1

a) Show that DTFT $\{x[n-k]\} = e^{-i\omega k}$ DTFT $\{x[n]\}$, where

DTFT
$$\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n]e^{i\omega n}$$

b) Prove the convolution property for the Discrete Time Fourier Transform (DTFT), i.e. show that if

$$y[n] = a[n] * x[n] = \sum_{n=-\infty}^{\infty} a_k x_{n-k}$$

then

$$DTFT{y_n} = DTFT{a_n}DTFT{x_n}$$

Hint: Use the result from **a**).

 $\mathbf{2}$

We assume a stationary time series X[n], with $E[X[n]] = \mu_X = 0$.

Figur 1: Autocovariance function.

- a) Give an interpretation of the autocovariance function $\gamma_x(h)$ shown in Figure 1. Is the associated stochastic process uncorrelated?
- **b)** Why can't we define the Fourier transform of a stochastic process? Why can't an energy spectral density be defined either?
- c) Show that the power spectral density $S(\omega)$ for the ACVF shown in Figure 1 is given by

$$S(\omega) = 2\sigma^2(1 + \cos(\omega)) \tag{1}$$

Sketch $S(\omega)$ and discuss the result.

- d) Explain why the average power of X[n] is given by $\gamma_x(0)$. Hint: Think of the inverse Fourier transform.
- e) Let $w_t \sim wn(0, \sigma^2)$ and let $x_t = w_t + w_{t-1}$. Show that $\gamma_x(h)$ corresponds to Figure 1.

3

We assume a stationary time series X[n], with only real values.

- a) Prove that the power spectral density (PSD) is a symmetric function: $S(\omega) = S(-\omega)$.
- **b)** Prove that the PSD is always non-negative: $S(\omega) \geq 0$. You may prove this by showing that $|X(\omega)|^2 \geq 0$, where $X(\omega) = \sum_{n=-\infty}^{\infty} X[n]e^{-i\omega n}$ is the DTFT. Hint: remember that the autocovariance function is positive semi-definite.

4

(Exercise 4.8 in the book) Suppose x[n] and y[n] are stationary zero-mean time series with x[n] independent of y[k] for all n, k. Consider the product series $z[n] = x[n] \cdot y[n]$. Prove the PSD for z[n] can be written as

$$S_Z(f) = \int_{-1/2}^{1/2} S_X(f - f') S_Y(f') df'$$

where $S_Z(f)$ is the PSD of Z[n] and $S_X(f), S_Y(f)$ the PSD of X[n], Y[n], respectively.