Problem 8.1

Example 7.13.

$$\mathbf{E} = \frac{\lambda}{2\pi\epsilon_0} \frac{1}{s} \,\hat{\mathbf{s}}$$

$$\mathbf{B} = \frac{\mu_0 I}{2\pi} \frac{1}{s} \,\hat{\boldsymbol{\phi}}$$

$$\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B}) = \frac{\lambda I}{4\pi^2 \epsilon_0} \frac{1}{s^2} \,\hat{\mathbf{z}};$$

$$P = \int \mathbf{S} \cdot d\mathbf{a} = \int_a^b S2\pi s \, ds = \frac{\lambda I}{2\pi\epsilon_0} \int_a^b \frac{1}{s} \, ds = \frac{\lambda I}{2\pi\epsilon_0} \ln(b/a).$$
But $V = \int_a^b \mathbf{E} \cdot d\mathbf{l} = \frac{\lambda}{2\pi\epsilon_0} \int_a^b \frac{1}{s} \, ds = \frac{\lambda}{2\pi\epsilon_0} \ln(b/a)$, so $P = IV$.

Problem 7.62.

$$\mathbf{E} = \frac{\sigma}{\epsilon_0} \hat{\mathbf{z}}$$

$$\mathbf{B} = \mu_0 K \hat{\mathbf{x}} = \frac{\mu_0 I}{w} \hat{\mathbf{x}}$$

$$\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B}) = \frac{\sigma I}{\epsilon_0 w} \hat{\mathbf{y}};$$

$$P = \int \mathbf{S} \cdot d\mathbf{a} = Swh = \frac{\sigma Ih}{\epsilon_0}, \text{ but } V = \int \mathbf{E} \cdot d\mathbf{l} = \frac{\sigma}{\epsilon_0} h, \text{ so } \boxed{P = IV}.$$

Problem 8.2

(a)
$$\mathbf{E} = \frac{\sigma}{\epsilon_0} \,\hat{\mathbf{z}}; \ \sigma = \frac{Q}{\pi a^2}; \ Q(t) = It \ \Rightarrow \ \mathbf{E}(t) = \boxed{\frac{It}{\pi \epsilon_0 a^2}} \,\hat{\mathbf{z}}.$$

$$B \, 2\pi s = \mu_0 \epsilon_0 \frac{\partial E}{\partial t} \pi s^2 = \mu_0 \epsilon_0 \frac{I\pi s^2}{\pi \epsilon_0 a^2} \ \Rightarrow \ \mathbf{B}(s,t) = \boxed{\frac{\mu_0 Is}{2\pi a^2}} \,\hat{\boldsymbol{\phi}}.$$
(b)
$$u_{\rm em} = \frac{1}{2} \left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) = \frac{1}{2} \left[\epsilon_0 \left(\frac{It}{\pi \epsilon_0 a^2} \right)^2 + \frac{1}{\mu_0} \left(\frac{\mu_0 Is}{2\pi a^2} \right)^2 \right] = \boxed{\frac{\mu_0 I^2}{2\pi^2 a^4} \left[(ct)^2 + (s/2)^2 \right].}$$

$$\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B}) = \frac{1}{\mu_0} \left(\frac{It}{\pi \epsilon_0 a^2} \right) \left(\frac{\mu_0 Is}{2\pi a^2} \right) (-\hat{\mathbf{s}}) = \boxed{-\frac{I^2 t}{2\pi^2 \epsilon_0 a^4} s \,\hat{\mathbf{s}}.}$$

$$\begin{split} \frac{\partial u_{\text{em}}}{\partial t} &= \frac{\mu_0 I^2}{2\pi^2 a^4} 2c^2 t = \frac{I^2 t}{\pi^2 \epsilon_0 a^4}; \quad -\nabla \cdot \mathbf{S} = \frac{I^2 t}{2\pi^2 \epsilon_0 a^4} \nabla \cdot (s\,\hat{\mathbf{s}}) = \frac{I^2 t}{\pi^2 \epsilon_0 a^4} = \frac{\partial u_{\text{em}}}{\partial t}. \checkmark \\ & \text{(c) } U_{\text{em}} = \int u_{\text{em}} w 2\pi s \, ds = 2\pi w \frac{\mu_0 I^2}{2\pi^2 a^4} \int_0^b [(ct)^2 + (s/2)^2] s \, ds = \frac{\mu_0 w I^2}{\pi a^4} \left[(ct)^2 \frac{s^2}{2} + \frac{1}{4} \frac{s^4}{4} \right]_0^b \\ &= \left[\frac{\mu_0 w I^2 b^2}{2\pi a^4} \left[(ct)^2 + \frac{b^2}{8} \right]. \right] \text{Over a surface at radius } b : P_{\text{in}} = -\int \mathbf{S} \cdot d\mathbf{a} = \frac{I^2 t}{2\pi^2 \epsilon_0 a^4} \left[b\,\hat{\mathbf{s}} \cdot (2\pi b w\,\hat{\mathbf{s}}) \right] = \left[\frac{I^2 w t b^2}{\pi \epsilon_0 a^4}. \right] \\ &\frac{dU_{\text{em}}}{dt} = \frac{\mu_0 w I^2 b^2}{2\pi a^4} 2c^2 t = \frac{I^2 w t b^2}{\pi \epsilon_0 a^4} = P_{\text{in}}. \checkmark \text{(Set } b = a \text{ for } total.) \end{split}$$