第七章 复合优化算法

修贤超

https://xianchaoxiu.github.io

目录

- 7.1 近似点梯度法
- 7.2 Nesterov 加速算法
- 7.3 近似点算法
- 7.4 分块坐标下降法
- 7.5 对偶算法
- 7.6 交替方向乘子法
- 7.7 随机优化算法

邻近算子

■ 考虑如下复合优化问题

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + h(x)$$

- □ f(x) 为可微函数 (可能非凸)
- □ h(x) 可能为不可微函数
- 定义 7.1 对于一个凸函数 h, 定义邻近算子为

$$\operatorname{prox}_h(x) = \arg\min_{u} \left\{ h(u) + \frac{1}{2} ||u - x||_2^2 \right\}$$

■ 定理 7.1 如果 h 为闭凸函数,则对任意 x 有 $prox_h(x)$ 存在且唯一

邻近算子

■ 定理 7.2 若 ħ 是适当的闭凸函数,则

$$u = \operatorname{prox}_h(x) \quad \Leftrightarrow \quad x - u \in \partial h(u)$$

证明 若 $u = \text{prox}_h(x)$, 则由最优性条件得 $0 \in \partial h(u) + (u - x)$, 因此 $x - u \in \partial h(u)$. 反之,若 $x - u \in \partial h(u)$ 则由次梯度的定义可得到

$$h(v) \geqslant h(u) + (x - u)^{\top} (v - u), \quad \forall v \in \text{dom } h$$

两边同时加 $\frac{1}{2}||v-x||^2$, 即有

$$h(v) + \frac{1}{2} \|v - x\|^2 \ge h(u) + (x - u)^{\top} (v - u) + \frac{1}{2} \|(v - u) - (x - u)\|^2$$
$$\ge h(u) + \frac{1}{2} \|u - x\|^2, \quad \forall v \in \text{dom } h$$

根据定义可得 $u = \operatorname{prox}_h(x)$

■ 给定 ℓ_1 范数 $h(x) = ||x||_1$, 则 $\operatorname{prox}_{th}(x) = \operatorname{sign}(x) \max\{|x| - t, 0\}$

证明 邻近算子 $u = prox_{th}(x)$ 的最优性条件为

$$x - u \in t\partial ||u||_1 = \begin{cases} \{t\}, & u > 0 \\ [-t, t], & u = 0 \\ \{-t\}, & u < 0 \end{cases}$$

$$u = \begin{cases} x - t, & x > t \\ x + t, & x < -t \\ 0, & x \in [-t, t] \end{cases}$$

■ 给定 ℓ_2 范数 $h(x) = \|x\|_2$, 则 $\operatorname{prox}_{th}(x) = \begin{cases} (1 - \frac{t}{\|x\|_2})x, & \|x\|_2 \geqslant t \\ 0, & \text{其他} \end{cases}$

证明 邻近算子 $u = \text{prox}_{th}(x)$ 的最优性条件为

$$x - u \in t\partial ||u||_2 = \begin{cases} \{\frac{tu}{||u||_2}\}, & u \neq 0 \\ \{w : ||w||_2 \leqslant t\}, & u = 0 \end{cases}$$

$$\downarrow u = \begin{cases} x - \frac{tx}{||x||_2}, & ||x||_2 > t \\ 0, & ||x||_2 \leqslant t \end{cases}$$

- 邻近算子的计算规则
 - \Box 变量的常数倍放缩以及平移 $(\lambda \neq 0)$

$$h(x) = g(\lambda x + a), \quad \operatorname{prox}_h(x) = \frac{1}{\lambda} \left(\operatorname{prox}_{\lambda^2 g}(\lambda x + a) - a \right)$$

 \Box 函数(及变量)的常数倍放缩 $(\lambda > 0)$

$$h(x) = \lambda g\left(\frac{x}{\lambda}\right), \quad \operatorname{prox}_h(x) = \lambda \operatorname{prox}_{\lambda^{-1}g}\left(\frac{x}{\lambda}\right)$$

□ 加上线性函数

$$h(x) = g(x) + a^{\mathsf{T}}x, \quad \operatorname{prox}_h(x) = \operatorname{prox}_g(x - a)$$

□ 加上二次项 (u > 0)

$$h(x) = g(x) + \frac{u}{2} ||x - a||_2^2, \quad \text{prox}_h(x) = \text{prox}_{\theta g}(\theta x + (1 - \theta)a)$$

其中
$$\theta = \frac{1}{1+u}$$

□ 向量函数

$$h\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \varphi_1(x) + \varphi_2(y), \quad \operatorname{prox}_h\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \left[\begin{array}{c} \operatorname{prox}_{\varphi_1}(x) \\ \operatorname{prox}_{\varphi_2}(y) \end{array}\right]$$

 $lue{}$ 设 C 为闭凸集,则示性函数 I_C 的邻近算子为点 x 到 C 的投影 $\mathcal{P}_C(x)$

$$\operatorname{prox}_{I_C}(x) = \underset{u}{\operatorname{arg \, min}} \left\{ I_C(u) + \frac{1}{2} \|u - x\|^2 \right\}$$
$$= \underset{u \in C}{\operatorname{arg \, min}} \|u - x\|^2$$
$$= \mathcal{P}_C(x)$$

■几何意义

$$u = \mathcal{P}_C(x) \quad \Leftrightarrow \quad (x - u)^\top (z - u) \leqslant 0, \quad \forall z \in C$$

近似点梯度法

■ 考虑复合优化问题

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + h(x)$$

■ 对于光滑部分 f 做梯度下降,对于非光滑部分 h 使用邻近算子

========

算法 7.1 近似点梯度法

- 1 给定函数 f(x),h(x), 初始点 x^0
- 2 while 未达到收敛准则 do
- $3 x^{k+1} = \operatorname{prox}_{t_k h}(x^k t_k \nabla f(x^k))$
- 4 end while

对近似点梯度法的理解

■ 把迭代公式展开

$$x^{k+1} = \operatorname{prox}_{t_k h}(x^k - t_k \nabla f(x^k))$$

$$\downarrow \downarrow$$

$$x^{k+1} = \arg\min_{u} \left\{ h(u) + \frac{1}{2t_k} \|u - x^k + t_k \nabla f(x^k)\|^2 \right\}$$

$$= \arg\min_{u} \left\{ h(u) + f(x^k) + \nabla f(x^k)^\top (u - x^k) + \frac{1}{2t_k} \|u - x^k\|^2 \right\}$$

■ 根据邻近算子与次梯度的关系, 可改写为

$$x^{k+1} = x^k - t_k \nabla f(x^k) - t_k g^k, \quad g^k \in \partial h(x^{k+1})$$

■ 对光滑部分做显式的梯度下降,对非光滑部分做隐式的梯度下降

步长选取

- $lacksymbol{\blacksquare}$ 当 f 为梯度 L-利普希茨连续函数时,可取固定步长 $t_k=t\leqslant rac{1}{L}$
- 当 L 未知时可使用线搜索准则

$$f(x^{k+1}) \le f(x^k) + \nabla f(x^k)^{\top} (x^{k+1} - x^k) + \frac{1}{2t_k} ||x^{k+1} - x^k||^2$$

- BB 步长
- 可构造如下适用于近似点梯度法的非单调线搜索准则

$$\psi(x^{k+1}) \le C^k - \frac{c_1}{2t_k} \|x^{k+1} - x^k\|^2$$

应用举例: LASSO 问题

■ 考虑用近似点梯度法求解 LASSO 问题

$$\min_{x} \quad \mu \|x\|_{1} + \frac{1}{2} \|Ax - b\|^{2}$$

• $\Rightarrow f(x) = \frac{1}{2} ||Ax - b||^2, h(x) = \mu ||x||_1, \, \mathbf{M}$

$$\nabla f(x) = A^{\top} (Ax - b)$$
$$\operatorname{prox}_{t_k h}(x) = \operatorname{sign}(x) \max \{|x| - t_k \mu, 0\}$$

■ 相应的迭代格式为

$$y^{k} = x^{k} - t_{k}A^{\top}(Ax^{k} - b)$$
$$x^{k+1} = \text{sign}(y^{k}) \max\{|y^{k}| - t_{k}\mu, 0\}$$

即第一步做梯度下降, 第二步做收缩

应用举例: LASSO 问题

■ 使用 BB 步长加速收敛

应用举例: 低秩矩阵恢复

■ 考虑低秩矩阵恢复模型

$$\min_{X \in \mathbb{R}^{m \times n}} \quad \mu \|X\|_* + \frac{1}{2} \sum_{(i,j) \in \Omega} (X_{ij} - M_{ij})^2$$

令

$$f(X) = \frac{1}{2} \sum_{(i,j) \in \Omega} (X_{ij} - M_{ij})^2, \quad h(X) = \mu ||X||_*$$

■ 定义矩阵

$$P_{ij} = \begin{cases} 1, & (i,j) \in \Omega \\ 0, & \not\exists \text{ th} \end{cases}$$

则

$$f(X) = \frac{1}{2} ||P \odot (X - M)||_F^2$$

应用举例: 低秩矩阵恢复

■进一步可以得到

$$\nabla f(X) = P \odot (X - M)$$
$$\operatorname{prox}_{t_k h}(X) = U \operatorname{Diag}(\max\{|d| - t_k \mu, 0\}) V^{\top}$$

■ 得到近似点梯度法的迭代格式

$$Y^{k} = X^{k} - t_{k}P \odot (X^{k} - M)$$
$$X^{k+1} = \operatorname{prox}_{t_{k}h}(Y^{k})$$

收敛性分析

- 假设 7.1 为了保证近似点梯度算法的收敛性

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y$$

- □ h 是适当的闭凸函数
- ullet 函数 $\psi(x)=f(x)+h(x)$ 的最小值 ψ^* 是有限的,并且在点 x^* 处取到
- 定理 7.3 在假设 7.1 下,取定步长为 $t_k = t \in (0, \frac{1}{L}]$,设 $\{x^k\}$ 为迭代产生序列,则

$$\psi(x^k) - \psi^* \leqslant \frac{1}{2kt} ||x^0 - x^*||^2$$

目录

- 7.1 近似点梯度法
- 7.2 Nesterov 加速算法
- 7.3 近似点算法
- 7.4 分块坐标下降法
- 7.5 对偶算法
- 7.6 交替方向乘子法
- 7.7 随机优化算法

典型问题形式

■ 考虑如下复合优化问题

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + h(x)$$

 $\Box f(x)$ 是连续可微的凸函数,且梯度是利普西茨连续的

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

□ h(x) 是适当的闭凸函数, 且邻近算子

$$\operatorname{prox}_h(x) = \arg\min_{u \in \operatorname{dom}h} \{h(u) + \frac{1}{2} ||x - u||^2\}$$

■ 步长取常数 $t_k = 1/L$ 时,近似点梯度法的收敛速度为 $\mathcal{O}(1/k)$

Nesterov 加速算法简史

- Nesterov 在 1983、1988、2005 提出了三种改进的一阶算法,收敛速度 $\mathcal{O}\left(\frac{1}{k^2}\right)$
- Beck 和 Teboulle 在 2008 年提出了 FISTA 算法, 第一步沿着前两步的计算方向计算一个新点, 第二步在该新点处做一步近似点梯度迭代

Nesterov 加速算法简史

[引用] A method for solving the convex programming problem with convergence rate O (1/k2)

Y Nesterov - Dokl akad nauk Sssr, 1983 - cir.nii.ac.jp

A method for solving the convex programming problem with convergence rate o(1/k2) | CiNii Research ... A method for solving the convex programming problem with convergence rate o(1/k2) ...

☆ 保存 ⑰ 引用 被引用次数: 5901 相关文章 所有 5 个版本 >>>

A fast iterative shrinkage-thresholding algorithm for linear inverse problems

A Beck, M Teboulle - SIAM journal on imaging sciences, 2009 - SIAM

... algorithm FISTA and ... that FISTA can be even faster than the proven theoretical rate and can outperform ISTA by several orders of magnitude, thus showing the potential promise of FISTA...

☆ 保存 奶 引用 被引用次数: 13863 相关文章 所有 27 个版本

FISTA 算法

算法 7.2 FISTA 算法

- 1 $\hat{\mathbf{m}} \lambda x^0 = x^{-1} \in \mathbb{R}^n, k \leftarrow 1$
- 2 while 未达到收敛准则 do
- 3 计算 $y^k = x^{k-1} + \frac{k-2}{k+1}(x^{k-1} x^{k-2})$
- 4 选取 $t_k = t \in (0, 1/L]$, 计算 $x^k = \operatorname{prox}_{t_k h}(y^k t_k \nabla f(y^k))$
- $5 k \leftarrow k+1$
- 6 end while

FISTA 的等价形式

算法 7.3 FISTA 算法的等价变形

- 1 $\hat{m} \wedge v^0 = x^0 \in \mathbb{R}^n, k \leftarrow 1$
- 2 while 未达到收敛准则 do
- 3 计算 $y^k = (1 \gamma_k)x^{k-1} + \gamma_k v^{k-1}$
- 4 选取 t_k , 计算 $x^k = \operatorname{prox}_{t_k h}(y^k t_k \nabla f(y^k))$
- 5 计算 $v^k = x^{k-1} + \frac{1}{\gamma_k} (x^k x^{k-1})$
- 6 $k \leftarrow k+1$
- 7 end while

第二类 Nesterov 加速算法

■ 第二类 Nesterov 加速算法

$$z^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k-1}$$
$$y^{k} = \operatorname{prox}_{(t_{k}/\gamma_{k})h} \left(y^{k-1} - \frac{t_{k}}{\gamma_{k}} \nabla f(z^{k}) \right)$$
$$x^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k}$$

■ 三个序列 $\{x^k\}$, $\{y^k\}$ 和 $\{z^k\}$ 都可以保证在定义域内

$$y^{k} = \operatorname{prox}_{(t_{k}/\gamma_{k})h}(y^{k-1} - (t_{k}/\gamma_{k})\nabla f(z^{k}))$$

$$y^{k-1} \quad z^{k} \quad x^{k-1}$$

第三类 Nesterov 加速算法

■ 第三类 Nesterov 加速算法

$$z^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k-1}$$

$$y^{k} = \operatorname{prox}_{(t_{k} \sum_{i=1}^{k} 1/\gamma_{i})h} \left(-t_{k} \sum_{i=1}^{k} \frac{1}{\gamma_{i}} \nabla f(z^{i}) \right)$$

$$x^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k}$$

- 计算 y^k 时需要利用全部已有的 $\{\nabla f(z^i)\}, i=1,2,\cdots,k$
- lacksquare 取 $\gamma_k=rac{2}{k+1}$, $t_k=rac{1}{L}$ 时,也有 $\mathcal{O}\left(rac{1}{k^2}
 ight)$ 的收敛速度

针对非凸问题的 Nesterov 加速算法

- 考虑 *f*(*x*) 是非凸函数, 但可微且梯度是利普希茨连续
- 非凸复合优化问题的加速梯度法框架

$$z^{k} = \gamma_{k} y^{k-1} + (1 - \gamma_{k}) x^{k-1}$$
$$y^{k} = \operatorname{prox}_{\lambda_{k} h} (y^{k-1} - \lambda_{k} \nabla f(z^{k}))$$
$$x^{k} = \operatorname{prox}_{t_{k} h} (z^{k} - t_{k} \nabla f(z^{k}))$$

- \blacksquare 当 λ_k 和 t_k 取特定值时,它等价于第二类 Nesterov 加速算法
- $lacksymbol{\bullet}$ 当 f 为凸函数,收敛速度为 $\mathcal{O}\left(\frac{1}{k^2}\right)$
- $lacksymbol{\blacksquare}$ 当 f 为非凸函数,收敛速度为 $\mathcal{O}\left(rac{1}{k}
 ight)$

应用举例: LASSO 问题求解

■ 考虑 LASSO 问题

$$\min_{x} \quad \frac{1}{2} ||Ax - b||_{2}^{2} + \mu ||x||_{1}$$

■ FISTA 算法可以由下面的迭代格式给出

$$y^{k} = x^{k-1} + \frac{k-2}{k+1}(x^{k-1} - x^{k-2})$$

$$w^{k} = y^{k} - t_{k}A^{\top}(Ay^{k} - b)$$

$$x^{k} = \operatorname{sign}(w^{k}) \max\{|w^{k}| - t_{k}\mu, 0\}$$

■ 第二类和第三类 Nesterov 加速算法

应用举例: LASSO 问题求解

■ 取 $\mu = 10^{-3}$, 步长 $t = \frac{1}{L}$, 其中 $L = \lambda_{\max}(A^{T}A)$

收敛性分析

■ 定理 7.5 在假设 7.1 下,取定步长 $t_k = t \in (0, 1/L]$. 设 $\{x^k\}$ 是由近似点梯 度法迭代产生的序列,则

$$\psi(x^k) - \psi^* \le \frac{1}{2kt} \|x^0 - x^*\|^2$$

■ <mark>推论 7.1</mark> 在假设 7.1 下,当用 FISTA 算法求解凸复合优化问题时,若迭代点 x^k, y^k ,步长 t_k 以及组合系数 γ_k 满足一定条件,则

$$\psi(x^k) - \psi(x^*) \le \frac{C}{k^2}$$

其中 C 仅与函数 f 和初始点 x^0 的选取有关

■ 采用线搜索的 FISTA 算法具有 $\mathcal{O}\left(\frac{1}{k^2}\right)$ 的收敛速度

Q&A

Thank you!

感谢您的聆听和反馈