 is 40%.
- The percentage decreases as the range increases

Fundamental Theorem of Arithmetic

- Any integer a > 1 can be factored in a unique way as a = p₁^{a1} * p₂^{a2} * ... * p_t^{at}, where p₁,p₂p_t are prime numbers and a_i is a positive integer
- This is known as the fundamental theorem of arithmetic

$$91 = 7 \times 13$$

 $3600 = 2^4 \times 3^2 \times 5^2$
 $11011 = 7 \times 11^2 \times 13$

Fundamental Theorem of Arithmetic

 If P is the set of all prime numbers, then any positive integer a can be written uniquely in the following form:

$$a = \prod_{p \in P} p^{a_p}$$
 where each $a_p \ge 0$

 Multiplication of two numbers is equivalent to adding the corresponding exponents.

a | b

 Any integer of the form pⁿ can be divided only by an integer that is of a lesser or equal power of the same prime number, p^j, j <= n.

$$a = \prod_{p \in P} p^{a_p}, b = \prod_{p \in P} p^{b_p}$$

If $a \mid b$, then $a_p \le b_p$ for all p .

$$a=12; b=36; 12|36$$

 $12=2^2\times 3; 36=2^2\times 3^2$
 $a_2=2=b_2$
 $a_3=1\leq 2=b_3$
Thus, the inequality $a_p\leq b_p$ is satisfied for all prime numbers.

GCD

- It is easy to determine the greatest common divisor of two positive integers if we express each integer as the product of primes.
- If k = gcd(a, b), then kp = min(ap, bp) for all p.
- Determining the prime factors of a large number is not easy
- Not a practical method of calculating the greatest common divisor for large numbers

$$300 = 2^{2} \times 3^{1} \times 5^{2}$$

$$18 = 2^{1} \times 3^{2}$$

$$gcd(18,300) = 2^{1} \times 3^{1} \times 5^{0} = 6$$

CoPrimes

- Two positive integers, a and b, are relatively prime, or coprime, if gcd (a, b) = 1.
- Number 1 is relatively prime with any integer.
- If p is a prime, then all integers 1 to p 1 are relatively prime to p (Zp*)

Cardinality of Primes

- Is there a finite number of primes or is the list infinite?
- The number of primes is infinite.
- Given a number n, how many primes are smaller than or equal to n?
- A function called $\pi(n)$ is defined that finds the number of primes smaller than or equal to n.
- $\pi(1) = 0$; $\pi(2) = 1$; $\pi(3) = 2$; $\pi(10) = 4$ $\pi(20) = 8$; $\pi(50) = 15$; $\pi(100) = 25$

$\pi(n)$

 But if n is very large, we can only use approximation:

• $[n / (ln n)] < \pi(n) < [n / (ln n - 1.08366)]$

- Gauss discovered the upper limit; Lagrange discovered the lower limit.
- $\pi(100) = [100 / 4.605] < \pi(100) < [100 / (4.605) 1.08366)]$
- $22 < \pi(100) < 28$

- Find the number of primes less than 1,000,000
- $[n / (ln n)] < \pi(n) < [n / (ln n 1.08366)]$
- $1000000/13.8155 < \pi(1,000,000) < [1000000/(13.8155 1.08366)]$
- $1000000/13.8155 < \pi(1,000,000) < [1000000/12.73184]$
- $72383 < \pi(1,000,000) < 78543$

- Find the number of primes less than 5,000,000
- $[n / (ln n)] < \pi(n) < [n / (ln n 1.08366)]$

- Find the number of primes less than 5,000,000
- $[n / (ln n)] < \pi(n) < [n / (ln n 1.08366)]$
- $5000000/15.4249 < \pi(5,000,000) < [5000000/(15.4249 1.08366)]$
- $5000000/13.8155 < \pi(5,000,000) < [5000000/14.3412]$
- $361912 < \pi(5,000,000) < 348646$

Checking for Primeness

- Given a number n, how can we determine if n is a prime?
- We need to see if the number **n** is divisible by all primes less than \sqrt{n} .

- Is 97 a prime?
- Is 301 a prime?

- Is 97 a prime?
- The floor of $\sqrt{97} = 9$.
- The primes less than 9 are 2, 3, 5, and 7.
- 97 is not divisible by any of these numbers.
- So 97 is a prime

- Is 301 a prime?
- The floor of $\sqrt{301}$ = 17.
- The primes less than 17 are 2, 3, 5,7,11,13,17.
- 301 is divisible by 7.
- So 301 is not a prime

Sieve of Eratosthenes

- The Greek mathematician Eratosthenes devised a method to find all primes less than n.
- The method is called the sieve of Eratosthenes.
- Suppose we want to find all prime less than n.
- We write down all the numbers between 2 and n.
- Find all primes less than sqrt(n). The numbers not divisible by any of these numbers are primes.

Sieve of Eratosthenes

- Eg: Primes less than 100
- Sqrt(100) = 10
- Primes < 10 = (2,3,5,7)
- The numbers which are not divisible by these numbers are the primes

Sieve of Eratosthenes

 Table 9.1
 Sieve of Eratosthenes

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Euler's Phi-Function φ(n)

- Euler's phi-function or Euler's totient function φ(n), finds the number of integers that are both smaller than n and relatively prime to n.
- Set Zn* contains the numbers that are smaller than n and relatively prime to n.
- The function φ(n) calculates the number of elements in this set.

Euler's Phi-Function φ(n)

- $\phi(1) = 0$.
- $\varphi(p) = p 1$ if p is a prime.
- $\phi(m \times n) = \phi(m) \times \phi(n)$ if m and n are relatively prime.
- $\varphi(p^e) = p^e p^{e-1}$ if p is a prime.
- If $n = p_1^{e_1} * p_2^{e_2} * ... * p_k^{e_k}$, $\phi(n) = (p_1^{e_1} - p_1^{e_1-1}) * (p_2^{e_2} - p_2^{e_2-1}) * ... * (p_k^{e_k} - p_k^{e_k-1})$

• Find $\phi(13)$, $\phi(10)$, $\phi(240)$, $\phi(49)$, $\phi(100)$

- Find $\phi(13)$, $\phi(10)$, $\phi(240)$, $\phi(49)$, $\phi(100)$
- $\varphi(13) = 13-1 = 12$
- $\varphi(10) = \varphi(2*5) = \varphi(2) * \varphi(5) = 1 * 4 = 4$
- $\varphi(240) = \varphi(3^*2^4 *5) = \varphi(3)^* \varphi(5)^* \varphi(2^4) = 2 * 4$ * $(2^4 - 2^3) = 2^*4^*8 = 64$
- $\varphi(100) = \varphi(5^2 \times 2^2) = (5^2 5^1)^* (2^2 2) = 40$

- Observation:
- If n > 2, the value of $\varphi(n)$ is even.
- What is number of elements in Z₁₄*?

- What is number of elements in Z₁₄*?
- $\phi(14) = \phi(7) \times \phi(2) = 6 \times 1 = 6$. The members are 1, 3, 5, 9, 11, and 13.

- Fact:
- If n > 2, the value of $\varphi(n)$ is even.

Fermat's Little Theorem

- Two Versions:
- First Version:
- If p is a prime and a is positive integer not divisible by p, then

$$a^{p-1} \equiv 1 \mod p$$

- Second Version:
- If p is a prime and a is an integer, then

$$a^p \equiv a \mod p$$

- Verify Fermats Theorem for
- p = 19, a = 7
- p = 5, a = 3
- p = 5, a = 10
- Find the value of using Fermat's theorem
- 6¹⁰ mod 11
- 3¹² mod 11

- a = 7, p = 19
- Since a is positive integer not divisible by p we can check both

$$a^{p-1} \equiv 1 \mod p$$
; $a^p \equiv a \mod p$

• To check $7^{18} \equiv 1 \mod 19$

```
a = 7, p = 19

7^2 = 49 \equiv 11 \pmod{19}

7^4 \equiv 121 \equiv 7 \pmod{19}

7^8 \equiv 49 \equiv 11 \pmod{19}

7^{16} \equiv 121 \equiv 7 \pmod{19}

a^{p-1} = 7^{18} = 7^{16} \times 7^2 \equiv 7 \times 11 \equiv 1 \pmod{19}
```

- To check $7^{19} \equiv 7 \mod 19$
- $7^{19} \equiv 7 \mod 19 = 7^{18} * 7^{1} = 1*7 \mod 19 = 7 \mod 19$

- p = 5, a = 3
- Since a is positive integer not divisible by p we can check both

$a^{p-1} \equiv 1 \mod p$; $a^p \equiv a \mod p$

- $3^{5-1} \equiv 1 \mod 5$
- $3^4 \mod 5 = 81 \mod 5 = 1 \mod 5$
- $3^5 \equiv 3 \mod 5$
- 3^{4} * 3^{1} mod 5 = 1 * 3 mod 5 = 3 mod 5

- p = 5, a = 10
- Since a is divisible by p we can check only
 a^p ≡ a mod p
- $10^5 \equiv 10 \mod 5$
- $1000000 \mod 5 = 0 \mod 5 = 10 \mod 5$

- Find the value of using Fermat's theorem
- 6¹⁰ mod 11
- Since a is not divisible by p, we have
- $a^{p-1} \equiv 1 \mod p$
- $6^{10} \mod 11 = 1 \mod 11$
- Verify -
- $6^2 \mod 11 = 3 \mod 11$
- $6^4 \mod 11 = 9 \mod 11$
- $68 \mod 11 = 9*9 \mod 11 = 4 \mod 11$
- 6^{10} mod $11 = 6^8 * 6^2$ mod 11 = 4 * 3 mod 11 = 12 mod 11 = 1 mod 11.

- Find the value of using Fermat's theorem
- 3¹² mod 11
- Since a is not divisible by p, we have
- $a^{p-1} \equiv 1 \mod p$
- $3^{12} \mod 11 = 3^{10} * 3^2 \mod 11 = 1 * 9 \mod 11 = 9 \mod 11$.
- Verify -
- $3^2 \mod 11 = 9 \mod 11$
- $3^4 \mod 11 = 9^*9 \mod 11 = 4 \mod 11$
- 38 mod 11 = 4*4 mod 11 = 5 mod 11
- $3^{12} \mod 11 = 3^8 * 3^4 \mod 11 = 5 * 4 \mod 11 = 20 \mod 11 = 9 \mod 11$.

Multiplicative Inverse using Formats Theorem

- Interesting application of Fermat's theorem is in finding some multiplicative inverses quickly if the modulus is a prime.
- If p is a prime and a is an integer such that p does not divide a, then

```
a^{-1} \mod p = a^{p-2} \mod p.
```

- Proof:
- Since a is not divisible by p, we have:
- $a^{p-1} \equiv 1 \mod p$
- Multiply both sides by a⁻¹
- $a^{-1} a^{p-1} \equiv a^{-1} 1 \mod p$
- => $a^{p-2} \equiv a^{-1} \mod p$

- Find Multiplicative inverse for the following without using Extended Euclid's algorithm:
- 8⁻¹ mod 17
- 5⁻¹ mod 23

- Since a is not divisible by p, we have:
 a⁻¹ mod p = a^{p-2} mod p.
- 8⁻¹ mod 17
- = $8^{17-2} \mod 17$
- = $8^{15} \mod 17$
- \bullet = 15 mod 17

- Since a is not divisible by p, we have:
 a⁻¹ mod p = a^{p-2} mod p.
- 5⁻¹ mod 23
- = $5^{23-2} \mod 17$
- = $5^{21} \mod 17$
- $= 14 \mod 23$

Euler's Theorem

- Euler's theorem can be thought of as a generalization of Fermat's little theorem.
- The modulus in the Fermat theorem is a prime, the modulus in Euler's theorem is an integer.
- There are two versions similar to Fermat's theorem

Euler's Theorem

First Version

- The first version of Euler's theorem is similar to the first version of the Fermat's little theorem.
- If a and n are coprime, then a^{φ(n)} ≡ 1 (mod n)
- Second Version
- The second version of Euler's theorem is similar to the second version of Fermat's little theorem;
- It removes the condition that a and n should be coprime.
- If n = p × q, a < n, and k an integer, then
- $a^{k \times \varphi(n) + 1} \equiv a \pmod{n}$

- Find the result of
- 6²⁴ mod 35,
- 20⁶² mod 77.

- Find the result of 6²⁴ mod 35,
- 6²⁴ mod 35
- $\varphi(35) = \varphi(7*5) = \varphi(7)* \varphi(5) = 6*4 = 24$
- $6^{\varphi(35)} \mod 35 = 1$
- $6^{24} \mod 35 = 1$

- Find the result of 20⁶² mod 77.
- $\varphi(77) = \varphi(7^*11) = \varphi(7)^* \varphi(11) = 6^*10 = 60$
- 20⁶⁰ mod 77 = 1 mod 77
- 20⁶² mod 77 = 20⁶⁰ * 20² mod 77 = 1 * 400 mod 77 = 15 mod 77.

Multiplicative inverse using Euler's theorem

- Fermat's theorem can be used to find multiplicative inverses modulo a prime;
- Euler's theorem can be used to find multiplicative inverses modulo a composite
- If n and a are coprime, then a^{-1} mod $n = a^{\varphi(n)-1}$ mod n
- Proof:
- Euler's theorem first version, If a and n are coprime, then
 a^{φ(n)} ≡ 1 (mod n)
- Multiply both sides by a⁻¹
- $a^{\phi(n)} * a^{-1} \equiv a^{-1} \pmod{n}$
- $a^{\phi(n)-1} \equiv a^{-1} \pmod{n}$

- Find $8^{-1} \mod 77$,
- Find $7^{-1} \mod 15$,
- Find 60⁻¹ mod 187

- 8⁻¹ mod 77
- n = 77 is composite; 8 and 77 are co-prime. Hence we can use a^{-1} mod n = $a^{\varphi(n)-1}$ mod n
- $\varphi(77) = \varphi(7*11) = \varphi(7)*\varphi(11) = 6*10 = 60$
- $8^{\phi(77)-1} \mod 77$
- \bullet = 8⁵⁹ mod 77
- \bullet = 29 mod 77

- 7⁻¹ mod 15
- n=15 is composite; 7 and 15 are co-prime. Hence we can use a^{-1} mod $n = a^{\varphi(n)-1}$ mod n
- $\varphi(15) = \varphi(3*5) = \varphi(3)*\varphi(5) = 2*4 = 8$
- $7^{\phi(15)-1} \mod 15$
- = $7^7 \mod 15$
- \bullet = 13 mod 15

- 60⁻¹ mod 187
- n=187 is composite; 60 and 187 are co-prime.Hence we can use a^{-1} mod $n = a^{\varphi(n)-1}$ mod n
- $\varphi(187) = \varphi(17*11) = \varphi(17)*\varphi(11) = 16*10 = 160$
- $60^{\phi(187)-1} \mod 187$
- = $60^{159} \mod 187$
- \bullet = 53 mod 187