

Advanced Probabilistic Machine Learning

Exercise session 10 – Variational inference

Aleix Nieto Juscafresa

Division of Systems and Control Department of Information Technology Uppsala University

aleix.nieto-juscafresa@it.uu.se aleixnieto.github.io/

Bayesian framework reminder

In this course, we solve problems using Bayes' theorem

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathcal{D})}$$

Objective: Update the belief about the parameters θ of our model based on observed data \mathcal{D} using Bayes' theorem.

- D: observed data
- θ : parameters of our model
- $p(\theta)$: **prior** belief of parameters before we collected any data
- $p(\theta|\mathcal{D})$: **posterior** belief of parameters after inferring data
- $p(\mathcal{D}|\theta)$: **likelihood** of the data in view of the parameters

Inference methods

Broad set of techniques for making inferences about model parameters or latent variables based on observed data.

- Exact inference: Conjugate priors
 - + Exact
 - + Fast
 - Limited applicability (there is not always a closed form sol.)
- Stochastic approximate inference: Monte Carlo
 - + Asymptotically exact (converges to the true posterior)
 - Computationally costly
 - ↓ Today:
- Deterministic approximate inference:
 Expectation propagation (EI) and Variational inference (VI)
 - + Fast (compared to MC)
 - Not asymptotically exact.

Deterministic approx. inference: The idea

Instead of sampling (as in Monte Carlo methods), we turn the inference problem into an optimization problem.

Approximate the posterior $p(\pmb{\theta}|\mathcal{D})$ with tractable distribution $q(\pmb{\theta}) \in Q$

$$\hat{q}(\boldsymbol{\theta}) = \underset{q(\boldsymbol{\theta}) \in Q}{\operatorname{arg min}} D\left(p(\boldsymbol{\theta}|\mathcal{D}), q(\boldsymbol{\theta})\right)$$

Kullback-Leibler divergence

A common choice is the Kullback-Leibler divergence

$$\mathrm{KL}\left[p \parallel \mathbf{q}\right] = -\int p(\mathbf{x}) \ln \frac{\mathbf{q}(\mathbf{x})}{p(\mathbf{x})} d\mathbf{x}.$$

Some properties

- Non-negative KL $[p(\mathbf{x}) \parallel q(\mathbf{x})] \geq 0$
- KL $[p(\mathbf{x}) \parallel q(\mathbf{x})] = 0$ if and only if $p(\mathbf{x}) = q(\mathbf{x})$
- Non-symmetric $\mathrm{KL}\left[p(\mathbf{x}) \parallel q(\mathbf{x})\right] \neq \mathrm{KL}\left[q(\mathbf{x}) \parallel p(\mathbf{x})\right]$

EP vs. VI

The non-symmetry leads to two different classes of variational approximations:

Expectation Propagation (EP)

$$D(p(\boldsymbol{\theta}|\mathcal{D}), q(\boldsymbol{\theta})) = \text{KL}[p(\boldsymbol{\theta}|\mathcal{D}) \parallel q(\boldsymbol{\theta})]$$

Variational Inference (VI)

$$D(p(\boldsymbol{\theta}|\mathcal{D}), q(\boldsymbol{\theta})) = \text{KL}[q(\boldsymbol{\theta}) \parallel p(\boldsymbol{\theta}|\mathcal{D})]$$

- Tends to underestimate variance → narrower approximation leads to overconfidence
- May not explore lower probability but important regions, limiting the posterior's uncertainty representation.

EP vs. VI

Let

$$p(\theta) = 0.2\mathcal{N}\left(\theta; 5, 1^2\right) + 0.8\mathcal{N}\left(\theta; -5, 2^2\right)$$
$$q(\theta) = \mathcal{N}\left(\theta; \mu, \sigma^2\right)$$

Expectation propagation

Variational inference

EP vs. VI

Expectation propagation

$$\begin{split} \text{KL}\left[p \parallel q_{\mu,\sigma}\right] = \\ -\int p(\theta) \ln \frac{q_{\mu,\sigma}(\theta)}{p(\theta)} d\theta \end{split}$$

non-zero-forcing

Where $p \gg 0$, q needs to be $\gg 0$.

Variational inference

$$\begin{split} \operatorname{KL}\left[q_{\mu,\sigma} \parallel p\right] = \\ -\int q_{\mu,\sigma}(\theta) \ln \frac{p(\theta)}{q_{\mu,\sigma}(\theta)} d\theta \end{split}$$

zero-forcing

Where $p \approx 0$, q needs to be ≈ 0 .

Moment matching

For the first form

$$\begin{aligned} \operatorname{KL}\left[p \parallel q_{\mu,\sigma}\right] \\ &= -\int p(\theta) \ln \frac{q_{\mu,\sigma}(\theta)}{p(\theta)} d\theta \end{aligned}$$

we have that $\hat{\mu}, \hat{\sigma} = \arg\min_{\mu,\sigma} \mathrm{KL}\left[p \parallel q_{\mu,\sigma}\right]$ gives

$$\hat{\boldsymbol{\mu}} = \int \theta p(\theta) d\theta = \mathbb{E}_p[\theta] = \mu_p$$

$$\hat{\boldsymbol{\sigma}}^2 = \int (\theta - \hat{\boldsymbol{\mu}})^2 p(\theta) d\theta = \mathbb{E}_p[(\theta - \hat{\boldsymbol{\mu}})^2] = \sigma_p^2$$

We call this moment matching

(Exercise 2!)

Variational inference

The KL divergence is tricky to compute since it contains an expression of the posterior which we do not have access to.

However, it can be reformulated as:

$$\ln p(\mathcal{D}) = \underbrace{\int \frac{q(\boldsymbol{\theta}) \ln \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta})} d\boldsymbol{\theta}}_{\mathcal{L}(q) \text{ = ELBO}} - \underbrace{\operatorname{KL}\left[\frac{q(\boldsymbol{\theta})}{\| p(\boldsymbol{\theta}|\mathcal{D})}\right]}_{\bigstar \geq 0}.$$

- $\ln p(\mathcal{D}) \geq \mathcal{L}(q)$, i.e., it is a lower bound on the worst-case for the log-likelihood of the data $\ln p(\mathcal{D})$.
- By maximizing $\mathcal{L}(q)$ we get a minimum of \bigstar .
- ELBO is usually tractable to estimate via Monte-Carlo.

 $oxed{1}
ightarrow ext{Captures the essential "information"}$

Goal: Make $q(\theta)$ reflect the key characteristics of $p(\theta|\mathcal{D})$.

- KL divergence measures how one probability distribution diverges from a second reference distribution.
- In the context of variational inference:
 - True posterior $p(\theta|\mathcal{D})$ contains the full information about parameters given data.
 - Approximate posterior $q(\theta)$ tries to capture the essential information while constrained by its form (e.g., Gaussian).

$oxed{2} ightarrow ext{KL minimization and low-probability regions}$

- Minimizing $\mathsf{KL}(q(\theta) \parallel p(\theta|\mathcal{D}))$ prevents $q(\theta)$ from assigning mass to low-probability regions of $p(\theta|\mathcal{D})$.
- KL divergence is:

$$\mathsf{KL}(q(\theta) \parallel p(\theta|\mathcal{D})) = \int q(\theta) \log \left(\frac{p(\theta|\mathcal{D})}{q(\theta)}\right) d\theta$$

- A small ratio $\frac{p(\theta|\mathcal{D})}{q(\theta)}$ (when $p(\theta|\mathcal{D})$ is small) leads to a high KL cost.
- \bullet This encourages $q(\theta)$ to focus on regions where $p(\theta|\mathcal{D})$ has significant mass.

- $oxed{3}
 ightarrow ext{Intractability of } \log p(\mathcal{D})$
 - The marginal likelihood $p(\mathcal{D})$ is:

$$p(\mathcal{D}) = \int p(\mathcal{D}|\theta)p(\theta)d\theta$$

- This involves integrating over the entire parameter space θ .
- Reasons for intractability:
 - $p(\theta)$ and $p(\mathcal{D}|\theta)$ can be complex, high-dimensional distributions.
 - Does not have a closed-form solution in most cases.
 - Numerical methods become inefficient in high-dimensional parameter spaces.
- Variational inference avoids direct computation by approximating the evidence.

- - Maximum likelihood estimation maximizes the likelihood:

$$\hat{\theta}_{\mathsf{MLE}} = \arg\max_{\theta} p(\mathcal{D}|\theta)$$

Variational inference instead maximizes the ELBO:

$$\mathsf{ELBO} = \mathbb{E}_q[\log p(\mathcal{D}|\theta)] - \mathsf{KL}(q(\theta) \parallel p(\theta))$$

- KL divergence acts as a regularization term, penalizing $q(\theta)$ if it deviates too much from the prior $p(\theta)$.
- This balances fitting the data well (likelihood) with staying close to prior beliefs (regularization), preventing overfitting.