GÉOMÉTRIE DIFFÉRENTIELLE

2023-2024

Table des matières

1	Fonctions continues	1
2	Dérivée, dérivée partielle, différentielle 2.1 Différentiabilité des fonctions multi-variables 2.2 Deux points fins 2.3 La dérivée de composition	3 4 6 7
3	Inversion locale, fonctions implicites, théorème du rang 3.1 Théorème de l'application inverse	
4	4.1 L'espace dual E^*	$\frac{16}{21}$
5	Analyse tensorielle sur les ouverts de \mathbb{R}^n 3.15.1 Motivation5.2 Dérivation d'une fonction5.2.1 Exemple très important : la métrique riemanienne5.3 Champ de vecteurs5.4 L'application tangente	33 37 47
1	Fonctions continues $U \subseteq \mathbb{R}^n \text{ ouvert.} $ $f: \begin{array}{ccc} U & \longrightarrow & \mathbb{R} \\ U & \longrightarrow & \mathbb{R} \\ (x_1, \dots, x_n) & \longmapsto f(x_1, \dots, x_n) \end{array} \text{ application.} $ $f \text{ est continue en } x_0 \text{ dans } U \text{ si} $ $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in U, \ x - x_0\ < \delta \to f(x) - f(x_0) < \varepsilon, $	
	avec $ y = \sqrt{y_1^2 + \dots + y_n^2}$. On dit que f est une application continue quand f est continue en $x \in U$ pour tout $x \in U$.	

Proposition 1.1. f est continue si et seulement si pour tout intervalle ouvert $J \subseteq \mathbb{R}$, $f^{-1}(J)$ est ouvert, avec $f^{-1}(J) := \{x \in U \mid f(x) \in J\}$.

Figure 1 – Illustration

 $D\'{e}monstration. \qquad 1. \ Si \ f \ est \ continue, \ alors \ \forall J \subset \mathbb{R} \ intervalle \ ouvert, \ f^{-1}(J) \ est \ ouvert.$

Il faut montrer que $\forall x_0 \in f^{-1}(J)$, il existe r > 0 tel que $B(x_0, r) \subset f^{-1}(J)$.

J = (a, b).

$$x_0 \in f^{-1}(J) \implies f(x_0) \in J \implies a < f(x_0) < b \implies \exists \varepsilon > 0 \text{ tel que}$$

$$a < f(x_0) - \varepsilon < f(x_0) < f(x_0) + \varepsilon < b.$$

On peut choisir $\varepsilon = \min\{\frac{b - f(x_0)}{2}, \frac{f(x_0) - a}{2}\}.$

FIGURE 2 – On choisit ε de cette sorte

Donc il y a $\delta > 0$ tel que

$$||x - x_0|| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

$$\implies -\varepsilon < f(x) - f(x_0) < \varepsilon$$

$$\implies f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon \implies a < f(x) < b$$

$$\implies f(x) \in J \implies x \in f^{-1}(J).$$

Choisissons $r := \delta$

$$x \in B(x_0, r) \implies ||x - x_0|| < r = \delta.$$

On a démontré que avec ce choix de δ on a $x \in f^{-1}(J) \implies B(x_0, r) \subset f^{-1}(J)$.

2. Si $f^{-1}(J)$ ouvert pour tout intervalle $J \subset \mathbb{R}$, alors f est continue.

Fixons $x_0 \in U : \varepsilon > 0$ est donné.

On met
$$J = (f(x_0) - \varepsilon, f(x_0) + \varepsilon) \neq \emptyset$$
.

Par l'hypothèse, $f^{-1}(J)$ est ouvert, donc $\exists r > 0, B(x_0, r) \subset f^{-1}(J)$.

On met $\delta := r$.

$$||x - x_0|| < \delta \implies x \in B(x_0, \delta) = B(x_0, r)$$

$$\implies x \in f^{-1}(J) \implies f(x) \in J$$

$$\implies f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon \implies -\varepsilon < f(x) - f(x_0) < \varepsilon$$

$$\implies |f(x) - f(x_0)| < \varepsilon.$$

On peut aussi généraliser ces définitions et la proposition aux cas où $f: U \to \mathbb{R}^m$ est une application de U dans \mathbb{R}^m , avec

$$f(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_m)).$$

Exemple $f(x_1, x_2) = (x_1^2 + 3\cos(x_2)e^{x_1 - x_2}), n = 2, m = 2, U = \mathbb{R}^2.$

Définition 1.1. f est continue en $x_0 \in U$ si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in U, ||x - x_0|| < \delta \implies ||f(x) - f(x_0)|| < \varepsilon,$$
 avec $||f(x) - f(x_0)|| = \sqrt{(f_1(x) - f_1(x_0))^2 + \dots + (f_m(x) - f_m(x_0))^2}$.

Définition 1.2. $f: U \to \mathbb{R}^m$ est continue quand f est continue en $x, \forall x \in U$.

Proposition 1.2. Les 3 conditions suivantes sont équivalentes.

- 1. $f: U \to \mathbb{R}^m$ est continue;
- 2. $\forall j \in \{1, \dots, m\}, f_j \text{ est continue};$
- 3. $\forall V \subseteq \mathbb{R}^m$ ensemble ouvert, $f^{-1}(V)$ est ouvert.

Figure 3 – Illustration pour 1.2

2 Dérivée, dérivée partielle, différentielle

 $f: U \to \mathbb{R}$. $x \in U$ fixé.

La dérivée partielle $\frac{\partial f}{\partial x_i}$, pour $i \in \{1, \dots, n\}$ et $x = (x_1, \dots, x_n)$ est définie par

$$\frac{\partial f}{\partial x_i}(x_1, \dots, x_n) := \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n)}{h}$$

si la limite existe.

Si $e_i \in \mathbb{R}^n$ est le vecteur $e_i = (0, 0, \dots, 0, 1, 0, \dots, 0)$ (tel que $\{e_1, \dots, e_n\}$ est la base standart de l'espace linéaire \mathbb{R}^n), on a

$$\frac{\partial f}{\partial x_i}(x) := \lim_{h \to 0} \frac{f(x + he_i)}{h}.$$

On peut aussi calculer les dérivées partielles de $\frac{\partial f}{\partial x_i}$. En général, pour tout $k \geq 1$,

$$\frac{\partial^k f}{\partial x_k \partial x_{k-1} \dots \partial x_2 \partial x_1} = \frac{\partial}{\partial x_k} \left(\frac{\partial}{\partial x_{k-1}} \dots \left(\frac{\partial f}{\partial x_1} \right) \right).$$

 $i_1 \in \{1, \dots, n\}, \dots, i_k \in \{1, \dots, n\}.$

Pour k = 1, il y a n dérivées partielles.

Pour $k = 2, i_1 \longrightarrow n$ choix de $\{1, \ldots, n\}$.

 $i_2 \longrightarrow n$ choix.

Donc il y a n^2 choix.

En général, il y a n^k dérivées partielles différentes de l'ordre k.

Définition 2.1. $r \in \mathbb{N}$.

On dit que $f: U \to \mathbb{R}$ est une application de classe \mathcal{C}^r ou tout simplement f est \mathcal{C}^r quand

- 1. Si r = 0, f est continue.
- 2. Si $r \ge 1$, f est continue et les dérivées partielles d'ordre k existent partout dans U et elles sont toutes les applications continues dans U et ceci pour tout $1 \le k \le r$.
- 3. Pour $f: U \to \mathbb{R}^m$, une application, on dit que f est C^r si $\forall j \in \{1, \dots, m\}$, f_j est une application C^r , avec $f = (f_1, \dots, f_m)$.

On dit que f est \mathcal{C}^{∞} quand $\forall r \in \mathbb{N}$, f est \mathcal{C}^{r} .

2.1 Différentiabilité des fonctions multi-variables

 $U \subseteq \mathbb{R}^n$ ouvert, $f: U \to \mathbb{R}^n$, $x = (x_1, \dots, x_n) \in U$, $f = (f_1, \dots, f_m)$.

On dit que f est différentiable à $x\in U$ quand il existe une application linéaire $L:\mathbb{R}^n\to\mathbb{R}^m$ telle que

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ si } ||h|| < \delta \text{ et } x + h \in U, \text{ alors } ||f(x+h) - (f(x) + L(h))|| < \varepsilon ||h||.$$

FIGURE 4 – Exemple illustratif avec x = 0, f(0) = 0

f différentiable en 0 si $\forall \varepsilon > 0$, $\exists \delta > 0$, $||h|| < \delta \implies ||f(h) - L(h)|| < \varepsilon ||h||$.

Proposition 2.1. $n=1, m=1, f: I \to \mathbb{R}$ est différentiable selon la définition donnée sur un point $x \in I$ si et seulement si f'(x) existe.

Démonstration.

1. Sens direct : f différentiable en $x \in I \implies f'(x)$ existe. $\exists L: \mathbb{R} \to \mathbb{R}$ telle que

$$\forall \varepsilon > 0, \exists \delta > 0, ||h|| < \delta, x + h \in I \implies ||f(x+h) - f(x) - L(h)|| < \varepsilon ||h||.$$

L(h) = ah pour un $a \in \mathbb{R}$ quelconque mais fixé.

a est la pente ou le coefficient directeur.

Prenons a la pente du graphe de L (comme L linéaire, $\exists a \in \mathbb{R}$ tel que $\forall h \in \mathbb{R}, L(h) = ah$). On obtient

$$\forall \varepsilon > 0, \exists \delta > 0, |h| < \delta, x + h \in I \implies |f(x+h) - f(x) - ah| \le \varepsilon |h|.$$

On divise par $|h| \neq 0$ pour obtenir

$$\left| \frac{f(x+h) - f(x)}{h} - \frac{ah}{h} \right| \le \varepsilon.$$

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ tel que } |h| < \delta, h + x \in I, \text{ alors } \left| \frac{f(x+h) - f(x)}{h} - a \right| \leq \varepsilon,$$

c'est à dire

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = a.$$

Donc f'(x) existe et f'(x) = a.

2. Sens réciproque : f'(x) existe \implies f différentiable. Si f'(x) existe, on met a := f'(x). On définit L(h) = ah. On sait que

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x) = a.$$

Donc

$$\forall \varepsilon > 0, \exists \delta > 0, |h| < \delta \implies \left| \frac{f(x+h) - f(x)}{h} - a \right| \le \varepsilon$$

$$\implies |f(x+h) - f(x) - ah| \le \varepsilon |h|$$

$$\implies \forall h, |h| < \delta, \text{ on a } |f(x+h) - f(x) - ah| \le \varepsilon |h|.$$

f est différentiable selon notre définition avec L(h) = ah.

On suppose maintenant que $f: U \to \mathbb{R}^m, U \subset \mathbb{R}^n$.

Pour $x \in U$, f différentiable en x si $\exists L : \mathbb{R}^n \to \mathbb{R}^m$ linéaire telle que

$$\forall \varepsilon > 0, \exists \delta > 0, \forall h \in \mathbb{R}^n, ||h|| < \delta, x + h \in U \implies ||f(x+h) - f(x) - L(h)|| \le \varepsilon ||h||.$$

On note $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) = \{T : \mathbb{R}^n \to \mathbb{R}^m \mid T \text{ est linéaire } \}.$

On écrit dans ce cas là que $Df(x) = L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$.

En particulier, si f est différentiable pour tout $x \in U$, on obtient une application

$$Df: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m).$$

5

Rappel Chaque transformation linéaire est uniquement représentée par une matrice au cas où les bases des espaces de départ et d'arrivée sont fixées.

Si on choisit les bases standart $\alpha = \{e_1, \dots, e_n\}$ pour \mathbb{R}^n et $\beta = \{e_1, \dots, e_m\} \in \mathbb{R}^m, T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$.

$$[T]^{\alpha}_{\beta} := A = [A_{ij}]_{m \times n}$$

et on a

$$T(e_j) = \sum_{i=1}^m A_{ij} e_i = \begin{pmatrix} A_{1j} \\ A_{2j} \\ \vdots \\ A_{mj} \end{pmatrix}.$$

C'est la j-ième colonne de la matrice A.

En particulier, pour chaque $x \in U$ où f est différentiable, en fixant les bases standart de \mathbb{R}^n et \mathbb{R}^m , on peut supposer que $Df(x) \in \mathbb{R}^{m \times n}$.

On peut identifier $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ avec $\mathbb{R}^{m \times n} = \{ [A_{ij}], 1 \le i \le n, 1 \le j \le m \mid A_{ij} \in \mathbb{R} \}.$

Avec cette identification, on peut utiliser la norme euclidienne de $\mathbb{R}^{m \times n}$, $||A|| = \left(\sum_{i=1}^n \sum_{j=1}^m |A_{ij}|^2\right)^{\frac{1}{2}}$. Comme ça on peut parler de continuité et de différentiabilité de l'application

$$Df: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \simeq \mathbb{R}^{m \times n}$$

Ou bien on peut encore identifier $\mathbb{R}^{m \times n}$ avec \mathbb{R}^{mn} . Alors $Df: U \subseteq \mathbb{R}^n \to \mathbb{R}^{mn}$.

Donc on peut parler de continuité de Df, de derivée de Df.

Pour $x \in U, D(Df)(x) \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)).$

On va noter D(Df) par D^2f . Alors $D^2f(x) \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)) = \mathcal{L}(\mathbb{R}^n, \mathbb{R}^{m \times n})$. $D^2f: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^{m \times n}) \simeq \mathbb{R}^{mn^2}$.

Théorème 2.1. $f: U \to \mathbb{R}^m$ une application donnée et $r \in \mathbb{N}$.

f est de classe C^r si et seulement si $D^k f: U \to \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \ldots))$ (de dimension mn^k) existe comme une application pour tout $1 \leq k \leq r$, et elle est en plus continue.

2.2 Deux points fins

En général, les dérivées partielles de f peuvent exister sans que Df soit définie. Par exemple, dans \mathbb{R}^2 , on peut avoir f telle que $\frac{\partial f}{\partial x_1}(0)$ existe, $\frac{\partial f}{\partial x_2}$ existe, mais Df(0) n'existe pas. Par contre, si $Df(x_0)$ existe, alors toutes les dérivées partielles de f existent en x_0 .

 $D\acute{e}monstration$. Supposons que $Df(x_0)$ existe. Donc

$$\forall \varepsilon > 0, \exists \delta > 0, ||h|| < \delta, x + h \in U \implies ||f(x) - f(x_0) - L(h)|| < \varepsilon ||h||.$$

Fixons une direction $\overrightarrow{v} \in \mathbb{R}^n$ et on met $h = t\overrightarrow{v}$, avec $\|\overrightarrow{v}\| \neq 0$. Donc $\|h\| = |t| \cdot \|\overrightarrow{v}\|$. Donc

$$\forall \varepsilon > 0, \exists \delta > 0, t < \frac{\delta}{\|\overrightarrow{v}\|}, x_0 + t\overrightarrow{v} \in U \implies |f(x_0 + t\overrightarrow{v}) - f(x_0) - tL(\overrightarrow{v})| < \varepsilon |t| \|\overrightarrow{v}\|.$$

On pose $\tilde{\varepsilon} = \varepsilon \|\overrightarrow{v}\|$ et $\tilde{\delta} = \frac{\delta}{\|\overrightarrow{v}\|}$.

$$\forall \tilde{\varepsilon} > 0, \exists \tilde{\delta} > 0 \text{ tel que } |t| < \tilde{\delta} \implies \|f(x_0 + t\overrightarrow{v}) - f(x_0) - tL(\overrightarrow{v})\| \le \tilde{\varepsilon}$$

$$\forall \tilde{\varepsilon} > 0, \exists \tilde{\delta} > 0, |t| < \tilde{\delta} \implies \left\| \frac{1}{t} \left(f(x_0 + t\overrightarrow{v}) - f(x_0) \right) - L(\overrightarrow{v}) \right\| \le \tilde{\varepsilon}$$

$$\implies \lim_{t \to 0} \frac{1}{t} \left(f(x_0 + t\overrightarrow{v}) - f(x_0) \right) = L(\overrightarrow{v}) = Df(x_0)(\overrightarrow{v}).$$

On définit

$$D_{\overrightarrow{v}}f(x_0) := \lim_{t \to 0} \frac{1}{t} (f(x_0 + t\overrightarrow{v}) - f(x_0)).$$

Donc si $Df(x_0)$ existe, la dérivée directionnelle de f en x_0 dans une direction $\overrightarrow{v} \in \mathbb{R}^n$ existe et on a

$$D\overrightarrow{v}f(x_0) = Df(x_0)(\overrightarrow{v}) \in \mathbb{R}^m.$$

En particulier, si $\overrightarrow{v} = e_j, 1 \leq j \leq n$,

$$\frac{\partial f}{\partial x_j}f(x_0) = D_{e_j}f(x_0) = Df(x_0)(e_j).$$

Il se peut que toutes les dérivées directionnelles $D_{\overrightarrow{v}}f(x_0)$ existent pour tout $\overrightarrow{v} \in \mathbb{R}^n$ alors que $Df(x_0)$ n'existe pas.

Théorème 2.2. Si $f: U \to \mathbb{R}^m, x_0 \in U$. Si $Df(x_0)$ existe, alors f est continue en x_0 .

Démonstration. En exercice.

Il se peut que toutes les dérivées directionnelles $D_{\overrightarrow{v}}f(x_0)$ existent pour tout $\overrightarrow{v} \in \mathbb{R}^n$ en $x_0 \in U$ sans que pour autant f soit continue en x_0 .

Si la matrice de $Df(x_0)$ est donnée par $[A_{ij}]_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}$.

$$\forall j \in \{1, \dots, n\}, A_{e_j} = \frac{\partial f}{\partial x_j}(x_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_j}(x_0) \\ \vdots \\ \frac{\partial f_m}{\partial x_j}(x_0) \end{bmatrix}.$$

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_j} & \dots & \frac{\partial f_1}{\partial x_j} \end{bmatrix}$$

$$Df = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}.$$

C'est la matrice jacobienne de f.

2.3 La dérivée de composition

 $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}, (g \circ f)'(x) = g'(f(x))f'(x).$

 $f: U \to \mathbb{R}^m, q: V \to \mathbb{R}^p.$

Supposons que pour $x_0 \in U$, $f(x_0) \in V$.

Si f est continue, $g \circ f$ est définie dans un voisinage de x_0 , par exemple dans une boule ouverte $B(x_0, r) = \tilde{U} \subset U \cap f^{-1}(V)$.

 $g \circ f : U \to \mathbb{R}^p$.

Supposons que les trois dérivées $Df(x_0), Dg(f(x_0)), D(g \circ f)(x_0)$ existent.

 $Df(x_0) \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^m).$

 $D(g(f(x_0))) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^p).$

 $D(g \circ f) \in (\mathbb{R}^n, \mathbb{R}^p).$

Théorème 2.3. Supposons que f est dérivable en $x_0 \in U$ avec la dérivée $Df(x_0)$ et g est dérivable en $f(x_0) \in V$ avec la dérivée $Dg(f(x_0))$, alors $g \circ f$ est bien dérivable en $x_0 \in U$ et

$$D(g \circ f)(x_0) = Dg(f(x_0)) \circ Df(x_0).$$

FIGURE 5 – La différentiation composée

Si on utilise les matrices jacobiennes de chaque dérivée $(1 \le k \le m, 1 \le j \le n, 1 \le i \le p)$,

$$\left[\frac{\partial (g\circ f)_i}{\partial x_j}\right]_{p\times n}(x_0) = \left[\frac{\partial g_i}{\partial y_k}\right]_{p\times m}(f(x_0)) \times \left[\frac{\partial f_k}{\partial x_j}\right]_{m\times n}(x_0).$$

$$\left[\frac{\partial z_i}{\partial x_j}\right](x_0) = \left[\frac{\partial z_i}{\partial y_k}\right](f(x_0)) \times \left[\frac{\partial y_k}{\partial x_j}\right](x_0).$$

On a:

$$\frac{\partial z_i}{\partial x_j}(x_0) = \sum_{k=1}^n \frac{\partial z_i}{\partial y_k}(f(x_0)) \frac{\partial y_k}{\partial x_j}(x_0).$$

 $f:U\to\mathbb{R}^m,U\subseteq\mathbb{R}^n,\,V=f(U)$ est ouvert et $g:V\to\mathbb{R}^n$ est l'inverse de f.

Donc $g \circ f : U \to \mathbb{R}^n$ et $g \circ f = \mathbb{1}_U$.

Si en plus f et g sont différentiables, alors m = n et $\forall x \in U, Dg(f(x)) = (Df(x))^{-1}$, c'est à dire en particulier Df(x) est une transformation linéaire inversible.

Démonstration. Si f est dérivable en $x \in U$ et g dérivable en $f(x) \in V$, $\mathbb{1} = g \circ f$ dérivable en x_0 et

$$D1_U(x_0) = D(g(f(x_0))) \circ Df(x_0).$$

$$\mathbb{1}_U(x) = x \implies D\mathbb{1}_U(x_0) \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^n).$$

Donc

$$\mathbb{1}_{\mathbb{R}^n} = Dg(f(x_0)) \circ Df(x_0).$$

Ainsi comme g est linéaire de f on a $f \circ g = \mathbb{1}_V$, donc

$$\mathbb{1}_{\mathbb{R}^m} = Df(x_0) \circ Dg(f(x_0)).$$

Lemme. Si $L: \mathbb{R}^n \to \mathbb{R}^m$ est une fonction linéaire, $\overrightarrow{b} \in \mathbb{R}^m$ et $T(x) = L(x) + \overrightarrow{b}$, $T: \mathbb{R}^n \to \mathbb{R}^m$. Ainsi T est différentiable dans \mathbb{R}^n et

$$\forall x \in \mathbb{R}^n, DT(x) = L.$$

Dans ce cas, $DT: \mathbb{R}^n \to \mathscr{L}(\mathbb{R}^n, \mathbb{R}^m)$ est une application constante (les dérivées partielles de T aussi).

3 Inversion locale, fonctions implicites, théorème du rang

Théorème 3.1 (de Bronner). Si $U \subseteq \mathbb{R}^n, V \subseteq \mathbb{R}^m, h : U \to V$ est un homéomorphisme (i. e. h continue, inversible et d'inverse **continue** $h^{-1}: V \to U$), alors m = n.

3.1 Théorème de l'application inverse

Théorème 3.2 (De l'application inverse). $U \subseteq \mathbb{R}^n$, $x_0 \in U$, $f: U \to \mathbb{R}^n$, f est de classe C^1 . Supposons que $Df(x_0) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ est inversible.

Alors il existe des ensembles ouverts $W \subset U$, $x_0 \in W$ et $V \subseteq \mathbb{R}^n$ tels que $f_{|W}: W \to V$ est inversible. L'inverse $(f_{|W})^{-1}: V \to W$ est aussi de classe \mathcal{C}^1 .

Figure 6 – Fonctions inversibles

Remarque. Si en plus f est de classe \mathcal{C}^r , alors $(f_{|W})^{-1}$ est aussi de classe \mathcal{C}^r . Notons que $\forall y \in V, x \in W, f(x) = y$,

$$(D(f_{|W})^{-1})(y) = (Df(x))^{-1}.$$

En particulier, il existe W tel que Df(x) est inversible pour tout $x \in W$.

3.2 Théorème du rang

20-09-2023

Théorème 3.3 (Du rang). $f: U \to \mathbb{R}^m$, $U \subset \mathbb{R}^n$ de classe \mathcal{C}^r , $r \geq 1$. Supposons que $\forall x \in U$,

$$\operatorname{rang}(Df(x)) \equiv k$$
,

 $où 1 \le k \le m \text{ est fixé.}$

 $(Df(x): \mathbb{R}^n \to \mathbb{R}^m, \ donc \ 0 \le \operatorname{rang}(Df(x)) \le m).$

Soit $x_0 \in U$. Alors il y a des ouverts $W \subseteq \mathbb{R}^n, V \subseteq \mathbb{R}^m, x_0 \in W, f(x) \in V$, 2 applications de classe C^r inversibles

$$\varphi: W \to W', \varphi(x_0) = 0, W' \subseteq \mathbb{R}^n$$

$$\psi: V \to V', \psi(f(x_0)) = 0, V' \subseteq \mathbb{R}^m$$

telles que $\forall z \in W', z = (z_1, \dots, z_n),$

$$\psi \circ f \circ \varphi^{-1}(z_1, z_2, \dots, z_n) = (z_1, z_2, \dots, z_k, 0, \dots, 0).$$

FIGURE 7 – Illustration du théorème de rang

En particulier, f(W) est un objet de dimension k, de régularité \mathcal{C}^r (Si m=3, k=2, f(W) est une surface de classe \mathcal{C}^r) et pour tout $y \in f(W), f^{-1}(y)$ est un objet de dimension n-k de régularité \mathcal{C}^r .

On note que les deux applications φ et ψ sont de classe \mathcal{C}^r et inversibles. On peut démontrer que dans ce cas-là, les inverses φ^{-1} et ψ^{-1} sont aussi de classe \mathcal{C}^r .

$$D\varphi^{-1}(y)=(D\varphi(\varphi^{-1}(y))^{-1}), y\in W'.$$

 φ^{-1} étant continue, $D\varphi$ étant continue, l'inverse d'une matrice étant continue tant que det $\neq 0$, φ est de classe \mathcal{C}^1 inversible $\implies \varphi^{-1}$ est de classe \mathcal{C}^1 .

Définition 3.1 (Difféomorphisme). Soient $U, U' \subseteq \mathbb{R}^n$ ouverts.

Si $\varphi: U \to U'$ est une application de classe \mathcal{C}^r , avec l'inverse $\varphi^{-1}: U' \to U$ de classe \mathcal{C}^r , on dit que φ est un difféomorphisme de classe \mathcal{C}^r .

Remarque (Le théorème de rang dans le cas spécial où f est linéaire). Soit $L: \mathbb{R}^n \to \mathbb{R}^m$, rang $(L) = k, 0 \le k \le m$, alors il existe deux bases α_n et β_m pour \mathbb{R}^n et \mathbb{R}^m telles que

$$[L]_{\alpha_n}^{\beta_m} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}_{m \times n}.$$

(En exercice).

Corollaire. $U \subseteq \mathbb{R}^n, f: U \to \mathbb{R}^m, f \text{ est } \mathcal{C}^r, r \geq 1.$

Supposons que pour $x_0 \in U$, $Df(x_0)$ est injective. $Df(x_0) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Alors il existe un voisinage W de x_0 tel que f est injective sur W.

Pour $x \in U$,

$$Df(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix}_{m \times n}.$$

Si $Df(x_0)$ est injective, rang $(Df(x_0)) = n \ (m \ge n)$. On obtient une sous-matrice de Df(x) de taille $n \times n$ inversible.

Lemme (D'algèbre linéaire). $A \in \mathbb{R}^{m \times n}$. Alors rang A = n si et seulement si il existe une sous-matrice $B \in \mathbb{R}^{n \times n}$ de A telle que det $B \neq 0$. (En exercice).

Alors sous les hypothèse du corollaire 3.2, rang $Df(x) \equiv n$ dans un voisinage W de x_0 , appliquant le théorème du rang

$$\tilde{f} = \varphi \circ f \circ \varphi^{-1}(z_1, \dots, z_n) = (z_1, \dots, z_n, 0, \dots, 0)$$

qui est injectif.

Corollaire. Les mêmes hypothèses que dans le corollaire 3.2.

Si $Df(x_0)$ est surjective, alors il existe un voisinage ouvert $V \subseteq f(U)$ de $f(x_0)$ (c'est à dire $f(x_0)$ est un point intérieur de f(U)) tel que f est surjective sur V.

Argument à travers l'observation de l'algèbre linéaire qui dit que si $\operatorname{rang}(A) = m, m \leq n, A \in \mathbb{R}^{m \times n}$, il y a une sous-matrice $B \in \mathbb{R}^{m \times m}$ tel que $\det(B) \neq 0$.

Théorème de rang : $k = m \le n$.

Les détails en exercice.

3.3 Théorème de fonctions implicites

Théorème 3.4 (De fonctions implicites). $U \subseteq \mathbb{R}^n, V \subseteq \mathbb{R}^m, F: U \times V \to \mathbb{R}^m$ une application $C^r, r \geq 1$.

 $(x_0, y_0) \in U \to V \ donn\acute{e}.$

$$DF(x_0) \in \mathbb{R}^{m \times (m+n)}$$

et

$$DF(x_0) = \begin{bmatrix} \frac{\partial F}{\partial x_1} & \dots & \frac{\partial F}{\partial x_n} & | & \frac{\partial F}{\partial y_1} & \dots & \frac{\partial F}{\partial y_m} \end{bmatrix}_{m \times (m+n)}.$$

Pour tout $(x_0, y_0) \in U \times V$, $DyF(x_0, y_0) \in \mathbb{R}^{m \times m}$. Supposons que $DyF(x_0)$ est inversible. Alors il existe un voisinage W de x_0 dans U et une application C^r $f: W \to V$ telle que $f(x_0) = y_0$ et

$$\forall x \in W, F(x, f(x)) = F(x_0, y_0).$$

FIGURE 8 – Illustration du théorème de fonctions implicites

Donc le graphe de $x \longrightarrow f(x)$ dans $W \times V$ pour l'application $f: W \to V$ est à l'intérieur de $F^{-1}(x_0)$.

On peut dire que la fonction implicite

$$F(x,y) = z_0, x \in \mathbb{R}^n, y \in \mathbb{R}^m, z_0 \in \mathbb{R}^n$$

peut être exprimée explicitement y = f(x) dans un voisinage W.

Exemple m = 1 = n. Si $F(x, y) = y^2 - x$.

Exemple 1 $x_0 = 0, y_0 = 1, z_0 = 1.$

$$DF = \begin{bmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \end{bmatrix} = \begin{bmatrix} -1 & 2y \end{bmatrix} \in \mathcal{C}^{\infty}.$$

$$DyF = [2y]_{|x|}.$$

$$DyF(x_0, y_0) = 2y_0 = 2 \neq 0.$$

Donc près de $(0,1) = (x_0, y_0), y = f(x)$ a une solution C^{∞} .

Mais si $x_0 = 0, y_0 = 0, z_0 = 0, DyF(x_0, y_0) = 2y_0 = 0$ n'est pas inversible. F est \mathcal{C}^{∞} .

Implicitement, près de (0,0), on a $y^2 - x = 0$.

On essaie de trouver y = f(x).

$$y^2 = x \implies y = \pm \sqrt{x}.$$

Mais $\sqrt{\cdot}$ n'est pas définie pour x < 0 près de $x_0 = 0$!

Donc il n'y a pas un moyen d'écrire explicitement F(x,y) = 0 près de (0,0) comme une fonction \mathcal{C}^{∞} .

Remarque (Sur le théorème des fonctions implicites). En effet, si $W' = f(W) \subset V$, on a

$$(x,y) \in W \times W', F(x,y) = z_0 \iff y = f(x).$$

4 Algèbre multilinéaire

Soit E espace vectoriel sur \mathbb{R} de dimension finie n, c'est-à-dire il existe $\beta = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}$ base telle que

$$\forall \overrightarrow{v} \in E, \exists ! (\alpha_1, \dots, \alpha_n), \overrightarrow{v} = \sum_{i=1}^n \alpha_i \overrightarrow{v_i}.$$

En particulier, β engendre E ($E = \text{span}(\beta) = \langle \beta \rangle$) si β est libre.

4.1 L'espace dual E^*

$$E^* = \{T : E \to \mathbb{R} \text{ lin\'eaire}\} = \mathcal{L}(E, \mathbb{R}).$$

Théorème 4.1. On $a \dim(E^*) = \dim(E)$.

Démonstration. Supposons $\beta = (e_1, \dots, e_n)$ est une base ordonnée de E. On définit alors n éléments (e^1, e^2, \dots, e^n) , $e^j \in E^*$ de la manière suivante :

$$e^{j}(e_{i}) = \delta_{i}^{j} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ sinon.} \end{cases}$$

Remarque (Personnelle). e^j est l'évaluation du vecteur $\overrightarrow{v} \in E$ en e_i .

Donc
$$e^j \left(\sum_{i=1}^n \alpha_i e_i \right) = \sum_{i=1}^n \alpha_i e^j (e_i) = \sum_{i=1}^n \alpha_i \delta_i^j = \alpha_i.$$

Donc $\forall j \in \{1, \dots, n\}, e^j \in E^*, \beta^* = \{e^1, \dots, e^n\}$. On montre que β^* est une base pour E^* .

1. β^* est libre. Supposons que pour $c_i \in \mathbb{R}$,

$$\sum_{j=1}^{n} c_j e^j = 0 \in E^*.$$

Donc pour tout i,

$$\left(\sum_{j=1}^n c_j e^j\right)(e_i) = 0 \in \mathbb{R} \text{ et}$$

$$\left(\sum_{j=1}^n c_j e^j\right)(e_i) = \sum_{j=1}^n c_j e^j(e_i) = \sum_{j=1}^n c_j \delta_i^j = c_i.$$

Donc $\forall i, c_i = 0$.

2. β^* engendre E^* . Soit $T \in E^*$. Est-ce qu'il existe $\alpha_1, \ldots, \alpha_n$ tel que

$$T = \sum_{j=1}^{n} \alpha_j e^j ?$$

Essayons de trouver les α_i en appliquant l'identité desirée en e_i .

$$\forall i, T(e_i) = \left(\sum_{j=1}^n \alpha_j e_j\right)(e_i) = \sum_{j=1}^n \alpha_j e_j(e_i) = \sum_{j=1}^n \alpha_j \delta_i^j = \alpha_i.$$

Donc pour $T \in E^*$ donnée, le candidat pour α_i est

$$\forall i \in \{1, \ldots, n\}, \alpha_i \in T(e_i) \in \mathbb{R},$$

et on obtient que

$$\forall i \in \{1, \dots, n\}, T(e_i) = \left(\sum_{j=1}^n \alpha_j e^j\right)(e_i).$$

Comme T et \tilde{T} ont les mêmes valeurs sur la base β , donc $T = \tilde{T}$.

$$T = \sum_{j=1}^{n} T(e_j)e^j.$$

Définition 4.1. On dit que β^* est la base duale de β .

On considère le dual du dual $E^{**} = (E^*)^*$.

Théorème 4.2. Si dim $(E) < \infty$, il y a un isomorphisme canonique entre E et E^{**} .

On peut définir $E \to E^{**}$. On pose $e: E \to E^{**}$.

$$(\iota(\overrightarrow{v}))(T) = T(\overrightarrow{v}),$$

 $\forall T \in E^* = \mathcal{L}(E, \mathbb{R}).$

Exercice 1.

- 1. Montrer que $\forall v \in E, \iota(\overrightarrow{v}) : E^* \to \mathbb{R}$ est une transformation linéaire.
- 2. Montrer que $\iota: E \to E^{**}$ est une transformation linéaire.
- 3. Montrer que ι est bijective (donc un isomorphisme).

Démonstration.

1.

$$\iota(\overrightarrow{v})(\alpha T + S) = (\alpha T + S)(\overrightarrow{v}) = \alpha T(\overrightarrow{v}) + S(\overrightarrow{v}) = \alpha \iota(\overrightarrow{v})(T) + \iota(\overrightarrow{v})(S).$$

2. $\iota: E \to E^{**}$ est linéaire.

$$\iota(\alpha \overrightarrow{v} + \overrightarrow{w})(T) = T(\alpha \overrightarrow{v} + \overrightarrow{w}) \stackrel{T \text{ linéaire}}{=} \alpha T(\overrightarrow{v}) + T(\overrightarrow{w})$$
$$= \alpha \iota(\overrightarrow{v})(T) + \iota(\overrightarrow{w})(T) = \alpha \iota(\overrightarrow{v}) + \iota(\overrightarrow{w}).$$

Comme c'est vrai $\forall T \in E^*$, on a l'identification $\iota(\alpha \overrightarrow{v} + \overrightarrow{w}) = \alpha \iota(\overrightarrow{v}) + \iota(\overrightarrow{w})$ (comme un élément de E^{**}). Donc ι est une transformation linéaire.

3. On sait que $dimE = dimE^* = dimE^{**}$ (ce qui veut dire que ι est surjective). Pour démontrer que ι est un isomorphisme, il suffit de démontrer que $\operatorname{Ker}(\iota) = \{0\}$ (que ι est injective). Si $\overrightarrow{v} \in \operatorname{Ker}(\iota)$, alors $\iota(\overrightarrow{v}) = 0 \implies \forall T \in E^*, T(\overrightarrow{v}) = \iota(\overrightarrow{v})(T) = 0(T) = 0$, donc \overrightarrow{v} est tel que $\forall T \in E^*, T(\overrightarrow{v}) = 0$.

Si $\overrightarrow{v} \neq \overrightarrow{0}$, on peut compléter \overrightarrow{v} avec une base $\{\overrightarrow{v}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\}$ de E et définir $T(\alpha_1 \overrightarrow{v} + \alpha_2 \overrightarrow{v_2} + \dots + \alpha_n \overrightarrow{v_n}) = \alpha_1$. Dans ce cas-là, $T(\overrightarrow{v}) = 1 \neq 0$.

Si $\beta = (e_1, \dots, e_n)$ base de E. On a vu que la base duale $\beta^* = (e^1, e^2, \dots, e^n)$ est une base de E^* .

$$e^{j}(e_{i}) = \delta_{i}^{j}$$
.

$$(\beta^*)^* = \beta^{**} = (\varepsilon_1, \eta_2, \dots, \eta_n).$$

$$\forall i, \eta_i \in E^{**}, \eta_i(e^i) = \delta_i^j, \forall i, j. \tag{1}$$

On va aussi calculer

$$\iota(e_i)(e^j) = e^j(e_i) = \delta_i^j. \tag{2}$$

 $\forall e^j$ de base β^* , on a

$$\eta_i(e^j) = \iota(e_i)(e^j), \eta_i, \iota(e_i) \in E^{**} = \mathcal{L}(E^*, \mathbb{R}).$$

 η_i et $i(e_i)$ coincident sur une base de E^* , donc

$$\forall i, \eta_i = \iota(e_i).$$

Pour simplifier, parfois on identifie E et E^{**} par l'application ι , c'est-à-dire on met $\overrightarrow{v} = \iota(\overrightarrow{v})$.

Les éléments de E^* sont appelés les vecteurs covariants. Les éléments de E^{**} sont appelés les vecteurs contravariants.

4.2 Les applications multilinéaires

Supposons que E_1, E_2, \dots, E_k sont des espaces vectoriels sur \mathbb{R} et E' espace vectoriel de \mathbb{R} .

$$\alpha: E_1 \times E_2 \times \cdots \times E_k \longrightarrow E'$$

est une application k-linéaire quand α est linéaire par rapport à chaque coordonnée dans l'un des espaces E_j quand les autres coordonnées (composantes) sont fixées.

$$\overrightarrow{v_i} \in \overrightarrow{E_i}, \ 1 \leq i \leq k, \ \alpha(\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}).$$

Si $\forall i \in \{1, \dots, k\}, \ a \in \mathbb{R}, \forall \overrightarrow{v_j} \in E_j, \ \overrightarrow{w} \in E_i, \ \text{on a}$

$$\alpha(\overrightarrow{v_1},\overrightarrow{v_2},\ldots,a\overrightarrow{v_i}+\overrightarrow{w},\ldots,\overrightarrow{v_k})=a\alpha(\overrightarrow{v_1},\ldots,\overrightarrow{v_i},\ldots,\overrightarrow{v_k})+\alpha(\overrightarrow{v_1},\overrightarrow{v_2},\ldots,\overbrace{\overrightarrow{w}}^{i\text{-ème}},\ldots,\overrightarrow{v_k}).$$

Exemple

- 1. f(x,y) = xy, $f: \mathbb{R}^{E_1} \times \mathbb{R}^{E_2} \to \mathbb{R}^{E'}$.
- 2. $E_1 = E_2 = \mathbb{R}^n, E' = \mathbb{R},$

$$\alpha(\overrightarrow{v_1}, \overrightarrow{v_2}) = \overrightarrow{v_1} \cdot \overrightarrow{v_2}$$
 2-linéaire.

3. $E_1 = E_2 = E_3 \equiv \mathbb{R}^3, E' = \mathbb{R}$.

$$\alpha(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}) = \overrightarrow{v_1} \cdot (\overrightarrow{v_2} \wedge \overrightarrow{v_3}) = det \left(\begin{bmatrix} \overrightarrow{v_1} \\ \overrightarrow{v_2} \\ \overrightarrow{v_3} \end{bmatrix} \right)_{3 \times 3}.$$

Cette application est 3-linéaire.

4. $E_1 = E_2 = \cdots = E_n = \mathbb{R}^n$.

$$\alpha(\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}) = det \begin{pmatrix} \overrightarrow{v_1} \\ \overrightarrow{v_2} \\ \vdots \\ \overrightarrow{v_n} \end{pmatrix}.$$

C'est une application n-linéaire.

5. Le déterminant d'une matrice de taille $n \times n$ est une application n-linéaire.

4.2.1Quelques notations

E espace vectoriel de dimension finie.

On note $\Omega^k(E):=\{\alpha: \underbrace{E\times E\times \cdots \times E}_{k \text{ fois}} \to \mathbb{R} \mid \alpha \text{ est } k\text{-lin\'eaire}\}.$ Remarquons que $\Omega^1(E)=\{\alpha: E\to \mathbb{R} \mid \alpha \text{ est lin\'eaire}\}=E^*.$

Proposition 4.1. $\forall k \in \mathbb{N}^*, \Omega^k(E)$ est un espace vectoriel de dimension n^k .

Démonstration. Si $\alpha, \beta \in \Omega^k(E), a \in \mathbb{R}$. Il faut démontrer que $a\alpha + \beta$ est aussi une application k-linéaire $\operatorname{sur} E^k = \underbrace{E \times \cdots \times E}_{k \text{ fois}}$

$$a\alpha + \beta(b\overrightarrow{v_1} + \overrightarrow{w}, \dots) = a[\alpha(b\overrightarrow{v_1} + \overrightarrow{w}, \dots)] + \beta(b\overrightarrow{v_1} + \overrightarrow{w})$$

= $a[b\alpha(\overrightarrow{v_1}, \dots) + \alpha(\overrightarrow{w}, \dots)] + b\beta(v_1, \dots) + \beta(\overrightarrow{w}, \dots)$
= $b[a\alpha + \beta](\overrightarrow{v_1}, \dots) + [a\alpha + \beta](\overrightarrow{w}, \dots)$

De même pour chaque $1 \le i \le k$.

Pour trouver la dimension de $\Omega^k(E)$, il faudra trouver une base de $\Omega^k(E)$. Pour cela, il faudra d'abord introduire "le produit tensoriel".

Définition 4.2 (Produit tensoriel). Supposons que $\alpha: E_1 \times \cdots \times E_k \to \mathbb{R}$ k-linéaire, $\beta: E'_1 \times \cdots \times E'_l \to \mathbb{R}$ l-linéaire.

On définit

$$\alpha \otimes \beta : E_1 \times \cdots \times E_k \times E'_1 \times \cdots \times E'_l \longrightarrow \mathbb{R}$$

telle que

$$\alpha \otimes \beta(\overrightarrow{v_1}, \dots, \overrightarrow{v_k}, \overrightarrow{v_1}, \dots, \overrightarrow{v_l}) := \alpha(\overrightarrow{v_1}, \dots, \overrightarrow{v_k}) \beta(\overrightarrow{v_1}, \dots, \overrightarrow{v_l})$$

qui est une application (k+l)-linéaire (avec $\overrightarrow{v_i} \in E_i, i \in \{1, \dots, k\}, \overrightarrow{v_i'} \in E_i', j \in \{1, \dots, l\}$).

Les applications k-linéaires sont appelées les tenseurs covariants d'ordre k.

Exercice 2. On montre que \otimes est une opération associative.

 $\forall \alpha, \beta, \gamma \text{ tenseurs covariants,}$

$$(\alpha \otimes \beta) \otimes \gamma = \alpha \otimes (\beta \otimes \gamma).$$

Exemple $E_1 = \mathbb{R}^n, E_1' = \mathbb{R}^n, k = l = 1, \alpha \in E_1^*, \alpha(\overrightarrow{v}) = 2\overrightarrow{v} \cdot e_1, \forall \overrightarrow{v} \in \mathbb{R}^n, \beta \in E_1^{'*}, \beta(\overrightarrow{v'}) = \overrightarrow{v'} \cdot e_1, \forall \overrightarrow{v'} \in \mathbb{R}^n.$

$$\alpha \otimes \beta(\overrightarrow{v}, \overrightarrow{v'}) = 2(\overrightarrow{v} \cdot e_1)(\overrightarrow{v'} \cdot e_1)$$

et

$$\beta \otimes \alpha(\overrightarrow{v'}, \overrightarrow{v}) = 2(\overrightarrow{v'} \cdot e_1)(\overrightarrow{v} \cdot e_1).$$

Mais si $\tilde{\beta}(\overrightarrow{v'}) = \overrightarrow{v'} \cdot e_2$,

$$\alpha \otimes \widetilde{\beta}(\overrightarrow{v}, \overrightarrow{v'}) = 2(\overrightarrow{v} \cdot e_1)(\overrightarrow{v'} \cdot e_2),$$
mais $\widetilde{\beta} \otimes \alpha(\overrightarrow{v'}, \overrightarrow{v}) = 2(\overrightarrow{v'} \cdot e_1)(\overrightarrow{v'} \cdot e_2).$

Le produit tensoriel n'est donc pas commutatif.

$$\begin{split} E^k &= \underbrace{E \times \dots \times E}_{k \text{ fois}} \\ \Omega^k(E) &:= \{\alpha : \underbrace{E \times E \times \dots \times E}_{k \text{ fois}} \to \mathbb{R} \mid \alpha \text{ est k-linéaire}\}. \end{split}$$

Proposition 4.2. $\Omega^k(E)$ est un espace vectoriel de dimension n^k , où n = dim(E).

Démonstration. dimE = n, (e_1, \ldots, e_n) est une base de E et (e^1, \ldots, e^n) est une base de $E^* = \Omega^1(E)$. Par exemple si on prend

$$\underbrace{e^1 \otimes e^1 \otimes \cdots \otimes e^1}_{k \text{ fois}} : E \times \cdots \times E \to \mathbb{R},$$

et

$$e^1 \otimes e^1 \otimes \cdots \otimes e^1(\overrightarrow{v_1}, \dots, \overrightarrow{v_n}), \overrightarrow{v_i} \in E,$$

= $e^1(\overrightarrow{v_1})e^1(\overrightarrow{v_2}) \dots e^1(\overrightarrow{v_n}).$

$$\mathscr{A} = \{e^{i_1} \otimes e^{i_2} \otimes \cdots \otimes e^{i_k} \mid \text{pour } 1 \leq j \leq k, 1 \leq i_k \leq n\}.$$

Il y a n choix pour chaque e^{ij} , alors, au total, on a n^k choix pour les éléments de \mathscr{A} , ce qui démontre la proposition 4.2. On montre maintenant que

- 1. \mathscr{A} engendre $\Omega^k(E)$;
- 2. \mathscr{A} est libre.

Soit $\alpha \in \Omega^k(E)$.

On va démontrer que

$$\alpha \stackrel{?}{=} \sum_{1 \leq i_1, \dots, i_k \leq n} \alpha(e_{i_1}, e_{i_2}, \dots, e_{i_k}) e^{i_1} \otimes e^{i_2} \otimes \dots \otimes e^{i_k}.$$

Prenons $(\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}) \in E^k$. On a

$$\overrightarrow{v_j} = \sum_{i=1}^n c_{ij} e_i.$$

$$\alpha(\overrightarrow{v_1}, \dots, \overrightarrow{v_k}) = \alpha \left(\sum_{i=1}^n c_{i1} e_i, \dots, \sum_{i=1}^n c_{ik} e_i \right)$$

$$= \sum_{i=1}^n c_{i1} \alpha \left(e_i, \sum_{i_2} c_{i_2 2} e_{2i}, \dots \right)$$

$$= \sum_{i_1=1}^n \sum_{i_2=1}^n \dots \sum_{i_k=1}^n c_{i_1 1} c_{i_2 2} \dots c_{i_k k} \alpha(e_{i_1}, \dots, e_{i_k}).$$

Maintenant, pour

$$\beta = \sum_{1 \le i_1, \dots, i_n \le n} \alpha(e_{i_1}, \dots, e_{i_n}) e^{i_1} \otimes \dots \otimes e^{i_n},$$

on calcule pour $\beta \in \Omega^k(E)$,

$$\beta(\overrightarrow{v_1},\ldots,\overrightarrow{v_k}) = \sum_{i_1} \sum_{i_2} \ldots \sum_{i_k} c_{i_1} c_{i_2} \ldots c_{i_k} \beta(e_{i_1},\ldots,e_{i_n}).$$

Mais

$$\beta(e_{i_1}, \dots, e_{i_k}) = \sum_{1 \leq i'_1, \dots, i'_k \leq n} \alpha(e_{i'_1}, e_{i'_2}, \dots, e_{i'_k}) e^{i'_1} \otimes e^{i'_2} \otimes \dots \otimes e^{i'_k} (e_{i_1}, \dots, e_{i_k})$$

$$= \sum_{1 \leq i'_1 \leq \dots \leq i'_k \leq n} \alpha(e_{i'_1}, \dots, e_{i'_k}) e^{i'_1} (e_{i_1}) e^{i'_2} (e_{i_2}) \dots e^{i'_k} (e_{i_k})$$

$$= \sum_{1 \leq i'_1, \dots, i'_k \leq n} \alpha(e_{i'_1}, \dots, e_{i'_k}) \delta^{i'_1}_{i_1} \dots \delta^{i'_k}_{i_k} = \alpha(e_{i_1}, \dots, e_{i_n}).$$

Donc

$$\beta(\overrightarrow{v_1},\ldots,\overrightarrow{v_k}) = \sum_{i_1} \sum_{i_2} \ldots \sum_{i_k} c_{i_1 1} c_{i_2 2} \ldots c_{i_k k} \alpha(e_{i_1},\ldots,e_{i_k}) = \alpha(\overrightarrow{v_1},\ldots,\overrightarrow{v_k}).$$

Donc? est démontré, et on a $\alpha \in span(\mathscr{A}) = \langle \mathscr{A} \rangle$, où $\mathscr{A} = \{e^{i_1} \otimes \cdots \otimes e^{i_k}\}$.

Montrons que \mathscr{A} est libre. Soit

$$\sum_{1 \le i_1, \dots, i_k \le n} c_{i_1 i_2 \dots i_k} e^{i_1} \otimes \dots \otimes e^{i_k} = 0 \in \Omega^k(E).$$

Le même calcul qu'auparavant démontre que

$$0 = 0(e_{i_1}, \dots, e_{i_k}) = c_{i_1 \dots i_k}, \forall i_1, \dots, i_k,$$

donc

$$\forall i_1, \dots, i_k, c_{i_1 \dots i_k} = 0,$$

donc \mathscr{A} est libre.

Remarque. Si $f: U \to \mathbb{R}^m, U \subseteq \mathbb{R}^n, Df(x) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m),$

$$Df: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$$

$$D^2 f(x) \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m))$$

$$\vdots$$

$$D^n f(x) \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \dots, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m))).$$

Lemme. $\mathscr{L}(\mathbb{R}^n, \mathscr{L}(\mathbb{R}^n, \mathbb{R}^m)) \simeq \{\alpha : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \mid \alpha \text{ est 2-lin\'eaire}\}.$

Pour un élément $g \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m))$ et $\overrightarrow{v} \in \mathbb{R}^n, g(\overrightarrow{v}) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Pour tout k, pour tout $x \in U$, $D^k f(x) \in (\Omega^k(\mathbb{R}^n))^m$. Cet espace est de dimension $m(n^k)$. On définit

$$\alpha_g(\overrightarrow{v})(\overrightarrow{w}) \in \mathbb{R}^n$$
.

On voit que α_g est une application 2-linéaire.

Supposons que $\alpha_g = \alpha_{g'}$, donc $\forall \overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}^n, \alpha_g(\overrightarrow{v}, \overrightarrow{w}) = \alpha_{g'}(\overrightarrow{v}, \overrightarrow{w}), \text{ donc } g(\overrightarrow{v})(\overrightarrow{w}) = g'(\overrightarrow{v})(\overrightarrow{w}).$

Donc $\forall \overrightarrow{v} \in \mathbb{R}^n, g(\overrightarrow{v}) = g'(\overrightarrow{v}) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m), \text{ donc } g = g'.$

On en déduit que $g \longrightarrow \alpha_g$ est injective.

Exemple. $T: \mathbb{R}^2 \to \mathbb{R}, Tx = 2x_1 + 5x_2$. On définit $\alpha: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \ \alpha((x_1, x_2), (x_1', x_2')) = x_1x_2' - 27$ -09-2023 $x_2x_1', \alpha \in \Omega^2(\mathbb{R}^2)$.

Ecrire le produit tensoriel entre α et T...

Si E,F sont deux espaces vectoriels et $T:E\longrightarrow F$ linéaire $(T\in\mathcal{L}(E,F))$. On peut définir une application linéaire

$$T^*: F^* \longrightarrow E^*$$
.

Pour $f \in F^*$, on doit déterminer $T^*(f)$ comme un élément de E^* . Alors $T^*(f)$ doit être une application linéaire $T^*(f) \in \mathscr{L}(E,\mathbb{R})$, i. e. $T^*(f) : E \longrightarrow \mathbb{R}$.

$$\forall v \in E, (T^*(f))(v) \stackrel{\text{def}}{=} f(T(v)) \text{ cf figure 9}.$$

On a $f \in F^*, f \in \mathcal{L}(F, \mathbb{R})$.

FIGURE 9 – Illustration de T^*

 $F^* = \Omega'(F), E^* = \Omega'(E)$. On peut aussi utiliser la notation $\Omega^1(T)$ pour T^* . On peut aussi définir, à partir de T,

$$\Omega^k(T): \underbrace{\Omega^k(F)}_{\alpha} \longrightarrow \underbrace{\Omega^k(E)}_{\beta}.$$

Pour $\alpha \in \Omega^k(E)$, on a besoin que $\underbrace{\Omega^k(T)(\alpha)}_{k-\text{linéaire}} \in \Omega^k(E)$.

 $\forall v_1, \ldots, v_n$, on a besoin de définir

$$\underbrace{(\Omega^k(T))(\alpha)}_{\beta \in \Omega^k(E)}(v_1, \dots, v_k) = \underbrace{\alpha(T(v_1), T(v_2), \dots, T(v_k))}_{\in F^k}.$$

Exercice 3.

- 1. Montrer que β est k-linéaire, i. e. $\forall k, \Omega^k(T)(\alpha) \in \Omega^k(E)$.
- 2. Montrer que $\Omega^k(S \circ T) = \Omega^k(T) \circ \Omega^k(S)$.
- 3. Montrer que $\Omega^k(\mathbb{1}_E) = \mathbb{1}_{\Omega^k(E)}$.
- 4. Montrer que si $T: E \to F$ est inversible, alors

$$\Omega^k(T^{-1}) = (\Omega^k(T))^{-1}.$$

Quelques propriétés Si on a $E \xrightarrow{T} F \xrightarrow{S} G$, on a

$$\Omega^k(G) \stackrel{\Omega^k(S)}{\longrightarrow} \Omega^k(F) \stackrel{\Omega^k(T)}{\longrightarrow} \Omega^k(E).$$

On a $S \circ T : E \longrightarrow G$. Alors

$$\Omega^k(T) \circ \Omega^k(S) \in \Omega^k(G) \longrightarrow \Omega^k(E)$$

et

$$\Omega^k(S \circ T) : \Omega^k(G) \longrightarrow \Omega^k(E).$$

On considère $\mathbb{1}_E: E \to E$. Alors

$$\Omega^k(\mathbb{1}_E) = \mathbb{1}_{\Omega^k(E)}.$$

On rappelle que l'on peut associer à un vecteur $v \in E$ un vecteur contravariant $\iota(v) \in E^{**}$. On définit alors, $\forall l \in \mathbb{N}, l \geq 1$,

$$\Omega_l(E) := \{ \alpha : \underbrace{E^* \times \cdots \times E^*}_{k \text{ fois}} \to \mathbb{R} \mid \alpha \text{ est } l\text{-lin\'eaire} \} = \Omega^l(E^*),$$

avec la base $\{e_{i_1} \otimes \cdots \otimes e_{i_l} \mid 1 \leq i_j \leq n, 1 \leq j \leq l\}$. On a $\dim(\Omega_l(E)) = n^l$ et $\forall \alpha \in \Omega_l(E)$,

$$\alpha = \sum_{1 \leq i_1, \dots, i_l \leq n} \alpha(e^{i_1}, \dots, e^{i_l}) e_{i_1} \otimes \dots \otimes e_{i_l}.$$

Pour $T: E \longrightarrow F$, $\Omega_l(T): \Omega_l(E) \to \Omega_l(F)$ (objets contravariants pour la dualité), avec $\alpha \in \Omega_l(E)$, $\beta = \Omega_l(T)(\alpha) \in \Omega_l(F)$.

On va essayer de définir

$$\beta(f_1,\ldots,f_l) = \Omega_l(T)(\alpha)(f_1,\ldots,f_l) \stackrel{\text{déf}}{=} \alpha(T^*(f_1),\ldots,T^*(f_l)).$$

$$f_j \in F^*$$

$$T^*(f_j) \in F^*$$

On a alors le schéma suivant :

$$E \xrightarrow{T} F \xrightarrow{S} G$$

$$\Omega_l(E) \xrightarrow{\Omega_l(T)} \Omega_l(F) \xrightarrow{\Omega_l(S)} \Omega_l(G).$$

Définition 4.3. Pour tous k, l, on a

$$\Omega_l^k(E) := \{ \alpha : \underbrace{E \times \dots \times E}_{k \text{ fois}} \times \underbrace{E^* \times \dots \times E^*}_{l \text{ fois}} \mid \alpha \text{ est } k \text{-lin\'eaire} \}$$

qui a pour base

$$\{e^{i_1}\otimes\cdots\otimes e^{i_k}\otimes e_{j_1}\otimes\cdots\otimes e_{j_l}\mid 1\leq i_1,\ldots,i_k\leq n,1\leq j_1,\ldots,j_l\leq n\}.$$

On a $\dim(\Omega_l^k) = n^{k+l}$. Pour $\alpha \in \Omega_l^k(E)$, on écrit

$$\alpha = \sum_{\substack{1 \leq i_1, \dots, i_k \leq n \\ 1 \leq j_1, \dots, j_l}} \alpha(e_{i_1}, \dots, e_{i_k}, e^{j_1}, \dots, e^{j_l}) e^{i_1} \otimes \dots \otimes e^{i_k} \otimes e_{j_1} \otimes \dots \otimes e_{j_l}.$$

Parenthèse sur les notations En physique, on écrit

$$\alpha = \sum_{\substack{i_1, \dots, i_k \\ j_1, \dots, j_l}} a_{i_1 \dots i_k}^{j_1 \dots j_l} e^{i_1} \otimes \dots e^{i_k} \otimes e_{j_1} \otimes \dots \otimes e^{j_l}.$$

et on dit : si α est un (l,k) tenseur, alors α est la collection de valeurs $a_{i_1...i_k}^{j_1...j_l}$. Si $T:E\to E$ est donnée, alors $\Omega_l^k(T)(\alpha)$ est donnée maintenant par le coefficient

$$b_{\tilde{i_1},\ldots,\tilde{i_l}}^{\tilde{j_1},\ldots,\tilde{j_l}}$$
.

4.3 Produit scalaire

Les produits scalaires sur un espace vectoriel sont des tenseurs 2-covariants.

Définition 4.4 (Produit scalaire). Une application $\alpha: E \times E \to \mathbb{R}$ est un produit scalaire quand

- 1. $\alpha \in \Omega^2(E)$:
- 2. α est symétrique, i. e.

$$\forall v, w, \alpha(v, w) = \alpha(w, v).$$

- 3. α est définie positive, i. e. $\forall v \in E, \alpha(v, v) \geq 0$ et $\alpha(v, v) = 0 \iff v = 0$. En particulier, si $v \neq 0$, alors $\alpha(v, v) > 0$.
- α dans une base est donnée par les coefficients $a_{i,j}, 1 \leq i, j \leq n$. Par exemple, on considère

$$v = \sum x_i e_i, w = \sum y_i e_i, \alpha = \sum_{1 \le i, j \le n} a_{ij} e^i \otimes e^j.$$
 (3)

Dans ce cas, on a

$$\alpha(v,w) = \left(\sum_{1 \le i,j \le n} a_{ij} e^i \otimes e^j\right) \left(\sum_k x_k e_k, \sum_l y_l e_l\right)$$
(4)

$$= \sum_{i,j,k,l} a_{ij} e^{i}(e_k) e^{j}(e_l) x_k y_l = \sum_{i,j,k,l} a_{ij} \delta_k^i \delta_l^j x_k y_l = \sum_{i,j} a_{ij} x_i y_j.$$
 (5)

Donc un produit scalaire est un (0, 2)-tenseur.

Pour aller vers les formes différentielles, on a besoin d'une sous-catégorie de $\Omega_l^k(E)$ qui sont appelés les tenseurs extérieurs. Voici quelques définitions.

Définition 4.5. 1. On dit que σ est une permutation d'ordre k quand

$$\sigma: \{1, \dots, k\} \longmapsto \{1, \dots, k\}$$

est une bijection. On note $\sigma_i := \sigma(i)$. Pour tout $k \in \mathbb{N}$, S_k est l'ensemble des permutations d'ordre k. L'ensemble S_k muni de la loi \circ est un groupe. On dit qu'une permutation est une transposition quand il existe $i \neq j$ tels que

$$\sigma_i = j, \sigma_j = i, \sigma_s = s, \forall s \notin \{i, j\}.$$

 $\forall \sigma \in S_k, \exists \sigma_{(1)}, \ldots, \sigma_{(l)} \text{ tel que}$

$$\sigma = \sigma_{(1)} \dots \sigma_{(l)},\tag{6}$$

et chaque $\sigma_{(s)}$ est une transposition. Cette décomposition n'est pas unique, mais dans toutes les décompositions comme dans 6, la parité de l ne change pas. On définit

$$\frac{\operatorname{sgn}(\sigma)}{\varepsilon(\sigma)} := \begin{cases} 1 & \text{si } l \text{ est paire,} \\ 0 & \text{si } l \text{ est impaire.} \end{cases}$$

Définition 4.6. $\alpha \in \Omega^k(E)$ est dite un **tenseur extérieur** (aussi appelé tenseur antisymétrique) si

$$\forall v_1, \ldots, v_k \in E, \forall \sigma \in S_k, \alpha(v_{\sigma_1}, \ldots, v_{\sigma_k}) = \operatorname{sgn}(\sigma)\alpha(v_1, \ldots, v_k).$$

Proposition 4.3. Les trois assertions suivantes sont équivalentes :

- 1. α est extérieur;
- 2. $\forall \sigma \in S_k$ telle que σ est une transposition,

$$\forall v_1, \ldots, v_k, \alpha(v_{\sigma_1}, \ldots, v_{\sigma_k}) = -\alpha(v_1, \ldots, v_k);$$

3. $\forall v_1, \ldots, v_k \in E$, s'il existe $i, j \in \{1, \ldots, k\}$ tels que $v_i = v_j, i \neq j$, alors $\alpha(v_1, \ldots, v_k) = 0$.

Démonstration.

- 1. (1) \implies (2). On a sgn(transposition) = -1.
- 2. (2) \Longrightarrow (3). Donné i,j tels que $v_i=v_j, i\neq j$. On considère la transposition qui échange i et j et on a

$$\alpha(v_{\sigma_1}, \dots, v_{\sigma_k}) = -\alpha(v_1, \dots, v_k),$$

mais $(v_{\sigma_1}, \ldots, v_{\sigma_k}) = (v_1, \ldots, v_k)$ comme $v_i = v_j$ et donc

$$\alpha(v_1, \dots, v_k) = -\alpha(v_1, \dots, v_k) \implies \alpha(v_1, \dots, v_k) = 0.$$

3. (2) \Longrightarrow (1). Si $\sigma = \sigma_{(1)} \dots \sigma_{(l)}$, avec pour tout $j, \sigma_{(j)}$ est une transposition, alors

$$\alpha(v_{\sigma_1}, \dots, v_{\sigma_k}) = (-1)^l \alpha(v_1, \dots, v_k) = \operatorname{sgn}(\sigma) \alpha(v_1, \dots, v_k).$$

4. (3) \Longrightarrow (2). σ est une transposition telle que $\sigma_i = j, \sigma_j = i$. Les v_1, \ldots, v_k sont donnés. On écrit :

$$\alpha(v_1, \dots, \underbrace{v_i + v_j}_{\text{position } i}, \dots, \underbrace{v_i + v_j}_{\text{position } j}, \dots, v_k) = 0.$$

Mais

$$\alpha(v_1, \dots, v_i + v_j, \dots, v_i + v_j, \dots, v_k) \tag{7}$$

$$= \alpha(v_1, \dots, v_i, \dots, v_i + v_j, \dots, v_k) + \alpha(v_1, \dots, v_j, \dots, v_i + v_j, \dots, v_k)$$
(8)

$$= \underbrace{\alpha(v_1, \dots, v_i, \dots, v_k)}_{=0} + \alpha(v_1, \dots, v_i, \dots, v_j, \dots, v_k)$$
(9)

$$+\alpha(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k) + \underbrace{\alpha(v_1,\ldots,v_j,\ldots,v_j,\ldots,v_k)}_{=0}.$$
 (10)

On a d'une part 9 + 10 = 0 et d'autre part :

$$\alpha(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k) = -\alpha(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k) = \alpha(v_{\sigma_1},\ldots,v_{\sigma_k}),$$

ce qui donne le résultat souhaité.

Exemple.

- 1. $\alpha(v, w) = \alpha((v', v^2), (w', w^2)) = v'w^2 v^2w'$. On vérifie facilement qu'il est antisymétrique.
- 2. Plus généralement, pour chaque $v_1, \ldots, v_k \in \mathbb{R}^k$,

$$\alpha(v_1,\ldots,v_k) = \det[v_1 \ v_2 \ \ldots \ v_k]$$

est un tenseur extérieur.

Corollaire. Si la famille $\{v_1, \ldots, v_k\}$ n'est pas libre (i. e. linéairement dépendante), $\alpha(v_1, \ldots, v_k) = 0$.

Démonstration. Si la famille n'est pas libre, il existe i tel que $v_i = \sum_{j \neq i} c_j v_j$ et la démonstration est la même que pour la proposition 4.3.

On suppose que $\dim(E) = n$ et k > n. Si $\alpha \in \Omega^k(E)$ est un tenseur extérieur, alors, par convention, on écrit :

$$\forall v_1, \ldots, v_k \in E, \alpha(v_1, \ldots, v_k) = 0.$$

On définit maintenant l'ensemble des tenseurs extérieurs, à savoir

$$\Lambda^k(E) := \{ \alpha \in \Omega^k(E), \alpha \text{ est tenseur extérieur} \}.$$

Proposition 4.4. $\Lambda^k(E)$ est un sous-espace vectoriel, i. e.

$$\forall \alpha, \beta \in \Lambda^k(E) \text{ et } c \in \mathbb{R}, (c\alpha + \beta) \in \Lambda^k(E).$$

Quelle est la dimension de $\Lambda^k(E)$?

On cherche une base pour $\Lambda^k(E)$. Si (e_1,\ldots,e_n) base de $E,(e'_1,\ldots,e'_n)$ base duale, alors

$$\{e^{i_1}\otimes\cdots\otimes e^{i_k}\mid 1\leq i_j\leq n, 1\leq j\leq n\}$$

est une base de $\Omega^k(E)$.

On va définir pour chaque choix d'indices $1 \le i_1 < i_2 < \ldots < i_k \le n$ un élément extérieur $\varepsilon^{i_1 i_2 \ldots i_k}$ comme un élément proposé de base de $\Lambda^k(E)$ par la formule

$$\varepsilon^{i_1 \dots i_k}(v_1, \dots, v_k) = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) e^{i_1} \otimes \dots \otimes e^{i_k}(v_{\sigma_1}, \dots, v_{\sigma_k}).$$

Exemple.

$$e^{12}(v_1, v_2) = e^1 \otimes e^2(v_1, v_2) - e^1 \otimes e^2(v_2, v_1) = e^1(v_1)e^2(v_2) - e^1(v_2)e^2(v_1).$$

Proposition 4.5. $\varepsilon^{i_1...i_k} \in \Lambda^k(E)$, autrement dit $\varepsilon^{i_1...i_k}$ est un tenseur extérieur.

Démonstration. Soit $\tau \in S_k$ fixé. On a :

$$\varepsilon^{i_1 \dots i_k}(v_{\tau_1}, \dots, v_{\tau_k}) = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) e^{i_1} \otimes \dots \otimes e^{i_k}(v_{\sigma \tau_1}, \dots, v_{\sigma \tau_k})$$
$$= \sigma(\tau) \sum_{\sigma \in S_k} \operatorname{sgn}(\tau) \operatorname{sgn}(\sigma) e^{i_1} \otimes \dots \otimes e^{i_k}(v_{\sigma \tau_1}, \dots, v_{\sigma \tau_2}).$$

Donc

$$\varepsilon^{i_1\dots i_k}(v_{\tau_1},\dots,v_{\tau_k}) = \operatorname{sgn}(\tau) \sum_{\sigma' \in S_k} \operatorname{sgn}(\sigma') e^{i_1} \otimes \dots \otimes e^{i_k}(v_{\sigma'_1},\dots,v_{\sigma'_k}) = \operatorname{sgn}(\sigma) \varepsilon^{i_1\dots i_k}(v_1,\dots,v_k).$$

Il existe une autre manière pour proposer des éléments de base $\forall 1 \leq i_1 < i_2 < \ldots < i_k \leq n$ et $1 \leq j_1 < \ldots < j_k \leq n$. On va définir

$$\overline{\varepsilon}^{i_1...i_k}(e_{j_1},\ldots,e_{j_k}) \stackrel{\text{def}}{=} \delta^{i_1}_{j_1}\delta^{i_2}_{j_2}\ldots\delta^{i_k}_{j_k}.$$

Si $j_s = j_l$ pour $s \neq l$, alors $\overline{\varepsilon}^{i_1 \dots i_k} = 0$ par définition.

Si j_1, \ldots, j_k sont k indices différents, mais pas dans l'ordre croissant, on les réordonne par une permutation $\sigma \in S_k$ avec $1 \le \sigma_{j_1} < \ldots < \sigma_{j_k} \le n$. On définit

$$\overline{\varepsilon}^{i_1...i_k}(e_{j_1},\ldots,e_{j_k}) \stackrel{\text{def}}{=} \operatorname{sgn}(\sigma)\delta^{i_1}_{j_1}\ldots\delta^{i_k}_{j_k}.$$

Exercice 4. Est-ce que on a $\overline{\varepsilon} = \varepsilon$ pour tout choix de $1 \le i_1 < \ldots < i_k \le n$?

 $\overline{\varepsilon}$ est prolongé par k-linéarité sur tout élément $(v_1,\ldots,v_k)\in E^k$.

Théorème 4.3. $\{\overline{\varepsilon}^{i_1...i_k}, \text{ pour tout } 1 \leq i_1 < ... < i_k \leq n\}$ forme une base pour $\Lambda^k(E)$, l'espace vectoriel des tenseurs extérieurs.

 $D\'{e}monstration.$

1. Ils sont libres. En effet,

$$\sum_{1 \leq i_1 < \dots < i_k \leq n} c_{i_1 \dots i_k} \overline{\varepsilon}^{i_1 \dots i_k} = 0$$

$$\implies \forall 0 \leq j_1 < \dots < j_k \leq n, \sum_{1 \leq i_1 < \dots < i_k \leq n} c_{i_1 \dots i_k} \overline{\varepsilon}^{i_1 \dots i_k} (e_{j_1}, \dots, e_{j_k}) = 0$$

$$\implies 0 = \sum_{1 \leq i_1 < \dots i_k \leq n} c_{i_1 \dots i_k} \delta^{i_1}_{j_1} \dots \delta^{i_k}_{j_k} = c_{j_1 \dots j_k}.$$

2. Ils génèrent $\Lambda^k(E)$: exercice.

Quelle est la dimension de $\Lambda^k(E)$?

C'est $\dim(\Lambda^k(E)) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$. Par convention, $\dim(\Lambda^0(E)) = 1$ et $\Lambda^k(E) = \mathbb{R}$, $\Lambda^k(E) = \{0\}$ si k < 0 et

$$\dim(\Lambda^1(E)) = \frac{n!}{1!(n-1)!} = n \text{ et } \dim(\Lambda^n(E)) = \frac{n!}{(n-n)!0!} = 1.$$

Proposition 4.6. Si $\alpha \in \Lambda^k(F)$, $T \in \mathcal{L}(E,F)$, alors $(\Omega^k(T))(\alpha) \in \Lambda^k(E)$, avec $\Omega^k(T): \Omega^k(F) \longrightarrow$ $\Omega^k(E)$.

Démonstration. Si $\beta = (\Omega^k(T))(\alpha), v_1, \dots, v_k \in E$,

$$\beta(v_1,\ldots,v_k)=\alpha(T(v_1),\ldots,T(v_k)).$$

Si $i \neq j, v_i = v_j$, alors $T(v_i) = T(v_j)$ et $\alpha(T(v_1), \dots, T(v_k)) = 0$, donc $\beta(v_1, \dots, v_k) = 0$. Donc $\beta \in \Lambda^k(E)$.

On écrit

$$\Lambda^k(T) \stackrel{\mathrm{def}}{=} \Omega^k(T)_{|\Lambda^k(E)}.$$

Exemple.1.

2. Si k=n, on a dim $(\Lambda^k(E))=1$ et

$$\overline{\varepsilon}^{1...n}(e_1,\ldots,e_n)=1 \text{ et } \overline{\varepsilon}^{12...n}(e_{\sigma_1},\ldots,e_{\sigma_n})=\operatorname{sgn}(\sigma).$$

Si k=2=n, on a

$$\overline{\varepsilon}(e_1, e_2) = 1, \overline{\varepsilon}(e_2, e_1) = -1, \overline{\varepsilon}(e_1, e_1) = 0, \overline{\varepsilon}(e_2, e_2) = 0.$$

et $\overline{\varepsilon}(v,w) = -\overline{\varepsilon}(w,v)$. Si $v = (x_1,x_2), w = (y_1,y_2)$. Donc

$$\overline{\varepsilon}(v,w) = \overline{\varepsilon}(x_1e_1 + x_2e_2, y_1e_1 + y_2e_2)$$

 $=\dots$ on développe grâce à la linéarité de l'application $=x_1y_2-x_2y_1$.

C'est le déterminant formé par les vecteurs v, w, à savoir l'aire du parallélogramme formé par v, w.

Donc

$$\overline{\varepsilon}^{12...n}(v_1,\ldots,v_n) = \det[v_1 \ldots v_n].$$

C'est le volume *n*-dimensionnel signé de parallélipipède crée par (v_1, \ldots, v_n) (ordonné). On dit que $\overline{\varepsilon}^{1...n}$ est l'élément de volume sur $\Lambda^k(E)$ et on va le noter par $\omega = \overline{\varepsilon}^{1...n}$.

$$\omega(v_1,\dots,v_n) = \text{ volume sign\'e de parall\'elipip\`ede cr\'e\'e par } v_1,\dots,v_n = \left\{\sum_{i=1}^n \lambda_i v_i, 0 \leq \lambda_i \leq 1\right\}.$$

Remarque (Sur les notations). Parfois on représente les éléments de E comme les vecteurs de colonne

$$\overrightarrow{v} = \begin{bmatrix} x^1 \\ \vdots \\ x^n \end{bmatrix} = |\overrightarrow{v}\rangle, \text{ avec } \overrightarrow{v} = x^1e_1 + \dots + x^ne_n$$

et les éléments de E^* comme les vecteurs de ligne par rapport à la base duale.

$$\overrightarrow{a} = y_1 e^1 + \dots + y_n e^n, \langle \overrightarrow{a} | = [y_1 \dots y_n].$$

Pour $\overrightarrow{a} \in E^*$, pour $\overrightarrow{v} \in E$,

$$\overrightarrow{a}(\overrightarrow{v}) = \sum_{i=1}^{n} y_i x^i = \langle \overrightarrow{a} \mid \overrightarrow{v} \rangle$$
$$= [y_1 \dots y_n] \begin{bmatrix} x_1 \\ \vdots \\ x \end{bmatrix}.$$

Dans le cas général, $\omega = \overline{\varepsilon}^{1...n} \in \Lambda^k(E)$ est le seul élément de base pour cet espace de dimension 1. Si $T: E \to E$ transpormation linéaire $\Lambda^k(T): \Lambda^k(E) \longrightarrow \Lambda^k(E)$, mais $\dim(\Lambda^n(E)) = 1$ s'il existe $c \in \mathbb{R}, \forall \alpha \in \Lambda^n(E), \Lambda^n(T)(\alpha) = c\alpha$.

Définition 4.7. det(T) := c.

Exercice 5. Si $E = \mathbb{R}^n, T(v) = A|\overrightarrow{v}\rangle$ pour la base standart, alors $\det(T) = \det(A)$.

On considère $T: \mathbb{R}^n \to \mathbb{R}^n$, $\alpha \in \Lambda^n(\mathbb{R}^n)$,

$$(\Lambda^n(T))(\alpha)(w_1,\ldots,w_n) = \alpha(T(w_1),\ldots,T(w_n)) = \det(T)\alpha(w_1,\ldots,w_n).$$

On choisit $\alpha = \omega, w_i = e_i$.

$$\omega(T(e_1), \dots, T(e_n)) = \det(T)\omega(e_1, \dots, e_n). \tag{11}$$

Mais

$$\det(T) = \omega(T(e_1), \dots, T(e_n)) = \det[T(e_1), \dots, T(e_n)]. \tag{12}$$

11, 12 impliquent que det(T) = det(A).

 $\det(T)$ est défini directement indépendemment d'une base de E. Donc

$$\Lambda^n(\mathbb{1}_E) = \mathbb{1}_{\Lambda^n(E)},$$

donc $\mathbb{1}_{\Lambda^n(E)}(\alpha) = \alpha \implies c = 1.$

De plus, pour $T: E \to E, S: E \to E$,

$$\Lambda^n(S \circ T) = \Lambda^n(T) \circ \Lambda^n(S) \implies \det(S \circ T) = \det(S) \det(T).$$

Si T est inversible, alors

$$\Lambda^{n}(E)(T \circ T^{-1}) = \Lambda^{n}(\mathbb{1}_{E}) = \mathbb{1}_{\Lambda^{n}(E)}$$

$$\Longrightarrow \Lambda^{n}(T^{-1}) \circ \Lambda^{n}(T) = \mathbb{1}_{\Lambda^{n}(E)}$$

$$\Longrightarrow \det(T) \det(T^{-1}) = 1.$$

Si T est inversible, on a $det(T) \neq 0$ et

$$\det(T^{-1}) = \frac{1}{\det(T)}.$$

Aussi $\det(T) \neq 0 \implies T$ est inversible. Etant donné (e_1, \ldots, e_n) , on doit démontrer que $T(e_1), \ldots, T(e_n)$ forment une famille libre.

$$\omega(T(e_1),\ldots,T(e_n)) = \Lambda^n(T)(\omega)(e_1,\ldots,e_n) = (\det(T))\omega(e_1,\ldots,e_n) = \det(T)\cdot 1 \neq 0.$$

Comme ω est linéairement dépendant, par contraposée, $\{T(e_1),\ldots,T(e_n)\}$ ne peut pas être linéairement dépendant.

Lemme. Si $\{v_1, \ldots, v_n\}$ sont linéairement dépendants, alors $\omega(v_1, \ldots, v_n) = 0$. Si $\omega(v_1, \ldots, v_n) \neq 0$, alors $\{v_1, \ldots, v_n\}$ famille libre.

Aussi, si $\{v_1,\ldots,v_n\}$ sont libres, on définit $Te_i=v_i,T:E\to E$ devient inversible, donc $\det(T)\neq 0$.

$$\det(T) = \det(T)\omega(e_1, \dots, e_n) = (\Lambda^n(T))(\omega)(e_1, \dots, e_n)$$
$$= \omega(T(e_1), \dots, T(e_n)) = \omega(v_1, \dots, v_n) \implies \omega(v_1, \dots, v_n) \neq 0.$$

 $T: E \to E, (e_1, \ldots, e_n)$ base de E,

$$Te_i = A|e_i\rangle = \begin{bmatrix} A_{1i} \\ A_{2i} \\ \vdots \\ A_{ni} \end{bmatrix} = \sum_{j=1}^n A_{ji}e_j.$$

$$\det(T) = \omega(T(e_1), \dots, T(e_n)) = \omega(\sum_{j=1}^n A_{j1}e_j, \dots, \sum_{j=1}^n A_{jn}e_j)$$

$$= \sum_{j1} \dots \sum_{jn} A_{j11}A_{j22} \dots A_{jnn}\omega(e_{j1}, \dots, e_{jn}) = \sum_{\sigma \in S_n} A_{\sigma_11}A_{\sigma_22} \dots A_{\sigma_nn}\operatorname{sgn}(\sigma)$$

$$\implies \det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma)A_{\sigma_11}A_{\sigma_22} \dots A_{\sigma_nn}.$$

4.4 Les éléments de volumes et orientation

On a défini

$$\omega = \varepsilon^{12...n} \in \Lambda^n(E).$$

Cet élément dépend du choix de la base.

Définition 4.8. On dit que ω est un élément de volume sur E, avec $\dim(E) = n$ si $\omega \in \Lambda^n(E)$ et $\omega = 0$.

Remarque. Si $\omega_1, \omega_2 \in \Lambda^n(E)$ sont deux éléments de volume, alors il existe $c \neq 0, c \in \mathbb{R}$ tel que $\omega_1 = c\omega_2$.

Définition 4.9. On dit qu'une base $\{e_1, \ldots, e_n\}$ de E (base arbitraire $ordonn\acute{e}e$) a l'orientation positive (négative) ou est orientée positivement (négativement) par rapport à ω , qui est élément de volume donné sur E, quand $\omega(e_1, \ldots, e_n) > 0(\omega(e_1, \ldots, e_n) < 0)$.

Si $\omega = \varepsilon^{12...n}$ construit à partir de la base $\{e_1, \ldots, e_n\}$ et $\{e'_1, \ldots, e'_n\}$ est une base orientée positivement par rapport à ω , alors, par rapport à l'application linéaire $T: E \longrightarrow E, T(e_i) = e'_i$, on a $\det(T) > 0$.

Démonstration. En exercice.

La réciproque est aussi vraie.

Définition 4.10. $\{e_1,\ldots,e_n\},\{e'_1,\ldots,e'_n\}$ sont deux bases données. On dit qu'elles sont de même orientation lorsqu'il existe $\omega\in\Lambda^n(E)$ élément de volume tel que $\omega(e_1,\ldots,e_n)$ et $\omega(e'_1,\ldots,e'_n)$ sont de même signe.

Lemme. Si un tel ω dans la définition existe, alors $\forall \omega \in \Lambda^n(E)$, $\omega(e_1, \ldots, e_n)$ et $\omega(e'_1, \ldots, e'_n)$ ont le même signe.

Démonstration. En exercice.

Remarque. Etre de la même orientation est une relation d'équivalence sur la collection de bases sur E. Il y a deux classes d'équivalence.

Si on fait la théorie sur \mathbb{C} (qui n'est pas un corps ordonné), on ne peut pas définir une orientation. Si $\omega(e_1,\ldots,e_n)\in\mathbb{C}$, il n'y a pas de signe (Kähler).

On définit

$$\Lambda^*(E) := \bigoplus_{k \in \mathbb{Z}} \Lambda^k(E) = \bigoplus_{0 \le k \le n} \Lambda^k(E).$$

En général, $\alpha \otimes \beta$ n'est pas un tenseur extérieur. On cherche un produit \wedge qui nous donne

$$\alpha \in \Lambda^k(E), \beta \in \Lambda^l(E) \implies \alpha \wedge \beta \in \Lambda^{k+l}(E).$$

Si on essaie de mettre

$$\alpha \wedge \beta(v_1, \dots, v_k, v_{k+1}, \dots, v_{k+l}) = \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \alpha(v_{\sigma_1}, \dots, v_{\sigma_k}) \beta(v_{\sigma_{k+1}}, \dots, v_{\sigma_{k+l}}).$$

Ce produit est tel que $\alpha \times \beta$ est antisymétrique, mais défini de cette façon, il n'est pas associatif.

Définition 4.11. $\Lambda^k(E) \times \Lambda^l(E) \xrightarrow{\wedge} \Lambda^{k+l}(E)$, avec $\alpha \in \Lambda^k(E)$, $\beta \in \Lambda^l(E)$, le produit extérieur $\alpha \wedge \beta$ est défini comme l'élément de $\Omega^{k+l}(E)$ par

$$\alpha \wedge \beta(v_1, \dots, v_k, v_{k+1}, \dots, v_{k+l}) = \frac{1}{k! l!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \alpha(v_{\sigma_1}, \dots, v_{\sigma_k}) \beta(v_{\sigma_{k+1}}, \dots, v_{k+l}).$$

Lemme. $\alpha \in \Lambda^k, \beta \in \Lambda^l(E) \implies \alpha \wedge \beta \in \Lambda^{k+l}(E).$

Démonstration. Prenons $\tau \in S_{k+l}$. On a

$$\alpha \wedge \beta(v_{\tau_1}, \dots, v_{\tau_k}, v_{\tau_{k+1}}, \dots, v_{\tau_{k+l}})$$

$$\stackrel{\text{def}}{=} \frac{1}{k! l!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \alpha(v_{(\sigma\tau)_1}, \dots, v_{(\sigma\tau)_k}) \beta(v_{(\sigma\tau)_{k+1}}, \dots, v_{(\sigma\tau)_{k+l}})$$

Proposition 4.7. Si $\alpha \in \Lambda^k(E), \beta \in \Lambda^l(E), \gamma \in \Lambda^s(E)$, alors

$$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma).$$

Donc on peut parler sans confusion de $\alpha \wedge \beta \wedge \gamma \in \Lambda^{k+l+s}(E)$.

Donc on peut généraliser le produit sur m tenseurs extérieurs $\alpha_i \in \Lambda^{k_i}, 1 \leq i \leq m$,

$$\alpha_1 \wedge \dots \wedge \alpha^m(v_1, \dots, v_{k_1}, v_{k_1+1}, \dots, v_{k_1+k_2}, \dots, v_{\sum_{i=1}^{m-1} k_i}, \dots, v_{\sum_{i=1}^m k_i})$$

$$= \frac{1}{k_1! \dots k_m!} \sum_{\sigma \in S_{k_1+\dots+k_m}} \operatorname{sgn}(\sigma) \alpha_1(v_{\sigma_1}, \dots, v_{\sigma_{k_1}}) \alpha_2(\dots) \dots \alpha_m(\dots).$$

Exemple.

$$\varepsilon^{i_1 \dots i_k}(v_1, \dots, v_k) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) (e^{i_1} \otimes e^{i_n}) (v_{\sigma_1}, \dots, v_{\sigma_n})$$

$$= \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) e^{i_1}(v_{\sigma_1}) \dots e^{i_k}(v_{\sigma_k})$$

$$= \frac{1}{1! \dots 1!} \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) e^{i_1}(v_{\sigma_1}) \dots e^{i_k}(v_{\sigma_n}).$$

Si on met $m=k, k_1=\cdots=k_m=1, \alpha_{k_j}=e^{i_j}\in\Lambda^1(E), 1\leq j\leq k$, on voit que

$$\varepsilon^{i_1...i_k} = e^{i_1} \wedge \cdots \wedge e^{i_k}.$$

Exercice 6. Montrer que $e^{i_1} \wedge \cdots \wedge e^{i_k}(e_{j_1}, \dots, e_{j_k}) = \delta^{i_1}_{j_1} \dots \delta^{i_k}_{j_k}$, avec $0 < i_1 < \dots < i_k \le n, 0 \le j_1 < j_2 < \dots < j_k \le n$ qui montre que

$$\varepsilon^{i_1...i_k} = \overline{\varepsilon}^{i_1...i_k}.$$

Donc pour n=m, on obtient $\varepsilon^{12\dots n}=e^1\wedge\dots\wedge e^n$. Donc l'élément de volume ω associé à une base ordonnée (e_1,\dots,e_n) de E est simplement $\omega=e^1\wedge\dots\wedge e^n$.

Exemple. Si $\alpha_i \in \Lambda^1(E), v_i \in E$,

$$\alpha_1 \wedge \dots \wedge \alpha_m(v_1, \dots, v_m) = \sum_{\sigma \in S_m} \operatorname{sgn}(\sigma) \alpha_1(v_{\sigma_1} \dots \alpha_m(v_{\sigma_m})) = \det[\alpha_i(v_j)].$$

Exemple. $\alpha_i: \mathbb{R}^3 \to \mathbb{R}$,

$$\alpha_1(x_1, x_2, x_3) = x_1 + x_2, \alpha(x_1, x_2, x_3) = x_3,$$

 $v_1 = (1, 1, 0), v_2 = (0, 1, 0).$

m = 2, n = 3.

$$\begin{split} \alpha_1 \wedge \alpha_2(v_1, v_2) &= \sum_{\sigma \in S_2} \operatorname{sgn}(\sigma) \alpha_1(v_{\sigma_1}) \alpha_2(v_{\sigma_2}) \\ &= \alpha_1(v_1) \alpha_2(v_2) - \alpha_2(v_1) \alpha_1(v_2) = \det \left(\begin{pmatrix} \alpha_1(v_1) & \alpha_1(v_2) \\ \alpha_2(v_1) & \alpha_2(v_2) \end{pmatrix} \right) = \det \left(\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \right) = 2. \end{split}$$

Proposition 4.8. $\alpha \in \Lambda^k(E), \beta \in \Lambda^l(E)$, alors

$$\alpha \wedge \beta = (-1)^{kl} \beta \times \alpha.$$

En particulier, si k est impair,

$$\forall \alpha \in \Lambda^k(E), \alpha \wedge \alpha = 0,$$

parce que dans ce cas, on a $\alpha \wedge \alpha = (-1)\alpha \wedge \alpha$.

Démonstration.

$$\alpha \wedge \beta(v_1, \dots, v_{k+l}) = \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma)(v_{\sigma_1}, \dots, v_{\sigma_k}) \beta(v_{\sigma_{k+1}}, \dots, v_{\sigma_{k+l}})$$
$$\beta \wedge \alpha(v_1, \dots, v_{k+l}) = \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \beta(v_{\sigma_1}, v_{\sigma_l}) \alpha(v_{l+1}, \dots, v_{l+k}).$$

On doit introduire τ telle que $(-1)^{kl}$.

Proposition 4.9. Soit $T \in \mathcal{L}(E, F)$. Pour tout k, $\Lambda^k(T) : \Lambda^k(F) \longrightarrow \Lambda^k(E)$, pour $\alpha \in \Lambda^k(F)$, $\beta \in \Lambda^l(F)$,

$$\underbrace{\Lambda^{k+l}(T)(\alpha \wedge \beta)}_{\in \Lambda^{k+l}(E)} = \underbrace{\Lambda^{k}(T)(\alpha)}_{\in \Lambda^{k}(E)} \wedge \underbrace{\Lambda^{l}(T)(\beta)}_{\in \Lambda^{l}(E)}.$$

La relation entre le produit extérieur \wedge et le produit extérieur des vecteurs de \mathbb{R}^3 : soient $v_1 = (x_1, x_2, x_3)$ et $v_2 = (y_1, y_2, y_3)$.

$$v_1 \times v_2 := (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

Penser à v_1, v_2 comme des éléments de $(\mathbb{R}^3)^*$, donc comme des éléments de $\Lambda^1((\mathbb{R}^3)^*)$. Quels sont les coefficients de $v_1 \wedge v_2$ dans la base $\varepsilon_{12}, \varepsilon_{13}, \varepsilon_{23}$?

$$v_{1} \wedge v_{2} = \sum_{1 \leq i_{1} < i_{2} \leq 3} v_{1} \wedge v_{2}(e^{i_{1}}, e^{i_{2}}) \varepsilon_{i_{1}i_{2}} = v_{1} \wedge v_{2}(e^{1}, e^{2}) \varepsilon_{12} + v_{1} \wedge v_{2}(e^{2}, e^{3}) \varepsilon_{23} + v_{1} \wedge v_{2}(e^{1}, e^{3}) \varepsilon_{13}$$

$$= [v_{1}(e^{1})v_{2}(e^{2}) - v_{1}(e^{2})v_{2}(e^{1})] \varepsilon_{12} + [v_{1}(e^{2})v_{2}(e^{3}) - v_{2}(e^{2})v_{1}(e^{3})] \varepsilon_{23} + [v_{1}(e^{1})v_{2}(e^{2}) - v_{2}(e^{1})v_{1}(e^{3})] \varepsilon_{13}$$

$$= (e^{1}(v_{1})e^{2}(v_{2}) - e^{2}(v_{1})e^{1}(v_{2})) \varepsilon_{12} + (e^{2}(v_{1})e^{3}(v_{2}) - e^{2}(v_{2})e^{3}(v_{1})) \varepsilon_{23} + (e^{1}(v_{1})e^{2}(v_{2}) - e^{1}(v_{2})e^{3}(v_{1})) \varepsilon_{13}$$

$$= (x_{1}y_{2} - x_{2}y_{1}) \varepsilon_{12} + (x_{2}y_{3} - x_{3}y_{2}) \varepsilon_{23} + (x_{1}y_{3} - x_{3}y_{1}) \varepsilon_{13}.$$

Donc si on choisit la base $\{\varepsilon_{23}, \varepsilon_{31}, \varepsilon_{12}\}$, on obtient $\varepsilon_{31} = -\varepsilon_{13} = e_1 \wedge e_3$. On obtient les coordonnées dans la base ordonnée $(\varepsilon_{23}, \varepsilon_{31}, \varepsilon_{12})$ de $\Lambda_2(\mathbb{R}^3)$ de $v_1 \wedge v_2 \in \Lambda_2(\mathbb{R}^3)$ est donnée par $v_1 \times v_2$.

Définition 4.12 (Contraction d'un tenseur par vecteur). Soit $X \in E$. Pour tout $\alpha \in \Omega^k(E), 1 \le k \le n$. $i_X(\alpha) \in \Omega^{k-1}(E)$ pour

$$i_X(\alpha)(v_1,\ldots,v_{k-1}) \stackrel{\text{def}}{=} \alpha(X,v_1,\ldots,v_{k-1}).$$

On a $\Omega^0 \simeq \mathbb{R}$. Si $\alpha \in \Omega^1(E) = E^*$, on a $i_X(\alpha) = \alpha(X) \in \mathbb{R}$. En particulier, i_X est défini sur $\Lambda^k(E)$ pour tout k.

Lemme. $X \in E, \alpha \in \Lambda^k(E), \ alors \ i_X(\alpha) \in \Lambda^{k-1}(E).$

Démonstration. Pour $v_i = v_j, i \neq j, i, j \in \{1, \dots, k-1\}$, donc

$$i_X(\alpha)(v_1, \dots, v_{k-1}) = \alpha(X, v_1, \dots, v_{k-1}) = 0$$

Proposition 4.10. 1. $X \longrightarrow i_X$ est linéaire dans le sens que

- (a) $i_{X+Y} = i_X + i_Y$,
- (b) $i_{cX} = ci_X$.
- 2. Si on considère i_X restreint à $\Lambda^*(E)$, on a $i_X \circ i_Y = -i_Y \circ i_X$ et $i_X \circ i_X = 0$.
- 3. Pour $i_{X_{|\lambda^*(E)}}$, on a, pour $\alpha \in \Lambda^k(E)$, $\beta \in \Lambda^l(E)$,

$$i_X(\alpha \wedge \beta) = i_X(\alpha) \wedge \beta + (-1)^k \alpha \wedge (i_X \beta).$$

Remarque. Supposons que $F \subseteq E$ est un sous-espace vectoriel, avec $\dim(F) = n-1, \dim(E) = n$, $X \notin F$ et ω est un élément de volume en E, alors $\omega \in \lambda^n(E)$. Alors $i_X(\omega) \in \Lambda^{n-1}(F)$ va être un élément de volume pour F.

$$I_F: F \longrightarrow E$$
 est une injection $\implies \Lambda^{n-1}(E) \stackrel{\Lambda^{n-1}(I_F)}{\longrightarrow} \Lambda^{n-1}(F)$,

$$\Lambda^{n-1}(I_F)\alpha(v_1, \dots, v_{n-1}) = \alpha(v_1, \dots, v_{n-1}), v_i \in F.$$

Donc quand on dit que $i_X(\omega) \in \Lambda^{n-1}(F)$, on est en train de considérer $i_X(\omega)_{|F^{n-1}}$ en réalité.

5 Analyse tensorielle sur les ouverts de \mathbb{R}^n

5.1 Motivation 18-10-2023

On veut faire une analyse (calcul différentiel) sur les surfaces, courbes, variétés (les objets courbes de dimensions supérieures).

FIGURE 10 – Dans ce cas, \mathbb{R}^2 est tangent partout.

FIGURE 11 – Dans ce cas, chaque vecteur tangent est à l'intérieur et chaque plan tangent est différent.

Définition 5.1. Soit $U \subseteq \mathbb{R}^2$ un ouvert. Pour tout $a \in U$, l'espace tangent

$$T_a U \stackrel{\text{déf}}{=} \{a\} \times \mathbb{R}^n,$$

et est muni d'un espace vectoriel de manière suivante :

$$\forall u, v \in \mathbb{R}^n, \underbrace{(a, u)}_{\in T_a U} + (a, v) = (a, u + v),$$

$$\forall r \in \mathbb{R}, \forall v \in \mathbb{R}^n, r(a, u) = (a, ru).$$

 T_aU devient un espace vectoriel linéairement isomorphe à \mathbb{R}^n . Géométriquement on peut penser à T_aU comme un vecteur de \mathbb{R}^n basé en un point a.

FIGURE 12 – Exemple d'un plan tangent à U.

5.2 Dérivation d'une fonction

Définition 5.2. Soit $f: U \to \mathbb{R}^n$. Pour tout $a \in U, Df(a): \mathbb{R}^n \longrightarrow \mathbb{R}^m$. C'est une application linéaire. On va définir

$$d_a f = df(a) : T_a U \longrightarrow \mathbb{R}^n,$$

avec

$$\underbrace{df((a,\overrightarrow{v}))}_{a\in U,\overrightarrow{v}\in\mathbb{R}^n}=Df(a)(\overrightarrow{v}).$$

Si $a \neq b$, $d_a f$ ne peut pas agir sur $T_a U$ (formellement, ce n'est pas défini. On dit que $d_a f$ est la dérivée de f au point a.

Remarque (Personnelle). C'est la différentielle définie sur un espace tangent.

Remarque. Si m = 1, $d_a f \in \mathcal{L}(T_a U, \mathbb{R})$, c'est-à-dire que $d_a f \in (T_a U)^*$.

Remarque (Notation). $T_a^*U := (T_aU)^* \simeq \{a\} \times (\mathbb{R}^n)^*$.

Définition 5.3. Le fibré tangent sur U est

$$TU := \bigcup_{a \in U} T_a U \atop (a, \overrightarrow{v}), \overrightarrow{v} \in \mathbb{R}^n \simeq U \times \mathbb{R}^n$$

et le fibré cotangent est

$$T^*U := \bigcup_{a \in U} T_a^* U \simeq U \times (\mathbb{R}^*)^n.$$

Avec ce formalisme, la différentielle de $f:U\longrightarrow \mathbb{R}^n$ est définie par $df:U\longrightarrow T^*U$ et $\forall a\in U, df(a)=d_af\in T_a^*U\subseteq T^*U$.

Remarque. $\underline{\wedge}$ Une condition nécessaire pour qu'une application $\alpha: U \longrightarrow T^*U$ soit une différentielle soit dans la forme $\alpha = df$ est que pour tout $a \in U, \alpha(a) \in T^*U$.

Si on définit $\pi: T_a^* \longrightarrow U$ par $\pi(a, f) = a$, cette condition nécessaire est équivalente que de dire que $\pi \circ \alpha = \mathbbm{1}_U$.

Exemple (De différentielle). Projection sur le composant j:

On a $x^j: U \longrightarrow \mathbb{R}$ telle que

$$x^j(a_1,\ldots,a_n)=a_i.$$

$$d_a x^j(a, \overrightarrow{v}) = D x^j(a)(\overrightarrow{v}) = \left[\frac{\partial x^j}{\partial x_1}, \dots, \frac{\partial x^j}{\partial x_n}\right] \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = [0, \dots, 0, \underbrace{1}_{\text{en } j}, 0, \dots, 0] \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = v_j.$$

On a $dx^j: U \longrightarrow T^*U$. Pour tout $a \in U$, $dx^j(a) \in T_a^*U$.

Donc $dx^j(a) = (a, f)$ où $f \in (\mathbb{R}^n)^*$. Pour tout $\overrightarrow{v} \in \mathbb{R}^n$, $f(\overrightarrow{v}) = v_j$. Pour $e_i \in \mathbb{R}^n$, $f(e_i) = \delta_i^j$, donc $f = e_j$, l'élément de la base duale. On a alors

$$dx^{j}(a) = (a, e^{j}).$$

Donc $(dx^1(a), \ldots, dx^n(a))$ est une base naturelle pour T_a^*U . La base duale de cette base dans $T_aU \simeq (T_a^*U)^*$ est décrite par la notation suivante :

$$\left(\frac{\partial}{\partial x^1}(a), \dots, \frac{\partial}{\partial x^n}(a)\right) = ((a, e_1), \dots, (a, e_n)).$$

On a
$$\frac{\partial}{\partial x^j}(a) = (a, e_j), (dx^j(a)) \left(\frac{\partial}{\partial x^i}\right) = \delta_i^j.$$

On suppose que $E = T_a U$. On peut construire $\Omega^k(T_a U)$, $\Omega_l(T_a U) = \Omega_l(T_a^* U)$, $\Omega_l^k(T_a U)$ qui sont des (l,k)-tenseurs sur $T_a U$.

On peut aussi définir $\Lambda^k(T_aU)$ (tenseurs extérieurs covariants), $\Lambda_l(T_aU) = \Lambda^l(T_a^*U)$ (tenseurs extérieurs contravariants), $\Lambda_l^k(T_aU)$.

Définition 5.4. On définit

$$(T_l^k)_a U = \Omega_l^k (T_a U)$$

et

$$(\Lambda_l^k)_a U \stackrel{\text{déf}}{=} (\Lambda_l^k) (T_a U).$$

Si k = l = 0, on ne va pas les écrire.

Définition 5.5. On peut alors définir les fibrés tensoriels et tensoriels extérieurs par :

$$T_l^k U := \bigcup_{a \in U} (T_l^k)_a U \text{ et } \Lambda_l^k := \bigcup_{a \in U} (\Lambda_l^k)_a U.$$

Très souvent on va avoir affaire aux fibrés où soit k soit l vaut 0. Par exemple,

$$\Lambda^{k}U = \bigcup_{a \in U} \Lambda^{k}_{a}U = \bigcup_{a \in U} \Lambda^{k}(T_{a}U),$$
$$T^{k}U = \bigcup_{a \in U} T^{k}_{a}U = \bigcup_{a \in U} \Omega^{k}(T_{a}U).$$

Si $\alpha \in T_l^k U$, alors il existe $a \in U$ tel que $\alpha \in (T_l^k)_a U = \Omega_l^k (T_a U)$. Donc α est une application (k+l)-linéaire sur $\underbrace{T_1 U \times \cdots \times T_a U}_{k \text{ fois}} \times \underbrace{(T_a U)^* \times \cdots \times (T_a U)^*}_{l \text{ fois}}$.

Mais une telle application peut être identifiée par une application (k+l)-linéaire sur

$$\underbrace{\mathbb{R}^n \times \dots \mathbb{R}^n}_{k \text{ fois}} \times \underbrace{(\mathbb{R}^n)^* \times \dots \times (\mathbb{R}^n)^*}_{l \text{ fois}}$$

avec les isomorphismes $T_aU \simeq \mathbb{R}^n$, $T_a^*U \simeq (\mathbb{R}^n)^*$.

Donc $\Omega_l^k(T_aU)\simeq \{a\}\times \Omega_l^k(\mathbb{R}^n)$ et on a une projection bien définie sur la première composante

$$\tau_l^k : \Omega_l^k(T_a U) \longrightarrow U, \tau_l^k(a, \tilde{\alpha}) = a.$$

Donc si $\alpha \in T_l^k U$, on a $\tau_l^k(\alpha)$ est le point $a \in U$ pour lequel $\alpha \in (T_l^k)_a U$.

Définition 5.6. Un champ tensoriel sur $U \subseteq \mathbb{R}^n$ est une application

$$\alpha: U \longrightarrow T_l^k U$$

telle que

$$\tau_l^k \circ \alpha = \mathbb{1}_U$$
, avec $\tau_l^k(\alpha(a)) = a$.

 α est aussi appelée parfois une section du fibré tensoriel $T_i^k U$.

Si α est un champ tensoriel, pour tout $a \in U$, $\alpha(a) \in \Omega_l^k(T_aU)$.

L'ensemble $(e^{i_1} \otimes \cdots \otimes e^{i_k} \otimes e_{j_1} \otimes \cdots \otimes e_{j_k})$ est une base de $\Omega_l^k(\mathbb{R}^n)$ où $1 \leq i_1, \ldots, i_k, j_1, \ldots, j_l \leq n$. Maintenant la base de $\Omega_l^k(T_aU)$ devient

FIGURE 13 - Exemple d'un champ tensoriel

$$dx^{i_1}(a) \otimes \cdots \otimes dx^{i_k}(a) \otimes \frac{\partial}{\partial dx^{j_1}}(a) \otimes \cdots \otimes \frac{\partial}{\partial x^{j_l}}(a).$$

Donc pour tout $a\in U,$ il existe des coefficients $a^{j_1...j_l}_{i_1...i_k}(a)\in\mathbb{R}$ tels que :

$$\alpha(a) = \sum_{\substack{1 \le i_1, \dots, i_k \le n \\ 1 \le j_1, \dots, j_l \le n}} a_{i_1 \dots i_k}^{j_1 \dots j_l} dx^{i_1} \otimes \dots \otimes dx^{i_k} \otimes \frac{\partial}{\partial x^{j_1}}(a) \otimes \dots \otimes \frac{\partial}{\partial x^{j_l}}(a).$$

FIGURE 14 – Cylindre $S^1 \times \mathbb{R}^2$. On peut "couper" et considérer les cylindres $S^1 \times [-1,1]$.

FIGURE 15 – Le Ruban de Mobius n'est pas équivalent à $S^1 \times [-1,1]$

Donc

$$\alpha = \sum_{1 \le i_1, \dots, i_k, j_1, \dots, j_l \le n} a_{i_1 \dots i_k}^{j_1 \dots j_l} dx^{i_1} \otimes \dots \otimes dx^{i_k} \otimes \frac{\partial}{\partial x^{j_1}} \otimes \dots \otimes \frac{\partial}{\partial x^{j_l}}$$

où $a^{j_1...j_l}_{i_1...i_k}: U \longrightarrow \mathbb{R}$ est une application.

Définition 5.7. On dit que le champ vectoriel α est de classe \mathcal{C}^r si $\forall i_1, \dots, i_k, j_1, \dots, j_l$, le coefficient $\alpha_{i_1 \dots i_l}^{j_1 \dots j_l} \in \mathcal{C}^r(U)$.

Donc on peut parler de régularité de $\alpha:U\longrightarrow\mathbb{R}^{n+n^{k+l}}$ directement, mais dans ce cas là, la définition revient à la même.

5.2.1 Exemple très important : la métrique riemanienne

Définition 5.8. Soit $U \subseteq \mathbb{R}^n$ ouvert. Une métrique riemanienne sur U est un champ tensoriel 2-covariant (de type (0,2)) symétrique, positif-défini ur U.

Si g est une métrique riemanienne sur $U, g: U \longrightarrow T^2U$.

Pour tout $x \in U, g(a) \in \Omega^2(T_aU)$, avec $\tau^2 \circ g = \mathbb{1}_U$.

$$\forall \overrightarrow{u}, \overrightarrow{v} \in T_a U, g(a)(\overrightarrow{u}, \overrightarrow{v}) = g(a)(\overrightarrow{v}, \overrightarrow{u}) \text{ (symétrie)}.$$

Donc cela revient à dire que g(a) est un produit scalaire sur T_aU (mais qui dépend de a).

La métrique riemanienne est donc un champ tensoriel de type (0,2) tel que $\forall a \in U, g(a)$ est un produit scalaire sur T_aU .

Donc

$$g = \sum_{1 \le i_1, i_2 \le n} g_{i_1 i_2} dx^{i_1} \otimes dx^{i_2} = \sum_{1 \le i, j \le n} g_{ij} dx^i \otimes dx^j.$$

Quelle est la condition sur les coefficients g_{ij} pour que g devienne une métrique riemanienne? Pour tout $x \in U$, on peut former la matrice

$$G_a = [g_{ij}(a)]_{n \times n}$$
.

Proposition 5.1. g(a) est une métrique riemanienne sur T_aU si et seulement si g(a) est un produit scalaire.

Lemme. g(a) est un produit scalaire sur T_aU si et seulement si G_a est une matrice symétrique définie positive.

Démonstration.

$$g(a)\left(\frac{\partial}{\partial x^{i'}}, \frac{\partial}{\partial x^{j'}}\right) = \sum_{1 \leq i, j \leq n} g_{ij}(a) dx^{i}(a) \otimes dx^{j}(a) \left(\frac{\partial}{\partial x^{i'}}(a), \frac{\partial}{\partial dx^{j'}}\right)$$
$$= \sum_{1 \leq i, j \leq n} g_{ij}(a) d^{i}(a) \left(\frac{\partial}{\partial x^{i}}(a)\right) dx^{j}(a) \left(\frac{\partial}{\partial x^{j}}(a)\right) = \sum_{1 \leq i, j \leq n} g_{ij}(a) \delta^{i}_{i'} \delta^{j}_{j'} = g_{i'j'}(a).$$

Donc $\forall i, j,$

$$g_{i'j'}(a) = g(a) \left(\frac{\partial}{\partial x^{i'}(a)}, \frac{\partial}{\partial x^{j'}}(a) \right) = g(a) \left(\frac{\partial}{\partial x^{j'}(a)}, \frac{\partial}{\partial x^{i'}}(a) \right) = g_{j'i'}(a),$$

ce qui implique que ${}^tG_a = G_a$, donc G_a est symétrique.

Supposons que g(a) est défini positif.

$$g(a)(\overrightarrow{v}) = \sum_{i,j} dx^i(a) \otimes dx^j(a)(\overrightarrow{v}, \overrightarrow{v}),$$

avec

$$\overrightarrow{v} = \sum_{j=1}^{n} v^{j} \frac{\partial}{\partial x^{j}} = \sum_{i,j} g_{i,j}(a) dx^{i}(a) \otimes dx^{j}(a) \left(\sum_{i'} \frac{\partial}{\partial x^{i'}}(a), \sum_{j'} v^{j'} \frac{\partial}{\partial x^{j'}}(a) \right)$$

$$= \sum_{i,j} \sum_{i',j'} g_{ij}(a) v^{i'} v^{j'} dx^{i}(a) \left(\frac{\partial}{\partial x^{i'}}(a) dx^{j}(a) \frac{\partial}{\partial x^{j'}}(a) \right) = \sum_{\substack{i,j\\i'=i\\j=j'}} g_{ij}(a) v^{i} v^{j}$$

$$= [v^{1} \dots v^{n}][G_{a}] \begin{bmatrix} v^{1}\\ \vdots\\ v^{n} \end{bmatrix} = \widetilde{v} \cdot G_{a} \widetilde{v}.$$

Donc $\tilde{\overrightarrow{v}}G_a\tilde{\overrightarrow{v}}\geq 0$ pour tout $\overrightarrow{v}\in\mathbb{R}^n$ et $\tilde{\overrightarrow{v}}\cdot G_a\tilde{\overrightarrow{v}}=0\iff \tilde{\overrightarrow{v}}=0$, ce qui implique que G_a est défini positif.

Le sens réciproque est démontré par les mêmes calculs.

Commentaires

1. Si $G \in r^{n+n}$ est symétrique et défini positif, alors $\forall \overrightarrow{u}, \overrightarrow{v} \in \mathbb{R}^n$,

$$\langle \overrightarrow{u} \mid \overrightarrow{v} \rangle_G := \overrightarrow{u} \cdot G \overrightarrow{v} = {}^t \overrightarrow{u} G \overrightarrow{v} = \langle \overrightarrow{u} \mid G \mid \overrightarrow{v} \rangle$$

est un produit scalaire.

2. Si $\langle \overrightarrow{u} \mid \overrightarrow{v} \rangle$ est un produit scalaire sur \mathbb{R}^n , alors il existe une matrice G dans \mathbb{R}^{n+n} symétrique, définie positive telle que

$$\langle \overrightarrow{u}, \overrightarrow{v} \rangle_* = \langle \overrightarrow{u} \mid G \mid \overrightarrow{v} \rangle,$$

avec $G = [g_{ij}]_{i,j}$ et $g_{ij} = \langle e_i \mid e_j \rangle_*$.

Donc pour la métrique riemanienne,

$$g = \sum_{i,j} g_{ij} dx^i \otimes dx^j,$$

avec

$$g_{ij}(a) = g\left(\frac{\partial}{\partial x^i}(a), \frac{\partial}{\partial x^j}(a)\right).$$

Pour tout i, $\frac{\partial}{\partial x^i}(a) = (a, e_i) \in T_a U$ et

$$\left(\frac{\partial}{\partial x^1}(a), \dots, \frac{\partial}{\partial x^n}(a)\right)$$

est une base de $T_aU = \{a\} \times \mathbb{R}^n, a \in U$.

 $g: U \longrightarrow T^2U, \tau^2 \circ g(a) = a, \forall a \in U \text{ si et seulement si } \forall a \in U, g(a) \in T_aU.$

La métrique g est de classe \mathcal{C}^r si et seulement si $\forall i, j, g_{ij} : U \longrightarrow \mathbb{R}$ est de classe \mathcal{C}^r (par définition).

Exemple (La métrique euclidienne).

$$g = \sum_{i=1}^{n} dx^{i} \otimes dx^{i}$$

et

$$\forall a \in U, G_a = I_{n+n} \in \mathbb{R}^{n+n}$$

Supposons $\gamma:[a,b]\longrightarrow U$ différentiable, avec $[a,b]\subset\mathbb{R}$.

On a, pour $\gamma(t) = (x^1(t), \dots, x^n(t)), (\gamma)'(t) = (x^1)'(t), \dots, (x^n)'(t),$

$$L(\gamma) = \int_{a}^{b} \|\gamma'(t)\| dt = \int_{a}^{b} (\gamma'(t) \cdot I_{n+n} \gamma'(t))^{\frac{1}{2}} dt = \int_{a}^{b} \langle \gamma'(t) | \gamma'(t) \rangle_{I_{n+n}}^{\frac{1}{2}} dt$$

On va définir, pour $\gamma:(a,b)\longrightarrow U$,

$$T\gamma: \underbrace{T_{(a,b)}}_{(t,\overrightarrow{v}),\overrightarrow{v}\in\mathbb{R}} \longrightarrow \underbrace{TU}_{(c,\overrightarrow{w}),c\in U,\overrightarrow{w}\in\mathbb{R}^n}.$$

 $g(\gamma(t))$ est un produit scalaire sur $T_{\gamma(t)}U$ et

$$T\gamma(t, \overrightarrow{v}) = (\gamma(t), \overrightarrow{v}\gamma'(t)).$$

Choisissons $\{1\}$ comme base de \mathbb{R} . Alors

1.

$$T\gamma_{|T_t(a,b)}:T_{t(a,b)}\longrightarrow T_{\gamma(t)}U.$$

2. $T\gamma(t,1) = (\gamma(t), \gamma'(t))$, avec (t,1) élément de base pour $T_{t(a,b)}$.

On définit alors

$$L_g(\gamma) := \int_a^b g(\gamma(t)) (T\gamma(t,1), T\gamma(t,1))^{\frac{1}{2}} dt.$$

Si $g = \sum g_{ij} dx^i \otimes dx^j$ et $G_c = [g_{ij}(c)], \forall c \in U$, on obtient

$$L_g(\gamma) = \int_a^b \langle \gamma'(t) \mid G_{\gamma(t)} \mid \gamma'(t) \rangle^{\frac{1}{2}} dt.$$

Remarque. Si $c,d \in U, c \neq d, \forall \gamma: [a,b] \longrightarrow U$ tel que $\gamma(a)=c, \gamma(b)=d$ différentiable sur $(a,b), L_q(\gamma)>0$.

Exercice 7. Si $\gamma'(t) = 0$, alors $\gamma(t) \equiv \text{constant} \implies c = d$ impossible. Il exsite $t_0 \in (a, b)$ tel que $\gamma'(t_0) \neq 0 \implies \langle \gamma'(t_0) \mid G_{\gamma(t_0)} \mid \gamma'(t_0) \rangle > 0$. Utiliser la continuité des acteurs pour conclure.

Définition 5.9 (Rappel : distance, espace métrique).

 $\forall x, y \in U, d_q(x, y) = \inf\{L_q(\gamma), \gamma : [a, b] \longrightarrow U, \gamma \text{ différentiable sur } [a, b], \gamma(a) = x, \gamma(b) = b\}.$

Théorème 5.1. Si $U \subseteq \mathbb{R}^n$ connexe par arcs et g est une métrique riemanienne continue sur U, alors

$$d_a: U \times U \longrightarrow \mathbb{R}$$

est une distance sur U et (U, d_q) devient un espace métrique.

Remarque (Point technique). Si U est connexe par arcs, $\forall x, y \in U, \exists \gamma \in \mathcal{C}^0([0,1], U)$, avec $\gamma(0) = x, \gamma(1) = y$, alors (analyse réelle, on utilise le fait que U est ouvert) il existe $\gamma \in \mathcal{C}^1([0,1], U)$ avec $\gamma(0) = x, \gamma(1) = y$.

Donc il existe un élément de $\{\gamma \in \mathcal{C}^1([a,b],U) \mid \gamma(a)=x,\gamma(b)=y\}$, avec a=0,b=1. Comme $\gamma \in \mathcal{C}^1([a,b]), |\gamma'(t)|$ est continue sur [a,b] implique que il existe M>0 tel que $\forall t \in [a,b], \|\gamma'(t)\| \leq M$ et $G_{\gamma(t)}: [a,b] \longrightarrow \mathbb{R}^{n+n}$ est aussi continue.

Cela implique que $t \longmapsto \langle \gamma'(t) \mid G_{\gamma(t)} \mid \gamma'(t) \rangle$ est continue sur [a,b], ce qui implique que il existe \tilde{M} tel que

$$\forall t \in [a, b], \langle \gamma'(t) \mid G_{\gamma(t)} \mid \gamma'(t) \rangle^{\frac{1}{2}} \leq \tilde{M},$$

ce qui implique que

$$L_g(\gamma) = \int_a^b \langle \gamma'(t) \mid G_{\gamma(t)} \mid \gamma'(t) \rangle \le \tilde{M}(b-a) < +\infty,$$

donc $d_g(x,y)$ ne peut être $+\infty$, $d_g(x,y) \in \mathbb{R}_+$. Donc $d_g: U \times U \longrightarrow \mathbb{R}$ est justifié. Remarque.

- 1. Si U n'est pas connexe, il faut faire attention que le chemin droit de x à y peut sortir de U et n'est pas éligible pour évaluer $L_q(\gamma)$.
- 2. Même si U est connexe, il n'y a pas de raison que le chemin sur le segment droit joignant x à y est le chemin le plus court :

$$\gamma(t) = x + t(y - x), \gamma : [0, 1] \longrightarrow U.$$

Il peut arriver que

$$d_g(x,y) < L_g(\gamma) = \int_0^1 \langle y - x \mid G_{\gamma(t)} \mid y - x \rangle dt.$$

- 3. Pas toutes les métriques d des espaces métriques (X,d) où X est un ouvert de \mathbb{R}^n sont les distances d_g pour la métrique riemanienne. Par exemple, d(x,y) = 1 si x = y et d(x,y) = 0 sinon ne peut pas dériver de la métrique riemanienne.
- 4. On peut remplacer les chemins γ par les chemins \mathcal{C}^1 par morceaux ou bien par les chemins polygonaux.

Définition 5.10. (U,g) où g est une métrique riemanienne et $U \subseteq \mathbb{R}^n$ est un exemple d'une variété riemanienne.

Définition 5.11. Supposons que $(x, \overrightarrow{v}), (x, \overrightarrow{v}) \in T_xU$ pour $x \in U$. Alors l'angle entre ces deux vecteurs est défini par

$$\sphericalangle(x,\overrightarrow{u}),(x,\overrightarrow{v})=\cos^{-1}\left(\frac{g(x)((x,\overrightarrow{u}),(x,\overrightarrow{v}))}{\|(x,\overrightarrow{u})\|_g\,\|(x,\overrightarrow{v})\|}\right).$$

Remarque (Rappel). Pour tout produit scalaire $\langle | \rangle_*$, l'inégalité de Cauchy-Schwarz est valide, c'est-à-dire :

$$\forall \overrightarrow{u}, \overrightarrow{v} \in E, |\langle \overrightarrow{u} \mid \overrightarrow{v} \rangle| \le \langle \overrightarrow{u} \mid \overrightarrow{u} \rangle_{\frac{1}{2}}^{\frac{1}{2}} \langle \overrightarrow{v} \mid \overrightarrow{v} \rangle_{\frac{1}{2}}^{\frac{1}{2}}.$$

Donc pour tout $\overrightarrow{u}, \overrightarrow{v} \in T_xU, |g(a)(\overrightarrow{u}, \overrightarrow{v})| \leq ||\overrightarrow{u}||_g ||\overrightarrow{v}||_g.$

Avec la notation qu'on a eu sur la norme $\|\cdot\|_q$, on a, pour tout $\gamma:[a,b]\longrightarrow \mathbb{R}$ différentiable,

$$L_g(\gamma) = \int_a^b \underbrace{\|T\gamma(t,1)\|_g}_{(\gamma(t),\gamma'(t))} dt.$$

Exemple (Demi-plan de Poincaré (exemple de variété riemanienne) de dimension 2 et de géométrie non-euclidienne).

$$U = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}.$$

On définit une métrique riemanienne sur U par

$$g = \sum_{i=1}^{2} g_{ii} dx^{i} \otimes dx^{i}, g_{ij}(x, y) = \delta_{ij} \frac{1}{y^{2}} G_{(x, y)} = \begin{bmatrix} \frac{1}{y^{2}} & 0\\ 0 & \frac{1}{y^{2}} \end{bmatrix}.$$

Définition 5.12. Si pour une métrique riemanienne g donnée sur U, il existe une fonction $h:U\longrightarrow \mathbb{R}$ telle que

$$\forall a \in U, g(a) = h(a)I_{n \times n} = \begin{bmatrix} h(a) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & h(a) \end{bmatrix}.$$

On dit que g est une métrique conformale.

Donc la métrique

$$g(x,y) = \frac{1}{y^2} (dx \otimes dx + dy \otimes dy)$$

est une métrique riemanienne.

La géométrie induite par g sur le demi-plan est la géométrie hyperbolique, connue aussi sous le nom de la géométrie de Lebachowski.

Théorème 5.2. Si g est une métrique conformale sur U et \overrightarrow{u} , $\overrightarrow{v} \in T_aU$ pour $a \in U$, alors

$$\triangleleft_a \overrightarrow{u}, \overrightarrow{v} = \triangleleft \overrightarrow{u}, \overrightarrow{v}$$

pour la métrique standart euclidienne.

Figure 16 -

On a, pour le cas des figures 16 et 17, le calcul suivant, pour $\gamma(t) = (x(t), y(t))$:

Figure 17 -

$$L_g(\gamma) = \int_0^1 \|\overbrace{y(t), \gamma'(t)}^{\in T_{\gamma}(t)}\|_g dt = \int_0^1 \frac{\|\gamma'(t)\|}{y} dt = \int_0^1 \frac{\sqrt{(x')^2(t) + (y')^2(t)}}{y(t)} dt.$$

On a $\eta(t) = (x, y_0) + t((x, y_1) - (x, y_0)) = (x, y_0 + t(y_1 - y_0))$ et $\eta'(t) = (0, y_1 - y_0)$, ce qui donne $\|\eta'(t) = |y_1 - y_0|\|$. Donc

$$L_g(y) = \int_0^1 \frac{\|\eta'(t)\|}{y_0 + t(y_1 - y_0)} dt = \int_0^1 \frac{|y_1 - y_0|}{y_0 + t(y_1 - y_0)} dt.$$

Notez que si l'on choisit $\tilde{\gamma}(t) = (x, y(t))$ en partant de $\gamma(t) = (x(t), y(t))$, on a :

$$L_g(\tilde{\gamma}) = \int_0^1 \frac{\|\tilde{\gamma}(t)\|}{y(t)} dt = \int_0^1 \frac{|y'(t)|}{y(t)} dt \le \int_0^1 \frac{\sqrt{(x')^2(t) + (y')^2(t)}}{y(t)} dt = L_g(\gamma).$$

Figure 18 – Le chemin tout droit vertical est toujours le plus court

En conclusion, on a $L_g(\tilde{\gamma}) \leq L_g(\gamma)$, ce qui signifie que le chemin tout droit vertical est toujours le plus court par rapport à tous les chemis qui joignent (x, y_0) à (x, y_1) comme illustré dans la figure 18.

 \triangle On n'a pas dit que η donne la paramétrisation du chemin le plus court entre (x, y_0) et (x, y_1) . C'est une question à discuter plus tard.

Si $\overrightarrow{w} \in T_{(x,y)}U$ pour $(x,y) \in U$ quelconque, avec $\overrightarrow{w} = (w_1, w_2)$, on a :

$$\left\|\overrightarrow{w}\right\|_g = (g(x,y)(\overrightarrow{w},\overrightarrow{w}))^{\frac{1}{2}} = \left(\frac{1}{y^2} \left\|\overrightarrow{w}^2\right\|\right)^{\frac{1}{2}} = \frac{\left\|\overrightarrow{w}\right\|}{y}.$$

Si $\gamma:[0,\infty)\longrightarrow U$, avec $\gamma(0)=(x_0,y_0),\ \overrightarrow{w}=(0,-y)\in T_{(x,y)}U$, on cherche $\gamma(t)$ tel que

$$\gamma'(t) = (0, -\gamma_2(t)),$$

FIGURE 19 – La ligne droite n'est pas en général le chemin le plus court.

avec
$$\gamma(t) = (x(t), y(t)), \gamma_1(t) = x(t), \gamma_2(t) = y(t),$$

$$\begin{cases} x'(t) = 0, x(t) \equiv x_0 \\ y'(t) = 0, y(t) \equiv y_0, \end{cases}$$

alors $y(t) = y_0 e^{-t}$. Donc $\gamma(t) = (x_0, y_0 e^{-t})$ est le chemin partant de (x_0, y_0) d'une manière verticale vers l'horizon y = 0 avec la vitesse hyperbolique constante.

On voit bien que $\gamma(t) = (x_0, 0)$ donne $t = +\infty$.

Il y a aussi le disque de Poincaré (Escher hyperbolic disc).

 ${\tt FIGURE~20-Escher~hyperbolic~disc}$

Il faudra encore développer les techniques nécessaires pour pouvoir démontrer que les lignes droites par rapport à la métrique hyperbolique sur le demi-plan de Poincaré sont effectivement des demi-cercles centrés sur la ligne y=0. Ces lignes droites sont appelées les géodésies de (U,g) dans la géométrie différentielle.

Voici une première définition de la géodésie 21 (de manière rudimentaire plus géométrique que mécanique) :

Définition 5.13. On dit que $\gamma([a,b])$ est un segment géodésique dans (U,g) si pour $x=\gamma(a),y=\gamma(b),x,y\in U,$

$$d_g(x,y) = L_g(\gamma).$$

Une courbe $\mathscr{C} \subseteq U$ est une géodésie de (U,g) quand

$$C = \bigcup_{i \in I} \mathscr{C}_i$$

où chaque \mathscr{C}_i est un segment géodésique tel que $\forall n \in \mathbb{Z}, C_n \cap C_{n+1}$ est un singleton.

FIGURE 21 - Géodésie

Remarque (Rappel). Soit $\beta: E \times E \longrightarrow \mathbb{R}$ un produit scalaire sur un espace vectoriel E. Soit $f \in E^*$, avec $\dim(E) = n$. Alors il existe un vecteur $\overrightarrow{v_f}$ unique tel que

$$\forall \overrightarrow{w} \in E, f(\overrightarrow{w}) = \beta(\overrightarrow{v_f}, \overrightarrow{w}).$$

Exemple. Soit β donné par la matrice $B \in \mathbb{R}^{n \times n}$ symétrique définie positive sur une base (e_1, \dots, e_n) de E. On a

$$f(\overrightarrow{w}) = f\left(\sum_{i} w_{i}e_{i}\right) = \sum_{i} w_{i}f(e_{i}),$$

avec $\overrightarrow{v_f} = \sum_{j=1}^n x_j e_j$ ((x_1, \dots, x_n) inconnues).

$$\beta(\overrightarrow{v_f}, \overrightarrow{w}) = \langle \overrightarrow{v_f} \mid B \mid \overrightarrow{w} \rangle = \sum_{i,j=1}^n x_j b_{ij} w_i,$$

 $B = [b_{ij}]_{n \times n}$. On veut que $\forall (w_i)_{i=1}^n$,

$$\sum_{i} x_i f(e_i) = \sum_{i,j=1} x_j b_{ij} w_i$$

si et seulement si

$$\forall i, \sum_{i=1}^{n} b_{ij} x_j = f(e_i) \in \mathbb{R}.$$

$$\begin{bmatrix} b_{ij} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} f(e_1) \\ \vdots \\ f(e_n) \end{bmatrix}. \tag{13}$$

f étant donné, comme $\det(B) \neq 0$, il existe un unique $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ qui satisfait 13, et donc

$$\overrightarrow{v_f} = \sum_i x_i e_i$$

est la réponse unique.

Définition 5.14 (Rappel : gradient euclidien). Soit $f: U \longrightarrow \mathbb{R}$ différentiable, $U \subseteq \mathbb{R}^n$ et

$$\nabla f(a) = (\partial_1 f(a), \dots, \partial_n f(a)).$$

 $Df(a): \mathbb{R}^n \longrightarrow \mathbb{R}$ application linéaire de $(\mathbb{R}^n)^*$.

$$\forall \overrightarrow{v} \in \mathbb{R}^n, Df(a)(\overrightarrow{v}) = \langle Df(a), \overrightarrow{v} \rangle$$

avec la métrique euclidienne.

Soit (U,g) une métrique riemanienne, $U\subseteq\mathbb{R}^n,\,f:U\longrightarrow\mathbb{R}$ une application partout différentiable $df:U\longrightarrow T^*U$,

$$\forall a \in U, d_a f \in T_a^* U = (T_a U)^*,$$

où g(a) est un produit scalaire sur T_aU . On prend $E=T_aU, d_af \in E^*, \beta=g(a)$. Donc il y a un vecteur unique $\nabla_q f(a) \in T_aU$ tel que

$$\forall \overrightarrow{w} \in T_a U, d_a f(\overrightarrow{w}) = g(a)(\nabla_g f(a), \overrightarrow{w}).$$

Si $g = \sum_{i,j} g_{ij} dx^i \otimes dx^j$, $\nabla_g f(a) \in T_a U$, on a déjà vu que pour la métrique euclidienne g = eu,

$$\nabla_{eu} f(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(a) \frac{\partial}{\partial x^{i}}.$$

On peut aussi écrire

$$\nabla_g f(a) = \sum_{i=1}^n (?)_i \frac{\partial}{\partial x^i}(a).$$

Si $\nabla_g f(a) = \sum_{i=1}^n c_i \frac{\partial}{\partial x_i}(a)$, on écrit

$$\nabla_g f(a) = |\nabla_g f(a)\rangle = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = ?$$

Pour tout i, on a $d_a f\left(\frac{\partial}{\partial x^i}(a)\right) = g(a)(\nabla_g f(a), \frac{\partial}{\partial x^i}(a))$. Cela implique que

$$\forall i \in \{1, \dots, n\}, G_a = [g_{ij}], g(a) \left(\nabla_g f(a), \frac{\partial}{\partial x^i} (a) \right) = \langle e_i \mid G_a \mid \nabla_g f(a) \rangle \partial_i f(a)$$

si et seulement si

$$G_a \mid \nabla_g f(a) \rangle = \begin{bmatrix} \partial_1 f(a) \\ \vdots \\ \partial_n f(a) \end{bmatrix} \implies \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \mid \nabla_g f(a) \rangle = G_a^{-1} \begin{bmatrix} \partial_1 f(a) \\ \vdots \\ \partial_n f(a) \end{bmatrix}.$$

Donc $|\nabla_g f(a)\rangle = G_a^{-1} |\nabla f(a)\rangle$. $G^{-1}(a)$ est souvent représentée par une matrice $g^{ij}(a)$. On a

$$\left(\sum_{k=1}^{n} g_{ik}(a)g^{kj}(a) = \delta_{i}^{i}\right), \sum_{k=1}^{n} g^{ik}g_{kj} = \delta_{j}^{i}$$

et

$$\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = [g^{ij}(a)] \begin{bmatrix} \partial_1 f(a) \\ \vdots \\ \partial_n f(a) \end{bmatrix},$$

donc $\forall i, \sum_{j=1}^{n} g^{ij}(a) \partial_j f(a).$

Remarque. $\underbrace{d_a}_{\in T_a^*U} = \sum_{i=1}^n \partial_i f(a) \underbrace{dx^i(a)}_{(a,e^{ij})}$ (si $\alpha = \sum a_i e^i, a_i = \alpha(e_i)$ et $d_a f(e_i) = \partial_i f(a)$).

Donc $d_a f \in (T_a U)^* = \Omega^1(T_a U)$, c'est un tenseur covariant d'ordre 1.

Les coefficients sont indexés en base $\partial_i f(a)$. La base indexée en haut est $dx^i(a)$. On remarque que $\nabla_q f(a) \in T_a U = \Omega_1(T_a U)$, c'est donc un tenseur contravariant d'ordre 1. Donc

$$\nabla_g f(a) = \sum_{i=1}^n c^j \frac{\partial}{\partial x^i}(a).$$

On a pour tout i,

$$c^{i} = \sum_{j=1}^{n} g^{ij}(a)\partial_{j} f(a).$$

On écrit

$$\nabla_g f(a) = g_\sharp (T_a U \atop \operatorname{dans} \Omega^1(T_a U)).$$

Plus généralement, si $\alpha: U \longrightarrow T_l^k U$ est un champ tensoriel, i. e.

$$\alpha = \sum_{\substack{i_1, \dots, i_k \\ j_1, \dots, j_k}} a_{i_1 \dots i_k}^{j_1 \dots j_l} dx^{i_1} \otimes \dots \otimes dx^{i_k} \otimes \frac{\partial}{\partial x^{j_1}} \otimes \dots \otimes \frac{\partial}{\partial x^{j_l}}$$

et g est une métrique riemanienne pour $k \ge 1$, on peut créer un champ tensoriel dans T_{l+1}^{k-1} de trace g que l'on notera $g_\sharp \alpha: U \longrightarrow T_{l+1}^{k-1}U$ et il vaudra :

$$g_{\sharp}\alpha = \sum_{\substack{1 \leq i_1 \dots i_{k-1} \leq n \\ 1 \leq j_1 \dots j_{l+1} \leq n}} b_{i_1 \dots i_{k-1}}^{j_1 \dots j_{l+1}} dx^{i_1} \otimes \dots dx^{i_{k-1}} \otimes \frac{\partial}{\partial x^{j_1}} \otimes \dots \otimes \frac{\partial}{\partial x^{j_{l+1}}}.$$

Pour tous les choix, on a $b^{j_1...j_{l+1}}_{i_1...i_{k-1}} = g^{j_{l+1}i}a^{j_1...j_l}_{i_1...i_{k-1}}i$.

Exemple (Tenseurs de courbure de Riemann). Parfois il est écrit comme R_{jkl}^i de type (1,3) ou comme R_{ijkl} de type (0,4).

En fait
$$R_{jkl}^i = \sum_{s=1}^n g^{is} R_{sjkl}; R_{ijkl} = \sum_{s=1}^n g_{is} R_{jkl}^s.$$

 $df(a) \in T_a^* U$ ne dépend pas de g et $\nabla_g f(a) \in T_a U$. Alors

$$G_a \mid \nabla_g f(a) \rangle = \mid \nabla f(a) \rangle ; \underbrace{\partial_i f(a)}_{\text{les coefs de } df(a)} = \sum_{s=1}^n g_{is} C^s,$$

où
$$\nabla_g f(a) = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$
.

5.3 Champ de vecteurs

19-10-2023

Définition 5.15. Un champ de vecteurs est une application $X: U \longrightarrow TU$ telle que

$$\forall a \in U, \tau_1 \circ X(a) = a \ (\tau_1 \circ X = id),$$

c'est-à-dire X est un champ de tenseur 1-contravariant sur U. En équivalence, X est une section de fibré tangent TU.

X est un champ de tenseurs de type (1,0) et

$$X = \sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}.$$

On a $\forall a \in U$,

$$X(a) = \sum_{i=1}^{n} X^{i}(a) \underbrace{\frac{\partial}{\partial x^{i}}}_{(a,e_{i})}.$$

Pour tout $i, X : U \longrightarrow \mathbb{R}$ et on a $X \in C^*$ si et seulement si pour tout $i, X^i \in C^*$.

Exemple. Soit $I \subseteq \mathbb{R}$ un intervalle ouvert, par exemple I = (a, b). Soit $\gamma : I \longrightarrow U$ une application continue, différentiable $\gamma(t) = (\gamma^1(t), \dots, \gamma^n(t))$. On a pour tout $t \in I$,

$$\gamma'(t) = ((\gamma^1)'(t), \dots, (\gamma^n)'(t)).$$

On introduit $T\gamma: TI \longrightarrow TU$ et on a $T\gamma(t,1) = (\gamma(t), \gamma'(t)) \in T_{\gamma(t)}U$. Si X est un champ de vecteurs, $X: U \longrightarrow TU$.

Définition 5.16. On dit que $\gamma: T \longrightarrow U$ est une courbe intégrale par le champ de vecteurs $X: U \longrightarrow TU$ si $\forall t \in I, T\gamma(t, 1) = X(\gamma(t))$.

Remarque. Soit $X: U \longrightarrow TU$ un champ de vecteurs, alors $X(a) \in T_aU = \{a\} \times \mathbb{R}^n$. De plus, pour tout $a \in U$, on a $X(a) = (a, \overrightarrow{F}(a))$ où $\overrightarrow{F}(a) \in \mathbb{R}^n$, donc $X(\gamma(t)) = (\gamma(t), \overrightarrow{F}(\gamma(t)))$ par $\overrightarrow{F}: U \longrightarrow \mathbb{R}^n$. Alors on a pour tout $t \in I$, $(\gamma(t), \gamma'(t)) = (\gamma(t), \overrightarrow{F}(\gamma)(t))$ si et seulement si $\forall t \in I, \gamma'(t) = \overrightarrow{F}(\gamma(t))$.

Remarque. $T\gamma(t,1) = \sum_{i=1}^{n} (\gamma^{i})'(t) \frac{\partial}{\partial x^{i}} (\gamma(0))$. Pour $X: U \longrightarrow TU$ champ vectoriel, on a

$$X(\gamma(t)) = \sum_{i=1}^{n} (X^{i})(\gamma(t)) \frac{\partial}{\partial X^{i}}(\gamma(t)).$$

Ecrire cela est équivalent à :

$$\forall t \in I, (\gamma^i)'(t) = X^i(\gamma(t))$$

avec
$$(\overrightarrow{F} = (X^1, \dots, X^n) : U \longrightarrow \mathbb{R}^n).$$

On voit bien qu'il s'agit d'une équation à dérivées ordinaires autonomes (i. e. F ne dépend que de $a \in U$ et pas de t directement) (EDO). On peut aussi appeler cela système de EDO.

$$\begin{cases} (\gamma^1)' = X^1(\gamma) \\ \vdots \\ (\gamma^n)' = X^n(\gamma) \end{cases} \text{ dans } I \iff \gamma' = \overrightarrow{F} \circ \gamma.$$

Remarque. En raison des observations précédentes, une courbe intégrale γ pour le champ de vecteurs X est aussi appelée une solution (pour les EDO).

Théorème 5.3 (Fondamental de l'existence et de l'unicité des solutions pour les EDO). Soient $X: U \longrightarrow TU$ un champ de vecteurs de régularité C^1 , $a_0 \in U, t_0 \in \mathbb{R}$.

- 1. ALors il existe un intervalle ouvert $I \subseteq \mathbb{R}, t_0 \in \mathbb{R}$ et $\gamma : T \longrightarrow U$ tel que $\gamma(t_0) = a_0$ et γ est une courbe intégrale pour X.
- 2. Si $J \subseteq \mathbb{R}$ est un intervalle ouvert, $t_0 \in J$ et $\lambda : J \longrightarrow U$ est une courbe intégrale pour X telle que $\lambda(t_0) = a_0$, alors $\gamma = \lambda$ sur $I \cap J$.

Remarque. Si $X(a_0) = 0 \in T_{a_0}U$, alors on peut observer que $I = \mathbb{R}$ et $\gamma : \mathbb{R} \longrightarrow U$. Pour tout $t, \gamma(t) = a_0$ est une solution (donc la solution unique maximale).

Si
$$\gamma(t) \equiv a_0$$
, alors $\gamma'(t) = 0 = F(\gamma(t)), \forall t \in \mathbb{R}$.

Remarque. Supposons que $\gamma: I \longrightarrow U$ est une solution pour $\gamma(t_0) = a$ et $\lambda: J \longrightarrow U$ est une solution pour $\lambda(t_1) = a_0$. Pour $t_0 \in I$, $t_1 \in J$ et $t_0 \neq t_1$, on définit

$$\tilde{\lambda}(t) = \lambda(t + t_1 - t_0) \text{ et}$$

$$\tilde{J} = \{ t \in \mathbb{R} \mid t + t_1 - t_0 \in J \}.$$

On voit bien que $t_0 \in \tilde{J}$. De plus,

$$\widetilde{\lambda} = \lambda'(\underbrace{t+t_1-t_0}_{\widetilde{t}\in J}) = \overrightarrow{F}(\lambda(t+t_1-t_0)) = \overrightarrow{F}(\widetilde{\lambda}(t)), \forall t \in \widetilde{J}.$$

On a $\tilde{\lambda}(t_0) = \lambda(t_0 + t_1 - t_0) = \lambda(t_1) = a_0$. Par unicité, on a alors $\tilde{\lambda} = \gamma$ sur $I \cap \tilde{J}$. En particulier, $a_0 \in \tilde{\lambda}(I \cap \tilde{J}) = \gamma(I \cap \tilde{J})$. Donc il y a un sous-intervalle de J défini comme ceci :

$$\overline{J} = \{ t \in \mathbb{R} \mid t + t_a - t_1 \in I \cap \widetilde{J} \}$$

pour lequel $\lambda(\overline{J}) = \gamma(I \cap \tilde{J})$.

$$\underline{\wedge} t_1 \in J.$$

Donc quand on regarde l'ensemble de toutes les courbes intégrales, ce n'est pas possible d'observer les figures suivantes (si $X \in \mathcal{C}^1$).

Pour toute courbe intégrale, on peut faire un changement de variable $\tilde{t} = t + t_0, \overline{\gamma}(t) = \gamma(t + t_0)$ pour lequel on obtient $\tilde{\gamma}(0) = a_0$ (en principe on peut, sans perdre en généralité, supposer que $t_0 = 0$ pour les systèmes autonomes d'EDO).

Définition 5.17. Soit $\Phi: \tilde{U} \longrightarrow U$ telle que $\forall (t,x) \in \tilde{U}, t \in I_x$ et $\Phi(t,x) = \gamma_x(t)$ (γ_x est solution maximale sur I_x telle que $\gamma_x(0) = x$).

Théorème 5.4. \tilde{U} est un ouvert de \mathbb{R}^n . Si X est de classe \mathcal{C}^n , alors Φ est de classe \mathcal{C}^r . Φ est appelée le **flux** de X.

25-10-2023

Exemple. On définit $X: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tel que $X(x=(x_1,x_2))=(x,x^\perp) \in T_x\mathbb{R}^2$. On a

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

et
$$\gamma_x(t)=e^{At}x, I_x=(-\infty,\infty).$$
 On a

$$\gamma_x(t) = (\cos(t)x_1 - \sin(t)x_2), \sin(t)x_1 + \cos(t)x_2 = \begin{bmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

On calcule $\gamma_x'(t) = (-\sin(t)x_1 - \cos(t)x_2, \cos(t)x_1 - \sin(t)x_2) = (\gamma_x(t))^{\perp}$. C'est une rotation d'angle t de point x autour du point 0.

Remarque. Si x = 0, alors $\gamma_0 = 0$.

Exemple. $X: \mathbb{R}^2 \longrightarrow T\mathbb{R}^2, X(x) = (x, -x) \in T_x\mathbb{R}^2.$

On a

$$-x = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} x,$$

 $\gamma_x(t) = e^{-t}x, I_x = (-\infty, \infty) \text{ et } \gamma_x'(t) = -e^{-t}x = -\gamma_x(t) \text{ et } \gamma_x(0) = x.$

$$\lim_{t\to\infty}e^{-t}x=0\in\mathbb{R}^2$$

$$\lim_{-t\to-\infty}\left\|e^{-t}x\right\|=+\infty.$$

Remarque (Sur la taille de I_x). On définit

$$K(x) = \max_{\substack{i=1,\dots,n\\j=1,\dots,n}} \left\| \frac{\partial X^j}{\partial x^i}(x) \right\|$$

et

$$b = \sup\{r > 0, B(x, r) \subset U\}.$$

Alors il existe C > 0 ne dépendant que de U (mais dépendant de ces deux paramètres) tel que

$$|I_x| \ge C\left(\frac{b}{\|X(w)\|}, K(x)\right).$$

 $|I_x|$ est plus large quand $\frac{b}{\|X(x)\|}$ est plus large et K(x) est plus petit.

On sait que b(x), ||X(x)|| et K(x) sont continues en x, alors on a :

$$\forall \varepsilon > 0, \exists \delta > 0, \text{ si } ||y - x|| < \delta, \text{ alors } |I_y| \ge |I_x| - \varepsilon.$$

Comme $|I_x| > 0$, on peut prendre $\varepsilon = \frac{|I_x|}{2}$, on obtient $\delta > 0$ tel que

$$||y - x|| < \delta \implies |I_y| \ge |I_x| - \frac{|I_x|}{2} = \frac{|I_x|}{2},$$
 (14)

ce qui implique que

$$\forall (t, x) \in \tilde{U}, (t, x) \in \{(s, y) \in \mathbb{R} \times \mathbb{R}^n \mid ||y - x|| < \delta, s \in I_y\} \subseteq \tilde{U}.$$

Indication : l'argument sur la taille de l'intervalle d'existence devrait être transporté et basé sur $t_0 = t$. Il faudra appliquer 14 autour de $t_0 = t$ et non à 0.

Définition 5.18. Le flux $\Phi: \tilde{U} \longrightarrow U$ associé à X est tel que

$$\forall (t, x) \in \tilde{U}, \phi(t, x) := \gamma_x(t).$$

On écrit aussi $\Phi_t(x)$.

Remarque. $X \in \mathcal{C}^r \implies \phi \in \mathcal{C}^r$ (il est évident que γ_x dépend régulièrement en t, $(\gamma_x^i)'(t) = X^i(\gamma_x)(t)$), mais ici on réclame aussi la dépendance régulière de γ_x en x.

Pour t fixé, $\Phi_t(x)$ est défini pour $U_t = \{x \in U \mid t \in I_x\}$ qui est un sous-ensemble ouvert de U. Donc $\Phi_t : U_t \longrightarrow U$ est une application $X \in \mathcal{C}^r \implies \phi_t \in \mathcal{C}^r$.

On a $\Phi_0(x) = x$ et $\Phi_0 = \mathrm{id}_U$.

Remarque. Si $\Phi_t(x)$ et $\Phi_s(\Phi_t(x))$ et $\Phi_{s+t}(x)$ sont définis, alors

$$\Phi_{t+s}(x) = \Phi_s(\Phi_t(x)).$$

Démonstration. On va définir pour t fixé $\eta(s) := \Phi_s(\Phi_t(x))$. On a $\Gamma(s) = \Phi_{s+t}(x)$. On a

$$\eta(0) = \Phi_0(\Phi_t(x)) = \Phi_t(x) = y, \Gamma(0) = \Phi_{0+t}(x) = \Phi_t(x) = y.$$

De plus, si $\eta(s) = \gamma_{\Phi_t(x)}(s)$, alors

$$\eta'(s) = \gamma_{\Phi_t(x)}(s) = \sum_{i=1}^n X^i(\gamma_{\Phi_t(x)}(s)) \frac{\partial}{\partial x^i}(\gamma_{\Phi_{t(x)}(s)}).$$

Aussi $\Gamma(s) = \gamma_x(s+t)$ et

$$\Gamma'(s) = \frac{d}{ds} \gamma_x(s+t) = \gamma_x'(s+t) \underbrace{\frac{d}{ds}(s+t)}_{\equiv 1} = \gamma_x'(s+t) = \sum_{i=1}^n X^i(\gamma_x(s+t)) \frac{\partial}{\partial x^i} (\gamma_x(s+t))$$
$$= \sum_{i=1}^n X^i(\Gamma(s)) \frac{\partial}{\partial x^i} (\Gamma(s)).$$

Donc η et γ tous les deux sont une solution (courbe intégrale) de x avec $\eta(0) = \Gamma(0) = y$, donc ils devraient être égaux par unicité.

Pour toit s, on a $\eta(s) = \Gamma(s)$, ce qui implique que $\Phi_{t+s}(x) = \Phi_s(\Phi_t(x))$.

Remarque. Une observation plus fine démontre que si deux d'entre les trois acteurs $\Phi_t(x)$, $\Phi_s(\Phi_t(x))$ et $\Phi_{t+s}(x)$ est défini, alors le troisième aussi est défini et on a $\Phi_{t+s}(x) = \Phi_s(\Phi_t(x))$.

En particulier, si $\Phi_t(x)$ est défini (pour $t \in I_x$), alors on a $\Phi_{-t}(\Phi_t(x))$ est aussi défini et on a :

$$x = \Phi_{-t}(\Phi_t(x)).$$

Noter qu'on a pris s = -t et $\Phi_0(x) = x$ est toujours défini.

Donc $\Phi_t(U_t) = U_{-t}$ et $\Phi_t : U_t \longrightarrow U_{-t}$ est un difféomorphisme de régularité \mathcal{C}^r si $X \in \mathcal{C}^r$.

Proposition 5.2. Soit X un champ de vecteurs \mathcal{C}^1 sur $U, K \subset U$ compact. On fixe $T \in \mathbb{R}$ et on suppose que pour tout $t \in I_x$ tel que $t \geq T$, on a $\Phi_t(x) \in K$, alors $\omega_x = +\infty$ (donc $I_x = (\omega_x, +\infty)$). (De même si $\forall t \leq T, \Phi_t(x) \in K$, alors $I_x = (-\infty, \omega_x)$).

Démonstration. Pour tout $x \in U$, $\Phi_t(x) = \gamma_x(t)$ est défini pour un temps t qui dépend de $C\left(\frac{b(x)}{\|X(x)\|}, K(x)\right)$ continue en x et positive. Donc il existe c > 0 dépendant de K tel que $\forall x \in K C\left(\frac{b(x)}{\|X(x)\|}, K(x)\right) \ge c > 0$. (le minimum de f sur K est atteint pour f continue et K compact).

Pour tout $x \in K$, $\Phi_t(x)$ est défini pour $t \in [0, \frac{c}{2}] \subset I_x$. On raisonne par contradiction. Supposons que $\forall t \geq T$, $\Phi_t(x) \in K$ et $\omega_x < +\infty$, il existe $t_k \longrightarrow \omega_x \in \mathbb{R}$, $I_x = (\alpha_x, \omega_x)$ avec (t_k) une suite bornée.

 $\{\Phi_{t_k}(x)\}\subseteq K$, il existe une sous suite $\Phi_{t_{k_j}}(x)$ qui converge dans K par la compacité. Alors $\Phi_{t_{k_j}}(x)\longrightarrow y\in K, t_{k_j}\longrightarrow \omega_x$.

On va prendre j assez grand tel que $0 < \omega_x - t_{k_i} < \frac{c}{2}$.

Pour $\Phi_{t_{k_i}}(x) \in K$, $\Phi_{\omega_x - t_{k_i}}(\Phi_{t_{k_i}}(x))$ est défini.

 $\Phi_{t_k}(x)$ est défini. Alors

$$\Phi_{s+t}(x) = \Phi_{\omega_x - tk_j + tk_j}(x) = \Phi_{\omega_x}(x)$$

est défini. Comme $t_{k_j} \longrightarrow \omega_x$, alors $\Phi_{tk_j}(x) \longrightarrow \Phi_{\omega_j}(x)$. Or comme on savait que $\Phi_{tk_j}(x) \longrightarrow y$, on a alors $y = \Phi_{\omega_x}(x)$.

Donc il existe $\varepsilon > 0$ tel que Φ_{ε} est défini et $\Phi_{\varepsilon}(y) = \Phi_{\varepsilon}(\Phi_{\omega_x}(x))$ est défini. Donc $\Phi_{\omega_x + \varepsilon}(x)$ est défini, donc $\omega_x + \varepsilon \in I_x = (-\infty, \omega_x)$ ce qui est contradictoire!

5.4 L'application tangente

On suppose $f: U \longrightarrow V$, $U \subseteq \mathbb{R}^n$, $V \subseteq \mathbb{R}^m$. On suppose que f est différentiable en $a \in U$. On a $Df(a) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. On a $df(a): T_aU \longrightarrow \mathbb{R}^m$ avec $df(a)(a, \overrightarrow{v}) = Df(a)(\overrightarrow{v})$ avec $\overrightarrow{v} \in \mathbb{R}^n$ et $(a, \overrightarrow{v}) \in T_aU$.

Définition 5.19. L'application tangente $Tf: TU \longrightarrow TV$ est définie par :

$$\forall (a, \overrightarrow{v}) \in T_a U \subset TU, Tf(a, \overrightarrow{v}) = (f(a), Df(a)(\overrightarrow{v})) \in T_{f(a)V \subset TV}.$$

 $Tf_{|T_aU}:T_aU\longrightarrow T_{f(a)}U$ est linéaire.

Définition 5.20. On définit $T_a f := T f_{|T_a U}$, avec

$$T_a f(a, \overrightarrow{v}) = (f(a), Df(a)(\overrightarrow{v})).$$

Lorsque $m=1, f: U \longrightarrow \mathbb{R}$ et $d_a f: T_a U \longrightarrow \mathbb{R}$ linéaire, donc $d_a f \in (T_a U)^*$, donc $d f: U \longrightarrow T^*U$. C'est un champ covariant.

Maintenant on suppose que $Tf: TU \longrightarrow T\mathbb{R}$ et $T_af: \underbrace{T_aU}_{\{a\} \times \mathbb{R}} \longrightarrow \{f(a)\} \times \mathbb{R}$ linéaire. On ne peut plus

dire que c'est une application de l'espace dual, mais elle admet quand même des propriétés intéressantes.

Exemple. Soit $i: U \longrightarrow \mathbb{R}^n$ une inclusion (injection canonique) avec i(x) = x. On prend $Ti: TU \longrightarrow T\mathbb{R}^n$, on a $Ti(x, \overrightarrow{v}) = (x, \overrightarrow{v})$, car $Di(x)(\overrightarrow{v}) = \overrightarrow{v}$. Donc Ti est l'inclusion de TU dans $T\mathbb{R}^n$.

Proposition 5.3. Si $f: U \longrightarrow V$ est différentiable en $x \in U$ et $g: V \longrightarrow W$ est différentiable en f(x) et $W \subseteq \mathbb{R}^p$. Alors $T(g \circ f) = Tg \circ Tf$.

Vérification. $Tf: TU \longrightarrow TV, \forall (x, \overrightarrow{v}) \in T_xU \subseteq TU$, avec

$$Tf(x, \overrightarrow{v}) = (f(x), Df(x)(\overrightarrow{v})).$$

On a de plus $Tg: TV \longrightarrow TW, \forall (y, \overrightarrow{w}) \in T_yV \subseteq TV$, avec

$$Tg(y, \overrightarrow{w}) = (g(y), Dg(y)(\overrightarrow{w})).$$

Alors

$$Tg \circ Tf(x, \overrightarrow{v}) = Tg(f(x), Df(x)(\overrightarrow{v})) = (g(f(x)))((Df(x))(\overrightarrow{v}))$$
$$= ((g \circ f)(x), (Dg(f(x)) \circ Df(x))(\overrightarrow{v})) = T(g \circ f)(x, \overrightarrow{v}).$$

Exemple (Un cas particulier). $U \xrightarrow{h} V \xrightarrow{f} \mathbb{R}$ et on a $f \circ h : U \longrightarrow \mathbb{R}$. Alors $d(f \circ h) : U \longrightarrow T^*U$. On a donc $Th : TU \longrightarrow TV$, $df : TU \longrightarrow \mathbb{R}$ et $d(f \circ h) : TU \longrightarrow \mathbb{R}$.

Démonstration. En effet Tf = (f, Df), Th = (h, Dh) et d'une part $T(f \circ h) = (f \circ h, D(f \circ h))$ et d'autre part $Tf \circ Th = (f \circ h, D(f \circ h))$.

$$Th(x, \overrightarrow{v}) = (h(x), Dh(x)(\overrightarrow{v})), T(f \circ h)(x, \overrightarrow{v}) = (f \circ h(x), D(f \circ h)(x)(\overrightarrow{v}))$$
 et

$$Tf \circ Th(x, \overrightarrow{v}) = (f \circ h(x), Df(h(x))(Dh(x)(\overrightarrow{v}))).$$

En fait $df(h(x))(h(x), Dh(x)(\overrightarrow{v}))$ c'est $d(f \circ h)(\overrightarrow{x})(\overrightarrow{x}, \overrightarrow{v})$ évalué à $(x, \overrightarrow{v}) \in TU$.

Rappel Si $T: E \longrightarrow F$ linéaire, on rappelle que l'on peut définir $\Omega^k(T), \Omega_k(T), \ldots$ Pour les applications tangentes, on peut ausi définir pour tout k:

$$\Omega^k(T_x f): \Omega^k(T_{f(x)} V) \longrightarrow \Omega^k(T_x U), \dots$$

et tous les autres espaces de tenseurs covariants, contravariants....

Rappel On a dit que

$$\bigcup_{x \in U} (\Omega^k(T_x U)) = T^k U.$$

Définition 5.21. On définit $\Omega^k f: T^k V \longrightarrow T^k U$ une fonction, définie seulement pour tout élément $\alpha \in T^k V$ tel que $\tau^k(\alpha) \in f(U)$ (la projection sur la k-ième coordonnée). On a $\Omega^k(\alpha) = \Omega^k(T_x f)(\alpha)$ lorsque $\alpha \in \Omega^k(T_{f(x)} V)$.

Pour $\overrightarrow{v_1}, \dots, \overrightarrow{v_k} \in T_xU$, on a

$$\Omega^k f(\alpha) (\overrightarrow{v_1}, \dots, \overrightarrow{v_k}) = \alpha(T_x f(\overrightarrow{v_1}, \dots, T_x f(\overrightarrow{v_k}))).$$

Définition 5.22. On dit que $\Omega^k f(\alpha) \in \Omega^k(T_x f) \subseteq T^k U$, pour $\alpha \in \Omega^k(F_{f(x)}V) \subseteq T^k V$ est le "pull-back" (le retiré) de α sous l'action de l'application tangente $T_x f: T_x U \longrightarrow T_{f(x)} V$.

Par contre, pour tout $\alpha \in \Omega_l(T_xU)$ et $f: U \longrightarrow V$ différentiable en $x \in U$, on définit $T_xf: T_xU \longrightarrow T_{f(x)}V$, et on a alors

$$\Omega_l f \stackrel{\text{def}}{=} \Omega_l(T_x f) : T_l U \longrightarrow T_l V$$

et on a $\Omega_l f(\alpha) \in \Omega_l(T_{f(x)}V) \subseteq T_lV$. α étant un élément de $\Omega_l(T_xU)$, il est une application l-linéaire sur $(T_xU)^*$ (contravariant). On cherche une application l-linéaire sur $(T_{f(x)}V)^*$.

Prenons donc un l-covecteur $h_1, \ldots, h_l \in T(T_{f(x)}V)^* = \mathcal{L}(T_{f(x)}V, \mathbb{R})$. On doit définir

$$\Omega_l f(\alpha)(h_1, \dots, h_l) = \alpha(h_1 \circ T_x f, h_2 \circ T_x f, \dots, h_l \circ T_x f).$$

Notez que si $h_i \in (T_{f(x)}V)^*$, $h_i : T_{f(x)}V \longrightarrow \mathbb{R}$ et $T_xf : T_xU \longrightarrow T_{f(x)}V$, alors on obtient que $h_i \circ T_xf : T_xU \longrightarrow \mathbb{R}$ linéaire, donc $h_i \circ T_xf \in (T_xU)^*$.

On peut aussi interpréter $\Omega_l f(\alpha)$ de la manière suivante : si $T_x f: T_x U \longrightarrow T_{f(x)} V$ est donné, on a $(T_x f)^*: (T_{f(x)} V)^* \longrightarrow (T_x U)^*$ et

$$\Omega_l f(\alpha) \left(\underbrace{h_1, \dots, h_l}_{\in (T_{f(x)}V \times \dots \times (T_{f(x)}V^*))} \right) = \alpha((T_x f)^* (h_1), \dots, (T_x f)^* (h_l)).$$

Définition 5.23. Si $\alpha \in \Omega_l(T_xU) \subseteq T_lU$, on dit que $\Omega_lf(a)$ est le "push-forward" (le poussé) de α sous l'action de T_xf .

Chaque vecteur $\overrightarrow{v} \in T_xU$ est un objet contravariant et il agit sur $(T_xU)^*$ par bidualité, i. e. $T_xU \simeq (T_xU)^{**}$.

Ici, $l = 1, \overrightarrow{v} \in T_xU$. Question : qu'est-ce $\Omega_1 f(\overrightarrow{v})$?

Démonstration. Prenons $h \in (T_{f(x)}V)^*$,

$$\Omega_1 f(\overrightarrow{v})(h) = \overrightarrow{v}(\Omega_1(T_x f)(h)) = \overrightarrow{v}((T_x f)^*(h)) = \overrightarrow{v}(h \circ T_x f) = (h \circ T_x f)(\overrightarrow{v}).$$

Donc on a vu que pour tout $h \in (T_{f(x)}V)^*$, $\underbrace{\Omega_1 f(\overrightarrow{v})}_{\in T_{f(x)}V}(\underbrace{h}_{\in (T_{f(x)}V)^*}) = h(T_x f(\overrightarrow{v})).$ On a donc $\forall h \in (T_{f(x)}V)^*$, $h(\Omega_1 f(\overrightarrow{v})) = h(T_x f(\overrightarrow{v})).$ Cela implique que $\Omega_1 f(\overrightarrow{v}) = T_x f(\overrightarrow{v}), \forall \overrightarrow{v} \in T_x f(\overrightarrow{v})$

 T_xU .

Exercice 8.

Définition 5.24. Si $\alpha \in \Lambda^k(T_{f(x)}V)$, alors

$$\Lambda^k f(\alpha) \stackrel{\text{def}}{=} \Omega^k f(\alpha) \in \Lambda^k(T_x U)$$

si (α est extérieur). Si $\alpha \in \Lambda_l(T_xU)$,

$$\Lambda_l f(\alpha) = \Omega_l f(\alpha) \in \Lambda_l(T_{f(x)}V).$$

Définition 5.25. Soit $F:U\longrightarrow V$ différentiable et $\alpha:V\longrightarrow T^kV$ un champ de tenseurs de type (0,k) (une section de fibré tensoriel k-covariant), i. e. $\forall y \in V, \alpha(y) \in T_y^k V = \Omega^k(T_y V)$.

Le pull-back de α sur U, désigné par $f^*\alpha$ est un champ de tenseurs de type (0,k) sur U, donc $f^*\alpha: U \longrightarrow T^kU$.

On a

$$\underbrace{f^*\alpha(x)}_{\in\Omega^k(T_xU)} = \Omega^k f(\underbrace{\alpha(f(x))}_{\in\Omega^k(T_{f(x)V})}).$$

Définition 5.26. Si β est un champ de tenseurs l-contravariant (de type (0,l)) sur U avec $\beta:U\longrightarrow$ $T_l U, \forall x \in U, \beta(x) \in \Omega_l(T_x U).$

On définit, pour f injectif, le "push-forward" de β désigné par $f_{\sharp}\beta$. $f_{\sharp}\beta$ est un champ de tenseur de type (l,0) sur $f(U) \subseteq V$ tel que

$$\forall y = f(x) \in f(U), f_{\sharp}\beta(y) \in \Omega_l(T_{\eta}V).$$

On suppose maintenant que $U \subseteq \mathbb{R}^n, V \subseteq \mathbb{R}^n$ et $h: U \longrightarrow V$ est un difféomorphisme \mathcal{C}^{∞} .

Si X est un champ de vecteurs sur U, alors $h_{\sharp}X$ est un champ de vecteurs sur h(U) et comme h est injective, on aura V = h(U). On aura

$$h_{\sharp}X(h(x)) = T_x h(X(x)).$$

Si $h \in \mathcal{C}^r$, $X \in \mathcal{C}^s$, on aura $h_{\sharp}X \in \mathcal{C}^{\min(r-1,s)}$.

Notez que $h_{\sharp}X(y) = Th(X(h^{-1}(y))) = (y, Dh(h^{-1}y)(X(h^{-1}(y)))).$

On a

$$h_{\dagger}X = Th \circ X \circ h^{-1}.$$

Avec les hypothèses $h: U \longrightarrow U$ est un difféomorphisme de classe \mathcal{C}^{∞} , si $X \in \mathcal{C}^1$ est un champ de vecteurs sur U avec le flux Φ , alors $h_{\sharp}X$ est un champ de vecteurs sur V de régularité \mathcal{C}^1 .

Dans ce cas-là, si ψ est le flux de $h_{\sharp}Y$, on a

$$\psi_t = h \circ \Phi_t \circ h^{-1}$$
.

Si $\Phi_t : \underbrace{U_t}_{\subseteq U} \longrightarrow \Phi_t(U_t)$ et $\psi : \underbrace{V_t}_{\subseteq V} \longrightarrow \psi_t(V_t)$, les deux sont des difféomorphismes de régularité \mathcal{C}^1 .

On aura:

$$h^{-1}(V_t) = U_t \ (h(U_t) = V_t)$$
$$h(\Phi_t(U_t)) = \psi_t(V_t)$$

Il y a une consistance au niveau des domaines de définition.

Démonstration. $\Phi_t \stackrel{\text{def}}{=} \gamma_x(t)$ la courbe intégrale de X.

On a $\eta_{h(x)}(t) := h \circ \gamma_x(t) = h(\Phi_t(x))$ $(\eta_{h(x)} = h \circ \gamma_x)$. On calcule $\eta_{h(x)} = h(\gamma_x(0)) = h(x)$, donc

$$T_{\eta_{h(x)}} = Th \circ T\gamma_x.$$

Alors

$$T_{\eta_{h(x)}}\left(\frac{d}{dt}(t)\right) = Th \circ \overbrace{T_{\gamma_x}\left(\frac{d}{dt}(t)\right)} = Th(X(\gamma_x(t))) = h_{\sharp}X(h(\gamma_x(t))) = h_{\sharp}X(\eta_{h(x)}(t)).$$

On a

$$\begin{cases} \eta_{h(x)}(0) = h(x) \\ T_{\eta_{h(x)}}\left(\frac{d}{dt}(t)\right) = (h_{\sharp}X)(\eta_{h(x)}(t)), \end{cases}$$

donc $\eta_{h(x)}$ est une courbe intégrale pour $h_{\sharp}X$ et en plus on a

$$\psi(t, h(x)) = \eta_{h(x)}(t),$$

donc

$$\psi_t(h(x)) = h(\gamma_n(t)) = h(\Phi_t(x)).$$

On a alors

$$\psi_t \circ h = h \circ \Phi_t \implies \psi_t = h \circ \Phi_t \circ h^{-1}.$$
(15)

Remarque. Si $X \in \mathcal{C}^{\infty}$, alors on a $\Phi_t : U_t \longrightarrow \Phi_t(U_t)$ est un difféomorphisme \mathcal{C}^{∞} . On peut, dans un cas spécial, utiliser $h = \Phi_t, V = \Phi_t(U_t)$. Le flux $(\Phi)_{\sharp}X$ sur V est donnée par

$$h \circ \phi_t \circ h^{-1} = \Phi_t \circ \Phi_t \circ (\Phi_t)^{-1} = \Phi_t. \tag{16}$$

Exercise 9. 16 implique que $(\Phi_t)_{\sharp}X(\Phi_t(x)) = X(\Phi_t(x))$.

La forme la plus concise de push-forward est :

$$(\Phi_t)_{\sharp}(X_{|Ut}) = X_{|\Phi_t(U_t)}.$$

Théorème 5.5 ("Ironing theorem", "Flow-box theorem"). Soient $U \subseteq \mathbb{R}^n$, X champ de vecteurs C^{∞} sur U et $a \in U$ tel que $X(a) \neq 0$. Alors il existe un ouvert $V \subseteq U$, $a \in V$ et un difféomorphisme $h: V \longrightarrow W \subseteq \mathbb{R}^n$ tel que

$$h_{\sharp}X_{|V} = \frac{\partial}{\partial x^1}.$$

En particulier, si Φ est le flux de X et $\Phi(t,x)$ est défini pour $x \in V$, on a

$$\Phi_t(x) = h^{-1} \circ \psi_t \circ h(x),$$

 $où \psi_t$ est le flux de $\frac{\partial}{\partial x^1}$ sur W.

Remarque. Si $\frac{\partial}{\partial x^1}(y) = (y, e_1)$, alors on a $\psi_t(y) = y + te_1$. Donc

$$\Phi_t(x) = h^{-1}(\psi_t(h(x))) = h^{-1}(y + te_1).$$

Avec les rotations, les dilatations et les transformations, on peut supposer que $a=0, X(a)=\frac{\partial}{\partial x^1}(a)$. Si X(a) est donné, on peut trouver l'application $h_0: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ affine $h_0(x) = Ax + \overrightarrow{b}, A \in$ $\mathbb{R}^{n \times n}$, $\det(A) \neq 0$ telle que $h_0(a) = 0$ et $((T_{h_0})_{|U})(X(a)) = \frac{\partial}{\partial x^1}(0)$. Cela démontre l'existence de h_0 qui vient du fait que $\forall \overrightarrow{v} \in \mathbb{R}^n, \exists A \in \mathbb{R}^{n \times n}, A$ inversible telle que

 $\overrightarrow{Av} = e_1$. Il faut fixer A comme défini et puis définir $h_0(x) = Ax$.

Exercise 10. Calculer $(T_{h_0})_{|U}(X(a)) = \frac{\partial}{\partial r^1}(0)$

Exercice 11. Si $f: U \longrightarrow V, g: V \longrightarrow W, \forall \alpha$ champ de tenseur de type (0,k) sur W, alors

$$(g \circ f)^* = f^*(g^*\alpha).$$

Pour tout β champ de tenseurs de type (l,0) sur U,

$$(g \circ f)_{\sharp}\beta = g_{\sharp}(f_{\sharp}\beta),$$

avec f et g injectives.

Donc $0 \in U, X(0) = \frac{\partial}{\partial x^1}(0)$. On a

$$h^{-1}(y_1 + t, y_2, \dots, y_n) = y_{h^{-1}(y)}(t) = \Phi(t, h^{-1}(y)) = \gamma_x(t) = \Phi(t, x).$$

Si $x = (0, x_2, \dots, x_n), t = x_1$, on va imposer que $h(0, x_2, \dots, x_n) = (0, x_2, \dots, x_n)$. Alors il faut chercher h^{-1} tel que

$$h^{-1}(x_1, x_2, \dots, x_n) = h^{-1}(0 + \overbrace{x_1}^t, x_2, \dots, x_n) = \Phi(x_1, h^{-1}(0, x_2, \dots, x_n)) = \phi(\overbrace{x_1}^t, x_2, \dots, x_n).$$

Démonstration. On va alors définir (le candidat k pour h^{-1})

$$k(x_1,\ldots,x_n) = \Phi_{x_1}(0,x_2,\ldots,x_n)$$

On a bien sûr $k(0) = \Phi_0(0) = 0$. k est défini pour $x = (x_1, \dots, x_n)$ dans un voisinage de $0 \in \mathbb{R}^n$. Donc on appelle le voisinage \tilde{W} avec $0 \in \tilde{W}, k : \tilde{W} \longrightarrow U$. Si $X \in \mathcal{C}^{\infty}$, alors $\Phi \in \mathcal{C}^{\infty}$ et donc $k \in \mathcal{C}^{\infty}$.

On veut utiliser le théorème de l'application inverse. Il faut vérifier que Dk(0) est inversible. On a

$$Dk(0) = \left[\frac{\partial k}{\partial x^1} \dots \frac{\partial k}{\partial x^n}\right]_{|x=0} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}.$$

Pour $j = 2, \ldots, n$ On a $k(x_1,...,x_n) = \Phi_{x_1}(0,x_2,...,x_n)$. On a fixé $x_1 = 0$, donc

$$k(0, x_2, \dots, x_n) = \Phi_0(0, x_2, \dots, x_n) = (0, x_2, \dots, x_n),$$

donc

$$\frac{\partial k}{\partial x^j}|_{x=0} = (0, 0, \dots, \underbrace{1}_j, \dots, 0) = e_j.$$

Donc $Dk(0) = \mathrm{Id}_{n \times n}$ inversible. Donc par le théorème de l'application inverse, il existe V ouvert avec $0 \in V, W \subseteq \tilde{W}, 0 \in \tilde{W}$ tels que

$$\Phi_{x_1}(0, x_2, \dots, x_n) = h^{-1}(x_1, \dots, x_n).$$

Alors $k(0, x_2, ..., x_n) = (0, x_2, ..., x_n)$, donc $h(0, x_2, ..., x_n)$, donc

$$h^{-1}(y_1+t,y_2,\ldots,y_n) = \Phi_{t+y_1}(0,y_2,\ldots,y_n) = \Phi_t(\Phi_{y_1}(0,y_2,\ldots,y_n)) = \Phi(h^{-1}(\underbrace{y_1,\ldots,y_n}_{x})).$$