Introdução ao Projeto Digital Avançado com VHDL e FPGA

Prof. Dr. Oscar Eduardo Anacona Mosquera

oscar.mosquera@ufmt.br

4 de Agosto de 2025

- Agradecimentos
- Objetivos
- 3 Apresentação
- 4 Ementa do minicurso
- Produção bibliográfica

Agradecimentos

- Universidade Federal de Mato Grosso (UFMT)
- Faculdade de Engenharia do Campus de Várzea Grande (FAENG)
- Instituto de Computação (IC-UFMT)
- Curso da Engenharia da Computação
- Prof. Dr. Carlos Humberto Llanos (QEPD), Professor Associado do Departamento de Engenharia Mecânica (ENM) da Universidade de Brasília (UnB)
- Intel Altera
- Colaboradores

- Agradecimentos
- Objetivos
- Apresentação
- 4 Ementa do minicurso
- Produção bibliográfica

Objetivos

• VHDL e Projeto Digital:

Introduzir os conceitos fundamentais do projeto digital utilizando a linguagem VHDL.

• Simulação e Implementação em FPGA:

 Capacitar os participantes na simulação e verificação de projetos digitais utilizando testbenches.

• Testbench com ModelSim:

- ▶ Apresentar o software ModelSim para simulação de circuitos digitais.
- Demonstrar como criar um testbench para verificar o comportamento do circuito antes da implementação em hardware.

• Projeto Aplicado – Carrinho Seguidor de Linha:

- Aplicar os conhecimentos adquiridos no desenvolvimento de um projeto prático e funcional.
- ▶ Controlar um carrinho seguidor de linha utilizando lógica implementada em FPGA.

• Comparação com Arduino Uno:

 Apresentar uma implementação alternativa do projeto utilizando a plataforma Arduino Uno.

- Agradecimentos
- Objetivos
- 3 Apresentação
- 4 Ementa do minicurso
- Produção bibliográfica

Apresentação

- Nome: Prof. Dr. Oscar Eduardo Anacona Mosquera
- Formação: Doutor e Mestre em Sistemas Mecatrônicos pela Universidade de Brasília (UnB), Bacharel em Engenharia Física pela Universidad del Cauca (Colômbia) e revalidado pela Universidade de Goiás (UFG).
- Áreas de Atuação: Sistemas embarcados, Automação, Robótica, e Algoritmos de otimização.
 - ► FPGAs, microcontroladores (PIC e Atmega) e CLPs.
- Professor da UFMT do curso da Engenharia da Computação da FAENG-VG.
- GitHub: oscar-ufmt
- CV Lattes: https://lattes.cnpq.br/4776138897349156

- Agradecimentos
- Objetivos
- 3 Apresentação
- 4 Ementa do minicurso
- Produção bibliográfica

Ementa do minicurso

• Dia 1 – Fundamentos e Ferramentas:

- Introdução ao conceito de hardware reconfigurável e aplicações em sistemas digitais.
- ► Conceitos básicos da linguagem VHDL: sintaxe, estruturas e modelagem de circuitos simples.
- ► Tutorial prático do Quartus II: criação de projetos, entrada de código, compilação e programação da FPGA.
- ► Tutorial do ModelSim: simulação de circuitos digitais e criação de testbenches para validação funcional.

Dia 2 – Aplicações Práticas e Comparações:

- Desenvolvimento de máquinas de estados finitas (FSM) no Quartus, com foco no controle sequencial.
- ▶ Elaboração de testbenches para validação de FSMs e controle de sistemas digitais.
- ▶ Implementação do controle de um carrinho seguidor de linha usando VHDL em FPGA (DE0-Nano).
- ▶ Implementação equivalente do controle do carrinho utilizando Arduino Uno para fins de comparação entre as plataformas.

Proposta do Projeto

Implementação do sistema de controle de um Carrinho Seguidor de Linha com Circuitos Digitais: O projeto consiste em projetar e implementar o controle de um carrinho que segue uma linha traçada no chão, usando sensores para detectar o caminho e lógica digital para controlar os motores. O objetivo é criar um sistema autônomo que seja capaz de navegar com base nas leituras dos sensores e seguir um percurso definido. Os estados do carrinho serão os seguintes: espera (estado 0), ir para frente (estado 1), ir para esquerda (estado 2) e ir para direita (estado 3).

- Agradecimentos
- Objetivos
- Apresentação
- 4 Ementa do minicurso
- Produção bibliográfica

Produção bibliográfica

- CABRAL, FELIPE; ANACONA-MOSQUERA, OSCAR; SAMPAIO, RENATO C.; TEODORO, GEORGE; LLANOS, CARLOS H.; JACOBI, RICARDO P. Optimized execution of morphological reconstruction in large medical images on embedded devices. Journal of Real-Time Image Processing, v. 1, p. 1, 2020.
- ANACONA-MOSQUERA, OSCAR; SANTOS, CARLOS E.; CABRAL, FELIPE R. G.; SAMPAIO, RENATO C.; TEODORO, GEORGE; JACOBI, RICARDO P.; LLANOS, CARLOS H. . Hardware-Based Fast Hybrid Morphological Reconstruction. IEEE Design & Test, v. 1, p. 1-1, 2019.