Feuille d'exercices 23. Algèbre linéaire

Exercice 23.1 : (niveau 1)

Résoudre le système ci-dessous, où $(a_1, \ldots, a_n) \in \mathbb{R}^n$ et où les inconnues sont $(x_0, \ldots, x_n) \in \mathbb{R}^{n+1}$, en utilisant des opérations élémentaires portant sur les lignes de la matrice globale du système.

$$\begin{cases} \forall i \in \{1, \dots, n\} & x_0 + x_i = a_i \\ x_0 + \dots + x_n & = 1 \end{cases}$$

Exercice 23.2 : (niveau 1)

Soit $\lambda \in \mathbb{C}$. Déterminer l'ensemble des solutions du système de dimension n suivant :

$$\begin{cases} x_1 & +\lambda x_2 & +\cdots & +\lambda^{n-1}x_n & = 1\\ \lambda x_1 & +x_2 & +\lambda x_3 & +\cdots & +\lambda^{n-2}x_n & = \lambda\\ \vdots & & & & \vdots\\ \lambda^k x_1 & +\cdots & +x_{k+1} & +\lambda x_{k+2} & +\cdots & +\lambda^{n-k-1}x_n & = \lambda^k\\ \vdots & & & & \vdots\\ \lambda^{n-1}x_1 & & +\cdots & +x_n & = \lambda^{n-1} \end{cases}$$

Exercice 23.3 : (niveau 1)

Soit E un \mathbb{K} -espace vectoriel de dimension finie n. Soient g et h deux endomorphismes de E.

- a) Montrez que $rg(g+h) \leq rg(g) + rg(h)$.
- b) Montrez qu'il y a égalité lorsque g + h est bijectif et gh = 0.

Exercice 23.4 : (niveau 1)

Soit $n \in \mathbb{N}^*$. E est l'ensemble des applications de \mathbb{R} dans \mathbb{C} qui sont de classe C^n , F est l'ensemble des applications polynômiales de \mathbb{R} dans \mathbb{C} de degré inférieur ou égal à n et $G = \{f \in E / \forall p \in \{0, ..., n\} \ f^{(p)}(0) = 0\}$.

- 1°) Montrer que F et G sont deux sous-espaces vectoriels supplémentaires dans E.
- 2°) Préciser ce qu'est la projection sur F parallèlement à G.

Exercice 23.5 : (niveau 1)

Soient u et v deux éléments de L(E).

- a) Montrez que si u et v commutent, $v(Imu) \subseteq Imu$ et $v(Keru) \subseteq Keru$.
- b) Montrez que la réciproque est vraie lorsque u et v sont des projecteurs.

Exercice 23.6 : (niveau 1)

n et p sont deux entiers tels que $n \ge p \ge 1$.

Soient A une matrice à coefficients réels à n lignes et p colonnes et B une matrice à coefficients réels à p lignes et n colonnes.

On suppose que AB est un projecteur de rang p.

- 1°) Calculez le rang de BA.
- 2°) Calculez BA.

Exercice 23.7 : (niveau 1)

Soient f et g deux endomorphismes d'un \mathbb{C} -espace vectoriel E.

On suppose que $f \circ g = Id_E$.

Montrer que $g \circ f$ est un projecteur et déterminer son noyau et son image.

Exercice 23.8 : (niveau 1)

Dans $E = \mathbb{R}[X]$, déterminer les éléments propres des endomorphismes f et g définis par : f(P(X)) = P(X+1) et g(P(X)) = P(-X).

Exercice 23.9 : (niveau 1)

On considère des suites de réels
$$(u_n)$$
, (v_n) et (w_n) telles que
$$\begin{cases} u_{n+1} &= -u_n + v_n + w_n \\ v_{n+1} &= u_n - v_n + w_n \\ w_{n+1} &= u_n + v_n - w_n \end{cases}$$

Déterminer les expressions de u_n, v_n et w_n en fonction de $n \in \mathbb{N}$ et de u_0, v_0 et w_0 .

Exercice 23.10 : (niveau 2)

Soit A une matrice carrée de taille 3 à coefficients réels. On suppose qu'il existe $p \in \mathbb{N}^*$ tel que $A^p = 0$ et $A^{p-1} \neq 0$. On note u l'endomorphisme canoniquement associé à cette matrice.

- **1**°) Soit $a \in \mathbb{R}^3$ tel que $u^{p-1}(a) \neq 0$. Montrer que la famille $(a, u(a), \dots, u^{p-1}(a))$ est libre.
- 2°) Que peut-on dire de p?
- **3°)** a) Déterminer lorsque $p \in \{1,3\}$ une matrice semblable à A dont tous les coefficients sont dans $\{0,1\}$.
- b) Montrer que lorsque p=2, la matrice A est semblable à $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

Exercice 23.11: (niveau 2)

On se place sur un corps de caractéristique différente de 2.

Soit A et B deux matrices de taille n telles que AB = -BA et $A^2 = B^2 = I_n$. Montrer que A et B sont semblables.

Exercice 23.12 : (niveau 2)

Soient p et q deux projecteurs d'un K-espace vectoriel E, tels que $p \circ q = 0$.

On note $r = p + q - q \circ p$.

Montrer que r est un projecteur. Déterminer le noyau et l'image de r.

Exercice 23.13 : (niveau 2)

- 1°) Soit E un \mathbb{K} -espace vectoriel de dimension finie n. Soient f et g deux endomorphismes de E tels que E = Im(f) + Im(g) = Ker(f) + Ker(g). Montrer que ces deux sommes sont directes.
- 2°) Ce résultat est-il encore vrai en dimension infinie?

Exercice 23.14 : (niveau 2)

Diagonaliser
$$A = \begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ 1 & 1 & & \mathbf{0} & \\ \vdots & & \ddots & & \\ \vdots & \mathbf{0} & & \ddots & \\ 1 & & & & 1 \end{pmatrix}$$
.

Exercice 23.15 : (niveau 2)

 1°) Soit n un entier naturel supérieur à 2.

Montrer que pour toute forme linéaire f de $\mathcal{M}_n(\mathbb{R})$, il existe une unique matrice A telle que pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$, f(M) = Tr(AM).

2°) Montrer que tout hyperplan de $\mathcal{M}_n(\mathbb{R})$ rencontre l'ensemble des matrices inversibles.

Exercice 23.16: (niveau 2)

On considère l'endomorphisme u de $\mathbb{R}[X]$ défini par u(P) = X(X-1)P' + (aX+b)P. Déterminer les éléments propres de u.

Indication : Utiliser les applications polynomiales et ramener le problème à la résolution d'une équation différentielle.

Exercice 23.17 : (niveau 2)

Calculer la limite en
$$+\infty$$
 de A^n où $A = \frac{1}{3} \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$.

Exercice 23.18: (niveau 2)

Soient E et F deux espaces vectoriels de dimensions finies et $f \in L(E, F)$. Notons $V = \{g \in L(F, E)/f \circ g \circ f = 0\}$.

- 1°) Montrer que $g \in V$ si et seulement si $g(Im(f)) \subset Ker(f)$.
- **2°)** On pose dim(E) = n, dim(F) = p et rg(f) = r.

Calculer la dimension de V en fonction de n, p et r.

Indication : on pourra utiliser des bases "adaptées" à Ker(f) et Im(f) et étudier la forme de la matrice des éléments de V dans ces bases.

Exercice 23.19: (niveau 3)

Soit $n \in \mathbb{N}$. Résoudre l'équation $M^n = \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$, en l'inconnue $M \in \mathcal{M}_2(\mathbb{C})$.

Exercice 23.20 : (niveau 3)

Soit $A \in \mathcal{M}_{\mathbb{R}}(3)$ telle que $A^2 = 0$ et $A \neq 0$. Montrer que A est semblable à

$$J = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$
 En déduire la dimension de $\{X \in \mathcal{M}_{\mathbb{R}}(3)/AX + XA = 0\}.$

Exercice 23.21 : (niveau 3)

Soit G un sous-groupe fini de $GL(n, \mathbb{R})$ de cardinal m.

- 1°) Montrer que $p = \frac{1}{m} \sum_{A \in G} A$ est un projecteur.
- **2**°) Montrer que dim $\left(\bigcap_{A \in G} Ker(A I_n)\right) = \frac{1}{m} \sum_{A \in G} Tr(A)$.

Exercice 23.22 : (niveau 3)

Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{C})$. On suppose que la suite $(A^p)_{p \in \mathbb{N}}$ est bornée.

Pour tout $p \in \mathbb{N}^*$, on pose $B_p = \frac{1}{p} \sum_{k=0}^{p-1} A^k$.

- 1°) Montrer que la suite $(B_p)_{p\in\mathbb{N}^*}$ admet une valeur d'adhérence, notée B.
- $\mathbf{2}^{\circ})$ Montrer que B(I-A)=0, où I désigne la matrice identité.
- 3°) En déduire que $B^2 = B$.
- $\mathbf{4}^{\circ}$) Montrer que B est le projecteur sur Ker(A-I) parallèlement à Im(A-I).
- **5**°) Montrer que la suite $(B_p)_{p \in \mathbb{N}^*}$ converge vers B.

Exercice 23.23 : (niveau 3)

On suppose que $\mathbb K$ est un corps de caractéristique nulle.

- 1°) On note D l'application de $\mathbb{K}[X]$ dans lui-même définie par : D(P) = P'. Exprimer deg(D(P)) en fonction de deg(P).
- **2°)** Montrer que les seuls sous-espaces non nuls stables par D de dimension finie sont les $\mathbb{K}_n[X]$.
- $3^\circ)~$ Quels sont les sous-espaces stables de dimension infinie ?
- $\mathbf{4}^{\circ})$ En déduire quels sont les sous-espaces stables de \mathbb{K}^n par l'endomorphisme cano-

niquement associé à la matrice $J = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}.$

Exercice 23.24 : (niveau 3)

Soit n un entier strictement positif.

On note \mathcal{E} l'ensemble des matrices $M = (m_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in \mathcal{M}_n(\mathbb{R})$ telles que,

- \diamond pour tout $(i,j) \in \{1,\ldots,n\}^2$, $m_{i,j} > 0$ et
- \Rightarrow pour tout $i \in \{1, ..., n\}, \sum_{i=1}^{n} m_{i,j} = 1.$
- 1°) Montrer que 1 est une valeur propre pour tout élément de \mathcal{E} .
- 2°) Montrer que le produit de deux matrices de \mathcal{E} est encore un élément de \mathcal{E} .
- **3°)** Montrer que les valeurs propres des éléments de \mathcal{E} sont toutes de module inférieur ou égal à 1.
- 4°) Pour tout élément de \mathcal{E} , montrer que 1 est la seule valeur propre de module 1.

Exercice 23.25 : (niveau 3)

Soient E un \mathbb{K} -espace vectoriel de dimension n $(n \in \mathbb{N}^*)$ et u un endomorphisme de E nilpotent, c'est-à-dire qu'il existe $k \in \mathbb{N}$ tel que $u^k = 0$.

Notons $p = \min\{k \in \mathbb{N}/u^k = 0\}.$

- 1°) Montrer que $(Ker(u^k))_{0 \le k \le p}$ est une suite strictement croissante de sous-espaces vectoriels de E. En déduire que $p \le n$.
- 2°) Trouver une base de E dans laquelle la matrice de u est triangulaire supérieure.
- 3°) Montrer qu'une matrice de $\mathcal{M}_n(\mathbb{K})$ est nilpotente si et seulement si elle est semblable à une matrice triangulaire supérieure dont les coefficients diagonaux sont tous nuls.
- **4**°) Posons $d_k = dim(Ker(u^k))$. Pour tout $k \in \mathbb{N}$ tel que $1 \le k \le p-1$, montrer que $d_{k+1} d_k \le d_k d_{k-1}$.

Exercice 23.26: (niveau 3)

Soit $M \in \mathcal{M}_n(\mathbb{C})$ une matrice de trace nulle.

- $\mathbf{1}^{\circ}$) Montrer que M est semblable à une matrice dont tous les coefficients diagonaux sont nuls.
- **2°)** Montrer qu'il existe $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$ tel que M = AB BA.

Exercice 23.27 : (niveau 3)

Décomposition LU:

Montrer qu'une matrice $M = (M_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$ se décompose sous la forme LU où L est triangulaire inférieure inversible et U est triangulaire supérieure inversible si et seulement si pour tout $k \in \{1, \ldots, n\}$, la matrice extraite $(M_{i,j})_{1 \leq i,j \leq k}$ est inversible. Dans ce cas, montrer que la décomposition LU est unique si on impose aux coefficients diagonaux de L d'être tous égaux à 1.

Exercices supplémentaires

Exercice 23.28: (niveau 1)

Dans \mathbb{C} et en utilisant l'algorithme du pivot de Gauss, déterminez le rang, la compatibilité, et les éventuelles solutions du système suivant :

$$\begin{cases} 2000x_1 & +0,003x_2 & -0,3x_3 & +40x_4 & = 5\\ 3000x_1 & +0,005x_2 & -0,4x_3 & +90x_4 & = 8\\ 500x_1 & +0,0007x_2 & -0,08x_3 & +8x_4 & = 1,3\\ 60000x_1 & +0,09x_2 & -9x_3 & +1300x_4 & = 190 \end{cases}.$$

Exercice 23.29 : (niveau 1)

Soit $a \in \mathbb{C}$: En utilisant l'algorithme du pivot de Gauss, déterminez le rang, la compatibilité et les éventuelles solutions du système suivant :

$$\begin{cases} x_1 & +x_2 & +ax_3 & = 2 \\ x_1 & +ax_2 & +x_3 & = -1 \\ ax_1 & +x_2 & +x_3 & = -1 \end{cases}.$$

Exercice 23.30 : (niveau 1)

Soit E un espace vectoriel de dimension finie et f appartenant à L(E).

Montrer qu'il existe un supplémentaire de Im(f) stable par f

si et seulement si $Im(f) \cap Ker(f) = \{0\}.$

Montrer alors que le seul supplémentaire de Im(f) stable par f est Ker(f).

Exercice 23.31 : (niveau 1)

Utilisez l'algorithme de pivot de Gauss pour résoudre dans $\mathbb C$ le système suivant :

$$\begin{cases} 3x_1 & +4x_2 & -5x_3 & +7x_4 & = 0 \\ 2x_1 & -3x_2 & +3x_3 & -2x_4 & = 0 \\ 4x_1 & +11x_2 & -13x_3 & +16x_4 & = 0 \\ 7x_1 & -2x_2 & +x_3 & +3x_4 & = 0 \end{cases}$$

Exercice 23.32 : (niveau 1)

Dans \mathbb{C} , en utilisant l'algorithme de pivot de Gauss, déterminez le rang, la compatibilité et les éventuelles solutions du système suivant :

$$\begin{cases} 2x_1 & +x_2 & -x_3 & +x_4 & = 1 \\ 3x_1 & -2x_2 & +2x_3 & -3x_4 & = 2 \\ 5x_1 & +x_2 & -x_3 & +2x_4 & = -1 \\ 2x_1 & -x_2 & +x_3 & -3x_4 & = 4 \end{cases}$$

Exercice 23.33 : (niveau 1)

Dans \mathbb{C} , en utilisant l'algorithme de Gauss-Jordan, déterminez le rang, la compatibilité et les éventuelles solutions du système suivant :

$$\begin{cases} x_1 & +2x_2 & +3x_3 & +4x_4 & = -2 \\ 7x_1 & +14x_2 & +20x_3 & +27x_4 & = -13 \\ 5x_1 & +10x_2 & +16x_3 & +19x_4 & = -11 \\ 3x_1 & +5x_2 & +6x_3 & +13x_4 & = -3 \end{cases}$$

Exercice 23.34 : (niveau 2)

Soient
$$a_1, ..., a_n$$
 n réels. On pose $M = \begin{pmatrix} a_1 & \cdots & a_1 \\ \vdots & a_2 & \cdots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_n \end{pmatrix} \in M_n(\mathbb{R})$. Donnez une

condition nécessaire et suffisante pour que M soit inversible et, dans ce cas, calculez son inverse.

Exercice 23.35 : (niveau 2)

Soit E un espace vectoriel de dimension finie $n \geq 1$.

On considère f et g dans $\mathcal{L}(E)$ tels que $f + g = Id_E$ et $rg(f) + rg(g) \leq n$.

- $\mathbf{1}^{\circ}$) Montrer que rg(f) + rg(g) = n.
- 2°) Montrer que $E = Im(f) \oplus Im(g)$, puis que f et g sont des projecteurs.

Exercice 23.36 : (niveau 2)

Soient $n \in \mathbb{N}^*$ et $p \in \{1, \dots, n\}$.

Montrer qu'il existe une base de $\mathcal{M}_n(\mathbb{K})$ formée de matrices de rang p.

Indication : on pourra commencer par montrer que toute matrice de rang 1 est la somme de deux matrices de rang p.

Exercice 23.37 : (niveau 2)

Exercice 23.38 : (niveau 2)

Soit $(a_1,\ldots,a_n)\in\mathbb{C}^n$. A quelle condition les matrices M et A sont-elles semblables

$$\text{où } M = \begin{pmatrix}
 a_1 & a_2 & \cdots & \cdots & a_n \\
 0 & a_1 & \ddots & & \vdots \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 \vdots & & \ddots & \ddots & a_2 \\
 0 & \cdots & \cdots & 0 & a_1
 \end{pmatrix} \text{ et } A = \begin{pmatrix}
 1 & 0 & \cdots & 0 & 1 \\
 0 & 1 & \ddots & & 0 \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 \vdots & & \ddots & \ddots & \ddots & 0 \\
 0 & \cdots & \cdots & 0 & 1
 \end{pmatrix}$$

Exercice 23.39 : (niveau 2)

Soit E un \mathbb{K} -espace vectoriel avec dim(E) = 3n où n > 0.

Soit u un endomorphisme de E tel que rq(u) = 2n et $u^3 = 0$.

- $\mathbf{1}^{\circ}$) En utilisant la restriction de u à Im(u), montrer que Ker(u) est inclus dans Im(u).
- $\mathbf{2}^{\circ}$) Soit F un supplémentaire de Ker(u) dans Im(u). Montrer que u induit un isomorphisme de F dans Ker(u).

Exercice 23.40 : (niveau 2)

Soient n un entier supérieur ou égal à 2 et $(a, b) \in \mathbb{R}^2$ tel que $a \neq b$.

Montrer qu'il existe une unique forme linéaire φ sur $\mathbb{R}_n[X]$ telle que

$$\varphi(1) = 1, \ \varphi(X) = 0 \text{ et, pour tout } P \in \mathbb{R}_n[X], \ \begin{cases} P(a) &= 0 \\ P(b) &= 0 \end{cases} \Longrightarrow \varphi(P) = 0.$$

Déterminer φ .

Exercice 23.41 : (niveau 2)

On pose
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix}$$
.

Déterminer des matrices $B \in \mathcal{M}_{\mathbb{R}}(3,2)$ et $C \in \mathcal{M}_{\mathbb{R}}(2,3)$ telles que A = BC.

Exercice 23.42 : (niveau 2)

Pour $n \geq 2$, on note $E = \mathcal{M}_n(\mathbb{R})$.

On note F le sous-espace vectoriel de E constitué des matrices telles que la somme des éléments de chaque ligne est nulle. On note S l'ensemble des matrices symétriques de E.

- $\mathbf{1}^{\circ}$) Montrer que dim(F) = n(n-1).
- $\mathbf{2}^{\circ})$ En notant $(E_{i,j})$ la base canonique de E, montrer que

$$M = (m_{i,j}) \in F \cap S \Longrightarrow M = \sum_{i=1}^{n} m_{i,i} E_{i,i} + \sum_{1 \leq i < j \leq n} m_{i,j} (E_{i,j} + E_{j,i})$$
$$= \sum_{1 \leq i < j \leq n} m_{i,j} (E_{i,j} + E_{j,i} - E_{i,i} - E_{j,j})$$

3°) Calculer $dim(F \cap S)$.

Exercice 23.43 : (niveau 2)

On se place dans un K-espace vectoriel E (où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Soient p_1 et p_2 deux projecteurs. On note $q = p_1 + p_2$ et $r = p_1 - p_2$.

- $\mathbf{1}^{\circ}$) a) Montrer que q est un projecteur si et seulement si $p_1 \circ p_2 = p_2 \circ p_1 = 0$.
- b) On suppose que q est un projecteur. Montrer les égalités suivantes :

$$Ker(q) = Ker(p_1) \cap Ker(p_2)$$
 et $Im(q) = Im(p_1) \oplus Im(p_2)$.

2°) a) Montrer que r est un projecteur si et seulement si $(Id_E - p_1) \circ p_2 = p_2 \circ (Id_E - p_1) = 0$.

b) On suppose que r est un projecteur. Montrer les égalités suivantes :

$$Ker(r) = Ker(p_1) \oplus Im(p_2)$$
 et $Im(r) = Im(p_1) \cap Ker(p_2)$.

Exercice 23.44 : (niveau 2)

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$. On note φ l'application de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$ qui à X associe AXA.

- 1°) Lorsque A est la matrice par blocs $A = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, quel est le rang de φ .
- 2°) Quel est le rang de φ lorsque A est une matrice quelconque?

Exercice 23.45 : (niveau 3)

Soient E un \mathbb{R} -espace vectoriel de dimension finie et F un sous-espace vectoriel de E, distinct de E et de $\{0\}$.

Montrer que F admet une infinité de supplémentaires.

Exercice 23.46 : (niveau 3)

Soit E un \mathbb{K} -espace vectoriel de dimension finie n.

- 1°) Si F et G sont deux sous-espaces vectoriels de E différents de E, montrer que $F \cup G \neq E$ (Indication : on pourra raisonner par l'absurde).
- **2°)** Soient F et G deux sous-espaces vectoriels de E de même dimension. Montrer qu'il existe H, sous-espace vectoriel de E, tel que $F \oplus H = G \oplus H = E$. (Indication : on pourra faire une récurrence descendante sur dim(F)).

Exercice 23.47 : (niveau 3)

Soit $n \in \mathbb{N}$.

1°) On pose $E_0 = 1$, et, pour tout $i \in \mathbb{N}_n$, on note $E_i = \frac{1}{i!} \prod_{k=0}^{i-1} (X - k)$.

Montrer que $(E_i)_{0 \le i \le n}$ est une base de $\mathbb{R}_n[X]$.

Déterminer sa base duale à l'aide de l'application

$$\Delta_n: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$$
 $P \longmapsto P(X+1) - P(X)$

2°) Soit Q un polynôme de degré n prenant des valeurs entières pour n+1 entiers consécutifs. Montrer que $Q(\mathbb{Z}) \subset \mathbb{Z}$.

Exercice 23.48 : (niveau 3)

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $(f,g) \in L(E)^2$.

- 1°) Montrer que $rg(f+g) \le rg(f) + rg(g)$.
- **2°)** Montrer que rg(f+g)=rg(f)+rg(g) si et seulement si $Im(f)\cap Im(g)=\{0\}$ et E=Ker(f)+Ker(g).

Exercice 23.49 : (niveau 3)

Soit n un entier supérieur ou égal à 2. On note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées de taille n à coefficients réels et l'on considère un hyperplan H de $\mathcal{M}_n(\mathbb{R})$.

- 1°) Pour tout $M \in \mathcal{M}_n(\mathbb{R})$, on note Tr(M) la trace de M. On désigne par H_0 le noyau de l'application Tr. Déterminer la dimension de H_0 .
- **2°)** Montrer qu'il existe $B \in \mathcal{M}_n(\mathbb{R}) \setminus \{0\}$ telle que, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, $M \in \mathcal{H} \iff Tr(M^tB) = 0$ (où Tr désigne la trace).
- 3°) On note r le rang de B. On note J_r la matrice de $\mathcal{M}_n(\mathbb{R})$ dont les r premiers coefficients diagonaux sont égaux à 1 et dont tous les autres coefficients sont nuls. Pour tout $M \in \mathcal{M}_n(\mathbb{R})$, montrer qu'il existe une matrice $\widetilde{M} \in \mathcal{M}_n(\mathbb{R})$ de même rang que M et telle que $Tr(M^tB) = Tr(\widetilde{M}J_r)$.
- **4**°) En déduire que, pour tout $p \in \{0, ..., n\}$, tout hyperplan de $\mathcal{M}_n(\mathbb{R})$ contient au moins une matrice de rang p.

Exercice 23.50 : (niveau 3)

Soit E un ensemble de n éléments noté $E = \{a_1, \ldots, a_n\}$.

Soient m un entier supérieur ou égal à 2, $(A_i)_{1 \leq i \leq m}$ une famille de parties de E, deux à deux distinctes, et $a \in \mathbb{N}^*$ tels que

$$\forall (i,j) \in \mathbb{N}_m \ [i \neq j \Longrightarrow Card(A_i \cap A_j) = a],$$

où $\mathbb{N}_m = \{1, \dots, m\}$. Le but de l'exercice est de montrer que $m \leq n$.

1°) Considérons la matrice $M = (a_{i,j}) \in \mathcal{M}_{m,n}(\mathbb{R})$, où, pour tout $(i,j) \in \mathbb{N}_m \times \mathbb{N}_n$, $a_{i,j} = 1$ si $a_j \in A_i$ et $a_{i,j} = 0$ si $a_j \notin A_i$. De plus, pour tout $i \in \mathbb{N}_m$, on pose $d_i = Card(A_i)$. Calculer $M \times^t M$ en fonction de a et de d_1, \ldots, d_m .

On fixe
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} \in \mathbb{R}^m$$
 tel que $M \times^t MX = 0$ et on note $S = \sum_{i=1}^m x_i$.

- **2**°) Supposons qu'il existe $i_0 \in \mathbb{N}_m$ tel que $a = d_{i_0}$. Montrer que S = 0, puis que X = 0.
- **3°)** Supposons que pour tout $i \in \mathbb{N}_m$, $a \neq d_i$. Montrer que S = 0, puis que X = 0.
- **4**°) Conclure.

Exercice 23.51 : (niveau 3)

Soit E un \mathbb{C} -espace vectoriel de dimension $n \geq 2$ muni d'une base $e = (e_1, \ldots, e_n)$. On note S_n l'ensemble des bijections de $\{1, \ldots, n\}$ dans lui-même, et pour tout $\sigma \in S_n$, on note f_{σ} l'unique endomorphisme de E tel que, pour tout $i \in \{1, \ldots, n\}$, $f_{\sigma}(e_i) = e_{\sigma(i)}$.

1°) Déterminer les coefficients de la matrice de f_{σ} dans la base e, ainsi que son déterminant.

2°) Si $\sigma, \sigma' \in \mathcal{S}_n$, montrer que $f_{\sigma \circ \sigma'} = f_{\sigma} \circ f_{\sigma'}$.

On note $s = \sum_{i=1}^{n} e_i$, D = Vect(s) et H l'hyperplan d'équation dans $e : \sum_{i=1}^{n} x_i = 0$. On note \mathcal{F} l'ensemble des sous-espaces vectoriels F de E tels que, pour tout $\sigma \in \mathcal{S}_n$,

 $f_{\sigma}(F) \subset F$.

- 3°) Montrer que D et H sont deux éléments de \mathcal{F} .
- **4**°) Montrer que $p = \frac{1}{n!} \sum_{\sigma \in \mathcal{S}_n} f_{\sigma}$ est le projecteur sur D parallèlement à H.
- **5°)** Pour tout $F \in \mathcal{F}$, montrer que si $F \not\subset D$ alors $H \subset F$.
- 6°) En déduire \mathcal{F} .

Exercice 23.52 : (niveau 3

Diagonaliser la matrice $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$

Exercice 23.53: (niveau 3)

Soit $n \in \mathbb{N}^*$. On choisit n parties parmi $\{1,\ldots,n\}$, deux à deux distinctes, qui ont toutes le même cardinal a et dont les intersections deux à deux sont toutes de cardinal b. Montrer que $a^2 - a = (n-1)b$.