

第五章

三維空間繪圖

本章學習目標

學習三維繪圖的基本技巧

學習peaks函數的用法

學習二維與三維等高線圖的繪製

學習三維圖形的編修

5.1 基本三維繪圖

o 對於函數而言,每給一組f(x,y),便能求得其相對應的高度z,如下圖所示:

5.1.1 繪製三維的網格圖

o 利用mesh函數可繪製三維的網格圖:

表 5.1.1 mesh 函數的使用

函 數	說 明
mesh(x,y,z)	續出三維的網格圖
mesh(z)	繪出 x 座標從 1 到 m, y 座標從 1 到 n 的三維的網格圖

Mesh 函數的用法


```
>> xx=[2 3 4;2 3 4;2 3 4;2 3 4];
>> yy=[0 0 0;1 1 1;2 2 2;3 3 3]
>> zz=[7 7 6;7 7 7;8 8 9;8 8 9]
>> mesh(xx,yy,zz)
```


o Matlab提供了meshgrid函數,可以建立xx與yy矩陣:

表 5.1.2 meshgrid 函數的使用

函數說明

meshgrid(vx,vy) 建構出兩個二維矩陣xx與yy,以供三維繪圖所需

```
>> x=linspace(-2,2,30);
>> y=linspace(-2,2,30);
>> [xx,yy]=meshgrid(x,y);
>> zz=xx.*exp(-xx.^2-yy.^2);
>> mesh(xx,yy,zz)
```


o 下面是meshc函數與waterfall函數用法:

表 5.1.3 meshc 與 waterfall 函數的使用

函 數	說 明
meshc(xx, yy, zz)	繪出網格圖,但在網格圖下方會附帶繪出等高線圖
waterfall(xx,yy,zz)	以切片的方式來繪製三維的立體圖

>> meshc(xx,yy,zz)

>> waterfall(xx,yy,zz)

5.1.2 繪製三維的曲面圖

o 想要對網格面上色,可利用surf或其它相關的函數:

表 5.1.4 surf 與 surfc 函數的使用

函數	說 明
surf(xx, yy, zz)	繪出三維的曲面圖
surfc(xx,yy,zz)	同 surf,但在圖形下方會顯示出函數圖形的等高線圖

>> surf(xx,yy,zz);

>> surfc(xx,yy,zz);axis tight;

5.2 簡易的三維繪圖函數

o ezmesh與ezsurf函數可以快速的繪出三維的圖形:

表 5.2.1 簡易三維繪圖函數的使用

函 數	說 明
ezmesh(f,[xmin, xmax, ymin, ymax])	根據函數 f 以 60×60 個網格數繪出 f 的三維圖形
ezmeshc(f,[xmin,xmax,ymin,ymax])	同 ezmesh,但在圖形下方會顯示出圖形的等高線
ezsurf(f,[xmin,xmax,ymin,ymax])	同 ezmesh,但是網格面會上色
ezsurfc(f,[xmin,xmax,ymin,ymax])	同 ezsurf,但在圖形下方會顯示出圖形的等高線

>> ezmesh('exp(-0.2*x)*cos(t)')

>> ezsurfc('y/(x^2+y^2+1)',36)

5.3 內建的三維圖形展示函數—peaks

o peaks所描述的數學函數,其定義式為

$$f(x,y) = 3(1-x)^2 e^{-x^2 - (y+1)^2} - 10\left(\frac{x}{5} - x^3 - y^5\right) e^{-x^2 - y^2} - \frac{1}{3}e^{-(x+1)^2 - y^2}$$

表 5.3.1 使用 peaks 函數

函 數	說 明
peaks	以 49×49 個資料點繪製數學函數 peaks,範圍 x 與 y 方向同為 $-3 \sim 3$
peaks(n)	同 $peaks$,但以 $n \times n$ 個資料點來繪圖
zz=peaks	計算 49×49 個數學函數 peaks 的值
zz=peaks(n)	以 n×n 個資料點計算數學函數 peaks 的值
[xx,yy,zz] = peaks(n)	以 n×n 個資料點計算數學函數 peaks 的值

```
>> peaks(24);
>> surfc(xx,yy,zz);
```


5.4 空間曲線繪圖

o plot3函數可用來繪製空間的曲線:

表 5.4.1 空間曲線繪圖函數

函 數	說 明
plot3(x,y,z)	以向量x,y與z繪製三維空間曲線
plot3(x,y,z,'str')	以控制字串 str 所指定的格式繪出三維空間曲線

>> plot3(t.*sin(t),t.*cos(t),t);

5.5 等高線繪圖

5.5.1 二維的等高線圖

o Matlab的contour函數可用來繪製二維的等高線圖:

表 5.5.1 二維等高線繪圖函數

函 數	說 明
contour(xx,yy,zz,n)	分別以矩陣 xx、yy 與 zz 繪出 n 條等高線
contour(zz,n)	同上,但 x 方向是從 1 到 m , y 方向是從 1 到 n
contour(xx,yy,zz,[z ₁ ,z ₂ ,z ₃ ,])	繪出高度為 z ₁ , z ₂ , z ₃ , 的等高線圖
contourf(xx,yy,zz,n)	同 contour 函數,但會以顏色填滿(fill)等高線圖

>> contour(xx,yy,zz) >> contourf(xx,yy,zz,20)

o 要標註等高線的值: 把繪出的等高線圖設給某一個變數 把這個變數傳遞給clabel函數

表 5.5.2 將等高線加入高度標記的函數

函 數	說 明
clabel(cmat)	在等高線圖內加上高度的標記
clabel($cmat, [z_1, z_2, z_3,]$)	在高度為[z ₁ ,z ₂ ,z ₃ ,]的等高線上加上高度標記
clabel(cmat, 'manual')	利用滑鼠標註等高線的數值

>> cmat=contour(xx,yy,zz);

>> clabel(cmat)

5.5.2 三維的等高線圖

o contour3函數可繪製三維的等高線圖:

表 5.5.3 三維等高線繪圖函數

函 數	說 明
contour3(xx , yy , zz , n)	分別以矩陣 $xx \cdot yy$ 與 zz 繪出 n 條三維的等高線
contour3(zz,n)	同上,但x方向從1到m,y方向從1到n
contour3(xx,yy,zz,[z ₁ ,z ₂ ,z ₃ ,])	指定繪出高度為 z ₁ ,z ₂ ,z ₃ , 的三維等高線圖

- >> zz=peaks;
- >> contour3(zz);

5.6 編修三維繪圖

5.6.1 三維圖形的基本編修

o 下表列出了三維圖形常用的編修指令:

表 5.6.1 三維繪圖的基本編修指令

指令	說 明
hidden on/off	預設為 on。設定 off 則會除去隱藏線,但這個指令只對 mesh 等函數所繪出的網格圖形有效
axis on/off	預設為 on。設定 off 則不顯示座標軸與刻度
box on/off	預設為 off。設定 on 則在圖形的外圍顯示一個外框
hold on/off	預設為 off。設定 on 時,則新產生的圖形不會覆蓋掉原有的圖形
grid on/off	設定 on 則顯示座標的網格線

>> hidden off;

>> box on;

5.6.2 改變三維圖形的視角

o 如果想更改圖形的觀測角度,可用利用view函數:

表 5.6.2 改變三維圖形的視角

函 數	說 明
view(az,el)	設定圖形的視角,單位為度
[az,el]=view	傳回目前所使用的視角

>> peaks;

>> view(60,30);

o 按下工具列上的Rotate 3D鈕 , 可利用滑鼠旋轉所 繪製的圖形

5.6.3 修改三維圖形的曲面顏色

o Matlab是利用color map,依所繪製之函數值的大小來對曲面上色。

- o colormap可限定三維的圖形使用特定的顏色對應表
- o 下表列出了colormap與colorbar函數的用法:

表 5.6.4 colormap 函數的使用

函 數	說 明
colormap(<i>map</i>)	使用map當成目前配色的顏色對應表
colormap('default')	使用預設的顏色對應表
map=colormap	把目前的顏色對應表設定給變數 map
colorbar	在目前的圖形中顯示顏色對應圖

o 下表列出了Matlab常用來建立顏色對應表的函數

表 5.6.5 產生顏色對應表的函數

函 數	說 明
hsv(m)	建立一個 $m \times 3$ 的顏色對應矩陣,色系是由紅、橙、黃、綠、藍、靛、紫
	等循環色彩所組成
jet(<i>m</i>)	建立一個 $m \times 3$ 的顏色對應矩陣,色系是暗紅、紅、橙、黃、綠、藍、靛、
	紫與暗藍等色彩所組成(Matlab 預設的顏色對應表)
spring(m)	建立一個 $m \times 3$ 的春天色系矩陣,它是由粉紅與黃色色系所組成
summer(m)	建立一個 $m \times 3$ 的夏天色系矩陣,它是由綠色與黃色色系所組成
$\operatorname{autumn}(m)$	建立一個 $m \times 3$ 的秋天色系矩陣,它是由黃色與紅色色系所組成
winter(m)	建立一個 $m \times 3$ 的冬天色系矩陣,它是由藍色與綠色色系所組成
hot(<i>m</i>)	建立一個 $m \times 3$ 的暖色系矩陣,由黑、紅、黃、白等顏色所組成
cool(m)	建立一個 m×3 的冷色系矩陣,由青色和暗紅色等顏色所組成
gray(m)	建立一個 m×3 的灰階色系矩陣

>> colormap(hot(32));colorbar; >> colormap('default');colorbar;

5.6.4 利用Property Editor視窗修改圖形

