TUD, Fachrichtung Mathematik

Institut für Analysis

Prof. Dr. S. Siegmund

PD Dr. A. Kalauch

Übung 24.10. bis 28.10.

Analysis I

3. Übungsblatt: Relationen, vollständige Induktion, binomischer Satz

In der Übung werden die folgenden Themen behandelt (siehe Schichl/Steinbauer, Kap. Mengenlehre 4.2):

- Relationen: Umkehrrelation, Relationstabelle als graphisches Hilfsmittel, Eigenschaften (reflexiv, symmetrisch, antisymmetrisch, transitiv)
- Äquivalenz
relation \sim : Äquivalenzklasse, Faktormenge
 M/\sim (= Menge aller Äquivalenzklassen), Partition von
 M
- Ordnungsrelation
- Binomischer Satz (siehe Forster)

Hinweis: Für eine Menge M und $Q \subseteq \mathcal{P}(M)$ schreiben wir

$$\bigcup Q := \{x \in M; \exists S \in Q : x \in S\}, \quad \bigcap Q := \{x \in M; \forall S \in Q : x \in S\}.$$

Aufgabe 3.1

Sei M die Menge aller Vorlesungsteilnehmer der Lehrveranstaltung Analysis I. Auf M seien die folgenden Relationen R_1 , R_2 , R_3 definiert:

Es gelte $(x, y) \in R_1$ genau dann, wenn x schon einmal mit y gesprochen hat.

Es gelte $(x, y) \in R_2$ genau dann, wenn x die Person y schon einmal gesehen hat.

Es gelte $(x, y) \in R_3$ genau dann, wenn x mit y verwandt ist.

- (a) Sind diese Relationen reflexiv, transitiv, symmetrisch, antisymmetrisch? Sind sie Äquivalenz- oder Ordnungsrelationen?
- (b) Was bedeuten die jeweiligen Umkehrrelationen umgangssprachlich?

Aufgabe 3.2

Welche der folgenden Relationen sind Äquivalenzrelationen auf der Menge M?

(a)
$$R_1 := \{(x, y) \in \mathbb{R} \times \mathbb{R} : x - y \in \mathbb{Z} \}$$
 auf $M := \mathbb{R}$,

(b)
$$R_2 := \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x - y| < 1\} \text{ auf } M := \mathbb{R},$$

(c)
$$R_3 := \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \colon x^2 = y^2\}$$
 auf $M := \mathbb{Z}$.

Geben Sie für die Relationen aus (a) bis (c), die Äquivalenzrelationen sind, auch die Äquivalenzklassen an.

Aufgabe 3.3

- (a) Gegeben seien zwei Äquivalenzrelationen R, S auf der Menge A. Zeigen Sie, dass dann auch $R \cap S$ eine Äquivalenzrelation ist. Ist die entsprechende Behauptung auch für $R \cup S$ richtig?
- (b) Geben Sie Beispiele für Relationen an, die jeweils zwei der Eigenschaften einer Äquivalenzrelation erfüllen, jedoch nicht die dritte.

Aufgabe 3.4

(a) Welche Gemeinsamkeiten und Unterschiede gibt es zwischen der üblichen Relation \leq auf \mathbb{R} und der Relation \leq auf $\mathbb{R} \times \mathbb{R}$ definiert durch

$$x \le y :\Leftrightarrow (x_1 \le y_1 \land x_2 \le y_2)$$

für
$$x = (x_1, x_2) \in \mathbb{R} \times \mathbb{R}$$
 und $y = (y_1, y_2) \in \mathbb{R} \times \mathbb{R}$?

(b) Sei M eine Menge. Welche Eigenschaften hat die Relation \subseteq auf $\mathcal{P}(M)$?

Aufgabe 3.5

- (a) Zeigen Sie für alle $n \in \mathbb{N}$, $n \geq 6$, dass $2^n \cdot n! < n^n$ gilt. Hinweis: Man kann den binomischen Satz nutzen.
- (b) Zeigen Sie für alle $n \in \mathbb{N}$, dass $11^{n+1} + 12^{2n-1}$ durch 133 teilbar ist.

Aufgabe 3.6 (H)

Zeigen Sie, dass die folgenden Relationen Äquivalenzrelationen auf M sind. Geben Sie jeweils die Äquivalenzklassen an.

(a) [2]
$$R_1 = \{(a,b) \in M \times M : \exists k \in \mathbb{Z} \text{ mit } a-b=5k\} \text{ auf } M = \mathbb{Z},$$

(b) [2] $R_2 = \{((a,b),(c,d)) \in M \times M : a^2 + b^2 = c^2 + d^2\}$ auf $M = \mathbb{R} \times \mathbb{R}$. (Veranschaulichen Sie sich in diesem Beispiel die Äquivalenzklassen geometrisch in der Ebene.)

Aufgabe 3.7 (H)

Beweisen Sie mittels vollständiger Induktion:

- (a) [2] Für alle $n \in \mathbb{N}$ ist $a_n := \frac{n}{6} + \frac{n^2}{2} + \frac{n^3}{3}$ eine natürliche Zahl.
- (b) [2] Für alle $n \in \mathbb{N} \exists k \in \mathbb{N} : b_n := 5^n 1 = 4 \cdot k$.
- (c) [2] Für alle $n \in \mathbb{N} \ \exists k \in \mathbb{N} : c_n := 6^n 5n + 4 = 5 \cdot k$.