

SEQUENCE LISTING

<110> Yosef, Shaul
Zemel, Romi
<120> HEPATITIS B VIRUS BINDING PROTEINS AND USES THEREOF
<130> 27169
<160> 14
<170> PatentIn version 3.3

<210> 1
<211> 2512
<212> DNA
<213> Homo sapiens

<400> 1
caatgcactg acggatatga gtgggatcct gtgagacagc aatgcaaaga tattgtgaa 60
tgtgacattt tcccagacgc ttgttaaagggt ggaatgaagt gtgtcaacca ctatggagga 120
tacctctgcc ttccgaaaac agccccaggatt attgtcaata atgaacagcc tcagcgagaa 180
acacaaccag cagaaggaac ctcagggca accaccgggg ttgttagtgc cagcagcatg 240
gcaaccagggt gagtgttgcc cgggggtgggt tttgtggcca gtgctgtgc agtgcagggc 300
cctgaaatgc agactggccg aaataacttt gtcatccggc ggaaccaggc tgaccctcag 360
cgcatccctt ccaacccttc ccaccgtatc cagtgtagcag caggctacga gcaaagtgaa 420
cacaacgtgt gccaagacat agacgagtgc actgcagggc cgccacaactg tagacgac 480
caagtgtgca tcaatttacg gggatccctt gcatgtcagt gccctctgg atatcagaag 540
cgaggggagc agtgcgtaga catagatgaa tgttaccatcc ctccatattt ccaccaaaga 600
tgcgtgaata caccaggctc attttattgc cagtgtagc ctgggtttca attggcagca 660
aacaactata cctgcgtaga tataaatgaa tgtgatgcca gcaatcaatg tgctcagcag 720
tgctacaaca ttcttggttc attcatctgt cagtgcaatc aaggatatga gctaaggcgt 780
gacaggctca actgtgaaga cattgtgaa tgcagaacct caagctaccc gtgtcaatata 840
caatgtgtca atgaacacctt gaaattctca tgttatgtgcc cccaggata ccaagtgggt 900
agaagttagaa catgtcaaga tataaatgag tgtgagacca caaatgaatg cggggaggat 960
gaaatgtgtt ggaattatca tggcggttcc cggtgttac cacgaaatcc ttgtcaagat 1020
ccctacatcc taacaccaga gaaccgtatgt gtttgcggcc tctcaatgc catgtgccga 1080
gaactgcggcc agtcaatagt ctacaaatac atgagcatcc gatctgatag gtctgtgcca 1140
tcagacatct tccagataca gcccacaact atttatgcca acaccatcaa tactttcgg 1200
attaaatctg gaaatgaaaa tggagatgtc tacctacgac aaacaagtcc tgtaagtgca 1260
atgcttggtgc tcgtgaagtc attatcagga ccaagagaac atatcgatcc cctggagatg 1320
ctgacagtca gcagtatagg gaccttccgc acaagctctg tgttaagatt gacaataata 1380
gtggggccat ttccatattta gtctttctca agagtcaacc acaggcattt aagtgcggcca 1440
aagaatattt gttacccatgg gcaactatattt atttatagat atatcttagt catctacatc 1500
tctatactgt acactcaccc ataacaaaca attacaccat ggtataaaatg gggcattttaa 1560
tatgtaaaga ttcaaaatgtt gtctttatca ctatatgtaa attagacatt aatccactaa 1620
actggcttcc ttcaagagag ctaagtatac actatctggt gaaacttgga ttctttccata 1680

taaaaagtggg accaagcaat gatgatcttc tgggtgc tt aaggaaactt actagagctc	1740
cactaacagt ctcataagga ggcagccatc ataaccattt aatagcatgc aaggtaaga	1800
atgagttttt aactgctttg taagaaaatg gaaaaggatca ataaagatat atttcttag	1860
aaaatgggta tctgccatat ttgtgttggt ttttatttc atatccagcc taaaggatgg	1920
tgtttattat atagtaataa atcattgctg tacaacatgc tggttctgt agggatattt	1980
taattttgtc agaaaattta gattgtgaat attttgtaaa aaacagtaag caaaattttc	2040
cagaattccc aaaatgaacc agatacccccc tagaaaattta tactattgag aaatctatgg	2100
ggaggatatg agaaaataaa ttccctctaa accacattgg aactgacctg aagaagcaaa	2160
ctcgaaaaat ataataacat ccctgaattc aggcatcac aagatgcaga acaaaatgg	2220
taaaaggat ttcactggag aagtttaat ttctaaatc aatttaatc ctaacacttc	2280
actaatttat aactaaaatt tctcatcttc gtacttgatg ctcacagagg aagaaaatga	2340
tgtgggtttt tattcctggc atccagatgt acagtgaact taagcaaattt accctctac	2400
ccaattctat ggaatattttt atacgtctcc ttgtttaaaa tctgactgct ttactttgat	2460
gtatcatatt tttaaataaa aataaatattt cctttagaaag atcactctaa aa	2512

<210> 2
<211> 387
<212> PRT
<213> Homo sapiens

<400> 2

Met Ala Thr Ser Gly Val Leu Pro Gly Gly Phe Val Ala Ser Ala			
1	5	10	15

Ala Ala Val Ala Gly Pro Glu Met Gln Thr Gly Arg Asn Asn Phe Val			
20	25	30	

Ile Arg Arg Asn Pro Ala Asp Pro Gln Arg Ile Pro Ser Asn Pro Ser			
35	40	45	

His Arg Ile Gln Cys Ala Ala Gly Tyr Glu Gln Ser Glu His Asn Val			
50	55	60	

Cys Gln Asp Ile Asp Glu Cys Thr Ala Gly Thr His Asn Cys Arg Ala			
65	70	75	80

Asp Gln Val Cys Ile Asn Leu Arg Gly Ser Phe Ala Cys Gln Cys Pro			
85	90	95	

Pro Gly Tyr Gln Lys Arg Gly Glu Gln Cys Val Asp Ile Asp Glu Cys			
100	105	110	

Thr Ile Pro Pro Tyr Cys His Gln Arg Cys Val Asn Thr Pro Gly Ser			
115	120	125	

Phe Tyr Cys Gln Cys Ser Pro Gly Phe Gln Leu Ala Ala Asn Asn Tyr			
130	135	140	

Thr Cys Val Asp Ile Asn Glu Cys Asp Ala Ser Asn Gln Cys Ala Gln			
145	150	155	160

Gln Cys Tyr Asn Ile Leu Gly Ser Phe Ile Cys Gln Cys Asn Gln Gly
165 170 175

Tyr Glu Leu Ser Ser Asp Arg Leu Asn Cys Glu Asp Ile Asp Glu Cys
 180 185 190

Arg Thr Ser Ser Tyr Leu Cys Gln Tyr Gln Cys Val Asn Glu Pro Gly
195 200 205

Lys Phe Ser Cys Met Cys Pro Gln Gly Tyr Gln Val Val Arg Ser Arg
210 215 . 220

Thr Cys Gln Asp Ile Asn Glu Cys Glu Thr Thr Asn Glu Cys Arg Glu
225 230 235 240

Asp Glu Met Cys Trp Asn Tyr His Gly Gly Phe Arg Cys Tyr Pro Arg
245 . . . 250 . . . 255

Asn Pro Cys Gln Asp Pro Tyr Ile Leu Thr Pro Glu Asn Arg Cys Val
260 265 270

Cys Pro Val Ser Asn Ala Met Cys Arg Glu Leu Pro Gln Ser Ile Val
275 280 285

Tyr Lys Tyr Met Ser Ile Arg Ser Asp Arg Ser Val Pro Ser Asp Ile
290 295 300

Phe Gln Ile Gln Ala Thr Thr Ile Tyr Ala Asn Thr Ile Asn Thr Phe
 305 310 315 320

Arg Ile Lys Ser Gly Asn Glu Asn Gly Glu Phe Tyr Leu Arg Gln Thr
325 330 335

Ser Pro Val Ser Ala Met Leu Val Leu Val Lys Ser Leu Ser Gly Pro
340 345 350

Arg Glu His Ile Val Asp Leu Glu Met Leu Thr Val Ser Ser Ile Gly
355 360 365

Thr Phe Arg Thr Ser Ser Val Leu Arg Leu Thr Ile Ile Val Gly Pro
370 375 380

Phe Ser Phe
385

<210> 3
<211> 2019
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> (22)..(22)
<223> n is a, c, g, or t
```

<400> 3
accccgccgc tctccccgtg tntcttccac gactcgctcg gccctctgg aataaaaacac

ccgcgcggccc	cgagggccca	gaggaggccg	acgtgccccga	gctcctccgg	gggtcccgcc	120
cgcaagcttt	cttctcgccct	tcgcatactcc	tcctcgccg	tcttgacat	gccagagaata	180
aaaaggatac	tcactgttac	cattctggct	ctctgtcttc	caagccctgg	aatgcacag	240
gcacagtgc	cgaatggc	ttgacctggat	cgccagtc	gacagtgtt	agatattgat	300
gaatgccaa	ccatccccga	ggcctgcccga	ggagacatga	tgtgtgttaa	ccaaaatggg	360
gggtatttat	gccatccccg	gacaaacctt	gtgtatcgag	ggccctactc	gaacccctac	420
tgcacccct	actcaggatcc	gtacccagca	gctgccccac	caactctc	tccaaaactat	480
cccacgatct	ccaggcctct	tatatgccgc	tttggatacc	agatggatga	aagcaaccaa	540
tgtgtggatg	tggacgagtg	tgcaacagat	tcccaccagt	gcaacccac	ccagatttgc	600
atcaaatatga	agggccggta	cacctgtcc	tgccacggac	gatattggct	tttggaaaggc	660
cagtgcttag	acattgtatga	atgtcgctat	ggttactgcc	agcagctctg	tgcaaatgtt	720
cctggatct	attcttgtac	atgcaacccct	ggttttaccc	tcaatgagga	ttggaaaggct	780
tgccaagatg	tgaacgagtg	tgccaccgag	aacccctgcg	tgcaaacctg	cgtcaacacc	840
tacggctctt	tcatctgccc	ctgtgaccca	ggatatgaac	ttgaggaaga	tggcgttcat	900
tgcaagtata	tggacgagtg	cagttctct	gagttcctct	gccaacatga	gtgtgtgaac	960
cagcccg	gcatacttctg	ctccctgccc	ccaggctaca	tcctgctgga	tgacaaccga	1020
agctgccaag	acatcaacga	atgtgagcac	aggaaccaca	cgtgcaaccc	gcagcagacg	1080
tgctacaatt	tacaaggggg	cttcaaatgc	atcgacccca	tccgctgtga	ggagccttat	1140
ctgaggatca	gtgataaccg	ctgtatgtgt	cctgctgaga	accctggctg	cagagaccag	1200
ccctttacca	tcttgcaccg	ggacatggac	gtgggtgtcag	gacgctccgt	tcccgctgac	1260
atcttccaaa	tgcaagccac	gacccgctac	cctggggcct	attacatttt	ccagatcaa	1320
tctggaaatg	agggcagaga	attttacatg	cggcaaacgg	gccccatcag	tgccaccctg	1380
gtgatgacac	gccccatcaa	agggcccccgg	gaaatccagc	tggacttgga	aatgatca	1440
gtcaacactg	tcatcaactt	cagaggcagc	tccgtatcc	gactgcggat	atatgtgtcg	1500
cagttccat	tctgagcctc	gggctggagc	ctccgacgct	gcctctcatt	ggcaccaagg	1560
gacaggagaa	gagaggaaat	aacagagaga	atgagagcga	cacagacgtt	aggcattcc	1620
tgctgaacgt	ttccccgaag	agtcaagcccc	gacttcctga	ctctcacctg	tactattgca	1680
gacctgtcac	cctgcaggac	ttgccacccc	cagttcctat	gacacagtt	tcaaaaaagta	1740
ttatcattgc	tcccctgata	gaagattgtt	ggtgaatttt	caaggccttc	agtttatttc	1800
cactatttc	aaagaaaata	gattaggttt	gcgggggtct	gagtctatgt	tcaaagactg	1860
tgaacagctt	gctgtcactt	cttcacccct	tcactcactgt	gttactgtt	1920	
tgcaaagacc	cggggagctg	gcggggaaac	cctggggagt	agctagtttgcgt	1980	
acacagaaga	aggctatgt	aacaaaccac	agcaggatc		2019	

<210> 4
 <211> 448
 <212> PRT
 <213> Homo sapiens
 <400> 4

Met Pro Gly Ile Lys Arg Ile Leu Thr Val Thr Ile Leu Ala Leu Cys

1 5 10 15

Leu Pro Ser Pro Gly Asn Ala Gln Ala Gln Cys Thr Asn Gly Phe Asp
20 25 30

Leu Asp Arg Gln Ser Gly Gln Cys Leu Asp Ile Asp Glu Cys Arg Thr
35 40 45

Ile Pro Glu Ala Cys Arg Gly Asp Met Met Cys Val Asn Gln Asn Gly
50 55 60

Gly Tyr Leu Cys His Ser Arg Thr Asn Pro Val Tyr Arg Gly Pro Tyr
65 70 75 80

Ser Asn Pro Tyr Ser Thr Pro Tyr Ser Gly Pro Tyr Pro Ala Ala Ala
85 90 95

Pro Pro Leu Ser Ala Pro Asn Tyr Pro Thr Ile Ser Arg Pro Leu Ile
100 105 110

Cys Arg Phe Gly Tyr Gln Met Asp Glu Ser Asn Gln Cys Val Asp Val
115 120 125

Asp Glu Cys Ala Thr Asp Ser His Gln Cys Asn Pro Thr Gln Ile Cys
130 135 140

Ile Asn Met Lys Gly Gly Tyr Thr Cys Ser Cys Thr Asp Gly Tyr Trp
145 150 155 160

Leu Leu Glu Gly Gln Cys Leu Asp Ile Asp Glu Cys Arg Tyr Gly Tyr
165 170 175

Cys Gln Gln Leu Cys Ala Asn Val Pro Gly Ser Tyr Ser Cys Thr Cys
180 185 190

Asn Pro Gly Phe Thr Leu Asn Glu Asp Gly Arg Ser Cys Gln Asp Val
195 200 205

Asn Glu Cys Ala Thr Glu Asn Pro Cys Val Gln Thr Cys Val Asn Thr
210 215 220

Tyr Gly Ser Phe Ile Cys Arg Cys Asp Pro Gly Tyr Glu Leu Glu Glu
225 230 235 240

Asp Gly Val His Cys Ser Asp Met Asp Glu Cys Ser Phe Ser Glu Phe
245 250 255

Leu Cys Gln His Glu Cys Val Asn Gln Pro Gly Thr Tyr Phe Cys Ser
260 265 270

Cys Pro Pro Gly Tyr Ile Leu Leu Asp Asp Asn Arg Ser Cys Gln Asp
275 280 285

Ile Asn Glu Cys Glu His Arg Asn His Thr Cys Asn Leu Gln Gln Thr
290 295 300

Cys Tyr Asn Leu Gln Gly Gly Phe Lys Cys Ile Asp Pro Ile Arg Cys
305 310 315 320

Glu Glu Pro Tyr Leu Arg Ile Ser Asp Asn Arg Cys Met Cys Pro Ala
 325 330 335

Glu Asn Pro Gly Cys Arg Asp Gln Pro Phe Thr Ile Leu Tyr Arg Asp
 340 345 350

Met Asp Val Val Ser Gly Arg Ser Val Pro Ala Asp Ile Phe Gln Met
355 360 365

Gln Ala Thr Thr Arg Tyr Pro Gly Ala Tyr Tyr Ile Phe Gln Ile Lys
370 375 380

Ser Gly Asn Glu Gly Arg Glu Phe Tyr Met Arg Gln Thr Gly Pro Ile
 385 390 395 400

Ser Ala Thr Leu Val Met Thr Arg Pro Ile Lys Gly Pro Arg Glu Ile
405 410 415

Gln Leu Asp Leu Glu Met Ile Thr Val Asn Thr Val Ile Asn Phe Arg
420 425 430

Gly Ser Ser Val Ile Arg Leu Arg Ile Tyr Val Ser Gln Tyr Pro Phe
 435 440 445

<210> 5
<211> 1661

<213> Homo sapiens

<400> 5
atgtccccct gcgcctcctg cctacccggg tctctactgc tctggcgct gctactgttg . 60
ctcttggat cagcttctcc tcaggattct gaagagcccg acagctacac ggaatgcaca
gatggctata cccagacagc caactgccgg gatgtcaacg agtgtctgac catccctgag . 120
gcctgcagg gggaaatgaa gtgcataaac cactacgggg gctacttgtc cctggcccgc . 180
tccgctgccg tcatcaacga cctacacggc gagggacccc cgccaccagt gcctcccgtc . 240
aacacccaac ccctgcccac aggctatgag cccgacgatc aggacagctg tgtggatgtg . 300
gacgagtgtg cccaggccct gcacgactgt cgccccagcc aggactgcc taactgcct . 360
ggctcctatac agtgcacctg ccctgatggt taccgcaaga tccggcccgta gttgtggac . 420
atagacgagt gccgctacccg ctactgccag caccgctgcg tgaacctgc tggctccctc . 480
cgctgccagt gcgagccggg cttccagctg gggcctaaca accgctcctg tttgtatgtg . 540
aacagtggtg acatgggggc cccatgcgag cagcgctgct tcaactccta tgggaccttc . 600
ctgtgtcgct gccaccaggg ctatgagctg catggatgat gttctccctg cagtatatt . 660
gatgagtgtt gctactccag ctacctctgt cagtagccgt gctcaacga gccaggccgt . 720
ttctccctgcc actgcccaca gggttaccag ctgctggcca cacgcctctg ccaagacatt . 780
gatgagtgtg agtctgggtgc gcaccagtgg tccgaggccc aaacctgtgt caattccat . 840
gggggctacc gctgcgtgga caccaaccgc tgcgtggagc cctacatcca ggtctctgag . 900
aacccgctgtc tctggccggc ctccaaaccct ctatgtcgag agcagcccttc atccattgtg . 960
aaccgctgtc tctggccggc ctccaaaccct ctatgtcgag agcagcccttc atccattgtg . 1020

caccgctaca tgaccatcac ctcggaagcg gagagacccg ctgacgtgtt ccagatccag 1080
 gcgacacctcg tctaccccg tgcctacaat gccttcaga tccgtgctgg aaactcgcag 1140
 ggggacttt acattaggca aatcaacaac gtcagcgcca tgctggtcct cgccccggccg 1200
 gttacgggcc cccgggagta cgtgctggac ctggagatgg tcaccatgaa ttccctcatg 1260
 agctaccggg ccagctctgt actgaggctc accgtctttg taggggccta caccctctga 1320
 ggagcaggag ggagccaccc tccctgcage taccctagct gaggagcctg ttgtgagggg 1380
 cagaatgaga aaggcccagg ggccccatt gacaggagct gggagctctg caccacgagc 1440
 ttcagtacc ccgagaggag aggaggtaac gaggagggcg gacttcags cccsgscag 1500
 agatttggac ttggctggct tgcaagggc ctaagaaaact ccactctgga cagcgcagg 1560
 aggccctggg ttccattcct aactctgcct caaaactgtac atttggataa gcccttagtag 1620
 ttccctggc ctgttttct ataaaacgag gcaactggaa a 1661

<210> 6
 <211> 439
 <212> PRT
 <213> Homo sapiens
 <400> 6

Met Leu Pro Cys Ala Ser Cys Leu Pro Gly Ser Leu Leu Leu Trp Ala
 1 5 10 15

Leu Leu Leu Leu Leu Leu Gly Ser Ala Ser Pro Gln Asp Ser Glu Glu
 20 25 30

Pro Asp Ser Tyr Thr Glu Cys Thr Asp Gly Tyr Thr Gln Thr Ala Asn
 35 40 45

Cys Arg Asp Val Asn Glu Cys Leu Thr Ile Pro Glu Ala Cys Lys Gly
 50 55 60

Glu Met Lys Cys Ile Asn His Tyr Gly Gly Tyr Leu Cys Leu Pro Arg
 65 70 75 80

Ser Ala Ala Val Ile Asn Asp Leu His Gly Glu Gly Pro Pro Pro Pro
 85 90 95

Val Pro Pro Val Asn Thr Gln Pro Leu Pro Thr Gly Tyr Glu Pro Asp
 100 105 110

Asp Gln Asp Ser Cys Val Asp Val Asp Glu Cys Ala Gln Ala Leu His
 115 120 125

Asp Cys Arg Pro Ser Gln Asp Cys His Asn Leu Pro Gly Ser Tyr Gln
 130 135 140

Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro Glu Cys Val Asp
 145 150 155 160

Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg Cys Val Asn Leu
 165 170 175

Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro
 180 185 190

Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp Met Gly Ala Pro
 195 200 205

Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys
 210 215 220

His Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser Cys Ser Asp Ile
 225 230 235 240

Asp Glu Cys Ser Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Val Asn
 245 250 255

Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu
 260 265 270

Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Ser Gly Ala His
 275 280 285

Gln Trp Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg
 290 295 300

Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Ile Gln Val Ser Glu
 305 310 315 320

Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro
 325 330 335

Ser Ser Ile Val His Arg Tyr Met Thr Ile Thr Ser Glu Ala Glu Arg
 340 345 350

Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly Ala
 355 360 365

Tyr Asn Ala Phe Gln Ile Arg Ala Gly Asn Ser Gln Gly Asp Phe Tyr
 370 375 380

Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro
 385 390 395 400

Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met
 405 410 415

Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr Val
 420 425 430

Phe Val Gly Ala Tyr Thr Phe
 435

<210> 7
 <211> 534
 <212> DNA
 <213> Artificial sequence

<220>
 <223> HBV preS1 derived construct

<400> 7
atgcgggggtt ctcatcatca tcatcatcat ggtatggcta gcatgactgg tggacagcaa 60
atgggtcggg atctgtacga cgatgacgat aaggatccga gctcgagatc ttcaaaacct 120
cgcaaaggca tggggacgaa tctttctgtt cccaatcctc tggattctt tcccgatcat 180
cagttggacc ctgcattcgg agccaaactca aacaatccag attgggactt caaccccgta 240
aaggacgact ggccagcagc caaccaagta ggagtggag cattcgggcc aaggetcacc 300
cctccacacg gcggtatattt ggggtggagc cctcaggctc agggcatatt gaccacagt 360
tcaacaattc ctccctcctgc ctccaccaat cggcagtcag gaaggcagcc tactcccattc 420
tctccacctc taagagacag tcatcctcag gccatgcagt ggaattcgaa gcttgatccg 480
gctgctaaca aagcccgaaa ggaagctgag ttggctgctg ccaccgctga gcaa 534

<210> 8
<211> 178
<212> PRT
<213> Artificial sequence

<220>
<223> Recombinant HBV derived polypeptide

<400> 8

Met	Arg	Gly	Ser	His	His	His	His	His	Gly	Met	Ala	Ser	Met	Thr
1				5			10			15				

Gly	Gly	Gln	Gln	Met	Gly	Arg	Asp	Leu	Tyr	Asp	Asp	Asp	Lys	Asp
				20		25				30				

Pro	Ser	Ser	Arg	Ser	Ser	Lys	Pro	Arg	Lys	Gly	Met	Gly	Thr	Asn	Leu
						35		40		45					

Ser	Val	Pro	Asn	Pro	Leu	Gly	Phe	Phe	Pro	Asp	His	Gln	Leu	Asp	Pro
					50		55		60						

Ala	Phe	Gly	Ala	Asn	Ser	Asn	Asn	Pro	Asp	Trp	Asp	Phe	Asn	Pro	Val
					65		70		75		80				

Lys	Asp	Asp	Trp	Pro	Ala	Ala	Asn	Gln	Val	Gly	Val	Gly	Ala	Phe	Gly
					85		90			95					

Pro	Arg	Leu	Thr	Pro	Pro	His	Gly	Gly	Ile	Leu	Gly	Trp	Ser	Pro	Gln
					100			105		110					

Ala	Gln	Gly	Ile	Leu	Thr	Thr	Val	Ser	Thr	Ile	Pro	Pro	Pro	Ala	Ser
					115		120		125						

Thr	Asn	Arg	Gln	Ser	Gly	Arg	Gln	Pro	Thr	Pro	Ile	Ser	Pro	Pro	Leu
					130		135		140						

Arg	Asp	Ser	His	Pro	Gln	Ala	Met	Gln	Trp	Asn	Ser	Lys	Leu	Asp	Pro
					145		150		155		160				

Ala	Ala	Asn	Lys	Ala	Arg	Lys	Glu	Ala	Glu	Leu	Ala	Ala	Thr	Ala
					165		170			175				

Glu Gln

```

<210> 9
<211> 29
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic HBV derived polypeptide

<400> 9

Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro Ala Phe Gly Ala
1           5           10          15

```

```

Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Gly Lys
20           25

```

```

<210> 10
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 10
ggagatcttc aaaacctggc aaaggc

```

26

```

<210> 11
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 11
gaattccact gcatggcctg

```

20

```

<210> 12
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 12
gacttgaatt cctgtggttg a

```

21

```

<210> 13
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 13
gccagcacca tggcaaccag t

```

21

```

<210> 14
<211> 21
<212> DNA
<213> Artificial sequence

```

<220>
<223> Single strand DNA oligonucleotide

<400> 14
gacttgaatt cctgtggttg a