D. Greg and Caves

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

Greg has a pad. The pad's screen is an $n \times m$ rectangle, each cell can be either black or white. We'll consider the pad rows to be numbered with integers from 1 to n from top to bottom. Similarly, the pad's columns are numbered with integers from 1 to m from left to right.

Greg thinks that the pad's screen displays a cave if the following conditions hold:

- There is a segment [l, r] $(1 \le l \le r \le n)$, such that each of the rows l, l+1, ..., r has exactly two black cells and all other rows have only white cells.
- There is a row number t ($l \le t \le r$), such that for all pairs of rows with numbers i and j ($l \le i \le j \le t$) the set of columns between the black cells in row i (with the columns where is these black cells) is the subset of the set of columns between the black cells in row j (with the columns where is these black cells). Similarly, for all pairs of rows with numbers i and j ($t \le i \le j \le r$) the set of columns between the black cells in row j (with the columns where is these black cells) is the subset of the set of columns between the black cells in row i (with the columns where is these black cells).

Greg wondered, how many ways there are to paint a cave on his pad. Two ways can be considered distinct if there is a cell that has distinct colors on the two pictures.

Help Greg.

Input

The first line contains two integers n, m — the pad's screen size $(1 \le n, m \le 2000)$.

Output

In the single line print the remainder after dividing the answer to the problem by $100000007 (10^9 + 7)$.

Examples

input	
1 1	
output	
0	

input	
4 4	
output	
485	

input
3 5
output
451