Comparative Analysis of SIH Problem Statements

Evaluation Criteria

Criteria	Description	Weight
Technical Feasibility	How feasible is the implementation with current technology?	20%
Innovation Potential	How much room is there for novel, creative solutions?	25%
Social Impact	What is the potential positive impact on society?	20%
Implementation Complexity	How complex would the implementation be? (Lower is better)	15%
Alignment with Trends	How well does it align with current technological trends?	10%
Scalability	How easily can the solution be scaled across different regions?	5%
Sustainability	How sustainable is the solution in the long term?	5%

Scoring (1-10 scale)

Problem Statement #2: Smart Tourist Safety Monitoring & Incident Response System

Criteria	Score	Justification
Technical Feasibility	8	Blockchain, AI, and geo-fencing technologies are mature enough for implementation
Innovation Potential	9	High potential for novel integration of multiple technologies

about:blank 1/4

Criteria	Score	Justification
Social Impact	8	Could significantly improve tourist safety in remote areas
Implementation Complexity	6	Integration of multiple technologies increases complexity
Alignment with Trends	9	Aligns with digital identity, blockchain, and safety tech trends
Scalability	8	Can be adapted to different tourist destinations
Sustainability	7	Requires ongoing maintenance but provides long-term value
Weighted Score	8.05	

Problem Statement #50: Smart Traffic Management System for Urban Congestion

Criteria	Score	Justification
Technical Feasibility	9	Traffic management technologies are well- established
Innovation Potential	7	Many existing solutions, but room for India-specific innovations
Social Impact	9	Could improve daily life for millions in congested cities
Implementation Complexity	7	Requires integration with existing infrastructure
Alignment with Trends	8	Aligns with smart city and sustainable transportation trends
Scalability	9	Can be implemented across multiple cities with adjustments
Sustainability	8	Addresses a persistent problem with long-term benefits

about:blank 2/4

Criteria	Score	Justification
Weighted Score	8.15	

Problem Statement #95: Accelerating High-Fidelity Road Network Modeling for Indian Traffic Simulations

Criteria	Score	Justification
Technical Feasibility	7	Requires sophisticated modeling techniques
Innovation Potential	8	Opportunity to create India-specific traffic models
Social Impact	6	Indirect impact through improved traffic planning
Implementation Complexity	5	High complexity due to detailed modeling requirements
Alignment with Trends	7	Aligns with digital twin and simulation trends
Scalability	7	Models can be adapted for different regions
Sustainability	8	Creates foundation for ongoing traffic improvements
Weighted Score	6.85	

Problem Statement #97: Al-based Drop-out Prediction and Counseling System

Criteria	Score	Justification
Technical Feasibility	9	Al prediction models are well-established
Innovation Potential	8	Room for novel approaches in counseling interventions
Social Impact	10	Direct impact on education outcomes and life opportunities
Implementation Complexity	8	Relatively straightforward implementation

about:blank 3/4

Criteria	Score	Justification
Alignment with Trends	9	Aligns with AI in education and personalized learning trends
Scalability	9	Can be implemented across various educational institutions
Sustainability	9	Addresses a persistent problem with long-term benefits
Weighted Score	8.85	

Overall Ranking

- 1. Problem Statement #97: Al-based Drop-out Prediction and Counseling System (8.85/10)
 - Highest social impact
 - Strong technical feasibility
 - Good innovation potential
 - Lower implementation complexity
- 2. Problem Statement #50: Smart Traffic Management System for Urban Congestion (8.15/10)
 - High social impact
 - Strong technical feasibility
 - Good scalability
- 3. Problem Statement #2: Smart Tourist Safety Monitoring & Incident Response System (8.05/10)
 - High innovation potential
 - Good technical feasibility
 - Strong alignment with current trends
- 4. Problem Statement #95: Accelerating High-Fidelity Road Network Modeling for Indian Traffic Simulations (6.85/10)
 - Higher implementation complexity
 - Lower direct social impact
 - Still valuable but more specialized application

about:blank 4/4