Microsoft SQL Server 2016 (T-SQL)

Aula 01

Quem sou eu?

- Anderson Henrique Rodrigues Maciel
- 45 anos
- Desenvolvedor Full-Stack desde 2008
- Professor de programação desde 2009
- Formado em Ciências Sociais e Pós-Graduado em Docência do Ensino Superior
- Amante das literaturas na área da Filosofia e Ficção Científica

Assuntos tratados nessa aula:

01 – SQL (Structure Query Language)

02 – Banco de Dados, SGDBR, Tipos de Dados

01 – O que é o SQL?

Linguagem de Consulta Estruturada padrão para acesso a Bancos de Dados. Não é uma linguagem de programação de computadores especificadamente criada para desenvolver sistemas, como são as linguagens **PASCAL**, **C**, **BASIC**, **COBOL**, **MODULA-2**, **LUA**, entre outras. É tão somente uma linguagem declarativa utilizada para facilitar o acesso a informações (por meio de consultas, atualizações e manipulações de dados) armazenadas em banco de dados relacional.

Usada em inúmeros sistemas, como MySQL, SQL Server, Oracle, Sybase, Access, DB2, PostgreSQL, etc.

Cada sistema pode usar um "dialeto" do SQL como T-SQL(SQL Server), PL/SQL(Oracle), JET SQL(Access), etc.

Funções do SQL

Permite o acesso a dados em SGBDR;

Permite definir os dados no banco de dados e manipulá-los;

Pode ser embutido em outras linguagens usando módulos SQL, bibliotecas,

etc.;

Permite criar e excluir bancos de dados e tabelas;

Permite a criação de visões (Exibições), Stored Procedures e Functions em um

Banco de Dados;

Permite configurar permissões de acesso em tabelas, procedimentos e visões;

Grupos de Comandos

Os comandos SQL podem ser divididos em quatro grupos principais:

DDL

DML

DCL

DQL

Comandos DDL (Data Definition Language)

Comando	Descrição	
CREATE	Cria um novo banco de dados, uma nova tabela, visão ou outro objeto no Banco de Dados	
ALTER	Modifica um objeto existente no banco de dados, como uma tabela p.ex.	
DROP	Exclui um banco de dados, uma tabela, uma visão ou outro objeto no Banco de dados	

Comandos DML (Data Manipulation Language)

Comando	Descrição	
INSERT	Cria um registro (linha)	
UPDATE	Modifica registros	
DELETE	Exclui registros	

Comandos DCL (Data Control Language)

Comando	Descrição	
GRANT	Dá privilégios a um usuário	
REVOKE	Retira privilégios fornecidos a um usuário	

Comandos DQL (Data Query Language)

Comando	Descrição
SELECT	Obtém registros especificados de uma ou mais tabelas

02 – Banco de Dados, SGDBR, Tipos de Dados

- 01 O que é um SGDBR?
- 02 Composição de um Banco de Dados Relacional
- 03 Tabelas, Campos e Registros
- 04 Tipos de Dados

O que é um SGDBR?

Sistema Gerenciador de Banco de Dados Relacional.

Trata-se de um sistema de gerenciamento de banco de dados baseado no modelo relacional introduzido por E. F. Codd (IBM).

Um Banco de Dados relacional é composto por: Tabelas, Campos e Registros.

Composição de um Banco de Dados Relacional

Um Banco de Dados relacional é composto por: Tabelas, Campos e Registros.

Tabelas

Objetos onde são armazenados os dados em um banco de dados relacional.

Uma tabela é uma coleção de entradas de dados relacionados e consiste em linhas e colunas.

Campos (Colunas)

São as entidades que representam os atributos dos dados, como Nome, Data de Nascimento, Salário, Preço, etc.

Um campo é uma coluna em uma tabela que mantém informações específicas sobre cada registro.

Registros

Linhas ou Tuplas.

Cada entrada individual em uma tabela. Trata-se de um conjunto de campos relacionados que caracterizam os dados de uma entidade única.

Composição de um Banco de Dados Relacional

Os tipos de dados em SQL Server são organizados nas seguintes categorias:

Numéricos exatos Numéricos aproximados Data e hora Cadeias de caracteres Cadeias de caracteres Unicode Cadeia de caracteres binária Outros tipos de dados

Tipos de Dados

Tipo	Descrição	Armazenamento
char(n)	String de caracteres de tamanho fixo, máximo de 8000 caracteres	n
varchar(n)	String de caracteres de tamanho fixo, máximo de 8000 caracteres	
text	Cadeia de caracteres de tamanho variável. Até 2Gb de dados	
nchar(n)	Dados Unicode de tamanho fixo, máximo de 4000 caracteres	
nvarchar(n)	Dados Unicode de tamanho variável, máximo de 4000 caracteres	
ntext	Dados Unicode de comprimento variável, com um comprimento de 2 ³⁰ – 1 bytes	
		TECH soluções em

Tipos de Dados

bigint	Números entre -9,223,372,036,854,775,808 e	8 bytes
	9,223,372,036,854,775,807	2 .5 / 525
bit	0, 1 ou nulo	
decimal	Números de precisão e escala fixos. Quando a precisão máximo for usada os valores válidos serão de -10 ³⁸ a 10 ³⁸	
tinyint	Números inteiros de 0 a 255	1 byte
smallint	Números inteiros de -32768 a 32767	2 bytes
int	Números inteiros de -2,147,483,648 a 2,147,483,647	4 bytes
smallmoney	Números entre -922,337,203,685,447.5808 a 922,337,203,685,477.5807	4 bytes
money	Dados monetários de -922,337,203,685,447.5808 até - 922,337,203,685,447.5807	8 bytes

soluções em ti

Tipos de Dados

Tipo	Descrição	Armazenamento
float	Dados numéricos aproximados de ponto flutuante	4-8 bytes
real	Dados numéricos aproximados de ponto flutuante	4-8 bytes
datetime	De 01/01/1753 a 31/12/9999, com uma precisão de 3.33 milissegundos	8 bytes
smalldatetime	De 01/01/1900 a 06/06/2079, com uma precisão de 1 minuto	4 bytes
date	Data apenas. De 01/01/0001 a 31/12/9999	3 bytes
time	Hora apenas. Precisão de até 100 nanosegundos	3-5 bytes
datetimeoffset	Define a data combinada com uma hora de um dia que possui reconhecimento de fuso horário, baseada em 24 horas	10 bytes

Dúvidas?

Para a próxima aula

- 01 Criação de um Banco de Dados
- 02 SQL Constraints (Restrições)
- 03 Normatização e Desnormatização

