Probabilidade

Análise combinatória

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Slides e notebook em:

github.com/tetsufmbio/IMD0033/

Na aula passada...

Permutação

- a ordem com que elementos de um conjunto podem ser dispostos → utilizando todos os elementos;
- n!

Permutação parcial (Arranjos)

- A ordem com que os elementos de um conjunto podem ser dispostos → não utilizando todos os elementos;
- n! / (n-k)!

k-subconjuntos

Subconjuntos de tamanho k;

$$egin{pmatrix} [n] \\ k \end{pmatrix}$$
 Coleção de todos os subconjuntos de tamanho k presentes no conjunto [n] = {1,2, ..., n}

$$\binom{[3]}{1} = \{\{1\}, \{2\}, \{3\}\}$$

Os diferentes **subconjuntos** correspondem à diferentes combinações.

k-subconjuntos e sequências binárias

$$\binom{[n]}{k}$$

Coleção de todos os subconjuntos de tamanho k presentes no conjunto $[n] = \{1,2, ..., n\}$

	1	•	
— • • • • •	hco	nIII	ntos
Jul	ucu	mu	HUS
-	~~~	, ~	
		_	

Sequências binárias

$$\binom{[3]}{1}$$

{{1}, {2}, {3}}

100, 010, 001

 $\binom{[3]}{2}$

{{1,2}, {2,3}, {1,3}}

110, 011, 101

Sequência de n-bits com k-1s

$$\binom{[4]}{2}$$

 $\{\{1,2\},\,\{1,3\},\,...\,,\,\{3,4\}\}$

1100, 1010, ..., 0011

Número de combinações

$$\binom{n}{k} = \binom{[n]}{k}$$
 Coeficiente binomial

Número

k-subconjuntos

inteiro

$$\binom{3}{2}$$
 = $\binom{[3]}{2}$ = $|\{\{1,2\},\{1,3\},\{2,3\}\}| = 3$

Número de combinações

$$\binom{3}{2} = \binom{[3]}{2} = |\{\{1,2\},\{1,3\},\{2,3\}\}| = 3$$

Número de permutações
$$=\frac{3!}{(3-2)!}=6$$

$$\frac{n!}{(n-k)!} = k! \binom{n}{k}$$

$$\frac{n!}{(n-k)!k!} = \binom{n}{k}$$

Exemplos

$$egin{array}{l} egin{array}{l} egin{array}$$

Escolhendo as posições dos 1s. Para o 1º há 4 opções, e para o 2º há 3 opções. Cada ordem possui duas formas

de escolha.

Exemplos

$$\binom{n}{0} = \frac{n!}{(n)!0!} = 1 \qquad ooo$$

$$\binom{n}{n} = \frac{n!}{(0)!n!} = 1$$

$$inom{n}{1}=rac{n!}{(n-1)!1!}=n$$
 Posição de um único 1 em uma sequência binária

$$inom{n}{2}=rac{n(n-1)}{2}$$
 Posição de dois 1s em uma sequência binária

Aplicações:

Formação de comitês:

Um comitê deve ser composto por 4 pessoas. 7 pessoas estão aptas a compor o comitê. Quantas maneiras diferentes posso formar este comitê?

$$\binom{7}{4} = \frac{7!}{(7-4)!4!} = 35$$

Aplicações:

Formação de comitês:

Um comitê deve ser composto por 4 pessoas, dois homens e duas mulheres. 7 pessoas estão aptas a compor o comitê, 4 homens e 3 mulheres. Quantas maneiras diferentes posso formar este comitê?

$$\binom{4}{2}\binom{3}{2} = \frac{4!}{(4-2)!2!} \frac{3!}{(3-2)!2!} = 18$$

Aplicações:

Formação de comitês:

Um comitê deve ser composto por 4 pessoas. 7 pessoas estão aptas a compor o comitê. João e Maria não se dão bem, por isso eles não devem fazer parte da comissão juntos. Quantas maneiras diferentes posso formar este comitê?

Comitês com João e Maria:
$$\binom{5}{2}=rac{5!}{(5-2)!2!}=10$$
 $35-10=25$ Regra da subtração:

Propriedades do coeficiente binomial

$$\binom{n}{k} = \binom{n}{n-k}$$

$$\binom{5}{3} = \binom{5}{2} \quad \frac{5!}{2!3!} = \frac{5!}{3!2!}$$

Identidade de Pascal

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

$$\binom{4}{3} = \binom{3}{3} + \binom{3}{2}$$

$$\binom{0111}{1011}_{1110}$$

$$\binom{1101}{1110}_{1110}$$

$$\binom{1110}{11101}$$

Triângulo de Pascal

$$\binom{n}{0} = 1$$
 $\binom{n}{n} = 1$

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

$$\binom{2}{1} = \binom{1}{1} + \binom{1}{0}$$

$$\binom{3}{1} = \binom{2}{1} + \binom{2}{0}$$

$$\binom{3}{2} = \binom{2}{2} + \binom{3}{1}$$

k

	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

Triângulo de Pascal

$$\binom{n}{0} = 1$$
 $\binom{n}{n} = 1$

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

$$\binom{2}{1} = \binom{1}{1} + \binom{1}{0}$$

$$\binom{3}{1} = \binom{2}{1} + \binom{2}{0}$$

$$\binom{3}{2} = \binom{2}{2} + \binom{3}{1}$$

k

	0	1	2	3	4	5
0	1					
1	1	1				
2	1	2	1			
3	1	3	3	1		
4	1	4	6	4	1	
5	1	5	10	10	5	1

Binômio de Newton

Polinômio com duas variáveis = binômino

$$(a+b)^1 = a + b$$

 $(a+b)^2 = a^2 + 2ab + b^2$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 3ab^{3} + b^{4}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\binom{4}{0} \binom{4}{1} \binom{4}{2} \binom{4}{3} \binom{4}{4}$$

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} b^i$$

k

	0	1	2	3	4	5
0	1					
1	1	1				
2	1	2	1			
3	1	3	3	1		
4	1	4	6	4	1	
5	1	5	10	10	5	1

Coeficiente de polinômios

Qual o coeficiente do x^2 em $(1+x)^7$?

$$(1+x)^7 = \sum_{i=0}^7 {7 \choose i} 1^{7-i} x^i \qquad {7 \choose 2} = rac{7!}{5!2!} = 21$$

Qual o coeficiente do x^3 em $(3+2x)^5$?

$$(3+2x)^5 = \sum_{i=0}^5 {5 \choose i} 3^{5-i} 2x^i \quad {5 \choose 3} 3^2 2^3 = rac{5!}{2!3!} 3^2 2^3 = 720$$

Revisão

- Subconjuntos de tamanho k de um conjunto de n elementos: diferentes combinações;
- Número de combinações distintos \rightarrow coeficiente binomial;
- Identidade de Pascal;
- Triângulo de Pascal;
- Binômio de Newton;
- Coeficientes de polinômios.

Exercícios do notebook

github.com/tetsufmbio/IMD0033/