高等数学期中试题(A 卷)

		同	守奴子	州中区	(赵(A	位)			
班级		学号							
		(7.	本试卷共	€4页, ∃	七个大题)			
题号	_	二	三	四四	五.	六	七	总分	
得分									
 点 P(2, 3) 设 u = 3 u 的变 曲线 x 	$=1, \vec{b} =$ $ \vec{b} = $ $= 3,4)$ 到直 $= x^2y + xy^2$ $= x^2y + xy^2$	2,向量 线 $\frac{x-1}{2}$ 3z,在点	$\vec{a} = \vec{b} \Rightarrow \vec{b}$ $= \frac{y-2}{5} = \frac{(2,1,0)}{5}$ $= \theta, z = 5$	的夹角 (\vec{a}) $= \frac{z-3}{6}$ 此沿方向	的距离 <i>d</i> 。]	=	и 增力		
5. 函数 $f(x,y)$	$(x, y) = e$ $= \underline{\qquad}$								
6. 设 $\frac{\partial^2 z}{\partial x \partial y}$	$ \frac{\partial^2 z}{\partial x \partial y} = \frac{x}{1+y^2}, \frac{\partial z}{\partial x}\Big _{y=0} = \sqrt{1+x}, z\Big _{x=0} = y, \text{If } z = $								
7. 设 _{z=j}	$f(x^2 + y^2)$	$(e^{x+y}),$	其中 ƒ 🤊	有二阶连	E续偏导	数,则 <i>∂.</i> ∂.	$\frac{z}{x} = \underline{\hspace{1cm}}$,	
$\frac{\partial^2 z}{\partial x \partial y} = 0$								·	
8. 函数 f	(x,y)=x	$x^2 + 2y^2$	-5在区	域 $D: x^2$	$+ y^2 \le 1$	上的最大	大值 <i>M</i> =	=,最小值	
$m = __$	•								

二. (10 分)设 $x^2 + y^2 + z^2 = f(xy, z - 2x)$, 其中 f 有连续偏导数, 求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.

三. (12 分) 证明直线 $L_1: \frac{x-2}{3} = \frac{y+1}{-2} = \frac{z-3}{2}$ 与 $L_2: \begin{cases} x+2y=1 \\ y+z=2 \end{cases}$ 共面,并求过直线 L_1 与 L_2 的平面方程.

四. (12 分) 计算二重积分 $\iint_D \frac{|y-x|}{x^2+y^2} dx dy$, 其中 D 是由直线 y=x, y=2, 与圆 $x^2+(y-1)^2=1$ 所围成的阴影部分区域(如图).

五. (11 分) 在曲面 $3x^2 + y^2 + z^2 = 16$ 上求一点,使曲面在此点的切平面与直线 $L_1: \frac{x-3}{4} = \frac{y-6}{5} = \frac{z+1}{8}$ 和 $L_2: x = y = z$ 都平行.

六. (11 分) 计算三重积分 $I = \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} e^{\frac{y}{1-x-z}} dz$.

七. (12 分) 设 M 是椭圆 $\begin{cases} 2x^2 - y^2 + z^2 = 5 \\ x + y = 0 \end{cases}$ 上的点, $\frac{\partial f}{\partial \vec{e}}$ 是函数 $f(x,y,z) = x^2 + y^2 + z^2$ 在 点 M 处沿方向 {1,-1,1} 的方向导数,求使 $\frac{\partial f}{\partial \vec{e}}$ 取得最大值和最小值的点 M 及 $\frac{\partial f}{\partial \vec{e}}$ 的最大值和最小值.