

Algorithmique géométrique appliquée à l'image

Diagramme de Voronoi domaines d'applications

Image et informatique graphique Imagerie médicale Biologie Réseaux Base de données Géographie Astronomie Sport Art

.

Exemples

Reconstruction

Effet pointillé « Stippling »

Diagramme de Voronoi appliquée au football

Diagramme de Voronoi des aéroports du monde

Exemples

https://www.jasondavies.com/maps/voronoi/airports/

Exemples

En Australie, les écoles publiques admettent les élèves éligibles à l'école primaire la plus proche de leur lieu de résidence. Les élèves et les parents peuvent voir les "écoles" les plus proches de leur résidence.

http://melbourneschoolzones.com/schools/kew-primary-school/

L'art Voronoi

Exemples

Alpha-complexe et alpha-shape

Cryptographie visuelle

Diagramme de Voronoi, triangulation de Delaunay : algorithmes et applications

- ❖ Triangulation de Delaunay et diagramme de Voronoi
- ❖ Algorithme pour calculer Diagramme de Voronoï discret
- ❖ Approximation d'images, compression
- Morphing
- ❖ Segmentation : Algorithme K-means.
- Cryptographie visuelle

- Installer OpenCV :
 - Tutoriel vidéo (sur youtube)
 - Installation Cheat Sheet 1 OpenCV 3 and C++.pdf
 - Guide : étapes décrites pas à pas en moins de 3 pages

OpenCV 3 Windows Installation Guide

OpenCV 3 Windows 10 Installation Tutorial - Part 1 - C++

de Chris Dahms

Source: https://github.com/MicrocontrollersAndMore/OpenCV 3 Windows 10 Installation Tutorial

1. Diagramme de Voronoi etTriangulation de Delaunay

Voronoi is everywhere

Diagramme de Voronoï

 \clubsuit Une région de Voronoï d'un p_i est définie par :

$$R(p_i,S) = \left\{ p \in \Re^2; \left| p_i p \right| \le \left| p_j p \right| \ \forall j \ne i \right\}$$

Le diagramme de Voronoï de l'ensemble S, DV(S), est l'ensemble des régions $R(p_i, S)$.

Propriété:
$$R(p_i, S) = \bigcap_{i \neq j} H(p_i, p_j)$$

 $H(p_i, p_j)$ = demi plan limité par la médiatrice de [pipj] et contenant pi.

Voronoi

H(p1, p2) = demi plan limité par la médiatrice de [p1p2] et/contenant p1

Triangulation de Delaunay

 $S = \{p_1, p_2, p_3, ..., p_n\}$ est un ensemble fini de points sur un plan Euclidien.

Soient
$$T \subset S$$
, tel que $|T| \leq 3$, et $\sigma_T = Conv(T)$

|T| =nombre de points dans T. Conv(T) = enveloppe convexe de T.

$$|T|=1$$
 $|T|=2$

 σ_T est un point, un segment, ou un triangle.

 $\sigma_T = Conv(T)$ appartient à la triangulation de Delaunay de S D(S) ssi il existe un disque ouvert b tel que :

$$b \cap S = \phi \ et \ T \subset \partial b \cap S$$

Delaunay

2. Diagramme de Voronoï discret

2.1. Algorithme de force brute

Etant donnés une image I de taille NxM et un ensemble de pixels $S = \{p_1, p_2, ..., p_n\}$. Posons $I(p_i) = i$.

```
Pour x = 0 à N-1 faire
Pour y = 0 à M-1 faire {
P = (x,y);
Calculer l'indice m tel que d(P, p_m) \le d(P, p_i) \ \forall i = 1 \dots n
I(x,y) = m.
P=(x, y), P'=(x', y')
 de(P, P') = \sqrt{(x - x')^2 + (y - y')^2}
 d1(P, P') = |x - x'| + |y - y'|
                                        Tester cet algorithme avec ces
                                        différentes distances
 d\infty(P,P') = \max(|x-x'|,|y-y'|)
```

TP 1. Mettre en œuvre cet algorithme

2. Diagramme de Voronoï discret

2.2. Algorithme séquentiel

On calcule la transformation de distances (TD) sur une image initial (0, infini) en balayant l'image deux fois de la façon suivante:

- avec le masque avant: de gauche à droite et de haut en bas,
- avec le masque arrière: de droite à gauche et de bas en haut.

C2 C1 C2 C1 0 Masque 3x3 avant 0 C1 C2 C1 C2 Masque 3x3 arrière

Exemples de masques

1 1 1 4 3 4
$$\sqrt{2}$$
 1 $\sqrt{2}$
1 0 1 3 0 3 1 0 1
1 1 1 4 3 4 $\sqrt{2}$ 1 $\sqrt{2}$

$$\sqrt{2}$$
 1 $\sqrt{2}$
1 0
Masque 3x3 avant

$$\begin{array}{ccc} & 0 & 1 \\ \sqrt{2} & 1 & \sqrt{2} \end{array}$$

Masque 3x3 arrière

Pixel courant

$$D_{i,j}$$
=0 si (i,j) \in Objet
 $D_{i,j}$ = ∞ si (i,j) \notin Objet

Etape avant:

taille = 3 pour un masque 3x3

Pour i= (taille+1)/2 à nblignes faire Pour j= (taille+1)/2 à nbcolonnes faire

$$D_{i,j} = \min_{(k,l) \in masque \, avant} \left(D_{i+k,j+l} + C(k,l) \right)$$

Etape arrière :

Pour i= nblignes-(taille+1)/2 à 1 faire Pour j= colonnes-(taille+1)/2 à 1 faire

$$D_{i,j} = \min_{(k,l) \in masque \, arri\`ere} \, \left(D_{i+k,j+l} + C(k,l) \right)$$

Algorithme séquentiel $S = \{P_1, P_2, ..., P_n\}$ $D_{i.i} = 0$ si $(i, j) = P_m$ $V_{i.i} = m$ si $(i, j) = P_m$ $D_{i,j} = \infty$ si $(i,j) \neq P_m$ $V_{i,j} = 0$ si $(i,j) \neq P_m$ (taille = 3)Etape avant: Pour i = (taille+1)/2 à nblignes faire Pour j = (taille+1)/2 à nbcolonnes faire $D_{i, j} = D_{i+k, j+l} + C(k, l) = \min(D_{i-1, j-1} + C(-1, -1), D_{i-1, j} + C(-1, 0),$ $D_{i-1, j+1} + C(-1,1), D_{i, j-1} + C(0,-1), D_{i, j} + C(0,0)$ $V_{i} = V_{i+k-i+l}$ Etape arrière : Pour i = nblignes - (taille+1)/2 à 1 fairePour j = colonnes - (taille+1)/2 à 1 faire $D_{i, j} = D_{i+k, j+l} + C(k, l) = \min(D_{i, j+1} + C(0, l), D_{i+1, j+1} + C(1, l),$ $D_{i+1, j} + C(1,0), D_{i+1, j-1} + C(1,-1), D_{i, j} + C(0,0)$ $V_{i,i} = V_{i+K,i+L}$

Exemple (distance $d\infty$)

Distance

-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	0	1	2	3	4	5
1	1	1	0	1	2	3
2	2	1	1	1	2	3
3	2	2	2	0	1	2
3	3	3	1	1	1	2

Voronoi

	V 01 011 01									
ı	-	-	-	-	-	-				
-	-	-	-	-	-	-				
-	1	-	-	ı	-	-				
•	-	ı	2	ı	1	-				
ı	-	ı	-	ı	1	-				
ı	ı	ı	ı	3	ı	-				
1	ı	ı	ı	ı	ı	-				
-	-	-	-	-	-	-				
-	-	-	_	-	-	-				

-	-	-	-	-	-	-
-	-	-	-	ı	-	-
-	1	1	1	1	1	1
1	1	1	2	2	2	2
1	1	2	2	2	2	2
1	2	2	2	3	3	3
2	2	2	3	3	3	3

Exemple

Distance

-	ı	ı	ı	ı	ı	-
-	ı	ı	ı	ı	ı	-
-	0	1	2	3	4	5
1	1	1	0	1	2	3
2	2	1	1	1	2	3
3	2	2	2	0	1	2
3	3	3	1	1	1	2

2	2	2	2	3	3	3
1	1	1	2	2	2	3
1	0	1	1	1	2	3
1	1	1	0	1	2	2
2	2	1	1	1	1	2
3	2	2	1	0	1	2
3	3	2	1	1	1	2

Voronoi

-	-	-	-	-	-	-
-	-	ı	ı	ı	ı	ı
-	<u>1</u>	1	1	1	1	1
1	1	1	2	2	2	2
1	1	2	2	2	2	2
1	2	2	2	<u>3</u>	3	3
2	2	2	3	3	3	3

1	1	1	1	1	2	2
1	1	1	1	2	2	2
1	1	1	2	2	2	2
1	1	1	2	2	2	3
1	1	2	2	2	3	3
1	2	2	3	<u>3</u>	3	3
2	2	3	3	3	3	3

Algorithme parallèle

À l'itération m :

$$V_{i,j}^{m} = \min_{(k,l) \in masque} (V_{i+k,j+l}^{m-1} + C(k,l))$$

C2 C1 C2 C1 0 C1 C2 C1 C2 Masque distance

Exemple

-	ı	ı	ı	ı	ı	1
-	ı	ı	ı	ı	ı	1
-	-	1	1	1	-	-
-	-	1	0	1	-	-
-	ı	1	1	1	1	1
-	-	-	-	-	-	-
-	-	1	1	1	1	-

-	-	-	-	ı	-	-
-	2	2	2	2	2	-
-	2	1	1	1	2	-
-	2	1	0	1	2	-
-	2	1	1	1	2	-
-	2	2	2	2	2	-
-	-	-	-	-	-	-

3	3	3	3	3	3	3
3	2	2	2	2	2	3
3	2	1	1	1	2	3
3	2	1	0	1	2	3
3	2	1	1	1	2	3
3	2	2	2	2	2	3
3	3	3	3	3	3	3

Exemples

3. Approximation d'images en utilisant le diagramme de Voronoï

3.1. Approximation d'images en utilisant le diagramme de Voronoï

Algorithme de force brute

Considérons une image I de taille N=MxM

- 1) Générer aléatoirement un grand nombre de points (germes) n, sur le support image.
- 2) Calculer le diagramme de Voronoï en utilisant les germes sélectionnés.
- 3) Associer aux pixels de chaque région la moyenne des niveaux de gris.

TP3. Mettre en œuvre cet algorithme

3.2. Approximation d'images en utilisant le diagramme de Voronoï

Algorithme adaptatif

Considérons une image I de taille N=MxM

- 1) Générer aléatoirement un nombre faible de points n, sur le support image. (e.g. 0.2% de l'ensemble de pixels ; n=2N/1000).
- 2) Calculer le diagramme de Voronoï en utilisant les germes sélectionnés.
- 3) Associer aux pixels de chaque région la moyenne des niveaux de gris.
- 4) Pour chaque région de Voronoï, calculer la variance V et identifier les régions homogènes. Une région est homogène ssi V < seuil.

On peut aussi utiliser le coefficient de variation (CF = écart-type/moyenne).

Approximation d'images en utilisant le diagramme de Voronoi (suite)

- 5) Soit T le nombre de pixels d'une région R non-homogène. Sélectionner uniformément dans R un nombre d'échantillons m=10% * T . Ajouter ces échantillons aux points précédemment sélectionnés
- 6) Réitérer les étapes 2) à 5) jusqu'à ce que le nombre des nouveaux échantillons soit 0.

TP4. Mettre en œuvre cet algorithme

4. Algorithme K-moyennes (K-means)

Entrée : un ensemble de points S, k (nombre de classes)

Sortie: Les classes C_k

Choisir k points $c_1 ldots c_k$ (k centres de classes C_k),

Répéter

- Calculer le diagramme de Voronoi des centres $c_1 \dots c_k$
- Affecter $p_j \in S$ à la classe C_i si $p_j \in R(c_i)$. (affecter l'étiquette i à l'individu p_j)
- Calculer le nouveau centre de gravité c_i de la classe C_i .

Jusqu'à (c_i ne change pas ou le nombre d'itération dépasse NMAX)

TP4. Mettre en œuvre l'algorithme K-moyennes

Algorithme K-moyennes (K-means)

K-means clustering on the digits dataset (PCA-reduced data)
Centroids are marked with white cross

Source: Wikipédia

Mise en œuvre de l'algorithme k-moyenne++

Entrée:

- Données : $X = \{x_1, x_2, ..., x_n\}$, - Nombre de clusters k

Sortie:

- Centres des clusters $C = \{C_1, C_2, ..., C_k\}$
- Assignation des points aux clusters
- 1. Initialisation des centres :
 - 1.1. Choisir aléatoirement un centre C_1 parmi les points de X.
 - 1.2. Pour chaque point $x_i \in X$, calculer la distance au centre le plus proche :

$$D(x_i) = \min_{j=1}^k \left| x_i - C_j \right|^2$$

- 1.3 Choisir un nouveau centre C_2 avec une probabilité proportionnelle $\mathrm{D}(x_i)^2$
- 1.4 Répéter les étapes 1.2 et 1.3 jusqu'à avoir k centres $C = \{C_1, C_2, \dots, C_k\}$.
- 2. Répéter jusqu'à convergence :
 - 2.1 Pour chaque point $x_i \in X$, assigner x_i au centre le plus proche C_K :

$$|x_i - C_K|^2 = min_{j=1}^n (|x_i - C_j|^2)$$

(i.e Soient $V(C_1) \dots V(C_n)$ les régions de Voronoi, trouver C_k tel que $x_i \in V(C_K)$)

2.2 Pour chaque cluster, recalculer le centre comme la moyenne des points :

$$C_k = \frac{\sum_{x_i \in Cluster(C_k)} x_i}{card(C_k)}$$

2.3 Vérifier la convergence : Si les centres ne changent plus ou changent très peu, arrêter. Sortie : - Les centres C - Les clusters assignés pour chaque point.

Comment sélectionner les premiers centres C_i ?

Nous voulons sélectionner un point x_i comme nouveau centre $C_{\mathbf{j}}$, avec une probabilité proportionnelle au carré de la distance $D(x_i)^2$, où $D(x_i)$ est la distance minimale du point x_i au centre déjà sélectionné.

Étapes détaillées pour choisir la probabilité proportionnelle à

$$D(x_{j})^{2},...,D(x_{n})^{2}$$
:

1. Calculer la somme des distances au carré :

Pour chaque point x_i , on a déjà calculé la distance $D(x_i)$. Ensuite, on calcule la somme des distances au carré :

$$S = \sum_{i=oldsymbol{\mathsf{j}}}^n D(x_i)^2$$

2. Calculer la probabilité pour chaque point :

La probabilité $P(x_i)$ de sélectionner le point x_i comme nouveau centre est proportionnelle à $D(x_i)^2$. Pour obtenir la probabilité exacte, on divise $D(x_i)^2$ par la somme totale des distances au

carré S. La probabilité est donc donnée par :

$$P(x_i) = rac{D(x_i)^2}{S}$$

où $S=\sum^n D(x_{f k})^2$ est la somme des distances au carré pour tous les points $x_2,x_3,...,x_n$. k=j

3. Tirer un point en utilisant cette probabilité :

Pour choisir le nouveau centre C_2 , on peut appliquer une technique de tirage probabiliste (souvent appelée "roulette wheel selection"). Voici comment procéder :

- ullet Générer un nombre aléatoire r dans l'intervalle [0,1].
- Construire les probabilités cumulées pour chaque point x_i :

$$P_{ ext{cumul}}(x_i) = \sum_{\mathsf{k}=\mathsf{j}}^i P(x_{\mathsf{k}})$$

• Sélectionner le point x_i tel que la probabilité cumulée $P_{
m cumul}(x_i)$ dépasse le nombre aléatoire r.

Entrée:

- Données : X[0] ... X[n-1], k nombre de clusters

Sortie:

- Centres des clusters C[0]...C[k-1]
- Assignation des points aux clusters
- Initialisation des centres :
 - 1.1. Choisir aléatoirement un centre C[0] parmi les points de X.
 - 1.2. Pour chaque point X[i], calculer la distance au centre le plus proche :

$$D(i) = \min_{j=0}^{k-1} |X[i] - C[j]|^2$$

- 1.3 Choisir un nouveau centre C[1] avec une probabilité proportionnelle $D(i)^2$
- 1.4 Répéter les étapes 1.2 et 1.3 jusqu'à avoir k centres C.
- 2. Répéter jusqu'à convergence :
 - 2.1 Pour chaque point X[i], assigner x_i au centre le plus proche C_K :

$$|X[i] - C[k]|^2 = min_{j=1}^n (|X[i] - C[j]|^2)$$

2.2 Pour chaque cluster, recalculer le centre comme la moyenne des points :

$$C_k = \frac{\sum_{X[i] \in Cluster(C_k)} X[i]}{card(C_k)}$$

2.3 Vérifier la convergence : Si les centres ne changent plus ou changent très peu, arrêter. Sortie : - Les centres C - Les clusters assignés pour chaque point.

4. Morphing d'images et triangulation de Delaunay

Etapes de l'algorithme Morphing

L'objectif est de produire une séquence vidéo transformant une image M en une autre image N.

Etape 1 : Marquer les points caractéristiques

Marquer les caractéristiques principales des images M et N, en établissant une correspondance un à un entre les points marqués dans M et N, (exemple mettre en correspondance deux visages, marquer les traits du visage dans les 2 images : les yeux, les sourcils, le nez, les lèvres, etc). Le nombre de points caractéristiques dans les deux images doit être le même.

Les caractéristiques peuvent être marquées manuellement ou en utilisant un logiciel pour détecter ces caractéristiques.

Etape 2: Calculer les triangulations de Delaunay

Notons $S_M = \{m_1, m_2, ..., m_k\}$ et $S_N = \{n_1, n_2, ..., n_k\}$ les points caractéristiques de M et de N.

Soit \alpha une valeur réelle entre 0 et 1.

Calculer l'ensemble de points
$$S_I = \{i_1, i_2, ..., i_k\}$$
, tel que $i_1 = (1 - \alpha)m_i + \alpha n_i$

Les points de SI sont ceux de l'image intermédiaire. Calculer les triangulations de Delaunay de S_M , S_N et S_I .

Etape 2: Calculer les triangulations de Delaunay (suite)

Etape 3 : Calculer l'image intermédiaire

- Transformer le triangle A en B

Trouver la matrice T telle que TA=B

$$\begin{pmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ 1 & 1 & 1 \end{pmatrix}$$

$$T = BA^{-1}$$

Chaque point (x,y) du triangle A est transformé en un point (x', y') de B en utilisant : $\begin{pmatrix} x' \\ y' \end{pmatrix} = T \begin{pmatrix} x \\ y \end{pmatrix}$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = T \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}_{49}$$

n4

- Calculer les images M' et N'

• Pour chaque triangle A de M et son correspondant C dans I, calculer la transformation $T = AC^{-1}$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = T \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
$$M'(x',y') = M(x,y)$$

Pour chaque unante transformation $T = BC^{-1}$ $\begin{pmatrix} x' \\ y' \end{pmatrix} = T \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$ • Pour chaque triangle B de N et son correspondant C dans I, calculer la

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = T \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$N'(x',y') = N(x,y)$$

• Calculer l'image intermédiaire $I(x,y) = (1 - \alpha)M'(x,y) + \alpha N'(x,y)$ La séquence vidéo est obtenue en variant α de 0 à 1. 50

- Fonctions d'OpenCv

Subdiv2D : calcule la triangulation de Delaunay et renvoie les listes des coordonnées des triangles...

getAffineTransform : calcule la matrice de transformation qui transforme un triangle en un autre.

- **Python:** scipy.spatial:

https://docs.scipy.org/doc/scipy/reference/tutorial/spatial.html

- Quelques liens

https://devendrapratapyadav.github.io/FaceMorphing/

https://inst.eecs.berkeley.edu/~cs194-26/fa17/upload/files/proj4/cs194-26-aeh/

https://azmariewang.medium.com/face-morphing-a-step-by-step-tutorial-with-code-75a663cdc666

http://stackoverflow.com/questions/18844000/transfer-coordinates-from-one-triangle-to-another-triangle-https://www.learnopencv.com/delaunay-triangulation-and-voronoi-diagram-using-opencv-c-python/https://www.cs.princeton.edu/courses/archive/fall00/cs426/papers/beier92.pdf
http://www.cs.cmu.edu/~quake/triangle.html

6. Application à la cryptographie visuelle

6. Application à la cryptographie visuelle

Considérons une image binaire secrète S de taille NxM.

Les pixels du message dans S ont la valeur 255 (blanc), les pixels du fond ont la valeur 0 (noir). L'image S est transformée en deux images clés K1 et K2 chacune de taille 2NxM.

Chacune des deux images est insuffisante pour déchiffrer l'image S. mais la superposition de K1 et K2 restitue le message de S (le XOR des deux donne l'image complète).

Construction des 2 images clés

Définition de K1. Chaque pixel de l'image S, génère dans K1 selon un processus aléatoire uniforme deux pixels horizontaux de type masque 1 ou masque 2.

Définition de K2. Si le pixel de S est blanc alors le masque généré dans K2 est le même que celui généré dans K1.

Si le pixel de S est noir alors le masque généré dans K2 est l'opposé de celui généré dans K1.

Pixel (if)	White		Black	
Probability	50%	50%	50%	50%
Mask for image key 1 (then)				
Mask for image key 2 (and)				
Resulting mask once image keys superposed				

Image secrète

Image clé 1

Image clé 2

Image obtenue par la superposition des 2 images clés

Cryptographie visuelle en utilisant le diagramme de Voronoï

Approximation de l'image binaire secrète *S de taille* NxM en utilisant le diagramme de Voronoï.

- ☐ Générer uniformément et aléatoirement n points sur la surface de S.
- ☐ Calculer le diagramme de Voronoï discret des points.
- □ Pour chaque région de Voronoï, calculer la proportion p1 des pixels blancs et la proportion p2 des pixels noirs.
- Si p2 > p1 alors colorer les pixels de la région en noir sinon colorer en blanc la région de Voronoï.
- □ Choisir « le meilleur » nombre n pour obtenir une bonne approximation de l'image S.

Cryptographie visuelle en utilisant le diagramme de Voronoï

Définition des masques.

- Calculer le centre de gravité de la région de Voronoï. Notons D la droite verticale passant pas le centre de gravité.
- Le masque 1 est une région de Voronoï telle que les pixels à gauche de la droite D sont en blanc et les pixels à droite sont en noir.
- Le masque 2 est obtenue en inversant les couleurs du masque 1.

ZJ217 X568E

Image originale

Image clé K1

Résultat de la superposition de K1 et K2

Image clé K2