Assignment

- 1. Conduct the t-test for the SMS speed example in SAS and complete the following exercises:
 - 1. Using the formula from the notes, calculate by hand a 95% confidence interval for the difference in the two treatment means. Use $t_{28,0.975} = 2.0484$.

Formula:

95% Confidence Interval =
$$(\bar{Y}_1 - \bar{Y}_2) \pm t_{28,0.975} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Where:

$$S_p = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Calculation

```
# Load Data
library(readr)
smsspeed_1 <- read_csv("C:/Users/samue/OneDrive/Desktop/Iowa_State_PS/STAT 5000/Labs/Lab 3/smsspeed-1.c</pre>
## Rows: 30 Columns: 4
## Delimiter: ","
## chr (1): AgeGroup
## dbl (3): Age, Own Phone, Control
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
      intersect, setdiff, setequal, union
##
data1 <- smsspeed_1 %>%
 filter(smsspeed_1$AgeGroup == "Over30")
data2 <- smsspeed_1 %>%
 filter(smsspeed_1$AgeGroup == "Teens")
```

```
sampleMean1 <- mean(data1$`Own Phone`)
sampleMean2 <- mean(data2$`Own Phone`)
difference <- sampleMean1 - sampleMean2
difference</pre>
```

[1] 44.012

```
#Step 2: Finding standard deviation
s1 <- sd(data1$^Own Phone^)
s2 <- sd(data2$^Own Phone^)

#Step 3: Finding sample size
n1 <- length(data1$^Own Phone^)
n2 <- length(data2$^Own Phone^)

numerator <- (n1-1)*(s1^2) + (n2-1)*(s2^2)
denom <- n1 + n2 - 2
pooled <- sqrt( numerator / denom )
sqrtFactor <- sqrt(1/n1 + 1/n2)

tStatDf <- 2.0484

rightSide <- tStatDf*pooled*sqrtFactor
pooled</pre>
```

[1] 18.51069

```
rightSide
```

```
## [1] 13.84544
```

```
lb <- difference - rightSide
ub <- difference + rightSide
lb</pre>
```

```
## [1] 30.16656
```

ub

[1] 57.85744

This gives a 95% Confidence Interval for the Difference to be between (30.167, 57.857), where units are the difference in the amount of time it took Over 30-year olds compared to teens (I believe in seconds, but that would be wild, wouldn't it?)

2. Provide a screenshot of the SAS output and use it to verify your calculation.

Figure 1: 95% Confidence Interval SAS

3. Interpret the confidence interval in the context of the problem.

A 95% Confidence Interval can be interpreted as a calculated range within which we can be 95% certain the true effect (true difference between two groups) lies.

Within the context of this particular question, it can be interpreted as: We are 95% Confident that the true difference between people Over 30 and Teens texting speeds is between 30.167 and 57.857 seconds; or is would take people Over 30 30.167 to 57.857 more seconds to type a specified message compared to Teens (within the context of being 95% confident).

This may also be interpreted as a commentary on the procedure of calculating the Confidence Interval: If we repeated this procedure of experimentation and calculation and constructed their respective 95% confidence intervals, these confidence intervals would contain the true difference between Over 30 and Teens texting times 95% of the time.

- 2. Use SAS to explore sample size determinations for the bone loss example using the **hypothesis testing** method and complete the following exercises:
 - 1. Explore the effect of changing just the significance level For $\alpha = 0.01, 0.05, 0.1$, what are the resulting sample sizes? Summarize your findings in one concise sentence.

			o-Sample t Test for Mean Differe			
	Fixed	Scenario Ele	ments			
	Distrib	ution	Normal			
	Method	I	Exact			
	Mean D	ifference	4			
	Standa	rd Deviation	5			
	Nominal Power		8.0			
	Number of Sides		2			
	Null Difference		0			
				•		
	Com	puted N per C	Group			
Index	Alpha	Actual Power	er N per	Group		
1	0.01	0.81	0	39		
2	0.05	0.80	7	26		
3	0.10	0.81	7	21		

Figure 2: Alpha

Results: The resulting sample sizes for a given "Alpha" are as follows, in the format of Sample Size (resp. Alpha): 39 (0.01), 26 (0.05), and 21 (0.10).

Findings: For greater significance levels we require an increasing number of samples per Group, and the amount these sample sizes increase by is non-linear, i.e. each decrease of 0.01 in α (greater significant level) requires a larger number of samples to be added per Group compared to its prior significance level.

2. Explore the effect of changing just the power - For $1 - \beta = 0.99, 0.95, 0.9, 0.8, 0.7$, what are the resulting sample sizes? Summarize your findings in one concise sentence.

	The POW Two-Sample t Tes			rence
	Fixed Sce	nario Ele	ments	
	Distribution		Norma	I
	Method		Exac	t
	Alpha	Alpha		5
	Mean Differe	Mean Difference		1
	Standard De	Standard Deviation		5
	Number of 5	Number of Sides		2
	Null Differer	Null Difference)
	Compute	d N per G	Group	
Index	Nominal Power	Actual	Power	N per Group
1	0.99		0.991	59
2	0.95		0.952	42
3	0.90		0.902	34
4	0.80		0.807	26
5	0.70		0.716	21

Figure 3: Beta

Results: The resulting sample sizes for a given "Nominal Power" are as follows, in the format of Sample Size (resp. Nominal Power): 50 (0.99), 42 (0.95), 34 0.90, 26 (0.80), and 21 (0.70).

Findings: When changing just the power in relation to the required sample size, we see that greater power (smaller β) requires larger sample sizes, and the increase in sample sizes between power levels becomes larger and larger for smaller and smaller β 's.

3. Explore the effect of changing just the true effect size - For $\delta = 1, 2, 3, 4, 5, 6$, what are the resulting sample sizes? Summarize your findings in one concise sentence.

Fixed Scenario Ele	ments
Distribution	Normal
Method	Exact
Alpha	0.05
Standard Deviation	5
Nominal Power	0.8
Number of Sides	2
Null Difference	0

The POWER Procedure

Computed N per Group					
Index	Mean Diff	Actual Power	N per Group		
1	1	0.801	394		
2	2	0.804	100		
3	3	0.804	45		
4	4	0.807	26		
5	5	0.807	17		
6	6	0.802	12		

Figure 4: Effect Size

Results: The resulting sample sizes for a given "Mean Difference in Effect" are as follows, in the format of Sample Size (resp. Mean Diff): 394 (1), 100 (2), 45 (3), 26 (4), 17 (5), and 12 (6).

Findings: We require larger sample sizes to detect smaller effect sizes, i.e. the larger the effect size, the smaller the calculated sample size required, holding all else equal.

4. Explore the effect of changing just the estimated population variance - For $S_p^2=1,4,9,16,25,36$, what are the resulting sample sizes? Summarize your findings in one concise sentence.

	Fixed	Fixed Scenario Ele		nts	
	Distrib		Nor		
	Method	Method		cact	
	Alpha	mourou		.05	
		Difference		4	
	Nomin	al Power		8.0	
	Numbe	er of Sides		2	
	Null Di	fference		0	
	Comp	outed N per	Grou	ıp	
Index	Std Dev	Actual Po	wer	N p	er Group
1	1	0.	948		3
2	2	0.	876		6
	3	0.	805		10
3		0	807		17
3	4	•			
	5		807		26

Figure 5: 95% Confidence Interval SAS

Results: The resulting sample sizes for a given "Std Dev" are as follows, in the format of Sample Size (resp. Std Dev): 3 (1), 6 (2), 10 (3), 17 (4), 26 (5), and 37 (6).

Findings: As the estimated population variance increases, we need increasing larger sample sizes, and the rate at which these sample sizes increase is increasing, e.g. the difference (change in sample size) between 5 and 6 Std Dev is larger than the difference between 1 and 2 Std Dev.

- 3. Use SAS to explore sample size determinations for the bone loss example using the **confidence interval method** and complete the following exercises:
 - 1. Explore the effect of changing just the significance level For $\alpha = 0.01, 0.05, 0.1$, what are the resulting sample sizes? Summarize your findings in one concise sentence.

The POWER Procedure Two-Sample t Test for Mean Difference

Fixed Scenario Elements		
Distribution	Normal	
Method	Exact	
Mean Difference	4	
Standard Deviation	5	
Number of Sides	2	
Null Difference	0	

Computed N per Group					
Index	Alpha	Nominal Power	Actual Power	N per Group	
1	0.01	0.995	0.995	85	
2	0.01	0.975	0.975	66	
3	0.01	0.950	0.952	58	
4	0.05	0.995	0.995	66	
5	0.05	0.975	0.977	50	
6	0.05	0.950	0.952	42	
7	0.10	0.995	0.995	57	
8	0.10	0.975	0.977	42	
9	0.10	0.950	0.952	35	

Results: The resulting sample sizes for a given "Alpha" are as follows, with a fixed power level, in the format of Sample Size (resp. Alpha for "Nominal Power" of 0.975): 66 (.01), 50 (0.05), and 42 (0.10).

Findings: Consistent with the findings of Q2, albeit via a different method: Higher significance levels (lower α) require significantly larger sample sizes per group.

2. Explore the effect of changing just the true effect size - For $\delta = 1, 2, 3, 4, 5, 6$, what are the resulting sample sizes? Summarize your findings in one concise sentence.

The POWER Procedure				
Two-Sample t Test for Mean Difference				

Fixed Scenario Elements		
Distribution Normal		
Method	Exact	
Alpha	0.05	
Standard Deviation	5	
Nominal Power	0.975	
Number of Sides	2	
Null Difference	0	

Computed N per Group					
Index	Mean Diff	Actual Power	N per Group		
1	1	0.975	770		
2	2	0.976	194		
3	3	0.976	87		
4	4	0.977	50		
5	5	0.976	32		
6	6	0.978	23		

Results: The resulting sample sizes for a given "Mean Difference Effect" are as follows, in the format of Sample Size (resp. Mean Diff): 770 (1), 194 (2), 87 (3), 50 (4), 32 (5), and 23 (6).

Findings: Consistent with the findings of Q2, 3. albeit for a different method: We require much larger sample sizes per Group for smaller differences between groups, and smaller sample sizes per Group for larger differences between groups.

3. Explore the effect of changing just the estimated population variance - For $S_p^2=1,4,9,16,25,36$, what are the resulting sample sizes? Summarize your findings in one concise sentence.

The POWER Procedure
Two-Sample t Test for Mean Difference

Fixed Scenario Elements		
Distribution Normal		
Method	Exact	
Alpha	0.05	
Mean Difference	4	
Nominal Power	0.975	
Number of Sides	2	
Null Difference	0	

Computed N per Group			
Index	Std Dev	Actual Power	N per Group
1	1	0.996	4
2	2	0.978	9
3	3	0.979	19
4	4	0.976	32
5	5	0.977	50
6	6	0.976	71

Results: The resulting sample sizes for a given "Std Dev" are as follows, in the format of Sample Size (resp. Std Dev): 4 (1), 9 (2), 19 (3), 32 (4), 50 (5), and 71 (6).

Findings: Consistent with the findings of Q2, 4. albeit for a different method: Increasing estimated population variance results in much larger required sample sizes, and the rate of increase for these samples grows larger as the variance increases.

4. Think about how the sample size determination using the confidence interval method relates to the standard error method. Summarize your findings in one concise sentence.

Results:

Confidence Interval Method

$$n_0 = 8\left(\frac{z_{1-\frac{\alpha}{2}}S_p}{w}\right)^2$$
$$n = 8\left(\frac{t_{2(n_0-1),1-\frac{\alpha}{2}}S_p}{w}\right)^2$$

Standard Error Method

$$n = \frac{2S_P^2}{(s.e.)^2}$$

Findings: One may consider the confidence interval method as a modification of the standard error method, in that both methods require and take as input the **pooled estimate of the population variance** to estimate the required sample size, the standard error is closely related to the "width" of the confidence interval method, and furthermore, the confidence interval method distinguishes itself through use of the z and t distributions as well (takes additional inputs compared to the standard error method).

Total: 50 points # correct: %: