Introduction to Quantum Information Processing Assignment 3 Solutions

1. **3 marks** For any subspace S of the vector space $\{0,1\}^n$ (over \mathbb{Z}_2) define $S^{\perp} = \{\mathbf{t} \in \{0,1\}^n \mid \mathbf{s} \cdot \mathbf{t} = 0 \text{ for all } \mathbf{s} \in S\}$.

Let $|\mathbf{x} + S\rangle = \frac{1}{\sqrt{|S|}} \sum_{\mathbf{y} \in S} |\mathbf{x} \oplus \mathbf{y}\rangle$. Show that

$$H^{\otimes n}|\mathbf{x} + S\rangle = \sqrt{\frac{|S|}{2^n}} \sum_{\mathbf{z} \in S^{\perp}} (-1)^{\mathbf{x} \cdot \mathbf{z}} |\mathbf{z}\rangle.$$

Hint: Show that for any $\mathbf{z} \in \mathbb{Z}_2^n$, either $\mathbf{z} \in \mathbb{S}^{\perp}$ or \mathbf{z} is perpendicular to exactly half of the elements of S.

Solution:

Recall from the lectures that

$$H^{\otimes n}|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{y} (-1)^{x \cdot y} |y\rangle$$

Thus

$$H^{\otimes n}|S+x\rangle = \frac{1}{\sqrt{|S|}} \sum_{s \in S} H^{\otimes n}|s \oplus x\rangle$$

$$= \frac{1}{\sqrt{2^n |S|}} \sum_{s \in S} \sum_{z} (-1)^{z \cdot (s \oplus x)}|z\rangle$$

$$= \frac{1}{\sqrt{2^n |S|}} \sum_{z} (-1)^{z \cdot x} \left(\sum_{s \in S} (-1)^{z \cdot s}\right)|z\rangle$$

We note that $|\sum_{s\in S} (-1)^{z\cdot s}| = |S|$ if $z\in S^{\perp}$.

For $z \notin S^{\perp}$, we note that there are equal number of elements sin S with $s \cdot z = 0$ as with $s \cdot z = 1$.

Proof: If $z \notin S^{\perp}$, then there must exist a $v \in S$ such $z \cdot v = 1$.

We define a one-to-one correspondence between elements s of S that satisfy $s \cdot z = 0$ and those that satisfy $s \cdot z = 1$, by mapping $s \mapsto s \oplus v$; this map is self-inverse, and thus gives a one-to-one correspondence between the two sets.

Thus, if $z \notin S^{\perp}$, we have $|\sum_{s \in S} (-1)^{z \cdot s}| = 0$.

Thus, the above superposition reduces to

$$\sqrt{\frac{|S|}{2^n}} \sum_{z \in S^{\perp}} (-1)^{z \cdot x} |z\rangle.$$

The normalization factor can also be written as $\frac{1}{\sqrt{|S^{\perp}|}}$.

2. 4 marks Measuring stabilizers

In Section 4.5 it is shown how to implement a parity measurement using a quantum circuit. In Exercise 3.4.4, it is shown how the parity measurement is equivalent to measuring the observable $Z^{\otimes n}$.

(a) Describe an alternative algorithm (and draw the corresponding circuit diagram) for measuring any Pauli observable $P_1 \otimes P_2 \otimes P_3$ using one application of a c- $(P_1 \otimes P_2 \otimes P_3)$ gate, where $P_1, P_2, P_3 \in \{I, X, Y, Z\}$, and not all three equal I.

Solution:

We are projecting the input space onto one of the two eigenspaces of $P_1 \otimes P_2 \otimes P_3$. We can do this using eigenvalue kickback, where the eigenvalue of $P_1 \otimes P_2 \otimes P_3$ appears as a phase in the control register. Consider the following circuit

Suppose that $|\psi\rangle = a|\psi_{-1}\rangle + b|\psi_{1}\rangle$, where $|\psi_{-1}\rangle$ and $|\psi_{1}\rangle$ are -1 and 1 eigenvectors for $P_{1}\otimes P_{2}\otimes P_{3}$, respectively. Then in the above circuit, we begin with the state

$$|0\rangle (a|\psi_1\rangle + b|\psi_{-1}\rangle)$$
.

Applying H to the first qubit results in

$$\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) (a|\psi_1\rangle + b|\psi_{-1}\rangle).$$

Applying the controlled $P_1 \otimes P_2 \otimes P_3$ gives

$$a\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right)|\psi_1\rangle + b\left(\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle\right)|\psi_{-1}\rangle.$$

Finally, applying H to the control qubit, we get

$$a|0\rangle|\psi_1\rangle + b|1\rangle|\psi_{-1}\rangle.$$

Now we see that measuring the control qubit will project onto one of the eigenspaces of $P_1 \otimes P_2 \otimes P_3$, with the eigenvalue revealed from the outcome of the measurement.

(b) What are the two possible outcomes, and their respective probabilities, of measuring the observable $X \otimes X \otimes Y$ on input $|000\rangle$? (Note that the eigenvectors of Y are $\frac{1}{\sqrt{2}}|0\rangle \pm \frac{i}{\sqrt{2}}|1\rangle$.)

Solution:

Let us denote

$$|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle, \ |-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle, \ |L\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{i}{\sqrt{2}}|1\rangle, \ |R\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{i}{\sqrt{2}}|1\rangle.$$
 Then

$$\begin{split} |000\rangle &= \qquad \left(\frac{1}{\sqrt{2}}|+\rangle + \frac{1}{\sqrt{2}}|-\rangle\right) \left(\frac{1}{\sqrt{2}}|+\rangle + \frac{1}{\sqrt{2}}|-\rangle\right) \left(\frac{1}{\sqrt{2}}|L\rangle + \frac{1}{\sqrt{2}}|R\rangle\right) \\ &= \qquad \frac{1}{\sqrt{2}} \left(\frac{1}{2}|+\rangle|+\rangle|L\rangle + \frac{1}{2}|+\rangle|-\rangle|R\rangle + \frac{1}{2}|-\rangle|+\rangle|R\rangle + \frac{1}{2}|-\rangle|-\rangle|L\rangle) \\ &+ \frac{1}{\sqrt{2}} \left(\frac{1}{2}|-\rangle|-\rangle|R\rangle + \frac{1}{2}|-\rangle|+\rangle|L\rangle + \frac{1}{2}|+\rangle|-\rangle|L\rangle + \frac{1}{2}|+\rangle|+\rangle|R\rangle) \end{split}$$

where

$$\left(\frac{1}{2}|+\rangle|+\rangle|L\rangle+\frac{1}{2}|+\rangle|-\rangle|R\rangle+\frac{1}{2}|-\rangle|+\rangle|R\rangle+\frac{1}{2}|-\rangle|-\rangle|L\rangle\right)$$

is a normalized superposition of +1 eigenstates of $X \otimes X \otimes Y$ (since it is a product of an even number of -1 eigenstates of the single qubit operators X, X and Y), and thus is also a +1 eigenstate of $X \otimes X \otimes Y$.

Similarly,

$$\frac{1}{\sqrt{2}} \left(\frac{1}{2} |-\rangle|-\rangle|R\rangle + \frac{1}{2} |-\rangle|+\rangle|L\rangle + \frac{1}{2} |+\rangle|-\rangle|L\rangle + \frac{1}{2} |+\rangle|+\rangle|R\rangle \right)$$

is a normalized superposition of -1 eigenstates of $X \otimes X \otimes Y$ (since it is a product of an odd number of -1 eigenstates of the single qubit operators X, X and Y), and thus is also a -1 eigenstate of $X \otimes X \otimes Y$.

Thus one measures eigenvalue +1 with probability $\frac{1}{2}$ and in this case is left with the state $(\frac{1}{2}|+\rangle|+\rangle|L\rangle+\frac{1}{2}|+\rangle|-\rangle|R\rangle+\frac{1}{2}|-\rangle|+\rangle|R\rangle+\frac{1}{2}|-\rangle|-\rangle|L\rangle),$

and one measures eigenvalue -1 with probability $\frac{1}{2}$ and in this case is left with the state $\frac{1}{\sqrt{2}}\left(\frac{1}{2}|-\rangle|-\rangle|R\rangle+\frac{1}{2}|-\rangle|+\rangle|L\rangle+\frac{1}{2}|+\rangle|-\rangle|L\rangle+\frac{1}{2}|+\rangle|+\rangle|R\rangle$.

3. 2 marks eigenvalues of the QFT

(a) Find a concise description of the operation formed by the square of QFT_N .

Solution:

The QFT_N maps

$$|x\rangle \mapsto \sum_{y=0}^{N-1} e^{2\pi i \frac{xy}{N}} |y\rangle$$

and applying the QFT_N again gives

$$\sum_{y=0}^{N-1} \sum_{z=0}^{N-1} e^{2\pi i \frac{xy}{N}} e^{2\pi i \frac{yz}{N}} |z\rangle$$

$$= \sum_{z=0}^{N-1} \left(\sum_{y=0}^{N-1} e^{2\pi i \frac{xy+zy}{N}} \right) |z\rangle$$

$$= \sum_{z=0}^{N-1} \left(\sum_{y=0}^{N-1} e^{2\pi i y \frac{x+z}{N}} \right) |z\rangle$$

Note that if $x + z \neq 0 \mod N$, then $\sum_{y=0}^{N-1} e^{2\pi i y \frac{x+z}{N}} = 0$.

Proof: Note that any element of the form $e^{2\pi i \frac{k}{N}}$ for an integer k is a root of the polynomial $x^N-1=0$. This polynomial factors as $(x-1)(1+x+x^2+\ldots x^{N-1})$. Thus any root that is not equal to 1, must be a root of $1+x+x^2+\ldots +x^{N-1}$.

And for $x + z = 0 \mod N$, we have $\sum_{y=0}^{N-1} e^{2\pi i y \frac{x+z}{N}} = N$.

Thus the only basis state in the above superposition that does vanish is $z = N - x \mod N$, and has phase factor +1.

Thus the square of QFT_N sends $|x\rangle$ to $|N-x \mod N\rangle$, for $0 \le x < N$.

(b) Note that the order of the QFT_N is 4, for $N \geq 3$. That is, $QFT_N^4 = I$. For $N \geq 3$, give a circuit for exactly measuring the eigenvalues of the QFT_N operation. You may use a controlled-QFT operation, and other elementary quantum gates.

Solution:

Solution:

Since $QFT_N^4 = I$, the eigenvalues are of the form $e^{2\pi i \frac{k}{4}}$ for k = 0, 1, 2, 3.

Thus the eigenvalue estimation algorithm with a control register of two qubits will measure the eigenvalues exactly.

4. 4 marks Consider the cyclic shift operator S on three qubits:

$$|x\rangle|y\rangle|z\rangle \mapsto |z\rangle|x\rangle|y\rangle$$

for all $x, y, z \in \{0, 1\}$.

(a) What are the eigenvalues of S?

Solution:

Since $S^3=I$, the eigenvalues must be cube roots of 1: 1, $\omega=e^{2\pi i\frac{1}{3}}$ or $\omega^2=e^{2\pi i\frac{2}{3}}$.

As we see in the next part, each of these values occur in the spectrum of S.

(b) Note that $|000\rangle$, $|111\rangle$, $\frac{1}{\sqrt{3}}(|100\rangle + |010\rangle + |001\rangle)$, and $\frac{1}{\sqrt{3}}(|110\rangle + |011\rangle + |101\rangle)$ are eigenvectors with eigenvalue 1.

For the remaining eigenvalues, write a basis of eigenvectors for the corresponding eigenspace. (Hint: you can find eigenvectors that are superpositions of strings with the same Hamming weight.)

Solution:

By inspection, $\frac{1}{\sqrt{3}}(|100\rangle + \omega^2|010\rangle + \omega|001\rangle)$ and $\frac{1}{\sqrt{3}}(|110\rangle + \omega^2|011\rangle + \omega|101\rangle)$ are eigenstates with eigenvalue ω .

By inspection, $\frac{1}{\sqrt{3}}(|100\rangle + \omega|010\rangle + \omega^2|001\rangle)$ and $\frac{1}{\sqrt{3}}(|110\rangle + \omega|011\rangle + \omega^2|101\rangle)$ are eigenstates with eigenvalue ω^2 .

Note that another way to find an eigenstate of S with eigenvalue ω^j is to pick any state, say $|100\rangle$ and renormalize the state $|100\rangle + \omega^{-j}S|100\rangle + \omega^{-2j}S^2|100\rangle$. Note that by construction the operator S maps

$$|100\rangle + \omega^{-j}S|100\rangle + \omega^{-2j}S^{2}|100\rangle \mapsto S|100\rangle + \omega^{-j}S^{2}|100\rangle + \omega^{-2j}S^{3}|100\rangle$$

which equals (using $S^3 = I$, $\omega^{-2j} = \omega^j$, and reordering)

$$\omega^{j}|100\rangle + S|100\rangle + \omega^{-j}S^{2}|100\rangle = \omega^{j}(|100\rangle + \omega^{-j}S|100\rangle + \omega^{-2j}S^{2}|100\rangle).$$

(c) Express the state

$$(\alpha|0\rangle + \beta|1\rangle)(\alpha|0\rangle + \beta|1\rangle)(\alpha|0\rangle + \beta|1\rangle)$$

as a linear combination of the given eigenvectors.

Solution:

$$(\alpha|0\rangle + \beta|1\rangle)(\alpha|0\rangle + \beta|1\rangle)(\alpha|0\rangle + \beta|1\rangle)$$

$$= \alpha^{3}|000\rangle + \alpha^{2}\beta|001\rangle + \alpha^{2}\beta|010\rangle + \alpha^{2}\beta|100\rangle + \alpha\beta^{2}|011\rangle + \alpha\beta^{2}|101\rangle + \alpha\beta^{2}|110\rangle + \beta^{3}|111\rangle$$

$$= \alpha^{3}|000\rangle + \sqrt{3}\alpha^{2}\beta(\frac{1}{\sqrt{3}}|100\rangle + \frac{1}{\sqrt{3}}|010\rangle + \frac{1}{\sqrt{3}}|001\rangle) + \sqrt{3}\alpha\beta^{2}(\frac{1}{\sqrt{3}}|110\rangle + \frac{1}{\sqrt{3}}|011\rangle + \frac{1}{\sqrt{3}}|111\rangle$$

(d) Express the state $|0\rangle|0\rangle|1\rangle$ as a linear combination of the given eigenvectors.

Solution:

$$|001\rangle = \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} (|100\rangle + |010\rangle + |001\rangle) + \frac{\omega^2}{\sqrt{3}} \frac{1}{\sqrt{3}} (|100\rangle + \omega^2 |010\rangle + \omega |001\rangle) + \frac{\omega}{\sqrt{3}} \frac{1}{\sqrt{3}} (|100\rangle + \omega |010\rangle + \omega^2 |001\rangle)$$

We can see that the coefficient for a given eigenvector is just the conjugate of the coefficient of $|001\rangle$ in that eigenvector. This is what we obtain when we take the inner product of the given state and the corresponding eigenvector.

5. 3 marks Modular arithmetic and factoring

Let r be the order of 3 mod 65.

(a) 1 mark Find r.

Solution 1:

If we compute the powers of $3 \mod 65$, we get 3, 9, 27, 16, 48, 14, 42, 61, 53, 29, 22, 1, ..., with the first element equal to 1 being the one in position number 12. Therefore, the order of $3 \mod 65$ is 12.

Note that to obtain an element of this list, we can just multiply the previous element by 3, and reduce the result modulo 65.

Solution 2:

By direct calculation, 4 is the order of 3 modulo 5 (so $3^4 = 1 \mod 5$), and 3 is the order of 3 modulo 13 (so $3^3 = 1 \mod 13$). By the Chinese Remainder theorem we have $3^{12} = 1 \mod 5 * 13 = 65$, and 12 is the smallest power of 3 that is congruent to 1 modulo both 5 and 13.

(b) **1 mark** What is $3^{123} \mod 65$?

Solution:

Since $3^{12} = 1 \mod 65$, then $3^{12k} = 1 \mod 65$ for any positive integer k, and thus $3^{123} = 3^{123 \mod 12} \mod 65$. Now, $123 = 3 \mod 12$. Therefore, $3^{123} = 3^3 = 27 \mod 65$.

(c) **1 mark** Find GCD(65, $3^{\frac{r}{2}} - 1$) and GCD(65, $3^{\frac{r}{2}} + 1$).

Solution:

We have $3^{\frac{r}{2}} - 1 = 13 \mod 65$ and $2^{\frac{r}{2}} + 1 = 15 \mod 65$. Thus $GCD(65, 2^{\frac{r}{2}} - 1) = 13$ and $GCD(65, 3^{\frac{r}{2}} + 1) = 5$.

6. 2 marks

Let $s \in \{0,1\}^n$ be a secret string of length n.

Suppose you have a black-box that outputs states of the form $\frac{1}{\sqrt{2}}|0\rangle|x\rangle + \frac{1}{\sqrt{2}}|1\rangle|x\oplus s\rangle$ for random values of x.

Describe an algorithm that will find s with high probability using O(n) calls to the blackbox.

(Hint: Use ideas from Simon's algorithm.)

Solution:

Apply $H^{\otimes n}$ to the second register. This gives

$$\sum_{y \in \{0,1\}^n} \frac{1}{\sqrt{2^n}} \left(\frac{(-1)^{y \cdot x}}{\sqrt{2}} |0\rangle |y\rangle + \frac{(-1)^{y \cdot (x \oplus s)}}{\sqrt{2}} |1\rangle |y\rangle \right).$$

7

If we measure the second register we get a random y and the first qubit is left in the state $\frac{(-1)^{y\cdot x}}{\sqrt{2}}|0\rangle + \frac{(-1)^{y\cdot (x\oplus s)}}{\sqrt{2}}|1\rangle = (-1)^{y\cdot x}(\frac{1}{\sqrt{2}}|0\rangle + \frac{(-1)^{y\cdot s}}{\sqrt{2}}|1\rangle).$

If we apply a Hadamard gate to this qubit, we obtain $(-1)^{y\cdot x}|y\cdot s\rangle$. Thus we know y and the value of $y\cdot s$ for a random string y.

If we sample n + O(1) such random strings, y_1, y_2, \ldots , with $y_i \cdot s = b_i$, then with high probability s will be the only solution to the linear system $y_1 \cdot s = b_1, y_2 \cdot s = b_2, \ldots$, and we can find s by solving the linear system.