Analyse of Adult dataset.nbconvert

January 19, 2020

1 Analyse dataset

This notebook main goal is to : - Understand what is in the data : plot variables one by one, missing values, etc. - See which data are correlated

1.1 Load packages

```
[1]: import pandas as pd
import numpy as np

from IPython.display import display, Markdown

# transparentai package : https://github.com/Nathanlauga/transparentai
import transparentai.explore as explore
from transparentai.utils import remove_var_with_one_value
```

1.2 Load dataset

```
[2]: dataset = pd.read_csv('../data/adult.csv', sep=',')
[3]: target = 'income'
target = None if target not in dataset.columns else target
```

1.3 Quick overview

```
[4]: display(Markdown(f'#### {dataset.shape}'))
display(dataset.head())
```

(48842, 15)

```
education educational-num
      workclass fnlwgt
                                                             marital-status
   age
   25
         Private 226802
                                  11th
                                                              Never-married
0
                   89814
                               HS-grad
                                                      9 Married-civ-spouse
1
   38
         Private
2
   28
      Local-gov 336951
                            Assoc-acdm
                                                     12 Married-civ-spouse
                 160323 Some-college
                                                         Married-civ-spouse
3
   44
         Private
                                                     10
   18
               ? 103497
                          Some-college
                                                     10
                                                              Never-married
```

	occupation	relationship	race	gender	capital-gain	capital-loss	\
0	Machine-op-inspct	Own-child	Black	Male	0	0	
1	Farming-fishing	Husband	White	Male	0	0	
2	Protective-serv	Husband	White	Male	0	0	
3	Machine-op-inspct	Husband	Black	Male	7688	0	
4	?	Own-child	White	Female	0	0	
	hours-per-week native-country income						
0	40 U1	40 United-States <=50					
1	50 U1	nited-States	<=50K				
2	40 U1	40 United-States					
3	40 U1	nited-States	>50K				

1.4 Analyse: missing values

30

4

```
[5]: display(Markdown('#### Missing values for adult dataset'))
explore.show_missing_values(dataset)
```

<=50K

Missing values for adult dataset No missing value.

United-States

1.5 Analyse: each variable

```
[6]: dataset = remove_var_with_one_value(dataset)
```

[7]: explore.show_df_vars(df=dataset, target=target)

1.5.1 Numerical variables

age: 0 nulls, 74 unique vals, most common: {36: 1348, 35: 1337}

fnlwgt: 0 nulls, 28523 unique vals, most common: {203488: 21, 190290: 19}

educational-num: 0 nulls, 16 unique vals, most common: {9: 15784, 10: 10878}

capital-gain: 0 nulls, 123 unique vals, most common: {0: 44807, 15024: 513}

capital-loss: 0 nulls, 99 unique vals, most common: {0: 46560, 1902: 304}

 $\mathbf{hours\text{-}per\text{-}week}$: 0 nulls, 96 unique vals, most common: $\{40:\ 22803,\ 50:\ 4246\}$

1.5.2 Categorical variables

workclass: 0 nulls, 9 unique vals, most common: {'Private': 33906, 'Self-emp-not-inc': 3862}

education: 0 nulls, 16 unique vals, most common: {'HS-grad': 15784, 'Some-college': 10878}

marital-status: 0 nulls, 7 unique vals, most common: {'Married-civ-spouse': 22379, 'Nevermarried': 16117}

occupation: 0 nulls, 15 unique vals, most common: {'Prof-specialty': 6172, 'Craft-repair': 6112}

relationship: 0 nulls, 6 unique vals, most common: {'Husband': 19716, 'Not-in-family': 12583}

race: 0 nulls, 5 unique vals, most common: {'White': 41762, 'Black': 4685}

gender: 0 nulls, 2 unique vals, most common: {'Male': 32650, 'Female': 16192}

native-country: 0 nulls, 42 unique vals, most common: {'United-States': 43832, 'Mexico': 951}

 $\mathbf{income}:0$ nulls, 2 unique vals, most common: {'<=50K': 37155, '>50K': 11687}

1.5.3 Datetime variables

1.6 Analyse: numericals variables relations

[8]: explore.show_df_numerical_relations(df=dataset, target=target)

Joint plot for educational-num & hours-per-week

Joint plot for capital-gain & educational-num

Joint plot for educational-num $\&\ \mathbf{fnlwgt}$

Joint plot for capital-loss & educational-num

Joint plot for $\mathbf{fnlwgt}\ \&\ \mathbf{hours\text{-}per\text{-}week}$

Joint plot for age & capital-gain

Joint plot for $\mathbf{age}\ \&\ \mathbf{hours\text{-}per\text{-}week}$

Joint plot for $\mathbf{age}\ \&\ \mathbf{capital\text{-}loss}$

Joint plot for capital-gain & hours-per-week

Joint plot for ${\bf capital\text{-}gain}\ \&\ {\bf fnlwgt}$

Joint plot for $\mathbf{age}\ \&\ \mathbf{fnlwgt}$

Joint plot for capital-loss & hours-per-week

Joint plot for capital-gain & capital-loss

Joint plot for capital-loss & fnlwgt

Joint plot for age & educational-num

1.7 Analyse: numericals & categoricals variables relations

[9]: explore.show_df_num_cat_relations(df=dataset, target=target)

Box plot for workclass & age

Box plot for education & age

Box plot for marital-status & age

Box plot for **occupation** & age

Box plot for **relationship** & **age**

Box plot for race & age

Box plot for **gender** & **age**

Box plot for **native-country** & **age**

Box plot for workclass & fnlwgt

Box plot for education & fnlwgt

Box plot for marital-status & fnlwgt

Box plot for **occupation** & fnlwgt

Box plot for **relationship** & **fnlwgt**

Box plot for race & fnlwgt

Box plot for $\mathbf{gender}\ \&\ \mathbf{fnlwgt}$

Box plot for **native-country** & **fnlwgt**

Box plot for workclass & educational-num

Box plot for education & educational-num

Box plot for marital-status & educational-num

Box plot for occupation & educational-num

Box plot for relationship & educational-num

Box plot for race & educational-num

Box plot for **gender** & **educational-num**

Box plot for native-country & educational-num

Box plot for workclass & capital-gain

Box plot for education & capital-gain

Box plot for marital-status & capital-gain

Box plot for occupation & capital-gain

Box plot for relationship & capital-gain

Box plot for race & capital-gain

Box plot for $\mathbf{gender} \ \& \ \mathbf{capital\text{-}gain}$

Box plot for native-country & capital-gain

Box plot for workclass & capital-loss

Box plot for education & capital-loss

Box plot for marital-status & capital-loss

Box plot for **occupation** & **capital-loss**

Box plot for relationship & capital-loss

Box plot for race & capital-loss

Box plot for **gender** & **capital-loss**

Box plot for native-country & capital-loss

Box plot for workclass & hours-per-week

Box plot for education & hours-per-week

Box plot for marital-status & hours-per-week

Box plot for occupation & hours-per-week

Box plot for relationship & hours-per-week

Box plot for race & hours-per-week

Box plot for **gender** & **hours-per-week**

Box plot for **native-country** & **hours-per-week**

1.8 Analyse variables correlations

[10]: explore.show_df_correlations(df=dataset)

Pearson correlation matrix for numerical variables

Cramers V correlation matrix for categorical variables

Point Biserial correlation matrix for numerical & categorical variables

The end.