

Fahrerassistenzsysteme im Kraftfahrzeug

Prof. Dr. phil. Klaus Bengler

Tobias Hecht, M.Sc.

Vorlesungsübersicht

01 Einführung	01 Einführung	01 Übung Einführung
28.04.2022 – Prof. Lienkamp	28.04.2022 – Prof. Lienkamp	28.04.2022 – Hoffmann
02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I
05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp
03 Sensorik / Wahrnehmung II	03 Sensorik / Wahrnehmung II	03 Übung Sensorik / Wahrnehmung II
12.05.2022 – DrIng. Diermeyer	12.05.2022 – DrIng. Diermeyer	12.05.2022 – Schimpe
04 Sensorik / Wahrnehmung III	04 Sensorik / Wahrnehmung III	04 Übung Sensorik / Wahrnehmung III
19.05.2022 – Schimpe	19.05.2022 – Schimpe	19.05.2022 – Schimpe
05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler
06 Übung Funktionslogik / Regelung 09.06.2022 – DrIng. Winkler	06 Funktionale Systemarchitektur 09.06.2022 – Prof. Lienkamp	06 Aktorik 09.06.2022 – Prof. Lienkamp
07 Deep Learning	07 Deep Learning	07 Übung Deep Learning
23.06.2022 – Majstorovic	23.06.2022 – Majstorovic	23.06.2022 – Majstorovic
08 MMI	08 MMI	08 MMI Übung
30.06.2022 – Prof. Bengler	30.06.2022 – Prof. Bengler	30.06.2022 – Prof. Bengler
09 Controllability	09 Controllability	09 Übung Controllability
07.07.2022 – Prof. Bengler	07.07.2022 – Prof. Bengler	07.07.2022 – Winkle
10 Entwicklungsprozess	10 Entwicklungsprozess	10 Übung Entwicklungsprozess
14.07.2022 – DrIng. Diermeyer	14.07.2022 – DrIng. Diermeyer	14.07.2022 – Hoffmann
11 Analyse und Bewertung FAS 21.07.2022 – DrIng. Feig	11 Analyse und Bewertung FAS 21.07.2022 – DrIng. Feig	11 Übung Analyse und Bewertung FAS 21.07.2022 – DrIng. Feig
12 Aktuelle und künftige Systeme 28.07.2022 – Prof. Lienkamp	12 Aktuelle und künftige Systeme 28.07.2022 – Prof. Lienkamp	12 Aktuelle und künftige Systeme 28.07.2022 – Prof. Lienkamp
	-	

Übung Mensch-Maschine-Interaktion Tobias Hecht, M.Sc.

Agenda

- 8.1 Kompatibilität
- 8.2 Bedienkonzept
- 8.3 Übung 1: Entwurf eines Bedienkonzepts
- 8.4 Anzeigekonzept
- 8.5 Übung 2: Entwurf eines Anzeigekonzepts
- 8.6 Level-2-Assistenzsysteme

8.1 Kompatibilität

Kompatibilität

Kompatibilität

Primäre Kompatibilität

Die primäre Kompatibilität bezieht sich auf die Sinnfälligkeit von Informationen bezogen auf Wirklichkeit, Anzeigen, Stellteile und innere Modelle

- Innere: Bewegungsrichtung stimmen mit unseren inneren Modellen (Erwartungen) überein
- Äußere: Bewegungsrichtung von Stellteilen und Anzeigen stimmen mit der Umwelt, anderen Stellteilen und Anzeigen überein

Sekundäre Kompatibilität

Drehsinn und Bewegungsrichtung dürfen nicht im Widerspruch zueinander stehen.

6

Kompatibilität

Primäre Kompatibilität

Die primäre Kompatibilität bezieht sich auf die Singfällt ver von Informationen bezogen auf Wirklichkeit, Anzeigen, Stellteile und Ninere Modelle

- Innere: Bewegungsrichtung stimmen inneren Modellen (Erwartungen) überein
- Äußere: Bewegungsrichtung on Stellteilen und Anzeigen stimmen mit der Umwelt, anderen Stell Gen und Anzeigen überein

Sekundäre Kom aibilität

Drehsinn und Bewegungsrichtung dürfen nicht im Widerspruch zueinander steken.

Primäre innere Kompatibilität

Sekundäre Kompatibilität

Drehsinn und Bewegungsrichtung müssen übereinstimmen

8.2 Bedienkonzept

BMW Bedienkonzept ACC (ohne Spurführungsass.)

- ACC aktivieren/deaktivieren
 falls aktiv: 1x Drücken zum Unterbrechen, 2x Drücken zum Deaktivieren
- 2. Geschwindigkeit halten/speichern
- 3. Gespeicherte Geschwindigkeit aufrufen (nach Stillstand oder Unterbrechung des Systems)
- Geschwindigkeit erhöhen

 in 1 km/h- (bis Druckpunkt) bzw. 5 km/h-Schritten (über Druckpunkt)
- 5. Geschwindigkeit verringern in 1 km/h- bzw. 5 km/h-Schritten
- 6. Abstand zum Vorderfahrzeug verringern (gedrückt halten: auf Tempomat umschalten)
- 7. Abstand zum Vorderfahrzeug erhöhen (gedrückt halten: auf Tempomat umschalten)

https://www.bmw.ca/en/all-models/3-series/Touring/2012/assistance.html

BMW Bedienkonzept ACC (mit Spurführungsass.)

- ACC aktivieren/deaktivieren falls aktiv: 1x Drücken zum Unterbrechen, 2x Drücken zum Deaktivieren
- 2. Geschwindigkeit halten/speichern
- Gespeicherte Geschwindigkeit aufrufen (nach Stillstand oder Unterbrechung des Systems)
- 4. Geschwindigkeit erhöhen in 1 km/h- (bis Druckpunkt) bzw. 5 km/h-Schritten (über Druckpunkt)
- 5. Geschwindigkeit verringern in 1 km/h- bzw. 5 km/h-Schritten
- 6. Abstand zum Vorderfahrzeug erhöhen/verringern (gedrückt halten: auf Tempomat umschalten)
- 7. Lenk- und Spurführungsassistent aktivieren/deaktivieren

https://derstandard.at/2000005933403/Fahrassistenzsysteme-wieschlau-ist-der-BMW-i3-wirklich

8.3 Übung 1

Übung 1: Aufgabenstellung

 Pfeile mit entsprechenden Nummern stehen für Verstellwege, die dieser ACC-Hebel in der Realität bietet. Bitte belegen Sie die Hebelpositionen mit dem geforderten Funktionsumfang auf der nächsten Folie. Es müssen nicht alle Hebelpositionen genutzt werden.

Prüfen Sie dabei immer auf Kompatibilität.

Übung 1: Aufgabenstellung

Funktionsumfang:

- System an-/ausschalten
- Zeitlücke/Abstand in 4 Stufen vergrößern/verkleinern
- Geschwindigkeit in 1er (km/h) und 10er (km/h) Schritten erhöhen/verringern
- Aktivierung mit aktueller Geschwindigkeit
- Deaktivieren in Standby
- Resume-Funktion: Aktivieren mit alten Einstellungen

Übung 1: Mögliche Lösung

1 (antasten/beschleunigen) und 3 (verzögern):

- Aktuelle Geschwindigkeit wird gehalten und gespeichert
- Jedes weitere Antippen erhöht Geschwindigkeit um 1 km/h
- Längeres Drücken: Beschleunigung des Fahrzeugs ohne Gaspedal und Erreichte Geschwindigkeit wird gehalten und gespeichert

2 (beschleunigen) und 4 (verzögern):

• Geschwindigkeit um 10 km/h erhöhen

5 und 6:

- Geschwindigkeitsregelung wird unterbrochen (ebenso über Bremse)
- Zweimaliges Betätigen deaktiviert das System

<u>7:</u>

 Abstand zum Vorausfahrenden Fahrzeug erhöhen

<u>8:</u>

 Abstand zum Vorausfahrenden Fahrzeug verringern

9

 Bei unterbrochenem System: zuletzt gespeicherte Geschwindigkeit und Abstand werden wieder erreicht.

Audi Bedienkonzept ACC (bis 2016)

Audi Bedienkonzept ACC (ab 2016)

Mercedes Bedienkonzept ACC (bis 2017)

- 1 Einschalten oder Geschwindigkeit erhöhen
- Sollabstand einstellen
- 3 LIM-Kontrollleuchte
- Einschalten mit aktueller oder mit zuletzt gespeicherter Geschwindigkeit
- ⑤ Einschalten oder Geschwindigkeit reduzieren
- Zwischen DISTRONIC PLUS und variabler SPEEDTRONIC wechseln
- O DISTRONIC PLUS ausschalten

8.4 Anzeigekonzept

Mercedes Anzeigekonzept ACC

8.5 Übung 2

Übung 2: Aufgabenstellung

- Im Kombiinstrument zwischen Tacho und Drehzahlmesser sollen relevante Systeminformationen zum ACC dargestellt werden.
- Bitte entwerfen Sie eine Anzeigelogik, die den Funktionsumfang und Transitionen zwischen den Systemzuständen darstellen kann.

Funktionsumfang:

- Systemzustand ACC (ein/Standby/aus)
- Zeitlücke (in 4 Stufen)
- Eingestellte Geschwindigkeit
- Führungsfahrzeug (falls vorhanden)

Übung 2

Funktionsumfang:

- Systemzustand ACC (ein/Standby/aus)
- Zeitlücke (in 4 Stufen)
- Eingestellte GeschwindigkeitFührungsfahrzeug (falls vorhanden)

Übung 2: Mögliche Lösung (BMW)

Mercedes Anzeigekonzept ACC

Systemstatus

8.6 Level-2-Assistenzsysteme

Mercedes Drive Pilot (Distronic Plus mit Lenkassistent)

BMW Driving Assistant Plus

Tesla Autopilot

