Dans ce document

- $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et p un entier supérieur ou égal à deux;
- Pour $A \in \mathcal{M}_p(\mathbb{K})$ et $\lambda \in \mathbb{K}$ on pose $\chi_A(\lambda) = \det(\lambda I_p A)$

Problème 1: $\mathrm{GL}_{\mathrm{p}}\left(\mathbb{K}\right)$ est un ouvert dense dans $\mathrm{M}_{p}\left(\mathbb{K}\right)$

- 1. Montrer que l'application det est continue sur $M_p(\mathbb{K})$
- 2. En déduire que $GL_p(\mathbb{K})$ est un ouvert de $\mathcal{M}_p(\mathbb{K})$.
- 3. Soit $A \in M_p(\mathbb{K})$.
 - (a) Montrer que $\exists \alpha > 0, \forall \lambda \in]0, \alpha[, \chi_A(\lambda) \neq 0.$
 - (b) Pour $n \in \mathbb{N}^*$, on pose $A_n = A \frac{\alpha}{2n} I_p$. Vérifier que $\forall n \in \mathbb{N}^*, A_n \in \mathrm{GL}_p(\mathbb{K})$
- 4. En déduire $GL_p(\mathbb{K})$ est dense dans $M_p(\mathbb{K})$.
- 5. **Application:** Soit $A, B \in M_p(\mathbb{K})$
 - (a) On suppose que $A \in GL_p(\mathbb{K})$, montrer que $\forall \lambda \in \mathbb{K}, \chi_{AB}(\lambda) = \chi_{BA}(\lambda)$.
 - (b) Montrer que l'égalité précédente est encore vraie si A n'est plus inversible.

PROBLÈME 2: Propriétés topologiques de l'ensemble des matrices nilpotentes

On note $\mathcal{N}_n(\mathbb{K})$ l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$

- 1. Montrer la continuité de l'application $f: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K}), M \mapsto M^n$
- 2. En déduire que $\mathcal{N}_n(\mathbb{K})$ est un fermé de $M_n(\mathbb{K})$.
- 3. $\mathcal{N}_n(\mathbb{K})$ est -il borné?
- 4. Soit $A \in \mathcal{N}_n(\mathbb{K})$
 - (a) Montrer que A n'est pas inversible.
 - (b) Soit $\varepsilon > 0$. Montrer que $\mathcal{B}(A, \varepsilon) \nsubseteq \mathcal{N}_n(\mathbb{K})$
 - (c) Déduire $\widehat{\mathcal{N}_n(\mathbb{K})}$.
- 5. Montrer que $N_n(\mathbb{K})$ est étoilé en \mathcal{O}_n , puis qu'il est connexe par arcs dans $M_n(\mathbb{K})$.

Problème 3: Matrices stochastiques

Une matrice $M=(m_{i,j})_{1\leqslant i,j\leqslant p}\in\mathcal{M}_p(\mathbb{R})$ est dite stochastique lorsqu'elle est à coefficients positifs et que de plus $\sum_{i=1}^p m_{i,j}=1, \text{ pour tout } j\in[|1,p|].$

1. Montrer que l'ensemble $\mathcal{C}_p(\mathbb{R})$ des matrices stochastiques de $\mathcal{M}_p(\mathbb{R})$ est un compact convexe de $\mathcal{M}_p(\mathbb{R})$.

Problème de révision Enoncé

Les classiques de la topologie dans $M_n(\mathbb{K})$

- 2. On munit $E = \mathcal{M}_p(\mathbb{R})$ de la norme : $||A|| = \sup_{1 \leq i \leq p} \left(\sum_{j=1}^p |a_{ij}| \right)$ si $A = (a_{ij})_{1 \leq i,j \leq p}$. On note f l'application de E dans \mathbb{R} définie par f(A) = Tr(A)
 - (a) Montrer que f est linéaire continue
 - (b) Montrer que f est bornée sur $\mathcal{C}_p(\mathbb{R})$ et atteint ses bornes puis déterminer ces bornes.
 - (c) Montrer que $f(\mathcal{C}_p(\mathbb{R}))$ est un segment de \mathbb{R} qu'on déterminera.

Problème 4: Connexité par arcs de $\mathrm{GL}_{n}\left(\mathbb{K}\right)$ et de $\mathrm{M}_{n}\left(\mathbb{K}\right)\setminus\mathrm{GL}_{n}\left(\mathbb{K}\right)$

- 1. (a) Montrer que l'ensemble E des matrices non inversibles dans $\mathrm{M}_n\left(\mathbb{K}\right)$ est étoilée en $\mathrm{O}_{\mathrm{M}_n\left(\mathbb{K}\right)}$
 - (b) En déduire que E est connexe par arcs
- 2. Soit $A \in \mathrm{GL}_{\mathrm{n}}(\mathbb{C})$
 - (a) Justifier qu'il existe $P \in GL_n(\mathbb{C})$ et une matrice $T = \begin{pmatrix} m_{11} & \cdots & \cdots & m_{1n} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & m_{nn} \end{pmatrix}$ triangulaire supérieure dont

les éléments diagonaux sont non nuls telles que $A = PTP^{-1}$

(b) On écrit $m_{kk} = \rho_k e^{i\theta_k}$ pour tout $k \in [1, n]$, avec $\rho_k > 0$ et on considère l'application $\varphi : [0, 1] \longrightarrow M_n(\mathbb{C})$ par

$$\varphi(t) = \begin{pmatrix} \rho_1^t e^{it\theta_1} & tm_{12} & \cdots & \cdots & tm_{1n} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & & \vdots \\ 0 & \cdots & 0 & & \rho_n^t e^{it\theta_n} \end{pmatrix}$$

Justifier que φ est continue sur [0,1]

- (c) Montrer que $\forall t \in [0,1], \quad \varphi(t) \in GL_n(\mathbb{C})$ et calculer $\varphi(1)$ et $\varphi(0)$
- (d) Considérer $\psi = P\varphi P^{-1}$ et montrer que $GL_n(\mathbb{C})$ est connexe par arcs
- 3. Que dire de $GL_n(\mathbb{R})$?

Problème 5: Composantes connexes dans $\mathrm{GL}_n\left(\mathbb{R}\right)$

- 1. On note $\mathrm{SL}_n\left(\mathbb{R}\right)=\{M\in\mathrm{GL}_n\mid\det(M)=1\}$ le groupe spécial linéaire. On admet que $\mathrm{SL}_n\left(\mathbb{R}\right)$ est engendré par les transvections $T_{i,j}(\lambda)=I_n+\lambda E_{i,j},\ 1\leqslant i,j\leqslant n,\ i\neq j$ et $\lambda\in\mathbb{R}$.
 - (a) Montrer que $\mathrm{SL}_n(\mathbb{R})$ est connexe par arcs. On pourra relier toute matrice M à I_n .
 - (b) $\mathrm{SL}_n\left(\mathbb{R}\right)$ est-il étoilé en I_n ?
- 2. On note $\operatorname{GL}_n^+(\mathbb{R}) = \{ M \in \operatorname{GL}_n(\mathbb{R}) \mid \det(M) > 0 \}$. Soit $M, M' \in \operatorname{GL}_n^+(\mathbb{R})$ et pour $\alpha \in \mathbb{R}$, on pose $D(\alpha) = \operatorname{diag}(1, 1, \dots, 1, \alpha)$.
 - (a) Justifier l'existence de $N, N' \in SL_n(\mathbb{R})$ et $\alpha, \alpha' > 0$, telles que $M = D(\alpha)N$ et $M' = D(\alpha')N'$.
 - (b) En utilisant que $SL_n(\mathbb{R})$ est connexe par arcs, relier les deux matrices M et M' par un chemin continu et inclus dans $GL_n^+(\mathbb{R})$. Conclure

Problème de révision Enoncé

Les classiques de la topologie dans $M_n(\mathbb{K})$

- 3. On pose $\operatorname{GL}_n^-(\mathbb{R})=\{M\in\operatorname{GL}_n(\mathbb{R})\mid \det(M)<0\}$ et soit $\sigma\in\operatorname{GL}_n^-(\mathbb{R}).$
 - (a) Montrer que l'application $\gamma:\left\{\begin{array}{ccc} \mathrm{M}_{n}\left(\mathbb{R}\right) & \longrightarrow & \mathrm{M}_{n}\left(\mathbb{R}\right)\\ M & \longmapsto & \sigma M \end{array}\right.$ est continue
 - (b) Montrer que $GL_n^-(\mathbb{R}) = \gamma \left(GL_n^+(\mathbb{R}) \right)$
 - (c) En déduire que $\mathrm{GL}_n^-(\mathbb{R})$ est connexe par arcs

Problème 6: Groupe orthogonal d'ordre $n \ge 2$

On rappelle $\mathcal{O}_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid {}^t A A = I_n \}$

- 1. (a) Montrer que l'application $A \mapsto {}^{t}AA$ est continue sur $M_{n}(\mathbb{R})$;
 - (b) Montrer que $\mathcal{O}_n(\mathbb{R})$ est compact.
- 2. Montrer que $O_n(\mathbb{R})$ n'est pas connexe par arcs.
- 3. Montrer que $SO_n(\mathbb{R}) = \{A \in \mathcal{O}_n(\mathbb{R}) \mid \det A = 1\}$ est compact.

Problème 7: Densité des matrices diagonalisables dans $M_n\left(\mathbb{C}\right)$

Soit A une matrice de $M_n(\mathbb{C})$

1. Justifier que A est semblable à une matrice triangulaire supérieure.

On pose
$$T = \begin{pmatrix} \lambda_1 & ? & \cdots & ? \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & ? \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$
 telle que $A = PTP^{-1}$ où $P \in GL_n(\mathbb{C})$

- 2. On pose $\alpha = \begin{cases} 1 \text{ si } \forall i, j \in \llbracket 1, n \rrbracket, \ \lambda_i = \lambda_j \\ \inf \{ |\lambda_i \lambda_j|, \ |\lambda_i \neq \lambda_j \} \end{cases}$ et on définit la suite de matrices $(T_k)_{k \geqslant 1}$ par $T_k = T + \Delta_k$, où $\Delta_k = \operatorname{diag}\left(\frac{\alpha}{k}, \frac{\alpha}{2k}, \cdots, \frac{\alpha}{nk}\right)$
 - (a) Montrer que T_k admet n valeurs propres distinctes deux à deux.
 - (b) Montrer que $A_k = PT_kP^{-1}$ est diagonalisable
 - (c) Déterminer la limite de la suite $(A_k)_{k\geq 1}$
- 3. Montrer que l'ensemble des matrices diagonalisables est dense dans $M_n(\mathbb{C})$
- 4. Le résultat reste-t-il vrai dans $M_n(\mathbb{R})$?

Problème 8: Matrice de rang $\leq r$

Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$ On appelle matrice extraite de A toute matrice B obtenue de A en supprimant un certain nombre de lignes ou de colonnes. Soit r un entier naturel, avec $r \leq n$. On admet les deux résultats suivant : Pour tout $A \in \mathcal{M}_n(\mathbb{K})$

(i) Si le rang de A est égal à r alors il existe une matrice extraite carrée d'ordre r de la matrice A qui est inversible.

3

Les classiques de la topologie dans $\mathrm{M}_{n}\left(\mathbb{K}\right)$

- (ii) S'il existe une matrice extraite de la matrice A, qui soit d'ordre r et inversible, alors le rang de A est supérieur ou égal à r.
- 1. On notera $R_r = \{A \in \mathcal{M}_n(\mathbb{K}) \mid \operatorname{rg}(A) = r\}$ et $R_r^- = \{A \in \mathcal{M}_n(\mathbb{K}) \mid \operatorname{rg}(A) \leqslant r\}$. On définit la fonction f de $\mathcal{M}_n(\mathbb{K})$ à valeurs dans \mathbb{R} par:

$$f(A) = \sum_{\substack{B \text{ extraite de } A \\ \text{Ordre de } B > r}} |\det(B)|$$

La somme étant prise sur toutes les matrices carrées B extraites de A et d'ordre supérieure strictement à r

- (a) Justifier que f est continue sur $M_n(\mathbb{K})$
- (b) Montrer qu'une matrice $A \in \mathbb{R}_r^-$ si et seulement si f(A) = 0
- (c) En déduire que R_r^- est un fermé de $\mathcal{M}_n\left(\mathbb{K}\right)$
- 2. **Application:** Soit $(M_p)_{p\in\mathbb{N}}$ une suite de $\mathrm{M}_n\left(\mathbb{K}\right)$ convergeant vers une matrice M du rang r
 - (a) Justifier que $\{A \in \mathcal{M}_n(\mathbb{K}), \mathbf{rg}(A) \geq r\}$ est ouvert de $\mathcal{M}_n(\mathbb{K})$
 - (b) Montrer que pour p assez grand, on a dim $Ker(M_p) \leq \dim Ker(M)$
- 3. Prouver que l'adhérence de R_r est inclus dans R_r^-
- 4. Inversement, si $A \in \mathbb{R}_r^-$
 - (a) Justifier que A s'écrit: $A=P\begin{pmatrix}I_{\alpha}&0\\0&0\end{pmatrix}Q$ où $P,Q\in\mathrm{GL}_{n}\left(\mathbb{K}\right)$ et $0\leqslant\alpha\leqslant r.$
 - (b) Construire une suite de matrices $(A_k)_{k\in\mathbb{N}^*}$ de rang r convergeant vers A.
- 5. Conclure que $\overline{R_r} = R_r^-$
- 6. Montrer que $\mathrm{GL}_n\left(\mathbb{K}\right)$ est dense dans $\mathrm{M}_n\left(\mathbb{K}\right)$

Les classiques de la topologie dans $\mathrm{M}_{n}\left(\mathbb{K}\right)$

Problème 1: $GL_p(\mathbb{K})$ est un ouvert dense dans $M_p(\mathbb{K})$

- 1. L'application $E_{ij}^*: \begin{cases} M_p(\mathbb{K}) & \longrightarrow & \mathbb{K} \\ (a_{k\ell})_{1\leqslant k,\ell\leqslant n} & \longmapsto & a_{ij} \end{cases}$ est linéaire et $M_p(\mathbb{K})$ est de dimension finie, donc elle continue. \mathbb{K} étant une \mathbb{K} -algèbre normée et par la formule de Leibniz det $=\sum_{\sigma\in S_n} \varepsilon(\sigma) \prod_{i=1}^n E_{i\sigma(i)}^*$, l'application det est continue est continue sur $M_p(\mathbb{K})$
- 2. On a

$$A \in \mathrm{GL}_p(\mathbb{K}) \iff \det(A) \neq 0$$

 $\iff \det(A) \in \mathbb{K}^*$
 $\iff A \in \det^{-1}(\mathbb{K}^*)$

Alors $GL_p(\mathbb{K}) = \det^{-1}(\mathbb{K}^*)$, avec \mathbb{K}^* ouvert dans \mathbb{K} et det est continue, donc $GL_p(\mathbb{K})$ est ouvert dans de $M_p(\mathbb{K})$.

- 3. Soit $A \in M_p(\mathbb{K})$.
 - (a) Rappelons que $Sp(A) \setminus \{0\}$ est un ensemble fini de cardinal inférieur ou égal p.
 - Si Sp $(A) \setminus \{0\} = \emptyset$, alors on prend α quelconque dans \mathbb{R}_+^* . Alors pour tout $\lambda \in]0, \alpha[$, on a $\lambda \notin \operatorname{Sp}(A)$, donc $\chi_A(\lambda) \neq 0$
 - Sinon soit $\alpha = \min\{|z| \ , \ z \in \operatorname{Sp}(A) \setminus \{0\}\}$. Alors pour tout $\lambda \in]0, \alpha[$, on a $\chi_A(\lambda) \neq 0$, car sinon λ sera une racine non nulle de χ_A et par suite $\lambda = |\lambda| \geqslant \alpha$. Absurde

Bref $\exists \alpha > 0, \forall \lambda \in]0, \alpha[, \chi_A(\lambda) \neq 0.$

- (b) Soit $n \in \mathbb{N}^*$, on a $\frac{\alpha}{2n} \in]0, \alpha[$, donc $\det(A_n) = \det(A \frac{\alpha}{2n}I_p) = (-1)^p \chi_A\left(\frac{\alpha}{2n}\right) \neq 0$. Donc $A_n \in \mathrm{GL}_p\left(\mathbb{K}\right)$
- 4. Soit $A \in \mathcal{M}_p(\mathbb{K})$. D'après la question 3a il existe $\alpha \in \mathbb{R}_+^*$ tel que $\forall \lambda \in]0, \alpha[, \chi_A(\lambda) \neq 0$. Posons $A_n = A \frac{\lambda}{2n}I_p$, alors la suite $(A_n)_{n\geqslant 1}$ est d'éléments de $\mathrm{GL}_p(\mathbb{K})$ vérifiant $||A_n A|| = \frac{\alpha}{2n}||I_p|| \xrightarrow[n \to +\infty]{} 0$, donc $A_n \xrightarrow[n \to +\infty]{} A$
- 5. **Application:** Soit $A, B \in M_p(\mathbb{K})$
 - (a) Si $A \in GL_p(\mathbb{K})$, alors AB et $BA = A^{-1}(AB)A$ sont semblables, donc elles ont le même polynôme caractéristique et, par suite $\forall \lambda \in \mathbb{K}, \chi_{AB}(\lambda) = \chi_{BA}(\lambda)$.
 - (b) Soit $\lambda \in \mathbb{K}$. Les deux applications

$$\psi_1: \left\{ \begin{array}{ccc} \mathcal{M}_p\left(\mathbb{K}\right) & \longrightarrow & \mathbb{K} \\ A & \longmapsto & \det\left(\lambda I_p - AB\right) \end{array} \right. \quad \text{et} \quad \psi_2: \left\{ \begin{array}{ccc} \mathcal{M}_p\left(\mathbb{K}\right) & \longrightarrow & \mathbb{K} \\ A & \longmapsto & \det\left(\lambda I_p - BA\right) \end{array} \right.$$

sont continues et elles coïncident sur $\mathrm{GL}_{p}(\mathbb{K})$ qui est dense dans $\mathrm{M}_{p}(\mathbb{K})$, donc elles sont égales.

PROBLÈME 2: Propriétés topologiques de l'ensemble des matrices nilpotentes

1. Soit

$$\varphi_{1}:\left\{\begin{array}{ccc} \mathbf{M}_{n}\left(\mathbb{K}\right) & \longrightarrow & \mathbf{M}_{n}\left(\mathbb{K}\right)^{n} \\ A & \longmapsto & (A,\cdots,A) \end{array}\right. \quad \text{et} \quad \varphi_{2}:\left\{\begin{array}{ccc} \mathbf{M}_{n}\left(\mathbb{K}\right)^{n} & \longrightarrow & \mathbf{M}_{n}\left(\mathbb{K}\right) \\ \left(A_{1},\cdots,A_{n}\right) & \longmapsto & \prod_{i=1}^{n}A_{i} \end{array}\right.$$

 φ_1 est continue en dimension finie, donc elle est continue et φ_2 est *n*-linéaire en dimension finie, donc elle est continue. Ainsi $f = \varphi_2 \circ \varphi_1$ est continue par composition.

2. Soit $M \in M_n(\mathbb{K})$, on a

$$M \in N_n(\mathbb{K}) \iff M^n = 0 \iff f(M) = 0 \iff f(M) \in \{0\} \iff M \in f^{-1}(\{0\})$$

Alors $N_n\left(\mathbb{K}\right)=f^{-1}\left(\{0\}\right)$, avec $\{0\}$ fermé dans $\mathcal{M}_n\left(\mathbb{K}\right)$ et f est continue, donc $N_n\left(\mathbb{K}\right)$ est fermé dans de $\mathcal{M}_n\left(\mathbb{K}\right)$

- 3. Pour $p \in \mathbb{N}$, on pose $A_p = pE_{1,n} = \begin{pmatrix} 0 & \cdots & 0 & p \\ \hline 0 & \cdots & 0 & 0 \\ \vdots & (0) & \vdots & \vdots \\ 0 & \cdots & 0 & 0 \end{pmatrix}$. Alors pour tout $p \in \mathbb{N}$, on a $A_p \in N_n(\mathbb{K})$ et $\|A_p\| = p \|E_{1,n}\| \xrightarrow[p \to +\infty]{} +\infty$, donc $N_n(\mathbb{K})$ n'est pas borné.
- 4. Soit $A \in \mathcal{N}_n(\mathbb{K})$
 - (a) A est nilpotente, donc $\operatorname{Sp}_{\mathbb{K}}(A) = \{0\}$, donc A n'est pas inversible.
 - (b) Soit $\varepsilon > 0$. Par absurde si $\mathcal{B}(A, \varepsilon) \nsubseteq \mathcal{N}_n(\mathbb{K})$. Mais $\operatorname{GL}_n(\mathbb{K})$ est dense dans $\operatorname{M}_n(\mathbb{K})$, alors $\mathcal{B}(A, \varepsilon) \cap \operatorname{GL}_n(\mathbb{K}) \neq \emptyset$, donc la boule $\mathcal{B}(A, \varepsilon)$ contient une matrice inversible et, par suite, l'ensemble $N_n(\mathbb{K})$ contient une matrice inversible. Absurde
 - (c) Si $\widehat{\mathcal{N}_n(\mathbb{K})} \neq \emptyset$, alors il existe $A \in \mathcal{N}_n(\mathbb{K})$ et $\varepsilon > 0$ tel que $\mathcal{B}(A, \varepsilon) \subset \mathcal{N}_n(\mathbb{K})$. Absurde, vu le résultat de la question précédente
- 5. On a $\mathcal{O}_n \in N_n(\mathbb{K})$. Soit $N \in N_n(\mathbb{K})$, montrons $[\mathcal{O}_n, N] \subset N_n(\mathbb{K})$. Soit $t \in [0, 1]$, on a $(tN)^n = t^n N^n = \mathcal{O}_n$, donc $tN \in N_n(\mathbb{K})$. Donc $N_n(\mathbb{K})$ est étoilée en \mathcal{O}_n . En fin Toue partie étoilée est connexe par arcs.

Problème 3: Matrices stochastiques

1. • Montrons que $C_p(\mathbb{R})$ est fermé. Pour $i, j \in [1, p]$, on pose

$$\psi_{i,j}: \left\{ \begin{array}{ccc} \mathbf{M}_p\left(\mathbb{R}\right) & \longrightarrow & \mathbb{R} \\ \left(m_{k,\ell}\right)_{1\leqslant k,\ell\leqslant p} & \longmapsto & m_{i,j} \end{array} \right.$$

et pour $j \in [1, p]$ on pose

$$S_{j}: \left\{ \begin{array}{ccc} \mathbf{M}_{p}\left(\mathbb{R}\right) & \longrightarrow & \mathbb{R} \\ \left(m_{k,\ell}\right)_{1 \leqslant k,\ell \leqslant p} & \longmapsto & \sum_{l=0}^{p} m_{i,j} \end{array} \right.$$

Les applications considérées sont linéaires et dim $M_p(\mathbb{R}) < +\infty$, donc elles sont continues. Soit $M = (m_{i,j})_{1 \le i,j \le p} \in M_p(\mathbb{R})$, on a:

$$M \in \mathcal{C}_{p}(\mathbb{R}) \iff \begin{cases} \forall i, j \in [[1, p]], & \psi_{i, j}(M) \geqslant 0 \\ \forall j \in [[1, p]], & S_{j}(M) = 1 \end{cases}$$

$$\iff \begin{cases} \forall i, j \in [[1, p]], & M \in \psi_{i, j}^{-1}([0, +\infty[)]) \\ \forall j \in [[1, p]], & M \in S_{j}^{-1}(\{1\}) \end{cases}$$

Donc

$$C_{p}\left(\mathbb{R}\right) = \left(\bigcap_{1 \leq i, j \leq p} \psi_{i,j}^{-1}\left([0, +\infty[\right)\right) \cap \left(\bigcap_{j=1}^{p} S_{j}^{-1}\left(\{1\}\right)\right)$$

Pour tous i, j $[\![1, p]\!]$, les ensembles $\psi_{i,j}^{-1}$ ($[\![0, +\infty[\!]]$) et S_j^{-1} ($\{1\}$) sont des fermés, car ils sont des images réciproques des fermés par des applications continues, en conséquence $\mathcal{C}_p(\mathbb{R})$ est fermé comme intersection de fermés

6

• Montrons que $C_p(\mathbb{R})$ est borné. Soit $M=(m_{i,j})_{1\leqslant i,j\leqslant p}\in C_p(\mathbb{R}),$ on a

$$||M||_1 = \max_{1 \le j \le p} \left(\sum_{i=1}^p |m_{i,j}| \right) = \max_{1 \le j \le p} \left(\sum_{i=1}^p m_{i,j} \right) = 1$$

Donc $C_p(\mathbb{R})$ est borné. L'espace $M_p(\mathbb{R})$ est de dimension finie, donc $C_p(\mathbb{R})$ est compact de $M_p(\mathbb{R})$.

• Montrons que $C_p(\mathbb{R})$ est convexe. Soit $A = (a_{i,j})_{1 \leqslant i,j \leqslant p}$ et $B = (b_{i,j})_{1 \leqslant i,j \leqslant p}$ deux matrices de $C_p(\mathbb{R})$. Pour tout $t \in [0,1]$, on a $tA + (1-t)B = (ta_{i,j} + (1-t)b_{i,j})_{1 \leqslant i,j \leqslant p}$ et

$$\forall i, j \in [1, p], \quad ta_{i,j} + (1-t)b_{i,j} \ge 0$$

Et pour tout $j \in [1, p]$,

$$\sum_{i=1}^{p} t a_{i,j} + (1-t)b_{i,j} = t \sum_{i=1}^{p} a_{i,j} + (1-t) \sum_{i=1}^{p} b_{i,j} = t + (1-t) = 1$$

Donc $tA + (1 - t)B \in \mathcal{C}_p(\mathbb{R})$. D'où $[A, B] \subset \mathcal{C}_p(\mathbb{R})$

- 2. (a) $f: \left\{ \begin{array}{ccc} \mathrm{M}_p\left(\mathbb{R}\right) & \longrightarrow & \mathbb{R} \\ A & \longmapsto & \mathrm{Tr}\left(A\right) \end{array} \right.$ est linéaire et $\dim \mathrm{M}_p\left(\mathbb{R}\right) < +\infty$, donc f est continue
 - (b) f est continue à valeurs dans \mathbb{R} et $\mathcal{C}_p(\mathbb{R})$ est compact, donc f est bornée sur $\mathcal{C}_p(\mathbb{R})$ et atteint ses bornes.
 - Soit $M = (m_{i,j})_{1 \le i,j \le p} \in \mathcal{C}_p(\mathbb{R})$, on a:

$$0 \leqslant m_{i,i} \leqslant \sum_{k=1}^{p} m_{k,i} = 1$$

Donc $0 \leqslant f(M) \leqslant p$. Or $I_p \in \mathcal{C}_p(\mathbb{R})$ et $f(I_p) = p$, donc $p = \max f(\mathcal{C}_p(\mathbb{R}))$. En outre pour $J = \max f(\mathcal{C}_p(\mathbb{R}))$

$$\begin{pmatrix} 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & \cdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_p(\mathbb{R}), \text{ on a } J \in \mathcal{C}_p(\mathbb{R}) \text{ et } f(J) = 0, \text{ donc } 0 = \min f(\mathcal{C}_p(\mathbb{R})).$$

- - f étant continue et $f(\mathcal{C}_p(\mathbb{R}))$ est connexe par arcs, donc $f(\mathcal{C}_p(\mathbb{R}))$ est un intervalle
 - $f(\mathcal{C}_p(\mathbb{R})) \subset [0,p]$
 - Comme $0, p \in f(\mathcal{C}_p(\mathbb{R})), \text{ donc } [0, p] \subset f(\mathcal{C}_p(\mathbb{R}))$

Problème 4: Connexité par arcs de $GL_n(\mathbb{K})$ et de $M_n(\mathbb{K}) \setminus GL_n(\mathbb{K})$

- 1. (a) On a $\mathcal{O}_n \in M_n(\mathbb{K}) \setminus GL_n(\mathbb{K})$. Soit $N \in M_n(\mathbb{K}) \setminus GL_n(\mathbb{K})$, montrons $[\mathcal{O}_n, N] \subset M_n(\mathbb{K}) \setminus GL_n(\mathbb{K})$. Soit $t \in [0,1]$, on a det (tN) = 0, donc $tN \in M_n(\mathbb{K}) \setminus GL_n(\mathbb{K})$. Donc $M_n(\mathbb{K}) \setminus GL_n(\mathbb{K})$ est étoilée en \mathcal{O}_n .
 - (b) Toue partie étoilée est connexe par arcs.
- 2. Soit $A \in GL_n(\mathbb{C})$
 - (a) Toute matrice complexe est trigonalisable, alors il existe $P \in \operatorname{GL}_{\mathbf{n}}(\mathbb{C})$ et une matrice $T = \begin{pmatrix} m_{11} & \cdots & \cdots & m_{1n} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & m_{nn} \end{pmatrix}$

triangulaire supérieure telles que $A = PTP^{-1}$. De plus $\prod_{k=1}^{n} m_{k,k} = \det(T) = \det(A) \neq 0$, donc $\forall k \in [1, n]$, $m_{k,k} \neq 0$

Problème de révision

Les classiques de la topologie dans $M_n(\mathbb{K})$

(b) Pour tout $k \in [1, p]$, l'application:

$$\varphi_{k,k}: \left\{ \begin{array}{ccc} [0,1] & \longrightarrow & \mathbb{C} \\ t & \longmapsto & \rho_k^t e^{it\theta_k} \end{array} \right.$$

est continue. De plus pour tout $i \neq j \in [1, n]$, l'application affine

$$\varphi_{i,j}: \left\{ \begin{array}{ccc} [0,1] & \longrightarrow & \mathbb{C} \\ t & \longmapsto & tm_{i,j} \end{array} \right.$$

est continue. Donc φ est continue sur [0,1], car ses fonctions composantes sont continues sur [0,1]

- (c) Soit $t \in [0, 1]$, on a det $\varphi(t) = \left(\prod_{k=1}^{n} \rho_{k}\right)^{t} e^{it} \sum_{k=1}^{n} \theta_{k}$ (d) L'application $S: \left\{\begin{array}{c} M_{n}(\mathbb{C}) & \longrightarrow & M_{n}(\mathbb{C}) \\ M & \longmapsto & PMP^{-1} \end{array}\right.$ est continue, car elle est linéaire et dim $M_{n}(\mathbb{C}) < +\infty$.

 Alors $\psi = S \circ \varphi: [0, 1] \longrightarrow M_{n}(\mathbb{C})$ est continue par composition. En fin pour tout $t \in [0, 1]$, on a $\det(\psi(t)) = \det(\varphi(t)) \neq 0$, donc $\psi(t) \in GL_n(\mathbb{C})$, donc $\psi: [0,1] \longrightarrow GL_n(\mathbb{C})$ est continue, avec $\psi(0) = I_n$ et $\psi(1) = A$. Soit maintenant $A, B \in \mathrm{GL}_{\mathrm{n}}(\mathbb{C})$, on sait qu'il existe un chemin dans $\mathrm{GL}_{\mathrm{n}}(\mathbb{C})$ joignant A et I_n et un autre joignant B et I_n , donc il existe un chemin dans $\mathrm{GL}_n(\mathbb{C})$ joignant A et B. Ainsi $\mathrm{GL}_n(\mathbb{C})$ est connexe par arcs
- 3. Comme det $(GL_n(\mathbb{R})) = \mathbb{R}^*$, det est continue et \mathbb{R} n'est pas connexe par arcs, alors $GL_n(\mathbb{R})$ n'est pas connexe par arcs.

Problème 5: Composantes connexes dans $GL_n(\mathbb{R})$

- 1. (a) Remarquons d'abord que $T_{i,j}^{-1}(\lambda) = T_{i,j}(-\lambda)$. Soit $M \in \mathrm{SL}_n(\mathbb{R})$, alors il existe des transvections $(T_{i_k,j_k}(\lambda_k))_{k=1}^p$ telles que $M = \prod_{k=1}^p T_{i_k,j_k}(\lambda_k)$. Pour $k \in [\![1,p]\!]$, on pose $\psi_k : \left\{ \begin{array}{cc} [0,1] & \longrightarrow & \mathrm{M}_n(\mathbb{R}) \\ t & \longmapsto & T_{i_k,j_k}(t\lambda_k) \end{array} \right.$ De telles fonctions ψ_k sont continues car leurs fonctions coordonnées sont continues et comme $\mathrm{M}_n(\mathbb{R})$ est une \mathbb{R} -algèbre normée, alors $\psi: \left\{ \begin{array}{ccc} [0,1] & \longrightarrow & \mathrm{M}_n\left(\mathbb{R}\right) \\ t & \longmapsto & \prod_{k=1}^p T_{i_k,j_k}\left(t\lambda_k\right) \end{array} \right. \text{ est continue sur } [0,1] \text{ et } \forall t \in [0,1], \text{ on a } \det(\psi(t)) = 1$ c'est-à-dire $\psi(t) \in \mathrm{SL}_n(\mathbb{R})$. En outre $\psi(0) = I_n$ et $\psi(1) = M$. Donc il existe un chemin dans $\mathrm{SL}_n(\mathbb{R})$ joignant I_n et M. Soit maintenant $M, N \in \mathrm{SL}_n(\mathbb{R})$, on sait qu'il existe un chemin dans $\mathrm{SL}_n(\mathbb{R})$ joignant Met I_n et un autre joignant N et I_n , donc il existe un chemin dans $\mathrm{SL}_n\left(\mathbb{R}\right)$ joignant M et N. Ainsi $\mathrm{SL}_n\left(\mathbb{R}\right)$
 - (b) Pour n=2, on pose $M=\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathrm{SL}_2\left(\mathbb{R}\right)$, mais $\mathcal{O}_2=\frac{1}{2}I_n+\frac{1}{2}M \notin \mathrm{SL}_2\left(\mathbb{R}\right)$, donc $\mathrm{SL}_2\left(\mathbb{R}\right)$ n'est pas
- (a) Soit $\alpha = \det(M)$ et $\alpha' = \det(M')$, puis on pose $N = D\left(\frac{1}{\alpha}\right)M$ et $N' = D\left(\frac{1}{\alpha'}\right)M'$, alors $\alpha, \alpha' > 0$ et $\det(N) = \det(N') = 1$. Les nombres α et α' et les matrices N et N' vérifient les conditions demandées
 - (b) Soit $\gamma_2: [0,1] \longrightarrow \operatorname{SL}_n(\mathbb{R})$ un chemin joignant $\gamma_2(0) = N$ et $\gamma_2(1) = N'$ et soit $\gamma_1: \left\{ \begin{array}{cc} [0,1] & \longrightarrow & \operatorname{M}_n(\mathbb{R}) \\ t & \longmapsto & D\left((1-t)\alpha + \alpha' t\right) \end{array} \right.$ L'application γ_1 est continue car ses fonctions coordonnées est continue sur [0,1] et par le produit $\gamma = 1$ $\gamma_1.\gamma_2:[0,1]\longrightarrow \mathrm{M}_n\left(\mathbb{R}\right)$ est continue et elle vérifie $\forall t\in[0,1],\,\det(\gamma(t))=(1-t)\alpha+\alpha't>0$ et $\gamma(0)=M$ et $\gamma(1)=M'$, c'est-à-dire γ est un chemin dans $\mathrm{GL}_n^+(\mathbb{R})$ joignant M et M'. Donc $\mathrm{GL}_n^+(\mathbb{R})$ est connexe par
- 3. On pose $GL_n^-(\mathbb{R}) = \{ M \in GL_n(\mathbb{R}) \mid \det(M) < 0 \}$ et soit $\sigma \in GL_n^-(\mathbb{R})$.

- (a) L'application $\gamma: \left\{ \begin{array}{ccc} \mathrm{M}_n\left(\mathbb{R}\right) & \longrightarrow & \mathrm{M}_n\left(\mathbb{R}\right) \\ M & \longmapsto & \sigma M \end{array} \right.$ est linéaire et $\dim \mathrm{M}_n\left(\mathbb{R}\right) < +\infty$, donc elle est continue
- (b) Soit $M \in \operatorname{GL}_n^+(\mathbb{R})$, alors $\det(\sigma M) = \underbrace{\det(\sigma)\det(M)}_{<0} < 0$, donc $\gamma(M) \in \operatorname{GL}_n^-(\mathbb{R})$, puis $\gamma\left(\operatorname{GL}_n^+(\mathbb{R})\right) \subset \operatorname{GL}_n^-(\mathbb{R})$. Inversement soit $N \in \operatorname{GL}_n^-(\mathbb{R})$, on pose $M = \sigma^{-1}N$, on a bien $M \in \operatorname{GL}_n^+(\mathbb{R})$, car $\det(M) = \det(\sigma^{-1})\det(N) = \underbrace{\det(\sigma^{-1})\det(N)}_{<0} > 0$ et $\gamma(M) = \sigma M = N$, donc $N \in \gamma\left(\operatorname{GL}_n^+(\mathbb{R})\right)$ et par suite $\operatorname{GL}_n^-(\mathbb{R}) \subset \gamma\left(\operatorname{GL}_n^+(\mathbb{R})\right)$
- (c) Comme $\mathrm{GL}_n^-(\mathbb{R}) = \gamma\left(\mathrm{GL}_n^+(\mathbb{R})\right)$, γ est continue et $\mathrm{GL}_n^+(\mathbb{R})$ es connexe par arcs, alors $\mathrm{GL}_n^-(\mathbb{R}) = \gamma\left(\mathrm{GL}_n^+(\mathbb{R})\right)$ est connexe par arcs

Problème 6: Groupe orthogonal d'ordre $n \ge 2$

1. (a) Posons

$$g:\left\{\begin{array}{ccc} \mathbf{M}_{n}\left(\mathbb{R}\right) & \longrightarrow & \left(\mathbf{M}_{n}\left(\mathbb{R}\right)^{2} \\ M & \longmapsto & \left(M,{}^{t}M\right) \end{array}\right., \quad h:\left\{\begin{array}{ccc} \mathbf{M}_{n}\left(\mathbb{R}\right)^{2} & \longrightarrow & \mathbf{M}_{n}\left(\mathbb{R}\right) \\ \left(M,N\right) & \longmapsto & MN \end{array}\right. \quad \text{puis } f:\left\{\begin{array}{ccc} \mathbf{M}_{n}\left(\mathbb{R}\right) & \longrightarrow & \mathbf{M}_{n}\left(\mathbb{R}\right) \\ M & \longmapsto & M^{t}M \end{array}\right.$$

g est continue sur $\mathcal{M}_n(\mathbb{R})$ car linéaire sur un espace de dimension finie. h est continue sur $(M_n(\mathbb{R}))^2$ car bilinéaire sur un espace de dimension finie. On en déduit que $f = h \circ g$ est continue sur $\mathcal{M}_n(\mathbb{R})$.

- (b) $O_n(\mathbb{R}) = f^{-1}(I_n)$ est fermé en tant qu'image réciproque d'un fermé par une application continue.
 - Montrons que $O_n(\mathbb{R})$ est borné. $\forall A \in O_n(\mathbb{R}), \ \forall (i,j) \in [1,n]^2, \ |a_{i,j}| \leq 1$ et donc $\forall A \in O_n(\mathbb{R}), \ \|A\|_{\infty} \leq 1$.

Puisque $O_n(\mathbb{R})$ est un fermé borné de l'espace de dimension finie $\mathcal{M}_n(\mathbb{R})$, $O_n(\mathbb{R})$ est un compact de $\mathcal{M}_n(\mathbb{R})$.

- 2. Si $O_n(\mathbb{R})$ est connexe par arcs, alors $\det(O_n(\mathbb{R})) = \{-1,1\}$ est connexe par arcs dans puisqu'il est l'mage d'un connexe par arcs par une fonction continue. Absurde
- 3. $SO_n(\mathbb{R}) = \{A \in \mathcal{O}_n(\mathbb{R}) \mid \det A = 1\} = O_n(\mathbb{R}) \cap \det^{-1}(\{1\}) \text{ est fermé et inclus dans le compact } O_n(\mathbb{R}), \text{ donc il s'agit d'un compact}$

Problème 7: Densité des matrices diagonalisables dans $M_n(\mathbb{C})$

- 1. Toute matrice complexe est trigonalisable
- 2. (a) Soit $k \ge 1$, notons que le spectre de T_k est $\left\{\lambda_i + \frac{\alpha}{ik}, i \in [\![1,n]\!]\right\}$. Soit $i \ne j \in [\![1,n]\!]$.
 - Si $\lambda_i = \lambda_j$, alors $\lambda_i + \frac{1}{ik} \neq \lambda_j + \frac{1}{jk}$
 - Si $\lambda_i \neq \lambda_j$, alors $\lambda_i + \frac{1}{ik} = \lambda_j + \frac{1}{ik}$ entraı̂ne $|\lambda_i \lambda_j| = \frac{\alpha}{k} \left| \frac{1}{i} \frac{1}{i} \right| < \frac{\alpha}{k} \leqslant \alpha$

ce qui contredit la définition de α et donc les valeurs propres T_k sont deux à deux distinctes

- (b) Pour tout $k \in \mathbb{N}^*$, la matrice A_k est semblable à T_k , donc elle est diagonalisable de n valeures propres distinctes deux à deux.
- (c) $T_k = T + \Delta_k \xrightarrow[k \to +\infty]{} T$ et par continuité de l'application $M \longmapsto PMP^{-1}$, alors $A_k \xrightarrow[k \to +\infty]{} A$
- 3. Pour $A \in M_n(\mathbb{C})$, la suite construite $(A_k)_{k \geqslant 1}$ est une suite de matrices admettant n valeurs propres distinctes qui tend vers A. D'où la densité demandée

Les classiques de la topologie dans $\mathrm{M}_{n}\left(\mathbb{K}\right)$

4. Le résultat précédent est faux sur $M_n(\mathbb{R})$. Dans le cas n=2, l'application $\varphi: M_2(\mathbb{R}) \longrightarrow \mathbb{R}$ qui associe à une matrice $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ le discriminant de son polynôme caractéristique:

$$\varphi(M) = (a-d)^2 + 4bc$$

 φ est continue car pour toute $M \in M_2(\mathbb{R})$, l'expression de $\varphi(M)$ est un polynôme en les coefficients de M. Donc si on choisit une matrice A dont le discriminant de son polynôme caractéristique est strictement négatif et on suppose qu'il existe une suite de matrices réelles diagonalisables $(A_k)_{k\geqslant 0}$ telle que $A_k \xrightarrow[k\to+\infty]{} A$, alors $\varphi(A_k) \xrightarrow[k\to+\infty]{} \varphi(A)$. Mais pour tout $k \in \mathbb{N}$, le polynôme χ_{A_k} est scindè, donc $\varphi(A_k) \geqslant 0$ et par passage à la limite $\varphi(A) \geqslant 0$. Absurde

PROBLÈME 8: Matrice de rang $\leq r$

- 1. (a) Pour toute matrice carrée B extraite $\det(B)$ est un polynôme en les coefficients de A. En outre $|.|: \mathbb{K} \longrightarrow \mathbb{R}_+$ est continue, donc par composition puis par somme des fonctions continues l'application f est continue
 - (b) Soit $A \in M_n(\mathbb{K})$. Alors f(A) = 0 si, et seulement, si le déterminant de toute matrice extraite de A d'ordre > r est nul si, et seulement, si toute matrice extraite de A d'ordre > r est non inversible si, et seulement, si $A \in R_r^-$
 - (c) $A \in R_r^-$ si et seulement si $A \in f^{-1}(\{0\})$, donc $R_r^- = f^{-1}(\{0\})$ est l'image réciproque d'un fermé par une application continue, donc c'est un fermé de $M_n(\mathbb{K})$
- 2. **Application:** Soit $(M_p)_{p\in\mathbb{N}}$ une suite de $M_n(\mathbb{K})$ convergeant vers une matrice M du rang r
 - (a) On a $R_{+}^{r}=\left\{A\in\mathcal{M}_{n}\left(\mathbb{K}\right)\;,\;\mathbf{rg}(A)\geqslant r\right\}=\left\{A\in\mathcal{M}_{n}\left(\mathbb{K}\right)\;,\;\mathbf{rg}(A)>r-1\right\}=\mathcal{C}_{\mathcal{M}_{n}\left(\mathbb{K}\right)}^{R_{r-1}^{-}}$ est le complémentaire d'un fermé de $\mathcal{M}_{n}\left(\mathbb{K}\right)$
 - (b) Comme $M \in R_+^r$ et R_+^r est ouvert, alors il existe $\varepsilon > 0$ tel que $B(M, \varepsilon) \subset R_+^r$. Par hypothèse $M_p \xrightarrow[p \to +\infty]{} M$, alors il existe p_0 tel que pour tout $p \geqslant p_0$: $M_p \in B(M, \varepsilon)$, soit $\mathbf{rg}(M_p) \geqslant \mathbf{rg}(M)$ ou encore, par le théorème du rang, dim $\mathrm{Ker}(M_p) \leqslant \dim \mathrm{Ker}(M)$
- 3. R_r^- contient R_r et est fermé, donc $\overline{R_r} \subset \overline{R_r^-} = R_r^-$
- 4. (a) Soit $\alpha = \mathbf{rg}(A)$, alors A s'écrit: $A = P\begin{pmatrix} I_{\alpha} & 0 \\ 0 & 0 \end{pmatrix}Q$ où $P,Q \in \mathrm{GL}_n\left(\mathbb{K}\right)$ et $0 \leqslant \alpha \leqslant r$.
 - (b) Soit $k \in \mathbb{N}^*$, on pose $A_k = P \begin{pmatrix} I_{\alpha} & 0 & 0 \\ 0 & \frac{1}{k}I_{r-\alpha} & 0 \\ 0 & 0 & 0 \end{pmatrix} Q$. Pour tout $k \in \mathbb{N}^*$ la matrice A_k est du rang r et par continuité de l'application linéaire $M \longmapsto PMQ$, alors $A_k \xrightarrow[k \to +\infty]{} A$
- 5. D'après la question 4b, on a $R_r^- \subset \overline{R_r}$ et d'après la question 3, on a $\overline{R_r} \subset R_r^-$. Donc l'égalité demandée
- 6. Il suffit de voir que $\operatorname{GL}_n(\mathbb{K}) = R_n$ et que $\operatorname{M}_n(\mathbb{K}) = R_n^-$. D'après la question précédente $\overline{R_n} = R_n^-$, alors $\overline{\operatorname{GL}_n(\mathbb{K})} = \operatorname{M}_n(\mathbb{K})$