MFE 409 LECTURE 6 LIQUIDITY RISK

Valentin Haddad

Spring 2019

UCLA Anderson

LECTURE OBJECTIVES

■ Market liquidity

■ Funding liquidity

■ How to measure them?

■ Liquidity crises

LIQUIDITY

■ Liquidity: ability to make payments when they are due

- Two dimensions to liquidity:
 - Market liquidity, or trading liquidity
 - Funding liquidity

■ The two dimensions interact

OUTLINE

MARKET LIQUIDITY

2 Funding Liquidity

3 Liquidity Crises

MARKET LIQUIDITY

- Market liquidity: Ability to sell an asset on short notice
- Price received for an asset depends on:
 - Mid-market price

MARKET LIQUIDITY

- Market liquidity: Ability to sell an asset on short notice
- Price received for an asset depends on:
 - Mid-market price
 - How much is to be sold
 - How quickly it is to be sold
 - ► The economic environment

BID-ASK SPREAD

Ask->Bid

- Ask price (or offer price): price at which one can buy
- Bid price: price at which one can sell

Limit ordars

BID-ASK SPREAD

- Ask price (or offer price): price at which one can buy
- Bid price: price at which one can sell
- Role of size

■ Proportional bid-ask spread:

$$s = \frac{\text{Ask Price} - \text{Bid Price}}{\text{Mid-market Price}}$$

$$= \text{Bid} + \text{Ash}$$

■ Proportional bid-ask spread:

$$s = \frac{\mathsf{Ask} \; \mathsf{Price} - \mathsf{Bid} \; \mathsf{Price}}{\mathsf{Mid\text{-}market} \; \mathsf{Price}}$$

• Cost of liquidating a portfolio with positions α_i right now:

$$\sum_{i=1}^{n} \frac{1}{2} |\alpha_i| s_i$$

■ Proportional bid-ask spread:

$$s = \frac{\mathsf{Ask} \; \mathsf{Price} - \mathsf{Bid} \; \mathsf{Price}}{\mathsf{Mid\text{-}market} \; \mathsf{Price}}$$

• Cost of liquidating a portfolio with positions α_i right now:

$$\sum_{i=1}^{n} \frac{1}{2} |\alpha_i| \underline{s_i(\alpha_i)}$$

■ Proportional bid-ask spread:

$$s = \frac{\mathsf{Ask} \; \mathsf{Price} - \mathsf{Bid} \; \mathsf{Price}}{\mathsf{Mid\text{-}market} \; \mathsf{Price}}$$

■ Cost of liquidating a portfolio with positions α_i right now:

$$\sum_{i=1}^{n} \frac{1}{2} |\alpha_i| s_i(\alpha_i)$$

- lacktriangle Stressed conditions: replace s_i by extreme historical value, e.g. 1% largest
- Liquidity-adjusted VaR: If portfolio is likely liquidated in extreme bad performance, add liquidation cost to VaR calculation

Role of Time

- Role of *time*
 - Example: selling a house tomorrow vs over the next month

■ Trade-off for executing a trade:

Role of Time

- Role of *time*
 - Example: selling a house tomorrow vs over the next month

- Trade-off for executing a trade:
 - Selling slowly avoids large trading costs

Selling slowly increases the risk of adverse price movement

Optimal Execution

- \blacksquare You want to sell S shares over the next n days
- The bid-ask difference is p(q) where q is the quantity sold on that day The daily standard deviation of returns is σ
- min. \hat{Z} $p(q)|q_t|+1$ \hat{Z} $x_t \in \mathcal{L}$ { $q \in \mathcal{L}_{t-1}$ } $x_t : how much I hold at the beginning of Jate <math>t$ Formalize the problem of optimal execution

■ Solve it for $p(q) = 0.1 + 0.05 \exp(0.03 \times q)$, S = 100, n = 5, $\sigma = 0.1$

OPTIMAL EXECUTION

- lacktriangle You want to sell S shares over the next n days
- $\hfill\blacksquare$ The bid-ask difference is p(q) where q is the quantity sold on that day
- lacktriangle The daily standard deviation of returns is σ
- Formalize the problem of optimal execution

 \blacksquare Solve it for $p(q)=0.1+0.05\exp(0.03\times q)$, S=100 , n=5 , $\sigma=0.1$

7/14

FIRE SALES

■ Bid-ask spread might be the tip of the iceberg for illiquidity

■ Fire sale: In periods of deep market distress, many investors might want to sell, and few are ready to buy, so the whole price is lower

FIRE SALES

■ Bid-ask spread might be the tip of the iceberg for illiquidity

- Fire sale: In periods of deep market distress, many investors might want to sell, and few are ready to buy, so the whole price is lower
- Fire sales are difficult to tell apart from justified low prices
 - Chodorow-Reich, Ghent, Haddad (2016): Asset insulators: Valuation of institutions that sit out the fire sale should not respond to the drop in prices

OUTLINE

MARKET LIQUIDITY

2 Funding Liquidity

3 Liquidity Crises

FUNDING LIQUIDITY

- Funding liquidity: Ability to maintain sources of funding for running the firm's activities
- Sources of funding liquidity:

FUNDING LIQUIDITY

- Funding liquidity: Ability to maintain sources of funding for running the firm's activities
- Sources of funding liquidity:
 - Cash and Treasury holdings
 - Ability to borrow
 - ► Retail and wholesale deposits
 - Central bank borrowing

QUANTIFYING LIQUIDITY RISK

■ Difficult to quantify liquidity risk

- Some measures from Basel III:
 - Liquidity coverage ratio: designed to make sure that the bank can survive a 30-day period of acute stress

Net stable funding ratio: a longer term measure designed to ensure that stability of funding sources is consistent with the permanence of the assets that have to be funded

OUTLINE

MARKET LIQUIDITY

2 Funding Liquidity

3 Liquidity Crises

LIQUIDITY CRISES

- In a simple view of markets, trading stabilizes prices
 - ▶ If somebody gets in trouble and has to liquidate some assets ...
 - Somebody else sees this as a buying opportunity
 - Negative feedback trading: price drop creates buying, which pushes price up

LIQUIDITY CRISES

- In a simple view of markets, trading stabilizes prices
 - ▶ If somebody gets in trouble and has to liquidate some assets ...
 - Somebody else sees this as a buying opportunity
 - Negative feedback trading: price drop creates buying, which pushes price up
- But market frictions can lead to unstable prices: positive feedback trading
 - ► Remember LTCM

LIQUIDITY SPIRALS

PREPARING FOR LIQUIDITY CRISES

■ Fatalist view: when everything goes bad, there is nothing to do

Preparing for Liquidity Crises

■ Fatalist view: when everything goes bad, there is nothing to do

- Some useful steps:
 - Plan for the lifetime of the strategy
 - Analyze correlation of strategy performance and funding conditions
 - Understand behavior of other participants in the markets: if everybody does the same thing, everybody will fall at the same time

Preparing for Liquidity Crises

- Fatalist view: when everything goes bad, there is nothing to do
- Some useful steps:
 - Plan for the lifetime of the strategy
 - Analyze correlation of strategy performance and funding conditions
 - ► Understand behavior of other participants in the markets: if everybody does the same thing, everybody will fall at the same time

■ Even risk management regulations could generate liquidity crises!

TAKEAWAYS

- Liquidity problems can prevent ability to run a strategy or a business
- Stem from limited ability to:
 - Sell assets: market liquidity
 - Borrow to finance trade: funding liquidity
 - ▶ Both
- Liquidity risk is difficult to quantify ...
- But being aware of sources of liquidity and market environment can help