Mathematics II for Computer Science and Engineering stream

(Subject code: BMATS201)

Module 2: Vector Space and linear transformations

Module – 2: Vector Space and Linear Transformations

(8 hours)

Definition and examples of vector space, subspace, linear span, linear independent and dependent sets, Basis and dimension.

Definition and examples of Linear transformations, Matrix of a linear transformation, rank-nullity theorem (without proof). Inner product space and orthogonality.

2.1 Vector spaces

Definition:

A non-empty set of vectors V over the scalar field F under addition and scalar multiplication is said to be a vector space if it satisfies the following properties:

If $u, v, w \in V$ and $\alpha, \beta \in F$ then

Addition

- (i) Closure:
- $u + v \in V$
- (ii) Associative: (u + v) + w = u + (v + w)
- (iii) Identity: There is $0 \in V$ such that 0 + u = u = u + 0
- (iv) Inverse: There is $-u \in V$ such that u + (-u) = (-u) + u = 0
- (v) Commutative: u + v = v + u

Scalar multiplication

- (vi) Closure: $\alpha u \in V$
- (vii) Distributive 1: $\alpha (u + v) = \alpha u + \alpha v$
- (viii) Distributive 2: $(\alpha + \beta) u = \alpha u + \beta u$
- (ix) Associative: $\alpha(\beta u) = (\alpha \beta)u$
- (x) Identity: 1u = u

Problems:

1. Let $V = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ be the unit disc in \mathbb{R}^2 . Is V a vector space?

$$u = (1,0) \in V$$
 and $\alpha = 2 \in F$. But $\alpha u = (2,0) \notin V$

The circle is not closed under scalar multiplication.

Therefore, the unit disc is not a vector space.

2. Let $V = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$ be the graph of the quadratic function. Is V a vector space?

 $u = (1, 1) \in V$ and $v = (2, 4) \in V$. But $u + v = (3, 5) \notin V$.

Therefore, V is not closed under addition.

Therefore, the graph of the quadratic function is not a vector space.

3. Let $V = \{(x, y) \in \mathbb{R}^2 \mid y = 2x\}$ be the graph of the function f(x) = 2x. Is V a vector space?

Let u = (a, 2a), v = (b, 2b), w = (c, 2c) be points in V and $\alpha, \beta \in F$.

Addition

(i) Closure:
$$u + v = (a + b, 2a + 2b)$$

= $(a + b, 2(a + b)) \in V$

- (ii) Associative: (u + v) + w = (a + b, 2a + 2b) + (c, 2c) = (a + b + c, 2a + 2b + 2c) = (a + (b + c), 2a + (2b + 2c)) = (a, 2a) + (b + c, 2b + 2c)= u + (v + w)
- (iii) Identity: There exists $0 = (0,0) \in V$ such that u + 0 = (a,2a) + (0,0) = (a,2a) = u
- (iv) Inverse: There exists $-u = (-a, -2a) \in V$ such that u + (-u) = 0
- (v) Commutative: u + v = (a + b, 2a + 2b) = (b + a, 2b + 2a) = v + uScalar multiplication
- (vi) Closure:

$$\alpha u = \alpha (a, 2a) = (\alpha a, \alpha 2a) = (\alpha a, 2(\alpha a)) \in V$$

(vii) Distributive 1:

$$\alpha (u + v) = \alpha(a + b, 2a + 2b)$$

$$= (\alpha(a + b), \alpha(2a + 2b))$$

$$= (\alpha a + \alpha b, 2\alpha a + 2\alpha b)$$

$$= (\alpha a, 2\alpha a) + (\alpha b, 2\alpha b)$$

$$= \alpha(a, 2a) + \alpha(b, 2b)$$

$$= \alpha u + \alpha v$$

(viii) Distributive 1:

$$(\alpha + \beta)u = (\alpha + \beta)(a, 2a)$$

$$= ((\alpha + \beta)a, \alpha + \beta)2a)$$

$$= (\alpha a + \beta a, 2\alpha a + 2\beta a)$$

$$= (\alpha a, 2\alpha a) + (\beta a, 2\beta a)$$

$$= \alpha(a, 2a) + \beta(a, 2a)$$

$$= \alpha u + \beta u$$

(ix) Associative:

$$\alpha(\beta u) = \alpha (\beta(a, 2a))$$

$$= \alpha(\beta a, 2\beta a)$$

$$= (\alpha \beta a, 2\alpha \beta a)$$

$$= \alpha \beta(a, 2a)$$

$$= (\alpha \beta) u$$

(x) Identity:

$$1u = 1(a, 2a) = (a, 2a) = u$$

All the axioms of vector space are satisfied.

Therefore, the graph of the function f(x) = 2x is a vector space.

4. Let $V = P_n[t] = \{a_0 + a_1t + a_nt^n | a_0, a_1, ..., a_n \in R\}$ be the set of all polynomials in the variable t and of degree $\leq n$. Is V a vector space?

Let
$$u = u_0 + u_1 t + \dots + u_n t^n$$
, $v = v_0 + v_1 t + \dots + v_n t^n$ and $w = w_{0_1} t + \dots + w_n t^n$ be polynomials in V and $\alpha, \beta \in F$

Addition

(i) Closure:

$$u + v = (u_0 + u_1t + \dots + u_nt^n) + (v_0 + v_1t + \dots + v_nt^n)$$

= $(u_0 + v_0) + (u_1 + v_1)t + \dots + (u_n + v_n)t^n \in P_n[t]$

(ii) Associative:

$$(u + v) + w = [(u_0 + v_0) + (u_1 + v_1)t + \dots + (u_n + v_n)t^n] + [w_0 + w_1t + \dots + w_nt^n]$$

$$= (u_0 + v_0 + w_0) + (u_1 + v_1 + w_1)t + \dots + (u_n + v_n + w_n)t^n$$

$$= [u_0 + u_1t + \dots + u_nt^n] + \begin{bmatrix} (v_0 + w_0) + (v_1 + w_1)t + \dots \\ + (v_n + w_n)t^n \end{bmatrix}$$

$$= u + (v + w).$$

(iii) Identity:

There exists $0 \in P_n(t)$ such that

$$u + 0 = u_0 + u_1 t + \cdots + u_n t^n + 0 = u$$

(iv) Inverse:

There exists
$$-u = -u_0 - u_1 t - \dots - u_n t^n \in V$$
 such that $u + (-u) = (u_0 + u_1 t + \dots + u_n t^n) + (-u_0 - u_1 t - \dots - u_n t^n) = 0$.

(v) Commutative:

$$u + v = (u_0 + v_0) + (u_1 + v_1)t + \dots + (u_n + v_n)tn$$

= $(v_0 + u_0) + (v_1 + u_1)t + \dots + (v_n + u_n)tn$
= $v + u$

Scalar multiplication

(vi) Closure:

$$\alpha u = \alpha(u_0 + u_1 t + \dots + u_n t^n)$$

= $(\alpha u_0) + (\alpha u_1)t + \dots + (\alpha u_n)t^n \in P_n[t]$

(vii) Distributive 1:

$$\alpha (u + v) = \alpha [(u_0 + v_0) + (u_1 + v_1) t + \dots + (u_n + v_n) t^n]$$

$$= \alpha (u_0 + v_0) + \alpha (u_1 + v_1) t + \dots + \alpha (u_n + v_n) t^n$$

$$= (\alpha u_0 + \alpha v_0) + (\alpha u_1 + \alpha v_1) t + \dots + (\alpha u_n + \alpha v_n) t^n$$

$$= (\alpha u_0 + \alpha u_1 t + \dots + \alpha u_n t^n) + (\alpha v_0 + \alpha v_1 t + \dots + \alpha v_n t^n)$$

$$= \alpha(u_0 + u_1t + \dots + u_nt^n) + \alpha(v_0 + v_1t + \dots + v_nt^n)$$

= $\alpha u + \alpha v$

(viii) Distributive 2:

$$(\alpha + \beta) u = (\alpha + \beta) (u_0 + u_1 t + \dots + u_n t^n)$$

$$= (\alpha + \beta) u_0 + (\alpha + \beta) u_1 t + \dots + (\alpha + \beta) u_n t^n$$

$$= (\alpha u_0 + \alpha u_1 t + \dots + \alpha u_n t^n) + (\beta u_0 + \beta u_1 t + \dots + \beta u_n t^n)$$

$$= \alpha (u_0 + u_{1n} t^n) + \beta (u_0 + u_1 t + \dots + u_n t^n)$$

$$= \alpha u + \beta u$$

(ix) Associative:

$$\alpha(\beta u) = \alpha \left(\beta(u_0 + u_1t + \dots + u_nt^n)\right)$$

$$= \alpha \left(\beta u_0 + \beta u_1t + \dots + \beta u_nt^n\right)$$

$$= \alpha\beta u_0 + \alpha\beta u_1t + \dots + \alpha\beta u_nt^n$$

$$= \alpha\beta(u_0 + u_1t + \dots + u_nt^n)$$

$$= (\alpha\beta)u$$

(x) Identity:

$$1u = 1(u_0 + u_1t + \dots + u_nt^n)$$

= 1.u_0 + 1.u_1t + \dots + 1.u_nt^n
= u_0 + u_1t + \dots + u_nt^n
= u

All the axioms of vector space are satisfied.

Therefore, $V = P_n[t]$ is a vector space.

5. Show that the set of all 2×2 matrices is a vector space over the field of reals R under usual addition and multiplication.

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $B = \begin{pmatrix} e & f \\ a & h \end{pmatrix}$, $= \begin{pmatrix} i & j \\ k & l \end{pmatrix} \in V$ and $\alpha, \beta \in F$

Addition:

(i) Closed

$$A + B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ a & h \end{pmatrix} = \begin{pmatrix} a + e & b + f \\ c + a & d + h \end{pmatrix} \in V$$

(ii) Associative

$$(A+B)+C = \begin{bmatrix} \binom{a}{c} & b \\ c & d \end{bmatrix} + \binom{e}{g} & h \end{bmatrix} + \binom{i}{k} & j \\ = \binom{(a+e)+i}{(c+g)+k} & (b+f)+j \\ (c+g)+k & (d+h)+l \end{pmatrix}$$
$$= \binom{a+(e+i)}{c+(g+k)} & d+(h+l)$$
$$= \binom{a}{c} & b \\ c & d \end{pmatrix} + \begin{bmatrix} \binom{e}{g} & h \\ \binom{e}{g} & h \end{pmatrix} + \binom{i}{k} & j \\ = A+(B+C)$$

(iii) Identity

There exists
$$0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in V$$
 such that

$$0A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = A$$

(iv) Inverse

There exists
$$-A = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix} \in V$$
 such that $A + (-A) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix} = 0$

(v) Commutative

$$A+B=\begin{pmatrix} a & b \\ c & d \end{pmatrix}+\begin{pmatrix} e & f \\ g & h \end{pmatrix}=\begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix}=\begin{pmatrix} e+a & f+b \\ g+c & h+d \end{pmatrix}=B+A$$

Scalar multiplication

(vi) Closed:

$$\alpha A = \alpha \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \alpha a & \alpha b \\ \alpha c & \alpha d \end{pmatrix} \in V$$

(vii) Distributive 1:

$$\alpha(A+B) = \alpha \begin{bmatrix} \binom{a}{c} & b \\ c & d \end{bmatrix} + \binom{e}{g} & h \end{bmatrix} = \alpha \begin{pmatrix} \alpha + e & b + f \\ c + g & d + h \end{pmatrix}$$
$$= \begin{pmatrix} \alpha a + \alpha e & \alpha b + \alpha f \\ \alpha c + \alpha g & \alpha d + \alpha h \end{pmatrix} = \begin{pmatrix} \alpha a & \alpha b \\ \alpha c & \alpha d \end{pmatrix} + \begin{pmatrix} \alpha e & \alpha f \\ \alpha g & \alpha h \end{pmatrix} = \alpha A + \alpha B$$

(viii) Distributive 2:

$$(\alpha + \beta)A = (\alpha + \beta) \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$= \alpha \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \beta \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$= \begin{pmatrix} \alpha a + \beta a & \alpha b + \beta b \\ \alpha c + \beta c & \alpha d + \beta d \end{pmatrix}$$

$$= \begin{pmatrix} \alpha a & \alpha b \\ \alpha c & \alpha d \end{pmatrix} + \begin{pmatrix} \beta a & \beta b \\ \beta c & \beta d \end{pmatrix}$$

$$= \alpha A + \beta B$$

(ix) Associative:

$$\alpha(\beta A) = \alpha \left[\beta \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right]$$

$$= \alpha \begin{pmatrix} \beta a & \beta b \\ \beta c & \beta d \end{pmatrix}$$

$$= \begin{pmatrix} \alpha(\beta a) & \alpha(\beta b) \\ \alpha(\beta c) & \alpha(\beta d) \end{pmatrix}$$

$$= \begin{pmatrix} (\alpha \beta) a & (\alpha \beta) b \\ (\alpha \beta) c & (\alpha \beta) d \end{pmatrix}$$

$$= (\alpha \beta) \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$= (\alpha \beta) A$$

(x) Identity:

$$1A = 1 \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = A$$

All the axioms of vector space are satisfied.

Therefore, V is a vector space.

i.e., the set of all 2×2 matrices is a vector space.

6. Let $V = M_{m \times n}$ be the set of all $m \times n$ matrices. Under the usual operations of addition of matrices and scalar multiplication, is $M_{m \times n}$ a vector space?

It is proved that $M_{2\times 2}$ is a vector space in problem 5.

Similarly $M_{m \times n}$ is also a vector space.

7. Prove that the set of all real valued continuous (differentiable & integrable) functions of x defined in the interval [0, 1] is a vector space.

Let V be the set of all real valued continuous functions of x defined in [0, 1].

Let $f, g, h \in V$ and $\alpha, \beta \in F$

Define the function f + g such that (f + g)(x) = f(x) + g(x) and their scalar multiplication αf such that $(\alpha f)(x) = \alpha [f(x)]$.

Addition

(i) Closure:

If f and g are continuous functions, then their sum f + g is also continuous.

(ii) Associative:

$$[(f + g) + h](x) = (f + g)(x) + h(x)$$

$$= [f(x) + g(x)] + h(x)$$

$$= f(x) + [g(x) + h(x)]$$

$$= f(x) + [g + h](x)$$

$$= [f + (g + h)](x)$$

Therefore, (f + g) + h = f + (g + h).

(iii) Identity:

There exists $0(x) = 0 \in V$ such that

$$(f + 0)(x) = f(x) + 0(x) = f(x) + 0 = f(x)$$

(iv) Inverse:

There exists $-f(x) \in V$ such that

$$[f + (-f)](x) = f(x) + (-f)(x) = f(x) - f(x) = 0.$$

(v) Commutative:

$$(f + g)(x) = f(x) + g(x)$$

= $g(x) + f(x)$
= $(g + f)(x)$

Therefore, f + g = g + f

Scalar multiplication

(vi) Closure:

If f is continuous then αf is also continuous.

(vii) Distributive 1:

$$[\alpha (f + g)] (x) = \alpha [(f + g) (x)]$$

$$= \alpha [(f(x) + g(x)]]$$

$$= \alpha f(x) + \alpha g(x)$$

$$= (\alpha f) (x) + (\alpha g) (x)$$

$$= (\alpha f + \alpha g) (x)$$

Therefore, $\alpha(f + g) = \alpha f + \alpha g$

(viii) Distributive 2:

$$(\alpha + \beta) f(x) = \alpha f(x) + \beta f(x)$$
$$= [\alpha f + \beta f](x)$$

Therefore, $(\alpha + \beta) f = \alpha f + f$

(ix) Associative:

$$(\alpha\beta) f(x) = [(\alpha\beta) f](x)$$

$$= [\alpha(\beta f)](x)$$
$$= \alpha(\beta f)(x)$$

Therefore, $(\alpha\beta)f = \alpha(\beta f)$

(x) Identity:

$$(1f)(x) = 1f(x) = f(x)$$

Therefore, 1f = f

All the axioms of vector space are satisfied. Therefore, V is a vector space. i.e., set of all real valued cont. functions of X defined in the interval [0, 1] is a vector space.

Home work:

- 8. Show that the set $V = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \mid x, y \in R \right\}$ is a vector space over the field of reals R under usual addition and multiplication.
- 9. Prove that the set of all convergent sequences of real numbers is a vector space over the field of real numbers.
- 10. Prove that the set of all ordered n-triples of complex numbers forms a vector space over the field of complex numbers.
- 11. Show that the set V of all ordered pairs of integers does not form a vector space over the field of real numbers R.
- 12. Show that the set of all pairs of real numbers over the field of reals defined as $(x_1, y_1) + (x_2, y_2) = (3y_1 + 3y_2, -x_1 x_2)$ and $c(x_1, y_1) = (3cy_1 cx_1)$ does not form a vector space.

2.2 Subspace

A subset W of a vector space V is called a subspace of V if it satisfies the following properties:

- (1) The zero vector of V is also in W.
- (2) If $u, v \in W$ then $u + v \in W$ (i.e., W is closed under addition),
- (3) If $u \in W$ and k is a scalar then $ku \in W$ (i.e., W is closed under scalar multiplication).

Theorem: A non-empty subset W of a vector space V is a subspace of V iff $u, v \in W$ and α and β are scalars then $\alpha u + \beta v \in W$.

Remark: The intersection of two subspaces of a vector space V is a subspace of V but the union of two subspaces of V need not be a subspace of V.

- 1. Let $W = \{(x, y) \in \mathbb{R}^2 \mid y = 2x\}$ be the graph of the function f(x) = 2x. Is W a subspace of $V = \mathbb{R}^2$?
 - (i) If x = 0 then $y = 2 \cdot 0 = 0$ and therefore $0 = (0,0) \in W$.

(ii) Let
$$u = (a, 2a), v = (b, 2b) \in W$$
.
Then $u + v = (a, 2a) + (b, 2b)$

$$= (a + b, 2a + 2b)$$

$$= (a + b, 2(a + b)) \in W$$

Thus, W is closed under addition.

(iii) Let
$$u = (\alpha, 2\alpha) \in W$$
 and $\alpha \in F$
Then $\alpha u = (\alpha \alpha, \alpha 2\alpha) = (\alpha \alpha, 2(\alpha \alpha)) \in W$

W is closed under scalar multiplication.

All three conditions of a subspace are satisfied for W.

Therefore, W is a subspace of V.

- 2. Let $W = \{(x, y) \in R^2 | x \ge 0, y \ge 0\}$ be the first quadrant in R^2 . Is W a subspace?
 - (i) The set W contains the zero vector (0,0).
 - (ii) Let $u=(x_1,y_1)\in W$ has components $x_1\geq 0,y_1\geq 0$ Let $v=(x_2,y_2)\in W$ has components $x_2\geq 0,y_2\geq 0$ Then $u+v=(x_1+x_2,y_1+y_2)\in W$ has components $x_1+y_1\geq 0,x_2+y_2\geq 0$. Therefore, $u+v\in W$. Thus, W is closed under addition.
 - (iii) If u = (1, 1) and $\alpha = -1$ then $\alpha u = (-1, -1) \notin W$. Therefore, W is not closed under scalar multiplication. Therefore, W is not a subspace of V.
 - 3. Let $V=M_{n\times n}$ be the vector space of all $n\times n$ matrices. We define the trace of a matrix $A\in M_{n\times n}$ as the sum of its diagonal entries: $tr(A)=a_{11}+a_{22}+\cdots+a_{nn}$. Let W be the set of all $n\times n$ matrices whose trace is zero: $W=\{A\in M_{(n\times n)}\mid tr(A)=0\}$. Is W a subspace of V?
 - (i) If 0 is the n × n zero matrix then clearly tr(0) = 0 and thus $0 \in M_{n \times n}$.
 - (ii) Suppose that A and B are in W. Then necessarily tr(A) = 0 and tr(B) = 0.

Consider the matrix C = A + B. Then

$$tr(C) = tr(A + B) = (a_{11} + b_{11}) + (a_{22} + b_{22}) + \dots + (a_{nn} + b_{nn})$$

$$= (a_{11} + \dots + a_{nn}) + (b_{11} + \dots + b_{nn})$$

$$= tr(A) + tr(B)$$

$$= 0$$

Therefore, tr(C) = 0 and consequently $C = A + B \in W$,

Thus, W is closed under addition.

(iii) Now let α be a scalar and let $C = \alpha A$. Then

$$tr(\mathcal{C}) = tr(\alpha A) = \alpha a_{11} + \alpha a_{22} + \cdots + \alpha a_{nn} = \alpha tr(A) = 0.$$

Thus, tr(C) = 0, that is, $C = \alpha A \in W$, and consequently W is closed under scalar multiplication. Therefore, the set W is a subspace of V.

- 4. Let $V = P_n[t]$ and consider the subset W of V: $W = \{u \in P_n[t] \mid u'(1) = 0\}$. In other words, W consists of polynomials of degree n in the variable t whose derivative at t = 1 is zero. Is W a subspace of V?
 - (i) The zero polynomial 0(t) = 0 clearly has derivative at t = 1 equal to zero, that is, 0'(1) = 0, and thus the zero polynomial is in W.
 - (ii) Now suppose that u(t) and v(t) are two polynomials in W. Then, u'(1) = 0 and also v'(1) = 0. To verify whether or not W is closed under addition, we must determine whether the sum polynomial (u + v)(t) has a derivative at t = 1 equal to zero. From the rules of differentiation, we compute

$$(u + v)'(1) = u'(1) + v'(1) = 0 + 0 = 0.$$

Therefore, the polynomial (u + v) is in W, and thus W is closed under addition.

(iii) Now let α be any scalar and let u(t) be a polynomial in W. Then u'(1) = 0. To determine whether or not the scalar multiple $\alpha u(t)$ is in W we must determine if $\alpha u(t)$ has a derivative of zero at t = 1. Using the rules of differentiation, we compute that $(\alpha u)'(1) = \alpha u'(1) = \alpha \cdot 0 = 0$. Therefore, the polynomial $(\alpha u)(t)$ is in W and thus W is closed under scalar multiplication.

All three properties of a subspace hold for W and therefore W is a subspace of $P_n[t]$.

5. Let $V = P_n[t]$ and consider the subset W of $V: W = \{u \in P_n[t] \mid u(2) = -1\}$. In other words, W consists of polynomials of degree n in the variable t whose value t = 2 is -1. Is W a subspace of V?

The zero polynomial O(t) = 0 clearly does not equal to -1 at t = 2.

Therefore, W does not contain the zero polynomial and, because all three conditions of a subspace must be satisfied for W to be a subspace, then W is not a subspace of $P_n[t]$.

- 6. Let $V = R^3$ be a vector space and consider the subset W of V consisting of vectors of the form (a, a^2, b) , where the first two components are the same. Is W a subspace of V?
 - (i) The set W contains the zero vector (0, 0, 0).
 - (ii) Let u = (a, a, b) and v = (c, c, d) then $u + v = (a + c, a + c, b + d) \in W$ Thus, W is closed under addition.
 - (iii) If we multiply (a, a, b) by a scalar k, we get $(ka, ka, kb) \in W$. Thus, W is closed under scalar multiplication. Therefore, W is a subspace of V.
- 7. Let $V = R^3$ be a vector space and consider the subset W of V consisting of vectors of the form (a, a^2, b) , where the second component is the square of the first. Is W a subspace of V?
 - (i) The set W contains the zero vector (0, 0, 0).
 - (ii) Let $u=(a,a_2,b)$ and $v=(c,c_2,d)$, $u+v=(a+c,a_2+c_2,b+d) \in W$ Because the second component of this vector is not the square of the first.

Thus, W is not closed under addition.

Therefore, W is not a subspace of V.

- 8. Prove that the set W of $2 \in 2$ diagonal matrices is a subspace of the vector space M_{22} of 2×2 matrices.
 - (i) The set W contains the zero matrix $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
 - (ii) Let $u=\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ and $v=\begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix}$ are in W then $u+v=\begin{pmatrix} a+c & o \\ 0 & b+d \end{pmatrix} \in W$.

Thus, W is closed under addition.

(iii) Let k be a scalar and $u = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \in W \setminus$, then $u = \begin{pmatrix} ka & 0 \\ 0 & kb \end{pmatrix} \in W$.

Thus, W is closed under scalar multiplication.

Therefore, W is a subspace of V.

9. Let W be the set of vectors of the form (a, a, a + 2). Show that W is not a subspace of $V = R^3$.

The set W does not contain the zero vector (0,0,0).

Therefore, W is not a subspace of V.

- 10. Prove that the subset $W = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$ of the vector space $V(R^3)$ is a subspace of $V(R^3)$.
 - (i) The set W contain the zero vector (0, 0, 0) such that $0^2 + 0^2 + 0^2 \le 1$.
 - (ii) Let u = (1, 0, 0) such that $1^2 + 0^2 + 0^2 \le 1$ and v = (0, 0, 1) such that $0^2 + 0^2 + 1^2 \le 1$ are in W then u + v = (1, 0, 1) such that $1^2 + 0^2 + 1^2 = 2$ which is not less than or equal to 1.

i.e.,
$$u + v = (1, 0, 1) \notin W$$

Therefore, W is not a subspace of V.

Home work:

- 11. Prove that the subset $W = \{(x, y, z) \mid x 3y + 4z = 0\}$ of the vector space R^3 is a subspace of R^3 .
- 12. Prove that the subset $W = \{(x, y, z) \mid x + y + z = 0\}$ of the vector space V_3 (R) is a subspace of V_3 (R).
- 13. Prove that the subset $W = \{(x, y, z) \mid x = y = z\}$ of the vector space $V_3(R)$ is a subspace of $V_3(R)$.
- 14. Prove that the subset $W = \{(x, y, z) \mid 2x + 3y + z = 0\}$ of the vector space $V_3(R)$ is a subspace of $V_3(R)$.
- 15. Verify the subset $W = \{(x, 2y, 3z) \mid x, y, z \in R\}$ of the vector space $V_3(R)$ is a subspace of $V_3(R)$ or not.

2.3 Linear combination, Linear span

Linear combination:

Let V be a vector space over a field F and let $v_1, v_2, ..., v_n \in V$. Any vector of the form $a_1.v_1 + a_2.v_2 + \cdots + a_n.v_n \in V$, where $a_i \in F$ is called a linear combination of $v_1, v_2, ..., v_n$.

Linear span:

Let S be a subset of a vector space over the field F. The set of all linear combination of vectors in S is called a linear span of S and is denoted by L(S). If $S = \phi$, then L(S) = 0.

1. Express the vector v = (1, -2, 5) as a linear combination of the vectors $v_1 = (1, 1, 1), v_2 = (1, 2, 3), v_3 = (2, -1, 1)$ in the vector space $R^3(R)$.

Let
$$v = a_1v_1 + a_2v_2 + a_3v_3$$

 $(1, -2, 5) = a_1(1, 1, 1) + a_2(1, 2, 3) + a_3(2, -1, 1)$
 $(1, -2, 5) = (a_1 + a_2 + 2a_3, a_1 + 2a_2 - a_3, a_1 + 3a_2 + a_3)$

Equating the corresponding elements,

$$a_1 + a_2 + 2a_3 = 1$$
, $a_1 + 2a_2 - a_3 = -2$, $a_1 + 3a_2 + a_3 = 5$

Solving these equations, $a_1 = -6$, $a_2 = 3$, $a_3 = 2$.

Hence,
$$(1, -2, 5) = -6(1, -1, 1) + 3(1, 2, 3) + 2(2, -1, 1)$$
.

2. Express the vector v = (2, -1, -8) as a linear combination of the vectors (1, 2, 1), (1, 1, -1) and (4, 5, -2) in the vector space R^3 .

Let
$$v = a_1v_1 + a_2v_2 + a_3v_3$$

 $(2, -1, -8) = a_1(1, 2, 1) + a_2(1, 1, -1) + a_3(4, 5, -2)$
 $(2, -1, -8) = (a_1 + a_2 + 4a_3, 2a_1 + a_2 + 5a_3, a_1 - a_2 - 2a_3)$

Equating the corresponding elements,

$$a_1 + a_2 + 4a_3 = 2$$
, $2a_1 + a_2 + 5a_3 = -1$, $a_1 - a_2 - 2a_3 = -8$

Solving these equations, $a_1 = -4$, $a_2 = 2$, $a_3 = 1$.

Hence,
$$(2, -1, -8) = -4(1, 2, 1) + 2(1, 1, -1) + (4, 5, -2)$$

3. Express the vector v = (1, 3, 9) as a linear combination of the vectors $u_1 = (2, 1, 3), u_2 = (1, -1, 1), u_3 = (3, 1, 5)$ in the vector space $R^3(R)$.

Let
$$v = a_1v_1 + a_2v_2 + a_3v_3$$

 $(1,3,9) = a_1(2,1,3) + a_2(1,-1,1) + a_3(3,1,5)$
 $(1,3,9) = (2a_1 + a_2 + 3a_3, a_1 - a_2 + a_3, 3a_1 + 3a_2 + 5a_3)$

Equating the corresponding elements,

$$2a_1 + a_2 + 3a_3 = 1$$
, $a_1 - a_2 + a_3 = 3$, $3a_1 + 3a_2 + 5a_3 = 9$

Solving these equations, $a_1 = 10$, $a_2 = -5$, $a_3 = -12$.

Hence,
$$(1,3,9) = 10(2,1,3) - 5(1,-1,1) - 12(3,1,5)$$

4. For what value of k (if any) the vector v = (1, -2, k) can be expressed as a linear combination of vectors $v_1 = (3, 0, -2)$ and $v_2 = (2, -1, -5)$ in $R^3(R)$.

Since vector v = (1, -2, k) is a linear combination of vectors $v_1 = (3, 0, -2)$ and $v_2 = (2, -1, -5)$, there exist scalars a and b such that $v = av_1 + bv_2$

$$(1,-2,k) = a(3,0,-2) + b(2,-1,-5)$$

$$(1,-2,k) = (3a+2b,-b,-2a-5b)$$

Equating the corresponding elements,

$$3a + 2b = 1, -b = -2, -2a - 5b = k$$

By solving these equations, k = -8.

5. Find a condition on a, b, c so that w = (a, b, c) is a linear combination of u = (1, -3, 2) and v = (2, -1, 1) in R^3 so that $w \in span(u, v)$.

Since vector w = (a, b, c) is a linear combination of vectors u = (1, -3, 2) and v = (2, -1, 1), there exist scalars x and y such that w = xu + yv.

That is,
$$(a, b, c) = x(1, -3, 2) + y(2, -1, 1)$$

Equating the corresponding elements,

$$x + 2y = a$$
, $-3x - y = b$, $2x + y = c$.

Since
$$w \in span(u, v)$$
, $\begin{vmatrix} 1 & 2 & a \\ -3 & -1 & b \\ 2 & 1 & c \end{vmatrix} = 0$

We get, a - 3b - 5c = 0. This is the required condition.

6. Express the matrix $A = \begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix}$ in the vector space of 2×2 matrices as a linear combination of $B = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$

Let
$$A = a_1B + a_2B + a_3D$$
, where a_1 , $a_3 \in R$.)

$$\begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix} = a_1 \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} + a_2 \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} + a_3 \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} - \dots (1)$$

$$\begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 + a_3 & a_1 + a_2 - a_3 \\ -a_2 & -a_1 \end{bmatrix}$$

Equating the corresponding elements,

$$a_1 + a_2 + a_3 = 3$$
, $a_1 + a_2 - a_3 = -1$, $-a_2 = 1$, $-a_1 = -2$

By solving these equations, $a_1 = 2$, $a_2 = -1$, $a_3 = 2$.

Linear combination of A is

$$(1) \Longrightarrow \begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix} = 2 \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} + 2 \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

7. Express the matrix $\begin{bmatrix} 2 & 0 \\ 4 & -5 \end{bmatrix}$ as a linear combination of the matrices $A = \begin{bmatrix} 1 & 1 \\ 4 & -5 \end{bmatrix}$

$$\begin{bmatrix} 0 & -3 \\ 2 & 0 \end{bmatrix} \ , \ B = \begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix} \ , \ C = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}$$

Let $A = a_1B + a_2B + a_3D$, where a_1 , $a_3 \in R$.)

$$\begin{bmatrix} 2 & 0 \\ 4 & -5 \end{bmatrix} = a_1 \begin{bmatrix} 0 & -3 \\ 2 & 0 \end{bmatrix} + a_2 \begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix} + a_3 \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} ----- (1)$$

$$\begin{bmatrix} 2 & 0 \\ 4 & -5 \end{bmatrix} = \begin{bmatrix} 2a_3 & -3a_1 + 3a_3 \\ 2a_1 + 2a_2 & a_2 + 5a_3 \end{bmatrix}$$

Equating the corresponding elements,

$$2a_3 = 2$$
, $-3a_1 + 3a_3 = 0$, $2a_1 + 2a_2 = 4$, $a_2 + 5a_3 = -5$

By solving these equations, $a_1 = 1$, $a_2 = 1$, $a_3 = 1$.

Linear combination of A is

$$(1) \Longrightarrow \begin{bmatrix} 2 & 0 \\ 4 & -5 \end{bmatrix} = \begin{bmatrix} 0 & -3 \\ 2 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}$$

8. Determine whether the function $f(x) = 2x^2 + 6x + 7$ is a linear combination of $g(x) = x^2 - 1$ and h(x) = 2x + 3.

To check: $a_1g(x) + a_2h(x) = f(x)$ for some real values of a_1, a_2 .

$$a_1(x^2 - 1) + a_2(2x + 3) = 2x^2 + 6x + 7$$

Equating components, $a_1 = 2$, $a_2 = 3$. This system has the unique solution.

Therefore, f(x) is a linear combination of g(x) and h(x) as

$$f(x) = 2g(x) + 3h(x).$$

9. Let $f(x) = 2x^2 - 5$ and g(x) = x + 1. Show that the function $h(x) = 4x^2 + 3x - 7$ lies in the subspace Span $\{f, g\}$ of P_2 .

It is enough to prove that that h(x) is a linear combination of f(x) and g(x).

$$h(x) = a_1 f(x) + a_2 g(x)$$

$$4x^2 + 3x - 7 = a_1(2x^2 - 5) + a_2(x + 1)$$

Equating coefficients, $a_1 = 2$, $a_2 = 3$. This system has the unique solution.

Therefore, he function h is a linear combination of f and g.

Therefore, h lies in Span $\{f, g\}$.

2.4 Linearly dependence, Basis and dimension

Linear dependence:

Let V be a vector over the field F. The vectors $v_1, v_2, ..., v_n$ are said to be linearly dependant over F if there exist scalars $a_1, a_2, ..., a_n \in F$ such that

$$a_1.v_1 + a_2.v_2 + \cdots + a_n.v_n = 0$$
, but not all $a_i = 0$., where $i \in N$.

Linear independence:

Let V be a vector over the field F. The vectors $v_1, v_2, ..., v_n$ are said to be linearly independent over F if there exist scalars $a_1, a_2, ..., a_n \in F$ such that

$$a_1.v_1 + a_2.v_2 + \cdots + a_n.v_n = 0 \Rightarrow \text{All } a_i = 0., where i \in N.$$

Basis of a vector space:

Let V be a vector space over the scalar field F. The set of vectors $\{v_1, v_2, ..., v_n\}$ is called a basis of V, if

- (i) v_1 , v_2 , v_n are linearly independent.
- (ii) v_1, v_2, v_n span V.. That is, each vector V can be uniquely expressed as linear combination of v_1, v_2, v_n .

Example:

Consider the set $\{(1, 2, 3), (-2, 4, 1)\}\$ of vectors in \mathbb{R}^3 .

These vectors generate a subspace V of R³ consisting of all vectors of the form

$$v = c_1(1, 2, 3) + c_2(-2, 4, 1)$$

Thus, the vectors (1, 2, 3) and (-2, 4, 1) span this subspace.

Furthermore, since the second vector is not a scalar multiple of the first vector the vectors are linearly independent.

Therefore $\{(1, 2, 3), (-2, 4, 1)\}$ is a basis for V. Thus dim (V) = 2.

Dimension of a vector space V:

Number of elements in a basis of vector space V is called the dimension of V and is denoted by dim V. If V contains a basis with n elements then the dim V = n.

Note:

(i) The vector space $\{0\}$ is defined to have dim 0, since empty set ϕ is independent and generates $\{0\}$.

That is, dim $0 = Number \ of \ elements \ in \ \phi = 0$ (Since no element is in ϕ).

(ii) When a vector is not of finite dimension, it is said to be of infinite dimension.

Properties:

- 1. For n vector of n dimensional vector space V to be a basis, it is sufficient that they span V or that they are linearly independent.
- 2. Let A be any m × n matrix which is equivalent to a row reduced echelon matrix E.

 Then the non-zero rows of E form a basis of the subspace spanned by the rows of A.

Theorem: Let V be an n dimensional vector space and let S be a set with n vectors. Then the following are equivalent.

- 1. S is a basis for V.
- 2. S is linearly independent.
- 3. S spans V.

Theorem: If $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is a basis for a vector space V and $T = \{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_k\}$ is a linearly independent set of vectors in V, then $k \le n$.

Remark: If S and T are both bases for V then k = n. This says that every basis has the same number of vectors. Hence the dimension is will defined.

Note:

- (i) Since the dimension of a vector space is the number of elements in a basis, the number of non-zero rows in E is the dimension of the subspace spanned by the rows of A.
- (ii) Since the rank of a matrix is the number of non-zero rows, the dimensional of the subspace spanned by the rows of A is equal to the rank of A.

(iii) To find the basis and the dimension of a subspace spanned the vectors, reduce the matrix whose rows are the given vectors to echelon form.

1. Check whether the vectors $v_1=(1,2,3), v_2=(3,1,7)$ and $v_3=(2,5,8)$ are linearly dependent or not.

$$xv_1 + yv_2 + zv_3 = 0$$

$$\Rightarrow x(1,2,3) + y(3,1,7) + z(2,5,8) = (0,0,0)$$

$$\Rightarrow x + 3y + 2z = 0, 2x + y + 5z = 0, 3x + 7y + 8z = 0$$

$$\Rightarrow \begin{vmatrix} 1 & 3 & 2 \\ 2 & 1 & 5 \\ 3 & 7 & 8 \end{vmatrix} = 0$$

This is impossible. Therefore, the given vectors are linearly independent.

2. Check whether the vectors $v_1=(1,4,9), v_2=(3,1,4)$ and $v_3=(9,3,12)$ are linearly dependent or not.

$$xv_1 + yv_2 + zv_3 = 0$$

$$\Rightarrow x(1,4,9) + y(3,1,4) + z(9,3,12) = 0$$

$$\Rightarrow x + 3y + 9z = 0, 4x + y + 3z = 0, 9x + 4y + 12z = 0$$

$$\Rightarrow \begin{vmatrix} 1 & 3 & 9 \\ 4 & 1 & 3 \\ 9 & 4 & 12 \end{vmatrix} = 0$$

This is true. Therefore, the given vectors are linearly dependent.

3. If u, v, w are linearly independent vectors in V(F), where F is the field of Complex numbers, then $\{u + v, v + w, w + u\}$ is a linearly independent set of vectors.

Let
$$a(u + v) + b(v + w) + c(w + u) = 0$$
, where $a, b, c \in F$
 $(a + c)u + (a + b)v + (b + c)w = 0$

Since u, v, w are linearly independent, a + c = 0, a + b = 0, b + c = 0.

Therefore, a = 0, b = 0, c = 0.

Therefore, $\{u + v, v + w, w + u\}$ is a linearly independent set of vectors.

4. Let V be a vector space of all 2×3 matrices over R. Show that the matrix

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 3 & -2 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 & -3 \\ 2 & 0 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 4 & -1 & 2 \\ 1 & -2 & 3 \end{bmatrix}$ form a linearly

independent set.

Let
$$a \begin{bmatrix} 2 & 1 & -1 \\ 3 & -2 & 4 \end{bmatrix} + b \begin{bmatrix} 1 & 1 & -3 \\ 2 & 0 & 5 \end{bmatrix} + c \begin{bmatrix} 4 & -1 & 2 \\ 1 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2a+b+4c & a+b-c & -a-3b+2c \\ 3a-2b+c & -2a-2c & 4a+5b+3c \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

By equating the corresponding elements,

$$2a + b + 4c = 0$$
, $a + b - c = 0$, $-a - 3b + 2c = 0$. --- (1)

$$3a - 2b + c = 0, -2a - 2c = 0, 4a + 5b + 3c = 0.$$
 ---- (2)

On solving the system (1) of equations, the only solution is a = 0, b = 0, c = 0.

This solution also satisfies the system (2) of equations.

Therefore, the given set of matrices is linearly independent.

5. Determine whether or not each of the following forms a basis, $x_1 =$

$$(2,2,1), x_2 = (1,3,7), x_3 = (1,2,2) \text{in } R^3.$$

Three vectors in \mathbb{R}^3 form a basis if and only if they are linearly independent.

$$x(2,2,1) + y(1,3,7) + z(1,2,2) = (0,0,0)$$

$$\Rightarrow$$
 2x + y + z = 0, 2x + 3y + 2z = 0, x + 7y + 2z = 0

$$\Rightarrow \begin{vmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 1 & 7 & 2 \end{vmatrix} = 0$$

This is impossible.

Therefore, Possible solution is x = 0, y = 0, z = 0.

Therefore, the vectors x_1, x_2, x_3 are linearly independent and hence form a basis.

6. Let W be the subspace of R^5 spanned by $x_1 = (1, 2, -1, 3, 4)$,

$$x_2=(2,4,-2,6,8),\; x_3=(1,3,2,2,6), x_4=(1,4,5,1,8), x_5=(2,7,3,3,9).$$

Find a subset of vectors which forms a basis of W.

$$A = \begin{bmatrix} 1 & 2 & -1 & 3 & 4 \\ 2 & 4 & -2 & 6 & 8 \\ 1 & 3 & 2 & 2 & 6 \\ 1 & 4 & 5 & 1 & 8 \\ 2 & 7 & 3 & 3 & 9 \end{bmatrix}$$

$$R_2 \to R_2 - 2R_1, \ R_3 \to R_3 - R_1, R_4 \to R_4 - R_1, R_5 \to R_5 - R_1$$

$$\begin{bmatrix}
 1 & 2 & -1 & 3 & 4 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 3 & -1 & 2 \\
 0 & 2 & 6 & -2 & 4 \\
 0 & 3 & 5 & -3 & 1
 \end{bmatrix}$$

$$R_2 \leftrightarrow R_5$$

$$\sim \begin{bmatrix} 1 & 2 & -1 & 3 & 4 \\ 0 & 3 & 5 & -3 & 1 \\ 0 & 1 & 3 & -1 & 2 \\ 0 & 2 & 6 & -2 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$R_2 \leftrightarrow R_3$$

$$\sim
\begin{bmatrix}
1 & 2 & -1 & 3 & 4 \\
0 & 1 & 3 & -1 & 2 \\
0 & 3 & 5 & -3 & 1 \\
0 & 2 & 6 & -2 & 4 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$R_3 \rightarrow R_3 - 3R_2, R_4 \rightarrow R_4 - 2R_2$$

$$\begin{bmatrix}
 1 & 2 & -1 & 3 & 4 \\
 0 & 1 & 3 & -1 & 2 \\
 0 & 0 & -4 & 0 & -5 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0
 \end{bmatrix}$$

The number of non-zero rows is 3.

Therefore, dim W = 3 and $\{x_1, x_2, x_3\}$ forms a basis in W.

7. V is a vector space of polynomials over R. Find a basis and dimension of the subspace W of V, spanned by the polynomials, $x_1 = t^3 - 2t^2 + 4t + 1$, $x_2 = 2t^3 - 3t^2 + 9t - 1$, $x_3 = t^3 + 6t - 5$, $x_4 = 2t^3 - 5t^2 + 7t + 5$.

$$A = \begin{bmatrix} 1 & -2 & 4 & 1 \\ 2 & -3 & 9 & -1 \\ 1 & 0 & 6 & -5 \\ 2 & -5 & 7 & 5 \end{bmatrix}$$

 $R_2 \to R_2 - 2R_1, \ R_3 \to R_3 - R_1, R_4 \to R_4 - 2R_1$

$$\sim
\begin{bmatrix}
1 & -2 & 4 & 1 \\
0 & 1 & 1 & -3 \\
0 & 2 & 2 & -6 \\
1 & -1 & -1 & 3
\end{bmatrix}$$

$$R_3 \to R_3 - 2R_2, R_4 \to R_4 + R_2$$

$$\sim \begin{bmatrix} 1 & -2 & 4 & 1 \\ 0 & 1 & 1 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Non-zero rows of Echelon matrix form a basis.

Number of non-zero rows is 2.

Therefore, dim W = 2 and $\{x_1, x_2\}$ forms a basis of W.

8. Determine whether the set of vectors $\{(1, 2, 3), (-2, 1, 3), (3, 1, 0)\}$ is a basis for \mathbb{R}^3 or not.

Consider the determinant
$$\begin{vmatrix} 1 & 2 & 3 \\ -2 & 1 & 3 \\ 3 & 1 & 0 \end{vmatrix} = 1(0-3) - 2(0-9) + 3(-2-3) = 0$$

Therefore, the vectors are linearly dependent.

Therefore, It is not a basis of R³.

9. Prove that the set $\{(1, 3, -1), (2, 1, 0), (4, 2, 1)\}$ is a basis for \mathbb{R}^3 .

Consider the determinant
$$\begin{vmatrix} 1 & 3 & -1 \\ 2 & 1 & 0 \\ 4 & 2 & 1 \end{vmatrix} = -5 \neq 0$$

Thus, the vectors are linearly independent.

The set $\{(1, 3, -1), (2, 1, 0), (4, 2, 1)\}$ is therefore a basis for \mathbb{R}^3 .

10. Find a basis for the subspace V of R^4 spanned by the vectors (1, 2, 3, 4), (-1, -1, -4, -2), (3, 4, 11, 8).

We construct a matrix A having these vectors as row vectors.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & -1 & -4 & -2 \\ 3 & 4 & 11 & 8 \end{bmatrix}$$

Determine the reduced echelon form of A. We get

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & -1 & -4 & -2 \\ 3 & 4 & 11 & 8 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -1 & 2 \\ 0 & -2 & 2 & -4 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The nonzero vectors of this reduced echelon form are (1, 2, 3, 4), (0, 1, -1, 2)

These are the basis for the subspace V. The dimension of this subspace is two.

11. Find the basis and dimension of the subspace spanned by the vectors $\{(1, -2, 3), (1, -3, 4), (-1, 1, -2)\}$ in the vector space $V_3(R)$.

Let $S = \{(1, -2, 3), (1, -3, 4), (-1, 1, -2)\}$ be the given set in the vector space

 $V_3(R)$. Dim $[V_3(R)] = 3$.

Consider,
$$\begin{vmatrix} 1 & -2 & 3 \\ 1 & -3 & 4 \\ -1 & 1 & -2 \end{vmatrix} = 1(6-4) + 2(-2+4) + 3(1-3) = 0$$

Given set S is linearly dependent.

Therefore, S is not a basis of $V_3(R)$.

To find the basis and dimension of the subspace of S

Consider,
$$\begin{bmatrix} 1 & -2 & 3 \\ 1 & -3 & 4 \\ -1 & 1 & -2 \end{bmatrix} \approx \begin{bmatrix} 1 & -2 & 3 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & -2 & 3 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

The final matrix has two non-zero rows.

Therefore, Subspace is $S' = \{(1, -2, 3), (0, -1, 1)\}$ and the dimension of subspace

S' is 2

i.e.,
$$\dim(S') = 2$$
.

12. Find the basis and dimension of the subspace spanned by the vectors $\{(1, 0, -1), (1, 2, 1), (0, -3, 2)\}$ in the vector space $V_3(R)$.

Let $S = \{(1, 0, -1), (1, 2, 1), (0, -3, 2)\}$ be the given set in the vector space $V_3(R)$.

 $Dim[V_3(R)] = 3.$

Consider,
$$\begin{vmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 0 & -3 & 2 \end{vmatrix} = 1(4+3) - 1(-3-0) = 10 \neq 0$$

Given set is linearly independent.

Therefore, S is a basis of $V_3(R)$ and dim(S) = 3.

13. Find the basis and dimension of the subspace spanned by the vectors $\{(2, 4, 2), (1, -1, 0), (1, 2, 1), (0, 3, 1)\}$ in the vector space $V_3(R)$.

Let $S = \{(2, 4, 2), (1, -1, 0), (1, 2, 1), (0, 3, 1)\}$ be the given set in the vector space

 $V_3(R)$. Dim $[V_3(R)] = 3$.

Any subset of $V_3(R)$ containing more than 3 vectors is linearly dependent.

Therefore, S is not a basis of $V_3(R)$.

To find the basis and dimension of the subspace of S

$$\text{Consider,} \begin{bmatrix} 2 & 4 & 2 \\ 1 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & 1 \\ 0 & -3 & -1 \\ 0 & 0 & 0 \\ 0 & 3 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & 1 \\ 0 & -3 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The final matrix has two non-zero rows.

Therefore, Subspace is $S' = \{(1, 2, 1), (0, -3, -1)\}$ and the dimension of subspace

S' is 2

i.e., $\dim(S') = 2$.

14. Find the basis and dimension of the subspace spanned by the vectors $\{(2, -3, 1), (3, 0, 1), (0, 2, 1), (1, 1, 1)\}$ in the vector space $V_3(R)$.

Let $S = \{(2, -3, 1), (3, 0, 1), (0, 2, 1), (1, 1, 1)\}$ be the given set in the vector space $V_3(R)$. Dim $[V_3(R)] = 3$.

Any subset of $V_3(R)$ containing more than 3 vectors is linearly dependent.

Therefore, S is not a basis of $V_3(R)$.

To find the basis and dimension of the subspace of S

Consider,
$$\begin{bmatrix} 2 & -3 & 1 \\ 3 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & 1 & 1 \\ 3 & 0 & 1 \\ 0 & 2 & 1 \\ 2 & -3 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & 1 & 1 \\ 0 & -3 & -2 \\ 0 & 2 & 1 \\ 0 & -5 & -1 \end{bmatrix} \approx \begin{bmatrix} 1 & 1 & 1 \\ 0 & -3 & -2 \\ 0 & 0 & -7 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\approx \begin{bmatrix} 1 & 1 & 1 \\ 0 & -3 & -2 \\ 0 & 0 & -7 \\ 0 & 0 & 0 \end{bmatrix}$$

The final matrix has three non-zero rows.

Therefore, Subspace is $S' = \{(1, 1, 1), (0, -3, -2), (0, 0, -7)\}$ and the dimension of subspace S' is 3. i.e., dim (S') = 3.

 $15. \text{ Show that the set } S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{ form a basis of the vector}$ space of the vector space $M_2(R)$ of 2×2 matrices and find its dimension.

Let
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(R)$$

Let $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
Therefore, S spans $M_2(R)$ and $c_1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + c_4 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ implies $\begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $\Rightarrow c_1 = 0, c_2 = 0, c_3 = 0, c_4 = 0$

Given set is linearly independent.

Therefore, S is a basis of $M_2(R)$ and dim(S) = 4.

16. Let $V = P_3$ (polynomials of degree 3) and let $S = \{1, t, t^2, t^3\}$. Show that S is a basis for V.

We must show both linear independence and span.

Linear Independence:

Let
$$c_1(1) + c_2(t) + c_3(t^2) + c_4(t^3) = 0$$

Then since a polynomial is zero if and only if its coefficients are all zero, we have

$$c_1 = c_2 = c_3 = c_4 = 0$$

Hence S is a linearly independent set of vectors in V.

A general vector in P_3 is given by $a + bt + ct^2 + dt^3$

We need to find constants c₁, c₂, c₃, c₄ such that

$$c_1(1) + c_2(t) + c_3(t^2) + c_4(t^3) = a + bt + ct^2 + dt^3$$

We just let
$$c_1 = a$$
, $c_2 = b$, $c_3 = c$, $c_4 = d$

Hence S spans V. We can conclude that S is a basis for V.

In general the basis $\{1, t, t^2, ..., t^n\}$ is called the *standard basis* for P_n .

2.5 Linear transformations

Linear Transformation:

Let V and W be any two subspaces over the field F. A mapping T from V to W is called a linear transformation if

(i)
$$T(v_1 + v_2) = T(v_1) + T(v_2)$$
, for $v_1, v_1 \in V$

(ii)
$$T(aV) = aT(v), \forall a \in F, \forall v \in V$$

Algebra of linear transformations:

Let $T_1: Y \to V$ be two transformations where U and V are two vector spaces over the field F. We define the sum of T_1 and T_2 by $T_1 + T_2: U \to V$ such that $(T_1 + T_2)u = T_1(u) + T_2(u_2), u \in U$.

Scalar multiplication of linear transformations:

If $a \in F$, the function aT, that is, product of a linear transformation $T: U \to V$ with a, and defined by $aT: U \to V$ such that (aT)u = a(T(u)) for all $u \in U$ is a linear transformation from U into V.

Composition of two linear transformations:

Let u, v, w be three vector spaces over a field F. We define T_2T_1 , called the composition or product of T_2 and T_1 , by $(T_2T_1)u = T_2(T_1(u))$. T_2T_1 is also denoted by $(T_2 \circ T_1)$.

Kernel of T (Nullity of T) and image of T:

Let T be a linear transformation from V to W.

$$Ker\ T=\{v\in V \colon T(v)=0, 0\in W\}$$

$$Img(T) = \{w \in W : w = T(v) for \ some \ v \in V\}$$

1. Prove that the transformation T: $R^2 \rightarrow R^2$ defined by T (x, y) = (2x, x + y) is linear.

Let $x = (x_1, y_1)$ and $y = (x_2, y_2)$ be elements of \mathbb{R}^2 and let c be a scalar.

$$\begin{split} T &(x+y) = T &((x_1,y_1) + (x_2,y_2)) \\ &= T &(x_1+x_2,y_1+y_2) & \text{by vector addition} \\ &= (2x_1+2x_2,x_1+x_2+y_1+y_2) & \text{by definition of } T \\ &= (2x_1,x_1+y_1) + (2x_2,x_2+y_2) & \text{by vector addition} \\ &= T &(x_1,y_1) + T &(x_2,y_2) & \text{by definition of } T \\ &= T &(x) + T &(y) \end{split}$$

Thus, T preserves vector addition.

$$T(cx) = T(c(x_1, y_1))$$

$$= T(cx_1, cy1)$$

$$= (2cx_1, cx_1 + cy_1)$$

$$= c(2x_1, x_1 + y_1)$$

$$= c T(x_1, y_1)$$
by scalar multiplication of a vecto by scalar multiplication of a vecto by definition of $x_1 = x_2 = x_1 + x_2 = x_2 = x_1 + x_2 = x_2 = x_2 = x_1 = x_2 = x_2 = x_1 = x_2 = x_2 = x_2 = x_1 = x_1 = x_2 = x_2 = x_1 = x_1 = x_2 = x_1 = x_1 = x_2 = x_1 = x_1 = x_1 = x_1 = x_2 = x_2 = x_1 = x_1 = x_1 = x_2 = x_2 = x_2 = x_1 = x_1 = x_2 = x_1 = x_1 = x_2 = x_1 = x_1 = x_1 = x_2 = x_2 = x_1 = x_1 = x_1 = x_2 = x_2 = x_1 = x_1 = x_1 = x_2 = x_2 = x_2 = x_1 = x_1 = x_2 = x_2 = x_2 = x_2 = x_1 = x_2 = x_2 = x_2 = x_1 = x_2 = x_1 = x_2 =$

Thus, T preserves scalar multiplication. Therefore, T is linear.

2. Prove that the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x,y) = (3x, x + y) is linear. Find the images of the vectors (1,3) and (-1,2) under this transformation.

Let $x = (x_1, y_1)$ and $y = (x_2, y_2)$ be arbitrary vectors in \mathbb{R}^2 and c an arbitrary scalar. Then

$$T(x + y) = T(x_1 + x_2, y_1 + y_2)$$

$$= (3(x_1 + x_2), x_1 + x_2 + y_1 + y_2)$$

$$= (3x_1, x_1 + y_1) + (3x_2, x_2 + y_2)$$

$$= T(x) + T(y)$$

Thus, T preserves vector addition.

We now show that T preserves scalar multiplication.

$$T(c x) = T(cx_1, cy_1)$$

$$= (3cx_1, cx_1 + cy_1)$$

$$= c(3x_1, x_1 + y_1)$$

$$= cT(x)$$

Therefore, T is linear.

By definition of T, we have

$$T(1,3) = (3.1,1+3) = (3,4),$$

 $T(-1,2) = (3.(-1),-1+2) = (-3,1).$

3. Prove that T (x, y) = (x + 2y, 3y, x - y) defines a linear transformation by T: $\mathbb{R}^2 \to \mathbb{R}^3$. Find the images of (0, 4) and (1, 1).

Let $x = (x_1, y_1)$ and $y = (x_2, y_2)$ be arbitrary vectors in \mathbb{R}^2 and c an arbitrary scalar.

Then

$$T (x + y) = T (x_1 + x_2, y_1 + y_2)$$

$$= (x_1 + x_2 + 2y_1 + 2y_2, 3y_1 + 3y_2, x_1 + x_2 - y_1 - y_2)$$

$$= (x_1 + 2y_1, 3y_1, x_1 - y_1) + (x_2 + 2y_2, 3y_2, x_2 - y_2)$$

$$= T(x) + T(y)$$

To prove that scalar multiplication is preserved under *T*,

$$T(cx) = T (cx_1, cy_1)$$

$$= T (cx_1 + 2cy_1, 3cy_1, cx_1 - cy_1)$$

$$= c (x_1 + 2y_1, 3y_1, x_1 - y_1)$$

$$= c T(x)$$

Therefore, *T* is linear.

By definition of T, we have

$$T(0, 4) = (0+2\cdot4, 3\cdot4, 0-4) = (8, 12, -4)$$

 $T(1, 1) = (1+2\cdot1, 3\cdot1, 1-1) = (3, 3, 0).$

4. Verify whether the transformation T: $R^1 \to R^3$ defined by T $(x) = (x, 2x^2, x^3)$ is linear or not.

Let $x = (x_1)$ and $y = (x_2)$ be arbitrary vectors in \mathbb{R}^1 and c be a scalar.

Then,
$$T(x + y) = T(x_1 + x_2)$$

 $= (x_1 + x_2, 2(x_1 + x_2)^2, (y_1 + y_2)^3)$
 $T(x) + T(y) = (x_1, 2x_1^2, y_1^3) + (x_2, 2x_2^2, y_2^3)$
 $= (x_1 + x_2, 2x_1^2 + 2x_2^2, y_1^3 + y_2^3)$
 $T(x + y) \neq T(x) + T(y)$

Therefore, T is not linear.

5. Prove that the transformations T: $R^2 \to R$ defined by T $(x, y) = y^2$ is not linear. Justify your answer by counter example.

Let $x = (x_1, y_1)$ and $y = (x_2, y_2)$ be arbitrary vectors in \mathbb{R}^2 and c be a scalar.

Then, T
$$(x + y) = T (x_1 + x_2, y_1 + y_2)$$

= $(y_1 + y_2)^2$
And T(x) + T(y) = T $((x_1, y_1)) + T ((x_2, y_2))$
= $y_1^2 + y_2^2$

$$T(x + y) \neq T(x) + T(y)$$

Therefore, T is not linear.

For example, let x = (0, 1) and y = (0, 2)

$$T(x + y) = T((0, 1) + (0, 2)) = T((0,3)) = 9$$

$$T(x) + T(y) = T((0,1)) + T((0,2)) = 1 + 4 = 5$$

6. Show that the function $T: \mathbb{R}^2 \to \mathbb{R}^3$ given by T(x, y) = (x + y, x - y, y) is a linear transformation.

$$u = (x_1, y_1), v = (x_2, y_2) \in R^2$$

$$T(u + v) = T(x_1 + x_2, y_1 + y_2)$$

$$= (x_1 + x_2 + y_1 + y_2, x_1 + x_2 - y_1 - y_2, y_1 + y_2)$$

$$= (x_1 + y_1 + x_2 + y_2, x_1 - y_1 + x_2 - y_2, y_1 + y_2)$$

$$= (x_1 + y_1, x_1 - y_1, y_1) + (x_2 + y_2, x_2 - y_2, y_2)$$

$$= T(u) + T(v)$$

Thus, T preserves vector addition.

Also for any scalar $a \in R$,

$$T(au) = T(ax_1, ay_1)$$

$$= (ax_1 + ay_1, ax_1 - ay_1, ay_1)$$

$$= a(x_1 + y_1, x_1 - y_1, y_1)$$

$$= aT(u)$$

Thus, T preserves scalar multiplication.

Therefore, T is a linear transformation.

7. Check whether the function $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (y, -x, -z) is a linear transformation or not.

Let
$$u = (x_1, y_1, z_1), v = (x_2, y_2, z_1) \in \mathbb{R}^3$$

$$T(u+v) = T(x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

$$= (y_1 + y_2, -x_1 - x_2, -z_1 - z_2)$$

$$= (y_1, -x_1, -z_1) + (y_2 - x_2 - z_2)$$

$$= T(u) + T(v)$$

Also for any scalar $a \in R$,

$$T(au) = T(ax_1, ay_1, az_1)$$

$$= (ay_1, -ax_1, -az_1)$$

$$= a(y_1, -x_1, -z_1)$$

$$= aT(u)$$

Therefore, T is a linear transformation.

8. Check whether the function $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

T(x, y, z) = (2x - 3y, 7y + 2z) is a linear transformation or not.

Let
$$u = (x_1, y_1, z_1), v = (x_2, y_2, z_1) \in \mathbb{R}^3$$

$$T(u) = T(x_1, y_1, z_1) = (2x_1 - 3y_1, 7y_1 + 2z_1)$$

$$T(v) = T(x_2, y_2, z_2) = (2x_2 - 3y_2, 7y_2 + 2z_2)$$

$$T(u + v) = T(x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

$$= (2x_1 + 2x_2 - 3y_1 - 3y_2, 7y_1 + 7y_2 + 2z_1 + 2z_2)$$

$$= (2x_1 - 3y_1 + 2x_2 - 3y_2, 7y_1 + 2z_1 + 7y_2 + 2z_2)$$

$$= (2x_1 - 3y_1, 7y_1 + 2z_1) + (2x_2 - 3y_2, 7y_2 + 2z_2)$$

$$= T(u) + T(v)$$

Also for any scalar $a \in R$,

$$T(au) = T(ax_1, ay_1, az_1)$$

$$= (2ax_1 - 3ay_1, 7ay_1 + 2az_1)$$

$$= a(2x_1 - 3y_1, 7y_1 + 2z_1)$$

$$= aT(u)$$

Therefore, T is a linear transformation.

9. Let $V(R) \rightarrow V_2(R)$ be a mapping f(x) = (3x, 5x). Show that f is a linear transformation.

$$f(x_1 + x_2) = (3(x_1 + x_2), 5(x_1 + x_2))$$

$$= (3x_1 + 3x_2, 5x_1 + 5x_2)$$

$$= (3x_1, 5x_1) + (3x_2, 5x_2)$$

$$= f(x_1) + f(x_2)$$

$$f(ax) = (3(ax), 5(ax))$$

$$= (3ax, 5ax)$$

$$= a(3x, 5x)$$

$$= af(x)$$

Hence f is a linear transformation.

10. Show that the transformation mapping $f: V_2(R) \to V_2(R)$ defined by

$$f(x,y) = (x + 6, y + 2)$$
 is not linear.
 $f(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + 6, y_1 + y_2 + 2)$

$$f(x_1, y_1) + f(x_2, y_2) = (x_1 + 6, y_1 + 2) + (x_2 + 6, y_2 + 2)$$
$$= (x_1 + x_2 + 12, y_1 + y_2 + 4)$$

Therefore,
$$f(x_1 + x_2, y_1 + y_2) \neq f(x_1, y_1) + f(x_2, y_2)$$

Therefore, f is not a linear transformation.

11. Find a linear transformation T: $V_2(R) \rightarrow V_2(R)$ such that T(1, 2) = (3, 0) and T(2, 1) = (1, 2).

Let us express (1, 2) and (2, 1) as linear combination of the standard basis

vectors $e_1 = (1, 0)$ and $e_2 = (0, 1)$.

$$(1, 2) = 1(1, 0) + 2(0, 1) = 1e_1 + 2e_2$$

$$(2,1) = 2(1,0) + 1(0,1) = 2e_1 + 1e_2$$

Therefore, $T(e_1 + 2e_2) = T(1, 2)$ and $T(2e_1 + e_2) = T(2, 1)$

i.e.,
$$T(e_1) + 2T(e_2) = (3, 0)$$
 and $2T(e_1) + T(e_2) = (1, 2)$

Solving these, we get

$$T(e_1) = \left(\frac{-1}{3}, \frac{4}{3}\right)$$
 and $T(e_2) = \left(\frac{5}{3}, \frac{-2}{3}\right)$

Now, T (x, y) = T [x (1, 0) + y (0, 1)]
= T (xe₁ + ye₂)
= x T(e₁) + y T(e₂)
=
$$x \left(\frac{-1}{3}, \frac{4}{3}\right) + y \left(\frac{5}{3}, \frac{-2}{3}\right)$$

= $\left(\frac{-x}{3} + \frac{5y}{3}, \frac{4x}{3} - \frac{2y}{3}\right)$
= $\left(\frac{-x+5y}{3}, \frac{4x-2y}{3}\right)$

i.e., T (x, y) = $\left(\frac{-x+5y}{3}, \frac{4x-2y}{3}\right)$ is the required liner transformation.

12. Find a linear transformation T: $V_2(R) \rightarrow V_3(R)$ such that T(-1, 1) = (-1, 0, 2) and T(2, 1) = (1, 2, 1).

Let us express (-1, 1) and (2, 1) as linear combination of the standard basis vectors $e_1 = (1, 0)$ and $e_2 = (0, 1)$.

$$(-1, 1) = -1(1, 0) + 1(0, 1) = -e_1 + e_2$$

$$(2, 1) = 2(1, 0) + 1(0, 1) = 2e_1 + e_2$$

Therefore, $T(-e_1 + e_2) = T(-1, 1)$ and $T(2e_1 + e_2) = T(2, 1)$

i.e.,
$$-T(e_1) + T(e_2) = (-1, 0, 2)$$
 and $2T(e_1) + T(e_2) = (1, 2, 1)$

Solving these, we get

$$T(e_1) = \left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right)$$
 and $T(e_2) = \left(\frac{-1}{3}, \frac{2}{3}, \frac{5}{3}\right)$

Now, T
$$(x, y) = T [x (1, 0) + y (0, 1)]$$

= T $(xe_1 + ye_2)$

$$= x T(e_1) + y T(e_2)$$

$$= x\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right) + y\left(\frac{-1}{3}, \frac{2}{3}, \frac{5}{3}\right)$$

$$=\left(\frac{2x-y}{3},\frac{2x+2y}{3},\frac{-x+5y}{3}\right)$$

i.e., T (x, y) = $\left(\frac{2x-y}{3}, \frac{2x+2y}{3}, \frac{-x+5y}{3}\right)$ is the required liner transformation.

13. Find a linear transformation T: $V_3(R) \rightarrow V_2(R)$ such that T(1, 0, 0) = (-1, 0), T(0, 1, 0) = (1, 1) and T(0, 0, 1) = (0, -1).

$$e_1 = (1, 0, 0), e_2 = (0, 1, 0) \text{ and } e_3 = (0, 0, 1).$$

$$T(e_1) = (-1, 0), T(e_2) = (1, 1) \text{ and } T(e_3) = (0, -1)$$

Now, T
$$(x, y, z) = T [x (1, 0, 0) + y (0, 1, 0) + z (0, 0, 1)]$$

$$= T (xe_1 + ye_2 + ze_3)$$

$$= x T(e_1) + y T(e_2) + z T(e_3)$$

$$= x (-1, 0) + y (1, 1) + z (0, -1)$$

$$= (-x + y, y - z)$$

i.e., T(x, y, z) = (y - x, y - z) is the required liner transformation.

14. Find a linear transformation T: $V_3(R) \rightarrow V_3(R)$ such that T(1, 1, 1) = (1, 1, 1), T(1, 2, 3) = (-1, -2, -3) and T(1, 1, 2) = (2, 2, 4).

Let us express (1, 1, 1), (1, 2, 3) and (1, 1, 2) as linear combination of the

standard basis vectors $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$.

$$(1, 1, 1) = 1(1, 0, 0) + 1(0, 1, 0) + 1(0, 0, 1) = e_1 + e_2 + e_3$$

$$(1, 2, 3) = 1(1, 0, 0) + 2(0, 1, 0) + 3(0, 0, 1) = e_1 + 2e_2 + 3e_3$$

$$(1, 1, 2) = 1(1, 0, 0) + 1(0, 1, 0) + 2(0, 0, 1) = e_1 + e_2 + 2e_3$$

Therefore, $T(1, 1, 1) = T(e_1 + e_2 + e_3)$

$$T(1, 2, 3) = T(e_1 + 2e_2 + 3e_3)$$

$$T(1, 1, 2) = T(e_1 + e_2 + 2e_3)$$

i.e.,
$$T(e_1) + T(e_2) + T(e_3) = (1, 1, 1), T(e_1) + 2T(e_2) + 3T(e_3) = (-1, -2, -3)$$
 and

$$T(e_1) + T(e_2) + 2T(e_3) = (2, 2, 4)$$

Solving these, we get

$$T(e_1) = (4, 5, 8), T(e_2) = (-4, -5, -10) \text{ and } T(e_3) = (1, 1, 3)$$

Now,
$$T(x, y, z) = T[x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)]$$

$$= T (xe_1+ye_2+ze_3)$$

$$= x T(e_1) + y T(e_2) + T(e_3)$$

$$= x (4, 5, 8) + y (-4, -5, -10) + z (1, 1, 3)$$

$$= (4x - 4y + z, 5x - 5y + z, 8x - 10y + 3z)$$

i.e., T (x, y, z) = (4x - 4y + z, 5x - 5y + z, 8x - 10y + 3z) is the required liner transformation.

15. Let the transformations $T_1: R^3 \to R^2$ such that $T_1(x, y, z) = (4x, 3y - 2z)$ and $T_2: R^2 \to R^2$ such that $T_2(x, y) = (-2x, y)$. Compute T_1T_2 and T_2T_1 .

Range of T_2 does not contain the domain of T_1 .

Therefore, T_1T_2 is not defined.

Range of T_1 contains the domain of T_2 .

Therefore, T_2T_1 is defined.

$$T_2T_1(x, y, z) = T_2(T_1(x, y, z)) = T_2(4x, 3y - 2z) = (-8x, 3y - 2z)$$

16. Illustrate with an example that there exisits linear transformations $T_1: R^2 \to R^2$ and $T_2: R^2 \to R^2$ such that $T_2T_1 \neq 0$.

Let us define
$$T_1: \mathbb{R}^2 \to \mathbb{R}^2$$
 by $T_1(x, y) = (0, 4x)$

And
$$T_2: \mathbb{R}^2 \to \mathbb{R}^2$$
 by $T_2(x, y) = (x, 0)$.

Therefore, T_1T_2 and T_2T_1 both are defined.

Also,
$$(T_2T_1)(x, y) = T_2(T_1(x, y)) = T_2(0, 4x) = (0, 0) = 0(x, y)$$

Therefore, $T_2T_1 = 0$.

Also,
$$T_1T_2(x, y) = T_1(T_2(x, y)) = T_1(x, 0) = (0, 4x) \neq 0(x, y)$$

Therefore, $T_1T_2 \neq 0$.