# Refined analysis of local convergence: implicit regularization



Cong Ma
University of Chicago, Autumn 2021

# A natural least-squares formulation

given: 
$$y_k = (\boldsymbol{a}_k^{\top} \boldsymbol{x}^{\star})^2, \quad 1 \leq k \leq m$$
 
$$\Downarrow$$
 
$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[ \left( \boldsymbol{a}_k^{\top} \boldsymbol{x} \right)^2 - y_k \right]^2$$

#### A natural least-squares formulation

given: 
$$y_k = (\boldsymbol{a}_k^{\top} \boldsymbol{x}^{\star})^2, \quad 1 \leq k \leq m$$
 
$$\Downarrow$$
 
$$\text{minimize}_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[ \left( \boldsymbol{a}_k^{\top} \boldsymbol{x} \right)^2 - y_k \right]^2$$

• pros: often exact as long as sample size is sufficiently large

# A natural least-squares formulation

given: 
$$y_k = (\boldsymbol{a}_k^{\top} \boldsymbol{x}^{\star})^2, \quad 1 \leq k \leq m$$
 
$$\Downarrow$$
 
$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[ \left( \boldsymbol{a}_k^{\top} \boldsymbol{x} \right)^2 - y_k \right]^2$$

- pros: often exact as long as sample size is sufficiently large
- ullet cons:  $f(\cdot)$  is highly nonconvex  $\longrightarrow$  computationally challenging!

# Wirtinger flow (Candès, Li, Soltanolkotabi '14)

$$\mathrm{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[ \left( \boldsymbol{a}_k^\top \boldsymbol{x} \right)^2 - y_k \right]^2$$

# Wirtinger flow (Candès, Li, Soltanolkotabi '14)

$$\mathrm{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[ \left( \boldsymbol{a}_k^\top \boldsymbol{x} \right)^2 - y_k \right]^2$$



ullet spectral initialization:  $x^0 \leftarrow {
m leading}$  eigenvector of certain data matrix

# Wirtinger flow (Candès, Li, Soltanolkotabi '14)

$$\mathrm{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^{m} \left[ \left( \boldsymbol{a}_k^\top \boldsymbol{x} \right)^2 - y_k \right]^2$$



- ullet spectral initialization:  $x^0 \leftarrow {
  m leading}$  eigenvector of certain data matrix
- gradient descent:

$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \, \nabla f(\boldsymbol{x}^t), \qquad t = 0, 1, \cdots$$

$$\mathsf{dist}({m x}^t,{m x}^\star) := \min\{\|{m x}^t \pm {m x}^\star\|_2\}$$

#### Theorem 9.1 (Candès, Li, Soltanolkotabi '14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\star) \lesssim \left(1 - \frac{\eta}{4}\right)^{t/2} \|\boldsymbol{x}^\star\|_2,$$

with high prob., provided that step size  $\eta \lesssim 1/n$  and sample size:  $m \gtrsim n \log n$ .

$$\mathsf{dist}({m x}^t,{m x}^\star) := \min\{\|{m x}^t \pm {m x}^\star\|_2\}$$

#### Theorem 9.1 (Candès, Li, Soltanolkotabi'14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\star) \lesssim \left(1 - \frac{\eta}{4}\right)^{t/2} \|\boldsymbol{x}^\star\|_2,$$

with high prob., provided that step size  $\eta \lesssim 1/n$  and sample size:  $m \gtrsim n \log n$ .

• Iteration complexity:  $O(n\log\frac{1}{\epsilon})$ 

$$\mathsf{dist}({oldsymbol x}^t,{oldsymbol x}^\star) := \min\{\|{oldsymbol x}^t \pm {oldsymbol x}^\star\|_2\}$$

#### Theorem 9.1 (Candès, Li, Soltanolkotabi'14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\star) \lesssim \left(1 - \frac{\eta}{4}\right)^{t/2} \|\boldsymbol{x}^\star\|_2,$$

with high prob., provided that step size  $\eta \lesssim 1/n$  and sample size:  $m \gtrsim n \log n$ .

- Iteration complexity:  $O(n\log\frac{1}{\epsilon})$
- Sample complexity:  $O(n \log n)$

$$\mathsf{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\star) := \min\{\|\boldsymbol{x}^t \pm \boldsymbol{x}^\star\|_2\}$$

#### Theorem 9.1 (Candès, Li, Soltanolkotabi '14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\star) \lesssim \left(1 - \frac{\eta}{4}\right)^{t/2} \|\boldsymbol{x}^\star\|_2,$$

with high prob., provided that step size and sample size: .

- Iteration complexity:  $O(n\log\frac{1}{\epsilon})$
- Sample complexity:  $O(n \log n)$
- Derived based on (worst-case) local geometry

Gaussian designs: 
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Gaussian designs: 
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level  $(m \asymp n \log n)$ 

$$\nabla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$

Gaussian designs: 
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level  $(m \approx n \log n)$ 

$$\nabla^2 f(x) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Gaussian designs: 
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level  $(m \approx n \log n)$ 

$$\nabla^2 f(x) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Consequence (Candès et al '14): WF attains  $\varepsilon$ -accuracy within  $O(n\log\frac{1}{\varepsilon})$  iterations if  $m\asymp n\log n$ 

WF converges in O(n) iterations

WF converges in O(n) iterations



Step size taken to be  $\eta = O(1/n)$ 

This choice is suggested by worst-case optimization theory

WF converges in O(n) iterations



Step size taken to be  $\eta = O(1/n)$ 



This choice is suggested by worst-case optimization theory



Does it capture what really happens?

#### Improved theory of WF

$$\mathsf{dist}({oldsymbol x}^t,{oldsymbol x}^\star) := \min\{\|{oldsymbol x}^t \pm {oldsymbol x}^\star\|_2\}$$

#### Theorem 9.2 (Ma, Wang, Chi, Chen '17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\mathsf{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\star) \lesssim \left(1 - \frac{\eta}{2}\right)^t \|\boldsymbol{x}^\star\|_2$$

with high prob., provided that step size  $\eta \approx 1/\log n$  and sample size  $m \gtrsim n \log n$ .

- Iteration complexity:  $O(n \log \frac{1}{\epsilon}) \searrow O(\log n \log \frac{1}{\epsilon})$
- Sample complexity:  $O(n \log n)$
- Derived based on finer analysis of GD trajectory

Gaussian designs:  $a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n), \quad 1 \leq k \leq m$ 

Gaussian designs: 
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level  $(m \asymp n \log n)$ 

$$\nabla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$

Gaussian designs: 
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level  $(m \approx n \log n)$ 

$$\nabla^2 f(x) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Gaussian designs: 
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level  $(m \approx n \log n)$ 

$$\nabla^2 f(x) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Consequence (Candès et al '14): WF attains  $\varepsilon$ -accuracy within  $O(n\log\frac{1}{\varepsilon})$  iterations if  $m\asymp n\log n$ 

WF converges in O(n) iterations

WF converges in O(n) iterations



Step size taken to be  $\eta = O(1/n)$ 

This choice is suggested by worst-case optimization theory

WF converges in O(n) iterations



Step size taken to be  $\eta = O(1/n)$ 



This choice is suggested by worst-case optimization theory



Does it capture what really happens?

#### Numerical efficiency with $\eta_t = 0.1$



Vanilla GD (WF) converges fast for a constant step size!

Which local region enjoys both strong convexity and smoothness?

$$abla^2 f(oldsymbol{x}) = rac{1}{m} \sum_{k=1}^m \left[ 3 oldsymbol{(a_k^ op oldsymbol{x})}^2 - oldsymbol{(a_k^ op oldsymbol{x}^\star)}^2 
ight] oldsymbol{a}_k oldsymbol{a}_k^ op$$

Which local region enjoys both strong convexity and smoothness?

$$\nabla^2 f(\boldsymbol{x}) = \frac{1}{m} \sum_{k=1}^m \left[ 3 (\boldsymbol{a}_k^\top \boldsymbol{x})^2 - (\boldsymbol{a}_k^\top \boldsymbol{x}^\star)^2 \right] \boldsymbol{a}_k \boldsymbol{a}_k^\top$$

ullet Not sufficiently smooth if  $oldsymbol{x}$  and  $oldsymbol{a}_k$  are too close (coherent)

Which local region enjoys both strong convexity and smoothness?



• x is incoherent w.r.t. sampling vectors  $\{a_k\}$  (incoherence region)

Which local region enjoys both strong convexity and smoothness?



ullet x is incoherent w.r.t. sampling vectors  $\{a_k\}$  (incoherence region)

Which local region enjoys both strong convexity and smoothness?



• x is incoherent w.r.t. sampling vectors  $\{a_k\}$  (incoherence region)

Prior works suggest enforcing regularization (e.g. truncation, projection, regularized loss) to promote incoherence

# Encouraging message: GD is implicitly regularized





# Encouraging message: GD is implicitly regularized





# Encouraging message: GD is implicitly regularized





# Encouraging message: GD is implicitly regularized





# Encouraging message: GD is implicitly regularized





GD implicitly forces iterates to remain incoherent with  $\{a_k\}$   $\max_k |a_k^\top (x^t - x^\star)| \lesssim \sqrt{\log n} \, \|x^\star\|_2, \quad \forall t$ 

 cannot be derived from generic optimization theory; relies on finer statistical analysis for entire trajectory of GD

# Theoretical guarantees for local refinement stage

#### Theorem 9.3 (Ma, Wang, Chi, Chen'17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

•  $\max_k |\boldsymbol{a}_k^{\top} \boldsymbol{x}^t| \lesssim \sqrt{\log n} \, \|\boldsymbol{x}^{\star}\|_2$  (incoherence)

# Theoretical guarantees for local refinement stage

#### Theorem 9.3 (Ma, Wang, Chi, Chen'17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

- $\max_k |\boldsymbol{a}_k^{\top} \boldsymbol{x}^t| \lesssim \sqrt{\log n} \, \|\boldsymbol{x}^{\star}\|_2$  (incoherence)
- $\mathsf{dist}(m{x}^t, m{x}^\star) \lesssim \left(1 \frac{\eta}{2}\right)^t \|m{x}^\star\|_2$  (linear convergence)

provided that step size  $\eta \approx 1/\log n$  and sample size  $m \gtrsim n \log n$ .

• Attains  $\varepsilon$  accuracy within  $O(\log n \, \log \frac{1}{\varepsilon})$  iterations

For each  $1 \leq l \leq m$ , introduce leave-one-out iterates  $\boldsymbol{x}^{t,(l)}$  by dropping lth measurement





ullet Leave-one-out iterate  $oldsymbol{x}^{t,(l)}$  is independent of  $oldsymbol{a}_l$ 



- ullet Leave-one-out iterate  $oldsymbol{x}^{t,(l)}$  is independent of  $oldsymbol{a}_l$
- ullet Leave-one-out iterate  $x^{t,(l)} pprox {
  m true}$  iterate  $x^t$



- ullet Leave-one-out iterate  $oldsymbol{x}^{t,(l)}$  is independent of  $oldsymbol{a}_l$
- ullet Leave-one-out iterate  $oldsymbol{x}^{t,(l)} pprox ext{true}$  iterate  $oldsymbol{x}^t$ 
  - $\Longrightarrow x^t$  is nearly independent of  $a_l$

#### No need of sample splitting

 Several prior works use sample-splitting: require fresh samples at each iteration; not practical but helps analysis



### No need of sample splitting

 Several prior works use sample-splitting: require fresh samples at each iteration; not practical but helps analysis



• This tutorial: reuses all samples in all iterations



Low-rank matrix completion