

FIG. 4: Determination of $\sqrt{M_{Bs}^{\rm ren}/M_{Bl}^{\rm ren}}$ using the average of two time sources on the three sea quark ensembles. The blue (triangle) points denote the APE data, while the red (square) points denote the HYP-smeared data. The shaded (hatched) band corresponds to the plateau extracted from averaging the APE (HYP) data over four consecutive time slices. Errors shown are statistical only.

quickly than SU(3) χ PT [34–37]. For the case of SU(3)-breaking ratios such as f_{B_s}/f_{B_d} and ξ , however, SU(3) HM χ PT has the advantage that the chiral extrapolation formulae manifestly preserve the fact that the ratios must be equal to one in the limit $m_l \to m_s$. Within the framework of SU(2) HM χ PT, this fact must be introduced in a more $ad\ hoc$ manner such as by matching the SU(2) HM χ PT expression at small quark masses onto an analytic form at large quark masses that becomes one when $m_l \to m_s$. We therefore plan