

CAI 4104/6108 – Machine Learning Engineering: Performance Evaluation

Prof. Vincent Bindschaedler

Spring 2024

Administrivia: Midterm

- Reminder: Midterm is coming up!
 - Monday 2/19 and Wednesday 2/21 during class time (10:40 11:30) in FLG 0220
 - Topics: everything until 2/16
 - Duration: 50 minutes
 - Schedule:
 - CAI6108: take the exam on 2/19
 - CAI4104: take the exam on 2/21
 - Lecture that week (topic: Unsupervised Learning) will be pre-recorded
 - Format: closed-books, (blank) scratch paper, and physical calculator are allowed (no phones!)
 - Questions: short answers + problems
- Sample Midterm (Practice Questions):
 - On Canvas 50 minutes (18 short answers) + 3 problems.
 - This is for you to practice. <u>Do not overfit!</u>

Administrivia: Homework 2

■ Homework 2 is out

- Topic: regression and ensembles
- Due 2/23 (delayed to avoid conflict with the midterm)
- Do not submit the data file, only submit the notebook (.ipynb)
- Advice: start early

Reminder: Training, Test, Validation

- Before training a model (or looking at the data ideally)
 - Divide the dataset into three disjoint parts
 - 1. Training dataset
 - 2. Test dataset
 - 3. Validation dataset
- Why? Why do we need the validation dataset? Why not just training and test?
 - We need it for hyperparameter optimization!
- What proportion of the dataset to allocate to each?
 - (Rule of thumb:) For small datasets (i.e., < 100k examples): 70% training, 15% validation, 15% test
 - For large datasets (e.g., deep learning): 95% training, 2.5% validation, 2.5% test
 - For very small datasets (e.g., <1000 examples): check the raw numbers (e.g., how many examples is 10%?)
 - What if you don't have enough data to afford leaving some aside for validation/testing?
 - ★ Use k-fold validation: divide the data into k equal parts, then train on k-1, test on the remaining part, repeat k times and average!

Model Performance Evaluation

- What do we care about?
 - Out-of-sample predictions quality
 - In other words, we want our model to perform well on the test set
 - If it does, we say it generalizes well
 - What about overfitting?
- We need a metric
 - Different metrics for different tasks (e.g., classification vs regression, binary vs multiclass)
 - Q: Why don't we use the loss/cost function that we train the model with?

Metrics for Regression

- Mean Squared Error (MSE):
 - $MSE(h) := 1/n \sum_{i} [h(x_i) y_i]^2$
 - ◆ Root Mean Squared Error (RMSE): RMSE(h) := [MSE(h)]^{1/2}
- Mean Absolute Error (MAE):
 - MAE(h) := $1/n \sum_{i} |h(x_i) y_i|$
- Median Absolute Error (MedAE):
 - $\operatorname{MedAE}(h) := \operatorname{median}(\{|h(\boldsymbol{x_i}) y_i|\}_{i=1,2,\dots,n})$
- Almost Correct Predictions Error Rate (ACPER):
 - τ : threshold of percentage error that is acceptable (e.g., 1%)
 - ◆ ACPER(h, τ) = $1/n | \{ x_i : |h(x_i) y_i| / y_i \le \tau \}_{i=1,2,...,n} |$
 - * Proportion of predictions within τ % of the target
- What about baselines?
 - Mean model: always predict the mean value/target of the training data

Metrics for Classification

Confusion Matrix

- Applicable to classification in general
- Focus on the binary classification case:
 - One of the classes is designated as "positive" (the other is "negative")
 - False positives are Type I errors
 - Think of them as "false alarms"
 - False negatives are Type II errors
 - Think of them as "missed detections"
 - Prevalence (aka base rate):
 - Proportion of positive examples
- Baselines?
 - Statistical mode prediction
 - Random guessing

		Actual			
		+	-		
Predicted	+	True Positive (TP)	False Positive (FP)		
	-	False Negative (FN)	True Negative (TN)		

- Accuracy: (TP + TN) / (TP + FP + TN + FN)
- Recall: TP / (TP + FN)
 - Also called: True positive rate (TPR), Sensitivity
- False negative rate (FNR): FN / (TP + FN) = 1 TPR
- False positive rate (FPR): FP / (FP + TN)
- True negative rate (TNR): TN / (FP + TN) = 1 FPR
 - Also called Specificity and Selectivity
- Precision: TP / (TP + FP)
 - Also called: Positive predictive value (PPV)
- False discovery rate (FDR): FP / (TP + FP) = 1 Precision

Precision-Recall Tradeoff

Decision Threshold / Function

- (In most cases) when you train a classification model, you actually train a family of classifiers!
 - The model assigns scores (or probabilities) to examples
 - Make predictions based on scores using a specific decision threshold

The Tradeoff

- The threshold provides a tradeoff between Type I and Type II errors
- A popular way to express this tradeoff is Precision versus Recall
 - We need to choose between high precision and high recall
 - Q: What if we need to achieve precision above a specific value (e.g., 90%)?

Optimizing and Statisficing

- One way of navigating the tradeoff is to set a cutoff for precision or recall
- E.g.: Pick the model with precision ≥95% that maximimizes recall

Performance Curves

- Receiver Operating Characteristics (ROC)
 - Plots true positive rate (TPR) versus false positive rate (FPR)
 - How? Vary the threshold
 - Each point on the curve (a valid pair (TPR,FPR)) is a valid tradeoff point
 - E.g.: Equal Error Rate (EER) point where FPR and FNR are equal
- Area Under Curve (AUC)
 - This is exactly the area under the ROC curve
 - AUC = 0 means the worst possible classifier
 - * AUC = 0.5 is a random classifier
 - * AUC = 1.0 is a perfect classifier
- Note: there are other performance curves
 - For example: Detection Error Tradeoff (DET) curves
 - * False positive rate (FPR) versus the false negative rate (FNR), usually a log-log plot

Accuracies & F-measure

Accuracy

- Definition: the proportion of examples correctly classified (out of all examples)
 - If M is the confusion matrix, then $\operatorname{accuracy} = \operatorname{Tr}(M) / \sum_{i,j} M_{i,j}$
 - where Tr(M) is the trace of M, i.e., $Tr(M) = \sum_{i} M_{i,i}$ (the sum of diagonal elements)
- Cost-sensitive accuracy: assign a cost to both FP and FN; multiply by those costs to compute accuracy
 - * E.g.: (TP + TN) / (TP + α FP + TN + β FN), where α >0 is the cost for FP and β >0 is the cost for FN
- Per-class accuracy: calculate accuracy for each class separately then average the individual accuracies
 - Suitable for multiclass problems; Useful when the dataset is imbalanced but all mistakes are costly
 - Warning: do not use this if some classes have very few examples! Why?
 - Example for the binary case: (balanced accuracy) BA = (TPR + TNR) / 2

■ F-measure (aka F-score)

- Combination of precision and recall into a single measure
- $F_{\beta} = (1 + \beta^2) \text{ precision} \cdot \text{ recall} / (\beta^2 \cdot \text{ precision} + \text{ recall}) = (1 + \beta^2) \text{ PPV} \cdot \text{TPR} / (\text{PPV} + \text{TPR})$
- F_1 -score: $F_1 = 2 \text{ precision} \cdot \text{ recall} / (\text{precision} + \text{recall}) = 2 \text{ TP} / (2 \text{ TP} + \text{FP} + \text{FN})$

Multiclass Classification

- Can we use precision and recall?
 - Yes: designate one class as "positive" and the rest as "negative"
- What else can we do?
 - Accuracy and per-class accuracy
 - Error analysis: explore the confusion matrix to understand the kinds of error that your model makes!

Model Calibration

Classification:

- Given an input example x, the model returns a prediction class label y'
 - But many models also return a score or a probability p associated with the prediction
- A model is well-calibrated if we can interpret the score/probability as the true probability
- Most models are not well-calibrated by default
 - Especially deep neural networks but also SVM, etc.

Calibration techniques:

- Train a calibration model ("sigmoid scaling" aka "Platt scaling" or "isotonic regression")
- Many regularization techniques help with calibration
 - ★ For example: L₁ and L₂ regularization, label smoothing, temperature scaling, etc.
- Data augmentation

Model Calibration

- A model is well-calibrated if we can interpret the score/probability as the true probability
- Is your model well-calibrated?

Base Rate Fallacy

Example:

- Suppose you have a very accurate classifier (e.g., 99% accurate) to predict whether a person suffers from a specific disease D from features of their blood
- Q: Should we test everyone in the world? Why or why not?
 - It depends on the base rate!

Base rate fallacy / base rate neglect

- Error in reasoning: confusing a classifier's prior probability of correct prediction and the posterior probability of a true positive
- Suppose we have a classifier that has a false positive rate of 2% (i.e., 2% of the time it predicts '+' when the true label is '-') and a true positive rate of 100% (i.e., it never fails to detect '+' instances)
- What is the probability that if the classifier predicts '+' the true label is in fact '+'?
 - ★ If the base rate is 0.5 (i.e., 50% of instances are '+') then it is: ~98%
 - # If the base rate is 0.001 (i.e., 0.1% of instances are '+') then it is: ~4.8%

Base Rate Fallacy

Base rate fallacy / base rate neglect

- Suppose we have a classifier that has a false positive rate of 2% (i.e., 2% of the time it predicts '+' when the true label is '-') and a true positive rate of 100% (i.e., it never fails to detect '+' instances)
- What is the probability that if the classifier predicts '+' the true label is in fact '+'?

		Actual	
		+	-
Predicted	+	5000	100
	-	0	4900

 $Pr(Actual + | Predicted +) = 5000/5100 \approx 0.98$

		Actual	
		+	-
Predicted	+	10	200
	-	0	9790

 $Pr(Actual + | Predicted +) = 10/210 \approx 0.0476$

- Note: there are other (similar) errors in reasoning
 - Examples: Prosecutor's fallacy, Simpson's paradox, etc.

Next Time

■ Wednesday (2/14): Lecture

- Upcoming:
 - Homework 2 is out (due 2/23) by 11:59pm
 - Midterm on 2/19 and 2/21