

無窮級數

單元十一

+ Outline

- 無窮數列
- 無窮級數
- 判別法:
 - ◆ 發散判別法
 - ◆ 有界判別法
 - ◆ 積分判別法
 - ◆ 比較判別法
 - ◆ 极限判別法
 - ◆ 絕對比率判別法

+無窮數列 (Infinite Sequences) (9.1)

- 無窮數列 定義域為正整數集、值域為實數集的函數。
 - \bullet $a_1, a_2, a_3, a_4 ...$

 - $lack \{a_n\}$
- 如: 1, 4, 7, 10, 13....
 - ◆ 以上數列可以**通項式** (Explicit formula) 表示:

$$a_n = 3n - 2, n \ge 1$$

◆ 也可以遞歸公式 (Recursion formula) 表示:

■ 求下列數列的通項式:

A.
$$-5, -1, 3, 7, 11, \dots$$

- B. $-1, 2, -4, 8, \dots$
- C. $1\times3, 3\times9, 5\times27,$
- D. 3, 33, 333, 3333, ...

* 收斂 (Convergent)

■若

$$\lim_{n\to\infty} a_n = L$$

則稱數列 $\{a_n\}$ 收斂(converge)的,否則稱它是發散(diverge)的。

+ 範例

$$\lim_{x \to \infty} \frac{x}{x + \frac{1}{x}} = ?$$

$$\lim_{x \to \infty} \frac{x}{x + \frac{1}{x}} = 1$$

- $\lim_{x \to \infty} \frac{\bar{x}}{x+1} = 1$
- $\lim_{n\to\infty} \frac{n^{-}}{n+1} = 1 \text{ (收斂Converges)}$

■ 9.1例3:

若 $\lim_{x\to\infty} f(x) = L, f(n) = a_n (n \in \mathbb{Z}^+)$, 則 $\lim_{n\to\infty} a_n = L_\circ$

+無窮數列的極限 (9.1定理A&C)

若 $\{a_n\}$ 與 $\{b_n\}$ 是收斂數列, k為常數, 則:

- $\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n$
- $\lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$
- = 若 $\lim_{n\to\infty} |a_n| = 0$,則 $\lim_{x\to\infty} a_n = 0$

+ 單調數列

- ◆ 對於數列 $\{a_n\}$,若存在數 M 對任意 $n \ge 1$ 有 $a_n \le M$,則 $\{a_n\}$ 有上界 (bounded above).
- ◆ 對於數列 $\{a_n\}$,若存在數 M 對任意 $n \ge 1$ 有 $a_n \ge M$,則 $\{a_n\}$ 有下界 (bounded below).
- ◆ 若一數列有上界或有下界,則此數列是有界的數列 (bounded sequence)。
- 每一個單調且有界的數列都是收斂的。

+ 例2

■ 判斷下列 $\{a_n\}$ 是否收斂,若收斂請求出其收斂值:

A.
$$a_n = \frac{\ln n}{n}$$

B.
$$a_n = (-1)^n$$

C.
$$a_n = \frac{(-1)^n}{n}$$

+無窮級數 (Infinite Series) (9.2)

當我們說:以無限小數來表示一個數是什麼意思?如: π = 3.14159 26535 89793 23846 26433 83279 50288...

意即小數點以後的數能用無限個數的和來表示:

$$\pi = 3 + \frac{1}{10} + \frac{4}{10^2} + \frac{1}{10^3} + \frac{5}{10^4} + \cdots$$

■ 無窮級數Infinite Series(或簡稱級數Series): 將無窮數列 $\{a_n\}_{n=1}^{\infty}$ 的每一項相加所得。

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{k=1}^{n} a_k = \lim_{n \to \infty} S_n$$

+ 幾何級數 (Geometric Series)

$$\sum_{k=1}^{\infty} ar^{k-1} = a + ar + ar^2 + \dots, \not \pm r = 0$$

- 可知:
 - \bullet |r| < 1時,收斂於 $\frac{a}{1-r}$
 - |r| ≥ 1時,發散

+ 例3

■ 判斷級數 $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ 是否收斂或發散,若收斂求級數和:

+ 例4

■ 求下列循環小數的值:

A. 0.4444444... B. 1.6737373737373...

+ 發散判別法 (Test for Divergence)(9.2定理A)

若
$$\sum_{n=1}^{\infty} a_n$$
 收斂,則 $\lim_{n\to\infty} a_n = 0$

同理,

若
$$\lim_{n\to\infty} a_n \neq 0$$
或不存在,則 $\sum_{n=1}^{\infty} a_n$ 發散

- - ◆ 如:調和級數(harmonic series): $\sum_{n=1}^{\infty} \frac{1}{n}$

+ 例5

■ 判斷級數 $\sum_{n=1}^{\infty} \frac{n^2}{5n^2+4}$ 是否收斂或發散。

+ 收斂級數的線性性質

■ 假設 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 收斂, c為常數, 則:

$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

■ 求下列級數的和:

$$\sum_{n=1}^{\infty} \left(\frac{3}{n(n+1)} + \frac{1}{2^n} \right)$$

+ 有界判別法 (Bounded Sum Test) (9.3定理A)

■ 正項級數 $\sum_{k=1}^{\infty} a_k$ 收斂

若且唯若

其部分和 S_n 有上界(bounded above)。

■ 證明下列級數收斂:

$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

+ 積分判別法 (Integral Test) (9.3定理B)

■ 假設 f 在區間[1,∞)上為連續、正的、非遞增函數,同時對於所有正整數 k 有 $a_k = f(k)$;那麼

$$\sum_{n=1}^{\infty} a_n$$
 收斂

若且唯若

$$\int_{1}^{\infty} f(x)dx$$
 收斂.

+ 例8

$$p$$
-級數: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 收斂若 $p > 1$.

■ 判斷級數是否收斂或發散, 若收斂求級數和:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

+ 正項級數的判別法 (9.4)

- 比較判別法(定理A):
 - 已知對於任意 n > N 有 $0 \le a_n \le b_n$, 那麼:
 - \bullet 若 $\sum b_n$ 收斂,則 $\sum a_n$ 也收斂;
 - ◆ 若 $\sum a_n$ 發散,則 $\sum b_n$ 也發散.
- 極限比較法 (定理B):

假設
$$a_n \ge 0$$
, $b_n > 0$ 且 $\lim_{n \to \infty} \frac{a_n}{b_n} = L$.

- ◆ 若 $0 < L < \infty$, 則 $\sum a_n$ 和 $\sum b_n$ 斂散性相同(同時收斂 或同時發散).
- lack 若 L=0 且 $\sum b_n$ 收斂,則 $\sum a_n$ 收斂.

■ 判斷級數是否收斂或發散:

A.
$$\sum_{n=1}^{\infty} \frac{5}{2n^2+4n+3}$$

B.
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

+絕對比率判別法

- 對於級數 $\sum a_n$,若 $\sum |a_n|$ 收斂,稱 $\sum a_n$ 為絕對收斂的 (absolute convergent)。
- \blacksquare 若 $\sum a_n$ 絕對收斂,則 $\sum a_n$ 收斂。(9.5定理**B**)

- 絕對比率判別法(9.5定理**C**): 令 $\sum a_n$ 為一非零項級數,且 $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = \rho$.
 - ◆ 若 ρ < 1,則 $\sum a_n$ 絕對收斂(因而收斂).
 - ◆ 若 ρ > 1,則 $\sum a_n$ 發散.
 - ◆ 若 ρ = 1,則不能判斷.

■ 判斷級數是否收斂或發散:

A.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n}$$

$$\mathbf{B.} \quad \sum_{n=1}^{\infty} \frac{n^n}{n!}$$

+ 幂級數 Power Series (9.6)

■ 以下為以函數項 x 的幂級數形式:

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x \dots$$

I 其收斂集 (Convergence Set): 幂級數收斂的 x 取值的集合。

■ 求以下幂級數的收斂集並以函數形式表示其級數:

A.
$$\sum_{n=0}^{\infty} x^n$$

$$\mathbf{B.} \ \sum_{n=1}^{\infty} \frac{x^n}{3^n}$$

+ 教材對應閱讀章節及練習

- 9.1-9.4(~例3), 9.5, 9.6
- 對應習題:(可視個人情況定量)
 - **◆** 9.1: 1-12, 21-24
 - **◆** 9.2: 1-6, 15-18
 - **◆** 9.3: 1-12
 - **◆** 9.4: 1-10
 - **◆** 9.5: 7-12
 - **◆** 9.6: 1-28