《线性代数》复习提纲

一、行列式

- 1.定义
- 2.计算:
 - (1)八种基本形;
 - (2)利用性质直接计算;
 - (3)利用性质直接化为八种基本形 (最主要右上三角);
 - (4)展开;
 - (5)范德蒙行列式。

二、矩阵

- 1.矩阵的运算及性质:加、数乘、乘、方阵的幂与多项式、转置、逆矩阵; 综合:解矩阵方程。
- 2.方阵行列式的性质:

$$|kA| = k^n |A|, |AB| = |A| |B|, |A^T| = |A|, |A^{-1}| = |A|^{-1}, |A^*| = |A|^{n-1}$$

3.矩阵可逆的判别及求逆矩阵:

$$(1)\mathbf{A}\mathbf{B} = \mathbf{E} \Rightarrow \mathbf{A}^{-1} = \mathbf{B};$$

$$(2)A$$
可逆 $\Leftrightarrow |A| \neq 0$ 且 $A^{-1} = \frac{1}{|A|}A^*$,其中 $AA^* = A^*A = |A|E$;

(3) $n \ge 3$ 时,[$A \ E$] $\xrightarrow{\text{行}}$ [$E \ A^{-1}$],推广:AX = B, $X = A^{-1}B$ 。[$A \ B$] $\xrightarrow{\text{行}}$ [$E \ A^{-1}B$] 4.分块矩阵:

$$(1)G = \begin{bmatrix} A_1 & & & \\ & \ddots & & \\ & & A_s \end{bmatrix} \Rightarrow |G| = |A_1| \dots A_s, \quad G^{-1} = \begin{bmatrix} A_1^{-1} & & & \\ & \ddots & & \\ & & A_s^{-1} \end{bmatrix}$$

$$(2)G = \begin{bmatrix} & & A_1 \\ & & \ddots & \\ & & A_s & & \end{bmatrix} \Rightarrow G^{-1} = \begin{bmatrix} & & A_s^{-1} \\ & & \ddots & \\ & & & A_1^{-1} \end{bmatrix}$$

5.初等矩阵与初等变换的关系:

$$(1)E_n \xrightarrow{R_{ij}} E(i,j)$$

$$C_{ij} \xrightarrow{kR_{ij}} E(i(k))$$

$$kC_{ij} \xrightarrow{kC_{ij}} E(i(k))$$

$$(3) E_n \xrightarrow{R_i + kR_j} E(i + j(k), j)$$

$$C_j + kC_i$$

6.矩阵的等价:

$$(1)A \rightarrow B \Leftrightarrow PAQ = B \Leftrightarrow r(A) = r(B)$$

(2)等价标准形: 若
$$r(A) = r$$
,则 $PAQ = \begin{bmatrix} E_r \\ 0 \end{bmatrix}$

- 7.矩阵的秩:
 - (1)定义;
 - (2)求法;
 - (3)五个重要公式:

①若
$$A_{m\times n}B_{n\times t}=\mathbf{0}$$
, 则 $r(\mathbf{A})+r(\mathbf{B})\leq n$;

$$(2r(AB) \leq \min\{r(A), r(B)\},$$

$$(3)r(\mathbf{A} + \mathbf{B}) \leq r(\mathbf{A}) + r(\mathbf{B})$$

$$\operatorname{Ar}\left(\begin{bmatrix} A & \\ & R \end{bmatrix}\right) = r\left(\begin{bmatrix} & A \end{bmatrix}\right) = r(A) + r(B)$$

⑤若A, B可逆,
$$r(AC) = r(C)$$
, $r(CB) = r(C)$

三、线性空间

- 1.线性空间 V,三个常见的线性空间:
 - $(1)P^n$, \mathbb{R}^n
 - (2) $P^{m\times n}$
 - $\mathfrak{I}^{\mathbf{p}}[x]_n$
- 2. 线性表示:
 - (1)定义(V中);
 - (2) P^n 中: 判断 $r(A) = r(\overline{A})$ 是否成立, $A = (\alpha_1, ..., \alpha_s), \overline{A} = (\alpha_1, ..., \alpha_s, \beta)$
- 3. 线性相关与线性无关:
 - (1) 定义 (V中);
 - (2) $P^n \oplus : r(A) =?$
 - (3) 特别s = n, |A| = ?
- 4. 极大线性无关组与向量的秩:
 - (1)定义;
 - (2) 求法 (**P**ⁿ中);
 - (3) r(A) = A的行秩= A的列秩。

综合: 给一个常有参数 λ 的向量组 α_1 , ..., α_s , 讨论: λ 取何值时:

- ①无关;
- ②相关;
- ③求极大线性无关组与向量组的秩;
- ④剩余向量用极大无关组线性表示。
- 5. 基与维数:
 - (1) 定义, 三个常用基:
 - $(1)\mathbf{P}^{n}$:

- (2) $P^{m\times n}$:
- $\mathfrak{I}^{\mathbf{p}}[x]_n$:
- (2)向量 α 在基 ϵ_1 , …, ϵ_n 下的坐标:

$$\boldsymbol{\alpha} = \boldsymbol{x}_1 \boldsymbol{\varepsilon}_1 + \dots + \boldsymbol{x}_n \boldsymbol{\varepsilon}_n = \begin{pmatrix} \boldsymbol{\varepsilon}_1, & \dots, & \boldsymbol{\varepsilon}_n \end{pmatrix} \begin{bmatrix} \boldsymbol{x}_1 \\ \vdots \\ \boldsymbol{x}_n \end{bmatrix}, \quad \boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}_1, & \dots, & \boldsymbol{x}_n \end{bmatrix}^{\mathrm{T}};$$

- (3) 基(I) $\boldsymbol{\varepsilon}_1$, …, $\boldsymbol{\varepsilon}_n$ 到基(II) $\boldsymbol{\eta}_1$, …, $\boldsymbol{\eta}_n$ 的过渡矩阵: 基变换公式: $(\boldsymbol{\eta}_1, \dots, \boldsymbol{\eta}_n) = (\boldsymbol{\varepsilon}_1, \dots, \boldsymbol{\varepsilon}_n) M$ 坐标变换公式: $\boldsymbol{X} = \boldsymbol{M} \boldsymbol{Y}, \boldsymbol{Y} = \boldsymbol{M}^{-1} \boldsymbol{X}$
- (4) n维线性空间 V 中任意n个线性无关的向量 α_1 , …, α_n 均可作为 V 的一组基(若 α_1 , …, α_n 在 V 中一组基 ε_1 , …, ε_n 下的坐标为 X_1 , …, X_n , 则 $|X_1$, …, $X_n|\neq 0$)。
- 6. 子空间:
 - (1)**AX** = **0**的解空间的基与维数;
 - (2) 由 α_1 , ..., α_t 生成的子空间 $L(\alpha_1$, ..., α_t)的基与维数。
- 7. **n**维欧代空间**R**ⁿ:
 - (1)内积;
 - (2)长度;
 - (3) 正交;
 - (4)标准正交基;
 - (5) 正交矩阵 $(A^{T} = A^{-1}, AA^{T} = A^{T}A = E)$;
 - (6) 施密特正交化方法:
 - ①正交化;
 - ②单位化。

四、线性方程组

- 1.齐次: $A_{m\times n}X_{n\times 1} = O_{m\times 1}$ (II)
 - (1)解的判别:
 - ①只有零解;
 - ②有非零解:
 - (2)若r(A) = r,则(II)的基础解系有n r个解向量,通解为:

$$\xi = t_1 \xi_1 + \dots + t_{n-r} \xi_{n-r} (\dim W = n-r)$$

- 2.非齐次: $A_{m\times n}X_{n\times 1} = b_{m\times 1}$ (I)
 - (1)解的判别:
 - ①无解:
 - ②唯一解;
 - ③无穷多解;
 - (2)通解(用导出组的基础解系表示):

$$\eta = \eta_0 + t_1 \xi_1 + \dots + t_{n-r} \xi_{n-r}$$

综合: 给一个常有参数》的方程组,讨论》取何值时:

- (1)无解:
- (2)唯一解;
- (3)无穷多解(并求其通解)。

五、矩阵的对角变化

- 1.特征值与特征向量:
 - (1)定义: $A\xi = \lambda \xi (\xi \neq 0)$
 - (2)求法;
 - (3)性质:

$$(1) \begin{cases} \lambda_1 + \dots + \lambda_n = \operatorname{tr} A \\ \lambda_1 \dots \lambda_n = |A| \end{cases}$$

- ②若 λ 是A的特征值 $\Rightarrow \lambda^k$ 是 A^k , $f(\lambda)$ 是f(A), λ^{-1} 是 A^{-1} , λ^{-1} |A|是 A^* 的特征值,且 $|f(A)| = f(\lambda_1) \cdots f(\lambda_n)$ 。
- 2. 矩阵的相似:
 - (1)定义: $P^{-1}AP = B$;

(2)性质: 若
$$A$$
与 B 相似⇒ $\begin{cases} r(A) = r(B) \\ |A| = |B| \end{cases}$, $\begin{cases} \operatorname{tr} A = \operatorname{tr} B \\ |\lambda E - A| = |\lambda E - B| \end{cases}$, $\begin{cases} A^k = B^k + A = B \\ f(A) = f(B) + A = B \end{cases}$

- 3.矩阵的对角化:
 - (1)条件:
 - ①充要条件;
 - ②充分条件(互异单根);
 - (2)方法: $P^{-1}AP = \Lambda$
 - (3)若已知 \mathbf{A} 的特征值与特征向量,求 $\mathbf{A}^k = \mathbf{P} \mathbf{\Lambda}^k \mathbf{P}^{-1}$, $f(\mathbf{A}) = \mathbf{P} f(\mathbf{\Lambda}) \mathbf{P}^{-1}$
- 4.实对称矩阵的对角化: $U^{-1}AU = \Lambda (U^{-1} = U^{T})$

六、二次型

- 1.用配方法化二次型为标准形,并写出二次型的秩和正惯性指数。
- 2.写出二次型的矩阵4,用正交线性替换化二次型为标准形。
- 3.矩阵的合同:
 - (1)定义 $C^TAC = B$:
 - (2)性质:
 - (3)判别: 实对称 \mathbf{A} 与 \mathbf{B} 的合同⇔ $\mathbf{r}(\mathbf{A}) = \mathbf{r}(\mathbf{B})$ 且正惯性指数相同。(注: 等价,相似,合同的判别)。
- 4.实二次型 $f = X^TAX$ 正定(即实对称A的正定)的判别:
- (1)正惯性指数=n;
- (2) A的特征值全大于零;
- (3)顺序主子式△ょ全大于零;
- (4)定义,正定二次型(正定矩阵)的性质。
- (5)存在可逆 B, 使 $A = B^T B$