Leçon 234. Fonctions et espaces de fonctions Lebesgue-intégrables.

1. NOTATION. Le corps \mathbf{R} ou \mathbf{C} sera noté \mathbf{K} . L'ensemble \mathbf{R}^d pour un entier $d \ge 1$ est toujours muni de sa tribu borélienne $\mathcal{B}(\mathbf{R}^d)$.

I. Intégration des fonctions mesurables

I.1. Fonctions mesurables et étagées

2. DÉFINITION. Une fonction $f\colon X\longrightarrow Y$ entre deux espaces mesurables (X,\mathscr{A}) et (Y,\mathscr{B}) est mesurable si

$$\forall B \in \mathscr{B}, \quad f^{-1}(B) \in \mathscr{A}.$$

- 3. EXEMPLE. Pour tout ensemble $A \in \mathcal{A}$, la fonction indicatrice $\mathbf{1}_A \colon X \longrightarrow \{0,1\}$ où l'ensemble d'arrivée $\{0,1\}$ est muni de la tribu discrète $\mathscr{P}(\{0,1\})$ est mesurable.
- 4. Théorème. Lorsque les espaces X et Y sont deux espaces métriques munis de leurs tribus boréliennes respectives, toute fonction continue $X \longrightarrow Y$ est mesurable.
- 5. Remarque. La somme et le produit de deux fonctions mesurables $X \longrightarrow \mathbf{K}$ est encore mesurable. Une limite simple de fonctions mesurables $X \longrightarrow \overline{\mathbf{R}}$ l'est encore.
- 6. DÉFINITION. Une fonction $f \colon X \longrightarrow \mathbf{K}$ est étagée si elle est mesurable et ne prend qu'une nombre fini de valeurs.
- 7. Remarque. Toute fonction étagée $f: X \longrightarrow \mathbf{K}$ est de la forme

$$f = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i}$$

pour des scalaires $\alpha_i \in \mathbf{K}$ et une partition $\{A_1, \ldots, A_n\} \subset \mathscr{A}$ de l'ensemble X. Cette écriture est unique lorsqu'on impose que les nombres α_i soient deux à deux distincts : on obtient l'écriture canonique

$$f = \sum_{\alpha \in f(X)} \alpha \mathbf{1}_{\{f = \alpha\}}.$$

- 8. EXEMPLE. Soit X un ensemble muni de sa tribu discrète. Une fonction $X \longrightarrow \mathbf{K}$ est étagée si et seulement si son image est finie.
- 9. THÉORÈME. Soient $f: X \longrightarrow \mathbf{K}$ une fonction mesurable. Alors il existe une suite $(f_n)_{n \in \mathbf{N}}$ de fonctions étagées qui converge simplement vers la fonction f, c'est-à-dire telle que $f_n(x) \longrightarrow f(x)$ pour tout élément $x \in X$. Si la fonction f est positive, alors la suite $(f_n)_{n \in \mathbf{N}}$ peut être choisie croissante et les fonctions f_n positives.

I.2. Intégrale d'une fonction mesurable ou intégrable

10. DÉFINITION. Soit (X, \mathcal{A}, μ) un espace mesuré. L'intégrale d'une fonction étagée positive $f \colon X \longrightarrow \mathbf{R}_+$ par rapport à la mesure μ est la quantité

$$\int_X f \, \mathrm{d}\mu := \sum_{\alpha \in f(X)} \alpha \mu(\{f = \alpha\}) \in \mathbf{R} \cup \{+\infty\}.$$

11. Exemple. Pour un ensemble $A \in A$, on peut écrire

$$\int_X \mathbf{1}_A \, \mathrm{d}\mu = \mu(A).$$

12. DÉFINITION. L'intégrale d'une fonction mesurable positive $f: X \longrightarrow \mathbf{R}_+ \cup \{+\infty\}$ par rapport à la mesure μ est la quantité

$$\int_X f \, \mathrm{d}\mu \coloneqq \sup \left\{ \int_X \varphi \, \mathrm{d}\mu \ \middle| \ \varphi \colon X \longrightarrow \mathbf{R}_+ \cup \{+\infty\} \ \text{mesurable}, \ \varphi \leqslant f \right\}.$$

13. THÉORÈME (Beppo Levi). Soit $(f_n)_{n \in \mathbb{N}}$ une suite croissantes de fonctions mesurables positives sur X. Alors sa limite simple f est mesurable positive et

$$\int_X f \, \mathrm{d}\mu = \lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu.$$

14. EXEMPLE. Pour tout réel $\alpha < 1$, on a

$$\int_0^n \left(1 - \frac{x}{n}\right)^n e^{\alpha x} \, \mathrm{d}x \longrightarrow \frac{1}{1 - \alpha}.$$

- 15. PROPOSITION. Soient $f, g: X \longrightarrow \mathbf{R}_+ \cup \{+\infty\}$ deux fonctions mesurables positives et $\lambda \geq 0$ un réel.
 - Si $f \leq g$, alors $0 \leq \int_{\mathbf{Y}} f \, d\mu \leq \int_{\mathbf{Y}} g \, d\mu$;
 - On a $\int_X (\lambda f + g) d\mu = \lambda \int_X f d\mu + \int_X g d\mu$.
- 16. Proposition. Soit $f: X \longrightarrow \mathbf{R}_+ \cup \{+\infty\}$ une fonction mesurable positive. Alors

$$\int_X f \, \mathrm{d}\mu = 0 \quad \Longleftrightarrow \quad \mu(\{f \neq 0\}) = 0.$$

- 17. COROLLAIRE. Soient $f, g: X \longrightarrow \mathbf{R}_+ \cup \{+\infty\}$ deux fonctions mesurables positives. Si f = g presque partout, alors $\int_X f \, \mathrm{d}\mu = \int_X g \, \mathrm{d}\mu$.
- 18. DÉFINITION. Une fonction $f: X \longrightarrow \mathbf{K}$ est intégrable si

$$\int_{V} |f| \, \mathrm{d}\mu < +\infty.$$

Dans ce cas, lorsque $\mathbf{K} = \mathbf{R}$, on pose

$$\int_X f \, \mathrm{d}\mu := \int_X f^+ \, \mathrm{d}\mu - \int_X f^- \, \mathrm{d}\mu$$

et, lorsque $\mathbf{K} = \mathbf{C}$, on pose

$$\int_X f \, \mathrm{d}\mu := \int_X \mathrm{Re} \, f \, \mathrm{d}\mu + i \int_X \mathrm{Re} \, f \, \mathrm{d}\mu.$$

19. EXEMPLE. Dans l'espace $(\mathbf{N}, \mathscr{P}(\mathbf{N}))$ muni de la mesure de comptage m, une suite $(u_n)_{n \in \mathbf{N}}$ de \mathbf{K} est intégrable si et seulement si la série $\sum u_n$ est absolument convergente. Dans ce cas, on a

$$\int_{\mathbf{N}} u_n \, \mathrm{d}m(n) = \sum_{n \in \mathbf{N}} u_n.$$

20. Proposition. Soit $f: X \longrightarrow \mathbf{K}$ une fonction intégrable. Alors

$$\left| \int_X f \, \mathrm{d}\mu \right| \leqslant \int_X |f| \, \mathrm{d}\mu.$$

I.3. Lien avec l'intégrale de Riemann

- 21. THÉORÈME. Il existe une unique mesure $\lambda_d \colon \mathscr{B}(\mathbf{R}^d) \longrightarrow \mathbf{R}_+$ qui est invariante par translation et qui vérifie $\lambda_d([0,1]^d) = 1$.
- 22. EXEMPLE. Pour un intervalle $[a,b] \subset \mathbf{R}$, sa mesure vaut $\lambda_1([a,b]) = b a$.
- 23. Proposition. Soit $f:[a,b] \longrightarrow \mathbf{R}$ une fonction borélienne Riemann-intégrable. Alors elle est λ_1 -intégrable et

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \int_{[a,b]} f \, \mathrm{d}\lambda_{1}.$$

II. Théorèmes généraux de la théorie de l'intégration

II.1. Lemme de Fatou et théorèmes de convergence dominée

24. Théorème (lemme de Fatou). Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables positives. Alors

$$\int_X \liminf_{n \to +\infty} f_n \, \mathrm{d}\mu \leqslant \liminf_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu.$$

25. APPLICATION. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions intégrables qui converge simplement vers une fonction f et vérifiant

$$\sup_{n \in \mathbf{N}} \int_X |f_n| \, \mathrm{d}\mu < +\infty.$$

Alors la fonction f est intégrable.

- 26. THÉORÈME (de convergence dominée). Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions intégrables vérifiant les points suivants :
 - pour presque tout $x \in X$, la suite $(f_n(x))_{n \in \mathbb{N}}$ converge vers $f(x) \in \mathbb{K}$;
 - il existe une fonction intégrable g telle que, pour tout $n \in \mathbb{N}$, on ait $|f_n(x)| \leq g(x)$ pour presque tout $x \in X$.

Alors

$$\lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu.$$

27. APPLICATION. Soit $f \colon [0,1] \longrightarrow \mathbf{K}$ une fonction dérivable de dérivée bornée. Alors

$$\int_0^1 f'(x) \, \mathrm{d}x = f(1) - f(0).$$

II.2. Changements de variables

28. Théorème (changement de variables). Soit $\varphi\colon U\longrightarrow V$ un \mathscr{C}^1 -difféomorphisme entre deux ouverts de \mathbf{R}^d . Soit $f\colon V\longrightarrow \mathbf{K}$ une fonction borélienne. Alors cette dernière est intégrable sur V si et seulement si la fonction $f\circ\varphi\times|\det \mathrm{J}_{\varphi}|$ est intégrable sur U. Dans ce cas, on a

$$\int_V f(y) \, \mathrm{d}y = \int_U f(\varphi(x)) \left| \det \mathcal{J}_\varphi(x) \right| \, \mathrm{d}x.$$

29. Exemple (coordonnées polaires). On considère le \mathscr{C}^1 -difféomorphisme

$$\varphi \colon \begin{vmatrix} \mathbf{R}_{+}^{*} \times] - \pi, \pi[\longrightarrow \mathbf{R}^{2} \setminus (\mathbf{R}_{-} \times \{0\}), \\ (r, \theta) \longmapsto (r \cos \theta, r \sin \theta). \end{vmatrix}$$

Pour toute fonction intégrable $f: \mathbb{R}^2 \longrightarrow \mathbb{K}$, on a

$$\int_{\mathbf{R}^2} f(x) \, \mathrm{d}x = \int_0^{2\pi} \int_0^{+\infty} f(r\cos\theta, r\sin\theta) \times r \, \mathrm{d}r \, \mathrm{d}\theta.$$

30. APPLICATION. L'intégrale de Gauss vaut

$$\int_0^{+\infty} e^{-x^2} \, \mathrm{d}x = \frac{\sqrt{\pi}}{2}.$$

II.3. Applications aux séries et aux intégrales à paramètre

- 31. THÉORÈME. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables.
 - Si elles sont positives, alors

$$\int_{X} \sum_{n=0}^{+\infty} f_n \, \mathrm{d}\mu = \sum_{n=0}^{+\infty} \int_{X} f_n \, \mathrm{d}\mu. \tag{*}$$

- Si la série $\sum \int_X |f_n| d\mu$ converge, alors on a aussi (*).
- 32. APPLICATION (lemme de Borel-Cantelli). Soit $(A_k)_{k \in \mathbb{N}}$ une suite d'ensembles mesurables. Si la série $\sum \mu(A_n)$ converge, alors

$$\mu(\limsup_{n \to +\infty} A_n) = 0.$$

33. COROLLAIRE. Soient $(u_{m,n})_{(m,n)\in\mathbb{N}^2}$ une suite scalaire. Alors

$$\sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty} |u_{m,n}| < +\infty \implies \sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty} u_{m,n} = \sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty} u_{m,n}.$$

- 34. Théorème. Soient X un espace métrique et (E, \mathcal{A}, μ) un espace mesurable. Soit $f: X \times E \longrightarrow \mathbf{K}$ une fonction vérifiant les points suivants :
 - pour tout $x \in X$, la fonction $f(x, \cdot)$ est mesurable;
 - pour presque tout $t \in E$, la fonction $f(\cdot, t)$ est continue sur X;
 - il existe une fonction intégrable $g \colon E \longrightarrow \mathbf{R}_+$ telle que, pour tout $t \in E$, on ait $|f(x,t)| \leq g(t)$ pour presque tout $x \in X$.

Alors la fonction

$$x \in X \longmapsto \int_{F} f(x,t) \, \mathrm{d}\mu(t)$$

est continue sur X.

- 35. Remarque. Il existe une version analogue pour les régularités \mathscr{C}^k et \mathscr{C}^{∞} .
- 36. Exemple. La fonction gamma d'Euler

$$\Gamma: x > 0 \longmapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$$

est continue sur \mathbf{R}_{\perp}^* .

37. APPLICATION. Soient $f \colon \mathbf{R} \longrightarrow \mathbf{K}$ une fonction intégrable telle que la fonc-

tion $x \mapsto x f(x)$ le soit aussi. Alors la transformée de Fourier de la fonction f

$$\xi \in \mathbf{R} \longmapsto \hat{f}(\xi) \coloneqq \int_{\mathbf{R}} f(x)e^{2i\pi\xi x} \,\mathrm{d}x$$

est de classe \mathscr{C}^1 sur \mathbf{R} .

III. Les espaces de Lebesgue

III.1. Définitions et premières propriétés

38. DÉFINITION. Soient p > 0 un réel et (X, \mathcal{A}, μ) un espace mesuré. Le **K**-espace vectoriel $\mathcal{L}^p(\mu)$ est l'ensemble des fonctions mesurables $f \colon X \longrightarrow \mathbf{K}$ telle que

$$||f||_p := \int_X |f|^p \,\mathrm{d}\mu < +\infty.$$

Le **K**-espace vectoriel $\mathscr{L}^{\infty}(\mu)$ est l'ensemble des fonctions mesurables $f \colon X \longrightarrow \mathbf{K}$ qui sont bornées presque partout. Pour une fonction $f \in \mathscr{L}^{\infty}(\mu)$, on notera

$$||f||_{\infty} := \inf\{M \geqslant 0 \mid |f| \leqslant M \text{ presque partout}\}.$$

39. Exemple. Lorsque l'espace $(\mathbf{N}, \mathscr{P}(\mathbf{N}))$ est muni de la mesure de comptage m, on retrouve l'espace

$$\mathscr{L}^p(m) = \ell^p(\mathbf{N}) := \left\{ (u_n)_{n \in \mathbf{N}} \in \mathbf{K}^{\mathbf{N}} \mid \sum_{n=0}^{+\infty} |u_n|^p < +\infty \right\}.$$

- 40. Proposition. Soient p, q > 0 deux réels vérifiant $p \leq q$.
 - Si la mesure X est finie, alors $\mathcal{L}^q(\mu) \subset \mathcal{L}^p(\mu)$.
 - On a $\ell^p(\mathbf{N}) \subset \ell^q(\mathbf{N})$.
- 41. Remarque. Dans le cas d'une mesure μ qui n'est pas nécessairement finie, on ne peut déduire aucune inclusion puisque

$$1/\sqrt{\cdot} \in \mathcal{L}^1(]0,1[) \setminus \mathcal{L}^2(]0,1[) \qquad \text{et} \qquad 1/\sqrt{\cdot^2+1} \in \mathcal{L}^2(]0,1[) \setminus \mathcal{L}^1(]0,1[).$$

- 42. DÉFINITION. Soit $p \ge 1$ un réel ou l'infini. Pour deux fonctions $f, g \in \mathcal{L}^p(\mu)$, on écrit $f \sim g$ lorsqu'elles sont égales μ -presque partout. L'espace vectoriel quotient $L^p(\mu) := \mathcal{L}^p(\mu)/\sim$ est l'espace de Lebesgue d'ordre p.
- 43. NOTATION. On notera simplement $L^p(\mathbf{R}^d) := L^p(\lambda_d)$.

III.2. Des espaces complets

44. Théorème (inégalité de Hölder). Soient p, q > 1 deux réels vérifiant 1/p + 1/q = 1. Soient $f \in L^p(\mu)$ et $g \in L^q(\mu)$ deux fonctions. Alors la fonction fg est intégrable et

$$||fg||_1 \leq ||f||_p ||g||_q$$
.

De plus, il y a égalité si et seulement s'il existe un couple $(\alpha, \beta) \in \mathbf{R}^2 \setminus \{(0,0)\}$ tel que $\alpha f^p = \beta g^q$ presque partout.

45. COROLLAIRE. Sous les mêmes hypothèses, on trouve

$$\left| \int_X f g \, \mathrm{d}\mu \right| \leqslant \|f\|_p \|g\|_q.$$

46. Théorème (inégalité de Minkowski). Soient $p \ge 1$ un réel et $f, g \in L^p(\mu)$. Alors $||f + g||_p \le ||f||_p + ||g||_p$.

En particulier, l'espace $(L^p(\mu), || ||_p)$ est un espace vectoriel normé.

- 47. THÉORÈME. Soit $p \ge 1$ un réel.
 - L'espace vectoriel normé $L^p(\mu)$ est complet.
 - De toute suite convergente dans $L^p(\mu)$, on peut extraire une sous-suite qui converge presque partout.

III.3. Des résultats de densité

- 48. Proposition. Pour tout réel $p \ge 1$, l'ensemble des fonctions étagées intégrables est dense dans $L^p(\mu)$.
- 49. DÉFINITION. Une fonction $f: \mathbf{R}^d \longrightarrow \mathbf{K}$ est en escalier si elle est de la forme

$$f = \sum_{i=1}^{k} \alpha_k \mathbf{1}_{P_k}$$

pour des scalaires $\alpha_k \in \mathbf{K}$ et des pavés $P_k \subset \mathbf{R}^d$.

- 50. Théorème. Soit $p \ge 1$ un réel. L'ensemble des fonctions en escalier à support compact est dense dans $L^p(\mathbf{R}^d)$. L'ensemble des fonctions continues à support compact est dense dans $L^p(\mathbf{R}^d)$.
- 51. DÉFINITION. Le produit de convolution de fonctions boréliennes $f, g: \mathbf{R}^d \longrightarrow \mathbf{K}$ est, lorsqu'elle est bien définie, la fonction $f \star g: \mathbf{R}^d \longrightarrow \mathbf{K}$ telle que

$$f \star g(x) \coloneqq \int_{\mathbf{R}^d} f(x - y)g(y) \, dy, \qquad x \in \mathbf{R}^d.$$

- 52. Proposition. Soient $f, g: \mathbf{R}^d \longrightarrow \mathbf{K}$ deux fonctions. Alors
 - si $f, g \in L^1(\mathbf{R}^d)$, alors $f \star g \in L^1(\mathbf{R}^d)$ et $||f \star g||_1 \leqslant ||f||_1 ||g||_1$;
 - Si $f \in \mathscr{C}^k(\mathbf{R}^d)$ et la fonction $g \in L^1(\mathbf{R}^d)$ est à support compact, alors la fonction $f \star g$ est de classe \mathscr{C}^k et

$$\partial^{\alpha}(f \star g) = (\partial^{\alpha} f) \star g, \qquad a \in \mathbf{N}^{n}, \ |\alpha| \leqslant k.$$

- 53. DÉFINITION. Une approximation de l'unité est une suite $(\alpha_n)_{n \in \mathbb{N}}$ de L¹(\mathbb{R}^d) vérifiant les points suivants :
 - les fonctions α_n sont positives et de masse 1;
 - pour tout réel $\varepsilon > 1$, on a

$$\int_{\|x\| \geqslant \varepsilon} \alpha_n(x) \, \mathrm{d}x \longrightarrow 0.$$

- 54. THÉORÈME. Soient $(\alpha_n)_{n \in \mathbb{N}}$ une approximation de l'unité et $f \in L^p(\mathbf{R}^d)$. Alors la suite $(f * \alpha_n)_{n \in \mathbb{N}}$ est constituée d'éléments de $L^p(\mathbf{R}^d)$ et elle converge dans L^p vers la fonction f.
- 55. Proposition. Pour tout $p \ge 1$, l'espace $\mathscr{C}_{c}^{\infty}(\mathbf{R}^{d})$ est dense dans $L^{p}(\mathbf{R}^{d})$.
- 56. Lemme (Riemann-Lebesgue). Pour toute function $f \in L^1([a,b])$, on a

$$\int_{a}^{b} f(t)e^{int} dt \xrightarrow[n \to \pm \infty]{} 0.$$

III.4. Le cas des fonctions de carré intégrable

57. DÉFINITION. Le produit scalaire

$$(f,g) \in L^2(\mu)^2 \longrightarrow \int_X f\overline{g} \,d\mu$$

58. DÉFINITION. Soit I un intervalle de \mathbf{R} . Une fonction poids sur I est une fonction mesurable $\rho\colon I\longrightarrow \mathbf{R}_+^*$ telle que

$$\forall n \in \mathbf{N}, \qquad \int_{I} |x|^n \rho(x) \, \mathrm{d}x < +\infty.$$

L'ensemble $L^2(I,\rho)$ des fonctions de carré intégrable pour la mesure ρdx est muni du produit scalaire définit par l'égalité $\langle f, g \rangle = \int_{T} f \overline{g} \rho$.

- 59. REMARQUE. Grâce au procédé de Gram-Schmidt appliqué à la famille $(X^n)_{n\in\mathbb{N}}$, il existe une unique famille étagée orthogonale de polynômes unitaires, les polynômes orthogonaux.
- 60. Théorème. Soient $\rho\colon I\longrightarrow \mathbf{R}_+^*$ une fonction poids et $\alpha>0$ un réel vérifiant

$$\int_{I} e^{\alpha|x|} \rho(x) \, \mathrm{d}x < +\infty.$$

Alors la famille des polynômes orthogonaux est une base hilbertienne de $L^2(I, \rho)$.

Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2º édition. H&K, 2005.

Marc Briane et Gilles Pagès. Théorie de l'intégration. Vuibert, 2012.