MAT1120

Robin A. T. Pedersen

November 3, 2016

Contents

1	For	ord	3
4	Kpt	t.4 - Vektorrom	3
	4.1	Vektor rom og underrom	3
		4.1.1 Definisjon - vektorrom	3
		4.1.2 Definisjon - underrom	3
		4.1.3 Teorem 1	4
	4.2	Nullrom, kolonnerom og lineærtransformasjoner	4
		4.2.1 Definisjon - nullrom	4
		4.2.2 Teorem 2	4
		4.2.3 Definisjon - kolonnerom	4
		4.2.4 Teorem 3	4
		4.2.5 Definisjon - lineærtransformasjon	4
		4.2.6 Begrep - kjerne (kernel)	4
	4.3	Lineært uavhengige mengder: basiser	5
		4.3.1 Teorem 4	5
		4.3.2 Definisjon - basis	5
		4.3.3 Teorem 5 - Utspennende mengde teoremet	5
		4.3.4 Teorem 6	5
	4.4	Koordinatsystemer	5
		4.4.1	5
	4.5	Dimensjon av vektorrom	5
		4.5.1	5
	4.6	Rang	5
		4.6.1	5
	4.7	Basisskifte	6
		4.7.1	6
	4.8	Ikke eksamensrelevant	6
	4.9	Anvendelser til Markovkjeder	6
		4 9 1	6

5	Kpt	5.5 - Egenverdier og Egenvektorer	6
	5.1	Egenvektor og egenverdier	6
		5.1.1	6
	5.2	Den karakteristisk ligningen	6
		5.2.1	6
	5.3	Diagonalisering	6
		5.3.1	6
	5.4	Egenvektorer og lineærtransformasjoner	6
	0.1	5.4.1	6
	5.5	Komplekse egenverdier	6
	0.0	5.5.1	6
	5.6	Diskrete dynamiske systemer	7
	5.0	· ·	7
	E 7		7
	5.7	Anvendelser til differensialligninger	7
	F 0	****	
	5.8	Iterative estimater for egenverdier? TODO	7
		5.8.1	7
6	Kpt	5.6 - Ortogonalitet og Minstekvadrater	7
	6.1	Indre produkt, lengde og ortogonalitet	7
	0	6.1.1	7
	6.2	Ortogonale mengder	7
	٠	6.2.1	7
	6.3	Ortogonal projeksjon	7
	0.0	6.3.1	7
	6.4	Gram-Schmidt prosessen	7
	0.1	6.4.1	7
	6.5	Minstekvadraters problem	7
	0.0	6.5.1	7
	6.6	Anvendelser til lineære modeller	8
	0.0	6.6.1	8
	6.7	Indreproduktrom? TODO	8
	0.1	6.7.1	8
	6.8	Anvendelser til indreproduktrom	8
	0.0		8
		6.8.1	0
7	Kpt	5.7 - Symmetriske Matriser og Kvadratisk Form	8
	_	Diagonalisering av symmetriske matriser	8
		7.1.1	8
	7.2	Kvadratisk form	8
	•	7.2.1	8
	7.3	Begrenset optimalisering? TODO	8
		7.3.1	8
	7.4	Singulærverdidekomposisjon	8
	1.4	7.4.1	8
	7.5	Ikke pensum? TODO	8
	1.0	into ponouni: IODO	O

8	Notat 1 8.0.1	 9
9	Notat 2 9.0.2	9

1 Forord

Dette er en oversikt over alle definisjoner, teoremer og lignende fra læreboka i MAT1120.

NB! Noensteder har jeg skrevet $c \in \mathbb{R}$, men det kan hende at \mathbb{C} hadde fungert like fint. Lignende "feil" kan finnes andre steder.

4 Kpt.4 - Vektorrom

4.1 Vektor rom og underrom

4.1.1 Definisjon - vektorrom

Et vektorrom er en ikketom mengde V. Den består av såkalte *vektorer*. Disse vektorene må være beskrevet av 2 operasjoner: Addisjon og skalarmultiplikasjon.

De to operasjonene defineres av følgende aksiomer: La $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$

- 1. $\mathbf{u} + \mathbf{v} \in V$
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. (u + v) + w = u + (v + w)
- $4. \ \exists \mathbf{0} \in Vs.a.\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 5. $\forall \mathbf{u} \in V, \ \exists -\mathbf{u} \in V s.a.\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 6. $c\mathbf{u} \in V, c \in \mathbb{R}$
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. 1**u**=**u**

4.1.2 Definisjon - underrom

Et underrom H er en delmengde av V. H er et underrom av V. To egenskaper må være oppfylt:

- 1. H er lukket under addisjon. $\mathbf{u} + \mathbf{v} \in H$, $\forall \mathbf{u}, \mathbf{v} \in H$
- 2. H er lukket under skalarmultiplikasjon. $c\mathbf{u} \in H, \ \forall c \in \mathbb{R}$

4.1.3 Teorem 1

Hvis $\mathbf{v}_1,...,\mathbf{v}_p$ er i et vektorrom V, så er $\mathrm{Span}\{\mathbf{v}_1,...,\mathbf{v}_p\}$ et underrom av V.

4.2 Nullrom, kolonnerom og lineærtransformasjoner

4.2.1 Definisjon - nullrom

Nullromet til en $m \times n$ matrise A, er mengden av alle løsninger av $A\mathbf{x} = \mathbf{0}$.

$$Nul(A) = \{ \mathbf{x} : \mathbf{x} \in \mathbb{R}^n, A\mathbf{x} = \mathbf{0} \}$$

4.2.2 Teorem 2

Nullrommet til A $m \times n$, er et underrom av \mathbb{R}^n .

Med andre ord: $A\mathbf{x} = \mathbf{0}$ har m homogene lineære ligninger, med n ukjente. Mengden av løsninger er et underrom av \mathbb{R}^n .

4.2.3 Definisjon - kolonnerom

Kolonnerommet til $m \times n$ matrisen A, er mengden av alle lineærkombinasjoner av kolonnene i A.

$$A = [\mathbf{a}_1 \quad \dots \quad \mathbf{a}_n]$$

$$Col(A) = Span\{\mathbf{a}_1, ..., \mathbf{a}_n\}$$

4.2.4 Teorem 3

Kolonnerommet til A $m \times n$, er et underrom av \mathbb{R}^m .

Med andre ord: Kolonnene i A har m elementer i hver vektor. Kolonnerommet er alle lineærkombinasjoner av disse, og har derfor m elementer i hver vektor.

4.2.5 Definisjon - lineærtransformasjon

En lineærtransformasjon T fra et vektorrom V til et annet vektorrom W, er en regel som gir hver \mathbf{x} i V en unik vektor $T(\mathbf{x})$ i W.

To egenskaper må oppfylles

1.
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}), \ \forall \ \mathbf{u}, \mathbf{v} \in V$$

2.
$$T(c\mathbf{u}) = cT(\mathbf{u}), \ \forall \ c \in \mathbb{R}^n$$

4.2.6 Begrep - kjerne (kernel)

Praktisk talt synonymt med nullrom.

4.3 Lineært uavhengige mengder: basiser

4.3.1 Teorem 4

En mengde $\{\mathbf{v}_1,...,\mathbf{v}_p\}$ (minst 2 vektorer) er lineært avhengig hvis (minst) en vektor kan skrives som en lineærkombinasjon av de andre vektorene.

4.3.2 Definisjon - basis

La H være et underrom av vektorrommet V. En mengde $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_p\}$ i V, er en basis for H hvis:

- 1. \mathcal{B} er lineært uavhengig
- 2. underrommet utspent av \mathcal{B} er det samme som H. Altså, $H = \text{Span}\{\mathbf{b}_1, ..., \mathbf{b}_p\}$

4.3.3 Teorem 5 - Utspennende mengde teoremet

La $S = \{\mathbf{v}_1, ..., \mathbf{v}_p\}$ være en mengde i V, og la $H = \text{Span}\{\mathbf{v}_1, ..., \mathbf{v}_p\}.$

- 1. Hvis \mathbf{v}_k er en lin.komb. av de andre vektorene, så kan man fjerne den fra mengden og den vil fremdeles utspenne H.
- 2. Hvis $H \neq \{0\}$, så er en delmengde av S en basis for H.

4.3.4 Teorem 6

Pivotkolonnene til en matrise A, utgjør en basis for Col(A). Man velger altså de kolonnene i A som er lineært uavhengige.

4.4 Koordinatsystemer

4.4.1

TODO

4.5 Dimensjon av vektorrom

4.5.1

TODO

4.6 Rang

4.6.1

TODO

4.7 Basisskifte
4.7.1
TODO
4.8 Ikke eksamensrelevant
Ikke eksamensrelevant.
4.9 Anvendelser til Markovkjeder
4.9.1
TODO
5 Kpt.5 - Egenverdier og Egenvektorer
5.1 Egenvektor og egenverdier
5.1.1
TODO
1000
5.2 Den karakteristisk ligningen
5.2.1
TODO
5.3 Diagonalisering
5.3.1
TODO
5.4 Egenvektorer og lineærtransformasjoner
5.4.1
TODO
5.5 Komplekse egenverdier
5.5.1

TODO			
5.7 Anvendelser til differensialligninger5.7.1TODO			
5.8 Iterative estimater for egenverdier? TODO5.8.1TODO			
6 Kpt.6 - Ortogonalitet og Minstekvadrater			
6.1 Indre produkt, lengde og ortogonalitet6.1.1TODO			
6.2 Ortogonale mengder6.2.1TODO			
6.3 Ortogonal projeksjon6.3.1TODO			
6.4 Gram-Schmidt prosessen6.4.1TODO			
6.5 Minstekvadraters problem6.5.1TODO			

5.6 Diskrete dynamiske systemer

5.6.1

TODO			
6.7 Indreproduktrom? TODO6.7.1TODO			
6.8 Anvendelser til indreproduktrom 6.8.1 TODO			
7 Kpt.7 - Symmetriske Matriser og Kvadratisk Form			
7.1 Diagonalisering av symmetriske matriser7.1.1TODO			
7.2 Kvadratisk form7.2.1TODO			
7.3 Begrenset optimalisering? TODO7.3.1TODO			
7.4 Singulærverdidekomposisjon7.4.1TODO			
7.5 Ikke pensum? TODO Ikke pensun? TODO			

6.6 Anvendelser til lineære modeller

6.6.1

8 Notat 1

8.0.1

TODO

9 Notat 2

9.0.2

TODO