Venous Mapping of Vascular Malformations using Cranial 4D Flow MRI with Improved 'Virtual Injections'

Presenter: Grant Roberts

Laura B. Eisenmenger¹

<u>Grant S. Roberts²</u>

Michael W. Loecher³

Leonardo A. Rivera-Rivera²

Patrick A. Turski¹

Kevin M. Johnson^{1,2}

Oliver Wieben^{1,2}

University of Wisconsin-Madison, Dept. of: Radiology¹ Medical Physics²

ONE COMMUNITY

Virtual Conference & Exhibition
08-14 August 2020

Declaration of Financial Interests or Relationships

Speaker Name: Grant S. Roberts

I have the following financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company Name: GE Healthcare

Type of Relationship: Research Support

Background: Transvenous Embolization (TVE)

- Management of intracranial vascular lesions can be complex with significant morbidity/mortality
- Transvenous embolization (TVE) is a common method to treat DAVFs¹
 - TVE for AVM treatment has recently gained interest²
- However, accurate characterization of venous drainage is essential to the TVE approach
- Digital subtraction angiography (DSA) is gold standard diagnostic imaging

- 1. Urtasun, F, et al. *Radiology*. 1996; 199(1)
- 2. Chen, CJ, et al. *Neurosurg Focos*. 2018 Jul;45(1)

Background: 4D Flow

- 4D Flow MRI provides timeresolved velocity fields over a 3D volume³
 - Provides morphology and dynamic velocity fields simultaneously with high resolution
 - Significant advances over the last decade

Background: Virtual Injections

- One compelling use of 4D flow data is streamlines traced through time, similar to contrast injection^{4,5}
 - No need for an actual injection
 - Can 'seed' at any location within volume
 - Can track retrograde or anterograde flow
 - Can greatly aid in lesion characterization prior to entering the angiography suite
- In order to track blood along longer vessel segments, 4D flow errors must be accounted for

- 4. Edjlali, M, et al. Radiology. 2014 January; 270(1).
- 5. Loecher, M, et al. *Proc. ISMRM* 22. 2015 June; p. 0513

Motivation

- Here, we apply a previously developed methodology⁵ in which we combine probabilistic streamlines⁶, displacement corrections^{7,8}, and fluid constraints to allow for accurate venous mapping in AVMs and DAVFs
 - Can be used in junction with 4D flow quantitative data
- May provide valuable insight into the pre-procedural vascular anatomy and the potential impact of selective embolization

- 5. Loecher, M, et al. *Proc. ISMRM 22*. 2015 June; p. 0513
- 6. Friman, O et al. *Med Image Anal.* 2011 October; 15(5).
- 7. Steinman, DA et al. JMRI. 1997 Mar-Apr.; 7(2).
- 8. Thunberg, P et al. JMRI. 2002 November; 16(5).

Methods: In-Vivo Experiments

- 11 AVM and 2 DAVF cases (IRB approved) were imaged with 4D flow MRI:
 - Radially-undersampled PCVIPR⁹
 - Ideal for cranial applications^{10,11}
 - 3T (Discovery 750, GE Healthcare)
 - Complete volumetric brain coverage (22 cm³).
 - Isotropic Resolution = 0.78 mm³
 - Scan time ≈ 6 minutes
 - TE = 2.8 ms
 - TR = 8.2 ms
 - $V_{enc} = 80 \text{ cm/s}$

PCVIPR Sequence

- 9. Gu, O, et al. *AJNR*. 2005 April; 26(4).
- 10. Rivera-Rivera, LA, et al. *JCBFM*. 2016 October; 36(10)
- 11. Chang, W, et al. AJNR. 2012 September; 33(1).

Methods: Displacement Correction

- Velocity measurements become displaced due to finite timing of encoding gradients
 - Artifacts if acceleration is present
- If time difference (t_d) between encodes is known, displacement can be approximated⁴

4. Thunberg, P et al. JMRI. 2002 November; 16(5).

Methods: Probabilistic Streamlines

- Create Gaussian
 distribution of noise
 based on local signal and
 variance measures³
- Randomly sample from this distribution at every step (Monte Carlo)
 - Create many random streamlines
- Fluid constraints
 - Minimize ΔKE
 - Non-binary vessel boundaries

Methods: In-Vivo Experiments

- Virtual injection methodology⁵:
 - 40,000 probabilistic streamlines were generated
 - Computed from time-averaged velocity maps
 - Displacement time = 2.6 ms
 - Compute time = 10 minutes/seed
 - Streamline starting positions (seeds) were placed within a masked plane in the neck or from a manually-positioned seeding sphere

Results: Comparison to PCASL

Results: Virtual Injection in AVM

Anterograde + Retrograde Nidus Seeding

Results: Venous Mapping in AVM

Results: Venous Mapping in AVM

Results: Venous Mapping in DAVF

Pressure Mapping

Virtual Injection

Discussion

- Demonstrated a novel method combining probabilistic streamlines, displacement corrections, and fluid constraints to create virtual injections
 - Can track blood movement throughout the whole brain using only 4D flow MR
- Unlike DSA and ASL, seed locations can be (1) chosen retrospectively, (2) at multiple locations, and (3) placed in downstream vessel segments for retrograde tracking
- Complementary to the quantitative flow analysis provided by 4D flow acquisitions

Conclusion

- Virtual injections for complex venous mapping in vascular malformations which could have high impact in vascular lesion characterization prior to and after treatment
- Future studies:
 - Needed to assess the actual impact on improved preprocedure planning and patient outcomes
 - Will incorporate an interface allowing for semiautomatic seed placement
 - Needed to quantitatively compare virtual injection data to other MR methods.

Acknowledgements

Venous Mapping of Vascular Malformations using Cranial 4D Flow MRI with Improved 'Virtual Injections'

Laura B. Eisenmenger

Grant S. Roberts

Michael W. Loecher

Leonardo A. Rivera-Rivera

Patrick A. Turski

Kevin M. Johnson

Oliver Wieben

University of Wisconsin-Madison & Stanford University

We gratefully acknowledge funding by the AHA (#12PRE12080073) a GE Healthcare for research support.

Slide 18 of 18