

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of

Docket No: Q80720

Toshiki TAGUCHI, et al.

Appln. No.: 10/809,550

Group Art Unit: not yet assigned

Confirmation No.: not yet assigned

Examiner: not yet assigned

Filed: March 26, 2004

For:

INK AND INK SET

SUBMISSION OF PRIORITY DOCUMENTS

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

Submitted herewith are certified copies of the priority documents on which claims to priority were made under 35 U.S.C. § 119. The Examiner is respectfully requested to acknowledge receipt of said priority documents.

SUGHRUE MION, PLLC

Telephone: (202) 293-7060

Facsimile: (202) 293-7860

WASHINGTON OFFICE

23373

CUSTOMER NUMBER

Enclosures:

Japan 2003-089019

Japan 2004-030413

Date: May 26, 2004

Respectfully submitted,

Mark Boland

Registration No. 32,197

Inventor's name: Toshiki TAGUCHI, et al.

Title: Ink and ink set

Application No.: 10/809,550 Filed: March 26, 2004

Group Art Unit: not yet assigned SUGHRUE Reference No.: Q80720 SUGHRUE Telephone No.: 202-293-7060

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 3月27日

出 願 番 号 Application Number:

特願2003-089019

[ST. 10/C]:

[JP2003-089019]

出 願 人
Applicant(s):

富士写真フイルム株式会社

2004年 4月23日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願

【整理番号】 P044167

【提出日】 平成15年 3月27日

【あて先】 特許庁長官殿

【国際特許分類】 C09D 11/00

B41J 2/01

B41M 5/00

【発明者】

【住所又は居所】 静岡県富士宮市大中里200番地 富士写真フイルム株

式会社内

【氏名】 田口 敏樹

【発明者】

【住所又は居所】 静岡県富士宮市大中里200番地 富士写真フイルム株

式会社内

【氏名】 和地 直孝

【特許出願人】

【識別番号】 000005201

【氏名又は名称】 富士写真フイルム株式会社

【代理人】

【識別番号】 100105647

【弁理士】

【氏名又は名称】 小栗 昌平

【電話番号】 03-5561-3990

【選任した代理人】

【識別番号】 100105474

【弁理士】

【氏名又は名称】 本多 弘徳

【電話番号】 03-5561-3990

【選任した代理人】

【識別番号】 100108589

【弁理士】

【氏名又は名称】 市川 利光

【電話番号】 03-5561-3990

【選任した代理人】

【識別番号】 100115107

【弁理士】

【氏名又は名称】 高松 猛

【電話番号】 03-5561-3990

【選任した代理人】

【識別番号】 100090343

【弁理士】

【氏名又は名称】 栗宇 百合子

【電話番号】 03-5561-3990

【手数料の表示】

【予納台帳番号】 092740

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 0003489

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 インクジェット用インクおよびインクセット

【特許請求の範囲】

【請求項1】 下記一般式 $(1) \sim (4)$ で表される染料を、少なくとも1種水性媒体中に溶解したインクジェット用インクであって、該インク中に含まれる染料の25 で大気圧条件下における水100 gへの溶解度が、すべて15 g以上であることを特徴とするインクジェット用インク。

一般式(1);

 $A_{11} - N = N - B_{11}$

一般式(1)中、 A^{11} および B^{11} は、それぞれ独立して、置換されていてもよい複素環基を表す。

一般式(2);

【化1】

一般式(2)中、 X_{21} 、 X_{22} 、 X_{23} および X_{24} は、それぞれ独立に、 $-SO-Z_2$ 、 $-SO_2-Z_2$ 、 $-SO_2NR_{21}R_{22}$ 、スルホ基、 $-CONR_{21}R_{22}$ 、または $-COOR_{21}$ を表す。 Z_2 は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。 R_{21} 、 R_{22} は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキ

ル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基 、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表 す。

 Y_{21} 、 Y_{22} 、 Y_{23} および Y_{24} は、それぞれ独立に、一価の置換基を表す。

 a_{21} ~ a_{24} 、 b_{21} ~ b_{24} は、それぞれ X_{21} ~ X_{24} および Y_{21} ~ Y_{24} の置換基数を表す。 a_{21} ~ a_{24} はそれぞれ独立に0~4の数を表すが、全てが同時に0になることはない。 b_{21} ~ b_{24} はそれぞれ独立に0~4の数を表す。なお、 a_{21} ~ a_{24} および b_{21} ~ b_{24} が2以上の数を表すとき、複数の X_{21} ~ X_{24} および Y_{21} ~ Y_{24} はそれぞれ互いに同一でも異なっていてもよい。

Mは水素原子、金属原子またはその酸化物、水酸化物もしくはハロゲン化物である。

一般式(3);

【化2】

$$A_{31}-N=N- \begin{array}{c} B_{32} B_{31} \\ \hline \\ R_{36} \\ \hline \\ G_{3} \\ \end{array}$$

一般式(3)中、A31は5員複素環を表す。

 B_{31} および B_{32} は、各々、 $= CR_{31} -$ 、 $- CR_{32} =$ を表すか、またはいずれか 一方が窒素原子、他方が $= CR_{31} -$ もしくは $- CR_{32} =$ を表す。

R35およびR36は、各々独立に、水素原子、脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルもしくはアリールスルホニル基、またはスルファモイル基を表し、各基は更に置換基を有していてもよい。

G3、R31、R32は、各々独立に、水素原子、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、カルボキシル基、カルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環オキシカルボニル基、アシル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、複素環オキシ基、シリルオキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ

3/

基、アリールオキシカルボニルオキシ基、アミノ基(アリールアミノ基、複素環アミノ基を含む)、アシルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アルキルもしくはアリールスルホニルアミノ基、複素環スルホニルアミノ基、ニトロ基、アルキルもしくはアリールチオ基、アルキルもしくはアリールスルホニル基、複素環スルホニル基、でルキルもしくはアリールスルフィニル基、複素環スルホニル基、でルキルもしくはアリールスルフィニル基、複素環スルフィニル基、スルファモイル基、スルホ基、または複素環チオ基を表し、各基は更に置換されていてもよい。

 R_{31} と R_{35} 、または R_{35} と R_{36} が結合して5または6員環を形成してもよい。

一般式(4);

$$A^{41}$$
 - $(N = N - (B^{41}) m) n - N = N - C^{41}$

一般式(4)中、 A_{41} 、 B_{41} および C_{41} は、それぞれ独立に、置換されていてもよい芳香族基または複素環基を表す。mは1または2であり、nは0以上の整数である。

【請求項2】 インクがすべて請求項1記載のインクから形成されたインクセット。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、吐出安定性に優れたインクジェット用インクおよびインクセットに 関する。

[0002]

【従来の技術】

近年、コンピューターの普及に伴い、インクジェットプリンターがオフィスだけでなく家庭で紙、フィルム、布等に印字するために広く利用されている。

インクジェット記録方法には、ピエゾ素子により圧力を加えて液滴を吐出させる方式、熱によりインク中に気泡を発生させて液滴を吐出させる方式、超音波を用いた方式、あるいは静電力により液滴を吸引吐出させる方式がある。これらのインクジェット記録用インク組成物としては、水性インク、油性インク、あるい

は固体(溶融型)インクが用いられる。これらのインクのうち、製造、取り扱い性・臭気・安全性等の点から水性インクが主流となっている。

[0003]

これらのインクジェット記録用インクに用いられる着色剤に対しては、溶剤に対する溶解性が高いこと、高濃度記録が可能であること、色相が良好であること、光、熱、空気、水や薬品に対する堅牢性に優れていること、受像材料に対して定着性が良く滲み難いこと、インクとしての保存性に優れていること、毒性がないこと、純度が高いこと、さらには、安価に入手できることが要求されている。しかしながら、これらの要求を高いレベルで満たす着色剤を捜し求めることは、極めて難しい。

既にインクジェット用として様々な染料や顔料が提案され、実際に使用されているが、未だに全ての要求を満足する着色剤は、発見されていないのが現状である。カラーインデックス(C. I.)番号が付与されているような、従来からよく知られている染料や顔料では、インクジェット記録用インクに要求される色相や堅牢性を両立させることは難しい。

[0004]

一方でインクを調液する際に、そのインク中に不溶解の染料固形物が存在すると、インクの吐出性に問題があることがわかった。特に我々が検討してきたような分子吸光係数の高い染料では、不吐出による画像の乱れやビーディングの発生が問題であることがわかった。

[0005]

【発明が解決しようとする課題】

本発明は、上記問題に鑑み、不吐出による画像の乱れやビーディングが発生せず、吐出安定性に優れた耐久性に優れたインクジェット用インクおよびインクセットセットを提供することを目的とする。

[0006]

【課題を解決するための手段】

本発明の目的は、下記 2 項のインクジェット用インクおよびインクセットによって達成された。

1. 下記一般式(1)~(4)で表される染料を、少なくとも1種水性媒体中に溶解したインクジェット用インクであって、該インク中に含まれる染料の25℃大気圧条件下における水100gへの溶解度が、すべて15g以上であることを特徴とするインクジェット用インク。

[0007]

一般式(1);

 $A_{11} - N = N - B_{11}$

[0008]

一般式 (1) 中、 A^{11} および B^{11} は、それぞれ独立して、置換されていてもよい複素環基を表す。

[0009]

一般式(2);

[0010]

【化3】

[0011]

一般式(2)中、 X_{21} 、 X_{22} 、 X_{23} および X_{24} は、それぞれ独立に、 $-SO-Z_2$ 、 $-SO_2-Z_2$ 、 $-SO_2NR_{21}R_{22}$ 、スルホ基、 $-CONR_{21}R_{22}$ 、または $-COOR_{21}$ を表す。 Z_2 は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。 R_{21} 、 R_{22} は、それぞれ独立に、水

素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。

 Y_{21} 、 Y_{22} 、 Y_{23} および Y_{24} は、それぞれ独立に、一価の置換基を表す。

 a_{21} ~ a_{24} 、 b_{21} ~ b_{24} は、それぞれ X_{21} ~ X_{24} および Y_{21} ~ Y_{24} の置換基数を表す。 a_{21} ~ a_{24} はそれぞれ独立に0~4の数を表すが、全てが同時に0になることはない。 b_{21} ~ b_{24} はそれぞれ独立に0~4の数を表す。なお、 a_{21} ~ a_{24} および b_{21} ~ b_{24} が2以上の数を表すとき、複数の X_{21} ~ X_{24} および Y_{21} ~ Y_{24} はそれぞれ互いに同一でも異なっていてもよい。

Mは水素原子、金属原子またはその酸化物、水酸化物もしくはハロゲン化物である。

[0012]

一般式(3);

[0013]

【化4】

[0014]

一般式(3)中、A31は5員複素環を表す。

 B_{31} および B_{32} は、各々、= CR_{31} -、- CR_{32} =を表すか、またはいずれか - 方が窒素原子、他方が= CR_{31} -もしくは- CR_{32} =を表す。

R35およびR36は、各々独立に、水素原子、脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルもしくはアリールスルホニル基、またはスルファモイル基を表し、各基は更に置換基を有していてもよい。

G3、R31、R32は、各々独立に、水素原子、ハロゲン原子、脂肪族基、芳香

族基、複素環基、シアノ基、カルボキシル基、カルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環オキシカルボニル基、アシル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アリールアミノ基、複素環アミノ基を含む)、アシルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アルキルもしくはアリールスルホニルアミノ基、複素環スルホニルアミノ基、ニトロ基、アルキルもしくはアリールスルホニル基、複素環スルホニル基、複素環スルホニル基、複素環スルホニル基、でルキルもしくはアリールスルホニル基、複素環スルホニル基、複素環スルホニル基、複素環スルホニル基、複素環スルホニル基、複素環スルホニル基、表別ファモイル基、スルホ基、または複素環チオ基を表し、各基は更に置換されていてもよい。

 R_{31} と R_{35} 、または R_{35} と R_{36} が結合して5または6員環を形成してもよい。

[0015]

一般式(4);

$$A^{41}$$
 - $(N = N - (B^{41}) m) n - N = N - C^{41}$

 $[0\ 0\ 1\ 6\]$

一般式(4)中、 A_{41} 、 B_{41} および C_{41} は、それぞれ独立に、置換されていてもよい芳香族基または複素環基を表す。mは1または2であり、nは0以上の整数である。

[0017]

2. インクがすべて上記1に記載のインクから形成されたインクセット。

[0018]

【発明の実施の形態】

以下、本発明について詳細に説明する。

先ず、一般式(1) \sim (4) で表される染料を含め、本発明で用いられる染料について説明する。

本発明では、酸化電位が1.0 Vより貴である染料 (好ましくは1.1 Vより貴である染料、特に好ましくは1.2 Vより貴である染料) を用いることが好ま

しく、染料の酸化電位を1.0 Vより貴とすることにより、画像耐久性、特にオ ゾン耐性に優れる画像を得ることができる。

[0019]

酸化電位の値(Eox)は当業者が容易に測定することができる。この方法に関しては、例えばP. Delahay著"New Instrumental Methods in Electrochemistry"(1954年 Interscience Publishers社刊)、A. J. Bard他著"Electrochemical Methods"(1980年 JohnWiley & Sons社刊)、藤嶋昭他著"電気化学測定法"(1984年 技報堂出版社刊)などに記載されている。

[0020]

具体的には、酸化電位は、過塩素酸ナトリウムや過塩素酸テトラプロピルアンモニウムなどの支持電解質を含むジメチルホルムアミドやアセトニトリルなどの溶媒中に、被験試料を $1\times10^{-4}\sim1\times10^{-6}$ モル/リットルの濃度に溶解して、サイクリックボルタンメトリーや直流ポーラログラフィーを用いてSCE(飽和カロメル電極)に対する値として測定する。この値は、液間電位差や試料溶液の液抵抗などの影響で、数10ミルボルト程度偏位することがあるが、標準試料(例えばハイドロキノン)を入れて電位の再現性を保証することができる。なお、電位を一義的に規定するために、本発明では、0.1moldm-3の過塩素酸テトラプロピルアンモニウムを支持電解質として含むジメチルホルムアミド中(染料の濃度は0.001moldm-3)で直流ポーラログラフィーにより測定した値(vsSCE)を染料の酸化電位とする。水溶性染料の場合では直接N、N-ジメチルホルムアミドに溶解し辛い場合があるが、その場合には出来る限り少量の水を用いて染料を溶解した後、含水量が<math>2%以下となるようにN、N-ジメチルホルムアミドで希釈して測定する。

$[0\ 0\ 2\ 1]$

酸化電位(Eox)の値は試料から電極への電子の移りやすさを表し、その値が 大きい(酸化電位が貴である)ほど試料から電極への電子の移り難い、言い換え れば、酸化され難いことを表す。化合物の構造との関連では、電子求引性基を導 入することにより酸化電位はより貴となり、電子供与性基を導入することにより 酸化電位はより卑となる。

[0022]

上記特性を有する染料として、特定の性能や構造を有する、アゾ染料(イエロー染料、マゼンタ染料、ブラック染料)、フタロシアニン染料(シアン染料)が 挙げられる。以下、それぞれの染料について説明する。

[0023]

〔イエロー染料〕

本発明で使用されるイエロー染料は、該イエロー染料を含むインクを反射型メディアに印画した後に、ステータスAフィルターを通して反射濃度を測定し、イエロー領域における反射濃度(D_B)が、 $0.90\sim1.10$ の点を1点そのインクの初期濃度として規定して、この印画物を、5ppmのオゾンを常時発生可能なオゾン褪色試験機を用いて強制的に褪色させ、その反射濃度が初期濃度の80%(残存率)となるまでの時間(t)から求めた強制褪色速度定数(k)を定めたときに、該速度定数を 5.0×10^{-2} [hour-1] 以下とするものが好ましい。これにより、堅牢性、特にオゾンガスに対する堅牢性を向上させることができ、この観点から、該速度定数は 3.0×10^{-2} [hour-1] 以下が好ましく、 1.0×10^{-2} [hour-1] 以下が分ましく。 1.0×10^{-2} [hour-1] 以下が分ましく。

ここで、反射濃度は、反射濃度計(X-R i t e 3 1 0 TR)を用いてステータスAフィルター(ブルー)により測定される値である。また、強制褪色速度定数(k)は、残存率=e x p (-k t)、即ち、k=(-l n 0. 8) /t から求められる値である。

[0024]

また、イエロー染料は、前述した通り、酸化電位が1.0V(vs SCE) よりも貴であることが好ましく、1.1V(vs SCE) よりも貴であることがさらに好ましく、1.2V(vs SCE) よりも貴であることが特に好ましい。本発明では、イエロー染料骨格に電子求引性基を導入して酸化電位をより貴とすることが望ましい。

[0025]

また、本発明において使用する染料は、堅牢性が良好であると共に色相が良好であるということが好ましく、特に吸収スペクトルにおいて長波側の裾切れが良好であることが好ましい。このため水溶液における λ maxが390nmから470nmにあり、 λ maxの吸光度 I(λ max)と、 λ max+70nmの吸光度 I(λ max+70nm)/ I(λ max)が、0.2以下であるイエロー染料が好ましく、0.1以下がさらに好ましい。該比の下限は理想的には0であるが、現実的には0.01程度である。

[0026]

このような酸化電位及び吸収特性を満足する染料として、一般式(1)で表さ 染料が挙げられる。

[0027]

一般式(1) $A_{11}-N=N-B_{11}$

[0028]

一般式(1)中、 A_{11} および B_{11} は、それぞれ独立して、置換されていてもよい複素環基を表す。

複素環としては、5 員環または6 員環から構成された複素環が好ましく、単環構造であっても、2 つ以上の環が縮合した多環構造であってもよく、芳香族複素環であっても非芳香族複素環であってもよい。前記複素環を構成するヘテロ原子としては、N,O,S原子が好ましい。

[0029]

一般式(1)において、A₁₁で表される複素環としては、5-ピラゾロン、ピラゾール、トリアゾール、オキサゾロン、イソオキサゾロン、バルビツール酸、ピリドン、ピリジン、ローダニン、ピラゾリジンジオン、ピラゾロピリドン、メルドラム酸およびこれらの複素環にさらに炭化水素芳香環や複素環が縮環した縮合複素環が好ましい。中でも5-ピラゾロン、5-アミノピラゾール、ピリドン、2,6-ジアミノピリジン、ピラゾロアゾール類が好ましく、5-アミノピラゾール、2-ヒドロキシ-6-ピリドン、ピラゾロトリアゾールが特に好ましい

[0030]

B₁₁で表される複素環としては、ピリジン、ピラジン、ピリミジン、ピリダジ ン、トリアジン、キノリン、イソキノリン、キナゾリン、シンノリン、フタラジ ン、キノキサリン、ピロール、インドール、フラン、ベンゾフラン、チオフェン 、ベンゾチオフェン、ピラゾール、イミダゾール、ベンゾイミダゾール、トリア ゾール、オキサゾール、イソオキサゾール、ベンゾオキサゾール、チアゾール、 ベンゾチアゾール、イソチアゾール、ベンゾイソチアゾール、チアジアゾール、 ベンゾイソオキサゾール、ピロリジン、ピペリジン、ピペラジン、イミダゾリジ ン、チアゾリンなどが挙げられる。中でもピリジン、キノリン、チオフェン、ベ ンゾチオフェン、ピラゾール、イミダゾール、ベンゾイミダゾール、トリアゾー ル、オキサゾール、イソオキサゾール、ベンゾオキサゾール、チアゾール、ベン ゾチアゾール、イソチアゾール、ベンゾイソチアゾール、チアジアゾール、ベン ゾイソオキサゾールが好ましく、キノリン、チオフェン、ピラゾール、チアゾー ル、ベンゾオキサゾール、ベンゾイソオキサゾール、イソチアゾール、イミダゾ ール、ベンゾチアゾール、チアジアゾールがさらに好ましく、ピラゾール、ベン ゾチアゾール、ベンゾオキサゾール、イミダゾール、1,2,4-チアジアゾー ル、1,3,4ーチアジアゾールが特に好ましい。

[0031]

A11およびB11で表される複素環基は置換されていてもよく、置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、シアノ基、ヒドロキシル基、ニトロ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルもしくはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、アルキルもしくはアリールスルカナエルをしくはアリールスルカールスルカルボニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、イミド基、ホスフィール基、ホスフィニル表、ホスフィニルオキ

シ基、ホスフィニルアミノ基、シリル基、またはイオン性親水性基が例として挙 げられる。

[0032]

一般式(1)の染料を水溶性染料として使用する場合には、分子内にイオン性 親水性基を少なくとも1つ有することが好ましい。イオン性親水性基には、スル ホ基、カルボキシル基、ホスホノ基および4級アンモニウム基等が含まれる。イ オン性親水性基としては、カルボキシル基、ホスホノ基、およびスルホ基が好ま しく、特にカルボキシル基、スルホ基が好ましい。カルボキシル基、ホスホノ基 およびスルホ基は塩の状態であってもよく、塩を形成する対イオンの例には、ア ンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオ ン、カリウムイオン)および有機カチオン(例、テトラメチルアンモニウムイオ ン、テトラメチルグアニジニウムイオン、テトラメチルホスホニウム)が含まれ る。対イオンの中でもアルカリ金属イオン、特にリチウムイオンが好ましい。

一般式(1)で表される染料の中でも、下記一般式(1-A)、(1-B)、(1-C)の染料が好ましい。

一般式(1-A);

[0034]

【化5】

一般式(1-A)中、R1およびR3は、水素原子、シアノ基、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基、アルキルチオ基、アリールチオ基、アリール基またはイオン性親水性基を表し、R2は、水素原子、アルキル基、シクロアルキル基、アラルキル基、カルバモイル基、アシル基、アリール基または複素環基を表し、R4は複素環基を表す。

[0036]

一般式 (1-B);

[0037]

【化6】

[0038]

一般式(1-B)中、R5は、水素原子、シアノ基、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基、アルキルチオ基、アリールチオ基、アリール基またはイオン性親水性基を表し、Zaは-N=、-NH-、または-C(R11)=を表し、ZbおよびZcは各々独立して、-N=または-C(R11)=を表し、R11は水素原子または非金属置換基を表し、R6は複素環基を表す。

[0039]

一般式 (1-C);

[0040]

【化7】

[0041]

一般式(1-C)中、R7およびR9は、各々独立して、水素原子、シアノ基、アルキル基、シクロアルキル基、アラルキル基、アリール基、アルキルチオ基、アリールチオ基、アルコキシカルボニル基、カルバモイル基、またはイオン性親水性基を表し、R8は水素原子、ハロゲン原子、アルキル基、アルコキシ基、

アリール基、アリールオキシ基、シアノ基、アシルアミノ基、スルホニルアミノ 基、アルコキシカルボニルアミノ基、ウレイド基、アルキルチオ基、アリールチ オ基、アルコキシカルボニル基、カルバモイル基、スルファモイル基、アルキル スルホニル、アリールスルホニル基、アシル基、アミノ基、ヒドロキシ基、また はイオン性親水性基を表し、R10は複素環基を表す。

[0042]

前記一般式(1-A)、(1-B)および(1-C)中、R1、R2、R3、R5、R7、R8およびR9が表すアルキル基には、置換基を有するアルキル基および無置換のアルキル基が含まれる。前記アルキル基としては、炭素原子数が1乃至20のアルキル基が好ましい。前記置換基の例には、ヒドロキシル基、アルコキシ基、シアノ基、ハロゲン原子、およびイオン性親水性基が含まれる。前記アルキル基の例には、メチル、エチル、ブチル、イソプロピル、tーブチル、ヒドロキシエチル、メトキシエチル、シアノエチル、トリフルオロメチル、3-スルホプロピル、および4-スルホブチルが含まれる。

[0043]

R1、R2、R3、R5、R7、R8およびR9が表すシクロアルキル基には、置換基を有するシクロアルキル基および無置換のシクロアルキル基が含まれる。前記シクロアルキル基としては、炭素原子数が5乃至12のシクロアルキル基が好ましい。前記置換基の例にはイオン性親水性基が含まれる。前記シクロアルキル基の例には、シクロヘキシル基が含まれる。

R1、R2、R3、R5、R7、R8およびR9が表すアラルキル基には、置換基を有するアラルキル基および無置換のアラルキル基が含まれる。前記アラルキル基としては、炭素原子数が7乃至20のアラルキル基が好ましい。前記置換基の例にはイオン性親水性基が含まれる。前記アラルキル基の例には、ベンジル、および2-フェネチルが含まれる。

[0044]

R1、R2、R3、R5、R7、R8およびR9が表すアリール基には、置換基を有するアリール基および無置換のアリール基が含まれる。前記アリール基としては、炭素原子数が6乃至20のアリール基が好ましい。前記置換基の例には

、アルキル基、アルコキシ基、ハロゲン原子、アルキルアミノ基、およびイオン性親水性基が含まれる。前記アリール基の例には、フェニル、p-トリル、p-メトキシフェニル、o-クロロフェニル、およびm-(3-スルホプロピルアミノ)フェニルが含まれる。

[0045]

R1、R2、R3、R5、R7、R8およびR9が表すアルキルチオ基には、 置換基を有するアルキルチオ基および無置換のアルキルチオ基が含まれる。前記 アルキルチオ基としては、炭素原子数が1乃至20のアルキルチオ基が好ましい 。前記置換基の例にはイオン性親水性基が含まれる。前記アルキルチオ基の例に は、メチルチオおよびエチルチオが含まれる。

[0046]

R1、R2、R3、R5、R7、R8およびR9が表すアリールチオ基には、 置換基を有するアリールチオ基および無置換のアリールチオ基が含まれる。前記 アリールチオ基としては、炭素原子数が6乃至20のアリールチオ基が好ましい 。前記置換基の例には、アルキル基、およびイオン性親水性基が含まれる。前記 アリールチオ基の例には、フェニルチオ基およびpートリルチオが含まれる。

[0047]

R2及び後述のR22で表される複素環基は、5 員または6 員の複素環が好ましくそれらはさらに縮環していてもよい。複素環を構成するヘテロ原子としては、N、S、Oが好ましい。また、芳香族複素環であっても非芳香族複素環であっても良い。前記複素環はさらに置換されていてもよく、置換基の例としては、後述のアリール基の置換基と同じものが挙げられる。好ましい複素環は、6 員の含窒素芳香族複素環であり、特にトリアジン、ピリミジン、フタラジンを好ましい例としてあげることができる。

[0048]

R8が表すハロゲン原子としては、フッ素原子、塩素原子および臭素原子が挙 げられる。

R1、R3、R5、R8が表すアルコキシ基には、置換基を有するアルコキシ 基および無置換のアルコキシ基が含まれる。前記アルコキシ基としては、炭素原 子数が1万至20のアルコキシ基が好ましい。前記置換基の例には、ヒドロキシル基、およびイオン性親水性基が含まれる。前記アルコキシ基の例には、メトキシ、エトキシ、イソプロポキシ、メトキシエトキシ、ヒドロキシエトキシおよび3-カルボキシプロポキシが含まれる。

[0049]

R8が表すアリールオキシ基には、置換基を有するアリールオキシ基および無置換のアリールオキシ基が含まれる。前記アリールオキシ基としては、炭素原子数が6乃至20のアリールオキシ基が好ましい。前記置換基の例には、アルコキシ基、およびイオン性親水性基が含まれる。前記アリールオキシ基の例には、フェノキシ、p-メトキシフェノキシおよびo-メトキシフェノキシが含まれる。

R8が表すアシルアミノ基には、置換基を有するアシルアミノ基および無置換のアシルアミノ基が含まれる。前記アシルアミノ基としては、炭素原子数が2乃至20のアシルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アシルアミノ基の例には、アセトアミド、プロピオンアミド、ベンズアミドおよび3,5ージスルホベンズアミドが含まれる。

[0050]

R8が表すスルホニルアミノ基には、置換基を有するスルホニルアミノ基および無置換のスルホニルアミノ基が含まれる。前記スルホニルアミノ基としては、炭素原子数が1乃至20のスルホニルアミノ基が好ましい。前記スルホニルアミノ基の例には、メチルスルホニルアミノ、およびエチルスルホニルアミノが含まれる。

R8が表すアルコキシカルボニルアミノ基には、置換基を有するアルコキシカルボニルアミノ基および無置換のアルコキシカルボニルアミノ基が含まれる。前記アルコキシカルボニルアミノ基としては、炭素原子数が2乃至20のアルコキシカルボニルアミノ基が好ましい。前記置換基の例にはイオン性親水性基が含まれる。前記アルコキシカルボニルアミノ基の例には、エトキシカルボニルアミノが含まれる。

[0051]

R8が表すウレイド基には、置換基を有するウレイド基および無置換のウレイ

ド基が含まれる。前記ウレイド基としては、炭素原子数が1乃至20のウレイド 基が好ましい。前記置換基の例には、アルキル基およびアリール基が含まれる。 前記ウレイド基の例には、3-メチルウレイド、3,3-ジメチルウレイドおよ び3-フェニルウレイドが含まれる。

R7、R8、R9が表すアルコキシカルボニル基には、置換基を有するアルコキシカルボニル基および無置換のアルコキシカルボニル基が含まれる。前記アルコキシカルボニル基としては、炭素原子数が2乃至20のアルコキシカルボニル基が好ましい。前記置換基の例にはイオン性親水性基が含まれる。前記アルコキシカルボニル基の例には、メトキシカルボニルおよびエトキシカルボニルが含まれる。

[0052]

R2、R7、R8、R9が表すカルバモイル基には、置換基を有するカルバモイル基および無置換のカルバモイル基が含まれる。前記置換基の例にはアルキル基が含まれる。前記カルバモイル基の例には、メチルカルバモイル基およびジメチルカルバモイル基が含まれる。

R8が表す置換基を有するスルファモイル基および無置換のスルファモイル基が含まれる。前記置換基の例には、アルキル基が含まれる。前記スルファモイル基の例には、ジメチルスルファモイル基およびジー(2ーヒドロキシエチル)スルファモイル基が含まれる。

[0053]

R8が表すアルキルスルホニルおよびアリールスルホニル基の例には、メチルスルホニルおよびフェニルスルホニルが含まれる。

R2、R8が表すアシル基には、置換基を有するアシル基および無置換のアシル基が含まれる。前記アシル基としては、炭素原子数が1乃至20のアシル基が好ましい。前記置換基の例にはイオン性親水性基が含まれる。前記アシル基の例には、アセチルおよびベンゾイルが含まれる。

[0054]

R8が表すアミノ基には、置換基を有するアミノ基および無置換のアミノ基が含まれる。置換基の例にはアルキル基、アリール基、複素環基が含まれる。アミ

ノ基の例には、メチルアミノ、ジエチルアミノ、アニリノおよび2-クロロアニリノが含まれる。

[0055]

R4、R6、R10で表される複素環基は、一般式(1)のB₁₁で表される置換されていてもよい複素環基と同じであり、好ましい例、さらに好ましい例、特に好ましい例も先述のものと同じである。置換基としては、イオン性親水性基、炭素原子数が1乃至12のアルキル基、アリール基、アルキルまたはアリールチオ基、ハロゲン原子、シアノ基、スルファモイル基、スルホンアミノ基、カルバモイル基、およびアシルアミノ基等が含まれ、前記アルキル基およびアリール基等はさらに置換基を有していてもよい。

[0056]

前記一般式(1-B)中、Zaは-N=、-NH-、または-C(R11)=を表し、ZbおよびZcは各々独立して、-N=または-C(R11)=を表し、R11は水素原子または非金属置換基を表す。R11が表す非金属置換基としては、シアノ基、シクロアルキル基、アラルキル基、アリール基、アルキルチオ基、アリールチオ基、またはイオン性親水性基が好ましい。前記置換基の各々は、R1が表す各々の置換基と同義であり、好ましい例も同様である。前記一般式(1-B)に含まれる2つの5員環からなる複素環の骨格例を下記に示す。

[0057]

【化8】

[0058]

上記で説明した各置換基がさらに置換基を有していてもよい場合の置換基の例としては、先述の一般式(1)の複素環 A_{11} 、 B_{11} に置換してもよい置換基を挙げることが出来る。

[0059]

前記一般式(1-A)~(1-C)で表される染料を水溶性染料として使用する場合には、分子内にイオン性親水性基を少なくとも1つ有することが好ましい。前記一般式(1-A)~(1-C)中の、R1、R2、R3、R5、R7、R8 およびR9の少なくともいずれかがイオン性親水性基である染料の他、前記一般式(1-A)~(1-C)中の、R1~R11がさらにイオン性親水性基を置換基として有する染料が含まれる。

[0060]

上記一般式(1-A)、(1-B)、及び(1-C)のうち、好ましいものは一般式(1-A)であるが、中でも下記一般式(1-A1)で表されるものが特に好ましい。

一般式 (1-A1)

[0061]

【化9】

[0062]

一般式(1-A1)中、R21およびR23は、水素原子、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基またはアリール基を表す。R22は、アリール基または複素環基を表す。XおよびYは、一方は窒素原子を表し、他方は一CR24を表す。R24は、水素原子、ハロゲン原子、シアノ基、アルキル基、アルキルチオ基、アルキルスルホニル基、アルキルスルフィニル基、アルキルオキシカルボニル基、カルバモイル基、アルコキシ基、アリール基、アリールチオ基、アリールスルホニル基、アリールスルフィニル基、アリールオキシ基またはアシルアミノ基を表す。それぞれの置換基はさらに置換していてもよい。

一般式(1-A1)において、イオン性親水性基を有する染料が好ましい。

[0063]

以下に、一般式(1)で表される染料の好ましい具体例を示すが、本発明に用いられる染料は、下記の具体例に限定されるものではない。これらの化合物は特開平2-24191号、特開2001-279145号、特願2000-124832号を参考にして合成できる。

また、以下の具体例では、イオン性親水性基の対イオンとしてナトリウムイオンとする例を多く挙げているが、対イオンとしてはそれに限定するものでなく、合成時に調製し、任意のイオンとすることができる。

[0064]

【化10】

YI-1

$$H_3C$$
 $N=N$
 $N=N$
 $N+N$
 $N+1$
 $N+1$

YI-2

YI-3

$$N=N$$
 $N=N$
 $N=N$

YI-4

[0065]

【化11】

YI-5

NC
$$N=N-N-N$$
 SO_3Na $N+1$ $N+2$ $C_3H_6SO_3Na$

YI-6

YI-7

$$N=N-N-0$$
 $N=N-0$
 $N=$

YI-8

[0066]

【化12】

YI-9

$$NaO_3S$$
 $N=N$
 $N=N$
 NH_2
 CH_3

YI-10

$$HO$$
 $HN-C$
 H_3C
 $N=N N=N N=$

YI-11

$$N=N$$
 $N=N$
 $N=N$

YI-12

[0067]

【化13】

YI-17

YI-14
$$N=N-S$$

$$N=N-S$$

$$SO_3N$$

$$N+N$$

$$N+2$$

$$CH_2CNHSO_2CH_3$$

$$O$$

YI-16

$$H_3C$$
 $N=N-O$
 SO_3Na
 SO_2NH-O
 SO_3Na

SO₃Na

$$N = N - N$$

$$N = N$$

[0068]

【化14】

	R
色素	R
YI-18	CH ₃
Yl-19	C ₃ H ₆ SO ₃ Na
YI-20	Н
YI-21	C₂H₄CN
YI-22	-√SO ₃ Na
YI-23	-CI
YI-24	SO ₃ Na CI ——————————————————————————————————
Y1-25	-Соок
YI-26	COONa
YI-27	SO ₃ Na SO ₃ Na

【化15】

$$R$$
 $N=N-S$ $SC_2H_4SO_3Na$ $N=N-S$ $N+1$ $N+1$

[0070]

【化16】

色素	R	
YI-31		
YI-32	CH ₃	
YI-33	SC ₂ H ₄ SO ₃ Na	
YI-34	SO ₂ C ₂ H ₄ SO ₃ Na	

[0071]

【化17】

色素	R
YI-35	н
YI-36	CH ₃
YI-37	

[0072]

【化18】

色素	R
YI-38	COOC₄H ₉
YI-39	CON(C ₄ H ₉) ₂
YI-40	SO ₂ NHC ₁₂ H ₂₅
YI-41	OC ₈ H ₁₇

[0073]

【化19】

色素	R	R'
YI-42	CON(C ₄ H ₉) ₂	Н
YI-43	COOC ₈ H ₁₇	н
YI-44	CON(C ₄ H ₉) ₂	
YI-45	$CON(C_4H_9)_2$	CH ₃
YI-46	. Н	
YI-47	н	SC ₈ H ₁₇

[0074]

【化20】

$R \nearrow N \nearrow R$		
色素	R	
YI-48	-NHC ₂ H ₄ COOK	
YI-49	-NHC ₂ H ₄ SO ₃ Na	
YI-50	-NH-COOK	
Yl-51	NH- SO₃K SO₃K	
YI-52	KO ₃ S -NH-SO ₃ K	
YI-53	-N+CH ₂ COONa) ₂	
YI-54	KOOC COOK	
YI-55	-NH- SO₃Na	
YI-56	-NHC ₆ H ₁₃	
YI-57	-N(C ₄ H ₉) ₂	

[0075]

【化21】

[0076]

【化22】

色素	R	R'
YI-66	Ph	н
YI-67	OC ₂ H ₅	C₂H₅
Y1-68	СН₃	Н
YI-69	t-C ₄ H ₉	н
YI-70	t-C ₄ H ₉	-C ₂ H₄COOH

[0077]

【化23】

[0078]

【化24】

色素	R
YI-72	Н
YI-73	OCH ₃
YI-74	ОН
YI-75	SO₃Na
YI-76	F
YI-77	-h

[0079]

【化25】

色素	R ¹	R ²	R ³
YI-78	CI	CI	CI
YI-79	CI	CI	F
YI-80	CI	-CONHPh	CI

[080]

【化26】

$$H_3C$$
 $N=N$
 $N=N$
 $N+N$
 $N+1$
 $N+1$

色素	R ¹	R ²	R ³
YI-81	F	н	Н
YI-82	CI	н	F

[0081]

【化27】

色素	R¹	R ²	R ³
YI-83	н	F	F
YI-84	F	F	Н

[0082]

【化28】

色素	R
YI-85	н
YI-86	CH ₃
YI-87	Ph .
YI-88	SCH ₂ COONa
Y1-89	SC ₂ H ₅
YI-90	SC₄H ₉ -n
YI-91	SCH ₂ CHMe ₂
YI-92	SCHMeEt
YI-93	SC₄H _g -t
YI-94	SC ₇ H ₁₅ -n
YI-95	SC ₂ H ₄ OC ₂ H ₅
YI-96	SC ₂ H ₄ OC ₄ H ₉ -n
YI-97	SCH ₂ CF ₃

[0083]

【化29】

A_N	N^R
色素	R
YI-98	-NHC ₂ H₄COOK
YI-99	−NHC ₂ H ₄ SO ₃ Na
	KOOC
YI-100	-NH-
	KO₃S COOK
YI-101	-NH-
	SO₃K
	,SO₃Li
YI-102	-NH-
	SO₃Li
	COO_ NH⁴
YI-103	-NH-
\	,COO_ NH ⁺
YI-104	-NHC ₆ H ₁₃ -n
YI-105	-N(C ₄ H ₉ -n) ₂
YI-106	−N+CH₂COONa)₂
Yl-107	-NHSO ₃ - NH ₄ +
	,coo-
YI-108	-NH- 2Et₃ H
	coo_

[0084]

[シアン染料]

次に、シアン染料であるフタロシアニン染料について詳細に説明する。

本発明で使用されるフタロシアニン染料は、耐光性、オゾン耐性がともに優れ 、色相・表面状態の変化が小さい(ブロンズが生じにくく、染料が析出し難い)こ とが好ましい。

[0085]

耐光性については、エプソンPM写真用受像紙上に印字した画像の反射濃度ODが1.0の部位にキセノン光(Xe 1.1W/m(間欠条件))をTACフィルターありで3日間照射した際の色素残存率(照射後の反射濃度/初期濃度×100)が90%以上あることが好ましい。また14日間際の色素残存率85%以上あることが好ましい。

[0086]

色相・表面状態の変化については、フタロシアニン染料の分解によってフタル酸塩として存在するCuイオンの量が指標となる。実際のプリントに存在するCuイオン換算量は $10mg/m^2$ 以下にすることが好ましい。プリントから流出するCuイオン量は、Cuイオン換算量が $20mg/m^2$ 以下のベタ画像を形成させ、この画像を5ppmのオゾン環境に24時間保存しオゾン褪色させた後、画像から水中に流出するCuイオン量が20%以下であることが好ましい。なお褪色以前は全てのCu化合物は受像材料にトラップされている。

[0087]

上記のような物性を有するフタロシアニン染料は、1)酸化電位を上げる、2)会合性を上げる、3)会合促進基を導入する、 $\pi - \pi$ スタッキング時の水素結合を強くする。4) α 位へ置換機を入れない、即ちスタッキングしやすくすること等によって得られる。

[0088]

本発明で使用されるフタロシアニン染料の構造上の特徴は、従来のインクに用いられていたフタロシアニン染料が無置換のフタロシアニンのスルホン化から誘導されたものであるため、置換基の数と位置を特定できない混合物であるのに対

して、置換基の数と位置を特定できるフタロシアニン染料を用いることである。構造上の特徴の第一は、無置換のフタロシアニンのスルホン化を経由しないフタロシアニン染料であることである。構造上の特徴の第二は、フタロシアニンのベンゼン環のβ位に電子吸引性基を有することであり、特に好ましくは全てのベンゼン環のβ位に電子吸引性基を有することである。具体的にはスルホニル基が置換したもの(特願2001-190214)、スルファモイル基全般が置換したもの(特願2001-24352、特願2001-189982)、ヘテロ環スルファモイル基が置換したもの(特願2001-190215)、特定スルファモイル基が置換したもの(特願2001-76689、特願2001-190215)、特定スルファモイル基が置換したもの(特願2001-76689、特願2001-190215)、特定スルファモイル基が置換したもの(特願2001-57063)、カルボニル基が置換したもの(特願2002-012869)、溶解性、インク安定性向上、ブロンズ対策のため特定置換基を有するものが好ましく、具体的には不斉炭素を有する(特願2002-012864)、が有用である。

[0089]

また、物性上の特徴の第一は高い酸化電位(1.0 Vより貴)を有することである。物性上の特徴の第二は、強い会合性を有することである。具体的には油溶性染料の会合を規定したもの(特願2001-64413)、水溶性染料の会合を規定したもの(特願2001-117350)が挙げられる。

[0090]

会合性基の数と性能(インクの吸光度)との関係は、会合性基の導入で希薄溶液中でも吸光度の低下や λ maxの短波化が起きやすくなる。また会合性基の数と性能(エプソン P M 9 2 0 受像紙における反射濃度 O D)との関係は、会合性基の数が増えるほど、同じイオン強度での反射濃度 O D が低下する。即ち受像紙上で会合が進むと思われる。会合性基の数と性能(オゾン耐性・耐光性)との関係は、会合性基の数が増えるほど、オゾン耐性が良化する。会合性基の数が多い染料は耐光性も良化する傾向がある。オゾン耐性を付与するためにはフタロシアニンのベンゼン環に置換基を付与することが必要である。反射濃度 O D と E 室性と

はトレードオフの関係にあるので、会合を弱めずに耐光性を上げることが必要で ある。

[0091]

上記特徴を有するフタロシアニン染料を用いたシアンインクにおける好ましい 態様は、次の通りである。

- 1) エプソンPM写真用受像紙上に印字した画像の反射濃度ODが1.0の部位にキセノン光(Xe 1.1W/m(間欠条件))をTACフィルターありで3日間照射した際の色素残存率が90%以上あるシアンインク。
- 2) 印字した画像のステータスAフィルターにおける反射濃度が $0.9 \sim 1.1$ となる部位を5ppmのオゾン環境に24時間保存した際の色素残存率が60%以上(好ましくは80%以上)あるシアンインク。
- 3) 2の条件でオゾン褪色させた後、水中に流出するCuイオン量は全染料の20%以下であるシアンインク。
- 4)特定受像紙の受像層の上部30%以上まで浸透可能なシアンインク。

[0092]

上記特徴を有する染料として、下記一般式(2)で表されるフタロシアニン染料が挙げられる。

[0093]

【化30】

[0094]

一般式(2)中、 X_{21} 、 X_{22} 、 X_{23} および X_{24} は、それぞれ独立に、-SO-

 Z_2 、 $-SO_2-Z_2$ 、 $-SO_2NR_{21}R_{22}$ 、スルホ基、 $-CONR_{21}R_{22}$ 、または $-COOR_{21}$ を表す。 Z_2 は、それぞれ独立に、置換もしくは無置換のアルキル 基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアルケニル 基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。 R_{21} 、 R_{22} は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。

 Y_{21} 、 Y_{22} 、 Y_{23} および Y_{24} は、それぞれ独立に、一価の置換基を表す。

 a_{21} ~ a_{24} 、 b_{21} ~ b_{24} は、それぞれ X_{21} ~ X_{24} および Y_{21} ~ Y_{24} の置換基数を表す。 a_{21} ~ a_{24} はそれぞれ独立に0~4の数を表すが、全てが同時に0になることはない。 b_{21} ~ b_{24} はそれぞれ独立に0~4の数を表す。なお、 a_{21} ~ a_{24} および b_{21} ~ b_{24} が2以上の数を表すとき、複数の X_{21} ~ X_{24} および Y_{21} ~ Y_{24} はそれぞれ互いに同一でも異なっていてもよい。

Mは水素原子、金属原子またはその酸化物、水酸化物もしくはハロゲン化物である。

[0095]

フタロシアニン染料は堅牢な染料として知られていたが、インクジェット用記録色素として使用した場合、オゾンガスに対する堅牢性に劣ることが知られている。

本発明では、前述の通り、フタロシアニン骨格に電子求引性基を導入して酸化電位を 1.0V(vsSCE) よりも貴とすることが望ましい。そのため、スルフィニル基、スルホニル基、スルファモイル基のようにハメットの置換基定数 σ p 値(電子求引性や電子供与性の尺度)が大きい置換基を導入することにより酸化電位をより貴とすることができる。

このような電位調節をする理由からも、上記一般式(2)で表されるフタロシアニン染料を用いることは好ましい。

[0096]

以下、上記一般式(2)で表されるフタロシアニン染料について詳細に説明する。

一般式(2)において、 X_{21} 、 X_{22} 、 X_{23} および X_{24} は、それぞれ独立に、-SO- Z_2 、-SO $_2$ - Z_2 、-SO $_2$ NR $_{21}$ R $_{22}$ 、スルホ基、-CONR $_{21}$ R $_{22}$ 、または-CO $_2$ R $_{21}$ を表す。これらの置換基の中でも、-SO- Z_2 、-SO $_2$ - Z_2 、-SO $_2$ NR $_{21}$ R $_{22}$ および-CONR $_{21}$ R $_{22}$ が好ましく、特に-SO $_2$ - Z_2 および-SO $_2$ NR $_{21}$ R $_{22}$ が好ましく、-SO $_2$ - Z_2 が最も好ましい。ここで、その置換基数を表す a $_2$ 1 - a $_2$ 4のいずれかが $_2$ 以上の数を表す場合、 $_3$ 21- $_4$ 24のうち、複数存在するものは同一でも異なっていてもよく、それぞれ独立に上記のいずれかの基を表す。また、 $_3$ 21、 $_3$ 22、 $_3$ 23および $_3$ 24は、全て同一の置換基であってもよく、または、例えば $_3$ 21、 $_3$ 22、 $_3$ 23および $_3$ 24が全て $_3$ 20 $_4$ 20を表のように、同じ種類の置換基であるが部分的に互いに異なる置換基であってもよく、あるいは互いに異なる置換基であってもよく、あるいは互いに異なる置換基であってもよく、あるいは互いに異なる置換基であってもよく、あるいは互いに異なる置換基であってもよく、あるいは互いに異なる置換

[0097]

上記 Z₂は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基を表す。好ましくは、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基であり、その中でも置換アルキル基、置換アリール基、置換複素環基が最も好ましい。

[0098]

上記R₂₁、R₂₂は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。なかでも、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、および置換もしくは無置換の複素環基が好ましく、その中でも水素原子、置換アルキル基、置換アリール基、および置換複素環基がさらに好ましい。但し、R₂₁、R₂₂がいずれも水

素原子であることは好ましくない。

[0099]

R21、R22および Z_2 が表す置換もしくは無置換のアルキル基としては、炭素原子数が $1\sim30$ のアルキル基が好ましい。特に染料の溶解性やインク安定性を高めるという理由から、分岐のアルキル基が好ましく、特に不斉炭素を有する場合(ラセミ体での使用)が特に好ましい。置換基の例としては、後述の Z_2 、R21、R22、Y21、Y22、Y23およびY24が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。中でも水酸基、エーテル基、エステル基、シアノ基、アミド基、スルホンアミド基が染料の会合性を高め堅牢性を向上させるので特に好ましい。この他、ハロゲン原子やイオン性親水性基を有していてもよい。なお、アルキル基の炭素原子数は置換基の炭素原子を含まず、他の基についても同様である。

[0100]

 R_{21} 、 R_{22} および Z_2 が表す置換もしくは無置換のシクロアルキル基としては、炭素原子数が $5\sim3$ 0のシクロアルキル基が好ましい。特に染料の溶解性やインク安定性を高めるという理由から、不斉炭素を有する場合(ラセミ体での使用)が特に好ましい。置換基の例としては、後述の Z_2 、 R_{21} 、 R_{22} 、 Y_{21} 、 Y_{22} 、 Y_{23} および Y_{24} が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。なかでも、水酸基、エーテル基、エステル基、シアノ基、アミド基、およびスルホンアミド基が染料の会合性を高め堅牢性を向上させるので特に好ましい。この他、ハロゲン原子やイオン性親水性基を有していてもよい。

$[0\ 1\ 0\ 1]$

 R_{21} 、 R_{22} および Z_2 が表す置換もしくは無置換のアルケニル基としては、炭素原子数が $2\sim3$ 0のアルケニル基が好ましい。特に染料の溶解性やインク安定性を高めるという理由から、分岐のアルケニル基が好ましく、特に不斉炭素を有する場合(ラセミ体での使用)が特に好ましい。置換基の例としては、後述の Z_2 、 Z_2 、 Z_3 、 Z_4 、 Z_4 が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。なかでも、水酸基、エーテル基、エステル基、シアノ基、アミド基、スルホンアミド基が染料の会合性を高め堅牢性を向

上させるので特に好ましい。この他、ハロゲン原子やイオン性親水性基を有していてもよい。

[0102]

 R_{21} 、 R_{22} および Z_2 が表す置換もしくは無置換のアラルキル基としては、炭素原子数が $7\sim3$ 0のアラルキル基が好ましい。特に染料の溶解性やインク安定性を高めるという理由から、分岐のアラルキル基が好ましく、特に不斉炭素を有する場合(ラセミ体での使用)が特に好ましい。置換基の例としては、後述の Z_2 、 Z_2 、 Z_3 、 Z_4 、 Z_4 が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。なかでも、水酸基、エーテル基、エステル基、シアノ基、アミド基、スルホンアミド基が染料の会合性を高め堅牢性を向上させるので特に好ましい。この他、ハロゲン原子やイオン性親水性基を有していてもよい。

[0103]

R21、R22および Z_2 が表す置換もしくは無置換の T_1 ール基としては、炭素原子数が G_2 0の T_1 ール基が好ましい。置換基の例としては、後述の Z_2 、R21、R22、Y21、Y22、Y23および Y_2 4が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。なかでも、染料の酸化電位を貴とし堅牢性を向上させるので電子吸引性基が特に好ましい。電子吸引性基としては、ハメットの置換基定数 σ_1 2 向が正のものが挙げられる。なかでも、ハロゲン原子、複素環基、シアノ基、カルボキシル基、アシルアミノ基、スルホンアミド基、スルファモイル基、カルバモイル基、スルホニル基、イミド基、アシル基、スルホ基、4級アンモニウム基が好ましく、シアノ基、カルボキシル基、スルファモイル基、カルバモイル基、スルホニル基、イミド基、アシル基、スルホ基、4級アンモニウム基が更に好ましい。

$[0\ 1\ 0\ 4]$

 R_{21} 、 R_{22} および Z_2 が表す複素環基としては、5 員または6 員環のものが好ましく、それらは更に縮環していてもよい。また、芳香族複素環であっても非芳香族複素環であってもよい。以下に R_{21} 、 R_{22} および Z_2 で表される複素環基を、置換位置を省略して複素環の形で例示するが、置換位置は限定されるものでは

なく、例えばピリジンであれば、2位、3位、4位で置換することが可能である 。ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、イソ キノリン、キナゾリン、シンノリン、フタラジン、キノキサリン、ピロール、イ ンドール、フラン、ベンゾフラン、チオフェン、ベンゾチオフェン、ピラゾール 、イミダゾール、ベンズイミダゾール、トリアゾール、オキサゾール、ベンズオ キサゾール、チアゾール、ベンゾチアゾール、イソチアゾール、ベンズイソチア ゾール、チアジアゾール、イソオキサゾール、ベンズイソオキサゾール、ピロリ ジン、ピペリジン、ピペラジン、イミダゾリジン、チアゾリンなどが挙げられる 。なかでも、芳香族複素環基が好ましく、その好ましい例を先と同様に例示する と、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、ピラゾール、 イミダゾール、ベンズイミダゾール、トリアゾール、チアゾール、ベンゾチアゾ ール、イソチアゾール、ベンズイソチアゾール、チアジアゾールが挙げられる。 それらは置換基を有していてもよく、置換基の例としては、後述の Z₂、R₂₁、 R_{22} 、 Y_{21} 、 Y_{22} 、 Y_{23} および Y_{24} が更に置換基を持つことが可能な場合の置換 基と同じものが挙げられる。好ましい置換基は前記アリール基の置換基と、更に 好ましい置換基は、前記アリール基の更に好ましい置換基とそれぞれ同じである

[0105]

Y21、Y22、Y23およびY24は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、アラルキル基、アリール基、複素環基、シアノ基、ヒドロキシル基、ニトロ基、アミノ基、アルキルアミノ基、アルコキシ基、アリールオキシ基、アシルアミノ基、アリールアミノ基、ウレイド基、スルファモイルアミノ基、アルキルチオ基、アリールチオ基、アルコキシカルボニルアミノ基、スルホンアミド基、カルバモイル基、スルファモイル基、スルホニル基、アルコキシカルボニル基、複素環オキシ基、アゾ基、アシルオキシ基、カルバモイルオキシ基、シリルオキシ基、アリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニルを、イミド基、複素環チオ基、ホスホリル基、アシル基、カルボキシル基、またはスルホ基を挙げる事ができ、各々はさらに置換基を有していてもよい。

なかでも、水素原子、ハロゲン原子、アルキル基、アリール基、シアノ基、アルコキシ基、アミド基、ウレイド基、スルホンアミド基、カルバモイル基、スルファモイル基、アルコキシカルボニル基、カルボキシル基、およびスルホ基が好ましく、特に水素原子、ハロゲン原子、シアノ基、カルボキシル基およびスルホ基が好ましく、水素原子が最も好ましい。

[0106]

 Z_2 、 R_{21} 、 R_{22} 、 Y_{21} 、 Y_{22} 、 Y_{23} および Y_{24} が更に置換基を有することが可能な基であるときは、以下に挙げる置換基を更に有してもよい。

炭素数1~12の直鎖または分岐鎖アルキル基、炭素数7~18の直鎖または 分岐鎖アラルキル基、炭素数2~12の直鎖または分岐鎖アルケニル基、炭素数 2~12の直鎖または分岐鎖アルキニル基、炭素数3~12の直鎖または分岐鎖 シクロアルキル基、炭素数3~12の直鎖または分岐鎖シクロアルケニル基(以 上の各基は分岐鎖を有するものが染料の溶解性およびインクの安定性を向上させ る理由から好ましく、不斉炭素を有するものが特に好ましい。以上の各基の具体 例:例えばメチル、エチル、プロピル、イソプロピル、sec-ブチル、t-ブチル 、2-エチルヘキシル、2-メチルスルホニルエチル、3-フェノキシプロピル 、トリフルオロメチル、シクロペンチル)、ハロゲン原子(例えば、塩素原子、 臭素原子)、アリール基(例えば、フェニル、4-t-ブチルフェニル、2,4 ージーtーアミルフェニル)、複素環基(例えば、イミダゾリル、ピラゾリル、 トリアゾリル、2-フリル、2-チエニル、2-ピリミジニル、2-ベンゾチア ゾリル)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシ基、アミノ基、ア ルキルオキシ基(例えば、メトキシ、エトキシ、2-メトキシエトキシ、2-メ タンスルホニルエトキシ)、アリールオキシ基(例えば、フェノキシ、2-メチ ルフェノキシ、4 - t - ブチルフェノキシ、3 - ニトロフェノキシ、3 - t - ブ チルオキシカルバモイルフェノキシ、3-メトキシカルバモイル)、アシルアミ ノ基(例えば、アセトアミド、ベンズアミド、4-(3-t-ブチルー4-ヒド ロキシフェノキシ)ブタンアミド)、アルキルアミノ基(例えば、メチルアミノ 、ブチルアミノ、ジエチルアミノ、メチルブチルアミノ)、アニリノ基(例えば 、フェニルアミノ、2-クロロアニリノ)、ウレイド基(例えば、フェニルウレ

イド、メチルウレイド、N, N-ジブチルウレイド)、スルファモイルアミノ基 (例えば、N, N-ジプロピルスルファモイルアミノ)、アルキルチオ基(例え ば、メチルチオ、オクチルチオ、2-フェノキシエチルチオ)、アリールチオ基 (例えば、フェニルチオ、2-ブトキシ-5-t-オクチルフェニルチオ、2-カルボキシフェニルチオ)、アルキルオキシカルボニルアミノ基(例えば、メト キシカルボニルアミノ)、スルホンアミド基(例えば、メタンスルホンアミド、 ベンゼンスルホンアミド、p-トルエンスルホンアミド)、カルバモイル基(例 えば、N-エチルカルバモイル、N,N-ジブチルカルバモイル)、スルファモ イル基(例えば、N-エチルスルファモイル、N,N-ジプロピルスルファモイ ル、N-フェニルスルファモイル)、スルホニル基(例えば、メタンスルホニル 、オクタンスルホニル、ベンゼンスルホニル、トルエンスルホニル)、アルキル オキシカルボニル基(例えば、メトキシカルボニル、ブチルオキシカルボニル) 、複素環オキシ基(例えば、1-フェニルテトラゾール-5-オキシ、2-テト ラヒドロピラニルオキシ)、アゾ基(例えば、フェニルアゾ、4-メトキシフェ ニルアゾ、4-ピバロイルアミノフェニルアゾ、2-ヒドロキシー4-プロパノ イルフェニルアゾ)、アシルオキシ基(例えば、アセトキシ)、カルバモイルオ キシ基(例えば、Nーメチルカルバモイルオキシ、N-フェニルカルバモイルオ キシ)、シリルオキシ基(例えば、トリメチルシリルオキシ、ジブチルメチルシ リルオキシ)、アリールオキシカルボニルアミノ基(例えば、フェノキシカルボ ニルアミノ)、イミド基(例えば、N-スクシンイミド、N-フタルイミド)、 複素環チオ基(例えば、2-ベンゾチアゾリルチオ、2,4-ジーフェノキシー 1, 3, 5-トリアゾールー6-チオ、2-ピリジルチオ)、スルフィニル基(例えば、3-フェノキシプロピルスルフィニル)、ホスホニル基(例えば、フェ ノキシホスホニル、オクチルオキシホスホニル、フェニルホスホニル)、アリー ルオキシカルボニル基(例えば、フェノキシカルボニル)、アシル基(例えば、 アセチル、3-フェニルプロパノイル、ベンゾイル)、イオン性親水性基(例え ば、カルボキシル基、スルホ基、ホスホノ基および4級アンモニウム基)が挙げ られる。

[0107]

前記一般式(2)で表されるフタロシアニン染料が水溶性である場合には、イオン性親水性基を有することが好ましい。イオン性親水性基には、スルホ基、カルボキシル基、ホスホノ基および4級アンモニウム基等が含まれる。前記イオン性親水性基としては、カルボキシル基、ホスホノ基、およびスルホ基が好ましく、特にカルボキシル基、スルホ基が好ましい。カルボキシル基、ホスホノ基およびスルホ基は塩の状態であってもよく、塩を形成する対イオンの例には、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)および有機カチオン(例、テトラメチルアンモニウムイオン、テトラメチルグアニジニウムイオン、テトラメチルホスホニウム)が含まれる。対イオンのなかでも、アルカリ金属塩が好ましく、特にリチウム塩は染料の溶解性を高めインク安定性を向上させるため特に好ましい。

[0108]

イオン性親水性基の数としては、フタロシアニン系染料1分子中少なくとも2個有することが好ましく、スルホ基および/またはカルボキシル基を少なくとも2個有することが特に好ましい。

[0109]

一般式(2)中、 a_{21} ~ a_{24} および b_{21} ~ b_{24} は、それぞれ X_{21} ~ X_{24} および Y_{21} ~ Y_{24} の置換基数を表す。 a_{21} ~ a_{24} は、それぞれ独立に、0~4の整数を表すが、全てが同時に0になることはない。 b_{21} ~ b_{24} は、それぞれ独立に、0~4の整数を表す。なお、 a_{21} ~ a_{24} および b_{21} ~ b_{24} のいずれかが2以上の整数であるときは、 X_{21} ~ X_{24} および Y_{21} ~ Y_{24} のいずれかは複数個存在することになり、それらは互いに同一でも異なっていてもよい。

[0110]

 a_{21} と b_{21} は、 a_{21} + b_{21} =4の関係を満たす。特に好ましいのは、 a_{21} が1または2を表し、 b_{21} が3または2を表す組み合わせであり、そのなかでも、 a_{21} が1を表し、 b_{21} が3を表す組み合わせが最も好ましい。

[0111]

a 22とb 22、a 23とb 23、a 24とb 24の各組み合わせにおいても、a 21とb 21の組み合わせと同様の関係であり、好ましい組み合わせも同様である。

[0112]

Mは、水素原子、金属元素またはその酸化物、水酸化物もしくはハロゲン化物を表す。

Mとして好ましいものは、水素原子の他に、金属元素として、Li、Na、K、Mg、Ti、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Hg、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Bi等が挙げられる。酸化物としては、VO、GeO等が好ましく挙げられる。

[0113]

また、水酸化物としては、 $Si(OH)_2$ 、 $Cr(OH)_2$ 、 $Sn(OH)_2$ 等が好ましく挙げられる。

[0114]

さらに、ハロゲン化物としては、 $A \ 1 \ C \ 1$ 、 $S \ i \ C \ 1_2$ 、 $V \ C \ 1$ 、 $V \ C \ 1_2$ 、 $V \ C \ 1$ 、 $V \ C \ 1_2$ 、 $V \ C \ 1$ 、 $V \ C \ 1_2$ 、 $V \ C \ 1$ 、 $V \ C \ 1_2$ $V \ C \ 1_2$

[0115]

なかでも、Cu、Ni、Zn、Al等が好ましく、Cuが最も好ましい。

$[0\ 1\ 1\ 6\]$

また、一般式(2)で表されるフタロシアニン染料は、L(2価の連結基)を介してPc(フタロシアニン環)が2量体(例えば、Pc-M-L-M-Pc)または3量体を形成してもよく、その時のMはそれぞれ同一であっても異なるものであってもよい。

[0117]

この場合、Lで表される2価の連結基は、オキシ基-O-、チオ基-S-、カルボニル基-CO-、スルホニル基 $-SO_2-$ 、イミノ基-NH-、メチレン基 $-CH_2-$ 、およびこれらを組み合わせて形成される基が好ましい。

[0118]

前記一般式(2)で表される化合物の好ましい置換基の組み合わせについては、種々の置換基の少なくとも1つが前記の好ましい基である化合物が好ましく、より多くの種々の置換基が前記好ましい基である化合物がより好ましく、全ての

置換基が前記好ましい基である化合物が最も好ましい。

[0119]

前記一般式(2)で表されるフタロシアニン染料のなかでも、下記一般式(5)で表される構造のフタロシアニン染料が更に好ましい。

[0120]

一般式(5);

[0121]

【化31】

$$(X_{54})a_{54}$$
 Y_{57}
 Y_{58}
 Y_{51}
 Y_{51}
 Y_{51}
 Y_{51}
 Y_{52}
 Y_{52}
 Y_{53}
 Y_{54}
 Y_{52}
 Y_{53}

[0122]

一般式 (5) 中、 $X_{51} \sim X_{54}$ 、 $Y_{51} \sim Y_{58}$ 、および M_1 は、それぞれ一般式 (2) の $X_{21} \sim X_{24}$ 、 $Y_{21} \sim Y_{24}$ 、Mと同義である。 $a_{51} \sim a_{54}$ は、それぞれ独立 に、1 または 2 の整数を表す。

[0123]

以下に、一般式(5)で表されるフタロシアニン染料について詳しく述べる。 前記一般式(5)において、 $X_{51} \sim X_{54}$ 、 $Y_{51} \sim Y_{58}$ は一般式(2)の中の $X_{21} \sim X_{24}$ 、 $Y_{21} \sim Y_{24}$ とそれぞれ同義であり、好ましい例も同じである。また、 X_{1} は一般式(2)中の X_{24} と同義であり、好ましい例も同様である。

[0124]

一般式 (5) 中、 a_{51} ~ a_{54} は、それぞれ独立に、1または2の整数であり、 好ましくは $4 \le a_{51}$ + a_{52} + a_{53} + a_{54} ≤ 6 を満たし、特に好ましくは a_{51} =a $52 = a_{53} = a_{54} = 1$ のときである。

[0125]

 X_{51} 、 X_{52} 、 X_{53} および X_{54} は、それぞれ全く同じ置換基であってもよく、または例えば X_{51} 、 X_{52} 、 X_{53} および X_{54} が全て $-SO_2-Z_2$ であり、かつ各 Z_2 は異なるものを含む場合のように、同じ種類の置換基であるが部分的に互いに異なる置換基であってもよく、あるいは互いに異なる置換基を、例えば $-SO_2-Z_2$ と $-SO_2$ N R_{21} R_{22} を含んでいてもよい。

[0126]

一般式(5)で表されるフタロシアニン染料のなかでも、特に好ましい置換基の組み合わせは、以下の通りである。

 X_{51} ~ X_{54} としては、それぞれ独立に、 $-SO-Z_2$ 、 $-SO_2-Z_2$ 、 $-SO_2$ N R $_{21}$ R $_{22}$ または $-CONR_{21}$ R $_{22}$ が好ましく、特に $-SO_2-Z_2$ または $-SO_2$ 2N R $_{21}$ R $_{22}$ が好ましく、 $-SO_2-Z_2$ が最も好ましい。

[0127]

Z₂は、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基が好ましく、そのなかでも、置換アルキル基、置換アリール基、置換複素環基が最も好ましい。特に染料の溶解性やインク安定性を高めるという理由から、置換基中に不斉炭素を有する場合(ラセミ体での使用)が好ましい。また、会合性を高め堅牢性を向上させるという理由から、水酸基、エーテル基、エステル基、シアノ基、アミド基、スルホンアミド基が置換基中に有する場合が好ましい。

[0128]

R₂₁、R₂₂は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基が好ましく、そのなかでも、水素原子、置換アルキル基、置換アリール基、置換複素環基がより好ましい。ただしR₂₁、R₂₂が共に水素原子であることは好ましくない。特に染料の溶解性やインク安定性を高めるという理由から、置換基中に不斉炭素を有する場合(ラセミ体での使用)が好ましい。また、会合性を高め堅牢性を向上させるという理由から、水酸基、エーテル基、エステル基、シアノ基、アミド基

、スルホンアミド基が置換基中に有する場合が好ましい。

[0129]

Y₅₁~Y₅₈は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アリール基、シアノ基、アルコキシ基、アミド基、ウレイド基、スルホンアミド基、カルバモイル基、スルファモイル基、アルコキシカルボニル基、カルボキシル基、およびスルホ基が好ましく、特に水素原子、ハロゲン原子、シアノ基、カルボキシル基、またはスルホ基であることが好ましく、水素原子であることが最も好ましい。

[0130]

 a_{51} $\sim a_{54}$ は、それぞれ独立に、1 または2 であることが好ましく、全てが1 であることが特に好ましい。

[0131]

 M_1 は、水素原子、金属元素またはその酸化物、水酸化物もしくはハロゲン化物を表し、特にCu、Ni、Zn、Alが好ましく、なかでも特に特にCuが最も好ましい。

$[0\ 1\ 3\ 2]$

前記一般式(5)で表されるフタロシアニン染料が水溶性である場合には、イオン性親水性基を有することが好ましい。イオン性親水性基には、スルホ基、カルボキシル基、ホスホノ基および4級アンモニウム基等が含まれる。前記イオン性親水性基としては、カルボキシル基、ホスホノ基、およびスルホ基が好ましく、特にカルボキシル基、スルホ基が好ましい。カルボキシル基、ホスホノ基およびスルホ基は塩の状態であってもよく、塩を形成する対イオンの例には、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)および有機カチオン(例、テトラメチルアンモニウムイオン、テトラメチルグアニジニウムイオン、テトラメチルホスホニウム)が含まれる。対イオンのなかでも、アルカリ金属塩が好ましく、特にリチウム塩は染料の溶解性を高めインク安定性を向上させるため特に好ましい。

[0133]

イオン性親水性基の数としては、フタロシアニン系染料1分子中に少なくとも

2個有することが好ましく、スルホ基および/またはカルボキシル基を少なくとも2個有することが特に好ましい。

[0134]

前記一般式(5)で表される化合物の好ましい置換基の組み合わせについては、種々の置換基の少なくとも1つが前記の好ましい基である化合物が好ましく、より多くの種々の置換基が前記好ましい基である化合物がより好ましく、全ての置換基が前記好ましい基である化合物が最も好ましい。

[0135]

前記一般式(5)で表されるフタロシアニン染料の化学構造としては、スルフィニル基、スルホニル基、スルファモイル基のような電子吸引性基を、フタロシアニンの4つの各ベンゼン環に少なくとも一つずつ、フタロシアニン骨格全体の置換基のσρ値の合計で1.6以上となるように導入することが好ましい。

[0136]

ここで、ハメットの置換基定数 σ p値について若干説明する。ハメット則は、ベンゼン誘導体の反応または平衡に及ぼす置換基の影響を定量的に論ずるために 1935年L. P. Hammettにより提唱された経験則であるが、これは今日広く妥当性が認められている。ハメット則に求められた置換基定数には σ p値と σ m値があり、これらの値は多くの一般的な成書に見出すことができるが、例えば、J. A. Dean編、「Lange's Handbook of Chemistry 第12版、1979年(Mc Graw -Hill)や「化学の領域」増刊、122号、96~103頁、1979年(南光堂)に詳しい。尚、本発明において各置換基をハメットの置換基定数 σ pにより限定したり、説明したりするが、これは上記の成書で見出せる、文献既知の値がある置換基にのみ限定されるという意味ではなく、その値が文献未知であってもハメット則に基づいて測定した場合にその範囲内に包まれるであろう置換基をも含むことはいうまでもない。また、本発明で用いる染料の中には、ベンゼン誘導体ではない物も含まれるが、置換基の電子効果を示す尺度として、置換位置に関係なく σ p値を使用する。本発明において、 σ p値をこのような意味で使用する。

[0137]

前記一般式(2)で表されるフタロシアニン染料は、その合成法によって不可避的に置換基Xn($n=1\sim4$)およびYm($m=1\sim4$)の導入位置および導入個数が異なる類縁体混合物である場合が一般的であり、従って一般式はこれら類縁体混合物を統計的に平均化して表している場合が多い。本発明では、これらの類縁体混合物を以下に示す三種類に分類すると、特定の混合物が特に好ましいことを見出したものである。すなわち前記一般式(2)および(5)で表されるフタロシアニン系染料類縁体混合物を置換位置に基づいて以下の三種類に分類して定義する。一般式(5)中における Y_{51} 、 Y_{52} 、 Y_{53} 、 Y_{54} 、 Y_{55} 、 Y_{56} 、 Y_{57} 、 Y_{58} を各々1、4、5、8、9、12、13、16位とする。

[0138]

- (1) β 位置換型:2 およびまたは3 位、6 およびまたは7 位、1 0 およびまたは1 1 位、1 4 およびまたは1 5 位に特定の置換基を有するフタロシアニン染料。
- (2) α -位置換型:1 およびまたは 4 位、5 およびまたは 8 位、9 およびまたは 1 2 位、1 3 およびまたは 1 6 位に特定の置換基を有するフタロシアニン染料 (3) α 、 β -位混合置換型: $1\sim1$ 6 位に規則性なく、特定の置換基を有するフタロシアニン染料

[0139]

本明細書中において、構造が異なる(特に、置換位置が異なる)フタロシアニン染料の誘導体を説明する場合、上記 β 一位置換型、 α 一位置換型、 α , β 一位混合置換型を使用する。

(0.140]

本発明に用いられるフタロシアニン染料は、例えば白井-小林共著、(株)アイピーシー発行「フタロシアニンー化学と機能-」(P. 1~62)、C. C. Leznoff-A. B. P. Lever共著、VCH発行'Phthalocyanines-Properties and Applications' (P. 1~54)等に記載、引用もしくはこれらに類似の方法を組み合わせて合成することができる。

[0141]

本発明の一般式(2)で表されるフタロシアニン染料は、国際公開00/17275号、同00/08103号、同00/08101号、同98/41853号、特開平10-36471号などに記載されているように、例えば無置換のフタロシアニン化合物のスルホン化、スルホニルクロライド化、アミド化反応を経て合成することができる。この場合、スルホン化がフタロシアニン核のどの位置でも起こり得る上にスルホン化される個数も制御が困難である。従って、このような反応条件でスルホ基を導入した場合には、生成物に導入されたスルホ基の位置と個数は特定できず、必ず置換基の個数や置換位置の異なる混合物を与える。従ってそれを原料として合成する時には、複素環置換スルファモイル基の個数や置換位置は特定できないので、得られるフタロシアニン染料としては置換基の個数や置換位置の異なる化合物が何種類か含まれるα、βー位混合置換型混合物として得られる。

[0142]

前述したように、例えばスルファモイル基のような電子求引性基を数多くフタロシアニン核に導入すると酸化電位がより貴となり、オゾン耐性が高まる。上記の合成法に従うと、電子求引性基が導入されている個数が少ない、即ち酸化電位がより卑であるフタロシアニン染料が混入してくることが避けられない。従って、オゾン耐性を向上させるためには、酸化電位がより卑である化合物の生成を抑えるような合成法を用いることがより好ましい。

[0 1 4 3]

本発明の一般式(5)で表されるフタロシアニン化合物は、例えば下記式で表されるフタロニトリル誘導体(化合物P)および/またはジイミノイソインドリン誘導体(化合物Q)を一般式(6)で表される金属誘導体と反応させるか、或いは下記式で表される4ースルホフタロニトリル誘導体(化合物R)と一般式(6)で表される金属誘導体を反応させて得られるテトラスルホフタロシアニン化合物から誘導することができる。

[0144]

【化32】

[0145]

上記各式中、Xpは上記一般式(5)における X_{51} 、 X_{52} 、 X_{53} または X_{54} に相当する。また、Yq、Yq'は、それぞれ上記一般式(5)における Y_{51} 、 Y_5

2、 Y_{53} 、 Y_{54} 、 Y_{55} 、 Y_{56} 、 Y_{57} または Y_{58} に相当する。化合物Rにおいて、M'はカチオンを表す。

[0146]

M'が表すカチオンとしては、Li、Na、Kなどのアルカリ金属イオン、またはトリエチルアンモニウムイオン、ピリジニウムイオンなどの有機カチオンなどが挙げられる。

[0147]

一般式(6):M-(Y) d

[0148]

一般式(6)中、Mは前記一般式(2)のMおよび前記一般式(5)の M_1 と同義であり、Yはハロゲン原子、酢酸陰イオン、アセチルアセトネート、酸素などの1価または2価の配位子を示し、dは $1\sim4$ の整数である。

[0149]

即ち、上記の合成法に従えば、望みの置換基を特定の数だけ導入することができる。特に本発明のように酸化電位を貴とするために電子求引性基を数多く導入したい場合には、上記の合成法は、一般式(2)のフタロシアニン化合物を合成するための既に述べた方法と比較して極めて優れたものである。

[0150]

かくして得られる前記一般式(5)で表されるフタロシアニン化合物は、通常 Xp の各置換位置における異性体である下記一般式(a)-1~(a)-4で 表される化合物の混合物、すなわち β -位置換型となっている。

[0151]

【化33】

一般式 (a) -1

[0152]

【化34】

一般式 (a) -2

[0153]

【化35】

一般式 (a) -3

[0154]

【化36】

一般式 (a) - 4

[0155]

上記合成法において、Xpとして全て同一のものを使用すれば X_{51} 、 X_{52} 、 X_{53} および X_{54} が全く同じ置換基である β 一位置換型フタロシアニン染料を得ることができる。一方、Xpとして異なるものを組み合わせて使用すれば、同じ種類

の置換基であるが部分的に互いに異なる置換基をもつ染料や、あるいは、互いに 異なる種類の置換基をもつ染料を合成することができる。一般式 (5) の染料の なかでも、互いに異なる電子吸引性置換基を持つこれらの染料は、染料の溶解性 、会合性、インクの経時安定性などを調整できるので、特に好ましい。

[0156]

本発明では、いずれの置換型においても酸化電位が 1.0V (vs SCE) よりも貴であることが堅牢性の向上に非常に重要であることが見出され、その効果の大きさは前記先行技術から全く予想することができないものであった。また、原因は詳細には不明であるが、なかでも、 α , β — 位混合置換型よりは β — 位置換型の方が色相、光堅牢性、オゾンガス耐性等において明らかに優れている傾向にあった。

[0157]

前記一般式 (2) および (5) で表されるフタロシアニン染料の具体例(例示化合物 $I-1\sim I-1$ 2 および 1 0 $1\sim 1$ 9 0) を下記に示すが、本発明に用いられるフタロシアニン染料は、下記の例に限定されるものではない。

[0158]

【化37】

例示化合物

(I-1)

[0159]

【化38】

(I-3)

(I-4)

[0160]

【化39】

(I-6)

[0161]

[0162]

【化41】

(I-9)

(I-10)

[0163]

【化42】

(I-11)

$$\begin{array}{c} SO_2NH \longrightarrow SO_3K \\ N \longrightarrow N \\ N \longrightarrow N \\ N \longrightarrow N \\ N \longrightarrow N \\ SO_2NH \longrightarrow SO_3K \\ SO_2NH \longrightarrow SO_3K \\ \end{array}$$

[0164]

【化43】

	Y17, Y18	Ŧ	Ϋ́	Ŧ Ŧ	Ŧ	∓ "⊙	Ŧ	Ŧ Ŧ	₩. ₩	H- 'H-	HH-
	Y15, Y18	H. H	-CiH	Ŧ	Ŧ- Ĭ	-CH	# "	Ŧ	Ŧ.Ŧ	H- 'H-	H- 'H-
	7588. Y13, Y14	H .H	H- (I)-	Ŧ	Ŧ	- Ci, -H	-HH	Ŧ	-нн	-HH	-HH
	立に順不同 Y11、Y12	ŦŦ	-Ci, -H	¥ ¥	+ ·+	-CiH	-HH	н- 'н-	H- 'H-	-HH	-HH
	たれた猫 ×2	Ŧ	Ŧ	Ŧ	¥-	Ŧ	-CN	Ŧ	H-	Ŧ	Ŧ
X3 X1 X2 X18 X19 X19 X19 X10	数中(X1、X2)、(Y11、Y12)、(Y13、Y14)、(Y15、Y16)、(Y17、Y18)の各組の具体例はそれぞれ独立に順不同である。 化合物 No │ M │ X2 │ Y11、Y12 │ Y13、Y	-SO ₂ -NH-CH ₂ -CH ₃ -SO ₃ Li	OH -802-NH-CH2-CH-CO-NH-CH2CH2-803NB	OH -50 ₂ -NH-CH ₂ -CH ₂ -SO ₂ NH-CH ₂ CH-SO ₃ LI	-502-NH-()-SO2NH-CH2CH2-SO3Li	CH2-COONB -SO2-NH-CH-CH-COONB	-SO ₂ -NH-CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -COON _B	CH2-CH2-CH2-CH2-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-	-50,-CH,-CH,-CH,-SO,Li	-50,-CH,-CH,-CH,-SO,K	-So ₁ -(CH ₂) ₅ -CO ₂ K
	2), (Y1	S	Co	S	Cr	Ë	S	ខ	Cu	Ç	3
	数中 (X1、) 化合物 No.	101	102	103	104	105	106	107	108	109	110

[0165]

ŦŦ

ŦŦ

Ŧ. Ŧ

¥. ¥

ŦŦ

【化44】

[0166]

【化45】

		SX IX					
		EX N 91 X EX					
		V14 N Y12 X14 X2 X1					
表中 (X1, X2)、(Y11, Y12)、	χ2), (Υ	(Y13, Y14), (Y15, Y16	れぞれ独	立に順不同	೧ ಹಿಕೆ.		
化合物 No.	Σ	X	X2	Y11, Y12	Y11, Y12 Y13, Y14	Y15, Y16	Y17, Y18
118	S	- SO2CH2CH2CH - SO2CH2CH2CH - SO3CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2C	푸	Ŧ	Ŧ	푸 푸	Ŧ Ŧ
119	Cm	OH -SO ₂ -CH ₂ -CH-CH ₂ -SO ₃ Na	Ŧ	Ŧ	ŦŤ	푸 푸	Ŧ
120	రె	-80-CH-CH2-H2-H2-OS-	Ŧ	Ŧ Ŧ	Ŧ Ŧ	Ŧ	Ŧ
121	Co	- SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ - CH - CH ₂ - SO ₃ Li OH	Ŧ	-H, -H	H- 'H-	H- ,H-	Ŧ
122	ŏ	OH CO2CH2CH2CH2SO2-NH-CH2-CH-CH2-SO3L1	Ŧ	+, +	-нн	-нн	H, H
123	S	-SO2NH-C4H1,(¢)	H-	-H, -H	-HH	-HH	-НН
124	3	-so ₂ -nh-сн ₂ -сн ₃ -сн ₃ -сн ₄ -сн ₄ -сн ₄ -сн ₅ -сн ₄ -с	Ŧ	H- 'H-	+ +	Ŧ	Ŧ

[0167]

【化46】

	Y17, Y18	HH	Ŧ Ŧ	Ŧ	# ' F	-C, -H	Ŧ	-HH
	Y15, Y16	Ŧ	Ŧ	Ŧ	+, . +	-Ci, -H	Ŧ Ŧ	-H, -H
ት ተ	Y13, Y14	Ŧ	-HH	Ŧ	Ŧ Ŧ	-CI, -H	HH	-НН
	Y11, Y12	Ŧ	-HH	Ŧ	H. H	H- '10-	H- 'H-	-HH
息 ネ ガ エ	X2	Ŧ	Ŧ	Ŧ	Ç	Ŧ	#-	Ŧ
X2 X1 X2 X11 X2 X16 N N N N N N N N N N N N N N N N N N N	XI	CH3 - SO2CH2CH2CH2SO2-NH-CH2-CH3-CH3-CH3	ี่ Ho−0−Ho−Ho−Ho−Ho−Ho−os− CH	- SO ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ O - CH	O-CH3 SO2-CH2-CH-CH3-CH2	%Э-КО-КО-КО-КО-КО-КО-КО-КО-КО-КО-КО-КО-КО-	CH ³ CH ³ CH ³ CH ³ CH ³	CH ₃ SO ₃ U CH ₃ - CH ₂ - CH ₃ SO ₃ U
χ2), (Υ	Σ	n _O	ő	S.	Zn	Cu	Cu	O
费中 (X1, X2), (Y11, Y12)	化合物 No.	125	126	127	128	129	130	131

[0168]

【化47】

	Y17, Y18	H- 'H-	-HH	干·干	H- 'H-	H- 'H-
	Y15, Y16	H- 'H-	H- 'H-	H- 'H-	н- 'н-	-HH
ন জ জ	Y11, Y12 Y13, Y14	-нн	-НН	-Н, -Н	H, -H	Ŧ Ŧ
立二屬不同	Y11, Y12	Н- 'Н-	H- 'H-	H- 'H-	н- 'н-	Ŧ
カチャ	ZX	Ŧ	Ŧ	Н-	+	Ŧ
x2 x1 x2 x14)、(Y15、Y16)、(Y17、Y18)の各組の具体例はそれぞれ独立に順不同である。	XI	CO ₂ C ₆ H ₁₃ (n)	$- so_2NH - \bigcirc$ $- so_2NHCH_2CH_3$ $- so_2NHCH_2CH_3$	-SO2NH—CH2—CH2—CH2—CH2—CH2—CH3—CH3—CH3	-sos -	- SO ₂ N C2,H ₃ (n)
,X2), (Y	Σ	õ	õ	Cn	õ	õ
奏中 (X1, X2), (Y11, Y12),	化合物 No.	132	133	134	135	136

[0169]

【化48】

	Y17, Y18	Ŧ	Ŧ	H- 'H-	Ŧ Ŧ
	Y15, Y16	H, H	Ŧ	H- 'H-	Ŧ Ŧ
<u>ተ</u> ተ	Y13, Y14	Ŧ Ŧ	Ŧ	ŦŦ	Ŧ Ŧ
立に順不同	Y11, Y12	H- H-	H- H-	H H	Ŧ Ŧ
光がれ	X2	+ -	Ŧ	10-	Ŧ
X1 X2 X11 X12 X13、Y14、(Y15、Y16)、(Y17、Y18)の各組の具体例はそれぞれ独立に順不同である。	X1	-so ₂ -s So ₃ Li	- SO ₂ NH A N N SO ₃ Li	$-SO_2(CH_2)_3-NH-C + C - CO_2U$	NH-CH2-CH-SO-1 N= CH2 N- N- CH3 N- N- N- N- N- N- CH3 N- CH3 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4
, (XZ), (Y	Σ	õ	ច	3	Ö
表中 (X1, X2), (Y11, Y12)	化合物 No.	137	138	139	140

[0170]

【化49】

	Y17, Y18	푸 푸	Ŧ Ŧ	Ŧ Ŧ	Ŧ Ŧ	-HH
	Y15, Y16	Ŧ Ŧ	Ŧ	Ŧ.,±	HH	-HH
%	Y11, Y12 Y13, Y14 Y15, Y16 Y17, Y18	Ŧ Ŧ	Ŧ	H- 'H-	H- 'H-	-Н, -Н
優 不同であ	Y11, Y12	-нн	H. H	Н- Н-	-н, -н	-Н, -Н
・独立に	X2	7	Ŧ	H-	H-	⊬ -
xi xz xi xz xi xi x	XI	COONB 	Leos NHC—So ₂ NH—N ₅ Os—	OH COOK 	COOLI COOLI CO-NH-CO-CO-NH-CH-CH-CH-COOLI	— so ₂ ch ₂ ch ₂ ch ₂ ch ₂ ch ₂ ch ₃ co ₃ u
X2). (\	Σ	õ	õ	Ö	o. C	J O
要 (X1,	化合物 No.	141	142	143	144	145

[0171]

【化50】

$M-Pc(Xp_1)_m(Xp_2)_n$	() ()	イp.シ/。 安中(Xp.)、(Xp.)の各置換基のβ位置換基型内で導入位置の順序は順不同である。	の強力	(位置の頃序は順不同である。	
化合物 No.	X	Хр1	ε	Хрг	٦
146	ος	CH —SO2—NH—CH2—CH—SO3Li	3	OH 	-
147	2	-SO ₂ -NH-CH ₂ -CH ₂ SO ₃ Li	င	OH - 	-
148	Cu	1705-H2-H2-H2-20F1	က	-SO,NH-CH,-CH,-CH,-SO,-NH-CH,-CH,-O-CH,-CH,-OH	-
149	ng	СН ₈ - 	2	-502-NH-CH2-CH2-CH2-CO-N-(CH2-CH2-OH)2	7
150	င်	-SO ₂ -NH-CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ CH ₂ -COONa	3	- So ₂ NH — сн ₂ OH	-
151	Cu	OH 	3	-So,NH-CH,-CH,-O-CH,-CH,-OH	-
152	రె	CH₃ —SO₂ — CH₂ — CH₂ — SO₃Li	2.5	-S0,-CH,-CH,-O-CH,-CH,-OH	1.5
153	Ç	CH ₃ SO ₂ CH ₂ CH ₂ -CH-SO ₃ Na	2	-sochchco-n-(chcho+)2	2
154	₂	-So,-CH,-CH,-SO,Li	3	OH 	-
155	S	-50 ₂ -CH ₂ -CH ₂ -COOK	2	OH - -802-CH2-CH2-SO2-NH-CH2-CH-CH2-COOK	2
156	ာ	-S0,-CH,-CH,-S0,Li	က	он so ₋ -cңсңso _з ы	-
157	ζ.	-so,-ch,-ch,-o-ch,-so,Li	2	-80,-CH,-CH,-CH,-CO,-CH,-CH,-CH-CH,-COCK	2

【0172】 【化51】

.5 ~ ~ ~ -CO2-CH2-CH2-SO2-NH-CH2-CH-CH2-COOK -co-nh-ch-ch-ch-co-n+ch-ch-oh) -co-ch-ch-ch-co-n-(ch-ch-oh)2 -со₂-сн₂-сн₂-сн₂-сн₂-сн-сн₄ CH-CH-COONS -SO2NH-CH2-CH-CH-OH -so--ch-ch-ch-so-nh-ch-ch-ch -802-CH,-CH,-CH,-CO-NH-CH,-COON -SOSHO-HO-HOHNOSHOHOHOOS--co-NH-CH,-CH,-O-CH,-CH,-OH -SOCHCHCHSONH-CH-CH-OH -SO2CH,CH,OCH,CH,OCH,CH,OH -SO,CH,CH,CH,SO,N(CH,CH,OH), × 表中(Xp ,)、(Xp ,)の各置換基の B 位置換基型内で導入位置の順序は順不同である。 -CO-NH-CH-CH-CH - SO2-CH2 2.5 7 က က က က က -SO2-CH2-CH2-O-CH2-O-CH2-CH2-SO3Na -CO-NH-CH,-CH,-SO,-NH-CH,-CH,-COONa -SO2(CH2)3SO2NHCH2-CH-CH2CO2Li -co, -ch, -ch, -ch, -so,Li -CO2-CH2-CH2-CH-SO3NA -802-CH2-CH2-CH2SO3L -co,-ch,-ch,-ch,cook -CO-NH-CH,-CH,-SO,K -SO,NHCH,CH, -SO,Li -SO,CH,CH,CH,SO,Li -SO,CH,CH,CH,SO,Li -SO,CH,CH,CH,SO,K -SO,CH,CH,CH,SO,Li -M-Pc(Xp,),(Xp,), \overline{S} ರ $\overline{\mathbf{c}}$ 3 $\bar{\mathbf{c}}$ చె ಶ ဥ 3 ပြ ನ ಪ ಪ **六伯毯No.** 158 5 159 8 162 163 99 161 164 165 167 168 169

[0173]

【化52】

	ء	-	7	2	_	2	_	-	-	~	-	_	5.1
・導入位置の順序は順不同である。	χρ ₂	-802-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH	OH - CO2 - CH2 - CH3 - CO3 - CH3 - C	OH - CO2-CH2-CH2-SO3L1		1002-45-64-00-40-40-600-	СЪСР - СЪ - СЪ - SO2 - NH - СЪ - СЪСР - СЪС	HO-HO-HO-NH-CN-4D-4D-7N-70S-	-802-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH	-802-с42-с42-802-NH-с42-с42-с43	HO-1HO-1HO-O-1HO-HN-OS-1HO-1HO-HN1OS-	-802-CH2-CH2-802-NH-CH+CH+CH)2	CH CH-CH-COH-CH-CH-CH-
전절	ε	6	~	7	ဇ	2	ဗ	2	က	2	3	က	2.5
φ ₂ / ₂ 数甲(Xp ₁)、(Xp ₂)の各世換基のβ位置換基型内で導入位置の順序は順不同である。	Χp ,	C0,-CH,-CH,-O-CH,-CH,-CH,-SO,Na	-So.ch.ch.ch.ch.ch.so.k	- SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ CHCH ₂ OH OH	-80 ₂ (CH ₂) ₃ SO ₂ NHCH ₂ - CH - CH ₂ SO ₃ K OH	-SO ₂ (CH ₂) ₃ SO ₂ NH(CH ₂) ₃ N(CH ₂ CH ₂ OH) ₂	OH - - 	-SO ₂ -CH ₂ -CH ₃ -O-CH ₁ -CH ₂ -O-CH ₃	-50,-CH,-CH,-O-CH,-CH,-O-CH,-CH,-OH	С+с+-с+с+с+с+с+с+	0-сң -so ₂ -сң-сң-сң-so ₂ -ин-сң-сн-сң	CH ₃ -SO ₂ -CH ₂ -CH ₂ -CO ₂ -NH-CH-CH ₂ -CH ₃	OH
<u>۲</u>	Σ	ટ	S	Cn	3	ಕ	3	ટ	3	3	ઢ	3	3
M-rc(Xp 1/m(Xp 2/n	た い を No.	171	172	173	174	175	176	177	178	179	180	181	182

[0174]

【化53】

	c	2	-	-	-	-	1	-	-
導入位置の顧序は順不同である。	¹ dX	-S0,-CH,-CH,-CH,-SO,-NH-(CH,),-CH,-О-СН,СН,-ОН	-S02-CH2-CH2-0-CH2-0-CH3	-SO ₂ -CH ₃	HO-1H2-1H2-0H1-0H1-0H1-0H1-0S-	"HO"HO — "HO	"HO-0-"HO-0-"HO-"HO-"O-"	CH2CH3 - CH2-CH2-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	-co-nh-ch;-ch;-o-ch;-o-ch;
K	ε	2	3	3	3	3	3	3	ဗ
クック。 表中(Xp イ)、(Xp ス)の各置換基のβ位置換基型内で導入位置の順序は順不同である。	Хр,	CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH ₃ -CO ₂ -NH-CH-CH ₃ -CH ₃	OH -SO ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₃	OH 1 1 	CH3 -SO2-CH2-CH2-CH2-CO2-NH-CH-CH2-CH3	-502-CH2-CH2-SO2-NH-CH-(CH6)2	-c02-c12-c12-c12-c13-c13-c14	-CO-NH-CH-CH-SO2-NH-CH-(CH)2	CH2CH3 -CO-NH-CH2-CH-CH2-CH2CH3
('d	¥	Cn	Ç.	ος	ટ	က်	S	ng C	η
M-Pc(Xp ₁) _m (Xp ₂) _n	化合物 No.	183	184	185	186	187	188	189	190

[0175]

なお、化合物No. $146 \sim 190$ のM-Pc (Xp1) m (Xp2) n で示されるフタロシアニン化合物の構造は下記の通りである。

[0176]

【化54】

$$X_{pl}$$
 $Y_{q'}$ $Y_{q'}$

[0177]

前記一般式(2)で表されるフタロシアニン染料は、前述した特許に従って合成することが可能である。また、一般式(5)で表されるフタロシアニン染料は、前記した合成方法の他に、特開 2001-226275号、同2001-96610号、同2001-47013号、同2001-193638号の各公報に記載の方法により合成することができる。また、出発物質、染料中間体および合成ルートについてはこれらに限定されるものでない。

[0178]

〔マゼンタ染料〕

本発明で使用されるマゼンタ染料は、水性媒体中において $500\sim580$ n m の分光領域に吸収極大を有し、かつ1.0 V (vsSCE)よりも貴の酸化電位を有するアゾ染料であることが好ましい。

[0179]

このマゼンタ染料であるアゾ染料の好ましい染料の構造上の特徴の第1は、一般式(複素環A)-N=N-(複素環B)で表される発色団を有する染料であることである。この場合、複素環Aと複素環Bは同一の構造であってもよい。複素環A及び複素環Bは、具体的には5員環、または6員環の複素環で、ピラゾール、イミダゾール、トリアゾール、オキサゾール、チアゾール、セレナゾール、ピリドン、ピラジン、ピリミジン、ピリジンから選ばれた複素環である。具体的には特願2000-15853、特願2001-15614、特開平2002-309116号公報、特願2001-195014などに記載されている。

[0180]

さらに、前記アゾ染料の好ましい構造上の特徴の第2は、アゾ基が、少なくともその一方に芳香族含窒素6員複素環をカップリング成分として直結させたアゾ 染料であることで、その具体例は2001-110457に記載されている。

[0181]

構造上の好ましい特徴の第3は、助色団が芳香族環アミノ基または複素環アミノ基の構造を有することであり、具体的にはアニリノ基、ヘテリルアミノ基である。

[0182]

好ましい構造上の特徴の第4は立体構造を有することである。具体的には特願 2002-12015に記載されている。

[0183]

アゾ染料に上記構造上の特徴を持たせることにより、染料の酸化電位を高め、オゾン耐性を向上させることができる。酸化電位を高める手段としては、アゾ染料の α 水素を除去することが挙げられる。また、酸化電位を高める観点からも、一般式(3)のアゾ染料は好ましい染料である。アゾ染料の酸化電位を高める手段については、具体的には特願 2001-254878 に記載されている。

[0184]

上記特徴を有するアゾ染料を用いた本発明のマゼンタインクとしては、λmax (吸収極大波長)が500~580nmであることが色相の点で優れており、さ らに最大吸収波長の長波側と短波側の半値幅が小さい、すなわちシャープな吸収 であることが好ましい。具体的には特開平 2002-309133 号公報に記載されている。また一般式(3)のアゾ染料を用いて、 α 位にメチル基を導入することにより吸収のシャープ化を具現できる。

[0185]

また、該アゾ染料を用いたマゼンタインクのオゾンガスに対する強制褪色速度 定数は、 5.0×10^{-2} [hour-1] 以下が好ましく、 3.0×10^{-2} [hour-1] がより好ましく、 1.5×10^{-2} [hour-1] 以下が特に好ましい。

オゾンガスに対する強制褪色速度定数の測定は、当該マゼンタインクのみを反射型受像媒体に印画して得られた画像の該インクの主分光吸収領域の色であってステータスAのフィルターを通して測定した反射濃度が 0.90~1.10の濃度の着色領域を初期濃度点として選択し、この初期濃度を開始濃度(=100%)とする。この画像を 5 mg/Lのオゾン濃度を常時維持するオゾン褪色試験機を用いて褪色させ、その濃度が初期濃度の 80%となるまでの時間を測定し、この時間の逆数 [hour-1] を求め、褪色濃度と時間関係が一次反応の速度式に従うとの仮定のもとに、褪色反応速度定数とする。

$[0\ 1\ 8.6]$

試験用の印画パッチは、JISコード2223の黒四角記号を印字したパッチ、マクベスチャートの階段状カラーパッチ、そのほか測定面積が得られる任意の階段濃度パッチを用いることができる。

測定用に印画される反射画像(階段状カラーパッチ)の反射濃度は、国際規格 ISO5-4 (反射濃度の幾何条件) を満たした濃度計によりステータスAフィルターを透した測定光で求められた濃度である。

オゾンガスに対する強制褪色速度定数測定用の試験チャンバーには、内部のオゾンガス濃度を定常的に5mg/Lに維持可能のオゾン発生装置(例えば乾燥空気に交流電圧を印可する高圧放電方式)が設けられ、曝気温度は25℃に調節される。

なお、この強制褪色速度定数は、光化学スモッグ、自動車排気、家具の塗装面 や絨毯などからの有機蒸気、明室の額縁内の発生ガスなどの環境中の酸化性雰囲 気による酸化の受け易さの指標であって、オゾンガスによってこれらの酸化性雰 囲気を代表させた指標である。

[0187]

以下に、上記特徴を有し、本発明で用いられるアゾ染料である一般式 (3) で表される染料について説明する。

一般式(3);

[0188]

【化55】

$$A_{31}-N=N-N=0$$

$$A_{32}=B_{31}$$

$$N$$

$$N$$

$$R_{36}$$

[0189]

一般式(3)において、A31は5員複素環基を表す。

 B_{31} および B_{32} は、各々、 $= CR_{31} -$ 、 $- CR_{32} =$ を表すか、またはいずれか 一方が窒素原子、他方が $= CR_{31} -$ もしくは $- CR_{32} =$ を表す。

R₃₅およびR₃₆は、各々独立に、水素原子または置換基を表し、該置換基は脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、またはスルファモイル基を表し、該各置換基の水素原子は置換されていてもよい。

[0190]

G3、R31およびR32は、各々独立して、水素原子または置換基を示し、該置換基は、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、カルボキシル基、カルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、複素環オキシ基、シリルオキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アシルアミノ基、アレコキシカルボニルアミノ基、アルコキシカルボニルアミノ基、アルキルスルホニシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アルキルスルホニ

ルアミノ基、アリールスルホニルアミノ基、複素環スルホニルアミノ基、ニトロ 基、アルキルチオ基、アリールチオ基、複素環チオ基、アルキルスルホニル基、 アリールスルホニル基、複素環スルホニル基、アルキルスルフィニル基、アリー ルスルフィニル基、複素環スルフィニル基、スルファモイル基、またはスルホ基 を表し、該各置換基の水素原子はさらに置換されていてもよい。

 R_{31} と R_{35} 、または R_{35} と R_{36} が結合して $5\sim6$ 員環を形成してもよい。

[0191]

一般式(3)において、 A_{31} は5 員複素環基を表すが、複素環のヘテロ原子の例には、N、O、およびS を挙げることができる。好ましくは含窒素5 員複素環であり、複素環に脂肪族環、芳香族環または他の複素環が縮合していてもよい。 A_{31} の好ましい複素環の例には、ピラゾール環、イミダゾール環、チアゾール環、イソチアゾール環、チアジアゾール環、ベンゾオキサゾール環、ベンゾイソチアゾール環を挙げることができる。各複素環基は更に置換基を有していてもよい。中でも下記一般式(a)から(f)で表されるピラゾール環、イミダゾール環、イソチアゾール環、チアジアゾール環、ベンゾチアゾール環が好ましい。

[0192]

下記一般式 (a) から (f) において、 R_{307} から R_{320} は一般式 (3) における G_3 、 R_{31} 、 R_{32} と同じ置換基を表す。

一般式(a)から(f)のうち、好ましいのは一般式(a)、(b)で表されるピラゾール環、イソチアゾール環であり、最も好ましいのは一般式(a)で表されるピラゾール環である。

[0193]

(c)
$$\begin{pmatrix} N & R_{312} & M-N \\ S-N & S & R_{313} \end{pmatrix}$$

(e)
$$R_{314}$$
 R_{315} R_{316} R_{316} R_{316} R_{320}

[0194]

一般式 (3) において、 B_{31} および B_{32} は、各々、 $=CR_{31}$ -および $-CR_{32}$ = を表すか、またはいずれか一方が窒素原子、他方が $=CR_{31}$ -もしくは $-CR_{32}$ = を表すが、各々、 $=CR_{31}$ -、 $-CR_{32}$ = を表すものがより好ましい。

[0195]

R₃₅、R₃₆は好ましくは、水素原子、脂肪族基、芳香族基、複素環基、アシル基、アルキルまたはアリールスルホニル基を挙げることができる。さらに好ましくは水素原子、芳香族基、複素環基、アシル基、アルキルまたはアリールスルホニル基である。最も好ましくは、水素原子、アリール基、複素環基である。該各置換基の水素原子は置換されていてもよい。ただし、R₃₅およびR₃₆が同時に水素原子であることはない。

[0196]

G₃としては水素原子、ハロゲン原子、脂肪族基、芳香族基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アシルオキシ基、複素環オキシ基、アミノ基

、アシルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アルキル及びアリールチオ基、または複素環チオ基が好ましく、更に好ましくは水素原子、ハロゲン原子、アルキル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アシルオキシ基、アミノ基またはアシルアミノ基であり、中でも水素原子、アミノ基(好ましくは、アニリノ基)、アシルアミノ基が最も好ましい。該各置換基の水素原子は置換されていてもよい。

[0197]

R₃₁、R₃₂として好ましいものは、水素原子、アルキル基、ハロゲン原子、アルコキシカルボニル基、カルボキシル基、カルバモイル基、ヒドロキシ基、アルコキシ基、シアノ基を挙げることができる。該各置換基の水素原子は置換されていてもよい。

 R_{31} と R_{35} 、または R_{35} と R_{36} が結合して5~6員環を形成してもよい。

[0198]

 A_{31} が置換基を有する場合、または R_{31} 、 R_{32} 、 R_{35} 、 R_{36} または G_3 の置換基が更に置換基を有する場合の置換基としては、上記 G_3 、 R_{31} 、 R_{32} で挙げた置換基を挙げることができる。

[0199]

上記一般式(3)で表される染料が水溶性染料である場合には、A₃₁、R₃₁、R₃₂、R₃₅、R₃₆、G₃上のいずれかの位置に置換基としてさらにイオン性親水性基を有することが好ましい。置換基としてのイオン性親水性基には、スルホ基、カルボキシル基、ホスホノ基および4級アンモニウム基等が含まれる。前記イオン性親水性基としては、カルボキシル基、ホスホノ基、およびスルホ基が好ましく、特にカルボキシル基、スルホ基が好ましい。カルボキシル基、ホスホノ基およびスルホ基は塩の状態であってもよく、塩を形成する対イオンの例には、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)および有機カチオン(例、テトラメチルアンモニウムイオン、テトラメチルグアニジニウムイオン、テトラメチルホスホニウム)が含まれる。

[0200]

ここで、一般式(3)の説明において使用される用語(置換基)について説明 する。これら用語は一般式(3)及び後述の一般式(3-A)においても共通で ある。

[0201]

ハロゲン原子としては、フッ素原子、塩素原子および臭素原子が挙げられる。

[0202]

脂肪族基はアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アラルキル基および置換アラルキル基を意味する。「置換アルキル基」等に用いる「置換」とは、「アルキル基」等に存在する水素原子が上記G3、R31、R32で挙げた置換基等で置換されていることを示す。

[0203]

脂肪族基は分岐を有していてもよく、また環を形成していてもよい。脂肪族基の炭素原子数は1~20であることが好ましく、1~16であることがさらに好ましい。アラルキル基および置換アラルキル基のアリール部分はフェニル基またはナフチル基であることが好ましく、フェニル基が特に好ましい。脂肪族基の例には、メチル基、エチル基、ブチル基、イソプロピル基、tーブチル基、ヒドロキシエチル基、メトキシエチル基、シアノエチル基、トリフルオロメチル基、3ースルホプロピル基、4ースルホブチル基、シクロヘキシル基、ベンジル基、2ーフェネチル基、ビニル基、およびアリル基を挙げることができる。

[0204]

芳香族基はアリール基および置換アリール基を意味する。アリール基は、フェニル基またはナフチル基であることが好ましく、フェニル基が特に好ましい。芳香族基の炭素原子数は6~20であることが好ましく、6から16がさらに好ましい。

芳香族基の例には、フェニル基、p-トリル基、p-メトキシフェニル基、o-クロロフェニル基およびm-(3-スルホプロピルアミノ)フェニル基が含まれる。

[0205]

複素環基には、置換複素環基が含まれる。複素環基は、複素環に脂肪族環、芳香族環または他の複素環が縮合していてもよい。前記複素環基としては、5 員または6 員環の複素環基が好ましい。前記置換基の例には、脂肪族基、ハロゲン原子、アルキルスルホニル基、アリールスルホニル基、アシル基、アシルアミノ基、スルファモイル基、カルバモイル基、イオン性親水性基などが含まれる。前記複素環基の例には、2 ーピリジル基、2 ーチエニル基、2 ーチアゾリル基、2 ーベンゾチアゾリル基、2 ーベンゾオキサゾリル基および2 ーフリル基が含まれる

[0206]

カルバモイル基には、置換カルバモイル基が含まれる。前記置換基の例には、 アルキル基が含まれる。前記カルバモイル基の例には、メチルカルバモイル基お よびジメチルカルバモイル基が含まれる。

[0207]

アルコキシカルボニル基には、置換アルコキシカルボニル基が含まれる。前記アルコキシカルボニル基としては、炭素原子数が2~20のアルコキシカルボニル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アルコキシカルボニル基の例には、メトキシカルボニル基およびエトキシカルボニル基が含まれる。

[0208]

アリールオキシカルボニル基には、置換アリールオキシカルボニル基が含まれる。前記アリールオキシカルボニル基としては、炭素原子数が7~20のアリールオキシカルボニル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アリールオキシカルボニル基の例には、フェノキシカルボニル基が含まれる。

[0209]

複素環オキシカルボニル基には、置換複素環オキシカルボニル基が含まれる。 複素環としては、前記複素環基で記載の複素環が挙げられる。前記複素環オキシ カルボニル基としては、炭素原子数が2~20の複素環オキシカルボニル基が好 ましい。前記置換基の例には、イオン性親水性基が含まれる。前記複素環オキシカルボニル基の例には、2-ピリジルオキシカルボニル基が含まれる。

[0210]

アシル基には、置換アシル基が含まれる。前記アシル基としては、炭素原子数が1~20のアシル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アシル基の例には、アセチル基およびベンゾイル基が含まれる。

[0211]

アルコキシ基には、置換アルコキシ基が含まれる。前記アルコキシ基としては、炭素原子数が1~20のアルコキシ基が好ましい。前記置換基の例には、アルコキシ基、ヒドロキシル基、およびイオン性親水性基が含まれる。前記アルコキシ基の例には、メトキシ基、エトキシ基、イソプロポキシ基、メトキシエトキシ基、ヒドロキシエトキシ基および3-カルボキシプロポキシ基が含まれる。

[0212]

アリールオキシ基には、置換アリールオキシ基が含まれる。前記アリールオキシ基としては、炭素原子数が6~20のアリールオキシ基が好ましい。前記置換基の例には、アルコキシ基、およびイオン性親水性基が含まれる。前記アリールオキシ基の例には、フェノキシ基、pーメトキシフェノキシ基およびoーメトキシフェノキシ基が含まれる。

$[0\ 2\ 1\ 3]$

複素環オキシ基には、置換複素環オキシ基が含まれる。複素環としては、前記 複素環基で記載の複素環が挙げられる。前記複素環オキシ基としては、炭素原子 数が2~20の複素環オキシ基が好ましい。前記置換基の例には、アルキル基、 アルコキシ基、およびイオン性親水性基が含まれる。前記複素環オキシ基の例に は、3-ピリジルオキシ基、3-チエニルオキシ基が含まれる。

[0214]

シリルオキシ基としては、炭素原子数が1~20の脂肪族基、芳香族基が置換 したシリルオキシ基が好ましい。前記シリルオキシ基の例には、トリメチルシリ ルオキシ、ジフェニルメチルシリルオキシが含まれる。

[0215]

アシルオキシ基には、置換アシルオキシ基が含まれる。前記アシルオキシ基としては、炭素原子数1.~20のアシルオキシ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アシルオキシ基の例には、アセトキシ基およびベンゾイルオキシ基が含まれる。

[0216]

カルバモイルオキシ基には、置換カルバモイルオキシ基が含まれる。前記置換 基の例には、アルキル基が含まれる。前記カルバモイルオキシ基の例には、N-メチルカルバモイルオキシ基が含まれる。

[0217]

アルコキシカルボニルオキシ基には、置換アルコキシカルボニルオキシ基が含まれる。前記アルコキシカルボニルオキシ基としては、炭素原子数が2~20のアルコキシカルボニルオキシ基が好ましい。前記アルコキシカルボニルオキシ基の例には、メトキシカルボニルオキシ基、イソプロポキシカルボニルオキシ基が含まれる。

[0218]

アリールオキシカルボニルオキシ基には、置換アリールオキシカルボニルオキシ基が含まれる。前記アリールオキシカルボニルオキシ基としては、炭素原子数が7~20のアリールオキシカルボニルオキシ基が好ましい。前記アリールオキシカルボニルオキシ基の例には、フェノキシカルボニルオキシ基が含まれる。

[0219]

アミノ基には、置換アミノ基が含まれる。該置換基としてはアルキル基、アリール基または複素環基が含まれ、アルキル基、アリール基および複素環基はさらに置換基を有していてもよい。アルキルアミノ基には、置換アルキルアミノ基が含まれる。アルキルアミノ基としては、炭素原子数1~20のアルキルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アルキルアミノ基の例には、メチルアミノ基およびジエチルアミノ基が含まれる。

[0220]

アリールアミノ基には、置換アリールアミノ基が含まれる。前記アリールアミノ基としては、炭素原子数が6~20のアリールアミノ基が好ましい。前記置換

基の例としては、ハロゲン原子、およびイオン性親水性基が含まれる。前記アリールアミノ基の例としては、フェニルアミノ基および2ークロロフェニルアミノ基が含まれる。

[0221]

複素環アミノ基には、置換複素環アミノ基が含まれる。複素環としては、前記 複素環基で記載の複素環が挙げられる。前記複素環アミノ基としては、炭素数2 ~20個の複素環アミノ基が好ましい。前記置換基の例としては、アルキル基、 ハロゲン原子、およびイオン性親水性基が含まれる。

[0222]

アシルアミノ基には、置換アシルアミノ基が含まれる。前記アシルアミノ基としては、炭素原子数が2~20のアシルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アシルアミノ基の例には、アセチルアミノ基、プロピオニルアミノ基、ベンゾイルアミノ基、N-フェニルアセチルアミノおよび3,5-ジスルホベンゾイルアミノ基が含まれる。

[0223]

ウレイド基には、置換ウレイド基が含まれる。前記ウレイド基としては、炭素原子数が1~20のウレイド基が好ましい。前記置換基の例には、アルキル基およびアリール基が含まれる。前記ウレイド基の例には、3-メチルウレイド基、3、3-ジメチルウレイド基および3-フェニルウレイド基が含まれる。

[0224]

スルファモイルアミノ基には、置換スルファモイルアミノ基が含まれる。前記 置換基の例には、アルキル基が含まれる。前記スルファモイルアミノ基の例には 、N、N-ジプロピルスルファモイルアミノ基が含まれる。

[0225]

アルコキシカルボニルアミノ基には、置換アルコキシカルボニルアミノ基が含まれる。前記アルコキシカルボニルアミノ基としては、炭素原子数が2~20のアルコキシカルボニルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アルコキシカルボニルアミノ基の例には、エトキシカルボニルアミノ基が含まれる。

[0226]

アリールオキシカルボニルアミノ基には、置換アリールオキシカルボニルアミノ基が含まれる。前記アリールオキシカルボニルアミノ基としては、炭素原子数が7~20のアリールオキシカルボニルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アリールオキシカルボニルアミノ基の例には、フェノキシカルボニルアミノ基が含まれる。

[0227]

アルキルスルホニルアミノ基及びアリールスルホニルアミノ基には、置換アルキルスルホニルアミノ基及び置換アリールスルホニルアミノ基が含まれる。前記アルキルスルホニルアミノ基及びアリールスルホニルアミノ基としては、炭素原子数が1~20のアルキルスルホニルアミノ基及びアリールスルホニルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アルキルスルホニルアミノ基及びアリールスルホニルアミノ基の例には、メチルスルホニルアミノ基、Nーフェニルーメチルスルホニルアミノ基、フェニルスルホニルアミノ基、および3ーカルボキシフェニルスルホニルアミノ基が含まれる。

[0228]

複素環スルホニルアミノ基には、置換複素環スルホニルアミノ基が含まれる。 複素環としては、前記複素環基で記載の複素環が挙げられる。前記複素環スルホ ニルアミノ基としては、炭素原子数が1~12の複素環スルホニルアミノ基が好 ましい。前記置換基の例には、イオン性親水性基が含まれる。前記複素環スルホ ニルアミノ基の例には、2ーチエニルスルホニルアミノ基、3ーピリジルスルホ ニルアミノ基が含まれる。

[0229]

アルキルチオ基、アリールチオ基及び複素環チオ基には、置換アルキルチオ基、置換アリールチオ基及び置換複素環チオ基が含まれる。複素環としては、前記複素環基で記載の複素環が挙げられる。前記アルキルチオ基、アリールチオ基及び複素環チオ基としては、炭素原子数が1から20のものが好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アルキルチオ基、アリールチオ基及び複素環チオ基の例には、メチルチオ基、フェニルチオ基、2-ピリジルチ

オ基が含まれる。

[0230]

アルキルスルホニル基およびアリールスルホニル基には、置換アルキルスルホニル基および置換アリールスルホニル基が含まれる。アルキルスルホニル基およびアリールスルホニル基の例としては、それぞれメチルスルホニル基およびフェニルスルホニル基をあげる事ができる。

[0231]

複素環スルホニル基には、置換複素環スルホニル基が含まれる。複素環としては、前記複素環基で記載の複素環が挙げられる。前記複素環スルホニル基としては、炭素原子数が1~20の複素環スルホニル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記複素環スルホニル基の例には、2-チェニルスルホニル基、3-ピリジルスルホニル基が含まれる。

. [0232]

アルキルスルフィニル基およびアリールスルフィニル基には、置換アルキルスルフィニル基および置換アリールスルフィニル基が含まれる。アルキルスルフィニル基およびアリールスルフィニル基の例としては、それぞれメチルスルフィニル基およびフェニルスルフィニル基をあげる事ができる。

[0233]

複素環スルフィニル基には、置換複素環スルフィニル基が含まれる。複素環としては、前記複素環基で記載の複素環が挙げられる。前記複素環スルフィニル基としては、炭素原子数が1~20の複素環スルフィニル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記複素環スルフィニル基の例には、4-ピリジルスルフィニル基が含まれる。

[0234]

スルファモイル基には、置換スルファモイル基が含まれる。前記置換基の例には、アルキル基が含まれる。前記スルファモイル基の例には、ジメチルスルファモイル基およびジー(2-ヒドロキシエチル)スルファモイル基が含まれる。

[0235]

一般式(3)の中でも、特に好ましい構造は、下記一般式(3-A)で表され

るものである。

一般式 (3-A);

[0236]

【化57】

$$Z$$
 Z_{31}
 R_{32}
 R_{31}
 R_{35}
 R_{36}
 R_{34}
 R_{33}

[0237]

式中、R₃₁、R₃₂、R₃₅およびR₃₆は一般式(3)と同義である。

R₃₃およびR₃₄は、各々独立に、水素原子または置換基を表し、該置換基は脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、またはスルファモイル基を表す。中でも水素原子、芳香族基、複素環基、アシル基、アルキルスルホニル基もしくはアリールスルホニル基が好ましく、水素原子、芳香族基、複素環基が特に好ましい。

[0238]

 Z_{31} はハメットの置換基定数 σ p 値が 0 . 2 0 以上の電子吸引性基を表す。 Z_{31} は σ p 値が 0 . 3 0 以上の電子吸引性基であるのが好ましく、 0 . 4 5 以上の電子吸引性基が更に好ましく、 0 . 6 0 以上の電子吸引性基が特に好ましいが、 1 . 0 を超えないことが望ましい。

[0239]

具体的には、ハメット置換基定数 σ p 値が 0.60以上の電子吸引性基としては、シアノ基、ニトロ基、アルキルスルホニル基(例えばメチルスルホニル基、アリールスルホニル基(例えばフェニルスルホニル基)を例として挙げることができる。

[0240]

ハメット置換基定数 σ p値が0. 45以上の電子吸引性基としては、上記に加えアシル基(例えばアセチル基)、アルコキシカルボニル基(例えばドデシルオキシカルボニル基)、アリールオキシカルボニル基(例えば、<math>m-クロロフェノキシカルボニル)、アルキルスルフィニル基(例えば、n-プロピルスルフィニル)、アリールスルフィニル基(例えばフェニルスルフィニル)、スルファモイル基(例えば、N-エチルスルファモイル、N, N-ジメチルスルファモイル)、ハロゲン化アルキル基(例えば、トリフロロメチル)を挙げることができる。

[0241]

ハメット置換基定数 σ p値が 0.3 0以上の電子吸引性基としては、上記に加え、アシルオキシ基(例えば、アセトキシ)、カルバモイル基(例えば、Nーエチルカルバモイル、N,Nージブチルカルバモイル)、ハロゲン化アルコキシ基(例えば、トリフロロメチルオキシ)、ハロゲン化アリールオキシ基(例えば、ペンタフロロフェニルオキシ)、スルホニルオキシ基(例えばメチルスルホニルオキシ基)、ハロゲン化アルキルチオ基(例えば、ジフロロメチルチオ)、2つ以上の σ p値が 0.15以上の電子吸引性基で置換されたアリール基(例えば、2,4ージニトロフェニル、ペンタクロロフェニル)、およびヘテロ環(例えば、2・ベンゾオキサゾリル、2・ベンゾチアゾリル、1ーフェニルー2・ベンゾイミダゾリル)を挙げることができる。

[0242]

ハメット置換基定数 σ p 値が 0. 2 0 以上の電子吸引性基の具体例としては、 上記に加え、ハロゲン原子などが挙げられる。

[0243]

 Z_{31} としては、上記のなかでも、炭素数 $2 \sim 20$ のアシル基、炭素数 $2 \sim 20$ のアルキルオキシカルボニル基、ニトロ基、シアノ基、炭素数 $1 \sim 20$ のアルキルスルホニル基、炭素数 $6 \sim 20$ のアリールスルホニル基、炭素数 $1 \sim 20$ のカルバモイル基及び炭素数 $1 \sim 20$ のハロゲン化アルキル基が好ましい。特に好ましいものは、シアノ基、炭素数 $1 \sim 20$ のアルキルスルホニル基、炭素数 $6 \sim 20$ のアリールスルホニル基であり、最も好ましいものはシアノ基である。

[0244]

 Z_{32} は水素原子または置換基を表し、該置換基は脂肪族基、芳香族基もしくは 複素環基を表す。 Z_{32} は好ましくは脂肪族基であり、更に好ましくは炭素数 $1\sim$ 6 のアルキル基である。

[0245]

Qは水素原子または置換基を表し、該置換基は脂肪族基、芳香族基もしくは複素環基を表す。中でもQは5~8員環を形成するのに必要な非金属原子群からなる基が好ましい。前記5~8員環は置換されていてもよいし、飽和環であっても不飽和結合を有していてもよい。その中でも特に芳香族基、複素環基が好ましい。好ましい非金属原子としては、窒素原子、酸素原子、イオウ原子または炭素原子が挙げられる。そのような環構造の具体例としては、例えばベンゼン環、シクロペンタン環、シクロペキサン環、シクロペプタン環、シクロオクタン環、シクロペキセン環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、イミダゾール環、ベンゾイミダゾール環、オキサゾール環、ベンゾオキサゾール環、チアゾール環、ベンゾチアゾール環、オキサン環、スルホラン環およびチアン環等が挙げられる。

[0246]

一般式(3-A)で説明した各置換基の水素原子は置換されていてもよい。該置換基としては、一般式(3)で説明した置換基、 G_3 、 R_{31} 、 R_{32} で例示した基やイオン性親水性基が挙げられる。

[0247]

前記一般式(3)で表されるアゾ染料として特に好ましい置換基の組み合わせは、R35およびR36として好ましくは、水素原子、アルキル基、アリール基、複素環基、スルホニル基、アシル基であり、さらに好ましくは水素原子、アリール基、複素環基、スルホニル基であり、最も好ましくは、水素原子、アリール基、複素環基である。ただし、R35およびR36が共に水素原子であることは無い。

[0248]

G3として好ましくは、水素原子、ハロゲン原子、アルキル基、ヒドロキシル基、アミノ基、アシルアミノ基であり、さらに好ましくは水素原子、ハロゲン原子、アミノ基、アシルアミノ基であり、もっとも好ましくは水素原子、アミノ基

、アシルアミノ基である。

[0249]

A₃₁のうち、好ましくはピラゾール環、イミダゾール環、イソチアゾール環、チアジアゾール環、ベンゾチアゾール環であり、さらにはピラゾール環、イソチアゾール環であり、最も好ましくはピラゾール環である。

[0250]

 B_{31} および B_{32} がそれぞれ= CR_{31} -、 $-CR_{32}$ =であり、 R_{31} 、 R_{32} は各々好ましくは水素原子、アルキル基、ハロゲン原子、シアノ基、カルバモイル基、カルボキシル基、ヒドロキシル基、アルコキシ基、アルコキシカルボニル基であり、さらに好ましくは水素原子、アルキル基、カルボキシル基、シアノ基、カルバモイル基である。

[0251]

尚、前記一般式(3)で表される化合物の好ましい置換基の組み合わせについては、種々の置換基の少なくとも1つが前記の好ましい基である化合物が好ましく、より多くの種々の置換基が前記好ましい基である化合物がより好ましく、全ての置換基が前記好ましい基である化合物が最も好ましい。

[0252]

前記一般式(3)で表されるアゾ染料の具体例を以下に示すが、本発明は、下 記の例に限定されるものではない。

[0253]

【化58】

 染料	R,	R,	R ₃
a-1	→ S N	-C ₈ H ₁₇	-C ₈ H ₁₇
a-2	-S N CI	——————————————————————————————————————	CH_3 CH_3 CH_3
a−3	S CI	CH_3 CH_3	-C ₈ H ₁₇
a-4	$-\stackrel{s}{\underset{N}{\longleftarrow}}$	OC ₈ H ₁₇	-C ₈ H ₁₇
a−5	√S NO ₂	CH ₃ —CH ₃	CH ₃ —CH ₃

[0254]

【化59】

[0255]

【化60】

$$\begin{array}{c|c}
R_1 & CN & H_3C & CN & H \\
N & N = N & N = N & R_4 \\
R_2 & H - N & R_3
\end{array}$$

染料	R,	R₂	R ₃	R ₄
a-11	+	SO ₂ Na	—CH₃	{SO₃Na
a-12	~	S COOH	- √ -so₃K	Соон
a-13	-CI	S_{N} $SO_{3}K$ $(4,5-mix)$	———so₃K	Соон
a-14	+	SO ₃ Na	CH ₃ SO ₃ Na CH ₃	CH ₃ SO ₃ Na CH ₃
a−15	+	-SSO₃K	CH ₃ SO ₃ K CH ₃	CH ₃ SO ₃ K CH ₃
a-16	+	s C	CH ₃ CH ₂ CH ₃ N(CH ₂ CO ₂ H	CH ₃ CH ₂ CH ₂ N(CH ₂ CO ₂ H) ₂
a-17	+	SO ₃ Na	CH ₃ SO ₃ Na CH ₃	CH ₃ SO ₃ Na CH ₃

[0256]

【化61】

染料	R,	R ₂	R ₃	R ₄
a-18	→ _N \(\tag{\sqrt{1}}	→ ^S N	CH ₃	CH ₃ CH ₃
a−19	→ ^s C _C	−SO ₂ CH ₃	CH ₃	С—сн
a-20	\prec_{N}^{S}	-COCH ₃	G _B H ₁₇ (t)	G ₈ H ₁₇ (t)
a-21	-S-CI	-SO₂CH₃	ньс сн	C ₈ H ₁₇ (t)
a-22	$\stackrel{s}{\longrightarrow}$	н	CH ₃ CH ₃	CH ₃
a-23	$\prec_{N}^{s} \mathcal{D}$	н	—————————————————————————————————————	−ÇH3
a-24	\prec_{N}^{S}	н	CH ₃	CH ₃
a-25	~\^\(\)	$ ^{\circ}$ \bigcirc	СН3	CH ₃ CH ₃

[0257]

【化62】

[0258]

【化63】

[0259]

【化64】

[0260]

【化65】

R ₃ H-N R ₃ R ₄ R ₄ R ₄ R ₄ R ₅ R ₄ R ₅	డి	ŧ 🔷	COCH	+000	го,сн,	C ₆ H ₁ ,	£ 5 £
	R,	, h. 8	G,H ₁₇ (t)	\$ €		*	F. CH3
	Re	SO ₂ CH ₃		O Z	Ş y z	ಕ್ ೮ ೮=0	Ç ″Y²
	r R	CONH	I	I	I	CONH2	Ξ
	ď	Ι	COOEt	CONH	I	I	ъ́в
	Ŗ	2	ZZZ		\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	o o	~ Yz
	8 2	N O	à	SO ₂ CH ₃	S	å	S
	œ	£\$	+	a-43 N SO ₂ CH ₃	+	+	+
	茶	14-e	a-42	a-43	a-44	a-45	a-46

[0261]

【化66】

	ď	Co.H17		\$ \$\frac{1}{2}\frac{1}	tos to	ev.cos-Ne
ď <u>'</u> ď	Ą	C ₆ H ₁₇	ŧ\$ŧ	C ₀ H ₁₇	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	evo.cos
R N N N N N N N N N N N N N N N N N N N	ď	I	I	I	I	I
NO N	æ	NO	S	CONH,	r	S
	R ₂	CH3	ช็	ર્ક	చ్	I
	R,	ъ́	гно	ť	ъ́в	G.
	松	<u>-</u> -6	p-2	6 -3	. d 4-	ь-5 5

[0262]

【化67】

	g.	CH3 CH2N(CH2CO2N)2	C ₆ H,,	eN _c OS -
R ₂ N N N N N N N N N N N N N N N N N N N	₹ 2	CH ₂ CH ₂ NICH ₂ CO ₂ N ₂	£\$\$	SO ₂ CH ₃
A S N = N S N = N S N = N S N = N S N = N S N S	82	ν΄	ν ^ż	ъ
	R.	r O	СН³	I
	æ	OH,	Сĥ	ъ,
	菜	9-q	b-7	8-q

[0263]

【化68】

	ď	C ₆ H ₁ ,	× so ×	ycos \	C ₆ H ₁ ,	C ₈ H ₁₇ (t)
	ď	C,H,(t)	yos Soyk	So ₃ K	£ + £	ર્ફ નિક
N=N N=N N-H N-N-R _s	, Y	I	I	SO ₃ ×	Noos Noos Noos Noos Noos Noos Noos Noos	S MHSO ₂ OC ₈ H ₁ y(n)
E Z	œ	N	CONH	I	x	I
	œ	cH,	I	ť	ť	I
	Ŗ.	-SOH,		SO ₃ K	l GH,	\Diamond
	纵然	7	c-2	8	o-4	in ပ

[0264]

【化69】

	ď.	So _s ×	i di	to to to	-CaH1,	₹ \$ \$
·	œ	×°°°s-	ž Š	₽ 80° ₩ - 64°	-C ₂ H ₁ ,	OC, H ₉ (n)
N=N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	ď.	I	I	Ø ₂ ×z	I	
Z Z Z	æ	NO O	S	I	CONH,	I
	α,	cH3	СН³	I.	СН	ર્સ
	æ	Me	d-2 Me	Me	£	£
	茶	д -1	7-P	6 - 3	d-4	A R

[0265]

【化70】

	s.	C ₆ H ₁₇ (t)	C ₈ H;	° НООО	×°os	\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	to t
T Z	ď	C,H1,(t)	C ₉ H ₁ ,	£\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	×°os →	ŝ ∽	N N N N N N N N N N N N N N N N N N N
S N N N N N N N N N N N N N N N N N N N	T.	I	wyz wyz		I	so ₂ cH ₃	4-2
- E	R	CONH,	I	x	N O	I	eto
	R ₂	ch,	I	ř	I	ъ́в	
	R	5-CI	5,6-diCl	5,6-diCl	5-CH,	5-NO ₂	# # # # # # # # # # # # # # # # # # #
	茶	1-8	e-2	e-3	9-4	စ ၂ လ	<u>†</u> 5. 5

[0266]

〔ブラック染料〕

本発明で使用するブラックインクには、波長 λ maxが 5 0 0 n m から 7 0 0 n m にあり、吸光度 1. 0 に規格化した希薄溶液の吸収スペクトルにおける半値幅 $(W\lambda_{,1/2})$ が 1 0 0 n m 以上(好ましくは 1 2 0 n m 以上 5 0 0 n m 以下、 さらに好ましくは 1 2 0 n m 以上 3 5 0 n m 以下)である染料(L)を使用する。

[0267]

この染料(L)単独で、画像品質の高い「(しまりのよい)黒」=観察光源によらず、かつB、G、Rのいずれかの色調が強調されにくい黒を実現できる場合は、この染料を単独でブラックインク用染料として使用することも可能であるが、通常はこの染料の吸収が低い領域をカバーする染料と併用するのが一般的である。通常はイエロー領域に主吸収(λmaxが350から500nm)を有する染料(S)と併用するのが好ましい。また、さらに他の染料と併用してブラックインクを作製することも可能である。

[0268]

本発明においては、該染料を単独もしくは混合して水性媒体中に溶解または分散することによりブラックインクを作製するが、インクジェット記録用ブラックインクとして好ましい性能、すなわち、1)耐候性に優れること、および/または、2)褪色後も黒のバランスが崩れないことを満足するために、下記の条件を満たすようなインクを作製するのが好ましい。

[0269]

まず、該ブラックインクを用いてJISコード2223の黒四角番号を48ポイントで印字し、これをステータスAフィルター(ビジュアルフィルター)により測定した反射濃度(D_{vis})を初期濃度として規定する。ステータスAフィルターを搭載した反射濃度測定機としては、たとえばX-R i t e 濃度測定機などを挙げることができる。ここで「黒」を濃度測定する場合、標準的な観察反射濃度として D_{vis} による測定値を使用する。この印刷物を、5 p p mのオゾンを常時発生可能なオゾン褪色試験機を用いて強制的に褪色させ、その反射濃度(D_{vi} s)が初期反射濃度値の80%となるまでの時間(t)から強制褪色速度定数(k_{vi} s)を「0.8 = e x p($-k_{vi}$ s・t)」なる関係式から求める。

ブラックインクでは、該速度定数(k_{vis})が 5. 0×1 0^{-2} [hour-1] 以下

が好ましく、3. 0×1 0^{-2} [hour-1] 以下がより好ましく、1. 0×1 0^{-2} [hour-1] 以下が特に好ましい。(条件 1)

[0270]

また、該ブラックインクを用いてJISコード2223の黒四角記号を48ポイントで印字し、これをステータスAフィルターにより測定した濃度測定値で、 D_{vis} ではないC(シアン)、M(マゼンタ)、Y(イエロー)3色の反射濃度(D_R , D_G , D_B)も初期濃度として規定する。ここで、(D_R , D_G , D_B)は、(レッドフィルターのよるC 反射濃度、グリーンフィルターのよるM 反射濃度、ブルーフィルターのよるY 反射濃度)を示す。この印刷物を上記の方法に従って 5 p p m のオゾンを常時発生可能なオゾン褪色試験機を用いて強制的に褪色させ、それぞれの反射濃度(D_R , D_G , D_B)が初期濃度値の80%となるまでの時間からも同様に強制褪色速度定数(k_R , k_G , k_B)を定める。該3つの速度定数を求めて、その最大値と最小値の比(R)を求めた場合(たとえば k_R が最大値で、 k_G が最小値の場合、 $R=k_R$ / k_G である)、該比(R)が1.2以下が好ましく、1.1以下がより好ましく、1.05以下が特に好ましい。(条件2)

[0271]

なお、上記で使用した「JISコード2223の黒四角記号を48ポイントで印字した印字物」は、濃度測定に十分な大きさを与えるため、測定機のアパーチャーを十分にカバーする大きさに画像を印字したものである。

[0272]

また、ブラックインクに使用する少なくとも 1 つの染料の酸化電位は、前述の通り、 $1.0\,V$ (vsSCE)よりも貴、好ましくは $1.1\,V$ (vsSCE)よりも貴、さらに好ましくは $1.2\,V$ (vsSCE)よりも貴、最も好ましくは $1.2\,SV$ (vsSCE)よりも貴であり、その染料の少なくとも 1 つは λ maxが $5\,0\,0$ n m以上であることが好ましい。(条件 3)

[0273]

さらに、ブラックインクとしては、下記一般式(4)に記載のアゾ染料を使用 して作製する。

[0274]

一般式(4);

 A^{41} – $(N = N - (B^{41}) m) n - N = N - C^{41}$

[0275]

一般式(4)中、 A_{41} 、 B_{41} および C_{41} は、それぞれ独立に、置換されていてもよい芳香族基または複素環基を表す。mは1または2であり、nは0以上の整数である。

[0276]

一般式(4)に記載のアゾ染料としては、まず λ maxが 5 0 0 n mから 7 0 0 n mにあり、吸光度 1.0に規格化した希薄溶液の吸収スペクトルにおける半値幅が 1 0 0 n m以上である染料(L)に該当するものを挙げることができる。これの他に、 λ maxが 3 5 0 n mから 5 0 0 n mにある染料(S)も同様に一般式(4)の染料に該当するものとして挙げることができる。好ましくは染料(L)の少なくとも 1 つが一般式(4)の染料であるが、特に好ましくは染料(L)、(S)のいずれにおいても少なくとも 1 つが一般式(4)の染料であり、中でもインク中全染料の 9 0 質量%が一般式(4)の染料であることが好ましい。(条件4)

[0277]

本発明におけるブラックインクは、上記条件1~4のいずれか少なくとも1つ を満たすブラックインクである。

[0278]

以下に、一般式(4)で表される染料について説明する。

一般式 (4) 中、 A_{41} 、 B_{41} および C_{41} は、それぞれ独立に、置換されていてもよい芳香族基または置換されていてもよい複素環基を表す(A_{41} および C_{41} は一価の基であり、 B_{41} は二価の基である)。

mは1または2であり、nは0以上の整数であり、好ましくはm=n=1である。

一般式(4)で表されるアゾ染料は、特に下記一般式(4-A)で表される染料であることが好ましい。

一般式 (4-A);

[0279]

【化71】

$$A_{41}-N=N-B_{41}-N=N-B_{43}=B_{42}$$
 R_{45}
 R_{46}

[0280]

上記一般式(4-A)中、 A_{41} 、 B_{41} は一般式(4)におけると同義である。 B_{42} および B_{43} は、各々= C R_{41} -および- C R_{42} =を表すか、またはいずれか 一方が窒素原子、他方が= C R_{41} -もしくは- C R_{42} =を表す。

[0281]

[0282]

R₄₅、R₄₆は、各々独立に、水素原子、脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルもしくはアリールスルホニル基、またはスルファモイル基を表し、各

基は更に置換基を有していても良い。但し、R₄₅、R₄₆が同時に水素原子であることはない。

また、 R_{41} と R_{45} 、あるいは R_{45} と R_{46} が結合して5乃至6 員環を形成してもよい。

[0283]

一般式(4-A)で表されるアゾ染料は、さらに下記一般式(4-B)で表される染料であることが好ましい。

一般式 (4-B);

[0284]

【化72】

$$R_{47}$$
 R_{48} R_{43} R_{45} R_{46} R_{46}

[0285]

上記一般式(4-B)中、 R_{47} および R_{48} は、一般式(4-A)の R_{41} と同義である。

[0286]

ここで、一般式(4)、一般式(4-A)および一般式(4-B)の説明において使用される用語(置換基)について説明する。これらの用語は後述する一般式(4-C)、一般式(4-D)の説明にも共通するものである。

[0287]

ハロゲン原子としては、フッ素原子、塩素原子および臭素原子が挙げられる。

[0288]

脂肪族基は、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アラルキル基および置換アラルキル基を意味する。脂肪族基は分岐を有していてもよく、また環を形成していてもよい。脂肪族基の炭素原子数は1~20であることが好ましく、1~16であることがさらに好ましい。アラルキル基および置換アラルキル基のアリール部分はフェニル

またはナフチルであることが好ましく、フェニルが特に好ましい。脂肪族基の例には、メチル、エチル、ブチル、イソプロピル、tーブチル、ヒドロキシエチル、メトキシエチル、シアノエチル、トリフルオロメチル、3ースルホプロピル、4ースルホブチル、シクロヘキシル基、ベンジル基、2ーフェネチル基、ビニル基、およびアリル基を挙げることができる。

[0289]

1価の芳香族基はアリール基および置換アリール基を意味する。アリール基は、フェニルまたはナフチルであることが好ましく、フェニルが特に好ましい。 1 価の芳香族基の炭素原子数は $6\sim2$ 0 であることが好ましく、6 から 1 6 がさらに好ましい。 1 価の芳香族基の例には、フェニル、p-トリル、p-メトキシフェニル、o-クロロフェニルおよびm-(3-スルホプロピルアミノ)フェニルが含まれる。 2 価の芳香族基は、これらの 1 価の芳香族基を 2 価にしたものであり、その例にはとしてフェニレン、p-トリレン、p-メトキシフェニレン、o-クロロフェニレンおよびm-(3-スルホプロピルアミノ)フェニレン、ナフチレンなどが含まれる。

[0290]

複素環基には、置換基を有する複素環基および無置換の複素環基が含まれる。 複素環に脂肪族環、芳香族環または他の複素環が縮合していてもよい。複素環基 としては、5 員または6 員環の複素環基が好ましく、複素環のヘテロ原子として はN、O、およびSをあげることができる。上記置換基の例には、脂肪族基、ハ ロゲン原子、アルキル及びアリールスルホニル基、アシル基、アシルアミノ基、 スルファモイル基、カルバモイル基、イオン性親水性基などが含まれる。1 価及 び2 価の複素環基に用いられる複素環の例には、ピリジン、チオフェン、チアゾ ール、ベンゾチアゾール、ベンズオキサゾール、及びフラン環が含まれる。

[0291]

カルバモイル基には、置換基を有するカルバモイル基および無置換のカルバモイル基が含まれる。前記置換基の例には、アルキル基が含まれる。前記カルバモイル基の例には、メチルカルバモイル基およびジメチルカルバモイル基が含まれる。

[0292]

アルコキシカルボニル基には、置換基を有するアルコキシカルボニル基および 無置換のアルコキシカルボニル基が含まれる。アルコキシカルボニル基としては 、炭素原子数が2~20のアルコキシカルボニル基が好ましい。置換基の例には 、イオン性親水性基が含まれる。前記アルコキシカルボニル基の例には、メトキ シカルボニル基およびエトキシカルボニル基が含まれる。

[0293]

アリールオキシカルボニル基には、置換基を有するアリールオキシカルボニル基および無置換のアリールオキシカルボニル基が含まれる。アリールオキシカルボニル基としては、炭素原子数が7~20のアリールオキシカルボニル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アリールオキシカルボニル基の例には、フェノキシカルボニル基が含まれる。

[0294]

複素環オキシカルボニル基には、置換基を有する複素環オキシカボニル基および無置換の複素環オキシカルボニル基が含まれる。複素環オキシカルボニル基としては、炭素原子数が2~20の複素環オキシカルボニル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記複素環オキシカルボニル基の例には、2-ピリジルオキシカルボニル基が含まれる。

アシル基には、置換基を有するアシル基および無置換のアシル基が含まれる。 アシル基としては、炭素原子数が 1~20のアシル基が好ましい。上記置換基の 例には、イオン性親水性基が含まれる。上記アシル基の例には、アセチル基およ びベンゾイル基が含まれる。

[0295]

アルコキシ基には、置換基を有するアルコキシ基および無置換のアルコキシ基が含まれる。アルコキシ基としては、炭素原子数が1~20のアルコキシ基が好ましい。置換基の例には、アルコキシ基、ヒドロキシル基、およびイオン性親水性基が含まれる。上記アルコキシ基の例には、メトキシ基、エトキシ基、イソプロポキシ基、メトキシエトキシ基、ヒドロキシエトキシ基および3ーカルボキシプロポキシ基が含まれる。

[0296]

アリールオキシ基には、置換基を有するアリールオキシ基および無置換のアリールオキシ基が含まれる。アリールオキシ基としては、炭素原子数が6~20のアリールオキシ基が好ましい。上記置換基の例には、アルコキシ基およびイオン性親水性基が含まれる。上記アリールオキシ基の例には、フェノキシ基、pーメトキシフェノキシ基およびoーメトキシフェノキシ基が含まれる。

[0297]

複素環オキシ基には、置換基を有する複素環オキシ基および無置換の複素環オキシ基が含まれる。上記複素環オキシ基としては、炭素原子数が2~20の複素環オキシ基が好ましい。上記置換基の例には、アルキル基、アルコキシ基、およびイオン性親水性基が含まれる。上記複素環オキシ基の例には、3-ピリジルオキシ基、3-チエニルオキシ基が含まれる。

[0298]

シリルオキシ基としては、炭素原子数が1~20の脂肪族基、芳香族基が置換したシリルオキシ基が好ましい。シリルオキシ基の例には、トリメチルシリルオキシ、ジフェニルメチルシリルオキシが含まれる。.

[0299]

アシルオキシ基には、置換基を有するアシルオキシ基および無置換のアシルオキシ基が含まれる。アシルオキシ基としては、炭素原子数1~20のアシルオキシ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。アシルオキシ基の例には、アセトキシ基およびベンゾイルオキシ基が含まれる。

[0300]

カルバモイルオキシ基には、置換基を有するカルバモイルオキシ基および無置換のカルバモイルオキシ基が含まれる。置換基の例には、アルキル基が含まれる。カルバモイルオキシ基の例には、N-メチルカルバモイルオキシ基が含まれる。

[0301]

アルコキシカルボニルオキシ基には、置換基を有するアルコキシカルボニルオキシ基および無置換のアルコキシカルボニルオキシ基が含まれる。アルコキシカ

ルボニルオキシ基としては、炭素原子数が2~20のアルコキシカルボニルオキシ基が好ましい。アルコキシカルボニルオキシ基の例には、メトキシカルボニルオキシ基、イソプロポキシカルボニルオキシ基が含まれる。

[0302]

アリールオキシカルボニルオキシ基には、置換基を有するアリールオキシカルボニルオキシ基および無置換のアリールオキシカルボニルオキシ基が含まれる。 アリールオキシカルボニルオキシ基としては、炭素原子数が7~20のアリールオキシカルボニルオキシ基が好ましい。アリールオキシカルボニルオキシ基の例には、フェノキシカルボニルオキシ基が含まれる。

[0303]

アミノ基には、アルキル基、アリール基または複素環基で置換されたアミノ基が含まれ、アルキル基、アリール基および複素環基はさらに置換基を有していてもよい。アルキルアミノ基としては、炭素原子数1~20のアルキルアミノ基が好ましい。置換基の例には、イオン性親水性基が含まれる。アルキルアミノ基の例には、メチルアミノ基およびジエチルアミノ基が含まれる。

アリールアミノ基には、置換基を有するアリールアミノ基および無置換のアリールアミノ基が含まれる。アリールアミノ基としては、炭素原子数が6~20のアリールアミノ基が好ましい。置換基の例としては、ハロゲン原子、およびイオン性親水性基が含まれる。アリールアミノ基の例としては、アニリノ基および2-クロロフェニルアミノ基が含まれる。

複素環アミノ基には、置換基を有する複素環アミノ基および無置換の複素環アミノ基が含まれる。複素環アミノ基としては、炭素数2~20個の複素環アミノ基が好ましい。置換基の例としては、アルキル基、ハロゲン原子、およびイオン性親水性基が含まれる。

[0304]

アシルアミノ基には、置換基を有するアシルアミノ基および無置換基のアシルアミノ基が含まれる。アシルアミノ基としては、炭素原子数が2~20のアシルアミノ基が好ましい。置換基の例には、イオン性親水性基が含まれる。アシルアミノ基の例には、アセチルアミノ基、プロピオニルアミノ基、ベンゾイルアミノ

基、N-フェニルアセチルアミノおよび3, 5-ジスルホベンゾイルアミノ基が含まれる。

[0305]

ウレイド基には、置換基を有するウレイド基および無置換のウレイド基が含まれる。ウレイド基としては、炭素原子数が1~20のウレイド基が好ましい。置換基の例には、アルキル基およびアリール基が含まれる。ウレイド基の例には、3-メチルウレイド基、3,3-ジメチルウレイド基および3-フェニルウレイド基が含まれる。

[0306]

スルファモイルアミノ基には、置換基を有するスルファモイルアミノ基および 無置換のスルファモイルアミノ基が含まれる。置換基の例には、アルキル基が含 まれる。スルファモイルアミノ基の例には、N, N-ジプロピルスルファモイル アミノ基が含まれる。

[0307]

アルコキシカルボニルアミノ基には、置換基を有するアルコキシカルボニルアミノ基および無置換のアルコキシカルボニルアミノ基が含まれる。アルコキシカルボニルアミノ基としては、炭素原子数が2~20のアルコキシカルボニルアミノ基が好ましい。置換基の例には、イオン性親水性基が含まれる。アルコキシカルボニルアミノ基の例には、エトキシカルボニルアミノ基が含まれる。

[0308]

アリールオキシカルボニルアミノ基には、置換基を有するアリールオキシカボニルアミノ基および無置換のアリールオキシカルボニルアミノ基が含まれる。アリールオキシカルボニルアミノ基としては、炭素原子数が7~20のアリールオキシカルボニルアミノ基が好ましい。置換基の例には、イオン性親水性基が含まれる。アリールオキシカルボニルアミノ基の例には、フェノキシカルボニルアミノ基が含まれる。

[0309]

アルキル及びアリールスルホニルアミノ基には、置換基を有するアルキル及び アリールスルホニルアミノ基、および無置換のアルキル及びアリールスルホニル アミノ基が含まれる。スルホニルアミノ基としては、炭素原子数が1~20のスルホニルアミノ基が好ましい。置換基の例には、イオン性親水性基が含まれる。これらスルホニルアミノ基の例には、メチルスルホニルアミノ基、N-フェニルーメチルスルホニルアミノ基、フェニルスルホニルアミノ基、および3-カルボキシフェニルスルホニルアミノ基が含まれる。

[0310]

複素環スルホニルアミノ基には、置換基を有する複素環スルホニルアミノ基および無置換の複素環スルホニルアミノ基が含まれる。複素環スルホニルアミノ基としては、炭素原子数が1~12の複素環スルホニルアミノ基が好ましい。置換基の例には、イオン性親水性基が含まれる。複素環スルホニルアミノ基の例には、2-チオフェンスルホニルアミノ基、3-ピリジンスルホニルアミノ基が含まれる。

[0311]

複素環スルホニル基には、置換基を有する複素環スルホニル基および無置換の 複素環スルホニル基が含まれる。複素環スルホニル基としては、炭素原子数が1 ~20の複素環スルホニル基が好ましい。置換基の例には、イオン性親水性基が 含まれる。複素環スルホニル基の例には、2-チオフェンスルホニル基、3-ピ リジンスルホニル基が含まれる。

[0312]

複素環スルフィニル基には、置換基を有する複素環スルフィニル基および無置 換の複素環スルフィニル基が含まれる。複素環スルフィニル基としては、炭素原 子数が1~20の複素環スルフィニル基が好ましい。置換基の例には、イオン性 親水性基が含まれる。複素環スルフィニル基の例には、4-ピリジンスルフィニ ル基が含まれる。

[0313]

アルキル、アリール及び複素環チオ基には、置換基を有するアルキル、アリール及び複素環チオ基と無置換のアルキル、アリール及び複素環チオ基が含まれる。アルキル、アリール及び複素環チオ基としては、炭素原子数が1から20のものが好ましい。置換基の例には、イオン性親水性基が含まれる。アルキル、アリ

ール及び複素環チオ基の例には、メチルチオ基、フェニルチオ基、2-ピリジル チオ基が含まれる。

[0314]

アルキルおよびアリールスルホニル基には、置換基を有するアルキルおよびアリールスルホニル基、無置換のアルキルおよびアリールスルホニル基が含まれる。アルキルおよびアリールスルホニル基の例としては、それぞれメチルスルホニル基およびフェニルスルホニル基を挙げることができる。

[0315]

アルキルおよびアリールスルフィニル基には、置換基を有するアルキルおよび アリールスルフィニル基、無置換のアルキルおよびアリールスルフィニル基が含 まれる。アルキルおよびアリールスルフィニル基の例としては、それぞれメチル スルフィニル基およびフェニルスルフィニル基を挙げることができる。

[0316]

スルファモイル基には、置換基を有するスルファモイル基および無置換のスルファモイル基が含まれる。置換基の例には、アルキル基が含まれる。スルファモイル基の例には、ジメチルスルファモイル基およびジー(2-ヒドロキシエチル)スルファモイル基が含まれる。

$[0\ 3\ 1\ 7\]$

次に、一般式(4)、(4-A) および(4-B) について更に説明する。 以下の説明において、基、置換基は、既に説明したことが適用される。

一般式(4)において、 A_{41} 、 B_{41} 、 C_{41} は、それぞれ独立して、置換されていてもよい芳香族基(A_{41} 、 C_{41} は 1 価の芳香族基、例えばアリール基; B_{41} は 2 価の芳香族基、例えばアリーレン基)または置換されていてもよい複素環基(A_{41} 、 C_{41} は 1 価の複素環基; B_{41} は 2 価の複素環基)を表す。芳香族環の例としてはベンゼン環やナフタレン環をあげることができ、複素環のヘテロ原子としてはN、O、およびSをあげることができる。複素環に脂肪族環、芳香族環または他の複素環が縮合していてもよい。

置換基としてはアリールアゾ基または複素環アゾ基であってもよい。

 A_{41} 、 B_{41} 、 C_{41} の少なくとも1つが複素環基であるのが好ましく、 A_{41} 、B

41、 C_{41} の少なくとも 2 つが複素環基であるのがより好ましい。また、 A_{41} 、 B_{41} 、 C_{41} の全てが複素環基であってもよい。

[0318]

 C_{41} の好ましい複素環基として、下記一般式(4-C)で表される芳香族含窒素 6 員複素環基があげられる。 C_{41} が、下記一般式(4-C)で表される芳香族含窒素 6 員複素環基である場合は、一般式(4)は一般式(4-A)に相当する

一般式(4-C);

[0319]

【化73】

[0320]

一般式(4-C)において、 B_{42} および B_{43} は、各々、 $=CR_{41}-$ および-C $R_{42}=$ を表すか、またはいずれか一方が窒素原子、他方が $=CR_{41}-$ もしくは $-CR_{42}=$ を表す。各々、 $=CR_{41}-$ 、 $-CR_{42}=$ を表すものがより好ましい。

R45、R46は、各々独立に、水素原子、脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルまたはアリールスルホニル基、スルファモイル基を表し、各基は更に置換基を有していてもよい。R45、R46で表される好ましい置換基は、水素原子、脂肪族基、芳香族基、複素環基、アシル基、アルキルまたはアリールスルホニル基を挙げることができる。さらに好ましくは水素原子、芳香族基、複素環基、アシル基、アルキルまたはアリールスルホニル基である。最も好ましくは、水素原子、アリール基、複素環基である。各基は更に置換基を有していてもよい。但し、R45、R46が同時に水素原子であることはない。

[0321]

G4、R41、R42は、各々独立して、水素原子、ハロゲン原子、脂肪族基、芳

香族基、複素環基、シアノ基、カルボキシル基、カルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環オキシカルボニル基、アシル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アルコキシカルボニルオキシ基、アリールオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アルキルアミノ基、アリールアミノ基、複素環アミノ基を含む)、アシルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アルキルもしくはアリールスルホニルアミノ基、農素環スルホニルアミノ基、ニトロ基、アルキルもしくはアリールチオ基、複素環チオ基、アルキル及びアリールスルホニル基、複素環スルホニル基、アルキルもしくはアリールスルフィニル基、複素環スルホニル基、スルファモイル基、またはスルホ基を表し、各基は更に置換されていてもよい。

[0322]

G4で表される置換基としては、水素原子、ハロゲン原子、脂肪族基、芳香族基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アシルオキシ基、複素環アミノ基を含む)、アシルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アリールオキシ基、アリーが大原子、アルキル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アシルオキシ基、アミノ基(アルキルアミノ基、アリールアミノ基、複素環アミノ基を含む)またはアシルアミノ基であり、中でも水素原子、アニリノ基、アシルアミノ基が最も好ましい。各基は更に置換基を有していてもよい。

[0323]

R₄₁、R₄₂で表される好ましい置換基は、水素原子、アルキル基、ハロゲン原子、アルコキシカルボニル基、カルボキシル基、カルバモイル基、ヒドロキシ基、アルコキシ基、シアノ基を挙げることができる。各基は更に置換基を有していてもよい。

 R_{41} と R_{45} 、あるいは R_{45} と R_{46} が結合して5乃至6員環を形成してもよい。

 A_{41} 、 R_{42} 、 R_{45} 、 R_{46} 、 G_4 で表される各置換基が更に置換基を有する場合の置換基としては、上記 G_4 、 R_{41} 、 R_{42} で挙げた置換基を挙げることができる。また、 A_{41} 、 R_{41} 、 R_{42} 、 R_{45} 、 R_{46} 、 G_4 上のいずれかの位置に置換基としてさらにイオン性親水性基を有することが好ましい。

[0324]

置換基としてのイオン性親水性基には、スルホ基、カルボキシル基、ホスホノ基および4級アンモニウム基等が含まれる。前記イオン性親水性基としては、カルボキシル基、ホスホノ基、およびスルホ基が好ましく、特にカルボキシル基、スルホ基が好ましい。カルボキシル基、ホスホノ基およびスルホ基は塩の状態であってもよい。塩を形成する対イオンの例には、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)および有機カチオン(例、テトラメチルアンモニウムイオン、テトラメチルグアニジニウムイオン、テトラメチルホスホニウム)が挙げられ、なかでもリチウムイオンが好ましい。

[0325]

 B_{41} が環構造であるときの好ましい複素環としてはチオフェン環、チアゾール環、イミダゾール環、ベンゾチアゾール環、チエノチアゾール環を挙げることができる。各複素環基は更に置換基を有していてもよい。中でも下記一般式(a)から(e)で表されるチオフェン環、チアゾール環、イミダゾール環、ベンゾチアゾール環、チエノチアゾール環が好ましい。なお、 B_{41} が(a)で表されるチオフェン環であり、 C_{41} が前記一般式(4-C)で表される構造であるときは、一般式(4)は一般式(4-B)に相当することになる。

[0326]

【化74】

(a)
$$R_{409}$$
 R_{410} (b) R_{411} N

(c)
$$R_{413}$$
 R_{415} R_{416} R_{416}

[0327]

上記一般式(a)から(e)において、 R_{409} から R_{417} は、一般式(4-A)における G_4 、 R_{41} 、 R_{42} と同義の置換基を表す。

[0328]

一般式 (4-B) で表される染料のうち、特に好ましい構造は、下記一般式 (4-D) で表されるものである。

一般式 (4-D);

[0329]

【化75】

[0330]

式中、 Z_4 はハメットの置換基定数 σ p 値が 0 . 2 0 以上の電子吸引性基を表す。 Z_4 は、 σ p 値が 0 . 3 0 以上の電子吸引性基であるのが好ましく 0 . 4 5 以上の電子吸引性基が更に好ましく、0 . 6 0 以上の電子吸引性基が特に好ましいが、1 . 0 を超えないことが望ましい。

[0331]

具体的には、ハメット置換基定数 σ p 値が 0. 6 0 以上の電子吸引性基としては、シアノ基、ニトロ基、アルキルスルホニル基(例えばメタンスルホニル基、アリールスルホニル基(例えばベンゼンスルホニル基)を例として挙げることができる。

[0332]

ハメット置換基定数 σ p 値が 0. 4 5 以上の電子吸引性基としては、上記に加えアシル基(例えばアセチル基)、アルコキシカルボニル基(例えばドデシルオキシカルボニル基)、アリールオキシカルボニル基(例えば、m-クロロフェノキシカルボニル)、アルキルスルフィニル基(例えば、n-プロピルスルフィニル)、アリールスルフィニル基(例えばフェニルスルフィニル)、スルファモイル基(例えば、N-エチルスルファモイル、N 、N-ジメチルスルファモイル)、ハロゲン化アルキル基(例えば、トリフロロメチル)を挙げることができる。

[0333]

ハメット置換基定数 σ p 値が0. $30以上の電子吸引性基としては、上記に加え、アシルオキシ基(例えば、アセトキシ)、カルバモイル基(例えば、Nーエチルカルバモイル、N,Nージブチルカルバモイル)、ハロゲン化アルコキシ基(例えば、トリフロロメチルオキシ)、ハロゲン化アリールオキシ基(例えば、ペンタフロロフェニルオキシ)、スルホニルオキシ基(例えばメチルスルホニルオキシ基)、ハロゲン化アルキルチオ基(例えば、ジフロロメチルチオ)、2つ以上の<math>\sigma$ p値が0. 15以上の電子吸引性基で置換されたアリール基(例えば、2,4ージニトロフェニル、ペンタクロロフェニル)、およびヘテロ環(例えば、2,4ージニトロフェニル、ペンタクロロフェニル)、およびヘテロ環(例えば、2ーベンゾオキサゾリル、2ーベンゾチアゾリル、1ーフェニルー2ーベンズイミダゾリル)を挙げることができる。

[0334]

ハメット置換基定数σρ 値が0.20以上の電子吸引性基の具体例としては、上記に加え、ハロゲン原子などが挙げられる。

[0335]

 Z_4 としては、なかでも、炭素数2~20のアシル基、炭素数2~20のアルキルオキシカルボニル基、ニトロ基、シアノ基、炭素数1~20のアルキルスルホニル基、炭素数6~20のアリールスルホニル基、炭素数1~20のカルバモイル基及び炭素数1~20のハロゲン化アルキル基が好ましい。特に好ましいものは、シアノ基、炭素数1~20のアルキルスルホニル基、炭素数6~20のアリールスルホニル基であり、最も好ましいものはシアノ基である。

[0336]

一般式(4-D)中のR₄₁、R₄₂、R₄₅、R₄₆は、一般式(4-A)と同義である。R₄₃、R₄₄は、各々独立に、水素原子、脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルもしくはアリールスルホニル基、またはスルファモイル基を表す。中でも、水素原子、芳香族基、複素環基、アシル基、アルキルもしくはアリールスルホニル基が好ましく、水素原子、芳香族基、複素環基が特に好ましい。

[0337]

一般式 (4-D) で説明した各基は更に置換基を有していてもよい。これらの各基が更に置換基を有する場合、該置換基としては、一般式 (4-A) で説明した置換基、 G_4 、 R_{41} 、 R_{42} で例示した基やイオン性親水性基が挙げられる。

[0338]

前記一般式(4-B)で表されるアゾ染料として特に好ましい置換基の組み合わせは、 R_{45} および R_{46} として好ましくは、水素原子、アルキル基、アリール基、複素環基、スルホニル基、アシル基であり、さらに好ましくは水素原子、アリール基、複素環基、スルホニル基であり、最も好ましくは、水素原子、アリール基、複素環基である。ただし、 R_{45} および R_{46} が共に水素原子であることは無い

 G_4 として、好ましくは、水素原子、ハロゲン原子、アルキル基、ヒドロキシル基、アミノ基、アシルアミノ基であり、さらに好ましくは水素原子、ハロゲン

原子、アミノ基、アシルアミノ基であり、最も好ましくは水素原子、アミノ基、アシルアミノ基である。

 A_{41} のうち、好ましくはピラゾール環、イミダゾール環、イソチアゾール環、チアジアゾール環、ベンゾチアゾール環であり、さらにはピラゾール環、イソチアゾール環であり、最も好ましくはピラゾール環である。

 B_{42} および B_{43} が、それぞれ= CR_{41} -、 $-CR_{42}$ =であり、 R_{41} 、 R_{42} は、各々好ましくは水素原子、アルキル基、ハロゲン原子、シアノ基、カルバモイル基、カルボキシル基、ヒドロキシル基、アルコキシ基、アルコキシカルボニル基であり、さらに好ましくは水素原子、アルキル基、カルボキシル基、シアノ基、カルバモイル基である。

[0339]

尚、前記アゾ染料の好ましい置換基の組み合わせについては、種々の置換基の 少なくとも1つが前記の好ましい基である化合物が好ましく、より多くの種々の 置換基が前記好ましい基である化合物がより好ましく、全ての置換基が前記好ま しい基である化合物が最も好ましい。

[0340]

前記一般式(4)で表されるアゾ染料の具体例を以下に示すが、本発明は、下記の例に限定されるものではなく、また下記の具体例中でカルボキシル基、ホスホノ基およびスルホ基は塩の状態であってもよく、塩を形成する対イオンの例には、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)および有機カチオン(例、テトラメチルアンモニウムイオン、テトラメチルグアニジニウムイオン、テトラメチルホスホニウム)が含まれ、なかでもリチウムイオンが好ましい。

[0341]

【化76】

[0342]

【化77】

【化78】

[0344]

【化79】

[0345]

【化80】

【化81】

[0347]

前記一般式 (4) 、 (4-A) 、 (4-B) 、 (4-D) で表されるアゾ染料は、ジアゾ成分とカプラーとのカップリング反応によって合成することができる。主たる合成法としては、特願 2002-113460 に記載の方法により合成できる。

[0348]

λmaxが350nmから500nmにある染料(S)としては、後述のイエロー染料及び黄色顔料が好ましく用いることができる。

[0349]

一般式 (1) ~ (4) で表される各染料のインク中での含有量は、0.2~2 0 質量%が好ましく、0.5~1.5 質量%がより好ましい。

[0350]

特に本発明では、インク中に含まれる上記染料の中でも、25℃大気圧条件下における水100gへの溶解度が、すべて15g以上であるものを使用するという特徴を有する。

ここでいう溶解度の定義は、通常の化学実験で利用される概念と同一であり、 溶媒である水100gに対して、溶質である染料が、25℃大気圧条件下で最大 どのくらい溶解可能であるかを示す数値である。

その測定法としては、例えば、水100gに対して、25℃において過剰量(例えば60g)の染料を加え、25℃の条件の恒温漕の中に24時間放置後、不溶解の溶質を濾過によって除去して、得られた溶液中に溶質がどれだけ溶解しているかを分析することによって測定することが可能である。

[0351]

「インクの調製など〕

本発明のインクには、前記染料とともにフルカラーの画像を得るため、あるいは色調を整えるために、他の染料を併用してもよい。併用することができる染料の例としては以下を挙げることができる。

[0352]

イエロー染料としては、例えばカップリング成分としてフェノール類、ナフトール類、アニリン類、ピラゾロン類、ピリドン類、開鎖型活性メチレン化合物類を有するアリールもしくはヘテリルアゾ染料;例えばカップリング成分として開鎖型活性メチレン化合物類を有するアゾメチン染料;例えばベンジリデン染料やモノメチンオキソノール染料等のようなメチン染料;例えばナフトキノン染料、アントラキノン染料等のようなキノン系染料などがあり、これ以外の染料種とし

てはキノフタロン染料、ニトロ・ニトロソ染料、アクリジン染料、アクリジノン 染料等を挙げることができる。これらの染料は、クロモフォアの一部が解離して 初めてイエローを呈するものであってもよく、その場合のカウンターカチオンは アルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリ ジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらに はそれらを部分構造に有するポリマーカチオンであってもよい。

[0353]

マゼンタ染料としては、例えばカップリング成分としてフェノール類、ナフトール類、アニリン類を有するアリールもしくはヘテリルアゾ染料;例えばカップリング成分としてピラゾロン類、ピラゾロトリアゾール類を有するアゾメチン染料;例えばアリーリデン染料、スチリル染料、メロシアニン染料、オキソノール染料のようなメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料のようなカルボニウム染料、例えばナフトキノン、アントラピリドンなどのようなキノン系染料、例えばジオキサジン染料等のような縮合多環系色素等を挙げることができる。これらの染料は、クロモフォアの一部が解離して初めてマゼンタを呈するものであってもよく、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。

[0354]

シアン染料としては、例えばインドアニリン染料、インドフェノール染料のようなアゾメチン染料;シアニン染料、オキソノール染料、メロシアニン染料のようなポリメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料のようなカルボニウム染料;フタロシアニン染料;アントラキノン染料;例えばカップリング成分としてフェノール類、ナフトール類、アニリン類を有するアリールもしくはヘテリルアゾ染料、インジゴ・チオインジゴ染料を挙げることができる。これらの染料は、クロモフォアの一部が解離して初めてシアンを呈するものであってもよく、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級ア

ンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。

また、ポリアゾ染料などのブラック染料も使用することができる。

[0355]

また、直接染料、酸性染料、食用染料、塩基性染料、反応性染料等の水溶性染料を併用することもできる。なかでも好ましいものとしては、

- C. I. ダイレクトレッド2、4、9、23、26、31、39、62、63、72、75、76、79、80、81、83、84、89、92、95、111、173、184、207、211、212、214、218、21、223、224、225、226、227、232、233、240、241、242、243、247
- C.I. ダイレクトバイオレット7、9、47、48、51、66、90、93、94、95、98、1 00、101
- C.I. ダイレクトイエロー8、9、11、12、27、28、29、33、35、39、41、44、5 0、53、58、59、68、86、87、93、95、96、98、100、106、108、109、110、130 、132、142、144、161、163
- C. I. ダイレクトブルー 1、10、15、22、25、55、67、68、71、76、77、78、80、84、86、87、90、98、106、108、109、151、156、158、159、160、168、189、192、193、194、199、200、201、202、203、207、211、213、214、218、225、229、236、237、244、248、249、251、252、264、270、280、288、289、291 C. I. ダイレクトブラック 9、17、19、22、32、51、56、62、69、77、80、91、94、97、108、112、113、114、117、118、121、122、125、132、146、154、166、168、173、199
- C. I. アシッドレッド35、42、52、57、62、80、82、111、114、118、119、127、128、131、143、151、154、158、249、254、257、261、263、266、289、299、301、305、336、337、361、396、397
- C.I. アシッドバイオレット5、34、43、47、48、90、103、126
- C.I. アシッドイエロー17、19、23、25、39、40、42、44、49、50、61、64、76、79、110、127、135、143、151、159、169、174、190、195、196、197、199、218、219、222、227
- C.I. アシッドブルー9、25、40、41、62、72、76、78、80、82、92、106、112、

- 113、120、127:1、129、138、143、175、181、205、207、220、221、230、232、247、258、260、264、271、277、278、279、280、288、290、326
- C. I. アシッドブラック7、24、29、48、52: 1、172
- C. I. リアクティブレッド3、13、17、19、21、22、23、24、29、35、37、40、41 、43、45、49、55
- C.I. リアクティブバイオレット1、3、4、5、6、7、8、9、16、17、22、23、24 、26、27、33、34
- C. I. リアクティブイエロー2、3、13、14、15、17、18、23、24、25、26、27、2 9、35、37、41、42
- C. I. リアクティブブルー2、3、5、8、10、13、14、15、17、18、19、21、25、26、27、28、29、38
- C.I. リアクティブブラック4、5、8、14、21、23、26、31、32、34
- C. I. ベーシックレッド12、13、14、15、18、22、23、24、25、27、29、35、36、38、39、45、46
- C. I. ベーシックバイオレット1、2、3、7、10、15、16、20、21、25、27、28、3 5、37、39、40、48
- C. I. ベーシックイエロー1、2、4、11、13、14、15、19、21、23、24、25、28、29、32、36、39、40
- C. I. ベーシックブルー1、3、5、7、9、22、26、41、45、46、47、54、57、60、62、65、66、69、71
- C.I. ベーシックブラック8、等が挙げられる。

[0356]

さらに、顔料を併用することもできる。

本発明のインクに用いることのできる顔料としては、市販のものの他、各種文献に記載されている公知のものが利用できる。文献に関してはカラーインデックス(The Society of Dyers and Colourists編)、「改訂新版顔料便覧」日本顔料技術協会編(1989年刊)、「最新顔料応用技術」CMC出版(1986年刊)、「印刷インキ技術」CMC出版(1984年刊)、W. Herbst, K. Hunger共著によるIndustrial Organic Pigments (VCH Verlagsgesellschaft、1993年刊)等がある。具体的には、有

機顔料ではアゾ顔料(アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料、キレートアゾ顔料)、多環式顔料(フタロシアニン系顔料、アントラキノン系顔料、ペリレン及びペリノン系顔料、インジゴ系顔料、キナクリドン系顔料、ジオキサジン系顔料、イソインドリノン系顔料、キノフタロン系顔料、ジケトピロロピロール系顔料等)、染付けレーキ顔料(酸性または塩基性染料のレーキ顔料)、アジン顔料等があり、無機顔料では、黄色顔料のC. I. Pigment Yellow 34, 37, 42, 53など、赤系顔料のC. I. Pigment Red 101, 108など、青系顔料のC. I. Pigme nt Blue 27, 29,17:1など、黒系顔料のC. I. Pigment Black 7,マグネタイトなど、白系顔料のC. I. Pigment White 4,6,18,21などを挙げることができる。

[0357]

画像形成用に好ましい色調を持つ顔料としては、青ないしシアン顔料ではフタロシアニン顔料、アントラキノン系のインダントロン顔料(たとえばC. I. Pigment Blue 60など)、染め付けレーキ顔料系のトリアリールカルボニウム顔料が好ましく、特にフタロシアニン顔料(好ましい例としては、C. I. Pigment Blue 15:1、同15:2、同15:3、同15:4、同15:6などの銅フタロシアニン、モノクロロないし低塩素化銅フタロシアニン、アルニウムフタロシアニンでは欧州特許860475号に記載の顔料、C. I. Pigment Blue 16である無金属フタロシアニン、中心金属がZn、Ni、Tiであるフタロシアニンなど、中でも好ましいものはC. I. Pigment Blue 15:3、同15:4、アルミニウムフタロシアニン)が最も好ましい。

[0358]

赤ないし紫色の顔料では、アゾ顔料(好ましい例としては、C. I. Pigment Red 3、同5、同11、同22、同38、同48:1、同48:2、同48:3、同48:4、同49:1、同52:1、同53:1、同57:1、同63:2、同144、同146、同184)など、中でも好ましいものはC. I. Pigment Red 57:1、同146、同184)、キナクリドン系顔料(好ましい例としてはC. I. Pigment Red 122、同192、同202、同207、同209、C. I. Pigment Violet 19、同42、なかでも好ましいものはC. I. Pigment Red 122)、染め付けレーキ顔料系のトリアリールカルボニウム顔料(好ましい例としてはキサンテン系のC. I. Pigment Red 81:1、C. I. Pigment Violet 1、同2、同3、同27、同39)、ジオキサジン系顔料(例えばC. I. Pigment Violet 23、同37)、ジ

ケトピロロピロール系顔料(例えばC. I. Pigment Red 254)、ペリレン顔料(例えばC. I. Pigment Violet 29)、アントラキノン系顔料(例えばC. I. Pigment Violet 5:1、同31、同33)、チオインジゴ系(例えばC. I. Pigment Red 38、同88)が好ましく用いられる。

[0359]

黄色顔料としては、アゾ顔料(好ましい例としてはモノアゾ顔料系のC. I. Pigment Yellow 1, 3, 74, 98、ジスアゾ顔料系のC. I. Pigment Yellow 12, 13, 14, 16, 17, 83、総合アゾ系のC. I. Pigment Yellow 93, 94, 95, 128, 155、ベンズイミダゾロン系のC. I. Pigment Yellow 120, 151, 154, 156, 180など、なかでも好ましいものはベンジジン系化合物を原料に使用しなもの)、イソインドリン・イソインドリノン系顔料(好ましい例としてはC. I. Pigment Yellow 109, 110, 137, 139など)、キノフタロン顔料(好ましい例としてはC. I. Pigment Yellow 138など)、フラパントロン顔料(例えばC. I. Pigment Yellow 24など)が好ましく用いられる。

[0360]

黒顔料としては、無機顔料(好ましくは例としてはカーボンブラック、マグネタイト)やアニリンブラックを好ましいものとして挙げることができる。

この他、オレンジ顔料 (C. I. Pigment Orange 13, 16など) や緑顔料 (C. I. Pigment Green 7など) を使用してもよい。

[0361]

本発明のインクに使用できる顔料は、上述の裸の顔料であってもよいし、表面 処理を施された顔料でもよい。表面処理の方法には、樹脂やワックスを表面コートする方法、界面活性剤を付着させる方法、反応性物質(例えば、シランカップリング剤やエポキシ化合物、ポリイソシアネート、ジアゾニウム塩から生じるラジカルなど)を顔料表面に結合させる方法などが考えられ、次の文献や特許に記載されている。

- ① 金属石鹸の性質と応用 (幸書房)
- ② 印刷インキ印刷 (CMC出版 1984)
- ③ 最新顔料応用技術 (CMC出版 1986)

- ④ 米国特許5,554,739号、同5,571,311号
- ⑤ 特開平9-151342号、同10-140065号、同10-292143号、同11-166145号

特に、上記④の米国特許に記載されたジアゾニウム塩をカーボンブラックに作用させて調製された自己分散性顔料や、上記⑤の日本特許に記載された方法で調製されたカプセル化顔料は、インク中に余分な分散剤を使用することなく分散安定性が得られるため特に有効である。

[0362]

本発明のインクおいては、顔料はさらに分散剤を用いて分散されていてもよい。分散剤は、用いる顔料に合わせて公知の種々のもの、例えば界面活性剤型の低分子分散剤や高分子型分散剤を用いることができる。分散剤の例としては特開平3-69949号、欧州特許549486号等に記載のものを挙げることができる。また、分散剤を使用する際に分散剤の顔料への吸着を促進するためにシナジストと呼ばれる顔料誘導体を添加してもよい。

本発明のインクに使用できる顔料の粒径は、分散後で $0.01\sim10~\mu$ mの範囲であることが好ましく、 $0.05\sim1~\mu$ mであることが更に好ましい。

顔料を分散する方法としては、インク製造やトナー製造時に用いられる公知の分散技術が使用できる。分散機としては、縦型あるいは横型のアジテーターミル、アトライター、コロイドミル、ボールミル、3本ロールミル、パールミル、スーパーミル、インペラー、デスパーサー、KDミル、ダイナトロン、加圧ニーダー等が挙げられる。詳細は「最新顔料応用技術」(CMC出版、1986)に記載がある。

[0363]

次に、本発明のインクジェット用インクが含有し得る界面活性剤について説明 する。

本発明のインクジェット用インクに界面活性剤を含有させ、インクの液物性を調整することで、インクの吐出安定性を向上させ、画像の耐水性の向上や印字したインクの滲みの防止などに優れた効果を持たせることができる。

界面活性剤としては、例えばドデシル硫酸ナトリウム、ドデシルオキシスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム等のアニオン性界面活

性剤、セチルピリジニウムクロライド、トリメチルセチルアンモニウムクロライド、テロラブチルアンモニウムクロライド等のカチオン性界面活性剤や、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンナフチルエーテル、ポリオキシエチレンオクチルフェニルエーテル等のノニオン性界面活性剤などが挙げられる。中でも特にノニオン系界面活性剤が好ましく使用される。

[0364]

界面活性剤の含有量はインクに対して 0. 0 0 1 ~ 2 0 質量%、好ましくは 0. 0 0 5 ~ 1 0 質量%、更に好ましくは 0. 0 1 ~ 5 質量%である。

[0365]

本発明のインクジェット用インクは、水性媒体中に前記染料と、好ましくは界面活性剤とを溶解または分散させることによって作製することができる。本発明における「水性媒体」とは、水又は水と少量の水混和性有機溶剤との混合物に、必要に応じて湿潤剤、安定剤、防腐剤等の添加剤を添加したものを意味する。

[0366]

本発明のインク液を調液する際には、水溶性インクの場合、まず水に溶解する ことが好ましい。そのあと、各種溶剤や添加物を添加し、溶解、混合して均一な インク液とする。

このときの溶解方法としては、攪拌による溶解、超音波照射による溶解、振とうによる溶解等種々の方法が使用可能である。中でも特に攪拌法が好ましく使用される。攪拌を行う場合、当該分野では公知の流動攪拌や反転アジターやディゾルバを利用した剪断力を利用した攪拌など、種々の方式が利用可能である。一方では、磁気攪拌子のように、容器底面との剪断力を利用した攪拌法も好ましく利用できる。

[0367]

本発明において用いることができる上記水混和性有機溶剤の例には、アルコール(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、secーブタノール、tーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコ

ール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコー ル、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペン タンジオール、グリセリン、ヘキサントリオール、チオジグリコール)、グリコ ール誘導体(例えば、エチレングリコールモノメチルエーテル、エチレングリコ ールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレン グルコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プ ロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエー テル、ジプロピレングリコールモノメチルエーテル、トリエチレングルコールモ ノメチルエーテル、エチレングリコールジアセテート、エチレングルコールモノ メチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリ エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエー テル)、アミン(例えば、エタノールアミン、ジエタノールアミン、トリエタノ ールアミン、Nーメチルジエタノールアミン、Nーエチルジエタノールアミン、 モルホリン、N-エチルモルホリン、エチレンジアミン、ジエチレントリアミン 、トリエチレンテトラミン、ポリエチレンイミン、テトラメチルプロピレンジア ミン)およびその他の極性溶媒(例えば、ホルムアミド、N.N-ジメチルホル ムアミド、N、Nージメチルアセトアミド、ジメチルスルホキシド、スルホラン 、2 - ピロリドン、N - メチルー2 - ピロリドン、N - ビニルー2 - ピロリドン 、2-オキサゾリドン、1,3-ジメチル-2-イミダゾリジノン、アセトニト リル、アセトン) が挙げられる。尚、前記水混和性有機溶剤は、2種類以上を併 用してもよい。

[0368]

前記染料が油溶性染料の場合は、該油溶性染料を高沸点有機溶媒中に溶解させ、水性媒体中に乳化分散させることによって調製することができる。

本発明に用いられる高沸点有機溶媒の沸点は150℃以上であるが、好ましくは170℃以上である。

例えば、フタル酸エステル類 (例えば、ジブチルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジー2-エチルヘキシルフタレート、デシルフタレート、ビス (2, 4-ジーtert-アミルフェニル) イソフタレー

ト、ビス(1,1-ジエチルプロピル)フタレート)、リン酸又はホスホンのエ ステル類(例えば、ジフェニルホスフェート、トリフェニルホスフェート、トリ クレジルホスフェート、2-エチルヘキシルジフェニルホスフェート、ジオクチ ルブチルホスフェート、トリシクロヘキシルホスフェート、トリー2-エチルヘ キシルホスフェート、トリドデシルホスフェート、ジー2-エチルヘキシルフェ ニルホスフェート)、安息香酸エステル酸(例えば、2-エチルヘキシルベンゾ エート、2,4-ジクロロベンゾエート、ドデシルベンゾエート、2-エチルへ キシルーp-ヒドロキシベンゾエート)、アミド類(例えば、N.N-ジエチル ドデカンアミド、N, N-ジエチルラウリルアミド)、アルコール類またはフェ ノール類(イソステアリルアルコール、2,4-ジーtert-アミルフェノー ルなど)、脂肪族エステル類(例えば、コハク酸ジブトキシエチル、コハク酸ジ - 2 - エチルヘキシル、テトラデカン酸 2 - ヘキシルデシル、クエン酸トリブチ ル、ジエチルアゼレート、イソステアリルラクテート、トリオクチルシトレート)、アニリン誘導体(N,N-ジブチル-2-ブトキシ-5-tert-オクチ ルアニリンなど)、塩素化パラフィン類(塩素含有量10%~80%のパラフィ ン類)、トリメシン酸エステル類(例えば、トリメシン酸トリブチル)、ドデシ ルベンゼン、ジイソプロピルナフタレン、フェノール類(例えば、2,4-ジー tert-アミルフェノール、4ードデシルオキシフェノール、4ードデシルオ キシカルボニルフェノール、4-(4-ドデシルオキシフェニルスルホニル)フ エノール)、カルボン酸類(例えば、2-(2,4-ジーtert-アミルフェ ノキシ酪酸、2-エトキシオクタンデカン酸)、アルキルリン酸類(例えば、ジ -2 (エチルヘキシル)リン酸、ジフェニルリン酸)などが挙げられる。高沸点 有機溶媒は油溶性染料に対して質量比で0.01~3倍量、好ましくは0.01 ~ 1. 0倍量で使用できる。

これらの高沸点有機溶媒は単独で使用しても、数種の混合〔例えばトリクレジルホスフェートとジブチルフタレート、トリオクチルホスフェートとジ(2-エチルヘキシル)セバケート、ジブチルフタレートとポリ(N-t-ブチルアクリルアミド)〕で使用してもよい。

[0369]

本発明において用いられる高沸点有機溶媒の前記以外の化合物例及び/または これら高沸点有機溶媒の合成方法は例えば米国特許第2,322,027号、同 第2,533,514号、同第2,772,163号、同第2,835,579 号、同第3,594,171号、同第3,676,137号、同第3,689, 271号、同第3,700,454号、同第3,748,141号、同第3,7 64.336号、同第3,765,897号、同第3,912,515号、同第 3,936,303号、同第4,004,928号、同第4,080,209号 、同第4, 127, 413号、同第4, 193, 802号、同第4, 207, 3 93号、同第4, 220, 711号、同第4, 239, 851号、同第4, 27 8, 757号、同第4, 353, 979号、同第4, 363, 873号、同第4 , 430, 421号、同第4, 430, 422号、同第4, 464, 464号、 同第4,483,918号、同第4,540,657号、同第4,684,60 6号、同第4,728,599号、同第4,745,049号、同第4,935 , 3 2 1 号、同第 5 , 0 1 3 , 6 3 9 号、欧州特許第 2 7 6 , 3 1 9 A 号、同第 286,253A号、同第289,820A号、同第309,158A号、同第 309, 159A号、同第309, 160A号、同第509, 311A号、同第 5 1 0, 5 7 6 A 号、東独特許第 1 4 7, 0 0 9 号、同第 1 5 7, 1 4 7 号、同 第159、573号、同第225,240A号、英国特許第2,091,124 A号、特開昭48-47335号、同50-26530号、同51-25133 号、同51-26036号、同51-27921号、同51-27922号、同 51-149028号、同52-46816号、同53-1520号、同53-1521号、同53-15127号、同53-146622号、同54-913 25号、同54-106228号、同54-118246号、同55-5946 4号、同56-64333号、同56-81836号、同59-204041号 、同61-84641号、同62-118345号、同62-247364号、 同63-167357号、同63-214744号、同63-301941号、 同64-9452号、同64-9454号、同64-68745号、特開平1-101543号、同1-102454号、同2-792号、同2-4239号、 同2-43541号、同4-29237号、同4-30165号、同4-232

ページ: 146/

946号、同4-346338号等に記載されている。

上記高沸点有機溶媒は、油溶性染料に対し、質量比で 0.01~3.0倍量、 好ましくは 0.01~1.0倍量で使用する。

[0370]

本発明では油溶性染料や高沸点有機溶媒は、水性媒体中に乳化分散して用いられる。乳化分散の際、乳化性の観点から場合によっては低沸点有機溶媒を用いることができる。低沸点有機溶媒としては、常圧で沸点約30℃以上150℃以下の有機溶媒である。例えばエステル類(例えばエチルアセテート、ブチルアセテート、エチルプロピオネート、βーエトキシエチルアセテート、メチルセロソルブアセテート)、アルコール類(例えばイソプロピルアルコール、nーブチルアルコール、セカンダリーブチルアルコール)、ケトン類(例えばメチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン)、アミド類(例えばジメチルホルムアミド、Nーメチルピロリドン)、エーテル類(例えばテトラヒドロフラン、ジオキサン)等が好ましく用いられるが、これに限定されるものではない。

[0371]

乳化分散は、高沸点有機溶媒と場合によっては低沸点有機溶媒の混合溶媒に染料を溶かした油相を、水を主体とした水相中に分散し、油相の微小油滴を作るために行われる。この際、水相、油相のいずれか又は両方に、後述する界面活性剤、湿潤剤、染料安定化剤、乳化安定剤、防腐剤、防黴剤等の添加剤を必要に応じて添加することができる。

乳化法としては水相中に油相を添加する方法が一般的であるが、油相中に水相 を滴下して行く、いわゆる転相乳化法も好ましく用いることができる。なお、本 発明に用いる染料が水溶性で、添加剤が油溶性の場合にも前記乳化法を適用し得 る。

[0372]

乳化分散する際には、種々の界面活性剤を用いることができる。例えば脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、

ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル硫酸エステル塩等のアニオン系界面活性剤や、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、パリオキシエチレン脂肪酸エステル、パリオキシエチレン脂肪酸エステル、ポリオキシエチレンルビタン脂肪酸エステル、ポリオキシエチレンフルギルアミン、グリセリン脂肪酸エステル、オキシエチレンオキシプロピレンブロックコポリマー等のノニオン系界面活性剤が好ましい。また、アセチレン系ポリオキシエチレンオキシド界面活性剤であるSURFYNOLS(AirProducts&Chemicals社)も好ましく用いられる。また、N,NージメチルーNーアルキルアミンオキシドのようなアミンオキシド型の両性界面活性剤等も好ましい。更に、特開昭59-157,636号の第(37)~(38)頁、リサーチ・ディスクロージャーNo.308119(1989年)記載の界面活性剤として挙げたものも使うことができる。

[0373]

また、乳化直後の安定化を図る目的で、上記界面活性剤と併用して水溶性ポリマーを添加することもできる。水溶性ポリマーとしては、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド、ポリアクリル酸、ポリアクリルアミドやこれらの共重合体が好ましく用いられる。また多糖類、カゼイン、ゼラチン等の天然水溶性ポリマーを用いるのも好ましい。さらに染料分散物の安定化のためには実質的に水性媒体中に溶解しないアクリル酸エステル類、メタクリル酸エステル類、メタクリルでミド類、オレフィン類、ビニルエステル類、アクリルアミド類、メタクリルアミド類、オレフィン類、スチレン類、ビニルエーテル類、アクリロニトリル類の重合により得られるポリビニルやポリウレタン、ポリエステル、ポリアミド、ポリウレア、ポリカーボネート等も併用することができる。これらのポリマーは一SO3~、一COO-を含有していること好ましい。これらの実質的に水性媒体中に溶解しないポリマーを併用する場合、高沸点有機溶媒の20質量%以下用いられることが好ましく、10質量%以下で用いられることがより好ましい。

[0374]

乳化分散により油溶性染料や高沸点有機溶媒を分散させて水性インクとする場合、特に重要なのはその粒子サイズのコントロールである。インクジェットによ

り画像を形成した際の、色純度や濃度を高めるには平均粒子サイズを小さくすることが必須である。体積平均粒径で好ましくは $1~\mu$ m以下、より好ましくは $5~\mu$ 1~0~0~n mである。

前記分散粒子の体積平均粒径および粒度分布の測定方法には静的光散乱法、動的光散乱法、遠心沈降法のほか、実験化学講座第4版の417~418ページに記載されている方法を用いるなど、公知の方法で容易に測定することができる。例えば、インク中の粒子濃度が0.1~1質量%になるように蒸留水で希釈して、市販の体積平均粒径測定機(例えば、マイクロトラックUPA(日機装(株)製))で容易に測定できる。更に、レーザードップラー効果を利用した動的光散乱法は、小サイズまで粒径測定が可能であり特に好ましい。

体積平均粒径とは粒子体積で重み付けした平均粒径であり、粒子の集合において、個々の粒子の直径にその粒子の体積を乗じたものの総和を粒子の総体積で割ったものである。体積平均粒径については「高分子ラテックスの化学(室井 宗一著 高分子刊行会)」の119ページに記載がある。

[0375]

また、粗大粒子の存在も印刷性能に非常に大きな役割を示すことが明らかになった。即ち、粗大粒子がヘッドのノズルを詰まらせる、あるいは詰まらないまでも汚れを形成することによってインクの不吐出や吐出のヨレを生じ、印刷性能に重大な影響を与えることが分かった。これを防止するためには、インクにした時にインク 1μ 1 中で 5μ m以上の粒子を 100 0 個以下に抑えることが重要である。

これらの粗大粒子を除去する方法としては、公知の遠心分離法、精密濾過法等を用いることができる。これらの分離手段は乳化分散直後に行ってもよいし、乳化分散物に湿潤剤や界面活性剤等の各種添加剤を加えた後、インクカートリッジに充填する直前でもよい。

平均粒子サイズを小さくし、且つ粗大粒子を無くす有効な手段として、機械的 な乳化装置を用いることができる。

[0376]

乳化装置としては、簡単なスターラーやインペラー撹拌方式、インライン撹拌

方式、コロイドミル等のミル方式、超音波方式など公知の装置を用いることができるが、高圧ホモジナイザーの使用は特に好ましいものである。

高圧ホモジナイザーは、US-4533254号、特開平6-47264号等に詳細な機構が記載されているが、市販の装置としては、ゴーリンホモジナイザー(A. P. V GAULIN INC.)、マイクロフルイダイザー(MIC ROFLUIDEX INC.)、アルティマイザー(株式会社スギノマシン)等がある。

また、近年になってUS-5720551号に記載されているような、超高圧ジェット流内で微粒子化する機構を備えた高圧ホモジナイザーは本発明の乳化分散に特に有効である。この超高圧ジェット流を用いた乳化装置の例として、DeBEE2000(BEE INTERNATIONAL LTD.)があげられる。

[0377]

高圧乳化分散装置で乳化する際の圧力は50MPa以上であり、好ましくは60MPa以上、更に好ましくは180MPa以上である。

例えば、撹拌乳化機で乳化した後、高圧ホモジナイザーを通す等の方法で2種以上の乳化装置を併用するのは特に好ましい方法である。また、一度これらの乳化装置で乳化分散した後、湿潤剤や界面活性剤等の添加剤を添加した後、カートリッジにインクを充填する間に再度高圧ホモジナイザーを通過させる方法も好ましい方法である。

高沸点有機溶媒に加えて低沸点有機溶媒を含む場合、乳化物の安定性及び安全衛生上の観点から低沸点溶媒を除去するのが好ましい。低沸点溶媒を除去する方法は溶媒の種類に応じて各種の公知の方法を用いることができる。即ち、蒸発法、真空蒸発法、限外濾過法等である。この低沸点有機溶剤の除去工程は乳化直後、できるだけ速やかに行うのが好ましい。

[0378]

なお、インクジェット用インクの調製方法については、特開平5-14843 6号、同5-295312号、同7-97541号、同7-82515号、同7-118584号の各公報に詳細が記載されていて、本発明のインクジェット記 録用インクの調製にも利用できる。

[0379]

本発明のインクジェット用インクの製造においては、染料などの添加物の溶解 工程等に超音波振動を加えることもできる。

超音波振動とは、インクが記録ヘッドで加えられる圧力によって気泡を発生することを防止するため、記録ヘッドで受けるエネルギーと同等かそれ以上の超音 波エネルギーを予めインクの製造工程中に加えて気泡を除去しておくものである。

超音波振動は、通常、振動数 2.0 k H z 以上、好ましくは 4.0 k H z 以上、より好ましくは 5.0 k H z の超超音波である。また超音波振動により液に加えられるエネルギーは、通常、 $2 \times 1.0^7 \text{ J/m}^3$ 以上、好ましくは $5 \times 1.0^7 \text{ J/m}^3$ 以上、より好ましくは $1 \times 1.0^8 \text{ J/m}^3$ 以上である。また、超音波振動の付与時間としては、通常、 $1.0 \text{ 分} \sim 1$ 時間程度である。

[0380]

超音波振動を加える工程は、染料を媒体に投入以降であれば何時行っても効果を示す。完成後のインクを一旦保存した後に超音波振動を加えても効果を示す。 しかし、染料を媒体中に溶解及び/又は分散する際に超音波振動を付加することが、気泡除去の効果がより大きく、尚且つ超音波振動により色素の媒体への溶解及び/又は分散が促進されるので好ましい。

即ち、上記少なくとも超音波振動を加える工程は、染料を媒体中に溶解及び/ 又は分散する工程中でもその工程後であってもいずれの場合にも行うことができる。換言すれば、上記少なくとも超音波振動を加える工程は、インク調製後に製品となるまでの間に任意に1回以上行うことができる。

[0381]

実施の形態としては媒体中に溶解及び/又は分散する工程は、前記染料を全媒体の一部分の媒体に溶解する工程と、残余の媒体を混合する工程とを有することが好ましく、上記少なくともいずれかの工程に超音波振動を加えることが好ましく、染料を全媒体の一部分の媒体に溶解する工程に少なくとも超音波振動を加えることが更に好ましい。

上記残余の溶媒を混合する工程は、単独工程でも複数工程でもよい。

[0382]

また、本発明によるインク製造に加熱脱気あるいは減圧脱気を併用することは、インク中の気泡除去の効果を上げるので好ましい。加熱脱気工程あるいは減圧脱気工程は、残余の媒体を混合する工程と同時またはその後に実施することが好ましい。

超音波振動を加える工程における、超音波振動発生手段としては、超超音波分散機等の公知の装置が挙げられる。

[0383]

本発明のインクジェット用インクを作製する際には、さらに調液した後に行われる、濾過により固形分であるゴミを除く工程が重要である。この作業には濾過フィルターを使用するが、このときの濾過フィルターとは、有効径が $1\,\mu$ m以下、好ましくは0. $3\,\mu$ m以下0. $0\,5\,\mu$ m以上、特に好ましくは0. $3\,\mu$ m以下0. $2\,5\,\mu$ m以上のフィルターを用いる。フィルターの材質としては種々のものが使用できるが、特に水溶性染料のインクの場合には、水系の溶媒用に作製されたフィルターを用いるのが好ましい。中でも特にゴミの出にくい、ポリマー材料で作製されたフィルターを用いるのが好ましい。濾過法としては送液によりフィルターを通過させてもよいし、加圧濾過、減圧濾過のいずれの方法も利用可能である。

[0384]

この濾過後には溶液中に空気を取り込むことが多い。この空気に起因する泡もインクジェット記録において画像の乱れの原因となることが多いため、前述の脱泡工程を別途設けることが好ましい。脱泡の方法としては、濾過後の溶液を静置してもよいし、市販の装置などを用いた超超音波脱泡や減圧脱泡等種々の方法が利用可能である。超超音波による脱泡の場合は、好ましくは30秒~2時間、より好ましくは5分~1時間程度脱泡操作を行うとよい。

[0385]

これらの作業は、作業時におけるゴミの混入を防ぐため、クリーンルームもしくはクリーンベンチなどのスペースを利用して行うことが好ましい。本発明では

特にクリーン度としてクラス1000以下のスペースにおいてこの作業を行うことが好ましい。ここで「クリーン度」とは、ダストカウンターにより測定される値を指す。

[0386]

本発明のインクジェット用インクには、インクの噴射口での乾操による目詰まりを防止するための乾燥防止剤、インクを紙によりよく浸透させるための浸透促進剤、紫外線吸収剤、酸化防止剤、粘度調整剤、表面張力調整剤、分散剤、分散安定剤、防黴剤、防錆剤、pH調整剤、消泡剤、キレート剤等の添加剤を適宜選択して適量使用することができる。

[0387]

本発明に使用される乾燥防止剤としては水より蒸気圧の低い水溶性有機溶剤が好ましい。具体的な例としてはエチレングリコール、プロピレングリコール、ジチオジグリコール、ポリエチレングリコール、チオジグリコール、ジチオジグリコール、2ーメチルー1、3ープロパンジオール、1、2、6ーへキサントリオール、アセチレングリコール誘導体、グリセリン、トリメチロールプロパン等に代表される多価アルコール類、エチレングリコールモノメチル(又はエチル)エーテル、ジエチレングリコールモノメチル(又はエチル)エーテル、トリエチレングリコールモノエチル(又はブチル)エーテル、トリエチレングリコールモノエチル(又はブチル)エーテル等の多価アルコールの低級アルキルエーテル類、2ーピロリドン、Nーメチルー2ーピロリドン、1、3ージメチルー2ーイミダゾリジノン、Nーエチルモルホリン等の複素環類、スルホラン、ジメチルスルホキシド、3ースルホレン等の含硫黄化合物、ジアセトンアルコール、ジエタノールアミン等の多官能化合物、尿素誘導体が挙げられる。これらのうちグリセリン、ジエチレングリコール等の多価アルコールがより好ましい。また上記の乾燥防止剤は単独で用いてもよいし2種以上併用してもよい。これらの乾燥防止剤はインク中に10~50質量%含有することが好ましい。

[0388]

本発明に使用される浸透促進剤としてはエタノール、イソプロパノール、ブタノール、ジ(トリ)エチレングリコールモノブチルエーテル、1,2-ヘキサンジオール等のアルコール類やラウリル硫酸ナトリウム、オレイン酸ナトリウムや

ノニオン性界面活性剤等を用いることができる。これらはインク中に10~30 質量%含有すれば充分な効果があり、印字の滲み、紙抜け(プリントスルー)を 起こさない添加量の範囲で使用するのが好ましい。

[0389]

本発明で画像の保存性を向上させるために使用される紫外線吸収剤としては特開昭58-185677号公報、同61-190537号公報、特開平2-782号公報、同5-197075号公報、同9-34057号公報等に記載されたベンゾトリアゾール系化合物、特開昭46-2784号公報、特開平5-194483号公報、米国特許第3214463号等に記載されたベンゾフェノン系化合物、特公昭48-30492号公報、同56-21141号公報、特開平10-88106号公報等に記載された桂皮酸系化合物、特開平4-298503号公報、同8-53427号公報、同8-239368号公報、同10-182621号公報、特表平8-501291号公報等に記載されたトリアジン系化合物、リサーチ・ディスクロージャーNo.24239号に記載された化合物やスチルベン系、ベンゾオキサゾール系化合物に代表される紫外線を吸収して蛍光を発する化合物、いわゆる蛍光増白剤も用いることができる。

[0390]

本発明では、画像の保存性を向上させるために使用される酸化防止剤として、各種の有機系及び金属錯体系の褪色防止剤を使用することができる。有機の褪色防止剤としてはハイドロキノン類、アルコキシフェノール類、ジアルコキシフェノール類、フェノール類、アニリン類、アミン類、インダン類、クロマン類、アルコキシアニリン類、複素環類などがあり、金属錯体としてはニッケル錯体、亜鉛錯体などがある。より具体的にはリサーチ・ディスクロージャーNo.17643の第VIIのIないしJ項、同No.15162、同No.18716の650頁左欄、同No.36544の527頁、同No.307105の872頁、同No.15162に引用された特許に記載された化合物や特開昭62-215272号公報の127頁~137頁に記載された代表的化合物の一般式及び化合物例に含まれる化合物を使用することができる。

[0391]

本発明に使用される防黴剤としてはデヒドロ酢酸ナトリウム、安息香酸ナトリウム、ナトリウムピリジンチオンー1ーオキシド、pーヒドロキシ安息香酸エチルエステル、1,2ーベンゾイソチアゾリンー3ーオンおよびその塩等が挙げられる。これらはインク中に0.02~5.00質量%使用するのが好ましい。

尚、これらの詳細については「防菌防黴剤事典」(日本防菌防黴学会事典編集 委員会編)等に記載されている。

また、防錆剤としては、例えば、酸性亜硫酸塩、チオ硫酸ナトリウム、チオグリコール酸アンモン、ジイソプロピルアンモニウムニトライト、四硝酸ペンタエリスリトール、ジシクロヘキシルアンモニウムニトライト、ベンゾトリアゾール等が挙げられる。これらは、インク中に0.02~5.00質量%使用するのが好ましい。

[0392]

本発明に使用されるp H調整剤はp H調節、分散安定性付与などの点で好適に使用することができ、25 $\mathbb C$ でのインクのp Hが $8 \sim 11$ に調整されていることが好ましい。p Hが8 未満である場合は染料の溶解性が低下してノズルが詰まりやすく、11 を超えると耐水性が劣化する傾向がある。p H調製剤としては、塩基性のものとして有機塩基、無機アルカリ等が、酸性のものとして有機酸、無機酸等が挙げられる。

塩基性化合物としては水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、 炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、酢酸ナトリウム、酢酸 カリウム、リン酸ナトリウム、リン酸 1 水素ナトリウムなどの無機化合物やアン モニア水、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、 エタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジア ミン、ピペリジン、ジアザビシクロオクタン、ジアザビシクロウンデセン、ピリ ジン、キノリン、ピコリン、ルチジン、コリジン等の有機塩基を使用することも 可能である。

酸性化合物としては、塩酸、硫酸、リン酸、ホウ酸、硫酸水素ナトリウム、硫酸水素カリウム、リン酸2水素カリウム、リン酸2水素ナトリウム等の無機化合物や、酢酸、酒石酸、安息香酸、トリフルオロ酢酸、メタンスルホン酸、エタン

スルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、サッカリン酸、フタル酸、ピコリン酸、キノリン酸等の有機化合物を使用することもできる。

[0393]

本発明のインクの伝導度は $0.01\sim10$ S/mの範囲である。中でも好ましい範囲は伝導度が $0.05\sim5$ S/mの範囲である。

伝導度の測定方法は、市販の飽和塩化カリウムを用いた電極法により測定可能 である。

伝導度は主に水系溶液中のイオン濃度によってコントロール可能である。塩濃度が高い場合、限外濾過膜などを用いて脱塩することができる。また、塩等を加えて伝導度調節する場合、種々の有機物塩や無機物塩を添加することにより調節することができる。

無機物塩としては、ハロゲン化物カリウム、ハロゲン化物ナトリウム、硫酸ナトリウム、硫酸カリウム、硫酸水素ナトリウム、硫酸水素カリウム、硝酸ナトリウム、硝酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸1水素ナトリウム、ホウ酸、リン酸2水素カリウム、リン酸2水素ナトリウム等の無機化合物や、酢酸ナトリウム、酢酸カリウム、酒石酸カリウム、酒石酸ナトリウム、安息香酸カリウム、p-トルエンスルホン酸ナトリウム、サッカリン酸カリウム、フタル酸カリウム、ピコリン酸ナトリウム等の有機化合物を使用することもできる。

また、他の添加剤の成分を選定することによっても伝導度を調整し得る。

[0394]

本発明のインク粘度は、25℃において1~20mPa·sである。更に好ましくは2~15mPa·sであり、特に好ましくは2~10mPa·sである。 30mPa·sを超えると記録画像の定着速度が遅くなり、吐出性能も低下する。 1mPa·s未満では、記録画像がにじむために品位が低下する。

粘度の調製はインク溶剤の添加量で任意に調製可能である。インク溶剤として 例えば、グリセリン、ジエチレングリコール、トリエタノールアミン、2ーピロ リドン、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモ ノブチルエーテルなどがある。 また、粘度調整剤を使用してもよい。粘度調整剤としては、例えば、セルロース類、ポリビニルアルコールなどの水溶性ポリマーやノニオン系界面活性剤等が挙げられる。更に詳しくは、「粘度調製技術」(技術情報協会、1999年)第9章、及び「インクジェットプリンタ用ケミカルズ(98増補)ー材料の開発動向・展望調査-」(シーエムシー、1997年)162~174頁に記載されている。

[0395]

液体の粘度測定法はJISOZ8803に詳細に記載されているが、市販品の 粘度計にて簡便に測定することができる。例えば、回転式では東京計器のB型粘度計、E型粘度計がある。本発明では山一電機の振動式VM-100A-L型に より25℃にて測定した。粘度の単位はパスカル秒($Pa\cdot s$)であるが、通常 はミリパスカル秒($mPa\cdot s$)を用いる。

[0396]

本発明で用いるインクの表面張力は動的・静的表面張力のいずれも、25℃において20~50mN/m以下であることが好ましく、20~40mN/m以下であることが更に好ましい。表面張力が50mN/mを超えると吐出安定性、混色時のにじみ、ひげ等印字品質が著しく低下する。また、インクの表面張力を20mN/m以下にすると吐出時、ハード表面へのインクの付着等により印字不良となる場合がある。

表面張力を調整する目的において、前記カチオン、アニオン、ノニオン系の各種界面活性剤を添加することができる。界面活性剤は、インクジェット用インクに対して 0.01~20質量%の範囲で用いられることが好ましく、0.1~10質量%の範囲で用いられることがさらに好ましい。また、界面活性剤は2種以上を併用することができる。

[0397]

静的表面張力測定法としては、毛細管上昇法、滴下法、吊環法等が知られているが、本発明においては、静的表面張力測定法として、垂直板法を用いている。

ガラスまたは白金の薄い板を液体中に一部分浸して垂直に吊るすと、液面と板 との接する部分に沿って液体の表面張力が下向きに働く。この力を上向きの力で 釣り合わせて表面張力を測定することができる。

[0398]

また、動的表面張力測定法としては、例えば、「新実験化学講座、第18巻、 界面とコロイド」 [(株)丸善、p.69~90(1977)] に記載されるように、振動ジェット法、メニスカス落下法、最大泡圧法などが知られており、さらに、特開平3-2064号公報に記載されるような液膜破壊法が知られているが、本発明においては、動的表面張力測定法として、バブルプレッシャー差圧法を用いている。以下、その測定原理と方法について説明する。

[0399]

撹拌して均一となった溶液中で気泡を生成すると、新たな気ー液界面が生成され、溶液中の界面活性剤分子が水の表面に一定速度で集まってくる。バブルレート(気泡の生成速度)を変化させたとき、生成速度が遅くなれば、より多くの界面活性剤分子が泡の表面に集まってくるため、泡がはじける直前の最大泡圧が小さくなり、バブルレートに対する最大泡圧(表面張力)が検出できる。好ましい動的表面張力測定としては、大小二本のプローブを用いて溶液中で気泡を生成させ、二本のプローブの最大泡圧状態での差圧を測定し、動的表面張力を算出する方法を挙げることができる。

[0400]

本発明のインク中における不揮発性成分は、インクの全量の10~70質量%であることがインクの吐出安定性やプリント画質、画像の各種堅牢性や印字後の画像の滲みと印字面のべたつき低減の点で好ましく、20~60質量%であることがインクの吐出安定性や印字後の画像の滲みの低減の点でさらに好ましい。

ここで、不揮発性成分とは、1気圧のもとでの沸点が150℃以上の液体や固体成分、高分子量成分を意味する。インクジェット記録用インクの不揮発性成分は、染料、高沸点溶媒、必要により添加されるポリマーラテックス、界面活性剤、染料安定化剤、防黴剤、緩衝剤などであり、これら不揮発性成分の多くは、染料安定化剤以外ではインクの分散安定性を低下させ、また印字後にもインクジェット受像紙上に存在するため、受像紙での染料の会合による安定化を阻害し、画像部の各種堅牢性や高湿度条件下での画像の滲みを悪化させる性質を有している

[0401]

本発明においては高分子量化合物を含有することも可能である。ここで高分子量化合物とは、インク中に含まれている数平均分子量が5000以上のすべての高分子化合物を指す。これらの高分子化合物としては水性媒体中に実質的に溶解する水溶性高分子化合物や、ポリマーラテックス、ポリマーエマルジョンなどの水分散性高分子化合物、さらには補助溶剤として使用する多価アルコールに溶解するアルコール可溶性高分子化合物などが挙げられるが、実質的にインク液中に均一に溶解又は分散するものであれば、いずれも本発明における高分子量化合物に含まれる。

[0402]

水溶性高分子化合物の具体例としては、ポリビニルアルコール、シラノール変性ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、ポリエチレンオキサイド、ポリプロピレンオキサイドなどのポリアルキレンオキサイド、ポリアルキレンオキサイド誘導体等の水溶性高分子、多糖類、デンプン、カチオン化デンプン、カゼイン、ゼラチンなどの天然水溶性高分子、ポリアクリル酸、ポリアクリルアミドやこれらの共重合体などの水性アクリル樹脂、水性アルキッド樹脂、分子内に一SO3-、一COO-基を有してい実質的に水性媒体中に溶解する水溶性高分子化合物が挙げられる

また、ポリマーラテックスとしては、スチレンブタジエンラテックス、スチレンーアクリルラテックスやポリウレタンラテックスなどが挙げられる。さらに、ポリマーエマルジョンとしては、アクリルエマルジョンなどが挙げられる。

これらの水溶性高分子化合物は単独でも2種以上併用して用いることもできる

[0403]

水溶性高分子化合物は、すでに述べたように粘度調整剤として、吐出特性の良好な粘度領域にインクの粘度を調節するために使用されるが、その添加量が多いとインクの粘度が高くなってインク液の吐出安定性が低下し、インクが経時したときに沈殿物によってノズルがつまり易くなる。

粘度調整剤の高分子化合物の添加量は、添加する化合物の分子量にもよるが(高分子量のものほど添加量は少なくて済む)、インク全量に対して添加量を0~5質量%、好ましくは0~3質量%、より好ましくは0~1質量%である。

本発明では前記した界面活性剤とは別に表面張力調整剤として、ノニオン、カ チオンあるいはアニオン界面活性剤が挙げられる。例えばアニオン系界面活性剤 としては脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、 アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン 酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンア ルキル硫酸エステル塩等を挙げることができ、ノニオン系界面活性剤としては、 ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエー テル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオ キシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、 グリセリン脂肪酸エステル、オキシエチレンオキシプロピレンブロックコポリマ ー等を挙げることができる。アセチレン系ポリオキシエチレンオキシド界面活性 剤であるSURFYNOLS(AirProducts&Chemicals社)も好ましく用いられる。また、N,N-ジメチル-N-アルキルアミンオキシ ドのようなアミンオキシド型の両性界面活性剤等も好ましい。更に、特開昭59 - 157,636号の第(37)~(38)頁、リサーチ・ディスクロージャー No. 308119 (1989年) 記載の界面活性剤として挙げたものも使うこ とができる。

[0404]

また本発明では分散剤、分散安定剤として上述のカチオン、アニオン、ノニオン系の各種界面活性剤、消泡剤としてフッソ系、シリコーン系化合物やEDTAに代表されるキレート剤等も必要に応じて使用することができる。

[0405]

[受像材料]

本発明に用いられる受像材料としては、下記で説明する反射型メディアである 記録紙及び記録フィルムが挙げられる。

[0406]

記録紙及び記録フィルムにおける支持体はLBKP、NBKP等の化学パルプ、GP、PGW、RMP、TMP、CTMP、CMP、CGP等の機械パルプ、DIP等の古紙パルプ等からなり、必要に応じて従来の公知の顔料、バインダー、サイズ剤、定着剤、カチオン剤、紙力増強剤等の添加剤を混合し、長網抄紙機、円網抄紙機等の各種装置で製造されたもの等が使用可能である。支持体としては、これらの支持体の他に合成紙、プラスチックフィルムシートのいずれであってもよく、支持体の厚みは $10\sim250\,\mu$ m、坪量は $10\sim250\,g/m^2$ が望ましい。

支持体にそのまま受像層及びバックコート層を設けて本発明のインクの受像材料としてもよいし、デンプン、ポリビニルアルコール等でサイズプレスやアンカーコート層を設けた後、受像層及びバックコート層を設けて受像材料としてもよい。さらに支持体には、マシンカレンダー、TGカレンダー、ソフトカレンダー等のカレンダー装置により平坦化処理を行ってもよい。

本発明では支持体としては、両面をポリオレフィン(例、ポリエチレン、ポリスチレン、ポリブテンおよびそれらのコポリマー)やポリエチレンテレフタレートでラミネートした紙およびプラスチックフイルムがより好ましく用いられる。ポリオレフィン中に、白色顔料(例、酸化チタン、酸化亜鉛)または色味付け染料(例、コバルトブルー、群青、酸化ネオジウム)を添加することが好ましい。

[0407]

支持体上に設けられる受像層には、多孔質材料や水性バインダーが含有される。また、受像層には顔料を含むのが好ましく、顔料としては、白色顔料が好ましい。白色顔料としては、炭酸カルシウム、カオリン、タルク、クレー、珪藻土、合成非晶質シリカ、珪酸アルミニウム、珪酸マグネシウム、珪酸カルシウム、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、硫酸バリウム、硫酸カルシウム、二酸化チタン、硫化亜鉛、炭酸亜鉛等の無機白色顔料、スチレン系ピグメント、アクリル系ピグメント、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。特に好ましくは、多孔性の白色無機顔料がよく、特に細孔面積が大きい合成非晶質シリカ等が好適である。合成非晶質シリカは、乾式製造法(気相法)によって得られる無水珪酸及び湿式製造法によって得られる含水珪酸のいずれも

使用可能である。

[0408]

上記顔料を受像層に含有する記録紙としては、具体的には、特開平10-81064号、同10-119423号、同10-157277号、同10-217601号、同11-348409号、特開2001-138621号、同2000-43401号、同2000-211235号、同2000-309157号、同2001-96897号、同2001-138627号、特開平11-91242号、同8-2087号、同8-2090号、同8-2091号、同8-2093号、同8-174992号、同11-192777号、特開2001-301314号などに開示されたものを用いることができる。

[0409]

受像層に含有される水性バインダーとしては、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、ポリアルキレンオキサイド、ポリアルキレンオキサイド誘導体等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。これらの水性バインダーは単独または2種以上併用して用いることができる。本発明においては、これらの中でも特にポリビニルアルコール、シラノール変性ポリビニルアルコールが顔料に対する付着性、インク受容層の耐剥離性の点で好適である。

[0410]

受像層は、顔料及び水性バインダーの他に媒染剤、耐水化剤、耐光性向上剤、 耐ガス性向上剤、界面活性剤、硬膜剤その他の添加剤を含有することができる。

[0411]

受像層中に添加する媒染剤は、不動化されていることが好ましい。そのためには、ポリマー媒染剤が好ましく用いられる。

ポリマー媒染剤については、特開昭48-28325号、同54-74430 号、同54-124726号、同55-22766号、同55-142339号 、同60-23850号、同60-23851号、同60-23852号、同6 0-23853号、同60-57836号、同60-60643号、同60-118834号、同60-122940号、同60-122941号、同60-122941号、同60-122941号、同60-122942号、同60-235134号、特開平1-161236号の各公報、米国特許2484430号、同2548564号、同3148061号、同3309690号、同4115124号、同4124386号、同4193800号、同4273853号、同4282305号、同4450224号の各明細書に記載がある。特開平1-161236号公報の212~215頁に記載のポリマー媒染剤を含有する受像材料が特に好ましい。同公報記載のポリマー媒染剤を用いると、優れた画質の画像が得られ、かつ画像の耐光性が改善される。

[0412]

耐水化剤は、画像の耐水化に有効であり、これらの耐水化剤としては、特にカチオン樹脂が望ましい。このようなカチオン樹脂としては、ポリアミドポリアミンエピクロルヒドリン、ポリエチレンイミン、ポリアミンスルホン、ジメチルジアリルアンモニウムクロライド重合物、カチオンポリアクリルアミド等が挙げられる。これらのカチオン樹脂の含有量は、インク受容層の全固形分に対して1~15質量%が好ましく、特に3~10質量%であることが好ましい。

[0413]

耐光性向上剤、耐ガス性向上剤としては、フェノール化合物、ヒンダードフェノール化合物、チオエーテル化合物、チオ尿素化合物、チオシアン酸化合物、アミン化合物、ヒンダードアミン化合物、TEMPO化合物、ヒドラジン化合物、ヒドラジド化合物、アミジン化合物、ビニル基含有化合物、エステル化合物、アミド化合物、エーテル化合物、アルコール化合物、スルフィン酸化合物、糖類、水溶性還元性化合物、有機酸、無機酸、ヒドロキシ基含有有機酸、ベンゾトリアゾール化合物、ベンゾフェノン化合物、トリアジン化合物、ヘテロ環化合物、水溶性金属塩、有機金属化合物、金属錯体等があげられる。

これらの具体的な化合物例としては、特開平10-182621号、特開2001-260519号、特開2000-260519号、特公平4-34953号、特公平4-34513号、特公平4-34512号、特開平11-170686号、特開昭60-67190号、特開平7-276808号、特開2000

-94829号、特表平8-512258号、特開平11-321090号等に 記載のものがあげられる。

[0414]

界面活性剤は、塗布助剤、剥離性改良剤、スベリ性改良剤あるいは帯電防止剤として機能する。界面活性剤については、特開昭62-173463号、同62-183457号の各公報に記載がある。

界面活性剤の代わりに有機フルオロ化合物を用いてもよい。有機フルオロ化合物は、疎水性であることが好ましい。有機フルオロ化合物の例には、フッ素系界面活性剤、オイル状フッ素系化合物(例、フッ素油)および固体状フッ素化合物樹脂(例、四フッ化エチレン樹脂)が含まれる。有機フルオロ化合物については、特公昭57-9053号(第8~17欄)、特開昭61-20994号、同62-135826号の各公報に記載がある。

[0415]

硬膜剤としては特開平1-161236号公報の222頁、特開平9-263036号、特開平10-119423号、特開2001-310547号に記載されている材料などを用いることができる。

[0416]

その他の受像層に添加される添加剤としては、顔料分散剤、増粘剤、消泡剤、 染料、蛍光増白剤、防腐剤、pH調整剤、マット剤、硬膜剤等が挙げられる。尚 、インク受容層は1層でも2層でもよい。

[0417]

記録紙及び記録フィルムには、バックコート層を設けることもでき、この層に 添加可能な成分としては、白色顔料、水性バインダー、その他の成分が挙げられ る。

バックコート層に含有される白色顔料としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、カオリン、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サチンホワイト、珪酸アルミニウム、珪藻土、珪酸カルシウム、珪酸マグネシウム、合成非晶質シリカ、コロイダルシリカ、コロイダルアルミナ、擬ベーマイト、水酸化アルミニウム、アルミナ

、リトポン、ゼオライト、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウム等の白色無機顔料、スチレン系プラスチックピグメント、アクリル系プラスチックピグメント、ポリエチレン、マイクロカプセル、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。

[0418]

バックコート層に含有される水性バインダーとしては、スチレン/マレイン酸塩共重合体、スチレン/アクリル酸塩共重合体、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。バックコート層に含有されるその他の成分としては、消泡剤、抑泡剤、染料、蛍光増白剤、防腐剤、耐水化剤等が挙げられる。

[0419]

インクジェット記録紙及び記録フィルムの構成層(バック層を含む)には、ポリマー微粒子分散物を添加してもよい。ポリマー微粒子分散物は、寸度安定化、カール防止、接着防止、膜のひび割れ防止のような膜物性改良の目的で使用される。ポリマー微粒子分散物については、特開昭62−245258号、同62−136648号、同62−110066号の各公報に記載がある。ガラス転移温度が低い(40℃以下の)ポリマー微粒子分散物を媒染剤を含む層に添加すると、層のひび割れやカールを防止することができる。また、ガラス転移温度が高いポリマー微粒子分散物をバック層に添加しても、カールを防止できる。

[0420]

〔インクジェット記録〕

本発明におけるインクの記録材料上への打滴体積は0.1pl以上100pl以下が好ましい。打滴体積のより好ましい範囲は0.5pl以上50pl以下であり、特に好ましい範囲は2pl以上50pl以下である。

[0421]

本発明では、インクジェットの記録方式に制限はなく、公知の方式、例えば静

電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して放射圧を利用してインクを吐出させる音響インクジェット方式、及びインクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット(バブルジェット)方式等に用いられる。

インクジェット記録方式には、フォトインクと称する濃度の低いインクを小さい体積で多数射出する方式、実質的に同じ色相で濃度の異なる複数のインクを用いて画質を改良する方式や無色透明のインクを用いる方式が含まれる。インクの打滴体積の制御は主にプリントヘッドにより行われる。

[0422]

例えばサーマルインクジェット方式の場合、プリントヘッドの構造で打滴体積を制御することが可能である。すなわち、インク室、加熱部、ノズルの大きさを変えることにより、所望のサイズで打滴することができる。またサーマルインクジェット方式であっても、加熱部やノズルの大きさが異なる複数のプリントヘッドを持たせることで、複数サイズの打滴を実現することも可能である。

ピエゾ素子を用いたドロップオンデマンド方式の場合、サーマルインクジェット方式と同様にプリントヘッドの構造上打滴体積を変えることも可能であるが、 後述するようにピエゾ素子を駆動する駆動信号の波形を制御することにより、同 じ構造のプリントヘッドで複数のサイズの打滴を行うことができる。

[0423]

本発明においてインクを、記録材料へ打滴するときの吐出周波数は1kHz以上が好ましい。

写真のように、高画質の画像を記録するためには、小さいインク滴で鮮鋭度の高い画像を再現するため、打滴密度を600dpi(1インチあたりのドット数)以上とする必要がある。

一方、インクを複数のノズルを有するヘッドで打滴するにあたり、記録紙とヘッドが互いに直交する方向に移動して記録するタイプでは同時に駆動できるヘッドの数は数十から200程度であり、ラインヘッドと呼ばれるヘッドが固定されたタイプでも数百であるという制約がある。これは駆動電力に制約があることや

、ヘッドでの発熱が画像に影響を及ぼすため、多数のヘッドノズルを同時に駆動できないためである。このため、打滴密度を上げて記録するには、記録速度が長くなりがちであるが、駆動周波数を高くすることにより、記録速度を上げることが可能である。

[0424]

打滴周波数を制御するには、サーマルインクジェット方式の場合、ヘッドを加 熱するヘッド駆動信号の周波数を制御することで可能である。

ピエゾ方式の場合、ピエゾを駆動する信号の周波数を制御することで可能である。

ピエゾヘッドの駆動に関して説明する。プリントすべき画像信号はプリンタ制御部により、打滴サイズ、打滴速度、打滴周波数が決定され、プリントヘッドを駆動する信号が作成される。駆動信号はプリントヘッドに供給される。ピエゾを駆動する信号により打滴サイズ、打滴速度、打滴周波数が制御される。ここで打滴サイズと打滴速度は駆動波形の形状と振幅で決定され、周波数は信号の繰返し周期で決定される。

この打滴周波数を10kHzに設定すると、100マイクロ秒ごとにヘッドは駆動され、<math>400マイクロ秒で1ラインの記録が終了する。記録紙の移動速度を <math>400マイクロ秒に1/600インチすなわち約42ミクロン移動するように設定することにより、<math>1.2秒に1枚の速度でプリントすることができる。

[0425]

本発明のインクジェット用インクを用いる印刷装置の構成、プリンタの構成に関しては、たとえば特開平11-170527号公報に開示されるような様態が好適である。また、インクカートリッジに関しては、たとえば特開平5-229133号公報に開示されるものが好適である。吸引およびその際に印字ヘッド28を覆うキャップ等の構成に関しては、たとえば特開平7-276671号公報に開示されるものが好適である。また、ヘッド近傍には特開平9-277552号公報に開示されるような気泡を排除するためのフィルターを備えることが好適である。

また、ノズルの表面は特願2001-16738に記載されるような撥水処理

を施すことが好適である。用途としては、コンピュータと接続されるプリンタであってもよいし、写真をプリントすることに特化した装置であってもよい。

[0426]

本発明のインクジェット用インクは、記録材料へ打滴するときの平均打滴速度が2m/sec以上とするのが好ましく、5m/sec以上とするのがより好ましい。

打滴速度を制御するには、ヘッドを駆動する波形の形状と振幅を制御すること により行う。

また複数の駆動波形を使い分けることにより、同じヘッドで複数のサイズの打 滴を行うことができる。

[0427]

[インクジェット用途]

本発明のインクジェット用インクは、インクジェット記録以外の用途に使用することもできる。例えば、ディスプレイ画像用材料、室内装飾材料の画像形成材料および屋外装飾材料の画像形成材料などに使用が可能である。

[0428]

ディスプレイ画像用材料としては、ポスター、壁紙、装飾小物(置物や人形など)、商業宣伝用チラシ、包装紙、ラッピング材料、紙袋、ビニール袋、パッケージ材料、看板、交通機関(自動車、バス、電車など)の側面に描画や添付した画像、ロゴ入りの洋服、等各種の物を指す。本発明の染料をディスプレイ画像の形成材料とする場合、その画像とは狭義の画像の他、抽象的なデザイン、文字、幾何学的なパターンなど、人間が認知可能な染料によるパターンをすべて含む。

[0429]

室内装飾材料としては、壁紙、装飾小物(置物や人形など)、照明器具の部材、家具の部材、床や天井のデザイン部材等各種の物を指す。本発明の染料を画像形成材料とする場合、その画像とは狭義の画像の他、抽象的なデザイン、文字、幾何学的なパターンなど、人間が認知可能な染料によるパターンをすべて含む。

[0430]

屋外装飾材料としては、壁材、ルーフィング材、看板、ガーデニング材料屋外

装飾小物(置物や人形など)、屋外照明器具の部材等各種の物を指す。本発明の 染料を画像形成材料とする場合、その画像とは狭義の画像ののみならず、抽象的 なデザイン、文字、幾何学的なパターンなど、人間が認知可能な染料によるパタ ーンをすべて含む。

[0431]

以上のような用途において、パターンが形成されるメディアとしては、紙、繊維、布(不織布も含む)、プラスチック、金属、セラミックス等種々の物を挙げることができる。染色形態としては、媒染、捺染、もしくは反応性基を導入した反応性染料の形で色素を固定化することもできる。この中で、好ましくは媒染形態で染色されることが好ましい。

[0432]

【実施例】

以下、本発明を実施例によって説明するが、本発明はこれに限定されるものではない。

〔実施例〕

下記表に示した成分に超純水(抵抗値 $18M\Omega$ 以上)を加え1リッターとした後、 $30\sim40$ ℃で加熱しながら 1 時間撹拌した。その後、平均孔径 0.25μ mのミクロフィルターで減圧濾過して各インク液によるインクセット 101 を調製した。

[0433]

【表1】

(インクセット101構成)

	С	LC	М	LM	Y	DY	Bk
染料	C-1 45g	C-1 15g	M-1 30g	M-1 10g	Y-1 30g	Y-1 30g C-1 3g M-1 5g	Bk-1 55g BK-2 15g
BTZ	3g	3g	3g	3 g	3 g	3g	3g
UR	12g	5 g	10g	5g	10g	15g	17g
DGB	_	-	•	1	130g	125g	120g
TGB	150g	140g	120g	120g		-	_
DEG	100g	100g	90g	80g	_	-	_
TEG	-	_		_	110g	125g	100g
GR	120g	130g	130g	120g	125g	135g	125g
PRD	35g	35g	_	_	_	_	35g
TEA	10g	10g	10g	10g	10g	10g	10g
PRX	1g	1g	1g	1g	1 g	1g	1g
SW	10g	10g	10g	10g	10g	10g	10g

[0434]

BTZ:ベンゾトリアゾール

UR:尿素

DGB: ジエチレングリコールモノブチルエーテル

TGB: トリエチレングリコールモノブチルエーテル

DEG: ジエチレングリコール

TEG:トリエチレングリコール

GR:グリセリン

PRD: 2-ピロリドン

TEA: トリエタノールアミン(TEA)

PRX:プロキセルXL2(S) Avecia社製

SW:サーフィノールSTG

[0435]

【化82】

C-1

H H
$$\times$$

N Cu N H \times

H \times

H \times

N \times

M-1

Y-1

BK-2

BK-1

$$(NH_{4}O)_{2}-P C_{2}H_{5}O NH_{4}O_{3}S NH_{2}$$

[0436]

インクセット101に対して、下記の通りに染料を変更した以外は、全く同じ構

成のインクセット102~110をそれぞれ作製した。

[0437]

【表2】

	C	LC	M	LM	γ	DY	Bk
101 (比較例)	C-1	C-1	M-1	M ~1	Y-1	Y-1 C-1 M-1	Bk-1 Bk-2
102 (比較例)	C-1	C-1	M-2	M-2	Y-1	Y-1 C-1 M-2	Bk-1 Bk-2
103 (比較例)	C-2	C-2	M-1	M-1	Y-1	Y-1 C-2 M-2	Bk-1 Bk-2
104 (比較例)	C-2	C-2	M-2	M-2	Y-1	Y-1 C-2 M-2	Bk-1 Bk-2
105 (本発明)	C-3	C-3	M-3	M-3	Y-2	Y-3 C-3 M-3	Bk-3 Y-3
106 (本発明)	C-3	C-3	M-3	M-3	Y-2	Y-3 C-4 M-4	Bk−4 Y−3
107 (本発明)	C-3	C-3	M-4	M-4	Y-2	Y-4 C-3 M-3	Bk-3 Bk-4 Y-3
108 (本発明)	C-3	C-3	M-4	M-4	Y-3	Y-3 C-4 M-3	Bk-3 Bk-4 Y-4
109 (本発明)	C-4	C-4	M-3	M-3	Y-3	Y-4 C-4 M-3	Bk-3 Bk-5 Y-4
110	C-4	C-4	M-3	M-3	Y-3	Y-3 C-3 M-3	Bk-3 Bk-5 Y-4

[0438]

【化83】

C-2

$$X = -SO_2(CH_2)_3SO_3K$$

$$Y= -SO_2(CH_2)_3SO_2NH OH$$

C-3

$$X = -SO_2(CH_2)_3SO_3Li$$

C-4

$$X = -SO_2(CH_2)_3SO_3Li$$

[0439]

【化84】

M-2

M-3

M-4

[0440]

【化85】

Y-2

[0441]

【化86】

BK-3

BK-4

BK-5

[0442]

(25℃大気圧条件下での水への溶解度が15g以下の染料)

C-1, C-2, M-1, M-2, Y-1, Bk-1, Bk-2

(25℃大気圧条件下での水への溶解度が15g以上の染料)

C-3, C-4, M-3, M-4, Y-2, Y-3, Bk-3, Bk-4, Bk-5

[0443]

これらのインクをEPSON社製インクジェットプリンターPM-950Cのインクカートリッジに装填し、グレーの階段状画像パターンと人物の写ったポートレート画像を印字させた。

受像シートは、富士写真フイルム(株)製インクジェットペーパーフォト光沢 紙「画彩」に画像を印刷し、画像品質ならびにインクの吐出性と画像堅牢性の評価を行った。

[0444]

(評価実験)

1)吐出安定性については、カートリッジをプリンターにセットし全ノズルからのインクの突出を確認した後機械を止め、15 \mathbb{C} 30%RHの環境、さらに35 \mathbb{C} 90%RHの環境にプリンターをそれぞれ240時間ずつ放置し、その後A4 画像 100 枚を出力して、以下の基準で評価した。

[0445]

A:印刷開始から終了まで印字の乱れ無し

B:印字の乱れのある出力が発生する

C:印刷開始から終了まで印字の乱れあり

[0446]

2) 画像保存性については、印字サンプルを用いて、以下の評価を行った。ここで印字サンプルは、シアンならびにグレーの、階段状に濃度の変化したパターンを印字して、このパターン中でX-rite濃度測定機のステータスAのフィルターを用いて、濃度が1.0±0.1となっているパターンにおいて褪色試験における濃度測定の指標とした。

[0447]

- ①光堅牢性は印字後、アトラス社製ウェザーメーターを用い画像にキセノン光(8万5千ルックス)を7日照射した後、画像評価を行った。
- ②熱堅牢性については、80℃70%RHの条件下に10日間、試料を保存して、同様の評価を行った。
- ③耐オゾン性については、オゾンガス濃度が0.5ppmに設定されたボックス内に7日間放置し、同様の評価を行った。

いずれもグレー濃度で初期に比べて85%以上残存している場合をA、70-85%の場合をB、70%以下の場合をCとした。

[0448]

3) 画像品質については、ポートレート画像における肌色印字部でビーディングが起きているかどうかで判定した。すべての画像部で均一な画像が得られているものについてはA, 一部ビーディングもしくはブロンズが認められるものをB, 画像の全面にビーディングもしくはブロンズが認められるものをCとして判定した。

得られた結果を下記表に示す。

[0449]

【表3】

No.	吐出性	光堅牢性	熱堅牢性	0₃堅牢性	画像品質
PM-950C (比較例)	Α	C	В	С	A
101(比較例)	В	В	A	В	C
102(比較例)	C	В	Α	В	С
103(比較例)	В	В	Α	В	C .
104(比較例)	С	В	Α	В	С
105(本発明)	A	Α	Α	Α	Α
106(本発明)	Α	Α	Α	Α	A
107(本発明)	Α	A	Α	Α	Α
108(本発明)	Α	Α	Α	Α	A
109(本発明)	Α	Α	Α	Α	A
110(本発明)	A	A	Α	Α	A

[0450]

表の結果から、本発明のインクセットを使用した系ではすべての性能で比較例 に対して勝っていることがわかった。

本発明のインクセットを使用した系をサーマルタイプのインクジェットプリンタで試験しても、同様の結果として得られた。

[0451]

【発明の効果】

本発明によれば、特定の染料を、少なくとも1種水性媒体中に溶解し、含まれ

る染料の25℃大気圧条件下における水100gへの溶解度が、すべて15g以上であるインクジェット用インクおよびインクセットにより、不吐出による画像の乱れやビーディングが発生せず、吐出安定性に優れた耐久性に優れたものとすることができる。

【書類名】 要約書

【要約】

【課題】 不吐出による画像の乱れやビーディングが発生せず、吐出安定性に優れた耐久性に優れたインクジェット用インクおよびインクセットセットを提供する。

【解決手段】 特定の染料を、少なくとも1種水性媒体中に溶解したインクジェット用インクであって、該インク中に含まれる染料の25 で大気圧条件下における水100 gへの溶解度が、すべて15 g以上であることを特徴とするインクジェット用インク、および、インクがすべて前記のインクから形成されたインクセット。

【選択図】 なし

特願2003-089019

出願人履歴情報

識別番号

[000005201]

1. 変更年月日 [変更理由] 住 所

氏

1990年 8月14日

新規登録

神奈川県南足柄市中沼210番地

名 富士写真フイルム株式会社