Summary: Lecture 7

Summary for the chapters 9.1 and 9.2. [1]

NP-Completeness

NP

Class of lanugages decided by nonderteministic Turing machines in polynomial time. Most problems are in NP.

NP-completeness:

- easiest problems among those we do not know how to solve efficiently
- if P≠NP can be proven: exact border of efficient solvability is found
- best bet for proving P=NP: show that some NP-complete problem is P
- Until then, the NP-complete problems are the least likely ones in NP to be efficiently solved

Lanugage L

```
L = \{x : (x, y) \in R \text{ for some } y\}
L \text{ gets an input } x \text{ and finds a } y \text{ with } ((x, y) \in R \text{ and the relation } R \subseteq \Sigma^* \times \Sigma^*.
```

Polynomially decidable:

- ullet R is polynomially decidable if there is da deterministic Turing machine deciding the language L in polynomial time
- then the relation R (not the language L) is polynomially decidable

Polynomially balanced:

- R is polynomially balanced if $(x, y) \in R$ implies $|y| \le |x|^k$ for some $k \ge 1$ \to length of the second component is bounded by a polynomial in the length of the first
- then the relation R (not the language L) is polynomially balanced

NP

The language $L \subseteq \Sigma^*$ is in NP only if there is a polynomially decidable and polynomially balanced relation R such that $L = \{x : (x, y) \in R \text{ for some } y\}.$

For example: Is there a satisfying assignment (y) for a formular (x)? Why is $R \subseteq \Sigma^* \times \Sigma^*$? Is the input formula and the truth assignment $\in \Sigma^*$?

TODO proof Questions:

Succinct certificate (for NP-complete problems)

- yes instance of x has a polynomial witness y (certificate)
- ullet no instances don't have such a certificate
- Examples:
 - Sat: certificate is the truth assignment
 - HamiltonPath: certificate is the hamilton path of a graph

Typical problems in NP

- sometimes the optimum needs to be found
- sometimes any object that fits the specification is enough
- constraints can be added to optimization problems

TODO

Questions:

3Sat is NP-complete

Title			
Content			

TODO

Questions:

2Sat in P (graph construction)

Title	
Content	

TODO

Questions:

2Sat in NL

Title		
Content		

TODO

Questions:

MaxSat is NP-complete

Title			,
Content			

TODO

Questions:

NaeSat is NP-complete

Title	
Content	

TODO

Questions:

References

[1] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1994.