

NONREFLECTING STATIONARY SETS IN $\mathcal{P}_\kappa\lambda$

SAHARON SHELAH AND MASAHIRO SHIOYA

ABSTRACT. Let κ be a regular uncountable cardinal and $\lambda \geq \kappa^+$. The principle of stationary reflection for $\mathcal{P}_\kappa\lambda$ has been successful in settling problems of infinite combinatorics in the case $\kappa = \omega_1$. For a greater κ the principle is known to fail at some λ . This note shows that it fails at every λ if κ is the successor of a regular uncountable cardinal or κ is countably closed.

1. INTRODUCTION

In [6] Foreman, Magidor and Shelah introduced the following principle for $\lambda \geq \omega_2$: If S is a stationary subset of $\mathcal{P}_{\omega_1}\lambda$, then $S \cap \mathcal{P}_{\omega_1}A$ is stationary in $\mathcal{P}_{\omega_1}A$ for some $\omega_1 \subset A \subset \lambda$ of size ω_1 . Let us call the principle stationary reflection for $\mathcal{P}_{\omega_1}\lambda$. It follows from Martin's Maximum (see [6]) and holds in the Lévy model where ω_2 was supercompact in the ground model (see [2]). See [3, 15, 17, 18] for recent applications of reflection principles for stationary sets in $\mathcal{P}_{\omega_1}\lambda$.

What if ω_1 is replaced by a higher regular cardinal? Feng and Magidor [4] proved that the corresponding statement for $\mathcal{P}_{\omega_2}\lambda$ is false at some large enough λ . Their argument (see also [2]) showed in effect that stationary reflection for $\mathcal{P}_\kappa\lambda$ at some large enough λ implies the presaturation of the club filter on κ for a successor cardinal κ , which is known to be false if in addition $\kappa \geq \omega_2$ by [11].

Foreman and Magidor [5] extended the Feng–Magidor result for every regular cardinal $\kappa \geq \omega_2$, although they proved only the case $\kappa = \omega_2$. We present below what was proved in effect and in §4 its proof of our own:

Theorem 1. *Stationary reflection for $\mathcal{P}_\kappa\lambda$ fails at every $\lambda \geq 2^\kappa^+$ if $\kappa \geq \omega_2$ is regular.*

1991 *Mathematics Subject Classification.* 03E05.

The first author was supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities. Publication 764. The second author was partially supported by Grant-in-Aid for Scientific Research (No.12640098), Ministry of Education, Science, Sports and Culture of Japan.

See [13] for a further example of nonreflection, which is based on pcf theory [12]. This note addresses the problem whether stationary reflection for $\mathcal{P}_\kappa\lambda$ fails *everywhere*, i.e. at every $\lambda \geq \kappa^+$. Specifically we prove

Theorem 2. *Stationary reflection for $\mathcal{P}_\kappa\lambda$ fails everywhere if $\nu < \kappa$ are both regular uncountable and $\text{cf}(\nu, \gamma) < \kappa$ for $\nu < \gamma < \kappa$.*

Here $\text{cf}(\nu, \gamma)$ is the smallest size of unbounded subsets of $\mathcal{P}_\nu\gamma$. The last condition in Theorem 2 holds if $\kappa = \nu^+$ or if $\nu = \omega_1$ and $\gamma^\omega < \kappa$ for $\gamma < \kappa$. In §3 we prove Theorem 2 in much greater generality.

2. PRELIMINARIES

For background material we refer the reader to [7]. Throughout the paper, κ and ν stand for a regular cardinal $\geq \omega_1$ and $\mu < \lambda$ a cardinal $\geq \kappa$. We write S_κ^ν for $\{\gamma < \kappa : \text{cf } \gamma = \nu\}$. Let A be a set of ordinals. The set of limit points of A is denoted $\lim A$. It is easy to see $|\lim A| \leq |A|$. A is called σ -closed if $\gamma \in A$ for $\gamma \in \lim A$ of cofinality ω . Let $f : [\lambda]^{<\omega} \rightarrow \mathcal{P}_\kappa\lambda$. We write $C(f)$ for $\{x \in \mathcal{P}_\kappa\lambda : \bigcup f^{<\omega}[x] \subset x\}$. For $x \in \mathcal{P}_\kappa\lambda$ the smallest superset of x in $C(f)$ is denoted $\text{cl}_f x$.

Stationary reflection for $\mathcal{P}_\kappa\lambda$ states that if S is a stationary subset of $\mathcal{P}_\kappa\lambda$, then $S \cap \mathcal{P}_\kappa A$ is stationary in $\mathcal{P}_\kappa A$ for some $\kappa \subset A \subset \lambda$ of size κ . It is easily seen that stationary reflection for $\mathcal{P}_\kappa\lambda$ implies one for $\mathcal{P}_\kappa\mu$. Hence stationary reflection for $\mathcal{P}_\kappa\lambda$ fails everywhere iff it fails at $\lambda = \kappa^+$.

Let S be a stationary subset of $\mathcal{P}_\kappa\lambda$. S is called nonreflecting if it witnesses the failure of stationary reflection, i.e. $S \cap \mathcal{P}_\kappa A$ is nonstationary in $\mathcal{P}_\kappa A$ for $\kappa \subset A \subset \lambda$ of size κ . More generally S is called μ -nonreflecting if $S \cap \mathcal{P}_\kappa A$ is nonstationary in $\mathcal{P}_\kappa A$ for $\mu \subset A \subset \lambda$ of size μ .

We write $[\lambda]^\mu$ for $\{x \subset \lambda : |x| = \mu\}$. A filter F on $[\lambda]^\mu$ is called fine if it is μ^+ -complete and $\{x \in [\lambda]^\mu : \alpha \in x\} \in F$ for $\alpha < \lambda$. The specific example relevant to us was introduced in [10]:

Lemma 1. *A fine filter on $[\lambda]^\mu$ is generated by the sets of the form $\{\bigcup_{n < \omega} A_n : \{A_n : n < \omega\} \subset [\lambda]^\mu \wedge \forall n < \omega (\varphi(\langle A_k : k < n \rangle) \subset A_n)\}$, where $\varphi : ([\lambda]^\mu)^{<\omega} \rightarrow [\lambda]^\mu$.*

We need an analogue [9] of Ulam's theorem in our context:

Lemma 2. *$[\lambda]^\mu$ splits into λ disjoint F -positive sets if F is a fine filter on $[\lambda]^\mu$.*

Proof. It suffices to split X F -positive into ν disjoint F -positive sets for $\mu < \nu \leq \lambda$ regular. Fix a bijection $\pi_x : \mu \rightarrow x$ for $x \in X$. Set

$X_{\gamma\xi} = \{x \in X : \pi_x(\xi) = \gamma\}$ for $\gamma < \nu$ and $\xi < \mu$. Then $\bigcup_{\xi < \mu} X_{\gamma\xi} = \{x \in X : \gamma \in x\}$ is F -positive for $\gamma < \nu$. Hence for $\gamma < \nu$ we have $\xi < \mu$ such that $X_{\gamma\xi}$ is F -positive, since F is μ^+ -complete. Thus we have F -positive sets $\{X_{\gamma\xi} : \gamma \in A\} \subset \mathcal{P}X$ for some $A \in [\nu]^\nu$ and $\xi < \mu$, which are mutually disjoint, as desired. \square

3. MAIN THEOREM

This section is devoted to the main result of this paper. Like the proof [11] of a diamond principle for some $\mathcal{P}_{\omega_1}\lambda$ (see also [16]), our argument originates from nonstructure theory [14].

Throughout the section, let $\nu < \kappa$ be regular cardinals $\geq \omega_1$ and $\mu < \lambda$ cardinals $\geq \kappa$. Recall from [12] $\text{cov}(\lambda, \mu^+, \mu^+, \nu) = \lambda$ iff $\{\bigcup_{\alpha \in a} E_\alpha : a \in \mathcal{P}_\nu\lambda\}$ is unbounded in $[\lambda]^\mu$ for some $\{E_\alpha : \alpha < \lambda\} \subset [\lambda]^\mu$. It is easy to see $\text{cov}(\mu^+, \mu^+, \mu^+, \nu) = \mu^+$.

For the moment assume further $\text{cf}(\nu, \gamma) < \kappa$ for $\nu < \gamma < \kappa$. Inductively we have $\{c_\xi : \xi < \kappa\} \subset \mathcal{P}_\nu\kappa$ and $g : \kappa \rightarrow \kappa$ so that $\{c_\xi : \xi < g(\gamma)\}$ is unbounded in $\mathcal{P}_\nu\gamma$ for $\nu \leq \gamma < \kappa$. Then $T = \{\gamma \in S_\kappa^\nu : g``\gamma \subset \gamma\}$ is stationary in κ and $\{c_\xi : \xi < \gamma\}$ is unbounded in $\mathcal{P}_\nu\gamma$ for $\gamma \in T$. Hence Theorem 2 follows from the case $\lambda = \mu^+ = \kappa^+$ of

Theorem 3. *Assume $\text{cov}(\lambda, \mu^+, \mu^+, \nu) = \lambda$, $\{c_\xi : \xi < \mu\} \subset \mathcal{P}_\nu\mu$, T is a stationary subset of $\mathcal{P}_\kappa\mu$ of size μ and $\{c_\xi : \xi \in z\}$ is unbounded in $\mathcal{P}_\nu z$ for $z \in T$. Then $\mathcal{P}_\kappa\lambda$ has a μ -nonreflecting stationary subset.*

Proof. Let $\{E_\alpha : \alpha < \lambda\} \subset [\lambda]^\mu$ witness $\text{cov}(\lambda, \mu^+, \mu^+, \nu) = \lambda$. Define $e : \lambda \times \mu \rightarrow \lambda$ so that $E_\alpha = e``\{\alpha\} \times \mu$. Hence for $A \in \mathcal{P}_{\mu^+}\lambda$ we have $a \in \mathcal{P}_\nu\lambda$ with $A \subset e``a \times \mu$. Let F be the filter on $[\lambda]^\mu$ as defined in Lemma 1. Lemma 2 allows us to split $[\lambda]^\mu$ into μ disjoint F -positive sets $\{X_z : z \in T\}$.

Set $S = \{x \in \mathcal{P}_\kappa\lambda : e``x \times (x \cap \mu) \subset x \wedge x \cap \mu \in T \wedge \exists b \in \mathcal{P}_\nu x(x \subset e``b \times \mu = e``x \times \mu \in X_{x \cap \mu})\}$.

Claim. *S is stationary in $\mathcal{P}_\kappa\lambda$.*

Proof. Fix $f : [\lambda]^{<\omega} \rightarrow \mathcal{P}_\kappa\lambda$. We may assume $e``x \times (x \cap \mu) \subset x$ for $x \in C(f)$. For $z \in T$ consider the following game $\mathcal{G}(z)$ of length ω between two players I and II:

At round n I plays $\mu \subset A_n \subset \lambda$ of size μ . Then II plays a triple of $b_n \in \mathcal{P}_\nu\lambda$, a bijection $\pi_n : \mu \rightarrow e``b_n \times \mu$ and $x_n \in C(f)$ such that $b_n \subset x_n = \pi_n``(x_n \cap \mu)$. We further require $A_n \subset e``b_n \times \mu \subset e``x_n \times \mu \subset A_{n+1}$ and $x_n \subset x_{n+1}$. Finally we let II win iff $x_n \cap \mu = z$ for $n < \omega$.

Set $T' = \{z \in T : \text{II has no winning strategy in } \mathcal{G}(z)\}$.

Subclaim. *T' is nonstationary in $\mathcal{P}_\kappa\mu$.*

Proof. Suppose otherwise. For $z \in T'$ we have a winning strategy τ_z for I in $\mathcal{G}(z)$, since the game is closed for II , hence determined. By induction on $n < \omega$ build b_n, π_n and $\{x_n^z : z \in T'\}$ so that $\langle (b_n, \pi_n, x_n^z) : n < \omega \rangle$ is a play of II in $\mathcal{G}(z)$ against τ_z as follows:

Since $|T'| \leq |T| = \mu$, we have in ω steps $b_n \in \mathcal{P}_\nu \lambda$ such that $\bigcup_{z \in T'} \tau_z(\langle (b_k, \pi_k, x_k^z) : k < n \rangle) \subset e``b_n \times \mu$, $b_n \subset e``b_n \times \mu$ and $e``b_n \times \mu$ is closed under f . Next fix a bijection $\pi_n : \mu \rightarrow e``b_n \times \mu$. Note that $x_{n-1}^z = \pi_{n-1}`(x_{n-1}^z \cap \mu) \subset e``b_{n-1} \times \mu \subset \tau_z(\langle (b_k, \pi_k, x_k^z) : k < n \rangle) \subset e``b_n \times \mu$ for $z \in T'$. Hence we have $x_{n-1}^z \cup b_n \subset x_n^z \subset e``b_n \times \mu$ such that $\pi_n``(x_n^z \cap \mu) = x_n^z \in C(f)$, since $b_n \subset e``b_n \times \mu$ and $e``b_n \times \mu$ is closed under f . If possible, we further require $x_n^z \cap \mu = z$, in which case we have $x_n^z = \pi_n``z$.

Set $b = \bigcup_{n < \omega} b_n \in \mathcal{P}_\nu \lambda$ and $E = e``b \times \mu \in [\lambda]^\mu$. Then $b \subset E$ by $b_n \subset e``b_n \times \mu$. Since $e``b_n \times \mu \subset e``b_{n+1} \times \mu$ are closed under f , so is E . Also $\mu \subset \bigcup_{z \in T'} \tau_z(\emptyset) \subset e``b_0 \times \mu \subset E$. Since T' is stationary in $\mathcal{P}_\kappa \mu$, we have $b \subset x \subset E$ such that $x \in C(f)$, $\pi_n``(x \cap \mu) = x \cap e``b_n \times \mu$ for $n < \omega$ and $x \cap \mu \in T'$.

Set $z = x \cap \mu$. Since $\mu \subset e``b_0 \times \mu \subset e``b_n \times \mu$, it is easily seen that $x \cap e``b_n \times \mu = \pi_n``z$ meets the requirements for x_n^z . Hence $x_n^z = x \cap e``b_n \times \mu$ and $x_n^z \cap \mu = x \cap \mu = z$ for $n < \omega$. Thus II wins against τ_z with the play $\langle (b_n, \pi_n, x_n^z) : n < \omega \rangle$, which contradicts that τ_z is a winning strategy for I in $\mathcal{G}(z)$, as desired. \square

Fix $z \in T - T'$ with a winning strategy τ for II in $\mathcal{G}(z)$. Define $\varphi : ([\lambda]^\mu)^{<\omega} \rightarrow [\lambda]^\mu$ by $\varphi(\emptyset) = \mu$ and $\varphi(s) = e``x \times \mu$, where $\tau(s) = (b, \pi, x)$. Since X_z is F -positive, $\bigcup_{n < \omega} A_n \in X_z$ for some $\{A_n : n < \omega\} \subset [\lambda]^\mu$ such that $\varphi(\langle A_k : k < n \rangle) \subset A_n$ for $n < \omega$. Set $(b_n, \pi_n, x_n) = \tau(\langle A_k : k \leq n \rangle)$ for $n < \omega$. Then $\langle A_n : n < \omega \rangle$ is a play of I in $\mathcal{G}(z)$ against τ , since $\mu = \varphi(\emptyset) \subset A_0$ and $e``x_n \times \mu = \varphi(\langle A_k : k \leq n \rangle) \subset A_{n+1}$.

Set $x = \bigcup_{n < \omega} x_n$. Since $\{x_n : n < \omega\} \subset C(f)$ is increasing, we have $x \in C(f)$, hence $e``x \times (x \cap \mu) \subset x$. Also $x \cap \mu = z \in T$ by $x_n \cap \mu = z$. Note that $b_n \in \mathcal{P}_\nu \lambda$, $b_n \subset x_n = \pi_n``(x_n \cap \mu) \subset e``b_n \times \mu$ and $A_n \subset e``b_n \times \mu \subset e``x_n \times \mu \subset A_{n+1}$ for $n < \omega$. Hence $b = \bigcup_{n < \omega} b_n \in \mathcal{P}_\nu x$. Also $x \subset e``b \times \mu = e``x \times \mu = \bigcup_{n < \omega} A_n \in X_z = X_{x \cap \mu}$. Thus we have $x \in S \cap C(f)$, as desired. \square

Claim. S is μ -nonreflecting.

Proof. Suppose to the contrary $S \cap \mathcal{P}_\kappa A$ is stationary in $\mathcal{P}_\kappa A$ for some $\mu \subset A \subset \lambda$ of size μ . Then $\{x \in \mathcal{P}_\kappa A : e``x \times (x \cap \mu) \subset x\}$ is unbounded in $\mathcal{P}_\kappa A$, hence $e``A \times \mu \subset A$. Moreover $A = e``a \times \mu$ for some $a \in \mathcal{P}_\nu A$:

Fix a bijection $\pi : \mu \rightarrow A$. Then $U = \{x \cap \mu : \pi``(x \cap \mu) = x \in S \cap \mathcal{P}_\kappa A\}$ is a stationary subset of T . For $z \in U$ we have $b \in \mathcal{P}_\nu z$ and

$\xi \in z$ such that $\pi``z \subset e``(\pi``z) \times \mu = e``(\pi``b) \times \mu \subset e``(\pi``c_\xi) \times \mu$, since $\pi``z \in S$ and $\{c_\xi : \xi \in z\}$ is unbounded in $\mathcal{P}_\nu z$. Take $\xi < \mu$ and $U^* \subset U$ stationary in $\mathcal{P}_\kappa \mu$ so that $\pi``z \subset e``(\pi``c_\xi) \times \mu$ for $z \in U^*$. Since $\{\pi``z : z \in U^*\}$ is stationary in $\mathcal{P}_\kappa A$, $A = \bigcup_{z \in U^*} \pi``z \subset e``(\pi``c_\xi) \times \mu \subset e``A \times \mu \subset A$. Hence $A = e``(\pi``c_\xi) \times \mu$ and $\pi``c_\xi \in \mathcal{P}_\nu A$, as desired.

For $i = 0, 1$ take $a \subset x^i \in S \cap \mathcal{P}_\kappa A$ so that $x^i \cap \mu$ disagrees with each other. Then $A = e``a \times \mu \subset e``x^i \times \mu \subset e``A \times \mu \subset A$. Hence $A = e``x^i \times \mu \in X_{x^i \cap \mu}$ by $x^i \in S$, which contradicts that $X_{x^i \cap \mu}$ is disjoint from each other, as desired. \square

Therefore S is the desired set. \square

Let us derive another

Corollary. $\mathcal{P}_\kappa \lambda$ has a κ^+ -nonreflecting stationary subset if $\lambda \geq \kappa^{++}$ and $\text{cf}(\nu, \gamma) < \kappa$ for $\nu < \gamma < \kappa$.

Proof. It suffices to prove the case $\lambda = \kappa^{++}$ by checking the conditions of Theorem 3 for $\lambda = \mu^+ = \kappa^{++}$.

For $\gamma < \mu = \kappa^+$ fix a club set $T_\gamma \subset \mathcal{P}_\kappa \gamma$ of size κ and for $z \in \bigcup_{\gamma < \mu} T_\gamma$ an unbounded set $C_z \subset \mathcal{P}_\nu z$ of size $< \kappa$. Set $\{c_\xi : \xi < \mu\} = \bigcup \{C_z : z \in \bigcup_{\gamma < \mu} T_\gamma\}$. Then $T = \{z \in \bigcup_{\gamma < \mu} T_\gamma : \{c_\xi : \xi \in z\}$ is unbounded in $\mathcal{P}_\nu z\}$ has size μ . We claim that T is stationary in $\mathcal{P}_\kappa \mu$.

Fix $f : [\mu]^{<\omega} \rightarrow \mathcal{P}_\kappa \mu$. We have $\gamma < \mu$ of cofinality κ such that $\bigcup f``[\gamma]^{<\omega} \cup \bigcup_{\xi < \gamma} c_\xi \subset \gamma$ and $C_y \subset \{c_\xi : \xi < \gamma\}$ for $y \in \bigcup_{\beta < \gamma} T_\beta$. Build an increasing and continuous sequence $\{z_\alpha : \alpha < \nu\} \subset T_\gamma$ so that $\bigcup f``[z_\alpha]^{<\omega} \cup \bigcup \{c_\xi : \xi \in z_\alpha\} \subset z_{\alpha+1}$ and $C_y \subset \{c_\xi : \xi \in z_{\alpha+1}\}$ for some $z_\alpha \subset y \in \bigcup_{\beta < \gamma} T_\beta$. Then $z = \bigcup_{\alpha < \nu} z_\alpha \in C(f)$, since $\bigcup f``[z_\alpha]^{<\omega} \subset z_{\alpha+1}$. Since $\{z_\alpha : \alpha < \nu\} \subset T_\gamma$ is increasing, $z \in T_\gamma$. Since $\bigcup \{c_\xi : \xi \in z_\alpha\} \subset z_{\alpha+1}$, $\{c_\xi : \xi \in z\} \subset \mathcal{P}_\nu z$. To see that $\{c_\xi : \xi \in z\}$ is unbounded in $\mathcal{P}_\nu z$, fix $x \in \mathcal{P}_\nu z$. We have $\alpha < \nu$ with $x \subset z_\alpha$, hence $\xi \in z_{\alpha+1}$ with $x \subset c_\xi$, as desired. \square

Theorem 3 is void, however, if $\text{cf} \mu < \kappa$ or if $\kappa = \theta^+$ and $\theta > \text{cf} \theta = \omega$: In the former case $\mathcal{P}_\kappa \mu$ has no stationary subset of size μ . In the latter case $\mathcal{P}_\nu z$ has no unbounded subset of size θ for $z \in [\mu]^\theta$, since $\text{cf}(\nu, \theta) > \theta$ if $\text{cf} \theta < \nu < \theta$. See [9] for a nonreflection result in the latter case under additional assumptions.

4. PROOF OF THEOREM 1

This section is devoted to Foreman–Magidor’s example of a nonreflecting stationary set as we understand it. The proof invokes those [1, 2] that $\mathcal{P}_\kappa \kappa^+$ has a club subset of size $\leq (\kappa^+)^{\omega_1}$ and that stationary reflection implies Chang’s conjecture.

Proof of Theorem 1. Fix a bijection $\pi_\gamma : \kappa \rightarrow \gamma$ for $\kappa \leq \gamma < \kappa^+$. Define $h : [\kappa^+]^2 \rightarrow \mathcal{P}_\kappa \kappa^+$ by $h(\alpha, \beta) = \lim \pi_\beta `` \pi_\beta^{-1}(\alpha)$. Since $\lambda \geq 2^{\kappa^+}$, we have a list $\{g_\xi : \xi < \lambda\}$ of the functions $g : \kappa^+ \rightarrow \mathcal{P}_\kappa \kappa$. Then $D = \{x \in \mathcal{P}_\kappa \lambda : \bigcup h``[x \cap \kappa^+]^2 \subset x \wedge \forall \gamma \in x \cap (\kappa^+ - \kappa) (\pi_\gamma `` (x \cap \kappa) = x \cap \gamma) \wedge \forall \xi \in x (\bigcup g_\xi `` (x \cap \kappa^+) \subset x)\}$ is club in $\mathcal{P}_\kappa \lambda$.

Set $S = \{x \in \mathcal{P}_\kappa \lambda : \{\sup(y \cap \kappa^+) : x \subset y \in D \wedge y \cap \kappa = x \cap \kappa\}$ is nonstationary in $\kappa^+\}$.

Claim. S is stationary in $\mathcal{P}_\kappa \lambda$.

Proof. Suppose otherwise. By induction on $n < \omega$ build $f_n : [\lambda]^{<\omega} \rightarrow \mathcal{P}_\kappa \lambda$ and $\xi_n : [\lambda]^{<\omega} \rightarrow \lambda$ so that $C(f_0) \subset D - S$, $g_{\xi_n(a)}(\gamma) = \text{cl}_{f_n}(a \cup \{\gamma\}) \cap \kappa$ and $f_{n+1}(a) = f_n(a) \cup \{\xi_n(a)\}$. Define $f : [\lambda]^{<\omega} \rightarrow \mathcal{P}_\kappa \lambda$ by $f(a) = \bigcup_{n < \omega} f_n(a)$.

Subclaim. $\{\sup(z \cap \kappa^+) : x \subset z \in C(f) \wedge z \cap \kappa = x \cap \kappa\}$ is unbounded in κ^+ for $x \in C(f)$.

Proof. Fix $\alpha < \kappa^+$. Since $x \in C(f) \subset \mathcal{P}_\kappa \lambda - S$, $\{\sup(y \cap \kappa^+) : x \subset y \in D \wedge y \cap \kappa = x \cap \kappa\}$ is stationary in κ^+ . Hence we have $x \subset y \in D$ with $y \cap \kappa = x \cap \kappa$ and $\alpha < \gamma \in y \cap \kappa^+$.

Set $z = \bigcup \{\text{cl}_{f_n}(a \cup \{\gamma\}) : n < \omega \wedge a \in [x]^{<\omega}\}$. Then $\alpha < \gamma \leq \sup(z \cap \kappa^+)$. It is easy to see $x \subset z \in C(f)$. To see $z \cap \kappa \subset x \cap \kappa$, fix $\beta \in z \cap \kappa$. Then $\beta \in \text{cl}_{f_n}(a \cup \{\gamma\}) \cap \kappa = g_{\xi_n(a)}(\gamma)$ for some $n < \omega$ and $a \in [x]^{<\omega}$. Since $x \in C(f)$ and $a \in [x]^{<\omega}$, $\xi_n(a) \in f(a) \subset x \subset y$. Hence $\beta \in g_{\xi_n(a)}(\gamma) \subset y \cap \kappa = x \cap \kappa$, as desired, since $\xi_n(a), \gamma \in y \in D$. \square

For $i = 0, 1$ build an increasing and continuous sequence $\{x_\xi^i : \xi < \omega_1\} \subset C(f)$ so that $x_\xi^i \cap \kappa = x_0^0 \cap \kappa \in \kappa$ has cofinality ω_1 , $\sup(x_\xi^0 \cap \kappa^+) \leq \sup(x_\xi^1 \cap \kappa^+) < \sup(x_{\xi+1}^0 \cap \kappa^+)$ and $x_0^1 \cap \kappa^+$ is not an initial segment of $x_1^0 \cap \kappa^+$ as follows: First take $x_0^0 \in C(f)$ with $x_0^0 \cap \kappa \in S_\kappa^{\omega_1}$. Subclaim allows us to take x_1^0 from $X = \{z \in C(f) : x_0^0 \subset z \wedge z \cap \kappa = x_0^0 \cap \kappa\}$ so that $\{\sup(z \cap \kappa^+) : z \in X\} \cap \sup(x_1^0 \cap \kappa^+)$ has size κ . Since $x_1^0 \cap \kappa^+$ has $< \kappa$ initial segments, we have $x_1^0 \in X$ as required above. The rest of the construction is routine.

Set $x^i = \bigcup_{\xi < \omega_1} x_\xi^i$. Then $x^i \in C(f)$, since $\kappa \geq \omega_2$ is regular and $\{x_\xi^i : \xi < \omega_1\} \subset C(f)$ is increasing. Also $\sup(x^i \cap \kappa^+) = \sup_{\xi < \omega_1} \sup(x_\xi^i \cap \kappa^+)$ has cofinality ω_1 and agrees with each other by $\sup(x_\xi^0 \cap \kappa^+) \leq \sup(x_\xi^1 \cap \kappa^+) < \sup(x_{\xi+1}^0 \cap \kappa^+)$. Since $x^i, x_\xi^i \in C(f) \subset D$, we have $x^i \cap \gamma = \pi_\gamma `` (x^i \cap \kappa) = \pi_\gamma `` (x_0^0 \cap \kappa) = \pi_\gamma `` (x_\xi^i \cap \kappa) = x_\xi^i \cap \gamma$ for $\gamma \in x_\xi^i \cap (\kappa^+ - \kappa)$. Since $x_0^1 \cap \kappa^+$ is not an initial segment of $x_1^0 \cap \kappa^+$, $x^i \cap \kappa^+$ disagrees with each other. Moreover $x^i \cap \kappa^+$ is σ -closed:

Fix $b \subset x^i \cap \kappa^+$ of order type ω . We have $b \subset \beta \in x^i \cap (\kappa^+ - \kappa)$ by $\text{cf } \sup(x^i \cap \kappa^+) = \omega_1$. Since $\pi_\beta^{-1} `` (x^i \cap \beta) = x^i \cap \kappa = x_0^0 \cap \kappa \in \kappa$

has cofinality ω_1 , we have $\alpha \in x^i \cap \beta$ with $\pi_\beta^{-1}“b \subset \pi_\beta^{-1}(\alpha)$. Hence $b \subset \pi_\beta“\pi_\beta^{-1}(\alpha)$. Thus $\sup b \in h(\alpha, \beta) \subset x^i$, as desired, since $\alpha, \beta \in x^i \in D$.

Set $c = x^0 \cap x^1 \cap \kappa^+$, which is unbounded in $\sup(x^i \cap \kappa^+)$. Then $x^i \cap \kappa^+ = \bigcup_{\gamma \in c} x^i \cap \gamma = \bigcup_{\gamma \in c} \pi_\gamma“(x^i \cap \kappa) = \bigcup_{\gamma \in c} \pi_\gamma“(x_0^0 \cap \kappa)$ by $x^i \in D$, which contradicts that $x^i \cap \kappa^+$ disagrees with each other, as desired. \square

Claim. S is nonreflecting.

Proof. Suppose to the contrary $S \cap \mathcal{P}_\kappa A$ is stationary in $\mathcal{P}_\kappa A$ for some $\kappa \subset A \subset \lambda$ of size κ . Fix a bijection $\pi : \kappa \rightarrow A$. Then $T = \{\gamma < \kappa : \pi“\gamma \in S \wedge \pi“\gamma \cap \kappa = \gamma\}$ is stationary in κ , hence $\{y \cap \kappa^+ : \pi“(y \cap \kappa) \subset y \in D \wedge y \cap \kappa \in T\}$ is stationary in $\mathcal{P}_\kappa \kappa^+$. Thus $\{\sup(y \cap \kappa^+) : \pi“(y \cap \kappa) \subset y \in D \wedge y \cap \kappa \in T\}$ is stationary in κ^+ , hence so is $\{\sup(y \cap \kappa^+) : \pi“(y \cap \kappa) \subset y \in D \wedge y \cap \kappa = \gamma\}$ for some $\gamma \in T$. Thus $\{\sup(y \cap \kappa^+) : \pi“\gamma \subset y \in D \wedge y \cap \kappa = \pi“\gamma \cap \kappa\}$ is stationary in κ^+ , which contradicts $\pi“\gamma \in S$, as desired. \square

Therefore stationary reflection for $\mathcal{P}_\kappa \lambda$ fails. \square

We remark that the same proof as above works if we replace “non-stationary” by “bounded” in the above definition of S .

REFERENCES

- [1] J. Baumgartner, *On the size of closed unbounded sets*, Ann. Pure Appl. Logic 54 (1991) 195–227.
- [2] M. Bekkali, Topics in Set Theory, Lecture Notes in Math. 1476, Springer, Berlin, 1991.
- [3] J. Cummings, M. Foreman and M. Magidor, *Squares, scales and stationary reflection*, J. Math. Logic 1 (2001) 35–98.
- [4] Q. Feng and M. Magidor, *On reflection of stationary sets*, Fund. Math. 140 (1992) 175–181.
- [5] M. Foreman and M. Magidor, *Large cardinals and definable counterexamples to the continuum hypothesis*, Ann. Pure Appl. Logic 76 (1995) 47–97.
- [6] _____ and S. Shelah, *Martin’s Maximum, saturated ideals, and non-regular ultrafilters. Part I*, Ann. Math. 127 (1988) 1–47.
- [7] A. Kanamori, The Higher Infinite, Springer Monogr. Math., Springer, Berlin, 2003.
- [8] Y. Matsumura, *Menas’ conjecture and generic ultrapowers*, Ann. Pure Appl. Logic 36 (1987) 225–234.
- [9] _____, *Stationary preserving ideals over $\mathcal{P}_\kappa \lambda$* , J. Math. Soc. Japan 55 (2003) 827–835.
- [10] S. Shelah, *A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals*, Israel J. Math. 21 (1975) 319–349.
- [11] _____, Around Classification Theory of Models, Lecture Notes in Math. 1182, Springer, Berlin, 1986.

- [12] ———, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press, New York, 1994.
- [13] ———, *Existence of almost free abelian groups and reflection of stationary set*, Math. Japon. 45 (1997) 1–14.
- [14] ———, Structure Nonstructure Theory, Oxford Logic Guides, Oxford Univ. Press, New York, to be published.
- [15] ———, *Reflection implies the SCH*, preprint, 2004.
- [16] M. Shioya, *Splitting $\mathcal{P}_\kappa\lambda$ into maximally many stationary sets*, Israel J. Math. 114 (1999) 347–357.
- [17] ———, *Stationary reflection and the club filter*, preprint, 2004.
- [18] W. Woodin, The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, de Gruyter Ser. Log. Appl. 1, Walter de Gruyter, Berlin, 1999.

INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY, JERUSALEM, 91904 ISRAEL.

E-mail address: shelah@math.huji.ac.il

INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA, TSUKUBA, 305-8571 JAPAN.

E-mail address: shioya@math.tsukuba.ac.jp