Recursion

Algorithm: Design & Analysis
[3]

In the last class...

- Asymptotic growth rate
- The Sets O, Ω and Θ
- Complexity Class
- An Example: Maximum Subsequence Sum
 - Improvement of Algorithm
 - Comparison of Asymptotic Behavior
- Another Example: Binary Search
 - Binary Search Is Optimal

Recursion

- Recursive Procedures
- Proving Correctness of Recursive Procedures
- Deriving recurrence equations
- Solution of the Recurrence equations
 - Guess and proving
 - Recursion tree
 - Master theorem
- Divide-and-conquer

Recursion as a Thinking Way

- Cutting the plane
 - How many sections can be generated at most by *n* straight lines with infinite length.

Intersecting all *n*-1 existing lines to get as most sections as possible

$$L(0) = 1$$

$$L(n) = L(n-1) + n$$

Line n

Recursion for Algorithm

Recurrence relations

- Computing n!
 - if n=1 then return 1 else return Fac(n-1)*n

 M(1)=0 and M(n)=M(n-1)+1 før n>0

 (critical operation: multiplication)
- Hanoi Tower
 - if n=1 then move d(1) to peg3 else { Hanoi(n-1, peg1, peg2); move d(n) to peg3; Hanoi(n-1, peg2, peg3)

$$M(1)=1$$
 and $M(n)=2M(n-1)+1$ for $n>1$ (critical operation: move)

Counting the Number of Bit

- Input: a positive decimal integer n
- Output: the number of binary digits in *n*'s binary representation

Int BinCounting (int *n*)

- 1. if (n==1) return 1;
- 2. else
- 3. return BinCounting(n div 2)+1;

Correctness of BinCounting

- Proof by induction
- Base case: if n = 1, trivial by line 1.
- Inductive hypothesis: for any 0 < k < n, BinCounting(k) return the correct result.
- Induction
 - If $n \neq 1$ then line 3 is excuted
 - (*n* div 2) is a positive decimal integer (so, the precondition for BinCounting is still hold), and
 - 0<(n div 2)<n, so, the inductive hypothesis applies
 - So, the correctness (the number of bit of *n* is one more the that of (*n* div 2)

Complexity Analysis of BinCounting

- The critical operation: addition
- The recurrence relation

$$T(n) = \begin{cases} 0 & n = 1 \\ T(\lfloor n/2 \rfloor) + 1 & n > 1 \end{cases}$$

Solution by backward substitutions

By the recursion equation: $T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1$

For simplicity, let $n = 2^k$ (k is a nonnegative integer), that is, $k = \log n$

$$T(n) = T\left(\frac{n}{2}\right) + 1 = T\left(\frac{n}{4}\right) + 1 + 1 = T\left(\frac{n}{8}\right) + 1 + 1 + 1 = \dots$$

$$T(n) = T\left(\frac{n}{2^k}\right) + \log n = \log n \qquad (T(1)=0)$$

Smooth Functions

- Let f(n) be a nonnegative eventually nondecreasing function defined on the set of natural numbers, f(n) is called **smooth** if $f(2n) \in \Theta(f(n))$.
- Note: $\log n$, n, $n \log n$ and n^{α} ($\alpha \ge 0$) are all smooth.
 - For example: $2n\log 2n = 2n(\log n + \log 2) \in \Theta(n\log n)$

Even Smoother

- Let f(n) be a smooth function, then, for any fixed integer $b \ge 2$, $f(bn) \in \Theta(f(n))$.
- That is, there exist positive constants c_b and d_b and a nonnegative integer n_0 such that

$$d_b f(n) \le f(bn) \le c_b f(n)$$
 for $n \ge n_0$.

It is easy to prove that the result holds for $b = 2^k$, for the second inequality:

$$f(2^k n) \le c_2^k f(n)$$
 for $k = 1, 2, 3...$ and $n \ge n_0$.

For an arbitrary integer $b \ge 2, 2^{k-1} \le b \le 2^k$

Then, $f(bn) \le f(2^k n) \le c_2^k f(n)$, we can use c_2^k as c_b .

Smoothness Rule

Let T(n) be an eventually nondecreasing function and f(n) be a smooth function. If $T(n) \in \mathcal{O}(f(n))$ for values of n that are powers of $b(b \ge 2)$, then $T(n) \in \mathcal{O}(f(n))$.

Just proving the big - Oh part:

By the hypothsis:
$$T(b^k) \le cf(b^k)$$
 for $b^k \ge n_0$.

By the prior result: $f(bn) \le c_b f(n)$ for $n \ge n_0$.

Let
$$n_0 \le b^k \le n \le b^{k+1}$$
,

$$T(n) \le T(b^{k+1}) \le cf(b^{k+1}) = cf(bb^k) \le cc_b f(b^k) \le cc_b f(n)$$

Noń-decreasing

hypothesis

Prior result

Non-decreasing

Computing the *n*th Fibonacci Number

$$f_1 = 0$$
 $f_2 = 1$
 $f_n = f_{n-1} + f_{n-2}$

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

$$a_n = r_1 \quad a_{n-1} + r_2 a_{n-2} + \cdots + r_m a_{n-k}$$
is called linear homogeneous relation of degree k

is called linear homogeneous relation of degree k.

For the special case of Fibonacci: $a_n = a_{n-1} + a_{n-2}$, $r_1 = r_2 = 1$

Characteristic Equation

For a linear homogeneous recurrence relation of degree k

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \cdots + r_k a_{n-k}$$

the polynomial of degree k

$$x^{k} = r_{1}x^{k-1} + r_{2}x^{k-2} + \dots + r_{k}$$

is called its characteristic equation.

 The characteristic equation of linear homogeneous recurrence relation of degree 2 is:

$$x^2 - r_1 x - r_2 = 0$$

Solution of Recurrence Relation

If the characteristic equation $x^2 - r_1 x - r_2 = 0$ of the recurrence relation $a_n = r_1 a_{n-1} + r_2 a_{n-2}$ has two distinct roots s_1 and s_2 , then

$$a_n = us_1^n + vs_2^n$$

where u and v depend on the initial conditions, is the explicit formula for the sequence.

If the equation has a single root s, then, both s₁ and s₂ in the formula above are replaced by s

Proof of the Solution

Remember the equation : $x^2 - r_1x - r_2 = 0$ We need prove that : $us_1^n + vs_2^n = r_1a_{n-1} + r_2a_{n-2}$

$$us_{1}^{n} + vs_{2}^{n} = us_{1}^{n-2}s_{1}^{2} + vs_{2}^{n-2}s_{2}^{2}$$

$$= us_{1}^{n-2}(r_{1}s_{1} + r_{2}) + vs_{2}^{n-2}(r_{1}s_{2} + r_{2})$$

$$= r_{1}us_{1}^{n-1} + r_{2}us_{1}^{n-2} + r_{1}vs_{2}^{n-1} + r_{2}vs_{2}^{n-2}$$

$$= r_{1}(us_{1}^{n-1} + vs_{2}^{n-1}) + r_{2}(us_{1}^{n-2} + vs_{2}^{n-2})$$

$$= r_{1}a_{n-1} + r_{2}a_{n-2}$$

Return to Fibonacci Sequence

$$f_1 = 1$$
 $f_2 = 1$
 $f_n = f_{n-1} + f_{n-2}$

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

Explicit formula for Fibonacci Sequence

The characteristic equation is x^2 -x-1=0, which has roots:

$$s_1 = \frac{1+\sqrt{5}}{2}$$
 and $s_2 = \frac{1-\sqrt{5}}{2}$

Note: (by initial conditions) $f_1 = us_1 + vs_2 = 1$ and $f_2 = us_1^2 + vs_2^2 = 1$

which results:
$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

Guess the Solutions

- Example: $T(n)=2T(\lfloor n/2 \rfloor)+n$
- Guess
 - $T(n) \in O(n)$?
 - $T(n) \le cn$, to be prov
 - $T(n) \in O(n^2)$?
 - $T(n) \le cn^2$, to be prov
- $T(n) = 2T(\lfloor n/2 \rfloor) + n$ $\leq 2(c \lfloor n/2 \rfloor \log (\lfloor n/2 \rfloor)) + n$ $\leq cn \log (n/2) + n$ $= cn \log n cn \log 2 + n$ $= cn \log n cn + n$ $\leq cn \log n \text{ for } c \geq 1$
- **Or maybe**, $T(n) \in O(n \log n)$?
 - T(n) ≤ $cn\log n$, to be proved for c large enough

Recursion Tree

The recursion tree for T(n)=T(n/2)+T(n/2)+n

Recursion Tree Rules

- Construction of a recursion tree
 - work copy: use auxiliary variable
 - root node
 - expansion of a node:
 - recursive parts: children
 - nonrecursive parts: nonrecursive cost
 - the node with base-case size

Recursion tree equation

- For any subtree of the recursion tree,
 - size field of root =
 - **\(\Sigma** nonrecursive costs of expanded nodes +
 - **\Size** fields of incomplete nodes
- Example: divide-and-conquer:

$$T(n) = bT(n/c) + f(n)$$

After kth expansion: $T(n) = b^k T\left(\frac{n}{c^k}\right) + \sum_{i=1}^{k-1} b^{i-1} f\left(\frac{n}{c^{i-1}}\right)$

Evaluation of a Recursion Tree

- Computing the sum of the *nonrecursive costs* of all nodes.
- Level by level through the tree down.
- Knowledge of the maximum depth of the recursion tree, that is the depth at which the size parameter reduce to a base case.

Recursion Tree

Work copy: T(k)=T(k/2)+T(k/2)+k

Recursion Tree for $T(n)=3T(\lfloor n/4 \rfloor)+\Theta(n^2)$

Verifying "Guess" by Recursive Tree

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{1}{1 - \left(\frac{3}{16}\right)} cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{16}{13} cn^2 + \Theta(n^{\log_4 3}) = O(n^2)$$

$$T(n) \le 3T(\lfloor n/4 \rfloor) + cn^{2}$$

$$\le 3d\lfloor n/4 \rfloor^{2} + cn^{2}$$

$$\le 3d(n/4)^{2} + cn^{2}$$

$$= \frac{3}{16}dn^{2} + cn^{2}$$

$$\le dn^{2} \quad when \quad d \ge \frac{16}{13}c$$
Inductive hypothesis

Recursion Tree for T(n)=bT(n/c)+f(n)

Solving the Divide-and-Conquer

- The recursion equation for divide-and-conquer, the general case: T(n)=bT(n/c)+f(n)
- Observations:
 - Let base-cases occur at depth D(leaf), then $n/c^D=1$, that is $D=\lg(n)/\lg(c)$
 - Let the number of leaves of the tree be L, then $L=b^{\rm D}$, that is $L=b^{(\lg(n)/\lg(c))}$.
 - By a little algebra: $L=n^{\rm E}$, where $E=\lg(b)/\lg(c)$, called *critical exponent*.

$$L = b^{\frac{\lg n}{\lg c}} = 2^{\lg b^{\frac{\lg n}{\lg c}}} = 2^{\frac{\lg n}{\lg c}} = 2^{\frac{\lg n}{\lg c}} = 2^{\frac{\lg n}{\lg c}}$$

Divide-and-Conquer: the Solution

- The recursion tree has depth $D=\lg(n)/\lg(c)$, so there are about that many row-sums.
- The 0^{th} row-sum is f(n), the nonrecursive cost of the root.
- The *D*th row-sum is n^E , assuming base cases cost 1, or $\Theta(n^E)$ in any event.
- The solution of divide-and-conquer equation is the non-recursive costs of all nodes in the tree, which is the sum of the row-sums.

Solution by Row-sums

- [Little Master Theorem] Row-sums decide the solution of the equation for divide-and-conquer:
 - Increasing geometric series: $T(n) \in \mathcal{O}(n^E)$
 - Constant: $T(n) \in \Theta(f(n) \log n)$
 - Decreasing geometric series: $T(n) \in \Theta(f(n))$

This can be generalized to get a result not using explicitly row-sums.

Master Theorem

The positive ε is critical, resulting gaps between cases as well

- Loosening the restrictions on f(n)
 - Case 1: $f(n) \in O(n^{E-\varepsilon})$, $(\varepsilon>0)$, then: $T(n) \in \Theta(n^E)$
 - Case 2: $f(n) \in \Theta(n^E)$, as all node depth contribute about equally:

$$T(n) \in \Theta(f(n)\log(n))$$

■ case 3: $f(n) \in \Omega(n^{E+\varepsilon})$, $(\varepsilon>0)$, and $f(n) \in O(n^{E+\delta})$, $(\delta \ge \varepsilon)$, then:

$$T(n) \in \Theta(f(n))$$

Using Master Theorem

Example 1
$$T(n) = 9T\left(\frac{n}{3}\right) + n$$

 $b = 9, c = 3, E = 2, f(n) = n = O(n^{E-1}),$
case 1 applies $T(n) = \Theta(n^2)$
Example 2 $T(n) = T\left(\frac{2n}{3}\right) + 1$
 $b = 1, c = \frac{3}{2}, E = 0, f(n) = 1 = \Theta(n^0),$
case 2 applies $T(n) = \Theta(\lg n)$

Using Master Theorem

Example 3
$$T(n) = 3T\left(\frac{n}{4}\right) + n \lg n$$

 $b = 3, c = 4, E = \log_4 3 \approx 0.793,$
 $f(n) = n \lg n = \Omega(n^{E+0.21}) = O(n^{E+1.21})$
case 3 applies, $T(n) = \Theta(n \lg n)$

Looking at the Gap

- $T(n)=2T(n/2)+n\lg n$
 - $a=2, b=2, E=1, f(n)=n \lg n$
 - We have $f(n) = \Omega(n^{E})$, but no $\varepsilon > 0$ satisfies $f(n) = \Omega(n^{E+\varepsilon})$, since $\lg n$ grows slower that n^{ε} for any small positive ε .
 - So, case 3 doesn't apply.
 - However, neither case 2 applies.

Home Assignment

- pp.143-
 - **3.4**
 - **3.6**
 - **3.9-3.11**