ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Департамент программной инженерии

УТВЕРЖДАЮ

СОГЛАСОВАНО

	,	департамента про	офессор ограммной инженерии ехнических наук	образователы	ий руководитель ной программы ая инженерия»
			Е.М. Гринкруг 2018 г.		В.В. Шилов 2018 г.
Подп. и дата		РЕАЛІ		ВА СТАНДАРТА ТІ И БИБЛИОТЕКИ W ство программист	EBGL
Инв. № дубл.			ЛИСТ	УТВЕРЖДЕНИЯ 29.03.05-01 33 01-1	
Взам. инв. №					
Подп. и дата					Исполнитель: этка группы БПИ162 / Казанцева А.Р. / 2018 г.
Инв. № подл	RU.17701729.03.05-01				

УТВЕРЖДЕНО RU.17701729.03.05-01 33 01-1

ПРОГРАММА КОДИРОВАНИЯ И ДЕКОДИРОВАНИЯ АЛГЕБРОГЕОМЕТРИЧЕСКИХ КОДОВ

Руководство программиста

RU.17701729.03.05-01 33 01-1

Листов 15

Інв. № подл	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата
17701729.03.05-01				

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ	
1. Назначение программы	
1.1 Функциональное назначение	
1.2 Эксплуатационное назначение	
2. Условия выполнения программы	
2.1 Минимальный состав технических средств	
2.2 Минимальный состав программных средств	.4
2.3 Требования к пользователю	.5
3. Использование библиотеки	5
3.3 Состав элементов	
3.4 Примеры использования	
Инициализация сцены:	.7
Создание прямоугольного параллелепипеда и освещения:	.8
Изменение параметров:	.9
Загрузка произвольных моделей:	.9
Выбор типа навигации:	0
ПРИЛОЖЕНИЕ 1	1
ПРИЛОЖЕНИЕ 2	13
ЛИСТ РЕГИСТРАНИИ ИЗМЕНЕНИЙ	14

1. Назначение программы

1.1 Функциональное назначение

Библиотека предназначена для предоставления возможности работы с 3D-графикой непосредственно средствами Web-браузера, без установки каких-либо иных специальных программных средств.

Библиотека при подключении к проекту определяет наличие специальной трехмерной сцены¹ в виде тега¹ «canvas is="my-scene"> «/canvas>. При наличии хотя бы одного тега данного формата библиотека начинает взаимодействовать с графическим контекстом webgl¹ этого тега и, опираясь на дочерние теги¹, описываемые в соответствии со стандартом трехмерной графики X3D[12] и спецификацией данной библиотеки[13], отрисовывает трехмерные объекты, обращаясь к WebGL API¹.

1.2 Эксплуатационное назначение

Подключенная к проекту библиотека определённые библиотекой (нестандартизованные) DOM-элементы¹, определенные спецификацией[13] и обозначающие те или иные элементы стандарта трехмерной графики X3D[12], преобразует в трехмерные объекты и отрисовывает в DOM-элементе¹ Canvas, тем самым позволяя работать с трехмерной графикой в веб-браузере:

- не используя никаких плагинов¹;
- декларируя элементы непосредственно в привычном html-коде;
- не углубляясь в низкоуровневую работу с шейдерами и GLSL 1.

2. Условия выполнения программы

2.1 Минимальный состав технических средств

1) NVIDIA >= 257.21 или ATI/AMD >= 10.6 или Intel driver версии от сентября 2010.

2.2 Минимальный состав программных средств

1. один из следующих браузеров:

Таблица 1. Совместимость библиотеки с браузерами.

Наименование	Версия
--------------	--------

¹ см. Приложение 1.

Edge	16 выше
Firefox	59 и выше
Chrome	49 и выше
Safari	TP, 11
Яндекс.Браузер	17 и выше
iOS Safari	10.3, 11.2, 11.3
Chrome Android	66
UC for Android	11.8
Samsung Internet	4, 6.2

2. операционная система Windows XP и более поздние версии, Mac OS X 10.5 и более поздние версии, Unix-подобная операционная система не позднее 2010 года выпуска.

2.3 Требования к пользователю

Для использования библиотеки не требуется никаких особых знаний.

3. Использование библиотеки

3.3 Состав элементов

Таблица 2 . Теги и атрибуты

Тег	Атрибуты	Значение атрибутов		
my-scene Определяет трехмерную сцену.	fon-color	Значение по умолчанию: "255 255 255 0" Цвет фона трехмерной сцены.		
my-camera Определяет	view-angle	Значение по умолчанию: "60" Угол фрустума в градусах.		
камеру. Обязательный элемент.	z-far	Значение по умолчанию: "2000" Максимальное видимое значение координат по оси z.		
	z-near	Значение по умолчанию: "1" Минимальное видимое значение координат по оси z.		
	camera- rotation	Значение по умолчанию: "0 0 0" Углы вращения по осям х,у, для камеры.		
	camera- position	Значение по умолчанию: "0 0 0" Начальная позиция камеры.		
	navigation-type	Значение по умолчанию: "" Тип навигации в нашем мире. Принимает одно из двух значений: object или camera.		

my-directed- light Определяет направленный	fon-light-color	Значение по умолчанию: "100 100 100" Rgb-цвет фонового освещения (значения в пределах 0255)
свет.	directed-light- color	Значение по умолчанию: "200 200 200" Rgb-цвет направленного освещения (значения в пределах 0255)
	direction	Значение по умолчанию: "0 0 -1" Направление направленного освещения.
my-transform Определяет	translation	Значение по умолчанию: "0 0 0" Смещение относительно центра сцены.
положение некоторого трехмерного	rotation	Значение по умолчанию: "0 0 0" Поворот относительно осей сцены.
объекта в пространстве сцены.	scale	Значение по умолчанию: "1 1 1" Масштаб объекта.
ту-shape Определяет форму некоторого трехмерного объекта. Обязательно имеет дочерний элемент.	-	
my-indexed- face-set Определяет произвольную фигуру.	model	Обязательный атрибут. Путь к .obj файлу - модели, которую необходимо отрендерить.
my-box Определяет прямоугольный параллелепипед.	size	Значение по умолчанию: "10 10 10" Размеры параллелепипеда по соответствующим сторонам.
ту-арреагапсе Определяет внешний вид некоторого трехмерного объекта. Обязательно имеет дочерний элемент.	-	-
my-color	color	Обязательный атрибут.

Определяет	Значение по умолчанию: "255 255 255"
цвет некоторого	Rgb-цвет (значения в пределах 0255)
трехмерного	
объекта.	

3.4 Примеры использования

Инициализация сцены:

Для написания простейшей программы необходимо в коде html-страницы подключить библиотеку easy_webgl и определить сцену следующим образом:

```
<canvas is="my-scene"></canvas>
```

И написать скрипт, инициализирующий эту сцену:

```
cloody>

<canvas is="my-scene" id="scene"></canvas>

<script type="text/javascript">

let scene = new Scene(document.getElementById("scene"));

</script>
```

Для того, чтобы убедиться, что всё работает окрасим сцену, определим простейшую камеру и придадим сцене размеры. Размеры передаем элементу canvas через CSS или атрибуты. Для окраски сцены используем специальный атрибут fon-color. Тег my-camera – обязательный тег в трехмерной сцене, определяющий камеру, т.е. зрителя.

```
<!DOCTYPE html>
><html lang="ru">
-<head>
    <meta charset="UTF-8">
    <title>Easy WebGL. Simple example.</title>
    <script src="../src/easy webgl.js"></script>
    <style>
            margin: 0;
            width: 400px;
            display: block;
     </style>
│<<u>@</u>lead>
 <canvas is="my-scene" id="scene" fon-color="100 100 100 200">
    <my-camera></my-camera>
</canvas>
<script type="text/javascript">
    let scene = new Scene(document.getElementById("scene"));
 </script>
 </body>
```


Создание прямоугольного параллелепипеда и освещения:

Теперь определим первую фигуру на нашей сцене. Пусть это будет куб. Для использования библиотеки необходимо запомнить, что у каждого трехмерного объекта есть три важных составляющих:

- Положение в мире (определяется тегом my-transform);
- Форма (определяется тегом my-shape и обязательно дополняется дочерними);
- Внешний вид (определяется тегом my-appearance shape и обязательно дополняется дочерними).

Каждая из этих составляющих выражается определенным тегом, который может иметь дополняющие его дочерние теги.

Итак, для создания простейшего кубика определим следующие элементы:

Заметим, что у камеры, трансформа и цвета есть атрибуты. Атрибут для цвета обязателен, для трансформа и камеры нет, но если мы ничего не укажем ни там, ни там, то ничего и не увидим. Это происходит т.к. согласно предыдущему разделу и бокс, и камера

имеют начальную позицию в начале координат. Оставлять их на своих местах все равно что пытаться увидеть свои внутренние органы. Поэтому мы двигаем камеру на зрителя(в нашей системе координат изначально X смотрит строго вправо, Y – строго вверх, а Z – на зрителя. Центр координат совпадает с центром экрана). Таким образом, мы двигаем камеру от себя, а бокс на себя.

Благодаря атрибуту rotation мы видим, что фигура имеет объем.

Изменение параметров:

Изменение параметров можно производить согласно информации из предыдущего раздела.

Загрузка произвольных моделей:

Для отрисовки более сложных форм в библиотеке предусмотрен тег my-indexedface-set. Его использование предполагает наличие у программиста готовой 3D-модели в формате .obj¹, которую он хочет добавить в свой проект.

Пример кода объявления произвольной модели:

Результат:

¹ см. Приложение 2.

Для конфигурации параметров модели обратитесь к списку атрибутов предыдущего раздела.

Выбор типа навигации:

Тип навигации по трехмерной сцене можно выбрать задав значение атрибуту navigation-type тега my-camera. Отсутствие атрибута равносильно статичной картинке на экране.

Атрибут может принимать одно из двух возможных значений: "object" (всё движение объектов производится вокруг своих осей) или "camera" (так газываемое «брождение» по сцене).

Для навигации используются следующие элементы управления:

- в режиме object:
 - стрелки, PageUp, PageDown вращение элемента по всем его осям.
 - Home, End для приближения и отдаления объекта.
- в режиме сатега:
 - Shift + стрелки, PageUp, PageDown вращение камеры по всем ее осям.
 - стрелки, Home, End перемежение вдоль осей камеры во все три стороны.

приложение 1

ТЕРМИНОЛОГИЯ

Таблица 3. Терминология

Термин	Определение
Трехмерная сцена	Трехмерная сцена - это часть 3D-мира, подлежащая расчёту и выводу на экран в соответствии с текущей точкой наблюдения.
HTML-Ter	HTML-тег (HTML-элемент)- основная структурная единица веб-страницы, написанная на языке HTML.
Графический контекст WebGL	Графический контекст - вспомогательный объект для взаимодействия графического приложения, операционной системы и видеокарты.
WebGL API	WebGL API - программный интерфейс для отображения трёхмерной графики интернет-браузерами[18]
Дочерние теги	Дочерние тэги - тэги, являющиеся прямыми потомками данного элемента в DOM и объявленные внутри данного элемента.
Стандарт ХЗД	X3D — это стандарт ISO, предназначенный для работы с трёхмерной графикой в реальном времени, открытый и не требующий отчислений. В X3D возможно кодировать сцену используя синтаксис

	XML, равно как и Open Inventor-подобный синтаксис VRML97, а также расширенный интерфейс прикладного программирования.[21]
Custom Elements	Custom Elements – это спецификация, описывающая определение пользовательских элементов [14]
DOM -элементы	Объекты DOM, соответствующие HTML тегам страницы
Canvas	Canvas — элемент HTML, предназначенный для создания растрового изображения при помощи скриптов, обычно на языке JavaScript [15]
Плагин	Плагин — независимо компилируемый программный модуль, динамически подключаемый к основной программе и предназначенный для расширения и/или использования её возможностей. Плагины обычно выполняются в виде библиотек общего пользования. [22]
HTML	HTML (от англ. HyperText Markup Language — «язык гипертекстовой разметки») — стандартизированный язык разметки документов во Всемирной паутине. Большинство веб-страниц содержат описание разметки на языке HTML (или XHTML). Язык HTML интерпретируется браузерами; полученный в результате интерпретации форматированный текст отображается на экране монитора компьютера или мобильного устройства. [15]
GLSL	GLSL (OpenGL Shading Language) — язык высокого уровня для программирования шейдеров.[23]
Шейдер	Ше́йдер (англ. shader — затеняющая программа) — компьютерная программа, предназначенная для исполнения процессорами видеокарты (GPU). [24]
Вершинный шейдер	Вершинный шейдер оперирует данными, связанными с вершинами многогранников, например, с координатами вершины (точки) в пространстве, с текстурными координатами, с цветом вершины, с вектором касательной, с вектором бинормали, с вектором нормали. Вершинный шейдер может использоваться для видового и перспективного преобразования вершин, для генерации текстурных координат, для расчёта освещения и т. д.
Фрагментный шейдер	Пиксельный (Фрагментный) шейдер работает с фрагментами растрового изображения и с текстурами — обрабатывает данные, связанные с пикселями (например, цвет, глубина, текстурные координаты). Пиксельный шейдер используется на последней стадии графического конвейера для формирования фрагмента изображения.
дерев DOM- элементов	Дерево DOM элементов – структура объектов, описывающая структуру HTML документа
WebWorkers API	Программный интерфейс, позволяющий запускать на WEB- странице фоновые задачи, не влияющие на производительность страницы. [16]
OpenGL	OpenGL (Open Graphics Library) — спецификация, определяющая платформо-независимый (независимый от языка программирования) программный интерфейс для написания приложений, использующих двумерную и трёхмерную компьютерную графику.[26]
растеризация	Растеризация — это перевод изображения, описанного векторным форматом в пиксели или точки, для вывода на дисплей или принтер. Процесс, обратный векторизации.

JS Promise	Объект Promise (обещание) используется для отложенных и асинхронных вычислений.				
API	АРІ (программный интерфейс приложения, интерфейс прикладного программирования) (англ. application programming interface, АРІ [эй-пи-ай]) — набор готовых классов, процедур, функций, структур и констант, предоставляемых приложением (библиотекой, сервисом) или операционной системой для использования во внешних программных продуктах. Используется программистами при написании всевозможных приложений. [27]				
DOM	OM (от англ. Document Object Model — «объектная модель документа») — это независящий от платформы и языка программный интерфейс, позволяющий программам и скриптам получить доступ к содержимому HTML-, XHTML- и XML-документов, а также изменять содержимое, структуру и оформление таких документов. [28]				
Фрустум	устум Фрустум - часть геометрического тела, заключённая между двумя секущими плоскостями.				

приложение 2

ОПИСАНИЕ ФОРМАТА ФАЙЛА .ОВЈ

1. Комментарии

Строки, начинающиеся с решётки(#), — это комментарии.

Это комментарий

2. **Список вершин**, с координатами (x,y,z[,w]), w является не обязательным и по умолчанию 1.0.

v 0.123 0.234 0.345 1.0

٧ ...

...

3. Нормали (x,y,z); нормали могут быть не нормированными.

vn 0.707 0.000 0.707

vn ...

•••

4. Определения поверхности (сторон)

f 1 2 3 f 3/1 4/2 5/3 f 6/4/1 3/5/3 7/6/5 f 6//1 3//3 7//5 f ...

•••

Определение сторон

Поверхность определяется в списке вершин, текстурных координат и нормалей. Полигоны, такие как квадрат, могут быть определены с помощью более 3 вершин/текстурных координат/нормалей.

4.1. Вершины

Строка, начинающаяся с f, представляет собой индекс Поверхности. Каждая поверхность (полигон) может состоять из трех или более вершин.

f v1 v2 v3 v4 ...

Индексация начинается с первого элемента, а не с нулевого, как принято в некоторых языках программирования, также индексация может быть отрицательной. Отрицательный индекс указывает позицию относительно последнего элемента (индекс -1 указывает на последний элемент).

4.2. Вершины / Текстурные координаты

Наряду с вершинами могут сохраняться соответствующие индексы текстурных координат.

f v1/vt1 v2/vt2 v3/vt3 v4/vt4 ...

4.3. Вершины / Текстурные координаты / Нормали

Также допустимо сохранение соответствующих индексов нормалей.

f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3 v4/vt4/vn4 ...

4.4. Вершины / / Нормали

При отсутствии данных о текстурных координатах допустима запись с пропуском индексов текстур.

f v1//vn1 v2//vn2 v3//vn3 v4//vn4 ...

Наличие всех параметров необязательно. При отсутствии какого-либо параметра программа автоматически устанавливает его по умолчанию.[25][29]

Описание файла приведено не полностю. Описываются только части, необходимые для работы библиотеки.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

	Лист регис						енений			
Номера листов (страниц)					Всего листов (страниц в докум.)	№ документа	Входящий № сопроводит ельного докум. и дата	Подп.	Дата	
Изм.	Изменен	Заменен	Новых	Аннули	рованх					