

ECTE333 – Tutorial 2 **Serial Communication**

School of Electrical, Computer and Telecommunications Engineering
University of Wollongong
Australia

ECTE333's schedule

Lecture (2h)	Tutorial (1h)	Lab (2h)
L1:Introduction to AVR Microcontrollers		
L2: C Programming, Digital IO	Tutorial 1	Lab 1
L3: Serial Communication		
	Tutorial 2	Lab 2
L4: Interrupts, Timers		
	Tutorial 3	Lab 3
L5: Pulse Width Modulators		
	Tutorial 4	Lab 4
L6: Analogue-to-Digital Converters		
	Tutorial 5	Lab 5
L7: Microcontroller Applications		
		Lab 6

Lam Phung ECTE333 Tutorial 2 2/21

Tutorial 2's overview

Lam Phung ECTE333 Tutorial 2 3/21

Tutorial 2's overview

For this tutorial, we use Section 5 of Exam Appendix:

ECTE333-Exam-Appendix.pdf

(available on e-learning)

Q1 – Serial communication in ATmega16: Quiz

a) On what IO port do TXD and RXD pins reside?

Port D: TXD = D.1 and RXD = D.0.

b) What registers are used to set the baud rate?

UBRRH and UBRRL.

$$UBRR = \frac{system\ clock\ frequency\ (Hz)}{16\times (baud\ rate)} - 1$$

c) How to select asynchronous transmission?

Make flag UMSEL = 0 (register UCSRC).

URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL UCSRC

d) How to specify the number of stop bits?

Flag USBS of register UCSRC: 0 → 1 stop bit,

 $1 \rightarrow 2$ stop bits.

Lam Phung ECTE333 Tutorial 2 5/21

Q1 – Serial communication in ATmega16: Quiz

e) How to select parity bit options?

Bits UPM1 and UPM0 of register UCSRC: 00 → none, 10 → even, 11 → odd.

URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL UCSRC

f) How to double the transmission speed?

- Set bit U2X = 1 (register UCSRA).
- Then, baud rate = clock/[8 x(UBRR+1)].

								-
RXC	TXC	UDRE	FE	DOR	PE	U2X	MPCM	UCSRA

g) How to specify the character size 5, 6, 8, or 9?

■ Use three flags UCSZ2, UCSZ1 and UCSZ0.

RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8	UCSRB
URSEL	UMSEL	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL	UCSRC

Lam Phung ECTE333 Tutorial 2 6/21

a) Describe the steps and the relevant registers to initialise the serial port on the ATmega16 for asynchronous serial transmission.

b-i) Write C code for asynchronous serial transmission at baud rate 2400bps, 8 data bits, 1 start bit, 1 stop bit, no parity, system clock 1MHz.

Baud rate

- \square UBRR = 1000000/(16 × 2400) 1 = 25_d = 0019_H.
- □ Therefore, UBRRH = 00_{H} and UBRRL = 19_{H} .
- Control and status registers (next 3 slides)
 - UCSRA = 0b0000 0000
 - UCSRB = 0b0001 1000
 - \bigcup UCSRC = 0b1000 0110

C code

```
UCRSA = 0b00000000;

UCSRB = 0b00011000;

UCSRC = 0b10000110;

UBRRH = 0x00; UBRRL = 0x19;
```

b-i) Write C code for asynchronous serial transmission at baud rate 2400bps, 8 data bits, 1 start bit, 1 stop bit, no parity, system clock 1MHz.

Lam Phung ECTE333 Tutorial 2 9/21

b-i) Write C code for asynchronous serial transmission at baud rate 2400bps, 8 data bits, 1 start bit, 1 stop bit, no parity, system clock 1MHz.

Lam Phung ECTE333 Tutorial 2 10/21

b-i) Write C code for asynchronous serial transmission at baud rate 2400bps, 8 data bits, 1 start bit, 1 stop bit, no parity, system clock 1MHz.

Lam Phung ECTE333 Tutorial 2 11/21

b-ii) Write C code for asynchronous serial transmission at baud rate 4800bps, 7 data bits, 1 start bit, 2 stop bits, even parity, system clock 4 MHz.

C code

```
UCRSA = 0b00000000;

UCSRB = 0b00011000;

UCSRC = 0b10101100;

UBRRH = 0x00; UBRRL = 0x33;
```

Q3 – Serial communication in ATmega16: Sending a character

a) Explain the steps and the registers involved in sending a character through the serial port. Assume that the polling approach is used.


```
TXC UDRE
UCSRA
         RXC
                          FE
                               DOR
                                    PE
                                         U2X MPCM
                                0
                                     0
                0
                          0
                                          0
                                                0
  mask
bit-wise
                   UDRE
                0
                          0
                                          0
                                0
                                     0
                                                0
   AND
```

zero if bit at position UDRE = 0

```
void serial_send(unsigned char data) {
    // Wait until UDRE flag = 1
    while ((UCSRA & Ob0010000) == 0x00) {;}

    // Write char to UDR for transmission
    UDR = data;
}
```

Q3 – Serial communication in ATmega16: Receiving a character

b) Explain the steps and the registers involved in receiving a character through the serial port. Assume that the polling approach is used.

Lam Phung ECTE333 Tutorial 2 14/21

Q4 – Serial communication in ATmega16: Programming

Write a C program to continually read a character from the serial port of ATmega16 and send the character to PORTA. Use parameters in Q2b-i.

```
#include <avr/io.h>
void serial init(void) {
   UCSRA = 0b00000000; // disable double speed, disable multi-proc
   UCSRB = 0b00011000; // enable Tx and Rx, disable interrupts
   UCSRC = 0b10000110; // asyn mode, no parity, 1 stop bit, 8 data bits
   UBRRH = 0 \times 00; UBRRL = 0 \times 19; // Baud rate 2400bps, assuming 1MHz clock
unsigned char serial receive(void) {
   while ((UCSRA & (1<<RXC)) == 0 \times 00) {;} // wait until RXC flag = 1
                                 // read the received character from UDR
   return (UDR);
int main(void) {
   unsigned char i;
   DDRA = 0xFF; // set PORTA for output
   serial init(); // initialise USART
   while (1) {
        i = serial receive(); // receive from serial port
        PORTA = i; // send it to port A
   return 0;
```

Q5 – Serial communication in ATmega16: Programming

Write a C program to control a pan-tilt camera through the serial port ...

```
#include <avr/io.h>
void delay(void) {
   for (int i = 0; i < 1000; i++)</pre>
      for (int j = 0; j < 100; j++)
        asm volatile("nop"); // create a relay by repeating NOP instructions
}
void serial init(void) {
   UCSRA = \overline{0}b00000010; // double speed, disable multi-proc
   UCSRB = 0b00011000; // Enable Tx and Rx, disable interrupts
   UCSRC = 0b10000110; // Asyn mode, no parity, 1 stop bit, 8 data bits
   UBRRH = 0 \times 00; UBRRL = 12; // Baud rate 9600bps, 1MHz clock, double-speed
void serial send(unsigned char data) {
   while ((\overline{UCSRA} \& (1 << \overline{UDRE})) == 0 \times 00){;} // wait until \overline{UDRE} flag = 1
   UDR = data; // Write character to UDR for transmission
int main(void) {
   unsigned char i, j;
   unsigned char move chars[4] = {'4', '6', '8', '2'};
   serial init(); // initialise USART
   while (1) {
      for (j = 0; j < 4; j++)
         serial send(move chars[j]); // send '4', '6', '8', or '2'
            delay();
   return 0;
```

Q6 – Timing in asynchronous serial transmission

- Asynchronous serial transmission uses 8 data bits, 1 start bit, 1 stop bit and 1 parity bit.
- Incoming bits are sampled at the middle of each clock period of the receiver.
- Determine the relationship between the clock frequency of receiver & sender to prevent framing errors.
- Main idea: In asynchronous serial transmission, the clock rates of the sender and receiver do not have to be the same.
- Each character requires 11 bits to send: 8 data + 1 start + 1 stop + 1 parity.
- The receiver reads the 11th bit to find the end of transmission.
- If it cannot detect this bit, a <u>framing error</u> will occur.
- Let T_{tx} be the clock period of transmitter, $T_{tx} = 1/(baud rate)$.
- Let T_{rx} be the clock period of the receiver.

Q6 – Timing in asynchronous serial transmission

- The transmitter sends the last bit (bit 11th) during: $[10 \times T_{tx}, 11 \times T_{tx}]$.
- The receiver reads the last bit (bit 11th) at time: $10.5 \times T_{rx}$.
- For the last bit to be read correctly, we require:

$$10 \times T_{tx} \leq 10.5 \times T_{rx} \leq 11 \times T_{tx}$$

$$\frac{10}{F_{tx}} \leq \frac{10.5}{F_{rx}} \leq \frac{11}{F_{tx}}$$

$$0.95 \times F_{tx} \leq F_{rx} \leq 1.05 \times F_{tx}$$

Lam Phung ECTE333 Tutorial 2 18/21

Q7 – Asynchronous versus synchronous serial transmission

a) Differentiate synchronous versus asynchronous serial transmission.

Synchronous

- □ The clocks of the sender and receiver are synchronised.
- □ A block of characters, enclosed by synchronising bytes, is sent at a time.
- Faster transfer and less overhead.
- Examples: SPI, BISYNC.

Asynchronous

- The clocks of the sender and receiver are not synchronised.
- One character is sent at a time, enclosed by start bit, stop bits, & parity bit.
- Example: asynchronous mode of serial port ATmega16.
- □ For long messages, asynchronous mode is slow because start/stop bit must be sent for each character.
- ☐ For short, interactive messages, asynchronous mode is suitable.

Q7 – Asynchronous versus synchronous serial transmission

- b) Suppose a file of 10,000 bytes is to be sent over a line at 19600bps.
- i. Calculate the overhead in bits and seconds for asynchronous mode.
 Assume 1 start bit, 1 stop bit, 8 data bits, and no parity bit.
- ii. Calculate the overhead in bits and seconds for synchronous mode. Data are sent in frames: 1000 characters/frame, and an overhead of 48 bits/frame.
- Asynchronous: Each character has 2 bits of overhead (1 start bit, 1 stop bit).
 - This means an extra of 20,000 bits are sent.
 - This leads to an overhead of 20,000/19,600 = 1.02 seconds.

Synchronous:

- 10 frames are required to transmit this file.
- The control bits are the extra bits: 48 bits/frame × 10 frames = 480 bits.
- The overhead time: 0.0245 seconds.

Extra practice for Lecture 3/Lab 3/Tutorial 2

- Write and test a C program for STK500 board that connects to the PC via serial port at baud rate 2400bps, 8 data bits, 1 start bit, 1 stop bit, no parity bit.
- The program should repeatedly
 - let the user enter two integer values from Hyper Terminal (using scanf).
 - turn ON or OFF the corresponding LED.
- The first integer is LED number, and the second integer is LED status.
 For example,
 - if the user enters 2 1, then LED2 will be turned ON.
 - If the user enters 2 0, then LED2 will be turned OFF.