1 Stability of equilibrium points & bifurcations

1.1 A simple population model

The population model has in general two solutions (and hence two fixed points) for $\dot{N}=0$, namely

$$N_1 = 0$$
 and $N_2 = K \frac{\alpha - \beta}{\alpha}$.

The stability of these fixed points in function of α and β can be summarised as follows:

Parameter region	Fixed points
$\alpha < \beta$	$N_1=0$: stable $N_2<0$: unstable
$\alpha = \beta$	$N_1=N_2=0$: half-stable (unstable for $N<0$, stable for $N>0$)
$\alpha > \beta$	$N_1 = 0$: unstable $N_2 > 0$: stable

The system thus undergoes a transcritical bifurcation at $\alpha=\beta$. Note that the fixed point $N_2<0$ is not meaningful in this model, as N represents a non-negative population count.

For the given parameter values, $\alpha > \beta$. Using the above results, we therefore find an unstable fixed point $N_1 = 0$, and a stable fixed point $N_2 = K(\alpha - \beta)/\alpha = 4\,023\,913$. As the population does not start at N = 0, it will evolve towards N_2 . The difference between N(t) and $N(\infty) = N_2$ decays exponentially, as a Taylor approximation of N around N_2 shows.