Symbolic Regression

Matheus Cândido Teixeira

1 Introdução

A regressão simbólica (RS) é utilizada para resolver o problema de *curve fitting*. Para isso, um conjunto de amostras é fornecido, e o resultado é uma função que possui o menor erro entre os pontos amostrados e o valor dela nesses pontos.

A regressão simbólica pode ser resolvida de diversas maneiras. Uma delas é utilizando programação genética (GP, do inglês *Genetic Programming*). A GP é semelhante ao Algoritmo Genético (GA, do inglês Genetic Algorithm) no que tange os operadores genéticos, pois ambos definem operadores de inicialização, seleção, cruzamento, mutação e *fitness*.

Na literatura, há diversas possiveis implementações dos operadores de GP. Por exemplo, na fase de geração de indivíduos, que podem ser gerados utilizando o método full ou grow. No primeiro método, o indivíduo é complemente gerado, isto é, todas os seus locus são preenchidos, enquanto que no último, não há essa necessidade. Na prática, é comum haver a combinação dos dois métodos, denominado ramped half-and-half, onde parte da população é gerada um dos método e o restante utilizando o outro. A seguir é apresentado as alternativas comuns para o desenvolvimento de cada operador.

Os operadores de seleção são os mesmos dos utilizados em GA: roulette whell e k-tournament. O primeiro seleciona o indivíduo com probabilidade proporcional a fitness do indivíduo, ou seja, se a fitness de um indivíduo for f_k em uma população com N indivíduos, a probabilidade dele ser selecionado é igual a $p(k) = f_k / \sum_{i=0}^N f_i$. O outro método é o k-tournament, que amostra k indivíduos aleatóriamente e seleciona o indivíduo com maior fitness nesse grupo. A diferença entre esses algoritmos está na pressão seletiva imposta aos indivíduos. Falar sobre menor pressão seletiva no começo e aumentar no final.

O operador de cruzamento (ou crossover) mais comum é denominado troca de sub-árvore. Esse operador funciona da seguinte maneira: dois indivíduos (I_1 e I_2 , respectivamente) são selecionados da população utilizando o operador de seleção, após isso, para cada indivíduo, é escolhido um ponto aleatório (p_1 e p_2) e um novo indivíduo é gerado pela junção da árvore I_1 sem a sub-árvore com raíz no ponto p_1 com a sub-árvore extraida do I_2 com raíz em p_2 .

No caso do operador de mutação há diversas alternativas, entre elas estam a mutação de um ponto e mutação de sub-árvore. O primeiro método, percorre todo o indivíduo muda o gene com uma probabilidade p_{op} . O segundo método, seleciona um ponto aleatório na árvore e, a partir desse ponto, uma sub-árvore é gerada aleatóriamente. Note que no primeiro método há duas probabilidades envolvidas: (1) a probabilidade de ocorrer mutação (p_m) e (2) a probabilidade de haver mutação em cada nó (p_{op}) , caso o indivíduo tenha sido selecionado para mutação.

O último operador é o cálculo da fitness. Como a regressão simbólica busca

1 Introdução 2

minimizar o erro entre função gerada é os pontos amostrais, é comum utilizar o erro (a diferença entre o ponto e o resultado da função nesse ponto) como a forma de mensurar a adequação do indivíduo. Portanto, a *fitness* pode ser calculada como a somatória do erro absoluto (MAE), somatória do quadrado do erro (MSE) ou raíz quadrada da somatória do quadrado do erro (RMSE) entre a função gerado e os pontos amostrais fornecidos, onde as equações são fornecidas a seguir:

$$\begin{aligned} \text{MAE} &= \sum_{i}^{N} |y - \hat{y}| \\ \text{MSE} &= \sum_{i}^{N} (y - \hat{y})^2 \\ \text{RMSE} &= \sqrt{\sum_{i}^{N} (y - \hat{y})^2} = \sqrt{\text{MSE}} \end{aligned}$$

Outro aspecto importanto em GP é a representação dos indivíduos, que podem ser representados linearmente ou em árvore. Ambas as representações possuem vantagens, porém é mais comum a implementação em árvore. Juntamente com a representação é importante definir os conjuntos de valores que eles podem assumir. A escolha do conjunto de funções e operadores devem atender a três restrições: Suficiência¹, Fechamento² e Parcimônia³.

Por exemplo, para uma árvore com um conjunto de funções F: $\{\sin(\cdot),\cos(\cdot)\}$, com um conjunto de operadores $S: \{\times,+,-,\div\}$, uma possível árvore, cuja expressão é $\sin(ax^2) + \cos(by^2)$, onde a e b são constantes numéricas e x e y são variáveis independentes, é:

Neste trabalho, o GP é utilizado para resolver o problema da RS. Os detalhes e parâmetros da implementação são apresentados nas próximas seções. Para mensurar a eficiência, o algoritmo é aplicado a 3 dataset, dois do quais possuem apresentam versões com e sem ruídos aleatórios. O último dataset é um real e contém oito váriaveis aleatórias.

O restante deste relatório é dividido em 3 seções: (1) A seção de metodologia apresenta os detalhes e escolhas de implementação e design de projeto. (2) A

 $^{^{1}}$ O conjunto de operadores deve ser capaz de representar uma solução apropriada.

 $^{^{2}}$ Os operadores devem suportar todos os resultados dos demais.

³ O conjunto de operadores não deve conter elementos desnecessários.

2 Metodologia 3

seção de experimentos apresenta os resultados obtidos do treinamento do algoritmo nos datasets. (3) Por fim, a seção de conclusão analisa os resultados obtidos da seção de experimentos.

- 2 Metodologia
- 3 Experimentos
- 4 Conclusão