CS383 Quiz I

Solution

Which one is not a basic property of programming languages?

- a. Functions
- b. Syntax
- c.Type
- d. Semantics

For C, which one does not constitute a scope?

- a. Compilation unit
- b. Function
- c. For loop
- d. Block

Which one of the following is NOT a part of doing an inductive proof?

- a. Clearly state the induction hypothesis.
- b. Make a proper inductive definition.
- c. Clearly state what you are doing induction on.
- d. Show one case for each rule in the inductive definition.

If the structure of your induction hypothesis is "If X and Y then A", which of the following things is proper for you to assume and prove?

- a. Assume X or Y, prove A
- b. Assume X and Y, prove A
- c. Assume X prove A, or Assume Y prove A
- d. Assume X prove A, and Assume Y prove A

5. If the structure of your induction hypothesis is "If X or Y then A", which of the following things is proper for you to assume and prove?

- a. Assume X or Y, prove A
- b. Assume X and Y, prove A
- c. Assume X prove A, or Assume Y prove A
- d. Assume X prove A, and Assume Y prove A

Which one of the following is not essential in lambda calculus?

- a. Variable: x
- b. Conditional: if e1 then e2 else e3
- c. Abstraction: $\lambda x \cdot e$
- d. Application: e1 e2

7

Which one of the following is incorrect about the semantics of if-then-else?

$$e_1 \rightarrow e_1' \quad e_2 \rightarrow e_2' \quad e_3 \rightarrow e_3'$$

 $\underline{\mathbf{a}}$. if e_1 then e_2 else $e_3 \rightarrow$ if e_1 ' then e_2 ' else e_3 '

b. $\frac{e_1 \rightarrow e_1'}{\text{if } e_1 \text{ then } e_2 \text{ else } e_3 \rightarrow \text{if } e_1' \text{ then } e_2 \text{ else } e_3}$

C. if true then e_2 else $e_3 \rightarrow e_2$

d. if false then e_2 else $e_3 \rightarrow e_3$

Which one of the following is different from the other three after evaluation?

a.
$$\lambda x. x x$$

b.
$$(\lambda x. x x) (\lambda y. y y)$$

c.
$$(\lambda y. \lambda x. y x) (\lambda x. x x) (\lambda y. y y)$$

d.
$$(\lambda x. (\lambda x. x x) x) (\lambda x. x x)$$

Which one of the following is incorrect in simply typed lambda calculus?

```
a. (\lambda f: int \rightarrow int. \lambda g: int. f g) (\lambda x: int. x+5)
```

- b. $(\lambda f:bool. \lambda g:bool \rightarrow int. g f)$
- c. $(\lambda f: int \rightarrow int. \lambda g: int. f g) (\lambda x: int \rightarrow int. x)$
- d. $(\lambda f:int. f)$ $((\lambda x:int. x) 5)$

Which one of the following is incorrect?

- a. Type checking is the process of verifying type safety of a program (or a term).
- b. If a well-typed term has type t, its evaluation result (if any) also has type t.
- c. Well-typed programs do not get stuck.
- d. Typed lambda calculus is more expressive than untyped lambda calculus.

#	A	В	С	D	A%	B%	C%	D%
1	22	1	0	3	85	4	0	12
2	13	1	11	1	50	4	42	4
3	1	20	4	1	4	77	15	4
4	0	25	1	0	0	96	4	0
5	0	0	10	16	0	0	38	62
6	0	24	1	1	0	92	4	4
7	19	4	3	0	73	15	12	0
8	17	0	6	3	65	0	23	12
9	3	12	10	1	12	46	38	4
10	2	6	13	5	8	23	50	19