Econometría I (EC402) Clase #18 - MCRL con variables dicotomas

Prof. Andrés M. Castaño

Ingeniería Comercial Universidad Católica del Norte Lunes 11 de noviembre de 2013

Comentarios generales...

- Las variables explicativas pueden no ser de escala de razón, de escala de intervalo, o de escala ordinal.
- Las variables cualitativas que tienden a ser importantes son: sexo, raza, color, religión, nacionalidad, región geográfica, trastornos políticos y afiliación a un partido.
- Modelos ANOVA: una regresada cuantitativa y unas regresoras cualitativas

Ejemplo: Difiere el salario promedio anual de los maestros de escuelas públicas por área geográfica?

51 estados clasificados en tres regiones: región noreste y norte-centro (21 estados), región sur (17 estados) y región oeste (13 estados)

TABLA 9.1	SALARIO PROMEDIO DE LOS MAESTROS DE ESCUELAS PÚBLICA:
DOD FOTAF	0.4000

POR ESTADO, 1986									
Salario	Gasto	D_2	D ₃	Salario	Gasto	D_2	D ₂		
19 583	3 346	1	0	22 795	3 366	0	1		
20 263	3 114	1	0	21 570	2 920	0	1		
20 325	3 554	1	0	22 080	2 980	0	1		
26 800	4 642	- 1	0	22 250	3 731	0	1		
29 470	4 669	1	0	20 940	2 853	0	1		
26 610	4 888	1	0	21 800	2 533	0	1		
30 678	5 710	1	0	22 934	2 729	0	1		
27 170	5 536	-1	0	18 443	2 305	0	1		
25 853	4 168	1	0	19 538	2 642	0	1		
24 500	3 547	1	. 0	20 460	3 124	0	1		
24 274	3 159	1	0	21 419	2 752	0	1		
27 170	3 621	1	0	25 160	3 429	0	1		
30 168	3 782	4	0	22 482	3 947	0	0		
26 525	4 247	1	0	20 969	2 509	0	0		
27 360	3 982	1	0	27 224	5 440	0	0		
21 690	3 568	1	0	25 892	4 042	0	0		
21 974	3 155	1	0	22 644	3 402	0	0		
20 816	3 059	1	0	24 640	2 829	0	0		
18 095	2 967	1	0	22 341	2 297	0	0		
20 939	3 285	1	0	25 610	2 932	0	0		
22 644	3 9 1 4	1	0	26 015	3 705	0	0		
24 624	4 5 1 7	0	1	25 788	4 123	0	0		
27 186	4 349	0	1	29 132	3 608	0	0		
33 990	5 020	0	1	41 480	8 349	0	0		
23 382	3 594	0	1	25 845	3 766	0	0		
20 627	2 821	0	1 ~						

Nota: D₂ = 1 para estados del Noreste y Norte-centro; 0 de otra región.

D₃ = 1 para estados del Sur; 0 de otra región.
Fuente: National Education Association, como se informó en Albuquerque Tribune, 7 de noviembre de 1986.

Especificación

•

$$Y_i = \beta_1 + \beta_2 D_{2i} + \beta_3 D_{3i} + \mu_i$$

- $ightharpoonup Y_i =$ Salario promedio de los maestros de las escuelas públicas en el estado i
- $ightharpoonup D_{2i}=$ es 1 si el estado está en el Noroeste o Norte-centro, 0 para otra región del país
- $D_{3i} = \text{es 1 si el estado está en el Sur, 0 para otra región del país$
- Cuál es el salario medio de los maestros de escuelas públicas en la región Noreste y Norte-centro?

$$E(Y_i \mid D_{2i} = 1, D_{3i} = 0) = \beta_1 + \beta_2$$

• Cuál es el salario medio de los maestros de escuelas públicas del Sur?

$$E(Y_i \mid D_{2i} = 0, D_{3i} = 1) = \beta_1 + \beta_3$$

• Cuál es el salario medio de los maestros de escuelas públicas del Oeste?

$$E(Y_i \mid D_{2i} = 0, D_{3i} = 0) = \beta_1$$

Ejemplo

$$\hat{Y}_i = 26\ 158.62 - 1\ 734.473D_{2i} - 3\ 264.615D_{3i}$$
ee = (1\ 128.523) (1\ 435.953) (1\ 499.615) (9.2.5)
$$t = (23.1759) (-1.2078) (-2.1776)$$

$$(0.0000)^* (0.2330)^* (0.0349)^* R^2 = 0.0901$$

Ejemplo

Precaución en el uso de variables dicótomas

- Si una variable cualitativa tiene m categorías, sólo hay que agregar (m-1) variables dicótomas

 Colinealidad perfecta (trampa de la variable dicótoma).
- La categoría a la cual no se asigna variable dicótoma se conoce como categoría de comparación, base, de control, de referencia u omitida. Todas las comparaciones se hacen con base en la categoría de comparación.
- El valor de la intersección (β_1) representa el valor medio de la categoría de comparación.
- Los coeficientes anexos a las variables dicótomas se conocen como coeficientes de intersección diferencial. Indican en qué medida el valor de la intersección que se le asigna 1 varía del coeficiente de intersección de la categoría de comparación.
- Se pueden introducir tantas variables dicotómicas como categorías cuando se omite de la regresión la intersección
- Qué criterio es mejor: (m-1) variables dicótomas o sacar el intercepto

 Planteamiento de Kennedy.

Ejemplo sin intersección

$$\hat{Y}_i = 26\ 158.62D_{1i} + 24\ 424.14D_{2i} + 22\ 894D_{3i}$$
ee = (1\ 128.523) (887.9170) (986.8645)
$$t = (23.1795)^* (27.5072)^* (23.1987)^*$$

$$R^2 = 0.0901$$

 β_1 = salario medio de los maestros en el Oeste

 β_2 = salario medio de los maestros en el Noreste y Norte-centro

 β_3 = salario medio de los maestros en el Sur

Modelos ANOVA con dos variables cualitativas

```
\hat{Y}_{i} = 8.8148
                                                                                 + 1.0997D21-
                                                                                                1.6729Da
EJEMPLO 9.2
                                                                       (0.4015)
                                                                                   (0.4642)
                                                                                                 (0.4854)
SALARIOS POR HORA EN RELACIÓN CON EL ESTADO
CIVIL Y LA REGIÓN DE RESIDENCIA
                                                                   t = (21.9528)
                                                                                   (2.3688)
                                                                                                (-3.4462)
                                                                                                            (9.3.1)
                                                                        (0.0000)*
                                                                                   (0.0182)*
                                                                                                 (0.0006)*
De una muestra de 528 personas tomada en mayo de 1985,
                                                                                             B^2 = 0.0322
se obtuvieron los siguientes resultados de regresión:8
```

```
donde Y = \text{salario por hora (\$)}
D_2 = \text{estado civil; 1 si es caso, 0 en otro caso}
D_3 = \text{región de residencia; 1 si es del Sur, 0 en otro caso}
```

Modelos Ancova: mezcla de cuantitativas con cualitativas

 Los modelos ANOVA no son tan comunes en economía: Modelos de análisis de Covarianza.

$$Y_{i} = \beta_{1} + \beta_{2}D_{2i} + \beta_{3}D_{3i} + \beta_{4}X_{i} + u_{i}$$
(9.4.1)

donde Y_i = salario anual promedio de los maestros de escuelas públicas en el estado (\$)

 X_i = gasto en escuelas públicas por alumno (\$)

 $D_{2i} = 1$ si el estado es del Noreste o Norte-centro; 0 en otro caso

 $D_{3i} = 1$ si el estado es del Sur; 0 en otro caso

Modelos Ancova: mezcla de cuantitativas con cualitativas

SALARIO DE LOS MAESTROS RESPECTO A LA REGIÓN Y AL GASTO EN ESCUELAS PÚBLICAS POR ALUMNO

De los datos mostrados en la tabla 9.1, los resultados del modelo (9.4.1) son los siguientes:

$$Y_i = 13\ 269.11$$
 $-1\ 673.514D_{2i} - 1\ 144.157D_{3i} + 3.2889X_i$
 $ee = (1\ 395.056)$ (801.1703) (861.1182) (0.3176)
 $t = (9.5115)^*$ $(-2.0889)^*$ $(-1.3286)^{**}$ $(10.3539)^*$
 $B^2 = 0.7266$

Modelos Ancova: mezcla de cuantitativas con cualitativas

