

Reinforcement Learning (2)

Maxime Berar

25 septembre 2025

From Bandits to RL

Bandits: Chosen actions do not affect the distribution of arms, so the current action is independent of future actions. However, the policy determined by the bandit algorithm will change.

 \Rightarrow There is no "environment" in a bandit problem. The system can be represented by a unique state.

The concepts of exploration and exploitation, as defined in the context of bandits, will remain relevant to reinforcement learning problems.

Markov Decision Process

tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{R} \rangle$ with

- \triangleright S set of states
- \rightarrow A set of actions all of finite number of elements.
- $ightharpoonup \mathcal{R}$ set of rewards

At time t-1 in state S_{t-1} ($\in S$) after choosing action A_{t-1} ($\in A$), the agent is in state S_t ($\in S$) and receives reward R_t ($\in R$).

Assumption

 R_t and S_t have well defined discrete probability distribution dependent only on the preceding state and action

Example, student dilemna (from D. Silver)

- ▶ 5 states $\{S_1, S_2, S_3, S_4, S_5\}$
- ▶ 1 final state (S_5)
- ► 5 actions {*F*, *Q*, *St*, *Sl*, *P*}
- a model
 - p(2|1,Q)=1,
 - p(2|4, P) = 0.2,
 - r(2|1, Q) = 0,
 - r(2|4, P) = 1,
- Episodes

Model of the environment

 $p: \mathcal{S} \times \mathcal{R} \times \mathcal{S} \times \mathcal{A} \to [0,1]$ is an ordinary deterministic function

$$p(s', r|s, a) \doteq \Pr\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\}$$

p specifies a probability distribution for each choice of s and a

$$\sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} p(s', r|s, a) = 1$$

From it, one can compute anything else one might want to know about the environment.

- ▶ state-transition probabilities $p(s'|s, a) = \sum_{r \in \mathcal{R}} p(s', r|s, a)$
- expected rewards for state-action pairs $r(s, a) \doteq \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r | s, a)$
- expected rewards for state-action-next-state triples $r(s, a, s') \doteq \mathbb{E}\left[R_t | S_{t-1} = s, A_{t-1} = a, S_t = s'\right] = \sum_{r \in \mathcal{R}} r \frac{p(s', r | s, a)}{p(s' | s, a)}$

Reward hypothesis

Maximizing the cumulative reward in the long run; not the immediate reward.

► Return, over an episode

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

Return, for continued tasks, weighted cumulative reward :

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

where γ is a parameter, $0 \le \gamma \le 1$, called the discount rate.

Return recursion property

$$G_t = R_{t+1} + \gamma G_{t+1}$$

If the reward is a constant +1, what is the return? Suppose $\gamma=0.5$ and the following sequence of rewards is received $R_1=-1, R_2=2, R_3=6, R_4=3, R_5=2$, with T=5. What are G_0, G_1, \cdots, G_5 ?

6/33

Policies and Value Functions

We have yet to model how to choose an action.

Formally, a policy is a mapping from states to probabilities of selecting each possible action. If the agent is following policy π at time t, then $\pi(a|s)$ is the probability that $A_t = a$ if $S_t = s$.

value function,
 expected return from state s following policy π :

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[G_t|S_t = s\right]$$

value function of an action expected return from state s, choosing action a, following policy π :

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[G_t|S_t=s,A_t=a\right]$$

Toward Bellman Equation

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t | S_t = s \right]$$

$$\begin{aligned} v_{\pi}(s) &= \mathbb{E}_{\pi} \left[G_{t} | S_{t} = s \right] \\ &= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma G_{t+1} | S_{t} = s \right] \\ &= \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r|a, s) \left(r + \gamma \mathbb{E}_{\pi} \left[G_{t+1} | S_{t+1} = s' \right] \right) \\ &= \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r|a, s) \left(r + \gamma v_{\pi}(s') \right) \end{aligned}$$

idem for $q_{\pi}(s, a)$

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a \right]$$

Bellman equations in graph form

► Recursive decomposition of the value functions

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s \right]$$

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a \right]$$

Solutions of Bellman equations?

$$v_{\pi}(s) = \sum_{\mathsf{a}} \pi(\mathsf{a}|s) \sum_{\mathsf{r},\mathsf{s}'} p(\mathsf{s}',\mathsf{r}|s,\mathsf{a}) \left[r(\mathsf{s},\mathsf{a}) + \gamma v_{\pi}(\mathsf{s}') \right]$$

$$v_{\pi}(s) = \sum_{r,s'} \sum_{a} \pi(a|s) p(s',r|s,a) r(s,a) + \gamma \sum_{r,s'} \sum_{a} \pi(a|s) p(s',r|s,a) v_{\pi}(s')$$

Known elements : Environment model p(s', r|s, a) , policy $\pi(a|s)$

state transition according to a policy

$$p_{\pi}(s,s') = \sum_{a \in \mathcal{A}} \pi(a|s)p(s'|a,s) = \sum_{a \in \mathcal{A}} \pi(a|s)\sum_{r \in \mathcal{R}} p(s',r|a,s)$$

- reward $r(s, a) = \sum_{r \in \mathcal{R}} \sum_{s' \in \mathcal{S}} r(s, a) p(s', r|s, a) \pi(a|s)$
- reward according to a policy $r_\pi(s) = \sum_{a \in \mathcal{A}} \pi(a|s) r(s,a)$

Bellman equation for the value-function

$$v_{\pi}(s) = r_{\pi}(s) + \gamma \sum_{s' \in \mathcal{S}} p_{\pi}(s, s') v_{\pi}(s')$$

Solutions of Bellman equations according to a policy

$$v_{\pi}(s) = r_{\pi}(s) + \gamma \sum_{s' \in \mathcal{S}} p_{\pi}(s, s') v_{\pi}(s')$$

in matrix-vector form

$$\mathbf{v}_{\pi} = \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{v}_{\pi}$$

linear system

$$(\mathbf{I}_d - \gamma \mathbf{P}_{\pi}) \mathbf{v}_{\pi} = \mathbf{r}_{\pi}$$

Problem when there is a big number of states (e.g. bachgammon (10²⁰))

Student Example with Uniform policy


```
>> ganna=1;
>> P=[.5 .5 0 0 0 ;
   .5 0 .5 0 0 ; 0 0 0 .5 .5 ; 0 .1 .2 .2 .5 ; 0 0 0 0 0 0
P =
    0.5000
              0.5000
    0.5000
                        0.5000
                                  0.5000
                                             0.5000
                        0.2000
                                  0.2000
                                             0.5000
              0.1000
>> R=[-0.5 -1.5 -1 5.5 0]'
R =
   -0.5000
   -1.5000
   -1.0000
    5.5000
>> v=(eve(5)-gamma*P)\R;
>> v=(eye(5)-gamma*P)\R
v =
   -2.3077
   -1.3077
    2,6923
```

7.3846

Optimal value function & policy

- $ightharpoonup v_*(s) = \max_{\pi} v_{\pi}(s)$

best performance of a MDP. The problem is solved if the functions are known.

- It is possible to define a partial order of the policies : $\pi > \pi'$ if $v_{\pi}(s) > v_{\pi'}(s) \ \forall s$
- ▶ Theorem : for all MDP
 - there exists an optimal policy π_* better or equal of all others
 - All optimal policies enable optimal function values, i.e. $v_{\pi_0}(s) = v_*(s)$
 - i.e. $q_{\pi_*}(s, a) = q_*(s, a)$
- lacktriangle An optimal policy can be obtained after finding $q_*(s,a)$ with :

$$\pi_*(a,s) = 1 \text{ if } a = \arg\max_{a \in \mathcal{A}} q_*(s,a) \text{ , } 0 \text{ else}$$

Optimality equations of Bellman

The optimal policy should always consider the best action

$$\begin{aligned} v_*(s) &= \max_{\pi} v_{\pi}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi^*}(s, a) \\ &= \max_{a \in \mathcal{A}(s)} \mathbb{E}_{\pi^*} \left[G_t \middle| S_t = s, A_t = a \right] \\ &= \max_{a \in \mathcal{A}(s)} \mathbb{E}_{\pi^*} \left[R_{t+1} + \gamma v_*(S_{t+1}) \middle| S_t = s, A_t = a \right] \\ &= \max_{a \in \mathcal{A}(s)} \sum_{s', r} p(s', r \middle| s, a) \left[R_{t+1} + \gamma v_*(S_{t+1}) \right] \end{aligned}$$

 $v_*(s') \leftarrow s'$ \bigcirc $v_*(s') \leftarrow v_*(s') \leftarrow v_*(s$

no simple solutions \rightarrow iteratives methods.

Dynamic Programming

How to compute the optimal value functions v_* , q_* ?

$$v_*(s) = \max_{a \in \mathcal{A}(s)} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_*(S_{t+1}) \right]$$

$$q_*(s,a) = \sum_{s',r} p(s',r|s,a) \left[r + \gamma \max_{a'} q_*(s',a') \right]$$

in order to find the optimal policy?

Policy evaluation

Remember that

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|a,s) (r + \gamma v_{\pi}(s'))$$

iterative view of the problem : searching for a fixed point in the update rule

$$v_{\pi}^{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|a,s) \left(r + \gamma v_{\pi}^{k}(s')\right)$$

Iterative policy evaluation

```
\begin{split} & \text{input: } \pi \\ & \mathbf{v} = \mathbf{0}_{|\mathcal{S}|} \\ & \text{Repeat} \\ & \Delta \leftarrow 0 \\ & \text{For each } s \in \mathcal{S} : \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')] \\ & \Delta \leftarrow \max(\Delta,|v - V(s)|) \\ & \text{until } \Delta < \theta \text{ (a small positive number)} \\ & \text{Output } V \approx v_{\pi} \end{split}
```

Example

r = -1 on all transitions

- $ightharpoonup \gamma = 1$
- 14 non-terminal states
- ▶ 1 terminal state (2 boxes)
- lacktriangle Actions that leave the grid ightarrow same state
- Reward is -1 for all non-terminal state, 0 else
- uniform policy (up,down,left,right)

Example (cont.)

k = 0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0
<i>k</i> = 1	0.0	-1.0	-1.0	-1.0
	-1.0	-1.0	-1.0	-1.0
	-1.0	-1.0	-1.0	-1.0
	-1.0	-1.0	-1.0	0.0
<i>k</i> = 2	0.0	-1.7	-2.0	-2.0
	-1.7	-2.0	-2.0	-2.0
	-2.0	-2.0	-2.0	-1.7
	-2.0	-2.0	-1.7	0.0

<i>k</i> = 3	0.0	-2.4	-2.9	-3.0
	-2.4	-2.9	-3.0	-2.9
	-2.9	-3.0	-2.9	-2.4
	-3.0	-2.9	-2.4	0.0

$$k = \infty$$

$$0.0 | -14. | -20. | -22.$$

$$-14. | -18. | -20. | -20.$$

$$-20. | -20. | -18. | -14.$$

$$-22. | -20. | -14. | 0.0$$

Policy improvement

How to improve a policy? If v_π has been evaluated, then q_π is known :

$$q_{\pi}(s,a) = \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

Question is any $q_{\pi}(s, a)$ greater than $v_{\pi}(s)$? In this case, a good policy would be to choose the corresponding action.

$$\pi'(s) \doteq rg \max_{a} q_{\pi}(s,a)$$

The greedy policy takes the action that looks best in the short term after one step of lookahead.

$$\pi'(s) \doteq \arg \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

Policy iteration (alg.)

```
1.Initialisation V(s) \in \mathbb{R} and \pi(s) \in \mathcal{A}(s) arbitrary 2. Policy evaluation 3. Policy improvement policy-stable \leftarrow true for each s \in \mathcal{S}: old-action \leftarrow \pi(s) \pi(s) \leftarrow \arg\max_a \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_\pi(s')\right] If old-action \neq \pi(s), then policy-stable \leftarrow false If policy-stable, then stop and return V \approx v_* and \pi \approx \pi_*; else go to 2.
```

Value iteration

Drawback of policy iteration is that at each iteration, the policy must be evaluated.

However, as $v* \Leftrightarrow \pi^*$ can we work only with the value function?

Value iteration

$$\begin{split} & \text{initilalize } V \\ & \text{Repeat} \\ & \Delta \leftarrow 0 \\ & \text{For each } s \in \mathcal{S} : \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma V(s')] \\ & \Delta \leftarrow \max(\Delta,|v-V(s)|) \end{split}$$

until $\Delta < \theta$ (a small positive number)

Output a deterministic policy

$$\pi(s) = \arg\max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')]$$

Back to example

Remark ${\bf 1}$: after ${\bf 3}$ iterations, the policy found by greedy amelioration is optimal

Remark 2 : It always converges to π_*

Remark 3 : if $\pi' = \pi$ then $\pi = \pi *$

Starting from the end time?

If this is a finite horizon problem with known rewards for the final set of actions and known transition probability matrices at all times, we can learn the policy backward.

Backward recursion

From the final states to the actions

$$q(s,a)_{T-1} = \sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s',r|a,s)r$$

From
$$q(s, a)_{T-1}$$
 to $v(s)_{T-1}$

$$v(s)_{T-1} = \max_{a \in \mathcal{A}} q(s, a)_{T-1}$$

Yahtzee example 1/3

naive view

action: keep or reroll each dice 2**5=32

non-equiprobable states : 252

action between "keep" and "re-roll".

The number of actions depends on the state

Yahtzee example 2/3

working view

3 dices with 4 faces20 (histogram) states

state s
2 1 0 0

From a given state s, choosing action a among Actions(s) we could attain states s' with probability p, which is known.

Yahtzee example 3/3

イロト イ部ト イミト イミト

RL for the MOQ problem 1/3

Learning to order quantity / manage stock level for multiple items under uncertainty and minimum-order quantity.

Expected reward

Thèse de G. Deletoile

RL for the MOQ problem 2/3

Learning to order items quantity / manage stock levels for multiple items under uncertainty and minimum-order quantity.

Thèse de G. Deletoile

MOQ Problem equations

First, we need to bound the maximum stock and orders. For a single item,

- x stock level (state)
- ▶ a reorder quantity (action)
- r reward equation d demand at time t with a h holding penalty, a m shortage penalty and a reodering cost c(a_t).

$$x_{t+1} = x_t + a_t - d_t$$

$$r_t = c(a_t) + m[x_t + a_t - d_t]^- - h[x_t + a_t - d_t]^+$$

$$c(a) = \begin{cases} 0 & \text{if } a = 0 \\ K + ca & \text{if } a > 0 \end{cases}$$

Complexity of multi-item scenari

Backward recursion?

Thèse de G. Deletoile

Results - Advantage Function

Thèse de G. Deletoile

Results - Action Space

Thèse de G. Deletoile

Results - Poisson demand

Thèse de G. Deletoile