E-Commerce Shipping Classification Modelling

W3.Solutions()

Table of Contents

W3.Solutions()

Data Consultant

An international e-commerce company that sell electronic product call W3.Solutions() to discover key insights & studies from their customer database

BACKGROUND PROBLEM

Source: MHL News & Last Mile Convey's 2018 Last-Mile Delivery Report

59.7% of the Business E-Commerce Deliveries Are Late

6563 of 10999 Customers

87% Online shoppers identified shipping speed as a key factor for online shoppers to shop aga

In face, price is not even as important as speed since 67% online shoppers would pay more to get same day delivery 84% online shoppers are unlikely to return after a poor delivery experience.

55% online shoppers will stop shopping after receiving late delivery twice

Potential profits will lose because the customer left.

52% online shoppers expect a refund or discount on shipping cost after receiving late delivery

BACKRGOUND PROBLEM

W3.Solutions() as a data consultant will analyze insight & make predictions model about whether the delivery will be received late/on time by the customer to help solve e-commerce shipping problem

BACKGROUND PROBLEM

Current Condition

Most of the E-Commerc e Deliveries are not reached on time

Machine Learning Approach						
Insight	Action	Impact				
Finding Pattern from database feature	Predictive model	Insight & Recommendations				

02

The Insight

Insight Mode Of Shipment

Every mode of shipment is relatively delayed but shipments made by ship present higher numbers due to a higher volume of shipments

Package arrival base on mode of shipment
Every mode of shipment presents a similar on-time to delayed
shipments ratio despite the varying volumes of shipments

Insight Product Importance

Package arrival base on product importance

Products of medium and low importance present larger total delayed shipments because of higher shipment volumes

Package arrival base on product importance

Insight Warehouse Block

Insight Discount Offer

Package arrival base on Discount Offer

Dari correlation heatmap di samping dapat dilihat bahwa:

-0.8

-0.6

-0.4

-0.2

-0.0

- -0.2

-0.4

- Target kita Reached.on.Time_Y.N
 memiliki korelasi positif lemah dengan
 customer_rating, cost_of_the_product,
 customer_care_calls dan
 prior_purchases
- Ia juga memiliki korelasi positif cukup kuat dengan Discount_offered
- Ia juga memiliki korelasi negatif cukup kuat dengan weight_in_gms

Conclusion: Tidak terdapat fitur redundant karena tidak ada feature yang memiliki korelasi yang kuat diatas 0.7

03

Pre-Processing & Modelling

O3 Pre-Processing & Modelling Pre-Processing

O3 Pre-Processing & Modelling Pre-Processing

Outliers

replaced Discount and Purcase outliers with IQR Limit

Standardization

Ratio of target feature

13 Pre-Processing & Modelling Pre-Processing

Feature Transformation

Standarisasi:

- Cost_of_the_Product
- Prior_purchases
- Discount_offered
- Weight_in_gms

Encoding

Product_importance & Gender : Label Encoding
Mode of Shipment & Warehouse block : One Hot Encoding

Dataset for modelling (After Rename): .

```
df2.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10999 entries, 0 to 10998
Data columns (total 15 columns):
    Column
                            Non-Null Count Dtype
                            10999 non-null float64
    Cost
    Purchase
                            10999 non-null float64
    Importance
                            10999 non-null int64
    Gender
                            10999 non-null int64
    Discount
                            10999 non-null float64
    Weight
                            10999 non-null float64
                            10999 non-null int64
    Late
    Mode of Shipment Flight 10999 non-null uint8
    Mode of Shipment Road
                             10999 non-null uint8
    Mode of Shipment Ship
                            10999 non-null uint8
    Warehouse block A
                            10999 non-null uint8
    Warehouse block B
                            10999 non-null uint8
    Warehouse block C
                            10999 non-null uint8
    Warehouse block D
                            10999 non-null uint8
    Warehouse block F
                            10999 non-null uint8
dtypes: float64(4), int64(3), uint8(8)
memory usage: 687.6 KB
```

O3 Pre-Processing & Modelling Modelling Result

Best Modelling Result Before Feature Selection

	Decision Tree	Logistic Regression	LightGBM	KNN	Random Forest	XGBoost
Accuracy	0.65	0.63	0.68	0.65	0.66	0.69
Precision	0.74	0.68	0.79	0.72	0.74	0.89
Recall	0.62	0.71	0.63	0.68	0.65	0.55
F1-Score	0.68	0.70	0.70	0.70	0.69	0.68
ROC-AUC	0.65	0.62	0.75	0.65	0.66	0.72

Primary: ROC-AUC Secondary: F1-Score

103 Pre-Processing & Modelling Interpretation

Feature importance LightGBM.

<matplotlib.axes._subplots.AxesSubplot at 0x7f887a796910>

Top 4	l Fea	ture
-------	-------	------

Feature	Correlation
Discount_offered	0.40
Weigth_in_gms	-0.27
Cost_of_Product	-0.07
Prior_purchases	-0.06

Top 4 feature show direct relationship to the target 'Reached.on.Time_Y.N or 'Late"

O3 Pre-Processing & Modelling Modelling Result

Best Modelling Result After Feature Selection

	Decision Tree	Logistic Regression	LightGBM	KNN	Random Forest	XGBoost
Accuracy	0.68	0.64	0.69	0.66	0.69	0.69
Precision	0.87	0.69	0.89	0.80	0.94	0.89
Recall	0.54	0.72	0.55	0.58	0.51	0.54
F1-Score	0.67	0.70	0.67	0.67	0.66	0.67
ROC-AUC	0.71	0.62	0.75	0.68	0.73	0.72

Primary: ROC-AUC Secondary: F1-Score

QuantityRecommendation On-Time Rate

On time Rate Mengalami peningkatan sebanyak

102.1% dari yang sebelumnya 40.3% menjadi 81.5% berdasarkan predictive modelling

RecommendationHypothetical Loss Saved

\$196.82
Avg revenue / customer

\$1,291,729.66

Potential revenue loss

Jika customer berhenti belanja, maka kemungkinan kerugian pendapatan yang dialami perusahaan sebanyak \$1.3 Million

\$891,200.96

69%

Potential revenue loss saved

Tapi dengan menggunakan predictive modelling perusahaan dapat menghemat sampai dengan \$891 thousand

QuantificationRecommendation Customer Satisfaction

Customer Rating

Model kita memberikan peningkatan sebanyak 11% dalam customer rating

Ini dibuktikan dengan rata-rata rating sebelumnya 2.99% menjadi 3.32%

Ini dapat terjadi dengan memberikan bintang 1 untuk setiap keterlambatan kecuali untuk pelanggan yang telah memberikan bintang 5, karena bintang 5 adalah nilai maksimal yang dapat diberikan

Q4 Recommendation Business Recommendations

SHORT TERM

Customers will have higher satisfaction if they are given updates and compensation on their packages

Do an internal audit

Many entities involved in the shipping process are underperforming and it is worth investigating the reason

Add more relevant dimensions

Measurements such as package departure time, and distance will provide better insight and analysis

Develop strategies based on influential factors

Strategies based around package weight and discount may help optimize the shipping process

w3.solutions()

APPENDIX

Data Exploration

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10999 entries, 0 to 10998 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	ID	10999 non-null	int64
1	Warehouse_block	10999 non-null	object
2	Mode_of_Shipment	10999 non-null	object
3	Customer_care_calls	10999 non-null	int64
4	Customer_rating	10999 non-null	int64
5	Cost_of_the_Product	10999 non-null	int64
6	Prior_purchases	10999 non-null	int64
7	Product_importance	10999 non-null	object
8	Gender	10999 non-null	object
9	Discount_offered	10999 non-null	int64
10	Weight_in_gms	10999 non-null	int64
11	Reached.on.Time_Y.N	10999 non-null	int64
	1 / - \ 1 1 . /	. \	

dtypes: int64(8), object(4)

memory usage: 1.0+ MB

Data Understanding and Describe

Data Statistics Description

	Customer_care_calls	Customer_rating	Prior_purchases	Discount_offered	Cost_of_the_Product	Weight_in_gms	Reached.on.Time_Y.N
count	10999.000000	10999.000000	10999.000000	10999.000000	10999.000000	10999.000000	10999.000000
mean	4.054459	2.990545	3.567597	13.373216	210.196836	3634.016729	0.596691
std	1.141490	1.413603	1.522860	16.205527	48.063272	1635.377251	0.490584
min	2.000000	1.000000	2.000000	1.000000	96.000000	1001.000000	0.000000
25%	3.000000	2.000000	3.000000	4.000000	169.000000	1839.500000	0.000000
50%	4.000000	3.000000	3.000000	7.000000	214.000000	4149.000000	1.000000
75%	5.000000	4.000000	4.000000	10.000000	251.000000	5050.000000	1.000000
max	7.000000	5.000000	10.000000	65.000000	310.000000	7846.000000	1.000000

Beberapa Pengamatan

- Kolom Customer_care_calls, customer_rating, dan Cost_of_the_Product tampak sudah cukup simetrik distribusinya (mean dan median tak berbeda jauh)
- Kolom Discount_offered dan Prior_purchases tampaknya skew-ke-kanan (long-right tail)
- Kolom Reached.on.Time_Y.Nbernilai boolean/binary

,	Mode_of_Shipment	Product_importance	Gender	Warehouse_block
count	10999	10999	10999	10999
unique	3	3	2	5
top	Ship	low	F	F
freq	7462	5297	5545	3666

- Untuk kategori gender perempuan lebih dominan,
- untuk kategori product importance di dominasi oleh kategori low
- untuk kategori mode pengiriman di dominasi oleh pengiriman menggunakan kapal (ship)
- untuk warehouse_block didominasi oleh block F
- Semua unique value tiap kategori masih dalam kategori normal sekitar 2-5 unique values

Numerical Feature

Reached.on.Time Y.N

10

8000

6000

Reached.on.Time_Y.N

Pengamatan

- shipment dengan ship cenderung akan mengalami telat pengiriman
- untuk produk_importance dengan kategori low dan medium cenderung akan mengalami telat pengiriman
- untuk warehouse_block dengan kategori F cenderung mengalami telat pengirimanPengamatan
- shipment dengan ship cenderung akan mengalami telat pengiriman
- untuk produk_importance dengan kategori low dan medium cenderung akan mengalami telat pengiriman
- untuk warehouse_block dengan kategori F cenderung mengalami telat pengiriman

Log Transformation


```
sns.kdeplot(np.log(df2['Prior_purchases']));
/usr/local/lib/python3.7/dist-packages/pandas/core/arra
  result = getattr(ufunc, method)(*inputs, **kwargs)
   1.6
   1.4
  1.2
  1.0
Density
80
   0.6
   0.4
   0.2
   0.0
           -1.0
                   -0.5
                          0.0
                                  0.5
                                          1.0
                                                 1.5
                         Prior_purchases
```


Log Transformation

Log Transformation


```
sns.kdeplot(np.log(df2['Weight_in_gms']));
/usr/local/lib/python3.7/dist-packages/pandas/core/arra
 result = getattr(ufunc, method)(*inputs, **kwargs)
```


Log Transformation


```
sns.kdeplot(np.log(df2['Cost_of_the_Product']));
/usr/local/lib/python3.7/dist-packages/pandas/core/arra
  result = getattr(ufunc, method)(*inputs, **kwargs)
  0.7
  0.6
  0.5
Density
0.4
  0.2
  0.1
  0.0
                                            0
                       Cost_of_the_Product
```


Log Transformation


```
sns.kdeplot(np.log(df2['Customer_care_calls']));
/usr/local/lib/python3.7/dist-packages/pandas/core/array
  result = getattr(ufunc, method)(*inputs, **kwargs)
   3.0
   2.5
Density
15
   1.0
   0.5
   0.0
             -0.2
                   0.0
                         0.2
        -0.4
                              0.4
                                    0.6
                                          0.8
                                               1.0
                       Customer_care_calls
```

EDA Conclusion

- Data terlihat valid dan tidak ada kecacatan yang major/signifikan
- Ada beberapa distribusi yang sedikit skewed, hal ini harus diingat apabila kita ingin melakukan sesuatu atau menggunakan model yang memerlukan asumsi distribusi normal
- Beberapa feature memiliki korelasi yang jelas dengan target, mereka akan dipakai
- Beberapa feature terlihat sama sekali tidak berkorelasi, mereka sebaiknya diabaikan
- Dari fitur kategorikal, "mode_of_shipment"," warehouse_block", dan "product_importance" sepertinya berguna untuk menjadi prediktor model

Pre-Processing & ModellingInterpretation

Feature importance LightGBM after feature selection

10p 4 reature	
Feature	Correlation
Discount_offered	0.40
Weigth_in_gms	-0.27
Cost_of_Product	-0.07
Prior_purchases	-0.06

Top 4 Fosturo

Top 4 feature show direct relationship to the target 'Reached.on.Time_Y.N'

Actual Value

Predicted value

	Positive	Negative
Positive	812 (TP)	68 (FP)
Negative	615 (FN)	690 (TN)

Feature Importance Random Forest

Text(0.5, 1.0, 'feature importance score')

Feature Importance XGBoost

Feature Importance Decision Tree

Text(0.5, 1.0, 'feature importance score')

Feature Importance Logistic Regression

Text(0.5, 1.0, 'feature importance score')

Modelling without feature selection and without hyperparameter

	Decision Tree	Logistic Regression	Lightgbm	KNN	Random Forest	XGBoost
Accuracy	0.65	0.63	0.68	0.65	0.66	0.69
Precision	0.70	0.68	0.79	0.72	0.74	0.89
Recall	0.71	0.71	0.63	0.68	0.65	0.55
F1-Score	0.71	0.70	0.70	0.70	0.69	0.68
ROC-AU C	0.64	0.62	0.75	0.65	0.66	0.72

Primary : ROC-AUC Secondary : F1-Score

Modelling without feature selection and with hyperparameter

	Decision Tree	Logistic Regression	Lightgbm	KNN	Random Forest	XGBoost
Accuracy	0.65	0.59	0.69	0.65	0.62	0.65
Precision	0.74	0.59	0.9	0.72	0.63	0.70
Recall	0.62	1.00	0.53	0.68	0.85	0.72
F1-Score	0.68	0.74	0.67	0.70	0.73	0.71
ROC-AU C	0.65	0.50	0.75	0.65	0.57	0.63

Primary: ROC-AUC Secondary: F1-Score

Modelling with feature selection and without hyperparameter

	Decision Tree	Logistic Regression	Lightgbm	KNN	Random Forest	XGBoost
Accuracy	0.65	0.64	0.67	0.65	0.67	0.69
Precision	0.70	0.69	0.78	0.72	0.74	0.89
Recall	0.71	0.72	0.62	0.68	0.68	0.54
F1-Score	0.71	0.70	0.69	0.70	0.71	0.67
ROC-AU C	0.63	0.62	0.74	0.65	0.67	0.72

Primary : ROC-AUC Secondary : F1-Score

Modelling with feature selection and with hyperparameter

	Decision Tree	Logistic Regression	Lightgbm	KNN	Random Forest	XGBoost
Accuracy	0.68	0.59	0.69	0.65	0.69	0.66
Precision	0.87	0.59	0.89	0.72	0.94	0.75
Recall	0.54	1.00	0.55	0.68	0.51	0.64
F1-Score	0.67	0.74	0.67	0.70	0.66	0.69
ROC-AU C	0.71	0.50	0.75	0.65	0.73	0.67

Primary : ROC-AUC Secondary : F1-Score