MA108 ODE: Existence and Uniqueness Lecture 4 (D4)

Prachi Mahajan IIT Bombay

Existence & Uniqueness Theorem

Let $R = \{(x, y) : |x - x_0| < a, |y - y_0| < b\}$. Let

- f(x, y) be defined and continuous on R, and
- $|f(x,y)| \le K$ for all (x,y) in R.

Then the IVP $y'=f(x,y),\ y(x_0)=y_0$ has at least one solution on $(x_0-\alpha,x_0+\alpha)$ where

$$\alpha = \min\left\{a, b/K\right\}.$$

Moreover, if f satisfies the Lipschitz condition with respect to y on R, i.e. there is M>0 such that

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2|$$

for all $(x, y_1), (x, y_2) \in R$ then the IVP admits a unique solution on the interval $(x_0 - \alpha, x_0 + \alpha)$.

Remarks

- The theorem guarantees existence and uniqueness only in an interval.
- 2 The theorem DOES NOT give the largest interval where the solution exists.

Example

Example: Solve the IVP:

$$\frac{dy}{dt} = y^2; \ y(0) = 1$$

and find the interval in which the solution exists.

The IVP has a unique solution on an interval containing t=0 by the above theorem. The given DE is separable and we have

$$\frac{dy}{y^2} = dt.$$

Thus,

$$-\frac{1}{v}=t+c;$$

i.e.,

$$y = -\frac{1}{t+c}.$$

Example continued

The initial condition y(0) = 1 gives c = -1. Hence

$$y(t) = \frac{1}{1-t}$$

is the solution to the given DE. This function is unbounded as $t \rightarrow 1$. Hence,

$$y:(-\infty,1)\to\mathbb{R}$$

defined by

$$y(t) = \frac{1}{1-t}$$

is the solution to the given IVP.

Example

Example: Consider the IVP $y'=y^2+\cos(x^2), y(0)=0$ on $R=\{(x,y)\in\mathbb{R}^2: |x|<1, |y|<1\}$. Does the IVP have a solution on the interval $(-\frac{1}{2},\frac{1}{2})$? If yes, is the solution unique?

Ans. Here, $f(x,y) = y^2 + \cos(x^2)$ is continuous on R, $|f(x,y)| \le 2$ for all $(x,y) \in R$. The function f satisfies the Lipschitz condition wrt y on R.

$$|f(x, y_1) - f(x, y_2)| = |y_1^2 - y_2^2| \le 2|y_1 - y_2|,$$

for all $(x, y_1), (x, y_2) \in R$.

It follows from the theorem that the IVP admits a unique solution on $(-\alpha,\alpha)$, where $\alpha=\min\{a,b/K\}$, a=1,b=1 and K=2. Hence, the IVP has a solution on $\left(-\frac{1}{2},\frac{1}{2}\right)$ and the solution is unique on this interval.

Existence and Uniqueness

Example: Consider the IVP

$$y' = \frac{10}{3}xy^{2/5}, y(x_0) = y_0.$$
 (1)

- (i) For what points (x_0, y_0) , does the Theorem imply that (1) has a solution?
- (ii) For what points (x_0, y_0) , does the Theorem imply that (1) has a unique solution on some open interval that contains x_0 ?
- Ans.(i) The IVP admits a solution for every (x_0, y_0) on an interval around the point x_0 .
- (ii) f is not Lipschitz with respect to y on every rectangle R containing the points $(x,0), x \in \mathbb{R}^2$. Also, f satisfies the Lipschitz condition on any rectangle R not containing $(x,0), x \in \mathbb{R}^2$. Therefore, if $y_0 \neq 0$, there is an open rectangle on which f satisfies the Lipschitz condition with respect to y, and hence the IVP has a unique solution on an interval around x_0 . If $y_0 = 0$, then f does not satisfy the Lipschitz condition wrt y on any rectangle containing $(x_0,0)$, and thus the uniqueness theorem is not applicable to this IVP for $y_0 = 0$.

Linear first order ODEs

Consider the linear equation

$$y' + p(t)y = q(t), (2)$$

where $p(\cdot)$ and $q(\cdot)$ are continuous on an interval $I \subseteq \mathbb{R}$.

(i) The general solution of the ODE (2), containing an arbitrary constant is given by

$$y(t) = e^{-\int p(t)dt} \left(\int e^{\int p(t)dt} \cdot q(t)dt + c \right), t \in I.$$

A particular solution that satisfies the given initial condition can be picked out by choosing the appropriate value of the arbitrary constant.

(ii) The solution of the IVP $y'+p(t)y=q(t), y(t_0)=y_0, t_0 \in I$ exists throughout the interval I. Moreover, the solution is unique. Why?

Linear ODE contd...

Let ϕ_1 and ϕ_2 be two solutions of the IVP

$$y' + p(t)y = q(t), y(t_0) = y_0$$

. Consider

$$w(t) = \phi_1(t) - \phi_2(t), \ t \in I.$$

Then $w(\cdot)$ satisfies $w(t_0) = 0$ and

$$w'(t) + p(t)w(t) = 0,$$
 (3)

on *I*. Use the Integrating factor $\mu(t) = e^{\int p(t) dt}$ for (3) to deduce that

$$\frac{d}{dt}\Big(\mu(t)w(t)\Big)=0,$$

on I. Hence, $\mu(t)w(t) = \mu(t_0)w(t_0) = 0$ for all $t \in I$. I.e.

$$w(t) = 0$$
 for all $t \in I$, and $\phi_1(t) = \phi_2(t)$ throughout I .

Picard's iteration method gives us a rough idea on how to construct solutions to IVP's. Consider the IVP

$$y' = f(t, y); \ y(t_0) = y_0.$$

Assume that all the hypotheses as in the Existence & Uniqueness Theorem are satisfied. Suppose $y = \phi(t)$ is a solution to the IVP. That is,

$$\frac{d\phi}{dt}=f(t,\phi(t)),\ \phi(t_0)=y_0.$$

Then,

$$\phi(t)-\phi(t_0)=\int_{t_0}^t f(s,\phi(s))ds,$$

so that

$$\phi(t) = y_0 + \int_{t_0}^t f(s,\phi(s))ds,$$

The above equation is called <u>an integral equation</u> in the unknown function ϕ .

Conversely, if there is a continuous function ϕ that satisfies the integral equation, i.e.,

$$\phi(t) = y_0 + \int_{t_0}^t f(s,\phi(s))ds,$$

then note that $\phi(t_0) = y_0$. Moreover, by the Fundamental Theorem of Calculus,

$$\frac{d\phi}{dt}=f(t,\phi(t)),$$

so that $y = \phi(t)$ is a solution to the IVP y' = f(t, y); $y(t_0) = y_0$. Thus, solving the integral equation is equivalent to solving the IVP.

Picard's iteration describes a way to look for solutions of the integral equation

$$\phi(t) = y_0 + \int_{t_0}^t f(s, \phi(s)) ds.$$
 (4)

We define iteratively a sequence of functions $\phi_n(t)$ for every integer $n \ge 0$ as follows: Let

Note: Each ϕ_n satisfies the initial condition $\phi_n(t_0) = y_0$. None of the ϕ_n may satisfy y' = f(t, y). However, it is possible to show that under the hypotheses of the Existence & Uniqueness theorem, the sequence $\{\phi_n\}$ converges to a function

$$\phi(t) = \lim_{n \to \infty} \phi_n(t)$$

which is the solution to the given IVP.

Example

Example: Solve the IVP:

$$y' = 2t(1+y); \ y(0) = 0$$

by the method of successive approximation.

If $y = \phi(t)$ is a solution of the IVP, the corresponding integral equation is

$$\phi(t) = \int_0^t 2s(1+\phi(s))ds.$$

Let $\phi_0(t) \equiv 0$. Then,

$$\phi_1(t) = \int_0^t 2sds = t^2,$$

$$\phi_2(t) = \int_0^t 2s(1+s^2)ds = t^2 + \frac{t^4}{2},$$

$$\phi_3(t) = \int_0^t 2s(1+s^2 + \frac{s^4}{2})ds = t^2 + \frac{t^4}{2} + \frac{t^6}{6}.$$

Example continued

We claim:

$$\phi_n(t) = t^2 + \frac{t^4}{2} + \frac{t^6}{6} + \ldots + \frac{t^{2n}}{n!}.$$

Use induction to prove this:

$$\phi_{n+1}(t) = \int_0^t 2s(1+\phi_n(s))ds$$

$$= \int_0^t 2s\left(1+s^2+\frac{s^4}{2}+\ldots+\frac{s^{2n}}{n!}\right)ds$$

$$= t^2+\frac{t^4}{2}+\frac{t^6}{6}+\ldots+\frac{t^{2n}}{n!}+\frac{t^{2n+2}}{(n+1)!}.$$

Hence $\phi_n(t)$ is the *n*-th partial sum of the series $\sum_{k=1}^{\infty} \frac{t^{2k}}{k!}$.

Example continued

Recall that $\phi_n(t)$ is the *n*-th partial sum of the series $\sum_{k=1}^{\infty} \frac{t^{2k}}{k!}$.

Applying the ratio test, we get:

$$\left| \frac{t^{2k+2}}{(k+1)!} \cdot \frac{k!}{t^{2k}} \right| = \frac{t^2}{k+1} \to 0$$

for all t as $k \to \infty$. Thus,

$$\lim_{n\to\infty}\phi_n(t)=\sum_{k=1}^\infty\frac{t^{2k}}{k!}=\mathrm{e}^{t^2}-1.$$

Hence, $y(t) = e^{t^2} - 1$ is the solution of the IVP.

Outline of the Proof of the Uniqueness statement

Let $R = \{(x, y) : |x - x_0| < a, |y - y_0| < b\}.$

- f(x, y) is continuous on R, and
- $|f(x,y)| \le K$ for all $(x,y) \in R$.
- f satisfies the Lipschitz condition (wrt to y) on R, i.e., there is M>0 such that

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2|$$

for all $(x, y_1), (x, y_2)$ in R.

Suppose $\phi(\cdot)$ and $\psi(\cdot)$ are solutions of $y'=f(x,y), y(x_0)=y_0$ on an interval (x_0-h,x_0+h) . Thus, both these satisfy the integral equation as well. Then, for $x_0 < x < x_0 + h$,

$$\phi(x) - \psi(x) = \int_{x_0}^x (f(s,\phi(s)) - f(s,\psi(s))) ds.$$

Thus,

$$|\phi(x)-\psi(x)| \leq \int_{x_0}^x |f(s,\phi(s)-f(s,\psi(s))|ds.$$

Using the Lipschitz condition, we have

$$|\phi(x)-\psi(x)|\leq \int_{x_0}^x M\,|\phi(s)-\psi(s)|ds=M\int_{x_0}^x |\phi(s)-\psi(s)|ds.$$

Let $U(x) = \int_{x_0}^{x} |\phi(s) - \psi(s)| ds$. Clearly, $U(x_0) = 0$, $U(x) \ge 0$.

Also, $U'(x) = |\phi(x) - \psi(x)|$ and from above we get

$$U'(x) - MU(x) \leq 0.$$

It yields $\frac{d}{dx} \left(e^{-Mx} U(x) \right) \leq 0$.

Integrating both sides from (x_0, x) , we get

$$\int_{s_{c}}^{x} \frac{d}{ds} \left(e^{-Ms} U(s) \right) ds \leq 0,$$

and thus $e^{-Mx}U(x) - e^{-Mx_0}U(x_0) \le 0$, for all $x_0 < x < x_0 + h$.

Hence, U(x) < 0 for all $x_0 < x < x_0 + h$.

Similarly, derive $U(x) \le 0$, for all $x_0 - h < x < x_0$.

We conclude that $U(x) \leq 0$, and hence,

$$U(x)\equiv 0,$$

on
$$(x_0 - h, x_0 + h)$$
. Thus, $\phi(x) \equiv \psi(x)$.