

Schletter, Inc.		15° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V =	90 mpn	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 12.72 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1 (Procesure)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.6 (Pressure)	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.04 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T. =	0.00	$C_4 = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
Тор	M3	Outer	N7	Outer
Bottom	M7	Inner	N15	Inner
	M11	Outer	N23	Outer
<u>Location</u>	Rear Struts	Location	Rear Reactions	Location
Outer	M2	Outer	N8	Outer
Inner	M6	Inner	N16	Inner
Outer	M10	Outer	N24	Outer
<u>Location</u>	Bracing	<u>9</u>		
Outer	M15	5		
Inner	M16A	A		
Outer				
	Top Bottom Location Outer Inner Outer Location Outer Inner	Top M3 Bottom M7 M11 M11 Location Rear Struts Outer M2 Inner M6 Outer M10 Location Bracing Outer M15 Inner M16/	Top M3 Outer Bottom M7 Inner M11 Outer Location Rear Struts Location Outer M2 Outer Inner M6 Inner Outer M10 Outer Location Bracing Outer M15 Inner M16A	Top Bottom M3 M7 Inner Outer N15 M11 N7 N15 M11 Location Outer Rear Struts M2 Outer Location M8 Inner Rear Reactions N8 Inner Outer M6 Inner Inner N16 N24 Location Outer Bracing Outer M15 Inner M15 Inner

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

$\begin{array}{ll} \text{Brace Type =} \\ \text{Aluminum Type =} \\ \text{F}_{\text{ty}} = \\ \Phi = \end{array}$	1.5x0.25 6061-T6 35 0.90	ksi
S _y =	0.02	in ³
E =	10100	ksi
$I_y =$	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.006	k-ft
P _n =	0.028	k
$M_{y \text{ allowable}} =$	0.046	k-ft
$P_{n \text{ allowable}} =$	11.813	k
Utilization =	<u>13%</u>	

A cross brace kit is required every 14 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	<u>511.37</u>	<u>1566.57</u>	k
Compressive Load =	2277.82	1670.25	k
Lateral Load =	<u>4.10</u>	<u>588.58</u>	k
Moment (Weak Axis) =	0.01	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 23021.8 in-lbs Resisting Force Required = 767.39 lbs A minimum 60in long x 23in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1278.99 lbs to resist overturning. Minimum Width = 23 in in Weight Provided = 2084.38 lbs Sliding Force = 141.44 lbs Use a 60in long x 23in wide x 18in tall Friction = 0.4 Weight Required = 353.59 lbs ballast foundation to resist sliding. Resisting Weight = 2084.38 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 141.44 lbs Cohesion = 130 psf Use a 60in long x 23in wide x 18in tall 9.58 ft² Area = ballast foundation. Cohesion is OK. Resisting = 1042.19 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

		Ballast	t Width	
	23 in	24 in	25 in	<u>26 in</u>
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.92 \text{ ft}) =$	2084 lbs	2175 lbs	2266 lbs	2356 lbs

ASD LC		1.0D	+ 1.0S	0S 1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W						
Width	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in
FA	860 lbs	860 lbs	860 lbs	860 lbs	648 lbs	648 lbs	648 lbs	648 lbs	1072 lbs	1072 lbs	1072 lbs	1072 lbs	-243 lbs	-243 lbs	-243 lbs	-243 lbs
FB	632 lbs	632 lbs	632 lbs	632 lbs	474 lbs	474 lbs	474 lbs	474 lbs	785 lbs	785 lbs	785 lbs	785 lbs	-751 lbs	-751 lbs	-751 lbs	-751 lbs
F_V	60 lbs	60 lbs	60 lbs	60 lbs	252 lbs	252 lbs	252 lbs	252 lbs	231 lbs	231 lbs	231 lbs	231 lbs	-283 lbs	-283 lbs	-283 lbs	-283 lbs
P _{total}	3576 lbs	3667 lbs	3758 lbs	3848 lbs	3206 lbs	3297 lbs	3387 lbs	3478 lbs	3942 lbs	4032 lbs	4123 lbs	4213 lbs	256 lbs	311 lbs	365 lbs	419 lbs
M	517 lbs-ft	517 lbs-ft	517 lbs-ft	517 lbs-ft	706 lbs-ft	706 lbs-ft	706 lbs-ft	706 lbs-ft	885 lbs-ft	885 lbs-ft	885 lbs-ft	885 lbs-ft	503 lbs-ft	503 lbs-ft	503 lbs-ft	503 lbs-ft
е	0.14 ft	0.14 ft	0.14 ft	0.13 ft	0.22 ft	0.21 ft	0.21 ft	0.20 ft	0.22 ft	0.22 ft	0.21 ft	0.21 ft	1.96 ft	1.62 ft	1.38 ft	1.20 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	308.4 psf	304.7 psf	301.2 psf	298.0 psf	246.1 psf	244.9 psf	243.8 psf	242.8 psf	300.4 psf	297.0 psf	293.8 psf	290.9 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	437.9 psf	428.7 psf	420.3 psf	412.5 psf	423.0 psf	414.4 psf	406.6 psf	399.3 psf	522.1 psf	509.4 psf	497.8 psf	487.0 psf	165.4 psf	117.4 psf	104.0 psf	99.2 psf

Maximum Bearing Pressure = 522 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 23in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 364.0 \text{ ft-lbs}$

Resisting Force Required = 379.82 lbs S.F. = 1.67 Weight Required = 633.04 lbs

Minimum Width = 23 in in Weight Provided = 2084.38 lbs

A minimum 60in long x 23in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		23 in			23 in					
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	91 lbs	255 lbs	86 lbs	387 lbs	1207 lbs	382 lbs	27 lbs	75 lbs	25 lbs	
F _V	3 lbs	3 lbs	0 lbs	17 lbs	16 lbs	1 lbs	1 lbs	1 lbs	0 lbs	
P _{total}	2671 lbs	2836 lbs	2666 lbs	2844 lbs	3664 lbs	2839 lbs	781 lbs	829 lbs	780 lbs	
М	5 lbs-ft	5 lbs-ft	0 lbs-ft	29 lbs-ft	24 lbs-ft	2 lbs-ft	1 lbs-ft	1 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.01 ft	0.01 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.32 ft	1.91 ft	1.92 ft	1.90 ft	1.90 ft	1.92 ft	1.91 ft	1.91 ft	1.92 ft	
f _{min}	277.1 sqft	294.4 sqft	278.1 sqft	287.2 sqft	374.5 sqft	295.5 sqft	81.0 sqft	86.1 sqft	81.3 sqft	
f _{max}	280.3 psf	297.4 psf	278.3 psf	306.2 psf	390.1 psf	296.9 psf	82.0 psf	87.0 psf	81.4 psf	

Maximum Bearing Pressure = 390 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 23in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 23in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	1.752 k	Maximum Axial Load =	1.408 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>31%</u>	Utilization =	<u>25%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.164 k	Maximum Axial Load =	0.028 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
M8 Bolt Shear Capacity = Strut Bearing Capacity =	5.692 k 7.952 k	M10 Bolt Capacity = Strut Bearing Capacity =	8.894 k 7.952 k
		. ,	

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 28.39 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.568 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.047 \text{ in} \\ \hline & N\!\!\!\!/\!\!\!/\!\!\!\!A} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus XT**

Strong Axis:

3.4.14

$$L_{b} = 99.00 \text{ in}$$

$$J = 0.427$$

$$206.479$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 28.7 \text{ ksi}$$

3.4.16

b/t = 6.6

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_b = 99.00 \text{ in}$$

$$J = 0.427$$

$$224.369$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)}}]$$

28.5

3.4.16

 $\phi F_1 =$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 22.7 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 37.95$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 38.1$$

$$m = 0.63$$

$$C_0 = 40.784$$

$$Cc = 39.216$$

$$k_1Bbr$$

$$\begin{array}{lll} m = & 0.63 \\ C_0 = & 40.784 \\ Cc = & 39.216 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 79.7 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 28.7 \text{ ksi} \\ k = & 498305 \text{ mm}^4 \\ & & 1.197 \text{ in}^4 \\ y = & 40.784 \text{ mm} \\ Sx = & 0.746 \text{ in}^3 \\ M_{max} St = & 1.782 \text{ k-ft} \\ \end{array}$$

3.4.18

$$h/t = 6.6$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20.5$$

$$Cc = 20.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 22.7 \text{ ksi}$$

$$ly = 148662 \text{ mm}^4$$

$$0.357 \text{ in}^4$$

$$x = 20.5 \text{ mm}$$

$$Sy = 0.443 \text{ in}^3$$

$$M_{max} Wk = 0.838 \text{ k-ft}$$

Compression

3.4.9

b/t =6.6 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi b/t =37.95 S1 = 12.21 S2 = 32.70 $\phi F_L = (\phi ck2*\sqrt{(BpE)})/(1.6b/t)$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.42 \text{ ksi}$
 $A = 620.02 \text{ mm}^2$
 0.96 in^2
 $P_{\text{max}} = 20.59 \text{ kips}$

21.4 ksi

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$L_b = 33.78 \text{ in}$$

 $ry = 1.374$
 $Cb = 1.25$
 21.9891

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

$$S2 = 79.2$$

$$\phi F_L = \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

$$\phi F_L = 29.7 \text{ ksi}$$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$L_{b} = 33.78 \text{ in}$$

$$ry = 1.374$$

$$Cb = 1.25$$

$$24.5845$$

$$S1 = \frac{1.2(Bc - \frac{\theta_{y}}{\theta_{b}}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_{c}$$

$$S2 = 79.2$$

$$\phi F_{L} = \phi b[Bc-Dc^{*}Lb/(1.2^{*}ry^{*}\sqrt{(Cb)})]$$

$$\phi F_{I} = 29.7 \text{ ksi}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$(- - \theta_{V} - \phi_{V})^{2}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

3.4.18

h/t =

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

4.29

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.7 \text{ ksi}$$

$$lx = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

37.77 mm

0.589 in³

1.455 k-ft

$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$ S1 = 36.9 M = 0.65 $C_0 = 29$ Cc = 29 $S2 = \frac{k_1Bbr}{mDbr}$ S2 = 77.3 $\phi F_L = 1.3\phi y F cy$ $\phi F_L = 43.2 \text{ ksi}$ $\phi F_L Wk = 13.5 \text{ ksi}$

 $\begin{array}{rcl} & \text{Iy} = & 217168 \text{ mm}^4 \\ & & 0.522 \text{ in}^4 \\ & \text{x} = & 29 \text{ mm} \\ & \text{Sy} = & 0.457 \text{ in}^3 \\ & \text{M}_{\text{max}} \text{Wk} = & 0.513 \text{ k-ft} \end{array}$

Compression

 $M_{max}St =$

y =

Sx=

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

b/t =24.46 S1 = 3.83 S2 = 10.30 $\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(5.1b/t)$

$\phi F_L =$ 10.4 ksi

3.4.9

b/t =4.29 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi b/t =24.46 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{2}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{\text{max}} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$1.6Dc$$
S1 = 0.51461

$$52 = (\frac{1.6}{1.6})$$

 $52 = 1701.56$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.2 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_1 = 33.3 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_1 = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$

$$0.096 \text{ in}^4$$

y = 15 mm
Sx = 0.163 in³

$$M_{max}St = 0.423 \text{ k-ft}$$

Weak Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 18.00 \text{ in} \\ \mathsf{J} = & 0.16 \\ & 47.2194 \\ \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \\ \mathsf{\phiF_L} = & 31.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

m =

$$\begin{array}{cccc} C_0 = & 15 \\ Cc = & 15 \\ S2 = \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L Wk = & 31.2 \text{ ksi} \\ y = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{\text{max}} Wk = & 0.423 \text{ k-ft} \\ \end{array}$$

7.75

mDbr

0.65

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$
 $r = 0.437 \text{ in}$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14 46.38 in

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S1 = \frac{12}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$1.6Dp$$
 S2 = 46.7

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C.$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

 $C_0 =$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

 $Ix = 39958.2 \text{ mm}^4$

$$0.096 \text{ in}^4$$

y = 15 mm

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.404 \text{ k-ft}$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$

$$\left(Bc - \frac{\theta_y}{\Omega}Fcy\right)$$

$$S1 = \left(\frac{Bc - \frac{o_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$S1 - \frac{Bbr - \frac{\theta_y}{\theta_b}}{1.3Fc}$$

$$S1 = 36.9$$

$$m = 0.68$$

$$C_0 = 15$$

$$c_2 = k_1 Bbr$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{\text{max}}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 29.96 \text{ in}$$

$$J = 0.16$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)}}]$$

$$\phi F_L = 30.5 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$\theta_{v} = 0$$

$$S1 = \frac{\theta_b}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

 $Cc = 15$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.5 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

0.096 in⁴

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.413 \text{ k-ft}$

Weak Axis:

3.4.14

$$L_b = 29.96 \text{ in}$$
 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$(C_c)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.5$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

S2 =
$$\frac{1}{46.7}$$

 $\phi F_1 = \phi y F c y$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
$$S1 = 36.9$$

$$m = 0.65$$

 $C_0 = 15$

$$C_0 = 15$$

$$k_1Bhr$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi \varphi F_C \varphi$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

SCHLETTER

Compression

3.4.7
$$\lambda = 1.28467$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.75985$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 16.1143 \text{ ksi}$$
3.4.9
$$b/t = 7.75$$

$$b/t = 7.75$$

 $S1 = 12.21$ (See 3.4.16 above for formula)
 $S2 = 32.70$ (See 3.4.16 above for formula)
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$
 $b/t = 7.75$
 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 16.11 \text{ ksi}$
A = 323.87 mm²
0.50 in²
 $\phi F_L = 8.09 \text{ kips}$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-63.248	-63.248	0	0
2	M16	Υ	-63.248	-63.248	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-35.466	-35.466	0	0 -
2	M16	V	-56.746	-56.746	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	72.351	72.351	0	0
2	M16	V	35.466	35.466	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	102.071	2	358.384	1	.034	2	0	1	0	1	0	1
2		min	-141.762	3	-366.172	3	106	3	0	3	0	1	0	1
3	N7	max	0	15	587.369	1	05	15	0	15	0	1	0	1
4		min	192	1	-112.158	3	-1.392	1	003	1	0	1	0	1
5	N15	max	0	15	1752.17	1	.502	1	.001	1	0	1	0	1
6		min	-2.036	1	-393.358	3	227	3	0	3	0	1	0	1
7	N16	max	427.481	2	1284.805	1	185	10	0	1	0	1	0	1
8		min	-452.751	3	-1205.056	3	-26.187	1	0	3	0	1	0	1
9	N23	max	0	15	587.27	1	3.15	1	.006	1	0	1	0	1
10		min	192	1	-111.753	3	.106	15	0	15	0	1	0	1
11	N24	max	102.478	2	363.855	1	25.737	3	.002	1	0	1	0	1
12		min	-141.817	3	-363.193	3	.038	10	0	3	0	1	0	1
13	Totals:	max	630.068	2	4933.853	1	0	3						
14		min	-736.694	3	-2551.69	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	I C	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LIC	v-v Mome	1 C	z-z Mome.	LC
1	M2	1	max	428.124	1	.66	4	.863	1	0	15	0	3	0	1
2			min	-368.07	3	.157	15	054	3	001	1	0	2	0	1
3		2	max	428.221	1	.622	4	.863	1	0	15	0	1	0	15
4			min	-367.998	3	.148	15	054	3	001	1	0	10	0	4
5		3	max	428.317	1	.584	4	.863	1	0	15	0	1	0	15
6			min	-367.925	3	.139	15	054	3	001	1	0	15	0	4
7		4	max	428.414	1	.547	4	.863	1	0	15	0	1	0	15
8			min	-367.853	3	.13	15	054	3	001	1	0	12	0	4
9		5	max	428.51	1	.509	4	.863	1	0	15	0	1	0	15
10			min	-367.781	3	.121	15	054	3	001	1	0	3	0	4
11		6	max	428.606	1	.471	4	.863	1	0	15	0	1	0	15
12			min	-367.708	3	.112	15	054	3	001	1	0	3	0	4
13		7	max	428.703	1	.433	4	.863	1	0	15	0	1	0	15
14			min	-367.636	3	.104	15	054	3	001	1	0	3	0	4
15		8	max	428.799	1	.395	4	.863	1	0	15	0	1	0	15
16			min	-367.564	3	.095	15	054	3	001	1	0	3	0	4
17		9	max	428.895	1	.357	4	.863	1	0	15	0	1	0	15
18			min	-367.492	3	.086	15	054	3	001	1	0	3	0	4
19		10	max	428.992	1	.32	4	.863	1	0	15	.001	1	0	15
20			min	-367.419	3	.077	15	054	3	001	1	0	3	0	4
21		11	max	429.088	1	.282	4	.863	1	0	15	.001	1	0	15
22			min	-367.347	3	.068	15	054	3	001	1	0	3	0	4
23		12	max	429.184	1	.244	4	.863	1	0	15	.001	1	0	15
24			min	-367.275	3	.059	15	054	3	001	1	0	3	0	4
25		13	max	429.281	1	.206	4	.863	1	0	15	.001	1	0	15
26			min	-367.202	3	.05	15	054	3	001	1	0	3	0	4
27		14	max	429.377	1	.168	4	.863	1	0	15	.002	1	0	15
28			min	-367.13	3	.041	15	054	3	001	1	0	3	0	4
29		15	max	429.474	1	.13	4	.863	1	0	15	.002	1	0	15
30			min	-367.058	3	.032	15	054	3	001	1	0	3	0	4
31		16	max	429.57	1	.093	4	.863	1	0	15	.002	1	0	15
32			min	-366.986	3	.024	15	054	3	001	1	0	3	0	4
33		17	max	429.666	1	.055	4	.863	1	0	15	.002	1	0	15
34			min	-366.913	3	0	1	054	3	001	1	0	3	0	4
35		18	max	429.763	1	.029	10	.863	1	0	15	.002	1_	0	15
36			min	-366.841	3	03	1	054	3	001	1	0	3	0	4
37		19	max	429.859	1	.005	10	.863	1	0	15	.002	1	0	15

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]		y-y Mome		z-z Mome	
38			min		3	059	1	054	3	001	1_	0	3	0	4
39	M3	1	max	36.749	10	1.811	4	023	15	0	15	.002	1	0	4
40			min	-123.867	_1_	.427	15	738	1	0	_1_	0	15	0	15
41		2	max	36.693	10	1.633	4	023	15	0	15	.002	1_	0	4
42			min	-123.934	1_	.385	15	738	1	0	1	0	15	0	15
43		3	max	36.638	10	1.455	4	023	15	0	15	.002	1	0	10
44			min	-124.001	1_	.343	15	738	1	0	1	0	15	0	1
45		4	max	36.582	10	1.277	4	023	15	0	15	.002	1	0	15
46			min	-124.068	1	.301	15	738	1	0	1	0	15	0	1
47		5	max	36.526	10	1.099	4	023	15	0	15	.001	1	0	15
48			min	-124.135	1	.26	15	738	1	0	1	0	15	0	4
49		6	max	36.47	10	.921	4	023	15	0	15	.001	1	0	15
50			min	-124.202	1	.218	15	738	1	0	1	0	15	0	4
51		7	max	36.414	10	.743	4	023	15	0	15	.001	1	0	15
52			min	-124.269	1	.176	15	738	1	0	1	0	15	0	4
53		8	max	36.358	10	.565	4	023	15	0	15	.001	1	0	15
54			min	-124.336	1	.134	15	738	1	0	1	0	15	0	4
55		9	max	36.302	10	.387	4	023	15	0	15	0	1	0	15
56			min	-124.404	1	.092	15	738	1	0	1	0	15	001	4
57		10	max	36.246	10	.209	4	023	15	0	15	0	1	0	15
58				-124.471	1	.05	15	738	1	0	1	0	15	001	4
59		11	max	36.19	10	.032	10	023	15	0	15	0	1	0	15
60				-124.538	1	004	1	738	1	0	1	0	15	001	4
61		12	max	36.134	10	033	15	023	15	0	15	0	1	0	15
62			min	-124.605	1	147	4	738	1	0	1	0	12	001	4
63		13	max	36.078	10	075	15	023	15	Ö	15	0	1	0	15
64			min	-124.672	1	325	4	738	1	0	1	0	12	001	4
65		14	max	36.022	10	117	15	023	15	0	15	0	1	0	15
66				-124.739	1	503	4	738	1	0	1	0	3	001	4
67		15	max	35.967	10	159	15	023	15	0	15	0	15	0	15
68		-10		-124.806	1	681	4	738	1	0	1	0	1	0	4
69		16	max	35.911	10	201	15	023	15	0	15	0	15	0	15
70			min	-124.873	1	859	4	738	1	0	1	0	1	0	4
71		17	max	35.855	10	243	15	023	15	0	15	0	15	0	15
72		- ' '	min	-124.94	1	-1.037	4	738	1	0	1	0	1	0	4
73		18	max	35.799	10	284	15	023	15	0	15	0	15	0	15
74		10	min	-125.007	1	-1.215	4	738	1	0	1	0	1	0	4
75		19	max	35.743	10	326	15	023	15	0	15	0	15	0	1
76		13		-125.074	1	-1.393	4	738	1	0	1	0	1	0	1
77	M4	1	max		1	0	1	05	15	0	1	0	3	0	1
78	IVIT			-113.031	3	0	1	-1.544	1	0	1	0	1	0	1
79		2		586.269	1	0	1	05	15	0	1	0	12	0	1
80				-112.983	3	0	1	-1.544	1	0	1	0	1	0	1
81		3		586.334	_ <u></u>	0	1	05	15	0	1	0	15	0	1
82				-112.934	3	0	1	-1.544	1	0	1	0	1	0	1
83		4		586.399		0	1	05	15	0	1	0	15	0	1
84		-		-112.886	3	0	1	-1.544	1	0	1	0	1	0	1
85		5		586.463	<u> </u>	0	1	05	15	0	1	0	15	0	1
86		J		-112.837	3	0	1	-1.544	1	0	1	0	1	0	1
		6					1		15		1	-			1
87		6		586.528	1	0	1	05 1.544		0	1	0	1 <u>5</u>	0	1
88		7		-112.789	3_1	0	•	-1.544	1_	_		0	_		-
89		7		586.593	1	0	1	05	15	0	1	0	15	0	1
90				-112.74	3_4	0	1_	-1.544	1_	0	1_	0	1_	0	1
91		8		586.658	1	0	1	05	15	0	1_	0	15	0	1
92				-112.692	3	0	1_	-1.544	1_	0	1_	001	1_	0	1
93		9		586.722	1_	0	1	05	15	0	1	0	15	0	1
94			min	-112.643	3	0	1	-1.544	1	0	1_	001	1	0	1

: Schletter, Inc. : HCV

Job Number :
Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
95		10	max		_1_	0	1	05	15	0	1	0	15	0	1
96				-112.594	3	0	1	-1.544	1	0	1	001	1	0	1
97		11		586.852	_1_	0	1	05	15	0	1	0	15	0	1
98				-112.546	3	0	1	-1.544	1	0	1	001	1	0	1
99		12	max		1_	0	1	05	15	0	1	0	15	0	1
100		40		-112.497	3	0	1	<u>-1.544</u>	1	0	1	002	1	0	1
101		13		586.981	1_	0	1	05	15	0	1	0	15	0	1
102		4.4		-112.449	3_	0	1	<u>-1.544</u>	1	0	1	002	1	0	1
103		14		587.046	1	0	1	05	15	0	1	0	15	0	1
104		15	min	-112.4	3	0	1	<u>-1.544</u>	15	0	1	002	15	0	1
105		15	max	587.11	1	0	1	05		0	1	0 002		0	1
106 107		16		-112.352 587.175	<u>3</u> 1	0	1	<u>-1.544</u> 05	15	0	1	<u>002</u> 0	15		1
107		10		-112.303	3	0	1	-1.544	1	0	1	002	1	0 0	1
109		17	max	587.24	<u> </u>	0	1	-1. <u>344</u> 05	15	0	1	<u>002</u> 0	15	0	1
110		17		-112.255	3	0	1	-1.544	1	0	1	002	1	0	1
111		18		587.305	1	0	1	05	15	0	1	0	15	0	1
112		10		-112.206	3	0	1	-1.544	1	0	1	002	1	0	1
113		19		587.369	1	0	1	05	15	0	1	0	15	0	1
114		10	min	-112.158	3	0	1	-1.544	1	0	1	003	1	0	1
115	M6	1		1405.827	1	.642	4	.337	1	0	1	0	3	0	1
116				-1207.953	3	.155	15	12	3	0	15	0	1	0	1
117		2		1405.923	1	.605	4	.337	1	0	1	0	3	0	15
118				-1207.881	3	.146	15	12	3	0	15	0	2	0	4
119		3	max	1406.02	1	.567	4	.337	1	0	1	0	1	0	15
120			min	-1207.809	3	.137	15	12	3	0	15	0	15	0	4
121		4	max	1406.116	1	.529	4	.337	1	0	1	0	1	0	15
122			min	-1207.737	3	.128	15	12	3	0	15	0	3	0	4
123		5	max	1406.213	_1_	.491	4	.337	1	0	1	0	1	0	15
124			min	-1207.664	3	.119	15	12	3	0	15	0	3	0	4
125		6		1406.309	_1_	.453	4	.337	1	0	1	00	1	0	15
126				-1207.592	3	.11	15	12	3	0	15	0	3	0	4
127		7		1406.405	_1_	.415	4	.337	1	0	1	0	1	0	15
128				-1207.52	3	.101	15	12	3	0	15	0	3	0	4
129		8		1406.502	1_	.378	4	.337	1	0	1	0	1	0	15
130				-1207.447	3	.092	15	12	3	0	15	0	3	0	4
131		9		1406.598	1	.34	4	.337	1	0	1	0	1	0	15
132		40	1	-1207.375	3_4	.083	15	12	3	0	15	0	3	0	4
133		10		1406.694 -1207.303	1	.302	4	.337	1	0	1	0	1	0	15
134 135		11		1406.791	<u>3</u>	.075 .264	1 <u>5</u>	12 .337	3	0	1 <u>5</u>	<u> </u>	3	<u> </u>	15
136				-1207.231	3	.066	15	12	3	0	15	0	3	0	4
137		12		1406.887	<u> </u>	.226	4	.337	1	0	1	0	1	0	15
138		14		-1207.158	3	.057	15	12	3	0	15	0	3	0	4
139		13		1406.983	<u></u>	.188	4	.337	1	0	1	0	1	0	15
140		10		-1207.086	3	.048	15	12	3	0	15	0	3	0	4
141		14		1407.08	1	.154	2	.337	1	0	1	0	1	0	15
142				-1207.014	3	.032	9	12	3	0	15	0	3	0	4
143		15		1407.176	1	.124	2	.337	1	0	1	0	1	0	15
144			min		3	.008	9	12	3	0	15	0	3	0	4
145		16		1407.273	1	.097	10	.337	1	0	1	0	1	0	15
146				-1206.869	3	019	1	12	3	0	15	0	3	0	4
147		17		1407.369	1	.072	10	.337	1	0	1	0	1	0	15
148			min	-1206.797	3	048	1	12	3	0	15	0	3	0	4
149		18		1407.465	1	.048	10	.337	1	0	1	0	1	0	15
150			min	-1206.725	3	078	1	12	3	0	15	0	3	0	4
151		19	max	1407.562	1_	.023	10	.337	1	0	1	0	1	0	15

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]			LC			Torque[k-ft]		y-y Mome	LC	z-z Mome	
152			min	-1206.652	3	107	1	12	3	0	15	0	3	0	4
153	M7	1		164.064	2	1.803	4	.015	1	0	2	0	2	0	4
154			min	-172.001	9	.426	15	008	3	0	3	0	3	0	15
155		2	max	163.997	2	1.625	4	.015	1	0	2	0	2	0	2
156			min	-172.057	9	.384	15	008	3	0	3	0	3	0	15
157		3	max	163.93	2	1.447	4	.015	1	0	2	0	2	0	2
158			min	-172.113	9	.342	15	008	3	0	3	0	3	0	9
159		4	max	163.862	2	1.269	4	.015	1	0	2	0	2	0	10
160			min	-172.169	9	.3	15	008	3	0	3	0	3	0	1
161		5			2	1.091	4	.015	1	0	2	0	2	0	15
162			min	-172.225	9	.259	15	008	3	0	3	0	3	0	1
163		6	max	163.728	2	.913	4	.015	1	0	2	0	2	0	15
164			min	-172.281	9	.217	15	008	3	0	3	0	3	0	4
165		7	max	163.661	2	.735	4	.015	1	0	2	0	2	0	15
166			min	-172.337	9	.175	15	008	3	0	3	0	3	0	4
167		8	max	163.594	2	.557	4	.015	1	0	2	0	2	0	15
168			min	-172.393	9	.133	15	008	3	0	3	0	3	0	4
169		9	max	163.527	2	.379	4	.015	1	0	2	0	2	0	15
170				-172.449	9	.091	15	008	3	0	3	0	3	001	4
171		10	max		2	.201	4	.015	1	0	2	0	2	0	15
172				-172.505	9	.049	15	008	3	0	3	0	3	001	4
173		11		163.393	2	.053	2	.015	1	0	2	0	2	0	15
174				-172.561	9	022	9	008	3	0	3	0	3	001	4
175		12	max		2	034	15	.015	1	0	2	0	2	0	15
176		T -		-172.616	9	157	1	008	3	0	3	0	3	001	4
177		13		163.259	2	076	15	.015	1	0	2	0	2	0	15
178				-172.672	9	333	4	008	3	0	3	0	3	001	4
179		14		163.192	2	118	15	.015	1	0	2	0	2	0	15
180				-172.728	9	511	4	008	3	0	3	0	3	001	4
181		15		163.124	2	16	15	.015	1	0	2	0	2	0	15
182		10		-172.784	9	689	4	008	3	0	3	0	3	0	4
183		16		163.057	2	202	15	.015	1	0	2	0	2	0	15
184		10	min		9	867	4	008	3	0	3	0	3	0	4
185		17	max	162.99	2	244	15	.015	1	0	2	0	2	0	15
186		11		-172.896	9	-1.045	4	008	3	0	3	0	3	0	4
187		18		162.923	2	285	15	.015	1	0	2	0	2	0	15
188		10		-172.952	9	-1.223	4	008	3	0	3	0	3	0	4
189		19		162.856	2	327	15	.015	1	0	2	0	2	0	1
190		13		-173.008	9	-1.401	4	008	3	0	3	0	3	0	1
191	M8	1		1751.006		0	1	.703	1	0	1	0	15	0	1
192	IVIO			-394.232	3	0	1	213	3	0	1	0	1	0	1
193		2		1751.07	1	0	1	.703	1	0	1	0	1	0	1
194				-394.183	3	0	1	213	3	0	1	0	3	0	1
195		3		1751.135	<u> </u>	0	1	.703	1	0	1	0	1	0	1
196		3		-394.135	3	0	1	213	3	0	1	0	3	0	1
197		4		1751.2	<u> </u>	0	1	.703	1	0	1	0	1	0	1
198		4		-394.086	3	0	1	213	3	0	1	0	3	0	1
199		5		1751.265	<u>3</u>	0	1		1	0	1	0	1	0	1
		<u> </u>			<u> </u>	0	1	.703	_	0	1			0	1
200		6		-394.037	3		•	213	3		<u>1</u> 1	0	<u>3</u>		1
201		6		1751.329	<u>1</u> 3	0	1	.703	3	0	1	0		0	1
202		7		-393.989			•	213 702		_	•	_	3		
203		7		1751.394	1	0	1	.703	1	0	1_	0	1	0	1
204		_		-393.94	3	0	1	213	3	0	1_	0	3	0	1
205		8		1751.459	1_	0	1	.703	1	0	1_	0	1	0	1
206				-393.892	3	0	1	213	3	0	1_	0	3	0	1
207		9		1751.523	1_	0	1	.703	1	0	1_	0	1	0	1
208			mın	-393.843	3	0	1	213	3	0	1	0	3	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC.	y-y Mome	LC	z-z Mome	. LC
209		10	max	1751.588	1	0	1	.703	1	0	1	0	1	0	1
210			min	-393.795	3	0	1	213	3	0	1	0	3	0	1
211		11	max	1751.653	1	0	1	.703	1	0	1	0	1	0	1
212			min	-393.746	3	0	1	213	3	0	1	0	3	0	1
213		12	max	1751.718	1	0	1	.703	1	0	1	0	1	0	1
214			min	-393.698	3	0	1	213	3	0	1	0	3	0	1
215		13	max	1751.782	1	0	1	.703	1	0	1	0	1	0	1
216			min	-393.649	3	0	1	213	3	0	1	0	3	0	1
217		14	max	1751.847	1	0	1	.703	1	0	1	0	1	0	1
218			min	-393.601	3	0	1	213	3	0	1	0	3	0	1
219		15	max	1751.912	1	0	1	.703	1	0	1	0	1	0	1
220			min	-393.552	3	0	1	213	3	0	1	0	3	0	1
221		16	max	1751.976	1	0	1	.703	1	0	1	0	1	0	1
222			min	-393.504	3	0	1	213	3	0	1	0	3	0	1
223		17	max	1752.041	1	0	1	.703	1	0	1	.001	1	0	1
224			min	-393.455	3	0	1	213	3	0	1	0	3	0	1
225		18	max	1752.106	1	0	1	.703	1	0	1	.001	1	0	1
226			min	-393.407	3	0	1	213	3	0	1	0	3	0	1
227		19	max	1752.17	1	0	1	.703	1	0	1	.001	1	0	1
228			min	-393.358	3	0	1	213	3	0	1	0	3	0	1
229	M10	1	max		1	.647	4	004	15	.001	1	0	2	0	1
230			min	-358.622	3	.155	15	118	1	0	3	0	3	0	1
231		2	max		1	.61	4	004	15	.001	1	0	2	0	15
232			min	-358.55	3	.146	15	118	1	0	3	0	3	0	4
233		3	max	438.52	1	.572	4	004	15	.001	1	0	2	0	15
234			min	-358.477	3	.137	15	118	1	0	3	0	3	0	4
235		4	max		1	.534	4	004	15	.001	1	0	2	0	15
236			min	-358.405	3	.128	15	118	1	0	3	0	3	0	4
237		5	max		1	.496	4	004	15	.001	1	0	2	0	15
238			min	-358.333	3	.12	15	118	1	0	3	0	3	0	4
239		6	max		1	.458	4	004	15	.001	1	0	2	0	15
240			min	-358.261	3	.111	15	118	1	0	3	0	1	0	4
241		7	max		1	.42	4	004	15	.001	1	0	15	0	15
242			min	-358.188	3	.102	15	118	1	0	3	0	1	0	4
243		8	max	439.002	1	.383	4	004	15	.001	1	0	15	0	15
244			min	-358.116	3	.093	15	118	1	0	3	0	1	0	4
245		9	max		1	.345	4	004	15	.001	1	0	15	0	15
246			min	-358.044	3	.084	15	118	1	0	3	0	1	0	4
247		10	max		1	.307	4	004	15	.001	1	0	15	0	15
248			min	-357.972	3	.075	15	118	1	0	3	0	1	0	4
249		11		439.291	1	.269	4	004	15	.001	1	0	15	0	15
250			min		3	.066	15	118	1	0	3	0	1	0	4
251		12		439.388	1	.231	4	004	15	.001	1	0	15	0	15
252		, <u> </u>		-357.827	3	.057	15	118	1	0	3	0	1	0	4
253		13	max		1	.193	4	004	15	.001	1	0	15	0	15
254			min	-357.755	3	.048	15	118	1	0	3	0	1	0	4
255		14	max		1	.156	4	004	15	.001	1	0	15	0	15
256			min		3	.025	1	118	1	0	3	0	1	0	4
257		15	max		1	.119	3	004	15	.001	1	0	15	0	15
258		'	min	-357.61	3	004	1	118	1	0	3	0	1	0	4
259		16		439.773	1	.097	3	004	15	.001	1	0	15	0	15
260		'	min		3	034	1	118	1	0	3	0	1	0	4
261		17	max		1	.075	3	004	15	.001	1	0	15	0	15
262		17		-357.466	3	063	1	118	1	0	3	0	1	0	4
263		18	max		<u></u>	.053	3	004	15	.001	1	0	15	0	15
264		10	min	-357.393	3	093	1	118	1	0	3	0	1	0	4
265		10	max		<u> </u>	.031	3	004	15	.001	1	0	15	0	15
200		13	παχ	++0.002		.031	⊥ J	004	ΙÜ	.001			LΙΌ		<u> </u>

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec	_	Axial[lb]		y Shear[lb]			LC	Torque[k-ft]		<u>y-y Mome</u>	LC :	<u>z-z Mome</u>	
266			min	-357.321	3	122	1	118	1	0	3	0	1	0	4
267	M11	1	max	36.185	10	1.816	4	.874	1	.001	1	0	3	0	4
268			min	-123.676	1	.428	15	.02	12	0	15	002	1	0	15
269		2	max	36.13	10	1.638	4	.874	1	.001	1	0	3	0	4
270				-123.743	1	.386	15	.02	12	0	15	002	1	0	15
271		3	max	36.074	10	1.46	4	.874	1	.001	1	0	3	0	2
272			min	-123.81	1	.344	15	.02	12	0	15	002	1	0	3
273		4	max	36.018	10	1.282	4	.874	1	.001	1	0	3	0	15
274		_	min	-123.877	1	.302	15	.02	12	0	15	002	1	0	4
275		5	max	35.962	10	1.104	4	.874	1	.001	1	0	3	0	15
276		5		-123.944	1	.26	15	.02	12	0	15	001	1	0	4
		_			•										_
277		6	max		10	.926	4	.874	1	.001	1	0	3	0	15
278		_	min	-124.012	1_	.218	15	.02	12	0	15	001	1	0	4
279		7	max	35.85	10	.748	4	.874	1	.001	1	0	3	0	15
280				-124.079	<u> 1</u>	.176	15	.02	12	0	15	0	1	0	4
281		8	max	35.794	10	.57	4	.874	1	.001	1	0	3	0	15
282			min	-124.146	_1_	.135	15	.02	12	0	15	0	1	0	4
283		9	max	35.738	10	.392	4	.874	1	.001	1	0	3	0	15
284			min	-124.213	1	.093	15	.02	12	0	15	0	1	001	4
285		10	max	35.682	10	.214	4	.874	1	.001	1	0	3	0	15
286			min	-124.28	1	.051	15	.02	12	0	15	0	1	001	4
287		11	max	35.626	10	.051	2	.874	1	.001	1	0	3	0	15
288			min	-124.347	1	.002	3	.02	12	0	15	0	1	001	4
289		12	max	35.57	10	033	15	.874	1	.001	1	0	3	0	15
290		12		-124.414	1	142	4	.02	12	0	15	0	2	001	4
291		13	max	35.514	10	075	15	.874	1	.001	1	0	3	0	15
292		13				32	4	.02	12	_	15	<u> </u>	2	001	
		4.4		-124.481	1_					0		0			4
293		14	max		10	116	15	.874	1	.001	1	0	1	0	15
294		4.5		-124.548	1_	498	4	.02	12	0	15	0	15	001	4
295		15	max	35.403	10	158	15	.874	1	.001	1	0	1	0	15
296		1.0		-124.615	1_	676	4	.02	12	0	15	0	15	0	4
297		16	max		10	2	15	.874	1	.001	1	0	1	0	15
298			min	-124.682	<u> 1</u>	854	4	.02	12	0	15	0	15	0	4
299		17	max	35.291	10	242	15	.874	1	.001	1	0	1	0	15
300			min	-124.75	1_	-1.032	4	.02	12	0	15	0	15	0	4
301		18	max	35.235	10	284	15	.874	1	.001	1	.001	1	0	15
302			min	-124.817	1	-1.21	4	.02	12	0	15	0	15	0	4
303		19	max	35.179	10	326	15	.874	1	.001	1	.001	1	0	1
304			min	-124.884	1	-1.388	4	.02	12	0	15	0	15	0	1
305	M12	1	max	586.105	1	0	1	3.487	1	0	1	0	1	0	1
306				-112.627	3	0	1	.106	15	0	1	0	3	0	1
307		2		586.17	1	0	1	3.487	1	0	1	0	1	0	1
308				-112.578	3	0	1	.106	15	0	1	0	12	0	1
309		3	max		1	0	1	3.487	1	0	1	0	1	0	1
310				-112.53	3	0	1	.106	15	0	1	0	15	0	1
311		4		586.299	1	0	1	3.487	1	0	1	0	1	0	1
312		-	_	-112.481	3		1		15	0	1	0	15	0	1
$\overline{}$		-				0		.106							_
313		5		586.364	_1_	0	1	3.487	1	0	1	.001	1	0	1
314		_		-112.433	3	0	1	.106	15	0	1	0	15	0	1
315		6		586.429	1_	0	1	3.487	1	0	1	.002	1	0	1
316				-112.384	3	0	1	.106	15	0	1	0	15	0	1
317		7		586.494	_1_	0	1	3.487	1_	0	1	.002	1	0	1
318				-112.336	3	0	1	.106	15	0	1	0	15	0	1
319		8		586.558	1_	0	1	3.487	1	0	1	.002	1	0	1
320			min	-112.287	3	0	1	.106	15	0	1	0	15	0	1
321		9		586.623	1	0	1	3.487	1	0	1	.003	1	0	1
322				-112.239	3	0	1	.106	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

: _ . . . _ .

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
323		10	max	586.688	1	0	1	3.487	1	0	1	.003	1	0	1
324			min	-112.19	3	0	1	.106	15	0	1	0	15	0	1
325		11	max	586.752	1	0	1	3.487	1	0	1	.003	1	0	1
326			min	-112.142	3	0	1	.106	15	0	1	0	15	0	1
327		12	max	586.817	1	0	1	3.487	1	0	1	.003	1	0	1
328			min	-112.093	3	0	1	.106	15	0	1	0	15	0	1
329		13	max	586.882	1	0	1	3.487	1	0	1	.004	1	0	1
330			min	-112.045	3	0	1	.106	15	0	1	0	15	0	1
331		14	max	586.947	1	0	1	3.487	1	0	1	.004	1	0	1
332			min	-111.996	3	0	1	.106	15	0	1	0	15	0	1
333		15	max	587.011	1	0	1	3.487	1	0	1	.004	1	0	1
334		1.0	min	-111.948	3	0	1	.106	15	0	1	0	15	0	1
335		16	max	587.076	1	0	1	3.487	1	0	1	.005	1	0	1
336		10	min	-111.899	3	0	1	.106	15	0	1	0	15	0	1
337		17	max	587.141	1	0	1	3.487	1	0	1	.005	1	0	1
338		17	min	-111.851	3	0	1	.106	15	0	1	0	15	0	1
339		18	max	587.205	1	0	1	3.487	1	0	1	.005	1	0	1
340		10	min	-111.802	3	0	1	.106	15	0	1	.005	15	0	1
341		19		587.27	1		1		1	-	1	.006	1		1
		19	max			0	1	3.487		0	1			0	
342	N // 4	1	min	-111.753	3		_	.106	15	0	1	0	15		1
343	<u>M1</u>		max	114.791 3.521	1	344.851	3	-2.119	15	0		.135	1_	.015	1
344		2	min	114.863	15	-427.406	1	-68.456	15	0	<u>3</u>	.004	<u>15</u>	01 .108	3
345			max		15	344.648	3	-2.119	1	0	3		15		3
346		2	min	3.543		-427.676	-	-68.456				.004		085	
347		3	max	130.336	1	7.002	9	-2.094	15	0	12	.104	1	.199	1
348		1	min	-6.681	3	-23.433	3	-68.042	1_	0	1	.003	15	158	3
349		4	max	130.409	1	6.777	9	-2.094	15	0	12 1	.089	1_	.199	3
350		-	min	-6.627	3	-23.635	3	-68.042	1_	0	-	.003	15	153	_
351		5	max	130.481	1	6.553	9	-2.094	15	0	12	.075	1_	.199	1
352			min	-6.573	3	-23.838	3	-68.042	1_	0	1	.002	15	148	3
353		6	max	130.553	1	6.328	9	-2.094	15	0	12 1	.06	1_	.199	1
354		7	min	-6.519	3	-24.04		-68.042	15	0	12	.002 .045	15	143	3
355		-	max	130.625	1	6.103 -24.242	9	-2.094	1	0	1		1 15	.199 137	3
356		0	min	-6.464	3			-68.042	-			.001	1 <u>0</u>		
357 358		8	max min	130.698 -6.41	3	5.878 -24.445	9	-2.094 -68.042	1 <u>5</u>	0	12 1	.03	15	.199 132	3
		9		130.77	1	5.654	9		15		12				
359 360		9	max	-6.356	3	-24.647	3	-2.094	1	0	1	.016	1 15	.199 127	3
		10	min					-68.042 -2.094	15	-	12	_	1 <u>1</u>		1
361		10	max	130.842	3	5.429	9		1	0	1	0	15	.199	3
362		11	min	-6.302	<u>ي</u> 1	<u>-24.849</u>	3	-68.042	_		_	_		121	3
363		11	max		2	5.204	9	-2.094	15	0	12		12	.2	1
364		40	min	-6.248	3	-25.052	3	-68.042	1_	0	12	014	12	116	3
365		12	max		1	4.979	9	-2.094	15	0	12 1	0	12	.2	1
366		10	min	-6.193	3	-25.254	3	-68.042 -2.094	1_	0	12	029	1	111 .2	3
367		13			1	4.755	9		15	0		001	12		_
368		1.1	min	-6.139	3	-25.456	3	-68.042	1_	0	1	043	1_	105	3
369 370		14	max		1	4.53	9	-2.094 -68.042	15	0	12 1	002	1 <u>5</u>	.201 1	3
		4.5	min	-6.085	3	-25.658	3			0		058			_
371		15	max		1	4.305	9	-2.094	15	0	12 1	002	1 <u>5</u>	.202	1
372		16	min	-6.031	3	<u>-25.861</u> 9.957	3	-68.042		0		073		094	3
373		16	max		2		10	-2.117	15	0	1	003	15	.203	1
374		17	min	-34.682	3	-85.41	10	-68.7	1_	0	12	089	1_	088	3
375		17	max		2	9.732	10	-2.117	15	0	1	003	15	.221	1
376		40	min	-34.627	3	-85.679 470.40F	1	-68.7	1_	0	12	104	1_	077	3
377		18		-3.527	15	479.405	1	-2.167 70.207	15	0	<u>3</u>	004	15	.12	1
378		10			1 1 5	<u>-161.492</u>	3	-70.297	1_	0		119	1_	042	3
379		19	max	-3.505	15	479.135	1	-2.167	15	0	3	004	15	.016	1

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]				Torque[k-ft]	LC		LC	z-z Mome	LC
380			min	-114.331	1	-161.695	3	-70.297	1_	0	1	134	1_	007	3
381	<u>M5</u>	1	max	251.888	1_	1140.143	3	068	10	0	1	.004	1_	.02	3
382			min	6.802	12	-1413.652	1	-22.921	3	0	3	0	10	03	1
383		2	max	251.96	1	1139.94	3	068	10	0	1	0	2	.277	1
384			min	6.838	12	-1413.922	1	-22.921	3	0	3	002	3	227	3
385		3	max	301.193	1	10.416	9	2.628	3	0	3	0	2	.578	1
386			min	-32.025	3	-77.11	3	339	2	0	1	007	3	469	3
387		4	max	301.265	1	10.191	9	2.628	3	0	3	0	2	.581	1
388			min	-31.97	3	-77.312	3	339	2	0	1	007	3	452	3
389		5	max	301.337	1	9.966	9	2.628	3	0	3	0	2	.584	1
390			min	-31.916	3	-77.514	3	339	2	0	1	006	3	436	3
391		6	max	301.409	1	9.742	9	2.628	3	0	3	0	2	.588	1
392			min	-31.862	3	-77.716	3	339	2	0	1	005	3	419	3
393		7	max	301.482	1	9.517	9	2.628	3	0	3	0	2	.591	1
394			min	-31.808	3	-77.919	3	339	2	0	1	005	3	402	3
395		8	max	301.554	1	9.292	9	2.628	3	0	3	0	2	.595	1
396		0	min	-31.754	3	-78.121	3	339	2	0	1	004	3	385	3
397		9		301.626	1	9.067	9	2.628	3	0	3	004	10	.598	1
		9	max				3		2	_	1	_			
398		40	min	-31.699	3	-78.323		339		0		004	3	368	3
399		10	max	301.699	1	8.843	9	2.628	3	0	3	0	10	.602	1
400		4.4	min	-31.645	3	-78.526	3	339	2	0	1	003	3	351	3
401		11	max	301.771	1	8.618	9	2.628	3	0	3	0	10	.605	1
402			min	-31.591	3	-78.728	3	339	2	0	1	003	1	334	3
403		12	max	301.843	1_	8.393	9	2.628	3	0	3	0	10	.609	1
404			min	-31.537	3	-78.93	3	339	2	0	1	002	1	317	3
405		13	max	301.915	1	8.168	9	2.628	3	0	3	0	10	.613	1
406			min	-31.483	3	-79.132	3	339	2	0	1	002	1	3	3
407		14	max	301.988	_1_	7.944	9	2.628	3	0	3	0	10	.616	1
408			min	-31.428	3	-79.335	3	339	2	0	1	002	1	283	3
409		15	max	302.06	1	7.719	9	2.628	3	0	3	0	15	.62	1
410			min	-31.374	3	-79.537	3	339	2	0	1	001	1	265	3
411		16	max	256.161	2	54.25	10	2.607	3	0	1	0	3	.625	1
412			min	-112.685	3	-150.197	3	338	2	0	15	001	1	247	3
413		17	max	256.233	2	54.026	10	2.607	3	0	1	0	3	.647	1
414			min	-112.631	3	-150.4	3	338	2	0	15	0	1	215	3
415		18	max	-7.244	12	1580.313	1	2.392	3	0	3	.001	3	.311	1
416			min	-252.583	1	-532.2	3	062	2	0	1	0	2	101	3
417		19	max	-7.208	12	1580.044	1	2.392	3	0	3	.002	3	.014	3
418			min	-252.511	1	-532.403	3	062	2	0	1	0	2	031	1
419	M9	1	max	114.267	1	344.84	3	90.376	1	0	3	004	15	.015	1
420	IVIO		min	3.503	15		1	2.891	15	0	1	135	1	01	3
421		2	max	114.34	1	344.637	3	90.376	1	0	3	002	12	.108	1
422		_	min	3.525	15	-427.659		2.891	15	0	1	115	1	085	3
423		3	max		1	6.982	9	64.15	1	0	1	.002	3	.198	1
424		J	min	-6.261	3	-23.378	3	.896	12	0	15	094	1	158	3
425		4	max		<u> </u>	6.757		64.15	1		1	.002	3	.198	1
426		4					9		12	0	15		1		
		E	min	-6.207	3	-23.581	3	.896		0		08		153	3
427		5	max		1	6.532	9	64.15	1	0	1	.003	3	.198	1
428		_	min	-6.153	3	-23.783	3	.896	12	0	15	066	1	148	3
429		6	max		1	6.307	9	64.15	1	0	1	.003	3	.198	1
430			min	-6.099	3	-23.985	3	.896	12	0	15	052	1	143	3
431		7	max		1	6.083	9	64.15	1	0	1_	.003	3	.199	1
432			min	-6.044	3	-24.188	3	.896	12	0	15	038	1	137	3
433		8	max		1	5.858	9	64.15	1	0	1	.003	3	.199	1
434			min	-5.99	3	-24.39	3	.896	12	0	15	025	1	132	3
435		9	max		1_	5.633	9	64.15	1	0	1	.004	3	.199	1
436			min	-5.936	3	-24.592	3	.896	12	0	15	011	1	127	3

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]								z-z Mome	
437		10	max	130.916	1_	5.408	9	64.15	1	0	1	.004	3	.199	1
438			min	-5.882	3	-24.795	3	.896	12	0	15	0	2	121	3
439		11	max	130.988	1_	5.184	9	64.15	1	0	1	.017	1	.2	1
440			min	-5.828	3	-24.997	3	.896	12	0	15	0	15	116	3
441		12	max	131.06	1	4.959	9	64.15	1_	0	1	.031	1_	.2	1
442			min	-5.773	3	-25.199	3	.896	12	0	15	0	15	111	3
443		13	max	131.133	1	4.734	9	64.15	1	0	1	.045	1	.2	1
444			min	-5.719	3	-25.401	3	.896	12	0	15	.001	15	105	3
445		14	max	131.205	_1_	4.509	9	64.15	1_	0	1_	.059	1_	.201	1
446			min	-5.665	3	-25.604	3	.896	12	0	15	.002	15	1	3
447		15	max	131.277	1	4.285	9	64.15	1	0	1	.073	1	.202	1
448			min	-5.611	3	-25.806	3	.896	12	0	15	.002	15	094	3
449		16	max	69.303	2	9.603	10	64.969	1	0	15	.088	1	.203	1
450			min	-34.75	3	-85.314	1_	.919	12	0	1	.003	15	088	3
451		17	max	69.376	2	9.378	10	64.969	1	0	15	.103	1	.221	1
452			min	-34.695	3	-85.584	1	.919	12	0	1	.003	15	077	3
453		18	max	-3.52	15	479.405	1	68.357	1	0	1	.117	1	.12	1
454			min	-114.177	1	-161.491	3	1.109	12	0	3	.004	15	042	3
455		19	max	-3.498	15	479.135	1	68.357	1	0	1	.132	1	.016	1
456			min	-114.105	1	-161.693	3	1.109	12	0	3	.004	15	007	3
457	M13	1	max	90.547	1	426.817	1	-3.503	15	.015	1	.135	1	0	1
458			min	2.891	15	-344.83	3	-114.255	1	01	3	.004	15	0	3
459		2	max	90.547	1	301.091	1	-2.686	15	.015	1	.042	1	.269	3
460			min	2.891	15	-243.181	3	-87.536	1	01	3	.001	15	334	1
461		3	max	90.547	1	175.365	1	-1.868	15	.015	1	.001	3	.446	3
462			min	2.891	15	-141.533	3	-60.817	1	01	3	026	1	552	1
463		4	max	90.547	1	49.638	1	-1.05	15	.015	1	0	12	.529	3
464			min	2.891	15	-39.884	3	-34.097	1	01	3	069	1	655	1
465		5	max	90.547	1	61.765	3	233	15	.015	1	002	12	.519	3
466			min	2.891	15	-76.088	1	-7.378	1	01	3	088	1	643	1
467		6	max	90.547	1	163.413	3	19.341	1	.015	1	002	12	.416	3
468			min	2.891	15	-201.814	1	.254	12	01	3	083	1	516	1
469		7	max	90.547	1	265.062	3	46.061	1	.015	1	001	12	.219	3
470			min	2.891	15	-327.54	1	1.051	12	01	3	053	1	273	1
471		8	max	90.547	1	366.71	3	72.78	1	.015	1	.001	1	.085	1
472			min	2.891	15	-453.267	1	1.849	12	01	3	0	12	07	3
473		9	max	90.547	1	468.359	3	99.499	1	.015	1	.08	1	.558	1
474			min	2.891	15	-578.993	1	2.647	12	01	3	.002	12	453	3
475		10	max	90.547	1	570.008	3	126.219	1	.011	2	.184	1	1.146	1
476			min	2.891	15	-704.719	1	3.445	12	015	1	.005	12	929	3
477		11	max	00 0 10	1	578.993	1	-2.558	12	.01	3	.077	1	.558	1
478			min	2.12	15	-468.359	3	-98.973	1	015	1	0	12	453	3
479		12	max		1	453.267	1	-1.76	12	.01	3	0	2	.085	1
480			min	2.12	15	-366.71	3	-72.253	1	015	1	002	3	07	3
481		13		68.646	1	327.54	1	963	12	.01	3	002	15	.219	3
482			min	2.12	15	-265.062	3	-45.534	1	015	1	056	1	273	1
483		14	max		1	201.814	1	165	12	.01	3	003	15	.416	3
484			min	2.12	15	-163.413	3	-18.815	1	015	1	085	1	516	1
485		15	max		1	76.088	1	7.905	1	.01	3	003	15	.519	3
486			min	2.12	15	-61.765	3	.25	15	015	1	09	1	643	1
487		16	max	68.646	1	39.884	3	34.624	1	.01	3	002	12	.529	3
488		10	min	2.12	15	-49.639	1	1.068	15	015	1	071	1	655	1
489		17	max		1	141.533	3	61.343	1	.01	3	0	12	.446	3
490		17	min	2.12	15	-175.365	1	1.886	15	015	1	027	1	552	1
491		18			1	243.181	3	88.063	1	.013	3	.042	1	.269	3
492		10	min	2.12	15	-301.091	1	2.703	15	015	1	.001	15	334	1
493		10	max		1	344.83	3	114.782	1	.015	3	.135	1	0	1
_ + 30		וט	шах	00.040		U-4.03	J	114.702		.01	J	. 100			

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	
494			min	2.12	15	-426.818	1	3.521	15	015	1	.004	15	0	3
495	M16	1	max	-1.109	12	479.74	1	-3.498	15	.007	3	.132	1	0	1
496			min	-68.151	1	-161.709	3	-114.115	1	016	1	.004	15	0	3
497		2	max	-1.109	12	338.409	1	-2.68	15	.007	3	.04	1	.126	3
498			min	-68.151	1	-114.158	3	-87.396	1	016	1	.001	15	375	1
499		3	max	-1.109	12	197.077	1	-1.863	15	.007	3	0	12	.209	3
500			min	-68.151	1	-66.608	3	-60.676	1	016	1	028	1	62	1
501		4	max	-1.109	12	55.745	1	-1.045	15	.007	3	002	15	.249	3
502			min	-68.151	1	-19.057	3	-33.957	1	016	1	071	1	736	1
503		5	max	-1.109	12	28.494	3	227	15	.007	3	003	15	.244	3
504			min	-68.151	1	-85.586	1	-7.238	1	016	1	09	1	723	1
505		6	max	-1.109	12	76.044	3	19.482	1	.007	3	003	15	.196	3
506			min	-68.151	1	-226.918	1	.359	12	016	1	085	1	579	1
507		7	max	-1.109	12	123.595	3	46.201	1	.007	3	002	15	.105	3
508			min	-68.151	1	-368.25	1	1.157	12	016	1	055	1	307	1
509		8	max	-1.109	12	171.145	3	72.92	1	.007	3	.001	2	.096	1
510			min	-68.151	1	-509.581	1	1.955	12	016	1	001	3	03	3
511		9	max	-1.109	12	218.696	3	99.64	1	.007	3	.079	1	.628	1
512			min	-68.151	1	-650.913	1	2.753	12	016	1	.001	12	209	3
513		10	max	-2.167	15	-17.106	15	126.359	1	0	15	.183	1	1.289	1
514			min	-70.115	1	-792.245	1	-5.477	3	016	1	.005	12	431	3
515		11	max	-2.167	15	650.913	1	-2.86	12	.016	1	.079	1	.628	1
516			min	-70.115	1	-218.696	3	-99.413	1	007	3	.002	12	209	3
517		12	max	-2.167	15	509.581	1	-2.062	12	.016	1	0	2	.096	1
518			min	-70.115	1	-171.145	3	-72.694	1	007	3	0	3	03	3
519		13	max	-2.167	15	368.25	1	-1.264	12	.016	1	002	12	.105	3
520			min	-70.115	1	-123.595	3	-45.975	1	007	3	054	1	307	1
521		14	max	-2.167	15	226.918	1	467	12	.016	1	002	12	.196	3
522			min	-70.115	1	-76.044	3	-19.255	1	007	3	084	1	579	1
523		15	max	-2.167	15	85.586	1	7.464	1	.016	1	002	12	.244	3
524			min	-70.115	1	-28.494	3	.234	15	007	3	089	1	723	1
525		16	max	-2.167	15	19.057	3	34.183	1	.016	1	002	12	.249	3
526			min	-70.115	1	-55.745	1	1.052	15	007	3	07	1	736	1
527		17	max	-2.167	15	66.608	3	60.903	1	.016	1	0	12	.209	3
528			min	-70.115	1	-197.077	1	1.87	15	007	3	027	1	62	1
529		18	max	-2.167	15	114.158	3	87.622	1	.016	1	.042	1	.126	3
530			min	-70.115	1	-338.409	1	2.687	15	007	3	.001	15	375	1
531		19	max	-2.167	15	161.709	3	114.341	1	.016	1	.134	1	0	1
532			min	-70.115	1	-479.74	1	3.505	15	007	3	.004	15	0	3
533	M15	1	max	.348	2	2.87	4	.023	3	0	1	0	1	0	1
534			min	-26.423	3	0	10	031	1	0	3	0	3	0	1
535		2	max	.276	2	2.551	4	.023	3	0	1	0	1	0	10
536			min	-26.477	3	0	10	031	1	0	3	0	3	001	4
537		3	max	.204	2	2.232	4	.023	3	0	1	0	1	0	10
538			min	-26.531	3	0	10	031	1	0	3	0	3	002	4
539		4	max	.132	2	1.913	4	.023	3	0	1	0	1	0	10
540			min	-26.585	3	0	10	031	1	0	3	0	3	003	4
541		5	max	.06	2	1.594	4	.023	3	0	1	0	1	0	10
542			min	-26.639	3	0	10	031	1	0	3	0	3	004	4
543		6	max	0	10	1.276	4	.023	3	0	1	0	1	0	10
544			min	-26.693	3	0	10	031	1	0	3	0	3	005	4
545		7	max	0	10	.957	4	.023	3	0	1	0	3	0	10
546			min	-26.747	3	0	10	031	1	0	3	0	1	005	4
547		8	max	0	10	.638	4	.023	3	0	1	0	3	0	10
548		Ĭ	min	-26.801	3	0	10	031	1	0	3	0	1	006	4
549		9	max	0	10	.319	4	.023	3	0	1	0	3	0	10
550			min	-26.855	3	0	10	031	1	0	3	0	1	006	4
500				_5.000	_	•						·		.000	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

5551		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
1			10	max	_		0	1		3	0		0	3		10
5556				min	-26.909						0	3	0	_		
555			11										0			
Secondary Seco																
557			12												_	
558			10													
S59			13				-									
Seco			4.											_		
Secondary Seco			14		•		-									
Secondary Seco			4.5								_					_
Feb Feb			15													
Se64			4.0										-	_		
Feb 17 max			16				_									
Sef6			17													
S68			17													
Seba			18													
See			10												-	
S70			10												_	
571 M16A 1 max -747 10 2.87 4 0.09 3 0 1			13		•		_									
Fig. 2		M16A	1								_		_		_	_
573		1011071														
574			2									_	-	_		_
S76																
576			3			10						3	_	3		
577										3					002	
578			4			10		4	.019	1	0	3	0	3		15
S80	578			min		1	.45	15	009	3	0	1	0	1	003	
581 6 max 447 10 1.276 4 .019 1 0 3 0 3 001 15 582 min -27.7845 1 .3 15 .009 3 0 1 0 1 005 4 583 7 max 387 10 .957 4 .019 1 0 3 0 3 001 15 584 min -27.773 1 .225 15 .009 3 0 1 0 1 .005 4 585 8 max 327 10 .638 4 .019 1 0 3 .001 1 .006 4 587 9 max 267 10 .319 4 .019 1 0 1 .001 1 .006 4 589 10 max 207 10 0 1	579		5	max	507	10	1.594	4	.019	1	0	3	0	3	001	15
582 min -27.845 1 .3 15 009 3 0 1 0 1 005 4 583 7 max 387 10 .957 4 .019 1 0 3 0 3 001 15 584 min -27.773 1 .225 15 009 3 0 1 0 1 005 4 585 8 max 327 10 .638 4 .019 1 0 3 0 3 001 15 586 min -27.701 1 .15 15 009 3 0 1 0 1 006 4 587 9 max 267 10 .319 4 .019 1 0 1 .001 1 .509 1 0 1 .009 3 0 1 0 1				min		1		15		3			0			_
583 7 max 387 10 .957 4 .019 1 0 3 0 3 001 15 584 min -27.773 1 .225 15 009 3 0 1 0 1 005 4 585 8 max 327 10 .638 4 .019 1 0 3 0 3 001 15 586 min -27.701 1 .15 15 009 3 0 1 0 1 .001 1 .006 4 587 9 max 267 10 .319 4 .019 1 0 3 0 3 001 15 588 min -27629 1 .075 15 .009 3 0 1 0 1 .006 4 590 min -27.57 1 0			6	max		10								3		15
584 min -27.773 1 .225 15 009 3 0 1 0 1 005 4 585 8 max 327 10 .638 4 .019 1 0 3 0 3 001 15 586 min -27.701 1 .15 15 009 3 0 1 0 1 006 4 587 9 max 267 10 .319 4 .019 1 0 3 0 3 001 15 588 min -27.629 1 .075 15 009 3 0 1 0 1 006 4 589 10 max 207 10 0 1 .019 1 0 3 0 3 001 15 590 min -27.485 1 319 4 009				min		1				3	0	_	0	_		
585 8 max 327 10 .638 4 .019 1 0 3 0 3 001 15 586 min -27.701 1 .15 15 009 3 0 1 0 1 006 4 587 9 max 267 10 .319 4 .019 1 0 3 0 3 001 15 588 min -27.629 1 .075 15 009 3 0 1 0 1 006 4 589 10 max 207 10 0 1 .019 1 0 3 0 3 001 15 590 min -27.557 1 0 1 009 3 0 1 0 1 006 4 591 11 max 147 10 075 15 .019 1 0 <			7													
586 min -27.701 1 .15 15 009 3 0 1 0 1 006 4 587 9 max 267 10 .319 4 .019 1 0 3 0 3 001 15 588 min -27.629 1 .075 15 009 3 0 1 0 1 006 4 589 10 max 207 10 0 1 .019 1 0 3 0 3 001 15 590 min -27.557 1 0 1 009 3 0 1 0 1 006 4 591 11 max 147 10 075 15 .019 1 0 3 0 3 001 15 592 min -27.485 1 319 4 009<						_										
587 9 max 267 10 .319 4 .019 1 0 3 0 3 001 15 588 min -27.629 1 .075 15 009 3 0 1 0 1 006 4 589 10 max 207 10 0 1 .019 1 0 3 0 3 001 15 590 min -27.557 1 0 1 009 3 0 1 0 1 006 4 591 11 max 147 10 075 15 .019 1 0 3 0 3 001 15 592 min -27.485 1 319 4 009 3 0 1 0 1 001 15 593 12 max 087 10 15 15 .019 1 0			8													
588 min -27.629 1 .075 15 009 3 0 1 0 1 006 4 589 10 max 207 10 0 1 .019 1 0 3 0 3 001 15 590 min -27.557 1 0 1 009 3 0 1 0 1 006 4 591 11 max 147 10 075 15 .019 1 0 3 0 3 001 15 592 min -27.485 1 319 4 009 3 0 1 0 1 0 1 .006 4 593 12 max 087 10 15 15 .019 1 0 3 0 3 001 15 594 min -27.413 1 638 <td></td>																
589 10 max 207 10 0 1 .019 1 0 3 0 3 001 15 590 min -27.557 1 0 1 009 3 0 1 0 1 006 4 591 11 max 147 10 075 15 .019 1 0 3 0 3 001 15 592 min -27.485 1 319 4 009 3 0 1 0 1 006 4 593 12 max 087 10 15 15 .019 1 0 3 0 3 001 15 594 min -27.413 1 638 4 009 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0<			9													
590 min -27.557 1 0 1 009 3 0 1 0 1 006 4 591 11 max 147 10 075 15 .019 1 0 3 0 3 001 15 592 min -27.485 1 319 4 009 3 0 1 0 1 006 4 593 12 max 087 10 15 15 .019 1 0 3 0 3 001 15 594 min -27.413 1 638 4 009 3 0 1 0 1 006 4 595 13 max 027 10 225 15 .019 1 0 3 0 1 001 15 596 min -27.341 1 957 4 <t< td=""><td></td><td></td><td>40</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			40													
591 11 max 147 10 075 15 .019 1 0 3 0 3 001 15 592 min -27.485 1 319 4 009 3 0 1 0 1 006 4 593 12 max 087 10 15 15 .019 1 0 3 0 3 001 15 594 min -27.413 1 638 4 009 3 0 1 0 1 006 4 595 13 max 027 10 225 15 .019 1 0 3 0 1 001 15 596 min -27.341 1 957 4 009 3 0 1 0 4 005 4 597 14 max .033 10 3 <			10													
592 min -27.485 1 319 4 009 3 0 1 0 1 006 4 593 12 max 087 10 15 15 .019 1 0 3 0 3 001 15 594 min -27.413 1 638 4 009 3 0 1 0 1 006 4 595 13 max 027 10 225 15 .019 1 0 3 0 1 001 15 596 min -27.341 1 957 4 009 3 0 1 0 4 005 4 597 14 max .033 10 3 15 .019 1 0 3 0 1 001 15 598 min -27.269 1 -1.276 4 009 3 0 <td>590</td> <td></td> <td>4.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td>4</td>	590		4.4										_	_		4
593 12 max 087 10 15 15 .019 1 0 3 0 3 001 15 594 min -27.413 1 638 4 009 3 0 1 0 1 006 4 595 13 max 027 10 225 15 .019 1 0 3 0 1 001 15 596 min -27.341 1 957 4 009 3 0 1 0 4 005 4 597 14 max .033 10 3 15 .019 1 0 3 0 1 001 15 598 min -27.269 1 -1.276 4 009 3 0 1 0 3 005 4 599 15 max .093 10 375 15 .019 1 0 <td></td> <td></td> <td>11</td> <td>_</td> <td></td>			11	_												
594 min -27.413 1 638 4 009 3 0 1 0 1 006 4 595 13 max 027 10 225 15 .019 1 0 3 0 1 001 15 596 min -27.341 1 957 4 009 3 0 1 0 4 005 4 597 14 max .033 10 3 15 .019 1 0 3 0 1 001 15 598 min -27.269 1 -1.276 4 009 3 0 1 0 3 005 4 599 15 max .093 10 375 15 .019 1 0 3 0 1 001 15 600 min -27.197 1 -1.594 4			40					_								
595 13 max 027 10 225 15 .019 1 0 3 0 1 001 15 596 min -27.341 1 957 4 009 3 0 1 0 4 005 4 597 14 max .033 10 3 15 .019 1 0 3 0 1 001 15 598 min -27.269 1 -1.276 4 009 3 0 1 0 3 005 4 599 15 max .093 10 375 15 .019 1 0 3 0 1 001 15 600 min -27.197 1 -1.594 4 009 3 0 1 0 3 004 4 601 16 max .153 10 45 <			12													
596 min -27.341 1 957 4 009 3 0 1 0 4 005 4 597 14 max .033 10 3 15 .019 1 0 3 0 1 001 15 598 min -27.269 1 -1.276 4 009 3 0 1 0 3 005 4 599 15 max .093 10 375 15 .019 1 0 3 0 1 001 15 600 min -27.197 1 -1.594 4 009 3 0 1 0 3 004 4 601 16 max .153 10 45 15 .019 1 0 3 0 1 0 15 602 min -27.125 1 -1.913 4			12			_						_				
597 14 max .033 10 3 15 .019 1 0 3 0 1 001 15 598 min -27.269 1 -1.276 4 009 3 0 1 0 3 005 4 599 15 max .093 10 375 15 .019 1 0 3 0 1 001 15 600 min -27.197 1 -1.594 4 009 3 0 1 0 3 004 4 601 16 max .153 10 45 15 .019 1 0 3 0 1 0 3 004 4 602 min -27.125 1 -1.913 4 009 3 0 1 0 3 003 4 603 17 max .213 10 525 15 .019 <td></td> <td></td> <td>13</td> <td></td>			13													
598 min -27.269 1 -1.276 4 009 3 0 1 0 3 005 4 599 15 max .093 10 375 15 .019 1 0 3 0 1 001 15 600 min -27.197 1 -1.594 4 009 3 0 1 0 3 004 4 601 16 max .153 10 45 15 .019 1 0 3 0 1 0 3 004 4 602 min -27.125 1 -1.913 4 009 3 0 1 0 3 003 4 603 17 max .213 10 525 15 .019 1 0 3 0 1 0 15 604 min -27.053 1 -2.			11					_						_		
599 15 max .093 10 375 15 .019 1 0 3 0 1 001 15 600 min -27.197 1 -1.594 4 009 3 0 1 0 3 004 4 601 16 max .153 10 45 15 .019 1 0 3 0 1 0 15 602 min -27.125 1 -1.913 4 009 3 0 1 0 3 003 4 603 17 max .213 10 525 15 .019 1 0 3 0 1 0 15 604 min -27.053 1 -2.232 4 009 3 0 1 0 3 002 4 605 18 max .273 10 6 15 .019 1 0			14													
600 min -27.197 1 -1.594 4 009 3 0 1 0 3 004 4 601 16 max .153 10 45 15 .019 1 0 3 0 1 0 15 602 min -27.125 1 -1.913 4 009 3 0 1 0 3 003 4 603 17 max .213 10 525 15 .019 1 0 3 0 1 0 15 604 min -27.053 1 -2.232 4 009 3 0 1 0 3 002 4 605 18 max .273 10 6 15 .019 1 0 3 0 1 0 15 606 min -26.981 1 -2.5551 4 009<			15													
601 16 max .153 10 45 15 .019 1 0 3 0 1 0 15 602 min -27.125 1 -1.913 4 009 3 0 1 0 3 003 4 603 17 max .213 10 525 15 .019 1 0 3 0 1 0 15 604 min -27.053 1 -2.232 4 009 3 0 1 0 3 002 4 605 18 max .273 10 6 15 .019 1 0 3 0 1 0 15 606 min -26.981 1 -2.551 4 009 3 0 1 0 3 001 4			13													
602 min -27.125 1 -1.913 4 009 3 0 1 0 3 003 4 603 17 max .213 10 525 15 .019 1 0 3 0 1 0 15 604 min -27.053 1 -2.232 4 009 3 0 1 0 3 002 4 605 18 max .273 10 6 15 .019 1 0 3 0 1 0 15 606 min -26.981 1 -2.551 4 009 3 0 1 0 3 001 4			16								_		_	_		
603 17 max .213 10 525 15 .019 1 0 3 0 1 0 15 604 min -27.053 1 -2.232 4 009 3 0 1 0 3 002 4 605 18 max .273 10 6 15 .019 1 0 3 0 1 0 15 606 min -26.981 1 -2.551 4 009 3 0 1 0 3 001 4			10													
604 min -27.053 1 -2.232 4 009 3 0 1 0 3 002 4 605 18 max .273 10 6 15 .019 1 0 3 0 1 0 15 606 min -26.981 1 -2.551 4 009 3 0 1 0 3 001 4			17					_								
605																
606 min -26.981 1 -2.551 4009 3 0 1 0 3001 4			18			_						_				
														<u> </u>	_	
	607		19		.333	10	675	15	.019	1	0	3	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-26.909	1	-2.87	4	009	3	0	1	0	3	0	1

Envelope Member Section Deflections

LIIVE	воре метт	Jei c	Jecuic	ni Dene	CliO	113									
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.003	1	.006	2	.013	1	-3.026e-5	15	NC	3	NC	3
2			min	003	3	005	3	0	3	-9.817e-4	1	4821.366	2	2341.822	1
3		2	max	.003	1	.006	2	.012	1		15	NC	3	NC	3
4			min	003	3	005	3	0	3	-9.431e-4	1	5217.292	2	2538.703	1
5		3		.003	1	.005	2	.011	1		15	NC	3	NC	3
		3	max		_						-				3
6		4	min	002	3	004	3	0	3	-9.046e-4	1_	5680.783	2	2770.336	
7		4	max	.003	1	.005	2	01	1		<u>15</u>	NC	3_	NC	3
8			min	002	3	004	3	0	3	-8.66e-4	1_	6226.975	2	3045.189	1
9		5	max	.002	1	.004	2	.009	1		15	NC	3	NC	3
10			min	002	3	004	3	0	3	-8.274e-4	1_	6875.726	2	3374.567	_1_
11		6	max	.002	1	.004	2	.008	1	-2.425e-5	<u>15</u>	NC	_1_	NC	3
12			min	002	3	004	3	0	3	-7.888e-4	1	7653.504	2	3773.833	1
13		7	max	.002	1	.004	2	.007	1	-2.305e-5	15	NC	1	NC	2
14			min	002	3	004	3	0	3	-7.502e-4	1_	8596.252	2	4264.301	1
15		8	max	.002	1	.003	2	.006	1	-2.185e-5	15	NC	1	NC	2
16			min	002	3	003	3	0	3	-7.116e-4	1	9753.844	2	4876.27	1
17		9	max	.002	1	.003	2	.005	1	-2.065e-5	15	NC	1	NC	2
18			min	002	3	003	3	0	3	-6.73e-4	1	NC	1	5654.029	1
19		10	max	.002	1	.002	2	.005	1		15	NC	1	NC	2
20		10	min	001	3	003	3	0	3	-6.344e-4	1	NC	1	6664.49	1
21		11	max	.001	1	.002	2	.004	1	-1.825e-5	15	NC	1	NC	2
22			min	001	3	003	3	0	3	-5.958e-4	1	NC	1	8012.829	1
23		12	max	.001	1	.002	2	.003	1	-1.705e-5	15	NC	1	NC	2
24		12		001	3		3	<u>.003</u>	3		1	NC NC	1	9872.56	1
		40	min			002				-5.572e-4					
25		13	max	.001	1	.001	2	.002	1	-1.585e-5	<u>15</u>	NC	1	NC NC	1
26		4.4	min	0	3	002	3	0	3	-5.187e-4	1_	NC NC	1_	NC NC	1
27		14	max	0	1	.001	2	.002	1	-1.465e-5	<u>15</u>	NC	_1_	NC	1
28			min	0	3	002	3	0	3	-4.801e-4	1_	NC	_1_	NC	1
29		15	max	0	1	0	2	.001	1_		15	NC	_1_	NC	1
30			min	0	3	002	3	0	3	-4.415e-4	1_	NC	1_	NC	1
31		16	max	0	1	0	2	0	1	-1.224e-5	<u>15</u>	NC	_1_	NC	1
32			min	0	3	001	3	0	3	-4.029e-4	1	NC	1	NC	1
33		17	max	0	1	0	2	0	1	-1.104e-5	15	NC	1	NC	1
34			min	0	3	0	3	0	3	-3.643e-4	1	NC	1	NC	1
35		18	max	0	1	0	2	0	1	-9.843e-6	15	NC	1	NC	1
36			min	0	3	0	3	0	12	-3.257e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	-6.922e-6	12	NC	1	NC	1
38			min	0	1	0	1	0	1	-2.871e-4	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	1.305e-4	1	NC	1	NC	1
40	1410		min	0	1	0	1	0	1	3.255e-6		NC	1	NC	1
41		2	max	0	1	0	2	0		1.662e-4	1	NC	1	NC	1
42			min	0	10	0	3	0	1	5.021e-6	12	NC	1	NC	1
43		3		0	1	0	2	0	12	2.019e-4	1	NC NC	1	NC NC	1
		3	max	0											
44		A	min		10	001	3	0	1		<u>15</u>	NC NC	1_	NC NC	1
45		4	max	0	1	0	2	0	12	2.375e-4	1_	NC	1_	NC NC	1
46		_	min	0	10	002	3	001	1	7.252e-6	<u>15</u>	NC NC	1_	NC NC	1
47		5	max	0	1	0	2	0	12	2.732e-4	1_	NC	1_	NC	1
48			min	0	10	003	3	001	1	8.359e-6	15	NC	_1_	NC	1
49		6	max	0	1	0	2	0	3	3.089e-4	1_	NC	_1_	NC	1
50			min	0	10	003	3	001	1	9.467e-6	15	NC	1_	NC	1
51		7	max	0	1	0	2	0	3	3.446e-4	1	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC				LC	(n) L/z Ratio	LC
52			min	0	10	004	3	0	1	1.057e-5	15	NC	1	NC	1
53		8	max	0	1	.001	2	0	3	3.802e-4	1_	NC	_1_	NC	1
54			min	0	10	005	3	0	1	1.168e-5	15	NC	1_	NC	1
55		9	max	0	1	.002	2	0	3	4.159e-4	_1_	NC	_1_	NC	1
<u>56</u>		10	min	0	10	005	3	0	2	1.279e-5	<u>15</u>	NC	1_	NC	1
57		10	max	0	1	.002	2	0	1	4.516e-4	1_	NC	1	NC	1
58		44	min	0	10	006	3	0	15	1.39e-5	15	NC	1_	NC	1
59		11	max	0	1	.003	2	.001	1	4.872e-4	1_	NC NC	1_	NC	1
60		40	min	0	10	006	3	0	15	1.5e-5	<u>15</u>	NC NC	1_	NC NC	1
61 62		12	max	0	10	.003	3	.002	15	5.229e-4	1_	NC NC	<u>1</u> 1	NC NC	1
63		13	min		1	006	2	.002		1.611e-5	<u>15</u>	NC NC	1	NC NC	1
64		13	max	0	10	.004 007	3	00 <u>2</u>	15	5.586e-4 1.722e-5	<u>1</u> 15	NC NC	1	NC NC	1
65		14	min	.001	1	.007	2	.003	1	5.942e-4	1	NC NC	3	NC NC	1
66		14	max min	.001	10	007	3	<u>.003</u>	15	1.833e-5	15	9619.549	2	NC NC	1
67		15	max	.001	1	.006	2	.004	1	6.299e-4	1	NC	3	NC	1
68		13	min	0	10	007	3	0	15	1.943e-5		8122.842	2	NC	1
69		16	max	.001	1	.007	2	.005	1	6.656e-4	1	NC	3	NC	2
70		10	min	0	10	007	3	0	15			6955.762	2	9802.038	
71		17	max	.001	1	.008	1	.005	1	7.012e-4	1	NC	3	NC	2
72			min	0	10	007	3	0	15	2.165e-5		6022.417	1	8527.117	1
73		18	max	.001	1	.009	1	.006	1	7.369e-4	1	NC	3	NC	2
74			min	0	10	007	3	0	15	2.276e-5		5269.378	1	7597.681	1
75		19	max	.001	1	.01	1	.007	1	7.726e-4	1	NC	3	NC	2
76			min	0	10	007	3	0	15	2.386e-5	15	4673.114	1	6910.295	1
77	M4	1	max	.003	1	.007	2	0	15		15	NC	1	NC	2
78			min	0	3	005	3	005	1	-8.691e-4	1	NC	1	3880.919	1
79		2	max	.003	1	.007	2	0	15	-2.655e-5	15	NC	1	NC	2
80			min	0	3	005	3	005	1	-8.691e-4	1	NC	1	4233.78	1
81		3	max	.002	1	.007	2	0	15	-2.655e-5	<u>15</u>	NC	1_	NC	2
82			min	0	3	005	3	004	1	-8.691e-4	1_	NC	1	4653.74	1
83		4	max	.002	1	.006	2	0	15		15	NC	_1_	NC	2
84			min	0	3	004	3	004	1	-8.691e-4	1_	NC	1_	5158.496	
85		5	max	.002	1	.006	2	0	15		<u>15</u>	NC	_1_	NC	2
86			min	0	3	004	3	003	1	-8.691e-4	_1_	NC	_1_	5772.159	1
87		6	max	.002	1	.005	2	0	15		<u>15</u>	NC	_1_	NC	2
88			min	0	3	<u>004</u>	3	003	1_	-8.691e-4	_1_	NC	1_	6528.266	
89		7	max	.002	1	.005	2	0	15			NC	1_	NC	2
90			min	0	3	004	3	003	1	-8.691e-4	1_	NC	1_	7474.585	
91		8	max	.002	1	.004	2	0	15	-2.655e-5		NC NC	1	NC	2
92			min		3	003	3	002		-8.691e-4		NC NC		8681.072	
93		9	max	.002	3	.004	2	0		-2.655e-5		NC	1	NC	1
94		10	min	0		003	2	002	1 1 1 5	-8.691e-4	1_	NC NC	<u>1</u> 1	NC NC	1
95		10	max	.001	3	.004	3	0	1	-2.655e-5		NC NC	1	NC NC	1
96		11	min max	.001	1	003 .003	2	002 0		-8.691e-4 -2.655e-5	15	NC NC	1	NC NC	1
98		11	min	0	3	002	3	001	1	-8.691e-4	1	NC	1	NC	1
99		12	max	.001	1	.002	2	0	_	-2.655e-5		NC	1	NC	1
100		12	min	0	3	002	3	0	1	-8.691e-4	1	NC	1	NC	1
101		13		0	1	.002	2	0	15		15	NC	1	NC	1
101		13	max min	0	3	002	3	0	1	-8.691e-4	1 <u>1</u>	NC NC	1	NC NC	1
103		14	max	0	1	.002	2	0		-2.655e-5	-	NC	1	NC	1
104		14	min	0	3	001	3	0	1	-8.691e-4	1	NC	1	NC	1
105		15	max	0	1	.002	2	0		-2.655e-5	•	NC	1	NC	1
106		13	min	0	3	001	3	0	1	-8.691e-4	1	NC	1	NC	1
107		16	max	0	1	.001	2	0	15			NC	1	NC	1
108		1	min	0	3	0	3	0	1	-8.691e-4	1	NC	1	NC	1
			1111111		U		U			0.0010 4		110			

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		LC
109		17	max	0	1	0	2	0	15		15	NC	_1_	NC	1
110			min	0	3	0	3	0	1	-8.691e-4	1_	NC	1_	NC	1
111		18	max	0	1	0	2	0	15	-2.655e-5	15	NC	_1_	NC	1
112			min	0	3	0	3	0	1	-8.691e-4	1_	NC	1_	NC	1
113		19	max	0	1	0	1	0	1	-2.655e-5	<u>15</u>	NC	_1_	NC	1
114			min	0	1	0	1	0	1	-8.691e-4	1_	NC	1_	NC	1
115	M6	1	max	.01	1	.02	2	.004	1	2.067e-4	<u>1</u>	NC	3	NC	2
116			min	009	3	013	3	002	3	3.655e-6	10	1512.057	2	7788.748	1
117		2	max	.01	1	.019	2	.004	1	1.932e-4	_1_	NC	3	NC	2
118			min	008	3	013	3	002	3	2.936e-6	10	1612.272	2	8444.28	1
119		3	max	.009	1	.017	2	.003	1	1.797e-4	<u>1</u>	NC	3	NC	2
120			min	008	3	012	3	002	3	2.217e-6	10	1726.403	2	9222.607	1
121		4	max	.009	1	.016	2	.003	1	1.662e-4	<u>1</u>	NC	3	NC	1
122			min	007	3	011	3	002	3	1.499e-6	10	1857.222	2	NC	1
123		5	max	.008	1	.015	2	.003	1	1.527e-4	1	NC	3	NC	1
124			min	007	3	011	3	001	3	7.797e-7	10	2008.296	2	NC	1
125		6	max	.008	1	.014	2	.002	1	1.392e-4	1	NC	3	NC	1
126			min	006	3	01	3	001	3	6.092e-8	10	2184.293	2	NC	1
127		7	max	.007	1	.013	2	.002	1	1.274e-4	3	NC	3	NC	1
128			min	006	3	009	3	001	3	-6.579e-7	10	2391.44	2	NC	1
129		8	max	.006	1	.011	2	.002	1	1.239e-4	3	NC	3	NC	1
130			min	005	3	009	3	001	3	-1.377e-6	10	2638.23	2	NC	1
131		9	max	.006	1	.01	2	.002	1	1.203e-4	3	NC	3	NC	1
132			min	005	3	008	3	0	3	-3.484e-6	2	2936.554	2	NC	1
133		10	max	.005	1	.009	2	.001	1	1.168e-4	3	NC	3	NC	1
134			min	004	3	007	3	0	3	-7.649e-6	2	3303.589	2	NC	1
135		11	max	.005	1	.008	2	.001	1	1.133e-4	3	NC	3	NC	1
136			min	004	3	007	3	0	3	-1.181e-5	2	3765.102	2	NC	1
137		12	max	.004	1	.007	2	0	1	1.097e-4	3	NC	3	NC	1
138			min	003	3	006	3	0	3	-1.598e-5	2	4361.577	2	NC	1
139		13	max	.003	1	.006	2	0	1	1.062e-4	3	NC	3	NC	1
140			min	003	3	005	3	0	3	-2.015e-5	2	5160.487	2	NC	1
141		14	max	.003	1	.005	2	0	1	1.027e-4	3	NC	3	NC	1
142			min	002	3	004	3	0	3	-2.431e-5	2	6283.278	2	NC	1
143		15	max	.002	1	.004	2	0	1	9.913e-5	3	NC	3	NC	1
144		1.0	min	002	3	003	3	0	3	-2.848e-5	2	7972.823	2	NC	1
145		16	max	.002	1	.003	2	0	1	9.559e-5	3	NC	1	NC	1
146		1.0	min	001	3	003	3	0	3	-3.264e-5	2	NC	1	NC	1
147		17	max	.001	1	.002	2	0	1	9.205e-5	3	NC	1	NC	1
148			min	0	3	002	3	0	3	-3.681e-5	2	NC	1	NC	1
149		18	max	0	1	0	2	0	1	8.852e-5		NC	1	NC	1
150		10	min	0	3	0	3	0	3	-4.097e-5	2	NC	1	NC	1
151		19	max	0	1	0	1	0	1	8.498e-5	3	NC	1	NC	1
152		10	min	0	1	0	1	0	1	-4.514e-5	2	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	2.025e-5	2	NC	1	NC	1
154	1717	<u> </u>	min	0	1	0	1	0	1	-3.849e-5	3	NC	1	NC	1
155		2	max	0	9	.001	2	0	3	1.7e-5	2	NC	1	NC	1
156			min	0	2	001	3	0	2	-2.943e-5	3	NC	1	NC	1
157		3		0	9	.003	2	0	3	1.515e-5	1	NC	1	NC	1
158			max min	0	2	003	3	0	2	-2.036e-5	3	NC NC	1	NC NC	1
159		4	max	0	9	.004	2	0	3	1.474e-5	<u> </u>	NC	1	NC	1
160		4	min	0	2	004	3	0	2	-1.129e-5	3	NC NC	1	NC NC	1
161		5	max	0	9	004 .005	1	0	3	1.433e-5	<u>ა</u> 1	NC NC	3	NC NC	1
162		<u> </u>	min	0	2	005 006	3	0	2	-2.229e-6	3	8974.265	1	NC NC	1
163		G		0	9	.006	1	0	3	1.393e-5	<u>ာ</u> 1	NC	3	NC NC	1
164		6	max	0	2	006	3	0	1	3.552e-7		7105.389	<u> </u>	NC NC	1
		7	min						_				•		
165		//	max	0	9	.008	1	0	3	1.59e-5	3	NC	3	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
166			min	0	2	008	3	0	1	3.864e-7	15	5833.491	1	NC	1
167		8	max	0	9	.009	1	.001	3	2.497e-5	3	NC	3	NC	1
168			min	0	2	01	3	0	1	-2.524e-6	2	4907.464	<u>1</u>	NC	1
169		9	max	0	9	.011	1	.001	3	3.403e-5	3_	NC	3	NC	1
170		4.0	min	0	2	011	3	0	1	-5.778e-6	2	4201.691	1_	NC	1
171		10	max	0	9	.013	1	.001	3	4.31e-5	3	NC	3	NC	1
172		44	min	0	2	012	3	0	1	-9.031e-6	2	3646.141	1_	NC	1
173		11	max	.001	9	.014	1	.001	3	5.216e-5	3	NC	3	NC NC	1
174		40	min	001	2	013	3	001	1	-1.228e-5	2	3198.466	1	NC NC	1
175		12	max	.001	9	.016	3	.001	3	6.123e-5	2	NC 2831.377	<u>3</u>	NC NC	1
176 177		13	min	001	9	<u>014</u> .018		001	3	-1.554e-5 7.029e-5	3	NC	3	NC NC	1
178		13	max	.001 001	2	015	3	.001 001	1	-1.879e-5	2	2526.357	<u> </u>	NC NC	1
179		14		.001	9	015 .02	1	.001	3	7.936e-5	3	NC	3	NC NC	1
180		14	max min	001	2	016	3	001	1	-2.205e-5	2	2270.306	1	NC NC	1
181		15	max	.002	9	.022	1	.001	3	8.843e-5	3	NC	3	NC	1
182		10	min	001	2	017	3	002	1	-2.53e-5	2	2053.639	1	NC	1
183		16	max	.002	9	.025	1	.002	3	9.749e-5	3	NC	3	NC	1
184		10	min	002	2	018	3	002	1	-2.855e-5	2	1869.145	1	NC	1
185		17	max	.002	9	.027	1	.001	3	1.066e-4	3	NC	3	NC	1
186		<u> </u>	min	002	2	018	3	002	1	-3.181e-5	2	1711.28	1	NC	1
187		18	max	.002	9	.029	1	.001	3	1.156e-4	3	NC	3	NC	1
188			min	002	2	019	3	002	1	-3.506e-5	2	1575.708	1	NC	1
189		19	max	.002	9	.032	1	0	3	1.247e-4	3	NC	3	NC	1
190			min	002	2	02	3	002	1	-3.831e-5	2	1458.992	1	NC	1
191	M8	1	max	.008	1	.023	2	.002	1	-3.858e-7	10	NC	1	NC	2
192			min	002	3	015	3	0	3	-1.004e-4	3	NC	1	8711.121	1
193		2	max	.008	1	.022	2	.002	1	-3.858e-7	10	NC	1	NC	2
194			min	002	3	014	3	0	3	-1.004e-4	3	NC	1	9497.512	1
195		3	max	.007	1	.021	2	.002	1	-3.858e-7	10	NC	1_	NC	1_
196			min	002	3	013	3	0	3	-1.004e-4	3	NC	1_	NC	1
197		4	max	.007	1	.019	2	.002	1	-3.858e-7	10	NC	1_	NC	1
198			min	002	3	012	3	0	3	-1.004e-4	3	NC	1_	NC	1
199		5	max	.006	1	.018	2	.001	1	-3.858e-7	10	NC	_1_	NC	1
200			min	001	3	012	3	0	3	-1.004e-4	3	NC	_1_	NC	1
201		6	max	.006	1	.017	2	.001	1	-3.858e-7	10	NC	_1_	NC	1
202		<u> </u>	min	001	3	011	3	0	3	-1.004e-4	3	NC	1_	NC	1
203		7	max	.006	1	.015	2	.001	1	-3.858e-7	<u>10</u>	NC	1_	NC	1
204			min	001	3	01	3	0	3	-1.004e-4	3_	NC	1_	NC	1
205		8	max	.005	1	.014	2	0	1	-3.858e-7	10	NC NC	1_	NC NC	1
206			min		3	009	3	0		-1.004e-4		NC NC	1	NC NC	1
207		9	max	.005	1	.013	2	0	1	-3.858e-7	<u>10</u>	NC NC	1	NC NC	1
208		10	min	001	3	008	2	0	1	-1.004e-4 -3.858e-7	<u>3</u>	NC NC	<u>1</u> 1	NC NC	1
209		10	max	.004 0	3	.012 007	3	<u> </u>	3	-3.858e-7 -1.004e-4	<u>10</u>	NC NC	1	NC NC	1
211		11	min max	.004	1	007 .01	2	0	1	-1.004e-4 -3.858e-7	<u>၂</u> 10	NC NC	1	NC NC	1
212			min	0	3	007	3	0	3	-1.004e-4	3	NC	1	NC	1
213		12	max	.003	1	.009	2	0	1	-3.858e-7	10	NC	1	NC	1
214		12	min	0	3	006	3	0	3	-1.004e-4	3	NC	1	NC	1
215		13	max	.003	1	.008	2	0	1	-3.858e-7	<u> </u>	NC NC	1	NC NC	1
216		13	min	.003	3	005	3	0	3	-1.004e-4	3	NC NC	1	NC NC	1
217		14	max	.002	1	.006	2	0	1	-3.858e-7	10	NC	1	NC	1
218			min	0	3	004	3	0	3	-1.004e-4	3	NC	1	NC	1
219		15	max	.002	1	.005	2	0	1	-3.858e-7	10	NC	1	NC	1
220		10	min	0	3	003	3	0	3	-1.004e-4	3	NC	1	NC	1
221		16	max	.001	1	.003	2	0	1	-3.858e-7	10	NC	1	NC	1
222			min	0	3	002	3	0	3	-1.004e-4	3	NC	1	NC	1
					_	.002				1100 TO T					

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio	LC) LC
223		17	max	0	1	.003	2	0	1	-3.858e-7	10	NC	_1_	NC	1
224			min	0	3	002	3	0	3	-1.004e-4	3	NC	1_	NC	1
225		18	max	0	1	.001	2	0	1	-3.858e-7	<u>10</u>	NC	_1_	NC	1
226			min	0	3	0	3	0	3	-1.004e-4	3	NC	1_	NC	1
227		19	max	0	1	0	1	0	1	-3.858e-7	10	NC	_1_	NC	1
228	1440	-	min	0	1	0	1	0	1	-1.004e-4	3	NC	1_	NC NC	1
229	<u>M10</u>	1	max	.003	1	.006	2	0	3	8.804e-4	1_	NC	3	NC	1
230		 	min	003	3	005	3	002	1	-1.575e-4	3	4829.734	2	NC NC	1
231		2	max	.003	1	.006	2	0	3	8.349e-4	1	NC F040 000	3	NC	1
232		2	min	003	3	005	3	002	1	-1.534e-4	3	5212.083	2	NC NC	1
233		3	max	.003 002	3	.005	3	0 002	3	7.893e-4 -1.494e-4	<u>1</u> 3	NC 5657.237	3	NC NC	1
235		4	min	.002	1	005 .005	2	<u>002</u> 0	3	7.438e-4		NC	3	NC NC	1
236		4	max	002	3	005 004	3	001	1	-1.453e-4	<u>1</u> 3	6178.727	2	NC NC	1
237		5		.002	1	.004	2	<u>001</u> 0	3	6.983e-4	<u> </u>	NC	3	NC	1
238		+ 5	max	002	3	004	3	001	1	-1.412e-4	3	6794.173	2	NC	1
239		6	max	.002	1	.004	2	0	3	6.528e-4	1	NC	3	NC	1
240		+	min	002	3	004	3	001	1	-1.371e-4	3	7526.881	2	NC	1
241		7	max	.002	1	.004	2	0	3	6.073e-4	1	NC	1	NC	1
242		1	min	002	3	004	3	001	1	-1.331e-4	3	8408.249	2	NC	1
243		8	max	.002	1	.003	2	0	3	5.618e-4	1	NC	1	NC	1
244			min	002	3	004	3	0	1	-1.29e-4	3	9481.5	2	NC	1
245		9	max	.002	1	.003	2	0	3	5.163e-4	1	NC	1	NC	1
246			min	001	3	003	3	0	1	-1.249e-4	3	NC	1	NC	1
247		10	max	.002	1	.002	2	0	3	4.708e-4	1	NC	1	NC	1
248			min	001	3	003	3	0	1	-1.208e-4	3	NC	1	NC	1
249		11	max	.001	1	.002	2	0	3	4.253e-4	1	NC	1	NC	1
250			min	001	3	003	3	0	1	-1.168e-4	3	NC	1	NC	1
251		12	max	.001	1	.002	2	0	3	3.798e-4	1	NC	1	NC	1
252			min	001	3	003	3	0	1	-1.127e-4	3	NC	1	NC	1
253		13	max	.001	1	.001	2	0	3	3.343e-4	1_	NC	1_	NC	1
254			min	0	3	002	3	0	1	-1.086e-4	3	NC	1_	NC	1
255		14	max	0	1	.001	2	0	3	2.888e-4	_1_	NC	_1_	NC	1
256			min	0	3	002	3	0	1	-1.045e-4	3	NC	1_	NC	1
257		15	max	0	1	0	2	0	3	2.433e-4	1_	NC	1_	NC	1
258			min	0	3	002	3	0	1	-1.004e-4	3	NC	1_	NC	1
259		16	max	0	1	0	2	0	3	1.978e-4	1_	NC	1_	NC	1
260		+	min	0	3	<u>001</u>	3	0	1	-9.637e-5	3	NC	1_	NC	1
261		17	max	0	1	0	2	0	3	1.523e-4	1	NC	_1_	NC	1
262		40	min	0	3	0	3	0	1	-9.229e-5	3	NC NC	1_	NC NC	1
263		18	max	0	1	0	2	0			1	NC NC	1_	NC NC	1
264		10	min	0	3	0	3	0	1	-8.822e-5	3	NC NC	1_	NC NC	1
265 266		19	max	0	1	0	1	0	1	6.127e-5	1_2	NC NC	1	NC NC	1
267	M11	1	min	<u> </u>	1	<u> </u>	1	0	1	-8.414e-5 3.835e-5	3	NC NC	1	NC NC	1
268	IVI I I		max min	0	1	0	1	0	1	-2.928e-5	1	NC NC	1	NC NC	1
269		2	max	0	1	0	2	0	2	2.762e-5	3	NC	1	NC	1
270		+-	min	0	10	0	3	0	3	-9.14e-5	1	NC	1	NC	1
271		3	max	0	1	0	2	0	2	1.689e-5	3	NC	1	NC	1
272		-	min	0	10	001	3	0	3	-1.535e-4	1	NC	1	NC	1
273		4	max	0	1	<u>001</u> 0	2	0	2	6.154e-6	3	NC	1	NC	1
274			min	0	10	002	3	0	3	-2.156e-4	1	NC	1	NC	1
275		5	max	0	1	0	2	0	10		•	NC	1	NC	1
276			min	0	10	003	3	0	1	-2.778e-4	1	NC	1	NC	1
277		6	max	0	1	<u>.005</u>	2	0	15		12	NC	1	NC	1
278			min	0	10	004	3	002	1	-3.399e-4	1	NC	1	NC	1
279		7	max	0	1	.001	2	0		-1.235e-5	15	NC	1	NC	1
			man			.001									

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
280			min	0	10	004	3	002	1	-4.02e-4	1_	NC	1	NC	1
281		8	max	0	1	.001	2	0	15		15	NC	_1_	NC	1
282			min	0	10	005	3	003	1	-4.641e-4	1_	NC	1_	NC	1
283		9	max	0	1	.002	2	0	15		15	NC	_1_	NC	1
284		1.0	min	0	10	005	3	004	1	-5.262e-4	_1_	NC	1_	NC	1
285		10	max	0	1	.002	2	0	15	-1.818e-5	<u>15</u>	NC	1	NC 0477.404	2
286		4.4	min	0	10	006	3	005	1_	-5.883e-4	1_	NC NC	1_	9177.134	1
287		11	max	0	1	.003	2	0	15	-2.013e-5	<u>15</u>	NC NC	1	NC 7007.400	2
288		40	min	0	10	006	3	006	1	-6.505e-4	1_	NC NC	1_	7627.109	
289		12	max	0	10	.003	3	0 007	15	-2.207e-5	<u>15</u>	NC NC	1	NC CEO2 COC	2
290 291		13	min		1	006	2	007 0	15	-7.126e-4 -2.402e-5	1_	NC NC	1	6503.696 NC	2
292		13	max	0	10	.004 007	3	008	1	-2.402e-5	<u>15</u> 1	NC NC	1	5665.773	1
293		14		.001	1	.005	2	<u>008</u> 0	15	-7.747e-4 -2.596e-5	15	NC NC	3	NC	2
294		14	max min	.001	10	005	3	009	1	-8.368e-4	1	9410.903	2	5027.148	1
295		15	max	.001	1	.006	2	<u>009</u> 0	15	-2.791e-5	15	NC	3	NC	2
296		10	min	0	10	007	3	01	1	-8.989e-4	1	8001.606	2	4532.827	1
297		16	max	.001	1	.007	2	0	15		15	NC	3	NC	2
298		10	min	0	10	007	3	011	1	-9.611e-4	1	6889.311	2	4146.507	1
299		17	max	.001	1	.008	1	0	15	-3.179e-5	15	NC	3	NC	2
300			min	0	10	007	3	012	1	-1.023e-3	1	5977.908	1	3843.62	1
301		18	max	.001	1	.009	1	0	15	-3.374e-5	15	NC	3	NC	2
302			min	0	10	007	3	013	1	-1.085e-3	1	5253.855	1	3607.293	1
303		19	max	.001	1	.01	1	0	15	-3.568e-5	15	NC	3	NC	3
304			min	0	10	007	3	013	1	-1.147e-3	1	4675.901	1	3425.94	1
305	M12	1	max	.003	1	.007	2	.011	1	9.781e-4	1	NC	1	NC	3
306			min	0	3	005	3	0	15	3.083e-5	15	NC	1	1738.462	1
307		2	max	.003	1	.007	2	.01	1	9.781e-4	1	NC	1	NC	3
308			min	0	3	005	3	0	15	3.083e-5	15	NC	1	1895.919	1
309		3	max	.002	1	.007	2	.009	1	9.781e-4	1_	NC	1_	NC	3
310			min	0	3	005	3	0	15	3.083e-5	15	NC	1	2083.347	1
311		4	max	.002	1	.006	2	.008	1	9.781e-4	_1_	NC	_1_	NC	3
312			min	0	3	004	3	0	15	3.083e-5	15	NC	1_	2308.643	1
313		5	max	.002	1	.006	2	.007	1	9.781e-4	1_	NC	_1_	NC	3
314			min	0	3	004	3	0	15	3.083e-5	15	NC	1_	2582.572	1
315		6	max	.002	1	.005	2	.007	1	9.781e-4	1_	NC	1	NC	3
316		-	min	0	3	004	3	0	15	3.083e-5	15	NC NC	1_	2920.1	1
317		7	max	.002	1	.005	2	.006	1	9.781e-4	1_	NC	1	NC	3
318			min	0	3	004	3	0	15	3.083e-5	<u>15</u>	NC NC	1_	3342.549	1
319 320		8	max	.002	3	.004	3	.005	1	9.781e-4 3.083e-5	1_	NC NC	1	NC 3881.143	2
			min			003	2	0				NC NC	1		2
321		9	max min	.002 0	3	.004 003	3	.004 0	15	9.781e-4 3.083e-5	<u>1</u> 15	NC NC	1	NC 4583.109	
323		10	max	.001	1	.004	2	.003	1	9.781e-4	10	NC NC	1	NC	2
324		10	min	0	3	003	3	<u>.003</u>	15	3.083e-5	15	NC	1	5522.702	1
325		11	max	.001	1	.003	2	.003	1	9.781e-4	1	NC	1	NC	2
326			min	0	3	002	3	0	15	3.083e-5	15	NC	1	6822.227	1
327		12	max	.001	1	.003	2	.002	1	9.781e-4	1	NC	1	NC	2
328		12	min	0	3	002	3	0	15	3.083e-5	15	NC	1	8695.052	1
329		13	max	0	1	.002	2	.002	1	9.781e-4	1	NC	1	NC	1
330		13	min	0	3	002	3	0	15	3.083e-5	15	NC	1	NC	1
331		14	max	0	1	.002	2	.001	1	9.781e-4	1	NC	-	NC	1
332		1 7	min	0	3	001	3	0	15	3.083e-5	15	NC	1	NC	1
333		15	max	0	1	.002	2	0	1	9.781e-4	1	NC	1	NC	1
334		.	min	0	3	001	3	0	15	3.083e-5	15	NC	1	NC	1
335		16	max	0	1	.001	2	0	1	9.781e-4	1	NC	1	NC	1
336			min	0	3	0	3	0	15		15	NC	1	NC	1
					_					3.0000			_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
337		17	max	0	1	0	2	0	1	9.781e-4	_1_	NC	_1_	NC	1
338			min	0	3	0	3	0	15	3.083e-5	15	NC	1_	NC	1
339		18	max	0	1	0	2	00	1	9.781e-4	_1_	NC	_1_	NC	1
340			min	0	3	0	3	0	15	3.083e-5	15	NC	1_	NC	1
341		19	max	0	1	0	1	0	1	9.781e-4	1_	NC		NC	1
342	D. 4.4		min	0	1	0	1	0	1	3.083e-5	15	NC	1_	NC NC	1
343	<u>M1</u>	1	max	.005	3	.022	3	.001	3	2.007e-2	1_	NC	1_	NC NC	1
344			min	006	2	031	1	004	1	-1.612e-2	3	NC NC	1_	NC NC	1
345		2	max	.005	3	.012	3	0	3	9.657e-3	1	NC	4	NC 0000 CC4	2
346		2	min	006	2	017 .002	1	<u>01</u>	1	-7.977e-3	3	3136.687 NC	1_	8863.661 NC	2
347		3	max	.005 006	3	002 003	3	0 013	3	1.915e-5 -5.592e-4	<u>3</u>	1622.445	<u>5</u> 1	5373.33	1
349		4	min	006 .005	3	003 .009	1	<u>013</u> 0	3	2.159e-5	3	NC	<u> </u>	NC	2
350		4	max	006	2	00 <u>9</u>	3	015	1	-4.597e-4	1	1148.091	1	4444.232	1
351		5		.005	3	.019	1	<u>015</u> 0	3	2.404e-5	3	NC	5	NC	2
352		1 5	max	005	2	012	3	015	1	-3.603e-4	1	920.188	1	4264.484	
353		6	max	.005	3	.027	1	<u>015</u> 0	3	2.649e-5	3	NC	5	NC	2
354			min	006	2	017	3	014	1	-2.609e-4	1	791.466	1	4558.115	
355		7	max	.005	3	.033	1	0	3	2.894e-5	3	NC	5	NC	2
356			min	006	2	021	3	013	1	-1.614e-4	1	713.631	1	5417.491	1
357		8	max	.005	3	.038	1	0	3	3.138e-5	3	NC	5	NC	2
358			min	006	2	024	3	01	1	-6.198e-5	1	666.607	1	7410.372	1
359		9	max	.005	3	.041	1	0	3	3.746e-5	1	NC	5	NC	1
360			min	006	2	025	3	007	1	1.397e-6	15	641.026	1	NC	1
361		10	max	.005	3	.041	1	0	3	1.369e-4	1	NC	5	NC	1
362			min	006	2	025	3	004	1	4.443e-6	15	632.578	1	NC	1
363		11	max	.005	3	.04	1	0	3	2.363e-4	1	NC	5	NC	1
364			min	006	2	024	3	001	1	7.49e-6	15	639.965	1	NC	1
365		12	max	.005	3	.038	1	.002	1	3.358e-4	1_	NC	5	NC	2
366			min	006	2	022	3	0	15	1.054e-5	15	664.369	1_	8703.524	1
367		13	max	.005	3	.033	1	.004	1	4.352e-4	_1_	NC	5_	NC	2
368			min	006	2	019	3	0	15	1.358e-5	15	709.942	<u>1</u>	6027.885	
369		14	max	.005	3	.026	1	.006	1	5.347e-4	_1_	NC	5	NC	2
370			min	006	2	015	3	0	15	1.663e-5	15	785.773	1_	4935.858	
371		15	max	.005	3	.018	1	.007	1	6.341e-4	_1_	NC	_5_	NC	2
372		40	min	007	2	<u>011</u>	3	0	15	1.967e-5	15	911.34	1_	4542.356	
373		16	max	.005	3	.008	1	.007	1	7.074e-4	1_	NC	5	NC 4070 000	2
374		4-	min	007	2	005	3	0	15	2.193e-5		1133.077	_1_	4678.293	
375		17	max	.005	3	.002	3	.005	1	1.577e-4	1_	NC	5_	NC	2
376		10	min max	007	3	004	3	0	15	5.452e-6	15	1590.459	<u>1</u> 4	5609.728	
377		18		.005	2	.009		.002		1.124e-2		NC	<u>4</u> 1	NC 9201.002	2
378 379		19	min	007	3	018 .017	3	<u> </u>	1 <u>5</u>	-3.802e-3 2.254e-2	3	3065.63 NC	1	NC	
380		19	max min	.005 007	2	034	1	003	1	-7.704e-3	<u>1</u> 3	NC NC	1	NC NC	1
381	M5	1	max	.014	3	.066	3	.003	3	4.193e-7	3	NC	1	NC	1
382	IVIO		min	02	2	094	1	005	1	3.545e-8	15	NC	1	NC	1
383		2	max	.014	3	.036	3	.002	3	3.79e-5	3	NC	5	NC	1
384			min	02	2	05	1	004	1	-9.344e-5	1	1059.765	1	NC	1
385		3	max	.014	3	.008	3	.002	3	7.468e-5	3	NC	5	NC	1
386			min	02	2	009	1	004	1	-1.853e-4	1	545.755	1	NC	1
387		4	max	.014	3	.026	1	.002	3	7.414e-5	3	NC	5	NC	1
388			min	02	2	015	3	003	1	-1.73e-4	1	385.397	1	NC	1
389		5	max	.014	3	.056	1	.003	3	7.36e-5	3	NC	15	NC	1
390		Ť	min	02	2	034	3	003	1	-1.607e-4	1	308.339	1	NC	1
391		6	max	.014	3	.081	1	.003	3	7.305e-5	3	NC	15	NC	1
392		Ĭ	min	02	2	049	3	003	1	-1.484e-4	1	264.767	1	NC	1
393		7	max	.014	3	.1	1	.003	3	7.251e-5	3	NC	15	NC	1
			,								_				<u> </u>

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
394			min	02	2	06	3	002	1	-1.361e-4	1	238.358	1	NC	1
395		8	max	.014	3	.113	1	.003	3	7.197e-5	3_	NC	15	NC	1
396			min	02	2	068	3	002	1	-1.237e-4	<u>1</u>	222.324	<u>1</u>	NC	1
397		9	max	.014	3	.122	1	.003	3	7.142e-5	3	9797.938	15	NC	1
398		1.0	min	02	2	072	3	002	1	-1.114e-4	1_	213.496	1_	NC	1
399		10	max	.014	3	.124	1	.003	3	7.088e-5	3	9698.065	<u>15</u>	NC NC	1
400		44	min	02	2	072	3	002	1	-9.911e-5	1_	210.41	1_	NC NC	1
401		11	max	.014	3	.122	1	.002	3	7.033e-5	3	9839.523	<u>15</u>	NC	1
402		40	min	02	2	07	3	002	1	-8.68e-5	1	212.614	1_	NC NC	1
403		12	max	.014 02	3	.113 064	3	.002 002	3	6.979e-5	<u>3</u>	NC 220.487	<u>15</u> 1	NC NC	1
404		13	min	.014	3	.099		.002	3	-7.449e-5 6.925e-5		NC	15	NC NC	1
406		13	max min	021	2	055	3	002	1	-6.217e-5	<u>3</u> 1	235.402	1	NC NC	1
407		14	max	.014	3	055 .08	1	.002	3	6.87e-5	3	NC	15	NC NC	1
408		14	min	021	2	044	3	002	1	-4.986e-5	1	260.38	1	NC	1
409		15	max	.014	3	.054	1	.002	3	6.816e-5	3	NC	15	NC	1
410		13	min	021	2	03	3	002	1	-3.755e-5	1	301.919	1	NC	1
411		16	max	.014	3	.023	1	0	3	6.598e-5	3	NC	5	NC	1
412		10	min	021	2	013	3	002	1	-3.377e-5	2	375.599	1	NC	1
413		17	max	.014	3	.005	3	0	3	2.478e-5	3	NC	5	NC	1
414			min	021	2	013	1	002	1	-1.868e-4	1	528.915	1	NC	1
415		18	max	.014	3	.026	3	0	3	1.208e-5	3	NC	5	NC	1
416			min	021	2	056	1	002	1	-9.577e-5	1	1024.479	1	NC	1
417		19	max	.014	3	.048	3	0	3	0	5	NC	1	NC	1
418			min	021	2	103	1	002	1	-8.372e-8	3	NC	1	NC	1
419	M9	1	max	.005	3	.022	3	0	3	1.612e-2	3	NC	1	NC	1
420			min	006	2	031	1	006	1	-2.007e-2	1	NC	1	NC	1
421		2	max	.005	3	.012	3	0	3	7.997e-3	3	NC	4	NC	1
422			min	006	2	017	1	001	1	-9.916e-3	1	3137.535	1	NC	1
423		3	max	.005	3	.002	3	.002	1	4.547e-5	1_	NC	5	NC	2
424			min	006	2	003	1	0	3	1.619e-6		1622.897	1_	6433.157	1
425		4	max	.005	3	.009	1	.003	1	1.084e-5	3	NC	5	NC	2
426			min	006	2	006	3	0	3	-3.712e-5	1_	1148.412	1_	5457.094	
427		5	max	.005	3	.019	1	.004	1	2.113e-6	3_	NC	5_	NC	2
428		_	min	006	2	012	3	0	3	-1.197e-4	_1_	920.437	_1_	5415.619	1
429		6	max	.005	3	.027	1	.003	1	-4.499e-6	12	NC	5	NC	2
430			min	006	2	<u>017</u>	3	<u>001</u>	3	-2.023e-4	1_	791.671	_1_	6089.689	
431		7	max	.005	3	.033	1	.001	1	-8.612e-6		NC	5	NC Tools	2
432			min	006	2	021	3	001	3	-2.849e-4	1_	713.805	1_	7902.439	
433		8	max	.005	3	.038	1	0	2	-1.117e-5	<u>15</u>	NC CCC 7F0	5	NC NC	1
434			min		2	024	3	002		-3.675e-4			1	NC NC	1
435		9	max	.005	3	.041	1	0		-1.373e-5			5	NC NC	1
436		10	min	006	2	025	1	003	1 1 1 5	-4.501e-4 -1.629e-5	1_	641.163	1_	NC NC	1
437		10	max	.005	3	.041	3	0	1			NC	<u>5</u> 1	NC NC	1
438 439		11	min max	006 .005	3	025 .04	1	006 0		-5.327e-4 -1.884e-5	<u>1</u> 15	632.702 NC	5	NC NC	2
440		11	min	006	2	024	3	009	1	-6.153e-4	1	640.081	1	9536.03	1
441		12	max	.005	3	.038	1	<u>009</u> 0	15		15	NC	5	NC	2
442		12	min	006	2	022	3	011	1	-6.979e-4	1	664.477	1	6249.606	
443		13	max	.005	3	.033	1	<u>011</u> 0	15		15	NC	5	NC	2
444		13	min	006	2	019	3	013	1	-7.805e-4	1	710.046	1	4880.063	
445		14	max	.005	3	.026	1	<u>013</u> 0		-7.803e-4 -2.652e-5		NC	5	NC	2
446		14	min	006	2	015	3	014	1	-8.631e-4		785.876	1	4255.262	
447		15	max	.005	3	.018	1	014	-	-2.907e-5		NC	5	NC	2
448		10	min	006	2	011	3	014	1	-9.457e-4	1	911.446	1	4070.084	
449		16	max	.005	3	.008	1	0	15			NC	5	NC	2
450		1.5	min	007	2	005	3	013	1	-1.008e-3	1	1133.193	1	4301.575	
100			1111111	.001		.000		.010		1.0000	_	. 100.100		1001.010	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r		(n) L/y Ratio	LC		LC
451		17	max	.005	3	.002	3	0	15 -1.737e-5	15	NC	5	NC	2
452			min	007	2	004	1	011	1 -5.829e-4	1	1590.612	1	5253.662	1
453		18	max	.005	3	.009	3	0	15 3.803e-3	3	NC	4	NC	2
454			min	007	2	018	1	007	1 -1.145e-2	1	3065.911	1	8735.048	1
455		19	max	.005	3	.017	3	0	3 7.704e-3	3	NC	1	NC	1
456			min	007	2	034	1	002	1 -2.254e-2	1	NC	1	NC	1
457	M13	1	max	.006	1	.022	3	.005	3 3.926e-3	3	NC	1	NC	1
458	10110		min	0	3	031	1	006	2 -5.641e-3	1	NC	1	NC	1
459		2	max	.006	1	.193	3	.04	1 4.751e-3	3	NC	5	NC	2
460			min	0	3	245	1	0	10 -6.849e-3	1	929.194	1	4398.509	
461		3		.006	1	.333	3	.103	1 5.576e-3	3	NC	5	NC	3
		3	max							-				
462		-	min	0	3	419	1	.003	15 -8.056e-3	1_	511.151	<u>1</u>	1837.188	
463		4	max	.006	1	.421	3	.156	1 6.4e-3	3_	NC	5	NC	3
464		_	min	0	3	528	1	.005	15 -9.264e-3	1_	398.665	1_	1230.63	1
465		5	max	.006	1	.445	3	.182	1 7.225e-3	3	NC	_5_	NC	3
466			min	0	3	56	1	.006	15 -1.047e-2	1_	374.559	1_	1059.638	1
467		6	max	.005	1	.409	3	.173	1 8.05e-3	3	NC	5_	NC	3
468			min	0	3	516	1	.005	15 -1.168e-2	1_	408.493	1_	1112.312	1
469		7	max	.005	1	.324	3	.132	1 8.875e-3	3	NC	5	NC	3
470			min	0	3	412	1	.004	10 -1.289e-2	1	520.814	1	1449.962	1
471		8	max	.005	1	.213	3	.07	1 9.7e-3	3	NC	5	NC	3
472			min	0	3	276	1	003	10 -1.409e-2	1	811.185	1	2655.209	1
473		9	max	.005	1	.112	3	.013	3 1.052e-2	3	NC	5	NC	1
474		Ť	min	0	3	151	1	009	2 -1.53e-2	1	1659.393	1	NC	1
475		10	max	.005	1	.066	3	.014	3 1.135e-2	3	NC	4	NC	1
476		10	min	001	3	094	1	02	2 -1.651e-2	1	3165.212	1	NC	1
477		11		.005	1	.112	3	.016	3 1.052e-2	3	NC	5	NC	1
			max									3		
478		40	min	001	3	1 <u>51</u>	1	008	2 -1.53e-2	1_	1659.393	_	NC NC	1
479		12	max	.005	1	.213	3	.076	1 9.7e-3	3_	NC	5	NC 0.450,474	3
480		10	min	001	3	276	1	002	10 -1.409e-2	1_	811.185	1_	2450.171	1
481		13	max	.005	1	.324	3	.139	1 8.876e-3	3	NC	5	NC	3
482			min	001	3	412	1	.004	10 -1.289e-2	1_	520.814	1_	1375.045	
483		14	max	.005	1	409	3	.181	1 8.051e-3	3_	NC	5_	NC	3
484			min	001	3	516	1	.006	15 -1.168e-2	1_	408.493	1_	1066.659	
485		15	max	.005	1	.446	3	.189	1 7.227e-3	3	NC	5	NC	3
486			min	001	3	56	1	.006	15 -1.047e-2	1	374.559	1	1021.53	1
487		16	max	.005	1	.421	3	.162	1 6.402e-3	3	NC	5	NC	3
488			min	001	3	528	1	.005	15 -9.264e-3	1	398.666	1	1188.594	1
489		17	max	.004	1	.333	3	.107	1 5.577e-3	3	NC	5	NC	3
490			min	001	3	419	1	.003	15 -8.056e-3	1	511.152	1	1771.883	
491		18	max	.004	1	.193	3	.042	1 4.753e-3	3	NC	5	NC	2
492		10	min	001	3	244	1	0	10 -6.848e-3	1	929.195	1	4210.453	
493		19	max	.004	1	.022	3	.005	3 3.928e-3	3	NC	1	NC	1
494		13	min	001	3	031	1	006	2 -5.641e-3	1	NC NC	1	NC	1
	MAG	1								•				
495	<u>M16</u>		max	.002	1	.017	3	.005	3 5.868e-3	1	NC NC	1	NC NC	1
496			min	0	3	034	1	007	2 -2.948e-3	3	NC NC	1_	NC NC	
497		2	max	.002	1	.099	3	.043	1 7.153e-3	1_	NC 007.405	5_	NC 4405.000	2
498			min	0	3	273	1	0	10 -3.539e-3	3	827.425	_1_	4125.696	
499		3	max	.002	1	.166	3	.108	1 8.439e-3	_1_	NC	5	NC	3
500			min	0	3	469	1	.003	15 -4.13e-3	3	455.207	1_	1754.66	1
501		4	max	.002	1	.208	3	.162	1 9.724e-3	1_	NC	5	NC	3
502			min	0	3	591	1	.005	15 -4.721e-3	3	355.089	1	1184.055	1
503		5	max	.002	1	.221	3	.188	1 1.101e-2	1	NC	15	NC	3
504			min	0	3	627	1	.006	15 -5.313e-3	3	333.707	1	1022.388	
505		6	max	.002	1	.206	3	.179	1 1.229e-2	1	NC	5	NC	3
506		Ĭ	min	0	3	578	1	.006	15 -5.904e-3	3	364.112	1	1072.786	
507		7	max	.002	1	.167	3	.137	1 1.358e-2	1	NC	5	NC	3
JUI			παλ	.002		. 101	J	.101	1 1.0006°2		110	<u> </u>	110	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
508			min	0	3	46	1	.003		6.495e-3	3	464.647	<u>1</u>	1392.529	
509		8	max	.002	1	.116	3	.073		1.486e-2	1	NC	5	NC	3
510			min	0	3	307	1	003		7.086e-3	3	725.179	1_	2517.45	1
511		9	max	.002	1	.069	3	.016		1.615e-2	_1_	NC	5	NC	1
512			min	0	3	167	1	009		7.678e-3	3	1491.98	1_	NC	1
513		10	max	.002	1	.048	3	.014		1.743e-2	1_	NC	4	NC	1
514			min	0	3	103	1	021		8.269e-3	3	2874.897	<u>1</u>	NC	1
515		11	max	.003	1	.069	3	.014		1.615e-2	_1_	NC	5_	NC	1
516			min	0	3	167	1	009		7.677e-3	3	1491.98	1_	NC	1
517		12	max	.003	1	.116	3	.071		1.486e-2	1_	NC	5_	NC	3
518			min	0	3	307	1	003		7.086e-3	3	725.179	1_	2590.847	1
519		13	max	.003	1	.167	3	.134		1.358e-2	_1_	NC	5	NC	3
520			min	0	3	46	1	.003		6.494e-3	3	464.648	<u>1</u>	1423.725	1
521		14	max	.003	1	.206	3	.176		1.23e-2	_1_	NC	_5_	NC	3
522			min	0	3	578	1	.006		5.903e-3	3	364.112	1_	1094.977	1
523		15	max	.003	1	.221	3	.184		1.101e-2	_1_	NC	<u>15</u>	NC	3
524			min	0	3	627	1	.006		5.311e-3	3	333.707	1_	1044.055	1
525		16	max	.003	1	.208	3	.158		9.725e-3	1_	NC	5	NC	3
526			min	0	3	591	1	.005		-4.72e-3	3	355.089	1_	1212.092	1
527		17	max	.003	1	.166	3	.104		8.441e-3	<u>1</u>	NC	5_	NC	3
528			min	0	3	469	1	.003		4.128e-3	3	455.208	1_	1805.929	1
529		18	max	.003	1	.099	3	.041		7.156e-3	<u>1</u>	NC	5_	NC	2
530			min	0	3	273	1	0	10 -	3.536e-3	3	827.426	1	4299.687	1
531		19	max	.003	1	.017	3	.005		5.871e-3	1	NC	1	NC	1
532			min	0	3	034	1	007	2 -	2.945e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1 2	2.829e-4	3	NC	1	NC	1
534			min	0	1	0	1	0	1 -	1.117e-4	2	NC	1	NC	1
535		2	max	0	3	006	15	.001	1 7	7.844e-4	3	NC	5	NC	1
536			min	0	10	026	4	0	3 -	8.648e-4	1	4017.73	4	NC	1
537		3	max	0	3	012	15	.004	1 1	1.286e-3	3	8697.535	15	NC	1
538			min	0	10	051	4	003	3 -	1.639e-3	1	2044.486	4	NC	1
539		4	max	0	3	017	15	.008	1 1	1.788e-3	3	5967.017	15	NC	2
540			min	0	10	074	4	006		2.412e-3	1	1402.637	4	8813.945	1
541		5	max	0	3	022	15	.013	1 2	2.289e-3	3	4656.124	15	NC	4
542			min	0	10	095	4	01		3.186e-3	1	1094.492	4	5729.66	1
543		6	max	0	3	026	15	.019		2.791e-3	3	3918.621	15	NC	4
544			min	0	10	113	4	014		-3.96e-3	1	921.13	4	4144.594	1
545		7	max	0	3	03	15	.025		3.292e-3	3	3475.109	15	NC	4
546			min	0	10	127	4	018		4.734e-3	1	816.876	4	3224.478	1
547		8	max	0	3	032	15	.031		3.794e-3	3	3208.936	15	NC	4
548			min	0	10	138	4	022				754.308		2648.958	1
549		9	max	0	3	034	15	.036		4.295e-3	3	3065.666	15	NC	4
550			min	0	10	144	4	026		6.282e-3	1	720.631		2273.536	1
551		10	max	0	3	034	15	.041		4.797e-3	3	3020.342	15	NC	4
552			min	0	10	146	4	029		7.056e-3	1	709.977	4	2026.073	1
553		11	max	0	3	034	15	.044		5.299e-3	3	3065.666	15	NC	4
554			min	0	10	144	4	032		7.829e-3	1	720.631	4	1868.807	1
555		12	max	0	3	032	15	.045	1	5.8e-3	3	3208.936	15	NC	5
556			min	0	10	138	4	033		8.603e-3	1	754.308	4	1782.922	1
557		13	max	0	3	03	15	.045		6.302e-3	3	3475.109	15	NC	5
558			min	0	10	128	4	033		9.377e-3	1	816.876	4	1762.667	1
559		14	max	0	3	027	15	.042		6.803e-3	3	3918.621	15	NC	5
560			min	0	10	113	4	03		1.015e-2	1	921.13	4	1815.33	1
561		15	max	0	3	022	15	.037		7.305e-2	3	4656.124	15	NC	4
562		10	min	0	10	022	4	026		1.092e-2	1	1094.492	4	1968.773	1
563		16	max	0	3	090 018	15	.028		7.806e-3	3	5967.017	15	NC	4
564		10	min	0	10	075	4	02		-1.17e-2	1	1402.637		2299.117	1
J04			HIIII	U	IU	073	4	02	J	-1.178-2		1402.037	4	2233.117	

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	Ö	3	012	15	.016	1	8.308e-3	3	8697.535	15	NC	4
566			min	0	10	052	4	011	3	-1.247e-2	1	2044.486	4	3045.541	1
567		18	max	0	3	006	15	.002	9	8.81e-3	3	NC	5	NC	4
568			min	0	10	027	4	005	2	-1.325e-2	1	4017.73	4	5418.397	1
569		19	max	0	3	.005	3	.016	3	9.311e-3	3	NC	1	NC	1
570			min	0	10	005	1	021	2	-1.402e-2	1	NC	1	NC	1
571	M16A	1	max	0	10	0	3	.005	3	3.147e-3	3	NC	1	NC	1
572			min	0	1	002	1	007	2	-4.427e-3	1	NC	1	NC	1
573		2	max	0	10	006	15	.006	1	3.002e-3	3	NC	5	NC	2
574			min	0	1	026	4	0	10	-4.209e-3	1	4017.73	4	9497.54	1
575		3	max	0	10	012	15	.014	1	2.858e-3	3	8697.535	15	NC	3
576			min	0	1	051	4	004	3	-3.991e-3	1	2044.486	4	5369.27	1
577		4	max	0	10	017	15	.021	1	2.713e-3	3	5967.017	15	NC	4
578			min	0	1	074	4	008	3	-3.772e-3	1	1402.637	4	4079.896	1
579		5	max	0	10	022	15	.025	1	2.568e-3	3	4656.124	15	NC	4
580			min	0	1	095	4	01	3	-3.554e-3	1	1094.492	4	3519.782	1
581		6	max	0	10	026	15	.028	1	2.423e-3	3	3918.621	15	NC	4
582			min	0	1	113	4	011	3	-3.336e-3	1	921.13	4	3273.344	1
583		7	max	0	10	03	15	.028	1	2.279e-3	3	3475.109	15	NC	4
584			min	0	1	127	4	012	3	-3.118e-3	1	816.876	4	3210.136	1
585		8	max	0	10	032	15	.028	1	2.134e-3	3	3208.936	15	NC	4
586			min	0	1	138	4	012	3	-2.899e-3	1	754.308	4	3285.21	1
587		9	max	0	10	034	15	.026	1	1.989e-3	3	3065.666	15	NC	4
588			min	0	1	144	4	011	3	-2.681e-3	1	720.631	4	3491.835	1
589		10	max	0	10	034	15	.024	1	1.844e-3	3	3020.342	<u>15</u>	NC	4
590			min	0	1	146	4	01	3	-2.463e-3	1	709.977	4	3850.344	1
591		11	max	0	10	034	15	.021	1	1.699e-3	3	3065.666	15	NC	4
592			min	0	1	144	4	009	3	-2.245e-3	1_	720.631	4	4412.303	1
593		12	max	0	10	032	15	.017	1	1.555e-3	3	3208.936	15	NC	3
594			min	0	1	137	4	007	3	-2.026e-3	1_	754.308	4	5280.151	1
595		13	max	0	10	03	15	.014	1	1.41e-3	3	3475.109	15	NC	2
596			min	0	1	127	4	006	3	-1.808e-3	1_	816.876	4	6657.523	1
597		14	max	0	10	026	15	.01	1	1.265e-3	3	3918.621	15	NC	2
598			min	0	1	113	4	004	3	-1.59e-3	1	921.13	4	8982.152	1
599		15	max	0	10	022	15	.007	1	1.12e-3	3	4656.124	15	NC	1_
600			min	0	1	095	4	003	3	-1.372e-3	1_	1094.492	4	NC	1
601		16	max	0	10	<u>017</u>	15	.004	1	9.757e-4	3	5967.017	15	NC	1
602			min	0	1	074	4	001	3	-1.153e-3	1_	1402.637	4	NC	1
603		17	max	0	10	012	15	.001	1	8.31e-4	3	8697.535	15	NC	1_
604			min	0	1	051	4	0	3	-9.351e-4	1_	2044.486	4	NC	1
605		18	max	0	10	006	15	0	4	6.862e-4	3	NC	5	NC	1_
606			min	0	1	026	4	0	10	-7.169e-4	1_	4017.73	4	NC	1
607		19	max	0	1	0	1	0	1	5.415e-4	3	NC	1_	NC	1_
608			min	0	1	0	1	0	1	-5.193e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\mathscr{\Psi}_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.