Biostats Lecture 11: Review

Public Health 783

Ralph Trane University of Wisconsin–Madison

Fall 2019

Review

Topics covered:

- 1. Descriptive Statistics
- 2. Probability and Random Variables
- 3. Statistical Hypothesis Tests
- 4. Confidence Intervals
- 5. Linear Regression

Descriptive Statistics

- Important to describe your sample
 - to avoid generalizing when you shouldn't
- Distinguish between categorical and continuous variables
 - when categorical
 - tables: frequency counts, relative frequencies
 - graphs: bar chart prefered
 - when continuous
 - tables: mean, sd or median, min, max
 - graphs for one variable: histogram, boxplots
 - graphs for two: scatter plot
- Important to consider if data should be stratified
 - often done if main outcome is categorical

Descriptive Statistics

Take-aways from descriptive statistics

What you absolutely need to know:

- why we need to describe/summarize our data
- when to pick what kind of summary
- when to pick what kind of plot
- how to read boxplots, histograms, and bar charts
- how to create the simple summary statistics using SAS
 - proc means and proc freq
- how to generate and boxplots using SAS
 - proc sort and then proc boxplot

- Probability: the proportion of times an event happens if experiment repeated over and over again
- Random Variable: a variable where the outcome cannot be determined before the experiment
- Distribution:
 - for categorical variable, histogram that gives the probabilities of each outcome
 - for continuous, curve
 - for both, total area must be 1!

- Important distributions:
 - bernoulli
 - discrete
 - binary outcome, one has probability p, the other probability 1-p
 - think coin toss, sex, disease status (if disease/healthy)
 - binomial
 - discrete
 - a number of bernoulli's added up
 - think number of individuals in a sample with disease
 - normal
 - continuous
 - occurs often in nature
 - turns out, averages (if enough samples are included) are normally distributed (Central Limit Theorem)

- Other distributions we have used:
 - t-distribution
 - ullet almost normal, and when n large enough, impossible to tell from normal
 - $\circ \chi^2$ distribution
 - used for χ^2 test

Take-aways from Probability and Random Variables

What you absolutely need to know:

- how to interpret a probability
 - Say an event happens with a probability of 15. If you were to repeat the experiment many, many times, we expect the event would happen about 15 percent of the times.

What I hope you have learned:

- better intuition about what "probability" is
- statisticians think about experiments as realizations of random variables
- depending on the experiment, a certain type of distribution is appropriate for the corresponding random variable
- a distribution is something that guides the outcome of a random event

General strategy:

- Write down your hypothesis in stats language:
 - \circ if interested if the overall mean is some number, say 2, then $H_0: \mu=2$ vs. $H_A: \mu
 eq 2$
- Find something that catches the spirit of what you're interested in

$$\circ \frac{\bar{X}-2}{SD(\bar{X})}$$

- Find the distribution of that thing, **IF** H_0 is true:
 - $\circ~$ if $\mu=2$ is actually true, then $rac{ar{X}-2}{SD(ar{X})}\sim N(0,1)$ since it is of the form "normal random variable minus mean divided by the stanard deviation"
 - \circ remember, average ($ar{X}$) is normal when n is "large enough"

- ullet Find the p-value, i.e. the probability of observing something more extreme IF H_0 is true
 - \circ More extreme = data further away from H_0
 - $\circ \,\,\, ar{X}$ further away from 2
 - $\circ \ \frac{\bar{X}-2}{SD(\bar{X})}$ further away from 0

$$\circ ext{ p-value} = 2 \cdot P\left(Z > \left| rac{ar{X} - 2}{SD(ar{X})}
ight|
ight)$$

- Went through a bunch (full list here)
- Talked in somewhat detail about:
 - t-test: for means
 - when you want to test if the mean in a group is equal to or different from a number
 - when you want to compare the means in two groups
 - test for proportions:
 - test if the proportion of a population with a certain attribute (disease, for example) is equal to a number (say 0.5)
 - test if two proportions are different
- Also seen:
 - $\circ \chi^2$ test
 - test if two categorical variables are related
 - test for RR

Take-aways from Hypothesis Testing

What you absolutely need to know:

- how to interpret a p-value
 - \circ the probability of something more extreme IF H_0 IS TRUE
 - if small, evidence against the null, so we reject
 - if large, not evidence against the null, so we do not reject
 - notes:
 - we **NEVER** accept H_0 or H_A . **ALWAYS** either reject of do not reject H_0
 - p-value is **NOT** the probability the null/model is true. Remember, loosely speaking p-value $= P(\text{data}|H_0)$, **NOT** $P(H_0|\text{data})$.
- what test to use when
- how to perform the tests mentioned above in SAS

What I hope you have learned:

intuition about what a statistical test is, and how it is build

Confidence Intervals

- hypothesis test: "could this one value be the truth?"
- confidence interval: "what range of values could be the truth?"
- all the values that make the test statistic fall between the critical values:

Take-aways from Confidence Intervals

What you absolutely need to know:

- how to interpret a 95% confidence interval:
 - \circ "we are 95% confident that the true value lies in the interval"
 - \circ NOT "there's a 95% probability/chance the true value lies in the interval"
 - this makes it seem like the true value varies from experiment to experiment, which is **NOT** how we think about hypothesis testing/confidence intervals/life in general.
- how to compare two confidence intervals:
 - two intervals that do not overlap means there is a statistically significant difference
 - two intervals that do overlap means there is NO statistically significant difference
- how to get confidence intervals for the following quantities in SAS:
 - a single mean
 - o difference in means
 - a single proportion
 - difference in proportions
 - RR
 - OR

Linear Regression

- Looking for association between two continuous variables
 - find the "best straight line"
 - $\circ \,$ i.e. find eta_0, eta_1 such that y_i is as close to $eta_0 + eta_1 \cdot x_i$ as possible
 - interpretations:
 - if $\beta_1 = 0$, no association
 - if $\beta_1 < 0$, when x increases, y decreases
 - if $\beta_1 > 0$, when x increases, y increases

Linear Regression

- Also allows us to adjust for other covariates:
 - \circ find eta_0, eta_1, eta_2 such that y_i is as close to $eta_0 + eta_1 \cdot x_{1,i} + eta_2 \cdot x_{2,i} + eta_3 \cdot x_{3,i}$ as possible.
 - interpretations
 - if $\beta_1=0$: after accounting for everything else, no association
 - ullet if $eta_1 < 0$: all else being equal, when x increases, y decreases
 - ullet if $eta_1>0$: all else being equal, when x increases, y increases

Linear Regression

Take-aways from Linear Regression

What you absolutely need to know:

• ...

What I hope you have learned:

- very basic intuition about linear regression
- some idea of how to interpret coefficients
- hopefully won't be scared when you encounter it in the future (cause you will)