# Milk (v5) split

#### Contents

| ojectives                                                                                      |
|------------------------------------------------------------------------------------------------|
| nalysis                                                                                        |
| Split                                                                                          |
| LMMS                                                                                           |
| C-section                                                                                      |
| Vaginal                                                                                        |
| Filter                                                                                         |
| C-section                                                                                      |
| Vaginal                                                                                        |
| PCA Clustering                                                                                 |
| C-section                                                                                      |
| Vaginal                                                                                        |
| sparse PCA Clustering                                                                          |
| C-section                                                                                      |
| Vaginal                                                                                        |
| esults 23                                                                                      |
| brary(tidyverse)                                                                               |
| brary(mixOmics)                                                                                |
| <pre>lk(dir("~/Documents/timeOmics_dev/R/", pattern = ".R\$", full.names = TRUE),source)</pre> |
| ad("./milk_data.RData")                                                                        |

## Objectives

Split data in devlivery mode. Re-run, modelisation, pca-clustering, get silhouette coef.

### Analysis

#### Split

```
delivery_mode <- design %>% dplyr::select(BABY, Delivery) %>% unique
index.C <- rownames(OTU) %>% str_split("_") %>% map_chr(~.x[1]) %in%
  (delivery_mode %>% filter(Delivery == "C-section") %>% pull(BABY))
OTU_norm.C <- OTU[index.C,] %>% norm_OTU(AR = T)
OTU_norm.V <- OTU[!index.C,] %>% norm_OTU(AR = T)
```

#### LMMS

#### C-section

```
time_lmms.C <- rownames(OTU_norm.C) %>% str_split("_") %>% map_chr(~.x[2]) %>% as.numeric
sample id = rownames(OTU norm.C)
# cubic p-spline
spline.MILK.C.cubicpspline = lmms::lmmSpline(data = OTU_norm.C, time = time_lmms.C,
                                       sampleID = sample_id,
                                       basis = 'cubic p-spline', keepModels = T,
                                       numCores = 2)
spline.MILK.C.pspline = lmms::lmmSpline(data = OTU_norm.C, time = time_lmms.C,
                                      sampleID = sample_id,
                                      basis = 'p-spline', keepModels = T,
                                      numCores = 2 )
spline.MILK.C.cubic = lmms::lmmSpline(data = OTU_norm.C, time = time_lmms.C,
                                    sampleID = sample_id,
                                    basis = 'cubic', keepModels = T,
                                    numCores = 2)
# summary
spline.MILK.C.cubicpspline@modelsUsed %>% table %>% as.data.frame() %>%
  set_names("ModelUsed", "Cubic P-spline") %>%
 left_join(spline.MILK.C.pspline@modelsUsed %>% table%>% as.data.frame() %>%
              set_names("ModelUsed", "P-spline")) %>%
  left_join(spline.MILK.C.cubic@modelsUsed %>% table%>% as.data.frame() %>%
              set_names("ModelUsed", "Cubic")) %>%
 knitr::kable()
```

| $\overline{\text{ModelUsed}}$ | Cubic P-spline | P-spline | Cubic |
|-------------------------------|----------------|----------|-------|
| 0                             | 95             | 78       | 82    |
| 1                             | 12             | 29       | 25    |

#### Vaginal

| ModelUsed | Cubic P-spline | P-spline | Cubic |
|-----------|----------------|----------|-------|
| 0         | 107            | 95       | 98    |
| 1         | 10             | 22       | 19    |

More straight lines in every delivery mode. Less in pspline.

#### Filter

#### C-section

```
filter.spline.C.res <- wrapper.filter.splines(OTU_norm.C, spline.MILK.C.pspline)
index.filter.C <- (rownames(spline.MILK.C.pspline@predSpline) %in% filter.spline.C.res$to_keep) %>%
   which

spline.data.C <- spline.MILK.C.pspline@predSpline[index.filter.C,] %>% t %>% as.data.frame()
spline.data.C %>% rownames_to_column("time") %>%
   gather(Features, value, - time) %>% mutate(time =as.numeric(time)) %>%
   ggplot(aes(x=time, y = value, col = Features)) + geom_line() + theme_bw() +
   theme(legend.position = "none") + ggtitle("Modelled OTU evolution")
```

### Modelled OTU evolution



#### Vaginal

```
filter.spline.V.res <- wrapper.filter.splines(OTU_norm.V, spline.MILK.V.pspline)
index.filter.V <- (rownames(spline.MILK.V.pspline@predSpline) %in% filter.spline.V.res$to_keep) %>%
    which()

spline.data.V <- spline.MILK.V.pspline@predSpline[index.filter.V,] %>% t %>% as.data.frame()
spline.data.V %>% rownames_to_column("time") %>%
    gather(Features, value, - time) %>% mutate(time =as.numeric(time)) %>%
    ggplot(aes(x=time, y = value, col = Features)) + geom_line() + theme_bw() +
    theme(legend.position = "none") + ggtitle("Modelled OTU evolution")
```

### Modelled OTU evolution



### **PCA** Clustering

### C-section

```
pca.res.C <- pca(spline.data.C, ncomp = 2, scale = F, center = T)
pca.plot(pca.res.C, title = "PCA, with lines, scale = F")</pre>
```

PCA, with lines, scale = F



plotIndiv(pca.res.C)



plotVar(pca.res.C)



pca.res.C <- pca(spline.data.C, ncomp = 2, scale = T, center = T)
pca.get\_cluster(pca.res.C) %>% pull(cluster) %>% table

```
## .
## -2 -1    1    2
## 10 35 11 15
pca.plot(pca.res.C, title = "PCA, with lines, scale = T")
```

### PCA, with lines, scale = T



```
pca.res.C <- pca(spline.data.C, ncomp = 2, scale = F, center = T)
# silhouette coefficient for this clustering
wrapper.silhouette.pca(spline.data.C, ncomp = 2, scale = T, center=T)</pre>
```

```
## [1] 0.8426561
```

pca.plot(pca.res.0.C)

remove lines

```
spline.0.C <- spline.MILK.C.pspline@predSpline[spline.MILK.C.pspline@modelsUsed != 0, ] %>%
    t %>% as.data.frame()
# no filter needed

pca.res.0.C <- pca(spline.0.C, ncomp = 2, scale = T, center = T)

pca.get_cluster(pca.res.0.C) %>% pull(cluster) %>% table

## .
## -2 -1 1 2
## 3 6 14 6
```



# silhouette coefficient for this clustering
wrapper.silhouette.pca(spline.0.C, ncomp = 2, scale = T, center=T)

## [1] 0.698184

#### Vaginal

```
pca.res.V <- pca(spline.data.V, ncomp = 2, scale = F, center = T)
pca.plot(pca.res.V, title = "PCA, with lines, scale = F")</pre>
```

PCA, with lines, scale = F



plotIndiv(pca.res.V)



plotVar(pca.res.V)



pca.res.V <- pca(spline.data.V, ncomp = 2, scale = T, center = T)
pca.get\_cluster(pca.res.V) %>% pull(cluster) %>% table

### PCA, with lines, scale = T



```
pca.res.V <- pca(spline.data.V, ncomp = 2, scale = F, center = T)
# silhouette coefficient for this clustering
wrapper.silhouette.pca(spline.data.V, ncomp = 2, scale = T, center=T)</pre>
```

```
## [1] 0.8730084
```

pca.plot(pca.res.0.V)

remove lines

```
spline.0.V <- spline.MILK.V.pspline@predSpline[spline.MILK.V.pspline@modelsUsed != 0, ] %>%
    t %>% as.data.frame()
# no filter needed

pca.res.0.V <- pca(spline.0.V, ncomp = 2, scale = T, center = T)

pca.get_cluster(pca.res.0.V) %>% pull(cluster) %>% table

## .
## -2 -1 1 2
## 7 8 3 4
```



## [1] 0.4420804

### sparse PCA Clustering

#### C-section

```
keepX = list(seq(11,29, 3), seq(9,15,1))
res.tune.spca.C <- tune.spca(X = spline.data.C, ncomp = 2, keepX = keepX)
tune.spca.choice.keepX(res.tune.spca.C, draw = T)</pre>
```

wrapper.silhouette.pca(spline.0.V, ncomp = 2, scale = T, center=T)





## [1] 11 NA

```
spca.res_f.C <- spca(spline.data.C, ncomp = 2, keepX = c(17,9))
wrapper.silhouette.spca(spline.data.C, keepX = c(17,9), ncomp = 2, scale = T, center=T)</pre>
```

## [1] 0.9527507

spca.plot(spca.res\_f.C)



### • remove lines :

```
keepX = list(seq(11,26, 3), seq(8,15,1))
res.tune.spca.0.C <- tune.spca(X = spline.0.C, ncomp = 2, keepX = keepX)
tune.spca.choice.keepX(res.tune.spca.0.C, draw = T)</pre>
```





## [1] NA NA

```
spca.res_f <- spca(spline.0.C, ncomp = 2, keepX = c(13,13))
wrapper.silhouette.spca(spline.0.C, keepX = c(13,13), ncomp = 2, scale = T, center=T)</pre>
```

## [1] 0.7278328

spca.plot(spca.res\_f)



### Vaginal

```
keepX = list(seq(11,29, 3), seq(9,15,1))
res.tune.spca.V <- tune.spca(X = spline.data.V, ncomp = 2, keepX = keepX)
tune.spca.choice.keepX(res.tune.spca.V, draw = T)</pre>
```





## [1] 17 10

```
spca.res_f.V <- spca(spline.data.V, ncomp = 2, keepX = c(17,10))
wrapper.silhouette.spca(spline.data.V, keepX = c(17,10), ncomp = 2, scale = T, center=T)</pre>
```

## [1] 0.8656932

spca.plot(spca.res\_f.C)



### • remove lines :

```
keepX = list(seq(11,21,1), seq(8,15,1))
res.tune.spca.0.V <- tune.spca(X = spline.0.V, ncomp = 2, keepX = keepX)
tune.spca.choice.keepX(res.tune.spca.0.V, draw = T)</pre>
```





## [1] NA NA

```
spca.res_f <- spca(spline.0.V, ncomp = 2, keepX = c(18,10))
wrapper.silhouette.spca(spline.0.V, keepX = c(18,10), ncomp = 2, scale = T, center=T)</pre>
```

## [1] 0.5840128

spca.plot(spca.res\_f)



# Results

 $Silhouette\ coefficient:$ 

|           | PCA  | PCA w/o lines | sPCA | sPCA w/o lines |
|-----------|------|---------------|------|----------------|
| C-section | 0.84 | 0.69          | 0.95 | 0.72           |
| Vaginal   | 0.87 | 0.44          | 0.86 | 0.58           |
| All       | 0.82 | 0.66          | 0.99 | 0.89           |

nb of molecules :

|           | 0 (after filter) | 1  |
|-----------|------------------|----|
| C-section | 42               | 29 |
| Vaginale  | 68               | 22 |
| All       | 54               | 47 |