數位影像處理

Yih-Lon Lin (林義隆) Associate Professor,

Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology

課程內容

- Introduction
- BMP format
- Image Capture
- Image Display
- Point Processing
- Neighborhood Processing
- Image Geometry
- Image Segmentation

- Hough
- Mathematical Morphology
- Image Topology
- Shapes and Boundaries
- Color Model
- Transform
- Applications
- Camera Calibration

Reference

- OpenCV-3-x-with-Python-By-Example
 - https://github.com/PacktPublishing/OpenCV-3-x-with-Python-By-Example
- Geeksforgeeks
 - https://www.geeksforgeeks.org/opencv-python-tutorial/
 - https://www.geeksforgeeks.org/introduction-to-opencv/
- Learn DIP
 - https://www.tutorialspoint.com/dip/index.htm

課程目標

- 基礎影像處理
 - 理論及演算法介紹
 - 實作與專案軟體開發

Books

評分標準

- 平時成績(點名、課後練習) 30%
- 期中考 40%
- 期末專案軟體開發30%(一分組3-4人)
 - 第五週後每週一組作業報告
 - 期末報告全部作業盤點報告

課程專題

- 作業一讀取影像/顯示座標的素點/彩色轉灰階/儲存檔案
- 作業二上下翻轉/左右翻轉/90度翻轉/270度翻轉
- 作業三 亮度轉換(線性)/直方圖統計/直方圖等化
- 作業四 任意倍率的放大縮小
- 作業五 平均濾波器/Sobel濾波器/Prewitt濾波器/高斯濾波器/ 拉普拉斯濾波器
- 作業六中位數濾波器
- 作業七 任意倍率的旋轉
- 作業八 影像銳化
- 作業九 Otsu's 分割
- 作業十 連通標記
- 作業十一 Canny 邊緣偵測

Dynamic Link Library

- VC 2017 C++ Call ANSI C
- VC 2017 C# Call ANSI C
- BCC Call ANSI C
- Python Call C

DIP

- bmp_dip() (show)
- bmp2array() (to printer f)
- array2bmp() (from printer g)
- bmp_write() (save)

Python 程式下載

• https://drive.google.com/drive/folders/1pFHi6Rk1Dima E2Fl4S6uElCmuIIAoWwi?usp=sharing

Project

Homework

Lesson 01: Tools

Tools

- Colab
- VS Code
- Visual Studio C#

Jupyter Notebook

Google Colab

國立雲林科技大學 https://zhuanlan.zhihu.com/p/33466657

Google Colaboratory

Google Drive/Colab Notebooks

Control+Enter

Mount Drive

from google.colab import drive drive.mount('/content/drive')

國立雲林科技大學

AI Stack

https://gpu.yuntech.edu.tw/ai-stack/account/login

AI Stack

Code Sample

- User Interface (UI)
- Algorithm
- User Interface (UI) + Algorithm
 - C++ Pointer f
 - C++ Pointer g

Lesson 02: Introduction

DIP-Single Form

- OpenFileDialog 物件(UI) -> Bitmap 物件(C#)
 - pictureBox 物件(UI)
 - -int(f)

BMP Format

https://www.itreado1.com/content/1549504280.html

Photo Impact

Camera Module

1R2G1B

https://en.wikipedia.org/wiki/Bayer_filter

RGB

Image Representation in 2-Dim

20	23	12	5	7	9	22	30
22	32	16	5	8	12	11	23
29	32	16	11	70	30	20	20
100	142	3	45	44	200	50	22
103	120	33	41	200	50	22	70
120	210	22	123	23	70	69	160
12	222	24	126	90	20	6	60
212	252	243	26	149	221	61	90

• f(0,0): 20

• f(1,0): 23

• f(2,0): 12

• f(0,7): 212

$$z=f(i,j)$$

Magnitude vs Light

z: z-axis magnitude

z: brightness of lights

Any Possible Signal z

- Visible light, Infrared (IR)
- Ultrasonic
- Medical (CT and MRI)
- Microwave (SAR)
- Alpha ray
- Earthquake, Weather
- •
- Everything

Spectral Characteristics

https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I14863862 9329404252&sid=0J009494851141638603

Intel RealSense 3D & ZED

Intel RealSense 3D

Intel RealSense D435

- Depth frame
- Color frame
- Infrared frame

Resolution

- Capture
- Representation
- Display & Printout
- Storage

Capture

a c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Representation

• Quantization: 8-bit, 256 levels

1(binary)-level

16(4 bits)-level

256(8 bits)-level 24 bits

• Sampling:

 $3,456 \times 2,304 = 7,962,624$ (8 Megapixel) $5,184 \times 3,456 = 17,915,904$ (18 megapixels)

RGB, Gray & Binary

NUMBERS		
R 255	R 102	R 51
G 0	G 102	G 204
B 0	B 255	B 153
R 255	R 255	R 51
G 255	G 0	G 204
B 102	B 204	B 255
R 51	R 51	R 255
G 51	G 51	G 153
B 0	B 153	B 153

GRAY = 1 SET OF DIGITS		
11111111	11100110	11001101
10110100	10011011	01110011
01010000	00101000	00000000

@ Graeme Cookson / Shutha.org

C Graeme Cookson / Shutha.org

https://en.wikipedia.org/wiki/Grayscale

0.2989 * R + 0.5870 * G + 0.1140 * B

Size of Gray Level Image

A 352 × 240 8-bit gray level image
- 352 × 240 × 8/8=101,376 bytes (CIF video)

• $5,184 \times 3,456 \times 3 = 53,747,712$ bytes

Subsampled down

FIGURE 2.19 A 1024 \times 1024, 8-bit image subsampled down to size 32 \times 32 pixels. The number of allowable gray levels was kept at 256.

Digital Image Processing (Gonzalez and Woods)

Subsampled down

abc def

FIGURE 2.20 (a) 1024×1024 , 8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) 256×256 , 128×128 , 64×64 , and 32×32 images resampled into 1024×1024 pixels.

Resolution Improvement

- Resolution in the spatial direction
 - Number of pixels in a 'fixed" spatial range
 - Image super-resolution
- Resolution in the intensity direction
 - Number of levels from the darkest to the lightest
 - High dynamic range image (HDR)
- Resolution in time (audio, video)

Super-resolution on (x,y)

High Dynamic Range on Z

- Fixed camera, scene
- Various exposure settings

Fusion image

Exercise

0.5

+ 0.5

f

Exercise

Bitplane

Homework-2

