Section 5D:

Definition: A diagonal matrix is a square matrix that is 0 everywhere except

possibly on the diagonal.

Definition: An operator on V is called diagonalizable if the operator has a diagonal matrix with respect to some basis of V.

Definition: $T \in L(V)$ and $\lambda \in F$. The eigenspace of T corresponding to λ is the subspace $E(\lambda, T)$ of V defined by $E(\lambda, T) = \text{null}(T - \lambda I) = \{v \in V : Tv = \lambda v\}$. Hence $E(\lambda, T)$ is the set of all eigenvectors of Tcorresponding to λ , along with the 0 vector

Result: Sum of eigenvalues is a direct sum $> T \in L(V)$ and $\lambda 1, \ldots, \lambda m$ are distinct eigenvalues of T. Then $E(\lambda 1, T) + \cdots + E(\lambda m, T)$ is a direct sum. Furthermore, if V is finite-dimensional, then $\dim E(\lambda 1, T) + \cdots + E(\lambda m, T)$ is a direct sum. $+ \dim E(\lambda m, T) \le \dim V$

Result: Conditions equivalent to diagonalizability

V is finite-dimensional and $T \in L(V)$. Let $\lambda 1, ..., \lambda m$ denote the distinct eigenvalues of T. Then TFAE

(a) T is diagonalizable.

(b) V has a basis consisting of eigenvectors of T.

(c) $V = E(\lambda 1, T) \oplus \cdots \oplus E(\lambda m, T)$. (d) dim $V = \dim E(\lambda 1, T) + \cdots + \dim E(\lambda m, T)$.

Result: Enough eigenvalues implies diagonalizability -> V is finite-dimensional and $T \in L(V)$ has dim Vdistinct eigenvalues. Then ${\it T}$ is diagonalizable.

Result: Restriction of diagonalizable operator to invariant subspace $\rightarrow T \in I(V)$ is diagonalizable and Uis a subspace of V that is invariant under T. Then $T|_{U}$ is a diagonalizable operator on U.

Section 5E:

Definition: commute

- Two operators S and T on the same vector space commute if ST = TS.
- Two square matrices A and B of the same size commute if AB = BA.

Result: Eigenspace is invariant under commuting operator - $S, T \in L(V)$ commute and $\lambda \in F$. Then $E(\lambda, V)$ S) is invariant under T.

Result: Simultaneous diagonalizablity \Leftrightarrow commutativity -> Two diagonalizable operators on the same vector space have diagonal matrices with respect to the same basis iff the two operators commute. Result: Eigenvalues of sum and product of commuting operators

V is a finite-dimensional complex vector space and S, T are commuting operators on V.

• every eigenvalue of S + T is an eigenvalue of S plus an eigenvalue of T,

- every eigenvalue of ST is an eigenvalue of S times an eigenvalue of T

Section 6A:

Definition: For $x, y \in \mathbb{R}^n$, the dot product of x and y, denoted by $x \cdot y$, is defined by $x \cdot y = x1y1 + \cdots + y$ xnyn, where x = (x1, ..., xn) and y = (y1, ..., yn). Definition: An inner product on V is a function that takes each ordered pair (u, v) of elements of V to a

number $\langle u, v \rangle \in \mathbf{F}$ and has the following properties

positivity: $\langle v, v \rangle \ge 0$ for all $v \in V$. definiteness: $\langle v, v \rangle = 0$ iff v = 0. additivity in first slot: $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ for all $u, v, w \in V$.

homogeneity in first slot: $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$ for all $\lambda \in \mathbb{F}$ and all $u, v \in V$.

conjugate symmetry: $\langle u, v \rangle = \overline{\langle v, u \rangle}$ for all $u, v \in V$

Definition: An inner product space is a vector space V along with an inner product on V Result: Basic properties of an inner product

(a) For each fixed $v \in V$, the function that takes $u \in V$ to $\langle u, v \rangle$ is a lin map from V to F.

(b) $\langle 0, v \rangle = 0$ for every $v \in V$. (c) $\langle v, 0 \rangle = 0$ for every $v \in V$.

(d) $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ for all $u, v, w \in V$.

(e) $\langle u, \lambda v \rangle = \lambda \langle u, v \rangle$ for all $\lambda \in \mathbb{F}$ and all $u, v \in V$

Definition: For $v \in V$, the norm of v is defined by $||v|| = \sqrt{\langle v, v \rangle}$

Result: Basic properties of the norm

Suppose $v \in V$.

(a) ||v|| = 0 iff v = 0.

(b) $\|\lambda v\| = |\lambda| \|v\|$ for all $\lambda \in F$

Definition: Two vectors $u, v \in V$ are called orthogonal if $\langle u, v \rangle = 0$.

Result: orthogonality and 0

(a) 0 is orthogonal to every vector in V.(b) 0 is the only vector in V that is orthogonal to itself.

Result: Pythagorean theorem

 $u, v \in V$. If u and v are orthogonal, then

$$||u + v||^2 \le ||u||^2 + ||v||^2$$

Result: an orthogonal decomposition

$$u, v \in V$$
, with $v \neq 0$. Set $c = \frac{\langle u, v \rangle}{||v||^2}$ and $w = u - \frac{\langle u, v \rangle}{||v||^2} v$. Then $u = v$

cv + w and $\langle w, v \rangle = 0$. Result: Cauchy-Schwarz inequality

 $u, v \in V$. Then $|\langle u, v \rangle| \le ||u|| \, ||v||$. This inequality is an equality iff one of u, v is a scalar multiple of the other

Result: triangle inequality $u,v\in V. \text{ Then } \|u+v\|\leq \|u\|+\|v\|. \text{ This inequality is an equality iff one of } u,v \text{ is a noneg}$

real multiple of the other. Result: parallelogram equality

 $u, v \in V$. Then $||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$

Definition: orthonormal

- A list of vectors is called orthonormal if each vector in the list has norm 1 and is
- orthogonal to all the other vectors in the list.
- In other words, a list e1, ..., em of vectors in V is orthonormal if $\langle e_j e_k \rangle = \{ \begin{cases} 1 & \text{if } j = k \\ 0 & \text{if } l \neq k \end{cases}$ for

Result: norm of an orthonormal lin combination e1, ...,em is an orthonormal list of vectors in V. Then

$$\left|\left|a_{_{1}}e_{_{1}}+\ldots+\right.a_{_{m}}e_{_{m}}\right|\right|^{2}=\left.\left|a_{_{1}}\right|^{2}+\ldots+\left.\left|a_{_{m}}\right|^{2}\text{for all a1,...,am}\right.\in\left.\mathsf{F}.$$

Result: Every orthonormal list of vectors is linearly independ

Result: Bessel's inequality

e1. ...em is orthonormal list of vectors in V. If $v \in V$ then

$$\mid < v, e_{_{1}} > \mid^{^{2}} + \ldots + \mid < v, e_{_{m}} > \mid^{^{2}} \leq \left| |v| \right|^{^{2}}$$

Definition: An orthonormal basis of V is an orthonormal list of vectors in V that is also a basis of V. Result: orthonormal lists of the right length are orthonormal bases -> Suppose V is finite-dimensional. Then every orthonormal list of vectors in V of length dim V is an orthonormal basis of V.

Result: writing a vector as a lin combination of an orthonormal basis e1, ..., en is an orthonormal basis of V and $u, v \in V$. Then

(a)
$$v = \langle v, e_1 \rangle e_1 + ... + \langle v, e_n \rangle e_n$$

(b)
$$||v||^2 = | \langle v, e_1 \rangle|^2 + ... + | \langle v, e_n \rangle|^2$$

(c)
$$< u, v > = < u, e_1 > \overline{< v, e_1 >} + ... + < u, e_n > \overline{< v, e_n >}$$

Result: Gram-Schmidt procedure

v1 , ..., vm is a linearly independ list of vectors in V. Let f1 = v1 . For k=2,...,m, define fk

inductively by
$$\boldsymbol{f}_k = \boldsymbol{v}_k - \frac{<\boldsymbol{v}_k \boldsymbol{f}_1>}{||\boldsymbol{f}_1||^2} \boldsymbol{f}_1 - \ldots - \frac{<\boldsymbol{v}_k \boldsymbol{f}_{k-1}>}{||\boldsymbol{f}_{k-1}||^2} \boldsymbol{f}_{k-1}$$
. For each

k=1,...,m. $e_k = \frac{f_k}{||f_k||}$. Then e1,...,em is an orthonormal list of vectors in V such that

span(v1, ..., vk) = span(e1, ..., ek) for each k = 1, ..., m

Result: Every finite-dimensional inner product space has an orthonormal basis

Result: V is finite-dimensional. Then every orthonormal list of vectors in V can be extended to an orthonormal basis of V

Definition: linear functional, dual space, V'

- A lin functional on V is a lin map from V to F.
- ullet The dual space of V, denoted by V', is the vector space of all lin functionals on V. In other words $V' = I(V | \mathbf{F})$

Result: Riesz representation theorem -> V is finite-dimensional and φ is a lin functional on V. Then there is a unique vector $v \in V$ such that $\varphi(u) = \langle u, v \rangle$ for every $u \in V$

Definition: If U is a subset of V, then the orthogonal complement of U, denoted by U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U: $U^{\perp} = \{v \in V : \langle u, v \rangle = 0 \text{ for every } u \in U\}.$ Result: properties of orthogonal complement

(a) If U is a subset of V, then U^{\perp} is a subspace of V.

(b) $\{0\}^{\perp} = V$

(c) $V^{\perp} = \{0\}.$

(d) If U is a subset of V, then $U \cap U^{\perp} \subseteq \{0\}$.

(e) If G and H are subsets of V and $G \subseteq H$, then $H^{\perp} \subseteq G^{\perp}$

Result: direct sum of a subspace and its orthogonal complement -> U is a finite-dimensional subspace

Result: dimension of orthogonal complement -> V is finite-dimensional and U is a subspace of V. Then $\dim U^{\perp} = \dim V - \dim U$.

Result: Suppose U is a finite-dimensional subspace of V. Then $U = (U^{\perp})^{\perp}$

Definition: U is a finite-dimensional subspace of V. The orthogonal projection of V onto U is the operator $P_{y} \in L(V)$ defined as follows: For each $v \in V$, write v = u + w, where $u \in U$ and $w \in U$. Then let

Result: properties of orthogonal projection $P_{_{II}}$

U is a finite-dimensional subspace of V. Then

a) $P_{II} \in L(V)$

b) $P_{u}u = u$ for every $u \in U$

 $P_{u}w = 0$ for every $w \in U^{\perp}$

d) range $P_{ij} = U$

 $\mathsf{null}\ P_{_{II}}=U^{^{\perp}}$ e)

 $v - P_{II}v \in U^{\perp}$ for every $v \in V$ f)

g) $P_{ij}^{2} = P_{ij}$

 $||P_{ii}v|| \le ||v||$ for every $v \in V$

if $e_1,...,e_m$ is an orthonormal basis of U and $v \in V$, then

$$P_{II}v = \langle v, e_1 \rangle e_1 + ... + \langle v, e_m \rangle e_m$$

Section 7A

Definition: Suppose $T \in L(V, W)$. The adjoint of T is the function $T^*: W \to V$ such that $\langle Tv, w \rangle = \langle v, T^*w \rangle$ for every $v \in V$ and every $w \in W$.

Result: adjoint of a lin map is a lin map -> If $T \in L(V, W)$, then $T \in L(W, V)$. Result: Properties of the Adjoint

 $T \in L(V, W)$. Then

a)
$$(S + T)^* = S^* + T^* \text{ for all } S \in L(V, W).$$

b)
$$(\lambda T)^* = \bar{\lambda} T^*$$
 for all $\lambda \in \mathbf{F}$;

c)

 $(ST)^* = T^*S^*$ for all $S \in L(W, U)$ (here U is a

finite-dimensional inner product space over F);

 $I^* = I$, where *I* is the identity operator on *V*;

if T is invertible, then T^* is invertible and $(T^*)^{-1} = (T^{-1})^*$

Result: null space and range of T

 $T \in L(V, W)$. Then (a) $null T^* = (range T)^{\perp}$

f)

(b) range $T^* = (null T)^{\perp}$

(c) $null T = (range T^*)^*$ (d) range $T = (null T)^{*}$

Definition: The conjugate transpose of an m-by-n matrix A is the n-by-m matrix A obtained by interchanging the rows and columns and then taking the complex conjugate of each entry. In other

words, if $j \in \{1, ..., n\}$ and $k \in \{1, ..., m\}$, then $(A^*)_{ik} = \overline{A_{ki}}$ Result: matrix of T * equals conjugate transpose of matrix of T

Let $T \in L(V, W)$. e1 , ..., en is an orthonormal basis of V and f1 , ..., fm is an orthonormal basis of W. Then $M(T^*, (f1, ..., fm), (e1, ..., en))$ is the conjugate transpose of M(T, (e1, ..., en), (f1, ..., fm)). In other words, $M(T^*) = (\mu(T))^*$.

```
Definition: An operator T\in L(V) is called self-adjoint if T=T^*. Result: Every eigenvalue of a self-adjoint operator is real. Result: T self-adjoint and \langle Tv, v \rangle = 0 for all v \Leftrightarrow T=0 \to T is a self-adjoint operator on V. Then \langle Tv, v \rangle = 0 for every v \in V \Leftrightarrow T=0. Definition: normal • An operator on an inner product space is called normal if it commutes with its adjoint. • In other words, T \in L(V) is normal if T^* = T^*T. Result: T is normal iff T^* and T^* v have the same norm \to T \in L(V). Then T is normal \to \|Tv\| = \|T^*v\| for every v \in V. Result: range, null space, and eigenvectors of a normal operator (T \in L(V) is normal) (a) null T = \text{null } T^*; (b) range T = \text{range } T^*; (c) V = \text{null } T = \text{range } T^*; (d) T \to U is normal for every \lambda \in \mathbb{F}; (e) if v \in V and \lambda \in \mathbb{F}, then Tv = \lambda v iff T^*v = \lambda v.
```