NUCOMP

$15 \ {\rm septembre} \ 2023$

Espace	éléments	base
$\bigwedge^r V$	$\sum_{i=1}^{r} a_i \bigwedge_{j}^{i} e_{i_j}$	$(e_{i_1} \wedge \ldots \wedge e_{i_r})$
V	$\sum_i a_i e_i$	$(e_1,,e_r)$

On regarde $S_r(V)$ l'ensemble des familles libres de V de dim r. Et on a :

$$\phi : S_r(V) \to \mathcal{P}(\bigwedge^r V)$$
$$(f_1, ..., f_r) \mapsto f_1 \wedge ... \wedge f_r$$

(On a une action de $GL_r(V)$ qui passe au quotient ?)