ABSTRACT

Data Analysis for P300 data set including spatial averaging of parietal channels

Zunera Zahid

First extract single trials after stimulus and Plot

In order to extract single trials after stimulus following steps were used:

- 1. Loading data set into workspace
- 2. Selecting channel 5 and Reducing Data dimension from 85x7794x64 in variable Signal to 26x1 using squeeze (Signal (1, 5, 39:end, 1)) %26 points from Subject A, channel 5, trial 3
- 3. Saving the reduced data in variable SingleStimulus
- 4. Plotting the signal
- 5. Plotting square Signal
- 6. Repeat steps 1-5 for each data set train/test
- 7. Repeat steps 1-5 for both subjects A and B

Matlab Commands Subject A:

```
load('Subject A Train.mat')
frequency s=60; % Setting the frequency to 60 Hz
% points from Subject A, channel 5, trial 3
singleStimulus Train A = squeeze(Signal(1,5,39:end,1))
N=length(singleStimulus Train A); % Get length of average per 5
t=(0:N-1)/frequency s; % Generating time vector
subplot(2,2,1)% Generating SingleStimulus Train A Plot
plot(t, singleStimulus Train A, 'k'); hold on;
title('Subplot 1: SingleStimulus Train A')
subplot(2,2,2)% Generating Single Stimulus Test A Squared Signal
Plot
plot(t, square(singleStimulus Train A), 'k'); hold on;
title ('Subplot 2: Single Stimulus Test A Squared Signal')
load('Subject A Test.mat')
singleStimulus Test A = squeeze(Signal(1,5,39:end,1))
N1=length(singleStimulus Test A); % Get length
t1=(0:N1-1)/frequency s; % Generating time vector
subplot(2,2,3)
plot(t1, singleStimulus Test A, 'k'); hold on;
title ('Subplot 3: Single Stimulus Test A Signal')
subplot(2,2,4)
plot(t1, square(singleStimulus Test A), 'k'); hold on;
title ('Subplot 4: Single Stimulus Train Squared Signal A')
```

Matlab Commands Subject B:

```
load('Subject B Train.mat')
singleStimulus Train B = squeeze(Signal(1,5,39:end,1))
N2=length(singleStimulus Train B); % Get length
t2=(0:N2-1)/frequency s; % Generating time vector
subplot(2,2,1)
plot(t2, singleStimulus Train B, 'k'); hold on;
title('Subplot 5: Single Stimulus Train Signal B')
subplot(2,2,2)
plot(t2, square(singleStimulus Train B), 'k'); hold on;
title ('Subplot 6: Single Stimulus Train Squared Signal B')
load('Subject B Test.mat')
singleStimulus Test B = squeeze(Signal(1,5,39:end,1))
N3=length(singleStimulus Test B); % Get length
t3=(0:N3-1)/frequency s; % Generating time vector
subplot(2,2,3)
plot(t2, singleStimulus Test B, 'k'); hold on;
title('Subplot 7: Single Stimulus Test Signal B')
subplot(2,2,4)
plot(t2, square(singleStimulus Test B), 'k'); hold on;
title('Subplot 8: Single Stimulus Test Squared Signal B')
```

Plots Subject A and Subject B

2. Take averaging of 5 trails and plot

In order to take average of 5 trials and plot following steps were used:

- 1. Loading data set into workspace
- 2. Selecting 5 trails by using values 1-5 and taking their mean, next using next 5 values and taking their mean and so on using reshape (column2(1:100), [], 5)
- 3. Saving the reduced data in variable out
- 4. Taking mean(out, 2)
- 5. Plotting the signal
- 6. Plotting square Signal
- 7. Repeat steps 1-4 for each data set train/test
- 8. Repeat steps 1-5 for both subjects A and B

Matlab Commands:

```
column2 = Signal;
out = reshape(column2(1:100), [], 5)
N=length(out); % Get length of average per 5 trails
frequency_s=60; % Setting the frequency to 60 Hz

t=(0:N-1)/frequency_s; % Generating time vector
means5 = mean(out, 2)
subplot(2,1,1)
plot(t,means5,'k');hold on;
title('Subplot 9: Average of 5 trails Signal')
```

Plots

3. Take averaging to all trials from single channel and plot

Matlab Commands:

```
column2 = Signal;
out = reshape(column2(1:100), [], 1)
N=length(out); % Get length of average per 5 trails
frequency_s=60; % Setting the frequency to 60 Hz

t=(0:N-1)/frequency_s; % Generating time vector
means5 = mean(out, 2)
subplot(2,1,1)
plot(t,means5,'k');hold on;
title('Subplot 11: Average of All trails Signal')
```

Plots

Average the parietal region channels and find the spatial averaging of all trials.

```
load('Subject A Train.mat')
frequency s=60; % Setting the frequency to 60 Hz
% points from Subject A, channel 5, trial 3
48, 49, 53, 54
singleStimulus Train A P5 =
squeeze(Signal(1,48,39:end,1))
singleStimulus Train A P3 =
squeeze(Signal(1,49,39:end,1))
singleStimulus Train A P4 =
squeeze(Signal(1,53,39:end,1))
singleStimulus Train A P6 =
squeeze(Signal(1,54,39:end,1))
N=length(singleStimulus Train A P5); % Get length
t=(0:N-1)/frequency s; % Generating time vector
singleStimulus Train A parietal avg=(singleStimulus Tr
ain A P5+singleStimulus Train A P3+singleStimulus Trai
n_A_P4+singleStimulus_Train A_P6)/4
subplot(2,2,1)% Generating SingleStimulus Train A Plot
plot(t, singleStimulus Train A parietal avg, 'k'); hold
title ('Subplot 14: Average Parietal Region Plot for
Subject A Train')
load('Subject A Test.mat')
frequency s=60; % Setting the frequency to 60 Hz
% points from Subject A, channel 5, trial 3
48, 49, 53, 54
singleStimulus Test A P5 =
squeeze(Signal(1,48,39:end,1))
singleStimulus Test A P3 =
squeeze (Signal (1, 49, 39:end, 1))
singleStimulus Test A P4 =
squeeze(Signal(1,53,39:end,1))
singleStimulus Test A P6 =
squeeze (Signal (1,54,39:end,1))
N=length(singleStimulus Test A P5); % Get length
t=(0:N-1)/frequency s; % Generating time vector
singleStimulus Test A parietal avg=(singleStimulus Tes
t_A_P5+singleStimulus_Test_A_P3+singleStimulus_Test_A_
P4+singleStimulus Test A P6)/4
subplot(2,2,2)% Generating SingleStimulus Train A Plot
plot(t, singleStimulus Test A parietal avg, 'k'); hold
title('Subplot 15: Average Parietal Region Plot for
Subject A Test')
```

```
load('Subject B Train.mat')
frequency s=60; % Setting the frequency to 60 Hz
% points from Subject A, channel 5, trial 3 48,49,53,54
singleStimulus Train B P5 = squeeze(Signal(1,48,39:end,1))
singleStimulus Train B P3 = squeeze(Signal(1,49,39:end,1))
singleStimulus Train B P4 = squeeze(Signal(1,53,39:end,1))
singleStimulus Train B P6 = squeeze(Signal(1,54,39:end,1))
N=length(singleStimulus Train B P5); % Get length
t=(0:N-1)/frequency s; % Generating time vector
singleStimulus Train B parietal avg=(singleStimulus Train B
P5+singleStimulus Train B P3+singleStimulus Train B P4+sin
gleStimulus Train B P6)/4
subplot(2,2,3)% Generating SingleStimulus Train A Plot
plot(t, singleStimulus Train B parietal avg, 'k'); hold on;
title ('Subplot 16: Average Parietal Region Plot for Subject
B Train')
load('Subject B Test.mat')
frequency s=60; % Setting the frequency to 60 Hz
% points from Subject A, channel 5, trial 3 48,49,53,54
singleStimulus Test B P5 = squeeze(Signal(1,48,39:end,1))
singleStimulus Test B P3 = squeeze(Signal(1,49,39:end,1))
singleStimulus Test B P4 = squeeze(Signal(1,53,39:end,1))
singleStimulus Test B P6 = squeeze(Signal(1,54,39:end,1))
N=length(singleStimulus Test B P5); % Get length
t=(0:N-1)/frequency s; % Generating time vector
singleStimulus Test B parietal avg=(singleStimulus Test B P
5+singleStimulus Test B P3+singleStimulus Test B P4+singleS
timulus Test B P6)/4;
subplot(2,2,4)% Generating SingleStimulus Train A Plot
plot(t, singleStimulus_Test_B_parietal_avg, 'k'); hold on;
title('Subplot 17: Average Parietal Region Plot for Subject
B Test')
```

Plots:

Find if single channel averaging is better than averaging over channels.

Matlab Code

```
load('Subject A Train.mat')
x = linspace(0, 10, 50);
frequency s=60; % Setting the frequency to 60 Hz
% points from Subject A, Parietal channels 48,49,53,54
singleStimulus Train A P5 = squeeze(Signal(1,48,39:end,1))
singleStimulus Train A P3 = squeeze(Signal(1,49,39:end,1))
singleStimulus Train A P4 = squeeze(Signal(1,53,39:end,1))
singleStimulus Train A P6 = squeeze(Signal(1,54,39:end,1))
N=length(singleStimulus Train A P5); % Get length
t=(0:N-1)/frequency s; % Generating time vector
% Sp Averaging
singleStimulus Train A parietal avg=(singleStimulus Train A P
5+singleStimulus Train A P3+singleStimulus Train A P4+singleS
timulus Train A \overline{P6})/4
% Comparison Plot
plot(t, singleStimulus Train A P5, 'c'); hold on;
title('Overall Channel Averagings vs Single channel
averaging')
hold on
h1=plot(t,singleStimulus Train_A_P5,'r');hold on;
h2=plot(t, singleStimulus Train A P3, 'b'); hold on;
h3=plot(t,singleStimulus Train_A_P4,'g');hold on;
h4=plot(t, singleStimulus Train A P6, 'y'); hold on;
h5=plot(t, singleStimulus Train A parietal avg, 'm'); hold on;
legend([h1 h2 h3 h4 h5], 'P5', 'P3', 'P4', 'P6', 'Parietal
```


From the plot, the performance of the averaging over channels is significantly higher in comparison to individual channels. Standard deviation is lesser from the axis in cases of later

```
load('Subject_A_Train.mat')
% points from Subject A, channel 5, trial 3 48,49,53,54
singleStimulus_Train_A_P5 = squeeze(Signal(1,48,39:end,1))
singleStimulus_Train_A_P3 = squeeze(Signal(1,49,39:end,1))
singleStimulus_Train_A_P4 = squeeze(Signal(1,53,39:end,1))
singleStimulus_Train_A_P6 = squeeze(Signal(1,54,39:end,1))

% Standard deviation of individual vs average of parietal channels

Standard_Deviation_P5 = std(singleStimulus_Train_A_P5)
Standard_Deviation_P3 = std(singleStimulus_Train_A_P3)
Standard_Deviation_P4 = std(singleStimulus_Train_A_P4)
Standard_Deviation_P6 = std(singleStimulus_Train_A_P6)
Standard_Deviation_Average = std(singleStimulus_Train_A_Parietal_avg)
```

Standard Deviation P5 = 8.5473

Standard_Deviation_P3 =10.8791

Standard_Deviation_P4 = 8.0947

Standard_Deviation_P6 = 8.8262

Standard Deviation Average = 7.6199