DATABASE CONCEPTS

FINAL ASSIGNMENT

Name: Pratham Radhakrishna

ID:3997064

I) ER - Diagram:

- Australia, England, New Zealand, and the United States csvs are combined into a single table called country_vaccinations .
- Us_state_vaccinations csv is ---- state_vaccinations table where location specifies the country and state specifies which state in the country.

Assumption:

- a) Each country does not have a manufacturer.
- b) Every country will have vaccination.

SCHEMA

1.Strong entities:

Locations(location, <u>iso_code</u>, vaccines, last_observation_date, source_name, source_website)

Country_vaccinations(<u>location</u>, <u>date</u>, vaccines, source_url, total_vaccinations, people_vaccinated, people fully vaccinated, total boosters)

Vaccinations_by_age_group(location, date, age_group, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred)

State_vaccinations(date, location, state, total_vaccinations, total_distributed, people_vaccinated, people_fully_vaccinated_per_hundred, total_vaccinations_per_hundred, people_fully_vaccinated, people_vaccinated_per_hundred, distributed_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, share_doses_used, total_boosters, total_boosters_per_hundred)

Vaccination_by_manufacturer(<u>location</u>, <u>date</u>, <u>vaccine</u>, total_vaccinations)

Vaccination(<u>location</u>, <u>date</u>, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters,daily_vaccinations_raw, daily_vaccinations, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_boosters_per_hundred, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred)

2) Map weak entities: Null

3) Map 1:1 relations: Null

4) Map 1:N relations:

Locations (location, iso code, vaccines, last observation date, source name, source website)

Country_vaccinations(<u>location</u>, date, vaccines, source_url, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters, iso_code*)

Vaccinations_by_age_group(location, date, age_group, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred, iso_code*)

State_vaccinations(date, location, state, total_vaccinations, total_distributed, people_vaccinated, people_fully_vaccinated_per_hundred, total_vaccinations_per_hundred, people_fully_vaccinated, people_vaccinated_per_hundred, distributed_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, share_doses_used, total_boosters, total_boosters_per_hundred, iso_code*)

Vaccination_by_manufacturer(location, date, vaccine, total_vaccinations, iso_code*)

Vaccination(<u>location</u>, <u>date</u>, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters,daily_vaccinations_raw, daily_vaccinations, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_boosters_per_hundred, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated per_hundred, iso code*)

5) Map M:N relation: Null

6) Map Multi- valued attributes:

Country_vaccinations(<u>location</u>, <u>date</u>, source_url, total_vaccinations, people_vaccinated, people fully vaccinated, total boosters, iso code*)

Country_vaccines_list(vaccines, (location, date)*)

Locations(location, iso code, last observation_date, source_name, source_website)

locations_vaccines_list(vaccines, iso code*)

7) Map higher-degree relationships: Null

Final Scheme:

Country_vaccinations(<u>location</u>, <u>date</u>, source_url, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters, iso_code*)

Country_vaccines_list(vaccines, (location, date)*)

Locations (location, iso_code, last_observation_date, source_name, source_website)

locations_vaccines_list(vaccines, iso code*)

Vaccinations_by_age_group(<u>location</u>, <u>date</u>, age_group, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred, iso_code*)

State_vaccinations(date, location, state, total_vaccinations,total_distributed,people_vaccinated, people_fully_vaccinated_per_hundred,total_vaccinations_per_hundred, people_fully_vaccinated, people_vaccinated_per_hundred, distributed_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, share_doses_used, total_boosters, total_boosters per_hundred, iso_code*)

Vaccination_by_manufacturer(<u>location</u>, <u>date</u>, <u>vaccine</u>, total_vaccinations, iso_code*)

Vaccination(<u>location</u>, <u>date</u>, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters,daily_vaccinations_raw, daily_vaccinations, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_boosters_per_hundred, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred, iso_code*)

Schema Normalization:

a) Locations Locations (location, <u>iso_code</u>, vaccines, last_observation_date, source_name, source_website)

Dependencies:

Location $\leftarrow \rightarrow$ iso code

iso code → vaccines, last observation date, source name, source website

3NF:

Locations(location, iso_code*)

Location_details(<u>iso_code</u>, vaccines, last_observation_date, source_name, source_website) **Locations_vaccines_list**(vaccines, <u>iso_code</u>*)

b) Country_vaccinations

Dependencies:

(location, date) \rightarrow source_url, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters, iso_code Location $\leftarrow \rightarrow$ iso_code

3NF:

Country_vaccinations((location, date)*, iso_code*)

Country_vaccination_Details(<u>location</u>, <u>date</u>, source_url, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters) **Country_vaccines_list**(<u>vaccines</u>, (<u>location</u>, <u>date</u>)*)

c) Vaccinations_by_age_group

Vaccinations_by_age_group(<u>location</u>, <u>date</u>, age_group, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred, iso_code*)

Dependencies:

(location, date) \rightarrow age_group, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred, iso_code Location \leftarrow \rightarrow iso_code

3NF:

Vaccinations_by_age_group(location, date, iso_code*)
Vaccinations_by_age_group_details(location, date, age_group,
people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred,
people_with_booster_per_hundred)

d) State_vaccinations

State_vaccinations(date, location, state,

total_vaccinations,total_distributed,people_vaccinated,
people_fully_vaccinated_per_hundred,total_vaccinations_per_hundred,
people_fully_vaccinated, people_vaccinated_per_hundred, distributed_per_hundred,
daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million,
share_doses_used, total_boosters, total_boosters_per_hundred, iso_code*)

Dependencies:

date, location, state → total_vaccinations,total_distributed,people_vaccinated,
people_fully_vaccinated_per_hundred,total_vaccinations_per_hundred,
people_fully_vaccinated, people_vaccinated_per_hundred, distributed_per_hundred,
daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million,
share_doses_used, total_boosters, total_boosters_per_hundred

State_vaccinations_details(date, location, state,

total_vaccinations,total_distributed,people_vaccinated, people_fully_vaccinated_per_hundred,total_vaccinations_per_hundred, people_fully_vaccinated, people_vaccinated_per_hundred, distributed_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, share_doses_used, total_boosters, total_boosters_per_hundred)

state_vaccinations(date, location, state, iso code*)

e) **Vaccination_by_manufacturer**(<u>location, date</u>, vaccine, total_vaccinations, iso_code*)

Dependencies:

location, date, vaccine → total_vaccinations Location → iso_code

3NF:

Vaccination_by_manufacturer_details(<u>location</u>, <u>date</u>, <u>vaccine</u>, total_vaccinations) Vaccination_by_manufacturer(location, date, iso_code*)

f) Vaccination

Vaccination(<u>location</u>, <u>date</u>, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters, daily_vaccinations_raw, daily_vaccinations, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_boosters_per_hundred, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred, iso_code*)

Dependencies:

Location, date \rightarrow total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters,daily_vaccinations_raw, daily_vaccinations, daily_people_vaccinated Location $\leftarrow \rightarrow$ iso_code

3NF:

Vaccination(location, date, iso code*)

Vaccination_details(<u>location</u>, date, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters,daily_vaccinations_raw, daily_vaccinations, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_boosters_per_hundred, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred)

Comment:

The relations between Column and Column_per_hundred/ per_million are unreliable as the population is not constant and will lead to foreign key constraint failure.

Final Schema:

Vaccination(location, date, iso code*)

Vaccination_details(<u>location</u>, <u>date</u>, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters,daily_vaccinations_raw, daily_vaccinations, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred,

```
daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred)
```

Vaccination_by_manufacturer_details(<u>location</u>, date, vaccine, total_vaccinations)

Vaccination_by_manufacturer(location, date, iso_code*)

State_vaccinations_details(date, location, state,

total_vaccinations,total_distributed,people_vaccinated, people_fully_vaccinated_per_hundred,total_vaccinations_per_hundred, people_fully_vaccinated, people_vaccinated_per_hundred, distributed_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, share_doses_used, total_boosters, total_boosters_per_hundred)

state_vaccinations(date, location, state, iso_code*)

Vaccinations_by_age_group(location, date, iso_code*)

Vaccinations_by_age_group_details(<u>location</u>, date, age_group, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred)

Country_vaccinations((location, date)*, iso_code*)

Country_vaccination_Details(<u>location</u>, <u>date</u>, source_url, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters)

Country_vaccines_list(vaccines, (location, date)*)

Locations(location, iso code*)

Location_details(iso code, vaccines, last observation date, source name, source website)

Locations_vaccines_list(vaccines, iso code*)