1 Measure Theory Continued

Notation: $\mathcal{B} := \sigma\{\text{open sets of } S^{\text{topo}}\}.$

For $f: S_1 \to S_2$, have pullback $f^{-1}: S_2 \to S_1$

(a) f^{-1} commutes with finite Boolean operations and monotone limits, i.e.

$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2) \tag{1.1}$$

$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2) \tag{1.2}$$

$$B_n \uparrow B \implies f^{-1}(B_n) \uparrow f^{-1}(B) \tag{1.3}$$

(b) Given S_2 , $\{f^{-1}(B): B \in S_2\}$ is a σ -field: "the pullback of a σ -field is a σ -field."

Definition 1.1. A function $f: S_1 \to S_2$ between two measurable spaces is *measurable* if $f^{-1}(B) \in S_1$ for all $B \in S_2$.

Lemma 1.2. f is measurable if $f^{-1}(B) \in S_1$ for all $B \in \mathcal{B}$ such that $S_2 = \sigma(\mathcal{B})$.

Proof. $\{B \in \mathcal{S}_2 : f^{-1}(B) \in \mathcal{S}_1\} \supset \sigma(\mathcal{B})$ is a σ -field by commutativity of f^{-1} wrt Boolean operations. It also $\supset \mathcal{B}$.

Lemma 1.3. $f^{cts}: S_1^{topo} \rightarrow S_2^{topo}$ is measurable (i.e. $cts \implies meas$)

Proof. cts $\implies f^{-1}(G_2^{\text{open}}) \in S_1^{\text{open}} \supset S_1$, where S_1 is the Borel σ -algebra on S_1 . The previous lemma implies f is measurable wrt $\sigma\{S_1^{\text{open}}\} = S_1$.

Lemma 1.4 (π -system sufficiency). If $S_2 = \mathbb{R}$, it suffices to check $f^{-1}(-\infty, x] \in S_1$ for all $x \in \mathbb{R}$.

Proof.
$$\sigma\{(-\infty,x]:x\in\mathbb{R}\}=\sigma(\mathbb{R})=\mathcal{S}_2$$

Lemma 1.5 (Composition). *If h and g are measurable, then f* = $g \circ h$ *is measurable.*

Lemma 1.6 (Multi-input composition). Suppose $\{f_i:(S,\mathcal{S})\to\mathbb{R}\}_{i=1}^d$ are measurable and $g: \mathbb{R}^d \to \mathbb{R}$ is measurable. Then $g(f_1(s), f_2(s), \cdots, f_d(s))$ is a measurable function $S_1 \to \mathbb{R}$.

Proof. Apply lemma 1.5 to $(S, \mathbb{R}^d, \mathbb{R})$ and $h(s_1) = [f_1(s_1) \ f_2(s_1) \ \cdots \ f_d(s_1)]$. Suffices to show $h : S\mathbb{R}^d$ measurable.

Use fact that \mathcal{B}^d = Borel σ -field on \mathbb{R}^d = σ -field generated by $\left\{\prod_{i=1}^d (-\infty, \hat{x}_i] : \hat{x} \in \mathbb{R}^d\right\}$. Then

$$h^{-1}\left(\prod_{i=1}^{d}(-\infty,x_i]\right) = \bigcap_{i=1}^{d}\left\{s_1: f_i(s_1) = x_i\right\} \in \mathcal{S}_1 \tag{1.4}$$

and by lemma 1.4 we are done.

Corollary 1.7. $\{f_i: S \to \mathbb{R}\}$ measurable, then $f_1 + f_2$, $f_1 \cdot f_2$, and $\max\{f_1, f_2\}$ are measurable.

Proof. $g(x_1, x_2) = x_1 + x_2, x_1 \cdot x_2$, and $\max\{x_1, x_2\}$ are all continuous hence measurable. Applying lemma 1.6 with $\{f_i\}$ and g shows that the composition is measurable.

This is *very important*, make sure to grok the following definition:

Definition 1.8. For arbitrary $x_n \in \mathbb{R}$, $n \in \mathbb{N}$, define

$$\limsup_{n} x_n := \lim_{N \uparrow \infty} \sup_{n > N} x_n = \inf N \uparrow \infty \sup_{n > N} x_n \in \bar{\mathbb{R}}$$
(1.5)

$$\limsup_{n} x_{n} := \lim_{N \uparrow \infty} \sup_{n \geq N} x_{n} = \inf N \uparrow \infty \sup_{n \geq N} x_{n} \in \bar{\mathbb{R}}
\liminf_{n} x_{n} := \lim_{N \uparrow \infty} \inf_{n \geq N} x_{n} = \sup N \uparrow \infty \inf_{n \geq N} x_{n} \in \bar{\mathbb{R}}$$
(1.5)

(1.7)

Note that both \limsup and \liminf exist $\in \mathbb{R}$, regardless of whether $\lim_n x_n$ does, and $\limsup \ge \lim \ge \liminf$.

These definitions may be generalized to ascending and descending sequences of sets, where sup is taken to be \cup and inf as \cap .

Lemma 1.9. Given measurable functions $\{f_i: S \to \bar{\mathbb{R}}\}_{i=1}^{\infty}$, define $f^*(s) = \limsup_n f_n(s)$ and $f_*(s) = \liminf_n f_n(s)$. Then f^* and f_* are measurable functions $S \to \bar{\mathbb{R}}$.

Proof.

$$\{s: \limsup_{n} f_n(s) \le x\} = \{ss: f_n(s) \le x + 1/i \text{ ult. } \forall i \in \mathbb{N}\}$$

$$\tag{1.8}$$

$$= \bigcap_{i=1}^{\infty} \{ s : f_n(s) \le x + 1/i \text{ ult.} \}$$
 (1.9)

$$= \bigcap_{i=1}^{\infty} \bigcup_{N=1}^{\infty} \{ s : f_n(s) \le x + 1/i \ \forall n \ge N \}$$
 (1.10)

$$= \bigcap_{i=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \underbrace{\left\{ s : f_n(s) \le x + 1/i \right\}}_{\in \mathcal{S}} \tag{1.11}$$

so f^* meaurable.

2 On \mathbb{R} -valued measurable functions $(S, \mathcal{S}) \to \mathbb{R}$

Definition 2.1. For $A \in \mathcal{S}$, the *indicator function* $1_A(s) = \begin{cases} 1, & \text{if } s \in \mathcal{A} \\ 0, & \text{otherwise} \end{cases}$

Let $\vec{c} \in \mathbb{R}^n$ and $\{A_i\}_1^n$ be a partition of S into measurable sets. $f:(S,\mathcal{S}) \to \mathbb{R}$ is a simple function if $f(s) = \sum_i \underbrace{c_i 1_{A_i}}_{\text{step function on } A_i} (= c_i \text{ for } s \in A_i).$

Lemma 2.2. *Let* h^{meas} ; $S \rightarrow [0, L]$. *For* $i \ge 1$, *define*

$$h_i(s) = \max_{j \ge 0} \left\{ \frac{j}{2^i} : \frac{j}{2^i} \le h(s) \right\} = 2^{-i} \left\lfloor 2^i h(s) \right\rfloor \le h(s)$$
 (2.1)

Then $h_i(s) \uparrow h(s)$ *and each* h_i *is a simple function.*

Exercise 2.3. Prove this.

3 Measures

(S, S) a measurable space.

Definition 3.1. A *measure* is a function $\mu : \mathcal{S} \to [0, \infty]$ such that

- (a) $\mu(\emptyset) = 0$
- (b) (Countable additivity) For countable disjoint $A_i \in \mathcal{S}$, $\mu(\cup_i A_i) = \sum_i \mu(A_i) \leq \infty$

Definition 3.2. μ is a *probability measure* if in addition $\mu(S) = 1$.

 $\mu(S) < \infty$ is a finite measure.

If $\exists S_n \uparrow S$ s.t. $\mu(S_n) < \infty$ for all n, then μ is a σ -finite measure

3.1 Elementary Properties

- If $A \subset B$, then $\mu(A) \leq \mu(B)$
- If $(A \cup B) \le \mu(A) + \mu(B)$, with equality if $A \cap B = \emptyset$
- For probability measures, $\mu(A^c) = 1 \mu(A)$
- (Monotonicity) $A_n \uparrow A \implies \mu(A_n) \uparrow \mu(A)$. $A_n \downarrow A$ and some $\mu(A_n) < \infty \implies \mu(A_n) \downarrow \mu(A)$
- (Continuity) $A_n \downarrow \emptyset$, $\exists n : \mu(A_n) < \infty$, then $\mu(A_n) \downarrow 0$.