Thermo-Kinetic Model of Burning for Polymeric Materials

Stanislav I. Stoliarov^a, Sean Crowley^b, Richard Lyon^b

^aUniversity of Maryland, Fire Protection Engineering, College Park, MD 20742 ^bFAA W. J. Hughes Technical Center, Egg Harbor Twp., NJ 08405

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the , 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE JUL 2010 2. REPORT TYPE N/A				3. DATES COVERED -		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Thermo-Kinetic Model of Burning for Polymeric Materials				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Maryland, Fire Protection Engineering, College Park, MD 20742 8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
13. SUPPLEMENTARY NOTES See also ADM002313. Department of Defense Explosives Safety Board Seminar (34th) held in Portland, Oregon on 13-15 July 2010, The original document contains color images.						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	SAR	OF PAGES 19	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Key Long-Term Objectives

- ☐ Develop a versatile model for simulation of bench-scale flammability tests.
- ☐ Parameterize this model for various types of polymeric materials.
- ☐ Relate parameters (properties) used in the model to molecular structure.

Flammability Measurement Techniques

Cone Calorimetry (heat release measurement)

Fire Propagation Apparatus (heat release measurement)

Gasification Apparatus (mass loss measurement)

Flammability Measurement Techniques

Cone Calorimetry

(heat release measurement) (mass loss measurement) (heat release measurement) Exhaust -1200 1000 Соде Heater 800 HRR $(kW m^{-2})$ Mirror Water 600 Shutter Test Specimen 400 Window 200

100

200

300

t (s)

400

500

600

Fire Propagation Apparatus

Gasification Apparatus

Load

Foamed-glass insulation

Nitrogen Gas Inlets

ThermaKin Model Overview

Radiative Energy Transfer

During any given time step, the external radiation is absorbed by a single element chosen at random.

probability of absorption =
$$\frac{I_i \alpha_i \Delta x_i}{I_1}$$

radiative loss = $\varepsilon_i \sigma T_i^4$

internal radiative flux = $-k_r \sigma T^3 \frac{\Delta T}{\Delta x}$

Mass Transfer

Components are categorized as solids, liquids, or gases.

mass flux of gas =
$$-\lambda \rho_g \frac{\Delta \left(\frac{m_g/\rho_g}{V}\right)}{\Delta x}$$

Swelling factor γ defines volumetric reaction of the condensed phase to the presence of gases.

Chemical Reactions

$$\theta_A A + \theta_B B \rightarrow \theta_C C + \theta_D D + heat$$

$$rate = \begin{cases} A \exp\left(-\frac{E}{RT}\right) \left[\frac{m_{A}}{V}\right] \\ \text{or} \\ A \exp\left(-\frac{E}{RT}\right) \left[\frac{m_{A}}{V}\right] \left[\frac{m_{B}}{V}\right] \end{cases}$$

The reaction can be switched on or off at a specified temperature.

Parameterization

Kinetics of Decomposition

Assumptions:

 $PMMA \rightarrow Gas + heat$

 $MLR = k_D m_{PMMA}$ (first order)

Gas leaves PMMA instantaneously.

Modeling of Fire Calorimetry Experiments

Gasification

Conditions:

external heat flux = 52 kW m^{-2} initial sample thickness $\approx 9 \text{ mm}$

Cone Calorimetry

Conditions:

external heat flux = 49 kW m⁻² initial sample thickness ≈ 9 mm

Cone Calorimetry of PMMA

Cone Calorimetry of HIPS

Cone Calorimetry of HDPE

Cone Calorimetry of PC

5 mm PC sample after 160 s at 75 kW m⁻².

Flame heat flux = 15 kW m^{-2} .

The main mode of heat transfer inside char is radiation. The rate of transfer is defined by a single adjustable parameter.

Sensitivity of Peak and Average Mass Loss Rates

Conclusions

- ☐ A one-dimensional numerical pyrolysis model can be used to predict the outcome of fire calorimetry experiments performed on polymeric materials.
- ☐ The predictions require the knowledge of chemical, thermal, and optical properties of the material. Measurement of these properties represents a challenging task.
- \square The rate of decomposition (defined by A and E), heat of decomposition, char yield and heat of combustion are the key parameters required for prediction of the peak and average heat release rates.