9 Response theory

Remark 9.1. In the presence of a time-varying field, the electronic wavefunction is no longer simply an eigenfunction of the Hamiltonian. Instead, the electronic structure is described by the *time-dependent Schrödinger equation*

$$H(t)\Psi(t) = i\frac{\partial \Psi(t)}{\partial t} \qquad \qquad H(t) = H + V(t) \tag{9.1}$$

where H is the usual electronic Hamiltonian and the interaction Hamiltonian V(t) describes electronic coupling to the external field. Most interactions can be expressed as a sum over one-electron operators V_{β} representing the electronic degrees of freedom which are coupled to the field, scaled by time-envelopes $f_{\beta}(t)$ representing the field strength over time.

$$V(t) = \sum_{\beta} V_{\beta} f_{\beta}(t) \tag{9.2}$$

where $\{V_{\beta}\}$ is a set of one-electron operators

V(t) is a time-dependent perturbation describing the energetic coupling to the .

the time-dependent perturbation V(t) is the Hamiltonian of the interaction between the electrons and the time-varying field.

Remark 9.2. In the presence of a time-varying field, the electronic wavefunction is no longer simply an eigenfunction of the Hamiltonian. This more general system is described by the following $time-dependent\ Schrödinger\ equation$ where H is the usual electronic Hamiltonian and V(t) describes the interaction with the external field. Appendix A shows how to solve this.

A convenient starting point for response theory is to cast the interaction Hamiltonian in the following form

$$V(t) = \sum_{\beta} V_{\beta} f_{\beta}(t) \tag{9.3}$$

where $\{V_{\beta}\}$ is a set of one-particle operators and the $f_{\beta}(t)$'s are scalar-valued time envelopes. A convenient set of boundary conditions for response theory turns the interaction off in the infinite past and requires that the system begins in a stationary state, which is usually chosen to be the ground state.

$$\lim_{t \to -\infty} f_{\beta}(t) = 0 \qquad \qquad \lim_{t \to -\infty} \tilde{\Psi}(t) = \Psi_0 \qquad \qquad H\Psi_k = E_k \Psi_k \tag{9.4}$$

This can be imposed on any time envelope with a finite $t \to -\infty$ limit by building in a factor $e^{-\epsilon t}$ where ϵ is a real number. For sufficiently small ϵ , this new envelope will match the old one to arbitrary precision in an arbitrarily wide window about the time origin.

Example 9.1. The dipole approximation. The dominant coupling of an electronic system to an external electric or magnetic field, $\mathbf{E}(t)$ or $\mathbf{B}(t)$, is mediated through its dipoles. Quantizing the classical formulae for these interactions gives

$$V_{\mathbf{E}}(t) \approx -\boldsymbol{\mu} \cdot \mathbf{E}(t) = -\sum_{\beta} \mu_{\beta} \mathcal{E}_{\beta}(t) \qquad \qquad \boldsymbol{\mu} = \sum_{pq} \langle \psi_{p} | \hat{\boldsymbol{\mu}} | \psi_{q} \rangle a_{p}^{\dagger} a_{q} \qquad \qquad \hat{\boldsymbol{\mu}} = -\hat{\mathbf{r}}$$

$$V_{\mathbf{B}}(t) \approx -\boldsymbol{m} \cdot \mathbf{B}(t) = -\sum_{\beta} m_{\beta} \mathcal{B}_{\beta}(t) \qquad \qquad \boldsymbol{m} = \sum_{pq} \langle \psi_{p} | \hat{\boldsymbol{m}} | \psi_{q} \rangle a_{p}^{\dagger} a_{q} \qquad \qquad \hat{\boldsymbol{m}} = -\frac{1}{2} (\hat{\boldsymbol{l}} + 2\,\hat{\mathbf{s}})$$

$$(9.5)$$

where $\hat{\mu}$ and \hat{m} are the first-quantized electric and magnetic dipole operators of a single electron.¹ The orbital angular momentum operator is $\hat{l} = \hat{\mathbf{r}} \times \hat{\mathbf{p}}$, and $\hat{\mathbf{s}}$ is the intrinsic spin angular momentum operator.

Definition 9.1. Quasi-energy.

$$\Psi(t) = e^{-i\theta(t)}\bar{\Psi}(t) \qquad \lim_{t \to -\infty} \bar{\Psi}(t) = \Psi_0 \qquad \theta(t)|_{f=0} = E_0 t \qquad (9.6)$$

$$(H(t) - i\frac{\partial}{\partial t})\bar{\Psi}(t) = \dot{\theta}(t)\bar{\Psi}(t)$$
(9.7)

$$\dot{\theta}(t) = \int_0^t dt' \langle \bar{\Psi}(t') | H(t') - i \frac{\partial}{\partial t'} | \bar{\Psi}(t') \rangle$$
(9.8)

$$\langle \delta \bar{\Psi}(t) | H(t) - i \frac{\partial}{\partial t} | \bar{\Psi}(t) \rangle = \dot{\theta}(t) \langle \delta \bar{\Psi}(t) | \bar{\Psi}(t) \rangle \tag{9.9}$$

$$\langle \delta \bar{\Psi}(t) | \bar{\Psi}(t) \rangle + \langle \bar{\Psi}(t) | \delta \bar{\Psi}(t) \rangle = 0 \tag{9.10}$$

$$\delta\langle\bar{\Psi}(t)|H(t) - i\frac{\partial}{\partial t}|\bar{\Psi}(t)\rangle + i\frac{\partial}{\partial t}\langle\bar{\Psi}(t)|\delta\bar{\Psi}(t)\rangle = 0$$
(9.11)

¹More generally, these expressions are $\hat{\boldsymbol{\mu}} = q_e \, \hat{\mathbf{r}}$, where $q_e = -e$ is the charge of an electron, and $\hat{\boldsymbol{m}} = \mu_{\rm B}(g_l \, \hat{\boldsymbol{l}} + g_{\rm s} \, \hat{\mathbf{s}})$ where $\mu_{\rm B} = \frac{1}{2} \cdot \frac{e\hbar}{m_e}$ is the Bohr magneton and $g_l = -1$, $g_{\rm s} = -2$ are the spin and orbital *g-factors*. Note that the exact $g_{\rm s}$ actually deviates very slightly from 2 due to effects arising in quantum field theory.

\mathbf{A} Time-dependent perturbation theory

Remark A.1. If the electrons are prepared in a particular state Ψ_0 at some time t_0 , the system is completely described by a time-evolution operator.

$$\Psi(t) = U(t, t_0)\Psi_0 \qquad \qquad \Psi_0 = \Psi(t_0) \tag{A.1}$$

The following discussion shows how to expand this operator in orders of the perturbing interaction, V(t).

Definition A.1. Interaction picture. The interaction picture results from to the following similarity transformation.

$$\tilde{\Theta}(t) \equiv e^{+iHt}\Theta(t)$$
 $\tilde{W}(t) \equiv e^{+iHt}We^{-iHt}$ (A.2)

Expanding the Schrödinger equation in the interaction picture yields the the Schwinger-Tomonaga equation.

$$\tilde{V}(t)\tilde{\Psi}(t) = i\frac{\partial \tilde{\Psi}(t)}{\partial t} \tag{A.3}$$

Multiplying both sides by -i and integrating from t_0 to t yields a recursive equation for the interaction-picture wavefunction

$$\tilde{\Psi}(t) - \tilde{\Psi}(t_0) = -i \int_{t_0}^t dt' \, \tilde{V}(t') \tilde{\Psi}(t')$$
(A.4)

from which we infer $\tilde{U}(t,t_0) = 1 - i \int_{t_0}^t dt' \tilde{V}(t') \tilde{U}(t',t_0)$. Infinite recursion yields the following.

$$\tilde{U}(t,t_0) = \sum_{n=0}^{\infty} (-i)^n \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 \cdots \int_{t_0}^{t_{n-1}} dt_n \, \tilde{V}(t_1) \cdots \tilde{V}(t_n)$$
(A.5)

Definition A.2. Time-ordering. Let $\tilde{q}_1(t_1)\cdots\tilde{q}_n(t_n)$ be a string of particle-hole operators in the interaction picture.² The time-ordering map takes this string into $\mathcal{T}\{\tilde{q}_1(t_1)\cdots\tilde{q}_n(t_n)\} \equiv \varepsilon_{\pi}\,\tilde{q}_{\pi(1)}(t_{\pi(1)})\cdots\tilde{q}_{\pi(n)}(t_{\pi(n)})$, where $\pi \in S_n$ is a permutation that puts the time arguments in reverse-chronological order, $t_{\pi(1)} > \cdots > t_{\pi(n)}$.

Notation A.1. The following notation proves convenient for manipulating multiple integrals

$$\int_{t_1 t_2 t_3 \dots}^{[t_0, t]} dt_1 dt_2 dt_3 \dots \equiv \int_{t_0}^t dt_1 \int_{t_0}^t dt_2 \int_{t_0}^t dt_3 \dots \qquad \int_{t_1 > t_2 > t_3 > \dots}^{[t_0, t]} dt_1 dt_2 dt_3 \dots \equiv \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 \int_{t_0}^{t_2} dt_3 \dots$$
(A.6)

which is defined by analogy with summation notation $\sum_{i_1i_2i_3...}^{\{n_0,...,n\}}$ and $\sum_{i_1>i_2>i_3...}^{\{n_0,...,n\}}$. That is, the t_i 's are dummy variables which we integrate over all values in $[t_0,t]$ satisfying a condition, such as $t_1>t_2>t_3>\cdots$. Then the identity

$$\int_{t_1 \cdots t_n}^{[t_0, t]} dt_1 \cdots t_n f(t_1 \cdots t_n) = \sum_{t_n = 0}^{S_n} \int_{t_{r(1)} \ge \dots \ge t_{r(n)}}^{[t_0, t]} dt_1 \cdots t_n f(t_1 \cdots t_n)$$
(A.7)

follows from considering all possible chronologies for t_1, \ldots, t_n in the unrestricted integral.³⁴

Proposition A.1. The Dyson series. $\tilde{U}(t,t_0) = \mathcal{T}\{e^{-i\int_{t_0}^t dt' \, \tilde{V}(t')}\}$

Proof: Expanding the exponential in a Taylor series and applying equation A.7 gives the following

$$\sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int_{t_1 \cdots t_n}^{[t_0, t]} dt_1 \cdots dt_n \, \mathcal{T}\{\tilde{V}(t_1) \cdots \tilde{V}(t_n)\} = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \sum_{\pi}^{S_n} \int_{t_{\pi(1)} > \dots > t_{\pi(n)}}^{[t_0, t]} dt_1 \cdots dt_n \, \mathcal{T}\{\tilde{V}(t_1) \cdots \tilde{V}(t_n)\}$$
(A.8)

which simplifies to equation A.5 because all n! terms in the sum over π are equivalent by def A.2.⁵

Remark A.2. The Dyson series for the wavefunction can then be written in the form

$$\tilde{\Psi}(t) = \lim_{t_0 \to -\infty} \tilde{U}(t, t_0) \Psi_0 = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int_{\mathbb{R}^n} dt_1 \cdots dt_n \, \theta(t - t_1) \cdots \theta(t - t_n) \, \mathcal{T}\{\tilde{V}(t_1) \cdots \tilde{V}(t_n)\} \Psi_0 \tag{A.9}$$

where $\theta(x) = \int_{-\infty}^{x} dx' \delta(x')$ is the Heaviside step function, which here enforces an upper limit of t for each integral over t_i .

²As in $\tilde{q}(t) \equiv e^{+iHt}qe^{-iHt}$ for some $q \in \{a_p\} \cup \{a_p^{\dagger}\}$.

⁴The corresponding summation identity would be $\sum_{i_1 \neq i_2 \neq i_3 \neq \cdots}^{\{n_0, n\}} = \sum_{\pi}^{\{n_0, n\}} \sum_{i_{\pi(1)} > i_{\pi(2)} > i_{\pi(3)} > \cdots}^{\{n_0, n\}}$. The unrestricted integral is equivalent to the corresponding summation identity would be $\sum_{i_1 \neq i_2 \neq i_3 \neq \cdots}^{\{n_0, n\}} = \sum_{\pi}^{\{n_0, n\}} \sum_{i_{\pi(1)} > i_{\pi(2)} > i_{\pi(3)} > \cdots}^{\{n_0, n\}}$. alent to an integral over $t_1 \neq t_2 \neq t_3 \neq \cdots$ because individual integrand values have "measure zero": $\int_{t_i}^{t_j} dt_i = 0$.

⁵We are assuming that $\tilde{V}(t)$ is particle-number-conserving, or at least contains only even operator products.

B Response functions

Definition B.1. Any perturbation-dependent quantity X(t) can be expanded in a Taylor expansion of the time-envelopes

$$X(t) = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\beta_1, \dots, \beta_n} \int_{\mathbb{R}^n} dt_1 \cdots t_n f_{\beta_1}(t_1) \cdots f_{\beta_n}(t_n) X_{t; t_1 \cdots t_n}^{\beta_1 \cdots \beta_n} \qquad X_{t; t_1 \cdots t_n}^{\beta_1 \cdots \beta_n} \equiv \left. \frac{d^n X(t)}{df_{\beta_1}(t_1) \cdots df_{\beta_n}(t_n)} \right|_{\mathbf{f} = \mathbf{0}}$$
(B.1)

where the coefficients $X_{t;t_1\cdots t_n}^{\beta_1\cdots\beta_n}$ are n^{th} -order responses of X. When the quantity of interest is an observable expectation value, $W(t) = \langle \Psi(t)|W|\Psi(t)\rangle$, we write $\langle\langle \tilde{W}(t); \tilde{V}_{\beta_1}(t_1), \ldots, \tilde{V}_{\beta_n}(t_n)\rangle\rangle \equiv W_{t;t_1\cdots t_n}^{\beta_1\cdots\beta_n}$. In some contexts, these property response functions are also known to as retarded propagators or retarded Green's functions. Note that, since W does not explicitly depend on time, shifting the time origin does not change the value of W(t), because $U(t,t_0)$ only depends on the time elapsed between t_0 and t. This implies $\langle\langle \tilde{W}(t); \tilde{V}_{\beta_1}(t_1), \ldots, \tilde{V}_{\beta_n}(t_n) \rangle\rangle = \langle\langle \tilde{W}(0); \tilde{V}_{\beta_1}(\tau_1), \ldots, \tilde{V}_{\beta_n}(\tau_n) \rangle\rangle$ where we have shifted the origin to t and defined t and t a

Example B.1. Substituting eq 9.3 into eq A.9 and comparing the result to eq B.1 yields the wavefunction responses.

$$\tilde{\Psi}_{t:t_1\cdots t_n}^{\beta_1\cdots\beta_n} = (-i)^n \theta(t-t_1)\cdots\theta(t-t_n) \mathcal{T}\{\tilde{V}_{\beta_1}(t_1)\cdots\tilde{V}_{\beta_n}(t_n)\}\Psi_0$$
(B.2)

Substituting this expansion into $\langle \Psi(t)|W|\Psi(t)\rangle = \langle \tilde{\Psi}(t)|\tilde{W}(t)|\tilde{\Psi}(t)\rangle$ and grouping powers of \boldsymbol{f} gives the following

$$\langle \langle \tilde{W}(t); \tilde{V}_{\beta_1}(t_1), \dots, \tilde{V}_{\beta_n}(t_n) \rangle \rangle = \sum_{n=0}^{n} \frac{1}{p!(n-p)!} \sum_{\pi}^{S_n} \langle \tilde{\Psi}_{t;t_{\pi(1)}\cdots t_{\pi(p)}}^{\beta_{\pi(1)}\cdots\beta_{\pi(p)}} | \tilde{W}(t) | \tilde{\Psi}_{t;t_{\pi(p+1)}\cdots t_{\pi(n)}}^{\beta_{\pi(p+1)}\cdots\beta_{\pi(n)}} \rangle$$
(B.3)

which can be further simplified using the permutational symmetries of the wavefunction responses.

Proposition B.1.
$$\langle \langle \tilde{W}(t); \tilde{V}_{\beta}(t') \rangle \rangle = -i\theta(t-t') \langle \Psi_0 | [\tilde{W}(t), \tilde{V}_{\beta}(t')] | \Psi_0 \rangle$$

Proof: This follows from equations B.2 and B.3 with n = 1.

Corollary B.1. Defining the excitation energy $\omega_k \equiv E_k - E_0$, the linear response function can be expressed as follows.

$$\langle\langle \tilde{W}(t); \tilde{V}_{\beta}(t') \rangle\rangle = -i\theta(t-t') \sum_{k=0}^{\infty} (e^{-i\omega_k(t-t')} \langle \Psi_0 | W | \Psi_k \rangle \langle \Psi_k | V_{\beta} | \Psi_0 \rangle - e^{-i\omega_k(t'-t)} \langle \Psi_0 | V_{\beta} | \Psi_k \rangle \langle \Psi_k | W | \Psi_0 \rangle)$$

Proof: Expanding the interaction-picture operators of prop B.1 in the Schrödinger picture yields the following

$$\langle\langle \tilde{W}(t); \tilde{V}_{\beta}(t') \rangle\rangle = -i\theta(t-t')(\langle \Psi_0 | We^{-i(H-E_0)(t-t')}V_{\beta} | \Psi_0 \rangle - \langle \Psi_0 | V_{\beta}e^{-i(H-E_0)(t'-t)}W | \Psi_0 \rangle)$$
(B.4)

where we have used $H\Psi_0 = E_0\Psi_0$. The proposition follows by inserting resolution of the identity

C Fourier transforms

Remark C.1. The time-envelopes of

Remark C.2.

$$f_{\beta}(t) = \int_{-\infty}^{\infty} d\omega \, f_{\beta}(\omega_{\epsilon}) e^{-i\omega_{\epsilon}t} \qquad f_{\beta}(\omega_{\epsilon}) \equiv (2\pi)^{-1} \int_{-\infty}^{\infty} dt \, f_{\beta}(t) e^{+i\omega_{\epsilon}t} \qquad \omega_{\epsilon} \equiv \omega + i\epsilon$$
 (C.1)

$$f_{\beta}(-\omega) = f_{\beta}^*(\omega)$$

Footnote: Fourier transforms can always be verified using $\int_{\mathbb{R}} dk \, e^{ikx} = 2\pi \, \delta(x)$

Remark C.3. Define $\tau_j \equiv t_j - t$ and note that $X_{t;t_1\cdots t_n}^{\beta_1\cdots\beta_n} = X_{0;\tau_1\cdots\tau_n}^{\beta_1\cdots\beta_n}$

$$X_{0;\tau_1\cdots\tau_n}^{\beta_1\cdots\beta_n} \equiv (2\pi)^{-n} \int_{\mathbb{R}^n} d\omega_1 \cdots d\omega_n X_{\omega_{\epsilon,1}\cdots\omega_{\epsilon,n}}^{\beta_1\cdots\beta_n} e^{+i\sum_j \omega_{\epsilon,j}\tau_j} \qquad X_{\omega_{\epsilon,1}\cdots\omega_{\epsilon,n}}^{\beta_1\cdots\beta_n} \equiv \int_{\mathbb{R}^n} d\tau_1 \cdots d\tau_n X_{0;\tau_1\cdots\tau_n}^{\beta_1\cdots\beta_n} e^{-i\sum_j \omega_{\epsilon,j}\tau_j}$$
 (C.2)

$$\mathbf{Remark} \ \mathbf{C.4.} \ \int_{\mathbb{R}^n} dt_1 \cdots dt_n \ f_{\beta_1}(t_1) \cdots f_{\beta_n}(t_n) \ X_{t;t_1 \cdots t_n}^{\beta_1 \cdots \beta_n} = \int_{\mathbb{R}^n} d\omega_1 \cdots d\omega_n \ f_{\beta_1}(\omega_{\epsilon,1}) \cdots f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,1} \cdots \omega_{\epsilon,n}}^{\beta_1 \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,1} \cdots \omega_{\epsilon,n}}^{\beta_1 \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,n} \cdots \omega_{\epsilon,n}}^{\beta_1 \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,n} \cdots \omega_{\epsilon,n}}^{\beta_n \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,n} \cdots \omega_{\epsilon,n}}^{\beta_n \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,n} \cdots \omega_{\epsilon,n}}^{\beta_n \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,n} \cdots \omega_{\epsilon,n}}^{\beta_n \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,n} \cdots \omega_{\epsilon,n}}^{\beta_n \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,n} \cdots \omega_{\epsilon,n}}^{\beta_n \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,n} \cdots \omega_{\epsilon,n}}^{\beta_n \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,n} \cdots \omega_{\epsilon,n}}^{\beta_n \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,n} \cdots \omega_{\epsilon,n}}^{\beta_n \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,n} \cdots \omega_{\epsilon,n}}^{\beta_n \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,n} \cdots \omega_{\epsilon,n}}^{\beta_n \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,n} \cdots \omega_{\epsilon,n}}^{\beta_n \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_{\epsilon,n}) X_{\omega_{\epsilon,n} \cdots \omega_{\epsilon,n}}^{\beta_n \cdots \beta_n} e^{-i \sum_j \omega_{\epsilon,j} t_j} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_n) X_{\omega_n}^{\beta_n \cdots \beta_n} d\omega_1 \cdots d\omega_n \ f_{\beta_n}(\omega_n) X_{\omega_n}^{\beta_n \cdots \beta_n} d\omega_n$$

$$\langle\langle \tilde{W}(t); \tilde{V}_{\beta}(t') \rangle\rangle = \sum_{k=0}^{\infty} (g_k^+(\tau) \langle \Psi_0 | W | \Psi_k \rangle \langle \Psi_k | V_{\beta} | \Psi_0 \rangle - g_k^-(\tau) \langle \Psi_0 | V_{\beta} | \Psi_k \rangle \langle \Psi_k | W | \Psi_0 \rangle) \quad g_k^{\pm}(\tau) \equiv -i\theta(-\tau)e^{\pm i\omega_k \tau}$$
(C.3)

$$g_k^{\pm}(\omega_{\epsilon}) = \int_{-\infty}^{\infty} d\tau \, g_k^{\pm}(\tau) e^{-i\omega_{\epsilon}\tau} = -i \int_{-\infty}^{0} d\tau \, e^{-i(\omega_{\epsilon} \mp \omega_k)\tau} = \frac{1}{\omega_{\epsilon} \mp \omega_k}$$
 (C.4)

$$g_k^{\pm}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, g_k^{\pm}(\omega_{\epsilon}) e^{+i\omega_{\epsilon}\tau} = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, \frac{e^{+i\omega_{\epsilon}\tau}}{\omega_{\epsilon} \mp \omega_k}$$
 (C.5)

D Complex Calculus