Tutto quello che avreste voluto sapere sui fit* (*ma non avete mai osato chiedere) (parte II) Laboratorio di Metodi Computazionali e Statistici (2022/2023)

R. Cardinale, F. Parodi, S. Passaggio

November 30, 2022

1/6

Fit di Likelihood

Unbinned Maximum Likelihood (N eventi)

$$\mathcal{L} = \prod_{i=1}^{N} p(x_i|\theta)$$
 $-ln(\mathcal{L}) = -\sum_{i=1}^{N} ln \; p(x_i|\theta)$

Binned Maximum Likelihood (M bins)

$$P(n_1, n_2, ..., n_M | p_1, p_2, ..., p_M) = \frac{N!}{n_1! n_2! ... n_M!} p_1^{n_1} p_2^{n_2} ... p_M^{n_M}$$
$$- ln(\mathcal{L}(P)) = -\sum_{i=1}^M n_i ln(p_i) + const$$

Binned Extended Maximum Likelihood (M bins)

$$P(n_1, n_2, ..., n_M | p_1, p_2, ..., p_M) = \prod_{i=1}^M \frac{e^{-\mu_i} \mu_i^{n_i}}{n_i!} \qquad \mu_i = N p_i$$
$$- \ln(\mathcal{L}(P)) = -\sum_{i=1}^M (n_i \ln(\mu_i) - \mu_i)$$

Fit di Likelihood

Per fare esercizio con i fit di likelihood proviamo a fittare dati distribuiti secondo un espoenziale negativo (file exp.dat)

$$p(t) = \frac{1}{ au} exp(-t/ au)$$

eseguiremo i seguenti fit:

- Likelihood unbinned
- Likelihood binned
- Likelihood binned (extended)

sia implementando la funzione $-ln(\mathcal{L})$ sia utilizzando metodi di ROOT

Fit di Likelihood in ROOT

ROOT ha già disponibili molte delle tipologie di fit che abbiamo visto

 Unbinned Likelihood. Per questo ovviamente serve un contenitore diverso dall'istogramma.

La classe TTree permette di descrivere più variabili per un singolo dato (senza alcun "impacchettamento"). Ecco alcuni metodi utili

```
TTree()
ReadFile(const char *filename, const char *var_descr="")
int TTree::GetEntries()
int TTree::GetEntry(int i)
TTree::UnbinnedFit (const char * funcname, const char * varexp)
```

- Binned Likelihood. Implementata tramite opzione "MULTI" nel metodo Fit per istogrammi
- Binned Extended Likelihood. Implementata tramite opzione "L" nel metodo Fit per istogrammi

Tree

- TTree()
 Costruttore
- ReadFile (const char *filename, const char *var_descr="") legge da file secondo l'espressione "var1:var2:var3...", è possibile specificare i formati: F(float)/D(double)/I(int)/C(string) (F default) come "var1/D:var2/D:var3/D..."
- int TTree::GetEntries()
 ritorna il numero di dati
- int TTree::GetEntry(int i)
 carica in memoria il dato i-esimo che da quel momento sara' accessibile con
 nomeOggettoTree.var
- TTree::UnbinnedFit (const char * funcname, const char * var)
 esegue un Unbinned Fit con la funzione funcname (TF1) sulla variabile var

Esempio

```
from ROOT import *

tree = TTree();
tree.ReadFile("exp.dat","t/D")
for i in range(0, tree.GetEntries()):
    tree.GetEntry(i)
print(tree.t)
```

Riassunto metodi ROOT per fit di likelihood

	Binned	Unbinned
Likelihood	Fit + opzione MULTI	TTree + UnbinnedFit
Extended Likelihood	Fit + opzione L	

6 / 6