Tema 7: Métodos de aproximación para la estimación Bayesiana

Conchi Ausín Departamento de Estadística Universidad Carlos III de Madrid concepcion.ausin@uc3m.es

CESGA, Noviembre 2012

Introducción

Ya hemos dicho que en la mayoría de los casos no es fácil calcular analílitamente la distribución a posteriori:

$$\pi(\boldsymbol{\theta} \mid \mathbf{x}) = \frac{f(\mathbf{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})}{\int f(\mathbf{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}},$$

ni tampoco la media y varianza a posteriori, las distribuciones predictivas, intervalos creíbles, etc.

Sin embargo, podemos usar técnicas de aproximación como son:

- Integración numérica
- Aproximaciones asintóticas
- Simulación Monte Carlo:
 - con métodos directos
 - con cadenas de Markov

- 1. Integración numérica
- 2. Aproximaciones asintóticas
- 3. Aproximaciones Monte Carlo
- 4. Comentarios finales

Consiste en aproximar una integral usando una suma ponderada de algunos valores del integrando,

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} \omega_{i} f_{i}$$

donde $f_i = f(x_i)$ y ω_i es el peso asociado a x_i .

Supongamos que dividimos el intervalo [a, b] en n puntos, $x_i = x_1 + ih$, para i = 1, ..., n-1, con $x_1 = a$, $x_n = b$ y h = (b-a)/n.

Lo más simple es usar la regla trapezoidal que aproxima f(x) en $[x_1, x_2]$ con una línea recta,

$$\int_{x_1}^{x_2} f(x) dx \approx \frac{(f_1 + f_2) h}{2},$$

y repetirlo para cada par de puntos del intervalo.

Integración numérica

En general, es mejor usar la regla de Simpson, que usa una polinomio de orden 2 uniendo los puntos (x_1, f_1) , (x_2, f_2) y (x_3, f_3) ,

$$\int_{x_1}^{x_3} f(x) dx \approx \frac{h}{3} (f_1 + 4f_2 + f_3).$$

Se puede usar también esta regla repetidamente para aproximar la integral completa en $[x_1, x_n]$, (n debe ser impar),

$$\int_{x_1}^{x_n} f(x) dx = \frac{h}{3} (f_1 + 4f_2 + 2f_3 + 4f_4 + 2f_5 + \ldots + 4f_{n-1} + f_n).$$

Ejemplo 7.1. Aproximar la constante de integración de la distribución a posteriori de θ en el ejemplo de las caras del tema anterior,

$$\pi(\theta \mid \mathbf{x}) \propto \theta^9 (1-\theta)^3, \quad 0 < \theta < 1.$$

Integración numérica

- Existen otros procedimientos de integración numérica más sofisticados que la regla de Simpson simple, como son la regla de Simpson adaptada y otros basados en polinomios ortogonales, como la cuadratura Gaussiana.
- El principal problema con la integración numérica aparece cuando el número de parámetros es grande. Según aumenta la dimensión de la integral, el número de funciones a evaluar para obtener una buena aproximación aumenta considerablemente.

Datos los datos, $\mathbf{x} = \{x_1, \dots, x_n\}$, si el tamaño muestral, n, es muy grande, la influencia de la distribución a priori será muy pequeña.

Por ejemplo, si $X|\mu,\sigma^2\sim N(\mu,\sigma^2)$ y usamos una distribución conjugada a priori, entonces,

$$E\left[\mu\mid\mathbf{x}\right] = \frac{cm + n\bar{x}}{c+n} \to \bar{x},$$

cuando $n \to \infty$.

De hecho, las propiedades de las distribuciones a posteriori son serán similares a las de los estimadores máximo verosímiles cuando $n \to \infty$.

Concretamente, si la distribución a posteriori es unimodal y prácticamente simétrica, se puede aproximar por una distribución normal cuando el tamaño muestral es muy grande.

Dado $X|\theta \sim f(\cdot|\theta)$, y una a priori $\pi(\theta)$, cuando $n \to \infty$, se aproximan:

- 1. $\theta \mid \mathbf{x} \approx \mathcal{N}(E[\theta|\mathbf{x}], V[\theta|\mathbf{x}])$.
- 2. $\theta \mid \mathbf{x} \approx \mathcal{N}(\hat{\theta}, I(\hat{\theta})^{-1})$, donde $\hat{\theta}$ es la moda a posteriori y

$$I(\boldsymbol{\theta}) = -\frac{d^2}{d\boldsymbol{\theta}^2} \log(\pi(\boldsymbol{\theta}|\mathbf{x})).$$

3. $\theta \mid \mathbf{x} \approx \mathcal{N}(\hat{\theta}_{MV}, I^{\star}(\hat{\theta}_{MV})^{-1})$, donde $\hat{\theta}_{MV}$ es el estimador MV de θ y,

$$I^*(\theta) = -\frac{d^2}{d\theta^2} \log(f(\mathbf{x}|\theta)).$$

4. $\theta \mid \mathbf{x} \approx \mathcal{N}(\hat{\theta}_{MIF}, I^{\star\star}(\hat{\theta}_{MIF})^{-1})$, donde,

$$I^{\star\star}(\theta) = -nE_X \left[\frac{d^2}{d\theta^2} \log(f(X|\theta)) \right].$$

Ejemplo 7.2. Usar algunas aproximaciones asintóticas para la distribución a posteriori de la probabilidad de cara, θ :

- Cuando se han observado 20 caras en 30 lanzamientos.
- Cuando se han observado 2 caras en 3 lanzamientos.

- Claramente, las aproximaciones asintóticas son sólo válidas cuando el tamaño muestral es grande, lo cual no siempre es factible en la práctica.
- Otras alternativas más útiles para aproximar medidas a posteriori son los métodos de simulación Monte Carlo.

Aproximación Monte Carlo

Supongamos que sabemos cómo simular una muestra, $\{\theta_1,\ldots,\theta_M\}$, de valores de la distribución a posteriori, $\pi(\theta\mid\mathbf{x})$. Entonces, podemos aproximar la media a posteriori de cualquier función de los parámetros, θ , mediante:

$$E\left[\theta \mid \mathbf{x}\right] = \int g\left(\theta\right) \pi\left(\theta \mid \mathbf{x}\right) d\theta \approx \frac{1}{N} \sum_{m=1}^{M} \theta_{m}$$

Análogamente, podemos aproximar otros momentos a posteriori, probabilidades a posteriori :

$$\Pr(\theta < c \mid \mathbf{x}) \approx \frac{1}{M} \sum_{m=1}^{M} I(\theta_m < c),$$

o intervalos creíbles de nivel (1 $- \alpha$) % usando los cuantiles de la muestra $\{\theta_1, \dots, \theta_M\}$.

Aproximación Monte Carlo

Ejemplo 7.3. Considerar los datos de longitudes del caparazón de 200 cangrejos del tema anterior. Aproximar mediante simulación Monte Carlo:

- La probabilidad a posteriori de que la media de la longitud sea mayor de 30 milímetros.
- Un intervalo creíble al 95 % para dicha media.
- Comparar los resultados que obtuvimos analíticamente.

Comentarios:

• En la mayoría de los casos sin embargo, no hay forma directa de simular de $\pi(\theta \mid \mathbf{x})$. En estos casos, se puede usar otros métodos MC que veremos a continuación: el muestreo de importancia y el método de rechazo, etc.

A menudo es difícil simular de la distribución a posteriori pero se puede simular de otra densidad $h(\theta)$ que llamaremos función de importancia. Entonces, se puede aproximar:

$$E[\theta \mid \mathbf{x}] = \int \theta \pi(\theta \mid \mathbf{x}) d\theta = \int \theta \frac{\pi(\theta) f(\mathbf{x} \mid \theta)}{\int \pi(u) f(\mathbf{x} \mid u) du} d\theta$$
$$= \int \theta \frac{\frac{\pi(\theta) f(\mathbf{x} \mid \theta)}{h(\theta)} h(\theta)}{\int \frac{\pi(u) f(\mathbf{x} \mid u)}{h(u)} h(u) du} d\theta = \frac{\int \theta \omega(\theta) h(\theta)}{\int \omega(u) h(u) du} d\theta,$$

donde,

$$\omega(\theta) = \frac{\pi(\theta) f(\mathbf{x} \mid \theta)}{h(\theta)}.$$

Luego, usando una muestra $\{\theta_1, \dots, \theta_M\}$ simulada de $h(\theta)$, se puede aproximar:

$$E\left[\theta \mid \mathbf{x}\right] \approx \frac{\sum_{m=1}^{M} \omega\left(\theta_{m}\right) \theta_{m}}{\sum_{m=1}^{M} \omega\left(\theta_{m}\right)}$$

Ejemplo 7.4. Usando una función de importancia uniforme, aproximar la constante de integración y la media de la distribución a posteriori de θ en el ejemplo de las caras del tema anterior,

$$\pi(\theta \mid \mathbf{x}) \propto \theta^9 (1 - \theta)^3, \quad 0 < \theta < 1.$$

- La eficiencia del algoritmo depende mucho de la función de importancia. En particular, $h(\theta)$ tiene que tener colas más pesadas que $\pi(\theta \mid \mathbf{x})$ para que la varianza del estimador de $E[\theta \mid \mathbf{x}]$ sea finita.
- Además, la función de importancia debe parecerse a la distribución a posteriori. Por ejemplo, si el centro de $\pi(\theta \mid \mathbf{x})$ está en la cola de $h(\theta)$, la mayoría de los pesos serán muy pequeños y la estimación de la integral sólo dependerá unos pocos pesos grandes.

El muestreo de importancia no proporciona en pincipio una muestra de la distribución a posteriori, sino estimaciones de los momentos a posteriori.

Sin embargo, se puede obtener una muestra aproximada de $\pi(\theta \mid \mathbf{x})$ por submuestreo mediante el algoritmo SIR. Para ello, se normalizan primero los pesos para que sumen uno:

$$\omega_{m} = \frac{\omega(\theta_{m})}{\sum_{m=1}^{M} \omega(\theta_{m})},$$

luego, se simula una muestra aproximada, $\tilde{\theta}$, de tamaño J < M tomando $\tilde{\theta}_j = \theta_m$ con probabilidad ω_m para $m = 1, \ldots, M$ y $j = 1, \ldots, J$.

Ejemplo 7.5. Obtener una remuestra de tamaño J=1000 de la distribución a posteriori de θ a partir de la muestra de importancia obtenida en el ejemplo anterior.

Otro método que permite simular valores de $\pi(\theta \mid \mathbf{x})$ a partir de valores simulados de otra densidad $h(\theta)$, denominada densidad candidata, que verifique que $\pi(\theta \mid \mathbf{x}) < Mh(\theta)$ para alguna constante M > 0:

Para $m = 1, \ldots, M$:

- 1. Simular $\tilde{\theta}_m \sim h(\theta)$.
- 2. Simular $u_m \sim \mathcal{U}(0,1)$.
- 3. Si $Mu_mh(\tilde{\theta}_m) < \pi(\tilde{\theta}_m \mid \mathbf{x})$, tomar $\theta_m = \tilde{\theta}_m$.
- 4. Si no, ir a 1.

Método del rechazo

Ejemplo 7.6. Considerar los datos de longitudes del caparazón de 200 cangrejos del tema anterior. Suponer que se impone a priori que la media de la longitud del caparazón debe ser mayor que 31 milímetros. Simular valores de la distribución a posteriori de la media mediante el método de rechazo.

- El gran problema del método del rechazo es encontrar una buena densidad candidata que sólo rechace algunos de los valores simulados.
- Se puede demostrar que la probabilidad de aceptar un valor simulado es 1/M.
- Existen varios refinamientos del algoritmo de rechazo tales como los métodos de envoltura (envelope methods) o el algoritmo ARS (adaptive rejection sampling), etc.

Comentarios finales

- En este tema hemos visto varios métodos para aproximar la distribución a posteriori cuando no es analíticamente tratable.
- Sin embargo, hemos visto que todos estos métodos ofrecen distintos problemas:
 - Los métodos de integración numérica son muy costosos.
 - Los de aproximacíon asintótica no son útiles en muestras pequeñas.
 - Los métos de simulación Monte Carlo directa requieren poder simular de la distribución a posteriori o de una densidad candidata parecida lo cual casi nunca es fácil en la práctica.
- En el tema siguiente, veremos los métodos MCMC, que son también métodos de simulación Monte Carlo para generar valores de la distribución a posteriori de los parámetros.
- Sin embargo, los métodos MCMC proporcionan procedimientos para los casos en los que la forma de la posteriori es casi desconocida y/o el número de parámetros a estimar es muy elevado.

