

Uvod v računalništvo

Vaje

Atributi algoritmov

Kaj je dober algoritem?

- Pravilnost Algoritem mora dati <u>pravilen rezultat</u>, <u>pravilnemu problemu</u> in se nato <u>ustaviti</u>.
- Razumljivost Algoritem mora biti enostaven za razumevanje, da bo vzdrževanje čim lažje.
- Eleganca kompakten, jasen in učinkovit algoritem.
- Učinkovitost optimalna izraba virov.
 - časovna učinkovitost/potratnost globalna indikacija količine "dela", ki jo zahteva algoritem
 - prostorska učinkovitost/potratnost količino informacij, ki jih mora algoritem shraniti v pomnilnik računalnika

Časovna učinkovitost

Big O	Naziv
O(1)	Constant
O(log n)	Logarithmic
O(n)	Linear
O(n log n)	Linearithmic
$O(n^2)$	Quadratic
$O(n^3)$	Cubic
$O(2^n)$	Exponential
O(n!)	Factorial

Časovna učinkovitost - primeri

```
0(1)
function sum(a,b){
  return a+b;
0(n)
int i, y;
for (i = 0; i < n; ++i) {
   y = i + 1;
O(\log n)
 x = n
 while (x > 0) {
   x = x / 2
```

```
O(n^2)
                            O(n!)
                            function factorial(n){
x = n;
while (x > 0) {
                               int i = n;
                                for (i = 0; i < n; i++) {
   y = x;
  while (y > 0) {
                                      print(n);
                                      factorial(n-1);
       y = y - 1;
   x = x - 1;
O(2^n)
function fibonacci(num) {
    if(num < 2) {
        return num;
    else {
        return fibonacci(num-1) + fibonacci(num - 2);
```

V kateri razred zahtevnosti sodi algoritem v primeru, da:

- a) Za osnovno enoto dela izberemo odštevanje?
- Za osnovno enoto dela izberemo celoštevilsko Dokler a>=1, ponavljaj deljenje?
 c = c + 1

Utemelji odgovore!

```
Preberi vrednost n
Nastavi c na 0
Nastavi a na vrednost n
      c = c + 1
     b = n
     Dokler b>0, ponavljaj
           c = c + 1
           b = b / 2
     a = a - 1
Ustavi se.
```

V kateri razred zahtevnosti sodi algoritem v primeru, da:

- a) Za osnovno enoto dela izberemo odštevanje?
- Za osnovno enoto dela izberemo celoštevilsko Dokler a>=1, ponavljaj deljenje?
 c = c + 1

Utemelji odgovore!

- a) O(n)
- b) O(n*logn)

```
Preberi vrednost n
Nastavi c na 0
Nastavi a na vrednost n
     c = c + 1
     b = n
     Dokler b>0, ponavljaj
           c = c + 1
           b = b / 2
     a = a - 1
Ustavi se.
```


Algoritma A in B rešujeta isti problem. Pri vhodu velikosti n algoritem A izvrši 0,003n² operacij, algoritem B pa 243n operacij. Poišči vrednost n, nad katero algoritem B postane bolj učinkovit kot algoritem A.

$$0.003 \text{ n}^2 = 243 \text{ n}$$

$$0.003 \text{ n} = 243$$

$$n = 243/0.003$$

$$n = 81000$$

=> Pri vrednostih n-ja večjih od 81000 bo algoritem B učinkovejši od algoritma A.

Algoritem, katerega časovna zahtevnost je reda velikosti O(n), se pri vrednosti n = 100 na določenem računalniku izvaja 10 sekund. Kako dolgo naj bi se izvajal pri vrednosti n = 500?

Algoritem, katerega časovna zahtevnost je reda velikosti O(n), se pri vrednosti n = 100 na določenem računalniku izvaja 10 sekund. Kako dolgo naj bi se izvajal pri vrednosti n = 500?

100	10
500	X

$$x = (10*500)/100$$

 $x = 50 \text{ s}$

Ustavi se.

Podana je nekoliko posplošena različica algoritma za zaporedno iskanje oseb v telefonskem imeniku.

- S pomočjo zgornjega algoritma poišči telefonsko številko Dumbledora v naslednjem imeniku.
- · V kateri razred časovne zahtevnosti uvrščamo ta algoritem? Utemelji.

Preberi vrednosti za IME, n, N_1 , N_2 , ... N_n in T_1 , T_2 , ..., T_n .

Nastavi vrednost i na 1 in vrednost Najden na NE.

Dokler ((Najden = NE) IN ($i \le n$)), ponavljaj

Če se IME ujema z i-tim imenom v imeniku, N_i Izpiši telefonsko številko te osebe, T_i .

Nastavi vrednost Najden na DA.

sicer (t.j. IME se ne ujema z N_i) i povečaj za 1.

Če (Najden = NE)

Izpiši sporočilo "Dorostite, tega naročnika ni v imeniku."

Oseba	Telefonska številka
Harry	03 3940510
Ron	04 9753020
Hermione	02 7772892
Hagrid	08 8829374
Dumbledore	04 8264950
Malfoy	01 6624584


```
i=1
Najden = NE
```

```
Dokler (Najden == NE) IN (i<=6) ponavljaj
    Dumblerdore != N1
    i=i+1
    Dumblerdore != N2
    i=i+1</pre>
```

Dumblerdore = N5 Telefonska številka je 04 8264950 Najden = DA

Oseba	Telefonska številka
Harry	03 3940510
Ron	04 9753020
Hermione	02 7772892
Hagrid	08 8829374
Dumblerdore	04 8264950
Malfoy	01 6624584

Vstavitev

0(n)

Spodaj je podan algoritem za mehurčno urejanje (angl. bubble sort).

Preberi vrednost n za velikost seznama.

Preberi vseh n elementov seznama.

Postavi oznako N za neurejeni del seznama na konec seznama.

Dokler velja, da ima neurejeni del seznama vsaj dva elementa, ponavljaj

Postavi oznako T za trenutni element na drugi element seznama.

Dokler oznaka T ne preskoči oznake N, ponavljaj

Če je element na položaju T manjši od elementa na njegovi levi zamenjaj ta dva elementa

Premakni oznako T eno mesto v desno.

Premakni oznako N eno mesto v levo.

Ustavi se.

- a) Zapiši seznam: 35 83 44 12 76 91 55 7 27 31, po vsakem obhodu zunanje zanke. V kateri razred časovne zahtevnosti uvrščamo ta algoritem? Utemelji.
- b) Recimo, da izvedemo algoritem za urejanje z izbiranjem in algoritem za mehurčno urejanje na seznamu, ki je že pravilno urejen po velikosti. Pri katerem izmed obeh algoritmov imamo manj zamenjav elementov? Utemelji?

a)									
35	<u>83</u>	44	12	76	<u>91</u>	55	7	27	31
<u>po 1 ou</u>	bhodu:								
35	44	<u>12</u>	76	83	55	7	27	31	91
<u>po 2 ou</u>	<u>bhodih:</u>								
35	12	44	<u>76</u>	55	7	27	31	83	91
<u>po 3 ou</u>	<u>bhodov:</u>								
35	12	44	<u>55</u>	7	27	31	76	83	91

b)

<u>Urejanje z izbiranjem</u>: naredi po eno zamenjavo za vsak položaj na seznam in ne upošteva morebitni že obstoječe urejenosti.

<u>Mehurčno urejanje</u>: zamenja le elemente, ki niso pravilno urejeni. Če je seznam že urejen, ne bo zamenjave.

Algoritem, katerega časovna zahtevnost je reda velikosti $O(n^2)$, se pri vrednosti n = 100 na določenem računalniku izvaja 10 sekund. Kako dolgo naj bi se izvajal pri vrednosti n = 500?

Algoritem, katerega časovna zahtevnost je reda velikosti $O(n^2)$, se pri vrednosti n = 100 na določenem računalniku izvaja 10 sekund. Kako dolgo naj bi se izvajal pri vrednosti n = 500?

100^{2}	10
500^{2}	X

$$x = \frac{10 * 250000}{10000}$$

$$x = 250 \text{ s}$$

V kateri razred zahtevnosti sodi algoritem v primeru, da:

a) Za osnovno enoto dela izberemo seštevanje? Utemelji odgovore!

```
Preberi vrednost n
Nastavi c na 0
Nastavi a na vrednost n
Dokler a>=1, ponavljaj
     c = c + 1
     b = n
     Dokler b>0, ponavljaj
           c = c + 1
           b = b / 2
     a = a - 1
Ustavi se.
```

V kateri razred zahtevnosti sodi algoritem v primeru, da:

a) Za osnovno enoto dela izberemo seštevanje? Utemelji odgovore!

a) O(n*logn)

```
Preberi vrednost n
Nastavi c na 0
Nastavi a na vrednost n
Dokler a>=1, ponavljaj
     c = c + 1
     b = n
     Dokler b>0, ponavljaj
           c = c + 1
           b = b / 2
     a = a - 1
Ustavi se.
```

V kateri razred zahtevnosti sodi algoritem? Utemelji odgovore!

```
Preberi vrednost n
i = n
Dokler i > 0, ponavljaj
i = i / 2
j = 1
Dokler j < n, ponavljaj
j = j * 2
k = 0
Dokler k < n, ponavljaj
k = k + 4
(konstantno število operacij)
Ustavi se.</pre>
```

V kateri razred zahtevnosti sodi algoritem? Utemelji odgovore!

```
Preberi vrednost n
i = n
Dokler i > 1, ponavljaj
        Dokler j < n, ponavljaj j = j * 2
                Dokler k < n, ponavljaj k = k + 4
                         (konstantno število operacij)
```

Ustavi se.

 $O(n*logn*logn) = O(nlog^2n)$

Hvala za pozornost!

Petar.Kochovski@fri.uni-lj.si