HALL TICKET NO.	BOOKLET SL. NO. 505030
NAME OF THE CANDIDATE	BOOKLET CODE: B
SIGNATURE OF THE CANDIDATE	INVIGILATOR'S SIGNATURE

(CSE)

COMPUTER SCIENCE AND ENGINEERING INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the FMR Response Sheet BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING BALL POINT PEN (BLUE/BLACK) ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKLY NUMBER ANY WHERE ELSE.
- Immediately on opening this Question Paper Booklet, eheck. 2.
 - Whether 200 multiple choice questions are printed 50 spessions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Lagracering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- Use of Calculators, Mathematical Tables and Log books is not permitted 3.
- Candidate must ensure that he/she has received the Correct Onestion Booklet, corresponding to 4. his/her branch of Engineering.
- Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is 5. entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using Ball Point Pen (Blue/Black) only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response 6. Sheet using Ball Point Pen (Blue/Black) only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks. 7.
- The OMR Response Sheet will not be valued if the candidate:
 - Writes the Hall Licket Number in any part of the OMR Response Sheet except in the space provided for
 - Writes any irrelevant matter meluding religious symbols, words, prayers or any communication whatsoever in may part of the OMR Response Sheet.
 - Adopts any other malpractice.
- Rough work should be done only in the space provided in the Question Paper Booklet. 9.
- 10. No loose sheets or papers will be allowed in the examination hall.
- Timings of Test: 10 00 A M to 1.00 P.M.
- Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet. leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- This brooklet contains a total of 32 pages including Cover page and the pages for Rough Work.

Set Code :

Booklet Code:

В

Note: (1) Answer all questions.

(2) Each question carries I mark. There are no negative marks.

- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with Ball Point Pen (Blue/Black), only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using pencil or if more than one circle is shaded against each question.

MATHEMATICS

$$1. \qquad \int \left(\frac{x+2}{x+1}\right) dx =$$

(1) $x \log (x+1) + c$

(2) $x \log (x+1) + 2 \log (x+1) + c$

(3) $x + \log(x+1) + c$

 $(4) \quad \frac{1}{x}\log(x+1)+c$

$$2. \qquad \int \frac{x^2}{\sqrt{1+x^6}} dx =$$

(1) $\frac{1}{2}\sin^{-1}(x^3) + c$

(2) $2\cos^{-1}(x^3) + c$

(3) $\frac{1}{2}\cos h^{-1}(x^3) + c$

 $(4) \quad \frac{1}{3}\sin h^{-1}(x^3) + c$

3. $\int 8x^3 e^{2x} dx =$

(1) $(4x^3 - 6x^2 + 6x - 3)e^{2x} + c$

(2) $4x^3 + 6x^2 + 6x + 3e^{2x} + c$

(3) $\left(\frac{4x^2}{3} - \frac{2}{3}x + \frac{1}{3}\right)e^{2x} + c$

(4) $\left(\frac{4x^2}{3} + \frac{2}{3}x - \frac{1}{3}\right)e^{2x} + c$

4.
$$\lim_{n\to\infty} \left[\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n} \right] =$$

(1) $\frac{\pi}{3}$

(2) $\frac{\pi}{4}$

(3) log 2

(4) log 3

Set Code : T2

Booklet Code : B

$$5. \qquad \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx =$$

- $(1) \quad \frac{\pi}{2} \qquad \qquad (2) \quad \frac{\pi}{4}$
- (3) 0
- (4) 2

6. The area of the region in the first quadrant enclosed by x-axis, y-axis, y = 3x-2 and y = 4 is

- (1) 16
- (2) 8
- (3) $\frac{16}{2}$
- $(4) \frac{8}{3}$

The root mean square (RMS) value of $\log x$ over the range x = 1 to x = e is 7.

(1)
$$\frac{\sqrt{(e+1)}}{\sqrt{(e-2)}}$$
 (2) $\frac{\sqrt{(e-2)}}{\sqrt{(e-1)}}$ (3) $\frac{\sqrt{(e+2)}}{\sqrt{(e+1)}}$ (4) $\frac{\sqrt{(e+2)}}{\sqrt{(e-1)}}$

$$(2) \quad \frac{\sqrt{(e-2)}}{\sqrt{(e-1)}}$$

$$(3) \quad \frac{\sqrt{(e+2)}}{\sqrt{(e+1)}}$$

$$(4) \quad \frac{\sqrt{(e+2)}}{\sqrt{(e-1)}}$$

The differential equation formed by eliminating the arbitrary constants a and b in the relation 8. $y = a \cos(nx+b)$ is

(1)
$$\frac{d^2y}{dx^2} + n^2y = 0$$

(2)
$$\frac{d^3y}{dx^3} - x^3y = 0$$

(3)
$$\frac{dy}{dx} + ny = 0$$

(4)
$$\frac{d^2y}{dx^2} - y = 0$$

9. The solution of $\frac{dy}{dx} = e^{x-y}$

(1)
$$e^x - e^{-x} + c = 0$$

$$(2) e^{x-y} + c$$

(3)
$$e^{x} + e^{-x} + c = 0$$

$$(4) \quad e^r - e^{\nu} + e^c = 0$$

The solution of the differential equation $\tan x \frac{dy}{dx} + y = \sec x$ is

$$(1) \quad y \sin x - x = c$$

(2)
$$y \cot x + x = c$$

(3)
$$y = \tan x + c$$

(4)
$$y$$
. $\csc x = x + c$

11. The solution of the linear third order equation $\frac{d^3y}{dx^3} - 7\frac{d^2y}{dx^2} + 16\frac{dy}{dx} - 12y = 0$ is

(1)
$$y = c_1 e^{3x} + c_2 e^x + c_3 e^{4x}$$

(2)
$$y = c_1 e^{3x} + c_2 x e^x + c_3 e^{4x}$$

(3)
$$y = c_1 e^{2x} + c_2 x e^{3x} + c_3 e^{4x}$$

(4)
$$y = c_1 e^{3x} + (c_2 + c_1 x) e^{2x}$$

12. If
$$y_1 = e^x$$
 and $y_2 = e^{-x}$ are two solutions of the homogeneous differential equation; then

(1)
$$y_3 = e^{2x}$$
 and $y_4 = e^{-2x}$ are also solutions of the equation

(2)
$$y_3 = xe^x$$
 and $y_4 = xe^{-x}$ are also solutions of the equation

(3)
$$y_1 = \cosh x$$
 and $y_4 = \sinh x$ are also solutions of the equation '

(4)
$$y_3 = \cos x$$
 and $y_4 = \sin x$ are also solutions of the equation

13. The particular integral (P.I) of the equation
$$(D^2+D-6)y = 5e^{2x} + 6$$
 is

(1)
$$xe^{2x}-1$$

(2)
$$e^{2x} + 1$$

(3)
$$5xe^{2x} + 1$$

(4)
$$e^{2x} - 1$$

14. The particular integral of
$$(D^2+16)y = 8 \cos 4x$$
 is

(1)
$$\cos 4x$$

$$(2)$$
 $x \sin 4x$

$$(3) -\frac{1}{4}\sin 4x$$

$$(4) \quad -\frac{1}{4}\cos 4x$$

15. If
$$A = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 0 & 2 \\ -3 & 5 & 1 \end{bmatrix}$$
 then,

(1)
$$A = A^T$$

16. If
$$A = \begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
 then

- (1) The minors of first row elements are respectively -3, -1, 5
- (2) The cofactors of second row elements respectively are 1, -1, 1
- (3) The cofactors of first row elements respectively are -3, -1, -5
- (4) The minors of second row elements respectively are 7.5, -13
- 17. If A, B, C are non singular matrices of order 3 then

(1)
$$A(BC) \neq (AB)C$$

(2)
$$(ABC)^T = A^T B^T C^T$$

(3)
$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$$

(4)
$$(ABC)^{-1} = 1/(ABC)$$

18. If
$$\begin{bmatrix} 3 & 2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$
, then

(1)
$$x = -1, y = 4$$

(2)
$$x = 2, y = -1$$

(3)
$$x = 4, y = -1$$

(2)
$$x = 2, y = -1$$

(4) $x = -1, y = 2$

19. If w is the cube root of unity then
$$\begin{bmatrix} 1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w \end{bmatrix} =$$

- (1) 0
- (2) 1
- (3) -1
- (4) 2

20. If
$$\frac{x^2 + 13x + 15}{(2x+3)(x+3)^2} = \frac{A}{2x+3} + \frac{B}{x+3} + \frac{C}{(x+3)^2}$$
 then C =

- (1) 10
- (2) 5
- (3) 3
- (4) I

21. If
$$\frac{2x+1}{(x^2+1)(x-1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x-1}$$
 then $A =$

- (1) -1
- (2) $\frac{2}{3}$ (3) $-\frac{3}{2}$

		. : -	TDI	IIC
22	Which of the following statement	15	IKU	JE

- (A) The period of $\sin x$ is π and the period of cosec x is 2π
- (B) The period of $\cos x$ is 2π and the period of $\sec x$ is 2π
- (C) The period of tan x is 2π and the period of cot x is π
- (D) The period of cosec x is π and the period of sec x is 3π
- A
- (2) B
- (3) C
- (4) D

23. The range of
$$3\cos\theta - 4\sin\theta$$
 is

- (1) [-1,1]
- (2) [0,4]
- (3) [-5, 5]
- (4) [-4,0]

24. If
$$A+B=45^\circ$$
, then $(1+\tan A)(1+\tan B)$

- (1) 0
- (2) 1
- $(3) \frac{1}{2}$
- (4) 2

25.
$$\left(\frac{\sin 2A}{1-\cos 2A}\right) \left(\frac{1-\cos A}{\cos A}\right) =$$

- (1) $\tan \frac{A}{2}$ (2) $\cos \frac{A}{2}$ (3) $\sec \frac{A}{2}$ (4) $\csc \frac{A}{2}$

26. The value of
$$\frac{\sin 70^{\circ} - \cos 40^{\circ}}{\cos 50^{\circ} - \sin 20^{\circ}} =$$

- (2) $\frac{1}{\sqrt{2}}$
- (3) $\frac{1}{\sqrt{3}}$
- (4) 0

27.
$$4 \sin \frac{11\theta}{2} \cos \frac{11}{2}\theta \cos 5\theta$$
 expressed as sum or difference is

(1) $\sin 15 \theta - \sin 6 \theta$

(2) $\sin 16 \theta + \sin 6 \theta$

(3) $\sin 11 \theta + \sin 8 \theta$

(4) $\sin 11 \theta - \sin 8 \theta$

28. If
$$2\cos^2\theta + 11\sin\theta = 7$$
, the principal value of θ is

- (1) 60°
- (2) 45°
- (3) 30°
- (4) $22\frac{1}{2}$

Set Code: T2

Booklet Code :

Which one of the following equation is FALSE

(1) $\cos^{-1}(-x) = \pi - \cos^{-1} x$

- (2) $\sin^{-1}(-x) = \pi \sin^{-1}x$
- (3) If $-1 \le x \le 1$, then $\cos^{-1}x + \sin^{-1}x = \frac{\pi}{2}$ (4) $\sin^{-1}x \ne \frac{1}{\sin x}$

30. In any triangle ABC, Σ (b+c) cos A =

- (1) a+b+c
- (2) 2(a+b+c)
- (3) 3(a+b+c)
- (4) 0

With the usual notation, in a triangle ABC

$$s\left[\frac{r_1-r}{a}+\frac{r_2-r}{b}+\frac{r_3-r}{c}\right]=$$

- (1) $2(r_1+r_2+r_3)$ (2) $3(r_1+r_2+r_3)$ (3) $r_1+r_2+r_3$
- (4) 0

32. The modulus amplitude form of $-\sqrt{3} + i$ is

- (1) $2 \operatorname{cis} \frac{5\pi}{6}$ (2) $2 \operatorname{cis} \frac{3\pi}{6}$ (3) $2 \operatorname{cis} \frac{\pi}{3}$ (4) $2 \operatorname{cis} \frac{\pi}{6}$

33. If $x = \cos\theta + i\sin\theta$, then the value of $x^6 + \left(\frac{1}{\sqrt{6}}\right)$

- (1) 0
- (2) $2i\sin\theta\theta$ (3) $2\cos\theta\theta$
- (4) $2(\cos 6 \theta + \sin 6 \theta)$

34. The most general second degree equation $ax^2+2hxy+by^2+2gx+2fy+c=0$ represents a circle if

(1) a+b=0, h=0

(2) a-b=0, h=0

(3) $a-b=0, h \neq 0$

(4) $a+b \neq 0, h \neq 0$

The equation of the circle whose radius is $\sqrt{(a^2-b^2)}$ and whose center is (-a, -b) is

- (1) $x^2+y^2+2ax+2by+2a^2=0$ (2) $x^2+y^2-2ax+2(a^2+b^2)=0$ (3) $x^2+y^2+2ax+2by+2(a^2-b^2)=0$ (4) $x^2+y^2+2ax+2bx+2b^2=0$

36. The coordinates of the parabola $y^2 = 18x$ such that the ordinate equals to three times of the abscissa is

- (1) (3,9)
- (2) (2, 6)
- (3) (1, 3) (4) (162, 54)

With respect to the ellipse $5x^2+7y^2=11$, the point (4,-3)

(1) Is a focus

- (2) lies with in the ellipse
- (3) lies outside the ellipse
- (4) lies on the ellipse

38. For the Hyperbola $4x^2-9y^2=36$, the coordinates of the foci are

- (1) $(\pm\sqrt{13},0)$ (2) $(\pm\sqrt{31},0)$ (3) (±6.0)
- (4) (0,±6)

39. Which of the following statements are FALSE

- (A) The equation of the tangent at the point (x', y') of the circle $x^2 + y^2 = a^2$ is $xx' + yy' = a^2$
- (B) The eccentricity of a parabola is unity
- (C) The eccentricity of an ellipse is greater than unity
- (D) The eccentricity of a hyperbola is less than unity
- (I) A,B
- (2) A, D
- (3) B, C
- (4) C, D

40. $\lim_{x \to \infty} \frac{3^{x+1} + 4}{3^{x+2} + 4} =$

- (1) 1
- (2) 0
- (3) $\frac{3}{4}$
- (4) $\frac{1}{3}$

41. Derivative of $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ with reference to x is

- (1) $\frac{2}{1+r^2}$ (2) $\frac{1}{1-r^2}$ (3) 2r
- $(4) \quad \sqrt{(1+x^2)}$

42. If $y = x^{3x}$, (x > 0) then $\frac{dy}{dx} =$

- (1) $3.x^{3x-1}$
- (2) $3x^{2x}$
- (3) $3y(1+\log x)$ (4) $\frac{3y}{\log x}$

Set Code: Booklet Code:

43. If
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$
 then $\frac{dy}{dx} =$

- (1) $\left(\frac{x}{y}\right)^{\frac{1}{3}}$ (2) $-\left(\frac{y}{x}\right)^{\frac{1}{3}}$ (3) $-\left(\frac{x}{y}\right)^{\frac{1}{3}}$ (4) $\left(\frac{y}{x}\right)^{\frac{1}{3}}$
- 44. The derivative of $\log \sec x$ with respect to $\tan x$ is

(1) $\sec x \cdot \tan x$ (2) $\cos x \cdot \cot x$ (3) $\cos x \cdot \sin x$ (4) $\sec x \cdot \cot x$

45. The coordinates of the point P(x, y) on the curve of $y = x^2 - 4x + 5$ such that the tangent at P is parallel to y = 2x+4 are

(3) (2, 1) (4) (5, 4) (1) (3, 2)(2) (1,2)

46. The function $f(x) = x \log^2 x$ has

(1) Maximum value occurs when $x = \frac{1}{e}$ (2) Maximum value occurs when x = e

(3) Maximum value occurs when $x = e^{-2}$ (4) Maximum value occurs when $x = e^2$

47. In a cube the percentage increase in side is 2 units. The percentage increases in the volume of the cube is

(1) 3 (3) 8 (4) 16 (2) 6

The curves $x = y^2$ and xy = m cut at right angle if

(2) $m^2 = 8$ (3) $8m^2 = 1$ (4) m = -1(1) m = 0

49. If $u = e^{ax} \sin by$, then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} =$

(1) $(a^2-b^2)u$ (2) a^2+b^2 (3) $(a^2+b^2)u$ (4) (a+b)u

50. $\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx =$

(1) $\sqrt{x} \sin \sqrt{x} + c$ (2) $2 \sin \sqrt{x} + c$ (3) $\sqrt{\cos x} + c$ (4) $\frac{\sin \sqrt{x}}{\sqrt{c}} + c$

Set Cox :	T2
Booklet Code	В

PHYSICS

51.	In th	nermodynamics,	= Qb	0 and dU = -dV	V is true	for			
	(1)	1) Isothermal process				Adiabatic process			
	(3)	Isochoric proc	cess		(4)	Isobaric pro	ocess		
52.		mple of an ideal ne gas is m. The		Parata and Salah Salah and a salah sal			ture T. Th	e mass of each	ole 'o
		P/kVT		mkT			(4)	P/kT	
5 3 .	A ga	as does 4.5 J of	extern	al work during	adiabat	ic expansion	. Its temp	erature falls by	K. I
	inter	mal energy will	be						
	(1)	increase by 4.5	5 J		(2)	increase by	9.0 J		
	(3)	decrease by 4.	5 J		(4)	decrease by	2.25 J		
54.	One	mole of an idea	l gas (y = 5/3) is mixe.	d with o	ne mole of d	iatomic g	as (γ=7/5). The v	ı eo
		the mixture	0 (-	M 103.22	
	300000000000000000000000000000000000000	3/2	(2)	4/3	(3)	23/15	(4)	35/23	
55.	In a given process on an ideal gas, dW = 0 and dQ < 0. Then for the gas								
		the temperatur		17/4/			3373	40	
		the pressure w							
56.	The	threshold wavel	ength	for a metal who	se work	function is V	V. is λ . T	he threshold wav	eler I
	for a	metal whose w	vork fi	nction is W /2	Clotheral New Total		0 0		J. 30712 10
	(1)	λ,/4	(2)	$\lambda_0/2$	(3)		(4)	$2\lambda_0$	
57.	The	propagation of	light tl	rough an optic	al fiber	goes by the r	rinciple		
		Refraction							
	(3)	Interference			(4)	Diffraction			
58.	The	dimensions of a	ıngula	r momentum ar	e			21	
		MLT-1	10.75	ML-IT	(3)	ML°T-2	(4)	ML ² T ⁻¹	
59.	The	SI unit of unive	rsal ga	s constant R is		_			
		Newton K-1 m				Joule K-1 m	10 1 -1		
	200	Watt K-t mol-				ere K ⁻¹ mol			

							1	Booklet Co	: B
60	The	magnitude of th	ne result	ant of (A-	+ <i>B</i>) and (<i>A</i> − <i>I</i>	8) is			P
ου.	(1)			•					
	(1)	Li				$\sqrt{\left(A^2 + B^2\right)}$ $\sqrt{\left(A^2 - B^2\right)}$		*	
	(3)	2 <i>B</i>			(4)	$\sqrt{(A^2-B^2)}$			
61.	Give	en A.B = 0 and a 135°	4×C=0	, the angl	e between B	and C is	_	77.5	
	(1)	135°	(2)	90°	(3)	180°	(4)	45°	
62.	A pr	ojectile has a m	aximun	range of	200m. The	maximum heig	ht attain	ed by it is	
	(1)	75 m			(2)	100 m			
	0.000	25 m			(4)	50 m			
63.	A bl	ock of mass M	is lying o	n a horiz	ontal friction	less surface. O	ne end o	of a rope mass	m is ed
	to th	e block and a fo	cc F is	applied a	t the free end	parallel to the	surface.	The force ac	ting o he
		k will be				- // P			
	(1)	FM/(M-m)			(2)	Fm/(M+m)			
	(3)	FM/(M+m)			(4)	F			
64.	A bl	lock of weight 2	200 N is	pulled alo	ng a rough h	orizontal surfa	ce at a c	onstant speed	by a fo
		00 N acting at a	ın angle	of 30°. Ti	ne coefficien	t of friction be	tween th	ie block and i	ine suria
	(1)	0.58	(2)	0.75	(3)	0.45	(4)	0.65	
65.	Δh	oy wants to clim	h down	a rone. Th	e rope can w	ithstand a maxi	mum ter	nsion equal to	two-thirc
00.	the	weight of the	hov If a	is the ac	celeration d	ue to gravity, t	he mini	mum acceler	ration with
	u.ki	ch the boy sho	uld clim	h down th	e mae is				
				2g/3	(3)	3g/2	(4)	ø	
		g/3			0, •0	X-00.	2500500	N-5	
66.	N b	ullets each of r	nass m k	g are fire	ed with a vel	ocity v m/s, at	the rate	of n bullets p	er second,
	upo	n a wall. The r	eaction o	ffered by	the wall to	he bullets is gi	ven by		
	(1)	nNv/m			. (2)	nΝmν			
	(3)	Nmv/n			(4)	nNm/v			
67.	Αı	nachine gun fi	res a bu	llet of ma	ass 40 g wit	h a velocity of	1200 n	n/s. The mar	holding it
	can	exert a maxii	mum fo	rce of 14	4 N on the	gun. The nun	nber of	bullets he c	an fire per
		ond is	(2)	1	(3)	3	(4)	8	
	(1)	4	(2)	14	(3)	•	(')	1 7 521	

Set Code :	T2
Booklet Code :	В

	68.	A horizontal force F pulls a 20 kg box at a constant of friction between the box and the floor is 0.25. through a distance of 2 m	ant speed along a horizontal floor. If the coefficient 5. The work done by the force F in moving the box
			2) 147 J
		(.,	4) 98 J
-	69.	of the rod in this position is	o stand vertically on one end. The potential energy
		(1) $mgl/4$ (2) $mgl/2$ (3)	(4) mgl/3
	70.	If momentum is increased by 20%, then kinetic	tic energy increases by
		(1) 44% (2) 77% (3)	(4) 66%
	71.	the fraction of kinetic energy is	de A. When the displacement is half the amplitude
		(1) 1/5 (2) 3/4 (3	(3) 1/2 (4) 1/4
	72 .	(1) maximum displacement (2	equilibrium position the phase is $\frac{\pi}{2}$ when it has (2) maximum energy
		(3) half the displacement (4	(4) maximum velocity
	73.	A particle executes SHM between $x = -A$ and $x = -A$ an	x = +A. The time taken for it to go from 0 to A/2 is
			$(2) T_1 = T_2$
		19 10 10 10 10 10 10 10 10 10 10 10 10 10	$(4) T_1 > T_2$
	74.	Two sounds of wavelengths 5 m and 6 m, trave The speed of sound in the medium	welling in a medium produce 10 beats per second.
6		(1) 300 m/s (2) 320 m/s (3	(3) 350 m/s (4) 1200 m/s
	75.		ce of sound with a velocity one tenth the velocity of
			(3) 5% (4) 10%

Set Code : T2

Booklet Code : B

CHEMISTRY

76.	Gla:	ss is corroded by							
	(1)	Fluorine (dry or wet)	(2)	Sulphuric acid (concentrated)					
	(3)	Phosphoric acid	(4)	Carbonic acid					
77.	The	most resistant material to alkaline cor	Tosion	is					
	(1)	Cast iron	(2)	Nickel					
	(3)	Aluminium	(4)	Brass					
78.	The	monomer of polyvinyl chloride is							
	(1)	Chloro ethene	(2)	Ethylene dichloride					
	(3)	Ethyl chloride	(4)	Chloroform					
79.	Poly	thene is							
		An addition polymerization product	(2)	A condensation polymerization product					
	(3)	Thermosetting	(4)	Polymer of amylopectin					
80.	Tefl	on is							
	(1)	Phenol formaldehyde	(2)	An inorganic polymer					
	(3)	Poly tetrafluoroethylene	(4)	A monomer					
31.	Wate	er gas constitutes mainly of							
	(1)	CO and H.	(2)	CO and N,					
	(3)	CO ₂ and H ₂	(4)	CH ₄ and H ₂					
32.	The	lightest particle is							
	(1)	Positron	(2)	Neutron					
	(3)	Proton	(4)	α-particle					
33.	If an electron has spin quantum number of +1/2 and magnetic quantum number of -1, it cannot be								
	•	ent in	/= :						
	(1)	d orbital (2) forbital	(3)	p orbital (4) s orbital					

Set Code :	T2
oklet Code :	R

84.	The	ion that is iso ele	ctron	ic with CO is				
		NO*	(2)		(3)	0,-	(4)	N_2^+
85.	The	hydrogen bond is	s stror	igest in				NOT 1000 1440
	(1)	O-HS	(2)	S-HO	(3)	F-HF	(4)	F-HO
86.	The	molecule having	ругап	nidal shape	•			
	(1)	PCl ₃	(2)	SO ₃	(3)	CO's	(4)	NO ₃ -
87.	Crys	stals of a sodium	chlor	ide belong to th	ne syste	m		
	(1)	Orthorhombic	(2)	Cubic	(3)	Trigonal	(4)	Monoclinic
88.	The	pH of 0.05 M ac	etic a	cid is $(K_a = 2 \times 1)$	10-5)			
	(1)	2	· (2)	11	(3)	10-3	(4)	3
89.		volume in ml. of		I solution of Na	OH req	uired to comple	etely ne	utralize 100 ml of 0.3 M
		60		600	(3)	300	(4)	30
90.		P ^{ta} values of four					3.41 res	pectively. The strongest
		4.19		3.41		0.23	(4)	4.76
91.	Ifp	H value of a solu	tion is	8, then its pOF	I value	will be		
	(1)		(2)		(3)		(4)	10
92.	The	standard reduction to the standard reduction	tion p	otential for Li	Li, Zr	n*2/Zn; H*/H ₂ a	and Ag*	/Ag are -3.05, -0.762
		Ag		H ₂		Zn	(4)	
93.		e standard reduct = Zn ⁺² + 2e E° =			ollowir	ng half-cell read	ctions a	re
	200	= Fe ⁻² + 2e ⁻ E ^o =						
		E.M.F. for the c			→ Zn¹	+ Fe will be		
		−0.32 V		+0.32 V		+1.20 V	(4)	-1.20 V

Set Code :	T2
Booklet Code :	В

94.	 In salt bridge, KCl is used because (1) KCl is present in calomel electrode (2) K* and Cl* ions are not iso electronic (3) K* and Cl* ions have the same transport number (4) KCl is an electrolyte 									
95.	The	metal that canno	t be o	btained by e	lectrolysis	of aqueor	us solution	of its s	alt is	
	(1)		(2)		(3)) Al		
96.	BOL	of raw municipa	al sew	age may be	about					
		2-5 mg/lit			(2)	5-10 mg/	/lit			
	(3)	₹ 0			(4)	_	00 m g/li t			
97.	The	pH value of potal	ble wa	ater should b	e between					•
		1 to 1.5			(2)	6.5 to 8				
	(3)	13 to 14			(4)	4 to 5				
98.	Dea	eration of high p	ressui	re boiler feed	d water is o	ione to rec	duce			
		Foaming from					ved oxyge	en conte	nt	
	(3)	Its silica conter			22 33 5		embrittlen			
99.		ence of non-bio			nces like	alkyl benz	zene sulpi	nonate f	rom deter	rgents in
	•	Fire hazards		, 40	(2)	Explosio	n hazards			
	(3)	Persistent foan	ı			•	n of disso	lved oxy	gen	
100	Pres	ence of soluble of	organ	ies in pollute	ed water ca	uses				
	(1)	Undesirable pla		•	(2)		n of oxyg	en		
	(3)	Fire hazards		1021 H50M	(4)		n hazards			
	1									

Set Code :	T2
Booklet Code :	

COMPUTER SCIENCE AND ENGINEERING

101.	Ope	rator is used to compare	e a value to a list (of lite	erals value that have been specified
	(1)	BETWEEN		(2)	ANY
	(3)	IN	•	(4)	ALL
• • • •		n n'			9
102.		-R Diagram relationshi			Turner van Nersensen
	(1)	Ellipse		(2)	Dashed ellipse
	(3)	Rectangle		(4)	Diamond
103.	A re	lation in which the inte	rsection of each r	ow a	and column contains one and only one value is
	said	to be in			
	(1)	First normal form		(2)	Second normal form
	(3)	Third normal form		(4)	Fourth normal form
104	Two	phase protocol in a dat	abase manageme	nt is	
	(1)	A concurrency mecha	nism that is not d	eadl	ock free
	(2)	A recovery protocol u			
	(3)	Any update to the syst	the state of the s		
	(4)			•	•
105	. Wh	ich of the following is a	not a type of cons	truct	or?
	(1)	TOTAL STANDARD AND STANDARD ST		(2)	Friend constructor
	(3)			(4)	Parameterized constructor
106	. Wh	ich of the following cor	ncepts says, metho	od in	voking at runtime?
	(1)	Data hiding			Dynamic Typing
	(3)	Dynamic binding		(4)	Dynamic loading
7270242			777 12 12 12 120		A
107		ich one of the following			
	(1)	PIPE (2)	SYS	(3)	ERROR (4) BUFF

108.	How	many objects ca	n be c	reated from an	abstrac	t class?					
	(1)	Zero			(2)	One					
	(3)	Two			(4)	As many as we wa	ant				
109.	Whi	ch of the following	ng wil	l be called who	en an ob	ject goes out of so	ope'	?			
	(1)	Constructor	0.50		(2)	Destructor	78				
	(3)	Main			(4)	Virtual function					
110.	Whi	ch of the following	ng fur	ction/type of	function	cannot be overlos	aded	?			
		Member function	_		(2)						
		Virtual function			(4)	Operator function	n				
1 11.	Whi	ch of the followi	ng sta	tement is corre	ect?						
		Two functions	havin	g same numb	er of ar	gument, order and default argument	55.7	pe of a	argument can be		
	(2)	Overloaded function must have default arguments.									
					and the second	ments starting fro	m th	e left o	of argument list		
	(4)										
112.	The	operator that can	not be	e overloaded is	ie.						
		++	(2)		(3)	0.0	(4)	~_			
113.	Ifyo	ou create a file by	'fstre	am', then the o	lefault n	node of the file is	:				
	(1)	ios :: app			(2)	ios :: out					
	(3)	ios :: app & ios	:: out		(4)	ios :: in & ios ::	out				
114.	Who	en vou derive a cl	ass ni	rivately, a prote	ected ba	se class member b	ecor	nes			
		Private		Public		Not inherited		(4)	Protected		
115.	Whi	ich will legally de	eclare.	. construct, and	l initiali:	ze an array?					
		int[] my List = {			(2)	10일 ^^ 및 및 MAN 및 (Mar.	5. 8.	2):			
		int myList [] []			(4)	77					
	-1		(,	-, ', ', ',	(*)	In the state of the state	., -,	') '			

Set Code : T2

Booklet Code : B

116.	Whic	th two are valid constructors for thread	in JAV	/A?
	a)	Thread (Runnable r, string name)		
	b)	Thread()		
	c)	Thread (int priority)		
	d)	Thread (Runnable r, Thread Group g)		
	(1)	(a) & (c)	(2)	(b) & (d)
	(3)	(a) & (b)	(4)	(c) & (d)
117.	Whi	ch is TRUE about a method - local inne	r clas	s
	(1)	it must be marked final	(2)	it can be marked abstract
	(3)	it can be marked public	(4)	it can be marked static
118.	Wha	t will be the output of the program?		
	try			
	{			
	int x	= 0;		
	int y	=5/x;		
	}			
	cate	h (Exception e)		(2)
	{	147		
	157	System. out. println ("Exception");		
	}			
	cate	h (Arithmetic Exception ae)		. 9
	{			
	950	System.out. println ("Arithmetic Exce	ption	");
	}	•		
		tem.out.println ("finished");		
	(1)	Finished	(2)	Exception
	(3)	Compilation fails	(4)	Arithmetic Exception
119	. Giv	en a class name as 'Student', which of the	he foll	owing is a valid constructor declaration for the
	clas			
	(1)	Student (student s) { }	(2)	Student student () { }
	(3)	Private final student() {}	(4)	Void student(){}
		The authorities at		

		*							Set Code : T2
									Booklet Code : B
									DOORICE COUC. B
120.	Whic	ch of the keyword	d is us	sed to define p	ackages i	in Java?			,
	(1)		(2)	Pkg		package		(4)	Package
121.		ch of the access	_						D.C.I.
	(1)	Public	(2)	Protected	(3)	Private		(4)	Default
122	Who	t is multithreaded	d nroc	ramming?					
122.	(1)	It's a process in	-	0.00000	nt proces	ses run simu	ltan	eousl	y.
	(2)	It's a process in							
	(3)	1.50							same information.
	(4)				-				m many sources.
123.	Whi	ch of these keyw	ords i	s not part of e	xception	handling?			
	(1)	try	(2)	finally	(3)	thrown		(4)	catch
	77 H .						1 -	•0	
124.		ch of these method	ods ca	an be used to	1000		ppie	t?	
	(1)	display ()			(2) (4)	print () transient ()	i e		
	(3)	drawstring ()			(4)	tratisient ()			
125.	Htm	l document must	alwa	ys be saved w	ith :				
	(1)	.html		.txt	(3)	.doc		(4)	.pdf
126.	To in	nsert blank lines,	whic	h tags are use	d:				
	(1)		(2)	<bk></bk>	(3)	>		(4)	<ba></ba>
127	572728	ML stands for;			(2)	U.mantah s		- a= 1a=	
	(1)	Hyper text mark			(2)	Hyper tab i			
	(3)	High transfer m	arkuj	anguage	(4)	Hyper text	mar	kup ia	niguage
128	The	schedular which	deter	rmines when r	orocesses	are to be sus	pen	de d ar	nd resumed.
-20	(1)	Short-term sch			(2)	Long-term			

(3) Medium-term schedular

(4) Job schedular

Set Code: Booklet Code: 129. Which of the following is not a disk scheduling algorithm. (1) SSTF (2) C-SCAN (3) SRTF (4) LOOK	T2 B
129. Which of the following is not a disk scheduling algorithm.	В
(1) SSTF (2) C-SCAN (3) SRTF (4) LOOK	
130. In VB Script functions, which one is false among the following	
(1) Variables must be declared before use	
(2) Variables may not be declared before use	
(3) Variables may be declared without data types	
(4) Variables are used in VB script	
131. A running program requests the service from the kernel of the operating system using a	
(1) System call (2) Function call	
(3) Procedure call (4) Remote call	
132. The leading bits of an IP address of a class B network are	
(1) 10 (2) 01 (3) 110 (4) 0	
133tab enables you to view the current value of any variable or VB Script express	on.
(1) Watch (2) View	
(3) Locate (4) Current	
134. What does ASP stands for ?	
(1) All Standard Pages (2) Active Server Pages	
(3) Active Standard Pages (4) A Server Page	
135. Convert the fractional decimal number 6.75 to binary.	
(1) 0111.1100 (2) 0110.1010	
(3) 0110.1100 (4) 0110.0110	
136. If a 3-input AND gate has eight input possibilities, how many of those possibilities will re a HIGH output?	sult in
(1) 1 (2) 2 (3) 7 (4) 8	

								Set Code : T2 Booklet Code : B]
37.	One	advantage TTL l	as ov	er CMOS	is that TTL is				
	(1)	Less expensive			(2)	Not sensiti	ve to ele	ectrostatic discharge	
	(3)	Faster			(4)	More wide	ly availa	ble	
38.	Арр	lying DeMorgan	's the	orem to the	expression	ABC we get			
	(1)	$\overline{A} + \overline{B} + \overline{C}$		8	(2)	A+B+C			
	(3)	$A + \overline{B} + C\overline{C}$			(4)	A(B+ C)			
39.	Whi	ch statement belo	ow bes	st describe	s a Kar naugh	map?			
	(1)	A Karnaugh ma	p can	be used to	replace Boo	lean rules			
	(2)	The Karnaugh r	nap el	iminates tl	he need for u	sing NAND a	nd NOR	gates	
	(3)	Variable comple	ement	s can be el	iminated by i	using Karnaug	gh maps	**************************************	
	(4)	Karnaugh maps	provi	de a cookl	book approac	ch to simplifyi	ng Bool	ean expressions	
40.	How	is a J-K flip-flo	p mad	e to toggle	?				
	(1)	J = 0, K = 0			(2)	J = 1, K = 0		i.	
	(3)	J=0, K=1			(4)	J = 1, K = 1			
41.	How	many flip-flops	are re	quired to	make a MOE	0-32 binary co	unter?		
	(1)		(2)		(3)	1988	(4)	6 .	
42.	Whi	ch gate is best us	ed as	a basic con	mparator?				
	(1)	NOR			(2)	OR			
	(3)	Exclusive-OR			(4)	AND	•		
43.		ch segment regis					ry locati	ion in the code segmen	t
	(1)	Code segment	registe	er	(2)	Data segmen	t registe	r	
	(3)	Extra segment	registe	er	(4)	Stack segme	nt regist	er	
44.	The	8086	reg	ister conte	ents indicate	the results of	comput	ation in the ALU.	
	(1)	Data Segment	(2)	Flag	(3)	Index	(4)	Accumulator	

Set Code :	T2
Booklet Code :	В

145.	In 80	086a	long v	with	for	ms a pipeline.			
	(1)	Bus Interface U	nit, A	rithmetic and Lo	gic un	iit			
	(2)	Execution Unit,	Arith	metic and Logic	unit				
	(3)	Bus Interface U	nit, M	femory unit					
	(4)	Bus Interface U	nit, E	xecution unit					
146.		s flag is set, the n t is that flag in 80		ble interrupts are	recog	mized by the CP	U, othe	erwise they are ignor	ed.
	(1)	Trap			(2)	Interrupt			
	(3)	Directional			(4)	Overflow			
147.	Fort	he following ins	tructio	on, what is the e	ffectiv	e address :			
	MOY	AX,[BX][SI]							
	(1)	10H*DS+[SI]			(2)	10H*DS+[BX]	*[SI]		
	(3)	10H*DS+[BX]-	+[SI]		(4)	10 H*[BX]+[S 1]		
148.	Whi	ch instruction of	8086,	is used for findir	ig out	the codes in case	ofcod	de conversion probler	ns,
	using	g look up table te	chniq	ues?					
	(1)	TEST			(2)	DAS			
	(3)	CBW			(4)	XLAT			
149.		conditional bran her SF nor OF is			transf	er execution to	he add	dress 'label', if ZF = 1	or
	(1)	JNL/JGE label			(2)	JLE/JNC label			
	(3)	JL/JNGE label			(4)	JNLE/JE label			
150.	The	80286 CPU is al	ole to	address	M	IB of physical n	nemory	у.	
	(1)	16	(2)	24	(3)	32	(4)	8	
151.	The	size of the addre	ss bu	s of 80386 is		bit.			
	(1)	16	(2)	24	(3)	32	(4)	64	

Set Code :	T2
Booklet Code :	В

152.	The	80486 is pack	aged in a	L	grid a	array package.			
	(1)	32-pin			(2)	48-pin			
	(3)	64-pin			(4)	168-pin			
153.	Whi	ch of the follo	owing is a	sequential	access dev	/ice			
	(1)	Hard disk			(2)	Optical disk			
	(3)	Таре			(4)	Flash memor	У		
154.	The	addressing m	ode in wl	nich the oper	rand is giv	en explicitly i	n the ins	truction i	t self is
	(1)	Absolute mo		4	(2)	Index mode			
	(3)	Register Dir	rect mode	:	(4)	Immediate m	ode		
155.	Whi	ch of the follo	wing int	errupt is non	maskable	•		v	
		INTR		RST 7.5		RST 6.5	(4)	TRAP	
156.	Spec	ed of micropro	ocessor d	epends on					
	(1)	Data Bus wie		•	(2)	Access Time			
	(3)	Response Ti	me		(4)	Hard disk			
157.	Zero	address instr	ruction fo	rmat is used	i for		*		
	(1)	RISC archite	ecture		(2)	CISC archite	cture		
	(3)	Von-Neuma	n archited	ture	(4)			itecture	
158.	The	two types of i	main men	nory are					
		Primary and			(2)	Random and	sequenti	al	
	(3)	ROM and RA			(4)	Central and p			
159.	How chip		ss lines a	re needed to	address e	ach memory l	ocations	in a 204	8 X 4 memory
	(1)	10	(2)	11	(3)	8	(4)	12	

160.	C	ISC	stands	for

- (1) Co-related Instruction Set Computer
- (2) Combined Instruction Set Computer
- (3) Complex Instruction Set Computer
- (4) Common Instruction Set Computer
- 161. Fastest type of memory from the following list is
 - (1) Tape

(2) Semiconductor

(3) Disk

- (4) Bubble memory
- 162. The entity that is not involved in a memory write operation.
 - (1) MAR

(2) Data Bus

(3) PC

(4) MDR

163. What is the output of this C code

```
# include <stdio. h>
void main()
int a = -5:
int k = (a++, ++a);
printf("%d\n",k);
(1) -3
```

(2) -5

(3) 4

(4) Undefined

164. What is the output of this C code

```
#include < stdio.h>
int main ()
int x = 2:
x = x << 1:
print f("% d\n",x);
(1) 4
```

(2) 1

(3) Depends on the compiler

(4) Depends on the endianness of the machine

(CSE)

Set Code : T2

Booklet Code : B

165.	#incl void { int x y = z = x print }		x, y, z			25	(3)	3 2 2	(4)	2 3 4
							cı	. 1 . 1 .		
100.	(1)	iber of internal n 2 ^{k-1}		n a 1u 2 ^k –		ry tro	(3)		(4)	21 + 1
167.	#inc. void { char char print }	t is the output of lude <stdio.h> main () *s = "hello"; *p = s; if("%c\t %c", *(p</stdio.h>	n + 3),		e?		(3)	1 0	(4)	l e
168.	Wha	t is the correct sy	yntax	to dec	lare a	func	tion fe	oo() which recei	ves an	array of strucuture in a
	(1)	tion? void foo (struct void foo(struct		:			(2) (4)	void foo (struct None of the me	-	• 100
169.	0404040	data structure wi queue		called stack		e en	ded. (3)	tree	(4)	graph
170.		near list in which ed as	each	node l	nas p oi	inter	s to po	oint to the predec	essor	and successors nodes is
		Singly Linked I Doubly Linked					(2) (4)	Circular Linked Linear Linked		

Set Code :	T2
Booklet Code :	В

171.	Preo	rder is same as							
	(1)	Depth-first orde	er		(2)	Breadth-first or	der		
	(3)	Topological ord	er		(4)	Linear order			
172	The	complexity of m	erge s	ort algorithm is					
	(1)	O(n)	6		(2)	O(log n)			
	(3)	O(n2)			(4)	O(n log n)			
172	Whi	ich laver of the (SI Da	ference model o	ffere	format and code	CONU	ersion services	
175.	(1)	Physical layer	ol Ku	actence moder (Network layer	COM	CISION SCI VICCS	
		Session layer			(4)		,,,,,		
	(3)	Session layer			(4)	r resentation la	yCı		
174.	The	most common U	TP co	nnector is					
	(1)	BNC	(2)	RJ-45	(3)	SC	(4)	MT-RJ	
175.	Том	which class of IP	addres	ses the followin	g add	ress corresponds	to		
175. To which class of IP addresses the following address correspond 11000001 10000011 00011011 11111111							W.T.	20	
	(1)	Class A			(2)	Class B			
	(3)	Class C			(4)	Class D			
176	A bl	ack of ID address	ae ie²	ranted to a smal	l orga	nization. We kno	w the	t one of the add	recces is
170.						esses in the block		t one or the add	103303 13
		205.16.37.39 a				205.16.37.32 a		5.16.37.47	
	, ,	205.16.37.32 a				205.16.37.32 a			
. 77	IFF	E 902 2 I	1.0	22	41		6 6		O Mbas
177.		E 802.3 standard ernet.	defin	es	_ as un	e access method	IOF II	rst generation i	U-Miops
		CSMA/CA			(2)	Non Persistent	CSM	A/CD	
		1-Persistent CS	X4 A //	מי	(2)				
	(3)	1-1 disistent Ca	ONIAN.	U	(4)	p-Persistent CS	TATUM.		
178.	The	protocol that auto	mates	the IP configurat	ion inc	cluding IP address	, Subr	net mask, default	gateway
	and	DNS information	n is					3	
	(1)	SNMP	(2)	DHCP	(3)	SMTP	(4)	ARP	

				3. 5				
								Set Code : T
								Booklet Code : B
179.		uses o	command	s and resp	onses of tra	nsfer messa	age betwee	n an MTA elient and a
	remo mondo	A server.						
	(1)	POP3	(2)	SMTP	(3)	НПР	(4)	FIP
180.	In H	TTP v1.1, wh	ich reque	est type is u	sed to echo	the incomi	ng request	
	(1)	GET	(2)	POST	(3)	PUT	(4)	TRACE
181.		is the	client/ se	erver appli	cation that	allows a us	ser to log o	n to a remote machin
		ng the user ac					10 -0 0.	
	(1)	HTTP			(2)	SNMP		
	(3)	TELNET			(4)	MIME		
182.	Whi	ch LAN topo	logy is ea	sy to instal	ll but diffict	ılt in recont	nection and	fault isolation.
	(1)	STAR			(2)	BUS		
	(3)	RING			(4)	MESH		
183.	Whi	ch one of the	following	g is not a R	cal time op	erating syst	em?	
	(1)	VxWorks			(2)	Windows 0	CE	
	(3)	RTLinux			(4)	Palm OS		
184.	To a	ccess the serv	rices of o	perating sy	stem, the in	terface is p	rovided by	the
	(1)	System calls	3		(2)	API		
	(3)	Library			(4)	Assembly	instruction	S
185.	Wha	it is a long-ter	m schedu	iler?				
	(1)	It selects wh	ich proce	ss has to b	e brought in	to the read	y queue '	
	(2)	It selects wh					T) (T)	U
(3) It selects which process to remove from memory by swapping								
	(4)	It selects wh	700					SS
186.	Time	e quantum is d	lefined in					

28-B

(2)

Round robin scheduling algorithm

(4) Multilevel queue scheduling algorithm

(1) Shortest job scheduling algorithm

(3) Priority scheduling algorithm

Set Code :	T2
Booklet Code:	В

	calle	d:	1 .						
	(1)	Non preemptive scheduling	(2)	Preemptive scheduling					
	(3)	Shortest job first	(4)	First come first served					
	0.000								
188.		most optimal scheduling algorithm is:		52 TV N W					
	(1)	FCFS - First come First served		SJF - Shortest Job First					
	(3)	RR - Round Robin	(4)	LCFS - Last Come First Serve					
189	Cons	sider the following set of processes, the	lengtl	of the CPU burst time given in milliseconds:					
	Pro								
	P1	6							
	P2	8							
	P3	7							
	P4	3							
		iming the above process being schedule	ed wit	h the STE scheduling algorithm:					
				it the 331 Scheduling digorithm.					
	(1)	The waiting time for process P1 is 3n							
	(2)	The waiting time for process P1 is 0n							
	(3)								
	(4)	The waiting time for process P1 is 9n	ns.						
190.	Whi	e one of the following is the deadlock a	voida	nce algorithm?					
	(1)	Banker's algorithm	(2)	Round-robin algorithm					
	(3)	Elevator algorithm	(4)	Karn's algorithm					
101	I G	and direct monthing the decrease of multi-		ammina is bounded by					
191.		xed sized partition, the degree of multi							
	(1)	The number of partitions	(2)	The CPU utilization					
	(3)	The memory size	(4)	BOIS					
192.	A pr	occess refers to 5 pages, A,B,C,D,E, in th	e orde	er : A, B, C, D, A,B, E, A, B, C, D, E. If the page					
				age transfers with an empty internal store of 3					
		nes is:	-						
	(1)	8 (2) 10	(3)	9 (4) 7					
			0.578,0500	91 93					

187. The strategy of making processes that are logically runnable to be temporarily suspended is

								Set Code: 12
								Booklet Code : B
193.	98,	sider a disk queu 183, 37, 122, 14, sidering FCFS (f	124,	65, 67				of head movements is, if
	the o	disk head is initia	lly at	53:				
	(1)	600	(2)	620	(3)	630	(4)	640
194.	On s	systems where the	ere aı	re multiple oper	ating s	system, the decis	ion to	load a particular one is
	(1)	Boot loader			(2)	Boot strap		
	(3)	Process control	bloc	k	(4)	File control blo	ock	
195.	Whi Data	ch of the follow	ing C	ommand is use	d to g	ive Permission o	of ope	ration to other users in
	(1)	Permission	(2)	Allow	(3)	Grant	(4)	Revoke
196.	Allo	of the following a	re typ	es of databases	. excei	ot:		
	(1)	Relational	-		(2)	Relational orie	nted	
	(3)	Object oriented			(4)			
197.	Whi	ch of the followir	ng is r	iot a DML state	ment?			
	(1)	UPDATE		COMMIT	(3)	INSERT	(4)	DELETE
198.	In th	e architecture of	a data	ibase system, ex	ternal	level is the		dr.
	(1)	Physical level			(2)	Logical level	*	
	(3)	Conceptual leve	l		(4)	View level		
199.	The	column of a table	is re	ferred to as the				
	(1)	Tuple			(2)	Attribute		
	(3)	Entity			(4)	Degree		
200.	A pri	imary key for an e	entity	is				V
	(1)	A candidate key			(2)	Any attribute		
	(3)	A unique attribut	le		(4)	A super key		
					, ,			