QCB/MOL/COS 455/551 Introduction to genomics & computational biology

Basic statistical concepts in "omics"

October 11, 2016

Overview

- 1. True and false positives, precision/recall, ROC curves
- 2. Gene Ontology and other functional standards
- 3. P-values, multiple testing correction
- 4. Data exploratory analysis, heatmaps, clustering, visualization

The workflow of systems biology

Reality vs Test

Population

Test for the condition

Is this a good test? It depends on how the positives & the negatives align with individuals with & without condition.

Reality vs Test

Best case scenario

Most likely scenario

Worst case scenario

Can I quantify the quality of this test?

Some terminology (1)

Best case scenario

Most likely scenario

Worst case scenario

TP = true positives

FP = false positives

TN = true negatives

FN = false negatives

TP + FP =all positives in my test

TN + FN =all negatives in my test

TP + FN = all individuals with condition (among tested)

FP + TN = all individuals without condition (among tested)

Some terminology (2)

Most likely scenario

1. How many individuals **with condition** will be labelled as **positive**?

$$TPR = \frac{TP}{FN+TP}$$
 True Positive Rate = Sensitivity = Recall

2. How many individuals <u>without the condition</u> will be labelled as <u>negative</u>?

$$TNR = \frac{TN}{TN + FP}$$
 True Negative Rate = Specificity

Some terminology (3)

Most likely scenario

1. How many individuals **without the condition** will be labelled as **positive**?

$$FPR = 1 - TNR = \frac{FP}{TN + FP}$$
 False Positive Rate

2. How many individuals **with the condition** will be labelled as **negative**?

$$FNR = 1 - TPR = \frac{FN}{FN + TP}$$
 False Negative Rate

The lesser of two evils: high FPR or high FNR?

Most likely scenario

Not all of these measurements are equally informative in different contexts.

A) Development of a clinical test for early cancer diagnosis:

High false positive rate (FPR)	Many healthy individuals labelled as positives.	OK*
High false negative rate (FNR)	Many sick individuals labeled as negative.	Not OK

B) Development of a computational method for predicting physical interactions between proteins:

High false positive rate (FPR)	Many random proteins labelled as interacting.	Not OK
High false negative rate (FNR)	Many interactions missed.	OK

- * Steven Salzberg's (@StevenSalzberg1) post on Forbes about genetic testing for breast cancer: http://goo.gl/xfj6wb (Sept. 15, 2014)
- Elizabeth Holmes & Theranos (Kidd et al., "Evaluation of direct-to-consumer low-volume lab tests in healthy adults", J Clin Invest, 2016)

The lesser of two evils: high FPR or high FNR?

All individuals in a population

High false positive rate (FPR)

- = Many random protein pairs are labelled as interacting.
- = Huge contamination of a tiny dataset.

High false negative rate (FNR)

- = Many interactions missed.
- = Not great, but at least the ones I have are real.

All possible protein pairs in yeast S. cerevisiae

So, should I aim for low FPR?

Low FPR is not informative for rare events

$$FPR = 1 - TNR = \frac{FP}{TN + FP}$$

Reality:

Total number of protein pairs = $18\,000\,000$ Interacting = $54\,000 = 0.3\%$ Non-interacting = $17\,946\,000 = 99.7\%$

New method:

Predicted to interact = 54 000 Predicted to not interact = 17 946 000

The true interactions & the predicted ones only overlap by half.

 $FPR = 27\ 000\ /\ 17\ 946\ 000 =\ 0.15\%$

FPR very low but half the data is false.

General rule:

The more specific the phenomenon (i.e., the less frequently it is observed), the less informative *FPR* is.

All possible protein pairs in yeast S. cerevisiae

99.7% pairs do not interact physically 0.3% pairs share a physical interaction

Better estimate of false positives: FDR

All possible protein pairs in yeast S. cerevisiae

$$FDR = \frac{FP}{FP + TP}$$
 False Discovery Rate

Total number of protein pairs = $18\,000\,000$ Interacting = $54\,000 = 0.3\%$ Non-interacting = $17\,946\,000 = 99.7\%$

Predicted to interact = 54 000 Predicted to not interact = 17 946 000

The true interactions & the predicted ones only overlap by half.

$$FDR = 27\ 000\ /\ 54\ 000 = 50\%$$

$$1 - FDR = precision$$

FPR vs FDR

$$FPR = 1 - TNR = \overline{TN + FP}$$

$$FDR = \frac{FP}{FP + TP}$$

Cheat sheet (nobody ever remembers all of this)

http://en.wikipedia.org/wiki/Accuracy_and_precision

Print it, tape it on a wall & look at it every time you read a paper.

Evaluating binary vs quantitative data

Binary data

Test	Ref		
1	1	1 P	
0	1	1 N	
0	1	1 N	
0	0	N	TN
1	0	P	FP
0	1	N	FN
0	1	N	FN
0	0	0 N	
1	0	P	FP
1	1	P	TP
0	1	N	FN
0	1	N	FN
0	0	N	TN

Recall =
$$TPR = \frac{\#TP}{\#TP + \#FN} = \frac{2}{8} = 0.25$$

Precision =
$$1 - FDR = \frac{\#TP}{\#TP + \#FP} = \frac{2}{4} = 0.5$$

Evaluating binary vs quantitative data

Quantitative data

Test	Ref	
0.21	0	?
0.65	0	?
0.37	0	?
0.42	1	?
0.54	1	?
0.11	0	?
0.69	1	?
0.75	1	?
0.83	1	?
0.31	1	?
0.22	1	?
0.46	1	?
0.17	0	?

Sort data from highest to lowest confidence

Ask the question:

If I draw the cutoff here, how good would my dataset be?

Quantitative data sorted

Test	Ref	P	TP	Recall	Precision
0.83	1	1	1	1/8	1/1
0.75	1	2	2	2/8	2/2
0.69	1	3	3	3/8	3/3
0.65	0	4	3	3/8	3/4
0.54	1	5	4	4/8	4/5
0.46	1	6	5	5/8	5/6
0.42	1	7	6	6/8	6/7
0.37	0	8	6	6/8	6/8
0.31	1	9	7	7/8	7/9
0.22	1	10	8	8/8	8/10
0.21	0	11	8	8/8	8/11
0.17	0	12	8	8/8	8/12
0.11	0	13	8	8/8	8/13

Precision/recall analysis for defining data thresholds

Precision/recall analysis for comparing datasets

Baryshnikova~Myers, Nat Methods, 2010

von Mering~Bork, Nature, 2002

Receiver operating curve (ROC)

$$TPR = \frac{TP}{FN+TP}$$

$$FPR = 1 - TNR = \frac{FP}{TN + FP}$$

AUC = Area Under the ROC Curve

Often used to associate a method with a single number, instead of a plot.

A few final thoughts about precision & recall

- Precision & recall only tell you how well your data aligns with a reference standard.
- The estimate of your data quality will therefore depend on the standard you choose.
- For example, if you reference standard is incomplete, any novel finding will be labelled as False Positive. If a new dataset uncovers a lot of novel biology, it might perform poorly in the precision/recall analysis.
- When using precision/recall to compare datasets, make sure you are comparing them on a common ground (same tested universe, same standard).
- Any estimate is more reliable if supported by multiple standards.
- Any estimate is more reliable if compared to an alternative hypothesis (p-values).