MATH3404 Week 10

Simon Thomas

September 30, 2025

Slides at https://simonnthomasmaths.github.io/teaching/

Optimal control general recipe

- Find $f_0(\mathbf{x}, u)$ using $J = \int_{t_0}^{t_1} f_0(\mathbf{x}, u) dt$.
- Find ψ_i using $\dot{\psi}_i = -\frac{\partial H}{\partial x_i}$.
- Maximise H as a function of u to find u^* .
- Find trajectory x(t) associated to u^* .
- Determine path from x^0 to x^1 using these trajectories.

Time-optimal control of linear systems

Consider a system with two variables $x_1(t)$, $x_2(t)$ and a single control variable u(t) restricted to $|u| \le 1$. The system is governed by

$$\dot{\mathbf{x}} = A\mathbf{x} + u\mathbf{I},$$

where

$$I = \begin{pmatrix} I \\ m \end{pmatrix}$$
.

We want to find the optimal control $u^*(t)$ for which

$$J = \int_{t_0}^{t_1} 1 dt = t_1 - t_0$$

is minimised.

Time-optimal control of linear systems

Optimal control is of the form

$$u^* = \operatorname{sgn}(I\psi_1 + m\psi_2).$$

• Provided det $A \neq 0$, the trajectories for u^* will have isolated singularities (solutions constant for all t) when

$$A\mathbf{x} + u^*\mathbf{I} = 0.$$

- If the eigenvalues of A are real, then u^* switches at most once between -1 and 1.
- The trajectories associated with u^* are given by

$$\mathbf{x}(t) = \alpha \mathbf{v}_1 e^{\lambda_1 t} + \beta \mathbf{v}_2 e^{\lambda_2 t} + \mathbf{x}_s,$$

where x_s is the isolated singularity for u^* , λ_i are the eigenvalues of A, and v_i are the eigenvectors.

