Integration: Definitions and basic concepts Introduction to Engineering Mathematics

Prof. Joris Vankerschaver

Contents

- Definite/indefinite integral
- Relation with area
- Properties
- Examples

Indefinite integrals as antiderivatives

- Antiderivative: the opposite (inverse operation) of a derivative.
- The **indefinite integral** is an antiderivative.

Examples:

•
$$\frac{d}{dx}\frac{x^3}{3} = x^2$$
, so $\int x^2 dx = \frac{x^3}{3} + C$

Indefinite integrals as antiderivatives

- Antiderivative: the opposite (inverse operation) of a derivative.
- The indefinite integral is an antiderivative.

Examples:

•
$$\frac{d}{dx}\frac{x^3}{3} = x^2$$
, so $\int x^2 dx = \frac{x^3}{3} + C$

•
$$\frac{d}{dx}\arcsin(x) = \frac{1}{\sqrt{1-x^2}}$$
, so $\int \frac{dx}{\sqrt{1-x^2}} = \arcsin(x) + C$.

Indefinite integrals as antiderivatives

- Antiderivative: the opposite (inverse operation) of a derivative.
- The indefinite integral is an antiderivative.

Examples:

•
$$\frac{d}{dx}\frac{x^3}{3} = x^2$$
, so $\int x^2 dx = \frac{x^3}{3} + C$

•
$$\frac{d}{dx}\arcsin(x) = \frac{1}{\sqrt{1-x^2}}$$
, so $\int \frac{dx}{\sqrt{1-x^2}} = \arcsin(x) + C$.

In these examples, C is an **arbitrary constant**.

Anatomy of an indefinite integral

Polynomials:

•
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \text{ for } n \neq -1$$
•
$$\int \frac{dx}{x} = \ln|x| + C$$

Trigonometric functions:

•
$$\int \sin x \, dx = -\cos x + C$$
 $\int \tan x \, dx = -\ln|\cos x| + C$
• $\int \cos x \, dx = \sin x + C$ Not an obvious antiderivative; we will see how to derive this integral later.

Exponential/logarithmic functions:

Inverse trigonometric functions:

•
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin(x) + C$$
•
$$\int \frac{dx}{1+x^2} = \arctan(x) + C$$

Special cases:

•
$$\int \sec^2 x \, dx = \tan x + C$$
•
$$\int \csc^2 x \, dx = -\cot x + C$$
•
$$\int \sec x \tan x \, dx = \sec x + C$$
•
$$\int \csc x \cot x \, dx = -\csc x + C$$

The definite integral

Definite integral: integral with "bounds"

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
 Lower bound

How to compute:

• Find primitive function
$$F(x)$$
: $\int f(x) dx = F(x) + C$

2 Substitute bounds into F(x):

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x) \Big|_{a}^{b}.$$

Compute:

$$\bullet \int_0^{\pi/2} \sin x \, dx$$

$$\bullet \int_{-1}^2 (x^2 + 2x - 1) \, dx$$

•
$$\int_{a}^{a} f(x)dx = F(a) - F(a) = 0$$

•
$$\int_{a}^{a} f(x)dx = F(a) - F(a) = 0$$
•
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Linearity:

$$\int_a^b (Af(x)+Bg(x))dx = A\int_a^b f(x)dx + B\int_a^b g(x)dx$$

•
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Linearity:

$$\int_{a}^{b} (Af(x) + Bg(x))dx = A \int_{a}^{b} f(x)dx + B \int_{a}^{b} g(x)dx$$

•
$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

Definite integrals correspond to signed areas

If f(x) changes sign: break up into parts above/below x-axis.

Find the area...

- Between the graph of $y = \sin x$ and the x-axis, from 0 to 2π .
- Below the graph of $y = 3x x^2$ and above the x-axis.

Properties (continued)

• For an even function, $\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$

Properties (continued)

- For an even function, $\int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx$
- For an odd function, $\int_{-\hat{a}}^{\hat{a}} f(x) = 0$.

Properties (continued)

- For an even function, $\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$
- For an odd function, $\int_{a}^{a} f(x) = 0$.
- "King's rule": $\int_0^a f(x)dx = \int_0^a f(a-x)dx.$

Continuity and integration

- So far, we have silently assumed f(x) is continuous on [a,b] to define the integral $\int_a^b f(x) dx$.
- The integral can also be defined if f(x) is **piecewise** continuous.

Compute the following integrals:

•
$$\int_{1}^{1} \left(10x^4 - \frac{2}{\sqrt{1-x^2}} \right) dx$$

$$\bullet \int \frac{x^2}{1+x^2} \, dx$$

Show that
$$\int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx = \frac{\pi}{4}.$$

Difficult, uses King's rule.

Integrals and derivatives are each other's inverse

- If $G(x) = \int_1^x \ln y \, dy$, find G'(x).
- If $H(x) = \int_{1}^{x^{2}} \ln y \, dy$, find H'(x).