

Introducción rápida a los sistemas de control

Robótica

Alberto Díaz y Raúl Lara Curso 2022/2023 Departamento de Sistemas Informáticos

License CC BY-NC-SA 4.0

La teoría del control

Se ocupa del control de sistemas dinámicos en procesos de todo tipo.

• Se considera campo interdisciplinario de la ingeniería y de las matemáticas.

¿Cómo **llevar sistemas a estados deseados** en función de sus entradas ...

- ... minimizando el tiempo de ajuste, rebasamiento y error estacionario?
- ... garantizando un nivel de estabilidad de control?
- ... persiguiendo el grado de optimalidad?

Por cierto, las entradas también reciben nombre de referencia.

Dentro de la teoría de control existen también otros dos aspectos de estudio:

- Controlabilidad: Alterar un sistema usando solo manipulaciones admisibles.
- Observabilidad: Medida de lo bien que se infieren los estados internos de un sistema a partir del conocimiento de sus salidas externas.

Existen dos grandes divisiones en la teoría de control, a saber:

- Clásica: Diseño de sistemas de una única entrada y una única salida¹.
- Moderna: Diseño de sistemas con múltiples entradas y salidas.

Excepto cuando se analiza el impacto de perturbaciones, donde sí se utiliza una segunda entrada.

Función de transferencia

Función que modela la salida de un sistema para cada entrada posible ².

El caso más sencillo ofrece una entrada para una salida:

- La gráfica generada se denomina curva de transferencia.
- Muy común en áreas como tratamiento de señal o teoría de la comunicación.

Se suele utilizar sólo en sistemas lineales invariantes en el tiempo (LTI):

- La mayoría de sistemas tienen características de entrada/salida no lineales.
- Suelen comportarse linealmente dentro de sus parámetros "normales".

Modelización **teórica**, por lo que no tiene por qué replicar exactamente todos los detalles del sistema modelado.

Ingeniería automática

Puede definirse como la aplicación práctica de la Teoría del control.

Sus objetivos fundamentales son:

- 1. Modelado de sistemas dinámicos en términos de entradas y salidas.
- 2. Diseño de controladores para regular el comportamiento de dichos sistemas.
- 3. Implementación de controladores empleando la tecnología disponible.

Se suele considerar subcampo de la Ingeniería eléctrica:

- Pero sólo porque muchos controladores son eléctricos.
- En realidad no tiene por qué, también existen controladores mecánicos.
- Incluso hay sistemas software controlados por controladores Software.

Sistemas de control (controladores)

Regulan el comportamiento de otros sistemas mediante bucles de control.

Sistema de control automático: Diseñado para funcionar sin intervención.

Error y rebasamiento en un controlador

Error: Diferencia entre estado actual y estado deseado de un sistema.

Rebasamiento: Magnitud o dirección cuando el estado supera el set point.

Ambos son dos tipos de divergencias. Pueden ofrecer diferente información:

- Existe/no existe error: La menor cantidad de información.
- Dirección: Hacia dónde hay que ir para minimizar el error.
- Magnitud: La distancia al estado objetivo.

Controlar un sistema es mejor cuando conocemos dirección y magnitud.

Clasificación según anticipación a la salida

Punto de vista respecto la relación entre salida y los valores actual y pasados.

Causales: La salida es consecuencia del valor actual y pasado de la entrada.

• Son con los que trabajaremos normalmente porque modelan sistemas reales

No causales: No es posible determinar la salida en función de la entrada.

• No existen físicamente, son representaciones abstractas

Estos controladores se diseñan de tal manera que la salida depende de valores futuros de la entrada.

Clasificación según número de entradas y salidas

Clasificación sencilla en función de si hay una o muchas entradas o salidas:

- **SISO** (Single input, single output)
- **SIMO** (Single input, multipe output)
- MISO (Multiple input, single output)
- MIMO (Multiple input, multiple output)

Clasificación según función de transferencia

Un sistema es lineal si su función característica cumple los principios de:

Homogeneidad

Superposición

Por tanto el controlador se denominará:

- Lineal : Si cumple ambos principios de superposición y homogeneidad.
- No lineal : Si no cumple al menos uno de ellos.

Clasificación según paso del tiempo

Otro punto de vista: ¿cómo se modela el paso del tiempo en un sistema?:

- De tiempo continuo: El tiempo evoluciona de manera continua.
- De tiempo discreto: El tiempo evoluciona de manera discreta.
- De eventos discretos: La tiempo evoluciona cuando ocurren ciertos eventos.

Clasificación según relación entre las variables de entrada

Cuando hablamos de varios controladores, estos se pueden clasificar como:

- Acoplados: Si las variables de ambos están relacionadas entre sí.
- Desacoplados: Si no lo están.

Clasificación según evolución de parámetros internos

Los controladores mantienen parámetros que modulan su respuesta.

Así diferenciamos dos tipos de controladores:

- Estacionarios: Los parámetros no varían durante su funcionamiento.
- No estacionarios: Los parámetros pueden variar a lo largo del tiempo.

Clasificación según respuesta del sistema

La salida de un sistema petenece a un dominio, por lo que podemos clasificarlos:

- Estables: Para toda entrada acotada la respuesta es acotada.
- Inestables: Al menos una entrada acotada produce una salida no acotada.

Clasificación según realimentación

Realimentación: Relación secuencial de causas y efectos entre variables.

- O de otro modo, cuando una o más variables de salida se pasan a la entrada.
- También se la conoce como retroalimentación o feedback.
- Concepto muy antiguo, aunque fue formalizado por Norbert Wiener en 1948.

Dependiendo de la acción correctiva que tome el sistema:

- Si es apoyar la salida: Realimentación positiva o "efecto bola de nieve".
- En caso contrario: Realimentación negativa o regulación autocompensatoria.

Dos tipos, de lazo cerrado y de lazo abierto

Control de lazo cerrado

Cuando se usa la realimentación para minimizar el error de la salida.

• El controlador usa el *feedback* para conocer en cada momento la salida real.

El *feedback* provee al controlador de un comportamiento correctivo:

- 1. El controlador monitoriza una variable de salida (PV, de *Process Variable*).
- 2. La compara con la referencia, consigna o punto de ajuste (SP, de set point).
- 3. SP-PV da lugar a la **señal de error** , que es la salida a minimizar

Ejemplos de estos sistemas de control:

- Convergencia fonética de un humano.
- Control de crucero de un vehículo.

Control de lazo abierto

Aquellos controladores que no tienen en cuenta su influencia en el entorno.

Ejemplos de estos sistemas de control:

- Tostadora (las hay que comprueban el color de la rebanada).
- Secadora estándar (las hay que comprueban la humedad del tambor de secado).

Controladores de lazo abierto vs. lazo cerrado

Lazo abierto

Ventajas

• Sencillos, de fácil mantenimiento

Inconvenientes

- Requieren calibración inicial
- Sensibles a perturbaciones
- Mejor en modelos simples

Lazo cerrado

Ventajas

- Control de sistemas inestables
- Robustez frente perturbaciones

Inconvenientes

- Mayor coste (más sensores)
- Son más complejos de modelar

Clasificación según predictibilidad

En función de lo predecible de la respuesta de un sistema, lo podemos clasificar como:

- **Determinista**: Si su comportamiento es extremadamente predecible.
- Estocástico: Si es imposible predecir su comportamiento futuro.

Cibernética

Etimología

La palabra timonel (en inglés *steersman*) viene el griego antiguo *kybernetes*:

- Los romanos la usaron para su *gubernare* (no eran muy buenos navegando).
- Norbert Wiener tomó la palabra griega y le añadió el sufijo ics³

Podemos definir la cibernética como el arte de gobernar o controlar.

³ En realidad remplazó el sufijo -tes (actor, agente) por -ike (disciplina, práctica, actividad), pasando de κυβερνήτης (kybernetes) a κυβερνητική (kybernetike). Disculpas por anticipado a todo estudiante de griego clásico.

Sistema de control genérico

Desde el punto de vista de la cibernética, un sistema tiene la siguiente forma:

Generalmente son bucles de control con realimentación

- ullet Realimentación positiva o negativa (de ahí el \pm en la generación del input).
- Puede haber sistemas de lazo abierto, pero no suelen ser de interés aquí.

Componentes más importantes de la cibernética

Realimentación: Mejora el rendimiento dinámico del sistema.

• Es un principio muy general que abarca tecnología, astronomía, biología, ...

Información: Flujos de datos que rodean un sistema.

Modelo: Basada en que existe isomorfismo⁵ entre diferentes sistemas.

Ley de Ashby ⁶: "cuanto mayor es la variedad de acciones, mayor es la variedad de perturbaciones a controlar".

• Sólo podemos controlar cuando sistema y controlador comparten variedad.

⁴ Fue definida por *Shannon* como la cantidad de incertidumbre eliminada que se describe probabilísticamente.

⁵ Sistemas mecánicos, electrónicos, etc. se pueden describir mediante las mismas ecuaciones diferenciales.

⁶ En algunos contextos se conoce como la **Ley de la Variedad Requerida** .

Sobre la Ley de Ashby

Podemos pensar en un controlador como un reductor de variedad:

- Cualquier alteración del entorno afecta al estado interno de un sistema.
- El objetivo es mantener a este lo más cerca de su estado objetivo (set point).
- El control por definición impide transmitir esa variedad existente en el entorno.

Es **justo lo contrario** al objetivo de la transmisión de información:

• Esta trata de mantener al máximo la variedad (e.g. compresión de datos).

¡GRACIAS!