Diseño de reactores ideales

Gustavo Plaza Roma y Jesús Casado Gonzalez

19 de enero de 2017

1. Introducción

Esta aplicación se ha desarrollado usando Python 3, la interfaz gráfica se ha creado con el programa $Qt\ Designer$ y se ha transformado a Python para que sea compatible con la librería $PySide\ 1.2.4.$

Para el correcto funcionamiento de la aplicación es necesario tener los siguientes módulos instalados:

- Pyqtgraph para poder visualizar gráficas dentro de la aplicación Qt.
- Matplotlib para poder visualizar y exportar los resultado de los cálculos.
- Scipy permite realizar las distintas operaciones matemáticas.
- Numpy proporciona las clases necesarias para operar con vectores.

2. Reactor discontinuo

Son aquellos que trabajan por cargas, es decir se introduce una alimentación, y se espera un tiempo dado, que viene determinado

por la cinética de la reacción, tras el cual se saca el producto.

2.1. Reactor discontinuo isotermo

La ecuación que proporciona el tiempo de reacción en este modo de operación es:

$$t = C_{A0} \int_{X_{A0}}^{X_A} \frac{dX_A}{(-r_a)}$$

Donde $(-r_a)$ se puede calcular como:

$$(-r_a) = K \cdot C_{A0}^n (1 - X_A)^n; \qquad K = K_0 \exp\left(\frac{-E_a}{RT}\right)$$

Según el orden de reacción el tiempo se podrá calcular como:

- Orden 0: $t = \frac{C_{A0}}{K}(X_A X_{A0})$
- Orden 1: $t = \frac{1}{K} \ln \left(\frac{1 X_{A0}}{1 X_A} \right)$
- Orden 2: $t = \frac{1}{KC_{A0}} \left(\frac{X_A}{1 X_A} \right)$

2.2. Reactor discontinuo adiabático

La ecuación que proporciona el tiempo de reacción en este modo de operación es:

2.2.1. Balance de materia

$$t = C_{A0} \int_{X_{A0}}^{X_A} \frac{dX_A}{(-r_a)}$$

Donde $(-r_a)$ se puede calcular como:

$$(-r_a) = K \cdot C_{A0}^n (1 - X_A)^n; \qquad K = K_0 \exp\left(\frac{-E_a}{RT}\right)$$

2.2.2. Balance de energía

$$T = T_0 + \frac{(-\Delta H_R)C_{A0}}{\rho C_p}(X_A - X_{A0})$$

2.3. Reactor discontinuo no discontinuo y no adiabático

La ecuación que proporciona el tiempo de reacción en este modo de operación es:

2.3.1. Balance de materia

$$\frac{dt}{dX_A} = \frac{C_{A0}}{K_0 \exp\left(\frac{-E}{RT}\right) C_{A0}^n (1 - X_A)^n}$$

2.3.2. Balance de energía

$$\frac{dT}{dX_A} = \frac{(-\Delta H_R)C_{A0}}{\rho C_p} + \frac{C_{A0}US(T_c - T)}{V\rho C_p K_0 \exp\left(\frac{-E_a}{RT}\right)C_{A0}^n (1 - X_A)^n}$$

3. Condiciones óptimas

3.1. Conversión óptima

$$X_{A_{opt}} = 1 - \frac{C_R a}{(\Delta w) C_{A0} V K}$$

3.2. Tiempo óptimo de reacción

$$t_{opt} = \frac{1}{K} \ln \left(\frac{(\Delta w) C_{A0} V K}{C_R a} \right)$$

4. Reactor continuo

4.1. Cálculo del volumen

4.1.1. Balance de materia

$$V = \frac{X_{AF}v_0C_{A0}}{(-r_a)_f}$$

Donde $(-r_a)_f$ se calcula como:

$$(-r_a)_f = K_f C_{A0}^n (1 - X_{Af})^n; \qquad K_f = K_0 \exp\left(\frac{-E_a}{RT_f}\right)^n$$

4.2. Cálculo de la conversión

4.2.1. Balance de materia

• Orden 0:
$$X_{Af} = \frac{VK_f}{v_0 C_{A0}}$$

• Orden 1:
$$X_{Af} = \frac{VK_f}{v_0 + K_f V}$$

• Orden 2: $X_{Af} = \frac{\left(\frac{v_0}{VK_fC_{A0}} + 2\right) \pm \sqrt{\left(\frac{v_0}{VK_fC_{A0}} + 2\right)^2 - 4}}{2}$