Chrysostomos Karakasis

Ph.D. Candidate in Mechanical Engineering

Address: 68 Welsh Tract Road

Newark, DE, 19713

Phone: (+1) 302-898-8542 e-mail: chryskar@udel.edu in: in/chrys-karakasis

?: chryskar

👉: Chrysostomos Karakasis

Education

Ph.D. in Mechanical Engineering

UNIVERSITY OF DELAWARE, USA

GPA: 4.0/4.0 Aug. 2019 - Present

• Dissertation: "Robust and Stable Locomotion over Compliant Terrains: Application to Lower-limb Prostheses and Bipedal Robots"

Advisor: Dr Panagiotis Artemiadis

Committee: Ioannis Poulakakis (UD); Thomas Buchanan (UD); Robert Gregg (UMich)

M.Sc. in Mechanical Engineering

University of Delaware, USA

GPA: 4.0/4.0 MAY 2023

B.Sc. & M.Sc. in Electrical and Computer Engineering (Top 5%)

NATIONAL TECHNICAL UNIVERSITY OF ATHENS, GREECE (5-YEAR JOINT DEGREE; 300 ECTS)

GPA: 9.02/10 DEC. 2013 - FEB. 2019

• Thesis: "Implementation of Quadruped Robot's Motion Control on SoC FPGA" Supervisors: Prof. Dimitrios Soudris & Prof. Evangelos Papadopoulos

Research Interests

Legged Robots Rehabilitation Robotics Dynamical Systems and Control Embedded Systems Design

Professional Experience

Robotics and Controls Engineer Intern

Johnson & Johnson Medtech

Manager: Douglas Spencer Maughan - Mentor: Michael Dermksian

June - Aug. 2022

• Developing and deploying a hard-stop algorithm to prevent overloading in a cable-driven surgical instrument wrist.

Research Assistant University of Delaware

Advisor: Dr. Panagiotis Artemiadis

2019 - Present

- Robust and stable biped locomotion (3D Dual-SLIP) under one-step low-stiffness perturbations.
- Development of controller for an ankle-foot prosthesis that improves walking stability over compliant terrains.
- Development of novel kinematic data-based algorithm (F-VESPA) for real-time heel-strike detection.
- Development of user-friendly interface for performing experiments using the Variable Stiffness Treadmill (VST).

Research Assistant

National Technical University of Athens

Advisor: Dr. Dimitrios Soudris & Dr. Evangelos Papadopoulos (MicroLab & CSL-EP)

2018-2019

• Implementation of highly affordable control architecture for the quadruped robot Laelaps II based on a SoC FPGA.

Technical Skills

- Operating Systems: Microsoft Windows, Unix (Linux)
- Programming Languages: C/C++, Python, Pascal, Assembly (ARM, AVR architecture)
- Computer Hardware Design: VHDL, Verilog, Xilinx Vivado/ISE Design Suite, High-Level Synthesis (HLS)
- Software Tools: Mathworks MATLAB/Simulink, CLion IDE, Bitbucket, GitHub, Vicon Nexus/DataStream SDK, Gazebo, Jupyter Notebook, Microsoft Azure, Eclipse IDE, Matplotlib
- Application Software: T_EX (L^AT_EX, BIBT_EX), Microsoft Office, OpenOffice

Academic Scholarships and Awards

- IEEE/RAS Member Support Program for IROS 2023

- Graduate Student Travel Award for IROS 2023

- George W. Laird Merit Fellowship (Finalist)

- Onassis Foundation Scholarship

- Gerondelis Foundation Scholarship for Academic Excellence

IEEE Robotics and Automation Society, 2023

University of Delaware, 2023

University of Delaware, 2020

Alexander S. Onassis Foundation, 2020-2023

Gerondelis Foundation Inc., 2020

Publications

[J3] V. Chambers, B. Hobbs, W. Gaither, Z. The, A. Zhou, C. Karakasis, and P. Artemiadis, "The Variable Stiffness Treadmill (VST) 2.0: Development and Validation of a Unique Tool to Investigate Locomotion on Compliant Terrains," ASME Journal of Mechanisms and Robotics, 2023, Under Review.

- [J2] C. Karakasis, I. Poulakakis, and P. Artemiadis, "An Energy-Based Framework for Robust Dynamic Bipedal Walking Over Compliant Terrain," *Journal of Dynamic Systems, Measurement, and Control*, pp. 1–12, Nov. 2023, ISSN: 0022-0434. DOI: 10.1115/1.4064094. eprint: https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/doi/10.1115/1.4064094/7060193/ds-23-1181.pdf. [Online]. Available: https://doi.org/10.1115/1.4064094.
- [J1] C. Karakasis and P. Artemiadis, "Real-time kinematic-based detection of foot-strike during walking," *Journal of Biomechanics*, p. 110849, 2021.
- [C4] C. Karakasis, R. Salati, and P. Artemiadis, "Adjusting the Quasi-Stiffness of an Ankle-Foot Prosthesis Improves Walking Stability during Locomotion over Compliant Terrain," in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), To Appear.
- [C3] C. Karakasis, I. Poulakakis, and P. Artemiadis, "Robust Dynamic Walking for a 3D Dual-SLIP Model under One-Step Unilateral Stiffness Perturbations: Towards Bipedal Locomotion over Compliant Terrain," in 2022 30th Mediterranean Conference on Control and Automation (MED), 2022, pp. 969–975. DOI: 10.1109/MED54222.2022. 9837236.
- [C2] C. Karakasis and P. Artemiadis, "F-VESPA: A Kinematic-based Algorithm for Real-time Heel-strike Detection During Walking," in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2021, pp. 5098–5103.
- [C1] C. Karakasis, K. Machairas, C. Marantos, I. S. Paraskevas, E. Papadopoulos, and D. Soudris, "Exploiting the SoC FPGA Capabilities in the Control Architecture of a Quadruped Robot," in 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2020, pp. 501-507. [Online]. Available: https: //ieeexplore.ieee.org/document/9159012.

Presentations

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

In-person presentation of the accepted paper "Adjusting the Quasi-Stiffness of an Ankle-Foot Prosthesis Improves Walking Stability during Locomotion over Compliant Terrain" as part of the "Prosthesis Design and Control" Technical Session.

30th Mediterranean Conference on Control and Automation (MED)Athens, Greece, July 2022 Presentation of the accepted paper "Robust Dynamic Walking for a 3D Dual-SLIP Model under One-Step Unilateral Stiffness Perturbations: Towards Bipedal Locomotion over Compliant Terrain" as part of the "Robotics V" Regular Session.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Prague, Czech Republic, Sep. 2021 Virtual presentation of the accepted paper "F-VESPA: A Kinematic-based Algorithm for Real-time Heel-strike Detection During Walking" as part of the "Prosthetics and Exoskeletons I" Technical Session.

IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)

Boston, USA, July 2020

Virtual presentation of the accepted paper "Exploiting the SoC FPGA Capabilities in the Control Architecture of a Quadruped Robot" as part of the "Legged Robots II" Technical Session.

Mentoring

Research Advising at the University of Delaware (HORC Lab)

- <u>Camryn Scully</u> (Master's in Robotics) Feb. 2023 Present Development of an inline bypass adapter for an ankle-foot prosthesis based on the iWALK3.0 Hands Free Crutch.
- <u>Robert Salati</u> (Master's in Robotics) Sep. 2022 Aug. 2023 Development of admittance controller for the adjustment of the quasi-stiffness of an ankle-foot prosthesis.