## **Causal Reinforcement Learning**

By Anna Zhang

## Part I Intro to RL

Main ideas



# What is Reinforcement Learning?

A computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex and uncertain environment.



# What is Reinforcement Learning?

A computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex and uncertain environment.



# What is Reinforcement Learning?

A computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex and uncertain environment.



# Fundamental Framework for RL

- Agent
- Env



- State
- Action
- Reward



# Fundamental Framework for RL

- Agent
- Env



- State
- Action
- Reward
- Policy







- Heuristic algorithm
- Statistical learning
- Deep learning
- Reinforcement learning

## RL's position in Machine Learning Ma

- Heuristic algorithm
- Statistical learning
- Deep learning
- Reinforcement learning





### Classification via Algo

- Heuristic algorithm
- Statistical learning
- Deep learning

### Classification via problem

- Supervised learning
- Unsupervised learning
- Reinforcement learning

## RL's position in Machine Learning Map

### Classification via Algo

- Heuristic algorithm
- Statistical learning
- Deep learning

### Classification via problem

- Supervised learning
- Unsupervised learning
- Reinforcement learning



### Features by

- Supervised learning: learning from labels
- Unsupervised learning: find hidden structures
- Reinforcement learning: learning from environments
  - Rewards are correlated time series, not i.i.d. samples
  - no supervisor, only a delayed reward signal
  - Agent is not told which actions to take, discover the mostrewarded actions by trying them.





- Delayed reward
- > Time matters (sequential data, non i.i.d data)
- Agent's actions affect the subsequent data it receives (agent's action changes the environment)
- > Trial-and-error exploration



## An Example for Introduction

Multi-armed bandit problem



Exploration-exploitation dilemma

## Tasks in Machine Learning

Unsupervised Supervised Reinforcement Learning Learning Learning Learn from Classification Clustering environment Dimension Learn a Prediction Reduction "policy"

- [1] Dudik, M., Langford, J., Li, L. Doubly robust policy evaluation and learning. In Proceedings of 28th International Conference on Machine Learning. 2011.
- [2] Bareinboim, E., Forney, A., Pearl, J. Bandits with Unobserved Confounders: A Causal Approach. In Proceedings of the 28th Annual Conference on Neural Information Processing Systems, 2015.
- [3] Zhang, J., Bareinboim, E. Designing Optimal Dynamic Treatment Regimes: A Causal Reinforcement Learning Approach. In Proceedings of the 37th International Conference on Machine Learning. 2020.

## Part II Causal RL

Reinforcement learning environments with causal structures

### Why Causal + RL?

- Critical concerns in ML:
  - Overfitting
  - bias-variance trade-off
  - Robustness
- Key to causal inference:
  - confounders bias
  - Causal discovery: structural learning
- Bandits with Unobserved Confounders:
- A Causal Approach

- Reinforcement Learning
  - Real-world challenges
  - Promising applications
  - A step further into AGI

## See bandits from a Causal Perspective: Unobserved Confounders

**Definition 3.1.** (Structural Causal Model) ([Pea00, Ch. 7]) A structural causal model M is a 4-tuple  $\langle U, V, f, P(u) \rangle$  where:

- 1. *U* is a set of background variables (also called exogenous), that are determined by factors outside of the model,
- 2. V is a set  $\{V_1, V_2, ..., V_n\}$  of observable variables (also called endogenous), that are determined by variables in the model (i.e., determined by variables in  $U \cup V$ ),
- 3. F is a set of functions  $\{f_1, f_2, ..., f_n\}$  such that each  $f_i$  is a mapping from the respective domains of  $U_i \cup PA_i$  to  $V_i$ , where  $U_i \subseteq U$  and  $PA_i \subseteq V \setminus V_i$  and the entire set F forms a mapping from U to V. In other words, each  $f_i$  in  $v_i \leftarrow f_i(pa_i, u_i), i = 1, ..., n$ , assigns a value to  $V_i$  that depends on the values of the select set of variables  $(U_i \cup PA_i)$ , and
- 4. P(u) is a probability distribution over the exogenous variables.



**Definition 3.2.** (K-Armed Bandits with Unobserved Confounders) A K-Armed bandit problem with unobserved confounders is defined as a model M with a reward distribution over P(u) where:

- 1.  $X_t \in \{x_1, ..., x_k\}$  is an observable variable encoding player's arm choice from one of k arms, decided by Nature in the observational case, and  $do(X_t = \pi(x_0, y_0, ..., x_{t-1}, y_{t-1}))$ , for strategy  $\pi$  in the experimental case (i.e., when the strategy decides the choice),
- 2.  $U_t$  represents the unobserved variable encoding the payout rate of arm  $x_t$  as well as the propensity to choose  $x_t$ , and
- 3.  $Y_t \in 0, 1$  is a reward (0 for losing, 1 for winning) from choosing arm  $x_t$  under unobserved confounder state  $u_t$  decided by  $y_t = f_u(x_t, u_t)$ .

## See bandits from a Causal Perspective: Unobserved Confounders

```
Algorithm 1 Causal Thompson Sampling (TS^C)
 1: procedure TS^C(P_{obs}, T)
        E(Y_{X=a}|X) \leftarrow P_{obs}(y|X)
                                                                                             (seed distribution)
       for t = [1, ..., T] do
             x \leftarrow intuition(t)
                                                                                        (get intuition for trial)
     Q_1 \leftarrow E(Y_{X=x'}|X=x)
                                                                    (estimated payout for counter-intuition)
       Q_2 \leftarrow P(y|X=x)
                                                                              (estimated payout for intuition)
     w \leftarrow [1, 1]
                                                                                            (initialize weights)
     bias \leftarrow 1 - |Q_1 - Q_2|
                                                                                (compute weighting strength)
             if Q_1 > Q_2 then w[x] \leftarrow bias else w[x'] \leftarrow bias
 9:
                                                                                          (choose arm to bias)
                                                                                                 (choose arm) <sup>6</sup>
             a \leftarrow max(\beta(s_{M_1,x}, f_{M_1,x}) \times w[1], \beta(s_{M_2,x}, f_{M_2,x}) \times w[2])
10:
11:
            y \leftarrow pull(a)
                                                                                               (receive reward)
             E(Y_{X=a}|X=x) \leftarrow y|a,x
12:
                                                                                                        (update)
```

## Recall: Regression Method

• Model assumption:

$$E(Y \mid Z, \boldsymbol{X}) = \alpha_0 + \alpha_Z Z + \boldsymbol{X}^T \alpha_X$$

• Treatment effect:

$$\Delta = E\{E(Y \mid Z = 1, X) - E(Y \mid Z = 0, X)\} = \alpha_Z$$

- ullet Calculus treatment effect by fitting a regression model (OLS)  $\widehat{\Delta} = \widehat{lpha}_Z$
- Binary outcome: logistic regression

$$\widehat{\Delta} = n^{-1} \sum_{i=1}^n \left\{ rac{\expigl(\widehat{lpha}_0 + \widehat{lpha}_Z + oldsymbol{X}_i^T \widehat{lpha}_Xigr)}{1 + \expigl(\widehat{lpha}_0 + \widehat{lpha}_Z + oldsymbol{X}_i^T \widehat{lpha}_Xigr)} - rac{\expigl(\widehat{lpha}_0 + oldsymbol{X}_i^T \widehat{lpha}_Xigr)}{1 + \expigl(\widehat{lpha}_0 + oldsymbol{X}_i^T \widehat{lpha}_Xigr)} 
ight\}$$

Adjustment by Regression

### Recall: Propensity score Method

• Propensity score: Probability of treatment given covariates

$$e(X) = P(Z = 1 \mid X) = E\{I(Z = 1) \mid X\} = E(Z \mid X)$$

- Assumption:  $m{X} \perp Z \mid e(m{X})$  $(Y_0, Y_1) \perp Z \mid e(m{X})$
- Model for propensity score:  $P(Z=1 \mid \boldsymbol{X}) = e(\boldsymbol{X}, \boldsymbol{\beta}) = \frac{\exp(\beta_0 + \boldsymbol{X}^T \beta_1)}{1 + \exp(\beta_0 + \boldsymbol{X}^T \beta_1)}$
- Treatment Estimation:  $\widehat{\Delta}_{IPW,1} = n^{-1} \sum_{i=1}^n \frac{Z_i Y_i}{e\left(oldsymbol{X}_i, \widehat{oldsymbol{eta}}
  ight)} n^{-1} \sum_{i=1}^n \frac{(1-Z_i) Y_i}{1-e\left(oldsymbol{X}_i, \widehat{oldsymbol{eta}}
  ight)}$

### Doubly robust estimator

Modified estimator:

$$egin{aligned} \widehat{\Delta}_{DR} = & n^{-1} \sum_{i=1}^n \left[ rac{Z_i Y_i}{e\left(oldsymbol{X}_i, \widehat{oldsymbol{eta}}
ight)} - rac{\left\{Z_i - e\left(oldsymbol{X}_i, \widehat{oldsymbol{eta}}
ight)
ight\}}{e\left(oldsymbol{X}_i, \widehat{oldsymbol{eta}}
ight)} m_1(oldsymbol{X}_i, \widehat{oldsymbol{lpha}}_1) 
ight] \ & - n^{-1} \sum_{i=1}^n \left[ rac{(1 - Z_i) Y_i}{1 - e\left(oldsymbol{X}_i, \widehat{oldsymbol{eta}}
ight)} + rac{\left\{Z_i - e\left(oldsymbol{X}_i, \widehat{oldsymbol{eta}}
ight)
ight\}}{1 - e\left(oldsymbol{X}_i, \widehat{oldsymbol{eta}}
ight)} m_0(oldsymbol{X}_i, \widehat{oldsymbol{lpha}}_0) 
ight] \ & = \widehat{\mu}_{1,DR} - \widehat{\mu}_{0,DR} \end{aligned}$$

$$\widehat{\mu}_{1,DR}: E(Y_1) + Eigg[rac{\{Z-e(oldsymbol{X},oldsymbol{eta})\}}{e(oldsymbol{X},oldsymbol{eta})}\{Y_1-m_1(oldsymbol{X},oldsymbol{lpha}_1)\}igg]$$

## Doubly robust estimator

**Scenario 1:** Postulated propensity score model  $e(X, \beta)$  is correct, but postulated regression model  $m_1(X, \alpha_1)$  is not, i.e.,

- $e(X, \beta) = e(X) = E(Z|X)$  (  $= E(Z|Y_1, X)$  by no unmeasured confounders)
- $m_1(X, \alpha_1) \neq E(Y|Z=1, X)$

2020/11/29 25

## Doubly robust estimator

**Scenario 2:** Postulated regression model  $m_1(X, \alpha_1)$  is correct, but postulated propensity score model  $e(X, \beta)$  is not

- $e(X, \beta) \neq e(X) = E(Z|X)$
- $m_1(X, \alpha_1) = E(Y|Z = 1, X)$  (=  $E(Y_1|X)$  by no unmeasured confounders)

2020/11/29 26

### Doubly Robust Policy Evaluation and Learning

 $\widehat{\Delta}_{DR}$  is consistent estimator if:

- Assumption of Scenario 1 holds

or

- Assumption of Scenario 2 holds

### **Doubly Robust Policy Evaluation**

• Apply the doubly robust technique to policy value estimation

$$\hat{V}_{ ext{DR}}^{\pi} = rac{1}{|S|} \sum_{(x,h,a,r_a) \in S} igg[ rac{(r_a - \hat{arrho}_a(x)) \mathbf{I}(\pi(x) = a)}{\hat{p}(a \mid x,h)} + \hat{arrho}_{\pi(x)}(x) igg] \ ext{the estimate of action probabilities}$$

## Doubly Robust Policy Evaluation



### Dynamic Treatment Regime

- Goal of DTR:
  - Determine a sequence of decision rules, one per stage of intervention, that dictates how to determine the treatment assignment

### Dynamic Treatment Regime

Reinforcement learning with causal bond

**Theorem 6.** Given  $[\![\mathcal{G}, \Pi, Y]\!]$  and causal bounds  $\mathbb{C}$ , fix a  $\delta \in (0,1)$ . W.p. at least  $1-\delta$ , it holds for any T>1, the regret of OFU-DTR is bounded by

$$R(T, M^*) \le \Delta(T, \mathcal{C}, \delta) + 2|S|\sqrt{T\log(2|S|T/\delta)},$$

where function  $\Delta(T, \mathcal{C}, \delta)$  is defined as

$$\sum_{S_k \in \mathbf{S}} \min \left\{ |\mathfrak{C}_{S_k}| T, 17 \sqrt{|\mathfrak{D}_{\bar{\mathbf{S}}_k \cup \bar{\mathbf{X}}_k}| T \log(|\mathbf{S}| T/\delta)} \right\}.$$

### Algorithm 2 OFU-DTR

- 1: **Input:** Signature  $[\![\mathcal{G}, \Pi, Y]\!], \delta \in (0, 1)$ .
- 2: **Initialization:** Let  $\Pi = \text{Reduce}(\mathcal{G}, \Pi, Y)$  and let  $\mathcal{G} = \text{Proj}(\mathcal{G}, \{S, X, Y\})$ .
- 3: for all episodes  $t = 1, 2, \ldots$  do
- Define counts  $n^t(z)$  for any event Z = z prior to episode t as  $n^t(z) = \sum_{i=1}^{t-1} I_{\{Z^i = z\}}$ .
- 5: For any  $S_k \in S$ , compute estimates

$$\hat{P}_{\bar{\boldsymbol{x}}_k}^t(s_k|\bar{s}_k\setminus\{s_k\}) = \frac{n^t(\bar{\boldsymbol{x}}_k,\bar{s}_k)}{\max\left\{n^t(\bar{\boldsymbol{x}}_k,\bar{s}_k\setminus\{s_k\}),1\right\}}.$$

6: Let  $\mathcal{P}_t$  denote a set of distributions  $P_{\boldsymbol{x}}(s)$  such that its factor  $P_{\bar{\boldsymbol{x}}_k}(s_k|\bar{s}_k\setminus\{s_k\})$  in Eq. (2) satisfies

$$\left\|P_{\bar{\boldsymbol{x}}_k}(\cdot|\bar{\boldsymbol{s}}_k\setminus\{s_k\}) - \hat{P}_{\bar{\boldsymbol{x}}_k}^t(\cdot|\bar{\boldsymbol{s}}_k\setminus\{s_k\})\right\|_1 \le f_{S_k}(t,\delta),$$

where  $f_{S_k}(t,\delta)$  is a function defined as

$$f_{S_k}(t,\delta) = \sqrt{\frac{6|\mathcal{D}_{S_k}|\log(2|S||\mathcal{D}_{(\bar{S}_k\cup\bar{X}_k)\setminus\{S_k\}}|t/\delta)}{\max\{n^t(\bar{x}_k,\bar{s}_k\setminus\{s_k\}),1\}}}.$$

7: Find the optimistic policy  $\sigma_{\boldsymbol{X}}^t$  such that

$$\sigma_{\mathbf{X}}^{t} = \underset{\sigma_{\mathbf{X}} \in \Pi}{\operatorname{arg\,max}} \max_{P_{\mathbf{x}}^{t}(s) \in \mathcal{P}_{t}} V_{\sigma_{\mathbf{X}}}(P_{\mathbf{x}}^{t}(s))$$
(3)

- 8: Perform  $do(\sigma_{\mathbf{X}}^t)$  and observe  $\mathbf{X}^t, \mathbf{S}^t$ .
- 9: end for

[4] Khalil, Elias, et al. "Learning combinatorial optimization algorithms over graphs." Advances in Neural Information Processing Systems. 2017.

[5] Zhu, Shengyu, Ignavier Ng, and Zhitang Chen. "Causal discovery with reinforcement learning." arXiv preprint arXiv:1906.04477 (2019).

## Part III RL for Causal Discovery

### RL for Combinational Optimization on graph

### **Algorithm 1 Q-learning for the Greedy Algorithm**

```
1: Initialize experience replay memory \mathcal{M} to capacity N
 2: for episode e = 1 to L do
         Draw graph G from distribution \mathbb{D}
         Initialize the state to empty S_1 = ()
         for step t = 1 to T do
           v_t = \begin{cases} \text{random node } v \in \overline{S}_t, & \text{w.p. } \epsilon \\ \operatorname{argmax}_{v \in \overline{S}_t} \widehat{Q}(h(S_t), v; \Theta), \text{ otherwise} \end{cases}
             Add v_t to partial solution: S_{t+1} := (S_t, v_t)
             if t \geq n then
                Add tuple (S_{t-n}, v_{t-n}, R_{t-n,t}, S_t) to \mathcal{M}
                 Sample random batch from B \stackrel{iid.}{\sim} \mathcal{M}
10:
                 Update \Theta by SGD over (6) for B
11:
             end if
12:
         end for
13:
14: end for
15: return \Theta
```

### Recall: Causal Discovery

- Constraint based methods
  - Markov assumptions
  - Model joint distributions for observed variables
  - Directed Acyclic Graph→Markov equivalence classes
- SEM: functional causal models
  - Additional assumptions
  - Distinguish DAGs in same Markov equivalence class
    - Linear non-Gaussian acyclic model(LiNGAM)
    - Nonlinear Additive Noise Model(ANM)
    - Post-nonlinear causal model(PNL)
- Score based methods
  - Evaluate the DAG and observed dataset
  - Bayesian Information Criterion (BIC) or Minimum Description Length(MDL) etc...

### Recall: Causal Discovery

• Goal: search for the DAG with the best scoring.

$$\min_{\mathcal{G}} \ \mathcal{S}(\mathcal{G})$$
, subject to  $\mathcal{G} \in \mathsf{DAGs}$ .

- Challenge: large search space
  - 3e6(6-node DAG)
  - 5e26(12-node DAG)
- Alternative method: transfer the problem into continuous space
  - Zheng, Xun, et al. "DAGs with NO TEARS: Continuous optimization for structure learning." *Advances in Neural Information Processing Systems*. 2018.

### Recall: Causal Discovery

- ICLR 2020
- Zhu, Shengyu, Ignavier Ng, and Zhitang Chen. "Causal discovery with reinforcement learning." arXiv preprint arXiv:1906.04477 (2019).



Figure 1: Reinforcement learning for score-based causal discovery.

• Main idea: use Reinforcement Learning (RL) to search for the DAG with the best scoring.

### **Actor-Critic**

**Policy Gradient** 

$$abla_{ heta} J( heta) = \mathbb{E}_{\pi_{ heta}} [
abla_{ heta} \log \pi_{ heta}(s,a) Q^{\pi_{ heta}}(s,a)]$$

Actor-Critic

$$abla_{ heta} J( heta) pprox \mathbb{E}_{\pi_{ heta}} [
abla_{ heta} \log \pi_{ heta}(s,a) Q_w(s,a)]$$

$$J(\psi \mid \mathbf{s}) = \mathbb{E}_{A \sim \pi(\cdot \mid \mathbf{s})} \{ -[\mathcal{S}(\mathcal{G}) + \lambda_1 \mathbf{I}(\mathcal{G} 
ot\in \mathrm{DAGs}) + \lambda_2 h(A)] \}$$

## Reinforcement-learning for Causal Discovery

### **Encoder-Decoder for generating directed graphs**



### Reward



### Reinforcement-learning for Causal Discovery

```
Algorithm 1 The proposed RL approach to score-based causal discovery
Require: score parameters: S_L, S_U, and S_0; penalty parameters: \lambda_1, \lambda_2, \lambda_2, \lambda_2, and \Lambda_2; iteration
     number for parameter update: t_0.
 1: for t = 1, 2, \dots do
          Run actor-critic algorithm, with score adjustment by \mathcal{S} \leftarrow \mathcal{S}_0(\mathcal{S} - \mathcal{S}_L)/(\mathcal{S}_U - \mathcal{S}_L)
          if t \pmod{t_0} = 0 then
 3:
               if the maximum reward corresponds to a DAG with score S_{\min} then
 4:
                    update S_U \leftarrow \min(S_U, S_{\min})
 5:
               end if
 6:
               update \lambda_1 \leftarrow \min(\lambda_1 + \Delta_1, \mathcal{S}_U) and \lambda_2 \leftarrow \min(\lambda_2 \Delta_2, \Lambda_2)
               update recorded rewards according to new \lambda_1 and \lambda_2
          end if
 9:
10: end for
```

### RL + Causality

- A promising research area
- Various real-world applications
- Ultimate Goal:
  - Train an agent that learns causality from real environment

2020/11/29 40

### RL + Causality

### TASK 1

### Generalized Policy Learning

combining online + offline learning

Learn policy  $\prod$  by systematically combining offline (L<sub>1</sub>) and online (L<sub>2</sub>) modes of interaction.

### TASK 2

#### When and Where to Intervene?

refining the policy space

Identify subset of  $L_2$  to refine the policy space  $do(\Pi(X))$  based on topological constraints implied by M on G.

#### TASK 3

### Counterfactual Decision-Making

changing optimization function based on intentionality, free will, and autonomy

Optimization criterion based on counterfactuals and  $L_3$ -based randomization (instead of  $L_2$ /do()-counterpart).

#### TASK 4

#### Generalizability & Robustness of Causal Claims

transportability & structural invariances

Generalize policy based on structural invariances shared across training (SCM *M*) and deployment environments (*M\**).

### TASK 5

#### Learning Causal Models

discovering the causal structure with observation and experiments

Learn the causal graph G (of M) by systematically combining observations (L<sub>1</sub>) and experimentation (L<sub>2</sub>).

#### TASK 6

#### Causal Imitation Learning

policy learning with unobserved rewards

Construct  $L_2$ -policy based on partially observable  $L_1$ -data coming from an expert with unknown reward function.

2020/11/29 41

## Thanks!