Econ C103: Game Theory and Networks Module I (Game Theory): Lecture 6

Instructor: Matt Leister

Fall 2019, UC Berkeley

Readings:

- Osborne (2004) chapter 3.5
- Osborne and Rubinstein (1994) Example 18.1, Exercises 18.2, 18.3

Auctions: complete information

- In this class: we define an "auction" as a market mechanism in which a single good is sold to a player ("bidder") who submits a highest bid.
- More generally: auctions may include multiple units, and more complicated actions than a single bid, e.g., "bidding fee" auctions, and "Simultaneous Multiple-Round" (SMR) auctions (more later).
- Types of auctions (we study):
 - **Second-price sealed-bid auction** (SPA): static (simultaneous move) auctions where highest bidder pays the second highest bid. SPA approximates dynamic assenting price "English" auction.
 - **First-price sealed-bid auction** (FPA): static (simultaneous move) auctions where highest bidder pays their bid. FPA approximates dynamic descending price "Dutch" auction.
- Auctions can either be under complete information (covered today), or incomplete/private information (covered in week 4).
- Both SPA and FPA under complete information yield multiple PNE...

Auctions: Second-price sealed-bid auction (SPA)

- Players: n > 1 bidders.
- Actions: bids $b_i \ge 0$ for each $i \in N$.
- Utilities: Each $i \in N$ endowed with valuation $v_i \geq 0$; Without loss of generality, order $v_1 > v_2 > \ldots > v_n$. $\bar{b}_{-i} \equiv \max_{j \in N \setminus \{i\}} \{\mathbf{b}_{-i}\}$ gives the highest bid (excluding b_i), $\bar{B}_{-i} \equiv \operatorname{argmax}_{j \in N \setminus \{i\}} \{\mathbf{b}_{-i}\}$ are the players bidding \bar{b}_{-i} (excluding i).

$$u_{i}(b_{i},b_{-i}) = \begin{cases} v_{i} - \bar{b}_{-i} & \text{if } b_{i} > \bar{b}_{-i} \\ v_{i} - \bar{b}_{-i} & \text{if } b_{i} = \bar{b}_{-i} \& i = \min(\{i\} \cup \bar{B}_{-i}) \\ 0 & \text{otherwise} \end{cases}.$$

note: i is lowest index with highest bid when $i = \min(\{i\} \cup \bar{B}_{-i})$, so auctioneer chooses lowest index among those bidding the most to win.

Auctions: Second-price sealed-bid auction (SPA)

Best response in SPA:

$$BR_{i}(b_{-i}) = \begin{cases} & [\bar{b}_{-i}, \infty) & \text{if } \bar{b}_{-i} < v_{i} \& i = \min(\{i\} \cup \bar{B}_{-i}) \\ & (\bar{b}_{-i}, \infty) & \text{if } \bar{b}_{-i} < v_{i} \& i \neq \min(\{i\} \cup \bar{B}_{-i}) \\ & [0, \infty) & \text{if } \bar{b}_{-i} = v_{i} \\ & [0, \bar{b}_{-i}) & \text{if } \bar{b}_{-i} > v_{i} \& i = \min(\{i\} \cup \bar{B}_{-i}) \\ & [0, \bar{b}_{-i}] & \text{if } \bar{b}_{-i} > v_{i} \& i \neq \min(\{i\} \cup \bar{B}_{-i}) \end{cases}$$

Auctions: Second-price sealed-bid auction (SPA)

- The set of PNE in SPA include:
 - $b_i^* = v_i$ for each $i \in N$: bidder 1 wins, pays v_2 (i.e. "bid your value"),
 - $b_1^* = v_1$ and $b_i^* = 0$ for each i > 1: bidder 1 wins, pays 0,
 - $b_i^* = 1,000,000,000, b_i^* = 0$ for each $j \in N$: bidder i wins, pays 0,
 - ...an infinite number of other PNE.
- Fact: for any $i \in N$, $b_i \neq v_i$ is weakly dominated by $b_i = v_i$. Proof:
 - For each $b_i < v_i$, whenever $b_i < \bar{b}_{-i} < v_i$ then i loses (giving utility 0), while if $b_i = v_i$ then i wins and earns positive utility $v_i \bar{b}_{-i}$.
 - For each $b_i > v_i$, whenever $v_i < \bar{b}_{-i} < b_i$ then i wins (giving negative utility $v_i \bar{b}_{-i}$), while if $b_i = v_i$ then i loses and earns utility 0.
- It is convention to focus on the "bid your value" PNE.

- Players: n > 1 bidders.
- Actions: bids $b_i \ge 0$ for each $i \in N$.
- Utilities: Each $i \in N$ endowed with valuation $v_i \geq 0$; Without loss of generality, order $v_1 > v_2 > \ldots > v_n$. $\bar{b}_{-i} \equiv \max_{j \in N \setminus \{i\}} \{\mathbf{b}_{-i}\}$ gives the highest bid (excluding b_i), $\bar{B}_{-i} \equiv \operatorname{argmax}_{j \in N \setminus \{i\}} \{\mathbf{b}_{-i}\}$ are the players bidding \bar{b}_{-i} (excluding i).

$$u_{i}(b_{i}, b_{-i}) = \begin{cases} v_{i} - b_{i} & \text{if } b_{i} > \bar{b}_{-i} \\ v_{i} - b_{i} & \text{if } b_{i} = \bar{b}_{-i} \& i = \min(\{i\} \cup \bar{B}_{-i}) \\ 0 & \text{otherwise} \end{cases}.$$

note: i is lowest index with highest bid when $i = \min(\{i\} \cup \bar{B}_{-i})$, so auctioneer chooses lowest index among those bidding the most to win.

Best response in FPA:

$$BR_{i}(b_{-i}) = \begin{cases} \bar{b}_{-i} & \text{if } \bar{b}_{-i} < v_{i} \& i = \min(\{i\} \cup \bar{B}_{-i}) \\ \emptyset & \text{if } \bar{b}_{-i} < v_{i} \& i \neq \min(\{i\} \cup \bar{B}_{-i}) \\ [0,\bar{b}_{-i}] & \text{if } \bar{b}_{-i} = v_{i} \\ [0,\bar{b}_{-i}) & \text{if } \bar{b}_{-i} > v_{i} \& i = \min(\{i\} \cup \bar{B}_{-i}) \\ [0,\bar{b}_{-i}] & \text{if } \bar{b}_{-i} > v_{i} \& i \neq \min(\{i\} \cup \bar{B}_{-i}) \end{cases}$$

- Fact: $b_i = v_i$ is no longer a weakly dominant strategy: if $\bar{b}_{-i} < v_i$ then i can decrease ("shade") her bid keeping $b_i > \bar{b}_{-i}$, and earn a positive utility $v_i b_i$.
- The set of PNE in FPA:

$$\left\{ \mathbf{b}^* \in \mathbb{R}^n_+ : b_1 \in [v_2, v_1], b_1 \geq \bar{b}_{-1}, b_1 = b_i \text{ for some } i \in N \setminus \{1\} \right\}.$$

In words, bidder 1 always wins in any PNE, and there must be some bid $b_i=\bar{b}_{-1}$ for i>1 preventing bidder 1 from further shading her bid below $b_1=\bar{b}_{-1}$.

 Under discrete bidding (i.e. bids must be multiples of "cent"), best response in FPA becomes:

$$BR_{i}(b_{-i}) = \begin{cases} \bar{b}_{-i} & \text{if } \bar{b}_{-i} < v_{i} \& i = \min(\{i\} \cup \bar{B}_{-i}) \\ \bar{b}_{-i} + 1 \text{ cent} & \text{if } \bar{b}_{-i} < v_{i} \& i \neq \min(\{i\} \cup \bar{B}_{-i}) \\ [0, \bar{b}_{-i}] & \text{if } \bar{b}_{-i} = v_{i} \\ [0, \bar{b}_{-i}) & \text{if } \bar{b}_{-i} > v_{i} \& i = \min(\{i\} \cup \bar{B}_{-i}) \\ [0, \bar{b}_{-i}] & \text{if } \bar{b}_{-i} > v_{i} \& i \neq \min(\{i\} \cup \bar{B}_{-i}) \end{cases}$$

- Fact: Under discrete bidding, $b_i = v_i$ still not weakly dominant: e.g., if $\bar{b}_{-i} < v_i 1$ cent, then i can set $b_i = \bar{b}_{-i} + 1$ cent, and earn a positive utility $v_i b_i$.
- The set of PNE in FPA is (essentially) unchanged:

$$\left\{\mathbf{b}^* \in \hat{\mathbb{R}}^n_+: b_1 \in [v_2, v_1], b_1 \geq \overline{b}_{-1}, b_1 = b_i \text{ for some } i \in N \setminus \{1\} \right\}$$
,

where $\hat{\mathbb{R}}_+$ gives all non-negative bids divisible by cents.

Spectrum Auctions: some facts

- Between July 1994 and February 2001, the Federal Communications Commission (FCC) conducted 33 spectrum auctions, with total revenue of \$40 billion USD (P. Cramton '01).
- In January 2015, FCC raised \$45 billion in one wireless spectrum auction (CNET).
- With advent of 5G, this number will only increase.
- FCC uses Simultaneous Multiple-Round (SMR) Auctions:
 - Multiple, successive rounds of bidding over licenses (dynamics).
 - After each round, bidders observe others' bids, potentially learning about others' evaluations (incomplete information and learning).
 - Bidding continues until all bidders no longer adjust their bids.
- Week 3: Extensive (dynamic) games with perfect information.
- Week 4: Static games with incomplete information.
- Weeks 5 & 6: Dynamic games with incomplete information.