Roots – rational or not

January 23, 2021

Conjecture. A real root of a natural number is either an integer or irrational.

Proof. We begin by observing that if a prime number y divides any power x^p , it also divides x because otherwise it would have to be "composed" of other factors of x, which is impossible for a prime.

Now let $n, k \in \mathbb{N}$ with $k \geq 2$. We will prove that $n^{1/k}$ is either an **integer** or an **irrational number**. The only other possibility for a real root being a **strictly rational** number (of the form $p/q: p, q \in \mathbb{N}$ with gcd(p,q) = 1).

n=1 is trivial. For n>1 let's assume that $n^{1/k}$ is strictly rational. I.e.,

$$n^{1/k} = \frac{p}{q}$$

This implies that $p^k = nq^k$ or that n divides p^k .

If n is prime this also implies that n divides p (from the first observation we made) or that p = np' for some factor p'. Using this and the fact that $k \geq 2$, the last equation can be written as $nq^k = n^2p'^2p^{k-2}$ or $q^k = np'^2p^{k-2}$, i.e. n divides q^k . But we know this means n divides q. Hence we see that p and q have a common divisor n(>1). This is a contradiction to the definition of **strictly rational** numbers: gcd(p,q) = 1.

If n is not prime let $n_a, n_b, n_c...$ be all the prime factors of n and $n' = n_a \cdot n_b \cdot n_c...$ be their product. Since n divides p^k so does n' and so do each of $n_a, n_b, n_c...$ Again, from the observation above each of $n_a, n_b, n_c...$ also divide p, and so does n'. In the same way as above we can show that now p and q share a common divisor n'(>1) which is, again, contrary to the assumption above.

In this way we see that in no case can $n^{1/k}$ be **strictly rational**. So it must be either an integer or an irrational number.