GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: October 15, 2004, 15:11:57; Search time 3229.12 Seconds

(without alignments)

10265.033 Million cell updates/sec

Title: US-10-070-532-3

Perfect score: 1110

Sequence: 1 atggagccctcagccacccc.....ttccctggagtctgctctaa 1110

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 27513289 seqs, 14931090276 residues

Total number of hits satisfying chosen parameters: 55026578

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

EST:* Database :

1: em estba:*

2: em esthum:*

3: em_estin:*

4: em_estmu:*

5: em_estov:*

6: em estpl:*

7: em estro:*

em htc:*

9: gb est1:*

10: gb est2:*

11: gb htc:*

12: gb est3:*

13: gb_est4:*

14: gb est5:*

15: em estfun:* 16: em estom: *

17: em_gss_hum:*

18: em gss inv:*

19: em gss pln:*

20: em_gss_vrt:*

21: em_gss_fun:*

22: em_gss_mam:*

23: em gss mus:*

24: em_gss_pro:*

25: em gss rod:*

26: em_gss_phg:*

27: em_gss_vrl:* 28: gb_gss1:* 29: gb_gss2:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

			0			SUMMARI	- E2
_			8				
ке	sult		Query	~ ·.1		T.D.	
_	No.	Score	Match	Length	DB 	ID	Description
	1	729.2	65.7	1740	11	BC035686	BC035686 Homo sapi
С	- 2	696	62.7	886	13	BX433093	BX433093 BX433093
С	3	650.4	58.6	899	13	BX433092	BX433092 BX433092
	4	554.4	49.9	753	29	AY420885	AY420885 Homo sapi
	5	521.4	47.0	3470	11	AK048781	AK048781 Mus muscu
	6	521.4	47.0	3729	1.1	AK038551	AK038551 Mus muscu
	7	511.8	46.1		11	BC035858	BC035858 Homo sapi
	8	510.4	46.0	3153	11	AK079572	AK079572 Mus muscu
С	9	500.6	45.1	790	14	CF147830	CF147830 AGENCOURT
	10	467.2	42.1	750	29	AY420886	AY420886 Pan trogl
	11	462.4	41.7	726	29	AY420887	AY420887 Mus muscu
	12	462.4	41.7	1001	9	AL535838	AL535838 AL535838
	13	385.2	34.7	993	12	BM926746	BM926746 AGENCOURT
	14	376.2	33.9		13	BX119589	BX119589 BX119589
	15	359	32.3	788	14	CF147829	CF147829 AGENCOURT
	16	322.8	29.1	382	12	BQ042116	BQ042116 sheep1 Sh
С	17	288	25.9	525	12	BI133700	BI133700 UI-M-BH3-
	18	280.6	25.3	635	12	BM939496	BM939496 UI-M-BH3-
	19	277.8	25.0	520	13	BQ269289	BQ269289 ik23f12.y
	20	264.2	23.8	627	10	BB632359	BB632359 BB632359
	21	263.8	23.8	599	12	BM933820	BM933820 UI-M-BH3-
	22	261.6	23.6	611	13	BY723922	BY723922 BY723922
	23	248.4	22.4	892	13	BX409735	BX409735 BX409735
	24	208.8	18.8	477	12	BM087401	BM087401 500158 MA
	25	200.8	18.1	662	10	BB632883	BB632883 BB632883
	26	199.8	18.0	1073	12	BM920548	BM920548 AGENCOURT
С	27	197.8	17.8	625	13	BQ285933	BQ285933 ik23f12.x
	28	197.6	17.8	505	10	BB651179	BB651179 BB651179
	29	195.2	17.6	245	12	BI976482	BI976482 485407 MA
	30	186.2	16.8	464	13	BY239887	BY239887 BY239887
	31	177	15.9	444	14	R55704	R55704 yg88h10.r1
С	32	164.2	14.8	703	29	CE375359	CE375359 tigr-gss-
	33	162	14.6	721	29	CE235359	CE235359 tigr-gss-
	34	161.6	14.6	1290	29	AY411591	AY411591 Nomo sapi
	35	156.2	14.1	1296	29	AY411593	AY411593 Mus muscu
C	36	155.6	14.0	1013	9	AL535837	AL535837 AL535837
	37	146.2	13.2	768	13	BX109847	BX109847 BX109847
	38	133	12.0	257	10	AW427900	AW427900 64510 MAR
	39	120.2	10.8	526	29	CG978334	CG978334 CH240_169
С	40	119.2	10.7	1005	28	CC212654	CC212654 CH261-75F
С	41	119.2	10.7	1058	28	CC297061	CC297061 CH261-177
	42	117.4	10.6	1113	29	AY420480	AY420480 Homo sapi
	43	115.4	10.4	1100	29	AY420481	AY420481 Pan trogl
С	44	114.4	10.3	1194	28	CC279941	CC279941 CH261-24C
	45	108.8	9.8	1113	29	AY420482	AY420482 Mus muscu

ALIGNMENTS

RESULT 1 BC035686 LOCUS BC035686 1740 bp mRNA linear HTC 20-SEP-2002 DEFINITION Homo sapiens, Similar to hypocretin (orexin) receptor 1, clone IMAGE: 5750551, mRNA. ACCESSION BC035686 VERSION BC035686.1 GI:23242909 KEYWORDS SOURCE Homo sapiens (human) ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. REFERENCE 1 (bases 1 to 1740) AUTHORS Strausberg, R. TITLE Direct Submission JOURNAL Submitted (31-JUL-2002) National Institutes of Health, Mammalian Gene Collection (MGC), Cancer Genomics Office, National Cancer Institute, 31 Center Drive, Room 11A03, Bethesda, MD 20892-2590, USA REMARK NIH-MGC Project URL: http://mgc.nci.nih.gov COMMENT Contact: MGC help desk Email: cgapbs-r@mail.nih.gov Tissue Procurement: Life Technologies, Inc. cDNA Library Preparation: Life Technologies, Inc. cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL) DNA Sequencing by: National Institutes of Health Intramural Sequencing Center (NISC), Gaithersburg, Maryland; Web site: http://www.nisc.nih.gov/ Contact: nisc mgc@nhgri.nih.gov Akhter, N., Ayele, K., Beckstrom-Sternberg, S.M., Benjamin, B., Blakesley, R.W., Bouffard, G.G., Breen, K., Brinkley, C., Brooks, S., Dietrich, N.L., Granite, S., Guan, X., Gupta, J., Haghighi, P., Hansen, N., Ho, S.-L., Karlins, E., Kwong, P., Laric, P., Legaspi, R., Maduro, Q.L., Masiello, C., Maskeri, B., Mastrian, S.D., McCloskey, J.C., McDowell, J., Pearson, R., Stantripop, S., Thomas, P.J., Touchman, J.W., Tsurgeon, C., Vogt, J.L., Walker, M.A., Wetherby, K.D., Wiggins, L., Young, A., Zhang, L.-H. and Green, E.D. Clone distribution: MGC clone distribution information can be found a Figs through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov Series: IRAK Plate: 79 Row: m Column: 17 This clone was selected for full length sequencing because it passed the following selection criteria: matched mRNA gi: 4557636 This clone has the following problem: frame shifted. FEATURES Location/Qualifiers 1. .1740 source /organism="Homo sapiens" /mol type="mRNA" /db xref="taxon:9606" /clone="IMAGE:5750551" /tissue type="Lung, Spleen, fetal, pooled"

/clone_lib="NIH_MGC_122" /lab_host="DH10B" /note="Vector: pCMV-SPORT6"

ORIGIN

	cal S	65.7%; Score 729.2; DB 11; Length 1740; Similarity 83.2%; Pred. No. 4e-138; 3; Conservative 0; Mismatches 8; Indels 179; Gaps	1:
Qу		ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG	
Db			
Qу	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Db	566	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGCGATTATCTG	625
Qу	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Db	626	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	685
Qу	181	CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	686		703
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	704	· · · · · · · · · · · · · · · · · · ·	703
Qу	301	$\tt CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG$	360
Db	704		703
Qу	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	704	GGCTGTGTCCGTGTCAGCTGCTAACTCTCAGCTTCATC	746
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	747	GCCCTGGACCGCTGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	806
Qу	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCATCATGGTGCCCCAGGCT	540
Db	807	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	866
Qу	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	867	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	926
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	927	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	986
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	987	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	1046

Ολ		21 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780
Db		47 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 1106
QУ	7	81 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
Db	11	07 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGCC 1166
Qу	8	41 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Db	11	67 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAGACAGCCAAGATGCTG 1226
Qу	91	01 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Db	122	27 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 1286
Qу	90	61 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Db	128	87 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1346
Qy	102	21 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Db	134	47 ACCTTCTCCCACTGGCTGGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1406
QУ	108	81 CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110
Db	140	07 CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1436
RESULT 2 BX433093 LOCUS DEFINITI ACCESSIO VERSION KEYWORDS SOURCE ORGANI REFERENC AUTHOR TITLE JOURNA COMMENT	/c ON N SM E	BX433093 886 bp mRNA linear EST 15-MAY-2003 BX433093 Homo sapiens FETAL BRAIN Homo sapiens cDNA clone CSODF013YE04 3-PRIME, mRNA sequence. BX433093 BX433093.1 GI:30779168 EST. Homo sapiens (human) Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 886) Li,W.B., Gruber,C., Jessee,J. and Polayes,D. Full-length cDNA libraries and normalization Unpublished (2001) Contact: Genoscope Genoscope - Centre National de Sequencage BP 191 91006 EVRY cedex - France Email: seqref@genoscope.cns.fr, Web: www.genoscope.cns.fr Library was constructed by Life Technologies, a division of Invitrogen. This sequence belongs to sequence cluster 151.r For more information about this cluster, see http://www.genoscope.cns.fr/ cgi-bin/cluster.cgi?seq=CSOBAI011ZB01_CS00962_2&cluster=151.r. Contact: Feng Liang Email: fliang@lifetech.com URL: http://fulllength.invitrogen.com/ InVitroGen Corporation 1600 Faraday Avenue Genoscope sequence ID: CSOBAI011ZB01_CS00962_2.

FEATURES source

Location/Qualifiers

1. .886

/organism="Homo sapiens"

/mol_type="mRNA"

/db_xref="taxon:9606"

/clone="CS0DF013YE04"

/tissue type="FETAL BRAIN"

/dev stage="fetal"

/clone lib="Homo sapiens FETAL BRAIN"

/note="Organ: brain; Vector: pCMVSPORT_6; 1st strand cDNA was primed with a NotI-oligo(dT) primer. Five prime end enriched, double-strand cDNA was digested with Not I and cloned into the Not I and EcoRV sites of the pCMVSPORT 6 vector. Library was not normalized."

ORIGIN

Query Match 62.7%; Score 696; DB 13; Length 886; Best Local Similarity 98.5%; Pred. No. 1.7e-131; 702; Conservative 0: Mismatches Indels 0; 377 AGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCGCTGGT 436 Qy 745 AGGCTGTGTCCGTGTCAGTGACAGTGCTAACTCTCAGCTTCATCGCCCTGGACCGCTGGT 686 Db 437 ATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGGGCCCGTGGCTCCATCC 496 Qу Db 685 ATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGGGCCCGTGGCTCCATNC 626 Qy 497 TGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCTGCAGTCATGCAATCCA 556 625 TGGGCATCTGGCCTGTGTCGCCAGCCATCATGGTGCCCAGGGCTGCAGTCATGCAATGCA 566 Db 557 GCAGTGTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGAACGCT 616 Qу 565 GCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCAGTCTGTGATGAACGCT 506 Dh Qy Db 677 CCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCC 736 Qy Db 445 CCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCC 386 737 AGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCAGCTGG 796 Qу Db 385 AGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCAGCTGG 326 797 GGGACCTGGAGCAGGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCCTTCCTGGCTG 856 Qγ Db 857 AAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGGTGCTGCTGG 916 Qγ 265 AAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGGTGCTGCTGG 206 Dh 917 TCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGTTCGGGA 976 Qу

205 TCTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGTTCGGGA 146 Db Qу 977 TGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTCACCTTCTCCCACTGGC 1036 145 TGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTCACCTTCTCCCACTGGC 86 Db Qу - 1037 TGGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTCCTCAGTGGC 1089 Db 85 TGGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTCCTCAGTGGC 33 RESULT 3 BX433092/c LOCUS BX433092 899 bp mRNA linear EST 15-MAY-2003 BX433092 Homo sapiens FETAL BRAIN Homo sapiens cDNA clone DEFINITION CSODF013YE04 3-PRIME, mRNA sequence. ACCESSION BX433092 BX433092.1 GI:30779167 VERSION KEYWORDS EST. SOURCE Homo sapiens (human) ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. REFERENCE 1 (bases 1 to 899) AUTHORS Li, W.B., Gruber, C., Jessee, J. and Polayes, D. TITLE Full-length cDNA libraries and normalization JOURNAL Unpublished (2001) COMMENT Contact: Genoscope Genoscope - Centre National de Sequencage BP 191 91006 EVRY cedex - France Email: seqref@genoscope.cns.fr, Web : www.genoscope.cns.fr Library was constructed by Life Technologies, a division of Invitrogen. This sequence belongs to sequence cluster 151.r For more information about this cluster, see http://www.genoscope.cns.fr/ cgi-bin/cluster.cgi?seq=CS0BAI011ZB01 CS00962 1&cluster=151.r. Contact : Feng Liang Email : fliang@lifetech.com URL : http://fulllength.invitrogen.com/ InVitroGen Corporation 1600 Faraday Avenue Genoscope sequence ID: CSOBAIO11ZB01 CS00962 1. **FEATURES** Location/Qualifiers 1. .899 source /organism="Homo sapiens" /mol type="mRNA" /db xref="taxon:9606" 2173 /clone="CS0DF013YE04" /tissue type="FETAL BRAIN" /dev stage="fetal" /clone lib="Homo sapiens FETAL BRAIN" /note="Organ: brain; Vector: pCMVSPORT 6; 1st strand cDNA was primed with a NotI-oligo(dT) primer. Five prime end enriched, double-strand cDNA was digested with Not I and cloned into the Not I and EcoRV sites of the pCMVSPORT 6 vector. Library was not normalized." ORIGIN

58.6%; Score 650.4; DB 13; Length 899;

Query Match

Best Lo Matches		Similarity 94.0%; Pred. No. 3.5e-122; 6; Conservative 0; Mismatches 43; Indels 1; Gaps	1;
Qу	372	TCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCG	431
Db	738	TGTAAGNNCTGTGTCGTGTTCAGTGGCAGTGCTACTTCTCAGCTTCATCGCCTGGACCCG	679
Qу	432	CTGGTATGCCATC-TGCCACCCACTATTGTTCAAGAGCACAGCCCGGGGGCCCGTGGCT	490
Db	678		619
Qу	491	CCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCTGCAGTCATGC	550
Db	618		559
Qу	551	AATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATG	610
Db	558	AATGCAGCAGTGTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCAGTCTGATG	499
Qy	611	AACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTTATTGTCACCT	670
Db	498		439
Qy	671	ACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGG	730
Db	438	ACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGG	379
Qγ	731	GCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACC	790
Db	378	GCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACC	319
Qу	791	AGCTGGGGGACCTGGAGCAGGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCCTTCC	850
Db	318	AGCTGGGGGACCTGGAGCGCCTGAGTGGAGAGCCCCAGCCCCGGGCCCGCGCCTTCC	259
QУ	851	TGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGGTGC	910
Db	258	TGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGC	199
Qу	911	TGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGT	970
Db	198	TGCTGGTCTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGT	139
Qy.	971	TCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTCACCTTCTCCC	1030
Db	138	TCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTCACCTTCTCCC	79
Qу	1031	ACTGGCTGGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTCCTCAGTGGCC	1090
Db	78		19
Qу	1091	TTCCCTGGAG 1100	
Db	18	ATTCCGGGAG 9	

```
AY420885
LOCUS
           AY420885
                                753 bp
                                                    linear GSS 17-DEC-2003
                                             DNA
           Homo sapiens HCRTR1 gene, VIRTUAL TRANSCRIPT, partial sequence,
DEFINITION
           genomic survey sequence.
ACCESSION
           AY420885
VERSION
           AY420885.1 GI:39776842
KEYWORDS
           GSS.
SOURCE
           Homo sapiens (human)
  ORGANISM
           Homo sapiens
           Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
           Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
              (bases 1 to 753)
  AUTHORS
           Clark, A.G., Glanowski, S., Nielson, R., Thomas, P., Kejariwal, A.,
           Todd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B.,
           Ferriera, S., Wang, G., Zheng, X.H., White, T.J., Sninsky, J.J.,
           Adams, M.D. and Cargill, M.
  TITLE
           Inferring nonneutral evolution from human-chimp-mouse orthologous
           gene trios
  JOURNAL
           Science 302 (5652), 1960-1963 (2003)
  PUBMED
           14671302
REFERENCE
              (bases 1 to 753)
 AUTHORS
           Clark, A.G., Glanowski, S., Nielson, R., Thomas, P., Kejariwal, A.,
           Todd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B.,
           Ferriera, S., Wang, G., Zheng, X.H., White, T.J., Sninsky, J.J.,
           Adams, M.D. and Cargill, M.
  TITLE
           Direct Submission
  JOURNAL
           Submitted (16-NOV-2003) Celera Genomics, 45 West Gude Drive,
           Rockville, MD 20850, USA
           This sequence as made by sequencing genomic exons and ordering them
COMMENT
           based on alignment.
                    Location/Qualifiers
FEATURES
                    1. .753
    source
                    /organism="Homo sapiens"
                    /mol_type="genomic DNA"
                    /db xref="taxon:9606"
                    <1. .>753
    αene
                    /gene="HCRTR1"
                    /locus tag="HCM7373"
ORIGIN
 Query Match
                        49.98;
                                Score 554.4; DB 29; Length 753;
 Best Local Similarity
                        98.9%;
                                Pred. No. 1.2e-102;
 Matches 558; Conservative
                               0; Mismatches
                                                    Indels
                                                                 Gaps
                                                                         0:
Qу
         526 ATGGTGCCCCAGGCTGCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGC 585
             Db
           1 ATGGTGCCCCAGGCTGCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGC 60
         586 ACACGGCTCTTCTCACTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTAC 645
Qy
             61 ACACGGCTCTTCTCAGTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTAC 120
Db
         646 CACAGTTGCTTCTTTATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTAT 705
Qy
             121 CACAGTTGCTTCTTTATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTAT 180
Db
Qу
         706 TTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTG 765
```

Db 1	
Qy 7	66 CGGAACTGGAAGCGCCCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAG 825
Db 2	
Qy 8	326 CCCCAGCCCGGGGCCGCCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAG 885
Db 3	01 CCCCAGCCCCGGGCCCGCCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAG 360
Qy . 8	86 ACAGCCAAGATGCTGATGGTGGTGCTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGC 945
Db 3	61 ACAGCCAAGATGCTGATGGTGCTGCTGCTTCGCCCTCTGCTACCTGCCCATCAGC 420
Qy 9	946 GTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCT 1005
Db 4	21 GTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCT 480
Qy 10	06 GTCTACGCCTGCTTCACCTTCTCCCACTGGCTGGTGTACGCCAACAGCGCTGCCAACCCC 1065
Db 4	81 GTCTACGCCTGCTTCACCTTCTCCCACTGGCTGGTGTACGCCAACAGCGCTGCCAACCCC 540
Qy 10	66 ATCATCTACAACTTCCTCAGTGGC
Db 5	41 ATCATCTACAACTTCCTCAGTGGC 564
RESULT 5 AK048781 LOCUS DEFINITION ACCESSION VERSION KEYWORDS SOURCE	AK048781 3470 bp mRNA linear HTC 20-SEP-2003 Mus musculus 0 day neonate cerebellum cDNA, RIKEN full-length enriched library, clone:C230065B06 product:OREXIN RECEPTOR TYPE 2, full insert sequence. AK048781 AK048781.1 GI:26339571 HTC; CAP trapper. Mus musculus (house mouse)
ORGĀNISM	Mus musculus Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
REFERENCE AUTHORS TITLE JOURNAL MEDLINE PUBMED	Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus. 1 Carninci, P. and Hayashizaki, Y. High-efficiency full-length cDNA cloning Meth. Enzymol. 303, 19-44 (1999) 99279253 10349636
REFERENCE AUTHORS	2 Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K.,
TITLE	Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y. Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes
JOURNAL MEDLINE PUBMED	Genome Res. 10 (10), 1617-1630 (2000) 20499374 11042159
REFERENCE AUTHORS	3 Shibata, K., Itoh, M., Aizawa, K., Nagaoka, S., Sasaki, N., Carninci, P.,

```
Konno, H., Akiyama, J., Nishi, K., Kitsunai, T., Tashiro, H., Itoh, M.,
            Sumi, N., Ishii, Y., Nakamura, S., Hazama, M., Nishine, T., Harada, A.,
            Yamamoto, R., Matsumoto, H., Sakaguchi, S., Ikegami, T., Kashiwagi, K.,
            Fujiwake, S., Inoue, K., Togawa, Y., Izawa, M., Ohara, E., Watahiki, M.,
            Yoneda, Y., Ishikawa, T., Ozawa, K., Tanaka, T., Matsuura, S., Kawai, J.,
            Okazaki, Y., Muramatsu, M., Inoue, Y., Kira, A. and Hayashizaki, Y.
            RIKEN integrated sequence analysis (RISA) system--384-format
            sequencing pipeline with 384 multicapillary sequencer
  JOURNAL
            Genome Res. 10 (11), 1757-1771 (2000)
 MEDLINE
            20530913
            11076861
  PUBMED
REFERENCE
 AUTHORS
            The RIKEN Genome Exploration Research Group Phase II Team and the
            FANTOM Consortium.
            Functional annotation of a full-length mouse cDNA collection
            Nature 409, 685-690 (2001)
  JOURNAL
REFERENCE
 AUTHORS
            The FANTOM Consortium and the RIKEN Genome Exploration Research
            Group Phase I & II Team.
            Analysis of the mouse transcriptome based on functional annotation
            of 60,770 full-length cDNAs
  JOURNAL
            Nature 420, 563-573 (2002)
REFERENCE
               (bases 1 to 3470)
 AUTHORS:
            Adachi, J., Aizawa, K., Akimura, T., Arakawa, T., Bono, H., Carninci, P.,
            Fukuda, S., Furuno, M., Hanagaki, T., Hara, A., Hashizume, W.,
            Hayashida, K., Hayatsu, N., Hiramoto, K., Hiraoka, T., Hirozane, T.,
            Hori, F., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Kasukawa, T.,
            Katoh, H., Kawai, J., Kojima, Y., Kondo, S., Konno, H., Kouda, M.,
            Koya, S., Kurihara, C., Matsuyama, T., Miyazaki, A., Murata, M.,
            Nakamura, M., Nishi, K., Nomura, K., Numazaki, R., Ohno, M., Ohsato, N.,
            Okazaki, Y., Saito, R., Saitoh, H., Sakai, C., Sakai, K., Sakazume, N.,
            Sano, H., Sasaki, D., Shibata, K., Shinagawa, A., Shiraki, T.,
            Sogabe, Y., Tagami, M., Tagawa, A., Takahashi, F., Takaku-Akahira, S.,
            Takeda, Y., Tanaka, T., Tomaru, A., Toya, T., Yasunishi, A.,
            Muramatsu, M. and Hayashizaki, Y.
            Direct Submission
            Submitted (16-JUL-2001) Yoshihide Hayashizaki, The Institute of
 JOURNAL
            Physical and Chemical Research (RIKEN), Laboratory for Genome
            Exploration Research Group, RIKEN Genomic Sciences Center (GSC),
            RIKEN Yokohama Institute; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama,
            Kanagawa 230-0045, Japan (E-mail:genome-res@gsc.riken.go.jp,
            URL: http://genome.gsc.riken.go.jp/, Tel:81-45-503-9222,
            Fax: 81-45-503-9216)
            cDNA library was prepared and sequenced in Mouse Genome
            Encyclopedia Project of Genome Exploration Research Group in Riken
            Genomic Sciences Center and Genome Science Laboratory in RIKEN.
            Division of Experimental Animal Research in Riken contributed to
            prepare mouse tissues.
            Please visit our web site for further details.
            URL:http://genome.gsc.riken.go.jp/
            URL:http://fantom.gsc.riken.go.jp/.
                     Location/Qualifiers
                     1. .3470
    source
                     /organism="Mus musculus"
                     /mol type="mRNA"
                     /strain="C57BL/6J"
```

/db xref="FANTOM DB:C230065B06"

TITLE

TITLE

TITLE

TITLE

COMMENT

FEATURES

```
/db xref="MGI:2415851"
                 /db xref="taxon:10090"
                 /clone="C230065B06"
                 /tissue type="cerebellum"
                 /clone lib="RIKEN full-length enriched mouse cDNA library"
                 /dev stage="0 day neonate"
    CDS
                 75. .1457
                 /note="unnamed protein product; OREXIN RECEPTOR TYPE 2
                 (SWISSPROT|P56719, evidence: FASTY, 98.5%ID, 100%length,
                 match=1380)
                 putative"
                 /codon start=1
                 /protein id="BAC33457.1"
                 /db xref="GI:26339572"
                 translation="MSSTKLEDSLSRRNWSSASELNETOEPFLNPTDYDDEEFLRYLW/
                 REYLHPKEYEWVLIAGYIIVFVVALIGNVLVCVAVWKNHHMRTVTNYFIVNLSLADVL
                 VTITCLPATLVVDITETWFFGQSLCKVIPYLQTVSVSVSVLTLSCIALDRWYAICHPL
                 MFKSTAKRARNSIVVIWIVSCIIMIPQAIVMECSSMLPGLANKTTLFTVCDEHWGGEV
                 YPKMYHICFFLVTYMAPLCLMILAYLOIFRKLWCROIPGTSSVVORKWKOOOPVSOPR
                 GSGQQSKARISAVAAEIKQIRARRKTARMLMVVLLVFAICYLPISILNVLKRVFGMFT
                 HTEDRETVYAWFTFSHWLVYANSAANPIIYNFLSGKFREEFKAAFSCCLGVHHRQGDR
                 LARGRTSTESRKSLTTQISNFDNVSKLSEHVVLTSISTLPAANGAGPLQNWYLQQGVP
                 SSLLSTWLEV"
                 3455. .3460
    polyA signal
                 /note="putative"
                 3470
    polyA site
                 /note="putative"
ORIGIN
 Query Match
                     47.0%;
                           Score 521.4; DB 11;
                                             Length 3470;
 Best Local Similarity
                     70.6%;
                           Pred. No. 1.3e-95;
        712; Conservative
                           0; Mismatches 291;
                                             Indels
                                                               1;
                                                     6:
                                                        Gaps
         80 ATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTGTACCCAAAACAGTATGAGT 139
           178 ACGACGAGGAATTCCTGCGGTACCTGTGGAGGGAATACCTACACCCGAAAGAATATGAGT 237
        140 GGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCCCTGGTGGGCAACACGCTGG 199
           238 GGGTCCTGATCGCAGGGTATATCATCGTGTTCGTTGTGGCTCTCATCGGGAACGTCCTGG 297
        200 TCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTCACCAACTACTTCATTGTCA 259
               298 TCTGTGTGGCAGTGTGGAAGAACCACCACATGAGGACAGTCACCAACTACTTCATAGTCA 357
        358 ACCTTTCCCTAGCAGATGTGCTTGTGACCATCACCTGCCTTCCAGCTACCCTCGTTGTTG 417
        320 ACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAGGTCATCCCCTATCTACAGG 379
           418 ACATCACTGAGACTTGGTTCTTTGGACAGTCCCTCTGTAAGGTCATTCCTTATTTACAGA 477
        380 CTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCGCTGGTATG 439
```

478 CTGTGTCAGTGTCTGTTCTTACGTTGAGCTGCATTGCCTTGGACCGATGGTACG 537

Qу

Db

Qу

Db

Qу

Db

Qу

Db

Qу

Db

Qy

Db

· ·	CCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGGGCCCGTGGCTCCATCCTGG	
	GCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCTGCAGTCATGCAATCCAGCA	
Qy 560	GTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGAACGCTGGG	619
Db 658		717
Qy 620	CAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTTATTGTCACCTACCT	679
Db 718		777
Qy 680	CACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGA	739
Db 778		837
Qy 740	TCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCAGCTGGGGG	799
Db 838		891
Qy 800	ACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCCTTCCTGGCTGAAG	859
Db 892	CTCAGCCCCGGGGGTCCGGACAGCAGAGCAAGGCTCGGATTAGCGCTGTTGCTGAGA	951
Qy 860	TGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGGTGCTGCTGTCT	919
Db 952	TAAAGCAGATCCGAGCACGAAGGAAAACAGCCCGGATGCTCATGGTTGTACTTCTGGTCT	1011
Qy 920	TCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGT	979
Db 1012	TTGCAATTTGCTATCTACCAATCAGCATCCTCAATGTGCTAAAGAGAGTATTTGGGATGT	1071
	TCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTCACCTTCTCCCACTGGCTGG	
Db 1072	TCACACACGGAAGACAGAGAGACTGTCTATGCTTGGTTCACTTTTTCTCATTGGCTTG	1131
	TGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTCCTCAGTGG 1088	
Db 1132	TATATGCCAACAGTGCTGCAAACCCAATTATTTATAATTTTCTTAGTGG 1180	
RESULT 6 AK038551	g organis and the second of th	
DEFINITION M	K038551 3729 bp mRNA linear HTC 19-SEP- us musculus adult male hypothalamus cDNA, RIKEN full-length nriched library, clone:A230036M08 product:OREXIN RECEPTOR TYPE ull insert sequence.	
ACCESSION A	K038551 K038551.1 GI:26332642	
KEYWORDS H	TC; CAP trapper. us musculus (house mouse)	
ORGANISM M	us musculus us musculus ukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostom	i:
•	_ , , , , , , , , , , , , , , , , , , ,	•

```
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE
  AUTHORS
            Carninci, P. and Hayashizaki, Y.
  TITLE
            High-efficiency full-length cDNA cloning
  JOURNAL
            Meth. Enzymol. 303, 19-44 (1999)
  MEDLINE
            99279253
   PUBMED
            10349636
REFERENCE
            2
  AUTHORS
            Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K.,
            Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y.
  TITLE
            Normalization and subtraction of cap-trapper-selected cDNAs to
            prepare full-length cDNA libraries for rapid discovery of new genes
  JOURNAL
            Genome Res. 10 (10), 1617-1630 (2000)
  MEDLINE
            20499374
            11042159
   PUBMED
REFERENCE
  AUTHORS
            Shibata, K., Itoh, M., Aizawa, K., Nagaoka, S., Sasaki, N., Carninci, P.,
            Konno, H., Akiyama, J., Nishi, K., Kitsunai, T., Tashiro, H., Itoh, M.,
            Sumi, N., Ishii, Y., Nakamura, S., Hazama, M., Nishine, T., Harada, A.,
            Yamamoto, R., Matsumoto, H., Sakaguchi, S., Ikegami, T., Kashiwagi, K.,
            Fujiwake, S., Inoue, K., Togawa, Y., Izawa, M., Ohara, E., Watahiki, M.,
            Yoneda, Y., Ishikawa, T., Ozawa, K., Tanaka, T., Matsuura, S., Kawai, J.,
            Okazaki, Y., Muramatsu, M., Inoue, Y., Kira, A. and Hayashizaki, Y.
  TITLE
            RIKEN integrated sequence analysis (RISA) system--384-format
            sequencing pipeline with 384 multicapillary sequencer
  JOURNAL
            Genome Res. 10 (11), 1757-1771 (2000)
 MEDLINE
            20530913
            11076861
  PUBMED
REFERENCE
            The RIKEN Genome Exploration Research Group Phase II Team and the
 AUTHORS
            FANTOM Consortium.
 TITLE
            Functional annotation of a full-length mouse cDNA collection
  JOURNAL
            Nature 409, 685-690 (2001)
REFERENCE
 AUTHORS
            The FANTOM Consortium and the RIKEN Genome Exploration Research
            Group Phase I & II Team.
 TITLE
            Analysis of the mouse transcriptome based on functional annotation
            of 60,770 full-length cDNAs
  JOURNAL
            Nature 420, 563-573 (2002)
REFERENCE
               (bases 1 to 3729)
            Adachi, J., Aizawa, K., Akimura, T., Arakawa, T., Bono, H., Carninci, P.,
 AUTHORS
            Fukuda, S., Furuno, M., Hanagaki, T., Hara, A., Hashizume, W.,
            Hayashida, K., Hayatsu, N., Hiramoto, K., Hiraoka, T., Hirozane, T.,
            Hori, F., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Kasukawa, T.,
            Katoh, H., Kawai, J., Kojima, Y., Kondo, S., Konno, H., Kouda, M.,
            Koya, S., Kurihara, C., Matsuyama, T., Miyazaki, A., Murata, M.,
            Nakamura, M., Nishi, K., Nomura, K., Numazaki, R., Ohno, M., Ohsato, N.,
            Okazaki, Y., Saito, R., Saitoh, H., Sakai, C., Sakai, K., Sakazume, N.,
            Sano, H., Sasaki, D., Shibata, K., Shinagawa, A., Shiraki, T.,
            Sogabe, Y., Tagami, M., Tagawa, A., Takahashi, F., Takaku-Akahira, S.,
            Takeda, Y., Tanaka, T., Tomaru, A., Toya, T., Yasunishi, A.,
            Muramatsu, M. and Hayashizaki, Y.
 TITLE
            Direct Submission
  JOURNAL
            Submitted (16-JUL-2001) Yoshihide Hayashizaki, The Institute of
            Physical and Chemical Research (RIKEN), Laboratory for Genome
            Exploration Research Group, RIKEN Genomic Sciences Center (GSC),
            RIKEN Yokohama Institute; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama,
```

```
URL: http://genome.gsc.riken.go.jp/, Tel:81-45-503-9222,
            Fax: 81-45-503-9216)
 COMMENT
            cDNA library was prepared and sequenced in Mouse Genome
            Encyclopedia Project of Genome Exploration Research Group in Riken
            Genomic Sciences Center and Genome Science Laboratory in RIKEN.
            Division of Experimental Animal Research in Riken contributed to
            prepare mouse tissues.
            Please visit our web site for further details.
            URL:http://genome.gsc.riken.go.jp/
            URL:http://fantom.gsc.riken.go.jp/.
 FEATURES
                     Location/Qualifiers
     source
                     1. .3729
                     /organism="Mus musculus"
                     /mol type="mRNA"
                     /strain="C57BL/6J"
                     /db xref="FANTOM DB:A230036M08"
                     /db xref="MGI:2402981"
                     /db xref="taxon:10090"
                     /clone="A230036M08"
                     /sex="male"
                     /tissue type="hypothalamus"
                     /clone lib="RIKEN full-length enriched mouse cDNA library"
                     /dev stage="adult"
     CDS
                     76. .1458
                     /note="unnamed protein product; OREXIN RECEPTOR TYPE 2
                     (SWISSPROT|P56719, evidence: FASTY, 98.5%ID, 100%length,
                     match=1380)
                     putative"
                     /codon start=1
                     /protein id="BAC30039.1"
                     /db xref="GI:26332643"
                     /translation="MSSTKLEDSLSRRNWSSASELNETQEPFLNPTDYDDEEFLRYLW
                     REYLHPKEYEWVLIAGYIIVFVVALIGNVLVCVAVWKNHHMRTVTNYFIVNLSLADVL
                     VTITCLPATLVVDITETWFFGQSLCKVIPYLQTVSVSVSVLTLSCIALDRWYAICHPL
                    MFKSTAKRARNSIVVIWIVSCIIMIPQAIVMECSSMLPGLANKTTLFTVCDEHWGGEV
                     YPKMYHICFFLVTYMAPLCLMILAYLQIFRKLWCRQIPGTSSVVQRKWKQQQPVSQPR
                     GSGQQSKARISAVAAEIKQIRARRKTARMLMVVLLVFAICYLPISILNVLKRVFGMFT
                     HTEDRETVYAWFTFSHWLVYANSAANPIIYNFLSGKFREEFKAAFSCCLGVHHRQGDR
                     LARGRTSTESRKSLTTQISNFDNVSKLSEHVVLTSISTLPAANGAGPLQNWYLQQGVP
                     SSLLSTWLEV"
                     3712. .3717
     polyA signal
                     /note="putative"
                     3729
     polyA site
                     /note="putative"
ORIGIN
  Query Match
                         47.0%;
                                 Score 521.4; DB 11;
  Best Local Similarity
                         70.6%;
                                 Pred. No. 1.4e-95;
  Matches 712; Conservative
                                0; Mismatches 291; Indels
                                                                   Gaps
                                                                          1;
Qy
           80 ATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTGTACCCAAAACAGTATGAGT 139
              Db
          179 ACGACGAGGAATTCCTGCGGTACCTGTGGAGGGAATACCTACACCCGAAAGAATATGAGT 238
Qy ·
          140 GGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCCCTGGTGGGCAACACGCTGG 199
```

4.3

Kanagawa 230-0045, Japan (E-mail:genome-res@gsc.riken.go.jp,

Db	2	239	${\tt GGGTCCTGATCGCAGGGTATATCATCGTGTTCGTTGTGGCTCTCATCGGGAACGTCCTGG}$	298
Qу	2	200	TCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTCACCAACTACTTCATTGTCA	259
Db	. 2	299	TCTGTGTGGCAGTGTGGAAGAACCACCACATGAGGACAGTCACCAACTACTTCATAGTCA	358
Qy	2	260	ACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTGC	319
Db	3	359	ACCTTTCCCTAGCAGATGTGCTTGTGACCATCACCTGCCTTCCAGCTACCCTCGTTGTTG	418
Qу	3	320	ACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAGGTCATCCCCTATCTACAGG	379
Db	4	119	ACATCACTGAGACTTGGTTCTTTGGACAGTCCCTCTGTAAGGTCATTCCTTATTTACAGA	478
Qy	3	380	CTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCGCTGGTATG	439
Db	4	179	CTGTGTCAGTGTCTGTTCTTACGTTGAGCTGCATTGCCTTGGACCGATGGTACG	538
Qy	4	140	CCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGGGGCCCGTGGCTCCATCCTGG	499
Db	5	39	CCATTTGTCACCCTTTGATGTTCAAGAGCACAGCCAAACGGGCTCGAAACAGCATCGTTG	598
Qу	5	00	GCATCTGGGCTGTCGCCGCCATCATGGTGCCCCAGGCTGCAGTCATGCAATCCAGCA	559
Db	5	99	TCATCTGGATCGTCTCCTGCATCATAATGATTCCTCAAGCCATTGTCATGGAGTGCAGCA	658
Qу	. 5	60	GTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGAACGCTGGG	619
Db	6	559	GCATGCTCCCTGGCCTAGCCAATAAGACCACCCTCTTTACAGTATGTGATGAACACTGGG	718
ДĀ	6	520	CAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTTATTGTCACCTACCT	679
Db	7	19	GCGGTGAAGTTTACCCAAAGATGTACCATATCTGCTTCTTTCT	778
Qу	6	80	CACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGA	739
Db	.7	779	CTCTGTGTCTTATGATATTGGCTTATCTCCAAATATTCCGTAAACTCTGGTGCCGACAGA	838
Qу	7		TCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCAGCTGGGGG	799
Db	8		TTCCCGGAACTTCTTCTGTGGTTCAGAGAAAATGGAAGCAGCAGCAGCCGGTTT	892
.Qy	8	800	ACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCCTTCCTGGCTGAAG	859
Db	8	93	CTCAGCCCGGGGGTCCGGACAGCAGGCAGGCTCGGATTAGCGCTGTTGCTGCTGAGA	
Qу	8	60	TGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGGTGCTGCTCT	
Db	è	53	TAAAGCAGATCCGAGCACGAAGGAAAACAGCCCGGATGCTCATGGTTGTACTTCTGGTCT	1012
Qу	9	20	TCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGT	979
Db	10	13	TTGCAATTTGCTATCTACCAATCAGCATCCTCAATGTGCTAAAGAGAGTATTTGGGATGT	1072
Qу	9	80	TCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTCACCTTCTCCCACTGGCTGG	1039
Db	10	73	TCACACACACGGAAGACAGAGACTGTCTATGCTTCACTTCACTTCACTTCACTTCACTTT	1132

```
1040 TGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTCCTCAGTGG 1088
Qу
          Db
      1133 TATATGCCAACAGTGCTGCAAACCCAATTATTATAATTTTCTTAGTGG 1181
```

RESULT 7 BC035858

LOCUS BC035858 1790 bp mRNA HTC 04-MAR-2003 linear

DEFINITION Homo sapiens, Similar to hypocretin (orexin) receptor 2, clone

IMAGE: 5767576, mRNA.

ACCESSION BC035858

VERSION BC035858.1 GI:23959160

KEYWORDS HTC.

SOURCE Homo sapiens (human)

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE (bases 1 to 1790)

AUTHORS Strausberg, R. Direct Submission TITLE

JOURNAL Submitted (31-JUL-2002) National Institutes of Health, Mammalian

Gene Collection (MGC), Cancer Genomics Office, National Cancer Institute, 31 Center Drive, Room 11A03, Bethesda, MD 20892-2590,

REMARK NIH-MGC Project URL: http://mgc.nci.nih.gov

COMMENT Contact: MGC help desk

Email: cgapbs-r@mail.nih.gov

Tissue Procurement: Life Technologies, Inc.

cDNA Library Preparation: Life Technologies, Inc.

cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL) DNA Sequencing by: National Institutes of Health Intramural

Sequencing Center (NISC), Gaithersburg, Maryland;

Web site: http://www.nisc.nih.gov/

Contact: nisc mgc@nhgri.nih.gov

Akhter, N., Ayele, K., Beckstrom-Sternberg, S.M., Benjamin, B., Blakesley, R.W., Bouffard, G.G., Breen, K., Brinkley, C., Brooks, S.,

Dietrich, N.L., Granite, S., Guan, X., Gupta, J., Haghighi, P.,

Hansen, N., Ho, S.-L., Karlins, E., Kwong, P., Laric, P., Legaspi, R., Maduro, Q.L., Masiello, C., Maskeri, B., Mastrian, S.D., McCloskey, J.C.,

McDowell, J., Pearson, R., Stantripop, S., Thomas, P.J., Touchman, J.W.,

Tsurgeon, C., Voqt, J.L., Walker, M.A., Wetherby, K.D., Wiggins, L.,

Young, A., Zhang, L.-H. and Green, E.D.

Clone distribution: MGC clone distribution information dan be found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov

Series: IRAK Plate: 79 Row: p Column: 14

This clone was selected for full length sequencing because it passed the following selection criteria: matched mRNA gi: 6006037 This clone has the following problem: retained intron.

FEATURES

Location/Qualifiers

source

1. .1790

/organism="Homo sapiens"

/mol type="mRNA"

/db xref="taxon:9606"

/clone="IMAGE:5767576"

/tissue_type="Brain, fetal, whole pooled"
/clone_lib="NIH_MGC_121"
/lab_host="DH10B"
/note="Vector: pCMV-SPORT6"

ORIGIN

atch		
		1;
80		139
146	ACGACGAGGAATTCCTGCGGTACCTGTGGAGGGAATACCTGCACCCGAAAGAATATGAGT	205
140		199
206		265
200		259
266		325
260		319
326		385
320		379
386		445
380		439
446		505
440		499
506		565
500		559
566		625
560		619
626		685
620		679
686		745
680		739
746		805
740		799
806		859
	200 2666 2200 3266 320 386 440 506 5500 566 620 686 680 746 740	cal Similarity 70.0%; Pred. No. 9e-94;

```
1 11 1
                             1
                                     1111
Db
         860 CACAGCCTCGAGGGCCAGGACAGCCAACGAAGTCCCGGATGAGCGCTGTGGCGGCTGAAA 919
Qу
         860 TGAAGCAGATGCGTGCACGGAGGAGACAGCCAAGATGCTGATGGTGGTGCTGCTCGTCT 919
             Db
         920 TAAAGCAGATCCGAGCCAGAAGGAAAACAGCCCGGATGTTGATGGTTGTTGTTTTGGTAT 979
Qу
         920 TCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGT 979
             Db
         980 TTGCAATTTGCTATCTACCAATTAGCATCCTCAATGTGCTAAAGAGAGTATTTGGGATGT 1039
         Qу
                         Db
        1040 TTGCCCATACTGAAGACAGAGAGACTGTGTATGCCTGGTTTACCTTTTCACACTGGCTTG 1099
Qу
        1040 TGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTCCTCAGTGG 1088
             Db
        1100 TATATGCCAATAGTGCTGCGAATCCAATTATTATAATTTTCTCAGTGG 1148
RESULT 8
AK079572
LOCUS
           AK079572
                                 3153 bp
                                           mRNA
                                                          HTC 19-SEP-2003
                                                  linear
DEFINITION
          Mus musculus adult male hypothalamus cDNA, RIKEN full-length
           enriched library, clone:A230091E19 product:OREXIN RECEPTOR TYPE 2,
           full insert sequence.
ACCESSION
           AK079572
           AK079572.1 GI:26348079
VERSION
           HTC; CAP trapper.
KEYWORDS
SOURCE
           Mus musculus (house mouse)
 ORGANISM
          Mus musculus
           Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
           Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE
 AUTHORS
           Carninci, P. and Hayashizaki, Y.
 TITLE
           High-efficiency full-length cDNA cloning
 JOURNAL
          Meth. Enzymol. 303, 19-44 (1999)
 MEDLINE
           99279253
           10349636
  PUBMED
REFERENCE
 AUTHORS
           Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K.,
           Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y.
 TITLE
           Normalization and subtraction of cap-trapper-selected cDNAs to
           prepare full-length cDNA libraries for rapid discovery of new genes
 JOURNAL
           Genome Res. 10 (10), 1617-1630 (2000)
 MEDLINE
           20499374
           11042159
  PUBMED
REFERENCE
 AUTHORS
           Shibata, K., Itoh, M., Aizawa, K., Nagaoka, S., Sasaki, N., Carninci, P.,
           Konno, H., Akiyama, J., Nishi, K., Kitsunai, T., Tashiro, H., Itoh, M.,
           Sumi, N., Ishii, Y., Nakamura, S., Hazama, M., Nishine, T., Harada, A.,
           Yamamoto, R., Matsumoto, H., Sakaguchi, S., Ikegami, T., Kashiwagi, K.,
           Fujiwake, S., Inoue, K., Togawa, Y., Izawa, M., Ohara, E., Watahiki, M.,
           Yoneda, Y., Ishikawa, T., Ozawa, K., Tanaka, T., Matsuura, S., Kawai, J.,
           Okazaki, Y., Muramatsu, M., Inoue, Y., Kira, A. and Hayashizaki, Y.
```

800 ACCTGGAGCAGGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCCTTCCTGGCTGAAG 859

Qу

```
TITLE
            RIKEN integrated sequence analysis (RISA) system--384-format
            sequencing pipeline with 384 multicapillary sequencer
  JOURNAL
            Genome Res. 10 (11), 1757-1771 (2000)
  MEDLINE
            20530913
   PUBMED
            11076861
REFERENCE
  AUTHORS
            The RIKEN Genome Exploration Research Group Phase II Team and the
            FANTOM Consortium.
  TITLE
            Functional annotation of a full-length mouse cDNA collection
            Nature 409, 685-690 (2001)
  JOURNAL
REFERENCE
            5
  AUTHORS
            The FANTOM Consortium and the RIKEN Genome Exploration Research
            Group Phase I & II Team.
  TITLE
            Analysis of the mouse transcriptome based on functional annotation
            of 60,770 full-length cDNAs
            Nature 420, 563-573 (2002)
  JOURNAL
REFERENCE
               (bases 1 to 3153)
            Adachi, J., Aizawa, K., Akimura, T., Arakawa, T., Bono, H., Carninci, P.,
  AUTHORS
            Fukuda, S., Furuno, M., Hanagaki, T., Hara, A., Hashizume, W.,
            Hayashida, K., Hayatsu, N., Hiramoto, K., Hiraoka, T., Hirozane, T.,
            Hori, F., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Kasukawa, T.,
            Katoh, H., Kawai, J., Kojima, Y., Kondo, S., Konno, H., Kouda, M.,
            Koya, S., Kurihara, C., Matsuyama, T., Miyazaki, A., Murata, M.,
            Nakamura, M., Nishi, K., Nomura, K., Numazaki, R., Ohno, M., Ohsato, N.,
            Okazaki, Y., Saito, R., Saitoh, H., Sakai, C., Sakai, K., Sakazume, N.,
            Sano, H., Sasaki, D., Shibata, K., Shinagawa, A., Shiraki, T.,
            Sogabe, Y., Tagami, M., Tagawa, A., Takahashi, F., Takaku-Akahira, S.,
            Takeda, Y., Tanaka, T., Tomaru, A., Toya, T., Yasunishi, A.,
            Muramatsu, M. and Hayashizaki, Y.
  TITLE
            Direct Submission
  JOURNAL
            Submitted (16-APR-2002) Yoshihide Hayashizaki, The Institute of
            Physical and Chemical Research (RIKEN), Laboratory for Genome
            Exploration Research Group, RIKEN Genomic Sciences Center (GSC),
            RIKEN Yokohama Institute; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama,
            Kanagawa 230-0045, Japan (E-mail:genome-res@gsc.riken.go.jp,
            URL:http://genome.gsc.riken.go.jp/, Tel:81-45-503-9222,
            Fax:81-45-503-9216)
            cDNA library was prepared and sequenced in Mouse Genome
COMMENT
            Encyclopedia Project of Genome Exploration Research Group in Riken
            Genomic Sciences Center and Genome Science Laboratory in RIKEN.
            Division of Experimental Animal Research in Riken contributed to
            prepare mouse tissues.
            Please visit our web site for further details.
            URL:http://genome.gsc.riken.go.jp/
            URL:http://fantom.gsc.riken.go.jp/.
FEATURES
                F274.
                     Location/Qualifiers
     source
                     1. .3153
                     /organism="Mus musculus"
                     /mol type="mRNA"
                     /strain="C57BL/6J"
                     /db xref="FANTOM DB:A230091E19"
                     /db xref="MGI:2403517"
                     /db xref="taxon:10090"
                     /clone="A230091E19"
                     /sex="male"
                     /tissue type="hypothalamus"
                     /clone lib="RIKEN full-length enriched mouse cDNA library"
```

/dev_stage="adult" CDS 108..1202

/note="unnamed protein product; OREXIN RECEPTOR TYPE 2
(SWISSPROT|P56719, evidence: FASTY, 98.5%ID, 100%length,
match=1380)

putative"
/codon start=1

/protein_id="BAC37688.1"

/db xref="GI:26348080"

/translation="MSSTKLEDSLSRRNWSSASELNETQEPFLNPTDYDDEEFLRYLW REYLHPKEYEWVLIAGYIIVFVVALIGNVLVCVAVWKNHHMRTVTNYFIVNLSLADVL VTITCLPATLVVDITETWFFGQSLCKVIPYLQTVSVSVSVLTLSCIALDRWYAICHPL MFKSTAKRARNSIVVIWIVSCIIMIPQAIVMECSSMLPGLANKTTLFTVCDEHWGGEV YPKMYHICFFLVTYMAPLFLMILAYLQIFRKLWCRQIPGTSSVVQRKWKQQQPVSQPR GSGQQSKARVSAVAAEIKQIRARRKTARMLMVVLLVFAICYLPISILNVLKRVFGMFT HTEDRETVYAWFTFPHWLVYANSCCKPNYL"

ORIGIN

Query Match 46.0%; Score 510.4; DB 11; Length 3153; Best Local Similarity 70.5%; Pred. No. 2.2e-93; Matches 712; Conservative 0; Mismatches 291; Indels 7; Gaps 2; 80 ATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTGTACCCAAAACAGTATGAGT 139 Qу 211 ACGACGAGGAATTCCTGCGGTACCTGTGGAGGGAATACCTACACCCGAAAGAATATGAGT 270 Db Qу 140 GGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCCCTGGTGGGCAACACGCTGG 199 271 GGGTCCTGATCGCAGGGTATATCATCGTGTTCGTTGTGGCTCTCATCGGGAACGTCCTGG 330 Db 200 TCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTCACCAACTACTTCATTGTCA 259 Qу Db 331 TCTGTGTGGCAGTGTGGAAGAACCACCACATGAGGACAGTCACCAACTACTTCATAGTCA 390 Qу Db 391 ACCTTTCCCTAGCAGATGTGCTTGTGACCATCACCTGCCTTCCAGCTACCCTCGTTGTTG 450 320 ACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAGGTCATCCCCTATCTACAGG 379 Qу Db 451 ACATCACTGAGACTTGGTTCTTTGGACAGTCCCTCTGTAAGGTCATTCCTTATTTACAGA 510 380 CTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCGCTGGTATG 439 Qу Db 511 CTGTGTCAGTGTCTGTGTCTTTTACGTTGAGCTGCATTGCCTTGGACCGATGGTACG 570 440 CCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGGGCCCGTGGCTCCATCCTGG 499 Qу Db 571 CCATTTGTCACCCTTTGATGTTCAAGAGCACAGCCAAACGGGCTCGAAACAGCATCGTTG 630 500 GCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCTGCAGTCATGCAATCCAGCA 559 Qу 111111 11 11 111 111 1 11 11 11 631 TCATCTGGATCGTCTCCTGCATCATAATGATTCCTCAAGCCATTGTCATGGAGTGCAGCA 690 Db 560 GTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGAACGCTGGG 619 Qу 111 Db 691 GCATGCTCCCTGGCCTAGCCAATAAGACCACCCTCTTTACAGTATGTGATGAACACTGGG 750

Qy		CAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTTATTGTCACCTACCT	
Db	751	GCGGTGAAGTTTACCCAAAGATGTACCATATCTGCTTCTTTCT	810
QУ	680	CACTGGGCCTCATGGCCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGA	739
Db	811	CTCTGTTTCTTATGATATTGGCTTATCTCCAAATATTCCGTAAACTCTGGTGCCGACAGA	870
Qу	740	TCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCAGCTGGGGG	799
Db	871	TTCCCGGAACTTCTTCTGTGGTTCAGAGAAAATGGAAGCAGCAGCAGCCGGTTT	924
Qу	800	ACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCCTTCCTGGCTGAAG	859
Db	925		984
Qу	860	TGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGGTGCTGCTGTCT	919
Db	985		1044
QУ	920	TCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGT	979
Db	1045	TTGCAATTTGCTATCTACCAATCAGCATCCTCAATGTGCTAAAGAGAGTATTTGGGATGT	1104
Qy	980	TCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTCACCTTCTCCCACTGGCTGG	1039
Db	1105		1164
Qy	1040	TGTACGCCAACAGC-GCTGCCAACCCCATCATCTACAACTTCCTCAGTGG 1088	
Db	1165		
RESULT 9 CF147830/	С		
LOCUS	Cl	F147830 790 bp mRNA linear EST 25-JUL-	2003
DEFINITION		GENCOURT 14740202 NIH MGC 145 Homo sapiens cDNA clone MAGE:6971889 5', mRNA sequence.	
ACCESSION		F147830	
VERSION KEYWORDS		F147830.1 GI:33244098 ST.	
SOURCE	Н	omo sapiens (human)	
ORGANIS		omo sapiens	
	Et Ma	ukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostom ammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.	i;
REFERENCE	1	(bases 1 to 790)	
AUTHORS TITLE		<pre>IH-MGC http://mgc.nci.nih.gov/. ational Institutes of Health, Mammalian Gene Collection (MGC)</pre>	
JOURNAL		npublished (1999)	
COMMENT		ontact: Daniela S. Gerhard, Ph.D.	
	,	ffice of Cancer Genomics ational Cancer Institute / NIH	
		ldg. 31 Rm10A07 Bethesda, MD 20892	
		mail: cgapbs-r@mail.nih.gov	
		issue Procurement: GPCR Consortium cDNA Library Preparation: GPCR Consortium	
	Ì		

cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL) DNA Sequencing by: Agencourt Bioscience Corporation Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov Plate: IRBI02 row: a column: 08 High quality sequence start: 7 High quality sequence stop: 738. **FEATURES** Location/Qualifiers source 1. .790 /organism="Homo sapiens" /mol type="mRNA" /db xref="taxon:9606" /clone="IMAGE:6971889" /tissue type="mixed" /lab host="DH10B" /clone lib="NIH MGC 145" /note="Vector: pcDNA3.1; Site_1: varies by clone; Site_2: varies by clone; ORFs were PCR-amplified and cloned into pcDNA3.1 by the GPCR Consortium. Cloning sites vary by clone and include the following: 5'-EcoRV-XmnI/XhoI-3', 5'-EcoRV-XmnI/NotI-3', EcoRV (TA cloned, non-directional). For information about which gene each clones represents, please visit our anonymous ftp site at ftp://image.llnl.gov/image/rearrayed_plates/IRBI.preSV.dat a Note: this is a NIH MGC Library." ORIGIN Ouerv Match Scare 500 6.

Query Ma	Similarity						Length	790;			
		3; Conservat			. No. 1 ismatch			Indels	0;	Gaps	0;
Qу		CGCACACGGCT									642
Db		CGCACACGGCT									731
Qy _,	643	TACCACAGTTGO									702
Db	730	TACCACAGTTGO									671
Qy	703	TATTTCCAGATA									762
Db	670	TATTTCCAGATA									611
Qy	763	GTGCGGAACTGG									822
Db	610	GTGCGGAACTG									551
Qy	823	GAGCCCCAGCCC									882
Db	550	GAGCCCCAGCCC									491
Qу	883	AAGACAGCCAAG									942
Db	490	AAGACAGCCAAG									431
Qу	943	AGCGTCCTCAAT	'GTCCTTA	AGAGG	GTGTTCG(GGATGT	TCCG	CCAAGCC	AGTGAC	CGCGAA	1002

```
Db
          430 AGCGTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAA 371
         1003 GCTGTCTACGCCTGCTTCACCTTCTCCCACTGGCTGGTGTACGCCAACAGCGCTGCCAAC 1062
Qу
              370 GCTGTCTACGCCTGCTTCACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAAC 311
Db
Qy
         1063 CCCATCATCTACAACTTCCTCAGTGGC 1089
              Db
         310 CCCATCATCTACAACTTCCTCAGTGGC 284
RESULT 10
AY420886
LOCUS
           AY420886
                                   750 bp
                                             DNA
                                                     linear
                                                             GSS 17-DEC-2003
DEFINITION
           Pan troglodytes HCRTR1 gene, VIRTUAL TRANSCRIPT, partial sequence,
           genomic survey sequence.
ACCESSION
           AY420886
           AY420886.1 GI:39776843
VERSION
KEYWORDS
           GSS.
SOURCE
           Pan troglodytes (chimpanzee)
  ORGANISM
           Pan troglodytes
           Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
           Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Pan.
REFERENCE
              (bases 1 to 750)
  AUTHORS
           Clark, A.G., Glanowski, S., Nielson, R., Thomas, P., Kejariwal, A.,
           Todd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B.,
           Ferriera, S., Wang, G., Zheng, X.H., White, T.J., Sninsky, J.J.,
           Adams, M.D. and Cargill, M.
  TITLE
           Inferring nonneutral evolution from human-chimp-mouse orthologous
           gene trios
           Science 302 (5652), 1960-1963 (2003)
  JOURNAL
   PUBMED
           14671302
REFERENCE
              (bases 1 to 750)
  AUTHORS
           Clark, A.G., Glanowski, S., Nielson, R., Thomas, P., Kejariwal, A.,
           Todd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B.,
           Ferriera, S., Wang, G., Zheng, X.H., White, T.J., Sninsky, J.J.,
           Adams, M.D. and Cargill, M.
  TITLE
           Direct Submission
           Submitted (16-NOV-2003) Celera Genomics, 45 West Gude Drive,
  JOURNAL
           Rockville, MD 20850, USA
COMMENT
           This sequence as made by sequencing genomic exons and ordering them
           based on alignment.
FEATURES
                    Location/Qualifiers
                    1. .750
    source
     1.357
                    /organism="Pan troglodytes"
                    /mol type="genomic DNA"
                    /db xref="taxon:9598"
                    <1. .>750
     gene
                    /gene="HCRTR1"
                    /locus tag="HCM7373"
ORIGIN
  Query Match
                         42.1%; Score 467.2; DB 29; Length 750;
  Best Local Similarity 83.7%; Pred. No. 7.6e-85;
 Matches 472; Conservative
                               0; Mismatches
                                                     Indels
                                                                  Gaps
                                                                          0;
```

	Qу	526	ATGGTGCCCCAGGCTGCAGTCATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGC	585				
	Db	1	ATGGTGCCCCAGGCTGCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGC	60				
	Qу	586	ACACGGCTCTTCTCACTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTAC					
	Db	61	ACACGGCTCTTCTCAGTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTAC	120				
	Qу	646	CACAGTTGCTTCTTTATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCTAT	705				
	Db	121		180				
	Qу	706	TTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTG	765				
	Db	181	TTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTG	240				
	Qу	766	CGGAACTGGAAGCGCCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAG	825				
	Db	241	CGGAACTGGAAGCGCCCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAG	300				
	Qy .	826	CCCCAGCCCCGGGGCCGCCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAG	885				
	Db	301	CCCCAGCCCCGGGCCCGCGCCTTCCTGGCTGAAGTGAAG	360				
,	Qу	886	ACAGCCAAGATGCTGATGGTGCTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGC	945				
	Db	361		420				
,	Qу	946	GTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCT	1005				
	Db	421	GTCCTCAATGTCCTTAAGAGNNNNNNNNNNNNNNNNNNNN	480				
•	Qy 1	006	GTCTACGCCTGCTTCACCTTCTCCCACTGGCTGGTGTACGCCAACAGCGCTGCCAACCCC	1065				
	Db	481		540				
•	Qy 1	066	ATCATCTACAACTTCCTCAGTGGC 1089					
	Db .	541	ATCANNNACAACTTCCTCAGTGGC 564					
	RESULT 11							
	AY420887							
	LOCUS DEFINITION		7420887 726 bp DNA linear GSS 17-DEC- us musculus HCRTR1 gene, VIRTUAL TRANSCRIPT, partial sequence,					
	DELINITION	g€	enomic survey sequence.					
	ACCESSION VERSION		7420887 7420887.1 GI:39776844					
	KEYWORDS		S.					
	SOURCE		us musculus (house mouse)					
	ORGANISM	<pre>Mus musculus Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi</pre>						
,	DEEEDDWAE	Ma	mmalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; M					
J	REFERENCE AUTHORS		(bases 1 to 726) .ark, A.G., Glanowski, S., Nielson, R., Thomas, P., Kejariwal, A.,					
		To	odd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B.,					
		F€	erriera, S., Wang, G., Zheng, X.H., White, T.J., Sninsky, J.J.,					

```
Adams, M.D. and Cargill, M.
          Inferring nonneutral evolution from human-chimp-mouse orthologous
 TITLE
          gene trios
          Science 302 (5652), 1960-1963 (2003)
 JOURNAL
  PUBMED
          14671302
REFERENCE
          2 (bases 1 to 726)
 AUTHORS
          Clark, A.G., Glanowski, S., Nielson, R., Thomas, P., Kejariwal, A.,
          Todd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B.,
          Ferriera, S., Wang, G., Zheng, X.H., White, T.J., Sninsky, J.J.,
          Adams, M.D. and Cargill, M.
 TITLE
          Direct Submission
 JOURNAL
          Submitted (16-NOV-2003) Celera Genomics, 45 West Gude Drive,
          Rockville, MD 20850, USA
COMMENT
          This sequence as made by sequencing genomic exons and ordering them
          based on alignment.
FEATURES
                  Location/Qualifiers
    source
                  1. .726
                  /organism="Mus musculus"
                  /mol type="genomic DNA"
                  /db xref="taxon:10090"
    gene
                  <1. .>726
                  /gene="HCRTR1"
                  /locus tag="HCM7373"
ORIGIN
 Query Match
                      41.7%;
                             Score 462.4; DB 29; Length 726;
 Best Local Similarity
                      87.0%;
                             Pred. No. 7.2e-84;
 Matches 508; Conservative
                            0; Mismatches
                                          76;
                                               Indels
                                                           Gaps
                                                                  0;
Οv
        526 ATGGTGCCCCAGGCTGCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGC 585
            Db
          1 ATGGTGCCCCAGGCTGCTGTCATGGAGTGCAGCAGCGTGCTGAGCTAGCCAATCGC 60
        586 ACACGGCTCTTCTCACTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTAC 645
Qy
            Db
         61 ACCCGGCTCTTCTCTGTCTGTGATGAGCACTGGGCAGATGAACTCTACCCCAAGATCTAT 120
        646 CACAGTTGCTTCTTTATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTAT 705
Qy
            Db
        121 CACAGCTGCTTTTTCATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCTATGGCCTAT 180
        706 TTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTG 765
Qу
            Db
        181 TTCCAGATCTTCCGCAAGCTCTGGGGCCGCCAGATCCCTGGTACCACATCAGCCTTGGTG 240
        766 CGGAACTGGAAGCGCCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAG 825
Qу
            Db
        241 CGGAACTGGAAACGGCCCTCGGAACAACTGGAGGCTCAGCACCAGGGCCTCTGTACAGAG 300
        826 CCCCAGCCCGGGGCCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAG 885
Qv
            301 CCCCAGCCCGGGCCCGAGCCTTCCTGGCTGAGGTGAAGCAGATGCGAGCTCGGAGGAAG 360
Db
        886 ACAGCCAAGATGCTGATGGTGCTGCTGCTCTCCCCTCTGCTACCTCCCCATCAGC 945
Qy
```

Db

```
Qy
          946 GTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCT 1005
            421 GTCCTCAATGTCCTTAAGAGAGTGTTCGGGATGTTCCGCCAAGCCAGCGACCGGGAAGCC 480
Db
Qy
         1006 GTCTACGCCTGCTTCACCTTCTCCCACTGGCTGGTGTACGCCAACAGCGCTGCCAACCCC 1065
              Db
         481 GTCTACGCCTGCTTCACCTTCTCCCACTGGCTAGTGTACGCCAACAGTGCCGCCAACCCT 540
Qy
         1066 ATCATCTACAACTTCCTCAGTGGCCTTCCCTGGAGTCTGCTCTA 1109
             1111111111111111111111
                                         \perp
Dh
         541 ATCATCTACAACTTCCTCAGTGGCAAATTCCGGGAGCAGTTCAA 584
RESULT 12
AL535838
LOCUS
           AL535838
                                  1001 bp
                                             mRNA
                                                     linear
                                                             EST 12-MAY-2003
DEFINITION
           AL535838 Homo sapiens FETAL BRAIN Homo sapiens cDNA clone
           CSODF013YE04 5-PRIME, mRNA sequence.
ACCESSION
           AL535838
VERSION
           AL535838.2 GI:30542758
KEYWORDS
           EST.
SOURCE
           Homo sapiens (human)
  ORGANISM Homo sapiens
           Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
           Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
              (bases 1 to 1001)
REFERENCE
  AUTHORS
           Li, W.B., Gruber, C., Jessee, J. and Polayes, D.
  TITLE
           Full-length cDNA libraries and normalization
  JOURNAL
           Unpublished (2001)
COMMENT
           On Feb 13, 2001 this sequence version replaced gi:12799331.
           Contact: Genoscope
           Genoscope - Centre National de Sequencage
           BP 191 91006 EVRY cedex - France
           Email: seqref@genoscope.cns.fr, Web : www.genoscope.cns.fr
           Library was constructed by Life Technologies, a division of
           Invitrogen. This sequence belongs to sequence cluster 151.r For
           more information about this cluster, see
           http://www.genoscope.cns.fr/
           cgi-bin/cluster.cgi?seq=CS0DF013BC02QP1&cluster=151.r. Contact :
           Feng Liang Email : fliang@lifetech.com URL :
           http://fulllength.invitrogen.com/ InVitroGen Corporation 1600
           Faraday Avenue Genoscope sequence ID : CSODF013BC02QP1.
FEATURES
                    Location/Qualifiers
    source
                    1. .1001
                    /organism="Homo sapiens"
                    /mol type="mRNA"
                    /db xref="taxon:9606"
                    /clone="CS0DF013YE04"
                    /tissue type="FETAL BRAIN"
                   \dev stage="fetal"
                    /clone lib="Homo sapiens FETAL BRAIN"
                    /note="Organ: brain; Vector: pCMVSPORT 6; 1st strand cDNA
                    was primed with a NotI-oligo(dT) primer. Five prime end
                    enriched, double-strand cDNA was digested with Not I and
                    cloned into the Not I and EcoRV sites of the pCMVSPORT 6
                    vector. Library was not normalized."
ORIGIN
```

```
Query Match
                 41.7%;
                      Score 462.4; DB 9; Length 1001;
 Best Local Similarity
                 91.0%;
                       Pred. No. 8.3e-84;
 Matches 538; Conservative
                     13;
                        Mismatches
                                     Indels
                                              Gaps
                                                    6;
Qy
      377 AGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCGCTGGT 436
         Db
      415 AGGCTGTGTCCGTGTCANTGGCAGTGCTAACTCTMANCTTCATCGCMCTGGACCGCTGGT 474
      437 ATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGGGCCCGTGGCTCCATCC 496
Qу
         Db
      475 ATGCHATCTGCYACCCACTATTGTTCAAGARCACAGCCCGGGGGGCCCGTGGCTCCATCC 534
      497 TGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCTGCAGTCATGCAATCCA 556
Qу
           Db
      535 TNNGNATCTGGGCTNTNTCGCTGGCCATCATGGTGCCCCAGGCTGCAGTCATGGAATGCA 594
      557 GCAGTGTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGAACGCT 616
Qу
         595 GCAGTGTGCCTNAGCTANCCAACCGCACACGGCTCTTCTCAGTCTGTGATGAACGCT 654
Db
      Qу
         Db
      677 CCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCC 736
Qy
         715 CCCCACTGGGCCTCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCC 774
Db
      737 AGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCAGCT-G 795
Qу
         Db
      775 AGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCAGCTGG 834
      796 GGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCCTTCCTGGCT 855
Qу
         Db
      835 GGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCC--AGCCCCGGGCCGCCCTTCCTGGCT 892
      856 GAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGGTGCTGCTG 915
Qy
               : |
                   - 1
                        Db
      893 GAAGTGA---RCAGATGSTGCAGGCAGVAGACASCSAAGATGCTGATGGTGGBGCTGCTG 949
      916 GTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTTAAGAGG 966
Qу
         Db
      950 STCTTCG-CCTCTGCTACST-GCCATCAGSGT-CTCAATGTCTTAAAGAGG 997
```

RESULT 13 BM926746

LOCUS BM926746

993 bp mRNA linear EST 12-MAR-2002

DEFINITION AGENCOURT_6681991 NIH_MGC_121 Homo sapiens cDNA clone IMAGE:5767576 5', mRNA sequence.

ACCESSION BM926746

VERSION BM926746.1 GI:19377125

KEYWORDS EST.

SOURCE Homo sapiens (human)

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

```
Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
           1 (bases 1 to 993):
  AUTHORS
           NIH-MGC http://mgc.nci.nih.gov/.
           National Institutes of Health, Mammalian Gene Collection (MGC)
  TITLE
  JOURNAL
           Unpublished (1999)
COMMENT
           Contact: Robert Strausberg, Ph.D.
           Email: cgapbs-r@mail.nih.gov
           Tissue Procurement: Life Technologies, Inc.
            cDNA Library Preparation: Life Technologies, Inc.
            cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)
            DNA Sequencing by: Agencourt Bioscience Corporation
            Clone distribution: MGC clone distribution information can be
           found through the I.M.A.G.E. Consortium/LLNL at:
           http://image.llnl.gov
           Plate: LLAM12826 row: a column: 17
           High quality sequence stop: 684.
FEATURES
                   Location/Qualifiers
    source
                   1. .993
                   /organism="Homo sapiens"
                   /mol type="mRNA"
                   /db xref="taxon:9606"
                   /clone="IMAGE: 5767576"
                   /lab host="DH10B"
                   /clone lib="NIH MGC 121"
                   /note="Organ: brain; Vector: pCMV-SPORT6; Site 1: NotI;
                   Site 2: EcoRV (destroyed); RNA source anonymous pool of 3
                   fetal brains, female age 20 weeks, female age 24 weeks,
                   and male age 26 weeks. Library is oligo-dT primed and
                   directionally cloned (EcoRV site is destroyed upon
                   cloning). Average insert size 1.7 kb, insert size range
                   0.7-3.5 kb. Library is normalized and enriched for
                   full-length clones and was constructed by C. Gruber
                   (Invitrogen). Research Genetics tracking code 017. Note:
                   this is a NIH MGC Library."
ORIGIN
  Query Match
                       34.7%;
                              Score 385.2; DB 12; Length 993;
  Best Local Similarity
                       71.4%;
                              Pred. No. 4.6e-68;
  Matches 507; Conservative
                             0; Mismatches 203; Indels
                                                              Gaps
                                                                     0;
Qу
          80 ATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTGTACCCAAAACAGTATGAGT 139
             145 ACGACGAGGAATTCCTGCGGTACCTGTGGAGGGAATACCTGCACCCGAAAGAATATGAGT 204
Db
         140 GGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCCCTGGTGGGCAACACGCTGG 199
Qу
             Db
         205 GGGTCCTGATCGCCGGGTACATCATCGTGTTCGTCGTGGCTCTCATTGGGAACGTCCTGG 264
Qу
         200 TCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTCACCAACTACTTCATTGTCA 259
                  265 TTTGTGTGGCAGTGTGGAAGAACCACCACATGAGGACGGTAACCAACTACTTCATAGTCA 324
Db
         Qу
             1 11 11 1111111 11 11 11 1111
                                         .Dp
         325 ATCTTTCTCTGGCTGATGTGCTCGTGACCATCACCTGCCTTCCAGCCACACTGGTCGTGG 384
         320 ACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAGGTCATCCCCTATCTACAGG 379
Qy
```

	Db	
	Qy Db	380 CTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCGCTGGTATG 439
	Qу	440 CCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGGGGCCCGTGGCTCCATCCTGG 499
	Db	505 CAATCTGTCACCCTTTGATGTTTAAGAGCACAGCAAAGCGGGCCCGTAACAGCATTGTCA 564
	Qу	500 GCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCTGCAGTCATGCAATCCAGCA 559
	Db	565 TCATCTGGATTGTCTCCTGCATTATAATGATTCCTCAGGCCATCGTCATGGAGTGCAGCA 624
	Qу	560 GTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGAACGCTGGG 619
	Db	625 CCGTGTTCCCAGGCTTAGCCAATAAAACCACCCTCTTTACGGTGTGTGATGAGCGCTGGG 684
	Qy	620 CAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTTATTGTCACCTACCT
	Db	685 GTGGTGAAATTTATCCCAAGATGTACCACATCTGTTTCTTCTGGTGACATACAT
	QУ	680 CACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGA 739
,	Db	745 CACTGTGTCTCATGGTGTTGGCTTATCTGCAAATATTTCGCAAACTCTGGTGTCGACAGA 804
	Qy	740 TCCCCGGCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGAC 789
	Db '	805 TCCCTGGAACATCATCTGTAGTTCAGAGAAAATGGAAAGCCCCTGGAGCC 854
	RESULT 14 BX119589 LOCUS	BX119589 543 bp mRNA linear EST 10-FEB-2003
	DEFINITION	TINEAL BOLLO LED 2005
	ACCESSION VERSION KEYWORDS	BX119589 BX119589.1 GI:28289997 EST.
	SOURCE ORGANISM	Homo sapiens (human)
		Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
	REFERENCE AUTHORS	1 (bases 1 to 543) Ebert, L., Heil, O., Hennig, S., Neubert, P., Partsch, E., Feters, M., Radelof, U., Schneider, D. and Korn, B.
	TITLE JOURNAL	Human UnigeneSet - RZPD3 Unpublished (2003)
	COMMENT	Contact: Ina Rolfs RZPD Deutsches Ressourcenzentrum fuer Genomforschung GmbH Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany RZPD; IMAGp998P20171. RZPDLIB; I.M.A.G.E. cDNA Clone Collection;
		<pre>Human UnigeneSet - RZPD3 (RZPDLIB No.972) http://www.rzpd.de/CloneCards/cgi- bin/showLib.pl.cgi/response?libNo=972 Contact: Ina Rolfs</pre>

```
RZPD Deutsches Ressourcenzentrum fuer Genomforschung GmbH
          Heubnerweg 6, D-14059 Berlin, Germany
          Tel: +49 30 32639 101
          Fax: +49 30 32639 111
          www.rzpd.de
          This clone is available royalty-free from RZPD;
          contact RZPD (clone@rzpd.de) for further information. Seq primer:
          M13u, Primer sequence: CGTTGTAAAACGACGGCCAGT.
FEATURES
                 Location/Oualifiers
                 1. .543
    source
                 /organism="Homo sapiens"
                 /mol type="mRNA"
                 /db xref="taxon:9606"
                 /clone="IMAGp998P20171; IMAGE:40608"
                 /sex="female"
                 /dev stage="73 days post natal"
                 /lab host="DH10B (ampicillin resistant)"
                 /clone lib="Soares infant brain 1NIB"
                 /note="Organ: whole brain; Vector: Lafmid BA; Site 1: Not
                 I; Site 2: Hind III; 1st strand cDNA was primed with a Not
                 I - oligo(dT) primer [5'
                 double-stranded cDNA was ligated to Hind III adaptors
                  (Pharmacia), digested with Not I and directionally cloned
                 into the Not I and Hind III sites of the Lafmid BA vector.
                 Library went through one round of normalization. Library
                 constructed by Bento Soares and M. Fatima Bonaldo."
ORIGIN
 Query Match
                     33.9%; Score 376.2; DB 13; Length 543;
 Best Local Similarity
                     99.0%; Pred. No. 2.4e-66;
 Matches 378; Conservative
                           0; Mismatches
                                          4;
                                              Indels
                                                         Gaps
                                                                0;
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Qy
           Db
        158 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 217
Qy
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
           218 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGCGATTATCTG 277
Db
Qy
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
           278 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 337
Db
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Qу
           Db
        338 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 397
Qу
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
           398 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 457
Db
        301 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
Qy
           458 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGNAAG 517
Db
```

518 GTCATCCCCTATCTACAGACAG 539

RESULT 15

CF147829 LOCUS

CF147829

788 bp mRNA linear

EST 25-JUL-2003

DEFINITION

AGENCOURT 14740210 NIH MGC 145 Homo sapiens cDNA clone

IMAGE: 6971890 5', mRNA sequence.

ACCESSION

CF147829

VERSION

CF147829.1 GI:33244097

KEYWORDS

SOURCE

Homo sapiens (human)

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE (bases 1 to 788)

AUTHORS

NIH-MGC http://mgc.nci.nih.gov/.

TITLE

National Institutes of Health, Mammalian Gene Collection (MGC)

JOURNAL Unpublished (1999)

COMMENT

Contact: Daniela S. Gerhard, Ph.D.

Office of Cancer Genomics

National Cancer Institute / NIH

Bldg. 31 Rm10A07 Bethesda, MD 20892

Email: cgapbs-r@mail.nih.gov

Tissue Procurement: GPCR Consortium

cDNA Library Preparation: GPCR Consortium

cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)

DNA Sequencing by: Agencourt Bioscience Corporation

Clone distribution: MGC clone distribution information can be

found through the I.M.A.G.E. Consortium/LLNL at:

http://image.llnl.gov

Plate: IRBI02 row: a column: 09 High quality sequence start: 9 High quality sequence stop: 772.

FEATURES

Location/Qualifiers

source

1. .788

/organism="Homo sapiens"

/mol type="mRNA"

/db xref="taxon:9606" /clone="IMAGE:6971890" /tissue type="mixed" /lab host="DH10B"

/clone lib="NIH MGC 145"

/note="Vector: pcDNA3.1; Site 1: varies by clone; Site 2: varies by clone; ORFs were PCR-amplified and cloned into pcDNA3.1 by the GPCR Consortium. Cloning sites vary by clone and include the following: 5'-EcoRV-XmnI/XhoI-3', 5'-EcoRV-XmnI/NotI-3', EcoRV (TA cloned, non-directional). For information about which gene each clones represents, please visit our anonymous ftp site at

ftp://image.llnl.gov/image/rearrayed_plates/IRBI.preSV.dat a Note: this is a NIH MGC Library."

ORIGIN

Query Match

32.3%; Score 359; DB 14; Length 788;

			Similarity 72.0%; Pred. No. 9.2e-63; 7; Conservative 0; Mismatches 182; Indels 0; Gaps	. O ;
Qչ	7	80	ATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTGTACCCAAAACAGTATGAGT	139
Dk	>	140	ACGACGAGGAATTCCTGCGGTACCTGTGGAGGGAATACCTGCACCCGAAAGAATATGAGT	199
Q۶	7		GGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCCCTGGTGGGCAACACGCTGG	199
Dk	`		GGGTCCTGATCGCCGGGTACATCATCGTGTTCGTCGTGGCTCTCATTGGGAACGTCCTGG	259
Q۲	7	200	TCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTCACCAACTACTTCATTGTCA	259
Dk)	260	TTTGTGTGGCAGTGTGGAAGAACCACCACATGAGGACGGTAACCAACTACTTCATAGTCA	319
ζZ	7	260	ACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTGC	319
Dk)	320	ATCTTTCTCTGGCTGATGTGCTCGTGACCATCACCTGCCTTCCAGCCACACTGGTCGTGG	379
Qζ	7	320	ACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAGGTCATCCCCTATCTACAGG	379
Db)	380	ATATCACCGAGACCTGGTTTTTTGGACAGTCCCTTTGCAAAGTGATTCCTTATCTACAGA	439
Qy	,	380	CTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCGCTGGTATG	439
Dk)	440	CCGTGTCGGTGTCTGTCCTCACACTGAGCTGTATCGCCTTGGATCGGTGGTATG	499
Qγ	,	440	CCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGGGGCCCGTGGCTCCATCCTGG	499
Db	•	500	CAATCTGTCACCCTTTGATGTTTAAGAGCACAGCAAAGCGGGCCCGTAACAGCATTGTCA	559
Qγ		500	GCATCTGGGCTGTCGCCGGCCATCATGGTGCCCCAGGCTGCAGTCATGCAATCCAGCA	559
Db	•	560	TCATCTGGATTGTCTCCTGCATTATAATGATTCCTCAGGCCATCGTCATGGAGTGCAGCA	619
ДУ	, `	560	GTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGAACGCTGGG	619
Db	•	620	CTGTGTTCCCAGGCTTAGCCAATAAAACCACCCTCTTTACGGTGTGATGAGCGCTGGG	679
Σу	,	620	CAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTTATTGTCACCTACCT	679
Db	•	680	GTGGTGAAATTTATCCCAAGATGTACCACATCTGTTTCTTTC	739
Ωу	•	680	CACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTG 728	
٦ĥ		740	CACHCHCHCAHCCHCAHCCHCHHACCCHHAACACAAAAAA	

Search completed: October 15, 2004, 22:50:30 Job time: 3232.12 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

October 15, 2004, 13:54:41; Search time 4497.38 Seconds Run on:

(without alignments)

10697.520 Million cell updates/sec

Title: US-10-070-532-3

Perfect score: 1110

Sequence: 1 atggagccctcagccacccc.....ttccctggagtctgctctaa 1110

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 3470272 seqs, 21671516995 residues

Total number of hits satisfying chosen parameters: 6940544

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : GenEmbl:*

> 1: qb ba:*

2: gb htg:*

3: gb in:*

4:

gb om:* 5: gb_ov:*

6: gb pat:*

7: gb_ph:*

8: gb pl:*

9:

gb pr:*

gb ro:* 10:

gb sts:* 11:

12: gb_sy:*

13: gb_un:*

14: gb_vi:*

15: em ba:*

16: em fun:*

17: em hum:*

18: em in:*

19: em mu:*

20: em om:* 21:

em or:* 22:

em ov:*

23: em pat:*

24: em ph:*

25: em pl:* 26: em ro:*

27: em_sts:*

```
28:
     em un:*
29:
     em vi:*
30:
     em_htg_hum:*
31:
     em_htg_inv:*
32:
     em_htg_other:*
33:
     em_htg_mus:*
34:
     em_htg_pln:*
·35:
     em_htg_rod:*
36:
     em_htg_mam:*
37:
     em_htg_vrt:*
38:
     em_sy:*
39:
     em htgo hum:*
40:
     em_htgo_mus:*
     em_htgo_other:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

					SUMMARTI	72
_		ક				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	1110	100.0	1110	6	BD185453	BD185453 Human neu
2	1102	99.3	1110	6	AR216118	AR216118 Sequence
3	1079.4	97.2	1209	6	AR216117	AR216117 Sequence
4	1079.4	97.2	1564	6	E43974	E43974 Novel G pro
5	1079.4	97.2	1564	6	E50810	E50810 Novel G pro
6	1079.4	97.2	1564	6	E50811	E50811 Novel G pro
7	1079.4	97.2	1564	6	AX299473	AX299473 Sequence
8	1079.4	97.2	1564	6	AX299475	AX299475 Sequence
9	1079.4	97.2	1564	6	AX549082	AX549082 Sequence
10	1079.4	97.2	1564	6	AX746121	AX746121 Sequence
11	1079.4	97.2	1564	6	AX840912	AX840912 Sequence
12	1079.4	97.2	1564	9	AF041243	AF041243 Homo sapi
13	1078.4	97.2	1133	6	E43973	E43973 Novel G pro
14	1078.4	97.2	1133	6	AX746120	AX746120 Sequence
15	1078.4	97.2	1170	6	E43972	E43972 Novel G pro
16	1078.4	97.2	1170	6	AX746118	AX746118 Sequence
17	1077.8	97.1	1209	6	BD185452	BD185452 Human neu
18	1075.2	96.9	1116	6	AR216119	AR216119 Sequence
19	1075.2	96.9	1133	6	BD185454	BD185454 Human neu
20	1074.6	96.8	1278	6	AX280925	AX280925 Sequence
21	883.4	79.6	2200	10	AY336083	AY336083 Mus muscu
22	881	79.4		10	AF041244	AF041244 Rattus no
23	688	62.0	843	6	AR109899	AR109899 Sequence
24	661	59.5	789	6	AR109632	AR109632 Sequence
25	661	59.5	789	6	E12154	E12154 cDNA encodi
26	661	59.5	789	6	AR300942	AR300942 Sequence
27	571.8	51.5	781	10	AF394596	AF394596 Mus muscu
28	545.6	49.2	3114	10	AF041246	AF041246 Rattus no
29	521.4	47.0	1545	10	AY336084	AY336084 Mus muscu
30	521.4	47.0	2117	10	AY336085	AY336085 Mus muscu
31	511.8	46.1	1633	6	E33974	E33974 cDNA clone
32	511.8	46.1	1843	6	AX549084	AX549084 Sequence
33	511.8	46.1	1843	6	AX840914	AX840914 Sequence
						· ·

34	511.8	46.1	1878	9	AF041245	AF041245 Homo sapi
35.	507	45.7	1335	6	AX280927	AX280927 Sequence
36	505.4	45.5	1805	4	AF164626	AF164626 Canis fam
37	487.2	43.9	597	10	AY255599	AY255599 Mus muscu
38	322.8	29.1	382	4	AF499612	AF499612 Ovis arie
39	296.2	26.7	637	10	AF394597	AF394597 Mus muscu
40	275.2	24.8	328	4	AB092488	AB092488 Bos tauru
41	261.6	23.6	501	4	AF532967	AF532967 Ovis arie
42	241.2	21.7	344	9	F202078S03	AF202080 Homo sapi
43	241.2	21.7	9785	6	AR178605	AR178605 Sequence
44	241.2	21.7	9785	6	AX088174	AX088174 Sequence
45	241.2	21.7	9785	9	AY062030	AY062030 Homo sapi

ALIGNMENTS

```
RESULT 1
BD185453
            BD185453
LOCUS
                                      1110 bp
                                                 DNA
                                                          linear
                                                                   PAT 17-JUN-2003
DEFINITION
            Human neuropeptide receptor.
ACCESSION
            BD185453
VERSION
            BD185453.1 GI:31877653
            JP 2002360288-A/2.
KEYWORDS
SOURCE
            unidentified
  ORGANISM
            unidentified
            unclassified.
REFERENCE
                (bases 1 to 1110)
  AUTHORS
            Soppet, D.R., Li, Y. and Rosen, C.A.
  TITLE
            Human neuropeptide receptor
  JOURNAL
            Patent: JP 2002360288-A 2 17-DEC-2002;
            HUMAN GENOME SCIENCES INC
COMMENT
            OS
                  Unidentified
            ΡN
                  JP 2002360288-A/2
            PD
                  17-DEC-2002
            PF
                  02-MAY-2002 JP 2002130838
            PΙ
                  DANIEL R SOPPET, YI LI, CRAIG A ROSEN
            PC
                  C12N15/09,A61K31/7088,A61K38/00,A61K45/00,A61K48/00,A61P3/04,
            PC
                  A61P3/06,
            PC
                  A61P3/10,A61P9/10,A61P9/12,A61P25/08,A61P25/18,A61P25/22, PC
            A61P25/28,
            PC
                  A61P35/00, A61P43/00, C07K14/705, C07K16/24, C12N1/15, C12N1/19, PC
              C12N1/21,
            PC
                  C12N5/10,C12Q1/68,C12N15/00,C12N5/00,A61K37/02 CC
            Strandedness: Single;
            CC
                  Topology: Linear;
                  Human neuropeptide receptor
            CC
            FΗ
                                  Location/Qualifiers
                  Key
            FT
                  source
                                  1. .1110
            FT
                                  /organism='Unidentified'.
                      Location/Qualifiers
FEATURES
     source
                      1. .1110
                      /organism="unidentified"
                      /mol type="genomic DNA"
                      /db xref="taxon:32644"
ORIGIN
```

Query Match 100.0%; Score 1110; DB 6; Length 1110;
Best Local Similarity 100.0%; Pred. No. 2.6e-210;
Matches 1110; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ATGGAGCCCTCAGCCACCCCAGGGGCCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60

Qy	1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG	60
Db	1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG	60
QУ	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Db	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Qу	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Db	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
QУ	181	CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	181	CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
ОÃ	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Qу	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
QУ	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Qу	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
QУ	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Qу		CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db		CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	661		720
Qу	721	AAGCTCTGGGGCCGCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840

Db 781 CCCTCAGACCAGCTGGGGGACCTGGAGCGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840	
Qy 841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900	
Db 841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900	
Qy 901 ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960	
Db 901 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960	
Qy 961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020	Э
Db 961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020	Э
Qy 1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080	C
Db 1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080	C
Qy 1081 CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110	
Db 1081 CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110	
RESULT 2 AR216118 LOCUS AR216118 1110 bp DNA linear PAT 25-SEP-2002 DEFINITION Sequence 3 from patent US 6410701. ACCESSION AR216118 VERSION AR216118.1 GI:23314431 KEYWORDS . SOURCE Unknown. ORGANISM Unknown. Unclassified. REFERENCE 1 (bases 1 to 1110) AUTHORS Soppet, D.R., Li, Y. and Rosen, C.A. TITLE Human neuropeptide receptor JOURNAL Patent: US 6410701-A 3 25-JUN-2002; FEATURES Source 1 . 1110 /organism="unknown" /mol_type="genomic DNA" ORIGIN	2
Query Match 99.3%; Score 1102; DB 6; Length 1110; Best Local Similarity 99.5%; Fied. No. 1e-208; Matches 1105; Conservative 0; Mismatches 5; Indels 0; Gaps 0;	:
Qy 1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60	
Db 1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60	
Qy 61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120	
Db 61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120	
Qy 121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC 180	

Db	12:1	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Qу	181	CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	181		240
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	241		300
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Qу	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	421	GCCCTGGACCGCTGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
QУ	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
QУ	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	541	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Qy	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	601	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	720
QУ	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	721	AAGCTCTGGGGCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db [see	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
QУ	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Qу	901	ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	901	ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Qу	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020

```
Db
        961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
       1021 ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qу
           1021 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Db
Qу
       1081 CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110
           Db
       1081 CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110
RESULT 3
AR216117
LOCUS
         AR216117
                             1209 bp
                                      DNA
                                             linear
                                                    PAT 25-SEP-2002
DEFINITION
         Sequence 1 from patent US 6410701.
ACCESSION
         AR216117
         AR216117.1 GI:23314430
VERSION
KEYWORDS
SOURCE
         Unknown.
 ORGANISM Unknown.
         Unclassified.
REFERENCE
         1 (bases 1 to 1209)
 AUTHORS
         Soppet, D.R., Li, Y. and Rosen, C.A.
         Human neuropeptide receptor
 TITLE
         Patent: US 6410701-A 1 25-JUN-2002;
 JOURNAL
FEATURES
                 Location/Oualifiers
    source
                 1. .1209
                 /organism="unknown"
                 /mol type="genomic DNA"
ORIGIN
 Query Match
                     97.2%; Score 1079.4; DB 6; Length 1209;
 Best Local Similarity 99.4%; Pred. No. 3.1e-204;
 Matches 1083; Conservative
                          0; Mismatches
                                         6: Indels
                                                        Gaps
                                                               0;
Qу
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
           Db
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qу
           Db
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Qу
           Db
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCGC180
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Qy
           Db
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
Qy
           Db
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
        301 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
Oy
           1141414141414141414141414141414
```

Db	301	$\tt CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAGCCCTGGCAGGCCATGCCCTGGCAAGCCCTGGCAGGCCATGCCCTGGCAAGCCCTGGCCAGGCCATGCCCTGGCAAGCCCTGGCAAGCCCTGGCAAGCCCTGGCAAGCCCTGGCCAGGCCATGCCCTGGCAAGCCCTGGCCAAGCCCTGGCCAAGCCCTGGCAAGCCCTGGCAAGCCCTGGCCAAGCCCAGGCCATGCCCTGCAAGCCCAGGCCAAGCCCAGGCCAAGCCCAGGCCAAGCCCAGGCCAAGCCCAGGCCAAGCCAAGCCAAGCCCAAGCCCAAGCCCAAGCCCAAGCCCAAGCCCAAGCCCAAGCCCAAGCCCAAGCCAAGCCAAGCCCAAGCCAAGCCAAGCCAAGCCAAGCCAAGCCAAGCAAGCCAAGCAAA$	360
ДУ	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Qγ	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	421	GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Qy	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCGATCATGGTGCCCCAGGCT	540
Db	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCGATCATGGTGCCCCAGGCT	540
QΥ		GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	
Db		GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	
Qу		CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	
Db		GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	
Qу		ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	
Db		ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	
Qу		AAGCTCTGGGGCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	
Db		AAGCTCTGGGGCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	
ДУ		CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	
Db		CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	
Qy Db		CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCTGCACGGAGGAAGACAGCCAAGATGCTG	
		$\tt CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCTGCACGGAGGAAGACAGCCAAGATGCTG$ $\tt ATGGTGGTGCTGCTGCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT$	
Qy Db		ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	
Qy		AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	
Db			
Qy		ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	
Db			
Qу		CTCAGTGGC 1089	1000
Db		CTCAGTGGC 1089	

```
LOCUS
            E43974
                                   1564 bp
                                              DNA
                                                      linear
                                                               PAT 31-JAN-2002
DEFINITION
            Novel G protein-coupled receptor (HFGAN72Y).
ACCESSION
            E43974
            E43974.1 GI:18625173
VERSION
KEYWORDS
            JP 2000106888-A/3.
SOURCE
            unidentified
  ORGANISM
           unidentified
            unclassified.
REFERENCE
               (bases 1 to 1564)
  AUTHORS
            Bergsma, D.J. and Ellis, C.E.
  TITLE
            Novel G protein-coupled receptor (HFGAN72Y)
  JOURNAL
            Patent: JP 2000106888-A 3 18-APR-2000;
            SMITHKLINE BEECHAM CORP
COMMENT
            OS
                Unidentified
                 JP 2000106888-A/3
            PN
            PD
                 18-APR-2000
                 21-JUL-1999 JP 1999206116
            PF
            PR
                 30-APR-1997 US
                                  08/846705
            PΙ
                 DERK J BERGSMA, CATHARINE ELIZABETH ELLIS
            PC
                 C12N15/09,A61K38/00,A61K38/00,A61K45/00,A61K48/00,A61P1/00, PC
             A61P1/14,
            PC
                A61P9/02, A61P9/04, A61P9/10, A61P9/12, A61P11/06, A61P13/02, PC
            A61P13/08,
                A61P19/10, A61P25/14, A61P25/16, A61P25/18, A61P25/22, A61P25/24,
            PC
            PC
                A61P31/04.
                A61P31/10, A61P31/12, A61P31/18, A61P33/00, A61P35/00, A61P37/08,
            PC
            PC
                A61P43/00.
            PC
                C07K14/705,C07K16/28,C12N1/21,C12N5/10,C12P21/02,G01N33/566.
            PC
                G01N33/577//
                C12P21/08, (C12N15/09, C12R1:91), (C12P21/02, C12R1:91), C12N15/00,
            PC
            PC
                A61K37/02.
            PC
                A61K37/02, C12N5/00, (C12N15/00, C12R1:91)
           CC
                Strandedness: Single;
           CC
                Topology: Linear;
            FH
                Kev
                                Location/Qualifiers
            FT
                source
                                1. .1564
            FT
                                /organism='Unidentified'.
FEATURES
                    Location/Qualifiers
     source
                    1. .1564
                    /organism="unidentified"
                    /mol_type="genomic DNA"
                    /db xref="taxon:32644"
ORIGIN
  Query Match
                         97.2%; Score 1079.4; DB 6;
                                                       Length 1564;
  Best Local Similarity
                         99.4%;
                                 Pred. No. 3e-204;
                                                           35.1
 Matches 1083; Conservative
                                0;
                                    Mismatches
                                                  6;
                                                                0;
                                                      Indels
                                                                           0;
                                                                   Gaps
Qy
           1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
              154 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213
Db
          61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qy
              Db
          214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273
```

121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180

Qу

Db	274	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	333
Qy	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	334		393
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	394	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	453
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	454	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	513
Qу	361	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	514	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	573
QУ	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	574	GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	633
ДÀ	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db	634	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	693
Qу	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	694	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	753
QУ	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	754	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	813
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	814	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	873
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	874	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	933
QΫ	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	934	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	993
QУ	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	994	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	1053
QУ	901	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	1054	ATGGTGGTGCTGCTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT	1113
Qу	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020

```
1114 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1173
         1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qу
              Db
         1174 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
Qу
         1081 CTCAGTGGC 1089
              Db
         1234 CTCAGTGGC 1242
RESULT 5
E50810
LOCUS
            E50810
                                   1564 bp
                                              DNA
                                                      linear
                                                               PAT 18-JUN-2001
DEFINITION
           Novel G protein-bound receptor (HFGAN 72X).
ACCESSION
            E50810
VERSION
            E50810.1 GI:13023197
KEYWORDS
            JP 2000060578-A/1.
SOURCE
            unidentified
 ORGANISM unidentified
           unclassified.
REFERENCE
            1 (bases 1 to 1564)
 AUTHORS
           Derk, J.B. and Catharine, E.E.
           Novel G protein-bound receptor (HFGAN 72X)
  TITLE
  JOURNAL
            Patent: JP 2000060578-A 1 29-FEB-2000;
            SMITHKLINE BEECHAM CORP
COMMENT
            OS
                Unidentified
            PN
                JP 2000060578-A/1
            PD
                29-FEB-2000
           PF
                21-JUL-1999 JP 1999206115
            PR
                30-APR-1997 US
                                  08/846704
                DERK J BERGSMA, CATHARINE ELIZABETH ELLIS
           PΙ
           PC
                C12N15/09, A61K31/70, A61K38/00, A61K39/00, A61K39/395, A61K39/395,
           PC
                A61K45/00,
           PC
                A61K48/00, A61P3/04, A61P9/00, A61P11/06, A61P13/00, A61P25/00, PC
            A61P25/16,
           PC
                A61P25/18, A61P25/20, A61P25/22, A61P31/04, A61P31/10, A61P31/12,
           PC
                A61P31/18,
           PC
                A61P35/00, A61P37/00, C07K14/705, C12N5/10, C12P21/02, C12Q1/02, PC
             G01N33/53,
           PC
                G01N33/566//C07K16/28,C12N15/00,A61K37/02,C12N5/00 CC
           Strandedness: Single;
           CC
                Topology: Linear;
           FH
                Key
                                Location/Qualifiers
           FT
                                1. .1564
                source
           FT
                                /organism='Unidentified'.
                    Location/Qualifiers
FEATURES
    source
                    1. .1564
                    /organism="unidentified"
                    /mol type="genomic DNA"
                    /db xref="taxon:32644"
ORIGIN
 Query Match
                         97.2%; Score 1079.4; DB 6;
                                                      Length 1564;
 Best Local Similarity
                         99.4%; Pred. No. 3e-204;
 Matches 1083; Conservative
                              0; Mismatches
                                                  6;
                                                      Indels
                                                                0; Gaps
                                                                            0;
```

Db

ŲΫ		ATGGAGCCCTCAGCCACACCCCAGAGGGCCCAGATGGGGGGTCCCCCCTGGCAGCAGAGAGCCG	60
Db		ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG	213
QУ	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Db	214	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	273
Qу	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Db	274		333
Qу	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	334	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	393
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	394	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	453
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	454	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	513
Qу	361	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	514	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	573
Qy ·	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	.480
Db	574	GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	633
Qу	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCGGCCATCATGGTGCCCCAGGCT	540
Db	634	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	693
Qу	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	694	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	753
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	754	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	813
Qy	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	814	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	873
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	874	AAGCTCTGGGGCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	933
Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	934	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGCCCCAGCCCCGGGGC	993
Qу	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900

```
Db
       994 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 1053
         901 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Qy
            1054 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 1113
Db
         961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
            1114 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1173
Db
        1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qу
            Db
        1174 ACCTTCTCCCACTGGTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
        1081 CTCAGTGGC 1089
Qу
            1111111
Db
        1234 CTCAGTGGC 1242
RESULT 6
E50811
LOCUS
          E50811
                                1564 bp
                                          DNA
                                                 linear
                                                         PAT 18-JUN-2001
DEFINITION Novel G protein-bound receptor (HFGAN 72X).
          E50811
ACCESSION
VERSION
          E50811.1 GI:13023198
KEYWORDS
          JP 2000060578-A/2.
SOURCE
          unidentified
 ORGANISM unidentified
          unclassified.
REFERENCE
          1 (bases 1 to 1564)
 AUTHORS
          Derk, J.B. and Catharine, E.E.
 TITLE
          Novel G protein-bound receptor (HFGAN 72X)
 JOURNAL
          Patent: JP 2000060578-A 2 29-FEB-2000;
          SMITHKLINE BEECHAM CORP
COMMENT
          OS
               Unidentified
          PN
               JP 2000060578-A/2
          PD
               29-FEB-2000
          PF
               21-JUL-1999 JP 1999206115
          PR
               30-APR-1997 US
                               08/846704
          PI
               DERK J BERGSMA, CATHARINE ELIZABETH ELLIS
          PC
               C12N15/09,A61K31/70,A61K38/00,A61K39/00,A61K39/395,A61K39/395,
          PC
               A61K45/00,
               A61K48/00, A61P3/04, A61P9/00, A61P11/06, A61P13/00, A61P25/00, PC
          PC
           A61P25/16,
          PC
               A61P25/18, A61P25/20, A61P25/22, A61F31/04, A61P31/10, A61P31/12,
          PC
               A61P31/18,
               A61P35/00, A61P37/00, C07K14/705, C12N5/10, C12P21/02, C12Q1/02, PC
          PC
            G01N33/53,
          PC
               G01N33/566//C07K16/28,C12N15/00,A61K37/02,C12N5/00 CC
          Strandedness: Single;
          CC
               Topology: Linear;
          FΗ
               Key
                             Location/Qualifiers
          FT
               source
                             1. .1564
          FT
                             /organism='Unidentified'.
FEATURES
                  Location/Qualifiers
                  1. .1564
    source
```

/organism="unidentified" /mol_type="genomic DNA" /db_xref="taxon:32644"

ORIGIN

Query M Best Lo		97.2%; Score 1079.4; DB 6; Length 1564; Similarity 99.4%; Pred. No. 3e-204;	
			0;
Qу	1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGAGAGAG	Į
Db	154	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 21	.3
QУ	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 12	0
Db	214	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 27	3
Qу	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 18	0
Db	274	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 33	3
Qу	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 24	0
Db	334		3
QУ	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 30	0
Db	394	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 45	3
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 36	0
Db	454	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 51	3
QΥ	361	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 42	0
Db	514	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 57	3
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG 48	0
Db	574		3
QУ	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT 54	0
Db	634	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT 69	3
Qу	541	GCAGTGATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600	0
Db	694		3
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 66	0
Db	754		3
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC 72	0
Db	814		3

```
721 AAGCTCTGGGGCCGCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780
Qу
            Db
        874 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 933
Qy
        781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
            934 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 993
Db
        841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Qy
            Db
        994 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 1053
Qу
        901 ATGGTGGTGCTGCTCTCCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
            Db
       1054 ATGGTGGTGCTGCTGCTCTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 1113
        961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
            1114 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1173
Db
       1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qy
            Db
       1174 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
       1081 CTCAGTGGC 1089
Qу
            111111111
       1234 CTCAGTGGC 1242
Db
RESULT 7
AX299473
LOCUS
          AX299473
                              1564 bp
                                        DNA
                                              linear
                                                      PAT 26-NOV-2001
          Sequence 1 from Patent EP1154019.
DEFINITION
ACCESSION
          AX299473
VERSION
          AX299473.1 GI:17129230
KEYWORDS
SOURCE
          Homo sapiens (human)
 ORGANISM
          Homo sapiens
          Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
          Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
 AUTHORS
          Bergsma, D.J. and Ellis, C.E.
 TITLE
          G-protein coupled receptor (hfgan72x)
 JOURNAL
          Patent: EP 1154019-A 1 14-NOV-2001;
          SmithKline Beecham Corporation (US)
FEATURES
                 Location/Qualifiers
                 1. .1564
    source
                 /organism="Homo sapiens"
                 /mol type="unassigned DNA"
                 /db xref="taxon:9606"
ORIGIN
 Query Match
                      97.2%;
                            Score 1079.4;
                                         DB 6;
                                               Length 1564;
 Best Local Similarity
                      99.4%;
                             Pred. No. 3e-204;
 Matches 1083; Conservative
                            0; Mismatches
                                              Indels
                                           6;
                                                          Gaps
                                                                 0;
Qy
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
```

Db	154	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG	213
Qу	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Db	214	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	273
QУ	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Db	274	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTCGTCGTGGCC	333
QУ	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	334	CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	393
QУ	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	394	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	4 53
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	454	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	513
Qу	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	514	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	573
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	574	GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	633
QУ	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCATCATGGTGCCCCAGGCT	540
Db	634	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCGATCATGGTGCCCCAGGCT	693
QУ	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	694	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	753
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	754	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	813
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTGTTTCCAGATATTCCGC	720
Db	814	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	873
Qу	721	AAGCTCTGGGGCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	874	AAGCTCTGGGGCCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	933
QУ	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	934	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	993
Qу	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900

Db	994	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 1053
Qу	901	ATGGTGGTGCTGCTCTCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Db	1054	
QУ	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Db	1114	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1173
QУ	1021	ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Db	1174	ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
		CTCAGTGGC 1089
Db	1234	CTCAGTGGC 1242
RESULT 8 AX299475 LOCUS DEFINITION ACCESSION VERSION KEYWORDS SOURCE ORGANISM REFERENCE AUTHORS TITLE JOURNAL FEATURES SOURCE ORIGIN	N Se All All All All All All All All All Al	2299475 1564 bp DNA linear PAT 26-NOV-2001 equence 3 from Patent EP1154019. 2299475 2299475.1 GI:17129231 Domo sapiens (human) Domo sapiens Elkaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Emmalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. Pergsma, D. J. and Ellis, C. E. Eprotein coupled receptor (hfgan72x) Electric EP 1154019-A 3 14-NOV-2001; ElithKline Beecham Corporation (US) Location/Qualifiers 11564 /organism="Homo sapiens" /mol_type="unassigned DNA" /db_xref="taxon:9606"
	cal S	97.2%; Score 1079.4; DB 6; Length 1564; Similarity 99.4%; Pred. No. 3e-204; B; Conservative 0; Mismatches 6; Indels 0; Gaps 0;
Qу	1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Db	154	
QУ	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Db	214	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273
Qу	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Db	274	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC 333

QУ		CTGGTGGCCACACGCTGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	
Db	334	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	393
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	394	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	453
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	454	CCGGCCAGCCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	513
Qу	361	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	514	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	573
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	574	GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	633
Qу	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCTCGCCATCATGGTGCCCCAGGCT	540
Db	634	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	693
Qy	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db ,	694	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	753
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	754	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	813
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	814	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	873
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	874		933
Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	934		993
Qy Latina	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGCAAGACAGCCAAGATGCTG	900
Db	994		1053
Qу	901	ATGGTGGTGCTGCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	1054		1113
Qу	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Db	1114		1173

```
1021 ACCTTCTCCCACTGGCTGTTACGCCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qу
            Db
       1174 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
       1081 CTCAGTGGC 1089
Qу
           Db
       1234 CTCAGTGGC 1242
RESULT 9
AX549082
LOCUS
          AX549082
                              1564 bp
                                       DNA
                                              linear
                                                      PAT 26-NOV-2002
DEFINITION
          Sequence 367 from Patent W002061087.
ACCESSION
          AX549082
VERSION
          AX549082.1 GI:25813851
KEYWORDS
SOURCE
          Homo sapiens (human)
 ORGANISM
          Homo sapiens
          Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
          Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
          Burmer, G.C., Roush, C.L. and Brown, J.P.
 AUTHORS
 TITLE
          Antigenic peptides, such as for G protein-coupled receptors
          (GPCRs), antibodies thereto, and systems for identifying such
          antigenic peptides
 JOURNAL
          Patent: WO 02061087-A 367 08-AUG-2002;
          Lifespan Biosciences, Inc. (US)
FEATURES
                 Location/Qualifiers
                 1. .1564
    source
                 /organism="Homo sapiens"
                 /mol type="unassigned DNA"
                 /db xref="taxon:9606"
ORIGIN
 Query Match
                      97.2%; Score 1079.4; DB 6; Length 1564;
 Best Local Similarity
                     99.4%; Pred. No. 3e-204;
 Matches 1083; Conservative
                           0; Mismatches
                                              Indels
                                                       0; Gaps
                                                                 0;
Qy
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
           Db
        154 ATGGAGCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qy
           214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273
Db
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Qу
           Db
        274 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 333
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Qy
           Db
        334 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 393
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
Qу
           394 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 453
Db
```

Qy ~	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	454	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	513
Qу	361	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	514	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	573
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	574	GCCCTGGACCGCTGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	633
Qу	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db	634	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	693
Qу	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	694	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	753
QУ	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	754	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	813
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	814	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCATGGCCTATTTCCAGATATTCCGC	873
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	874	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	933
QУ	781	CCCTCAGACCAGCTGGGGGACCTGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db ´	934	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	993
Qу	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	994	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	1053
QУ	901	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	1054	ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT	1113
QУ	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Db	1114	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1173
QΥ	1021	ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Db	1174	ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1233
Qγ ·	1081	CTCAGTGGC 1089	
Db	1234	CTCAGTGGC 1242	

.

```
RESULT 10
AX746121
LOCUS
          AX746121
                              1564 bp
                                       DNA
                                             linear
                                                     PAT 12-JUN-2003
DEFINITION
         Sequence 4 from Patent EP1156110.
ACCESSION
          AX746121
VERSION
          AX746121.1 GI:31744927
KEYWORDS
SOURCE
          Homo sapiens (human)
 ORGANISM
         Homo sapiens
          Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
          Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
 AUTHORS
          Bergsma, D.J. and Ellis, C.E.
 TITLE
          G-protein coupled receptor (HFGAN72Y)
 JOURNAL
          Patent: EP 1156110-A 4 21-NOV-2001;
          SMITHKLINE BEECHAM CORPORATION (US)
FEATURES
                 Location/Qualifiers
                 1. .1564
    source
                 /organism="Homo sapiens"
                 /mol type="genomic DNA"
                 /db xref="taxon:9606"
                 /note="HGS EST 554692"
ORIGIN
 Query Match
                     97.2%; Score 1079.4; DB 6; Length 1564;
 Best Local Similarity
                     99.4%;
                            Pred. No. 3e-204;
 Matches 1083; Conservative
                           0: Mismatches
                                          6; Indels
                                                        Gaps
                                                               0;
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Qy
           Db
        154 ATGGAGCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qу
           214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273
Db
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Qу
           Db
        274 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 333
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Qу
           334 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 393
Db
Qу
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTTGACTGCTATCTGCCTG 300
           394 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 453
Db
Qy.
        301 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
           454 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 513
Db
        361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
Qу
           Db
        514 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 573
```

QУ	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	574	GCCCTGGACCGCTGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG	633
Qу	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db	634	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCGGCCATCATGGTGCCCCAGGCT	693
Qу	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	694		753
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	754	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	813
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	814		873
Qу	721	AÁGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	874	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	933
Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	934		993
Qу	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	994		1053
Qу	901	ATGGTGGTGCTGCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	1054		1113
Qу	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Db	1114	AAGAGGGTGTTCGGCATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1173
Qу	1021	ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Db .	1174		1233
Ωу	1081	CTCAGTGGC 1089	
Db	1234		

RESULT 11 AX840912

LOCUS AX840912 1564 bp DNA linear PAT 16-DEC-2003

DEFINITION Sequence 8 from Patent W003075945.

ACCESSION AX840912

VERSION AX840912.1 GI:39979051

KEYWORDS

SOURCE Homo sapiens (human)

```
Homo sapiens
 ORGANISM
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
         Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
 AUTHORS
         Eulenberg, K., Steuernagel, A., Haeder, T. and Broenner, G.
 TITLE
         Cg8327, cg10823, cg18418, cg15862, cg3768, cg11447 and cg16750
         homologous proteins involved in the regulation of energy
         homeostasis
         Patent: WO 03075945-A 8 18-SEP-2003;
 JOURNAL
         DeveloGen Aktiengesellschaft fuer entwicklungsbiologische;
         Forschung (DE)
FEATURES
                Location/Qualifiers
                 1. .1564
    source
                 /organism="Homo sapiens"
                 /mol type="unassigned DNA"
                 /db xref="taxon:9606"
ORIGIN
 Query Match
                    97.2%; Score 1079.4; DB 6; Length 1564;
Best Local Similarity
                    99.4%; Pred. No. 3e-204;
 Matches 1083; Conservative
                          0; Mismatches
                                                              0;
                                            Indels
                                                       Gaps
                                                    0:
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Qу
           Db
        154 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213
        61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qу
           214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273
Db
Ov
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
           Db
        274 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC 333
Qу
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
           Db
        334 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 393
Qy
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
           Db
        394 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 453
        301 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
Qy
           Db
        454 CCGGCCAGCCTGCTGGAGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 513
. . .
        361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
Qу
           Db
        514 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 573
        421 CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480
Qy
            Db
        574 GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 633
        481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT 540
Qy
           Db
        634 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTGTCGCTGGCCATCATGGTGCCCCAGGCT 693
```

Qy · 541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600					
Db 694	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA						
Qy 601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660					
Db 754	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	813					
Qy 661	ATTGTCACCTACCTGGCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720					
Db 814	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	873					
Qy 721	AAGCTCTGGGGCCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780					
Db 874	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	933					
Qy 781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840					
Db 934	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	993					
Qy841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900					
Db 994	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	1053					
Qy 901	ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960					
Db 1054	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT	1113					
Qy 961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020					
Db 1114	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1173					
Qy 1021	ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080					
Db 1174							
Qy 1081	CTCAGTGGC 1089						
Db 1234	TITLE CTCAGTGGC 1242						
DEFINITION H ACCESSION A VERSION A KEYWORDS . SOURCE H ORGANISM H E M REFERENCE 1	F041243 1564 bp mRNA linear PRI 24-FEB- omo sapiens orexin receptor-1 mRNA, complete cds. F041243 F041243.1 GI:2897123 omo sapiens (human) omo sapiens ukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostom ammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. (bases 1 to 1564)	6 ¹⁷					
Т	akurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R.M., anaka, H., Williams, S.C., Richardson, J.A., Kozlowski, G.P., ilson, S., Arch, J.R.S., Buckingham, R.E., Haynes, A.C., A. Carr, S	.A.,					

```
Annan, R.S., McNulty, D.E., Liu, W.-S., Terrett, J.A.,
           Elshourbagy, N.A., Bergsma, D.J. and Yanagisawa, M.
           Orexins and orexin receptors: a family of hypothalamic
  TITLE
           neuropeptides and G protein-coupled receptors that regulate feeding
           behavior
  JOURNAL
           Cell 92 (4), 573-585 (1998)
  MEDLINE
           98150861
           9491897
   PUBMED
REFERENCE
              (bases 1 to 1564)
  AUTHORS
           Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R.M.,
           Tanaka, H., Williams, S.C., Richardson, J.A., Kozlowski, G.P.,
           Wilson, S., Arch, J.R.S., Buckingham, R.E., Haynes, A.C., A. Carr, S.A.,
           Annan, R.S., McNulty, D.E., Liu, W.-S., Terrett, J.A.,
           Elshourbagy, N.A., Bergsma, D.J. and Yanagisawa, M.
  TITLE
           Direct Submission
           Submitted (07-JAN-1998) HHMI/Department of Molecular Genetics,
  JOURNAL
           University of Texas Southwestern Medical Center at Dallas, 5323
           Harry Hines Blvd., Rm. Y5.224, Dallas, TX 75235-9050, USA
FEATURES
                    Location/Qualifiers
                    1. .1564
     source
                    /organism="Homo sapiens"
                    /mol type="mRNA"
                    /db xref="taxon:9606"
                    /chromosome="1"
                    /map="1p33"
                    154. .1431
     CDS
                    /note="OX1R; G protein-coupled receptor"
                    /codon start=1
                    /product="orexin receptor-1"
                    /protein id="AAC39601.1"
                    /db xref="GI:2897124"
                    translation="MEPSATPGAQMGVPPGSREPSPVPPDYEDEFLRYLWRDYLYPKO"
                    YEWVLIAAYVAVFVVALVGNTLVCLAVWRNHHMRTVTNYFIVNLSLADVLVTAICLPA
                    SLLVDITESWLFGHALCKVIPYLQAVSVSVAVLTLSFIALDRWYAICHPLLFKSTARR
                    ARGSILGIWAVSLAIMVPQAAVMECSSVLPELANRTRLFSVCDERWADDLYPKIYHSC
                    FFIVTYLAPLGLMAMAYFQIFRKLWGRQIPGTTSALVRNWKRPSDQLGDLEQGLSGEP
                    QPRGRAFLAEVKQMRARRKTAKMLMVVLLVFALCYLPISVLNVLKRVFGMFRQASDRE
                    AVYACFTFSHWLVYANSAANPIIYNFLSGKFREQFKAAFSCCLPGLGPCGSLKAPSPR
                    SSASHKSLSLOSRCSISKISEHVVLTSVTTVLP"
ORIGIN
  Query Match
                         97.2%;
                                Score 1079.4; DB 9; Length 1564;
  Best Local Similarity
                        99.4%;
                                Pred. No. 3e-204;
  Matches 1083; Conservative
                               0; Mismatches
                                                6;
                                                    Indels
                                                              0; Gaps
                                                                         0;
           1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCTGGCAGCAGAGAGCCG 60
Çy.
             Db
         154 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213
Qу
          61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
             Db
         214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273
Qу
         121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
             Db
         274 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 333
```

QУ	18	81	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	. 3:	34		393
Qу	24	41	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	3	94	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	453
Qу	30	01	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db .	45	54	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	513
QУ	36	61	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	5.	14	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	573
Qу	42	21	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	5	74	GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	633
Qу	48	81	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db	63	34	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCATCATGGTGCCCCAGGCT	693
Qу	54	41	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	. 69	94	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	753
Qу	60	01	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	75	54	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	813
Qу	66	61	ATTGTCACCTACCTGGCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	81	14	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	873
Qу	72	21	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	87	74	AAGCTCTGGGGCCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	933
Qy .	78	81	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	93	34	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	993
Qу	84	41	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	
Db	99	94	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	
Qу	9(ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	105			1113
Qу	. 96		AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Db	111			1173
0v ·	102	2.1	ACCTTCTCCCACTGGCTGGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080

```
Db
         1174 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
         1081 CTCAGTGGC 1089
Qу
              Db
         1234 CTCAGTGGC 1242
RESULT 13
E43973
LOCUS
            E43973
                                    1133 bp
                                               DNA
                                                       linear
                                                                PAT 31-JAN-2002
DEFINITION
            Novel G protein-coupled receptor (HFGAN72Y).
ACCESSION
            E43973
VERSION
            E43973.1 GI:18625172
KEYWORDS
            JP 2000106888-A/2.
SOURCE
            unidentified
  ORGANISM
           unidentified
            unclassified.
REFERENCE
               (bases 1 to 1133)
            1
            Bergsma, D.J. and Ellis, C.E.
  AUTHORS
  TITLE
            Novel G protein-coupled receptor (HFGAN72Y)
            Patent: JP 2000106888-A 2 18-APR-2000;
  JOURNAL -
            SMITHKLINE BEECHAM CORP
COMMENT
            OS
                 Unidentified
            PN
                 JP 2000106888-A/2
            PD
                 18-APR-2000
            PF
                 21-JUL-1999 JP 1999206116
            PR
                 30-APR-1997 US
                                   08/846705
            PΙ
                 DERK J BERGSMA, CATHARINE ELIZABETH ELLIS
            PC
                 C12N15/09, A61K38/00, A61K38/00, A61K45/00, A61K48/00, A61P1/00, PC
              A61P1/14,
            PC
                 A61P9/02, A61P9/04, A61P9/10, A61P9/12, A61P11/06, A61P13/02, PC
            A61P13/08,
            PC
                 A61P19/10, A61P25/14, A61P25/16, A61P25/18, A61P25/22, A61P25/24,
            PC
                 A61P31/04,
            PC
                 A61P31/10,A61P31/12,A61P31/18,A61P33/00,A61P35/00,A61P37/08,
            PC
                 A61P43/00,
            PC
                 C07K14/705,C07K16/28,C12N1/21,C12N5/10,C12P21/02,G01N33/566,
            PC
                 G01N33/577//
            PC
                 C12P21/08, (C12N15/09, C12R1:91), (C12P21/02, C12R1:91), C12N15/00,
            PC
                 A61K37/02,
            PC
                 A61K37/02, C12N5/00, (C12N15/00, C12R1:91)
            CC
                 Strandedness: Single;
                 Topology: Linear;
            CĊ
            FH
                 Key
                                 Location/Qualifiers
            FΤ
                 source
                                 1. .1133
            FT
                                 /organism='Unidentified'.
                     Location/Qualifiers
FEATURES
     source
                     1. .1133
                     /organism="unidentified"
                     /mol type="genomic DNA"
                     /db xref="taxon:32644"
ORIGIN
  Query Match
                         97.2%; Score 1078.4; DB 6; Length 1133;
                         99.4%; Pred. No. 4.9e-204;
  Best Local Similarity
  Matches 1082; Conservative
                                0; Mismatches
                                                  6;
                                                      Indels
                                                                 0; Gaps
                                                                             0;
```

. Qy	, 1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG	60
Db	1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG	60
Qу	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCCGCTATCTGTGGCGTGATTATCTG	120
Dh	61		120
Qу	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Db	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Qу	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	181	CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Qy	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
ÕА	361	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Qу		CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	
Db		GCCCTGGACCGCTGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	
Qу		GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	
Db		GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	
ДУ		GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	
Db		GCAGTCATGGAATGCAGCAGCAGTGTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	
Qy Db		CTCTGTCATGAACGCTGGGCAGATGACCTCTATĆCCAAGATCTACCACAGTTGCTTCTTT	
Qy		GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	
Dρ		ATTGTCACCTACCTGGCCCCACTGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	
Qу		AAGCTCTGGGGCCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	
∑y Db		AAGCTCTGGGGCCGCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	
Qу		CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	
Σy Db	•	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGCCCCAGCCCCGGGGCCCCAGCCCCGGGGCCCCCAGCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCAGCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCAGCCCAGCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCAGCCCCAACACAACA	

```
Qу
        841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
            Db
        841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAGACAGCCAAGATGCTG 900
        901 ATGGTGGTGCTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Qу
            901 ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 960
Db
        961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
            961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Db
Qу
       1021 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
            Db
       1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
       1081 CTCAGTGG 1088
Qу
            1111111
Db
       1081 CTCAGTGG 1088
RESULT 14
AX746120
LOCUS
          AX746120
                              1133 bp
                                       DNA
                                              linear
                                                     PAT 12-JUN-2003
         Sequence 3 from Patent EP1156110.
DEFINITION
          AX746120
ACCESSION
VERSION
          AX746120.1 GI:31744926
KEYWORDS
SOURCE
          Homo sapiens (human)
 ORGANISM
          Homo sapiens
          Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
          Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE
 AUTHORS
          Bergsma, D.J. and Ellis, C.E.
 TITLE
          G-protein coupled receptor (HFGAN72Y)
          Patent: EP 1156110-A 3 21-NOV-2001;
 JOURNAL
          SMITHKLINE BEECHAM CORPORATION (US)
FEATURES
                 Location/Qualifiers
    source
                 1. .1133
                 /organism="Homo sapiens"
                 /mol_type="genomic DNA"
                 /db xref="taxon:9606"
                 /note="HGS EST 557082"
ORIGIN
 Query Match
                     97.2%
                            Score 1078.4; DB 6; Length 1133;
 Best Local Similarity
                     99.4%;
                            Pred. No. 4.9e-204;
 Matches 1082; Conservative
                           0; Mismatches
                                          6;
                                              Indels
                                                      0; Gaps
                                                                0;
Qу
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCTGGCAGCAGAGAGCCG 60
           Db
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Qу
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
           Db
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
```

QУ	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Db	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
QΥ.	181	CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db .	181	CTGGTGGCCACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
QУ	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Qγ	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	421	GCCCTGGACCGCTGGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG	480
QУ	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
QУ	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db ,	541	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Qy .	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	601	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Qy	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	661	ATTGTCACCTACCTGGCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
QУ	721	AAGCTCTGGGGCCGCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	721	AAGCTCTGGGGCCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Qy ुः	781	CCCTCAGACCAGCTGGGGGACCTGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGCCCCAGCCCCGGGGC	840
Qу	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Qу	901	ATGGTGGTGCTGCTCTCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	901	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT	960
Ov	961	A MCMCCCTTCTTTCCCCATCTTTCCCCCAACCCACTCACCCCCAACCTCTTACCCCTTTACCCCTTTC	1020

```
961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Db
        1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qу
             Db
        1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
        1081 CTCAGTGG 1088
Qу
             Db
        1081 CTCAGTGG 1088
RESULT 15
E43972
LOCUS
                                   1170 bp
           E43972
                                             DNA
                                                     linear
                                                              PAT 31-JAN-2002
DEFINITION
           Novel G protein-coupled receptor (HFGAN72Y).
           E43972
ACCESSION
           E43972.1 GI:18625171
VERSTON
KEYWORDS
           JP 2000106888-A/1.
SOURCE
           unidentified
           unidentified
 ORGANISM
           unclassified.
REFERENCE
              (bases 1 to 1170)
 AUTHORS
           Bergsma, D.J. and Ellis, C.E.
           Novel G protein-coupled receptor (HFGAN72Y)
 TITLE
 JOURNAL
           Patent: JP 2000106888-A 1 18-APR-2000;
           SMITHKLINE BEECHAM CORP
COMMENT
           OS
                Unidentified
           PN
                JP 2000106888-A/1
           PD
                18-APR-2000
                21-JUL-1999 JP 1999206116
           PF
           PR
                30-APR-1997 US
                                  08/846705
           PI
                DERK J BERGSMA, CATHARINE ELIZABETH ELLIS
                C12N15/09,A61K38/00,A61K38/00,A61K45/00,A61K48/00,A61P1/00, PC
           PC
             A61P1/14,
           PC
                A61P9/02, A61P9/04, A61P9/10, A61P9/12, A61P11/06, A61P13/02, PC
           A61P13/08,
           PC
                A61P19/10, A61P25/14, A61P25/16, A61P25/18, A61P25/22, A61P25/24,
           PC
                A61P31/04,
           PC
                A61P31/10,A61P31/12,A61P31/18,A61P33/00,A61P35/00,A61P37/08,
           PC
                A61P43/00,
           PC
                C07K14/705, C07K16/28, C12N1/21, C12N5/10, C12P21/02, G01N33/566,
           PC
                G01N33/577//
           PC
                C12P21/08, (C12N15/09, C12R1:91), (C12P21/02, C12R1:91), C12N15/00,
           PC
                A61K37/02,
           PC
                A61K37702,C12N5/00,(C12N15/00,C12R1:91)
           CC
                Strandedness: Single;
           CC
                Topology: Linear;
           FH
                Key
                                Location/Qualifiers
           FT
                                1. .1170
                source
           FT
                                /organism='Unidentified'.
FEATURES
                    Location/Qualifiers
    source
                    1. .1170
                    /organism="unidentified"
                    /mol type="genomic DNA"
                    /db xref="taxon:32644"
```

ORIGIN

Query Match . 97.2%; Score 1078.4; DB 6; Length 1170; Best Local Similarity 99.4%; Pred. No. 4.9e-204; Matches 1082; Conservative 0; Mismatches Indels Gaps 0; 1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCTGGCAGCAGAGAGCCG 60 Qу Db ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60 61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120 Qу 61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120 Db 121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180 Qу Db 121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180 181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240 Qу Db 181 CTGGTGGCCACACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACACATGAGGACAGTC 240 241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300 Qу 241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300 Db 301 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360 Qу 301 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360 Db 361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420 Qy Dh 361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420 421 CCCCTGGACCGCTGGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG 480 Qу 421 GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480 Db 481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTGTCGCTGGCCATCATGGTGCCCCAGGCT 540 Qу 481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT 540 Db 541 GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600 Qу 541 GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600 Db 601 CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660 Qу 601 GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660 Db 661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 720 Qy 661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 720 Db 721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780 Qу 721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780 Db

Qу	781	CCCTCAGACCAGCTGGGGGACCTGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Qy	841	- CONTROL OF THE CONT	900
Db	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Qу	901	ATGGTGGTGCTGCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	901	ATGGTGGTGCTGCTCTCCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT	960
Qу	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Db	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Qу	1021	ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Db	1021	ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Qy	1081	CTCAGTGG 1088	
Db	1081	CTCAGTGG 1088	

Search completed: October 15, 2004, 19:59:37 Job time: 4500.38 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: October 15, 2004, 13:52:46; Search time 474.138 Seconds

(without alignments)

9945.416 Million cell updates/sec

Title: US-10-070-532-3

Perfect score: 1110

Sequence: 1 atggagccctcagccacccc.....ttccctggagtctgctctaa 1110

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 3373863 seqs, 2124099041 residues

Total number of hits satisfying chosen parameters: 6747726

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Databasé: N_Geneseq_29Jan04:*

1: geneseqn1980s:*

2: geneseqn1990s:*

3: geneseqn2000s:*

4: geneseqn2001as:*

5: geneseqn2001bs:*

6: geneseqn2002s:*

7: geneseqn2003as:*

8: geneseqn2003bs:*

9: geneseqn2003cs:*

10: genesegn2004s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result		_o Query				
No.	Score	Match	Length	DB	ID	Description
1	1110	100.0	1110	4	AAS00492	Aas00492 Human neu
2	1102	99.3	1110	2	AAT42827	Aat42827 Neuropept
3	1079.4	97.2	1209	2	AAT42826	Aat42826 Neuropept
4	1079.4	97.2	1564	2	AAV63468	Aav63468 cDNA enco
5	1079.4	97.2	1564	2	AAV68514	Aav68514 Nucleotid
6	1079.4	97.2	1564	4	AAF32103	Aaf32103 Human HFG
7	1079.4	97.2	1564	6	ABA96021	Aba96021 HGS EST 5

8	1079.4	97.2	1564	6	AAI64173	Aai64173	HFGAN72X
9	1079.4	97.2	1564	6	AAI64172	Aai64172	Human HFG
10	1079.4	97.2	1564	7	ABZ42789	Abz42789	Human ore
11	1078.4	97.2	1133	2	AAV68512	Aav68512	Nucleotid
12	1078.4	97.2	1133	6	ABA96020	Aba96020	HGS EST 5
13	1078.4	97.2	1170	2	AAV68511	Aav68511	Nucleotid
14	1078.4	97.2	1170	6	ABA96019	Aba96019	G-protein
15	1077.8	97.1	1278	4	AAS00491	, Aas00491	Human neu
16	1077.8	97.1	1564	4	AAS17464	Aas17464	Human G p
17	1076.8	97.0	1133	4	AAS00493	Aas00493	Human neu
18	1075.2	96.9	1133	2	AAT42828	Aat42828	Neuropept
19	1074.6	96.8	1278	5	ABI98014	Abi98014	Non-endog
20	1031.4	92.9	1278	4	AAD09335	Aad09335	Cynomolgo
21	905	81.5	1281	5	AAC85974	Aac85974	Dog orexi
22	661	59.5	789	. 2	AAT13909	Aat13909	Rabbit G-
23	661	59.5	789	2	AAT51065	Aat51065	G-protein
24	511.8	46.1	1633	2	AAX29700	Aax29700	Human 7-t
25	511.8	46.1	1843	7	ABZ42790	Abz42790	Human ore
26	507	45.7	1335	4	AAF90300		Nucleotid
27	507	45.7	1335	5	ABI98015	Abi98015	Non-endog
28	241.2	21.7	344	5	AAF56748	Aaf56748	Human HCR
29	241.2	21.7	9785	5	AAF55159	Aaf55159	Nucleotid
30	241.2	21.7	10453	4	AAS17462	Aas17462	Human G p
31	236	21.3	244	4	AAS17449	Aas17449	Human G p
32	228.4	20.6	331	5	AAF56750	Aaf56750	Human HCR
33	223.8	20.2	227	4	AAS17453		Human G p
34	199	17.9	356	4	AAS17445	Aas17445	Human G p
35	198.6	17.9	452	5	AAF56746	Aaf56746	Human HCR
36	181	16.3	263	5	AAF56747	Aaf56747	Human HCR
37	179	16.1	179	4	AAS17447	Aas17447	Human G p
38	161.6	14.6	1290	3	AAA70507	Aaa70507	Novel hum
39	161.6	14.6	1290	3	AAA70508	Aaa70508	Novel hum
40	161.6	14.6	1290	4	AAH78518	Aah78518	Nucleotid
41	161.6	14.6	1290	4	AAH78519	Aah78519	Nucleotid
42	161.6	14.6	1290	7	ACC49315		Human RFR
43	161.6	14.6	1290	7	ACC49316		Human RFR
44	161.6	14.6	1290	9	ADB76179		Altenativ
45	161.6	14.6	1290	9	ADB76178	Adb76178	Human OT7

ALIGNMENTS

```
RESULT 1
AAS00492
    AAS00492 standard; cDNA; 1110 BP.
XX
АC
     AAS00492;
XX
DT
     17-MAY-2001 (first entry)
XX
DE
    Human neuropeptide receptor splice variant 1 cDNA.
XX
    Human; neuropeptide receptor; neuropeptide Y receptor; obesity;
KW
    nervous system disorder; hyperproliferative disorder; diabetes mellitus;
KW
     cardiovascular disorder; autoimmune disorder; infectious disorder;
KW
     eating behaviour disorder; narcolepsy; neurological disease;
KW
```

```
KW
     narcotics addiction; nicotine addiction; alcohol addiction; gene therapy;
KW
     protein co-ordinate data; ss.
XX
OS
     Homo sapiens.
XX
FH
     Key
                     Location/Qualifiers
FT
     CDS
                     1. .1110
FT
                     /*tag= a
FT
                     /product= "neuropeptide receptor splice variant 1"
XX
PN
     W0200117532-A1.
XX
PD
     15-MAR-2001.
XX
PF
     07-SEP-2000; 2000WO-US024518.
XX
PR
     10-SEP-1999;
                    99US-00393696.
XX
PA
     (HUMA-) HUMAN GENOME SCI INC.
XX
PΙ
     Soppet DR, Li Y, Rosen CA;
XX
DR
     WPI; 2001-183276/18.
DR
     P-PSDB; AAU00439.
XX
РΤ
     A new nucleic acid encoding a human neuropeptide receptor polypeptide,
     useful for preventing, treating or ameliorating obesity, narcolepsy,
PT
PT
     neurological disease and addiction to narcotics, nicotine and alcohol.
XX
PS
     Claim 4; Fig 2; 385pp; English.
XX
CC
     The present sequence encodes for human neuropeptide receptor splice
CC
     variant 1. Two splice variants (AAU00439-AAU00440) and a possible mutant
CC
     (AAU00442) of a novel human neuropeptide receptor (AAU00438) are
CC
     described. The neuropeptide receptor shows sequence homology to the
CC
     neuropeptide Y receptor. Polypeptides and polynucleotides of the
CC
     neuropeptide receptor are useful for diagnosing, preventing, or treating
CC
     a pathological condition in a subject related to the central nervous and
CC
     peripheral nervous systems (CNS and PNS). The polypeptides and
CC
     polynucleotides may be used to treat hyperproliferative, cardiovascular,
     autoimmune, nervous system or infectious disorders e.g. cancer, heart
CC
CC
     disease, rheumatoid arthritis, Alzheimer's disease, HIV infection and
CC
     diabetes mellitus. In particular they are useful for preventing, treating
CC
     or ameliorating a medical condition in a mammal such as obesity/eating
CC
     behaviour disorders, narcolepsy, neurological disease, addiction to
CC
     narcotics, nicotine and alcohol, chronic pain, acute pain, migraine
CC
     headaches and anxiety disorders. The polynucleotides encoding the
CC
     neuropeptide receptor can also be used in gene therapy methods for
CC
     treating such diseases
XX
SO
     Sequence 1110 BP; 194 A; 369 C; 300 G; 247 T; 0 U; 0 Other;
                          100.0%; Score 1110; DB 4; Length 1110;
 Query Match
  Best Local Similarity
                         100.0%; Pred. No. 4.6e-253;
 Matches 1110; Conservative
                                 0; Mismatches
                                                   0; Indels
                                                                      Gaps
                                                                              0;
```

Qу

Db	1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGACCG	60
Qу	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Db	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Qу	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Db.	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Qу	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Qy	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301	$\tt CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG$	360
Qу	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db		GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	
Qу		CCCCTGGACCGCTGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	
Db		CCCCTGGACCGCTGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	
Qу		GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	
Db		GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCATCATGGTGCCCCAGGCT	
ДУ		GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	
Db		GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	
QУ		CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	
Db		CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	
ДУ		ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	
Db		ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	
Qy Db		AAGCTCTGGGGCCGCCAGATCCCCGGCACCTCAGCACTGGTGCGGAACTGGAAGCGC	
		AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	
Qу		CCCTCAGACCAGCTGGGGGACCTGGAGCAGGCCCAGCCCGGGGC	
Db		CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	
Qγ	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900

```
841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Db
         901 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Qy
             Db
         901 ATGGTGGTGCTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
         961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
             Dh
         961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
        1021 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qу
             Db
        1021 ACCTTCTCCCACTGGCTGTTACGCCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
        1081 CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110
Qу
             Db
        1081 CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110
RESULT 2
AAT42827
TD
    AAT42827 standard; cDNA; 1110 BP.
XX
AC
    AAT42827;
XX
DT
    22-FEB-1997 (first entry)
XX
DE
    Neuropeptide receptor splice variant-1 gene.
XX
KW
    Human; neuropeptide receptor; splice variant; drug screening;
KW
    receptor-agonist; receptor-antagonist; anorectic; antitumour;
KW
    anticholesterolemic; neuroprotective; anticonvulsant; hypotensive;
KW
    sedative; diagnostic; gene therapy; ss.
XX
OS
    Homo sapiens.
XX
PN
    WO9634877-A1.
XX
PD
    07-NOV-1996.
XX
PF
    05-MAY-1995;
                  95WO-US005616.
XX
PR
    05-MAY-1995;
                  95WO-US005616.
XX
PA
    (HUMA-) HUMAN GENOME SCI INC.
XX
                  .....
                                                                 7.94
_{\rm PI}
    Soppet DR,
              Li Y,
                    Rosen CA;
XX
DR
    WPI; 1996-506094/50.
DR
    P-PSDB; AAW06125.
XX
PT
    Human neuro-peptide receptor polypeptide(s) - used to identify
    antagonists and agonists to such polypeptide(s), e.g. in the treatment of
PT
PT
    obesity, Alzheimer's disease, epilepsy, etc.
XX
PS
    Disclosure; Page 50-51; 77pp; English.
XX
```

```
CC
     retains activity corresponding to the mature receptor (encoded by
     AAT42826). The receptor gene has been isolated from from a human adult
 CC
 CC
     hypothalamus cDNA library, and is structurally related to the G-protein-
 CC
     coupled receptor family. The receptor may be used in a drug screening
 CC
     assay for isolation of receptor-agonists and -antagonists, which may be
 CC
     used as anorectic, antitumour, anticholesterolemic, neuroprotective,
 CC
     anticonvulsant, hypotensive or sedative drugs, etc. The DNA may also be
 CC
     used in genetic disease diagnosis or gene therapy. The receptor and its
 CC
     corresponding antibody may also be used in therapy and diagnosis
 XX
 SO
     Sequence 1110 BP; 194 A; 364 C; 305 G; 247 T; 0 U; 0 Other;
  Query Match
                      99.3%;
                            Score 1102; DB 2;
                                            Length 1110:
  Best Local Similarity
                      99.5%;
                            Pred. No. 3.6e-251;
  Matches 1105; Conservative
                           0:
                              Mismatches
                                             Indels
                                                        Gaps
                                                              0;
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
 Qy
            1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
 Db
          61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
 Qy
            61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
 Db
         121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
 Qу
            121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTCGTCGTGGCC 180
 Db
         181 CTGGTGGGCAACACGCTGGTCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
 Qy
            181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
 Db
 Qу
         241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
            241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
 Db
         301 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
 Qу
            301 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
 Db
         361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
 Qу
            361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
 Db
         421 CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480
421 GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480
 Db
         481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT 540
 Qу
            481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT 540
 Db
         541 GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600
 Qу
            541 GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600
 Db
```

The sequence encodes human neuropeptide receptor splice variant-1, which

CC

```
601 CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660
Qу
            601 GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660
Db
        661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 720
Qу
           661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 720
Db
        721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780
Qy
           721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780
Db
        781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
Qу
           781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
Db
        841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Qy
           Dh
        841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
        901 ATGGTGGTGCTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Qy
           901 ATGGTGGTGCTGCTCTCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Db
        961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qy
           961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Db
       1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qу
           1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Db
       1081 CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110
Qу
           Db
       1081 CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110
RESULT 3
AAT42826
ID
   AAT42826 standard; cDNA; 1209 BP.
XX
AC
   AAT42826;
XX
DT
   22-FEB-1997
             (first entry)
XX
DE
   Neuropeptide receptor gene.
XX
KW
   Human; neuropeptide receptor; drug screening; receptor-agonist;
KW
    receptor-antagonist; anorectic; antitumour; anticholesterolemic;
KW
   neuroprotective; anticonvulsant; hypotensive; sedative; diagnostic;
KW
    gene therapy; ss.
XX
OS
   Homo sapiens.
XX
FH
   Kev
                Location/Qualifiers
FT
   primer bind
                complement(1. .18)
FT
                /*tag= a
```

```
FT
                     /note= "Binds primer AAT42829"
FT
     misc difference 151. .153
FT
                     /*tag= b
FT
                     /codon= seq:CCA, aa:Ala
FT
     primer bind
                     complement (1190. .1192)
FT
                     /*tag= c
FT
                     /note= "Binds primers AAT42830 and AAT42832"
XX
· PN
     WO9634877-A1.
XX
     07-NOV-1996.
PD
XX
PF
     05-MAY-1995;
                    95WO-US005616.
XX
PR
     05-MAY-1995;
                    95WO-US005616.
XX
PA
     (HUMA-) HUMAN GENOME SCI INC.
XX
PΙ
     Soppet DR, Li Y, Rosen CA;
XX
DR
     WPI; 1996-506094/50.
DR
     P-PSDB; AAW06124.
XX
PТ
     Human neuro-peptide receptor polypeptide(s) - used to identify
     antagonists and agonists to such polypeptide(s), e.g. in the treatment of
PT
     obesity, Alzheimer's disease, epilepsy, etc.
PT
XX
PS
     Claim 6; Page 48-49; 77pp; English.
XX
CC
     The sequence encodes a human neuropeptide receptor, and has been mapped
CC
     to human chromosome 1q31-34. The sequence has been isolated from a human
CC
     adult hypothalamus cDNA library, and is structurally related to the G-
CC
     protein-coupled receptor family. Splice variants are given in AAT42827-
CC
     28. The sequence may be amplified by PCR with e.g. primers AAT42829-34
CC
     for expression in a host cell. The recombinant receptor may be used in a
CC
     drug screening assay for isolation of receptor-agonists and -antagonists.
CC
     which may be used as anorectic, antitumour, anticholesterolemic,
CC
     neuroprotective, anticonvulsant, hypotensive or sedative drugs, etc. The
CC
     DNA may also be used in genetic disease diagnosis or gene therapy. The
CC
     receptor and its corresponding antibody may also be used in therapy and
CC
     diagnosis
XX
SO
     Sequence 1209 BP; 206 A; 402 C; 330 G; 271 T; 0 U; 0 Other;
  Query Match
                         97.2%;
                                 Score 1079.4; DB 2; Length 1209;
  Best Local Similarity
                         99.4%;
                                 Pred. No. 8.3e-246;
  Matches 1083; Conservative
                                0: Mismatches
                                                 6;
                                                     Indels
                                                               0;
                                                                  Gaps
                                                                          0;
Qу
            1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
              1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Db
Qy
           61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
              61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Db
Qу
          121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTCGTCGTGGCC 180
```

Db		121	TACCCAAAACAGTATGAGTGGGTCCTCATCCCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Qу		181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db		181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Qу		241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db		241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Qy .		301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	•	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Qу		361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db		361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Qу		421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db .		421	GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Qу		481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db		481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Qу		541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db		541	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Qу		601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db		601	GTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Qу		661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db		661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	720
Qу		721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db		721	AAGCTCTGGGGCCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Qу		781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db		781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Qу		841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db		841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Qу		901	ATGGTGGTGCTGCTCCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	,	901	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT	960
Qy _.		961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020

```
Db
          961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
         1021 ACCTTCTCCCACTGGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
              1021 ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Db
         1081 CTCAGTGGC 1089
Qу
              Db
         1081 CTCAGTGGC 1089
RESULT 4
AAV63468
ID
     AAV63468 standard; cDNA; 1564 BP.
XX
AC
     AAV63468;
XX
DT
     26-JAN-1999 (first entry)
XX
DE
     cDNA encoding G-protein coupled receptor (HFGAN72X) polypeptide.
XX
KW
     G-protein coupled receptor; HFGAN72X; HIV infection; anorexia; cancer;
KW
     bulimia; asthma; Parkinson's disease; acute heart failure;
KW
     urinary retention; osteoporosis; angina pectoris; myocardial infarction;
KW
     benign prostatic hypertrophy; neurological disorder; ss.
XX
OS
     Homo sapiens.
XX
FH
     Key
                    Location/Qualifiers
FT
     CDS
                    154. .1431
FT
                    /*tag= a
FT
                    /product= "HFGAN72X"
XX
PN
     EP875566-A2.
XX
PD
     04-NOV-1998.
XX
PF
     27-OCT-1997;
                   97EP-00308563.
XX
PR
     30-APR-1997;
                   97US-00846704.
XX
PΑ
     (SMIK ) SMITHKLINE BEECHAM CORP.
XX
PΙ
    Bergsma DJ, Ellis CE;
XX
DR
    WPI; 1998-559432/48.
                                                                 25
DR
    P-PSDB; AAW80456.
XX
РΤ
    New human G-protein coupled receptor HFGAN72X polypeptide and
    polynucleotide - useful as diagnostic reagents and for treating e.g. HIV
PT
PT
    infection, cancer and Parkinson's disease.
XX
PS
    Claim 3; Page 7; 24pp; English.
XX
CC
    The present sequence encodes a G-protein coupled receptor (HFGAN72X)
CC
    polypeptide. HFGAN72X polypeptides and polynucleotides are useful for
CC
    diagnosing diseases related to over or under expression of HFGAN72X
```

```
CC
    probes, or determining HFGAN72X protein or mRNA expression levels.
CC
    HFGAN72X polypeptides are also useful for screening for compounds which
CC
    affect activity of the protein. Diseases that can be treated with
CC
    HFGAN72X include HIV infections, pain, anorexia, cancers, bulimia,
CC
    asthma, Parkinson's disease, acute heart failure, hypotension,
CC
    hypertension, urinary retention, osteoporosis, angina pectoris,
CC
    myocardial infarction, ulcers, allergies, benign prostatic hypertrophy,
CC
    and psychotic and neurological disorders
XX
SQ
    Sequence 1564 BP; 271 A; 511 C; 435 G; 347 T; 0 U; 0 Other;
 Query Match
                     97.28:
                           Score 1079.4; DB 2; Length 1564;
 Best Local Similarity
                     99.4%;
                           Pred. No. 8.9e-246;
 Matches 1083; Conservative
                             Mismatches
                          0;
                                         6;
                                            Indels
                                                    0;
                                                              0;
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Qу
           Db
        154 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qy
           Db
        214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273
Qу
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
           274 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 333
Db
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Qу
           334 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 393
Db
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
Qу
           394 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 453
Db
        301 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
Qy
           454 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 513
Db
        361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
Qу
           Db
        514 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 573
        421 CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480
Qу
            574 GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 633
Db
Qу
        481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTGTCGCTGGCCATCATGGTGCCCCAGGCT 540
           634 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT 693
Db
        541 GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600
Qy
           694 GCAGTCATGGAATGCAGCAGTGTGCCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 753
Db
        601 CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660
Qу
```

proteins by identifying mutations in the HFGAN72X gene using HFGAN72X

CC

```
754 GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 813
Dh
        661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 720
Qу
           Db
        814 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 873
        721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780
Qy
           874 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 933
Db
Qy
        781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
           Db
        934 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 993
Qy
        841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
           994 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 1053
Db
        901 ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Qy
           1054 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 1113
Db
        961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
           1114 AAGAGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1173
Db
       1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qy
           Db
       1174 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
Qy
       1081 CTCAGTGGC 1089
           111111111
Dh
       1234 CTCAGTGGC 1242
RESULT 5
AAV68514
ID
    AAV68514 standard; cDNA; 1564 BP.
XX
AC
   AAV68514;
XX
DT
   29-JAN-1999 (first entry)
XX
DΕ
   Nucleotide sequence of a probe HGS EST 554692.
XX
KW
    Probe HGS EST 554692; G-protein coupled receptor family; HFGAN72Y;
   mutation; probe; agonist; antagonist; activation; inhibition;
KW
    gene therapy; antibody; immune response; vaccine; HIV-1; HIV-2; cancer;
KW
KW
    anorexia; bulimia; asthma; Parkinson's disease; acute heart failure;
KW
   hypotension; hypertension; urinary retention; osteoporosis;
   angina pectoris; myocardial infarction; ulcer; allergies;
KW
KW
   psychotic disorder; neurological disorder; gene mapping; ss.
XX
os
   Synthetic.
OS
   Homo sapiens.
ХX
```

```
PN
     EP875565-A2.
XX
PD
     04-NOV-1998.
XX ·
PF
                   97EP-00308554.
     27-OCT-1997;
XX
PR
     30-APR-1997;
                    97US-00846705.
XX
PA
     (SMIK ) SMITHKLINE BEECHAM CORP.
XX
PΙ
     Bergsma DJ,
                 Ellis C;
XX
DR
     WPI; 1998-570286/49.
XX
PT
     New G-protein coupled receptor HFGAN72Y polypeptide and polynucleotide -
РΤ
     useful as diagnostic reagents and for prevention and treatment of HIV
PT
     infections, cancer, osteoporosis and Parkinson's disease.
XX
     Example 1; Page 19-20; 22pp; English.
PS
XX
CC
     This is the nucleotide sequence of the probe HGS EST 554692 used in the
CC
     method of the invention involving the G-protein coupled receptor,
CC
     HFGAN72Y. Its polypeptides and polynucleotides are useful for diagnosing
CC
     susceptibility to diseases by detecting mutations in the HFGAN72Y gene
CC
     using probes containing the HFGAN72Y nucleotide sequence, and can
CC
     diagnose diseases associated with HFGAN72Y imbalance by determining
CC
     HFGAN72Y polypeptide or mRNA expression levels. Agonists/antagonists can
CC
     be used in treatment to activate/inhibit HFGAN72Y activity, in addition
CC
     to direct administration of antisense sequences to prevent expression, or
CC
     HFGAN72Y polypeptides to treat conditions associated with a lack HFGAN72Y
CC
     protein. Gene therapy may also be used to affect endogenous HFGAN72Y
CC
     polypeptide production. HFGAN72Y antibodies are useful for inducing an
CC
     immune response to immunise and prevent diseases, and for isolating
CC
     HFGAN72Y clones or purifying the polypeptides by affinity chromatography.
CC
    HFGAN72Y polypeptides can be administered directly or as a vaccine to
CC
     inoculate against diseases. Diseases diagnosed, prevented or treated
     include HIV-1 or HIV-2 infections, pain, cancers, anorexia, bulimia,
CC
CC
     asthma, Parkinson's disease, acute heart failure, hypotension,
CC
    hypertension, urinary retention, osteoporosis, angina pectoris,
CC
    myocardial infarction, ulcers; allergies, benign prostatic hypertrophy,
CC
     and psychotic and neurological disorders. The HFGAN72Y polypeptide is
CC
     also useful for mapping the gene to a chromosome, allowing gene
CC
     inheritance to be studied through linkage analysis
XX
SQ
     Sequence 1564 BP; 269 A; 508 C; 436 G; 347 T; 0 U; 4 Other;
  Query Match
                         97.2%;
                                 Score 1079.4; DB 2;
                                                     Length 1564;
 Best Local Similarity
                         99.4%;
                                 Pred. No. 8.9e-246;
 Matches 1083; Conservative
                                0;
                                   Mismatches
                                                 6;
                                                     Indels
                                                                           0;
           1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCTGGCAGCAGAGAGCCG 60
Qу
             Db
         154 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213
Qy
          61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
             Db
         214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273
```

Qу	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180.
Db	274		333
Qу	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	334		393
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	394	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	453
Qу	301	CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db ·	454		513
Qу	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	514	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	573
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	574	GCCCTGGACCGCTGGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG	633
Qу	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCGCCATCATGGTGCCCCAGGCT	540
Db	634	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCCCCATCATGGTGCCCCAGGCT	693
Qу	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	694		753
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	754	CID	813
Qу	661		720
Db	814		873
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	874		933
Ωу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	934		993
ДУ	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	994		1053
Qу	901	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	1054		1113

```
961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
             1114 AAGAGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1173
Db
Qу
        1021 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
             Db
        1174 ACCTTCTCCCACTGGTTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
        1081 CTCAGTGGC 1089
Qу
             Db
        1234 CTCAGTGGC 1242
RESULT 6
AAF32103
ID
    AAF32103 standard; cDNA; 1564 BP.
XX
AC
    AAF32103;
XX
DT
    10-APR-2001 (first entry)
XX
DΕ
    Human HFGAN72 receptor coding sequence SEQ ID NO: 12.
XX
KW
    Human; mouse; rat; Lig72A; Lig72B; neuropeptide receptor; HFGAN72;
KW
    truncation mutant; ligand; neurodegenerative disorder; pain;
KW
    eating disorder; behaviour disorder; mood disorder; ss.
XX
OS
    Homo sapiens.
XX
PN
    WO200100787-A2.
XX
PD
    04-JAN-2001.
XX
PF
    22-JUN-2000; 2000WO-US017251.
XX
PR
    25-JUN-1999;
                  99US-0141156P.
XX
PA
    (SMIK ) SMITHKLINE BEECHAM CORP.
PΑ
    (SMIK ) SMITHKLINE BEECHAM PLC.
XX
PI
    Bingham S, Darker J, Liu W, Martin JD, Parsons AA,
                                                         Patel SR;
XX
DR
    WPI; 2001-071483/08.
XX
PT
    Polynucleotides encoding Lig 72A polypeptides or their variants, which
PT
    are useful in the treatment of a disease or disorder associated with
PT
    pain, e.g. enhanced or exaggerated sensitivity to pain, hyperalgesia,
PT
    neuropathic pain and back pain.
XX
PS
    Disclosure; Fig 6; 101pp; English.
XX
CC
    The present invention provides the protein and coding sequences for the
CC
    human, mouse and rat HFGAN receptor ligand Lig72A. It also provides
CC
    truncated mutant versions. These, and their agonists and antagonists, are
CC
    all useful in the treatment of eating, neurodegenerative, behaviour,
    mood, sexual, hormonal and sleep disorders, pain, depression, epilepsy
CC
CC
    and acute inflammatory conditions
```

Query Match

Sequence 1564 BP; 271 A; 511 C; 435 G; 347 T; 0 U; 0 Other;

97.2%; Score 1079.4; DB 4; Length 1564;

Best Local Similarity Pred. No. 8.9e-246; 99.4%; Matches 1083; Conservative 0; Mismatches 6; 0; Gaps 0; Indels Qу 1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60 Db 154 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213 61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120 Qу Db 214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273 121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180 Qу Db 274 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 333 181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240 Qy 334 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 393 Dh 241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300 Qу 394 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 453 Db 301 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360 Qу 454 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 513 Db 361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420 Qу 514 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 573 Db Qу 421 CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480 Db 574 GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 633 Qy 481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTGTCGCTGGCCATCATGGTGCCCCAGGCT 540 634 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT 693 Db 541 GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600 Qy 694 GEAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 753 Db 601 CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660 Qу Db 754 GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 813 661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 720 Qy Db 814 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 873 Qу 721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780

```
874 AAGCTCTGGGGCCGCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 933
Db
Qу
         781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
            Db
         934 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 993
         841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Qу
            Db
        994 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 1053
         901 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Qу
            Db
        1054 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 1113
         961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qγ
            Db
        1114 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1173
        1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qy
            Db
        1174 ACCTTCTCCCACTGGTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
        1081 CTCAGTGGC 1089
Qу
            11111111
        1234 CTCAGTGGC 1242
Db
RESULT 7
    ABA96021 standard; cDNA; 1564 BP.
XX
AC
    ABA96021;
XX
DT
    12-MAR-2002 (first entry)
XX
DE
    HGS EST 554692.
XX
KW
    G-protein; receptor; HFGAN72Y; cytostatic; cardiant; analgesic; cancer;
KW
    nootropic; tranquillising; neuroprotective; anti-asthmatic; gene therapy;
KW
    infection; HIV-1; pain; anorexia; bulimia; Parkinson's disease; ulcer;
    cardiac disease; urinary retention; asthma; allergy; psychotic disorder;
KW
KW
    benign prostatic hypertrophy; neurological disorder; anxiety; delirium;
    schizophrenia; manic depression; dementia; mental retardation; EST;
KW
KW
    dyskinesia; Huntington's disease; Tourette's syndrome; HIV-2;
KW
    HGS EST 554692; expressed sequence tag; probe; ss.
XX
OS
    Homo sapiens.
XX
PN
    EP1156110-A2.
XX
PD
    21-NOV-2001.
XX
    27-OCT-1997; 2001EP-00203010.
PF
XX
PR
                 97US-00846705.
    30-APR-1997;
    27-OCT-1997;
PR
                 97EP-00308554.
XX
```

```
PΑ
     (SMIK ) SMITHKLINE BEECHAM CORP.
XX
PΙ
    Bergsma DJ,
                Ellis CE;
XX
DR
    WPI; 2002-084320/12.
XX
PT
    New polynucleotide encoding a G-protein coupled receptor designated
PT
    HFGAN72Y is useful to diagnose and treat associated diseases including
PT
    cancer, infection, cardiac disease and psychotic and neurological
PT
    disorders.
XX
PS
    Example 1; Page 19-20; 22pp; English.
XX
    The sequence represents HGS EST 554692. The sequence was used in the
CC
CC
    invention as a probe to screen a human genomic placenta phage library.
CC
    The invention relates to a novel isolated polynucleotide encoding
CC
    HFGAN72Y polypeptide. The polypeptide of the invention has cytostatic,
CC
    cardiant, analgesic, tranquillising, nootropic, neuroprotective, and anti
    -asthmatic activity. The HFGAN72Y has a use in gene therapy. The HFGAN72Y
CC
CC
    polynucleotide or an HFGAN72Y polypeptide agonist are used to treat a
CC
    subject in need of enhanced HFGAN72Y activity or expression. An HFGAN72Y
CC
    antagonist or competitor, or nucleic acid which inhibits HFGAN72Y
CC
    expression is used to treat a subject in need of decreased HFGAN72Y
CC
    activity or expression. HFGAN72Y-associated diseases include infections,
CC
    particularly by HIV-1 or HIV-2, pain, anorexia, bulimia, Parkinson's
CC
    disease, cardiac diseases, cancers, ulcers, urinary retention, asthma,
CC
    allergies, benign prostatic hypertrophy, and psychotic and neurological
CC
    disorders including anxiety, schizophrenia, manic depression, delirium,
CC
    dementia, severe mental retardation and dyskinesias such as Huntington's
CC
    disease and Tourette's syndrome
XX
SO
    Sequence 1564 BP; 269 A; 508 C; 436 G; 347 T; 0 U; 4 Other;
  Query Match
                        97.2%;
                               Score 1079.4; DB 6; Length 1564;
  Best Local Similarity
                        99.4%;
                               Pred. No. 8.9e-246;
 Matches 1083; Conservative
                              0; Mismatches
                                               6;
                                                  Indels
                                                            0; Gaps
                                                                       0;
Qу
           1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCTGGCAGCAGAGAGCCG 60
             154 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213
Db
Qу
          61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
             214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273
Db
Qу
         121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
             274 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 333
Db
Qу
         181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
             Db
         334 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 393
Qу
         241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
```

394 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 453

Db

Qу	3	301	CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	4	454		513
QУ	3	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	5	514		573
Qу	4	121	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	5	574		633
Qу	4	181	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCGCCATCATGGTGCCCCAGGCT	540
Db	6	534		693
Qу	5	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	6	594		753
Qу	ϵ	501	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	7	754		813
Qу	ϵ	61	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	8	314	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	873
Qу	7	21	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	. 8	374	AAGCTCTGGGGCCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	.933
Qу	7	81	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	9	34	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGCCCCAGCCCCGGGGC	993
Qу	8		CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	9	94	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	1053
Qу	9	01	ATGGTGGTGCTGCTCTCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	10	54	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT	1113
Qу	9	61	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Db	11	.14	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1173
Qу	10	21	ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Db	11	74	ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1233
Qу	10		CTCAGTGGC 1089	
Db	. 12		CTCAGTGGC 1242	

.

```
RESULT 8
AAI64173
ID
     AAI64173 standard; cDNA; 1564 BP.
XX
AC
     AAI64173;
XX
DT
     22-JAN-2002 (first entry)
XX
DE
     HFGAN72X G coupled receptor polypeptide partial sequence.
XX
     Antibacterial; fungicide; virucide; protozoacide; anti-HIV; analgesic;
KW
KW
     cytostatic; nootropic; antiparkinsonian; cardiant; antiulcer;
KW
     antiasthmatic; tranquiliser; neuroleptic; antidepressant; anticonvulsant;
KW
     osteopathic; HIV infection; pain; cancer; anorexia; bulimia;
KW
     Parkinson's disease; acute heart failure; hypotension; hypertension;
KW
     urinary retention; osteoporosis; angina pectoris; probe;
KW
     myocardial infarction; ulcers; asthma; allergy; delirium; dementia;
KW
     benign prostatic hypertrophy; anxiety; schizophrenia; manic depression;
KW
     dyskinesia; G coupled receptor; HFGAN72X; 7 transmembrane receptor; ss.
XX
OS
     Homo sapiens.
XX
FΗ
     Key
                     Location/Qualifiers
                     154. .1362
FT
     CDS
FT
                      /*tag= a
FT
                      /partial
FT
                      /product= "HFGAN72X protein"
FT
                      /note= "The specification states that this is a partial
FT
                     sequence even though it contains start and stop codons;
FT
                     HFGAN72X is a G coupled receptor polypeptide"
FT
                      /transl except= (pos:991. .993, aa:Ala)
XX
ΡN
     EP1154019-A2.
XX
PD
     14-NOV-2001.
XX
PF
     27-OCT-1997; 2001EP-00203008.
XX
PR
     30-APR-1997;
                    97US-00846704.
PR
     27-OCT-1997;
                    97EP-00308563.
XX
PΑ
     (SMIK ) SMITHKLINE BEECHAM CORP.
XX
PI
     Bergsma DJ, Ellis CE;
XX
DR
     WPI; 2002-012659/02.
DR
     P-PSDB; AAG78346.
XX
PT
     Nucleic acid encoding the HFGAN72X receptor, useful for diagnosis and
PT
     treatment of e.g. infections, cancer, anorexia, bulimia, Parkinson's
PT
     disease, and acute heart failure.
XX
PS
     Example 3; Page 9; 24pp; English.
XX
CC
     The present sequence is that of a known partial nucleotide sequence
CC
     encoding a HFGAN72X polypeptide (AAG78346) used as a probe to identify
CC
     the HFGAN72X gene (AAI64173). The specification describes a newly
```

CC isolated polynucleotide encoding a human HFGAN72X G coupled receptor polypeptide. The protein of the invention has antibacterial, fungicide, CC virucide, protozoacide, anti-HIV, cardiant, analgesic, cytostatic, CC CC nootropic, antiparkinsonian, antiulcer, antiasthmatic, tranquiliser, CC neuroleptic, antidepressant, anticonvulsant and osteopathic activities. CC HFGAN72X polynucleotides (PNs) are used to express HFGAN72X in vivo, to treat diseases requiring increased activity or expression of HFGAN72X; CC CC for recombinant production of HFGAN72X; diagnose diseases by detecting CC mutations in genomic sequences and in chromosome identification and CC mapping. HFGAN72X polypeptides are used to raise specific antibodies; as CC therapeutic agents; to identify HFGAN72X protein-expressing clones; to CC purify HFGAN72X proteins; in vaccines. Cells transformed with HFGAN72X CC PNs are used to identify (ant)agonists of HFGAN72X, useful CC therapeutically. Nucleic acids that inhibit expression of HFGAN72X and CC polypeptides that compete with ligands for binding to HFGAN72X proteins CC are also useful therapeutically and diagnostically. HFGAN72X-related CC diseases include infections (bacterial, viral, fungal or protozoal, CC particularly HIV-1 or -2); pain; cancer; anorexia; bulimia; Parkinson's CCdisease; acute heart failure; hypotension; hypertension; urinary CC retention; osteoporosis; angina pectoris; myocardial infarction; ulcers; CC asthma; allergy; benign prostatic hypertrophy; anxiety; schizophrenia; CC manic depression; delirium; dementia; severe mental retardation and CC dyskinesias XX

Sequence 1564 BP; 269 A; 508 C; 436 G; 347 T; 0 U; 4 Other;

SO

Query Match 97.2%; Score 1079.4; DB 6; Length 1564;
Best Local Similarity 99.4%; Pred. No. 8.9e-246;
Matches 1083; Conservative 0; Mismatches 6; Indels 0; Gaps 0;

Qу 1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60 154 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213 Db Qу 61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120 Db 214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273 Qу 121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180 Db 274 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTTCGTCGTGGCC 333 181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240 Qу Db 334 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 393 241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300 Qy 394 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 453 Db Qу 301 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360 454 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 513 Db 361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420 Qу 514 GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 573 Db

```
Qу
       421 CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480
           574 GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 633
Db
Qу
       481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTGTCGCTGGCCATCATGGTGCCCCAGGCT 540
          Db
       634 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTGTCGCTGGCCATCATGGTGCCCCAGGCT 693
       541 GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600
Qу
          694 GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 753
Db
       601 CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660
Qy
          754 GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 813
Db
       661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 720
Qy
          814 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 873
Db
       721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780
Qу
          874 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 933
Db
       781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
Qу
          934 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGC 993
Db
       841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Qу
          Db
       994 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 1053
Qу
       901 ATGGTGGTGCTGCTCTCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
          Db
      1054 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 1113
       961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
          1114 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1173
Db
      1021 ACCTTCTCCCACTGGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qу
          1174 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
Db
      1081 CTCAGTGGC 1089
Qу
          Db
      1234 CTCAGTGGC 1242
```

RESULT 9 AAI64172

ID AAI64172 standard; cDNA; 1564 BP.

XX AC, AAI64172;

ХX

DT 22-JAN-2002 (first entry)

XX Human HFGAN72X G coupled receptor polypeptide cDNA. DE XX Antibacterial; fungicide; virucide; protozoacide; anti-HIV; analgesic; KW cytostatic; nootropic; antiparkinsonian; cardiant; antiulcer; KW KW antiasthmatic; tranquiliser; neuroleptic; antidepressant; anticonvulsant; KW osteopathic; HIV infection; pain; cancer; anorexia; bulimia; Parkinson's disease; acute heart failure; hypotension; hypertension; KW KW urinary retention; osteoporosis; angina pectoris; myocardial infarction; ulcers; asthma; allergy; delirium; dementia; KW KW benign prostatic hypertrophy; anxiety; schizophrenia; manic depression; dyskinesia; G coupled receptor; HFGAN72X; 7 transmembrane receptor; ss. ΚW XX OS Homo sapiens. XX FΗ Location/Qualifiers Key FTCDS 154. .1431 FT/*tag= aFT/product= "HFGAN72X protein" FT/note= "G coupled receptor polypeptide" XX EP1154019-A2. PNXX 14-NOV-2001. PDXX PF 27-OCT-1997; 2001EP-00203008. XX PR 97US-00846704. 30-APR-1997; PR27-OCT-1997; 97EP-00308563. XX PA (SMIK) SMITHKLINE BEECHAM CORP. XX PIBergsma DJ, Ellis CE; XX DR WPI; 2002-012659/02. DR P-PSDB; AAG78345. XX PTNucleic acid encoding the HFGAN72X receptor, useful for diagnosis and PTtreatment of e.g. infections, cancer, anorexia, bulimia, Parkinson's PT disease, and acute heart failure. XX PS Claim 3; Page 7; 24pp; English. XXCC The present sequence is that of a cDNA encoding a HFGAN72X polypeptide CC (AAG78345). The specification describes a newly isolated polynucleotide CC encoding a HFGAN72X G coupled receptor polypeptide. The protein of the CC invention has antibacterial, fungicide, virucide, protozoacide, anti-HIV, CC cardiant, analgesic, cytostatic, nootropic, antiparkinsonian, antiulcer, CC antiasthmatic, tranquiliser, neuroleptic, antidepressant, anticonvulsant CCand osteopathic activities. HFGAN72X polynucleotides (PNs) are used to CC . express HFGAN72X in vivo, to treat diseases requiring increased activity CC or expression of HFGAN72X; for recombinant production of HFGAN72X; CC diagnose diseases (or susceptibility to them) by detecting mutations in CC genomic sequences and in chromosome identification and mapping. HFGAN72X CC polypeptides are used to raise specific antibodies; as therapeutic agents CC ; to identify HFGAN72X protein-expressing clones; to purify HFGAN72X

proteins; in vaccines. Cells transformed with HFGAN72X PNs are used to

CC

```
that inhibit expression of HFGAN72X and polypeptides that compete with
CC
CC
    ligands for binding to HFGAN72X proteins are also useful therapeutically
CC
    and diagnostically. HFGAN72X-related diseases include infections
    (bacterial, viral, fungal or protozoal, particularly HIV-1 or -2); pain;
CC
    cancer; anorexia; bulimia; Parkinson's disease; acute heart failure;
CC
    hypotension; hypertension; urinary retention; osteoporosis; angina
CC
CC
    pectoris; myocardial infarction; ulcers; asthma; allergy; benign
CC
    prostatic hypertrophy; anxiety; schizophrenia; manic depression; delirium
CC
    ; dementia; severe mental retardation and dyskinesias
XX
SO
    Sequence 1564 BP; 271 A; 511 C; 435 G; 347 T; 0 U; 0 Other;
 Query Match
                     97.2%; Score 1079.4; DB 6; Length 1564;
 Best Local Similarity
                    99.4%; Pred. No. 8.9e-246;
 Matches 1083; Conservative
                          0; Mismatches
                                            Indels
                                                             0;
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Qу
           154 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213
Db
        61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qy
           214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273
Db
       121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Qy
           Db
       274 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 333
       181 CTGGTGGCCACACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACACATGAGGACAGTC 240
Qу
           334 CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 393
Db
       241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
Qy
           394 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 453
Db
       301 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
Qу
           454 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 513
Db
       361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
Qy
           514 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 573
Db
       421 CCCCTGGACCGCTGGTATGCCATCTCCCACCACTATTGTTCAAGAGCACAGCCCGGCGG 480
Qу
            574 GCCCTGGACCGCTGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 633
Db
       481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT 540
Qy
           634 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT 693
Db
Qу
       541 GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600
           Db
       694 GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 753
```

identify (ant)agonists of HFGAN72X, useful therapeutically. Nucleic acids

CC

```
601 CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660
Qу
             Db
        754 GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 813
Qy
        661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 720
            1111411141141414141411111111111111111
Dh
        814 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCATGGCCTATTTCCAGATATTCCGC 873
        721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780
Qу
            874 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 933
Db
        781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
Qy
            934 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 993
Db
        841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAGACAGCCAAGATGCTG 900
Qу
            994 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 1053
Db
        901 ATGGTGGTGCTGCTGCTCTCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Qy
            1054 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 1113
Db
        961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
            1114 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1173
Db
Qy
       1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
           Db
       1174 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
Qу
       1081 CTCAGTGGC 1089
           Db
       1234 CTCAGTGGC 1242
RESULT 10
    ABZ42789 standard; DNA; 1564 BP.
XX
AC
    ABZ42789;
XX
DT
    04-MAR-2003 (first entry)
XX
DE
    Human orexin receptor 1 nucleotide SEQ ID NO:367.
XX
KW
    G protein-coupled receptor; GPCR; antigenic peptide; gene therapy;
KW
    G protein-coupled receptor modulator; antibody; immune-related disease;
KW
    growth-related disease; cell regeneration-related disease; AIDS; cancer;
KW
    immunological-related cell proliferative disease; autoimmune disease;
KW
    Alzheimer's disease; atherosclerosis; infection; osteoarthritis; allergy;
KW
    osteoporosis; cardiomyopathy; inflammation; Crohn's disease; diabetes;
    graft versus host disease; Parkinson's disease; multiple sclerosis; pain;
KW
KW
    psoriasis; anxiety; depression; schizophrenia; dementia; memory loss;
KW
    mental retardation; epilepsy; asthma; tuberculosis; obesity; nausea;
KW
    hypertension; hypotension; renal disorder; rheumatoid arthritis; trauma;
```

KW ulcer; gene; ds. XX OS Homo sapiens. XXPNW0200261087-A2. XX PD08-AUG-2002. XXPF 19-DEC-2001; 2001WO-US050107. XX PR 19-DEC-2000; 2000US-0257144P. XX PA (LIFE-) LIFESPAN BIOSCIENCES INC. XX PΙ Burmer GC, Roush CL, Brown JP; XX WPI; 2003-046718/04. DR DR P-PSDB; ABP81941. XX PTNew isolated antigenic peptides e.g., for G protein-coupled receptors PT(GPCR), useful for diagnosing and designing drugs for treating conditions in which GPCRs are involved, e.g. AIDS, Alzheimer's disease, cancer or PTPTautoimmune diseases. XX Disclosure; Fig 1; 523pp; English. PS XX CC The present invention describes antigenic peptides (I) comprising: (a) any one of 1601 sequences (see ABP82019 to ABP83619) of 12-24 amino CC acids. Also described: (1) an assay for the detection of a particular G CCCC protein-coupled receptor (GPCR) or a candidate polypeptide in a sample; CC and (2) an isolated antibody having high specificity and high affinity or CCavidity for a particular GPCR. (I) can be used as GPCR modulators and in CC gene therapy. The antigenic peptides for GPCRs are useful in detecting an CC antibody against a particular GPCR, and in the production of specific CC antibodies. The peptides and antibodies are also useful for detecting the CC presence or absence of corresponding GPCRs. The antigenic peptides for CC GPCRs and antibodies are useful for diagnosing and designing drugs for CC treating immune-related diseases, growth-related diseases, cell CC regeneration-related disease, immunological-related cell proliferative CCdiseases, or autoimmune diseases, e.g. AIDS, Alzheimer's disease, CC atherosclerosis, bacterial, fungal, protozoan or viral infections, CC osteoarthritis, osteoporosis, cancer, cardiomyopathy, chronic and acute CC inflammation, allergies, Crohn's disease, diabetes, graft versus host CCdisease, Parkinson's disease, multiple sclerosis, pain, psoriasis, CCanxiety, depression, schizophrenia, dementia, mental retardation, memory CCloss, epilepsy, asthma, Cúberculosis, obesity, nausea, hypertension, CC hypotension, renal disorders, rheumatoid arthritis, trauma, ulcers, or CC any other disorder in which GPCRs are involved. The antibodies may be CC used in immunoassays and immunodiagnosis. ABZ42523 to ABZ42869 encode CC GPCR proteins given in ABP81675 to ABP82018, which are used in the CC exemplification of the present invention XX SO Sequence 1564 BP; 268 A; 513 C; 436 G; 347 T; 0 U; 0 Other; Query Match 97.2%; Score 1079.4; DB 7; Length 1564; Best Local Similarity 99.4%; Pred. No. 8.9e-246;

0; Mismatches

Indels

0; Gaps

0;

Matches 1083; Conservative

QУ	• •	1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG	60
Db		154		213
Qу		61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Db		214	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	273
Qу		121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Db		274	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	333
Qу		181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db		334	CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	393
Qу		241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db		394	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	453
Qу		301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db		454	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	513
Qу		361	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db		514	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	573
Qу		421	CCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db		574	GCCCTGGACCGCTGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	633
Qу	,	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db		634	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	693
Qу		541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db		694	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	753
Qу		601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db		754	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	813
Qу		661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db		814	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	873
Qу		721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db		874	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	933
Qу		781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db		934		993

```
Qy
         841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
            Db
         994 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 1053
        901 ATGGTGGTGCTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Qу
            Db
        1054 ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTGCCATCAGCGTCCTCAATGTCCTT 1113
Qу
         961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
            Db
        1114 AAGAGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1173
Qу
        1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
            Db
        1174 ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
        1081 CTCAGTGGC 1089
Qy
            Db
        1234 CTCAGTGGC 1242
RESULT 11
AAV68512
ID
    AAV68512 standard; cDNA; 1133 BP.
XX
AC
    AAV68512:
XX
DT
    29-JAN-1999
               (first entry)
XX
DE
    Nucleotide sequence of HGS EST 557082.
XX
KW
    HGS EST 557082; G-protein coupled receptor family; HFGAN72Y; mutation;
KW
    probe; agonist; antagonist; activation; inhibition; gene therapy;
KW
    antibody; immune response; vaccine; HIV-1; HIV-2; cancer; anorexia;
KW
    bulimia; asthma; Parkinson's disease; acute heart failure; hypotension;
KW
    hypertension; urinary retention; osteoporosis; angina pectoris;
KW
    myocardial infarction; ulcer; allergies; psychotic disorder;
KW
    neurological disorder; gene mapping; ss.
XX
OS
    Homo sapiens.
XX
PN
    EP875565-A2.
XX
PD
    04-NOV-1998.
XX
PF
    27-OCT-1997
                 97EP-00308554.
XX
PR
    30-APR-1997;
                 97US-00846705.
XX
PA
    (SMIK ) SMITHKLINE BEECHAM CORP.
XX
PΙ
    Bergsma DJ,
               Ellis C;
XX
DR
    WPI; 1998-570286/49.
XX
PT
    New G-protein coupled receptor HFGAN72Y polypeptide and polynucleotide -
PT
    useful as diagnostic reagents and for prevention and treatment of HIV
```

infections, cancer, osteoporosis and Parkinson's disease.

Example 1; Page 18-19; 22pp; English.

PS XX CC CC

CC

CC

CC

CC

CC

CC

CC CC

CC

CC

CC.

CC

CC

CC

CC

CC CC

CC

CC

XX

PΤ

XX

This is the nucleotide sequence of the HGS EST 557082 used in the method of the invention involving the G-protein coupled receptor, HFGAN72Y. Its polypeptides and polynucleotides are useful for diagnosing susceptibility to diseases by detecting mutations in the HFGAN72Y gene using probes containing the HFGAN72Y nucleotide sequence, and can diagnose diseases associated with HFGAN72Y imbalance by determining HFGAN72Y polypeptide or mRNA expression levels. Agonists/antagonists can be used in treatment to activate/inhibit HFGAN72Y activity, in addition to direct administration of antisense sequences to prevent expression, or HFGAN72Y polypeptides to treat conditions associated with a lack HFGAN72Y protein. Gene therapy may also be used to affect endogenous HFGAN72Y polypeptide production. HFGAN72Y antibodies are useful for inducing an immune response to immunise and prevent diseases, and for isolating HFGAN72Y clones or purifying the polypeptides by affinity chromatography. HFGAN72Y polypeptides can be administered directly or as a vaccine to inoculate against diseases. Diseases diagnosed, prevented or treated include HIV-1 or HIV-2 infections, pain, cancers, anorexia, bulimia, asthma, Parkinson's disease, acute heart failure, hypotension, hypertension, urinary retention, osteoporosis, angina pectoris, myocardial infarction, ulcers; allergies, benign prostatic hypertrophy, and psychotic and neurological disorders. The HFGAN72Y polypeptide is also useful for mapping the gene to a chromosome, allowing gene inheritance to be studied through linkage analysis

SQ Sequence 1133 BP; 202 A; 366 C; 314 G; 251 T; 0 U; 0 Other;

Query Match 97.2%; Score 1078.4; DB 2; Length 1133; Best Local Similarity 99.4%; Pred. No. 1.4e-245; Matches 1082; Conservative 0; Mismatches 6; Indels 0; Gaps 0;

Qy	1	ATGGAGCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCTGGCAGCAGAGAGCCG	60
Db	1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG	60
Qу	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Db	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Qу	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Db .	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC	180
Qу	181	CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	181		240
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	241		300
Qу	301	CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301		360

Qу		361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db		361		420
Qу		421	$\tt CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG$	480
Db		421		480
Qу		481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCGATCATGGTGCCCCAGGCT	540
Db		481		540
Qу		541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db		541	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Qу		601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db		601		660
Qу		661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db		661		720
Qу		721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db		721	AAGCTCTGGGGCCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Qу		781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db		781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
QУ		841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db		841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Qу		901	ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db		901		960
Qу		961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Db		961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Qy.	·* 1	021	ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Db	1	.021	ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Qу	1	.081	CTCAGTGG 1088	
Db	1	081	CTCAGTGG 1088	

RESULT 12 ABA96020

ID ABA96020 standard; cDNA; 1133 BP.

XX AC ABA96020; XX DT 12-MAR-2002 (first entry) XX HGS EST 557082. DE XXKW G-protein; receptor; HFGAN72Y; cytostatic; cardiant; analgesic; cancer; KW nootropic; tranquillising; neuroprotective; anti-asthmatic; gene therapy; KW infection; HIV-1; pain; anorexia; bulimia; Parkinson's disease; ulcer; KW cardiac disease; urinary retention; asthma; allergy; psychotic disorder; KW benign prostatic hypertrophy; neurological disorder; anxiety; delirium; KW schizophrenia; manic depression; dementia; mental retardation; EST; KW dyskinesia; Huntington's disease; Tourette's syndrome; HIV-2; KW HGS EST 557082; expressed sequence tag; ss. XX OS Homo sapiens. XX PNEP1156110-A2. XX PD 21-NOV-2001. XX 27-OCT-1997; 2001EP-00203010. PF XX PR 30-APR-1997; 97US-00846705. PR 27-OCT-1997; 97EP-00308554. XX PΑ (SMIK) SMITHKLINE BEECHAM CORP. XX ΡI Bergsma DJ, Ellis CE; XX DR WPI; 2002-084320/12. XX РΤ New polynucleotide encoding a G-protein coupled receptor designated РΤ HFGAN72Y is useful to diagnose and treat associated diseases including PTcancer, infection, cardiac disease and psychotic and neurological PT disorders. XX PS Example 1; Page 18-19; 22pp; English. XXCCThe sequence represents HGS EST 557082. The invention relates to a novel CC isolated polynucleotide encoding HFGAN72Y polypeptide. The polypeptide of CC. the invention has cytostatic, cardiant, analgesic, tranquillising, CCnootropic, neuroprotective, and anti-asthmatic activity. The HFGAN72Y has CCa use in gene therapy. The HFGAN72Y polynucleotide or an HFGAN72Y CC polypeptide agonist are used to treat a subject in need of enhanced CCHFGAN72Y activity or expression. An HFGAN72Y antagonist or competitor, or CC nucleic acid which inhibits HFGAN72Y expression is used to treat a CC subject in need of decreased HFGAN72Y activity or expression. HFGAN72Y-CC associated diseases include infections, particularly by HIV-1 or HIV-2, CCpain, anorexia, bulimia, Parkinson's disease, cardiac diseases, cancers, CCulcers, urinary retention, asthma, allergies, benign prostatic

hypertrophy, and psychotic and neurological disorders including anxiety,

retardation and dyskinesias such as Huntington's disease and Tourette's

schizophrenia, manic depression, delirium, dementia, severe mental

CC

CC

CC

CC

XX

syndrome

721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780

Qу

Db

```
Qу
        781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
            781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
Db
        841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Qу
            841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Db
Qу
        901 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
            901 ATGGTGGTGCTGCTCTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 960
Db
Qy
        961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
            961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Db
Qу
       1021 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
            1021 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Db
       1081 CTCAGTGG 1088
Qу
            1081 CTCAGTGG 1088
Dh
RESULT 13
AAV68511
ID
    AAV68511 standard; cDNA; 1170 BP.
XX
AC
    AAV68511;
XX
\operatorname{DT}
    29-JAN-1999 (first entry)
XX
DΕ
    Nucleotide sequence of HFGAN72Y a G-protein coupled receptor.
XX
KW
    G-protein coupled receptor family; HFGAN72Y; mutation; probe; agonist;
KW
    antagonist; activation; inhibition; gene therapy; antibody;
KW
    immune response; vaccine; HIV-1; HIV-2; cancer; anorexia; bulimia;
KW
    asthma; Parkinson's disease; acute heart failure; hypotension;
    hypertension; urinary retention; osteoporosis; angina pectoris;
KW
KW
    myocardial infarction; ulcer; allergies; psychotic disorder;
KW
    neurological disorder; gene mapping; ss.
XX
OS
    Homo sapiens.
XX
FH
                  Location/Qualifiers
    Key
FT
    CDS
                  1. .1170
FT
                  /*tag= a
FT
                  /product= "HFGAN72Y protein"
XX
PN
    EP875565-A2.
XX
PD
    04-NOV-1998.
XX
PF
    27-OCT-1997;
                 97EP-00308554.
XX
```

```
30-APR-1997;
PR
                   97US-00846705.
XX
PA
     (SMIK ) SMITHKLINE BEECHAM CORP.
XX
ΡI
     Bergsma DJ, Ellis C;
XX
DR
     WPI; 1998-570286/49.
DR
     P-PSDB; AAW80805.
XX
PT
     New G-protein coupled receptor HFGAN72Y polypeptide and polynucleotide -
PT
     useful as diagnostic reagents and for prevention and treatment of HIV
PT
     infections, cancer, osteoporosis and Parkinson's disease.
XX
PS
     Claim 3; Page 7; 22pp; English.
XX
CC
     This is the nucleotide sequence of the G-protein coupled receptor,
CC
     HFGAN72Y used in the method of the invention. HFGAN72Y polypeptides and
CC
     polynucleotides are useful for diagnosing susceptibility to diseases by
CC
     detecting mutations in the HFGAN72Y gene using probes containing the
CC
     HFGAN72Y nucleotide sequence, and can diagnose diseases associated with
CC
    HFGAN72Y imbalance by determining HFGAN72Y polypeptide or mRNA expression
CC
     levels. Agonists/antagonists can be used in treatment to activate/inhibit
CC
     HFGAN72Y activity, in addition to direct administration of antisense
CC
     sequences to prevent expression, or HFGAN72Y polypeptides to treat
CC
     conditions associated with a lack HFGAN72Y protein. Gene therapy may also
CC
    be used to affect endogenous HFGAN72Y polypeptide production. HFGAN72Y
CC
     antibodies are useful for inducing an immune response to immunise and
CC
     prevent diseases, and for isolating HFGAN72Y clones or purifying the
CC
    polypeptides by affinity chromatography. HFGAN72Y polypeptides can be
CC
     administered directly or as a vaccine to inoculate against diseases.
CC
     Diseases diagnosed, prevented or treated include HIV-1 or HIV-2
     infections, pain, cancers, anorexia, bulimia, asthma, Parkinson's
CC
CC
    disease, acute heart failure, hypotension, hypertension, urinary
CC
     retention, osteoporosis, angina pectoris, myocardial infarction, ulcers;
CC
     allergies, benign prostatic hypertrophy, and psychotic and neurological
CC
     disorders. The HFGAN72Y polypeptide is also useful for mapping the gene
CC
     to a chromosome, allowing gene inheritance to be studied through linkage
CC
     analysis
XX
SQ
     Sequence 1170 BP; 208 A; 381 C; 322 G; 259 T; 0 U; 0 Other;
  Query Match
                        97.2%; Score 1078.4; DB 2; Length 1170;
  Best Local Similarity
                        99.4%;
                                Pred. No. 1.4e-245;
  Matches 1082; Conservative
                               0; Mismatches
                                                6; Indels
                                                                         0;
Qу
           1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
             Db
           1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
          61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qу
             Db
          61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
         121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTCGTCGTCGCC 180
Qу
             Db
         121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTCGTCGTGGCC 180
```

QУ	181	CTGGTGGCCACCACACGCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	181		240
QУ	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301		360
Qу	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361		420
QУ	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	421		480
Qу	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCATCATGGTGCCCCAGGCT	540
Db	481		540
Qу	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	541		600
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	601		660
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	661		720
Qу	721	AAGCTCTGGGGCCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	721		780
Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	781		840
Qу		CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	841		900
Qу	901	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	901	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT	960
Qу	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Db	961		1020
Qу	1021	ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080

```
Db
         1021 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qy
         1081 CTCAGTGG 1088
              Db
         1081 CTCAGTGG 1088
RESULT 14
ABA96019
ΙD
     ABA96019 standard; cDNA; 1170 BP.
XX
AC
     ABA96019;
XX
DT
     12-MAR-2002 (first entry)
XX
DE
     G-protein coupled receptor (HFGAN72Y) cDNA.
XX
KW
     G-protein; receptor; HFGAN72Y; cytostatic; cardiant; analgesic; cancer;
ΚW
     nootropic; tranquillising; neuroprotective; anti-asthmatic; gene therapy;
     infection; HIV-1; pain; anorexia; bulimia; Parkinson's disease; ulcer;
     cardiac disease; urinary retention; asthma; allergy; psychotic disorder;
KW .
     benign prostatic hypertrophy; neurological disorder; anxiety; delirium;
ΚW
     schizophrenia; manic depression; dementia; mental retardation;
KW
ΚW
     dyskinesia; Huntington's disease; Tourette's syndrome; HIV-2; ss.
XX
OS
     Homo sapiens.
XX
FH
     Key
                     Location/Qualifiers
                     1. .1170
     CDS
FT
FТ
                     /*tag= a
                     /product= "HGFAN72Y"
FT
XX
PN
     EP1156110-A2.
XX
PD
     21-NOV-2001.
XX
PF
     27-OCT-1997; 2001EP-00203010.
XX
PR
     30-APR-1997;
                    97US-00846705.
PR
     27-OCT-1997;
                    97EP-00308554.
XX
PΑ
     (SMIK ) SMITHKLINE BEECHAM CORP.
XX
PΙ
     Bergsma DJ, Ellis CE;
XX
DR
     WPI; 2002-084320/12.
DR
     P-PSDB; ABB08208.
XX
PT
     New polynucleotide encoding a G-protein coupled receptor designated
PТ
     HFGAN72Y is useful to diagnose and treat associated diseases including
PT
     cancer, infection, cardiac disease and psychotic and neurological
PТ
     disorders.
XX
PS
     Claim 3; Page 7; 22pp; English.
XX
CC
     The sequence encodes G-protein coupled receptor HFGAN72Y. The invention
```

```
CC
     relates to a novel isolated polynucleotide encoding HFGAN72Y polypeptide.
     The polypeptide of the invention has cytostatic, cardiant, analgesic,
CC
CC
     tranquillising, nootropic, neuroprotective, and anti-asthmatic activity.
     The HFGAN72Y has a use in gene therapy. The HFGAN72Y polynucleotide or an
CC
     HFGAN72Y polypeptide agonist are used to treat a subject in need of
CC
CC
     enhanced HFGAN72Y activity or expression. An HFGAN72Y antagonist or
CC
     competitor, or nucleic acid which inhibits HFGAN72Y expression is used to
CC
     treat a subject in need of decreased HFGAN72Y activity or expression.
CC
     HFGAN72Y-associated diseases include infections, particularly by HIV-1 or
CC
     HIV-2, pain, anorexia, bulimia, Parkinson's disease, cardiac diseases,
CC
     cancers, ulcers, urinary retention, asthma, allergies, benign prostatic
     hypertrophy, and psychotic and neurological disorders including anxiety,
CC
CC
     schizophrenia, manic depression, delirium, dementia, severe mental
CC
     retardation and dyskinesias such as Huntington's disease and Tourette's
CC
     syndrome
XX
```

SQ Sequence 1170 BP; 208 A; 381 C; 322 G; 259 T; 0 U; 0 Other;

Query Match 97.2%; Score 1078.4; DB 6; Length 1170; Best Local Similarity 99.4%; Pred. No. 1.4e-245; Matches 1082; Conservative 0; Mismatches 6; Indels 0; Gaps 0;

	nacenes	1002	o, Arsmatches o, Inders o, Gaps	υ,
Q:	Y	1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG	60
Dl		1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG	60
Q:	Y	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Dl	o	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Q	Y	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Dl	o	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Q:	Y	181	CTGGTGGCCACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Dl	o	181	CTGGTGGCCACACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACACATGAGGACAGTC	240
Q		241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Dł	o	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Q:	/	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Dl)	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Q	7	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Dł)	361	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Q	7	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG	480
DÌ)	421	GCCCTGGACCGCTGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Q	/	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCTCGCTGGCCATCATGGTGCCCCAGGCT	540
Dł)	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540

```
541 GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600
Qy
          541 GCAGTCATGGAATGCAGCGGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600
Db
       601 CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660
Qу
           601 GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660
Db
Qу
       661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 720
          661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 720
Db
       721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780
Qу
          721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780
Db
       781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
Qу
          781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
Db
Qy
       841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
          841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Db
       901 ATGGTGGTGCTGCTCTCCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Qу
          901 ATGGTGGTGCTGCTCTTCGCCCTCTGCTACCTGCCATCAGCGTCCTCAATGTCCTT 960
Db
       961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qy
           961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Db
       1021 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qу
          Db
       1021 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
       1081 CTCAGTGG 1088
Qу
          111111
       1081 CTCAGTGG 1088
Db
RESULT 15
AAS00491
   AAS00491 standard; cDNA; 1278 BP.
XX
AC
   AAS00491;
XX
   17-MAY-2001 (first entry)
DT
XX
DE
   Human neuropeptide receptor cDNA.
XX
KW
   Human; neuropeptide receptor; neuropeptide Y receptor; obesity;
ΚW
   nervous system disorder; hyperproliferative disorder; diabetes mellitus;
   cardiovascular disorder; autoimmune disorder; infectious disorder;
KW
KW
   eating behaviour disorder; narcolepsy; neurological disease;
```

narcotics addiction; nicotine addiction; alcohol addiction; gene therapy;

KW

```
KW
     protein co-ordinate data; chromosome 1; ss.
XX
OS
    Homo sapiens.
XX
FH
     Key
                    Location/Qualifiers
FT
     CDS
                    1. .1278
FT
                    /*tag= a
FT
                    /product= "neuropeptide receptor"
XX
ΡN
    WO200117532-A1.
XX
PD
     15-MAR-2001.
XX
PF
     07-SEP-2000; 2000WO-US024518.
XX
PR
     10-SEP-1999;
                   99US-00393696.
XX
PA
     (HUMA-) HUMAN GENOME SCI INC.
XX
PΙ
     Soppet DR, Li Y, Rosen CA;
XX
    WPI; 2001-183276/18.
DR
DR
    P-PSDB; AAU00438.
XX
PT
    A new nucleic acid encoding a human neuropeptide receptor polypeptide,
PТ
    useful for preventing, treating or ameliorating obesity, narcolepsy,
PT
     neurological disease and addiction to narcotics, nicotine and alcohol.
XX
PS
    Claim 4; Fig 1; 385pp; English.
XX
CC
     The present sequence encodes for a novel human neuropeptide receptor
CC
     which shows sequence homology to the neuropeptide Y receptor. Two splice
CC
     variants of the neuropeptide receptor (AAU00439-AAU00440) and a possible
CC
     mutant (AAU00442) are also described. Polypeptides and polynucleotides of
CC
     the neuropeptide receptor are useful for diagnosing, preventing, or
CC
     treating a pathological condition in a subject related to the central
CC
     nervous and peripheral nervous systems (CNS and PNS). The polypeptides
CC
     and polynucleotides may be used to treat hyperproliferative,
CC
     cardiovascular, autoimmune, nervous system or infectious disorders e.g.
     cancer, heart disease, rheumatoid arthritis, Alzheimer's disease, HIV
CC
CC
     infection and diabetes mellitus. In particular they are useful for
CC
     preventing, treating or ameliorating a medical condition in a mammal such
CC
     as obesity/eating behaviour disorders, narcolepsy, neurological disease,
CC
     addiction to narcotics, nicotine and alcohol, chronic pain, acute pain,
CC
     migraine headaches and anxiety disorders. The polynucleotides encoding
CC
     the neuropeptide receptor can also be used in gene therapy methods for
CC
     treating such diseases
XX
SO
     Sequence 1278 BP; 220 A; 426 C; 347 G; 285 T; 0 U; 0 Other;
  Query Match
                         97.1%;
                                 Score 1077.8; DB 4; Length 1278;
  Best Local Similarity
                         99.4%;
                                 Pred. No. 2e-245;
  Matches 1082; Conservative
                                0; Mismatches.
                                                  7;
                                                      Indels
                                                                    Gaps
                                                                            0;
            1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Qу
              1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Db
```

Qy.	61	${\tt TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG}$	120
Db.	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
QУ	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Db	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Qу	181	CTGGTGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	241		300
ДУ	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301		360
Qу	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
QУ	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	421	GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Qу	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCCCTGGCCATCATGGTGCCCCAGGCT	540
Db	481		540
Qу	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	541	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
QУ	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	601	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	661	ATTGTCACCTACCTGGCCCCACTGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Qy	721	AAGCTCTGGGGCCGCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	781		840
Qy	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	841		900

Qу	901	ATGGTGGTGCTGCTCTCCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	901	ATGGTGGTGCTGCTCTCCCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT	960
QУ	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Db	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Qу	1021	ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Db	1021	ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Qу	1081	CTCAGTGGC 1089	
Db	1081	CTCAGTGGC 1089	

Search completed: October 15, 2004, 16:01:45
Job time: 477.138 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: October 15, 2004, 15:25:17; Search time 87.0094 Seconds

(without alignments)

7079.645 Million cell updates/sec

Title:

US-10-070-532-3

Perfect score:

1110

Sequence:

1 atggagccctcagccacccc.....ttccctggagtctgctctaa 1110

Scoring table:

IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched:

682709 seqs, 277475446 residues

Total number of hits satisfying chosen parameters:

1365418

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database :

Issued Patents NA:*

- 1: /cgn2_6/ptodata/2/ina/5A COMB.seq:*
- 2: /cgn2_6/ptodata/2/ina/5B_COMB.seq:*
- 3: /cgn2_6/ptodata/2/ina/6A COMB.seq:*
- 4: /cgn2 6/ptodata/2/ina/6B COMB.seq:*
- 5: /cgn2 6/ptodata/2/ina/PCTUS COMB.seq:*
- 6: /cgn2 6/ptodata/2/ina/backfiles1.seg:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		ક્ર				
Result	•	Query				•
No.	Score	Match	Length	DB	ID .	Description
1	1110	100.0	1110	5	PCT-US95-05616-3	Sequence 3, Appli
2	1102	99.3	1110	4	US-08-462-509B-3	Sequence 3, Appli
3	1079.4	97.2	1209	4	US-08-462-509B-1	Sequence 1, Appli
4	1079.4	97.2	1564	2	US-08-846-705-4	Sequence 4, Appli
5	1079.4	97.2	-1564	3	US-08-846-704-1	Sequence 1, Appli
6	1079.4	97.2	1564	3	US-08-846-704-3	Sequence 3, Appli
7	1078.4	97.2	1133	2	US-08-846-705-3	Sequence 3, Appli
8	1078.4	97.2	1170	2	US-08-846-705-1	Sequence 1, Appli
9	1077.8	97.1	1209	5	PCT-US95-05616-1	Sequence 1, Appli
10	1075.2	96.9	1116	4	US-08-462-509B-5	Sequence 5, Appli
11	1075.2	96.9	1133	5	PCT-US95-05616-5	Sequence 5, Appli

12	688	62.0	843	3	US-08-513-974B-375	Sequence	375, App
13	661	59.5	789	3 -	US-08-513-974B-55		55, Appl
14	661	59.5	789	4	US-09-461-436B-55	Sequence	55, Appl
15	511.8	46.1	1633	3	US-09-119-788-1		1, Appli
16	241.2	21.7	9785	4	US-09-479-128-1		1, Appli
17	161.6	14.6	1293	3	US-09-255-368-7		7, Appli
18	154.6	13.9	1410	3	US-09-255-368-1		1, Appli
19	120.4	10.8	168575	4	US-09-426-290-1	_	1, Appli
20	117.4	10.6	1110	3	US-08-513-974B-31		31, Appl
21	117.4	10.6	1110	3	US-08-776-971-26	Sequence	26, Appl
22	117.4	10.6	1110	4	US-09-461-436B-31		31, Appl
23	117.4	10.6	1331	3	US-08-513-974B-322		322, App
24	117.4	10.6	1331	3	US-08-776-971-103	Sequence	103, App
25	108.8	9.8	1113	3	US-09-172-353-1	Sequence	1, Appli
26	108.8	9.8	1113	4	US-09-799-955-1		1, Appli
27	107.2	9.7	669	3	US-08-513-974B-314	Sequence	314, App
28	107.2	9.7	669	3	US-08-776-971-99	Sequence	99, Appl
29	101.6	9.2	1110	4	US-09-170-496D-25	Sequence	25, Appl
30	101.6	9.2	1110	4	US-09-170-496D-177	Sequence	177, App
31	101.6	9.2	1344	4	US-09-016-434-1295	Sequence	1295, Ap
32	101.6	9.2	1356	1	US-07-978-892A-4	Sequence	4, Appli
33	101.6	9.2	1535	4	US-09-016-434-1051	Sequence	1051, Ap
34	101.6	9.2	1969	1	US-07-937-609-28	Sequence	28, Appl
35	101.6	9.2	1969	3	US-08-029-170-28	Sequence	28, Appl
36	98.4	8.9	1621	1	US-08-722-001-13	Sequence	13, Appl
37	98.4	8.9	1776	1	US-08-722-001-29	Sequence	29, Appl
38	98.4	8.9	2002	4	US-09-016-434-1172	Sequence	1172, Ap
39	98.4	8.9	2140	1	US-08-334-698-1	Sequence	1, Appli
40	98.4	8.9	2140	1	US-08-228-932-1	Sequence	1, Appli
41	98.4	8.9	2140	1	US-08-468-939-1	Sequence	1, Appli
42	98.4	8.9	2140	2	US-08-406-855A-1	Sequence	1, Appli
43	98.4	8.9	2140	2	US-08-722-190-1	Sequence	
44	98.4	8.9	2140	3	US-08-244-354-1	Sequence	
45	98.4	8.9	2140	3	US-09-206-899-1	Sequence	

ALIGNMENTS

```
RESULT 1
PCT-US95-05616-3
; Sequence 3, Application PC/TUS9505616
 GENERAL INFORMATION:
     APPLICANT: LI, ET AL.
     TITLE OF INVENTION: Human Neuropeptide Receptor
     NUMBER OF SEQUENCES: 12
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: CARELLA, BYRNE, BAIN, GILFILLAN, ADDRESSEE: CECCHI, STEWART & OLSTEIN
       STREET: 6 BECKER FARM ROAD
       CITY: ROSELAND
       STATE: NEW JERSEY
       COUNTRY: USA
       ZIP: 07068
     COMPUTER READABLE FORM:
       MEDIUM TYPE: 3.5 INCH DISKETTE
       COMPUTER: IBM PS/2
```

```
OPERATING SYSTEM: MS-DOS
     SOFTWARE: WORD PERFECT 5.1
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: PCT/US95/05616
     FILING DATE:
                concurrently
     CLASSIFICATION:
    ATTORNEY/AGENT INFORMATION:
     NAME: FERRARO, GREGORY D.
     REGISTRATION NUMBER: 36,134
     REFERENCE/DOCKET NUMBER: 325800-268
    TELECOMMUNICATION INFORMATION:
     TELEPHONE: 201-994-1700
     TELEFAX: 201-994-1744
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 1110 BASE PAIRS
     TYPE: NUCLEIC ACID
    STRANDEDNESS:
                 SINGLE
     TOPOLOGY: LINEAR
    MOLECULE TYPE:
PCT-US95-05616-3
 Query Match
                    100.0%; Score 1110; DB 5; Length 1110;
 Best Local Similarity
                    100.0%; Pred. No. 4.1e-255;
 Matches 1110; Conservative
                          0; Mismatches
                                        0; Indels
                                                       Gaps
                                                             0;
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Qу
           1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Db
        61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qу
           61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Db
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Qу
           121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Db
Qy
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
           Db
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
Qу
           241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
Db
        301 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
Qу
           Db
        301 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
        361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
Qy
           361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
Db
        421 CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480
Qу
           421 CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480
Db
```

Qу	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCTCGCCCATCATGGTGCCCCAGGCT	540
Db	481		540
QУ	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	601		660
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db		AAGCTCTGGGGCCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	
Qу		CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	
Db		CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	
Qу		CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	
Db		CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	
Qу		ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db			960
Qу		AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	
Db		AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	
Qy Db		ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	
		ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Qy Db		CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110	
בט	1001	CICACIOSCETICCETGGAGICIGCICIAA IIIU	

RESULT 2

```
US-08-462-509B-3
```

- ; Sequence 3, Application US/08462509B
- ; Patent No. 6410701
- ; GENERAL INFORMATION:
- APPLICANT: Soppet, Daniel et al
- ; TITLE OF INVENTION: Human Neuropeptide Receptor
- ; NUMBER OF SEQUENCES: 12
- CORRESPONDENCE ADDRESS:
 - ADDRESSEE: Human Genome Sciences, Inc.
- ; STREET: 9410 Key West Avenue

```
CITY: Rockiville
      STATE: MD
      COUNTRY: USA
      ZIP: 20850
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/462,509B
      FILING DATE: 05-JUN-1995
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: WO PCT/US95/05616
      FILING DATE: 05-MAY-1995
    ATTORNEY/AGENT INFORMATION:
      NAME: Wales, Michele M.
      REGISTRATION NUMBER: 43,975
      REFERENCE/DOCKET NUMBER: PF168P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 301-309-8504
      TELEFAX: 301-309-8439
  INFORMATION FOR SEQ ID NO: 3:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 1110 base pairs
      TYPE: nucleic acid
      STRANDEDNESS: single
     TOPOLOGY: linear
    MOLECULE TYPE: DNA (genomic)
    FEATURE:
     NAME/KEY: CDS
              1..1110
     LOCATION:
US-08-462-509B-3
 Query Match
                      99.3%; Score 1102; DB 4;
                                             Length 1110;
 Best Local Similarity
                     99.5%; Pred. No. 3.3e-253;
 Matches 1105; Conservative
                           0; Mismatches
                                           5; Indels
                                                       0; Gaps
                                                                 0;
Qу
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
            Db
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Qу
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
            Db
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG. 120
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Qу
            Db
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTCGTCGCC 180
Qy
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
            181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Db
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
Qy
```

Db	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Qу	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	421	GCCCTGGACCGCTGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Qy	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCCCTGGCCATCATGGTGCCCCAGGCT	540
Qу	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	541	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	601	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Qy	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db.	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	721	AAGCTCTGGGGCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Qу	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	841	$\tt CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCTGCACGGAGGAAGACAGCCAAGATGCTG$	900
Qγ		ATGGTGGTGCTGCTCTCCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	
Db		ATGGTGGTGCTGCTCTCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	
Qу		AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	
Db	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
QУ		ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	
Db	1021	ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
QУ	1081	CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110	
Db	1081	CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110	

, i , F

```
RESULT 3
US-08-462-509B-1
; Sequence 1, Application US/08462509B
; Patent No. 6410701
  GENERAL INFORMATION:
    APPLICANT: Soppet, Daniel et al
    TITLE OF INVENTION: Human Neuropeptide Receptor
    NUMBER OF SEQUENCES: 12
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Human Genome Sciences, Inc.
      STREET: 9410 Key West Avenue
      CITY: Rockiville
      STATE: MD
      COUNTRY: USA
      ZIP: 20850
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/462,509B
      FILING DATE: 05-JUN-1995
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: WO PCT/US95/05616
      FILING DATE: 05-MAY-1995
    ATTORNEY/AGENT INFORMATION:
      NAME: Wales, Michele M.
      REGISTRATION NUMBER: 43,975
      REFERENCE/DOCKET NUMBER: PF168P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 301-309-8504
      TELEFAX: 301-309-8439
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 1209 base pairs
      TYPE: nucleic acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: DNA (genomic)
    FEATURE:
      NAME/KEY: CDS
      LOCATION: 1..1209
US-08-462-509B-1
 Query Match
                     97.2%; Score 1079.4; DB 4; Length 1209;
 Best Local Similarity 99.4%; Pred. No. 8.1e-248;
 Matches 1083; Conservative 0; Mismatches
                                             6; Indels
                                                                         0;
Qу
           1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
             Db
           1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Qу
          61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
```

Db	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Qу	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Db ·	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC	180
Qу	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	181	CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Qу	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	421	GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Qy .	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCGATCATGGTGCCCCAGGCT	540
QУ	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	541	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
QУ	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	601	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
D b	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	720
QУ	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
ДÀ	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Qу	901	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960

ŧ

```
Db
         901 ATGGTGGTGCTGCTCTCCCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 960
         961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
             Db
         961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
        1021 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
             11/11/11/11/14/1///
Db
        1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
        1081 CTCAGTGGC 1089
Qу
            Db
        1081 CTCAGTGGC 1089
RESULT 4
US-08-846-705-4
; Sequence 4, Application US/08846705
; Patent No. 5935814
  GENERAL INFORMATION:
    APPLICANT: BERGSMA, DERK J.
    APPLICANT: ELLIS, CATHERINE E
    TITLE OF INVENTION: NOVEL G-PROTEIN COUPLED
    NUMBER OF SEQUENCES: 5
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: RATNER & PRESTIA
      STREET: P.O. BOX 980
      CITY: VALLEY FORGE
      STATE: PA
      COUNTRY: USA
      ZIP: 19482
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette
      COMPUTER: IBM Compatible
      OPERATING SYSTEM: DOS
      SOFTWARE: FastSEQ for Windows Version 2.0
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/846,705
      FILING DATE: 30-APR-1997
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER:
      FILING DATE:
    ATTORNEY/AGENT INFORMATION:
      NAME: PRESTIA, PAUL F
      REGISTRATION NUMBER: 23,031
      REFERENCE/DOCKET NUMBER: GH-70003
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 610-407-0700
      TELEFAX: 610-407-0701
      TELEX: 846169
  INFORMATION FOR SEQ ID NO: 4:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 1564 base pairs
      TYPE: nucleic acid
      STRANDEDNESS: single
```

TOPOLOGY: linear

; MOLECULE TYPE: cDNA US-08-846-705-4

Query Match 97.2%; Score 1079.4; DB 2; Length 1564; Best Local Similarity 99.4%; Pred. No. 8.7e-248; Matches 1083; Conservative 0; Mismatches 6; Indels 0; Gaps 0; Qy 1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60 154 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213 Db 61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120 Qγ 214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273 Db 121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180 Qу 274 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 333 Db 181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240 Qy 334 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 393 Db 241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300 Qу Db 394 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 453 Qу 301 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360 Db 454 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 513 361 GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420 Qу Db 514 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 573 Qу 421 CCCCTGGACCGCTGGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG 480 Db 574 GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 633 481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCGATCATGGTGCCCCAGGCT 540 Qу 634 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTGTCGCTGGCCATCATGGTGCCCCAGGCT 693 Db 541 GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600 Qу 694 GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 753 Db 601 CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660 Qу 754 GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 813 Db 661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 720 Qу 814 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 873 Db 721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780 Qу

```
874 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 933
Db
Qу
        781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
           Db
        934 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 993
        841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Qу
           Db
        994 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 1053
        901 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Qу
           Db
       1054 ATGGTGGTGCTGCTCTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 1113
        961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qv
           Db
       1114 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1173
       1021 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qy
           Db
       1174 ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
Qу
       1081 CTCAGTGGC 1089
           11111111
Db
       1234 CTCAGTGGC 1242
RESULT 5
US-08-846-704-1
; Sequence 1, Application US/08846704
 Patent No. 6020157
  GENERAL INFORMATION:
    APPLICANT: BERGSMA, DERK J.
    APPLICANT: ELLIS, CATHERINE E.
    TITLE OF INVENTION: NOVEL G-PROTEIN COUPLED
    NUMBER OF SEQUENCES: 4
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: RATNER & PRESTIA
     STREET: P.O. BOX 980
     CITY: VALLEY FORGE
     STATE: PA
     COUNTRY: USA
     ZIP: 19482
    COMPUTER READABLE FORM:
     MEDIUM TYPE: Diskette
     COMPUTER: IBM Compatible
     OPERATING SYSTEM: DOS
     SOFTWARE: FastSEQ for Windows Version 2.0
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/08/846,704
     FILING DATE: 30-APR-1997
     CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER:
     FILING DATE:
```

ATTORNEY/AGENT INFORMATION: NAME: PRESTIA, PAUL F

```
REGISTRATION NUMBER: 23,031
     REFERENCE/DOCKET NUMBER:
                        GH-70002
    TELECOMMUNICATION INFORMATION:
     TELEPHONE: 610-407-0700
     TELEFAX: 610-407-0701
     TELEX: 846169
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 1564 base pairs
     TYPE: nucleic acid
     STRANDEDNESS: single
     TOPOLOGY: linear
   MOLECULE TYPE: cDNA
US-08-846-704-1
 Query Match
                    97.28;
                         Score 1079.4; DB 3;
                                          Length 1564;
 Best Local Similarity
                   99.4%;
                         Pred. No. 8.7e-248;
 Matches 1083; Conservative
                         0; Mismatches
                                          Indels
                                                    Gaps
                                                          0:
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Qу
           Db
       154 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213
        61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qу
          214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273
Db
       121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Qy
          Db
       274 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC 333
       181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Qy
          334 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 393
Db
Qу
       241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
          394 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 453
Db
Qу
       301 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
          454 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 513
Db
Qγ
       361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
          514 GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 573
Db
       421 CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480
Qу
           574 GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 633
Db
Qу
       481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTGTCGCTGGCCATCATGGTGCCCCAGGCT 540
          Db
       634 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTGTCGCTGGCCATCATGGTGCCCCAGGCT 693
Qу
       541 GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600
```

Db	694	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	753				
Qy	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660				
Db	754	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	813				
Qy	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	720				
Db	814	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	873				
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780				
Db	874		933				
Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840				
Db	934	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	993				
Qy	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900				
Db	994	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	1053				
Qу	901	ATGGTGGTGCTGCTCTCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960				
Db	1054	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT	1113				
Qу	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020				
Db	1114	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1173				
Qу	1021	ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080				
Db	1174	ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1233				
Qу	1081	CTCAGTGGC 1089					
Db	1234	CTCAGTGGC 1242					
RESULT 6							
US-08-846	5-704-	-3					
; Sequenc	ce 3,	Application US/08846704					
; Patent							
		FORMATION:					
	LICANT		ار آداشتان م				
	LICANT	F: ELLIS, CATHERINE E. INVENTION: NOVEL G-PROTEIN COUPLED	125%				
		F SEQUENCES: 4					
; CORRESPONDENCE ADDRESS:							
	DDRESS						
	REET:						
	TY:	VALLEY FORGE PA					
. ~.	·						

COUNTRY: USA ZIP: 19482

COMPUTER READABLE FORM:
MEDIUM TYPE: Diskette

```
COMPUTER: IBM Compatible
     OPERATING SYSTEM: DOS
     SOFTWARE: FastSEQ for Windows Version 2.0
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/08/846,704
     FILING DATE: 30-APR-1997
     CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER:
     FILING DATE:
    ATTORNEY/AGENT INFORMATION:
     NAME: PRESTIA, PAUL F
     REGISTRATION NUMBER: 23,031
     REFERENCE/DOCKET NUMBER: GH-70002
    TELECOMMUNICATION INFORMATION:
     TELEPHONE: 610-407-0700
     TELEFAX: 610-407-0701
     TELEX: 846169
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 1564 base pairs
     TYPE: nucleic acid
     STRANDEDNESS: single
     TOPOLOGY: linear
    MOLECULE TYPE: cDNA
US-08-846-704-3
 Query Match
                     97.2%; Score 1079.4; DB 3; Length 1564;
 Best Local Similarity
                   99.4%; Pred. No. 8.7e-248;
 Matches 1083; Conservative
                          0; Mismatches
                                         6;
                                            Indels
                                                       Gaps
                                                             0;
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Qy
           Db
        154 ATGGAGCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213
Qу
        61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
           214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273
Db
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Qу
           274 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 333
Db
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Qy
           334 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 393
Db
Qу
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
           394 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 453
Db
        301 CCGGCCAGCCTGCTGGAGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
Qу
           454 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 513
Db
        361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
Qу
```

Db	514	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	573
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	574	GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	633
Qу	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCTCGCCGGCCATCATGGTGCCCCAGGCT	540
Db	634	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	693
Qу	•	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	
Db		GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	
Qy Db		CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTŤGCTTCTTT	813
		ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	
Qy Db		ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCTATTTCCAGATATTCCGC	
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	874		933
Qy	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	934	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	993
Qу	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	994	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	1053
Qу	901	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	1054	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT	1113
Qу	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Db	1114	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1173
Qу	1021	ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Db	1174	ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1233
Qу	1081	CTCAGTGGC 1089	
Db	1234	CTCAGTGGC 1242	

RESULT 7

US-08-846-705-3

; Sequence 3, Application US/08846705; Patent No. 5935814

- ; GENERAL INFORMATION:
- APPLICANT: BERGSMA, DERK J.

```
APPLICANT: ELLIS, CATHERINE E
    TITLE OF INVENTION: NOVEL G-PROTEIN COUPLED
    NUMBER OF SEQUENCES: 5
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: RATNER & PRESTIA
      STREET: P.O. BOX 980
      CITY: VALLEY FORGE
      STATE: PA
      COUNTRY: USA
      ZIP: 19482
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette
      COMPUTER: IBM Compatible
      OPERATING SYSTEM: DOS
      SOFTWARE: FastSEO for Windows Version 2.0
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/846,705
      FILING DATE: 30-APR-1997
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER:
      FILING DATE:
    ATTORNEY/AGENT INFORMATION:
      NAME: PRESTIA, PAUL F
      REGISTRATION NUMBER: 23,031
      REFERENCE/DOCKET NUMBER: GH-70003
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 610-407-0700
      TELEFAX: 610-407-0701
      TELEX: 846169
  INFORMATION FOR SEQ ID NO: 3:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 1133 base pairs
      TYPE: nucleic acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: cDNA
US-08-846-705-3
 Query Match
                      97.2%; Score 1078.4; DB 2; Length 1133;
 Best Local Similarity 99.4%; Pred. No. 1.4e-247;
 Matches 1082; Conservative
                            0; Mismatches 6; Indels
                                                       0; Gaps
                                                                  0;
Qy
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
            Db
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Qy
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
            61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Db
Qу
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
            Dh
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC 180
        181 CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Qy
```

Db	183	CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Qу	24	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	24		300
Qy	301	CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301		360
Qу	363	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Qу	42.	CCCCTGGACCGCTGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	423	GCCCTGGACCGCTGGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Qу	483	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db	48	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
QУ	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	541	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	601	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
QУ	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
QУ	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	721	AAGCTCTGGGGCCGCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Qу	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Qу	901	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	901	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT	960
Qу	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Db	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Qу	1021	ACCTTCTCCCACTGGCTGGTGCCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Db	1021	ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080

```
1081 CTCAGTGG 1088
Qу
             1111111
Db
        1081 CTCAGTGG 1088
RESULT 8
US-08-846-705-1
; Sequence 1, Application US/08846705
; Patent No. 5935814
  GENERAL INFORMATION:
    APPLICANT: BERGSMA, DERK J.
    APPLICANT: ELLIS, CATHERINE E
    TITLE OF INVENTION: NOVEL G-PROTEIN COUPLED
    NUMBER OF SEQUENCES: 5
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: RATNER & PRESTIA
      STREET: P.O. BOX 980
      CITY: VALLEY FORGE
      STATE: PA
      COUNTRY: USA
      ZIP: 19482
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette
      COMPUTER: IBM Compatible
      OPERATING SYSTEM: DOS
      SOFTWARE: FastSEQ for Windows Version 2.0
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/846,705
      FILING DATE: 30-APR-1997
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER:
      FILING DATE:
    ATTORNEY/AGENT INFORMATION:
      NAME: PRESTIA, PAUL F
    REGISTRATION NUMBER: 23,031
      REFERENCE/DOCKET NUMBER: GH-70003
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 610-407-0700
      TELEFAX: 610-407-0701
      TELEX: 846169
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 1170 base pairs
      TYPE: nucleic acid de
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: cDNA
US-08-846-705-1
 Query Match
                        97.2%; Score 1078.4; DB 2;
                                                   Length 1170;
 Best Local Similarity 99.4%; Pred. No. 1.4e-247;
 Matches 1082; Conservative
                               0; Mismatches
                                               6; Indels
           1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Qу
```

Db	1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG	60
Qy	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Db	61		120
Qy	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Db	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Qу	181	CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301	CCGGCCAGCCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
QУ	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGCTGCTAACTCTCAGCTTCATC	420
Qy	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	421	GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
QУ	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
QУ	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	541	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	601	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Qy	661	ATTGTCACCTACCTGGCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	721	AAGCTCTGGGGCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Qy	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
ДÀ	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGGATGCCTGCACGACGACGAAGACACGACGACGAAGACACGACACGACA	900

```
Qу
        901 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
            901 ATGGTGGTGCTGCTGCTCTCCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 960
        961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
            961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Db
       1021 ACCTTCTCCCACTGGCTGTTACGCCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qу
            1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Db
       1081 CTCAGTGG 1088
Qу
            Db
       1081 CTCAGTGG 1088
RESULT 9
PCT-US95-05616-1
; Sequence 1, Application PC/TUS9505616
  GENERAL INFORMATION:
    APPLICANT: LI, ET AL.
    TITLE OF INVENTION: Human Neuropeptide Receptor
    NUMBER OF SEQUENCES: 12
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: CARELLA, BYRNE, BAIN, GILFILLAN,
      ADDRESSEE: CECCHI, STEWART & OLSTEIN
      STREET: 6 BECKER FARM ROAD
      CITY: ROSELAND
      STATE: NEW JERSEY
      COUNTRY: USA
      ZIP: 07068
    COMPUTER READABLE FORM:
     MEDIUM TYPE: 3.5 INCH DISKETTE
      COMPUTER: IBM PS/2
     OPERATING SYSTEM: MS-DOS
      SOFTWARE: WORD PERFECT 5.1
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: PCT/US95/05616
      FILING DATE: concurrently
     CLASSIFICATION:
    ATTORNEY/AGENT INFORMATION:
     NAME: FERRARO, GREGORY D.
     REGISTRATION NUMBER: 36,134
     REFERENCE/DOCKET NUMBER: 325800-268
    TELECOMMUNICATION INFORMATION:
     TELEPHONE: 201-994-1700
     TELEFAX: 201-994-1744
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 1209 BASE PAIRS
     TYPE: NUCLEIC ACID
     STRANDEDNESS: SINGLE
     TOPOLOGY: LINEAR
    MOLECULE TYPE: cDNA
PCT-US95-05616-1
```

		cal S	Similarity 2; Conservat	99.4%;	Pre	ed.	No.	1.9e			Length		Coma	
	Macches	1002	z; conservat	ive	U;	Mis	matc	nes	7;	1	ndels	0;	Gaps	0;
Q <u>r</u>	7	1	ATGGAGCCCTCA											60
Dŀ)	1	ATGGAGCCCTCA											60
Q	T.	61	TCCCCTGTGCCT											120
Dł		61	TCCCCTGTGCCT											120
Q	7	121	TACCCAAAACAG											180
Dk)	121	TACCCAAAACAG											180
Qζ	7	181	CTGGTGGGCAAC											240
Dk)	181	CTGGTGGGCAAC											240
Qζ	7	241	ACCAACTACTTC											300
Dk		241	ACCAACTACTTC											300
Q5	7	301	CCGGCCAGCCTG											360
DŁ)	301	CCGGCCAGCCTG											360
Q۷	<i>,</i> '	361	GTCATCCCCTAT											420
Dk)	361	GTCATCCCCTAT											420
Q۷	7	421	CCCCTGGACCGC											480
Dk)	421	GCCCTGGACCGC											480
Qζ	7	481	GCCCGTGGCTCC											540
Dk)	481	GCCCGTGGCTCC											540
Q۷	7	541	GCAGTCATGCAA											600
Dk		541	GCAGTCATGGAA											600
Q;	7	601	CTCTGTCATGAA											660
Dk	,	601	GTCTGTCATGAA											660
Qζ	,	661	ATTGTCACCTAC	CTGGCCC	CACT	GGG	CCTC	ATGG	CCATG	GCC	TATTTC	CAGATA'	TTCCGC	720
DŁ)	661	 ATTGTCACCTAC	CTGGCCC	IIII CACT	III GGG	IIII CCTC	IIII ATGG	IIIII CCATG	III GCC	 TATTTC	IIIIII CAGATA	TTCCGC	720
Qγ	7	721	AAGCTCTGGGGC											780
n.		701					1111							

```
781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
Qу
            Db
        781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
Qy
        841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
            841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Db
        901 ATGGTGGTGCTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Qу
            Db
        901 ATGGTGGTGCTGCTGTTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 960
Qу
        961 AAGAGGTTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
            961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Db
Qу
       1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
            Db
       1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qу
       1081 CTCAGTGGC 1089
            111111111
Db
       1081 CTCAGTGGC 1089
RESULT 10
US-08-462-509B-5
; Sequence 5, Application US/08462509B
; Patent No. 6410701
  GENERAL INFORMATION:
    APPLICANT: Soppet, Daniel et al
    TITLE OF INVENTION: Human Neuropeptide Receptor
    NUMBER OF SEQUENCES: 12
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: Human Genome Sciences, Inc.
     STREET: 9410 Key West Avenue
     CITY: Rockiville
     STATE: MD
     COUNTRY: USA
     ZIP: 20850
    COMPUTER READABLE FORM:
     MEDIUM TYPE: Floppy disk
     COMPUTER: IBM PC compatible
     OPERATING SYSTEM: PC-DOS/MS-DOS
     SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/08/462,509B
     FILING DATE: 05-JUN-1995
     CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: WO PCT/US95/05616
     FILING DATE: 05-MAY-1995
    ATTORNEY/AGENT INFORMATION:
     NAME: Wales, Michele M.
     REGISTRATION NUMBER: 43,975
     REFERENCE/DOCKET NUMBER: PF168P1
    TELECOMMUNICATION INFORMATION:
```

```
TELEFAX: 301-309-8439
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 1116 base pairs
     TYPE: nucleic acid
     STRANDEDNESS: single
     TOPOLOGY:
             linear
   MOLECULE TYPE:
               DNA (genomic)
    FEATURE:
     NAME/KEY:
             CDS
     LOCATION:
             1..1116
US-08-462-509B-5
 Query Match
                    96.9%;
                          Score 1075.2; DB 4;
                                          Length 1116;
 Best Local Similarity
                          Pred. No. 7.9e-247;
                    99.3%;
 Matches 1080:
            Conservative
                         0;
                           Mismatches
                                       8;
                                          Indels
                                                  0; Gaps
                                                           0;
Qу
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCTGGCAGCAGAGACCCC 60
Db
        61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qу
          61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Db
       121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC 180
QУ
          Db
       121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
       181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Qy
          181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Db
       241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
Qy
          241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
Db
Qу
       301 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
          1114411414444
       301 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
Db
Qу
       361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
          Db
       361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
       421 CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480
Qy
           Db
       421 GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480
Qу
       481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT 540
          Db
       481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT 540
Qy
       541 GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600
          Db
       541 GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600
```

TELEPHONE: 301-309-8504

```
601 CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660
 Qу
           Db
        601 GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660
        661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 720
 Qу
           Db
        661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 720
        721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780
 Qу
           Db
        721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780
 Qу
        781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
           781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
 Db
        841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
 Qу
           Db
        841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
        901 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
 Qу
           Db
        901 ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTGCCATCAGCGTCCTCAATGTCCTT 960
        961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
 Qу
           961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
 Db
       1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
· Qy
           1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Db
       1081 CTCAGTGG 1088
Qу
           1081 CTCAGTGG 1088
Db
RESULT 11
 PCT-US95-05616-5
```

- ; Sequence 5, Application PC/TUS9505616
- GENERAL INFORMATION:
- APPLICANT: LI, ET AL.
- TITLE OF INVENTION: Human Neuropeptide Receptor
- NUMBER OF SEQUENCES: 12
- CORRESPONDENCE ADDRESS:
- ADDRESSEE: CARELLA, BYRNE, BAIN, GILFILLAN,
- ADDRESSEE: CECCHI, STEWART & OLSTEIN
- STREET: 6 BECKER FARM ROAD
- CITY: ROSELAND
- STATE: NEW JERSEY
- COUNTRY: USA
- ZIP: 07068
- COMPUTER READABLE FORM:
- MEDIUM TYPE: 3.5 INCH DISKETTE
- COMPUTER: IBM PS/2
- OPERATING SYSTEM: MS-DOS

```
SOFTWARE: WORD PERFECT 5.1
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: PCT/US95/05616
     FILING DATE: concurrently
     CLASSIFICATION:
    ATTORNEY/AGENT INFORMATION:
     NAME: FERRARO, GREGORY D.
     REGISTRATION NUMBER: 36,134
     REFERENCE/DOCKET NUMBER: 325800-268
    TELECOMMUNICATION INFORMATION:
     TELEPHONE: 201-994-1700
     TELEFAX: 201-994-1744
  INFORMATION FOR SEO ID NO:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 1133 BASE PAIRS
     TYPE: NUCLEIC ACID
     STRANDEDNESS:
                 SINGLE
     TOPOLOGY: LINEAR
    MOLECULE TYPE: cDNA
PCT-US95-05616-5
 Query Match
                    96.9%;
                           Score 1075.2; DB 5;
                                            Length 1133;
 Best Local Similarity 99.3%; Pred. No. 7.9e-247;
 Matches 1080; Conservative
                          0; Mismatches
                                           Indels
                                                      Gaps
                                                             0;
Qу
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCTGGCAGCAGAGAGCCG 60
           Db
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGACCCC 60
        61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qу
           61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Db
Qу
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTCGTCGCC 180
           Db
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Qу
           181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Db
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
Qy
           Db
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
        301 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
Qy
           301 CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
Db
        361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
Qу
           Db
        361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
        421 CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480
Qy
            Db
        421 GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480
```

```
Qу
       481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT 540
          481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTGTCGCTGGCCATCATGGTGCCCCAGGCT 540
Db
Qу
       541 GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600
          541 GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA 600
Db
Qу
       601 CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660
          601 GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT 660
Db
       661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCATGGCCTATTTCCAGATATTCCGC 720
Qу
          661 ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC 720
Db
       721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780
Qу
          Db
       721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780
       781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
Qу
          781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
Db
       841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Qу
          +||||||
       841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Db
       901 ATGGTGGTGCTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Qу
          901 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 960
Db
       961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
          961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Db
      1021 ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qу
          1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Db
      1081 CTCAGTGG 1088
Qу
          Db
      1081 CTCAGTGG 1088
```

RESULT 12

US-08-513-974B-375

- ; Sequence 375, Application US/08513974B
- ; Patent No. 6114139
- ; GENERAL INFORMATION:
- ; APPLICANT: Hinuma, Shuji
- ; APPLICANT: Hosoya, Masaki
- ; APPLICANT: Fujii, Ryo
- ; APPLICANT: Ohtaki, Tetsuya
- ; APPLICANT: Fukusumi, Shoji
- ; APPLICANT: Ohqi, Kazuhiro
- ; TITLE OF INVENTION: G PROTEIN COUPLED RECEPTOR PROTEIN.

```
TITLE OF INVENTION: PRODUCTION, AND USE THEREOF
NUMBER OF SEQUENCES: 380
CORRESPONDENCE ADDRESS:
  ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN, LLP
  STREET: 130 Water Street
  CITY: Boston
  STATE: MA
  COUNTRY: USA
  ZIP: 02109
COMPUTER READABLE FORM:
  MEDIUM TYPE: Floppy disk
  COMPUTER: IBM PC compatible
  OPERATING SYSTEM: PC-DOS/MS-DOS
  SOFTWARE: PatentIn Release #1.0, Version #1.30
CURRENT APPLICATION DATA:
  APPLICATION NUMBER: US/08/513,974B
  FILING DATE: 14-SEP-1995
  CLASSIFICATION: 536
PRIOR APPLICATION DATA:
  APPLICATION NUMBER: PCT/JP95/01599
  FILING DATE: 10-AUG-1995
PRIOR APPLICATION DATA:
  APPLICATION NUMBER: JP 7-093989
  FILING DATE: 19-AUG-1995
PRIOR APPLICATION DATA:
  APPLICATION NUMBER: JP 7-057186
  FILING DATE: 16-MAR-1995
PRIOR APPLICATION DATA:
  APPLICATION NUMBER: JP 7-007177
  FILING DATE: 20-JAN-1995
PRIOR APPLICATION DATA:
  APPLICATION NUMBER: JP 6-326611
  FILING DATE: 28-DEC-1994
PRIOR APPLICATION DATA:
  APPLICATION NUMBER: JP 6-270017
  FILING DATE: 02-NOV-1994
PRIOR APPLICATION DATA:
  APPLICATION NUMBER: JP 6-236357
  FILING DATE: 30-SEP-1994
PRIOR APPLICATION DATA:
  APPLICATION NUMBER: JP 6-236356
  FILING DATE: 30-SEP-1994
PRIOR APPLICATION DATA:
  APPLICATION NUMBER: JP 6-189274
  FILING DATE: 11-AUG-1994
PRIOR APPLICATION DATA:
  APPLICATION NUMBER: JP 6-189273
  FILING DATE: 11-AUG-1945
PRIOR APPLICATION DATA:
  APPLICATION NUMBER: JP 6-189272
  FILING DATE: 11-AUG-1994
ATTORNEY/AGENT INFORMATION:
  NAME: Resnick, David S.
  REGISTRATION NUMBER: 34,235
  REFERENCE/DOCKET NUMBER: 45753
TELECOMMUNICATION INFORMATION:
  TELEPHONE: 617-523-3400
```

```
TELEFAX: 617-523-6440
  INFORMATION FOR SEQ ID NO:
                     375:
   SEQUENCE CHARACTERISTICS:
    LENGTH: 843 base pairs
    TYPE: nucleic acid
    STRANDEDNESS: double
    TOPOLOGY:
           linear
   MOLECULE TYPE: cDNA
   FEATURE:
    NAME/KEY: CDS
    LOCATION: 28..816
US-08-513-974B-375
                 62.0%; Score 688; DB 3; Length 843;
 Query Match
 Best Local Similarity
                 89.2%;
                      Pred. No. 1e-154;
 Matches 742; Conservative
                      0; Mismatches
                                 90; Indels
                                              Gaps
                                                    0;
      Qу
         Db
        312 GCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAGGTCATCCCCTA 371
Qу
         69 GCTGGTAGACATCACGGAATCCTGGCTCTTTGGCCATGCCCTCTGCAAGGTCATCCCCTA 128
Db
      372 TCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCG 431
Qy
         Db
      129 TCTACAGGCCGTGTCCGTGTCAGTGGTGGTGCTGACTCTCAGCTCCATCGCCCTGGACCG 188
      432 CTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGGGCCCGTGGCTC 491
Qу
         189 CTGGTACGCCATCTGCCACCGGTGTTGTTCAAGAGCACTGCCCGGCGCGCCCGCGGCTC 248
Db
      492 CATCCTGGGCATCTGGGCTGTCGCCGGCCATCATGGTGCCCCAGGCTGCAGTCATGCA 551
Qу
         249 CATCCTCGGCATCTGGGCGGTGTCGCTGGCTGTCATGGTGCCTCAGGCTGCTGTCATGGA 308
Db
      552 ATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGA 611
Qу
          1
           Db
    612 ACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTTATTGTCACCTA 671
Qy
          369 GCGCTGGGCAGACGACCTGTACCCCAAGATCTACCACAGCTGCTTCTTCATTGTCACCTA 428
Db
      672 CCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGG 731
Qу
         Db
      429 CCTGGCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATCTTCCGCAAGCTCTGGGG 488
      732 CCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCA 791
Qу
         Db
      489 CCGCCAGATCCCCGGCACCACCTCGGCCCTGGTGCGCAACTGGAAGCGGCCCTCAGACCA 548
      792 GCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCCTTCCT 851
Qу
             Db
      549 GCTGGACGACCAGGGCCAGGGCCTGAGCTCAGAGCCCCAGCCCCGGGCCCGCGCCTTCCT 608
```

```
Qу
        852 GGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGGTGCT 911
            Db
         609 GGCCGAGGTGAAACAGATGCGAGCCCGGAGGAAGACGGCCAAGATGCTGATGGTGGTGCT 668
Qy
        912 GCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGTT 971
            669 GCTGGTCTTCGCCCTCTGCTACCTGCCCATCAGTGTCCTCAACGTCCTCAAGAGGGTCTT 728
Db
        972 CGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTCACCTTCTCCCA 1031
Qу
            729 CGGGATGTTCCGCCAAGCCAGCGACCGAGAGGCCATCTACGCCTGCTTCACCTTCTCCCA 788
Db
        1032 CTGGCTGGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTCCTC 1083
Qу
            789 CTGGCTGGTGTACGCCAACAGCGCCGCCAATCCCCTCCTCTACTCCTC 840
Db
RESULT 13
US-08-513-974B-55
; Sequence 55, Application US/08513974B
; Patent No. 6114139
  GENERAL INFORMATION:
    APPLICANT: Hinuma, Shuji
    APPLICANT: Hosoya, Masaki
    APPLICANT:
              Fujii, Ryo
    APPLICANT:
              Ohtaki, Tetsuya
    APPLICANT:
              Fukusumi, Shoji
    APPLICANT: Ohgi, Kazuhiro
    TITLE OF INVENTION: G PROTEIN COUPLED RECEPTOR PROTEIN,
    TITLE OF INVENTION: PRODUCTION, AND USE THEREOF
    NUMBER OF SEQUENCES: 380
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN, LLP
      STREET: 130 Water Street
      CITY: Boston
      STATE: MA
      COUNTRY: USA
      ZIP: 02109
    COMPUTER READABLE FORM:
     MEDIUM TYPE: Floppy disk
     COMPUTER: IBM PC compatible
     OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/08/513,974B
     FILING DATE: 14-SEP-1995
     CLASSIFICATION: 536
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: PCT/JP95/01599
     FILING DATE: 10-AUG-1995
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: JP 7-093989
     FILING DATE: 19-AUG-1995
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: JP 7-057186
      FILING DATE: 16-MAR-1995
    PRIOR APPLICATION DATA:
```

```
APPLICATION NUMBER: JP 7-007177
      FILING DATE: 20-JAN-1995
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: JP 6-326611
      FILING DATE: 28-DEC-1994
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: JP 6-270017
      FILING DATE: 02-NOV-1994
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: JP 6-236357
      FILING DATE: 30-SEP-1994
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: JP 6-236356
      FILING DATE: 30-SEP-1994
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: JP 6-189274
      FILING DATE: 11-AUG-1994
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: JP 6-189273
      FILING DATE: 11-AUG-1945
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: JP 6-189272
      FILING DATE: 11-AUG-1994
    ATTORNEY/AGENT INFORMATION:
      NAME: Resnick, David S.
      REGISTRATION NUMBER: 34,235
      REFERENCE/DOCKET NUMBER: 45753
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 617-523-3400
      TELEFAX: 617-523-6440
  INFORMATION FOR SEO ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 789 base pairs
      TYPE: nucleic acid
      STRANDEDNESS: double
      TOPOLOGY: linear
    MOLECULE TYPE: cDNA
US-08-513-974B-55
 Query Match
                      59.5%; Score 661; DB 3; Length 789;
 Best Local Similarity
                     89.9%; Pred. No. 2.6e-148;
 Matches 709; Conservative
                            0; Mismatches 80; Indels
                                                        0; Gaps
Qy
        271 GCTGACGTTCTGGTGACTGCTATCTGCCTGCCGGCCAGCCTGCTGGTGGACATCACTGAG 330
            Db
          1 GCCGATGTGCTGGTGACAGCCATCTGCCTGCCGGCCAGTCTGCTGGTAGACATCACGGAA 60
        331 TCCTGGCTGTTCGGCCATGCCCTCTGCAAGGTCATCCCCTATCTACAGGCTGTGTCCGTG 390
Qv'
            Db
         61 TCCTGGCTCTTTGGCCATGCCCTCTGCAAGGTCATCCCCTATCTACAGGCCGTGTCCGTG 120
Qу
        391 TCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCGCTGGTATGCCATCTGCCAC 450
            Db
        121 TCAGTGGTCGTGCTGACTCTCAGCTCCATCGCCCTGGACCGCTGGTACGCCATCTGCCAC 180
Qу
        451 CCACTATTGTTCAAGAGCACAGCCCGGCGGGCCCGTGGCTCCATCCTGGGCATCTGGGCT 510
```

```
181 CCGCTGTTGTTCAAGAGCACTGCCCGGCGCGCCCCGCGGCTCCATCCTCGGCATCTGGGCG 240
Db
      511 GTGTCGCTGGCCATCATGGTGCCCCAGGCTGCAGTCATGCAATCCAGCAGTGTGCTGCCT 570
Qy
         241 GTGTCGCTGGCTGTCATGGTGCCTCAGGCTGCTGTCATGGAGTGTAGCAGCGTGCTGCCC 300
Db
Qу
      571 GAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGAACGCTGGGCAGATGACCTC 630
         301 GAGCTGGCCAACCGCACCCGCCTCTGTCTGTCTGTGATGAGCGCTGGGCAGACGACCTG 360
Db
      Qу
         Db
      691 ATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGATCCCCGGCACC 750
Qy
         421 ATGGCCATGGCCTATTTCCAGATCTTCCGCAAGCTCTGGGGCCGCCAGATCCCCGGCACC 480
Db
      751 ACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCAGCTGGGGGACCTGGAGCAG 810
Qy
         481 ACCTCGGCCCTGGTGCGCAACTGGAAGCGGCCCTCAGACCAGCTGGACGACCAGGGCCAG 540
Db
      811 GGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCCTTCCTGGCTGAAGTGAAGCAGATG 870
Qу
                541 GGCCTGAGCTCAGAGCCCCAGCCCCGGGCCCGCGCCTTCCTGGCCGAGGTGAAACAGATG 600
Dh
      871 CGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGGTGCTGCTGGTCTTCGCCCTCTGC 930
Qy
         Db
      601 CGAGCCCGGAGGAAGACGGCCAAGATGCTGATGGTGGTGCTGCTGGTCTTCGCCCTCTGC 660
      931 TACCTCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGTTCCGCCAAGCC 990
Qу
         Db
      661 TACCTGCCCATCAGTGTCCTCAACGTCCTCAAGAGGGTCTTCGGGATGTTCCGCCAAGCC 720
      Qу
         Db
      1051 AGCGCTGCC 1059
Qу
         11111 111
      781 AGCGCCGCC 789
Db
RESULT 14
US-09-461-436B-55
; Sequence 55, Application US/09461436B
 Patent No. 6538107
  GENERAL INFORMATION:
     APPLICANT: Shuji Hinuma
             Yasuaki Ito
             Ryo Fujii
     TITLE OF INVENTION: G Protein Coupled Receptor Protein,
                   Production, And Use Thereof
     NUMBER OF SEQUENCES: 61
     CORRESPONDENCE ADDRESS:
         ADDRESSEE: Edwards & Angell, LLP
```

STREET: 101 Federal Street

```
CITY: BOSTON
              STATE: MA
              COUNTRY: USA
              ZIP: 02209
         COMPUTER READABLE FORM:
              MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
              OPERATING SYSTEM: PC-DOS/MS-DOS
              SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
         CURRENT APPLICATION DATA:
              APPLICATION NUMBER: US/09/461,436B
              FILING DATE: 14-Dec-1999
              CLASSIFICATION: <Unknown>
         PRIOR APPLICATION DATA:
              APPLICATION NUMBER: 08/513,974
              FILING DATE: 14-SEP-1995
              APPLICATION NUMBER: PCT/JP95/01599
              FILING DATE: 10-AUG-1995
              APPLICATION NUMBER: 7-093989
              FILING DATE: 19-APR-1995
              APPLICATION NUMBER: 7-057186
              FILING DATE: 16-MAR-1995
              APPLICATION NUMBER: 7-007177
              FILING DATE: 20-JAN-1995
              APPLICATION NUMBER: 6-326611
              FILING DATE: 28-DEC-1994
              APPLICATION NUMBER: 6-270017
              FILING DATE: 02-NOV-1994
              APPLICATION NUMBER: 6-236357
              FILING DATE: 30-SEP-1994
              APPLICATION NUMBER: 6-236356
              FILING DATE: 30-SEP-1994
              APPLICATION NUMBER: 6-189274
              FILING DATE: 11-AUG-1994
              APPLICATION NUMBER: 6-189273
              FILING DATE: 11-AUG-1994
              APPLICATION NUMBER: 6-189272
              FILING DATE: 11-AUG-1994
         ATTORNEY/AGENT INFORMATION:
              NAME: CONLIN, DAVID G.
              REGISTRATION NUMBER: <Unknown>
              REFERENCE/DOCKET NUMBER: 45753 DIV2
         TELECOMMUNICATION INFORMATION:
              TELEPHONE: 617-439-4444
              TELEFAX: 617-439-4170
    INFORMATION FOR SEQ ID NO: 55:
         SEQUENCE CHARACTERISTICS:
              LENGTH: 789 base pairs
              TYPE: nucleic acid
              STRANDEDNESS: double
              TOPOLOGY: linear
         MOLECULE TYPE: cDNA
         SEQUENCE DESCRIPTION: SEQ ID NO: 55:
US-09-461-436B-55
  Query Match
                          59.5%; Score 661; DB 4; Length 789;
  Best Local Similarity 89.9%; Pred. No. 2.6e-148;
```

Matches	70	9; Conservative 0; Mismatches 80; Indels 0; Gaps 0;
Qy	271	GCTGACGTTCTGGTGACTGCTATCTGCCTGCCGGCCAGCCTGCTGGTGGACATCACTGAG 330
Db	1	
Qу	331	TCCTGGCTGTTCGGCCATGCCCTCTGCAAGGTCATCCCCTATCTACAGGCTGTGTCCGTG 390
Db	61	
Qу	391	TCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCGCTGGTATGCCATCTGCCAC 450
Db	121	
QУ	451	CCACTATTGTTCAAGAGCACAGCCCGGCGGGCCCGTGGCTCCATCCTGGGCATCTGGGCT 510
Db	181	CCGCTGTTGTTCAAGAGCACTGCCCGGCGCGCGCGCGCGC
QУ	511	GTGTCGCTGGCCATCATGGTGCCCCAGGCTGCAGTCATGCAATCCAGCAGTGTGCTGCCT 570
Db	241	GTGTCGCTGGCTGTCATGGTGCCTCAGGCTGCTGTCATGGAGTGTAGCAGCGTGCTGCCC 300
Qy	571	GAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGAACGCTGGGCAGATGACCTC 630
Db	301	GAGCTGGCCAACCGCACCCGCCTCCTGTCTGTCTGTGATGAGCGCTGGGCAGACGACCTG 360
Qу	631	TATCCCAAGATCTACCACAGTTGCTTCTTTATTGTCACCTACCT
Db	361	TACCCCAAGATCTACCACAGCTGCTTCTTCATTGTCACCTACCT
QУ	691	ATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGATCCCCGGCACC 750
Db	421	ATGGCCATGGCCTATTTCCAGATCTTCCGCAAGCTCTGGGGCCGCCAGATCCCCGGCACC 480
Qу	751	ACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCAGCTGGGGGACCTGGAGCAG 810
Db	481	ACCTCGGCCCTGGTGCGCAACTGGAAGCGGCCCTCAGACCAGCTGGACGACCAGGGCCAG 540
QУ	811	GGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCCTTCCTGGCTGAAGTGAAGCAGATG 870
Db	541	GGCCTGAGCTCAGAGCCCCAGCCCCGGGCCCGCGCCTTCCTGGCCGAGGTGAAACAGATG 600
QУ	871	CGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGGTGCTGCTGGTCTTCGCCCTCTGC 930
Db	601	CGAGCCCGGAGGAAGACGGCCAAGATGCTGATGGTGGTGCTGCTGGTCTTCGCCCTCTGC 660
ДĀ	931	TACCTCCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGTTCCGCCAAGCC 990
Db	661	TACCTGCCCATCAGTGTCCTCAACGTCCTCAAGAGGGTCTTCGGGATGTTCCGCCAAGCC 720
Qу	991	AGTGACCGCGAAGCTGTCTACGCCTGCTTCACCTTCTCCCACTGGCTGTGTACGCCAAC 1050
Db	721	AGCGACCGAGAGGCCATCTACGCCTGCTTCACCTTCTCCCACTGGCTGG
Qy 1	1051	AGCGCTGCC 1059
Db	781	AGCGCCGCC 789

. Agree of

```
RESULT 15
US-09-119-788-1
; Sequence 1, Application US/09119788
; Patent No. 6166193
  GENERAL INFORMATION:
    APPLICANT: Yanagisawa, Masashi
    TITLE OF INVENTION: CDNA CLONE MY1 THAT ENCODES
    TITLE OF INVENTION: A NOVEL HUMAN 7-TRANSMEMBRANE RECEPTOR
    NUMBER OF SEQUENCES: 2
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: SmithKline Beecham Corporation
      STREET: 709 Swedeland Road
      CITY: King of Prussia
      STATE: PA
      COUNTRY: United States of America
      ZIP: 19406
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette
      COMPUTER: IBM Compatible
      OPERATING SYSTEM: DOS
      SOFTWARE: FastSEQ for Windows Version 2.0
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/119,788
      FILING DATE: 21-JUL-1998
      CLASSIFICATION:
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 60/053,790
      FILING DATE: 25-JUL-1997
    ATTORNEY/AGENT INFORMATION:
      NAME: King, William T
      REGISTRATION NUMBER: 30,954
      REFERENCE/DOCKET NUMBER: GH50029
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 610-270-5515
      TELEFAX: 610-270-5090
      TELEX:
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 1633 base pairs
      TYPE: nucleic acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: Genomic DNA
US-09-119-788-1
                       46.1%; Score 511.8; DB 3;
 Query Match
                                                 Length 1633;
 Best Local Similarity
                       70.0%; Pred. No. 1e-112;
 Matches 706; Conservative
                              0; Mismatches 297;
                                                  Indels
                                                               Gaps
                                                                       1;
          80 ATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTGTACCCAAAACAGTATGAGT 139
Qу
            Dh
         217 ACGACGAGGAATTCCTGCGGTACCTGTGGAGGGAATACCTGCACCCGAAAGAATATGAGT 276
         140 GGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCCCTGGTGGGCAACACGCTGG 199
Qy
```

	מע	211	GGGTCCTGATCGCCGGGTACATCATCGTGTTCGTCGTGGCTCTCATTGGGAACGTCCTGG	336
	Qy	200	TCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTCACCAACTACTTCATTGTCA	259
	Db	337	TTTGTGTGGCAGTGTGGAAGAACCACCACATGAGGACGGTAACCAACTACTTCATAGTCA	396
	Qу	260	ACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTGC	319
	Db	397	ATCTTTCTCTGGCTGATGTGCTCGTGACCATCACCTGCCTTCCAGCCACACTGGTCGTGG	456
	Qу	320	ACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAGGTCATCCCCTATCTACAGG	379
	Db	457	ATATCACTGAGACCTGGTTTTTTGGACAGTCCCTTTGCAAAGTGATTCCTTATCTACAGA	516
	Qу	380	CTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCGCTGGTATG	439
	Db	517	$\tt CCGTGTCGGTGTCTGTCTCTCACACTGAGCTGTATCGCCTTGGATCGGTGGTATG$	576
k	Qy	440	CCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGGGGCCCGTGGCTCCATCCTGG	499
	Db	577	${\tt CAATCTGTCACCCTTTGATGTTTAAGAGCACAGCAAAGCGGGCCCGTAACAGCATTGTCA}$	636
	ДУ		GCATCTGGGCTGTCGCCGCCATCATGGTGCCCCAGGCTGCAGTCATGCAATCCAGCA	
	Db		TCATCTGGATTGTCTCCTGCATTATAATGATTCCTCAGGCCATCGTCATGGAGTGCAGCA	
	Qу		GTGTGCTGAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGAACGCTGGG	
	Db		$\tt CCGTGTTCCCAGGCTTAGCCAATAAAACCACCCTCTTTACGGTGTGATGAGCGCTGGG$	
	Qy .		CAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTTATTGTCACCTACCT	
	Db		GTGGTGAAATTTATCCCAAGATGTACCACATCTGTTTCTTTC	
	QУ		CACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGA	
	Db		CACTGTGTCTCATGGTGTTGGCTTATCTGCAAATATTTCGCAAACTCTGGTGTCGACAGA	
	Qу		TCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCAGCTGGGGG	
	Db		TCCCTGGAACATCATCTGTAGTTCAGAGAAAATGGAAGCCCCTGCAGCCTGTTT ACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCCTTCCTGGCTGAAG	
	Qy Db		CACAGCCTCGAGGGCCAGGACAAGAGCCCCAGCCCCGGGGCCGCCCTTCCTGGCTGAAG	
	Qу		TGAAGCAGATGCGTGCACGGAGGAAGACCAAGATGCTGATGGTGGTGCTGGTCT	
	Db		TAAAGCAGATCCGAGCCAGAAGGAAAACAGCCCGGATGTTGATGGTTGTGTTTTTGGTAT	
	Qy		TCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGT	
			TEGCATTTGCTACCTACCATTAGCATCCTCAATGTCCTTAAGAGGGTGTTCGGGATGT TTGCAATTTGCTATCTACCAATTAGCATCCTCAATGTGCTAAAGAGAGTATTTGGGATGT	
	Qy		TCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTCACCTTCTCCCACTGGCTGG	
	_		TGCCCATACTGAAGACAGAGAGACTGTGTATGCCTGGTTTACCTTTTCACACTGGCTTG	
				

QУ	1040	TGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTCCTCAGTGG 1088
Db	1171	TATATGCCAATAGTGCTGCGAATCCAATTATTTATAATTTTCTCAGTGG 1219

Search completed: October 15, 2004, 22:55:08 Job time : 90.0094 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: October 15, 2004, 19:59:43; Search time 572.496 Seconds

(without alignments)

9829.265 Million cell updates/sec

Title:

US-10-070-532-3

Perfect score:

1110

Sequence:

1 atggagccctcagccacccc.....ttccctggagtctgctctaa 1110

Scoring table:

IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched:

3340653 seqs, 2534783454 residues

Total number of hits satisfying chosen parameters:

6681306

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database :

Published Applications NA:*

- 1: /cgn2 6/ptodata/1/pubpna/US07 PUBCOMB.seg:*
- 2: /cgn2_6/ptodata/1/pubpna/PCT_NEW PUB.seq:*
- 3: /cgn2_6/ptodata/1/pubpna/US06 NEW PUB.seq:*
- 4: /cgn2_6/ptodata/1/pubpna/US06_PUBCOMB.seq:*
- 5: /cgn2 6/ptodata/1/pubpna/US07 NEW PUB.seq:*
- 6: /cgn2 6/ptodata/1/pubpna/PCTUS PUBCOMB.seq:*
- 7: /cgn2_6/ptodata/1/pubpna/US08_NEW PUB.seq:*
- 8: /cgn2 6/ptodata/1/pubpna/US08 PUBCOMB.seq:*
- 9: /cgn2_6/ptodata/1/pubpna/US09A_PUBCOMB.seq:*
- 10: /cgn2_6/ptodata/1/pubpna/US09B_PUBCOMB.seq:*
- 11: /cgn2_6/ptodata/1/pubpna/US09C_PUBCOMB.seq:*
- 12: /cgn2_6/ptodata/1/pubpna/US09_NEW_PUB.seq:*
- 13: /cgn2 6/ptodata/1/pubpna/US09 NEW PUB.seq2:*
- 14: /cgn2_6/ptodata/1/pubpna/US10A PUBCOMB.seq:*
- 15: /cgn2 6/ptodata/1/pubpna/US10B PUBCOMB.seg:*
- 16: /cgn2 6/ptodata/1/pubpna/US10C PUBCOMB.seq
- 17: /cgn2_6/ptodata/1/pubpna/US10_NEW_PUB.seq:*
 18: /cgn2_6/ptodata/1/pubpna/US60_NEW_PUB.seq:*
- 19: /cgn2 6/ptodata/1/pubpna/US60 PUBCOMB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

g,

Result

Query

							4
I	No.	Score	Match	Length	DB	ID	Description
	 1	1110	100.0	1110	10	US-09-393-696-3	Sequence 3, Appli
	2	1102	99.3	1110	14	US-10-077-874-3	Sequence 3, Appli
	3	1079.4	97.2	1564	15	US-10-225-567A-367	Sequence 367, Appril
	4	1079.4	97.2	1564	16	US-10-352-684A-21	Sequence 21, Appl
	5	1077.8	97.1	1209	10	US-09-393-696-1	
	6	1077.8	97.1	1209	14		Sequence 1, Appli
	7		97.1			US-10-077-874-1	Sequence 1, Appli
	8	1077.8 1075.2	96.9	1564	9	US-09-828-538-23	Sequence 23, Appl
	9			1116	14	US-10-077-874-5	Sequence 5, Appli
		1075.2	96.9	1133	10	US-09-393-696-5	Sequence 5, Appli
	10	1074.6	96.8	1278	11	US-09-826-509-548	Sequence 548, App
	11	905	81.5	1281	9	US-09-730-931-1	Sequence 1, Appli
	12	661	59.5	789	15	US-10-278-087A-55	Sequence 55, Appl
	13	511.8	46.1	1633	15	US-10-282-717-1	Sequence 1, Appli
	14	511.8	46.1	1843	15	US-10-225-567A-369	Sequence 369, App
	15	507	45.7	1335	11	US-09-826-509-550	Sequence 550, App
	16	241.2	21.7	9785	9	US-09-961-848-1	Sequence 1, Appli
	17	241.2	21.7	10453	9	US-09-828-538-21	Sequence 21, Appl
	18	236	21.3	244	9	US-09-828-538-6	Sequence 6, Appli
	19	223.8	20.2	227	9	US-09-828-538-10	Sequence 10, Appl
	20	199	17.9	356	9	US-09-828-538-2	Sequence 2, Appli
	21	179	16.1	179	9	US-09-828-538-4	Sequence 4, Appli
	22	161.6	14.6	1290	17	US-10-719-587-55	Sequence 55, Appl
	23	161.6	14.6	1290	17	US-10-719-587-56	Sequence 56, Appl
	24	161.6	14.6	1293	9	US-09-866-248A-7	Sequence 7, Appli
	25	161.6	14.6	1293	15	US-10-225-567A-657	Sequence 657, App
	26	161.6	14.6	1320	9	US-09-292-973-3	Sequence 3, Appli
	27	154.6	13.9	1299	17	US-10-719-587-38	Sequence 38, Appl
	28	154.6	13.9	1410	9	US-09-866-248A-1	Sequence 1, Appli
	29	148.2	13.4	1532	9	US-09-292-973-1	Sequence 1, Appli
	30	126	11.4	977	12	US-09-876-143-1561	Sequence 1561, Ap
	31	122	11.0	122	9	US-09-828-538-12	Sequence 12, Appl
	32	120.4		168575	15	US-10-178-194-1	Sequence 1, Appli
	33	119	10.7	1174	17	US-10-611-210-9	Sequence 9, Appli
	34	117.4	10.6	1110	14	US-10-044-592-17	Sequence 17, Appl
	35	117.4	10.6	1110	15	US-10-278-087A-31	Sequence 31, Appl
	36	117.4	10.6	1113	15	US-10-225-567A-244	Sequence 244, App
	37	117.4	10.6	1152	17	US-10-611-210-10	Sequence 10, Appl
	38	117.4	10.6			US-10-611-210-7	
	39	117.4	10.6	1331	14	US-10-044-592-73	Sequence 7, Appli
	40	116.8	10.5	1173	17	US-10-611-210-6	Sequence 73, Appl Sequence 6, Appli
	41	116.6	10.5	1173	9	US-09-828-538-8	
	42	114.2	10.3	1174	17	US-10-611-210-8	Sequence 8, Appli
	43	105.6	9.5	669	$\frac{1}{14}$		Sequence 8, Appli
C	44	103.6 . 104	9.4	436	13	US-10-044-592-70 US-10-027-632-275272	Sequence 70, Appl
c c	45	104	9.4	436	16		Sequence 275272,
C	1. 3	104	. 2.4	430	Τ.Ω	US-10-027-632-275272	Sequence 275272,

ALIGNMENTS

RESULT 1

US-09-393-696-3

[;] Sequence 3, Application US/09393696

[;] Publication No. US20030022277A1

[;] GENERAL INFORMATION:

```
APPLICANT: Human Genome Sciences, Inc. et al.
  TITLE OF INVENTION: Human Neuropeptide Receptor
  FILE REFERENCE: PF168P2
  CURRENT APPLICATION NUMBER: US/09/393,696
  CURRENT FILING DATE: 1999-09-10
  EARLIER APPLICATION NUMBER: PCT/US95/05616
  EARLIER FILING DATE: 1995-05-05
  EARLIER APPLICATION NUMBER: US08/462,509
  EARLIER FILING DATE: 1995-06-05
  NUMBER OF SEQ ID NOS: 23
  SOFTWARE: PatentIn Ver. 2.0
 SEQ ID NO 3
   LENGTH: 1110
   TYPE: DNA
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (1)..(1110)
US-09-393-696-3
 Query Match
                     100.0%; Score 1110; DB 10; Length 1110;
 Best Local Similarity
                    100.0%; Pred. No. 9.1e-303;
 Matches 1110; Conservative
                         0; Mismatches
                                         0; Indels
                                                    0; Gaps
                                                              0:
Qy
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
           Db
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCTGGCAGCAGAGAGCCG 60
        61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qy
           Db
        61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Qу
           121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Db
Qy
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
           Db
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
Qy
           Db
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
        301 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
Qу
           Db
        301 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
        361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
Qy
           361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
Db
Qy
        421 CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480
           Db
        421 CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG 480
Qy
        481 GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTGTCGCTGGCCATCATGGTGCCCCAGGCT 540
```

Db	481		540
Qу	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	661	ATTGTCACCTACCTGGCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	721		780
Qу	781	CCCTCAGACCAGCTGGGGGACCTGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGCCCCAGCCCCGGGGC	840
Qy	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Qу	901	ATGGTGGTGCTGCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	901	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Qу	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Db	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Qy [°]	1021	ACCTTCTCCCACTGGCTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Db	1021	ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Qy	1081	CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110	
Db	1081	CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110	

```
RESULT 2
```

```
US-10-077-874-3
; Sequence 3, Application US/10077874
; Publication No. US20020115155A1
; GENERAL INFORMATION:
; APPLICANT: Soppet, Daniel et al
; TITLE OF INVENTION: Human Neuropeptide Receptor
; NUMBER OF SEQUENCES: 12
; CORRESPONDENCE ADDRESS:
; ADDRESSEE: Human Genome Sciences, Inc.
; STREET: 9410 Key West Avenue
; CITY: Rockville
; STATE: MD
```

```
COUNTRY: USA
            ZIP: 20850
        COMPUTER READABLE FORM:
            MEDIUM TYPE: Floppy disk
            COMPUTER: IBM PC compatible
            OPERATING SYSTEM: PC-DOS/MS-DOS
            SOFTWARE: PatentIn Release #1.0, Version #1.30
        CURRENT APPLICATION DATA:
            APPLICATION NUMBER: US/10/077,874
            FILING DATE: 20-Feb-2002
            CLASSIFICATION: <Unknown>
        PRIOR APPLICATION DATA:
            APPLICATION NUMBER: 08/462,509
            FILING DATE: 05-JUNE-1995
        ATTORNEY/AGENT INFORMATION:
            NAME: Wales, Michele M.
            REGISTRATION NUMBER: 43,975
            REFERENCE/DOCKET NUMBER: PF168P1D1
        TELECOMMUNICATION INFORMATION:
            TELEPHONE: 301-309-8504
            TELEFAX: 301-309-8439
   INFORMATION FOR SEQ ID NO: 3:
        SEQUENCE CHARACTERISTICS:
            LENGTH: 1110 base pairs
            TYPE: nucleic acid
            STRANDEDNESS: single
            TOPOLOGY: linear
       MOLECULE TYPE: DNA (genomic)
       FEATURE:
            NAME/KEY: CDS
            LOCATION: 1..1110
       SEQUENCE DESCRIPTION: SEQ ID NO: 3:
US-10-077-874-3
 Query Match
                      99.3%; Score 1102; DB 14;
                                               Length 1110;
 Best Local Similarity
                      99.5%; Pred. No. 1.6e-300;
 Matches 1105; Conservative
                            0; Mismatches
                                            5:
                                               Indels
                                                           Gaps
                                                                  0;
QУ
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
            1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Db
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qу
            61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Db
Qу
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
            121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Db
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Qу
            181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Db
Qу
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
            241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
Db
```

Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db .	301		360
Qу	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361		420
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	421		480
Qy .	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Qу	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	541		600
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	601		660
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	661		720
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
ДУ	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Qу	901	ATGGTGGTGCTGCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	901	ATGGTGGTGCTGCTCTCCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Эγ 🤭	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Db	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Qу	1021	ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Db	1021		1080
Σу	1081	CTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110	
Db	1081	TCTCAGTGGCCTTCCCTGGAGTCTGCTCTAA 1110	

```
RESULT 3
US-10-225-567A-367
; Sequence 367, Application US/10225567A
 Publication No. US20030113798A1
 GENERAL INFORMATION:
  APPLICANT: LifeSpan Biosciences
            Brown, Joseph P.
  APPLICANT:
  APPLICANT:
           Burmer, Glenna C.
  APPLICANT:
            Roush, Christine L.
  TITLE OF INVENTION: ANTIGENIC PEPTIDES AND ANTIBODIES FOR G PROTEIN-COUPLED
RECEPTORS (GPCRS)
  FILE REFERENCE: 1920-4-4
  CURRENT APPLICATION NUMBER: US/10/225,567A
  CURRENT FILING DATE: 2001-12-19
  PRIOR APPLICATION NUMBER: 60/257,144
  PRIOR FILING DATE: 2000-12-19
  NUMBER OF SEQ ID NOS: 2292
  SOFTWARE: PatentIn version 3.1
 SEO ID NO 367
   LENGTH: 1564
   TYPE: DNA
   ORGANISM: Homo sapiens
US-10-225-567A-367
 Query Match
                     97.2%;
                           Score 1079.4; DB 15;
                                              Length 1564;
 Best Local Similarity
                     99.4%;
                           Pred. No. 4.2e-294;
 Matches 1083; Conservative
                           0;
                             Mismatches
                                         6; Indels
                                                               0:
                                                        Gaps
Qу
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCTGGCAGCAGAGAGCCG 60
           Db
        154 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213
Qу
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
           Db
        214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273
Qy
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
           Db
        274 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 333
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Qу
           Db
        334 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACACATGAGGACAGTC 393
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
Qу
           394 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 453
Db
        301 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 360
Qу
           Db
        454 CCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG 513
        361 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 420
Qу
           514 GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC 573
Db
```

```
APPLICANT: Weich, Nadine S.
  APPLICANT: Kelly, Louise M.
  TITLE OF INVENTION: METHODS AND COMPOSITIONS FOR TREATING
  TITLE OF INVENTION: HEMATOLOGICAL DISORDERS USING 131, 148, 199, 12303,
13906,
  TITLE OF INVENTION: 15513, 17822, 302, 5677, 194, 14393, 28059, 7366, 12212,
  TITLE OF INVENTION: 1981, 261, 12416, 270, 1410, 137, 1871, 13051, 1847,
1849,
  TITLE OF INVENTION: 15402, 340, 10217, 837, 1761, 8990 OR 13249 MOLECULES
  FILE REFERENCE: MPI02-019P1RNOMNIM
  CURRENT APPLICATION NUMBER: US/10/352,684A
  CURRENT FILING DATE: 2003-01-28
  PRIOR APPLICATION NUMBER: US 60/354,333
  PRIOR FILING DATE: 2002-02-04
  PRIOR APPLICATION NUMBER: US 60/360,258
  PRIOR FILING DATE: 2002-02-28
  PRIOR APPLICATION NUMBER: US 60/364,476
  PRIOR FILING DATE: 2002-03-15
  PRIOR APPLICATION NUMBER: US 60/375,626
  PRIOR FILING DATE: 2002-04-26
  PRIOR APPLICATION NUMBER: US 60/386,494
  PRIOR FILING DATE: 2002-06-06
  PRIOR APPLICATION NUMBER: US 60/390,965
  PRIOR FILING DATE: 2002-06-24
  PRIOR APPLICATION NUMBER: US 60/392,480
  PRIOR FILING DATE: 2002-06-28
  PRIOR APPLICATION NUMBER: US 60/394,128
  PRIOR FILING DATE: 2002-07-03
  PRIOR APPLICATION NUMBER: US 60/399,783
  PRIOR FILING DATE: 2002-07-31
  PRIOR APPLICATION NUMBER: US 60/403,221
  PRIOR FILING DATE: 2002-08-13
  Remaining Prior Application data removed - See File Wrapper or PALM.
  NUMBER OF SEQ ID NOS: 62
  SOFTWARE: FastSEO for Windows Version 4.0
 SEQ ID NO 21
   LENGTH: 1564
   TYPE: DNA
   ORGANISM: Homo Sapiens
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (154)...(1431)
US-10-352-684A-21
 Query Match
                        97.2%; Score 1079.4; DB 16; Length 1564;
 Best Local Similarity 99.4%; Pred. No. 4.2e-294;
 Matches 1083; Conservative
                               0; Mismatches
                                              6; Indels
                                                             0; Gaps
                                                                        0;
Qу
           1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
             154 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213
Db
          61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qу
             214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 273
Db
         121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Qу
```

Db	274	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC	333
Qу	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	334		393
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	394		453
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	454	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	513
QУ	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	514	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	573
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	574	GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	633
Qу	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db	. 634	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	693
QУ	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db ·	694	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	753
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db	754	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	813
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db	814	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	873
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	874	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	933
Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	934	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	993
Qу	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	994	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	1053
Qу	901	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db	1054	ATGGTGGTGCTGCTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT	1113
Qу	961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020

```
Db
        1114 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1173
Qу
        1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
            Db
        1174 ACCTTCTCCCACTGGTTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
       1081 CTCAGTGGC 1089
Qу
            Db
        1234 CTCAGTGGC 1242
RESULT 5
US-09-393-696-1
; Sequence 1, Application US/09393696
; Publication No. US20030022277A1
; GENERAL INFORMATION:
  APPLICANT: Human Genome Sciences, Inc. et al.
  TITLE OF INVENTION: Human Neuropeptide Receptor
  FILE REFERENCE: PF168P2
  CURRENT APPLICATION NUMBER: US/09/393,696
  CURRENT FILING DATE: 1999-09-10
  EARLIER APPLICATION NUMBER: PCT/US95/05616
  EARLIER FILING DATE: 1995-05-05
  EARLIER APPLICATION NUMBER: US08/462,509
  EARLIER FILING DATE: 1995-06-05
  NUMBER OF SEQ ID NOS: 23
  SOFTWARE: PatentIn Ver. 2.0
 SEO ID NO 1
   LENGTH: 1209
   TYPE: DNA
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (1)..(1209)
US-09-393-696-1
 Query Match
                      97.1%; Score 1077.8; DB 10; Length 1209;
 Best Local Similarity 99.4%; Pred. No. 1.1e-293;
 Matches 1082; Conservative
                            0; Mismatches
                                           7;
                                              Indels
                                                          Gaps
                                                                 0;
Qу
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
            Db
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Qу
            Db
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
Qу
            Db
        121 TACCCAAAACAGTATGAGTGGGTCCTCATCCCAGCCTATGTGGCTGTGTTCGTCGTGGCC 180
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
Qу
            Db
        181 CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC 240
        241 ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG 300
Qy
```

...455%

Db		241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Qу		301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db		301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Qу		361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db		361		420
Qу		421	CCCCTGGACCGCTGGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db		421	GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Qу		481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCTCGCCATCATGGTGCCCCAGGCT	540
Db		481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Qу		541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db		541	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Qу	2	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db		601	GTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Qу			ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
Db			ATTGTCACCTACCTGGCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	7.20
Qу		721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db		721	AACCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Qу		781	CCCTCAGACCAGCTGGGGGACCTGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db		781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Qу		841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db		841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Qу		901	ATGGTGGTGCTGCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db		901	ATGGTGGTGCTGCTCTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT	960
Ωу		961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
Db		961	AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	1020
ΣУ	1	021	ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Db	1	021	ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC	1080
Σу	1	081	CTCAGTGGC 1089	

```
RESULT 6
US-10-077-874-1
; Sequence 1, Application US/10077874
; Publication No. US20020115155A1
    GENERAL INFORMATION:
        APPLICANT: Soppet, Daniel et al
        TITLE OF INVENTION: Human Neuropeptide Receptor
        NUMBER OF SEQUENCES: 12
        CORRESPONDENCE ADDRESS:
             ADDRESSEE: Human Genome Sciences, Inc.
             STREET: 9410 Key West Avenue
             CITY: Rockville
             STATE: MD
             COUNTRY: USA
             ZIP: 20850
        COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
             COMPUTER: IBM PC compatible
             OPERATING SYSTEM: PC-DOS/MS-DOS
             SOFTWARE: PatentIn Release #1.0, Version #1.30
        CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/077,874
             FILING DATE: 20-Feb-2002
             CLASSIFICATION: <Unknown>
        PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 08/462,509
             FILING DATE: 05-JUNE-1995
        ATTORNEY/AGENT INFORMATION:
             NAME: Wales, Michele M.
             REGISTRATION NUMBER: 43,975
             REFERENCE/DOCKET NUMBER: PF168P1D1
        TELECOMMUNICATION INFORMATION:
             TELEPHONE: 301-309-8504
             TELEFAX: 301-309-8439
   INFORMATION FOR SEQ ID NO: 1:
        SEQUENCE CHARACTERISTICS:
             LENGTH: 1209 base pairs
             TYPE: nucleic acid
             STRANDEDNESS: single
             TOPOLOGY: linear
        MOLECULE TYPE: cDNA
        FEATURE:
             NAME/KEY: CDS
                                                                 2330
                       1..1209
             LOCATION:
        SEQUENCE DESCRIPTION: SEO ID NO: 1:
US-10-077-874-1
 Query Match
                         97.1%; Score 1077.8; DB 14; Length 1209;
 Best Local Similarity 99.4%; Pred. No. 1.1e-293;
 Matches 1082; Conservative
                              0; Mismatches
                                                 7; Indels
Qу
           1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
             Db
           1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
```

	Qу	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
	Db	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
	Qy	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
	Db	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
	Qу	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
	Db	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
	QУ	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
	Db	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
	Qy .	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
	Db	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
	Qy	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
÷	Db	361	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
	Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
	Db	421	GCCCTGGACCGCTGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
	Qy	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
	Db	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
	Qy	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
	Db	541	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
	Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
	Db	601	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
	Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720
	Db	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	720
	Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780∜
	Db.	721	AAGCTCTGGGGCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
	Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
	Db	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGCCCCAGCCCCGGGCC	840
	QУ	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
*	Db	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACACCCAACATGCCTC	900

```
Qy
           901 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
              901 ATGGTGGTGCTGCTGCTCTCCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 960
  Db
           961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
  Qу
              Db
           961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
          1021 ACCTTCTCCCACTGGCTGGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
  Qу
              Db
          1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
          1081 CTCAGTGGC 1089
  Qу
              Db
          1081 CTCAGTGGC 1089
  RESULT 7
  US-09-828-538-23
  ; Sequence 23, Application US/09828538
  ; Patent No. US20010025031A1
  ; GENERAL INFORMATION:
     APPLICANT: Ellis, Catherine E.
     APPLICANT: Kwok, Cheni
     APPLICANT: Bodsworth, Nicola J.
    APPLICANT: Halsey, Wendy
    APPLICANT: Van Horn, Stephanie
     TITLE OF INVENTION: HFGAN72 Receptor Genomic DNA and Methods
     TITLE OF INVENTION: of Use Thereof in Diagnostic Applications
     FILE REFERENCE: GH-50038-C1
     CURRENT APPLICATION NUMBER: US/09/828,538
     CURRENT FILING DATE: 2001-04-06
     PRIOR APPLICATION NUMBER: 60/088,624
     PRIOR FILING DATE: 1998-06-08
     PRIOR APPLICATION NUMBER: 60/093,726
     PRIOR FILING DATE: 1998-07-22
     PRIOR APPLICATION NUMBER: 09/328,014
     PRIOR FILING DATE: 1999-06-08
     NUMBER OF SEQ ID NOS: 24
     SOFTWARE: FastSEQ for Windows Version 3.0
    SEQ ID NO 23
     LENGTH: 1564
     TYPE: DNA
     ORGANISM: HOMO SAPIENS
  US-09-828-538-23
Query Match
                        97.1%;
                               Score 1077.8; DB 9; Length 1564;
    Best Local Similarity
                        99.4%; Pred. No. 1.2e-293;
    Matches 1082; Conservative
                              0; Mismatches
                                             7;
                                                 Indels
                                                                    0;
                                                         0; Gaps
  Qу
            1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
              154 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 213
  Db
  QУ
           61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
              214 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGCGATTATCTG 273
  Db
```

Qy ·		TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC	
Db	274	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	333
QУ	181	CTGGTGGCCACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	334	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	393 '
QУ	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	394	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	453
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	454	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	513
Qу	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	514		573
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	574		633
Qy	481		540
Db	634		693
Qy	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	694	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	753
Qу	601		660
Db	754		813
Qу	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	720 -
Db	814		873
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780
Db	874		933
Qу	781	CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	840
Db	934		993
Qу	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900
Db	994		1053
Qу	901	ATGGTGGTGCTGCTCTCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	960
Db		ATGGTGGTGCTGCTGCTTCGCCCTCTGCTACCTGCCCATCAGCCTCATCAATCTCATT	1112

```
961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
 Qy
              1114 AAGAGGTTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1173
Db
         1021 \ \ ACCTTCTCCCACTGGCTGTTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC \ \ 1080
Qу
              Db
         1174 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1233
         1081 CTCAGTGGC 1089
Qу
              · Db
         1234 CTCAGTGGC 1242
RESULT 8
US-10-077-874-5
; Sequence 5, Application US/10077874
  Publication No. US20020115155A1
    GENERAL INFORMATION:
         APPLICANT: Soppet, Daniel et al
         TITLE OF INVENTION: Human Neuropeptide Receptor
         NUMBER OF SEQUENCES: 12
         CORRESPONDENCE ADDRESS:
             ADDRESSEE: Human Genome Sciences, Inc.
             STREET: 9410 Key West Avenue
             CITY: Rockville
             STATE: MD
             COUNTRY: USA
             ZIP: 20850
         COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
             COMPUTER: IBM PC compatible
             OPERATING SYSTEM: PC-DOS/MS-DOS
             SOFTWARE: PatentIn Release #1.0, Version #1.30
         CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/077,874
             FILING DATE: 20-Feb-2002
             CLASSIFICATION: <Unknown>
         PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 08/462,509
             FILING DATE: 05-JUNE-1995
         ATTORNEY/AGENT INFORMATION:
             NAME: Wales, Michele M.
             REGISTRATION NUMBER: 43,975
             REFERENCE/DOCKET NUMBER: PF168P1D1
         TELECOMMUNICATION INFORMATION:
             TELEPHONE: 301-309-8504
             TELEFAX: 301-309-8439
    INFORMATION FOR SEQ ID NO: 5:
         SEQUENCE CHARACTERISTICS:
             LENGTH: 1116 base pairs
             TYPE: nucleic acid
             STRANDEDNESS: single
             TOPOLOGY: linear
        MOLECULE TYPE: DNA (genomic)
         FEATURE:
             NAME/KEY:
             LOCATION: 1..1116
```

; SEQUENCE DESCRIPTION: SEQ ID NO: 5: US-10-077-874-5

Bea		96.9%; Score 1075.2; DB 14; Length 1116; Similarity 99.3%; Pred. No. 5.9e-293; 0; Conservative 0; Mismatches 8; Indels 0; Gaps	0;
Qу	1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG	60 .
Db	1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGACCCC	60
Qу	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Db	61		120
Qу	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC	180
Db	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Qу	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	181	CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Qу	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	421	GCCCTGGACCGCTGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Qу	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Db	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCGGCCATCATGGTGCCCCAGGCT	540
Qу	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	541	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT (660
Db	601	GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Qy	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	720
Db	661	ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCCTATTTCCAGATATTCCGC	720
Qу	721	AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	780

```
721 AAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC 780
Db
        781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
Qу
            Db
        781 CCCTCAGACCAGCTGGGGGACCTGGAGCAGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC 840
Qу
        841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
            841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Db
        901 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
Qу
            Db
        901 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 960
        961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qν
            Db
        961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
       1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
            Db
       1021 ACCTTCTCCCACTGGCTGGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qy
       1081 CTCAGTGG 1088
            1111111
       1081 CTCAGTGG 1088
Db
RESULT 9
US-09-393-696-5
; Sequence 5, Application US/09393696
; Publication No. US20030022277A1
; GENERAL INFORMATION:
  APPLICANT: Human Genome Sciences, Inc. et al.
  TITLE OF INVENTION: Human Neuropeptide Receptor
  FILE REFERENCE: PF168P2
  CURRENT APPLICATION NUMBER: US/09/393,696
  CURRENT FILING DATE: 1999-09-10
  EARLIER APPLICATION NUMBER: PCT/US95/05616
  EARLIER FILING DATE: 1995-05-05
  EARLIER APPLICATION NUMBER: US08/462,509
  EARLIER FILING DATE: 1995-06-05
  NUMBER OF SEQ ID NOS: 23
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 5
   LENGTH: 1133
   TYPE: DNA
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (1)..(1131)
US-09-393-696-5
                      96.9%; Score 1075.2; DB 10; Length 1133;
 Query Match
 Best Local Similarity
                      99.3%; Pred. No. 6e-293;
 Matches 1080; Conservative
                            0; Mismatches
                                           8; Indels
                                                       0; Gaps
                                                                 0;
```

Qy

Db	1	ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGACCCC	60
Qу	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Db	61	TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG	120
Qу	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTTCGTCGTGGCC	180
Db	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Qу	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Qу	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301	${\tt CCGGCCAGCCTGCTGGAGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG}$	360
QУ	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361	GTCATCCCCTATCTACAGGCTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Qу	421	CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
Db	421	GCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	480
QУ	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCCGGCCATCATGGTGCCCCAGGCT	540
Db	481	GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCT	540
Qу	541	GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Db	541	GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	600
Qу	601	CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db		GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	
QУ		ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	
Db		ATTGTCACCTACCTGGCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	
QУ		AAGCTCTGGGGCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	
Db	,	AAGCTCTGGGGCCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	
Qу		CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	
Db		CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGC	
Qу	841	CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	900

```
Db
        841 CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG 900
Qу
        901 ATGGTGGTGCTGCTCTCCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT 960
            Db
        901 ATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTGCCCATCAGCGTCCTCAATGTCCTT 960
        961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Qу
            Db
        961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
       1021 ACCTTCTCCCACTGGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Qу
            Db
       1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
       1081 CTCAGTGG 1088
Qv
            Db
       1081 CTCAGTGG 1088
RESULT 10
US-09-826-509-548
; Sequence 548, Application US/09826509
; Publication No. US20030204073A1
; GENERAL INFORMATION:
  APPLICANT: Lehmann-Bruinsma, Karin
  APPLICANT: Liaw, Chen W.
  APPLICANT: Lin, I-Lin
  TITLE OF INVENTION: No. US20030204073A1-Endogenous, Constitutively Activated
  TITLE OF INVENTION: Protein-Coupled Receptors
  FILE REFERENCE: AREN-207
  CURRENT APPLICATION NUMBER: US/09/826,509
  CURRENT FILING DATE: 2001-04-05
  PRIOR APPLICATION NUMBER: 60/195,747
  PRIOR FILING DATE: 2000-04-07
  PRIOR APPLICATION NUMBER: 09/170,496
  PRIOR FILING DATE: 1998-10-13
  NUMBER OF SEQ ID NOS: 589
  SOFTWARE: PatentIn Version 2.1
 SEQ ID NO 548
   LENGTH: 1278
   TYPE: DNA
   ORGANISM: Homo sapiens
US-09-826-509-548
 Query Match
                      96.8%;
                            Score 1074.6; DB 11; Length 1278;
 Best Local Similarity
                      99.2%;
                            Pred. No. 9e-293;
 Matches 1080; Conservative
                            0; Mismatches
                                              Indels
                                                       0;
                                                          Gaps
                                                                 0;
Qy
          1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
           1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCCTGGCAGCAGAGAGCCG 60
Db
Qу
         61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
            61 TCCCCTGTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTG 120
Db
```

Qу	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCC	180
Db	121	TACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCC	180
Qy	181	CTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Db	181	CTGGTGGCCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTC	240
Qy	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Db	241	ACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTG	300
Qу	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Db	301	CCGGCCAGCCTGCTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAG	360
Qу	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
Db	361	GTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATC	420
QУ		CCCCTGGACCGCTGGTATGCCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGG	
Db		GCCCTGGACCGCTGTATGCCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGG	
Qу		GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCTCGCTGGCCATCATGGTGCCCCAGGCT	
Db '		GCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCTCGCTGGCCATCATGGTGCCCCAGGCT	
QΥ		GCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	
Db		GCAGTCATGGAATGCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCA	
Δλ		CTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Db		GTCTGTGATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTT	660
Qу		ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	
Db		ATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGC	
Qy Db		AAGCTCTGGGGCCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGC	
Qγ		CCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCGGGGC	
Db		CCCTCAGACCAGCTGGGGGACCTGGAGCGCCCAGCCCCGGGGCCCCCAGCCCCCGGGGCCCCAGCCCCAGCCCCCGGGGCCCCAGCCCCCAGCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCAGCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCAGCCCAGCCCCCAGCCCCAGCCCCCAGCCCCAGCCCCAGCCCCCAGCCCCCAGCCCCAGCCCCCAGCCCAGCCCCCAGCCCCAGCCCCCAGCCCCCAGCCCCCAGCCCCCAGCCCCCAGCCCCCAGCCCCCAGCCCCCAGCCCCCAGCCCCCAGCCCCCAGCCCCCAGCCCCCAGCCCCCAGCCCCCAGCCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCACAAAAAA	
Qy		CGCGCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTG	
Db			
Qу		ATGGTGGTGCTGCTGCTCTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTT	
Db			
Ωу		AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC	
•			1020

```
961 AAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTC 1020
Dh
Qy
       1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
           1021 ACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTC 1080
Db
       1081 CTCAGTGGC 1089
Qу
           1111111
Db
       1081 CTCAGTGGC 1089
RESULT 11
US-09-730-931-1
; Sequence 1, Application US/09730931
 Patent No. US20020064814A1
 GENERAL INFORMATION:
  APPLICANT: ELLIS, CATHERINE E.
  TITLE OF INVENTION: DOG OREXIN 1 RECEPTOR
  FILE REFERENCE: GH-70669
  CURRENT APPLICATION NUMBER: US/09/730,931
  CURRENT FILING DATE: 2000-12-06
  PRIOR APPLICATION NUMBER: 60/169,373
  PRIOR FILING DATE: 1999-12-07
  NUMBER OF SEQ ID NOS: 2
  SOFTWARE: FastSEQ for Windows Version 3.0
 SEQ ID NO 1
   LENGTH: 1281
   TYPE: DNA
   ORGANISM: CANIS FAMILIARIS
US-09-730-931-1
 Query Match
                    81.5%; Score 905; DB 9; Length 1281;
 Best Local Similarity
                    89.9%; Pred. No. 6.2e-245;
 Matches 984; Conservative
                         0; Mismatches 105; Indels
                                                     Gaps
                                                            1:
Qу
         1 ATGGAGCCCTCAGCCACCCCAGGGGCCCAGATGGGGGTCCCCCTGGCAGCAGAGAGCCG 60
           Db
         Qy
        61 TCCCCT----GTGCCTCCAGACTATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGAT 114
                    Db
        61 TCTCCGTCACTGGTGCCTCCCGACTATGAAGACGAGTTCCTGCGCTATCTGTGGCGCGAT 120
       115 TATCTGTACCCAAAACAGTATGAGTGGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTC 174
Qy
           Db
       121 TACCTGTACCCAAAGCAGTATGAGTGGGTCCTCATCGCTGCCTACGTGGCTGTGTTCCTA 180
       175 GTGGCCCTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGCGGAACCACCACATGAGG 234
Qy
           181 GTGGCCCTGGTGGGCAACACGCTGGTCTGCCTGGCCGTGTGGAGGAACCACCACATGAGG 240
Db
       235 ACAGTCACCAACTACTTCATTGTCAACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATC 294
Qy
           241 ACGGTCACCAACTATTTCATTGTCAACCTGTCCCTGGCTGATGTGCTGGTGACAGCCATC 300
Db
Qу
       295 TGCCTGCCGGCCAGCCTGCTGGTGGACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTC 354
```

Db	301	TGCCTCCCGGCCAGCCTGCTGGTAGACATCACTGAGTCCTGGCTCTTCGGTCATACCCTC	360
Qу	355	TGCAAGGTCATCCCCTATCTACAGGCTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGC	414
Db .	361	TGCAAAGTCATCCCCTACCTACAGGCCGTGTCTGTGTCGGTGGCAGTGCTGACTCTCAGC	420
Qу	415	TTCATCCCCCTGGACCGCTGGTATGCCATCTGCCACCCAC	474
Db	421	TTCATCGCCCTGGACCGCTGGTATGCCATCTGCCACCCGCTGTTGTTCAAGAGCACCGCC	480
Qу	475	CGGCGGGCCCGTGGCTCCATCCTGGGCATCTGGGCTGTCTCGCCGCCATCATGGTGCCC	534
Db	481	CGGCGCCCCGCAGCTCCATCCTGGGCATCTGGGCTGTCATTGGCTGTCATGGTACCT	540
Qу	535	CAGGCTGCAGTCATGCAATCCAGCAGTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTC	594
Db	541	CAGGCTGCCGTCATGGAATGCAGCAGCGTGCTCCCTGAGCTAGCCAACCGCACCCGCCTC	600
Qу	595	TTCTCACTCTGTCATGAACGCTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGC	654
Db	601	TTCTCTGTGTGATGAACACTGGGCAGATGACCTCTATCCCAAGATCTACCACAGTTGC	660
Qу	655	TTCTTTATTGTCACCTACCTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATA	714
Db	661	TTCTTCATTGTCACCTACTTGGCCCCACTGGGCCTCATGGCCATGGCCTATTTCCAGATC	720
Qу	715	TTCCGCAAGCTCTGGGGCCGCCAGATCCCCGGCACCACCTCAGCACTGGTGCGGAACTGG	774
Db	721	TTCCGCAAGCTCTGGGGCCGCCAGATCCCTGGCACCACATCGGCCCTGGTGAGGAACTGG	780
Qy	775	AAGCGCCCTCAGACCAGCTGGGGGACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCC	834
Db	781	AAGCGGCCTCGGACCAGCTGGAGGACCAGGGGCCCGGCCTGAGCGCGGAACCCCCCCT	840
Qу	835	CGGGGCCGCCCTTCCTGGCTGAAGTGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAG	894
Db	841	CGGGCCCGGGCCTTCCTGGCTGAGGTGAAGCAGATGCGAGCGCGGAGGAAGACGGCCAAG	900
Qу	895	ATGCTGATGGTGGTGCTGGTCTTCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAAT	954
Db	901	ATGCTGATGGTGCTGCTGGTCTTTGCCCTCTGCTACCTGCCCATCAGTGTCCTCAAT	960
Qу	955	GTCCTTAAGAGGGTGTTCGGGATGTTCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCC	1014
Db	961	GTCCTCAAGAGGGTGTTCGGGATGTTCCGCCAATCCAGTGACCGAGAAGCCGTGTACGCC	1020
Qу	1015	TGCTTCACCTTCTCCCACTGGCTGTGTACGCCAACAGCGCTGCCAACCCCATCATCTAC	1074
Db	1021	TGCTTCACCTTCTCCCACTGGCTGTGTATGCCAACAGCGCTGCCAACCCCATCATCTAC	1080
Qу	1075	AACTTCCTCAGTGGC 1089	
nh	1091	አእሮሞጥሮሮጥሮእሮሮሮሮሮ 1005	

```
US-10-278-087A-55
; Sequence 55, Application US/10278087A
 Publication No. US20030138817A1
    GENERAL INFORMATION:
         APPLICANT: Shuji Hinuma
                    Yasuaki Ito
                    Ryo Fujii
         TITLE OF INVENTION: G Protein Coupled Receptor Protein,
                             Production, And Use Thereof
        NUMBER OF SEQUENCES: 61
         CORRESPONDENCE ADDRESS:
              ADDRESSEE: Edwards & Angell, LLP
              STREET: 101 Federal Street
              CITY: BOSTON
              STATE: MA
              COUNTRY: USA
              ZIP: 02209
        COMPUTER READABLE FORM:
              MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
              OPERATING SYSTEM: PC-DOS/MS-DOS
              SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
        CURRENT APPLICATION DATA:
              APPLICATION NUMBER: US/10/278,087A
              FILING DATE: 31-Jan-2003
              CLASSIFICATION: <Unknown>
        PRIOR APPLICATION DATA:
              APPLICATION NUMBER: 09/461,436
              FILING DATE: 14-DEC-1999
              APPLICATION NUMBER: 09/038,572
              FILING DATE: 11-MAR-1998
              APPLICATION NUMBER: 08/513,974
              FILING DATE: 14-SEP-1995
             APPLICATION NUMBER: PCT/JP95/01599
              FILING DATE: 10-AUG-1995
              APPLICATION NUMBER: 7-093989
              FILING DATE: 19-APR-1995
             APPLICATION NUMBER: 7-057186
              FILING DATE: 16-MAR-1995
             APPLICATION NUMBER: 7-007177
             FILING DATE: 20-JAN-1995
             APPLICATION NUMBER: 6-326611
             FILING DATE: 28-DEC-1994
             APPLICATION NUMBER: 6-270017
             FILING DATE: 02-NOV-1994
             APPLICATION NUMBER: 6-236357
             FILING DATE: 30-SEP-1994
             APPLICATION NUMBER: 6-236356
             FILING DATE: 30-SEP-1994
             APPLICATION NUMBER: 6-189274
             FILING DATE: 11-AUG-1994
             APPLICATION NUMBER: 6-189273
             FILING DATE: 11-AUG-1994
             APPLICATION NUMBER: 6-189272
              FILING DATE: 11-AUG-1994
        ATTORNEY/AGENT INFORMATION:
             NAME: CONLIN, DAVID G.
```

```
REGISTRATION NUMBER: <Unknown>
          REFERENCE/DOCKET NUMBER: 45753 DIV3
      TELECOMMUNICATION INFORMATION:
          TELEPHONE: 617-439-4444
          TELEFAX: 617-439-4170
   INFORMATION FOR SEQ ID NO: 55:
      SEQUENCE CHARACTERISTICS:
          LENGTH: 789 base pairs
          TYPE: nucleic acid
          STRANDEDNESS: double
          TOPOLOGY: linear
      MOLECULE TYPE: cDNA
      SEQUENCE DESCRIPTION: SEQ ID NO: 55:
US-10-278-087A-55
 Query Match
                  59.5%;
                        Score 661; DB 15;
                                      Length 789;
 Best Local Similarity
                  89.9%;
                        Pred. No. 3.6e-176;
 Matches 709; Conservative
                       0; Mismatches
                                       Indels
                                                 Gaps
                                                      0:
       271 GCTGACGTTCTGGTGACTGCTGCCTGCCGGCCAGCCTGCTGGTGGACATCACTGAG 330
Qу
          Db
        1 GCCGATGTGCTGGTGACAGCCATCTGCCTGCCGGCCAGTCTGCTGGTAGACATCACGGAA 60
       331 TCCTGGCTGTTCGGCCATGCCCTCTGCAAGGTCATCCCCTATCTACAGGCTGTGTCCGTG 390
Qу
          Db
       61 TCCTGGCTCTTTGGCCATGCCCTCTGCAAGGTCATCCCCTATCTACAGGCCGTGTCCGTG 120
       391 TCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCGCTGGTATGCCATCTGCCAC 450
Qу
               Db
       121 TCAGTGGTCGTGCTGACTCTCAGCTCCATCGCCCTGGACCGCTGGTACGCCATCTGCCAC 180
       451 CCACTATTGTTCAAGAGCACAGCCCGGCGGGCCCGTGGCTCCATCCTGGGCATCTGGGCT 510
Qу
          Db
       181 CCGCTGTTGTTCAAGAGCACTGCCCGGCGCGCGCGCGCTCCATCCTCGGCATCTGGGCG 240
       511 GTGTCGCTGGCCATCATGGTGCCCCAGGCTGCAGTCATGCAATCCAGCAGTGTGCTGCCT 570
Qу
          241 GTGTCGCTGGCTGTCATGGTGCCTCAGGCTGCTGTCATGGAGTGTAGCAGCGTGCTGCCC 300
Db
       571 GAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGAACGCTGGGCAGATGACCTC 630
Qу
          301 GAGCTGGCCAACCGCACCGCCTCCTGTCTGTCTGTGATGAGCGCTGGGCAGACGACCTG 360
Db
       Qу
          Db
       691 ATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGATCCCCGGCACC 750
Qу
          421 ATGGCCATGGCCTATTTCCAGATCTTCCGCAAGCTCTGGGGCCGCCAGATCCCCGGCACC 480
Db
       751 ACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCAGCTGGGGGACCTGGAGCAG 810
Qу
         481 ACCTCGGCCCTGGTGCGCAACTGGAAGCGGCCCTCAGACCAGCTGGACGACCAGGGCCAG 540
Db
Qу
       811 GGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCTTCCTGGCTGAAGTGAAGCAGATG 870
```

```
541 GGCCTGAGCTCAGAGCCCCAGCCCCGGGCCCGCCCTTCCTGGCCGAGGTGAAACAGATG 600
Db
        871 CGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGGTGCTGCTGGTCTTCGCCCTCTGC 930
Qу
           601 CGAGCCCGGAGGAAGACGGCCAAGATGCTGATGGTGGTGCTGCTGGTCTTCGCCCTCTGC 660
Dh
        931 TACCTCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGTTCCGCCAAGCC 990
Qy
           661 TACCTGCCCATCAGTGTCCTCAACGTCCTCAAGAGGGTCTTCGGGATGTTCCGCCAAGCC 720
Db
        Qy
           Db
        1051 AGCGCTGCC 1059
Qу
           Db
        781 AGCGCCGCC 789
RESULT 13
US-10-282-717-1
; Sequence 1, Application US/10282717
; Publication No. US20030083466A1
 GENERAL INFORMATION:
  APPLICANT: YANAGISAWA, MASASHI
  TITLE OF INVENTION: cDNA CLONE MY1 THAT ENCODES A NOVEL
  TITLE OF INVENTION: HUMAN 7-TRANSMEMBRANE RECEPTOR
  FILE REFERENCE: GH50029D1C1
  CURRENT APPLICATION NUMBER: US/10/282,717
  CURRENT FILING DATE: 2002-10-28
  PRIOR APPLICATION NUMBER: 09/676,625
  PRIOR FILING DATE: 2000-10-02
  PRIOR APPLICATION NUMBER: 09/119,788
  PRIOR FILING DATE: 1998-07-21
  PRIOR APPLICATION NUMBER: 60/053,790
  PRIOR FILING DATE: 1997-07-25
  NUMBER OF SEO ID NOS: 2
  SOFTWARE: FastSEQ for Windows Version 3.0
 SEQ ID NO 1
   LENGTH: 1633
   TYPE: DNA
   ORGANISM: HOMO SAPIENS
US-10-282-717-1
 Query Match
                  46.1%; Score 511.8; DB 15; Length 1633;
 Best Local Similarity 70.0%; Pred. No. 5.2e-134;
 Matches 706; Conservative
                          0; Mismatches 297;
                                           Indels
                                                      Gaps
                                                             1;
Qy
        80 ATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTGTACCCAAAACAGTATGAGT 139
           Db
        217 ACGACGAGGAATTCCTGCGGTACCTGTGGAGGGAATACCTGCACCCGAAAGAATATGAGT 276
        140 GGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCCCTGGTGGGCAACACGCTGG 199
Qv
           1111
Db
        277 GGGTCCTGATCGCCGGGTACATCATCGTGTTCGTCGTGGCTCTCATTGGGAACGTCCTGG 336
        200 TCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTCACCAACTACTTCATTGTCA 259
Qy
```

Db	. 337		396
Qу	260	ACCTGTCCCTGGCTGACGTTCTGGTGACTGCTATCTGCCTGC	319
Db	397		456
Qу	320	ACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAGGTCATCCCCTATCTACAGG	379
Db	457		516
Qу	380	CTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCGCTGGTATG	439
Db	517		576
Qy .	440	CCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGGGCCCGTGGCTCCATCCTGG	499
Db	577	CAATCTGTCACCCTTTGATGTTTAAGAGCACAGCAAAGCGGGCCCGTAACAGCATTGTCA	636
Qу	500	GCATCTGGGCTGTCGCCGGCCATCATGGTGCCCCAGGCTGCAGTCATGCAATCCAGCA	559
Db	637		696
Qу	560	GTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGAACGCTGGG	619
Db	697	CCGTGTTCCCAGGCTTAGCCAATAAAACCACCCTCTTTACGGTGTGATGAGCGCTGGG	756
Qу	620	CAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTTATTGTCACCTACCT	679
Db	757	GTGGTGAAATTTATCCCAAGATGTACCACATCTGTTTCTTTC	816
Qу	680	CACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGA	739
Db	817	CACTGTGTCTCATGGTGTTGGCTTATCTGCAAATATTTCGCAAACTCTGGTGTCGACAGA	876
Qу	740	TCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCAGCTGGGGG	799
Db	877	TCCCTGGAACATCATCTGTAGTTCAGAGAAAATGGAAGCCCCTGCAGCCTGTTT	930
Qу	800	ACCTGGAGCAGGGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCCTTCCTGGCTGAAG	859
Db	931	CACAGCCTCGAGGGCCAGGACGACGAAGTCCCGGATGGGCGCTGTGGCGGCTGAAA	990
Qу	860	TGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGGTGCTGCTGTCT	919
Db	991	TAAAGCAGATCCGAGCCAGAAGGAAAACAGCCCGGATGTTGATGGTTTTTGGTAT	1050
Qу	920	TCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGT	979
Db	1051	TTGCAATTTGCTATCTACCAATTAGCATCCTCAATGTGCTAAAGAGAGTATTTGGGATGT	1110
Qу	980	TCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTCACCTTCTCCCACTGGCTGG	1039
Db	1111	TTGCCCATACTGAAGACAGAGAGACTGTGTATGCCTGGTTTACCTTTTCACACTGGCTTG	1170
QУ	1040	TGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTCCTCAGTGG 1088	

J.A.1

, 51.55

```
RESULT 14
US-10-225-567A-369
; Sequence 369, Application US/10225567A
; Publication No. US20030113798A1
; GENERAL INFORMATION:
  APPLICANT: LifeSpan Biosciences
  APPLICANT: Brown, Joseph P.
  APPLICANT: Burmer, Glenna C.
  APPLICANT: Roush, Christine L.
  TITLE OF INVENTION: ANTIGENIC PEPTIDES AND ANTIBODIES FOR G PROTEIN-COUPLED
RECEPTORS (GPCRS)
  FILE REFERENCE: 1920-4-4
  CURRENT APPLICATION NUMBER: US/10/225,567A
  CURRENT FILING DATE: 2001-12-19
  PRIOR APPLICATION NUMBER: 60/257,144
  PRIOR FILING DATE: 2000-12-19
  NUMBER OF SEQ ID NOS: 2292
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 369
   LENGTH: 1843
   TYPE: DNA
   ORGANISM: Homo sapiens
US-10-225-567A-369
 Query Match
                    46.1%; Score 511.8; DB 15; Length 1843;
 Best Local Similarity 70.0%; Pred. No. 5.3e-134;
 Matches 706; Conservative
                         0; Mismatches 297; Indels
                                                  6; Gaps
                                                           1;
Qу
        80 ATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTGTACCCAAAACAGTATGAGT 139
          Db
       428 ACGACGAGGAATTCCTGCGGTACCTGTGGAGGGAATACCTGCACCCGAAAGAATATGAGT 487
Qy
       140 GGGTCCTCATCGCAGCCTATGTGGCTGTTCGTCGTGGCCCTGGTGGGCAACACGCTGG 199
          Db
       488 GGGTCCTGATCGCCGGGTACATCGTGTTCGTCGTGGCTCTCATTGGGAACGTCCTGG 547
       200 TCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTCACCAACTACTTCATTGTCA 259
Qγ
          Db
       548 TTTGTGTGGCAGTGTGGAAGAACCACCACATGAGGACGGTAACCAACTACTTCATAGTCA 607
       Ov
          Db
       608 ATCTTTCTCTGGCTGATGTGCTCGTGACCATCACCTGCCTTCCAGCCACACTGGTCGTGG 667
Qу
       320 ACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAGGTCATCCCCTATCTACAGG 379
          668 ATATCACTGAGACCTGGTTTTTTGGACAGTCCCTTTGCAAAGTGATTCCTTATCTACAGA 727
Db
       380 CTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCGCTGGTATG 439
Qy
          Dh
       728 CCGTGTCGGTGTCTGTCCTCACACTGAGCTGTATCGCCTTGGATCGGTGGTATG 787
       440 CCATCTGCCACCACTATTGTTCAAGAGCACAGCCCGGCGGGCCCGTGGCTCCATCCTGG 499
Qу
```

Db	788	${\tt CAATCTGTCACCCTTTGATGTTTAAGAGCACAGCAAAGCGGGCCCGTAACAGCATTGTCA}$	847
QУ	500	GCATCTGGGCTGTCGCTGGCCATCATGGTGCCCCAGGCTGCAGTCATGCAATCCAGCA	559
Db	848	TCATCTGGATTGTCTCCTGCATTATAATGATTCCTCAGGCCATCGTCATGGAGTGCAGCA	907
Qу	560	GTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGAACGCTGGG	619
Db	908	CCGTGTTCCCAGGCTTAGCCAATAAAACCACCCTCTTTACGGTGTGATGAGCGCTGGG	967
Qу	620	CAGATGACCTCTATCCCAAGATCTACCACAGTTGCTTCTTTATTGTCACCTACCT	679
Db	968	GTGGTGAAATTTATCCCAAGATGTACCACATCTGTTTCTTTC	1027
Qy .	680	CACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGA	739
Db	1028	CACTGTGTCTCATGGTGTTGGCTTATCTGCAAATATTTCGCAAACTCTGGTGTCGACAGA	1087
Qу	740	TCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCAGCTGGGGG	799
Db	1088	TCCCTGGAACATCATCTGTAGTTCAGAGAAAATGGAAGCCCCTGCAGCCTGTTT	1141
Qу	800	ACCTGGAGCAGGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCCTTCCTGGCTGAAG	859
Db	1142	CACAGCCTCGAGGGCCAGGACAACGAAGTCCCGGATGAGCGCTGTGGCGGCTGAAA	1201
Qу	860	TGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGGTGCTGCTGTCT	
Db	1202	TAAAGCAGATCCGAGCCAGAAGGAAAACAGCCCGGATGTTGATGGTTGTGCTTTTGGTAT	
Qу	. 920	TCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGT	979
Db	1262	TTGCAATTTGCTATCTACCAATTAGCATCCTCAATGTGCTAAAGAGAGTATTTGGGATGT	1321
Qу	980	TCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTCACCTTCTCCCACTGGCTGG	1039
Db	1322	TTGCCCATACTGAAGACAGAGAGACTGTGTATGCCTGGTTTACCTTTTCACACTGGCTTG	1381
Qу	1040	TGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTCCTCAGTGG 1088	
Db	1382	TATATGCCAATAGTGCTGCGAATCCAATTATTTATAATTTTCTCAGTGG 1430	

RESULT 15

US-09-826-509-550

- ; Sequence 550, Application US/09826509
- ; Publication No. US20030204073A1
- ; GENERAL INFORMATION:
- ; APPLICANT: Lehmann-Bruinsma, Karin
- ; APPLICANT: Liaw, Chen W.
- ; APPLICANT: Lin, I-Lin
- ; TITLE OF INVENTION: No. US20030204073A1-Endogenous, Constitutively Activated Known G

155

- ; TITLE OF INVENTION: Protein-Coupled Receptors
- ; FILE REFERENCE: AREN-207
- ; CURRENT APPLICATION NUMBER: US/09/826,509
- ; CURRENT FILING DATE: 2001-04-05

```
PRIOR FILING DATE: 2000-04-07
    PRIOR APPLICATION NUMBER: 09/170,496
    PRIOR FILING DATE: 1998-10-13
    NUMBER OF SEQ ID NOS: 589
    SOFTWARE: PatentIn Version 2.1
   SEQ ID NO 550
      LENGTH: 1335
      TYPE: DNA
      ORGANISM: Homo sapiens
US-09-826-509-550
   Query Match
                                       45.7%; Score 507; DB 11; Length 1335;
   Best Local Similarity
                                      69.7%; Pred. No. 1.1e-132;
   Matches 703; Conservative
                                                 0; Mismatches 300;
                                                                                 Indels
                                                                                                   6;
                                                                                                        Gaps
                                                                                                                     1:
                80 ATGAAGATGAGTTTCTCCGCTATCTGTGGCGTGATTATCTGTACCCAAAACAGTATGAGT 139
Qу
                     Db
               104 ACGACGAGGAATTCCTGCGGTACCTGTGGAGGGAATACCTGCACCCGAAAGAATATGAGT 163
               140 GGGTCCTCATCGCAGCCTATGTGGCTGTGTTCGTCGTGGCCCTGGTGGGCAACACGCTGG 199
Qу
                     Db
               164 GGGTCCTGATCGCCGGGTACATCATCGTGTTCGTCGTGGCTCTCATTGGGAACGTCCTGG 223
Qу
               200 TCTGCCTGGCCGTGTGGCGGAACCACCACATGAGGACAGTCACCAACTACTTCATTGTCA 259
                     Db
               224 TTTGTGTGGCAGTGTGGAAGAACCACCACATGAGGACGGTAACCAACTACTTCATAGTCA 283
               Qу
                     284 ATCTTTCTCTGGCTGATGTGCTCGTGACCATCACCTGCCTTCCAGCCACACTGGTCGTGG 343
Db
               320 ACATCACTGAGTCCTGGCTGTTCGGCCATGCCCTCTGCAAGGTCATCCCCTATCTACAGG 379
Qy
                     344 ATATCACTGAGACCTGGTTTTTTGGACAGTCCCTTTGCAAAGTGATTCCTTATCTACAGA 403
Db
               380 CTGTGTCCGTGTCAGTGGCAGTGCTAACTCTCAGCTTCATCCCCCTGGACCGCTGGTATG 439
Qy
                     Db
               404 CCGTGTCGGTGTCTGTCTCTCACACTGAGCTGTATCGCCTTGGATCGGTGGTATG 463
               440 CCATCTGCCACCCACTATTGTTCAAGAGCACAGCCCGGCGGGCCCGTGGCTCCATCCTGG 499
Qy
                     Db
               464 CAATCTGTCACCCTTTGATGTTTAAGAGCACAGCAAAGCGGGCCCGTAACAGCATTGTCA 523
               500 GCATCTGGGCTGTCCCTGGCCATCATGGTGCCCCAGGCTGCAGTCATGCAATCCAGCA 559
Qy
                   J. 474 | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1] | [1]
                                                      524 TCATCTGGATTGTCTCCTGCATTATAATGATTCCTCAGGCCATCGTCATGGAGTGCAGCA 583
Db
               560 GTGTGCTGCCTGAGCTAGCCAACCGCACACGGCTCTTCTCACTCTGTCATGAACGCTGGG 619
Qy
                        - 11
                                                                     584 CCGTGTTCCCAGGCTTAGCCAATAAAACCACCCTCTTTACGGTGTGATGAGCGCTGGG 643
Db
               Qy
                        Db
               680 CACTGGGCCTCATGGCCATGGCCTATTTCCAGATATTCCGCAAGCTCTGGGGCCGCCAGA 739
Qу
```

PRIOR APPLICATION NUMBER: 60/195.747

D)-	704		7.60
Db	704	CACTGTGTCTCATGGTGTTGGCTTATCTGCAAATATTTCGCAAACTCTGGTGTCGACAGA	763
Qу	740	TCCCCGGCACCACCTCAGCACTGGTGCGGAACTGGAAGCGCCCCTCAGACCAGCTGGGGG	799
Db	764	TCCCTGGAACATCATCTGTAGTTCAGAGAAAATGGAAGCCCCTGCAGCCTGTTT	817
Qу	800	ACCTGGAGCAGGCCTGAGTGGAGAGCCCCAGCCCCGGGGCCGCCCTTCCTGGCTGAAG	859
Db	818	CACAGCCTCGAGGGCCAGGACAGCCAACGAAGTCCCGGATGAGCGCTGTGGCGGCTGAAA	877
Qу		TGAAGCAGATGCGTGCACGGAGGAAGACAGCCAAGATGCTGATGGTGGTGCTGGTCT	
Db		TAAAGCAGATCCGAGCCAGAAGGAAAACAAAACGGATGTTGATGGTTGTGCTTTTGGTAT	
Qу		TCGCCCTCTGCTACCTCCCCATCAGCGTCCTCAATGTCCTTAAGAGGGTGTTCGGGATGT	3,3
Db		TTGCAATTTGCTATCTACCAATTAGCATCCTCAATGTGCTAAAGAGAGTATTTGGGATGT	
Qy		TCCGCCAAGCCAGTGACCGCGAAGCTGTCTACGCCTGCTTCACCTTCŢCCCACTGGCTGG	
Db		TTGCCCATACTGAAGACAGAGAGACTGTGTATGCCTGGTTTACCTTTTCACACTGGCTTG	1057
Qγ		TGTACGCCAACAGCGCTGCCAACCCCATCATCTACAACTTCCTCAGTGG 1088	
Db	1058	TATATGCCAATAGTGCTGCGAATCCAATTATTTATAATTTTCTCAGTGG 1106	

Search completed: October 16, 2004, 03:40:42

. . 2.9

Job time : 575.496 secs