Intro to Modern Algebra Homework 3

Sam Cook

October 19th, 2017

1 Section 3.3 #8

Problem Let $\mathbb{Q}(\sqrt{2})$ be as in Exercise 39 of Section 3.1 Prove that the function $f: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ given by $f(a+b\sqrt{2}) = a-b\sqrt{2}$ is an isomorphism.

Solution In order for f to be an isomorphism, it must be a bijective homomorphism.

First, to be bijective, it must be both injective and surjective. Take $f(a), f(b) \in \mathbb{Q}\sqrt{2}$ such that f(a) = f(b). Then, for some $k, l, m, n \in \mathbb{Q}$, $f(k+l\sqrt{2}) = f(m+n\sqrt{2})$. This implies that $k-l\sqrt{2} = m-n\sqrt{2}$, by the definition of f. We can group the rational and irrational parts together to get $k-l\sqrt{2} = m-n\sqrt{2} \Rightarrow (k-m) = (l-n)\sqrt{2}$. But (k-m) is rational, and $(l-n)\sqrt{2}$ is irrational. The only way this could be possible is if (k-m) = 0 and (l-n) = 0, since $(0-0) = (0-0)\sqrt{2}$. This implies that k = m and l = n. Therefore, $k+l\sqrt{2} = m+n\sqrt{2}$ and f is an injective function.

Now, consider $c - d\sqrt{2}\epsilon \mathbb{Q}(\sqrt{2})$. $c - d\sqrt{2}$ is mapped to from $c + d\sqrt{2}$, since $(c + d\sqrt{2}) = c - d\sqrt{2}$. Therefore, f is surjective, and as a result of that, bijective.

Now, we must prove that f is a homomorphism. Consider $f((k+l\sqrt{2})*(m+n\sqrt{2}))$. This simplifies to $f(km+kn\sqrt{2}+ml\sqrt{2}+nl)$, which again simplifies to $f((km+nl)+(kn+ml)\sqrt{2})$. By applying the function f, we get $f((km+nl)+(kn+ml)\sqrt{2})=(km+nl)-(kn+ml)\sqrt{2}$. Now consider $f(k+l\sqrt{2})*f(m+n\sqrt{2})$. By applying f, we get $(k-l\sqrt{2})*(m-n\sqrt{2})$. We can use distributive laws to get $km-kn\sqrt{2}-ml\sqrt{2}+2nl=(km+2nl)-(kn+ml)\sqrt{2}=f((k+l\sqrt{2})*(m+l\sqrt{2}))$. Therefore, f preserves multiplication

Now consider $f((k+l\sqrt{2})+(m+n\sqrt{2}))$ This simplifies to $f((k+m)+(n+l)\sqrt{2})$. Applying f, $f((k+m)+(n+l)\sqrt{2})=(k+m)-(n+l)\sqrt{2}$. Next consider $f(k+l\sqrt{2})+f(m+n\sqrt{2})$. Applying f, $f(k+l\sqrt{2})+f(m+n\sqrt{2})=(k-l\sqrt{2})+(m-\sqrt{2})=(k+m)-(n+l)\sqrt{2}$, by associativity. But (k+m)-(k+m)

 $(n+l)\sqrt{2} = f((k+l\sqrt{2}) + (m+n\sqrt{2}))$ and therefore f preserves addition. Since f preserves addition and multiplication, it is a homomorphism, and since it is a bijective homomorphism, it is an isomorphism.

2 Section 3.3# 12e

Problem Is the following function a homeomorphism or not?

$$f: \mathbb{Z}_{12} \to \mathbb{Z}_4 \tag{1}$$

defined by $f([x]_{12}] = [x]_4$, where $[u]_4$ denotes the class of the integer u in \mathbb{Z}_n

Solution

3 Section 3.3#30

Problem Let $f: R \to S$ be a homomorphism of rings and let $K = r \in R$ $f(r) = 0_r$. Prove that K is a subring of R.

Solution

4 Section 3.3 #38

Problem Let F be a field and $f :\to R$ a homomorphism of rings.

- (a) If there is a nonzero element c of F such that $f(c) = 0_R$, prove that f is the zero homomorphism (that is, $f(x) = 0_R$ for every $x \in F$). [Hint: c^{-1} exists (Why?). If $x \in F$, consider $F(xcc^{-1})$.]
- (b) Prove that f is either injective of the zero homomorphism. [Hint: If f is not the zero homomorphism and f(a) = f(b), then $f(a b) = 0_R$.]

Solution

5 Extra Problem

Problem Define an equivalence relation on the set of all rings by defining a ring R to be equivalent to a ring S if there is a ring isomorphism $f: R \to S$, i.e. R is isomorphic to S, $R \simeq S$. Show that this is an equivalence relation by showing

 $\bullet R \simeq R$ for all rings R

- If $R \simeq S$ for rings R and S, then $S \simeq R$
- \bullet If $R \simeq S$ and $S \simeq T$ for rings $R,\,S,$ and T, then $R \simeq T$ (See problem #27)

Solution