Lista 5 - Cálculo Infinitesimal II

Semestre 2017/2 - Prof. Ricardo M. S. Rosa

23 de novembro de 2017

Obs: Sejam claros nas suas repostas e façam as devidas justificativas. Boa sorte!

1º Questão: Determine $\alpha \in \mathbb{R}$ tal que a função $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2$ dada por $F(x,y) = (x^3 - \alpha x y^2, \alpha x^2 y - y^3)$ é conforme na região $(x,y) \neq (0,0)$.

2º Questão: Se $\mathbf{G}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^2$ e $\mathbf{F}: \Omega' \subset \mathbb{R}^2 \to \mathbb{R}^2$ são transformações conformes, com $\mathbf{G}(\Omega) \subset \Omega'$, é verdade que a transformação composta $\mathbf{H} = \mathbf{F} \circ \mathbf{G}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^2$ é conforme? Mostre ou dê um contra-exemplo.

3º Questão: Seja $\mathbf{F}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação conforme definida em um aberto $\Omega \subset \mathbb{R}^2$. Dadas duas curvas parametrizadas suaves γ, σ em \mathbb{R}^2 que se interceptam em um certo ponto $\mathbf{P} \in \Omega$, mostre que

$$D\mathbf{F}(\mathbf{P})\gamma' \cdot D\mathbf{F}(\mathbf{P})\sigma' = \det D\mathbf{F}(\mathbf{P})\gamma' \cdot \sigma'.$$

4º. Questão: Seja S' a esfera unitária em \mathbb{R}^3 menos o "polo norte", ou seja $S = \{(x,y,z); \ x^2 + y^2 + z^2 = 1, \ z \neq 1\}$. Considere a projeção estereográfica $P: S' \to \mathbb{R}^2$ que leva um ponto (x,y,z) de S' no ponto (ξ,η) tal que $(\xi,\eta,0)$ é a interseção do plano z=0 com a reta que passa por (x,y,z) e o "polo norte" (0,0,1).

(1) Mostre que P é dado por

$$P(x,y,z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right), \quad (x,y,z) \in S'.$$

(2) Em cada ponto (x,y,z), considere o operador $DP(x,y,z):\mathbb{R}^3\to\mathbb{R}^2$ dado por

$$DP(x, y, z) = \begin{bmatrix} \xi_x & \xi_y & \xi_z \\ \eta_x & \eta_z & \eta_z \end{bmatrix},$$

onde $\xi = x/(1-z)$ e $\eta = y/(1-z)$. (O operador DP é a diferencial de P quando DP está restrito ao plano tangente a S' em (x,y,z) ou quando P é visto como operador definido em todo o conjunto $z \neq 1$.) Dados $(x,y,z) \in S'$ e um vetor $\mathbf{u} = (u_1, u_2, u_3) \in \mathbb{R}^3$ tangente a S' em (x,y,z), mostre que

$$||DP(x, y, z)\mathbf{u}|| = \frac{1}{1-z}||\mathbf{u}||.$$

(3) Dados $(x, y, z) \in S'$ e dois vetores $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ tangentes a S' em (x, y, z), mostre que

$$DP(x, y, z)\mathbf{u} \cdot DP(x, y, z)\mathbf{v} = \frac{1}{(1-z)^2}\mathbf{u} \cdot \mathbf{v}.$$

(4) Deduza que a projeção estereográfica P é conforme, i.e. leva duas curvas em S' que se interceptam em um ponto em outras duas curvas em \mathbb{R}^2 , preservando o ângulo entre elas no ponto de interseção.

5ª Questão: Se $(z_n)_{n\in\mathbb{N}}$ e $(w_n)_{n\in\mathbb{N}}$ são duas sequências complexas convergentes, com $z_n \to z$ e $w_n \to w$, mostre que $z_n + w_n \to z + w$ e $z_n w_n \to z w$.

6º Questão: Mostre que a transformação de Möbius

$$w = \frac{z - 1}{z + 1}$$

leva o semi-plano $\text{Re}(z) \geq 0$ no disco unitário fechado $|w| \leq 1$.

- **7º** Questão: Mostre, usando a definição de derivada complexa, que a soma e o produto de funções holomorfas também são holomorfas. Da mesma forma, mostre que o recíproco 1/f(z) de uma função holomorfa f(z) é holomorfa na região em que f não se anula. Mostre, usando agora as equações de Cauchy-Riemann, que a composição de duas funções holomorfas é holomorfa em sua região de definição.
- **8º:** Questão: Mostre que se uma função holomorfa $f = f(z), z \in \mathbb{C}$, tem a sua imagem pertencente a uma reta Im(z) = aRe(z), onde $a \in \mathbb{R}$ é uma constante, então f é constante.
- **9º** Questão: Seja $f: D \subset \mathbb{C} \to \mathbb{C}$ uma função holomorfa em um domínio D. Se $z_0 \in D$ é tal que $f'(z_0) \neq 0$, mostre que a função $g(z) = f(\bar{z})$ não é derivável em z_0 .
- 10º Questão: Considere a função complexa $f: \mathbb{C} \to \mathbb{C}$ dada por $f(z) = z\bar{z}$. Mostre que f é derivável em z = 0 mas não é derivável em nenhum ponto $z \neq 0$.
- 11º Questão: Seja $f: \underline{D} \subset \mathbb{C} \to \mathbb{C}$ uma função holomorfa em um domínio D. Mostre que a função $g = \overline{f(\bar{z})}$ é holomorfa no domínio $\bar{D} = \{\bar{w}, w \in D\}$.
- 12ª Questão: Escreva a expansão em série de Taylor da função $f(z) = e^{z^2}$ em torno da origem. Qual o raio de convergência dessa série?
- 13ª Questão: Dado um número complexo $z=|z|e^{i\arg(z)},\,z\neq 0$, mostre que a função logaritmo complexo, definida por

$$\ln z = \ln |z| + i \arg(z), \quad n \in \mathbb{Z},$$

onde $\arg(z)=\theta+2n\pi,\,n\in\mathbb{Z}$, tem a propriedade $e^{\ln z}=z,\,\forall z\in\mathbb{C},\,z\neq0$. O logaritmo complexo e a função argumento são funções multivaloradas. O valor principal do argumento, $\operatorname{Arg}(z)=\theta,\,-\pi<\theta\leq\pi,\,$ nos leva ao valor principal do logaritmo complexo, $\operatorname{Ln} z=\ln|z|+i\operatorname{Arg}(z)$. Mostre que o valor principal do logaritmo é uma função holomorfa no domínio aberto

$$D=\{re^{i\theta},\ r>0,\ -\pi<\theta<\pi\},$$

mas não é contínuo em todo o seu domínio de definição $\tilde{D} = \mathbb{C} \setminus \{0\}$.

14º Questão: A equação a derivadas parciais $P_t(t,z) = P_{zz}(t,z)$, para $t \in \mathbb{R}$, $z \in \mathbb{C}$, é chamada de equação do calor complexa. O problema de valor inicial associado a essa equação é encontrar, dada uma função inteira $P_0 = P_0(z)$, uma função P = P(t,z) com as seguintes propriedades: (i) está definida para todo $z \in \mathbb{C}$ e para todo t em um certo intervalo $0 \le t < T$, onde $0 < T \le \infty$; (ii) é diferenciável, em t e em z, na

região dada por 0 < t < T e $z \in \mathbb{C}$; (iii) satisfaz a equação do calor complexa em 0 < t < T e $z \in \mathbb{C}$; e (iv) satisfaz a condição inicial $P(0, z) = P_0(z)$, para todo $z \in \mathbb{C}$.

- (1) Prove que todo polinômio complexo de grau um, $P_0(z) = a_0 + a_1 z$, $a_0, a_1 \in \mathbb{C}$, é uma solução estacionária da equação do calor, i.e. $P(t, z) = P_0(z)$, $\forall t \in \mathbb{R}$, $\forall z \in \mathbb{C}$, é solução da equação do calor.
- (2) Dada uma condição inicial que seja um polinômio complexo de grau dois da forma $P_0(z) = (z z_1)(z z_2)$, onde $z_1, z_2 \in \mathbb{C}$ são distintos, encontre um sistema de equações diferenciais para $t \mapsto (z_1(t), z_2(t)) \in \mathbb{C}^2$ tal que $P(t, z) = (z z_1(t))(z z_2(t))$ seja solução do problema de valor inicial associado a essa condição inicial. (Dica: após obter a equação escalar complexa envolvendo $z'_1(t)$ e $z'_2(t)$, escolha valores apropriados de z para obter o sistema.)
- (3) Obtenha uma equação diferencial complexa para a diferença $w(t) = z_2(t) z_1(t)$ entre as duas raízes.
- (4) No caso particular em que $z_2(0) = x_0$ e $z_1(0) = -x_0$, com $x_0 \in \mathbb{R}$, $x_0 \neq 0$, encontre explicitamente a solução w(t) do sistema anterior, determine o tempo máximo T > 0 de definição dessa solução e determine o limite de w(t) quando $t \to T$.
- (5) Idem no caso em que $z_2(0) = iy_0$ e $z_1(0) = -iy_0$, com $y_0 \in \mathbb{R}$, $y_0 \neq 0$.