Assignment 4 Problem 2

Michael Cai

February 20, 2016

- 2. Consider the error function, $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$
- (a) Use Simpson's Rule with n = 10 to estimate erf(1)

To calculate S_{10} for the erf(1) we must first find the Δx 's and the corresponding y's. $\Delta x = \frac{1-0}{10} = \frac{1}{10}$ Therefore, $x_0 = 0$ $x_1 = \frac{1}{10}$ $x_2 = \frac{2}{10}$ $x_3 = \frac{3}{10}$... $x_{10} = \frac{10}{10}$ And thus, we calculate y_0 through y_{10} in the following way:
Let m represent $\frac{2}{\sqrt{\pi}}$ Then $y_i = me^{-x_i^2}$ Thus $S_{10} = \frac{1}{30}(y_0 + 4y_1 + 2y_2 + ... + 2y_8 + 4y_9 + y_{10}) \approx 0.842702$

$$\Delta x = \frac{1-0}{10} = \frac{1}{10}$$

Then
$$y_i = me^{-x_i^2}$$

(b) In the interval [0,1] $|\frac{d^4}{dt^4}(e^{-t^2})| \le 12$. Use this information to give an upper bound for the magnitude of error of the estimate in part (a).

The information given indicates that in the equation $|E_S| = \frac{L(b-a)^5}{180n^4}$ that L = 12 then $|E_S| = \frac{L(1)^5}{180(10^4)} \approx$ $6.666667*10^{-6}$.

The reason why we don't multiply the error estimate by the constant $\frac{2}{\sqrt{\pi}}$ is because a constant multiple should not affect the amount of error in the estimation of an integral.