Lista de Exercícios 1 - INFERÊNCIA ESTATÍSTICA COMPARADA

2o semestre - 2020

1. Considere uma urna contendo θ bolas numeradas de 1 a θ , $\theta \in \{1, 2, 3, ...\}$, θ desconhecido. Considere o experimento que consiste em retirar uma bola da urna e registrar X: número marcado na bola extraída da urna.

- (a) Determine o erro quadrático médio (EQM) do estimador não-viesado para θ .
- (b) Determine o EQM do estimador de máxima verossimilhança (EMV) para θ .
- **2.** No exercício anterior, considere a seguinte função $L:\{1,2,3,...\}^2 \to \mathbb{R}$ dada por: L(u,v)=1, se $u\neq v$, e L(u,v)=0, se u=v.
- (a) Determine a função de risco do EMV para θ contra a função L.
- (b) Determine a função de risco do estimador não-viesado para θ contra a função L.

Observação: Para o estimador $\delta: \mathcal{X} \to \Theta$, o risco (função de risco) de δ contra uma função L é dado por $R(\delta,\theta) = \mathbb{E}[L(\delta(X),\theta)]$ (note que quando $L(u,v) = (u-v)^2$, o risco de δ é seu EQM)

3. Considerando novamente o exercício 1, determine o estimador de Bayes com relação à perda quadrática $(L(u,v)=(u-v)^2)$, considerando, a priori, que a distribuição de θ é dada por

(a)
$$\mathbb{P}(\theta = j) = \frac{12}{(j+1)(j+2)(j+3)} \mathbb{I}_{\{1,2,\dots\}}(j)$$

(b)
$$\mathbb{P}(\theta = j) = \frac{2}{(j+1)(j+2)} \mathbb{I}_{\{1,2,\ldots\}}(j)$$

- 4. No exercício anterior, determine o EQM dos estimadores obtidos em (a) e (b).
- **5.** Ainda nas condições do exercício 1, determine o estimador de Bayes com relação à perda 0-1 (descrita no exercício 2), considerando, a priori, que
- (a) $\theta 1 \sim Poisson(\lambda_0)$, com $\lambda_0 \in \{1, 2, 3, ...\}$.
- (b) $\theta 1 \sim Binomial(N 1, \frac{1}{2}), \text{ com } N > 1.$
- (c) a distribuição de θ é dada por $\mathbb{P}(\theta=j)=\frac{2}{(j+1)(j+2)}\mathbb{I}_{\{1,2,\ldots\}}(j).$
- **6.** (Schervish (1995)) Sejam X_1, X_2, X_3 variáveis aleatórias cuja distribuição conjunta é dada por:

$$\mathbb{P}(X_1 = 1, X_2 = 1, X_3 = 0) = \mathbb{P}(X_1 = 1, X_2 = 0, X_3 = 1) =$$

= $\mathbb{P}(X_1 = 0, X_2 = 1, X_3 = 1) = \frac{1}{2}$

(a) Mostre que X_1, X_2, X_3 são permutáveis.

- (b) Prove que se $X_4 \in \{0,1\}$ é uma outra variável aleatória, então X_1, X_2, X_3, X_4 não são permutáveis.
- 7. (Schervish (1995)) Seja $\{Y_n\}_{n=1}^{\infty}$ uma sequência de variáveis aleatórias IID com função de distribuição F. Seja Z uma variável aleatória independente de $\{Y_n\}_{n=1}^{\infty}$ com função de distribuição G e, para cada n, seja $X_n = Y_n + Z$. Mostre que $\{X_n\}_{n=1}^{\infty}$ são permutáveis.
- 8. (Schervish (1995)) Suponha que para todo m=1,2,3,..., a função de probabilidade conjunta de $X_1,...,X_m$ é dada por

$$\mathbb{P}(X_1 = x_1, ..., X_m = x_m) = \begin{cases} \frac{1}{10^m}, \sum_{i=0}^{10} a_i i^x (10 - i)^{m-x} & \text{if all } x_i \in \{0, 1\} \\ 0, & \text{caso contrário} \end{cases},$$

onde $x = \sum_{j=1}^{m} x_j$, e os números a_i são não-negativos e somam 1. Seja $\theta = \lim_{m \to \infty} \frac{\sum_{j=1}^{m} X_j}{m}$. Mostre que a distribuição a priori de θ é $\mathbb{P}(\theta = \frac{i}{10}) = a_i$, i = 0, 1, ..., 10.

9. (Schervish (1995)) Sejam $X_1,..,X_{14}$ variáveis aleatórias de Bernoulli permutáveis. Seja $M = \sum_{i=1}^{14} X_i$. Considere que a distribuição de M é dada por:

$$\mathbb{P}(M=2) = 0.3 \quad \mathbb{P}(M=8) = 0.2 \quad \text{e} \quad \mathbb{P}(M=13) = 0.5$$

- (a) Determine $\mathbb{P}(X_{i_1} = 1, X_{i_2} = 1, X_{i_3} = 0, X_{i_4} = 1)$, com $i_j \neq i_l$ se $j \neq l$.
- (b) Suponha que $\sum_{i=1}^{4} X_i = 1$. Determine todas as probabilidades de k "sucessos" em n "tentativas" futuras para n = 1, ..., 10 e k = 0, ..., n.
- **10.** Seja $(X_n)_{n\geq 1}$ uma sequência de variáveis aleatórias de Bernoulli permutáveis. Mostre que $COV(X_i, X_j) = VAR(\theta), i \neq j$, onde θ é o limite (quase certo) de $(\bar{X}_n)_{n\geq 1}$.
- 11. (Schervish (1995)) Seja $\{X_n\}_{n=1}^{\infty}$ uma sequência de variáveis aleatórias permutáveis com variância finita.
- (a) Mostre que $COV(X_i, X_j) \ge 0$, se $i \ne j$.
- (b) Exiba um exemplo de uma tal sequência permutável na qual $COV(X_i, X_j) = 0$, se $i \neq j$, mas as variáveis aleatórias sendo dependentes (não independentes).
- 12. (Schervish (1995)) Seja $\{X_n\}_{n=1}^{\infty}$ uma sequência de variáveis aleatórias de Bernoulli permutáveis. Seja

$$Y = \min\{n : \sum_{i=1}^{n} X_i \ge 2\}$$
,

isto é, Y é o tempo até o segundo "sucesso" (por exemplo, se $X_1 = 1, X_2 = 0, X_3 = 1,$ então Y = 3).

(a) Obtenha a distribuição de Y usando a forma do Teorema da Representação de De Finetti para variáveis de Bernoulli.

- (b) Obtenha a distribuição condicional de $\{X_{n+k}\}_{k=1}^{\infty}$ dado Y=n.
- (c) Mostre que a distribuição em (b) coincide com a distribuição condicional de $\{X_{n+k}\}_{k=1}^{\infty}$ dado que $\sum_{i=1}^{n} X_i = 2$.
- 13. Sejam $(X_1, ..., X_n)$ variáveis aleatórias que, dado $\theta = (\theta_1, \theta_2)$, são condicionalmente independentes e identicamente distribuídas segundo o modelo Normal de média θ_1 e variância θ_2 . Proponha um teste para testar $H_0: \theta = (m_0, v_0)$ contra $H_1: \theta = (m_1, v_1)$. (Considere, $m_0 < m_1$ e $0 < v_0 < v_1$)
- **14.** Considere $\Theta = \{0, 1\}$. Suponha que $X|\theta = 0 \sim U\{0, 1, 2, ..., 19\}$ e que $X|\theta = 1 \sim Bin(19, \frac{1}{2})$. Considere as hipóteses $H_0: \theta = 0$ versus $H_1: \theta = 1$.
- (a) Quantos testes (não-aleatorizados) de nível de significância $\alpha=0,05$ para testar H_0 versus H_1 existem?
- (b) Obtenha o (um) teste mais poderoso de nível de significância $\alpha=0,05$ para H_0 versus H_1 . Você adotaria outro valor para α ?
- (c) Obtenha o teste de Bayes para H_0 versus H_1 considerando a perda $0 a_1 a_2$.
- **15.** Refaça o exercício anterior supondo que $X|\theta=0\sim U\{0,1,2,...,99\}$ e que $X|\theta=1\sim Bin(99,\frac{1}{2})$. Que nível de significância α você adotaria para testar H_0 versus H_1 ?
- **16.** Considere $\Theta = \{0, 1\}$. Suponha que $X|\theta = 0 \sim U\{1, 2, 3, ..., 100\}$ e que $X|\theta = 1 \sim Geo(\frac{95}{100})$.
- (a) Obtenha o teste MP de nível $\alpha = 0,05$ para as hipóteses $H_0: \theta = 0$ versus $H_1: \theta = 1$. Determine o valor de $\frac{\mathbb{P}(X=5|\theta=1)}{\mathbb{P}(X=5|\theta=0)}$. Qual é sua decisão se X=5? E se X=2?
- (b) Para conduzir um teste MP para H_0 versus H_1 , qual valor de α você adotaria?
- (c) Obtenha o teste MP de nível (aproximadamente) $\alpha=0,05$ para as hipóteses H_0' : $\theta=1$ versus H_1' : $\theta=0$. Qual é sua decisão se X=2?
- 17. Seja $X|\theta \sim Exp(\theta)$. Considere as hipóteses $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$, com $\theta_0 > 0$. Para x > 0, determine o p-valor com relação à classe de testes UMP para H_0 .
- **18.** Seja $X|\theta \sim N(\theta, 1)$. Considere as hipóteses $H_0: \theta \in [a, b]$ versus $H_1: \theta \notin [a, b]$, com a < b. Para x > b, determine o p-valor com relação à classe de testes RVG para H_0 .
- 19. Sejam $X_1, ..., X_{14}$ variáveis aleatórias de Bernoulli com distribuição conjunta dada por

$$\mathbb{P}(X_1 = x_1, ..., X_{14} = x_{14} \mid \theta) = \frac{\theta \left(\sum_{i=1}^{14} x_i\right)! \left(\theta + n - 1 - \sum_{i=1}^{14} x_i\right)!}{(\theta + 14)!} ,$$

para $x_i \in \{0,1\}, i=1,...14$, com $\theta \in \{1,2,3,...\}$. Obtenha, se possível, o teste MP de nível de significância $\alpha=0,05$ para $H_0:\theta\in\{2,3,4,...\}$ versus $H_1:\theta=1$.