

MC14411

BIT RATE GENERATOR

The MC14411 bit rate generator is constructed with complementary MOS enhancement mode devices. It utilizes a frequency divider network to provide a wide range of output frequencies.

A crystal controlled oscillator is the clock source for the network. A two-bit address is provided to select one of four multiple output clock rates.

Applications include a selectable frequency source for equipment in the data communications market, such as teleprinters, printers, CRT terminals, and microprocessor systems.

- Single 5.0 Vdc (±5%) Power Supply
- Internal Oscillator Crystal Controlled for Stability (1.8432 MHz)
- Sixteen Different Output Clock Rates
- 50% Output Duty Cycle
- Programmable Time Bases for One of Four Multiple Output Rates
- Buffered Outputs Compatible with Low Power TTL
- Noise Immunity = 45% of Vnn Typical
- Diode Protection on All Inputs
- External Clock May be Applied to Pin 21
- Internal Pullup Resistor on Reset Input

MAXIMUM RATINGS (Voltages referenced to Vss. Pin 12.)

Rating	Symbol	Value	Unit	
DC Supply Voltage Range	V _{DD}	5.25 to -0.5	٧	
Input Voltage, All Inputs	V _{in}	V _{DD} + 0.5 to V _{SS} - 0.5	٧	
DC Current Drain per Pin	1	10	mA	
Operating Temperature Range	TA	-40 to +85	°C	
Storage Temperature Range	T _{stg}	-65 to +150	°C	

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

BIT RATE GENERATOR

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{in} and V_{out} be constrained to the range $V_{SS} \leq (V_{in})$ or $V_{out} \geq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD).

MC14411

ELECTRICAL CHARACTERISTICS

Characteristic		VDD	- 40°C		25°C			+ 85°C		
	Symbol	Vdc	Min	Max	Min	Тур	Max	Min	Max	Unit
Supply Voltage	VDD	-	4.75	5.25	4.75	5.0	5.25	4.75	5.25	V
Output Voltage "0" Level		5.0	-	0.05	_	0	0.05	_	0.05	V
"1" Level	Vout	5.0	4.95		4.95	5.0		4.95	_	V
Input Voltage	l	ļ							}	1
$(V_0 = 4.5 \text{ or } 0.5 \text{ V})$	VIL	5.0	-	1.5	-	2.25	1.5	-	1.5	V
$(V_0 = 0.5 \text{ or } 4.5 \text{ Vdc})$	VIH	5.0	3.5	_	3.5	2.75	_	3.5	_	V
Output Drive Current										
$(V_{OH} = 2.5 \text{ V})$ Source	ЮН	5.0	- 0.23	-	- 0.20	- 1.7	_	- 0.16	_	mA
$(V_{OL} = 0.4 \text{ V})$ Sink	IOL	5.0	0.23	_	0.20	0.78	-	0.16	_	mA
Input Current										
Pins 21, 22, 23	lin	_	_	±0.1	_	±0.00001	±0.1	-	± 1.0	μΑ
Pin 10		5.0		-	- 1.5		- 7.5	_		μΑ
Input Capacitance (Vin = 0)	Cin	-	-	_	_	5.0	_	_	_	pF
Quiescent Dissipation	PQ	5.0	-	2.5	_	0.015	2.5	-	15	mW
Power Dissipation**† (Dynamic plus Quiescent) (C _L = 15 pF)	PD	5.0			P _D = (7.5 mW/MHz) f + P _Q			mW		
Output Rise Time** $t_{\Gamma} = (3.0 \text{ ns/pF}) \text{ C}_{L} + 25 \text{ ns}$	tTLH	5.0	-	-	_	70	200	-	_	ns
Output Fall Time**	tTHL	5.0	-		-	70	200	_	-	ns
$t_f = (1.5 \text{ ns/pF}) \text{ CL} + 47 \text{ ns}$										
Input Clock Frequency	fCL	5.0	_	1.85	_	_	1.85	_	1.85	MHz
Clock Pulse Width	tW(C)		200	-	200	***	men	200	_	ns
Reset Pulse Width	tW(R)	-	500	-	500	-	_	500	-	ns

TFor dissipation at different external capacitance (C_L) refer to corresponding formula: $P_T(C_L = P_D + 2.6 \times 10^{-3} (C_L - 15 \text{ pF}) \text{ V}_{DD} 2f \\ \text{where: } P_T, P_D \text{ in mW, } C_L \text{ in pF, V}_{DD} \text{ in Vdc, and f in MHz.}$ **The formula given is for the typical characteristics only.

TABLE 1 - OUTPUT CLOCK RATES

Rate	Rate Select		
В	Α	Rate	
0	0	X1	
0	1	X8	
1	0	X16	
1	1	X64	

Output	Output Rates (Hz)					
Number	X64	X16	X8	X1		
F1	614.4 k	153.6 k	76.8 k	9600		
F2	460.8 k	115.2 k	57.6 k	7200		
F3	307.2 k	76.8 k	38.4 k	4800		
F4	230.4 k	57.6 k	28.8 k	3600		
F5	153.6 k	38.4 k	19.2 k	2400		
F6	115.2 k	28.8 k	14.4 k	1800		
F7	76.8 k	19.2 k	9600	1200		
F8	38.4 k	9600	4800	600		
F9	19.2 k	4800	2400	300		
F10	12.8 k	3200	1600	200		
F11	9600	2400	1200	150		
F12	8613.2	2153.3	1076.6	134.5		
F13	7035.5	1758.8	879.4	109.9		
F14	4800	1200	600	75		
F15	921.6 k	921.6 k	921.6 k	921.6 k		
F16*	1.843 M	1.843 M	1.843 M	1.843 M		

^{*}F16 is buffered oscillator output.

FIGURE 1 - DYNAMIC SIGNAL WAVEFORMS

FIGURE 2 - TYPICAL CRYSTAL OSCILLATOR CIRCUIT

Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc., or others.