Sannsynlighetsfordelinger:

Binomisk Fordeling:

- 1. n uavhengige delforsøk
- 2. Suksess eller ikke
- 3. P(A)=p i alle forsøk
- X = Antall ganger A intreffer på n forsøk.
- $X \sim binom(n, p)$
- $f(x) = \binom{n}{x} \cdot p^x \cdot (1-p)^{n-x}, \ x = 0, 1, 2, \dots, n$
- $P(X \le x) = \sum_{k=0}^{x} P(X = k)$
- E(X) = np Var(X) = np(1-p)

Hypergeometrisk:

- 1. Populasjon med N elementer.
- 2. k av disse regnes som "Suksess", N-k som flasko
- 3. Trekker n elementer uten tilbakelegging
- X, antallet suksesser.
- $f(x) = \frac{\binom{k}{x} \cdot \binom{N-k}{n-x}}{\binom{N}{x}}$
- E(X) = np $Var(X) = np(1-p)\frac{N-n}{N-1}$, p = k/N

Negativ-Binomisk:

X er antall forsøk en må gjøre for at en hendelse A skal intreffe k ganger

- $f(x) = {x-1 \choose k-1} \cdot p^x (1-p)^{x-k}, \ x = k, k+1, k+2, \dots$
- E(X) = k/p $Var(x) = k \cdot \frac{1-p}{n^2}$

Geometrisk:

X er antall forsøk en må gjøre for at hendelsen A intreffer første gang.

- $g(x) = P(X = x) = p(1 p)^{X-1}$
- E(X) = 1/p $Var(X) = \frac{1-p}{p^2}$ Geometrisk fordeling er minneløs!

Antall forekomster av hendelsen A er Poisson-fordelt hvis:

- 1. Antallet av A i disjunkte tidsintervall er uavhengige
- 2. Forventa antall av A er konstant lik λ (raten) per tidsenhet
- 3. Kan ikke få to forekomster samtidig
- X = antall forekomster av A i et tidsrom t
- $f(x) = \frac{(\lambda t)^x \cdot e^{-\lambda t}}{x!}, \ x = 0, 1, 2, \dots$
- $E(X) = \lambda t$ $Var(X) = \lambda t$
- $P(X \le x) = \sum_{k=0}^{x} P(X = k)$
- Ventetida til hendelse k er gammafordelt med $\alpha =$ $k \text{ og } \beta = 1/\lambda$
- Ventetida til første hendelse,og mellom etterfølgende hendelser, er eksponensialfordelt

Uniform fordeling:

En kontinuerlig uniformt fordelt variabel, samme sannsynlighet for alle verdier Generelt har vi tetthetsfunksjonen: intervall.

$$f(x) = \begin{cases} \frac{1}{B-A}, & A \le x \le B\\ 0, & \text{ellers} \end{cases}$$

• $E(X) = \frac{A+B}{2}$ $Var(X) = \frac{(A-B)^2}{12}$

Gammafordeling:

En kontinuerlig variabel X er gammfordelt med parameter $\alpha > 0$ og $\beta > 0$ dersom tetthetsfunksjonen er gitt

ved:
$$f(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\beta}}, & x > 0\\ 0, & \text{ellers} \end{cases}$$

• $E(X) = \alpha \beta$ $Var(X) = \alpha \beta^2$

Eksponensialfordeling:

•
$$f(x;\beta) = \begin{cases} \frac{1}{\beta}e^{-\frac{x}{\beta}}, & x > 0\\ 0, & ellers \end{cases}$$

• $E(X) = \beta$ $Var(X) = \beta^2$

Eksponensialfordelinga er minneløs!

Normalfordeling:

•
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• $P(a \le X \le b) = \int_a^b f(x) dx$

Standard normalfordeling:

- Alle normalfordelinger kan skrives som Standard normalfordeling
- $\bullet Z = \frac{X-\mu}{2}$
- $F(x) = F(X \le x) = P\left(\frac{X-\mu}{\sigma} \le \frac{x-\mu}{\sigma}\right) = P\left(Z \le \frac{x-\mu}{\sigma}\right) =$

Anta at X_1, X_2, \ldots, X_n er uavhengige og normalfordelt. Da er: $Y = \alpha_1 X_1 + \alpha_2 X_2 + \cdots + \alpha_n X_n$ Være normalfordelt med:

• $E(Y) = \sum_{i=1}^{n} \alpha_i \mu_i$ $Var(Y) = \sum_{i=1}^{n} \alpha_i^2 \sigma_i^2$

Inferens:

QQ-Plot:

- Plotter observasjoner mot teoretiske ("ideelle") observasjoner fra en aktuell fordeling.
- Teoretiske observasjoner er gitt ved invers kumulativ fordeling av jevnt spredte Sannsynlighetsfordelinger mellom 0 og 1.
- Om antatt fordeling stemmer skal plottet gi tilnermet rett linje.

Estimering:

Viktige estimatoregenskaper:

- En punktestimator Θ for en paramaeter θ er forventningsrett hvis $E(\Theta) = \theta$
- Variansen $Var(\Theta)$ burde synke med økende antall observasjoner

• Om en har to ulike estimatorer, så er den estimatoren med minst varians den mest effektive estimatoren.

Vanlige estimatorer:

Alle estimatorene vist til her er forventningsrett.

•
$$\mu$$
: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ $E(\overline{X}) = \mu$ $Var(\overline{X}) = \frac{\sigma^2}{n}$

•
$$\sigma^2$$
: $S^2 = \frac{1}{1-n} \sum_{i=1}^n (X_i - \overline{X})^2 \quad E(S^2) = \sigma^2 \quad Var(S^2) = \frac{2\sigma^4}{n-1}$

•
$$p$$
: $\hat{p} = \frac{X}{n}$ $E(\hat{p}) = p$ $Var(\hat{p}) = \frac{p(1-p)}{p}$ Binomisk

•
$$\mu_1 - \mu_2$$
: $\overline{X_1} - \overline{X_2}$ $Var(\overline{X_1} - \overline{X_2}) = \frac{\sigma_1^2}{n_1} - \frac{\sigma_2^2}{n_2}$

•
$$\frac{\sigma_1^2}{\sigma_2^2}$$
: $\frac{S_1^2}{S_2^2}$

•
$$p_1 - p_2$$
: $\hat{p_1} - \hat{p_2}$, Binomisk

•
$$\mu_D : \overline{D}$$

Utvalgsfordelinger:

$$\begin{array}{l} \overline{X} \sim N\left(\mu,\frac{\sigma}{\sqrt{n}}\right) \ Z = \frac{\overline{X} - E(\overline{X})}{\sqrt{Var\overline{X}}} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1) \ \text{Selv} \\ \text{om populasjonen ikke er normalfordelt gjelder dette når} \\ n \rightarrow \infty. \text{Regner vanligvis tilnærmina for god når } n > 30 \end{array}$$

Sentralgrenseteoremet:

Når utvalgsstørrelsen $N \to \infty$ så vil $\overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ for uansett fordeling av X. Godkjener dette for $N \ge 30$

\mathbf{T}

Hvis ukjent varians: $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$ Dette gjelder tilnærmet andre fordelinger som har klokkeliknende form.

S^2 :

Forutsatt normalfordeling: $\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \left| P\left(-z_{\frac{\alpha}{2}} \le \frac{X_0 - \overline{X}}{\sigma\sqrt{1 + \frac{1}{n}}} \le z_{\frac{\alpha}{2}}\right) = 1 - \alpha$ $\overline{X})^2 \sim \chi_{n-1}^2$

Binomisk forsøk med sannsynlighet p, gitt at n er stor nok: $Z = \frac{\hat{p} - E(\hat{p})}{\sqrt{Var(\hat{p})}} = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0, 1)$

$\hat{\mathbf{X}_1} - \hat{\mathbf{X}_2}$:

Kjent varians:

•
$$\hat{X}_1 - \hat{X}_2 \sim N\left(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$$

•
$$Z = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

Ukjent varians:

$$\bullet \quad \sigma_1^2 = \sigma_2^2 \colon T = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

$$S_p^2 = \frac{S_1^2 (n_1 - 1) + S_2^2 (n_2 - 1)}{n_1 + n_2 - 2}$$

•
$$\sigma_1^2 \neq \sigma_2^2$$
: $T' = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_v$,
 $v = \frac{(S_1^2/n_1 + s_2^2/n_2)^2}{\frac{(S_2^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}}$

Fra to uavhengige NF utvalg: $F = \frac{S_1^2 \sigma_2^2}{S_2^2 \sigma_1^2} \sim F_{n_1-1,n_2-1}$

$$Z = \frac{\frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}} \sim N(0, 1)$$

$\overline{\mathbf{D}}$ Difference av parvis utvalg

Gitt normalfordeling: $T = \frac{\overline{D} - \mu_D}{S_D/\sqrt{n}} \sim t_{n-1}$ Fra utvalgsfordelinger kan en utlede testobservatorer og

konfidensintervaller!

Utlede Konfidensintervall:

Anta at vi har X_1, X_2, \ldots, X_n stokastiske variabler, hvor sannsynlighetsfordelingen til disse inneholder en ukjent parameter θ . Anta også at vi har observasjoner x_1, x_2, \ldots, x_n . Har lyst å bruke disse for å finne et $100(1-\alpha)\%$ konfidensintervall:

- 1. Bestem en stokastiske variabel $Z = h(X_1, X_2, \dots, X_n, \theta)$ som følger en kjent fordeling. Altså finn utvalgsfordelingen for paramaeteren θ
- 2. Finn kvantilene $Z_{\frac{\alpha}{2}}$ og $Z_{1-\frac{\alpha}{2}}$. Da har en at: $P(Z_{1-\frac{\alpha}{2}} \leq h(X_1, X_2, \dots, X_n, \theta) \leq Z_{\frac{\alpha}{2}})$
- 3. Da er løsningen på ulikhetene $Z_{1-\frac{\alpha}{2}} \leq h(X_1, X_2, \dots, X_n, \theta)$ og $Z_{1-\frac{\alpha}{2}} \geq h(X_1, X_2, \dots, X_n, \theta)$ konfidensintervallet.

Prediksjonsintervall:

 μ, σ kjent:

$$P\left(-z_{\frac{\alpha}{2}} \le \frac{X_0 - \mu}{\sigma} \le z_{\frac{\alpha}{2}}\right) = 1 - \alpha$$

 μ kjent og σ ukjent:

$$P\left(-z_{\frac{\alpha}{2}} \le \frac{X_0 - \overline{X}}{\sigma\sqrt{1 + \frac{1}{\alpha}}} \le z_{\frac{\alpha}{2}}\right) = 1 - \alpha$$

 μ, σ ukjent:

$$P\left(-t_{\frac{\alpha}{2}} \le \frac{X_0 - \overline{X}}{S\sqrt{1 + \frac{1}{z}}} \le t_{\frac{\alpha}{2}}\right) = 1 - \alpha$$

Hypotesetesting:

Velger testobservator med kjent fordeling(Velger utvalgsfordelingen til parameteren) når nullhypotesen er Dersom utregna testobservator gir en verdi som er veldig usansynlig hvis nullhypotesen er sann forkastes nullhypotesen.

Forkastningsområde:

Forkastnings område velges slik at det skal være en sannsynlighet α for å få en så ekstrem verdi, dersom H_0 er sant. Kritisk verdi blir da z_{α} , og vi forkaster H_0 om $Z > z_{\alpha}$

Kritisk region:

Hypotesetest for parameter θ og fordeling z:

Type 1 og type 2 feil:

- Type 1: Forkaste h_0 når h_0 er sann: $\alpha = P(\text{Forkaste } h_0 \mid h_0 \text{ sann})$
- Type 2: Forkaster ikke h_0 når h_1 er sann: $\beta = P(\text{Beholder } h_0 \mid h_1 \text{ sann})$

P-verdi:

 $P(\text{minst like ekstremt resultat som vi fikk}|H_0 \text{ sann})$

Styrken til hypotesetest:

Styrken = $1 - P(\text{type II-feil}) = 1 - \beta$

Enkel lineær regresjon:

Regresjonsmodell:

- $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, ..., n$
- Forutsatt: $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma^2$
- $E(Y_i) = \mu_{Y|x_i} = \beta_0 + \beta_1 x_i, \ Var(Y_i) = \sigma_{Y|x_i}^2 = \sigma^2$

Minste kvadraters metode:

- Brukes for å finne β_0, β_1 fra data
- Vil minimere $SSE = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i b_0 b_1)$
- Minste verdier av b_0, b_1 kan finnes ved partiellderivasjon.
- $b_1 = \frac{\sum_{i=1}^{n} (x_i \overline{x})(Y_i \overline{Y})}{\sum_{i=1}^{n} (x_i \overline{x})^2}, \ b_0 = \overline{Y} b_1 \overline{x}$
- b_0, b_1 forventningsrette estimatorer for β_0, β_1
- $Var(b_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i \overline{x})^2}$
- $Var(b_0) = \frac{\sigma^2 \sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i \overline{x})^2}$
- $S^2 = \frac{SSE}{n-2}$

Inferens av parametere:

- $T = \frac{b_1 E(b_1)}{SE(b_1)} = \frac{b_1 \beta_1}{\sqrt{\sum_{i=1}^n (x_i \overline{x})^2}}$, t-fordelt, n-2 frihetsgrader
- $T = \frac{b_0 E(b_0)}{SE(b_0)} = \frac{b_0 \beta_0}{S\sqrt{\frac{\sum_{i=1}^n x_i^2}{n\sum_{i=1}^n (x_i \overline{x})^2}}}$,t-fordelt, n 2 fri-

hetsgrader

Inferens av σ^2 og $\mu_{\mathbf{Y}|\mathbf{x}_0}$:

- σ^2 : $V = \frac{(n-2)S^2}{\sigma^2}$, χ^2 -fordelt, n-2 frihetsgrader
- $\mu_{Y|x_0}$: $T = \frac{\hat{Y}_0 \mu_{Y|x_0}}{S\sqrt{\frac{1}{n} + \frac{(x_0 \overline{x})^2}{\sum_{i=1}^n (x_i \overline{x})^2}}}$, t-fordelt, n-2 frihetsgrader

Generell sannsynlighet og statistikkregler:

- Addisjonsregel $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Betinget sannsynlighet $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- Multiplikasjonsregelen: $P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$
- Kumulativ fordelingsfunksjon: $F(X) = P(X \le x) = \begin{cases} \sum_{t \le x} P(X = t), & \text{diskret} \\ \int_{-\infty}^{x} f(t) dt, & \text{Kont.} \end{cases}$

• Forventningsverdi:

$$E(X) = \begin{cases} \sum_{x} X f(x), \text{ Diskret} \\ \int_{-\infty}^{\infty} X f(x) \text{ Kont.} \end{cases}$$

• Varians:

$$Var(X) = \begin{cases} \sum_{x} (x - \mu)^2 f(x) = E(X^2) - E(X)^2 \text{ Disk} \\ \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx \cdot \mu^2 \end{cases}$$

- E(X + Y) = E(X) + E(Y) E(cX) = cE(X)
- Var(X + Y) = Var(X) + Var(Y) $Var(aX + b) = a^2Var(X)$ Ved uavhengighet.

Simultanfordeling for to variabler:

- $P((x,y) \in A) = \begin{cases} \int \int_A f(x,y) dx dy \text{ Kont.} \\ \sum \sum_A F(x,y) \text{ Diskret.} \end{cases}$
- $g(x) = \int_{-\infty}^{\infty} f(x, y) dy$ eller $\sum_{y} f(x, y)$ Samme for h(y)
- $f(y|x) = \frac{f(x,y)}{g(x)}$
- $\sigma_{XY} = Cov(X, y) = E[(X \mu_X)(Y \mu_Y)] = \begin{cases} \sum_x \sum_y (x \mu_X)(y \mu_Y) f(x, y), \text{ Diskret} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x \mu_X)(y \mu_Y) f(x, y) dx dy \text{ Kont.} \end{cases}$
- $\rho_{XY} = Cor(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$
- X, Y uavhengig $\Rightarrow Cov(x, y) = 0$

Sannsynlighetsmaksimeringsestimator:

Brukes hvis en ikke har/vet en naturlig estimator for en parameter θ

- 1. $L(\theta) = f(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 2. Bruk ln(L) og deriver med hensyn på theta.
- 3. Løs $\frac{\partial L}{\partial \theta}(\theta) = 0$ for θ