

High temperature Transil™ for automotive applications

Features

- High performance TRANSIL designed to fit high temperature environment like automotive applications
- High reliability planar technology
- High performance in voltage regulation mode
- Very low leakage current:
- $I_R \text{ max.} = 5 \mu A @ T_{amb} = 150^{\circ} C$
- Peak pulse power: 600 W (10/1000 µs)
- Fast response time
- Unidirectional type
- Low clamping factor

Description

This high performance Transil series has been designed to fit high temperature environment such as automotive applications, using surface mount technology.

These devices are using high reliability planer technology resulting in high performances in voltage regulation mode and low leakage current at high temperature.

Orger codes

Part number	Marking
SM6HT24A	EMB
SM6HT27A	EPB
SM6HT30A	ERB
SM6HT36A	EVB
SM6HT39A	EXB
SM6HT43A	EYB

TM: TRANSIL is a trademark of STMicroelectronics

Characteristics SM6HT

1 Characteristics

Table 1. Absolute maximum rating $(T_{amb} = 25^{\circ} C)$

Symbol	Parameter	Value	Unit		
P _{PP}	Peak pulse power dissipation (1)	T_j initial = T_{amb}	600	W	
Р	Power dissipation on infinite heatsink	T _{amb} = 50° C	6	W	
I _{FSM}	Non repetitive surge peak forward current for unidirectional types	75	Α		
T _{stg /} T _j	Storage and operating junction temperature range	-65 to 175	°C		
T _L	Maximum lead temperature for soldering during 10 s. 260 °C				

^{1.} for a surge greater than the maximum values, the diode will fail in short circuit.

Table 2. Thermal resistances

Symbol	Parameter	Value	Unit
R _{th(j-l)}	Junction to leads	20	°C/W
R _{th(j-a)}	Junction to ambient on printed circuit on recommended pad layout	100	°C/W

Table 3. Electrical characteristics ($T_{amb} = 25^{\circ} C$)

Table 5.	Liectifical characteristics (amb -	25 ()
Symbol	Parameter	
V _{RM}	Stand-off voltage	
V _{BR}	Breakdown voltage	
V _{CL}	Clamping voltage	
I _{RM}	Leakage current	V _{CL} V _{BR} V _{RM} V _F
I _{PP}	Peak pulse current	I _{RM}
V _F	Forward voltage drop $V_F < 3.5 \ V \ @ \ I_F = 50 \ A$ (pulse test: $t_p \le 500 \ \mu s$)	
IZ	Continuous regulation current	/ IPP
	1.10	

		00/	I _{RM} @ V _{BR}			V _{BR} @	l _R (1)		V _{CL}	@ I _{PP}	α T ⁽²⁾	I _Z @
Types	Marking	T _{amb} =25° C	T _{amb} =150° C						10/10	00 µs		T _{amb} =50°C
	.0.	max	max		min	nom	max		max		max	max
10		μΑ	μΑ	V	V	V	V	mA	V	Α	10 ⁻⁴ /°C	mA
SM6HT24A	EMB		5	20.5	22.8	24	25.2		33.2	18.0	9.4	50
SM6HT27A	EPB			23.1	25.7	27	28.4		37.5	16.0	9.6	44
SM6HT30A	ERB	2		25.6	28.5	30	31.5	4	41.5	14.5	9.7	40
SM6HT36A	EVB	2 3	3	30.8	34.2	36	37.8	'	49.9	12.0	9.9	33
SM6HT39A	EXB			33.3	37.1	39	41.0		53.9	11.1	10.0	20
SM6HT43A	EYB			36.8	40.9	43	45.2		59.3	10.1	10.1	28

^{1.} Pulse test: $t_p < 50 \text{ ms}$

577

^{2.} $\Delta V_{BR} = \alpha T x (T_{amb} - 25) x V_{BR} (25^{\circ} C)$

SM6HT Characteristics

Figure 1. Peak power dissipation versus initial junction temperature

Figure 2. Continuous power dissipation versus ambient temperature

Figure 3. Peak pulse power versus exponential pulse duration $(T_i initial = 25^{\circ} C)$

Figure 4. Clamping voltage versus peak pulse current $(T_j initial = 25^{\circ} C)$

Figure 5. Junction capacitance versus reverse applied voltage (typical values)

Figure 6. Peak forward voltage drop versus peak forward current (typical values)

Characteristics SM6HT

Figure 7. Variation of thermal impedance junction to ambient versus pulse duration (Printed circuit board FR4 with recommended pad layout)

Figure 9. Variation of leakage current versus junction temperature (typical values)

4/8

2 Order information scheme

577

Package information SM6HT

3 Package information

- Case: JEDEC DO-214AA molded plastic over Planar junction
- Terminals: Solder plated, solderable per MIL-STD-750, Method 2026
- Polarity: For unidirectional types the band indicates cathode.
- Flammability: Epoxy is rated UL94V-0
- RoHS package

Table 4. SMB dimensions

	Dimensions						
Ref.	Millim	neters	Inches				
	Min.	Max.	Min.	Max.			
A1	1.90	2.45	0.075	0.096			
A2	0.05	0.20	0.002	0.008			
b	1.95	2.20	0.077	0.087			
С	0.15	0.40	0.006	0.016			
Е	5.10	5.60	0.201	0.220			
E1	4.05	4.60	0.159	0.181			
D	3.30	3.95	0.130	0.156			
Ţ	0.75	1.50	0.030	0.059			

Figure 10. SMB footprint dimensions

Figure 11. Marking information

4 Ordering information

Part number	Marking	Package	Weight	Base qty	Delivery mode
SM6HT24A	EMB				
SM6HT27A	EPB				
SM6HT30A	ERB	CMD	0.10 a	5000	Topo and roal
SM6HT36A	EVB	SMB	0.12 g	5000	Tape and reel
SM6HT39A	EXB				
SM6HT43A	EYB				

5 Revision history

	Date	Revision	Changes
	Apr-1999	4A	Last release.
	26-Jan-2005	5	Figure 9 on page 4: leakage current improved.
	18-Mar-2005	6	Table 3: Electrical characteristics (T _{amb} = 25° C) on page 2: V _F specification added.
	21-Mar-2007	7	Table 1 on page 2: Power dissipation upgraded from 5 W to 6 W. Table 3 on page 2: I _Z max parameter added. Figure 2 on page 3: Updated for 6 W power dissipation.
Obsole	te Pro	ducil	51

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577