QOCO: A QoE-Oriented Computation Offloading Algorithm based on Deep Reinforcement Learning for Mobile Edge Computing

Iman Rahmati, Hamed Shah-Mansouri, and Ali Movaghar

Sharif University of Technology, Tehran, Iran

December 3, 2023

Overview

Background

Contribution

System Model

Communication Model Computation Model

Problem Formulation

Markov Decision Process QoE Optimization Problem

DRL-Based QOCO Algorithm

Performance Evaluation

Simulation Settings Performance Comparison

Background

Contribution

System Model

Communication Model Computation Model

Problem Formulation

Markov Decision Process
QoE Optimization Problem

DRL-Based QOCO Algorithm

Performance Evaluation

Simulation Settings
Performance Comparison

Edge Computing as a Solution

Edge Computing

Computation at the edge of the network.

Computation Offloading

Enhances the capacity of mobile devices.

Benefits

- Reduced task performance delay.
- Extended mobile device (MD) battery life.
- Enhanced Quality of Experience (QoE).

Challenges

- Dynamic network conditions.
- Heterogeneous device capabilities.

Background

Contribution

System Model
Communication M

Computation Model

Problem Formulation

Markov Decision Process QoE Optimization Problem

DRL-Based QOCO Algorithm

Performance Evaluation

Simulation Settings
Performance Comparison

Contribution

Research Focus: Computation Task Offloading Problem in MEC

- Task Processing Deadlines
- Energy Constraints

Key Contributions:

- Formulated the computation task offloading problem as a finite and discret Markov Decision Process (MDP) to maximize the expected long term QoE for each MDs.
- Proposed a QoE-oriented computation offloading (QOCO) algorithm based on Deep Reinforcement Learning (DRL) to empower each MD to make offloading decisions independently.
- Conducting comprehensive experiments to evaluate the performance of QOCO compared with several benchmark methods.

Background

Contribution

System Model
Communication Model
Computation Model

Problem Formulation
Markov Decision Process
QoE Optimization Problem

DRL-Based QOCO Algorithm

Performance Evaluation
Simulation Settings
Performance Comparison

We consider

- lacksquare the set of MD $\mathcal{I} = \{1, 2, ..., I\}$
- the set of EN $\mathcal{J} = \{1, 2, ..., J\}$
- set of time slots $\mathcal{T} = \{1, 2, \dots, T\}$
- lacksquare each MD $i \in \mathcal{I}$ are connected to each EN $j \in \mathcal{J}$ with it's wireless interface.
- each time slot consider as a diuration of time.

Task

- $z_i(t)$: arrived task in MD
- $\lambda_i(t)$: Required CPU cycles of task
- $\rho_i(t)$: Required CPU cycles of task
- $\Delta_i(t)$: Required CPU cycles of task

Offloading

- $x_i(t)$: Offloading Decision
- $y_{i,j}(t)$: Offloading Target

Queues' Information

- $\delta_i^C(t)$ Compution Queue in MD
- $\delta_i^T(t)$ Transsmition Queue in MD
- $\eta_{i,j}^E(t)$ MD Compution Queue in EN

Communication Model

lacksquare $\delta_i^T(t)$: MD i Transmission Queue Waiting Time

$$\delta_i^T(t) = \left[\max_{t' \in \{0, 1, \dots, t-1\}} l_i^T(t') - t + 1 \right]^+ \tag{1}$$

 $lackbox{ } l_i^T(t)$: Task Transmited/Dropped Time Slot

$$l_i^T(t) = \min\left\{t + \delta_i^T(t) + \lceil D_i^T(t) \rceil - 1, t + \Delta_i(t) - 1\right\}$$
 (2)

lacksquare $D_i^T(t)$: Task Transmission Time

$$D_i^T(t) = \sum_{\mathcal{I}} y_{i,j}(t) \frac{\lambda_i(t)}{r_{i,j}(t)\tau}$$
 (3)

 $lackbox{\bf E}_i^T(t)$: Task Transmission Energy Consumption

$$E_i^T(t) = D_i^T(t)p_i^T(t)\tau \tag{4}$$

Computation Model

Local Execution:

lacksquare $\delta_i^C(t)$: MD i Computation Queue Waiting Time

$$\delta_i^C(t) = \left[\max_{t' \in \{0, 1, \dots, t-1\}} l_i^C(t') - t + 1 \right]^+ \tag{5}$$

 $lackbox{l}_i^C(t)$: Task Executed/Dropped Time Slot

$$l_i^C(t) = \min\left\{t + \delta_i^C(t) + \lceil D_i^C(t) \rceil - 1, t + \Delta_i(t) - 1\right\}$$
 (6)

■ $D_i^C(t)$: Task Execution Time

$$D_i^C(t) = \frac{\lambda_i(t)}{f_i \tau / \rho_i(t)} \tag{7}$$

■ $E_i^L(t)$: Task Execution Energy Consumption

$$E_i^L(t) = D_i^C(t)p_i^C \tau \tag{8}$$

Computation Model

Edge Execution:

 \bullet $\eta_{i,j}^E(t)$: MD i Queue Backlog at EN j

$$\eta_{i,j}^{E}(t) = \left[\eta_{i,j}^{E}(t-1) + \lambda_{i,j}^{E}(t) - \frac{f_{j}^{E}}{\rho_{i}(t)B_{j}(t)} - \omega_{i,j}(t) \right]^{+}$$
 (9)

 $lackbox{\it l}_{i,j}^E(t)$: Task Execution Start Time Slot at EN j

$$\hat{l}_{i,j}^{E}(t) = \max\{t, \max_{t' \in \{0,1,\dots,t-1\}} l_{i,j}^{E}(t') + 1\}$$
 (10)

$$\sum_{t'=\hat{l}_{i,j}^{E}(t)}^{l_{i,j}^{E}(t)} \frac{f_{j}^{E}}{\rho_{i}(t)B_{j}(t')} \ge \lambda_{i,j}^{E}(t) > \sum_{t'=\hat{l}_{i,j}^{E}(t)}^{l_{i,j}^{E}(t)-1} \frac{f_{j}^{E}}{\rho_{i}(t)B_{j}(t')}$$
(11)

Computation Model

Edge Execution:

 $lackbox{D}_{i,j}^E(t)$: Task Execution Time at EN j

$$D_{i,j}^{E}(t) = \frac{\lambda_{i,j}^{E}(t)\rho_{i}(t)}{f_{j}^{E}\tau/B_{j}(t)}$$
(12)

■ $E_{i,j}^E(t)$: Task Execution Energy Consumption at EN j

$$E_{i,j}^{E}(t) = \frac{D_{i,j}^{E}(t)p_{j}^{E}\tau}{B_{j}(t)}$$
 (13)

■ $E_i^I(t)$: MD i Standby Energy Consumption

$$E_i^I(t) = D_{i,j}^E(t)p_i^I \tau \tag{14}$$

■ $E_i^O(t)$: Overall Offloading Energy Consumption

$$E_i^O(t) = E_i^T(t) + \sum_{\mathcal{I}} E_{i,j}^E(t) + E_i^I(t).$$
 (15)

Background

Contribution

System Model

Communication Model

Computation Model

Problem Formulation

Markov Decision Process

QoE Optimization Problem

DRL-Based QOCO Algorithm

Performance Evaluation
Simulation Settings
Performance Comparison

Markov Decision Process

State Space:

$$\boldsymbol{s}_{i}(t) = \left(\lambda_{i}(t), \delta_{i}^{C}(t), \delta_{i}^{T}(t), \boldsymbol{\eta}_{i}^{E}(t-1)^{\circ}, \phi_{i}(t)^{\times}, \mathcal{H}(t)^{\circ}\right)$$
(16)

 ${}^\diamond\mathcal{H}(t): \mathsf{Edge}\ \mathsf{Load}\ \mathsf{History}\ \mathsf{Matrix}$

 $^{ imes}\phi_i(t): \mathsf{MD}$ Battery Level

$$\left[\mathcal{S} = \Lambda \times T^2 \times \mathcal{U} \times 3 \times I^{T^s \times J}\right]$$

Action Space:

$$\boldsymbol{a}_i(t) = (x_i(t), \boldsymbol{y}_i(t)^*) \tag{17}$$

$$^*\boldsymbol{y}_i(t) = (y_{i,j}(t), j \in \mathcal{J})$$

Markov Decision Process

QoE Function:

[Delay]

$$\mathcal{D}_i(\boldsymbol{s}_i(t),\boldsymbol{a}_i(t)) = (1-x_i(t)) \Big(l_i^{\mathsf{C}}(t)-t+1\Big) +$$

$$x_{i}(t) \left(\sum_{\mathcal{J}} \sum_{t'=t}^{T} \mathbb{1} \left(z_{i,j}^{\mathsf{E}}(t') = z_{i}(t) \right) l_{i,j}^{\mathsf{E}}(t') - t + 1 \right)$$
 (18)

[Energy]

$$\mathcal{E}_i(\boldsymbol{s}_i(t), \boldsymbol{a}_i(t)) = (1 - x_i(t))E_i^{\mathsf{L}}(t) +$$

$$x_i(t) \left(\sum_{\mathcal{J}} \sum_{t'=t}^T \mathbb{1} \left(z_{i,j}^{\mathsf{E}}(t') = z_i(t) \right) E_i^{\mathsf{O}}(t) \right) \tag{19}$$

Markov Decision Process

[Cost]

$$C_i(s_i(t), a_i(t)) = \phi_i(t) \mathcal{D}_i(s_i(t), a_i(t)) + (1 - \phi_i(t)) \mathcal{E}_i(s_i(t), a_i(t))$$
(20)

[QoE]

$$\begin{aligned} \boldsymbol{q}_i(\boldsymbol{s}_i(t), \boldsymbol{a}_i(t)) &= \\ \begin{cases} \mathcal{R}^* - \mathcal{C}_i(\boldsymbol{s}_i(t), \boldsymbol{a}_i(t)) & \text{if task } z_i(t) \text{ processed,} \\ -\mathcal{E}_i(\boldsymbol{s}_i(t), \boldsymbol{a}_i(t)) & \text{if task } z_i(t) \text{ dropped,} \end{cases} \end{aligned} \tag{21}$$

 $*\mathcal{R}$: A Constant Reward for Completed Task

QoE Optimization Problem

$${}^{\circ}\pi_{i}^{*} = \arg \max_{\pi_{i}} \mathbb{E}\left[\sum_{t \in \mathcal{T}} {}^{*}\gamma^{t-1}q_{i}(s_{i}(t), a_{i}(t) \middle| \pi_{i}\right]$$
(22)

 ${}^{\circ}\pi_{i}^{*}: \mathsf{Optimal\ Policy}$

⇒ maximizes the long-term QoE

 $^*\gamma$: Discount Factor

 \Rightarrow balance between instant QoE and long-term QoE

Background

Contribution

System Model

Communication Model Computation Model

Problem Formulation

Markov Decision Process QoE Optimization Problem

DRL-Based QOCO Algorithm

Performance Evaluation

Simulation Settings
Performance Comparisor

DQN-based solution

- LSTM: ENs Load Level Prediction
- FC: State-Action Q-Value Mapping
- A&V: Dueling-DQN Approach for Q-Value Estimation

QOCO Algorithm

Stracture:

- ENs help MDs to traine their neural networks.
- The algorithms to be executed at MD and EN
- Training neural networks with MD experiences
 - (i.e., state, action, QoE, next state)
- Mapping Q-values to each state-action pair

In detail:

- MD's Neural Network in EN:
 - Replay Memory: Records the observed experience of MD.
 - Evaluation Network: Responsible for action selection. $Q_i^{\sf E}(s_i(t),a;\theta_i^{\sf E})$
 - Target Network: Characterizes the target Q-values. $Q_i^{\mathsf{T}}(s_i(t), a; \theta_i^{\mathsf{T}})$
- Updating the evaluation network parameter vector:
 - Minimization of the difference between the Q-values under evaluation and target networks.

QOCO Algorithm

Offloading Decision Algorithm at MD:

- MD sends an UpdateRequest to EN.
- \blacksquare Receive network parameter vector θ_i^{E} from EN
- Select an Action for each Computation Task based on

$$a_i(t) = \begin{cases} \arg \max_{\boldsymbol{a} \in \mathcal{A}} Q_i^{\mathsf{E}}(\boldsymbol{s}_i(t), \boldsymbol{a}; \boldsymbol{\theta}_i^{\mathsf{E}}), & \text{with } \mathsf{p}(1 - \boldsymbol{\epsilon}) \\ \text{pick an random action from } \mathcal{A}, \text{with } \mathsf{p}(\boldsymbol{\epsilon}) \end{cases}$$
(23)

- Observes a set of QoEs
- Send Experience $(s_i(t), a_i(t), q_i(t), s_i(t+1))$ to EN

QOCO Algorithm

Training Process Algorithm at EN:

- Stores the Receives Experience $(s_i(t), a_i(t), q_i(t), s_i(t+1))$
- Calculates the Q-value given the MD experience

$$\hat{Q}_{i,n}^{\mathsf{T}} = \boldsymbol{q}_i(n) + \gamma Q_i^{\mathsf{T}}(\boldsymbol{s}_i(n+1)), \tilde{\boldsymbol{a}}_n; \boldsymbol{\theta}_i^{\mathsf{T}})$$
 (24)

optimal action for the state

$$\tilde{\boldsymbol{a}}_n = \arg \max_{\boldsymbol{a} \in \mathcal{A}} Q_i^{\mathsf{E}}(\boldsymbol{s}_i(n+1), \boldsymbol{a}; \theta_i^{\mathsf{E}})$$
 (25)

Updating netwrok based on loss function

$$L(\theta_i^{\mathsf{E}}, \hat{\mathbf{Q}}_i^{\mathsf{T}}) = \frac{1}{|\mathcal{N}|} \sum_{n \in \mathcal{N}} \left(Q_i^{\mathsf{E}}(\boldsymbol{s}_i(n), \boldsymbol{a}_i(n); \theta_i^{\mathsf{E}}) - \hat{Q}_{i,n}^{\mathsf{T}} \right)^2 \quad (26)$$

Background

Contribution

System Model
Communication Model
Computation Model

Problem Formulation

Markov Decision Process

QoE Optimization Problem

DRL-Based QOCO Algorithm

Performance Evaluation
Simulation Settings
Performance Comparison

Simulation Settings

Parameter	Value
Computation capacity of MD f_i	2.6 GHz
Computation capacity of EN f_j^{E}	42.8 GHz
Transmission capacity of MD $r_{i,j}(t)$	14 Mbps
Task arrival rate	150 Task/Sec
Size of task $\lambda_i(t)$	{1.0, 1.1,, 7.0} Mbits
Required CPU cycles of task $ ho_i(t)$	{0.197,0.297,0.397}G/Mbits
Deadline of task Δ_i	10 time slots (1 Sec)
Battery level of MD $\phi_i(t)$	{25, 50, 75} Percent
Computation power of MD p_i^{C}	$10^{-27}(f_i)^3$
Computation power of EN p_i^{E}	5 w
Transmission power of MD p_i^T	2.3 w
Standby power of MD p_i^{I}	0.1 w

50 MD and 5 EN 1000 Episode and 100 Time Slot

Benchmark Methods:

- Local Computing (LC): MDs execute all of their computation tasks using their own computing capacity
- Full Offloading (FO): MDs dispatches all of their computation tasks to ENs and selects their offloading target randomly
- Random Decision (RD): MDs randomly makes offloading decisions and selects the offloading target
- PGOA[21]: A distributed optimization algorithm designed for delay-sensitive tasks in an environment where MDs interact strategically with multiple ENs.

Number of completed tasks under different computation loads:

- (a) task arrival rate
- (b) the number of MDs

Overall energy consumption under different computation loads:

- (a) task arrival rate
- (b) the number of MDs

Average delay under different computation loads:

- (a) task arrival rate
- (b) the number of MDs

Average **QOE** under different computation loads:

- (a) task arrival rate
- (b) the number of MDs

Background

Contribution

System Model

Communication Model
Computation Model

Problem Formulation

Markov Decision Process QoE Optimization Problem

DRL-Based QOCO Algorithm

Performance Evaluation

Simulation Settings
Performance Comparison

Conclusion

- We formulated an optimization problem that aims to maximize the QoE of each MD individually.
 - The QoE reflects the energy consumption and task completion delay.
- Empowering MDs to make offloading decisions.
 - (without relying on knowledge about task models or other MDs' offloading decisions)
- Adapts to the uncertain dynamics of load levels at ENs.
 - Effectively manages the ever-changing system environment.

Future Work:

- Extending the task model by considering interdependencies among tasks.
 - This can be achieved by incorporating a task call graph representation to develop dependency among task partitions.
- Enabling MDs to take advantage of federated learning techniques in the training process.
 - This allows MDs to collectively contribute to improving the offloading model and enable continuous learning when new MDs join the network.