Faculty of Electrical - Electronics Bộ Môn Cơ Sở KỸ Thuật Điện Tử

CHƯƠNG 1 : LỊNH KIỆN BÁN DẪN 2 LỚP VÀ ỨNG DỤNG

Giới thiệu

► FIGURE 1-1

The Bohr model of an atom showing electrons in orbits around the nucleus, which consists of protons and neutrons. The "tails" on the electrons indicate motion.

FIGURE 1-3

Energy increases as the distance from the nucleus increases.

Cấu trúc nguyên tử

Giới thiệu

Giản đồ năng lượng

Bán dẫn thuần

Vật liệu phổ biến

Si: Silicon

Ge: germanium

Không pha tạp chất

n(electrons) = p(holes)

Bán dẫn thuần

Dòng electron và lỗ trống

Bán dẫn pha tạp chất

Loai N (Negative)

- ☐ BD thuần + tạp chất hóa trị 5
- → tăng số e

$$n_N >> p_N$$

Bán dẫn pha tạp chất

Loai P(Positive)

- ☐ BD thuần + tạp chất hóa trị 3
- → Tăng số lỗ trống

Tiếp giáp PN

Tiếp giáp PN

Diện trường (hàng rào điện thế) trong miền nghèo

$$E_{tx}=V\gamma=0.7V$$
 (Si)
0.3V (Ge)

$$I_{PN} = 0$$

Phân cực ngược
$$(V_N > V_P)$$
 $I_{PN} = 0$

Chiều chuyển động hạt đa số

Phân cực thuận $(V_N < V_P)$

$$I_{p-n} = I_{kt} - I_{tr} = I_{S} \left(e^{V_{D}/\eta V_{T}} - 1 \right)$$

Đặc tuyến Volt-Ampere 20 19 18 17 16 15 14 13 12 Defined polarity and 11 direction for graph 10 ► ID Forward-bias region $(V_D > 0 \text{ V}, I_D > 0 \text{ mA})$ 6 $V_D(V)$ 0.7 -40 -30-20-100.3 0.5 $-0.1 \mu A$ No-bias 0.2 µA $(V_D = 0 \text{ V}, I_D = 0 \text{ mA})$ Reverse-bias region 0.3 µA $(V_D < 0 \ V, I_D = -I_S)$ $-0.4 \, \mu A$

Đánh thủng ngược

Đánh thủng là phá huỷ đặc tính van của tiếp giáp. Tiếp giáp dẫn điện hai chiều. Phân loại:

<u>Đánh thủng thác lũ</u>: Do hạt thiểu số tăng tốc theo điện áp gây ion hóa các nguyên tử qua va chạm \rightarrow dòng thác lũ.

<u>Đánh thủng xuyên hầm</u>: Khi mật độ tap chất trong bán dẫn tăng \rightarrow E_{TX} lớn gây ra hiệu ứng xuyên hầm lôi kéo các e^- trong vùng hóa trị của lớp P vượt qua E_{tx} chảy sang lớp N

<u>Đánh thủng nhiệt</u>: Xảy ra do tích lũy nhiệt trong vùng tiếp xúc vượt quá giới hạn → Hư hỏng vĩnh viễn tiếp xúc

