Concursul de admitere iulie 2018Domeniul de licență - Matematică

\mathbf{Barem}

I.	Algebră. Oficiu)
	(a) $A(m)$ inversabilă dacă și numai dacă det $A(m) \neq 0$	Ç
	Calculul determinantului: $m(m+2)(m+3)$	9
	$m \in \mathbb{R} \setminus \{-3, -2, 0\}$)
	(b) Calculul puterilor $A(0)^2$ și $A(0)^3$ ale matricei $A(0)$	9
	Verificarea egalității)
	$\left(\begin{array}{ccc}2^{2018} & -2^{2018} & 3^{2018}\end{array}\right)$	
	(c) $A(0)^{2018} = \begin{bmatrix} 0 & 0 & 3^{2018} \end{bmatrix}$,)
	(c) $A(0)^{2018} = \begin{pmatrix} 2^{2018} & -2^{2018} & 3^{2018} \\ 0 & 0 & 3^{2018} \\ 0 & 0 & 3^{2018} \end{pmatrix}$,	
	$A(1)^{2018} = \begin{pmatrix} 3^{2018} & 1 - 3^{2018} & 4^{2018} - 1 \\ 0 & 1 & 4^{2018} - 1 \\ 0 & 0 & 4^{2018} \end{pmatrix} \dots $	
	$A(1)^{2018} = \begin{bmatrix} 0 & 1 & 4^{2018} - 1 \\ 0 & 1 & 4^{2018} - 1 \end{bmatrix}$)
	$\begin{pmatrix} 0 & 0 & 4^{2018} \end{pmatrix}$	
	(d) $\operatorname{tr}(CB) = 5$	
	$\det(CB) = 6 \dots \dots$)
II.	Analiză. Oficiu)
	(a) $y = x - 3$ asimptotă oblică spre $+\infty$	0
	$y=-x+3$ asimptotă oblică spre $-\infty$	
	f nu are asimptote verticale	
	(b) f este derivabilă pe $\mathbb{R}\setminus\{2,4\}$	
	Studiul derivabilității în $x=2$	
	Studiul derivabilității în $x=4$	9
	Calculul derivatei a doua0,5 µ)
	Concluzia: f concavă pe $(-\infty,2],[2,4],[4,\infty)$	Ç
	(c) calculul integralei $I = \frac{4}{3}$)
	(d) $(I_n)_n$ descrescător)
	$(I_n)_n$ mărginit)
	$\lim_{n \to \infty} I_n = 0 \dots \qquad \qquad 1$)
II	Geometrie. Oficiu	
	•	
	(a) $P(\frac{1}{2}, \frac{\sqrt{3}}{2})$ şi $Q(2, \sqrt{3})$)
	Demonstrarea perpendicularității	
	(c) $P(\frac{a}{2}, \frac{a\sqrt{3}}{2})$ şi $Q(\frac{a+3}{2}, \frac{(3-a)\sqrt{3}}{2})$)
	Expresiile pantelor $m_{OP} = \sqrt{3}$ și $m_{PQ} = \frac{\sqrt{3}(3-2a)}{3}$	
	Condiția de perpendicularitate si calculul lui $a=2$	
	(d) Ecuația dreptei MN : $(x-a)3\sqrt{3} - y(3-2a) = 0$	
	Identificarea punctului fix $B(\frac{3}{2}, \frac{3\sqrt{3}}{2})$)

IV. Informatică. Oficiu	1 p
Găsirea relației care permite aflarea constantei c	2 p
Considerarea unui interval de căutare pentru constanta c care conține și valori negative	1 p
Găsirea constantei c prin căutare	3 p
Respectarea aproximării de 2 zecimale	1 p
Corectitudinea limbajului	1 p
Explicații	1 p