

IN 2090 gruppetime - uke 2

Relasjonell algebra og terminologi:)

Mulighet for å bytte grupper!

Opprettet to nye grupper (man 14.15-16.00 og tirs 14.15-16.00)

Relations – terminology

Relational Model	Tabular Data	
Relation	Table	
Tuple	Row	
Attribute	Column	
Domain	Column data type	
Arity	Number of columns	
Signature (i.e., intension)	Table header	
Instance (i.e., extension)	All rows (except header)	

Terminologi i tabell

- → Relasjonsnavn -> Navnet på tabellen
- Relasjonssignatur -> Attributt hvor hver instans unikt identifiserer tilhørende tuppel
- → Kolonneattributt -> Navnet på kolonnen (navngi strategisk)
- → Instanser -> Alle innlegg i tabellen
- → Tuppel -> Rad med instanser som tilhører en instanse

Nøkler, nøkkelattributter og fremmednøkler

- → Supernøkler -> Kombinasjon av attributter som gir hvert tuppel en unik attributt-instans. Sørger for integritet
- → Kandidatnøkkel -> En minimal supernøkkel
- → Primærnøkkel -> Valgt fra kandidatnøklene. Alle relasjoner må ha en og bare en
- → Nøkkelattributt -> Et attributt som inngår i en kandidatnøkkel
- → Kandidatnøkler har en linje, mens primærnøkkelen har to hvis det er flere kandidatnøkler
- → Fremmednøkler -> En eller flere attributter som peker til tupler i en annen relasjon (tabell)

Hente data fra relasjoner

- → Select -> Hente tupler fra en relasjon (fødselsnr, navn, kjønn, fødselsdato)
- → Project -> Hente spesifikke atributter fra alle tupler fra en relasjon (navn)
- → Join -> Hente kombinerte tupler fra forskjellige relasjoner (navn og oppmeldte emner fra tabeller som deler nøkkelen studentbrukernavn)

Modifisere data fra relasjoner

- Insert -> Legge til tupler i en relasjon (ny bruker)
- → Delete -> Fjerne tupler fra en relasjon (avsluttet abonnement)
- → Modifisering er en kombinasjon av insert og delete

Nyttige tabeller for relasjonelle oppgaver

Basic

- Selection (σ)
- Projection (π)
- Cartesian product (x)
- Set operations
 - Union (U)
 - Difference(- or \)

Derived and Auxiliary

- Renaming (ρ)
- Join (⋈)
 - Theta, equi, natural, etc.
- Set operations
 - Intersection (∩)
 - Division (÷)

Extended

- Aggregate functions and grouping (γ)
- Generalized projection
- Sort (τ)
- Duplicate elimination (δ)

Joins

$\sigma_{Age > 22}$ (Employee)

EID	Name	Age	Department
6	Ann	24	SD
25	John	23	IT

 $\sigma_{\text{Age} > 22}$

Employee

EID	Name	Age	Department	
19	Joe	22	OM	
6	Ann	24	SD	
3	Paul	21	OS	
25	John	23	IT	
5	Peter	21	SD	

Selection

$\pi_{\text{Name, Department}}(\text{Employee})$

Department
OM
SD
os
IT

 $\pi_{
m Name, \ Department}$

Employee

	_		
EID	Name	Age	Department
19	Joe	22	OM
6	Ann	24	SD
3	Paul	21	os
25	John	23	IT
5	Ann	21	SD

Projection

Group1 U Group2

Union

Group1 – Group2

John

Difference

Group1

GroupID

5045

4000

6002

Lead

Joe

Ann

Peter

Group1 ∩ Group2

Intersection

Employee ⋈_{Department=DID ∧ Age=21} Department

EID	SName	Age	Department	DID	DeptName	Address
19	Joe	21	OM	OM	Online Marketing	Addr_2
3	Paul	21	OS	OS	Online Sales	Addr_3

Theta join

Join operasjon som returnerer tupler som oppfyller gitte join-krav

Employee ⋈_{Department=DID} Department

EID	Name	Age	Department	DID	DeptName	Address
19	Joe	21	OM	OM	Online Marketing	Addr_2
6	Ann	24	SD	SD	Software Development	Addr_1
3	Paul	21	OS	OS	Online Sales	Addr_3

Employee

EID	Name	Age	Department
19	Joe	21	OM
6	Ann	24	SD
3	Paul	21	OS

Department

DID	DeptName	Address
SD	Software Development	Addr_1
OM	Online Marketing	Addr_2
OS	Online Sales	Addr_3

Equi join

Join operasjon som returnerer tupler som oppfyller likhetskrav

= $\pi_{\text{EID,Name,Age,DIO,Depthame,Acases}}(\sigma_{\text{DID-DIO2}}(\text{Employee} \times \rho_{\text{DID2,Depthame,Aabres}}(\text{Department})))$

EID	Name	Age	DID	DeptName	Address
19	Joe	21	OM	Online Marketing	Addr_2
6	Ann	24	SD	Software Development	Addr_1
3	Paul	21	OS	Online Sales	Addr_3

EID	Name	Age	DID		
19	Joe	21	OM		
6	Ann	24	SD		
3	Paul	21	os		

Department-

DID	DeptName	Address
SD	Software Development	Addr_1
ОМ	Online Marketing	Addr_2
OS	Online Sales	Addr_3

Natural join

- → Returnerer alle kombinasjoner av tupler
- → Spesiell form for equi join

Liten quiz

Hva er et nøkkelattributt?

Mentimeter

Er attributtet Emnenavn en god primærnøkkel?

Hva er en relasjonssignatur?

Emp#	Name	Bdate	Pers#	Dep
2	John	310148	39302	Admin
35	Mike	0 50785	36493	Sales
14	Pet som ikke navn med		for 34 kan være en	Sales
8		onne 3 10148	364tilen onnen	null
22	John	020266	32443	Marketing

σAge > 22(Employee) betyr

Ukesoppgaver! WOO!

Send en melding i chat om du trenger hjelp, så lager vi et breakoutroom:)

