3.1 确界的概念和确界存在定理 练习题

1. 试证明确界的唯一性.

解答

反证. 不妨设有 a > b 都为 A 上确界,

取 $0 < \varepsilon < a - b$,则由确界定义知 $\exists a_n > a - \varepsilon > b$ 且 $a_n < a$;这与 b 也为上确界矛盾,故上确界唯一,下确界同理可证.

2. 设对每个 $x \in A$ 成立 x < a. 问: 在 $\sup A < a$ 和 $\sup A \le a$ 中哪个是对的?

解答

后者. 显然 $\sup A \leq a$ 必然成立.

设 $A = \left\{1 - (\frac{1}{2})^n \mid n \in N_+\right\}$, 显然 x < 1 对 $x \in A$ 都成立, 而无论多小的 ε , 都 $\exists n \in N_+ s.t. 1 - (\frac{1}{2})^n > 1 - \varepsilon$, 即 $\sup A = 1$.

3. 设数集 A 以 β 为上界, 又有数列 $\{x_n\} \subset A$ 和 $\lim_{n \to \infty} x_n = \beta$. 证明 $\beta = \sup A$.

解答

由收敛定义可知无论多小的 $\varepsilon > 0$ 都 $\exists N \in N_+$ s.t. $n > N, \beta - x_n < \varepsilon \Rightarrow \beta - \varepsilon < x_n$. 这就是上确界定义.

- 4. 求下列数集的上确界和下确界:
 - (1) $\{x \in Q \mid x > 0\}$;

解答

显然下确界是 0, 上确界是 +∞.

(2) $\{y \mid y = x^2, x \in (-\frac{1}{2}, 1)\};$

解答

如右图所示,下确界为0,上确界为1.

 $(3) \left\{ \left(1 + \frac{1}{n}\right)^n \mid n \in N_+ \right\};$

解答

下确界为 2, 上确界为 e.

前已证 $\left(1+\frac{1}{n}\right)^n$ 单调递增且极限为 e.

(4) $\{ne^{-n} \mid n \in N_+\};$

解答

前后两项的比值为 $\frac{1}{e} \cdot \frac{n+1}{n} < \frac{2}{e} < 1$,故数列 $\left\{ \frac{n}{e^n} \right\}$ 单调递减. 而且上一章已证 $\left\{ \frac{n^q}{p^n} \right\} \to 0 (p > 1)$,所以下确界为 0,上确界为 $\frac{1}{e}$.

(5) $\{\arctan x \mid x \in (-\infty, +\infty)\};$

解答

上下确界为 $\pm \frac{\pi}{2}$. 下证上确界.

由于 $\arctan x$ 值域在 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, 而 $\tan x$ 在此集合上单调增, 故对任意小的 ε , 欲使 $\arctan n > \frac{\pi}{2} - \varepsilon$, 只需 $\tan(\arctan n) = n > \tan\left(\frac{\pi}{2} - \varepsilon\right)$ 即可.

(6)
$$\left\{ (-1)^n + \frac{1}{n} (-1)^{n+1} \mid n \in N_+ \right\};$$

解答

上下确界为±1.

从感性可以认知到集合中的数从中间向外边 (-1 和 1) 扩, 对于任意小的 ε , 只需取 n 使 $\frac{1}{n} < \varepsilon$ 即 可.

$$(7) \left\{ 1 + n \sin \frac{n\pi}{2} \,\middle|\, n \in N_+ \right\}.$$

解答

上下确界为±∞.

无论多大的 M, 都存在 n > M 且为 4k + 1(k 为正整数) 使 $1 + n \sin \frac{n\pi}{2} = 1 + n > M$; 同理也存在 n > -M - 10 且为 4k + 3(k 为正整数) 使 $1 + n \sin \frac{n\pi}{2} = 1 - n < M$.

- 5. 证明:
 - (1) $\sup\{x_n + y_n\} \le \sup\{x_n\} + \sup\{y_n\};$

解答

因为对 $n \in N_+$ 都成立 $x_n + y_n < \sup\{x_n\} + \sup\{y_n\}$,故 $\sup\{x_n\} + \sup\{y_n\}$ 也为 $\{x_n + y_n\}$ 上界,而由上确界定义 (上确界是所有上界中最小的一个) 知命题成立.

(2) $\inf\{x_n + y_n\} \ge \inf\{x_n\} + \inf\{y_n\}.$

解答

解法与上题类似

6. 设有两个数集 A 和 B, 且对数集 A 中的任何一个数 x 和数集 B 中的任何一个数 y 成立不等式 $x \le y$. 证明: $\sup\{x_n\} \le \{y_n\}$.

解答

由题知, $\{y_n\}$ 中元素全是 $\{x_n\}$ 上界,而由定义知命题成立.

7. 设数集 A 有上界, 数集 $B = \{x + c \mid x \in A\}$, 其中 c 是一个常数. 证明:

$$\sup B = \sup A + c, \inf B = \inf A + c.$$

解答

只证上确界.

显然 $\sup B \leq \sup A + c$. 由定义知无论多小的 ε , 都存在 n 使得 $a_n > \sup A - \varepsilon$, 即 $a_n + c > \sup A + c - \varepsilon$, 故 $\sup B = \sup A + c$. 下确界证法完全类似.

8. 设 A, B 是两个有上界的数集, 又有数集 $C \subset \{x + y \mid x \in A, y \in B\}$, 则 $\sup C \leqslant \sup A + \sup B$. 举出成立严格不等号的例子.

解答

挺显然的.

因为由定义有 $x < \sup A, y < \sup B$, 即 $\sup A + \sup B$ 是 $\{x + y \mid x \in A, y \in B\}$ 一个上界,

故有 $\sup\{x+y \mid x \in A, y \in B\} \le \sup A + \sup B$, 而 $C \subset \{x+y \mid x \in A, y \in B\}$,

所以 $\sup C \leq \{x + y \mid x \in A, y \in B\} \leq \sup A + \sup B$.

例如 $A = \{1, 2\}, B = \{2, 3\}; C = \{3\}.$

9. 设 A, B 是两个有上界的数集, 又有数集 $C \supset \{x + y \mid x \in A, y \in B\}$, 则 $\sup C \geqslant \sup A + \sup B$. 举出成立严格不等号的例子.

解答

与上题完全类似.

(合并以上两题可见: 当且仅当 $C = \{x + y \mid x \in A, y \in B\}$ 时成立 $\sup C = \sup A + \sup B$.)