CASOS DE USO Y SISTEMA DEL PROYECTO

DAVID ALEJANDRO ANZOLA CAICEDO FRANKLIN VILLALBA DAVID SANTIAGO BELTRAN PEDRAZA

"SISTEMA DE MONITOREO DE CALIDAD DEL AIRE EN INVERNADEROS" SERVICIO NACIONAL DE APRENDIZAJE "S.E.N.A." ANÀLISIS Y DESARROLLO DE SOFTWARE

FICHA - 3203084

PROFESOR – IVAN MALAVER

MOSQUERA, CUNDINAMARCA, OCTUBRE 2025

TABLA DE CONTENIDO

Proyecto No.9	4
Introducción	4
Análisis de Requerimientos del Sistema	4
Diagramas del Arquitectura de Software (UML)	5
Diagrama de Clases:	5
Figura 1	5
Diagrama de Clases	5
Diagrama de Componentes:	5
Figura 2	5
Diagrama de Componentes	5
Diagrama de Secuencia	7
Figura 3	7
Diagrama de Secuencia	7
Diagrama de Despliegue	8
Figura 4	8
Diagrama de Despliegue	8
Modelo de Datos	10
Diagrama de Lógico-Relacional (3FN)	10
Figura 5	10
Diagrama 3FN	10
Casos de Uso	11
Actores del Sistema	11
Diagramas Generales de Casos de Uso	12
Figura 6	12

	Casos de Uso Cliente	12
Figura	7	13
	Diagrama de Flujo Sensores Iot	13
Figura	8	14
	Casos de Uso Administración del Sistema	14
Prototipado de	Interfaz de Usuario (UI)	14
Mapa de Nave	gación (Sitemap)	14
Figura	9	14
	Pantalla Principal	14
Prototipos de 3	3 pantallas principales	15
Figura	10	15
	Primera Pantalla	15
Figura	11	16
	Segunda Pantalla	16
Figura	12	16
	Tercera Pantalla	16

Proyecto No.9

Introducción

Análisis de Requerimientos del Sistema

El análisis de requerimientos identifica las necesidades principales que el sistema debe cumplir, tanto a nivel funcional como técnico.

Requerimientos funcionales: el sistema debe capturar y procesar datos en tiempo real (ejemplo: temperatura, humedad, niveles de CO₂).

Requerimientos no funcionales: debe garantizar bajo consumo energético, estabilidad, seguridad de la información y escalabilidad.

Usuarios objetivo: profesionales, técnicos y personal operativo que requieren información precisa y confiable para la toma de decisiones.

Sensores y dispositivos: recogen datos del entorno de manera continua y precisa.

Servidor o base de datos: gestiona, organiza y almacena los registros recolectados.

Interfaz de usuario: muestra la información de forma visual y amigable, permitiendo reportes, consultas y análisis de tendencias.

Al ir avanzando en los diagramas se irá complementando la información sobre cada uno de esos requerimientos.

Diagramas del Arquitectura de Software (UML)

Diagrama de Clases:

Figura 1

Diagrama de Clases

Diagrama de Componentes:

Figura 2

Diagrama de Componentes

Frontend: Básicamente el frontend es lo que le mostrará al usuario o cliente los datos, reportes o acciones que necesite hacer en la plataforma, para esto se usaría un framework cómo Bootstrap que nos facilitaría el diseñado CSS de la página.

Backend: El backend básicamente es la parte lógica y funcional desde la cual básicamente hará que funcione correctamente la página y se gestionen bien los datos y se manipule bien la información de las bases de datos, y que a través del frontend se muestren esos datos. Para esto usaremos un lenguaje de programación sencillo y fácil de usar como lo es Python y un framework como Djando el cual facilita el desarrollo de las aplicaciones web.

Bases de Datos: Aquí básicamente se guardarán todos los datos tanto de usuarios, administradores, sensores IoT, invernaderos, entre más datos. Esto permitiéndonos acceder a la información que se necesita de manera rápida y almacenándola para organizar toda esa información.

En este caso se usaría MySQL que nos permite crear, almacenar, organizar, gestionar o eliminar las bases de datos.

Sensores IoT: Estos son necesarios ya que con estos sensores se determinará las variables en la calidad del aire en los invernaderos que pide le cliente y se guardaran en la base de datos, para que después se envíen los datos al backend en el momento que el usuario necesite ver variables en la calidad del aire y se generen los reportes en la plataforma.

Servicio de Notificaciones: En esta se utilizará una API externa que el backend utilizará para generar las alertas o notificaciones sobre reportes en la calidad del aire en los invernaderos y avisar al usuario de manera efectiva.

Diagrama de Secuencia

Figura 3

Diagrama de Secuencia

En el diagrama de secuencia se muestra el flujo de comunicación entre los diferentes componentes y el usuario:

- 1. El usuario accede a la plataforma desde su dispositivo mediante un navegador web.
- 2. El frontend recibe la solicitud y la transmite al backend usando protocolos HTTP/HTTPS.
- 3. El backend procesa la solicitud y consulta la información en la base de datos.
- Los sensores IoT alimentan continuamente la base de datos con nuevos registros de medición.
- El sistema puede enviar notificaciones automáticas al usuario si se cumplen determinadas condiciones (ejemplo: exceso de CO₂)

Finalmente, el frontend muestra al usuario la respuesta en forma de reportes o gráficos.

Diagrama de Despliegue

Figura 4Diagrama de Despliegue

El diagrama de despliegue muestra la infraestructura física y lógica donde se ejecuta el sistema, detallando los nodos de hardware y software que lo soportan. Su objetivo es representar cómo los componentes descritos en el diagrama anterior se distribuyen en servidores, dispositivos y redes.

En este caso, el sistema está desplegado de la siguiente manera:

Servidor de Aplicaciones:

Aloja el backend desarrollado en Django.

Expone servicios mediante protocolos HTTP/HTTPS.

Contiene el motor de notificaciones para alertas al usuario.

Servidor de Base de Datos: Implementado en MySQL.

Resguarda la información histórica y en tiempo real que envían los sensores IoT.

Puede estar alojado en la misma máquina que el backend o en un servidor dedicado, dependiendo de la escalabilidad requerida.

Sensores IoT (nodos de captura):

Dispositivos físicos distribuidos en el invernadero.

Se comunican con el backend a través de la red local o internet, enviando datos de temperatura, humedad y CO₂.

Cliente/Usuario Final:

Accede al sistema mediante un navegador web desde cualquier dispositivo (PC, tablet o smartphone).

Recibe reportes, alertas y notificaciones.

Modelo de Datos

Diagrama de Lógico-Relacional (3FN)

Figura 5

Diagrama 3FN

Detalle de entidades y atributos

Sensor: identifica los dispositivos IoT instalados en cada invernadero, indicando tipo y modelo.

Invernadero: almacena información del espacio físico a monitorear (nombre, ubicación, tamaño y tipo de cultivo).

Lectura: registra los valores obtenidos por los sensores con fecha, hora y unidad de medida.

11

Usuario: gestiona la información de los clientes o administradores que acceden

al sistema.

Alerta: permite notificar eventos críticos (ej. valores fuera de rango), vinculando

Casos de Uso

Los casos de uso describen cómo los distintos actores interactúan con el

sistema para cumplir objetivos específicos.

A continuación, se presentan los principales casos de uso del sistema de

monitoreo de invernaderos:

Actores del Sistema

Usuario: consulta información de lecturas y alertas.

Sistema IoT (sensores): envía datos al sistema central.

Administrador: gestiona usuarios, sensores e invernaderos.

Diagramas Generales de Casos de Uso

Figura 6Casos de Uso Cliente

Figura 7Diagrama de Flujo Sensores Iot

Figura 8Casos de Uso Administración del Sistema

Prototipado de Interfaz de Usuario (UI)

Mapa de Navegación (Sitemap)

Figura 9

Pantalla Principal

Prototipos de 3 pantallas principales

Figura 10

Primera Pantalla

Figura 11Segunda Pantalla

Figura 12
Tercera Pantalla

