Cheat Sheet Java - Parte 1

Técnicas de Programação - 2025/02

Última atualização: 29/07/2025 20:49

Algoritmos, Variáveis e Atribuições

Toda variável e valor de retorno deverá ter seu tipo declarado de maneira explícita. Veja abaixo uma tabela com as equivalências de tipos.

Pseudo código	Java
int	long
float	double
character	char
string	String

Atenção

- 1. Divisão de int resultará sempre em um int (como a operação // em Python).
- 2. Operações que misturam int e float fazem conversão para float.

A parte inicial de todo algoritmo descreve seu nome, propósito, entradas e saídas. Veja abaixo um algoritmo que recebe dois inteiros e devolve sua soma. Note que declaramos os tipos das variáveis em **Input** e o tipo da saída em **Output** e que descrevemos em **Result** o que o algoritmo faz.

```
Algorithm 1: Exemplo1

Result: Soma as variáveis a \in b

Input : int a, int b

Output: int

int c \leftarrow a + b

return c
```

```
public static long Exemplo1(long a, long b) {
  long c = a + b;
  return c;
}
```

Condicionais e Loops

Indentação representa o conteúdo de um loop ou condicional. Para facilitar, estamos usando a linha vertical para indicar onde cada bloco acaba. Veja abaixo.

```
Algorithm 2: Exemplo2
 Result: Calcula \sum_{i=1}^{n} 2^{i} (-1)^{i}
 Input: int i, int n
 Output: int
 int total \leftarrow 0
 int temp \leftarrow 2^i
 while i \le n do
      if i\%2 = 0 then
          total \leftarrow total + temp
      else
          total \leftarrow total - temp
      end
      i \leftarrow i + 1
      temp \leftarrow temp \times 2
 end
 return total
```

```
public static long Exemplo2(long i, long n) {
   long total = 0;
   long temp = Math.pow(2, i);

   while (i <= n) {
     if (i % 2 == 0) {
       total += temp;
     } else {
       total -= temp;
     }
     i++;
     temp *= 2;
   }
   return total;
}</pre>
```

Cheat Sheet Java - Parte 1 2025/02

Loops for serão sempre exclusivos em nossos algoritmos. Veja o trecho abaixo.

```
Algorithm 3: Exemplo de for for int \ i \leftarrow 5 \ to \ 10 \ do | .... end
```

```
// exemplo de for
for (long i = 5; i < 10; i++) {
    ...
}</pre>
```

Arrays

Um *Array* A é um tipo composto de um número **fixo** de elementos, todos do mesmo tipo. Usamos A.length para representar seu tamanho. O primeiro elemento tem índice O e o elemento i é acessado com A[i]. Veja um exemplo de uso abaixo.

Algorithm 4: Exemplo2 Result: Calcula média de um array Input : array float AOutput: float float $total \leftarrow 0$ for i = 0 to A.length do $total \leftarrow total \leftarrow A[i]$

```
public static double Exemplo2(double[] A) {
  double total = 0;
  for (int i = 0; i < A.length; i++) {
    total += A[i];
  }
  return total / A.length;
}</pre>
```

Strings

end

return total / A.length

Java tem muitas funções de conveniência com Strings. Neste disciplina iremos tratá-las como um array do tipo especial char, que representa um único caractere. Veja abaixo como passar por todos os caracteres de uma String (em Java).

```
String S = ....;
for (long i = 0; i < S.length(); i++) {
    // faz algo com
    S.charAt(i);
}</pre>
```

Cuidado com char em Java

- 'a' representa um único caractere (tipo char)
- "a" representa uma string de tamanho 1 (tipo String)

Essas duas coisas são diferentes em Java e costumam dar erros de compilação complicados.

Referências

Todo array é recebido por referência em um algoritmo. Ou seja, o comportamento padrão é que modificar elementos de um array recebido como parâmetro em um algoritmo modifica também o array "original" passado.

Strings são sempre imutáveis. Ou seja, não é possível fazer uma atribuição e modificar o caractere no índice i.

Um valor para "vazio"

O valor especial NIL representa a ideia de *vazio* ou *inválido*. Ele pode ser usado tanto para *string* quanto para *arrays*. Em Java, ele é representado pela constante null.