1		<u>Claims</u>
2		
3		What is claimed is:
4		
5		1. A system for communication on a chip, comprising:
6		an on-chip communication bus including plural tracks; and
7		a plurality of stations that couple a plurality of on-chip components to the on-chip
8	communicatio	on bus;
	other stations.	wherein each station has a dedicated track which it can use to send information to
	protocol.	2. A system as in claim 1, wherein the stations use a packet based communication
17 17 17	a USB compo	3. A system as in claim 1, wherein the on-chip components include a PCI bridge, nent, or an inter-integrated-circuit component.
18		4. A system as in claim 1, wherein each station includes:
19		an initiator that requests permission to transmit outgoing data over a track to
20	another station	and that transmits the outgoing data;
21		an arbiter that evaluates requests from other stations and selects a track on which
22	to receive inco	oming data; and
23		a target that receives the incoming data.
24		

1	5. A system as in claim 4, wherein the initiator is connected to a grant
2	multiplexor for selecting a grant line.
3	
4	6. A system as in claim 5, wherein the grant multiplexor further comprises plura
5	smaller multiplexors distributed across the chip.
6	
7	7. A system as in claim 4, wherein the arbiter is connected to a track multiplexor
8	for selecting a track.
9	8. A system as in claim 7, wherein the track multiple on further account to the
	8. A system as in claim 7, wherein the track multiplexor further comprises plural smaller multiplexors distributed across the chip.
	9. A system as in claim 4, wherein each station further comprises a source queue
	for queuing outgoing data.
16 17	10. A system as in claim 9, wherein the source queue is a first-in-first-out register.
18	
19	11. A system as in claim 4, wherein each station further comprises a destination
20	queue for queuing incoming data.
21	
22	12. A system as in claim 11, wherein the destination queue is a first-in-first-out
23	register.
24	

1	13. A system as in claim 4, wherein each station further comprises:
2	a source queue for queuing outgoing data, and
3	a destination queue for queuing incoming data.
4	
5	14. A system as in claim 13, wherein the source queue and the destination queue
6	serve to separate a first clock domain for the on-chip communication bus from a second clock
7	domain for one of the plurality of on-chip components.
8	
9	15. A system as in claim 1, wherein more than one of the plurality of on-chip
10 11	components are coupled to the on-chip communication bus through one of the stations.
	16. A system as in claim 1, wherein the stations comprise multiplexors that
<u>L3</u>	further comprise:
<u> </u>	smaller multiplexors distributed across the chip in stages;
	pipeline storage elements between some of the stages in order to maintain
<u>-</u> 16 17	transmission speed when a track must traverse a large number of stages.
18	17. A system as in claim 1, wherein each station comprises a watchdog circuit
19	that determines if its station has gone offline.
20	
21	18. A system as in claim 17, wherein if the watchdog station determines that its
22	station has gone offline, that watchdog station informs a controller connected to the system.
23	
24	19. A method for communication on a chip, comprising the steps of:

5
6
7
8
18
19
20
21
22

communicating between a plurality of on-chip components and a plurality of
stations coupled to the plurality of on-chip components; and
communicating between the plurality of stations using an on-chip communication
bus including a plurality of tracks;
wherein each station has a dedicated track which it can use to send information to
other stations.
20. A method as in claim 19, wherein the stations use a packet based
communication protocol.
21. A method as in claim 19, wherein the on-chip components include a PCI
bridge, a USB component, or an inter-integrated-circuit component.
22. A method as in claim 19, wherein the step of communicating between the
plurality of stations further comprises the steps of:
sending a request from a first station to a second station;
evaluating the request at the second station;
sending a grant signal from the second station to the first station;
selecting a track at the second station;
sending a data or command from the first station to the second station; and
receiving the data or command at the second station.
23. A method as in claim 22, wherein

sending the request is performed by an initiator at the first station;

1	evaluating the request is performed by an arbiter at the second station;
2	sending the grant signal is performed by the arbiter at the second station;
3	selecting the track is performed by the arbiter at the second station;
4	sending the data or command is performed by the initiator at the first station; and
5	receiving the data is performed by a target at the second station.
6	
7	24. A method as in claim 23, wherein the initiator is connected to a grant
8	multiplexor for selecting a grant line.
	25. A method as in claim 24, wherein the grant multiplexor further comprises plural smaller multiplexors distributed across the chip. 26. A method as in claim 23, wherein the arbiter is connected to a track multiplexor for selecting a track. 27. A method as in claim 26, wherein the track multiplexor further comprises plural smaller multiplexors distributed across the chip.
18	
19	28. A method as in claim 23, wherein each station further comprises a source
20	queue for queuing outgoing data.
21	
22	29. A method as in claim 28, wherein the source queue is a first-in-first-out
23	register.

23

24

1	30. A method as in claim 23, wherein each station further comprises a destination
2	queue for queuing incoming data.
3	
4	31. A method as in claim 30, wherein the destination queue is a first-in-first-out
5	register.
6	
7	32. A method as in claim 23, wherein each station further comprises:
8	a source queue for queuing outgoing data, and
	a destination queue for queuing incoming data.
	33. A method as in claim 32, wherein the source queue and the destination queue
12 JJ	serve to separate a first clock domain for the on-chip communication bus from a second clock
	domain for one of the plurality of on-chip components.
15	34. A method as in claim 19, wherein more than one of the plurality of on-chip
〒 116 ≟ 17	components are coupled to the on-chip communication bus through one of the stations.
18	35. A method as in claim 19, wherein the stations comprise multiplexors that
19	further comprise smaller multiplexors distributed across the chip in stages and pipeline storage
20	elements between some of the stages in order to maintain transmission speed when a track must
21	traverse a large number of stages.
22	

station has gone offline, the step of determining performed by a watchdog circuit for the station.

36. A method as in claim 19, further comprising the step of determining if a

1	37. A method as in claim 36, further comprising the step of informing a controlle
2	if the watchdog circuit determines that its station has gone offline.
3	
4	38. A system for communication on a chip, comprising:
5	means for communicating between a plurality of on-chip components and a
6	plurality of stations coupled to the plurality of on-chip components; and
7	means for communicating between the plurality of stations using an on-chip
8	communication bus including a plurality of tracks;
9	wherein each station has a dedicated track which it can use to send information to
	other stations.
1	