TinyBERT: Distilling BERT for Natural Language Understanding

2022.01.09

주세준

Figure 1: The illustration of TinyBERT learning.

$$\mathcal{L}_{KD} = \sum_{x \in \mathcal{X}} L(f^{S}(x), f^{T}(x)),$$

$$\mathcal{L}_{\text{model}} = \sum_{x \in \mathcal{X}} \sum_{m=0}^{M+1} \lambda_m \mathcal{L}_{\text{layer}}(f_m^S(x), f_{g(m)}^T(x)),$$

Figure 2: The details of Transformer-layer distillation consisting of Attn_{loss} (attention based distillation) and Hidn_{loss} (hidden states based distillation).

Transformer Layer Distillation

$$\mathcal{L}_{\mathrm{attn}} = rac{1}{h} \sum
olimits_{i=1}^h \mathtt{MSE}(oldsymbol{A}_i^S, oldsymbol{A}_i^T),$$

$$\mathcal{L}_{\text{hidn}} = \text{MSE}(\boldsymbol{H}^S \boldsymbol{W}_h, \boldsymbol{H}^T),$$

Embedding-layer Distillation

$$\mathcal{L}_{\mathrm{embd}} = \mathtt{MSE}(oldsymbol{E}^S oldsymbol{W}_e, oldsymbol{E}^T),$$

Prediction-layer Distillation

$$\mathcal{L}_{ ext{pred}} = ext{CE}(oldsymbol{z}^T/t, oldsymbol{z}^S/t),$$

Final Loss

$$\mathcal{L}_{\text{model}} = \sum_{x \in \mathcal{X}} \sum_{m=0}^{M+1} \lambda_m \mathcal{L}_{\text{layer}}(f_m^S(x), f_{g(m)}^T(x)),$$

$$\mathcal{L}_{\text{layer}} = \begin{cases} \mathcal{L}_{\text{embd}}, & m = 0 \\ \mathcal{L}_{\text{hidn}} + \mathcal{L}_{\text{attn}}, M \ge m > 0 \\ \mathcal{L}_{\text{pred}}, & m = M + 1 \end{cases}$$

General Distillation

• Teacher: PreTrained Bert

Prediction-layer distillation (x)

Figure 1: The illustration of TinyBERT learning.

Task-specific Distillation

• 1. Data Augmentation

2. Task Specific distillation

Figure 1: The illustration of TinyBERT learning.

Algorithm 1 Data Augmentation Procedure for Task-specific Distillation

```
Input: x is a sequence of words
Params: p_t: the threshold probability
          N_a: the number of samples augmented per example
           K: the size of candidate set
Output: D': the augmented data
 1: n \leftarrow 0; D' \leftarrow [
 2: while n < N_a do
        \mathbf{x}_m \leftarrow \mathbf{x}
        for i \leftarrow 1 to len(x) do
           if \mathbf{x}[i] is a single-piece word then
 6:
               Replace \mathbf{x}_m[i] with [MASK]
 7:
               C \leftarrow K most probable words of BERT(\mathbf{x}_m)[i]
 8:
           else
 9:
               C \leftarrow K most similar words of \mathbf{x}[i] from GloVe
10:
            end if
           Sample p \sim \text{Uniform}(0, 1)
11:
           if p \leq p_t then
12:
               Replace \mathbf{x}_m[i] with a word in C randomly
14:
            end if
        end for
        Append \mathbf{x}_m to D'
        n \leftarrow n + 1
18: end while
19: return D'
```

System	#Params	#FLOPs	Speedup	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avg
BERT _{BASE} (Teacher)	109M	22.5B	1.0x	83.9/83.4	71.1	90.9	93.4	52.8	85.2	87.5	67.0	79.5
$BERT_{TINY}$	14.5M	1.2B	9.4x	75.4/74.9	66.5	84.8	87.6	19.5	77.1	83.2	62.6	70.2
$BERT_{SMALL}$	29.2M	3.4B	5.7x	77.6/77.0	68.1	86.4	89.7	27.8	77.0	83.4	61.8	72.1
BERT ₄ -PKD	52.2M	7.6B	3.0x	79.9/79.3	70.2	85.1	89.4	24.8	79.8	82.6	62.3	72.6
DistilBERT ₄	52.2M	7.6B	3.0x	78.9/78.0	68.5	85.2	91.4	32.8	76.1	82.4	54.1	71.9
MobileBERT _{TINY} †	15.1M	3.1B	-	81.5/81.6	68.9	89.5	91.7	46.7	80.1	87.9	65.1	77.0
TinyBERT ₄ (ours)	14.5M	1.2B	9.4x	82.5/81.8	71.3	87.7	92.6	44.1	80.4	86.4	66.6	77.0
BERT ₆ -PKD	67.0M	11.3B	2.0x	81.5/81.0	70.7	89.0	92.0	-	-	85.0	65.5	-
PD	67.0M	11.3B	2.0x	82.8/82.2	70.4	88.9	91.8	-	-	86.8	65.3	-
DistilBERT ₆	67.0M	11.3B	2.0x	82.6/81.3	70.1	88.9	92.5	49.0	81.3	86.9	58.4	76.8
TinyBERT ₆ (ours)	67.0M	11.3B	2.0x	84.6/83.2	71.6	90.4	93.1	51.1	83.7	87.3	70.0	79.4

Table 1: Results are evaluated on the test set of GLUE official benchmark. The best results for each group of student models are in-bold. The architecture of TinyBERT₄ and BERT_{TINY} is $(M=4, d=312, d_i=1200)$, BERT_{SMALL} is $(M=4, d=512, d_i=2048)$, BERT₄-PKD and DistilBERT₄ is $(M=4, d=768, d_i=3072)$ and the architecture of BERT₆-PKD, DistilBERT₆ and TinyBERT₆ is $(M=6, d=768, d_i=3072)$. All models are learned in a single-task manner. The inference speedup is evaluated on a single NVIDIA K80 GPU. † denotes that the comparison between MobileBERT_{TINY} and TinyBERT₄ may not be fair since the former has 24 layers and is task-agnosticly distilled from IB-BERT_{LARGE} while the later is a 4-layers model task-specifically distilled from BERT_{BASE}.

감사합니다