Определение. Линейное отображение $\varphi: V_1 \to V_2$ называется изоморфизмом, если φ линейно и биективно. V_1 и V_2 называются изоморфными, если существует изоморфизм $\varphi: V_1 \to V_2$. Обозначается: $V_1 \cong V_2$.

Теорема. (Об изоморфизме) Конечномерные векторные пространства V_1 и V_2 изоморфны тогда и только тогда, когда $dimV_1 = dimV_2$.

Доказательство. $dim V_1 = dim V_2 = n$. Пусть e_1, \ldots, e_n - базис в V_1 , а f_1, \ldots, f_n - базис в V_2 , тогда $\forall v \in V_1 \ v = \sum_{i=1}^n x_i e_i$.

Определим отображение $\varphi: V_1 \to V_2$ формулой $\varphi(v) := \sum_{i=1}^n x_i f_i$.

- 1. (линейность) Пусть $v_1, v_2 \in V_1, v_1 = \sum_{i=1}^n x_i e_i$ и $v_2 = \sum_{i=1}^n y_i e_i$, тогда $v_1 + v_2 = \sum_{i=1}^n (x_i + y_i) e_i \Longrightarrow$ $\Longrightarrow \varphi(v_1 + v_2) = \sum_{i=1}^n (x_i + y_i) f_i = \sum_{i=1}^n x_i f_i + \sum_{i=1}^n y_i f_i = \varphi(v_1) + \varphi(v_2).$ $\forall \lambda \in \mathbb{F} \text{ и } \forall v \in V_1 \text{ } \varphi(\lambda v) = \sum_{i=1}^n (\lambda x_i) f_i = \lambda \sum_{i=1}^n x_i f_i = \lambda \varphi(v).$
- 2. (инъективность) $Ker\varphi = \{v \in V_1 \mid \varphi(v) = 0_{V_2}\}$. Пусть $v \in V_1$ и $v \in Ker\varphi$, тогда $v = \sum_{i=1}^n \alpha_i e_i \Longrightarrow$ $\Rightarrow \varphi(v) = \sum_{i=1}^n \alpha_i f_i = 0$, так как f_1, \ldots, f_n линейно независимы $\Rightarrow \forall i \ \alpha_i = 0 \Longrightarrow v = \sum_{i=1}^n \alpha_i e_i = 0 \Longrightarrow Ker\varphi = \{0\}.$
- 3. (сюръективность) $\forall w \in V_2 \ w = \sum_{j=1}^n \alpha_j f_j \Longrightarrow w = \varphi(v), \ v = \sum_{j=1}^n \alpha_j e_j \Longrightarrow \varphi(V_1) = V_2.$

 \Longrightarrow Пусть $V_1\cong V_2,\ dim V_1=n,\ \varphi:V_1\to V_2$ - изоморфизм. Выберем базис $e_1,\ \dots,\ e_n$ в V_1 и покажем, что $\varphi(e_1),\ \dots,\ \varphi(e_n)$ - базис в V_2 .

$$\forall w \in V_2 \ \exists v \in V_1 : \varphi(v) = w.$$
 Пусть $v = \sum_{i=1}^n x_i e_i$, тогда $\varphi(v) = w = \sum_{i=1}^n x_i \varphi(e_i) \Longrightarrow$

 $\Longrightarrow V_2 = \langle \varphi(e_1), \ldots, \varphi(e_n) \rangle$. Проверим линейную независимостн

Предположим, что $\exists \mu_i \in \mathbb{F} : 0_{V_2} = \sum_{i=1}^n \mu_i \varphi(e_i) = \varphi(\sum_{i=1}^n \mu_i e_i) \Longrightarrow \sum_{i=1}^n \mu_i e_i \in Ker \varphi = \{0\}$, так как φ - биекция.

Так как $\{e_i\}$ - линейно независимы $\Longrightarrow \mu_i=0 \; \forall i\Longrightarrow arphi(e_1),\,\ldots,\,arphi(e_n)$ - линейно независимы.

1