Some Characterized Projective δ -cover

R. S. Wadbude

Abstract— In this paper we characterize some properties of projective δ -cover and find some new results with δ-supplemented module M. Let M be a fixed R-module. A δ -cover in M is an δ -small epimorphism from M onto P. These concept introduce by Zhou [14]. A δ-cover is projective δ-cover(M-projective δ -cover) in case M is projective.

Index Terms— Singular, non singular, simple, small, δ -small, cover, δ -cover, supplement, δ -supplement.

I. INTRODUCTION

Throughout this paper R is an associative ring with unity and all modules are unitary R-modules. Let M be a fixed module, a sub module L of module M is denoted by $L \le M$. submodule L of M is called essential (large) in M, abbreviated $K \leq_e M$, if for every submodule N of M, L \cap N implies N = 0. A sub module N of a module M is called small in M, Denoted by N \ll M, if for every sub module L of M, the equality N + L = M implies L = M. For each $X \subset M$, the right Ann(X) in R is $r_R(X) = \{r \in R : xr = 0 \text{ for all } x \text{ in } x\}$. The sub module Z(M) = $\{x \in M : r_R(x) \text{ is an essential in } R_R\} \{x\} \text{ is singleton, is called}$ singular submodule of M. The module M is called singular module if Z(M) = M. (M is non singular if Z(M) = 0). A right R-module is called simple if $M \neq 0$ and M has only proper submodules. A sub module N of M is called minimal in M if N $\neq 0$ and for every submodules A of M, A \subset N implies A = N. epimorphism $f: M \to P$ is called small if $\ker f \prec \prec M$. A small epimorphism $f: M \to P$ is called projective cover if M is projective with

 $\ker f \prec \prec M$.[Zhou] introduce the concept of δ-small submodule as generalization of small submodules. Let $K \leq M$, K is called δ -small if whenever M = N + K and M/N is a singular, we have M = N.(denoted by $\prec \prec_{\delta}$). The sum of all $\delta\text{-small}$ submodules is denoted by $\delta(M).$ A $\delta\text{-cover}$ in M is an δ-small epimorphism from M onto P. A δ-cover is projective δ -cover(M-projective δ -cover) in case M is projective.

Definition: Let M be a fixed R- module. An R-module U is called (small) M-projective module, if for every (small) epimorphism $f: M \to P$ and

homomorphism $g: U \to P$, there exists a homomorphism $v: U \to M$ such that $f \circ v = g$, i.e. following diagram is commute.

R. S. Wadbude, Department of Mathematics, Mahatma Fule Arts, Commerce and Sitaramji, Chaudhari Science Mahavidyalaya, Warud.SGB Amaravati University Amravati [M.S.]

$$U \downarrow g \qquad \qquad \text{Example}$$

$$M \xrightarrow{f} P \to 0 \qquad (Kerf \prec \prec M)$$

: Every proper sub module of the Z-modules Z_p^{∞} is small in

Remarks:

i) Every M-projective module is a small M-projective cover.

ii) Every self projective module M is self small projective module and converse is true for M is hollow.

Lemma: [Zhou] Let N be a sub module of M. The following are equivalent:

i) $N \ll_{\delta} M$

ii) If M = X + N, then $M = X \oplus Y$ for a projective semisimple sub module Y with $Y \subseteq N$.

Proof: [14]

Lemma: If each $f_i: N_i \to M_i$ are M-projective δ -covers for i = 1,2,3,...n, then $\bigoplus_{i=1}^{n} f_i : \bigoplus_{i=1}^{n} N_i \to M_i \text{ is M-projective } \delta\text{- cover.}$

Proof: [12]

Lemma: If N is a direct summand of module M and

 $A \ll_{\delta} M$, then $A \cap N \ll_{\delta} N$.

Lemma: Let K be a sub module of a M-projective module U. If U/K has a M-projective δ -cover, then it has a M-projective

δ-cover of the form
$$f: \frac{U}{L} \to \frac{U}{K}$$
 with $\ker f = \frac{K}{L}$

36

Proof: Let K be a sub module of a M-projective module U.

Let
$$f: M \to \frac{U}{K}$$
 be a M-projective δ -cover of $\frac{U}{K}$, and

 $\pi: U \to \frac{U}{K}$ is a canonical epimorphism , U is M-projective

there homomorphism $v: U \to M$ s.t. $f \circ v = \pi$.

$$\begin{array}{c}
L \\
\downarrow \\
K \\
\downarrow \\
U \\
\downarrow \\
M \xrightarrow{f} \frac{U}{K} \to 0
\end{array}$$

Then $M = \ker g \oplus \operatorname{Im} v$. By lemma $M = N \oplus \text{Im} v$ for semi simple sub module N, with N \subseteq Kerf since $\ker(f \mid_{\operatorname{Im} v}) \prec \prec_{\delta} \operatorname{Im} v$. So $f \mid_{\operatorname{Im} v}$ is also M-projective δ -cover of $\frac{U}{K}$. But $\frac{U}{\ker v}\cong \operatorname{Im} v$ by isomorphism theorem. Since $f\circ v=\pi$ and $\ker v\subseteq K$. If we consider the isomorphism $v'\colon \frac{U}{\ker v}\to \operatorname{Im} v$ defined by $v'(\ker v+u)=u \ \forall u\in U, \operatorname{Im} v\leq^{\oplus} U$. Then we obtain $\ker(f_{\operatorname{Im} v},v')\prec\prec_{\delta} \frac{U}{\ker v}$.

Lemma: A pair (M, f) is a M-projective δ -cover of finitely generated module U, The there exists a

finitely generated direct summand M' of M such that $fI_{M'}$ is a M-projective δ -cover of U.

Theorem: An R module M has a M-projective δ -cover, then for every epimorphism $f:M\to P$, the following are equivalent:

- i) $f: M \to P$ is a M-projective cover.
- ii) M is projective, for every epimorphism $f'\colon M'\to P$, with $M'\leq^\oplus M$, there exists a necessarily split epimorphism $h\colon M'\to M$ such that $f\circ h=f'$.
- iii) For every small epimorphism $g:M\to N$, there exists an epimorphism $h:P\to M$ such that $f\circ h=g$

Corollary: Let $f: M \to P$

and $f': M' \to P$, $M' \leq^{\oplus} M$, be a M-projective cover.

Then there is an isomorphism $h: M \to M'$ such that $f' \circ h = f$. In fact if $h: M \to M'$ is a homomorphism with $f' \circ h = f$, then h is an isomorphism.

Proposition: Let $f:M\to P$ be a M-projective δ -cover. If U is M-projective and $g:U\to P$ is an homomorphism, then there exists decomposition $M=A\oplus B$ and $U=X\oplus Y$ such that

- i) $A \cong X$
- ii) $fI_A: A \rightarrow P$ is a M-projective δ -cover.
- iii) $hI_X: X \to P$ is a M-projective δ -cover.
- iv) B is a Projective semi simple with $B \subseteq \ker f$ and $Y \subset \ker h$

Proof: Since U is M-projective,

$$\begin{array}{ccc}
 & U \\
 & \downarrow g \\
 & M & \xrightarrow{f} P \to 0
\end{array}$$

Then there exists $h:U\to M$ such that $f\circ h=g$. Thus we have $M=\operatorname{Im} h+\ker f$ and $\ker f\prec \prec_\delta M$, we have $M=\operatorname{Im} h+B$ for a semi simple module B with $B\subseteq \ker f$, by lemma 9. $f\mathrm{I}_A:A\to P$ is a M-projective δ -cover.

Since direct summand of projective module is projective, so A is projective and homomorphism $h:U\to A$ splits, then there exists $t:A\to U$ such that $h\circ t=I_A$. Thus

 $U = X \oplus Y = \operatorname{Im} t + \ker h \qquad \text{this} \qquad \text{implies} \\ A \cong t(A) = X. \operatorname{Since} \ \ker(h \operatorname{I}_A) \prec \prec_\delta A \ (M = A \oplus B) \,, \\ \text{we} \qquad \text{have} \qquad \ker(h \operatorname{I}_X) = \ker(h \operatorname{I}_A) \prec \prec_\delta t(A) = X \\ g(X) = (f \circ h)(X + Y) = (f \circ h)(U) = P \\ \text{Thus } h \operatorname{I}_X : X \to P \text{ is a M-projective } \delta\text{-cover.} / /$

Lemma: Let U be a M-projective module and $N \leq^{\oplus} M$, then the following are equivalent;

- i) $\frac{M}{N}$ has a M-projective δ -cover.
- ii) $M=M_1\oplus M_2$ for some M_1 and M_2 ,with $M_1\subset N \ \ and \ \ M_2\cap N\prec\prec_\delta M \ .$

Proof: i)=> ii) Assume that $\frac{M}{N}$ has a M-projective

δ-cover. Let $g: U \to \frac{M}{N}$ be a M-projective δ- cover

and $\pi:M\to \frac{M}{N}$ is canonical epimorphism, then there

exists an homomorphism $h: U \to M$ such that the diagram

$$\begin{array}{ccc}
h & \downarrow g \\
M & \xrightarrow{\pi} & \frac{M}{N} & \to 0
\end{array}$$

is commute. Therefore $M=\operatorname{Im} h+\ker \pi=\operatorname{Im} h+N$. By lemma [Zhou 3.1] there exists a decomposition $M=M_1\oplus M_2$ such that $\pi \mathbf{1}_X:M_2\to M$ is a M-projective δ -cover and $M_1\subseteq\ker \pi=N$. Thus $M_2\cap N=\ker(\pi \mathbf{1}_X)\prec \prec_\delta X$. Since $M_2\subseteq^\oplus M$ then $M_2\cap N\prec \prec_\delta M$.

ii)=> i) it is clear.

Lemma: If $f: U \to M$ and $g: M \to N$ are δ -covers, then $g \circ f$ is a δ -cover.

Proof: [12]

Lemma: Let M, N, P be R-modules , for some homomorphisms $f: M \to P$, $g: M \to N$ and

 $h: N \to P$ such that $h \circ g = f$ then,

i) F is a small epimorphism if and only if

 $N = \ker h + \operatorname{Im} g$.

ii) A pair (M, f) is a projective δ -cover if and only if g(M) is a δ -supplement of kerh in N and ker $g \prec \prec_{\delta} M$

Proof: i) it is clear by lemma R

(ii) => Suppose a pair (M, f) is a δ -cover, by (i) we have $N = \ker h + \operatorname{Im} g$ i.e. f is small epimorphism, we get $g(\ker f) = \ker h + \operatorname{Im} g$ and $\ker f \prec \prec_{\delta} M$. By lemma [1,1 K. Al-Thakman] $g(\ker f) \prec \prec_{\delta} \operatorname{Im} g$, hence Img is δ -supplement of kerh in N. \Leftarrow Assume that the g(M) is a δ-supplement of $\ker h$ in N, then $N = \operatorname{Im} g + \ker h$ and $\operatorname{Im} g \cap \ker h \prec \prec_{\delta} \operatorname{Im} g$. Since f is epimorphism, consider $\ker f + S = M$ and $\frac{M}{S}$ is singular. So $g(\ker f) + g(S) = g(M)$ but $g(\ker f) = \ker h \cap \operatorname{Im} g$, Hence $g(M) = g(\ker f) \cap \operatorname{Im} g + g(S)$ since

Hence $g(M) = g(\ker f) \cap \operatorname{Im} g + g(S)$, since $\frac{g(M)}{g(S)}$ is singular, being a homomorphic image of singular

module and $\operatorname{Im} g \cap \ker h \prec \prec_{\delta} \operatorname{Im} g$. We have g(M) = g(S) and so $M = S + \ker g$, by assumption $\ker g \prec \prec_{\delta} M$ and $\frac{M}{S}$ is singular,

so M = S. Hence $\ker f \prec \prec_{\delta} M$.//

Theorem: If $M = M_1 + M_2$ then the following are equivalent:

- i) M_2 is a small- M_1 -projective.
- ii) For any sub module N of M such that M_1 is a δ -supplement of N in M. There exists a sub N_1 of N such that $M=M_1\oplus N_1$.

Proof: [14].

Proposition: If U is a sub module of R-module M, then following are equivalent:

- i) $\frac{M}{M_1}$ has a M-projective δ -cover.
- ii) If $M_2 \leq M$ and $M=M_1+M_2$, M_2 has a δ -supplemented $M'_1 \subseteq M_2$ such that M'_1 has a M-projective δ -cover.
- iii) M_2 has a δ supplemented M'_1 , which has a M-projective δ -cover.

Proof: (i) \Rightarrow (ii) Assume that $\frac{M}{M_1}$ has a M-projective

 δ -cover. Therefore $f:U \to \frac{M}{M_1}$ be a M-projective δ -cover.

Since $M = M_1 + M_2$, $g: M_2 \to \frac{M}{M_1}$ is an epimorphism

.Given that U is M- projective module, then there exists an homomorphism $h:U\to M_2$ such that $f=g\circ h$. By lemma Q] $M=M_1+\mathrm{Im}\,h=M_1+h(U)$,where $h(U)\prec\prec_\delta M_2$. Since $\ker f\prec\prec_\delta U$, we have $M_1\cap h(U)=h(\ker f)\prec\prec_\delta h(U)$ and h(U) is δ -supplement of M_1 in M. Since $\ker h\leq \ker f\prec\prec_\delta U,h:U\to h(U)$ is M-projective δ -cover.

(ii)⇒(iii) it is clear.

(iii) \Rightarrow (i) Let $f:U\to M_1$ ' be a M-projective δ -cover. Since M_1 ' is a δ -supplement of M, the natural epimorphism

$$g: M_1' \to \frac{M_1'}{M_1 \cap M_1'} \cong \frac{M_1 + M_1'}{M_1} = \frac{M}{M_1}$$
 is

M-projective δ -cover. Hence $f: U \to \frac{M}{M_1}$ is a

M-projective δ -cover, by lemma [A], where $h: \frac{M_1'}{M_1 \cap M_1'} \to \frac{M_1 + M_1'}{M_1}$ is an isomorphism. //

REFERENCES

- Anderson, F. W., Fuller, K. R. Rings and Categories of Modules, Springer-Verlag, NewYork, 1992.
- [2]. Azumaya G. 'some characterization of regular modules' Publications Mathematiques, Vol 34 (1990) 241-248.
- [3]. Bharadwaj, P.C. Small pseudo projective modules, Int. J. alg. 3 (6), 2009, 259-264.
- [4]. Keskin D., 'On lifting modules' Comm.Alg. 28 (7) 2000, 3427-3440.
- [5]. Keskin D and kuratomi Y. 'on Generalized Epi-Projective modules' Math J. Okayama Uni. 52 (2010) 111-122.
- [6]. Khaled Al-Takhman, Cofinitely δ-supplemented and Cofinitely δ-Seme perfect module, Int. Journal of Algebra, Vol 1,(12) 2007, 601-613.
- [7]. Kosan. M.T. δ-Lifting and δ-supplemented modules, Alg. Coll.14 (1) 2007, 53-60.
- [8]. Nicholsion. Semiregular modules and rings, Canad, Math. J. 28. (5) 1976 1105-1120.
- [9]. Sinha A.K, Small M-pseudo projective modules, Amr. j. Math 1 (1), 2012 09-13.
- [10]. Talebi, Y. and Khalili Gorji I. On Pseudo Projective and Pseudo Small-Projective Modules. Int. Journal of Alg. 2. (10), 2008, 463-468.
- [11]. Truong Cong. QUYNA On Pseudo Semi-projective modules Turk J. Math 37. 2013.27- 36.
- [12]. Wang Y. and Wu D. 'Rings characterized by Projectivity Classes' Int. Journal of algebra, Vol 4 2010 (19) 945-952.
- [13].Xue, W. Characterization of Semi-perfect and perfect Rings. Publications Mathematiques, Vol 40 (1996) 115-125.
- [14]. Zhou, Y. Generalizations of perfect, semiperfect and semiregular rings, Algebra Colloquium 7 (3), 2000, 305-318.