# Misura della caratteristica di due diodi a giunzione p-n

## Bertasi Leonardo, Perniola Davide

Quarto turno

#### 1 Introduzione

Una giunzione p-n è composta da due regioni con drogaggio differente, di tipo p e di tipo n, di un semiconduttore a contatto tra di loro. Quando ai suoi capi è applicato una differenza di potenziale si parla di diodo. La prova è consistita nel misurare la caratteristica I-V di due diodi a semiconduttore, uno al silicio e uno al germanio, con l'obiettivo di ricavare il valore della corrente inversa  $I_0$  e del prodotto  $\eta V_T$  ( $\eta$  fattore di idealità,  $V_T$  equivalemte in volt della temperatura della giunzione). Sono stati utilizzati, inoltre, un alimentatore di bassa tensione, un multimetro digitale, un oscilloscopio, un potenziometro da  $1k\Omega$  oltre che dai due diodi in esame. Il circuito realizzato è riporato in Figura 1.

## 2 Risultati

## 3 Conclusioni

ewjewnfvonwdonvpsdnvpinwpvmwpmvprmpvmrmremoewjewnfvonwdonvpsdnvpinwpvmwpmvprmpvmrmremo ewjewnfvonwdonvpsdnvpinwpvmwpmvprmpvmrmremo ewjewnfvonwdonvpsdnvpin



Figura 1: Circuito realizzato e una sua rappresentazione schematica.

| F.S(mV/div) | V(mV)        | I(mA)           |
|-------------|--------------|-----------------|
| 200         | $730 \pm 30$ | $7.17 \pm 0.12$ |
| 200         | $720 \pm 29$ | $4.95 \pm 0.08$ |
| 200         | $670 \pm 28$ | $2.00 \pm 0.04$ |
| 100         | $665 \pm 22$ | $1.74 \pm 0.04$ |
| 100         | $650 \pm 22$ | $1.50 \pm 0.03$ |
| 100         | $645 \pm 22$ | $1.25 \pm 0.03$ |
| 100         | $635 \pm 22$ | $0.98 \pm 0.02$ |
| 100         | $625 \pm 21$ | $0.69 \pm 0.02$ |
| 100         | $605 \pm 21$ | $0.53 \pm 0.02$ |
| 100         | $590 \pm 20$ | $0.36 \pm 0.02$ |
| 100         | $565 \pm 20$ | $0.22 \pm 0.01$ |
| 100         | $525 \pm 19$ | $0.10 \pm 0.01$ |
| 100         | $500 \pm 18$ | $0.05 \pm 0.01$ |
| 100         | $445 \pm 17$ | $0.02 \pm 0.01$ |
| 100         | $430 \pm 16$ | $0.01 \pm 0.01$ |

Tabella 1: Risultati delle misure effettuate con il diodo al silicio. Sono riportate i valori di corrente e delle differenze di potenziale corrispettive, oltre che il fondo scale scelto per ogni misura

| F.S(mV/div) | V(mV)        | I(mA)           |
|-------------|--------------|-----------------|
| 100         | $345 \pm 14$ | $3.06 \pm 0.06$ |
| 50          | $325 \pm 11$ | $2.48 \pm 0.05$ |
| 50          | $315 \pm 11$ | $2.07 \pm 0.04$ |
| 50          | $305 \pm 10$ | $1.78 \pm 0.04$ |
| 50          | $295 \pm 10$ | $1.51 \pm 0.03$ |
| 50          | $285 \pm 10$ | $1.28 \pm 0.03$ |
| 50          | $275 \pm 10$ | $1.01 \pm 0.03$ |
| 50          | $255 \pm 9$  | $0.73 \pm 0.02$ |
| 50          | $245 \pm 9$  | $0.58 \pm 0.02$ |
| 50          | $225 \pm 8$  | $0.42 \pm 0.02$ |
| 50          | $212 \pm 8$  | $0.32 \pm 0.01$ |
| 50          | $182 \pm 7$  | $0.18 \pm 0.01$ |
| 50          | $155 \pm 7$  | $0.10 \pm 0.01$ |
| 50          | $135 \pm 6$  | $0.06 \pm 0.01$ |
| 20          | $100 \pm 4$  | $0.02 \pm 0.01$ |
| 20          | $85 \pm 3$   | $0.01 \pm 0.01$ |

Tabella 2: Risultati delle misure effettuate con il diodo al germanio. Sono riportate i valori di corrente e delle differenze di potenziale corrispettive, oltre che il fondo scale scelto per ogni misura