Simple model for HI-WCPO shared stock

John Sibert, Retirement-failure Consulting

sibert@hawaii.edu

Simple model

- Two zones: Here (1) and There (2).
- Logistic population dynamics Here; unknown population dynamics There.
- Fishing occurs Here
- Emigration from Here to There (T_{12}) and immigration from There to Here (T_{21}) .
- Immigrants subject to logistic population constraints.
- Track origins of fish residing Here.

Model Variables

State Variables

 N_{11} Fish originating Here and residing Here.

 N_{21} Fish originating There and residing Here.

P Proportion local fish Here; ~ 0.9 , Wells et al.

Parameters

K Equilibrium population size ("carrying capacity") – unknown assume 1.0

r Instantaneous rate of change – unknown, assume 0.5 yr^{-1}

F Fishing mortality – unknown, assume F_{msy}

 T_{12} Emigration rate from Here to There – unknown ~ 0.024, Adam et al.

 T_{21} Immigration rate from There to Here – unknown (stochastic time series?)

Model Equations

$$\frac{d}{dt}(N_{11} + N_{21}) = (N_{11} + N_{21}) \left[r \left(1 - \frac{N_{11} + N_{21}}{K} \right) - F - T_{12} \right] + T_{21}$$

$$= \frac{dN_{11}}{dt} + \frac{dN_{21}}{dt}$$
(1)

$$\frac{dN_{11}}{dt} = N_{11} \left[r \left(1 - \frac{N_{11}}{K} \right) - F - T_{12} \right] - \frac{r}{K} T_{12} N_{11} N_{21} \tag{2}$$

$$\frac{dN_{21}}{dt} = N_{21} \left[r \left(1 - \frac{N_{21}}{K} \right) - F - T_{12} \right] - \frac{r}{K} T_{12} N_{11} N_{21} + T_{21} \tag{3}$$

$$C = F \cdot (N_{11} + N_{21}) \tag{4}$$

$$P = \frac{N_{11}}{N_{11} + N_{21}} \tag{5}$$

No Transfer

Time
$$r = 0.5$$
, $K = 1$, $dt = 0.5$, $(ss = 2)$

Emigration

Decrease total stock and catch; proportion local unchanged.

Immigration

Increase total stock and catch; reduce proportion local.

Emigration, immigration and variability?

Correlated log-normal random errors in N_{11} and N_{21}

Next steps?

Is there a fishery management question here?

Implement state space model

- Complete simulator (state equation) to include autocorrelated process error.
- Find and explore some data.
- Write observation equation.
- Test the model on simulated "data".
- Estimate some parameters.

Zzzzzz ...

