

Applied Generalized Linear Models (FS 20)

Binary outcomes: logistic regression and probit models (Practical)

Viviana Amati

Course structure - schedule

Date	Topic	Assignment		
18.02	Introduction to the course	Ass. 1 released on 25.02		
25.02	Introduction to R and review of the linear regression mode			
03.03	The general linear model: ANOVA and ANCOVA	due to 19.03		
10.03	Practical: ANOVA and ANCOVA			
17.03	Binary outcomes: logistic regression and probit models	Ass. 2 released on 18.03 due to 23.04		
24.03	Practical: logistic regression and probit models			
31.03	Nominal outcomes: multinomial logistic regression			
07.04	Practical: multinomial logistic regression			
21.04	Ordinal outcomes: ordered logistic regression and probit models	Ass. 3		
28.04	Practical: ordered logistic regression and probit models	released on 25.04		
05.05	Count outcomes: Poisson and negative binomial models	due to 21.05		
12.05	Practical: Poisson and negative binomial models			
19.05	Survival models	L+P		
26.05	Regular lecture: panel data model	L+P		

A bit of (re-)organization

► Assignments:

- A few people are working alone.
 - Please let me know if you would like to team up and will put you in contact
- Some groups forgot to attach the script and will receive an email

► Exam:

- I am collecting the available options and publish them in moodle by the end of this week
- I will call for an opinion poll at the beginning of the lecture next week
- If you cannot attend the lecture send me an email by Monday 29 March

► Zoom:

- Instead of writing in chat please unmute your mic. and ask your question
- You can also ask questions after the lecture
- Will be in zoom every Thursday from 5 p.m. to 6 p.m. for questions
 Join URL: https://ethz.zoom.us/j/702918320 Meeting ID: 702 918 320

ETH zürich

Today's agenda

- ▶ Quick overview of the ANCOVA model example
- ▶ Estimation of binary logistic regression models with R
- ▶ Interpretation of the model results
- ▶ Data and scripts are in the folder BLR.zip in moodle
- ▶ Commented output in lecture notes

ANCOVA model: Data

The data set incomeRaceEduc.dat contains information collected on a sample of 80 adults American aged over 25. The variables in the data set are:

- ▶ inc: annual income (thousands of dollars)
- ▶ educ: number of years of education (12 = high school graduate, 16 = college graduate)
- ▶ race: racial-ethnic group (b = black, h=hispanic, w=white)

Researchers would like to test if there is a relationship between race and income while controlling for education.

ANCOVA model

$$Y_{ij} = \mu + \alpha_j + \beta(x_{ij} - \overline{x}) + \varepsilon_{ij}$$

	Estimate	Std. Error	t-value	$\Pr(> t)$
Intercept	35.294	2.033	17.357	0.000
race black (α_1)	-5.605	3.012	-1.861	0.067
race Hispanic (α_2)	0.336	3.156	0.106	0.916
educCentred (β)	4.432	0.619	7.158	0.000

ANCOVA model with interaction

ANCOVA model with interaction

$$Y_{ij} = \mu + \alpha_j + \beta(x_{ij} - \overline{x}) + \gamma_j(x_{ij} - \overline{x}) + \varepsilon_{ij}$$

ANCOVA Table

	Df	Sum Sq	Mean Sq	F-value	Pr(>F)
race	2	3352.470	1676.235	7.099	0.002
educCentred	1	12245.232	12245.232	51.862	0.000
race:educCentred	2	691.837	345.918	1.465	0.238
Residuals	74	17472.412	236.114		

The data does not provide evidence for an interaction between race and education

Logistic regression: Data

The data set admission.csv contains information on the admission of 400 students into a business school. The variables in the data set are:

- ▶ admit: binary variable taking value 1 if the student was admitted into the business school and 0 otherwise
- \triangleright gpa: grade point average in the undergraduate institution (range 1 6)
- ▶ gre: graduate record examination score obtained in the undergraduate institution (range 0-1000)
- ▶ rank: prestige of the undergraduate institution. The variable takes on the values 1 (highest prestige) through 4 (lowest prestige).

Test the association between admit and all the other variables

Logistic regression model

$$\log \left[\frac{\pi(x)}{1 - \pi(x)} \right] = \beta_0 + \beta_{\text{gre}} X_{\text{gre}} + \beta_{\text{gpa}} X_{\text{gpa}} + \beta_{\text{r}2} D_{\text{r}2} + \beta_{\text{r}3} D_{\text{r}3} + \beta_{\text{r}4} D_{\text{r}4}$$

with D_r the dummy variables for rank with reference category highest prestige (1).

Grouped data

The titanic.csv data set

Economic status	Age group	Gender	Survived	Died	Total
Crew	A	W	20	3	23
Crew	A	\mathbf{M}	192	670	862
1st	A	W	140	4	144
1st	A	\mathbf{M}	57	118	175
2nd	A	W	80	13	93
2nd	A	\mathbf{M}	14	154	168
3rd	A	W	76	89	165
3rd	A	M	75	387	462
1st	C	W	1	0	1
1st	$^{\mathrm{C}}$	\mathbf{M}	5	0	5
2nd	$^{\mathrm{C}}$	W	13	0	13
2nd	C	M	11	0	11
3rd	C	W	14	17	31
3rd	C	M	13	35	48
Total			711	1490	2201