MA1522 Linear Algebra for Computing

Lecture 6: Span and Linear Dependence/Independence

Yang Yue

Department of Mathematics National University of Singapore

17 February, 2025

Outline

Questions posed in $Dr.Teo's\ Lectures$

Challenges about Optional Topic: Abstract Vector Spaces

Question one in Section 3.3

Let
$$\mathbf{u}_1=egin{pmatrix}1\\0\\1\end{pmatrix}$$
, $\mathbf{u}_2=egin{pmatrix}0\\1\\-1\end{pmatrix}$, $\mathbf{u}_3=egin{pmatrix}2\\1\\1\end{pmatrix}$, and $\mathbf{v}=egin{pmatrix}1\\1\\0\end{pmatrix}$.

- (i) Is \mathbf{v} in span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$?
- (ii) If it is, write ${f v}$ as a linear combination of ${f u}_1, {f u}_2, {f u}_3,$

$$\mathbf{v}=c_1\mathbf{u}_1+c_2\mathbf{u}_2+c_3\mathbf{u}_3.$$

(iii) Are the coefficients c_1, c_2, c_3 unique?

Find a vector
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 that is not in span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

Slide 24: Linear Combinations

Definition

Let $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ be vectors in \mathbb{R}^n . A <u>linear combination</u> of the vectors $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ is

$$c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_k\mathbf{u}_k,$$

for some $c_1, c_2, ..., c_k \in \mathbb{R}$. The scalars $c_1, c_2, ..., c_k$ are called *coefficients*.

Slide 26: Linear Span

Definition

Let $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ be vectors in \mathbb{R}^n . The <u>span</u> of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ is the subset of \mathbb{R}^n containing all the linear combinations of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$,

$$\mathsf{span}\{\mathbf{u}_1,\mathbf{u}_2,...,\mathbf{u}_k\} = \{ \ c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k \ \big| \ c_1,c_2,...,c_k \in \mathbb{R} \ \}.$$

We also define the span of the empty set span $\emptyset = \{\mathbf{0}\}.$

That is every vector \mathbf{v} in the set span $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$,

$$\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_k \mathbf{u}_k,$$

for some scalars $c_1, c_2, ..., c_k$.

Slide 31: Algorithm to Check for Linear Combination

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ be a set of vectors in \mathbb{R}^n .

- Form the $n \times k$ matrix $\mathbf{A} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \end{pmatrix}$ whose columns are the vectors in S.
- ▶ Then a vector \mathbf{v} in \mathbb{R}^n is in span $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ if and only if the system $\mathbf{A}\mathbf{x} = \mathbf{v}$ is consistent.
- ▶ If the system is consistent, then the solutions to the system are the possible coefficients of the linear combination. That

is, if
$$\mathbf{u} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix}$$
 is a solution to $\mathbf{A}\mathbf{x} = \mathbf{v}$, then

$$\mathbf{v}=c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_k\mathbf{u}_k.$$

Explicitly, $\mathbf{v} \in \text{span}\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ if and only if $(\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k \ | \ \mathbf{v} \)$ is consistent.

Answer to Question one in Section 3.3, part 1

Q: Let
$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, and $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. Is \mathbf{v} in span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$?

Answer: By the algorithm on Slide 31, we form the augmented matrix:

$$\left(\begin{array}{cc|c} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & -1 & 1 & 0 \end{array}\right) \xrightarrow{R_3 - R_1} \xrightarrow{R_3 + R_2} \left(\begin{array}{cc|c} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

The system is consistent. Hence, \mathbf{v} is in span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

Answer to Question one in Section 3.3, part 1 (conti.)

Q: (following (i))

(ii) Write \mathbf{v} as a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$,

$$\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3.$$

(iii) Are the coefficients c_1, c_2, c_3 unique?

Answer: We have had the REF form of the augmented matrix:

$$\left(\begin{array}{ccc|c} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

The system has solutions $c_1=1-2s, c_2=1-s$ and $c_3=s$, where $s\in\mathbb{R}.$ We can let s=0, and $c_1=c_2=1$ and $c_3=0$. Namely

$$\mathbf{v} = \mathbf{u}_1 + \mathbf{u}_2.$$

The answer is not unique, for example, we let s=1 and $c_1=-1, c_2=0$ and $c_3=1$,

$$v = -u_1 + u_3$$
.

Answer to Question one in Section 3.2, part 2

Q: Let
$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$, and $\mathbf{u}_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$. Find a vector $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ that is not in span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

Answer: We can take $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, and form the augmented matrices

$$\left(\begin{array}{ccc|c} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \end{array}\right) \xrightarrow{R_3 - R_1} \xrightarrow{R_3 + R_2} \left(\begin{array}{ccc|c} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

The system is inconsistent. Thus \mathbf{v} is not in span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

Question Two in Section 3.3

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ be a set of k vectors in \mathbb{R}^n .

- 1. Show that if k < n then span $(S) \neq \mathbb{R}^n$.
- 2. If k > n, can we make any conclusion?

Slide 37: Algorithm to check if span(S) = \mathbb{R}^n .

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ be a set of vectors in \mathbb{R}^n .

- Form the $n \times k$ matrix $\mathbf{A} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \end{pmatrix}$ whose columns are the vectors in S.
- ► Then span(S) = \mathbb{R}^n if and only if the system $\mathbf{A}\mathbf{x} = \mathbf{v}$ is consistent for all \mathbf{v} .
- This is equivalent to the reduced row-echelon form of A having no zero rows.

Explicitly, span $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\} = \mathbb{R}^n$ if and only if the reduced row-echelon form of $(\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k)$ has no zero rows.

Answer to Question two in Section 3.2, part 1

Q: Let $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ be a set of k vectors in \mathbb{R}^n . Show that if k < n then $\mathrm{span}(S) \neq \mathbb{R}^n$.

Answer: By slide 37, we study the reduced row-echelon form of ($\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k$). Since k < n, the number of pivotal columns can be at most k, in other words, there are at most k many nonzero rows. Thus, there must be zero rows, because n > k. Therefore, we conclude $\mathrm{span}(S) \neq \mathbb{R}^n$.

Answer to Question two in Section 3.2, part 2

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ be a set of k vectors in \mathbb{R}^n . If k > n, can we make any conclusion?

Answer: We cannot make any conclusion. For example, let n=2, and k=3.

If we take
$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $\mathbf{u}_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Then

$$\operatorname{span}(S)=\mathbb{R}^2$$
 (because $\operatorname{\textbf{u}}_1$ and $\operatorname{\textbf{u}}_2$ already $\operatorname{span}(\mathbb{R}^2)$).

On the other hand, if we take
$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
 and

$$\mathbf{u}_3 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
. Then $\mathrm{span}(S) \neq \mathbb{R}^2$ (because the RREF has a zero row).

Question one in Section 3.4

- 1. Show that the set containing the zero vector $\{\mathbf{0}\}$ is a subspace.
- 2. Construct a set V such that it satisfies condition (i) and (ii) but not (iii); that is, V contains the origin and is closed under scalar multiplication, but not closed under addition.
- 3. Let V be a subspace of \mathbb{R}^n and $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ a subset of V, $S \subseteq V$. Show that the span of S is contained in V, span $(S) \subseteq V$.

Slide 58: Subspace

Definition

A subset V of \mathbb{R}^n is a <u>subspace</u> if it satisfies the following properties.

- (i) V contains the zero vector $\mathbf{0} \in V$.
- (ii) V is closed under scalar multiplication. For any vector \mathbf{v} in V and scalar α , the vector $\alpha \mathbf{v}$ is in V.
- (iii) V is closed under addition. For any vectors \mathbf{u}, \mathbf{v} in V, the sum $\mathbf{u} + \mathbf{v}$ is in V.

Remark

- (1) Property (i) can be replaced with property (i'): V is nonempty.
- (2) Properties (ii) and (iii) is equivalent to property (ii'): For any \mathbf{u}, \mathbf{v} in V, and scalars α, β , the linear combination $\alpha \mathbf{u} + \beta \mathbf{v}$ is in V.

Remarks

- ▶ Algebraic terminology: Let U be a set, $f: U \rightarrow U$ a function/operation on U. A subset X of U is closed under f, if for any $x \in X$, $f(x) \in X$.
- Subspace is an instance of "substructure" in algebra.
- ▶ It turns out that for a subset V of the Euclidean space \mathbb{R}^n to satisfy all 10 axioms of being a vector space, suffice for it to satisfies only 3 of them.
- ► (This is because all other axioms are in "universal" form. If a "universal" property holds for a big set, then it holds for all its subsets.)

Answer to Question one in Section 3.4, part 1

Q: Show that the set containing the zero vector $Z = \{\mathbf{0}\}$ is a subspace.

Answer: We check the three properties:

- (i) V contains the zero vector $\mathbf{0} \in V$. Clearly, $\mathbf{0} \in Z$.
- (ii) V is closed under scalar multiplication. For any vector \mathbf{v} in V and scalar α , the vector $\alpha \mathbf{v}$ is in V. Only $\mathbf{0}$ is in Z, and for any scalar α , $\alpha \mathbf{0} = \mathbf{0} \in Z$.
- (iii) V is closed under addition. For any vectors \mathbf{u}, \mathbf{v} in V, the sum $\mathbf{u} + \mathbf{v}$ is in V. Again, we only have one sum $\mathbf{0} + \mathbf{0} = \mathbf{0} \in Z$.

Answer to Question one in Section 3.4, part 2

Q: Construct a set V such that it satisfies condition (i) and (ii) but not (iii); that is, V contains the origin and is closed under scalar multiplication, but not closed under addition.

Answer: Consider the space \mathbb{R}^2 and V to be the two axis. That is,

$$V = \{(x,0) : x \in \mathbb{R}\} \cup \{(0,y) : y \in \mathbb{R}\}.$$

Then (i) and (ii) are satisfied, but (iii) failed because $(1,0)+(0,1)=(1,1)\not\in V$.

Answer to Question one in Section 3.4, part 3

Q: Let V be a subspace of \mathbb{R}^n and $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ a subset of V, $S \subseteq V$. Show that the span of S is contained in V, span $(S) \subseteq V$.

Answer: Recall that the elements \mathbf{w} in span(S) are linear combinations of $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$, i.e., of the form

$$c_1\mathbf{u}_1+\cdots+c_k\mathbf{u}_k$$

for some $c_1, \ldots c_k \in \mathbb{R}$.

Given $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k \in V$, since V is a subspace, V is closed under scalar multiplication, so $c_1\mathbf{u}_1, ..., c_k\mathbf{u}_k$ are in V. V is also closed under addition, because it is a subspace, we have

$$c_1\mathbf{u}_1+\cdots+c_k\mathbf{u}_k\in V.$$

Question two in Section 3.4

Is
$$\mathbb{R}^2\subseteq\mathbb{R}^3$$
?

Answer: No, because every element is \mathbb{R}^2 has two coordinates, whereas \mathbb{R}^3 has three.

That said, \mathbb{R}^2 can be "embedded" into \mathbb{R}^3 by $(x,y) \mapsto (x,y,0)$. In other words, if we identify (x,y) with (x,y,0), then \mathbb{R}^2 can be viewed as a subspace of \mathbb{R}^3 .

Question one in Section 3.5

Suppose $\{\textbf{u}_1,\textbf{u}_2,\textbf{u}_3\}$ is linearly independent. Let

$$\begin{array}{rcl} \textbf{v}_1 & = & \textbf{u}_1, \\ \\ \textbf{v}_2 & = & \textbf{u}_1 + \textbf{u}_2, \\ \\ \textbf{v}_3 & = & \textbf{u}_1 + \textbf{u}_2 + \textbf{u}_3. \end{array}$$

Show that $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ is linearly independent too.

Slide 82: Linearly Independent

Definition

A set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is <u>linearly independent</u> if the only coefficients $c_1, c_2, ..., c_k$ satisfying the equation

$$c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_k\mathbf{u}_k=\mathbf{0},$$

are $c_1 = c_2 = \cdots = c_k = 0$. Otherwise, we say that the set is *linearly dependent*.

Remarks on Linear Independence

▶ In symbols, $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is linearly independent if for all $c_1, \ldots, c_k \in \mathbb{R}$,

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \cdots = c_k = 0.$$

▶ $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is linearly dependent if for some $c_1, ..., c_k \in \mathbb{R}$, not all equal to 0 such that

$$c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_k\mathbf{u}_k=\mathbf{0}.$$

► (It is a good exercise in logic to show the second statement is indeed a negation of the first.)

Answer to Question one in Section 3.5

Suppose $\{u_1,u_2,u_3\}$ is linearly independent. Let

$$\begin{array}{rcl} \textbf{v}_1 & = & \textbf{u}_1, \\ \\ \textbf{v}_2 & = & \textbf{u}_1 + \textbf{u}_2, \\ \\ \textbf{v}_3 & = & \textbf{u}_1 + \textbf{u}_2 + \textbf{u}_3. \end{array}$$

Show that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent too.

Answer: Suppose that for some $c_1, c_2, c_3 \in \mathbb{R}$ with

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}.$$

We must show that $c_1 = c_2 = c_3 = 0$.

Answer to Question one in Section 3.5 (conti.)

Substitute the *u* vectors, we have

$$c_1\mathbf{u}_1 + c_2(\mathbf{u}_1 + \mathbf{u}_2) + c_3(\mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3) = \mathbf{0}.$$

Namely,

$$(c_1+c_2+c_3)\mathbf{u}_1+(c_2+c_3)\mathbf{u}_2+c_3\mathbf{u}_3=\mathbf{0}.$$

Since $\{u_1, u_2, u_3\}$ is linearly independent, we have

$$c_1 + c_2 + c_3 = c_2 + c_3 = c_3 = 0.$$

Hence $c_1 = c_2 = c_3 = 0$.

Question two in Section 3.5

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ be a set of vectors in of \mathbb{R}^n . Show that if k > n, then S is linearly dependent.

Answer: We need to show that for some scalars $c_1, \ldots, c_k \in \mathbb{R}$, not all zero, $c_1\mathbf{u}_1 + \cdots + c_k\mathbf{u}_k = \mathbf{0}$. In other words, the linear system with c_i as unknowns has nonzero solutions.

Form the augmented matrix, which is $n \times k$. Since k > n, it has infinitely many solutions (with at least k - n parameters). Thus S is linearly dependent.

Challenge in Section 3.4

Prove that if a subset V of \mathbb{R}^n satisfies the 3 criteria of a subspace, then it satisfies all 10 axioms of a vector space.

Answer: By (ii) and (iii), V also equipped with the same addition and scalar multiplication.

Axioms 1,2,5,6,7,8 are in universal form, thus they also hold in V.

Axiom 3 holds by (i).

Axiom 4 holds because $-\mathbf{u} = (-1)\mathbf{u} \in V$.

Definition of Abstract Vector Spaces

A set V equipped with addition and scalar multiplication is said to be a *vector space* over \mathbb{R} if it satisfies the following axioms.

- 1. (Commutative) For any vectors \mathbf{u}, \mathbf{v} in V, $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- 2. (Associative) For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V, $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- 3. (Zero vector) There is a vector $\mathbf{0}$ in V such that $\mathbf{0} + \mathbf{v} = \mathbf{v}$ for all vectors \mathbf{v} in V.
- 4. (Negative) For any vector \mathbf{u} in V, there exists a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 5. (Distribution) For any scalar a in \mathbb{R} and vectors \mathbf{u}, \mathbf{v} in V, $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$.
- 6. (Distribution) For any scalars a, b in \mathbb{R} and vector \mathbf{u} in V, $(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$.
- 7. (Associativity of scalar multiplication) For any scalars a, b in \mathbb{R} and vector \mathbf{u} in V, $a(b\mathbf{u}) = (ab)\mathbf{u}$.
- 8. For any vector \mathbf{u} in V, $1\mathbf{u} = \mathbf{u}$.

Challenge in Section 3.3

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ be a set of vectors in \mathbb{R}^n . Referring to the properties of a spanning set or otherwise, show that the set $V = \operatorname{span}(S)$ is a (abstract) vector space. That is, it satisfies the 10 axioms of the definition of vector spaces.

Answer: By Challenge in Section 3.4, it suffices to show that ${\it V}$ satisfies all three conditions of subspaces. Details skipped.