Notes for MATH 3210: Foundation of Analysis I

Jing Guo

September 25, 2017

Contents

1 Ring and Field		
	1.1	Ring
		1.1.1 Addition Axiom
		1.1.2 Multiplication Axiom
	1.2	Field
	1.3	Construction of Integers
	1.4	Construction of Fractions (Rational Numbers) 4
	1.5	Ordered Set
		1.5.1 Partial Order
		1.5.2 Total Order
		1.5.3 Least-upper-bound Property 6
	1.6	Real Numbers
		1.6.1 Construction of Real Numbers 8
		1.6.2 Archimedean Property
		1.6.3 Density of Real Numbers
		1.6.4 Property of Real Numbers
	1.7	Complex Number
		1.7.1 Construction of Complex Numbers
		1.7.2 Automorphism of Complex Numbers
	1.8	Inner Product Space
	1.9	Cauchy-Schwarz Inequality
2	Bas	ic Topology 14
	2.1	Metric Space M
	2.2	Open Sets
	2.3	Closed Sets
	2.4	Compact Sets
	2.5	Topological Spaces (X, U)

1 Ring and Field

Notations:

- N: The set of natural numbers;
- Z: The set of integers (ring, not field, has no inverse);
- Q: The set of rational numbers;
- \mathbb{R} : The set of real numbers (ring and field).

1.1 Ring

The set A has two binary operations, addition and multiplication. For any $a,b\in A$,

$$A*A \to A$$
$$a,b \to a+b$$

1.1.1 Addition Axiom

- 1. a + b = b + a (commutative)
- 2. (a+b)+c=a+(b+c) (associative)
- 3. There is an element 0 such that a + 0 = a (additive identity)
- 4. There exists -a (additive inverse) such that a + (-a) = 0

1.1.2 Multiplication Axiom

- 1. $a \cdot b = b \cdot a$
- 2. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3. There is an element 1 such that $a \cdot 1 = a$ and $0 \neq 1$
- 4. $a \cdot (b+c) = a \cdot b + a \cdot c$ (distributive)

1.2 Field

A is a field if A is a ring for any $a \in A$ and $a \neq 0$, there exists a^{-1} (inverse of a) such that $a \cdot a^{-1} = 1$.

A has no zero divisors if $x \neq 0, y \neq 0 \rightarrow x \cdot y \neq 0$

Example: $x, y \in A$, $x \neq 0$, $y \neq 0$, xy = 0

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

1.3 Construction of Integers

We need to construct \mathbb{Z} from \mathbb{N} with **localization**.

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

Set of equivalence class: $\mathbb{N} \times \mathbb{N} / \sim$

Equivalence relation: $(a,b) \sim (a',b')$ if a+b'=b+a', since a-b=a'-b'

$$(a,b) \sim (a',b') \sim (a'',b'')$$
 $a' + b'' = b' + a''$
 $(a + b'') + b' = (a + b') + b'' = b + a' + b'' = b + b' + a'' = (a'' + b) + b'$
 $\therefore a + b'' = a'' + b$
 $\therefore (a,b) \sim (a'',b'')$

We then should define addition:

$$[(a,b)] + [(a',b')] = [(a+a',b+b')]$$
(1)

$$[(a_1, b_1)] + [(a', b')] = [(a_1 + a', b_1 + b')]$$
(2)

Equation 1 and equation 2 are equal since independent of choice of equivalence classes:

$$a + a' + b_1 + b' = a_1 + a' + b + b'$$

 $a + b_1 = a_1 + b$

Additive identity: 0 = [(0,0)]

For example: [(a,b)] + [(b,a)] = [(a+b,a+b)] = [(0,0)] = 0

We then need to define multiplication:

$$[(a,b)] \cdot [(a',b')] = [(aa' + bb', ab' + a'b)]$$

$$(a - b)(a' - b')$$
= $aa' - ab' - a'b + bb'$
= $(aa' + bb') - (ab' + a'b)$

Multiplicative identity: 1 = [(1,0)]For example: $[(a,b)] \cdot [(1,0)] = [(a,b)]$ $\therefore \mathbb{N} \times \mathbb{N} / \sim$ is a ring, that is, \mathbb{Z} .

$$\begin{split} \mathbb{N} &\longrightarrow \mathbb{Z} \\ m &\longrightarrow [(m,0)] \\ -m &\longrightarrow [(0,m)] = -[(m,0)] \end{split}$$

For example:

$$[(a,b)] = [(a,0)] + [(0,b)]$$
$$= [(a,0)] - [(b,0)]$$

1.4 Construction of Fractions (Rational Numbers)

We need to show that K is a field (with addition and multiplication). Assume A is a commutative ring with no zero divisors, and $A^* = A - \{0\}$.

$$A\times A^*=\{(a,b)\mid a,b\in A,b\neq 0\}$$

Set of equivalence classes: $K = (A \times A^*)/\sim$ (elements of K are fractions) We first need to define addition:

$$(a,b) \sim (a',b')$$
$$\frac{a}{b} = \frac{a'}{b'}$$
$$ab' = a'b$$

[(a,b)]: The equivalence class of (a,b)

$$[(a,b)] + [(a',b')] = [(ab' + a'b,bb')] = \frac{ab' + a'b}{bb'}$$
$$[(0,1)] = 0 \in K \quad \text{(additive identity)}$$

The following is to prove that it is independent of the choice of equivalence class:

$$[(a_1, b_1)] + [(a', b')] = [(a_1b' + a'b_1, b_1b')]$$

$$\therefore (ab' + a'b) \cdot b_1b' = (a_1b' + a'b_1) \cdot bb'$$

$$\therefore left = right$$

We then need to define multiplication:

$$[(a,b)][(a',b')] = [(aa',bb')] = \frac{aa'}{bb'}$$

$$[(1,1)] = 1 \in K \quad \text{(multiplicative identity)}$$

Examples:

$$[(x,y)] + [(0,1)] = [(x,y)]$$
$$[(x,y)] \cdot [(1,1)] = [(x,y)]$$
$$[(x,y)] \neq [(0,1)]$$

So we need to show that K is a field:

$$[(x,y)] \cdot [(y,x)] = [(xy,xy)] = [(1,1)] \quad \text{(Non-zeros have inverse)}$$

$$\therefore ab' = a'b$$

$$(a,b) \sim (a',b')$$

$$\therefore [(xy,xy)] = [(1,1)]$$

Therefore K is a field of fractions of A. We need to show the following map is injective: If $A = \mathbb{Z}$ and $K = \mathbb{Q}$:

$$\begin{split} A &\longrightarrow K \quad \text{(injective)} \\ x &\longrightarrow [(x,1)] \\ x+y &\longrightarrow [(x+y,1)] = [(x,1)] + [(y,1)] \\ x \cdot y &\longrightarrow [(xy,1)] = [(x,1)] \cdot [(y,1)] \end{split}$$

Comm. ring without $0 \longrightarrow \text{Field containing the ring}$

Assume [(a, 1) = [(b, 1)]] where $a, b \in A$:

$$a \cdot 1 = b \cdot 1 \Rightarrow a = b$$

 \therefore The map is injective.

$$P(x)=a_0x^n+a_1x^{n-1}+a_2x^{n-2}+\cdots+a_n, a\in R$$

Ring of polynomials: $P(x)\times Q(x)\Rightarrow R(x)$ (with no zero divisors)

1.5 Ordered Set

1.5.1 Partial Order

 (S, \leq) is a (partially) ordered set (poset), $\forall x, y, z \in S$:

- 1. $x \leq x$
- $2. \ x \leq y, y \leq x \Rightarrow x = y$
- $3. \ x \le y, y \le z \Rightarrow x \le z$

1.5.2 Total Order

Total/Linear order: Either $x \leq y$ or $y \leq x$.

Ordered field is a field K with \leq total order.

Definition:

- 1. If $x \leq y$ then $x + z \leq y + z$ and
- 2. if $x \ge 0, y \ge 0$ then $x \times y \ge 0$

There is no total order in complex numbers.

First example:

$$\mathbb{Q} = \{(a,b)\}, (a,b) = \frac{a}{b}$$
 Since $a \ge 0, b > 0$

 $\therefore \mathbb{Q}$ is an ordered set.

Second example:

$$x \ge 0 \Rightarrow x^2 \ge 0$$

$$x \le 0 \Rightarrow (-x)^2 = x^2 \ge 0$$

$$1^2 = 1 > 0$$

$$2 > 1$$

$$3 > 2$$

 $x > 0 \Leftrightarrow -x < 0$

n > n - 1

1.5.3 Least-upper-bound Property

Q: Ordered field of rational numbers (with gaps)

Least-upper-bound property: K has least-upper-bound property if any bounded subset $E \subset K$ has least upper bound.

K is a field with order relation \leq , $E \subset K$ and E is bounded above if $\exists \alpha \in K$ such that $p \leq \alpha, p \in E$.

 β is the least-upper-bound of E if

- 1. β is an upper bound,
- 2. for any other upper bound α , we have $\beta \leq \alpha$.

We call $\beta = \sup E$.

We then need to prove that \mathbb{Q} does not have least-upper-bound property, that is, there are gaps in \mathbb{Q} .

Proof.

$$E = \{q \in \mathbb{Q} : q^2 \le 2\} \quad \Rightarrow \quad \text{no sup } E$$
$$q \in E \Leftrightarrow -q \in E \quad \text{and} \quad q \ge 0$$

Let $p \in \mathbb{Q}$ such that $p \geq 0, p^2 > 2$.

$$\begin{split} \therefore p^2 > 2 \ge q^2 \Rightarrow p^2 \ge q^2 \\ p^2 - q^2 &= (p+q)(p-q) \ge 0 \quad \text{(property of ordered field)} \\ \therefore p \ge 0, q > 0 \\ \therefore p + q \ge 0 + q = q \ge 0 \\ \therefore p \ge q \\ p \in \mathbb{Q}, p \ge 0, p^2 > 2 \text{ are upper bound of } E. \end{split}$$

Remark: Let p be upper bound of $E, \forall q \in E, q \leq p, p > 0$. Define p':

$$p' = p - \frac{p^2 - 2}{p + 2} = \frac{2p + 2}{p + 2} = 2\frac{p + 1}{p + 2}$$
$$\therefore p'^2 - 2 = 2\frac{p^2 - 2}{(p + 2)^2}$$

In the above equation, $p^2 - 2 \le 0$ and $(p+2)^2 \ge 0$. Assume $p \in E \Rightarrow p^2 \le 2 \Rightarrow p^2 - 2 \le 0$. $\therefore p'^2 - 2 \le 0 \Rightarrow p' \in E$ and $p' \ge p$.

$$p'^2 - 2 < 0 \Rightarrow p' \in E \text{ and } p' > p.$$

 \therefore Either p' = p or p' > p.

But neither of them is possible since $\sqrt{2}$ is irrational:

$$p = p' \Rightarrow p^2 = 0, p \in \mathbb{Q}$$
 but p is irrational.
 $\therefore p \notin E$. All upper bounds of E are $\{p \in \mathbb{Q}, p^2 > 2\}$

r: an upper bound, and $r^2 \geq 2$

$$r' = r - \frac{r^2 - 2}{r^2 + 2}$$
 $\therefore r' < r$
$$r'^2 - 2 = 2\frac{r^2}{(r+2)^2} > 0$$
 $\therefore r'^2 > 2$

 $\therefore r'$ is an upper bound of E.

So we have no upper bound property in E.

1.6 Real Numbers

1.6.1 Construction of Real Numbers

Theorem. There exists a total ordered field \mathbb{R} which has least upper bound property. So every subset $E \subset \mathbb{R}$, are bounded above, has a supremum. Such field is **unique**.

$$K \xrightarrow{\varphi} K'$$

$$\varphi(x+y) = \varphi(x) + \varphi(y)$$

$$\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)$$

if bijective, then isomorphism; otherwise, morphism.

History of construction of real numbers: Dedekind used cuts and Cantor used Cauchy sequence, which works for more general occasions, in 1872.

What is *cuts*?

$$\begin{split} E \subset \mathbb{Q}, E \neq \mathbb{Q} \to E \text{ is bounded above} \\ q \in \mathbb{Q}, E_q = \{ p \in \mathbb{Q} : p < q \} \\ \text{If } \alpha \in E, \beta < \alpha \Rightarrow \beta \in \alpha \\ \gamma \in E, \delta \in E, \delta > \gamma \end{split}$$

1.6.2 Archimedean Property

Theorem (Archimedean Property).

$$x, y \in \mathbb{R}, x > 0, y > 0$$

$$\exists n \in \mathbb{Z}_+, n \cdot x > y$$

Proof. Assume $\{nx \mid n \in \mathbb{Z}\}$ is bounded above, i.e. has least upper bound property.

$$\exists \alpha = \sup\{nx \mid n \in \mathbb{Z}\}$$

 $n \cdot x \le \alpha, \forall n \text{ and } \alpha - x < \alpha$

 $\therefore \quad \alpha = \sup\{nx \mid n \in \mathbb{Z}\}$

 \therefore $\alpha - x$ is NOT an upper bound. $\exists m$ such that $\alpha - x < n \cdot x$

 $\alpha < (n+1)x$

: Contridication.

 \therefore $\{nx \mid n \in \mathbb{R}\}$ is not bounded above.

1.6.3 Density of Real Numbers

Proof. Assume $x, y \in \mathbb{R}$ and x < y.

There exists $q \in \mathbb{Q}$ such that x < q < y. Because y - x > 0 and 1 > 0, so there exists n such that n(y - x) > 1.

$$nx < m_1, \quad m_1 \in \mathbb{Z}$$

 $-nx < m_2, \quad m_2 \in \mathbb{Z}$
 $\therefore -m_2 < nx < m_1$

Conclusion: $\exists m \in \mathbb{Z}, m-1 \leq nx < m$, so $nx < m \leq nx + 1 < ny$.

$$nx < m < ny$$
$$m \le mx + 1$$
$$\therefore x < \frac{m}{n} < y$$

1.6.4 Property of Real Numbers

We have $x > 0, y > 0, n \ge 2$, and $y^n = x$, such y is unique.

We first need to prove **uniqueness**:

Proof. We have $y_1, y_2 > 0, y_1^n = x, y_2^n = x \Rightarrow y_1 = y_2$

We assume $y_1 \neq y_2$ and $0 < y_1 < y_2$. If a > 0, then $ay_1 > ay_2$.

We claim $y_1^n < y_2^n$, then we apply mathematical induction:

When $n = 1, y_1 < y_2$.

$$y_1 y_1^n < y_1^n y_2 < y_2 y_2^n$$

$$y_1^{n+1} < y_2^{n+1}$$

$$\therefore y_1^n < y_2^n$$

But they should both be equal to x, therefore we have a contradiction.

We then need to prove **existence**:

$$E = \{ t \in \mathbb{R} \mid t^n < x, x > 0, x \in \mathbb{R} \}$$

Proof. We first need to show that set E is not empty. We construct $t = \frac{x}{x+1} \Rightarrow 0 < t < 1$ and $t^n < t^{n-1} < \cdots < t < 1$

$$t = \frac{x}{x+1}$$

$$x = t + tx$$

$$t = x - tx < x$$

$$t = x - tx < x$$

We then need to show that E is bounded above:

Proof. Suppose $S \geq x+1 \Rightarrow S > 1$, so $S^m > S^{m-1} > \cdots > S$, therefore $S^m > x + 1 > S$.

It follows that if $t \in E$, then $t < x+1 \Rightarrow x+1$ is an upper bound of E. $\exists y = \sup E, y > 0$

We claim $y^n = x$, since $y^n < x$ and $y^n > x$ are both contradictions. For the first case of contradictions:

$$\frac{x-y^n}{n(y+1)^{n-1}} > 0$$

We have 0 < n < 1 and $h < \frac{x - y^n}{n(y+1)^{n-1}}$.

$$(y+h)^n - y^n$$

$$(y+h)^{n-k-1} * k < (y+h)^{n-k-1} * (y+h)^k$$

$$= (y+h)^{n-1}$$

$$< n * h * (y+h)^{n-1} < x - y^n$$

$$\therefore (y+h)^n - y^n < x - y^n$$

$$(y+h)^n < x$$

$$y+h \in E \text{ and } \sup E = y < y+h$$

Contradiction.

For the first case of contradictions:

$$y^n > x$$

We have $k = \frac{y^n - x}{ny^{n-1}} > 0$.

$$\therefore 0 < k < \frac{y^n}{ny^{n-1}} = \frac{y}{n} < y$$

$$\therefore 0 < k < y \text{ and } 0 < y - k \le t$$

$$y^{n} - t^{n} \le y^{n} - (y - k)^{n}$$
$$< y^{n-1} < kny^{n-1} = y^{n} - x$$
$$\therefore t^{n} > x \Rightarrow t \notin E$$

 $\therefore y - k \notin E$ is an upper bound of E

1.7 Complex Number

Properties:

- 1. $|z| \ge 0$
- $2. |z| = 0 \iff z = 0$
- 3. |z| = |-z|
- 4. Triangular inequity: $|z_1 + z_2| \le |z_1| + |z_2|$

Proof of Triangular Inequity.

$$|z_{1} + z_{2}|^{2} = (z_{1} + z_{2})\overline{(z_{1} + z_{2})}$$

$$= (z_{1} + z_{2})(\overline{z_{1}} + \overline{z_{2}})$$

$$= z_{1}\overline{z_{1}} + z_{1}\overline{z_{2}} + \overline{z_{1}}z_{2} + z_{2}\overline{z_{2}}$$

$$= |z_{1}|^{2} + |z_{2}|^{2} + (z_{1}\overline{z_{2}} + \overline{z_{1}}z_{2})$$

$$\leq z_{1}\overline{z_{1}} + z_{1}\overline{z_{2}} + 2|z_{1}\overline{z_{2}}|$$

$$\leq (|z_{1}| + |z_{2}|)^{2}$$

1.7.1 Construction of Complex Numbers

$$\mathbb{R}^2 = \{(a,b)|a,b \in \mathbb{R}\} \text{ forms abelian group}$$

$$(a,b) + (a',b') = (a+a',b+b') \quad \therefore (0,0) = 0$$

$$-(a,b) = (-a,-b)$$
 Multiplication:
$$(a,b) \cdot (a',b') = (aa'-bb',a'b+ab')$$
 Identity for mult.:
$$(1,0) = \mathbb{1} \text{ and } (a,b) \cdot (1,0) = (a,b)$$

 \mathbb{R}^2 is a ring and $(a, b) \neq (0, 0)$. For any such elements, we can form

$$(a,b)^{-1} = (\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2})$$

 $(a,b) \cdot (a,b)^{-1} = (1,0) = 1$

 $\therefore \mathbb{R}^2$ is a field of complex numbers, that is, \mathbb{C} .

$$: (0,1)^2 = (-1,0) = -1$$
$$(0,-1)^2 = -1$$
$$: i = (0,1)$$
$$(a,b) = a \cdot (1,0) + b \cdot (0,1) = a + ib$$

1.7.2 Automorphism of Complex Numbers

$$z=(a,b) \text{ and } \overline{z}=(a,-b) \text{ (complex conjugate)}$$

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$$

$$\overline{z_1*z_2}=\overline{z_1}*\overline{z_2}$$

$$z*\overline{z}=(a,b)*(a,-b)=(a^2+b^2,0)=(a^2,b^2)$$

We can extend from \mathbb{R} to \mathbb{C} , so we have $a \in \mathbb{R}$ and $(a, 0) \in \mathbb{C}$, therefore \mathbb{R} is a subfield of \mathbb{C} .

Absolute value of complex number z:

$$\sqrt{z\overline{z}} = \sqrt{a^2 + b^2} = |z| > 0$$

1.8 Inner Product Space

V: vector space over \mathbb{R}

$$V \times V \to \mathbb{R}$$

 $(u, v) \to (v \mid u)$ inner product

Some properties:

We have $\alpha, \beta \in \mathbb{R}$:

- 1. $(u \mid v) = (v \mid u)$
- 2. $(u \mid u) \ge 0$ and $(u \mid u) = 0 \iff u = 0$
- 3. Norm: $||u|| = (u \mid u)^{\frac{1}{2}}$
- 4. $(\alpha v + \beta w \mid u) = \alpha(v \mid u) + \beta(w \mid u)$
- 5. $(v \mid \alpha u + \beta w) = \alpha(v \mid u) + \beta(v \mid w)$

Euclidean inner product: In \mathbb{R}^n , $x=\{x_1,x_2,\cdots,x_n\}$, $y=\{y_1,y_2,\cdots,y_n\}$, $(x\mid y)=\sum_{i=1}^n x_iy_i$

1.9 Cauchy-Schwarz Inequality

Theorem (Cauchy-Schwarz Inequality).

$$\forall u,v \in V, |(u \mid v)| \leq \|u\| \cdot \|v\|$$

Proof. We can assume that $u, v \neq 0$ and $\forall t \in \mathbb{R}$, $(tu - v \mid tv - u) \geq 0$

$$t^{2}(u \mid u) - t(u \mid v) - t(v \mid u) + (v \mid v) \ge 0$$

$$\therefore b^{2} - 4ac \le 0$$

$$4(u \mid v)^{2} \le 4||u||^{2}||v||^{2}$$

$$|(u \mid v)| \le ||u||||v||$$

Properties of norms:

- 1. $||v|| \ge 0$
- 2. $||v|| = 0 \iff v = 0$
- 3. $\|\alpha v\| = |a| \|v\|, \alpha \in \mathbb{R}$
- 4. $||u+v|| \le ||u|| + ||v||$

Basic Topology 2

Metric (distance function) of x_0 and x: $d(x_0, x) = |x - x_0|$

Metric Space M2.1

$$d: M \times M \to \mathbb{R}_+$$

- 1. $d(x_0, x_1) \ge 0$ where $x_0, x_1 \in M$
- 2. $d(x_0, x_1) = 0 \iff x_0 = x_1$
- 3. $d(x_0, x_1) = d(x_1, x_0)$ (irrespective of order)
- 4. $d(x,z) \le d(x,y) + d(y,z)$ (triangular inequity)

Norm in metric space: $d(u, v) = ||u - v|| \ge 0$

$$||u-v|| = ||(u-w)+(w-v)|| < ||u-w|| + ||w-v||$$

From in metric space,
$$u(u,v) = ||u-v|| \ge 0$$

 $||u-v|| = ||(u-w) + (w-v)|| \le ||u-w|| + ||w-v||$
Euclidean metric in \mathbb{R}^2 : $d(x,y) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2}$
Euclidean metric in \mathbb{R}^n : $d(u,v) = (\sum_{i=1}^n (u_i-v_i)^2)^{\frac{1}{2}}$
Discrete metric: $d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$

Discrete metric is open and closed.

Open ball of radius ϵ : $B_{\epsilon}(x_0) = B(x_0, \epsilon) = \{y \in M \mid d(x_0, y) < \epsilon\}$

Open ball in M centered in x of radius ϵ/r , and Rudin called it "neighbor-

Example: In discrete metric, if r > 1, $y \in B_r(x) \Rightarrow d(x,y) < r \Rightarrow B_r(x) =$ S; if $r \le 1$, $B_r(x) = \{x\}$

2.2 Open Sets

 $U \subset X$ is open (without boundary) if for any $u \in U$ there exists r > 0 such that $B(u,r) \subset U$.

Open interval is open set; closed interval is not open set.

Prove $B_r(x)$ is an open set (https://math.stackexchange.com/questions/104083/an-open-ball-is-an-open-set):

Proof.
$$y \in B_r(x)$$
 and $\delta = d(x, y)$, so $\epsilon < r - \delta$. We have $z \in B_{\epsilon}(y)$, so $d(x, z) < \delta + \epsilon < r$, therefore $z \in B_{\epsilon}(y) \Rightarrow z \in B_r(x)$.

Theorem.

$$(\bigcup_{i \in I} U_i)^C = \bigcap_{i \in I} U_i^C$$

Proof. Suppose x in the left and y in the right, so $x \notin \bigcup U_i$, then $x \notin U_i$, so $x \in U_i^C$ for any i, so x in the right. Conversely, we can prove that y in the left. Therefore it follows that left equals to right.

Properties of open sets:

- 1. $\emptyset \in S$ is open;
- 2. S itself is open;
- 3. If $U_i, i \in I$ is a family of open sets, then $\bigcup_{i \in I} U_i$ is an open set. (Union of arbitrary (finite and infinite) collection of open sets is open)

Proof. If
$$x \in \bigcup_{i \in I} U_i$$
, $x \in U_i$, so there exists $r > 0$, such that $B_r(x) \in U_i \Rightarrow B_r(x) \subset \bigcup_{i \in I} U_i$.

4. Intersection of *finite* open sets is open. (Why not infinite: consider $\bigcap_{n=1}^{\infty} B_{\frac{1}{n}}(x) = \{x\}$, where $0 < \epsilon < 1$, which is not an open set.)

Proof. If
$$x \in \bigcap_{i \in I}^n U_i$$
, then $x \in U_i$. So U_i is open and $B_r(x) \subset U_i$. Let $\rho = \min(r_1, r_2, \dots, r_n) > 0$, $B_{\rho}(x) \subset B_{r_i}(x) \subset \bigcap_{i \in I}^n U_i \Rightarrow B_{\rho}(x) \subset \bigcap_{i \in I}^n U_i$.

2.3 Closed Sets

 $Z \subset S$ is closed if Z^C is open.

Third part of last subsection implies that $\bigcup_{i \in I} Z_i^C$ is open, which means that $\bigcap_{i \in I} Z_i$ is closed. Similarly, fourth part of last subsection implies that $\bigcup_{i=1}^n Z_i$ is closed.

Example (Chaos/Indiscrete topology): If $S \neq \emptyset$, then $u = \{\emptyset, S\}$. $(S, \{\emptyset, S\})$ is called a discrete space.

2.4 Compact Sets

In metric space X, compact sets are closed.

Compact \Leftrightarrow closed and bounded (only for Euclidean metric, \mathbb{R}^n)

2.5 Topological Spaces (X, U)

Let U be a family of all sets, X be a set. U is a **topology** on X if

- 1. \emptyset (Empty set) is always open; X is open. $\Leftrightarrow \emptyset$ and X itself belong to U.
- 2. F is a collection of open sets, then $\bigcup_{U \in F} U$ is open. \Leftrightarrow Any union of members of U still belongs to U. (Union)
- 3. F is a *finite* collection of open sets, then $\bigcap_{U \in F} U$ is open. \Leftrightarrow The intersection of any finite number of members of U belongs to U. (Intersection)

Finite case: $x \in \bigcap_{U \in F} U$, $x \in U$, hence $B(x, \epsilon_U) \subset U$

$$\delta = \min \epsilon_U > 0 \quad where \quad U \in F$$
$$B(x, \delta) \subset B(x, \epsilon_U) \subset U$$
$$\therefore B(x, \delta) \subset \bigcap_{U \in F} U$$

Infinite case: For example, the intersection of all intervals of $\left(-\frac{1}{n}, \frac{1}{n}\right)$, where n is a positive number, is the set $\{0\}$ which is not open in the real line.

Remark: Some topological spaces are not metric.

Discrete topology: (S,d) is discrete metric, and $B_{\frac{1}{2}}(x)=\{x\}$ since all subsets of S are open.