A Continuous Life-years Gained Priority Score for Ventilator Allocation

William Parker, Siva Bhavani, Susan Han, Dwight Miller, Monica Malec, Mark Siegler

- 1 Theory
- 2 Simulation using CDC data

Theory

In military triage situations, a utilitarian framework is employed to save the greatest number of wounded soliders in a mass casualty event

Identify patients who will survive without critical care (Green)

In military triage situations, a utilitarian framework is employed to save the greatest number of wounded soliders in a mass casualty event

- Identify patients who will survive without critical care (Green)
- Exclude patients who obviously will not survive with critical care (Blue)

In military triage situations, a utilitarian framework is employed to save the greatest number of wounded soliders in a mass casualty event

- Identify patients who will survive without critical care (Green)
- Exclude patients who obviously will not survive with critical care (Blue)
- 3 Rank order patients who will die without critical care by P(ICUSurvival) (Red > Yellow)

In military triage situations, a utilitarian framework is employed to save the greatest number of wounded soliders in a mass casualty event

- Identify patients who will survive without critical care (Green)
- Exclude patients who obviously will not survive with critical care (Blue)
- 3 Rank order patients who will die without critical care by P(ICUSurvival) (Red > Yellow)
- 4 Treat as many patients as possible in order of P(ICUSurvival)

Problems with military triage approach in the COVID-19 Pandemic

Three patients with COVID-19

28 year old female
• SOFA: 30% survival

80 year old male
• SOFA: 75% survival

60 year old male
• SOFA: 50% survival

Who gets the one remaining ventilator?

New York ventilator allocation policy

Step 2 – Mortality Risk Assessment Using SOFA ¹				
Color Code and Level of Access	Assessment of Mortality Risk/ Organ Failure			
Blue No ventilator provided. Use alternative forms of medical intervention and/or palliative care or discharge. Reassess if ventilators become available.	Exclusion criterion OR SOFA > 11			
Red Highest Use ventilators as available	SOFA < 7 OR Single organ failure ²			
Yellow Intermediate Use ventilators as available	SOFA 8 – 11			
Green Use alternative forms of medical intervention or defer or discharge. Reassess as needed.	No significant organ failure AND/OR No requirement for lifesaving resources			

William Parker, Siva Bhavani, Susan Han, Dwight Miller, Monica Malec, Mark Siegler

Priority rankings under NY triage system

Goes against "youngest first" allocation principles and does not maximize life-years saved

Multiprinciple approach

Principle	Specification	Point System*			
		1	2	3	4
Save the most lives	Prognosis for short-term survival (SOFA score)	SOFA score <6	SOFA score, 6-9	SOFA score, 10–12	SOFA score >12
Save the most life-years	Prognosis for long-term survival (medical assessment of comorbid conditions)	No comorbid conditions that limit long-term survival	Minor comorbid conditions with small impact on long-term survival	Major comorbid conditions with substantial impact on long-term survival	Severe comorbid conditions; death likely within 1 year
Life-cycle principle†	Prioritize those who have had the least chance to live through life's stages (age in years)	Age 12–40 y	Age 41-60 y	Age 61–74 y	Age ≥75 y

SOFA = Sequential Organ Failure Assessment.

White

et al, Ann Internal Medicine, 2009 What justification for relative weight of each category? Why categorical?

^{*} Persons with the lowest cumulative score would be given the highest priority to receive mechanical ventilation and critical care services.

[†] Pediatric patients may need to be considered separately, because their small size may require the use of different mechanical ventilators and personnel.

Maximizing life-years gained

An alternative utilitarian approach is to maximize life-years gained

Priority Score that maximizes life-years gained

$$PriorityScore = P(ICUSurvival) * (100 - age)$$

Example: Maximizing life-years

Life-years gained allocation

28 year old female

- · SOFA: 30% survival
- 100 28 = 72 years of life left
- · 22 life-years gained with vent

- SOFA: 75% survival
- 100 80 = 20 years of life left
- 15 life-years gained with vent

60 year old male

- SOFA: 50% survival
- 100 60 = 40 years of life left
 - 20 life-years gained with vent

3

2

1

Priority Score vs. Patient Age, by Probability of ICU Survival

Range of possible priority scores by patient age

Simulation using CDC data

Data sources

We took data from the CDC report Severe Outcomes Among Patients with Coronavirus Disease 2019 — United States, February 12–March 16, 2020

Simulated ICU population from CDC data distribution

Simulated SOFA score distribution

f(SOFA|age)Currently drawn from a truncated normal distribution with lower limit a=3, upper limit b=20, $\mu=7+0.1*(age-65)$, and $\sigma=3.5$ need to replace with a

Calibration of the SOFA score

The Sequential Organ Failure Assesment (SOFA) score is a validated bedside predictor of ICU mortality. The calibration of SOFA scores is drawn from *Raith et al. JAMA*, 2017

SOFA Score by Age

Age	Mean SOFA	Survival with Ventilator
20–44	5.6	84%
45-54	6.5	81%
55-64	6.9	78%
65–74	7.9	74%
75–84	8.8	69%
85	9.3	66%

Simulated Hypothetical Outcomes by Age

Lottery allocation

lottery allocation - ICU outcomes

A random allocation of 500 ventilators would save 379 out of 1000 who were in need of mechanical ventilation. A lottery saves 13,539 (39%) out of a total of possible 34,729 life years.

William Parker, Siva Bhavani, Susan Han, Dwight Miller, Monica Malec, Mark Siegler

Lottery- age vs. SOFA

Youngest first allocation

Youngest first allocation 500 ventilators would save 395 out of 1000 who were in need of mechanical ventilation. Youngest first saves 19,443 (56%) out of a total of possible 34,729 life years.

William Parker, Siva Bhavani, Susan Han, Dwight Miller, Monica Malec, Mark Siegler

Youngest first - ICU allocation

Youngest first allocation- age vs. SOFA

NY allocation

NY allocation systems of 500 ventilators would save 435 out of 1000 who were in need of mechanical ventilation. Youngest first saves 17,032 (49%) out of a total of possible 34,729 life years.

William Parker, Siva Bhavani, Susan Han, Dwight Miller, Monica Malec, Mark Siegler

NY outcomes- population allocated vents

NY allocation system- age vs. SOFA

- ventilator (death)
- ventilator (survival)
- palliative care

NY triage category

- Highest
- Intermediate
- No ventilator

Maximizing ICU survival

A max ICU survival triage system of 500 ventilators would save 441 out of 1000 who were in need of mechanical ventilation. Max ICU survival saves 17,944 out of a total of possible 34,729 (52%)

William Parker, Siva Bhavani, Susan Han, Dwight Miller, Monica Malec, Mark Siegler

Maximizing ICU survival- ICU Outcomes

Max ICU survival- age vs. SOFA

Maximizing Life-years gained

Prioritizing life-years for 500 ventilators would save 423 out of 1000 patients admitted to the ICU. Maximizing life-years gained saves 20,186 out of a total of possible 34,729 (58%) life-years.

William Parker, Siva Bhavani, Susan Han, Dwight Miller, Monica Malec, Mark Siegler

Max Life Years- ICU Outcomes by Age

Max life years- age vs. SOFA

Comparing system performance

Survivors	Life-years saved
379 (38%)	13,539 (39%)
395 (40%)	19,443 (56%)
435 (44%)	17,032 (49%)
441 (44%)	17,944 (52%)
423 (42%)	20,186 (58%)
	379 (38%) 395 (40%) 435 (44%) 441 (44%)

Maximizing life-years vs. ICU survival

Prioritizing young sick patients over old healthy patients leads to more ICU deaths in exchange for more life-years gained.

The Tradeoff

Prioritizing life-years gained over ICU survival saves an additional 2,242 life-years for this 1000 patient sample, at a cost of 18 more deaths in the ICU.