Your Presentation

Lead Author
Co-Author1 Co-Author2 Co-Author3

The Ohio State University

Another University

April 5, 2016

Introduction

- Your introduction goes here!
- Use itemize to organize your main points.

Examples

Some examples of commonly used commands and features are included, to help you get started.

Rigid body dynamics

Coriolis acceleration

$$ec{a}_p = ec{a}_o + rac{^b d^2}{dt^2} ec{r} + rac{2 ec{\omega}_{ib} imes rac{^b d}{dt} ec{r}}{} + rac{ec{lpha}_{ib} imes ec{r}}{} + rac{ec{lpha}_{ib} imes ec{r}}{} + rac{ec{\omega}_{ib} imes ec{r}}{}$$

Rigid body dynamics

Coriolis acceleration

$$ec{a}_p = ec{a}_o + rac{bd^2}{dt^2} ec{r} + 2ec{\omega}_{ib} imes rac{bd}{dt} ec{r} + ec{\alpha}_{ib} imes ec{r} + ec{\omega}_{ib} imes (ec{\omega}_{ib} imes ec{r})$$

Transversal acceleration

Rigid body dynamics

Coriolis acceleration

$$\vec{a}_p = \vec{a}_o + \frac{{}^b d^2}{dt^2} \vec{r} + 2\vec{\omega}_{ib} \times \frac{{}^b d}{dt} \vec{r} + \vec{\alpha}_{ib} \times \vec{r} + \vec{\omega}_{ib} \times (\vec{\omega}_{ib} \times \vec{r})$$

- Transversal acceleration
- Centripetal acceleration

Tables and Figures

- Use tabular for basic tables see Table 1, for example.
- You can upload a figure (JPEG, PNG or PDF) using the files menu.
- To include it in your document, use the includegraphics command (see the comment below in the source code).

Item	Quantity
Widgets	42
Gadgets	13

Table: An example table.

Readable Mathematics

Let X_1, X_2, \ldots, X_n be a sequence of independent and identically distributed random variables with $\mathsf{E}[X_i] = \mu$ and $\mathsf{Var}[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

denote their mean. Then as n approaches infinity, the random variables $\sqrt{n}(S_n-\mu)$ converge in distribution to a normal $\mathcal{N}(0,\sigma^2)$.

