1 Chapter 1 Exercises

Exercises with solutions from Chapter 1 of [PMA].

1. If r is rational $(r \neq 0)$ and x is irrational, prove that r + x and rx are irrational.

Solution. In both cases we shall prove the contrapositive. Suppose $r+x=p\in\mathbb{Q}$. Then x=p-r, a rational number. Similarly, $rx=q\in\mathbb{Q}$ implies that $x=\frac{q}{r}$, a rational number.

2. Prove that there is no rational number whose square is 12.

Solution. Taking as given that each positive integer has a unique prime factorization, we shall prove the following stronger result:

Let n be a positive integer. If n is not the square of an integer then there is no rational number whose square is n.

In fact, we shall prove the contrapositive. Suppose there is a rational $\frac{a}{b}$ such that $a^2 = nb^2$. The primes in the factorizations of a^2 and b^2 must appear to even powers; unique prime factorization implies that the primes in the factorization of nb^2 must be the same as those in the factorization of a^2 . It follows that the factorization of n contains only primes raised to even powers, else the factorization of nb^2 would contain a prime raised to an odd power. Hence n is the square of an integer.

3. Prove Proposition 1.15.

1.15 Proposition The axioms for multiplication imply the following statements.

- (a) If $x \neq 0$ and xy = xz then y = z.
- (b) If $x \neq 0$ and xy = x then y = 1.
- (c) If $x \neq 0$ and xy = 1 then $y = x^{-1}$.
- (d) If $x \neq 0$ then $(x^{-1})^{-1} = x$.

Solution. For (a), we have

$$y = 1y = (x^{-1}x)y = x^{-1}(xy) = x^{-1}(xz) = (x^{-1}x)z = 1z = z.$$

Take z = 1 in (a) to obtain (b), $z = x^{-1}$ in (a) to obtain (c), and for (d), replace x with x^{-1} and y with x in (c).

4. Let E be a non-empty subset of an ordered set; suppose α is a lower bound of E and β is an upper bound of E. Prove that $\alpha \leq \beta$.

Solution. Since E is non-empty, there exists $x \in E$. Then $\alpha \leq x \leq \beta$.

5. Let A be a non-empty set of real numbers which is bounded below. Let -A be the set of all numbers -x, where $x \in A$. Prove that

$$\inf A = -\sup(-A).$$

Solution. -A is non-empty since A is non-empty and -A is bounded above since A is bounded below $(x \ge y)$ implies $-x \le -y$ in an ordered field). Hence $\sup(-A)$ exists in \mathbb{R} . Let $x \in A$ be given. Then $-x \le \sup(-A)$, which gives $x \ge -\sup(-A)$, so that $-\sup(-A)$ is a lower bound of A. Now suppose $y > -\sup(-A)$. Then $-y < \sup(-A)$, so that -y is not an upper bound for -A, i.e. there exists $x \in A$ such that -y < -x. This gives y > x, demonstrating that y is not a lower bound of A. It follows that $-\sup(-A)$ is the infimum of A.

- **6.** Fix b > 1.
- (a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

$$(b^m)^{1/n} = (b^p)^{1/q}.$$

Hence it makes sense to define $b^r = (b^m)^{1/n}$.

Solution. Let $x = (b^m)^{1/n}$ and $y = (b^p)^{1/q}$. Then observe that

$$b^{np} = b^{mq} \iff (b^p)^n = (b^m)^q \iff (y^q)^n = (x^n)^q \iff y^{nq} = x^{nq}.$$

Since x, y, n, q are all positive, this implies that x = y.

(b) Prove that $b^{r+s} = b^r b^s$ if r and s are rational.

Solution. The result is certainly true if r and s are integers; we shall use this freely. Suppose r = m/n and s = p/q. Then

$$b^{r+s} = b^{\frac{mq+np}{nq}} = (b^{mq+np})^{1/nq} = (b^{mq}b^{np})^{1/nq} = (b^{mq})^{1/nq}(b^{np})^{1/nq} = b^{mq/nq}b^{np/nq} = b^{m/n}b^{p/q} = b^rb^s,$$

where we have used the corollary to Theorem 1.21 of [PMA].

(c) If x is real, define B(x) to be the set of all numbers b^t , where t is rational and $t \leq x$. Prove that

$$b^r = \sup B(r)$$

when r is rational. Hence it makes sense to define

$$b^x = \sup B(x)$$

for every real x.

Solution. First, let us work from the field axioms and Theorem 1.21 of [PMA] to prove some useful lemmas.

Lemma 1. Suppose we have a real number b > 1 and integers m, n. Then $m \le n$ if and only if $b^m < b^n$.

Proof. Since b > 1, induction on k shows that $b^k \ge 1$ for any non-negative integer k, with equality exactly when k = 0. Suppose $m \le n$; then $1 \le b^{n-m}$. Multiply both sides of this inequality by the positive quantity b^m to obtain $b^m \le b^n$. Now suppose m > n. Then $b^{m-n} > 1$, and $b^m > b^n$ follows since b^n is positive.

Lemma 2. Suppose we have positive real numbers x, y and a positive integer n. Then $x \leq y$ if and only if $x^{1/n} \leq y^{1/n}$.

Proof. It follows from the uniqueness part of Theorem 1.21 of [PMA] that $x = (x^n)^{1/n} = (x^{1/n})^n$. Given this, the result of the lemma is equivalent to $x \le y \iff x^n \le y^n$. Both of the implications $x \le y \implies x^n \le y^n$ and $x > y \implies x^n > y^n$ follow quickly from the field axioms and induction on n.

Lemmas 1 and 2 give us the following result.

Lemma 3. Suppose we have a real number b > 1 and rationals r = m/n, t = p/q, where n, q > 0. Then $r \le t$ if and only if $b^r \le b^t$.

Proof.

$$\begin{array}{cccc} r \leq t & \Longleftrightarrow & mq \leq np \\ & \Longleftrightarrow & b^{mq} \leq b^{np} & \text{(Lemma 1)} \\ & \Longleftrightarrow & b^m \leq (b^{p/q})^n & \text{(Lemma 2)} \\ & \Longleftrightarrow & b^{m/n} \leq b^{p/q} & \text{(Lemma 2)}. \end{array}$$

Now, returning to the exercise, let us show that

$$B(x) = \{b^t : t \in \mathbb{Q}, t \le x\}$$

is non-empty and bounded above for any real x. There are certainly rational numbers less than x, so B(x) is non-empty, and there are certainly rational numbers greater than x, so by Lemma

3 B(x) is bounded above by b to the power of any such rational. Hence $\sup B(x)$ always exists in \mathbb{R} .

Remark. Since any element of B(x) is positive, $\sup B(x)$ is also positive, i.e. b^x is positive for any b > 1 and $x \in \mathbb{R}$.

Finally, let us show that $b^r = \sup B(r)$ for a rational r. It follows from Lemma 3 that b^r is an upper bound for B(r), and since b^r belongs to B(r) it must be the supremum of B(r).

(d) Prove that $b^{x+y} = b^x b^y$ for all real x and y.

Solution. To prove this, we will show that both of the assumptions $b^{x+y} < b^x b^y$ and $b^x b^y < b^{x+y}$ lead to contradictions. First, suppose that $b^{x+y} < b^x b^y$, i.e. $\sup B(x+y) < \sup B(x) \cdot \sup B(y)$. This assumption is equivalent to $\frac{\sup B(x+y)}{\sup B(y)} < \sup B(x)$, so that $\frac{\sup B(x+y)}{\sup B(y)}$ is not an upper bound for B(x). Then there must exist some rational x such that $x \in x$ and

$$\frac{\sup B(x+y)}{\sup B(y)} < b^r \iff \frac{\sup B(x+y)}{b^r} < \sup B(y).$$

This demonstrates that $\frac{\sup B(x+y)}{b^r}$ is not an upper bound for B(y), so there must exist a rational s such that $s \leq y$ and

$$\frac{\sup B(x+y)}{b^r} < b^s \iff \sup B(x+y) < b^r b^s = b^{r+s}.$$

This is a contradiction since

$$r + s \le x + y \implies b^{r+s} \in B(x+y) \implies b^{r+s} \le \sup B(x+y).$$

Now suppose that $b^x b^y < b^{x+y}$. We shall make use of the following inequality:

$$\forall n \in \mathbb{N} \qquad b^{1/n} \le 1 + \frac{b-1}{n}.$$

This is proved in Exercise 7 (a) and (b). By assumption $b^{x+y} - b^x b^y > 0$, so by invoking the Archimedean property of \mathbb{R} we may obtain a positive integer n such that

$$n(b^{x+y} - b^x b^y) > (b-1)b^x b^y \implies \frac{b^{x+y}}{b^x b^y} > 1 + \frac{b-1}{n} \ge b^{1/n} \implies b^x b^y b^{1/n} < b^{x+y}.$$

The density of \mathbb{Q} in \mathbb{R} implies that there exist rational numbers r and s such that $x - \frac{1}{2n} < r \le x$ and $y - \frac{1}{2n} < s \le y$, which implies that $x + y < r + s + \frac{1}{n}$. It follows that

$$b^{x+y} \le b^{r+s+1/n} = b^r b^s b^{1/n} \le b^x b^y b^{1/n} < b^{x+y},$$

i.e. $b^{x+y} < b^{x+y}$, a contradiction.

7. Fix b > 1, y > 0, and prove that there exists a unique real x such that $b^x = y$, by completing the following outline. (This x is called the *logarithm of y to the base b*.)

(a) For any positive integer $n, b^n - 1 \ge n(b-1)$.

Solution. Observe that

$$b^{n} - 1 = (\sum_{j=0}^{n-1} b^{j})(b-1).$$

The desired result follows since there are n terms in the sum $\sum_{j=0}^{n-1} b^j$ and $b > 1 \implies b^j > 1$.

(b) Hence $b-1 \ge n(b^{1/n}-1)$.

Solution. By Lemma 2, $b > 1 \implies b^{1/n} > 1$. So this result follows by replacing b with $b^{1/n}$ in the inequality of part (a).

(c) If t > 1 and n > (b-1)/(t-1), then $b^{1/n} < t$.

Solution. By part (b), we have $b^{1/n} - 1 \le (b-1)/n < t-1$; the result follows.

(d) If w is such that $b^w < y$, then $b^{w+(1/n)} < y$ for sufficiently large n; to see this, apply part (c) with $t = yb^{-w}$.

Solution. Since $y > b^w$, we have $t = b^{-w}y > 1$. Take n large enough so that n > (b-1)/(t-1) and apply part (c) to obtain $b^{1/n} < b^{-w}y$, from which the result follows.

(e) If $b^w > y$, then $b^{w-(1/n)} > y$ for sufficiently large n.

Solution. Similarly, we take $t = b^w y^{-1} > 1$, n large enough so that n > (b-1)/(t-1), and apply part (c) to obtain $b^{1/n} < b^w y^{-1}$; the result follows.

(f) Let A be the set of all w such that $b^w < y$, and show that $x = \sup A$ satisfies $b^x = y$.

Solution. First, a lemma which generalises Lemma 3 above.

Lemma 4. Suppose we have real numbers b, x, y such that b > 1. Then $x \le y$ if and only if $b^x \le b^y$.

Proof. If $x \leq y$ then

$$B(x) = \{b^t : t \in \mathbb{Q}, t \leq x\} \subseteq B(y) = \{b^t : t \in \mathbb{Q}, t \leq y\},\$$

whence $b^x = \sup B(x) \le \sup B(y) = b^y$; the implication $x > y \implies b^x > b^y$ follows similarly. \square

Now let us show that $A = \{w \in \mathbb{R} : b^w < y\}$ is non-empty and bounded above. Since b-1>0, there is a positive integer n such that $n(b-1)>y^{-1}-1$. Part (a) then gives us $b^n-1>y^{-1}-1$, so that $b^{-n} < y$. Hence $-n \in A$. Similarly, there is a positive integer N such that $b^N > y$. Then for any $w \in A$ we have $b^w < y < b^N$ and an application of Lemma 4 gives us w < N, so that N is an upper bound for A. Hence $x = \sup A$ exists in \mathbb{R} .

To show that $b^x = y$, we will show that both of the assumptions $b^x < y$ and $b^x > y$ lead to contradictions. If $b^x < y$, then by part (d) there is a positive integer n such that $b^{x+(1/n)} < y$; but then $x + (1/n) \in A$, contradicting that x is the supremum of A. If $b^x > y$, then by part (e) there is a positive integer n such that $b^{x-(1/n)} > y$; but then for any $w \in A$ we have

$$b^w < y < b^{x-(1/n)} \implies w < x - (1/n),$$

where we have used Lemma 4. This says that x - (1/n) is an upper bound for A, contradicting that x is the supremum of A.

(g) Prove that this x is unique.

Solution. This follows from Lemma 4.

8. Prove that no order can be defined in the complex field that turns it into an ordered field. *Hint:* -1 is a square.

Solution. Suppose there was such an order <. Then by Proposition 1.18 of [PMA] we must have $i^2 = -1 > 0$, which contradicts the very same proposition.

9. Suppose z = a + bi, w = c + di. Define $z \prec w$ if a < c, and also if a = c but b < d. Prove that this turns the set of all complex numbers into an ordered set. (This type of order relation is called a *dictionary order*, or *lexicographic order*, for obvious reasons.) Does this ordered set have the least-upper-bound property?

Solution. Consider the following cases.

Case 1. a < c. Then $z \prec w$.

Case 2. a = c.

Case 2.1. b < d. Then $z \prec w$.

Case 2.2. b = d. Then z = w.

Case 2.3. b > d. Then $z \succ w$.

Case 3. a > c. Then $z \succ w$.

These cases are exclusive and exhaustive since < is an order on \mathbb{R} . So exactly one of $z \prec w, z = w$, or $z \succ w$ always holds. Suppose, for u = x + yi, we have $z \prec w$ and $w \prec u$. Then there are four cases:

Case 1. a < c.

Case 1.1. c < x. Then a < x, so that $z \prec u$.

Case 1.2. c = x and d < y. Then a < x, so that $z \prec u$.

Case 2. a = c and b < d.

Case 2.1. c < x. Then a < x, so that $z \prec u$.

Case 2.2. c = x and d < y. Then a = x and b < y, so that z < u.

In any case, we have transitivity and hence have shown that \prec is an order on \mathbb{C} .

Now we claim that (\mathbb{C}, \prec) does not have the least-upper-bound property. To see this, consider the set $E = \{0 + yi : y \in \mathbb{R}\}$; this is clearly non-empty and bounded above by, for example, any number of the form x + 0i for a positive real number x. Suppose a + bi is an upper bound for E. It follows that a > 0, for if $a \le 0$ then $(b + 1)i \succ a + bi$. But now $\frac{a}{2} + bi$ is also an upper bound for E and $\frac{a}{2} + bi \prec a + bi$. Hence E has no least upper bound.

10. Suppose z = a + bi, w = u + vi, and

$$a = \left(\frac{|w| + u}{2}\right)^{1/2}, \qquad b = \left(\frac{|w| - u}{2}\right)^{1/2}.$$

Prove that $z^2 = w$ if $v \ge 0$ and that $(\overline{z})^2 = w$ if $v \le 0$. Conclude that every complex number (with one exception!) has two complex square roots.

Solution. First, suppose that $v \geq 0$. Then

$$z^{2} = a^{2} - b^{2} + 2abi$$

$$= \frac{|w| + u}{2} - \frac{|w| - u}{2} + 2\left(\frac{|w| + u}{2}\right)^{1/2} \left(\frac{|w| - u}{2}\right)^{1/2} i$$

$$= u + (|w|^{2} - u^{2})^{1/2} i$$

$$= u + (v^{2})^{1/2} i$$

$$= u + vi.$$

So $z^2 = w$, which also gives us $(-z)^2 = w$. Hence w has two complex square roots, z and -z. These are distinct precisely when $z \neq 0 \iff z^2 = w \neq 0$. Now suppose that $v \leq 0$. Then

$$(\overline{z})^2 = a^2 - b^2 - 2abi$$

$$= u - (v^2)^{1/2}i$$

$$= u - (-v)i$$

$$= u + vi.$$

So $(\overline{z})^2 = w$, which also gives us $(-\overline{z})^2 = w$. Hence w has two complex square roots, \overline{z} and $-\overline{z}$. Similarly, these are distinct precisely when $\overline{z} \neq 0 \iff \overline{z}^2 = w \neq 0$. We conclude that every complex number other than 0 has (at least) two distinct complex square roots; 0 has itself as its unique square root.

11. If z is a complex number, prove that there exists an $r \ge 0$ and a complex number w with |w| = 1 such that z = rw. Are w and r always uniquely determined by z?

Solution. If $z \neq 0$, take r = |z| and $w = \frac{z}{|z|}$. These choices are unique, since z = rw implies that |z| = |rw| = r, which in turn gives $w = \frac{z}{|z|}$. If z = 0, then r = 0 and any w with |w| = 1 will do. In this case, r = 0 is uniquely determined, but there any infinitely many choices of w which satisfy the equation.

12. If z_1, \ldots, z_n are complex, prove that

$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|.$$

Solution. This follows from Theorem 1.33 (e) of [PMA] and induction on n.

13. If x, y are complex, prove that

$$||x| - |y|| \le |x - y|.$$

Solution. Observe that

$$|x| = |x - y + y| \le |x - y| + |y| \implies |x| - |y| \le |x - y|,$$

$$|y| = |x - y - x| \le |x - y| + |x| \implies -(|x| - |y|) \le |x - y|.$$

Since ||x| - |y|| = |x| - |y| or -(|x| - |y|), the result follows.

14. If z is a complex number such that |z|=1, that is, such that $z\overline{z}=1$, compute

$$|1+z|^2 + |1-z|^2.$$

Solution. This is a quick computation:

$$|1 + z|^{2} + |1 - z|^{2} = (1 + z)(1 + \overline{z}) + (1 - z)(1 - \overline{z})$$

$$= 1 + z + \overline{z} + z\overline{z} + 1 - z - \overline{z} + z\overline{z}$$

$$= 4.$$

15. Under what conditions does equality hold in the Schwarz inequality?

Solution. Let $\mathbf{a} = (a_1, \dots, a_n)$ and $\mathbf{b} = (b_1, \dots, b_n)$ be vectors in \mathbb{C}^n . We will show that equality holds in the Schwarz inequality

$$\left| \sum_{j=1}^{n} a_j \overline{b_j} \right|^2 \le \left(\sum_{j=1}^{n} |a_j|^2 \right) \left(\sum_{j=1}^{n} |b_j|^2 \right) \tag{\dagger}$$

if and only if a and b are linearly dependent.

First, suppose that \boldsymbol{a} and \boldsymbol{b} are linearly dependent. Then one is a complex multiple of the other and equality in (\dagger) is easily verified. Conversely, suppose that equality holds in (\dagger) . As in the proof of the Schwarz inequality in [PMA], put $A = \sum_{j=1}^{n} |a_j|^2$, $B = \sum_{j=1}^{n} |b_j|^2$, and $C = \sum_{j=1}^{n} a_j \overline{b_j}$, so that

$$\sum_{j=1}^{n} |Ba_j - Cb_j|^2 = B(AB - |C|^2). \tag{*}$$

Equality in (†) implies that the above quantity is zero, which gives us $Ba_j = Cb_j$ for each j. If \boldsymbol{b} is the zero vector, then certainly \boldsymbol{a} and \boldsymbol{b} are linearly dependent. So assume that \boldsymbol{b} is not the zero vector, which is the case precisely when B > 0. Then we have $a_j = \frac{C}{B}b_j$ for each j, i.e. $\boldsymbol{a} = \frac{C}{B}\boldsymbol{b}$, which demonstrates the linear dependence of \boldsymbol{a} and \boldsymbol{b} .

18. If $k \geq 2$ and $\boldsymbol{x} \in \mathbb{R}^k$, prove that there exists $\boldsymbol{y} \in \mathbb{R}^k$ such that $\boldsymbol{y} \neq \boldsymbol{0}$ but $\boldsymbol{x} \cdot \boldsymbol{y} = 0$. Is this also true if k = 1?

(Exercise 18 has been shifted up since the solution will be useful for Exercise 16 below.)

Solution. If x = 0, any $y \in \mathbb{R}^k$ will do. Assume therefore that $x \neq 0$, so that there is some $1 \leq i \leq k$ such that $x_i \neq 0$. Choose any real numbers, other than all zeros, for the components of y other than y_i (there is at least one such component since $k \geq 2$). Now set

$$y_i = \frac{-(x_1y_1 + \dots + x_{i-1}y_{i-1} + x_{i+1}y_{i+1} + \dots + x_ky_k)}{x_i}.$$

It then follows that: $\mathbf{y} \neq \mathbf{0}$ since we chose at least one non-zero component for \mathbf{y} , $\mathbf{x} \cdot \mathbf{y} = 0$, and, given the choices for the components of \mathbf{y} other than y_i , only this choice of y_i will yield a \mathbf{y} satisfying $\mathbf{x} \cdot \mathbf{y} = 0$; indeed

$$\mathbf{x} \cdot \mathbf{y} = 0 \iff \mathbf{x} \cdot \mathbf{y} - x_i y_i + x_i y_i = 0 \iff y_i = \frac{-1}{x_i} (\mathbf{x} \cdot \mathbf{y} - x_i y_i).$$

The result is no longer true if k = 1. It is still the case that if x = 0 then any $y \in \mathbb{R}$ will do, however for $x \neq 0$ there are no non-zero solutions for y; this would violate the field axioms (see Proposition 1.16 (b) of [PMA]).

- **16.** Suppose $k \geq 3$, $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^k$, $|\boldsymbol{x} \boldsymbol{y}| = d > 0$, and r > 0. Prove:
- (a) If 2r > d, there are infinitely many $z \in \mathbb{R}^k$ such that

$$|\boldsymbol{z} - \boldsymbol{x}| = |\boldsymbol{z} - \boldsymbol{y}| = r.$$

Solution. Suppose $\boldsymbol{w} \in \mathbb{R}^k$ satisfies the following two conditions:

- $(1) \ \boldsymbol{w} \cdot (\boldsymbol{x} \boldsymbol{y}) = 0;$
- (2) $|w| = \sqrt{r^2 \frac{d^2}{4}}$.

(The quantity $\sqrt{r^2 - \frac{d^2}{4}}$ is a positive real number since 2r > d.) Set $z = w + \frac{1}{2}x + \frac{1}{2}y$. Then

$$|\boldsymbol{z} - \boldsymbol{x}|^2 = |\boldsymbol{w} - (\frac{1}{2}\boldsymbol{x} - \frac{1}{2}\boldsymbol{y})|^2$$

$$= \frac{1}{4}|2\boldsymbol{w} - (\boldsymbol{x} - \boldsymbol{y})|^2$$

$$= \frac{1}{4}(2\boldsymbol{w} - (\boldsymbol{x} - \boldsymbol{y})) \cdot (2\boldsymbol{w} - (\boldsymbol{x} - \boldsymbol{y}))$$

$$= \boldsymbol{w} \cdot \boldsymbol{w} - \boldsymbol{w} \cdot (\boldsymbol{x} - \boldsymbol{y}) + \frac{1}{4}(\boldsymbol{x} - \boldsymbol{y}) \cdot (\boldsymbol{x} - \boldsymbol{y})$$

$$= |\boldsymbol{w}|^2 + \frac{1}{4}|\boldsymbol{x} - \boldsymbol{y}|^2$$

$$= r^2.$$

so that |z - x| = r. Similarly, one sees that |z - y| = r. In fact, all solutions are obtained in this way. That is, if $z \in \mathbb{R}^k$ is such that |z - x| = |z - y| = r, then $w = z - \frac{1}{2}x - \frac{1}{2}y$ satisfies conditions (1) and (2). Indeed,

$$(\boldsymbol{z} - \frac{1}{2}\boldsymbol{x} - \frac{1}{2}\boldsymbol{y}) \cdot (\boldsymbol{x} - \boldsymbol{y}) = \frac{1}{2}(\boldsymbol{z} - \boldsymbol{y} + \boldsymbol{z} - \boldsymbol{x}) \cdot (\boldsymbol{z} - \boldsymbol{y} - (\boldsymbol{z} - \boldsymbol{x}))$$

$$= \frac{1}{2}(|\boldsymbol{z} - \boldsymbol{y}|^2 - |\boldsymbol{z} - \boldsymbol{x}|^2)$$

$$= 0,$$

whence \boldsymbol{w} satisfies condition (1), i.e. \boldsymbol{w} is orthogonal to $\boldsymbol{x}-\boldsymbol{y}$. Then \boldsymbol{w} is also orthogonal to $\frac{1}{2}\boldsymbol{x}-\frac{1}{2}\boldsymbol{y}$, which has length $\frac{d}{2}$. An application of the Pythagorean theorem now shows that \boldsymbol{w} satisfies condition (2). Given that $\boldsymbol{w}\mapsto \boldsymbol{w}+\frac{1}{2}\boldsymbol{x}+\frac{1}{2}\boldsymbol{y}$ is a bijection of \mathbb{R}^k , we have now classified all solutions to the given problem; note that this classification did not depend on k.

Focus now on the case $k \geq 3$. To show that there are infinitely many such z, it will suffice to show that there are infinitely many $w \in \mathbb{R}^k$ satisfying conditions (1) and (2). Since $|x - y| \neq 0$, x - y is not the zero vector and so has at least one non-zero component, say $x_1 - y_1 \neq 0$ (a similar discussion holds for other non-zero components). As shown in the solution to Exercise 18, if we choose any real numbers, not all zero, for the components u_2, \ldots, u_k of a vector u, then setting

$$u_1 = \frac{-(u_2(x_2 - y_2) + \dots + u_k(x_k - y_k))}{x_1 - y_1}$$

will yield a non-zero u satisfying condition (1). Any scalar multiple of u will also satisfy condition (1), so taking

$$oldsymbol{w} = rac{\sqrt{r^2 - rac{d^2}{4}}}{|oldsymbol{u}|} oldsymbol{u}$$

gives us a non-zero \boldsymbol{w} satisfying conditions (1) and (2). There are infinitely many choices for the components u_2, \ldots, u_k , yielding infinitely many distinct vectors \boldsymbol{u} . However, not all of these choices give us distinct vectors \boldsymbol{w} (some of the choices for \boldsymbol{u} give us vectors lying on the same line). To surmount this, suppose we have chosen u_3, \ldots, u_k such that $u_3 \neq 0$ (note that this requires $k \geq 3$). Then observe that the ratio $\frac{u_2}{u_3} = \frac{w_2}{w_3}$, since \boldsymbol{w} is a scalar multiple of \boldsymbol{u} . There are infinitely many choices of u_2 yielding a distinct ratio; it follows that each choice yields a distinct \boldsymbol{w} .

(b) If 2r = d, there is exactly one such z.

Solution. It is quickly verified that $z = \frac{1}{2}x + \frac{1}{2}y$ has the desired properties. To see that this is the only solution, note that 2r = d implies equality in the triangle inequality:

$$|x - y| = |x - z| + |z - y|.$$

By studying the proof of the triangle inequality on page 17 of [PMA], one sees that equality occurs precisely when one has equality in the Schwarz inequality. By Exercise 15, this is the case exactly when $\boldsymbol{x}-\boldsymbol{z}$ and $\boldsymbol{z}-\boldsymbol{y}$ are linearly dependent, say $\boldsymbol{x}-\boldsymbol{z}=\lambda(\boldsymbol{z}-\boldsymbol{y})$. Taking absolute values and using that r>0, it follows that $\lambda=\pm 1$. $\lambda=-1$ gives $\boldsymbol{x}=\boldsymbol{y}$, which is not the case since $|\boldsymbol{x}-\boldsymbol{y}|=d>0$, so it must be that $\lambda=1$, which in turn gives $\boldsymbol{z}=\frac{1}{2}\boldsymbol{x}+\frac{1}{2}\boldsymbol{y}$.

(c) If 2r < d, there is no such z.

Solution. The existence of such a z would violate the triangle inequality

$$|x - y| \le |x - z| + |z - y|,$$

which in this case says d < 2r.

How must these statements be modified if k is 2 or 1?

Solution. The statements in (b) and (c) need no modification; the solutions there do not depend on k. We shall modify part (a) as follows.

k=2. If 2r>d, there are exactly two $\boldsymbol{z}\in\mathbb{R}^2$ such that

$$|\boldsymbol{z} - \boldsymbol{x}| = |\boldsymbol{z} - \boldsymbol{y}| = r.$$

By the discussion in part (a), it will suffice to show that there are exactly two $\mathbf{w} = (w_1, w_2) \in \mathbb{R}^2$ such that

 $(1) \ \boldsymbol{w} \cdot (\boldsymbol{x} - \boldsymbol{y}) = 0;$

(2)
$$|w| = \sqrt{r^2 - \frac{d^2}{4}}$$
.

Let us assume once again that $x_1 - y_1 \neq 0$, and for convenience let $D = \sqrt{r^2 - \frac{d^2}{4}}$. For any given w_2 , it is necessary to set

$$w_1 = \frac{-w_2(x_2 - y_2)}{x_1 - y_1}$$

in order to satisfy condition (1). Substituting this expression for w_1 into condition (2) then

constrains w_2 :

$$\frac{w_2^2(x_2 - y_2)^2}{(x_1 - y_1)^2} + w_2^2 = D^2$$

$$\iff w_2^2 \left(\frac{(x_2 - y_2)^2}{(x_1 - y_1)^2} + 1\right) = D^2$$

$$\iff w_2^2 \left(\frac{d^2}{(x_1 - y_1)^2}\right) = D^2$$

$$\iff w_2 = \frac{\pm D(x_1 - y_1)}{d}.$$

This gives us exactly two values for w_2 , and hence for \boldsymbol{w} , since $D(x_1 - y_1) \neq 0$.

k=1. If 2r>d, there are no $z\in\mathbb{R}$ such that

$$|z - x| = |z - y| = r.$$

In this case, one is forced to take w = 0 to satisfy condition (1); but then condition (2) cannot possibly be satisfied.

17. Prove that

$$|x + y|^2 + |x - y|^2 = 2 |x|^2 + 2 |y|^2$$

if $x \in \mathbb{R}^k$ and $y \in \mathbb{R}^k$. Interpret this geometrically, as a statement about parallelograms.

Solution. This is a quick computation:

$$|\mathbf{x} + \mathbf{y}|^2 + |\mathbf{x} - \mathbf{y}|^2 = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y}) + (\mathbf{x} - \mathbf{y}) \cdot (\mathbf{x} - \mathbf{y})$$

$$= \mathbf{x} \cdot \mathbf{x} + 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{x} - 2\mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y}$$

$$= 2\mathbf{x} \cdot \mathbf{x} + 2\mathbf{y} \cdot \mathbf{y}$$

$$= 2|\mathbf{x}|^2 + 2|\mathbf{y}|^2.$$

Geometrically, this result says that the sum of the squares of the lengths of the two diagonals of a parallelogram is equal to twice the sum of the squares of the lengths of the two sides; see here.

19. Suppose $\boldsymbol{a} \in \mathbb{R}^k$, $\boldsymbol{b} \in \mathbb{R}^k$. Find $\boldsymbol{c} \in \mathbb{R}^k$ and r > 0 such that

$$|\boldsymbol{x} - \boldsymbol{a}| = 2|\boldsymbol{x} - \boldsymbol{b}|$$

if and only if $|\boldsymbol{x} - \boldsymbol{c}| = r$.

(Solution: 3c = 4b - a, 3r = 2|b - a|.)

Solution. Rudin gives us the solution; to derive it ourselves we perform the following computation:

$$|\mathbf{x} - \mathbf{a}| = 2|\mathbf{x} - \mathbf{b}| \iff \left[\sum_{j=1}^{k} (x_j - a_j)^2 \right]^{1/2} = 2 \left[\sum_{j=1}^{k} (x_j - b_j)^2 \right]^{1/2}$$

$$\iff \sum_{j=1}^{k} (x_j - a_j)^2 = 4 \sum_{j=1}^{k} (x_j - b_j)^2$$

$$\iff \sum_{j=1}^{k} x_j^2 - 2x_j a_j + a_j^2 = \sum_{j=1}^{k} 4x_j^2 - 8x_j b_j + 4b_j^2$$

$$\iff \sum_{j=1}^{k} 3x_j^2 - (8b_j - 2a_j)x_j = \sum_{j=1}^{k} a_j^2 - 4b_j^2$$

$$\iff \sum_{j=1}^{k} x_j^2 - \frac{1}{3}(8b_j - 2a_j)x_j = \frac{1}{3} \sum_{j=1}^{k} a_j^2 - 4b_j^2$$

$$\iff \sum_{j=1}^{k} (x_j - \frac{1}{3}(4b_j - a_j))^2 - \frac{1}{9}(a_j - 4b_j)^2 = \frac{1}{9} \sum_{j=1}^{k} 3a_j^2 - 12b_j^2$$

$$\iff \sum_{j=1}^{k} (x_j - \frac{1}{3}(4b_j - a_j))^2 = \frac{1}{9} \sum_{j=1}^{k} 3a_j^2 - 12b_j^2 + (a_j - 4b_j)^2$$

$$\iff \sum_{j=1}^{k} (x_j - \frac{1}{3}(4b_j - a_j))^2 = \frac{1}{9} \sum_{j=1}^{k} 4a_j^2 - 8a_j b_j + 4b_j^2$$

$$\iff \sum_{j=1}^{k} (x_j - \frac{1}{3}(4b_j - a_j))^2 = \frac{4}{9} \sum_{j=1}^{k} (a_j - b_j)^2$$

$$\iff \sum_{j=1}^{k} (x_j - \frac{1}{3}(4b_j - a_j))^2 = \frac{2}{3} \left[\sum_{j=1}^{k} (a_j - b_j)^2 \right]^{1/2}$$

$$\iff \left[\sum_{j=1}^{k} (x_j - \frac{1}{3}(4b_j - a_j))^2 \right]^{1/2} = \frac{2}{3} \left[\sum_{j=1}^{k} (a_j - b_j)^2 \right]^{1/2}$$

$$\iff \left[\sum_{j=1}^{k} (x_j - \frac{1}{3}(4b_j - a_j))^2 \right]^{1/2} = \frac{2}{3} \left[\sum_{j=1}^{k} (a_j - b_j)^2 \right]^{1/2}$$

This exercise concerns the circles of Apollonius; see here. It demonstrates that one may specify a sphere either by giving a centre and a radius (here, \boldsymbol{c} and \boldsymbol{r}), or by giving two distinct points (here, \boldsymbol{a} and \boldsymbol{b} ; Rudin should really specify $\boldsymbol{a} \neq \boldsymbol{b}$), known as the foci, and a ratio for the distances of a point on the sphere to the two foci (here, 2).

20. With reference to the Appendix, suppose that property (III) were omitted from the definition of a cut. Keep the same definitions of order and addition. Show that the resulting ordered set has the least-upper-bound property, that addition satisfies axioms (A1) to (A4) (with a slightly different zero-element!) but that (A5) fails.

Solution. (I will instead make reference to my own write-up of the Appendix, where I have relabeled property (III) as property (IV).) Let us call this resulting ordered set \mathbb{R} . By examining the linked document, we see that property (IV) is not used at all when defining the order on \mathbb{R} , and is only used in the section on the least-upper-bound property to show that the proposed supremum has property (IV); so we lose nothing here by omitting property (IV). The same is true for axioms (A1) - (A3) in the section on addition, however we must modify axiom (A4) for \mathbb{R} as follows.

(A4) There exists an element $0 \in \mathbb{R}$ such that A + 0 = A (additive identity). We shall use a slightly different zero element; $0^* = \{p \in \mathbb{Q} : p \le 0\}$. It is clear that 0^* satisfies properties (I) - (III). We claim that 0^* is the additive identity in \mathbb{R} . For the inclusion $A + 0^* \subseteq A$, suppose $r \in A$ and $s \in 0^*$, i.e. $s \in \mathbb{Q}$ with $s \le 0$. Then either r + s < r and so property (III) implies that $r + s \in A$, or $r + s = r \in A$. For the reverse inclusion $A \subseteq A + 0^*$, simply observe that any $r \in A$ can be written as $r + 0 \in A + 0^*$. Hence $A \subseteq A + 0^*$ and we conclude that $A + 0^* = A$.

Now we will show that axiom (A5) fails, by considering the set $1^* = \{p \in \mathbb{Q} : p < 1\} \in \mathbb{R}$. Suppose there exists some $A \in \mathbb{R}$ such that $1^* + A = 0^*$. Since $0 \in 0^*$, we must be able to write 0 = r + s for some $r \in 1^*$ and $s = -r \in A$. Since r < 1, we have $\frac{1+r}{2} \in 1^*$. It follows that

$$\frac{1+r}{2} - r = \frac{1-r}{2} \in 1^* + A \implies \frac{1-r}{2} \in 0^* \implies \frac{1-r}{2} \le 0.$$

However, this is a contradiction:

$$r < 1 \implies 0 < \frac{1-r}{2}$$
.

[PMA] Rudin, W. (1976) Principles of Mathematical Analysis. 3rd edn.