Linear Regression Assignment (Bike Share)

Reading and Understanding the Data

In [1]:

```
# Import all the required libraries

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.feature_selection import RFE
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

In [2]:

```
# Import the data
bike_data = pd.read_csv('day.csv')
bike_data.head()
```

Out[2]:

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp
0	1	01-01- 2018	1	0	1	0	6	0	2	14.110847
1	2	02-01- 2018	1	0	1	0	0	0	2	14.902598
2	3	03-01- 2018	1	0	1	0	1	1	1	8.050924
3	4	04-01- 2018	1	0	1	0	2	1	1	8.200000
4	5	05-01- 2018	1	0	1	0	3	1	1	9.305237
4										•

In [3]:

```
# Check the shape
bike_data.shape
```

Out[3]:

(730, 16)

In [4]:

```
# Check data-info and other info regarding the null data
bike_data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 730 entries, 0 to 729 Data columns (total 16 columns): Column Non-Null Count Dtype -----0 instant 730 non-null int64 1 dteday 730 non-null object 2 730 non-null season int64 3 730 non-null int64 yr 4 mnth 730 non-null int64 5 holiday 730 non-null int64 6 weekday 730 non-null int64 7 workingday 730 non-null int64 8 weathersit 730 non-null int64 9 temp 730 non-null float64 10 float64 atemp 730 non-null hum 730 non-null float64 float64 12 windspeed 730 non-null 13 casual 730 non-null int64 int64 14 registered 730 non-null 730 non-null 15 cnt int64

Observation

memory usage: 91.4+ KB

- We see that the there are *no null datapoint* available in any columns.
- Total 16 features are availble to study the data.

dtypes: float64(4), int64(11), object(1)

In [5]:

```
# Describe the numeric columns of the dataset
bike_data.describe()
```

Out[5]:

	instant	season	yr	mnth	holiday	weekday	workingday
count	730.000000	730.000000	730.000000	730.000000	730.000000	730.000000	730.000000
mean	365.500000	2.498630	0.500000	6.526027	0.028767	2.997260	0.683562
std	210.877136	1.110184	0.500343	3.450215	0.167266	2.006161	0.465405
min	1.000000	1.000000	0.000000	1.000000	0.000000	0.000000	0.000000
25%	183.250000	2.000000	0.000000	4.000000	0.000000	1.000000	0.000000
50%	365.500000	3.000000	0.500000	7.000000	0.000000	3.000000	1.000000
75%	547.750000	3.000000	1.000000	10.000000	0.000000	5.000000	1.000000
max	730.000000	4.000000	1.000000	12.000000	1.000000	6.000000	1.000000
4							>

In [6]:

Out[6]:

	instant	dteday	season	year	month	holiday	weekday	workingday	weathersit	ten
0	1	01-01- 2018	1	0	1	0	6	0	2	14.11084
1	2	02-01- 2018	1	0	1	0	0	0	2	14.9025
2	3	03-01- 2018	1	0	1	0	1	1	1	8.05092
3	4	04-01- 2018	1	0	1	0	2	1	1	8.20000
4	5	05-01- 2018	1	0	1	0	3	1	1	9.30523
4										•

Drop the following columns

• instant : record index

dteday : date

casual and registered: Due to a feature column cnt, which is a sum of these two columns.

In [7]:

```
# Drop some columns
bike_data.drop(['instant', 'dteday', 'casual', 'registered'], axis=1, inplace=True)
```

In [8]:

```
# We, see that after dropping some columns, the remaining features are 12.
bike_data.shape
```

Out[8]:

(730, 12)

Visualising the Data

Let's now spend some time doing what is arguably the most important step - understanding the data.

· If there is some obvious multicollinearity going on, this is the first place to catch it

 Here's where you'll also identify if some predictors directly have a strong association with the outcome variable

We'll visualise our data using matplotlib and seaborn.

In [9]:

Lets see pair plot to understand the behaviour of one feature w.r.t to other feature
sns.pairplot(data=bike_data,vars=['temp','abs-temp','humidity','windspeed','cnt'])
plt.show()

Observation

- We see some very strong linear relation between temp, abs-temp and cnt.
- We see temp and abs-temp are very strongly correlated with each other.

In [10]:

Out[10]:

	season	year	month	holiday	weekday	workingday	weathersit	temp	abs- temp	huı
0	spring	0	Jan	0	Sat	0	Mist	14.110847	18.18125	8(
1	spring	0	Jan	0	Sun	0	Mist	14.902598	17.68695	69
2	spring	0	Jan	0	Mon	1	Clear	8.050924	9.47025	43
3	spring	0	Jan	0	Tue	1	Clear	8.200000	10.60610	59
4	spring	0	Jan	0	Wed	1	Clear	9.305237	11.46350	43
4										•

In [11]:

```
# Lets understand the behaviour of some categorical data
plt.figure(figsize=(20, 12))
plt.subplot(3,3,1)
sns.boxplot(x = 'season', y = 'cnt', data = bike_data)
plt.subplot(3,3,2)
sns.boxplot(x = 'year', y = 'cnt', data = bike_data)
plt.subplot(3,3,3)
sns.boxplot(x = 'month', y = 'cnt', data = bike_data)
plt.subplot(3,3,4)
sns.boxplot(x = 'holiday', y = 'cnt', data = bike_data)
plt.subplot(3,3,5)
sns.boxplot(x = 'weekday', y = 'cnt', data = bike_data)
plt.subplot(3,3,6)
sns.boxplot(x = 'workingday', y = 'cnt', data = bike_data)
plt.subplot(3,3,7)
sns.boxplot(x = 'weathersit', y = 'cnt', data = bike_data)
plt.show()
```


Observation

- Fall season has the most bike share count, where as the Spring has minimum count.
- Number of count in 2019 are significantly (33.33%) more than that of 2018.
- Number of count in the month of Jun, July, Aug and Sep are the most.
- Count is more when the weather is clear.

In [12]:

```
# Bivariate analysis

plt.figure(figsize = (10, 5))
plt.subplot(1,2,1)
sns.boxplot(x = 'year', y = 'cnt', hue = 'holiday', data = bike_data)
plt.subplot(1,2,2)
sns.boxplot(x = 'weathersit', y = 'cnt', hue = 'holiday', data = bike_data)
plt.show()
```


Observation

• More people use the bike during the non-holiday time and clear weather.

In [13]:

```
# Define a function to get the bar plots

def get_bar_plot(column):
    plt.figure(figsize = (12,6))
    plt.subplot(1,2,1)
    sns.barplot(column,'cnt',data=bike_data)
    plt.subplot(1,2,2)
    sns.barplot(column,'cnt',data=bike_data, hue='year',palette='Set2')
    plt.legend(labels=['2018', '2019'])
    plt.show()
```

In [14]:

In [15]:

In [16]:

```
get_bar_plot('month')
```


Observation

- More people use the bike during the non-holiday time and clear weather.
- Fall season has the most bike share count, where as the Spring has minimum count.
- Number of count in 2019 are significantly (33.33%) more than that of 2018.
- Number of count in the month of Jun, July, Aug and Sep are the most.
- · Count is more when the weather is clear.

Create dummy variable

In [17]:

```
# Create a function to get the dummy variable dataframe

def get_dummy_dataframe(column_name: list[str]):
    output = pd.DataFrame()
    for column in column_name:
        status = pd.get_dummies(bike_data[column], drop_first=True)
        output = pd.concat([output, status], axis=1) # Concatenate the status DataFrame
    return output
```

In [18]:

```
# Dummy dataframe from the below categorical columns
dummy_df = get_dummy_dataframe(column_name=['season', 'month', 'weekday', 'weathersit'])
```

In [19]:

```
# Dummy variable column name

dummy_df.columns
```

Out[19]:

In [20]:

```
# Dummy variable dataframe
dummy_df
```

Out[20]:

	spring	summer	winter	Aug	Dec	Feb	Jan	Jul	Jun	Mar	 Oct	Sep	Mon	Sat
0	1	0	0	0	0	0	1	0	0	0	 0	0	0	1
1	1	0	0	0	0	0	1	0	0	0	 0	0	0	0
2	1	0	0	0	0	0	1	0	0	0	 0	0	1	0
3	1	0	0	0	0	0	1	0	0	0	 0	0	0	0
4	1	0	0	0	0	0	1	0	0	0	 0	0	0	0
725	1	0	0	0	1	0	0	0	0	0	 0	0	0	0
726	1	0	0	0	1	0	0	0	0	0	 0	0	0	0
727	1	0	0	0	1	0	0	0	0	0	 0	0	0	1
728	1	0	0	0	1	0	0	0	0	0	 0	0	0	0
729	1	0	0	0	1	0	0	0	0	0	 0	0	1	0

730 rows × 22 columns

→

In [21]:

```
# Concatenate dummy dataframe with the original dataframe
bike_data = pd.concat([bike_data, dummy_df], axis=1)
```

In [22]:

Concatinated dataframe

bike_data

Out[22]:

	season	year	month	holiday	weekday	workingday	weathersit	temp	abs- temp	ŀ
0	spring	0	Jan	0	Sat	0	Mist	14.110847	18.18125	
1	spring	0	Jan	0	Sun	0	Mist	14.902598	17.68695	
2	spring	0	Jan	0	Mon	1	Clear	8.050924	9.47025	
3	spring	0	Jan	0	Tue	1	Clear	8.200000	10.60610	
4	spring	0	Jan	0	Wed	1	Clear	9.305237	11.46350	
725	spring	1	Dec	0	Thu	1	Mist	10.420847	11.33210	
726	spring	1	Dec	0	Fri	1	Mist	10.386653	12.75230	
727	spring	1	Dec	0	Sat	0	Mist	10.386653	12.12000	
728	spring	1	Dec	0	Sun	0	Clear	10.489153	11.58500	
729	spring	1	Dec	0	Mon	1	Mist	8.849153	11.17435	

730 rows × 34 columns

 $local host: 8888/notebooks/Downloads/Linear Regression_Nitin_Jain.ipynb\#$

In [23]:

```
# Data info
bike_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 730 entries, 0 to 729
Data columns (total 34 columns):

Data #	Column	Non-Null Count	Dtype
0	season	730 non-null	object
1	year	730 non-null	int64
2	month	730 non-null	object
3	holiday	730 non-null	int64
4	weekday	730 non-null	object
5	workingday	730 non-null	int64
6	weathersit	730 non-null	object
7	temp	730 non-null	float64
8	abs-temp	730 non-null	float64
9	humidity	730 non-null	float64
10	windspeed	730 non-null	float64
11	cnt	730 non-null	int64
12	spring	730 non-null	uint8
13	summer	730 non-null	uint8
14	winter	730 non-null	uint8
15	Aug	730 non-null	uint8
16	Dec	730 non-null	uint8
17	Feb	730 non-null	uint8
18	Jan	730 non-null	uint8
19	Jul	730 non-null	uint8
20	Jun	730 non-null	uint8
21	Mar	730 non-null	uint8
22	May	730 non-null	uint8
23	Nov	730 non-null	uint8
24	0ct	730 non-null	uint8
25	Sep	730 non-null	uint8
26	Mon	730 non-null	uint8
27	Sat	730 non-null	uint8
28	Sun	730 non-null	uint8
29	Thu	730 non-null	uint8
30	Tue	730 non-null	uint8
31	Wed	730 non-null	uint8
32	Light Snow	730 non-null	uint8
33	Mist	730 non-null	uint8
dt vne	os • float64/4	1) $int64(4)$ of	niect(4) i

dtypes: float64(4), int64(4), object(4), uint8(22)

memory usage: 84.2+ KB

In [24]:

Out[24]:

	year	holiday	workingday	temp	abs- temp	humidity	windspeed	cnt	spring	sumr
0	0	0	0	14.110847	18.18125	80.5833	10.749882	985	1	
1	0	0	0	14.902598	17.68695	69.6087	16.652113	801	1	
2	0	0	1	8.050924	9.47025	43.7273	16.636703	1349	1	
3	0	0	1	8.200000	10.60610	59.0435	10.739832	1562	1	
4	0	0	1	9.305237	11.46350	43.6957	12.522300	1600	1	

5 rows × 30 columns

→

In [25]:

```
# Final dataframe
bike_data.columns
```

Out[25]:

In [26]:

```
# We specify this so that the train and test data set always have the same rows, respect
# Create a train test split

np.random.seed(0)
df_train, df_test = train_test_split(bike_data, train_size = 0.7, test_size = 0.3, rando
```

In [27]:

Test data

df_test

Out[27]:

	year	holiday	workingday	temp	abs- temp	humidity	windspeed	cnt	spring	su
184	0	1	0	29.793347	33.27085	63.7917	5.459106	6043	0	
535	1	0	1	32.082500	36.04875	59.2083	7.625404	6211	0	
299	0	0	1	19.270000	22.85230	81.2917	13.250121	2659	0	
221	0	0	1	31.433347	34.24915	42.4167	13.417286	4780	0	
152	0	0	1	29.315000	32.19710	30.5000	19.583229	4968	0	
400	1	0	0	10.899153	13.22605	68.7917	11.791732	2947	1	
702	1	0	1	19.509153	23.45270	73.3750	11.666643	6606	0	
127	0	0	0	21.661653	25.94665	63.1667	5.000712	4333	0	
640	1	0	1	26.957500	29.95665	79.3750	4.458569	7572	0	
72	0	0	1	13.333897	16.60000	49.6957	9.174042	2046	1	

219 rows × 30 columns

 $local host: 8888/notebooks/Downloads/Linear Regression_Nitin_Jain.ipynb\#$

In [28]:

Train data

df_train

Out[28]:

	year	holiday	workingday	temp	abs- temp	humidity	windspeed	cnt	spring	su
653	1	0	1	19.201653	23.04230	55.8333	12.208807	7534	0	
576	1	0	1	29.246653	33.14480	70.4167	11.083475	7216	0	
426	1	0	0	16.980847	20.67460	62.1250	10.792293	4066	1	
728	1	0	0	10.489153	11.58500	48.3333	23.500518	1796	1	
482	1	0	0	15.443347	18.87520	48.9583	8.708325	4220	0	
526	1	0	1	29.554153	32.98605	58.7917	13.916771	6664	0	
578	1	0	1	30.852500	35.35440	65.9583	8.666718	7261	0	
53	0	0	1	9.091299	12.28585	42.3043	6.305571	1917	1	
350	0	0	0	10.591653	12.46855	56.0833	16.292189	2739	0	
79	0	0	1	17.647835	20.48675	73.7391	19.348461	2077	0	

510 rows × 30 columns

localhost:8888/notebooks/Downloads/LinearRegression_Nitin_Jain.ipynb#

In [29]:

```
# Use scalling for some numeric feature

scaler = MinMaxScaler()
num_var = ['temp', 'abs-temp', 'humidity', 'windspeed', 'cnt']
df_train[num_var] = scaler.fit_transform(df_train[num_var])
df_train
```

Out[29]:

	year	holiday	workingday	temp	abs- temp	humidity	windspeed	cnt	spring
653	1	0	1	0.509887	0.501133	0.575354	0.300794	0.864243	0
576	1	0	1	0.815169	0.766351	0.725633	0.264686	0.827658	0
426	1	0	0	0.442393	0.438975	0.640189	0.255342	0.465255	1
728	1	0	0	0.245101	0.200348	0.498067	0.663106	0.204096	1
482	1	0	0	0.395666	0.391735	0.504508	0.188475	0.482973	0
526	1	0	1	0.824514	0.762183	0.605840	0.355596	0.764151	0
578	1	0	1	0.863973	0.824359	0.679690	0.187140	0.832835	0
53	0	0	1	0.202618	0.218747	0.435939	0.111379	0.218017	1
350	0	0	0	0.248216	0.223544	0.577930	0.431816	0.312586	0
79	0	0	1	0.462664	0.434043	0.759870	0.529881	0.236424	0

510 rows × 30 columns

localhost:8888/notebooks/Downloads/LinearRegression_Nitin_Jain.ipynb#

In [30]:

```
# Correlation plot for train dataset

plt.figure(figsize = (16, 10))
sns.heatmap(df_train.corr(), annot = True, cmap="YlGnBu")
plt.show()
```


Observation

• We see that temp and abs_temp are highly correlated, therefore we will remove one of these feature.

In [31]:

```
# Drop 'abs-temp' columns

df_train.drop(['abs-temp'], axis=1, inplace=True)
plt.figure(figsize = (16, 10))
sns.heatmap(df_train.corr(), annot = True, cmap="YlGnBu")
plt.show()
```


Observation

· Now, the strong correlation effect has been removed.

Fit the model and predict using best model

In [32]:

```
# Select target feature and apply model
# Use RFE to select the best features

y_train = df_train.pop('cnt')
X_train = df_train

lm = LinearRegression()
lm.fit(X_train, y_train)

rfe = RFE(lm, 20)
rfe = rfe.fit(X_train, y_train)
```

```
In [33]:
```

```
# List of features with their names and ranking
list(zip(X_train.columns, rfe.support_, rfe.ranking_))
Out[33]:
[('year', True, 1),
 ('holiday', True, 1),
 ('workingday', True, 1),
 ('temp', True, 1),
 ('humidity', True, 1),
 ('windspeed', True, 1),
 ('spring', True, 1),
 ('summer', True, 1),
 ('winter', True, 1),
 ('Aug', False, 2),
 ('Dec', True, 1),
('Feb', True, 1),
 ('Jan', True, 1),
 ('Jul', True, 1),
 ('Jun', False, 8),
 ('Mar', False, 9),
 ('May', True, 1),
 ('Nov', True, 1),
 ('Oct', False, 5),
 ('Sep', True, 1),
 ('Mon', False, 3),
 ('Sat', True, 1),
('Sun', True, 1),
 ('Thu', False, 6),
 ('Tue', False, 4),
 ('Wed', False, 7),
 ('Light Snow', True, 1),
 ('Mist', True, 1)]
In [34]:
# Colums which supports the model
col = X train.columns[rfe.support ]
col
Out[34]:
Index(['year', 'holiday', 'workingday', 'temp', 'humidity', 'windspeed',
        spring', 'summer', 'winter', 'Dec', 'Feb', 'Jan', 'Jul', 'May', 'N
ov',
       'Sep', 'Sat', 'Sun', 'Light Snow', 'Mist'],
      dtype='object')
```

```
In [35]:
```

```
# Column which does not support the model

X_train.columns[~rfe.support_]

Out[35]:
Index(['Aug', 'Jun', 'Mar', 'Oct', 'Mon', 'Thu', 'Tue', 'Wed'], dtype='obj
```

In [36]:

```
# Build a model WITH required feature which supports the model
X_train_rfe_1 = X_train[col]
```

In [37]:

```
# Add constant to the model
import statsmodels.api as sm
X_train_lm_1 = sm.add_constant(X_train_rfe_1)
```

In [38]:

```
# Fit the model
lm_1 = sm.OLS(y_train, X_train_lm_1).fit()
```

In [39]:

```
# Print the model summary
print(lm_1.summary())
```

```
OLS Regression Results
______
Dep. Variable:
                              cnt
                                   R-squared:
0.852
                              0LS
Model:
                                   Adj. R-squared:
0.847
Method:
                     Least Squares
                                   F-statistic:
148.8
                                   Prob (F-statistic):
                  Wed, 16 Aug 2023
Date:
                                                            1.
59e-189
                         18:10:28
                                   Log-Likelihood:
Time:
526.24
No. Observations:
                              510
                                   AIC:
-1012.
Df Residuals:
                              490
                                   BIC:
-927.8
Df Model:
                               19
Covariance Type:
                        nonrobust
```

In [40]:

```
# Write a function to create a VIF dataframe

def get_vif_dataframe(dataframe: pd.DataFrame):
    vif = pd.DataFrame()
    vif['Features'] = dataframe.columns
    vif['VIF'] = [variance_inflation_factor(dataframe.values, i) for i in range(datafram vif['VIF'] = round(vif['VIF'], 2)
    vif = vif.sort_values(by = "VIF", ascending = False)
    return vif
```

In [41]:

```
# Get VIF for 1st set if data
get_vif_dataframe(X_train_rfe_1)
```

Out[41]:

	Features	VIF
2	workingday	60.93
16	Sat	14.59
17	Sun	13.91
6	spring	5.79
3	temp	4.88
8	winter	3.88
7	summer	3.49
1	holiday	3.43
11	Jan	2.38
4	humidity	1.97
10	Feb	1.87
14	Nov	1.81
9	Dec	1.65
19	Mist	1.58
13	May	1.52
12	Jul	1.49
15	Sep	1.34
18	Light Snow	1.28
5	windspeed	1.22
0	year	1.04

In [42]:

```
# Perform the second iteration (As the feature 'holiday' is not significant), so will re
X_train_rfe_2 = X_train_rfe_1.drop(['holiday'], axis=1)
```

In [43]:

```
# Fit the model based on feature selecte in 2nd iteration

X_train_lm_2 = sm.add_constant(X_train_rfe_2)
lm_2 = sm.OLS(y_train, X_train_lm_2).fit()
print(lm_2.summary())
```

OLS Regression Results

========		=======	-=======	=======	======	======
====						
Dep. Variabl	.e:	(ent R-squa	red:		
0.852						
Model:		(DLS Adj.R	-squared:		
0.847						
Method:		Least Squar	res F-stat	istic:		1
48.8						4 50
Date:	We	d, 16 Aug 20	023 Prob (F-statistic):		1.59e
-189 		10.10	20 1 1:			
Time:		18:10:	:28 Log-Li	kelihood:		52
6.24		-	-40 470			4
No. Observat	ions:	=	510 AIC:			-1
012. Df Residuals		,	190 BIC:			-9
27.8	•	-	+90 BIC.			- 9
Df Model:			19			
Covariance T	vne:	nonrobu				
				=========	======	======
====						
	coef	std err	t	P> t	[0.025	0.
975]					•	
const	0.2494	0.045	5.516	0.000	0.161	
0.338						
year	0.2317	0.008	29.150	0.000	0.216	
0.247						
workingday	0.0933	0.025	3.685	0.000	0.044	
0.143						
temp	0.4500	0.038	11.796	0.000	0.375	
0.525						
humidity	-0.1521	0.038	-4.055	0.000	-0.226	-
0.078						
windspeed	-0.1868	0.025	-7.365	0.000	-0.237	-
0.137	0.0540		2 562	0.011		
spring	-0.0560	0.022	-2.563	0.011	-0.099	-
0.013	0.0360	0 017	4 503	0 112	0.006	
summer	0.0269	0.017	1.593	0.112	-0.006	
0.060	0.1012	0 010	F 70F	0 000	0.066	
winter 0.136	0.1012	0.018	5.705	0.000	0.000	
Dec	-0.0506	0.018	-2.807	0.005	-0.086	_
0.015	0.0300	0.010	2.007	0.003	0.000	
Feb	-0.0355	0.021	-1.661	0.097	-0.077	
0.006	0.0000	0.077	_,,,,			
Jan	-0.0658	0.021	-3.110	0.002	-0.107	_
0.024						
Jul	-0.0512	0.018	-2.858	0.004	-0.086	_
0.016						
May	0.0250	0.017	1.449	0.148	-0.009	
0.059						
Nov	-0.0483	0.019	-2.592	0.010	-0.085	-
0.012						
Sep	0.0718	0.017	4.324	0.000	0.039	
0.104						
Sat	0.1038	0.027	3.876	0.000	0.051	
0.156			4			
Sun	0.0491	0.027	1.827	0.068	-0.004	
0.102						

5/ 10/20, 0.10 1 W			Emcarragics	olon_rallin_balli	supyter Hotobook	
Light Snow 0.205	-0.2564	0.026	-9.847	0.000	-0.308	-
Mist 0.040	-0.0599	0.010	-5.807	0.000	-0.080	-
========		========	=======	=======	=======	=====
====						
Omnibus:		84.215	Durbin	-Watson:		
2.035						
Prob(Omnibus	5):	0.000) Jarque	-Bera (JB):		24
1.321	•		•	, ,		
Skew:		-0.792	Prob(J	B):		3.96
e-53			`	•		
Kurtosis:		5.974	Cond. I	No.		
27.5						
=========		========	:======:	=======	=======	
====						

Notes:

 $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [44]:

```
# VIF for 2nd set of data
get_vif_dataframe(X_train_rfe_2)
```

Out[44]:

	Features	VIF
3	humidity	34.79
2	temp	22.48
1	workingday	19.10
5	spring	6.06
15	Sat	5.11
4	windspeed	5.06
16	Sun	4.89
7	winter	4.40
6	summer	3.71
10	Jan	2.42
18	Mist	2.35
0	year	2.11
9	Feb	1.92
13	Nov	1.83
8	Dec	1.70
11	Jul	1.61
12	May	1.60
14	Sep	1.41
17	Light Snow	1.29

In [45]:

```
# 3rd iteration
# As the feature 'May' is not significant), so will remove that

X_train_rfe_3 = X_train_rfe_2.drop(['May'], axis=1)

X_train_lm_3 = sm.add_constant(X_train_rfe_3)

lm_3 = sm.OLS(y_train, X_train_lm_3).fit()

print(lm_3.summary())
```

OLS Regression Results

========	=======		========	=========	======	======
====						
Dep. Variable	e:	,	cnt R-squa	ared:		
0.852 Model:		,	OLS Adj. F	R-squared:		
0.846		,	ULS AUJ. P	N-Squareu.		
Method:		Loast Saua	res F-stat	istic.		1
56.6		Least Squa	ies r-stat	.13(1(.		1
Date:	Mo	d 16 Aug 20	022 Pnoh ((F-statistic):		3.55e
-190	WE	u, 10 Aug 2	023 P100 ((F-Statistic).		3.336
Time:		18:10	·28	kelihood:		52
5.15		10.10	.20 LUG-LI	ikeiinoou.		32
No. Observat:	ions:	1	510 AIC:			-1
012.	10115		AIC.			-
Df Residuals	:		491 BIC:			-9
31.8						_
Df Model:			18			
Covariance Ty	ype:	nonrob	ust			
========	 ========	=======	========	.=======	======	======
====						
	coef	std err	t	P> t	[0.025	0.
975]						
const	0.2374	0.044	5.335	0.000	0.150	
0.325						
year	0.2311	0.008	29.082	0.000	0.215	
0.247	0.0043	0.035	2 722	0.000	0.045	
workingday	0.0943	0.025	3.722	0.000	0.045	
0.144	0.4598	0.038	12.233	0.000	0.386	
temp 0.534	0.4596	0.036	12.233	0.000	0.300	
humidity	-0.1456	0.037	-3.904	0.000	-0.219	
0.072	0.1450	0.037	3.504	0.000	0.213	
windspeed	-0.1887	0.025	-7.440	0.000	-0.239	_
0.139	012007	0,025	, , , , ,		01200	
spring	-0.0518	0.022	-2.390	0.017	-0.094	_
0.009						
summer	0.0377	0.015	2.483	0.013	0.008	
0.068						
winter	0.1035	0.018	5.852	0.000	0.069	
0.138						
Dec	-0.0491	0.018	-2.727	0.007	-0.085	-
0.014						
Feb	-0.0339	0.021	-1.591	0.112	-0.076	
0.008						
Jan	-0.0640	0.021	-3.025	0.003	-0.106	-
0.022	0 0517	0.010	2 002	0.004	0 007	
Jul 0.016	-0.0517	0.018	-2.883	0.004	-0.087	-
0.016 Nov	-0.0465	0.019	-2.499	0.013	-0.083	
0.010	-0.0403	0.019	-2.433	0.013	-0.003	-
Sep	0.0718	0.017	4.319	0.000	0.039	
0.104	0.0710	0.017	4.515	0.000	0.055	
Sat	0.1042	0.027	3.886	0.000	0.051	
0.157			3.000			
Sun	0.0499	0.027	1.857	0.064	-0.003	
0.103						
Light Snow	-0.2583	0.026	-9.924	0.000	-0.309	-
0.207						

-0.0600 0.010 -5.813 0.000 -0.080 Mist 0.040 ______ 81.478 Omnibus: Durbin-Watson: 2.041 Prob(Omnibus): 0.000 Jarque-Bera (JB): 21 9.245 Prob(JB): Skew: -0.787 2.46 e-48 Cond. No. Kurtosis: 5.800 27.0 ______

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [46]:

```
# VIF dataframe
get_vif_dataframe(X_train_rfe_3)
```

Out[46]:

	Features	VIF
3	humidity	34.69
2	temp	22.29
1	workingday	18.92
5	spring	6.05
14	Sat	5.04
4	windspeed	4.99
15	Sun	4.85
7	winter	4.40
6	summer	3.09
10	Jan	2.42
17	Mist	2.35
0	year	2.10
9	Feb	1.92
12	Nov	1.83
8	Dec	1.70
11	Jul	1.61
13	Sep	1.41
16	Light Snow	1.29

In [47]:

```
# 4th iteration for the model fitting
# As the feature 'Feb' is not significant), so will remove that
X_train_rfe_4 = X_train_rfe_3.drop(['Feb'], axis=1)
X_train_lm_4 = sm.add_constant(X_train_rfe_4)
lm_4 = sm.OLS(y_train, X_train_lm_4).fit()
print(lm_4.summary())
```

OLS Regression Results

=========	========	_	========== 36221011 K62	:======== :===========================	======	
====						
Dep. Variabl	e:	(ent R-squa	ared:		
0.851 Model:		(OLS Adj. R	R-squared:		
0.846 Method:		Least Squar	res F-stat	istic:		1
65.2 Date:	Wed	d, 16 Aug 20	023 Prob ([F-statistic):		9.55e
-191 Time:		18:10:	:28 Log-Li	kelihood:		52
3.84 No. Observat	ions:	<u>.</u>	510 AIC:			-1
012. Df Residuals	:	2	192 BIC:			-9
35.5 Df Model:			17			
Covariance T		nonrobu				
=======================================	========			:========	======	======
975]	coef	std err	t	P> t	[0.025	0.
const	0.2239	0.044	5.118	0.000	0.138	
0.310	0 2200	0.000	20.005	0.000	0 245	
year	0.2308	0.008	29.005	0.000	0.215	
0.246 workingday	0.0966	0.025	3.812	0.000	0.047	
0.146 temp	0.4750	0.036	13.038	0.000	0.403	
0.547 humidity	-0.1474	0.037	-3.949	0.000	-0.221	_
0.074 windspeed	-0.1876	0.025	-7.388	0.000	-0.237	_
0.138 spring	-0.0611	0.021	-2.925	0.004	-0.102	_
0.020 summer	0.0409	0.015	2.708	0.007	0.011	
0.071 winter	0.1052	0.018	5.949	0.000	0.070	
0.140						
Dec 0.007	-0.0405	0.017	-2.351	0.019	-0.074	-
Jan 0.011	-0.0458	0.018	-2.570	0.010	-0.081	-
Jul 0.017	-0.0526	0.018	-2.932	0.004	-0.088	-
Nov 0.006	-0.0420	0.018	-2.277	0.023	-0.078	-
Sep	0.0732	0.017	4.404	0.000	0.041	
0.106 Sat	0.1070	0.027	3.997	0.000	0.054	
0.160 Sun	0.0520	0.027	1.933	0.054	-0.001	
0.105 Light Snow	-0.2571	0.026	-9.865	0.000	-0.308	-
0.206 Mist	-0.0598	0.010	-5.781	0.000	-0.080	-
0.039						

====

Omnibus: 76.965 Durbin-Watson:

2.041

Prob(Omnibus): 0.000 Jarque-Bera (JB): 20

5.539

Skew: -0.747 Prob(JB): 2.33

e-45

Kurtosis: 5.727 Cond. No.

26.4

====

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []:

In [48]:

```
# VIF dataframe for 4th iteration
```

get_vif_dataframe(X_train_rfe_4)

Out[48]:

	Features	VIF
3	humidity	34.24
2	temp	21.56
1	workingday	18.83
5	spring	5.06
13	Sat	5.03
4	windspeed	4.98
14	Sun	4.83
7	winter	4.40
6	summer	3.08
16	Mist	2.34
0	year	2.10
11	Nov	1.81
9	Jan	1.77
10	Jul	1.61
8	Dec	1.58
12	Sep	1.41
15	Light Snow	1.29

In [49]:

```
# 5th iteration for the model fitting
# As the feature 'Nov' is not significant), so will remove that

X_train_rfe_5 = X_train_rfe_4.drop(['Nov'], axis=1)

X_train_lm_5 = sm.add_constant(X_train_rfe_5)

lm_5 = sm.OLS(y_train, X_train_lm_5).fit()

print(lm_5.summary())
```

OLS Regression Results

OLS Regression Results							
=====	=======	=======	======	====	========	:=====:	======
Dep. Variable	: :		cnt R	-squ	ared:		
Model:			OLS A	dj.	R-squared:		
0.844			_				
Method: 73.7		Least Squa	res F	-sta	tistic:		1
Date:	We	d, 16 Aug 2	023 P	rob	(F-statistic):		9.27e
-191 Time:		18:10:28 Log-Likelihood:					
1.17 No. Observati	ions•	ı	510 A	IC:			-1
008.		,	J10 A	10.			_
Df Residuals:	:	•	493 B	IC:			-9
36.3 Df Model:			16				
Covariance Ty	/pe:	nonrob					
		=======	======	====	=========	======	=====
====	coef	std err		t	P> t	[0.025	0.
975]						_	
const	0.1997	0.043	4.6	86	0.000	0.116	
0.283	0.2206	0.000	20.0	<i>.</i> .	0.000	0 215	
year 0.246	0.2306	0.008	28.8	66	0.000	0.215	
workingday	0.1033	0.025	4.0	88	0.000	0.054	
0.153 temp	0.4959	0.035	14.0	10	0.000	0.426	
0.565 humidity	-0.1484	0.037	-3.9	59	0.000	-0.222	_
0.075	0.1000	0 025	7.4	0.5	0.000	0 220	
windspeed 0.139	-0.1888	0.025	-7.4	05	0.000	-0.239	-
spring 0.012	-0.0525	0.021	-2.5	43	0.011	-0.093	-
summer	0.0467	0.015	3.1	30	0.002	0.017	
0.076 winter	0.0954	0.017	5.5	38	0.000	0.062	
0.129 Dec	-0.0251	0.016	-1.5	79	0.115	-0.056	
0.006	0.0405	0.010				0.076	
Jan 0.006	-0.0406	0.018	-2.2	8/	0.023	-0.076	-
Jul	-0.0526	0.018	-2.9	16	0.004	-0.088	-
0.017 Sep	0.0790	0.016	4.7	91	0.000	0.047	
0.111 Sat	0.1142	0.027	4.2	74	0.000	0.062	
0.167	0.1142		7,2	, -	0.000		
Sun 0.112	0.0593	0.027	2.2	80	0.028	0.007	
Light Snow 0.201	-0.2527	0.026	-9.6	82	0.000	-0.304	-
Mist 0.038	-0.0589	0.010	-5.6	71	0.000	-0.079	-
		=======	======	====	========	======	=====

.. .

Omnibus: 70.775 Durbin-Watson:

2.062

Prob(Omnibus): 0.000 Jarque-Bera (JB): 17

7.450

Skew: -0.709 Prob(JB): 2.93

e-39

Kurtosis: 5.518 Cond. No.

25.5

====

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []:

In [50]:

```
# VIF dataframe for 5th iteration
```

get_vif_dataframe(X_train_rfe_5)

Out[50]:

	Features	VIF
3	humidity	33.73
2	temp	21.06
1	workingday	18.81
5	spring	5.04
12	Sat	5.03
4	windspeed	4.93
13	Sun	4.83
7	winter	3.79
6	summer	3.06
15	Mist	2.33
0	year	2.10
9	Jan	1.76
10	Jul	1.61
11	Sep	1.39
8	Dec	1.37
14	Light Snow	1.27

In [51]:

```
# 6th iteration for model fitting
# As the feature 'Dec' is not significant), so will remove that

X_train_rfe_6 = X_train_rfe_5.drop(['Dec'], axis=1)

X_train_lm_6 = sm.add_constant(X_train_rfe_6)

lm_6 = sm.OLS(y_train, X_train_lm_6).fit()

print(lm_6.summary())
```

OLS Regression Results

========	=======		_	ion Res		======	======
==== Dep. Variable			cnt	R-squa	ared:		
0.849	•		CIIC	N-3que	area.		
Model:			OLS	Adj. F	R-squared:		
0.844							
Method: 84.6		Least Squa	ires	F-stat	istic:		1
Date:	We	d. 16 Aug 2	2023	Prob ((F-statistic)	:	2.31e
-191		.,		,	(
Time: 9.88		18:10):28	Log-Li	ikelihood:		51
No. Observati 008.	ons:		510	AIC:			-1
Df Residuals:			494	BIC:			-9
40.0							
Df Model:		الم مرم م	15				
Covariance Ty	-				-=======	=======	======
====	_						
975]					P> t	_	
const	0.1925	0.042	4	.537	0.000	0.109	
0.276							
year 0.246	0.2305	0.008	28	8.807	0.000	0.215	
workingday	0.1021	0.025	4	.035	0.000	0.052	
0.152							
temp 0.577	0.5098	0.034	14	.851	0.000	0.442	
humidity 0.081	-0.1547	0.037	-4	.145	0.000	-0.228	-
windspeed 0.136	-0.1860	0.025	-7	.301	0.000	-0.236	-
spring 0.010	-0.0508	0.021	-2	.461	0.014	-0.091	-
summer	0.0497	0.015	3	3.346	0.001	0.020	
0.079 winter	0.0944	0.017	5	.479	0.000	0.061	
0.128 Jan	-0.0343	0.017	-1	.980	0.048	-0.068	-
0.000 Jul	-0.0532	0.018	-2	.947	0.003	-0.089	-
0.018 Sep	0.0812	0.016	4	.934	0.000	0.049	
0.114 Sat	0.1123	0.027	4	.200	0.000	0.060	
0.165 Sun	0.0585	0.027	2	.178	0.030	0.006	
0.111 Light Snow	-0.2488	0.026	-9	.560	0.000	-0.300	-
0.198 Mist	-0.0578	0.010	- 5	5.574	0.000	-0.078	-
0.037	======		.===-	:======		======	
====							
Omnibus:		66.	344	Durbir	n-Watson:		

2.071

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 16

 1.565
 5kew:
 -0.676
 Prob(JB):
 8.25

e-36

Kurtosis: 5.403 Cond. No.

25.4

====

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [52]:

```
# VIF for 6th iteration
get_vif_dataframe(X_train_rfe_6)
```

Out[52]:

	Features	VIF
3	humidity	32.81
2	temp	19.97
1	workingday	18.57
5	spring	5.04
11	Sat	4.95
4	windspeed	4.92
12	Sun	4.79
7	winter	3.76
6	summer	3.03
14	Mist	2.31
0	year	2.10
8	Jan	1.68
9	Jul	1.60
10	Sep	1.38
13	Light Snow	1.25

In [53]:

```
# 7th iteration for the model fitting
# As the feature 'May' is not significant due to high VIF), so will remove that

X_train_rfe_7 = X_train_rfe_6.drop(['humidity'], axis=1)

X_train_lm_7 = sm.add_constant(X_train_rfe_7)

lm_7 = sm.OLS(y_train, X_train_lm_7).fit()

print(lm_7.summary())
```

========	=======		======		======================================	======	=====
====							
Dep. Variabl	e:		cnt R	-sqı	uared:		
0.843							
Model:		1	OLS A	dj.	R-squared:		
0.839			_				
Method:		Least Squa	res F	-sta	etistic:		1
90.3	N.	٠	000 0		/F -+-+:-+:-\.		7 22-
Date:	wed	a, 16 Aug 2	023 P	rob	(F-statistic):		7.33e
-189 Time:		18:10	• 20 I	00 1	ikalihaadi		F1
1.16		10.10	.20 L	og-i	_ikelihood:		51
No. Observat	ions:		510 A	IC:			-9
92.3	10113.)10 A	ıc.			- 5
Df Residuals	•		495 B	IC:			-9
28.8	•		.,,,				
Df Model:			14				
Covariance T	ype:	nonrob					
•				====			
====							
	coef	std err		t	P> t	[0.025	0.
975]							
	0 4475	0.000	2.0		2 222	0.044	
const	0.1175	0.039	3.0	12	0.003	0.041	
0.194	0 2244	0 000	20.0	10	0.000	0 210	
year 0.250	0.2344	0.008	29.0	19	0.000	0.218	
workingday	0.1027	0.026	3.9	96	0.000	0.052	
0.153	0.1027	0.020	ر. ر	J 0	0.000	0.052	
temp	0.4728	0.034	14.0	37	0.000	0.407	
0.539							
windspeed	-0.1563	0.025	-6.2	92	0.000	-0.205	-
0.107							
spring	-0.0597	0.021	-2.8	61	0.004	-0.101	-
0.019							
summer	0.0434	0.015	2.8	90	0.004	0.014	
0.073							
winter	0.0797	0.017	4.6	50	0.000	0.046	
0.113	0 0200	0.010	2 2	1 F	0 027	-0.073	
Jan 0.004	-0.0389	0.018	-2.2	12	0.027	-0.0/3	-
Jul	-0.0482	0.018	-2.6	35	0.009	-0.084	_
0.012	0.0402	0.010	2.0	,,	0.003	0.004	
Sep	0.0753	0.017	4.5	22	0.000	0.043	
0.108							
Sat	0.1146	0.027	4.2	22	0.000	0.061	
0.168							
Sun	0.0562	0.027	2.0	58	0.040	0.003	
0.110							
Light Snow	-0.2917	0.024	-12.0	27	0.000	-0.339	-
0.244	0.0026	0.000	0 5	00	0.000	0 100	
Mist	-0.0826	0.009	-9.5	92	0.000	-0.100	-
0.066	======			===-			
====							
Omnibus:		67.	959 D	urbi	in-Watson:		
2.066			_		· = - •		
Prob(Omnibus):	0.	000 J	arqı	ue-Bera (JB):		16
6.078							

Skew: -0.690 Prob(JB): 8.64

e-37

Kurtosis: 5.431 Cond. No.

23.0

====

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [54]:

```
# VIF dataframe for 7th iteration
get_vif_dataframe(X_train_rfe_7)
```

Out[54]:

	Features	VIF
1	workingday	16.57
2	temp	13.12
3	windspeed	4.79
10	Sat	4.54
11	Sun	4.28
4	spring	4.22
6	winter	2.80
5	summer	2.75
0	year	2.08
7	Jan	1.65
8	Jul	1.60
13	Mist	1.59
9	Sep	1.35
12	Light Snow	1.09

In [55]:

```
# 8th iteration for the model fitting
# As the feature 'workingday' is not significant), so will remove that

X_train_rfe_8 = X_train_rfe_7.drop(['workingday'], axis=1)

X_train_lm_8 = sm.add_constant(X_train_rfe_8)

lm_8 = sm.OLS(y_train, X_train_lm_8).fit()

print(lm_8.summary())
```

========			_		=========	======	
====							
Dep. Variable	2:		cnt	R-sq	uared:		
0.838 Model:			OLS	Adj.	R-squared:		
0.834				J	•		
Method:		Least Squa	ares	F-st	atistic:		1
97.7 Date:	We	d, 16 Aug 2	2023	Prob	(F-statistic)	:	1.27e
-186 Time:		18:16	9:28	Log-	Likelihood:		50
3.07 No. Observati	ons:		510	AIC:			-9
78.1 Df Residuals:			496	BIC:			-9
18.9				віс:			-9
Df Model: Covariance Ty	me:	nonrol	13 oust				
-	•			=====		======	======
====	_					_	
975]	coef	std err		t	P> t	[0.025	0.
	0.0470	0.000	_			0.455	
const 0.277	0.2172	0.030	7	138	0.000	0.157	
year	0.2349	0.008	28	3.657	0.000	0.219	
0.251							
temp 0.541	0.4737	0.034	13	.856	0.000	0.407	
windspeed 0.109	-0.1586	0.025	-6	.293	0.000	-0.208	-
spring 0.021	-0.0622	0.021	-2	.936	0.003	-0.104	-
summer	0.0437	0.015	2	.868	0.004	0.014	
0.074 winter	0.0767	0.017	4	.411	0.000	0.043	
0.111 Jan	-0.0398	0.018	- 2	2.231	0.026	-0.075	_
0.005							
Jul 0.011	-0.0474	0.019	-2	2.551	0.011	-0.084	-
Sep 0.105	0.0717	0.017	4	.247	0.000	0.039	
Sat	0.0159	0.011	1	.391	0.165	-0.007	
0.038 Sun	-0.0425	0.012	-3	.600	0.000	-0.066	-
0.019 Light Snow	-0.2871	0.025	-11	675	0.000	-0.335	_
0.239	0.0007	0.000		247	0.000	0.000	
Mist 0.064	-0.0807	0.009	-9	.247	0.000	-0.098	-
	=======	=======		:====:	=========	======	=====
==== Omnibus:		82.	611	Durb:	in-Watson:		
2.013							24
Prob(Omnibus) 7.073	:	0.	.000	Jarqı	ue-Bera (JB):		21
Skew: e-48		-0.	.806	Prob	(JB):		7.30

Kurtosis: 5.760 Cond. No.

17.9

====

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [56]:

```
# VIF dataframe for 8th iteration
```

get_vif_dataframe(X_train_rfe_8)

Out[56]:

	Features	VIF
1	temp	5.22
2	windspeed	4.64
3	spring	2.78
4	summer	2.24
0	year	2.07
5	winter	1.83
6	Jan	1.61
7	Jul	1.59
12	Mist	1.56
8	Sep	1.33
9	Sat	1.22
10	Sun	1.21
11	Light Snow	1.08

In [57]:

```
# Model fitting for the 9th iteration
# As the feature 'temp' is not significant), so will remove that

X_train_rfe_9 = X_train_rfe_8.drop(['temp'], axis=1)

X_train_lm_9 = sm.add_constant(X_train_rfe_9)

lm_9 = sm.OLS(y_train, X_train_lm_9).fit()
print(lm_9.summary())
```

=========			_		=========	======	
====							
Dep. Variable	2:		cnt	R-sq	uared:		
0.776 Model:			OL C	۷d÷	P. cauanad:		
Model: 0.770			OLS	Auj.	R-squared:		
Method:		Least Squa	ares	F-ct:	atistic:		1
43.2		Lease sque	11 C3	1 300	aciscic.		_
Date:	We	d. 16 Aug 2	2023	Prob	(F-statistic):		1.19e
-152		,			(
Time:		18:16	2:28	Log-I	Likelihood:		41
9.63							
No. Observati	lons:		510	AIC:			-8
13.3							
Df Residuals:			497	BIC:			-7
58.2			12				
Df Model:	mo.	nonrol	12				
Covariance Ty	-						
====							
	coef	std err		t	P> t	[0.025	0.
975]						-	
const	0.5905	0.017	35	.515	0.000	0.558	
0.623							
year	0.2483	0.010	25	.933	0.000	0.230	
0.267	0 1002	0 020	6	111	0.000	-0.248	
windspeed 0.132	-0.1903	0.030	-6	.444	0.000	-0.248	-
spring	-0.2632	0.018	-14	.507	0.000	-0.299	_
0.228	0.2032	0.020		•507	0.000	0.233	
summer	-0.0439	0.016	-2	.690	0.007	-0.076	-
0.012							
winter	-0.0783	0.016	-5	.004	0.000	-0.109	-
0.048							
Jan	-0.1035	0.020	-5	.099	0.000	-0.143	-
0.064				440	0.600	0 054	
Jul	-0.0089	0.022	-0	.412	0.680	-0.051	
0.034 Sep	0.0671	0.020	2	.380	0.001	0.028	
0.106	0.0071	0.020	ر	. 300	0.001	0.028	
Sat	0.0124	0.013	0	.923	0.356	-0.014	
0.039			_				
Sun	-0.0439	0.014	-3	.162	0.002	-0.071	-
0.017							
Light Snow	-0.2997	0.029	-10	.367	0.000	-0.357	-
0.243							
Mist	-0.0877	0.010	-8	.552	0.000	-0.108	-
0.068							
=======================================	=======	=======	=====	=====	=========	======	=====
Omnibus:		46	.366	Durh:	in-Watson:		
1.987		-10		_ 4. 0.			
Prob(Omnibus)) :	0.	.000	Jarqı	ue-Bera (JB):		9
9.978					• ,		
Skew:		-0.	.514	Prob	(JB):		1.95
e-22							
Kurtosis:		4.	.910	Cond	. No.		
9.29							

====

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [58]:

```
# VIF dataframe for 9th iteration
get_vif_dataframe(X_train_rfe_9)
```

Out[58]:

	Features	VIF
1	windspeed	3.91
2	spring	2.78
3	summer	2.04
0	year	1.84
4	winter	1.79
5	Jan	1.60
11	Mist	1.52
6	Jul	1.22
8	Sat	1.21
9	Sun	1.20
7	Sep	1.16
10	Light Snow	1.08

In [59]:

```
# Model fitting for 10th iteration
# As the feature 'JUL' is not significant), so will remove that

X_train_rfe_10 = X_train_rfe_9.drop(['Jul'], axis=1)

X_train_lm_10 = sm.add_constant(X_train_rfe_10)

lm_10 = sm.OLS(y_train, X_train_lm_10).fit()

print(lm_10.summary())
```

=========	=======	=======	:=====				
====				_			
Dep. Variable 0.776	:		cnt	R-sqı	uared:		
Model: 0.771			0LS	Adj.	R-squared:		
Method:		Least Squa	ires	F-sta	atistic:		1
56.5 Date:	We	d, 16 Aug 2	2023	Prob	(F-statistic)	:	1.01e
-153 Time:		18:10):28	Log-I	Likelihood:		41
9.54 No. Observation	ons:		510	AIC:			-8
<pre>15.1 Df Residuals:</pre>			498	BIC:			-7
64.3 Df Model:			11				
Covariance Ty	-	nonrob					
====	=		=		=========		==
975]	coef	std err		t	P> t	[0.025	0.
const	0.5872	0.015	40.	182	0.000	0.559	
0.616 year	0.2483	0.010	25.	959	0.000	0.230	
<pre>0.267 windspeed 0.132</pre>	-0.1902	0.030	-6.	447	0.000	-0.248	-
spring 0.228	-0.2600	0.016	-15.	849	0.000	-0.292	-
summer 0.012	-0.0407	0.014	-2.	830	0.005	-0.069	-
winter 0.048	-0.0753	0.014	-5.	442	0.000	-0.102	-
Jan 0.064	-0.1035	0.020	-5.	106	0.000	-0.143	-
Sep 0.107	0.0696	0.019	3.	683	0.000	0.032	
Sat 0.039	0.0123	0.013	0.	916	0.360	-0.014	
Sun 0.017	-0.0442	0.014	-3.	184	0.002	-0.071	-
Light Snow 0.243	-0.2999	0.029	-10.	380	0.000	-0.357	-
Mist 0.067	-0.0874	0.010	-8.	551	0.000	-0.107	-
	=======	=======					======
==== Omnibus:		46.	458	Durb:	in-Watson:		
1.991 Prob(Omnibus)	:	0.	000	Jarqı	ue-Bera (JB):		9
9.734 Skew:			516	Prob			2.20
e-22 Kurtosis:			905	Cond			
8.92 ====================================	=======	=======	:=====	:===:			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [60]:

```
# VIF for the 10th iteration
get_vif_dataframe(X_train_rfe_10)
```

Out[60]:

	Features	VIF
1	windspeed	3.60
2	spring	2.58
3	summer	1.87
0	year	1.78
4	winter	1.66
5	Jan	1.60
10	Mist	1.51
7	Sat	1.20
8	Sun	1.18
6	Sep	1.14
9	Light Snow	1.08

In [61]:

```
# Model fitting for 11th iteration
# As the feature 'Sat' is not significant), so will remove that

X_train_rfe_11 = X_train_rfe_10.drop(['Sat'], axis=1)

X_train_lm_11 = sm.add_constant(X_train_rfe_11)

lm_11 = sm.OLS(y_train, X_train_lm_11).fit()

print(lm_11.summary())
```

========	=======	OL3 N	•		=========	=======	
====							
Dep. Variabl	e:		cnt	R-sq	uared:		
0.775 Model:			OLS	۸di	R-squared:		
0.771			ULS	Auj.	N-Squareu.		
Method:		Least Squa	ares	F-sta	atistic:		1
72.1							
Date:	We	d, 16 Aug 2	2023	Prob	(F-statistic)	:	1.14e
-154 Time:		12.10	0:28	l ∩σ-l	Likelihood:		41
9.11		10.10	7.20	LOB	erkerinood.		71
No. Observat	ions:		510	AIC:			-8
16.2			400	5.7.0			_
Df Residuals 69.6	:		499	BIC:			-7
Df Model:			10				
Covariance T	ype:	nonrol	oust				
	=======	=======	=====	=====		======	======
====	coef	std err		+	P> t	[0.025	0.
975]	2021	Sta Cii		·	17/6/	[0.023	0.
	0 5001	0.014	40	705	0.000	0 561	
const 0.617	0.5891	0.014	40	.705	0.000	0.561	
year	0.2481	0.010	25	.947	0.000	0.229	
0.267							
windspeed	-0.1889	0.029	-6	.411	0.000	-0.247	-
0.131 spring	-0.2599	0.016	-15	.845	0.000	-0.292	_
0.228	0.2333	0.010		.045	0.000	0.232	
summer	-0.0408	0.014	-2	.837	0.005	-0.069	-
0.013	0.0750	0.014	_	422	0.000	0 100	
winter 0.048	-0.0750	0.014	-5	.423	0.000	-0.102	-
Jan	-0.1033	0.020	-5	.095	0.000	-0.143	_
0.063							
Sep	0.0695	0.019	3	.678	0.000	0.032	
0.107 Sun	-0.0464	0.014	_ 3	.399	0.001	-0.073	_
0.020	-0.0404	0.014	- 5	• 555	0.001	-0.075	
Light Snow	-0.2997	0.029	-10	.376	0.000	-0.356	-
0.243	0.0074	0.010			0.000	0.40=	
Mist 0.067	-0.0874	0.010	-8	.550	0.000	-0.107	-
	========	=======	=====	=====		=======	
====							
Omnibus:		44.	678	Durb:	in-Watson:		
1.989 Prob(Omnibus	١.	а	.000	Jargi	ue-Bera (JB):		10
0.042	, .	0.	.000	Jaiqi	ac bera (5b).		10
Skew:		-0.	.483	Prob	(JB):		1.89
e-22		-	0.43		N -		
Kurtosis: 8.86		4.	.943	Cond	. NO.		
	========	=======		=====		=======	======
====							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [62]:

```
# VIF for 11th iteration
get_vif_dataframe(X_train_rfe_11)
```

Out[62]:

	Features	VIF
1	windspeed	3.52
2	spring	2.58
3	summer	1.86
0	year	1.78
4	winter	1.64
5	Jan	1.59
9	Mist	1.51
7	Sun	1.15
6	Sep	1.13
8	Light Snow	1.08

Observation

- We see, model Im_11, is having all the significant feature and having VIF <5. So, we will proceed with this model
- R square and the adjusted R square values are: 0.775 and 0.771, which are pretty goood to show the variation.

In [63]:

```
# Get the prediction on X_train_lm_11
y_train_cnt = lm_11.predict(X_train_lm_11)
y_train_cnt
```

Out[63]:

```
0.705298
653
576
       0.787127
426
       0.441624
728
       0.405578
482
       0.673354
526
       0.641783
578
       0.801776
53
       0.308135
350
       0.345105
79
       0.360795
Length: 510, dtype: float64
```

In [64]:

```
# Plot heatmap for final train data after feature removal
plt.figure(figsize = (16, 10))
sns.heatmap(X_train_rfe_11.corr(), annot = True, cmap="YlGnBu")
plt.show()
                 -0.0011
 year
                            -0.036
                                       0.014
                                                  -0.023
                                                            -0.012
                                                                       0.0026
                                                                                 -0.00081
                                                                                             -0.061
                                                                                                        -0.015
 windspeed
      -0.0011
                             0.18
                                       0.11
                                                                                             0.087
                                                 -0.091
                                                            0.0068
                                                                        -0.12
                                                                                 -0.0012
                                                                                                        -0.03
                                                                                                                          - 0.8
      -0.036
                  0.18
                                       -0.32
                                                                        -0.17
                                                                                 0.0033
                                                                                             -0.045
                                                  -0.33
                                                                                                        0.014
                                                                                                                           0.6
      0.014
                  0.11
                             -0.32
                                                  -0.33
                                                                        -0.17
                                                                                  -0.012
                                                                                             -0.045
                 -0.091
                                                                                  0.037
                                                                                             0.11
      -0.023
                             -0.33
                                       -0.33
                                                             -0.18
                                                                        -0.02
                                                                                                        0.023
      -0.012
                 0.0068
                                       -0.18
                                                                       -0.092
                                                                                  -0.0087
                                                                                             -0.054
Jan
                                                                                                                           - 0.2
                                                                                  -0.038
Sep
      0.0026
                 -0.12
                            -0 17
                                       -0 17
                                                  -0.02
                                                            -0.092
                                                                                             0.034
                                                                                                        0.045
 ž
      -0.00081
                 -0.0012
                            0.0033
                                       -0.012
                                                  0.037
                                                            -0.0087
                                                                       -0.038
                                                                                             -0.038
                                                                                                        -0.048
                                                                                                                           - 0.0
      -0.061
                 0.087
                                                  0.11
                            -0.045
                                       -0.045
                                                            -0.054
                                                                       0.034
                                                                                  -0.038
                                                                                                        -0.13
                                                                                                                          - -0.2
```

Observation

• We see all the feature, which are relavent are having no multi-collinearity.

Plot histogram for Error terms

```
In [65]:
```

```
# Plot the histogram of the error terms
# We see, mean is almost zero and this shoud be the case.

fig = plt.figure()
sns.distplot((y_train - y_train_cnt), bins = 20)
fig.suptitle('Error Terms', fontsize = 20)  # Plot heading
plt.xlabel('Errors', fontsize = 18)
```

Out[65]:

Text(0.5, 0, 'Errors')

Prepare the test set based on the train set

```
In [66]:
```

```
# Select the colums to be transformed in the test set
num_var = ['temp', 'abs-temp', 'humidity', 'windspeed', 'cnt']
df_test[num_var] = scaler.transform(df_test[num_var])
```

In [67]:

```
# Drop target and abs-temp from the test set

X_test = df_test.drop(['cnt', 'abs-temp'], axis=1)
y_test = df_test[['cnt']]
```

In [68]:

```
# Add a constant for test dataset

X_test_lm_11 = sm.add_constant(X_test)
```

In [69]:

```
# Select required columns for X_test_lm_11 WHICH are available in X_train_lm_11
X_test_lm_11 = X_test_lm_11[X_train_lm_11.columns]
X_test_lm_11
```

Out[69]:

	const	year	windspeed	spring	summer	winter	Jan	Sep	Sun	Light Snow	Mist
184	1.0	0	0.084219	0	0	0	0	0	0	0	1
535	1.0	1	0.153728	0	1	0	0	0	0	0	0
299	1.0	0	0.334206	0	0	1	0	0	0	0	1
221	1.0	0	0.339570	0	0	0	0	0	0	0	0
152	1.0	0	0.537414	0	1	0	0	0	0	0	0
400	1.0	1	0.287411	1	0	0	0	0	1	0	1
702	1.0	1	0.283397	0	0	1	0	0	0	0	0
127	1.0	0	0.069510	0	1	0	0	0	1	0	0
640	1.0	1	0.052115	0	0	1	0	0	0	0	1
72	1.0	0	0.203418	1	0	0	0	0	0	0	0

219 rows × 11 columns

Get the prediction for test set

```
In [70]:
```

```
# we will use lm_11 model as this was the best model.
# Get the prediction

y_pred = lm_11.predict(X_test_lm_11)
```

In [71]:

```
# Predicted dataframe
y_pred
```

Out[71]:

```
0.485778
184
       0.767296
535
299
       0.363545
221
       0.524917
       0.446750
152
         . . .
400
       0.389174
702
       0.708584
127
       0.488750
640
       0.664898
72
       0.290748
Length: 219, dtype: float64
```

In [72]:

```
# Plot test and pred datapoints

fig = plt.figure()
plt.scatter(y_test,y_pred)
fig.suptitle('y_test vs y_pred', fontsize=20)  # Plot heading
plt.xlabel('y_test', fontsize=18)  # X-label
plt.ylabel('y_pred', fontsize=16)
```

Out[72]:

Text(0, 0.5, 'y_pred')

In [73]:

```
# Get the ccpr plots for some feature
sm.graphics.plot_ccpr(lm_11, 'windspeed')
plt.show()

sm.graphics.plot_ccpr(lm_11, 'spring')
plt.show()

sm.graphics.plot_ccpr(lm_11, 'summer')
plt.show()

sm.graphics.plot_ccpr(lm_11, 'year')
plt.show()

sm.graphics.plot_ccpr(lm_11, 'Mist')
plt.show()

sm.graphics.plot_ccpr(lm_11, 'Light Snow')
plt.show()
```


Observation

· We see that residul is almost zero and constant.

In [75]:

```
## Get some derived metrics for test and train dataset
# Get r2 score for test
from sklearn.metrics import r2_score
r2_test = r2_score(y_test, y_pred)
print(r2_test)
```

0.7395825489781629

In [76]:

```
# Get r2 score for test
from sklearn.metrics import r2_score
r2_train = r2_score(y_train, y_train_cnt)
print(r2_train)
```

0.7752016324072822

Observation

• We see that the varivation is test and train dataset is almost uniform w.r.t prediction.

In [77]:

In [78]:

```
# Final model coefficients
print(lm_11.params)
```

0.589066 const 0.248063 year windspeed -0.188912 -0.259890 spring summer -0.040792 -0.075008 winter -0.103274 Jan 0.069520 Sep Sun -0.046392 Light Snow -0.299689 Mist -0.087378 dtype: float64

Observation

 We, see the important feature are: year, windspeed, spring, summer, winter, Jan, Sep, Sun, LightSnow and Mist

Final Model Eqaution

The equation of our model is:

 $cnt = 0.5891 + 0.2481 \times year - 0.1889 \times windspeed - 0.2599 \times spring - 0.0408 \times summer - 0.07 \times Sep - 0.0464 \times Sun - 0.2997 \times LightSnow - 0.0874 \times Mist$