Lösningsförslag till Matematik II-Linjär algebra den 25/11 2020

- 1. (a) Låt $\mathbb{Q}[\sqrt{2}]$ beteckna mängden av alla tal av typen $a+b\sqrt{2}$, där a och b är rationella tal. Visa att, med de naturliga definitionerna av addition och skalär multiplikation, $\mathbb{Q}[\sqrt{2}]$ är ett vektorrum över \mathbb{Q} . Bestäm dimension av $\mathbb{Q}[\sqrt{2}]$. Ange en bas.
 - (b) Är $W = \{A \in \mathbb{M}_{n \times n} : \operatorname{tr}(A) = 0\}$ ett delrumm till $\mathbb{M}_{n \times n}$?

Lösningsförslag. (a) Med definition direkt: Först visar vi att $\mathbb{Q}[\sqrt{2}]$ är sluten under addition och multiplikation. Detta följer av att, för $\forall a, b, c, d \in \mathbb{Q}$,

$$(a+b\sqrt{2})+(c+d\sqrt{2})=\underbrace{(a+c)}_{\in\mathbb{O}}+\underbrace{(c+d)}_{\in\mathbb{O}}\sqrt{2}\in\mathbb{Q}[\sqrt{2}]$$

och

$$(a+b\sqrt{2})\cdot(c+d\sqrt{2}) = (\underbrace{ac+2bd}_{\in\mathbb{Q}}) + (\underbrace{ad+bc}_{\in\mathbb{Q}})\sqrt{2} \in \mathbb{Q}[\sqrt{2}].$$

Addition är kommutativ och associativ på $\mathbb{Q}[\sqrt{2}]$ eftersom den är \mathbb{R} .

Existens av identitet 0 för addition följs av $0 = 0 + 0\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$.

Inversen av $a + b\sqrt{2}$ är $-(a + b\sqrt{2})$ eftersom $-(a + b\sqrt{2}) = -a + (-b)\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$.

För varje $a + b\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$ har vi $1 \cdot (a + b\sqrt{2}) = a + b\sqrt{2}$.

För varje $\alpha, \beta \in \mathbb{Q}$ och $a + b\sqrt{2}, c + d\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$ gäller att

$$\alpha \cdot ((a+b\sqrt{2})+(c+d\sqrt{2})) = \alpha(a+b\sqrt{2}) + \alpha(a+b\sqrt{2})$$

 och

$$(\alpha + \beta) \cdot (a + b\sqrt{2}) = \alpha \cdot (a + b\sqrt{2}) + \beta \cdot (a + b\sqrt{2})$$

då multiplikation är kommutativ och associativ på $\mathbb{Q}[\sqrt{2}]$ eftersom den är kommutativ och associativ på är \mathbb{R} .

Vi har bevisat att $\mathbb{Q}[\sqrt{2}]$ är ett vektorrum över \mathbb{Q} .

Det är lätt att inse att $1, \sqrt{2}$ är linjärt oberoende eftersom för $\alpha, \beta \in \mathbb{Q}$

$$\alpha \cdot 1 + \beta \cdot \sqrt{2} = 0$$

medför att $\alpha = \beta = 0$ och alla vektorer i $\mathbb{Q}[\sqrt{2}]$ kan skrivas på formen $a + b\sqrt{2}$ med a, b rationella så $\{1, \sqrt{2}\}$ utgör en bas för $\mathbb{Q}[\sqrt{2}]$ och dimension av $\mathbb{Q}[\sqrt{2}]$ är 2.

Ett annat alternativ är att betrakta $\mathbb{Q}[\sqrt{2}]$ som en delmängd av vektorrummet \mathbb{R} . Vi har bevisat att att $\mathbb{Q}[\sqrt{2}]$ är sluten under addition och multiplikation. Då är $\mathbb{Q}[\sqrt{2}]$ ett delrum till \mathbb{R} . Således är $\mathbb{Q}[\sqrt{2}]$ ett vektorrum.

- (b) Ja eftersom för godtyckliga vektorer $A, B \in W$ gäller tr(A) = 0 och tr(B) = 0,
- $\Rightarrow \operatorname{tr}(\alpha A + \beta B) = \operatorname{tr}(\alpha A) + \operatorname{tr}(\beta B) = \alpha \operatorname{tr}(A) + \beta \operatorname{tr}(B) = 0, \ \forall \alpha, \beta \in \mathbb{R} \Rightarrow \alpha A + \beta B \in W.$
- 2. Betrakta $V = \mathbb{C}$ som vektorrummet över \mathbb{R} . Definera $T: V \to V$ genom $T(z) = \bar{z}$, där \bar{z} är z:s komplexa konjugate. Visa att T är linjär. Bestäm dim(V). Betrakta vidare $V = \mathbb{C}$ vara vektorrummet över \mathbb{C} . Bestäm dim(V). Är avblidningen T_1 på V genom $T_1(z) = \bar{z}$ linjär?

Lösningsförslag. För godtyckliga reella tal α_1, α_2 och godtyckliga $z_1, z_2 \in V$ har vi enligt räknereglerna för komplexa tal och definition dför T

$$T(\alpha_1 z_1 + \alpha_2 z_2) = \overline{\alpha_1 z_1 + \alpha_2 z_2} = \overline{\alpha_1} \overline{z_1} + \overline{\alpha_2} \overline{z_2} = \alpha_1 \overline{z_1} + \alpha_2 \overline{z_2} = T(z_1) + T(z_2)$$

så T är en linjär avbildning på V över \mathbb{R} .

Eftersom för $\alpha_1, \alpha_2 \in \mathbb{R}$ $\alpha_1 1 + \alpha_2 i = 0$ medför att $\alpha_1 = \alpha_2 = 0$ och alla vektorer i V kan skrivas på formen $\alpha + i\beta$ där $\alpha, \beta \in V$ är 1, i utgör $\{1, i\}$ en bas för V och $\dim(V) = 2$.

Om $V = \mathbb{C}$ är ett vektorrum över \mathbb{C} , är T_1 inte linjär eftersom

$$T_1(\alpha z) = \overline{\alpha}\overline{z} = \overline{\alpha}\overline{z} \neq T_1(z)\alpha \in \mathbb{C}$$

3. Låt W vara det delrum av $P_4=\{p_0+p_1x+p_2x^2+p_3x^3+p_4x^4:p_i\in\mathbb{R},i=0,1,2,3,4\}$ som spänns upp av vektorerna

$$v_1 = 1 + 2x + x^2 + 3x^4, v_2 = -1 - 2x^2 + x^3 - 2x^4, v_3 = 2 + x - 4x^2 + 3x^4, v_4 = -1 + x + x^3 - x^4.$$

Bestäm W^{\perp} relativt inre produkten

$$\langle p, q \rangle = p_0 q_0 + p_1 q_1 + p_2 q_2 + p_3 q_3 + p_4 q_4$$
, för $p, q \in P_4$.

Lösningsförslag. För varje vektor $p=p_0+p_1x+p_2x^2+p_3x^3+p_4x^4\in W^\perp$ gäller att

$$\langle v_i, p \rangle = 0, \quad i = 1, 2, 3, 4,$$

vilket är ekvivalent med

$$\begin{pmatrix} 1 & 2 & 1 & 0 & 3 \\ -1 & 0 & -2 & 1 & -2 \\ 2 & 1 & -4 & 0 & 3 \\ -1 & 1 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \\ p_4 \end{pmatrix} = 0.$$

Genom Gauss elimination får vi

$$\begin{pmatrix} 1 & 2 & 1 & 0 & 3 & 0 \\ -1 & 0 & -2 & 1 & -2 & 0 \\ 2 & 1 & -4 & 0 & 3 & 0 \\ -1 & 1 & 0 & 1 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & -5 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Sätt $p_3 = 5s, p_4 = 5t$. Då $p_2 = s - t, p_1 = -2s - 3t, p_0 = 3s - 8t \Longrightarrow$

$$\begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \\ p_4 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 1 \\ 5 \\ 0 \end{pmatrix} s + \begin{pmatrix} -8 \\ -3 \\ -1 \\ 0 \\ 5 \end{pmatrix} t.$$

Det ger en bas för W^{\perp} : $w_1 = 3 - 2x + x^2 + 5x^3$, $w_2 = -8 - 3x - x^2 + x^4 \Longrightarrow W^{\perp} = \text{span}\{w_1, w_2\}.$

4. Bestäm samtliga egenvärden och egenvektorer till den linjära avbildning T på ett ndimensionellt vektorum V genom $T(e_i) = e_{i+1}$ för i = 1, ..., n-1 och $T(e_n) = e_1$ där $B = \{e_1, ..., e_n\}$ är en bas för V. Låt $A = [T]_B$ och låt $p(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ vara ett polynom. Beräkna determinanten till matrisen p(A). (Att göra n = 5 ger delpoäng.)

Lösningsförslag.. Det är lätt att få matrisen

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$

Vi beräknar determinanten genom Laplace utveckling enligt rad 1:

$$\underbrace{ \begin{bmatrix} \lambda & 0 & \cdots & 0 & -1 \\ -1 & \lambda & \cdots & 0 & 0 \\ 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & \lambda \end{bmatrix}}_{n \times n} = \lambda \underbrace{ \begin{bmatrix} \lambda & 0 & \cdots & 0 & 0 \\ -1 & \lambda & \cdots & 0 & 0 \\ 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & \lambda \end{bmatrix}}_{(n-1) \times (n-1)} + (-1)^{1+n} (-1) \underbrace{ \begin{bmatrix} -1 & \lambda & 0 & \cdots & 0 \\ 0 & -1 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & \lambda \\ 0 & 0 & \cdots & 0 & -1 \end{bmatrix}}_{(n-1) \times (n-1)}$$

$$= \lambda \cdot \lambda^{n-1} + (-1)^{n+2} (-1)^{n-1} = \lambda^n - 1.$$

Så egenvärden är rötterna till den binomiska ekvationen $\lambda^n=1$: $\lambda_k=\omega_n^k,\ k=0,1,...,n-1$ där $\omega_n=e^{i\frac{2\pi}{n}}$. Egenvärden till p(A) är $p(w_n^k),\ k=0,1,...,n-1$. Så $\det(A)=\prod_{k=0}^{n-1}p(w_n^k)$

Eftersom det finns n olika egenvärden finns det n linjär oberoende egenvektorer, dvs, matrisen λ_k-A har rang n-1. Så ekvationssystemmet

$$Av^{(k)} = \omega_n^k v^{(k)}$$

har en parametrig lösning. Om vi väljer $v_1^{(k)}=1$ får vi egenvektorer

$$v^{(k)} = (1, w_n^{-k}, w_n^{-2k}, ..., w_n^{-(n-1)k})^*, \ k = 0, ..., n-1.$$

5. Visa att matrisen $A=\begin{pmatrix}3&1&2\\-1&3&2\\-2&-2&3\end{pmatrix}$ är normal. Bestäm en unitär matris U så att A blir diagonaliserad.

Lösningsförslag. Notera att $A=3I_3+H$ där $H=\begin{pmatrix}0&1&2\\-1&0&2\\-2&-2&0\end{pmatrix}$ uppfyller $H^t=-H$. Då

$$A^{t}A = (3I_3 + H)^{t}(3I_3 + H) = 9I_3 + 3H + 3H^{t} + H^{t}H = 9I_3 - H^{2},$$

$$AA^{t} = (3I_3 + H)(3I_3 + H)^{t} = 9I_3 + 3H^{t} + 3H + HH^{t} = 9I_3 - H^{2}.$$

Det innebär $AA^t = A^tA$ så A är normal. Matrisen kan således diagonaliseras med hjälp av en unitär matris.

Eftersom $H^t = -H$ är 0 ett egenvärde till H gör matrisuppdelningen ovan lättare att beräkna egenvärden. Låt λ vara ett egenvärd till A. Då gäller att $\lambda = 3 + \mu$ där μ är egenvärde till H. Det karakteristiska polynomet till H är $\mu(\mu^2 + 9)$ har rötterna 0, 3i, -3i Således har A egenvärden 3, 3 + 3i, 3 - 3i. Motsvarande normaliserade egenvektorer är

$$\frac{1}{3}(2, -2, 1), \frac{1}{6}(-1 - 3i, 1 - 3i, 4), \text{ och } \frac{1}{6}(-1 + 3i, 1 + 3i, 4),$$

Så om vi sätter

$$U = \frac{1}{6} \begin{pmatrix} 4 & -1 - 3i & -1 + 3i \\ 4 & 1 - 3i & 1 + 3i \\ 2 & 4 & 4 \end{pmatrix} \text{ och } D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 + 3i & 0 \\ 0 & 0 & 3 - 3i \end{pmatrix}$$

är matrisen U initär och $U^*AU = D$.

- 6. (a) Vad betyder $A \in M_{m \times n}(\mathbb{R})$ har rang k? Hur stort kan k vara?
 - (b) Vad är kolonnerna till matriserma U och V i singulärvärdesuppdelning för $A \in M_{m \times n}(\mathbb{R})$ med rang k, $A = U\Sigma V^t$, med avseende på bildrum och nollrum till A och A^t . Hur ser Σ ut?
 - (c) Låt nu $\{c_1,...,c_k\} \subset \mathbb{R}^m$ vara en bas för $\mathcal{R}(A)$ och $\{r_1,...,r_k\} \subset \mathbb{R}^n$ vara en bas för $\mathcal{R}(A^t)$. Definiera matriserna C och R genom $C = (c_1,c_2,...,c_k)$ och $R = (r_1,r_2,...,r_k)^t$. Visa att det finns en inverterbar $k \times k$ -matris M så att A = CMR.

Lösningsförslag. (a) Se boken.

(b) Notera att

$$A = U\Sigma V^t$$
 är ekvivalent med $AV = U\Sigma$

där $\Sigma = \begin{pmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{pmatrix}$ med Σ_1 en $(k \times k)$ -diagonalmatris singulärvärden på diagonalen och således inverterbra.

Låt kolonner i U and V vara $u_1, ..., u_m$ respektive $v_1, ..., v_n$. Då är $u_1, ...u_m$ ortonormerade och det samma för $v_1, ..., v_n$. Vi har

- $Av_i = 0$ och $A^t u_i = 0$ för i > r, dvs,

$$\mathcal{N}(A) = \text{span}\{v_{r+1}, ..., v_n\}, \quad \mathcal{N}(A^t) = \text{span}\{u_{r+1}, ..., u_m\}$$

men $\mathcal{N}(A) = \mathcal{C}(A^t)^{\perp}$ respektive $\mathcal{N}(A^t) = \mathcal{C}(A)^{\perp}$. Så $v_1, ..., v_r$ är en ON-bas för radrummet och $u_1, ..., u_r$ är en ON-bas för kolonnrummet.

- Om vi betraktar A som en linjär avbildning från radrummet till kolonnrummet så innebär $Av_i = \sigma_i u_i$ för i = 1, ..., r att matrisrepresentation för A i basen $v_1, ..., v_r$ i radrummet är en diagonalmatris i ON-basen $u_1, ..., u_r$ (i kolonnrummet).
- (c) Om $\{c_1,...,c_k\}$ och $\{r_1,...,r_k\}$ fås från SVD då är $M=\Sigma_1$ vilket följer av att

$$A = (U_1, U_2) \begin{pmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{pmatrix} (V_1, V_2)^t = U_1 \Sigma_1 V_1^t$$

med $U_1 = (c_1, ..., c_k)$ och $V_1 = (r_1, ..., r_k)$.

Vi vet att det finns en inverterbar $(k \times k)$ -matris P sådan att $\underbrace{(u_1,...,u_k)}_{U_1} = (c_1,...,c_k)P$ och det finns en inverterbar $(k \times)k$ -matris Q sådan att $\underbrace{(v_1,...,v_k)}_{V_1} = (r_1,...,r_k)Q$. Då gäller

$$A = U_1 \Sigma_1 V_1^t = CP\Sigma_1 (RQ)^t = C \underbrace{(P\Sigma_1 Q^t)}_{M} R.$$

Matrisen $M=P\Sigma_1Q^t$ är inverterbar eftersom matriserna $P,\ Q$ och $Sigma_1$ är inverterbara.