- 1. Якщо кожен елемент множини A міститься в множині B, то множина A називається : nid_M ножиною множини B (A містить B).
- 2. Множина, елементами якої є елементи, які належать або до множини A, або до множини B, називається: **Об'єднанням множин**
- 3. Множина, елементами якої ϵ елементи, які належать і до множини A , і до множини B , називається **Перетином множин**
- 4. Множина, елементами якої ϵ ті елементи множини A, які не належать до множини B, називається **Різницею множин**
- 5. Якщо кожному натуральному числу поставити у відповідність дійсне число, то одержимо послідовність
- 6. Якщо існує таке число m, що кожен член послідовності $\{x \ n\}$ задовольняє умову $x \ n \ \mathfrak{S} \ m$, то послідовність називається **Сумою послідовностей**
- 7. Якщо існує таке число m, що кожен член послідовності $\{x \ n\}$ задовольняє умову $x \ n \ \mathfrak{S} \ m$, то послідовність називається **Різницею послідовностей**
- 8. Якщо існує таке число A, що кожен член послідовності $\{x \ n \}$ задовольняє умову $|x \ n | \boxtimes A$, то послідовність називається **Добутком послідовності**
- 9. Якщо для довільного числа $A \stackrel{*}{\sim} 0$ існує такий член послідовності x n , що $|x| n \stackrel{*}{\sim} A$, то послідовність називається **Часткою послідовностей**
- 10. Якщо кожний наступний член послідовності більший, ніж попередній, то послідовність називається **зростаючою**
- 11. Якщо кожний наступний член послідовності менший, ніж попередній, то послідовність називається **спадною**
- 12. Якщо кожний наступний член послідовності не більший, ніж попередній, то послідовність називається **незростаючою**
- 13. Якщо кожний наступний член послідовності не менший, ніж попередній, то послідовність називається **неспадною**
- 14. Зростаючі та спадні послідовності називаються строго монотонними
- 15. Незростаючі та неспадні послідовності називаються монотонними
- 16. Послідовність, яка має границю, називається збіжною

17. Послідовність, границя якої дорівнює нулю, називається нескінченно малою	
18.	
19.	
20.	
21.	
22.	

- 1. **Множина** це сукупність деяких об'єктів (елементів множини), виділених за певною ознакою чи властивістю з інших об'єктів. При цьому потрібно мати повний опис класу всіх об'єктів, які розглядаються (універсальна множина U).
- 2. Якщо кожен елемент множини A міститься в множині B, то множина A називається **підмножиною** множини B (A містить B).
- 3. Множини A та B називаються рівними (A = B), якщо A містить B і B містить A.
- 5. Перетином множин A і B називають множину A = B, елементами якої ϵ елементи, які належать і до множини A, і до множини B одночасно.
- 6. Різницею множин A і B називають множину $A \setminus B$, елементами якої ϵ ті елементи множини A , які не належать до множини B .
- 7. Декартовим добутком множин A і B називають множину A x B всіх впорядкованих пар елементів (a , b) , з яких перший елемент a належить множині A , a другий в множині B , тобто

 $A \times B = \# (a, b) | a \ A, b \ B \# .$ Очевидно, що $A \not \sim B \# B \not \sim A$.

- 8. Комплексні числа z = a + bi
- 9. Модулем комплексного числа z = a + bi називається довжина вектора OM

- 10. Аргументом комплексного числа z = a + bi називається кут $\phi = arg z$ між вектором OM і додатним напрямом осі Ox .
- 11. Якщо за формулою множення комплексних чисел у тригонометричній формі множити п однакових комплексних чисел z = r ($\cos \phi + i \sin \phi$), то одержимо формулу Муавра z = r n ($\cos n \phi + i \sin n \phi$).
- 12. Коренем n го степеня (n ϵ N) з комплексного числа z називається таке число оо , що оо n = z . Його позначають n sqrt(z) .
- 13. Якщо кожному натуральному числу n **В** N поставити у відповідність за деяким правилом дійсне число x n, то одержимо множину чисел x 1, x 2, **Д**, x n, **Д**, яка називається числовою послідовністю і позначається { x n }
- 14. Послідовність $\{x \mid n\}$ називається обмеженою **зверху**, якщо існує таке число M, що кожен член послідовності $\{x \mid n\}$ задовольняє умову $x \mid n>=M$.
- 15. Послідовність $\{x \mid n\}$ називається обмеженою **знизу**, якщо існує таке число m, що кожен член послідовності $\{x \mid n\}$ задовольняє умову $x \mid n < = m$.
- 16. Послідовність $\{x \mid n\}$ називається **обмеженою**, якщо вона обмежена і зверху, і знизу, тобто, якщо існують такі числа m та M, що кожен член послідовності $\{x \mid n\}$ задовольняє умову $m \boxtimes x \mid n \boxtimes M$.

18.-21

Монотонні послідовності

Означення. Послідовність $\{x_n\}$ називається **зростаючою**, якщо кожний наступний член послідовності більший, ніж попередній, тобто $x_{n+1} > x_n$ для всіх $n \in \mathbb{N}$.

Означення. Послідовність $\{x_n\}$ називається **спадною**, якщо кожний наступний член послідовності менший, ніж попередній, тобто $x_{n+1} < x_n$ для всіх $n \in \mathbb{N}$.

Означення. Послідовність $\{x_n\}$ називається **незростаючою**, якщо кожний наступний член послідовності не більший, ніж попередній, тобто $x_{n+1} \le x_n$ для всіх $n \in \mathbb{N}$.

Означення. Послідовність $\{x_n\}$ називається **неспадною**, якщо кожний наступний член послідовності не менший, ніж попередній, тобто $x_{n+1} \ge x_n$ для всіх $n \in \mathbb{N}$.

Означення. Зростаючі та спадні послідовності називаються строго монотонними.

Означення. Незростаючі та неспадні послідовності називаються монотонними.

22. границею послідовності

Означення. Число a називається границею послідовності $\{x_n\}$ ($\lim_{n\to\infty}x_n=a$), якщо для будьякого як завгодно малого числа $\varepsilon>0$ існує такий номер n_0 , що для всіх $n>n_0$ виконується умова $|x_n-a|<\varepsilon$.

Означення. Послідовність, яка має границю, називається збіжною.

Нескінченно малі та нескінченно великі послідовності

23-24

Означення. Послідовність $\{x_n\}$ називається **нескінченно малою**, якщо $\lim_{n\to\infty}x_n=0$, тобто для будь-якого $\varepsilon>0$ існує такий номер n_0 , що для всіх $n>n_0$ виконується умова $|x_n|<\varepsilon$.

Прикладами нескінченно малих послідовностей є $x_n = \frac{1}{n}$, $y_n = \frac{3}{2^n}$, оскільки границі цих послідовностей дорівнюють нулю. Послідовність $x_n = \frac{n}{n+1}$ не є нескінченно малою, оскільки $\lim_{n \to \infty} x_n = 1 \neq 0$.

Означення. Послідовність $\{x_n\}$ називається **нескінченно великою**, якщо для будь-якого числа A>0 існує такий номер n_0 , що для всіх $n>n_0$ виконується умова $|x_n|>A$. ($\lim x_n=\infty$)

Прикладами нескінченно великих послідовностей є $x_n = 3n$, $x_n = 5^n$.