$12n_{0170} (K12n_{0170})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -2u^{46} + 4u^{45} + \dots + b + 2, \ 2u^{45} - 2u^{44} + \dots + a - 1, \ u^{47} - 2u^{46} + \dots - 12u^2 + 1 \rangle$$

$$I_2^u = \langle b - u, \ a - u - 1, \ u^3 + 2u - 1 \rangle$$

$$I_3^u = \langle u^3 + b + 2u + 1, \ a + 1, \ u^4 + u^3 + 2u^2 + 2u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 54 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -2u^{46} + 4u^{45} + \dots + b + 2, \ 2u^{45} - 2u^{44} + \dots + a - 1, \ u^{47} - 2u^{46} + \dots - 12u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{4} - u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2u^{45} + 2u^{44} + \dots - 5u + 1 \\ 2u^{46} - 4u^{45} + \dots - 3u - 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{8} + 3u^{6} + u^{4} - 2u^{2} + 1 \\ u^{8} + 4u^{6} + 4u^{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -4u^{45} + 4u^{44} + \dots + 16u^{2} - 5u \\ 4u^{46} - 8u^{45} + \dots - 4u - 4 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{19} - 8u^{17} - 24u^{15} - 30u^{13} - 7u^{11} + 10u^{9} - 4u^{7} - 6u^{5} + 3u^{3} - 2u \\ -u^{19} - 9u^{17} - 32u^{15} - 55u^{13} - 43u^{11} - 9u^{9} - 4u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{45} + u^{44} + \dots - 4u + 2 \\ u^{46} - 2u^{45} + \dots - 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{46} + 8u^{45} + \cdots + 38u + 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{47} + 14u^{46} + \dots - 5u + 1$
c_2, c_4	$u^{47} - 8u^{46} + \dots - 5u + 1$
c_3, c_8	$u^{47} + u^{46} + \dots + 192u + 128$
c_5	$u^{47} - 2u^{46} + \dots + 2u + 1$
c_6, c_{10}, c_{11}	$u^{47} - 2u^{46} + \dots - 12u^2 + 1$
c_7	$u^{47} + 2u^{46} + \dots + 96u + 72$
c_9, c_{12}	$u^{47} + 8u^{46} + \dots + 112u - 49$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{47} + 46y^{46} + \dots + 83y - 1$
c_2, c_4	$y^{47} - 14y^{46} + \dots - 5y - 1$
c_{3}, c_{8}	$y^{47} + 45y^{46} + \dots - 167936y - 16384$
c_5	$y^{47} - 52y^{46} + \dots + 24y - 1$
c_6, c_{10}, c_{11}	$y^{47} + 44y^{46} + \dots + 24y - 1$
c_7	$y^{47} + 12y^{46} + \dots + 50832y - 5184$
c_9, c_{12}	$y^{47} + 32y^{46} + \dots + 170128y - 2401$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.240850 + 1.172380I		
a = 0.76218 + 1.23522I	4.61957 - 0.02295I	0
b = 0.934577 + 0.402639I		
u = -0.240850 - 1.172380I		
a = 0.76218 - 1.23522I	4.61957 + 0.02295I	0
b = 0.934577 - 0.402639I		
u = 0.708507 + 0.363703I		
a = -0.94806 + 1.22755I	3.42438 + 9.90306I	2.22004 - 7.67510I
b = 2.37910 + 1.16766I		
u = 0.708507 - 0.363703I		
a = -0.94806 - 1.22755I	3.42438 - 9.90306I	2.22004 + 7.67510I
b = 2.37910 - 1.16766I		
u = -0.635055 + 0.455943I		
a = 0.114980 + 0.251136I	-4.12081 - 2.09104I	4.57556 + 3.64684I
b = 0.0894725 + 0.0904282I		
u = -0.635055 - 0.455943I		
a = 0.114980 - 0.251136I	-4.12081 + 2.09104I	4.57556 - 3.64684I
b = 0.0894725 - 0.0904282I		
u = 0.517341 + 0.581926I		
a = -1.35583 - 1.46783I	2.58809 - 5.73384I	0.56569 + 2.04831I
b = -1.70532 + 1.15194I		
u = 0.517341 - 0.581926I		
a = -1.35583 + 1.46783I	2.58809 + 5.73384I	0.56569 - 2.04831I
b = -1.70532 - 1.15194I		
u = 0.109843 + 1.219880I		
a = 0.767710 + 0.740963I	-2.27528 + 2.11283I	0
b = 0.864402 + 0.041075I		
u = 0.109843 - 1.219880I		
a = 0.767710 - 0.740963I	-2.27528 - 2.11283I	0
b = 0.864402 - 0.041075I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.698777 + 0.324988I		
a = 1.001160 - 0.887981I	4.64870 + 3.20376I	4.16524 - 3.31906I
b = -2.00444 - 1.18278I		
u = 0.698777 - 0.324988I		
a = 1.001160 + 0.887981I	4.64870 - 3.20376I	4.16524 + 3.31906I
b = -2.00444 + 1.18278I		
u = -0.256980 + 1.225330I		
a = -0.62010 - 1.29363I	4.25025 - 6.95397I	0
b = -0.881559 - 0.519345I		
u = -0.256980 - 1.225330I		
a = -0.62010 + 1.29363I	4.25025 + 6.95397I	0
b = -0.881559 + 0.519345I		
u = 0.435156 + 0.599476I		
a = 1.31533 + 1.27222I	3.57234 + 0.73807I	1.82651 - 2.67731I
b = 1.34439 - 0.94929I		
u = 0.435156 - 0.599476I		
a = 1.31533 - 1.27222I	3.57234 - 0.73807I	1.82651 + 2.67731I
b = 1.34439 + 0.94929I		
u = -0.037205 + 1.270570I		
a = -1.61889 - 0.61214I	-4.85814 - 0.97601I	0
b = -1.283830 + 0.388483I		
u = -0.037205 - 1.270570I		
a = -1.61889 + 0.61214I	-4.85814 + 0.97601I	0
b = -1.283830 - 0.388483I		
u = -0.623399 + 0.342153I		
a = -0.426734 + 0.510909I	-1.47489 - 3.82342I	0.98515 + 6.99857I
b = -0.111541 + 0.262625I		
u = -0.623399 - 0.342153I		
a = -0.426734 - 0.510909I	-1.47489 + 3.82342I	0.98515 - 6.99857I
b = -0.111541 - 0.262625I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.701377 + 0.026834I		
a = -0.073148 + 1.342220I	8.08746 - 3.45650I	7.23123 + 2.83028I
b = -0.017726 + 0.554191I		
u = -0.701377 - 0.026834I		
a = -0.073148 - 1.342220I	8.08746 + 3.45650I	7.23123 - 2.83028I
b = -0.017726 - 0.554191I		
u = 0.568091 + 0.371758I		
a = -2.10914 - 0.10547I	-3.30787 + 1.75612I	1.06262 - 3.54613I
b = 0.57523 + 2.44925I		
u = 0.568091 - 0.371758I		
a = -2.10914 + 0.10547I	-3.30787 - 1.75612I	1.06262 + 3.54613I
b = 0.57523 - 2.44925I		
u = 0.155614 + 1.341930I		
a = -0.415404 + 0.937335I	-3.43598 + 2.59417I	0
b = 0.224512 + 0.844236I		
u = 0.155614 - 1.341930I		
a = -0.415404 - 0.937335I	-3.43598 - 2.59417I	0
b = 0.224512 - 0.844236I		
u = -0.480171 + 0.404521I		
a = 0.848787 - 0.023160I	-1.96248 + 0.31457I	-1.52612 + 0.64426I
b = 0.311223 - 0.154426I		
u = -0.480171 - 0.404521I		
a = 0.848787 + 0.023160I	-1.96248 - 0.31457I	-1.52612 - 0.64426I
b = 0.311223 + 0.154426I		
u = -0.19689 + 1.43311I		
a = -0.446867 + 0.559009I	-7.79399 - 2.25837I	0
b = -0.063667 + 0.550788I		
u = -0.19689 - 1.43311I		
a = -0.446867 - 0.559009I	-7.79399 + 2.25837I	0
b = -0.063667 - 0.550788I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.12786 + 1.44594I		
a = -1.76062 + 0.79907I	-2.88567 + 2.62103I	0
b = -0.81689 + 1.44748I		
u = 0.12786 - 1.44594I		
a = -1.76062 - 0.79907I	-2.88567 - 2.62103I	0
b = -0.81689 - 1.44748I		
u = -0.23877 + 1.43350I		
a = 0.045007 - 0.588992I	-7.17228 - 6.98944I	0
b = -0.205747 - 0.403699I		
u = -0.23877 - 1.43350I		
a = 0.045007 + 0.588992I	-7.17228 + 6.98944I	0
b = -0.205747 + 0.403699I		
u = 0.21933 + 1.43707I		
a = 1.26805 - 3.51350I	-9.10435 + 4.67464I	0
b = -0.98988 - 3.16929I		
u = 0.21933 - 1.43707I		
a = 1.26805 + 3.51350I	-9.10435 - 4.67464I	0
b = -0.98988 + 3.16929I		
u = 0.26857 + 1.43228I		
a = 0.89236 + 2.94088I	-0.98075 + 6.72660I	0
b = 2.26858 + 1.61505I		
u = 0.26857 - 1.43228I		
a = 0.89236 - 2.94088I	-0.98075 - 6.72660I	0
b = 2.26858 - 1.61505I		
u = 0.518516 + 0.082438I		
a = 0.604605 + 0.167780I	1.061820 + 0.206928I	9.18626 - 0.93345I
b = -0.557380 - 0.379635I		
u = 0.518516 - 0.082438I		
a = 0.604605 - 0.167780I	1.061820 - 0.206928I	9.18626 + 0.93345I
b = -0.557380 + 0.379635I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.26958 + 1.45051I		
a = -1.41479 - 3.13096I	-2.40424 + 13.46930I	0
b = -2.74488 - 1.48581I		
u = 0.26958 - 1.45051I		
a = -1.41479 + 3.13096I	-2.40424 - 13.46930I	0
b = -2.74488 + 1.48581I		
u = 0.15911 + 1.47665I		
a = 2.44634 - 0.79574I	-4.02537 - 3.37401I	0
b = 1.32702 - 1.81501I		
u = 0.15911 - 1.47665I		
a = 2.44634 + 0.79574I	-4.02537 + 3.37401I	0
b = 1.32702 + 1.81501I		
u = -0.22773 + 1.47482I		
a = -0.232276 - 0.098321I	-10.35500 - 5.24252I	0
b = -0.194212 + 0.027487I		
u = -0.22773 - 1.47482I		
a = -0.232276 + 0.098321I	-10.35500 + 5.24252I	0
b = -0.194212 - 0.027487I		
u = -0.235762		
a = 2.71069	-1.27831	-10.8230
b = 0.517152		

II.
$$I_2^u = \langle b - u, \ a - u - 1, \ u^3 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2}+1 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2}+u \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2}-u+1 \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u+1 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2}+u \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u+1 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2}+u-1 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2}+2 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $7u^2 + 5u + 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3,c_8	u^3
<i>c</i> ₄	$(u+1)^3$
c_5, c_6, c_9	$u^3 + 2u + 1$
C ₇	$u^3 + 3u^2 + 5u + 2$
c_{10}, c_{11}, c_{12}	$u^3 + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_8	y^3
$c_5, c_6, c_9 \\ c_{10}, c_{11}, c_{12}$	$y^3 + 4y^2 + 4y - 1$
c_7	$y^3 + y^2 + 13y - 4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.22670 + 1.46771I		
a = 0.77330 + 1.46771I	-11.08570 - 5.13794I	-9.85299 + 2.68036I
b = -0.22670 + 1.46771I		
u = -0.22670 - 1.46771I		
a = 0.77330 - 1.46771I	-11.08570 + 5.13794I	-9.85299 - 2.68036I
b = -0.22670 - 1.46771I		
u = 0.453398		
a = 1.45340	-0.857735	9.70600
b = 0.453398		

III.
$$I_3^u = \langle u^3 + b + 2u + 1, \ a + 1, \ u^4 + u^3 + 2u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ u^{3} + 2u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + 2u + 1 \\ -u^{3} - u^{2} - u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} + u^{2} + 2u + 2 \\ u^{3} + 2u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1 \\ -u^{3} - 2u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u + 1 \\ -u^{3} - 2u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ -u^{3} - 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} - u^{2} - 2u - 2 \\ -u^{3} - 2u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + u^{2} + 2u + 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^3 2u^2 + 2u 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_8	u^4
c_4	$(u+1)^4$
c_5, c_6, c_9	$u^4 - u^3 + 2u^2 - 2u + 1$
c ₇	$(u^2 - u + 1)^2$
c_{10}, c_{11}, c_{12}	$u^4 + u^3 + 2u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_8	y^4
$c_5, c_6, c_9 \\ c_{10}, c_{11}, c_{12}$	$y^4 + 3y^3 + 2y^2 + 1$
c_7	$(y^2+y+1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.621744 + 0.440597I		
a = -1.00000	-4.93480 - 2.02988I	-6.26314 + 3.25323I
b = 0.121744 - 1.306620I		
u = -0.621744 - 0.440597I		
a = -1.00000	-4.93480 + 2.02988I	-6.26314 - 3.25323I
b = 0.121744 + 1.306620I		
u = 0.121744 + 1.306620I		
a = -1.00000	-4.93480 + 2.02988I	-3.23686 - 4.54099I
b = -0.621744 - 0.440597I		
u = 0.121744 - 1.306620I		
a = -1.00000	-4.93480 - 2.02988I	-3.23686 + 4.54099I
b = -0.621744 + 0.440597I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^7)(u^{47}+14u^{46}+\cdots-5u+1)$
c_2	$((u-1)^7)(u^{47} - 8u^{46} + \dots - 5u + 1)$
c_3, c_8	$u^7(u^{47} + u^{46} + \dots + 192u + 128)$
C4	$((u+1)^7)(u^{47} - 8u^{46} + \dots - 5u + 1)$
<i>C</i> ₅	$(u^{3} + 2u + 1)(u^{4} - u^{3} + 2u^{2} - 2u + 1)(u^{47} - 2u^{46} + \dots + 2u + 1)$
<i>c</i> ₆	$(u^{3} + 2u + 1)(u^{4} - u^{3} + 2u^{2} - 2u + 1)(u^{47} - 2u^{46} + \dots - 12u^{2} + 1)$
C ₇	$((u^{2}-u+1)^{2})(u^{3}+3u^{2}+5u+2)(u^{47}+2u^{46}+\cdots+96u+72)$
<i>c</i> 9	$(u^{3} + 2u + 1)(u^{4} - u^{3} + 2u^{2} - 2u + 1)(u^{47} + 8u^{46} + \dots + 112u - 49)$
c_{10}, c_{11}	$(u^3 + 2u - 1)(u^4 + u^3 + 2u^2 + 2u + 1)(u^{47} - 2u^{46} + \dots - 12u^2 + 1)$
c_{12}	$(u^{3} + 2u - 1)(u^{4} + u^{3} + 2u^{2} + 2u + 1)(u^{47} + 8u^{46} + \dots + 112u - 49)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^7)(y^{47} + 46y^{46} + \dots + 83y - 1)$
c_2, c_4	$((y-1)^7)(y^{47} - 14y^{46} + \dots - 5y - 1)$
c_3,c_8	$y^7(y^{47} + 45y^{46} + \dots - 167936y - 16384)$
<i>C</i> 5	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)(y^{47} - 52y^{46} + \dots + 24y - 1)$
c_6, c_{10}, c_{11}	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)(y^{47} + 44y^{46} + \dots + 24y - 1)$
c_7	$((y^2 + y + 1)^2)(y^3 + y^2 + 13y - 4)(y^{47} + 12y^{46} + \dots + 50832y - 5184)$
c_9, c_{12}	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)$ $\cdot (y^{47} + 32y^{46} + \dots + 170128y - 2401)$