- ・实验目的
 - 了解静态随机存储器的组成及工作特性
 - 掌握存储器数据读写方法
- 实验设备
 - 组成原理实验箱 TD-CMA

- 存储程序的概念
 - •程序指令和操作数都从存储器(主存)中获取
 - ·是冯·诺依曼体系计算机的基本特征
 - 是计算机能够自动、连续、快速工作的基础

- 基本存储位元:存储1位二进制信息
- 是一个可控制的双稳态触发器
- 选择信号、读写控制信号、数据信号

- 静态随机存储器的组成
 - 存储体: 存储位元集合体
 - 控制逻辑(选中信号,读/写电路)
 - •数据输入/输出电路
 - 地址译码:双译码方式(行地址&列地址)

· 静态随机存储器 (4096*1) 举例

存储器的位扩展 (了解)

• 位扩展: 地址线, 片选线和读写线并联, 数据线并行

存储器的字扩展 (了解)

• 字扩展: 地址线, 数据线和读写线并联, 片选选择

- 实验所用的静态存储器由一片 6116 (2K×8bit) 构成 (位于MEM 单元)。
- 三个控制线: CS (片选线) 、OE (读线) 、WE (写 线) ,均为低电平有效。

CS	WE	0E	功能
1	×	×	不选择
0	1	0	读
0	0	1	写
0	0	0	写

- 读写控制逻辑,T3节拍控制
- IOM 用来选择是对I/O 还是对MEM 进行读写操作, RD=1 时为读, WR=1 时为写。

• 实验原理图

- 数据总线接有8个LED灯 显示D7...D0 的内容
- 地址总线接有8个LED灯 显示A7...A0 的内容
- 地址锁存器 (273芯片) 给出地址
- IN 单元数据开关经三态门(245芯片)分时给出地址和数据。
- 地址寄存器为8位,接入 6116 的地址A7...A0, 实际容量为256 字节。

关于三态门 (了解)

• 三态门的定义

- 三态门 (Three-state gate) 是一种总线接口电路。
- · 三态门有一个EN控制使能端,来控制门电路的通断。
- 当EN有效时,三态电路呈现正常的"0"或"1"的输出;当EN 无效时,三态电路给出高阻态输出(断路)。

• 三态门的应用

- 如果有一些设备端口要挂在一个总线上,必须通过三态缓冲器。
- 在总线上同时只能有一个端口作为输出,这时其他端口必须在 高阻态,可以同时接收这个输出端口的数据。
- 通过总线控制管理,需要访问到哪个端口,相应端口的三态缓 冲器才可以转入输出状态。

静态 • 实验

- 实验步骤
 - 连接实验线路
 - ∘ KK1、KK3运行,KK2单步
 - •写存储器(至少写入3个不同的地址)
 - WR=0, RD=0, IOR=0, LDAR=1
 - · INPUT地址,T3脉冲
 - WR=0, RD=0, LDAR=0
 - ·INPUT数据, IOR=0
 - WR=1, RD=0, IOM=0, T3脉冲
 - 读存储器 (随机读取)
 - ・输入地址方法同上
 - IOR=1, WR=0, RD=1, IOM=0
 - ·观察数据总线灯

输入地址

输入数据

输入地址

读取数据

- 联机软件运行
 - ·【实验】-【存储器实验】
- 。实验过程中注意观察
 - ·联机软件数据流和控制信号的变化
 - ·总线LED指示灯

·注意:本实验不需要装载代码

- 。实验报告要点
 - · 存储器相关原理表述
 - ·存储位元原理图
 - ・实验现象描述,分析存储器进行读写读写的过程
 - · 简述在存储器实验中,RD、WR、IOM、IOR (IN-B) 、LDAR这些控制信号的作用
 - ・实验小结