		Data:	
Imię i nazwisko: Wydział: Kierunek: Semestr:			
Numer ćwiczenia	Temat ćwiczenia		
	Karta pomiarowa		
Wzór roboczy:			
			5.11.1.71
Wyniki pomiarów,			Dokładności przyrządów,
wartości tablicowe:			dokładności odczytu
			wartości z tablic:
Obliczona wartość wyznacze	onej wielkości fizycznej:		Podpis prowadzącego:

Mechanika

3.5.4. [4] 000 /04.4	
M.1. [1] 209/214	Wyznaczanie gęstości ciał stałych za pomocą piknometru
M.2. [-] 209/214	Wyznaczanie gęstości ciał stałych
M.3. [2a] 209/214	Wyznaczanie przyspieszenia ziemskiego za pomocą różnicowego wahadła
	matematycznego
M.4. [2b] 209	Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
M.5. [2c] 209/214	Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła matematycznego i
	wahadła rewersyjnego
M.6. [3] 209/214	Wyznaczanie przyspieszenia ziemskiego za pomocą spadkownicy Attwooda
M.7. $[4]$ 209/214	Wyznaczanie momentu bezwładności wahadła Maxwella
M.8. [5a] 209/214	Badanie ruchu obrotowego bryły sztywnej i wyznaczanie momentu bezwładności
	przyrządu (wahadło Oberbecka)
M.9. [5b] 214	Wyznaczanie momentu siły tarcia za pomocą wahadła Oberbecka
M.10.[6] 209/214	Wyznaczanie momentów bezwładności bryły za pomocą wahadła torsyjnego
M.11.[7] 209/214	Giroskop
M.12.[8] 209/214	Badanie tarcia tocznego i momentu bezwładności kuli za pomocą wahadła
	nachylnego
M.13.[-] 209/214	Badanie prawa Hooke'a
M.14.[9] 209	Wyznaczanie modułu Younga za pomocą strzałki ugięcia
M.15.[10] 214	Wyznaczanie modułu Younga
M.16.[15] 209/214	Wyznaczanie współczynnika lepkości cieczy metodą Stokesa
M.17.[16] 209/214	Wyznaczanie współczynnika lepkości cieczy za pomocą wiskozymetru Höpplera
M.18. [-] 209	Wyznaczanie współczynnika tłumienia ośrodka lepkiego
M.19.[-] 209	Wyznaczanie wartości krytycznej liczby Reynoldsa
M.20a[-] 214	Kalibracja piknometru gazowego i wyznaczanie gęstości materiałów
M.20b[-] 214	Wyznaczanie gęstości materiałów piknometrem gazowym

Akustyka

A.1. [12a] 214	Wyznaczanie prędkości fali dźwiękowej w powietrzu za pomocą interferometru
	Quincke'go
A.2. $[12b]209$	Wyznaczanie prędkości fali dźwiękowej w powietrzu metodą rezonansu (rura
	Quincke'go)
A.3. [-] 209	Wyznaczanie prędkości fali dźwiękowej w powietrzu metodą rezonansu
	(zmodyfikowana rura Kundta)

Ciepło i fizyka molekularna

C.1. [13] 209	Wyznaczanie napięcia powierzchniowego cieczy metodą naczyń włoskowatych
C.2. $[14]$ 214	Wyznaczanie napięcia powierzchniowego cieczy za pomocą wagi torsyjnej
C.3. $[17] 209/214$	Wyznaczanie ciepła topnienia lodu
C.4. [18] 209/214	Pomiar ciepła właściwego cieczy przy stałym ciśnieniu metodą elektryczną
C.5. $[19] 209/214$	Wyznaczanie molowego ciepła rozpuszczania soli w wodzie
C.6. [20] 214	Wyznaczanie stosunku C_p/C_v dla powietrza metodą Clementa-Desormesa
C.7. [42] 209/214	Wyznaczanie wilgotności względnej powietrza za pomocą psychrometru Augusta

Elektryczność i magnetyzm

E.1. [21] 209/214	Pomiar oporów elektrycznych metodą mostka Wheatstone'a
E.2. [22] 209/214	Pomiar oporności właściwej przewodu oporowego metodą techniczną
E.3a. [23a] 214	Wyznaczanie pojemności kondensatora metodą pomiaru czasu rozładowania
E.3b. [23b] 214	Wyznaczanie ładunku kondensatora metodą graficznego całkowania
E.4. [24] 209/214	Badanie obwodu RLC
E.5. [44] 214	Badanie prawa Ohma dla obwodu całkowitego
E.6. [25] 209/214	Wyznaczanie równoważnika elektrochemicznego miedzi i stałej Faradaya
E.7. [26] 214	Wyznaczanie składowej poziomej natężenia ziemskiego pola magnetycznego
E.8. [43] 214	Wyznaczanie współczynników temperaturowych rozszerzalności liniowej i rezystancji
	elektrycznej dla metali i stopów

Optyka i elementy fizyki współczesnej

O.1. [28] 209/214	Pomiar ogniskowej soczewki za podstawie odległości obrazu i przedmiotu od soczewki
O.2. [29] 209/214	Wyznaczanie powiększenia mikroskopu i pomiar małych odległości
O.3. $[30]$ $209/214$	Wyznaczanie współczynnika załamania za pomocą mikroskopu
O.4. [31] 209/214	Wyznaczanie stężenia roztworów gliceryny za pomocą refraktometru Abbego
O.5. [32] 214	Wyznaczanie stałej siatki dyfrakcyjnej za pomocą światła laserowego
O.6. [33] 209	Wyznaczanie stałej siatki dyfrakcyjnej za pomocą spektrometru
O.7. [-] 209	Badanie głębi ostrości układu optycznego
O.8. [35] 214	Wyznaczanie współczynnika załamania światła dla powietrza za pomocą
	interferometru
O.9. [36] 214	Wyznaczanie azymutów ćwierćfalówki za pomocą liniowo spolaryzowanej wiązki
	światła
O.10.[37] 209/214	Pomiar stężenia cukru za pomocą polarymetru
O.11. [38a] 214	Badanie widm emisyjnych za pomocą spektrometru
O.12.[38b]209	Badanie widm emisyjnych za pomocą spektroskopu
O.13. [27] 214	Wyznaczanie maksymalnych prędkości wyjściowych elektronów emitowanych przez
	termokatodę
O.14. [41] 214	Wyznaczanie stałej Halla
O.14a[-] 209	Wyznaczanie stałej Halla
O.14b[-] 209	Wyznaczanie stałej Halla
O.15. [-] 209/214	Pomiar małych odległości za pomocą mikroskopu

A.1. Wyznaczanie prędkości fali dźwiękowej w powietrzu za pomocą interferometru Quincke'go

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie długości generowanych fal dźwiękowych oraz prędkości rozchodzenia się dźwięku w powietrzu.

Instrukcja wykonania ćwiczenia:

- 1. Włączyć przyrząd do sieci.
- 2. Generator ustawić na częstotliwość f=2,50 kHz.
- 3. Woltomierz lampowy ustawić na zakres 20 mV.
- 4. Przesuwając ramię od jednego ze skrajnych położeń w kierunku drugiego zanotować kolejne położenia maksimów s_1 i s_2 . Pomiary wykonać 10 razy.
- 5. Wyznaczyć długość fali λ oraz prędkość rozchodzenia się fali w powietrzu v ze wzorów roboczych.
- 6. Pomiary powtórzyć dla częstotliwości 2,75 kHz i 3,00 kHz (uwaga! należy uważać, aby nie przekroczyć zakresu pomiarowego woltomierza lampowego).

Wzory robocze:

$$\lambda = 2|s_2 - s_1|, v = 2f|s_2 - s_1|.$$

- 1. Szacowanie niepewności pomiarowych wielkości prostych i złożonych (długość fali oraz prędkość rozchodzenia się dźwięku dla każdej częstotliwości).
- 2. Porównanie otrzymanych wartości prędkości dźwięku w powietrzu z wartością tablicową (sprawdzoną dla temperatury, w której wykonywany był pomiar).

A.2. Wyznaczanie prędkości fali dźwiękowej w powietrzu metodą rezonansu (rura Quincke'go)

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie prędkości fali dźwiękowej w powietrzu metodą rezonansu. Do tego celu użyta zostanie rura rezonansowa Quincke'go.

Instrukcja wykonania ćwiczenia:

- 1. Uderzyć młoteczkiem widełki stroikowe i opuszczając zbiornik z wodą określić na jakiej wysokości powierzchni wody h_1 nastąpi wzmocnienie dźwięku.
- 2. Opuszczając dalej zbiornik wyznaczyć analogiczną wysokość h_2 odpowiadającą następnemu wzmocnieniu dźwięku.
- 3. Powtórzyć pomiary 10 razy.
- 4. Obliczyć prędkość propagacji dźwięku w powietrzu V ze wzoru roboczego.

Wzór roboczy:

$$V = 2f\left(h_2 - h_1\right),\,$$

gdzie:

f - częstotliwość drgań widełek stroikowych f=435 Hz (Δf =1 Hz).

- 1. Szacowanie niepewności wielkości prostych i złożonej.
- 2. Porównanie otrzymanej wartości prędkości rozchodzenia się dźwięku w powietrzu z wartością tablicową (sprawdzoną dla temperatury, w której wykonywany był pomiar).

C.1. Wyznaczanie napięcia powierzchniowego cieczy metodą naczyń włoskowatych

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie współczynnika napięcia powierzchniowego wody destylowanej metodą naczyń włoskowatych, a następnie wyznaczenie promieni rurek kapilarnych.

Instrukcja wykonania ćwiczenia:

- 1. Ustawić podstawę katetometru w położeniu poziomym. Wycelować lunetkę na szerszą rurkę z umieszczoną w środku kapilarą wzorcową. Obracać pokrętłem lunetki, aż do uzyskania ostrego obrazu naczynia. Zmieniając poziome położenie lunetki doprowadzić do pokrycia się obrazu powierzchni cieczy (w szerszej rurce) ze skrzyżowaniem rys w polu widzenia lunetki. Zanotować położenie h_0 lunetki katetometru. Pomiar powtórzyć dziesięciokrotnie.
- 2. Wycelować lunetkę na cieńszą rurkę (wzorcowa kapilara) i powtórzyć czynności opisane w punkcie 1. Odczytać położenie h lunetki.
- 3. Wyznaczyć wartość współczynnika napięcia powierzchniowego σ ze wzoru roboczego.
- 4. Zmierzyć i zanotować wysokości poziomów cieczy h_k (k=1,2,3,4) w kolejnych pięciu rurkach włoskowatych. Pomiar dla każdej rurki powtórzyć dziesięciokrotnie.
- 5. Po przekształceniu wzoru roboczego wyznaczyć kolejne promienie r_k (k=1,2,3,4) otworów rurek włosowatych (we wzorze zamiast h wstawiamy h_k).

Wzór roboczy:

$$\sigma = \frac{1}{2} \left(h - h_0 \right) rg\rho,$$

gdzie:

r - promień rurki kapilarnej (promień wzorcowej kapilary $r{=}0{,}50~\mathrm{mm}),$

g - przyspieszenie ziemskie (9,81 m/s²),

 ρ - gęstość wody w temperaturze laboratorium.

- 1. Szacowanie niepewności wielkości prostych i złożonych (dla współczynnika napięcia powierzchniowego oraz promieni rurek kapilarnych).
- 2. Porównanie otrzymanej wartości współczynnika napięcia powierzchniowego wody destylowanej z wartością tablicową (sprawdzoną dla temperatury, w której wykonywany był pomiar).

C.2. Wyznaczanie napięcia powierzchniowego za pomocą wagi torsyjnej

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie współczynnika napięcia powierzchniowego toluenu za pomocą wagi torsyjnej.

Ogólny schemat budowy wagi torsyjnej:

- 1. Poziomica
- 2. Śruby nastawcze
- 3. Wyłącznik unieruchamiający dźwignię (A-blokada (aretaż) wagi, B-odblokowanie wagi)
- 4. Wskazówka ruchoma podziałki pomocniczej
- 5. Czerwona kreska podziałki pomocniczej wskaźnik równowagi
- 6. Wskazówka podziałki głównej
- 7. Ruchoma skala podziałki głównej
- 8. Pokrętło służące do obracania bębna z podziałką główną
- 9. Pokrętło służące do naprowadzania wskazówki głównej na wskaźnik równowagi
- 10. Ramka metalowa
- 11. Naczynko pomiarowe z badana cieczą

Przygotowanie wagi do pomiaru:

- 1. Zapoznać się ze schematem budowy wagi.
- 2. Na poziomicy oczkowej sprawdzić czy waga jest wypoziomowana, jeśli nie zablokować wagę za pomocą wyłącznika (3) tak aby czerwony znaczek znalazł się w pozycji A i wypoziomować wagę za pomocą śrub nastawczych (2).
- 3. Wyłącznik (3) ustawić w takiej pozycji aby czerwony znaczek znalazł się w pozycji pomiędzy A i B
- 4. Wyzerować wagę w tym celu ustawić zero wskazówki podziałki głównej za pomocą pokrętła (8) na czerwonej kresce podziałki pomocniczej (5), za pomocą pokrętła (9) naprowadzić wskazówkę podziałki głównej na zero skali .
- 5. Wyłącznikiem (3) odblokować wagę tak aby czerwony znaczek znalazł się w pozycji B.
- 6. Otworzyć drzwiczki wagi i sprawdzić czy ruchomy stolik, na którym umieszcza się naczynie, znajduje się w takim położeniu aby puste naczynie wsunęło się swobodnie pod ramkę, jeśli nie, za pomocą poziomego zielonego pokrętła u dołu wagi obniżyć stolik.
- 7. Wlać do naczynia badaną ciecz w takiej ilości, aby jej poziom był niższy o około 3 mm od brzegów naczynia. Sprawdzić czy brzegi naczynia są suche, jeśli nie odczekać do odparowania cieczy. Ustawić naczynie dokładnie pod ruchomą ramką, nie dotykając ramki.
- 8. Zamknąć drzwiczki.

Przebieg pomiaru:

- 9. Wyłącznikiem (3) zaaretować wagę (czerwony znaczek w pozycji A) ruchoma ramka powinna zanurzyć się w badanej cieczy. Uwaga jeśli ramka nie zanurza się w badanej cieczy należy za pomocą poziomego zielonego pokrętła u dołu wagi podnieść stolik, aż do gwałtownego zanurzenia się ramki w cieczy.
- 10. Odblokować wagę ustawiając pokrętło w pozycji B.
- 11. Obracać bardzo powoli pokrętło równoważenia (8) w górę, w chwili gdy, dolna część ramki będzie znajdować się na powierzchni cieczy zaobserwować efekt napięcia powierzchniowego a po gwałtownym jej oderwaniu od powierzchni cieczy odczytać wskazanie wagi m.
- 12. Powtórzyć pomiary 10-krotnie (punkty 9-11).
- 13. Po zakończeniu pomiarów ciecz przelać do butelki, zaaretować wagę (czerwony znaczek w pozycji A).
- 14. Wyznaczyć wartość napięcia powierzchniowego toluenu σ ze wzoru roboczego.

Wzór roboczy:

$$\sigma = \frac{mg}{2l},$$

gdzie:

g - przyspieszenie ziemskie (9,81 m/s²), l - szerokość ramki (24 mm), $\Delta l{=}1$ mm.

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności pomiarowych wielkości fizycznych prostych i złożonej.
- 2. Porównanie wyznaczonej wartości współczynnika napięcia powierzchniowego toluenu z wartością tablicową (odczytaną dla temperatury, w której wykonywany był pomiar).

Uwagi:

1. Nie wdychać par toluenu.

[9 kwietnia 2013] 2/2

C.3. Wyznaczanie ciepła topnienia lodu

Przyrządy
Cel ćwiczenia: do pobrania:

Zapoznanie się z zasadą działania kalorymetru, zasadą układania bilansu cieplnego oraz wyznaczenie ciepła topnienia lodu.

• suszarka

Instrukcja wykonania ćwiczenia:

- 1. Wyznaczyć masę m_k wewnętrznego naczynia kalorymetru wraz z mieszadełkiem.
- 2. Wlać do kalorymetru około 200 cm³ wody destylowanej i wyznaczyć masę wewnętrznego naczynia kalorymetru z wodą m_{k+w} .
- 3. Lekko kołysać kalorymetrem sprawdzając co pewien czas, czy temperatura jaką wskazuje termometr nie zmienia się. Jeżeli ulega ona zmianom, odczekać aż do jej ustabilizowania się kołysząc nadal kalorymetrem.
- 4. Odczytać temperaturę wody w kalorymetrze (T_1) .
- 5. Osuszyć bibułą kilka małych kawałków lodu (20 30 g) o temperaturze topnienia T_0 i wrzucić do kalorymetru z wodą.
- 6. Ciągle mieszając obserwować temperaturę wody z lodem przez cały czas jej opadania, aż do osiągnięcia najniższej wartości (T_2) .
- 7. Wyznaczyć masę m_{k+w+l} wewnętrznego naczynia kalorymetru z wodą i stopionym lodem.
- 8. Wartość ciepła topnienia lodu q_t wyznaczyć ze wzoru roboczego.

Wzór roboczy:

$$q_{t} = \frac{\left[c_{w}\left(m_{k+w} - m_{k}\right) + c_{k}m_{k}\right]\left(T_{1} - T_{2}\right) - c_{w}\left(m_{k+w+l} - m_{k+w}\right)\left(T_{2} - T_{0}\right)}{m_{k+w+l} - m_{k+w}},$$

gdzie:

 c_k - ciepło właściwe aluminium: 896 Jkg⁻¹K⁻¹ (Δc_k =4 Jkg⁻¹K⁻¹),

 c_w - ciepło właściwe wody destylowanej: 4186 Jkg⁻¹K⁻¹,

 T_0 - temperatura topnienia lodu: 273,16 K.

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności wielkości prostych i złożonej.
- 2. Porównanie otrzymanej wartości ciepła topnienia lodu z wartością tablicową.

Uwagi:

1. Po wykonaniu ćwiczenia opróżnić kalorymetr (Uwaga: Zużytą wodę wylewany do zlewu) i wysuszyć go wewnątrz i na zewnątrz.

C.4. Pomiar ciepła właściwego cieczy w stałym ciśnieniu metodą elektryczną

Cel ćwiczenia:	Przyrządy do pobrania:
Zapoznanie się z zasadą działania kalorymetru, zasadą układania bilansu cieplnego oraz	• suszarka
wyznaczenie ciepła właściwego wody destylowanej metodą elektryczną.	• stoper

Instrukcja wykonania ćwiczenia:

- 1. Sprawdzić czy kalorymetr oraz nasadka z termometrem i spiralami grzejnymi są suche i czyste.
- 2. Wyznaczyć masę m_k wewnętrznego naczynia kalorymetru.
- 3. Wlać do naczynia badaną ciecz (około 1/2 objętości wewnętrznego naczynia kalorymetru)
- 4. Wyznaczyć masę wewnętrznego naczynia kalorymetru z wodą destylowaną m_{k+c} .
- 5. Wstawić naczynie do obudowy i nałożyć nasadkę z termometrem i spiralami. Połączyć układ według podanego schematu **nie łącząc** jednak na razie jednego z przewodów ze źródłem prądu.

- 6. Lekko kołysać kalorymetrem sprawdzając co pewien czas, czy temperatura jaką wskazuje termometr nie zmienia się. Jeżeli ulega ona zmianom, odczekać aż do jej ustalenia się kołysząc nadal kalorymetrem.
- 7. Odczytać temperaturę wody w kalorymetrze (T_1) .
- 8. Podłączyć układ do źródła prądu i jednocześnie uruchomić sekundomierz. Natychmiast ustawić suwak opornika w takim położeniu, aby amperomierz wskazywał prąd I o natężeniu od 1.5 do 2.5 A. Odczytać napięcie U.
- 9. Kołysząc kalorymetrem ogrzewać ciecz przez około 3 do 4 minut (t). Odłączyć układ od zasilania i **jednocześnie** zatrzymać sekundomierz. Kołysząc kalorymetrem poczekać, aż termometr wskaże temperaturę maksymalną (T_2) .
- 10. Ze wzoru roboczego wyznaczyć wartość ciepła właściwego wody destylowanej c_w .

Wzór roboczy:

$$c = \frac{UIt - c_k m_k (T_2 - T_1)}{(m_{c+k} - m_k) (T_2 - T_1)},$$

gdzie:

 c_k - ciepło właściwe aluminium: 896 Jkg $^{-1}$ K $^{-1}$ ($\Delta c_k{=}4$ Jkg $^{-1}$ K $^{-1}$)

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności wielkości prostych i złożonej.
- 2. Porównanie otrzymanej wartości ciepła właściwego wody destylowanej z wartością tablicową.

Uwagi:

1. Po wykonaniu ćwiczenia opróżnić kalorymetr (Uwaga: Zużytą wodę wylewany do zlewu) i wysuszyć go wewnątrz i na zewnątrz.

C.5. Wyznaczanie molowego ciepła rozpuszczania soli w wodzie

Cel ćwiczenia:

Zapoznanie się z zasadą działania kalorymetru, zasadą układania bilansu cieplnego oraz wyznaczenie molowego ciepła rozpuszczania chlorku amonu (NH₄Cl) w wodzie.

Instrukcja wykonania ćwiczenia:

- 1. Wyznaczyć masę m_1 osuszonego wewnętrznego naczynia kalorymetru.
- 2. Odważyć około 6 g chlorku amonu (NH₄Cl) m_s .
- 3. Obliczyć konieczną masę m_w wody dla stężenia molowego roztworu 1 : 100 korzystając ze wzoru:

$$m_w = m_s \frac{M_w}{M_s} 100,$$

 M_w - masa molowa wody, M_s - masa molowa soli.

- 4. Napełnić kalorymetr wodą destylowaną o masie m_w (masa kalorymetru z wodą wynosi $m_2 = m_1 + m_w$).
- 5. Naczynie wewnętrzne z mieszadełkiem i termometrem wstawić do kalorymetru i mierzyć temperaturę wody co 30 s, aż do stwierdzenia, że warunki cieplne się ustaliły.
- 6. Wsypać sól do kalorymetru. Mieszać roztwór i co 30 s odczytywać wskazania termometru do czasu, gdy temperatu zacznie wzrastać.
- 7. Przedstawić na wykresie zależność temperatury roztworu od czasu i wyznaczyć temperaturę początkową T_p i końcową T_k .
- 8. Wyznaczyć molowe ciepła rozpuszczania Q_r ze wzoru roboczego.

Wzór roboczy:

$$Q_r = \frac{M_s \left(c_w m_w + c_k m_k\right) \left(T_p - T_k\right)}{m_s}$$

 c_k =0,896·10³ J/kgK - ciepło właściwe aluminium $(\Delta c_k=4 \text{ J/kgK}),$ $c_w=4,186\cdot10^3 \text{ J/kgK}$ - ciepło właściwe wody. $(\Delta c_k = 4 \text{ J/kgK}),$

Opracowanie wyników powinno zawierać:

- 1. Wykres temperatury roztworu w funkcji temperatury z zaznaczonymi temperaturami T_p i T_k .
- 2. Szacowanie niepewności pomiarowych wielkości prostych i złożonej.

Uwagi:

- 1. Przyjąć, że dla stężenia molowego 1 : 100 ciepło jest pobierane tylko od wody i kalorymetru.
- 2. Po wykonaniu ćwiczenia opróżnić wewnętrzne naczynie kalorymetru, wypłukać wodą destylowaną i wysuszyć je wewnątrz i na zewnątrz.

C.6. Wyznaczanie stosunku C_p/C_v dla powietrza metodą Clementa-Desormesa

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie stosunku $\kappa = C_p/C_v$ dla powietrza metodą Clementa-Desormesa.

Instrukcja wykonania ćwiczenia:

- 1. Za pomocą pompki zwiększyć ciśnienie powietrza w zbiorniku. Zamknąć kran łączący zbiornik z pompką. Odczekać kilka minut i odczytać wysokości l_1 i p_1 poziomów cieczy w odpowiednio lewym i prawym ramieniu manometru.
- 2. Otworzyć na chwilę kran (większy), a gdy poziom cieczy w ramionach manometru wyrówna się, natychmiast go zamknąć (rozprężenie adiabatyczne).
- 3. Po upływie kilku minut, gdy różnica poziomów cieczy przestanie się powiększać, odczytać wysokości poziomów l_2 i p_2 poziomów cieczy w odpowiednio lewym i prawym ramieniu manometru.
- 4. Pomiary powtórzyć dziesięciokrotnie.
- 5. Wyznaczyć $\kappa = Cp/Cv$ ze wzoru roboczego.

Wzór roboczy:

$$\kappa = \frac{h_1}{h_1 - h_2},$$

gdzie:

$$h_1 = |l_1 - p_1|,$$

$$h_2 = |l_2 - p_2|.$$

Opracowanie wyników powinno zawierać:

1. Szacowanie niepewności wielkości fizycznych prostych i złożonej.

$\mathbf{Uwagi:}$

- 1. Przy szacowaniu niepewności pomiarowych nie można uśredniać wartości wielkości l_1 , l_2 , p_1 , p_2 , h_1 oraz h_2 .
- 2. Potraktować wartości κ jako serię pomiarową i przyjąć, że $u_{C}\left(\kappa\right)=u_{A}\left(\kappa\right)$.

C.7. Wyznaczanie wilgotności względnej powietrza za pomocą psychrometru Augusta

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie wilgotności względnej oraz gęstości pary wodnej zawartej w pracowni fizycznej.

Wyznaczenie wilgotności względnej

Instrukcja wykonania ćwiczenia:

- 1. Sprawdzić, czy oba termometry są suche i wskazują jednakową temperaturę. W przypadku różnych wskazań zanotować różnicę, którą należy uwzględniać w obliczeniach.
- Owinąć zbiorniczek z rtęcią jednego z termometrów zwilżoną w wodzie destylowanej gazą (tylko jedną warstwą gazy).
 Po ustaleniu się wskazań termometrów (około 10 15 min.) odczytać wskazania suchego (T₁) i mokrego (T₂)
- termometru.
- 4. Znaleźć w Tabeli 1. prężności pary nasyconej p_1 i p_2 odpowiednio w temperaturach T_1 i T_2 .
- 5. Odczytać z barometru ciśnienie b.
- 6. Wyznaczyć wilgotność względną powietrza w ze wzoru roboczego (stosując poniższy wzór otrzymamy wilgotność względną powietrza wyrażoną w %).
- 7. Pomiar przeprowadzić 10 razy i wyznaczyć średnią wartość wilgotności względnej w_r .
- 8. Z tabeli psychrometrycznej (Tabela 2.) odczytać wilgotność względną w temperaturze T_1 i obliczoną dla różnicy temperatur (T_1-T_2) oraz porównać rezultaty.

Wzór roboczy:

$$w = \frac{p_2 - a(T_1 - T_2)b}{p_1} 100,$$
 gdzie: a=0,00046 /°C.

Wyznaczenie gęstości pary wodnej

Instrukcja wykonania ćwiczenia:

1. Obliczyć gęstość pary wodnej w powietrzu (d) w pracowni korzystając ze wzoru roboczego.

Wzór roboczy:

$$d = wd_t$$

gdzie:

 d_t – gęstość pary nasyconej w danej temperaturze T_1 odczytana z tablic.

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności pomiarowych należy przeprowadzić zarówno dla wilgotności względnej, jak i gęstości pary wodnej zawartej w powietrzu.
- 2. Porównanie wartości wilgotności względnej powietrza zawartego w pracowni fizycznej odczytanej z tabeli psychrometrycznej oraz obliczonej.

Uwagi:

1. Przy szacowaniu niepewności pomiarowej dla wilgotności względnej należy przyjąć, że $u_{C}(w) = u_{A}(w)$.

Tabela 1. Prężność i gęstość nasyconej pary wodnej w różnych temperaturach.

Temperatura	Prężność	Gęstość	Temperatura	Prężność	Gęstość	Temperatura	Prężność	Gęstość
[°C]	[mmHg]	[g/l]	[°C]	[mmHg]	[g/l]	[°C]	[mmHg]	[g/l]
-10	1,95	0,00214	11	9,84	0,0100	32	35,66	0,0339
-9	2,12	0,00233	12	10,52	0,0107	33	37,73	0,0357
-8	2,32	0,00254	13	11,23	0,0114	34	39,90	0,0376
-7	2,53	0,00276	14	11,99	0,0121	35	42,18	0,0396
-6	2,76	0,00299	15	12,79	0,0128	36	44,56	0,0418
-5	3,01	0,00324	16	13,63	0,0136	37	47,07	0,0440
-4	3,28	0,00351	17	14,53	0,0145	38	49,69	0,0463
-3	3,57	0,00381	18	15,48	0,0154	39	52,44	0,0487
-2	3,88	0,00413	19	16,48	0,0163	40	55,32	0,0512
-1	4,22	0,00447	20	17,54	0,0173	45	71,88	0,0654
0	4,58	0,00484	21	18,65	0,0183	50	92,50	0,0830
1	4,93	0,00522	22	19,83	0,0194	55	118,0	0,1043
2	5,29	0,00560	23	21,07	0,0206	60	149,4	0,130
3	5,69	0,00598	24	22,38	0,0218	65	187,5	0,161
4	6,10	0,00640	25	23,76	0,0230	70	233,7	0,198
5	$6,\!54$	0,00684	26	$25,\!21$	0,0244	75	289,1	0,242
6	7,01	0,0073	27	26,74	0,0258	80	355,1	0,293
7	7,51	0,0078	28	28,35	0,0272	85	433,6	0,354
8	8,05	0,0083	29	30,04	0,0287	90	525,8	0,424
9	8,61	0,0088	30	31,82	0,0303	95	633,9	0,505
10	9,21	0,0094	31	33,70	0,0321	100	760,0	0,598

Tabela 2. Tabela psychrometryczna (wilgotność względna powietrza wyrażona w %).

		Różnica odczytów temperatury na suchym i zwilżonym termometrze [°C]										etrze [°C]
		0	1	2	3	4	5	6	7	8	9	10
5	0	100	81	63	45	28	11					
[o C]	2	100	84	68	51	35	20					
etrze	3	100	85	70	56	42	28	14				
юшоп	6	100	86	73	60	47	35	23	10			
tern	8	100	87	75	63	51	40	28	18	7		
ym y	10	100	88	76	65	54	44	34	24	14	4	
such	12	100	89	78	68	57	48	38	29	20	11	
na s	14	100	90	79	70	60	51	42	33	25	17	9
ana	16	100	90	81	71	62	54	45	37	30	22	15
zyt	18	100	91	82	73	64	56	48	41	34	26	20
ode	20	100	91	82	74	66	59	51	44	37	30	24
tura	22	100	92	83	76	68	61	54	47	40	34	28
era	24	100	92	84	77	69	62	56	49	43	37	31
Temperatura odczytana na suchym termometrze	26	100	93	85	78	71	64	58	50	45	40	34
	28	100	93	85	78	72	65	59	53	48	42	37
	30	100	93	86	79	73	67	61	53	50	44	39

E.1. Pomiar oporów elektrycznych metodą mostka Wheatstone'a

Cel ćwiczenia:

Celem ćwiczenia jest zapoznanie się z działaniem mostka Wheatstone'a oraz zasadą łączenia szeregowego i równoległego oporników.

Wyznaczanie oporów elektrycznych pojedynczych oporników

Instrukcja wykonania ćwiczenia:

1. Połączyć obwód według schematu zamieszczonego poniżej. Jako opornik X_i (i=1,2,3,4 - numer opornika) należy podłączyć pierwszy z płytki zawierającej oporniki do badań. Sprawdzić z prowadzącym zajęcia połączenia elektryczne.

- 2. Ustawić na oporniku dekadowym początkową wartość oporu R (np. 100 Ω).
- 3. Przesuwając suwakiem S starać się uzyskać takie jego położenie, przy którym przez galwanometr G prąd nie płynie.
- 4. Odczytać długości drutu oporowego (l_1, l_2) po obu stronach suwaka i wyznaczyć wartość nieznanego oporu X_i (pomiar próbny) korzystając ze wzoru:

$$X_i = R \frac{l_1}{l_2}.$$

- 5. Wykonać kolejny pomiar dla oporu X_i ustawiając na opornicy dekadowej zamiast R obliczoną wartość X_i i powtarzać czynności jak w punktach 3 i 4. Pomiar dla danego opornika kończymy w momencie uzyskania jak najbardziej zbliżonych do siebie wartości l_1 oraz l_2 , dlatego jeżeli jest taka konieczność, należy punkty 3 i 4 wykonać dla tego samego opornika po raz kolejny. Jako ostateczną wartość oporu X_i przyjmujemy wartość obliczoną z powyższego wzoru dla ostatecznych wartości R, l_1 oraz l_2 .
- 6. Zamiast opornika X_1 podłączać kolejne oporniki z płytki X_i (i=2,3,4) oraz wyznaczyć ich opory powtarzając czynności 2-5.

Wyznaczanie oporu zastępczego oporników połączonych szeregowo i równolegle

Instrukcja wykonania ćwiczenia:

- 1. Jako opornik X (patrz schemat obwodu) należy włączyć wszystkie oporniki połączone szeregowo.
- 2. Aby wyznaczyć wartość X_{sz} należy powtórzyć czynności 2-5 instrukcji: Wyznaczanie oporów elektrycznych pojedynczych oporników. Uwaga: Zamiast wartości R=100 Ω można przyjąć wartość obliczoną ze wzoru podanego w punkcie 2. części instrukcji: Opracowanie wyników powinno zawierać.
- 3. Jako opornik X (patrz schemat obwodu) należy włączyć wszystkie oporniki połączone równolegle.
- 4. Aby wyznaczyć wartość X_r należy powtórzyć czynności 2-5 instrukcji: Wyznaczanie oporów elektrycznych pojedynczych oporników. Uwaga: Zamiast wartości $R=100~\Omega$ można przyjąć wartość obliczoną ze wzoru podanego w punkcie 2. części instrukcji: Opracowanie wyników powinno zawierać.

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności pomiarowych dla wielkości prostych i złożonych dla każdego z pojedynczych oporników oraz dla oporników połączonych szeregowo i równolegle.
- 2. Porównanie wartości oporów zastępczych oporników połączonych szeregowo i równolegle z wartościami obliczonymi z następujących wzorów:
 - dla połączenia szeregowego: $R_{sz} = X_1 + X_2 + X_3 + X_4$,
 - dla połączenia równoległego: $\frac{1}{R_r} = \frac{1}{X_1} + \frac{1}{X_2} + \frac{1}{X_3} + \frac{1}{X_4}$.

Uwagi:

1. Nie można uśredniać wartości wielkości X, l_1 oraz l_2 .

E.2. Pomiar oporności właściwej przewodu oporowego metodą techniczną

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie rezystancji drutu oporowego oraz jego rezystancji właściwej stosując dwie metody: dokładny pomiar prądu, dokładny pomiar napięcia.

Instrukcja wykonania ćwiczenia:

- 1. Potencjometr [REGULACJA PRĄDU] ustawić w skrajnym lewym położeniu.
- 2. Przełącznikiem rodzaju pracy na płycie czołowej wybrać [V-mA].
- 3. Ruchomy wspornik ustawić w położeniu l=50 cm.
- 4. Włączyć przycisk wyłącznika sieci.
- 5. Przełącznikiem umieszczonym na płycie czołowej wybrać dokładny pomiar napięcia [przycisk wciśnięty].
- 6. Ustawić potencjometr [REGULACJA PRĄDU] na 200 mA i odczytać na woltomierzu spadek napięcia U_V na ustalonej długości przewodu oporowego. Wynik zapisać w przygotowanej wcześniej tabeli.
- 7. Przełącznikiem umieszczonym na płycie czołowej wybrać dokładny pomiar prądu [przycisk wyciśnięty].
- 8. Ustawić potencjometr [REGULACJA PRĄDU] na 200 mA i odczytać na woltomierzu spadek napięcia na ustalonej długości przewodu oporowego. Wynik zapisać w przygotowanej wcześniej tabeli.
- 9. Powtórzyć czynności wymienione w punktach 5–8 zmieniając o 2 cm położenie wspornika w zakresie od 50 cm do 20 cm długości przewodu oporowego.
- 10. Dla każdego pomiaru obliczyć rezystancję przewodnika korzystając ze wzorów roboczych.

Wzory robocze:

a) dokładny pomiar napięcia:

$$R_p = \frac{U_V}{I_A} \left(1 + \frac{U_V}{I_A R_V} \right),\,$$

b) dokładny pomiar prądu:

$$R_p = \frac{U_V}{I_A} - R_A,$$

 U_V – spadek napięcia odczytany na woltomierzu, I_A – natężenie prądu odczytane na amperomierzu, R_V – rezystancja wewnętrzna woltomierza $(R_V{=}2500~\Omega),$

 R_A – rezystancja wewnętrzna miliamperomierza $(R_A=0.15 \Omega)$.

Opracowanie wyników powinno zawierać:

- 1. Przedstawić zależność rezystancji przewodnika od jego długości, $R_p = R_p(l)$ dla obydwu metod pomiaru.
- 2. Z nachyleń wykresów (prostych) wyznaczyć rezystancję właściwą przewodu oporowego.
- 3. Porównanie otrzymanej wartości rezystancji właściwej z wartością tablicową.

Uwagi:

1. Przed przystąpieniem do wykonywania ćwiczenia należy przemyśleć i zaprojektować tabelkę pomiarową.

E.3a. Wyznaczanie pojemności kondensatora metodą pomiaru czasu rozładowania

Cel ćwiczenia:

Celem ćwiczenia jest obserwowanie procesu rozładowywania kondensatorów oraz wyznaczenie ich pojemności.

Instrukcja wykonania ćwiczenia:

- 1. Podłączyć do zestawu mikroamperomierz. Zewrzeć odpowiednie zaciski łącząc z układem kondensator C1. Załączyć zasilacz do sieci.
- 2. Naładować kondensator zwierając wyłącznik w obwodzie prądu stałego. Gdy wskazówka mikroamperomierza wychyli się maksymalnie, odłączyć obwód od zasilacza.
- 3. W momencie gdy wskazówka miernika, powracając do położenia zerowego, wskaże prąd o natężeniu I_0 =70 μ A uruchomić sekundomierz. Odczytywać czas, w jakim miernik wskazuje natężenia podane w tabeli:

$I [\mu A]$	70	60	50	40	30	25	20	15	10	8	6	4	2
t_1 [s]													
t_2 [s]													
t_3 [s]													
t_r [s]													

- 4. Pomiary powtórzyć trzykrotnie i obliczyć wartości średnie odpowiadające kolejnym natężeniom.
- 5. Zewrzeć odpowiednie zaciski łącząc z układem kondensator C2 i powtórzyć pomiary dla drugiego kondensatora w identyczny sposób.
- 6. Wyłączyć układ.
- 7. Obliczyć wartość $0.37 \cdot I_0$ i znaleźć odpowiadający tej wartości czas $\tau = RC$ dla każdego z kondensatorów.
- 8. Obliczyć pojemności kondensatorów C1 i C2 ze wzoru roboczego (wynik przedstawić w μ F).

Wzór roboczy:

gdzie:
$$R=2~\mathrm{M}\Omega~(\Delta R=0.02~\mathrm{M}\Omega).$$

$$C = \frac{\tau}{R},$$

- 1. Wykresy zależności $I=I\left(t\right)$ dla obu kondensatorów.
- 2. Szacowanie niepewności pomiarowych wielkości fizycznych prostych i złożonych.

E.3b. Wyznaczanie ładunku kondensatora metodą graficznego całkowania

Cel ćwiczenia:

Celem ćwiczenia jest obserwowanie procesu rozładowywania kondensatorów oraz wyznaczenie ładunku na nich zgromadzonego.

Instrukcja wykonania ćwiczenia:

- 1. Podłączyć do zestawu mikroamperomierz. Zewrzeć odpowiednie zaciski łącząc z układem kondensator C1. Załączyć zasilacz do sieci.
- 2. Naładować kondensator zwierając wyłącznik w obwodzie prądu stałego. Gdy wskazówka mikroamperomierza wychyli się maksymalnie, odłączyć obwód od zasilacza.
- 3. W momencie gdy wskazówka miernika, powracając do położenia zerowego, wskaże prąd o natężeniu I_0 =70 μ A uruchomić sekundomierz. Odczytywać czas, w jakim miernik wskazuje natężenia podane w tabeli:

$I [\mu A]$	70	60	50	40	30	25	20	15	10	8	6	4	2
t_1 [s]													
t_2 [s]													
t_3 [s]													
t_r [s]													

- 4. Wyłączyć układ.
- 5. Wykreślić zależność I = I(t) dla obu kondensatorów.
- 6. Podzielić pole ograniczone wykresem funkcji na możliwie wąskie paski o stałej szerokości Δt i wysokości $I_1, I_2, I_3, ..., I_n$.
- 7. Wyznaczyć ładunki Q obu kondensatorów korzystając ze wzoru roboczego.

Wzór roboczy:

$$Q = \sum_{k=1}^{n} I_k \Delta t = \Delta t \sum_{k=1}^{n} I_k$$

- 1. Wykresy zależności I = I(t) dla obu kondensatorów.
- 2. Obliczone wartości ładunku zgromadzonego na każdym z kondensatorów.

E.4. Badanie obwodu RLC (lab.209)

Cel ćwiczenia:

Celem ćwiczenia jest określenie częstotliwości rezonansowych obwodu RLC, a następnie wyznaczenie pojemności własnej tego obwodu oraz indukcyjności zwojnicy.

Instrukcja wykonania ćwiczenia:

1. Połączyć układ według schematu:

- 2. Sprawdzić, czy pokrętła generatora są w następujących pozycjach:
 - modulacja poz. CW zakres miernika poz. 20 V zakres częstości poz. (40 – 85) kHz
- 3. Ustawić wskaźnik częstości generatora na początku zakresu.
- 4. Włączyć generator do sieci (poz. włącznika ON) i odczekać około 1 min.
- 5. Ustawić pokrętło regulacji napięcia wejściowego (output level) w takiej pozycji, aby miernik wskazywał 8 V (górna podziałka). Sprawdzać to przy każdym pomiarze.
- 6. Odczytać wskazania mikroamperomierza.
- 7. Zwiększać co 1 kHz generowaną częstość, aż do 85 kHz. Sprawdzać za każdym razem napięcie wejściowe (8 V) i odczytywać wskazanie amperomierza.
- 8. Przełączyć układ w taki sposób, aby kondensator C_1 został zastąpiony kondensatorem C_2 . Przełączyć zakres częstości na (85–180) kHz.
- 9. Powtórzyć wszystkie czynności (3-7) dla kondensatora C_2 .
- 10. Wyłączyć generator.
- 11. Obliczyć pojemność własną obwodu C_0 i indukcyjność zwojnicy L (wyrazić ją w mH).

Wzory robocze:

$$C_0 = \frac{C_1 - C_2 \left(\frac{\nu_1}{\nu_2}\right)^2}{\left(\frac{\nu_2}{\nu_1}\right)^2 - 1},$$

$$L = \frac{1}{4\pi^2 \nu_1^2 \left(C_0 + C_1 \right)},$$

gdzie:

 $C_1 = (22,0\pm 2,2) \text{ nF},$ $C_2 = (4,0\pm 0,4) \text{ nF},$

Częstotliwość ν_1 / ν_2 jest częstotliwością rezonansową obwodu RLC z włączonym do układu kondensatorem C_1 / C_2 .

- 1. Wykresy wskazań amperomierza w funkcji częstotliwości z zaznaczonymi częstotliwościami rezonansowymi.
- 2. Szacowanie niepewności wielkości prostych i złożonych $(C_0 \text{ i } L)$.

E.4. Badanie obwodu RLC (lab.214)

Cel ćwiczenia:

Celem ćwiczenia jest określenie częstotliwości rezonansowych obwodu RLC, a następnie wyznaczenie pojemności własnej tego obwodu oraz indukcyjności zwojnicy.

Instrukcja wykonania ćwiczenia:

1. Połączyć układ według schematu:

2. Sprawdzić, czy pokrętła generatora są w następujących pozycjach:

modulacja podzakresy częstotliwości poz. wył.

poz. 200 kHz – 400 kHz

przełącznik pod pokrętłem podzakresu

poz. w. cz.

- 3. Ustawić wskaźnik częstotliwości generatora (pokrętło z korbką) na początku zakresu. (częstotliwość = 200 kHz; podziałka nr 3).
- 4. Włączyć generator do sieci (poz. włącznika SIEĆ) i odczekać około 2 min.
- 5. Ustawić pokrętło regulacji napięcia w. cz. w takiej pozycji, aby wskazówka miernika w. cz. ustawiła się na czerwonej kresce. Sprawdzać to i ewentualnie korygować przy każdym pomiarze.
- 6. Odczytać wskazania mikroamperomierza.
- 7. Zwiększać co 10 kHz generowaną częstość, aż do 450 kHz. Sprawdzać za każdym razem wskazanie mikroamperomierza.
- 8. Przełączyć układ w taki sposób, aby kondensator C_1 został zastąpiony kondensatorem C_2 . Ustawić przełącznik podzakresów w pozycji 400 kHz – 800 kHz.
- 9. Powtórzyć wszystkie czynności opisane w punktach 5 i 6 zwiększając częstotliwość do 850 kHz. Notować co 10 kHz wskazanie mikroamperomierza.
- 10. Wyłączyć generator.
- 11. Obliczyć pojemność własną obwodu C_0 i indukcyjność zwojnicy L (wyrazić ją w mH).

Wzory robocze:

$$C_0 = \frac{C_1 - C_2 \left(\frac{\nu_2}{\nu_1}\right)^2}{\left(\frac{\nu_2}{\nu_1}\right)^2 - 1},$$

$$L = \frac{1}{4\pi^2 \nu_1^2 \left(C_0 + C_1 \right)},$$

gdzie:

 $C_1 = 510 \text{ pF},$

 $C_2 = 200 \text{ pF},$

Częstotliwości ν_1 / ν_2 jest częstotliwością rezonansową obwodu RLC z włączonym do układu kondensatorem C_1 / $C_2.$

- 1. Wykresy wskazań amperomierza w funkcji częstotliwości z zaznaczonymi częstotliwościami rezonansowymi.
- 2. Szacowanie niepewności wielkości prostych i złożonych $(C_0 \text{ i } L)$.

E.5. Badanie prawa Ohma dla obwodu całkowitego

Cel ćwiczenia:

Celem ćwiczenia jest badanie prawa Ohma dla obwodu całkowitego, wyznaczenie siły elektromotorycznej oraz rezystancji wewnętrznej źródła.

Instrukcja wykonania ćwiczenia:

- 1. Rezystor suwakowy ustawić w położeniu, w którym jego rezystancja jest największa.
- 2. Połączyć układ według schematu:

- 3. Wybrać zakres 20 V dla miernika uniwersalnego.
- 4. Wybrać zakres 3000 mA dla miliamperomierza.
- 5. Zmieniając położenie suwaka odczytać wartości napięć dla natężeń prądu zmieniających się w zakresie od około 1500 mA do około 3000 mA co 200 mA. Wyniki przedstawić w tabeli.
- 6. Dla tych samych co w punkcie 5, ale malejących natężeń prądu odczytać napięcia i wpisać do tabeli.

Opracowanie wyników powinno zawierać:

- 1. Wykres napięć w funkcji natężeń prądu U = f(I) dla natężeń rosnących i malejących (różnymi kolorami i tylko punkty pomiarowe); porównać wykresy.
- 2. Odczytaną z wykresu wartość siły elektromotorycznej źródła.
- 3. Obliczoną wartość SEM (ε) i rezystancji wewnętrznej (R_w) metodą najmniejszych kwadratów:

$$\varepsilon = \frac{\left(\sum I_i\right)\left(\sum I_i U_i\right) - \left(\sum U_i\right)\left(\sum I_i^2\right)}{\left(\sum I_i\right)^2 - n\sum I_i^2},$$

$$R_w = \frac{n\left(\sum I_i U_i\right) - \left(\sum I_i\right)\left(\sum U_i\right)}{\left(\sum I_i\right)^2 - n\sum I_i^2},$$

gdzie sumowanie przebiega po poszczególnych punktach pomiarowych, tj. i = 1, 2, ..., 5; $n{=}5$ - liczba punktów pomiarowych.

E.6. Wyznaczanie równoważnika elektrochemicznego miedzi i stałej Faradaya

Cel ćwiczenia: Przyrządy do pobrania:

Celem ćwiczenia jest zapoznanie się z reakcjami zachodzącymi na elektrodach w czasie elektrolizy oraz wyznaczenie równoważnika elektrochemicznego miedzi oraz stałej Faradaya. Elektrolitem stosowanym w doświadczeniu jest wodny roztwór $CuSO_4$.

- suszarka
 - stoper

Instrukcja wykonania ćwiczenia:

- 1. Oczyścić papierem ściernym katodę woltometru (cieńsza płytka).
- 2. Aby usunąć drobiny miedzi pozostałe na katodzie po szlifowaniu należy spryskać ją **wodą destylowaną** i wysuszyć suszarką.
- 3. Nie dotykając palcami oczyszczonej części katody wyznaczyć starannie jej masę m_1 .
- 4. Zważoną płytkę (katoda) włożyć do woltametru i połączyć układ wg schematu:

- 5. Podłączyć układ do źródła prądu stałego, uruchamiając jednocześnie sekundomierz. Możliwie szybko ustawić suwak opornicy w takim położeniu, aby w obwodzie płynął prąd o natężeniu od 1,5 A do 2,0 A. Notować natężenie prądu I co 2 minuty.
- 6. Po upływie 20 minut (t) odłączyć układ od źródła.
- 7. Wyjąć katodę, osuszyć ją starannie **suszarką** i wyznaczyć jej masę m_2 .
- 8. Wyznaczyć wartość równoważnika elektrochemicznego miedzi k oraz wartość stałej Faradaya F ze wzoru roboczego.

Wzory robocze:

$$k = \frac{m_2 - m_1}{It}, \quad F = \frac{M}{kw},$$

gdzie:

 ${\cal M}$ - masa molowa miedzi odczytana z układu okresowego pierwiastków, w - wartościowość miedzi.

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności pomiarowych wielkości prostych i złożonych (k oraz F).
- 2. Otrzymane wartości równoważnika elektrochemicznego miedzi oraz stałej Faradaya porównać z wartościami tablicowymi.

Uwagi:

1. Nie szacujemy niepewności pomiarowych dla w.

E.7. Wyznaczanie składowej poziomej natężenia ziemskiego pola magnetycznego

Cel ćwiczenia:	Przyrządy do pobrania:
Celem ćwiczenia jest wyznaczanie składowej poziomej natężenia ziemskiego pola magne-	• suwmiarka
tycznego.	o zakresie
	pomiarowym
	do 50 cm

Instrukcja wykonania ćwiczenia:

- 1. Zmierzyć w pięciu miejscach suwmiarką średnicę zwojnicy i znaleźć wartość średnią 2r oraz obliczyć ilość zwojów n.
- 2. Obrócić podstawę zwojnicy w taki sposób, aby wskazówka blokująca igłę (zamocowana prostopadle do igły magnetycznej) wyznaczała kierunek prostopadły do płaszczyzny zwojnicy. Położenia tego nie wolno zmieniać do końca pomiarów.
- 3. Ustawić płaszczyznę zwojnicy wzdłuż osi igły magnetycznej.
- 4. Połączyć układ według schematu:

- 5. Przesuwając suwak opornika dobrać takie natężenie prądu I_1 aby wskazówka odchyliła się o 45°. Odczytać wartość I_1 .
- 6. Zmienić kierunek płynącego przez zwojnicę prądu, zamieniając między sobą przewody doprowadzone do zacisków zwojnicy.
- 7. Dobrać tak natężenie prądu I_2 , aby wskazówka odchyliła się ponownie o 45° w stronę przeciwną. Odczytać wartość I_2 . Odłączyć układ od źródła prądu.
- 8. Obliczyć średnią wartość I natężeń I_1 i I_2 .
- 9. Wyznaczyć składową poziomą natężenia ziemskiego pola magnetycznego ze wzoru roboczego.

Wzór roboczy:

gdzie:

n - ilość zwojów.

$$H_0 = \frac{nI}{2r},$$

Opracowanie wyników powinno zawierać:

1. Szacowanie niepewności pomiarowych wielkości fizycznych prostych i złożonej.

E.8. Wyznaczanie współczynników temperaturowych rozszerzalności liniowej i rezystancji elektrycznej dla metali i stopów

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie współczynników: rozszerzalności liniowej oraz rezystancji elektrycznej konstantanu.

Instrukcja wykonania ćwiczenia:

1. Połączyć obwód elektryczny wg schematu:

Nastawy elektrycznych przyrządów pomiarowych:

- Amperomierz (A): funkcja 20 A, zakres 20 A.
- Woltomierz (mV): BM857, zakres "auto".
- Woltomierz (V): funkcja U=, zakres 20 V.
- Termometr (T): zakres 0,2 V.
- 2. Wyznaczyć (bez demontażu) długość początkową drutu l_0 (odległość między zamocowaniami). Wyzerować czujnik zegarowy.
- 3. Włączyć zasilanie. Zmieniając napięcie zasilania co 1 V (od 1 V do 10 V) zanotować (po ustaleniu się temperatury drutu) SEM termopary ε , przyrost długości Δl , napięcie U oraz natężenie prądu I.
- 4. Z wykresu $\varepsilon(\Delta T)$ określić względną zmianę temperatury drutu (względem temperatury otoczenia) ΔT .
- 5. Z prawa Ohma obliczyć opór R drutu przy danym ΔT .
- 6. Wykreślić zależności $\Delta l (\Delta T)$ oraz $R (\Delta T)$.
- 7. Z wykresu $\Delta l (\Delta T)$ wyznaczyć $tg(\beta)$ nachylenia prostej do osi ΔT .
- 8. Z wykresu $R(\Delta T)$ wyznaczyć $tg(\alpha)$ nachylenia prostej do osi ΔT oraz opór drutu R_0 dla ΔT =0.
- 9. Wyznaczyć współczynniki temperaturowe: rozszerzalności liniowej (α) i rezystancji elektrycznej (γ) ze wzorów roboczych.

Wzory robocze:

$$\alpha = \frac{tg(\beta)}{l_0}, \quad \gamma = \frac{tg(\alpha)}{R_0}.$$

Opracowanie wyników powinno zawierać:

- 1. Wykresy zależności $\Delta l\left(\Delta T\right)$ oraz $R\left(\Delta T\right)$.
- 2. Szacowanie niepewności pomiarowych dla α i $\gamma.$

Uwagi:

1. Sposób szacowania niepewności pomiarowych uzgodnić z prowadzącym.

M.1. Wyznaczanie gęstości ciał stałych za pomocą piknometru

Przyrządy
Cel ćwiczenia: do pobrania:

Celem ćwiczenia jest zapoznanie się ze sposobem wyznaczanie gęstości za pomocą piknometru oraz wyznaczenie gęstości ciał stałych takich jak: ołów, stal nierdzewna, żwir kwarcowy, żwir bazaltowy.

suszarka

Instrukcja wykonania ćwiczenia:

- 1. Zważyć czysty i suchy piknometr wraz ze szklanym korkiem (m_1) .
- 2. Wypełnić piknometr badanym suchym sypkim ciałem (ilość badanego ciała powinna zajmować od 1/2 do 3/4 objętości piknometru) i zważyć wraz z korkiem (m_2) .
- 3. Zapełnić dokładnie pozostałą objętość piknometru wodą destylowaną i zamknąć korkiem.
- 4. Potrząsać lekko!!! piknometrem, aby usunąć pęcherzyki powietrza.
- 5. Dolać **wody destylowanej** do piknometru, zamknąć korkiem i lekko wstrząsnąć. Jeżeli w jego wnętrzu nadal będą pęcherzyki powietrza, to należy powtórzyć punkty 4 i 5.
- 6. Osuszyć na zewnątrz piknometr za pomocy chusteczek higienicznych i zważyć (m_3) .
- 7. Opróżnić piknometr, wypełnić go dokładnie wodą destylowaną, zamknąć korkiem, osuszyć oraz ponownie zważyć (m_4) .
- 8. Sprawdzić temperatur
ę powietrza w laboratorium i odczytać z tablic gęstość wod
y ρ_w w tej temperaturze.
- 9. Obliczyć gęstość badanego ciała ρ ze wzoru roboczego.
- 10. Powtórzyć wyżej wymienione czynności dla kolejnych materiałów.
- 11. Opróżnić i za pomocą suszarki starannie osuszyć piknometr i badane ciała.

UWAGA: Zużytą wodę destylowaną wylewamy do zlewu.

Wzór roboczy:

$$\rho = \frac{m_2 - m_1}{m_2 + m_4 - m_1 - m_3} \rho_w$$

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności wielkości prostych i złożonych dla każdej z badanych substancji.
- 2. Porównanie otrzymanych wartości gęstości z wartościami tablicowymi.

Uwagi:

1. Należy lekko!!! potrząsać piknometrem, aby usunąć pęcherzyki powietrza, a nie zbić naczynie.

[14 marca 2013] 1/1 M.1.

M.2. Wyznaczanie gęstości ciał stałych

Przyrządy
Cel ćwiczenia: do pobrania:

Celem ćwiczenia jest wyznaczenie gęstości ciał stałych o regularnych kształtach na podstawie ich masy i rozmiaru. Badanymi ciałami w tym ćwiczeniu są kulki ołowiane i kulki wykonane ze stali nierdzewnej.

• śruba mikrometryczna

Instrukcja wykonania ćwiczenia:

- 1. Wybrać 10 kulek jednej z substancji i zmierzyć ich średnice (d).
- 2. Zważyć masę pustej naważki (m_1) .
- 3. Zważyć masę naważki z wybranymi kulkami (m_2) .
- 4. Obliczyć gęstość badanego ciała ρ ze wzoru roboczego.
- 5. Powtórzyć wyżej wymienione czynności dla drugiego materiału.

Wzór roboczy:

$$\rho = \frac{3(m_2 - m_1)}{5\pi d^3}$$

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności wielkości prostych i złożonych dla każdej z badanych substancji.
- 2. Porównanie otrzymanych wartości gęstości z wartościami tablicowymi.

Uwagi:

1. Kulki do pomiarów muszą być suche.

M.3. Wyznaczanie przyspieszenia ziemskiego za pomocą różnicowego wahadła matematycznego

Przyrządy
Cel ćwiczenia: do pobrania:

Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego za pomocą różnicowego wahadła matematycznego.

• stoper

Instrukcja wykonania ćwiczenia:

- 1. Podciągnąć wahadło w pobliże górnego krańca podziałki i odczytać jego położenie l_1 .
- 2. Wychylić wahadło z położenia równowagi o około **2 cm** i puścić swobodnie. Po wykonaniu kilku pierwszych wahnięć (ruch wahadła musi się ustabilizować) włączyć sekundomierz i zmierzyć czas t_1 odpowiadający dwudziestu okresom ($t_1 = 20T_1$). Obliczyć okres T_1 .
- 3. Pomiar powtórzyć dziesięciokrotnie nie zmieniając położenia l_1 i wyznaczyć średni okres dla górnego położenia wahadła.
- 4. Opuścić wahadło (o co najmniej metr) w dolną część podziałki, odczytać jego położenie l_2 i powtórzyć czynności opisane w punktach 2 i 3 wyznaczając średni okres T_2 dla dolnego jego położenia.
- 5. Wyznaczyć wartość przyspieszenia ziemskiego g ze wzoru roboczego.

Wzór roboczy:

$$g = \frac{4\pi^2 (l_2 - l_1)}{T_2^2 - T_1^2}$$

- 1. Szacowanie niepewności wielkości prostych i złożonej.
- 2. Porównanie otrzymanej wartości przyspieszenia ziemskiego z wartością tablicową.

M.4. Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Cel ćwiczenia:

Celem ćwiczenia jest określenie długości zredukowanej wahadła rewersyjnego oraz wyznaczenie wartości przyspieszenia ziemskiego.

Instrukcja wykonania ćwiczenia:

- 1. Wyznaczyć odległość d między ostrzami wahadła rewersyjnego.
- 2. Zawiesić wahadło na jednym z ostrzy (położenie I).
- 3. Przesunąć ruchomy obciążnik do dolnego skrajnego położenia.
- 4. Wychylić wahadło z położenia równowagi (**nie więcej niż na 3 cm**) i zmierzyć czas odpowiadający dziesięciu okresom (t_0) .
- 5. Przesuwać ruchomy obciążnik ku górze na odległości 10 cm, 20 cm, ... i wyznaczać za każdym razem czas 10 wahnięć $(t_1, t_2,...)$.
- 6. Obliczyć okresy wahań $T_0 = t_0/10$, $T_1 = t_1/10$, $T_2 = t_2/10$, ...
- 7. Zawiesić wahadło na drugim ostrzu (położenie II) i powtórzyć czynności wg punktów 3 5.
- 8. Obliczyć okresy wahań $T'_0, T'_1, T'_2,...$
- 9. Sporządzić wykres zależności okresów wahań od położenia obciążnika dla zawieszenia na ostrzu I i II. Odcięta punktu przecięcia krzywych S wyznacza położenie mas, przy którym okresy drgań w obu położeniach wahadła są równe, a odległość d_z między ostrzami jest równa długości zredukowanej wahadła.
- 10. Wyznaczyć 10 razy czasy 10 wahnięć przy zawieszeniu na ostrzu I (t) i II (t') dla położenia mas odpowiadającego punktowi S.
- 11. Obliczyć okres T dla zawieszenia na ostrzu I.
- 12. Obliczyć okres T' dla zawieszenia na ostrzu II.
- 13. Wyznaczyć wartość przyspieszenia ziemskiego g ze wzoru roboczego.

Wzór roboczy:

$$g$$
dzie: $T_z = \frac{T + T'}{2}$. $T_z = \frac{T + T'}{2}$.

- 1. Szacowanie niepewności wielkości prostych i złożonej.
- 2. Przy szacowaniu niepewności dla T_z należy przyjąć, że $u_C(T_z) = \sqrt{u_C^2(T) + u_C^2(T')}$.
- 3. Porównanie otrzymanej wartości przyspieszenia ziemskiego z wartością tablicową.

M.5. Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła matematycznego i wahadła rewersyjnego

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie wartości przyspieszenia ziemskiego za pomocą wahadła matematycznego i wahadła rewersyjnego.

Wahadło matematyczne

Instrukcja wykonania ćwiczenia:

- 1. Ustawić czujnik fotoelektryczny w dowolnej części kolumny po stronie wahadła matematycznego, zwracając uwagę na to, by górna krawędź wspornika wskazywała na skali przyrządu długość nie mniejszą niż 50 cm.
- 2. Kręcąc pokrętłem na wsporniku górnym ustalić długość wahadła l. Zwrócić uwagę na to, aby ryska na kulce była przedłużeniem ryski na korpusie czujnika fotoelektrycznego.
- 3. Wprowadzić wahadło w ruch odchylając kulkę o $4\text{-}5^{\circ}$.
- 4. Nacisnąć przycisk ZER, a po zliczeniu 10 okresów (po pokazaniu się "9" na wyświetlaczu) nacisnąć przycisk STOP. Odczytać czas t odpowiadający dziesięciu okresom drgań.
- 5. Pomiary powtórzyć dziesięciokrotnie.
- 6. Obliczyć okresy T drgań wahadła.
- 7. Wyznaczyć wartość przyspieszenia ziemskiego g ze wzoru roboczego.

Wzór roboczy:

$$g = \frac{4\pi^2 l}{T^2}.$$

Wahadło rewersyjne

Instrukcja wykonania ćwiczenia:

- 1. Obrócić czujnik fotoelektryczny w stronę wahadła rewersyjnego i ustawić go na takiej wysokości, aby pręt wahadła przecinał oś optyczną.
- 2. Odchylić wahadło o 4-5° i zmierzyć jego okres T_1 .
- 3. Zdjąć wahadło, obrócić je o 180°, ustawić na drugim nożu i zmierzyć jego okres T_2 .
- 4. Porównać zmierzone okresy. Jeżeli ich różnica przekracza 0,5%, to należy skorygować położenie noża umieszczonego pomiędzy ciężarkami.
- 5. W przypadku zgodności okresów przystąpić do zasadniczych pomiarów, tj. wyznaczyć okresy drgań T_1 i T_2 , powtarzając je dla obu położeń wahadła przynajmniej 10 razy.
- 6. Wyznaczyć długość zredukowaną wahadła d (odległość pomiędzy ostrzami).
- 7. Wyznaczyć wartość przyspieszenia ziemskiego g ze wzoru roboczego.

Wzór roboczy:

$$g = \frac{4\pi^2 d}{T^2},$$

gdzie:
$$T = \frac{T_1 + T_2}{2}.$$

- 1. Szacowanie niepewności wielkości prostych i złożonych.
- 2. Przy szacowaniu niepewności dla T należy przyjąć, że $u_C(T) = \sqrt{u_C^2(T_1) + u_C^2(T_2)}$.
- 3. Porównanie otrzymanej wartości przyspieszenia ziemskiego z wartością tablicową.

M.6. Wyznaczanie przyspieszenia ziemskiego za pomocą spadkownicy Attwooda

Cel ćwiczenia:

Przyrządy do pobrania:

Celem ćwiczenia jest wyznaczenie wartości przyspieszenia ziemskiego za pomocą spadkownicy Attwoda.

• suwmiarka

Instrukcja wykonania ćwiczenia:

- 1. Zmierzyć wysokość h ciężarków przerzuconych przez krążek.
- 2. Wyznaczyć masy trzech dodatkowych pierścieniowych ciężarków $(m_1, m_2 i m_3)$.
- 3. Podłączyć układ do sieci.
- 4. Nałożyć dodatkowy pierścieniowy ciężarek na prawy ciężarek, ustawić lewy ciężarek na podstawie dolnego wspornika, a górny w wspornik ustawić tak, aby jego wskaźnik położenia pokrywał się z położeniem pierścieniowego ciężarka.
- 5. Ustawić środkowy wspornik w taki sposób, aby spadający ciężarek mógł swobodnie przelecieć przez pierścień wspornika, pozostawiając na nim dodatkowy pierścieniowy ciężarek.
- 6. Zmierzyć odległość l pomiędzy środkowym i górnym wspornikiem oraz odległość S pomiędzy środkowym i dolnym wspornikiem.
- 7. Gdy układ będzie przygotowany, tzn. lewy ciężarek będzie znajdował się na podstawie dolnego wspornika, a prawy wraz z dodatkowym pierścieniowym ciężarkiem w skrajnym górnym położeniu, włączyć przycisk START.
- 8. Odczytać z sekundomierza czas t trwania ruchu jednostajnego.
- 9. Wyzerować sekundomierz (przycisk ZER), zwolnić przycisk START i przygotować ciężarki do kolejnego pomiaru.
- 10. Powtórzyć czynności 7-9 dziesięć razy dla tego samego ciężarka pierścieniowego.
- 11. Wyznaczyć wartość przyspieszenia ziemskiego g ze wzoru roboczego.
- 12. Powtórzyć pomiary dla pozostałych ciężarków pierścieniowych.

Wzór roboczy:

$$g = k \frac{(2M+m) S^2}{2m (l-h) t^2},$$

gdzie: k=1.388, M=0.0606 kg.

- 1. Szacowanie niepewności wielkości prostych i złożonych.
- 2. Porównanie otrzymanych wartości przyspieszenia ziemskiego z wartością tablicową.

M.7. Wyznaczanie momentu bezwładności wahadła Maxwella

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie momentu bezwładności wahadła Maxwella.

• suwmiarka

Przygotowanie przyrządu do pracy

- 1. Skontrolować ustawienie przyrządu w pionie.
- 2. Wcisnąć przycisk SIEĆ. Sprawdzić, czy wszystkie wyświetlacze wskazują zero oraz czy świecą się żarówki czujników fotoelektrycznych.
- 3. Wyznaczyć masę pierścienia m_p .
- 4. Zmierzyć średnicę osi wahadła d.
- 5. Na krążek wahadła nałożyć pierścień dociskając go do oporu.
- 6. Nawinąć nić na osi wahadła i unieruchomić je za pomocą elektromagnesu (wyciśnięty przycisk START). Sprawdzić, czy dolna krawędź pierścienia pokrywa się z zerem skali naniesionej na kolumnie przyrządu (uwaga na błąd paralaksy).
- 7. Podtrzymując lekko ręką wahadło wcisnąć przycisk START.
- 8. Po odwinięciu nici na pełną długość sprawdź, czy brzeg pierścienia znajduje się około 2 mm poniżej osi optycznej (czarna kreska) dolnego czujnika fotoelektrycznego. Jeżeli to konieczne, należy wyregulować długość nici.
- 9. Odczytać (ze skali na kolumnie przyrządu) długość wahadła h.

Pomiary

Instrukcja wykonania ćwiczenia:

- 1. Nawinąć starannie na oś wahadła nić (zwój przy zwoju), bez zbytniego naprężenia i unieruchomić wahadło za pomocą elektromagnesu (wyciśnięty przycisk START).
- 2. Wyzerować miernik (sekundomierz) naciskając przycisk ZER.
- 3. Wcisnąć przycisk START.
- 4. Odczytać i zanotować wartość czasu spadania wahadła (t).
- 5. Pomiar powtórzyć 10 razy (czynności od 1 do 4).
- 6. Obliczyć moment bezwładności wahadła (I) korzystając ze wzoru roboczego.

Wzór roboczy:

$$I = \frac{1}{4} (m_p + m_k) d^2 \left(\frac{gt^2}{2h} - 1 \right),$$

gdzie: $m_k{=}(162{,}34{\pm}0{,}02)~{\rm g} - {\rm masa~krążka}$ bez pierścienia, $g{=}9{,}81~{\rm m/s^2}.$

Opracowanie wyników powinno zawierać:

1. Szacowanie niepewności wielkości prostych i złożonej.

Uwagi:

1. Jako niepewność całkowitą dla m_k należy przyjąć 0,02 g.

M.8. Badanie ruchu obrotowego bryły sztywnej i wyznaczanie momentu bezwładności przyrządu (wahadło Oberbecka) (lab.214)

Cel ćwiczenia: Przyrządy do pobrania:

Celem ćwiczenia jest zbadanie jednostajnie przyspieszonego ruchu ciężarka oraz wyznaczenie momentu bezwładności wahadła Oberbecka.

• suwmiarka

Badanie ruchu jednostajnie przyspieszonego

Instrukcja wykonania ćwiczenia:

- 1. Wyznaczyć promień r walca, na który nawijana jest nić.
- 2. Na walec nawinąć nić tak, aby była ona nawinięta w jednej warstwie i określić liczbę zwojów N.
- 3. Zmierzyć czasy spadania t_i ciężarka z dziesięciu różnych wysokości h_i ($h_i = 2\pi r N_i$).
- 4. W celu sprawdzenia czy przyrząd porusza się ruchem jednostajnie przyspieszonym wykreślić zależność $h_i(t_i^2)$.

Wyznaczenie momentu bezwładności wahadła Oberbecka

Instrukcja wykonania ćwiczenia:

- 1. Zmierzyć 10 razy czas spadania ciężarka (t) ze stałej wysokości h. Stałość wysokości osiągamy przez nawinięcie na szpulkę zawsze dokładnie takiej samej liczby zwojów nici (N).
- 2. Wyznaczyć masę ciężarka m.
- 3. Ze wzoru roboczego obliczyć wartość momentu bezwładności przyrządu.

Wzór roboczy:

$$I = mr^2 \left(\frac{gt^2}{4\pi rN} - 1 \right),$$
 gdzie: $g=9,81 \text{ m/s}^2$

- 1. Wykres $h(t^2)$.
- 2. Szacowanie niepewności pomiarowych wielkości fizycznych prostych i złożonej.

M.8. Badanie ruchu obrotowego bryły sztywnej i wyznaczanie momentu bezwładności przyrządu (wahadło Oberbecka) (lab.209 i 214)

Cel ćwiczenia:

Celem ćwiczenia jest zbadanie jednostajnie przyspieszonego ruchu ciężarka oraz wyznaczenie momentu bezwładności wahadła Oberbecka.

Przyrządy do pobrania:

• suwmiarka

Budowa przyrządu

Na pionowej kolumnie zamocowane są dwa wsporniki. Wspornik górny można przemieszczać wzdłuż kolumny i unieruchomić w dowolnym położeniu. Na obu wspornikach zamocowane są czujniki fotoelektryczne (fototranzystory) do pomiaru czasu spadania ciężarka . Na osi badanej bryły - krzyżaka z ciężarkami znajduje się dwustopniowy krążek z nawiniętą nicią i elektromagnes hamujący, umożliwiający zablokowanie ruchu krzyżaka. Na płycie czołowej milisekundomierza znajdują się przyciski SIEĆ, START i ZER (zerowanie) o następujących funkcjach: SIEĆ - wciśnięcie włącza napięcie zasilające i przyrząd zostaje automatycznie wyzerowany. ZER - zerowanie miernika przed każdym następnym pomiarem. START - wciśnięcie powoduje zwolnienie elektromagnesu blokującego krzyżak, wyciśnięcie blokuje ruch krzyżaka.

Przygotowanie przyrządu do pracy

- 1. Sprawdzić, czy ciężarki zawieszone na nici nie uderzają w korpusy czujników fotoelektrycznych. Ewentualnie wypoziomować przyrząd. Sprawdzić, czy krzyżak znajduje się w równowadze obojętnej.
- 2. Ruchomy wspornik ustawić na wybranej wysokości tak, aby ciężarki spadając przechodziły przez środki okienek czujników fotoelektrycznych.
- 3. Nacisnąć przycisk START i sprawdzić działanie.
- 4. Wyzerować przyrząd.

Wyznaczenie momentu bezwładności przyrządu

Instrukcja wykonania ćwiczenia:

- 1. Wyznaczyć masę m ciężarków.
- 2. Zmierzyć promień r wybranego kółka dwustopniowego krążka, na który nawinięta jest nić.
- 3. Założyć wybraną ilość ciężarków i zgrać ich dolną krawędź z kreską na korpusie górnego czujnika fotoelektrycznego, wcisnąć przycisk START.
- 4. Odczytać na skali znajdującej się na kolumnie długość drogi spadania h ciężarków.
- 5. Nacisnąć przycisk START, odczytać czas spadania t ciężarków na drodze h.
- 6. Wyzerować układ.
- 7. Ponownie podnieść ciężarki. Zablokować układ.
- 8. Pomiar powtórzyć 20 razy dla wybranej wysokości h..
- 9. Wyznaczyć moment bezwładności I bryły ze wzoru roboczego.

Wzór roboczy:

gdzie:

g - przyspieszenie ziemskie.

$$I = mr^2 \left(\frac{gt^2}{2h} - 1 \right),$$

Badanie ruchu jednostajnie przyspieszonego

Instrukcja wykonania ćwiczenia:

- 1. Powtórzyć pomiary dla wysokości $h_{min} < h_y < h_{max}$, zmieniając wysokość ze skokiem 1-2 cm (10 pomiarów dla każdej wysokości h_y ; około 10 różnych wysokości h_y). Dla każdej wysokości określić średni czas spadania $< t_x >$.
- 2. Wykonać wykres liniowej zależności $h_y = f(\langle t_x \rangle^2) = A \langle t_x \rangle^2$.
- 3. Obliczyć nachylenie A prostej według wzoru (regresja liniowa):

$$A = \frac{n \sum x_i y_i - \sum x_i y_i}{n \sum x_i^2 - (\sum x_i^2)^2},$$

gdzie:

4. Wyznaczyć:

 $x_i=< t_{x_i}>^2$ - kwadrat średniego czasu spadania z kolejnych wysokości, $y_i=< h_{y_i}>$ - kolejne wysokości, n - liczba punktów w wykresie.

- _
- przyspieszenie ciężarków a=2A,
 - przyspieszenie kątowe bryły ε ,
 - wartość momentu siły |M|,
 - \bullet obliczyć moment bezwładności bryły Iz drugiej zasady dynamiki: $I=\frac{|M|}{|\varepsilon|}$

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności pomiarowych wielkości fizycznych prostych i złożonej/ych.
- 2. Wykres zależności $h_y = f(\langle t_x \rangle^2) = A \langle t_x \rangle^2$.

Uwagi:

- 1. Nie przesuwać ciężarków na krzyżaku. W przypadku naruszenia ich położeń starannie ustawić je tak, aby krzyżak znajdował się w równowadze obojętnej. Uzasadnić to w opracowaniu.
- 2. Szczegóły dotyczące ilości różnych obciążeń nici oraz użycie różnych promieni dwustopniowego krążka uzgodnić z prowadzącym zajęcia.

M.9. Wyznaczanie momentu siły tarcia za pomocą wahadła Oberbecka

Przyrządy
Cel ćwiczenia: do pobrania:

Celem ćwiczenia jest zbadanie jednostajnie przyspieszonego ruchu ciężarka oraz wyznaczenie momentu bezwładności wahadła Oberbecka. suwmiarka

Budowa przyrządu

Na pionowej kolumnie zamocowane są dwa wsporniki. Wspornik górny można przemieszczać wzdłuż kolumny i unieruchomić w dowolnym położeniu. Na obu wspornikach zamocowane są czujniki fotoelektryczne (fototranzystory) do pomiaru czasu spadania ciężarka . Na osi badanej bryły - krzyżaka z ciężarkami znajduje się dwustopniowy krążek z nawiniętą nicią i elektromagnes hamujący, umożliwiający zablokowanie ruchu krzyżaka. Na płycie czołowej milisekundomierza znajdują się przyciski SIEĆ, START i ZER (zerowanie) o następujących funkcjach: SIEĆ - wciśnięcie włącza napięcie zasilające i przyrząd zostaje automatycznie wyzerowany. ZER - zerowanie miernika przed każdym następnym pomiarem. START - wciśnięcie powoduje zwolnienie elektromagnesu blokującego krzyżak, wyciśnięcie blokuje ruch krzyżaka.

Przygotowanie przyrządu do pracy

- 1. Sprawdzić, czy ciężarki zawieszone na nici nie uderzają w korpusy czujników fotoelektrycznych. Ewentualnie wypoziomować przyrząd. Sprawdzić, czy krzyżak znajduje się w równowadze obojętnej.
- 2. Ruchomy wspornik ustawić na wybranej wysokości tak, aby ciężarki spadając przechodziły przez środki okienek czujników fotoelektrycznych.
- 3. Nacisnąć przycisk START i sprawdzić działanie.
- 4. Wyzerować przyrząd.

Instrukcja wykonania ćwiczenia:

1.

Wzór roboczy:

1.

Uwagi:

1.

M.10. Wyznaczanie momentów bezwładności bryły za pomocą wahadła torsyjnego

Przyrządy Cel ćwiczenia: do pobrania:

Celem ćwiczenia jest obliczenie momentu bezwładności walca, a następnie wyznaczenie momentu bezwładności bryły o nieregularnym kształcie wzdłuż trzech wzajemnie prostopadłych kierunków.

• suwmiarka

Wyznaczenie momentu bezwładności walca

Instrukcja wykonania ćwiczenia:

- 1. Zważyć walec i zanotować jego masę m.
- 2. Zmierzyć średnicę walca d.
- 3. Wyznaczyć moment bezwładności walca I ze wzoru roboczego.

Wzór roboczy:

$$I = \frac{1}{8}md^2$$

Wyznaczenie momentu bezwładności bryły o nieregularnym kształcie

Instrukcja wykonania ćwiczenia:

- 1. Podłączyć przyrząd do sieci zasilającej.
- 2. Wcisnąć przycisk **SIEĆ**.
- 3. Skręcając ramkę przyrządu zbliżyć jej wysięgnik do elektromagnesu.
- 4. Nacisnąć przycisk **ZER**, a następnie **START**. Po zliczeniu przez miernik 19 drgań skrętnych nacisnąć przycisk **STOP**. Zanotować czas drgań t dwudziestu drgań.
- 5. Obliczyć okres drgań T_0 ramki bez obciążenia.
- 6. Czynności 3-5 powtórzyć dziesięciokrotnie.
- 7. Umieścić w ramce walec. Powtarzając czynność 3-6 określić okres drgań T ramki z walcem.
- 8. Powtórzyć pomiar (czynności 3-6) mocując badaną bryłę w ramce wzdłuż trzech wzajemnie prostopadłych osi (x, y, z) i określić okres drgań T_i (i x, y lub z) dla każdego zamocowania.
- 9. Wyznaczyć momenty bezwładności bryły I_x , I_y oraz I_z ze wzoru roboczego.

Wzór roboczy:

$$I_i = \frac{T_i^2 - T_0^2}{T^2 - T_0^2} I,$$

gdzie:

I - moment bezwładności walca

Opracowanie wyników powinno zawierać:

1. Szacowanie niepewności wielkości prostych i złożonych (dla momentu bezwładności walca oraz momentu bezwładności bryły o nieregularnym kształcie dla każdego jej zamocowania).

M.11. Giroskop

Cel ćwiczenia:

Celem ćwiczenia jest zapoznanie się z zasadą działania giroskopu oraz wyznaczenie momentu bezwładności jego tarczy.

Instrukcja wykonania ćwiczenia:

- 1. Włączyć zasilanie przyrządu wciskając przycisk SIEĆ.
- 2. Za pomocą przesuwnego ciężarka o masie m ustawić dźwignię giroskopu prostopadle do osi pionowej.
- 3. Włączyć zasilanie silnika obracając potencjometrem REG. PRĘDKOŚCI.
- 4. Nastawić obroty silnika na około f=4000 obr/min.
- 5. Przesunąć ciężarek o około 2 cm Δr w lewo lub prawo.
- 6. Wcisnąć przycisk ZER. Wciśnięcie powoduje wyzerowanie układów bloku pomiarowego oraz wygenerowanie sygnału zezwolenia na pomiar.
- 7. Po obrocie giroskopu o kąt zawarty w przedziale 30°-60° wcisnąć przycisk STOP.
- 8. Odczytać wielkość kąta α i czasu t precesji.
- 9. Wyłączyć zasilanie silnika potencjometrem REG. PRĘDKOŚCI.
- 10. Pomiary powtórzyć 10 razy wykonując za każdym razem czynności 2-9.
- 11. Po zakończeniu pomiarów wyłączyć zasilanie przyrządu.
- 12. Obliczyć prędkość kątową precesji $\omega_p = \frac{\alpha}{t}$ dla każdego z pomiarów (**przed obliczeniem wartości** ω_p **kąt** α należy wyrazić w radianach).
- 13. Obliczyć prędkość kątową obrotów silnika $\omega = 2\pi f$.
- 14. Obliczyć moment bezwładności I tarczy giroskopu ze wzoru roboczego.

Wzór roboczy:

gdzie:

g - przyspieszenie ziemskie.

$$I = \frac{\Delta rmg}{\omega \omega_p},$$

Opracowanie wyników powinno zawierać:

1. Szacowanie niepewności pomiarowych dla wielkości fizycznych prostych i złożonej.

M.12. Badanie tarcia tocznego i momentu bezwładności kuli za pomocą wahadła nachylnego

Przyrządy
Cel ćwiczenia: do pobrania:

Celem ćwiczenia jest wyznaczenie współczynników tarcia tocznego oraz wyznaczenie współczynnika k dla kulki. Kulki i płytki wykonane są z: aluminium, mosiądzu i stali.

• suwmiarka

Instrukcja wykonania ćwiczenia:

- 1. Wyznaczyć średnicę kulki 2r.
- 2. Wcisnąć przełącznik SIEĆ obwodu elektrycznego.
- 3. Ramię nachylne przyrządu pochylić o kąt β =45°.
- 4. Kule wychylić z położenia równowagi i kat $\alpha_0 = 5^{\circ}$.
- 5. Zwolnić kule jednocześnie wciskając przycisk ZER.
- 6. W momencie wskazania przez licznik okresów liczby 9 wcisnąć przycisk STOP i jednocześnie odczytać kąt α_n wychylenia wahadła po dziesięciu pełnych wahnięciach.
- 7. Z licznika czasu odczytać czas t_1 trwania dziesięciu pełnych drgań i obliczyć okres drgań $T_1=t_1/10$.
- 8. Dla ustalonego kąta β wykonać dziesięć pomiarów.
- 9. Pomiary powtórzyć kolejno dla dwu następnych kulek i/lub płytek, powtarzając czynności określone w punktach 3–7.
- 10. Ustawić ramię nachylne przyrządu w pozycji pionowej i zmierzyć okres drgań T_2 wahadła matematycznego (kulka nie może dotykać płytki).
- 11. Wyznaczyć współczynnik tarcia tocznego μ_r oraz współczynnika k kulki ze wzorów roboczych (**Kąty** α_0 **i** α_n należy wyrazić w radianach).

Wzory robocze:

gdzie: n - liczba drgań wykonanych przez wahadło.

$$\mu_r = r \, tg\beta \left(\frac{\alpha_0 - \alpha_n}{4n}\right),\,$$

$$k = \frac{T_1^2}{T_2^2} sin\beta - 1,$$

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności pomiarowych prostych i złożonych dla μ_r i k wyznaczonych dla każdego z badanych układów.
- 2. Porównanie wartości współczynnika k kulki z wartością 2/5.

Uwagi:

1. Przed przystąpieniem do wykonywania ćwiczenia należy uzgodnić z prowadzącym zajęcia liczbę i konfiguracje badanych układów płytka-kulka.

M.13. Badanie prawa Hooke'a

Cel ćwiczenia:

Celem ćwiczenia jest sprawdzenie prawa Hooke'a i wyznaczenie współczynników sprężystości sprężyn.

Instrukcja wykonania ćwiczenia:

- 1. Wyznaczyć masę każdego z obciążników $(m_i, i=1,2,...,7)$.
- 2. Odczytać położenie początkowe swobodnego końca jednej ze sprężyn x_0 .
- 3. Zawiesić pierwszy obciążnik o masie m_1 i odczytać położenie swobodnego końca sprężyny x_1 .
- 4. Dokładać kolejne obciążniki o masach m_i i odczytywać położenia swobodnego końca sprężyny x_i .
- 5. Obliczyć wydłużenie sprężyny $X_i = x_i x_0$ dla poszczególnych obciążników.
- 6. Obliczyć sumy mas obciążników zawieszonych na sprężynie $M_i = \sum_{k=1}^{i} m_i$ (*i* liczba zawieszonych obciążników).
- 7. Wyniki zestawić w tabeli:

Lp.	M_i [kg]	X_i [m]	k [N/m]
1.			
2.			
:			

8. Czynności 2-7 powtórzyć dla drugiej ze sprężyn.

Wzór roboczy:

 $g=9,81m/s^2$ - przyspieszenie ziemskie

$$k = \frac{Mg}{X}$$

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności pomiarowych dla stałej sprężystości sprężyn.
- 2. Wykres wydłużenia (X) sprężyn w funkcji przyłożonej siły F = mg (w jednym układzie współrzędnych dla obu sprężyn). Należy sprawdzić, czy otrzymana zależność jest liniową (szczegóły ustalić z osobą prowadzącą zajęcia).

Uwagi:

- 1. Potraktować serie wartości k (osobno dla każdej ze sprężyn) jako serie pomiarowe i przyjąć, że: $u_{C}(k) = u_{A}(k)$.
- 2. Ćwiczenie zostało przygotowane przez studentów z koła naukowego Nabla.

M.14. Wyznaczanie modułu Younga za pomocą strzałki ugięcia

Przyrządy
Cel ćwiczenia: do pobrania:

Celem ćwiczenia jest sprawdzeni prawa Hooke'a i wyznaczenie modułu Younga za pomocą strzałki ugięcia takich materiałów, jak: miedź, mosiądz, aluminium i stal.

- śruba mikrometryczna
- miara metrowa

Instrukcja wykonania ćwiczenia:

- 1. Zmierzyć odległość l pomiędzy punktami oparcia pręta.
- 2. Zmierzyć śrubą mikrometryczną wymiary poprzeczne pręta (dla pręta o przekroju kołowym średnica d, dla pręta o przekroju kwadratowym długość boku kwadratu a) pomiary powtórzyć dziesięciokrotnie.
- 3. Zważyć ciężarki (m_i) .
- 4. Założyć na środek pręta ramkę do zaczepiania ciężarków i umieścić pręt na wspornikach statywu (w przypadku pręta o przekroju kwadratowym należy zwrócić uwagę na to, aby jego bok był ustawiony poziomo). W trakcie umieszczania pręta trzpień pomiarowy czujnika mikrometrycznego powinien być wciśnięty.
- 5. Sprawdzić, czy ramka do zawieszania ciężarków oraz dotykający ją trzpień pomiarowy znajdują się na środku odległości pomiędzy wspornikami.
- 6. Wyzerować czujnik mikrometryczny.
- 7. Obciążać ramkę kolejnymi ciężarkami i mierzyć strzałkę ugięcia h_i .
- 8. Zdjąć ciężarki.
- 9. Przesunąć pręt w wzdłuż osi x i/lub obrócić go wokół jego osi, a następnie wykonać kolejne pomiary (punkty 5-8). Należy otrzymać po 10 pomiarów dla każdego obciążenia.
- 10. Wyznaczyć ze wzoru roboczego wartość modułu Younga E badanego materiału (obliczenia należy przeprowadzić dla maksymalnego obciążenia).

Wzory robocze:

$$E_{\Box} = \frac{mgl^3}{4a^4h}, E_{\circ} = \frac{4mgl^3}{3\pi d^4h},$$

gdzie:

g - przyspieszenie ziemskie.

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności pomiarowych wielkości fizycznych prostych i złożonych dla każdego z badanych prętów.
- 2. Porównanie wyznaczonych wartości modułu Younga badanych materiałów z wartościami tablicowymi.
- 3. Wykres zależności strzałki ugięcia od obciążenia h(mg) dla każdego z badanych prętów i sprawdzenie prawa Hooke'a.

Uwagi:

- 1. Ilość prętów do badań uzgodnić z prowadzącym.
- 2. Przed przystąpieniem do wykonywania ćwiczenia należy przemyśleć i zaprojektować tabelkę pomiarową.

M.15. Wyznaczenie modułu Younga

Cel ćwiczenia:	Przyrządy do pobrania:
Celem ćwiczenia jest sprawdzenie prawa Hooke'a i wyznaczenia modułu Younga drutu stalowego.	• śruba mikrometryczna
	• miara

Instrukcja wykonania ćwiczenia:

- 1. Zważyć poszczególne obciążniki (6szt.) $m_1, m_2,..., m_6$.
- 2. Zmierzyć długość drutu L za pomocą miary milimetrowej.
- 3. Zmierzyć mikromierzem w dziesięciu miejscach średnicę drutu d.
- 4. W razie konieczności, należy ustawić poziomicę kręcąc śrubą na górnej części przyrządu.
- 5. Śrubą mikrometryczną od strony spodniej wyzerować miernik przesuwu liniowego. **Zwrócić uwagę na to,** aby nie dokręcać śruby, gdy wskazówka miernika przeszła w położenie poniżej 0 mm i 0 setnych mm.
- 6. Umieścić pierwszy obciążnik na szalce i po ustawieniu poziomicy odczytać wydłużenie drutu ΔL_1 .
- 7. Dokładać kolejne obciążniki na szalkę i po ustawieniu poziomicy odczytać wydłużenie drutu ΔL_i .
- 8. Po nałożeniu ostatniego obciążnika i wykonaniu pomiarów należy ściągać kolejno obciążniki i odczytywać wskazania miernika $\Delta L_i'$
- 9. Wyznaczyć wartość modułu Younga E dla maksymalnego obciażenia ze wzoru roboczego.

Wzór roboczy:

gdzie:
$$g$$
 - przyspieszenie ziemskie.

$$E = \frac{4mgL}{\Delta L\pi d^2},$$

- 1. Szacowanie niepewności pomiarowych wielkości fizycznych prostych i złożonej.
- 2. Porównanie wyznaczonej wartości modułu Younga z wartością tablicową.
- 3. Wykres zależności odkształcenia od naprężenia $\varepsilon = f(\sigma)$, gdzie: $\varepsilon = \frac{\Delta L}{L}$, $\sigma = \frac{4mg}{\pi d^2}$. Należy sprawdzić prawo Hooke'a (aproksymacja liniowa) oraz wyznaczyć moduł Younga z nachylenia wykresu.

M.16. Wyznaczanie współczynnika lepkości cieczy metodą Stokesa

Cel ćwiczenia:	Przyrządy do pobrania:
Celem ćwiczenia jest wyznaczenie współczynnika lepkości dynamicznej gliceryny metodą Stokesa.	stoperśruba mikrometryczna
	• miara metrowa

Instrukcja wykonania ćwiczenia:

- 1. Wybrać dziesięć kulek oraz zmierzyć mikromierzem ich średnice 2r.
- 2. Zmierzyć odległość l od górnej kreski do dolnej kreski namalowanej na naczyniu z gliceryną.
- 3. Wrzucać kolejno kulki mierząc czas t, w jakim przebywają odległość l.
- 4. Sprawdzić temperaturę w laboratorium (przyjąć, że temperatura gliceryny jest taka sama, jak temperatura powietrza w laboratorium).
- 5. Obliczyć wartość współczynnika lepkości dynamicznej η ze wzoru roboczego.

Wzór roboczy:

$$\eta = \frac{2tr^2}{9l} (\rho_s - \rho_g) g,$$

gdzie:

 ρ_s - gęstość stali (7,65·10³ kg/m³), ρ_g - gęstość gliceryny (1,26·10³ kg/m³), g - przyspieszenie ziemskie (9,81 m/s²).

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności wielkości prostych i złożonej.
- 2. Porównanie otrzymanej wartości współczynnika lepkości gliceryny z wartością tablicową (sprawdzoną dla temperatury, w której wykonywany był pomiar).

Uwagi:

1. Przy szacowaniu zwrócić uwagę, dla jakiej wielkości fizycznej (r - promień kulki, czy d - średnica kulki) szacowana jest niepewność: $\Delta r = \frac{1}{2}\Delta d,\ u(r) = \frac{1}{2}u(d).$

M.17. Wyznaczanie współczynnika lepkości cieczy za pomocą wiskozymetru Höpplera

Przyrządy
Cel ćwiczenia: do pobrania:

Celem ćwiczenia jest wyznaczenie współczynnika lepkości dynamicznej wody destylowanej za pomocą wiskozymetru Höpplera.

stoper

Instrukcja wykonania ćwiczenia:

- 1. Wypoziomować przyrząd. Odczytać temperaturę badanej cieczy (T_1) .
- Odciągnąć sprężynowy zaczep u dołu podstawy i obrócić szklane naczynie o 180°. Odczekać do chwili przesunięcia się kulki do końca szklanej rurki.
- 3. Odwrócić naczynie do poprzedniego położenia i zabezpieczyć sprężynowym zaczepem. Ustawić oczy na takiej wysokości, aby linie górnego znacznika, widziane po obu stronach wewnętrznej rurki, pokrywały się. W chwili, gdy górna część powierzchni kulki będzie mijała ten znacznik, uruchomić sekundomierz. Ustawić oczy na wysokości odpowiadającej położeniu dolnego znacznika i w chwili, gdy górna część kulki będzie mijała ten znaczek, zatrzymać sekundomierz. Odczytać czas t opadania kulki.
- 4. Pomiar opisany w pkt. 3 powtórzyć jeszcze 9 razy. Po ostatnim pomiarze odczytać ponownie temperaturę badanej cieczy (T_2) .
- 5. Wyznaczyć wartość współczynnika lepkości dynamicznej η ze wzoru roboczego.

Wzór roboczy:

$$\eta = K \left(\rho_k - \rho_c \right) t,$$

gdzie:

K - stała kulki (7,214·10⁻⁸ m²s⁻²),

 ρ_k - gęstość kulki (2,395·10³ kg/m³),

 ρ_c - gęstość badanej cieczy odczytana z tablic dla temperatury T $(\mathrm{T}{=}\frac{T_1+T_2}{2}).$

- 1. Szacowanie niepewności wielkości prostych i złożonej.
- 2. Porównanie otrzymanej wartości współczynnika lepkości wody destylowanej z wartością tablicową (sprawdzoną dla temperatury, w której wykonywany był pomiar).

M.18. Wyznaczanie współczynnika tłumienia ośrodka lepkiego

Cel ćwiczenia:	Przyrządy do pobrania:
Celem ćwiczenia jest zapoznanie się z wpływem lepkości ośrodka η (poprzez tarcie wi-	• stoper
skotyczne) na ruch wahadła torsyjnego.	• suwmiarka

Instrukcja wykonania ćwiczenia:

1. Wyznaczyć masę - m oraz średnicę - 2r walca zawieszonego na strunie i obliczyć jego moment bezwładności I. Dla walca jest on wyrażony wzorem:

$$I = \frac{1}{2}mr^2.$$

- 2. Ustawić skalę kątomierza tak aby wskazówka wskazywała 0.
- 3. Obracając pokrętło mocujące strunę (u góry przyrządu) wychylić wahadło z położenia równowagi.
- 4. Zmierzyć czas dziesięciu drgań i wyznaczyć okres drgań wahadła T_0 .
- 5. Obliczyć moment skręcający struny D ze wzoru:

$$T_0 = 2\pi \sqrt{\frac{I}{D}}.$$

- 6. Zanurzyć wahadło w badanej cieczy na taką głębokość, aby jego górna krawędź znajdowała się ok 1 cm pod powierzchnią cieczy.
- 7. Skręcić wahadło (patrz pkt. 3) i odczytać wartość maksymalnego skręcenia ϕ_0 jednocześnie włączając stoper.
- 8. Odczytywać kolejne maksymalne skręcenia wahadła ϕ_n (po tej samej stronie) oraz odpowiadające im czasy t_n . Oczytów dokonywać do momentu, w którym kąt skręcenia ϕ_n będzie miał wartość mniejszą niż 10 stopni.
- 9. Obliczyć stosunek dwóch kolejnych amplitud po tej samej stronie położenia równowagi:

$$\frac{\phi_n}{\phi_{n+1}} = \frac{e^{-\beta t}}{e^{-\beta(t+T_w)}} = e^{\beta T_w},$$

gdzie: T_w jest okresem drgań wiskotycznie tłumionych, β - współczynnik tłumienia ośrodka.

10. Wyznaczyć logarytmiczny dekrament tłumienia d:

$$d = \ln \frac{\phi_n}{\phi_{n+1}} = \beta T_w.$$

11. Pomiary (patrz pkty. 6-10) powtórzyć dla drugiej cieczy.

Wzór roboczy:

d - logarytmiczny dekrament tłumienia, T_w - okres drgań wiskotycznie tłumionych.

$$\beta = \frac{d}{T_w}$$

Opracowanie wyników powinno zawierać:

- 1. Wykres zależności $\phi(t)$ dla obu badanych cieczy.
- 2. Szacowanie niepewności pomiarowych prostych i złożonych.

Uwagi:

1. Przed zanurzeniem wahadła w badanej cieczy jak również po zakończeniu pomiarów należy je opłukać wodą destylowaną i wysuszyć, tak aby badane ciecze się nie mieszały w trakcie wykonywania kolejnych pomiarów.

M.19. Wyznaczanie wartości krytycznej liczby Reynoldsa

Cel ćwiczenia:	Przyrządy do pobrania:
Celem ćwiczenia jest zapoznanie z cechami turbulentnego i laminarnego przepływu cie-	• stoper
czy, zaobserwowanie zmiany charakteru przepływu cieczy rzeczywistej przez kapilarę wraz ze zmianą prędkości przepływu (przejście z przepływu turbulentnego w laminar-	• suwmiarka
ny).	• miara
1.5 y.	metrowa
	• termometr

Instrukcja wykonania ćwiczenia:

- 1. Zakręcić zawór wypływowy ze zbiornika.
- 2. Wyznaczyć średnicę zbiornika 2R oraz kapilary przepływowej 2r.
- 3. Napełnić zbiornik wodą do poziomu H nie przekraczającego wysokości rurek piezometrycznych.
- 4. Odczytać temperaturę wody T.
- 5. Odkręcić zawór wypływowy i włączyć stoper.
- 6. Zanotować czasy t, po których poziom wody H w zbiorniku obniży się o kolejne $\Delta H = 5$ cm, jednocześnie odczytać wysokość poziomu wody w rurkach piezometrycznych h_1 oraz h_2 .
- 7. Wyznaczyć różnicę ciśnien jaka powstaje na końcach kapilary:

$$\Delta p = p_1 - p_2 = \rho g \Delta h,$$

gdzie: ρ - gęstość wody w danej temparaturze T, g - przyspieszenie ziemski, $\Delta h = |h_1 - h_2|$.

8. Obliczyć prędkość przepływu cieczy przez kapilarę:

$$v = \frac{V}{St} = \frac{\rho g r^2}{8\eta l} \Delta h,$$

gdzie: $V = \pi R^2 \Delta H$ - objętość przepływającej cieczy, S - przekrój poprzeczny kapilary, η - współczynnik lepkości dynamicznej cieczy, l - odległość między rurkami piezometrycznymi.

- 9. Sporządzić wykres zależności $\Delta h(v)$. Z otrzymanego wykresu odczytać wartość prędkości v_{gr} , przy której krzywa zmienia swój charakter (w miejscu tym następuje przejście z przepływu laminarnego w turbulentny).
- 10. Dla odczytanej prędkości v_{gr} wyznaczyć graniczną wartość liczby Reynoldsa $R_{e_{kryt}}$.

Wzór roboczy:

$$R_{e_{kryt}} = \frac{\rho v_g r}{\eta}$$

 ρ - gęstość wody w temperaturze T, v_{gr} - prędkość graniczna odczytana z wykresu, r - promień kapilary, η - współczynnik lepkości dynamicznej cieczy w temperaturze T.

Opracowanie wyników powinno zawierać:

- 1. Wykres zależności $\Delta h(v)$.
- 2. Szacowanie niepewności pomiarowych prostych i złożonych.

Uwagi:

- 1. Rozlaną wodę natychmiast zebrać i miejsce to wytrzeć do sucha. Mokra podłoga grozi WYPADKIEM!!!
- 2. Zrócić uwagę aby woda nie przelewała się przez rurki piezometryczne.
- 3. Wypływającą wodę z kapilary zbierać do podstawionego pojemnika.
- 4. Po zakończeniu pomiarów opróżnić całkowicie zbiornik na wodę.

M.20a. Kalibracja piknometru gazowego i wyznaczanie gęstości materiałów

	Przyrządy
Cel ćwiczenia:	do pobrania:

Celem ćwiczenia jest kalibracja piknometru gazowego i wyznaczenie gęstości materiałów takich jak: metale, materiały biologiczne i syntetyczne.

- śruba mikrometryczna
- zestaw kulek kalibracyjnych

FIZYCZNE PODSTAWY POMIARU OBJĘTOŚCI PIKNOMETREM GAZOWYM

Piknometr gazowy składa się z uszczelnionej komory pomiarowej, tłoka oraz czujnika ciśnienia. Tłok służy do zwiększenia objętości komory pomiarowej o stałą wartość. Podczas zwiększania objętości komory następuje spadek ciśnienia, natomiast temperatura pozostaje stała. Równanie politropy opisujące stan gazu przyjmuje postać

$$pV^k = const,$$

w którym k (wykładnik politropy) przyjmuje wartość 1 w przypadku przemiany izotermicznej.

Cykl pomiarowy składa się z dwóch etapów. Pierwszy etap to pomiar ciśnienia przed i po rozprężeniu medium pomiarowego (powietrza) w piknometrze, gdy komora piknometru jest pusta. Drugi etap to pomiar ciśnienia przed i po rozprężeniu powietrza gdy w komorze piknometru znajduje się obiekt, którego objętość chcemy wyznaczyć. Schemat pomiarowy przedstawia rysunek 1.

Rysunek 1. Zasada pomiaru: a) cykl pracy dla pustej komory, b) cykl pracy dla pełnej komory $(V_1 - \text{objętość} \text{komory przed rozprężeniem}, V_2 - \text{stała objętość}, V_z - \text{objętość obiektu}).$

Dla każdego z cykli pomiarowych można zapisać równania izoterm w postaci:

$$p_1^0 V_1 = p_2^0 (V_1 + V_2),$$

$$p_1^z (V_1 - V_z) = p_2^z (V_1 + V_2 - V_z),$$

w których:

 p_1^0 - ciśnienie w pustej komorze przed rozprężeniem,

 p_2^0 - ciśnienie w pustej komorze po rozprężeniem,

 V_1 - objętość pustej komory przed rozprężeniem,

 V_2 - objętość, o którą zwiększa się objętość pustej komory po rozprężeniu.

 p_1^z - ciśnienie w komorze z obiektem przed rozprężeniem,

 p_2^z - ciśnienie w komorze z obiektem po rozprężeniu,

 V_z - nieznana objętość obiektu.

Rozwiązanie tego układu równań ze względu na V_z jest postaci:

$$V_z = V_1 \left(1 - \frac{\frac{p_1^0}{p_2^0} - 1}{\frac{p_2^z}{p_2^z} - 1} \right).$$

Instrukcja wykonania ćwiczenia:

- 1. Wykonaj po dziesięć pomiarów średnicy d dla każdej kulki z zestawu kulek kalibracyjnych.
- 2. Upewnij się, że komora piknometru jest otwarta. Jeśli jest zamknięta otwórz ją.
- 3. Upewnij się, że tłok piknometru jest wsunięty. Jeśli tłok jest wysunięty wsuń go.
- 4. Zamknij pustą komorę piknometru i odczytaj ciśnienie p_1^0 .
- 5. Wysuń tłok piknometru i odczytaj ciśnienie p_2^0 . Otwórz komorę piknometru i wsuń tłok.
- 6. Umieść pierwszą kulkę kalibracyjną w komorze piknometru, zamknij komorę i odczytaj ciśnienie p_1^z .
- 7. Wysuń tłok piknometru i odczytaj ciśnienie p_2^2 . Otwórz komorę piknometru i wsuń tłok.
- 8. Powtórz pięć razy czynności opisane w punktach od 1 do 7.
- 9. Powtórz czynności opisane w punktach od 1 do 8 dla pozostałych kulek z zestawu kalibracyjnego
- 10. Na podstawie pomiaru średnicy d wyznacz objętość V kulek kalibracyjnych.
- 11. Na podstawie pomiaru ciśnień uzyskanych dla kulek kalibracyjnych wyznacz wielkość x opisaną równaniem:

$$x = 1 - \frac{\frac{p_1^0}{p_2^0} - 1}{\frac{p_1^2}{p_2^2} - 1}.$$

- 12. Wykonaj wykres kalibracyjny V(x) i wyznacz współczynniki a i b funkcji kalibracyjnej V(x) = ax + b.
- 13. Wykonaj pięć powtórzeń pomiarów ciśnień p_1^z i p_2^z dla próbek, dla których wyznaczana będzie gęstość (wybór próbek ustalić z prowadzącym).
- 14. Wykonaj pomiar masy m próbek, dla których wyznaczana będzie gęstość. W przypadku, gdy masa próbki jest zbliżona do dokładności wagi, wykonaj pomiar masy dla 5 preparatów umieszczając je razem na wadze.
- 15. Na podstawie zaproponowanej funkcji kalibracyjnej i wielkości x wyznaczonej dla próbek z punktu 13., wyznacz objętość badanych obiektów.
- 16. Korzystając ze wzoru

$$\rho = \frac{m}{V}$$

wyznacz gęstość badanych materiałów. W przypadku, gdy pomiar masy wyznaczony jest dla pięciu próbek jednocześnie, to do wzoru należy podstawić sumę objętości tych próbek.

Opracowanie wyników powinno zawierać:

- 1. Wykres kalibracyjny
- 2. Szacowanie niepewności wielkości prostych i złożonych dla każdej z badanych substancji.
- 3. Porównanie otrzymanych wartości gestości z wartościami tablicowymi.

Uwagi:

1. Ilość oraz rodzaj próbek ustalić z prowadzącym.

M.20b. Wyznaczanie gęstości materiałów piknometrem gazowym

Przyrządy
Cel ćwiczenia: do pobrania:

Celem ćwiczenia jest wyznaczenie gęstości materiałów takich jak: metale, materiały biologiczne i syntetyczne z zastosowaniem piknometru gazowego.

FIZYCZNE PODSTAWY POMIARU OBJĘTOŚCI PIKNOMETREM GAZOWYM

Piknometr gazowy składa się z uszczelnionej komory pomiarowej, tłoka oraz czujnika ciśnienia. Tłok służy do zwiększenia objętości komory pomiarowej o stałą wartość. Podczas zwiększania objętości komory następuje spadek ciśnienia, natomiast temperatura pozostaje stała. Równanie politropy opisujące stan gazu przyjmuje postać

$$pV^k = const,$$

w którym k (wykładnik politropy) przyjmuje wartość 1 w przypadku przemiany izotermicznej.

Cykl pomiarowy składa się z dwóch etapów. Pierwszy etap to pomiar ciśnienia przed i po rozprężeniu medium pomiarowego (powietrza) w piknometrze, gdy komora piknometru jest pusta. Drugi etap to pomiar ciśnienia przed i po rozprężeniu powietrza gdy w komorze piknometru znajduje się obiekt, którego objętość chcemy wyznaczyć. Schemat pomiarowy przedstawia rysunek 1.

Rysunek 1. Zasada pomiaru: a) cykl pracy dla pustej komory, b) cykl pracy dla pełnej komory $(V_1$ – objętość komory przed rozprężeniem, V_2 – stała objętość, V_z – objętość obiektu).

Dla każdego z cykli pomiarowych można zapisać równania izoterm w postaci:

$$p_1^0 V_1 = p_2^0 (V_1 + V_2),$$

$$p_1^z (V_1 - V_z) = p_2^z (V_1 + V_2 - V_z),$$

w których:

 p_1^0 - ciśnienie w pustej komorze przed rozprężeniem,

 p_2^0 - ciśnienie w pustej komorze po rozprężeniem,

 V_1 - objętość pustej komory przed rozprężeniem,

 V_2 - objętość, o którą zwiększa się objętość pustej komory po rozprężeniu.

 p_1^z - ciśnienie w komorze z obiektem przed rozprężeniem,

 p_2^z - ciśnienie w komorze z obiektem po rozprężeniu,

 V_z - nieznana objętość obiektu.

Rozwiązanie tego układu równań ze względu na V_z jest postaci:

$$V_z = V_1 \left(1 - \frac{\frac{p_1^0}{p_2^0} - 1}{\frac{p_2^z}{p_2^z} - 1} \right).$$

Instrukcja wykonania ćwiczenia:

- 1. Wykonaj pomiar masy m pierwszej/kolejnej z próbek. W przypadku gdy masa próbki jest zbliżona do dokładności wagi, wykonaj pomiar masy dla pięciu próbek tego samego rodzaju jednocześnie.
- 2. Upewnij się, że komora piknometru jest otwarta. Jeśli jest zamknięta otwórz ją.
- 3. Upewnij się, że tłok piknometru jest wsunięty. Jeśli tłok jest wysunięty wsuń go.
- 4. Zamknij pustą komorę piknometru i odczytaj ciśnienie p_1^0 .
- 5. Wysuń tłok piknometru i odczytaj ciśnienie p_2^0 . Otwórz komorę piknometru i wsuń tłok.
- 6. Umieść badane ciało w komorze piknometru, zamknij komorę i odczytaj ciśnienie p_1^z .
- 7. Wysuń tłok piknometru i odczytaj ciśnienie p_2^z . Otwórz komorę piknometru i wsuń tłok.
- 8. Powtórz pięć razy czynności opisane w punktach od 2 do 7.
- 9. Powtórz czynności opisane w punktach od 1 do 8 dla pozostałych materiałów.
- 10. Wyznacz objętość próbek na podstawie równania:

$$V_z = V_1 \left(1 - rac{rac{p_1^0}{p_2^0} - 1}{rac{p_1^z}{p_2^z} - 1}
ight),$$

w którym: $V_1 = 482,91mm^3, u_c(V_1) = 0,25mm^3.$

11. Korzystając ze wzoru

$$\rho = \frac{m}{V}$$

wyznacz gęstość badanych materiałów. W przypadku, gdy pomiar masy wyznaczony jest dla pięciu próbek jednocześnie, to do wzoru należy podstawić sumę objętości tych próbek.

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności wielkości prostych i złożonych dla każdej z badanych substancji.
- 2. Porównanie otrzymanych wartości gestości z wartościami tablicowymi.

Uwagi:

1. Ilość oraz rodzaj próbek ustalić z prowadzącym.

O.1. Pomiar ogniskowej soczewki za podstawie odległości obrazu i przedmiotu od soczewki

Cel ćwiczenia: Przyrządy do pobrania:

Celem ćwiczenia jest zapoznanie się z zasadą tworzenia obrazów przez soczewki oraz wyznaczenie ogniskowej soczewki.

• miara metrowa

Instrukcja wykonania ćwiczenia:

- 1. Włączyć źródło światła.
- 2. Ustawić ekran na końcu ławy optycznej i przesuwać soczewkę do otrzymania ostrego obrazu na ekranie.
- 3. Zmierzyć odległości x przedmiotu od soczewki oraz y obrazu od soczewki.
- 4. Pomiar powtórzyć dziesięciokrotnie, za każdym razem zmniejszając o około 2-3 cm odległość ekranu od przedmiotu i korygując ustawienie soczewki tak, aby na ekranie otrzymać ostry obraz przedmiotu.
- 5. Dla każdej pary x i y obliczyć ze wzoru roboczego wartość ogniskowej soczewki (f).
- 6. Obliczyć średnią wartość f i ją przyjąć za wartość ogniskowej soczewki.

Wzór roboczy:

$$f = \frac{xy}{x+y}$$

Opracowanie wyników powinno zawierać:

1. Szacowanie niepewności pomiarowych dla ogniskowej soczewki.

Uwagi:

1. Potraktować serię wartości f jako serię pomiarową i przyjąć, że: $u_{C}\left(f\right)=u_{A}\left(f\right)$.

O.2. Wyznaczanie powiększenia mikroskopu i pomiar małych odległości

Cel ćwiczenia:	Przyrządy do pobrania:
Celem ćwiczenia jest zapoznanie się obsługą mikroskopu, wyznaczenie jego powiększenia oraz wyznaczenie grubości włosa.	• płytka wzorcowa
	• płytka z włosem

Wyznaczanie powiększenia mikroskopu

Instrukcja wykonania ćwiczenia:

- 1. Ustawić źródło światła oraz lusterko mikroskopu tak, aby uzyskać w okularze (x5 lub x10) możliwie jasne pole widzenia.
- 2. Pokrętłem przesuwu zgrubnego (śruba makrometryczna) obniżyć stolik i zamocować na nim płytkę z podziałką wzorcową (napisem ku górze).
- 3. Operując pokrętłem przesuwu zgrubnego podnieść stolik tak, aby obiektyw znalazł się w odległości około 1 mm od płytki. Należy uważać aby nie podnosić go wyżej, gdyż grozi to zniszczeniem płytki i uszkodzeniem obiektywu.
- 4. Za pomocą odpowiednich pokręteł xy stolika ustawić podziałkę na płytce wzorcowej bezpośrednio pod obiektywem.
- 5. Obracać śrubę mikrometryczną aż do uzyskania ostrego obrazu podziałki na płytce wzorcowej.
- 6. Obracając podziałkę pomiarową (układ z podziałką pomiarową przy okularze) poprawić jej ustawienie w taki sposób, aby jej kierunek pokrywał się z kierunkiem przesuwu skrzyżowania rys w okularze mikrometrycznym.
- 7. Za pomocą śruby mikrometrycznej okularu ustawić skrzyżowanie rys okularu na jednej z kresek podziałki wzorcowej, po lewej stronie pola widzenia. Odczytać położenie L_1 (całkowitą ilość milimetrów odczytujemy w okularze mikrometrycznym, setne części milimetra na bębnie jego pokrętła). Przesunąć skrzyżowanie rys o n kresek na skali wzorcowej w prawo i odczytać jej położenie L_2 .
- 8. Nie zmieniając liczby kresek n powtórzyć 10 razy pomiary. Każdy pomiar można zaczynać od tej samej kreski (do wzoru roboczego wstawiamy wtedy uśrednione wartości L_1 oraz L_2) lub od innej (liczymy dla każdej pary położeń L_1 i L_2 różnicę $L=L_2-L_1$ i średnią wartość L wstawiamy do wzoru roboczego).
- 9. Ze wzoru roboczego wyznaczyć powiększenie mikroskopu k.

Wzór roboczy:

$$k = \frac{L_2 - L_1}{nd},$$

gdzie: d=0,050 mm (odległość pomiędzy sąsiednimi kreskami na skali wzorcowej).

Wyznaczanie grubości włosa

Instrukcja wykonania ćwiczenia:

- 1. Zastąpić płytkę wzorcową płytką z włosem, którego grubość należy określić.
- 2. Ustawić ostrość obrazu i położenie układu z podziałką pomiarową (podobnie jak w punktach 3-6 instrukcji: WYZNACZANIE POWIĘKSZENIA MIKROSKOPU).
- 3. Odczytać położenia L_1 i L_2 brzegów włosa.
- 4. Pomiar powtórzyć dziesięciokrotnie (Uwaga: nie zmieniać położenia włosa).
- 5. Ze wzoru roboczego wyznaczyć grubość włosa x.

Wzór roboczy:

$$x = \frac{L_2 - L_1}{k}$$

Opracowanie wyników powinno zawierać:

1. Szacowanie niepewności pomiarowych wielkości fizycznych prostych i złożonych (szacowanie niepewności należy przeprowadzić zarówno dla powiększenia mikroskopu, jak i grubości włosa).

${f Uwagi:}$

- 1. W trakcie pomiarów nie należy zmieniać ustawienia śrub przesuwu stolika xy oraz śrub odpowiadających za ostrość obrazu.
- 2. Nie szacujemy niepewności pomiarowych dla n.
- 3. Jeżeli do wzoru roboczego była wstawiana średnia wartość $L = L_2 L_1$, to liczymy $u_A(L)$ dla serii wartości L. Należy wówczas pamiętać, że w takim przypadku $u_B(L) = \sqrt{u_B^2(L_1) + u_B^2(L_2)}$.

O.3. Wyznaczanie współczynnika załamania za pomocą mikroskopu

Cel ćwiczenia:	Przyrządy do pobrania:
Celem ćwiczenia jest zapoznanie się z obsługą mikroskopu oraz wyznaczenie współczynników załamania szkła i pleksi.	• śruba mikrometryczna
	• płytka szklana
	• płytka z pleksi

Instrukcja wykonania ćwiczenia:

- 1. Zmierzyć grubość d badanej płytki za pomocą mikromierza w dziesięciu miejscach w pobliżu narysowanych na niej linii.
- 2. Zamocować płytkę w uchwycie stolika mikroskopu. Ustawić lusterko w taki sposób, aby uzyskać jasne pole widzenia (obiektyw x5 lub x10).
- 3. Przesunąć płytkę tak, aby w polu widzenia znalazł się obraz przecięcia obu linii.
- 4. Obracać śrubą mikrometryczną mikroskopu tak, aby w polu widzenia widoczna była tylko jedna z linii.
- 5. Odczytać położenie początkowe na bębnie śruby mikrometrycznej.
- 6. Obracać śrubą mikrometryczną mikroskopu należy liczyć ilość działek (h), aż do uzyskania ostrego obrazu drugiej linii (jeden pełny obrót śruby mikrometrycznej = 50 działek).
- 7. Pomiar (czynności 3-6) powtórzyć dziesięć razy.
- 8. Wyznaczyć współczynnik załamania n badanego materiału ze wzoru roboczego.
- 9. Zmienić badaną płytkę na drugą i wyznaczyć jej współczynnik załamania (czynności 2-8).

Wzór roboczy:

$$n = \frac{d}{hk},$$
 gdzie:
$$k=1,14\cdot10^{-2} \text{ mm.}$$

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności pomiarowych wielkości fizycznych prostych i złożonych dla obu badanych materiałów.
- 2. Porównanie otrzymanych wartości współczynników załamania szkła oraz pleksi z wartościami tablicowymi.

Uwagi:

1. Jako niepewność całkowitą dla k należy przyjąć $u_c(k)=0.03\cdot10^{-2}$ mm.

O.4. Wyznaczanie stężenia roztworów gliceryny za pomocą refraktometru Abbego

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie współczynników załamania wodnych roztworów gliceryny i, na tej podstawie, określenie ich stężenia.

Instrukcja wykonania ćwiczenia:

- 1. Otworzyć obudowę pryzmatu refraktometru (czarne pokrętło pod prawym okularem). Oczyścić za pomocą wacika powierzchnie pryzmatów i wprowadzić na dolny pryzmat za pomocą pipety dwie krople badanej cieczy. Zamknąć obudowę.
- 2. Ustawić lusterko znajdujące się po lewej stronie nad pryzmatami w takim położeniu, aby w lewym okularze widoczna była podziałka. Ustawić lusterko znajdujące się pod pryzmatami tak, aby obraz pola widzenia w prawym okularze był dobrze oświetlony. Obrócić zewnętrzne pierścienie okularów w taki sposób, aby obrazy widzenia w obu okularach były ostre.
- 3. Za pomocą lewego pokrętła ustawić podziałkę widoczną w lewym okularze na około 1,3. Obserwując obraz w prawym okularze, za pomocą tego samego pokrętła należy zaleźć takie położenie, aby widoczna była granica pól jaśniejszego i ciemniejszego. Ustawić kompensator (prawe pokrętło) tak, aby granica pól o różnych jasnościach była bezbarwna. Lewym pokrętłem przesunąć widoczną kreskę na skrzyżowanie rys w prawym okularze.
- 4. Odczytać współczynnik załamania badanego roztworu (lewa podziałka w lewym okularze).
- 5. Wykonać po dziesięć pomiarów dla każdej z badanych cieczy. Przed każdym pomiarem należy rozregulować poprzednie ustawienie.
- 6. Z załączonej tabeli określić przybliżone stężenie badanych roztworów.
- 7. Korzystając z załączonej tabeli wykreślić zależność współczynnika załamania światła wodnych roztworów gliceryny od ich stężenia.
- 8. Odczytać z wykresu stężenie badanego roztworu.

- 1. Szacowanie niepewności pomiarowych dla współczynnika załamania każdego badanego roztworu.
- 2. Wykres zależności współczynnika załamania światła wodnych roztworów gliceryny od ich stężenia wykonany na podstawie załączonej tabeli (należy zaznaczyć na nim punktami wartości odczytane z tabeli oraz zmierzone wartości współczynników załamania badanych roztworów i odpowiadające im stężenia).

% wag.	N_D^{20}	% wag.	N_D^{20}
0	1,33303	55	1,40554
5	1,33880	60	1,41150
10	1,34481	65	1,42044
15	1,35106	70	1,42789
20	1,35749	75	1,43534
25	1,36404	80	1,44200
30	1,37070	85	1,45085
35	1,37740	90	1,45839
40	1,38314	95	1,46597
45	1,39089	100	1,47399
50	1,39809		

O.5. Wyznaczanie stałej siatki dyfrakcyjnej za pomocą światła laserowego

Cel ćwiczenia:

Celem ćwiczenia jest obserwacja obrazu interferencyjnego tworzonego przez siatkę dyfrakcyjną oraz wyznaczenie stałej siatki dyfrakcyjnej.

Instrukcja wykonania ćwiczenia:

- 1. Włączyć laser.
- 2. Umieścić siatkę dyfrakcyjną na ławie optycznej w odległości około 0,2 m od lasera.
- 3. Jeżeli jest taka potrzeba, należy skorygować położenie lasera (obracając uchwyt magnetyczny), aby prążek zerowego rzędu był w położeniu 0.
- 4. Wyznaczyć odległość l siatki dyfrakcyjnej od ekranu.
- 5. Odczytać na ekranie położenia x_{nL} i x_{nP} (n-rząd widma) prążków wszystkich widocznych rzędów (po prawej P i lewej L stronie prążka zerowego rzędu).
- 6. Obliczyć średnie położenie x_n prążka n-tego rzędu ze wzoru:

$$x_n = \frac{x_{nL} + x_{nP}}{2}.$$

- 7. Wyznaczyć wartość stałej siatki dyfrakcyjnej d ze wzoru roboczego, dla każdego rzędu widma.
- 8. Powtórzyć czynności 2-7 jeszcze czterokrotnie, zmieniając za każdym razem o około 10 cm położenie siatki dyfrakcyjnej.

Wzór roboczy:

$$d = \frac{n\lambda\sqrt{x_n^2 + l^2}}{x_n},$$

gdzie:

 $\lambda{=}660~\mathrm{nm}$ - długość fali zastosowanego światła laserowego.

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności pomiarowych dla stałej siatki dyfrakcyjnej (potraktować serię wartości d jako serię pomiarową i przyjąć, że $u_C(d) = u_A(d)$).
- 2. Porównanie obliczonej wartości stałej siatki dyfrakcyjnej z wartością nominalną (producent siatki dyfrakcyjnej podaje, że ma ona 140 rys na 1 mm).

Uwagi:

1. Przed przystąpieniem do wykonywania ćwiczenia należy przemyśleć i zaprojektować tabelkę pomiarową.

O.6. Wyznaczanie stałej siatki dyfrakcyjnej za pomocą spektrometru

Cel ćwiczenia:

Celem ćwiczenia jest obserwacja obrazu interferencyjnego tworzonego przez siatkę dyfrakcyjną oraz wyznaczenie stałej siatki dyfrakcyjnej.

Instrukcja wykonania ćwiczenia:

- 1. Włączyć do sieci lampę sodową i przystawić do szczeliny kolimatora spektrometru. Na stoliku spektrometru ustawić siatkę dyfrakcyjną tak, aby płaszczyzna jej była prostopadła do osi kolimatora.
- 2. Patrząc w okular ustawić lunetkę na wprost kolimatora (powinno być widać nieugięty obraz szczeliny).
- 3. Na noniuszu połączonym nieruchomo z lunetką odczytać na podziałce kątowej położenie lunety (położenie punktu zerowego spektrometru α_0).
- 4. Patrząc przez okular obracać lunetkę w prawo do pojawienia się widma dyfrakcyjnego pierwszego rzędu.
- 5. Ustawić skrzyżowanie rys na środek linii. Odczytać na skali położenie lunety α_{P1} . Nastawić lunetę na takie same linie widma pierwszego rzędu po lewej stronie i odczytać położenie α_{L1} .
- 6. Przy wyznaczaniu kątów ugięcia α_P i α_L skorzystać z następujących zależności:

$$\alpha_P = (\alpha_{P1} - \alpha_0), \ \alpha_L = (\alpha_{L1} - \alpha_0).$$

- 7. Czynności 4-6 należy powtórzyć, aby otrzymać po dwie pary wartości α_P i α_L .
- 8. Czynności opisane w punktach 4-7 należy powtórzyć dla widm drugiego i trzeciego rzędu (łącznie powinno się otrzymać dwanaście kątów dla trzech rzędów widma).
- 9. Wyznaczyć stałą siatki dyfrakcyjnej d ze wzoru roboczego (dwanaście wartości, z których następnie należy wyznaczyć wartość średnią).

Wzór roboczy:

$$d = \frac{n\lambda}{\sin\alpha_n},$$

gdzie:

 λ =589,27 nm - długość fali,

n - rząd widma,

 $\alpha_n = \frac{\alpha_L + \alpha_P}{2}$ - kąt ugięcia dla n-tegorzędu widma.

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności pomiarowych dla stałej siatki dyfrakcyjnej (serię wartości d potraktować jak serię pomiarową i przyjąć, że $u_C(d) = u_A(d)$).
- 2. Porównanie obliczonej wartości stałej siatki dyfrakcyjnej z wartością nominalną (producent siatki dyfrakcyjnej podaje, że ma ona 140 rys na 1 mm).

Uwagi:

1. Przed przystąpieniem do wykonywania ćwiczenia należy przemyśleć i zaprojektować tabelkę pomiarową.

O.7. Badanie głębi ostrości układu optycznego

Cel ćwiczenia:

Celem ćwiczenia jest zaobserwowanie zmiany głębi ostrości (przedziału odległości przedmiotu od soczewki, w którym uzyskany obraz wydaje się być ostry) układu optycznego w zależności od ilości światła przechodzącego przez układ, oraz wyznaczenie wielkości krążków rozmycia.

Instrukcja wykonania ćwiczenia:

1. Zestawić zestaw pomiarowy zgodnie z poniższym rysunkiem z maksymalnie otwartą przysłoną (wartość przysłony minimalna $P_{min} = 1.4$).

Układ optyczny do badania głebi ostrości.

- 2. Zmieniając odległość przedmiotu od soczewki x_0 oraz odległość obrazu (ekranu) od soczewki y_0 znaleźć takie położenie, dla którego obraz jest ostry i wyznaczyć ogniskową soczewki f ze wzoru: $f = \frac{x_0 y_0}{(x_0 + y_0)}$.
- 3. Przesuwając przedmiot znaleźć przedział odległości $(x_0 x_d, x_0 + x_b)$, dla której obraz wydaje się ostry.
- 4. Pomiary z punktu 3. powtórzyć dla przysłony maksymalnie przymkniętej (wartość przysłony maksymalna $P_{max} = 16$).
- 5. Wyznaczyć wielkość krążków rozmycia: bliskiego k_b oraz dalekiego k_d dla obu wartości przysłony P.

Wzory robocze:

$$k_b(P) = \frac{x_b f^2}{P(x_0 - f)(x_0 - x_b)}$$

$$k_d(P) = \frac{x_d f^2}{P(x_0 - f)(x_0 + x_d)}$$

	Opracowanie	wyników	powinno	zawierać
--	-------------	---------	---------	----------

1. Schematyczny rysunek z zaznaczonymi wielkościami: x_0, y_0, x_b oraz x_d dla obu wartości przysłony P.

Uwagi:

1. Nie dotykać palcami powierzchnii soczewek ani listków przysłony.

O.9. Wyznaczanie azymutów ćwierćfalówki za pomocą liniowo spolaryzowanej wiązki światła

Cel ćwiczenia:

Celem ćwiczenia jest zapoznanie się z zasadą polaryzacji światła przez polaryzator oraz wyznaczenie azymutów ćwierćfalówki.

Instrukcja wykonania ćwiczenia:

- 1. Zdjąć ćwierćfalówkę z ławy optycznej.
- 2. Obracając pierścień analizatora wyznaczyć kąty α_1 i α_2 , przy których następuje maksymalne wygaszenie światła.
- 3. Obliczyć kat kierunku polaryzacji światła ze wzoru:

$$\alpha_p = \frac{\alpha_1 + (\alpha_2 - 180^\circ)}{2} + 90^\circ = \frac{\alpha_1 + \alpha_2}{2}.$$

- 4. Założyć ćwierćfalówkę.
- 5. Ustawić analizator w pozycji $\alpha_p + 90^\circ$ (maksymalne wygaszenie). Obracając ćwierćfalówkę wyznaczyć leżące parami po przeciwnych stronach kąty β_1 i β_2 oraz β_1' i β_2' , przy których następuje wygaszenie wiązki.

- 6. Czynności 1-5 powtórzyć dziesięciokrotnie.
- 7. Ze wzoru roboczego obliczyć kąty odpowiadające azymutom β i β' ćwierćfalówki.

Wzory robocze:

$$\beta = \frac{\beta_1 + (\beta_2 - 180^\circ)}{2}, \quad \beta' = \frac{\beta'_1 + (\beta'_2 - 180^\circ)}{2}.$$

Opracowanie wyników powinno zawierać:

1. Szacowanie niepewności pomiarowych wielkości prostych i złożonych.

Uwagi:

1. Nie dotykać polaroidów i ćwierćfalówki.

O.10. Pomiar stężenia cukru za pomocą polarymetru (lab.209)

Cel ćwiczenia:

Celem ćwiczenia jest zapoznanie się z zasadą działania polarymetru, wyznaczenie skręcalności właściwej cukru oraz wyznaczenie stężeń wodnych roztworów cukru za pomocą polarymetru.

Wyznaczenie skręcalności właściwej cukru

Instrukcja wykonania ćwiczenia:

- 1. Włączyć lampę sodową i odczekać kilka minut.
- 2. Wyznaczyć długość rurki l.
- 3. Dokładnie umytą rurkę napełnić w całości **wodą destylowaną** i umieścić w polarymetrze (uwaga na pęcherzyki powietrza).
- 4. Ustawić okular polarymetru tak, aby w polu widzenia wyraźnie była widoczna granica między obszarami o różnej jasności.
- 5. Za pomocą pokrętła znaleźć takie położenie analizatora, aby w pobliżu "zera" podziałki kątowej nie było różnicy jasności między polami A i B.

- 6. Odczytać położenie φ_0 analizatora rurka z wodą destylowaną. Pomiar powtórzyć 10 razy.
- 7. Napełnić rurkę roztworem cukru o znanym stężeniu i znaleźć w podobny sposób (punkty 5 i 6) położenie analizatora φ_z . Pomiar powtórzyć 10 razy.
- 8. Przy wyznaczaniu skręcalności właściwej V skorzystać ze wzoru roboczego.

Wzór roboczy:

$$V = \frac{\varphi_z - \varphi_0}{lc},$$

gdzie: c=0,10 g/cm³.

Wyznaczenie stężeń wodnych roztworów cukru

Instrukcja wykonania ćwiczenia:

- 1. Przeprowadzić (jak w punkcie 7. WYZNACZENIE SKRĘCALNOŚCI WŁAŚCIWEJ CUKRU) pomiary położenia analizatora φ_k dla roztworów o nieznanych stężeniach pamiętając o przepłukaniu rurki wodą destylowaną przed wypełnianiem jej kolejnymi roztworami.
- 2. Wyznaczyć stężenia nieznanych roztworów c_k ze wzoru roboczego.

Wzór roboczy:

$$c_k = \frac{\varphi_k - \varphi_0}{lV},$$

Opracowanie wyników powinno zawierać:

1. Szacowanie niepewności pomiarowych wielkości fizycznych prostych i złożonych (skręcalność właściwa oraz stężenia wodnych roztworów cukru).

Uwagi:

- 1. Proszę pamiętać o wylewaniu roztworów do odpowiednich butelek.
- 2. Po zakończonych pomiarach należy rurkę wypłukać wodą destylowaną i pozostawić pustą.

O.10. Pomiar stężenia cukru za pomocą polarymetru (lab.214)

Cel ćwiczenia:

Celem ćwiczenia jest zapoznanie się z zasadą działania polarymetru, wyznaczenie skręcalności właściwej cukru oraz wyznaczenie stężeń wodnych roztworów cukru za pomocą polarymetru.

Wyznaczenie skręcalności właściwej cukru

Instrukcja wykonania ćwiczenia:

- 1. Włączyć lampę sodową i odczekać kilka minut.
- 2. Wyznaczyć długość rurki l.
- 3. Dokładnie umytą rurkę napełnić w całości **wodą destylowaną** i umieścić w polarymetrze (uwaga na pęcherzyki powietrza).
- 4. Ustawić okular polarymetru tak, aby w polu widzenia wyraźnie była widoczna granica między obszarami o różnej jasności.
- 5. Za pomocą pokrętła znaleźć takie położenie analizatora, aby w pobliżu "zera" podziałki kątowej nie było różnicy jasności między polami A i B.

- 6. Odczytać położenie φ_0 analizatora rurka z wodą destylowaną. Pomiar powtórzyć 10 razy.
- 7. Napełnić rurkę roztworem cukru o znanym stężeniu i znaleźć w podobny sposób (punkty 5 i 6) położenie analizatora φ_z . Pomiar powtórzyć 10 razy.
- 8. Przy wyznaczaniu skręcalności właściwej V skorzystać ze wzoru roboczego.

Wzór roboczy:

$$V = \frac{\varphi_z - \varphi_0}{lc},$$

gdzie: c=0,10 g/cm³.

Wyznaczenie stężeń wodnych roztworów cukru

Instrukcja wykonania ćwiczenia:

- 1. Przeprowadzić (jak w punkcie 7. WYZNACZENIE SKRĘCALNOŚCI WŁAŚCIWEJ CUKRU) pomiary położenia analizatora φ_k dla roztworów o nieznanych stężeniach pamiętając o przepłukaniu rurki wodą destylowaną przed wypełnianiem jej kolejnymi roztworami.
- 2. Wyznaczyć stężenia nieznanych roztworów c_k ze wzoru roboczego.

Wzór roboczy:

$$c_k = \frac{\varphi_k - \varphi_0}{lV},$$

Opracowanie wyników powinno zawierać:

1. Szacowanie niepewności pomiarowych wielkości fizycznych prostych i złożonych (skręcalność właściwa oraz stężenia wodnych roztworów cukru).

Uwagi:

- 1. Proszę pamiętać o wylewaniu roztworów do odpowiednich butelek.
- 2. Po zakończonych pomiarach należy rurkę wypłukać wodą destylowaną i pozostawić pustą.

O.11. Badanie widm emisyjnych za pomocą spektrometru

Cel ćwiczenia:

Celem zadania jest obserwacja widm emisyjnych różnych gazów, sporządzenie krzywej kalibracyjnej, wyznaczenie długości fal odpowiadających obserwowanym liniom widmowym oraz identyfikacja źródła.

Instrukcja wykonania ćwiczenia:

1. Przysunąć lampę rtęciową (szara obudowa) do szczeliny kolimatora i włączyć ją do sieci (nie wyłączać do końca pomiarów). W czasie nagrzewania się lampy zapoznaj się z załączony w tabeli opisem widma rtęci.

- 2. Ustawić pryzmat w takim położeniu, aby przysuwanie lunetki pozwalało na oglądanie całego widma od czerwieni do fioletu.
- 3. Ustawić na ostre widzenie okular lunetki (przez wsuwanie i wysuwanie). Poprawić ustawienie szerokości szczeliny kolimatora tak, aby linie widmowe były dostatecznie wąskie lecz nie za ciemne. Nie zmieniać położenia pryzmatu, aż do zakończenia pomiarów. W innym wypadku wyniki będą błędne.
- 4. Ustawić skrzyżowanie rys, widoczne w lunetce, na kolejnych liniach widmowych i notować kąty położenia lunetki oraz odpowiadające tym liniom długości fal.
- 5. Zgasić lampę rtęciową i nie poruszając spektroskopu zastąpić ją lampą stanowiącą badane źródło światła.
- 6. Określić położenie lunetki odpowiadające liniom widmowym badanego źródła światła. Wyłączyć lampę.
- 7. Wykonać wykres cechowania spektrometru tj. wykres zależności $\lambda = \lambda(\alpha)$.
- 8. Korzystając ze sporządzonego wykresu cechowania określ długości fal widma badanej lampy oraz określ źródło.

Opracowanie wyników powinno zawierać:

- 1. Wykres zależności $\lambda = \lambda(\alpha)$ (krzywa kalibracyjna).
- 2. Odczytane z wykresu zależności $\lambda = \lambda(\alpha)$ długości fal odpowiadających kątom wyznaczonym dla nieznanego badanego źródła (punkty pomiarowe dla nieznanego źródła również powinny znaleźć się na wykresie).

Linie widmowe rtęci

barwa linii widmowej	długość fali [nm]	
czerwona	690,7	słaba
	623,4	słaba
żółta	579,1	bardzo silna
	577,0	bardzo silna
zielona	546,0	bardzo silna
zielono-niebieska	496,0	słaba
	491,0	mocna
fioletowo-niebieska	435,8	bardzo silna
	434,8	słaba
fioletowa	407,8	mocna
	404,7	bardzo silna

O.12. Badanie widm emisyjnych za pomocą spektroskopu

Cel ćwiczenia:

Celem zadania jest obserwacja widm emisyjnych różnych gazów, sporządzenie krzywej kalibracyjnej, wyznaczenie długości fal odpowiadających obserwowanym liniom widmowym oraz identyfikacja źródła.

Instrukcja wykonania ćwiczenia:

1. Przysunąć lampę rtęciową (szara obudowa) do szczeliny kolimatora i włączyć ją do sieci (nie wyłączać do końca pomiarów). W czasie nagrzewania się lampy zapoznaj się z załączonym w tabeli opisem widma rtęci.

- 2. Ustawiamy na ostre widzenie soczewkę obiektywu kamery obracając pokrętła znajdujące się nad nią. Poprawić ustawienie szerokości szczeliny kolimatora (śruba mikrometryczna) tak, aby linie widmowe były dostatecznie wąskie lecz nie za ciemne.
- 3. Ustawić kolejne linie widmowe na wprost nici pajęczej, która znajduje się w płaszczyźnie ekranu kamery. Uzyskuje się to przez obrót bębna znajdującego się po prawej stronie kamery. Odczytać położenie linii widmowych α na podziałce bębna.
- 4. Lampę rtęciową zastąpić badanym źródłem światła. Powtórzyć czynności jak w punktach 2 i 3.
- 5. Wykonać wykres zależności $\lambda = \lambda(\alpha)$ korzystając z załączonego widma atomu rtęci.
- 6. Na podstawie krzywej kalibracji (patrz punkt 5) określić długości linii widmowych badanego źródła światła oraz zidentyfikować źródło.

Opracowanie wyników powinno zawierać:

- 1. Wykres zależności $\lambda = \lambda (\alpha)$ (krzywa kalibracyjna).
- 2. Odczytane z wykresu zależności $\lambda = \lambda(\alpha)$ długości fal odpowiadających kątom wyznaczonym dla nieznanego badanego źródła (punkty pomiarowe dla nieznanego źródła również powinny znaleźć się na wykresie).

Linie widmowe rtęci

barwa linii widmowej	długość fali [nm]	
czerwona	690,7	słaba
	623,4	słaba
żółta	579,1	bardzo silna
	577,0	bardzo silna
zielona	546,0	bardzo silna
zielono-niebieska	496,0	słaba
	491,0	mocna
fioletowo-niebieska	435,8	bardzo silna
	434,8	słaba
fioletowa	407,8	mocna
	404,7	bardzo silna

O.13. Wyznaczanie maksymalnych prędkości wyjściowych elektronów emitowanych przez termokatodę

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczanie maksymalnych prędkości wyjściowych elektronów emitowanych przez termokatodę. Dodatkowo studenci fizyki technicznej powinni wyznaczyć temperatury katody w zależności od napięcia źródła.

1.

Instrukcja wykonania ćwiczenia:

Przygotowanie układu do pracy

- 1. Przed włączeniem przyrządów pomiarowych sprawdzić czy układ pomiarowy jest połączony prawidłowo wg. schematu 1. (skonsultować z prowadzącym).
- 2. Pomiary wykonywane są dla trzech wartości napięcia podawanego na włókno grzejne katody $U_z=12$ V (temperatura T_3 na rys.2), 9 V (temperatura T_2) i 6 V (temperatura T_1), sprawdzić na zasilaczu termokatody czy wartość podawanego napięcia $U_z=12$ V.
- 3. Ustawić zakres pomiarowy 1,5 mA miliamperomierza (V640), sprawdzić czy przycisk "-" jest wciśnięty.
- 4. Ustawić multimetr do pomiaru napięcia sterowania V (UNI-T M890-F) na zakres 20 V-.
- 5. Sprawdzić na zasilaczu ZT-980-1M czy wartość napięcia jest 0 V (przyciski regulacja napięcia w skrajnym lewym położeniu).

Przebieg ćwiczenia

- 6. Włączyć miliamperomierz, włączyć zasilacz termokatody, odczekać około 5 min dla ustalenia temperatury termokatody, (w układzie powinien płynąć prąd o wartości około 0.4-0.5 mA).
- 7. Włączyć zasilacz ZT-980-1M oraz multimetr pomiaru napięcia sterowania.
- 8. Przyciskami zasilacza regulacja napięcia podawać napięcie hamujące U od zera do -2 V i odczytywać co 0,1 V natężenie I płynącego prądu. W razie potrzeby zmniejszyć zakres miliamperomierza na μA .
- 9. Zmniejszyć wartość napięcia hamującego do zera, wyłączyć zasilacz termokatody, zmienić wartość napięcia podawanego na włókno grzejne katody na U_z =9 V, włączyć zasilacz termokatody.
- 10. Powtórzyć czynności opisane w punkcie 8.
- 11. Powtórzyć czynności opisane w punkcie 9. zmieniając wartość napięcia na U_z =6 V.
- 12. Powtórzyć czynności opisane w punkcie 8.

- 13. Sporządzić wykresy I(U) (tak jak na rys. 2) dla trzech stosowanych napięć U_z . Z wykresu (posługując się pionowymi kreskami) odczytać wartości napięcia U_0 , przy których natężenie płynącego prądu staje się praktyczne równe zeru.
- 14. Obliczyć maksymalne prędkości wyjściowe elektronów ze wzoru roboczego.

Wzór roboczy:

$$V_m = \sqrt{\frac{2eU_0}{m}},$$

gdzie: $e=1,602\cdot10^{-19}$ C - ładunek elektronu, $m=9,109\cdot10^{-31}$ kg - masa elektronu.

Opracowanie wyników powinno zawierać:

- 1. Opisany wykres zależności I(U).
- 2. Szacowanie niepewności pomiarowych wielkości prostych i złożonej dla każdej z temperatur włókna katody. Szczegóły szacowania niepewności pomiarowych należy uzgodnić z prowadzącym.

Dodatek (tylko dla studentów Fizyki Technicznej)

Wyznaczanie temperatury katody

Korzystając ze wzoru Richarda-Dushmana na gęstość prądu emisji można zapisać wartość natężenia płynącego prądu w postaci:

$$I = I_e exp\left(\frac{-eU}{kT}\right),\,$$

gdzie I_e wartość prądu dla napięcia hamowania U=0 V , $k=1,38\cdot10^{-23}$ J/K (stała Boltzmana).

1. Sporządzić wykresy zależności ln(I/Ie) od U, a z nachylenia prostych wyznaczyć temperatury katody T_3 , T_2 i T_1 .

O.14. Wyznaczanie stałej Halla

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie stałej Halla oraz liczby nośników ładunku w jednostce objętości.

Instrukcja wykonania ćwiczenia:

1. Sprawdzić zgodność połączenia układu pomiarowego z niżej podanym schematem.

- 2. Włączyć zasilanie zasilacza P-316 i woltomierza.
- 3. Ustawić potencjometr zasilacza P-316 tak, aby przez próbkę płynął prąd I=1 mA i odczytać wskazanie miliwoltomierza.
- 4. Pomiary powtórzyć około 10 razy zmieniając za każdym razem natężenie I prądu płynącego przez próbkę o 1 mA. Po zakończeniu pomiarów napięcia U_0 obniżyć napięcie zasilania do minimum.
- 5. Włączyć zasilacz ZTR-1. Prąd z tego zasilacza płynąc przez cewki elektromagnesu wytwarza pole magnetyczne pomiędzy biegunami elektromagnesu. W poniższej tabeli podano wartości indukcji magnetycznej tego pola odpowiadające poszczególnym wartościom natężenia prądu.

 $\begin{array}{c|ccccc} I_e & [{\rm A}] & 1.0 & 1.5 & 1.8 \\ \hline B & [{\rm T}] & 0.142 & 0.210 & 0.248 \\ \end{array}$

- 6. Ustawić jedną z podanych wartości natężeń prądu płynącego przez uzwojenie.
- 7. Dla ustalonych w punkcie 3. wartości natężeń prądu płynącego przez próbkę dokonać pomiaru napięcia U_H .
- 8. Ze wzorów roboczych wyznaczyć stałą Halla R_H oraz liczbę nośników prądu w jednostce objętości (n).

Wzory robocze:

$$R_{H} = \frac{\left(U_{H} - U_{0}\right)L}{IB},$$

$$n = \frac{1}{R_{H}e},$$

Opracowanie wyników powinno zawierać:

 $1.\ \,$ Szacowanie niepewności pomiarowych wielkości fizycznych prostych i złożonych.

Zjawisko Halla - teoria

Zjawisko Halla zostało odkryte w 1879 roku. Polega ono na pojawianiu się poprzecznej różnicy potencjałów, gdy płytkę przewodzącą, przez którą płynie prąd o gęstości \overrightarrow{j} umieścimy w polu magnetycznym o indukcji \overrightarrow{B} , przy czym $\overrightarrow{B} \perp \overrightarrow{j}$ (rysunek).

Różnica potencjałów $U_1 = V_A - V_B$, pomiędzy dowolnymi punktami A i B na ścianie dolnej i górnej przewodnika jest wynikiem działania siły Lorenza $\overrightarrow{F} = q\left(\overrightarrow{v} \times \overrightarrow{B}\right)$ na ładunki elektryczne uczestniczące w ruchu uporządkowanym (\overrightarrow{j}) . W wyniku działania tej siły nośniki ulegają odchyleniu w kierunku prostopadłym do płaszczyzny $(\overrightarrow{B}, \overrightarrow{j})$ i w warunkach przedstawionych na rysunku ładunki ujemne zgromadzą się na górnej powierzchni płytki, a dodatnie na dolnej. W konsekwencji pojawi się poprzeczne pole elektryczne.

$$E_{\perp} = \frac{U_{\perp}}{d} \tag{1}$$

kompensujące działanie siły Lorenza. W warunkach równowagi otrzymamy:

$$q\left(\overrightarrow{v}\times\overrightarrow{B}\right) + q\overrightarrow{E}_{\perp}.\tag{2}$$

Jeżeli gęstość prądu dla izotropowego przewodnika o określonym charakterze przewodnictwa wyrazimy wzorem:

$$\overrightarrow{J} = nq\overrightarrow{v},\tag{3}$$

gdzie: q – ładunek nośnika prądu, a n – koncentracja swobodnych nośników ładunku w badanym układzie, wówczas:

$$\overrightarrow{E} = \frac{1}{nq} \left(\overrightarrow{B} \times \overrightarrow{j} \right), \quad \frac{U_{\perp}}{d} = R_H |\overrightarrow{B} \times \overrightarrow{j}|$$
 (4)

co daje:

$$\frac{U_{\perp}}{d} = R_H B j, \text{ gdy } \overrightarrow{B} \perp \overrightarrow{j}. \tag{5}$$

Wielkość $R_H = \frac{1}{nq}$ nosi nazwę stałej Halla. Wyznaczenie napięcia U_{\perp} i stałej Halla ze wzoru:

$$R_H = \frac{U_{\perp}S}{dBI}$$
, gdzie $S = Id$, (6)

pozwala określić koncentrację nośników prądu w badanej substancji oraz charakter przewodnictwa.

Generalnie dla przewodnictwa elektronowego R_H <0, a dla przewodnictwa dziurowego R_H >0. W przypadku gdy mamy do czynienia z obydwoma rodzajami nośników ładunku znak R_H informuje o tym, który typ przewodnictwa przeważa w danym półprzewodniku, zgodnie z wyrażeniem:

$$R_H = \frac{1}{e} \frac{\sigma_e^2 |n_e - \sigma_d^2| n_d}{\left(\sigma_e - \sigma_d\right)^2} \tag{7}$$

w słabym polu magnetycznym lub:

$$R_H = \frac{1}{e} \frac{1}{n_e - n_d} \tag{8}$$

w silnym polu magnetycznym. W równaniach (7) i (8) e oznacza ładunek elementarny, σ_e i σ_d – przewodnictwo właściwe odpowiednio elektronowe i dziurowe oraz n_e i n_d – koncentracje elektronów i dziur. W przypadkach równych koncentracji $n_e = n_d = n$ i niezależnie od wielkości pola magnetycznego:

$$R_H = \frac{1}{n_e} \frac{\sigma_e - \sigma_d}{\sigma_e + \sigma_d}.$$
 (9)

Dla półprzewodników wartość stałej Halla jest rzędu 10⁵ cm³/As.

W przypadku metali R_H zależy od struktury pasmowej i kształtu powierzchni Fermiego. Dla metali alkalicznych oraz kilku innych metali jednowartościowych R_H <0 i jest rzędu 10^{-3} cm³/As, a wyznaczona stąd wartość n zgadza się dobrze z gęstością elektronów walencyjnych. Dla około połowy metali R_H >0. Kwantowa teoria przewodnictwa metali wyjaśnia ten efekt przewodnictwem "półswobodnych" elektronów związanych energetycznie z jonami sieci krystalicznej. Dzieje się tak, gdy pasmo przewodnictwa jest dość znacznie zapełnione, tj. gdy liczba N_e elektronów wypełniających poziomy pasma przewodnictwa jest większa od połowy liczby N poziomów energetycznych w tym paśmie (Ne > 0.5N). Puste stany (dziury) wierzchołka pasma przewodnictwa działają tak jak dodatnie nośniki prądu. Ferromagnetyki wykazują anomalne zjawisko Halla. Oprócz normalnej stałej Halla wyrażonej wzorami (4) i (5) obserwuje się występowanie dodatkowego czynnika związanego z wektorem \overrightarrow{M} namagnesowania próbki.

$$E_{\perp} = (R_H B + R_1 M) j, \tag{10}$$

gdzie R_1 oznacza anomalną stałą Halla. Zwykle $R_1\gg R_H$ i silnie zależy od temperatury oraz rezystancji właściwej materiału.

O.14a. Wyznaczanie stałej Halla

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie stałej Halla oraz liczby nośników ładunku w jednostce objętości.

Instrukcja wykonania ćwiczenia:

Przygotowanie zestawu do pracy:

- 1. Przy **wyłączonym** zasilaniu (wyłącznik w pozycji 0) sprawdzić poprawność połączeń wg. schematu, ustawienie potencjometru (skrajny obrót w lewo), ustawienie mierników położenie Off , ustawienie kąta α =0°.
- 2. Włączyć zasilanie układu (wyłącznik w pozycji I) .
- 3. Ustawić zakres miernika do pomiaru prądu sterującego I_S w pozycji mA, miernika do pomiaru napięcia Halla U_H w pozycji V=.

Przebieg ćwiczenia:

I. Badanie zależności napięcia Halla od wartości indukcji pola magnetycznego

- 1. Ustawić potencjometr zasilacza tak, aby przez próbkę płynął prąd 1 mA. Obrócić magnesy w położenie, przy którym napięcie Halla U_H =0, kierunek pola magnetycznego jest wówczas równoległy do kierunku przepływu prądu, zanotować to położenie jako
- 2. Zmieniając położenie hallotronu w przedziale od 0° do 360° , co 10° odczytać wartość napięcia Halla U_H .

II. Badanie zależności napięcia Halla od wartości prądu sterującego

- 1. Ustawić takie położenie hallotronu, przy którym wartość $U_H = U_{Hmax}$ (ustalamy w ten sposób wartość indukcji pola magnetycznego)
- 2. Zmieniając wartość prądu płynącego przez hallotron w przedziale od 0 mA do 10 mA zwiększając wartość o 1 mA odczytać wartość napięcia Halla U_H .

Opracowanie wyników powinno zawierać:

- 1. Ze wzoru $B = B_0 sin(\alpha \alpha_0)$ wyznaczyć wartości indukcji pola magnetycznego odpowiadające badanym orientacjom hallotronu względem pola magnetycznego. Przyjąć B_0 =0.5 T.
- 2. Narysować wykres zależności napięcia Halla od wartości indukcji pola magnetycznego $U_H(B)$.

- 3. Korzystając z równania regresji liniowej wyznaczyć stałą Halla R_H , grubość hallotronu $d=2\mu\mathrm{m}$.
- 4. Narysować wykres zależności napięcia Halla od wartości natężenia prądu płynącego przez hallotron $U_H(I_S)$.
- 5. Korzystając z równania regresji liniowej wyznaczyć stałą Halla R_H .
- 6. Wyznaczyć średnią wartość R_H a na jej podstawie koncentrację nośników ładunku w badanej próbce, ładunek elektronu $e=1.6\cdot 10^{-19}$ C.
- 7. Otrzymane wartości porównać z tabelą i na tej podstawie wywnioskować rodzaj materiału próbki.

Uwaga: Stałą Halla można również wyznaczyć na podstawie wzoru $R_H = U_H \frac{d}{BI_S}$ dla ustalonej wartości B i poszczególnych wartości U_H i I_S .

2/2

Tabela pomiarowa 1

	1	
$B\left(T\right)$	$I_s(mA)$	$U_H(mV)$
	0	
	1	
	2	
	3	
	4	
0.5	5	
	6	
	7	
	8	
	9	
	10	

Tabela pomiarow	$\mathbf{a} \; 2$
-----------------	-------------------

Tabela po		owa 2
$I_S(mA)$	α (°)	$U_H(mV)$
	0	
	10	
	20	
	30	
	40	
	50	
	60	
	70	
	80	
	90	
	100	
	110	
	120	
	130	
	140	
	150	
	160	
	170	
1	180	
	190	
	200	
	210	
	220	
	230	
	240	
	250	
	260	
	270	
	280	
	290	
	300	
	310	
	320	
	330	
	340	
	350	
	360	

O.14b. Wyznaczanie stałej Halla

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie stałej Halla oraz liczby nośników ładunku w jednostce objętości badanego materiału na podstawie badania zależności napięcia Halla od wartości indukcji pola magnetycznego B.

Przypomnijmy – metale, ciało ludzkie, Ziemia... są dobrymi przewodnikami elektryczności, a szkło, sztuczne tworzywa itp. są izolatorami (nazywane dielektrykami). W przewodnikach ładunki elektryczne mogą swobodnie się poruszać, natomiast w izolatorach są unieruchomione. Przewodnictwo elektryczne w ciałach stałych zasadniczo można rozpatrywać jako ruch ładunków ujemnych – elektronów swobodnych, mówimy wówczas o przewodnictwie elektronowym. Jednak dla pewnej grupy materiałów zwanych półprzewodnikami typu p lub niektórych metali za przewodnictwo elektryczne odpowiedzialne są nośniki dodatnie (luki (dziury)w zajętych pasmach energetycznych).

Doświadczenie pozwalające obserwować zjawisko zwane efektem Halla, odkryte w 1879 roku, pozwala wyznaczyć charakter przewodnictwa w danym materiale. Polega ono na pojawianiu się poprzecznej różnicy potencjałów, gdy płytkę przewodzącą, przez którą płynie prąd o gęstości \overrightarrow{j} i ładunku q umieścimy w polu magnetycznym o indukcji \overrightarrow{B} , przy czym $\overrightarrow{j} \perp \overrightarrow{B}$ (rysunek).

Różnica potencjałów U_H , pomiędzy dowolnymi punktami na ścianie dolnej i górnej przewodnika jest wynikiem działania siły Lorenza $\overrightarrow{F} = q\left(\overrightarrow{v}x\overrightarrow{B}\right)$ na ładunki elektryczne uczestniczące w ruchu uporządkowanym (\overrightarrow{j}) . W wyniku działania tej siły nośniki ulegają odchyleniu w kierunku prostopadłym do płaszczyzny $(\overrightarrow{B}, \overrightarrow{j})$ zgodnie z wynikającym kierunkiem siły Lorentza. (Znak siły \overrightarrow{F} zależy od znaku ładunku q). Odchylenie nośników powoduje powstanie pola elektrycznego $\overrightarrow{E_H}$, które działa na poruszające się ładunki siłą $\overrightarrow{F_{E_H}}$. Zwrot tej siły jest przeciwny do siły Lorentza i po krótkim czasie ustala się równowaga: $q\overrightarrow{E_H} = q\left(\overrightarrow{v}x\overrightarrow{B}\right)$ Pole elektryczne $\overrightarrow{E_H}$ wytwarza na płytce napięcie U_H , którego wartość wynosi

$$U_H = E_H a = vBa$$

Jeżeli gęstość prądu dla izotropowego przewodnika o określonym charakterze przewodnictwa wyrazimy wzorem: $j=nqv=\frac{I}{S}$ gdzie: n – koncentracja swobodnych nośników ładunku w badanym układzie (liczba w jednostce objętości), I – natężenie prądu płynącego przez hallotron, S - pole przekroju poprzecznego hallotronu, wówczas:

$$U_H = \frac{I}{nqS}Ba = \frac{1}{nq}\frac{lB}{d},$$

gdzie : d - grubość hallotronu. Wielkość $R_H = \frac{1}{nq}$ nosi nazwę stałej Halla.

[11 marca 2015]

Zgodnie z klasycznym modelem przewodnictwa (gaz elektronów swobodnych) znak i wartość stałej Halla zależą od rodzaju nośników i ich koncentracji. Dla elektronów $R_H < 0$ a dla dziur $R_H > 0$. Dla metali alkalicznych oraz kilku innych metali jednowartościowych takich jak Li, Na, Ag, gdzie na jeden atom przypada jeden elektron przewodnictwa, $R_H < 0$ i jest rzędu 10^{-10} m³/C, a wyznaczona stąd wartość n zgadza się dobrze z gęstością elektronów walencyjnych. Dla półprzewodników wartość stałej Halla jest rzędu $10^{-3} \div 10^{-5}$ m³/C (dodatnia lub ujemna). Jednakże ten klasyczny model nie daje dobrych wyników dla pewnych metali o bardziej skomplikowanej budowie powłok elektronowych (Fe, Bi, Cd) dla których $R_H > 0$. Kwantowa teoria przewodnictwa metali wyjaśnia ten efekt przewodnictwem "półswobodnych" elektronów związanych energetycznie z jonami sieci krystalicznej. Dzieje się tak, gdy pasmo przewodnictwa jest dość znacznie zapełnione, tj. gdy liczba Ne elektronów wypełniających poziomy pasma przewodnictwa jest większa od połowy liczby N poziomów energetycznych w tym paśmie (Ne > 0.5N). Puste stany (dziury) wierzchołka pasma przewodnictwa działają tak jak dodatnie nośniki prądu. Zjawisko Halla może być wykorzystane w badaniach materiałowych jest bowiem źródłem informacji o podstawowych właściwościach fizycznych, które charakteryzują badany materiał pod względem elektrycznym. Wyznaczenie stałej Halla ze wzoru: $R_H = \frac{U_H d}{IB}$ na podstawie przeprowadzonych doświadczeń pozwala wyznaczyć koncentrację i ruchliwość nośników prądu w badanej substancji, co z kolei w półprzewodnikach umożliwia określenie ilości domieszek i charakteru wiązania chemicznego.

Liczba nośników ładunku gwałtownie rośnie z temperaturą zgodnie z wyrażeniem wykładniczym $n=n_e exp\frac{\varepsilon}{kT}$ gdzie: k-stała Boltzmana, ε -energia, jaką musi uzyskać nośnik, by uczestniczyć w przewodzeniu prądu. Temperaturowa zależność informuje o szerokości przerwy energetycznej E_g (w przypadku przewodnictwa samoistnego) i o głębokości poziomów domieszkowych w półprzewodnikach domieszkowanych. Stąd zjawisko Halla może być stosowane do kontroli jakości metali i półprzewodników, jest też szeroko wykorzystywane w technice pomiarowej i obliczeniowej.

Instrukcja wykonania ćwiczenia:

- 1. Przy **wyłączonym** zasilaniu (wyłącznik w pozycji 0) sprawdzić poprawność połączeń wg. schematu; ustawienie potencjometru (skrajny obrót w lewo), ustawienie mierników położenie **Off**, ustawienie kąta $\alpha 0^{\circ}$.
- 2. Włączyć zasilanie układu (wyłącznik w pozycji I).
- 3. Ustawić zakres miernika do pomiaru prądu sterującego I_S w pozycji mA, miernika do pomiaru napięcia Halla U_H w pozycji V=.
- 4. Ustawić potencjometr zasilacza tak, aby przez próbkę płynął prąd I_s =1mA. Obrócić magnesy w położenie, przy którym napięcie Halla $U_H = 0$, kierunek pola magnetycznego jest wówczas równoległy do kierunku przepływu prądu, zanotować to położenie jako α_0 .
- 5. Zmieniając położenie hallotronu w przedziale od 0° do 360°, co 10° dokonać odczytu wartości napięcia Halla U_H ; wartości umieścić w tabeli pomiarowej.
- 6. Po wykonanych pomiarach **wyłączyć** zasilanie układu (wyłącznik w pozycji 0) oraz mierniki położenie **Off**.
- 7. Ze wzoru $B = B_0 sin(\alpha \alpha_0)$ wyznaczyć wartości indukcji pola magnetycznego odpowiadające badanym orientacjom hallotronu względem pola magnetycznego. Przyjąć B_0 =0,5T. Następnie wyznaczyć wartości stałej Halla ze wzoru:

$$R_H = \frac{U_H d}{I_s B},$$

gdzie $d=2 \mu m$ (grubość hallotronu)

8. Wyznaczyć średnią wartość R_H a na jej podstawie koncentrację nośników ładunku w badanej próbce korzystając ze wzoru:

$$n = \frac{1}{R_H q}$$

przyjać ładunek elementarny $q=1.6\cdot10^{-19}$ C.

9. Otrzymane wartości porównać z poniższą tabelą i na tej podstawie wywnioskować rodzaj materiału próbki.

		$R_H [\mathrm{m}^3/\mathrm{C}]$	$n [1/m^3]$
metal	Cu	$-0.53 \ 10^{-10}$	$8,4\ 10^{28}$
	Ag	$-0.89 \ 10^{-10}$	$5.8 \ 10^{28}$
	Au	$-0.71 \ 10^{-10}$	$8.7 \ 10^{28}$
	Cd	$0,6 \ 10^{-10}$	$10 \ 10^{28}$
	In	$1,593 \ 10^{-10}$	$4 \ 10^{28}$
półprzewodnik	Ge	$-5,7 \ 10^{-3}$	$2,1 \ 10^{18}$
	InAs	$-2,3 \ 10^{-4}$	$1 \ 10^{21}$

[11 marca 2015] 3/4

Opracowanie wyników powinno zawierać:

- 1. Szacowanie niepewności dla wartości średniej stałej Halla oraz dla koncentracji nośników.
- 2. Wykres zależności napięcia Halla od wartości natężenia prądu płynącego przez hallotron $U_H(I_S)$. Wyznaczenie wartości stałej Halla metodą graficzną tj. na podstawie równania regresji liniowej y = ax, gdzie $y = U_H$, $a = R_H I_S/d$, x = B. $(R_H = ad/I_S)$

Tabela pomiarowa

$I_{S}(mA)$	α (°)	$U_H(mV)$	B(T)	$R_H(m^3/C)$
IS (IIIA)	0	$O_H(mv)$	D(T)	$It_H(IIt/C)$
	10			
	20			
	30			
	40			
	50			
	60			
	70			
	80			
	90			
	100			
	110			
	120			
	130			
	140			
	150			
	160			
1	170			
1	180			
	190			
	200			
	210			
	220			
	230			
	240			
	250			
	260			
	270			
	280			
	290			
	300			
	310			
	320			
	330			
	340			
	350			
	360			

[11 marca 2015] 4/4

O.15. Pomiar małych odległości za pomocą mikroskopu

Cel ćwiczenia:

Celem ćwiczenia jest zapoznanie się z obsługą mikroskopu sprzężonego z komputerem i pomiar małych odległości. Badanymi obiektami mogą być: komórki krwi, ściany komórkowe, mięsień szkieletowy,...

Instrukcja wykonania ćwiczenia:

- 1. Włączyć komputer i monitor, a po uruchomieniu systemu operacyjnego włączyć mikroskop.
- 2. Uruchomić program ScopeImage 9.0 (skrót na pulpicie). Okno programu powinno być białe (jeżeli jest czarne, to ten fakt należy zgłosić osobie prowadzącej zajęcia).
- 3. Wybrać pierwszy preparat do badań. Jeżeli osoba prowadząca zajęcia nie zaleci inaczej należy wybrać:
 - mięsień szkieletowy,
 - pączkujące drożdże,
 - wymaz krwi.
- 4. Używając śrub przesuwu stolika w płaszczyźnie xy ustawić preparat pod obiektywem x4.
- 5. Używając śrub makro- i mikrometrycznej ustawić ostrość obrazu badanego preparatu.
- 6. Zmieniać obiektywy aż do:
 - x10 (mięsień szkieletowy),
 - x40 (paczkujące drożdże),
 - x40 (wymaz krwi),
 - i, jeżeli jest to potrzebne, korygować ostrość śrubą mikrometryczną.
- 7. Wczytać plik kalibracyjny dla obiektywu, którego chcemy użyć do pomiarów (przejdź do: *Instrukcja obsługi programu ScopeImage 9.0*).
- 8. Wykonać pomiary:
 - mięsień szkieletowy– grubość włókien,
 - pączkujące drożdże średnica komórek,
 - wymaz krwi średnica komórek.

Sposób wykonania pomiarów został przestawiony w *Instrukcja obsługi programu ScopeImage 9.0.* Pomiary należy przeprowadzić dla dziesięciu obiektów.

- 9. Obliczyć średnią wartość wielkości badanych obiektów.
- 10. Pomiary powtórzyć dla kolejnych preparatów.
- 11. Zdjęcia zapisać na płycie CD/DVD.
- 12. Wyłączyć mikroskop, komputer i monitor.

[20 marca 2013] 1/2

Opracowanie wyników powinno zawierać:

- 1. Zdjęcia mikroskopowe badanych obiektów.
- 2. Obliczenie $u_A(x)$ dla wielkości badanych obiektów (osobno dla każdego preparatu). W tej sytuacji $u_A(x)$ charakteryzuje rozrzut wielkości badanych obiektów.

Uwagi:

- 1. Przed przystąpieniem do wykonywania ćwiczenia należy zapoznać się ze skróconą *Instrukcją obsługi oprogramowania ScopeImage 9.0*.
- 2. Do przenoszenia danych nie należy używać nośników pendrive.
- 3. Ćwiczenie zostało przygotowane przez studentów z koła naukowego Nabla.

O.15. Instrukcja obsługi programu ScopeImage 9.0

Wczytanie pliku kalibracyjnego

1. Przechwycić obraz za pomocą przycisku "Capture to field" zaznaczonego kółkiem na rysunku 1.

Rysunek 1.

2. Aby przełączać program pomiędzy trybem obserwacji, a wykonanymi przechwyceniami obrazów należy wybrać odpowiednią zakładkę (rysunek 2). UWAGA: Nie należy zamykać pierwszej zakładki, gdyż może to spowodować zamknięcie programu i w konsekwencji utratę wcześniejszych pomiarów.

Wideo × 1 Image2 Image3 Image5 Image6 Image6 Image6 Image8 Image9 Image10

Rysunek 2.

- 3. Wybieramy zakładkę z edytowanym obrazem.
- 4. Za pomocą przycisku "Show calibration ruler" (zaznaczony prostokątem na rysunku 3) wyświetlamy skalę.
- 5. Aby wczytać plik kalibracyjny dla odpowiedniego obiektywu należy użyć przycisku "Calibration" zaznaczonego prostokątem na rysunku 3,

Rysunek 3.

a po wyświetleniu okienka:

Rysunek 4.

wybrać opcję Otwórz i otworzyć z katalogu

C:\ Pliki programów(x86)\ ScopeImage 9.0 (H1C)\ rulerdata\ Obiektywy - kalibracja plik "obiektyw4.rlr" − dla obiektywu 4X, "obiektyw10.rlr" - 10X lub "obiektyw40.rlr" - 40X. Zatwierdzić przyciskiem OK.

[20 marca 2013] 1/2

Pomiary i zapisywanie obrazów

Pomiary wykonywane są na przechwyconym obrazie (wcześniejszy rozdział tej instrukcji). Przed pomiarami należy wczytać plik kalibracyjny dla odpowiedniego obiektywu.

1. Dokonać pomiarów za pomocą podkreślonych przycisków przedstawionych na rysunku 5 **Znak X usuwa zmiany naniesione na edytowany obraz!** :

- 2. W katalogu *Moje dokumenty* (skrót na pulpicie) utworzyć katalog wg schematu: 2012_2013_kierunek_nazwisko (np. 2012_2013_zip_gapinski).
- 3. Zapisać obraz w utworzonym folderze za pomocą przycisku z dyskietką.

Uwagi:

- 1. Pliki zapisane poza wyznaczonym miejscem na dysku będą niezwłocznie usunięte.
- 2. Po pomyłkowym zamknięciu programu ScopeImage 9.0 należy ponownie uruchomić komputer.