日本国特許庁 JAPAN PATENT OFFICE

RECEIVED 1,5 AUG 2003

別紙添付の書類に記載されている事項は下記の出願書類は いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 7月25日

出願番号 Application Number:

特願2002-216841

[ST.10/C]:

[JP2002-216841]

出 願 人 Applicant(s):

独立行政法人産業技術総合研究所

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 6月27日

特 許 庁 長 官 Commissioner, Japan Patent Office

特2002-216841

【書類名】

特許願

【整理番号】

326-02228

【あて先】

特許庁長官 殿

【国際特許分類】

C07C 51/235

C07C 53/00

B01J 23/14

【発明者】

【住所又は居所】

茨城県つくば市東1-1-1 独立行政法人産業技術総

合研究所つくばセンター内

【氏名】

碓井 洋子

【発明者】

【住所又は居所】

茨城県つくば市東1-1-1 独立行政法人産業技術総

合研究所つくばセンター内

【氏名】

佐藤 一彦

【特許出願人】

【識別番号】 301021533

【氏名又は名称】 独立行政法人産業技術総合研究所

【代表者】

吉川 弘之

【電話番号】

0298-61-3280

【その他】

国等の委託研究の成果に係る特許出願(平成14年度、

経済産業省 「エネルギー使用合理化技術開発」、産業

活力再生特別措置法第30条の適用を受けるもの)

【提出物件の目録】

【物件名】

明細書

1

【物件名】

要約書

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】 カルボン酸の製造方法

【特許請求の範囲】

【請求項1】 脂環式アルコール油性溶液と過酸化水素水溶液とを、周期律 表第6族金属化合物を含む触媒の存在下、不均一溶液系で反応させることを特徴 とするカルボン酸の製造方法。

【請求項2】 周期律表第6族金属化合物が、クロム、モリブデン及びタン グステンから選ばれた金属化合物の少なくとも一種であることを特徴とする請求 項1に記載のカルボン酸の製造方法。

【請求項3】 脂環式アルコールが下記一般式(1)

【化1】

$$\begin{array}{c}
R^1 & OH \\
R^2 + H & R^4
\end{array}$$
(1)

(式中、nは $1\sim18$ の整数を示し、 R^1 、 R^2 、 R^3 及び R^4 は、水素原子、ヒドロキ シ基、ハロゲン原子、カルボキシル基、炭素数1~4のアルキル基、炭素数1~ 4のアルコキシ基、炭素数3~7のシクロアルキル基、アリール基、アラルキル 基、アシル基またはアシロキシ基を示し、同一でも相異なっていてもよい。また $R^1 \geq R^2$ 、 $R^1 \geq R^3$ 、 $R^1 \geq R^4$ 、 $R^2 \geq R^3$ 、 $R^2 \geq R^4$ 又は $R^3 \geq R^4$ は互いに結合して炭素環 を形成していてもよく、更にこれらの環は炭素数1~4のアルキル基、炭素数1 ~4のアルコキシ基、炭素数3~7のシクロアルキル基、アリール基、アラルキ ル基、カルボキシル基またはハロゲン原子で置換されていてもよい。)

で表される化合物であることを特徴とする請求項1又は2に記載のカルボン酸 の製造方法。

【請求項4】カルボン酸がグルタル酸又はアジピン酸であることを特徴と する請求項1乃至3何れかに記載のカルボン酸の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、可塑剤、潤滑剤、伝熱媒体、誘電媒体、繊維、共重合体、塗料、界面活性剤、防力ビ薬、殺虫剤、接着剤等として化学工業をはじめ、各種の産業分野で幅広く用いられる有用な物質であるジエステル、ポリエステル及びポリアミドの合成における重要な中間体であるカルボン酸の製造方法に関し、更に詳しくは、脂環式アルコールと過酸化水素水溶液の反応によるカルボン酸の新規な製造法に関するものである。

[0002]

【従来の技術】

アルコール類を酸化してカルボン酸を製造する方法としては、硝酸 (Org. Synth., 5,9-11、Org. Synth., Coll. Vol. 1,18-20、Compt. Rend., 1919,1 68,1324-1326、J. Chem. Soc., 1942,559-562、J. Chem. Soc., Perkin Trans. II,1985,1677-1682)、クロム酸 (Org. Synth., Coll. Vol. 4,19-21) 又は過マンガン酸カリウム (Chem. Ber., 1908,41,575、Chem. Ber., 1922,55B,3526-3536) 等を酸化剤として用いる方法が知られているが、これらの方法は、毒性の高い副生物の発生、酸化剤の腐食性等の点で環境に与える負荷が大きく、工業的に優れたプロセスとは言い難い。

[0003]

これに対して、酸素や過酸化水素は、安価で腐食性がなく、反応後の副生物は 皆無又は無害な水であるために環境負荷が小さく、工業的に利用するのに優れた 酸化剤ということができる。

酸素を酸化剤とするアルコール類からカルボン酸を製造する方法としては、触媒として白金担持触媒を用いる方法が既に提案されている(Appl. Cat. A, 1996, 135, L7-L11)。

だが、この方法は酸素を加圧下として、反応温度を高温(150℃以上)で行わなければならず、しかも得られるカルボン酸の選択率も低く、50%程度に過ぎない。

[0004]

一方、過酸化水素を酸化剤としてカルボン酸を得る方法としては、極性溶媒を用い、シクロヘキサノールと過酸化水素との均一溶液を予め調製しておき、この均一溶液を周期律表第VI族の金属酸化物等の触媒の存在下で反応させてアジピン酸を製造する方法が提案されている(特開昭54-135720号公報)。

しかしながら、この方法によるアジピン酸の収率はせいぜい50%程度と推定され、工業的なカルボン酸の製造方法としては未だ充分なものとはいえず、また過酸化水素水溶液にシクロヘキサノールを溶解させて均一溶液とするために、酢酸やtーブチルアルコールなどの極性溶媒の使用が不可欠とされていることから、目的生成物であるアジピン酸をを単離する際にその除去手段が必要となり、反応操作や装置が煩雑となる上、極性有機溶媒自身の環境及び人体への影響・毒性も指摘されるに至っている。

[0005]

4

【発明が解決しようとする課題】

本発明は、上記のような従来技術の問題点を克服するためになされたものであって、温和な反応条件下で、脂環式アルコール類からカルボン酸を高収率で得ることができると共に反応操作が簡便で反応終了後の溶媒除去操作を不要とし、かっ環境や人体への影響・毒性がきわめて小さい、脂環式アルコール類と過酸化水素水溶液との反応による安全かつ簡便で効率的なカルボン酸の製造方法を提供することをその目的とする。

[0006]

【課題を解決するための手段】

本発明者らは、前記課題を解決するために鋭意研究した結果、脂環式アルコールの極性溶媒溶液と過酸化水素水溶液との均一溶液系で酸化反応を行う従来の反応方法に代えて、過酸化水素水溶液と脂環式アルコール油性溶液との不均一溶液系を用いる反応を選定すると、従来の常識的な技術的知見とは異なり、対応するカルボン酸が高収率で安全かつ簡便に製造し得ることを見いだし、本発明を完成するに至った。

[0007]

即ち、本発明によれば、以下の発明が提供される。

- (1) 脂環式アルコール油性溶液と過酸化水素水溶液とを、周期律表第6族金属 化合物を含む触媒の存在下、不均一溶液系で反応させることを特徴とするカルボン酸の製造方法。
- (2) 周期律表第6族金属化合物が、クロム、モリブデン及びタングステンから 選ばれた少なくとも一種の金属化合物であることを特徴とする上記(1)に記載 のカルボン酸の製造方法。
 - (3) 脂環式アルコールが下記一般式(1)

【化2】

$$R^{1}$$
 OH R^{2} R^{3} R^{4} (1)

(式中、nは $1 \sim 1$ 8 の整数を示し、 R^1 、 R^2 、 R^3 及び R^4 は、水素原子、ヒドロキシ基、ハロゲン原子、カルボキシル基、炭素数 $1 \sim 4$ のアルコキシ基、炭素数 $3 \sim 7$ のシクロアルキル基、アリール基、アラルキル基、アシル基またはアシロキシ基を示し、同一でも相異なっていてもよい。また、 R^1 と R^2 、 R^1 と R^3 、 R^1 と R^4 、 R^2 と R^3 、 R^2 と R^4 又は R^3 と R^4 は互いに結合して炭素環を形成していてもよく、更にこれらの環は炭素数 $1 \sim 4$ のアルキル基、炭素数 $1 \sim 4$ のアルコキシ基、炭素数 $3 \sim 7$ のシクロアルキル基、アリール基、アラルキル基、カルボキシル基またはハロゲン原子で置換されていてもよい。)

(4) カルボン酸がグルタル酸又はアジピン酸であることを特徴とする上記(1)) 乃至(3) 何れかに記載のカルボン酸の製造方法。

[0008]

【発明の実施の形態】

本発明に係る過酸化水素を用いる脂環式アルコールの酸化反応によるカルボン酸の製造方法は、該酸化反応を、周期律表第6族金属化合物を含む触媒の存在下、過酸化水素水溶液と脂環式アルコール油性溶液との不均一溶液中で行うことを特徴としている。

[0009]

従来、液液反応においては、原料同士、あるいは原料と酸化剤、反応促進剤などの反応試薬とが相溶性を持たない場合には、反応を円滑に進めるために原料と反応試薬等とが相互に溶解する溶媒を用いて、両者の均一な溶液を予め調製し、しかる後反応させるプロセスが選択率、収率などの点で有利であるとされていた

[0010]

脂環式アルコールと過酸化水素との反応によるカルボン酸の合成反応において も、前記したように、この発想が踏襲され、特開昭54-135720号公報記 載の発明においても、酢酸やt ーブチルアルコールのような極性溶媒を用い、シ クロヘキサノールと過酸化水素との均一溶液を予め調製しておき、この均一溶液 を周期律表第6族の金属酸化物等の触媒の存在下で反応させてアジピン酸を製造 するプロセスが採られている。

[0011]

本発明者らは、かかる酸化反応を更に効率的にかつ環境・人体の保護の観点から、種々様々な研究・実験、理論的考察を模索した結果、この過酸化水素を酸化剤とする脂環式アルコールの酸化反応は、従来の技術常識とは異なり、均一溶液系ではなく、脂環式アルコール油性溶液と過酸化水素水溶液との不均一溶液系で行なった場合には、カルボン酸の収率が著しく向上し、しかも環境負荷の軽減に著しく貢献することを知見した。このような知見は従来の技術常識では到底予期できるものではなく、本発明者の弛まぬ実験研究の積み重ねによってはじめて見い出された特異的な現象である。

本発明の不均一溶液系での酸化反応が、カルボン酸の大幅な収率アップにつながる理論的解明は現時点では明らかとなっていないが、油性溶液中では触媒活性種の溶媒和による活性低下が起こらない、或いは何らかの理由によって水一油相界面で反応が大幅に促進される等に起因するところが多いものと推定される。

[0012]

本発明方法で用いる原料としては、従来公知の一般的な脂環式アルコールを使用することができ、特に制限されるものではないが、下記一般式(1)で表され

る脂環式アルコールが好ましく用いられる。

[化3]

$$R^{1}$$
 OH R^{2} R^{3} R^{4} R^{4}

(式中、nは $1\sim1$ 8の整数を示し、 R^1 、 R^2 、 R^3 及び R^4 は、水素原子、ヒドロキシ基、ハロゲン原子、カルボキシル基、炭素数 $1\sim4$ のアルキル基、炭素数 $1\sim4$ 0アルコキシ基、炭素数 $3\sim7$ のシクロアルキル基、アリール基、アラルキル基、アシル基またはアシロキシ基を示し、同一でも相異なっていてもよい。また、 R^1 と R^2 、 R^1 と R^3 、 R^1 と R^4 、 R^2 と R^3 、 R^2 と R^4 又は R^3 と R^4 は互いに結合して炭素環を形成していてもよく、これらの環は炭素数 $1\sim4$ 0アルコキシ基、炭素数 $3\sim7$ 0シクロアルキル基、アリール基、アラルキル基、カルボキシル基またはハロゲン原子で置換されていてもよい。)

[0013]

 ,4 -ジメチルシクロヘキサノール、1,5 -ジメチルシクロヘキサノール、2, 3-ジメチルシクロヘキサノール、2,4-ジメチルシクロヘキサノール、1,2,3 ートリメチルシクロヘキサノール、1,2,4 ートリメチルシクロヘキサノー ル、1,2,5-トリメチルシクロヘキサノール、1,3,4-トリメチルシクロヘ キサノール、1,3,5ートリメチルシクロヘキサノール、2,3,4ートリメチル シクロヘキサノール、1,2,3,4ーテトラメチルシクロヘキサノール、1,2, 3,5-テトラメチルシクロヘキサノール、1,2,4,5-テトラメチルシクロヘ キサノール、1,2,3,4,5ーペンタメチルシクロヘキサノール、1ーメチルシ クロヘプタノール、1-メチルシクロオクタノール、1-メチルシクロノナノー ル、1ーメチルシクロデカノール、1ーメチルシクロウンデカノール、1ーメチ ルシクロドデカノール、1ーメチルシクロトリデカノール、1ーメチルシクロテ トラデカノール、1-メチルシクロペンタデカノール、1-メチルシクロヘキサ **デカノール、1-メチルシクロヘプタデカノール、1-メチルシクロオクタデカ** ノール、1ーメチルシクロノナデカノール、1ーメチルシクロイコサノール、1 ーメチルシクロヘニコサノール、1-フェニルシクロヘキサノール、1-ベンジ ルシクロヘキサノール、1,2-シクロヘキサンジオール、1-クロロシクロペ ンタノール、1ープロモシクロペンタノール、1ークロロシクロヘキサノール、 1-ブロモシクロヘキサノール、シクロペンタノールー1-カルボン酸、シクロ ヘキサノールー1ーカルボン酸、1ーアセチルシクロペンタノール、1ーアセチ ルシクロヘキサノール等が挙げられる。好ましくは、シクロペンタノール、シク ロヘキサノール等が挙げられる。本発明で好ましく使用されるアルコールはシク ロペンタノール、シクロヘキサノールである。

[0014]

本発明においては、上記したように、温和な反応条件下で、脂環式アルコールからカルボン酸を高収率で得ることができると共に反応操作が簡便で反応終了後の溶媒除去操作を不要とし、かつ環境や人体への影響・毒性がきわめて小さい、脂環式アルコール類と過酸化水素水溶液との反応による安全かつ簡便で効率的なカルボン酸の製造方法を提供することをその目的としていることから、上記酸化反応を可能な限り有機溶媒を使用することなく不均一溶液系で行うことが極めて

重要となる。したがって、上記した脂環式アルコールは、酸化剤である過酸化水 素水溶液相とは分相となるようにできればそれ自体の油性溶液として用いること が必要である。

脂環式アルコールの油性溶液としては、脂環式アルコールそれ自体の油性溶液の他、水と相溶のない炭化水素などの非極性溶媒中に溶解させた脂環式アルコールの油性溶媒溶液が挙げられるが、前記した環境負荷の軽減や溶媒除去操作の観点からみて、脂環式アルコールそれ自体の油性溶液を用いることが最も望ましい

[0015]

本発明方法で用いる酸化剤は、過酸化水素であり、実施に当たってはその水溶液の形態で用いられる。過酸化水素水溶液の濃度は、その濃度に応じて脂環式アルコールの酸化反応は生起するので、特に制限はないが、一般的には1~80重量%、好ましくは30~60重量%の範囲から選ばれる。

[0016]

また、過酸化水素水溶液の使用量にも制限はないが、一般的には脂環式アルコールに対して4.0~30.0当量、好ましくは4.4~8.0当量の範囲から選ばれる。

[0017]

本発明方法で用いる触媒は、周期律表第6族金属化合物を主体とするものである。このような金属化合物としては、クロム、モリブテン及びタングステンから 選ばれた少なくとも一種の金属化合物を挙げることができる。

[0018]

具体的には、クロム化合物としては、水中でクロム酸アニオンを生成するクロム化合物、例えばクロム酸、三酸化クロム、三硫化クロム、六塩化クロム、リンクロム酸、クロム酸アンモニウム、クロム酸カリウム二水和物、クロム酸ナトリウム二水和物等が挙げられるが、クロム酸、三酸化クロム、リンクロム酸が好ましい。

[0019]

モリブデン化合物としては、水中でモリブデン酸アニオンを生成する化合物、 例えばモリブデン酸、三酸化モリブデン、三硫化モリブデン、六塩化モリブデン

' 'गन्तु

、リンモリブデン酸、モリブデン酸アンモニウム、モリブデン酸カリウム二水和物、モリブデン酸ナトリウム二水和物等が挙げられるが、モリブデン酸、三酸化モリブデン、リンモリブデン酸が好ましい。

[0020]

タングステン化合物としては、水中でタングステン酸アニオンを生成する化合物であり、例えばタングステン酸、三酸化タングステン、三硫化タングステン、六塩化タングステン、リンタングステン酸、タングステン酸アンモニウム、タングステン酸カリウム二水和物、タングステン酸ナトリウム二水和物等が挙げられるが、タングステン酸、三酸化タングステン、リンタングステン酸が好ましい。

[0021]

これらの周期律表第6族金属化合物は単独で使用しても、二種以上を併用して も良い。また、その使用量に特に制限はないが、通常、原料の脂環式アルコール に対して0.0001~20モル%、好ましくは0.01~10モル%の範囲から選ばれる。

[0022]

本発明の製造方法で用いる触媒は、前記した周期律表第6族金属化合物が主体とするものであるが、必要に応じ、リン酸等の補助触媒等を使用することも可能である。

[0023]

本発明方法の反応条件には、特に制約ないが、通常、反応は30~120℃、好ましくは50~100℃の範囲で行われる。反応圧力は常圧、加圧、減圧のいずれでも 良いが、常圧で行うことが好ましい。

[0024]

また、本発明の製造方法においては、反応系中で過酸化水素水溶液と脂環式アルコールとが不均一溶液を形成する方法であれば、原料、酸化剤及び触媒の添加順序や反応態様に特に制限はないが、通常、触媒を混合した過酸化水素水溶液に脂環式アルコールを添加し、あらかじめ3者の不均一混合物を形成しておき、ついでこれらを撹拌しながら反応させる方法が採られる。

[0025]

本発明の製造方法においては、前記した特有な酸化反応プロセスを採ることに

より、脂環式アルコールからこれに対応するグルタル酸やアジピン酸などのカルボン酸を高収率で得ることができる。

[0026]

具体的には、前記一般式(1)の脂環式アルコールにおいて、 R^4 が水素原子、ヒドロキシ基又はハロゲン原子であるアルコールからは、下記一般式(2)

【化4】

$$HO = R^{1} O$$

$$R^{2} R^{3}$$

$$(2)$$

(式中、n、 R^1 、 R^2 及び R^3 は前記と同じ意味を表す。) で表されるジカルボン酸を得ることができる。

[0027]

また、前記一般式(1)の脂環式アルコールにおいて、 \mathbb{R}^4 が水素原子、ヒドロキシ基又はハロゲン原子以外の基である場合には、下記一般式(3)

【化5】

$$\begin{array}{c|c}
R^1 & O \\
HO & R^2 & R^3
\end{array}$$
(3)

(式中、n、 R^1 、 R^2 及び R^3 は前記と同じ意味を表す。 R^4 はカルボキシル基、炭素数 $1\sim 4$ のアルキル基、炭素数 $1\sim 4$ のアルコキシ基、炭素数 $3\sim 7$ のシクロアルキル基、アリール基、アラルキル基、アシル基またはアシロキシ基を示し、同一でも相異なっていてもよい。また、 R^1 と R^2 、 R^1 と R^3 、 R^1 と R^4 、 R^2 と R^3 、 R^2 と R^4 又は R^3 と R^4 は互いに結合して炭素環を形成していてもよく、更にこれらの環は炭素数 $1\sim 4$ のアルキル基、炭素数 $1\sim 4$ のアルキル基、炭素数 $1\sim 4$ のアルコキシ基、炭素数 $3\sim 7$ のシクロアルキル基、アリール基、アラルキル基、カルボキシル基またはハロゲン原子で置

換されていてもよい。)

で表されるケトカルボン酸を得ることができる。

[0028]

本発明方法で得られるカルボン酸の具体例としては、例えば、コハク酸、グル タル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウ ンデカンジオン酸、ブラシル酸、トリデカンジオン酸、テトラデカンジオン酸、 ペンタデカンジオン酸、ヘキサデカンジオン酸、ヘプタデカンジオン酸、オクタ デカンジオン酸、ノナデカンジオン酸、イコサンジオン酸、ヘニコサンジオン酸 、5-オキソヘキサン酸、2-メチルグルタル酸、4-メチル-5-オキソヘキ サン酸、3-メチル-5-オキソヘキサン酸、2-メチル-5-オキソヘキサン 酸、2,3-ジメチルグルタル酸、3,4-ジメチル-5-オキソヘキサン酸、2 - ,4-ジメチル-5-オキソヘキサン酸、2,3-ジメチル-5-オキソヘキサン 酸、2,3,4-トリメチル-5-オキソヘキサン酸、6-オキソヘプタン酸、2 ーメチルアジピン酸、3ーメチルアジピン酸、5ーメチルー6ーオキソヘプタン 酸、4-メチル-6-オキソヘプタン酸、3-メチル-6-オキソヘプタン酸、 2-メチルー6-オキソヘプタン酸、2,3-ジメチルアジピン酸、2,4-ジメ チルアジピン酸、4,5-ジメチル-6-オキソヘプタン酸、3,5-ジメチルー 6-オキソヘプタン酸、2,5-ジメチルー6-オキソヘプタン酸、2,3-ジメ チルー6-オキソヘプタン酸、3,4-ジメチルー6-オキソヘプタン酸、2,4 -ジメチル-6-オキソヘプタン酸、2,3,4-トリメチルアジピン酸、3,4, 5-トリメチルー6-オキソヘプタン酸、2,4,5-トリメチルー6-オキソヘ プタン酸、2,3,4ートリメチルー6ーオキソヘプタン酸、2,3,5ートリメチ ルー6-オキソヘプタン酸、2,3,4,5-テトラメチルー6-オキソヘプタン 酸、7-オキソオクタン酸、8-オキソノナン酸、9-オキソデカン酸、10-オキソウンデカン酸、11-オキソドデカン酸、12-オキソトリデカン酸、1 3-オキソテトラデカン酸、14-オキソペンタデカン酸、15-オキソヘキサ デカン酸、16-オキソヘプタデカン酸、17-オキソオクタデカン酸、18-オキソノナデカン酸、19-オキソイコサン酸、20-オキソヘニコサン酸、2 1-オキソドコサン酸、6-フェニルー6-オキソヘキサン酸、7-フェニルー 6 - オキソヘプタン酸等が挙げられる。この中でも、グルタル酸、アジピン酸等 が好ましく合成される。

[0029]

本発明方法においては、前記反応終了後、生成したカルボン酸を含む混合液を 濃縮後、再結晶や蒸留、昇華等の通常の方法によって分離精製することにより、 高収率、高選択率で目的とするカルボン酸を得ることができる。

[0030]

【実施例】

本発明を以下の実施例によってさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。

[0031]

実施例1

 H_2 WO $_4$ (25.0 mg, 0.100 mmol)、30%過酸化水素水溶液(5.1 mL, 44 mmol)及びシクロペンタノール(0.91 mL, 10 mmol)を混合し、90℃で20時間撹拌した。反応終了後、室温まで冷却した。グルタル酸の収率を、トリメチルシリルジアゾメタンでメチル化した後にビフェニルを内部標準としてGLCで決定したところ、91%であった。

[0032]

実施例2

 $\rm H_2WO_4$ (25.0 mg, 0.100 mmol)、30%過酸化水素水溶液(5.1 mL, 44 mmol) 及びシクロヘキサノール(1.06 mL, 10 mmol)を混合し、90℃で20時間撹拌した。実施例1と同様の操作を行いGLCによる定量を行ったところ、アジピン酸の収率は89%であった。

[0033]

実施例3

H₂WO₄ (2.50 g, 0.010 mol)、30%過酸化水素水溶液(510 mL, 4.4 mol) 及びシクロヘキサノール(101 mL, 1.0 mol)を混合し、90 ℃で20時間撹拌した。0 ℃にて一晩静置したところ、白色結晶が析出した。得られた結晶を減圧ろ過によりろ別し、冷水(20 mL)で洗浄した。ヨウ化カリウムデンプン紙を用いてろ液が過酸

化物反応を示さないことを確認し、真空乾燥を行った。アジピン酸の白色結晶が85% (125 g, 0.85 mol)の収率で得られた。

[0034]

比較例1

実施例2において、シクロヘキサノールに代えて、tーブチルアルコール(3 mL)に溶かしたシクロヘキサノール(1.06 mL, 10 mmol)溶液を用い、均一溶液中での酸化反応を実施例2に準じた操作で行い、GLCによる定量を行ったところ、アジピン酸の収率は52%であった。

[0035]

【発明の効果】

本発明方法によれば、可塑剤、潤滑剤、伝熱媒体、誘電媒体、繊維、共重合体、 塗料樹脂、界面活性剤、防力ビ薬、殺虫剤、接着剤等として化学工業をはじめ、 各種の産業分野で幅広く用いられる有用な物質であるジエステル、ポリエステル 及びポリアミドの合成における重要な中間体である、グルタル酸やアジピン酸な どのカルボン酸を、温和な反応条件下で、かつ高収率で得ることができる。

また、本発明方法は、有機溶媒、酸及び塩基は使用しないため、反応操作が簡便で反応終了後の溶媒除去操作等を不要とすると共に環境や人体への影響・毒性がきわめて小さく、環境に対する負荷を軽減する効果も有し、安全かつ簡便で効率的にカルボン酸を製造することができる。

したがって、本発明方法は工業的に多大な効果をもたらす発明ということができる。

【書類名】

要約書

【要約】

【課題】温和な反応条件下で、脂環式アルコール類からカルボン酸を高収率で得ることができると共に反応操作が簡便で反応終了後の溶媒除去操作を不要とし、かつ環境や人体への影響・毒性がきわめて小さい、脂環式アルコール類と過酸化水素水溶液との反応による安全かつ簡便で効率的なカルボン酸の製造方法を提供する。

【解決手段】脂環式アルコール油性溶液と過酸化水素水溶液とを、周期律表第6 族金属化合物を含む触媒の存在下、不均一溶液系で反応させる。

【選択図】なし

認定・付加情報

特許出願の番号

特願2002-216841

受付番号

50201098245

書類名

特許願

担当官

鎌田 柾規

8045

作成日

平成14年 7月26日

<認定情報・付加情報>

【提出日】

平成14年 7月25日

出願人履歴情報

識別番号

[301021533]

1. 変更年月日

2001年 4月 2日

[変更理由]

新規登録

住 所

東京都千代田区霞が関1-3-1

氏 名

独立行政法人産業技術総合研究所

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.