$4^{\circ} \ f(z)$ аналитична в $D \ (f:D\longrightarrow D'), \ f'(z)\neq 0 \ \forall z\in D.$ Тогда $\exists g(w)=f'(z) \ (g:D'\longrightarrow D)$ и $\forall z_0\in D \ f'_z(z_0)=rac{1}{g'_w(w_0)},$ где $w_0=w(z)$

$$f(z) = u(x,y) + iv(x,y)$$
Заметим, что $f'(z) \neq 0 \Longleftrightarrow \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = J \neq 0$
Действительно, если якобиан равен 0, то $\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} = 0 \Longrightarrow \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} \frac{\partial v}{\partial x} = 0$.

Аналогично $\frac{\partial u}{\partial y} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \frac{\partial v}{\partial y} = 0$
Значит, $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} = 0$ — противоречие

Если $J \neq 0$, то преобразование $f(z)$ приводит (x,y) в (u,v) взаимно однозначно. Тогда

 $\exists !$ решение $\begin{cases} u = u(x,y) \\ v = v(x,y) \end{cases}$, то есть взаимно однозначно определены $\begin{cases} x = x(u,v) \\ y = y(u,v) \end{cases}$
Обозначим $g(w) = x(u,v) + iy(u,v)$

Найдем $f'_z(z_0) = \frac{1}{g'_w(w_0)}$. Рассмотрим отношение $\frac{\Delta z}{\Delta w} \frac{\Delta w \to 0}{\Delta z \to 0} \lim_{\Delta w \to 0} \frac{\Delta z}{\Delta w} = \lim_{\Delta w \to 0} \frac{1}{\Delta w} = \lim_{\Delta w \to 0} \frac{1}{\Delta w} = \lim_{\Delta w \to 0} \frac{1}{\Delta w} = \lim_{\Delta w \to 0} \frac{\Delta z}{\Delta w} = \lim_{\Delta u \to 0} \frac{1}{\Delta w} = \lim_{\Delta u \to 0} \frac{\Delta z}{\Delta w} = \lim_{\Delta u \to 0} \frac{1}{\Delta w} = \lim_{\Delta u \to 0} \frac{\Delta z}{\Delta w} = \lim_{\Delta u \to 0} \frac{1}{\Delta w} = \lim_{\Delta$

 $5^{\circ}~f(z)=u(x,y)+iv(x,y)$ аналитична в D. Тогда u(x,y),v(x,y) — гармонические функции в D

Функция считается гармонической, если $\Delta u=0$ (здесь $\Delta=\nabla^2$ – лапласиан) \Longleftrightarrow $u_{xx}+u_{yy}=0$ <u>Lab.</u>

6° Если f(z) = u(x,y) + iv(x,y) аналитична в D и известна u(x,y) или v(x,y), то f(z) определяется однозначно с точностью до const

Пусть известна $\operatorname{Re} f(z) = u(x,y)$. Нужно найти v(x,y). По условию Коши-Римана $\int u(x,y), \int v(x,y)$ не зависят от пути (<u>Lab.</u> доказать, что $\int_{AB} dv$ не зависит от пути) $v(x,y) = \int_{(x_0,y_0)}^{(x,y)} dv(x,y) = \int_{(x_0,y_0)}^{(x,y)} v_x dx + v_y dy = \int_{(x_0,y_0)}^{(x,y)} (-u_y) dx + u_x dy$ Интеграл будет найден с точностью до $\operatorname{const} = C(x_0,y_0)$

5° Конформные отображения

Найдем геометрический смысл производной. Рассмотрим отображение w=f(z) $(w:D\longrightarrow G)$ дифференцируема в точке $z_0 \in D$ и $f'(z_0) \neq 0$

Аргумент: В области D рассмотрим гладкую кривую $\gamma(t) = \varphi(t) + i\psi(t)$. Образ $\gamma(t)$ — кривая $\sigma(t)$ в G

 $\gamma(t)$ в окрестности некоторой точки z_0 гладкая, \exists касательная с углом $\theta = \arg \gamma'(t)$

 $\sigma(t)$ в окрестности $w_0 = w(z_0)$ гладкая, \exists касательная с углом $\theta' = \arg \sigma'(t)$

A
$$\sigma'(t_0) = w'(t_0) == f'(z_0) \cdot \gamma'(t_0)$$

$$z'(t_0)$$

$$\arg w'(t_0) = \arg f'(z_0) + \arg \gamma'(t_0)$$

$$\theta' = \arg f'(z_0) + \theta$$

 $\theta' - \theta = \arg f'(z_0)$ — поворот кривой $\gamma(t)$ вокруг z_0 на угол $\arg f'(z_0)$ при отображении w = f(z)

Рассмотрим малый контур $|\Delta z| = |z - z_0| = \rho$. Тогда $|\Delta w| = |w(z) - w(z_0)| = |f'(z)|\rho + o(\rho)$

Таким образом w(z) растягивает круг $|z-z_0|=\rho$ в $|f'(z_0)|$ раз с точностью до малых высших порядков

Итак, w = f(z) в точке z_0 поворачивает точку у окрестности на угол $\alpha = \arg f'(z_0)$ и растягивает отрезки $[z_0, z]$ в $k = |f'(z_0)|$ раз

Def. Конформное отображение – отображение w(z), сохраняющее углы (между образами и прообразами) и постоянство растяжений

Th. Условия конформности:
$$\begin{cases} \text{дифференцируемость} \\ \text{однолистность} \end{cases} \iff \text{конформно} \\ f'(z) \neq 0 \text{ в } D \end{cases}$$

$$Ex. \ w = az + b$$

Мет. Геометрический смысл линейного отображения: b - перенос z=0 в точку $z=b; \ a=|a|e^{i\varphi},$ тогда |a| - коэффициент растяжения, φ - угол поворота

Заметим,
$$w' = (az + b)' = a$$
, тогда $k = |w'(z_0)| = |a|$, $\varphi = \arg w'(z_0) = \arg a$

Lab. Проверить, что $w = z^2$ не конформное отображение, найдя $w'(z_0)$

6° Интеграл по комплексной переменной

6.1 Определения

В \mathbb{C} задана кусочно-гладкая кривая K (с концами в точках M и N) параметрическими уравнениями:

$$\begin{cases} x = \varphi(t) & t \in [lpha, eta] \subset \mathbb{R} \ y = \psi(t) & arphi, \psi - \mathbb{R}$$
-функции

Тогда $z(t) = \varphi(t) + i\psi(t)$ - задание K в \mathbb{C} . Введем отображение w = f(z), действующее на K Определим интегральные суммы:

- 1. дробление отрезка MN на частичные дуги: $M=z_0,z_1,\ldots,z_{n-1},z_n=N$ Тогда $\alpha=t_0,t_1,\ldots,t_{n-1},t_n=\beta$
- 2. Выбор средных точек в отрезках кривой $\zeta_i = (\xi_i, \eta_i)$
- 3. Сопоставим интегральную сумму $\sigma_n = \sum_{i=1}^n f(\zeta_i) \Delta z_i$
- 4. Интегралом от w = f(z) по кривой K называется $\lim_{\substack{n \to \infty \\ \tau = \max \Delta z_i \to 0}} = \int_K f(z) dz$, если он существует, конечен и не зависит от способа разбиения, выбора средних точек и т. д.

При этом интеграл можно представить как $\lim_{n\to\infty}\sigma_n=\lim_{n\to\infty}\sum_{i=1}^n f(\zeta_i)\Delta z_i=\lim_{n\to\infty}\sum_{i=1}^n f(\xi_i,\eta_i)(\Delta x_i+\zeta_i)$

$$i\Delta y_{i}) = \lim_{n \to \infty} \sum_{i=1}^{n} (u(\xi_{i}, \eta_{i}) + iv(\xi_{i}, \eta_{i}))(\Delta x_{i} + i\Delta y_{i}) = \lim_{n \to \infty} \sum_{i=1}^{n} (u_{i}\Delta x_{i} - v_{i}\Delta y_{i}) + i\lim_{n \to \infty} \sum_{i=1}^{n} (u_{i}\Delta y_{i} + v_{i}\Delta x_{i}) = \int_{K} u dx - v dy + i \int_{K} u dy + v dx$$

Nota. Мы свели $\mathbb C$ -интеграл к двум криволинейным $\mathbb R$ -интегралам, все свойства интегралов сохраняются

$$Ex. \int_{\gamma=[0;1+i]} \overline{z} dz = \int_{\gamma} (x-iy)(dx+idy) = \int_{\gamma} x dx + y dy + i \int_{\gamma} x dy - y dx = 2 \int_{0}^{1} x dx = 1$$