LOGICAL DEDUCTION IN A

PREDICATE LOGIC FUNDAMENTALS

Predicate Logic

Wherever Mary goes, so does the lamb. Mary goes to school. So the lamb goes to school.

No contractors are dependable. Some engineers are contractors. Therefore some engineers are not dependable.

All dancers are graceful. Ayesha is a student. Ayesha is a dancer. Therefore some student is graceful.

Every passenger is either in first class or second class. Each passenger is in second class if and only if he or she is not wealthy. Some passengers are wealthy. Not all passengers are wealthy. Therefore some passengers are in second class.

F2: goes(Mary, School) \checkmark

G: goes(Lamb, School)

To prove: $(F1 \land F2) \rightarrow G)$ is always true

Use of Quantifiers

Use of Function Symbols

If x is greater than y and y is greater than z then x is greater than z.

The age of a person is greater than the age of his child.

Therefore the age of a person is greater than the age of his grandchild.

The sum of ages of two children are never more than the sum of ages of their parents.

constant - Functions
Constant - Functions
Productes
Productes
E Y

g(2,y) 2 is greater than y 42 4442 ((g(2,y) ∧ g(y,z)) → g(2,z)) (child (x,y) -> g (Age(y), Age(x) Age (x) -> returns a value child (204) -> notwins TRUE or FALSE Sum (x,y) - Function Symbol parent (2)4) use the child predicate

Variables and Predicate / Function Symbols

Variables, Free variables, Bound variables

Symbols – proposition symbols, constant symbols, function symbols, predicate symbols

Variables can be quantified in first order predicate logic

Symbols cannot be quantified in first order predicate logic

Interpretations are mappings of symbols to relevant aspects of a domain

Terminology for Predicate Logic

Domain: D	
Constant Sym	bols: N, O, P,
Variable Symbols: x,y,z,	
<u>Function Symbols</u> : F(x), G(x,y), H(x,y,z)	
Predicate Symbols: p(x), q(x,y), r(x,y,z),	
<u>Connectors</u> : ~, ∧, ∨, →, ∃, ∨	
Terms: ✓	WFF
Well-formed Formula:	
Free and Bound Variables:	
Interpretation Valid, Non-Valid,	
Satisfiable, Unsatisfiable	
SYNTAX	D(2) where zisteel
SEMANTICS	Hapan Japan
7	

Domain D will specified for every

Validity, Satisfiability, Structure

F1:
$$\forall x (\text{goes}(\text{Mary}, x) \rightarrow \text{goes}(\text{Lamb}, x))$$
F2: $\text{goes}(\text{Mary}, \text{School})$
G: $\text{goes}(\text{Lamb}, \text{School})$
To prove : $(\text{F1} \land \text{F2}) \rightarrow \text{G})$ is always true

Is the same as:
F1: $\forall x (\text{www}(\text{M}, x) \rightarrow \text{www}(\text{L}, x))$
F2: $\text{www}(\text{M}, \text{S})$

G: www(L, S)

To prove: (F1 \wedge F2) \rightarrow G) is always true

predicate symbol

Interpretations

What is an Interpretation? Assign a domain set D, map constants, functions, predicates suitably.

The formula will now have a truth value

Example:

F1: $\forall x(g(M, x) \rightarrow g(L, x))$

F2: g(M, S)

G: g(L, S)

<u>Interpretation 1</u>: D = {Akash, Baby, Home, Play, Ratan, Swim}, etc.,

F(XF2->G

Interpretation 2: D = Set of Integers, etc., ~

How many interpretations can there be?

To prove <u>Validity</u>, means (F1 Λ F2) \rightarrow G) is true under all interpretations

To prove Satisfiability means (F1 Λ F2) \rightarrow G) is true under at least one interpretation

D: Assign the Domain
F: Assign Constants of "s from
the Domain p: Assign a specific relation from Home, L: Akash, S: Akash g(x)y): for all pairs in D we have say whether g(x, y) is T/F A formula is said to be ration if it is true FORALL interpretations

In Its Power Lies Its Limitations

Russell's Paradox (The barber shaves all those who do not shave themselves. Does the barber shave himself?)

- There is a single barber in town.
- Those and only those who do not shave themselves are shaved by the barber.
- Who shaves the barber?

Checking Validity of First order logic is undecidable but partially decidable (semi-decidable) {Robinson's Method of Resolution Refutation}

Higher order predicate logic - can quantify symbols in addition to quantifying variables.

$$\forall p((p(0) \land (\forall x(p(x) \rightarrow p(S(x))) \rightarrow \forall y(p(y))))$$

NOT (1) 1st order Logic

Combutation Predicate Logic can model any computable function TURING MC - Undecidability Barber Shaves himself) Someone else Shaves the Barber X Unsolvable Problem is a veltood SEMI-DECIDABLE HIGHER ORDER LOGIC

Thank you