

Marius Verdier, Pierre Tesio, Edward Lucyszyn Paul Bastin, Mohamed Azahriou

What are the data?

Daily stock prices of General Electrics (from 1962 to 2023)

What is the model?

$$\begin{array}{l} \textit{Majewski et} \\ \textit{al. type of} \\ \textit{model} \end{array} \begin{cases} p_{t+1} \! = \! p_t \! + \kappa_1 \! \left(v_t \! - \! p_t \right) \! + \! \beta \! \tanh \! \left(\gamma \, m_t \right) \! + \! \varepsilon_t \\ m_t \! = \! \left(1 \! - \! \alpha \right) m_{t-1} \! + \! \alpha \! \left(p_t \! - \! p_{t-1} \right) \\ v_t \! = \! \left(1 \! - \! \lambda \right) v_{t-1} \! + \! \lambda \! p_t \end{array}$$

Where
$$\varepsilon_t \sim \mathcal{N}(0, \sigma(\varepsilon)^2)$$

We need to estimate the parameters $\xi = (\kappa_1, \beta, \gamma, \alpha, \lambda, \sigma(\varepsilon))$

How to find the optimal parameters?

Consider $r, r^2, r^3, r^4, r^5, r^6$ the first six moments of data

How to find the optimal parameters?

- Consider the function $f:(\kappa_1,\beta,\gamma,\alpha,\lambda,\sigma(\varepsilon))\mapsto r_{ABM},r_{ABM}^2,r_{ABM}^3,r_{ABM}^4,r_{ABM}^5,r_{ABM}^6$ The function is stochastic!
- Consider the vector: $X = \left(\mathbb{E}(r) \mathbb{E}(r_{ABM}), \mathbb{E}(r^2) \mathbb{E}(r_{ABM}^2), \dots, \mathbb{E}(r^6) \mathbb{E}(r_{ABM}^6), ACF_r(1) ACF_{r_{ABM}}(1), ACF_r(2) ACF_{r_{ABM}}(2), ACF_r(3) ACF_{r_{ABM}}(3)\right)$
- Minimize 100 times the function: $g:(\kappa_1,\beta,\gamma,\alpha,\lambda,\sigma(\varepsilon))\mapsto \sum_{i=1}^9\sum_{j=1}^9 X_jW_{i,j}^{(0)}X_i$ with $W^{(0)}=I_9$
- To minimize, we use the function scipy.optimize.minimize with Powell method
- Calculate the mean of 100 minimisations : we call it $\xi^{(0)}$

How to find the optimal parameters?

- For each minimized parameters array, we simulate 100 times the data, and calculate the 6 first powers of the returns. This creates an array of size 6x100x15000
- We calculate the mean on the third axis: we now have an array of size 6x100.
- We calculate the ACF, and take lags 1, 2, 3: we get an array of size 3x100.
- We calculate the covariance matrix with the concatenation. The matrix is of size 9x9.
- We take the inverse of this matrix: $\,W^{(1)}\,$
- With this new matrix, we calculate $\xi^{(1)}$ and we continue until the difference between two vectors is small enough.

Results

Results

$$\xi_{test} = (\kappa = 0.08, \beta = 0.1, \gamma = 50, \alpha = 0.1, \lambda = 0.05, \sigma = 0.075)$$

$$\xi_{mode} = (\kappa = 0.12, \beta = 0.3, \gamma = 54, \alpha = 0.25, \lambda = 0.02, \sigma = 0.05)$$

Because the calculus of m_t and v_t do not depend on noise, with the true data, we can predict the future values of m_t and v_t .

We aim to classify investors in **two** categories:

- trend followers
- contrarians

To do so, we plot 1 - ECDF(m) where each point represents an investor.

We then plot the 1-ECDF of the money invested:

We then plot the 1-ECDF of the number of changes of invested volume:


```
message: Optimization terminated successfully.
success: True
status: 0
fun: 0.5452154714687333
x: [ 1.380e+04]
nit: 2
direc: [[ 7.749e+02]]
nfev: 45
```

We begin by try to fit our data with a centered normal law but approximation is not satisfying.

We will search our distribution in those which can be written under the form

$$\frac{\mathcal{T}(k) - \mu}{\sigma}$$

And it's clearly better!

We plot the 1-ECDF of the number of change

The CDF can be written under the form:

$$\alpha - e^{(x-\beta)}$$

or heavy-tailed with y = 4.35

Bonus: we plot the 1-ECDF of the returns

We found a normal law!


```
message: Optimization terminated successfully.
success: True
status: 0
fun: 0.8719760579593364
x: [ 2.698e-01]
nit: 2
direc: [[ 1.000e+00]]
nfev: 28
[0.26983099]
```

We then divide the investors between mean-reverters, trend followers and neutral.

We calculate correlation between change of inventory and the same-day return for each investor.

If it is above 0, they are **trend followers**, Below 0 they are **mean-reverters**, Close to 0 we classify them as **neutral**.

```
744
         mean-reverting
2955
                 neutral
4066
6018
6198
         mean-reverting
6447
         mean-reverting
7319
         mean-reverting
7936
                 neutral
9176
         mean-reverting
9185
9190
         mean-reverting
9191
         mean-reverting
10510
         mean-reverting
10649
                 neutral
10710
                neutral
11513
                 neutral
11872
                 neutral
14561
                 neutral
14774
                 neutral
15724
         mean-reverting
15740
         mean-reverting
15814
15936
         mean-reverting
16433
         mean-reverting
17837
         mean-reverting
18169
         mean-reverting
18178
                 neutral
18195
                neutral
18228
                 neutral
18232
                 neutral
18317
                 neutral
18321
         mean-reverting
18322
                 neutral
18333
                 neutral
18397
         mean-reverting
dtype: object
mean-reverting
                  21
neutral
```

We compute the probability of an investor changing from a class to another.

second_period first period	mean-reverting	neutral	trend-following
mean-reverting	0.739130	0.217391	0.043478
neutral	0.571429	0.357143	0.071429

We finally determine which investors try to predict future price moves by calculating the correlation between the change of inventory and future returns.

neutral	26
mean-reverting	8
trend-following	3

- Take a model
- Compute the parameters of Majewski *et al.* that fits the most the model
- Compute the volatility and m_t with the last prices
- Predict the next value and repeat the process

Also for a non stationary signal:

Predict the n next values and repeat the process

Results for a model from *Majewski et al* type of model with the 1000 last values:

Parameters given : $\xi_{\text{test}} = (0.08, 0.1, 50, 0.1, 0.05, 0.075)$

Results:

- Good precision and hit ratio
- Not enough prices estimated to compute a safe precision
- Took 9 minutes to compute 15 future values with only 4 iterations max for the GMM method

Can you we predict more parameters and do it faster?

Results for a model from *Majewski et al* type of model with the 50 last values every 100 values :

Parameters given : $\xi_{\text{test}} = (0.08, 0.1, 50, 0.1, 0.05, 0.075)$

Results:

True for real model False for real model
True for predicted model 449 428
False for predicted model 53 69
Precision = 0.5119726339794755
Hit ratio = 0.8667953667953668

- Took only 2 minutes to predict 1000 prices
- Less good precision but good balance between time and precision

Results for a model with stocks prices of General Electrics estimated with the last 7000 values:

	True for real model	False for real model
True for predicted model	3	2
False for predicted model	0	0
Precision = 0.6		
Hit ratio = 1.0		

- Took 18 minutes to predict only 5 prices
- Precision of 60% → good

What could have been done to improve the prediction?

- More estimations of the precision with the prices of the stock exchange to have an idea of the precision for many values
- Take more time to compute with more iterations for the GMM method to see if it improves the precision
- Test on more data of different type (with crypto for example)
- Test if we can earn money with this method \$

In conclusion

How easy is it to predict the market prices?

Financial markets are very complex : more parameters to catch market dynamic?

- A huge amount of time and computational resources, as well as sophisticated models
- It is easier to understand better market movements, for example by studying investors behaviors

Thanks for your attention! Tasks distribution:

- Pierre: part 1 & end of part 2
- Paul : part 1 & statistics analysis
- Mohamed: part 1 & beginning of part 2 & beginning of part 3
- Marius: part 1 & end of part 2 & beginning of part 3
- Edward: part 1 & beginning of part 2 & part 3