

Volume 9 (1), January-March 2025, 368-377

E-ISSN:2580-1643

Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi)

DOI: https://doi.org/10.35870/jtik.v9i1.3218

Analisis Perbandingan Metode *Convolutional Neural Network* (CNN) dan *MobileNet* dalam Klasifikasi Penyakit Daun Padi

Tazkira Turahman 1*, Erfan Hasmin 2, Komang Aryasa 3

1*,2,3 Program Studi Teknik Informatika, Fakultas Teknik, Universitas Dipa Makassar, Kota Makassar, Provinsi Sulawesi Selatan, Indonesia.

article info

Article history:
Received 25 September 2024
Received in revised form
1 October 2024
Accepted 25 October 2024
Available online January
2025.

Keywords: Convolutional Neural Network (CNN); MobileNet; Disease Classification.

Kata Kunci: Convolutional Neural Network (CNN); MobileNet; Klasifikasi Penyakit.

abstract

This study aims to compare the effectiveness of Convolutional Neural Networks (CNN) and MobileNet in classifying rice leaf diseases (Oryza sativa), such as bacterial blight, brown spot, and leaf smut. The use of a dataset from Kaggle facilitates the performance evaluation of both models. The results show that MobileNet achieved a higher accuracy of 94.79% in just 10 epochs, while CNN reached 90.24% after 150 epochs. MobileNet's efficiency in terms of training time and performance is superior to CNN. This study recommends using MobileNet for similar applications and further research with an expanded dataset and other deep learning methods.

abstrak

Penelitian ini membandingkan efektivitas Convolutional Neural Network (CNN) dan MobileNet dalam klasifikasi penyakit daun padi (Oryza sativa), yaitu bercak bakteri, bercak coklat, dan smut daun. Menggunakan dataset dari Kaggle, hasil menunjukkan MobileNet mencapai akurasi 94,79% dalam 10 epoch, sedangkan CNN hanya mencapai 90,24% setelah 150 epoch. MobileNet terbukti lebih efisien dalam waktu pelatihan dan kinerja. Penelitian ini merekomendasikan penggunaan MobileNet serta eksplorasi lebih lanjut dengan dataset yang diperluas dan model deep learning lainnya.

Corresponding Author. Email: tazkira.212132@undipa.ac.id 1.

1. Pendahuluan

Dari semua jenis biji-bijian, padi (Oryza sativa) berada di urutan ketiga setelah jagung dan gandum. Beras merupakan salah satu makanan pokok paling penting di dunia. Konsumsi dan permintaan beras terus meningkat seiring pertumbuhan populasi global. Untuk memenuhi kebutuhan tersebut, diperlukan beras lebih dari 40% peningkatan produksi (Khoiruddin et al., 2022). Stabilitas sosial, keamanan pangan, dan pembangunan nasional menjadi alasan utama pentingnya peningkatan produksi padi. Salah satu ancaman utama terhadap produksi padi adalah penyakit hawar daun bakteri (bacterial leaf blight), yang dapat menyebabkan kehilangan hasil panen antara 15% hingga 24% di wilayah Indonesia (Setiaji & Huda, 2022). Setiap jenis penyakit daun memiliki gejala yang berbeda, namun gejala tersebut tidak selalu menunjukkan jenis penyakit secara spesifik. Hal ini disebabkan oleh banyaknya penyakit dengan gejala yang hampir serupa. Identifikasi penyakit daun padi biasanya dilakukan di laboratorium, yang membutuhkan waktu dan biaya yang cukup besar (Sigitta et al., 2023). Masyarakat umum, terutama petani, sering kesulitan membedakan jenis penyakit daun padi. Penyakit pada padi dapat disebabkan oleh berbagai patogen, seperti bakteri dan jamur (Burhanuddin, 2024).

Teknologi kecerdasan buatan (artificial intelligence atau AI) semakin berperan penting dalam meningkatkan ketahanan pangan. Salah satu inovasi AI dalam bidang pertanian adalah pengenalan objek melalui analisis citra (Milano, 2024). Klasifikasi citra adalah proses mengidentifikasi suatu objek, kelompok, atau kategori berdasarkan karakteristik tertentu. Dalam hal ini, tujuannya adalah membedakan antara daun padi yang sehat dengan yang terinfeksi penyakit (Azizah, 2023). Keterbatasan pengetahuan dan keterampilan petani dalam mengidentifikasi jenis penyakit padi membuat teknologi ini menjadi sangat diperlukan (Zulfa et al., 2023). Algoritma Convolutional Neural Network (CNN) dan MobileNet (SSD) telah diterapkan dalam sistem identifikasi otomatis untuk mendeteksi dan memprediksi penyakit tanaman melalui analisis citra daun. CNN dikenal sebagai metode deep learning yang unggul untuk klasifikasi citra, sementara MobileNet-V2 adalah model yang lebih ringan dan dirancang untuk aplikasi seluler dan

perangkat berbasis visi tersemat (Aini & Liliana, 2022). Dalam beberapa tahun terakhir, penelitian di bidang klasifikasi penyakit daun padi menggunakan teknologi deep learning telah menunjukkan hasil yang signifikan. Penelitian oleh Turnip dan Rozi (2024) membandingkan arsitektur MobileNet dan NASNetMobile, menunjukkan bahwa *MobileNet* memiliki akurasi 93%, lebih baik dibandingkan NASNetMobile yang mencapai 83%. Penelitian lain oleh Wicaksana (2022) pada klasifikasi penyakit daun apel menggunakan CNN melaporkan akurasi sebesar 94,9%, yang sebanding dengan MobileNet yang mencapai 95,9%.

2. Metodologi Penelitian

Tahapan penelitian mengenai klasifikasi penyakit pada tanaman padi dimulai dari pengumpulan dataset, preprocessing, training model CNN, training model Mobilenet, save best model, load model, input gambar, prediksi, hasil prediksi, output.

Gambar 1. Proses CNN, MOBILENET

Pengumpulan Dataset

Data dalam penelitian ini dikumpulkan dari dataset publik yang diakses melalui Kaggle dengan URL: https://www.kaggle.com/datasets/vbookshelf/rice-leaf-diseases. Dataset dari Kaggle dipilih karena memiliki koleksi yang luas, kualitas yang baik, serta kemudahan akses. Dataset ini terdiri dari 120 data, yang terbagi secara merata ke dalam tiga kelas, yaitu

bacterial leaf blight, brown spot, dan leaf smut, masingmasing dengan 40 data. Gambar 2 menunjukkan distribusi data untuk setiap kelas, sedangkan Gambar 3 memberikan contoh sampel data dari masingmasing kelas.

Gambar 3. Sampel data setiap kelas

Preprocessing

Setelah mendapatkan data gambar yang akan digunakan dalam penelitian, langkah selanjutnya adalah melakukan preprocessing. Langkah ini dilakukan untuk menyeragamkan unsur-unsur dalam gambar yang akan dianalisis, mengingat setiap gambar memiliki karakteristik yang berbeda. Selain itu, preprocessing bertujuan memperjelas fitur-fitur penting dalam gambar (Jinan et al., 2022). Tahap ini bertujuan untuk menghasilkan gambar yang dapat diproses dengan mudah. Jenis preprocessing yang dilakukan meliputi pengubahan ukuran (resize) gambar, yaitu proses memilih dan menyesuaikan parameter-parameter tertentu yang memengaruhi proses pelatihan model. Selain itu, proses labeling atau pemberian label pada citra gambar juga membantu model dilakukan untuk dalam mengklasifikasikan data (Nurcahyati et al., 2022).

Training Model CNN dan MobileNet

Tahap ini bertujuan untuk melatih model dengan menggunakan gambar yang telah diproses. Model CNN dan MobileNet digunakan dalam klasifikasi ini karena keduanya menawarkan keunggulan dalam hal kemampuan efisiensi komputasi, dan akurasi, generalisasi, serta kemudahan implementasi. Algoritma CNN melewati proses validasi menggunakan data uji untuk mengevaluasi tingkat akurasi model (Naufal, 2021). Proses pelatihan ini menggunakan confusion matrix sebagai parameter untuk mengukur akurasi prediksi. Hasil akurasi dari kedua model kemudian dibandingkan untuk menentukan model mana yang memberikan hasil terbaik dalam klasifikasi penyakit daun padi (Hardi, 2022).

Save Best Model

Dalam penelitian digunakan algoritma ini, Convolutional Neural Network (CNN) dan MobileNet untuk tugas klasifikasi gambar. Model-model tersebut dilatih menggunakan dataset yang relevan dengan pengaturan optimal untuk mencapai hasil terbaik. Proses penyimpanan model terbaik dilakukan dengan menggunakan callback ModelCheckpoint, memungkinkan penyimpanan model dengan kinerja validasi tertinggi selama pelatihan. Model yang disimpan kemudian digunakan untuk evaluasi dan pengujian lebih lanjut.

Load Model

Setelah proses pelatihan selesai, model CNN dan MobileNet disimpan dalam format yang sesuai untuk digunakan kembali. Model ini kemudian dimuat kembali untuk keperluan pengujian dan prediksi selanjutnya.

Prediksi

Pada tahap ini, model yang telah dilatih diuji menggunakan gambar-gambar baru yang belum pernah dilihat sebelumnya. Proses ini melibatkan pemberian input berupa gambar pada model, yang kemudian menghasilkan prediksi jenis penyakit daun padi, seperti bacterial blight, leaf smut, atau brown spot.

Hasil Prediksi

Hasil prediksi diperoleh dari gambar yang diunggah sebagai input. Model akan mengidentifikasi dan mengklasifikasikan apakah gambar tersebut mengindikasikan adanya penyakit bacterial blight, leaf smut, atau brown spot.

Output

Tahap akhir dari proses klasifikasi ini adalah output berupa hasil klasifikasi yang menunjukkan jenis penyakit daun padi berdasarkan prediksi model.

3. Hasil dan Pembahasan

Hasil

Penelitian ini bertujuan untuk melakukan klasifikasi citra melalui beberapa tahapan utama, yaitu pengumpulan data, preprocessing citra, pelatihan model, dan pengujian model aplikasi. Setiap tahapan ini berperan penting dalam memastikan keberhasilan klasifikasi citra yang akurat dan efektif.

Pengumpulan Data

Tahap awal penelitian ini adalah pengumpulan data citra yang diakses melalui Kaggle, dengan *link* Rice Leaf Diseases Dataset (kaggle.com). Sumber ini dipilih karena kualitas gambar yang baik, relevansi dengan tujuan penelitian, serta variasi dalam resolusi, pencahayaan, dan latar belakang. Data yang terkumpul kemudian diseleksi untuk memastikan hanya gambar yang memenuhi kriteria tertentu yang digunakan dalam penelitian ini.

Preprocessing Citra

Preprocessing citra adalah langkah penting sebelum data digunakan dalam proses pelatihan model. Tahapan ini mencakup beberapa langkah utama, di antaranya:

Resize Gambar menggunakan Hyperparameter

Hyperparameter dalam deep learning merujuk pada parameter yang mengatur proses pelatihan model. Pada tahap ini, beberapa hyperparameter diatur, termasuk initial learning rate, batch size, dan ukuran gambar. Ukuran gambar default diatur dalam bentuk tuple dengan nilai (256, 256), yang berarti setiap gambar akan diubah ukurannya menjadi 256 piksel lebar dan 256 piksel tinggi sebelum diproses oleh model.

Proses Labeling

Setelah data terkumpul, langkah berikutnya adalah proses labeling atau pemberian label pada citra. Label

yang diberikan akan menjadi dasar bagi model untuk belajar mengklasifikasikan gambar ke dalam kategori tertentu. Gambar dengan jenis penyakit yang berbeda akan diberi label sesuai, seperti *brown spot*, *bacterial leaf blight*, dan *leaf smut*. Label ini digunakan selama proses pelatihan model untuk membantu model mengenali dan mengklasifikasikan gambar berdasarkan fitur yang relevan.

Hasil Training dan Testing

Hasil penelitian diperoleh dari tahap pelatihan dan pengujian klasifikasi penyakit daun padi menggunakan *Convolutional Neural Network* (CNN) dan *MobileNet*. *MobileNet* menggunakan beberapa lapisan, antara lain:

- 1) Lapisan konvolusi (*Conv2D*),
- 2) Lapisan penggabungan (MaxPooling2D),
- 3) Lapisan flatten (Flatten),
- 4) Lapisan padat (Dense).

Fungsi aktivasi (activation function) yang digunakan adalah ReLU. Ukuran kernel dan filter untuk setiap lapisan konvolusi adalah 3x3, sedangkan ukuran pooling adalah 2x2. Jumlah kernel dan filter bervariasi, dengan 32 filter pada lapisan konvolusi pertama, 64 filter pada lapisan konvolusi kedua, dan 256 filter pada lapisan konvolusi keempat. Model MobileNet memiliki 3.755.203 parameter yang dilatih, sedangkan CNN memiliki 6.812.995 parameter. Jumlah epoch yang digunakan dalam proses pelatihan adalah 10 untuk MobileNet dan 150 untuk CNN. Proses pelatihan dihentikan ketika model memenuhi kriteria tertentu. Hasil pelatihan kedua model disajikan pada Gambar 4 dan 5.

Nodel: "sequential_2"		
Layer (type)	Output Shape	Param #
mobilenet_1.00_224 (Functi onal)	(None, 8, 8, 1024)	3228864
global_average_pooling2d_2 (GlobalAveragePooling2D)	(None, 1024)	0
flatten_2 (Flatten)	(None, 1024)	0
dense_3 (Dense)	(None, 512)	524800
classification (Dense)	(None, 3)	1539
otal params: 3755203 (14.32 rainable params: 3733315 (14 lon-trainable params: 21888 (4.24 MB)	

Gambar 4. Model Summary MobileNet

Layer (type)	Output Shape	Param
max_pooling2d_4 (MaxPoolin g2D)		
max_pooling2d_5 (MaxPooling2D)		
max_pooling2d_6 (MaxPoolin g2D)		
max_pooling2d_7 (MaxPooling2D)		

Gambar 5. Model Summary CNN

Confusion Matrix

Pengujian ini dilakukan untuk mengukur tingkat precision, recall, dan accuracy menggunakan Confusion Matrix. Data yang digunakan terdiri dari 120 sampel, yang dibagi dengan perbandingan 80:20, di mana 80% digunakan sebagai data latih (96 sampel) dan 20% sebagai data uji (24 sampel).

- Precision mengukur ketepatan model dalam memprediksi kelas positif, yaitu sejauh mana prediksi positif benar-benar sesuai dengan label sebenarnya.
- Recall mengevaluasi kemampuan model dalam mendeteksi semua kasus positif, yaitu seberapa baik model dalam menemukan seluruh data positif yang ada.
- Accuracy menunjukkan persentase prediksi yang benar secara keseluruhan, baik untuk kelas positif maupun negatif.

Secara umum, metrik *precision*, *recall*, dan *accuracy* dapat dirumuskan berdasarkan gambar *Confusion Matrix* berikut:

Gambar 6. Confusion Matrix

Precision digunakan untuk mengukur sejauh mana jawaban yang diberikan oleh sistem sesuai dengan informasi yang diminta dengan perhitungan sebagai berikut:

$$\frac{\mathit{True\ Positive}}{\mathit{True\ Positive} + \mathit{False\ Positive}}\ x\ 100\%$$

Untuk setiap kelas dalam matriks:

1) Precision kelas A =
$$\frac{10}{10+0+0} \times 100\% = \frac{10}{10} \times 100 = 1$$

2) Precision kelas B =
$$\frac{8}{0+8+0} \times 100\% = \frac{8}{8} \times 100\% = 1$$

$$\frac{8}{8} \times 100\% = 1$$
3) Precission kelas $C = \frac{6}{0+0+6} \times 100\% = \frac{6}{6} \times 100\% = 1$

Sedangkan recall digunakan untuk menilai seberapa berhasil sistem dalam menemukan kembali informasi yang dicari dengan perhitungan sebagai berikut:

$$\frac{\mathit{True\ Positive}}{\mathit{True\ Positive+False\ Negative}}\ x\ 100\%$$

Untuk setiap kelas dalam matrix:

1) Reccal kelas A =
$$\frac{10}{0+10+0} \times 100\% = \frac{10}{10} \times 100\% = 1$$

2) Reccal kelas B =
$$\frac{8}{0+8+0}$$
 x 100% = $\frac{8}{8}$ x 100% = 1

3) Reccal kelas
$$C = \frac{6}{0+6+0} \times 100\% = \frac{6}{6} \times 100\% = 1$$

Accuracy digunakan untuk membandingkan tingkat kedekatan antara nilai prediksi dengan nilai aktual. Berdasarkan gambar 6, precision, recall, dan accuracy memiliki metode perhitungannya masing-masing. Nilai-nilai ini dapat dihitung menggunakan persamaan berikut:

$$\frac{\textit{Total True Positive}}{\textit{Total Data Uji}} \ \textit{x} \ 100\%$$

- 1) Total True Positive adalah jumlah dari semua elemen diagonal: 10 + 8 + 6 = 24
- 2) Total data uji 24 Jadi Akurasi = $\frac{24}{24} = 1$

Epoch 150 CNN

Untuk menjelaskan hasil dari proses pelatihan yang telah dilakukan, berikut ini disampaikan hasil yang diperoleh dari pelatihan model yang mana dari 120 sample terdapat 108 prediksi yang benar sementara ada 12 prediksi yang salah. Hasil prosesnya seperti yang ada pada tabel di bawah ini:

Tabel 1. Hasil training model CNN

Epoch	Loss	Akurasi
1	0.9576	0.3523
2	0.6469	0.3780
3	0.6463	0.3780
4	0.6477	0.3171
150	0.1518	0.9024

Dan dapat juga dilakukan perhitungan manual sebagai berikut:

Akurasi=
$$\frac{Jumlah\ prediksi\ benar}{jumlah\ sample} x100\% = \frac{108}{120} = 0.9$$

Model tersebut dilatih menggunakan data latih yang terdiri dari 150 epoch. Pada epoch terakhir, yaitu epoch ke-150, model mencapai akurasi sebesar 0.9024. Dengan demikian, nilai akurasi pada epoch ke-150 memberikan gambaran tentang seberapa baik model telah belajar dari data latih yang diberikan. Berikut adalah kurva dari hasil training dan validasi yang telah dilakukan sebelumnya:

Gambar 7. Akurasi epoch 150

Gambar 7 akurasi epoch 150 tersebut memperlihatkan kondisi kurva akurasi model. Pada epoch terakhir yaitu epoch 150 diperoleh nilai accuracy 0,9024 dan val_accuracy 0,7000.

Gambar 8. Loss epoch 150

Gambar 8 loss epoch tersebut pemperlihatkan kondisi kurva model loss yang dihasilkan pada epoch terakhir memperlihatkan nilai training loss sebesar 0,1518 dan val_loss sebesar 0.6343.

Epoch 10 Mobilenet

Selanjutnya kita masuk ke tahap training MobileNet. Berbeda dengan CNN pelatihan model MobileNet yang mana dari 120 sample terdapat 113 prediksi yang benar sementara ada 7 prediksi yang salah. Hasil prosesnya seperti yang ada pada tabel di bawah ini.

Tabel 2. Hasil Training MobileNet

Epoch	Loss	Akurasi
1	1.1341	0.3958
2	0.8694	0.6562
3	0.7172	0.7292
4	0.4856	0.8750
		_
10	0.2453	0.9479

Dan dapat juga dilakukan perhitungan manual sebagai berikut:

Akurasi=
$$\frac{Jumlah\ prediksi\ benar}{jumlah\ sample}x100\%$$
$$=\frac{113}{120}x100=0,94$$

Tabel di atas menyajikan hasil dari pelatihan model pada suatu penelitian. Model tersebut dilatih menggunakan data latih selama 10 epoch. Pada epoch ke-10, model mencapai akurasi sebesar 0.9479. Interpretasi dari nilai akurasi ini adalah bahwa model menunjukkan peningkatan kinerja secara konsisten selama periode pelatihan. Meskipun peningkatan akurasi bisa jadi lebih lambat pada tahap-tahap akhir pelatihan, pada titik ini, model mencapai tingkat akurasi yang cukup tinggi, yaitu 94.79%.

Gambar 9. Akurasi dan loss epoch 10

Gambar 10. Akurasi dan loss epoch 10

Gambar tersebut menampilkan dua grafik yang menggambarkan peningkatan kinerja model selama 10 kali pelatihan (epoch). Grafik di sebelah kiri menunjukkan akurasi model, dengan garis biru mewakili akurasi pada data pelatihan dan garis oranye mewakili akurasi pada data uji. Terlihat bahwa seiring bertambahnya epoch, model semakin baik dalam mengenali data. Pada akhir pelatihan (epoch ke-10), model mencapai akurasi yang tinggi, yaitu sekitar 94,79%, yang menunjukkan bahwa model mampu memprediksi dengan benar hampir 95% dari data diberikan. Grafik di sebelah vang menunjukkan kesalahan (loss) yang dibuat oleh model selama pelatihan, dengan garis biru mewakili loss pada data pelatihan dan garis oranye pada data uji. Seiring bertambahnya epoch, kesalahan model terus menurun, menandakan peningkatan akurasi dalam membuat prediksi. Dengan kata lain, grafik ini menunjukkan bahwa model menjadi semakin akurat dan membuat lebih sedikit kesalahan selama proses pelatihan, mengindikasikan bahwa model telah belajar dengan baik dari data yang diberikan. Secara keseluruhan, hasil evaluasi menunjukkan bahwa model MobileNet mengungguli CNN dalam klasifikasi penyakit daun padi. MobileNet mencapai akurasi 94,79% hanya dalam 10 epoch, lebih tinggi dibandingkan CNN yang mencapai akurasi 90,24% setelah 150 *epoch*. Hal ini menunjukkan bahwa *MobileNet* memiliki kinerja yang lebih unggul, dengan akurasi yang lebih tinggi dan waktu pelatihan yang lebih singkat dibandingkan *CNN*. Oleh karena itu, *MobileNet* terbukti lebih efisien dan efektif dalam tugas klasifikasi gambar.

Pengujian Aplikasi

Pengujian model aplikasi dapat di lihat pada gambar di bawah:

Gambar 11. Meng-upload gambar daun padi

Gambar 12. Memilih file penyakit daun padi Bacterial Leaf Blight

Gambar 13. Memilih file penyakit daun padi Brown

Gambar 14. Memilih Penyakit daun padi Leaf Smut

Gambar 15. Jika file yang di upload tidak sesuai maka akan muncul pesan error

Dari segi kegunaan, pengujian model menggunakan aplikasi ini dapat untuk mendeteksi gejala awal penyakit dengan lebih cepat serta akurat, ini memungkinkan penerapan tindakan pencegahan yang lebih dini, mengurangi kerugian hasil panen akibat penyakit pada daun padi. Namun, dari segi pengenalan citra daun dapat dikembangkan lebih menyeluruh dikarenakan keterbatasan dataset yang ada pada Kaggle sehingga pengenalan citra mungkin menjadi kurang sehingga untuk penelitian kedepannya dapat dikembangkan terlebih dari segi jumlah dataset yang dapat digunakan.

Pembahasan

Penelitian ini membandingkan kinerja Convolutional Neural Network (CNN) dan MobileNet dalam klasifikasi penyakit daun padi. Hasil menunjukkan bahwa MobileNet lebih unggul dibandingkan CNN dalam hal akurasi dan efisiensi pelatihan. MobileNet mencapai akurasi 94,79% hanya dalam 10 epoch, sementara CNN memerlukan 150 epoch untuk mencapai akurasi 90,24%. Temuan ini sesuai dengan hasil penelitian Turnip dan Rozi (2024), yang menyatakan bahwa MobileNet lebih efisien dalam klasifikasi penyakit daun padi dibandingkan model lainnya. Keunggulan ini membuat MobileNet cocok digunakan pada perangkat dengan keterbatasan sumber daya, seperti ponsel atau edge devices (Hardi, 2022). Evaluasi menggunakan Confusion Matrix menunjukkan bahwa MobileNet memiliki nilai precision, recall, dan accuracy yang lebih tinggi dibandingkan mengindikasikan CNN.Ini kemampuan MobileNet dalam memprediksi kelas dengan lebih konsisten. Hasil ini sejalan dengan studi Milano (2024), yang menemukan bahwa model EfficientNet juga memiliki performa tinggi dalam

mendeteksi penyakit padi. Namun, dalam penelitian ini, *MobileNet* terbukti lebih unggul dalam efisiensi pelatihan. Salah satu keterbatasan dalam penelitian ini adalah ukuran dataset. Dataset yang digunakan terdiri dari 120 gambar yang terbagi merata dalam tiga kelas penyakit (*bacterial leaf blight, brown spot*, dan *leaf smut*). Menurut Khoiruddin et al. (2022), dataset yang lebih besar dapat meningkatkan kemampuan model dalam mengenali pola yang lebih kompleks. Burhanuddin (2024) juga mencatat bahwa ukuran dataset berpengaruh signifikan terhadap akurasi model dalam tugas klasifikasi berbasis *deep learning*.

Penelitian ini konsisten dengan temuan Sigitta et al. (2023), yang menunjukkan bahwa algoritma CNN memberikan hasil yang baik dalam klasifikasi penyakit tanaman. Namun, dalam penelitian ini, MobileNet terbukti memberikan akurasi yang lebih tinggi dalam waktu pelatihan yang lebih singkat, sejalan dengan penelitian Aini dan Liliana (2022), yang menyoroti efisiensi serupa dalam aplikasi klasifikasi berbasis citra. Penelitian ini memiliki implikasi penting dalam mendukung sektor pertanian. Dengan mengadopsi MobileNet, petani dapat dengan cepat dan akurat mengidentifikasi penyakit daun padi, memungkinkan tindakan pencegahan dini dan lebih efektif. Penelitian selanjutnya direkomendasikan untuk menggunakan dataset yang lebih besar dan beragam, serta mengeksplorasi model lain seperti NASNet dan EfficientNet (Zulfa et al., 2023; Milano, 2024). Teknik tambahan seperti data augmentation dan transfer learning juga dapat meningkatkan performa model di masa depan.

4. Kesimpulan dan Saran

Kesimpulan dari penelitian ini menunjukkan bahwa model *deep learning*, yaitu CNN dan MobileNet, mampu mengklasifikasikan penyakit pada daun padi dengan baik, di mana CNN mencapai akurasi 90,24% setelah 150 *epoch*, sedangkan MobileNet mencapai akurasi lebih tinggi, yaitu 94,79%, hanya dalam 10 *epoch*. Pengujian menggunakan metrik *precision*, *recall*, dan *accuracy* mengonfirmasi keunggulan MobileNet dalam hal akurasi dan efisiensi. Model ini, ketika diimplementasikan dalam aplikasi, dapat mendeteksi gejala awal penyakit daun padi secara cepat dan akurat, memungkinkan penerapan tindakan pencegahan yang

lebih dini dan mengurangi kerugian hasil panen. Penelitian ini diharapkan dapat membantu petani dan ahli agronomi dalam mendeteksi penyakit tanaman dengan lebih efisien, mendukung pengelolaan pertanian yang lebih produktif. Sebagai saran, penelitian selanjutnya disarankan untuk memperluas dataset dengan lebih banyak variasi gambar dan jenis penyakit daun padi, serta membandingkan metode CNN dan MobileNet dengan model lain. Eksplorasi lebih lanjut terhadap aplikasi model deep learning dalam mendeteksi penyakit tanaman lain dan pengujian pada berbagai kondisi lingkungan juga perlu dilakukan untuk meningkatkan keandalan dan generalisasi model.

5. Ucapan Terima Kasih

Saya ingin mengucapkan terima kasih yang tulus kepada semua pihak yang telah berkontribusi dalam penelitian dan penulisan jurnal ini. Terima kasih kepada [Erfan Hasmin dan Komang Aryasa] atas bimbingan, dukungan, dan wawasan yang sangat berharga sepanjang penelitian ini. Ucapan terima kasih saya sampaikan kepada rekan-rekan sejawat dan anggota tim penelitian yang telah memberikan masukan, kritik, dan saran yang konstruktif. Terima kasih juga kepada keluarga dan teman-teman yang selalu memberikan dukungan moral dan motivasi. Terima kasih kepada para pembaca dan rekan sejawat yang telah meluangkan waktu untuk membaca dan memberikan umpan balik atas jurnal ini. Semoga karya ini bermanfaat dan dapat berkontribusi bagi kemajuan ilmu pengetahuan di bidang IT.

6. Daftar Pustaka

- Aini, N., & Liliana, D. Y. (2022). Prediksi gender berdasarkan citra mata menggunakan metode Convolutional Neural Network, Inception dan MobileNet. *Bul. Poltanesa*, 23(1), 226–232. DOI: https://doi.org/10.51967/tanesa.v23i1.1272.
- Azizah, Q. N. (2023). Klasifikasi penyakit daun jagung menggunakan metode Convolutional Neural Network AlexNet. *sudo J. Tek. Inform.*,

- 2(1), 28–33. DOI: https://doi.org/10.56211/sudo.v2i1.227.
- Burhanuddin, R. R. (2024). Klasifikasi penyakit padi melalui citra daun menggunakan metode Naive Bayes. *J. Inform. dan Tek. Elektro Terap., 12*(2). DOI: https://doi.org/10.23960/jitet.v12i2.4012.
- Citra, K., Daun, P., & Padi, T. (2023). Klasifikasi citra penyakit daun tanaman padi menggunakan CNN dengan arsitektur VGG-19. *J. Sains dan Inform.*, 9(1), 37–45. DOI; https://doi.org/10.22216/jsi.v9i1.2175.
- Hardi, N. (2022). Komparasi algoritma MobileNet dan Nasnet Mobile pada klasifikasi penyakit daun teh. *Reputasi J. Rekayasa Perangkat Lunak, 3*(1), 50–55. DOI: https://doi.org/10.31294/reputasi.v3i1.1313.
- Hawari, F. H., Fadillah, F., Alviandi, M. R., & Arifin, T. (2022). Klasifikasi penyakit tanaman padi menggunakan algoritma CNN (Convolutional Neural Network). *J. Responsif Ris. Sains dan Inform.*, 4(2), 184–189. DOI: https://doi.org/10.51977/jti.v4i2.856.
- Jinan, A., Hayadi, B. H., & Utama, U. P. (2022). Klasifikasi penyakit tanaman padi menggunakan metode Convolutional Neural Network melalui citra daun (Multilayer Perceptron). J. Comput. Eng. Sci., 1(2), 37–44.
- Khoiruddin, M., Junaidi, A., & Saputra, W. A. (2022). Klasifikasi penyakit daun padi menggunakan Convolutional Neural Network. *J. Dinda Data Sci. Inf. Technol. Data Anal.*, 2(1), 37–45. DOI: https://doi.org/10.20895/dinda.v2i1.341.
- Milano, A. C. (2024). Klasifikasi penyakit daun padi menggunakan model deep learning Efficientnet-B6. *J. Inform. dan Tek. Elektro Terap.*, 12(1). DOI: https://doi.org/10.23960/jitet.v12i1.3855.
- Naufal, M. F. (2021). Perbandingan, analisis SVM, algoritma untuk, dan CNN. *J. Teknol. Inf. dan Ilmu Komput.*, 8(2), 311–318.

- Nurcahyati, A. D., Akbar, R. M., & Zahara, S. (2022). Klasifikasi citra penyakit pada daun jagung menggunakan deep learning dengan metode Convolution Neural Network (CNN). SUBMIT J. Ilm. Teknol. Informasi dan Sains, 2(2), 43–51. DOI: https://doi.org/10.36815/submit.v2i2.1877.
- Oktaviana, U. N., Hendrawan, R., Annas, A. D. K., & Wicaksono, G. W. (2021). Klasifikasi penyakit padi berdasarkan citra daun menggunakan model terlatih ResNet101. *J. RESTI (Rekayasa Sist. dan Teknol. Informasi)*, 5(6), 1216–1222. DOI: https://doi.org/10.29207/resti.v5i6.3607.
- Setiaji, B., & Huda, A. A. (2022). Implementasi Gray Level Co-Occurrence Matrix (GLCM) untuk klasifikasi penyakit daun padi. *Pseudocode, 9*(1), 33–38. DOI: https://doi.org/10.33369/pseudocode.9.1.33-38.

- Sigitta, R. C., Saputra, R. H., & Fathulloh, F. (2023). Deteksi penyakit tomat melalui citra daun menggunakan metode Convolutional Neural Network. *Avitec*, 5(1), 43. DOI: https://doi.org/10.28989/avitec.v5i1.1404.
- Turnip, E., & Rozi, A. F. (2024). Analisis perbandingan arsitektur Convolutional Neural Network pada klasifikasi jenis penyakit daun padi. *ProTekInfo (Pengembangan Ris. dan Obs. Tek. Inform.)*, 11(2), 1–6. DOI: https://doi.org/10.30656/protekinfo.v11i2.90 52.
- Zulfa, F. Y. S. S., Jasril, A. N., & Muhammad, I. (2023). Optimasi Convolutional Neural Network NASNetLarge menggunakan augmentasi data untuk klasifikasi citra penyakit daun padi. *J. Media Inform. Budidarma, 7*(2), 696–706. DOI: https://doi.org/10.30865/mib.v7i2.6056.