Count Fox Sequences

A non-decreasing sequence is a called a **Fox** sequence, iff the most frequent element in the sequence is unique.

e.g. The sequence 1, 1, 2, 3, 4 is a **Fox** sequence, because it follows the above definition. The most frequent element is 1. It occurs twice in the series, and is unique.

But the sequence 1, 1, 2, 2 is *not* a **Fox** sequence, because there are two most frequent elements - 1 and 2. It violates the uniqueness property.

Note: Sequence 2, 1, 1 is not a **Fox** sequence, because it is not a non-decreasing sequence.

You need to find the number of all possible **Fox** sequences of length n with elements having value between lo and hi inclusive.

As the number can grow very large, return the number modulo ($10^9 + 7$).

Input Format

The first line will contain *T*, i.e., the number of test cases.

For each test case, there will be a single line containing three space separated integers n, lo, hi.

Output Format

For each test case, display a single value corresponding to the number of all possible **Fox** sequences.

Constraints

```
1 \le T \le 5

1 \le lo, hi \le 10^9

lo \le hi

0 \le ||hi - lo|| < 10^5

1 \le n \le 10^5
```

Sample Input

```
5
2 1 1
2 1 3
3 1 2
4 4 5
10 2 4
```

Sample Output

```
1
3
4
4
60
```

Explanation

For the first test case, 11 is the only possible **Fox** sequence.

For the second test case, 11, 22, and 33 are three possible **Fox** sequences.

For the third test case, 111, 222, 112, and 122 are four possible **Fox** sequences.

Rest of the test cases are up to you to figure out.