Seconda esercitazione Data Analytics

Filippo Piccotto filippo.piccotto@phd.units.it

04/04/2024

- 1. Crea una function che calcola i primi n numeri di Fibonacci;
 - a. Aggiungi all'output un vettore che contiene i rapporti tra l'i-esimo numero ed il precedente.
- 2. Crea un vettore x composto da 20 valori estratti in maniera casuale. Poi, costruisci il vettore \tilde{x} , le cui componenti sono definite come segue:

$$\tilde{x}_i = \begin{cases} x_i & \text{se } x_i > \overline{x} \\ \overline{x} & \text{se } x_i \le \overline{x}, \end{cases} \tag{1}$$

dove con \overline{x} si indica la media aritmetica dei valori di x.

3. Sia data la seguente funzione:

$$f(x) = \begin{cases} x^2 - 1 & \text{se } x < 0 \\ x^3 - 1 & \text{se } x \ge 0. \end{cases}$$
 (2)

Definisci una function che abbia come output un valore x e che ritorni il corrispondente valore f(x).

4. Considera il dataframe Rabbits.csv disponibile su Moodle. Dopo averlo importato, modificalo in modo da ottenere una struttura come la seguente: Successivamente, parti dal dataset modificato e "ritorna" all'originale.

	Treatment	Dose	variable	value
1	Control	6.25	R1	0.50
2	Control	12.50	R1	4.50
3	Control	25.00	R1	10.00
4	Control	50.00	R1	26.00
5	Control	100.00	R1	37.00
6	Control	200.00	R1	32.00
7	MDL	6.25	R1	1.25
8	MDL	12.50	R1	0.75
9	MDL	25.00	R1	4.00
10	MDL	50.00	R1	9.00
11	MDL	100.00	R1	25.00
12	MDL	200.00	R1	37.00

(Suggerimento: per la prima parte la funzione da considerare è melt(), per la seconda parte usa la funzione unstack().

- 5. Con riferimento al dataframe iris reperibile direttamente su R:
 - a. Crea un sotto-dataframe iris2 composto solo da 15 righe estratte casualmente;
 - b. Nel dataframe iris2 trasforma la variabile Sepal.Length in un fattore con 5 classi;
 - c. Costruisci le tabelle di frequenza (assoluta e relativa) per le variabili qualitative presenti nel dataframe iris2;
 - d. Ripeti il procedimento fatto ai punti b. e c. considerando il dataframe originario;
 - e. Come si potrebbe creare iris3 considerando, dai dati originari, solo le informazioni relative alla specie setosa?