Examenul național de bacalaureat 2021 Proba E. c)

Matematică BAREM DE EVALUARE ȘI DE NOTARE

Testul 1

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{3} \cdot \left(\frac{1}{\sqrt{3} - 1} + \frac{1}{\sqrt{3} + 1} \right) = \sqrt{3} \cdot \frac{\sqrt{3} + 1 + \sqrt{3} - 1}{2} =$	3p
	$=\sqrt{3}\cdot\frac{2\sqrt{3}}{2}=3$	2p
2.	$f(1)=1-m$, deci $1-m \ge 0$	2p
	$m \le 1$ şi, cum m este număr natural, obținem $m = 0$ sau $m = 1$	3p
3.	$\log_2 x^2 = \log_2 (3x+4) \Rightarrow x^2 - 3x - 4 = 0$	3 p
	x = -1, care nu convine sau $x = 4$, care convine	2 p
4.	$x + \frac{10}{100} \cdot x = 440$, unde x este prețul obiectului înainte de scumpire	3 p
	$x = 400 \mathrm{lei}$	2p
5.	Panta dreptei $d: y = x + 2$ este $m_d = 1$	2p
	Ecuația dreptei care trece prin punctul $M(1,2)$ și este paralelă cu dreapta d este $y=x+1$	3 p
6.	$AD = \frac{AB\sqrt{3}}{2} \Rightarrow 3\sqrt{3} = \frac{AB\sqrt{3}}{2} \Rightarrow AB = 6$	3р
	$P_{\triangle ABC} = 3 \cdot AB = 3 \cdot 6 = 18$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$(-2)*2 = -2 \cdot 2 - 2(-2+2) + 4 + 2 =$	3p
	$=-4-2\cdot 0+6=2$	2p
2.	x * y = xy - 2(x + y) + 6 = yx - 2(y + x) + 6 =	3 p
	$= y * x$, pentru orice numere reale $x \neq y$, deci legea de compoziție ",*" este comutativă	2 p
3.	x * y = xy - 2x - 2y + 6 =	2p
	= x(y-2)-2(y-2)+2 = (x-2)(y-2)+2, pentru orice numere reale x şi y	3 p
4.	$(x+1-2)(x-2)+2=4 \Leftrightarrow x^2-3x=0$	3 p
	x = 0 sau $x = 3$	2 p
	$(2^{2x}-2)(2^x-2)+2=2 \iff 2^{2x}-2=0 \text{ sau } 2^x-2=0$	3p
	$x = \frac{1}{2} \text{sau} x = 1$	2 p
6.	$(x-1) * x \le 2 \Leftrightarrow (x-3)(x-2) \le 0$	2p
	$x \in [2,3]$	3 p

SUBIECTUL al III-lea (30 de puncte)

		30 de punete)
1.	$\det(A(a)) = \begin{vmatrix} 3 & a \\ 0 & 3 \end{vmatrix} = 3 \cdot 3 - 0 \cdot a =$	3p
	=9-0=9, pentru orice număr real a	2p
2.		2p
	$= 3 \cdot \begin{pmatrix} 3 & 2021 \\ 0 & 3 \end{pmatrix} = 3 \cdot A(2021)$	3p
3.	$A(a-1) + A(a+1) = \begin{pmatrix} 3 & a-1 \\ 0 & 3 \end{pmatrix} + \begin{pmatrix} 3 & a+1 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 6 & 2a \\ 0 & 6 \end{pmatrix} =,$	3p
	$= 2 \cdot \begin{pmatrix} 3 & a \\ 0 & 3 \end{pmatrix} = 2 \cdot A(a), \text{ pentru orice număr real } a$	2 p
4.	$A(m) \cdot A(n) = \begin{pmatrix} 9 & 3(n+m) \\ 0 & 9 \end{pmatrix}, \ 3A(3) = \begin{pmatrix} 9 & 9 \\ 0 & 9 \end{pmatrix} , \text{ deci } n+m=3$	3p
	Cum m și n sunt numere naturale nenule, obținem $n=1$, $m=2$ sau $n=2$, $m=1$	2 p
5.	$\begin{bmatrix} 3 & a^2 \\ 0 & 3 \end{bmatrix} - 2 \cdot \begin{bmatrix} 3 & a \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Leftrightarrow a^2 - 2a + 1 = 0$	2p
	a=1	3 p
6.	$\det(k \cdot A(k)) \le 36 \Leftrightarrow 9k^2 \le 36$	2p
	Cum k este număr întreg, obținem $k \in \{-2, -1, 0, 1, 2\}$, deci sunt 5 matrice care verific cerința	ă 3p