

Introduction Optimisation dans les graphes

Algorithme glouton pour le voyageur de commerce

Données : G = (V, E, p) : graphe initial **Résultat :** $H(V, E_2)$: cycle hamiltonien

 $k \leftarrow 0$ $E_2 \leftarrow \emptyset$

 $L \leftarrow \text{Liste}$ des arêtes de G triées par ordre de longueur croissante

pour k allant de 1 à n faire

 $\overline{w}\leftarrow$ 1ère arête de L ne formant pas de sous-cycle avec E_2 et telle que les degrés des sommets restent ≤ 2

 $E_2 \leftarrow E_2 \cup \{w\}$

retourner $H = (V, E_2)$

Solution heuristique de valeur 13

13/ 14

Introduction Optimisation dans les graphes

Définition - Circuit absorbant

Circuit de longueur négative

Théorème

ullet Il existe un chemin de longueur minimale finie de r à tous les sommets du graphe

si et seulement si

 r est une racine du graphe et le graphe ne contient pas de circuit absorbant

Cas où l'on est sûr de l'absence de circuit absorbant

- Toutes les longueurs sont positives ou nulles
- Le graphe est sans circuit

14/14

Le problème du flot maximal

L'algorithme de Ford-Fulkerson

Preuve du théorème et de l'algorithme de Ford-Fulkerson

Notations

- φ^* : flot obtenu par l'algorithme
- ullet : ensemble des sommets marqués à la fin de l'algorithme
- ullet : ensemble des sommets non marqués à la fin de l'algorithme

Rappels

•
$$v(\varphi^*) = \varphi^*(t, s)$$

•
$$(t,s) \notin \omega^+(T)$$

Preuve

- Toute coupe (S,T) et tout flot φ vérifient : $v(\varphi) \leq c(S, T)$
- Donc φ^* est un flot maximal et (S^*, T^*) est une coupe minimale

11/11

Relaxation linéaire

2ème idée : Énumération implicite par encadrement de la valeur optimale

Définition - Relaxation continue d'un problème entier (P)Problème obtenu lorsqu'on "oublie" le caractère entier des variables

Ex : $x \in \{1, 2, ..., n\} \rightarrow x \in [1, n]$ Intérêts

On obtient un PL continu qu'on sait résoudre Par exemple par le simplexe

Fournit une borne sur la valeur optimale

Exemple - Relaxation linéaire du modèle de localisation d'entrepôt $\begin{cases} &\text{minimiser} \quad z = \sum_{i=1}^n f_i y_i + \sum_{j=1}^n c_{ij} x_{ij} \\ &\text{tel que} \quad \sum_{i=1}^n x_{ij} = 1 \quad \forall i \\ &x_{ij} \leq y_i \quad \forall i,j \\ &y_i \in [0,1] \quad \forall i \\ &x_{ij} \in [0,1] \quad \forall i,j \end{cases}$

3/11

Difficulté d'un problème

Un tout petit peu de combinatoire

Durée d'exécution d'un algorithme

Supposons 1 étape = $1\mu s$ Taille des données d'entrée Nombre d'étapes élémentaires n n log(n) 10^{-5} 10^{-4} 10^{-3} 10^{-6} 10 4 2.10^{-5} 25 10^{-6} 6.10^{-4} 30 2.10^{19} 50 2.10^{-6} 5.10^{-5} 3.10^{-3} 10⁹ 3.10^{58} En secondes Polynomial Exponentiel ("efficace") ("non efficace")

Complexité

- Problème "facile"
- Peut se résoudre de façon exacte par un algorithme polynomial
- Problème "difficile"

Seuls algorithmes connus pour les résoudre de façon exacte sont "exponentiels"

Difficulté d'un problème

Comment reconnaître la difficulté d'un problème?

Théorie de la complexité

Attention : ce cours n'en donne qu'une idée intuitive

Définition - Problème de décision

Problème dont la réponse est oui ou non

Définition intuitive - Problème de décision P de classe NP

Si vous savez que P a pour réponse oui, il est facile d'en convaincre quelqu'un d'autre Mais trouver que la réponse est oui peut rester difficile

Exemple

Si on connaît un cycle hamiltonien, il est facile de convaincre quelqu'un qu'il en existe un

Mais trouver un cycle hamiltonien peut être difficile

Difficulté d'un problème

Le problème SAT ("satisfiabilité" d'une expression)

Problème de décision SAT

Fonction booléenne -

Existe-t-il une affectation des variables telle que *f* soit vraie?

Exemple

$$f(x) = (x_1 + \overline{x}_2 + x_3)(\overline{x}_1 + \overline{x}_2 + x_4) + (x_2 + \overline{x}_3 + x_4)(x_1 + x_3 + \overline{x}_4)$$

• une solution : $(x_1, x_2, x_3, x_4) = (vrai, faux, vrai, vrai)$

- Stephen Cook a classé le problème SAT comme NP-complet
- SAT est le premier problème NP-complet connu

3/4

1/4

4/4