Electronic version at http://rd.springer.com/book/10.1007%2F978-3-319-29659-3

Recommender Systems: The Textbook

Electronic version at http://rd.springer.com/book/10.1007%2F978-3-319-29659-3

Charu C. Aggarwal

Recommender Systems

The Textbook

Electronic version at http://rd.springer.com/book/10.1007%2F978-3-319-29659-3

Charu C. Aggarwal IBM T.J. Watson Research Center Yorktown Heights, NY, USA

ISBN 978-3-319-29657-9 ISBN 978-3-319-29659-3 (eBook) DOI 10.1007/978-3-319-29659-3

Library of Congress Control Number: 2016931438

Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com)

Electronic version at http://rd.springer.com/book/10.1007%2F978-3-319-29659-3
To my wife Lata, my daughter Sayani, and my late parents Dr. Prem Sarup and Mrs. Pushplata Aggarwal.

Electronic version at http://rd.springer.com/book/10.1007%2F978-3-319-29659-3

Contents

L	An	Introd	luction to Recommender Systems	1	
1.1 Introduction					
1.2 Goa.			of Recommender Systems	3	
		1.2.1	The Spectrum of Recommendation Applications	7	
	1.3	Basic	Models of Recommender Systems	8	
		1.3.1	Collaborative Filtering Models	8	
			1.3.1.1 Types of Ratings	10	
			1.3.1.2 Relationship with Missing Value Analysis	13	
			1.3.1.3 Collaborative Filtering as a Generalization of Classifica-		
			tion and Regression Modeling	13	
		1.3.2	Content-Based Recommender Systems	14	
		1.3.3	Knowledge-Based Recommender Systems	15	
			1.3.3.1 Utility-Based Recommender Systems	18	
		1.3.4	Demographic Recommender Systems	19	
		1.3.5	Hybrid and Ensemble-Based Recommender Systems	19	
		1.3.6	Evaluation of Recommender Systems	20	
	1.4	Doma	in-Specific Challenges in Recommender Systems	20	
		1.4.1	Context-Based Recommender Systems	20	
		1.4.2	Time-Sensitive Recommender Systems	21	
		1.4.3	Location-Based Recommender Systems	21	
		1.4.4	Social Recommender Systems	22	
			1.4.4.1 Structural Recommendation of Nodes and Links	22	
			1.4.4.2 Product and Content Recommendations with Social		
			Influence	23	
			1.4.4.3 Trustworthy Recommender Systems	23	
			1.4.4.4 Leveraging Social Tagging Feedback for		
			Recommendations	23	
	1.5	Advan	nced Topics and Applications	23	
		1.5.1	The Cold-Start Problem in Recommender Systems	24	
		1.5.2	Attack-Resistant Recommender Systems	24	
		1.5.3	Group Recommender Systems	24	

Electronic version at http://rd.springer.com/book/10.1007%2F978-3-319-29659-3 $_{ m CONTENTS}$

		1.5.4 Multi-Criteria Recommender Systems			24
		1.5.5 Active Learning in Recommender Systems			25
		1.5.6 Privacy in Recommender Systems			25
		1.5.7 Application Domains			26
	1.6	Summary			26
	1.7	Bibliographic Notes			26
	1.8	Exercises			28
2	Neig	ghborhood-Based Collaborative Filtering			29
	2.1	Introduction			29
	2.2	Key Properties of Ratings Matrices			31
	2.3	Predicting Ratings with Neighborhood-Based Methods			33
		2.3.1 User-Based Neighborhood Models			34
		2.3.1.1 Similarity Function Variants			37
		2.3.1.2 Variants of the Prediction Function			38
		2.3.1.3 Variations in Filtering Peer Groups			39
		2.3.1.4 Impact of the Long Tail			39
		2.3.2 Item-Based Neighborhood Models			40
		$2.3.3 \hbox{Efficient Implementation and Computational Complexity} .$			41
		2.3.4 Comparing User-Based and Item-Based Methods			42
		2.3.5 Strengths and Weaknesses of Neighborhood-Based Methods			44
		2.3.6 A Unified View of User-Based and Item-Based Methods $$			44
	2.4	Clustering and Neighborhood-Based Methods			45
	2.5	Dimensionality Reduction and Neighborhood Methods			47
		2.5.1 Handling Problems with Bias			49
		2.5.1.1 Maximum Likelihood Estimation			49
		2.5.1.2 Direct Matrix Factorization of Incomplete Data			50
	2.6	A Regression Modeling View of Neighborhood Methods			51
		2.6.1 User-Based Nearest Neighbor Regression			53
		2.6.1.1 Sparsity and Bias Issues			54
		2.6.2 Item-Based Nearest Neighbor Regression $\ \ldots \ \ldots \ \ldots$			55
		2.6.3 Combining User-Based and Item-Based Methods			57
		2.6.4 Joint Interpolation with Similarity Weighting			57
		2.6.5 Sparse Linear Models (SLIM)			58
	2.7	Graph Models for Neighborhood-Based Methods			60
		2.7.1 User-Item Graphs			61
		2.7.1.1 Defining Neighborhoods with Random Walks			61
		2.7.1.2 Defining Neighborhoods with the Katz Measure			62
		2.7.2 User-User Graphs			63
		2.7.3 Item-Item Graphs			66
	2.8	Summary			67
	2.9	Bibliographic Notes			67
	2.10	Exercises	 •		69
3	Mod	del-Based Collaborative Filtering			71
	3.1	Introduction			71
	3.2	Decision and Regression Trees			74
		3.2.1 Extending Decision Trees to Collaborative Filtering			76

	3.3			porative Filtering	
		3.3.1		Association Rules for Collaborative Filtering	
		3.3.2		Models versus User-Wise Models	
	3.4	Naive		borative Filtering	
		3.4.1		Overfitting	
		3.4.2		f the Bayes Method with Binary Ratings	
	3.5	Using	,	y Classification Model as a Black-Box	
		3.5.1	_	Jsing a Neural Network as a Black-Box	
	3.6	Latent		dels	
		3.6.1		Intuition for Latent Factor Models	
		3.6.2		Intuition for Latent Factor Models	
		3.6.3		ix Factorization Principles	
		3.6.4		ned Matrix Factorization	
				Stochastic Gradient Descent	
				Regularization	
				Incremental Latent Component Training	
				Alternating Least Squares and Coordinate Descent	
				Incorporating User and Item Biases	
				Incorporating Implicit Feedback	
		3.6.5	-	alue Decomposition	
				A Simple Iterative Approach to SVD	
				An Optimization-Based Approach	
				Out-of-Sample Recommendations	
				Example of Singular Value Decomposition	
		3.6.6	_	ve Matrix Factorization	
				Interpretability Advantages	
				Observations about Factorization with Implicit Feedback	122
				Computational and Weighting Issues with Implicit	
				Feedback	
				Ratings with Both Likes and Dislikes	
		3.6.7		ding the Matrix Factorization Family	
	3.7	_	-	ization and Neighborhood Models	
		3.7.1		stimator: A Non-Personalized Bias-Centric Model	
		3.7.2		ood Portion of Model	
		3.7.3		tor Portion of Model	
		3.7.4		the Neighborhood and Latent Factor Portions	
		3.7.5	_	Optimization Model	
		3.7.6		ns about Accuracy	
	0.0	3.7.7		Latent Factor Models with Arbitrary Models	
	3.8				
	3.9	,	-	es	
	3.10	Exerci	ses		136
4				mmender Systems	139
	4.1				
	4.2		-	s of Content-Based Systems	
	4.3	_	_	Feature Extraction	
		4.3.1		traction	
			4.3.1.1	Example of Product Recommendation	143

			4.3.1.2	Example of Web Page Recommendation	 . 143
			4.3.1.3	Example of Music Recommendation	 . 144
		4.3.2	Feature R	Representation and Cleaning	 . 145
		4.3.3		User Likes and Dislikes	
		4.3.4		d Feature Selection and Weighting	
			4.3.4.1	Gini Index	
			4.3.4.2	Entropy	
			4.3.4.3	χ^2 -Statistic	
			4.3.4.4	Normalized Deviation	
			4.3.4.5	Feature Weighting	
	4.4	Learni	ing User Pr	rofiles and Filtering	
		4.4.1		Weighbor Classification	
		4.4.2		ons with Case-Based Recommender Systems	
		4.4.3		assifier	
			4.4.3.1	Estimating Intermediate Probabilities	
			4.4.3.2	Example of Bayes Model	
		4.4.4	Rule-base	ed Classifiers	
			4.4.4.1	Example of Rule-based Methods	
		4.4.5	Regression	n-Based Models	
		4.4.6		arning Models and Comparative Overview	
		4.4.7		ions in Content-Based Systems	
	4.5	Conte		Yersus Collaborative Recommendations	
	4.6	Using	Content-B	ased Models for Collaborative Filtering	 . 162
		4.6.1		g User Profiles	
	4.7	Summ	ary	~ · · · · · · · · · · · · · · · · · · ·	 . 163
	4.8	Biblio	graphic No	tes	 . 164
	4.9	Exerci	ises		 . 165
5	Kno	wloda	n-Basad F	Recommender Systems	167
J	5.1				
	5.2			l Recommender Systems	
	0.2	5.2.1		g Relevant Results	
		5.2.1 $5.2.2$		on Approach	
		5.2.3		the Matched Items	
		5.2.4	_	Unacceptable Results or Empty Sets	
		5.2.5	_	onstraints	
	5.3	00	_	ommenders	
	0.0	5.3.1		Metrics	
		0.0.1	5.3.1.1	Incorporating Diversity in Similarity Computation	
		5.3.2		g Methods	
		0.0.2	5.3.2.1	Simple Critiques	
			5.3.2.2	Compound Critiques	
			5.3.2.3	Dynamic Critiques	
		5.3.3		ion in Critiques	
	5.4			nalization in Knowledge-Based Systems	
	5.5				
	5.6			$ ag{tes}$	
	5.7		_		

6	Ense	emble-Based and Hybrid Recommender Systems	199
	6.1	Introduction	199
	6.2	Ensemble Methods from the Classification Perspective	204
	6.3	Weighted Hybrids	206
		6.3.1 Various Types of Model Combinations	208
		6.3.2 Adapting Bagging from Classification	209
		6.3.3 Randomness Injection	211
	6.4	Switching Hybrids	211
		6.4.1 Switching Mechanisms for Cold-Start Issues	212
		6.4.2 Bucket-of-Models	212
	6.5	Cascade Hybrids	213
		6.5.1 Successive Refinement of Recommendations	213
		6.5.2 Boosting	213
		6.5.2.1 Weighted Base Models	214
	6.6	Feature Augmentation Hybrids	215
	6.7	Meta-Level Hybrids	216
	6.8	Feature Combination Hybrids	217
		6.8.1 Regression and Matrix Factorization	218
		6.8.2 Meta-level Features	218
	6.9	Mixed Hybrids	220
	6.10	Summary	221
	6.11	Bibliographic Notes	222
	6.12	Exercises	224
7		luating Recommender Systems	225
	7.1	Introduction	225
	7.2	Evaluation Paradigms	227
		7.2.1 User Studies	227
		7.2.2 Online Evaluation	227
	- 0	7.2.3 Offline Evaluation with Historical Data Sets	229
	7.3	General Goals of Evaluation Design	229
		7.3.1 Accuracy	229
		7.3.2 Coverage	231
		7.3.3 Confidence and Trust	232
		7.3.4 Novelty	233
		7.3.5 Serendipity	233
		7.3.6 Diversity	234
		7.3.7 Robustness and Stability	235
	- 4	7.3.8 Scalability	235
	7.4	Design Issues in Offline Recommender Evaluation	235
		7.4.1 Case Study of the Netflix Prize Data Set	236
		7.4.2 Segmenting the Ratings for Training and Testing	238
		7.4.2.1 Hold-Out	238
		7.4.2.2 Cross-Validation	239
		7.4.3 Comparison with Classification Design	239
	7.5	Accuracy Metrics in Offline Evaluation	240
		7.5.1 Measuring the Accuracy of Ratings Prediction	240
		7.5.1.1 RMSE versus MAE	241
		7.5.1.2 Impact of the Long Tail	241

		7.5.2 Evaluating Ranking via Correlation
		7.5.3 Evaluating Ranking via Utility
		7.5.4 Evaluating Ranking via Receiver Operating Characteristic 247
		7.5.5 Which Ranking Measure is Best?
	7.6	Limitations of Evaluation Measures
		7.6.1 Avoiding Evaluation Gaming
	7.7	Summary
	7.8	Bibliographic Notes
	7.9	Exercises
8	Con	ntext-Sensitive Recommender Systems 255
	8.1	Introduction
	8.2	The Multidimensional Approach
		8.2.1 The Importance of Hierarchies
	8.3	Contextual Pre-filtering: A Reduction-Based Approach
		8.3.1 Ensemble-Based Improvements
		8.3.2 Multi-level Estimation
	8.4	Post-Filtering Methods
	8.5	Contextual Modeling
		8.5.1 Neighborhood-Based Methods
		8.5.2 Latent Factor Models
		8.5.2.1 Factorization Machines
		8.5.2.2 A Generalized View of Second-Order Factorization Machines
		8.5.2.3 Other Applications of Latent Parametrization
		8.5.3 Content-Based Models
	8.6	Summary
	8.7	Bibliographic Notes
	8.8	Exercises
	0.0	Exercises
9		ne- and Location-Sensitive Recommender Systems 283
	9.1	Introduction
	9.2	Temporal Collaborative Filtering
		9.2.1 Recency-Based Models
		9.2.1.1 Decay-Based Methods
		9.2.1.2 Window-Based Methods
		9.2.2 Handling Periodic Context
		9.2.2.1 Pre-Filtering and Post-Filtering
		9.2.2.2 Direct Incorporation of Temporal Context
		9.2.3 Modeling Ratings as a Function of Time
		9.2.3.1 The Time-SVD++ Model
	9.3	Discrete Temporal Models
		9.3.1 Markovian Models
		9.3.1.1 Selective Markov Models
		9.3.1.2 Other Markovian Alternatives
		9.3.2 Sequential Pattern Mining
	9.4	Location-Aware Recommender Systems
		9.4.1 Preference Locality
		9.4.2 Travel Locality
		9 4 3 Combined Preference and Travel Locality 305

	9.5	Summary	305
	9.6	Bibliographic Notes	306
	9.7	Exercises	308
10		ectural Recommendations in Networks	309
		Introduction	309
	10.2	Ranking Algorithms	311
		10.2.1 PageRank	311
		10.2.2 Personalized PageRank	314
		10.2.3 Applications to Neighborhood-Based Methods	316
		10.2.3.1 Social Network Recommendations	317
		10.2.3.2 Personalization in Heterogeneous Social Media	317
		10.2.3.3 Traditional Collaborative Filtering	319
		10.2.4 SimRank	321
		10.2.5 The Relationship Between Search and Recommendation	322
	10.3	Recommendations by Collective Classification	323
		10.3.1 Iterative Classification Algorithm	324
		10.3.2 Label Propagation with Random Walks	325
		10.3.3 Applicability to Collaborative Filtering in Social Networks	326
	10.4	Recommending Friends: Link Prediction	326
		10.4.1 Neighborhood-Based Measures	327
		10.4.2 Katz Measure	328
		10.4.3 Random Walk-Based Measures	329
		10.4.4 Link Prediction as a Classification Problem	329
		10.4.5 Matrix Factorization for Link Prediction	330
		10.4.5.1 Symmetric Matrix Factorization	333
		10.4.6 Connections Between Link Prediction and Collaborative Filtering	335
		10.4.6.1 Using Link Prediction Algorithms for Collaborative	
		Filtering	336
		10.4.6.2 Using Collaborative Filtering Algorithms for Link	
		Prediction	337
	10.5	Social Influence Analysis and Viral Marketing	337
		10.5.1 Linear Threshold Model	339
		10.5.2 Independent Cascade Model	340
		10.5.3 Influence Function Evaluation	340
		10.5.4 Targeted Influence Analysis Models in Social Streams	341
	10.6	Summary	342
		Bibliographic Notes	
		Exercises	344
11		al and Trust-Centric Recommender Systems	345
		Introduction	345
		Multidimensional Models for Social Context	347
	11.3	Network-Centric and Trust-Centric Methods	349
		11.3.1 Collecting Data for Building Trust Networks	349
		11.3.2 Trust Propagation and Aggregation	351
		11.3.3 Simple Recommender with No Trust Propagation	353
		11.3.4 TidalTrust Algorithm	353

Electronic version at http://rd.springer.com/book/10.1007%2F978-3-319-29659-3

		11.3.5 MoleTrust Algorithm	356
			357
			358
			361
		11.3.8.1 Enhancements with Logistic Function	364
			364
		11.3.9 Merits of Social Recommender Systems	365
		11.3.9.1 Recommendations for Controversial Users and Items	365
		11.3.9.2 Usefulness for Cold-Start	366
		11.3.9.3 Attack Resistance	366
	11.4	User Interaction in Social Recommenders	366
			367
			368
			371
			372
			372
		· ·	373
		11.4.4.3 Content-Based Methods	374
			377
			378
			379
		· · · · · · · · · · · · · · · · · · ·	380
			382
	11.5		382
			382
		<u> </u>	384
12		v	385
			385
	12.2		386
			390
	12.3	V -	392
			393
		<u> </u>	393
		<u> </u>	394
		•	395
		1	395
		12.3.6 Reverse Bandwagon Attack	396
		12.3.7 Probe Attack	396
			396
		<u> </u>	397
	12.4	Detecting Attacks on Recommender Systems	398
			399
		1	402
		1 0	402
	40 -		403
	12.5	ŭ	403
		12.5.1 Preventing Automated Attacks with CAPTCHAs	403 404

Electronic version at http://rd.springer.com/book/10.1007%2F978-3-319-29659-3 $_{\rm CONTENTS}$ $_{\rm xv}$

12.5.3 Designing Robust Recommendation Algorithms 4	104
	05
12.5.3.2 Fake Profile Detection during Recommendation Time 4	05
	05
12.5.3.4 Robust Matrix Factorization 4	05
12.6 Summary	30
· · · · · · · · · · · · · · · · · · ·	30
	1(
13 Advanced Topics in Recommender Systems 4	11
13.1 Introduction	11
	13
	15
· · · · · · · · · · · · · · · · · · ·	16
1	17
	18
13.3.1 Naive Algorithm	19
13.3.2 ϵ -Greedy Algorithm	20
	21
13.4 Group Recommender Systems	23
v	24
9 •	25
V	26
	27
	28
•	29
Ų į	30
ů v	31
	$\frac{32}{3}$
v v	32
v	34
	34
0 11	35
	135
v	36
	36
	38
±	42
ı v	43
0 0 1	44
8 8	45
V	46
13.10Bibliographic Notes	46
Bibliography 4-	4 9
Index 4	93

Electronic version at http://rd.springer.com/book/10.1007%2F978-3-319-29659-3

Preface

"Nature shows us only the tail of the lion. But I do not doubt that the lion belongs to it even though he cannot at once reveal himself because of his enormous size."—Albert Einstein

The topic of recommender systems gained increasing importance in the nineties, as the Web became an important medium for business and e-commerce transactions. It was recognized early on that the Web provided unprecedented opportunities for personalization, which were not available in other channels. In particular, the Web provided ease in data collection and a user interface that could be employed to recommend items in a non-intrusive way.

Recommender systems have grown significantly in terms of public awareness since then. An evidence of this fact is that many conferences and workshops are exclusively devoted to this topic. The ACM Conference on Recommender Systems is particularly notable because it regularly contributes many of the cutting-edge results in this topic. The topic of recommender systems is very diverse because it enables the ability to use various types of user-preference and user-requirement data to make recommendations. The most well-known methods in recommender systems include collaborative filtering methods, content-based methods, and knowledge-based methods. These three methods form the fundamental pillars of research in recommender systems. In recent years, specialized methods have been designed for various data domains and contexts, such as time, location and social information. Numerous advancements have been proposed for specialized scenarios, and the methods have been adapted to various application domains, such as query log mining, news recommendations, and computational advertising. The organization of the book reflects these important topics. The chapters of this book can be organized into three categories:

- 1. Algorithms and evaluation: These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods (Chapters 2 and 4), content-based methods (Chapter 4), and knowledge-based methods (Chapter 5). Techniques for hybridizing these methods are discussed in Chapter 6. The evaluation of recommender systems is discussed in Chapter 7.
- 2. Recommendations in specific domains and contexts: The context of a recommender system plays a critical role in providing effective recommendations. For example, a

xviii PREFACE

user looking for a restaurant would want to use their location as additional *context*. The context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of domains such as temporal data, spatial data, and social data, provide different types of contexts. These methods are discussed in Chapters 8, 9, 10, and 11. Chapter 11 also discusses the issue of using social information to increase the trustworthiness of the recommendation process. Recent topics such as factorization machines and trustworthy recommender systems are also covered in these chapters.

3. Advanced topics and applications: In Chapter 12, we discuss various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses. In addition, recent topics, such as learning to rank, multi-armed bandits, group recommender systems, multi-criteria systems, and active learning systems, are discussed in Chapter 13. An important goal of this chapter is to introduce the reader to the basic ideas and principles underlying recent developments. Although it is impossible to discuss all the recent developments in detail in a single book, it is hoped that the material in the final chapter will play the role of "breaking the ice" for the reader in terms of advanced topics. This chapter also investigates some application settings in which recommendation technology is used, such as news recommendations, query recommendations, and computational advertising. The application section provides an idea of how the methods introduced in earlier chapters apply to these different domains.

Although this book is primarily written as a textbook, it is recognized that a large portion of the audience will comprise industrial practitioners and researchers. Therefore, we have taken pains to write the book in such a way that it is also useful from an applied and reference point of view. Numerous examples and exercises have been provided to enable its use as a textbook. As most courses on recommender systems will teach only the fundamental topics, the chapters on fundamental topics and algorithms are written with a particular emphasis on classroom teaching. On the other hand, advanced industrial practitioners might find the chapters on context-sensitive recommendation useful, because many real-life applications today arise in the domains where a significant amount of contextual side-information is available. The application portion of Chapter 13 is particularly written for industrial practitioners, although instructors might find it useful towards the end of a recommender course.

We conclude with a brief introduction to the notations used in this book. This book consistently uses an $m \times n$ ratings matrix denoted by R, where m is the number of users and n is the number of items. The matrix R is typically incomplete because only a subset of entries are observed. The (i,j)th entry of R indicates the rating of user i for item j, and it is denoted by r_{ij} when it is actually observed. When the entry (i,j) is predicted by a recommender algorithm (rather than being specified by a user), it is denoted by \hat{r}_{ij} , with a "hat" symbol (i.e., a circumflex) denoting that it is a predicted value. Vectors are denoted by an "overline," as in \overline{X} or \overline{y} .

Acknowledgments

I would like to thank my wife and daughter for their love and support during the writing of this book. I also owe my late parents a debt of gratitude for instilling in me a love of education, which has played an important inspirational role in my book-writing efforts.

This book has been written with the direct and indirect support of many individuals to whom I am grateful. During the writing of this book, I received feedback from many colleagues. In particular, I received feedback from Xavier Amatriain, Kanishka Bhaduri, Robin Burke, Martin Ester, Bart Goethals, Huan Liu, Xia Ning, Saket Sathe, Jiliang Tang, Alexander Tuzhilin, Koen Versetrepen, and Jieping Ye. I would like to thank them for their constructive feedback and suggestions. Over the years, I have benefited from the insights of numerous collaborators. These insights have influenced this book directly or indirectly. I would first like to thank my long-term collaborator Philip S. Yu for my years of collaboration with him. Other researchers with whom I have had significant collaborations include Tarek F. Abdelzaher, Jing Gao, Quanquan Gu, Manish Gupta, Jiawei Han, Alexander Hinneburg, Thomas Huang, Nan Li, Huan Liu, Ruoming Jin, Daniel Keim, Arijit Khan, Latifur Khan, Mohammad M. Masud, Jian Pei, Magda Procopiuc, Guojun Qi, Chandan Reddy, Saket Sathe, Jaideep Srivastava, Karthik Subbian, Yizhou Sun, Jiliang Tang, Min-Hsuan Tsai, Haixun Wang, Jianyong Wang, Min Wang, Joel Wolf, Xifeng Yan, Mohammed Zaki, ChengXiang Zhai, and Peixiang Zhao. I would also like to thank my advisor James B. Orlin for his guidance during my early years as a researcher.

I would also like to thank my manager Nagui Halim for providing the tremendous support necessary for the writing of this book. His professional support has been instrumental for my many book efforts in the past and present.

Finally, I would like to thank Lata Aggarwal for helping me with some of the figures drawn using Microsoft Powerpoint.

Electronic version at http://rd.springer.com/book/10.1007%2F978-3-319-29659-3

Author Biography

Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his B.S. from IIT Kanpur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996.

He has worked extensively in the field of data mining. He has published more than 300 papers in refereed conferences and journals and authored over 80 patents. He is the author or editor of 15 books, including a textbook on data mining and a comprehensive book on outlier analysis. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He is a recipient of an IBM Corporate Award (2003) for his work on bio-terrorist threat detection in data streams, a recipient of the IBM Outstanding Innovation Award (2008) for his scientific contributions to privacy technology, a recipient of two IBM Outstanding Technical Achievement Award (2009,

2015) for his work on data streams and high-dimensional data, respectively. He received the EDBT 2014 Test of Time Award for his work on condensation-based privacy-preserving data mining. He is also a recipient of the IEEE ICDM Research Contributions Award (2015), which is one of the two highest awards for influential research contributions in the field of data mining.

He has served as the general co-chair of the IEEE Big Data Conference (2014), program co-chair of the ACM CIKM Conference (2015), IEEE ICDM Conference (2015), and the ACM KDD Conference (2016). He served as an associate editor of the IEEE Transactions on Knowledge and Data Engineering from 2004 to 2008. He is an associate editor of the ACM Transactions on Knowledge Discovery from Data, an associate editor of the IEEE Transactions on Big Data, an action editor of the Data Mining and Knowledge Discovery Journal, editor-in-chief of the ACM SIGKDD Explorations, and an associate editor of the Knowledge and Information Systems Journal. He serves on the advisory board of the Lecture Notes on Social Networks, a publication by Springer. He has served as the vice-president of the SIAM Activity Group on Data Mining. He is a fellow of the SIAM, ACM, and the IEEE, for "contributions to knowledge discovery and data mining algorithms."