AMENDMENTS TO THE CLAIMS

Claims 1-18 are pending. All pending claims and their current status have been reproduced below.

1	1. (Original) A method of detecting at least one of a pan and a zoom in a video se-
2	quence, comprising:
3	selecting a set of frames from a video sequence;
4	determining a set of motion vectors for each frame in the set of frames;
5	identifying at least two largest regions in each frame having motion vectors with sub-
6	stantially similar orientation in a reference coordinate system;
7	determining percentages of each frame covered by the at least two largest regions;
8	determining a statistical measure of the motion vector orientations in the reference
9	coordinate system for at least one of the two largest regions; and
10	comparing the percentages and statistical measure to threshold values to identify at
11	least one of a pan and a zoom in the video sequence.

12

3

4 5

6

1

2

1

2

3

- 2. (Original) The method of claim 1, wherein the step of selecting a set of video frames from a video sequence further comprises: identifying a scene cut between two frames in the video sequence; and responsive to the identification of a scene cut, selecting a set of video frames from the video sequence that includes all the frames in the video sequence up to and including a frame just before the scene cut.
- 3. (Original) The method of claim 2, wherein frame differences and motion information are used to identify a scene cut.
- 4. (Original) The method of claim 1, wherein the reference coordinate system is one from the group of reference coordinate systems consisting of polar, Cartesian, spherical and cylindrical coordinate systems.

1	5. (Original) The method of claim 1, wherein the percentages of each frame covered	ed
2	by the at least two largest regions are determined from the number of pixels in each region as a	
3	percentage of the total number of pixels in a frame.	
1	6. (Original) The method of claim 1, wherein the statistical measure is a variance.	
1	7. (Original) A system for detecting at least one of a pan and a zoom in a video se-	-
2	quence, comprising:	
3	a preprocessor for selecting a set of frames from a video sequence; and	
4	a motion analyzer for determining a set of motion vectors for each frame in the set o	f
5	frames, identifying at least two largest regions in each frame having motion	
6	vectors with substantially similar orientation in a reference coordinate system	n,
7	determining percentages of each frame covered by the at least two largest re-	-
8	gions, determining a statistical measure of the motion vector orientations in	
9	the reference coordinate system for at least one of the two largest regions, an	ıd
0.	comparing the percentages and statistical measure to threshold values to iden	1-
1.1	tify at least one of a pan and a zoom in the video sequence.	
1	8. (Original) The system of claim 7, wherein the step of selecting a set of video	
2	frames from a video sequence further comprises	
3	identifying a scene cut between two frames in the video sequence and responsive to	
4	the identification of a scene cut, and	
5	selecting a set of video frames from the video sequence that includes all the frames i	in
6	the video sequence up to and including a frame just before the scene cut.	
1	9. (Original) The system of claim 8, wherein frame differences and motion information	a-
2	tion are used to identify a scene cut.	
1	10. (Original) The system of claim 7, wherein the reference coordinate system is on	ıe
2	from the group of reference coordinate systems consisting of polar, Cartesian, spherical and cy	_
3	lindrical coordinate systems.	

1	11. (Original) The system of claim 7, wherein the percentages of each frame covered
2	by the at least two largest regions are determined from the number of pixels in each region as a
3	percentage of the total number of pixels in a frame.
1	12. (Original) The system of claim 7, wherein the statistical measure is a variance.
1	13. (Original) A computer-readable medium having stored thereon instructions
2	which, when executed by a processor in a system for detecting at least one of a pan and a
3	zoom in a video sequence, cause the processor to perform the operations of:
4	selecting a set of frames from a video sequence;
5	determining a set of motion vectors for each frame in the set of frames;
6	identifying at least two largest regions in each frame having motion vectors with sub-
7	stantially similar orientation in a reference coordinate system;
8	determining percentages of each frame covered by the at least two largest regions;
9	determining a statistical measure of the motion vector orientations in the reference
10	coordinate system for at least one of the two largest regions; and
11	comparing the percentages and statistical measure to threshold values to identify at
12	least one of a pan or a zoom in the video sequence.
1	14. (Original) The computer-readable medium of claim 13, wherein the step of se-
2	lecting a set of video frames from a video sequence further comprises:
3	identifying a scene cut between two frames in the video sequence; and responsive to
4	the identification of a scene cut,
5	selecting a set of video frames from the video sequence that includes all the frames in
6	the video sequence up to and including a frame just before the scene cut.
1	15. (Original) The computer-readable medium of claim 13, wherein frame differ-
2	ences and motion information are used to identify a scene cut.
1	16. (Original) The computer-readable medium of claim 13, wherein the reference co-

ordinate system is polar coordinates.

2

- 1 17. (Original) The computer-readable medium of claim 13, wherein the percentages 2 of each frame covered by the at least two largest regions are determined from the number of pix-3 els in each region as a percentage of the total number of pixels in a frame.
 - 1 18. (Original) The computer-readable medium of claim 13, wherein the statistical measure is a variance.