Chapter 2 Essential Dictionary I- Part 1

Sets of Numbers

The 'open face' symbols \mathbb{N} , \mathbb{Z} , \mathbb{Q} were introduced in Sect. 2.1.1 to represent the natural numbers, the integers, and the rationals, respectively. Likewise, we denote by \mathbb{R} the set of **real** numbers (its symbolic definition is left as Exercise 2.13.

The set of **complex** numbers is denoted by \mathbb{C} . The set \mathbb{C} may be written as

$$\mathbb{C} \stackrel{\text{def}}{=} \{x + iy : i^2 = -1, \quad x, y \in \mathbb{R}\}.$$

The symbol i is called the **imaginary unit**, while x and y are, respectively, the **real part** Re(z) and the **imaginary** part Im(z) of the complex number z = x + iy.

The sets \mathbb{R} and \mathbb{C} are represented geometrically as the **real line** and the **complex plane** (or **Argand plane**), respectively.

A plot of complex numbers in the Argand plane is called an Argand diagram.

An **interval** is a subset of \mathbb{R} of the type

$$[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$$

where a, b are real numbers, with a < b. This interval is **closed**, that is, it contains its end points.

**A point is sometimes regarded as a degenerate closed interval, by allowing a = b in the definition.

We also have **open** intervals:

$$(a, b) := \{x \in \mathbb{R} : a < x < b\}$$

as well as half-open intervals [a, b) (a, b].

The interval with end-points a = 0 and b = 1 is the (open, closed, half-open) unit interval.

A semi-infinite interval

$$\{x \in \mathbb{R} : a < x\}$$
 or $\{x \in \mathbb{R} : x > b\}$

is called a **ray**.

The rays consisting of all positive real or rational numbers are particularly important, and have a dedicated notation

$$\mathbb{R} + := \{ x \in \mathbb{R}, x > 0 \}, \qquad \mathbb{Q} + := \{ x \in \mathbb{Q}, x > 0 \}.$$

Some authors extend the meaning of interval to include also rays and lines, and use expressions such as

$$(-\infty,\infty)$$
 $[a,\infty)$ $(-\infty,b]$.

As infinity does not belong to the set of real numbers, the notation $[1,\infty]$ is incorrect.

The set \mathbb{R}^2 of all ordered pairs of real numbers is called the **cartesian plane**, which is the cartesian product of the real line with itself.

If $(x, y) \in \mathbb{R}^2$, then the first component x is called the **abscissa** and the second component y the **ordinate**.

The set $\mathbb{Q}^2 \subset \mathbb{R}^2$, the collection of points of the plane having rational coordinates, is called the set of **rational** points in \mathbb{R}^2 .

The set $[0,1]^2 \subset \mathbb{R}^2$ is called the **unit square**.

In \mathbb{R}^3 we have the **unit cube** $[0,1]^3$, and for n > 3 we have the **unit**

hypercube $[0,1]^n \subset \mathbb{R}^n$.

The following subsets of the cartesian plane are related to the geometrical figure of the circle:

$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$
 unit circle $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ closed unit disc $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ open unit disc.

Thus the closed unit disc is the union of the open unit disc and the unit circle. The (unit) circle is denoted by the symbol s^1 .

For n > 0, the *n*-dimensional unit sphere s^n is defined as follows:

$$s^n = \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} : x_0^2 + \dots + x_n^2 = 1\}$$