## Max Wisniewski, Alexander Steen

Tutor: Tilmann

## Aufgabe 1

Die Funktionen der Aufgabe sollen derart geordnet werden, so dass  $g_i \in \Omega(g_{i+1})$  gilt. Geben Sie auch an, wenn sogar  $g_i = \Theta(g_{i+1})$  ist.

Die Folge erfüllt die Eigenschaft und enthält die Elemente, die geordent werden müssen:

$$(g_i)_{1 < i < 10} = (n^{\frac{1}{\log n}}, \ln n, \log^2 n, (\sqrt{2})^{\log n}, n^2, 4^{\log n}, (\lceil \log n \rceil)!, n^{\log(\log(n))}, 2^n, 2^{(2^n)})$$

## **Beweis**

1.  $2^{n} \in \Omega(2^{(2^{n})})$ :  $\lim_{n \to \infty} \frac{2^{n}}{2^{(2^{n})}} = \lim_{n \to \infty} \frac{2^{n} \cdot 1}{2^{n} \cdot 2^{(2^{n}) - n}} = \lim_{n \to \infty} \frac{1}{2^{(2^{n}) - n}}$ Da  $2^{n}$  stärker wächst als n, gilt:  $\lim_{n \to \infty} \frac{1}{2^{(2^{n}) - n}} = 0$ Paprit silt nach konvergeng Kriterium  $2^{n} \in \Omega(2^{(2^{n})}) \to a \in \Omega(n)$ 

Damit gilt nach konvergenz Kriterium  $2^n \in \Omega(2^{(2^n)}) \Rightarrow g_9 \in \Omega(g_{10})$ 

2.  $n^{\log(\log(n))} \in \Omega(2^n)$ : Kein Plan

3.  $(\lceil \log n \rceil)! \in \Omega(n^{\log(\log(n))})$ : Später

4.  $4^{\log(n)} \in \Omega((\lceil \log n \rceil)!)$ :

Wie gehabt

5.  $n^2 \in \Theta(4^{\log(n)})$ :

Wir zeigen an dieser Stelle, das gilt:  $n^2 = 4^{\log(n)}$ . Damit gilt die Beziehung für  $\Theta$  sofort.

$$4^{\log n} = (2^2)^{\log n} = 2^{2 \cdot \log n} = 2^{\log n^2} = n^2$$
  

$$\Rightarrow g_5 \in \Theta(g_6)$$

6.  $(\sqrt{2})^{\log n} \in \Theta(n^2)$ :

Ersteinmal gilt :  $(\sqrt{2})^{\log n} = (2^{\frac{1}{2}})^{\log n} = 2^{\frac{1}{2} \cdot \log n} = 2^{\log \sqrt{n}} = \sqrt{2}$ 

Nun wenden wir wieder das Konvergenzkreterium an:

$$\begin{split} &\lim_{n\to\infty}\frac{\sqrt{2}}{n^2}=\lim_{n\to\infty}\frac{1}{n^{1.5}}=0\\ &\Rightarrow (\sqrt{2})^{\log n}\in\Theta(n^2)\Rightarrow g_4\in\Omega(g_5) \end{split}$$

7.  $\log^2 n \in \Omega(\sqrt{2})$ : tbd

8.  $\ln n \in \Omega(\log^2 n)$ :

9.  $n^{\frac{1}{\log n}} \in \Omega(\ln n)$ :

Zunächst gilt:  $n^{\frac{1}{\log n}} = 2^{\frac{\log n}{\log n}} = 2.$ 

Daraus folgt offensichtlich:

$$\lim_{n \to \infty} \frac{2}{\ln n} = 0 \Rightarrow g_1 \in \Omega(g_2)$$