Problem Set 6

1. (Convergence in distribution does not imply convergence in probability). Define the following sequence of variables over the sample space generated by under a fair default coin toss, $S = \{H, T\}$:

$$X_n = \begin{cases} 1 \text{ if the coin toss is heads } s = H \\ 0 \text{ if the coin toss is tails } s = T \end{cases}$$

for all n (this means that $X_1 = X_2 = ... = X_n$). Now define the variable X such that

$$X = \left\{ \begin{array}{l} 0 \text{ if the coin toss is heads } s = H \\ 1 \text{ if the coin toss is tails } s = T \end{array} \right.$$

(a) What is the cdf of X_1 , X_2 and X_3 ? What is the cdf of X_n ?

$$F_{X_i}(x_i) = \begin{cases} 1 \text{ if } 1 \le x_i < \infty \\ \frac{1}{2} \text{ if } 0 \le x_i < 1 \\ 0 \text{ if } -\infty < x_i < 0 \end{cases}$$

(b) What is the cdf of X?

$$F_X(x) = \begin{cases} 1 \text{ if } 1 \le x < \infty \\ \frac{1}{2} \text{ if } 0 \le x < 1 \\ 0 \text{ if } -\infty < x < 0 \end{cases}$$

- (c) Does X_n converge in distribution to X? Answer: Yes. The result is trivial since $F_{X_n}(x_n) = F_X(x), \forall n$.
- (d) What is the cdf of $|X_n X|$? Answer: Let $Z = |X_n - X|$.

Note that because of the way the random variables are defined, it is never the case that $X_n = X$. Then:

$$F_Z(z) = \begin{cases} 1 \text{ if } 1 \le z < \infty \\ 0 \text{ if } -\infty < z < 1 \end{cases}$$

- (e) Using your answer to (d) find $P(|X_n X| \ge \frac{1}{2})$ Answer: $P(|X_n - X| \ge \frac{1}{2}) = P(Z \ge \frac{1}{2}) = 1$
- (f) Does X_n converge in probability to X? Answer: No, since

$$P\left(|X_n - X| \ge \frac{1}{2}\right) = P\left(Z \ge \frac{1}{2}\right) = 1, \forall n$$

and thus

$$\lim_{n \to \infty} P\left(|X_n - X| \ge \frac{1}{2}\right) = \lim_{n \to \infty} P\left(Z \ge \frac{1}{2}\right) = 1 > 0$$

- 2. Assume $X_1,...,X_{20}$ is a random sample where $X_i \sim \text{exponential}(2)$ $(f_X(x) = \lambda e^{-\lambda x})$. The first 4 uncentered moments of the exponential(2) distribution are given by: $\mathbb{E}(X_i) = \frac{1}{2}$, $\mathbb{E}(X_i^2) = \frac{1}{2}$, $\mathbb{E}(X_i^3) = \frac{3}{4}$ and $\mathbb{E}(X_i^4) = \frac{3}{2}$. Let $T = \frac{1}{n} \sum_{i=1}^n X_i^2$
 - (a) What is the mean of T?

Answer: $\mathbb{E}(T) = \frac{1}{n} \cdot n \cdot \mathbb{E}(X_i^2) = \frac{1}{2}$

(b) What is the variance of T?

Answer: $Var(T) = \frac{1}{n^2} n Var(X_i^2) = \frac{1}{n} \left(\mathbb{E}(X_i^4) - \left(\mathbb{E}(X_i^2) \right)^2 \right) = \frac{1}{n} \cdot (\frac{3}{2} - \frac{1}{4}) = \frac{5}{4n}$

(c) What is the asymptotic distribution of T?

Answer: Observe that T is an average of iid random variables, and hence we can apply the CLT. Thus we know $\sqrt{n}(T-\mu_{X^2}) \sim_A n(0,\sigma_{X^2}^2)$, and where here $\mu_{X^2} = \mathbb{E}(X_i^2)$ and $\sigma_{X^2}^2 = Var(X_i^2)$. We found these values in parts (a) and (b):

$$\sqrt{n}(T-\frac{1}{2}) \sim_A n(0,\frac{5}{4})$$

This can also be expressed:

$$\frac{2\sqrt{n}}{\sqrt{5}}(T-\frac{1}{2})\sim_A n(0,1)$$

(d) What is the approximate probability that $T \leq 1$?

$$P\left(T \leq 1\right) = P\left(\frac{2\sqrt{n}}{\sqrt{5}}(T - \frac{1}{2}) \leq \frac{2\sqrt{n}}{\sqrt{5}}(1 - \frac{1}{2})\right) \approx \Phi\left(\frac{2\sqrt{n}}{\sqrt{5}}(1 - \frac{1}{2})\right) = \Phi(2) \approx 0.98$$

or so, where $\Phi(z)$ is the cdf for the standard normal distribution.

- 3. Let \bar{X} denote the sample mean from a random sample of size n, from a population with exponential(λ) distribution. For convenience, let $\theta = \mathbb{E}(X) = \frac{1}{\lambda}$. So $\mathbb{E}(\bar{X}) = \theta$, $\operatorname{Var}(\bar{X}) = \theta^2/n$, $\bar{X} \to_p \theta$ and $\frac{\sqrt{n}}{\theta}(\bar{X} \theta) \to_d \operatorname{n}(0, 1)$. Consider the sample statistic $U = \frac{1}{\bar{X}}$ (n.b. this is $1/\bar{X}$).
 - (a) Use Slutsky theorem to show that $U \to_p \lambda$. Answer: Since $\bar{X} \to_p \theta$ and $\frac{1}{\bar{X}}$ (n.b. this is $1/\bar{X}$) is a continuous function of \bar{X} the result follows directly from Thm. 5.5.4. (this is sometimes called the continuous mapping theorem).
 - (b) Use the Delta method to find the limiting distribution of $\sqrt{n}(U-\lambda)$. Answer: Because $U=\frac{1}{\bar{X}}$ (n.b. this is $1/\bar{X}$), $\lambda=\frac{1}{\theta}$, and $\sqrt{n}(\bar{X}-\theta)\to_d n(0,\theta^2)$, we have $\sqrt{n}(U-\lambda)\to_d n(0,\theta^2g'(\theta)^2)$. Note that $g(\theta)=\frac{1}{\theta}$, so $g'(\theta)=-\frac{1}{\theta^2}$. Thus:

$$\sqrt{n}(U-\lambda) \to_d n(0,\lambda^2)$$

(c) Use your result to approximate $P(U \le 5/2)$ with a random sample of size 16, from an exponential population with $\lambda = 2$.

Answer: Because of (c), we know U is approximately distributed normal with mean and variance both equalling two. So,

$$P(U \le 5/2) = P(\frac{\sqrt{16}(U-2)}{2} \le \frac{\sqrt{16}(5/2-2)}{2}) = \Phi(1) = 0.84$$

(d) Use the following result to find the exact value for $P(U \le 5/2)$ with a random sample of size 16, from an exponential population with $\lambda = 2$. Let $X_1, X_2, ..., X_n$ be a random sample from an exponential(2) distribution. Define $\bar{X} = \frac{1}{n} \sum_i X_i$, then:

$$2n\lambda \bar{X} \sim \chi^2_{2n}$$

Answer: Define $W=2n\lambda\bar{X}$, so that $U=\frac{2n\lambda}{W}$. Then $W=\frac{2n\lambda}{U}$, and finally with evaluating at u=5/2 (because the map is monotonic decreasing):

$$F_U(u) = 1 - F_W\left(\frac{2n\lambda}{u}\right) = 0.78$$

Notice that this value is fairly different from the approximation. The sample size is relatively small.

4. In a population, the random variable X= length of unemployment (in months) has the exponential distribution with parameter $\lambda=2$. Consider a random sample of unemployment lengths where the sample size is n=21. Let T be the proportion of the sampled persons who have been unemployed between 0.4158 and 1 months.

Approximate the probability that T lies between 0.4 and 0.5. Hint: define the random variable

$$U_i = \begin{cases} 1 \text{ if } 0.4158 \le X_i \le 1\\ 0 \text{ otherwise} \end{cases}$$

Answer: Let's define the pdf of U_i :

$$f_{U_i}(u) = \begin{cases} \exp(-2(0.4158)) - \exp(-2) & \text{if } u = 1\\ 1 - \exp(-2(0.4158)) - \exp(-2) & \text{if } u = 0 \end{cases}$$

$$f_{U_i}(u) = \begin{cases} 0.3 \text{ if } u = 1\\ 0.7 \text{ if } u = 0 \end{cases}$$

First, we know that $T=\frac{1}{n}\sum_i U_i$, and because T is the average of Bernoulli r.v.s, it is Binomial, and has $\mathbb{E}(T)=0.3$ and $\mathrm{Var}(T)=0.21$. Applying the CLT, we can assert: $\frac{\sqrt{21}}{\sqrt{0.21}}(T-0.3)=10(T-0.3)\to_d \mathrm{n}(0,1)$. Now, we apply the assymptotic results and transform to standard normal: P(0.4 < T < 0.5)=P(1<10(T-0.3)<2) so that $\approx P(1< Z<2)=0.136$ is the approximation.

In addition, solve the following problems from Casella and Berger: 5.21 and 5.31.

5.21 (see text for Q): Answer: (from solutions): Let m denote the median. For the case with general n, we are interested in:

$$P(\max(X_1, \dots, X_n) > m) = 1 - P(X_i \le m, \forall i) = 1 - [P(X_i \le m)]^n = 1 - (\frac{1}{2})^n$$

5.31 (see text for Q): We know that $\sigma_{\bar{X}}^2=9/100.$ By Chebyshev's inequaliy, we have that

$$P(|X - \mu_x| \ge k\sigma) \le 1/k^2$$

$$P(|X - \mu_x| \ge 3k/10) \le 1/k^2$$

$$P(-3k/10 < X - \mu_x < 3k/10) \ge 1 - 1/k^2$$

We need $1 - 1/k^2 \ge 0.9$ which implies $k \ge \sqrt{10} = 3.16$ and 3k/10 = 0.9487. Then,

$$P(-0.9487 < X - \mu_x < 0.9487) \ge 0.9$$

Now, $\sqrt{n}(\bar{X}-\mu) \xrightarrow[n\to\infty]{d} n(0,\sigma_x^2)$ by the Central Limit Theorem (CLT). So $\sqrt{n}\frac{(\bar{X}-\mu)}{3/10} \sim_A n(0,1)$ (here \sim_A denotes "asymptotically distributed"). So

$$P\left(-1.645 < \frac{\bar{X} - \mu}{3/10} < 1.645\right) = P(-0.4935 < \bar{X} - \mu < 0.4935) = 0.9$$

The CLT guarantees convergence in distribution of the average of an large enough i.i.d. sample. In our case, n = 100 which is large enough (in other cases it might be too low to suffice convergence to a normal distribution or the limit distribution we are working with).

Chevyshev's gives a more conservative estimate than the limits provided by the CLT. In other words, they are too wide relative to the asymptotic distribution, which is normal.