

1.) Structure from motion

- Problem statement.
- Affine SFM.
- Projective SFM.
- Understand the ambiguities.

2.) Bundle adjustment.

- Introduction.
- Method.
- Schur's complement trick.

Recap:

Triangulation:

Input: Intrinsics, relative orientation b/w frames, projection of a 3D point in frames.

Output: 3D point coordinates (P).

Recap:

PnP:

Input: set of correspondences between 3D points of the object and their projections on the image plane.

Output: relative 6 DoF pose b/w camera and object.

SFM:

Input: Given unordered pair of images

Output: Poses of each of these images along with the structure of the scene.

How is this different from SLAM?

SFM Problem Statement:

We have an unordered collection of M images.

Notation: (P_i is the proj matrix of ith camera), set of 3d points X_j. Note: Each of the 3d points may be visible in one or more cameras.

Input: x_ij is the projection of X_j on P_i. These x's can be called as observations. **Output**: How can you recover motion of cameras (P_i 's) and structure of the scene (X_j 's).

Ref: http://theia-sfm.org/

Affine SFM:

• Weak perspective proj (orthographic) : Dist from COP to image plane is inf.

$$M = \begin{bmatrix} A & b \\ v & 1 \end{bmatrix} \qquad x = MX = \begin{bmatrix} m_1 \\ m_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ 1 \end{bmatrix} = \begin{bmatrix} m_1 X \\ m_2 X \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} m_1 X \\ m_2 X \end{bmatrix} = \begin{bmatrix} A & b \end{bmatrix} X = AX + b \qquad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

• Unknowns: 8m+3n, equations: 2mn. Where n is no of 3D points, m is no of cameras.

$$\mathbf{x}_{ij} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i, \quad i = 1, \dots, m, j = 1, \dots, n$$

Ref: CS231A notes and slides

Tomasi Kanade Factorization for Affine SFM:

Steps:

Data centering: Centre all the 2D points in every pose.

$$\hat{\mathbf{X}}_{ij} = \mathbf{X}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{ik} = \mathbf{A}_{i} \mathbf{X}_{j} + \mathbf{b}_{i} - \frac{1}{n} \sum_{k=1}^{n} (\mathbf{A}_{i} \mathbf{X}_{k} + \mathbf{b}_{i})$$

$$= \mathbf{A}_{i} \left(\mathbf{X}_{j} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \right) = \mathbf{A}_{i} \hat{\mathbf{X}}_{j}$$

Assuming centre of world frame is at centroid of all 3D points.

$$\hat{\mathbf{x}}_{ij} = \mathbf{A}_i \mathbf{X}_j$$

Affine SFM:

Get the observation matrix x_cap(ij) – (2m*n).

$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1n} \\ \hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2n} \\ & & \ddots & \\ \hat{\mathbf{x}}_{m1} & \hat{\mathbf{x}}_{m2} & \cdots & \hat{\mathbf{x}}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\mathbf{Cameras}$$

$$(2 m \times 3)$$

D = M * S where M is motion matrix and S is structure/shape matrix. How to solve for M, S from D?

• Find M ,S which minimizes |D-MS|2

Ref: CMU 16.385 slides (lec 12)

Affine SFM....

2. Factorization step:

Use SVD decomposition as shown below.

Ref: CMU 16.385 slides (lec 12)

Affine Ambiguity:

• Noticed something in decomposition? (Hint: Multiple solutions for matrices M, S). That's called ambiguity.

Take any 3*3 matrix C, we can have below decomposition as well.

$$M \rightarrow MC, S \rightarrow C^{-1}S$$

Ref: CMU 16.385 slides (lec 12)

Projective SFM:

• Let's consider generic case where all cameras as projective. Solved using incremental paradigm.

Step 1: Start with just 2 images and build sparse structure of scene.

Add more images in SFM...

Step 2: Add images and build structure in incremental fashion.

Note: BA above is not performed after every new view is added, instead its done periodically or when you reach a keyframe (first introduced in PTAM). More in SLAM.

Projective ambiguity:

Reconstruction is upto a projective transformation.

 $Ref: https://cvgl.stanford.edu/teaching/cs231a_winter1415/lecture/lecture7_perspective_SFM_notes.pdf$

1.) Structure from motion

- Problem statement.
- Affine SFM.
- Projective SFM.
- Understand the ambiguities.

2.) Bundle adjustment.

- Introduction.
- Method.
- Schur's complement trick.

Bundle adjustment:

Refine projection matrices and 3D points jointly using iterative optimization algos like LM etc. Why?

• **How**?

Reproject 3D points on every image and minimize reprojection error by formulating as non linear least squares problem.

Num frames = m Num points = n

How many variables to refine/optimize? Let's denote it by vector φ

Bundle adjustment cost function:

• Reprojection error:

LM solver recap

• Consider m dimensional $F(x) = [f_1(x), \dots, f_m(x)]^{\top}$ fn where $x \in \mathbb{R}$

$$\min_{x} \frac{1}{2} ||F(x)||^2 .$$

Steps:

1. At every iteration, find correction in x which decreases error.

We linearize the fn
$$F(x+\Delta x)\approx F(x)+J(x)\Delta x$$
, where $J_{ij}(x)=\partial_j f_i(x)$
Find correction by minimizing $\min_{\Delta x}\frac{1}{2}\|J(x)\Delta x+F(x)\|^2$

2. Update x:

$$\Delta X \leftarrow (J_{\perp} J + YI)_{-1} J_{\perp} X$$

$$X \leftarrow X + \Delta X$$

Ref: Bundle adjustment in Large (Sameer El al.)

Step 1: Construct residual vector

• Step 2: Compute Motion Jacobian.

a:) /	Metien	Ja	colian:	4			
	J=	38	$=$ $\frac{36}{3\lambda}$	gb. Ja	Indiana	76	
10	i =>	11	17	1 2		m	2mn×12m

	138		65 = 9
where $\frac{\partial s}{\partial l}$	Top:		
<u> </u>			Marchay ?
	26:		
	1	×C	2000 1231
	1 2 2		V
	3200	12 75 71	1242 (2)
	96: 98w		
1 5	12.77	J-11 X 11	
Observe that	22	0 9	0
L III	28K=1	i, 0 &	K+i 6
	2Pi)	0
The state of the s	16	7 8	27×12
	· · · · ·	JXe -	
		20.	
u' - core	125	3921 2Pi	
2,10	76	dPi	¥ K=1
,		1	The second second
		!	
	1,16	Dain	
. 185	1.3.1	25/2 25/2	
*		3gin	,
***		Vin	
- J	-	dP:	2nx12

• Step 3: Compute Structure Jacobian.

• Step 4: Update rule.

- a. **\delta** to be computed at every iteration of LM algorithm. (Also called as normal equation).
- b. $\phi \leftarrow \phi \delta$ (update rule)

Sparse Bundle adjustment

- What's the complexity of the above update rule?
- How to exploit sparse structure of the Jacobians?

Source. Towards using sparse bundle adjustment for robust stereo odometry in outdoor terrain

Schur complement trick

Ref. Towards using sparse bundle adjustment for robust stereo odometry in outdoor terrain

Schur complement trick

Ref: NUS 3D Vision course