Signed

Roll Number

PART A - Scantron Scored

(44 points, 4 points each) Bubble-in the correct answer on the Scantron card. There is only one correct answer. Also circle your answer below for later review with the answer key.

- 1. Of the following compounds, the one that forms a bright yellow precipitate upon treatment with iodine in aqueous sodium hydroxide
 - A. 2-hexanone
 - B. 3-pentanone
 - C. cyclohexanone
 - D. 2-butenal
- 2. Which of the following is <u>not</u> true about keto-enol interconversion of a ketone such as 2,4-pentanedione?
 - A) A proton is removed from the methylene carbon of the ketone.
 - B) An enolate ion is formed as an intermediate in the base-catalyzed reaction.
 - C) An enolate ion is formed as an intermediate in the acid-catalyzed reaction.
 - D) A proton is donated to the oxygen atom.
- 3. The product of the aldol condensation of butanal (C_4H_8O) in base with heat is the following.

Roll Number

- 4. Which of the following are true about a Claisen condensation?
 - A) The reactants are two molecules of an ester and an equivalent of a base.
 - B) The base is the same as the leaving group of the ester.
 - C) The products are a beta-keto ester and an alcohol.
 - D) . Only a and c are correct.
 - E) All of the above are correct
- 5. What is the major organic product obtained from the following reaction?

- 6. The pK_a of ethyl cyanoacetate is 9. Which of the following bases will give the most ethyl cyanoacetate enolate in solution (highest concentration)? The conjugate acid pK_a 's of the bases are given.
 - A) Dimethyl amine ($(CH_3)_2NH$) [pKa conjugate acid = 11]
 - B) Acetate (CH_3CO_2) [pKa conjugate acid = 5]
 - C) t-Butoxide ((CH₃)₃CO) [pKa conjugate acid = 18]
 - D) Phenoxide (PhO) [pKa conjugate acid = 10]
 - E) Methane sulfonate (CH_3SO_3) [pKa conjugate acid = -2]

7. What is the major organic product obtained from the following sequence of reactions?

- A) A
- B) B
- C) C
- D) D
- 8. Reaction of 6,6-dimethylcyclohex-2-en-1-one with a strong base, such as Lithium diisopropyl amide in tetrahydrofuran, followed by reaction with methyl iodide results in
 - A) methyl isopropyl amine formation
 - B) amination at C4
 - C) methylation at C4
 - D) no reaction
- 9. What product is formed when 3-pentanone is dissolved in D₂O that contains some OD?
 - A) CD_3CD_2 -C(=O)- CD_2CD_3
 - B) CH₃CHD-C(=O)-CHDCH₃
 - C) CH_3CD_2 -C(=O)- CH_2CH_3
 - D) $CH_3CHD-C(=O)-CH_2CH_3$
 - $E) \ CH_3CD_2\text{-}C(=O)\text{-}CD_2CH_3$

10. Which of the following bases is \underline{not} strong enough to deprotonate CH₃SH (pKa =11)?

- A) A
- B) B
- C) C
- D) D
- E) All are strong enough to deprotonate CH₃SH
- 11. **Extra Credit:** Histidine is an amino acid. The fully protonated form has the pKa values indicated below.

$$pKa = 9.2$$
 $H_3N-CH-C-OH$ $pKa = 1.8$
 CH_2
 HN
 $PKa = 6.0$

Which one of the following is the predominant structure at pH = 7.6?

END of PART A – Scantron scored

Extra Credit (4 points): The pKa of phenol, the side chain group of the amino acid tyrosine, is close to 10. The pKa of the COOH group is 2.2 and NH_3^+ is 9.1. In the box draw the species that will predominate at a pH = **7.6**.

2. (40 points, 4 points each) Provide the structure(s)of the major organic products(s); Fill in the box for all questions.

1)
$$I_2$$
 excess /
NaOH
2) H_3O^+

$$\begin{array}{c}
O \\
D_2O / OD^{-1}
\end{array}$$

$$Ph$$
 CH_2
 CH_3

How many enolizable protons are there in the molecule on the left?

c. 3

d.	0	
	Ĭ	

$$\frac{1) \text{LDA / THF}}{2) \text{BrCH}_2 \text{Ph}}$$

End Part B

Begin Part C (next page)

3. (20 points; 10 points each)) **Mechanistic Understanding:** Provide a step wise mechanism for **BOTH** (**A and B**) of the following. Use curved arrows to show the electron movement and show all intermediates.

A.
$$\bigcap_{\text{NaOH, H}_2\text{O}} \bigcap_{\text{H-OH}} \bigcap_{\text$$

_____/ 20

Name:		

END OF PART C

Write your class roll number on

- (1) the top of the first page and
- (2) in the box on the bottom of this page.

	Acid	Approximate pK _a	Conjugate Base	
Strongest acid	HSbF ₆	<-12	SbF ₆ -	Weakest base
	HI	-10	[-	
	H ₂ SO ₄	-9	HSO ₄ -	
	HBr	-9	Br-	
	HCI	-7	CI-	
A	C ₆ H ₅ SQ ₃ H	-6.5	C ₆ H ₅ SO ₃ ⁻	
	(CH ₃) ₂ ŌH	-3.8	(CH ₃) ₂ O	
	$(CH_3)_2C = \overset{-}{O}H$	-2.9	$(CH_3)_2C = O$	
	CH ₃ OH ₂	-2.5	CH ₃ OH	
	H ₃ O ⁺	-1.74	H ₂ O	
	HNO ₃	-1.4	NO ₃ -	=
=	CF ₃ CO ₂ H	0.18	CF ₃ CO ₂ -	Cre
Bus	HF	3.2	F	asin.
str	CH ₃ CO ₂ H	4.75	CH ₃ CO ₂ -	80
acid	H ₂ CO ₃	6.35	HCO ₃ -	ase
50	CH3COCH2COCH3	9.0	CH ₃ COCHCOCH ₃	stre
Increasing acid strength	NH ₄ ⁺	9.2	NH ₃	Increasing base strength
ncre	C ₆ H ₅ OH	9.9	C ₆ H ₅ O-	-
-	HCO ₃ ⁻	10.2	CO ₃ ²⁻	
	CH ₃ NH ₃ ⁺	10.6	CH ₃ NH ₂	
	H ₂ O	15.7	OH-	
	CH₃CH₂OH	16	CH ₃ CH ₂ O ⁻	
	(CH ₃)₃COH	18	(CH ₃) ₃ CO ⁻	-
	CH₃COCH₃	19.2	-CH₂COCH₃	
	HC≡CH	25	HC≡C⁻	
	H_2	35	H-	
	NH ₃	38	NH ₂ ⁻	
	$CH_2 = CH_2$	44	CH ₂ =CH ⁻	
Veakest acid	CH₃CH₃	50	CH ₃ CH ₂ ⁻	Strongest bas

Note: write your Roll Number in the box

Write your class roll number on (1) the top of the first page and (2) below.				
Class Roll number				
Part A Scantron scored (44 points)				
Page 6 (20) Page 7 (12) Page 8 (12) Page 9 (20)				
Part B only(64)				