Next we describe special norm continuous semigroups.

Compact semigroups

Let $(T(t))_{t\geq 0}$ be a strongly continuous semigroup and $t_0>0$. If $T(t_0)$ is compact, then it follows from the semigroup property that T(t) is compact for all $t\geq t_0$. Moreover, t+T(t) is norm continuous in every $t>t_0$ [In fact, since T(h)+Id strongly with h+0, it follows that $\lim_{h \neq 0} T(h)f = f$ uniformly on every compact subset K of E. Now let $t\geq t_0$. Then $K=\overline{T(t)}\overline{U}$ is compact (where U denotes the unit ball of E). Hence $\lim_{h \neq 0} T(h+t)f = \lim_{h \neq 0} T(h)T(t)f$ uniformly for $f \in U$. So the semigroup is right-sided norm continuous on $[t_0,\infty)$ and so norm continuous on $[t_0,\infty)$.

<u>Definition</u> 1.22. A strongly continuous semigroup $(T(t))_{t \ge 0}$ is called <u>compact</u> if T(t) is compact for all t > 0; the semigroup is called <u>eventually compact</u> if there exists $t_0 > 0$ such that $T(t_0)$ is compact (and hence T(t) is compact for all $t \ge t_0$).

We want to find a relation between the compactness of the semigroup and the compactness of the resolvent of its generator.

Definition 1.23. Let A be an operator and $\rho(A) \neq \emptyset$. We say, A has a compact resolvent if $R(\lambda,A)$ is compact for one (and hence all) $\lambda \in \rho(A)$.

<u>Proposition</u> 1.24. Let $(T(t))_{t\geq 0}$ be a strongly continuous semigroup and assume that its generator has a compact resolvent. If t + T(t) is norm continuous in t_0 , then T(t) is compact for all $t \geq t_0$.

<u>Proof.</u> Considering $(e^{-wt}T(t))_{t\geq 0}$ for some w>0 if necessary, we can assume that s(A)<0. Let $S(t)\in L(E)$ be given by $S(t)f=\int_0^t T(s)fds$ $(t\geq 0)$. Then AS(t)f=T(t)f-f for all $f\in E$, and so S(t)=R(0,A) (Id-T(t)) is compact for all $t\geq 0$. Since t+T(t) is norm continuous for $t\geq t_0$, one has $\lim_{h\downarrow 0}\frac{1}{h}(S(t_0+h)-S(t_0))=T(t_0)$ in the operator norm. Thus $T(t_0)$ is compact as limit of compact operators.