Этапы решения задач с матрицами средствами электронных таблиц

Задание 2.5

Матрицы в Excel

В программе Excel с матрицей можно работать как с диапазоном. То есть совокупностью смежных ячеек, занимающих прямоугольную область.

Адрес матрицы – левая верхняя и правая нижняя ячейка диапазона, указанные черед двоеточие.

Формулы массива

Построение матрицы средствами Excel в большинстве случаев требует использование формулы массива. Основное их отличие – результатом становится не одно значение, а массив данных (диапазон чисел).

Порядок применения формулы массива:

- Выделить диапазон, где должен появиться результат действия формулы.
- Ввести формулу (как и положено, со знака «=»).
- Нажать сочетание кнопок Ctrl + Shift + Ввод.

В строке формул отобразится формула массива в фигурных скобках.

Чтобы изменить или удалить формулу массива, нужно выделить весь диапазон и выполнить соответствующие действия. Для введения изменений применяется та же комбинация (Ctrl + Shift + Enter). Часть массива изменить невозможно.

Решение матриц в Excel

С матрицами в Excel выполняются такие операции, как: транспонирование, сложение, умножение на число / матрицу; нахождение обратной матрицы и ее определителя.

Рассмотрим все эти действия более подробно

Транспониро-вание

Транспонировать матрицу, значит, поменять строки и столбцы матрицы местами. Для этого в Excel есть специальная функция ТРАНСП.

- Сначала отметим пустой диапазон, куда будем транспонировать матрицу. ВАЖНО: при размерности исходной матрицы а x b, y транспонированной матрицы размерность будет b x a
- НЕ снимая выделения, вызываем «Мастер функций».
- Выбираем там нашу функцию ТРАНСП.
- В аргумент функции вписываем вручную или выделяем диапазон с исходной матрицей. Нажимаем ОК.
- НЕ снимая выделения, переходим в строку редактирования формул, ставим курсор после формулы и нажимаем сочетание клавиш Ctrl + Shift + Enter.

Формула будет заключена в фигурные скобки, а в выделенном диапазоне появится транспонированная матрица.

× ~	f_x	{=TPAHCΠ(B3:F7)}
-----	-------	------------------

0	2	7	-5	4
-8	1	3	0	-3
4	2	-2	5	1
6	-5	-1	8	0
-9	-2	7	3	-1
		1		
0	-8	4	6	-9
2	1	2	-5	-2
7	3	-2	-1	7
-5	0	5	8	3
4	-3	1	0	-1

Сложение и вычитание

Складывать и вычитать можно матрицы только с одинаковым количеством элементов. Число строк и столбцов первого диапазона должно равняться числу строк и столбцов второго диапазона.

• В первой ячейке итоговой матрицы нужно ввести формулу вида:

$$= a_{1,1} \pm b_{1,1}$$

где a — ссылка на элемент первой матрицы, b — ссылка на элемент второй матрицы

• Нажать Enter и растянуть формулу на весь диапазон

4	Α	В	С	D	E	F	G	Н	1
3		1	2	3			-2	3	0
4	A=	0	1	-1		B=	2	1	1
5									
6				=B3+G3	5	3			
7			C=	2	2	0			

\square	Α	В	С	D	Е	F	G	Н	1
3		1	2	3			-2	3	0
4	A=	0	1	-1		B=	2	1	1
5									
6				=B3-G3	5	3			
7			C=	2	2	0			

Обратная матрица

Обратную матрицу имеет смысл находить, если мы имеем дело с квадратной матрицей (количество строк и столбцов одинаковое).

Для вычисления обратной матрицы в Excel есть специальная функция МОБР.

Размерность обратной матрицы соответствует размеру исходной.

- Сначала отметим пустой диапазон, где будем находить обратную матрицу.
- НЕ снимая выделения, вызываем «Мастер функций».
- Выбираем нашу функцию МОБР.
- За аргумент функции выбираем диапазон с исходной матрицей. Нажимаем ОК.
- НЕ снимая выделения, переходим в строку редактирования формул, ставим курсор после формулы и нажимаем сочетание клавиш Ctrl + Shift + Enter.

Формула будет заключена в фигурные скобки, а в выделенном диапазоне появится обратная матрица

		× <	<i>f</i> _x {=N	1ОБР(В3:С4	1)}	
	1	2			1	-2
A=	0	1		V=	0	1

Определитель матрицы

Определитель — это одно единственное число, которое находится для квадратной матрицы. Для его нахождения в Excel есть специальная функция МОПРЕД.

- Ставим курсор в любой ячейке открытого листа
- Вызываем «Мастер функций».
- Выбираем нашу функцию МОПРЕД.
- Выбираем аргументом функции диапазон с исходной матрицей. Нажимаем ОК.

В выделенной ячейке появится результат – определитель исходной матрицы.

	2	-1	0	D=	53
A=	3	4	-2		
	-3	1	5		

Умножение матрицы на число

Чтобы умножить матрицу на число, нужно каждый ее элемент умножить на это число.

• В диапазоне итоговой матрицы вводим формулу вида:

$$= a_{1,1} \cdot \$b$$

где а — ссылка на ячейку исходной матрицы, b — ссылка на ячейку с числом (обращу внимание, что ссылка АБСОЛЮТНАЯ)

• И растягиваем формулу по диапазону итоговой матрицы.

	7	-2	3	-4		-14	4	-6	8
A=	0	2	1	-1	B=-2*/	0	-4	-2	2
	-5	3	2	0	-	10	-6	=	\$Z\$10*X10

Умножение матрицы на матрицу

Умножение можно производить только, если число столбцов первой матрицы равняется числу строк второй. В итоговой матрице количество строк равняется числу строк первой матрицы, а количество столбцов – числу столбцов второй.

- Выделяем диапазон итоговой матрицы.
- НЕ снимая выделения, вызываем «Мастер функций».
- Выбираем функцию МУМНОЖ.
- Выбираем аргументы. Первый аргумент диапазон первой матрицы, второй диапазон второй матрицы. Нажимаем ОК.
- НЕ снимая выделения, переходим в строку редактирования формул, ставим курсор после формулы и нажимаем сочетание клавиш Ctrl + Shift + Enter.

Формула будет заключена в фигурные скобки, а в выделенном диапазоне появится результат умножения матриц.

×	~	f_{x}	{=МУМНОЖ(С3:G7;С9:G13)}
---	---	---------	-------------------------

	1	-2	5	3	6
	2	0	-3	1	3
A=	5	-1	0	4	-1
	2	7	9	5	0
	-2	4	-3	1	1
	0	2	7	-5	4
	-8	1	3	0	-3
B=	4	2	-2	5	1
	6	-5	-1	8	0
	-9	-2	7	3	-1
	0	-17	30	62	9
	-33	-13	40	-8	2
C=	41	-9	21	4	24
	10	4	12	75	-4
	-47	-13	10	6	-24

Единичная матрица

Единичные матрицы – это отдельные квадратные матрицы, для которых в Excel есть своя функция.

- Выделяем диапазон той размерности, матрицу которой хотим сделать.
- НЕ снимая выделения, вызываем «Мастер функций».
- Выбираем функцию МЕДИН.
- В размер пишем одну цифру размерность итоговой матрицы. Нажимаем ОК.
- НЕ снимая выделения, переходим в строку редактирования формул, ставим курсор после формулы и нажимаем сочетание клавиш Ctrl + Shift + Enter.

Формула будет заключена в фигурные скобки, а в выделенном диапазоне появится единичная матрица.

1	0	0
0	1	0
0	0	1

Мы рассмотрели все основные действия с матрицами в Excel и разобрали поэтапно, что нужно делать для каждого действия.

Спасибо за внимание!

Работу выполнила Елкина Галина, студентка ИВТ 1 курса, 3 подгруппа