

Semantyczna analiza środowiska

przez robota usługowego

Piotr Hondra

promotor: mgr inż. Maciej Stefańczyk

Instytut Automatyki i Informatyki Stosowanej

Cele pracy

Zrozumienie środowiska wewnątrz budynków poprzez:

- klasyfikację pomieszczenia
- segmentację semantyczną

Segmentacja semantyczna oraz klasyfikacja sceny

Figure 1: [1].

Motywacje pracy

- Nawigacja robota
 - wykrywanie przeszkód
 - zmiana zachowania pod wpływem znajdującego się pomieszczenia
- Przewodnik dla osób niewidomych

Zbiór danych

Figure 2: Szacowana liczba cytowań w latach 2018-2022 [paperswithcode.com]

Zbiór danych

Figure 3: Szacowana liczba cytowań w latach 2018-2022 [paperswithcode.com]

Figure 4: Szacowana liczba cytowań w latach 2018-2022 [paperswithcode.com]

Rozwiązanie problemu

Rozwiązanie problemu - przedstawienie architektury

Figure 5: Architektura sieci zastosowana w pracy inżynierskiej.

Podejście jednozadaniowe

Rozwiązanie problemu

Figure 6: Architektura sieci wyłącznie w zadaniu klasyfikacji.

Figure 7: Architektura sieci wyłącznie w zadaniu segmentacji semantycznej.

Podejście wielozadaniowe

Rozwiązanie problemu

Figure 8: Architektura sieci jako uczenie wielozadaniowego.

Wyniki - klasyfikacja

Figure 9: Porównanie dokładności dla każdej z klas w zadaniu klasyfikacji pomieszczeń

Wyniki - segmentacja

Figure 10: Porównanie dokładności dla każdej z klas w zadaniu segmentacji semantycznej

Wnioski

Ucznie wielozadaniowe pomaga osiągnać lepsze wyniki.

zadanie/[%]	Acc jednozadaniowe	Acc wielozadaniowe
segmentacja	67.87	67.48 –0.39
klasyfikacja	65.50	67.45 + 1.95
średnia	66.69	67.47 +0.78

Podsumowanie

- Cele pracy klasyfikacja sceny i segmentacja semantyczna zostały spełnione
- Średnia dokładności została zwiększona poprzez uczenie wielozadaniowe
- Wielkość modelu zmniejszyła się prawie dwukrotnie, co bezpośrednio wpływa na czas inferencji
- Dalsze możliwości rozwoju:
 - inferencja na robocie Tiago
 - sprawdzenie czasu inferencji

Bibliografia i

H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and A. Agrawal.

Context encoding for semantic segmentation.

In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 7151–7160, 2018.