Scilab Textbook Companion for Engineering Physics by M. R. Srinivasan¹

Created by Lakshmi Tharun Ponnam B.TECH

Computer Engineering V R SIDDHARTHA ENGINEERING COLLEGE

College Teacher
None
Cross-Checked by
None

June 7, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Physics

Author: M. R. Srinivasan

Publisher: New Age International, New Delhi

Edition: 1

Year: 2011

ISBN: 978-81-224-3004-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	INTERFERENCE	5
2	DIFFRACTION	13
3	POLARIZATION OF LIGHT	20
5	X RAY DIFFRACTION	23
6	LASER	43
7	FIBER OPTICS	48
9	QUANTUM MECHANICS AND QUANTUM COMPUTING	53
10	ELECTRON THEORY OF METALS	56
13	SUPERCONDUCTIVITY	64
14	DIELECTRIC PROPERTIES	67
15	SEMICONDUCTORS	69

List of Scilab Codes

Exa 1.1.ul To calculate the location of screen from slits	5
Exa 1.2.u1 To calculate the wavelength	5
Exa 1.3.u1 To compare the intensity at a point distance 1mm from	
the center to that at its center and to find minimum dist	
from center of point	6
Exa 1.4.u1 To calculate thickness of plate	7
Exa 1.5.u1 To find the refractive index of coil	8
Exa 1.6.U1 Calculate the wavelengths of light in visible spectrum	8
Exa 1.7.u1 To calculate the fring width	9
Exa $1.8.u1$ To calculate the distance from the edge of wedge \dots	10
Exa 1.9.u1 To calculate diameter of the fifth bright ring	10
Exa 1.10.u1To find the diameter of the 20th dark ring	11
Exa 1.11.u1To calculate refractive Index of liquid	11
Exa 1.12.u1To calculate the wavelength of the light used	12
Exa 2.1.u1 To calculate the no of lines in one cm of grating surface	13
Exa 2.2.u1 To Find the difference in angles of deviation in first and	
third order spectra	14
Exa 2.3.u1 To calculate minimum no of lines per centimeter	14
Exa 2.4.u1 To examine two spectral lines are clearly resolved in first	
order and second order	15
Exa 2.5.u1 To find the angle of separation	16
Exa 2.6.u1 To Calculate the dispersive power of the grating	16
Exa 2.7.u1 To Calculate highest power of spectrum seen with mono	
chromaic light	17
Exa 2.8.u1 To calculate the wavelength	18
Exa 2.9.u1 To calculate resolving power in second order	18
Exa 3.1.u1 To calculate the polarising angle	20
Exa 3.2.u1 To calculate the thickness of quarter wave plate	20

Exa 3.3.u1 To calculate the wavelength	21
Exa 3.4.u1 To calculate the thickness of the plate	21
Exa 5.1.u1 To determine the miller indices of the plane	23
Exa 5.2.u1 To determine the miller indices of the plane	24
Exa 5.3.u1 To find the intercepts along the Y and Z axes	25
Exa 5.4.u1 To calculate the inter planar distance	25
Exa 5.5.u1 To find out the interplanar spacing of the reflecting	
planes of the crystal	26
Exa 5.6.u1 To calculate the interplanar spacing and wavelength .	26
Exa 5.7.u1 To find the wavelength whenthese planes give rise to	
maximum density in reflection	27
Exa 5.8.u1 To calculate the Bragg angle and the wavelength of X	
rays	28
Exa 5.9.u1 To determine the interplanar spacing	29
Exa 5.10.u1To calculate the lattice constant	29
Exa 5.11.u1To determine the unitcell and its dimensions	30
Exa 5.12.u1To determine the cubic structure of element and lattice	
constant and to identify element	33
Exa 5.13.u1To determine the crystal structure and indices of plane	
and lattice parameter of the material	35
Exa 5.14.u1To calculate the effective temprature of neutrons	38
Exa 5.15.u1To calculate the Braggs angle	39
Exa 5.16.u1To calculate the difference between the samples	40
Exa 5.17.u1To find the type of crystal and lattice parameter and	
atomic diameter	41
Exa 5.18.u1To find out the planes which gives reflection	42
Exa 6.1.u1 To calculate the Electric field of a laser beam	43
Exa 6.2.u1 To calculate the Electric field of a bulb	44
Exa 6.3.u1 To calculate the electric field intensity a a point	44
Exa 6.4.u1 To calculate the ratio of populations of two energy levels	45
Exa 6.5.u1 To find the wavelength of the radiation emitted	45
Exa 6.6.u1 To calculate the ratio of stimulated emission to Sponta-	
neous emission	46
Exa 6.7.u1 To calculate the no of photons emitted by the ruby laser	47
Exa 7.1.u1 To determine the no of modes propagating in the fiber	48
Exa 7.2.u1 To find the fraction of initial intensity	49
Exa 7.3.u1 To calculate the numerical apperture and angle of ac-	
ceptance	49

Exa	7.4.u1	To calculate the numerical apperture and angle of ac-	
		ceptance	50
Exa	7.5.u1	To find the loss specification of a fiber	50
Exa	7.6.u1	To calculate the numerical aperture acceptance angle	
		critical angle velocity of the light in core and cladding	51
Exa	7.7.u1	To calculate the fiber length	52
Exa	1.1.u2	To calculate energy momentum and the probability of	
		of finding the particle	53
		To calculate the wavelength of the radiation emitted .	54
		To calculate the uncertenity in momentum	54
		To find out the no of states that can accomodate	55
Exa	2.1.u2	To calculate the density of electrons and mobility of	
		electrons in silver	56
Exa	2.2.u2	To corresponding mean free path and compare with ex-	
		perimental value	57
		To calculate the drift velocity and their mobility	58
Exa	2.4.u2	To calculate the current density in each wire and drift	
		speed of electrons	59
Exa	2.5.u2	To calculate the no of states for conduction electrons	
		and the average energy interval	60
		To calculate the fermi energy level	60
		To calculate the probability for a state	61
Exa	2.8.u2	TO Find the energy at which probability of occupancy	
		is point9 and density of states and the population density	62
		To calculate the fermi energy and fermi factor	63
		To find the temprature where would be the critical field	64
		To calculate the maximum current density	64
		To calculate the transition temprature and critical field	65
		To calculate its critical temprature	66
		To calculate the dielectric constant	67
		To calculate the atomic polarizability	67
		To calculate the mean free path and mean free time .	69
		To calculate the diffusion current density	69
		To find the drift velocity and diffusivity	70
		To find the charge in the minority carrier concentration	70
Exa	7.5.u2	To find the hall voltage	71

Chapter 1

INTERFERENCE

Scilab code Exa 1.1.u1 To calculate the location of screen from slits

```
1 //Example 1_1_u1
2 clc();
3 clear;
4 //To calculate the location of screen from slits
                      //units in cm
5 d=0.08
6 d=d*10^-2
                      //units in mts
                         //units in mts
7 betaa=6*10^-4
                         //units in kHz
8 v = 8 * 10^11
                         //units in mts
9 c = 3 * 10^8
10 lamda=c/(v*10^3)
                                //units in mts
11 d=(betaa*d)/lamda
                                  //units in mts
12 printf("The distance of the screen from the slits is
      \%.2 \, \mathrm{fmts}",d)
```

Scilab code Exa 1.2.u1 To calculate the wavelength

```
1 / Example 1_2_u1
2 clc();
3 clear;
4 //To calculate the wavelength
5 // First case to calculte the wavelengths of the
      light source to obtain fringes 0.46*10^-2 mts
               //units in armstrongs
6 lamda1=4200
7 lamda1=lamda1*10^-10
                           //units in mts
8 \text{ betaa=0.64*10^--2}
                         //units in mts
9 D_d=betaa/lamda1
                         //units in mts
10 //Second caseDistance between slits and screen is
     reduced to half
11 beeta1=0.46*10^-2
                          //units in mts
12 lamdaD_d=beeta1*2
                                  //units in mts
13 lamda=(lamda1*lamdaD_d)/betaa
                                             //units in
14 \quad lamda=lamda*10^10
                           //units in armstrongs
15 printf ("The wavelength of the Light source is %.1
     fArmstrongs", lamda)
```

Scilab code Exa 1.3.u1 To compare the intensity at a point distance 1mm from the center to that at its center and to find minimum dist from center of point

```
1 //Example 1_3_u1
2 clc();
3 clear;
4 //To compare the intensity at a point distance 1mm
    from the center to that at its center and to find
    minimum dist from center of point
5 //Path difference=(Y*d)/D
6 y=1 // units in mm
7 y=y*10^-3 // units in mts
```

```
8 D=1 //units in mts
9 d=1 //units in mm
10 d=d*10^-3 // units in mts
11 pathdifference=(y*d)/D
                                   //units in mts
12 \quad lamda=5893 \quad //units \quad in \quad armstrongs
13 lamda=lamda*10^-10 //units in mts
14 phasedifference=(2*pathdifference)/lamda
     //units in pi radiand
15 ratioofintensity=(cos((phasedifference/2)*%pi))^2
     //units in
16 printf ("The ratio of intensity with central maximum
     is \%.4 \text{ f} \n", ratioofintensity)
17 pathdifference=lamda/4
18 distance=(pathdifference*D)/d //units in mts
19 printf ("The Distance of the point on the screen from
       center is %fmts", distance)
```

Scilab code Exa 1.4.u1 To calculate thickness of plate

Scilab code Exa 1.5.u1 To find the refractive index of coil

Scilab code Exa 1.6.U1 Calculate the wavelengths of light in visible spectrum

```
1 //Example 1_6_u1
2 clc();
3 clear;
4 //Calculate the wavelengths of light in visible spectrum
5 i=35 //units in degrees
6 u=1.33
7 d=5*10^-5 //units in cm
8 r=asin(sin(i*%pi/180)/u) //units in radians
9 r=r*180/%pi //units in degrees
```

```
10 // For n=1
11 n=1
12 lamda1=(2*u*d*cos(r*%pi/180))/n //units in cm
13 printf("For n=1 lamda=%.6fcm which lies in infrared
      region", lamda1)
14 / For n=2
15 n=2
16 lamda2 = (2*u*d*cos(r*\%pi/180))/n //units in cm
17 printf("\nFor n=2 lamda=\%.6 fcm which lies in visible
       region", lamda2)
18 / \text{For n} = 3
20 lamda3=(2*u*d*cos(r*\%pi/180))/n
                                               //units in
21 printf("\nFor n=3 lamda=\%.6fcm which lies in visible
       region", lamda3)
\frac{22}{\text{For n}} = 4
23 \quad n=4
24 \quad lamda4 = (2*u*d*cos(r*\%pi/180))/n
                                       //units in cm
25 printf("\nFor n=4 lamda=%.6fcm which lies in
      ultraviolet region", lamda4)
26 printf("\nHence absent wavelengths in reflected
      region are %.6 fcm and %.6 fcm", lamda2, lamda3)
```

Scilab code Exa 1.7.u1 To calculate the fring width

```
1 //Example 1_7_u1
2 clc();
3 clear;
4 //To calculate the fring width
5 //betaa=(lamda)/(2*alpha)
6 lamda=6000 //units in armstrongs
7 lamda=lamda*10^-8 //units in cm
```

Scilab code Exa 1.8.u1 To calculate the distance from the edge of wedge

Scilab code Exa 1.9.u1 To calculate diameter of the fifth bright ring

```
1 //Example 1_9_u1
2 clc();
3 clear;
4 //To calculate diameter of the fifth bright ring
5 n=5
6 lamda=5460 //units in armstrongs
```

```
7 lamda=lamda*10^-6  //units in cm
8 f=400  //units in cm
9 u=1.5
10 R=(u-1)*2*f  //units in cm
11 diameter=sqrt(2*(2*n-1)*lamda*R)
12 printf("Diameter of the 5th bright ring is %.4fcm", diameter)
13 //In text book the answer is printed wrong as 0.627 cm
14 //The correct answer is 6.269 cms
```

Scilab code Exa 1.10.u1 To find the diameter of the 20th dark ring

```
1 //Example 1_10_u1
2 clc();
3 clear;
4 //To find the diameter of the 20th dark ring
5 D4 = 0.4
                   //units in cm
6 D12=0.7
                    //units in cm
7 //As we have (D20^2-D4^2)/(D12^2-D4^2)=(4*16)/(4*8)
8 \text{ ans} = (4*16)/(4*8)
                                                     //units
9 D20_2 = (ans*((D12)^2 - (D4)^2)) + (D4)^2
       in cm<sup>2</sup>
                                                     //units
10 D20=sqrt(D20_2)
11 printf("Diameter of the 20th dark ring is %.3 fcm",
      D20)
```

Scilab code Exa 1.11.u1 To calculate refractive Index of liquid

```
1 //Example 1_11_u1
2 clc();
3 clear;
4 //To calculate refractive Index of liquid
5 d10=1.40
6 d_10=1.27
7 u=(d10/d_10)^2
8 printf("The refractive index of liquid is %.3f",u)
```

Scilab code Exa 1.12.u1 To calculate the wavelength of the light used

```
1 //Example 1_12_u1
2 clc();
3 clear;
4 //To calculate the wavelength of the light used
5 \, \text{Dnp} = 0.8
              //units in cm
                //units in cm
6 \, \text{Dn} = 0.3
7 n1 = 25
8 n2=5
9 p=n1-n2
10 R = 100
                  //units in cm
11 lamda=(Dnp^2-Dn^2)/(4*p*R)
                                                  //units in
12 printf ("The wavelength of light used is %.8 fcm",
      lamda)
13 //In text book the answer is printed wrong as
      4.87*10^{-5}cm
14 //correct Answer is 6.875*10^-5cm
```

Chapter 2

DIFFRACTION

Scilab code Exa 2.1.u1 To calculate the no of lines in one cm of grating surface

```
1 / Example 2_1_u1
2 clc();
3 clear;
4 //To calculate the no of lines in one cm of grating
      surface
6 \quad lamda=5*10^-5
                      //units in cm
                      //units in degrees
7 \text{ theta}=30
8 //We have nooflines=1/e=(k*lamda)/sin(theta)
9 nooflines=sin(theta*%pi/180)/(k*lamda)
                                                          //
      units in cm
10 printf ("No of lines per centimeter is %.f", nooflines
11 //In text book the answer is printed wrong as 10<sup>3</sup>
12 //The correct answer is 5*10^3
```

Scilab code Exa 2.2.u1 To Find the difference in angles of deviation in first and third order spectra

```
1 / Example 2_2u1
2 clc();
3 clear;
4 //To Find the difference in angles of deviation in
     first and third order spectra
5 lamda=5000
                    //units in armstrongs
6 \quad lamda = lamda * 10^- - 8
                                  //units in cm
7 e=1/6000
8 //For first order e*sin(theta1)=1*lamda
9 theta1=asin(lamda/e) //units in radians
10 theta1=theta1*180/%pi //units in degrees
11 printf("For First order spectra theta1=%.1f degrees"
     ,theta1)
12 //For third order e*sin(theta3)=3*lamda
13 theta3=asin(3*lamda/e)
                            //units in radians
14 theta3=theta3*180/\%pi
                           //units in degrees
15 printf("\nFor Third order spectra theta3=\%.1 f
     degrees", theta3)
16 diffe=theta3-theta1
                             //units in degrees
17 printf("\nDifference in Angles of deviation in first
      and third order spectra is theta3-theta1=\%.2
     fdegrees", diffe)
```

Scilab code Exa 2.3.u1 To calculate minimum no of lines per centimeter

```
1 //Example 2_3_u1
2 clc();
3 clear;
4 //To calculate minimum no of lines per centimeter
5 lamda1=5890 // units in armstrongs
```

Scilab code Exa 2.4.u1 To examine two spectral lines are clearly resolved in first order and second order

```
1 / Example 2_4_u1
2 clc();
3 clear;
4 //To examine two spectral lines are clearly resolved
      in first order and second order
5 n = 425
6 \text{ tno}=2*n
                          //units in armstrongs
7 lamda1=5890
                          //units in armstrongs
8 \ lamda2 = 5896
9 dlamda=lamda2-lamda1
10 //For first order
11 n=lamda1/dlamda
12 printf ("As total no of lines required for resolution
      in first order is %.f and total no of lines in
     grating is %d the lines will not be resolved in
      first order", n, tno)
13 //For second order
14 n=lamda1/(2*dlamda)
15 printf("\nAs total no of lines required for
      resolution in first order is %.f and total no of
     lines in grating is %d the lines will be resolved
      in second order", n, tno)
```

Scilab code Exa 2.5.u1 To find the angle of separation

```
1 / Example 2_5_u1
2 clc();
3 clear;
4 //To find the angle of separation
                       //units in armstrongs
5 lamda1=5016
                       //units in armstrongs
6 lamda2=5048
7 \quad lamda1 = lamda1 * 10^-8
                           //units in cm
8 \quad lamda2=lamda2*10^-8
                            //units in cm
9 k=2
10 \quad n = 15000
11 e=2.54/n
                         //units in cm
                                                    //units
12 theta1=asin((2*lamda1)/e)*(180/\%pi)
       in degrees
13 theta2=asin((2*lamda2)/e)*(180/\%pi)
                                                    //units
       in degrees
                                                    //units
14 diffe=theta2-theta1
       in degrees
15 diffe=diffe*60
                                                      //
      units in minutes
16 printf("Angle of separation is %.f minutes", diffe)
```

Scilab code Exa 2.6.u1 To Calculate the dispersive power of the grating

```
1 //Example 2_6_u1 2 clc();
```

```
3 clear;
4 //To Calculate the dispersive power of the grating
5 n = 4000
                  //units in cm
6 e=1/n
7 k=3
8 lamda=5000
              //units in armstrongs
9 lamda=lamda*10^-8
                            //units in cm
                                            //units in
10 theta=asin((k*lamda)/e)*(180/\%pi)
     degrees
11 costheta=cos(theta*%pi/180)
12 disppower=(k*n)/costheta
13 printf("The dispersive power of the grating is %.f",
     disppower)
```

Scilab code Exa 2.7.u1 To Calculate highest power of spectrum seen with mono chromaic light

Scilab code Exa 2.8.u1 To calculate the wavelength

```
1 // Example 2_8_u 1
2 clc();
3 clear;
4 //To calculate the wavelength
5 k=2
6 theta1=10
                         //units in degrees
                         //units in degrees
7 dtheta=3
                         //units in cm
8 \quad dlamda=5*10^-9
  lamda=(sin((theta1*%pi)/180)*dlamda*60*60)/(cos((
     theta1*%pi)/180)*dtheta*(%pi/180)) //units in
     cm
10 printf("Wavelength of the lines is %.7f cms", lamda)
11 lamda_dlamda=lamda+dlamda
                                      //units in cm
12 N=6063
13 Ne=(N*k*lamda)/sin((theta1*%pi)/180)
                                                 //units
14 printf("\nMinimum grating width required is %.1 fcm",
     Ne)
```

Scilab code Exa 2.9.u1 To calculate resolving power in second order

```
1 //Example 2_9_u1
2 clc();
3 clear;
4 //To calculate resolving power in second order
5 //We have e*sin(theta)=k*lamda
```

Chapter 3

POLARIZATION OF LIGHT

Scilab code Exa 3.1.u1 To calculate the polarising angle

```
1 //Example 3_1_u1
2 clc();
3 clear;
4 //To calculate the polarising angle
5 u=1.5
6 ip=atan(u)*(180/%pi) //units in degrees
7 printf("The Polarising angle is %.2 fdegrees or 56 degrees.18 minutes",ip)
8 //in text book the answer is printed wrong as 56 degrees.18 minutes
9 //the correct answer is 56.31 degrees or 56 degrees 18 minutes
```

Scilab code Exa 3.2.u1 To calculate the thickness of quarter wave plate

```
1 //Example 3_2_u1 2 clc();
```

Scilab code Exa 3.3.u1 To calculate the wavelength

Scilab code Exa 3.4.u1 To calculate the thickness of the plate

```
1 //Example 3_4_u1
2 clc();
```

```
3 clear;
4 //To calculate the thickness of the plate
5 lamda=5.5*10^-5 //units in cm
6 u0=1.553
7 ue=1.542
8 d=lamda/(2*(u0-ue)) //units in cm
9 d=d*10^-2 //units in mts
10 printf("The thickness of the plate is %.7fmts",d)
```

Chapter 5

X RAY DIFFRACTION

Scilab code Exa 5.1.u1 To determine the miller indices of the plane

```
1 / Example 5_1_u1
2 clc();
3 clear;
4 //To determine the miller indices of the plane
5 //Given Intercepts are 2a, -3b, 6c
6 a=1
7 b=1
8 c = 1
9 intercepts1=2*a
10 \text{ intercepts2=-3*b}
11 intercepts3=6*c
12 unitcell1=intercepts1/a
13 unitcell2=intercepts2/b
14 unitcell3=intercepts3/c
15 resiprocal1=1/unitcell1
16 resiprocal2=1/unitcell2
17 resiprocal3=1/unitcell3
18 lcms=int32([unitcell1 unitcell2 unitcell3]);
19 v = 1 cm (lcms)
20 \ 1cm1=3
21 \quad 1 \text{cm} 2 = -2
```

Scilab code Exa 5.2.u1 To determine the miller indices of the plane

```
1 / Example 5_2u1
2 clc();
3 clear;
4 //To determine the miller indices of the plane
5 // Given Intercepts are Infinity, OY, OZ
6 intercepts1="Infinity"
7 intercepts2="OY"
8 intercepts3="OZ"
9 unitcell1="Infinity"
10 unitcell2=1
11 unitcel13 = (2/3)
12 resiprocal1=0
13 resiprocal2=1/unitcell2
14 resiprocal3=1/unitcell3
15 lcms=int32([unitcell2 unitcell3]);
16 \text{ v=} 1\text{cm} (1\text{cms})
17 \quad 1 \text{ cm } 1 = 0
18 \ 1cm2=2
19 \ 1cm3=3
20 printf("Co-ordinates of A,B,C are (Infinity,0,0),(0,
      \%d,0)(0,0,\%f)", unitcell2, unitcell3)
21 printf("\n Miller indices of the plane are (\%d,\%d,
      \%d)",lcm1,lcm2,lcm3)
```

Scilab code Exa 5.3.u1 To find the intercepts along the Y and Z axes

```
1 // Example 5_3_u 1
2 clc();
3 clear;
4 //To find the intercepts along the Y and Z axes
                       //units in nm
5 a=0.121
6 b = 0.184
                       //units in nm
                       //units in nm
7 c = 0.197
8 //Given miller indices are (2,3,1)
9 \quad OA_OB = 3/2
10 \quad OA_OC = 1/2
11 OB = (2/3) *b //units in nm
12 \quad OC = 2 * c
               //units in nm
13 printf("The Intercepts along the Y and Z axes are OB
      =\%.3\,\mathrm{fnm} and OC=\%.3\,\mathrm{fnm}, OB, OC)
```

Scilab code Exa 5.4.u1 To calculate the inter planar distance

```
1 //Example 5_4_u1
2 clc();
3 clear;
4 //To calculate the inter planar distance
5 a=0.82 //units in nm
6 b=0.94 //units in nm
7 c=0.75 //units in nm
8 h=1
9 k=2
```

Scilab code Exa 5.5.u1 To find out the interplanar spacing of the reflecting planes of the crystal

 $\bf Scilab\ code\ Exa\ 5.6.u1$ To calculate the interplanar spacing and wavelength

```
1 / Example 5_6_u1
```

```
2 clc();
3 clear;
4 //To calculate the interplanar spacing and
      wavelength
5 n1=1
6 \text{ theta1=23}
                       //units in degrees
7 n2=3
                       //units in degrees
8 \text{ theta2=60}
9 lamda1=97
                        //units in pm
10 lamda2=(n2*lamda1*sin(theta1*(%pi/180)))/(sin(theta2)
      *(%pi/180)))
                             //units in pm
11 d=(n2*lamda1)/(2*sin(theta2*(%pi/180)))
      units in pm
12 printf("Wavelength lamda=%dpm \n Interplanar spacing
      d=%dpm",lamda2,d)
```

Scilab code Exa 5.7.u1 To find the wavelength when these planes give rise to maximum density in reflection

```
1 // Example 5_7_u1
2 clc();
3 clear;
4 //To find the wavelength whenthese planes give rise
      to maximum density in reflection
5 d = 275
            //units in pm
6 \text{ theta=} 45
                    //units in degrees
7 // For n=1
8 n=1
9 lamda = (2*d*sin(theta*(%pi/180)))/n
                                               //units in
10 printf ("Wavelength for n=1 is lamda=\%.1 fpm n", lamda)
11 / For n=2
12 n = 2
```

```
13 lamda = (2*d*sin(theta*(%pi/180)))/n
                                                //units in
14 printf ("Wavelength for n=1 is lamda=\%.1 fpm\n", lamda)
15 / For n=3
16 n=3
17 lamda = (2*d*sin(theta*(%pi/180)))/n
                                                //units in
18 printf ("Wavelength for n=1 is lamda=\%.1 fpm n", lamda)
19 // For n=4
20 n=4
21 lamda=(2*d*sin(theta*(\%pi/180)))/n
                                                //units in
22 printf ("Wavelength for n=1 is lamda=\%.1 fpm n", lamda)
23 / \text{For n} = 5
24 n = 5
                                                //units in
25 \quad lamda = (2*d*sin(theta*(%pi/180)))/n
26 printf ("Wavelength for n=1 is lamda=\%.1 fpm n", lamda)
27 printf ("For n=1,2,3 and >5 lamda lies beyond the
      range of wavelengths of polychromatic source")
```

Scilab code Exa 5.8.u1 To calculate the Bragg angle and the wavelength of X rays

```
//Example 5_8_u1
clc();
clear;
//To calculate the Bragg angle and the wavelength of X-rays
//Given plane indices are (1,1,1)
theta=87 //units in degrees
theta=theta/2 //units in degrees
a=0.2 //units in mm
```

Scilab code Exa 5.9.u1 To determine the interplanar spacing

```
1 / Example 5_9_u1
2 clc();
3 clear;
4 //To determine the interplanar spacing
5 h=6.63*10^-34
                        //units in m^2 kg s^-1
// units in Kgs
7 e=1.6*10^-19 // units in coulombs
8 v=844 // units in coulombs
9 lamda=h/sqrt(2*m*e*v)
                                        //units in meters
10 \quad n=1
11 theta=58
                  //units in degrees
12 d=(n*lamda)/(2*sin(theta*(%pi/180)))
                                                         //
      units in meters
13 printf("The interplanar spacing d=")
14 disp(d)
15 printf("meters")
```

Scilab code Exa 5.10.u1 To calculate the lattice constant

```
1 //Example 5_10_u1
2 clc();
3 clear;
4 //To calculate the lattice constant
5 h=6.63*10^{-34}
                          //units in m<sup>2</sup> kg s<sup>-1</sup>
                         //units in Kgs
6 m=1.804*10^-27
                             // units in m<sup>2</sup> kg s<sup>-2</sup> K<sup>-1</sup>
7 \text{ KB}=1.38*10^-23
                            //units in K
8 T = 300
9 lamda=h/sqrt(3*m*KB*T)
                                             //units in meters
10 \, n=2
                                      //units in meters
11 \quad a = (sqrt(3) * lamda)/2
12 printf("Lattice constant a=");
13 disp(a);
14 printf("meters")
```

Scilab code Exa 5.11.u1 To determine the unitcell and its dimensions

```
1 //Example 5_11_u1
2 clc();
3 clear;
4 //To determine the unitcell and its dimensions
5 //Experimental data
6 //We have relation \sin (theta) = (lamda/2*a)^2 and (h
      ^2+k^2+l^2 = j*(lamda/2*a)^2
                          //units in degrees
7 theta21=12.1
                           //units in degrees
8 \text{ theta} 22 = 17.1
9 \text{ theta} 23 = 21
                        //units in degrees
                           //units in degrees
10 \text{ theta} 24 = 24.3
                           //units in degrees
11 theta25=27.2
                           //units in degrees
12 \text{ theta} 26 = 29.9
                          //units in degrees
13 \text{ theta} 28 = 34.7
14 \text{ theta29=36.9}
                          //units in degrees
                            //units in degrees
15 theta210=38.9
```

```
16 theta211=40.9
                            //units in degrees
17 theta212=42.8
                            //units in degrees
18 theta1=theta21/2
                             //units in degrees
19 theta2=theta22/2
                             //units in degrees
20 theta3=theta23/2
                             //units in degrees
21 theta4=theta24/2
                             //units in degrees
22 theta5=theta25/2
                             //units in degrees
                             //units in degrees
23 theta6=theta26/2
24 theta8=theta28/2
                             //units in degrees
25 theta9=theta29/2
                             //units in degrees
26 theta10=theta210/2
                               //units in degrees
27 theta11=theta211/2
                               //units in degrees
28 theta12=theta212/2
                               //units in degrees
29 / \sin^2(theta) values
30 \sin 1 = (\sin(\tanh 1 * \% pi/180))^2
31 \sin 2 = (\sin(\tanh 2*\%pi/180))^2
32 \sin 3 = (\sin(\tan 3*\% pi/180))^2
33 \sin 4 = (\sin(\tanh 4 * \% pi/180))^2
34 \sin 5 = (\sin(\tanh 3 * \% pi/180))^2
35 \sin 6 = (\sin(\tanh 4 \% pi/180))^2
36 \sin 8 = (\sin(\tanh * \%pi/180))^2
37 \sin 9 = (\sin(\tan 9 * \% pi/180))^2
38 \sin 10 = (\sin(\tanh 10 * \% pi/180))^2
39 \sin 11 = (\sin(\tanh 11 * \% pi/180))^2
40 \sin 12 = (\sin(\tan 12 * \% pi / 180))^2
41 / \sin^2(\text{theta}) / 0.0111 \text{ value}
42 temp1=sin1/sin1
43 temp2=sin2/sin1
44 temp3=sin3/sin1
45 temp4=sin4/sin1
46 temp5=sin5/sin1
47 temp6=sin6/sin1
48 temp8=sin8/sin1
49 temp9=sin9/sin1
50 \text{ temp10=sin10/sin1}
51 \text{ temp11=sin11/sin1}
52 \text{ temp12=sin12/sin1}
53 //(h,k,l) values are determined such that the sum h
```

```
^2+k^2+l^2=temp value in that manner hence we
      have to select the (h,k,l) values
54 //(h,k,l) values
55 hkl1=100
                    //As h^2+k^2+l^2=1
56 hkl2=110
                    //As h^2+k^2+l^2=2
57 hkl3=111
                    //As h^2+k^2+1^2=3
                    //As h^2+k^2+l^2=4
58 \text{ hkl4} = 200
                    //As h^2+k^2+l^2=5
59 \text{ hkl} 5 = 210
60 \text{ hkl}6 = 211
                    //As h^2+k^2+1^2=6
61 \text{ hk18} = 220
                    //As h^2+k^2+1^2=8
                    //As h^2+k^2+1^2=9
62 \text{ hkl9} = 300
63 hkl10=310
                     //As h^2+k^2+l^2=10
64 hkl11=311
                     //As h^2+k^2+l^2=11
                     //As h^2+k^2+l^2=12
65 hkl12=222
66 printf("unit cell Dimensions when 2*theta=%.1f is (
      %d) where \sin^2(\text{theta})/0.0111 is %d\n", theta21,
      hkl1, temp1)
67 printf("unit cell Dimensions when 2*theta=%.1f is (
      %d) where \sin^2(\text{theta})/0.0111 is %.1 f\n", theta22,
      hkl2, temp2)
68 printf ("unit cell Dimensions when 2*theta=%.1f is (
      \%d) where \sin^2(\theta)/0.0111 is \%.1 \text{ f} \n, theta23,
      hkl3, temp3)
69 printf("unit cell Dimensions when 2*theta=%.1f is (
      %d) where \sin^2(\text{theta})/0.0111 is %.1 f\n", theta24,
      hkl4, temp4)
70 printf("unit cell Dimensions when 2*theta=%.1f is (
      %d) where \sin 2(\text{theta})/0.0111 is%.1 f\n", theta25,
      hkl5, temp5)
71 printf("unit cell Dimensions when 2*theta=%.1f is (
      %d) where \sin^2(\text{theta})/0.0111 is %.1 f\n", theta26,
      hkl6, temp6)
72 printf ("unit cell Dimensions when 2*theta=%.1f is (
      %d) where \sin^2(\text{theta})/0.0111 is %.1 f\n", theta28,
      hkl8, temp8)
73 printf ("unit cell Dimensions when 2*theta=\%.1f is (
      \%d) where \sin 2(\text{theta})/0.0111 is \%.1 \text{ f} n, theta29,
      hk19, temp9)
```

Scilab code Exa 5.12.u1 To determine the cubic structure of element and lattice constant and to identify element

```
1 //Example 5_12_u1
2 clc();
3 clear;
4 //To determine the cubic structure of element and
      lattice constant and to identify element
5 // Diffraction data
6 theta21=40
                      //units in degrees
7 theta22=58
                      //units in degrees
8 theta23=73
                      //units in degrees
9 theta24=86.8
                        //units in degrees
                          //units in degrees
10 \text{ theta} 25 = 100.4
                         //units in degrees
11 theta26=114.7
12 theta1=theta21/2
                          //units in degrees
13 theta2=theta22/2
                          //units in degrees
14 theta3=theta23/2
                          //units in degrees
15 theta4=theta24/2
                          //units in degrees
                          //units in degrees
16 \quad \text{theta5=theta25/2}
```

```
//units in degrees
17 theta6=theta26/2
18 / \sin^2(\text{theta}) \text{ values}
19 \sin 1 = (\sin(\tanh 1 * \% pi/180))^2
20 \sin 2 = (\sin(\tanh 2*\% pi/180))^2
21 \sin 3 = (\sin(\tanh 3*\%pi/180))^2
22 \sin 4 = (\sin(\tanh 4 * \% pi/180))^2
23 \sin 5 = (\sin(\tanh 3 * \% pi/180))^2
24 \sin 6 = (\sin(\tanh 3 \% pi/180))^2
25 / \sin^2(\text{theta}) / 0.111 \text{ value}
26 temp1=sin1/sin1
27 temp2=sin2/sin1
28 temp3=sin3/sin1
29 temp4=sin4/sin1
30 \text{ temp5}=\sin 5/\sin 1
31 temp6=sin6/sin1
32 / (h,k,l) values are determined such that the sum h
       2+k^2+l^2=temp value in that manner hence we
      have to select the (h,k,l) values
33 //(h,k,l) values
34 hkl1=100
                 //As h^2+k^2+l^2=1
                 //As h^2+k^2+l^2=2
35 hkl2=110
36 hkl3=111
                 //As h^2+k^2+l^2=3
37 hkl4=200
                  //As h^2+k^2+1^2=4
                    //As h^2+k^2+l^2=5
38 \text{ hkl5} = 210
39 hkl6=211
                    //As h^2+k^2+1^2=6
40 printf("unit cell Dimensions when 2*theta=%.1f is (
      \%d) where \sin 2(\text{theta})/0.0111 is \%d\n", theta21,
      hkl1, temp1)
41 printf("unit cell Dimensions when 2*theta=%.1f is (
      \%d) where \sin 2(\text{theta})/0.0111 is \%dn", theta22,
      hkl2, temp2)
42 printf("unit cell Dimensions when 2*theta=%.1f is (
      \%	ext{d}) where \sin 2(	ext{theta})/0.0111 is \%	ext{d}n, theta23,
      hkl3, temp3)
43 printf("unit cell Dimensions when 2*theta=%.1f is (
      %d) where \sin^2(\text{theta})/0.0111 is %d\n", theta24,
      hkl4, temp4)
44 printf("unit cell Dimensions when 2*theta=%.1f is (
```

```
%d) where \sin^2(\text{theta})/0.0111 is%d\n", theta25,
      hkl5, temp5)
45 printf ("unit cell Dimensions when 2*theta=%.1f is (
      %d) where \sin^2(\text{theta})/0.0111 is %d\n", theta26,
      hkl6, temp6)
46
47 ratio=sin1/sin2
48 printf("The ratio of sin(theta)^2 values for first
      and second angles is \%.2 f\n Hence the crystal
      structure is bcc\n", ratio)
49 \quad lamda = 0.154
                  //units in nm
50 //As we have used ratio of angles of 2*theta=40
      degrees and 58 degrees above we use h=1,k=1,l=0
      and a^2 = (lamda/2) * sqrt (sqrt (h^2+k^2+l^2)/sin^2)
      theta))
51 h = 2
52 k = 0
53 1=0
                   //units in degrees
54 \text{ theta=20}
55 a = (lamda/2) * (sqrt(sqrt(h^2+k^2+l^2)/sin(theta*(%pi)))
                             //units in nm
      /180))^2))
56 printf("Lattice constant a=%.3fnm \n And the element
       is tungsten Since Tungsten has lattice constant
      of %.3fnm and crystallizes in bcc structure",a,a)
57 // Given in textbook to find lattice constant h=1,k
      =1, l=1 but the correct answer is h=2, k=0, l=0
```

Scilab code Exa 5.13.u1 To determine the crystal structure and indices of plane and lattice parameter of the material

```
1 //Example 5_13_u1
2 clc();
3 clear;
```

```
4 //To determine the crystal structure and indices of
      plane and lattice parameter of the material
5 \text{ theta21=20.7}
                           //units in degrees
6 \text{ theta} 22 = 28.72
                             //units in degrees
7 \text{ theta23=35.36}
                            //units in degrees
8 \text{ theta} 24 = 41.07
                            //units in degrees
9 \text{ theta} 25 = 46.19
                            //units in degrees
                            //units in degrees
10 \text{ theta} 26 = 50.90
11 theta28=55.28
                             //units in degrees
12 \text{ theta} 29 = 59.4
                           //units in degrees
13
14 theta1=theta21/2
                              //units in degrees
15 theta2=theta22/2
                              //units in degrees
16 theta3=theta23/2
                              //units in degrees
17 theta4=theta24/2
                              //units in degrees
18 theta5=theta25/2
                              //units
                                      in
                                           degrees
19 theta6=theta26/2
                              //units in degrees
20 theta8=theta28/2
                              //units in degrees
21 theta9=theta29/2
                              //units in degrees
\frac{22}{\sin^2 2} (theta) values
23 \sin 1 = (\sin(\tanh 1 * \% pi/180))^2
24 \sin 2 = (\sin(\tan 2*\% pi/180))^2
25 \sin 3 = (\sin(\tanh 3*\% pi/180))^2
26 \sin 4 = (\sin(\tanh 4 * \% pi/180))^2
27 \sin 5 = (\sin(\tanh 5 * \% pi/180))^2
28 \sin 6 = (\sin(\tanh 4.8))^2
29 \sin 8 = (\sin(\tanh * \%pi/180))^2
30 \sin 9 = (\sin(\tan 9 * \% pi/180))^2
31 / \sin^2(\text{theta}) / 0.0308 \text{ values}
32 temp1=sin1/sin1
33 temp2=sin2/sin1
34 temp3=sin3/sin1
35 \text{ temp4} = \sin 4/\sin 1
36 temp5=sin5/sin1
37 temp6=sin6/sin1
38 temp8=sin8/sin1
39 temp9=sin9/sin1
40
```

```
41 \quad h2k2121 = temp1 * 2
42
43 \text{ h2k2l22=temp2*2}
44 \text{ h}2k2123 = temp3 * 2
45 \text{ h}2k2124 = temp4 * 2
46 \text{ h2k2l25=temp5*2}
47 \text{ h2k2l26=temp6*2}
48 \text{ h}2k2128=temp8*2
49 \text{ h}2k2129 = temp9 * 2
50 //(h,k,l) values are determined such that the sum h
       ^2+k^2+l^2=temp value in that manner hence we
       have to select the (h,k,l) values
51 / (h, k, l) values
52 hkl1=110
                       //As h^2+k^2+1^2=2
                       //As h^2+k^2+l^2=4
53 \text{ hkl2} = 200
54 hkl3=211
                       //As h^2+k^2+1^2=6
55 \text{ hkl4} = 220
                       //As h^2+k^2+1^2=8
                       //As h^2+k^2+l^2=10
56 hkl5=310
                       //As h^2+k^2+l^2=12
57 hkl6=232
                                  //As h^2+k^2+l^2=14
58 hkl8=321
59 hk19=400
                       //As h^2+k^2+l^2=16
60
61 printf ("unit cell Dimensions for peak 1 when 2*theta
       =\%.1 \, \text{f} is (%d) where \sin^2(\text{theta})/0.0308 is \%.2 \, \text{f} \setminus \text{n}
       ",theta21,hkl1,ceil(h2k2l21))
62 printf("unit cell Dimensions for peak 2 when 2*theta
       =\%.1 \, \text{f} is (%d) where \sin^2(\text{theta})/0.0308 is \%.2 \, \text{f} \setminus \text{n}
       ", theta22, hkl2, ceil(h2k2122))
63 printf("unit cell Dimensions for peak 3 when 2*theta
       =\%.1 \, \text{f} is (%d) where \sin 2(\text{theta})/0.0308 \, \text{is}\%.2 \, \text{f} \, \text{n}"
       ,theta23, hkl3, ceil(h2k2123))
64 printf ("unit cell Dimensions for peak 4 when 2*theta
       =\%.1 \, \text{f} is (%d) where \sin^2(\text{theta})/0.0308 is \%.2 \, \text{f} \setminus \text{n}
       ", theta24, hkl4, ceil(h2k2124))
65 printf("unit cell Dimensions for peak 5 when 2*theta
       =\%.1 \, \text{f} is (%d) where \sin^2(\text{theta})/0.0308 \, \text{is}\%.2 \, \text{f} \, \text{n}"
       ,theta25,hkl5,ceil(h2k2l25))
66 printf ("unit cell Dimensions for peak 6 when 2*theta
```

```
=\%.1 \, \text{f} is (%d) where \sin 2(\text{theta})/0.0308 \, \text{is}\%.2 \, \text{f} \, \text{n}"
       ,theta26,hk16,ceil(h2k2126))
67 printf("unit cell Dimensions for peak 7 when 2*theta
      =\%.1 \, \text{f} is (%d) where \sin^2(\text{theta})/0.0308 is \%.2 \, \text{f} \setminus \text{n}
       ",theta28,hkl8,ceil(h2k2128))
68 printf("unit cell Dimensions for peak 8 when 2*theta
      =\%.1 \, \text{f} is (%d) where \sin^2(\text{theta})/0.0308 is \%.2 \, \text{f} \setminus \text{n}
       ",theta29,hk19,ceil(h2k2129))
69
70 printf("The material corresonds to bcc structure\n")
71 //Consider peak no 8 where theta = 29.71
72 lamda=0.07107
                            //units in nm
73 d400 = lamda/(2*sin(theta9*(%pi/180)))
                                                            //units
        in nm
74 a=d400*sqrt(ceil(h2k2129))
                                               //units in nm
75 printf("Lattice parameter of the material a=%.4fnm",
       a)
```

Scilab code Exa 5.14.u1 To calculate the effective temprature of neutrons

```
1 //Example 5_14_u1
2 clc();
3 clear;
4 //To calculate the effective temprature of neutrons
           //units in nm
5 a=0.352
6 h=1
7 k=1
8 1=1
9 d=a/sqrt(h^2+k^2+1^2)
                                //units in nm
                       //units in degrees
10 theta=28.5
11 lamda=2*d*sin(theta*(\%pi/180))
                                           //units in nm
12 h=6.63*10^-34
                     //units in m<sup>2</sup> kg s<sup>-1</sup>
                      //units in Kgs
13 m=1.67*10^-27
```

Scilab code Exa 5.15.u1 To calculate the Braggs angle

```
1 //Example 5_15_u1
2 clc();
3 clear;
4 //To calculate the Braggs angle
5 h=6.63*10^{-34}
                       //units in m<sup>2</sup> kg s<sup>-1</sup>
                        //units in Kgs
6 m=9.1*10^-31
                          //units in coulombs
7 e=1.6*10^-19
8 v = 80
                            //units in volts
9 lamda=h/sqrt(2*m*e*v)
                                       //units in mts
10 lamda=lamda*10^9
                           //units in nm
11 a=0.35
                   //units in nm
12 h=1
13 k = 1
14 1=1
15 d111=a/sqrt(h^2+k^2+l^2)
                                      //units in nm
                  //units in nm
16 theta=asin(lamda/(2*d111))
                                               //units in
      radians
                                            //units in
17 theta=theta*180/%pi
      degrees
18 printf ("Braggs angle is theta=\%.2 fDegrees or 19
      Degrees 40 Minutes", theta)
```

Scilab code Exa 5.16.u1 To calculate the difference between the samples

```
1 / Example 5_16_u1
2 clc();
3 clear;
4 //To calculate the difference between the samples
                   //units in nm
5 d=0.2552
                      //units in nm
6 \quad a=d*sqrt(2)
7 lamda = 0.152
                      //units in nm
                      //units in degrees
8 \text{ theta}=21
9 //For sample A
10 d111=lamda/(2*sin(theta*%pi/180)) //units in nm
11 \quad h=1
12 k = 1
13 1=1
                                          //units in nm
14 a1=d111*sqrt(h^2+k^2+l^2)
15 printf("For sample A a=\%.4 f nm", a1)
16 //For sample B
17 theta=21.38
                         //units in degrees
                                       //units in nm
18 d111 = lamda/(2*sin(theta*%pi/180))
19 h = 1
20 k = 1
21 1=1
22 	 a2 = d111 * sqrt(h^2 + k^2 + l^2)
                                          //units in nm
23 change=((a1-a2)/a2)*100
24 printf("\nFor sample B a=\%.4 f nm", a2)
25 printf("\n Sample B is pure high purity copper as
      lattice parameter of A is %.2f percent greater
      than that of pure copper", change)
26 //Given in text book change in lattice parameter is
      1.75\% greater but it is 1.73\%
```

Scilab code Exa 5.17.u1 To find the type of crystal and lattice parameter and atomic diameter

```
1 //Example 5_17_u1
2 clc();
3 clear;
4 //To find the type of crystal and lattice parameter
      and atomic diameter
5 lamda=0.171
                      //units in nm
                        //units in degrees
6 \text{ theta}=30
7 //Assuming the metal is BCC
8 d110=lamda/(2*sin(theta*%pi/180)) //units in nm
9 h=1
10 k = 1
11 1=0
                                         //units in nm
12 a1=d110*sqrt(h^2+k^2+1^2)
13 \quad a2=0.148*sqrt(4)
14 printf ("The lattice parameter is a=\%.3 fnm but a=\%.3
      fnm if we consider it as bcc hence it is not bcc"
      ,a1,a2)
15 //Assuming the metal is FCC
                     //units in nm
16 \quad a1=0.171*sqrt(3)
                       //units in nm
17 a2=0.148*sqrt(4)
18 ad=a1/sqrt(2)
                          //units in nm
19 printf("\nIf we consider it as FCC a=\%.3 fnm hence it
       is FCC", a1)
20 printf("\n Atomic diameter is \%.4 \, \text{fnm}", ad)
```

Scilab code Exa 5.18.u1 To find out the planes which gives reflection

```
1 //Example 5_18_u1
2 clc();
3 clear;
4 //To find out the planes which gives reflection
5 \quad lamda=0.154
                  //units in nm
                          //units in degrees as sin(
6 \text{ theta=90}
      theta) is maximum at 90 degrees
7 d=lamda/(2*sin(theta*%pi/180))
                                          //units in nm
8 D = 0.228
                     //units in nm
9 hkl = (2*D)/(d*sqrt(3))
10 hkl2=hkl^2
11 printf("As h^2+k^2+l^2=\%.2 f \setminus n The highest possible
      values of (h, k, l) are (2, 2, 2) Hence (2, 2, 2)
      planes give reflection", hkl2)
12 //Given in text book h^2+k^2+l^2=13.98 but the
      answer is h^2+k^2+l^2=11.69
```

LASER

Scilab code Exa 6.1.u1 To calculate the Electric field of a laser beam

```
1 / Example 6_1_u1
2 clc();
3 clear;
4 //To calculate the Electric field of a laser beam
            //units in milli Watts
6 power=power*10^-3 //units in Watts
              //units in milli meter^2
8 area=area*10^-6 //units in meter^2
               // units in Watts/meter^2
9 i=power/area
10 c=3*10^8 //units in meter/sec
11 u=4*10^-7
                //units in SI
12 n=1
13 E0=sqrt((i*2*c*u)/n) //units in V/meters
14 printf("The electric field is E0=\%.2 f V/m", E0)
15 //In text book answer is given E0=501 V/m but the
     correct answer is E0=282.84~V/m
```

Scilab code Exa 6.2.u1 To calculate the Electric field of a bulb

```
1 / Example 6_2_u1
2 clc();
3 clear;
4 //To calculate the Electric field of a bulb
                  //units in Watts
5 power=10
                  //units in meters
6 r = 10
7 area=4*%pi*r^2
                     //units in meter^2
                              //Units in Watt/meter^2
8 i=(100*power)/area
9 c=3*10^8 //units in meter/sec
10 \quad u = 4 * 10^{-7}
              //units in SI
11 \quad n=1
12 E0=sqrt((i*2*c*u)/n) //units in Volt/meter
13 printf ("The electric field of the bulb is E0=\%.2 f
     Volt/meters", E0)
14 //In text book answer is given E0=2.4 V/m but the
     correct answer is E0=13.82 V/m
```

Scilab code Exa 6.3.u1 To calculate the electric field intensity a a point

```
//Example 6_3_u1
clc();
clear;
//To calculate the electric field intensity a a point
power=1 //units in milli Watts
power=power*10^-3 //units in Watts
r=6 //units in milli meters
r=6*10^-6 //units in meters
area=%pi*r^2 //units in meter^2
i=power/area //units in Watt/meter^2
c=3*10^8 //units in meter/sec
```

Scilab code Exa 6.4.u1 To calculate the ratio of populations of two energy levels

```
1 / Example 6_4_u1
2 clc();
3 clear;
4 //To calculate the ratio of populations of two
       energy levels
5 h=6.63*10^-34
                          //units in m<sup>2</sup> kg s<sup>-1</sup>
                           //units in meter/sec
6 c = 3 * 10^8
                                  //units in nm
7 \quad lamda = 694.3
8 \quad lamda=lamda*10^-9
                                  //units in meters
9 \text{ kb}=1.38*10^-23
                                       //\text{units} in m<sup>2</sup> kg s<sup>2</sup>-2
      K^-1
                                   //units in K
10 T = 300
11 n1_n2 = exp((h*c)/(lamda*kb*T))
12 printf("The ratio of Populations of two energy
       levels is N1/N2=")
13 disp(n1_n2);
```

Scilab code Exa 6.5.u1 To find the wavelength of the radiation emitted

```
1 / Example 6_5_u1
2 clc();
3 clear;
4 //To find the wavelength of the radiation emitted
5 h=6.63*10^{-34}
                         //units in m<sup>2</sup> kg s<sup>-1</sup>
6 c = 3 * 10^8
                         //units in meter/sec
                                      //units in m^2 kg s
7 \text{ kb}=1.38*10^-23
      ^{-2} K^{-1}
                                                  //units in
8 T = 300
      K
                                    //units in microns
9 lamda=(h*c)/(kb*T)
10 lamda=lamda*10^6
                                    //units in micro meters
11 printf ("The wavelength of the radiation emmitted is
      lamda=\%.2 f um", lamda)
```

Scilab code Exa 6.6.u1 To calculate the ratio of stimulated emission to Spontaneous emission

```
1 / Example 6_6_u1
2 clc();
3 clear;
4 //To calculate the ratio of stimulated emission to
      Spontaneous emission
5 h=6.63*10^-34
                                          //units in m<sup>2</sup> kg s
     ^{^{-}}-1
                                                     //units in
6 c = 3 * 10^8
       meter/sec
                                                         //units
 lamda=694.3
       in nm
 lamda=lamda*10^-9
                                                   //units in
     meters
9 \text{ kb=1.38*10^--23}
                                                             //
      units in m^2 \text{ kg s}^-2 \text{ K}^-1
```

Scilab code Exa 6.7.u1 To calculate the no of photons emitted by the ruby laser

```
1 / Example 6_7_u1
2 clc();
3 clear;
4 //To calculate the no of photons emitted by the ruby
       laser
              //units in Watts
                           //units in nm
6 lamda=694.3
7 \quad lamda=lamda*10^-9
                             //units in meters
8 h=6.63*10^-34
                               //units in m<sup>2</sup> kg s<sup>-1</sup>
                                       //units in meter/sec
9 c = 3 * 10^8
10 n=(p*lamda)/(h*c)
11 printf("The no of photons emitted by the ruby laser
      is n=")
12 disp(n)
```

FIBER OPTICS

Scilab code Exa 7.1.u1 To determine the no of modes propagating in the fiber

```
1 / Example 7_1_u1
2 clc();
3 clear;
4 //To determine the no of modes propagating in the
      fiber
5 n1=1.48
6 n2=1.41
7 NA = sqrt(n1^2-n2^2)
8 d=60 //units in micro mts
9 \quad lamda0=0.8
                     //units in micro mts
10 v = (\%pi*d*NA)/lamda0
11 n=v^2/2
12 printf("Number of modes n=\%.2f",n)
13 //In text book the answer given wrong as n=4.55*10^3
          the correct answer is n=5615.50
```

Scilab code Exa 7.2.u1 To find the fraction of initial intensity

```
1 // Example 7_2_u1
2 clc();
3 clear;
4 //To find the fraction of initial intensity
5 \text{ alpha} = -2.2
                         //units in db/Kilo meters
6 //When l=2 Kilo meters
           //units in Kilo meters
71=2
8 //Case (a) when L=2 Kilo meters
9 It_I0=10^(alpha*1/10)
10 printf ("The fraction of initial intensity left when
      L=2 \text{ It } / \text{I0} = \%.3 \text{ f } \text{ n", It_I0}
11 //Case (b) when L=6 Kilo meters
        //units in Kilo meters
12 1=6
13 It_IO=10^(alpha*1/10)
14 printf ("The fraction of initial intensity left when
      L=6 \text{ It } / \text{I0}=\%.3 \text{ f} \n\text{",It_I0}
```

Scilab code Exa 7.3.u1 To calculate the numerical apperture and angle of acceptance

Scilab code Exa 7.4.u1 To calculate the numerical apperture and angle of acceptance

```
1 //Example 7_4_u1
2 clc();
3 clear;
4 //To calculate the numerical apperture and angle of acceptance
5 n1=1.45
6 n2=1.40
7 NA=sqrt(n1^2-n2^2)
8 printf("Numerical apperture is NA=%.3f\n",NA)
9 ia=asin(NA)*180/%pi //units in degrees
10 printf("Angle of acceptance is ia=%.2f Degrees",ia)
```

Scilab code Exa 7.5.u1 To find the loss specification of a fiber

```
1 //Example 7_5_u1
2 clc();
3 clear;
4 //To find the loss specification of a fiber
5 l=0.5 // units in KM
6 it=7.5*10^-6 // units in micro mts
7 i0=8.6*10^-6 // units in micro mts
8 alpha=(10/1)*log10(it/i0) // units in db/Km
9 printf("The loss specification of the fiber is alpha =%.2 f db/km",alpha)
```

Scilab code Exa 7.6.u1 To calculate the numerical aperture acceptance angle critical angle velocity of the light in core and cladding

```
1 / Example 7_6_u1
2 clc();
3 clear;
4 //To calculate the numerical aperture, acceptance
      angle, critical angle, velocity of the light in
      core and cladding
5 n1=1.5
6 delta=1.8*10^-2
7 NA=n1*sqrt(2*delta)
8 printf ("Numerical apperture is NA=\%.3 \text{ f} \cdot \text{n}", NA)
9 ia=asin(NA)*180/%pi
                                     //units in degrees
10 printf("Angle of acceptance is ia=\%.2f Degrees\n",ia
      )
11 \quad n2 = 0.982 * n1
12 n2_n1=0.982
13 ic=asin(n2_n1)*180/\%pi
                                          //units in
      degrees
14 printf ("Critical angle is ic=\%.2 f Degrees\n",ic)
15 c = 3 * 10^8
16 \text{ vc=c/n1}
17 printf("Velocity of light in core is vc=")
18 disp(vc)
19 \text{ vcc=c/n2}
20 printf("Velocity of light in cladding is vcc=")
21 disp(vcc)
```

Scilab code Exa 7.7.u1 To calculate the fiber length

QUANTUM MECHANICS AND QUANTUM COMPUTING

Scilab code Exa 1.1.u2 To calculate energy momentum and the probability of of finding the particle

```
1 / Example 1_1_u2
2 clc();
3 clear;
4 //To calculate energy momentum and the probability
      of of finding the particle
5 n=3
6 h=6.63*10^{-34}
                             //units in m<sup>2</sup> kg s<sup>-1</sup>
                       //units in Kgs
7 m=1.67*10^-27
8 1=0.1
                 //units in nm
9 1=1*10^-9
                 //units in meters
10 e=(n^2*h^2)/(8*m*1^2)
                          //units in joules
11 printf("The energy of the particle is E=")
12 disp(e)
13 printf("Joules")
                 //units in meters
14 \ lamda = (2*1)/n
15 lamda=6.6*10^-11 //units in meters
```

Scilab code Exa 1.2.u2 To calculate the wavelength of the radiation emitted

```
1 / Example 1_2_u2
2 clc();
3 clear;
4 //To calculate the wavelength of the radiation
      emitted
5 h=6.63*10^{-34}
                             //units in m<sup>2</sup> kg s<sup>-1</sup>
                      //units in Kgs
6 m = 9.1 * 10^{-31}
                 // units in nm
7 1 = 1
8 1=1*10^-9
                 //units in meters
9 c = 3 * 10^8
                  //units in meters/sec
10 lamda=(8*m*c*l^2)/(27*h) //units in meters
11 lamda=lamda*10^9
                       //units in nm
12 printf ("The wavelength of the radiation is lamda=%.1
     fnm", lamda)
```

Scilab code Exa 1.3.u2 To calculate the uncertenity in momentum

```
1 / Example 1_3_u2
```

```
2 clc();
3 clear;
4 //To calculate the uncertenity in momentum
5 h=6.63e-34
                                //\text{units in m}^2 \text{ kg s}^-1
6 \text{ deltax=1}
                     //units in nm
7 deltax=deltax*10^-9
                                         //units in meters
                                      //units in Kg meter
8 deltap=h/(4*%pi*deltax)
       s^-1
9 printf("The uncertenity in momentum is delta p=")
10 disp(deltap)
11 printf("Kg ms^-1")
12 //In text book the answer is printed wrong as
      0.53*10^{-15} Kg ms<sup>-1</sup> the correct answer is
     D-26 Kg ms^-1
```

Scilab code Exa 1.4.u2 To find out the no of states that can accommodate

```
1 / Example 1_4_u2
2 clc();
3 clear;
4 //To find out the no of states that can accommodate
5 h=6.63*10^{-34}
                              //units in m^2 kg s^-1
6 m = 9.1 * 10^{-31}
                         //units in Kgs
                    //units in nm
71=0.5
8 1=1*10^-9
                        //units in meters
9 v = 15
        //units in eV
10 \quad v = v * 1.6 * 10^{-19}
                             //units in Volts
11 nmax = (4*1*sqrt(m*v))/h
12 printf ("The maximum quantum number possible is n=\%d"
      , nmax)
```

ELECTRON THEORY OF METALS

Scilab code Exa 2.1.u2 To calculate the density of electrons and mobility of electrons in silver

```
1 / Example 2_1_u2
2 clc();
3 clear;
4 //To calculate the density of electrons and mobility
        of electrons in silver
5 \text{ row} = 10.5 * 10^3
                             //units in Kg/m<sup>3</sup>
6 \text{ NA=} 6.023*10^23
                                  //Avagadro number
7 Z = 1
                                 //units in Kg
8 \text{ MA} = 107.9 * 10^{-3}
9 \quad n = (row * NA * Z) / MA
                                 //\text{units in m}^-3
10 printf("The number density of electrons is n=")
11 disp(n)
12 printf ("m^-3")
13 \text{ row} = 6.8 * 10^7
                               //units in ohm^-1 metre^-1
                              // units in m^-3
14 n=5.86*10<sup>28</sup>
                               //units in coulombs
15 \text{ e=1.6*10}^-19
16 \quad u = (row)/(n*e)
                                    // units in m<sup>2</sup> V<sup>-1</sup> sec<sup>-1</sup>
17 printf("\nThe conductivity is u=")
```

```
18 disp(u)
19 printf("m<sup>2</sup> V<sup>-1</sup> sec<sup>-1</sup>")
```

 ${\bf Scilab\ code\ Exa\ 2.2.u2}$ To corresponding mean free path and compare with experimental value

```
1 / \text{Example } 2 \_ 2 \_ u 2
2 clc();
3 clear;
4 //To corresponding mean free path and compare with
      experimental value
5 \text{ row} = 6.87 * 10^7
                                      //units in Kg/m<sup>3</sup>
6 m=9.11*10^-31
                                  //units in Kgs
7 n=5.86*10^28
                                            //units in m^-3
8 e=1.6*10^-19
                                        //units in
      coulombs
9 t = (row*m)/(n*e^2)
                                //units in s
10 printf("The mean free path is t=")
11 disp(t)
12 printf("sec")
                                //units in m^2 kg s^-2 K
13 \text{ kb=1.381*10}^-23
      ^{-1}
14 T=300
                              //units in K
15 m=9.11*10^{-31}
                                               //units in
      Kgs
16 v=(sqrt(3*kb*T))/sqrt(m)
                                        //units in m/s
17 printf("\n Velocity v=\%.2 f m/s n",v)
18 lamda=t*v //units in meters
19 printf("Wavelength is lamda=")
20 disp(lamda)
21 printf("meters")
22 printf("\nThe experimental value is ten times higher
       than predicted value")
```

```
23 //In textbook the answer is printed wrong as t = 2.84*10^--14 s and lamda=3.28*10^--9 meters but correct answer is t=4.172D-14sec and lamda=4.873D-9 meters
```

Scilab code Exa 2.3.u2 To calculate the drift velocity and their mobility

```
1 / Example 2_3_u2
2 clc();
3 clear;
4 //To calculate the drift velocity and their mobility
5 \text{ rowm} = 2700
                //units in kg/m<sup>3</sup>
                                      //Avagadro number
6 \text{ NA} = 6.023 * 10^2 3
7 MA = 26.98 * 10^{-3}
                         //units in Kg
                              //units in m^-3
8 n = (rowm * NA)/MA
                           //units in ohm metre
9 \text{ row} = 2.52 * 10^-6
                                     //units in coulombs
10 e = 1.6 * 10^{-19}
11 u=(row/(n*e))*10^13
                                //units in meter^2 V^-1 s
      ^{-1}
               //units in Volt/meter
12 E=50
                        //units in meter/sec
13 \text{ vd=u*E}
14 printf("The drift velocity of conduction electrons
      is vd=\%.4f meter/sec", vd)
15 printf("\nMobility of conduction electrons is n=")
16 disp(n)
17 printf ("meter-3")
18 //Given in text book mobility is n=18.07*10^28 meter
      ^{-3} but the correct answer is n=6.027D+28 meter
19 //Given in text book vd=0.066 meter/sec which is
      wrong and the correct one is vd=0.1307 meter/sec
```

Scilab code Exa 2.4.u2 To calculate the current density in each wire and drift speed of electrons

```
1 / Example 2_4_u2
2 clc();
3 clear;
4 //To calculate the current density in each wire and
      drift speed of electrons
5 \text{ dcu}=1.8*10^-3
                      //units in meters
                      //units in meters
6 \quad dAl = 2.5*10^{-3}
                          //units in meter^2
7 Acu=(\%pi*dcu^2)/4
8 \text{ AAl} = (\%pi*dAl^2)/4
                            //units in meter^2
9 ia=1.3
           //units in amperes
                          //units in A/meter^2
10 jcu=ia/Acu
                          //units in A/meter^2
11 jAl=ia/AAl
12 printf ("Current density in Copper is jcu=%.2f A/
      meter^2\n", jcu)
13 printf ("Current density in Aluminium is jal=%.2 f A/
      meter^2\n", jAl)
14 d1=8.49*10^28
                      // units in meter -3
15 d2 = 18 * 10^2 8
                    //units in meter^-3
16 \text{ e=} 1.6 * 10^{-19}
                                    //units in
                                                 coulombs
                         //units in meter/sec
17 vdcu=jcu/(d1*e)
                        //units in meter/sec
18 vdal=jAl/(d2*e)
19 printf ("Drift speed of electrons in copper vdcu=%.6f
       meter/sec \ n", vdcu)
20 printf ("Drift speed of electrons in Aluminium vdal=%
      .6 f meter/sec n, vdal)
```

Scilab code Exa 2.5.u2 To calculate the no of states for conduction electrons and the average energy interval

```
1 / Example 2_5_u2
2 clc();
3 clear:
4 //To calculate the no of states for conduction
      electrons and the average energy interval
5 n=9.11*10^-31
                              //units in Kg
6 \quad E=5*1.6*10^-19
                           //units in J
                  //units in meter 3
7 v = 10^{-6}
8 h=6.67*10^{-34}
                                //\text{units in m}^2 \text{ kg s}^-1
9 NE=(8*sqrt(2)*%pi*n^1.5*E^0.5*v)/h^3
                                                   //units
      in J^{-1}
10 no=NE*0.01*1.6*10^-19
                                     //units in J
11 printf ("Available number of energy states is ")
12 disp(no)
                            //units in eV
13 \text{ interval} = 0.01/\text{no}
14 printf("Average energy interval is")
15 disp(interval)
16 printf("eV")
17 // Given in text book available no of energy states
      is 1.52*10^20 but correct answer is 1.490D+20
      and for average energy interval is 7*10^-23 eV
      but correct answer is 6.709D-23 eV
```

Scilab code Exa 2.6.u2 To calculate the fermi energy level

```
1 //Example 2_6_u2
2 clc();
3 clear;
4 //To calculate the fermi energy level
5 h=4.14*10^-15 //units in m^2 kg s^-1
6 n=8.49*10^28 //units in m^-3
7 m=9.1*10^-31 //units in Kgs
8 Ef=(h^2*(3*n)^0.666)/(8*m*(%pi)^0.666) //units in J
9 Ef=Ef*1.67*10^-19 //units in eV
10 printf("Fermi energy for copper is Ef=%.2 f eV",Ef)
```

Scilab code Exa 2.7.u2 To calculate the probability for a state

```
1 / \text{Example } 2 - 7 - \text{u} 2
2 clc();
3 clear;
4 //To calculate the probability for a state
5 //When 0.1 eV above the fermi energy
                  //units in eV
6 \text{ e_ef} = 0.1
7 \text{ kb} = 8.62 * 10^{-5}
                              //units in eV/K
8 t = 800
                 //units in kelvin
9 fE=1/(1+exp((e_ef)/(kb*t)))
10 printf ("The probability of occupancy for a state
      whose energy is 0.1 eV above the fermi energy is
      f(E) = \%.3 f", fE)
11 //0.1 eV below the fermi energy level
                   //units in eV
12 e_ef = -0.1
13 fE=1/(1+exp((e_ef)/(kb*t)))
14 printf("\nThe probability of occupancy for a state
      whose energy is 0.1 eV below the fermi energy is
      f(E) = \%.3 f", fE)
15 //Equal to the fermi energy level
```

Scilab code Exa 2.8.u2 TO Find the energy at which probability of occupancy is point9 and density of states and the population density

```
1 / Example 2_8_u2
2 clc();
3 clear;
4 //TO Find the energy at which probability of
      occupancy is 0.9 and density of states and the
      population density
5 \text{ fe=0.9}
6 k = (1/fe) - 1
7 \log k = \log(k)
                                      //units in eV/K
8 \text{ kb} = 8.62 \times 10^{-5}
                //units in K
9 t = 1000
10 E = logk*kb*t
                         //units in eV
11 \text{ ef} = 7.06
                  //units in eV
                     //units in eV
12 energy=E+ef
13 printf ("The energy of this state is E=\%.2 \,\mathrm{f} eV",
      energy)
14 n=9.1*10^-31
                                            //units in Kgs
15 EE=energy
                          //units in eV
16 h=4.14*10^-15
                          //units in eV sec
17 ZE = (8*sqrt(2)*%pi*n^1.5*sqrt(EE))/h^3
                                                      //units
       in meter-3 (eV)-1
18 ZE=ZE*1.56*10^28
                                                    //units
      meter^-3 (eV)^-1
19 printf("\nThe density of the states for this energy
```

```
is Z(E)=")
20 disp(ZE)
21 printf("meter^-3 (eV)^-1")
22 ne=ZE*fe //units in meter^-3 (eV)^-1
23 printf("\nThe population density for this energy is N(E)=")
24 disp(ne)
25 printf("meter^-3 (eV)^-1")
```

Scilab code Exa 2.9.u2 To calculate the fermi energy and fermi factor

```
1 / \text{Example } 2_9 \text{-u} 2
2 clc();
3 clear;
4 //To calculate the fermi energy and fermi factor
5 \text{ ve} = 4 * 3
                  //No of Valence electrons
6 v = 4.05 * 10^{-10}
                                //units in meter 3
7 n=ve/v^3 //units in meter -3
8 h=4.14*10^-15
                              //units in eV sec
9 m=9.1*10^-31
                                      //units in Kgs
10 Ef=(h^2*(3*n)^0.666)/(8*m*(%pi)^0.666)
      units in J
11 Ef=Ef*1.67*10^-19
                             //units in eV
12 printf ("Fermi energy is Ef=\%.2 f eV", Ef)
13 \text{ e_ef} = 0.1
              //units in eV
14 \text{ kb=8.62*10^--5}
                               //units in eV/K
                 //units in kelvin
15 t = 300
16 fE=1/(1+exp((e_ef)/(kb*t)))
17 printf("\nFermi factor f(E) is \%.4f", fE)
```

SUPERCONDUCTIVITY

Scilab code Exa 5.1.u2 To find the temprature where would be the critical field

```
1 / \text{Example } 5 \text{-} 1 \text{-} \text{u} 2
2 clc();
3 clear;
4 //To find the temprature where would be the critical
        field
5 hc=0.070
6 ho=0.0803
7 tc=7.22
5 \text{ hc} = 0.070
                     //units in K
                       //units in K
7 \text{ tc} = 7.22
                        //units in K
                                //units in K
8 T=tc*sqrt(1-(hc/ho))
9 printf("Temprature T=\%.2 f K",T)
10 //Given in textbook T=2.94K But the correct answer
      is T=2.59K
```

Scilab code Exa 5.2.u2 To calculate the maximum current density

Scilab code Exa 5.3.u2 To calculate the transition temprature and critical field

```
1 / Example 5_3_u2
2 clc();
3 clear;
4 //To calculate the transition temprature and
      critical field
5 hc1=1.4*10<sup>5</sup>
                       //units in amp/meter
6 \text{ hc2=4.2*10^5}
                       //units in amp/meter
7 t1=14
                 //units in K
8 t2=13
                  //units in K
9 tc=sqrt((hc1*t2^2-hc2*t1^2)/(hc1-hc2))
                                                  //units
10 printf ("Transition temprature is Tc=\%.2 f K", tc)
11 hc1_ho=1-(t1/tc)^2
12 ho=hc1/hc1_ho
                        //units in amp/meter
13 printf("\nCritical field Ho=\%.1f amp/meter",ho)
```

Scilab code Exa 5.4.u2 To calculate its critical temprature

DIELECTRIC PROPERTIES

Scilab code Exa 6.1.u2 To calculate the dielectric constant

```
1 //Example 6_1_u2
2 clc();
3 clear;
4 //To calculate the di-electric constant
5 eo=8.85*10^-12 //units in F/meter
6 alphae=36*10^-40 //units in meter^3
7 n=5*10^28 //units in meter^-3
8 er=((30*eo)+(2*n*alphae))/((30*eo)-(n*alphae))
9 printf("The di-electric constant is er=%.2f",er)
```

Scilab code Exa 6.2.u2 To calculate the atomic polarizability

```
1 //Example 6_2_u2
2 clc();
3 clear;
4 //To calculate the atomic polarizability
5 eo=8.85*10^-12 //units in F/meter
```

SEMICONDUCTORS

Scilab code Exa 7.1.u2 To calculate the mean free path and mean free time

Scilab code Exa 7.2.u2 To calculate the diffusion current density

```
//Example 7_2_u2
clc();
clear;
//To calculate the diffusion current density
Dn=22.5 // units in cm^2/sec
e=1.6*10^-19 // units in coulombs
dn=(1*10^18)-(7*10^17)
dx=0.1 // units in cm
Jndiff=e*Dn*(dn/dx) // units in A/cm^2
printf("The diffusion current density is Jn, diff=%.1 f A/cm^2", Jndiff)
```

Scilab code Exa 7.3.u2 To find the drift velocity and diffusivity

```
1 / Example 7_3_u2
2 clc();
3 clear;
4 //To find the drift velocity and diffusivity
                               //units in cm/sec
5 \text{ vp}=1/(100*10^-6)
                              //units in Volt cm^-1
6 \text{ eapp}=50
7 up=vp/eapp
                     // units in cm^-2 V^-1 s^-1
                        //units in eV
8 k=0.0259
                          //units in cm^2 s^-1
9 dp=(k*up)
10 printf("The drift velocity is Vp=%d cm/sec\n", vp)
11 printf("The diffusivity of minority carriers is Dp=%
      .2 f cm^2/sec, dp)
```

Scilab code Exa 7.4.u2 To find the charge in the minority carrier concentration

```
1 // Example 7_4_u2
2 clc();
3 clear;
4 //To find the charge in the minority carrier
      concentration
5 \text{ ni} = 9.65 * 10^9
                       //units in cm^-3
6 nno=10^14
                  // units in cm^-3
7 // Before illumination
8 pno=ni^2/nno
                      //\text{units in cm}^-3
9 // After illumination
10 \text{ tp=2}
                  //units in us
11 tp=tp*10^-6
                     //units in sec
12 gl = (10^13/10^-6)
                               //units in No of electron
      hole pair for cm^-3
13 pn=pno+(tp*gl)
                     // units in cm^-3
14 printf ("Change in the minority carrier concentration
       is Pn=")
15 disp(pn)
16 printf ("cm^-3")
```

Scilab code Exa 7.5.u2 To find the hall voltage

```
1 / \text{Example } 7_5 \text{-u} 2
2 clc();
3 clear;
4 //To find the hall voltage
5 e=1.6*10^-19
                       //units in coulombs
                       //units in no of atoms for cm^-3
6 n = 10^16
7 Rh = -1/(e*n)
                             //units in cm<sup>3</sup>/C
                      //units in milli amperes
8 i = 1
9 i = i * 10^{-3}
                           //units in amperes
10 Bz = 10^{-4}
                     //units in wb/cm<sup>2</sup>
11 \ a=2.5*10^{-3}
                        //units in cm<sup>2</sup>
```