Matemática Discreta Aulas 4 e 5 Demonstração

Profa. Rosane Rossato Binotto

05/09/2023 e 13/09/2023

Tópicos

- Introdução ao assunto.
- Tipos de demonstração:
 - Demonstração direta.
 - Demonstração por contraposição.
 - Demonstração por contradição.
 - Demonstração por exaustão e casos.
 - Indução matemática.

- O que são: axiomas ou postulados, definições, proposições, lemas, teoremas e corolários, ...?
- Teorema é uma sentença declarativa que se pode demonstrar que é verdadeira. Em Matemática os teoremas são os resultados mais importantes.
- Proposições são os resultados (teoremas) menos importantes.
- Demonstração (ou prova) é um argumento válido que estabelece a verdade de um teorema (ou proposição, lema, ...).

• Exemplo de proposição: Se um triângulo é isósceles então ele possui dois ângulos iguais.

- Exemplo de proposição: Se um triângulo é isósceles então ele possui dois ângulos iguais.
- Exemplo Teorema de Pitágoras: Em um triângulo retângulo o quadrado da hipotenusa é igual a soma dos quadrados dos catetos.

- Exemplo de proposição: Se um triângulo é isósceles então ele possui dois ângulos iguais.
- Exemplo Teorema de Pitágoras: Em um triângulo retângulo o quadrado da hipotenusa é igual a soma dos quadrados dos catetos.
- Definição é um enunciado que descreve o significado de um termo.

- Exemplo de proposição: Se um triângulo é isósceles então ele possui dois ângulos iguais.
- Exemplo Teorema de Pitágoras: Em um triângulo retângulo o quadrado da hipotenusa é igual a soma dos quadrados dos catetos.
- Definição é um enunciado que descreve o significado de um termo.
- Exemplo de definição: Um número é primo se os seus únicos divisores são 1 e ele mesmo.

 Axiomas ou postulados são verdades incontestáveis que não precisam de uma prova.

- Axiomas ou postulados são verdades incontestáveis que não precisam de uma prova.
- Exemplo de axioma: Por dois pontos distintos no plano euclidiano passa uma única reta.

- Axiomas ou postulados são verdades incontestáveis que não precisam de uma prova.
- Exemplo de axioma: Por dois pontos distintos no plano euclidiano passa uma única reta.
- Lemas são afirmações provadas que ajudam a demonstrar afirmações mais importantes (teoremas).
 Um lema é normalmente um teorema auxiliar utilizado para provar outros teoremas.

- Corolário é um teorema que pode ser estabelecido diretamente do teorema que foi provado.
- Quando um teorema nos ajuda a concluir facilmente que outras afirmações são verdadeiras chamamos estas últimas de corolários do teorema.

- Corolário é um teorema que pode ser estabelecido diretamente do teorema que foi provado.
- Quando um teorema nos ajuda a concluir facilmente que outras afirmações são verdadeiras chamamos estas últimas de corolários do teorema.
- Prova x argumento. Qual a diferença?

• **Definição 1:** Um número inteiro a é par se a = 2n para algum número inteiro n.

- **Definição 1:** Um número inteiro a é par se a = 2n para algum número inteiro n.
- **Definição 2:** Um número inteiro b é **ímpar** se b = 2m + 1 para algum número inteiro m.

- **Definição 1:** Um número inteiro a é par se a = 2n para algum número inteiro n.
- **Definição 2:** Um número inteiro b é **ímpar** se b = 2m + 1 para algum número inteiro m.
- **Definição 3:** Um número inteiro positivo x é um quadrado perfeito se $x = s^2$ para algum s inteiro.

- **Definição 1:** Um número inteiro a é par se a = 2n para algum número inteiro n.
- **Definição 2:** Um número inteiro b é **ímpar** se b = 2m + 1 para algum número inteiro m.
- **Definição 3:** Um número inteiro positivo x é um **quadrado perfeito** se $x = s^2$ para algum s inteiro.
- Definição 4: Um número inteiro a é divisível por b (ou b divide a), se existe algum q inteiro tal que a = bq.

Dada uma proposição do tipo

$$p \rightarrow q$$
.

 Na prova direta assumimos a hipótese p verdadeira e provamos que vale a tese q.

Dada uma proposição do tipo

$$p \rightarrow q$$
.

 Na prova direta assumimos a hipótese p verdadeira e provamos que vale a tese q.

Exemplo 1:

Se a é um número inteiro ímpar, então a^2 é ímpar.

• Demonstração: em aula.

Exemplo 2:

Se m e n são quadrados perfeitos, então $m \cdot n$ é um quadrado perfeito.

Exemplo 2:

Se m e n são quadrados perfeitos, então $m \cdot n$ é um quadrado perfeito.

• **Demonstração:** Sejam *m* e *n* são quadrados perfeitos, então

 $\exists s, \ \exists t, \ \text{números inteiros, tais que } m = s^2 \text{ e } n = t^2.$

Logo,

$$m \cdot n = s^2 \cdot t^2 = (s \cdot t)^2$$

que é um quadrado perfeito, como queríamos demonstrar.

Temos que

$$p \rightarrow q \equiv \sim q \rightarrow \sim p,$$

onde $\sim q \rightarrow \sim p$ é a contrapositiva de $p \rightarrow q$.

• Para provar que $p \to q$ em um tipo de prova indireta, assumimos que vale $\sim q$ e provamos que vale $\sim p$.

Temos que

$$p \rightarrow q \equiv \sim q \rightarrow \sim p$$

onde $\sim q \rightarrow \sim p$ é a contrapositiva de $p \rightarrow q$.

• Para provar que $p \to q$ em um tipo de prova indireta, assumimos que vale $\sim q$ e provamos que vale $\sim p$.

Exemplo 3:

Se n é um número inteiro e 3n + 2 é ímpar, então n é ímpar.

• Demonstração: em aula.

Exemplo 4:

Mostre que se n é um número inteiro e n^2 é ímpar, então n é ímpar.

Exemplo 4:

Mostre que se n é um número inteiro e n^2 é ímpar, então n é ímpar.

- **Demonstração:** Vamos provar que n par implica n^2 par, ou seja, a contrapositiva.
- De fato, se n é par, então

 $\exists s$ número inteiro tal que n = 2s.

Assim,

$$n^2 = (2s)^2 = 4s^2 = 2(2s^2)$$

o que implica que n^2 é um número par, como queríamos demonstrar.

Exercício 1:

Mostre que se n^2 é um número inteiro par, então n é par.

• Demonstração: Usar a contrapositiva.

- i) Demonstração de proposições *p* por contradição.
- Uma proposição é uma contradição se sua tabela verdade é sempre falsa.
- Queremos demonstrar que uma sentença p é sempre verdadeira. Suponhamos que podemos encontrar uma contradição q tal que a condicional $\sim p \rightarrow q$ é sempre verdadeira.
- Como $\sim p$ é falsa e $\sim p \rightarrow q$ é verdadeira, podemos concluir que p é verdadeira.
- Como podemos encontrar essa contradição?

Exemplo 5:

Mostre que $\sqrt{2}$ é um número irracional.

Exemplo 5:

Mostre que $\sqrt{2}$ é um número irracional.

- Demonstração:
- Suponhamos por absurdo que $\sqrt{2} = \frac{p}{q}$, sendo p e q inteiros sem fator comum, ou seja, primos entre si.
- Assim,

$$2 = \frac{p^2}{q^2}$$
 o que equivale a $p^2 = 2q^2$. (1).

• Logo, p^2 é par, o que implica p par.

- Sendo p par, então p = 2k para algum k inteiro.
- Substituindo p=2k na equação (1), obtemos

$$2q^2 = p^2 = 4k^2$$
, ou seja, $q^2 = 2k^2$,

o que nos dá q par.

- Uma contradição pois p e q são primos entre sim.
- Logo, $\sqrt{2}$ é irracional.

Exercício 2:

Mostre que $\sqrt{3}$ é um número irracional.

- Demonstração: Passos:
- 1) Suponha que $\sqrt{3} = \frac{p}{q}$ com p e q primos entre si.
- **2)** Conclua que $p^2 = 3q^2$.
- 3) Resultado: x^2 múltiplo de 3 implica x múltiplo de 3 para x um número inteiro.
- Use o resultado citado em 3) para concluir a demonstração.

Demonstração de Bicondicionais

Temos que

$$(p \longleftrightarrow q) \equiv [(p \to q) \land (q \to p)].$$

Demonstração de Bicondicionais

Temos que

$$(p \longleftrightarrow q) \equiv [(p \to q) \land (q \to p)].$$

Exemplo 6:

Um número inteiro e positivo n é ímpar se e somente se n^2 for ímpar.

• Demonstração: em aula.

Contra-exemplos

• Para mostrar que uma sentença é falsa, basta procurar um contra-exemplo.

Contra-exemplos

 Para mostrar que uma sentença é falsa, basta procurar um contra-exemplo.

Exemplo 7:

Todo número inteiro positivo é a soma dos quadrados de dois inteiros.

- Solução: esta sentença é falsa.
- Basta apresentar um contra-exemplo.

Demonstração por Casos

- Às vezes não podemos provar um teorema usando um único argumento que satisfaça todos os casos.
- A ideia é utilizar um método de demonstração que considera diferentes casos separadamente.
- Para provar que $\left(p_1 \lor p_2 \lor ... \lor p_n\right) \to q$ mostramos que $\left(p_1 \to q\right) \land \left(p_2 \to q\right) \land ... \land \left(p_n \to q\right)$ pois essas duas proposições compostas são logicamente equivalentes.
- Esse argumento é chamado de demonstração por casos.

Demonstração por Exaustão

- Alguns teoremas podem ser comprovados examinando um número relativamente pequeno de exemplos.
- Essas demonstrações são chamadas de demonstrações por exaustão, pois procedem pela exaustão de todas as possibilidades.
- É um tipo especial de demonstração por casos.

Demonstração por Exaustão

- Alguns teoremas podem ser comprovados examinando um número relativamente pequeno de exemplos.
- Essas demonstrações são chamadas de demonstrações por exaustão, pois procedem pela exaustão de todas as possibilidades.
- É um tipo especial de demonstração por casos.

Exemplo 8:

Mostre que $(n+1)^2 \ge 3^n$, se n é um número inteiro positivo com $n \le 2$.

• Demonstração: em aula.

Demonstração por Casos

 Uma demonstração por casos deve cobrir todas as possibilidades que aparecem no teorema.

Demonstração por Casos

 Uma demonstração por casos deve cobrir todas as possibilidades que aparecem no teorema.

Exercício 3:

Mostre que, se n é um número inteiro, então $n^2 > n$.

• **Demonstração:** Considerar três casos: $n = 0, n \ge 1$ e n < -1.

Somatório e Produtório

- Seja (x_n) uma sequência de elementos de um conjunto com as operações adição e multiplicação.
- O somatório é dado por

$$S_n = \sum_{i=1}^n x_i = x_1 + x_2 + ... + x_n,$$

Exemplo 9:

- i) $S_n = \sum_{i=1}^n i = 1 + 2 + 3 + \dots$
- ii) $S_n = \sum_{i=1}^n i^2 = 1 + 4 + 9 + 16 + \dots$

Somatório e Produtório

- Seja (x_n) uma sequência de elementos de um conjunto com as operações adição e multiplicação.
- O produtório é dado por

$$P_n = \prod_{i=1}^n x_i = x_1 \cdot x_2 \cdot \ldots \cdot x_n.$$

• Vale: $S_1 = P_1 = x_1$, $S_{n+1} = S_n + x_{n+1}$ e $P_{n+1} = P_n \cdot x_{n+1}$, para todo $n \in \mathbb{N}$.

Indução Matemática - Escada Infinita

Princípio da Indução Matemática:

- Seja P(n) uma propriedade relativa ao número natural
 n. Suponhamos que:
- i) P(1) é verdadeira.
- ii) Para $k \in \mathbb{N}$, a validade de P(k) implica na validade de P(k+1), onde k+1 é o sucessor de k.
- Então P(n) é válida qualquer que seja o número natural n.

- Seja P(n) uma propriedade relativa ao número natural n.
- Passo base: P(1) é verdadeira.
- **Hipótese indutiva:** Para $k \in \mathbb{N}$, vale P(k).
- Passo indutivo: Vale P(k+1).

- Seja P(n) uma propriedade relativa ao número natural n.
- Passo base: P(1) é verdadeira.
- **Hipótese indutiva:** Para $k \in \mathbb{N}$, vale P(k).
- Passo indutivo: Vale P(k+1).
- Expressa como uma regra de inferência essa técnica de demonstração pode ser declarada como

$$\left[P(1) \wedge \left(\forall k, P(k) \rightarrow P(k+1)\right)\right] \rightarrow \forall n, P(n).$$

- Dada P(n) uma propriedade relativa ao número natural n. Temos que executar os seguintes passos na prova por indução:
- i Passo base: Mostrar que P(1) é verdadeira.
- ii Hipótese indutiva: Supor que para algum $k \in \mathbb{N}$, vale P(k).
- iii Passo indutivo: Mostrar que a propriedade vale para k + 1, ou seja, vale P(k + 1).
- Logo a propriedade P(n) vale $\forall n \in \mathbb{N}$.

Exemplo 10 - Soma dos *n* primeiros números naturais:

Mostre a propriedade

$$P(n): 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}.$$

• Demonstração: em aula.

Exemplo 11:

$$P(n): 1 + 3 + 5 + ... + (2n-1) = n^2$$
, para $n \ge 1$.

Exemplo 11:

$$P(n): 1 + 3 + 5 + ... + (2n-1) = n^2$$
, para $n \ge 1$.

- Demonstração:
- i Passo base: Para n = 1 temos 1 = 1 e assim, P(1) é verdadeira;

Exemplo 11:

$$P(n): 1 + 3 + 5 + ... + (2n-1) = n^2$$
, para $n \ge 1$.

- Demonstração:
- i Passo base: Para n = 1 temos 1 = 1 e assim, P(1) é verdadeira;
- ii Hipótese indutiva: Suponhamos que para algum $k \in \mathbb{N}$, vale P(k), isto é, $1+3+5+...+(2k-1)=k^2$.

- iii Passo indutivo: Mostrar que a propriedade vale para k+1.
- De fato, para n=k+1 obtemos 1+3+5+...+(2k-1)+[2(k+1)-1] o que implica $1+3+5+...+(2k-1)+(2k+1)=k^2+(2k+1)$ por hipótese de indução, o que implica em: $1+3+5+...+[2(k+1)-1]=(k+1)^2$ que é P(k+1).
- Logo, P(k)implica em P(k+1).
- Portanto, a propriedade P(n) vale $\forall n \in \mathbb{N}$.

Indução Matemática - Começando de um certo natural n_0

Princípio da Indução Matemática:

- Dada P(n) uma propriedade relativa ao número natural n.
- i Passo base: Mostrar que $P(n_0)$ é verdadeira.
- ii Hipótese indutiva: Supor que para algum $k \in \mathbb{N}$, com $k \geq n_0$, vale P(k).
- iii Passo indutivo: Mostrar que a propriedade vale para k + 1, ou seja, vale P(k + 1).
- Logo a propriedade P(n) vale $\forall n \in \mathbb{N}$, com $n \geq n_0$.

Exemplo 12:

Mostre a propriedade

$$P(n): 2^n < n!, \forall n \geq 4.$$

• **Demonstração:** em aula (comentar que essa desigualdade é falsa para n = 1, 2 e 3).

Exemplo 12:

Mostre a propriedade

$$P(n): 2^n < n!, \forall n \geq 4.$$

• **Demonstração:** em aula (comentar que essa desigualdade é falsa para n = 1, 2 e 3).

Exercício 4:

$$P(n): n < 2^n, \forall n \geq 0.$$

Indução Matemática - Mais de um antecessor

Princípio da Indução Matemática:

- Dada P(n) uma propriedade $n \in \mathbb{N}$.
- i Passo base: Mostrar que P(1) e P(2) são verdadeiras.
- ii Hipótese indutiva: Supor que para algum $k \in \mathbb{N}$, valem P(k) e P(k+1).
- iii Passo indutivo: Mostrar que a propriedade vale para k + 2, ou seja, vale P(k + 2).
- Logo a propriedade P(n) vale $\forall n \in \mathbb{N}$.

Exemplo 13:

Quantos pares de coelhos serão produzidos em um ano, a partir de um único casal, se cada casal procria a cada mês um novo casal que se torna produtivo depois de dois meses?

Mês	Número de casais do mês anterior	Número de casais recém-nascidos	Total
1º	0	1	1
2º	1	0	1
3º	1	1	2
4º	2	1	3
5º	3	2	5
6 <u>°</u>	5	3	8
7º	8	5	13

- O número de casais de coelhos em um determinado mês (a partir do terceiro) é igual ao número total de casais do mês anterior acrescido do número de casais nascidos no mês em curso, que é igual ao número total de casais do mês anterior.
- Se u_n é o número de casais no n-ésimo mês, temos
 - $u_1 = 1$;
 - $u_2 = 1$;
 - $u_{n+2} = u_n + u_{n+1}$, para todo n natural.
- Estas relações definem a chamada sequência de Fibonacci.

- Comentar a relação
 - $u_1 = 1$;
 - $u_2 = 1$;
 - $u_{n+2} = u_n + u_{n+1}$, para todo n natural.

- Comentar a relação
 - $u_1 = 1$;
 - $u_2 = 1$;
 - $u_{n+2} = u_n + u_{n+1}$, para todo n natural.
- Comentar a prova por indução de

$$u_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}.$$

- Comentar a relação
 - $u_1 = 1$;
 - $u_2 = 1$;
 - $u_{n+2} = u_n + u_{n+1}$, para todo n natural.
- Comentar a prova por indução de

$$u_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}.$$

• O número $\Phi = \frac{1+\sqrt{5}}{2} = 1,618033...$ é conhecido como número de ouro.

Indução Matemática Completa

Princípio da Indução Matemática Completa:

- Dada P(n) uma propriedade $n \in \mathbb{N}$.
- i Passo base: Mostrar que P(1) é verdadeira.
- ii Hipótese indutiva: Supor que para todo $1 \le k \le n$, vale P(k).
- iii Passo indutivo: Mostrar que a propriedade P(n+1) é válida.
- Logo a propriedade P(n) vale $\forall n \in \mathbb{N}$.

Exemplo 14:

Seja a_n uma sequência definida por

$$a_0 = 2$$
 e $a_{n+1} = \frac{\sum_{k=0}^{n} a_k}{n+2}$,

para cada natural n. Qual é o termo geral de a_n ?

• Demonstração: em aula.

Exercício 5:

Mostre que se n for um número inteiro maior do que 1, então n é primo ou n pode ser escrito com um produto de números primos.

Exercício 5:

Mostre que se n for um número inteiro maior do que 1, então n é primo ou n pode ser escrito com um produto de números primos.

Exercício 6:

Dado um conjunto A com n elementos. Mostre que o conjuntos das partes de A tem 2^n elementos.

Referências

- LIPSCHUTZ, S.; LIPSON, M. Teoria e Problemas de Matemática Discreta. 2. ed. Bookman, 2004.
- MENEZES, P. B. Matemática Discreta para Computação e Informática. 3. ed. Bookman, 2010.
- ROSEN, K. H. Matemática Discreta e Suas Aplicações. 6. ed. McGraw-Hill, 2009.