Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie următoarea definiție de predicat PROLOG f(integer, integer), având modelul de flux (i, o):

```
f(1, 1):-!. f(K,X):-K1 is K-1, f(K,X), Y>1, !, K2 is K1-1, X is K2. f(K,X):-K1 is K-1, f(K,X), Y>0.5, !, X is Y. f(K,X):-K1 is K-1, f(K,X), X is Y-1.
```

Rescrieți această definiție pentru a evita apelul recursiv f(J,V) în clauze. Nu redefiniți predicatul. Justificați răspunsul.

В.	Dându-se o listă neliniară conținând atât atomi numerici, cât și nenumerici, se cere un program LISP care să înlocuiască fiecare atom nenumeric cu numărul de apariții ale atomului la nivelul pe care se află. De exemplu , pentru lista (F A 12 13 (B 11 (A D 15) C C (F)) 18 11 D (A F) F), rezultatul va fi (2 1 12 13 (1 11 (1 1 15) 2 2 (1)) 18 11 1 (1 1) 2).

C. Să se scrie un program PROLOG care generează lista combinărilor de **k** elemente cu numere de la 1 la **N**, având diferența între două numere consecutive din combinare număr par. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru N=4, $k=2 \Rightarrow [[1,3],[2,4]]$ (nu neapărat în această ordine)

D. Se consideră o listă neliniară. Să se scrie o funcţie LISP care să aibă ca rezultat lista iniţială in care atomii de pe nivelul k au fost inlocuiti cu 0 (nivelul superficial se consideră 1). Se va folosi o funcţie MAP.

 <u>Exemplu</u> pentru lista (a (1 (2 b)) (c (d)))
 a) k=2 => (a (0 (2 b)) (0 (d)))
 b) k=1 => (0 (1 (2 b)) (c (d)))
 c) k=4 =>lista nu se modifică