Ex:	Find the number of integer solutions to
	the equation $x_1 + x_2 + x_3 + x_4 = 11$
	where Spurchase 11
	0 < x < 4 R Januts, 4 types.
	{ same as $2 \le x_2 \le 3$ } $\Rightarrow 2 \in x_2 < 4$ no more than 4
	[same as 3 = x = 7] > 2 < x = 7 (at least 2 but x 2)
	$0 \le \chi_4 \le 11$ of χ_3

Ex: Consider a grid graph with
5×6 edges. Find the
number of shortest routes from
(0,6) upper left to (5,0), lower right,
where we cannot use nodes:
(2,3), $(4,2)$, or $(3,5)$.
5
3
2
0 1 2 3 4 5

Fv.	Find the number of integer solutions to
LA	
	the equation $x_1 + x_2 + x_3 + x_4 = 11$ where $x_1 + x_2 + x_3 + x_4 = 11$
	no more than 4
	Same as $2 \le x_2 \le 3$ $\Rightarrow 2 \in x_2 < 4$ (at least 2 but
	Esame as 3=x3=7 2 < x3=7 Reast 2 but less than 4 of x2 more than 2 but
	0 = x4 = 11 . no more than 7 of x
	1) $2 \le \chi_2$ and $2 < \chi_3 \Rightarrow \text{ne really only}$
	have 11-2-3 = 6 in our total
	that can be distributed among the 4 variab
	I started water of on S some a not beaute &
	2) The upper limits are rules that
	cannot be broken, $\chi_4 \leq 11$ isn i
	really a rule: it says x4 can be anythin
	up to the total. So only 3 nles really.
	x_1 x_2 x_3
	Keep in mind: $x_2 \ge 2$ $x_3 \ge 3$ $x_2 = \frac{1}{2}$.
	X ₃ === 3
	$(6-5)$ $(6-(4-2))$ $(6-(8-3))$ (x_4) ?
	$\begin{pmatrix} 6+4-1 \\ 4-1 \end{pmatrix} - \begin{pmatrix} 1+4-1 \\ 4-1 \end{pmatrix} - \begin{pmatrix} 4+4-1 \\ 4-1 \end{pmatrix} - \begin{pmatrix} 1+4-1 \\ 4-1 \end{pmatrix}$
	$\chi_1 > 5$ $\chi_2 > 4$ $\chi_3 > 8$
	+ 0 + 0 + 0 - 0
	$\chi_{1} \geqslant 5$ $\chi_{1} \geqslant 5$ $\chi_{2} \geqslant 4$ $\chi_{1} \geqslant 5$ $\chi_{1} \geqslant 4$ $\chi_{1} \geqslant 5$ $\chi_{2} \geqslant 8$ $\chi_{3} \geqslant 8$ $\chi_{1} \geqslant 4$
	x3 > 8
	$= \begin{pmatrix} a \\ 3 \end{pmatrix} - \begin{pmatrix} 4 \\ 3 \end{pmatrix} - \begin{pmatrix} 7 \\ 3 \end{pmatrix} - \begin{pmatrix} 4 \\ 3 \end{pmatrix}$
	= 84 - 4 - 35 - 4 = 41

	Consider a grid graph with 5 × 6 edges, Find the
	number of shortest routes from
	(0,6) upper left to (5,0), lower righ
	where we cannot use nodes:
	(2,3) $(4,2)$ or $(3,5)$.
	4 3
	0 1 2 3 4 5
j)	shortest walks all use 5 steps E and 6 steps. (total 11 steps).
2)	each forbidden node is a rule: breaking
	it means using it.
3)	Notice: impossible to use (2,3) and (3,5) 6
	on a shortest route: no backtracking!
	$\binom{11}{5}$ - $\binom{5}{2}\binom{6}{3}$ - $\binom{4}{3}\binom{7}{2}$ - $\binom{8}{4}\binom{3}{1}$
	use (2,2) use (3,5) use (4,2)
	$+ 0 + {4 \choose 3} {4 \choose 1} {1 \choose 1} + {5 \choose 2} {2 \choose 3} {3 \choose 1}$
	(can i use use both (3,5) use both (2,3) both (2,3) \neq (3,5) and (4,2) and (4,2)
	- 0 (can f use all 3)
	= 462 - 10.20 - 4.21 - 70.3 + 4.4.3 + 10.3.3