4.9 Let R be a J-semisimple domain and a be a nonzero central element of R. Show that the intersection of all maximal left ideals not containing a is zero.

Solution.

Let R and a be as above. If a is not in any maximal left ideal of R, then the intersection of all maximal left ideals of R not containing a is $radR = \{0\}$ by assumption. Similarly, if a is in all nonzero maximal ideals of R, then the intersection of all maximal left ideals of R not containing a is simply the set $\{0\}$. So, let X be the collection of all maximal left ideals of R not containing a. Assume by way of contradiction that $\bigcap X \neq \{0\}$. So, there exists $b \in \bigcap X$ with $b \neq 0$ Since X is also an ideal, $ab \in X$. Cosider R the intersection of all maximal left ideals of R. So, $R \setminus X = Y$ the intersection of all maximal ideals of R containing a. So, $ab \in Y$. That is, $ab = ba \in X \cap Y = radR$. Since $a, b \neq 0$ and R is a domain, $ab \neq 0$. This contradicts R being J-semisimple. Thus, $\bigcap X = \{0\}$ as desired.

In case a is to be considered an idempotent: Let R be a J-semisimple domain and a a nonzero idempotent. Let X be the intersection of all maximal ideals of R not containg a. If X is all of the maximal ideals of R, then $X = radR = \{0\}$. If a is in every nonzero maximal ideal, then $X = \{0\}$. Now consider $b \in X$. Now, $ab = a^2b$ as a is an idempotent. So, $ab - a^2b = a(b - ab) = a(1 - a)b = 0$. Since R is a domain, either a = 0, 1 - a = 0, or b = 0. By assumption, $a \neq 0$, and if 1 - a = 0, then 1 = a and no maximal ideal of R can contain 1 which would result in the trivial case above. So, we have that b = 0 and since b was arbitrary, $X = \{0\}$ as desired.

4.11 If an ideal $I \subseteq R$ is such that R/I is J-semisimple, show that $I \supseteq radR$. (Therefore, radR is the smallest ideal $I \subseteq R$ such that R/I is J-semisimple.)

Solution.

Let R be a ring and I an ideal of R such that R/I is J-semisimple. Denote radR = J. If I = J, we are done. Now, assume by way of contradiction that $I \subset J$. So, radR/I = (radR)/I = J/I. Since $I \subset J$, we have that I is contained in a maximal ideal of R. Since $I \neq J$, there exists $a \in J$ such that $a + I \in J/I$ with $a + I \neq 0$. This gives us that R/I is not J-semisimple, a contradiction. So, $I \supseteq J$ as desired.

4.12A Let \mathfrak{A}_i $(i \in I)$ be ideals in a ring R, and let $\mathfrak{A} = \bigcap_i \mathfrak{A}_i$. True or False: "If each R/\mathfrak{A}_i is J-semisimple, then so is R/\mathfrak{A} "?

Solution.

Let R, \mathfrak{A}_i $(i \in I)$, and \mathfrak{A}_i be as above. This statement is true. Since each \mathfrak{A}_i is an ideal of R, we have that each \mathfrak{A}_i is contained in a maximal ideal of R. Whence, \mathfrak{A} is also contained in a maximal ideal of R. So, each $\mathfrak{A}_i \subseteq radR = J$ and $\mathfrak{A} \subseteq J$. Hence, $\{0\} = rad(R/\mathfrak{A}_i) = (rad(R))/\mathfrak{A}_i$ since each R/\mathfrak{A}_i is J-semisimple. So, $\{0\} = \bigcap_i \{0\} = \bigcap_i ((radR)/\mathfrak{A}_i) = (radR)/\mathfrak{A} = rad(R/\mathfrak{A})$. Thus, R/\mathfrak{A} is also J-semisimple.

4.14 Show that a ring R is von Neumann regular iff $IJ = I \cap J$ for every right ideal I and every left ideal J in R.

Solution.

Let R be a ring. Assume first that $IJ = I \cap J$ for every right ideal I and every left ideal J in R. Let $a \in R$. Consider the ideals aR and Ra. By our assumption, $(aR)(Ra) = aRa = aR \cap Ra$. Now, observe that 1a = a1 = a. Hence, $a \in aR$ and $a \in Ra$. That is $a \in aR \cap Ra = aRa$. So, there exists some $b \in R$ such that a = aba. That is, R is von Neumann regular as desired. Conversely assume that R is von Nuemann regular. Let I, J be left and right ideals of R respectively. Let $a \in IJ$. So, there exists $i \in I$ and $j \in J$ such that a = ij. Since I is a left ideal and J is a right ideal, we have that $a = ij \in I$ and $a = ij \in J$. That is $a \in I \cap J$. now, let $a \in I \cap J$. Since R is von Nuemann regular, there exists $a \in I \cap I$ and a = aba. Since $a \in I \cap I$ are left and right ideals respectively and $a \in I \cap I$ as desired.

- 4.14B For any ring R, show that the following are equivalent:
 - 1. For any $a \in R$, there exists a unit $u \in U(R)$ such that a = aua.
 - 2. Every $a \in R$ can be written as a unit times an idempotent.
 - 2'. Every $a \in R$ can be written as an idempotent times a unit.
 - If R satisfies 1, it is said to be unit-regular.
 - 3. Show that any unit-regular ring R is Dedekind-finite.

Let R be a ring.

 $(1 \Leftrightarrow 2)$. Let $a \in R$ and let $u \in U(R)$ such that a = aua. Since u is a unit in R, there exists $v \in R$ such that uv = vu = 1. Since a = aua, ua = uaua. Hence, ua is an idempotent in R. Whence, setting ua = e, we have that vua = a = ve. Since v is also a unit in R, a is a unit times an idempotent. Conversely assume that $a \in R$ is a unit v times an idempotent e. That is a = ve. Since v is a unit, there exists $u \in U(R)$ such that vu = uv = 1. Therefore, uve = e = ua. That is ua is an idempotent. So, ua = uaua. Whence, ua - uaua = u(a - aua) = 0. Thus, vu(a - aua) = a - aua = 0. Hence, ua = aua for some unit u in ua.

 $(1\Leftrightarrow 2')$. Let $a\in R$ and let $u\in U(R)$ such that a=aua. Since u is a unit in R, there exists $v\in R$ such that uv=vu=1. Since a=aua, au=auau. Hence, au is an idempotent in R. Whence, setting au=e, we have that auv=a=ev. Since v is also a unit in R, a is an idempotent times a unit. Conversely assume that $a\in R$ is an idempotent e times a unit v. That is a=ev. Since v is a unit, there exists $u\in U(R)$ such that vu=uv=1. Therefore, evu=e=au. That is au is an idempotent. So, au=auau. Whence, au-auau=(a-aua)u=0. Thus, (a-aua)uv=a-aua=0. Hence, a=aua for some unit u in R.

 $(1 \Rightarrow 3)$. Let $a \in R$ and let $u \in U(R)$ such that a = aua. Let $b \in R$ such that ab = 1. We will show that ba = 1. Since ab = 1, we have that aba = a. By assumption, that means b is a unit in R. Since b is a unit in R, we have that ab = ba = 1 and thus R is Dedekind finite as desired.

- 4.16 A left R-module M is said to be cohopfian if any injective R-endomorphism of M is an automorphism.
 - 1. Show that any artinian module M is cohopfian.
 - 2. Show that the left regular module $_RR$ is cohopfian iff every non right-0-divisor in R is a unit. In this case, show that $_RR$ is also hopfian

- 1. Let R be a ring and M an artinian R-module. Let f be an injective R-endomorphism of M. Consider the decending chain of submodules of M by $M \supseteq f(M) \supseteq f^2(M) \supseteq f^3(M) \supseteq \ldots$ Since M is artinian, this chain must stabilize for some $n \in \mathbb{Z}^+$. That is $f^n(M) = f^{n+1}(M) = \ldots$ Hence, $f(f^{n-1}(M)) = f(f^n(M))$. Since f is 1-1, we have that $f^{n-1}(M) = f^n(M)$. Repeating this process for n-1 more iterations, using that f is injective, yields M = f(M). Thus, f is surjective and therefore an automorphism. That is M is cohopfian as desired.
- 2. Let R be a ring. First assume that _RR is cohopfian. Let $u \in R$ be a non right-0-divisor. Consider that map $f: {}_{R}R \to {}_{R}R$ given by f(r) = ru for all $r \in {}_{R}R$. Now, let $a, b \in {}_{R}R$ and $m \in R$. Then, f(a+b) = (a+b)u = au + bu = f(a) + f(u)and f(ma) = (ma)u = mau = m(au) = f(a). So, f is an endomorphism of _RR. Now assume that f(a) = f(b). Whence, au = bu and therefore, au - bu = (a - b)u = 0. Since u is not a right-0-divisor, we have that a-b=0. So, a=b. That means f is also 1-1 and so by assumption, f is an automorphism. So, there exists $v \in R$ such that f(v) = vu = 1. Hence, uvu = u and so uvu - u = (uv - 1)u = 0. Since u is not a right-0-divisor, uv-1=0. That is uv=1 and thus u is a unit in R. Conversley assume that every non right-0-divisor in R is a unit. Let q be an injective endomorphism of _RR. So, g(r) = ru for all $r \in {}_{R}R$ and some $u \in {}_{R}R$. Since g is 1-1, if g(r) = 0, then r=0. So, if g(r)=ru=0, r=0. This means that u is not a right-0-divisor. So by assumption, u is a unit in R. Hence, there exists $v \in R$ such that uv = vu = 1. Now, let $s \in {}_{R}R$. Since ${}_{R}R$ is an R-module, $sv \in {}_{R}R$. Whence, g(sv) = (sv)u = svu = s. Thus, q is sujective making R cohopfian since q was arbitrary. Now, assume that $_{R}R$ is cohopfian. Let h be a surjective endomorphism of $_{R}R$. Since h is surjective, there exists $x \in {}_{R}R$ such that h(x) = 0. We know that every endomorphism has the form h(x) = xa for all $x \in {}_{R}R$ and some $a \in R$. So, h(x) = xa = 0. Let $x,y \in {}_{R}R$ and assume that h(x) = h(y). Then, h(x) - h(y) = h(x-y) = 0 since h is an endomorphism. Hence, (x-y)a=0. Clearly, $a\neq 0$ since h is onto. So, since a is not a right-0-divisor, a is a unit in R. Therefore, there exists $b \in R$ such that ab = ba = 1. Whence, (x - y)ab = x - y = 0 and so x = y. Thus, h is 1 - 1 and an automorphism. Therfore, $_{R}R$ is hopfian.

- 6.3 Let G be a finite group whose order is a unit in a ring k, and let $W \subseteq V$ be left kG-modules.
 - 1. If W is a direct summand of V as k-modules, show that W is a direct summand of V as kG-modules.
 - 2. If V is projective as a k-module, show that V is projective as a kG-module.

Let G, k, W, and V be as given.

- 1. Let W be a direct summand of V as k-modules. That is, $V = W \oplus X$ where $W \cap X = 0$ for some left k-module X. Let $\gamma : kG \to k$ be the augmentation map given in class, and let Y and Z be the preimages of W and X respectively. Since γ is a surjective map, we have that $W \subseteq Y$. Hence, $Y = W \oplus (Y \setminus W)$. Therefore, we have that $V = W \oplus (Y \setminus W) \oplus Z = Y \oplus Z$ and thus W is a direct summand of V as kG-modules.
- 2. Let W be a direct summand of V as k-modules. Consider the kG modules Y and Z. Let $\phi: Y \to Z$ be a surjective kG-module homomorphism, and let $\psi: V \to Z$ be a kG-module homomorphism. Let $\gamma: kG \to k$ be the augmentation map as given in class. Then, we have that $\gamma(Y)$ and $\gamma(Z)$ are k-modules. Now, ϕ restricted to a k-module homomorphism between $\gamma(Y)$ and $\gamma(Z)$ is still surjective. Thus, since V is projective as a k-module, there exists $\rho: V \to \gamma(Y)$ and we can restrict ρ to be between V and Y such that $\rho \circ \phi = \psi$. Thus, V is projective as a kG-module.

6.6 Let H be a normal subgroup of G. Show that $I = kG \cdot rad \ kH$ is an ideal of kG. If $rad \ kH$ is nilpotent, show that I is also nilpotent. (In particular, if H is finite, I is always nilpotent.)

Solution.

Let H, G, and I be as stated above. Define $f: kH \to kH$ by $f(h) = ghg^{-1}$. Then, we see that f is onto. Now, let $x, y \in kH$. Then, $f(x+y) = g(x+y)g^{-1} = gxg^{-1} + gyg^{-1} = f(x) + f(y)$ and $f(xy) = gxyg^{-1} = gxg^{-1}gyg^{-1} = f(x)f(y)$. So, f is a surjective homomorphism. Now, let $x \in \ker(f)$. Then, $f(x) = gxg^{-1}1 = 0$. Hence, $f(x) = gxg^{-1}1 = 0$. Thus, $f(x) = gxg^{-1}1 = 0$. Hence, $f(x) = gxg^{-1}1 = 0$. Thus, $f(x) = gxg^{-1}1 = 0$. Hence, $f(x) = gxg^{-1}1 = 0$. Thus, $f(x) = gxg^{-1}1 = 0$. Thus, $f(x) = gxg^{-1}1 = 0$. Hence, $f(x) = gxg^{-1}1 = 0$. Thus, $f(x) = gxg^{-1}1 = 0$. Hence, $f(x) = gxg^{-1}1 = 0$. Thus, $f(x) = gxg^{-1}1 = 0$. Thus, $f(x) = gxg^{-1}1 = 0$. Thus, $f(x) = gxg^{-1}1 = 0$. Hence, $f(x) = gxg^{-1}1 = 0$. Thus, $f(x) = gxg^{-1}1 = 0$. Thus, f(x) =

- 6.12 Assume char(k) = 3, and let $G = S_3$ (symmetric group on three letters)
 - 1. Compute the Jacobson radical J = rad(kG), and the factor ring kG/J.
 - 2. Determine the index of nilpotency for J, and find a k-basis for J^i for each i.

- 1. Consider the augmentation map $\phi: kG \to k$ as defined in class. Then, we have that the kernel $\ker(\phi) = J$ and thus, $kG/J = \{b + \ker(\phi) | b \in kG\}$ is the quotient ring.
- 2. The index of nilpotency for J is 18 which is the product of the characteristic of k and the order of G.