MATB43: Introduction to Analysis Lecture Notes

Joshua Concon

University of Toronto Scarborough – Winter 2018

Pre-reqs are MATA37. Instructor is John Scherk. If you find any problems in these notes, feel free to contact me at conconjoshua@gmail.com.

Contents

1	Frid	lay, January 5, 2017	2
	1.1	Countability	2
	1.2	Real Numbers	
	1.3	Algebraic Numbers	1
	1.4	Bounds	Ę

1 Friday, January 5, 2017

1.1 Countability

Countability is all about the cardinality of sets

Definition 1.1. For sets X, Y, they have the same cardinality if there exists a bijection between them $(f: X \mapsto Y \text{ has an inverse as well})$. Equality of cardinality of 2 sets is written as card(X) = card(Y)

Example 1.2. $card(\{1, 2, 3, 4, 5\}) = card(\{a, b, c, d, e\})$

Example 1.3. $card(\mathbb{N}) = card(2\mathbb{N})$

This example is correct because $f: \mathbb{N} \mapsto 2\mathbb{N}, f(n) = 2n$ is a bijection.

Example 1.4. $card(\{\text{set of odd numbers}\}) = card(\mathbb{N})$

This example is correct because $g : \mathbb{N} \mapsto \{\text{set of odd numbers}\}\$ $g(n) = 2n + 1, n \in \mathbb{N}$

Definition 1.5. X is **finite** if for some $n \in \mathbb{N}$ there exists a bijection where $A = \{1, 2, ..., n\}$ $f: A \mapsto X$. So essentially card(A) = card(X)

Intuitively, we can label the elements of X as $X = \{x_1, x_2, ..., x_n\}$

Definition 1.6. X is **inifinite** if X is not finite.

Examples of this include: $\mathbb{N}, 2\mathbb{N}, \mathbb{Q}, \mathbb{R}$

However, not all infinite sets have the same cardinality.

Definition 1.7. X is **countable** if card(X) = card(A) where $A \subseteq \mathbb{N}$

Again intuitively, we can label the elements of X as $X = \{x_1, x_2, ..., x_n, ...\}$ (using elements of \mathbb{N})

Example 1.8. $2\mathbb{N}$

Example 1.9. The set of odd numbers

Example 1.10. \mathbb{Z}

Theorem 1.11. In general, if $Z = X \cup Y$ and Y, X are both countable then Z is countable as well

Proof. label elements of $X = \{x_1, x_2, ..., x_n, ...\}$ label elements of $Y = \{y_1, y_2, ..., y_n, ...\}$ define $h : \mathbb{N} \mapsto \mathbb{Z}$ as, for $n \in \mathbb{N}$:

$$h(2n-1) = x_n$$
$$h(2n) = y_n$$

Then h is a bijection, therefore Z is also countable

Example 1.12. $\mathbb{N} \times \mathbb{N}$

This example is countable as we can label its elements in the following pattern.

$$(1,1) \mapsto 1$$

$$(2,1) \mapsto 2$$

$$(1,2) \mapsto 3$$

$$(1,3) \mapsto 4$$

$$(2,2) \mapsto 5$$

$$(3,1) \mapsto 6$$

$$(4,1) \mapsto 7$$

And so on, in this pattern. Intuitively, if you list out all the pairs of $\mathbb{N} \times \mathbb{N}$ like a matrix, this would create a sort of zig zag pattern.

Proposition 1.13. Suppose X is countable and $Y \subset X$, then Y is either finite (which also means that it is countable) or just countable

```
Proof. write X = \{x_1, x_2, ..., x_n, ...\} let j_1 be the smallest index such that x_{j_1} \in Y let j_2 be the smallest index such that x_{j_2} \in Y, j_2 > j_1 let j_3 be the smallest index such that x_{j_3} \in Y, j_3 > j_2 ... and so on.
```

Now either:

This process terminates, which means that $Y = \{x_{j_1}, ..., x_{j_n}\}$ for some

 $j_1, ..., j_n$ which Y is finite.

or:

Y is countable, since
$$Y = \{x_{j_1}, x_{j_2}, ..., x_{j_n}, ...\}$$

Proposition 1.14. \mathbb{Q} is countable

Proof. Note that $\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$ so we must check that \mathbb{Q}^+ is countable, note that

$$\mathbb{Q}^+ = \{ \frac{m}{n} | m, n \in \mathbb{N}, n \neq 0 \}$$

Since it is a pairing of two natural numbers (m, n), this is a subset of $\mathbb{N} \times \mathbb{N}$, which means that \mathbb{Q}^+ is countable, we can say that same thing for \mathbb{Q}^- as well, note that it is

$$\mathbb{Q}^+ = \{ \frac{-m}{n} | m, n \in \mathbb{N}, n \neq 0 \}$$

and since \mathbb{Q}^+ and \mathbb{Q}^- are both countable and $\{0\}$ is a set of cardinality 1, therefore \mathbb{Q} is countable

Theorem 1.15. Let $S = \{s = (s_1, s_2, ...) | s_j = 0 \text{ or } 1 \forall j \}$ (note here that s is a sequence). Then S is not countable

Proof. For proof by contradiction, suppose S is countable. We can then label the elements of S as $S^1, S^2, ..., S^n, ... \in S$.

So an example of this would be:

$$S^{1} = (s_{1}^{1}, s_{2}^{1}, s_{3}^{1}, ..., s_{n}^{1}, ...)$$

$$S^{2} = (s_{1}^{2}, s_{2}^{2}, s_{3}^{2}, ..., s_{n}^{2}, ...)$$

$$...$$

$$S^{m} = (s_{1}^{m}, s_{2}^{m}, s_{3}^{m}, ..., s_{n}^{m}, ...)$$

And we will define a $t \in S$ as follows, let $t = (t_1, t_2, ..., t_m, ...)$

$$t_1 = \begin{cases} 0, & \text{if } S_1^1 = 1\\ 1, & \text{if } S_1^1 = 0 \end{cases}$$

1 FRIDAY, JANUARY 5, 2017

$$t_2 = \begin{cases} 0, & \text{if } S_2^2 = 1\\ 1, & \text{if } S_2^2 = 0\\ & \dots \end{cases}$$

$$t_m = \begin{cases} 0, & \text{if } S_m^m = 1\\ 1, & \text{if } S_m^m = 0 \end{cases}$$

Therefore $t \neq S^m, \forall m$. Therefore this is a contradiction as t was not in the listed elements of S, therefore S is not countable.

Corollary 1.16. \mathbb{R} is not countable

Proof. Regard \mathbb{R} as a set of infinite decimal fractions.

Identify $s \in S$ with the decimal number $0.s_1s_2...s_n...$ so S can be regarded as a subset of \mathbb{R} . If \mathbb{R} were countable, then S would be countable, therefore \mathbb{R} must not be countable.

1.2 Real Numbers

Examples of real numbers that are not rational include: π, e (which are algebraic numbers), $\sqrt{2}, \sqrt{3}, \frac{\sqrt{5}+1}{2}$ (which are roots of polynomial equations with integer coefficients.)

1.3 Algebraic Numbers

The set of Algebraic Numbers is a set $\overline{\mathbb{Q}}$ such that

$$\overline{\mathbb{Q}} = \{x \in \mathbb{R} | x^n + a_{n-1}x^{n-1} + \dots + a_0 = 0 \text{ for some } a_0, \dots, a_{n-1} \in \mathbb{Z} \}$$

Note that $\mathbb{Q} \subset \overline{\mathbb{Q}}$, and in fact, $\overline{\mathbb{Q}}$ is countable.

if $x \in (\mathbb{R} \setminus \overline{\mathbb{Q}})$ then. x is transcendental.

1.4 Bounds

Definition 1.17. $X \subset \mathbb{R}, X$ is **bounded above** if $\exists a \in \mathbb{R}$ such that $a \geq x, \forall x \in X$

Definition 1.18. $X \subset \mathbb{R}, X$ is **bounded below** if $\exists a \in \mathbb{R}$ such that $a \leq x, \forall x \in X$

Example 1.19. $X = \{x \in \mathbb{R} | x^2 \le 2\}$ is bounded above by $\frac{3}{2}$ since $(\frac{3}{2})^2 \ge 2$

Definition 1.20. a is the **least upper bound** of X if a is an upper bound of X and if b < a, then there exists $x \in X$ such that x > b.

We write a = lub(X) or a = sup(X) if a is the least upper bound of X

Definition 1.21. a is the **greatest lower bound** of X if a is an lower bound of X and if b > a, then there exists $x \in X$ such that x < b.

Example 1.22. if $X = \{x | x^2 \le 2\}$, then $sup(X) = \sqrt{2} \notin \mathbb{Q}$

Property 1.23. if $X \subset \mathbb{R}$ is bounded above then there exists $a \in \mathbb{R}$, a least upper bound of X

Theorem 1.24. given $a, b \in \mathbb{R}$ a, b > 0 $\exists n \in \mathbb{N}$ such that na > b (This is known as the **archemedian property**)

Proof. Suppose that $\forall n \in \mathbb{N}$, $na \leq b$ implies that b is an upper bound for $X = \{na | n \in \mathbb{N}\}.$

Since X is bounded above, let $c = \sup(X)$, this implies that c - a is not an upper bound for X, which further implies that there exists an $a \in \mathbb{N}$ such that na > c - a, and that

$$na > c - a$$

$$na + a > c$$

$$(n+1)a > c$$

$$c < (n+1)a \in X$$

This is impossible since we've previously stated that c is the upper bound. Therefore X is not bounded above.

Theorem 1.25. given $c, d \in \mathbb{R}$, there exists $q = \frac{m}{n} \in \mathbb{Q}$ such that c < q < d

Proof. We want $c < \frac{m}{n} < d$ iff nc < m < nd.

let $\epsilon = d - c > 0$

pick $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$

pick m, such that m > nc

(since we also need m < nd, choose m to be as small as possible such that $m-1 \le nc < m$)

$$\frac{m-1 \le nc \le m}{n-1} = \frac{m-1}{n} \le c \le \frac{m}{n}$$

or

$$\frac{m}{n} \le c + \frac{1}{n} < c + \epsilon = d$$

So now we have $c < \frac{m}{n} < d$ as desired.