

Preliminary plan (analog filters)

- 1. {1-2}, 3-7, {7-16}, 25-30, 49-57, (app. A)
 - o Course overview
 - Analog filters: Applications
 - o The Butterworth approximation
 - o Passive filter realisation (ladder structure)
 - Design procedure, frequency and impedance scaling
- 2. 7-20, 30-36, 58-62, {App. A}
 - o The Chebyshev approximation
 - o Other filter types
 - o Impact of group delay variations
- 3. 37-38, {67-71}, 77-88, 171-184, 187-189, {190-196}, 197-208
 - Frequency transformations, LP-HP, LP-BP & LP-BS
 - o **Sensitivity analysis**
 - o How sensitive is a given circuit to component variations?
 - Used as a tool to evaluate filter circuits
- 4. 217-238, 253-260, 263-264
 - o OpAmps applied as building blocks in active RC-filters
 - o 2nd order Sallen-Key
 - o 2nd order multiple feed-back
 - o Higher order filters
- 5. Design/lab. exercise

Lecture 2: Recap

Chebyshev lowpass filter:

$$|H(j\omega)|^2 = \frac{1}{1 + \varepsilon^2 C_n^2(\omega)}$$

$$C_n(\omega) = \begin{cases} \cos(n \cdot \cos^{-1} \omega) & |\omega| \le 1\\ \cosh(n \cdot \cosh^{-1} \omega) & |\omega| \ge 1 \end{cases}$$

$$Ripple_{dB} = 10\log(1+\varepsilon^{2})$$

$$\varepsilon = \sqrt{10^{Ripple_{dB}/10} - 1}$$

Compared to Butterworth:

- Higher stopband attenuation 0
- Ripple in the passband 0
- Higher phase nonlinearity 0
- Longer impulse response 0

Lecture 2: Recap

If the filter requirements are:

- Passband ripple (dB) 0
- Stopband attenuation 0 $(= -H(j\omega)_{dB})$ at the normalized stopband radian frequency ω_S .

Then the necessary filter order is found from:

$$n \ge \frac{1}{\cosh^{-1} \omega_S} \cosh^{-1} \sqrt{\frac{10^{\alpha_{S,dB}/10} - 1}{10^{Ripple_{dB}/10} - 1}}$$

-rounded up to the nearest integer. Note the sign definition: $\alpha_{S,dB} > 0$, Ripple_{dB} > 0 ω_S is the stopband frequency for the normalized low-pass-filter: $\omega_S = \omega_{S,scaled}/k_f$

Lecture 2: Recap

Chebyshev poles on an ellipse: (Butterworth poles on the unit circle)

No zeros

$$p_k = \sin\frac{(2k-1)\pi}{2n} \cdot \sinh\left(\frac{1}{n}\sinh^{-1}\frac{1}{\varepsilon}\right) + j\cos\frac{(2k-1)\pi}{2n} \cdot \cosh\left(\frac{1}{n}\sinh^{-1}\frac{1}{\varepsilon}\right)$$

k = n+1, n+2..... 2n

The requirements for a Chebyshev low-pass filter are:

- Passband ripple: 1 dB
- Ripple bandwidth: 30 kHz
- The attenuation at 120 kHz shall be at least 61 dB
- a. Make a sketch of the magnitude of the filter
- b. Calculate \mathcal{E}
- Calculate the necessary order

Hint:

$$|H(j\omega)|^2 = \frac{1}{1+\varepsilon^2 C_n^2(\omega)}$$

$$Ripple_{dB} = 10\log(1 + \varepsilon^{2})$$

$$\varepsilon = \sqrt{10^{Ripple_{dB}/10} - 1}$$

$$Ripple_{dB} = 10\log(1+\varepsilon^{2}) \qquad n \ge \frac{1}{\cosh^{-1}\omega_{S}} \cosh^{-1}\sqrt{\frac{10^{\alpha_{S,dB}/10}-1}{10^{Ripple_{dB}/10}-1}}$$

Frequency scaling, exercise 2.2 & 1.2 (2nd order filters)

Inverse Chebyshev filter

$$|H_{InvCheb}(j\omega)|^2 = 1 - |H_b(j\omega)|^2$$

$$= \frac{\varepsilon^2 C_n^2(\frac{1}{\omega})}{1 + \varepsilon^2 C_n^2(\frac{1}{\omega})}$$

$$\frac{\varepsilon^2}{1+\varepsilon^2}$$

$$-\alpha_{SdB} = 10 \cdot \log \frac{\varepsilon^2}{1 + \varepsilon^2}$$

$$\frac{1+\varepsilon^2}{\varepsilon^2} = 10^{\alpha_{SdB}/10}$$

$$1 + \frac{1}{\varepsilon^2} = 10^{\alpha_{SdB}/10}$$

$$\varepsilon = \frac{1}{\sqrt{10^{\alpha_{SdB}/10} - 1}} \quad (\alpha_{SdB} > 0)$$

The 3-dB bandwidth is determined from:

$$1 - \frac{1}{1 + \varepsilon^2 C_n^2 \left(\frac{1}{\omega_{-3dB}}\right)} = \frac{1}{2}$$

"It is easily seen that":

$$\omega_{-3dB} = \frac{1}{\cosh\left(\frac{1}{n}\cosh^{-1}\frac{1}{\varepsilon}\right)}$$

Exercise

$$|H_{InvCheb}(j\omega)|^2 = 1 - |H_b(j\omega)|^2$$

$$= \frac{\varepsilon^2 C_n^2(\frac{1}{\omega})}{1 + \varepsilon^2 C_n^2(\frac{1}{\omega})}$$

$$\frac{\varepsilon^2}{1+\varepsilon^2}$$

$$\varepsilon = \frac{1}{\sqrt{10^{\alpha_{SdB}/10} - 1}} \quad (\alpha_{SdB} > 0)$$

Inverse Chebyshev filter with requirements:

Min. 40 dB attenuation in stop band

Calculate:

- **Epsilon**
- Magnitude at 1 rad/s

Other filter types

Elliptic function filters:

- o Ripple in both passband and stopband ⊗
- o Very sharp cut-off ©
- o High group delay distortion ⊗
- o Matlab: "ellip"

Bessel/Thomson filters:

- o Maximally flat group delay ©
- o "Soft" magnitude cut-off ⊗
- o Matlab: "besself"

Gaussian filters:

- o No ripple in the impulse response ©
- o "Very soft" magnitude cut-off ⊗

Plots:

- o All filters scaled to have a 3-dB bandwidth of 1 rad/s
- o The comparison depends on choice of parameters (1 dB, 40 dB, n = 4)

Other filter types

Group delay:

Frequency transformations

Lowpass filter prototypes can also be used for the design of:

Low-pass prototype (normalized) $s = \sigma + j\omega$

$$s = \sigma + j\omega$$

Frequency response

Transfer function

Poles / zeros

Circuit

$$\mathsf{S} = \Sigma + \mathsf{j}\Omega$$

$LP \rightarrow HP$ frequency transformation:

$$s = \frac{\Omega_0}{S}$$

On the imaginary axis: (setting $s = j\omega$ and $S = j\Omega$)

$$\omega = \frac{-\Omega_0}{\Omega}$$

$$\left|\omega\right| = \left|\frac{\Omega_0}{\Omega}\right|$$

Transfer functions are linked:

$$H_{HP}(S) = H_{LPP}\left(\frac{\Omega_0}{S}\right)$$

$$H_{HP}(j\Omega) = H_{LPP}\left(j\frac{-\Omega_0}{\Omega}\right)$$

The negative sign only reverses the angle – no effect on the magnitude

$$S = \frac{\Omega_0}{S} \qquad H_{HP}(S) = H_{LPP}\left(\frac{\Omega_0}{S}\right)$$

"All-pole" lowpass filter (Butterworth, Chebyshev, Bessel etc.) transfer function:

$$H_{LPP}(s) = \frac{K}{a_1 s^n + a_2 s^{n-1} + \dots + a_{n-1} s^2 + a_n s + a_{n+1}}$$

$$H_{HP}(S) = \frac{R}{a_1 \left(\frac{\Omega_0}{S}\right)^n + a_2 \left(\frac{\Omega_0}{S}\right)^{n-1} + \dots + a_{n-1} \left(\frac{\Omega_0}{S}\right)^2 + a_n \left(\frac{\Omega_0}{S}\right) + a_{n+1}}$$

$$H_{HP}(S) = \frac{K \cdot S^n}{a_1 \Omega_0^n + a_2 \Omega_0^{n-1} S + \dots + a_{n-1} \Omega_0^2 S^{n-2} + a_n \Omega_0 S^{n-1} + a_{n+1} S^n}$$

- n-fold zero at S = 0 \mathbf{O}
- n^{th} order denominator polynomial \rightarrow n poles 0
- If p_k is a pole in the LP function, then the **HP-poles** are found from: $P_k = \frac{\Omega_0}{2}$ 0
- (This rule also applies to zeros, if any) 0

$$P_k = \frac{\Omega_0}{p_k}$$

HP poles and zeros:

Low-pass prototype poles (+)

$$P_k = \frac{\Omega_0}{p_k}$$

High-pass filter poles and zeros, (+, 0)

3rd order Chebyshev 0

 $\Omega_0 = 3 \text{ rad/s}$

HP circuit components

$$s = \frac{\Omega_0}{S}$$

Inductor impedance:

$$Z_{Li} = sL_i$$

The HP-component must have the impedance:

$$Z_{New}(S) = Z_{Li} \left(\frac{\Omega_0}{S} \right)$$

$$= \frac{\Omega_0 L_i}{S} = \frac{1}{\frac{1}{\Omega_0 L_i} S}$$

Corresponding to a capacitor:

$$C_{HPi} = \frac{1}{\Omega_0 L_i}$$

-40

-30

-20

-10

Radian frequency [rad/s]

10

0

20

Low-pass	High-pass	
L_i	$\frac{- -}{1}$ $\frac{1}{\Omega_0 L_i}$	
$ C_i$	$\frac{1}{\Omega_0 C_i}$	
	$s = \frac{\Omega_0}{S}$ $H_{LPP}\left(\frac{\Omega_0}{S}\right)$	

Exercise

Low-pass	High-pass	
L_i	$\frac{- - }{1}$ $\frac{1}{\Omega_0 L_i}$	
$-$ $-$ C_i	$\frac{1}{\Omega_0 C_i}$	
of over break	$s = \frac{\Omega_0}{S}$ $H_{LPP}\left(\frac{\Omega_0}{S}\right)$	

A normalized 3rd order Chebyshev LP-filter can be made using the circuit

Find the component values in a 10 kHz HP-filter.

LP → BP transformation:

$$s = \frac{S^2 + \Omega_0^2}{B \cdot S}$$

On the imaginary axis:

$$j\omega = \frac{-\Omega^2 + \Omega_0^2}{j\Omega \cdot B} = j\frac{\Omega^2 - \Omega_0^2}{\Omega \cdot B} \qquad |\omega| = \left|\frac{\Omega_0^2 - \Omega^2}{\Omega \cdot B}\right|$$

$$|\omega| = \frac{|\Omega_0^2 - \Omega^2|}{\Omega \cdot B}$$

Transfer functions are linked:

$$H_{BP}(S) = H_{LPP}\left(\frac{S^2 + \Omega_0^2}{B \cdot S}\right)$$

$$H_{BP}(j\Omega) = H_{LPP}\left(j\frac{\Omega^2 - \Omega_0^2}{\Omega \cdot B}\right)$$

Low-pass to band-pass

$$H_{BP}(j\Omega) = H_{LPP}\left(j\frac{\Omega^2 - \Omega_0^2}{\Omega \cdot B}\right)$$

Band-edge frequencies:

$$\pm j = j \frac{\Omega_{edge}^2 - \Omega_0^2}{\Omega_{edge} \cdot B}$$

$$\Omega_{\rm edge}^2 \mp \Omega_{\rm edge} \cdot B - \Omega_0^2 = 0$$

$$\Omega_{edge} = \pm \frac{B}{2} \pm \sqrt{\frac{B^2}{4} + \Omega_0^2}$$

$$\left. \frac{\Omega_1}{\Omega_2} \right\} = \mp \frac{B}{2} + \sqrt{\frac{B^2}{4} + \Omega_0^2}$$

BP frequency relations:

$$\left. \begin{array}{c} \Omega_1 \\ \Omega_2 \end{array} \right\} = \mp \frac{B}{2} + \sqrt{\frac{B^2}{4} + \Omega_0^2}$$

$$B = \Omega_2 - \Omega_1$$

$$\Omega_0 = \sqrt{\Omega_1 \Omega_2}$$

$$\Omega_0 \neq \frac{\Omega_1 + \Omega_2}{2}$$

$$\frac{\Omega_0}{\Omega_1} = \frac{\Omega_2}{\Omega_0}$$

Check:

$$\Omega_2\Omega_1 = \left\lceil \frac{B}{2} + \sqrt{\frac{B^2}{4} + \Omega_0^2} \right\rceil \left\lceil -\frac{B}{2} + \sqrt{\frac{B^2}{4} + \Omega_0^2} \right\rceil = -\frac{B^2}{4} - \frac{B}{2}\sqrt{\frac{B^2}{4} + \Omega_0^2} + \frac{B}{2}\sqrt{\frac{B^2}{4} + \Omega_0^2} + \sqrt{\frac{B^2}{4} + \Omega_0^2} + \sqrt{\frac{B^2}{4} + \Omega_0^2} \right\rceil = \Omega_0^2$$

BP poles and zeros

$$H_{LPP}(s) = \frac{K}{a_1 s^n + a_2 s^{n-1} + \dots + a_{n-1} s^2 + a_n s + a_{n+1}}$$

$$s = \frac{S^2 + \Omega_0^2}{B \cdot S}$$

$$H_{BP}(S) = \frac{K}{a_1 \left(\frac{S^2 + \Omega_0^2}{B \cdot S}\right)^n + a_2 \left(\frac{S^2 + \Omega_0^2}{B \cdot S}\right)^{n-1} + \dots + a_n \left(\frac{S^2 + \Omega_0^2}{B \cdot S}\right) + a_{n+1}}$$

$$H_{BP}(S) = \frac{K \cdot S}{a_1 \left(\frac{S^2 + \Omega_0^2}{B}\right)^n + a_2 \left(\frac{S^2 + \Omega_0^2}{B}\right)^{n-1} S + \dots + a_n \left(\frac{S^2 + \Omega_0^2}{B}\right) S^{n-1} + a_{n+1} S^n}$$

n-fold zero at S = 00

Let p_k be a pole in the LP function. Then the BP-poles are found from:

$$p_k = \frac{P^2 + \Omega_0^2}{B \cdot P} \iff P^2 - B \cdot Pp_k + \Omega_0^2 = 0 \qquad P_{kBP} = \frac{1}{2}Bp_k \pm j\sqrt{\Omega_0^2 - \left(\frac{Bp_k}{2}\right)^2}$$

resulting in 2 poles, so the number of poles is doubled.

BP poles and zeros:

Low-pass prototype poles (+)

$$\bigcup$$

$$P_{kBP}$$
 =

$$\sqrt[1]{2}Bp_k \pm j\sqrt{\Omega_0^2 - \left(\frac{Bp_k}{2}\right)^2}$$

Band-pass filter poles and zeros, (+, 0)

- 3rd order Chebyshev 0
- $\Omega_0 = 3 \text{ rad/s}$ 0
- B = 0.5 rad/s0

BP components:

LP-inductor impedance:

$$Z_{Li} = sL_i$$

The BP-component must have the impedance:

LP circuit

$$H_{BP}(S) = H_{LPP}\left(\frac{S^2 + \Omega_0^2}{B \cdot S}\right)$$

$$Z_{New}(S) = Z_{Li} \left(\frac{S^2 + \Omega_0^2}{B \cdot S} \right) = \frac{S^2 + \Omega_0^2}{B \cdot S} L_i = \frac{S}{B} L_i + \frac{\Omega_0^2}{B \cdot S} L_i$$

$$Z_{New}(S) = \frac{L_i}{B}S + \frac{1}{\frac{B}{\Omega_0^2 L_i} \cdot S}$$

Corresponds to:

Frequency transformations

Low-pass	High-pass	Band-pass	Band-stop
L_i	$\frac{- - }{1}$ $\frac{1}{\Omega_0 L_i}$	$\frac{L_i}{B} \frac{B}{\Omega_0^2 L_i}$	$\frac{BL_{iR}}{\Omega_0^2}$ $\frac{1}{BL_{iR}}$
C_i	$\frac{1}{\Omega_0 C_i}$	$\frac{B}{\Omega_0^2 C_i}$ $\frac{C_i}{B}$	$ \begin{array}{ccc} & & & \\ & \frac{1}{BC_{iR}} & \frac{BC_{iR}}{\Omega_0^2} \end{array} $
5 Min. Di Lover	$s = \frac{\Omega_0}{S}$	$s = \frac{S^2 + \Omega_0^2}{B \cdot S}$	$s = \frac{B \cdot S}{S^2 + \Omega_0^2}$
Sreak	$H_{LPP}\!\!\left(\!rac{\Omega_0}{S}\! ight)$	$H_{LPP}\left(\frac{S^2 + \Omega_0^2}{B \cdot S}\right)$	$H_{LPR}\left(\frac{B\cdot S}{S^2 + \Omega_0^2}\right)$

First re-normalize the LP**filter** to have $\omega_{\text{stop}} = 1 \text{ rad/s}$:

Next:

Frequency transformation:

$$s = \frac{B \cdot S}{S^2 + \Omega_0^2}$$

$$j\omega = \frac{j\Omega B}{-\Omega^2 + \Omega_0^2}$$

Transfer function:

$$H_{BS}(S) = H_{LPR} \left(\frac{B \cdot S}{S^2 + \Omega_0^2} \right)$$

 Ω_1 and Ω_2 expressions as for BP

BS poles and zeros

Low-pass normalized poles (+)

Low-pass re-normalized poles (+)

$$p_R = \frac{B \cdot P}{P^2 + \Omega_0^2}$$

Solve to find band-stop filter poles and zeros, (+, o)

- 3rd order Chebyshev 0
- $\Omega_0 = 3 \text{ rad/s}$
- B = 0.5 rad/s0
- (Note n-fold zeros at $\pm j\Omega_0$) 0

BP, HP and BS in Matlab

Useful Matlab functions:

Direct HP, BP and BS:

[B,A] = CHEBY1(N,R,Wn,'s')

If Wn is a two-element vector, Wn = [W1 W2], CHEBY1 returns an order 2N bandpass filter with passband W1 < W < W2 or:

[B,A] = CHEBY1(N,R,Wn,'bandpass','s') is a bandpass filter if Wn = [W1 W2]

[B,A] = CHEBY1(N,R,Wn,'high','s') designs a highpass filter.

[B,A] = CHEBY1(N,R,Wn,'low','s') designs a lowpass filter.

[B,A] = CHEBY1(N,R,Wn,'stop','s') is a bandstop filter if Wn = [W1 W2]

$$H(s) = \frac{b_1 s^n + b_2 s^{n-1} + \dots + b_{n-1} s^2 + b_n s + b_{n+1}}{a_1 s^n + a_2 s^{n-1} + \dots + a_{n-1} s^2 + a_n s + a_{n+1}}$$

lp2bp lp2bs

lp2hp

[bt,at] = lp2bp(b,a,Wo,Bw) transforms an analog lowpass filter prototype given by polynomial coefficients into a bandpass filter with center frequency Wo and bandwidth Bw. Row vectors b and a specify the coefficients of the numerator and denominator of the prototype in

descending powers of s.

Matlab roadmap

buttap cheb1ap etc.

cheby1

etc.

Zeros & Poles:

$$K \frac{(s-z_1)(s-z_2)....}{(s-p_1)(s-p_2)...}$$

Partial fraction exp.

$$\frac{r_1}{(s-p_1)} + \frac{r_2}{(s-p_2)} + \dots k$$

ht =r.'*exp(p*time);

poly

roots

Polynomials: butter

$$\frac{b_1 s^n + \dots + b_n s + b_{n+1}}{a_1 s^n + \dots + a_n s + a_{n+1}}$$

tf impulse

step

freqs

tf bode

polyval

Step response:

In toolbox'es

Sensitivity analysis

- A filter will perform as specified when component values are as calculated
- o The parameters of components are not exact due to:
 - o Fabrication tolerances, e.g.: $\pm 0.1\%$. $\pm 1\%$ $\pm 20\%$.
 - o Roundoff to standard values: 8.1244 nF → 8.2 nF
 - o Temperature drift
 - o Ageing
- o How sensitive is a filter to parameter variations?
- o Are passive and active realisations equally sensitive?
- o Are all active realisations equally sensitive?

Sensitivity analysis is a tool to investigate this

How is sensitivity defined?

$$H(s) = K \frac{\prod_{i} (s - z_i)}{\prod_{j} (s - p_j)}$$

 $\left| H_{But,n}(j\omega) \right| = \frac{1}{\sqrt{1+\omega^{2n}}}$

The outputs in sensitivity analysis of a system can be defined in a lot of different ways

The outputs are usually not the output signals of the filter

Re

Sensitivity – multiple input system

$$x_1 + \Delta x_1$$

 $x_2 + \Delta x_2$
 $x_3 + \Delta x_3$
 $x_1 + \Delta x_2$
 $x_2 + \Delta x_3$
 $x_3 + \Delta x_4$
System $y + \Delta y$

Using a Taylor expansion:

$$y + \Delta y \approx y + \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2 + \frac{\partial y}{\partial x_3} \Delta x_3 + \dots + \frac{\partial y}{\partial x_n} \Delta x_n$$

+ higher order terms:
$$\frac{\partial^2 y}{\partial x_i^2}$$
 + cross-terms

Neglecting higher order terms and "cross-terms":

$$\Delta y \approx \sum_{i} \frac{\partial y}{\partial x_{i}} \Delta x_{i} \Rightarrow \frac{\Delta y}{y} \approx \sum_{i} \frac{1}{y} \cdot \frac{\partial y}{\partial x_{i}} \Delta x_{i}$$

When each perturbation is small the combined effect is found as a sum of the effects from each perturbation

How is sensitivity defined?

Mathematical definition of sensitivity:

$$S_x^y = \frac{x}{y} \cdot \frac{dy}{dx} \approx \frac{x}{y} \cdot \frac{\Delta y}{\Delta x} = \frac{\Delta y/y}{\Delta x/x}$$

The **relative** change of output divided by the **relative** change of input

E.g.: If $S_{x}^{y} = 2$, then a 1% change of x will give a 2% change of y

Multiple input system:

$$S_{x_i}^y = \frac{x_i}{y} \cdot \frac{\partial y}{\partial x_i}$$

Sensitivity – multiple input system

$$X_1 + \Delta X_1$$

 $X_2 + \Delta X_2$
 $X_3 + \Delta X_3$
 \vdots
 $X_n + \Delta X_n$

System

 $y + \Delta y$

$$\frac{\Delta y}{y} \approx \sum_{i} \frac{1}{y} \cdot \frac{\partial y}{\partial x_{i}} \Delta x_{i} = \sum_{i} \frac{x_{i}}{y} \cdot \frac{\partial y}{\partial x_{i}} \cdot \frac{\Delta x_{i}}{x_{i}}$$

$$S_{x_i}^y = \frac{x_i}{y} \cdot \frac{\partial y}{\partial x_i}$$

$$\frac{\Delta y}{y} \approx \sum_{i} S_{x_{i}}^{y} \frac{\Delta x_{i}}{x_{i}}$$

Sensitivity, example

Inverting amplifer:

Input: Variations on R₁ and R₂

Output: Amplification,
$$A = -R_2/R_1$$

$$\frac{\Delta A}{A} \approx \sum_{i=1}^{2} S_{R_i}^{A} \frac{\Delta R_i}{R_i}$$

$$\frac{\Delta A}{A} \approx S_{R_1}^A \frac{\Delta R_1}{R_1} + S_{R_2}^A \frac{\Delta R_2}{R_2}$$

$$S_{R_1}^A = \frac{R_1}{A} \cdot \frac{\partial A}{\partial R_1} = \frac{R_1}{A} \cdot \frac{R_2}{R_1^2} = -1$$

$$S_{R_2}^A = \frac{R_2}{A} \cdot \frac{\partial A}{\partial R_2} = \frac{R_2}{A} \cdot \frac{-1}{R_1} = 1 \qquad \frac{\Delta A}{A} \approx -\frac{\Delta R_1}{R_1} + \frac{\Delta R_2}{R_2}$$

$$\frac{\Delta A}{A} \approx -\frac{\Delta R_1}{R_1} + \frac{\Delta R_2}{R_2}$$

Inverting amplifer:

Input: Variations on R₁ and R₂

Output: Amplification, $A = -R_2/R_1$

Prove that the gain of the inverting amplifier $A = -R_2/R_1$

Sensitivity - math

$$x + \Delta x \longrightarrow System \qquad k \longrightarrow k(y+\Delta y)$$

Scaling y with a constant, k, does not affect the sensitivity

$$S_x^{ky} = \frac{x}{ky} \cdot \frac{\partial(ky)}{\partial x} = \frac{x}{y} \cdot \frac{\partial y}{\partial x} = S_x^y$$

$$X \longrightarrow System 1 \longrightarrow Z_1, Z_2, ...Z_n \longrightarrow System 2 \longrightarrow Y$$

$$\frac{\Delta y}{y} = \sum_{i=1}^{n} S_{z_i}^{y} \frac{\Delta z_i}{z_i} = \sum_{i=1}^{n} S_{z_i}^{y} S_{x}^{z_i} \frac{\Delta x}{x}$$

$$S_x^y = \frac{x}{y} \cdot \frac{\Delta y}{\Delta x} = \sum_{i=1}^n S_{z_i}^y S_x^{z_i}$$

$$S_x^{y(z_1, z_2...z_n)} = \sum_{i=1}^n S_{z_i}^y S_x^{z_i}$$

Sensitivity - math

The sensitivity of the product of 2 parameters wrt. x is the sum of the two individual sensitivities wrt. x

x System 1
$$y_1$$
 y_2 y_2 y_2 y_2

$$S_{x}^{y_{1} \cdot y_{2}} = \frac{x}{y_{1} y_{2}} \cdot \frac{\partial (y_{1} y_{2})}{\partial x} = \frac{x}{y_{1} y_{2}} \left(y_{2} \frac{\partial y_{1}}{\partial x} + y_{1} \frac{\partial y_{2}}{\partial x} \right)$$

$$S_{x}^{y_{1} \cdot y_{2}} = \frac{x}{y_{1} y_{2}} \cdot \frac{\partial (y_{1} y_{2})}{\partial x} = \frac{x}{y_{1} y_{2}} \left(y_{2} \frac{\partial y_{1}}{\partial x} + y_{1} \frac{\partial y_{2}}{\partial x} \right)$$

$$\underline{S_x^{y_1 \cdot y_2}} = \frac{x}{y_1} \cdot \frac{\partial y_1}{\partial x} + \frac{x}{y_2} \cdot \frac{\partial y_2}{\partial x} = \underline{S_x^{y_1} + S_x^{y_2}}$$

Extensions:

$$S_x^{\prod y_i} = \sum_i S_x^{y_i} \qquad S_x^{y^n} = n \cdot S_x^y$$

The sensitivity of the ratio between 2 parameters wrt. x is the difference between the two individual sensiti-

vities wrt. x

$$S_x^{y_1/y_2} = \frac{x}{y_1/y_2} \cdot \frac{\partial (y_1/y_2)}{\partial x} = \frac{x}{y_1/y_2} \left(\frac{1}{y_2} \cdot \frac{\partial y_1}{\partial x} - \frac{y_1}{y_2^2} \cdot \frac{\partial y_2}{\partial x} \right)$$
$$S_x^{y_1/y_2} = \frac{x}{y_2} \cdot \frac{\partial y_1}{\partial x} - \frac{x}{y_2} \cdot \frac{\partial y_2}{\partial x} = S_x^{y_1} - S_x^{y_2}$$

Sensitivity – transfer functions

$$S_x^{y_1/y_2} = S_x^{y_1} - S_x^{y_2}$$
 $S_x^{y_1 \cdot y_2} = S_x^{y_1} + S_x^{y_2}$

Transfer function as a ratio of the numerator and denominator polynomials:

$$H(s) = \frac{P(s)}{O(s)}$$

$$S_x^{H(s)} = S_x^{P(s)} - S_x^{Q(s)}$$

Transfer function as magnitude and phase:

$$H(s)|_{s=j\omega} = |H(j\omega)|e^{j\varphi(\omega)}$$

$$S_x^{H(j\omega)} = S_x^{|H(j\omega)|} + S_x^{e^{j\varphi(\omega)}} \qquad (S_z^{e^y} = \frac{z}{e^y} \cdot \frac{\partial e^y}{\partial z} = z \frac{\partial y}{\partial z} = y \frac{z}{v} \cdot \frac{\partial y}{\partial z} = y S_z^y)$$

$$S_x^{H(j\omega)} = S_x^{|H(j\omega)|} + j\varphi(\omega)S_x^{\varphi(\omega)} \qquad (S_x^{\varphi} = S_x^{j\varphi})$$

Sensitivity of magnitude and phase:

$$S_x^{|H(j\omega)|} = \text{Re}\left(S_x^{H(j\omega)}\right) \qquad S_x^{\varphi(\omega)} = \frac{1}{\varphi(\omega)} \text{Im}\left(S_x^{H(j\omega)}\right)$$

Sensitivity example: 2nd order BP: Passive LCR

The transfer function is found by voltage division:

$$H(s) = \frac{V_2(s)}{V_1(s)} = \frac{R}{\frac{1}{sC} + sL + R} = \frac{sCR}{s^2LC + sCR + 1}$$

This may be written in the standard form:

$$\underline{H(s)} = \frac{s\frac{R}{L}}{s^2 + s\frac{R}{L} + \frac{1}{LC}} = \frac{s\frac{\omega_0}{Q}}{s^2 + s\frac{\omega_0}{Q} + \omega_0^2} = \frac{s2\zeta\omega_0}{s^2 + s2\zeta\omega_0 + \omega_0^2}$$

Where:

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 $Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$ $\zeta = \frac{1}{2Q}$

Sensitivity example: 2nd order BP: Passive LCR

$$H(s) = \frac{s\frac{\omega_0}{Q}}{s^2 + s\frac{\omega_0}{Q} + \omega_0^2} \qquad \omega_0 = \frac{1}{\sqrt{LC}} \quad Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} \quad \begin{array}{c} C & L \\ V_1 & \\ \end{array}$$

Q = Quality factor

 $Q = \omega_0 / \Delta \omega_{3dB}$

Sensitivity example: 2nd order BP

$$H(s) = \frac{s\frac{\omega_0}{Q}}{s^2 + s\frac{\omega_0}{Q} + \omega_0^2}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 $Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$

Poles:

$$p_k = -\frac{\omega_0}{2Q} \pm \frac{1}{2} \sqrt{\left(\frac{\omega_0}{Q}\right)^2 - 4\omega_0^2} = \omega_0 \left(\frac{-1}{2Q} \pm j\sqrt{1 - \left(\frac{1}{2Q}\right)^2}\right)$$

A high Q-value means that the poles are close to the imaginary axis

Since ω_0 and Q are important parameters for the transfer function they are often chosen as output parameters for the sensitivity analysis

Sensitivity example: 2nd order BP

$$p_k = -\frac{\omega_0}{2Q} \pm \frac{1}{2} \sqrt{\left(\frac{\omega_0}{Q}\right)^2 - 4\omega_0^2} = \omega_0 \left(\frac{-1}{2Q} \pm j\sqrt{1 - \left(\frac{1}{2Q}\right)^2}\right)$$

Pole positions as a function of Q: $\omega_0 = 1 \text{ rad/s}$

Increasing Q

The pole sensitivity, $S_{\scriptscriptstyle x}^{\,p_k}$, can be a complex number

Sensitivity example: 2nd order BP

$$\omega_{0} = \frac{1}{\sqrt{LC}} = L^{-1/2}C^{-1/2}$$

$$Q = \frac{\omega_{0}L}{R} = \frac{1}{\omega_{0}CR} = \frac{1}{R}\sqrt{\frac{L}{C}} = R^{-1}L^{1/2}C^{-1/2}$$

$$Q = \frac{C}{V_{1}}$$

$$V_{1}$$

$$V_{2}$$

$$V_{2}$$

$$V_{3}$$

Sensitivities:

$$S_L^{\omega_0} = \frac{L}{\omega_0} \cdot \frac{\partial \omega_0}{\partial L} = \frac{L}{L^{-\frac{1}{2}}C^{-\frac{1}{2}}} \cdot \frac{\partial (L^{-\frac{1}{2}}C^{-\frac{1}{2}})}{\partial L} = -\frac{1}{2}$$

A 2 % increase of L will cause 1 % decrease in ω_0 .

Sensitivity example: 2nd order BP – small exercise (5 min.)

$$\omega_{0} = \frac{1}{\sqrt{LC}} = L^{-1/2}C^{-1/2}$$

$$Q = \frac{\omega_{0}L}{R} = \frac{1}{\omega_{0}CR} = \frac{1}{R}\sqrt{\frac{L}{C}} = R^{-1}L^{1/2}C^{-1/2}$$

$$Q = \frac{C}{V_{1}}$$

$$V_{1}$$

$$V_{2}$$

$$V_{2}$$

$$V_{3}$$

Prove that:

$$S_C^{\omega_0} = -\frac{1}{2} \quad S_R^{\omega_0} = 0$$

$$S_R^Q = -1$$
 $S_L^Q = \frac{1}{2}$ $S_C^Q = -\frac{1}{2}$