CT:
$$T(n) = aT(\frac{n}{b}) + f(n)$$

$$1)T(n) = 3T\left(\frac{n}{2}\right) + n^2$$

$$a = 3 , b = 2$$

$$A = 3, b = 2$$

$$A = \log_b a = \log_2 3$$

$$f(n) = n^2$$

So sinh:
$$n^h$$
 và $f(n)$

$$=) n^{lot_2^3} (n^2)$$

$$=) 0(n) = n^2$$

$$\Rightarrow$$
 n^{lof23} $\langle n^2 \rangle$

$$=) 0(m) = m^2$$

2)
$$T(n) = 4T(\frac{n}{2}) + n^2$$

$$a = 4, \quad b = 2$$

$$b = \log_b a = \log_2 4 = 2$$

$$f(n) = n$$

So sanh: nloge 4 và n2

$$\Rightarrow$$
) $n^2 = n^2$

$$\Rightarrow$$
 $O(n) = n^2 \log n$

2.1)
$$T(n) = 3 T(\frac{n}{3}) + n \log n$$

 $d = 3$, $b = 3$
 $b = \log_3 3 = 1$
 $f(n) = n \log n$
So $sanh: n \log_3 3 = n < n \log_3 n$
 $\Rightarrow O(n) = n \log_2 n$
3) $T(n) = T(\frac{n}{2}) + 2^n$
 $a = 1$, $b = 2$
 $h = \log_2 1 = 0$
 $f(n) = 2^n$
 $f(n) = 2^n$

$$\int_{\log n}^{(n)} = \frac{n}{\log n}$$
So sanh
$$O(n) = n^{1}$$
8) $T(n) = 2T(\frac{n}{4}) + n^{0,67}$

$$a = 2, b = 4$$

$$b = \log_{4} 2 = \frac{1}{2}$$

$$\int_{(n)}^{(n)} = n^{0,51}$$

$$=) O(n) = n^{0,51}$$

$$=) O(n) = n^{0,51}$$

$$10) T(n) = 16T(\frac{n}{4}) + n!$$

$$a = 16, b = 4$$

$$h = \log_{4} 16 = 2$$

$$f(n) = n!$$
So sanh:
$$n^{2} va n!$$

Xet lim
$$\frac{n^2}{n!} = \lim_{n \to +\infty} \frac{n-1+1}{(n-1)!}$$

$$= \lim_{n \to +\infty} \left[\frac{1}{n-2} + \frac{1}{n-2} \right]$$

$$= \lim_{n \to +\infty} \left[\frac{1}{n-2} + \frac{1}{n-2} \right]$$

$$=$$
 0

$$\Rightarrow$$
 $O(n) = n!$

16)
$$T(n) = 3T(\frac{n}{3}) + \frac{n}{2}$$

$$a = 3$$
 $b = 3$
 $h = loy_3 = 1$

$$f(m) = \frac{h}{2}$$

So sanh:
$$n^1 = \frac{u^1}{2}$$

$$\Rightarrow O(n) = n \log n$$