# Descriptive Statistics and Exploratory Data Analysis

Dr. Upendra Pratap Singh

LNMIIT

August 27, 2023

Types of Data

Descriptive Statistics and Exploratory Data Analysis

### Types of Data

- Numerical data:
  - Continuous: real numbers
  - Discrete: discrete numbers



Figure: Discrete and continuous data

#### Types of Data

- Categorical
  - Nominal: order immaterial
  - Ordinal: order remains significant



Figure: Nominal and Ordinal data

#### Types of Data

- Time series data: data points collected at fixed intervals.
- Text, image and audio data.
- Relational data: data stored in tables with keys connecting them.
- Geo-spatial data: related to geographic locations and spatial information.



Figure: Geo-Spatial Data: Applications

### Types of Data

Meta-data: provides information about other data, such as data dictionaries, data schemas, and data lineage.



Figure: Meta Data: Application

#### Introduction

- A set of techniques and summary measures used to describe and summarize the key characteristics of data.
- Allows analysts and researchers to better understand the underlying data distribution, central tendencies, dispersion, and other such attributes.

#### Methods

- **Graphical methods:** bar charts, histograms, pie-charts, scatter plots, and box-plots.
- Non-graphical methods: measures of central tendency, measures of dispersion, percentiles and quartiles, correlation coefficients, and summary tables.

### Graphical Methods - Bar Charts



Figure: Bar Charts

- Categorical Data Representation; bars can be vertical as well as horizontal
- Height or length measures the quantity.
- Excellent for *comparison* and *ranking*.
- **Limitation:** Not suited for *numerous* categories.

### Graphical Methods - Histograms



Figure: Histograms

- Provide a visual representation of the distribution of numerical data.
- 2 Useful for understanding the *frequency/count* of data points within different ranges or bins.

### Graphical Methods - Histograms

- Bar height corresponds to the frequency/count of data points within the associated bin.
- Interpretation remains sensitive to bar width.
- Measures of central tendency and outliers are easily observed.

### Graphical Methods - Bar Charts Vs Histograms

- **Data types:** bar charts for categorical data and histograms for numerical data
- **Data representation:** separate bars vs bins.
- **Bar spacing:** separate vs contiguous.
- **Utility:** ranking and comparison vs density shape estimation.

Graphical Methods - Histograms

### Limitations:

- Bin size sensitivity.
- Assumption of data continuity.
- Interpreting data between the bin boundaries can be challenging.
- Not suited for *complex patterns*.

### Graphical Methods - Pie Charts



Figure: Pie-Charts

- Part-to-Whole Representation: used to display the composition or distribution of a whole into its constituent parts.
- Shape resembles a pie divided into slices; slice angle follows proportional representation.
- Most suited for representing limited number of categories.

14 / 32

### Graphical Methods - Pie Charts

- Invariant to slice ordering.
- Computation of slice angle:

$$angle(data) = \frac{frequency(data)}{total\ data\ frequency} \times 360$$

Limited interpretability with numerous categories.

#### Graphical Methods - Scatter Plots



Figure: Scatter Plots

- Depict the relationship between two numerical variables.
- Each data point represents a single observation, with its coordinates (x, y).
- 3 Outliers and correlation information are easily observable.

### Graphical Methods - Scatter Plots

- Can easily reveal clusters/groups.
- Primarily used to analyze relationships between variables in various fields, including economics, social sciences, natural sciences, and engineering.
- Orrelation Vs Causation: scatter plots do not imply causation
- May not be useful for *large* datasets.

### Graphical Methods - Box Plots



Figure: Box-Plot

- AKA box-and-whisker plots, provide a concise summary of the distribution of numerical data.
- Five-number summary: minimum, first quartile (Q1), median (Q2) or middle value), third quartile (Q3), and maximum.

### Graphical Methods - Box Plots

- Excellent for comparing distributions of multiple datasets.
- Assumption of Continuity: Box plots assume a continuous distribution of data
- Concise representation of 5 numbers.
- **Limitation:** they do not tell about the underlying functional form of the data.

Measures of Central Tendency

- AKA measures of central location.
- 2 Provide information about the *central* or *average* value of a dataset.

#### Measures of Central Tendency

#### Mean

Calculated by adding up all the values in a dataset and then dividing by the total number of values

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{i=N} X_i$$

#### Measures of Central Tendency

#### Mean

- Sensitivity to outliers and missing values.
- **Balancing property:** the sum of the deviations of each value from the mean is always zero.
- Non-integer Mean: The mean computed may not necessarily be one of the actual values in the data.
- May not provide a reasonable picture of the data is the distribution is skewed.

#### Measures of Central Tendency

#### Mode

- Identifies the most prevalent/frequent value in the dataset.
- Unlike the mean and median, which are numerical averages, the mode deals with the *occurrence* of specific values.
- Not always unique: A dataset can have one mode, multiple modes, or no mode at all.
- Applicable for both numerical and categorical data.

#### Measures of Central Tendency

#### Mode

- *Insensitive* to outliers.
- Relationship with mean and median: mode, mean, and median are usually close to each other for non-skewed dataset.
- Limitations: it doesn't provide insight into the spread or variability of the data.

#### Measures of Central Tendency

#### Median

- The median is the *middle* value in a dataset when it is ordered from least to greatest.
- Prerequisite: requires the data to be ordered
- Computation:
  - Arrange the data in ascending order and then find the middle value.
  - If the dataset has an odd number of values, the median is the middle value.
  - If the dataset has an even number of values, the median is the average of the two middle values.

#### Measures of Central Tendency

#### Median

- Less sensitive to outliers compared to mean, hence, a better choice when the distribution is skewed or when outliers are present.
- It provides a representative value that's not heavily influenced by extreme observations.
- Limitations: Not directly applicable to nominal categorical data.

26 / 32

#### Measures of Dispersion

### Range

Difference between the maximum and minimum values in a dataset.

$$Range = Maximum\ Value - Minimum\ Value$$

- Simple to compute.
- Despite being a numerical value, it can be visualized using box plots.
- It provides a basic measure of the variability or spread of the data points.

Measures of Dispersion

### Range

- Not Robust: The range is sensitive to extreme values or outliers.
- Limitation: While the range provides insight into the extent of data dispersion, it doesn't provide information about the distribution's shape or central tendency.

Measures of Dispersion

#### Standard Deviation

Measures the average amount by which individual data points in a dataset deviate from the mean of the dataset.

$$\sigma = \sqrt{\frac{\sum (X_i - \mu)^2}{N}}$$

**Interpretation:** A larger standard deviation indicates greater variability or spread of the data points around the mean.

Measures of Dispersion

#### Standard Deviation

- Standard deviation has the same unit as the original data.
- Sensitive to outliers
- **Relation with Range:** While the range gives you the extent of the spread in the dataset, the standard deviation provides a more detailed and comprehensive measure of spread by considering the deviations of each data point from the mean.
- **Best Practice:** use with mean.

Measures of Dispersion

#### Standard Deviation

- **Bessel's Correction:** A mathematical adjustment applied when calculating the sample variance and sample standard deviation.
  - Sample Mean

$$s = \sqrt{\frac{\sum (X_i - \bar{x})^2}{n - 1}}$$

Population Mean

$$\sigma = \sqrt{\frac{\sum (X_i - \mu)^2}{N}}$$

#### Measures of Dispersion

#### Variance

Measures the average of the squared differences between each data point and the mean of the dataset.

$$Variance = \frac{\sum (X_i - \mu)^2}{N}$$

- Variance has squared units, which might not be directly interpretable in the same units as the original data.
- Sensitive to outliers.
- Variance is always a non-negative value.