NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REPORT No. 753

Polesta of County County Alle Costs

METHODS USED IN THE NACA TANK FOR THE INVESTIGATION OF THE LONGITUDINAL-STABILITY CHARACTERISTICS OF MODELS OF FLYING BOATS

By ROLAND E. OLSON and NORMAN S. LAND

n= 1942

LIBRARY OF CONERESS
SCIENCE & TECHNOLOGY PROJECT
TECHNICAL EMFORMATION SECTION

12 NOV 1947

1943

19950829 148

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D. C.

DIE QUALITY INSPECTED 3

AERONAUTIC SYMBOLS

1. FUNDAMENTAL AND DERIVED UNITS

		Metric		English				
	Symbol	Unit	Abbrevia- tion	Unit	Abbrevia- tion ft (or mi) sec (or hr) lb			
Length Time Force	l t F	metersecondweight of 1 kilogram	m s kg	foot (or mile) second (or hour) weight of 1 pound				
Power	P V	horsepower (metric) kilometers per hour meters per second	kph mps	horsepower miles per hour feet per second	hp mph fps			

2. GENERAL SYMBOLS

W	Weight = mg		Kinematic viscosity
g	Standard acceleration of gravity=9.80665 m/s ²	ρ	Density (mass per unit volume)
•	or 32.1740 ft/sec ²	Stand	lard density of dry air, 0.12497 kg-m ⁻⁴ -s ² at 15° C
	W	and	1 760 mm; or 0.002378 lb-ft ⁻⁴ sec ³
m	$\text{Mass} = \frac{W}{a}$	Speci	fic weight of "standard" air, 1.2255 kg/m ³ or
I	Moment of inertia $= mk^2$. (Indicate axis of	0.0	7651 lb/cu ft
-	radius of gyration k by proper subscript.)		
ц	Coefficient of viscosity		
-	8. AERODYNA	MIC SY	MROLS
	V 122102		
S	Area	i_{w}	Angle of setting of wings (relative to thrust line)
S_{w}	Area of wing	i_{t}	Angle of stabilizer setting (relative to thrust
G	Gap	•	line)
i.	Span	Q	Resultant moment
U	•	Ω	Resultant angular velocity
\boldsymbol{c}	Chord	••	
\boldsymbol{A}	Aspect ratio, $\frac{b^2}{S}$	R	Reynolds number, $\rho \frac{V!}{\mu}$ where l is a linear dimen-
V	True air speed		sion (e.g., for an airfoil of 1.0 ft chord, 100 mph,
•			standard pressure at 15° C, the corresponding
\boldsymbol{q}	Dynamic pressure, $\frac{1}{2}\rho V^2$		Reynolds number is 935,400; or for an airfoil
\boldsymbol{L}	Lift, absolute coefficient $C_L = \frac{L}{qS}$		of 1.0 m chord, 100 mps, the corresponding
	_ _ _		Reynolds number is 6,865,000)
D	Drag, absolute coefficient $C_D = \frac{D}{qS}$	α	Angle of attack
D	Diag, absolute esemeient ob qS	E	Angle of downwash
n	$D_{-}C_{-}C_{-}$ decreases absolute coefficient $C_{-}D_{0}$	α_0	Angle of attack, infinite aspect ratio
D_{0}	Profile drag, absolute coefficient $C_{D0} = \frac{D_0}{qS}$	αι	Angle of attack, induced
		-	Angle of attack, absolute (measured from zero-
$D_{\mathfrak{t}}$	Induced drag, absolute coefficient $C_{Di} = \frac{D_i}{qS}$	$\alpha_{\mathbf{g}}$	lift position)
	·		
$\mathcal{D}_{\cdot\cdot}$	Parasite drag, absolute coefficient $C_{Dg} = \frac{D_g}{C}$.	γ	Flight-path angle
	\sim \sim \sim \sim \sim \sim \sim \sim \sim		
\boldsymbol{C}	Cross-wind force, absolute coefficient $C_c = \frac{C}{qS}$	*	
	¥v.		

REPORT No. 753

METHODS USED IN THE NACA TANK FOR THE INVESTIGATION OF THE LONGITUDINAL-STABILITY CHARACTERISTICS OF MODELS OF FLYING BOATS

By ROLAND E. OLSON and NORMAN S. LAND

Langley Memorial Aeronautical Laboratory

Langley Field, Va.

Accesio	Accesion For									
NTIS	CRA&I	M								
DTIC	TAB	Z								
Unann	ou:.ce d									
Justific	ation									
By Distrib										
· A	vailabilit	y Codes	i 							
Dist	Avail a Spe	and / or scial	*							
A-1										

National Advisory Committee for Aeronautics

Headquarters, 1500 New Hampshire Avenue NW., Washington 25, D. C.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight (U. S. Code, title 49, sec. 241). Its membership was increased to 15 by act approved March 2, 1929. The members are appointed by the President, and serve as such without compensation.

JEROME C. HUNSAKER, Sc. D., Cambridge, Mass., Chairman

LYMAN J. BRIGGS, Ph. D., Vice Chairman, Director, National Bureau of Standards.

CHABLES G. ABBOT, Sc. D., Vice Chairman, Executive Committee, Secretary, Smithsonian Institution.

HENRY H. ABNOLD, General, United States Army, Commanding General, Army Air Forces, War Department.

WILLIAM A. M. Burden, Special Assistant to the Secretary of Commerce.

VANNEVAR BUSH, Sc. D., Director, Office of Scientific Research and Development, Washington, D. C.

WILLIAM F. DURAND, Ph. D., Stanford University, California.

OLIVER P. ECHOLS, Major General, United States Army, Chief of Maintenance, Matériel, and Distribution, Army Air Forces, War Department. JOHN C. McCain, Rear Admiral, United States Navy, Deputy Chief of Operations (Air), Navy Department.

GEORGE J. MEAD, Sc. D., Washington, D. C.

Ernest M. Pace, Rear Admiral, United States Navy, Special Assistant to Chief of Bureau of Aeronautics, Navy Department.

FRANCIS W. REICHELDERFER, Sc. D., Chief, United States Weather Bureau

EDWARD WARNER, Sc. D., Civil Aeronautics Board, Washington, D. C.

ORVILLE WRIGHT, Sc. D., Dayton, Ohio.

THEODORE P. WRIGHT, Sc. D., Assistant Chief, Aircraft Branch, War Production Board.

George W. Lewis, Sc. D., Director of Aeronautical Research

JOHN F. VICTORY, LL.M., Secretary

HENRY J. E. REID, Sc. D., Engineer-in-Charge, Langley Memorial Aeronautical Laboratory, Langley Field, Va.

SMITH J. DEFRANCE, B. S., Engineer-in-Charge, Ames Aeronautical Laboratory, Moffett Field, Calif.

EDWARD R. SHARP, LL.B., Manager, Aircraft Engine Research Laboratory, Cleveland Airport, Cleveland, Ohio

CARLTON KEMPER, B. S., Executive Engineer, Aircraft Engine Research Laboratory, Cleveland Airport, Cleveland, Ohio

TECHNICAL COMMITTEES

AERODYNAMICS
POWER PLANTS FOR AIRCRAFT
AIRCRAFT MATERIALS

AIRCRAFT STRUCTURES
OPERATING PROBLEMS
JET PROPULSION

Coordination of Research Needs of Military and Civil Aviation

Preparation of Research Programs

Allocation of Problems

Prevention of Duplication

LANGLEY MEMORIAL AFRONAUTICAL LABORATORY
Langley Field, Va.

AMES AERONAUTICAL LABORATORY Moffett Field, Ualif.

AIRCRAFT ENGINE RESEARCH LABORATORY, Cleveland Airport, Cleveland, Ohio Conduct, under unified control, for all agencies, of scientific research on the fundamental problems of flight

OFFICE OF AERONAUTICAL INTELLIGENCE, Washington. D. C.

Collection, classification, compilation, and dissemination of scientific and technical information on aeronautics

REPORT No. 753

METHODS USED IN THE NACA TANK FOR THE INVESTIGATION OF THE LONGITUDINA STABILITY CHARACTERISTICS OF MODELS OF FLYING BOATS

By ROLAND E. OLSON and NORMAN S. LAND

SUMMARY

Recent trends in the design of flying boats, such as high wing loadings (high get-away speeds) and high load coefficients (relatively narrow hulls) have made the problems associated with longitudinal stability of primary importance. The need for additional research on longitudinal stability or porpoising is recognized and the stability characteristics of models of several flying boats have been determined in NACA Tank No. 1. These investigations were made for the purpose of (1) determining suitable methods for evaluating the stability characteristics of models of flying boats, and (2) determining the design parameters which have an important effect on the porpoising. This report is mainly concerned with the construction of suitable models, the apparatus, and the methods used in the tests. The effect of changes in some design parameters is discussed.

The models were dynamically similar to the full-size airplane. Dynamic similarity required the use of a complete model with wings, tail, and hull built to scale dimensions, the weight of the model being so disposed as to result in scale weight, balance, and pitching moment of inertia. The use of such models results in forces and motions similar to those of the full-size flying boat. A description of the construction of a typical model and the ballasting procedure used is presented.

For the purpose of investigating the stability characteristics of a model during take-off, two general methods are usually followed: (1) the range of trims at which the model is stable is determined for a series of constant speeds covering a practical range of operation, and (2) the variation in attitude and behavior of the model is noted during accelerated runs. It is found that, in general, there are two primary limits of stability: an upper limit of trim above which porpoising occurs, and a lower limit of trim below which porpoising occurs. Between these limits lies a range of stable trims which is the operating range for stable take-off. This stable range of trims forms the limitation on center-of-gravity locations and aerodynamic control-surface settings for stable take-offs. The upper trim limit has two branches. The higher branch defines the trims at which porpoising starts as the trim is increased, and the lower branch defines the trims at which stability is again reached as the trim is decreased.

An increase in model gross load is found to move the trim limits of stability to higher trims. An increase in the depth of step has no appreciable effect on the lower trim limit of stability but raises the upper trim limits to higher trims and reduces the violence of the porpoising. (NACA as place!)

INTRODUCTION

The problem of the longitudinal stability of flying be while in motion on the water has become of major importa in the design of such boats because of the present trendthe construction of that type of craft. Flying boats are $b\varepsilon$ designed with high wing loadings (increased get-av speeds), greater load coefficients (relatively narrow hul and high centers of gravity. These characteristics, found in older designs, cause the flying boats to oper under conditions that, in general, have not been previou encountered. With these and other changes, the fly boat is apparently becoming more unstable while on water and at the same time, in view of the increased g away and landing speeds, a condition of stability is me essential now than previously. The resistance character tics have become of secondary importance because of increased power available in present engine designs.

The need for additional research on the problem of lon tudinal stability, or porpoising, is recognized and models several flying boats have already been tested at the NAC tank. Many of the forms have had poor characteristics longitudinal stability, and changes in form have been sugested for the purpose of either correcting or reducing a porpoising tendencies. Models of new designs have bettested to determine under what conditions they are unstalland changes in form have been made in an effort to sure stability for the full-size flying boat.

The present paper is devoted to the discussion of certa methods of testing dynamic models that have been fou helpful in the determination of the longitudinal-stabilic characteristics on the water of a number of specific flyi boats. It should be noted that these methods are still the process of improvement and no method as yet give-perfect or final answer. Consequently, both specific a general research must be continued for the purpose of i proving knowledge of the problems associated with t appearance of dynamic instability.

The effects of similar modifications on the longitudinstability characteristics of these models will be comparand general conclusions may be drawn as to the importan of these modifications. These results should be of assistan in evaluating the effects of possible variations in the planibottom of any particular model.

Research should not be confined to the investigation definite forms but should be extended to include the

determination, insofar as possible, of the necessary conditions that must exist in the design of the flying boat to provide stability on the water and the order of the importance of these conditions. The technique used in testing should be developed, with emphasis placed on duplicating full-size maneuvers. Additional information should also be obtained concerning the application of tank data and observations to the full-size airplane.

METHODS USED IN PREDICTING STABILITY CHARACTERISTICS

Theoretical.—Mathematical theories for determining the condition of stability of a flying boat while on the water have been suggested. Perring and Glauert (reference 1) were among the first to publish an approximate solution to the equations of motion for a flying boat. Klemin, Pierson, and Storer (reference 2) have presented a slightly different treatment of the same general method given in the British paper.

The amount of work necessary to determine the condition of stability by use of the method of reference 1 or reference 2 is extremely large. Aerodynamic and hydrodynamic data for the airplane must be available, and the actual computations are tedious. Until a more simple, less laborious, and more accurate method for determining the condition of stability by means of theoretical computations is developed, the need for tests of dynamic models in the towing tank will remain.

Observations made during the usual tank tests.-Predicting the stability characteristics of the model on the basis of observations made during the usual tank tests may lead to erroneous conclusions. The procedure followed in this type of test (reference 3) requires only that a model be geometrically similar to the full-size hull; the correct gross weight is obtained by counterbalancing the weight of the model and the weight of the towing gear. The mass that is moving vertically is thus greatly in excess of the weight corresponding to the gross weight of the aircraft. With the present type of towing gear, it would be impossible to obtain the correct mass moving vertically. The lift of the wings is simulated by a hydrofoil lifting device or dead weights, and no effort is made to duplicate the change in lift with change in trim, the damping effect, or the control moments of the aerodynamic surfaces. The models are generally constructed of pine or mahogany and no attempt is made to obtain the correct moment of inertia.

The porpoising characteristics observed during this type of test are only a very rough approximation of those for the full-size flying boat.

Research using dynamically similar models.—References 4, 5, and 6 report research conducted by the British in the Vickers and R.A.E. tanks with dynamic models, models with the proper geometric form and also the correct moment of inertia and mass moving vertically. These reports discuss the methods used and a few of the conclusions drawn from the results of the tests.

Research has been conducted at the NACA tank to investigate the stability characteristics of flying boats by use of dynamically similar models. The aerodynamic surfaces, wing and tail group, are a part of the model.

The remainder of this report will be devoted mainly discussion of the problems involved in the construction of model, the apparatus for making the tests, and the most testing. In this discussion, data from the construant tests of a model of a typical flying boat will be useful illustration and from the data some conclusions will be as to changes in the form of the hull that will improve stability characteristics.

MODEL

Selection of size of model.—In tank tests the resumodel tests are converted to full size by applying Freelaw of comparison. According to this law, the hadynamic forces vary as the cube of the scale at a given of the Froude number V^2/bg (where V is the speed; b, the of the model; and g, the gravity constant). It can also shown that, neglecting scale effect, the aerodynamic vary in the same way with scale. Neglecting scale the aerodynamic forces are a function of $\rho l^2 V^2$ (where ρ density of the air; l, a characteristic length; and l speed). At the same Froude number, V^2 varies as the power of the scale and l^2 varies as the square of the hence the aerodynamic forces vary as the cube of the

If the model is built with a form similar to the full size the gross weight is proportional to the cube of the the hydrodynamic and aerodynamic forces on the modesimulate those on the full size, if scale effect is negl. In order to reduce the error due to scale effect, the mare built as large as possible, the limiting condition the width of the tank. (See fig. 1.)

Particulars of model.—The model used for illustrepresents a hypothetical design for a modern flying be 133,000 pounds gross weight and is designated NACA 101. The form of the hull was chosen from a series of stiline hulls originated at the NACA tank. Part of the has been tested, but the results have not been published later extension of the series was made to include varing the length-beam ratio, and it was from this last-ment family that the hull for model 101 was chosen.

The heights of the bow and stern were selected on the of the results obtained during tests of the original strea hulls. The length-beam ratio is 6.54. The lines of the are given in figure 2; the typical sections, in figure 3 the offsets, in tables I and II. The general arrangement the complete model is shown in figure 4.

Important dimensions of the model are as follows:

	Full-size si (feet) (
imensions of hull:	
Beam, maximum	14. 25
Beam, at step	
Length of forebody	
Length of afterbody	37, 15
Length of tail extension	35.24
Length, over-all	128. 41
Depth of step:	
Model 101BA, 2.8 percent beam	. 40
. Model 101BB, 4.9 percent beam	70
Model 101BC, 7.0 percent beam	1. 00
Angle of dead rise at step:	
Excluding chine flare	. · 20°
Including chine flare	
Angle between keel lines at step	

METHODS IN NACA TANK FOR INVESTIGATION OF LONGITUDINAL-STABILITY CHARACTERISTICS

FIGURE 1.—General arrangement of pusher carriage for towing dynamic models.

FIGURE 2.—Lines of model 101 BA.

Dimensions of wing:		me-twelfth- eze model Square inches
Area	3, 700 Feet	
Span	200	200
Root chord	28	28
Root chord, section	NACA	23021
Tip chord	9. 33	9. 33
Tip chord, section	NACA	23012
Angle of wing setting, to base line	5.	5°
Leading edge at root, aft of bow	41. 03	41.03
Length M. A. C.	20. 12	20. 12
Leading edge M. A. C. aft of bow	43. 79	43. 79
Leading edge M. A. C. forward of step	12. 23	12. 23
Taper ratio	3	:1
Aspect ratio	10	.7
Upper-surface ordinates at 35-percent chord pendicular to center line of model. No twist		ne per-
Dimensions of horizontal tail surface:	Square feet	Square inches
Area	504 Feet	504 Inches
Span	42. 0	42. 0
Chord, total	12. 0	12. O

Dimensions of horizontal tail surface—Continued	Full-size	
Chord, elevator	6. 0	
Section	NACA	.0015 .5
Aspect ratio	_	
Loading conditions:	Feet	Inches
c. g. forward of step	7. 20	
c. g. above keel	13. 11	
c. g., percent M. A. C.	2	5
Gross loads:	Pounds	Pound
All models (normal $C_{\Delta_0} = 0.72$)	133, 000	76.
Also on model 101BC:		
C_{Δ_0} = 0.62	107, 800	65. ⊱
$C_{\Delta_0}^{-0} = 0.82$	142, 500	87. 1
Pitching moment of mertia about c. g.:	Stug-feet -	Sugger
All models (normal)	149, 000	5. 97
Also on model 101BC (25-percent increase)	186, 000	7. 4
Mass moving vertically:	Pounds	Pound
All models (normal)	133, 000	76.
	ſ	87. 1
Also on model 101BC		95. €
	l	114. 7

FIGURE 3.-Typical hull sections

Figure 5 shows model 101BA assembled and ready for testing.

Construction of model.—In order that modifications may be easily made, the hull of this particular model is constructed in three sections. The bow section forms the portion of the hull forward of station 10. The main section extends from station 10 to the after perpendicular and is recessed to receive the third, or afterbody, section. Three afterbody sections were available for these tests giving three depths of main step. The wing and tail group are attached to the main section of the hull.

Figure 6 shows the type of construction used throughout the hull. Transverse frames with lightening holes are cut from %-inch and %-inch spruce plywood. A mean-line stringer of 1/16-inch plywood extends on each side from bow to stern. Other stringers are 1/2- by 1/2-inch balsa. Two relatively heavy bulkheads (%-inch plywood with no lightening holes) and a heavy horizontal platform (1/2-inch mahogany) are located at the position of attachment of wing and towing fitting. The bottom is planked with %-inch balsa and the sides and deck are planked with Ke-inch balsa. The hull is covered with profilm to prevent absorption of water by the balsa planking. The bottom and lower portion of the sides have two coats of gray pigmented varnish in addition to the profilm. The profilm is applied to the balsa skin in small sheets, or strips, with overlapping edges.

The same type of construction (fig. 7) is used in the wing. Ribs are plywood and stringers are balsa. A hollowed balsa leading edge forms the main spar. The skin is 1/16-inch

FIGURE 4.—General arrangement of NACA model 101.

balsa applied in diagonal strips. Like the hull, the win entirely covered with profilm and its undersurface was g two coats of gray pigmented varnish. The wing is bo to the hull at a fixed location and with a fixed angle o cidence of $5\frac{1}{2}^{\circ}$.

The tail group is made up of four subassemblies: two tical surfaces, a stabilizer, and an elevator. Construct of these surfaces is similar to that of the hull and the was Inasmuch as the lateral stability was not being investigated the two vertical surfaces do not have movable rude instead, each is a single fixed surface of proper area to so late rudder and vertical stabilizer. The settings of elevator and stabilizer are independently and remotely trollable from the carriage by means of Bowden type cal

Two duralumin rails are mounted in the forebody of model to carry the ballast weights. The ballast can moved fore and aft along the rails and adjusted vertically means of spacers. The center of gravity is made to coin with the pivot by adjusting the position of the ballast.

The moment of inertia is determined by swinging model. Methods for swinging are described in the appen

METHODS IN NACA TANK FOR INVESTIGATION OF LONGITUDINAL-STABILITY CHARACTERISTICS

FIGURE 5.- Model 101BA assembled for testing.

FIGURE 6.—Model 101. Construction of hull.

FIGURE 7.-Model 101. Construction of wing.

Relative contribution of parts of model to the total moment of inertia.—As a guide in the construction of future dynamic models, the main subassemblies of NACA model 101 were swung individually to determine the relative importance of each in the total moment of inertia of the whole model. All moments of inertia are in slug-feet². The data are assembled as follows:

Item	I. about own c. g.	MR ¹ transfer inertia to test c. g.	I about test c. g.	I about test c. g., percent of total
Hull. Wing. Horizontal tail. Vertical tails. Ballast. Totals.	2. 32 . 11	0. 11 . 12 1. 25 . 43 1. 63 3. 54	2. 43 . 23 1. 25 . 43 1. 63 5. 97	40. 7 3. 8 21. 0 7. 2 27. 3 100. 0

Note that the I_o of the tail surfaces was too small to measure, but the final contribution of the tail surfaces to the required test moment of inertia of the complete model is slightly greater than that of the ballast. Light construction of the tail surfaces and the after portion of the hull is therefore essential.

Departures from full-size form that permit more exact simulation of full-size behavior.—The model previously described may be considered a dimensionally and dynamically correct reproduction of a hypothetical flying boat. It has been found that such a model is primarily useful for comparing the relative stability of any forms tested. Nevertheless, the stability of any form tested on such a model may not reproduce exactly that of a similar full-size flying boat.

In order that a more accurate indication of full-size behavior may be obtained from the behavior of the model, certain modifications must be made to the true, scaled-down aerodynamic surfaces. These changes are necessitated by the low Reynolds number at which the models are tested. The low Reynolds number is due to: (1) practical limitations on size and speed, and (2) the necessity of running the hull at the proper Froude number. The result of these requirements is to reduce the angle of attack at which the surfaces stall and also the maximum lift coefficient.

An additional difficulty arises from the fact that the airspeed over the model is reduced to a value slightly below the water speed, because the air is dragged along by the towing carriage. A reduction in the total lift at any angle and speed is therefore inherent.

The low stalling angle and low maximum lift coefficient can be compensated for by adding leading-edge slats to the wing of the model. The data given in reference 7 have been used in designing such slats.

The low total lift may be compensated for by adding area to the scale-size wing, usually by extending the tips. Additional area may also be necessary on elevators to obtain the correct control moments.

The aerodynamic characteristics are determined by towing the model just clear of the water and measuring the total lift and trimming moment. Adjustments of slats, areas, and so forth may then be made on the basis of these results.

APPARATUS

In order to reduce the aerodynamic interference between the towing carriage and a dynamic model, the water leve reduced from that given in reference 3 resulting in a cleara between the model and the bottom of the carriage of apprmately 10 feet. In these tests the model was towed from small auxiliary carriage which was pushed by the main riage. The relative positions of the model, the main auxiliary carriages, and the tank are shown in figure Figure 8 shows the model being towed under the carri-With the model supported beneath the auxiliary carriage. airspeed in the vicinity of the wing of the model is sligl lower than the carriage speed. With the model support beneath the main carriage at this same low-water level, airspeed is slightly higher than the carriage speed. neither case is there any appreciable distortion of the direct of the air stream.

The auxiliary carriage, shown in figure 1, is of welded-st tube construction with four supporting wheels and two p of guide wheels. All wheels have pneumatic tires. An verted pyramid made of steel tubing and extending be the carriage supports a roller cage. The roller cage cons of two sets of ball-bearing rollers, located about a foot at vertically. Each of these sets of rollers-is made up of eirollers located two on each side of a 2- by 1-inch rectangle vertical towing staff of rectangular section, and of the abdimensions, is guided by the roller cage. The model to tested is pivoted at the lower end of the towing staff, pivot being located at the center of gravity of the ballas model. The model is thus free to pitch about its center gravity, at the lower end of the staff, and rise vertically with staff. Restraint in yaw and roll is provided by the roller care.

For the usual stability tests, trim is read from an indicallocated on the model.

PROCEDURE

For the purpose of investigating the stability characterics of flying boats in the NACA tank, two general typestest procedure are usually followed: (1) The range of trat which the model is stable is determined for a series of c stant speeds covering a practical range of operation; and the variation in attitude and behavior of the model is no during accelerated runs.

Constant-speed runs.—In general, there are two prim limits of stability: an upper limit consisting of two parts (upper limit, increasing trim; and the upper limit, decreas trim) and a lower limit. Changes in trim beyond the up limit, increasing trim, or the lower limit result in porpoisi

During the early investigations, the tail was set at fi angles and the trim and condition of stability were noted a series of tail settings and constant speeds. The moassumed free-to-trim attitudes, and the condition of stabil was noted after a small initial pitching motion had be applied. If the model was violently unstable, the trim was termined by restraining the model in pitch with two oppovertical forces applied to the tail and by gradually reduc-

Figure 8.—Model 101 being towed under auxiliary carriage.

these forces until, at the instant of release, the forces were approximately zero. The trim was read at the instant of release before an appreciable amplitude of porpoising developed.

By the investigation of the condition of stability for a number of settings of the tail, the trims at which the model will be stable can be determined.

The model is likewise run at a series of constant speeds with the position of the tail group controlled by an operator on the carriage. At each speed the trim of the hull is changed by adjusting the elevator and stabilizer positions until the available maximum or minimum trims are obtained or until porpoising motion is noted. The trim at which porpoising motion is first observed is designated a limit of stability. Typical curves are shown in figure 9.

FIGURE 9.-Model 101 BC. Scatter of points obtained during tests of model 101 BC.

The lower limit of stability is obtained by decreasing the trim and usually appears just over the hump speed as the afterbody comes clear of the water. This limit is present over the remainder of the take-off.

The upper limit of stability (increasing trim) generally appears at intermediate planing speeds and is reached by increasing the trim until porpoising occurs. Because the trim of the hull is high, this porpoising is often referred to as "high-angle porpoising."

After the upper limit of stability (increasing trim) has been exceeded and porpoising is started, the elevators are moved to produce a lower trim and stop the motion. The model does not become stable as the upper limit (increasing trim) is again reached. Often the trim must be decreased by several degrees below this limit, before stability is established. When the model becomes stable, there is generally a sudden decrease in trim indicating that an excess of control moment had to be applied to stop the porpoising. The trim is noted just before this sudden decrease and is designated the upper limit, decreasing trim.

If the elevator control is insufficient to reach the upper limit, the model is jumped to a high trim by a sudden change in the angle of attack of the elevators. This maneuver sometimes starts porpoising that continues until the trim is decreased to the upper limit, decreasing trim.

Accelerated runs.—Accelerated runs are used for det mining the stable positions of the center of gravity and locating the best position of the step. These tests are m: with the tail group at fixed angles of attack. At prearrang speeds (intervals of 5 fps) during the acceleration, the ti of the model is read and the behavior noted. This proced is repeated at several settings of the tail group. The acc eration is continued to get-away speed unless the porpois becomes too violent, in which case the model is taken out the water. For this type of test the get-away speed of model should logically be attained in a time equal to ti for the full-size multiplied by the square root of the se-If too rapid an acceleration were used, the time available making readings would be insufficient. A lower rate acceleration is therefore applied, and emphasis is placed the reproducing of the rate of acceleration in successive ru Get-away speed generally is reached in 30 or 40 secon The effect of changing the rate of acceleration will be a cussed later.

If a specific design is being investigated, the commoment produced by the tail should correspond to that the full size. This control moment is checked by mak an aerodynamic test in which the model is towed just clof the water, and the lift and the control moments are refrom dynamometers located in the supporting cables.

A variation of the accelerated-run method of testing used in investigating take-off and landing characterist. The rate of acceleration of the carriage is increased and model is flown off and landed at different attitudes. Mot pictures permit a more detailed study of the behavior.

RESULTS AND DISCUSSION

Constant-speed tests.—Inasmuch as most of the invegations were made using model 101BC (1.00 inch, depth step), the results obtained with this model will be discusin detail.

The data plotted in figure 9, representing the limits stability for model 101BC, show a considerable scatter points, especially between tests made on different dat This scatter may be partially explained by the fact that planing bottom near the step could not be maintained smooth as would be desirable. Because of the severe p poising to which the model had been subjected during th tests, it was necessary to repair the covering on the forebo bottom near the main step on several occasions. Each ti the wood was found to be water-soaked. For one test, t planing bottom was deliberately roughened by fitting str of profilm, which were attached just forward of the m. step and loose at the trailing end. The scatter of points v increased and the lower limit of stability was substantia decreased. These results emphasize the necessity of ma taining the same condition of smoothness throughout tests if the results obtained with different modifications: to be compared.

The porpoising motion that appears on departures in tr below the lower limit is mainly motion in pitch and genera damps rapidly as the trim is increased. The accuracy the determination of this limit is about $\pm \frac{1}{4}$ ° for these tes

FIGURE 10.-Model 101BC. Trim and rise records of porpoising at upper limits, lower limit, between limits.

The porpoising just beyond the hump speed is not particularly violent and the amplitude of the motion increases slowly. The reverse is also true; the amplitude decreases slowly when the trim is again increased, indicating that the damping forces are small. This characteristic was particularly evident for all the modifications of model 101.

Porpoising at the upper limit is generally violent. After a very slight departure in trim above the upper limit, the porpoising motion increases rapidly and appears to be almost independent of the amount of the departure in trim above the limit. The motion is mainly in rise, and the model appears to bounce on the main step with relatively little vertical motion at the second step. The variation of the trim and rise during this porpoising is shown in figure 10(a). The large variation in rise is evident from these records. The accuracy of determination of the upper limit (increasing trim) is about $\pm \frac{1}{2}$ ° for these tests.

If the elevators are returned to the setting at which the model was stable just before the porpoising began, the motion will not stop. Further decrease in trim is necessary to recover stability. The trim at which porpoising ceases (upper limit, decreasing trim) is determined in these tests to an accuracy of about 17°. At 18 feet per second (fig. 9) the model did not start porpoising until a trim of 9° was exceeded, but a recovery from this instability could not be made until the trim was decreased to almost 6°. With a stable condition at 48 feet per second there is a range of trims of about 7° in which the model does not porpoise. When porpoising at high angles is started, however, this range of stable trims is reduced to about 4°.

A record of the trim and rise during a recovery from type of porpoising is shown in figure 10(b). This recillustrates the sudden decrease in trim as porpoising st-

The presence of the upper limit, decreasing trim, account for the violent porpoising that occurs in mal-stalled landings with some flying boats which, at the stime, apparently have no porpoising tendencies during take-off.

At high speeds the lower limit is very definite and amplitude of the porpoising rapidly increases with depart in trim below the limit. Most of the dynamic models tesin the tank show this characteristic. A record of the tand rise during this porpoising is shown in figure 10(c).

At low speeds, approximately 26 to 31 feet per second another variation in the porpoising was observed. If trim is very suddenly increased to a high value, either changing the elevator angle or by starting violent porpois because of a large decrease in trim below the lower limit porpoising motion that is entirely uncontrollable may established. The amplitude in several cases was greathan 10°. The lower extreme of the trim lies below lower limit. The upper extreme is a higher trim than the obtained with the available control moment and probables above an upper limit. A recovery by use of the vators was impossible; the model was usually removed from the water to prevent its being damaged. Figure 10 shows the variation in trim and rise during this porpoisi

The condition of stability obtained with fixed settingthe tail may be compared with the limits of stability tained by changing the angle of incidence of the tail surfa

FIGURE 11.—Model 101BA. Illustration of condition of stability as obtained by tests with fixed tail settings and varied tail settings.

FIGURE 12.—Model 101BC. Stability characteristics obtained during accelerated and constant-speed runs. Load at rest, Δ_o =76.5 pounds; mass moving vertically, 76.5 pounds.

until porpoising occurs. Such a comparison is shown in figure 11. The results obtained by either procedure are substantially the same. This agreement indicates that any small moments that may be introduced by the presence of the Bowden cable are negligible.

As a rule, when tests are made at constant speeds, the stability characteristics are determined for only one position of the center of gravity. Modifications of the model are then tested in an effort to determine the changes that will increase the range of stable trims. Available information indicates that the principal effect of moving the center of gravity is the change in pitching moment that results in a change in the trim.

An increase in the range of stable trims would be expected to increase the range of stable positions for the center of gravity unless the modification produces a comparable change in hydrodynamic moment. In order to determine the range of stable positions for the center of gravity, tests are ordinarily made at accelerated speeds.

Accelerated runs.—Results obtained by making test accelerated speeds are plotted in figure 12. The limit stability obtained at constant speeds are also show figure 12. As the trim during the accelerated runs crethe limit of stability, the model begins to porpoise continues porpoising until the trim is again in a stable report of the two methods give fairly consistent results.

If the control moment and lift of the full-size flying are simulated on the model, this method gives a rapid cation of the stability. Only settings of the elevator in actual flight need to be investigated. This method been used to determine the range of positions for the coof gravity at which the model is stable.

If the acceleration is small, the amplitude of porpo may become large because the trim of the model is i unstable region for a long period of time. With a rapid acceleration the model passes through an unsiregion without developing an appreciable amplitude of poising. This effect has been noted in tests of several mo The acceleration must therefore be reproduced as near possible for tests of all modifications of a model if the reare to be comparable.

The results obtained by either method of testing influenced by waves. With accelerated runs, howethe presence of the waves will have a greater effect on results. Each reading is a part of the time history of variation of the trim, and the readings at any partic speed are not independent of previous readings. If the is suddenly increased as the model passes through a w porpoising may be started and the readings taken impately thereafter are changed by this initial porpoising. this reason all runs are made with about the same interval between runs and about the same degree of rough of the water.

In the case of tests at accelerated speeds the condition the waves in the tank, the variations in rate of accelera and the general difficulty of reading trim during proposause considerable scatter of the points when the result-plotted. If the stability characteristics of the model particularly poor, it is very difficult to obtain data sho a systematic variation that tests of other models (by the smethod) indicate is present.

Effect of variations in moment of inertia.—The effect the porpoising characteristics of a change in moment inertia is of interest because it is often necessary or desirt to make tests at other than the design values. If the struction of the model is not sufficiently light, the mome inertia of the unballasted model may be such that impossible to obtain balance about the center of grawithout exceeding the design value for the moment of inc. When several loads are being investigated. It is us sufficient and most convenient to use one value of moment of inertia for all the loads.

In order to determine the effect of variation in the more of inertia on the limits of stability, model 101BC was with a 25-percent excess moment of inertia, the gross and mass moving vertically being kept constant.

FIGURE 13.—Model 101BC. Effect of increasing moment of inertia. Constant-speed runs.

FIGURE 14.—Model 101BC. Effect of increasing mass moving vertically. Constantspeed runs.

The limits of stability for the normal condition (5.97 slug-ft 2) and for a 25-percent excess (7.46 slug-ft 2) are shown in figure 13. The excess moment of inertia has little effect on the limits of stability within the accuracy of the tests, the only measurable difference being at the upper limit, decreasing trim. Since this limit is determined by a recovery from an existing unstable condition, some change would be expected with a change in the moment of inertia. A precise adjustment of the moment of inertia of a model to the design value is, therefore, not critical if the limits of stability are to be determined from constant-speed runs. If several conditions of loading are being investigated, an average value of the moment of inertia may be used for all the loads.

Unfortunately, comparable data were not obtained at accelerated speeds. Tests of other models indicate, however, that very large departures from the design value of the moment of inertia do influence the results.

(a) Elevator full down (minimum trim).(b) Elevator neutral (neutral trim).

FIGURE 15.—Model 101BC. Effect of varying the mass moving vertically on the amplitudes of porpoising.

Effect of variations in mass moving vertically.—The effof varying the mass moving vertically (model 101BC) on a limits of stability is shown in figure 14. The mass movivertically was increased by adding a weight to the towistaff and an equal counterweight, thus keeping a constaload on the water. The normal mass moving vertica (76.5 pounds) was increased by 14 percent, 25 percent, a 50 percent.

The lower limit and the upper limit, increasing trim, a unaffected by the variations in mass moving vertical within the limits of accuracy of the tests. The upper lim decreasing trim, is shifted to lower trims as the mass movi vertically is increased. Such a change is expected becauthis limit represents the trim of recovery from an alreaexisting porpoising condition.

Figure 15 shows similar data obtained by accelerat runs for two settings of the tail group. In general, increase in mass moving vertically tends to delay the i crease in amplitude of porpoising. With neutral elevate and 95.6 pounds moving vertically, the amplitude apparently did not have time to develop. With 114.7 pounmoving vertically, the porpoising became unmanageable a lower speed. This behavior is probably due to the prence of waves in the tank. With the tail set for minimu trim, the increase in amplitude of porpoising was definite delayed as the mass moving vertically was increased. Withis setting of the tail and excess mass moving verticall the model was removed from the water soon after porpoisin began, to prevent its being damaged.

FIGURE 16 .- Model 101. Effect of depth of step on limits of stability.

FIGURE 17.-Model 101BC. Effect of load coefficient on limits of stability.

Effect of variations of depth of step.—The limits of stability, with three depths of step, are shown in figure 16. The change in the lower limit is very small and is probably caused by changes in the condition of the planing bottom rather than by the increase in depth of step. No appreciable change is expected because the model is planing on the forebody alone, and the only water striking the afterbody is the spray from under the forebody, which occurs at high speeds.

The upper limit of stability, increasing trim, is raised as the depth of step increases. This raising of the limit may be caused by increased afterbody clearance, better ventilation behind the step, or a combination of the two.

With the shallow step (model 101BA) excessive negative pressures were present during porpoising at high angles and high speeds; and both sides of the afterbody planing surface behind the step were torn out of the model during the tests. Pressure measurements made on another model indicate that the negative pressures may become quite large during high-angle porpoising. In this last-mentioned case either ventilation of the step by the installation of air ducts or an increase in the depth of step improved the performance.

The upper limit, decreasing trim, is also raised as the a of step is increased. The violence of the motion, as the is decreased to approach this limit, is also reduced, model is more controllable and generally easier to have with a deep step.

Effect of variations of gross load coefficient C_{Δ_0} —load coefficient is defined by

$$C_{\Delta_0} = \Delta_o/wb^3$$

where

ے، gross load, pounds

w specific weight of water, pounds per cubic foot.

b beam of hull, feet

The effects of variations in load coefficient on the limstability are shown in figure 17. For these tests the moof inertia and the mass moving vertically were kept consthese quantities are small and for convenience they were varied.

Over the hump and at intermediate planing speeds lower limit of stability is raised as the load coefficient creased. There is an increase in damping at speeds over the hump with the higher load coefficients, the matter than the smallest load coefficient (C_{Δ_0} =0.62) having all no damping at all in this speed range. At high speed lower limits of stability with the three values of the coefficient tend to approach the same trims.

The variation in the upper limit of stability, incretrim, is small and is not so consistent as the variation i lower limit. The limit is raised as the load is increased with the same available training moment, the limit appears at a higher speed.

The effect on the lower branch of the upper limit is large. As the load coefficient is increased, this limit is rand the speed at which it first appears is increased.

CONCLUDING REMARKS

Two methods for investigating the stability character of dynamic models have been suggested:

(1) Tests at constant speed.—The attitude of the n is varied by means of the tail group, and the trim at v porpoising begins or stops is noted. This type of defines the range of trims at which the model is stable.

Although an accurate simulation of full-size comment is not essential, sufficient control should be able to attain the limiting trims. A shift of the cent gravity may be necessary to obtain this control moment

Small variations in the moment of inertia and in mass moving vertically have a negligible effect on limits of stability. With an excess of either, a slight of the upper limit, decreasing trim, is made toward trims.

The porpoising characteristics are generally detern for only one position of the center of gravity by this median order to determine the range of stable positions for center of gravity, the following method requires less and is consequently preferable.

(2) Tests at accelerated speed.—The trim and amplitude of porpoising are noted at predetermined speeds during an accelerated run. Data are taken for two or three settings of the tail. This type of test determines the amplitudes of porpoising of the model over the range of available control moment.

Control moments, corresponding to the full size, must be simulated if these results are to be used in predicting full-size behavior.

Maintaining correct moment of inertia and mass moving vertically is more important if this procedure is used than if tests are of the constant-speed type.

Different amplitudes of porpoising can be obtained for the same model by varying the rate of acceleration. With the present method for controlling the towing carriage, an accurate reproduction of accelerated runs is difficult.

A combination of the two methods for testing would probably give the most reliable results with the least amount of testing. The limits of stability would be first determined by making constant-speed runs. Modifications would be made on the basis of these tests and the merit of any alteration in form would, in general, be measured in terms of changes of the stability limits. The modification showing

the most desirable stability characteristics would then tested by accelerated runs, and the range of stable positi for the center of gravity would be determined. These Is mentioned tests would indicate any further changes necess to make this range of positions correspond to those necess for aerodynamic stability.

Increasing the depth of step has no appreciable eff on the lower limit of stability. The upper limits are rai with an increase in depth of step, and the violence of hi angle porpoising is greatly reduced.

Increasing the load coefficient raises the lower limit stability. The effect is greatest at intermediate plan speeds. The upper limit, increasing trim, is raised as load is increased and the speed at which this limit is f determined is also increased. The upper limit, decreastrim, is moved to higher trims and speeds with an incre in load coefficient.

Langley Memorial Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., September 9, 1942.

APPENDIX

DETERMINATION OF THE PITCHING MOMENT OF INERTIA OF A DYNAMIC MODEL

In an experimental study of the longitudinal stability of a flying boat by the use of a model, it is desirable that the motions of the model correctly reproduce those of the full-size craft. It is therefore necessary to measure the pitching moment of inertia of the model. This measurement may be accomplished by swinging the model as a compound pendulum.

FIGURE 18.—Knife-edge pendulum for determination of moment of inertia.

Knife-edge pendulum.—An elementary form of the pendulum is that shown in figure 18. The model is suspended by means of rigid links from a pair of knife edges. A detailed discussion of the method is given in reference 8. The virtual moment of inertia of the model about a lateral axis through its center of gravity may be expressed as follows:

$$I\!=\!\frac{T_{1}^{2}W_{1}L_{1}}{4\pi^{2}}\!-\!\frac{T_{2}^{2}W_{2}L_{2}}{4\pi^{2}}\!-\!I_{A}\!-\!\left(\!\frac{W}{g}\!+\!V\rho\!+\!M_{A}\right)L^{2}$$

where

I true moment of inertia of structure of model about a lateral axis through its center of gravity, slug-ft²

T₁ period of oscillation of complete pendulum, sec

 W_1 weight of complete pendulum, lb

L₁ distance from axis of rotation (knife edges) to center of gravity of complete pendulum, ft

T₂ period of swinging gear alone, sec

W2 weight of swinging gear alone, lb

 L_2 . distance from knife edges to center of gravity of swinging gear, ft

W weight of model, lb

g acceleration due to gravity, ft/sec 2

V volume of model, cu ft

ρ mass density of air, slugs/cu ft

M_A additional mass effect due to momentum imparted to surrounding air, slugs

L distance from knife edges to center of gravity of moderate ft

 I_A additional moment of inertia of air disturbed by mo about knife edges, slug-ft 2

The first two terms of the equation represent, respective the moments of inertia about the knife-edge axis of the coplete pendulum and of the swinging gear alone. The laterm transfers the remaining moment of inertia (that of model itself) to a parallel axis through the center of grav of the model. The factor $\left(\frac{W}{g} + V_{\rho} + M_{A}\right)$ is the true m of the model as swung. This factor is the sum of the m determined from the weight of the model in air $\frac{W}{g}$; the mass air entrapped in the model V_{ρ} ; and the additional meffect due to the motion imparted to the surrounding air M. Under ordinary conditions, the last two effects may safely neglected. The third term of the equation I_{A} is a moment of inertia (about the axis of oscillation) of the set in motion by the model.

In the design of a full-scale flying boat, the moment inertia is usually computed for the structure alone. T value, when reduced in proportion to the fifth power of scale of the model, is that to which the moment of inertia the structure of the model should correspond. The negleof the I_A term in swinging the model causes an apprecial error. For example (if the results obtained with NAC model 101 are used), the value of I_A computed by the meth of reference 8 is 0.32 slug-feet² or 5.4 percent of the transment of inertia desired for the structure alone, 5 slug-feet².

The pendulum should be kept short in order that t moment of inertia of the model about its own center gravity be a large part of the moment of inertia of t total pendulum about the axis of oscillation.

The error in measuring a moment of inertia that may expected in any given case may be easily determined from the fundamental formula and the probable errors in measuring time, length, and weight. In the case of the subjection of

Care must also be taken that the model is swinging in arc about the knife-edge axis and that no other freedom possible.

Added-weight method of swinging.—A somewhat me convenient adaptation of the compound pendulum is present used at the NACA tank. Figure 19 shows t arrangement. In this method the model is suspended from the towing staff actually used in testing. The ball-bearing

pivot is located at the desired center of gravity to be tested and an additional weight is suspended rigidly below the model to give the pendulum stability. A compound pendulum is thus formed with its center of gravity somewhat below the pivot. The following equation may be derived:

$$I = wl \left(\frac{T^2}{4\pi^2} - \frac{l}{g}\right) - I_w$$

where

I moment of inertia of model about a lateral axis through its center of gravity, slug-ft²

w added weight, lb

distance from pivot to center of gravity of added weight, ft.

T period of oscillation, sec

 I_w moment of inertia of added weight about its own center of gravity, slug-ft²

The moment of inertia of the added weight about its own center of gravity may in most cases be neglected. Ambientair effects have not been considered in the above equation, and their omission results in an error exactly the same as that due to their omission from the formula for the knife-edge system. The possible error due to errors in measurement is, of course, the same as that in a knife-edge pendulum.

The chief advantages in the use of an added-weight pendulum lie in the ease of setting up and balancing the model. One disadvantage is that the friction of the ballbearing pivot is higher than that of a set of knife edges, making it more difficult to get a sufficient number of oscillations.

Ballasting procedure.—The usual procedure followed at the NACA tank is to suspend the model at the desired location of the center of gravity and to balance the model about the pivot by trial location of ballast. The added weight is then attached to the model and a trial moment of inertia obtained. Computations then indicate the proper location and amount of ballast to give the correct location of the center of gravity and the correct moment of inertia. From the trial ballast and its location, the center of gravity of the unballasted model and its moment of inertia may be determined. The following relations may then be worked out (see fig. 18).

$$r_b = \frac{I_r - I_o - w_o r_o^2 - I_b}{w_o r_o}$$

and

$$w_b = \frac{w_o r}{r_b}$$

where

moment arm of ballast required, ft

I, required moment of inertia about pivot, slug-ft²

FIGURE 19.-Added-weight method of swinging model to determine moment of inert

I_o moment of inertia of unballasted model about its o center of gravity, slug-ft²

weight of unballasted model, lb

 r_o moment arm of unballasted model, ft.

I_b moment of inertia of ballast weight about its own cen of gravity, slug-ft². Neglect, at least, for fi approximation of r_b.

wb required ballast weight, lb

A check determination of the moment of inertia is usua made after setting the proper ballast at the compulocation.

REFERENCES

- Perring, W. G. A., and Glauert, H.: The Stability on the Water a Seaplane in the Planing Condition. R. & M. No. 1493, Brit A. R. C., 1933.
- Klemin, Alexander, Pierson, John D., and Storer, Edmund An Introduction to Seaplane Porpoising. Jour. Aero. Sci., vol. no. 8, June 1939, pp. 311-318.
- Truscott, Starr: The Enlarged NACA Tank, and Some of Work. NACA T.M. No. 918, 1939.
- Garner, H. M.: Porpoising Tests on a Model of a Flying Boat H R. & M. No. 1492, British A. R. C., 1932.
- Perring, W. G. A., and Hutchinson, J. L.: Full Scale and Mo Porpoising Tests of the Singapore IIc. R. & M. No. 17 British A. R. C., 1936.
- Coombes, L. P., Perring, W. G. A., and Johnston, L.: The Use Dynamically Similar Models for Determining the Porpois Characteristics of Seaplanes. R. & M. No. 1718, British A. R. 1936.
- Weick, Fred E., and Bamber, Millard J.: Wind-Tunnel Tests o Clark Y Wing with a Narrow Auxiliary Airfoil in Differ Positions. NACA Rep. No. 428, 1932.
- Soulé, Hartley A., and Miller, Marvel P.: The Fundamen Determination of the Moments of Inertia of Airplanes. NAC Rep. No. 467, 1933.

TABLE I.—OFFSETS OF MODEL 101BA

[Dimensions in inches]

	Dis-							Distanc	e belo	w base	line				ļ			H	alf-bres	dth			
Station	from F. P.	ance k r 1	DЦ	D2	a	ь	c	d	B1 a 1.40	B2 2.80	B3 4.20	B4 5.60	R	e	j	WL1 5 7.00	WL2 5.60	WL3 4.20	WL4 2.80	WL5 1.40	WL6	W -1	
F. P	0 .67 3. 19 5. 70 10. 73 15. 77 20. 80 25. 83 36. 60 40. 92 45. 95 50. 99 45. 95 66. 08 71. 11 76. 14 81. 17 86. 21 91. 24	0 .13 .22 .34 .48 .63 .67 61.23	4.17	3. 26 3. 08 2. 44 1. 93 1. 23 . 78 . 49 . 29 . 10 . 00 . 01 . 00 . 11 . 22 	4. 42 4. 28 3. 84 3. 45 2. 45 2. 24 5. 2. 20 1. 98 1. 87 1. 80 1. 78 1. 80 1. 86 1. 97 2. 12 2. 31 2. 31 2. 31 2. 82 3. 49 3. 88	-3. 26 68 2.54 4. 12 5. 83 6. 61 6. 98 7. 24 7. 38 7. 52 7. 60 7. 7. 72 7. 83 7. 94 7. 06 6. 59 6. 69 5. 61 5. 61 5. 61 5. 61 5. 61 6. 68 6. 68 6. 68 6. 68 6. 68 6. 68 7. 24 7. 38 7. 52 7. 60 7.	5. 52 5. 63 5. 78 5. 78 6. 5. 05 4. 41 4. 22 4. 13 4. 15	-3. 26 -2. 36 -61 2. 36 3. 48 4. 20 4. 697 5. 15 5. 17 5. 27 5. 38 5. 61 5. 21 4. 44 4. 45 3. 97 3. 87 3. 88 3. 90	4, 99 5, 11 5, 24 5, 00 4, 59 4, 24 3, 95 3, 76 3, 67 3, 82	0.36 2.27 4,42 5.53 6.17 6.59 6.81 6.97	1. 08 3. 35 4. 64 5. 42 5. 94 6. 24 6. 45 6. 48	2. 62 3. 96 4. 77 5. 31 5. 68 5. 94 5. 97	3. 53 4. 34 4. 86 5. 21 5. 44 5. 47	0 1. 11 2. 72 3. 72 5. 93 6. 89 7. 99 7. 10 7. 12 7. 10 6. 83 6. 59 6. 36 6. 59 6. 36 6. 59 6. 36 6. 59 6. 59 6. 59 6. 59 6. 59 7. 70 7. 70 70 70 70 70 70 70 70 70 70 70 70 70 7	5. 70 5. 70 5. 70 5. 70 5. 70 5. 4. 61 3. 82 2. 78 1. 42	6.73 6.39 5.84 5.05 4.02 2.65 .91	0,50 ,92 1,30 1,40	0. 20 1. 29 2. 44 3. 53 4. 36 5. 06 5. 11	1. 65	0. 95	0. 62 2. 35	1.75	0.3
21	93.17	1.64		2.98	4, 04	3.97		3. 97	3, 97					4.86		(rad)				• ••			
22	96. 27 101. 30 106. 33 111. 36 116. 39 121. 43 122. 16 126. 12 127. 46 128. 13 128. 41			3. 32 3. 89 4. 50 5. 15 5. 84 6. 58 6. 69 7. 39 7. 69 7. 88 7. 98	4. 32 4. 79 5. 31 5. 87 6. 46 7. 08 7. 71 7. 92 8. 02 7. 98									4, 58 4, 11 3, 59 3, 03 2, 44 1, 82 1, 72 1, 10 78 46 0									

<sup>Distance from center line to buttock.
Distance from base line to water line.</sup>

TABLE II.—AFTERBODY OFFSETS FOR MODELS 101BB AND 101BC

[Dimensions in inches. Offsets not given are same as 101BA]

	_	Во	th moo	dels	Mod	lel 101 E dej		Model 101BC, 1.0 step depth					
Sta- tion	Dis- tance from F. P.		Half- Distance below base line						Dist				
		e j	r	a	ь	c	k	а	b	с	k		
13A . 14	56. 02 61. 05 66. 08	5. 70 5. 49 5. 15	6, 93 6, 73 6, 39	4. 17 4. 17 4. 17	7. 24 6. 76 6. 28	5. 16 5. 75 4. 39	4. 91 4. 50 4. 14	(*) 0.04 .12	6. 94 6. 46 5. 98	4. 86 5. 45 4. 09	4. 61 4. 20 3. 84	(*) (*) (*)	
16 17 18	71. 11 76. 14	4. 61 3. 82 2. 78	5. 84 5. 05 4. 02	4. 17 4. 17 4. 17	5. 79 5. 31 4. 83	4. 11 3. 92 3. 82	3. 85 3. 67 3. 57	. 24 . 39 . 54	5. 49 5. 01 4. 53	3.81 3.62 3.52	3. 55 3. 37 3. 27	(*) 0.09 .24	
19 20 21	86. 21 91. 24 93. 17	1.42 0	2.65 .91	4. 17 4. 17 }4. 17	4. 34 3. 85 3. 67	3.83 3.85	3, 58 3, 60 3, 67	. 67 1. 01 1. 34	4. 04 3. 55 3. 37	3. 53 3. 85	3. 28 3. 30 3. 37	. 37 . 71 1. 04	

No radius; draw to chine.

Positive directions of axes and angles (forces and moments) are shown by arrows

Axis		Force	Mome	ent abo	ıt axis	Angle	Э	Veloc	ities
Designation	Sym- bol	(parallel to axis) symbol	Designation	Sym- bol	Positive direction	Designa- tion	Sym- bol	Linear (compo- nent along axis)	Angular
Longitudinal Lateral Normal	X Y Z	X Y Z	Rolling Pitching Yawing	L M N	$Y \longrightarrow Z$ $Z \longrightarrow X$ $X \longrightarrow Y$	Roll Pitch Yaw	φ θ ψ	น บ บ	p q t

 $\begin{array}{ccc} \text{Absolute coefficients of moment} \\ C_l = & \frac{L}{qb\overline{S}} & C_m = & \frac{M}{qcS} \\ \text{(rolling)} & \text{(pitching)} \end{array}$

$$C_l = \frac{L}{qbS}$$

$$C_{m} = \frac{M}{qc\bar{S}}$$
(pitching

$$C_n = \frac{N}{qbS}$$
 (yawing)

Angle of set of control surface (relative to neutral position), δ . (Indicate surface by proper subscript.)

4. PROPELLER SYMBOLS

DDiameter Geometric pitch

p/D V'Pitch ratio

Inflow velocity V_s Slipstream velocity

Thrust, absolute coefficient $C_T = \frac{T}{\rho n^2 D^4}$ T

Torque, absolute coefficient $C_{\mathbf{Q}} = \frac{Q}{\rho n^2 D^5}$ Q

Power, absolute coefficient $C_P = \frac{P}{\rho n^3 D^5}$ Speed-power coefficient $= \sqrt[5]{\frac{1}{\rho} V^5}$ C_{s}

Efficiency

Revolutions per second, rps

Effective helix angle = $\tan^{-1} \left(\frac{V}{2\pi rn} \right)$

5. NUMERICAL RELATIONS

1 hp = 76.04 kg-m/s = 550 ft-lb/sec

1 metric horsepower=0.9863 hp

1 mph = 0.4470 mps

1 mps=2.2369 mph

1 lb=0.4536 kg

1 kg = 2.2046 lb

1 mi = 1,609.35 m = 5,280 ft

1 m = 3.2808 ft