R-Code Visualizing of IR

Stefan Glogger 2 August 2017

Overview

Here we do the visualization. The mathematical formulas and setting of the parameters are done in separate files. Use the cache option in Markdown to safe computation time.

- 1. Calculate Sentiment
 - 1.1. 1 month Sentiment (survey regarding expectations for one month)
 - 1.2. 6 month Sentimen (survey regarding expectations for six months)
- 2. Import Data
 - 2.1. Sentix

Open Questions

-> QUEST

Functions and Parameters separate

```
source("parameters.R")
source("functions.R")

## Loading required package: cccp

## Loading required package: Rglpk

## Loading required package: slam

## Using the GLPK callable library version 4.47

## Loading required package: timeSeries

## Loading required package: timeDate

## Financial Risk Modelling and Portfolio Optimisation with R (version 0.4-1)
```

Data Import

Sentix

```
load(file.path(folderData, "Sentix", "SentixCalculated"))
There might be a problem with duplicated dates!
dates <- as.Date(sentix[[1]][,1], format = "%d.%m.%Y")
sum(duplicated(dates))
## [1] 1
sum(dates==as.Date("2013-04-05"))
## [1] 2
dates <- unique(dates)</pre>
```

dispersion

```
sentixP1disp <- data.frame(DAX = unique(sentix[["DAX"]])$P disp,</pre>
                           row.names = as.Date(unique(sentix[["DAX"]])[,1], format = "%d.%m.%Y"))
sentixP1disp$TEC = unique(sentix[["TEC"]])$P disp[unique(sentix[["TEC"]])$Datum %in% dates]
sentixP1disp$ESX50 = unique(sentix[["ESX50"]])$P_disp[unique(sentix[["ESX50"]])$Datum %in% dates]
sentixP1disp$SP5 = unique(sentix[["SP5"]])$P disp[unique(sentix[["SP5"]])$Datum %in% dates]
sentixP1disp$NASDAQ = unique(sentix[["NASDAQ"]])$P_disp[unique(sentix[["NASDAQ"]])$Datum %in% dates]
sentixP1disp$NIKKEI = unique(sentix[["NIKKEI"]])$P_disp[unique(sentix[["NIKKEI"]])$Datum %in% dates]
sentixP1disp$BUND = unique(sentix[["BUND"]])$P_disp[unique(sentix[["BUND"]])$Datum %in% dates]
sentixP1disp$TBOND = unique(sentix[["TBOND"]])$P_disp[unique(sentix[["TBOND"]])$Datum %in% dates]
sentixI1disp <- data.frame(DAX = unique(sentix[["DAX"]])$I_disp,</pre>
                           row.names = as.Date(unique(sentix[["DAX"]])[,1], format = "%d.%m.%Y"))
sentixI1disp$TEC = unique(sentix[["TEC"]])$I disp[unique(sentix[["TEC"]])$Datum %in% dates]
sentixI1disp$ESX50 = unique(sentix[["ESX50"]])$I disp[unique(sentix[["ESX50"]])$Datum %in% dates]
sentixI1disp$SP5 = unique(sentix[["SP5"]])$I disp[unique(sentix[["SP5"]])$Datum %in% dates]
sentixI1disp$NASDAQ = unique(sentix[["NASDAQ"]])$I_disp[unique(sentix[["NASDAQ"]])$Datum %in% dates]
sentixI1disp$NIKKEI = unique(sentix[["NIKKEI"]])$I disp[unique(sentix[["NIKKEI"]])$Datum %in% dates]
sentixI1disp$BUND = unique(sentix[["BUND"]])$I_disp[unique(sentix[["BUND"]])$Datum %in% dates]
sentixI1disp$TBOND = unique(sentix[["TBOND"]])$I_disp[unique(sentix[["TBOND"]])$Datum %in% dates]
sentixG1disp <- data.frame(DAX = unique(sentix[["DAX"]])$G_disp,</pre>
                           row.names = as.Date(unique(sentix[["DAX"]])[,1], format = "%d.%m.%Y"))
sentixG1disp$TEC = unique(sentix[["TEC"]])$G_disp[unique(sentix[["TEC"]])$Datum %in% dates]
sentixG1disp$ESX50 = unique(sentix[["ESX50"]])$G_disp[unique(sentix[["ESX50"]])$Datum %in% dates]
sentixG1disp$SP5 = unique(sentix[["SP5"]])$G_disp[unique(sentix[["SP5"]])$Datum %in% dates]
sentixG1disp$NASDAQ = unique(sentix[["NASDAQ"]])$G_disp[unique(sentix[["NASDAQ"]])$Datum %in% dates]
sentixG1disp$NIKKEI = unique(sentix[["NIKKEI"]])$G_disp[unique(sentix[["NIKKEI"]])$Datum %in% dates]
sentixG1disp$BUND = unique(sentix[["BUND"]])$G_disp[unique(sentix[["BUND"]])$Datum %in% dates]
sentixG1disp$TBOND = unique(sentix[["TBOND"]])$G_disp[unique(sentix[["TBOND"]])$Datum %in% dates]
```

```
sentixP6disp <- data.frame(DAX = unique(sentix[["DAXm"]])$P disp,</pre>
                           row.names = as.Date(unique(sentix[["DAXm"]])[,1], format = "%d.%m.%Y"))
sentixP6disp$TEC = unique(sentix[["TECm"]])$P disp[unique(sentix[["TECm"]])$Datum %in% dates]
sentixP6disp$ESX50 = unique(sentix[["ESX50m"]])$P disp[unique(sentix[["ESX50m"]])$Datum %in% dates]
sentixP6disp$SP5 = unique(sentix[["SP5m"]])$P_disp[unique(sentix[["SP5m"]])$Datum %in% dates]
sentixP6disp$NASDAQ = unique(sentix[["NASDAQm"]])$P disp[unique(sentix[["NASDAQm"]])$Datum %in% dates]
sentixP6disp$NIKKEI = unique(sentix[["NIKKEIm"]])$P_disp[unique(sentix[["NIKKEIm"]])$Datum %in% dates]
sentixP6disp$BUND = unique(sentix[["BUNDm"]])$P disp[unique(sentix[["BUNDm"]])$Datum %in% dates]
sentixP6disp$TBOND = unique(sentix[["TBONDm"]])$P disp[unique(sentix[["TBONDm"]])$Datum %in% dates]
sentixI6disp <- data.frame(DAX = unique(sentix[["DAXm"]])$I_disp,</pre>
                           row.names = as.Date(unique(sentix[["DAXm"]])[,1], format = "%d.%m.%Y"))
sentixI6disp$TEC = unique(sentix[["TECm"]])$I_disp[unique(sentix[["TECm"]])$Datum %in% dates]
sentixI6disp$ESX50 = unique(sentix[["ESX50m"]])$I_disp[unique(sentix[["ESX50m"]])$Datum %in% dates]
sentixI6disp$SP5 = unique(sentix[["SP5m"]])$I_disp[unique(sentix[["SP5m"]])$Datum %in% dates]
sentixI6disp$NASDAQ = unique(sentix[["NASDAQm"]])$I_disp[unique(sentix[["NASDAQm"]])$Datum %in% dates]
sentixI6disp$NIKKEI = unique(sentix[["NIKKEIm"]])$I_disp[unique(sentix[["NIKKEIm"]])$Datum %in% dates]
sentixI6disp$BUND = unique(sentix[["BUNDm"]])$I_disp[unique(sentix[["BUNDm"]])$Datum %in% dates]
sentixI6disp$TBOND = unique(sentix[["TBONDm"]])$I disp[unique(sentix[["TBONDm"]])$Datum %in% dates]
sentixG6disp <- data.frame(DAX = unique(sentix[["DAXm"]])$G disp,</pre>
                           row.names = as.Date(unique(sentix[["DAXm"]])[,1], format = "%d.%m.%Y"))
sentixG6disp$TEC = unique(sentix[["TECm"]])$G disp[unique(sentix[["TECm"]])$Datum %in% dates]
sentixG6disp$ESX50 = unique(sentix[["ESX50m"]])$G_disp[unique(sentix[["ESX50m"]])$Datum %in% dates]
sentixG6disp$SP5 = unique(sentix[["SP5m"]])$G disp[unique(sentix[["SP5m"]])$Datum %in% dates]
sentixG6disp$NASDAQ = unique(sentix[["NASDAQm"]])$G_disp[unique(sentix[["NASDAQm"]])$Datum %in% dates]
sentixG6disp$NIKKEI = unique(sentix[["NIKKEIm"]])$G_disp[unique(sentix[["NIKKEIm"]])$Datum %in% dates]
sentixG6disp$BUND = unique(sentix[["BUNDm"]])$G_disp[unique(sentix[["BUNDm"]])$Datum %in% dates]
sentixG6disp$TBOND = unique(sentix[["TBONDm"]])$G_disp[unique(sentix[["TBONDm"]])$Datum %in% dates]
```

herfindah

```
sentixI1herf$NIKKEI = unique(sentix[["NIKKEI"]])$I_herf[unique(sentix[["NIKKEI"]])$Datum %in% dates]
sentixI1herf$BUND = unique(sentix[["BUND"]])$I_herf[unique(sentix[["BUND"]])$Datum %in% dates]
sentixI1herf$TBOND = unique(sentix[["TBOND"]])$I_herf[unique(sentix[["TBOND"]])$Datum %in% dates]
sentixG1herf <- data.frame(DAX = unique(sentix[["DAX"]])$G_herf,</pre>
                           row.names = as.Date(unique(sentix[["DAX"]])[,1], format = "%d.%m.%Y"))
sentixG1herf$TEC = unique(sentix[["TEC"]])$G herf[unique(sentix[["TEC"]])$Datum %in% dates]
sentixG1herf$ESX50 = unique(sentix[["ESX50"]])$G herf[unique(sentix[["ESX50"]])$Datum %in% dates]
sentixG1herf$SP5 = unique(sentix[["SP5"]])$G_herf[unique(sentix[["SP5"]])$Datum %in% dates]
sentixG1herf$NASDAQ = unique(sentix[["NASDAQ"]])$G_herf[unique(sentix[["NASDAQ"]])$Datum %in% dates]
sentixG1herf$NIKKEI = unique(sentix[["NIKKEI"]])$G herf[unique(sentix[["NIKKEI"]])$Datum %in% dates]
sentixG1herf$BUND = unique(sentix[["BUND"]])$G_herf[unique(sentix[["BUND"]])$Datum %in% dates]
sentixG1herf$TBOND = unique(sentix[["TBOND"]])$G_herf[unique(sentix[["TBOND"]])$Datum %in% dates]
sentixP6herf <- data.frame(DAX = unique(sentix[["DAXm"]])$P_herf,</pre>
                           row.names = as.Date(unique(sentix[["DAXm"]])[,1], format = "%d.%m.%Y"))
sentixP6herf$TEC = unique(sentix[["TECm"]])$P_herf[unique(sentix[["TECm"]])$Datum %in% dates]
sentixP6herf$ESX50 = unique(sentix[["ESX50m"]])$P_herf[unique(sentix[["ESX50m"]])$Datum %in% dates]
sentixP6herf$SP5 = unique(sentix[["SP5m"]])$P_herf[unique(sentix[["SP5m"]])$Datum %in% dates]
sentixP6herf$NASDAQ = unique(sentix[["NASDAQm"]])$P herf[unique(sentix[["NASDAQm"]])$Datum %in% dates]
sentixP6herf$NIKKEI = unique(sentix[["NIKKEIm"]])$P_herf[unique(sentix[["NIKKEIm"]])$Datum %in% dates]
sentixP6herf$BUND = unique(sentix[["BUNDm"]])$P herf[unique(sentix[["BUNDm"]])$Datum %in% dates]
sentixP6herf$TBOND = unique(sentix[["TBONDm"]])$P herf[unique(sentix[["TBONDm"]])$Datum %in% dates]
sentixI6herf <- data.frame(DAX = unique(sentix[["DAXm"]])$I_herf,</pre>
                           row.names = as.Date(unique(sentix[["DAXm"]])[,1], format = "%d.%m.%Y"))
sentixI6herf$TEC = unique(sentix[["TECm"]])$I_herf[unique(sentix[["TECm"]])$Datum %in% dates]
sentixI6herf$ESX50 = unique(sentix[["ESX50m"]])$I_herf[unique(sentix[["ESX50m"]])$Datum %in% dates]
sentixI6herf$SP5 = unique(sentix[["SP5m"]])$I_herf[unique(sentix[["SP5m"]])$Datum %in% dates]
sentixI6herf$NASDAQ = unique(sentix[["NASDAQm"]])$I_herf[unique(sentix[["NASDAQm"]])$Datum %in% dates]
sentixI6herf$NIKKEI = unique(sentix[["NIKKEIm"]])$I_herf[unique(sentix[["NIKKEIm"]])$Datum %in% dates]
sentixI6herf$BUND = unique(sentix[["BUNDm"]])$I_herf[unique(sentix[["BUNDm"]])$Datum %in% dates]
sentixI6herf$TBOND = unique(sentix[["TBONDm"]])$I_herf[unique(sentix[["TBONDm"]])$Datum %in% dates]
sentixG6herf <- data.frame(DAX = unique(sentix[["DAXm"]])$G_herf,</pre>
                           row.names = as.Date(unique(sentix[["DAXm"]])[,1], format = "%d.%m.%Y"))
sentixG6herf$TEC = unique(sentix[["TECm"]])$G_herf[unique(sentix[["TECm"]])$Datum %in% dates]
sentixG6herf$ESX50 = unique(sentix[["ESX50m"]])$G herf[unique(sentix[["ESX50m"]])$Datum %in% dates]
sentixG6herf$SP5 = unique(sentix[["SP5m"]])$G herf[unique(sentix[["SP5m"]])$Datum %in% dates]
sentixG6herf$NASDAQ = unique(sentix[["NASDAQm"]])$G_herf[unique(sentix[["NASDAQm"]])$Datum %in% dates]
sentixG6herf$NIKKEI = unique(sentix[["NIKKEIm"]])$G_herf[unique(sentix[["NIKKEIm"]])$Datum %in% dates]
sentixG6herf$BUND = unique(sentix[["BUNDm"]])$G_herf[unique(sentix[["BUNDm"]])$Datum %in% dates]
sentixG6herf$TBOND = unique(sentix[["TBONDm"]])$G_herf[unique(sentix[["TBONDm"]])$Datum %in% dates]
```

Stocks

QUEST: take data of Yahoo Finance

Take data from Yahoo Finance. Take closing course from dateMin to dateMax for several indexes.

Take the following as sources of the data:

- DAX ^GDAXI
- TEC ^TECDAX
- ESX50 ^STOXX50E
- SP500 ^GSPC
- NASDAQ ^NDX
- NIKKEI ^N225
- BUND not from yahoo, manually from bundesbank BBK01.WT0557
- TBOND workaround with ETF TLH

```
# install.packages("quantmod")
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
## Attaching package: 'zoo'
## The following object is masked from 'package:timeSeries':
##
       time<-
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: TTR
## Version 0.4-0 included new data defaults. See ?getSymbols.
# ?qetSymbols
stocks <- data.frame(Datum = dates)</pre>
# DAX
dax <- new.env()</pre>
getSymbols("^GDAXI", env = dax, src = "yahoo", from = dateMin, to = dateMax)
## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
## This message is shown once per session and may be disabled by setting
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
## WARNING: There have been significant changes to Yahoo Finance data.
## Please see the Warning section of '?getSymbols.yahoo' for details.
##
## This message is shown once per session and may be disabled by setting
## options("getSymbols.yahoo.warning"=FALSE).
## Warning: ^GDAXI contains missing values. Some functions will not work if
## objects contain missing values in the middle of the series. Consider using
```

```
## na.omit(), na.approx(), na.fill(), etc to remove or replace them.
## [1] "GDAXI"
DAX <- data.frame(dax$GDAXI[dates, "GDAXI.Close"])</pre>
colnames(DAX) <- "Close" # somehow the column name cannot be given directly
DAX$Datum <- as.Date(row.names(DAX))</pre>
stocks$DAX <- merge(stocks, DAX, by = "Datum", all.x = T)$Close
# TEC
tec <- new.env()
getSymbols("^TECDAX", env = tec, src = "yahoo", from = dateMin, to = dateMax)
## Warning: ^TECDAX contains missing values. Some functions will not work if
## objects contain missing values in the middle of the series. Consider using
## na.omit(), na.approx(), na.fill(), etc to remove or replace them.
## [1] "TECDAX"
TEC <- data.frame(tec$TECDAX[dates, "TECDAX.Close"])</pre>
colnames(TEC) <- "Close"</pre>
TEC$Datum <- as.Date(row.names(TEC))</pre>
stocks$TEC <- merge(stocks, TEC, by = "Datum", all.x = T)$Close</pre>
# ESX50
esx50 <- new.env()
getSymbols("^STOXX50E", env = esx50, src = "yahoo", from = dateMin, to = dateMax)
## Warning: ^STOXX50E contains missing values. Some functions will not work if
## objects contain missing values in the middle of the series. Consider using
## na.omit(), na.approx(), na.fill(), etc to remove or replace them.
## [1] "STOXX50E"
ESX50 <- data.frame(esx50$ST0XX50E[dates,"ST0XX50E.Close"])</pre>
colnames(ESX50) <- "Close"</pre>
ESX50$Datum <- as.Date(row.names(ESX50))</pre>
stocks$ESX50 <- merge(stocks, ESX50, by = "Datum", all.x = T)$Close
# SP500
sp500 <- new.env()
getSymbols("^GSPC", env = sp500, src = "yahoo", from = dateMin, to = dateMax)
## [1] "GSPC"
SP500 <- data.frame(sp500$GSPC[dates, "GSPC.Close"])</pre>
colnames(SP500) <- "Close"</pre>
SP500$Datum <- as.Date(row.names(SP500))</pre>
# sum(is.na(SP500$Close))
stocks$SP5 <- merge(stocks, SP500, by = "Datum", all.x = T)$Close
```

```
# NASDAQ
nasdaq <- new.env()</pre>
getSymbols("^NDX", env = nasdaq, src = "yahoo", from = dateMin, to = dateMax)
## [1] "NDX"
NASDAQ <- data.frame(nasdag$NDX[dates,"NDX.Close"])</pre>
# sum(is.na(NASDAQ[,"NDX.Close"]))
colnames(NASDAQ) <- "Close"</pre>
NASDAQ$Datum <- as.Date(row.names(NASDAQ))</pre>
stocks$NASDAQ <- merge(stocks, NASDAQ, by = "Datum", all.x = T)$Close
# NIKKEI
nikkei <- new.env()</pre>
getSymbols("^N225", env = nikkei, src = "yahoo", from = dateMin, to = dateMax)
## Warning: ^N225 contains missing values. Some functions will not work if
## objects contain missing values in the middle of the series. Consider using
## na.omit(), na.approx(), na.fill(), etc to remove or replace them.
## [1] "N225"
NIKKEI <- data.frame(nikkei$N225[dates,"N225.Close"])</pre>
colnames(NIKKEI) <- "Close"</pre>
NIKKEI$Datum <- as.Date(row.names(NIKKEI))</pre>
stocks$NIKKEI <- merge(stocks, NIKKEI, by = "Datum", all.x = T)$Close
Bundesanleihe not to get from vahoo
env <- new.env()
getSymbols("FGBLU7.EX", env = bund, src = "yahoo", from = dateMin, to = dateMax)
getSymbols("FGBLH8.EX" env = bund, src = "yahoo", from = dateMin, to = dateMax)
new: Den Bund-Future habe ich bei onvista in 5-Jahresstücken geladen und zusammengebaut. Dezimal-
trennzeichen umgestellt im .csv
BUND <- read.csv(file.path(folderData, "Bundfuture", "Bundfuture2001-2017.csv"), sep = ";")
BUND[,1] \leftarrow as.Date(BUND[,1], format = "%d.%m.%Y")
BUND <- BUND[BUND[,1] %in% dates,]</pre>
BUND <- as.data.frame(BUND)
stocks$BUND <- merge(stocks, BUND, by = "Datum", all.x = T)$Schluss
old: Bundesanleihen von https://www.bundesbank.de/Navigation/DE/Statistiken/Zeitreihen Datenbanken/
Makrooekonomische Zeitreihen/its details value node.html?tsId=BBK01.WT0557 Zeitreihe BBK01.WT0557:
Ungewogene Umlaufsrendite der an der EUREX jeweils lieferbaren Bundeswertpapiere / Mittlere RLZ von 9
bis einschl. 10 Jahre / Tageswerte
# BUND <- read.csv(file.path(folderData, "Indexdaten", "BBK01.WT0557.csv"), sep = "\t")
# colnames(BUND) <- c("Datum", "Kurs")</pre>
```

```
\# stocks$BUND <- merge(stocks, BUND, by = "Datum", all.x = T)$Kurs
Treasury bond
new: Beim T-Bond ist es die 10 Year Treasury Note, auf welche das TBOND Sentiment abzielt. Diese habe
ich bei FRED geladen: https://fred.stlouisfed.org/series/DGS10
TBOND <- read.csv(file.path(folderData, "10 year T-Notes", "DGS10.csv"), sep = ",")
TBOND[,1] \leftarrow as.Date(TBOND[,1], format = "%Y-%m-%d")
TBOND[,2] <- as.numeric(as.character(TBOND[,2])) # was a factor first and factors are stored via index
## Warning: NAs durch Umwandlung erzeugt
colnames(TBOND) <- c("Datum", "DGS10")</pre>
TBOND <- TBOND[TBOND[,1] %in% dates,]</pre>
TBOND <- as.data.frame(TBOND)
stocks$TBOND <- merge(stocks, TBOND, by = "Datum", all.x = T)$DGS10
old: from Link Yahoo iShares 10-20 Year Treasury Bond ETF (TLH)
# tbond <- new.env()
# getSymbols("TLH", env = tbond, src = "yahoo", from = dateMin, to = dateMax)
# TBOND <- data.frame(tbond$TLH[dates, "TLH.Close"])</pre>
```

Data Preparation

na's

There might be dates missing.

colnames(TBOND) <- "Close"</pre>

TBOND\$Datum <- as.Date(row.names(TBOND))</pre>

```
colSums(is.na.data.frame(stocks))
```

Datum DAX TEC ESX50 SP5 NASDAQ NIKKEI BUND TBOND ## 0 25 22 41 26 26 32 56 22

stocks\$TBOND <- merge(stocks, TBOND, by = "Datum", all.x = T)\$Close

We delete dates with missing values.

Work with expressions to keep code nice: https://stackoverflow.com/questions/1743698/evaluate-expression-given-as-a-string

```
stocks <- stocks[complete.cases(stocks),]
dates <- stocks[,1]

updateDates <- function(d){
    return(d[as.Date(rownames(d)) %in% dates, ])
}

i = sentixDataNames[1]
parse(text = pasteO(i, " <- ", "updateDates(", i, ")"))</pre>
```

expression(sentixI1disp <- updateDates(sentixI1disp))</pre>

```
for (i in sentixDataNames){
    eval(parse(text = paste0(i, " <- ", "updateDates(", i, ")")))</pre>
}
### not needed any more (done in three lines above) :) :) :)
# sentixI1disp <- updateDates(sentixI1disp)</pre>
# sentixP1disp <- updateDates(sentixP1disp)</pre>
# sentixG1disp <- updateDates(sentixG1disp)</pre>
# sentixI1herf <- updateDates(sentixI1herf)</pre>
# sentixG1herf <- updateDates(sentixP1herf)</pre>
# sentixP1herf <- updateDates(sentixG1herf)</pre>
# sentixI6disp <- updateDates(sentixI6disp)</pre>
# sentixP6disp <- updateDates(sentixP6disp)</pre>
# sentixG6disp <- updateDates(sentixG6disp)</pre>
# sentixI6herf <- updateDates(sentixI6herf)</pre>
# sentixG6herf <- updateDates(sentixP6herf)</pre>
# sentixP6herf <- updateDates(sentixG6herf)</pre>
colSums(is.na.data.frame(stocks))
              DAX
                      TEC
                                     SP5 NASDAQ NIKKEI
    Datum
                           ESX50
                                                            BUND
                                                                  TBOND
##
                        0
                                0
                                        0
                                               0
                                                               0
colSums(is.na.data.frame(sentixI1disp)) + colSums(is.na.data.frame(sentixP1disp)) + colSums(is.na.data.frame(sentixP1disp))
##
      DAX
              TEC ESX50
                              SP5 NASDAQ NIKKEI
                                                    BUND
                                                           TBOND
##
                0
                        0
                                0
                                                       0
                                                             693
colSums(is.na.data.frame(sentixI6disp)) + colSums(is.na.data.frame(sentixP6disp)) + colSums(is.na.data.frame(sentixP6disp))
##
      DAX
              TEC
                    ESX50
                              SP5 NASDAQ NIKKEI
                                                    BUND
                                                           TBOND
##
                0
                                        0
                                                             693
remove TBOND
stocks <- stocks[,-which(colnames(stocks)=="TBOND")]</pre>
i <- sentixDataNames[1]</pre>
parse(text = paste0(i, " <- ", i, "[,-which(colnames(", i, ") == \"TBOND\")]"))</pre>
## expression(sentixI1disp <- sentixI1disp[, -which(colnames(sentixI1disp) ==
       "TBOND")])
for (i in sentixDataNames){
    eval(parse(text = paste0(i, " <- ", i, "[,-which(colnames(", i, ") == \"TBOND\")]")))
regress Sentiment
i <- sentixDataNames[1]</pre>
parse(text = paste0(i, "Reg", " <- ", "regSent(", i, ")"))</pre>
## expression(sentixI1dispReg <- regSent(sentixI1disp))</pre>
for (i in sentixDataNames){
    eval(parse(text = paste0(i, "Reg", " <- ", "regSent(", i, ")")))</pre>
```

```
i <- sentixDataNames[i]
parse(text = paste0(i, "RegCov", " <- ", "cov(", i, "Reg)"))

## expression(NARegCov <- cov(NAReg))

for(i in sentixDataNames){
    eval(parse(text = paste0(i, "RegCov", " <- ", "cov(", i, "Reg)")))
}
</pre>
```