

MT7687F DATASHEET

Version: 1.06

Release date: 23 May 2017

© 2015 - 2017 MediaTek Inc.

This document contains information that is proprietary to MediaTek Inc. ("MediaTek") and/or its licensor(s). MediaTek cannot grant you permission for any material that is owned by third parties. You may only use or reproduce this document if you have agreed to and been bound by the applicable license agreement with MediaTek ("License Agreement") and been granted explicit permission within the License Agreement ("Permitted User"). If you are not a Permitted User, please cease any access or use of this document immediately. Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited. THIS DOCUMENT IS PROVIDED ON AN "AS-IS" BASIS ONLY. MEDIATEK EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF ANY KIND AND SHALL IN NO EVENT BE LIABLE FOR ANY CLAIMS RELATING TO OR ARISING OUT OF THIS DOCUMENT OR ANY USE OR INABILITY TO USE THEREOF. Specifications contained herein are subject to change without notice.

Document Revision History

Revision	Date	Description
1.00	12 January 2016	Initial version.
1.01	10 May 2016	 Modify section 1.2.3 for adding SIP flash information. Modify table 4.2 for wider temperature specification. Modify table 5.8 for wider temperature specification.
1.02	04 November 2016	Add the power performance summary.
1.03	8 December 2016	 Add SPI Slave description. Update Auxilliary ADC specifications of Table 4-6
1.04	5 April 2017	1. Update GPIO description.
1.05	5 May 2017	 Remove SPI-M DMA description. Updated Clock Generation Block Diagram.
1.06	23 May 2017	 Remove XTAL note in Boot Strap Test Mode of Chip Mode. Updated Power States for CM4 Subsystem Wake-up time table. Update I2S for Stereo & 44.1KHz/48KHz.

Table of Contents

Docu	ıment	Revision	History	2
Table	e of Co	ontents		3
List o	_			
1	•		/iew	
	1.1		l Description	
	1.2	Feature	25	
		1.2.1	Technology and package	9
		1.2.2	Power management and clock source	9
		1.2.3	Platform	9
		1.2.4	WLAN	10
		1.2.5	Miscellaneous	10
	1.3	Applicat	tions	10
	1.4	Block Di	iagram	10
2	Func	tional De	escription	12
	2.1	Overvie	2W	12
	2.2	Power N	Management Unit	12
		2.2.1	PMU Architecture	12
		2.2.2	Chip Power Plan	13
		2.2.3	Digital Power Domain and Power States	13
	2.3	Clock ar	nd Reset Generation	17
		2.3.1	Clock	17
		2.3.2	Reset	20
	2.4	Applicat	tion Processor Subsystem	20
		2.4.1	CPU	20
		2.4.2	Cache and Tightly Coupled Memory	21
		2.4.3	Bus Fabric	22
		2.4.4	Serial Flash Controller	23
		2.4.5	DMA	23
		2.4.6	General Purpose Timer	25

		2.4.7	Watchdog Timer	. 26
		2.4.8	Efuse	. 27
		2.4.9	Interrupt Controller	.27
		2.4.10	Power-on Sequence	.30
		2.4.11	Memory Map	.33
		2.4.12	SYSRAM_CM4	.38
		2.4.13	Crypto engine	.38
	2.5	Periphera	als	.38
		2.5.1	GPIO Interface	.38
		2.5.2	UART Interface	.42
		2.5.3	I2C Serial Interface	.42
		2.5.4	Auxiliary ADC function	.42
		2.5.5	SPI Master Interface	.44
		2.5.6	SPI Slave Interface	.45
		2.5.7	I2S Interface	.46
		2.5.8	Pulse Width Modulation (PWM)	.48
		2.5.9	IrDA	.49
	2.6	Radio MC	CU Subsystem	.49
		2.6.1	CPU	.49
		2.6.2	RAM/ROM	.49
		2.6.3	Memory map	.49
		2.6.4	N9 Bus Fabric	.52
		2.6.5	CIRQ	.53
	2.7	Wi-Fi Sub	osystem	.55
		2.7.1	Wi-Fi MAC	.55
		2.7.2	WLAN Baseband	.55
		2.7.3	WLAN RF	.55
	2.8	RTC		.55
3	Radio	Characte	eristics	.57
	3.1	Wi-Fi Rac	lio Characteristics	.57
		3.1.1	Wi-Fi RF Block Diagram	.57
		3.1.2	Wi-Fi 2.4GHz Band RF Receiver Specifications	.57

		5.1.5	WI-FI 2.40HZ Ballu KF Transmitter Specifications	59
4	Elect	rical Chara	acteristics	61
	4.1	Absolute	Maximum Rating	61
	4.2	Recomme	nended Operating Range	61
	4.3	DC Chara	acteristics	61
	4.4	XTAL Osc	cillator	62
	4.5	PMU Cha	aracteristics	62
	4.6	Auxiliary	ADC Characteristics	63
	4.7	Thermal (Characteristics	65
	4.8	Power Pe	erformance Summary	65
5	Pack	age Specifi	fications	67
	5.1	Pin Layou	ut	67
	5.2	Pin Descr	ription	68
	5.3	Pin Multi	iplexing	70
	5.4	Bootstrap	p	75
	5.5	Package i	information	77
	5.6	Ordering	g information	77
	5.7	Top Mark	king	78

List of Tables

Table 2-1. MTCMOS Power Domain	13
Table 2-2. Power States for CM4 Subsystem	14
Table 2-3. Power States for N9 Subsystem	15
Table 2-4. Power State Transition Scenarios for N9	16
Table 2-5. Power State Transition Scenarios for CM4	16
Table 2-6. Cortex-M4 Clock Rate	18
Table 2-7. N9 Clock Rate	18
Table 2-8. Peripheral Clock Rate	18
Table 2-9. TCM and Cache Configuration	21
Table 2-10. Flash Controller Support Read Mode	23
Table 2-11. DMA Use for Hardware Functions	24
Table 2-12. General Purpose Timer Types	26
Table 2-13. CM4 NVIC Interrupt Source	27
Table 2-14. CM4 External Interrupt De-Bounce Period	29
Table 2-15. CM4 Memory Map	34
Table 2-16. Functional Description of AGPIO	41
Table 2-17. SPI Pin Description	44
Table 2-18. I2S Pin Description	47
Table 2-19. I2S Slave Mode	47
Table 2-20. I2S Data Format	47
Table 2-21. PWM Modes	48
Table 2-22. N9 Memory Map	49
Table 3-1. 2.4GHz RF Receiver Specification	57
Table 3-2. 2.4GHz RF Transmitter Specifications	59
Table 4-1 Absolute Maximum Rating	61
Table 4-2. Recommended Operating Range	61
Table 4-3. DC Characteristics	61
Table 4-4. XTAL Oscillator Requirements	62

Table 4-5. PMU Electrical Characteristics	62
Table 4-6. Auxiliary ADC Specifications	63
Table 4-7. Thermal Characteristics	65
Table 4-8. Current consumption in different scenarios	65
Table 5-1. Pin Map	67
Table 5-2. Pin Descriptions	68
Table 5-3. Pin Multiplexing	70
Table 5-4. Bootstrap Option– Flash Access Mode	75
Table 5-5. Bootstrap Option – XTAL Clock Mode	76
Table 5-6. Bootstrap Option – 32KHz Clock Mode	76
Table 5-7. Bootstrap Option — Chip Mode	76
Table 5-8. Ordering Information	77
Figure 1-1. System-on-Chip Block Diagram	11
Figure 2-1. Chip Power Block Diagram	
Figure 2-2. MT7687F Power State	14
Figure 2-3. Clock Generation Block Diagram	17
Figure 2-4. Clock Domains in N9 and CM4 Peripherals	19
Figure 2-5. Reset Structure	20
Figure 2-6. CM4 Subsystem – Bus Fabric	22
Figure 2-7. Virtual FIFO Concept	24
Figure 2-8. PMU Power-on Sequence	30
Figure 2-9. WDT Structure	32
Figure 2-10. Sleep/Wakeup Sequence	32
Figure 2-11. AGPIO/GPIO Block Diagram (Left: AGPIO; Right: GPIO)	39
Figure 2-12. AGPIO Configured as Output Multiplexing	40
Figure 2-13. AGPIO Configured as Input Multiplexing	41
Figure 2-14. AGPIO Configured as Input, Output, or Analog Mode	42

Figure 2-15. Auxiliary ADC Block Diagram (Analog Part)	43
Figure 2-16. Auxiliary ADC Block Diagram	43
Figure 2-17. Auxiliary ADC Clock Timing Diagram	44
Figure 2-18. SPI Timing Diagram	45
Figure 2-19. SPI Slave Block Diagram	46
Figure 2-20. I2S Signal Waveform	48
Figure 2-21. N9 Bus Fabric	52
Figure 2-22. N9 interrupt controller	53
Figure 3-1. 2.4GHz RF Block Diagram	57
Figure 5-1. Package Outline Drawing	77
Figure 5-2 Ton Marking	72

1 System Overview

1.1 General Description

MT7687F is a highly integrated single chip which features an application processor, a low power 1x1 11n single-band Wi-Fi subsystem, and a Power Management Unit. The application processor subsystem contains an ARM Cortex-M4 with floating point MCU. It also includes many peripherals, including UART, I2C, SPI, I2S, PWM, IrDA, and auxiliary ADC. It also includes embedded SRAM/ROM and a 2MB serial flash in package .

The Wi-Fi subsystem contains the 802.11b/g/n radio, baseband, and MAC that are designed to meet both the low power and high throughput application. It also contains a 32-bit RISC CPU that could fully offload the application processor.

1.2 Features

1.2.1 Technology and package

8mm x 8mm 68-pin QFN package.

1.2.2 Power management and clock source

- Integrate high efficiency power management unit with single 3.3V power supply input
- 40/26/52MHz source crystal clock support with low power operation in idle mode

1.2.3 Platform

- ARM Cortex-M4 MCU with FPU with up to 192MHz clock speed
- Embedded 352KB SRAM and 64KB boot ROM
- 2MB Quad Peripheral Interface (QPI) mode SIP serial Flash. Can also suppport external serial flash up to 16MB
- Supports eXecute In Place (XIP) on flash
- 32KB cache in XIP mode
- Hardware crypto engines including AES, DES/3DES, SHA2 for network security
- 28 General Purpose IOs multiplexed with other interfaces
- Two UART interfaces with hardware flow control and one UART for debug, all multiplexed with GPIO
- One SPI master interface multiplexed with GPIO
- One SPI slave interface multiplexed with GPIO
- Two I2C master interface multiplexed with GPIO
- One I2S interface multiplexed with GPIO
- Four channel 12-bit ADC multiplexed with GPIO
- 28 PWM multiplexed with GPIO
- 25 channels DMA

Low power RTC mode with 32KHz crystal support

1.2.4 WLAN

- Dedicated high-performance 32-bit RISC CPU N9 up to 160MHz clock speed
- IEEE 802.11 b/g/n compliant
- Supports 20MHz, 40MHz bandwidth in 2.4GHz band
- Dual-band 1T1R mode with data rate up to 150Mbps
- Supports STBC, LDPC
- Greenfield, mixed mode, legacy modes support
- IEEE 802.11e support
- Security support for WFA WPA/WPA2 personal, WPS2.0
- Supports 802.11w protected managed frames
- QoS support of WFA WMM
- Integrated LNA, PA, and T/R switch
- Optional external LNA and PA support.
- RX diversity support with additional RX input

1.2.5 Miscellaneous

Integrates 4Kbit efuse to store device specific information and RF calibration data.

1.3 Applications

MT7687F is designed for Internet-of-Things based on the Mediatek's low power technology and Wi-Fi design.

1.4 Block Diagram

Figure 1-1. System-on-Chip Block Diagram

2 Functional Description

2.1 Overview

2.2 Power Management Unit

A single regulated 3.3V power supply is required for the MT7687F. It could be from DC-DC converter to convert higher voltage supply to 3.3V or boost from a lower voltage supply to 3.3V.

The Power Management Unit (PMU) contains Under-Voltage Lockout (UVLO) circuit, several Low Drop-out Regulators (LDOs), a highly efficient buck converter, and a reference band-gap circuit. The circuits are optimized for low quiescent current, low drop-out voltage, efficient line/load regulation, high ripple rejection, and low output noise.

Figure 2-1. Chip Power Block Diagram

2.2.1 PMU Architecture

The PMU integrates 5 LDOs and one buck converter.

The four LDOs are CLDO, ALDO, high-voltage SLDO (SLDO-H) and low-voltage SLDO (SLDO-L). SLDO stands for sleep mode LDO, and CLDO stands for digital core LDO. The buck converter converts 1.6~1.8V output to other subsystems in MT7687F. It can be operated in PFM mode or PWM mode. Through an external on-board LC filter (2.2uH inductor and 10uF cap), it outputs a low ripple 1.6~1.8V to Wi-Fi RF system, and CLDO. CLDO is under BUCK domain, and then it outputs 1.15V for whole chip digital logics used. ALDO is also from 3.3V chip supply input and generates 2.5V for the auxiliary ADC. The two SLDOs have 1.8V and 0.85V output voltage respectively. They are used to keep BUCK and CLDO output voltage while MT7687F is in sleep mode to reduce current consumption.

Once MT7687F goes into deep sleep mode, BUCK, ALDO, and CLDO can be shut down. BUCK output voltage will be kept by SLDO-H, and CLDO output will be kept by SLDO-L.

PMU also integrated the ELDO (Efuse LDO). It provides 2.5V output voltage to the internal Efuse macro in programming mode.

2.2.2 Chip Power Plan

The 3.3V power source is directly supplied to the switching regulator, digital I/Os, and RF-related circuit. It is converted to 2.5V by the LDO for ADC analog circuit. It is converted to 1.6V by the buck converter for low voltage circuits. The built-in digital LDOs and RF LDOs converts 1.6V to 1.15V for digital, RF, and BBPLL core circuits.

2.2.3 Digital Power Domain and Power States

The digital circuit is separated into five power domains. They are TOP_AON, TOP_OFF(N9), WF_OFF and CM4_SYS. Except TOP_AON, each power domain can be turned on and off individually.

Table 2-1. MTCMOS Power Domain

Domain	Description	Circuit Included	OFF Condition
TOP_AON	Always-on power domain, which keeps the minimum circuit powered to wake up from the sleep mode upon receiving a wake-up event.	It includes: Chip level configuration register. Sleep mode controller; External interrupt controller; Part of the Wi-Fi MAC that handles the beacon filtering. Sustain and backup memory that stores the RAM code and the register values that need to be kept during sleep mode.	N/A
TOP_OFF(N9)	The power domain can be power gated in Wi-Fi power save mode.	The whole N9 subsystem, N9 peripherals, and part of the Wi-Fi MAC circuit are included.	N9 is in sleep mode and no DMA functions are enabled.

Domain	Description	Circuit Included	OFF Condition
WF_OFF	The power domain can be power gated when Wi-Fi is not used and in Wi-Fi power save mode.	The whole Wi-Fi baseband and part of the MAC subsystem are included.	Wi-Fi is disabled. N9 is in standby mode or in sleep mode.
CM4_OFF	The power domain is not powered gated when Cortex-M4 is used.	The whole Cortex-M4 subsystem and Cortex-M4 peripherals are included.	N/A

The MT7687F power state diagram is illustrated below. There are two sleep mode controllers, controlled by N9 and CM4, respectively.

The N9 power state and CM4 power state operates independently. When both enter the sleep mode, the XTAL and PMU can be changed to the low power mode to further lower the current consumption.

Figure 2-2. MT7687F Power State

Table 2-2. Power States for CM4 Subsystem

MCU mode	Description	Wake-up time	Power
CM4 active	MCU executing code at PLL clock	n/a	
CM4	MCU subsystem clocks are gated off and the state of the entire	100 ns	

© 2017 MediaTek Inc.

Page 14 of 78

MCU mode	Description	Wake-up time	Power
standby	subsystem is retained. PLL is off.	(HCLK comes from XTAL)	
CM4 sleep	MCU subsystem clocks are gated off and the state of the entire subsystem is retained. Only 32KHz clock from XTAL is active. MCU is configured to wake up on the expiry of the internal timer and external wake-up events.	850 us	1mA
PMU sleep	CM4_OFF is power gated. XTAL and PMU operate in low power mode. MCU is configured to wake up on the expiry of the internal timer and external wake-up events.	5.2 ms	0.3mA

Table 2-3. Power States for N9 Subsystem

MCU mode	Description	Wake-up time	Power
N9 active	MCU executing code at PLL clock.	n/a	
MCU idle	MCU clock is gated off, while MCU subsystem clocks are on to maintain the operation of Wi-Fi function, like listening to beacon. PLL is on.	800 ns	
N9 standby	MCU subsystem clocks are gated off and the state of the entire subsystem is retained. PLL is off.	100 ns (HCLK comes from XTAL)	
N9 sleep	MCU subsystem clocks are gated off and the state of the entire subsystem is retained. Only 32KHz clock from XTAL is active. MCU is configured to wake up on the expiry of the internal timer, external wake-up events, or the wake-up events from Wi-Fi radio or Bluetooth ratio.	1.2 ms	1mA
PMU sleep	TOP_OFF (N9) and WF_OFF are power gated. XTAL and PMU operate in low power mode. The state information is retained in back-up buffer (sleep-mode memory) and can be restored when	5.2 ms	0.3mA

MCU mode	Description	Wake-up time	Power
	wake-up. MCU is configured to wake up on the expiry of the internal timer, external wake-up events, or the wake-up events from Wi-Fi radio or Bluetooth ratio.		

^{*}XTAL: 40 MHz

The typical scenarios which N9 operates in and the power state transition are summarized in the following table.

Table 2-4. Power State Transition Scenarios for N9

Scenario	Description	State transition
1	All functions are idle and the N9 firmware triggers to enter the sleep mode.	Active → Standby → Sleep
2	Wi-Fi DTIM timer is expired and the hardware wakes up to listen to beacon and then goes to sleep again when It is not necessary to wake up N9 to process the data.	Sleep → MCU idle (Wi-Fi ON) → sleep
3	Wi-Fi DTIM timer is expired and the hardware wakes up to listen to beacon and then wake up N9 to process the data.	Sleep → MCU idle (Wi-Fi ON) → Active

The typical scenarios which CM4 operates in and the power state transition are summarized in the following table.

Table 2-5. Power State Transition Scenarios for CM4

Scenario	Description	State transition
1	All functions are idle and the CM4 firmware triggers to enter the sleep mode.	Active → Standby → Sleep
2	The wake-up event (wake-up event from N9 or other sources) triggers CM4 to wake up.	Sleep → Standby → Active

2.3 Clock and Reset Generation

2.3.1 Clock

MT7687F connects to the XTAL or external clock source as the single clock source of the whole system. The XTAL oscillator can support the XTAL frequencies from among 40, 26, and 52MHz.

Figure 2-3. Clock Generation Block Diagram

- PLL1 is used to generate the clock sources for PLL2.
- PLL2 is used to generate the clock sources for Wi-Fi, N9 core, Cortex-M4 core, and bus fabric.
- XPLL is used to generate the clock sources for I2S (for external audio CODEC).

The options of clock rate for MCU are listed below.

Table 2-6. Cortex-M4 Clock Rate

Reference Clock (MHz, XTAL m		MCU Clock (MHz, PLL mode)	
40	40		
26	26	30, 32, 40, 48, 60, 80, 96, 120, 160, 192.	
52	52	30, 120, 100, 132.	

Table 2-7. N9 Clock Rate

Reference Clock (MHz)	MCU Clock (MHz, XTAL mode)	MCU Clock (MHz, PLL mode)
40	40	
26	26	30, 32, 40, 48, 60, 80,
52	52	96, 120, 160, 192.

Table 2-8. Peripheral Clock Rate

	Peripheral Clock Rate	Support SPEC
PWM	XTAL clock with DIV13 (Default)	200Hz at minimum.
	XTAL clock	
	F32K clock	
UART	XTAL clock with DIV	9.6, 19.2, 38.4, 115.2K
I2C	XTAL clock with DIV	50, 100, 200, 400KHz
SPI	XTAL clock with DIV (Default)	4, 6, 8, 10, 12MHz
Flash	XTAL clock with DIV (Default)	64MHz.
	CM4 clock with DIV	

Figure 2-4. Clock Domains in N9 and CM4 Peripherals

2.3.2 Reset

MT7687F has three global resets: XRESETN, CM4_RESETN, and N9_RESETN. The figure below shows the module that the reset signals are applied to.

Figure 2-5. Reset Structure

2.4 Application Processor Subsystem

The MCU subsystem consists of a 32-bit MCU, the AHB/APB bus matrix, internal RAM/ROM with ROM patch function, the flash controller, and the system peripherals including Direct Memory Access (DMA) engine and the General Purpose Timer (GPT).

2.4.1 CPU

MT7687F features an ARM Cortex-M4 processor, which is the most energy efficient ARM processor available. It supports the clock rates from 1MHz up to 192MHz.

The MCU executes the Thump-2 instruction set for optimal performance and code size, including hardware division, single cycle multiplication, and bit-field manipulation.

© 2017 MediaTek Inc.

Page 20 of 78

MT7687F includes the memory protection unit (MPU) in Cortex-M4 MCU that provides memory protection features. It can be used to detect unexpected memory access.

MT7687F also includes floating point unit (FPU) in Corxex-M4 process to support DSP related function.

2.4.2 Cache and Tightly Coupled Memory

MT7687F has a cache for Cortex-M4 to improve the efficiency of the code and data fetch from the external flash. The only cacheable memory region is the external flash.

MT7687F also has a Tightly-Coupled-Memory (TCM), a zero-wait-state memory which is dedicated for Cortex-M4 and can be accessed by Cortex-M4 exclusively. It is a memory space for the critical code such as interrupt service routines which needs to be executed with minimum latency. The DMA engines on AHB bus can't access TCM.

The total size of memory of the cache and the TCM is 96KB. Four software-configurable options differ in the size of cache, the size of TCM, and the cache associativity. The user can select the option which maximizes the performance.

The cache system has the following features:

- Configurable 1/2/4-way set associative (8KB/16KB/32KB)
- Each way has 256 cache lines with 8-word link size
- 20-bit tag memory: 19-bit high address and 1-bit valid bit
- 2-bit dirty memory: each dirty bit identifies the dirtiness of half cache line

The size of SRAM is 96KB. It can be configured to the following configuration

- 96KB TCM, no cache
- 88KB TCM, 8KB cache (1 way, direct mapped)
- 80KB TCM, 16KB cache (2 way set-associative)
- 64KB TCM, 32KB cache (4 way set-associative)

The configuration setting and the memory configuration are shown in the following table.

Table 2-9. TCM and Cache Configuration

0x0153_0000[9:8]	Functional Description	Start Address	End Address
00b	96KB TCM, no cache	0x0010_0000	0x0011_7FFF
01b	88KB TCM, 8KB cache, direct mapped	0x0010_0000	0x0011_5FFF
10b	80KB TCM, 16KB cache, 2-way set-associative	0x0010_0000	0x0011_3FFF
11b	64KB TCM, 32KB cache, 4-way set associative	0x0010_0000	0x0010_FFFF

The cache controller provides the user ways to perform cache operations including invalidate single/all cache lines as well as flush one/all cache lines.

To facilitate tuning the system performance, the cache controller can record the statistics of the cache hit count and the number of cacheable memory access. Cache hit rate can be obtained by dividing the cache hit count by the number of memory access.

2.4.3 Bus Fabric

MT7687F implements AHB/APB bus fabric to connect the MCU, memory, IO peripherals, and the radio subsystem.

- ILM/DLM: Instruction Local Memory / Data Local Memory, the zero-wait-state local memory for Radio MCU.
- Wi-Fi HIF: The data interface to Wi-Fi Packet switch engine.

Figure 2-6. CM4 Subsystem – Bus Fabric

The AHB bus arbitration adopts round-robin scheme.

The N9 subsystem and Cortex-M4 subsystem are in different clock domains, so the asynchronous bridges are inserted in the bus fabric. N9 has the ability to (but would be rarely used) all the M4 peripherals.

2.4.4 Serial Flash Controller

MT7687F features a serial flash controller that can support the serial flash with the read mode of (JEDEC) standard SPI mode, SPI-Quad mode, QPI (Quad Peripheral Interface) mode, Dual IO mode, and Dual-Output mode.

The frequency of the serial clock rate is up to 64MHz. That provides 256Mbps equivalent throughput on flash when SPI-quad mode or QPI mode is used.

Read Mode	Description		
SPI	1xIO for receiving command and address, 1xIO for output data		
SPI-Quad	1xIO for receiving command, 4xIO for address, 4xIO for output data		
QPI	4xIO for receiving command/address and output data		
Dual-IO	1xIO for command, 2xIO for address and output data		
Dual-Output	1xIO for receiving command, 2xIO for address and output data		

Table 2-10. Flash Controller Support Read Mode

The Serial Flash Controller Supports Two Operation Modes:

- Direct read mode, which supports a high-throughput direct-access through AHB bus
- Macro access mode, which supports flash access with arbitrary command and is through APB bus.

2.4.5 DMA

Direct memory access (DMA) is used to transfer data between memory \leftrightarrow memory as well as memory \leftrightarrow peripherals without MCU intervention.

2.4.5.1 DMA Functional Description

There are three types of DMA channels supported in MT7687F.

- Full-size DMA: Both the source address and the destination address are programmable. It is normally used for memory copy.
- Half-size DMA: Either the source address or the destination address is programmable. It is normally used for data movement between memory and peripherals.
- Virtual FIFO DMA (VFF DMA): It is a half-size DMA with an additional FIFO control engine. It is
 used to provide the buffering capacity for peripherals including UART.

2.4.5.1.1 Virtual FIFO

Virtual FIFO DMA is designed to offload the control of the serial interface. The difference between the virtual FIFO DMA and the full-size/half-size DMA is that the virtual DMA contains an additional FIFO controller.

The figure below illustrates the operations of virtual FIFO DMA used for UART RX.

- READ: DMA controller reads data from UART and increments the WRITE pointer of the FIFO controller.
- WRITE; DMA controller writes data that was area from UART to SRAM in the area defined before enabling the virtual FIFO.
- READ: MCU reads data when FIFO is not empty and the amount of data is over a pre-defined threshold. The read transaction will be finished only when DMA controller reads back the data from SRAM.
- READ: DMA controller reads data from SRAM and increments the READ pointer of the FIFO controller.

Figure 2-7. Virtual FIFO Concept

2.4.5.2 DMA Channels and Priority Control

There are two full-size DMA channels, 10 half- size DMA channels, and 13 virtual FIFO DMA channels in MT7687F.

Table 2-11. DMA Use for Hardware Functions

Hardware Function	DMA Type
Radio (Wi-Fi)	Half size DMA x 1

© 2017 MediaTek Inc.

Page 24 of 78

Hardware Function	DMA Type
UART (x2)	Virtual FIFO DMA x 4
125	Virtual FIFO DMA x 2
ADC	Virtual FIFO DMA x 1
12C (x2)	Half size DMA x 4
Secure boot	Full size DMA x 1
Reserved	Full size DMA x 1, half size DMA x 5 and virtual FIFO DMA x 4.

The DMA provides two levels of scheduling scheme among all channels.

The 1st level scheduling follows the strict-priority scheme. All channels can be grouped into four priority groups. Group one gets the highest priority, then group two, and so on.

The 2nd level scheduling follows the round-robin scheme. Every channel in the same priority group has equal opportunity to use the bandwidth and was served sequentially.

The arbitration is done per AHB transaction. When one AHB transaction is finished, the scheduler will follow the above mechanism to select the next DMA channel to serve.

2.4.6 General Purpose Timer

MT7687F includes the General Purpose Timer (GPT).

Five independent timers are included. Timer 0, 1, and 3 are interrupt-based timers, while timer 2 and timer 4 are free-run timers.

Two modes are defined in interrupt-based timers:

- One-shot mode—the timer stops when the timer counts down to 0.
- Auto-repeat mode—the timer re-starts when the timer counts down to 0.

	Mode	Clock speed	Interrupt Source	
GPT0	Interrupt-based	1KHz or 32KHz	GPT	
GPT1	Interrupt-based	1KHz or 32KHz		
GPT2	Free-run	1KHz or 32KHz	n/a	
GPT3	Interrupt based	26MHz (oscillator clock)	GPT3	
GPT4	Free-run	Bus clock or bus clock / 2	n/a	

Table 2-12. General Purpose Timer Types

2.4.7 Watchdog Timer

MT7687F features the watchdog timer for CM4, which is used to recover the system to the initial status when the system hangs due to some malfunction.

WDT provides two ways to generate the WDT event:

- Triggered by the time-out event (by configuring WDT_MODE:0x83080030 and WDT_LENGTH:0x83080034). The WDT has an 11-bit counter and it uses the 32 KHz clock. The software regularly restarts the timer to prevent it from expiring. If it fails to restart the WDT, the timer would expire and generate a WDT event.
- Triggered by software programming (WDT_SWRST:0x83080044).

WDT provides the following options when a WDT event is generated:

- 0x83080030[3]=0: Reset mode
 - 0x8300917C[16] = 1: WDT whole chip mode. Reset the whole chip including CM4 and N9 subsystems.
 - 0x8300917C[16] = 0: WDT MCU mode. Reset CM4 subsystem only.
- 0x83080030[3]=1: Interrupt mode
 - -Issue an interrupt to CM4 instead of resetting whole chip or CM4 subsystem.

The WDT module can only be reset by the external reset (SYS_RST_N) and the PMU reset. Some WDT control registers feature a key protection mechanism such that an unintentional access would be prevented.

WDT also provides the capability for CM4 software to interrupt N9 or reset N9 (by configuring WDT_DUAL_CORE:0x83080080).

2.4.8 Efuse

MT7687F uses embedded Efuse to store device specific configuration information such as MAC addresses, and power control settings.

The major fields defined in the Efuse:

- Wi-Fi MAC addresses
- Wi-Fi country code
- Wi-Fi TSSI parameters, TX power level
- Wi-Fi NIC configuration: RF front-end configuration, LED mode, baseband configuration

2.4.9 Interrupt Controller

MT7687F integrates the Nested Vectored Interrupt Controller (NVIC) for Cortex-M4. The NVIC supports

- Level and pulse detection of interrupt signals
- Configurable priority
- Wake-up interrupt controller (WIC) providing ultra-low power sleep mode support

2.4.9.1 Interrupt Sources

The table below listed the NVIC and WIC interrupt sources. In total, there are 49 NVICs, while 23 of them are external interrupts multiplexed with GPIO functions.

The power domain/subsystem lists the power domain and the subsystem from which the interrupt is generated.

Table 2-13. CM4 NVIC Interrupt Source

NVIC No.	Interrupt source	Power domain / subsystem	External interrupt	Wake-up capability (1)	De-bounce	Description
INT0	UART1	CM4_OFF/MCUSYS_CM4				UART 1
INT1	DMA_CM4	CM4_OFF/MCUSYS_CM4				Generic DMA in CM4 subsystem
INT2	HIF_CM4	TOP_AON/HIFSYS		V		Wi-Fi host interface for CM4
INT3	I2C1	CM4_OFF/MCUSYS_CM4				I2C 1
INT4	12C2	CM4_OFF/MCUSYS_CM4				I2C 2
INT5	UART2	CM4_OFF/MCUSYS_CM4				UART 2
INT6	CRYPTO	CM4_OFF/MCUSYS_CM4				Crypto engine
INT7	SF	CM4_OFF/MCUSYS_CM4				Serial flash controller, for debug
INT8	(Reserved)					
INT9	(Reserved)					
INT10	WDT_CM4	TOP_AON/MCUSYS_CM4		V		Watchdog timer in CM4 subsystem
INT11	N9_TO_CM4	TOP_AON/MCUSYS_N9		V		N9 software interrupt to CM4

NVIC No.	Interrupt source	Power domain / subsystem	External interrupt	Wake-up capability (1)	De-bounce	Description
	_SW1					
INT12	SPI_S	CM4_OFF/MCUSYS_CM4				SPI slave
INT13	WDT_N9	TOP_AON/MCUSYS_N9		V		Watchdog timer in N9 subsystem
INT14	ADC	CM4_OFF/MCUSYS_CM4				Auxiliary ADC FIFO
INT15	IRTX	CM4_OFF/MCUSYS_CM4				IrDA TX
INT16	IRRX	CM4_OFF/MCUSYS_CM4				IrDA RX
INT17	(Reserved)					
INT18	(Reserved)					
INT19	RTC_TIMER	RTC		V		RTC timer interrupt
INT20	GPT3	CM4_OFF/MCUSYS_CM4		V		GPT3 time-out
INT21	RTC_ALARM	RTC		V		RTC alarm interrupt
INT22	(Reserved)					
INT23	N9_TO_CM4 _SW2	TOP_AON/MCUSYS_N9		V		N9 software interrupt to CM4
INT24	GPT	TOP_CON/MCUSYS_CM4		V		GPT0 or GPT1 time-out
INT25	ADC_COMP	TOP_AON		V		ADC comparison mode
INT26	(Reserved)					
INT27	SPI	CM4_OFF/MCUSYS_CM4				SPI transaction
INT28	(Reserved)					
INT29	(Reserved)					
INT30	(Reserved)					
INT31	WIC	TOP_AON/MCUSYS_CM4		V ⁽²⁾		WIC WAKEUP interrupt CM4
INT32	SWD_CLK	TOP_AON	WIC[0]	V	Available	GPI0[2]
INT33	I2C1_DATA	TOP_AON	WIC[1]	V	Available	GPIO[25]
INT34	I2C0_CLK	TOP_AON	WIC[2]	V	Available	GPIO[27]
INT35	I2S_MCLK_S PI_MOSI	TOP_AON	WIC[3]	V	Available	GPIO[29]
INT36	I2S_BCLK_S PI_CS	TOP_AON	WIC[4]	V	Available	GPIO[32]
INT37	ANT_SEL0	TOP_AON	WIC[5]	V	Available	GPIO[33]
INT38	ANT_SEL1	TOP_AON	WIC[6]	V	Available	GPIO[34]
INT39	GPIO17	TOP_AON	WIC[7]	V	Available	GPIO[36]
INT40	ADC0	TOP_AON	WIC[8]	V	Available	GPIO[57]
INT41	ADC1	TOP_AON	WIC[9]	V	Available	GPIO[58]
INT42	ADC2	TOP_AON	WIC[10]	V	Available	GPIO[59]

NVIC No.	Interrupt source	Power domain / subsystem	External interrupt	Wake-up capability (1)	De-bounce	Description
INT43	ADC3	TOP_AON	WIC[11]	V	Available	GPIO[60]
INT56	PWM0	TOP_AON	EINT[0]	V	Available	GPIO[0]
INT57	PWM1	TOP_AON	EINT[1]	V	Available	GPIO[1]
INT58	SWD_DIO	TOP_AON	EINT[2]	V	Available	GPIO[3]
INT59	GPIO0	TOP_AON	EINT[3]	V	Available	GPIO[4]
INT60	GPIO1	TOP_AON	EINT[4]	V	Available	GPIO[5]
INT61	GPIO2	TOP_AON	EINT[5]	V	Available	GPIO[6]
INT62	GPIO3	TOP_AON	EINT[6]	V	Available	GPIO[7]
INT75	GPIO16	TOP_AON	EINT[19]	V	Available	GPIO[35]
INT76	GPIO18	TOP_AON	EINT[20]	V	Available	GPIO[37]
INT77	GPIO19	TOP_AON	EINT[21]	V	Available	GPIO[38]
INT78	GPIO20	TOP_AON	EINT[22]	V	Available	GPIO[39]

Note 1; Capable to wake up CM4 when CM4 is in sleep mode.

Note 2: This interrupt is associated with other wake-up interrupts for CM4 to differentiate wake-up interrupts from non wake-up interrupts.

2.4.9.2 External Interrupt

MT7687F has the optionally enabled hardware de-bouncing circuit for each interrupt source.

Table 2-14. CM4 External Interrupt De-Bounce Period

3-bit prescaler	Reference clock rate for de-bounce counter (KHz)	Minimum de-bounce period (ms)	Maximum de-bounce period (ms)	
000	8	0.13	2	
001	4	0.25	4	
010	2	0.5	8	
011	1	1	16	

© 2017 MediaTek Inc.

Page 29 of 78

3-bit prescaler	Reference clock rate for de-bounce counter (KHz)	Minimum de-bounce period (ms)	Maximum de-bounce period (ms)	
100	0.5	2	32	
101	0.25	4	64	
110	0.125	8	128	
111	0.0625	16	256	

2.4.10 Power-on Sequence

The power-on control sequence diagram shows how the code reset (PMU_RESET_N) is generated on chip.

Figure 2-8. PMU Power-on Sequence

2.4.10.1 Power-on Reset (Cold Reset)

The power on reset sequence after chip power on is shown below.

Step 1: N9 reset is de-asserted and boot from ROM (CM4 reset state is still asserted)

Step 2: N9 sets up top configuration registers (such as PLL) and then de-asserts CM4 reset

© 2017 MediaTek Inc.

Page 30 of 78

This document contains information that is proprietary to MediaTek Inc. ("MediaTek") and/or its licensor(s).

- Step 3: CM4 boots from ROM while N9 polls the PDA (Patch Decryption Accelerator) status
- Step 4: CM4 fetch flash header (N9 FW download length information)
- Step 5: CM4 setup PDA and PDA address generator
- Step 6: PDA loads firmware from the flash to N9 IDLM
- Step 7: N9 executes from IDLM after PDA completes and CM4 executes from Cache/Flash or TCM.

2.4.10.2 Watchdog Reset

Watchdog reset WDT_N9 is the watchdog timer for N9, and WDT_CM4 is the watchdog timer for CM4.

When the WDT event of WDT_N9 occurs, WDT_N9 has the capability to

- Reset N9 or issue an interrupt to N9.
- Issue an interrupt to CM4 (can be masked by CM4 if it is not required to be received).

When the WDT event of WDT_CM4 occurs, WDT_CM4 has the capability to

- Reset whole chip or reset CM4 only or issue an interrupt to CM4.
- Issue an interrupt to N9 (can be masked by N9 if it's not required to be received).

For both WDT_N9 and WDT_CM4, the WDT events can be triggered by time-out and software programming.

For both WDT_N9 and WDT_CM4, the WDT has the capability to reset the other CPU or issue an interrupt to the other CPU.

© 2017 MediaTek Inc.

Page 31 of 78

 $This \ document \ contains \ information \ that \ is \ proprietary \ to \ Media Tek \ Inc. \ ("Media Tek") \ and/or \ its \ licensor(s).$

Figure 2-9. WDT Structure

2.4.10.3 Reset Scenarios

The definitions of the cold reset and the warm reset are shown below:

- Cold Reset: Power on reset and both RAM or peripheral devices will be initialized by firmware.
- Warm Reset: CPU is reset but RAM content is still retained (without firmware redownload). It's triggered by
 - o Software reset: Software set WDT reset control register to reset CPU.
 - o WDT reset: WDT expiration cause CPU to reset if enabled, otherwise interrupt.
 - o Core reset: Reset by the other CPU (e.g. N9 to reset CM4 or CM4 to reset N9).
 - Wake-up from deep sleep mode: Reset by the MTCMOS power control.

2.4.10.4 Sleep/Wakeup sequence

The sleep/wakeup control sequence is shown in the diagram below.

Figure 2-10. Sleep/Wakeup Sequence

2.4.11 Memory Map

The table below describes how the peripherals are mapped to the CM4 memory.

When the MCU performs a read transaction to an undefined address, the bus returns 0. When the MCU performs a write transaction to an undefined address, the bus regards it as an invalid transaction and does nothing. The memory space of 0x5040_0000 to 0x5FFF_FFFF is an undefined region and shall not be accessed.

The power domain is identified in the table. The hardware clock gating is associated with the power control. When the CPU power domain is in power-off mode, it implies that the clock is also gated.

The software clock gating control, identified in the table below, provides the way to disable the function and lower its power consumption when the function is not used.

Table 2-15. CM4 Memory Map

Start address	End address	Function	Power Domain	Software Clock gating control	Description
0x0000_0000	0x0000_FFFF	TCM ROM	CM4_OFF		Tightly Coupled ROM for CM4
0x0010_0000	0x0010_FFFF	TCM RAM0	CM4_OFF		Tightly Coupled RAM for CM4 (64KB)
0x0011_0000	0x0011_1FFF	TCM RAM1	CM4_OFF		Tightly Coupled RAM for CM4 (8KB)
0x0011_2000	0x0011_3FFF	TCM RAM2	CM4_OFF		Tightly Coupled RAM for CM4 (8KB)
0x0011_4000	0x0011_5FFF	TCM RAM3	CM4_OFF		Tightly Coupled RAM for CM4 (8KB)
0x0011_6000	0x0011_7FFF	TCM RAM4	CM4_OFF		Tightly Coupled RAM for CM4 (8KB)
0x1000_0000	0x1FFF_FFFF	Serial Flash CM4	CM4_OFF		Serial flash of CM4
0x2000_0000	0x2003_FFFF	SYSRAM_CM4	CM4_OFF		System RAM for CM4, 256Kbytes
0x2100_0000	0x2100_FFFF	SPI-S	CM4_OFF	0x8300_0200[21]	SPI slave
0x2200_0000	0x2200_FFFF	I2S/Audio	CM4_OFF	0x8300_0200[14]	12S
0x2400_0000	0x2400_FFFF	SPI-M	CM4_OFF	0x8300_0200[22]	SPI master
0x2500_0000	0x2500_CFFF	SYSRAM_N9	TOP_OFF(N9)		System RAM for N9, 52Kbytes
0x3000_0000	0x3FFF_FFFF	Serial Flash CM4	CM4_OFF		Serial flash of CM4 through system bus
0x5000_0000	0x501F_FFFF	HIF_device	TOP_OFF(N9)		Host interface device controller
0x5020_0000	0x502F_FFFF	HIF_host_CM4	TOP_AON		Host interface host controller of Wi-Fi radio
0x5040_0000	0x5FFF_FFFF	(Undefined)			
0x6000_0000	0x6FFF_FFFF	WIFISYS	TOP_OFF(N9)	0x8000_0100[5]	Wi-Fi subsystem
0x7000_0000	0x70FF_FFFF	PDA DMA port			Patch Decryption Accelerator DMA slave
0x7800_0000	0x7800_FFFF	VFF access port	TOP_OFF(N9)		Virtual FIFO access ports of N9 DMA

Start address	End address	Function	Power Domain	Software Clock gating control	Description
0x7900_0000	0x7900_FFFF	VFF_CM4 access port	CM4_OFF	0x8300_0200[3]	Virtual FIFO access ports of CM4 DMA
0x8000_0000	0x800C_FFFF	APB0	TOP_OFF(N9)		APB bridge 0 (synchronous to N9)
0x8000_0000	0x8000_FFFF	CONFG	TOP_OFF(N9)		N9 subsystem configuration
0x8001_0000	0x8001_FFFF	DMA	TOP_OFF(N9)		Generic DMA engine for N9
0x8002_0000	0x8002_FFFF	TOP_CFG_OFF	TOP_OFF(N9)		TOP_OFF(N9) power domain chip level configuration (GPIO, PINMUX, RF, CLK control)
0x8003_0000	0x8003_FFFF	UART	TOP_OFF(N9)	0x8000_0100[6]	UART host interface for N9
0x8005_0000	0x8005_FFFF	UART_PTA	TOP_OFF(N9)	0x8000_0100[11]	Inter-chip communication for PTA
0x8008_0000	0x8008_FFFF	AHB_MON	TOP_OFF(N9)	0x8000_0100[10]	AHB bus monitor
0x800A_0000	0x800A_FFFF	UART_DSN	TOP_OFF(N9)	0x8000_0100[7]	UART for N9 debug
0x800B_0000	0x800B_FFFF	SEC	TOP_OFF(N9)		Secure boot configuration
0x800C_0000	0x800C_FFFF	HIF	TOP_OFF(N9)		Host interface configuration
0x8100_0000	0x810C_FFFF	APB1	TOP_OFF(N9)		APB bridge 1 (synchronous to N9)
0x8102_0000	0x8102_FFFF	TOP_CFG_AON	TOP_AON		TOP_AON power domain chip level configuration (RGU, PINMUX, PLL, PMU, XTAL, CLK control)
0x8103_0000	0x8103_FFFF	DBG_CIRQ	TOP_AON		Debug interrupt controller for N9
0x8104_0000	0x8104_FFFF	CIRQ	TOP_AON		Interrupt controller for N9
0x8105_8000	0x8105_FFFF	GPT	TOP_AON		General Purpose Timer for N9

Start address	End address	Function	Power Domain	Software Clock gating control	Description
0x8106_0000	0x8106_FFFF	PTA	TOP_OFF(N9)	0x8000_0100[14]	Packet Traffic Arbitrator for Wi-Fi
0x8107_0000	0x8107_FFFF	EFUSE_MAC	TOP_OFF(N9)	0x8000_0100[12]	Efuse controller
0x8108_0000	0x8108_FFFF	WDT	TOP_AON		Watchdog Timer for N9
0x8109_0000	0x8109_FFFF	PDA	TOP_OFF(N9)		Patch Decryption Accelerator
0x810A_0000	0x810A_FFFF	RDD	TOP_OFF(N9)	0x8000_0100[23]	Wi-Fi debug
0x810C_0000	0x810C_FFFF	RBIST	TOP_OFF(N9)		RF BIST configuration
0x8300_0000	0x810C_FFFF	APB2	CM4_OFF		APB bridge 1 (synchronous to CM4)
0x8300_0000	0x8300_7FFF	CONFG_CM4	CM4_OFF		System configuration for CM4
0x8300_8000	0x8300_BFFF	TOP_CFG_AON_C M4	TOP_AON		TOP_AON configuration
0x8300_C000	0x8300_EFFF	CONFG_CM4_AON	TOP_AON		System configuration for CM4 in TOP_AON domain
0x8300_F000	0x8300_FFFF	SEC_TOP_CM4	CM4_OFF	0x8300_0200[0]	JTAG security for CM4
0x8301_0000	0x8301_FFFF	DMA_CM4	CM4_OFF	0x8300_0200[3]	Generic DMA engine for CM4
0x8302_0000	0x8302_FFFF	UART_DSN	CM4_OFF	0x8300_0200[4]	UART for CM4 debug
0x8303_0000	0x8303_FFFF	UART1	CM4_OFF	0x8300_0200[5]	UART 1 for CM4
0x8304_0000	0x8304_FFFF	UART2	CM4_OFF	0x8300_0200[6]	UART 2 for CM4
0x8305_0000	0x8305_FFFF	GPT_CM4	TOP_AON		General Purpose Timer for CM4
0x8306_0000	0x8306_FFFF	IrDA	CM4_OFF	0x8300_0200[8] 0x8300_0200[9]	IrDA
0x8307_0000	0x8307_FFFF	Serial flash	CM4_OFF	0x8300_0200[10]	Serial flash macro access
0x8308_0000	0x8308_FFFF	WDT_CM4	TOP_AON		Watchdog Timer for CM4

Start address	End address	Function	Power Domain	Software Clock gating control	Description
0x8309_0000	0x8309_FFFF	I2C_1	CM4_OFF	0x8300_0200[12]	I2C 1
				0x8300_0200[23]	
0x830A_0000	0x830A_FFFF	12C_2	CM4_OFF	0x8300_0200[13]	12C 2
				0x8300_0200[24]	
0x830B_0000	0x830B_0FFF	I2S	CM4_OFF	0x8300_0200[14]	I2S configuration
0x830C_0000	0x830C_FFFF	RTC	RTC		Real time clock
0x830D_0000	0x830D_FFFF	AUXADC	CM4_OFF	0x8300_0200[16]	Auxiliary ADC configuration
0x830F_0000	0x830F_FFFF	Crypto	CM4_OFF	0x8300_0200[18]	Crypto engine
0xA000_0000	0xAFFF_FFFF	PSE	CM4_OFF		Packet switch engine memory
0xE000_E000	0xE000_EFFF	NVIC, SYSTICK, FPU	CM4_OFF		Nested vectored interrupt controller System Control
					Space (SYSTICK) Floating-point unit

2.4.12 SYSRAM CM4

SYSRAM, the internal SRAM, is mapped on the system bus interface of Cortex-M4. M4 can carry out instruction fetches and data accesses to the SYSRAM.

SYSRAM is the internal SRAM that the DMA engine can access. It can be used as a GDMA or VFIFO buffer, the source and the destination of GDMA controller, for memory-to-memory transfer as well the transfer between memory and peripherals.

2.4.13 Crypto engine

The crypto engine supports

- AES, DES, and 3DES encryption and decryption engine.
- SHA256, SHA512 and MD5 hash engines.

2.5 Peripherals

Several peripheral are multiplexed GPIOs. MT7687F has two dedicated UART interfaces with flow control, one dedicated I2C interface, and one dedicated IrDA interface.

MT7687F also has the 2nd I2C interface, the SPI slave interface, the I2S interface, and the SPI master interface, but only 2 of the above interfaces can be effective at a time.

The section describes the function of all the peripherals.

2.5.1 GPIO Interface

2.5.1.1 GPIO Function

There are two types of GPIO (General purpose IO) designs in MT7687F: GPIO and AGPIO.

Floating-well design is used in GPIO and AGPIO. It prevents potential leakage problem when the DVDD33 power supply is not enabled but the pin input is pulled up to 3.3V source.

MT7687F offers GPIO, each with the following configuration options:

- Input / Output mode
- Slew rate control
- Schmitt trigger hysteresis control
- Input mode: Floating (Hi-Z), pull-up, or pull-down
- Output mode: Active driving
- Pull up/down control. The pull-up and pull-down resistance is 75K Ω with ±20% variation over PVT condition
- Driving strength: 4mA, 8mA, 12mA, 16mA
- Input and output duty cycle tuning

© 2017 MediaTek Inc.

Page 38 of 78

This document contains information that is proprietary to MediaTek Inc. ("MediaTek") and/or its licensor(s).

Figure 2-11. AGPIO/GPIO Block Diagram (Left: AGPIO; Right: GPIO)

The digital IO AGPIO function is equivalent to GPIO as shown above. A dedicated internal control signal is used to select between the digital and analog functions. The IOs are multiplexed with 16 channels ADC.

Output Signal Multiplexing

Function-[9:1]-AON and Function-[9:0] can all be output to PINX by setting pinx_pinmux_aon_sel and pinx_pinmux_off_sel, as shown in Figure 2-12 below. Function-[9:1]-AON signals are part of TOP_AON domain and Function-[9:0] signals are part of TOP_OFF (N9) domain. The output of the pad is enabled through E and G pad controls which require 2'b11 for digital output mode.

For a specific pin there could be only a limited number of functions available, these functions are mapped anywhere to the different inputs of the muxes (not always in an incremental scheme).

TOP_AON domain means the circuit is always powered on when PMU supplies the power. TOP_OFF (N9) domain means the N9 related circuit is powered off in some scenarios when PMU supplies the power.

Figure 2-12. AGPIO Configured as Output Multiplexing

Input Signal Multiplexing

Figure 2-13 below shows that PINX is the source of Function-AON-0, while PINX and PINY can both be the input source for Function-1. The (E, G) setting for both IO is 2'b01 for digital input mode.

Figure 2-13. AGPIO Configured as Input Multiplexing

Input / Output / Analog Signal Multiplexing

This figure below shows how function-0, function-1 and Analog-function share the same IO (PINX) by configuring (E, G) pair internally. G is controlled in off domain.

Table 2-16. Functional Description of AGPIO

(G,E) value	2'b11	2'b10	2'b0x
Function	PINX=Function-0	Function-1=PINX	Analog-function=PINX
	(output mode)	(input mode)	(analog mode)

Figure 2-14. AGPIO Configured as Input, Output, or Analog Mode

2.5.2 UART Interface

MT7687F has two UART interfaces. The UART has M16C450 and M16550A modes of operation, which are compatible with a range of standard software drivers.MT7687F supports UART with configurable BAUD rates from 9.6Kbps, 19.2Kbps, 38.4Kbps, 115.2Kbps, and 921.6Kbps.

2.5.3 I2C Serial Interface

MT7687F features two I2C serial interface master controllers. The two signals of I2C channel 0 are I2CO_CLK and I2CO_DATA.

- I2CO CLK is a clock signal that is driven by the master.
- I2CO_DATA is a bi-directional data signal that can be driven by either the master or the slave.
 It supports the clock rate of 50, 100, 200, and 400 KHz.
- I2C channel 1 supports the same feature as channel 0.

2.5.4 Auxiliary ADC function

MT7687F features one auxiliary ADC function. The ADC function contains a 4-channel analog switch, a single-end input asynchronous 12-bit SAR (Successive Approximation Register) ADC, and a digital averaging function. The digital averaging function can perform on-the-fly averaging function of 1/2/4/8/16/32/64 points. The ADC features the dithering function to enhance the DNL performance. The ADC uses an external VREF20 as a reference voltage.

Figure 2-15. Auxiliary ADC Block Diagram (Analog Part)

Figure 2-16. Auxiliary ADC Block Diagram

Figure 2-17. Auxiliary ADC Clock Timing Diagram

Auxiliary ADC Features:

- Input channel number: 4 channels
- Sampling and output data rate: 2MS/s
- DNL without dithering and averaging: <±2LSB
- DNL with dithering and averaging: <±1LSB
- Dithering function: 16 levels with step size of 4LSB.

2.5.5 SPI Master Interface

MT7687F features one SPI master controller. It is used as an extension interface to control the peripheral device on expansion port. The SPI master controller supports the clock rates of 0.25, 0.5, 1, 2, 4, 6, 8, 10, and 12MHz. It supports two options of clock polarity (CPOL) and two options of initial clock phase (CPHA). SPI pins are multiplexed with I2S pins.

Table 2-17. SPI Pin Description

Signal Name	Signal Description	Direction
CS	Chip select	Output
SCK	Serial clock	Output
MISO	Master in, Slave out	Input
MOSI	Master out, Slave in	Output

Figure 2-18. SPI Timing Diagram

2.5.6 SPI Slave Interface

The simple SPI slave module translates 16bits SPI serial protocol to create AHB master transaction for accessing SYSRAM or configuration registers.

The block diagram shows SPI slave controller, spis_top, was integrated in the CM4 system. SPI Host can write data into CM4 SYSRAM by controlling slave controller.

SPI slave controller supports interrupt to CM4 system. SPI host can configure register in slave controller to interrupt CM4 MCU. When CM4 MCU gets the interrupt, it can read status from SPI slave controller and clear the interrupt. Also, it can read data from SYSRAM.

Figure 2-19. SPI Slave Block Diagram

SPI slave uses SPI2AHB protocol. In AHB write transaction, it should write AHB 32bits data and 32bits address into spi controller register first, and then kick the AHB_cmd to start AHB write transaction. After start AHB_cmd, 32bits data will be written into specified 32bits address. In AHB read transaction, it should write 32bits address into spi controller register first, and then kick the AHB_cmd to start AHB read transaction. After start AHB_cmd, 32 bits data will be read from specified 32bits address and stored in spi slave controller.

2.5.7 I2S Interface

MT7687F features one I2S interface, which is used to connect to an external audio codec. The I2S interface can support the I2S slave mode only. The five I2S signals are shown below. The I2S_MLK clock frequency is 16MHz.

14010 = 101 120 1 111 2 000 1 ption					
Signal Name	Signal Description	Direction (Slave Mode)			
I2S_MCLK	The base clock of the function.	Output			
I2S_BCLK	The bit clock of the interface	Input			
I2S_FS (LRCLK) The left/right word select line of the interface		Input			
I2S_TX	Digital audio output	Output			
I2S_RX	Digital audio input	Input			

Table 2-18. I2S Pin Description

MT7687F supplies the MCLK of 16MHz. The external CODEC generates BCLK and LRCLK from MCLK. When configured as the I2S slave mode, the I2S interface can support two modes.

Slave Mode	Bit Width	Input Sample (Uplink)	Output Sample (Downlink)	BCLK (Input)	FS (Input)
Mode 1	16b	16KHz, mono/stereo	16KHz, mono/stereo	512KHz	16KHz
Mode 2	16b	24KHz, mono/stereo	24KHz, mono/stereo	768KHz	24KHz
Mode 3	16b	44.1KHz, mono/stereo	44.1KHz, mono/stereo	1.4112MHz	44.1KHz
Mode 4	16b	48KHz, mono/stereo	48KHz, mono/stereo	1.536MHz	48KHz

Table 2-19. I2S Slave Mode

	Byte 3	Byte 2	Byte 1	Byte 0
Stereo(2 CH)	R[15:8]	R[7:0]	L[15:8]	L[7:0]
Mono(1 CH)	8'b0	8'b0	L[15:8]	L[7:0]

The mono data is transferred across the I2S bus as left channel information.

In all of the modes above, when the input data is mono, the data of interest is transferred across the I2S bus on the left channel.

The I2S pins are multiplexed with SPI pins.

The signal waveform of I2S is shown below.

© 2017 MediaTek Inc.

Page 47 of 78

Figure 2-20. I2S Signal Waveform

2.5.8 Pulse Width Modulation (PWM)

MT7687F features 28 generic PWMs to generate pulse sequences with programmable frequency and duration for LCD, vibrators, and other devices. The PMU features three configurable pattern options.

Mode Waveform Description 1 Basic PWM: LED ON LED OFF LED ON time (duration) and LED OFF time (duration) are LED ON LED OFF Time Time configurable. 2 Two-State PWM: There are two configurable states **S1** S₀ **SO** Lastingtime (S0 and S1) for PWM LED. 3 Two-State replay mode: replay / User can set replay mode with specified S1_Lasting_Time. PWM S0 **S1** S0 LED would act as SO Lastingtime S1 Lastingtime SO Lastingtime $[S0\rightarrow S1\rightarrow S0\rightarrow S1\rightarrow S0...]$ with

Table 2-21. PWM Modes

© 2017 MediaTek Inc.

Page 48 of 78

This document contains information that is proprietary to MediaTek Inc. ("MediaTek") and/or its licensor(s). Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited.

Mode	Description	Waveform
	period time of (S0_Lasting_Time + S1_Lasting_Time)	

2.5.9 IrDA

IrDA TX module supports consumer IR protocols including NEC, RC-5, RC-6, and the software-based pulse-width mode. IrDA RX module supports protocols including RC-5 and pulse-width detection mode.

2.6 Radio MCU Subsystem

2.6.1 CPU

MT7687F features 32-bit CPU N9, with the following features:

- 5-stage pipeline with extensive clock-gating
- Dynamic branch prediction with BTB
- 16/32-bit mixed instruction format
- Multiply-accumulate and multiply-subtract instructions
- Instructions optimized for audio applications
- Instruction and data local memory
- JTAG based debug interface
- Programmable data endian control

2.6.2 **RAM/ROM**

The Radio MCU subsystem features ILM (Instruction Local Memory), DLM (Data Local Memory), and the SYSRAM. The ROM code is in ILM.

2.6.3 Memory map

The table below describes how the peripherals are mapped to the memory space in Radio MCU subsystem.

When the MCU performs a read transaction to an undefined address, the bus returns 0. When the MCU performs a write transaction to an undefined address, the bus regards it as an invalid transaction and does nothing.

Table 2-22. N9 Memory Map

Start address	End address	Function	Description
0x0000_0000	0x000C_FFFF	ILM ROM	Instruction local memory ROM
			for N9

© 2017 MediaTek Inc.

Page 49 of 78

Start address	End address	Function	Description
0x000D_0000	0x0011_FFFF	ILM RAM	Instruction local memory RAM for N9
0x0200_0000	0x0200_021C	Patch & CR	N9 ROM patch engine
0x0209_0000	0x020C_1FFF	DLM RAM	Data local memory for N9
0x0040_0000	0x0040_CFFF	SYSRAM N9	System RAM for N9
0x2000_0000	0x2003_FFFF	SYSRAM CM4	System RAM for CM4 (256KB)
0x2100_0000	0x2100_FFFF	SPI-S	SPI slave
0x2200_0000	0x2200_FFFF	I2S/Audio	I2S
0x2400_0000	0x2400_FFFF	(Reserved)	
0x3000_0000	0x3FFF_FFFF	Serial Flash CM4	Serial flash controller of CM4
0x5000_0000	0x501F_FFFF	HIF_device	Host interface device controller
0x5020_0000	0x502F_FFFF	HIF_host_CM4	Host interface host controller of Wi-Fi radio
0x6000_0000	0x6FFF_FFFF	WIFISYS	Wi-Fi subsystem
0x7000_0000	0x70FF_FFFF	PDA DMA port	Patch Decryption Accelerator DMA slave
0x7800_0000	0x7800_0000	VFF access port0	Virtual FIFO access port 0 of N9 DMA
0x7800_0100	0x7800_0100	VFF access port1	Virtual FIFO access port 1 of N9 DMA
0x7900_0000	0x7900_FFFF	VFF_CM4 access port	Virtual FIFO access ports of CM4 DMA
0x8000_0000	0x800C_FFFF	APB0	APB bridge 0 (synchronous to N9)
0x8000_0000	0x8000_FFFF	CONFG	N9 subsystem configuration
0x8001_0000	0x8001_FFFF	DMA	Generic DMA engine for N9
0x8002_0000	0x8002_FFFF	TOP_CFG_OFF	TOP_OFF(N9) power domain chip level configuration (GPIO, PINMUX, RF, PLL, CLK control)
0x8003_0000	0x8003_FFFF	UART	UART host interface for N9
0x8005_0000	0x8005_FFFF	UART_PTA	Inter-chip communication for PTA
0x8008_0000	0x8008_FFFF	AHB_MON	AHB bus monitor
0x800A_0000	0x800A_FFFF	UART_DSN	UART for N9 debug
0x800B_0000	0x800B_FFFF	SEC	Secure boot configuration
0x800C_0000	0x800C_FFFF	HIF	Host interface configuration
0x8100_0000	0x810C_FFFF	APB1	APB bridge 1 (synchronous to N9)
0x8102_0000	0x8102_FFFF	TOP_CFG_AON	TOP_AON power domain chip level configuration (RGU, PINMUX, PMU, XTAL, CLK control)

Start address	End address	Function	Description
0x8103_0000	0x8103_FFFF	DBG_CIRQ	Debug interrupt controller for N9
0x8104_0000	0x8104_FFFF	CIRQ	Interrupt controller for N9
0x8105_8000	0x8105_FFFF	GPT	General Purpose Timer for N9
0x8106_0000	0x8106_FFFF	РТА	Packet Traffic Arbitrator for Wi- Fi coexistence
0x8107 0000	0x8107 FFFF	EFUSE	Efuse controller
0x8108 0000	0x8108 FFFF	WDT	Watchdog Timer for N9
0x8109_0000	0x8109_FFFF	PDA	Patch Decryption Accelerator
0x810A_0000	0x810A_FFFF	RDD	Wi-Fi debug
0x810C_0000	0x810C_FFFF	RBIST	RF BIST configuration
0x8300_0000	0x810C_FFFF	APB2	APB bridge 1 (synchronous to CM4)
0x8300_0000	0x8300_FFFF	CONFG_CM4	System configuration for CM4
0x8301_0000	0x8301_FFFF	DMA_CM4	Generic DMA engine for CM4
0x8302_0000	0x8302_FFFF	UART_DSN	UART for CM4 debug
0x8303_0000	0x8303_FFFF	UART1	UART 1 for CM4
0x8304_0000	0x8304_FFFF	UART2	UART 2 for CM4
0x8305_0000	0x8305_FFFF	GPT_CM4	General Purpose Timer for CM4
0x8306 0000	0x8306 FFFF	IrDA	IrDA
0x8307 0000	0x8307 FFFF	Serial flash	Serial flash macro access
0x8308 0000	0x8308 FFFF	WDT CM4	Watchdog Timer for CM4
0x8309_0000	0x8309_FFFF	I2C_1	I2C 1
0x830A_0000	0x830A_FFFF	12C_2	12C 2
0x830B_0000	0x830B_FFFF	I2S	I2S configuration
0x830D_0000	0x830D_FFFF	AUXADC	Auxiliary ADC configuration
0x830F_0000	0x830F_FFFF	Crypto	Crypto engine
0xA000_0000	0xAFFF_FFFF	PSE	Packet switch engine memory

2.6.4 N9 Bus Fabric

Figure 2-21. N9 Bus Fabric

Functional description:

- Command batch: Used to save/restore the critical CR and memory data when entering and leaving the low power mode.
- Wi-Fi HIF: The host control and data interface from N9 to Wi-Fi subsystem.
- Wi-Fi PSE: The Packet switch engine used to transfer packet from N9 to Wi-Fi MAC/Radio or from CM4 to Wi-Fi MAC/Radio, and vice versa.
- PDA: Packet Decryption Agent, used to download firmware and decipher the firmware which is encrypted to avoid eavesdrop.
- PTA: Packet Traffic Arbitration, used to do the traffic arbitration of Wi-Fi when the two radios are transmitting and receiving at the same time.
- RDD: The Wi-Fi debug function.
- EFUSE: The Efuse macro used for the configuration of Wi-Fi MAC and Radio.

2.6.5 CIRQ

N9 subsystem uses the interrupt controller CIRQ to control the source selection, mask, edge/level sensitivity, and software enabling for internal interrupts, as well as the mask and the edge/level sensitivity for external interrupts.

CIRQ also integrates the de-bounce circuit for external interrupts.

Figure 2-22. N9 interrupt controller

2.6.5.1 Interrupt sources

The tables below lists the interrupt sources of internal and external interrupts.

There are totally 23 interrupts and 14 external interrupts.

The power domain/subsystem lists the power domain and the subsystem from which the interrupt is generated.

IRQ No.	Interrupt source	Power domain /subsystem	External interrupt	Wake-up capability (1)	De- bounce	Description
INT0	UART	TOP_OFF(N9)/MCUSY S				UART module
INT1	DMA	TOP_OFF(N9)/MCUSY S				Generic DMA in N9 subsystem
INT2	HIFSYS	TOP_AON/HIF				WIFI_HIF(SDIO)
INT3	(Reserved)					
INT4	THERM	TOP_OFF(N9)				Thermometer
INT5	(Reserved)					
INT6	WIFI	WF_OFF				Wi-Fi subsystem
INT7	ICAP	TOP_OFF(N9)/MCUSY S				Internal capture in RBIST module

IRQ No.	Interrupt source	Power domain /subsystem	External interrupt	Wake-up capability (1)	De- bounce	Description
INT8	EINT	TOP_AON/MCUSYS				External interrupt
INT9	(Reserved)					
INT10	WDT_N9	TOP_AON/MCUSYS				Watch dog timer in N9 subsystem
INT11	AHB_MONITOR	TOP_OFF(N9)/MCUSY S				AHB monitor
INT12	(Reserved)					
INT13	PLC_ACCLR	TOP_OFF(N9)/MCUSY S				Packet Loss Concealment accelerator
INT14	(Reserved)					
INT15	PSE	WF_OFF/PSE				Packet switch engine
INT16	(Reserved)					
INT17	HIFSYS	TOP_OFF(N9)/HIFSYS				HIF subsystem
INT18	UART_PTA *	TOP_OFF(N9)/MCUSY S				UART_PTA module
INT19	PTA *	TOP_OFF(N9)/MCUSY S				PTA module
INT20	CMBT	TOP_OFF(N9)				Command batch module
INT21	GPT3	TOP_AON/MCUSYS				General purpose timer module
INT22	WDT_CM4	TOP_AON/MCUSYS_C M4				CM4 WDT interrupt N9
EINT0	UART_RX	TOP_AON	V	V	Available	Wake up from UART
EINT1	(Reserved)		V	V	Available	
EINT2	HIFSYS	TOP_AON/HIF	V	V	Available	WIFI_HIF (SDIO)
EINT3	CM4_TO_N9_S W	TOP_AON/MCUSYS_C M4	V	V	Available	CM4 SW interrupt N9 83080080[31:30] SW_INT
EINT4	(Reserved)		V	V	Available	
EINT5	PCIE *	TOP_OFF(N9)/HIFSYS	V	V	Available	Wake up from PCIe
EINT6	GPT	TOP_AON/MCUSYS	V	V	Available	General purpose timer module (GPT0 timer and GPT1 timer)
EINT7	External interrupt	TOP_AON	V	V	Available	External interrupt Pin: GPIO58
EINT8	External interrupt	TOP_AON	V	V	Available	External interrupt Pin: GPIO57
EINT9	External interrupt	TOP_AON	V	V	Available	External interrupt Pin: GPIO30
EINT10	(Reserved)		V	V	Available	
EINT11	External interrupt	TOP_AON	V	V	Available	External interrupt Pin: GPIO38
EINT12	External interrupt	TOP_AON	V	V	Available	External interrupt Pin: GPIO39
EINT13	(Reserved)		V	V	Available	

^{*:} Not used for MT7687F

Note 1; Capable to wake up N9 when N9 is in sleep mode.

2.7 Wi-Fi Subsystem

2.7.1 Wi-Fi MAC

MT7687F MAC supports the following features:

- Supports all data rates of 802.11g including 6, 9, 12, 18, 24, 36, 48, and 54Mbps
- Supports short GI and all data rates of 802.11n including MCS0 to MCS7
- 802.11 to 802.3 header translation offload
- RX TCP/UDP/IP checksum offload
- Supports multiple concurrent clients as an access point
- Supports multiple concurrent clients as a repeater
- Aggregate MPDU RX (de-aggregation) and TX (aggregation) support
- Transmits beamforming as a beamformee
- Transmits rate adaptation
- Transmits power control
- Security
- 64-bit WEP (WEP-40) and 128-bit WEP (WEP-104) encryption with hardware TKIP and CKIP processing
- AES-CCMP hardware processing
- SMS4-WPI (WAPI) hardware processing

2.7.2 WLAN Baseband

MT7687F baseband supports the following features:

- 20 and 40MHz channels
- MCSO-7 (BPSK, r=1/2 through 64QAM, r=5/6)
- Short Guard Interval
- STBC support
- Low Density Parity check (LDPC) coding
- Support digital pre-distortion to enhance PA performance
- Smoothing (channel estimation) extension to MIMO case

2.7.3 WLAN RF

MT7687F RF supports the following features:

- Integrated 2.4GHzPA and LNA, and T/R switch
- Support frequency band
- **2**400-2497MHz
- Support RX antenna diversity for both 2.4GHz band to eliminate the requirement of an external SPDT

2.8 RTC

MT7687F features one RTC (Real Time Clock) module. The clock source is the 32.768 KHz Crystal or an external clock source. RTC has built in an accurate timer to wake up the system when it expires.

© 2017 MediaTek Inc.

Page 55 of 78

RTC uses a different power rail from PMU. In the hibernate mode, the PMU is turned off while the RTC module is remained powered on. The RTC module only consumes 3uA in hibernate mode.

RTC has a dedicated PMU control pin PMU_EN_RTC (pin 23) used to turn on the power to the chip when the RTC timer expires and turn off the power to the chip when it intends to enter the hibernate mode.

3 Radio Characteristics

3.1 Wi-Fi Radio Characteristics

3.1.1 Wi-Fi RF Block Diagram

Front-end loss with external Balun (2.4GHz band): 2.4GHz band insertion loss is 2dB.

Note: M is matching circuits for 50ohm impedance tuning.

Figure 3-1. 2.4GHz RF Block Diagram

3.1.2 Wi-Fi 2.4GHz Band RF Receiver Specifications

The specifications noted in the table below is measured at the antenna port, which includes the front-end loss.

Table 3-1. 2.4GHz RF Receiver Specification

Parameter	Description	Performance			
		MIN	TYP	MAX	Unit
Frequency range	Center channel frequency	2412		2484	MHz
RX sensitivity	1 Mbps CCK	-	-96.4	-	dBm
	2 Mbps CCK	-	-93.4	-	dBm
	5.5 Mbps CCK	-	-91.4	-	dBm

© 2017 MediaTek Inc.

Page 57 of 78

Parameter	Description		Performance				
		MIN	TYP	MAX	Unit		
	11 Mbps CCK	-	-88.4	-	dBm		
RX sensitivity	BPSK rate 1/2, 6 Mbps OFDM	-	-93.4	-	dBm		
	BPSK rate 3/4, 9 Mbps OFDM	-	-91.1	-	dBm		
	QPSK rate 1/2, 12 Mbps OFDM	-	-90.3	-	dBm		
	QPSK rate 3/4, 18 Mbps OFDM	-	-87.9	-	dBm		
	16QAM rate 1/2, 24 Mbps OFDM	-	-84.6	-	dBm		
	16QAM rate 3/4, 36 Mbps OFDM	-	-81.2	-	dBm		
	64QAM rate 1/2, 48 Mbps OFDM	-	-77.0	-	dBm		
	64QAM rate 3/4, 54 Mbps OFDM	-	-75.7	-	dBm		
RX Sensitivity	MCS 0, BPSK rate 1/2	-	-92.7	-	dBm		
BW=20MHz	MCS 1, QPSK rate 1/2	-	-89.5	-	dBm		
Mixed mode	MCS 2, QPSK rate 3/4	-	-87.1	-	dBm		
800ns Guard	MCS 3, 16QAM rate 1/2	-	-84.1	-	dBm		
Interval	MCS 4, 16QAM rate 3/4	-	-80.6	-	dBm		
Non-STBC	MCS 5, 64QAM rate 2/3	-	-76.2	-	dBm		
	MCS 6, 64QAM rate 3/4	-	-74.8	-	dBm		
	MCS 7, 64QAM rate 5/6	-	-73.6	-	dBm		
RX Sensitivity	MCS 0, BPSK rate 1/2	-	-89.6	-	dBm		
BW=40MHz	MCS 1, QPSK rate 1/2	-	-86.8	-	dBm		
Mixed mode	MCS 2, QPSK rate 3/4	-	-84.3	-	dBm		
800ns Guard	MCS 3, 16QAM rate 1/2	-	-80.8	-	dBm		
Interval	MCS 4, 16QAM rate 3/4	-	-77.7	-	dBm		
Non-STBC	MCS 5, 64QAM rate 2/3	-	-73.1	-	dBm		
	MCS 6, 64QAM rate 3/4	-	-71.8	-	dBm		
	MCS 7, 64QAM rate 5/6	-	-70.6	-	dBm		
Maximum Receive	6 Mbps OFDM	-	-10	-	dBm		
Level	54 Mbps OFDM	-	-10	-	dBm		
	MCS0	-	-10	-	dBm		
	MCS7	-	-20	-	dBm		
Receive Adjacent	1 Mbps CCK	-	40	-	dBm		

Parameter Description		Performance				
		MIN	TYP	MAX	Unit	
Channel Rejection	11 Mbps CCK	-	40	-	dBm	
	BPSK rate 1/2, 6 Mbps OFDM	-	34	-	dBm	
	64QAM rate 3/4, 54 Mbps OFDM	-	22	-	dBm	
	HT20, MCS 0, BPSK rate 1/2	-	33	-	dBm	
	HT20, MCS 7, 64QAM rate 5/6	-	15	-	dBm	
	HT40, MCS 0, BPSK rate 1/2	-	29	-	dBm	
	HT40, MCS 7, 64QAM rate 5/6	-	9	-	dBm	

3.1.3 Wi-Fi 2.4GHz Band RF Transmitter Specifications

The specifications in table are measured at the antenna port, which includes the front-end loss.

Table 3-2. 2.4GHz RF Transmitter Specifications

Parameter	Description	Performance				
		MIN	TYP	MAX	Unit	
Frequency range		2412	-	2484	MHz	
Output power with	1 Mbps CCK	-	21	-	dBm	
spectral mask and EVM compliance	11 Mbps CCK	-	21	-	dBm	
·	6 Mbps OFDM	-	19	-	dBm	
	54 Mbps OFDM	-	18	-	dBm	
	HT20, MCS 0	-	18	-	dBm	
	HT20, MCS 7	-	17.5	-	dBm	
	HT40, MCS 0	-	17	-	dBm	
	HT40, MCS 7	-	16.5	-	dBm	
TX EVM	6 Mbps OFDM	-	-	-5	dB	
	54 Mbps OFDM	-	-	-25	dB	
	HT20, MCS 0	-	-	-5	dB	
	HT20, MCS 7	-	-	-28	dB	
	HT40, MCS 0	-	-	-5	dB	
	HT40, MCS 7	-	-	-28	dB	
Output power variation ⁽¹⁾	TSSI closed-loop control across all temperature range and channels and VSWR \leq 1.5:1.	-1.5	-	1.5	dB	

Parameter	Description	Performance			
		MIN	TYP	MAX	Unit
Carrier suppression		-	-	-30	dBc
Harmonic Output	2nd Harmonic	-	-45	-43	dBm/MHz
Power	3nd Harmonic	-	-45	-43	dBm/MHz

Note 1: VDD33 voltage is within $\pm 5\%$ of typical value.

4 Electrical Characteristics

4.1 Absolute Maximum Rating

Table 4-1 Absolute Maximum Rating

Symbol	Parameters	Maximum rating	Unit
VDD33	3.3V Supply Voltage	-0.3 to 3.63	V
T _{STG}	Storage Temperature	-40 to +125	°C
VESD	ESD protection (HBM)	2000	V

4.2 Recommended Operating Range

Table 4-2. Recommended Operating Range

Symbol	Supply Voltage	Source	Min	Тур	Max	Unit
AVDD45	AVDD45_BUCK, AVDD45_MISC	To be connected to external 3.3V supply	2.97	3.3	3.63	V
RTC_3V3	RTC_3V3	To be connected to external supply	1.6		3.63	V
AVDD33	AVDD33_WF0_G_PA, AVDD33_WF0_G_TX, AVDD33	To be connected to external 3.3V supply	2.97	3.3	3.63	V
DVDDIO	DVDDIO_D, DVDDIO_L, DVDDIO_R	To be connected to PMU_DIO33_OUT	2.97	3.3	3.63	
AVDD25	AVDD25_AUXADC	To be connected to PMU ALDO output	2.3	2.5	2.7	V
AVDD16	AVDD16_CLDO, AVDD16, AVDD16_XO, AVDD16_WF0_AFE	To be connected to PMU BUCK output	1.6	1.7	1.8	V
DVDD11	DVDD11	To be connected to PMU CLDO output	0.86	1.15	1.3	V
Та	Operating Ambient Temperature	MT7687FN	-30		85	С
		MT7687FIN	-40		85	С
Tj	Operating Junction Temperature	MT7687FN	-30		125	С
		MT7687FIN	-40		125	С

4.3 DC Characteristics

Table 4-3. DC Characteristics

Symbol	Parameter	Conditions	MIN	MAX	Unit
VIL	Input Low Voltage	LVTTL	-0.28	0.8	٧

© 2017 MediaTek Inc.

Page 61 of 78

Symbol	Parameter	Conditions	MIN	MAX	Unit
VIH	Input High Voltage		2	3.63	V
Vol	Output Low Voltage	I _{OL} = 4~16 mA	-0.28	0.4	V
Vон	Output High Voltage	I _{OH} = 4~16 mA	2.4	VDD33+0.33	V
R _{PU}	Input Pull-Up Resistance	PU=high, PD=low	40	190	ΚΩ
R _{PD}	Input Pull-Down Resistance	PU=low, PD=high	40	190	ΚΩ

4.4 XTAL Oscillator

The table below lists the XTAL requirements for the XTAL.

Table 4-4. XTAL Oscillator Requirements

Parameter	Value
Frequency	26, 40, 52MHz.
Frequency stability	±10 ppm @ 25°C
Aging	±3 ppm/year

4.5 PMU Characteristics

Table 4-5. PMU Electrical Characteristics

	Parameter	Reference	Conditions	Min	Тур	Max	Unit			
Switchi	Switching regulator (BUCK)									
Vin	Input Voltage	AVDD45_BUCK		2.97	3.3	3.63	V			
Vout	Output Voltage	LXBK	Switching operation	1.6	1.7	1.8	V			
			Deep Sleep mode, SLDO-H enabled		1.8		V			
lout	Output Current		Switching operation			800	mA			
			Deep Sleep mode, SLDO-H enabled			10	mA			
			Over-current shutdown	960	1600	4000	mA			
Iq	Quiescent Current		Iload < 1mA		150		uA			
DC/DC	Line Regulation		Iload = 0mA			1	%			
	Load regulation		Iload = 200-400mA			0.05	mV/mA			
	Efficiency		Vin = 3.3V, Iload = 400mA	80	85		%			
Core LD	Core LDO (CLDO)									
Vin	Input	AVDD16_CLDO		1.6	1.7	1.8	V			

	Parameter	Reference	Conditions	Min	Тур	Max	Unit
Vout	Output Voltage	AVDD12_VCORE	Normal operation	0.86	1.15	1.3	V
			Deep Sleep mode, SLDO-L				
			enabled		0.85		V
lout	Output Current		Normal operation			420	mA
			Deep Sleep mode, SLDO-L				
			enabled			10	mA
	Quiescent						
Iq	Current				40	50	uA
Analog	LDO (ALDO)						
Vin	Input Voltage			2.97	3.3	3.63	V
Vout	Output Voltage	AVDD25_ALDO	Normal operation	2.3	2.5	2.7	V
			Deep Sleep mode, OFF		0		V
lout	Output Current		Normal operation			50	mA
	Quiescent		·				
Iq	Current				25	50	uA
PMU							
Vin	Input Voltage	AVDD45, AVDD33		2.97	3.3	3.63	V
		and DVDDIO					
	Quiescent						
Iq	Current		In Deep Sleep State			50	uA

4.6 Auxiliary ADC Characteristics

This section specifies the electrical characteristics of the auxiliary ADC.

Table 4-6. Auxiliary ADC Specifications

Symbol	Parameter	Min	Typical	Max	Unit
N	Resolution	-	12	-	Bit
FS	Sampling Rate @ N-Bit ⁽¹⁾	-	2	-	MSPS
VPP	Input Swing ⁽²⁾	-	-	AVDD25 (2.45~2. 55V)	V
VIN	Input voltage ⁽³⁾	0	-	AVDD25 (2.45~2. 55V)	V
RIN	Input Impedance: Unselected channel Selected channel	400M -	- 10K	-	Ohm
DNL	Differential Nonlinearity without dithering and averaging	-	± 1	± 2	LSB

© 2017 MediaTek Inc.

Page 63 of 78

Symbol	Parameter	Min	Typical	Max	Unit
INL	Integral Nonlinearity without dithering and averaging	-	± 2	± 4	LSB
DNL _{dither+average}	Differential Nonlinearity with dithering and averaging	-	± 0.5	± 1	LSB
INLdither+average	Integral Nonlinearity with dithering and averaging	-	-	± 2	LSB
OE	Offset Error	-	-	± 10	mV
FSE	Full Swing Error	-	-	± 50	mV
SNR	Signal to Noise Ratio ⁽²⁾	60	63	66	dB
	Current Consumption	-	-	400	μΑ
	Power-Down Current	-	-	1	μΑ

Note 1: Given that FS=2MHz

Note 2: At 1K Hz Input Frequency

Note 3: The voltage level is lowered by 0.04V when dithering is on.

4.7 Thermal Characteristics

 Θ_{JC} assumes that all the heat is dissipated through the top of the package, while Ψ_{Jt} assumes that the heat is dissipated through the top, sides, and the bottom of the package. Thus it is suggested to use Ψ_{Jt} to estimate the junction temperature.

Table 4-7. Thermal Characteristics

Symbol	Description	Performa	nce
Т _Ј	Description	Typical	Unit
TJ	Maximum Junction Temperature (Plastic Package)	125	°C
ОЈА	Junction to ambient temperature thermal resistance ^[1]	19.21	°C/W
Θ _{JC}	Junction to case temperature thermal resistance	7.33	°C/W
Ψ_{Jt}	Junction to the package thermal resistance ^[2]	1.65	°C/W

Note 1: JEDEC 51-7 system FR4 PCB size: 76.2mm x 114.3mm

Note 2: 8mm x 8mm QFN-68 package

4.8 Power Performance Summary

Table 4-8 lists the current consumptions in VBAT domain. Note that the measurement conditions are typical conditions for process, voltage (3.3v) and temperature (25°C).

Table 4-8. Current consumption in different scenarios

Scenario	Test Conditions	Typical	Unit
Legacy Sleep	MCU subsystem clocks are gated offThe entire subsystem is retained	0.667	mA
	Only 32KHz clock from XTAL is active		
RTC model ¹ l	System OffNo SRAM retainedOnly RTC is alive	0.0031	mA
WIFI Radio Off	 WFI Sleep mode^[1] Tickless feature enabled 	10.79	mA
	 Legacy Sleep mode^[1] Tickless feature enabled 	0.97	mA
WIFI Connected	WFI Sleep modeTickless feature enabled	14.18	mA

© 2017 MediaTek Inc.

Page 65 of 78

Scenario	Test Conditions	Typical	Unit
	• DTIM1 ^[2]		
	 Legacy Sleep mode Tickless feature enabled DTIM1^[2] 	4.64	mA
	 Legacy Sleep mode Tickless feature enabled DTIM10^[2] 	2.07	mA

Note 1: Please refer to LinkIt_for_RTOS_Power_Mode_Developers_Guide.pdf chapter 3.1 for power modes

Note 2: DTIM, A **delivery traffic indication map** is a kind of <u>traffic indication map</u> (TIM) which informs the clients about the presence of buffered multicast/broadcast data on the <u>access point</u>. It is generated within the periodic beacon at a frequency specified by the DTIM Interval

DTIM 1: DTIM interval = 1, WIFI wake up each beacon period (default 100 ms)

DTIM 10: DTIM interval = 10, WIFI wake up every 10 beacon period (1000ms)

5 Package Specifications

5.1 Pin Layout

MT7687F uses 8mm x 8mm QFN package of 68-pin with 0.4mm pitch.

Table 5-1. Pin Map

		68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52		
		NC	AVDD33	NC	AVDD33_WF0_G_TX	WF0_G_RFIOP	WF0_G_RFION	AVDD33_WF0_G_PA	WF0_RXG_AUX_IN	AVDD16	AVDD33	NC	GPIO33	GPIO34	GPIO35	GPIO36	GPIO37	GPIO38		
1	AVDD33											u u				U U	u u		SYSRST_B	51
2	AVDD16_WF0_AFE																		GPIO39	50
3	AVDD16_XO																		DVDD11	49
4	XO																		DVDDIO_L	48
5	GPIO0																		GPIO57	47
6	GPIO1																		GPIO58	46
7	GPIO2																		GPIO59	45
8	GPIO3																		GPIO60	44
9	GPIO4									VSS									AVDD25_AUXADC	43
10	GPIO5																		AVSS25_AUXADC	42
11	GPIO6																		AVSS45_BUCK	41
12	GPIO7																		LXBK	40
13	DVDDIO_R																		AVDD45_BUCK	39
14	DVDD11																		AVDD15_V2P5NA	38
15	GPIO24																		AVDD16_CLDO	37
16	DVDDIO_D																		AVDD12_VCORE	36
17	DVDD11																		PMU_TEST	35
		GPI025	GP1026	RTC_3V3	RTC_32K_XO	RTC_32K_XI	PMU_EN_RTC	GPI032	GPIO31	GPI027	GPI030	GPIO28	GPI029	PMU_DIO33_OUT	AVDD25_ALDO_OUT	PMU_EN_WF	ISO_INT_PMU_EN	AVDD45_MISC		
		18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34		

5.2 Pin Description

The section describes the pin functionality of MT7687F chip.

Table 5-2. Pin Descriptions

QFN	Pin Name	Pin description	PU/PD	1/0	Supply domain
Roset :	and Clocks				
51	SYSRST_B	External system reset active low	PU	Input	DVDDIO
4	XO	Crystal input or external clock input	N/A	Input	AVDD16 XO
3	AVDD16_XO	RF 1.6V power supply	N/A	Power	NVBB10_XC
_	mmable I/O	IN 1.0V power suppry	IV/A	TOWCI	
5	GPIO0	Programmable input/output	PU/PD	In/out	DVDDIO
6	GPIO1	Programmable input/output	PU/PD	In/out	DVDDIO
7	GPIO2	Programmable input/output	PU/PD	In/out	DVDDIO
8	GPIO3	Programmable input/output	PU/PD	In/out	DVDDIO
9	GPIO4	Programmable input/output	PU/PD	In/out	DVDDIO
10	GPIO5	Programmable input/output	PU/PD	In/out	DVDDIO
11	GPIO6	Programmable input/output	PU/PD	In/out	DVDDIO
12	GPIO7	Programmable input/output	PU/PD	In/out	DVDDIO
15	GPIO24	Programmable input/output	PU/PD	In/out	DVDDIO
18	GPIO25	Programmable input/output	PU/PD	In/out	DVDDIO
19	GPIO26	Programmable input/output	PU/PD	In/out	DVDDIO
26	GPIO27	Programmable input/output	PU/PD	In/out	DVDDIO
28	GPIO28	Programmable input/output	PU/PD	In/out	DVDDIO
29	GPIO29	Programmable input/output	PU/PD	In/out	DVDDIO
27	GPIO30	Programmable input/output	PU/PD	In/out	DVDDIO
25	GPIO31	Programmable input/output	PU/PD	In/out	DVDDIO
24	GPIO32	Programmable input/output	PU/PD	In/out	DVDDIO
57	GPIO33	Programmable input/output	PU/PD	In/out	DVDDIO
56	GPIO34	Programmable input/output	PU/PD	In/out	DVDDIO
55	GPIO35	Programmable input/output	PU/PD	In/out	DVDDIO

QFN	Pin Name	Pin description	PU/PD	1/0	Supply domain
54	GPIO36	Programmable input/output	PU/PD	In/out	DVDDIO
53	GPIO37	Programmable input/output	PU/PD	In/out	DVDDIO
52	GPIO38	Programmable input/output	PU/PD	In/out	DVDDIO
50	GPIO39	Programmable input/output	PU/PD	In/out	DVDDIO
47	GPIO57	Programmable input/output	PU/PD	In/out	DVDDIO
46	GPIO58	Programmable input/output	PU/PD	In/out	DVDDIO
45	GPIO59	Programmable input/output	PU/PD	In/out	DVDDIO
44	GPIO60	Programmable input/output	PU/PD	In/out	DVDDIO
RTC	l				1
20	VRTC	RTC domain power supply	N/A	Power	
21	RTC_32K_XO	32KHz crystal	N/A	Analog	VRTC
22	RTC_32K_XI	32KHz crystal	N/A	Analog	VRTC
23	PMU_EN_RTC	PMU enable	N/A	Output	VRTC
WIFI R	Radio Interface	1		l	
1,59, 67	AVDD33	RF 3.3v power supply	N/A	Power	
62	AVDD33_WF0_G_PA	RF 3.3v power supply	N/A	Power	
65	AVDD33_WF0_G_TX	RF 3.3v power supply	N/A	Power	
2	AVDD16_WF0_AFE	RF 1.6v power supply	N/A	Power	
58, 66,68	NC	No Connected	N/A	Input	
61	WF0_RXG_AUX_IN	RF g-band auxiliary RF LNA port	N/A	Input	AVDD33_WF0_G
64	WF0_G_RFIOP	RF g-band RF port	N/A	In/out	AVDD33_WF0_G
63	WF0_G_RFION	RF g-band RF port	N/A	In/out	AVDD33_WF0_G
60	AVDD16	RF 1.6v power supply	N/A	Power	
PMU/E	BUCK				
41	AVSS45_BUCK	BUCK ground	N/A	Ground	
40	LXBK	BUCK output	N/A	Output	
39	AVDD45_BUCK	BUCK power supply	N/A	Input	
38	AVDD15_V2P5NA	BUCK internal circuit output cap	N/A	Output	
37	AVDD16_CLDO	CLDO supply	N/A	Input	
36	AVDD12_VCORE	CLDO output	N/A	Output	

QFN	Pin Na	me	Pin description	PU/PD	1/0	Supply domain
34	AVDD4	5_MISC	PMU supply	N/A	Input	
31	AVDD2	5_ALDO_OUT	2.5V ALDO output with external cap.	N/A	Output	
30	AVDD45_MISC AVDD25_ALDO_OUT PMU_DIO33_OUT PMU_TEST ISO_INT_PMU_EN PMU_EN_WF		This pin output is to provide 3.3V for all DVDDIO. And in OFF mode, this pin is 0V.	N/A	Output	
35	PMU_1	TEST	PMU test pin	N/A	Output	
33	ISO_IN	T_PMU_EN	Input 0V for non-RTC platform. Input 3.3V for RTC platform.	N/A	Input	
32	PMU_E	EN_WF	External PMU enable	N/A	Input	
Power	r Supplie	s				
43		AVDD25_AUXADC	Auxiliary ADC 2.5v power supply	N/A	Power	
42		AVSS25_AUXADC	Auxiliary ADC ground	N/A	Ground	
13		DVDDIO_R	Digital 3.3V input	N/A	Power	
16		DVDDIO_D	Digital 3.3V input	N/A	Power	
48		DVDDIO_L	Digital 3.3V input	N/A	Power	
14, 17	, 30, 49	DVDD11	Digital 1.15V input	N/A	Power	
E-PAD	١	VSS	Common Ground	N/A	Ground	

5.3 Pin Multiplexing

The pin multiplexing could be controlled via the configuration register A (in TOP_AON domain) and the configuration register B (in TOP_OFF/N9 domain). When configuration register A is set to 0, the configuration register B determines the pin function. When configuration register A is not set to 0, the configuration register A determines the pin function.

The default function of each pin is highlighted with blue background.

The driving strength of all pins is programmable: 4mA, 8mA, 12mA, and 16mA. The default setting for all pins are 4mA.

Table 5-3. Pin Multiplexing

Pin	Pin alias	APGIO/	Name	Dir	Default	Default	Description	Pinx_pinmux_aon_se	I	Pinx_pinmux_off_se	el
		GPIO			dir	PU/PD		Address	Value		Value
			MCU_JTCK	ı	ı	PD	N9 JTAG debug port		0		0
			ANTSEL[0]	0			RF control		-		1
			UART0_RTS_CM4	0			UARTO RTS (CM4)		7		3
5	GPIO0	AGPIO	GPIO TOPOFF[0]	I/O			General purpose input output	0x8102_3020[3:0]	-	0x8002_5100[3:0]	5
			GPIO_TOPAON[0]	0			General purpose input output		8	(0x8102_3020[3:0]=0)	-
			PWM[0]	I/O			Pulse-width-modulated output		9		-
			EINT[0]	1			External interrupt		3		_
			MCU_JTMS	ı	ı	PD	N9 JTAG debug port		0		0
			ANTSEL[1]	0			RF control		-		1
			UARTO_CTS_CM4	1			UART0 CTS (CM4)		7		3
6	GPIO1	AGPIO	GPIO_TOPOFF[1]	I/O			General purpose input output	0x8102_3020[7:4]	-	0x8002_5100[7:4]	5
			GPIO_TOPAON[1]	I/O			General purpose input output		8	(0x8102_3020[7:4]=0)	_
			PWM[1]	0			Pulse-width-modulated output		9		_
			EINT[1]	ı			External interrupt		3		-
			MCU_JTDI	-	1	PD	N9 JTAG debug port		0		0
			ANTSEL[2]	0	•		RF control		-		1
			MCU AICE TMSC	1/0			N9 debug		-		2
			UARTO_RX_CM4	1			UARTO RX (CM4)		7		3
7	GPIO2	AGPIO	SWD CLK	0			CM4 SWD debug port	0x8102_3020[11:8]	4	0x8002_5100[11:8]	4
,	GF102	AGFIO	GPIO_TOPOFF[2]	1/0				0.00102_3020[11.0]	-	(0x8102_3020[11:8]=0)	5
				1/0			General purpose input output				-
			GPIO_TOPAON[2]				General purpose input output		8		
			PWM[23]	0			Pulse-width-modulated output		9		-
			WIC[0]	-	ı	DD.	External interrupt		3		-
			MCU_JTRST_B	1	ı	PD	N9 JTAG debug port		0		0
			ANTSEL[3]	0			RF control		-		1
			[Reserved]	1			[Reserved]		-		2
			UARTO_TX_CM4	0			UART0 TX (CM4)		7		3
8	GPIO3	AGPIO	SWD_DIO	I/O			CM4 SWD debug port	0x8102_3020[15:12]	4	0x8002_5100[15:12]	4
			GPIO_TOPOFF[3]	I/O			General purpose input output		-	(0x8102_3020[15:12]=0)	5
			GPIO_TOPAON[3]	I/O			General purpose input output		8		-
			PWM[24]	0			Pulse-width-modulated output		9		-
			EINT[2]	ı			External interrupt		3		-
			PULSE_CNT	- 1			Pulse counter		2		-
			MCU_DBGIN	I	I	PD	N9 JTAG debug port		0		0
			ANTSEL[4]	0			RF control		-		1
			MCU_AICE_TCKC	- 1			N9 debug		-		-
9	GPIO4	GPIO	SPI_DATA0_EXT *	I/O			External flash interface	0x8102_3020[19:16]	7	0x8002_5100[19:16]	3
	2	55	GPIO_TOPOFF[4]	I/O			General purpose input output		-	(0x8102_3020[19:16]=0)	5
			GPIO_TOPAON[4]	I/O			General purpose input output		8		-
			PWM[2]	0			Pulse-width-modulated output		9		-
			EINT[3]	- 1			External interrupt		3		-
			[Debug flag]	0	O(Lo w)		Debug monitor pin		0		0
			ANTSEL[5]	0			RF control		-		1
			SPI_DATA1_EXT *	0			External flash interface		7	0x8002_5100[23:20]	3
10	GPIO5	GPIO	GPIO_TOPOFF[5]	I/O	I		General purpose input output	0x8102_3020[23:20]	-	(0x8102_3020[23:20]=0)	5
	GPIO5 GI		GPIO_TOPAON[5]	I/O			General purpose input output		8		-
			PWM[3]	0			Pulse-width-modulated output		9		-
			EINT[4]	ı			External interrupt		3		-
'		GPIO		1		i —					_

Pin	Pin alias	APGIO/ GPIO	Name	Dir	Default dir	Default PU/PD	Description	Pinx_pinmux_aon_se	ı	Pinx_pinmux_off_se	el .
			ANTSEL[6]	0			RF control		-	(0x8102_3020[27:24]=0)	1
			SPI_CS_1_M_CM4	0			SPI master chip select 1		7		3
			GPIO TOPOFF[6]	I/O			General purpose input output		-		5
			GPIO TOPAON[6]	I/O			General purpose input output		8		_
			PWM[4]	0			Pulse-width-modulated output		9		_
			EINT[5]	-			External interrupt		3		_
			MCU_JTDO	0	O(Lo w)		N9 JTAG debug port		0		0
			ANTSEL[7]	0			RF control		-		1
			SPI_CS_0_M_CM4	0			SPI master chip select 0		6		2
12	GPIO7	GPIO	SPI_CS_EXT *	0			External flash interface	0x8102_3020[31:28]	7	0x8002_5100[31:28]	3
			GPIO_TOPOFF[7]	I/O			General purpose input output		-	(0x8102_3020[31:28]=0)	5
			GPIO_TOPAON[7]				General purpose input output		8		-
			PWM[5]	0			Pulse-width-modulated output		9		-
			EINT[6]	-			External interrupt		3		-
			[Reserved]				[Reserved]		-		0
			UART_DSN_TXD_N9	0			UART_DSN TX (N9)		-		1
			SPI_MOSI_M_CM4	0			SPI master MOSI		6		2
			SPI_DATA2_EXT *	I/O			External flash interface		7		3
			I2C1_CLK	I/O			I2C1 CLK		4	0x8002_510C[3:0]	4
15	GPIO24	GPIO	GPIO_TOPOFF[24]	I/O			General purpose input output	0x8102_302C[3:0]	-	(0x8102_302C[2:0]=0)	5
			GPIO_TOPAON[24]	I/O			General purpose input output		8		-
			PWM[25]	0			Pulse width modulation		9		-
			[Reserved]	ı	ı	PU	[Reserved]		1		-
			[Reserved]	0			[Reserved]		2		-
			[Reserved]				[Reserved]		-		0
			SPI_MISO_M_CM4	-			SPI master MISO		-		2
			SPI_DATA3_EXT *	I/O			External flash interface		7		3
			I2C1_DATA	I/O			I2C1 DATA		4		4
40	ODIOOF	ODIO	GPIO_TOPOFF[25]	I/O			General purpose input output	00400 000017.41	-	0x8002_510C[7:4]	5
18	GPIO25	GPIO	GPIO_TOPAON[25]	I/O			General purpose input output	0x8102_302C[7:4]	8	(0x8102_302C[7:4]=0)	-
			PWM[26]	0			Pulse width modulation		9		-
			[Reserved]	I/O	0	PU	Default: Low.		1		-
			FRAME_SYNC *	-			3DD synchronization		2		-
			WIC[1]	-			External interrupt		3		-
			[Reserved]				[Reserved]		-		0
			SPI_SCK_M_CM4	0			SPI master SCK		6		2
			SPI_CLK_EXT *	0			External flash interface		7		3
40	ODIOSS	ODIO	I2S_TX	0			I2S TX	0:-0400, 0000[44:0]	4	0x8002_510C[11:8]	4
19	GPIO26	GPIO	GPIO_TOPOFF[26]	I/O			General purpose input output	0x8102_302C[11:8]	-	(0x8102_302C[11:8]=0)	5
			GPIO_TOPAON[26]	I/O			General purpose input output		8		-
			PWM[27]	0			Pulse width modulation		9		-
			[Reserved]	I/O	0	PU	Default: Low.		1		-
			SWD_DIO	I/O			CM4 SWD debug port		5		1
			I2C0_CLK	0			I2C0 CLK		4		3
		ſ	GPIO_TOPOFF[27]	I/O			General purpose input output		-		5
26	GPIO27	GPIO	GPIO_TOPAON[27]	I/O			General purpose input output	0v8102 3020[45:42]	8	0x8002_510C[15:12]	-
26	GF IUZI	GFIU	PWM[28]	0			Pulse width modulation	0x8102_302C[15:12]	9	(0x8102_302C[15:12]=0)	-
			[Reserved]	-	ı		[Reserved]		1		-
			PULSE_CNT	_			Pulse counter input		2		-
			WIC[2]	-			External interrupt		3		-
			SWD_CLK	1			CM4 SWD debug port		5	0.0000 5100110 10	1
	ODIOOO	GPIO	SPI_INT_S_N9	0		-	SPI	0x8102_302C[19:16]	_	0x8002_510C[19:16]	2
28	GPIO28	0110	011_1111_0_110				01 1	0.0102_5020[15.10]		(0x8102_302C[19:16]=0)	

Pin	Pin alias	APGIO/ GPIO	Name	Dir	Default dir	Default PU/PD	Description	Pinx_pinmux_aon_sel		Pinx_pinmux_off_se	ı
		Ì	GPIO_TOPOFF[28]	I/O			General purpose input output		0		5
		•	GPIO_TOPAON[28]	I/O			General purpose input output		8		-
		ŀ	PWM[29]	0			Pulse width modulation		9		_
		•	[Reserved]	I/O	ı		[Reserved]		1		-
			I2S_MCLK_S	0			I2S MCLK slave		-		0
		•	SPI_MOSI_S_CM4	1			SPI slave MOSI (CM4)		6		1
			SPI_MOSI_S_N9	- 1			SPI slave MOSI (N9)		-		2
		•	SPI_MOSI_M_CM4	0			SPI master MOSI		7		3
		•	[Reserved]	0			[Reserved]		4		4
29	GPIO29	GPIO	GPIO_TOPOFF[29]	I/O			General purpose input output	0x8102_302C[23:20]	-	0x8002_510C[23:20]	5
		•	GPIO_TOPAON[29]	I/O			General purpose input output		8	(0x8102_302C[23:20]=0)	-
		•	PWM[30]	0			Pulse width modulation		9		-
			[Reserved]	I/O	ı		[Reserved]		1		-
		•	HOST_ACK	0					2		-
		•	WIC[3]	1			External interrupt		3		_
			[Reserved]	0			[Reserved]		5		0
		•	SPI_MISO_S_CM4	0			SPI slave MISO (CM4)		6		1
		ŀ	SPI_MISO_S_N9	0			SPI slave MISO (N9)		0		2
		ŀ	SPI_MISO_M_CM4	ı			SPI master MISO		7		3
		Ì	I2S_FS	ı			I2S slave FS		4	0x8002_5108[27:24]	4
27	GPIO30	GPIO	GPIO_TOPOFF[30]	I/O			General purpose input output	0x8102_302C[27:24]	0	(0x8102_302C[27:24]=0)	5
		Ì	GPIO_TOPAON[30]	I/O			General purpose input output		8		-
		ŀ	PWM[31]	0			Pulse width modulation		9		-
			[Reserved]	I/O	ı		[Reserved]		1		-
		ľ	HOST_EINT_B	ı					2		_
			I2S_TX	0			I2S TX		5		0
		•	SPI_SCK_S_CM4	1			SPI slave SCK (CM4)		6		1
		•	SPI_SCK_S_N9	-			SPI slave SCK (N9)		-		2
		•	SPI_SCK_M	0			SPI master SCK		7		3
25	GPIO31	GPIO	I2S_RX	I			I2S slave RX	0x8102_302C[31:28]	4	0x8002_510C[31:28]	4
		•	GPIO_TOPOFF[31]	I/O			General purpose input output		-	(0x8102_302C[31:28]=0)	5
		•	GPIO_TOPAON[31]	I/O			General purpose input output		8		_
		•	PWM[32]	0			Pulse width modulation		9		-
			[Reserved]	I/O	ı		[Reserved]		1		-
			[Reserved]	0			[Reserved]		5		0
		ŀ	SPI_CS_0_S_CM4	I			SPI slave CS (CM4)		6		1
		•	SPI_CS_0_S_N9	1			SPI slave CS (N9)		-		2
		•	SPI_CS_0_M	0			SPI master CS		7		3
			I2S_BCLK	- 1			I2S BCLK slave		4	0x8002_5110 [3:0]	4
24	GPIO32	GPIO	GPIO_TOPOFF[32]	I/O			General purpose input output	0x8102_3030[3:0]	-	(0x8102_3030[3:0]=0)	5
		•	GPIO_TOPAON[32]	I/O			General purpose input output		8		-
		•	PWM[33]	0			Pulse width modulation		9		-
		•	[Reserved]	I/O	ı		[Reserved]		1		-
		•	WIC[4]	-			External interrupt		3		-
			WIFI_INT_B	I/O	0	PU	External interrupt		0		0
			ALL_INT_B	I/O			External interrupt		-		1
			SWD_DIO	I/O			CM4 SWD debug port		6		2
			IR_TX	0			IrDA TX		7		3
57	GPIO33	AGPIO	ANTSEL[5]	0			RF control	0x8102_3030 [7:4]	4	0x8002_5110 [7:4]	4
		ļ	GPIO_TOPOFF[33]	I/O			General purpose input output		-	(0x8102_3030 [7:4]=0)	5
		ļ	GPIO_TOPAON[33]	I/O			General purpose input output		8		-
		ļ	PWM[34]	0			Pulse width modulation		9		-
		ŀ	PULSE_CNT	1			Pulse counter		1		_

Pin	Pin alias	APGIO/ GPIO	Name	Dir	Default dir	Default PU/PD	Description	Pinx_pinmux_aon_sel		Pinx_pinmux_off_se	d
			WF_LED_B	0			LED output		2		-
			WIC[5]	_			External interrupt		3		-
			MISC_INT_B	I/O	0	PU	External interrupt		0		0
			ALL_INT_B	I/O					-		1
			SWD_CLK	I			CM4 SWD debug port		6		2
			IR_RX	I			IrDA RX		7		3
			ANTSEL[6]	0			RF control		4		4
56	GPIO34	AGPIO	GPIO_TOPOFF[34]	I/O			General purpose input output	0x8102_3030 [11:8]	-	0x8002_5110 [11:8]	5
			GPIO_TOPAON[34]	I/O			General purpose input output		8	(0x8102_3030 [11:8]=0]	_
			PWM[35]	0			Pulse width modulation		9		_
			FRAME_SYNC *	1			3DD synchronization		1		_
			MISC_LED_B	I/O			LED output		2		_
			WIC[6]	1			External interrupt		3		_
			UART_DSN_TXD_N9	0	0	PD	UART DSN TX (N9)		0		0
			UART_DBG_CM4	0			UART DBG TX (CM4)		7		3
			GPIO_TOPOFF[35]	I/O			General purpose input output		-		5
55	GPIO35	GPIO	GPIO TOPAON[35]	I/O			General purpose input output	0x8102_3030 [15:12]	8	0x8002_5110 [15:12]	_
	0. 1000	00						0.0102_0000[10112]		(0x8102_3030 [15:12]=0)	
			I2S_TX	0			I2S TX		5		-
			PWM[18]	0			Pulse-width-modulated output		9		-
			[Reserved]				[Reserved]		-		0
			S2A_SPI_IN				SPI input		-		1
			UART1_RX_CM4	i			UART1 RX (CM4)		7		3
			GPIO_TOPOFF[36]	I/O			General purpose input output		-	0x8002_5110 [19:16]	5
54	GPIO36	GPIO	GPIO_TOPAON[36]	I/O			General purpose input output	0x8102_3030 [19:16]	8	(0x8102_3030 [19:16]=0)	-
			PWM[19]	0			Pulse-width-modulated output		9	(**************************************	_
			UART_RXD_N9	ı	ı	PU	UART RX (N9)		1		_
			WIC[7]	-	-	. 0	External interrupt		3		-
			UART_TXD_N9	0	0	PD	UART TX (N9)		0		0
			UART1_TX_CM4	0			UART1 TX (CM4)		7		3
			GPIO_TOPOFF[37]	I/O			General purpose input output		-	0x8002_5110 [23:20]	5
53	GPIO37	GPIO	GPIO_TOPAON]37]	I/O			General purpose input output	0x8102_3030 [23:20]	8	(0x8102_3030 [23:20]=0)	-
			PWM[20]	0			Pulse-width-modulated output		9	(**************************************	_
			EINT[20]	ı			External interrupt		3		-
			UART_RTS_N9	0	0	PD	UART RTS (N9)		0		0
			PTA EINT B	ı			Packet traffic arbitration		-		1
			IDC_DATA_OUT	0			UART IDC TX (N9)		-		2
			UART1_RTS_CM4	0			UART1 RTS (CM4)		7		3
			GPIO_TOPOFF[38]	1/0			General purpose input output		-	0x8002_5110 [27:24]	5
52	GPIO38	GPIO	GPIO_TOPAON[38]	I/O			General purpose input output	0x8102_3030 [27:24]	8	(0x8102_3030 [26:24]=0)	-
			PWM[21]	0			Pulse-width-modulated output		9	(* * * <u>_</u> ****(* , , , ,	_
			WF_LED_B	I/O			LED output		2		-
			EINT[21]	1			External interrupt		3		_
			SWD_DIO	I/O			CM4 SWD debug port		6		-
			UART_CTS_N9	I	ı	PU	UART CTS (N9)		0		0
			PTA_EINT_B	1	•	. 5	Packet traffic arbitration		-		1
			IDC_DATA_IN	<u>.</u>			UART IDC RX (N9)		-		2
			UART1_CTS_CM4	0			UART1 CTS (CM4)		7		3
50	GPIO39	GPIO	[Reserved]				[Reserved]	0x8102_3030 [31:28]	-	0x8002_5110[31:28]	4
55	J. 1000	5, 10	GPIO_TOPOFF[39]	I/O			General purpose input output	5.0.02_0000 [01.20]		(0x8102_3030 [31:28]=0)	5
			GPIO_TOPAON[39]	1/0			General purpose input output		8		-
			PWM[22]	0			Pulse-width-modulated output		9		
			PULSE_COUNT *	ı			Pulse counter		1		-
			, JLUL_JUUNI	<u>'</u>	l		I disc counter	<u> </u>	'		

Pin	Pin alias	APGIO/ GPIO	Name	Dir	Default dir	Default PU/PD	Description	Pinx_pinmux_aon_sel		Pinx_pinmux_off_se	ı
			MISC_LED_B	I/O			LED output		2		-
			EINT[22]	- 1			External interrupt		3		-
			SWD_CLK				CM4 SWD debug port		6		-
			[Reserved]	I/O			[Reserved]		-		0
			S2A_SPI_CK						-		1
			MCU_AICE_TCKC	-			N9 debug		-		2
			GPIO_TOPOFF[57]	I/O			General purpose input output	0.0400.0000.17.41	-	0x8002 511C [7:4]	5
47	GPIO57	AGPIO	GPIO_TOPAON[57]	I/O			General purpose input output	0x8102_303C [7:4] (0x8102_300C[6]=0)	8	(0x8102_303C [7:4]=0,	-
			PWM[36]	0			Pulse-width-modulated output	(0x0102_0000[0] 0)	9	0x8102_300C[6]=0)	-
			[Reserved]	ı	- 1	PU	[Reserved]		1		-
			WIC[8]	- 1			External interrupt		3		-
			ADC_IN0				Auxiliary ADC input	0x8102_300C[6]	1		-
			[Reserved]	I/O			[Reserved]		-		0
			S2A_SPI_OUT	0					-		1
			MCU_AICE_TMSC	I/O			N9 debug		-		2
			GPIO_TOPOFF[58]	I/O			General purpose input output	0x8102_303C[11:8]=0	-	0x8002 511C [11:8]	5
46	GPIO58	AGPIO	GPIO_TOPAON[58]	I/O			General purpose input output	(0x8102_300C[7]=0)	8	(0x8102_303C[11:8]=0,	-
			PWM[37]	0			Pulse-width-modulated output		9	0x8102_300C[7]=0)	-
			[Reserved]	ı	- 1	PU	[Reserved]		1		-
			WIC[9]	-			External interrupt		3		-
			ADC_IN1	-			Auxiliary ADC input	0x8102_300C[7]	1		-
			[Reserved]	0			[Reserved]		-		0
			UART_DSN_TXD_N9	0			UART DSN TX (N9)		1		1
			SWD_DIO	I/O	I		CM4 debug port		6		2
			GPIO_TOPOFF[59]	I/O			General purpose input output	0.0102 2020 [15:12]	-	0x8002_511C [15:12]	5
45	GPIO59	AGPIO	GPIO_TOPAON[59]	I/O			General purpose input output	0x8102_303C [15:12] (0x8102_300C[8]=0)	8	(0x8102_303C [15:12]=0, 0x8102_300C[8]=0)	-
			PWM[38]	0			Pulse-width-modulated output	(0.00.02_0000[0] 0)	9	,	-
			WF_LED_B	I/O			LED output		1		-
			WIC[10]	-			External interrupt		3		-
			ADC_IN2	-			Auxiliary ADC input	0x8102_300C[8]	1		-
			[Reserved]	-			[Reserved]		-		0
			SWD_CLK	1	- 1		CM4 SWD debug port		6		2
			GPIO_TOPOFF[60]	I/O			General purpose input output		-		5
			GPIO_TOPAON[[60]	I/O			General purpose input output	0x8102_303C [19:16]=0	8	0x8002_511C [19:16]	-
44	GPIO60	AGPIO	PWM[39]	0			Pulse-width-modulated output	(0x8102_300C[9]=0)	9	(0x8102_303C [19:16]=0, 0x8102_300C[9]=0)	-
			MISC_LED_B	I/O			LED output		1	_ ',	-
			PULSE_CNT	1			Pulse counter input		2		-
			WIC[11]	_			External interrupt		3		-
			ADC_IN3	_			Auxiliary ADC input	0x8102_300C[9]	1		-

Note: * not used in MT7687F

5.4 Bootstrap

The section describes the bootstrap function.

The chip modes are sensed from the device pin during power up. After chip reset, the pull configuration are stored in a register and determine the device operation mode.

Table 5-4. Bootstrap Option- Flash Access Mode

© 2017 MediaTek Inc.

Page 75 of 78

This document contains information that is proprietary to MediaTek Inc. ("MediaTek") and/or its licensor(s).

Flash Access Mode	PIN53 (GPIO37)	Description
Normal mode	Pull-down ⁽¹⁾	Firmware jumps to flash.
Recovery mode	Pull-up	Firmware does not jump to flash and wait for UART command.
		This mode is used for the firmware to jump to SYSRAM after downloading code from UART.

Note 1: No external pull-down resistor is required because internal pull-down is active during power up.

Table 5-5. Bootstrap Option – XTAL Clock Mode

XTAL Clock Mode	PIN12 (GPIO7)	PIN52 (GPIO38)	Description
40MHz	Pull-down	Pull-up	Uses 40MHz XTAL.
26MHz	Pull-up	Pull-down ⁽¹⁾	Uses 26MHz XTAL.
52MHz	Pull-up	Pull-up	Uses 52MHz XTAL.

Note 1: No external pull-down resistor is required because internal pull-down is active during power up.

Table 5-6. Bootstrap Option – 32KHz Clock Mode

32KHz clock mode	PIN11 (GPIO6)	Description
Internal 32KHz clock	Pull-down	32KHz clock sources from 40/26/52MHz clock.
External 32KHz clock	Pull-up	32KHz clock sources from external pin.

Table 5-7. Bootstrap Option — Chip Mode

Chip mode	PIN55 (GPIO35)	PIN10 (GPIO5)	PIN11 (GPIO6)	PIN12 (GPIO7)	PIN52 (GPIO38)	Description
Normal mode	Pull- down ⁽¹⁾	Don't care	32KHz clock mode control	XTAL clock mo	de control	Chip operates in normal mode.
Test mode	Pull-up					Chip operates in test mode.

Note 1: No external pull-down resistor is required because internal pull-down is active during power up.

Pins 10, 11, 12, 52, 53, and 55 are is used for bootstrap. The system design should follow the following guideline:

© 2017 MediaTek Inc.

Page 76 of 78

 $This \ document \ contains \ information \ that \ is \ proprietary \ to \ Media Tek \ Inc. \ ("Media Tek") \ and/or \ its \ licensor(s).$

 Those pins shall not be used as input functions because the signals from another device might affect the values sensed.

5.5 Package information

Figure 5-1. Package Outline Drawing

5.6 Ordering information

Table 5-8. Ordering Information

Part number	Package	Operational temperature range
MT7687FN	8mm x 8mm x 0.8 mm QFN68	-30~85°C
MT7687FIN	8mm x 8mm x 0.8 mm QFN68	-40~85°C

5.7 Top Marking

MEDIATEK

ARM

MT7687FN

DDDD-####

BBBBBBB

FFFFFFF

MT7687FN: Part number DDDD : Date code

: Internal control code
BBBBBBB : Main die lot number

FFFFFFF : Flash die lot number

Figure 5-2. Top Marking