Indian Institute of Technology Jammu

CSD001P5M Linear Algebra Tutorial: 08

- 1. Let $T: V_{\mathbb{F}} \to W_{\mathbb{F}}$ be a linear transformation.
 - (a) Show that Ker $T = \{v \in V : Tv = 0\}$ is a subspace of V and Range $T = \{w \in W : w = Tv \text{ for some } v \in V\}$ is a subspace of W.
 - (b) Show that Ker $T = \{0\}$ if and only if T is one-one.
- 2. Determine whether the following are linear transformations (yes or no). Justify your answers.
 - (a) $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by T(x, y, z) = (x + y, x z)
 - (b) $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by $T(x, y, z) = (x + y, z^2)$
 - (c) $U: \mathbb{M}_{n \times n}(\mathbb{R}) \to \mathbb{M}_{n \times n}(\mathbb{R})$ given by $U(A) = A^T$. Here A^T indicates the transpose of the matrix A.
 - (d) $M : \mathbb{R}[x] \to \mathbb{R}[x]$ given by M(p(x)) = xp(x) for all polynomials $p(x) \in \mathbb{R}[x]$.
- 3. Determine all linear transformations $T : \mathbb{R}^1 \to \mathbb{R}^1$. (Note: \mathbb{R}^1 is the vector space consisting of all 1-tuples with real entries; it is essentially the same as \mathbb{R} , however regarded as only a vector space rather than a field.)
- 4. Consider the field \mathbb{C} of complex numbers.
 - (a) Show that \mathbb{C} is a vector space over the field \mathbb{R} .
 - (b) Determine the dimension of \mathbb{C} by finding a suitable basis.
 - (c) Show that the function $\phi : \mathbb{C} \to \mathbb{C}$ given by $\phi(z) = \overline{z}$ is a linear transformation. Here \overline{z} indicates the complex conjugate of z, i.e. if z = a + bi, then $\overline{z} = a bi$.
 - (d) Show that complex conjugation is actually a multiplicative function, i.e. if $w, z \in \mathbb{C}$, then $\phi(wz) = \phi(w)\phi(z)$.
 - (e) Show that ϕ is the only multiplicative linear transformation on \mathbb{C} to \mathbb{C} , other than the zero and identity linear transformations.
- 5. Consider the space $V = C[\mathbb{R}]$ of all continuous functions on \mathbb{R} and consider the mapping $D_{\varepsilon}: V \to V$ given by $D_{\varepsilon}(f) = f(x + \varepsilon)$, where $f_{\varepsilon}(x) = f(x + \varepsilon)$ for all x. Here ε is an arbitrary but fixed real number. Is D_{ε} a linear transformation? Justify your answer.