GUDA Introduction II

林政宏

國立台灣師範大學電機系

Execution Model

- Threads are executed by scalar processor
- Thread blocks are executed on SM
 - Several concurrent thread block can reside on one SM

A kernel is launched as a grid of thread blocks

Thread Blocks are Executed as Warps

- Each thread block is mapped to one or more warps
 - When the thread block size is not a multiple of the warp size, unused threads within the last warp are disabled automatically
- The hardware schedules each warp independently
 - Warps within a thread block can execute independently

Warps and SIMT

- A warp is a group of threads within a block that are launched together and (usually) execute together
- Conceptual Programming Model

Conceptual SIMT Execution Model

Warps and SIMT

- SIMT = Single Instruction Multiple Threads
 - Within CUDA context, refers to issuing a single instruction to the (multiple) threads in a warp.
- The warp size is currently 32 threads
- The warp size could change in future GPUs

Filling Warps

- Prefer thread block sizes that result in mostly full warps
 - ► Bad: kernel<<<N, 1>>> (...)
 - Okay: kernel<<<N/32, 32>>>(...)
 - ► Better: kernel <<< N/128, 128>>(...)

- Prefer to have enough threads per block to provide hardware with many warps to switch between
 - This is how the GPU hides memory access latency
 - ► 128 or 256 threads per block are good choices

Filling Warps

When number of threads is not a multiple of preferred block size, insert bounds test into kernel

```
__global__ void kn( int n, int* x) {
  int i= threadIdx.x + blockIdx.x * blockDim.x;
  if (i < n) {
      //very important
  }
}</pre>
```

- Otherwise, threads may access memory outside of arrays
- Do not launch a second grid to process residual elements 12

```
kernel<<<n/128, 128>>>(...);
kernel<<<1, n%128>>>(...); // !!! very bad !!!
kernel<<<(n+127)/128, 128>>>(...); // !!! better!!!
```

Control Flow Divergence

Consider the following code

```
__global___ void odd_even(int n, int* x) {
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    if ((i & 0x01) == 0) {
        x[i] = x[i] + 1;
    }
    else {
        x[i] = x[i] + 2;
    }
}
```

Half the threads in the warp must execute the if clause, the other half the else clause

Performance of Divergent Code

Performance decreases with degree of divergence in warps

```
_global__ void dv(int* x)
int i = threadIdx.x + blockDim.x * blockIdx.x;
switch (i % 32)
  case 0 : x[i] = a(x[i]);
    break;
  case 1 : x[i] = b(x[i]);
    break;
  case 31: x[i] = v(x[i]);
    break;
```

Performance of Divergence

- Compiler and hardware can detect when all threads in a warp branch in the same direction
 - For example, all take the if clause, or all take the else clause
 - The hardware is optimized to handle these cases without loss of performance
- The compiler can also compile short conditional clauses to use predicates (bits that conditional convert instructions into null ops)
 - Avoids some branch divergence overheads, and is more efficient
 - Often acceptable performance with short conditional clauses

Data Address Divergence

- Concept is similar to control divergence and often conflated
- Hardware is optimized for accessing contiguous blocks of global memory when performing loads and stores
 - Global memory blocks are aligned to multiples of 32,64,128 bytes
 - If requests from a warp span multiple data blocks, multiple data blocks will be fetched from memory, called memory coalesce.
 - Entire block is fetched even if only a single byte is accesses, which can waste bandwidth
- Hardware handles divergence within <u>shared</u> memory more efficiently
 - Designed to support parallel accesses from all threads in warp
 - Still need to worry about addresses that map to the same bank

Data Address Divergence

- Hardware may need to issue multiple loads and stores when a warp accesses addresses that are far apart
 - Conceptually similar to executing the load or store multiple times
- Global memory accesses are most efficient when all load and store addresses generated within a warp are within the same memory block
 - For example, when addresses of loads and stores have stride 1 within a warp
 - Common when array index is a linear function of threadldx.x
- Consider both address and control divergence when designing algorithms and optimizing code

- Partition data to operate in well-sized blocks
 - Small enough to be staged in shared memory
 - Assign each data partition to a thread block
 - No different from cache blocking!
- Provides several significant performance benefits
 - Have enough thread blocks to keep processors busy
 - Working in shared memory reduces memory latency dramatically
 - More likely to have address access patterns that coalesce well on load/store to shared memory

Partition data into subsets that fit into __shared__ memory

Process each data subset with one thread block

Load the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism

Perform the computation on the subset from shared memory

Copy the result from __shared__ memory back to global memory

- Almost all CUDA kernels are built this way
 - Blocking may not impact the performance of a particular problem, but one is still forced to think about it
 - Not all kernels require __shared__ memory
 - All kernels do require registers

Synchronization

- Communication
- Race conditions
- Synchronizing accesses to shared data

Sharing Data Between Threads

- Terminology: within a block, threads share data via shared memory
- Extremely fast on-chip memory, user-managed
- Declare using <u>shared</u>, allocated per block
- Data is not visible to threads in other blocks

__syncthreads()

void __syncthreads();

- Synchronizes all threads within a block
 - Used to prevent RAW / WAR / WAW hazards

- All threads must reach the barrier
 - In conditional code, the condition must be uniform across the block

Global Communication

Device threads communicate through shared memory locations

- Threads in different blocks and different grids
 - Locations in global memory (global variables)

- Threads in same blocks
 - Locations in global memory
 - Locations in shared memory (__shared__ variables)

Race Conditions

Race conditions arise when 2+ threads attempt to access the same memory location concurrently and at least one access is a write.

```
// race.cu
__global__ void race(int* x)
{
   int i = threadIdx.x + blockDim.x * blockIdx.x;
   *x = i;
}

// main.cpp
int x;
race<<<<1,128>>>(d_x);
cudaMemcpy(&x, d_x, sizeof(int), cudaMemcpyDeviceToHost);
```

Race Conditions

- Programs with race conditions may produce unexpected, seemingly arbitrary results
 - Updates may be missed, and updates may be lost

```
// race.cu
__global__ void race(int* x)
{
   int i = threadIdx.x + blockDim.x * blockIdx.x;
   *x = *x + 1;
}

// main.cpp
int x;
race<<<<1,128>>>(d_x);
cudaMemcpy(&x, d_x, sizeof(int), cudaMemcpyDeviceToHost);
```

Synchronization

- Accesses to shared locations need to be correctly synchronized (coordinated) to avoid race conditions
- In many common shared memory multithreaded programming models, one uses coordination objects such as locks to synchronize accesses to shared data
- CUDA provides several scalable synchronization mechanisms, such as efficient barriers and atomic memory operations.
- In general, always most efficient to design algorithms to avoid synchronization whenever possible.

Synchronization

Assume thread T1 reads a value defined by thread T0

```
// update.cu
_global__ void update_race(int* x, int* y)
{
   int i = threadIdx.x + blockDim.x * blockIdx.x;
   if (i == 0) *x = 1;
   if (i == 1) *y = *x;
}

// main.cpp
update_race<<<<1,2>>>(d_x, d_y);
cudaMemcpy(&y, d_y, sizeof(int), cudaMemcpyDeviceToHost);
```

Program needs to ensure that thread T1 reads location after thread T0 has written location.

Synchronization within Block

Threads in same block: can use __synchthreads() to specify synchronization point that orders accesses

```
// update.cu
__global__ void update(int* x, int* y)
{
  int i = threadIdx.x + blockDim.x * blockIdx.x;
  if (i == 0) *x = 1;
   __syncthreads();
  if (i == 1) *y = *x;
}

// main.cpp
update<<<1,2>>>(d_x, d_y);
cudaMemcpy(&y, d_y, sizeof(int), cudaMemcpyDeviceToHost);
```

Important: all threads within the block must reach the __synchthreads() statement

Synchronization between Grids

Threads in different grids: system ensures writes from kernel happen before reads from subsequent grid launches.

```
update.cu
 global void update x(int* x, int* y)
  int i = threadIdx.x + blockDim.x * blockIdx.x;
  if (i == 0) *x = 1;
  global__ void update_y(int* x, int* y)
  int i = threadIdx.x + blockDim.x * blockIdx.x;
  if (i == 1) *y = *x;
 / main.cpp
update_x<<<1,2>>>(d_x, d_y);
update_y<<<1,2>>>(d_x, d_y);
cudaMemcpy(&y, d_y, sizeof(int), cudaMemcpyDeviceToHost);
```

Synchronization within Grid

- Often not reasonable to split kernels to synchronize reads and writes from different threads to common locations
 - Values of __shared__ variables are lost unless explicitly saved
 - Kernel launch overhead is non-trivial, and introducing extra launches can degrade performance
- CUDA provides atomic functions (commonly called atomic memory operations) to enforce atomic accesses to shared variables that may be accessed by multiple threads
- Programmers can synthesize various coordination objects and synchronization schemes using atomic functions.

Introduction to Atomics

- Atom memory operations (atomic functions) are used to solve all kinds of synchronization and coordination problems in parallel computer systems.
- General concept is to provide a mechanism for a thread to update a memory location such that the update appears to happen atomically (without interruption) with respect to other threads.
- This ensures that all atomic updates issued concurrently are performed (often in some unspecified order) and that all threads can observe all updates.

Atomic Functions

Atomic functions perform read-modify-write operations on data residing in global and shared memory

```
//example of int atomicAdd(int* addr, int val)
__global__ void update(unsigned int* x)
{
  int i = threadIdx.x + blockDim.x * blockIdx.x;
  int j = atomicAdd(x, 1);  // j = *x; *x = j + i;
}

// main.cpp
int x = 0;
cudaMemcpy(d_x, x, cudaMemcpyHostToDevice);
update<<<1,128>>>;
cudaMemcpy(&x, d_x, cudaMemcpyHostToDevice);
```

Atomic functions guarantee that only one thread may access a memory location while the operation completes

Atomic Functions

- The name atomic is used because the update is performed atomically: it cannot be interrupted by other atomic updates.
- The order in which concurrent atomic updates are performed is not defined, and may appear arbitrary. However, none of the atomic updates will be lost.
- Many different kinds of atomic operations
 - Add (add), Sub (subtract), Inc (increment), Dec (decrement)
 - And (bit-wise and), Or (bit-wise or), Xor (bit-wise exclusive or)
 - Exch (Exchange)
 - Min (Minimum), Max (Maximum)
 - Compare-and-Swap

Histogram Example

```
Compute histogram of colors in an image
  color - pointer to picture color data
  bucket - pointer to histogram buckets, one per color
_global__ void histogram(int n, int* color, int* bucket)
int i = threadIdx.x + blockDim.x * blockIdx.x;
if (i < n)
  int c = colors[i];
  atomicAdd(&bucket[c], 1);
```

Performance Notes

Atomics are slower than normal accesses (loads, stores)

Performance can degrade when many threads attempt to perform atomic operations on a small number of locations

Example: Global Min/Max (Naive)

- Compute maximum across all threads in a grid
- One can use a single global maximum value, but it will be VERY slow.

```
__global__ void global_max(int* values, int* global_max)
{
   int i = threadIdx.x + blockDim.x * blockIdx.x;
   int val = values[i];
   atomicMax(global_max, val);
}
```

Example: Global Min/Max (Better)

Introduce local maximums and update global only when new local maximum found.

Reduces frequency at which threads attempt to update the global maximum, reducing competition access to location.

Lessons from global Min/Max

Many updates to a single value causes serial bottleneck

 One can create a hierarchy of values to introduce more parallelism and locality into algorithm

▶ 但是,性能仍然可能很慢,因此請謹慎使用