1. Nieskończenie długi przewód, w którym płynie prąd $i(t) = 100\cos\omega tA$ (f= 50 Hz) jest osią toroidalnej cewki o przekroju prostokątnym o wymiarach a= 0,01 m, r_1 =0,025m, r_2 = 0,068 m. Liczba zwojów n= 1000, μ_r =1000. Obliczyć indukowaną w uzwojeniu siłę elektromotoryczną.

- 2. Dla układu z poprzedniego zadania obliczyć
 - indukcyjność własną cewki toroidalnej
 - indukcyjność wzajemną cewki i przewodu
 - napięcie indukowane w cewce, jeżeli w przewodzie płynie prąd o podanym na rysunku przebiegu.
- 3. Narysować przebieg $e_1(t)$ w przedstawionym na rysunku układzie przy podanych na rysunku przebiegach prądów w cewkach. $L_1=L_2=2H$, M=1H.

- 4. Dwie cewki sprzężone magnetycznie mają dane $R_1=R_2=10~\Omega,~L_1=0,1~H,~L_2=0,2H,~M=0,05~H.$ Wyznaczyć przebiegi napięcia $u_1(t)$ i $u_2(t)$, jeżeli:
 - $i_1(t)$ = 10 cos ωt , gdzie T= 20 ms
 - i₁(t) jak pokazano na rysunku

- 5. Dwie prostokątne ramki o powierzchniach S_1 = 100 cm^2 i S_2 = 60 cm^2 trwale połączone ze sobą, obracają się ze stałą prędkością kątową ω = 500 s^{-1} w polu magnetycznym B=1T. Narysować wykresy $e_1(t)$ i $e_2(t)$ w przypadku gdy kąt między ramkami wynosi $90^\circ, 45^\circ, 30^\circ, 0^\circ$.
- 6. Dwie cewki o danych parametrach L_1 =10 mH, L_2 = 40 mH, i współczynniku sprzężenia k= 0,8, R_1 = 10 Ω , R_2 = 40 Ω . Porównać energię pola magnetycznego przy różnych sposobach łączenia cewek(przy stałym napięciu zasilającym).