Ficha1-DC

João Nunes (A82300) Luís Braga (A82088)

21/02/2020

Conteúdo

1	Exe	Exercício 1				
	1.1	a) Quantas instâncias (registos) tem este data set?	2			
	1.2	b) Quantos atributos (colunas) tem este data set?	2			
	1.3	c) Quantos e quais os valores possíveis para o atributo "age"?	2			
	1.4	d) Quais os valores possíveis para o atributo "contact-lens"?	2			
	1.5	d) Qual o atributo que tem "reduced" como um dos valores?	2			
2	Exe	rcício 2	3			
	2.1	a) Quantas instâncias registos tem este data set?	3			
	2.2	b) Quantos atributos (colunas) tem este data set?	3			
	2.3	c) A classe "iris-setosa" tende a ter maiores ou menores valores de "sepal.length"?	3			
	2.4	d) A classe "iris-viginica" tende a ter maiores ou menores valores de "petal.width"?	3			
	2.5	e) Qual destes atributos, sozinho, parece dar uma melhor indicação da "class"?	4			
3	Exe	rcício 3	4			
	3.1	a) Identificar quais os atributos deste data set?	4			
	3.2	b) A utilização de um algoritmo de classificação poderá trazer conhecimento específico através dos				
		dados apresentados. Indique um objetivo que possa ser atingido com a aplicação de algoritmos de				
		classificação,quando o mesmo for executado em dados semelhantes, mas previamente desconhecidos.	5			
4	Exe	Exercício 4				
	4.1	b) Observar a "Confusion Matrix" e indicar quais as maiores falhas no processo de classificação	5			
	4.2	c) Qual o número de "headlamps" que foram classificadas como "build wind float"?	5			
	4.3	d) Qual o número de instâncias classificadas corretamente como "vehic wind non-float"?	6			
	4.4	e) Qual o número de instâncias classificadas corretamente como "vehic wind float"?	6			
	4.5	f) Na lista de resultados obtidos clicar com o botão direito e selecionar "Visualize tree". Copiar os	_			
		resultados para a ficha de solução e descrever sucintamente o processo de classificação do algoritmo	7			
5		rcício 5	7			
	5.1	a) Correr o algoritmo de classificação J48 com os parâmetros por defeito. Indicar a percentagem de	_			
	<i>-</i> -	instâncias corretamente classificadas	7			
	5.2	b) Utilizando somente 2 casas decimais, abra a configuração do algoritmo J48 e coloque a opção "un-				
		pruned" a "True". Corra novamente a classificação e indique a percentagem de instâncias corretamente	0			
		classificadas	8			
6	Exe	rcício 4 continuação	9			
	6.1	a) Retirar o atributo "Fe". Qual o resultado da classificação?	9			
	6.2	b) Retirar todos excepto "Ri", "Mg". Qual o resultado da classificação?	9			

1 Exercício 1

1.1 a) Quantas instâncias (registos) tem este data set?

O dataset possui 24 registos, como se pode ver na seguinte figura.

Relation: contact-lenses Instances: 24

1.2 b) Quantos atributos (colunas) tem este data set?

O dataset possui cerca de 5 colunas, sendo que o mesmo pode ser comporvado por uma análise da Current relation.

Attributes: 5 Sum of weights: 24

1.3 c) Quantos e quais os valores possíveis para o atributo "age"?

Existem três valores possíveis para o atributo age, o valor "young", "pre-presbyopic"e "presbyopic". Como se poderá verificar na seguinte figura.

1.4 d) Quais os valores possíveis para o atributo "contact-lens"?

O atributo "contact-lens" possui três valores possíveis, o valor "soft", "hard" ou "none".

1.5 d) Qual o atributo que tem "reduced" como um dos valores?

O atributo que possui o valor "reduced"é o atributo "tear-prode-rate".

Name: tear-prod-rate Missing: 0 (0%)		Distinct: 2	Type: Nominal Unique: 0 (0%)	
No.	Label	Count	Weight	
1	reduced	12	12.0	
2	normal	12	12.0	

2 Exercício 2

2.1 a) Quantas instâncias registos tem este data set?

Neste caso o data set possui 150 registos.

2.2 b) Quantos atributos (colunas) tem este data set?

O data set possui 5 atributos como se pode comprovar na figura abaixo.

Attributes: 5 Sum of weights: 150

2.3 c) A classe "iris-setosa" tende a ter maiores ou menores valores de "sepal.length"?

Tendo em conta que a classe "iris-setosa" é identificada pela cor azul, no seguinte gráfico mostra-se a relação do "sepal-length" juntamente com o tipo de classe. De onde é possível verificar que a classe "iris-setosa" ao analisar o "speal-length" em média é menor que as outras classes.

2.4 d) A classe "iris-viginica" tende a ter maiores ou menores valores de "petal.width"?

A classe "iris-virginica" representada pela cor apresentada abaixo:

Tende a ter valores maiores de "petal.width" que as restantes classes como se pode ver na figura seguinte, em que a classe em questão domina a área com os maiores valores.

2.5 e) Qual destes atributos, sozinho, parece dar uma melhor indicação da "class"?

O atributo que dá uma melhor indicação da class é o atributo "petal-width" uma vez analisando este atributo cada classe encontra-se bem distribuída e facilmente identificável a partir do "petal-width" ao contrário dos outros atributos onde é mais misturada a distribuição das classes pelos valores dos atributos.

3 Exercício 3

3.1 a) Identificar quais os atributos deste data set?

Este data set possui cerca de 5 atributos, sendo eles o "outlook", "temperature", "humidity", "windy"e por fim o "play".

3.2 b) A utilização de um algoritmo de classificação poderá trazer conhecimento específico através dos dados apresentados. Indique um objetivo que possa ser atingido com a aplicação de algoritmos de classificação,quando o mesmo for executado em dados semelhantes, mas previamente desconhecidos.

Um algoritmo de classificação, e tendo em conta o caso apresentado com base nos outros dados ou seja a temperatura, humidade, vento e "outlook"consegue classificar e prever se pode jogar ou não.

4 Exercício 4

4.1 b) Observar a "Confusion Matrix"e indicar quais as maiores falhas no processo de classificação.

```
=== Confusion Matrix ===
                  £
                         <-- classified as
 50 15
        3
           0
                 1
                     1 |
                          a = build wind float
              0
 16 47
                     2 |
                          b = build wind non-float
        6
           0
              2
                 3
     5
        6
           0
                          c = vehic wind float
                 1
                     0 |
                          d = vehic wind non-float
     0
           0
                     0 1
     2
        0
           0 10 0 1 |
                          e = containers
                     0 I
                         f = tableware
  1
     1
        0
           0
             0
                 7
     2
                1 23 | q = headlamps
        0
           0 0
```

A maior falha do algoritmo de classificação J48 concentra-se na previsão dos valore a e b, onde em 16 casos preveu como sendo b quando era verdadeiramente a, e em 15 casos preveu como sendo a quando era verdadeiramente b.

4.2 c) Qual o número de "headlamps" que foram classificadas como "build wind float"?

Foram três casos classificados como "build wind float".

```
=== Confusion Matrix ===
                 £
                         <-- classified as
     b
 50 15
                          a = build wind float
                     2 |
                          b = build wind non-float
 16 47
           0
     5
           0
                     0 |
                          c = vehic wind float
        6
              0
                 1
  0
     0
           0
                     0 I
                         d = vehic wind non-float
        0
             0
                 0
           0 10
                    1 |
                          e = containers
                          f = tableware
     1
                 7
                     0 I
     2
                 1 23 | g = headlamps
        0
           0
              0
```

4.3 d) Qual o número de instâncias classificadas corretamente como "vehic wind non-float"?

```
=== Confusion Matrix ===

a b c d e f g <-- classified as
50 15 3 0 0 1 1 | a = build wind float
16 47 6 0 2 3 2 | b = build wind non-float
5 5 6 0 0 1 0 | c = vehic wind float
0 0 0 0 0 0 0 | d = vehic wind non-float
0 2 0 0 10 0 1 | e = containers
1 1 0 0 0 7 0 | f = tableware
3 2 0 0 0 1 23 | g = headlamps
```

Zero casos foram previstos como sendo d quando verdadeiramente eram d.

4.4 e) Qual o número de instâncias classificadas corretamente como "vehic wind float"?

```
=== Confusion Matrix ===

a b c d e f g <-- classified as
50 15 3 0 0 1 1 | a = build wind float
16 47 6 0 2 3 2 | b = build wind non-float
5 5 6 0 0 1 0 | c = vehic wind float
0 0 0 0 0 0 0 | d = vehic wind non-float
0 2 0 0 10 0 1 | e = containers
1 1 0 0 0 7 0 | f = tableware
3 2 0 0 0 1 23 | g = headlamps
```

Seis casos foram previstos como sendo c quando verdadeiramente eram c.

4.5 f) Na lista de resultados obtidos clicar com o botão direito e selecionar "Visualize tree". Copiar os resultados para a ficha de solução e descrever sucintamente o processo de classificação do algoritmo.

O algoritmo de J48 é um algoritmo baseado em *decision trees* onde divide os dados de cada classe de forma adequada, onde cada novo caso que depois surge toma um dos valores dos ramos consoante o seu valor, conseguindo desta maneira fazer a previsão.

5 Exercício 5

5.1 a) Correr o algoritmo de classificação J48 com os parâmetros por defeito. Indicar a percentagem de instâncias corretamente classificadas.

O algoritmo J48 com os parâmetros standard consegue prever corretamente 73.6842% dos casos.

=== Summary ===

Correctly Classified Instances 42 73.6842 %
Incorrectly Classified Instances 15 26.3158 %

Kappa statistic 0.4415

Mean absolute error 0.3192

Root mean squared error 0.4669

Relative absolute error 69.7715 %

Root relative squared error

Total Number of Instances

5.2 b) Utilizando somente 2 casas decimais, abra a configuração do algoritmo J48 e coloque a opção "unpruned" a "True". Corra novamente a classificação e indique a percentagem de instâncias corretamente classificadas

97.7888 %

57

Utilizando essas configurações o algoritmo conseguiu prever corretamente em 78.9474% dos casos.

6 Exercício 4 continuação

6.1 a) Retirar o atributo "Fe". Qual o resultado da classificação?

Depois de retirar o atributo "Fe", foi possível verificar que o algorimto preveu corretamente em 67.2895% dos casos e preveu incorretamente em 32.7103% dos casos.

=== Summary ===		
Correctly Classified Instances	144	67.2897 %
Incorrectly Classified Instances	70	32.7103 %
Kappa statistic	0.5519	
Mean absolute error	0.1029	
Root mean squared error	0.285	
Relative absolute error	48.5797 %	
Root relative squared error	87.8206 %	
Total Number of Instances	214	

6.2 b) Retirar todos excepto "Ri", "Mg". Qual o resultado da classificação?

Removendo todos excepto esses dois atributos e o "Type" foi possível melhorar de maneira insignificante a percentagem de acerto para 68.6916% e preveu incorretamente em 31.3084%.

=== Summary ===		
Correctly Classified Instances	147	68.6916 %
Incorrectly Classified Instances	67	31.3084 %
Kappa statistic	0.5628	
Mean absolute error	0.1124	
Root mean squared error	0.267	
Relative absolute error	53.082 %	
Root relative squared error	82.2535 %	
Total Number of Instances	214	