Teorema de Hanh-Banach, Mazur-Orlicz y consecuencias

Lema 0.1. Sea V un espacio vectorial distinto de cero $y : V \to \mathbb{R}$ un funcional sublineal. Fijamos un elemento $y \in V$. Para todo $x \in V$ tomamos

$$P_y(x) := \inf_{\lambda > 0} [P(x + \lambda y) - \lambda P(y)]$$

Entonces, $P_y: V \to \mathbb{R}$, P_y es sublineal, $P_y \leq P$ y $P_y(-y) \leq -P(y)$.

Proof. Fijamos $y \in V$. Sea $x \in V$ y $\lambda > 0$, como P es sublineal tenemos:

$$\lambda P(y) = P(\lambda y) = P(\lambda y + x - x) \le P(x + \lambda y) + P(-x)$$

Por lo tanto, se obtiene que $P(x+\lambda y)-\lambda P(y)\geq -P(-x)$. Tomando el ínfimo sobre $\lambda>0$ llegamos a $P_y(x)\geq -P(-x)>-\infty$. Por consiguiente, $P_y:V\to\mathbb{R}$.

Probaremos ahora que P_y es sublineal. Empezamos viendo la subaditividad. Tomamos $x_1, x_2 \in V$ y sean $\lambda_1, \lambda_2 > 0$ arbitrarios. Entonces:

$$[P(x_1 + \lambda_1 y) - \lambda_1 P(y)] + [P(x_2 + \lambda_2 y) - \lambda_2 P(y)]$$

$$\geq [P(x_1 + x_2(\lambda_1 + \lambda_2)y)] - (\lambda_1 + \lambda_2)P(y)$$

$$\geq P_y(x_1 + x_2)$$

Tomando ínfimo sobre λ_1 y λ_2 , $P_y(x_1) + P_y(x_2) \ge P_y(x_1 + x_2)$. Así, P_y es subaditiva. Para comprobar que es positivamente homogénea tomamos $x \in V$ y $\mu > 0$. Entonces:

$$P_y(\mu x) = \inf_{\lambda > 0} \left[P(\mu x + \lambda y) - \lambda P(y) \right] = \mu \inf_{\lambda > 0} \left[P(ux + (\lambda/\mu)y) - (\lambda/\mu)P(y) \right]$$
$$= \mu \inf_{v > 0} \left[P(ux + vy) - vP(y) \right] = \mu P_y(x)$$

Obtenemos que P_y es positivamente homogénea y como consecuencia sublineal.

Para demostrar que $P_y \leq P$, sea $x \in V$ y tomando $\lambda = 1$. Como P es sublineal se tiene:

$$P_y(x) \le P(x+y) - P(y) \le P(x) + P(y) - P(y) = P(x) \Longrightarrow P_y \le P$$

Finalmente, actuando de manera similar al caso anterior:

$$P_y(-y) \le P(-y+y) - P(y) = -P(y)$$

Teorema 0.1 (Hanh-Banach). Sea V un espacio vectorial distinto de cero $y P : V \to \mathbb{R}$ un funcional sublineal. Entonces existe un funcional lineal L en V tal que $L \leq P$.

Proof. Sea \mathcal{Q} el conjunto de funcionales lineales Q en V tales que $Q \leq P$. Primero probaremos que todo subconjunto \mathcal{T} totalmente ordenado de \mathcal{Q} tiene una cota inferior en \mathcal{Q} . Para $T_1, T_2 \in \mathcal{Q}$ definimos:

$$T_1 \le T_2 \iff T_1(x) \le T_2(x) \quad \forall x \in V$$

obteniendo la relación de orden en \mathcal{Q} . Definimos $Q(x) := \inf\{T(x) : T \in \mathcal{T}\}$. Si $x \in V$ y $T \in \mathcal{T}$, como T es subaditiva al ser sublineal obtenemos la siguiente relación $0 = T(0) = T(x-x) \leq T(x) + T(-x) \Longrightarrow T(x) \geq -T(-x)$ (1). Como $T \in \mathcal{Q} \Longrightarrow T(x) \leq P(x) \Longrightarrow -T(x) \geq -P(x)$ (2). Usando (1) y (2) y tomando ínfimo sobre T llegamos a $Q(x) \geq -P(x) \geq -\infty$. Por lo tanto $Q: V \to \mathbb{R}$.

Ahora probaremos que Q es subaditiva. Para ello, tomamos $x_1, x_2 \in V$. Sean $T_1, T_2 \in \mathcal{T}$ arbitrarios. Si $T_1 \geq T_2$:

$$T_1(x_1) + T_2(x_2) \ge T_2(x_1) + T_2(x_2) \ge T_2(x_1 + x_2) \ge Q(x_1 + x_2)$$

El caso de $T_2 \geq T_1$ es análogo. Concluimos que ambos casos $T_1(x_1) + T_2(x_2) \geq Q(x_1 + x_2)$. Tomando ínfimo en T_1 y T_2 obtenemos que $Q(x_1) + Q(x_2) \geq Q(x_1 + x_2)$. Así, Q es sublineal. Que sea positivamente homogénea es consecuencia de que T también lo es. Dado $\mu > 0$:

$$Q(\mu x) = \inf\{T(\mu x) : T \in \mathcal{T}\}$$
$$= \inf\{\mu T(x) : T \in \mathcal{T}\}$$
$$= \mu \inf\{T(x) : T \in \mathcal{T}\}$$
$$= \mu Q(x)$$

De este modo, Q es sublineal y como es claro que $Q \leq P \Longrightarrow Q \in \mathcal{Q}$.

El lema de Zorn nos proporciona un elemento minimal que llamaremos L de \mathcal{Q} . Tomamos ahora $y \in V$. Con la notación del lema anterior, $L_y : V \longrightarrow \mathbb{R}$ es sublineal, $L_y \leq L$ (como consecuencia $L_y \in \mathcal{Q}$) y $L_y(-y) \leq L(-y)$. De hecho, como L es minimal en \mathcal{Q} , $L_y = L$ y por ello $L(-y) \leq L(-y)$. Por otro lado, como L es subaditiva, $L(-y) \geq -L(y)$. Combinando ambas desigualdades, L(-y) = -L(y). Tomamos $x \in V$ y $\lambda < 0$, usando la igualdad anterior llegamos a:

$$L(\lambda x) = L(-(-\lambda)x) = -L(-\lambda x) = -(-\lambda)L(x) = \lambda L(x)$$

obteniendo que L es homogénea. Si $x_1, x_2 \in V$, la subaditividad de L nos da $L(-x_1-x_2) \leq L(-x_1) + L(-x_2)$. Usando la homogeneidad de L:

$$L(x_1 + x_2) = L(-(-x_1 - x_2)) = -L(-x_1 - x_2)$$

$$\geq -L(-x_1) - L(-x_2) = L(x_1) + L(x_2) \geq L(x_1 + x_2)$$

Por ello, $L(x_1 + x_2) = L(x_1) + L(x_2)$ y concluimos que L es lineal.

Lema 0.2. Sea V un espacio vectorial distinto de cero $y : V \to \mathbb{R}$ un funcional sublineal. Sea D un subconjunto no vacío y convexo de V y $\beta := \inf_D P \in \mathbb{R}$. Para todo $x \in V$ tomamos

$$Q(x) := \inf_{d \in D, \lambda > 0} \left[P(x + \lambda d) - \lambda \beta \right]$$

Entonces, $Q: V \to \mathbb{R}$, Qes sublineal, $Q \leq P$ y $\forall d \in D, -Q(-d) \geq \beta$.

Proof. Si $x \in V$, $d \in D$ y $\lambda > 0$ entonces

$$P(x + \lambda d) - \lambda \beta \ge -P(-x) + \lambda P(d) - \lambda \beta \ge -P(-x) \ge -\infty$$

La primera igualdad se deduce de la linealidad de P ya que:

$$\lambda P(d) = P(\lambda d) = P(\lambda d + x - x) \leq P(x + \lambda d) + P(-x) \Longrightarrow -P(-x) \leq P(x + \lambda d)$$

Y la segunda a que como $\beta = \inf_D P \Longrightarrow \lambda P(d) \ge \lambda \beta \Longrightarrow \lambda P(d) - \lambda \beta \ge 0$. Tomando el ínfimo sobre $d \in D$ y $\lambda > 0$ llegamos a $Q(x) \ge -P(-x) > -\infty$. Por consiguiente, $Q: V \to \mathbb{R}$. Es relativamente fácil probar qu Q es positivamente homogénea por lo que para ver que es sublineal solo queda ver la subaditividad. Para ello, tomamos $x_1, x_2 \in V$. Sean $d_1, d_2 \in D$ y $\lambda_1, \lambda_2 > 0$ arbitrarios. Para simplificar la notación llamamos $x := x_1 + x_2$, $\lambda := \lambda_1 + \lambda_2$ y $d := (\lambda_1/\lambda)d_1 + (\lambda_2/\lambda)d_2$ Entonces:

$$[P(x_1 + \lambda_1 d_1) - \lambda_1 \beta] + [P(x_2 + \lambda_2 d_2) - \lambda_2 \beta] \ge P(x + \lambda_1 d_1 + \lambda_2 d_2) - \lambda \beta$$
$$= P(x + \lambda d) - \lambda \beta$$
$$\ge Q(x) = Q(x_1 + x_2)$$

Tomando ínfimo sobre d_1, d_2, λ_1 y λ_2 , $Q(x_1) + Q(x_2) \geq Q(x_1 + x_2)$. Así, Q es subaditiva y como consecuencia sublineal. Fijamos $d \in D$. Sea $x \in V$ arbitrario. Entonces, $\forall \lambda > 0$, $Q(x) \leq P(x) + \lambda \left[P(d) - \beta \right]$. Tomando $\lambda \longrightarrow 0$, $Q(x) \leq P(x)$ y como consecuencia $Q \leq P$. Finalemente, sea $d \in D$ arbitrario y tomando $\lambda = 1$:

$$Q(-d) \le Q(-d+d) - \beta = -\beta \Longrightarrow -Q(-d) \ge \beta$$

Teorema 0.2 (Mazur-Orlicz). Sea V un espacio vectorial distinto de cero $y : V \to \mathbb{R}$ un funcional sublineal. Sea D un subconjunto no vacío y convexo de V. Entonces existe un funcional lineal L sobre V tal que $L \leq P$ y inf D $L = \inf_D P$

Proof. Sea $\beta := \inf_D P$. En el caso de que $\beta = -\infty$ por el lema 0.1 tenemos que L es lineal y $L \leq P$. Así:

$$L \leq P \Longrightarrow inf_D L \leq \inf_D P = -\infty \Longrightarrow inf_D L = \inf_D P$$

Supongamos entonces que $\beta \in \mathbb{R}$. Definimos el funcional auxiliar Q tal y como en el lema 0.2. Del lema 0.1 obtenemos que existe un funcional lineal L sobre V tal que $L \leq Q$ (como $Q \leq P$ tenemos que $L \leq P$). Sea $d \in D$, entonces:

$$L(d) = -L(-d) \ge -Q(-d) \ge \beta$$

Tomando ínfimo sobre $d \in D$:

$$\inf_{D} L \ge \beta = \inf_{D} P$$

Por otro lado, como $L \geq P$:

$$\inf_{D} L \leq \inf_{D} P$$

Juntando ambas desigualdades obtenemos $\inf_D L = \inf_D P$

Lema 0.3. Sea C un subconjunto no vacío y convexo de un espacio vectorial. Dadas $f_1, ..., f_N$ funciones reales y convexas sobre C, entones existen $\lambda_1, ..., \lambda_N \geq 0$ tales que $\lambda_1 + ... + \lambda_N = 1$ y

$$\inf_{C} \left[m \acute{a} x \{ f_1, ..., f_N \} \right] = \inf_{C} \left[\lambda_1 f_1 + ... + \lambda_N f_N \right]$$

Proof. Sea $V = \mathbb{R}^N$. Definition $S: \mathbb{V} \longrightarrow P$ como

$$S(x_1,...,x_N) := m\acute{a}x\{x_1,...,x_N\}$$

. Claramente, S es positivamente homogénea. También es subaditiva ya que dados $x,y\in\! \mathbb{V}$:

$$\begin{split} S(x+y) &= m \acute{a} x \{x_1 + y_1, ..., x_N + y_N \} \\ &\leq m \acute{a} x \{x_1, ..., x_N \} + m \acute{a} x \{y_1, ..., y_N \} = S(x) + S(y) \end{split}$$

Por ello, S es sublineal. Tomamos el subconjunto:

$$D = \{(x_1, ..., x_N) \in V : \exists c \in C \ tal \ que \ \forall i = 1, ...N, \ f_i(c) \le x_i\}$$

Veamos que D es un subconjunto convexo de V. Sean $x,y\in D$, por ello, existen $c_x,c_y\in C$ tales que $f_i(c_x)\leq x_i$ y $f_i(c_y)\leq y_i$ $\forall i=1,...,N$. Dado $\lambda\in[0,1]$, llamamos $c:=(1-\lambda)c_x+\lambda c_y$ que pertenece a C por ser este convexo. Veamos que c es el elemento necesario de C para que caulquier combinación convexa de x e y esté en D. Así:

$$f_i(c) = f_i((1-\lambda)c_x + \lambda c_y) \le (1-\lambda)f(c_x) + \lambda f(c_y) \le (1-\lambda)x_i + \lambda y_i$$
, $\forall i = 1, ..., N$

donde la primera desigualdad se debe a que las f_i son convexas y la segunda a que $x, y \in D$. Por ello, $(1 - \lambda)x_i + \lambda y_i \in D$, $\forall \lambda \in [0, 1]$ por lo que D es convexo. Aplicando el Teorema de Mazur-Orlizc, existe L sobre V tal que $L \leq S$ e $\inf_D L = \inf_D S$.

Al ser L lineal, existen $\lambda_1, ..., \lambda_N \in \mathbb{R}$ tales que:

$$L(x) = \lambda_1 x_1 + ... + \lambda_N x_N, \forall x \in V$$

Como $L \leq S$ tenemos que $\lambda_1 x_1 + ... + \lambda_N x_N \leq m \acute{a} x \{x_1, ..., x_N\}$ por lo que también se tiene que cumplir que $\lambda_1, ..., \lambda_N \geq 0$ y $\lambda_1 + ... + \lambda_N = 1$.

Finalmente:

$$\inf_{D} L = \inf_{c \in C} \left[\lambda_1 f(c) + ... + \lambda_N f(c) \right] = \inf_{C} \left[\lambda_1 f + ... + \lambda_N f \right]$$

У

$$\inf_{D} S = \inf_{c \in C} \left[m \acute{a}x \{ f_{1}(c), ..., f_{N}(c) \} \right] = \inf_{C} \left[m \acute{a}x \{ f_{1}, ..., f_{N} \} \right]$$

por lo que

$$\inf_{C} \left[\lambda_1 f + ... + \lambda_N f \right] = \inf_{C} \left[m \acute{a} x \{ f_1, ..., f_N \} \right]$$