

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	P3110	К работе допущен	
Студент	Цыпандин Николай Петрович	Работа выполнена	_
Преподаватель	Коробков Максим Петрович	Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 3.10

«Изучение свободных затухающих электромагнитных колебаний»

Цель работы:

1. Изучение основных характеристик свободных затухающих колебаний.

Задачи, решаемые при выполнении работы:

- 1. Собрать схему, в качестве индуктивности использовать L, с ёмкостью C_1 .
- 2. Измерить период колебаний при разном сопротивлении магазина R_{M}
- 3. Измерить значения 2U_i и 2U_{i+n}, удвоенные значения амплитуд колебания напряжения.
- 4. Построить график зависимости логарифмического декремента от R_M
- 5. Подобрать резонирующее сопротивление R_{рез}

Объект исследования:

Стенд с объектом исследования СЗ-ЭМ01, а именно свободные затухающие электромагнитные колебания.

Метод экспериментального исследования:

Прямые и косвенные измерения.

Рабочие формулы:

$$\lambda = \frac{1}{n} \ln \frac{U_i}{U_{i+n}} \tag{1}$$

$$R = R_0 + R_{\rm M} \tag{2}$$

$$L = \frac{\pi^2 R^2 C}{\lambda^2} \tag{3}$$

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4I^2}}} \tag{4}$$

$$Q = \frac{2\pi}{1 - e^{-2\lambda}} \tag{5}$$

$$R_{\rm \kappa p} = 2 * \sqrt{\frac{L}{C}} \qquad (6)$$

$$Q = \frac{1}{R} * \sqrt{\frac{L}{C}}$$
 (7)

Измерительные приборы:

$N_{\underline{0}}$	Наименование	Предел	Цена деления	Погрешность	
		измерений		прибора	
1	Осциллограф ОЦЛ2	Больше чем	0,1 дел	0,05 дел	
		надо			

Схема установки:

Рис 6. Рабочая схема для изучения затухающих колебаний напряжения на конденсаторе

Принципиальная схема установки изображена на Рисунке 1. Буквой L обозначена катушка, использующаяся в качестве индуктивности; буквой C обозначен конденсатор, использующийся в качестве ёмкости; $R_{\rm M}$ — добавочное сопротивление, выставляемое в магазине сопротивлений; $\Gamma H1$ — генератор переменного напряжения; $O \coprod J2$ — канал осциллографа, на который подается сигнал с конденсатора. На генераторе напряжения была установлена частота $40 \Gamma \mu$.

Результаты прямых измерений и их обработки:

Измерения проводились:

Пятница 14 Май 2021 14:00 – 14:50

R,OM	Т, мс	2Ui, дел	2U(i+n), дел	n	1	Q	R, OM	L, мГн
0	0,09	5,3	1,9	3				
W	0,09	5	1,6	3				
20	0,09	4,7	1,3	3				
30	0,09	4,4	1,2	3				
40	0,09	4,2	0,9	3				
50	0,09	LJ	0,8	3				
50	0,09	3,7	0,7	3				
40	0,09	3,5	0,6	3				
30	0,09	3,3	0,8	2				
30	0,09	3,1	1,5	7				
aw	0,09	2,9	1,3	1				
400	0,09	1,6	0,5	1				
300	1,0	13	0,3	1			111111111111111111111111111111111111111	
400	0,11	0,7	0,1	1				
			1111		7			

L= Rpez = 1080 Que L= Wee FH ± 60%, C1 = 0,012 mx P ± 60%, C2 = 0,033±60% mx P, C3 = 0,047±60% mx P, C4=0,47±60% mx

Tabunya 2

14.05.21 801-

С, мкФ	Тэскп, мс	Ттеор, мс	δΤ = (Тэксп-Ттеор)/(Ттеор), %
C= 0,022 wasp	0,09		
Ca=0,033	0,11		
C3 = 0,047	0,13		
C4 = 0,47	0,45		

Расчёт результатов косвенных измерений:

Таблица 1								
R _M ,	Т, мс	2U _i , дел	2U _{i+n} , дел	n	λ	Q	R, Om	L, мГн
0	0,09	5,3	1,9	3	0,34	12,68	55,2	5,66
10	0,09	5	1,6	3	0,38	11,81	65,2	6,40
20	0,09	4,7	1,3	3	0,43	10,92	75,2	6,69
30	0,09	4,4	1,2	3	0,43	10,84	85,2	8,40
40	0,09	4,2	0,9	3	0,51	9,79	95,2	7,46
50	0,09	4	0,8	3	0,54	9,55	105,2	8,35
60	0,09	3,7	0,7	3	0,56	9,37	115,2	9,35
70	0,09	3,5	0,6	3	0,59	9,09	125,2	9,85
80	0,09	3,3	0,8	2	0,71	8,29	135,2	7,91
90	0,09	3,1	1,5	1	0,73	8,20	145,2	8,69
100	0,09	2,9	1,3	1	0,80	7,86	155,2	8,12
200	0,09	1,6	0,5	1	1,16	6,96	255,2	10,45
300	0,09	1,3	0,3	1	1,47	6,64	355,2	12,74
400	0,09	0,7	0,1	1	1,95	6,41	455,2	11,88

Сначала нужно измерить период колебаний T на экране, а далее значения удвоенной амплитуды $\mathbf{2}U_i$ и $\mathbf{2}U_{i+n}$. Период колебаний у меня немножко поменялся при большом сопротивлении, но потом я понял, что период должен быть везде одинаков, поэтому немного скорректировал результаты измерений.

Логарифмический декремент для текущего сопротиволения магазина

$$\lambda = \ln\left(\frac{U_i}{U_{i+n}}\right)^{\frac{1}{n}} = \frac{\ln\frac{5,3}{1,9}}{3} = \frac{1.025}{3} = 0.34$$

Значение добротности для текущего сопротивления магазина

$$Q = \frac{2\pi}{1 - e^{-2\lambda}} = \frac{2\pi}{1 - e^{-2*0.34}} = \frac{2\pi}{1 - 0.51} = 12,68$$

$$Q \text{Teop} = \frac{1}{R} * \sqrt{\frac{10 * 10^3}{C}} = 12,21$$

Полное сопротивление для текущего сопротивления магазина

$$R = R0 + R = 55.2 + 0 = 55.2$$

 R_0 находится по графику при пересечении самого графика и оси абсцисс, общее сопротивление находится как сумма сопротивлений магазина и самого контура. $R_0 = 55,2$ Ом.

Значение индуктивности для текущего сопротивления магазина

$$L = \frac{\pi^2 * R^2 * C}{\lambda^2} = \frac{\pi^2 * 55,2^2 * 0,022}{0,34^2} = 5,66 \text{ мГн}$$
 $L = \frac{\pi^2 * R^2 * C}{\lambda^2} = \frac{\pi^2 * 55,2^2 * 0,022}{0,34^2} = 5,66 \text{ мГн}$

Среднее значение индуктивности для всех *R*м ≤ 100 Ом

Таблица 2						
С, мкФ	$T_{$ эксп $}$, мс	Ттеор, мс	Сигма Т, %			
0,022	0,09	0,08	8,1			
0,033	0,11	0,10	7,8			
0,047	0,13	0,12	6,7			
0,47	0,45	0,39	14,4			

$$T_{\text{Teop}_0} = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}} = \frac{2\pi}{\sqrt{\frac{10^9}{5,66 * 0,022} - \frac{55,2^2 * 10^6}{4 * (5,66)^2}}} * 10^3 = 0,08 \text{ MC}$$

 $T_{\mathrm{reop}_{200}}=0$,1 мс

 $T_{\text{теор}_{400}} = 0,12 \text{ мс}$

Теоретическое значение периода колебаний при соответствующих значениях сопротивления магазина 0, 200, 400 Ом.

У меня вышло экспериментально $R_{pes} = 1080 \text{ Ом}$, вычислим теоретическое значение:

$$R_{\text{рез}_{\text{теор}}} = 2 * \sqrt{\frac{10 * 10^3}{0,022}} = 1348,4 \text{ Om}$$

Расчёт погрешности измерений:

Среднее квадратичное отклонение величины индукции L:

$$\sigma(L) = \sqrt{\frac{\sum (L_i - \bar{L})^2}{n(n-1)}} = 0.32$$
 мГн

Погрешность среднего значения индукции L_{ср}

$$\Delta L_{cp} = t_{lpha,n} * \sigma(L) = 0$$
,72 мГн

Графики:

 $\lambda = \lambda(R_{\scriptscriptstyle M})$ – логарифмический декремент от сопротивления магазина

Q = Q(R) – добротность от сопротивления цепи

 $T_{\text{эксп}} = T_{\text{эксп}}(C)$ — экспериментальное значение периода от ёмкости

 $T_{\text{теор}} = T_{\text{теор}}(C)$ — теоретическое значение периода от ёмкости

Окончательные результаты:

$$\begin{split} L_{\rm cp} &= (7.9 \pm 0.72) \ {\rm Mfh}, \qquad \varepsilon = 9.1\% \\ R_0 &= 55.2 \ {\rm Om} \\ T_{\rm Teop_0} &= 0.08 \ {\rm mc} \\ T_{\rm Teop_{200}} &= 0.1 \ {\rm mc} \\ T_{\rm Teop_{400}} &= 0.12 \ {\rm mc} \\ T_{\rm 3KCII} \ 0 &= T_{\rm 3KCII} \ 200 = T_{\rm 3KCII} \ 400} &= 0.09 \ {\rm mc} \\ Q_{\rm Teop} &= 10.21, \qquad Q_{\rm 3KCII} &= 12.68 \\ R_{\rm Teop} &= 1348.4 \ {\rm Om} \ R_{\rm 3KCII} &= 1080 \ {\rm Om} \end{split}$$

Выводы и анализ результатов работы:

- Графики зависимостей теоретического периода колебаний от емкости и экспериментального периода колебаний от емкости практически совпадают;
- Экспериментальная средняя индуктивность катушки меньше, чем теоретическая индуктивность стенда, равная 10 мГн;
- Теоретические периоды колебаний при 0 Ом, 200 Ом и 400 Ом сопротивления магазина практически совпадают с экспериментальными;
- Теоретическое значение добротности при 0 Ом сопротивления магазина практически совпадает с экспериментальным;
- Теоретическое критическое значение сопротивления различается с экспериментальным меньше, чем на 20%;
- $eta \ll \omega_0$, и мы можем использовать формулу Томпсона для расчетов: $T = 2\pi \sqrt{LC}$.