Theorem (3.2.18). Let f be the function defined by $f(k, n) = 1^k + 2^k + \cdots + n^k$, where k and n are positive integers. f(k, n) is $\mathcal{O}(n^{k+1})$.

Proof. If f(k, n) is $\mathcal{O}(n^{k+1})$, then there exist constant witnesses C and j such that $|1^k + 2^k + \cdots + n^k| \le C|n^{k+1}|$, for all n > j. If j = 1, then

$$f(k,n) = (1^k + 2^k + \dots + n^k) \le (n^k + n^k + \dots + n^k) = n(n^k) = n^{k+1}$$

Thus, $(1^k + 2^k + \cdots + n^k) \leq n^{k+1}$, for all n > 1. So $|f(k,n)| \leq |n^{k+1}|$, for all n > 1. It follows that f(k,n) is $\mathcal{O}(n^{k+1})$ with constant witnesses C = 1 and j = 1.