

Home

product

solution

News Center

knowledge base

Recruitment

Please enter key words

Simplified Chinese 🗸

8-Channel Long-Distance Communication Gateway Module

RHF0M301 8-channel LoRa ® gateway module is a high-performance and small-size module with built-in Semtech's LoRa ® /LoRaWAN ® gateway chip SX1301.

on

Q

Model: RHF0M301

Category: Wireless Module

product description

RHF0M301 8-channel LoRa ® gateway module is a high-performance and small-size module with built-in Semtech's LoRa ® /LoRaWAN ® gateway chip SX1301. It is dedicated to wireless sensing, automatic meters and other IOT applications, RHF0M301 8-channel LoRa ® The gateway module can help users quickly design their own LoRa ® /LoRaWAN ® gateway. The working frequency bands supported by the gateway module are: 434MHz, 470 ~ 510MHz, 780MHz, 868MHz and 915MHz. Meet the needs of users in various regions.

Main Feature

1 Small Size: 63mm X 40mm

DS01603

RHF0M301 Datasheet

V1.2

Document information

Info	Content
Keywords	RisingHF, LoRa Gateway, Module
Abstract	This document shows a product description including performance and interfaces of the concentrator module RHF0M301-xxx.

RisingHF

Content

Content	2
1 Introduction	1
1.1 Key Product Features	1
1.2 Applications	1
1.3 General descriptions	1
1.4 Part Number (ordering information)	1
2 Electrical Characteristics	2
2.1 Pins Definition	2
2.2 Absolute Maximum Ratings	2
2.3 Power consumption	3
2.4 SPI Timing specifications	3
2.5 RF Characteristics	3
2.5.1 Transmitter	3
2.5.2 Receiver	6
2.5.3 Frequency response	7
2.5.4 CW interferer rejection	. 13
3 Application	. 14
3.1 Semtech HAL	. 14
3.1.1 RHF0M301-434	. 14
3.1.2 RHF0M301-470/RHF0M301-470B	. 15
3.1.3 RHF0M301-780	. 16
3.1.4 RHF0M301-868	. 17
3.1.5 RHF0M301-915	. 18
3.2 Reset sequence	. 19
3.3 PPS selection	. 19
3.4 Reference Design	. 20
3.5 Dimension	. 20
3.6 Package information	. 22
3.6.1 Real product photo show	. 22
3.6.2 Silk screen on the product	. 23
3.6.3 Package information	. 23
Revision	. 25

1 Introduction

RHF0M301 is a high performance LoRa/LoRaWAN module based on Semtech SX1301. The SX1301 digital baseband chip is a massive digital signal processing engine specifically designed to offer breakthrough gateway capabilities in the ISM bands worldwide. RHF0M301 integrate the core chip SX1301 with high performance RF front end module include high efficiency PA and low noise figure LNA. SPI interface is provided to customer to access into the registers of the module. With this high integration and small size module, customer could easily to set up their own multi-channel GW.

1.1 Key Product Features

- Ultra small size 40 x 63 mm
- > LoRa long range module technology
- > SX1301 solution
- Various Frequency Band
 - √ 434/470/780/868/915MHz
- ➤ High speed SPI 10MHz
- Ultra long range communication
 - ✓ 15Km line of sight
 - √ 3~5Km urban enviroment
- Multi LoRa Spreading Factor
- Maximum 10 channels
 - √ 8 x Multi SF channels (SF7 to SF12 with 125kHz Bandwidth)
 - ✓ 1 x FSK channel
 - ✓ 1 x LoRa channel
- Dynamic data-rate adaptation (ADR)
- > Sensitivity down to -140 dBm
- CE/FCC/IC certificated
- > Supply customized development support

1.2 Applications

- > Smart city
- Smart Metering (Water, Electric, Gas meter)
- Security Sensors Network
- > Agricultural Monitoring
- Internet of Things (IoT)
- Industrial Automation Control
- Remote Control
- Wireless Sensors
- ➤ M2M
- Wireless Alarm
- **≻** ...

1.3 General descriptions

RHF0M301 module is based on Semtech v1.0 LoRaWAN concentrator reference design. A RF switch is used to achieve half duplex mode. Figure 1-1 show a simple block diagram of the module.

- ✓ Power supply: +5V type
- ✓ SPI: 22R is in serial internal
- ✓ GPIO: 910R is in serial internal.
- ✓ PPS: connect to it directly, no need to serial any resistor or parallel any capacitors
- ✓ Reset: pull down with 10k resistor internal, a RC filter(R=22R, C=10nF) is strongly suggested between the module and host MCU.

Figure 1-1 RHF0M301 simple block diagram

1.4 Part Number (ordering information)

Table 1-1 ordering information

Part Number	Feature	Status
RHF0M301-434	430 ~ 437MHz	Released
RHF0M301-470	470 ~ 490MHz	Released
RHF0M301-470B	Uplink 470 ~ 490MHz, Downlink 470 ~ 510MHz	Not Released
RHF0M301-780	779 ~ 787MHz	Released
RHF0M301-868	859 ~ 871MHz	Released
RHF0M301-915	900 ~ 930MHz	Released

2 Electrical Characteristics

2.1 Pins Definition

Table 2-1 Pin definition and description

Pin	1 Pin definition and descrip Definition	Туре	Description
1	VCC5V	Power (VCC)	+5V Input
2	VCC5V	Power (VCC)	+5V Input
3	GND	Power (GND)	Ground
4	GND	Power (GND)	Ground
5	NC		No connection
6	NC		No connection
7	NC		No connection
8	SX1301_GPIO4	Input/Output	GPIO4 from SX1301
9	SX1301_GPIO2	Input/Output	GPIO2 from SX1302
10	SX1301_GPIO3	Input/Output	GPIO3 from SX1303
11	SX1301_GPIO0	Input/Output	GPIO0 from SX1304
12	SX1301_GPIO1	Input/Output	GPIO1 from SX1305
13	NC		No connection
14	Reset	Input	Reset signal input to reset SX1301
15	MISO	Output	MISO of SPI
16	SCK	Input	SCK of SPI
17	CSN	Input	CSN of SPI
18	MOSI	Input	MOSI of SPI
19	NC		No connection
20	NC		No connection
21	GND	Power (GND)	Ground
22	GND	Power (GND)	Ground
23	GND	Power (GND)	Ground
24	GPS_PPS	Input	PPS signal input from GPS module

2.2 Absolute Maximum Ratings

Table 2-2 Absolute maximum ratings

Table 2 2 Absolute maximum ratings						
Item	MIN	TYP	MAX	Unit		
Operating Temperature	-40	+25	+85	°C		
RF Input			-13	dBm		
Supply Voltage	-0.3	+5	+6	V		
Supply Current	1.5			А		

Note: The maximum current is about 660mA with max output power with 50R match. But peak current would be about 1A if the output port is mismatching (antenna is mismatch for example).

2.3 Power consumption

Table 2-3 Power consumption of RHF0M301

Status	Current/	Unit
Normal, 8 Rx CH ON, PA ON	340	mA
Normal, 8 Rx CH ON, PA ON (Uplink) Average	590	mA
Normal, 8 Rx CH ON, PA ON (Uplink), Peak	660	mA
Normal, Standby mode	40	mA
Test mode, 8 Rx CH ON	340	mA
Test Mode, TX continuous, MAX Output power	395	mA

Note: All the test data above is based on the RF port is matching with 50R impedance, RHF0M301-434 used, 25°C Temperature.

- (1) 5V DC supply
- (2) RF port is matched with 50Ω load
- (3) RHF0M301-434 used, 25°C Temperature

2.4 SPI Timing specifications

Table 2-4 SPI timing specifications

Parameter	Conditions	Min	Тур	Max	Unit
Logic low input threshold	"0" logic input			0.4	V
Logic high input threshold	"1" logic input	2.9		3.3	V
Logic low output level	"0" logic output, 2 mA sink			0.4	V
Logic high output level	"1" logic output, 2 mA source	2.9		3.3	V
SCK frequency				10	MHz
SCK high time		50			ns
SCK low time		50			ns
SCK rise time			5		ns
SCK fall time			5		ns
MOSI setup time	From MOSI change to SCK rising edge.	10			ns
MOSI hold time	From SCK rising edge to MOSI change	20			ns
CSN setup time	From CSN falling edge to SCK rising edge	10		·	ns
CSN hold time	From SCK falling edge to CSN rising edge	40			ns
NSS high time between SPI accesses		40		·	ns

2.5 RF Characteristics

2.5.1 Transmitter

Table 2-5 RF transmitter characteristics

Part Number	Parameter	Min	Тур	Max	Unit
RHF0M301-434	Frequency Range (Rx/Tx)	430		437	MHz
	Max Output power		24.5		dBm
	Output Power Variation	-1.5		1.5	dB

	TX Power Variation Temperature (-40 to 85°C)	-1.5		1.5	dB
	TX Frequency Variation Temperature (-40 to 85°C)	-3		3	ppm
			T	T	
	Frequency Range (Rx/Tx)	470		490	MHz
	Max Output power		25		dBm
	Output Power Variation	-1.5		1.5	dB
RHF0M301-470	TX Power Variation Temperature (-40 to 85°)	-1.5		1.5	dB
	TX Frequency Variation Temperature (-40 to 85° C)	-3		3	ppm
	Frequency Range (Tx)	470		510	MHz
	Frequency Range (Rx)	470		490	MHz
	Max Output power		25		dBm
RHF0M301-	Output Power Variation	-1.5		1.5	dB
470B	TX Power Variation Temperature (-40 to 85 ℃)	-1.5		1.5	dB
	TX Frequency Variation Temperature (-40 to 85 ℃)	-3		3	ppm
	Frequency Range (Rx/Tx)	779		787	MHz
	Max Output power		26		dBm
RHF0M301-780	Output Power Variation	-1.5		1.5	dB
	TX Power Variation Temperature	-1.5		1.5	dB
	TX Frequency Variation Temperature	-3		3	ppm
	,		1	1	
	Frequency Range (Rx/Tx)	859		871	MHz
	Max Output power		24.5		dBm
	Output Power Variation	-1.5		1.5	dB
RHF0M301-868	TX Power Variation Temperature (-40 to 85°C)	-1.5		1.5	dB
	TX Frequency Variation Temperature (-40 to 85℃)	-3		3	ppm
	Frequency Range (Rx/Tx)	900		930	MHz
RHF0M301-915	Max Output power		24.5		dBm
	Output Power Variation	-1.5		1.5	dB

TX Power Variation (-40 to 85°C)	1 7 7	Temperature	-1.5	1.5	dI
TX Frequency Variation (-40 to 85 °C)		Temperature	-3	3	ppr

RisingHF

2.5.2 Receiver

Sensitivities are given for 32 bytes payload, 10% PER. Table 2-6 Receiver sensitivity

Table 2-6 Receiver sensitivity Part Number	Bandwidth/kHz	Spreading Factor	Sensitivity/dBm
	125	12	-140
	125	7	-126
RHF0M301-434	250	12	-137
KHFUW3U1-434	250	7	-123
	Γ00	12	-134
	500	7	-120
	Т	T	Г
	125	12	-139
		7	-125
RHF0M301-470	250	12	-136
RHF0M301-470B		7	-122
	500	12	-133
	300	7	-119
		12	120
RHF0M301-780	125		-139
		7	-125
	250	12	-136
		7	-122
	500	12	-133
		7	-119
		12	-139
	125	7	-125
		12	-136
RHF0M301-868	250	7	-122
		12	-133
	500	7	-119
	125	12	-139
	125	7	-125
DUFO14004 04 F	250	12	-136
RHF0M301-915	250	7	-122
	500	12	-133
	500	7	-119

2.5.3 Frequency response

2.5.3.1 RHF0M301-434

Available band: 430MHz to 437MHz

Figure 2-1 Txop vs Freq for RHF0M301-434

Figure 2-2 Sensitivity vs Freq for RHF0M301-434

2.5.3.2 RHF0M301-470/RHF0M301-470B

For RHF0M301-470 (the previous version):

Available band: 470MHz to 490MHz

For RHF0M301-470B(new version):

Available band: 470MHz to 490MHz (uplink); 470MHz to 510MHz (downlink);

Figure 2-3 Txop vs Freq for RHF0M301-470

Figure 2-4 Txop vs Freq for RHF0M301-470B

Figure 2-5 Sensitivity vs Freq for RHF0M301-470 and RHF0M301-470B

2.5.3.3 RHF0M301-780

Available band: 779MHz to 787MHz

Figure 2-6 Txop vs Freq for RHF0M301-780

Figure 2-7 Sensitivity vs Freq for RHF0M301-780

2.5.3.4 RHF0M301-868

Available band: 859MHz to 871MHz

Figure 2-8 Txop vs Freq for RHF0M301-868

Figure 2-9 Sensitivity vs Freq for RHF0M301-868

2.5.3.5 RHF0M301-915

Available band: 900MHz to 930MHz

Figure 2-10 Txop vs Freq for RHF0M301-915

Figure 2-11 Sensitivity vs Freq for RHF0M301-915

2.5.4 CW interferer rejection

PACKET: CHAN:0 BW:0 SF:7 CR:1 PPM:0 PL(16): 2E 5C 0F 86 56 2D 36 E7 AD 78 E9 1B BF BC 90 2F

TEST: CW interferer rejection

SETUP: Wanted level: -122 dBm, PER: 50%, max errors: 10, max packets: 20, resolution: 1 dB

Test Band: 434MHz

RESULT:

Figure 2-12 Rx CW blocking immunity

RISINGHF RHF0M301 Datasheet

3 Application

3.1 Semtech HAL

This part will give the output power table for each band. Users should refer to these tables to configure their GW on server side.

3.1.1 RHF0M301-434

RSSI Offset: -176

Table 3-1 RHF0M301-434 TX Power Table:

TXLUT Index	RF POWER/dBm	DAC	DIG	MIX	PA
0	-1	3	0	10	0
1	1	3	3	15	0
2	2	3	0	15	0
3	4	3	3	10	1
4	7	3	3	12	1
5	8	3	3	13	1
6	10	3	0	13	1
7	13	3	0	8	2
8	14	3	3	12	2
9	17	3	0	10	2
10	18	3	0	11	2
11	19	3	0	12	2
12	20	3	0	13	2
13	21	3	0	15	2
14	23	3	3	11	3
15	24	3	0	9	3

```
// RHF0M301-434
"tx_lut_0": { "rf_power": -1, "dig_gain": 0, "mix_gain": 10, "pa_gain": 0 },
"tx_lut_1": { "rf_power": 1, "dig_gain": 3, "mix_gain": 15, "pa_gain": 0 },
"tx_lut_2": { "rf_power": 2, "dig_gain": 0, "mix_gain": 15, "pa_gain": 0 },
"tx_lut_3": { "rf_power": 4, "dig_gain": 3, "mix_gain": 10, "pa_gain": 1 },
"tx_lut_4": { "rf_power": 7, "dig_gain": 3, "mix_gain": 12, "pa_gain": 1 },
"tx_lut_5": { "rf_power": 8, "dig_gain": 3, "mix_gain": 12, "pa_gain": 1 },
"tx_lut_6": { "rf_power": 10, "dig_gain": 0, "mix_gain": 13, "pa_gain": 1 },
"tx_lut_7": { "rf_power": 13, "dig_gain": 0, "mix_gain": 8, "pa_gain": 2 },
"tx_lut_8": { "rf_power": 14, "dig_gain": 0, "mix_gain": 12, "pa_gain": 2 },
"tx_lut_9": { "rf_power": 17, "dig_gain": 0, "mix_gain": 10, "pa_gain": 2 },
"tx_lut_10": { "rf_power": 18, "dig_gain": 0, "mix_gain": 11, "pa_gain": 2 },
"tx_lut_11": { "rf_power": 19, "dig_gain": 0, "mix_gain": 12, "pa_gain": 2 },
"tx_lut_12": { "rf_power": 20, "dig_gain": 0, "mix_gain": 13, "pa_gain": 2 },
"tx_lut_13": { "rf_power": 21, "dig_gain": 0, "mix_gain": 15, "pa_gain": 2 },
"tx_lut_14": { "rf_power": 23, "dig_gain": 0, "mix_gain": 11, "pa_gain": 3 },
"tx_lut_15": { "rf_power": 24, "dig_gain": 0, "mix_gain": 9, "pa_gain": 3 },
```

RisingHF

3.1.2 RHF0M301-470/RHF0M301-470B

RSSI Offset: -176

Table 3-2 RHF0M301-470/RHF0M301-470B TX Power Table:

TXLUT Index	RF POWER/dBm	DAC	DIG	MIX	PA
0	-2	3	3	8	0
1	1	3	3	10	0
2	3	3	3	12	0
3	4	3	3	15	0
4	5	3	0	15	0
5	8	3	3	8	1
6	10	3	0	8	1
7	14	3	0	13	1
8	15	3	3	8	2
9	17	3	3	9	2
10	19	3	0	8	2
11	20	3	0	9	2
12	21	3	0	10	2
13	23	3	0	14	2
14	24	3	3	10	3
15	25	3	0	9	3

```
// RHF0M301-470 and RHF0M301-470B
"tx_lut_0": { "rf_power": -2, "dig_gain": 3, "mix_gain": 8, "pa_gain": 0 },
"tx_lut_1": { "rf_power": 1, "dig_gain": 3, "mix_gain": 10, "pa_gain": 0 },
"tx_lut_2": { "rf_power": 3, "dig_gain": 3, "mix_gain": 12, "pa_gain": 0 },
"tx_lut_3": { "rf_power": 4, "dig_gain": 3, "mix_gain": 15, "pa_gain": 0 },
"tx_lut_4": { "rf_power": 5, "dig_gain": 0, "mix_gain": 15, "pa_gain": 0 },
"tx_lut_5": { "rf_power": 8, "dig_gain": 0, "mix_gain": 8, "pa_gain": 1 },
"tx_lut_6": { "rf_power": 10, "dig_gain": 0, "mix_gain": 8, "pa_gain": 1 },
"tx_lut_7": { "rf_power": 14, "dig_gain": 0, "mix_gain": 13, "pa_gain": 1 },
"tx_lut_8": { "rf_power": 15, "dig_gain": 3, "mix_gain": 8, "pa_gain": 2 },
"tx_lut_9": { "rf_power": 17, "dig_gain": 3, "mix_gain": 8, "pa_gain": 2 },
"tx_lut_10": { "rf_power": 19, "dig_gain": 0, "mix_gain": 8, "pa_gain": 2 },
"tx_lut_11": { "rf_power": 20, "dig_gain": 0, "mix_gain": 8, "pa_gain": 2 },
"tx_lut_12": { "rf_power": 21, "dig_gain": 0, "mix_gain": 10, "pa_gain": 2 },
"tx_lut_13": { "rf_power": 23, "dig_gain": 0, "mix_gain": 14, "pa_gain": 2 },
"tx_lut_14": { "rf_power": 24, "dig_gain": 0, "mix_gain": 10, "pa_gain": 3 },
"tx_lut_15": { "rf_power": 25, "dig_gain": 0, "mix_gain": 9, "pa_gain": 3 },
```

3.1.3 RHF0M301-780

RSSI Offset: -168

Table 3-3 RHF0M301-780 TX Power Table:

TXLUT Index	RF POWER/dBm	DAC	DIG	MIX	PA
0	0	3	3	12	1
1	2	3	0	10	1
2	4	3	3	10	2
3	5	3	0	8	2
4	6	3	0	13	1
5	9	3	0	10	2
6	11	3	3	9	3
7	14	3	0	8	3
8	16	3	0	14	2
9	18	3	0	10	3
10	20	3	3	14	3
11	21	3	3	15	3
12	22	3	0	12	3
13	24	3	0	13	3
14	25	3	0	14	3
15	26	3	0	15	3

3.1.4 RHF0M301-868

RSSI Offset: -166

Table 3-4 RHF0M301-868 TX Power Table:

TXLUT Index	RF POWER/dBm	DAC	DIG	MIX	PA
0	-1	3	0	8	1
1	2	3	0	10	1
2	5	3	0	12	1
3	6	3	0	8	2
4	8	3	0	9	2
5	9	3	0	10	2
6	11	3	0	11	2
7	12	3	0	12	2
8	14	3	0	13	2
9	15	3	0	8	3
10	17	3	0	9	3
11	18	3	0	10	3
12	20	3	0	11	3
13	22	3	0	12	3
14	23	3	0	13	3
15	24	3	0	15	3

```
// RHF0M301-868

"tx_lut_0": { "rf_power": -1, "dig_gain": 0, "mix_gain": 8, "pa_gain": 1 },

"tx_lut_1": { "rf_power": 2, "dig_gain": 0, "mix_gain": 10, "pa_gain": 1 },

"tx_lut_2": { "rf_power": 5, "dig_gain": 0, "mix_gain": 12, "pa_gain": 1 },

"tx_lut_3": { "rf_power": 6, "dig_gain": 0, "mix_gain": 8, "pa_gain": 2 },

"tx_lut_4": { "rf_power": 8, "dig_gain": 0, "mix_gain": 9, "pa_gain": 2 },

"tx_lut_5": { "rf_power": 9, "dig_gain": 0, "mix_gain": 10, "pa_gain": 2 },

"tx_lut_6": { "rf_power": 11, "dig_gain": 0, "mix_gain": 11, "pa_gain": 2 },

"tx_lut_7": { "rf_power": 12, "dig_gain": 0, "mix_gain": 12, "pa_gain": 2 },

"tx_lut_8": { "rf_power": 14, "dig_gain": 0, "mix_gain": 13, "pa_gain": 2 },

"tx_lut_9": { "rf_power": 15, "dig_gain": 0, "mix_gain": 13, "pa_gain": 3 },

"tx_lut_10": { "rf_power": 17, "dig_gain": 0, "mix_gain": 9, "pa_gain": 3 },

"tx_lut_11": { "rf_power": 18, "dig_gain": 0, "mix_gain": 10, "pa_gain": 3 },

"tx_lut_12": { "rf_power": 20, "dig_gain": 0, "mix_gain": 11, "pa_gain": 3 },

"tx_lut_13": { "rf_power": 22, "dig_gain": 0, "mix_gain": 12, "pa_gain": 3 },

"tx_lut_14": { "rf_power": 23, "dig_gain": 0, "mix_gain": 13, "pa_gain": 3 },

"tx_lut_15": { "rf_power": 25, "dig_gain": 0, "mix_gain": 15, "pa_gain": 3 },
```

RISINGHF RHF0M301 Datasheet

3.1.5 RHF0M301-915

RSSI Offset: -166

Table 3-5 RHF0M301-915 TX Power Table:

TXLUT Index	RF POWER/dBm	DAC	DIG	MIX	PA
0	-2	3	0	15	0
1	1	3	0	8	1
2	4	3	0	10	1
3	6	3	0	12	1
4	7	3	0	13	1
5	8	3	0	8	2
6	10	3	0	9	2
7	11	3	0	10	2
8	13	3	0	11	2
9	14	3	0	12	2
10	15	3	0	15	2
11	17	3	0	8	3
12	19	3	0	9	3
13	20	3	0	10	3
14	22	3	0	12	3
15	24	3	0	14	3

```
// RHF0M301-915
"tx_lut_0": { "rf_power": -2, "dig_gain": 0, "mix_gain": 15, "pa_gain": 0 },
"tx_lut_1": { "rf_power": 1, "dig_gain": 0, "mix_gain": 8, "pa_gain": 1 },
"tx_lut_2": { "rf_power": 4, "dig_gain": 0, "mix_gain": 10, "pa_gain": 1 },
"tx_lut_3": { "rf_power": 6, "dig_gain": 0, "mix_gain": 12, "pa_gain": 1 },
"tx_lut_4": { "rf_power": 7, "dig_gain": 0, "mix_gain": 12, "pa_gain": 1 },
"tx_lut_5": { "rf_power": 8, "dig_gain": 0, "mix_gain": 8, "pa_gain": 2 },
"tx_lut_6": { "rf_power": 10, "dig_gain": 0, "mix_gain": 9, "pa_gain": 2 },
"tx_lut_7": { "rf_power": 11, "dig_gain": 0, "mix_gain": 10, "pa_gain": 2 },
"tx_lut_8": { "rf_power": 13, "dig_gain": 0, "mix_gain": 11, "pa_gain": 2 },
"tx_lut_9": { "rf_power": 14, "dig_gain": 0, "mix_gain": 12, "pa_gain": 2 },
"tx_lut_10": { "rf_power": 15, "dig_gain": 0, "mix_gain": 15, "pa_gain": 2 },
"tx_lut_11": { "rf_power": 17, "dig_gain": 0, "mix_gain": 8, "pa_gain": 3 },
"tx_lut_12": { "rf_power": 19, "dig_gain": 0, "mix_gain": 9, "pa_gain": 3 },
"tx_lut_13": { "rf_power": 20, "dig_gain": 0, "mix_gain": 10, "pa_gain": 3 },
"tx_lut_14": { "rf_power": 22, "dig_gain": 0, "mix_gain": 12, "pa_gain": 3 },
"tx_lut_15": { "rf_power": 24, "dig_gain": 0, "mix_gain": 14, "pa_gain": 3 },
```

3.2 Reset sequence

Each time when powering up the RHF0M301 module, reset operation is compulsive. The input reset signal should be more than 1ms delay after VCC+5V stable.

Figure 3-1 Reset sequence

3.3 PPS selection

There are two choices for customer to input PPS signal: pin24 of 2.54mm pitch HDR2x12 connector, or J100.

Figure 3-2 PPS connection alternative

Note: The previous version (the production you got before 2016/12/30), the pps signal connection should be input into from J100. As the pin24 of Pext is NC.

3.4 Reference Design

Figure 3-3 Recommended Connection

Note:

- 1) 220uF//220uF//100nF//100pF is strongly suggested to put as close as to the input pin (Pin1 and Pin2) of the module when you layout!
- 2) A RC filter (R=22R, C=10nF) is strongly suggested to be added for Reset connection.

3.5 Dimension

Figure 3-4 Mechanical size of RHF0M301 (Top View)

Figure 3-5 Mechanical size of RHF0M301 (Side View)

Figure 3-6 Mechanical size of enclosure on board

3.6 Package information

3.6.1 Real product photo show

Figure 3-7 Top View of RHF0M301

Figure 3-8 Bottom View of RHF0M301

3.6.2 Silk screen on the product

Figure 3-9 Silk screen on the Shield

3.6.3 Package information

There will be a label with "RHF0M301-xxx" on the top side of the box. Box size is 150x90x42mm.

- --RHF0M301-434 is the 434MHz band production.
- --RHF0M301-470 is the 470MHz band production.
- --RHF0M301-780 is the 780MHz band production.
- --RHF0M301-868 is the 868MHz band production.
- --RHF0M301-915 is the 915MHz band (902MHz to 928MHz) production.

Figure 3-10 Box for packaging

RisingHF

Figure 3-11 Package of the module

Revision

V1.2 2016-12-02

+ update with package information

V1.1 2016-11-18

+ update with new specifications and block diagram

V1.0 2016-09-12

+ Creation

Please Read Carefully:

Information in this document is provided solely in connection with RisingHF products. RisingHF reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All RisingHF products are sold pursuant to RisingHF's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the RisingHF products and services described herein, and RisingHF assumes no liability whatsoever relating to the choice, selection or use of the RisingHF products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by RisingHF for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN RISINGHF'S TERMS AND CONDITIONS OF SALE RisingHF DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY WITH RESPECT TO THE USE AND/OR SALE OF RISINGHF PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWSOF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

RISINGHF PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE RISINGHF PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF RISINGHF HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY RISINGHF AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO RISINGHF PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of RisingHF products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by RisingHF for the RisingHF product or service described herein and shall not create or extend in any manner whatsoever, any liability of RisingHF.

RisingHF and the RisingHF logo are trademarks or registered trademarks of RisingHF in various countries.

Information in this document supersedes and replaces all information previously supplied.

The RisingHF logo is a registered trademark of RisingHF. All other names are the property of their respective owners.

© 2016 RISINGHF - All rights reserved

http://www.risinghf.com