INTRODUCTION TO DATA SCIENCE 01526105

Jakapun Tachaiya (Ph.D.) Department of Computer Science Faculty of Science, KMITL

Intro To Data Science Discord 2/2566

Outline

- 01 What will be the focus on this course?
- 02 Course Logistics
- 03 Example tasks on data analytic
- 04 Revise python knowledge

01

What is data science?

What is on data analytic?

Data analysis is a process of **inspecting**, **cleansing**, **transforming**, and **modeling** data with the goal of discovering useful information, informing conclusions, and supporting decision-making.

Data analysis process (pipeline)

Data Extraction Data Cleaning Data Wrangling Analysis Action

- SQL
- Scrapping
- File Formats
 - CSV
 - JSON
 - XML
- Consulting APIs
- Buying Data
- Distributed
 Databases

- Missing values and empty data
- Data imputation
- Incorrect types
- Incorrect or invalid values
- Outliers and non relevant data
- Statistical sanitization

- Hierarchical Data
- Handling categorical data
- Reshaping and transforming structures
- Indexing data for quick access
- Merging, combining and joining data

- Exploration
- Building statistical models
- Visualization and representations
- Correlation vs
 Causation analysis
- Hypothesis testing
- Statistical analysis
- Reporting

- Building Machine Learning Models
- · Feature Engineering
- Moving ML into production
- Building ETL pipelines
- Live dashboard and reporting
- Decision making and real-life tests

Data analysis process (pipeline)

Data Extraction Data Cleaning Data Wrangling Analysis Action SQL Missing values and Hierarchical Data Exploration **Building Machine** Handling categorical Building statistical Learning Models Scrapping empty data File Formats models Feature Engineering Data imputation data CSV Incorrect types Reshaping and Visualization and Moving ML into **JSON** Incorrect or invalid transforming representations production XML Correlation vs **Building ETL** values structures Consulting APIs Outliers and non Indexing data for Causation analysis pipelines Buying Data relevant data quick access Hypothesis testing Live dashboard and Distributed Statistical sanitization Merging, combining Statistical analysis reporting and joining data **Databases** Reporting **Decision making** and real-life tests

Data analysis process (pipeline)

Course logistics

Course logistic

Course Management

- Slides and Assignment
 - o Google Drive
- Google Colab: for coding and assignment.

Lecture

• **Lecture:** Tue: 13:00 - 17:00 PM (in-class/ Zoom)

My Info

• Email: jakapun.ta@kmitl.ac.th

Course logistic

Course Grading (100%)

Assignments (30%)

- HW1 15%
- HW2 15%

Midterm (35%)

Final (35%)

No Textbook require

Tentative Schedule

Week	Date	Topic	HW
1	28 Nov	Introduction & outline Revise Python basic	
2	5 Dec	No class (public holiday)	
3	12 Dec	Pandas - Data Manipulation	
4	19 Dec	Pandas - Merge Join table	HW1
5	26 Dec	Data Visualization	
6	2 Jan	No class (New Year)	HW 1 Due
7	9 Jan	Text preprocessing	
8	16 Jan	Natural language processing Tasks	
9	23 Jan	Midterm Exam	
10	30 Jan	Introduction to Machine Learning	
11	6 Feb	Regression & evaluation	
12	13 Feb	Regression & evaluation	
13	20 Feb	Supervised Learning: Classification	
14	27 Feb	Supervised Learning: Classification	HW 2
15	5 Mar	Unsupervised learning: Clustering	
16	12 Mar	Text mining	HW 2 Due
17	19 Mat	Final Exam	

Data Visualization

Seaborn Plots

Machine learning (AI)

What is Machine Learning?

"Machine learning ... gives computers the ability to learn without being explicitly programmed."

Arthur Samuel

Conditioning VS machine learning

```
Write a computer program
                                  Write a computer program
 with explicit rules to follow
                                  to learn from examples
 if email contains V!agrå
                                  try to classify some emails;
                                   change self to reduce errors;
   then mark is-spam;
                                  repeat;
 if email contains ...
 if email contains ...
Traditional Programming
                                 Machine Learning Programs
```

03

Examples on data analytic

```
df = pd.read_csv('assets/train.csv')
df.head()
```

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Use machine learning to create a model that predicts which passengers survived the Titanic shipwreck.

- Classical tasks
 - Feature Importance and Correlations
 - Predict survival class (0/1) of passengers based on features.
- Dataset https://www.kaggle.com/c/titanic
 - o 1309 passengers (891 for train & 418 for test)
 - 11 features
 - 10 source variable vs Target variable (survived)

Data Dictionary

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampto

Feature Importance (selection)

- Identify the most significant features from a given dataset.
- Sex and Title are significant factors in surviving the Titanic Disaster.

Feature Correlations

- Measure of the linear relationship (y=ax) of 2 or more variables.
 - E.g. Correlation between the height of parents and their offspring,
- Statistical test of association between variables. (-1 to 1 scale)
- Strong association is value close to -1 or 1.
- Weak association is value close to 0

Predict **survival class (0/1)** of passengers based on **features**.

- Dataset 1309 passengers
 - o (891 for train & 418 for test)
- KNN as a classifier model with the
 - best F1 score on cross validation.
 - 10 fold cross validation.

Train	set:	(712,	10)	(712,)
Test	set:	(179,	10)	(179,)

1:

	Pclass	Sex	Age	Fare	Embarked	Title	FamilySize	IsAlone	FarePerPerson	AgeClass
205	1.0	1.0	0.00	0.333333	1.0	1.0	0.1	0.0	0.010211	0.000000
718	1.0	0.0	0.25	0.666667	0.5	0.0	0.0	1.0	0.030254	0.250000
835	0.0	1.0	0.50	1.000000	0.0	1.0	0.2	0.0	0.054105	0.166667
851	1.0	0.0	1.00	0.000000	1.0	0.0	0.0	1.0	0.015176	1.000000
773	1.0	0.0	0.25	0.000000	0.0	0.0	0.0	1.0	0.014102	0.250000

	model	CV-mean	CV-std	AccuracyScore		
1	KNN	0.823142	0.036083	0.798883		

Example – Text analysis on The Simpsons

The Simpsons meets data analytic.

- Extract all lines of characters in popular TV series.
- id,episode_id,number,raw_text,timestamp_in_ms,speaking_line,character_id,location_id,raw_character_text,raw_location_text,spoken_words,normalized_text,word_count 9549,32,209,"Miss Hoover: No, actually, it was a little of both. Sometimes when a disease is in all the magazines and all the news shows, it's only natural that you think you have it.",848000,true,464,3,Miss Hoover,Springfield Elementary School,"No, actually, it was a little of both. Sometimes when a disease is in all the magazines and all the news shows its only natural that you think you have it."In oactually it was a little of both sometimes when a disease is in all the magazines and all the news shows its only natural that you think you have it.31
- 9550,32,210,Lisa Simpson: (NEAR TEARS) Where's Mr. Bergstrom?,856000,true,9,3,Lisa Simpson,Springfield Elementary School,Where's Mr. Bergstrom?,wheres mr bergstrom,3
 9551,32,211,Miss Hoover: I don't know. Although I'd sure like to talk to him. He didn't touch my lesson plan. What did he teach you?,856000,true,464,3,Miss Hoover,Springfield
 Elementary School,I don't know. Although I'd sure like to talk to him. He didn't touch my lesson plan. What did he teach you?,i dont know although id sure like to talk to him he
 didn't touch my lesson plan what did he teach you,22
- 5 9552,32,212,Lisa Simpson: That life is worth living.,864000,true,9,3,Lisa Simpson,Springfield Elementary School,That life is worth living.,that life is worth living.
- 9553,32,213,"Edna Krabappel-Flanders: The polls will be open from now until the end of recess. Now, (SOUR) just in case any of you have decided to put any thought into this, we'll have our final statements. Martin?",864000,true,40,3,Edna Krabappel-Flanders,Springfield Elementary School,"The polls will be open from now until the end of recess. Now, just in case any of you have decided to put any thought into this, we'll have our final statements. Martin?",the polls will be open from now until the end of recess now just in case any of you have decided to put any thought into this well have our final statements martin,33

Example – Text analysis on The Simpsons

- Who has most to say?
- 15 characters with the most lines

- Who speak to whom?
 - a. many conversations internally between the Simpson family.
 - medium amount of conversations between Simpson family members and the side characters.
 - c. **few** conversations that do not involve the Simpson family.

Example – Text analysis on The Simpsons

- What are they saying?
 - VADER Sentiment Analysis

- What are the most used words on characters?
 - Word clouds

Word Clouds - Word Spoken by MARGE, BART AND HOMER respectively

Tools and libraries

Natural Language Tool Kit (NLTK) Basic Text Analytics

Why using open source tools?

Commercial tools

- Easy to use/learn
 - Closed source
 - ▼ Costly
 - Limited

Open source tools (Programming)

- Open source (mostly free)
 - Flexibility/adaptability
- Tuning performance (Faster)
- ▼ Hard to learn (know how to code)

Why Python for data science and text analysis?

- Simple and easy to learn
- Flexibility/connectivity
- Free and open source
- accessibility to docs, references, and tutorials
- Slower than C

Python

```
print("Hello world.")
```

VS.

Java

```
public class HelloWorld {
   public static void main (String[]args) {
      System.out.println.("Hello world");
   }
}
```

O4 Revise python knowledge

Ways to use python

Python in local machine

- Install python in local machine + text editor(Jupyter Notebook), IDE(Pycharm)
- Install python in local machine via package management (Anaconda)
 - a. Limited by machine performance.

Python in Cloud

- 1. Google Colab
 - a. Pre-Installed Libraries
 - b. Saved on the Cloud
 - c. Collaboration
 - d. Free GPU and TPU Use

Python in Cloud (Google Colab)

How to use python in Google Colab

DEMO