Flow of Newtonian Fluid through a Tesla Valve Final project for Computer Solutions of Continuum Physics Problems

Matěj Vais

August 23, 2024

Contents

- Short Introduction to the Project
- Coding
- 3 Results
- Onclusion and References

Matěj Vais Tesla Valve August 23, 2024 2/19

Short Introduction to the Project

What Is a Tesla Valve?

- passive fixed geometry check valve
- suppresses the flow of fluid in the reverse direction (\rightarrow)
- pressure drop in reverse (\rightarrow) direction much higher than in the forward direction (\leftarrow)

Figure: Cross-section of the valve [1].

Aims of the Project

- \checkmark creation of mesh in the shape of the valve
- \checkmark simulating a steady flow through the valve
- ✓ simulating a time-dependent flow
- × computing the diodicity of the valve
- \times automatic generation of the mesh from an image [2]

$$Di = \left(\frac{\Delta p_r}{\Delta p_f}\right)_Q$$

Stationary Navier-Stokes Equation

• Steady flow of and incompressible fluid

$$\rho \operatorname{div}(\boldsymbol{v} \otimes \boldsymbol{v}) = -\nabla p + \operatorname{div}(2\nu \mathbb{D}) \quad \text{in } \Omega,$$
$$\operatorname{div} \boldsymbol{v} = 0 \quad \text{in } \Omega,$$

 $\Omega \subset \mathbb{R}^2$ is an open connected set representing a canal ρ given constant density ν given constant dynamic viscosity $\mathbb{S} = 2\nu \mathbb{D}$ shear stress \mathbb{D} symmetric part of the velocity gradient

• Unknowns: pressure, velocity (p, v) or pressure, velocity, stress (p, v, \mathbb{S}) .

Navier-Stokes equation

• Unsteady flow of and incompressible fluid

$$\frac{\partial \vec{v}}{\partial t} + (\nabla \vec{v})\vec{v} - \operatorname{div}(\nu \nabla \vec{v}) + \nabla p = 0 \quad \text{in } \Omega,$$
$$\operatorname{div} \vec{v} = 0 \quad \text{in } \Omega.$$

• Unknowns: pressure p and velocity v.

Initial and Boundary Conditions

- The boundary is partitioned as $\partial \Omega = \Gamma_{in} \cup \Gamma_{out} \cup \Gamma_{wall}$.
- ullet We impose the following boundary conditions on v:

• As an initial condition of the time-dependent problem we use the steady solution.

Matěj Vais Tesla Valve August 23, 2024 8 / 19

Coding

How Did I Progress?

- \rightarrow automatic mesh generation from an image unsuccessful
- \rightarrow Netgen proved to be a better option
- \rightarrow solving the steady flow using mixed formulation but no pressure drop
- \rightarrow moving to Navier-Stokes which showed the expected pressure drop
- \rightarrow solving the steady flow using velocity-pressure formulation, again no pressure drop

Note: ChatGPT very useful for code translation from FEniCS to Firedrake and for debugging.

Matěj Vais Tesla Valve August 23, 2024 10/19

netgen_mesh() - The Most Challenging Part

Results

Velocity

Figure: The top picture shows the forward mode (\rightarrow) , the bottom picture shows the reverse mode (\leftarrow) .

 Matěj Vais
 Tesla Valve
 August 23, 2024
 13 / 19

Pressure Drop

Figure: The top picture shows the forward mode (\rightarrow) , the bottom picture shows the reverse mode (\leftarrow) . There is no difference in pressure drop between modes.

Matěj Vais Tesla Valve August 23, 2024 14/19

Pressure Drop for Longer Valves

Figure: Both pictures show valves in the forward mode (\rightarrow) .

Possible Problems

- sharp corners on the domain boundary
- using dimensionless formulation of stationery N-S for the computation of initial condition

Figure: Velocity at time step 1. Both the forward and the reverse exhibit the same behaviour.

Matěj Vais Tesla Valve August 23, 2024 16 / 19

Conclusion

Solved problems:

- ✓ mesh generation using Netgen
- ✓ computing the steady flow
- ✓ computing the time-dependent flow

Unsolved problems:

- × automatic mesh generation from an image
- \times no difference in pressure drop between the forward and reverse direction of flow \Rightarrow diodicity is meaningless

Are there any questions?

References

- [1] Nikola Tesla. <u>Tesla valve cross-section</u>. https://patents.google.com/patent/US1329559. 1920.
- [2] Nanomesh documentation. https://nanomesh.readthedocs.io/en/latest/.