ЛЕКЦИЯ 4

KOMMYTAHT

НОРМАЛЬНОЕ ЗАМЫКАНИЕ ГРУПП

ГОМОМОРФИЗМЫ ГРУПП

ФАКТОР-ГРУППЫ, КАНОНИЧЕСКИЙ ГОМОМОРФИЗМ

ПЕРВАЯ ТЕОРЕМА О ГОМОМОРФИЗ-МЕ

KOMMYTAHT

Пусть G — группа, $a,b\in G$. Коммутатором элементов $a,b\in G$ называется элемент

$$[a, b] = aba^{-1}b^{-1} \in G.$$

Лемма 1 (свойства коммутаторов). Пусть $G-\mathit{группa},\ a,b\in G.$ Тогда:

- 1) [a, b]ba = ab;
- 2) [a,b] = e тогда и только тогда, когда ab = ba;
- 3) $[a, b]^{-1} = [b, a];$
- 4) $g^{-1}[a,b]g = [g^{-1}ag, g^{-1}bg]$ для $g \in G$.

Доказательство.

- 1) $[a, b]ba = aba^{-1}b^{-1}ba = ab.$
- 2) $[a,b] = aba^{-1}b^{-1} = e$ тогда и только тогда, когда ab = ba.
- 3) $[a, b]^{-1} = (aba^{-1}b^{-1})^{-1} = bab^{-1}a^{-1} = [b, a].$

4)

$$\begin{split} g^{-1}[a,b]g &= g^{-1}aba^{-1}b^{-1}g = \\ &= (g^{-1}ag)(g^{-1}bg)(g^{-1}a^{-1}g)(g^{-1}b^{-1}g) = \\ &= (g^{-1}ag)(g^{-1}bg)(g^{-1}ag)^{-1}(g^{-1}bg)^{-1} = [g^{-1}ag,g^{-1}bg]. \end{split}$$

Коммутант группы G определим как подгруппу

$$G' = [G, G] = \langle [a, b] \mid a, b \in G \rangle$$

группы G, порожденную множеством S всех коммутаторов [a,b], $a,b\in G.$

Теорема 1.

- 1) $G' = [G, G] = \{[x_1, y_1][x_2, y_2] \dots [x_k, y_k] \mid x_i, y_i \in G\}$ (т. е. коммутант состоит из всех конечных произведений коммутаторов).
- 2) $G' \lhd G$ (коммутант группы является нормальной подгруппой группы).

Доказательство.

- 1) Так как $[a,b]^{-1}=[b,a]$, то $G'=\langle S \rangle$, где S множество всех коммутаторов, состоит из произведений конечного числа коммутаторов.
 - 2) Так как для $g \in G$ имеем

$$q^{-1}(xy)q = (q^{-1}xq)(q^{-1}yq), \quad q^{-1}[a,b]q = [q^{-1}aq,q^{-1}bq],$$

ТО

$$g^{-1}([x_1, y_1] \dots [x_k, y_k])g = (g^{-1}[x_1, y_1]g) \dots (g^{-1}[x_k, y_k]g) =$$

$$= [g^{-1}x_1g, g^{-1}y_1g] \dots [g^{-1}x_kg, g^{-1}y_kg].$$

Итак, $g^{-1}G'g \subseteq G'$ для всех $g \in G$, это означает, что $G' \triangleleft G$. \square

Пусть A и B — подгруппы группы G и

$$[A,B] = \langle \{[a,b] \mid a \in A, \ b \in B\} \rangle -$$

подгруппа группы G, порожденная всеми коммутаторами

$$[a,b] = aba^{-1}b^{-1}, \quad \forall a \in A, \quad \forall b \in B$$

(называемая *взаимным коммутантом* подгрупп A и B).

Если $A \triangleleft G$, то для $a \in A, b \in B$

$$[a, b] = a(ba^{-1}b^{-1}) \in A \cdot A = A,$$

и поэтому

$$[A, B] \subseteq A$$
.

Аналогично, если $B \triangleleft G$, то

$$[a, b] = (a^{-1}b^{-1}a)b \in B \cdot B = B,$$

и поэтому

$$[A, B] \subseteq B$$
.

Если же $A \lhd G$, $B \lhd G$, то

$$[A, B] \triangleleft G, \quad [A, B] \subseteq A \cap B.$$

Упражнение 1.

- 1) Группа G коммутативна тогда и только тогда, когда $G' = [G,G] = \{e\}.$
- 2) Приведите пример группы G, в которой совокупность коммутаторов не является подгруппой (т. е. произведение двух коммутаторов не является коммутатором).
- 3) Покажите, что любой элемент группы \mathbf{A}_5 является коммутатором, в частности, $[\mathbf{A}_5, \mathbf{A}_5] = \mathbf{A}_5$.
- 4) Пусть G—группа, $\mathbf{Z}(G)$ ее центр, $(G:\mathbf{Z}(G))=n$. Тогда группа G имеет не более n^2 различных коммутаторов, [G,G]—конечная группа, $|[G,G]|\leqslant n^{2n^3}$.

НОРМАЛЬНОЕ ЗАМЫКАНИЕ ГРУПП

Лемма 2. Если $\{H_i, i \in I\}$ — совокупность нормальных подгрупп группы $G, H_i \triangleleft G, \text{ то } H = \bigcap_{i \in I} H_i$ — нормальная подгруппа группы G.

Доказательство. Действительно, мы знаем, что H — подгруппа. Если $h \in H$ и $g \in G$, то $h \in H_i$ для всех $i \in I$, и так как $H_i \triangleleft G$, то $g^{-1}hg \in H_i$ для всех $i \in I$. Поэтому $g^{-1}hg \in \bigcap_{i \in I} H_i = H$. Итак, $H \triangleleft G$.

Пусть S — непустое подмножество группы G. Рассмотрим совокупность всех нормальных подгрупп $H_i \triangleleft G$, $i \in I$, таких, что $S \subseteq H_i$ (эта совокупность непуста, поскольку она содержит саму группу G). Тогда

$$S \subseteq N(S) = \bigcap_{i \in I} H_i \lhd G.$$

Покажем в следующей теореме, что: N(S) — наименьшая нормальная подгруппа, содержащая S; если

$$S^G = \{ g^{-1} sg \mid s \in S, \ g \in G \},\$$

то оказывается, что подгруппа $\langle S^G \rangle$, порожденная подмножеством S^G , является наименьшей нормальной подгруппой, содержащей S, и потому она совпадает с N(S).

Теорема 2 (о нормальном замыкании подмножества группы). Пусть S — непустое подмножество группы G. Тогда:

1) пересечение

$$N(S) = \bigcap_{S \subseteq N_i \lhd G} N_i$$

всех нормальных подгрупп $N_i \triangleleft G$ таких, что $S \subseteq N_i$, является наименьшей нормальной подгруппой группы G, содержащей подмножество S;

2) $N(S) = \langle S^G \rangle = \left\{ \prod_{k=1}^t g_k^{-1} s_k^{\pm 1} g_k \mid t \in \mathbb{N}, \ s_k \in S, \ g_k \in G \right\}$ (элементы нормального замыкания подмножества S в группе G — это в точности конечные произведения элементов вида $g^{-1} s^{\pm 1} g$, $s \in S, \ g \in G$).

Доказательство. 1) Так как пересечение нормальных подгрупп— нормальная подгруппа, то $N = \bigcap N_i \lhd G$. Ясно, что $S \subseteq N = \bigcap N_i$, поскольку $S \subseteq N_i$ для всех $\{N_i \lhd G \mid S \subseteq N_i, i \in I\}$ (это множество содержит $N_i = G$, и поэтому не является пустым). Таким образом, нормальная подгруппа $N, S \subseteq N$, сама принадлежит этому множеству, т. е. $N = N_i$ для некоторого $i \in I$, и следовательно, $N = \bigcap_{S \subseteq N_i \lhd G} N_i$.

2) В силу 1) из $S \subseteq N \triangleleft G$ следует, что

$$\langle S^G \rangle = \left\{ \prod_{k=1}^t g_k^{-1} s_k^{\pm 1} g_k \mid t \in \mathbb{N}, \ s_k \in S, \ g_k \in G \right\} \subseteq N.$$

Но ясно, что $\langle S^G \rangle$ — нормальная подгруппа в G, содержащая S. Таким образом, $N \subseteq \langle S^G \rangle$. Итак, $\langle S^G \rangle = N$, и мы имеем общий вид произвольного элемента нормального замыкания N(S). \square

ГОМОМОРФИЗМЫ ГРУПП

Пусть G и G'—группы. Напомним, что отображение $f: G \to G'$, для которого f(ab) = f(a)f(b) для всех элементов $a, b \in G$, называется гомоморфизмом. Биективные гомоморфизмы называются изоморфизмами.

ПРИМЕР 1. Пусть $G=\mathbb{R}^+=\{r\in\mathbb{R}\mid r>0\}$ с операцией умножения, $G'=(\mathbb{R},+)$ с операцией сложения. Так как для отображения $\ln\colon\mathbb{R}^+\to\mathbb{R}$ имеем $\ln(ab)=\ln(a)+\ln(b)$ для всех $a,b\in\mathbb{R}^+,$ то \ln — гомоморфизм групп. Так как это — биекция, то \ln — изоморфизм.

ПРИМЕР 2. Если $G = \mathbf{S}_n$ — группа подстановок и $G' = \{1, -1\}$ — группа с операцией умножения, то отображение $\varepsilon \colon \mathbf{S}_n \to \{1, -1\}$, для которого $\varepsilon(\sigma) = 1$, если $\sigma \in \mathbf{A}_n$, т. е. если σ — четная подстановка, и $\varepsilon(\sigma) = -1$ для $\sigma \in \mathbf{S}_n \setminus \mathbf{A}_n$, т. е. для нечетной подстановки σ , является гомоморфизмом групп, поскольку $\varepsilon(\sigma\tau) = \varepsilon(\sigma)\varepsilon(\tau)$ для всех $\sigma, \tau \in \mathbf{S}_n$.

ПРИМЕР 3. Пусть $G = \operatorname{GL}_n(\mathbb{R})$, $G' = \mathbb{R}^* = \mathbb{R} \setminus \{0\}$ с операцией умножения. Так как |AB| = |A| |B| для $A, B \in \operatorname{GL}_n(\mathbb{R})$, то отображение $A \mapsto |A|$ из $\operatorname{GL}_n(\mathbb{R})$ в \mathbb{R}^* , ставящее в соответствие матрице A ее определитель |A|, является гомоморфизмом групп.

УПРАЖНЕНИЕ 2. Найдите все гомоморфизмы $f: G \to G'$, где $G = \langle a \rangle$, O(a) = m, $G' = \langle b \rangle$, O(b) = n (в частности, для m = 12, n = 15).

Для гомоморфизмов $f: G \to G'$ определим:

$$\operatorname{Im} f = \{ g' \in G' \mid g' = f(g) \text{ для } g \in G \}$$

(oбраз гомоморфизма f);

$$\ker f = \{ g \in G \mid f(g) = e' \},\$$

где e' — нейтральный элемент группы G' (ядро гомоморфизма f).

Теорема 3 (свойства гомоморфизма групп). Пусть G и G' — группы, е и е' соответственно — их нейтральные элементы, $f: G \to G'$ — гомоморфизм групп. Тогда:

- 1) f(e) = e';
- 2) $f(x^{-1}) = (f(x))^{-1}$ для всех $x \in G$;
- 3) $H' = \operatorname{Im} f no\partial \operatorname{pynna} \operatorname{pynnu} G';$
- 4) если $G = \langle a \rangle$ циклическая группа, то $\text{Im } f = \langle f(a) \rangle$ также циклическая группа;
- 5) если $O(a) < \infty$ для $a \in G$, то O(f(a)) является делителем числа O(a) (если f инъективный гомоморфизм, то O(f(a)) = O(a));
 - 6) $f(g^{-1}hg) = (f(g))^{-1}f(h)f(g);$
 - 7) f([g,h]) = [f(g),f(h)], u следовательно, f([G,G]) = [f(G),f(G)];
 - 8) $\ker f$ нормальная подгруппа группы G;
- 9) для $x,y \in G$ f(x) = f(y) тогда и только тогда, когда $xy^{-1} \in \ker f$;
- 10) f инъективное отображение тогда и только тогда, когда $\ker f = \{e\}.$

Доказательство. 1) Так как $u=f(e)=f(e^2)=f(e)f(e)=u^2,$ то u=e', т. е. f(e)=e'.

- 2) Так как $f(x^{-1})f(x)=f(x^{-1}x)=f(e)=e'$ и $f(x)f(x^{-1})=f(xx^{-1})=f(e)=e'$, то $f(x^{-1})=\left(f(x)\right)^{-1}$.
- 3) Если $h_1' = f(g_1)$ и $h_2' = f(g_2)$ элементы из $\operatorname{Im} f$, где $g_1, g_2 \in G$, то

$$h_1'h_2' = f(g_1)f(g_2) = f(g_1g_2) \in \text{Im } f.$$

Если $h'=f(g)\in \operatorname{Im} f,\,g\in G$, то

$$(h')^{-1} = (f(g))^{-1} = f(g^{-1}) \in \operatorname{Im} f.$$

Итак, $\operatorname{Im} f$ — подгруппа группы G'.

4) Если $G=\langle a\rangle$ и $h'\in {\rm Im}\, f,\, h'=f(g),\, g\in G,\, {\rm тo}\, g=a^n,\, n\in \mathbb{Z},$ и поэтому

$$h' = f(g) = f(a^n) = (f(a))^n.$$

Итак, $\operatorname{Im} f = \langle f(a) \rangle$ — циклическая группа с образующим f(a).

5) Пусть n = O(a). Тогда $a^n = e$, и поэтому

$$(f(a))^n = f(a^n) = f(e) = e'.$$

Следовательно, число O(f(a)) является делителем числа n=O(a).

Если же f — инъективный гомоморфизм и $m = O\big(f(a)\big),$ то

$$e' = (f(a))^m = f(a^m),$$

поэтому $a^m=e$, и следовательно, n=O(a) является делителем числа m. Таким образом, O(a)=n=m=Oig(f(a)ig).

6) и 7) следуют из 2).

8) Если $h_1, h_2 \in H = \ker f$, то $f(h_1) = e'$, $f(h_2) = e'$. Поэтому $f(h_1h_2) = f(h_1)f(h_2) = e' \cdot e' = e'$, т. е. $h_1h_2 \in \ker f$.

Если $h \in \ker f$, то f(h) = e', и поэтому $f(h^{-1}) = (f(h))^{-1} = (e')^{-1} = e'$, т. е. $h^{-1} \in \ker f$. Таким образом, $\ker f$ — подгруппа группы G.

Если $h \in H = \ker f$, то f(h) = e'. Для любого элемента $g \in G$ имеем

$$f(g^{-1}hg) = f(g^{-1})f(h)f(g) = f(g)^{-1}e'f(g) = e'.$$

Таким образом, $g^{-1}(\ker f)g \subseteq \ker f$ для всех элементов $g \in G$, т. е. $\ker f$ — нормальная подгруппа группы G.

9)
$$f(x) = f(y) \iff e' = f(x)f(y)^{-1} = f(x)f(y^{-1}) = f(xy^{-1}) \iff xy^{-1} \in \ker f$$
.

- 10) а) Если $\ker f = \{e\}$, то из f(x) = f(y) следует, что $xy^{-1} = e$, т. е. что x = y, другими словами, f инъективное отображение.
- б) Если f инъективное отображение, то, так как f(e)=e', из f(x)=e' следует, что x=e, т. е. $\ker f=\{e\}$.

УПРАЖНЕНИЕ 3. В рассмотренных выше примерах гомоморфизмов групп найти образ и ядро гомоморфизма.

УПРАЖНЕНИЕ 4. Докажите, что не существует сюръективного гомоморфизма $(\mathbb{Q},+) \to (\mathbb{Z},+)$.

Теорема 4 (теорема Кэли). Пусть G — группа, H — ее подгруппа, L — множество всех левых смежных классов группы G по подгруппе H, $\varphi \colon G \to \mathbf{S}(L)$, $\mathbf{S}(L)$ — группа подстановок на множестве L, $\varphi(g)(xH) = gxH$ для $x, g \in G$. Тогда:

- 1) φ гомоморфизм групп;
- 2) $\ker \varphi = \bigcap_{x \in G} x H x^{-1}$.

Доказательство. 1) Если $x, g_1, g_2 \in G$, то

$$\varphi(g_1g_2)(xH) = (g_1g_2)xH = g_1(g_2xH) = \varphi(g_1)(\varphi(g_2)(xH)),$$

поэтому $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$.

2) Ясно, что:

$$g \in \ker \varphi \iff \{xH = gxH \ \forall xH\} \iff \{g \in xHx^{-1} \ \forall x \in G\}.$$

Следствие 1. При $H = \{e\}, L = G, \mathbf{S}(G) - \mathit{группа}\ \mathit{nodcmahosok}$ на множестве G:

- 1) $\varphi \colon G \to \mathbf{S}(G)$, $\varphi(g)(x) = gx$ для $x, g \in G$, является левым регулярным представлением группы G, оно осуществляет вложение группы G в группу $\mathbf{S}(G)$, поскольку $\ker \varphi = \bigcap_{x \in G} xex^{-1} = \{e\};$
- 2) конечная группа G вкладывается в группу подстановок \mathbf{S}_m , где m=|G|.

ФАКТОР-ГРУППЫ, КАНОНИЧЕСКИЙ ГОМОМОРФИЗМ

Пусть G — группа, H — ее нормальная подгруппа, $G/H = \{xH = Hx \mid x \in G\}$ — множество смежных классов по подгруппе H. Определим на множестве G/H операцию умножения, полагая $xH \cdot yH = xyH$.

Проверим корректность этого определения (т.е. что умножение смежных классов не зависит от выбора их представителей).

Действительно, пусть $xH=x'H,\ yH=y'H.$ Тогда $x'=xh_1,\ y'=yh_2,$ где $h_1,h_2\in H.$ Следовательно, $x'y'=xh_1yh_2=xyh_1'h_2,$ где $h_1y=yh_1'$ (поскольку Hy=yH) для $h_1'\in H.$ Так как $h_1'h_2\in H$, то $x'y'=xyh_1'h_2\in xyH,$ и поэтому x'y'H=xyH.

Для любых $x, y, z \in G$ имеем

$$(xHyH)zH = (xy)zH = x(yz)H = xH(yHzH),$$

т. е. операция умножения смежных классов ассоциативна.

Ясно, что для H = eH имеем

$$eHxH = exH = xH = xeH = xHeH$$

для всех $xH \in G/H$, т. е. H = eH — нейтральный элемент.

Для всякого $xH \in G/H$ из

$$(xH)(x^{-1}H) = xx^{-1}H = eH = H,$$

 $(x^{-1}H)(xH) = x^{-1}xH = eH = H$

получаем, что $(xH)^{-1}=x^{-1}H$, т. е. у каждого смежного класса xH имеется обратный элемент $(xH)^{-1}=x^{-1}H$.

Таким образом, мы доказали первое утверждение следующей теоремы.

Теорема 5. *Если H* \triangleleft *G*, *mo*:

- 1) множество смежных классов $G/H = \{xH = Hx \mid x \in G\}$ группы G по ее нормальной подгруппе $H \triangleleft G$ с операцией $xH \cdot yH = xyH$ является группой (называемой фактор-группой группы G по нормальной подгруппе H);
- 2) отображение $\pi = \pi_H \colon G \to G/H$, для которого $\pi(x) = xH$, $x \in G$, является сюръективным гомоморфизмом (называемым каноническим гомоморфизмом);
 - 3) $\ker \pi_H = H$;
 - 4) $ecnu |G| < \infty, mo |G/H| = \frac{|G|}{|H|} = (G : H).$

Доказательство. Осталось проверить 2), 3) и 4). Действительно, для $a,b\in G$ имеем

$$\pi(ab) = abH = aH \cdot bH = \pi(a)\pi(b),$$

т. е. $\pi = \pi_H - гомоморфизм.$

Если $g\in G$, то $gH=\pi(g)$, т. е. π — сюръекция.

Если $a \in G$, то $a \in \ker \pi_H$ тогда и только тогда, когда $\pi(a) = aH = H$. Но это равносильно тому, что $a \in H$. Итак, $\ker \pi_H = H$.

4) следует из теоремы Лагранжа.

Следствие 2. Нормальные подгруппы H группы G и только они являются ядрами гомоморфизмов $f: G \to G'$ из группы G во все группы G'.

ПРИМЕРЫ ФАКТОР-ГРУПП

1) Пусть $H = \{e\} \lhd G$. Тогда $x\{e\} = x$ для всех $x \in G$, т. е. все смежные классы по единичной подгруппе— это в точности одноэлементные подмножества, т. е. элементы группы G, при этом

$$x\{e\} \cdot y\{e\} = xy\{e\} = xy.$$

Таким образом, биекция $x\{e\} \mapsto x, G/\{e\} \to G$ является изоморфизмом групп.

- 2) Пусть $H = G \lhd G$. Тогда имеем один смежный класс $\bar{e} = eG = G$. Итак, $G/G = \{\bar{e}\}, \, |G/G| = 1$.
- 3) Группа \mathbb{Z}_n вычетов по модулю n как фактор-группа группы $(\mathbb{Z},+)$ по подгруппе $n\mathbb{Z}$. Пусть $G=\mathbb{Z}-$ группа целых чисел с операцией сложения, n- натуральное число и $H=n\mathbb{Z}=\{nq\mid q\in\mathbb{Z}\}-$ подгруппа целых чисел, делящихся на n. Для $k\in\mathbb{Z}$ рассмотрим смежный класс

$$C_k = k + n\mathbb{Z} = \{k + nq \mid q \in \mathbb{Z}\}.$$

Ясно, что $C_k = C_l$ для $l \in \mathbb{Z}$ тогда и только тогда, когда k-l = nq. Так как k = nq + r, где $q \in \mathbb{Z}$, $0 \leqslant r < n$, то $C_k = C_r$. Таким образом, множество всех различных смежных классов $\mathbb{Z}_n = G/H = \mathbb{Z}/n\mathbb{Z} = \{C_0, C_1, \dots, C_{n-1}\}$ находится в биективном соответствии с остатками $\{0, 1, 2, \dots, n-1\}$ при делении на число n. Если $k, l \in \mathbb{Z}$ и k+l = nq+r, то

$$C_k + C_l = (k + n\mathbb{Z}) + (l + n\mathbb{Z}) = (k + l) + n\mathbb{Z} = r + n\mathbb{Z} = C_r.$$

Таким образом, операция сложения фактор-группы $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ в точности соответствует операции сложения остатков при делении на n по модулю числа n (т. е. сначала надо сложить остатки как целые числа, а затем от суммы взять остаток при ее делении на n). Таким образом, \mathbb{Z}_n —группа.

- 4) В фактор-группе \mathbb{Q}/\mathbb{Z} любой элемент имеет конечный порядок; для любого натурального числа n существует единственная подгруппа группы \mathbb{Q}/\mathbb{Z} порядка n.
- 5) Фактор-группа \mathbb{R}/\mathbb{Z} имеет естественную интерпретацию как группа $T = \{z \in \mathbb{C} \mid |z| = 1\}$ единичной окружности (или поворотов плоскости вокруг начала координат против часовой стрелки на угол φ , что равносильно умножению на комплексное число $\cos \varphi + i \sin \varphi$), а именно биекция

$$f: \mathbb{R}/\mathbb{Z} \to T$$
, $f(r+\mathbb{Z}) = \cos 2\pi r + i \sin 2\pi r$,

осуществляет изоморфизм групп \mathbb{R}/\mathbb{Z} и T.

ТЕОРЕМЫ О ГОМОМОРФИЗМАХ

Теорема 6 (о гомоморфизме для групп). Пусть $f: G \to G' -$ сюръективный гомоморфизм (т. е. гомоморфизм из группы G на группу G'). Тогда существует изоморфизм

$$\psi \colon G / \ker f \to G'$$

такой, что $f = \psi \pi$, где $\pi : G \to G / \ker f - \kappa$ анонический гомоморфизм из группы G на фактор-группу $G / \ker f$ по нормальной подгруппе $\ker f$ (ядро гомоморфизма f).

Доказательство. Для смежного класса $x \ker f, x \in G$, положим $\psi(x \ker f) = f(x)$.

Корректность отображения $\psi \colon G / \ker f \to G'$. Если для $y \in G$ имеем $x \ker f = y \ker f$, то $x^{-1}y \in \ker f$, поэтому $e' = f(x^{-1}y) = f(x)^{-1}f(y)$, следовательно, f(x) = f(y).

Покажем, что ψ — биекция.

- а) Если для $x,y\in G$ имеем $f(x)=\psi(x\ker f)=\psi(y\ker f)=f(y),$ то $f(x^{-1}y)=f(x)^{-1}f(y)=e',$ т. е. $x^{-1}y\in\ker f.$ Поэтому $x\ker f=y\ker f,$ т. е. ψ —инъекция.
- б) Если $g' \in G'$, то g' = f(x) для некоторого $x \in G$ (поскольку f сюръекция). Тогда $g' = f(x) = \psi(x \ker f)$, т. е. ψ сюръекция.

Проверим, что ψ — $\emph{гомомор} \emph{ф} \emph{изм}$ групп. Действительно, для $x,y \in G$ имеем

$$\psi(x \ker f \cdot y \ker f) = \psi(xy \ker f) = f(xy) = f(x)f(y) = \psi(x \ker f)\psi(y \ker f).$$

Итак, мы показали, что $\psi\colon G/\ker f\to G'-u$ зоморфизм. Проверим, что $f=\psi\pi$. Действительно, для $x\in G$ имеем

$$(\psi \pi)(x) = \psi(\pi(x)) = \psi(x \ker f) = f(x).$$