МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЁЖИ И СПОРТА УКРАИНЫ ГВУЗ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Ошовская Е.В., Бедарев С.А., Яковлев Д.А.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим работам

по дисциплине «Основы автоматизированного проектирования технологического оборудования»

для студентов, обучающихся по учебным планам с вариативной частью подготовки «Металлургическое оборудование»

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3							
Работа №1. Создание модели зубчатой шестерни раздаточного редуктора								
рабочего рольганга	4							
Работа № 2. Создание моделей деталей раздаточного редуктора с исполь-	0							
зованием вариационной параметризации	8							
Работа № 3. Создание модели сборки узла приводной шестерни раздаточ-								
ного редуктора рабочего рольганга								
Работа № 4. Создание спецификации, связанной с моделью сборочного	4							
изделия, в полуавтоматическом режиме	16							

ВВЕДЕНИЕ

Создание технологического оборудования — многостадийный процесс, включающий этапы выбора лучшего конструктивного решения, выполнения рабочего проекта и разработки конструкторской документации.

Для повышения качества и эффективности деятельности конструкторов и проектировщиков на этих этапах целесообразно использовать системы автоматизированного проектирования, которые позволяют выполнить компьютерное моделирование создаваемого оборудования, рассмотреть различные варианты его исполнения, исключить ошибки при оформлении документации и т.д.

Методические указания содержат 4 работы, целью которых является получение студентами практических навыков создания моделей элементов металлургического оборудования с использованием возможностей системы автоматизированного проектирования КОМПАС, а именно: вариационной параметризации трехмерных объектов, комбинированного способа сборки и полуавтоматического режима создания спецификаций, которые отражают современные приемы проектирования. Полученные навыки могут быть применены в дальнейшей профессиональной деятельности при разработке технологического оборудования.

Работа № 1 Создание модели зубчатой шестерни раздаточного редуктора рабочего рольганга

Задание. В приводе рабочего рольганга установлен раздаточный редуктор, на приводном валу которого установлена цилиндрическая зубчатая шестерня (рис.1). Необходимо создать трехмерную модель шестерни с использованием технологии вычерчивания профиля зуба.

Рис.1

Исходные данные для построения модели:

- 3. Модуль зацепления m = 10 мм.
- 4. Число зубьев z = 20.

Ход работы

- 1. Нажмите на кнопку **Новая деталь** на Панели управления для создания нового файла модели детали.
- 2. В Дереве построения переименуйте элемент Деталь в Шестерня.
- 3. Сохраните файл детали в своей папке с именем Шестерня. т3d.
- 4. В Дереве построения выберите *плоскость ZX*.
- 5. Нажмите на кнопку **Новый эскиз** и изобразите эскиз для формирования заготовки под шестерню в виде *окружности* с центром в начале координат и диаметром равным диаметру вершин зубьев, который определяется для прямозубых колес по формуле:

$$d_a=m(z+2)$$
.

Для этого в поле параметра **Диаметр** введите выражение: 10*(20+2) и нажмите **Enter**.

- 6. Нажмите на кнопку Закончить эскиз
- 7. С помощью команды **Операция выдавливания** выдавите полученный контур на расстояние **60 мм** при включенной опции **Средняя плоскость**.

8. Вызовите команду **Фаска** и постройте на обоих ребрах цилиндра фаску размером **4х45**°. Результат показан на рис.2.

Рис.2

- 9. В Дереве построения выберите *плоскость ZX*.
- 10. Нажмите на кнопку **Новый эскиз** (в этом эскизе будет построен контур впадины между зубьями).
- 11. Постройте четыре окружности (стиль линии **вспомогательный**) с центром в начале координат и следующими диаметрами:
 - окружность выступов $d_a = m^*(z+2);$

делительная окружность

основная окружность

d = m*z; $d_b = d*cos20^\circ;$

окружность впадин

 $d_f = m*(z-2.5).$

<u>Примечание.</u> При этом, аналогично п.5, при задании диаметра окружностей каждый раз в поле **Диаметр** вводите необходимое выражение. Для написания выражения $\cos 20^{\circ}$ используйте $\cos (20)$.

- 12. Через начало координат проведите вертикальную вспомогательную линию.
- 13. Увеличьте изображение (в несколько раз) и расположите в центре экрана верхнюю часть построенного изображения.
- 14. Отметьте точкой (команда

Точка) точку пересечения делительной окружности и вертикальной линии (точка 1, см. рис.3).

Рис.3

15. Вызовите команду **Дуга** и постройте дугу с центром в отмеченной точке пересечения и радиусом равным толщине зуба

 $s=0.5\pi m$,

т.е. в поле **Радиус** необходимо ввести выражение **0,5*3,1415926*10** и нажать **Enter**.

Первую и вторую точки дуги задайте произвольно так, чтобы она пересекла <u>делительную окружность</u> d. Отметьте эту точку пересечения (точка 2, см. рис.3).

- 16. Из отмеченной точки постройте дугу радиусом $\mathbf{R} = \mathbf{d/6}$ так, чтобы она пересекла основную окружность. Точку пересечения отметьте (точка 3, см. рис.3).
- 17. Из этой точки проведите дугу (стиль линии $\underline{\text{основная}}$) радиусом \mathbf{R} , которая должна пересечь окружность выступов и основную окружность. Отметьте точку пересечения дуги с основной окружностью (точка 4).
- 18. С помощью команды **Усечь кривую** удалите участки дуги, выходящие за пределы окружности выступов и основной окружности.
- 19. Проведите вспомогательную прямую через точку 4 и начало координат. По этой прямой изобразите отрезок (стиль линии основная) от основной окружности до окружности впадин (это будет линия ножки зуба). Изображение должно быть таким же, как на рис. 3.
- 20. Постройте дугу (стиль линии **вспомогательная**) с центром в точке 1 и радиусом равным **0,75*π*m** (в поле **Радиус** самостоятельно введите необходимое выражение) так, чтобы она пересекла делительную окружность. Отметьте эту точку пересечения (точка 5, см. рис. 4).
- 20. Проведите вспомогательную прямую через точку 5 и начало координат (см.

рис. 4).

рование

21. Выделите дугу и отрезок, изображенные основной линией (используйте команду Выделить по стилю кривой со страницы Инструменталь-

ной панели Выделение

22. Вызовите команду Симметрия (страница Инструментальной панели *Редакти*-

). В качестве ли-

 $\begin{array}{c|c}
 & d \\
\hline
 & d \\
\hline
 & d \\
\hline
 & d_t
\end{array}$

Рис..4

Рис.5

нии симметрии укажите последнюю проведенную вспомогательную прямую (через точку 5). Результат операции приведен на рис. 5.

- 23. Проведите дуги с помощью команды Дуга по 3 точкам (стиль линии основная) через точки A, B и C, а затем D, E и F.
- 24. Удалите вспомогательные кривые и точки. В результате в эскизе останется контур впадины между зубьями шестерни.
- 25. Вызовите команду Скругление и выполните сопряжение

линий профиля ножки с окружностью впадин радиусом равным **0.2*m** (рис. 6).

- 27. Нажмите на кнопку Показать все
- 28. С помощью команды **Вырезать выдавливанием** выполните вырезание выдавливанием полученного контура на расстояние **60 мм** при включенной опции **Средняя плоскость**.

Рис.6

29. Перейдите на страницу Инструментальной панели

Вспомогательные построения и вызовите команду **Ось конической поверхности** . Щелкните курсором «мыши» на цилиндрической поверхности детали для создания оси шестерни.

30. Перейдите на страницу Построение детали , вызовите команду Массив

по концентрической сетке . В Дереве построения выделите строки Вырезать элемент выдавливания: 1 и Ось конической поверхности: 1, а в окне диалога в разделе Кольцевое направление в поле Количество введите 20, нажмите кнопку Создать — на модели будут выполнены зубья.

- 31. В Дереве построения выберите плоскость ZX.
- 32. Нажмите на кнопку **Новый эскиз** и изобразите эскиз для формирования ступицы шестерни окружность с центром в начале координат и диаметром, вычисляемым по формуле

 \mathbf{d}_{ct} =1,5 \mathbf{d}_{B} + 10, где \mathbf{d}_{B} – диаметр вала.

Приняв $\mathbf{d}_{\scriptscriptstyle B} = 60$ мм, самостоятельно введите необходимое выражение в поле Диаметр.

- 33. Закончите эскиз.
- 34. С помощью команды Приклеить выдавливани-

ем выдавите полученный эскиз на расстояние равное $1,5*d_{\rm B}$ (это длина ступицы) при включенной опции **Средняя плоскость.** Результат операции приведен на рис. 7.

- 35. В Дереве построения выберите плоскость ZX.
- 36. Нажмите на кнопку **Новый эскиз** и изобразите эскиз в соответствии со схемой (рис.8).

Рис.7

- 37. Закончите эскиз.
- 38. С помощью команды **Вырезать выдавливанием** выполните вырезание эскиза на такое же расстояние и при той же включенной опции, как и в п.34.
- 39. Выполните скругления и фаски в соответствии с рис. 9.
- 40. Сохраните созданную модель шестерни.

Рис. 9

Работа № 2 Создание моделей деталей раздаточного редуктора с использованием вариационной параметризации

Задание 1. Необходимо создать трехмерную модель приводного вала цилиндрической зубчатой шестерни с использованием вариационной параметризации (рис. 1).

Исходные данные: 1) диаметр участка вала для установки шестерни - 60 мм; 2) длина участка вала для установки шестерни – 98 мм.

Рис. 1

Ход работы

- на Панели управления для создания 1. Нажмите на кнопку Новая деталь нового файла модели детали.
- 2. В Дереве построения переименуйте элемент Деталь в Вал приводной.
- 3. Сохраните файл детали в своей папке с именем *Вал приводной.m3d*.
- 4. В Дереве построения выберите *плоскость ZY*.
- 5. Нажмите на кнопку Новый эскиз для изображения эскиза.

6. Вызовите команду Непрерывный ввод и произвольно изобразите разомкнутый контур согласно рис.2.

7. На странице панели инструментов Технологические обозначения вызовите команду Осевая и изобразите линия ось (не стараясь выдер-

жать горизонтальность). 8. Перейдите на страницу

113 Рис. 2

инструментальной панели *Параметризация*

10.Вызовите команду Вертикаль и установите это отношение для отрезков *11*, *13*, *16*, *18*, *110* и *112* (см. рис.2).

- 3. Вызовите команду **Точка** на кривой и примените ее к точкам 1 и 2 и осевому отрезку *l13*. При этом вначале указывайте отрезок, а затем точку.
- - Рис. 3

4. Вызовите команду **ровнять точки по зонтали** и примените

ее к любым точкам отрезков *l5* и *l11*. Результат наложения перечисленных отношений и связей приведен на рис. 3.

- 5. Вызовите команду **Зафиксировать точку** и зафиксируйте точку **2** (см. рис. 3).
- 6. Перейдите на страницу *Размеры* Инструментальной панели.
- 7. Расставьте линейные размеры для длин и радиусов участков вала (см. рис. 4). При этом в окне диалога задавайте имя переменной, которая будет связана с размером (рис.5).

Рис. 4

8. Вызовите команду **Переменные** в поле *Выражение* введите следующие выражения для связи переменных (рис.6):

r1=r-2.5 (диаметр ступени мень-

Рис. 5

ше на 5 мм, чем базовый диаметр под шестерней)

r2=r+5 (диаметр буртика больше базового диаметра на 10 мм)

r3=ceil(r+1)/2 (диаметр конечного участка вала)

r4=r1-l3/20 (меньший диаметр конусного участка при конусности 1:10).

Закройте окно Переменные.

Переменные				ūΧ
T × f≈ π	↑ ↓ ◎	F% 🖪 🎹 🙀	?	
Имя	Выражение	Значение	Параметр	Комментарий 📥
🛨 Начало ко	ординат			
. □ Эскиз:1				
v8		0.0	Исключит	
r4	r1-l3/20	33.1841		
r1	r-2.5	34.4449		
r2	r+5	41.9449		
r	36.9449	36.9449		
l3	25.2161	25.2161		
l2		28.0		
l1		11.9613		
I		23.0		
r3	ceil(r+1)/2	19.0		V
1				

Рис. 6

9. Перейдите на страницу инструментальной панели *Параметризация*

- 10. Вызовите команду **Установить значение размера** и укажите на размер, обозначенный переменной r (это и есть участок для расположения шестерни). В появившемся окне задайте значение переменной равное **30** мм. Удостоверьтесь, что радиальные размеры автоматически изменились по введенным уравнениям.
- 11. Снова вызовите команду **Установить значение размера** и укажите на размер, обозначенный переменной l. В появившемся окне задайте значение переменной равное **98** мм.
- 12. Не прерывая команду **Установить значение размера**, последовательно указывайте размеры, соответствующие длинам участков и присваивайте им следующие значения: *l1*=40; *l2*=100; *l3*=84; *l4*=36; *L*=365. После каждого ввода значения переменной контур эскиза будет перестраиваться. Результат построения приведен на рис. 7.
- 13. Добавьте изображение фасок и канавки на эскизе, по размерам которые при-

ведены на рис. 8.

- 14. Закончите эскиз и с помощью команды **Операция вращения** создайте модель вала (на Панели свойств указать опции *Сфероид* и *Тонкая стенка Hem*).
- 15. Переключитесь на страницу *Вспомогательные построения* Инструментальной панели.
- 16. Вызовите команду Касательная плоскость
- 17. В Дереве построения детали укажите *плоскость ZX*. Затем на модели укажите *цилиндрическую грань*, соответствующую участку вала с радиусом 30 мм, и в Дереве построения укажите *плоскость ZY*. Нажмите на кнопку *Создать* на Панели свойств.
- 18. В Дереве построения выберите *созданную касательную плоскость*. Нажмите на кнопку **Новый эскиз**
- 19. Постройте эскиз шпоночного паза согласно схеме, приведенной на рис.9.

Рис. 9

R9

7

R

21. Сохраните созданную модель вала в файле.

Задание 2. Создать трехмерные модели дистанционной втулки и сквозной торцевой крышки, используя освоенный в предыдущей работе параметрический подход. Ниже приведена схемы, отражающие форму деталей, и таблицы с геометрическими параметрами. В Свойствах деталей задать их наименования и окраску моделей. Детали сохранить в отдельных файлах.

Таблица 1 – Геометрические размеры втулки (рис. 10)

Размер, мм							
D1	D2	В					
55	75	20					

Цвет детали – красный. Модель сохранить в файле *Втулка.т3d*.

Рис. 10

Таблица 2 – Геометрические размеры сквозной торцевой крышки (рис.11)

			Pa	змер	, MM				
D0	D1	D2	D3	D4	В	B1	B2	b	b1
56	120	140	80	90	20	15	8	14	6

Цвет детали – синий.

Модель сохранить в файле *Крышка.m3d*.

Рис. 11

Работа № 3

Создание модели сборки узла приводной шестерни раздаточного редуктора рабочего рольганга

<u>Задание.</u> Используя созданные в предыдущих работах модели деталей, выполнить модель сборочной единицы — узла приводной шестерни. Создание шпонки выполнить непосредственно в сборке. Подшипники вставить из библиотеки стандартных элементов.

Ход работы

- 1. Откройте файл новой сборки с помощью команды Новая сборка
- 2. Сохраните файл с именем Узел_шестерни.а3d в своей папке.
- 3. На странице Инструментальной панели *Построение сборки* вызовите команду Добавить компонент из файла и вставьте модель вала шестерни. При этом в окне диалога укажите в Вашей папке файл *Вал приводной.m3d* и нажмите на кнопку **Открыть**. Укажите в качестве точки вставки детали <u>начало координат</u> (точка с координатами 0,0,0).
- 4. Укажите курсором плоскую грань шпоночного паза (рис.1).

Рис. 1

5. На странице Инструментальной панели *Построение сборки* вызовите команду Создать деталь – Деталь

- 6. В появившемся окне диалога задайте имя файла для хранения модели создаваемой детали *Шпонка.m3d*. Нажмите на кнопку **Сохранить**. Система перейдет в режим редактирования детали на месте (в сборке), режим создания эскиза на выделенной грани (рис. 2).
- 7. На странице Инструментальной панели

Геометрия 🖺

вызовите команду

Рис. 2

Спроецировать объект . Укажите плоскую грань шпоночного паза (должен появится замкнутый контур шпоночного паза) (рис.3).

- 8. Закончите эскиз и с помощью команды Операция выдавите эскиз на расстояние 11 мм в давливания прямом направлении.
- 9. В Дереве построения переименуйте элемент Деталь в Шпонка.
- 10. Установите цвет шпонки жёлтый.
- 11. Сохраните файл шпонки.

Рис. 5

файла 별 15. В окне диалога укажите в Вашей папке файл *Шестерня.m3d* и нажмите на кнопку Открыть. Точку вставки детали укажите произвольно.

16. Перейдите на страницу Инструментальной панели Сопряжения У и вызовите команду Соосность ". Укажите цилиндрическую поверхность участка вала, на котором должна размещаться шестерня, и поверхность посадочного отверстия шестерни.

- 17. Вызовите команду Совпадение объектов

 Укажите боковую плоскую грань шпонки и плоскую грань шпоночного паза шестерни.
- 18. Вызовите команду На расстоянии 🌌. Укажите плоскую грань буртика вала и плоскую торцевую грань ступицы шестерни. В строке параметров в поле Расстояние задайте расстояние равное 0. Нажмите на кнопку Создать. Результат установки шестерни показан на рис. б.
- 19. Перейдите на страницу Инструментальной панели Построение сборки

вызовите команду Добавить компонент из файла .

- 20. В окне диалога укажите в Вашей папке файл *Втулка.т3d* и нажмите на кнопку **Открыть**. Точку вставки детали укажите произвольно.
- 21. Перейдите на страницу Инструментальной панели *Сопряжения* и вызовите команду Соосность . Укажите цилиндрическую поверхность участка вала,

на котором должна размещаться втулка, и цилиндрическую поверхность втулки.

- 22. Вызовите команду **На расстоянии Т**. Укажите торцевую плоскую грань шестерни и плоскую торцевую грань втулки. В строке параметров в поле **Расстояние** задайте расстояние равное **0**. Нажмите на кнопку **Создать**.
- 23. В строке меню выберите пункт *Библиотеки* и вызовите команду Стандартные изделия Вставить элемент.
- 24. В окне диалога в разделе *Подшипники качения* выберите *Подшипник ГОСТ* 8882-75 тип 160000. В списке укажите подшипник с внутренним диаметром 55 мм и шириной 29 мм. Нажмите на кнопку **Применить**.
- 25. Разместите подшипник в произвольной точке. Нажмите кнопку **Создать**.
- 26. Закройте окно библиотеки.
- 27. Аналогично пунктам 22 23 установите на валу подшипник.
- 28. Добавьте в сборку еще один такой же подшипник и самостоятельно установите его на валу до упора в буртик (рис.7).

Рис. 7

- 29. Самостоятельно установите на вал торцевую крышку (файл *Крышка.m3d*), а из Библиотеки стандартных изделий *манжету* 1.1-55x80-1/4 Γ OCT 8752-79.
- 30. В дереве построения переименуйте сборку в Узел вала шестерни.
- 31. Сохраните сборку в файле с именем Вал_приводной в сборе.а3d.

Работа № 4

Создание спецификации, связанной с моделью сборочного изделия, в полуавтоматическом режиме

<u>Задание.</u> Составить спецификация на изделие Вал приводной в сборе, связанную с трехмерной моделью сборки, используя полуавтоматический режим заполнения.

Ход работы

- 1. Откройте файл детали *Вал приводной.m3d*.
- 2. В Дереве построения на имени детали щелчком правой кнопки «мыши» вызовите контекстное меню и выберите команду *Свойства*.
- 3. На Панели свойств задайте обозначение изделия АБВГ.00.001. Нажмите *Enter*. Нажмите кнопку **Создать**.
- 4. Сохраните файл.
- 5. Активизируйте Панель инструментов Спецификация

6. Вызовите команду Спецификация – Добавить объект спецификации

- 7. В окне диалога выберите раздел Детали. Нажмите на кнопку Создать.
- 8. Подключите файл детали к строке спецификации (на закладке **Документы** на **Панели свойств**, нажмите на кнопку **Добавить документ** (рис.1).

Рис.1

- 9. В окне диалога выберите файл детали Вал приводной. т3d.
- 10. Подтвердите чтение данных из файла.
- 11. На экране появится сформированная строка спецификации (рис. 2). Нажмите на кнопку **ОК**. Сохраните файл детали. Закройте файл.

Рис.2

- 12. Повторите действия пунктов **1-11** для всех деталей, входящих в сборку: *Шестерня, Втулка, Крышка*. При этом обозначения деталей установите следующие: АБВГ.00.002, АБВГ.00.003, АБВГ.00.004.
- 13. Откройте файл детали *Шпонка.m3d*.
- 14. В Дереве построения на имени детали щелчком правой кнопки «мыши» вызовите контекстное меню и выберите команду *Свойства*.
- 15. На Панели свойств в поле наименование задайте *Шпонка 18х11х90 ГОСТ 23360-78* (т.к. шпонка это стандартное изделие, но ее модель была создана на месте в сборке, а не вставлена из библиотеки). Нажмите *Enter*. Нажмите кнопку **Создать**.
- 16. Сохраните файл.
- 17. Активизируйте Панель инструментов Спецификация

18. Вызовите команду Спецификация – Добавить объект спецификации

- 19. В окне диалога выберите раздел **Стандартные изделия** и подключите опцию *Текстовая часть в виде строки*. Нажмите на кнопку **Создать**.
- 20. На экране появится сформированная строка спецификации. Нажмите на кнопку **ОК**. Сохраните файл детали. Закройте файл.
- 21. Откройте файл сборки Вал_приводной в сборе.а3d.
- 22. В Дереве построения сборки выделите стандартный элемент *Подшипник* и перейдите в режим его редактирования.
- 23. Проверьте на Панели свойств, что опция *Создавать объект спецификации* включена (рис.3). Нажмите кнопку **Создать**.

- 24. В Дереве построения на имени сборки щелчком правой кнопки «мыши» вызовите контекстное меню и выберите команду Свойства.
- 25. На Панели свойств задайте обозначение изделия АБВГ.00.000. Нажмите *Enter*. Нажмите кнопку Создать.
- 26. Сохраните файл.
- 27. Нажмите на кнопку Создать и выберите пункт Спецификация.
- 28. Сохраните файл с именем Спец узел вала шестерни.
- 29. Вызовите команду Управление сборкой

30. В появившемся окне нажмите на кнопку Добавить документ (рис.4) и в окне диалога выберите файл сборки.

Рис.4

31. Подключите опции Заполнить основную надпись и Передавать изменения в документ (рис.5). Нажмите кнопку Выход.

Рис. 5

32. В спецификации появятся заполненные разделы **Детали** и **Стандартные из- делия** (рис. 6).

Рис.6

- 33. В спецификации вызовите команду Добавить раздел
- 34. Выберите в окне диалога раздел Документация. Нажмите кнопку Создать. В спецификации появится раздел Документация.
- 35. На Панели свойств перейдите на закладку Документы.
- 36. Разверните список и нажмите на кнопку Добавить документ.
- 37. В окне диалога выберите файл сборки. Нажмите кнопку Открыть.
- 38. Нажмите на кнопку Да при ответе на вопрос системы.
- 39. Включите опцию *Передавать изменения в документ*. Нажмите на кнопку **Создать**. В спецификации появится заполненный раздел **Документация** (рис.6).
- 40. Вызовите строку раздела на редактирование двойным щелчком «мыши» в графе **Обозначения**.

Рис.6.

41. Нажмите правую кнопку «мыши» и выберите команду **Вставить код и на-именование** ... (рис.7).

Рис.7 Рис.8

- 42. В окне диалога в разделе **Чертежи** выберите *Сборочный чертеж*, нажмите на кнопку **ОК**. На Панели свойств нажмите на кнопку **Создать**.
- 43. На панели инструментов Спецификация нажмите на кнопку Расставить позиции . При этом стандартные изделия будут начинаться с позиции 7.

- 44. Установите курсор на любую строку раздела **Детали** и на панели Текущее состояние выставите *количество резервных строк* равным **0** (рис.8).
- 46. Нажмите на кнопку **Разметка страницы** , чтобы посмотреть на документ спецификации (рис.9). Самостоятельно заполните необходимые графы основной надписи.
- 47. Сохраните файл спецификации.

	Фармат	Зана	Паз	į	Обозни	7 <i>42H</i> .	IP.	Наименовани	IP.	Кол	Приме чание
Херв примен								<u>Документац</u>	<u>ИЯ</u>		
/Jep				A B57.00	7.000 i	CF		Сборочный черте	X	3 3	
	3 -		*					<u>Детали</u>			
npati Nº	9		1	A 581.00	7.001			Вал приводной		1	
S			2	A5BF.OC				Шестерня		1	
	8		3	ABBT.OC				Вту лк а		1	
	8		4	A5BF.OC				Крышка		1	
	<u>-</u>			<u></u>				Стандартные из	а <u>делия</u>	200 2	
2	-		5					Манхета 1.1-55 х80-1 / 4 ГО			
J dan			6					Подшипник 160311 ГОСТ	3	2	
Подп и дата	>		7					Шпонка 18х11х90 ГОСТ	23360-78	1	
जेरकेर											
VIND Nº QUÓN	-							9		G :	
35.00	1										
CIND											
Вэан инд №								<u> </u>		20 1	
THO .				<i>0.</i>						8,	
Подп. и дата											
Nodi	Unu	/lu	COT	№ дакум.	Подп.	Лата		АВБГ.00.0	000		
поди		pad		N DUKUM.	1 JUUI I.	дини	11 0		Num.	Лист	Листо 1
THE NO	73 35	ант	D.				43en b	ала шестерни			

Рис. 9