Programming using C

Divya Dharshini. K 241501053

Week 13

Status Finished

Started Sunday, 12 January 2025, 6:47 PM

Completed Sunday, 12 January 2025, 7:02 PM

Duration 15 mins 17 secs

Correct

▼ Flag question

Given an array of numbers, find the index of the smallest array element (the pivot), for which the sums of all elements to the left and to the right are equal. The array may not be reordered.

Example

arr=[1,2,3,4,6]

- the sum of the first three elements, 1+2+3=6. The value of the last element is 6.
- Using zero based indexing, arr[3]=4 is the pivot between the two subarrays.
- The index of the pivot is 3.

Function Description

Complete the function balancedSum in the editor below.

balancedSum has the following parameter(s):

int arr[n]: an array of integers

Returns:

int: an integer representing the index of the pivot

Constraints

- $\cdot \qquad 3 \le n \le 10^5$
- $1 \le arr[i] \le 2 \times 10^4, \text{ where } 0 \le i < n$
- \cdot $\,$ It is guaranteed that a solution always exists.

Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the function.

The first line contains an integer n, the size of the array arr.

Each of the next n lines contains an integer, arr[i], where $0 \le i < n$.

Sample Case 0

Sample Input 0

STDIN Function Parameters

- 4 → arr[] size n = 4
- 1 \rightarrow arr = [1, 2, 3, 3]

```
Sample Output 1
```

.

Explanation 1

- \cdot $\,\,$ The first and last elements are equal to 1.
- · Using zero based indexing, arr[1]=2 is the pivot between the two subarrays.
- · The index of the pivot is 1.

Answer: (penalty regime: 0 %)

Reset answer

```
Test Expected Got

vint arr[] = {1,2,3,3};
printf("%d", balancedSum(4, arr))

Passed all tests! v
```

Question **2**Correct

Flag question

Calculate the sum of an array of integers.

Example

numbers = [3, 13, 4, 11, 9]

The sum is 3 + 13 + 4 + 11 + 9 = 40.

Function Description

Complete the function arraySum in the editor below.

arraySum has the following parameter(s):

int numbers[n]: an array of integers

Returns

int: integer sum of the numbers array

Constraints

 $1 \le n \le 10^4$

 $1 \le numbers[i] \le 10^4$

Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the function.

The first line contains an integer n, the size of the array numbers.

Each of the next n lines contains an integer numbers[i] where $0 \le i < n$.

Sample Case 0

```
Sample Input 0

STDIN Function

-----

5 → numbers [] size n = 5

1 → numbers = [1, 2, 3, 4, 5]

2

3

4

5

Sample Output 0

15

Explanation 0

1 + 2 + 3 + 4 + 5 = 15.

Sample Case 1

Sample Input 1

STDIN Function

-----

------
```

	Test	Expected	Got	
~	int arr[] = {1,2,3,4,5}; printf("%d", arraySum(5, arr))	15	15	~
	d all tests! 🗸			

Question **3**Correct

F Flag question

Answer: (nenalty regime: 0 %)

```
* Complete the 'minDiff' function below.
      * The function is expected to return an INTEGER.
* The function accepts INTEGER_ARRAY arr as parameter.
     int compare(const void* a, const void*b)
          return(*(int*)a-*(int*)b);
10
11
     |}
int minDiff(int arr_count, int* arr)
12 ·
13
       qsort(arr,arr_count,sizeof(int),compare);
14
15
       int min_sum=0;
for(int i=1;i<arr_count;i++)</pre>
16 ·
17
           min_sum+=abs(arr[i]-arr[i-1]);
18
19
       return min_sum;
20
21
```

Finish review