Modélisation des actions mécaniques dans les systèmes Révisions 2- Modélisation du frottement

Industrielles de

l'Ingénieur

Sciences

TD

Système EOS *

Banaue PT SIA - 2016

Savoirs et compétences :

Mise en situation

Objectif Déterminer les conditions de non arcboutement du guidage du système EOS.

Travail à réaliser

Question 1 En introduisant $F_I = Y_I \overrightarrow{y} + Z_I \overrightarrow{z}$ et $F_J = Y_J \overrightarrow{y} + Z_J \overrightarrow{z}$, les glisseurs en I et J qui résultent des actions mécaniques exercées par la colonne 2 sur le bras 1, écrire les trois équations scalaires traduisant l'équilibre du bras.

Correction

En appliquant le PFS en B, on a :

En appliquant le PFS en B, on a:
$$\begin{cases} Y_I + Y_J = 0 \\ Z_I + Z_J - F = 0 \\ -Y_J \frac{\ell}{2} - Z_J \left(e + \frac{d}{2} \right) + Y_I \frac{\ell}{2} - Z_I \left(e - \frac{d}{2} \right) = 0 \end{cases}$$

Question 2 En supposant que F > 0, comme précisé ci-dessus, donner les signes des composantes Y_I , Z_I , Y_I et Z_I puis écrire, en utilisant le modèle de Coulomb, les inéquations qui lient ces composantes.

Correction

On a de plus :
$$\begin{cases} Y_I \ge 0 \text{ et } Z_I \ge 0 \\ Y_J \le 0 \text{ et } Z_J \ge 0 \\ |Z_I| \le f|Y_I| \text{ et } |Z_J| \le f|Y_J| \end{cases} \Rightarrow \begin{cases} Y_I \ge 0 \text{ et } Z_I \ge 0 \\ Y_J \le 0 \text{ et } Z_J \ge 0 \\ Z_I \le fY_I \text{ et } Z_J \le -fY_J \end{cases}$$

Question 3 En supposant qu'on est à la limite du glissement au niveau d'un des contacts, donner la condition nécessaire entre ℓ , f et e pour qu'il n'y ait pas d'arcboutement dans la liaison.

Correction

On considère qu'on est à la limite du glissement au point I. En conséquences,

$$\begin{cases} Z_{I} = f Y_{I} \\ Y_{I} + Y_{J} = 0 \\ Z_{I} + Z_{J} - F = 0 \\ -Y_{I} \frac{\ell}{2} - Z_{J} \left(e + \frac{d}{2} \right) + Y_{I} \frac{\ell}{2} - Z_{I} \left(e - \frac{d}{2} \right) = 0 \end{cases} \iff \begin{cases} Z_{I} = f Y_{I} \\ Y_{J} = -Y_{I} \\ Z_{J} = F - Z_{I} = F - f Y_{I} \\ Y_{I} \frac{\ell}{2} - \left(F - f Y_{I} \right) \left(e + \frac{d}{2} \right) + Y_{I} \frac{\ell}{2} - f Y_{I} \left(e - \frac{d}{2} \right) = 0 \end{cases}$$

$$\Leftrightarrow Y_{I} \left(\frac{\ell}{2} + f \left(e + \frac{d}{2} \right) + \frac{\ell}{2} - f \left(e - \frac{d}{2} \right) \right) - F \left(e + \frac{d}{2} \right) = 0$$

$$\Leftrightarrow Y_{I} \left(\ell + f d \right) - F \left(e + \frac{d}{2} \right) = 0$$

1

et
$$\Leftrightarrow$$
 $F = Y_I \frac{\ell + f d}{e + \frac{d}{2}} = Y_I \frac{2\ell + 2f d}{2e + d}$
De plus, au point I , on a pécessai

De plus, au point J, on a nécessairement : $Z_J \le -f Y_J$. En conséquences,

$$F - f Y_I \le f Y_I$$

$$\Leftrightarrow F - f Y_{I} \le f Y_{I} \Leftrightarrow F \le 2f Y_{I} \Leftrightarrow F \le 2f Y_{I} \Leftrightarrow Y_{I} \frac{2\ell + 2f d}{2e + d} \le 2f Y_{I} \Leftrightarrow \frac{2\ell + 2f d}{2e + d} \le 2f \Leftrightarrow 2\ell + 2f d \le 4f e + 2f d$$

$$\Leftrightarrow \ell \le 2f e \Leftrightarrow \frac{\ell}{2e} \le f$$

Correction

On considère qu'on est à la limite du glissement au point J. En conséquences,

$$\begin{cases} Z_{J} = -f Y_{J} \\ Y_{I} + Y_{J} = 0 \\ Z_{I} + Z_{J} - F = 0 \\ -Y_{J} \frac{\ell}{2} - Z_{J} \left(e + \frac{d}{2} \right) + Y_{I} \frac{\ell}{2} - Z_{I} \left(e - \frac{d}{2} \right) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} Z_{J} = -f Y_{J} \\ Y_{I} = -Y_{J} \\ Z_{I} = -Z_{J} + F = f Y_{J} + F \\ -Y_{J} \frac{\ell}{2} + f Y_{J} \left(e + \frac{d}{2} \right) - Y_{J} \frac{\ell}{2} - \left(f Y_{J} + F \right) \left(e - \frac{d}{2} \right) = 0 \end{cases}$$

$$\text{Et donc } Y_{J} \left(-\ell + f \left(e + \frac{d}{2} \right) - f \left(e - \frac{d}{2} \right) \right) - F \left(e - \frac{d}{2} \right) = 0 \Leftrightarrow Y_{J} \left(-\ell + f d \right) - F \left(e - \frac{d}{2} \right) = 0 \Leftrightarrow Y_{J} \left(-\ell + f d \right) = F \left(e - \frac{d}{2} \right) \Leftrightarrow F = Y_{J} \frac{-\ell + f d}{e - \frac{d}{2}}$$

$$\text{Parasillary a real } Z_{J} \approx f Y_{J} = f Y_{J}$$

Par ailleurs, on a: $Z_I \le f Y_I \Leftrightarrow f Y_J + F \le -f Y_J$ $\Leftrightarrow 2f Y_J + F \le 0 \Leftrightarrow 2f Y_J + Y_J \frac{-\ell + f d}{e - \frac{d}{2}} \le 0 \Leftrightarrow 2f + \frac{-\ell + f d}{e - \frac{d}{2}} \ge 0 \ (Y_J < 0) \Leftrightarrow \frac{2f e - f d - \ell + f d}{e - \frac{d}{2}} \ge 0 \Leftrightarrow \frac{2f e - \ell}{e - \frac{d}{2}} \ge 0 \Leftrightarrow \frac{2f$

0.

• Si
$$e - \frac{d}{2} > 0$$
: $2fe - \ell \ge 0$ et $f \ge \frac{\ell}{2e}$.
• Si $e - \frac{d}{2} < 0$: $2fe - \ell \le 0$ et $f \le \frac{\ell}{2e}$.

• Si
$$e - \frac{d}{2} < 0$$
: $2fe - \ell \le 0$ et $f \le \frac{2\ell}{2e}$.

Conclusion vis-à-vis de l'objectif

Question 4 Vérifier que la condition de non arcboutement est satisfaite sur le système EOS pour lequel les grandeurs caractéristiques fournies ci-dessous?

Correction Pour ne pas arcbouter, il faut donc vérifier la relation $\frac{\ell}{2e} > f : \frac{20}{2 \times 20} > f$ et donc 0,5 > 0,2. La condition de glissement est donc vérifiée.