ЛАБОРАТОРНАЯ РАБОТА 5 ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ

Теоретический материал к данной теме содержится в [1, глава 13]. Варианты заданий к задачам 5.1–5.2 даны в **ПРИЛОЖЕНИИ 5.А.**

ТРЕБОВАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ 5

Задачи 5.1 и 5.2 выполняются *с помощью пакета* PYNHON

Задача 5.1. Вычислить значение интеграла $I = \int\limits_1^3 P_m(x) dx$, где $P_m(x) = \sum_{i=0}^m c_i x^i$, с помощью квадратурных формул левых прямоугольников, Гаусса и по формуле индивидуального варианта.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ

- 1. Вычислить аналитически значение интеграла I .
- 2. Используя выражение для остаточного члена интегрирования (см. **ПРИЛОЖЕНИЕ 5.В**), оценить шаг интегрирования h, при котором величина погрешности квадратурной формулы будет меньше ϵ . Вычислить число отрезков разбиения n.
- 3. Вычислить значение интеграла I^h по составной квадратурной формуле левых прямоугольников с найденным шагом h. Найти величину погрешности $R^h = |I I^h|$.
- 4. Проделать те же действия (п. 2 3) для вычисления интеграла *I* по квадратурной формуле из индивидуального варианта.
- 5. Основываясь на заданной степени многочлена m, выбрать число узлов для квадратуры Гаусса, обеспечивающее вычисление интеграла без погрешности. Вычислить интеграл $I^{\scriptscriptstyle G}$.
 - 6. Результаты внести в таблицу 5.1

Задача 5.2. Вычислить интеграл $I = \int_{a}^{b} f(x) dx$ с точностью $\varepsilon = 10^{-12}$

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ

- 1. Вычислить интеграл I с помощью средств пакета PYTHON.
- 2. Составить программу, содержащую следующие разделы:
- а) процедуру-функцию, вычисляющую интеграл по составной квадратурной формуле из индивидуального варианта I^h с заданным шагом h.
- б) подпрограмму, вычисляющую значение интеграла с заданной точностью ϵ ; оценку погрешности производить на основе правила Рунге.
- с) вычисление уточненного значение интеграла $I^{ymoчh}$ и величину погрешности $R^{ymoчh} = |I^{ymoчh} I|$

Результатом работы программы должны быть следующие величины:

n- число разбиений отрезка интегрирования, при котором заданная точность достигнута,

 I^h и - $I^{h/2}$ - полученные значения интеграла при шагах h и h/2 соответственно, $R^h=\left|I^h-I\right|$ и $R^{h/2}=\left|I^{h/2}-I\right|$ - величины абсолютных погрешностей,

 $I^{ymoчh}$ и $R^{ymoчh} = \left| I - I^{ymoчh} \right|$ - величины для уточненного значения интеграла.

3.Вычислить интеграл по программе и полученные данные свести в таблицу 5.2.

Оформить отчет по ЛР, содержащий постановки задач, расчетные формулы вариантов и заполненные таблицы 5.1 и 5.2.

ПРИЛОЖЕНИЕ 5.А

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ 5

ВНИМАНИЕ! Номер варианта *N* для лабораторных работ вычисляется по следующей формуле:

- 1) N = I для группы A-5-19;
- 2) N = 25 + I для группы A-13a-19
- 3) N = 40 + I для группы A-13б-19
- 4) N = 55 I для группы A-14-19
- 5) N = 41 I для группы A-16-19

Таблица к задаче 5.1

Nº	G	G	Ç	C ₃	<i>C</i> ₄	Nº	C ₀	G	Ç	C3	<i>C</i> ₄	C₅
5.1.1	0.6	1.3	0	1.2	1.9	5.1.31	3.5	-0.2	-2.3	-3.1	3.1	1.6
5.1.2	1	0.9	0.8	0.7	0.5	5.1.32	2.2	-4.1	0.3	-3.4	0	0
5.1.3	0.4	0.3	0.2	0.1	2	5.1.33	0.8	6.5	-4.4	6.1	-3.6	2.3
5.1.4	0.1	-0.1	1	1	1	5.1.34	7.9	-0.4	2.7	0.7	-2.4	-4.1
5.1.5	1.5	0	-2.1	-1.1	0	5.1.35	1.3	0.5	2.1	5.7	8.3	5.2
5.1.6	-2.5	-2.1	0	0.4	0.5	5.1.36	-5.6	-7.2	1.5	4.6	-5.1	6.5
5.1.7	6.8	1.7	-4.1	0.1	-6.1	5.1.37	7.4	-2.3	6.6	0.3	1.8	2
5.1.8	0	1.4	3.2	1.6	-9.4	5.1.38	4.4	15	-3.3	2.4	5.3	-2.7
5.1.9	1.3	0	-0.1	0.7	8.1	5.1.39	1.8	-2.4	5.5	0	0	0
5.1.10	2.8	-1.2	-1.5	0	6.4	5.1.40	6.6	-3.7	-8.4	5.5	15	-2.1
5.1.11	5.4	2.1	0.3	2.1	1.6	5.1.41	4.8	1.5	6.3	-2.7	3.7	4.4
5.1.12	0	-2.9	-0.9	0.4	1.9	5.1.42	0.6	1.3	0	1.2	1.9	5.2
5.1.13	5.2	5.3	2.5	0.1	0	5.1.43	1	0.9	0.8	0.7	0.5	-6.0
5.1.14	-4.6	-0.4	1.6	0	2.4	5.1.44	0.4	0.3	0.2	0.1	2	3.7
5.1.15	3.5	-0.2	-2.3	-3.1	3.1	5.1.45	0.1	-0.1	1	1	1	2.1
5.1.16	2.2	-4.1	0.3	-3.4	3.5	5.1.46	1.5	0	-2.1	-1.1	0	0
5.1.17	0.8	6.5	-4.4	6.1	0	5.1.47	-2.5	-2.1	0	0.4	0.5	5.7
5.1.18	7.9	-0.4	2.7	0.7	-2.4	5.1.48	6.8	1.7	-4.1	0.1	-6.1	8.4
5.1.19	1.3	0.5	2.1	5.7	8.3	5.1.49	0	1.4	3.2	1.6	-9.4	-13
5.1.20	-5.6	-7.2	1.5	0	0	5.1.50	1.3	0	-0.1	0.7	8.1	11.2
5.1.21	7.4	-2.3	6.6	0.3	1.8	5.1.51	2.8	-1.2	-1.5	0	6.4	5.6
5.1.22	4.4	15	-3.3	2.4	5.3	5.1.52	5.4	2.1	0.3	2.1	1.6	1.4
5.1.23	1.8	-2.4	5.5	7.4	-3.3	5.1.53	0	-2.9	-0.9	0.4	1.9	-4.2
5.1.24	6.6	-3.7	-8.4	5.5	15	5.1.54	5.2	5.3	2.5	0.1	0	3.8

5.1.25	-0.5	0	1.3	7.1	0	5.1.55	3.4	-1.6	4.5	2.8	4.5	-7.4
5.1.26	4.8	1.5	6.3	-2.7	3.7	5.1.56	-4.6	-0.4	1.6	0	2.4	7.1
5.1.27	0.8	6.5	-4.4	6.1	-3.6	5.1.57	2.2	-2.1	0	0.4	0	3.6
5.1.28	3.9	-0.4	2.7	0.7	0	5.1.58	6.8	1.7	-4.1	0.1	-6.1	8.4
5.1.29	1.3	1.5	2.1	-5.7	8.3	5.1.59	0	1.4	3.2	1.6	-9.4	0
5.1.30	5.2	7.1	1.5	4.6	-5.1	5.1.60	1.3	0	-0.1	0.7	8.1	1.2

Таблица к задаче 5.2

Nº	f(x)	[a,b]	Nº	f(x)	[a,b]
5.2.1	$e^x \sin(\pi x)$	[2,6]	5.2.31	$3x^2\sin(2\pi x)$	[2,7]
5.2.2	$\sin(3^x)$	[-1,3]	5.2.32	$5\sin(3x)/x$	[0.1,7]
5.2.3	$5 \cdot 2^x \cos(\pi x)$	[2,6]	5.2.33	$5x^3\cos(6x)$	[2,6]
5.2.4	$9e^{x/6}\sin(\pi x^2)$	[-2,1]	5.2.34	$4^{x/3}\cos(\pi x)$	[7,11]
5.2.5	$4^{x/2}\cos(x^2/2)$	[5,8]	5.2.35	$5e^{-x}\sin(3\pi x)$	[-3,0]
5.2.6	$\ln(x)\cos(3x)$	[9,16]	5.2.36	$2\sin(3^{-x})$	[-2,2]
5.2.7	$x\sin^2(6x)$	[-3,0]	5.2.37	$4 \cdot 2^x \cos(3\pi x)$	[6,10]
5.2.8	$\sqrt{x}\cos^2(4x)$	[1,9]	5.2.38	$10e^{x/2}\cos(2\pi x^2)$	[-1,1]
5.2.9	$4^{x/3}\sin(\pi x)$	[7,11]	5.2.39	$\ln(x)\cos^2(2x)$	[7,20]
5.2.10	$6x^3\cos(x)$	[0,6]	5.2.40	$3x\cos^2(2x)$	[-8,0]
5.2.11	$e^x \sin(2\pi x)$	[3,5]	5.2.41	$\sqrt{x}\sin^2(3x)$	[0,10]
5.2.12	$2\sin(3^x)$	[0,3]	5.2.42	$8 \cdot 2^{-x} \sin(3\pi x)$	[-6,1]
5.2.13	$7 \cdot 2^x \cos(2\pi x)$	[3,8]	5.2.43	$9e^{x/6}\sin(\pi x^2)$	[-2,1]
5.2.14	$\ln(x)\cos^2(x)$	[5,16]	5.2.44	$e^x \cos^2(2x)$	[-2,4]
5.2.15	$5x^3\sin(5x)$	[2,6]	5.2.45	$3\sqrt{x}\cos^2(2x)$	[1,9]
5.2.16	$2\sqrt{x}\sin^2(x)$	[1,10]	5.2.46	$4^{x/2}\sin(\pi x)$	[8,12]
5.2.17	$x\cos^2(4x)$	[-4,0]	5.2.47	$2x\sin^2(3x)$	[-5,0]

5.2.18	$e^x \sin^2(2x)$	[-1,4]	5.2.48	ln(x)sin(3x)	[9,16]
5.2.19	$10e^{x/2}\sin(2\pi x^2)$	[-2,2]	5.2.49	$4x^3\cos(5x)$	[2,6]
5.2.20	$4^x \cos(x^2)$	[4,7]	5.2.50	$x\sin^2(3x)$	[-6,0]
5.2.21	$3e^x\sin(3\pi x)$	[-3,0]	5.2.51	$4^{x/3}\cos(\pi x^2)$	[4,7]
5.2.22	$3\sin(2^{-x})$	[-2,2]	5.2.52	$6e^{-x}\sin(2\pi x)$	[0,3]
5.2.23	$2x^2\sin(3\pi x)$	[1,6]	5.2.53	$4\sin(2^x)$	[-4,0]
5.2.24	$6\sin(2x)/x$	[0.1,5]	5.2.54	$5 \cdot 2^{-x} \sin(2\pi x)$	[-3,0]
5.2.25	$9e^{x/2}-\cos(\pi x^2)$	[-2,2]	5.2.55	$7e^{x/4}\sin(\pi x^2)$	[-3,1]
5.2.26	$e^x \sin(2\pi x)$	[3,5]	5.2.56	$\sqrt{x}\sin^2(3x)$	[0,10]
5.2.27	$2.8\sin(3^x)$	[0,3]	5.2.57	$8 \cdot 2^{-x} \sin(3\pi x)$	[-6,1]
5.2.28	$7 \cdot 2^x \cos(2\pi x)$	[3,8]	5.2.58	$9e^{x/6} + 9\sin(\pi x)$	[-2,1]
5.2.29	$\ln(x) + 6\cos^2(x)$	[5,16]	5.2.59	$e^x \cos^2(2x)$	[-2,4]
5.2.30	$0.4x^3\cos(4x)$	[2,6]	5.2.60	$\sqrt{x-1}\sin^2(x)$	[1,10]

Номера вариантов	Метод решения
N = 1,7,13,19, 25,31,37,43,49,55	(3) формула центральных прямоугольников
N = 2,8,14,20,26,32,38,44,50,56	(4) формула трапеций
N = 3,9,15,21,27,33,39,45,51,57	(5) формула Симпсона
N = 4,10,16,22,28,34,40,46,52,58	(6) правило 3/8
N = 5,11,17,23,29,35,41,47,53,59	(7) формула Милна
N = 6,12,18,24,30,36,42,48,54,60	(8) формула Вэддла

ПРИЛОЖЕНИЕ 5.В

Квадратурные формулы и оценки погрешностей для вычисления $\int\limits_{a}^{b}f\left(x\right) dx.$

Замечание. В формулах для остаточных членов используется следующее обозначение:

$$M_{\mathbf{k}} = \max_{\mathbf{x} \in [a,b]} |f^{(k)}(\mathbf{x})|.$$

1. Формула **левых** прямоугольников:
$$S = h \sum_{i=0}^{n-1} f(x_i)$$
; остаточный член $R = \frac{M_i(b-a)}{2}h$.

2. Формула **правых** прямоугольников:
$$S = h \sum_{i=1}^{n} f(x_i)$$
; остаточный член $R = \frac{M_1(b-a)}{2}h$.

3. Формула **центральных** прямоугольников:
$$S = h \sum_{i=0}^{n-1} f(x_{i+1/2});$$

остаточный член
$$R = \frac{M_2(b-a)}{24}h^2$$
.

4. Формула **трапеций**:
$$S = h \left(\frac{f(x_0) + f(x_n)}{2} + \sum_{i=1}^{n-1} f(x_i) \right)$$
;

остаточный член
$$R = \frac{M_2(b-a)}{12}h^2$$
.

5. Формула **Симпсона**:
$$S = \frac{h}{6} \left(f(x_0) + 4 \sum_{i=0}^{n-1} f(x_{i+1/2}) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right)$$
;

остаточный член
$$R = \frac{M_4(b-a)}{2880}h^4$$
.

6. Правило 3/8:
$$S = \frac{h}{8} \sum_{i=1}^{n} \left[f(x_{i-1}) + 3 f\left(x_{i-1} + \frac{h}{3}\right) + 3 f\left(x_{i} - \frac{h}{3}\right) + f(x_{i}) \right];$$

остаточный член
$$R = \frac{M_4 (b-a)}{6480} h^4$$

7. Формула **Милна**:
$$S = \frac{h}{90} \sum_{i=1}^{n} \left[7 f(x_{i-1}) + 32 f(x_{i-1} + \frac{h}{4}) + 12 f(x_{i-1/2}) + 32 f(x_i - \frac{h}{4}) + 7 f(x_i) \right];$$

остаточный член
$$R = \frac{M_6 (b-a)}{1935360} h^6$$
.

8. Формула Вэддла:

$$S = \frac{h}{840} \sum_{i=1}^{n} \left[41 f(x_{i-1}) + 216 f(x_{i-1} + \frac{h}{6}) + 27 f(x_{i-1} + \frac{h}{3}) + 272 f(x_{i-1/2}) + + 27 f(x_i - \frac{h}{3}) + 216 f(x_i - \frac{h}{6}) + 41 f(x_i) \right];$$

остаточный член

$$R = \frac{M_8 (b-a)}{1.567.641.600} h^8$$
.

9. Формула 6-го порядка точности:

$$S = \frac{h}{288} \sum_{i=1}^{n} \left[19 f(x_{i-1}) + 75 f\left(x_{i-1} + \frac{h}{5}\right) + 50 f\left(x_{i-1} + \frac{2h}{5}\right) + 50 f\left(x_i - \frac{2h}{5}\right) + 75 f\left(x_i - \frac{h}{5}\right) + 19 f(x_i) \right];$$
остаточный член $R = \frac{11 M_6 (b-a)}{37800000} h^6$.

Правило Рунге: $R^{h/2} = \frac{I^{h/2} - I^h}{2^p - 1}$, где p — порядок точности формулы.

Уточнение по Рунге:
$$I^{y} = I^{h/2} + \frac{I^{h/2} - I^{h}}{2^{p} - 1}$$
, где p — порядок точности формулы.

ПРИЛОЖЕНИЕ 5. С

Пример заполнения таблицы 5.1 (нулевой вариант).

Задание: Вычисляется интеграл $I = \int_{0.5}^{2} (3.5 + 6.2x^3 - 3.3x^4) dx$ с точностью 0.05

Найденное точное значение интеграла $I = 8.85375$	Число разбиений отрезка п Шаг интегрирования h	Значение интеграла, вычисленное по составной формуле I^h Величина погрешности интеграла, вычисленного по составной формуле R^h
Метод Левых прямоугольников	n = 702 h = 1.5 / 725	$I^h = 8.857763$ $R^h = 0.004013$
Метод индивидуального варианта УКАЗАТЬ КОНКРЕТНЫЙ МЕТОД	n = 1 $h = 1.5$	$I^{h} = 8.85375$ $R^{h} = 0$
Метод Гаусса	Число узлов квадратуры N=	$I^G = 8.85375$

ТАБЛИЦА К ЗАДАЧЕ 5.2.

Задание: Вычисляется интеграл $I = \int_{3}^{6} (2\sin(x) - 3\cos(x)) dx$ с точностью $\varepsilon = 10^{-12}$

<i>l</i> = -2.6387190477252433	Метод левых прямоугольников	Метод индивидуального варианта
Число разбиений отрезка	n=	n= 32
Значение интеграла	$I^h =$	<i>I</i> ^h =-2.6387190477247224
Величина погрешности	$R^h =$	$R^h = 5 \cdot 10^{-13}$
Уточненное значение интеграла		<i>I</i> ^h =-2.6387190477252442
Величина погрешности уточненного значения интеграла		$R^h = 9 \cdot 10^{-16}$

ЛИТЕРАТУРА

1. Амосов А.А., Дубинский Ю.А., Копчёнова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994.