Department of Computer Engineering

Course Code	Computers	Program	B.Tech
Semester	IX	Year	V
Name of the Faculty	Artika Singh	Class	B and C
Course Title	Data Mining	Academic year	2022-23

PART B

Roll No: C035	Name: Krisha Goti
Class: B	Batch: B1
Date of Experiment:3/9/22	Date of Submission: 9/9/22
Grade	

Work done by student **B.1 CODE FOR SIMPLE LINEAR REGRESSION**

```
#Krisha Goti C035
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn import preprocessing
#Krisha Goti C035
df = pd.read_csv('USA_cars_datasets.csv')
df.head()
#Krisha Goti C035
df_ = df.loc[:,['price','year']]
```

Donautmont	Λf	Computor	Enginoovin	~
Department	UΙ	Computer	Lugmeerm	צ

Course Code	Computers	Program	B.Tech
Semester	IX	Year	V
Name of the Faculty	Artika Singh	Class	B and C
Course Title	Data Mining	Academic year	2022-23

```
df.plot(x='year',y='price',style='o')
plt.xlabel('year')
plt.ylabel('price')
plt.show()
x= pd.DataFrame(df['year'])
y= pd.DataFrame(df['price'])
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y, train_size=0.7
,test_size=0.3, random_state=100)
x_train
y_train
#Krisha Goti C035
import statsmodels.api as sm
x_train_sm = sm.add_constant(x_train)
lr = sm.OLS(y_train, x_train_sm).fit()
lr.params
lr.summary()
plt.scatter(x_train, y_train)
plt.plot(x_train, -2.864e+06 + 1429.5888*x_train, 'r')
plt.xlabel('year')
plt.ylabel('price')
```

Department of Computer Engineering

Course Code	Computers	Program	B.Tech
Semester	IX	Year	V
Name of the Faculty	Artika Singh	Class	B and C
Course Title	Data Mining	Academic year	2022-23

plt.show()

OUTPUT

Department of Computer Engineering

2 t pur timent of computer Engineering				
Course Code	Computers	Program	B.Tech	
Semester	IX	Year	V	
Name of the Faculty	Artika Singh	Class	B and C	
Course Title	Data Mining	Academic year	2022-23	

Department of Computer Engineering

Department of Computer Engineering				
Course Code	Computers	Program	B.Tech	
Semester	IX	Year	V	
Name of the Faculty	Artika Singh	Class	B and C	
Course Title	Data Mining	Academic year	2022-23	

Department of Computer Engineering

Course Code	Computers	Program	B.Tech
Semester	IX	Year	V
Name of the Faculty	Artika Singh	Class	B and C
Course Title	Data Mining	Academic year	2022-23

B.2 Conclusion

After successfully completing this experiment, I am able to:

Apply simple regression on real world dataset and estimate its parameters. Also learnt some new python libraries for plotting a scatter plot. Learnt how to predict dependent variable for dataset.