Following by Cao, 2016

Цель работы:

- 1. Реализовать алгоритмы спектральной и колориметрической реконструкции на основе применения взвешенных версий РСА, описанных в Cao et al.(2016).
- 2. Сравнить результаты реконструкций спектров на основании среднего RMSE. В случае колориметрической репродукции на основании двух метрик цветового различия СІЕ L*a*b* 1976 и СІЕDE 2000.

Теоретическое описание эксперимента

Пусть R - матрица $m \times n$, где m - число спектров поверхностного отражения в используемом наборе данных, а n - число длин волн, использующихся для дискретизации (в нашем случае - 61). Взвешенная матрица данных может быть определена как:

$$R_w = RW$$
,

где W - диагональная n imes n матрица, на диагонали которой расположены значения весовой функции.

Применяя сингулярное разложение ко взевешнной матрице данных, получим:

$$R_w = U_w \Sigma_w V_w^T$$
,

где индекс w обозначает применение разложения ко взвешенным, а не оригинальным данным.

Реконструкцию спектральных данных при использовании весовой функции и d главных компонент можно выразить как:

$$\hat{R} = (\tilde{V}_w^T C_w + \bar{R}_w) W^{-1},$$

где $ilde{V}_w$ - первые d столбцов унитарной матрицы V из сингулярного разложения (базисные векторы), C_w - столбец коэффициентов, $ar{R}_w$ - среднее значение спектра во взвешенном наборе данных.

В работе Cao et al.(2016) были описаны следующие варианты весовых функций:

$$\begin{split} WF_1 &= (\bar{x}(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda)) \, / \, max(\bar{x}(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda)) \\ WF_2 &= (\bar{x}(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda) + 1) \, / \, max(\bar{x}(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda) + 1) \\ WF_3 &= (\sqrt{\bar{x}(\lambda)} + \sqrt{\bar{y}(\lambda)} + \sqrt{\bar{z}(\lambda)}) \, / \, max(\sqrt{\bar{x}(\lambda)} + \sqrt{\bar{y}(\lambda)} + \sqrt{\bar{z}(\lambda)}) \\ WF_4 &= (\sqrt{\bar{x}(\lambda)} + \sqrt{\bar{y}(\lambda)} + \sqrt{\bar{z}(\lambda)}) \times D_{65} \, / \, max((\sqrt{\bar{x}(\lambda)} + \sqrt{\bar{y}(\lambda)} + \sqrt{\bar{z}(\lambda)}) \times D_{65}), \end{split}$$

где $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$ - функции цветового захвата стандартного наблюдателя CIE 1931, D_{65} - относительное спектральное распределение мощности стандратного осветителя CIE D65.

Обзор данных

В качестве обучающих данных в работе используются 1600 спектров поверхностного отражения Munsell colors glossy, в качестве тестовых данных - небольшой набор из датасета NCS, включающий в себя 183 спектра природных объектов (листья, цветы и проч.). Также, в последней части используются даные 337 спектров окрасок листьев берёз, 370 спектров хвои сосен и 349 спектров, соответсвюущих окраскам хвои елей.

Два основных осветителя, используемые для колориметрической реконструкции, - стандартные осветители СІЕ D65 и A (соответственно - нормальное дневное освещение и нормальное комнатное освещение вольфрамовой нитью).

В качестве функций чувствительности используются функции цветового захвата для стандаратного наблюдателя CIE 1931.

Все спектральные данные лежат в диапазоне длин волн от 400 нм до 700 нм с интервалом в 5 нм. Заметим, что в оригинальной работе Сао использовался несколько иной набор спектральных данных, и дискретизация составляла 10 нм.

Munsell Glossy Reflectances NCS Reflectances 1.0 Fraction of reflected illumination 0.8 Fraction of reflected illumination 0.8 0.6 0.2 Wavelength (nm) Wavelength (nm) Forest Reflectances NCS & Forest Reflectances 1.0 1.0 Fraction of reflected illumination 0.8 Fraction of reflected illumination 0.8 0.6 0.6 0.2 0.2 0.0 0.0 0 550 (Wavelength (nm) 450 550 400 450 650 700 Wavelength (nm)

Рис. 0. Спектры поверхностного отражения имеющихся наборов данных

Описание эксперимента

Последовательность действий:

1. Получение базисных векторов и аппроксимация

- 1.1 Формирование матрицы \$m \times n\$ спектральных данных \$R\$, где \$m\$ число спектов, \$n\$ дискретизация. В случае взвешенных алгоритмов происх одит домножение матрицы данных слева на матрицу весов (см. теоретическое оп исание).
- 1.2. Вычисление среднего значения спектров (столбцов) для каждой взвеше нной матрицы данных и центрирование данных.
- 1.3. Обучение PCA на наборе Munsell Glossy (Для взвешенных версий к с оответствующим взвешенным наборам) при фиксированном числе используемых гла вных компонент.
- 1.4. Применение обученного алгоритма для всех соответствующих наборов с пектров, прибавление среднего. В взвешенных версиях домножение справа на обратную матрицу весов (са. теоретическое описание).
- 2. Расчёт ошибки спектральной реконсвтркции. Рассчитывается RMSE для каждого спектра из тестового набора с соответсвующим спектром из набора аппроксимац ий. Затем значения ошибок для всех спектров усредняются. Построение графико в.
- 3. Расчёт ошибки колориметрической реконструкции.
- 3.1. Расчёт значений ХҮZ для всех оригинальных и аппроксимированных спе ктров в соответствии с функциями чувствительности стандартного наблюдателя СІЕ 1931. В качесвте источника освещения рассматриваются два варианта ст андартные осветители СІЕ D65 и A.
- 3.2. Конвертация значений XYZ в значения CIE Lab с помощью реализованно го метода convert_color python-библиотеки colormath. (Согласно документации, конвертация производится с явным заданием нужного истоника освещения, следо вательно в двух вариантах устанавливаются значения illuminant='d65' или 'a' соответственно, как при инициализации переменных XYZ, так и при их переводе в CIE Lab (установка target_illuminant)).
- 3.3. Расчёт колориметрических ошибок CIE 1976 и CIEDE 2000 для каждой п ары оригинальные координаты CIE Lab аппроксмированные значения CIE Lab ме тодами библиотеки colormath. Усреднение по всем вектор-стимулам аналогично пункту 2. Построение графиков.

Полную версию реализованных алгоритмов и визуализации результатов можно найти здесь (https://github.com/Slava1688/iitp-color/blob/main/Autumn/Following%20by%20Cao.ipynb).

Рис. 1. Кривые весовых функций

Рис. 2. Относительное спектральное распределение мощности стандартных осветителей CIE D65 и CIE A

Рис. 3. Обзор сингулярных значений матрицы данных спектров Munsell Glossy после применения различных видов РСА

Можно видеть, что характер спада сингулярных значений от первого до четвертого сохраняется постоянным, независимо от использования весовой функции. Единственно, что меняется - величина самих значений, причём для оригинального РСА эти значения наибольшие.

Спектральная реконструкция

Рассмотрим несколько примеров спектральной реконструкции.

Standard PCA, RMSE: 0.0033 WF1 PCA, RMSE: 0.00665 WF2 PCA, RMSE: 0.00438 WF3 PCA, RMSE: 0.00584 WF4 PCA, RMSE: 0.00642

Reflectance spectrum from munsell set №1500

Standard PCA, RMSE: 0.0694 WF1 PCA, RMSE: 0.07383 WF2 PCA, RMSE: 0.07217 WF3 PCA, RMSE: 0.07152 WF4 PCA, RMSE: 0.07105

Reflectance spectrum from natural set №0

Усреднение по набору спектров используется для центрирования матрицы данных перед использованием РСА. В данном случае и ниже рассматриваются две ситуации, когда аппроксимация спектров из тестового набора происходит с помощью центрирования по собственному, тестовому среднему спектру, и когда используется предрассчитанный на обучающей выборке средний спектр.

Ниже представлена аппроксимация спектра из малого набора природных объектов с использованием предрассчитанного среднего спектра из набора Munsell Glossy.

Standard PCA, RMSE: 0.04255 WF1 PCA, RMSE: 0.14927 WF2 PCA, RMSE: 0.10187 WF3 PCA, RMSE: 0.07785 WF4 PCA, RMSE: 0.11412

Reflectance spectrum from natural set №0

Исследование ошибок спектральной реконструкции

Таблица 1. Ошибки спектральной реконструкции спектров при разном числе главных компонент, полученных из набора Munsell Glossy

In [45]:]: 1 all_errors											
Out[45]:					RMS	E Munsell				R	MSE NCS	
		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4	PCA
	3	0.021134	0.026510	0.022945	0.024092	0.024941	0.072012	0.076329	0.073412	0.074761	0.075345	0.044189
	4	0.014436	0.018955	0.015725	0.016939	0.017557	0.070087	0.074778	0.071383	0.072991	0.073501	0.040879
	5	0.010574	0.015060	0.011600	0.013047	0.013577	0.068179	0.073226	0.069448	0.071198	0.071776	0.035293
	6	0.008268	0.012668	0.008966	0.010542	0.012275	0.066694	0.071490	0.067543	0.069102	0.070904	0.032282
	7	0.006289	0.011220	0.007254	0.009135	0.009606	0.064806	0.070522	0.066287	0.068140	0.068655	0.028277
	8	0.005022	0.009916	0.005636	0.007457	0.008237	0.064276	0.069756	0.065419	0.066747	0.067534	0.026987
	4 ▮											•

Рис. 4. Зависимость величины ошибки спектральной реконструкции от числа главных компонент

Хорошо видно, что стандартный РСА обладет самой высокой точностью спектрального восстановления. Как и следовало ожидать, реконструкция природных спектров на основе главных компонент, полученных из набора Munsell, показывает более худшие результаты.

Что касается аппроксимации природных спектров с использованием предрассчитанного среднего по набору Munsell, то здесь стандартный РСА демонстрирует более лучшие результаты, чем с использованием среднего по самому набору природных спектров, в то время как все остальные методы показыают неадекватные результаты.

Отметим, что первые два графика практически полностью совпадают с аналогичными результатами Сао. Это позволяет удостовериться в непротиворечивости используемых здесь методов и методов, предложенных в статье.

Исследование ошибок колориметрической реконструкции

Рассмотрим ошибку колориметрической реконструкции вектор-стимулов с точки зрения формулы цветовой разности CIE 1976.

Таблица 2. Ошибки ΔΕ CIE 1976 колориметрической реконструкции с использованием спектров из набора Munsell Glossy и двух стандартных источников освещения при различном числе главных компонент

In [65]:	1	munsel	l_delta_E	Ē							
Out[65]:					Mean ΔE C	IE 76 (D65)				Mean ΔE	CIE 76 (A)
		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4
	3	48.776540	37.623003	39.065721	30.915317	21.752613	31.349908	20.379730	17.357226	9.495627	10.878540
	4	21.144426	13.810725	6.691742	4.066266	3.106071	24.155650	17.458273	11.560459	7.689243	5.594527
	5	11.276947	8.909948	6.145395	3.879308	2.912693	11.357834	9.787405	6.280684	3.839130	3.647724
	6	10.775981	7.011560	5.341936	3.788762	1.313345	9.273009	5.992276	4.704038	2.939120	2.412941
	7	3.337176	4.038655	1.856463	0.606806	1.274771	2.513351	5.482523	2.438602	0.734632	1.539444
	8	2.585254	3.204024	0.698303	0.522604	0.879999	2.091139	4.167071	1.182442	0.650057	1.117401

Таблица 3. Ошибки ΔE CIE 1976 колориметрической реконструкции с использованием спектров из набора NCS и двух стандартных источников освещения при различном числе главных компонент

In [66]:	1	NCS_del	ta_E							
Out[66]:					Mean ΔE	CIE 76 (D65)				Mean Δ
		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3
	3	205.743696	201.739025	199.104657	199.474175	198.261287	226.210838	217.958818	216.324507	217.047316
	4	202.337215	197.621455	196.003388	196.698163	196.626465	223.008540	218.236471	215.809042	217.045342
	5	200.691628	196.961088	196.163667	196.799388	196.692906	218.310663	218.117596	216.051628	217.277949
	6	200.628923	195.955384	196.536968	196.504449	197.067539	219.218677	217.364060	215.930236	216.700933
	7	198.304238	197.535586	196.755398	197.205274	197.058144	217.989427	217.855084	215.956707	216.953657
	8	198.029164	198.101379	197.189369	197.351627	197.424671	217.633631	218.531336	216.566987	216.947151
	∢ 📗									>

Таблица 4. Ошибки ΔΕ CIE 1976 колориметрической реконструкции с использованием спектров из набора NCS и двух стандартных источников освещения при различном числе главных компонент, полученных путём центрирования данных по набору спектров Munsell Glossy

67]:	1	NCS_pre	calc_delt	a_E							
					Mean ΔE	CIE 76 (D65)				Mean ∆	Æ
_		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	
_	3	115.994692	207.767380	259.235376	214.588592	305.010256	97.053565	202.431612	245.640463	202.503454	;
	4	89.334382	248.246489	162.077248	145.739838	280.692646	87.450769	219.484204	209.978240	197.894399	;
	5	63.069168	260.755636	164.221803	149.257204	278.287048	59.346072	254.109027	210.255517	205.538013	;
	6	56.204556	259.147259	143.902756	154.362364	274.468452	40.940234	282.460190	176.602585	218.248316	;
	7	13.500177	286.031437	155.489691	147.987252	276.174135	13.158314	278.152530	174.701404	214.498044	;
	8	10.612311	307.455674	151.958885	145.593746	278.448161	11.333710	308.341824	164.937715	217.905555	;
	4									1	

Теперь рассмотрим ошибку колориметрической реконструкции с точки зрения метрики CIEDE 2000.

Таблица 5. Ошибки ΔE CIEDE 2000 колориметрической реконструкции с использованием спектров из набора Munsell Glossy и двух стандартных источников освещения при различном числе главных компонент

In [68]:	1	munse	ll_delta	_E_2000							
Out[68]:				Me	an ΔE CIE 2	2000 (D65)			ľ	Mean ΔE CI	E 2000 (A)
		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4
	3	7.925807	6.218281	6.776830	5.214478	3.555133	4.959469	2.645616	2.808463	1.264655	1.684607
	4	2.912662	1.730049	0.901608	0.493561	0.427609	3.395873	2.149358	1.507626	0.910472	0.748922
	5	1.630954	1.331513	0.858370	0.494229	0.412665	1.620014	1.503465	0.983940	0.509039	0.537501
	6	1.571617	1.122874	0.687707	0.478940	0.184952	1.299208	1.110904	0.678121	0.386963	0.353045
	7	0.445351	0.681053	0.348010	0.106393	0.180067	0.392006	0.994082	0.475401	0.135023	0.264298
	8	0.348312	0.608873	0.096395	0.094067	0.150449	0.322860	0.828396	0.172619	0.109978	0.207700

Таблица 6. Ошибки ΔE CIEDE 2000 колориметрической реконструкции с использованием спектров из набора NCS и двух стандартных источников освещения при различном числе главных компонент

In [69]:	1	NCS_de	lta_E_200	90							
Out[69]:				N	/lean ΔE CIE	2000 (D65)				Mean ΔE C	IE 2000 (A)
		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4
	3	27.924891	28.202428	27.446391	27.875106	27.700026	30.993940	31.208850	30.388122	30.992131	30.685319
	4	27.603466	27.338412	26.857130	27.189690	27.212340	30.711803	31.118030	30.091612	30.946557	31.045688
	5	28.046494	27.122355	26.972928	27.215333	27.196286	30.933081	31.183526	30.399951	31.062225	31.119606
	6	28.275266	27.145280	27.085013	27.192632	27.276211	31.696988	31.326483	30.519399	30.991145	31.256247
	7	27.841940	27.419717	27.084161	27.288121	27.275860	31.465473	31.464560	30.620989	31.144631	31.175846
	8	27.584824	27.492190	27.311347	27.324396	27.339970	31.263087	31.543101	30.997534	31.124301	31.183728
	◀ 📗										•

Таблица 7. Ошибки ΔE CIEDE 2000 колориметрической реконструкции с использованием спектров из набора NCS и двух стандартных источников освещения при различном числе главных компонент, полученных путём центрирования данных по набору спектров Munsell Glossy

Out[70]:

			N	lean ΔE CIE	2000 (D65)				Mean ΔE C	IE 2000 (A)
	PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4
3	9.063578	17.463604	29.251831	26.731469	32.212348	9.512466	15.850357	27.506772	24.491189	31.348114
4	8.708562	21.588995	13.223255	14.000492	26.106014	9.534631	16.475202	21.862345	23.034062	32.840727
5	5.748382	20.970423	13.016822	14.318557	26.286279	5.244597	18.136707	19.542958	22.332234	33.025640
6	5.734914	18.589660	11.464475	15.253097	25.286897	4.773428	23.021806	17.302270	24.729998	32.119576
7	2.176629	23.356098	13.222272	12.758238	25.546187	2.112674	21.246901	15.342296	22.886126	34.165870
8	1.677332	24.280456	13.262340	12.524340	25.372259	1.699141	21.991334	14.374947	23.124608	34.191014

Рис. 5. Зависимость ошибок CIE 1976 колориметрической реконструкции от числа главных компонент

Рис. 6. Зависимость ошибок CIEDE 2000 колориметрической реконструкции от числа главных компонент

Результаты колориметрической реконструкции для природных спектров не подтверждают результатов статьи. Только для спектров из набора Munsell Glossy можно заметить схожую зависимость с той, что описана в статье, однако сами величины ошибок в данном эксперименте на порядок выше для CIE 1976 и примерно в дава раза больше для CIEDE 2000.

Так как тестовый набор данных в данном эксперименте достаточно однообразен и мал, попробуем рассмотреть случай спектральной и колориметрической реконструкции для большего корпуса спектров.

Попробуем другие функции для конвертации и расчёта цветовой разности

Таблица 8. Ошибки ΔE CIEDE 2000 колориметрической реконструкции при различном числе главных компонент при стандартном освещении D65 (другой численный эксперимент)

	Munsell ΔE CIE 2000 (D65)					NCS AE CI	E 2000 (D65)				NCS prec	alc ∆E CIE 2	000 (D65)		
	PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4
3	7.938159	6.227863	6.795680	5.224254	3.562782	27.925880	28.202414	27.446321	27.875373	27.700326	9.063973	17.461399	29.246073	26.725519	32.20
4	2.915300	1.729961	0.901765	0.493570	0.427666	27.604257	27.338830	26.857732	27.190294	27.212927	8.709353	21.591725	13.222631	13.998087	26.100
5	1.632956	1.331662	0.858556	0.494242	0.412730	28.046903	27.122715	26.973529	27.215940	27.196856	5.749684	20.973342	13.016453	14.316134	26.28
6	1.573779	1.122942	0.687765	0.478940	0.184968	28.267206	27.145725	27.085586	27.193259	27.276741	5.736042	18.591250	11.465760	15.250405	25.282
7	0.445390	0.681172	0.348047	0.106397	0.180081	27.842597	27.420155	27.084548	27.288640	27.276398	2.176836	23.358947	13.224817	12.756246	25.54
8	0.348389	0.608980	0.096396	0.094066	0.150456	27.585449	27.492595	27.311935	27.324929	27.340522	1.677476	24.283214	13.264946	12.522503	25.36
4															•

Рис. 7. Зависимость ошибок CIEDE 2000 колориметрической реконструкции от числа главных компонент, другой численный эксперимент

Попытка улучшить результаты восстановления тестовых спектров путём увеличения объёма данных

Тестовый набор 183 спектров NCS был дополнен 337 спектрами окрасок листьев берёз, 370 спектрами окрасок хвои сосен и 349 спектрами, соответсвюущих окраскам хвои елей.

Спектральная реконструкция

Таблица 9. Ошибки спектральной реконструкции расширенной базы тестовых спектров при разном числе главных компонент, полученных из набора Munsell Glossy

In [81]:	1	forest	t_errors									
Out[81]:					RMSE NC	S & forest	RM	ISE NCS &	forest (Cen	tered by Mu	ınsell Set)	
		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4	
	3	0.226635	0.227032	0.226769	0.226894	0.226947	0.015655	0.047969	0.045194	0.038639	0.064721	
	4	0.226510	0.226908	0.226626	0.226763	0.226809	0.014724	0.076775	0.057519	0.047771	0.075896	
	5	0.226362	0.226733	0.226452	0.226586	0.226628	0.013330	0.081309	0.063829	0.055928	0.088209	
	6	0.226288	0.226622	0.226342	0.226455	0.226577	0.012689	0.102664	0.077783	0.075928	0.088052	
	7	0.226168	0.226585	0.226271	0.226408	0.226445	0.011129	0.121930	0.079519	0.080948	0.124061	
	8	0.226143	0.226512	0.226227	0.226321	0.226369	0.010439	0.129726	0.082840	0.094644	0.129558	
In [82]:	1	all_e	rrors #	Ниже про	одублиро	вана та	блица 2	для удо	бства ср	авнения	•	
In [82]: Out[82]:	1	all_e	rrors #	Ниже про		вана та	блица 2	для удо	бства ср		, RMSE NCS	
	1	all_e	rrors #	Ниже про			блица 2 РСА	для удо WF1	бства ср WF2			PCA
	3	_			RMS	E Munsell				F	MSE NCS	PCA 0.044189
	3 4	PCA	WF1	WF2	RMS WF3	E Munsell WF4	PCA	WF1	WF2	F WF3	RMSE NCS WF4	
		PCA 0.021134	WF1 0.026510	WF2 0.022945	RMS WF3 0.024092	WF4 0.024941	PCA 0.072012	WF1 0.076329	WF2 0.073412	WF3 0.074761	WF4 0.075345	0.044189
	4	PCA 0.021134 0.014436	WF1 0.026510 0.018955	WF2 0.022945 0.015725	RMS WF3 0.024092 0.016939	WF4 0.024941 0.017557	PCA 0.072012 0.070087	WF1 0.076329 0.074778	WF2 0.073412 0.071383	WF3 0.074761 0.072991	WF4 0.075345 0.073501	0.044189
	4 5	PCA 0.021134 0.014436 0.010574	WF1 0.026510 0.018955 0.015060	WF2 0.022945 0.015725 0.011600	RMS WF3 0.024092 0.016939 0.013047	E Munsell WF4 0.024941 0.017557 0.013577	PCA 0.072012 0.070087 0.068179	WF1 0.076329 0.074778 0.073226	WF2 0.073412 0.071383 0.069448	WF3 0.074761 0.072991 0.071198	0.075345 0.073501 0.071776	0.044189 0.040879 0.035293

Рис. 8. Зависимость величины ошибки спектральной реконструкции от числа главных компонент для расширенного тестового набора

Как видим, расширение спектральной тестовой выборки оказало отрицательное влияние на случай, когда не используется центрирование по обучающей выборке. Учитывая малые отклонения ошибок, увеличение числа главных компонент практически не улучшает спектральную реконструкцию в этом случае.

В то же время, это позволило более чем в два раза улучшить спектральную реконструкцию при использовании стандартного РСА для случая использования центрирования по обучающей выборке. Прочие версии РСА, хоть как и ранее не улучшают реконструкцию при увеличении числа компонент и проигрывают стандартному методу, также повысили точность на порядок.

Колриметрическая реконструкиция

In [94]:	1	NCS_for	est_delta	_E							
Out[94]:					Mean ΔE	CIE 76 (D65)			Me	an Δ
		PCA	WF1	WF2	WF3	WF4	PC.	A WF	1 W	F2 V	VF3
	3	439.472620	440.937125	439.864968	440.398915	440.622127	7 441.96508	3 443.30013	31 442.2201	53 442.771	151
	4	440.541353	441.063274	440.579190	440.812179	440.874985	442.46690	8 443.15732	24 442.4770	08 442.763	144
	5	440.957389	440.952187	440.647997	440.803145	440.862796	6 442.84814	2 443.08396	60 442.6280	24 442.771	060
	6	440.899298	440.745384	440.714870	440.750095	440.879070	442.79362	5 442.81278	30 442.5849	08 442.650	567
	7	440.932807	440.977960	440.832689	440.882941	440.879163	3 442.66245	5 442.90442	29 442.6435	69 442.725	382
	8	440.973628	441.019207	440.869730	440.905549	440.931672	2 442.69104	7 442.88460	3 442.6675	19 442.722	417
	4										•
In [95]:	1	NCS_del	ta_E								
Out[95]:					Mean ΔE	CIE 76 (D65)			Me	an Δ
		PCA	WF1	WF2	WF3	WF4	PC.	A WF	1 W	F2 V	VF3
	3	205.743696	201.739025	199.104657	199.474175	198.261287	7 226.21083	8 217.95881	.8 216.3245	07 217.047	316
	4	202.337215	197.621455	196.003388	196.698163	196.626465	5 223.00854	0 218.23647	'1 215.8090	42 217.045	342
	5	200.691628	196.961088	196.163667	196.799388	196.692906	5 218.31066	3 218.11759	96 216.0516	28 217.277	949
	6	200.628923	195.955384	196.536968	196.504449	197.067539	9 219.21867	7 217.36406	30 215.9302	36 216.700	933
	7	198.304238	197.535586	196.755398	197.205274	197.058144	1 217.98942	7 217.85508	34 215.9567	07 216.953	657
	8	198.029164	198.101379	197.189369	197.351627	197.424671	L 217.63363	1 218.53133	36 216.5669	87 216.947	151
ſ											
In []:	1										
In [96]:	1	NCS_for	est_preca	lc_delta_	E						
Out[96]:					Mean ΔE C	IE 76 (D65)				Mean A	ΔΕ С
		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	
	3	79.506621	116.069142	101.329206	84.008044	153.701512	48.228564	106.631259	114.751486	99.521199	18
	4	52.160205	162.332974	88.740794	71.371732	149.998243	47.020875	121.437977	103.991455	98.858578	18
	5	52.154295	160.641699	92.593296	73.770144	149.100784	42.797689	135.750154	104.689125	103.204655	19!
	6	49.854160	151.448876	87.352485	74.375462	147.382728	37.001875	145.859181	89.924338	109.240779	19:
	7	12.205430	173.478018	94.544384	75.455669	148.505183	12.286268	146.680700	90.514141	108.063867	203
	8	8.228669	179.242831	95.560886	75.144324	149.489119	10.610328	154.901011	85.518539	109.644125	20!
	4										•

Out[100]:

			N	lean ΔE CIE	2000 (D65)	2000 (D65)				IE 2000 (A)
	PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4
3	7.687776	12.777319	16.577661	14.701460	27.251338	5.902154	12.473963	23.870205	22.707882	35.587843
4	5.786769	17.449147	9.705297	10.023602	24.658339	7.519545	13.344785	19.641188	22.120901	36.312583
5	5.067541	16.298293	9.772811	10.460875	24.780936	4.257967	15.495507	16.439783	21.466030	36.383049
6	5.140417	14.995303	9.201905	11.058010	23.911719	4.210805	20.640345	14.024504	24.220320	35.551085
7	2.625279	17.626625	10.088148	9.721450	24.155986	3.225236	18.665446	13.084882	22.460151	38.285274
8	1.940230	17.782917	10.430611	9.516520	24.021796	2.549139	19.425023	11.416195	22.779133	38.362851

In [101]:

1 NCS_precalc_delta_E_2000

Out[101]:

			N	lean ΔE CIE	2000 (D65)	000 (D65)				IE 2000 (A)
	PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4
3	9.063578	17.463604	29.251831	26.731469	32.212348	9.512466	15.850357	27.506772	24.491189	31.348114
4	8.708562	21.588995	13.223255	14.000492	26.106014	9.534631	16.475202	21.862345	23.034062	32.840727
5	5.748382	20.970423	13.016822	14.318557	26.286279	5.244597	18.136707	19.542958	22.332234	33.025640
6	5.734914	18.589660	11.464475	15.253097	25.286897	4.773428	23.021806	17.302270	24.729998	32.119576
7	2.176629	23.356098	13.222272	12.758238	25.546187	2.112674	21.246901	15.342296	22.886126	34.165870
8	1.677332	24.280456	13.262340	12.524340	25.372259	1.699141	21.991334	14.374947	23.124608	34.191014

Очевидно, попытка улучшить результаты за счёт увеличения числа тестовых данных, не принесла никаких положительных результатов в случае колориметрической реконструкции. В целом, учитывая однообразие дополнительных спектров, значительного улучшения ожидать и не приходилось. Это подтверждает идею о важности разнообразия спектров в наборах данных для полноценной реконструкции.

Вывод

В целом, большая часть результатов проведённых экспериментов не подтверждает, а местами прямо противоречит результатам Сао et al. Это может быть вызвано рядом причин, однако доказывает тот факт, что колориметрическая реконструкция сильно зависит от данных, а также их обработки и условий эксперимента. В связи с этим легко поставить под сомнение универсальность выводов в этой теме. Скорее всего, на потенциальной практике следует заранее проводить серию эксперименов с имеющимися данными, чтобы понять какой метод лучше.