《初等数论》期末突击课

课时1 数的整除性

考点	重要程度	占分	题型
1. 整除的概念与性质	***	2~8	判断、证明
2. 带余除法	***	2~6	填空、证明
3. 最大公因数与最小公倍数	★★★★	4~6	选填、计算
4. 质数	***	2~6	填空、证明
5. 高斯函数	***	2	填空

考点1 整除的概念与性质

定义: 设a,b \in Z, b \neq 0, 如果存在q \in Z, 使得等式a=bq成立, 那么称b整除a或a能被

b整除,记作: b|a,此时称b为a的因数(约数),a为b的倍数。

性质: 设a,b,c∈Z, b≠0, c≠0, 则

- (1) 如果c|b, b|a, 那么c|a;
- (2) 如果b|a, 那么bc|ac; 反之亦真;
- (3) 如果c|a, c|b, 那么, 对于任意m,n∈Z, 有c|(ma+nb);
- (4) 如果b|a, a≠0, 那么|b|≤|a|;
- (5) 如果b|a, a|b, 那么|b|=|a|;
- (6) 如果b|a, c|a, (b,c) = 1,则 $bc|a_o$

扫码观看 视频讲解更清晰

【题1】判断:

- (1) 设a,b是整数,若a|b ,则 a^2 | b^2 。 ()
- (2) 若a|c, b|c, 则ab|c。 ()
- (3) 设a,b是整数, 若a|a+b, 则a|b。()

【题2】 设n是不能被3整除的奇数,证明: $24|n^2-1$

考点2 带余除法

带余除法:

设a,b∈Z, b>0,则存在q,r∈Z,使得a=bq+r, $0\le r< b$,并且q及r是唯一的。

定义1 设a,b是两个整数,若整数d满足da, db,则称d为a, b的一个公因数;

整数a,b的公因数中最大的一个称为最大公因数,记作: (a, b);

若(a, b)=1,则称a,b互质(互素)。

性质2:

- (1) (a, b)=(|a|,|b|);
- (2) 若b是任一正整数,则(0,b)=b;
- (3) 设a,b,c是任意三个不全为零的整数,且a=bq+c, 其中q∈Z, 则(a,b)=(b,c);

辗转相除法(欧几里得(Euclid)算法) 设 $a,b \in Z$,b>0,按下述方式反复做带余除法,

有限步之后必然停止(即余数为零)

用b除a: $a=bq_0+r_0$, $0 < r_0 < b$;

用 r_0 除b: $b=r_0q_1+r_1$, $0 < r_0 < r_1$;

用 r_1 除 r_0 : r_0 = r_1q_2 + r_2 , 0< r_2 < r_1 ;

用 r_{n-1} 除 r_{n-2} : $r_{n-2} = r_{n-1}q_n + r_n$, $0 < r_n < r_{n-1}$;

用 r_n 除 r_{n-1} : $r_{n-1} = r_n q_{n+1}$

则 $(a,b)=r_n$

事实上,由于余数满足 $r_0 > r_1 > ... > r_{n-1} > ... \ge 0$,故上述带余除法有限步后余数必为零,

我们有 $(a, b) = (b, r_0) = (r_0, r_1) = \dots = (r_{n-1}, r_n) = r_n$

推论3 a,b的公因数与(a,b)的因数相同。

定理4 设a, b是任意两个不全为0的整数, m是任一正整数, 则

- (1) (ma, mb) = m(a,b);
- (2) 若 δ 是a, b的任一公因数,则 $\left(\frac{a}{\delta},\frac{b}{\delta}\right) = \frac{(a,b)}{|\delta|}$ 特别地, $\left(\frac{a}{(a,b)},\frac{b}{(a,b)}\right) = 1$ 。

定义5 设a,b是两个非零整数,若整数m满足a|m,b|m,则称m为a,b的一个公倍数;整数a,b的所有正的公倍数中最小的一个称为a,b的最小公倍数,记作: [a,b]。

性质6

- (1) [a, 1] = |a|, [a, a] = |a|;
- (2) [a, b] = [b, a];
- (3) [a, b] = [|a|, |b|];
- (4) 若a|b,则[a,b] = |b|, (a, b) = |a|;
- (5) 对任意的正整数a, b, 有[a, b] = $\frac{ab}{(a,b)}$ 。

【题3】 (1515, 600) =_____; 已知 (a,b) =1,则 (13a+21b,34a+55b) =____.

【题4】 正整数a,b, ab=60,[a,b]=15,则(a,b)=_____.

【题5】 求532与336的最大公因数与最小公倍数.

【题6】 求整数x,y,使得(5767, 4453)=5767x+4453y.

【题7】 设n是正整数,证明: $\frac{21n+4}{14n+3}$ 是既约分数.

定义1 一个大于1的整数,如果它的正因数只有1和它本身,那么称之为质数;否则 称为合数。

性质2

- (1) 若p是一质数, a是任一整数, 则p|a或 (a,p)=1;
- (2) 设a₁, a₂, ..., a_n是 n个整数, p是质数, 若p|a₁a₂ ... a_n, 则a₁, a₂, ..., a_n中至少有一个被p整除;
 - (3) 质数有无穷多个。

定理3 (算术基本定理)

任一大于1的整数能表示成质数的乘积,即任一大于1的整数 $a = p_1 p_2 ... p_n$,

 $p_1 \le p_2 \le ... \le p_n$,其中 $p_1, p_2, ..., p_n$ 是质数,

并且若 $a = q_1q_2...q_m, q_1 \le q_2 \le ... \le q_m$,其中 $q_1,q_2,...,q_m$ 是质数,则 $m=n,p_i=q_i$

i=1,2,...,n

定理4 设a是任一大于1的正整数,

$$a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}, \qquad \alpha_i > 0, \qquad i = 1, 2, \cdots, k$$

是a的标准分解式,则a的正因数个数为 $T(a) = (\alpha_1 + 1)(\alpha_2 + 1)\cdots(\alpha_k + 1) = \prod_{i=1}^k (\alpha_i + 1)$

【题8】梅森数Mn是质数,则n是______

【题9】 480的正因数的个数是 .

【题10】下列数中是质数的是()

A. 101

B. 111

C. 121

D. 141

【题11】两个素数的和为31,则这两个素数为_____.

【题12】判断: 若整数n与质数p不互质,则 p|n. ()

【题13】证明:质数有无穷多个.

考点5 高斯函数

定义

函数 [x]与 $\{x\}$ 是定义在实数集上的函数,

函数 [x]的值等于不大于x的最大整数,

函数 {x} 的值是 x-[x]

[x]叫做x的整数部分(也称为高斯函数), {x}叫做 x的小数部分。

考点5 高斯函数

性质

- $(1) x=[x]+\{x\};$
- (2) $[x] \le x < [x] + 1, x-1 < [x] \le x, 0 \le \{x\} < 1;$
- $(3)[n+x]=n+[x], n \in \mathbb{Z};$
- (4) $[x]+[y] \le [x+y]$, $\{x\}+\{y\} \ge \{x+y\}$;
- (5)[-x]= $\begin{cases} -[x]-1, & \exists x \notin \mathbf{Z} \exists \exists x \in \mathbf{Z} \exists x \in \mathbf{$
- (6)设a,b ∈ Z^+ ,则不大于 a而为b的倍数的正整数的个数为 $\left[\frac{a}{b}\right]$

考点5 高斯函数

定理

在n! 的标准分解式中,质因数 $p(p \le n)$ 的指数

$$h = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \dots = \sum_{r=1}^{\infty} \left[\frac{n}{p^r}\right]$$

推论
$$n! = \prod_{p \le n} p^{\sum_{r=1}^{\infty} \left[\frac{n}{p^r} \right]}$$

【题14】从1到2022的正整数中,3的倍数有 个

【题15】 100至500的正整数中,能被17整除的有()个.

A.23 B. 24 C. 25 D. 26

【题16】 [x]=3,[Y]=4,[Z]=2,则[X-2Y+3Z]可能的值为_____.

【题17】7在2022! 中的最高幂指数为_____.

【题18】 设x是任意实数, 证明: [x]+[x+1/2]=[2x].

《初等数论》

期末突击课

课时2 不定方程

考点	重要程度	占分	题型
1. 二元一次不定方程	***	2-8	选择、填空、计
2. 多元一次不定方程	**	2-6	选择、计算
3. 勾股数	**	2-6	判断、计算

扫码观看 视频讲解更清晰

考点1 二元一次不定方程

定理1: 二元一次不定方程ax + by = c(a,b不为零)

有整数解的充要条(4)是) c

是方程的一组解,则它所有整

 $\begin{cases} x = x_0 - b_1 t \\ y = y_0 + a_1 t \end{cases}$, 其中t 为任意整数。

【题1】不定方程 8x + 6y = 14 的全部整数解是()

A.
$$\begin{cases} x = 1 + 6t \\ y = 1 + 8t \end{cases} (t \in Z)$$

B.
$$\begin{cases} x = 1 - 6t \\ y = 1 + 8t \end{cases} (t \in Z)$$

C.
$$\begin{cases} x = 1 - 3t \\ y = 1 + 4t \end{cases} (t \in Z)$$

D.
$$\begin{cases} x = 1 + 4t \\ y = 1 - 3t \end{cases} (t \in Z)$$

【题2】 ax + by = c 有整数解的充要条件是_____。

【题3】
$$17x + 2y = 3$$
 的通解为_____。

【题4】解不定方程: 4x + 5y = 10

解:

考点2 多元一次不定方程

定理: 已知 a_1, a_2, \dots, a_n 是非零整数,c是整数,若 $d = (a_1, a_2, \dots, a_n)$,则方程 $a_1x_1 + a_2x_2 + \dots + a_nx_n = c$ 有整数解的充要条件是 $d \mid c$ 。

【题1】
$$ax + by + cz = N$$
 有整数解的充要条件是_____。

【题2】下列多元不定方程无整数解的是()

A.
$$9x + 24y - 5z = 1000$$

B.
$$15x+10y+6z=61$$

C.
$$4x - 9y + 5z = 8$$

D.
$$6x + 9y + 15z = 2$$

【题3】求方程 $15x_1 + 10x_2 + 6x_3 = 61$ 的全部整数解。

解:

考点3 勾股数

定理1: 不定方程 $x^2 + y^2 = z^2$ 满足条件: x > 0, y > 0, z > 0, (x, y) = 1, 2 | x 的一切正整数解可以用下列公式表示出来: $x = 2ab, y = a^2 - b^2, z = a^2 + b^2, a > b > 0, (a, b) = 1, a, b$ 一奇一偶。

【题1】判断:

- (1) 满足勾股方程 $x^2 + y^2 = z^2$ 的x,y必是一奇一偶. ()

【题2】求 $x^2 + y^2 = 65^2$ 的全部正整数解。

解:

扫码观看 视频讲解更清晰

《初等数论》

期末突击课

课时3 同余

考点	重要程度	占分	题型
1. 同余的概念与性质	***	2-10	选择、填空、计 算、证明
2. 完全剩余系	**	2	选择、填空
3. 欧拉函数	**	2	选择、填空
4. 简化剩余系	**	2	选择、填空
5. 欧拉定理和费马定理	***	2-6	填空、证明

考点1 同余的概念与性质

定义: 给定正整数m,如果整数a与b之差被m整除,则称a与b对于模m同余,

记作 $a \equiv b \pmod{m}$;如果整数 $a = b \ge 2$ 差不能被m 整除,则称 $a = b \ge 3$ 可分,记作 $a \not\equiv b \pmod{m}$ 。

定理1: 下面的三种叙述是等价的

- ② 存在整数 q, 使得 a = b + qm;
- ③ 存在整数 q_1, q_2 , 使得 $a = q_1 m + r$, $b = q_2 m + r (0 \le r < m)$ 。

扫码观看 视频讲解更清晰

定理2: 同余具有如下性质

- $(3) \quad a \equiv b \pmod{m}, b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$

定理3: 设 a,b,c,d 是整数, $a \equiv b \pmod{m}, c \equiv d \pmod{m}$,则

- ② $ac \equiv bd \pmod{m}$.

定理4: 若 $a+b \equiv c \pmod{m}$,则 $a \equiv c-b \pmod{m}$.

定理5: 下列结论成立

- ① $a \equiv b \pmod{m}, d \mid m, d > 0 \Rightarrow a \equiv b \pmod{d}$;
- ② $a \equiv b \pmod{m}, k > 0 \Rightarrow ak \equiv bk \pmod{mk}$;

- 定理6: 设 $a_i, b_i (0 \le i \le n)$, x, y都是整数,并且 $x \equiv y \pmod{m}$, $a_i \equiv b_i \pmod{m}$, $(0 \le i \le n)$, 则 $\sum_{i=0}^{n} a_i x^i \equiv \sum_{i=0}^{n} b_i y^i \pmod{m}$
- 定理7: 设 $N = a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_n 10 + a_0$,则 $(1)3|N \Leftrightarrow 3|\sum_{i=0}^n a_i;(2)9|N \Leftrightarrow 9|\sum_{i=0}^n a_i;(3)11|N \Leftrightarrow 11|\sum_{i=0}^n (-1)^i a_i.$

【题1】判断:

- (1) 若 $a \equiv b \pmod{m}, k \in \mathbb{Z}$,则 $ka \equiv kb \pmod{m}$. ()
- (2) 若 $ab \equiv 0 \pmod{m}$ 则 $a \equiv 0 \pmod{m}$ 或 $b \equiv 0 \pmod{m}$. ()

【题2】四位数 3AA1能被9整除,则A=____。

【题3】下列各数中,能被11整除的是()

A.75523

B.868967

C.1095874

D.38635

【题4】 2002²⁰⁰² 被3除后余数为____。

【题5】 2²⁰⁰³ 的末位数是____。

【题6】证明: $641|2^{2^5}+1$

证明:

 \mathbb{C} 1: 给定正整数m,将所有整数按照除以m的余数可以分成m类,称为模m的剩余类.

定义2: 从模m的剩余类中,每一类中任取一个数,得到的m个数称为模m的一个完全剩余系.

注: (1) $0,1,2,\dots,m-1$ 是模m的最小非负完全剩余系;

(2)
$$m$$
为偶数时, $-\frac{m}{2}+1,\dots,-1,0,1,\dots,\frac{m}{2}$ 为模 m 的绝对最小完全剩余系;

$$m$$
为奇数时, $-\frac{m-1}{2}$,…, $-1,0,1,...$, $\frac{m-1}{2}$ 为模 m 的绝对最小完全剩余系。

定理1: 模m的一个完全剩余系当且仅当m个整数对模m两两不同余.

定理2: 设 $m \ge 1, a, b$ 是整数,(a, m) = 1 , $\{x_1, x_2, \dots x_m\}$ 是模m的一个完全剩余系,则 $\{ax_1 + b, ax_2 + b, \dots, ax_m + b\}$ 也是模m的一个完全剩余系.

定理3: 若 $m_1, m_2 \in N^*, (m_1, m_2) = 1$, 则当 x_1 与 x_2 分别通过模 m_1 与模 m_2 的完全剩余系时, $m_2x_1 + m_1x_2$ 通过模 m_1m_2 的完全剩余系.

【题1】模6的绝对最小完全剩余系是。

【题2】判断:有些整数的完全剩余系中的数可以都是偶数; ()

【题3】判断: 当x遍历模10的完全剩余系时,2x+3所取得值也遍历模10的完全剩余系。

考点3 欧拉函数

定义:对于正整数k,函数 $\varphi(k)$ 的值等于序列 $0,1,2,\dots,k-1$ 中与k互素的数的个数,称 $\varphi(k)$ 为欧拉(Euler)函数.

注: (1) 特别地,当p是素数时, $\varphi(p) = p - 1, \varphi(p^k) = p^k - p^{k-1}$

(2) $\varphi(1) = 1$

定理1: 若 $m_1, m_2 \in Z_+, (m_1, m_2) = 1$ 则 $\varphi(m_1 m_2) = \varphi(m_1)\varphi(m_2)$ 。

定理2: $n \in \mathbb{Z}_+$, p_1, p_2, \cdots, p_k 是它的全部素因数,则 $\phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})\cdots(1 - \frac{1}{p_k})$

【题3】计算:

(1)
$$\varphi(1000) = _____$$

(1)
$$\varphi(1000) = ______$$

(2) $\varphi(1) + \varphi(P) + \cdots + \varphi(P^n) = ______$

解:

定义: 若模m的剩余类中的任一个数都与m互质, 称为模m的一个简化剩余类。从模m 的所有简化剩余类中各取一个数,构成了模m的一个简化剩余系。

定理1: 设a是整数, $(a,m) = 1, B = \{x_1, x_2, \dots, x_{\varphi(m)}\}$ 是模m的简化剩余系,则 $A = \{ax_1, ax_2, \dots, ax_{\varphi(m)}\}$ 也是模m的简化剩余系。

定理2: 设 $m_1, m_2 \in N$, $(m_1, m_2) = 1$, 又设 $X = \{x_1, x_2, \cdots, x_{\varphi(m_1)}\}$ 与 $Y = \{y_1, y_2, \cdots, y_{\varphi(m_2)}\}$ 分别是模 m_1, m_2 的简化剩余系,则 $A = \{m_1y + m_2x \mid x \in X, y \in Y\}$ 是模 m_1m_2 的简化剩余系。

【题1】	判断:	若 x ₀ 、	x_1	$x_2 \cdots x_k$	是模m	的一个	`简化剩余系,	则。	ax_0	ax_1	ax_2	ax_k
	也是模	ŧm 的 一∶	个简(化剩余	系。()						

【题2】模18的最小正简化剩余系有()个数。

A.18

B.7

C.6

D.5

【题3】从满足以下要求的整数中,能选取出模20的简化剩余系的是()

A.2的倍数

B.3的倍数

C.4的倍数

D.5的倍数

【题4】写出6的一个简化剩余系,要求每项都是5的倍数____。

考点5 欧拉定理和费马定理

定理1: 欧拉(Euler)定理,设m是正整数,(a,m)=1,则 $a^{\varphi(m)}\equiv 1 \pmod{m}$.

定理2: 费马(Fermat)定理,设p是素数,则对于任意的整数a,有 $a^p \equiv a \pmod{p}$

定理3: 有理数 $\frac{a}{b}$, 0 < a < b, (a,b) = 1, 能表示成纯循环小数的充要条件是 (b,10) = 1.

定理3: 若 $\frac{a}{b}$ 是有理数,其中 $0 < a < b, (a,b) = 1, b = 2^{\alpha} 5^{\beta} b_1, (b_1, 10) = 1, b_1 \neq 1, \alpha, \beta$ 不全为零,则 $\frac{a}{b}$ 可以表成混循环小数,其中不循环的位数是 $\mu = \max\{\alpha, \beta\}$.

【题1】若 (a,m)=1,则 $a^{\varphi(m)}\equiv \underline{\qquad} \pmod{m}$; 若m是______时, $a^m \equiv a \pmod{m}$.

【题2】以下四个分数不能化为纯循环小数的是()

A.
$$\frac{15}{37}$$

B.
$$\frac{139}{875}$$
 C. $\frac{9}{13}$ D. $\frac{1}{17}$

C.
$$\frac{9}{13}$$

D.
$$\frac{1}{17}$$

【题3】 $\frac{1}{17408}$ 化为混循环小数,其不循环部分位数是()位

A.10

B.12

C.14

D.16

【题4】0.32化为分数是。

【题5】求13除 8⁴⁹⁶⁵ 的余数.

扫码观看 视频讲解更清晰 【题6】 叙述并且证明欧拉定理。

《初等数论》

期末突击课

课时4 同余式

考点	重要程度	占分	题型
1.一次同余式	***	2-10	选择、填空、计算
2.孙子定理	***	8	填空、计算
3.威尔逊定理	**	2-6	证明

考点1 一次同余式

定理 设a, b是整数, $a \neq 0 \pmod{m}$ 。则一次同余式

 $ax \equiv b \pmod{m}$

有解的充要条件是(a, m)|b。若有解,则恰有d = (a, m)个解。

【题1] $ax \equiv b \pmod{m}$ 有解的充要条件是_____

【题2】同余式 $28x \equiv 21 \pmod{35}$ 的解的个数 ()

A. 1

B. 7

C. 3

D. 0

【题3】同余式 $8x \equiv 9 \pmod{11}$ 的解为()

A. $x \equiv 6 \pmod{11}$

B. $x \equiv 7 \pmod{11}$

C. $x \equiv 8 \pmod{11}$

D. $x \equiv 9 \pmod{11}$

【题4】解下列同余式:

- $(1) 73x \equiv 1 \pmod{13}$
- $(2) 20x \equiv 44 \pmod{72}$

考点2 孙子定理

定理(孙子定理)

$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv a_2 \pmod{m_2}$$
.....

设 m_1, m_2, \dots, m_k 是正整数, $x \equiv a_k \pmod{m_k}$

$$(m_i, m_j) = 1, 1 \le i, j \le k, i \ne j,$$

记
$$m = m_1 m_2 ... m_k$$
 , $M_i = \frac{m}{m_i}$, $1 \le i \le k$,

则存在整数 M_i '($1 \le i \le k$), 使得

 $M_iM_i' \equiv 1 \pmod{m_i}$,

并且

$$x \equiv \sum_{i=1}^{k} a_i M_i M_i' \pmod{m}$$

是同余方程组的解.

【题5】解同余式组:

$$\begin{cases} x \equiv 3 \pmod{4} \\ x \equiv 2 \pmod{5} \\ x \equiv 6 \pmod{7} \end{cases}$$

【题6】解同余式组:

$$\begin{cases} x \equiv -2 \pmod{12} \\ x \equiv 6 \pmod{10} \\ x \equiv 1 \pmod{15} \end{cases}$$

考点3 威尔逊定理

定理 (Wilson定理)

p为素数,则 $(p-1)! \equiv -1 \pmod{p}$

【题7】证明:设P为素数,试证对任整数a,都有 $P|(P-1)!a^P+a$ 。

【题8】证明: 设2p+1为素数,试证 $(p!)^2 + (-1)^p \equiv 0 \pmod{2p+1}$

《初等数论》

期末突击课

课时5 二次同余式和平方剩余

考点	重要程度	占分	题型
1.平方剩余和平方非剩余	**	2	选择、填空
2.欧拉判别条件	**	2	选择、填空
3.勒让德符号	***	2-8	填空、选择、计算
4.雅克比符号	**	2	选择、填空

考点1 平方剩余和平方非剩余

定义 设p是素数,a为整数,且(a,p)=1.

若 $x^2 \equiv a \pmod{p}$ 有解, 称a为模p的平方剩余;

若 $x^2 \equiv a \pmod{p}$ 无解, 称a为模p的平方非剩余.

【题1】模7的平方剩余为()

A. 1,2,3,4,5,6

B. 1,2,3

C. 1,2,4

D. 4,5,6

【题2】模11的平方非剩余为()

A. 1,2,3,4,5

B. 6,7,8,9,10

C. 1,3,4,5,9

D. 2,6,7,8,10

考点2 欧拉判别条件

```
定理1(欧拉判别条件) 若(a, p)=1, x^2 \equiv a \pmod p . 则a是p的平方剩余的充要条件是 a^{\frac{p-1}{2}} \equiv l \pmod p ; a是p的平方非剩余的充要条件是 a^{\frac{p-1}{2}} \equiv l \pmod p ; 且若a是p的平方剩余,则 x^2 \equiv a \pmod p 有两个解.
```

考点2 欧拉判别条件

定理2 模p的简化剩余系中平方剩余和平方非剩余各为 $\frac{p-1}{2}$, 而且 $\frac{p-1}{2}$ 个平方剩余分别与序列 $1^2,2^2,\cdots,(\frac{p-1}{2})^2$ 中之一数同余,且仅与一数同余.

【题3】设p为单质数, (a,p)=1 , 则a是模p的平方剩余的充分必要条件是(

$$A. \quad a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$$

$$B. \ a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$$

C.
$$a \equiv \frac{p-1}{2} \pmod{p}$$

D.
$$a \equiv -\frac{p-1}{2} \pmod{p}$$

【题4】模17的平方剩余有_____个,在其绝对最小简化剩余系中,_____是

平方剩余.

【题5】判断:

设p是奇素数,则模p的两个平方非剩余的乘积是平方非剩余; ()

设p是奇素数,则模p的平方剩余和平方非剩余的个数相同; ()

扫码观看 视频讲解更清晰

考点3 勒让德符号

定义

勒让得(Legendre)符号 $(\frac{a}{p})$ (读作a对p的勒让得符号)是一个对于给定的单质数定义p在一切整数a上的函数,它的值规定如下:

$$(\frac{a}{p}) =$$

$$\begin{cases}
1, a$$
是模p的平方剩余
$$-1, a$$
是模p的平方非剩余
$$0, p \mid a.$$

考点3 勒让德符号

性质

(1)
$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$$

(2)
$$a \equiv b \pmod{p}, \Rightarrow (\frac{a}{p}) = (\frac{b}{p})$$

(3)
$$(\frac{a_1 a_2 \cdots a_k}{p}) = (\frac{a_1}{p})(\frac{a_2}{p}) \cdots (\frac{a_k}{p})$$

(4)
$$(\frac{1}{p}) = 1$$

考点3 勒让德符号

性质

(5)
$$(\frac{-1}{p}) = (-1)^{\frac{p-1}{2}} = \begin{cases} 1, p = 4k+1 \\ -1, p = 4k+3 \end{cases}$$

(6)
$$(\frac{ab^2}{p}) = (\frac{a}{p}), p \nmid b$$

(7)
$$(\frac{2}{p}) = (-1)^{\frac{p^2-1}{8}} = \begin{cases} 1, p = 8k \pm 1 \\ -1, p = 8k \pm 3 \end{cases}$$

定理(高斯二次互反律) 设p与q是不相同的两个奇素数,则

$$\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{p}{q}\right)$$

【题6】以下正确的是:

A.
$$\left(\frac{18}{11}\right) = \left(\frac{-1}{11}\right)$$

A.
$$\left(\frac{18}{11}\right) = \left(\frac{-1}{11}\right)$$
 B. $\left(\frac{12}{5}\right) = -\left(\frac{3}{5}\right)$

C.
$$\left(\frac{5}{12}\right) = \left(\frac{5}{2}\right)$$

C.
$$\left(\frac{5}{12}\right) = \left(\frac{5}{2}\right)$$
 D. $\left(\frac{7}{11}\right) = \left(\frac{4}{11}\right)$

【题7】高斯互反律是

【题8】 (1) 判断方程 $x^2 \equiv 3 \pmod{83}$ 是否有解,若有解,则有几解。

(2) 设p, q是两个不同的奇素数,且 $p \equiv 1 \pmod{4}$,证明: $\left(\frac{q}{p}\right) = \left(\frac{p}{q}\right)$ 。

考点4 雅克比符号

定义 给定正奇数m > 1, $m = p_1 p_2 ... p_k$, 其中 p_i ($1 \le i \le k$) 是奇素数,对于任意的整

数a, 定义
$$\left(\frac{a}{m}\right) = \left(\frac{a}{p_1}\right)\left(\frac{a}{p_2}\right)\cdots\left(\frac{a}{p_k}\right)$$

其中右端的 $\left(\frac{a}{p_i}\right)$ ($1 \le i \le k$) 是勒让德符号,称 $\left(\frac{a}{m}\right)$ 是雅克比符号.

考点4 雅克比符号

性质

- (1) 若a \equiv a₁ (mod m), 则 $(\frac{a}{m}) = (\frac{a_1}{m})$;
- (2) $(\frac{1}{m}) = 1$
- (3) 对于任意的整数 a_1, a_2, \dots, a_t ,有 $(\frac{a_1 a_2 \cdots a_t}{m}) = (\frac{a_1}{m})(\frac{a_2}{m}) \cdots (\frac{a_t}{m})$
- (4) 对于任意的整数a, b, (a, m) = 1, 有 $(\frac{a^2b}{m}) = (\frac{b}{m})$

考点4 雅克比符号

性质

(5)
$$\left(\frac{-1}{m}\right) = (-1)^{\frac{m-1}{2}}$$

(6)
$$\left(\frac{2}{m}\right) = (-1)^{\frac{m^2-1}{8}}$$

(7) 设
$$m$$
, n 是大于1的奇数,则 $\left(\frac{n}{m}\right) = (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}} \left(\frac{m}{n}\right)$

【题9】已知769是素数,判定下列方程是否有解:

$$x^2 \equiv 1742 \pmod{769}$$