Cyclic Group Exercises: Answers

- 1. (a) Generators are g^k for $1 \le k \le 4$.
 - (b) Generators are g^k for $k \in \{1, 3, 7, 9\}$.
 - (c) Generators are g^{2k-1} for $1 \le k \le 8$.
 - (d) Generators are g^k for $k \in \{1, 3, 7, 9, 11, 13, 17, 19\}$.
- 2. (a) Generators of \mathbb{Z}_5 are k for $1 \leq k \leq 4$.
 - (b) Generators of \mathbb{Z}_{10} are k for $k \in \{1, 3, 7, 9\}$.
 - (c) Generators of \mathbb{Z}_{16} are 2k-1 for $1 \leq k \leq 8$.
 - (d) Generators of \mathbb{Z}_{20} are k for $k \in \{1, 3, 7, 9, 11, 13, 17, 19\}.$
- 3. (a) U(7) is cyclic with generator 3.
 - (b) U(12) is not cyclic: every nonidentity element has order 2, but U(12) has order 8.
 - (c) U(16) is not cyclic: the nonidentity elements have orders 2 or 4, but U(16) has order 8.
 - (d) U(11) is cyclic with generator 2.
- 4. (a) $|g^2| = 10$ (b) $|g^8| = 5$ (c) $|g^5| = 4$ (d) $|g^3| = 20$
- 5. (a) Subgroups: $H_1 = \langle 1 \rangle$, $H_2 = \langle g^2 \rangle$, $H_3 = \langle g^4 \rangle$, $H_4 = G$.
 - (b) Subgroups: $H_1 = \langle 1 \rangle$, $H_2 = \langle g^2 \rangle$, $H_3 = \langle g^5 \rangle$, $H_4 = G$.
 - (c) Subgroups: $H_1 = \langle 1 \rangle$, $H_2 = \langle g^2 \rangle$, $H_3 = \langle g^3 \rangle$, $H_4 = \langle g^6 \rangle$, $H_5 = \langle g^9 \rangle$, $H_6 = G$.
 - (d) Subgroups $H_1 = \langle 1 \rangle$, $H_2 = \langle g^p \rangle$, $H_3 = \langle g^{p^2} \rangle$, $H_4 = G$.
 - (e) Subgroups $H_1 = \langle 1 \rangle$, $H_2 = \langle g^p \rangle$, $H_3 = \langle g^q \rangle$, $H_4 = G$.
 - (f) Subgroups $H_1 = \langle 1 \rangle$, $H_2 = \langle g^p \rangle$, $H_3 = \langle g^{p^2} \rangle$, $H_4 = \langle g^q \rangle$, $H_5 = \langle g^{pq} \rangle$, $H_6 = G$.
- 6. (a) $H = \langle a \rangle$
 - (b) $H = \langle a^2 \rangle$
 - (c) $H = \langle a^d \rangle$
 - (d) H = G

Below are detailed solutions to a couple of the exercises.

Exercise 6. Part (c)

Claim: If $G = \langle a \rangle$ and $x = x^m$, $y = a^k$, then the subgroup, generated by x and y, is $H = \langle x, y \rangle = \langle a^d \rangle$, where $d = \gcd(m, k)$.

Proof. If $d = \gcd(m, k)$, then there exist integers r, s such that d = rm + sk. Therefore, $a^d = a^{rm+sk} = a^{rm}a^{sk} = x^ry^s$. This proves that $a^d \in \langle x, y \rangle$, so $\langle a^d \rangle \subseteq \langle x, y \rangle$. On the other hand, $d \mid m$, so $m = \alpha d$ and $x = a^m = a^{\alpha d} = (a^d)^{\alpha}$, so $x \in \langle a^d \rangle$. Similarly, $d \mid k$, so $k = \beta d$ and $y = a^k = a^{\beta d} = (a^d)^{\beta}$, so $y \in \langle a^d \rangle$. Therefore, $\langle x, y \rangle \subseteq \langle a^d \rangle$.