Task 5: Network Packet Capture and Analysis Using Wireshark

1. Objective

To capture live network traffic using Wireshark, identify and analyse the packets for three main protocols (DNS, TCP, ICMP), and understand the role each plays in network communications.

2. What is Wireshark?

Wireshark is a free, open-source tool that captures and inspects network traffic at the packet level. It's widely used in cybersecurity for:

- Network troubleshooting
- Protocol analysis
- Security investigations

It allows you to see exactly what data is travelling over your network.

3. Tools Used

- Wireshark (latest version)
- Windows 10 laptop (test system and traffic source)
- Chrome browser (for website visits)
- Snipping Tool (for screenshots)

4. Step-by-Step Process

Step 1: Install Wireshark

- Downloaded from https://www.wireshark.org/download.html
- Completed installation with default settings.

Step 2: Start Live Capture

- Launched Wireshark.
- Selected my active network interface (Wi-Fi 2).
- Clicked the blue shark fin icon to start capture.

Step 3: Generate Network Traffic

- Opened browser and visited a few websites (e.g., roadmap.sh).
- This generated DNS queries, TCP traffic, and ICMP echo requests/replies.

Step 4: Stop Capture

- Let capture run for about 2 minutes.
- Stopped capture by clicking the red square icon.

Step 5: Filter by Protocol

- In the filter bar:
- For DNS: dns

For TCP: tcp

For ICMP: icmp

Verified packet lists changed according to each protocol.

Step 6: Inspect Packets

- Selected example packets to view details in the middle and bottom panes.
- Noted source/destination IPs, request/response types, and packet info.

Step 7: Save the Capture

- File → Save As → network-capture.pcap
- This file is part of deliverables.

5. Protocols Identified & Details

Protocol	Description	Example from Capture
DNS	Resolves human-readable domain names into IP addresses	Query for roadmap.sh and its response
ТСР	Provides reliable, ordered data delivery over the network	TCP handshake to a remote web server
ICMP	Used for connectivity tests and diagnostics	Echo request/reply from roadmap.sh

6. Summary & Learning

By using Wireshark, I learned how to:

- Start and stop live traffic captures.
- Filter for specific protocols.
- Identify the role of DNS, TCP, and ICMP in daily network activity.
- Save and document packet captures for analysis.

This task improved my understanding of network operations and protocol-level communication, which is essential for cybersecurity analysis.