Universal algebra over locally presentable categories

Yuto Kawase

RIMS, Kyoto University

March 1, 2024.

Relativization of universal algebra

2 Birkhoff's variety theorem

3 Filtered colimit elimination

4 Computation of strongly connected components

Single-sorted algebras

Definition

A (single-sorted) algebra consists of:

- a base set A;
- operators $\sigma \colon A^n \to A \ (n \ge 0)$;
- equations.

Example

A group consists of:

- a base set G:
- operators $e: 1 \to G$, $i: G \to G$, $m: G^2 \to G$;
- \bullet equations $m(e,x)=x=m(x,e), \quad m(x,i(x))=e=m(i(x),x), \\ m(m(x,y),z)=m(x,m(y,z)).$

Multi-sorted algebras

Definition

S: a set. (the set of sorts)

An S-sorted algebra consists of:

- base sets $(A_s)_{s \in S}$ indexed by S;
- operators $\sigma \colon A_{s_1} \times \cdots \times A_{s_n} \to A_s$;
- equations.

Example

A chain complex consists of:

- base sets $(A_n)_{n\in\mathbb{Z}}$;
- operators $0_n \colon 1 \to A_n$, $-_n \colon A_n \to A_n$, $+_n \colon A_n \times A_n \to A_n$, $d_n \colon A_n \to A_{n+1}$;
- appropriate equations.

This is an \mathbb{Z} -sorted algebra.

The free-forgetful adjunctions

$$\mathbf{Alg}(\Omega, E)$$

$$F \left(\neg \right) U$$

$$\mathbf{Set}^{S}$$

 $(\underline{\Omega}, \underline{E})$: an S-sorted algebraic theory.

Relativization via monads

Theorem ([Lin69])

There is an equivalence

$$\mathbf{Th}^S \simeq \mathbf{Mnd}_{\mathrm{f}}(\mathbf{Set}^S).$$

Here,

 \mathbf{Th}^{S} : the category of S-sorted algebraic theories,

 $\mathbf{Mnd}_{\mathrm{f}}(\mathbf{Set}^S)$: the category of finitary monads on \mathbf{Set}^S .

S-sorted algebraic theory = finitary monad on \mathbf{Set}^S

↓ generalize

Relative algebraic theories

Informal definition [Kaw23a]

```
A: a (locally presentable) category
```

An *A*-relative algebraic theory consists of:

- ullet a set Ω of partial operators;
- ullet a set E of $\underline{\mathsf{implications}}$ $\cdots (\underbrace{\mathsf{YYY}}_{\mathsf{postcondition}} \mathsf{whenever} \underbrace{\mathsf{XXX}}_{\mathsf{precondition}})$

such that

- For each operator $\omega \in \Omega$, its domain must be defined by "A's language."
- ullet For each implication in E, its precondition must be written in " $\mathscr A$'s language."

A generalized Linton theorem

Theorem ([Kaw23a; Kaw24])

For a locally κ -presentable category $\mathscr A$, there is an equivalence

$$\mathbf{Th}_{\kappa}^{\mathscr{A}} \simeq \mathbf{Mnd}_{\kappa}(\mathscr{A}).$$

Here,

 $\mathbf{Th}_{\kappa}^{\mathscr{A}}$: the category of \mathscr{A} -relative (κ -ary) algebraic theories, $\mathbf{Mnd}_{\kappa}(\mathscr{A})$: the category of κ -ary monads on \mathscr{A} .

↑ generalize

Recall (Linton's theorem)

 $\mathbf{Th}_{\aleph_0}^S \simeq \mathbf{Mnd}_{\aleph_0}(\mathbf{Set}^S).$

Example: small categories

Example

A small category consists of:

- a base quiver $\operatorname{mor}\mathscr{C} \xrightarrow{\operatorname{d}} \operatorname{ob}\mathscr{C}$;
- a total operator id: $ob\mathscr{C} \to mor\mathscr{C}$;
- ullet a partial operator $\circ \colon \mathrm{mor}\mathscr{C} imes \mathrm{mor}\mathscr{C} o \mathrm{mor}\mathscr{C}$ such that

$$g \circ f$$
 is defined iff $d(g) = c(f)$

which satisfy the following:

- d(id(x)) = x and c(id(x)) = x;
 - $d(g \circ f) = d(f)$ and $c(g \circ f) = c(g)$ whenever d(g) = c(f);
 - $f \circ id(d(f)) = f$ and $id(c(f)) \circ f = f$;
 - ullet $(h \circ g) \circ f = h \circ (g \circ f)$ whenever d(h) = c(g) and d(g) = c(f).

Small categories are algebras over quivers.

Further examples

Example			
		algebras over \sim	
small categories	~ →	quivers	
UDO semirings	~→	posets	
partial Boolean algebras	~ →	graphs	
monoid-graded rings	~ →	monoid-graded sets	
generalized complete metric spaces	~→	generalized metric spaces	
Banach spaces	~ →	pointed metric spaces	

Relativization of universal algebra

2 Birkhoff's variety theorem

3 Filtered colimit elimination

4 Computation of strongly connected components

Equational classes

Definition

 (Ω,E) : a single-sorted algebraic theory. A full subcategory $\mathscr{E}\subseteq\mathbf{Alg}(\Omega,E)$ is definable (by equations) if $\mathscr{E}=\mathbf{Alg}(\Omega,E+^{\exists}E')$, i.e., \mathscr{E} can be defined by adding equations.

Example

 $\{\text{commutative monoids}\}\subseteq \mathbf{Mon}$ is definable by the equation xy=yx.

Example

 $\{\text{invertible monoids}\}\subseteq \mathbf{Mon} \text{ is not definable by equations.}$

How can we prove this?

Birkhoff's variety theorem

Birkhoff's variety theorem [Bir35]

 (Ω,E) : a single-sorted algebraic theory. $\mathscr{E}\subseteq\mathbf{Alg}(\Omega,E)$: fullsub.

TFAE:

- $\bullet \ \mathscr{E} \subseteq \mathbf{Alg}(\Omega,E) \text{ is definable by equations.}$
- $② \mathscr{E} \subseteq \mathbf{Alg}(\Omega, E) \text{ is closed under } \underline{\mathbf{products}}, \, \underline{\mathbf{subobjects}}, \, \mathbf{and} \, \, \underline{\mathbf{quotients}}.$

closed under products: $A_i \in \mathscr{E} \implies \prod_i A_i \in \mathscr{E}$.

closed under subobjects: $B \subseteq A$: sub, $A \in \mathscr{E} \implies B \in \mathscr{E}$.

closed under quotients: $A \twoheadrightarrow B$: surj, $A \in \mathscr{E} \implies B \in \mathscr{E}$.

Corollary

 $\{\mathsf{invertible} \ \mathsf{monoids}\} \subseteq \mathbf{Mon} \ \mathsf{is} \ \mathsf{not} \ \mathsf{definable} \ \mathsf{by} \ \mathsf{equations}.$

Proof.

 $\frac{\mathbb{N}}{\mathbb{N}} \subset \mathbb{Z}$ \longrightarrow {inv. monoids} \subseteq **Mon**: not closed under subobjects

A generalized Birkhoff's theorem

Theorem ([Kaw23a; Kaw24])

 (Ω,E) : an \mathscr{A} -relative (κ -ary) algebraic theory. $\mathscr{E}\subseteq \mathbf{Alg}(\Omega,E)$: fullsub.

TFAE:

- **②** $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is closed under <u>products</u>, <u>closed subobjects</u>, $\underline{(U, \kappa)}$ -local retracts, and κ -filtered colimits.

single-sorted alg. (S et-relative alg.)	\mathscr{A} -relative alg.		
products	~ →	products	
subobjects	~ →	closed subobjects	
quotients	~ →	(U,κ) -local retracts	
	~ →	κ -filtered colimits (new)	

The filtered colimit elimination problem

Question

Why can the closure property under filtered colimits be eliminated in the case of **Set**-relative algebras?

Answer

The category Set satisfies a "noetherian" condition.

Relativization of universal algebra

2 Birkhoff's variety theorem

3 Filtered colimit elimination

4 Computation of strongly connected components

A noetherian condition for categories

Definition ([Kaw23b])

A category \mathscr{A} satisfies the ascending chain condition (ACC) if it has no chain $A_0 \to A_1 \to A_2 \to \cdots$ of objects such that there is no morphism $A_n \leftarrow A_{n+1}$ for all n.

Example

Set satisfies ACC.

Proof.

Let $A_0 \to A_1 \to \cdots$ be an ω -chain of sets.If there is no map $A_0 \leftarrow A_1$, then $A_0 = \varnothing$ and $A_1 \neq \varnothing$.Thus, a map $A_1 \leftarrow A_2$ exists.

Example

Quiv, the category of quivers, does not satisfy ACC.

Proof.

Let Q_n denote the n-path

$$Q_n: 0 \to 1 \to 2 \to \cdots \to n.$$

Then, the inclusions yields a chain $Q_0 \to Q_1 \to Q_2 \to \cdots$, and there is no quiver morphism $Q_n \leftarrow Q_{n+1}$.

Example

 \mathbf{Ring} , the category of rings, does **not** satisfy ACC.

Proof.

This is because there is a non-trivial chain of finite fields

$$\mathbb{F}_p \hookrightarrow \mathbb{F}_{p^2} \hookrightarrow \mathbb{F}_{p^4} \hookrightarrow \cdots \hookrightarrow \mathbb{F}_{p^{2^n}} \hookrightarrow \cdots$$

Relation to ordinary ACC

Definition

- Objects X and Y are strongly connected if there are morphisms $X \to Y$, $Y \to X$.
- An equivalence class under strong connectedness is called a strongly connected component.
- $\sigma(\mathscr{A})$: the large poset of all strongly connected components in a category \mathscr{A} . (the posetification of \mathscr{A})

Proposition

A category \mathscr{A} satisfies ACC \Leftrightarrow the large poset $\sigma(\mathscr{A})$ satisfies ACC.

Proposition

 \mathbf{Set}^S satisfies ACC \Leftrightarrow the set S is finite.

Proof.

Since the posetification $\boldsymbol{\sigma}$ preserves products, the following holds:

$$\sigma(\mathbf{Set}^S) \cong \sigma(\mathbf{Set})^S \cong \{0 < 1\}^S \cong \mathscr{P}(S).$$

" $\mathscr{P}(S)$ satisfies ACC $\Leftrightarrow S$: finite" is trivial.

Filtered colimit elimination

Theorem ([Kaw23b; Kaw24])

 (Ω, E) : an \mathscr{A} -relative (κ -ary) algebraic theory. $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$: fullsub. Assume that \mathscr{A} satisfies ACC.

TFAE:

- \bullet $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is definable.
- **②** $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is closed under <u>products</u>, <u>closed subobjects</u>, $\underline{(U, \kappa)}$ -local retracts, and κ -filtered colimits.

Some applications of filtered colimit elimination

Corollary

- Set satisfies ACC.
 - → fil.colim.elim. holds for single-sorted alg.
 - → The classical Birkhoff theorem [Bir35]
- Setⁿ satisfied ACC.
 - → fil.colim.elim. holds for finite-sorted alg.
 - → This subsumes a result in [ARV12].
- Pos satisfied ACC.

 - → This subsumes a result in [Blo76].
- ullet \mathbf{Met}_{∞} , the category of generalized metric spaces, satisfied ACC.

 - → This subsumes a result in [Hin16].

Filtered colimit elimination: sketch of proof

fullsub $\mathscr{E}\subseteq \mathbf{Alg}(\Omega,E)$: closed under products, closed sub, (U,κ) -local ret. $(A_J)_{J\in\mathbb{I}}$: a κ -filtered diagram s.t. $A_J\in\mathscr{E}$.

For each $J \in \mathbb{I}$, we can construct a "nice" wide sub-diagram $\mathbb{I}_J \subseteq \mathbb{I}$.

 $\rightsquigarrow \mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is closed under κ -filtered colimits.

Relativization of universal algebra

2 Birkhoff's variety theorem

3 Filtered colimit elimination

4 Computation of strongly connected components

Locally connected categories

Definition

 $C \in \mathscr{C}$ is connected $\overset{\mathsf{def}}{\Leftrightarrow} \mathscr{C}(C, \bullet) \colon \mathscr{C} \to \mathbf{Set}$ preserves small coproducts.

Example

- **①** A top. space $X \in \mathbf{Top}$ is connected \Leftrightarrow it is connected (in the usual sense).
- **②** A set $X \in \mathbf{Set}$ is connected \Leftrightarrow it is a singleton.
- $\begin{tabular}{ll} \hline \bullet & A \ category \ \mathscr{C} \in \mathbf{Cat} \ \ \text{is connected} \\ \hline & \Leftrightarrow & \ \ \, \text{all objects are connected by zig-zags.} \\ \hline \end{tabular}$
- A category $\emptyset \in \mathbf{Cat}$ is connected \Leftrightarrow an objects are connected by $\mathbf{Zig\text{-}ZagS}$.
 A presheaf $P \in \mathbf{Set}^{\mathscr{C}^{\mathrm{op}}}$ is connected \Leftrightarrow so is the caty of elements $\int P$.

Definition

 \mathscr{C} is locally connected $\overset{\mathsf{def}}{\Leftrightarrow}$ it has small coproducts and every object is a small coproduct of connected objects.

Example

- Top is not locally connected.
- \bullet $\mathbf{Set},\,\mathbf{Cat},\,\mathbf{and}$ any presheaf categories $\mathbf{Set}^{\mathscr{C}^{\mathrm{op}}}$ are locally connected.

A characterization of locally connected categories

Definition

Given a category \mathscr{A} , we define a category $\mathbf{Fam}(\mathscr{A})$ (the category of families):

- object \cdots a small family $(A_i \in \mathscr{A})_{i \in I}$;
- morphism $(A_i)_I \to (B_j)_J \cdots$ a map $I \xrightarrow{f} J$ together with a family $(A_i \xrightarrow{f_i} B_{f(i)} \text{ in } \mathscr{A})_{i \in I}.$

Theorem ([CV98])

 $\mathscr{C} \text{ is locally connected } \Leftrightarrow \mathscr{C} \simeq \mathbf{Fam}(\mathscr{A}) \text{ for some } \mathscr{A}.$

 \mathscr{C} : locally connected $\rightsquigarrow \mathscr{C} \simeq \mathbf{Fam}(\mathscr{C}_{\mathrm{conn}})$ $(\mathscr{C}_{\mathrm{conn}} \subseteq \mathscr{C}$: the fullsub of all connected objects)

ACC for locally connected categories

Definition

Proof.

- $\bullet \ L \subseteq \mathrm{ob}\mathscr{A} \text{ is called a lower class} \ \stackrel{\mathsf{def}}{\Leftrightarrow} \ "X \to Y \in L" \text{ implies } X \in L.$
- $\mathbb{L}(\mathscr{A})$: the (large) poset of lower classes on \mathscr{A} .

Lemma ([Kaw23b])

 \mathscr{C} : locally connected $+\alpha \quad \leadsto \quad \sigma(\mathscr{C}) \cong \mathbb{L}(\mathscr{C}_{\mathrm{conn}})$ ($\cong \mathbb{L}\sigma(\mathscr{C}_{\mathrm{conn}})$).

 $\sigma(\mathscr{C}) \cong \sigma(\mathbf{Fam}(\mathscr{C}_{\mathrm{conn}})) \cong \mathbb{L}(\mathscr{C}_{\mathrm{conn}}).$

Corollary ([Kaw23b])

A locally connected category $\mathscr C$ satisfies ACC \Leftrightarrow Every lower class on $\mathscr C_{\mathrm{conn}}$ is finitely generated.

 $S_3 \colon \mathop{\nearrow}\limits_{\varnothing} \overset{1}{\underset{\sim}{\times}} \mathsf{K} \qquad S_4 \colon \mathop{\ulcorner}^{\mathsf{CO}} \mathop{\nearrow}\limits_{\rtimes} \overset{2}{\underset{\sim}{\times}} \mathop{\ulcorner}^{\mathsf{CI}} \mathop{\urcorner}\limits_{\mathsf{I}} \qquad S_5 \colon \mathop{\nearrow}\limits_{\mathsf{I}} \overset{1}{\underset{\sim}{\times}} \mathsf{K}$

On the other hand, $\sigma(\mathbf{Cospan}_{conn}) = s_2 : \underbrace{\left(\begin{array}{ccc} s_1 & s_2 \\ s_3 & s_4 \end{array} \right)}_{S_1 : \underbrace{\left(\begin{array}{ccc} s_1 & s_2 \\ s_3 & s_4 \end{array} \right)}_{S_2 : \underbrace{\left(\begin{array}{ccc} s_1 & s_2 \\ s_4 & s_4 \end{array} \right)}_{S_3 : \underbrace{\left(\begin{array}{ccc} s_1 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_2 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_4 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_4 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_4 & s_4 \\ s_4 & s_4 \end{array} \right)}_{S_4 : \underbrace{\left(\begin{array}{ccc} s_4 & s_4 \\$

$$\sigma(\mathbf{Cospan}) \cong \mathbb{L}(\sigma(\mathbf{Cospan_{conn}})) \text{ is displayed as follows:}$$

$$S_{1}: \left(\begin{array}{ccc} x^{1} \times y & & & \\ &$$

ACC for G-Set

G: a topological group \leadsto G-Set: locally connected

Definition

 $A \in \mathscr{E}$ is called an $\operatorname*{\mathsf{atom}} \overset{\mathsf{def}}{\Leftrightarrow} A \neq 0$ and $\operatorname{Sub}(A) = \{0, A\}$.

 $(G\operatorname{-\mathbf{Set}})_{\operatorname{conn}}=\{\operatorname{atoms\ in}\ G\operatorname{-\mathbf{Set}}\}\simeq\{\operatorname{open\ subgroups\ of}\ G\}$

Corollary ([Kaw23b])

G: a topological group

- $\textbf{ Q-Set satisfies ACC} \Leftrightarrow \textbf{Every lower set of open subgroups of G is finitely generated.}$

Thank you!

My homepage

References I

- [AR04] J. Adámek and J. Rosický. "On pure quotients and pure subobjects". In: Czechoslovak Math. J. 54(129).3 (2004), pp. 623–636.
- [AR94] J. Adámek and J. Rosický. Locally Presentable and Accessible Categories. Vol. 189. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994.
- [ARV12] J. Adámek, J. Rosický, and E. M. Vitale. "Birkhoff's variety theorem in many sorts". In: Algebra Universalis 68.1-2 (2012), pp. 39–42.
- [Adá+21] J. Adámek et al. "Finitary monads on the category of posets". In: Math. Structures Comput. Sci. 31.7 (2021), pp. 799–821.
- [BH12] B. van den Berg and C. Heunen. "Noncommutativity as a colimit". In: Appl. Categ. Structures 20.4 (2012), pp. 393–414.
- [BMW12] C. Berger, P.-A. Melliès, and M. Weber. "Monads with arities and their associated theories". In: J. Pure Appl. Algebra 216.8-9 (2012), pp. 2029–2048.
- [Bir35] G. Birkhoff. "On the structure of abstract algebras". In: Math. Proc. Cambridge Philos. Soc. 31.4 (1935), pp. 433–454.
- [Blo76] S. L. Bloom. "Varieties of ordered algebras". In: J. Comput. System Sci. 13.2 (1976), pp. 200–212.
- [BG19] J. Bourke and R. Garner. "Monads and theories". In: Adv. Math. 351 (2019), pp. 1024–1071.
- [CV98] A. Carboni and E. M. Vitale. "Regular and exact completions". In: J. Pure Appl. Algebra 125.1-3 (1998), pp. 79–116.
- [Gol03] J. S. Golan. Semirings and Affine Equations over Them: Theory and Applications. Vol. 556. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 2003, pp. xiv+241.

References II

[Hin16]

[PV07]

[Ros21]

[Wea95]

[Kaw23a]

	[math.CT].
[Kaw23b]	Y. Kawase. Filtered colimit elimination from Birkhoff's variety theorem. 2023. arXiv: 2309.05304 [math.CT].
[Kaw24]	Y. Kawase. "Relativized universal algebra via partial Horn logic". in preparation. MA thesis. Kyoto University, 2024.
[Lin69]	F. E. J. Linton. "An outline of functorial semantics". In: Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67). Springer, Berlin, 1969, pp. 7–52.
[LP23]	R. B. B. Lucyshyn-Wright and J. Parker. "Diagrammatic presentations of enriched monads and varieties for a subcategory of arities". In: <i>Appl. Categ. Structures</i> 31.5 (2023), Paper No. 40, 39.

Appl. Logic 145.3 (2007), pp. 314–353.

W. Hino. Varieties of metric and quantitative algebras. 2016. arXiv: 1612.06054 [cs.L0].

Y. Kawase. Birkhoff's variety theorem for relative algebraic theories. 2023. arXiv: 2304.04382

E. Palmgren and S. J. Vickers. "Partial Horn logic and cartesian categories". In: Ann. Pure

J. Rosický. "Metric monads". In: Math. Structures Comput. Sci. 31.5 (2021), pp. 535-552.

N. Weaver. "Quasi-varieties of metric algebras". In: Algebra Universalis 33.1 (1995), pp. 1-9.

κ -filtered colimits

Definition

A small category $\mathbb I$ is κ -filtered if every $(<\kappa)$ -small diagram has a cocone in $\mathbb I$.

Definition

A κ -filtered colimit is a colimit of a functor from a κ -filtered small category.

Representing models

Theorem ([Kaw23a; Kaw24])

 \mathbb{T} : a κ -ary partial Horn theory For every \mathbb{T} -model M, we have:

 $\llbracket \vec{x}.\varphi \rrbracket_M \cong \mathbf{PMod}\, \mathbb{T}(\langle \vec{x}.\varphi \rangle_{\mathbb{T}}, M).$

Definition

An object $A \in \mathscr{A}$ is κ -presentable if its Hom-functor

$$\mathscr{A}(A,-)\colon \mathscr{A}\to \mathbf{Set}$$

preserves κ -filtered colimits.

Theorem ([Kaw23a; Kaw24])

 \mathbb{T} : a κ -ary partial Horn theory TFAE for a \mathbb{T} -model $M \in \mathbf{PMod} \mathbb{T}$:

- **1** M is κ -presentable.
- ② There exists a κ -ary Horn formula $\vec{x}.\varphi$ s.t. $M \cong \langle \vec{x}.\varphi \rangle_{\mathbb{T}}$.

Example: UDO semirings

Example ([Gol03])

A uniquely difference-ordered semiring consists of:

- a base poset (R, \leq) ;
- total operators $+, \cdot : R \times R \to R$;
- ullet constants $0,1\in R$;
- \bullet a partial operator $\ominus : R \times R \rightharpoonup R$ such that

$$b \ominus a$$
 is defined iff $a \leq b$

which satisfy the following:

- $(R, +, \cdot, 0, 1)$ is a semiring;
 - $a \le a + b$;
 - $(a+b) \ominus a = b$;
 - $a + (b \ominus a) = b$ whenever $a \le b$.

UDO semirings are algebras over posets.

Example: partial abelian groups

Example ([BH12])

A partial abelian group consists of:

- a base set A with a reflexive symmetric relation $\odot \subseteq A \times A$; (a set with commeasurability)
- a constant $0 \in A$;
- a total operator $-: A \to A$;
- ullet a partial operator $+\colon A\times A \rightharpoonup A$ such that

$$a+b$$
 is defined iff $a \odot b$

which satisfy the following:

- *a* ⊙ 0;
- $a \odot (-b)$ whenever $a \odot b$;
- $a \odot (b+c)$ whenever $a \odot b$, $b \odot c$, $c \odot a$;
- (a+b)+c=a+(b+c) whenever $a\odot b$, $b\odot c$, $c\odot a$;
- a + b = b + a whenever $a \odot b$;
- a + 0 = a and $a \odot (-a) = 0$.

Definition

A monoid-graded set is a map $d: X \to M$ from a set X to a monoid (M, \cdot, e) .

Example

A monoid-graded ring consists of:

which satisfy the following:

- a base monoid-graded set (X, d, M, \cdot, e) ;
- a constant $1 \in X$;
 - ullet total operators $\otimes\colon X\times X\to X$, $0\colon M\to X$, $-\colon X\to X$;
 - a partial operator $+: X \times X \rightarrow X$ s.t. x + y is defined iff d(x) = d(y)
 - $\bullet \ d(1) = e, \quad d(x \otimes y) = d(x)d(y), \quad d(0(a)) = a, \quad d(-x) = d(x);$
- d(x + y) = d(x) whenever d(x) = d(y); • $(x \otimes y) \otimes z = x \otimes (y \otimes z)$, $1 \otimes x = x = x \otimes 1$;
- x + 0(d(x)) = x, x + (-x) = 0(d(x));
- (x + y) + z = x + (y + z) whenever d(x) = d(y) = d(z);
- x + y = y + x whenever d(x) = d(y);
- $(x+y) \otimes z = x \otimes z + y \otimes z$ and $z \otimes (x+y) = z \otimes x + z \otimes y$ whenever d(x) = d(y).

Closed monomorphisms

Definition ([Kaw23a; Kaw24])

Let $\mathbb T$ be a κ -ary partial Horn theory over an S-sorted κ -ary signature Σ .

• A monomorphism $A \hookrightarrow B$ in $\mathbf{PMod}\,\mathbb{T}$ is called \mathbb{T} -closed (or Σ -closed) if the following diagrams form pullback squares for any $f,R\in\Sigma$.

$$\operatorname{Dom}(\llbracket f \rrbracket_A) \hookrightarrow \prod_{i < \alpha} A_{s_i} \qquad \llbracket R \rrbracket_A \hookrightarrow \prod_{i < \alpha} A_{s_i}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Dom}(\llbracket f \rrbracket_B) \hookrightarrow \prod_{i < \alpha} B_{s_i} \qquad \llbracket R \rrbracket_B \hookrightarrow \prod_{i < \alpha} B_{s_i}$$

② A morphism $h \colon A \to B$ in $\mathbf{PMod} \, \mathbb{T}$ is called $\overline{\mathbb{T}}$ -dense (or Σ -dense) if h factors through no \mathbb{T} -closed proper subobject of B.

Local retracts

Definition ([Kaw23b; Kaw24])

A morphism $p\colon X\to Y$ in a category $\mathscr A$ is called a $\kappa\text{-local}$ retraction if for every $\kappa\text{-presentable}$ object $\Gamma\in\mathscr A$ and every morphism $f\colon\Gamma\to Y$, there exists a morphism $g\colon\Gamma\to X$ such that $p\circ g=f$.

A κ -local retraction is also called a κ -pure quotient in [AR04].

Definition ([Kaw23b; Kaw24])

Let $U: \mathscr{A} \to \mathscr{C}$ be a functor. A morphism p in \mathscr{A} is called a (U, κ) -local retraction if Up is a κ -local retraction in \mathscr{C} .

The ascending chain condition for categories

Example ([Kaw23b])

- Set, Pos, and Ab satisfy ACC.
- **2** Ring and Lat $_{0,1}$ do not satisfy ACC.
- **3** Set^S satisfies ACC \Leftrightarrow S is finite. (S: a set)
- **5** Set $^{\rightarrow}$ satisfies ACC.
- Set → does not satisfy ACC.
- **3** Set $^{\omega^{op}}$ does not satisfy ACC.
- The category URel of sets with a unary relation satisfies ACC.
- The category BRel of sets with a binary relation does not satisfy ACC.