Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 6 de septiembre de 2024

Contenidos estimados para hoy

Representación de álgebras de Boole finitas

- 2 Representación se reticulados distributivos finitos
 - Conjuntos decrecientes de un poset

Definición

Dado un poset \mathbf{P} con elemento mínimo 0, decimos que a es un *átomo* si cubre a 0. Denotamos con $At(\mathbf{P}) = \{a \in P : a \text{ es átomo de } \mathbf{P}\}.$

Definición

Dado un poset \mathbf{P} con elemento mínimo 0, decimos que a es un *átomo* si cubre a 0. Denotamos con $At(\mathbf{P}) = \{a \in P : a \text{ es átomo de } \mathbf{P}\}.$

Nos interesa ver que, en las álgebras de Boole finitas, los átomos "separan" elementos distintos.

Lema

Sea **B** un álgebra de Boole **finita**. Para todo $x \in B$, $x \neq 0$, existe un átomo a tal que $a \leq x$.

Definición

Dado un poset \mathbf{P} con elemento mínimo 0, decimos que a es un *átomo* si cubre a 0. Denotamos con $At(\mathbf{P}) = \{a \in P : a \text{ es átomo de } \mathbf{P}\}.$

Nos interesa ver que, en las álgebras de Boole finitas, los átomos "separan" elementos distintos.

Lema

Sea **B** un álgebra de Boole **finita**. Para todo $x \in B$, $x \neq 0$, existe un átomo a tal que $a \leq x$.

Lema (separación)

Sea **B** un álgebra de Boole finita y sean $x, y \in B$, tales que $x \nleq y$. Entonces existe un átomo a tal que

$$a \le x \quad y \quad a \nleq y$$
.

Lema

Sea $\mathbf L$ un reticulado distributivo con elemento mínimo 0. Sean $b_1, \ldots, b_n \in L$ y a un átomo de $\mathbf L$. Si $a \leq b_1 \vee \cdots \vee b_n$ entonces $a \leq b_i$ para algún i, 1 < i < n.

Lema

Sea $\mathbf L$ un reticulado distributivo con elemento mínimo 0. Sean $b_1, \ldots, b_n \in L$ y a un átomo de $\mathbf L$. Si $a \leq b_1 \vee \cdots \vee b_n$ entonces $a \leq b_i$ para algún i, 1 < i < n.

Teorema (Representación de álgebras de Boole finitas)

Sea B un álgebra de Boole finita. La función

$$F: B \to \mathcal{P}(At(\mathbf{B}))$$
$$x \mapsto \{a \in At(\mathbf{B}) : a \le x\}$$

es un isomorfismo entre \mathbf{B} y $(\mathcal{P}(At(\mathbf{B})), \cup, \cap, {}^c, \emptyset, At(\mathbf{B}))$ y la inversa de F es el sup.

Si \leq es el orden asociado a ${\bf B}$, basta probar que F es un isomorfismo entre (B,\leq) y $(\mathcal{P}(At({\bf B})),\subseteq)$.

Si \leq es el orden asociado a ${\bf B}$, basta probar que F es un isomorfismo entre (B,\leq) y $(\mathcal{P}(At({\bf B})),\subseteq)$.

Para esto es suficiente probar que

- (1) F es suryectiva y que
- (2) para todo $x, y \in B, x \le y \iff F(x) \subseteq F(y)$.

Si \leq es el orden asociado a ${\bf B}$, basta probar que F es un isomorfismo entre $({\bf B}, \leq)$ y $(\mathcal{P}(At({\bf B})), \subseteq)$.

Para esto es suficiente probar que

- (1) F es suryectiva y que
- (2) para todo $x, y \in B, x \le y \iff F(x) \subseteq F(y)$.

Para ver (1), consideremos $A \subseteq At(\mathbf{B})$. Veremos que $F(\sup(A)) = A$.

Si \leq es el orden asociado a \mathbf{B} , basta probar que F es un isomorfismo entre (B, \leq) y $(\mathcal{P}(At(\mathbf{B})), \subseteq)$.

Para esto es suficiente probar que

- (1) F es suryectiva y que
- (2) para todo $x, y \in B, x \le y \iff F(x) \subseteq F(y)$.

Para ver (1), consideremos $A\subseteq At(\mathbf{B})$. Veremos que $F(\sup(A))=A$. La inclusión $A\subseteq F(\sup(A))$ es trivial.

Si \leq es el orden asociado a ${\bf B}$, basta probar que F es un isomorfismo entre $({\bf B}, \leq)$ y $(\mathcal{P}(At({\bf B})), \subseteq)$.

Para esto es suficiente probar que

- (1) F es suryectiva y que
- (2) para todo $x, y \in B, x \le y \iff F(x) \subseteq F(y)$.

Para ver (1), consideremos $A\subseteq At(\mathbf{B})$. Veremos que $F(\sup(A))=A$. La inclusión $A\subseteq F(\sup(A))$ es trivial. Para ver la otra inclusión,

Si \leq es el orden asociado a \mathbf{B} , basta probar que F es un isomorfismo entre (B, \leq) y $(\mathcal{P}(At(\mathbf{B})), \subseteq)$.

Para esto es suficiente probar que

- (1) F es suryectiva y que
- (2) para todo $x, y \in B, x \le y \iff F(x) \subseteq F(y)$.

Para ver (1), consideremos $A\subseteq At(\mathbf{B})$. Veremos que $F(\sup(A))=A$. La inclusión $A\subseteq F(\sup(A))$ es trivial. Para ver la otra inclusión, (si $A=\emptyset$

Si \leq es el orden asociado a ${\bf B}$, basta probar que F es un isomorfismo entre $({\bf B}, \leq)$ y $(\mathcal{P}(At({\bf B})), \subseteq)$.

Para esto es suficiente probar que

- (1) F es suryectiva y que
- (2) para todo $x, y \in B, x \le y \iff F(x) \subseteq F(y)$.

Para ver (1), consideremos $A\subseteq At(\mathbf{B})$. Veremos que $F(\sup(A))=A$. La inclusión $A\subseteq F(\sup(A))$ es trivial. Para ver la otra inclusión, (si $A=\emptyset\longrightarrow$ Ejercicio

Si \leq es el orden asociado a ${\bf B}$, basta probar que F es un isomorfismo entre (B,\leq) y $(\mathcal{P}(At({\bf B})),\subseteq)$.

Para esto es suficiente probar que

- (1) F es suryectiva y que
- (2) para todo $x, y \in B, x \le y \iff F(x) \subseteq F(y)$.

Para ver (1), consideremos $A\subseteq At(\mathbf{B})$. Veremos que $F(\sup(A))=A$. La inclusión $A\subseteq F(\sup(A))$ es trivial. Para ver la otra inclusión, (si $A=\emptyset\longrightarrow$ Ejercicio) sea $a\in F(\sup(A))$, es decir, si $A=\{a_1,\ldots,a_n\}$ entonces $a\le a_1\vee\cdots\vee a_n$. Por el Lema anterior, existe i tal que $a\le a_i$, como a y a_i son átomos, $a=a_i$ y en consecuencia $a\in A$.

Si \leq es el orden asociado a ${\bf B}$, basta probar que F es un isomorfismo entre (B,\leq) y $(\mathcal{P}(At({\bf B})),\subseteq)$.

Para esto es suficiente probar que

- (1) F es suryectiva y que
- (2) para todo $x, y \in B, x \le y \iff F(x) \subseteq F(y)$.

Para ver (1), consideremos $A\subseteq At(\mathbf{B})$. Veremos que $F(\sup(A))=A$. La inclusión $A\subseteq F(\sup(A))$ es trivial. Para ver la otra inclusión, (si $A=\emptyset\longrightarrow$ Ejercicio) sea $a\in F(\sup(A))$, es decir, si $A=\{a_1,\ldots,a_n\}$ entonces $a\le a_1\vee\cdots\vee a_n$. Por el Lema anterior, existe i tal que $a\le a_i$, como a y a_i son átomos, $a=a_i$ y en consecuencia $a\in A$.

Para ver (2), sean $x, y \in B$ tales que $x \le y$. Si $a \le x$ por transitividad $a \le y$ por lo que $F(x) \subseteq F(y)$. Para ver la otra implicación probaremos la contrarrecíproca. Si $x \nleq y$, por el Lema de separación por átomos, existe un átomo a tal que $a \le x$ y $a \nleq y$, lo que implica $F(x) \nsubseteq F(y)$.

Corolario

Si **B** es un álgebra de Boole finita entonces $|B| = 2^n$ para algún $n \in \mathbb{N}$.

Corolario

Si **B** es un álgebra de Boole finita entonces $|B| = 2^n$ para algún $n \in \mathbb{N}$.

Corolario

Si \mathbf{B} y \mathbf{B}' son álgebras de Boole finitas y $g:At(\mathbf{B})\to At(\mathbf{B}')$ es una función biyectiva, existe un y sólo un isomorfismo $G:\mathbf{B}\to\mathbf{B}'$ que extiende a g. Todo isomorfismo de álgebras de Boole está determinado por su valor en los átomos.

Corolario

Si **B** es un álgebra de Boole finita entonces $|B| = 2^n$ para algún $n \in \mathbb{N}$.

Corolario

Si \mathbf{B} y \mathbf{B}' son álgebras de Boole finitas y $g:At(\mathbf{B})\to At(\mathbf{B}')$ es una función biyectiva, existe un y sólo un isomorfismo $G:\mathbf{B}\to\mathbf{B}'$ que extiende a g. Todo isomorfismo de álgebras de Boole está determinado por su valor en los átomos.

Corolario

Si \mathbf{B} y \mathbf{B}' son dos álgebras de Boole finitas, son isomorfas sii tienen la misma cantidad de átomos.

Criterio

Este teorema nos sirve como criterio para determinar si un reticulado finito es o no álgebra de Boole.

Criterio

Este teorema nos sirve como criterio para determinar si un reticulado finito es o no álgebra de Boole.

Para cualquier reticulado finito ${\bf L}$ podemos realizar la contrucción $({\cal P}(At({\bf L})),\subseteq)$ y fijarnos si es isomorfa a ${\bf L}$.

Criterio

Este teorema nos sirve como criterio para determinar si un reticulado finito es o no álgebra de Boole.

Para cualquier reticulado finito ${\bf L}$ podemos realizar la contrucción $(\mathcal{P}(At({\bf L})),\subseteq)$ y fijarnos si es isomorfa a ${\bf L}$.

Podemos concluir que ${\bf L}$ es un álgebra de Boole sii resulta isomorfo a $(\mathcal{P}(At({\bf L})),\subseteq)$.

Conjuntos decrecientes de un poset

Definición

Sea $P = (P, \leq)$ un poset. Decimos que un subconjunto $D \subseteq P$ es *decreciente* sii para todo $x, z \in P$,

si
$$x \in D$$
 y $z \le x$ entonces $z \in D$.

Llamaremos $\mathcal{D}(\mathbf{P}) :=$ familia de todos los subconjuntos decrecientes de \mathbf{P} .

Lema

Dado un poset $\mathbf{P}=(P,\leq)$, $(\mathcal{D}(P),\subseteq)$ es un subreticulado de $(\mathcal{P}(P),\subseteq)$.

Corolario

 $(D(P),\subseteq)$ es distributivo.

Definición

Dado un reticulado L, un elemento $u \in L$ es (supremo)irreducible sii cubre exactamente a un elemento.

Denotaremos mediante L al conjunto de los elementos irreducibles de L.

Observar que si u es irreducible y $u=x_1\vee\cdots\vee x_n$ entonces $u=x_i$ para algún i.

Representación de reticulados distributivos finitos

Teorema (Birkhoff)

Sea L un reticulado distributivo finito. Entonces la función

$$F: L \to \mathcal{D}(Irr(L))$$
$$x \mapsto \{u \in Irr(L) : u \le x\}$$

es un isomorfismo entre (L,\leq) y $(\mathcal{D}(\mathit{Irr}(L)),\subseteq)$