1(d) By writing down the explicit gradient of log p(y|f_n), make an argument that those training points
$$x_i$$
 at which $1|\hat{f}(x_i)| \gg 1$, those "for from the decision boundary" do almost not contribute to this estimate $\mathbb{F}_q[f(\cdot)]$.

Ans: $\nabla_{f_x} \log (p|y|f_x) = \sum_{i=1}^n \nabla_{f_x} \log (\sigma(y_i + \sigma_{i,2}))$

$$= \sum_{i=1}^n \nabla_{f_x} \left[-\log(1 + \exp(-y_i f(x_i))) \right]$$

$$= \sum_{i=1}^n \nabla_{f_x} \left[-\log(1 + \exp(-y_i f(x_i))) \right]$$

$$= \sum_{i=1}^n \nabla_{f_x} \left[-\log(1 + \exp(-y_i f(x_i))) \right]$$

$$= \sum_{i=1}^n \nabla_{f_x} \left[-\log(1 + \exp(-y_i f(x_i))) \right]$$

$$= \sum_{i=1}^n \nabla_{f_x} \left[-\log(1 + \exp(-y_i f(x_i))) \right]$$

$$= \sum_{i=1}^n \nabla_{f_x} \left[-\log(1 + \exp(-y_i f(x_i))) \right]$$

$$= \sum_{i=1}^n \nabla_{f_x} \left[-\log(1 + \exp(-y_i f(x_i))) \right]$$

$$= \sum_{i=1}^n \nabla_{f_x} \left[-\log(1 + \exp(-y_i f(x_i))) \right]$$

$$= \sum_{i=1}^n \nabla_{f_x} \left[-\log(1 + \exp(-f(x_i))) \right]$$

$$= \sum_{i=1}^n \nabla_{f_x} \left[-\log(1 + \exp(-f(x_i)) \right]$$

$$= \sum_{i=1}^n \nabla_{f_x} \left[-\log(1$$

$$\frac{\partial}{\partial f_{i}} - \log (1 + e^{x} p(-y_{i} f(x_{i}))) = \frac{y_{i} + 1}{2} - \sigma (f(x_{i}))$$

$$\nabla_{i} \log (p(y_{i} f_{x})) = \frac{y_{i} + 1}{2} - \sigma (f(x_{i}))$$

Now consider $|\hat{f}_x| >> 1$ $\sigma\left(|\hat{\mathbf{f}}_{\mathbf{x}}|\right) = \frac{1}{1 + \exp\left(-|\hat{\mathbf{f}}_{\mathbf{x}}|\right)} = 1 \quad \text{as} \quad \lim_{\alpha \to a} \exp\left(-\alpha\right) = 0$ Thus when $y_i = 1$ and $|\hat{f}(\pi_i)| >> 1$ and $\hat{f}(\pi_i) > 0$ Vileg (p(y)fn)) = 1+1 -1 = 0 Thus xi will not contribute to Eq [f()] Similarly when y: =-1 and |f(ni)| >>1 ad f(ni) 40 $\nabla_{i} \log (p(y)\hat{f}_{x})) = -\frac{1+1}{2} - \frac{1}{1+\exp(-f(x_{i}))}$ $= 0 - \frac{1}{1 + \exp(-f(\pi_i))} = 0$ lin as -fin) -00 When the signs of y & $f(x_i)$ agree that is $y_i f(n_i) > 0$ and $|f(n_i)| > 1$ these are highly lively training points as given by logistic lixebihood at the same time the gradient of their log-logistic lixebihood $\nabla_i \log (p(y_i|f_n) \stackrel{\sim}{\Rightarrow} 0)$ thus those training point will not contributed to update equation. as the gradiet of log live lihard Eq[f()] = m. + R. x 7 log p(y) fa) these composites