CS4102 Algorithms

Fall 2018

Today's Keywords

- Reductions
- Bipartite Matching
- Vertex Cover
- Independent Set
- NP-Completeness

CLRS Readings

• Chapter 34

Homeworks

- HW8 due Friday 11/30 at 11pm
 - Written (use LaTeX)
 - Graphs

Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

Party Problem

Draw Edges between people who don't get along Find the maximum number of people who get along

Maximum Independent Set

- Independent set: $S \subseteq V$ is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph G=(V,E) find the maximum independent set S

Example

Generalized Baseball

Generalized Baseball

Minimum Vertex Cover

- Vertex Cover: $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph G = (V, E) find the minimum vertex cover C

Example

Reduction Idea

S is an independent set of G iff V-S is a vertex cover of G

Reduction Idea

S is an independent set of G iff V-S is a vertex cover of G

Proof: \Rightarrow

S is an independent set of G iff V-S is a vertex cover of G

Let S be an independent set

Consider any edge $(x, y) \in E$

If $x \in S$ then $y \notin S$, because o.w. S would not be an independent set

Therefore $y \in V - S$, so edge (x, y) is covered by V - S

Proof: ←

S is an independent set of G iff V-S is a vertex cover of G

Let V - S be a vertex cover

Consider any edge $(x, y) \in E$

At least one of x and y belong to V-S, because V-S is a vertex cover

Therefore x and y are not both in S, No edge has both end-nodes in S, thus S is an independent set

Reductions

Shows how two different problems relate to each other

MacGyver's Reduction

Problem we don't know how to solve

Problem we do know how to solve

Opening a door

Aim duct at door, insert keg

Lighting a fire

Solution for **B**

Alcohol, wood, matches

Solution for *A*Keg cannon
battering ram

Put fire under the Keg

Reduction

Bipartite Matching Reduction

Problem we don't know how to solve

Bipartite Matching

Solution for *A*

Problem we do know how to solve

In General: Reduction

Problem we don't know how to solve

Problem we do know how to solve

Worst-case lower-bound Proofs

The name "reduces" is confusing: it is in the *opposite* direction of the making

Proof of Lower Bound by Reduction

1. We know X is slow (e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction](Y = some way to light a fire)

3. Show how to use *Y* to perform *X* quickly

4. *X* is slow, but *Y* could be used to perform *X* quickly conclusion: *Y* must not actually be quick

Reduction Proof Notation

A is not a harder problem than B

$$A \leq B$$

If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time $A \leq_{f(n)} B$

$MaxIndSet \leq_V MinVertCov$

If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time $A \leq_V B$

We need to build this Reduction

MaxVertCov V-Time Reducable to MinIndSet

MaxIndSet *V*-Time Reducable to MinVertCov

Corollary

Corollary

Conclusion

- MaxIndSet and MinVertCov are either both fast, or both slow
 - Spoiler alert: We don't know which!
 - (But we think they're both slow)
 - Both problems are NP-Complete

Mid-class warm up: What is a Decision Problem?

Max Independent Set

Find the largest set of non-adjacent nodes

k Independent Set

Is there a set of non-adjacent nodes of size k?

Maximum Independent Set

- Independent set: $S \subseteq V$ is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph G=(V,E) find the maximum independent set S

k Independent Set

- Independent set: $S \subseteq V$ is an independent set if no two nodes in S share an edge
- k Independent Set Problem: Given a graph G=(V,E) and a number k, determine whether there is an independent set S of size k

Min Vertex Cover

k Vertex Cover

Minimum Vertex Cover

- Vertex Cover: $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph G = (V, E) find the minimum vertex cover C

k Vertex Cover

- Vertex Cover: $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- k Vertex Cover: Given a graph G = (V, E) and a number k, determine whether there is a vertex cover C of size k

Problem Types

- Decision Problems: If we can solve this
 - Is there a solution?
 - Output is True/False
 - Is there a vertex cover of size k?
- Search Problems: Then we can solve this
 - Find a solution
 - Output is complex
 - Give a vertex cover of size k
- Verification Problems:
 - Given a potential solution, is it valid?
 - Output is True/False
 - Is **this** a vertex cover of size k?

Reduction

k-VertexCover Solver

Solution for *A*

k-VertexCover Decider

Using any Algorithm for **B**

Solution for **B**

P vs NP

- P
 - Deterministic Polynomial Time
 - Problems solvable in polynomial time
 - $O(n^p)$ for some number p
- NP
 - Non-Deterministic Polynomial Time
 - Problems verifiable in polynomial time
 - $O(n^p)$ for some number p
- Open Problem: Does P=NP?
 - Certainly P ⊆ NP

k-Independent Set is NP

• To show: Given a potential solution, can we verify it in $O(n^p)$? [n = V + E]

How can we verify it?

- 1. Check that it's of size k O(V)
- 2. Check that it's an independent set $O(V^2)$

k-Vertex Cover is NP

• To show: Given a potential solution, can we verify it in $O(n^p)$? [n = V + E]

How can we verify it?

- 1. Check that it's of size k O(V)
- 2. Check that it's a Vertex Cover O(E)

NP-Hard

How can we try to figure out if P=NP?

Identify problems at least as "hard" as NP

 If any of these "hard" problems can be solved in polynomial time, then all NP problems can be solved in polynomial time.

- Definition: NP-Hard:
 - -B is NP-Hard if $\forall A \in NP$, $A \leq_p B$
 - $-A \leq_p B$ means A reduces to B in polynomial time

NP-Hardness Reduction

NP-Complete

"Together they stand, together they fall"

 Problems solvable in polynomial time iff ALL NP problems are

NP-Complete = NP ∩ NP-Hard

How to show a problem is NP-Complete?

- Show it belongs to NP
 - Give a polynomial time verifier
- Show it is NP-Hard
 - Give a reduction from another NP-H problem

We now just need a FIRST NP-Hard problem

NP-Completeness

NP-Completeness

3-SAT

- Shown to be NP-Hard by Cook and Levin (independently)
- Given a 3-CNF formula (logical AND of clauses, each an OR of 3 variables), Is there an assignment of true/false to each variable to make the formula true?

k-Independent Set is NP-Complete

- 1. Show that it belongs to NP
 - Give a polynomial time verifier (slide 21)
- 2. Show it is NP-Hard
 - Give a reduction from a known NP-Hard problem
 - Show $3SAT ≤_p kIndSet$

$3SAT \leq_p kIndSet$

Instance of 3SAT to Instance of kIndSet

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

For each clause, produce a triangle graph with its three variables as nodes

Connect each node to all of its opposites

Let k = number of clausesThere is a k-IndSet in this graph, iff there is a satisfying assignment

kIndSet \Rightarrow Satisfying Assignment

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

One node per triangle is in the Independent set: because we can have exactly k total in the set, and 2 in a triangle would be adjacent

If x is selected in some triangle, \bar{x} is not selected in any triangle: Because every x is adjacent to every \bar{x}

Set the variable which each included node represents to "true"

z = false

u = true

Satisfying Assignment $\Rightarrow k$ IndSet

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (\overline{u} \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

Use one true variable from the assignment for each triangle

z = falseu = true

The independent set has k nodes, because there are k clauses

If any variable x is true then \bar{x} cannot be true

$3SAT \leq_p kIndSet$

k-Vertex Cover is NP-Complete

- 1. Show that it belongs to NP
 - Give a polynomial time verifier (slide 22)
- 2. Show it is NP-Hard
 - Give a reduction from a known NP-Hard problem
 - We showed $kIndSet ≤_p kVertCov$
 - (Last Class)

$kIndSet \leq_p kVertCov$

k-Clique Problem

 Clique: A complete subgraph

• *k*-Clique Problem:

- Given a graph G and a number k, is there a clique of size k?

k-Clique is NP-Complete

- 1. Show that it belongs to NP
 - Give a polynomial time verifier
- 2. Show it is NP-Hard
 - Give a reduction from a known NP-Hard problem
 - − We will show $3SAT \leq_{p} kClique$

k-Clique is NP

- 1. Given a Graph and a potential solution
- 2. Check that the solution has k nodes
- 3. Check that every pair of nodes share an edge

$3SAT \leq_p kClique$

Instance of 3SAT to Instance of kClique

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

For each clause, produce a node for each of its three variables

Connect each node to all non-contradictory nodes in the other clauses (i.e., anything that's not its negation)

Let k = number of clausesThere is a k-Clique in this graph, iff there is a satisfying assignment

kClique \Rightarrow Satisfying Assignment

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

There are k triplets in the graph, and no two nodes in the same triplet are adjacent

To have a k-Clique, must have one node from each triplet

Cannot select a node for both a variable and its negation

Therefore selection of nodes is a satisfying assignment

Satisfying Assignment $\Rightarrow k$ Clique

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

Select one node for a true variable from each clause

There will be k nodes selected

We can't select both a node and its negation

All nodes will be non-contradictory, so they will be pairwise adjacent

$3SAT \leq_p kClique$

Reduction

k-VertexCover Solver

Solution for *A*

k-VertexCover Decider

Using any Algorithm for **B**

Solution for **B**

Problem Types

- Decision Problems: If we can solve this
 - Is there a solution?
 - Output is True/False
 - Is there a vertex cover of size k?
- Search Problems: Then we can solve this
 - Find a solution
 - Output is complex
 - Give a vertex cover of size k
- Verification Problems:
 - Given a potential solution, is it valid?
 - Output is True/False
 - Is **this** a vertex cover of size k?

Using a k-VertexCover decider to build a searcher

- Set i = k 1
- Remove nodes (and incident edges) one at a time
- Check if there is a vertex cover of size i
 - If so, then that removed node was part of the k vertex cover, set i=i-1
 - Else, it wasn't

