Network Applications: Email Security, DNS

Y. Richard Yang

http://zoo.cs.yale.edu/classes/cs433/

Outline

- > Admin and recap
- □ Email
 - O Basic email systems design
 - Email security
- DNS

Admin

□ 72 discretionary late hours for assignments across the semester

Recap: The Big Picture of the Internet

Hosts and routers:

- ~ 1 bill. hosts
- organized into ~50K networks
- o backbone links 100 Gbps

■ Software:

- datagram switching with virtual circuit support
- layered network architecture
 - use end-to-end arguments to determine the services provided by each layer
 - the 5-layer hourglass architecture of the Internet

Recap: Client-Server Paradigm

■ The basic paradigm of network applications is the client-server (C-S) paradigm

- o extensibility
- scalability
- o robustness
- security

Recap: Email Design Features

Some key design features of Email

- Separate protocols for different functions
 - email access (e.g., POP3, IMAP)
 - email transport (SMTP)
- A SMTP transaction consists of an envelope and a message body
 - separation of envelope and message body (end-to-end arguments)
 - envelope: simple/basic requests to implement transport control;
 - message body: fine-grain control through ASCII header and message body
 - MIME type as selfdescribing data type
- Status code in response makes message easy to parse

Recap: Evaluation of SMTP

Key questions to ask about a C-S application

- extensible?
 separate envelope and msg;
 self-describing message;
 ehlo negotiation
- scalable?
 have not seen mechanism yet
- robust?have not seen mechanism yet
- security?
 authentication/authorization
 (spoof, spam) are major issues
 of mail transport

Spam Trend

© Statista 2017

Current SMTP Authentication Approaches

Sender Policy Frame (SPF)

DomainKeys Identified Mail (DKIM)

Sender Policy Framework (SPF RFC7208)

DomainKeys Identified Mail (DKIM)

Exercise

Capture and look at SFP and DKIM in email messages

See pop3-trace.txt

<u>DomainKeys Identified Mail (DKIM;</u> <u>RFC 5585; RFC6376)</u>

- A domain-level digital signature authentication framework for email, using public key crypto, typically RSA
- □ Basic idea of RSA type public key signature
 - Owner has both public and private keys
 - Owner uses private key to sign a message to generate a signature
 - Others with public key can verify signature
 - Assumption: difficult to get private key even w/ public key distributed

Example: RSA

- 1. Choose two large prime numbers p, q. (e.g., 1024 bits each)
- 2. Compute n = pq, z = (p-1)(q-1)
- 3. Choose e (with e < n) that has no common factors with z. (e, z are "relatively prime").
- 4. Choose d such that ed-1 is exactly divisible by z. (in other words: $ed \mod z = 1$).
- 5. Public key is (n,e). Private key is (n,d).

RSA: Signing/Verification

- O. Given (n,e) and (n,d) as computed above
- To sign message, m, compute h = hash(m), then sign with private key

 $s = h^d \mod n$ (i.e., remainder when h^d is divided by n)

2. To verify signature s, compute

 $h' = s^e \mod n$ (i.e., remainder when s^e is divided by n)

Magic happens!
$$h = (h^d \mod n)^e \mod n$$

The magic is a simple application of Euler's generalization of Fermat's little theorem

<u>Domain-based Message Authentication,</u> <u>Reporting, and Conformance (DMARC) [RFC7489]</u>

Remaining issue: How to handle unauthenticated messages?

MSA = Mail Submission Agent MDA = Mail Delivery Agent

See pop3-trace.txt

Summary: Some Key Remaining Issues about Email

- Basic: How to find the email server of a domain?
- Scalability/robustness: how to find multiple servers for the email domain?
- Security
 - SPF: How does SPF know if its neighbor MTA is a permitted sender of the domain?
 - O DKIM: How does DKIM retrieve the public key of the author domain?
 - DMARC: How to find the security policy?

Scalability/Robustness

 Both scalability and robustness require that multiple email servers serve the same email address

130.132.50.7

Mapping Functions Design Alternatives

Mapping Functions Design Alternatives

Outline

- □ Recap
- □ Email security (authentication)
- > DNS

DNS: Domain Name System

Function

- map between (domain name, service) to value, e.g.,
 - (www.cs.yale.edu, addr)-> 128.36.229.30
 - (yale.edu, email)
 - -> chai.mail.yale.edu rosehip.mail.yale.edu

DNS Records

DNS: stores resource records (RR)

RR format: (name, type, value, ttl)

- \Box Type=A
 - o name is hostname
 - value is IP address
- □ Type=NS
 - name is domain (e.g. yale.edu)
 - value is the name of the authoritative name server for this domain
- Type=TXT
 - o general txt

- Type=CNAME
 - name is an alias of a "canonical" (real) name
 - o value is canonical name
- □ Type=MX
 - value is hostname of mail server associated with name
- □ Type=SRV
 - general extension for services
- □ Type=PTR
 - o a pointer to another name 24

Try DNS: Examples

- □ dig [@dnsserver] <name> <type>
 - o try yale.edu and various types
 - o dig www.yale.edu ANY
 - odig -x IP
 - o try www.yale.edu

Observations

- □ A name/type can return multiple answers
- DNS may rotate the answered servers

...

SPF Exercise

- telnet to netra.cs.yale.edu smtp
- Some test cases
 - From: yry@yale.edu
 - From: yry@harvard.edu
- dig <domain> txt to retrieve spf

DKIM Exercise

□ Send email from gmail and check message

DKIM Example

DKIM:
 Msg: DKIM-Signature: v=1; a=rsa-sha256;
 c=relaxed/relaxed;
 d=accounts.google.com; s=20161025;
 h=mime-version:date:feedback-id:message-id:subject:from:to; ...
 Query:

20161025._domainkey.accounts.google.com

- DKIM introduces a session key to allow multiple public keys
 - <session>._domainkey.<domain>

Outline

- □ Recap
- □ Email security (authentication)
- > DNS
 - > Interface
 - > Architecture design

DNS Design: Dummy Design

- DNS itself can be considered as a client-server system as well
- How about a dummy design: introducing one super Internet DNS server?

THE DNS server of the Internet

Problems of a Single DNS Server

- Scalability and robustness bottleneck
- Administrative bottleneck

DNS: Distributed Management of the Domain Name Space

- A distributed database managed by authoritative name servers
 - o divided into zones, where each zone is a sub-tree of the global tree
 - o each zone has its own authoritative name servers
 - an authoritative name server of a zone may delegate a subset (i.e. a sub-tree) of its zone to another name server

Email Architecture + DNS

Root Zone and Root Servers

- ☐ The root zone is managed by the root name servers
 - 13 root name servers worldwide
 - a. Verisign, Dulles, VA
 - c. Cogent, Herndon, VA (also Los Angeles)
 - d. U Maryland College Park, MD
 - g. US DoD Vienna, VA
 - h. ARL Aberdeen, MD
 - j. Verisign, (11 locations)
 - e. NASA Mt View, CAf. Internet Software C.
 - Palo Alto, CA

(and 17 other locations)

- b. USC-ISI Marina del Rey, CA
- I. ICANN Los Angeles, CA

- i. Autonomica, Stockholm (plus 3 other locations)
- k. RIPE London (also Amsterdam, Frankfurt)

m. WIDE Tokyo

Linking the Name Servers

- Each name server knows the addresses of the root servers
- Each name server knows the addresses of its immediate children (i.e., those it delegates)

Q: how to query a hierarchy?

DNS Message Flow: Two Types of Queries

Recursive query:

 The contacted name server resolves the name completely

Iterated query:

- Contacted server replies with name of server to contact
 - "I don't know this name, but ask this server"

Two Extreme DNS Message Flows

Issues of the two approaches?

Typical DNS Message Flow: The Hybrid Case

- Host knows only local name server
- Local name server is learned from DHCP, or configured, e.g. /etc/resolv.conf
- Local DNS server helps clients resolve DNS names

Typical DNS Message Flow: The Hybrid Case

- Host knows only local name server
- Local name server is learned from DHCP, or configured, e.g. /etc/resolv.conf
- Local DNS server helps clients resolve DNS names
- Benefits of local name servers (often called resolvers)
 - simplifies client
 - caches/reuses results

Outline

- □ Recap
- Email security (authentication)
- > DNS
 - > Interface
 - > Architecture design
 - > Message design

DNS Message Format?

Basic encoding decisions: UDP/TCP, how to encode domain name, how to encode answers...

Observing DNS Messages

- □ Capture the messages
 - ODNS server is at port 53
 - · Display and clear DNS cache
 - https://support.apple.com/en-us/HT202516 (e.g., MAC sudo killall -HUP mDNSResponder)
 - o visit gmail.com
 - o dig +tcp to see TCP mode
 - Try to load the dns-capture file from class Schedule page, if you do not want live capture

DNS Protocol, Messages

DNS protocol: typically over UDP (can use TCP); query and reply messages, both with the same message format

Identification	Flags	
Number of questions	Number of answer RRs	-12 bytes
Number of authority RRs	Number of additional RRs	
Questions (variable number of questions)		Name, type fields for a query
Answers (variable number of resource records)		RRs in response to query
Authority (variable number of resource records)		Records for authoritative servers
Additional information (variable number of resource records)		—Additional "helpful" info that may be used

DNS Details

- Header (Sec. 4.1.1 of https://www.ietf.org/rfc/rfc1035.txt)
- □ Encoding of questions (Sec. 4.1.2):
 - [Label-length label-chars]
- □ Encoding of answers (Sec. 4.1.3)
 - Pointer format (http://www.iana.org/assignments/dnsparameters/dns-parameters.xhtml)
- ☐ See example DNS packets

Name Encoding

▼ Oueries

```
▼ gmail.com: type A, class IN
          Name: qmail.com
          [Name Length: 9]
          [Label Count: 2]
          Type: A (Host Address) (1)
          Class: IN (0x0001)
     00 21 d7 75 74 00 6c 40
                               08 98 57 82 08 00 45 00
                                                         .!.ut.l@ ..W...E.
0000
                              2e c6 ac 1b 05 91 82 84
0010
     00 37 16 b7 00 00 40 11
                                                         .7....@. .......
     01 09 81 9b 00 35 00 23
0020
                              93 65 63 32 01 00 00 01
                                                         ....5.# .ec2....
     00 00 00 00 00 00 05 67
                               6d 61 69 6c 03 63 6f 6d
0030
                                                         .....g mail.com
0040
     00 00 01 00 01
                                                         . . . . .
```

Message Compression (Label Pointer)

Summary: DNS Protocol, Messages

Many features: typically over UDP (can use TCP); query and reply messages with the same message format; length/content encoding of names; simple compression; additional info as server push

Identification	Flags	
Number of questions	Number of answer RRs	–12 bytes
Number of authority RRs	Number of additional RRs	
Questions (variable number of questions)		Name, type fields for a query
Answers (variable number of resource records)		RRs in response to query
Authority (variable number of resource records)		Records for authoritative servers
Additional information (variable number of resource records)		Additional "helpful" info that may be used
(variable number of resource records) Authority (variable number of resource records) Additional information		RRs in response to query Records for authoritative servers Additional "helpful"

Discussion: What DNS did Right