Lecture 4 : Clustering

楊立偉教授

wyang@ntu.edu.tw

本投影片修改自Introduction to Information Retrieval一書之投影片 Ch 16 & 17

Clustering: Introduction

Clustering: Definition

- (Document) clustering is the process of grouping a set of documents into clusters of similar documents.
 - Documents within a cluster should be similar.

群內盡量相似

Documents from different clusters should be dissimilar.

群間盡量相異

- Clustering is the most common form of unsupervised learning.
 - Unsupervised = there are no labeled or annotated data.

Data set with clear cluster structure

Propose algorithm for finding the cluster structure in this example

Classification vs. Clustering

- Classification
 - Supervised learning
 - Classes are human-defined and part of the input to the learning algorithm.
- Clustering
 - Unsupervised learning
 - Clusters are inferred from the data without human input.

Why cluster documents?

- Whole corpus analysis/navigation
 - Better user interface 提供文件(資料)集合的分析與導覽
- For improving recall in search applications
 - Better search results 提供完整的搜尋結果(相似的也找出)
- For better navigation of search results
 - Effective "user recall" will be higher 搜尋結果導覽
- For speeding up vector space retrieval
 - Faster search 加快搜尋速度(因為限縮了範圍)

For visualizing a document collection

- Wise et al, "Visualizing the non-visual" PNNL
- ThemeScapes, Cartia
 - [Mountain height = cluster size]

For improving search recall

- Cluster hypothesis "closely associated documents tend to be relevant to the same requests".
- Therefore, to improve search recall:
 - Cluster docs in corpus 先將文件做分群
 - When a query matches a doc D, also return other docs in the cluster containing D 也建議符合的整群
- Hope if we do this: The query "car" will also return docs containing automobile
 - Because clustering grouped together docs containing car with those containing automobile.

For better navigation of search results

- For grouping search results thematically
 - clusty.com / Vivisimo (Enterprise Search Velocity)

Introduction to Information Retrieval

koh samui Search

Sources Sites Time Topics

Top 227 Results

remix

- + Hotels (59)
- **+** Travel (50)
- + Holiday (29)
- + Photos (23)
- + Maps, Pattaya (11)
- **+** Diving (9)
- Ritz-Carlton, Koh Samui (4)
- + Spa Resorts (6)
- · Samui Island (3)
- + Airport (5)
- Inhabit, Resort (3)
- · Land, House (4)
- Activities (4)
- **+** Blog (5)
- Restaurant, Bungalows (4)
- Kona, Klagenfurt (4)
- Koh Samui The 2019 Guide (2)
- Luxury Villas (3)
- Offre (4)
- Design (4)
- Family Resort In Koh Samui (2)
- BKK, USM (2)

Did you mean koh sami?

Koh Samui (Samui Island) - Thailand - Everything You Need ... new window preview

Koh Samui (Samui Island) is a cosmopolitan melting pot, attracting budget travellers staying for a month or two in simple be holidaymakers dropping in for a weekend at one of the many luxury resort or villa on the many white sand beaches of **Koh** swww.kosamui.com - Yippy Index V

Ko Samui - Wikipedia new window preview

Ko **Samui** is in the Gulf of Thailand, about 35 km northeast of Surat Thani town (9°N, 100°E). It is the most significant island measures some 25 km at its widest point. To the north are the populated resort islands of Ko Pha-ngan, Ko Tao, and Ko Nai https://en.wikipedia.org/wiki/Ko_**Samui** - Yippy Index V

Ko Samui 2019: Best of Ko Samui Tourism - TripAdvisor new window preview

Koh Samui was once a Thai fishing community, and that charming sensibility is still present today. Spending time in Bophut beachy village restaurants and pubs are perfect spots to experience the sunset.

https://www.tripadvisor.com/...i Surat Thani Province-Vacations.html - - Yippy Index V

<u>Luxury Boutique Hotel in **Koh Samui**</u> | W **Koh Samui** | new window | preview

Tranquil by day. Electric by night. Situated on a 30-square-mile tropical Thai island in the middle of the Gulf of Thailand, ove **Koh Samui** awakens as the sun goes down, igniting the unexpected.

https://www.marriott.com/hotels/travel/usmwh-w-koh-samui - Yippy Index V

Koh Samui: The Top 10 Mistakes To Avoid on Your First Trip ... new window preview

7. Death by Pad Thai Lunch (or what's left of it) at a favourite **Koh Samui** restaurant. I ate SO.MUCH.PAD.THAI. on my first soon as I could specify chicken or shrimp in Thai, there was no stopping me.

https://www.kohsamuisunset.com/our-first-trip-to-koh-samui - - Yippy Index V

- Home
- Download
- Documentation
- FAQ
- Support
- Source Code
- License
- Algorithms
- Publications
- Powered by C2
- Authors
- Spin-off
- Labs

Carrot² is an Open Source **Search Results Clustering Engine**. It can automatically organize small collections of documents (search results but not only) into thematic categories.

Search results clustered with Carrot² (live demo)

Download

Carrot² API JavaDoc Carrot² C# API reference

News

Release 3.11.0 is available.

Sponsors and donors
Carrot² is kindly supported
by a number of <u>companies</u>
and organizations

Spin-off company

Apart from two specialized <u>document clustering algorithms</u>, Carrot² offers ready-to-use components for fetching search results from various sources including GoogleAPI, Bing API, <u>eTools Meta Search</u>, Lucene, SOLR, and more.

For better understanding the data

Example

- 使用總體資料敘述統計做描述
 - 有4隻雞、4隻兔子
 - 每隻平均有3隻腳
- 先對資料做分群,再對各群做描述
 - 有4隻雞、4隻兔子
 - 依每隻的腳數可分為2群
 - 第1群每隻平均有2隻腳,第2群每隻平均有4隻腳

Issues for clustering (1)

- General goal: put related docs in the same cluster,
 put unrelated docs in different clusters.
- Representation for clustering
 - Document representation 如何表示一篇文件
 - Need a notion of similarity/distance 如何表示相似度

Issues for clustering (2)

- How to decide the number of clusters
 - Fixed a priori : assume the number of clusters K is given.
 - Data driven : semiautomatic methods for determining K
 - Avoid very small and very large clusters
- Define clusters that are easy to explain to the user

Clustering Algorithms

- Flat (Partitional) algorithms 無階層的聚類演算法
 - Usually start with a random (partial) partitioning
 - Refine it iteratively 不斷地修正調整
 - K means clustering
- Hierarchical algorithms 有階層的聚類演算法
 - Create a hierarchy
 - Bottom-up, agglomerative 由下往上聚合
 - Top-down, divisive 由上往下分裂

Flat (Partitioning) Algorithms

- Partitioning method: Construct a partition of n documents into a set of K clusters
 將 n 篇文件分到 K 群中
- Given: a set of documents and the number K
- Find: a partition of K clusters that optimizes the chosen partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions
 找出最佳切割 → 通常很耗時
 - Effective heuristic methods: K-means and K-medoids algorithms 用經驗法則找出近似解即可

Hard vs. Soft clustering

- Hard clustering: Each document belongs to exactly one cluster.
 - More common and easier to do
- Soft clustering: A document can belong to more than one cluster.
 - For applications like creating browsable hierarchies
 - Ex. Put sneakers in two clusters: sports apparel, shoes
 - You can only do that with a soft clustering approach.

^{*}only hard clustering is discussed in this class.

K-means algorithm

K-means

- Perhaps the best known clustering algorithm
- Simple, works well in many cases
- Use as default / baseline for clustering documents

K-means

- In vector space model, Assumes documents are real-valued vectors.
- Clusters based on *centroids* (aka the *center of gravity* 重心 or mean) of points in a cluster, *c*:

$$\vec{\mu}(c) = \frac{1}{|c|} \sum_{\vec{x} \in c} \vec{x}$$

 Reassignment of instances to clusters is based on distance to the current cluster centroids.

K-means algorithm

- 1. Select K random docs $\{s_1, s_2, ..., s_k\}$ as seeds. 先挑選種子
- 2. Until clustering converges or other stopping criterion:

重複下列步驟直到收斂或其它停止條件成立

2.1 For each doc d_i : 針對每一篇文件

Assign d_i to the cluster c_j such that $dist(x_i, s_j)$ is minimal.

將該文件加入最近的一群

2.2 For each cluster c_i

 $s_i = \mu(c_i)$ 以各群的重心為種子,再做一次

(Update the seeds to the centroid of each cluster)

K-means example (K=2)

通常做3至4回就大致穩定(但仍需視資料與群集多寡而調整)

K-means algorithm

```
K-MEANS(\{\vec{x}_1,\ldots,\vec{x}_N\},K)
   1 (\vec{s}_1, \vec{s}_2, \dots, \vec{s}_K) \leftarrow \text{SELECTRANDOMSEEDS}(\{\vec{x}_1, \dots, \vec{x}_N\}, K)
   2 for k \leftarrow 1 to K
   3 do \vec{\mu}_k \leftarrow \vec{s}_k
        while stopping criterion has not been met
         do for k \leftarrow 1 to K
   5
              do \omega_k \leftarrow \{\}
   6
              for n \leftarrow 1 to N
              do j \leftarrow \arg \min_{i'} |\vec{\mu}_{i'} - \vec{x}_n|
   8
                    \omega_i \leftarrow \omega_i \cup \{\vec{x}_n\} (reassignment of vectors)
   9
 10
               for k \leftarrow 1 to K
              do \vec{\mu}_k \leftarrow \frac{1}{|\omega_k|} \sum_{\vec{x} \in \omega_k} \vec{x} (recomputation of centroids)
 11
         return \{\vec{\mu}_1,\ldots,\vec{\mu}_K\}
 12
```

Termination conditions

- Several possibilities, e.g.,
 - A fixed number of iterations. 只做固定幾回合
 - Doc partition unchanged. 群集不再改變
 - Centroid positions don't change. 重心不再改變

Convergence of *K*-Means

- Why should the K-means algorithm ever reach a fixed point?
 - A state in which clusters don't change. 收斂
- K-means is a special case of a general procedure known as the Expectation Maximization (EM) algorithm.
 - EM is known to converge.
 - Number of iterations could be large.在理論上一定會收斂,只是要做幾回合的問題 (逼近法,且一開始逼近得快,之後逼近變慢)

Convergence of K-Means:證明

 Define goodness measure of cluster k as sum of squared distances from cluster centroid:

$$-G_k = \sum_i (d_i - c_k)^2$$
 (sum over all d_i in cluster k)

$$-G = \Sigma_k G_k$$

計算每一群中文件與中心的距離平方,然後加總

 Reassignment monotonically decreases G since each vector is assigned to the closest centroid. 每 回合的動作只會讓G越來越小

Time Complexity

- Computing distance between two docs is O(m) where
 m is the dimensionality of the vectors.
- Reassigning clusters: O(Kn) distance computations, or O(Knm).
- Computing centroids: Each doc gets added once to some centroid: O(nm).
- Assume these two steps are each done once for I iterations: O(IKnm).

執行 I 回合 ; 分 K 群 ; n 篇文件 ; m 個詞 → 慢且不scalable

改善方法:用**近似估計,抽樣,選擇**等技巧來加速

Issue (1) Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.
 - Select good seeds using a heuristic (e.g., doc least similar to any existing mean)
 - Try out multiple starting points

Example showing sensitivity to seeds

A O	В	C
2	O E	C

In the above, if you start with B and E as centroids you converge to {A,B,C} and {D,E,F}
If you start with D and F you converge to {A,B,D,E} {C,F}

Issue (2) How Many Clusters?

- Number of clusters K is given
 - Partition *n* docs into predetermined number of clusters
- Finding the "right" number of clusters is part of the problem 假設 連應該分成幾群都不知道
 - Given docs, partition into an "appropriate" number of subsets.
 - E.g., for query results ideal value of K not known up front though UI
 may impose limits. 查詢結果分群時通常不會預先知道該分幾群

If K not specified in advance

- Suggest K automatically
 - using heuristics based on N
 - 依經驗法則,例如每m筆分1群,缺點是可能很不準
 - using K vs. Cluster-size diagram 畫成圖表來分析
- Tradeoff between having less clusters (better focus within each cluster) and having too many clusters
 如何取捨

 方法:以「群間變異對應 於整體變異的百分比」來 看(即F檢驗),每增加一 群所能帶來的邊際變異開 始下降的前一點。

Explained Variance. The "elbow" is indicated by the red circle. The number of clusters chosen should therefore be 4.

Ref: "Determining the number of clusters in a data set", Wikipedia.

• The Calinski-Harabasz index

- 群內方差和WGSS:加總各群內各點離各群中心距離之平方和
- 群間方差和BGSS:加總各群中心與全資料中心距離之平方和
- BGSS越大越好,WGSS越小越好,因此得到的分數越高越好。

$$\mathcal{C} = \frac{BGSS/(K-1)}{WGSS/(N-K)} = \frac{N-K}{K-1} \frac{BGSS}{WGSS}$$

Ref: "Clustering Indices", clusterCrit package, R project.

K-means variations

 Recomputing the centroid after every assignment (rather than after all points are re-assigned) can improve speed of convergence of K-means

每個點調整後就重算重心,可以加快收斂

Evaluation of Clustering

What Is A Good Clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - the <u>intra-class</u> (that is, intra-cluster) similarity is high群內同質性越高越好
 - the inter-class similarity is low 群間差異大
 - The measured quality of a clustering depends on both the document representation and the similarity measure used

External criteria for clustering quality

- Based on a gold standard data set (ground truth)
 - e.g., the Reuters collection we also used for the evaluation of classification
- Goal: Clustering should reproduce the classes in the gold standard
- Quality measured by its ability to discover some or all of the hidden patterns

用挑出中間不符合的份子來評估分群好不好

External criterion: Purity

$$\operatorname{purity}(\Omega, C) = \frac{1}{N} \sum_{k} \max_{j} |\omega_{k} \cap c_{j}|$$

- $\Omega = \{\omega_1, \omega_2, \dots, \omega_K\}$ is the set of clusters and $C = \{c_1, c_2, \dots, c_I\}$ is the set of classes.
- For each cluster ω_k : find class c_j with most members n_{kj} in ω_k
- Sum all n_{kj} and divide by total number of points purity是群中最多一類佔該群總數之比例

Example for computing purity

To compute purity:

$$5 = \max_{j} |\omega_{1} \cap c_{j}|$$
 (class x, cluster 1)
 $4 = \max_{j} |\omega_{2} \cap c_{j}|$ (class o, cluster 2)
 $3 = \max_{j} |\omega_{3} \cap c_{j}|$ (class \diamond , cluster 3)
Purity is $(1/17) \times (5 + 4 + 3) \approx 0.71$.

Rand Index

Number of points	Same Cluster in clustering 分在同一群	Different Clusters in clustering 分在不同群
Same class in ground truth 已知同一類	A	C
Different classes in ground truth 已知不同類	В	D

Rand index: symmetric version

$$RI = \frac{A+D}{A+B+C+D}$$

Compare with standard Precision and Recall.

$$P = \frac{A}{A+B}$$

$$R = \frac{A}{A + C}$$

Rand Index example: 0.68

DBSCAN algorithm

- Density-based clustering: clusters are dense regions in the data space, separated by regions of lower object density. A cluster is defined as a maximal set of density-connected points
- May discovers clusters of arbitrary shape
 - c.f. K-mean is spherical

- Definition
 - Eps-neighborhood of point p : points within radius eps from p
 - "High density": Eps-neighborhood of a point contains at least MinPts of points

For radius ε , MinPts=4.

Density of p is "high"

Density of q is "low"

- Core points, Border points, and Noise points
 - A point is a core point if it has more than a specified number of points
 (MinPts) within Eps—These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point nor a border point.

Example

Original Points

Point types: core, border and outliers

 ε = 10, MinPts = 4

- Directly density-reachable
 - point q is directly density-reachable from point p if p is a core object and q is in eps-neighborhood of p

MinPts=4

q is directly density-reachable from p
p is not directly density-reachable
from q
density-reachability is asymmetric

DBSCAN Algorithm: Example

Parameter

- ε = 2 cm
- MinPts = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```

DBSCAN Algorithm: Example

Parameter

- ε = 2 cm
- MinPts = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```

DBSCAN Algorithm: Example

Parameter

- ε = 2 cm
- MinPts = 3


```
\begin{array}{l} \textbf{for each } o \in D \ \textbf{do} \\ \textbf{if } o \ \text{is not yet classified then} \\ \textbf{if } o \ \text{is a core-object then} \\ \textbf{collect all objects density-reachable from } o \\ \textbf{and assign them to a new cluster.} \\ \textbf{else} \\ \textbf{assign } o \ \text{to NOISE} \end{array}
```

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

DBSCAN: Determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor

Visualize the algorithm http://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

epsilon = 1.00 minPoints = 4

After clustering.

What kind of data would you like?

V

Restart

<u>DBSCAN</u>, (Density-Based Spatial Clustering of Applications with Noise), captures the insight that clusters are dense groups of points. The idea is that if a particular point belongs to a cluster, it should be near to lots of other points in that cluster.

It works like this: First we choose two parameters, a positive number epsilon and a

Hierarchical Clustering

Hierarchical Clustering

• Build a tree-based hierarchical taxonomy (dendrogram) from a set of documents.

 One approach: recursive application of a partitional clustering algorithm.

可由每一層不斷執行分群演算法所組成

Dendrogram: Hierarchical Clustering

 Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.

另一種思考:

對階層樹橫向切一刀, 留下有連接在一起的, 就構成一群

Hierarchical Clustering algorithms

- Agglomerative (bottom-up): 由下往上聚合
 - Start with each document being a single cluster.
 - Eventually all documents belong to the same cluster.
- Divisive (top-down): 由上往下分裂
 - Start with all documents belong to the same cluster.
 - Eventually each node forms a cluster on its own.
- Does not require the number of clusters k in advance
 - 不需要先決定要分成幾群
- Needs a termination condition

Hierarchical Agglomerative Clustering (HAC) Algorithm

- Starts with each doc in a separate cluster
 每篇文件剛開始都自成一群
 - then repeatedly joins the <u>closest pair</u> of clusters, until there is only one cluster.
 不斷地將最近的二群做連接
- The history of merging forms a binary tree or hierarchy.
 - 連接的過程就構成一個二元階層樹

Dendrogram: Document Example

 As clusters agglomerate, docs likely to fall into a hierarchy of "topics" or concepts.

Closest pair of clusters 如何計算最近的二群

- Many variants to defining closest pair of clusters
- Single-link 挑群中最近的一點來代表
 - Similarity of the most cosine-similar (single-link)
- Complete-link 挑群中最遠的一點來代表
 - Similarity of the "furthest" points, the least cosine-similar
- Centroid 挑群中的重心來代表
 - Clusters whose centroids (centers of gravity) are the most cosine-similar
- Average-link 跟群中的所有點計算距離後取平均值
 - Average cosine between pairs of elements

Single Link Agglomerative Clustering

Use maximum similarity of pairs:

$$sim(c_i,c_j) = \max_{x \in c_i, y \in c_j} sim(x,y)$$

- Can result in "straggly" (long and thin) clusters due to chaining effect. 長而鬆散的群集
- After merging c_i and c_j , the similarity of the resulting cluster to another cluster, c_k , is:

$$sim((c_i \cup c_j), c_k) = \max(sim(c_i, c_k), sim(c_j, c_k))$$

Single Link Example

Complete Link Agglomerative Clustering

Use minimum similarity of pairs:

$$sim(c_i,c_j) = \min_{x \in c_i, y \in c_j} sim(x,y)$$

- Makes "tighter," spherical clusters that are typically preferable. 緊密一點的群集
- After merging c_i and c_j , the similarity of the resulting cluster to another cluster, c_k , is:

$$sim((c_i \cup c_j), c_k) = min(sim(c_i, c_k), sim(c_j, c_k))$$

Complete Link Example

Computational Complexity

- In the first iteration, all HAC methods need to compute similarity of all pairs of n individual instances which is $O(n^2)$. 兩兩文件計算相似性
- In each of the subsequent *n*–2 merging iterations, compute the distance between the most recently created cluster and all other existing clusters.
 - 包含合併過程 O(n² log n)

Key notion: cluster representative

- We want a notion of a representative point in a cluster
 如何代表該群→可以用中心或其它點代表
- Representative should be some sort of "typical" or central point in the cluster, e.g.,

Example: n=6, k=3, closest pair of centroids

Outliers in centroid computation

- Can ignore outliers when computing centroid.
- What is an outlier?
 - Lots of statistical definitions, e.g.
 - moment of point to centroid $> M \times$ some cluster moment.

Outlier

Using Medoid As Cluster Representative

- The centroid does not have to be a document.
- Medoid: A cluster representative that is one of the documents 用以代表該群的某一份文件
 - Ex. the document closest to the centroid
- Why use Medoid?
 - Consider the representative of a large cluster (>1000 documents)
 - The centroid of this cluster will be a dense vector
 - The medoid of this cluster will be a sparse vector

Clustering: discussion

Feature selection 選擇好的詞再來做分群

- Which terms to use as axes for vector space?
 - IDF is a form of feature selection
 - the most discriminating terms 鑑別力好的詞
 - Ex. use only nouns/noun phrases

Labeling 在分好的群上加標記

- After clustering algorithm finds clusters how can they be useful to the end user?
- Need pithy label for each cluster 加上簡潔厄要的標記
 - In search results, say "Animal" or "Car" in the jaguar example.
 - In topic trees (Yahoo), need navigational cues.
 - Often done by hand, a posteriori. 事後以人工編輯

How to Label Clusters

Show titles of typical documents

用幾份代表文件的標題做標記

Show words/phrases prominent in cluster

用幾個較具代表性的詞做標記

- More likely to fully represent cluster
- Use distinguishing words/phrases配合自動產生關鍵詞的技術

Q 全部

■ 新聞 ▶ 影片

□ 圖片 ② 購物 : 更多

設定 工具

約有 136,000,000 項結果 (搜尋時間: 0.24 秒)

武漢肺炎28日零確診首度連3天無新增病例

中央社即時新聞 - 16 小時前

中央社記者陳偉婷台北28日電)中央流行疫情指揮中心宣布,台灣今天無新增武漢肺 炎(2019冠狀病毒疾病,COVID-19)確診病例,疫情指揮中心...

武漢肺炎》台灣連3日零確診! 全球確診破306萬死亡逾21萬 自由時報電子報 - 7 小時前

武漢 肺炎全球確診破300萬各國對城解對情況一次看

中央社即時新聞 - 16 小時前

快訊》讚讚讚!台灣武漢肺炎連3天0確診307人解除隔離

新頭殼 - 16 小時前

直播/今日再度0確診!國內新冠肺炎維持429例

udn 聯合新聞網 (新聞發布) - 16 小時前

查看全部

武漢肺炎全球最新情報4/28

中央社即時新聞 - 22 小時前

中央社台北28日電) 2019冠狀病毒疾病(COVID-19,武漢肺炎) 疫情有緩和趨勢, 多國都著眼放寬封鎖令,但民眾已不耐遲遲未解禁,冒險外出、抗命 ...

英牛津團隊進度領先9月前可能推出武漢肺炎疫苗

中央社即時新聞 - 11 小時前

中央社倫敦27日綜合外電報導)2019冠狀病毒疾病(COVID-19,武漢肺炎)肆虐全 球,各國競相開發疫苗。根據「紐約時報」,英國牛津大學實驗室領先...

武漢肺炎》猴子實驗成功牛津大學:疫苗最快9月間世

自由時報電子報 - 13 小時前

【武漢肺炎】牛津疫苗為何如此快進入臨床階段?

立場新聞 - 7 小時前

查看全部

Labeling

- Common heuristics list 5-10 most frequent terms in the centroid vector. 通常用5~10個詞來代表該群
- Differential labeling by frequent terms
 - Within a collection "Computers", clusters all have the word *computer* as frequent term.
 - Discriminant analysis of centroids.
 - 要挑選有鑑別力的詞

Topic Model 應用分群在主題建模上

- 在數量龐大的文件集合中自動地發現某些結構 (主題),並 將每個主題用某些關鍵字的形式表現 (註:即Bag-of-Word模型);
 隨後,還可以知道每篇文章中各個主題占得比重如何,並 據此判斷兩篇文章的相關程度。
- 分群演算法就可以將關鍵字群聚成若干主題。

延伸學習

Topic Modelling (with LSA, pLSA, or LDA)

Discussions