

Organização dos Computadores

Prof. Edson Pedro Ferlin

1

Organização dos Computadores

Prof. Edson Pedro Ferlin

professorferlin.blogspot.com

- Objetivos
 - Apresentar a organização dos computadores
- Conteúdos
 - Visão geral dos Computadores
 - Tipos de Computadores
 - Processadores
 - Memórias
 - Memória Secundária (Armazenamento)
 - Entrada/Saída

2

Organização dos Computadores

Bits e Bytes

Assista o vídeo sobre *Bits* e *Bytes* (link: http://youtu.be/fFkH1E9pmz4).

Organização dos Computadores

Prof. Edson Pedro Ferlin

3

professorferlin.blogspot.com

Sistemas Computacionais

Na publicação (Sistemas Computacionais: uma Visão Geral)

(link: http://professorferlin.blogspot.com/2012/05/sistemas-computacionais-uma-visao-geral.html)

temos uma reflexão sobre Sistemas Computacionais.

Organização dos Computadores

Prof. Edson Pedro Ferlin

4

Visão detalhada do Computador

Na publicação (**Uma visão mais detalhada dos componentes básicos dos Computadores**)

(link: http://professorferlin.blogspot.com/2012/06/uma-visao-mais-detalhada-dos.html)

temos uma visão dos componentes do computador.

Organização dos Computadores

Prof. Edson Pedro Ferlin

professorferlin.blogspot.com

Processador

- •<u>Microprocessadores</u> São processadores contidos em um único encapsulamento (Circuito Integrado).
- •<u>Microcontroladores</u> São microprocessadores desenvolvidos para aplicações específicas de controle e que possuem diversos recursos embutidos, como por exemplo as memórias de dados e de programas, portas de E/S, controlador de interrupção e etc.

8

Organização dos Computadores

Memória

É onde os programas e os dados são armazenados:

- •BIOS que é um programa em linguagem de máquina que fica gravado em uma EPROM (*Erase Programmable Read Only Memory*) ou ROM.
- •Memória Principal onde ficam armazenados os programa e dos dados em um computador, e são memórias do tipo RAM dinâmica.
- •Cache composta por memórias do tipo RAM (*Random Access Memory*) estática que armazena os dados que o processador está utilizando de maneira a ganhar em desempenho.

9

Organização dos Computadores

Prof. Edson Pedro Ferlin

professorferlin.blogspot.com

Entrada e Saída

Serve para a comunicação entre o computador e o mundo externo:

- Interface
- Controlador
- Dispositivo

10

Organização dos Computadores

Barramento

Um barramento é uma estrutura de interconexão capaz de associar diversos componentes de um computador:

- •Dados responsável pela transferência de dados entre os componentes;
- •Endereço responsável pelo envio do endereço do processador para os demais componentes;
- •Controle responsável pelo envio e recebimento dos sinais de controle necessários para o funcionamento do computador.

11

Organização dos Computadores

Prof. Edson Pedro Ferlin

professorferlin.blogspot.com

Tipos de Computadores

- **Dedicados (sistemas embarcados)**: Possuem funções específicas. São encontrados em equipamentos tais como videocassetes, computadores de bordo, etc. Geralmente sua função é limitada ao interesse do equipamento.
- **Genéricos**: São os que podem assumir diferentes funções, dependendo do programa.

12

Organização dos Computadores

Classificação de Flynn (1966)

SISD – Single Instruction, Single Data

fluxo único de instruções e de dados.

Ex: Computador tradicional

MIMD - Multiple Instruction, Multiple Data

fluxo múltiplo de instruções e de dados.

Ex: Máquinas Paralelas

SIMD - Single Instruction, Multiple Data

fluxo único de instruções e múltiplos de dados.

Ex: Máquinas vetoriais

MISD - Multiple Instruction, Single Data

fluxo múltiplo de instruções e simples de dados.

Ex: Não existe

13

Organização dos Computadores

Velocidade

- •Clock Quanto mais rápido for este relógio, mais rápido é o computador na resolução de um problema (programa).
- •Tamanho do ciclo de máquina Cada instrução necessita de um pequeno tempo (ciclo de máquina) para ser interpretada e executada pelo computador.
- •Tamanho do barramento de dados Quanto mais linhas existir nestes barramentos, mais fácil e rápida é a transferência de dados entre os componentes.
- •Velocidade das memórias e periféricos Quando o processador solicita uma informação da memória ou periférico, ele precisa aguardar por alguns instantes (nano até milisegundos) a resposta.

22

Organização dos Computadores

Chipset

	450GX	450GX	440GX
Multi-processing support	4-way	4-way	2-way
Bus Frequency	66 MHz	100 MHz	100 MHz
Address Bus Width	36 bits	36 bits	32 bits
Data Bus Width	64 bits	64 bits	64 bits
In order queue depth	8	8	4
Memory request queue	4	24	
Outbound read request queue	8 (same buffer for read/write)	24	
Outbound write posting request queue	8	8	
Inbound read request queue	8	8	
Memory Capacity	4 GB	8 GB	2 GB
Memory Interleaving	0, 2 and 4-way	2 and 4-way	
Address Bit Permuting	Yes	Yes	
Number of possible 32 bit PCI	2	4	1
Number of possible 64 bit PCI	0	2	0
AGP Support	No	No	Yes (66/133 MHz)

27 Organização dos Computadores

Prof. Edson Pedro Ferlin

professorferlin.blogspot.com

Computadores Paralelos

Na publicação (**Computadores Paralelos: Multiprocessadores** versus **Multicomputadores**)

(link: http://professorferlin.blogspot.com/2012/06/computadores-paralelos.html)

temos uma visão dos computadores paralelos.

28

Organização dos Computadores

