Μαθηματικά Γ΄ ΕΠΑ.Λ

Επαναληπτικό διαγώνισμα 1ο Κεφάλαιο 14 Δεκεμβρίου 2023

ΘΕΜΑ Α

Α.1 Δίνονται συναρτήσεις f, g με πεδία ορισμού A, B αντίστοιχα και $x_0 \in A \cap B$. Να αποδείξετε ότι

$$(f(x) + g(x))' = f'(x) + g'(x)$$

- **Α.2** Να διατυπώσετε το κριτήριο μονοτονίας για μια γνησίως αύξουσα συνάρτηση f.
- **Α.3** Πότε μια συνάρτηση f ονομάζεται συνεχής σε ένα σημείο x_0 του πεδίου ορισμού της
- Α.4 Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις ως Σωστή ή Λάθος.
 - α. Ισχύει ότι $(\sqrt{3})' = \frac{1}{2\sqrt{3}}$.
 - β. Το πεδίο ορισμού της f' είναι υποσύνολο του πεδίου ορισμού της f.
 - γ. Αν ισχύει $f'(x_0) = 0$, f'(x) > 0 για $x \in (a, x_0)$ και f'(x) < 0 για $x \in (x_0, \beta)$ τότε η f παρουσιάζει ελάχιστο στη θέση $x_0 \in (a, \beta)$.
 - δ. Ισχύει ότι συνx = ημx
 - ε. Ισχύει ότι (cf(x))' = cf'(x).

 $\mathbf{\Theta}\mathbf{EMA}\;\mathbf{B}\;$ Δίνεται η συνάρτηση $f(x)=\frac{x^2-a}{x-2}$ για την οποία ισχύει ότι

$$\lim_{x \to 2} \left[f(x)(x^2 - 4) \right] = 7 - a$$

- **B.1** Να αποδείξετε ότι a = 3.
- **B.2** Να βρεθεί η εξίσωση της εφαπτομένης της γραφικής παράστασης της f στο σημείο A(1, f(1)).
- **Β.3** Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία και τα ακρότατα.
- **B.4** Να συγκρίνετε τους αριθμούς $f\left(\frac{2023}{2022}\right)$ και $f\left(\frac{2024}{2022}\right)$.

ΘΕΜΑ Γ Δίνεται η συνάρτηση $f(x) = x^2 + (a-3)x + a - 4$ της οποίας η γραφική παράσταση διέρχεται από το σημείο A(3,4).

- Γ .1 Να αποδείξετε ότι a=2.
- Γ .2 Να δείξετε ότι για κάθε $x \in \mathbb{R}$ ισχύει

$$x^{2}f''(x) - xf'(x) + f(x) = x^{2} - 2$$

Γ.3 Να υπολογίσετε το όριο

$$\lim_{x \to 2} \frac{\sqrt{f'(x)} - \sqrt{3}}{x - 2}$$

Γ.4 Βρείτε την τιμή του x για την οποία η συνάρτηση $g(x) = x \cdot f(x) - x^3$ παίρνει μέγιστη τιμή.

ΘΕΜΑ Δ

Ενα εργοστάσιο κονσερβοποιίας κατασκευάζει κονσέρβες χωριτικότητας 500 ml για συμπυκνωμένο γάλα. Ο κύλινδρος έχει ακτίνα βάσης x cm και ύψος h cm.

- **Δ.1** Να δείξετε ότι το ύψος h του κυλίνδρου δίνεται από τη συνάρτηση $h(x) = \frac{500}{\pi x^2}$.
- **Δ.2** Να βρείτε το ρυθμό μεταβολής του εμβαδού το κυλίνδρου όταν το ύψος του ισούται με $h=\frac{20}{\pi}$ cm.
- **Δ.3** Να βρεθεί η τιμή του x για την οποία το εμβαδόν της κονσέρβας γίνεται ελάχιστο.
- Δ.4 Αν το υλικό κατασκευής κοστίζει 12€ άνα τετραγωνικό μέτρο, να βρεθεί το κόστος κατασκευής μιας κονσέρβας με ελάχιστο εμβαδόν.

(Δίνεται το εμβαδόν του κυλίνδρου $E=2\pi \rho^2+2\pi \rho h$ και ο όγκος του $V=\pi \rho^2 h$.)

