

Sarah Toolbox + Jupyter

Diego Restrepo

November 29, 2016

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Table of Contents

- 1. HEP Tools
- 2. Problems
- 3. Version control
- 4. Testing
- 5. Reproducibility

HEP Tools

HEP Tools

HEP Tools

HEP Tool 1 → Model A ...
$$\Downarrow$$
 LHA HEP Tool 2 → Model A ... \vdots

LHA Input/Output text File

```
BLOCK SET_OF_PARAMETERS

1 Value_1 # comment 1

2 Value_2 # comment 2

:
```

SARAH Toolbox

Lagrangian (math): SARAH \rightarrow Model LesHouches.in

Fortran: SPHENO \rightarrow Model : :

SARAH Toolbox

Lagrangian (math): SARAH → Model

Fortran: SPHENO → Model

CalcHEP mdl files: MicrOMEGAS → Model

UFO files (Python): MadGraph → Model

: :

Problems

Problems

When changing versions ...

- · Broken HEP tools
- · Broken models
- Lack of reproducibility

Problems

When changing versions ...

- Broken HEP tools → Version control + Testing
- Broken models → Version control + Testing
- Lack of reproducibility → Testing + Notebooks

GitHub (public) - GitLab (private)

Testing

File	Edit	View	Search	lermina	al labs	Help										
- 1	estr	×	[~]:i	×	restr	× r	estr	×	restr	×	latex	×	ksna	×	evinc	×
13. ===	A_2sca	ars S	8:48 COT TATUS:PA ====== 1:52 COT	SSED P DiracN				==								
)in	ac NMSSI	1 STAT	US:PASSE	D PASS												
.un	nov 28 SM STA	3 23:5 [US:PA	2:02 COT SSED PAS	2016 SED:61	FAILED	:14										
nar)me	nov 29 ga_Sho	9 00:0 rt/Reg	2:54 COT ime-2 ST	2016 ATUS:P		ASSED:6	2 FAIL	ED:14								
nar)me	nov 29	9 03:1 rt/Red	8:25 COT ime-1 ST	2016 ATUS:P	ASSED P	ASSED:6	3 FAIL									
nar İne	nov 29 rt STA	9 03:1 [US:PA	9:11 COT SSED PAS	2016 SED:64	FAILED	:14										
nar It	nov 29 ripletl	9 03:2 _R STA	2:42 COT TUS:PASS	2016 ED PAS		FAILED:										
	STATUS	FAILE	0:14 COT D PASSED	:65 FA												
nar MS	nov 29 SM STA	9 03:4 [US:PA	2:14 COT SSED PAS	2016 SED:66	FAILED	:15										
	erse-Se	esaw-	3:15 COT NMSSM ST	ATUS:P				ED:15								
nar IVL	nov 29 STATUS	04:0 5:PASS	8:52 COT ED PASSE	2016 D:68 F	AILED:1											
			2:19 COT													7
) b	ash <mark>1</mark>	bash	2 bash	3 bas	h								fisica	11/	29 6:1	Lar

README_CREATES_NEW_MODE	small fix	5 months ago
README_deploy_mybinder.md	small fix	5 months ago
README_mybinder	partial update	5 months ago
aclocal.m4	Initial relase after untar	2 years ago
■ butler	toolbox updated to 2.0.2	4 months ago
■ butler.in	toolbox updated to 2.0.2	4 months ago
butler.patch	1.29	2 years ago
clean.sh	Clean repo	5 months ago
clean_repo.sh	prepare merging	4 months ago

Introdocing scalar singlet to have also a compiling micromegas.

index.ipynb Fixed Model name index bash.ipynb fix micromegas bash run micromegas prtcl fix.sh Reorder particles in prtcl1.mdl

toolbox-1.2.7

small fix

1.2.9

Update to 1.2.10

toolbox updated to 2.0.2

Zee model implemented

compile_spheno_directly.sh

config.status

configure.ac

gitconfig.sh

requirements.txt

update-dirs.sh

■ README.md

configure

Run SARAH models precompiled by the butler script of SARAH Toolbox.

a year ago

2 years ago

4 months ago 9 months ago

5 months ago 5 months ago

4 months ago

5 months ago

6 months ago

2 years ago

SARAH Toolbox

Collection of models to be run from a docker image

Launch virtual docker image:

Jupyter home (Files, New -> Terminal, etc)

Highly recommended:

Run from a terminal:

Implemented models

Each model is to be run in a specific virtual machine. Follow the binder button in each github repo

- · SARAH/Models/SSDM/ (for test purposes)
- SARAH/Models/SM/HighScale (For RGE running: /butler SM/HighScale) Repo
- SARAH/Models/SimplifiedDM/IDM (This image)

Instructions to compile the model

In SPHENO and micromegas

See possible analysis based on the models in /tests folder.

Below we define the model to be compiled:

restrepo/SimplifiedDM-IDM-Toolbox

SARAH Toolbox

Launch virtual docker image:

Collection of models to be run from a docker image

<u>Jupyter home</u> (Files, New -> Terminal, etc)

launch binder

Highly recommended:

Run from a terminal:

Implemented models

Each model is to be run in a specific virtual machine. Follow the binder button in each github repo

SARAH/Models/SSDM/ (for test purposes)

CADAIL/M. J.7 - /02 -- 7 2 42 - JDM /TDM /#Lic i-----

SARAH/Models/SM/HighScale (For RGE running: /butler SM/HighScale) Repo

To better control in the outputs, it is recomended that the commands be executed from a terminal. Only

Instructions to compile the model

In SPHENO and mic romegas

See possible analysis based on the models in <u>/tests</u> folder.

Below we define the model to be compiled:

In [1]: MODEL=SimplifiedDMIDM

./compile spheno directly.sh \$MODEL > /dev/null

Run SPheno and generate LHA output file

possible errors are to be shown below

make a work dir

In [4]: LHAINPUT=../SPHENO/\$MODEL/Input_Files/LesHouches.in.\$MODEL
 if [-f ../SARAH/Models/\$MODEL/LesHouches.in.\$MODEL]; then
 LHAINPUT=../SARAH/Models/\$MODEL/LesHouches.in.\$MODEL
 fi

CDM-nucleon micromedas amplitudes: proton: SI -4.458E-12 SD 0.000E+00 neutron: SI -4.502E-12 SD 0.000E+00 BOX DIAGRAMS CDM-nucleon micrOMEGAs amplitudes: proton: SI -4.458E-12 SD 0.000E+00 neutron: SI -4.502E-12 SD 0.000E+00 CDM-nucleon cross sections[pb]: proton SI 7.259E-15 SD 0.000E+00 neutron SI 7.404F-15 SD 0.000F+00 ===== Direct Detection ====== 73Ge: Total number of events=2.74E-09 /day/kg Number of events in 10 - 50 KeV region=6.72E-12 /day/kg 131Xe: Total number of events=5.56E-09 /day/kg Number of events in 10 - 50 KeV region=1.30E-14 /day/kg 23Na: Total number of events=5.36E-10 /day/kg Number of events in 10 - 50 KeV region=3.36E-11 /day/kg I127: Total number of events=5.36E-09 /day/kg Number of events in 10 - 50 KeV region=3.20E-14 /day/kg

Go now to:

main ipyrhon file

Or to some specific scan in: Lux2016 notebook

Inert doublet model

According to this <u>bug report</u>, we need to change by hand the file $\underline{prtcls1.mdl}$ of the mic romegas model files, to be sure that the DM candidate appears as the first defined Z_2 particle. In this case:

```
etR | ~etR | ~etR | 35 ...
etI | ~etI | ~etI | 36 ...
etp | ~etp | ~Etp | 37 ...
```

```
In [1]: %pylab inline
```

```
Populating the interactive namespace from numpy and matplotlib
```

In [2]: import pandas as pd import numpy as np import os, sys, inspect import commands

from hep import *

Define functions to change from general basis to physical basis

Inert doublet model

According to this <u>bug report</u>, we need to change by hand the file $\underline{prtcls1.mdl}$ of the mic romegas model files, to be sure that the DM candidate appears as the first defined Z_2 particle. In this case:

```
etR | ~etR | ~etR | 35 ...
etI | ~etI | ~etI | 36 ...
etp | ~etp | ~Etp | 37 ...
```

```
In [1]: %pylab inline
```

```
Populating the interactive namespace from numpy and matplotlib
```

In [2]: import pandas as pd import numpy as np import os, sys, inspect import commands

from hep import *

Define functions to change from general basis to physical basis

Inert doublet model

According to this <u>bug report</u>, we need to change by hand the file $\underline{prtcls1.mdl}$ of the mic romegas model files, to be sure that the DM candidate appears as the first defined Z_2 particle. In this case:

```
etR | ~etR | ~etR | 35 ...
etI | ~etI | ~etI | 36 ...
etp | ~etp | ~Etp | 37 ...
```

```
In [1]: %pylab inline
```

```
Populating the interactive namespace from numpy and matplotlib
```

In [2]: import pandas as pd import numpy as np import os, sys, inspect import commands

from hep import *

Define functions to change from general basis to physical basis

#lambda 1=0.13 ipt=pd.Series({'MHX':66,'MH3':300,'MHC':300,'lambda L':0.0107}) #Official micromega mu2,lambda 3,lambda 4,lambda 5=phys to int(ipt.MHX, ipt.MH3,ipt.MHC,ipt.lambda L,v0) print 'expected:'.ipt.MHX.ipt.MH3.ipt.MHC print 'obtained' int to phys/mu2 lambda 3 lambda 4 lambda 5 v)[0]

BP1 at one loop

Relic density

```
In [12]: dfm=df[df.MH0<df.MHc]
    plt.semilogy(dfm.MH0,dfm.Omega_h2,'ko',label='SARAH')
    plt.semilogy(dfm.MH0,dfm.Omega_h2_official,'r-',label='micromegas/IDM'
    plt.xlabel(r'$m_{H^0}$ [GeV]',size=20)
    plt.ylabel(r'$\(^{\text{Omega}} \) h^2$',size=20)
    plt.legend(loc='best')
    plt.savefig('omega.pdf')</pre>
```


In [13]:

dfm=df[df.MH0<df.MHc]

10-9 L

100

200

```
plt.semilogy(dfm.MHO,dfm.proton_SI,'k-',label='SARAH')
plt.semilogy(dfm.MHO,dfm.proton_SI_official,'r--',label='micromegas/II
plt.xlabel(r'$m {H^0}$ [GeV]',size=20)
plt.ylabel(r'Direct Detection [pb]' ,size=20)
plt.legend(loc='best')
plt.savefig('dd.pdf')
    10-6
Direct Detection [pb]
                                   SARAH
                                   micromegas/IDM
    10-7
    10-8
```

In [14]: plt.plot(dfm.MH0,dfm.proton_SI_official/dfm.proton_SI,'k-')
nlt xlabel(r'sm {H^nls [GeV]' size=20)

 m_{H^0} [GeV]

400

500

600

700

8

300

Reproducibility

\begin{pmatrix}\null & e | \end{pmatrix}^{\operatorname{T}}&

\text{Name} & \text{Symbol} & \text{SU}(3) c & \text{SU}(2) L & \text{U}(1)

\begin{array}{llllll}

In [61]: %%latex

pmatr (e_R)^{\dagg (\psi_R)^{\d	er} & \eta^{\a	na} & \xi alpha}_1 {\alpha}	_{2\alpha & \mathb _2 & \mat	a} f{1} & \ thbf{1}	pmatrix}^{\operatornam mathbf{1} & +1 & +1 \\ & 1 & +1 & -1
Name	Symbol	$SU(3)_c$	$SU(2)_L$	$U(1)_{Y}$	Z_2
$\begin{pmatrix} \nu_L & e_L \end{pmatrix}^{\mathrm{T}}$	$\begin{pmatrix} \xi_{1\alpha} & \xi_{2\alpha} \end{pmatrix}^{T}$	1	2	-1/2	+1
$(e_R)^{\dagger}$	η_1^{α}	1	1	+1	+1
$(\psi_R)^{\dagger}$	η_2^{α}	1	1	+1	-1
ψ_L	$\xi_{3\alpha}$	1	1	-1	-1

\operatorname{T

1} & +1 & -1 \\

 $\frac{h_e v}{\sqrt{2}} \left(\eta_1^{\alpha} - \xi_{2\dot{\alpha}}^{\dagger} \right) \left(\begin{array}{c} \xi_{2\alpha} \\ \eta_1^{\dagger \dot{\alpha}} \end{array} \right) + M_{\psi} \left(\eta_2^{\alpha} - \xi_{3\dot{\alpha}}^{\dagger} \right) \left(\begin{array}{c} \xi_{3\alpha} \\ \eta_1^{\dagger \dot{\alpha}} \end{array} \right)$

+ $\begin{bmatrix} h_S S \left(\eta_1^{\alpha} & \xi_{2\dot{\alpha}}^{\dagger} \right) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \xi_{3\alpha} \\ \eta_1^{\dagger\dot{\alpha}} \end{pmatrix} + \text{h.c.} \end{bmatrix}$

 $= \frac{h_e v}{\sqrt{2}} \overline{e} e + M_{\psi} \overline{\Psi} \Psi + h_S \left(S \overline{e} \Psi_L + \text{h.c.} \right) ,$

 $\Psi_L = P_L \Psi = \begin{pmatrix} \psi_L \\ 0 \end{pmatrix}$.

$$\begin{split} &=\frac{h_e v}{\sqrt{2}}\left(\,\xi_{2\dot{\alpha}}^\dagger-\eta_1^\alpha\,\right)\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\left(\begin{matrix}\xi_{2\alpha}\\\eta_1^{\dagger\dot{\alpha}}\end{matrix}\right) + M_\psi\,\left(\,\xi_{3\dot{\alpha}}^\dagger-\eta_2^\alpha\,\right)\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\left(\begin{matrix}\xi_{3\alpha}\\\eta_2^{\dagger\dot{\alpha}}\end{matrix}\right) \\ &+\left[h_S S\left(\,\xi_{2\dot{\alpha}}^\dagger-\eta_1^\alpha\right)\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\left(\begin{matrix}1&0\\0&0\end{matrix}\right)\left(\begin{matrix}\xi_{3\alpha}\\\eta_2^{\dagger\dot{\alpha}}\end{matrix}\right) + \text{h.c.}\right] \end{split}$$
 Defining
$$e = \begin{pmatrix}\xi_{2\alpha}\\\eta_1^{\dagger\dot{\alpha}}\end{matrix}\right) = \begin{pmatrix}e_L\\e_R\end{matrix}\right) \qquad \Psi = \begin{pmatrix}\xi_{3\alpha}\\\eta_2^{\dagger\dot{\alpha}}\end{matrix}\right) = \begin{pmatrix}\psi_L\\\psi_R\end{matrix}$$
 the relevant Yukawa Lagrangian in terms of Dirac fermions is
$$\mathcal{L} = \frac{h_e v}{\sqrt{2}} e^\dagger \gamma^0 e + M_\psi \Psi^\dagger \gamma^0 \Psi + \left(h_S S e^\dagger \gamma^0 P_L \Psi + \text{h.c.}\right) \end{split}$$

where

9

from hep import * Check one point

import os, sys, inspect
import commands

```
In [3]: a=hep(MODEL='SimplifiedDMSSSFDM')
```

- are
- a.Series: pandas Series object with the "relevant" variables
- a.LHA: Input LesHouces file as pyslha object
- a.LHA: Input LesHouces file as <u>pyslha</u> object
 a.runSPheno() -> a.LHA out: return LHA output files as <u>pyslha</u> object
- output

2.0000000E+02 # MSFIN

- In [4]: pd.Series(a.LHA.blocks['MINPAR'].entries)
- Out[4]: 1 2.5500000E-01 # LambdalIN
 - 0.000000E+00 # LamSHIN
 - 0.00000000E+00 # LamSIN 2.0000000E+02 # MSZInput

a - object is an object with many attributes and methods. Use the tab to explore them. Some of them

a.runmicromegas() -> a.runSPheno() -> Updated the a - ob j ect with micrOMEGAS "relevant"

9

Scan the parameter space

In []: import time

a=hep(MODEL='SimplifiedDMSSSFDM')

st=time.time()

Omega h2 delta=0.0022

v=a.vev

🧇 🄊 🧭 🍴 🔯 localhost:8888/notebooks/prog/toolbox/mybinders/SimplifiedDM/SSSFDM/tests/SimplifiedDM-SSSFD 🍳 ☆

Scan the parameter space

```
In [ ]: import time
        st=time.time()
        a=hep(MODEL='SimplifiedDMSSSFDM')
        v=a.vev
        Omega h2 delta=0.0022
        CI = 3
        Omega h2=0.1197
        Omega h2 exp=[Omega h2-CL*Omega h2 delta,Omega h2,Omega h2+CL*Omega h2 delta
        lambda 1=0.26
        lambda SH=0
        a.LHA.blocks['SPHENOINPUT'].entries[55]='0
                                                                # Calculate one log
        a.LHA.blocks['SPHENOINPUT'].entries[520]='0.
                                                                  # Write effective
        df=pd.DataFrame()
        a.LHA.blocks['SPHENOINPUT'].entries[55]='0
                                                                  # Calculate one log
        dfmin=100 #40
        dfmax=600 #1E4
        npoints=1000
        df masses=np.logspace(np.log10(dfmin),np.log10(dfmax),npoints) #np.array([20
        DEBUG=False
        for i in range(1):
            for MF in df masses:
                 rm1=10**np.random.uniform(np.log10(1E-2),np.log10(3))
                r=rm1+1.
                M S=MF/r
                MS2=M S**2-a.vev**2*lambda SH
                Yse range=np.logspace(np.log10(np.pi),np.log10(1E-3),200)
                Omega h2 old=1E32
                for Yse in Yse range:
                    devnull=commands.getoutput('rm -f SPheno.spc.%s' %a.MODEL)
                    Ymu=0 #10**nn random uniform( log10(1E-3) nn log10(nn ni) )
```


a.LHA.blocks['MINPAR'][1]='%0.8E

a.LHA.blocks['MINPAR'][4]='%0.8E

a.LHA.blocks['MINPAR'1[5]='%0.8F

a.LHA.blocks['MINPAR'][2]='%0.8E

lambda1' %lambda 1

MS2' %MS2

MF' %MF

lambdaSH' %lambda SH

Help

Results in Poster Session:

200

300

 M_F [GeV]

400

500

600

Marta Liliana Sánchez Pélaez

100

File

Edit

View

Insert

101

10-1

Cell

Kernel

Conclusion

Sophisticated HEP tools require high programming standars Check: CERN-Root development