BANA4095: Decision Models – Spring 2020 Introduction to Optimization

Sam Heshmati

Adjunct Instructor of Operations and Business Analytics

Outline

- · What is Optimization?
- Key Elements of Optimization Models
- Optimization Algorithms
- Excel Solver
- · Unconstrained vs. Constrained
- Linear Optimization

:

Model as a Laboratory for Experimentation Decisions Optimization Loop Performance Measures Model Parameters

Optimization

- Finding an alternative that achieves the best possible result
 - » Unconstrained Optimization
 - » Constrained Optimization
- Four key elements of an optimization problem
 - » Objective function
 - » Decision variables
 - » Constraints
 - » Parameters

Optimization Elements

- · Objective Function
 - » Measures the value of an alternative
 - » Basis for comparing alternatives
 - » Examples
- Decision Variables
 - » What choices/decisions affect the objective function?
 - » Values that must be chosen in order to define an alternative
 - » Consume or supply some resource

5

Optimization Elements

- Constraints
 - » What resources or requirements limit the possible alternatives/decisions/choices?
 - » Determine whether a specific alternative is feasible
 - » Right-hand side: defines the amount of resource available or needed to satisfy the constraint
- Parameters
 - » Constants used in the model calculations
 - » Define relationships between decision variables, constraints, and objective function

6

Example: Armstrong Bike Co.

Armstrong Bike Co. produces two new lightweight bicycle frames, the Flyer and the Razor, that are made from special aluminum and steel alloys. The cost to produce a Flyer frame is \$100, and the cost to produce a Razor frame is \$120. As the selling price of each frame model, P_F and P_R , increases, the weekly quantity demanded for each model, F and F, goes down linearly. ABC can produce at most 180 bikes per week.

$$F = 750 - 5P_F$$

$$R = 400 - 2P_R$$

Example: Armstrong Bike Co.

- Define the following elements of this optimization problem
 - » Decision Variables
 - » Objective
 - » Constraints

Solver

- Free Excel add-in for optimization
- PC and Mac versions
- Located on the Data tab
- · Simple user interface
- · Limited problem size
- Frontline Systems
 - » Developer of Solver
 - » Also offers commercial version: Analytic Solver Platform (ASP)

Building a Solver Optimization Model

- · Build base case spreadsheet model
 - » Decision variable cells
 - » Input parameter cells
 - » Objective function formula
 - » Constraint formula(s)
- Enter Solver settings
- Solve

1

Solver Settings

- Set Objective (Max/Min)
 - » Select the cell containing the objective function formula
- · Changing/Decision Variable Cells
 - » Select the cells containing the decision variable values
- · Subject to the Constraints
 - » Add each constraint
 - » Cell Reference is cell containing the formula (left hand side)
 - » Constraint is cell containing the limiting value (right hand side)
 - » Drop down box selects the relationship between LHS and RHS
- Check box: Make unconstrained variables non-negative
- · Select a Solving Method

Armstrong Bike Company

Unconstrained Solution

	Flyer	Razor	Total
Price	\$125.00	\$160.00	
Quantity	125.00	80.00	205.00
Profit	\$3,125.00	\$3,200.00	\$6,325.00

· Constrained Solution

	Flyer	Razor	Total
Price	\$128.57	\$163.57	
Quantity	107.14	72.86	180.00
Profit	\$3,061.22	\$3,174.49	\$6,235.71

Special Cases of Optimization Models

- · Infeasible Model
 - » There are no feasible solutions that satisfy all of the model constraints
 - » Usually caused by one or more errors in the definition of the constraints or the formula cells referenced in the constraints
- Unbounded Solution
 - » There is no finite feasible solution that is optimal. There is always another solution that has a better objective value.
 - » Usually caused by one or more errors in the definition of the objective or the constraints or the formulas used in the objective and constraints

18

Types of Optimization Models

Туре	Variables	Relationships
Linear Program (LP)	Continuous	Linear
Nonlinear Program (NLP)	Continuous	Nonlinear or Linear
Integer Program (IP)	Integer	Linear
Mixed Integer-Linear (MILP)	Integer or Continuous	Linear
Mixed Integer Nonlinear (MINLP)	Integer or Continuous	Nonlinear or Linear

10

What is a Linear Program

- · Special class of optimization models
 - » Objective function and all constraints are linear expressions

a and b are scalars (numbers); x and y are variables ax + b OR ax + by NOT $ax^2 + bxy$

- » Decision variables are continuous/fractional
- Easiest class of optimization models to solve
 - » Simplex Algorithm (1947, George Dantzig)
 - » Always finds an optimal solution; can find an optimal solution relatively quickly even for very large problems.

Example - Sidneyville Desk Mfg.

- Allocation/Product Mix Problem
- Produces two types of desk
- Using three types of wood in every desk (measured in board feet, b.f.)

Туре	Profit/desk
Rolltop	\$115
Regular	\$90

	Amount Used		Amount
Wood	Rolltop	Regular	Available
Pine	10	20	200
Cedar	4	16	128
Maple	15	10	220

Example, cont.

- · What are the decision variables?
- What is the objective function?
- · What are the constraints?

22

Sidneyville Linear Programming (LP) Formulation

max $115x_1 + 90x_2$

Maximize Total Profit

s.t. $10x_1 + 20x_2 \le 200$

Pine

 $4x_1 + 16x_2 \le 128$

Cedar

 $15x_1 + 10x_2 \le 220$

Maple

 $X_1, X_2 \geq 0$

Non-negative

Feasibility

- A feasible solution is a combination of decision variable values that satisfy all of the constraints
- The feasible region is the set of all feasible solutions
- Extreme points are the "corners" of the feasible region

Optimality

- An optimal solution is a feasible solution that achieves the best possible objective function value within the feasible region
 - » No other feasible solution has a better objective value
 - » There may be multiple optimal solutions
- In an LP, at least one of the extreme points is an optimal solution
- » Graphical method
- » Simplex method (Excel Solver)

26

Simplex Method

- Invented by George Dantzig in 1947
- The Simplex Method uses linear algebra to "pivot" from one vertex to another until it stops at an optimal vertex.
- The gradients of the objective function and the constraints are used to determine the search direction
- The gradients of the current active/binding constraints are used to compute the current vertex
- The algorithm stops when the gradient of the objective function can be expressed as a linear combination of the gradients of the active/binding constraints.

Solver Engines/Algorithms

 Various algorithms that are used to solve different classes of optimization problems. The two basic engines in Solver are

Engine	Objective	Constraints
Simplex LP	Linear	Linear
GRG Nonlinear	Nonlinear	Nonlinear

- The specific Solver Engine is selected from the drop down list at the top of the Engine tab
- Uncheck the "Automatically Select Engine" box

29

Non-Negativity

- Decision variables are frequently assumed/implied to have non-negative values. This assumption is often not explicitly given in the problem statement, but the modeler should recognize the need for this restriction even if it is not explicitly stated.
- Check box: Make Unconstrained Variables Non-Negative
 - » Constrains ALL decision variables to be non-negative
 - » If only SOME of the decision variables should be non-negative, then explicit bound constraints (>= 0) must be added to the model for the variables that require them.

30

Sidneyville Manufacturing

Construct an optimization model for Sidneyville and verify the optimal solution

Summary

- What is Optimization?
- · Key Elements of Optimization Models
- Optimization Algorithms
- Excel Solver
- · Unconstrained vs. Constrained
- · Linear Optimization

3