Exemples de grammaires hors-contexte

Exemple 1 Soit $L = \{w \in \{a,b\}^* : |w| \equiv 0 \pmod{2}\}\$ et soit $G = \{\{S\},\{0,1\},R,S\}\$ une grammaire hors-contexte avec $R = \{S \longrightarrow \varepsilon |S00|S01|S10|S11\}$. Alors L = L(G).

Démonstration. On montre d'abord, par récurrence sur la longeur de w, que si $w \in L$ alors $S \stackrel{*}{\Longrightarrow} w$. Si |w| = 0, alors $w = \varepsilon$ et $S \stackrel{*}{\Longrightarrow} \varepsilon$ car $S \longrightarrow \varepsilon$ est une règle. Si |w| = k > 0, alors w = uxy avec $u \in \Sigma^*$, $|u| \equiv 0 \pmod{2}$ et $x, y \in \Sigma$. Par l'hypothèse de récurrence, $S \stackrel{*}{\Longrightarrow} u$. Donc $S \stackrel{1}{\Longrightarrow} Sxy \stackrel{*}{\Longrightarrow} uxy$ car $S \longrightarrow xy$ est une règle.

Ensuite, on prouve, par récurrence sur la longueur k de la dérivation que si $w \in L(G)$ alors soit $w \in L$, soit il existe un $u \in L$ tel que w = Su. Si k = 0, $S \stackrel{0}{\Longrightarrow} S$ et $S = S\varepsilon$, avec $\varepsilon \in L$. Si k = 1, $S \stackrel{1}{\Longrightarrow} w$ directement et alors $w = \{\varepsilon, S00, S01, S10, S11\}$ et est de la bonne forme. Si k > 1, $S \stackrel{k-1}{\Longrightarrow} vSz \stackrel{1}{\Longrightarrow} w$. Par l'hypthèse de récurrence, vSz = Su, $u \in L$. Donc $v = \varepsilon$ et soit w = u en utilisant $S \longrightarrow \varepsilon$, soit w = Sxyu en applicant $S \longrightarrow Sxy$, $x, y \in \Sigma$. Donc $S \stackrel{*}{\Longrightarrow} w$ avec $w \in \Sigma^*$ uniquement si $w \in L$.

Exemple 2 Soit $L = \{a^nb^n : n \in \mathbb{N}\}$ un langage non-régulier sur $\Sigma = \{a, b, c, d\}$. Définissons la grammaire hors-contexte $G = (\{S\}, \Sigma, R, S \text{ avec } R = \{S \longrightarrow \varepsilon | aSb\}$. On prétend que L = L(G).

On répète la procédure utilisée dans le premier exemple. Pour commencer, on montre par récurrence sur |w|=k que $L\subseteq L(G)$. Notons que tout mot de L est de longueur paire. Si $k=0,\ w=\varepsilon\in L$ et $S\stackrel{1}{\Longrightarrow}\varepsilon$ car $S\longrightarrow\varepsilon$ est une règle. Pour k>1, si |w|=k alors w=aub for $u\in L$. Par l'hypthèse de récurrence, $S\stackrel{*}{\Longrightarrow}u$. Donc $S\stackrel{1}{\Longrightarrow}aSb\stackrel{*}{\Longrightarrow}aub=w$ et $w\in L(G)$.

Pour montrer que $L(G) \subseteq L$, on fait la récurrence sur k, le longueur de la dérivation. On montre que $S \stackrel{k}{\Longrightarrow} w$ si, et seulement si, $w = a^{k-1}Xb^{k-1}$ avec $X \in \{S, \varepsilon\}$. Si k = 1, $S \stackrel{*}{\Longrightarrow} \varepsilon$ est de la bonne forme, et $\varepsilon \in L$. Pour k > 1, $S \stackrel{k}{\Longrightarrow} w$ si, et seulement si, $S \stackrel{1}{\Longrightarrow} aSb \stackrel{k-1}{\Longrightarrow} aub = w$ avec $S \stackrel{k-1}{\Longrightarrow} u$. Par l'hypothèse de récurrence, $u = a^{k-2}Xb^{k-2}$ et on a alors $S \stackrel{1}{\Longrightarrow} a^{k-1}Xb^{k-1}$. Par conséquent, si $w \in L(G)$, $w \in L$ et $L(G) \subseteq L$.

Exemples de langages qui ne sont pas hors-contexte

Exemple 3 (exemple canonique) Soit $\Sigma = \{a, b, c\}$. Le langage $L_1 = \{a^n b^n c^n \in \Sigma^* : n \in \mathbb{N}\}$ n'est pas hors contexte. Pour le voir, prenons p, la constante du lemme de pompage, et le mot $a^p b^p$, qui est bien évidemment dans L. Supposons que L soit hors-contexte. Alors il existe $u, v, x, y, z \in \Sigma^*$ vérifiant

- -uvxyz=w,
- $-|vxy| \leq p$,
- $vy \neq \varepsilon$,

- $uv^i xy^i z \in L_1$ quel que soit $i \in \mathbb{N} = \{0, 1, 2, \ldots\}.$

Puisque $|vxy| \le p$, le mot vxy ne peut avoir qu'une des formes suivantes: a^k , a^sb^t , b^k , b^sc^t , c^k , c'est-à-dire, au moins un des trois symboles a, b, c n'est pas dans vxy. Il est découle que aucun mot uv^ixv^iz n'est dans L_1 si $i \ne 1$ car le nombre d'au plus deux symboles peuvent changer. Ceci contredit le lemme de pompage et on conclut que L_1 n'est pas hors-contexte. Pour plus de précision, décortiquons les cas.

- $vxy = a^k$. Alors $u = a^\ell$, $v = a^n$, $x = a^m$, $y = a^r$ et $z = a^{p-\ell-n-m-r}b^pc^p$ et pour i = 0, $uv^ixv^iz = a^{\ell+m}a^{p-\ell-n-m-r}b^pc^p \notin L_2$ (il y a n+r a de moins que de b,c). Si $uvx = b^k$ ou $uvx = c^k$, l'arqument est semblable.
- $vxy = a^sb^t$. Alors v et y contiennent chacun au plus une sorte de symbole (i.e. $u = a^n$, $y = b^m$, uv^0xy^0z contient moins de a ou de b (ou les deux) que de c et n'est pas dans L_2 . Si un des deux contient deux sortes de symbole, le mot uv^2xy^2z ne sera pas de la bonne forme si $v = a^nb^m$, n, m > 0, alors $v^2 = a^nb^ma^nb^m$; si $y = a^nb^m$, c'est analoque. L'arqument est semblable pour $vxy = b^sc^t$.