STIR and Tensorflow

Philipp Windischhofer

July 27, 2017

Table of Contents

Where to start

How to do ray tracing on a CPU?

How to do ray tracing on a GPU?

Results

The big picture

- ▶ STIR
- iterative reconstruction algorithms
- find the optimum of a cost function

$$P(\text{global LOR response}|\text{image}) = \prod_{\text{all LORs}} P(\text{LOR response}|\text{image})$$

$$P(LOR response|image) = \int_{LOR} image density$$

▶ in the following: how to compute / approximate this integral?

How to do ray tracing on a CPU?

Siddon's algorithm

Ray marching: an iterative algorithm

Accuracy

assume: have "enough" points along the LOR

lacktriangle with 6 iterations, are already at \sim 5% level!

Ray marching: an iterative algorithm Accuracy

- are there ever enough points?
- does not matter for STIR!

Bringing together STIR and Tensorflow

graph generation in python and graph utilization in c++

Speedup without caching

left: 6 iterations, right: 2 iterations

average speedup is similar

left: 6 iterations, right: 2 iterations

- ► I/O: converting from ProjMatrixElemsForOneBin to Tensor and back
- point scheduling: choose points to sample the TOR / LOR

Images

left: 2 iterations, 20LORs per matrix element, right: original STIR

some artefacts: too few points

How to proceed?

▶ whole toolchain is in place

Where to find the code?

- ► STIR-TF: https://github.com/philippwindischhofer/ STIR/tree/stir-tf
- ray tracing scripts: https://gitlab.phys.ethz.ch/luster/tf-raytracing

Any comments and contributions are welcome!