2004 G3

Ezra Guerrero Alvarez

February 13, 2022

2004 G3

2004 G3

Let O be the circumcenter of an acute-angled triangle ABC with $\angle B < \angle C$. The line AO meets the side BC at D. The circumcenters of the triangles ABD and ACD are E and F, respectively. Extend the sides BA and CA beyond A, and choose on the respective extensions points G and H such that AG = AC and AH = AB. Prove that the quadrilateral EFGH is a rectangle if and only if $\angle ACB - \angle ABC = 60^{\circ}$.

Let ρ denote the reflection over the exterior angle bisector of $\angle A$. Then, $\rho(C) = G$ and $\rho(B) = H$. Now, since \overline{AD} passes through the circumcenter of $\triangle ABC$ and it is well known that the circumcenter and orthocenter are isogonal conjugates, we find $\overline{AD} \perp \overline{GH}$. Now, note that $\angle C - \angle B = 60^{\circ}$ if and only if $\angle ADC = 30^{\circ}$. This occurs if and only if $\triangle AFC$ and $\triangle AEB$ are equilateral. From centers and isosceles triangles, these triangles are equilateral if and only if AG = AF and AH = AE.

Now, this implies $\angle AFG = \angle FAD$, ie $\overline{FG} \parallel \overline{AD}$. Analogously, we would have $\overline{EH} \perp \overline{GH} \perp \overline{FG}$. Since FE = GH from SAS on $\triangle AGH$ and $\triangle AFE$, this implies EFGH is an isosceles trapezoid with right angles, ie, a rectangle. On the other hand, if EFGH is a rectangle, then $\angle FGA = 90^{\circ} - \angle C$ and $\overline{FG} \parallel \overline{AD}$. But then $\angle AFG = \angle FAD = 90^{\circ} - \angle C$, so AG = AF.