Job No.:ITM Takaka - PB ShedAddress:7 Buxton Lane, Takaka, New ZealandDate:31/10/2024Latitude:-40.858604Longitude:172.807761Elevation:9 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N2	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	5 m
Wind Region	NZ2	Terrain Category	2.26	Design Wind Speed	37.38 m/s
Wind Pressure	0.84 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 4.65 m Cpe = -0.9 pe = -0.68 KPa pnet = -0.68 KPa

For roof CP,e from 4.65 m To 9.30 m Cpe = -0.5 pe = -0.38 KPa pnet = -0.38 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 14 m Cpe = 0.7 pe = 0.53 KPa pnet = 0.78 KPa

For side wall CP,e from 0 m To 4.65 m Cpe = pe = -0.49 KPa pnet = -0.49 KPa

Maximum Upward pressure used in roof member Design = 0.68 KPa

Maximum Downward pressure used in roof member Design = 0.40 KPa

Maximum Wall pressure used in Design = 0.78 KPa

Maximum Racking pressure used in Design = 0.91 KPa

Design Summary

Girt Design Front and Back

Girt's Spacing = 0 mm Girt's Span = 4250 mm Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.00 Kn-m	Capacity	NaN Kn-m	Passing Percentage	NaN %
V _{0.9D-WnUp}	0.00 Kn	Capacity	0.00 Kn	Passing Percentage	NaN %

Deflections

Second page

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm

Limit by Woolcock et al, 1999 Span/100 = 42.50 mm

Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 0 mm

Girt's Span = 7000 mm

Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 0.00 Kn-m Capacity NaN Kn-m Passing Percentage NaN % V0.9D-WnUp 0.00 Kn Capacity 0.00 Kn Passing Percentage NaN %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm

Limit by Woolcock et al. 1999 Span/100 = 70.00 mm

Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

End Pole Design

Geometry For End Bay Pole

Geometry

 225 SED H5 (Minimum 250 dia. at Floor Level)
 Dry Use
 Height
 4850 mm

 Area
 44279 mm2
 As
 33209.1796875 mm2

Ix 156100441 mm4 Zx 1314530 mm3
Iy 156100441 mm4 Zx 1314530 mm3

Lateral Restraint mm c/c

Loads

Total Area over Pole = 59.5 m^2

 Dead
 14.88 Kn
 Live
 14.88 Kn

 Wind Down
 23.80 Kn
 Snow
 0.00 Kn

Moment Wind 18.08 Kn-m

Phi 0.8 K8 0.65

K1 snow 0.8 K1	Dead 0.6
----------------	----------

K1wind 1

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	414.27 Kn	PhiMnx Wind	24.80 Kn-m	PhiVnx Wind	78.64 Kn
PhiNcx Dead	248.56 Kn	PhiMnx Dead	14.88 Kn-m	PhiVnx Dead	47.18 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.86 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.66 < 1 OK$

Deflection at top under service lateral loads = 43.85 mm < 49.88 mm

Ds = 0.6 mm Pile Diameter

L= 1750 mm Pile embedment length

f1 = 3750 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 59.5 m^2

Pile Properties

Safety Factory 0.55

Hu = 8.68 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 19.26 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.94 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L = 1750 mm Pile embedment length

f1 = 3750 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 18.08 Kn-m Shear Wind = 4.82 Kn

Pile Properties

Safety Factory 0.55

Hu = 8.68 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 19.26 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.94 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2150) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2150)

Skin Friction = 37.33 Kn

Weight of Pile + Pile Skin Friction = 41.65 Kn

Uplift on one Pile = 27.07 Kn

Uplift is ok