

Relational Algebra: Part I

Complete Course on Database Management System

DBMS ER to Relational Model & RA

By: Vishvadeep Gothi

ER Diagram to Relational Model

Many to Many Relationship

Teaches

Eid Frame Esolary <u>Cid</u> crame cfee

Teaches. Eid =) fk referring to Educators. Eid
Teaches. cid => fk referring to courses. Cid

_ unaccouratores Courses Teaches Eil-> ename osalang Cid-) chame che cid Eid -> since

all 3 relations are in BCNF

- 1							entity set.
J-> rel	alionship Education	tow areds	Educators		Tables		
	rame Esalar		ince	0	name		
<u>1</u> -		C1 2	010			•	
1		c2 2	كاه.				
1		c ₃ 2	0 ¹ 2				
2 -		cZ 2	- ۱۵				
3 -		(2	·20				

Principlay & Eid Cid but partial defendency => Eid -> Engre Esalony after removing partial dependency => 3 tables same as option 1

terke relationship infor towards courses entity set=12 tables Eductors Courses

Eid Ename Esalery Cid Chame Gee 5il since

Robber in Courses -> partial dep.

One to Many Relationship

unacateducatures students Eil Enance Esalony sid sname sdob guide tid jeur 51 Rohit 27 Jan E1 2022 52 Govindar 1 Feb E1 Eid -> Ename Esalem 2022 53 Ruja 23 met 62 C2 => S'1) -> more, lob, oride, Jenne 2023 oplionz:- Educators 2 tobles

Eductors

Eid Ename Esulany

5 hedered Sid sname sdob

S:1 Eig gar

51 EI

S2 <u>E1</u>

sid is ple six better to table

Keep it in some table

One to One Relationship

Aption-2i-my keep relationship if on towards license side.

rot
Novel

citizen

License

Lice

option 2 is better because license has total participation in relationship.

Participation Constraint

How to contre | participation in many to - many => ?

Generalization & Specialization

•

option 1:- 3 Tables Person (Pid, pname, bdob) Employee (pid, salan) continct (Pid, per hour) Overlapping

oplion 2:-2 tables Employer (Pid, prane, pdob, salen contact [Pid, pranc, podob, perhour

désjoint

Weak entity sit Employee 2 tables: defrendents Eid Enome Eswen Eidi dname abod

Relational Algebra

Relational algebra is a procedural query language, which takes instances of relations as input and yields instances of relations as output

The main application of relational algebra is to provide a theoretical foundation for relational databases, particularly for query languages.

Relational Algebra

Basics Operators:

- Select (σ)
- Project (∏)
- Union (U)
- 4. Set Difference (-)
- Intersection (∩)
- Cartesian Product (X)
- Rename (ρ)
- 8. Division (÷)

12. full outer join

select x Loom table (= 52L

RA- => TT (table)

(table)

Select

The SELECT operator chooses those tuples in the output that satisfy the specified condition.

σ_{<selection-condition>} (Relation name)

Select

Eid	Ename	Rating	Age
101	Richa	7	24
105	Rohan	9	20
120	Mahesh	8	26
145	Abhishek	10	29

To select those tuples of sailors relation where rating is greater than 8

find all sailors who have rating greater than 8 but age less than 25.

rating > 8 1 age < 20 (Sailors)

Select

Comparison operators that can be used in selection conditions are:

The select operation is commutative i.e.

$$\sigma_{\text{cond 1>}} (\sigma_{\text{cond 2>}} (R)) = \sigma_{\text{cond 2>}} (\sigma_{\text{cond 1>}} (R)) = \sigma_{\text{cond 1>}} (R)$$

The project operation is used to choose certain columns from the table and trashes out the other attribute fields

A projection is a unary operation written as $\prod_{A1, A2, ..., An}$ (r)

Fetch only Ename and salary of all employees from employee relation

Eid	Ename	Salary	Dno	Sex
101	Raman	30,000	1	М
102	Sneha	20,000	1	F
103	Maya	20,000	2	F
104	Ranjith	20,000	2	М
105	Mahesh	15,000	3	М

The project operation results in a set of a distinct tuple as the Project operation removes duplicate tuples

Write a relation algebra statement to find name of all such employees from department no 2 whose salary is greater than 17000

Eid	Ename	Salary	Dno	Sex
101	Raman	30,000	1	M
102	Sneha	20,000	1	F
103	Maya	20,000	2	F
104	Ranjith	20,000	2	М
105	Mahesh	15,000	3	М

Set Operations

- 1) Union
- 2) Intersection
- Set-difference

Set Operations

The two relations on which set operations are implemented upon must necessarily have similar data types of tuples. This condition is called type or union compatibility.

Eid	Ename	Age	Rating
20	Somya	24.0	7
30	Rahul	25.0	8
40	Ranjith	24.0	9
50	Yashvi	23.0	10
60	Sonam	27.0	8

Example

Eid	Ename	Age	Rating
30	Rahul	25.0	8
35	Satyam	24.0	9
50	Yashvi	23.0	10
60	Sonam	27.0	8

Question

Consider 2 relations Students(rno, sname, dob) and Employess(eld, ename, salary)

Write a relational algebra statement for corresponding SQL Query:

Select distinct sname from Students where dob='27-10-1988' Union Select distinct ename where salary>15000

Set Operations

Union and intersection are commutative and associative

Question

Consider 2 relations R1(x,y) and R2(x,y). R1 and R2 contains all Not NULL values. Will the following 2 statements be equivalent or not?

$$\pi_x(R1 \cup R2)$$

$$\pi_{x}(R1) \cup \pi_{x}(R2)$$

Question

Consider 2 relations R1(x,y) and R2(x,y). R1 and R2 contains all Not NULL values. Will the following 2 statements be equivalent or not?

$$\pi_x(R1 \cap R2)$$

$$\pi_{x}(R1) \cap \pi_{x}(R2)$$

Happy Learning.!

▲ 1 • Asked by Saloni

yeh ques nhi samaj aaya sir

▲ 1 • Asked by Rishabh

If the relation is not in BCNF then all the attributes of every Dependency not having a superkey in LHS is kept in a separate relation.

