Soluzione degli esercizi del capitolo 12

Esercizio 12.2 (pag.177)

Siano

$$A = \begin{bmatrix} a_1 & a_2 \\ -a_2 & a_1 \end{bmatrix} \quad e \quad B = \begin{bmatrix} b_1 & b_2 \\ -b_2 & b_1 \end{bmatrix} \in Mat_{2 \times 2}(\mathbb{R}).$$

Dimostrare che vale l'uguaglianza:

$$(a_1^2 + a_2^2)(b_1^2 + b_2^2) = (a_1b_1 - a_2b_2)^2 + (a_2b_1 + a_1b_2)^2.$$

Soluzione

Basta applicare il Teorema di Binet (cfr. Teor. 12.12, pag. 176).

Esercizio 12.3 (pag.177)

Determinare il valore del parametro reale k per il quale è singolare la matrice A ottenuta come prodotto delle matrici

$$B = \left[\begin{array}{cc} k & 1 \\ 1 & k \end{array} \right] \quad \text{e} \quad C = \left[\begin{array}{cc} k & 2 \\ 2 & k \end{array} \right].$$

Soluzione

Calcoliamo il prodotto
$$BC = \left[\begin{array}{cc} k & 1 \\ 1 & k \end{array} \right] \left[\begin{array}{cc} k & 2 \\ 2 & k \end{array} \right] = \left[\begin{array}{cc} k^2 + 2 & 3k \\ 3k & 2 + k^2 \end{array} \right].$$

Poiché $\det BC = (2+k^2)^2 - 9k^2 = k^4 - 5k^2 + 4 = 0 \iff k^2 = 1, k^2 = 4$, si ottengono i valori: $k = \pm 1, \ k = \pm 2$.

Esercizio 12.4 (pag. 177)

Mostrare che sono linearmente dipendenti i vettori:

$$v_1 = (1, 2, 3), v_2 = (-2, 1, -5), v_3 = (0, 5, 1) \in \mathbb{R}^3.$$

Soluzione

Utilizziamo la prop. 12.1 (pag. 176). Poiché:

$$\det \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 5 \\ 3 & -5 & 1 \end{bmatrix} = 1 - 30 + 25 + 4 = 0,$$

si conclude che i Tre vettori v_1 , v_2 , v_3 sono linearmente dipendenti. (Senza calcoli si puó anche vedere che $v_3 = 2v_1 + v_2$.)

Esercizio 12.5 (pag.177)

Determinare il valore del parametro reale k per cui i vettori

$$v_1 = (1, 2, k, k - 1), v_2 = (0, 1, -1, k), v_3 = (1, 0, 0, 1), v_4 = (k, 0, 0, 0) \in \mathbb{R}^4.$$

sono linearmente indipendenti.

Soluzione

Il problema posto equivale (cfr prop. 12.1) a determinare il valore del parametro reale k per cui:

$$\det \begin{bmatrix} 1 & 0 & 1 & k \\ 2 & 1 & 0 & 0 \\ k & -1 & 0 & 0 \\ k - 1 & k & 1 & 0 \end{bmatrix} \neq 0.$$

Calcoliamo det A utilizzando il teorema di Laplace e sviluppando rispetto alla quarta colonna.

Ponendo $k \neq 0$ (altrimenti det A = 0), otteniamo:

$$det A = k \det \begin{bmatrix} 2 & 1 & 0 \\ k & -1 & 0 \\ k - 1 & k & 1 \end{bmatrix} = k \det \begin{bmatrix} 2 & 1 \\ k & -1 \end{bmatrix} = k(-2 - k).$$

Quindi $det A \neq 0$ per $k \neq 0$, $k \neq -2$ e i vettori sono linearmente indipendenti per ogni $k \in \mathbb{R}, \ k \neq 0, \ k \neq -2$.

Esercizio 12.6 (pag. 179)

Nel caso in cui esistano, scrivere le matrici inverse di:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} -2 & 1 & -1 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 1 & -1 \\ -2 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Soluzione

1. $det(A) = 1 \neq 0$, per cui la matrice è invertibile.

La sua inversa è
$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$
.

- **2.** det(B) = 0 per cui la matrice B non è invertibile.
- **3.** det(C) = 9, per cui la matrice è invertibile.

La sua inversa è
$$C^{-1} = \begin{bmatrix} \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$
.

4. $\det D = 1$, per cui la matrice è invertibile.

La sua inversa è
$$D^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
.

Esercizio 12.7 (pag. 181)

Risolvere, usando il metodo di Cramer, i seguenti sistemi lineari:

1)
$$\begin{cases} y +4z = 5 \\ x +y -3z = -4 \\ 4x +2y +z = -5 \end{cases}$$

2)
$$\begin{cases} x +3y +2z = 3\\ 2x -y -3z = -8\\ y +z = 2 \end{cases}$$

3)
$$\begin{cases} x +2y +3z = 1\\ 3x +2y +z = 0\\ x +y +z = 1. \end{cases}$$

Soluzione

1) Matrice associata al sistema lineare:

Hattite associate at sistema infeate.
$$A_1 = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 1 & -3 \\ 4 & 2 & 1 \end{bmatrix}; \det A_1 = -12 + 8 - 16 - 1 = -21 \neq 0.$$
Sindi il sistema ammette una ed una sola soluzione.

Quindi il sistema ammette una ed una sola soluzione.

Determiniamo la soluzione usando il metodo esposto nell'osservazione 12.5 (pag. 180).

$$x = \frac{\det \begin{bmatrix} 5 & 1 & 4 \\ -4 & 1 & -3 \\ -5 & 2 & 1 \end{bmatrix}}{\det A_1} = \frac{42}{-21} = -2,$$

$$y = \frac{\det \begin{bmatrix} 0 & 5 & 4 \\ 1 & -4 & -3 \\ 4 & -5 & 1 \end{bmatrix}}{\det A_1} = \frac{-21}{-21} = 1,$$

$$z = \frac{\det \begin{bmatrix} 0 & 1 & 5 \\ 1 & 1 & -4 \\ 4 & 2 & -5 \end{bmatrix}}{\det A_1} = \frac{-21}{-21} = 1.$$

La soluzione pertanto é (-2, 1, 1).

2)La matrice associata al sistema lineare è

$$A_2 = \left[\begin{array}{ccc} 1 & 3 & 2 \\ 2 & -1 & -3 \\ 0 & 1 & 1 \end{array} \right].$$

Poiché det $A_2 = -1 + 4 + 3 - 6 = 0$, il sistema **non** ammette una ed una sola soluzione (cfr. Es. 12.7 bis).

3) La matrice associata al sistema lineare è $A_3=\begin{bmatrix}1&2&3\\3&2&1\\1&1&1\end{bmatrix}$;

poiché det $A_3 = 2 + 2 + 9 - 6 - 6 - 1 = 0$, il sistema **non** ammette una ed una sola soluzione (cfr. Es. 12.7 bis).

Dopo l'esercizio 12.8, utilizzando i metodi presentati a partire dalla pag. 186, per esercizio, completeremo le risposte ai punti 2) e 3)

Esercizio 12.8 (pag. 185)

Stabilire, al variare del parametro reale k il rango delle matrici seguenti

$$A = \begin{bmatrix} 1 & k & 0 & -1 \\ 0 & 2 & 0 & -1 \\ k & 0 & k & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 3k & 0 & k \\ 2 & 2k & 0 \\ 1 & -5 & 1 \\ 0 & 1 & -2 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 0 & 1 & k \\ k & 1 & 1 & 1 \\ 2 & k & k & 0 \\ 0 & 1 & k & 1 \end{bmatrix}.$$

Soluzione

[1.] Poiché la matrice A ha tre righe, $carA \leq 3$. Consideriamo la sottomatrice M_2 formata dagli elementi che stanno sulla I e IV colonna e sulla I e II riga, cioè la matrice i cui elementi sono a_{11}, a_{14}, a_{21} e a_{24} , quindi $M_2 = \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$.

Poiché $det(M_2) = -1 \neq 0$ segue che $car(A) \geq 2$.

Vediamo se esistono valori del parametro reale k per cui car(A) = 3.

Per il procedimento di orlatura di Kroneker (12.4.1, pag 183 del testo) possiamo limitarci a considerare le due seguenti sottomatrici di ordine 3:

$$M_3 = \begin{bmatrix} 1 & k & -1 \\ 0 & 2 & -1 \\ k & 0 & 0 \end{bmatrix} \text{ e } M_3' = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & -1 \\ k & k & 0 \end{bmatrix}.$$

Poiché $\det(M_3) = -k^2 + 2k = k(2-k) \neq 0$ se e solo se $k \neq 0, 2$ e $\det(M_3') = k \neq 0$ se e solo se $k \neq 0$, si può concludere che car(A) = 2 se k = 0, mentre car(A) = 3 se $k \neq 0$.

[2.] Poiché la matrice B ha quattro righe e tre colonne, $car(B) \leq 3 = \min\{3,4\}$. Cerchiamo una sottomatrice di ordine 2, non singolare, possibilmente priva di parametri, ad esempio $M_2 = \begin{bmatrix} a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} = \begin{bmatrix} 1 & -5 \\ 0 & 1 \end{bmatrix}$.

Poiché $det(M_2) = 1 \neq 0 \Rightarrow car(B) \geq 2$.

Orliamo M_2 in tutti i modi possibili e otteniamo

$$M_3 = \begin{bmatrix} 2 & 2k & 0 \\ 1 & -5 & 1 \\ 0 & 1 & -2 \end{bmatrix} \text{ e } M_3' = \begin{bmatrix} 3k & 0 & k \\ 1 & -5 & 1 \\ 0 & 1 & -2 \end{bmatrix}.$$

Poiché

$$\det(M_3) = 20 - 2 + 4k = 18 + 4k = 0 \Leftrightarrow k = -\frac{9}{2} \text{ e}$$
$$\det(M_3') = 30k + k - 3k = 28k = 0 \Leftrightarrow k = 0,$$

si conclude che car(B)=3, perchè esiste un minore di ordine 3 non singolare per ogni valore di k.

[3.] Poiché la matrice C ha 4 righe e 4 colonne, $car(C) \leq 4$

Consideriamo la sottomatrice $M_2 = \begin{bmatrix} c_{12} & c_{13} \\ c_{22} & c_{23} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$.

Si ha che $det(M_2) = -1 \neq 0$ e quindi $car(C) \geq 2$.

Orliamo e otteniamo 4 sottomatrici di dimensione 3, precisamente:

$$M_{3} = \begin{bmatrix} 0 & 0 & 1 \\ k & 1 & 1 \\ 2 & k & k \end{bmatrix}; M'_{3} = \begin{bmatrix} 0 & 1 & k \\ 1 & 1 & 1 \\ k & k & 0 \end{bmatrix}; M''_{3} = \begin{bmatrix} 0 & 1 & k \\ 1 & 1 & 1 \\ 1 & k & 1 \end{bmatrix};$$

$$M'''_{3} = \begin{bmatrix} 0 & 0 & 1 \\ k & 1 & 1 \\ 0 & 1 & k \end{bmatrix}.$$

Facendo i calcoli si ottiene: $\det(M_3) = k^2 - 2 \neq 0 \Leftrightarrow k \neq \pm \sqrt{2}$; $\det(M_3') = k \neq 0 \Leftrightarrow k \neq 0$.

Non è necessario eseguire altri calcoli poiché $\forall k$ esiste un minore di ordine 3 non singolare e quindi $car(C) \geq 3$.

Poiché la caratteristica (rango) della matrice C può essere 4, non resta che calcolare il determinante di C.

Sviluppando rispetto alla prima colonna otteniamo:

$$\det(C) = -k \begin{bmatrix} 0 & 1 & k \\ k & k & 0 \\ 1 & k & 1 \end{bmatrix} + 2 \begin{bmatrix} 0 & 1 & k \\ 1 & 1 & 1 \\ 1 & k & 1 \end{bmatrix} = -k(k^3 - k^2 - k) + 2(1 + k^2 - k - 1) = -k^4 + k^3 + 3k^2 - 2k = -k(k^3 - k^2 + 3k - 2).$$

Tale determinante si annulla per k=0 e per $k=\alpha$, ove α è soluzione dell'equazione $k^3-k^2+3k-2=0$.

(In questo caso, utilizzando la formula risolutiva per le equazioni di terzo grado, si ottiene l'unica radice

$$\alpha = \frac{1}{6} \sqrt[3]{\left(116 + 12\sqrt{321}\right)} - \frac{16}{3\sqrt[3]{\left(116 + 12\sqrt{321}\right)}} + \frac{1}{3}\right).$$

Quindi la matrice data ha rango 4 per ogni $k \neq 0, k \neq \alpha$, e rango tre per k = 0 e $k = \alpha$.

Esercizio 12.7 bis (*pag. 181*)

Risolvere i seguenti sistemi lineari:

2)
$$\begin{cases} x +3y +2z = 3\\ 2x -y -3z = -8\\ y +z = 2 \end{cases}$$

3)
$$\begin{cases} x +2y +3z = 1\\ 3x +2y +z = 0\\ x +y +z = 1. \end{cases}$$

Soluzione

2) Abbiamo visto (esercizio 12.7) che la matrice A_2 associata al sistema è singolare. Occorre quindi determinare $carA_2$ e confrontarla con $carA_2|b_2$, ove b_2 è il vettore dei termini noti.

Se $car A_2 = car A_2 | b_2$ si avranno soluzioni (infinite, dipendenti da uno o più parametri), se $car A_2 \neq car A_2 | b_2$ il sistema non ammette soluzioni.

Si vede che
$$car A_2 = 2$$
 poiché $det \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} = -7 \neq 0$, quindi $2 < car A_2 | b_2 < 3$.

Consideriamo le due sottomatrici orlate della sottomatrice $\begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$ che

$$A_2 = \begin{bmatrix} 1 & 3 & 2 \\ 2 & -1 & -3 \\ 0 & 1 & 1 \end{bmatrix} e A_2' = \begin{bmatrix} 1 & 3 & 3 \\ 2 & -1 & -8 \\ 0 & 1 & 2 \end{bmatrix}.$$

Sappiamo (eser. 12.7) che $det A_2=0$. Poiché anche $det A_2'=-2+6+8-12=0$, si conclude che $car A_2=car A_2|b_2$, quindi il sistema ammette soluzioni, che possiamo determinare con il metodo di

Essendo $car A_2=2$, in quanto $det\begin{bmatrix}1&3\\2&-1\end{bmatrix}\neq 0$, il sistema dato è equivalente al sistema di due equazioni e due incognite

$$\left\{ \begin{array}{ll} x+3y & = 3-2z \\ 2x-y & = -8+3z \end{array} \right. \text{ che ha come matrice associata } \bar{A} = \left[\begin{array}{cc} 1 & 3 \\ 2 & -1 \end{array} \right].$$

Poiché det $\bar{A} \neq 0$, per il teorema di Cramer, avremo soluzioni (che dipenderanno dal parametro reale k = z):

$$x = \frac{\begin{vmatrix} 3-2h & 3\\ -8-3h & -1 \end{vmatrix}}{\det \bar{A}} = \frac{21-7h}{-7} = -3+h,$$

$$y = \frac{\begin{vmatrix} 1 & 3 - 2h \\ 2 & -8 - 3h \end{vmatrix}}{\det \bar{A}} = \frac{-14 + 7h}{-7} = 2 - h,$$

Le infinite soluzioni sono le terne $(-3+h,2-h,h), \forall h \in \mathbb{R}$.

3) Procediamo come al punto **2)**.

La matrice associata al sistema lineare è singolare, quindi la sua caratteristica è minore o uguale a 2.

Poiché
$$det \bar{A}_3 = det \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = -1$$
, la caratteristica è esattamente 2.

Determiniamo ora la caratterica della matrice completa $A_3|b_3=\begin{bmatrix} 1 & 2 & 3 & 1 \\ 3 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$.

Consideriamo le due sottomatrici orlate di \bar{A}_3 : una di esse è la matrice A_3 che era singolare. Calcoliamo quindi $det A_3' = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix} = 2 \neq 0$. In questo caso $car A_3 \neq car A_3 | b_3$, quindi il sistema dato non ammette relucioni.

soluzioni.

Osservazione: il fatto che il sistema non ammetta soluzioni, è equivalente a dire che il vettore dei termini noti $b_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ non si può scrivere come combinazione

lineare dei vettori
$$\begin{bmatrix} 1\\3\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\2\\1 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\1 \end{bmatrix}$, ovvero $\begin{bmatrix} 1\\0\\1 \end{bmatrix} \notin \left\langle \begin{bmatrix} 1\\3\\1 \end{bmatrix}$, $\begin{bmatrix} 2\\2\\1 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\1 \end{bmatrix} \right\rangle$.

Esercizio 12.9 (paq. 192)

Determinare gli eventuali valori del parametro reale k per i quali ammettono soluzione i seguenti sistemi:

1)
$$\begin{cases} 2x + ky = k-1 \\ x + (k+2)ky = 1 \\ x + y = 2 \end{cases}$$

2)
$$\begin{cases} x + y = -k \\ x + (k+1)y + z = 2 \\ 3x + (2k+3)y + (1-k)z = 5 \end{cases}$$

3)
$$\begin{cases} x + (k-1)y +3z +2t = 2\\ x +2y +(1+k)z +4t = 2+k\\ z +2t = 3 \end{cases}$$

Soluzione

La richiesta dell'esercizio è soltanto quella di decidere se i sistemi dati sono risolubili oppure no.

Basta quindi, in accordo con il teorema di Rouché -Capelli (pag. 187), stabilire quando la caratteristica della matrice dei coefficienti associata al sistema è uguale alla caratteristica della matrice completa.

1) Matrice dei coefficienti del primo sistema è
$$B_1 = \begin{bmatrix} 2 & k \\ 1 & (k+2)k \\ 1 & 1 \end{bmatrix}$$
,

la matrice completa è
$$B_1|b_1=\begin{bmatrix}2&k&k-1\\1&(k+2)k&1\\1&1&2\end{bmatrix}$$
. Poiché la caratteristica di B_1 è minore o uguale a 2, consideriamo i minori di

$$\det\begin{bmatrix} 2 & k \\ 1 & 1 \end{bmatrix} = 2 - k \neq 0 \iff k \neq 2;$$

$$\det\begin{bmatrix} 1 & (k+2)k \\ 1 & 1 \end{bmatrix} = 1 - k^2 - 2k \neq 0 \iff k \neq -1 \pm \sqrt{2}.$$

Quindi per ogni valore di $k \in \mathbb{R}$ esiste un minore non nullo, perciò $car B_1 = 2$.

Calcoliamo ora
$$det B_1|b_1 = \begin{bmatrix} 2 & k & k-1 \\ 1 & (k+2)k & 1 \\ 1 & 1 & 2 \end{bmatrix} = -k^3 + 3k^2 + 10k - 3.$$

Quindi il sistema ammetterà soluzioni soltanto per \bar{i} valori di k che annullano il determinante di $B_1|b_1$ (in questo caso sono tre radici reali che si possono determinare con la formula risolutiva delle equazioni di terzo grado).

2) Matrice dei coefficienti del secondo sistema è
$$B_2 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & k+1 & 1 \\ 3 & 2k+3 & 1-k \end{bmatrix}$$
, la matrice completa è $B_2|b_2 = \begin{bmatrix} 1 & 1 & 0 & -k \\ 1 & k+1 & 1 & 2 \\ 3 & 2k+3 & 1-k & 5 \end{bmatrix}$.

la matrice completa è
$$B_2|b_2 = \begin{bmatrix} 1 & 1 & 0 & -k \\ 1 & k+1 & 1 & 2 \\ 3 & 2k+3 & 1-k & 5 \end{bmatrix}$$
.

Poiché det $\begin{bmatrix} 1 & 0 \\ k+1 & 1 \end{bmatrix} = 1 \neq 0 \Rightarrow car B_2 \geq 2$ (e quindi anche $car B_2 | b_2 \geq 2$).

Si ha che det
$$B_2 = -1 \begin{vmatrix} 1 & 1 \\ 3 & 2k+3 \end{vmatrix} + (1-k) \begin{vmatrix} 1 & 1 \\ 1 & k+1 \end{vmatrix} = -(2k+3-3) + (1-k)(k+1-1) = -k(k+1),$$

quindi
$$det B_2 = 0 \iff k = 0$$
 oppure $k = -1$.

Se $k \neq 0, -1$ la caratteristica di B_2 è uguale a 3 ed è uguale alla caratteristica di $B_2|b_2$ (che ha solo tre righe) e quindi il sistema ha una ed una sola soluzione che si puó calcolare con il procedimento di Cramer.

Se k=0 oppure k=-1, $car(B_2)=2$ e occorre precisare la caratteristica di $B_2|b_2$ (che puó essere 2 oppure 3.

Consideriamo separatamente i due casi:

$$k = 0$$
: in questo caso si ha $B_2|b_2 = \begin{vmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 3 & 3 & 1 & 5 \end{vmatrix}$.

$$k = 0$$
: in questo caso si ha $B_2|b_2 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 3 & 3 & 1 & 5 \end{bmatrix}$.

Poiché det $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 3 & 3 & 1 \end{bmatrix} = 0$, e det $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 2 \\ 3 & 3 & 5 \end{bmatrix} = 0$ si conclude che anche

 $carB_2|b_2=2$ e quindi il sistema ammette ∞^1 soluzioni.

$$k = -1$$
: in questo caso si ha $B_2|b_2 = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 2 \\ 3 & 1 & 2 & 5 \end{bmatrix}$.

$$k = -1$$
: in questo caso si ha $B_2|b_2 = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 2 \\ 3 & 1 & 2 & 5 \end{bmatrix}$.

Poiché det $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{bmatrix} = 0$, e det $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 5 \end{bmatrix} = 0$ si conclude che anche in property and single size and size $B_1|b_2 = 0$.

in questo caso $car B_2 | b_2 = 2$ e quindi il sistema ammette ∞^1 soluzioni.

3) Matrice dei coefficienti del terzo sistema è
$$B_3=\begin{bmatrix}1&k-1&3&2\\1&2&k+1&4\\0&0&1&2\end{bmatrix},$$

la matrice completa
$$B_3|b_3 = \begin{bmatrix} 1 & k-1 & 3 & 2 & 2 \\ 1 & 2 & k+1 & 4 & 2+k \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix}$$
.

Poiché le righe sono tre, $car(B_3) \leq 3$ e poiché det $\begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix} = 4 \Rightarrow car(B_3) \geq 2$.

Consideriamo le sottomatrici orlate:

$$B_3' = \left[\begin{array}{ccc} k-1 & 3 & 2 \\ 2 & k+1 & 4 \\ 0 & 1 & 2 \end{array} \right], \ B_3'' = \left[\begin{array}{ccc} 1 & 3 & 2 \\ 1 & k+1 & 4 \\ 0 & 1 & 2 \end{array} \right] e \ B_3''' = \left[\begin{array}{ccc} 3 & 2 & 2 \\ k+1 & 4 & 2+k \\ 1 & 2 & 3 \end{array} \right].$$

Si ha che $\det B_3' = 2k^2 - 4k - 6 = 2(k^2 - 2k - 3)$, $\det B_3'' = 2(k - 3)$ e $\det B_3''' = -6k + 18$.

Quindi i minori sono contemporaneamente nulli solo per k=3.

Possiamo concludere che per $k \neq 3$ la caratteristica di B_3 è 3, e in tal caso ci saranno soluzioni (∞^1) , in quanto la caratteristica della matrice completa non puó che essere 3.

Se k=3 allora det $B_3'=\det B_3''=\det B_3'''=0$ quindi $carB_3=2$. Occorre determinare la caratteristica della matrice completa:

$$B_3|b_3 = \left[\begin{array}{ccccc} 1 & 2 & 3 & 2 & 2 \\ 1 & 2 & 4 & 4 & 5 \\ 0 & 0 & 1 & 2 & 3 \end{array} \right].$$

Senza fare calcoli, si vede che la terza riga è la differenza tra la seconda e la prima: quindi concludiamo che $car B_3 | b_3 = 2$ e il sistema ammette soluzioni (∞^2) .