```
$ 3588 979 323 8 462 643 383 2 795 028 841 9716 939 937 5 105 820 974 9 445 923 078 1 640 628 620 899 4 502 841 0270 193 852 110 5 559 644 6229 5489 549 303 8196 442 881 0 975 665 933 4 461 2847 554 822 377 2 359 940 8128 481 117 867 8316 5271 201 909 145 6 485 669 234 6 034 861 0 45 4 326 648 213 3 936 072 602 4 914 127 372 458 7006 606 315 5 881 748 815 2092 0 906 282 925 4 091 715 364 3 678 925 903 6 001 133 053 054 882 0 466 521 384 14 695 194 151 160 943 330 572 70 365 759 195 300 218 161 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193 26 11 738 193
```

Matematyka

Tablice rozszerzone

Spis treści

1	Symbole i notacja	1
	Litery greckie	1
	Zbiory	
	Logika	
	Zbiory liczbowe	
	Operacje arytmetyczne	
	Stochastyka i statystyka	
	Geometria	
2	Prawa działań, informacje ogólne	3
	Wartość bezwzględna	3
	Potęgi, pierwiastki i logarytmy	
	Wzory skróconego mnożenia	
	Średnie	6
	Błędy przybliżenia	
	Największy wspólny dzielnik	
	Najmniejsza wspólna wielokrotność	
	Oprocentowanie lokat i kredytów	
3	Wielomiany, funkcje wielomianowe	10
	Informacje i twierdzenia	
	Funkcja liniowa	
	Funkcja kwadratowa	
	Funkcja sześcienna	
	Funkcja wymierna	
4	Właściwości i wykresy funkcji	18
	Właściwości funkcji	19
	Wykresy funkcji	
	Przekształcenia funkcji	
5	Ciągi	27
	Informacje i twierdzenia	27
	Granica ciągu liczbowego	
	Ciąg arytmetyczny	
	Ciąg geometryczny	

6	Elementy analizy matematycznej	31
	Granica funkcji	31
	Granica jednostronna	32
	Granica niewłaściwa	33
	Granica w nieskończoności	33
	Własności granic	34
	Symbole nieoznaczone	34
	Definicja ciągłości funkcji	
	Limity a asymptoty wykresu	
	Pochodna funkcji w punkcie	
	Styczna do wykresu funkcji	
	Funkcja pochodna	
	Pochodne wybranych funkcji	
	Własności pochodnych	
	Pochodna a monotoniczność funkcji	
	Ekstrema funkcji	
7	Funkcje trygonometryczne	43
	Miara łukowa kąta	43
	Definicje funkcji trygonometrycznych	43
	Podstawowe tożsamości trygonometryczne	44
	Wartości funkcji trygonometrycznych	45
	Wzory redukcyjne	45
	Tożsamości trygonometryczne	46
	Okresowość funkcji trygonometrycznych	48
8	Planimetria	50
	Symetralna odcinka	
	Dwusieczna kąta	
	Środkowa trójkąta	52
	Twierdzenie o dwusiecznej kąta wewnętrznego	53
	Nierówność w trójkącie	53
	Twierdzenie Pitagorasa	54
	Twierdzenie Steinera-Lehmusa	54
	Pole trójkąta - wzory	55
	Promień okręgu wpisanego i opisanego dowolnego trójkąta	55
	Twierdzenia o dowolnych trójkątach	56
	Trójkąt równoboczny - wzory	
	Twierdzenia o trójkątach równobocznych	
	Trójkąt prostokątny - wzory	
	Cechy przystawania trójkątów	

Cechy podobieństwa trójkątów												63
Twierdzenie sinusów						 						64
Twierdzenie cosinusów						 						65
Twierdzenie tangensów						 						65
Twierdzenie cotangensów						 						65

1 Symbole i notacja

Litery greckie

Nazwa	Mała litera	Duża litera
Alfa	α	A
Beta	eta	B
Gamma	γ	Γ
Delta	δ	Δ
Epsilon	arepsilon	E
Dzeta	ζ	Z
Eta	η	H
Theta	$ heta,\ artheta$	Θ
Jotta	ι	I
Kappa	κ	K
Lambda	λ	Λ
My	μ	M
Ny	ν	N
Ksi	ξ	[1]
Omikron	0	O
Pi	π	Π
Rho	ho,~arrho	P
Sigma	σ,ς	\sum
Tau	au	T
Ipsylon	v	Υ
Phi	$\phi,arphi$	Φ
Chi	χ	X
Psi	ψ	Ψ
Omega	ω	Ω

Zbiory

Symbol	Znaczenie
Ø	Zbiór pusty
$A \cup B$	Suma zbiorów
$A \cap B$	Część wspólna zbiorów
$A \setminus B$	Różnica zbiorów
$A \times B$	Iloczyn kartezjański
\overline{A} , A'	Dopełnienie zbioru
$A \subset B$	Podzbiór zbioru
$A \not\subset B$	Nie jest podzbiorem zbioru
$x \in A$	Należy do zbioru
$x \not\in A$	Nie należy do zbioru
$ A , \overline{\overline{A}}$	Liczebność zbioru

Logika

Symbol	Znaczenie					
^	I (iloczyn logiczny)					
V	Lub (suma logiczna)					
$A \Leftrightarrow B$	Równowartość logiczna					
$A \Rightarrow B$	Konsekwencja logiczna					
$\neg A$	Negacja logiczna					
A : B	Dlatego					
A :: B	Ponieważ					
$\forall x, \bigwedge$	Dla każdego x					
$\exists x, \bigvee_{x}^{x}$	Istnieje x					
$\exists ! \ x, \bigvee_{x}^{x}$	Istnieje dokładnie jeden x					

Zbiory liczbowe

Nazwa	Symbol	Nazwa	Symbol
Naturalne	$\mathbb{N} = \{0, 1, 2, 3, \dots\}$	Wymierne	$\mathbb{Q}, \mathbb{W} = \{ \frac{p}{q} : p, q \in \mathbb{Z} \land q \neq 0 \}$
Naturalne dod.	$\mathbb{N}_+ = \mathbb{N} \setminus \{0\}$	Niewymierne	$\mathbb{R}\setminus\mathbb{Q},\mathbb{NW}$
Całkowite	$\mathbb{Z},\mathbb{C}=\{-1,0,1,\dots\}$	Rzeczywiste	\mathbb{R}

Operacje arytmetyczne

Symbol Znaczenie		Symbol	Znaczenie				
a+b Dodawanie		a < b	Mniejsze od				
a-b Odejmowanie		a > b	Większe od				
$a \cdot b, a \times b$ Mnożenie		$a \leq b$	Mniejsze bądź równe od				
$a/b, \frac{a}{b}$ Dzielenie		$a \ge b$	Większe bądź równe od				
x^n Potęgowanie		$a \approx b$	Aproksymacja				
\sqrt{x} Pierwiastek kwadratowy		x%	Procent				
$\sqrt[n]{x}$ Pierwiaster <i>n</i> -tego stopnia		x%0	Promil				
$\log_a x$ Logarytm o podstawie a		x	Wartość bezwzględna				
$\log x$ Logarytm dziesiętny		$\lceil x \rceil$	Sufit				
$\ln x$ Logarytm naturalny		$\lfloor x \rfloor$	Podłoga				
a = b Znak równości		$\{x\}$	Mantysa (część ułamkowa)				
$a \neq b$ Nierówność		$x \mod a$	Dzielenie całkowite (modulo)				

Stochastyka i statystyka

Symbol	Znaczenie					
n!	Silnia					
$\binom{n}{k}$	Kombinacja bez powtórzeń					
Ω	Przestrzeń probabilistyczna					
P(A)	Prawdopodobieństwo					
$P(A \mid B)$	Prawdopodobieństwo warunkow					
σ^2	Wariancja					
σ	Odchylenie standardowe					
$ar{x}$	Średnia arytmetyczna					

Geometria

Symbol	Znaczenie
AB	Odcinek
$\stackrel{ ightarrow}{AB}$	Wektor
\angle , \angle , \triangleleft	Kąt
$\triangle ABC$	Trójkąt
$\Box ABCD$	Czworokąt
$k \parallel l$	Proste równoległe
$k \perp l$	Proste prostopadłe
\sim	Figury podobne
=	Figury przystające

2 Prawa działań, informacje ogólne

Wartość bezwzględna

Wartość bezwzględna (moduł liczby) - operacja, która zwraca nienegatywną wartość. Zdefiniowana jest następującym równaniem:

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}, x \in \mathbb{R}$$

Dla $a, b \in \mathbb{R}$ prawdziwe są następujące zależności:

- Nienegatywność: $|a| \ge 0$,
- Określoność dodatnia: $|a| = 0 \Leftrightarrow a = 0$,
- Multiplikatywność: |ab| = |a||b|,
- Podaddytywność: $|a+b| \le |a| + |b|$, $|a-b| \ge |a| |b|$,
- Idempotencja: ||a|| = |a|,
- Parzystość: |-a| = |a|,
- Zasada identyczności przedmiotów nierozróżnialnych: $|a-b|=0 \Leftrightarrow a=b,$
- Zachowanie dzielenia: $\left|\frac{a}{b}\right| = \frac{|a|}{|b|} \Leftrightarrow b \neq 0$,

Dodatkowo:

$$|a| = \sqrt{a^2},$$
 $|a| \le b \Leftrightarrow -b \le a \le b,$ $|a| \ge b \Leftrightarrow a \le -b \lor a \ge b$

Potęgi, pierwiastki i logarytmy

Potęgowanie (podniesienie do n-tej potęgi) - operacja dwuargumentowa, która jest zdefiniowana jako iloczyn $a, a \in \mathbb{R} \setminus \{0\}$ (podstawa) $n, n \in \mathbb{N}_+$ (wykładnik) razy:

$$a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ razy}}$$

Szczególne przypadki:

$$a^1 = a,$$
 $a^0 = 1,$ $0^n = 0$

Pierwiastkowanie - operacja odwrotna do potęgowania, która dla a przyjmuje wartość b taką, że pomnożona n razy jest równa b:

$$b=\sqrt[n]{a} \Leftrightarrow b^n=a,$$

$$a=\{x:x\in\mathbb{R}\wedge x\geq 0\}, \qquad b\in\mathbb{R}, \qquad n=\{x:x\in\mathbb{N}\wedge x\geq 1\}$$

Dla $a,b\in\mathbb{R},b\neq 0;m,n\in\mathbb{N},n\neq 0$ prawdziwe są następujące zależności:

$$a^{-n} = \frac{1}{a^n} \qquad \qquad \sqrt[n]{a} = a^{\frac{1}{n}}$$

$$a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}} \qquad \qquad \sqrt[n]{a^m} = a^{\frac{m}{n}}$$

$$(a \cdot b)^n = a^n \cdot b^n \qquad \qquad \sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \qquad \qquad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$(a^n)^m = a^{n \cdot m} \qquad \qquad \sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{a}$$

$$a^n \cdot a^m = a^{n+m} \qquad \qquad \frac{a^n}{a^m} = a^{n-m}$$

$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m \qquad \qquad \sqrt{a^2} = |a|$$

Logarytm - operacja odwrotna do potęgowania, która dla podstawy a oraz argumentu b przyjmuje wartość n taką, że a podniesione do potęgi n jest równe b:

$$n = \log_a b \Leftrightarrow a^n = b$$

$$a = \{x : x \in \mathbb{R} \land x > 0 \land x \neq 1\}, \qquad b \in \mathbb{R}_+, \qquad n \in \mathbb{R}$$

Szczególne przypadki:

$$\log_a 0$$
 – niezdefiniowany, $\log_a 1 = 0$, $\log_a a = 1$

Dla $a,b=\{x:x\in\mathbb{R}\land x>0\land x\neq 1\}; x,y\in\mathbb{R}_+$ prawdziwe są następujące zależności:

- Prawo iloczynu: $\log_a(x \cdot y) = \log_a x + \log_a y$
- Prawo ilorazu: $\log_a \left(\frac{x}{y}\right) = \log_a x \log_a y$
- Prawo potęgi: $\log_a(x^y) = y \cdot \log_a x$
- Zamiana podstawy z argumentem: $\log_a b = \frac{1}{\log_b a}$
- Zmiana podstawy logarytmu: $\log_a x = \frac{\log_b x}{\log_b a}$
- Logarytm potęgi podstawy: $\log_a(a^x) = x$
- a do potęgi logarytmu a z x: $a^{\log_a x} = x$

Wzory skróconego mnożenia

Dla $x, y \in \mathbb{R}$; $n \in \mathbb{N}$ prawdziwe są następujące zależności:

- Kwadrat sumy: $(x+y)^2 = x^2 + 2xy + y^2$
- Kwadrat różnicy: $(x-y)^2 = x^2 2xy + y^2$
- Różnica kwadratów: $x^2 y^2 = (x y)(x + y)$
- Kwadrat sumy trzech składników: $(a+b+c)^2 = a^2+b^2+c^2+2ab+2ac+2bc$
- Sześcian sumy: $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$
- Sześcian różnicy: $(x y)^3 = x^3 3x^2y + 3xy^2 y^3$
- Różnica sześcianów: $x^3 y^3 = (x y)(x^2 + xy + y^2)$
- Suma sześcianów: $x^3 + y^3 = (x+y)(x^2 xy + y^2)$
- Suma *n*-tych potęg: $a^n + b^n = (a+b)(a^{(n-1)} a^{(n-2)}b + \dots ab^{(n-2)} + b^{(n-1)})$
- Różnica *n*-tych potęg: $a^n b^n = (a b)(a^{(n-1)} + a^{(n-2)}b + \ldots + ab^{(n-2)} + b^{(n-1)})$

Za pomocą **trójkąta Pascala** można wyznaczyć współczynniki arugmentów dla sumy i różnicy podniesionej do potęgi dowolnego $n, n \in \mathbb{N}$:

$$n = 0$$
 1
 $n = 1$ 1 1
 $n = 2$ 1 2 1
 $n = 3$ 1 3 3 1
 $n = 4$ 1 4 6 4 1
 $n = 5$ 1 5 10 10 5 1
 $n = 6$ 1 6 15 20 15 6 1

lub skorzystać ze wzoru:

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{(n-1)}b + \binom{n}{2}a^{(n-2)}b^2 + \dots + \binom{n}{n-1}ab^{(n-1)} + \binom{n}{n}b^n$$

Przykład: $(x-y)^5 = x^5 - 5x^4y + 10x^3y^2 - 10x^2y^3 + 5xy^4 - y^5$

Średnie

• Arytmetyczna:
$$S_a = \frac{x_1 + x_2 + x_3 + \ldots + x_n}{n}$$
; $x_1, x_2, x_3, \ldots, x_n \in \mathbb{R}$

• Geometryczna:
$$S_g = \sqrt[n]{x_1 \cdot x_2 \cdot x_3 \cdot \ldots \cdot x_n}; \ x_1, x_2, x_3, \ldots, x_n \in \mathbb{R}_+$$

• Kwadratowa:
$$S_k = \sqrt{\frac{x_1^2 + x_2^2 + x_3^2 + \ldots + x_n^2}{n}}; \ x_1, x_2, x_3, \ldots, x_n \in \mathbb{R}$$

• Harmoniczna:
$$S_h = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \ldots + \frac{1}{x_n}}; \ x_1, x_2, x_3, \ldots, x_n \in \mathbb{R} \setminus \{0\}$$

Nierówność Cauchy'ego między średnimi - średnie wyznaczone dla tego samego układu liczb dodatnich układają się w charakterystyczną nierówność:

$$S_k \ge S_a \ge S_g \ge S_h$$

Błędy przybliżenia

Dla r oznaczającego wartość dokładną i p oznaczającego wartość przybliżoną zdefiniowane są błędy przybliżenia:

Błąd bezwzględny przybliżenia - wartość bezwzględna różnicy między wartością dokładną a przybliżoną, wyrażona wzorem: |r-p|.

Błąd względny przybliżenia - iloraz błędu bezwzględnego i wartości bezwzględnej rzeczywistej wielkości, wyrażona: $\frac{|r-p|}{|r|}$.

Błąd procentowy przybliżenia - wartość procentowa błędu względnego: $\frac{|r-p|}{|r|} \cdot 100\%.$

Największy wspólny dzielnik

Funkcja NWD(a, b), $a, b \in \mathbb{N}_+$ dla liczb a i b znajduje największą liczbę c ze zbioru jednoczesnych dzielników liczb a i b. Znalezienie liczby NWD(a, b) sprowadza się do zastosowania **algorytmu Euklidesa**:

- 1. Dla a, b znajdź większą z nich,
- 2. Od większej liczby odejmij tę mniejszą,
- 3. Powtarzaj, aż odejmowanie liczb da zero.

Przykład:

$$\mathbf{NWD(798, 1008)} = \begin{cases} 1008 - 798 & = & 210 \\ 798 - 210 & = & 588 \\ 588 - 210 & = & 378 \\ 378 - 210 & = & 168 \\ 210 - 168 & = & 42 \\ 168 - 42 & = & 126 \\ 126 - 42 & = & 84 \\ 84 - 42 & = & 42 \\ 42 - 42 & = & 0 \end{cases}$$

Najmniejsza wspólna wielokrotność

Funkcja NWW(a,b), $\in \mathbb{N}_+$ dla liczb a i b znajduje najmniejszą liczbę c taką, że a i b są jednocześnie podzielne przez c. Aby znaleźć NWW(a,b) można posłużyć się następującym wzorem:

$$NWW(a, b) = \frac{|ab|}{NWD(a, b)}$$

NWW oraz NWD można też obliczyć znając rozkład liczb na czynniki pierwsze. NWW oblicza się jako iloczyn największych potęg unikalnych czynników. NWW to iloczyn wspólnych dla obu liczb czynników.

Przykład:

$$1008 = 2^4 \cdot 3^2 \cdot 7 \qquad 798 = 2 \cdot 3 \cdot 7 \cdot 19$$

Więc:

$$NNW(798, 1008) = 2^4 \cdot 3^2 \cdot 7 \cdot 19 = 19152$$
$$NWD(798, 1008) = 2 \cdot 3 \cdot 7 = 42$$

Oprocentowanie lokat i kredytów

Procent prosty - rodzaj oprocentowania polegający na tym, że odsetki doliczane do wkładu nie podlegają oprocentowaniu.

Procent składany - rodzaj oprocentowania, który nalicza procent od odsetek doliczonych do wkładu w każdym kolejnym rozpatrywanym okresie.

Doliczanie odsetek do lokaty nazywa się **kapitalizacją odsetek**, a czas między kapitalizacjami **okresem kapitalizacji**.

Niech K_0 będzie początkowym wkładem pieniężnym, K - końcową otrzymaną kwotą, n - liczbą równych okresów kapitalizacji, które miały miejsce w okresie m, m - liczbą okresów oszczędzania, r - stopą oprocentowania, p - podatkiem od dochodów kapitałowych. Wtedy:

Procent prosty:
$$K = K_0 \cdot \left(1 + \frac{r}{n}\right)^{n \cdot m}$$

Procent składany:
$$K = K_0 \cdot \left[1 + \frac{r}{n} \left(1 - \frac{p}{100}\right)\right]^{n \cdot m}$$

3 Wielomiany, funkcje wielomianowe

Informacje i twierdzenia

Wielomianem stopnia $n, n \in \mathbb{N}_+$ zmiennej rzeczywistej x nazywamy wyrażenie:

$$W(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0,$$

gdzie $a_0, a_1, a_2, \ldots, a_n \in \mathbb{R} \land a_n \neq 0$. Liczby $a_0, a_1, a_2, \ldots, a_n$ to współczynniki wielomianu. Wielomian stopnia zerowego to każda liczba rzeczywista różna od zera. Wielomian zerowy to liczba równa zeru; nie ma określonego stopnia.

Wielomian W(x) jest podzielny przez wielomian P(x) rózny od wielomianu zerowego wtedy i tylko wtedy, gdy istnieje taki wielomian Q(x), dla którego prawdziwa jest równość:

$$W(x) = P(x) \cdot Q(x)$$

Wówczas Q(x) nazywany jest ilorazem wielomianu W(x) przez P(x), a P(x) jest dzielnikiem wielomianu W(x).

Pierwiastek wielomianu W(x) to liczba rzeczywista a, dla której W(a) = 0.

Pierwiastek k-krotny wielomianu W(x), gdzie $k \in \mathbb{N}_+$ to liczba a taka, że W(x) jest podzielny przez $(x-a)^k$ i nie jest podzielny przez $(x-a)^{k+1}$. Liczba k jest nazywana krotnościa pierwiastka.

Twierdzenie o dzieleniu (rozkładzie) wielomianu

Jeśli W(x) oraz P(x) są wielomianami i P(x) nie jest wielomianem zerowym, to istnieją dwa wielomiany Q(x) oraz R(x) takie, że prawdziwa jest równość:

$$W(x) = P(x) \cdot Q(x) + R(x),$$

gdzie R(x) jest wielomianem zerowym lub wielomianem o stopniu mniejszym od stopnia wielomianu P(x).

Twierdzenie o reszcie wielomianu

Reszta z dzielenia wielomianu W(x) przez dwumian (x - a) jest równa W(a).

Twierdzenie o wymiernych pierwiastkach wielomianu o współczynnikach całkowitych

Jeżeli wielomian W(x) ma pierwiastek wymierny, który można zapisać w postaci nieskracalnego ułamka $\frac{p}{q}$, gdzie $p,q\in\mathbb{C} \land q\neq 0$, to p jest dzielnikiem wyrazu wolnego a_0 , natomiast q - dzielnikiem współczynnika a_n przy najwyższej potędze zmiennej.

Twierdzenie Bézouta

Liczba a jest pierwiastkiem wielomianu W(x) wtedy i tylko wtedy, gdy wielomian W(x) jest podzielny bez reszty przez dwumian (x - a).

Twierdzenie o liczbie pierwiastków wielomianu

Każdy wielomian stopnia n ma co najwyżej n pierwiastków.

Twierdzenie o rozkładzie wielomianu na czynniki

Każdy wielomian stopnia co najmniej trzeciego można rozłożyć na czynniki sponia co najwyżej drugiego. Rozkład w taki sposób jest jednoznaczny (z dokładnością co do kolejności czynników i stałej).

Reguła znaków Kartezjusza

Dla dowolnego wielomianu o rzeczywistych współczynnikach, uporządkowanych według malejącej potęgi zmiennej, ilość dodatnich miejsc zerowych wielomianu jest równa liczbie zmian znaków między niezerowymi współczynnikami, albo jest mniejsza o wielokrotność liczby 2.

Schemat Hornera

Sposób oblicznia wartości wielomianu dla danej wartości argumentu. Wykorzystywany również do przeprowadzania dzielenia wielomianu przez dwumian w formie $(x-a), a \in \mathbb{R}$ na podstawie twierdzenia Bézouta.

Przykład:

Podziel
$$W(x) = x^4 - 22x^2 - 56x + 77$$
 przez dwumian $x - 1$

1. Zapisz wszystkie współczynniki wielomianu od najwyższej potęgi (także z zerowymi) oraz a z dwumianu. Przepisz pierwszy współczynnik do najniższej linijki:

2. Pomnóż przeniesiony współczynnik przez a zapisane po lewej stronie:

3. Dodaj ze sobą współczynnik z górnego wiersza do właśnie policzonego iloczynu poniżej:

4. Powtarzaj operacje mnożenia i dodawania aż do ostatniej kolumny:

Otrzymujemy tabelkę wypełnioną w następujący sposób:

Więc:

$$\underbrace{(x^4 - 22x^2 - 56x + 77)}_{W(x)} = \underbrace{(x - 1)}_{P(x)} \underbrace{(1x^3 + 1x^2 - 21x - 77)}_{Q(x)} + \underbrace{\mathbf{0}}_{R(x)} \Leftrightarrow W(1) = 0$$

Funkcja liniowa

Wzór ogólny:

$$f(x) = ax + b; \ a, b \in \mathbb{R}$$

Liczba a nazywana jest współczynnikiem kierunkowym, b wyrazem wolnym. Dziedziną i zbiorem wartości funkcji liniowej są liczby rzeczywiste.

Funkcja liniowa przecina oś OY w punkcie (0, b), a oś OX w $(-\frac{b}{a}, 0)$. Wykres funkcji liniowej jest nachylony do osi OX pod kątem α takim, że tg $\alpha = a$.

Funkcja liniowa jest:

- nieograniczona,
- nieokresowa,
- monotoniczna (a > 0 rosnąca, a < 0 malejąca, a = 0 stała),
- różnowartościowa (gdy $a \neq 0$),
- ciągła,
- różniczkowalna: f'(x) = a.

Funkcja kwadratowa

Wzór w postaci ogólnej:

$$f(x) = ax^2 + bx + c; \quad a, b, c \in \mathbb{R}, a \neq 0$$

Wzór w postaci kanonicznej:

$$f(x) = a(x-p)^2 + q$$
; $p = -\frac{b}{2a}$, $q = -\frac{\Delta}{4a}$, $\Delta = b^2 - 4ac$

Wzór w postaci iloczynowej:

$$f(x) = a(x - x_1)(x - x_2) \Leftrightarrow \Delta \ge 0; \quad x_1 = \frac{-b + \sqrt{\Delta}}{2a}, \quad x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

Delta, wyróżnik wielomianu stopnia drugiego - Liczba opisująca relację między współczynnikami funkcji kwadratowej a jej miejscami zerowymi. Wyznaczona wzorem $\Delta_2 = b^2 - 4ac$.

- $\Delta > 0$ Dwa różne pierwiastki rzeczywiste: $x_1, x_2 = \frac{-b \pm \sqrt{\Delta}}{2a}$,
- $\Delta = 0$ Jeden pierwiastek rzeczywisty podwójny: $x_0 = -\frac{b}{2a}$,
- $\Delta < 0$ Brak pierwiastków rzeczywistych: $(x_1, x_2 \in \mathbb{C} \text{ (zespolonych)}).$

Wykresem funkcji kwadratowej jest parabola, której ramiona skierowane są do góry gdy a > 0 a do dołu, gdy a < 0.

Wierzchołek funkcji kwadratowej znajduje się w punkcie $\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$. Alternatywnie, współrzędną **x** wierzchołka można wyliczyć średnią arytmetyczną miejsc zerowych: $p = \frac{x_1 + x_2}{2}$, a współrzędną **y** wartością funkcji w punkcie p: q = f(p).

Wzory Viète'a - wzory wiążące współczynniki wielomianu (stopnia drugiego) z jego pierwiastkami:

$$\begin{cases} x_1 + x_2 = -\frac{b}{a} \\ x_1 \cdot x_2 = \frac{c}{a} \end{cases}$$

Dziedziną funkcji kwadratowej jest zbiór liczb rzeczywistych. Zbiorem wartości jest przedział $\langle q, +\infty \rangle$ dla $a>0, \ (-\infty, q)$ dla a<0.

Funkcja kwadratowa jest:

- nieokresowa,
- monotoniczna w przedziałach:

malejąca w
$$(-\infty, p)$$
, rosnąca w $\langle p, +\infty \rangle$, $a > 0$
rosnąca w $(-\infty, p)$, malejąca w $\langle p, +\infty \rangle$, $a < 0$

- ciągła,
- różniczkowalna: f'(x) = 2ax + b,
- ściśle wypukła dla a > 0, ściśle wklęsła dla a < 0.

Funkcja sześcienna

Wzór w postaci ogólnej:

$$f(x) = ax^3 + bx^2 + cx + d; \ a, b, c, d \in \mathbb{R}, a \neq 0$$

Wzór w postaci kanonicznej:

$$f(t) = t^3 + pt + q; \quad t = x + \frac{b}{3a}, \quad p = \frac{c}{a} - \frac{b^2}{3a^2}, \quad q = \frac{2b^3}{27a^3} + \frac{d}{a} - \frac{bc}{3a^2}$$

Wzór w postaci iloczynowej:

$$f(x) = a(x - x_1)(x - x_2)(x - x_3)$$

Wyróżnik wielomianu stopnia trzeciego - Liczba opisująca relację między współczynnikami funkcji sześciennej a jej miejscami zerowymi. Wyznaczona wzorem $\Delta_3 = b^2c^2 - 4ac^3 - 4b^3d + 18abcd - 27a^2d^2$.

- $\Delta_3 > 0$ Trzy różne pierwiastki rzeczywiste: $x_1, x_2, x_3,$
- $\Delta_3 = 0$ Dwa różne pierwiastki rzeczywiste, z czego jeden dwukrotny lub jeden pierwiastek trzykrotny,
- $\Delta_3 < 0$ Jeden pierwiastek rzeczywisty, dwa pozostałe w liczbach zespolonych.

Ekstrema funkcji sześciennej (punkty krytyczne) znajdują się w punktach (p, f(p)), gdzie p wyznaczone jest wzorem: $p = \frac{-b \pm \sqrt{b^2 - 3ac}}{3a}$. Jeżeli $b^2 - 3ac$ jest mniejsze bądź równe 0, wtedy ekstrem nie ma (funkcja f(x) jest monotoniczna w całej dziedzinie).

Środek symetrii funkcji sześciennej (punkt przegięcia) znajduje się w punkcie o współrzędnych $\left(-\frac{b}{3a}, \frac{2b^3}{27a^2} - \frac{bc}{3a} + d\right)$.

Wzory Viète'a - wzory wiążące współczynniki wielomianu (stopnia trzeciego) z jego pierwiastkami:

$$\begin{cases} x_1 + x_2 + x_3 = -\frac{b}{a} \\ x_1 x_2 + x_1 x_3 + x_2 x_3 = \frac{c}{a} \\ x_1 x_2 x_3 = -\frac{d}{a} \end{cases}$$

Dziedziną i zbiorem wartości funkcji sześciennej jest zbiór liczb rzeczywistych.

Funkcja sześcienna jest:

- nieokresowa,
- monotoniczna w przedziałach:

– rosnąca w
$$(-\infty, p_1)$$
 i $\langle p_2, +\infty \rangle$, malejąca w $\langle p_1, p_2 \rangle$, $a > 0, b^2 - 3ac > 0$

- malejąca w $(-\infty, p_1)$ i $\langle p_2, +\infty \rangle$, rosnąca w $\langle p_1, p_2 \rangle$, $a < 0, b^2 3ac > 0$
- rosnąca w całej dziedzinie, $a>0,\ b^2-3ac\leq 0$
- malejąca w całej dziedzinie, $a<0,\ b^2-3ac\leq 0$
- ciągła,
- różniczkowalna: $f'(x) = 3ax^2 + 2bx + c$,
- ściśle wypukła w przedziale:

$$\left(-rac{b}{3a},+\infty
ight) ext{dla a} > 0, \left(-\infty,-rac{b}{3a}
ight) ext{dla a} < 0$$

• ściśle wklęsła w przedziale:

$$\left(-\infty, -\frac{b}{3a}\right)$$
 dla a $> 0, \left(-\frac{b}{3a}, +\infty\right)$ dla a < 0

Funkcja wymierna

Funkcja będąca ilorazem funkcji wielomianowych. Iloraz wielomianów realizujących dane funkcje wielomianowe nazywa się wyrażeniem wymiernym. **Wzór w postaci ogólnej:**

$$f(x) = \frac{P(x)}{Q(x)}$$
; $P(x), Q(x)$ – wielomiany, $Q(x) \neq 0$

Asymptoty funkcji wymiernej

- Pionowa: Wszystkie miejsca, gdzie mianownik funkcji wymiernej Q(x) = 0.
- Pozioma: Niech L będzie stopniem licznika funkcji wymiernej, M stopniem mianownika funkcji wymiernej, a a_L, a_M to kolejno współczynniki przy największej potędze licznika i mianownika. Wtedy:

$$\begin{array}{c|ccc} L < M & L = M & L > M \\ \hline y = 0 & y = \frac{a_L}{a_M} & \text{Brak asymptoty poziomej} \end{array}$$

• Ukośna:

Występuje, gdy stopień licznika jest o jeden większy od mianownika. Aby policzyć wzór jej prostej należy przeprowadzić pisemne dzielenie licznika przez mianownik. Wynikiem jest iloraz dzielenia.

Przykład:

$$f(x) = \frac{2x^3 - 4x^2 + 6x + 9}{2x^2 - 10x + 4}$$

Stopień licznika jest o 1 większy od mianownika, więc:

$$\begin{array}{r}
x + 3 \\
2x^2 - 10x + 4) \overline{)2x^3 - 4x^2 + 6x + 9} \\
-2x^3 + 10x^2 - 4x \\
\underline{-2x^3 + 10x^2 - 4x} \\
6x^2 + 2x + 9 \\
\underline{-6x^2 + 30x - 12} \\
32x - 3
\end{array}$$

$$2x^3 - 4x^2 + 6x + 9 = (x+3)(2x^2 - 10x + 4) + 32x - 3$$

Asymptota ukośna: $y = x + 3$

Specjalnym przypadkiem funkcji wymiernej jest funkcja homograficzna. Wzór w postaci ogólnej:

$$f(x) = \frac{ax+b}{cx+d}$$
; $a,b,c,d \in \mathbb{R}$, $c \neq 0$, $ad-bc \neq 0$

Dziedziną funkcji homograficznej jest zbiór liczb rzeczywistych z wyłączeniem jednego miejsca zerowego opisanego wzorem $-\frac{d}{c}$.

Zbiór wartości to zbiór liczb rzeczywistych z wyłączeniem punktu $\frac{a}{c}$, którego zawarcie sprawiłoby, że funkcja homograficzna spełniałaby równanie ad-bc=0.

Asymptota pionowa opisana jest równaniem $x=-\frac{d}{c}$, a asymptota pozioma $y=\frac{a}{c}$.

Środkiem symetrii a zarazem punktem przecięcia asymptot jest punkt o współrzędnych $S=\left(-\frac{d}{c},\frac{a}{c}\right)$.

Funkcja homograficzna jest monotoniczna w przedziałach $\left(-\infty, -\frac{d}{c}\right)$ i $\left(-\frac{d}{c}, +\infty\right)$. Jest przedziałami rosnąca, gdy ad-bc>0 a przedziałami malejąca, gdy ad-bc<0.

4 Właściwości i wykresy funkcji

Funkcja - relacja między elementami zbioru X i Y taka, że każdemu elementowi zbioru X przyporządkowany jest dokładnie jeden element zbioru Y.

Funkcja f przedstawiona jako graf. Każdemu argumentowi ze zbioru X przyporządkowano dokładnie jeden element ze zbioru Y. Dwóm różnym elementom w zbiorze X może odpowiadać ten sam element Y. Nie każdy element zbioru Y musi być wartością funkcji f.

Zbiór X nazywa się dziedziną lub zbiorem argumentów, a zbiór Y - przeciwdziedziną lub zbiorem wartości.

Każdy $x \in X$ to argument funkcji f, a $y \in \{n : n \in Y \land n = f(x)\}$ - wartością funkcji.

Funkcja f to przekształcenie (odwzorowanie) zbioru X w zbiór Y.

Twierdzenie Darboux - Niech funkcja f(x) będzie funkcją ciągłą, a na jej dziedzinie niech będzie zdefiniowany przedział domknięty $\langle a,b\rangle$. Wtedy, jeżeli f(a) > f(c) > f(b) lub f(a) < f(c) < f(b) to punkt $c \in \langle a,b\rangle$. Szczególnym przypadkiem jest, gdy a i b mają różne znaki. Wtedy w przedziale domkniętym między nimi gwarantowane jest istnienie c takiego, że f(c) = 0.

Właściwości funkcji

Różnowartościowa (iniekcja)
 Funkcja dla każdego elementu dziedziny przyjmuje różny element z przeciwdziedziny co najwyżej raz:

$$f:X\to Y$$
- różnowartościowa $\Leftrightarrow \bigwedge_{a,b\in X} a\neq b \Rightarrow f(a)\neq f(b)$

• Funkcja "na" (suriekcja) Funkcja, która przyjmuje wszystkie wartości z przeciwdziedziny:

$$f: X \to Y$$
 - "na" $\Leftrightarrow \bigwedge_{y \in Y} \bigvee_{x \in X} f(x) = y$

- Funkcja wzajemnie jednoznaczna (bijekcja)
 Funkcja, w którek każdemu elementowi dziedziny odpowiada jeden i tylko jeden element z przeciwdziedziny, przy czym każdy y należący do zbioru Y jest obrazem zbioru X. Funkcja wzajemnie jednoznaczna jest jednocześnie różnowartościowa i "na".
- Addytywna Funkcja zachowuje operację dodawania: f(x+y) = f(x) + f(y)
- Multiplikatywna Funkcja zachowuje operację mnożenia: f(xy) = f(x)f(y)
- Parzysta Wykres funkcji jest symetryczny względem osi rzędnych (OY): f(x) = f(-x)
- Nieparzysta Wykres funkcji jest symetryczny wzglęgem środka układu współrzędnych: f(x) = -f(x)
- Ciągła
 Arbitralnie mała zmiana wartości funkcji jest uzasadniona arbitralnie małą zmianą argumentu funkcji. Pozbawiona jest też punktów nieciągłości pierwszego rodzaju usuwalnych, pierwszego rodzaju i drugiego rodzaju.
- Monotoniczna Funkcja, która zachowuje pewien określony porządek zbiorów. Niech $f: X \to Y$ będzie dowolną funkcją na uporządkowanych zbiorach X, Y, a x_1, x_2 elementami dziedziny funkcji f. Wówczas funkcja f jest:

- rosnąca (silnie rosnąca), gdy $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$
- malejąca (silnie malejąca), gdy $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$
- nierosnąca (słabo rosnąca), gdy $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$
- niemalejąca (słabo malejąca), gdy $x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$
- stała, gdy dla dowolnych $x_1, x_2 \in X \Rightarrow f(x_1) = f(x_2)$

• Różniczkowalna

Funkcja ma pochodną w każdym punkcie swojej dziedziny, oraz wartość tej pochodnej jest skończona.

Okresowa

Funkcja jest okresowa, gdy pewne wartości pojawiają się cyklicznie co pewien regularny odstęp. Niech $C, C \neq 0$ będzie pewną stałą wartością (okresem funkcji). Wtedy dla funkcji okresowej prawdziwa jest równość:

$$f(x+C) = f(x)$$

• Wypukła

Wykres funkcji f w przedziale (a, b) leży ponad prostą wyznaczoną przez pochodną w punkcie $x_0 \in (a, b)$

• Wklęsła

Wykres funkcji f w przedziale (a,b) leży pod prostą wyznaczoną przez pochodną w punkcie $x_0 \in (a,b)$

Wykresy funkcji

 $f(x) = x^2$ - parabola

$$f(x) = x^3$$

$$f(x) = \frac{1}{x}$$
 - hiperbola

$$f(x) = \frac{1}{x^2}$$

$$f(x) = a^x, \ a > 1$$

$$f(x) = a^x, \ 0 < a < 1$$

Przekształcenia funkcji

Symetria osiowa względem osi OX: y = -f(x)

Symetria osiowa względem osi OY: y = f(-x)

Symetria osiowa względem środka układu współrzędnych: y=-f(-x)

Przesunięcie równoległe poziome: $y = f(x - a), \ \vec{v} = [a, 0]$

Przesunięcie równoległe pionowe: $y = f(x) + b, \ \vec{v} = [0, b]$

Przesunięcie równoległe ukośne: $y = f(x - a) + b, \ \vec{v} = [a, b]$

$$y = |f(x)|$$

$$y = f(|x|)$$

Powinowactwo prostokątne o osi OX: $y = af(x), \ a > 1$

Powinowactwo prostokątne o osi OX: y = af(x), 0 < a < 1

Powinowactwo prostokątne o osi OY: y = f(ax), a > 1

Powinowactwo prostokątne o osi OY: y = f(ax), 0 < a < 1

5 Ciągi

Informacje i twierdzenia

Ciąg - Przyporządkowanie zbiorowi liczb $A = \langle 1, n \rangle$, $A \subset \mathbb{N}_+$ zwanemu zbiorowi indeksów kolejnych elementów, zwanymi **wyrazami ciągu**.

Ciąg skończony to ciąg, w którym występuje skończenie wiele elementów, tj. zbiór indeksów jest podzbiorem właściwym liczb naturalnych dodatnich.

Ciąg nieskończony to ciąg, w którym występuje nieskończenie wiele elementów, tj. zbiór indeksów jest zbiorem liczb naturalnych dodatnich.

Monotoniczność ciągu

- Stały wyrazy ciągu są sobie równe dla dowolnej pary indeksów: $\forall n \in \mathbb{N}_+ \ a_n = a_{n+1}$
- Rosnący każdy kolejny wyraz jest większy od wyrazu o mniejszym indeksie: $\forall n \in \mathbb{N}_+ \ a_n < a_{n+1}$
- Niemalejący każdy kolejny wyraz jest większy od wyrazu bądź równy wyrazowi o mniejszym indeksie: $\forall n \in \mathbb{N}_+ \ a_n \leq a_{n+1}$
- Nierosnący każdy kolejny wyraz jest mniejszy od wyrazu bądź równy wyrazowi o mniejszym indeksie: $\forall n \in \mathbb{N}_+ \ a_n \geq a_{n+1}$
- Malejący każdy kolejny wyraz jest mniejszy od wyrazu o mniejszym indeksie: $\forall n \in \mathbb{N}_+ \ a_n > a_{n+1}$

Monotoniczność ciągu można określić, badając znak różnicy kolejnych wyrazów ciągu: $a_{n+1} - a_n$.

$$a_{n+1}-a_n>0$$
 - rosnący
$$a_{n+1}-a_n\geq 0$$
 - niemalejący
$$a_{n+1}-a_n\leq 0$$
 - nierosnący

$$a_{n+1} - a_n < 0$$
 - malejący

Granica ciągu liczbowego

Liczba l jest granicą nieskończonego ciągu liczbowego (a_n) wtedy i tylko wtedy, gdy dla każdej liczby dodatniej ε istnieje taka liczba δ , że dla każdej liczby naturalnej $n > \delta$ zachodzi nierówność $|a_n - l| < \varepsilon$, tj. odległość od granicy l do wartości a_n jest mniejsza od ε . Definicja ta jest znana jako definicja epsilon delta granicy ciągu.

$$\lim_{n \to \infty} a_n = l \Leftrightarrow \bigwedge_{\varepsilon > 0} \bigvee_{\delta} \bigwedge_{n > \delta} |a_n - l| < \varepsilon$$

Ciąg zbieżny to ciąg nieskończony, którego granicą jest liczba rzeczywista. Taki ciąg ma tylko jedną granicę.

Ciąg jest rozbieżny, gdy granicą jest dodatnia bądź ujemna nieskończoność.

Twierdzenia o działaniach na granicach ciągów zbieżnych

Jeżeli $\lim_{n\to\infty}a_n=a$ i $\lim_{n\to\infty}b_n=b$, to zachodzą następujące równości:

$$\lim_{n \to \infty} (a_n + b_n) = a + b$$

$$\lim_{n \to \infty} (a_n - b_n) = a - b$$

$$\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$$

$$\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \frac{a}{b}$$

Ciąg arytmetyczny

Niech ciąg (a_n) będzie przynajmniej trzywyrazowy. Wtedy ciągiem arytmetycznym nazywamy takie (a_n) , gdzie każdy kolejny wyraz oprócz pierwszego jest tworzony poprzez dodanie stałej r, nazywanej **różnicą ciągu arytmetycznego**.

Postać rekurencyjna

$$a_{n+1} = a_n + r$$

Postać jawna

$$a_n = a_1 + (n-1)r$$

Wzór na różnicę ciągu

$$r = a_n - a_{n+1}$$

Wzór na sumę n początkowych wyrazów ciągu

$$S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)r}{2} \cdot n$$

Warunek wystarczający ciągu arytmetycznego

$$a_n = \frac{a_{n-1} + a_{n+1}}{2}$$

Ciąg geometryczny

Niech ciąg (a_n) będzie przynajmniej trzywyrazowy. Wtedy ciągiem geometrycznym nazywamy takie (a_n) , gdzie każdy kolejny wyraz oprócz pierwszego jest tworzony poprzez pomnożenie przez stałą q, nazywaną ilorazem ciągu arytmetycznego.

Postać rekurencyjna

$$a_{n+1} = a_n \cdot q$$

Postać jawna

$$a_n = a_1 \cdot q^{n-1}$$

Wzór na iloraz ciągu

$$q = \frac{a_{n+1}}{a_n}$$

Wzór na sumę n początkowych wyrazów ciągu

$$S_n = a_1 \cdot \frac{1 - q^n}{1 - q}, \ q \neq 1 \quad a_1 \cdot n, \ q = 1$$

Warunek wystarczający ciągu geometrycznego

$$a_n = \sqrt{a_{n-1} \cdot a_{n+1}}$$

Dla |q|<1 ciąg geometryczny staje się zbieżny i można go rozważać jako **szereg geometryczny**. Sumę wszystkich wyrazów szeregu geometrycznego można wyliczyć ze wzoru:

 $S = \frac{a_1}{1 - q}$

6 Elementy analizy matematycznej

Granica funkcji

Granica - wartość, do której wartości funkcji zbliżają się nieograniczenie dla argumentów z dziedziny funkcji arbitralnie bliskich punktowi. Operację tą notuje się symbolem $\lim_{x\to n}$ nazywanym limesem, czytanym "Limes przy x dążącym do n".

Definicja Cauchy'ego granicy funkcji - Liczba l jest granicą funkcji f w punkcie x_0 wtedy i tylko wtedy, gdy dla każdej liczby dodatniej ε istnieje taka liczba $\delta > 0$, że dla każdego elementu dziedziny funkcji f(x), $f: X \to \mathbb{R}$, takiego że $x \in X \cap (x_0 - \delta, x_0 + \delta)$ prawdziwa jest zależność: $|f(x) - l| < \varepsilon$.

$$\lim_{x \to x_0} f(x) = l \Leftrightarrow$$

$$\bigwedge_{\varepsilon > 0} \bigvee_{\delta > 0} \bigwedge_{x \in A} |f(x) - l| < \varepsilon, \quad A = \{x : x \in X \land 0 < |x - x_0| < \delta\}$$

Definicja Heinego - Funkcja f ma granicę l w punkcie x_0 wtedy i tylko wtedy, gdy dla każdego ciągu $(x_n), n \in \mathbb{N}$ zbieżnego do x_0 , zdefiniowanego na podzbiorze dziedziny X który to podzbiór ma w punkcie skupienia x_0 (podzbiór ten nazywa się sąsiedztwem $S(x_0)$), wartość funkcji od ciągu (x_n) , czyli $f(x_n)$ jest zbieżna do l.

Granica jednostronna

Granica jednostronna to wspólna nazwa na granicę lewostronną i prawostronną.

Granica lewostronna - wartość w punkcie x_0 , do której wartości funkcji zbliżają się nieograniczenie, ale uwzględniając tylko argumenty z dziedziny mniejsze od rozważanego punktu. By ten fakt odzwierciedlić, definicje granicy są zmodyfikowane w następujący sposób:

Definicja Cauchy'ego

$$\lim_{x \to x_0^-} f(x) = l \Leftrightarrow$$

$$\bigwedge_{\varepsilon > 0} \bigvee_{\delta > 0} \bigwedge_{x \in A} |f(x) - l| < \varepsilon, \quad A = \{x : x \in X \land x - \delta < x < x_0\}$$

Definicja Heinego

Rozpatrywane jest tylko sąsiedztwo $S(x_0)$, gdzie $\forall x \in S(x_0) \ x < x_0$.

Granica prawostronna - wartość w punkcie x_0 , do której wartości funkcji zbliżają się nieograniczenie, ale uwzględniając tylko argumenty z dziedziny większe od rozważanego punktu. By ten fakt odzwierciedlić, definicje granicy są zmodyfikowane w następujący sposób:

Definicja Cauchy'ego

$$\lim_{x \to x_0^+} f(x) = l \Leftrightarrow$$

$$\bigwedge_{\varepsilon > 0} \bigvee_{\delta > 0} \bigwedge_{x \in A} |f(x) - l| < \varepsilon, \quad A = \{x : x \in X \land x_0 < x < x + \delta\}$$

Definicja Heinego

Rozpatrywane jest tylko sąsiedztwo $S(x_0)$, gdzie $\forall x \in S(x_0) \ x > x_0$.

Jeżeli granica lewostronna oraz prawostronna w punkcie x_0 są sobie równe, jest to warunek wystarczający dla istnienia granicy w tym punkcie:

$$\lim_{x \to x_0} f(x) = l \iff \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = l$$

Jeżeli granica lewostronna i prawostronna w punkcie są różne, wtedy granica w tym punkcie nie istnieje.

Granica niewłaściwa

Granica niewłaściwa to granica, której wartość w punkcie x_0 jest równa minus $(-\infty)$ lub plus $(+\infty)$ nieskończoności. Granica w punkcie jest niewłaściwa, gdy spełnione są następujące warunki równoważnych definicji:

Definicja Cauchy'ego

$$\lim_{x \to x_0} f(x) = +\infty \Leftrightarrow$$

$$\bigwedge_{M>0} \bigvee_{\delta>0} \bigwedge_{x \in A} f(x) > M, \quad A = \{x : x \in X \land 0 < |x - x_0| < \delta\},$$

$$\lim_{x \to x_0} f(x) = -\infty \Leftrightarrow$$

$$\bigwedge_{M>0} \bigvee_{\delta>0} \bigwedge_{x \in A} f(x) < -M, \quad A = \{x : x \in X \land 0 < |x - x_0| < \delta\}$$

Definicja Heinego

Funkcja f ma granicę $\pm \infty$ w punkcie x_0 wtedy i tylko wtedy, gdy dla każdego ciągu $(x_n), n \in \mathbb{N}$ zbieżnego do x_0 , zdefiniowanego na podzbiorze dziedziny X który to podzbiór ma w punkcie skupienia x_0 , wartość funkcji od ciągu (x_n) , czyli $f(x_n)$ jest zbieżna do $\pm \infty$.

Granica w nieskończoności

Granica w nieskończoności przyjmuje wartość l gdy spełnione są następujące warunki równoważnych definicji:

Definicja Cauchy'ego

$$\lim_{x \to +\infty} f(x) = l \Leftrightarrow \bigwedge_{\varepsilon > 0} \bigvee_{\mu \in \mathbb{R}} \bigwedge_{x > \mu} |f(x) - l| < \varepsilon,$$

$$\lim_{x \to -\infty} f(x) = l \Leftrightarrow \bigwedge_{\varepsilon > 0} \bigvee_{\mu \in \mathbb{R}} \bigwedge_{x < \mu} |f(x) - l| < \varepsilon,$$

Definicja Heinego

Funkcja f ma granicę l w $\pm \infty$ wtedy i tylko wtedy, gdy dla każdego ciągu $(x_n), n \in \mathbb{N}$ zbieżnego do $\pm \infty$, zdefiniowanego na podzbiorze dziedziny X, odpowiednio $(a, +\infty)$ i $(-\infty, a)$, wartość funkcji od ciągu (x_n) , czyli $f(x_n)$ dąży do l.

Granica niewłaściwa w nieskończoności występuje tylko wtedy, gdy granica spełnia warunki granicy niewłaściwej i granicy w nieskończoności.

Własności granic

Niech funkcje $f, g: X \subseteq \mathbb{R} \to Y$ mają granice właściwe. Wtedy:

$$\lim_{x \to x_0} [f(x) + g(x)] = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} [f(x) - g(x)] = \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} [f(x) \cdot g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} [c \cdot f(x)] = c \cdot \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} [f(x)] = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x)$$

Symbole nieoznaczone

Wyrażenia algebraiczne które nie mają sensu liczbowego, często występujące przy poszukiwaniu limitów. Jest ich siedem:

$$\frac{0}{0} \quad \frac{\pm \infty}{+\infty} \quad 0 \cdot \pm \infty \quad \infty - \infty \quad 0^0 \quad \infty^0 \quad 1^{\pm \infty}$$

Takie wyniki nie są końcowymi rozwiązaniami i funkcję należy przekształcić, by otrzymać właściwy wynik.

Reguła de L'Hôpitala (czyt. delopitala) - Reguła umożliwiająca wyznaczenie granic wyrażeń, których wynikiem jest symbol nieoznaczony. Jeżeli funkcje $f, g: X \to Y$ są ciągłe oraz:

- Granice funkcji są nieoznaczone: $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ lub $\pm \infty$,
- Funkcje f(x) i g(x) są różniczkowalne,
- Pochodna g'(x) jest różna od 0,
- Istnieje granica ilorazu funkcji f(x) i g(x),

Wtedy:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Przykład:

$$\lim_{x \to 5} \frac{x^2 - 25}{2x^2 - 9x - 5} = \frac{25 - 25}{2 \cdot 25 - 9 \cdot 5 - 5} = \frac{0}{0}$$

Stosując regułę de L'Hôpitala:

$$\lim_{x \to 5} \frac{x^2 - 25}{2x^2 - 9x - 5} = \lim_{x \to 5} \frac{(x^2 - 25)'}{(2x^2 - 9x - 5)'} = \lim_{x \to 5} \frac{2x}{4x - 9} = \frac{2 \cdot 5}{4 \cdot 5 - 9} = \frac{10}{11}$$

Reguła de L'Hôpitala działa również dla granic nieoznaczonych w nieskończoności.

Definicja ciągłości funkcji

Niech funkcja f będzie zdefiniowana w pewnym otoczeniu. Jeżeli istnieje granica właściwa w punkcie f(x) oraz prawdziwa jest równość: $\lim_{x\to x_0} f(x) = f(x_0)$, to funkcja w tym punkcie jest ciągła. Funkcja jest ciągła w przedziale, jeżeli każdy punkt w przedziale spełnia powyższe warunki. By całą funkcję można było nazwać ciągłą, warunki te muszą zachodzić na całej dziedzinie funkcji Funkcje: wielomianowe, wymierne, potęgowe, wykładnicze, logarytmiczne i trygonometryczne są ciągłe.

Limity a asymptoty wykresu

• Asymptota pionowa jednostronna Niech funkcja f będzie określona w prawostronnym (lewostronnym) sąsiedztwie punktu x_0 . Prosta o równaniu $x = x_0$ jest asymptotą pionową prawostronną (lewostronną) wykresu funkcji f wtedy i tylko wtedy, gdy $\lim_{x\to x_0^+} f(x) = \pm \infty \left(\lim_{x\to x_0^-} f(x) = \pm \infty\right).$

- Asymptota pionowa obustronna Jeżeli prosta o równaniu $x=x_0$ jest jednocześnie asymptotą pionową lewostronną i prawostronną wykresu funkcji f, to wtedy nazywa się ją asymptotą pionową obustronną.
- Asymptota pozioma jednostronna Niech funkcja f będzie określona w przedziale $(m, +\infty)$ (odpowiednio $(-\infty, m)$), $m \in \mathbb{R}$. Prosta o równaniu y = a jest asymptotą poziomą prawostronną (lewostronną) wykresu funkcji f wtedy i tylko wtedy, gdy $\lim_{x \to +\infty} f(x) = a$ $\left(\lim_{x \to -\infty} f(x) = a\right)$.
- ullet Asymptota pozioma obustronna Jeżeli prosta o równaniu y=a jest jednocześnie asymptotą poziomą lewostronną i prawostronną wykresu funkcji f, to wtedy nazywa się ją asymptotą poziomą obustronną.
- Asymptota ukośna jednostronna Niech funkcja f będzie określona w przedziale $(m, +\infty)$ (odpowiednio $(-\infty, m)$), $m \in \mathbb{R}$. Prosta o równaniu y = ax + b jest asymptotą ukośną prawostronną (lewostronną) wykresu funkcji f wtedy i tylko wtedy, gdy:

$$\lim_{x \to \pm \infty} [f(x) - (ax + b)] = 0; \quad a = \lim_{x \to \pm \infty} \frac{f(x)}{x}, \quad b = \lim_{x \to \pm \infty} [f(x) - ax]$$

Jeżeli a = 0, prosta y = b jest asymptotą poziomą wykresu funkcji f.

• Asymptota ukośna obustronna Jeżeli prosta o równaniu y=ax+b jest jednocześnie asymptotą ukośną lewostronną i prawostronną wykresu funkcji f, to wtedy nazywa się ją asymptotą ukośną obustronną.

Pochodna funkcji w punkcie

Pochodna - miara czułości zmiany wartości funkcji względem zmiany wartości argumentu. Dla funkcji z jednym argumentem wartość pochodnej funkcji w punkcie wyznacza nachylenie prostej stycznej do wykresu w badanym punkcie. Proces znajdowania pochodnej nazywa się **różniczkowaniem**.

Niech $f: X \subseteq \mathbb{R} \to Y$, punkt x_0 należy do dziedziny X i h oznacza zmianę wartości zmiennej x. Pochodną funkcji f w punkcie x_0 nazywamy granicę (o ile istnieje):

Pochodną funkcji oznacza się: f'(x) (notacja Lagrange'a) lub $\frac{d}{dx}f$ (notacja Liebnitza).

Jeżeli we wzorze na pochodną zamiast granicy obustronnej badana będzie kolejno granica prawostronna i lewostronna, to otrzymaną pochodną nazywa się odpowiednio pochodną prawostronną i pochodną lewostronną funkcji f w punkcie x_0 . Pochodne te notuje się symbolicznie odpowiednio: $f'_+(x)$, $f'_-(x)$.

Styczna do wykresu funkcji

Niech funkcja f będzie określona w pewnym sąsiedztwie punktu x_0 i różniczkowalna w tym punkcie. Wtedy prostą styczną do wykresu funkcji f w punkcie x_0 jest prosta o równaniu:

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Współczynnik kierunkowy stycznej do wykresu w punkcie $(x_0, f(x_0))$ jest równy tangensowi kąta nachylenia tej prostej do osi OX:

$$f'(x) = \operatorname{tg}(\alpha)$$

Normalna to prosta prostopadła do stycznej wykresu funkcji w punkcie $(x_0, f(x_0))$. Opisuje ją równanie:

$$y = -\frac{1}{f'(x_0)}(x - x_0) + f(x_0)$$

Funkcja pochodna

Niech f będzie dowolną funkcją taką, że $f: X \to Y$. Funkcją pochodną funkcji f nazywa się funkcję, która każdej liczbie x_0 należącej do dziedziny X przyporządkowuje $f'(x_0)$, jeśli pochodna w tym punkcie istnieje. Zbiór liczb z dziedziny funkcji f, dla których ta funkcja była różniczkowalna jest dziedziną funkcji pochodnej.

f(x)	f'(x)	f(x)	f'(x)
a	0	e^x	$(x)'e^x$
x	1	$\log_a x$	$\frac{1}{x \ln a}$
ax^n	$an \cdot x^{n-1}$	$\ln x$	$\frac{1}{x}$
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\sin x$	$\cos x$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$\cos x$	$-\sin x$
$\sqrt[n]{x}$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	tgx	$\frac{1}{\cos^2 x} = 1 + tg^2 x$
a^x	$(x)' \cdot a^x \ln a$	ctgx	$-\frac{1}{\sin^2 x} = -(1 + \operatorname{ctg}^2 x)$

Własności pochodnych

Niech funkcje f i g będą różniczkowalne w pewnym zbiorze D, będącym podzbiorem dziedzin funkcji f i g, a α i β - dowolnymi liczbami rzeczywistymi. Wtedy dla dowolnej liczby $x \in D$:

$$[\alpha f(x) + \beta g(x)]' = \alpha f'(x) + \beta g'(x)$$

$$[\alpha f(x) - \beta g(x)]' = \alpha f'(x) - \beta g'(x)$$

$$[\alpha \cdot f(x) \cdot g(x)]' = \alpha (f'(x)g(x) + f(x)g'(x))$$

$$[\alpha \cdot f(x)]' = \alpha \cdot f'(x)$$

$$\left[\frac{\alpha}{f(x)}\right]' = -\frac{\alpha \cdot f'(x)}{[f(x)]^2}$$

$$\left[\frac{\alpha \cdot f(x)}{\beta \cdot g(x)}\right]' = \frac{\alpha}{\beta} \left(\frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}\right)$$

$$[f(x)^{g(x)}]' = f(x)^{g(x)} \left(g'(x) \ln f(x) + \frac{f'(x)g(x)}{f(x)}\right)$$

Reguła łańcuchowa - reguła pozwalająca obliczać pochodne funkcji złożonych. Niech funkcje f i g będą funkcjami zmiennej rzeczywistej o wartościach rzeczywistych. Jeżeli funkcja f ma pochodną w punkcie x_0 oraz funkcja g ma pochodną w punkcie $f(x_0)$, to wtedy funkcja złożona ma w punkcie x_0 pochodną:

$$(f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0)$$

Przykład:

Wyznacz funkcję pochodną funkcji:
$$\sqrt{x^2 - 3}$$

 $f(x) = \sqrt{x}$, $g(x) = x^2 - 3$

$$f(x) = \sqrt{x}, \ g(x) = x^{2} - 3$$

$$\sqrt{x^{2} - 3} = \sqrt{g(x)} = f(g(x)) = (f \circ g)(x)$$

Korzystając z reguły łańcuchowej:

$$(\sqrt{x^2 - 3})' = (\sqrt{g(x)})' \cdot g'(x) = \frac{1}{2\sqrt{g(x)}} \cdot g'(x) =$$

$$\frac{1}{2\sqrt{x^2-3}} \cdot (x^2-3)' = \frac{1}{2\sqrt{x^2-3}} \cdot 2x = \frac{x}{\sqrt{x^2-3}}$$

Pochodna a monotoniczność funkcji

Jeżeli funkcja f ma pochodną w przedziale (a,b) oraz dla każdej liczby rzeczywistej z tego przedziału:

- f'(x) > 0, to funkcja jest rosnąca w przedziale (a, b);
- $f'(x) \ge 0$, to funkcja jest niemalejąca w przedziale (a,b);
- f'(x) = 0, to funkcja jest stała w przedziale (a, b);
- $f'(x) \leq 0$, to funkcja jest nierosnąca w przedziale (a, b);
- f'(x) < 0, to funkcja jest malejąca w przedziale (a, b).

Prawdziwe są twierdzenia odwrotne do powyższych.

Ekstrema funkcji

Ekstremum funkcji - maksymalna (maksimum) lub minimalna (minimum) wartość funkcji.

Wśród ekstrem rozróżnia się odpowiednie kategorie:

• Maksimum (minimum) lokalne Punkt x_0 jest ekstremum lokalnym wtedy i tylko wtedy, gdy dla każdego punktu x należącego jednocześnie do dziedziny funkcji f oraz otoczenia punktu $x_0, U(x_0)$ prawdziwa jest nierówność:

$$f(x) \le f(x_0) \quad (f(x) \ge f(x_0))$$

Znaczy to, że w pewnej okolicy punktu x_0 nie występują wartości funkcji większe (mniejsze) od wartości w punkcie x_0 , choć mogą być tej wartości równe.

• Maksimum (minimum) lokalne właściwe Punkt x_0 jest ekstremum lokalnym właściwym wtedy i tylko wtedy, gdy dla każdego punktu x należącego jednocześnie do dziedziny funkcji f oraz otoczenia punktu $x_0, U(x_0)$ prawdziwa jest zależność:

$$x = x_0 \lor f(x) < f(x_0) \ (x = x_0 \lor f(x) > f(x_0))$$

Żadna wartość funkcji w otoczeniu punktu nie może być większa (mniejsza) ani równa wartości funkcji w punkcie x_0 .

• Maksimum (minimum) globalne Punkt x_0 jest ekstremum globalnym wtedy i tylko wtedy, gdy dla każdego punktu x w całej dziedzine funkcji f prawdziwa jest nierówność:

$$f(x) \le f(x_0) \ (f(x) \ge f(x_0))$$

W przeciwieństwie do ekstremum lokalnego, warunek dotyczy całej dziedziny.

• Maksimum (minimum) globalne właściwe Punkt x_0 jest ekstremum globalnym właściwym wtedy i tylko wtedy, gdy dla każdego punktu x w całej dziedzine funkcji f prawdziwa jest zależność:

$$x = x_0 \lor f(x) < f(x_0) \ (x = x_0 \lor f(x) > f(x_0))$$

W przeciwieństwie do ekstremum lokalnego właściwego, warunek dotyczy całej dziedziny.

Punkt stacjonarny - punkt w dziedzinie funkcji rzeczywistej, dla której pochodna tej funkcji przyjmuje wartość równą zeru.

Warunek konieczny istnienia ekstremum lokalnego (twierdzenie Fermata) - dla różniczkowalnej funkcji f, w pewnym przedziale $x_0 \in (a, b)$, pochodna $f'(x_0) = 0$.

Warunek Fermata nie gwarantuje istnienia ekstremów - funkcja może mieć pochodną równą zeru i nie mieć ekstremum w tym punkcie, a może mieć ekstremum i nie mieć w nim pochodnej.

Warunek konieczny i wystarczający ekstremum lokalnego - dla różniczkowalnej, ciągłej funkcji $f:[a,b]\to\mathbb{R}$, mającej skończoną ilość punktów stacjonarnych w punkcie x_0 istnieje

- minimum lokalne wtedy i tylko wtedy, gdy istnieje $\delta > 0$ taka, że:
 - $f'(x_0) = 0,$
 - $-f'(x_0) < 0 \text{ dla } x \in (x_0 \delta, x_0),$
 - $-f'(x_0) > 0$ dla $x \in (x_0, x_0 + \delta);$

- maksimum lokalne wtedy i tylko wtedy, gdy istnieje $\delta > 0$ taka, że:
 - $f'(x_0) = 0,$
 - $-f'(x_0) > 0 \text{ dla } x \in (x_0 \delta, x_0),$
 - $-f'(x_0) < 0 \text{ dla } x \in (x_0, x_0 + \delta).$

Alternatywnie, jeżeli funkcja f jest dwukrotnie różniczkowalna w punkcie $x_0 \in (a,b)$ i druga pochodna jest ciągła, to jeżeli $f'(x_0) = 0$ i $f''(x_0) \neq 0$, to funkcja f ma w punkcie x_0 ekstremum, przy czym jeżeli $f''(x_0) < 0$ to jest to maksimum lokalne, a jeżeli $f''(x_0) > 0$ to jest to minimum lokalne.

Warunek ten nie rozstrzyga istnienia ekstremum, jeżeli druga pochodna jest równa 0.

7 Funkcje trygonometryczne

Miara łukowa kąta

Jednym ze sposobów podawania wartości kąta jest **radian** - Niemianowana jednostka pochodna układu SI, zdefiniowana jako iloraz długości łuku nad długość promienia. Jeden radian to długość łuku równa długości promienia.

$$rad = \frac{l}{r}$$

- stopniowej na łukową: $t^{\circ} = \frac{\pi \cdot t}{180} (\text{rad})$
- łukowej na stopniową: $t(\text{rad}) = \left(\frac{180 \cdot t}{\pi}\right)^{\circ}$

Definicje funkcji trygonometrycznych

Definicja w trójkącie prostokątnym

$$\sin \alpha = \frac{\mathbf{a}}{\mathbf{c}} \quad \text{tg } \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\mathbf{a}}{\mathbf{b}} \quad \text{sec } \alpha = \frac{1}{\cos \alpha} = \frac{\mathbf{c}}{\mathbf{b}}$$

$$\cos \alpha = \frac{\mathbf{b}}{\mathbf{c}} \quad \text{ctg } \alpha = \frac{\cos \alpha}{\sin \alpha} = \frac{\mathbf{b}}{\mathbf{a}} \quad \text{cosec } \alpha = \frac{1}{\sin \alpha} = \frac{\mathbf{c}}{\mathbf{a}}$$

Definicja w okręgu jednostkowym (interpretacja geometryczna)

Na powyższej ilustracji długości odcinków odpowiadają wartościom poszczególnych funkcji trygonometrycznych względem kata środkowego α .

Dla wykresów funkcji trygonometrycznej, zobacz rozdział: 4. Właściwości i wykresy funkcji - Wykresy funkcji, str. 22-23.

Podstawowe tożsamości trygonometryczne

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
 $\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha = 1$ $\operatorname{tg}^2 \alpha + 1 = \sec^2 \alpha$ $\operatorname{ctg}^2 + 1 = \operatorname{cosec}^2 \alpha$

Wartości funkcji trygonometrycznych

Radiany	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5\pi}{12}$	$\frac{\pi}{2}$
Stopnie	0°	15°	30°	45°	60°	75°	90°
$\sin x$	0	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	1
$\cos x$	1	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	0
$\operatorname{tg} x$	0	$2-\sqrt{3}$	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$2+\sqrt{3}$	X
$\operatorname{ctg} x$	X	$2+\sqrt{3}$	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	$2-\sqrt{3}$	0
$\sec x$	1	$\sqrt{6}-\sqrt{2}$	$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	2	$\sqrt{6} + \sqrt{2}$	×
$\csc x$	×	$\sqrt{6} + \sqrt{2}$	2	$\sqrt{2}$	$\frac{2\sqrt{3}}{3}$	$\sqrt{6}-\sqrt{2}$	1

Wzory redukcyjne

	I ćwiartka	II ćwiartka		III ćwiartka		IV ćwiartka	
φ	$90^{\circ} - \alpha$	$90^{\circ} + \alpha$	$180^{\circ} - \alpha$	$180^{\circ} + \alpha$	$270^{\circ} - \alpha$	$270^{\circ} + \alpha$	$360^{\circ} - \alpha$
	$\frac{1}{2}\pi - \alpha$	$\frac{1}{2}\pi + \alpha$	$\pi - \alpha$	$\pi + \alpha$	$\frac{3}{2}\pi - \alpha$	$\frac{3}{2}\pi + \alpha$	$2\pi - \alpha$
$\sin \varphi$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$	$-\cos \alpha$	$-\sin\alpha$
$\cos \varphi$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$	$-\cos \alpha$	$-\sin\alpha$	$\sin \alpha$	$\cos \alpha$
$\operatorname{tg} arphi$	$\operatorname{ctg} lpha$	$-\operatorname{ctg}\alpha$	$-\operatorname{tg}\alpha$	$\operatorname{tg} \alpha$	$\operatorname{ctg} lpha$	$-\operatorname{ctg}\alpha$	$-\operatorname{tg}\alpha$
$\operatorname{ctg} arphi$	$\operatorname{tg} lpha$	$-\operatorname{tg}\alpha$	$-\operatorname{ctg}\alpha$	$\operatorname{ctg} \alpha$	$\operatorname{tg} lpha$	$-\operatorname{tg}\alpha$	$-\operatorname{ctg}\alpha$
$\sec \varphi$	$\operatorname{cosec} \alpha$	$-\csc \alpha$	$-\sec \alpha$	$-\sec \alpha$	$-\csc \alpha$	$\csc \alpha$	$\sec \alpha$
$\csc \varphi$	$\sec \alpha$	$\sec \alpha$	$\csc \alpha$	$-\csc \alpha$	$-\sec \alpha$	$-\sec \alpha$	$-\csc \alpha$

Tożsamości trygonometryczne

Funkcje trygonometryczne sumy i różnicy kątów

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$tg(\alpha + \beta) = \frac{tg \alpha + tg \beta}{1 - tg \alpha tg \beta} \qquad tg(\alpha - \beta) = \frac{tg \alpha - tg \beta}{1 + tg \alpha tg \beta}$$

$$ctg(\alpha + \beta) = \frac{ctg \alpha ctg \beta - 1}{ctg \beta + ctg \alpha} \qquad ctg(\alpha - \beta) = \frac{ctg \alpha ctg \beta + 1}{ctg \beta - ctg \alpha}$$

$$sec(\alpha + \beta) = \frac{sec \alpha sec \beta cosec \alpha cosec \beta}{cosec \alpha cosec \beta - sec \alpha sec \beta} \qquad sec(\alpha - \beta) = \frac{sec \alpha sec \beta cosec \alpha cosec \beta}{cosec \alpha cosec \beta + sec \alpha sec \beta}$$

$$cosec(\alpha + \beta) = \frac{sec \alpha sec \beta cosec \alpha cosec \beta}{cosec \alpha cosec \beta + sec \alpha sec \beta} \qquad cosec(\alpha - \beta) = \frac{sec \alpha sec \beta cosec \alpha cosec \beta}{cosec \alpha cosec \beta - sec \alpha sec \beta}$$

Sumy i różnice funkcji trygonometrycznych

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right) \qquad \sin \alpha - \sin \beta = 2 \sin \left(\frac{\alpha - \beta}{2}\right) \cos \left(\frac{\alpha + \beta}{2}\right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right) \qquad \cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

$$tg \alpha + tg \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta} \qquad tg \alpha - tg \beta = \frac{\sin(\alpha - \beta)}{\cos \alpha \cos \beta}$$

$$ctg \alpha + ctg \beta = \frac{\sin(\beta + \alpha)}{\sin \alpha \sin \beta} \qquad ctg \alpha - ctg \beta = \frac{\sin(\beta - \alpha)}{\sin \alpha \sin \beta}$$

$$tg \alpha + ctg \beta = \frac{\cos(\alpha - \beta)}{\cos \alpha \sin \beta} \qquad ctg \alpha - tg \beta = \frac{\cos(\alpha + \beta)}{\sin \alpha \cos \beta}$$

Funkcje trygonometryczne podwojonego i połowy kata

$$\sin(2\alpha) = 2\sin\alpha\cos\alpha \qquad \cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$$

$$\cos(2\alpha) = 2\cos^2\alpha - 1 \qquad \cos(2\alpha) = 1 - 2\sin^2\alpha$$

$$\tan(2\alpha) = \frac{2\tan\alpha}{1 - \tan^2\alpha} \qquad \cot(2\alpha) = \frac{\cot^2\alpha - 1}{2\cot\alpha}$$

$$\cot(2\alpha) = \frac{\cot^2\alpha}{1 - \tan^2\alpha} \qquad \cot(2\alpha) = \frac{\cot^2\alpha - 1}{2\cot\alpha}$$

$$\sec(2\alpha) = \frac{\sec^2\alpha}{2 - \sec^2\alpha} \qquad \csc(2\alpha) = \frac{\sec\alpha\csc\alpha}{2}$$

$$\sin\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos\alpha}{2}} \qquad \cos\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

$$\operatorname{tg}\left(\frac{\alpha}{2}\right) = \frac{\sin\alpha}{1+\cos\alpha} \qquad \operatorname{ctg}\left(\frac{\alpha}{2}\right) = \frac{\sin\alpha}{1-\cos\alpha}$$

Iloczyny funkcji trygonometrycznych

$$\sin \alpha \sin \beta = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2} \qquad \cos \alpha \cos \beta = \frac{\cos(\alpha - \beta) + \cos(\alpha + \beta)}{2}$$
$$\sin \alpha \cos \beta = \frac{\sin(\alpha + \beta) + \sin(\alpha - \beta)}{2} \qquad \operatorname{tg} \alpha \operatorname{tg} \beta = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{\cos(\alpha - \beta) + \cos(\alpha + \beta)}$$

Redukcja poteg funkcji trygonometrycznych

$$\sin^{2}\alpha = \frac{1 - \cos(2\alpha)}{2}$$

$$\cos^{2}\alpha = \frac{1 + \cos(2\alpha)}{2}$$

$$\sin^{2}\alpha \cos^{2}\alpha = \frac{1 - \cos(4\alpha)}{8}$$

$$\sin^{2}\alpha - \sin^{2}\beta = \sin(\alpha + \beta)\sin(\alpha - \beta)$$

$$\cos^{2}\alpha - \cos^{2}\beta = -\sin(\alpha + \beta)\sin(\alpha - \beta)$$

$$\cos^{2}\alpha - \sin^{2}\beta = \cos(\alpha + \beta)\cos(\alpha - \beta)$$

Okresowość funkcji trygonometrycznych

Uwaga - Funkcje $\arcsin(x)$, $\arccos(x)$, etc. to **funkcje cyklometryczne**, tj. funkcje odwrotne do funkcji trygonometrycznych. W przeciwieństwie do zwykłej funkcji trygonometrycznej, to kąt jest obrazem funkcji, podczas gdy wartość jest przeciwobrazem. Zachodzi więc następująca zależność:

$$\sin(\alpha) = x \Leftrightarrow \arcsin(x) = \alpha,$$

 $\cos(\alpha) = x \Leftrightarrow \arccos(x) = \alpha,$
 \vdots

Dla poniższych definicji zakłada się, że $k \in \mathbb{C}$.

Sinus - sin : $\mathbb{R} \to \langle -1, 1 \rangle$ - okres podstawowy: 2π

$$\sin \alpha = x \Leftrightarrow \begin{cases} \alpha = \arcsin x + 2k\pi \\ \alpha = \pi - \arcsin x + 2k\pi \end{cases}, \quad x \in (-1,0) \cup (0,1)$$
$$\alpha = \frac{\pi}{2} + 2k\pi, \quad x = 1$$
$$\alpha = k\pi, \quad x = 0$$
$$\alpha = -\frac{\pi}{2} + 2k\pi, \quad x = -1$$

Cosinus - $\cos : \mathbb{R} \to \langle -1, 1 \rangle$ - okres podstawowy: 2π

$$\cos \alpha = x \Leftrightarrow \begin{cases} \alpha = \arccos x + 2k\pi \\ \alpha = -\arccos x + 2k\pi \end{cases}, \quad x \in (-1,0) \cup (0,1) \\ \alpha = 2k\pi, \quad x = 1 \\ \alpha = \frac{\pi}{2} + k\pi, \quad x = 0 \\ \alpha = \pi + 2k\pi, \quad x = -1 \end{cases}$$

Tangens - tg : $\mathbb{R} \setminus \left\{ \alpha : \alpha = \frac{\pi}{2} + k\pi \right\} \to \mathbb{R}$ - okres podstawowy: π

$$\operatorname{tg} \alpha = x \iff \begin{cases}
\alpha = k\pi, & x = 0 \\
\alpha = \operatorname{arctg} x + k\pi, & x \in \mathbb{R} \setminus \{0\}
\end{cases}$$

Cotangens - ctg : $\mathbb{R} \setminus \{\alpha : \alpha = k\pi\} \to \mathbb{R}$ - okres podstawowy: π

$$\operatorname{tg} \alpha = x \iff \begin{cases}
\alpha = \frac{\pi}{2} + k\pi, & x = 0 \\
\alpha = \operatorname{arcctg} x + k\pi, & x \in \mathbb{R} \setminus \{0\}
\end{cases}$$

Secans - sec : $\mathbb{R}\setminus\left\{\alpha:\alpha=\frac{\pi}{2}+k\pi\right\}\to(-\infty,-1)\cup\langle 1,+\infty\rangle$ - okres podstawowy: 2π

Cosecans - cosec : $\mathbb{R}\setminus\{\alpha:\alpha=k\pi\}\to(-\infty,-1\rangle\cup\langle 1,+\infty)$ - okres podstawowy: 2π

8 Planimetria

Symetralna odcinka - jest to prosta prostopadła do odcinka, która dzieli ten odcinek na dwie równe części. Symetralna jest też zbiorem wszystkich punktów równo odległych od punktów na końcach odcinka.

Aby skonstruować symetralną, należy zakreślić dwa półokręgi, o równych promieniach większych od połowy długości odcinka, a następnie połączyć prostą punkty przecięć tych półokręgów.

Symetralne trzech boków dowolnego trójkąta przecinają się w punkcie, który jest środkiem okręgu opisanego na trójkącie (częściami wspólnymi okręgu i trójkąta są wierzchołki trójkąta).

Dwusieczna kąta - półprosta o początku w wierzchołku kąta, która dzieli kąt zawarty między ramionami kąta na dwa równe kąty, każdy o mierze równej połowie oryginalnego kąta. Dwusieczna kąta jest zbiorem punktów równo odległych od ramion kąta wypukłego.

By skonstuować dwusieczną, należy zakreślić półokrąg o środku w punkcie A. Następnie z miejsc przecięcia się ramion kąta i półokręgu zakreślić kolejne półokręgi o promieniu większym niż połowa odległości do drugiego punktu przecięcia. Dwusieczna to prosta przechodząca przez punkt przecięcia dwóch półokręgów i punkt A.

Dwusieczne trzech kątów dowolnego trójkąta przecinają się w punkcie, który jest środkiem okręgu wpisanego w trójkąt (częściami wspólnymi okręgu i trójkąta są trzy punkty, każdy należy do innego boku).

Środkowa trójkąta - odcinek łączący wierzchołek trójkąta z środkiem przeciwległego boku.

W dowolnym trójkącie trzy środkowe przecinają się w jednym punkcie (barycentrum, środek ciężkości trójkąta), który to dzieli każdą z środkowych na fragmenty o długości w stosunku 2:1, liczac od wierzchołka trójkata.

Każdy z sześciu trójkątów ograniczonych środkowymi trójkąta ma to samo pole.

Twierdzenie o środkowej (twierdzenie Apolloniusza) - suma kwadratów dwóch dowolnych boków jest równa podwojonej sumie kwadratów połowy trzeciego boku i środkowej opartej na trzecim boku.

Jeżeli boki trójkątu to a,b,c, a d to środkowa oparta na boku c, to wtedy:

$$a^{2} + b^{2} = 2\left(\left(\frac{1}{2}c\right)^{2} + d^{2}\right)$$

Twierdzenie o dwusiecznej kąta wewnętrznego - w dowolnym trójkącie ABC, w którym odcinek |BD| jest dwusieczną kąta wewnętrznego, prawdziwa jest równość:

$$\frac{|AB|}{|BC|} = \frac{|AD|}{|DC|}$$

Nierówność w trójkącie - W dowolnym trójkącie suma długości dwóch dowolnych boków jest większa od długości trzeciego boku.

$$a+b>c$$

$$a + c > b$$

$$b + c > a$$

Twierdzenie Pitagorasa

Jeżeli trójkąt jest prostokątny, to wtedy suma kwadratów długości przyprostokątnych a i b jest równa kwadratowi przeciwprostokątnej c:

Trójkat prostokatny
$$\Leftrightarrow a^2 + b^2 = c^2$$

Z twierdzenia Pitagorasa wynika również, że jeżeli trójkąt jest ostrokątny, to wtedy suma kwadratów dwóch krótszych boków jest większa od kwadratu najdłuższego boku:

Trójkat ostrokatny
$$\Leftrightarrow a^2 + b^2 > c^2$$

Jeżeli trójkąt jest rozwartokątny, to wtedy suma kwadratów dwóch krótszych boków jest mniejsza od kwadratu najdłuższego boku:

Trójkąt rozwartokątny
$$\Leftrightarrow a^2 + b^2 < c^2$$

Twierdzenia odwrotne do powyższych również są prawdziwe.

Twierdzenie Steinera-Lehmusa

Jeżeli w trójkącie istnieją dwa równe odcinki które są dwusiecznymi dwóch różnych jego kątów wewnętrznych, to wtedy rzeczony trójkąt jest równoramienny.

Pole trójkąta - wzory

$$P = \frac{1}{2}ch$$

$$P = \frac{1}{2}bc \cdot \sin \alpha$$

$$P = \frac{b^2}{2(\cot \alpha + \cot \gamma)}$$

$$P = p \cdot r, \quad p = \frac{a+b+c}{2}$$

$$P = \sqrt{p(p-a)(p-b)(p-c)}$$

$$P = \frac{abc}{4R}$$

$$P = \frac{1}{4} \operatorname{tg} \alpha(b^2 + c^2 - a^2)$$

Promień okręgu wpisanego i opisanego dowolnego trójkąta

$$R = \sqrt{\frac{a^2b^2c^2}{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}$$
$$r = \sqrt{\frac{(-a+b+c)(a-b+c)(a+b-c)}{4(a+b+c)}}$$

Twierdzenia o dowolnych trójkątach

Twierdzenie Cevy - niech dany będzie trójkąt ABC i punkty D, E, F takie, że $D \in |BC|, E \in |AC|$ i $F \in |AB|$. Jeżeli proste |AD|, |BE| i |CF| przecinają się w jednym punkcie O, to wtedy prawdziwa jest równość:

$$\frac{|AF|}{|FB|} \cdot \frac{|BD|}{|DC|} \cdot \frac{|CE|}{|EA|} = 1$$

Twierdzenie Eulera - twierdzenie opisujące relację między długościami promieni okręgów: wpisanego w i opisanego na trójkącie a odległością między środkami tych okręgów. Długość odcinka d, będącego odległością środków okręgów: wpisanego i opisanego jest równa:

$$d^2 = R(R - 2r)$$

Z twierdzenia tego wynika również **nierówność Eulera**: $R \ge 2r$

Twierdzenie o trójliściu - niech dany będzie dowolny trójkąt ABC. Prosta BO_r , przechodząca przez wierzchołek trójkąta i środek okręgu wpisanego w ten trójkąt przecina okrąg opisany na trójkącie w punkcie D. W takiej konfiguracji prawdziwa jest równość:

$$|AD| = |O_r D| = |CD|$$

Twierdzenie o linii środkowej - linia środkowa (odcinek łączący środki dwóch boków trójkąta) jest równoległa do odpowiadającego jej boku oraz długość linii środkowej jest równa połowie długości odpowiadającego boku.

$$|DE| = \frac{1}{2}|AB|$$

Twierdzenie Routha - opisuje stosunek między polami trójkąta i trójkąta zawartego między czewianami (dowolnymi odcinkami łączącymi wierzchołek trójkąta i przeciwległy bok).

Niech dany będzie dowolny trójkąt ABC i $D \in |BC|$, $E \in |AC|$ i $F \in |AB|$. Wiedząc, że $x = \frac{|CD|}{|BD|}$, $y = \frac{|AE|}{|CE|}$ i $z = \frac{|BF|}{|AF|}$ pole trójkąta GHI jest równe polu trójkąta ABC razy:

$$\frac{(xyz-1)^2}{(xy+y+1)(yz+z+1)(zx+x+1)}$$

Trójkąt równoboczny - wzory

$$P = \frac{a^2\sqrt{3}}{4}$$

$$h = \frac{a\sqrt{3}}{2}$$

$$R = \frac{2}{3}h = \frac{a\sqrt{3}}{3}$$

$$r = \frac{1}{3}h = \frac{a\sqrt{3}}{6}$$

Twierdzenia o trójkątach równobocznych

Twierdzenie Vivianiego - Dla każdego punktu wewnątrz trójkąta równobocznego suma odległości tego punktu od boków trójkąta jest równa jego wysokości.

Twierdzenie Van Schootena - Dla punktu D umieszczonego na okręgu opisanym na trójkącie równobocznym długość najdłuższego odcinka łączącego ten punkt z wierzchołkiem jest równa sumie długości dwóch pozostałych odcinków łączących punkt D z pozostałymi wierzchołkami.

Jest to specjalny przypadek **twierdzenia Möbiusa - Pompejusza** które postuluje, że odcinki łączące dowolny punkt D na płaszczyźnie z

wierzchołkami trójkąta równobocznego spełniają nierówność trójkąta (da się z nich zbudować trójkąt).

Trójkąt prostokątny - wzory

$$P = \frac{1}{2}ab \qquad h = \sqrt{ef}$$

$$a = \sqrt{ce} \qquad b = \sqrt{cf}$$

$$r = \frac{a+b-c}{2} \qquad R = \frac{1}{2}c$$

Twierdzenie Talesa o kącie wpisanym - jeżeli jeden z boków trójkąta jest średnicą okręgu na nim opisanego, to wtedy jest to trójkąt prostokątny, a średnica jest przeciwprostokątną.

Cechy przystawania trójkątów

I cecha przystawania trójkątów (bbb)

$$a = a_1 \wedge b = b_1 \wedge c = c_1 \Rightarrow ABC \equiv A_1B_1C_1$$

Jeżeli długości trzech boków w jednym trójkącie są odpowiednio równe długościom trzech boków w drugim trójkącie, to wtedy te trójkąty są przystające.

II cecha przystawania trójkątów (bkb)

$$b = b_1 \land \alpha = \alpha_1 \land c = c_1 \Rightarrow ABC \equiv A_1B_1C_1$$

Jeżeli dwa boki i kąt między tymi bokami w jednym trójkącie są odpowiednio równe dwóm bokom i kątowi między tymi bokami w drugim trójkącie, to te trójkąty są przystające.

III cecha przystawania trójkątów (kbk)

$$\alpha = \alpha_1 \wedge b = b_1 \wedge \beta = \beta_1 \Rightarrow ABC \equiv A_1B_1C_1$$

Jeżeli bok i dwa przyległe do niego kąty w jednym trójkącie są odpowiednio równe bokowi i dwóm przyległym do niego kątom w drugim trójkącie, to wtedy te trójkąty są przystające.

Cechy podobieństwa trójkątów

Cecha podobieństwa trójkątów (kkk)

$$\alpha = \delta \wedge \beta = \gamma \Rightarrow ABC \sim DEF$$

Jeżeli dwa kąty jednego trójkąta są odpowiednio równe dwóm kątom drugiego trójkąta, to trójkąty te są podobne.

Cecha podobieństwa trójkątów (bbb)

$$\frac{d}{a} = \frac{e}{b} = \frac{f}{c} = k, \ \text{gdzie} \ k$$
 - skala podobieństwa $\Rightarrow ABC \sim DEF$

Jeżeli długości boków jednego trójkąta są proporcjonalne do odpowiednich długości boków drugiego trójkąta, to trójkąty te są podobne.

Cecha podobieństwa trójkątów (bkb)

$$\frac{e}{b} = \frac{f}{c} = k$$
, gdzie k - skala podobieństwa $\wedge \alpha = \delta \Rightarrow ABC \sim DEF$

Jeżeli długości dwóch boków jednego trójkąta są proporcjonalne do odpowiednich długości boków drugiego trójkąta oraz kąty między tymi bokami są równe, to trójkąty te są podobne.

Jeżeli trójkąty T_1, T_2 są podobne w skali k, to stosunek pól tych trójkątów jest równy kwadratowi skali podobieństwa.

Twierdzenie sinusów

W dowolnym trójkącie iloraz długości dowolnego boku i sinusa kąta leżącego naprzeciwko tego boku jest równy średnicy okręgu opisanego:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

Twierdzenie cosinusów

W dowolnym trójkącie kwadrat długości dowolnego boku jest równy sumie kwadratów długości pozostałych boków pomniejszonej o podwojony iloczyn długości tych boków i cosinusa kąta zawartego między nimi.

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

Twierdzenie tangensów

W dowolnym trójkącie, jeżeli a,b to miary dwóch boków trójkąta, a kąty α,β są kątami odpowiednio leżącymi naprzeciwko do tych boków, to wtedy prawdziwa jest zależność:

$$\frac{a-b}{a+b} = \frac{\operatorname{tg}\frac{\alpha-\beta}{2}}{\operatorname{tg}\frac{\alpha+\beta}{2}}$$

Twierdzenie cotangensów

W dowolnym trójkącie iloraz różnicy połowy obwodu trójkąta $(p = \frac{a+b+c}{2})$ i dowolnego boku nad cotangens połowy kąta leżącego naprzeciwko tego boku jest równy promieniowi okręgu wpisanego.

$$\frac{p-a}{\operatorname{ctg}\frac{\alpha}{2}} = \frac{p-b}{\operatorname{ctg}\frac{\beta}{2}} = \frac{p-c}{\operatorname{ctg}\frac{\gamma}{2}} = r$$