NAME: SID:

Problem 1: (a) Use the Θ -notation to determine the rate of growth of the following functions:

Function	Θ estimate
$n^2 7^{-n} + n5^n + n^3 4^n + 3n^5 \log n^8$	$\Theta(n5^n)$
$3n^2 \log n + 2n \log^5 n + 0.3/(n^3 \sqrt{n})$	$\Theta(n^2 \log n)$

(b) For each piece of pseudo-code below, give its asymptotic running time as a function of n. Express this running time using the $\Theta()$ notation. Include a brief informal explanation (at most 20 words).

Pseudo-code	Running time	Explanation
$\begin{array}{c} \textbf{for } i \leftarrow 1 \textbf{ to } 3n \textbf{ do} \\ \textbf{ for } j \leftarrow 1 \textbf{ to } 2n \textbf{ do} \\ x \leftarrow x^2 \\ \textbf{ for } k \leftarrow 1 \textbf{ to } 5n \textbf{ do} \\ z \leftarrow x + z \end{array}$	$\Theta(n^2)$	The first nested loop makes $3n \cdot 2n = \Theta(n^2)$ iterations. The second loop makes $\Theta(n)$ iterations.
	$\Theta(n \log n)$	The external loop makes n iterations. In the internal loop j triples each time and stops at n , so it makes $\Theta(\log n)$ iterations.

(c) Let f(x) be a polynomial of degree m. Prove that $f(x) = O(x^m)$.

Problem 2: (a) Compute 7¹⁰ (mod 5) by squaring. Show your work.

$$7^{10} \pmod{5} = \dots = 4$$

(b) Compute 8^{-1} (mod 11) using the method of linear combinations (listing multiples). Show your work.

$$8^{-1} \pmod{11} = \dots = 7$$

(c) Compute $3^{-1} \pmod{13}$ using Fermat's Little Theorem. Show your work.

$$3^{-1} \pmod{13} = \dots = 9$$

(d) Solve:

$$3x \equiv 5 \pmod{13}.$$

$$3^{-1} \cdot 5x \equiv 5 \cdot 3^{-1} \pmod{13}$$

$$x \equiv 5 \cdot 9 \pmod{13}$$

$$x \equiv 45 \pmod{13}$$

$$x = 6$$

Problem 3: Part 1. Prove or disprove the following statements. (For each statement tell whether it is true or false and justify your answer.)

(a) For all nonnegative integers n, $n^2 + 3n + 2$ is not a prime number.

False. When n = 0, $n^2 + 3n + 2$ is prime.

(b) For all positive integers n, $n^2 + 3n + 2$ is not a prime number.

True. $n^2 + 3n + 2 = (n+1)(n+2)$. It is a product of two integers, and each of the factors is greater than 1.

(c) For all nonnegative integers n, $n^2 + 3n + 2$ is an even number.

True. $n^2 + 3n + 2 = (n+1)(n+2)$. A product of two consecutive integers is an even number.

Part 2. Using mathematical induction, prove that for all integers $k \ge 0$, $9^k - 2^k$ is divisible by 7.

NAME: SID:

Problem 4: (a) Use the Θ -notation to determine the rate of growth of the following functions:

Function	Θ estimate
$n^3 14^{-n} + n3^n + n^2 7^n + 3n^5 \log n^8$	$\Theta(n^27^n)$
$10/(n^2\sqrt{n}) + 3n^2 \log n + 4n \log^5 n$	$\Theta(n^2 \log n)$

(b) For each piece of pseudo-code below, give its asymptotic running time as a function of n. Express this running time using the $\Theta()$ notation. Include a brief informal explanation (at most 20 words).

Pseudo-code	Running time	Explanation
$\begin{array}{c} \textbf{for } i \leftarrow 1 \textbf{ to } 3n \textbf{ do} \\ \textbf{for } j \leftarrow 1 \textbf{ to } 5n \textbf{ do} \\ x \leftarrow x^4 \\ \textbf{for } k \leftarrow 1 \textbf{ to } 2n \textbf{ do} \\ z \leftarrow x + z \end{array}$	$\Theta(n^2)$	The first nested loop makes $3n \cdot 5n = \Theta(n^2)$ iterations. The second loop makes $\Theta(n)$ iterations.
$\begin{array}{c} \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} \\ j \leftarrow 1 \\ \mathbf{while} \ j < n \ \mathbf{do} \\ x \leftarrow 7 \cdot x \\ j \leftarrow 3 \cdot j \end{array}$	$\Theta(n \log n)$	The external loop makes n iterations. In the internal loop j triples each time and stops at n , so it makes $\Theta(\log n)$ iterations.

(c) Let g(x) be a polynomial of degree k. Prove that $f(x) = O(x^k)$.

Problem 5: (a) Compute 8⁹ (mod 5) by squaring. Show your work.

$$8^9 \pmod{5} = \dots = 3$$

(b) Compute 6^{-1} (mod 13) using the method of linear combinations (listing multiples). Show your work.

$$6^{-1} \pmod{13} = \dots = 11$$

(c) Compute $5^{-1} \pmod{11}$ using Fermat's Little Theorem. Show your work.

$$5^{-1} \pmod{11} = \dots = 9$$

(d) Solve:

$$5x \equiv 7 \pmod{11}.$$

$$5^{-1} \cdot 5x \equiv 7 \cdot 5^{-1} \pmod{11}$$

$$x \equiv 7 \cdot 9 \pmod{11}$$

$$x \equiv 63 \pmod{11}$$

$$x = 8$$

Problem 6: Part 1. Prove or disprove the following statements. (For each statement tell whether it is true or false and justify your answer.)

(a) For all nonnegative integers n, $n^2 + 5n + 6$ is an even number.

True. $n^2 + 5n + 6 = (n+2)(n+3)$. A product of two consecutive integers is an even number.

(b) For all positive integers n, $n^2 + 5n + 6$ is not a prime number.

True. $n^2 + 5n + 6 = (n+2)(n+3)$. It is a product of two integers, and each of the factors is greater than 1.

(c) For all nonnegative integers n, $n^2 + 5n + 6$ is not a prime number.

True. See (b).

Part 2. Using mathematical induction, prove that for all integers $k \geq 0$, $7^k - 2^k$ is divisible by 5.