LECTURE NOTES AND FINAL REVIEW May 18, 2012

JOHN WANG

1. Introduction and Mathematical Tools

Theorem 1.1. Given $a, b \in \mathbb{Z}$ such that a > 0, $\exists q, r \in \mathbb{Z}$ such that b = aq + r and r < a.

Proof. Examine the set $S = \{b - ka : b - ka > 0, a > 0, a, r \in \mathbb{Z}\}$. We shall show that this set is nonempty (and it is clearly a subset of N). We know that $b - 0\dot{a} \in S$ so if b > 0, then the set is nonempty. If b < 0, then there exists a k such that b - ka > 0, which shows the set is nonempty. Thus, we can use the well-ordering principle so that there exists some r which is a minimum in the set S.

Now we shall show that r < a. Suppose not and $r \ge a$. Then we know that $r = b - ka \ge a$. Hwoever, we know that $b - (k+1)a \ge 0$ which means there is a smaller element in S, contradicting the minimality of r.

Theorem 1.2. Let g = gcd(a, b). Then $\exists x_0, y_0 \in \mathbb{Z}$ such that $ax_0 + by_0 = g$.

Proof. Let $S = \{ax + by : x, y \in \mathbb{Z}, ax + by > 0\}$. We know that the set is nonempty because you can choose x, y = 1 so that $a + b \in S$. Therefore, we can use the well ordering property to obtain a minimum g of S. We'll show that g|a and g|b, and if there is any other divisor d of a and b, then d|g.

Assume that $g \nmid a$. Then there exists an r > 0 such that a = gq + r where r < g. This means that g = ax + by = (gq + r)x + by. This means that r = a(q - xq) - byq. This shows that $r \in S$, which is a contradiction because r < g which contradicts the minimality of g. We see that g|b follows similarly.

Now assume that d|a and d|b, then d|ax + by = g as well by the properties of division.

Construction 1.3. Euclidean Algorithm: Given two integers *a*, *b*:

- (1) If a or b is negative, replace it by its negative.
- (2) If a > b, switch a, b so that $a \le b$.
- (3) If a = 0, return b.
- (4) Since $b \ge a$, write b = aq + r where $0 \le r < a$ and replace (a, b) with (r, a), and loop on 3.

Theorem 1.4. Fundamental Theorem of Arithmetic: Any positive integer can be written as a product of primes uniquely.

Proof. Existence. We will use induction to show existence, and suppose that that all integers less than or equal to n can be written as a product of primes. If n+1 is a prime, then we are done because it can be written as (1)(n+1). If n+1 is not a prime, then it is composite and can be decomposed into integers $k, q \leq n$ such that kq = n. Since k and q can be written as a product of primes, we can write n+1 as a product of primes as well. This completes the induction step.

Uniqueness. Suppose there are two ways to write n as a product of primes: $n = p_1 p_2 \dots p_r = q_1 q_2 \dots q_s$.

Lemma 1.5. If p is a prime and p|ab, then p|a or p|b.

Proof. Suppose $p \nmid a$, then we know that gcd(p, a) = 1 because p is a prime. We see that p|ab which implies that p|b.

Therefore, we see that $p_1|q_i$ for some $i \in \{1, 2, ..., s\}$. However, since both p_1 and q_i are primes, we see that $p_1 = q_i$. This means that we can cancel p_1 and q_i , and obtain $p_2 ... p_r = q_1 ... q_{i-1} q_{i+1} ... q_s$. Continuing downwards, we find that this happens for all the primes on the list, so that $p_1 ... p_r$ is just a reordering of $q_1 ... q_s$.

Theorem 1.6. Euclids Infinitude of Primes: There exist an infinite number of primes.

Proof. Suppose by contradiction that this is not true. Then we can enumerate the primes $S = \{p_1, p_2, \dots, p_n\}$. Then we can construct the number $N = p_1 p_2 \dots p_n + 1$. We know that $p_i \nmid N$ for all $i \in \{1, \dots, n\}$ because $gcd(p_i, N) = 1$. This implies that no prime divides N. Moreover, N cannot be a prime because it is not

2 JOHN WANG

listed in the set S. This means that it must be composite, and hence, it can be decomposed into a product of primes. However, we see no primes in S can be factors of N. This is a contradiction.

Theorem 1.7. $p^e||n!$ where $e = \lfloor \frac{n}{n} \rfloor + \lfloor \frac{n}{n^2} \rfloor + \ldots$

Proof. Consider the set $S = \{1, 2, ..., n\}$ which is the complete residue system modulo n. We know that n! = n(n-1)(n-2)...1. Moreover, we know that $\lfloor \frac{n}{p} \rfloor$ is the number of multiples of p in the set S. Likewise, $\lfloor \frac{n}{p^2} \rfloor$ is the number of multiples of p^2 in the set S. Thus, we see that $e = \lfloor \frac{n}{p} \rfloor + \lfloor \frac{n}{p^2} \rfloor + ...$ is the total number of multiples of p in the set S. This means that p^e divides evenly into the product of S so that $p^e || n!$. \square

2. Congruences

Lemma 2.1. If r_1, r_2, \ldots, r_k is a reduced residue system modulo m and gcd(a, m) = 1, then so is ar_1, ar_2, \ldots, ar_k .

Proof. We need to show that $gcd(ar_1, m) = 1$. This is true because gcd(a, m) = 1 by assumption and $gcd(r_i, m) = 1$ by the definition of a reduced residue system. This implies that $gcd(ar_i, m) = 1$. Now we need to show that all ar_i are distinct modulo m. Suppose not. Then $ar_i \equiv ar_j \pmod{m}$ for some $i \neq j$. Then we see that $a(r_i - r_j) \equiv 0 \pmod{m}$. Since gcd(a, m) = 1, we know that $m \nmid a$ so that $m \mid r_i - r_j$. This implies that $r_i \equiv r_j \pmod{m}$ which is a contradiction.

Theorem 2.2. If gcd(a, m) = 1, then $a^{\phi(m)} \equiv 1 \pmod{m}$.

Proof. We will prove this by invoking the lemma from above. Let r_1, r_2, \ldots, r_k be a reduced residue system modulo m. Then we see that $ar_1ar_2 \ldots ar_k \equiv r_1r_2 \ldots r_k \pmod{m}$. This shows that $a^k \equiv 1 \pmod{m}$. Since $k = \phi(m)$ is the number of objects in the reduced residue system, we are finished with our theorem.

Corollary 2.3. Fermat's Little Theorem: If gcd(a, m) = 1, then $a^p \equiv a \pmod{p}$.

Lemma 2.4. The congruence $x^2 \equiv 1 \pmod{p}$ has only solutions $x \equiv \pm 1 \pmod{p}$.

Proof. It is clear that $x^2 - 1 \equiv 0 \pmod{p}$ is another way to write the above equation. Factoring out the left side, we see that $(x-1)(x+1) \equiv 0 \pmod{p}$. This means that p|(x-1)(x+1). Moreover, since $p \geq 2$, we know that p|x-1 or p|x+1. Thus, the only solutions to the equation come about when $x \equiv \pm 1 \pmod{p}$. \square

Theorem 2.5. Wilson's Theorem. If p is a prime, then $(p-1)! \equiv -1 \pmod{p}$.

Proof. We know that $\{1, 2, ..., p\}$ is a reduced residue system modulo p, since $\phi(p) = p - 1$. Since we know that $a \equiv a^{-1} \pmod{p}$, which implies $aa^{-1} \equiv 1 \pmod{p}$ unless $a \equiv \pm 1 \pmod{p}$. This means that we can pair up elements in the system with their inverses and obtain:

$$(2.6) (a_1 a_1^{-1})(a_2 a_2^{-1}) \dots (a_k a_k^{-1}) \equiv (-1)(1) \equiv -1 \pmod{p}$$

This follows because the only factors of (p-1)! which cannot be grouped into pairs equivalent to $1 \pmod p$ are 1 and -1. The theorem follows.

Theorem 2.7. The congruence $x^2 \equiv -1 \pmod{p}$ is solvable if and only if p = 2 or $p \equiv 1 \pmod{4}$.

Proof. The theorem follows trivially in the case when p=2. Now, we will assume that $x^2\equiv -1\pmod p$. Assume by contradiction that there is a solution if $p\equiv 3\pmod 4$. We know that $p-1\equiv 2\pmod 4$. This implies that $p-1\equiv 4k+2$ for some $k\in\mathbb{N}$. Thus, we find that $x^{p-1}\equiv x^{2(2k+1)}\equiv (x^2)^{2k+1}$. Since we know that $x^2\equiv -1\pmod p$, we see that $x^{p-1}\equiv (-1)^{2k+1}\equiv -1\pmod p$ because 2k+1 is odd. However, we see that $x^{p-1}\equiv 1\pmod p$ by Fermat, which is a contradiction.

Now we shall assume that $p \equiv 1 \pmod{4}$. Then we know that $(p-1)! \equiv -1 \pmod{p}$ by Wilson's theorem. Now we can write this as:

$$(2.8) (p-1)! = \left(1\ddot{2}\ddot{3}\dots\frac{p-1}{2}\right)\left(\frac{p+1}{2}\cdot\frac{p+3}{2}\dots(p-1)\right) \equiv -1 \pmod{p}$$

Let $x=1\ddot{2}\ddot{3}\dots\frac{p-1}{2}$, and so we need to show that $x\equiv\frac{p+1}{2}\cdot\frac{p+3}{2}\dots(p-1)\pmod{p}$. Yet we know that $p-1\equiv(-1)(1)\pmod{p},\ p-2\equiv(-1)(2)\pmod{p},\ \dots,\ \frac{p+1}{2}\equiv(-1)(\frac{p-1}{2})\pmod{p}$. This shows that $\frac{p+1}{2}\cdot\frac{p+3}{2}\dots(p-1)\pmod{p}\equiv(-1)^(p-1)(1\cdot2\cdot3\dots\frac{p-1}{2})\equiv x\pmod{p}$. This completes the theorem. \square

Theorem 2.9. Chinese Remainder Theorem: Given a system of congruences $x \equiv a_i \pmod{m_i}$ for $i \in \{1, \ldots, n\}$ such that all m_i are coprime in pairs, there exists a unique solution modulo $m_1 m_2 \ldots m_n$.

Proof. First, we will show existence by constructing a number a which satisfies all of the congruences. Let $N_i = m_1 m_2 \dots m_{i-1} m_{i+1} \dots m_n$. We know that $\gcd(N_i, m_i) = 1$ because of the pairwise coprimeness. We can choose H_i such that $H_i N_i \equiv 1 \pmod{p}$. Now, we can set $a = H_1 N_1 a_1 + H_2 N_2 a_2 + \dots H_n N_n a_n$. It is obvious that $H_i N_i \equiv 0 \pmod{m_j}$ for all $j \neq i$, but we know that $H_i N_i \equiv 1 \pmod{m_i}$. This means that $a \equiv a_i \pmod{m_i}$ for all i. This completes the construction.

Second, we will show uniqueness. Suppose there are two solutions x and y such that $x \equiv a_i \pmod{m_i}$ and $y \equiv a \pmod{m_i}$. This shows that $x \equiv y \pmod{m_i}$, which shows that $x = y \pmod{m_i}$. This implies that $m_i | x - y$ for all $i \in \{1, 2, ..., n\}$. However, we know that $gcd(m_i, m_j) = 1$ for all $i \neq j$. This shows that $m_1 m_2 ... m_n | x - y$. This means that $x \equiv y \pmod{m_1 m_2 ... m_n}$. This shows uniqueness.

Lemma 2.10. For a polynomial $f(x) \in \mathbb{Z}[x]$, we must have $f(a + tp^j) \equiv f(a) + tp^j f'(a) \pmod{p^{j+1}}$ for a prime p.

Proof. We can take the taylor expansion of $f(a + tp^{j})$, and we obtain:

(2.11)
$$f(a+tp^{j}) = f(a) + tp^{j}f'(a) + \frac{(tp^{j})^{2}f''(a)}{2!} + \dots$$

We know that $p^{j+1}|p^{kj}$ as long as $k \geq 2$. Moreover, we see that $f^{(k)}(a)/k!$ is an integer. This is because for any monomial we have $f^{(k)}(a) = (n)(n-1)\dots(n-k)a^{n-k}$. This means that $f^{(k)}(a)/k! = \binom{n}{k}a^{n-k}$, which is obviously an integer.

Theorem 2.12. Hansel's Lemma: Suppose that we have a solution x = a of the polynomial $f(x) \equiv 0 \pmod{p^j}$. Suppose that $f(x) \in \mathbb{Z}[x]$, $f(a) \equiv 0 \pmod{p^j}$, and $f'(a) \not\equiv 0 \pmod{p}$. Then there exists a unique $t \pmod{p}$ such that $f(a + tp^j) \equiv 0 \pmod{p^{j+1}}$.

Proof. Using the lemma, we know that $f(a+tp^j) \equiv f(a) + tp^j f'(a) \pmod{p^{j+1}}$. We want to set $f(a) + tp^j f'(a) \equiv 0 \pmod{p^{j+1}}$. This is equivalent to $tf'(a) + \frac{f(a)}{p^j} \equiv 0 \pmod{p}$. This means we can find a unique $t \equiv -\left(\frac{f(a)}{p^j}\right) \frac{1}{f'(a)} \pmod{p}$. This completes the proof.

3. Primitive Roots

Lemma 3.1. Let p be a prime. Suppose that $q^e||p-1$ for some prime q. Then there exists an element modulo p of order q^e .

Proof. Consider the solutions of $x^{q^e} \equiv 1 \pmod{p}$. We know that $q^e|p-1$. We know that $x^{q^e}-1$ has exactly q^e roots modulo p. If α is any such root, then $ord_p(a)|q^e$. Thus, if $ord_p(a) \neq q^e$, then we know that $ord_p(a)|q^e-1$. Then we must have α be a root of $x^{q^{e-1}} \equiv 1 \pmod{p}$, which has exactly q^{e-1} solutions. Since $q^e-q^{e-1}>0$, we know there exists α such that $ord_p(\alpha)=q^e$.

Theorem 3.2. There exist primitive roots modulo p where p is a prime.

Proof. Write $p-1=q_1^{e_1}\ldots q_r^{e_r}$. The lemma says that exists g_i such that $ord_p(g_i)=g_i^{e_i}$. Now let $g=g_1g_2\ldots g_r$. By the lemma above, g has order $q_1^{e_1}\ldots q_r^{e_r}=p-1$, because $q_1^{e_1}\ldots q_r^{e_r}$ are all coprime. Since $\phi(p)=p-1$, we see that g is a primitive root modulo p.

Theorem 3.3. There's a primitive root modulo m if and only if $m = 1, 2, 4, p^e, 2p^e$ where p is an odd prime.

4. Quadratic Reciprocity

Theorem 4.1. $\binom{a}{p} = a^{(p-1)/2} \pmod{p}$ if $p \nmid a$ and p is odd.

Proof. We know that $a^{p-1} \equiv 1 \pmod{p}$ by Fermat's Little Theorem. Since p-1 is even, we must have $a^{((p-1)/2)^2} \equiv 1 \pmod{p}$. This implies that $a \equiv \pm 1 \pmod{p}$. Now let g be a primitive root modulo p. We know that $\{1, g, g^2, \ldots, g^{p-1}\}$ runs through the entire residue system. This means that $a \equiv g^k \pmod{p}$ for some k. We also know that $a \equiv g^{k+m(p-1)} \pmod{p}$ so that k is only defined modulo p-1.

Now we know that a is a quadratic residue modulo p if and only if k is even so that $g^k \equiv (g^{k/2})^2 \pmod{p}$. Now look at $a^{(p-1)/2} \equiv g^{k(p-1)/2} \pmod{p}$. We know that $g^{k(p-1)/2} \equiv 1 \pmod{p}$ if and only if p-1|k(p-1)/2. This occurs if and only if p-1|k, which occurs when 2|k. Thus, we see that $a^{(p-1)/2} \equiv 1 \pmod{p}$ exactly when a is a quadratic residue modulo p.