Insper

Lógica da Computação

Aula 01

Raul Ikeda

Objetivos de Aprendizagem

- 1. Especificar uma gramática para reconhecer uma linguagem de interesse.
- 2. Saber programar e gerar o diagrama explicativo de um autômato que implementa uma gramática.
- 3. Especificar um analisador léxico por meio de expressões regulares.
- 4. Compreender os conceitos básicos sobre Lógica Matemática, Teoria da Computabilidade e Máquina de Turing.
- 5. Entender todos os passos necessários à compilação de programas.

Mapeamento das Avaliações

- LING LINGUAGEM:
 - ✓ Especificar uma gramática para reconhecer uma linguagem de interesse.
- COMP COMPILADOR:
 - ✓ Saber programar e gerar o diagrama explicativo de um autômato que implementa uma gramática.
 - ✓ Especificar um analisador léxico por meio de expressões regulares.
 - Entender todos os passos necessários à compilação de programas.
- PROV PROVAS:
 - ✓ Saber programar e gerar o diagrama explicativo de um autômato que implementa uma gramática.
 - ✓ Compreender os conceitos básicos sobre Lógica Matemática,
 Teoria da Computabilidade e Máquina de Turing.

Avaliações: LING - Linguagem

- Durante o curso será desenvolvida uma linguagem de programação com características proprietárias.
- Projeto em caráter de APS e individual.
- Requisitos:
 - 1. Adequar a linguagem à uma GLC e estruturá-la segundo o padrão EBNF.
 - 2. Utilizar as ferramentas Flex e Bison (ou semelhantes) para realizar as etapas de Análise Léxica e Sintática.
 - 3. Utilizar a LLVM (ou derivadas) para implementar a sua linguagem até a fase final de compilação. Não é preciso implementar um compilador novo.
 - 4. Criar um exemplo de testes que demonstre as características da sua Linguagem.
 - 5. Fazer uma apresentação de 15 minutos na data da entrega final.
- Nota da avaliação:
 - A+: se cumprir todos os requisitos acima.
 - C: se cumprir os requisitos, exceto o número 3.
 - D: se não cumprir os requisitos 1, 2, 4 ou 5.
 - I: se n\u00e3o houver entrega ou se for irrelevante.

Avaliações: COMP - Compilador

 Durante o semestre será desenvolvido incrementalmente um Compilador da linguagem C, aplicando o estudo de compiladores. No total serão 10 atividades com entregas.

Requisitos:

- Individual. Uso do Git obrigatório.
- Desenvolvimento em aula estúdio. As tarefas pendentes terão prazos de entrega entre 1 e 2 semanas dependendo do roteiro.
- Usar uma linguagem orientada a objetos com recursividade e dicionários.

Nota:

- I se n\u00e3o entregar nenhuma atividade.
- D se n\u00e3o entregar pelo menos uma atividade.
- A se n\u00e3o atrasar nenhuma entrega.
- Para cada atraso na entrega, desconta-se ¼ de conceito, arredondando para baixo no final do semestre.
- 11^a Entrega extra: adiciona meio conceito.
- Será permitido o atraso de até 1 relatório sem ônus na nota.

Avaliações: PROV - Prova

- 40% AI:
 - Teoria de Conjuntos.
 - Linguagens Regulares.
 - Linguagens Livres de Contexto.
 - Autômatos Finitos e de Pilha.
 - Hierarquia de Chomsky.
- 60% AF:
 - Computabilidade.
 - Máquina de Turing.
 - Decidibilidade e Intratabilidade.
 - Linguagens Sensíveis ao Contexto e Recursivamente Enumeráveis.
 - Complexidade.
 - Lógica Proposicional e de Predicados.
 - Prova Matemática e verificação de programas.

Nota Final

• Se LING COMP e PROV ≥ 5 ou C:

$$NF = 0.2LING + 0.4COMP + 0.4PROV$$

Caso contrário:

$$NF = \min(LING, COMP, PROV)$$

Será usada a tabela oficial de conversão de conceito para nota do Blackboard.

Bibliografia

- Compiladores:
 - JOSÉ NETO, J., Introdução à Compilação., 1º ed., Elsevier, 2016
 - AHO, A.V.; LAM, M. S.; SETHI, R.; ULLMAN, J., Compiladores: Princípios, Técnicas e Ferramentas, 2º ed., Longman, 2007
- Linguagens Formais e Autômatos:
 - RAMOS, M. V. M.; JOSÉ NETO, J.; VEJA, I. S., Linguagens Formais. Teoria, Modelagem e Implementação, 1º ed., Bookman, 2009
 - HOPCROFT, J. E.; ULLMAN, J. D; MOTWANU, R., Introdução à Teoria dos Autômatos, Linguagens e Computação, 1º ed., CAMPUS, 2002
- Computabilidade e Lógica:
 - BOOLOS, G. S.; BURGESS, J. P.; JEFFREY, R. C., Computabilidade e Lógica, 1^a ed., Unesp, 2012
 - SILVA, F. C.; FINGER, M.; MELO, A. C. V., Lógica para Computação, 2ª ed., Cengage, 2017
- Complexidade:
 - CORMEN, Thomas H., LEISERSON; Charles E., RIVEST; Ronald L., STEIN, Clifford., Algoritmos: teórica e prática., 3º ed., Elsevier-Campus., 2012
 - SIPSER, M., Introdução à Teoria da Computação, 2ª ed., Thomson Pioneira, 2007

Próxima Aula

- Discussão do artigo: Neto, J. J. A Teoria da Computação e o profissional de informática. Revista de Computação e Tecnologia da PUC-SP, vol. 1, 2009.
 - Revista Open Access, mas publicado no Blackboard.
 - Duração: até 30 minutos no início.
- Teoria dos Conjuntos e Linguagens Formais
 - Ramos et al. Cap 1 e 2.
 - Neto, J. J. Cap 2

Atividade I – 30 minutos

- Você foi incumbido de criar uma linguagem de programação de ALTA PRODUTIVIDADE.
- Criar uma wishlist das features desejadas, justificando a escolha.
- Tentar organizar a linguagem em algum esquema ou diagrama.
- Requisito mínimo:
 - A linguagem deve permitir implementar qualquer algoritmo de programação.
 - Deve conter no mínimo: variáveis, funções, condicionais, loops, I/O.
 - Desejável: classes (POO), vetores e características singulares (diretivas de compilação, funcional, etc)
- Entregar o material produzido durante a aula.

Atividade II – 1 hora

- Roteiro Zero do Compilador.
- Lembrando:
 - Individual.
 - Usar uma linguagem orientada a objetos com recursividade e dicionários.