Cálculo e Geometria Analítica II

Lista 8 - Convergência Absoluta e Condicional ; Séries de Potências

Convergência absoluta e convergência condicional

- 1. Em cada item marque com um X a alternativa correta, em que V indica verdadeiro e F indica
- (a) Seja a série $\sum_{k=1}^{\infty} a_k$ e seja $S_n = \sum_{k=1}^n |a_k|$, para todo $n \in \mathbb{N}$. Se $\lim_{n \to \infty} S_n = 4$, então a série $\sum_{k=1}^{\infty} a_k$ converge.
- (b) Se a série $\sum_k a_k$ é condicionalmente convergente, então $\sum_k |a_k|$ converge.
- 2. Classifique cada série como absolutamente convergente, condicionalmente convergente ou diver-
 - (a) $\sum_{k=1}^{\infty} \frac{(-1)^k k!}{e^k}$ (b) $\sum_{k=1}^{\infty} \frac{(-1)^k}{1 + 5\sqrt{k}}$ (c) $\sum_{k=1}^{\infty} \frac{(-1)^k \sqrt{k}}{1 + 2\sqrt{k}}$ (d) $\sum_{k=1}^{\infty} \frac{(-1)^k \sec(5k)}{k^3}$ (e) $\sum_{k=1}^{\infty} \frac{(-1)^k 3k}{4k^2 + 1}$ (f) $\sum_{k=1}^{\infty} \frac{(-1)^k 5k}{(2k + 3)!}$ (g) $\sum_{k=1}^{\infty} \frac{(-1)^k k^4}{2^k}$ (h) $-\frac{1}{3} + \frac{2}{4} \frac{3}{5} + \frac{4}{6} \frac{5}{7} + \dots$ (i) $\sum_{k=2}^{\infty} \frac{\cos(\pi k)}{\ln k}$

 - (j) $\sum_{k=1}^{\infty} k \operatorname{sen}\left(\frac{1}{k^2}\right)$ (k) $\sum_{k=1}^{\infty} k \operatorname{sen}\left(\frac{1}{k^3}\right)$
- 3. Cada série a seguir satisfaz o teste da série alternada, para cada uma delas determine um valor \boldsymbol{n} tal que a enésima soma parcial aproxima a série com a precisão explicitada.
 - (b) $\sum_{k=1}^{\infty} \frac{(-1)^k k}{e^k}$, três casas decimais (a) $\sum_{k=0}^{\infty} \frac{(-1)^k}{k\sqrt{k}}$, $|erro| \le 0,001$
- 4. Cada série a seguir satisfaz o teste da série altenada. Com o valor dado de n determine uma cota superior no erro absoluto que resulta se a soma da série for aproximada pela enésima soma

1

(a) $\sum_{k=1}^{\infty} \frac{(-1)^k}{k\sqrt{k}}, n = 8$ (b) $\sum_{k=1}^{\infty} \frac{(-1)^k k}{e^k}, n = 5$

Séries de potências 5. Em cada item abaixo marque com um X a alternativa correta, em que C, D e I indicam "converge", "diverge" e "inconclusivo", respectivamente. Suponha que a série de potências $\sum_k a_k(x+2)^k$ convirja quando x=-4 e divirja quando x = -7. Podemos afirmar que: (a) A série $\sum_{k} 6^{k} a_{k}$ () C () D (**(b)** A série $\sum_{k} (-1)^{k} 4^{k} a_{k}$ () C () D ((c) A série $\sum_{k} \left[(-1)^{k} a_{k} + \left(\frac{1}{2}\right)^{k} \right]$ () C () D ((d) A série $\sum_k 3^k a_k$ () C () D () I () C () D () I (e) A série $\sum_k a_k$

6. Em cada item marque com um X a alternativa correta, em que C, D e I indicam "converge", "diverge" e "inconclusivo", respectivamente.

Sabendo que a série de potências $\sum_{k=1}^{\infty} \frac{b_k}{4^k} (x+2)^k$ tem raio de convergência 4, podemos afirmar que:

- () C () D () I (a) a série $\sum_{k=1}^{\infty} b_k$
- **(b)** A série $\sum_{k=1}^{\infty} \frac{b_k}{2^k}$ () C () D () I
- (c) A série $\sum_{k=1}^{\infty} 2^k b_k$ () C () D () I
- (d) A série $\sum_{k=1}^{\infty} (-1)^k b_k$ () C () D () I
- 7. Suponha que as séries de potências $\sum b_k(x-3)^k$ e $\sum c_k(x-3)^k$ têm raios de convergência R=4e R = 6, respectivamente.
 - (a) Determine os maiores intervalos abertos nos quais essas séries convergem.
- (b) Marque com um X as alternativas corretas, em que C, D e I indicam "converge", "diverge" e "inconclusivo", respectivamente.
 - 1) Se x = 7, a série $\sum b_k (x 3)^k$ () C () D () I
 - () C () D () I 2) Se x = 7, a série $\sum c_k(x-3)^k$
 - 3) Se x = 4, a série $\sum (b_k + c_k)(x 3)^k$ () C () D () I
 - 4) Se 7 < x < 9, a série $\sum (b_k + c_k)(x-3)^k$ () C () D () I
- (c) O raio de convergência da série $\sum (b_k + c_k)(x-3)^k$ é () R = 0 () $R = \infty$ () R = 6 () R = 4 () 4 < R < 6

- 8. Sabendo que o raio convergência da série de potências $\sum_{k=1}^{\infty} \frac{(-1)^k}{3k2^{k+2}} (x-3)^k$ é R=2, determine o intervalo de convergência dessa série
- 9. Determine o raio de convergência da série de potências $\sum_{k=1}^{\infty} \frac{(-1)^k}{4^k k^2} (x-1)^{2k+1}$ e o maior intervalo aberto em que essa série converge.
- **10.** Determine o raio e o intervalo de convergência da série de potências $\sum_{k=3}^{\infty} \frac{(-1)^k}{k \cdot 3^k} (x-2)^k$.
- 11. Obtenha o polinômio de Taylor de ordem 2 da função $f(x) = \frac{1}{x}$ centrado em x = 2.
- 12. Obtenha o polinômio de Taylor de ordem 3 da função $f(x) = \ln x$ centrado em x = e.
- 13. Obtenha o polinômio de Maclaurin de ordem 3 da função $f(x) = \arctan x^2$.
- **14.** Lembre que $\forall x \in \mathbb{R}$, $e^x = \sum_{k=1}^{\infty} \frac{x^k}{k!}$.
- (a) Obtenha uma série numérica que converge para o número de Euler.
- (b) Obtenha a série de Maclaurin da função $f(x) = x^2 e^{-x^2}$, bem como o raio de convergência
- (c) Escreva $I = \int_0^1 f(x)dx$ como soma de uma série numérica alternada e verifique que essa série
- (d) Obtenha a soma parcial da série numérica do item 2, com o menor número de parcelas, que aproxima a integral I com erro menor do que 5×10^{-3} , ou seja, com precisão de 2 casas decimais.
- **15.** Lembre que sen $x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$, qualquer que seja x.
 - (a) Encontre o valor da soma de cada uma das séries numéricas dadas.

1)
$$\sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k+1}}{2^{2k+1} (2k+1)!}$$

2)
$$\sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k}}{4^k (2k+1)!}$$

1)
$$\sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k+1}}{2^{2k+1} (2k+1)!}$$
2)
$$\sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k}}{4^k (2k+1)!}$$
3)
$$\sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k+1}}{(2k+1)!}$$
4)
$$\sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k}}{3^4 (2k+1)!}$$

4)
$$\sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k+5}}{3^4 (2k+1)!}$$

- (b) Obtenha a série de Maclaurin da função $f(x) = x^4 \operatorname{sen}(5x^3)$ e o seu intervalo de convergência.
- (c) Obtenha a série de Maclaurin da função f'(x), derivada da função do item (b), e o seu intervalo de convergência.
- (d) Encontre a expressão da função cuja série de Maclaurin é $\sum_{k=0}^{\infty} \frac{(-1)^k 4^k}{(2k+1)!} x^{2k+1}$.
- **16.** Observe que $\frac{1}{(1+x)^2} = \frac{d}{dx} \left(-\frac{1}{1+x} \right)$ e lembre que $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$, para -1 < x < 1.
- (a) Obtenha a série de Maclaurin da função $f(x) = \frac{1}{(1+x)^2}$ e o seu intervalo de convergência.

3

- (b) Obtenha a série de Maclaurin da função $g(x) = \frac{x^5}{(1+4x^2)^2}$ e o seu intervalo de convergência.
- 17. Lembre que $\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k$, para $-1 < x \le 1$.
- (a) Calcule a soma das seguintes séries numéricas convergentes:

1)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$$

2)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k \ 3^k}$$

1)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$$
 2) $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k \, 3^k}$ 3) $\sum_{k=2}^{\infty} \frac{(-1)^{k+1}}{k \, 3^k}$

- **(b)** Seja $f(x) = x^4 \ln(1 + 9x^2)$. Obtenha:
 - 1) a série de Maclaurin de f(x), bem como o maior intervalo aberto em que f(x) é representada por essa série.
 - **2)** a derivada $f^{(36)}(0)$.
 - 3) a série de Maclaurin de f'(x). Apresente o raio de convergência dessa série.
- 18. Considere a função $f:(0,\infty)\to\mathbb{R}$ definida por

$$f(x) = \int_0^x t \ln\left(\frac{1}{1+2t}\right) dt.$$

- (a) Obtenha uma série de potências para a função $g(x) = x \ln\left(\frac{1}{1+2x}\right)$ e determine o seu intervalo de convergência.
- (b) Determine uma série de potências para a função f(x) indicando o seu raio de convergência.
- (c) Obtenha uma série numérica para a integral definida $\int_0^{1/4} x \ln\left(\frac{1}{1+2x}\right) dx$. Explique como aproximar o valor dessa integral com erro inferior a 0,01.
- **19.** Considere a função $f(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{10^k k!} (x-6)^{2k+3}, \ \forall x \in \mathbb{R}.$
- (a) Obtenha a série de Taylor de f'(x) em torno de x=6, bem como o raio de convergência dessa série.
- (b) Calcule o valor das derivadas $f^{(32)}(6)$ e $f^{(41)}(6)$.
- **20.** Considere a função $f(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{4^{2k} (2k+1)} (x-2)^{4k+3}$, com x em (0,4).
- (a) Obtenha o 15º polinômio de Taylor de f(x) em x=2.
- (b) Obtenha a derivada $f^{(63)}(2)$ de f(x) em x=2.
- (c) Obtenha a série de Taylor da integral indefinida $\int f(x)dx$ de f(x) em x=2.
- (d) Obtenha a integral $I = \int_0^3 f(x)dx$ como a soma de uma série numérica alternada convergente.
- (e) Escreva todas as parcelas que precisam ser somadas, no mínimo, para aproximar o valor de I do item (d) com erro absoluto menor do que 5×10^{-4} .

4

Soluções

- **1.** .
 - (a) V
- **2.** .
 - (a) divergente
 - (b) condicionalmente convergente
 - (c) divergente
 - (d) absolutamente convergente
 - (e) condicionalmente convergente
 - (f) absolutamente convergente
 - (g) absolutamente convergente
- **3.** .
 - (a) n=99
- **4.** .
 - (a) 0,037
- **5.** .
 - (a) D
 - (b) I
 - (c) C
- **6.** .
 - (a) I
 - (b) C
- **7.** .
 - (a) (-1,7) e (-3,9), respectivamente (b) **1)** I **2)** C **3)** C **4)** D

- 8. IC = (1, 5]
- **9.** R = 2, (-1, 3)
- **10.** R = 3, IC = (-1, 5]
- **11.** $p_2(x) = \sum_{k=0}^{2} \frac{(-1)^k}{2^{k+1}} (x-2)^k = \frac{1}{2} \frac{1}{4} (x-2) + \frac{1}{8} (x-2)^2$
- **12.** $p_3(x) = 1 + \frac{1}{e}(x e) \frac{1}{2!e^2}(x e)^2 + \frac{2}{3!e^3}(x e)^3$
- **13.** $p_3(x) = x^2$

- (b) F
- (h) divergente
- (i) condicionalmente convergente
- (j) divergente. Dica: use o teste da comparação no limite com a série harmônica e lembre do limite fundamental da trigonometria $\lim_{x\to 0} \frac{\operatorname{sen}(x)}{x} = 1$
- (k) absolutamente convergente
- (b) n=9
- (b) 0,015
- (d) I
- (e) C
- (c) D
- (d) I

(c) R = 4

14. .

(a)
$$e = e^1 = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$

(b)
$$x^2 e^{-x^2} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^{2k+2}$$
 para $-\infty < x < +\infty$

(c)
$$I = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(2k+3)}$$
, $\lim_{k \to +\infty} \frac{1}{k!(2k+3)} = 0$ e $\frac{1}{k!(2k+3)}$ é decrescente

(d)
$$\sum_{k=0}^{3} \frac{(-1)^k}{k!(2k+3)} = \frac{1}{0!3} - \frac{1}{1!5} + \frac{1}{2!7} - \frac{1}{3!9} = \frac{176}{945} \approx 0,186$$

15.

(a) 1) 1 2)
$$\frac{2}{\pi}$$
 3) 0 4) 0

(b)
$$x^4 \operatorname{sen}(5x^3) = \sum_{k=0}^{\infty} \frac{(-1)^k 5^{2k+1}}{(2k+1)!} x^{6k+7}$$
 para $-\infty < x < +\infty$

(c)
$$f'(x) = \sum_{k=0}^{\infty} \frac{(-1)^k 5^{2k+1} (6k+7)}{(2k+1)!} x^{6k+6}$$
 para $-\infty < x < +\infty$

(d)
$$\frac{\operatorname{sen}(2x)}{2}$$

16. .

(a)
$$f(x) = \sum_{k=1}^{\infty} (-1)^{k+1} k x^{k-1}$$
, e também, $f(x) = \sum_{k=0}^{\infty} (-1)^k (k+1) x^k$ para $-1 < x < 1$

(b)
$$g(x) = \sum_{k=1}^{\infty} (-1)^{k+1} k 4^{k-1} x^{2k+3}$$
, ou $g(x) = \sum_{k=0}^{\infty} (-1)^k (k+1) 4^k x^{2k+5}$ para $-\frac{1}{2} < x < \frac{1}{2}$

17. .

(a) 1)
$$\ln 2$$
 2) $\ln(4/3)$ 3) $\ln(4/3) - 1/3$

(b) **1)**
$$x^4 \ln(1+9x^2) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}9^k}{k} x^{2k+4}$$
 para $-\frac{1}{3} < x < \frac{1}{3}$ **2)** $-\frac{36!}{16} 9^{16}$

3)
$$f'(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} 9^k (2k+4)}{k} x^{2k+3}$$
 para $-\frac{1}{3} < x < \frac{1}{3}$

18. .

(a)
$$g(x) = \sum_{k=1}^{\infty} \frac{(-1)^k 2^k}{k} x^{k+1}$$
, e também $g(x) = \sum_{k=2}^{\infty} \frac{(-1)^{k-1} 2^{k-1}}{k-1} x^k$ para $-\frac{1}{2} < x \le \frac{1}{2}$

(b)
$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^k 2^k}{k(k+2)} x^{k+2}$$
, e também $f(x) = \sum_{k=3}^{\infty} \frac{(-1)^k 2^{k-2}}{k(k-2)} x^k$ para $-\frac{1}{2} \le x \le \frac{1}{2}$, raio de convergência = 1/2

(c) Integral = $f(1/4) = \sum_{k=1}^{\infty} \frac{(-1)^k}{16k(k+2)2^k}$. Como a série é alternada, o erro de uma soma parcial s_k pode ser estimada por $|f(\frac{1}{4}) - s_k| \le a_{k+1} = \frac{1}{16(k+1)(k+3)2^{k+1}} < 0,01$. Isto pode ser obtido com k = 1, pois $a_2 = 1/512$. Logo $s_1 = \sum_{k=1}^{1} \frac{(-1)^k}{16k(k+2)2^k} = -\frac{1}{96}$ tem um erro de no máximo 1/512 < 0,01.

19. .

(a)
$$f'(x) = \sum_{k=0}^{\infty} \frac{(-1)^k (2k+3)}{10^k k!} (x-6)^{2k+2}$$
 para $-\infty < x < +\infty$, raio de conv. $= +\infty$

(b)
$$f^{(32)}(6) = 0$$
 e $f^{(41)}(6) = -\frac{41!}{10^{19} \cdot 19!}$

20. .

(a)
$$p_3(x) = (x-2)^3 - \frac{1}{48}(x-2)^7 + \frac{1}{1280}(x-2)^{11} - \frac{1}{28672}(x-2)^{15}$$

(b)
$$f^{(63)}(2) = -\frac{63!}{4^{30} \cdot 31}$$

(c)
$$\int f(x) dx = C + \sum_{k=0}^{\infty} \frac{(-1)^k}{4^{2k+1} (2k+1)(k+1)} (x-2)^{4k+4}$$
, onde $C \in \mathbb{R}$ é uma constante.

(d)
$$I = \sum_{k=0}^{\infty} \frac{(-1)^k}{4^{2k+1} (2k+1)(k+1)}$$

(e) Usando a estimativa do erro para séries alternadas, garantimos que a soma parcial que vai de 0 até 1 é uma aproximação de I com um erro absoluto menor que 5×10^{-4} :

$$\sum_{k=0}^{1} \frac{(-1)^k}{4^{2k+1} (2k+1)(k+1)} = \frac{1}{4 \cdot 1 \cdot 1} - \frac{1}{4^3 \cdot 3 \cdot 2} = \frac{95}{384}$$