# Zusammenfassung Modellkategorien

© M Tim Baumann, http://timbaumann.info/uni-spicker

# Kategorientheorie

Bem. Die Topologie-Zusammenfassung bietet eine Übersicht über Grundbegriffe der Kategorientheorie. Weiterführende Begriffe werden in der Homologische-Algebra-Zusammenfassung behandelt.

Def. Eine (schwache) 2-Kategorie C besteht aus

- ullet einer Ansammlung Ob( $\mathbb C$ ) von Objekten,
- $\bullet$  für jedes Paar  $(\mathcal{C}, \mathcal{D})$  von Objekten einer Kategorie

$$\operatorname{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{D}) = \left\{ A \underbrace{\downarrow}_{G}^{F} B \right\},$$

- für jedes Tripel  $(\mathcal{C}, \mathcal{D}, \mathcal{E})$  von Objekten einem Funktor  $\operatorname{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{D}) \times \operatorname{Hom}_{\mathbb{C}}(\mathcal{D}, \mathcal{E}) \to \operatorname{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{E}), \ (F, G) \mapsto G \circ F,$
- für jedes Objekt  $\mathcal{C} \in \mathrm{Ob}(\mathbb{C})$  einem Objekt  $\mathrm{Id}_{\mathcal{C}} \in \mathrm{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{C})$ ,
- für alle  $\mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F} \in \mathrm{Ob}(\mathbb{C})$  einem natürlichen Isomorphismus

$$\alpha_{\mathcal{C},\mathcal{D},\mathcal{E},\mathcal{F}}: -\circ (-\circ -) \Longrightarrow (-\circ -)\circ -,$$

wobei beide Seiten Funktoren sind vom Typ

$$\operatorname{Hom}(\mathcal{E},\mathcal{F})\times\operatorname{Hom}(\mathcal{D},\mathcal{E})\times\operatorname{Hom}(\mathcal{C},\mathcal{D})\to\operatorname{Hom}(\mathcal{C},\mathcal{F}),$$

 $\bullet\,$ und für alle  $\mathcal{C},\mathcal{D}\in\mathrm{Ob}(\mathbb{C})$ natürlichen Isomorphismen

$$\lambda_{\mathcal{C},\mathcal{D}}: (\operatorname{Id}_{\mathcal{D}} \circ -) \Rightarrow \operatorname{Id}_{\operatorname{Hom}(\mathcal{C},\mathcal{D})}, \ \ \rho_{\mathcal{C},\mathcal{D}}: (- \circ \operatorname{Id}_{\mathcal{C}}) \Rightarrow \operatorname{Id}_{\operatorname{Hom}(\mathcal{C},\mathcal{D})},$$

sodass folgende Kohärenzbedingungen erfüllt sind:

• Für alle  $(C \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E} \xrightarrow{H} \mathcal{F} \xrightarrow{K} \mathcal{G}) \in C$  kommutiert  $K(H(GF)) \xrightarrow{\alpha_{C,\mathcal{E},\mathcal{F},\mathcal{G}}} (KH)(GF) \xrightarrow{\alpha_{C,\mathcal{D},\mathcal{E},\mathcal{G}}} ((KH)G)H$   $\downarrow^{K\alpha_{C,\mathcal{D},\mathcal{E},\mathcal{F}}} \xrightarrow{\alpha_{D,\mathcal{E},\mathcal{F},\mathcal{G}}} (K(HG)F) \xrightarrow{\alpha_{C,\mathcal{D},\mathcal{F},\mathcal{G}}} (K(HG)F)$ 

• Für alle  $(C \xrightarrow{F} D \xrightarrow{G} \mathcal{E}) \in \mathbb{C}$  kommutiert



 ${\bf Bspe.} \ \bullet \ {\rm Die} \ {\rm Kategorie} \ {\bf Cat} \ {\rm der} \ {\rm Kategorien}$  ist eine 2-Kategorie.

- $\bullet\,$  Jede Kategorie  $\mathcal C$  ist natürlich eine 2-Kategorie.
- Die Kategorie der Ringe  $\mathbb R$  mit  $\mathrm{Ob}(\mathbb R):=\{$  Ringe mit Eins $\}$  und  $\mathrm{Hom}_{\mathbb R}(A,B):=$  Kat. der  $B\text{-}A\text{-}\mathrm{Bimoduln}$  mit  $N\circ M:=N\otimes_B M$  für  $M\in\mathrm{Hom}(A,B)$  und  $N\in\mathrm{Hom}(B,C)$ . Dabei ist  $\mathrm{Id}_A:=A$ .

**Def.** Eine monoidale Kategorie ist eine 2-Kategorie mit genau einem Objekt. In der Regel wird dann  $\otimes$  anstelle von  $\circ$  geschrieben.

**Def.** Sei  $S: \mathcal{C}^{\text{op}} \times \mathcal{C} \to \mathcal{A}$  ein Funktor. Ein **Ende**  $E \in \text{Ob}(\mathcal{A})$  von S ist eine Familie  $\alpha_c: E \to S(c,c), c \in \text{Ob}(\mathcal{C})$  von Morphismen in  $\mathcal{A}$ , sodass für alle  $(f: c \to c') \in \mathcal{C}$  das Diagramm

$$E \xrightarrow{\alpha_c} S(c,c) \xrightarrow{S(\mathrm{id}_c,f)} S(c,c')$$

$$S(c',c') \xrightarrow{S(f,\mathrm{id}_{c'})} S(c,c')$$

kommutiert, und E universell (terminal) mit dieser Eigenschaft ist. Sprechweise: Ein Ende ist ein terminaler S-Keil.

Notation. 
$$E = \int_{c} S(c,c)$$
.

Bem. Enden sind spezielle Limiten, und umgekehrt sind Limiten spezielle Enden:  $\lim F = \int_c F(c)$ ; der Integrand ist  $\mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathcal{C} \xrightarrow{F} \mathcal{A}$ .

Bem. Das duale Konzept ist das eines Anfangs Koendes  $\int_{c}^{c} S(c,c)$ .

**Bsp.** Seien  $F,G:\mathcal{C}\to\mathcal{A}$  zwei Funktoren. Dann ist  $\int \operatorname{Hom}_{\mathcal{A}}(F(c),G(c)) \ \cong \ \operatorname{Nat}(F,G).$ 

 $\mathbf{Satz}$  (Fubini). Sei  $S:\mathcal{D}^\mathrm{op}\times\mathcal{D}\times\mathcal{C}^\mathrm{op}\times\mathcal{C}\to\mathcal{A}$ ein Funktor. Dann gilt

$$\int_{(d,c)} S(d,d,c,c) \cong \iint_{dc} S(d,d,c,c),$$

falls die rechte Seite und  $\int\limits_{\mathcal{Q}} S(d,d',c,c)$  für alle  $d,d'\in\mathcal{D}$  existieren.

**Bsp.** Sei R ein Ring, aufgefasst als präadditive Kategorie mit einem Objekt \*. Ein additiver Funktor  $R^{(op)} \to \mathbf{Ab}$  ist nichts anderes als ein R-Linksmodul (bzw. R-Rechtsmodul). Dann ist

$$A \otimes_R B \cong \int^{*\in R} A \otimes_{\mathbb{Z}} B.$$

**Lem** (Ninja-Yoneda-Lemma). Für jede Prägarbe  $F: \mathcal{C}^{\mathrm{op}} \to \mathbf{Set}$  gilt

$$F \cong \int_{c}^{c} F(c) \times \operatorname{Hom}_{\mathcal{C}}(-, c).$$

**Def.** Sei  $\mathbb{C}$  eine 2-Kategorie. Seien  $\mathcal{C}, \mathcal{D} \in \mathbb{C}$ . Eine **Adjunktion** von  $F \in \operatorname{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{D})$  und  $G \in \operatorname{Hom}_{\mathbb{C}}(\mathcal{D}, \mathcal{C})$  ist geg. durch Morphismen  $\eta : \operatorname{Id}_{\mathcal{C}} \Rightarrow G \circ F$  (genannt **Eins**) und  $\epsilon : F \circ G \Rightarrow \operatorname{Id}_{\mathcal{D}}$  (**Koeins**) mit  $G\epsilon \circ \eta G = \operatorname{Id}_{G}$  und  $\epsilon F \circ F \eta = \operatorname{Id}_{F}$ . Man notiert  $F \dashv G$ .

 $\textbf{Lem.} \ \ R/L\text{-}Adjungierte sind eindeutig bis auf eindeutige Isomorphie.}$ 

Bem. Seien  $F:\mathcal{C}\to\mathcal{D}$  und  $G:\mathcal{D}\to\mathcal{C}$  Funktoren. Dann gilt  $F\dashv G$  genau dann, wenn es einen nat. Iso zwischen den Hom-Mengen gibt:

$$\operatorname{Hom}(F \circ -, -) \cong \operatorname{Hom}(-, G \circ -)$$

**Bsp.**  $\exists_f \dashv f^* \dashv \forall_f$ 

 ${\bf Bsp.}$ Betrachte die 2-Kat. der Ringe. Dann gilt: Ein  $B\text{-}A\text{-}\mathrm{Modul}\ M$ ist genau dann ein Linksadjungierter, wenn Mals Rechts- $A\text{-}\mathrm{Modul}$ endlich erzeugt und projektiv ist.

Bem. Sind  $\eta$  und  $\epsilon$  in  $F \dashv G$  sogar Isomorphismen, so heißt  $F \dashv G$  auch **adjungierte Äquivalenz**. Jede beliebige Äquivalenz lässt sich stets (unter Beibehaltung von F und G sowie einem der Morphismen  $\epsilon$ ,  $\eta$ ) zu einer adj. Äquivalenz verfeinern.

### Kan-Erweiterungen

**Def.** Sei  $\mathcal{A} \xleftarrow{T} \mathcal{M} \xrightarrow{K} \mathcal{C}$  ein Ausschnitt einer 2-Kategorie. Eine **Rechts-Kan-Erw.** (RKE)  $(R, \epsilon)$  von T längs K besteht aus

• einem Morph.  $R: \mathcal{C} \to \mathcal{A}$  • einem 2-Morph.  $\epsilon: R \circ K \Rightarrow T$ ,

sodass gilt: Für alle Möchtegern-RKE  $(S: \mathcal{C} \to \mathcal{A}, \eta: S \circ K \Rightarrow T)$  gibt es genau ein  $\sigma: S \Rightarrow R$  mit  $\epsilon \circ \sigma K = \eta$ . Notation:  $R = \operatorname{Ran}_K(T)$ 

Bem. Es sind äquivalent:  $\bullet$   $(R, \epsilon)$  ist RKE von T längs K  $\bullet$   $\eta \mapsto \epsilon \circ \eta K$ : Nat $(S, R) \to \text{Nat}(S \circ K, T)$  ist bij.  $\forall S : \mathcal{C} \to \mathcal{A}$ 

Bem. Es gilt  $R = \operatorname{Ran}_K(T)$  genau dann, wenn es in  $S \in [\mathcal{C}, \mathcal{A}]$  natürliche Isomorphismen  $\operatorname{Nat}(S, R) \cong \operatorname{Nat}(S \circ K, T)$  gibt.

**Prop.** RKEs sind eindeutig bis auf eindeutige Isomorphie.

**Bspe.** • Die RKE eines bel. Morphismus  $T: \mathcal{M} \to \mathcal{A}$  längs  $\mathrm{Id}_{\mathcal{M}}$  existiert stets und ist gegeben durch  $(T, T \circ \mathrm{Id}_{M} \Rightarrow T)$ .

• In der 2-Kategorie der Ringe existieren alle RKE:

$$\operatorname{Ran}_K(T) = (\operatorname{Hom}_M(K,T), \ ev : \operatorname{Hom}_M(K,T) \otimes_C K \Rightarrow T).$$

**Bsp.** Sei  $K: \mathcal{M} \to \mathbb{1}$ ,  $* \mapsto 1$  und  $T: \mathcal{M} \to \mathcal{A}$  irgendein Funktor. Dann ist eine RKE von T längs K dasselbe wie ein Limes von T.

**Thm.** Seien  $K: \mathcal{M} \to \mathcal{C}$  und  $T: \mathcal{M} \to \mathcal{A}$  Funktoren. Existiere für alle  $c \in \mathrm{Ob}(\mathcal{C})$  der Limes  $R(c) := \lim((f: c \to Km) \mapsto Tm)$ . Dabei ist die Indexkategorie des Limes die Kommakat.  $\Delta(c) \downarrow K$ . Dann lässt sich diese Setzung zu einem Funktor  $\mathcal{C} \to \mathcal{A}$  ausdehnen und zwar zu einer RKE von T längs K.

Bem. Ist  $\mathcal{M}$  klein und  $\mathcal{C}$  lokal klein und ist  $\mathcal{A}$  vollständig, so sind die Voraussetzungen des Theorems für jeden Funktor  $K: \mathcal{M} \to \mathcal{C}$ ,  $T: \mathcal{M} \to \mathcal{A}$  erfüllt. Insbesondere ist dann jede solche RKE von der Form im Theorem. Solche RKE heißen auch **punktweise RKE**.

**Lem.** Eine RKE ist genau dann punktweise, wenn sie für alle  $a \in \text{Ob}(\mathcal{A})$  unter dem Funktor  $\text{Hom}_{\mathcal{A}}(a, -)$  erhalten bleibt.

**Thm.** Sei  $K:M\to C$  ein Funktor. Betrachte  $K^*:[\mathcal{C},\mathcal{A}]\to[\mathcal{M},\mathcal{A}]$ .

- Wenn ein Funktor  $\operatorname{Ran}_K : [\mathcal{M}, \mathcal{A}] \to [\mathcal{C}, \mathcal{A}]$  mit  $K^* \dashv \operatorname{Ran}_K$  ex., so ist  $\operatorname{Ran}_K(T)$  für alle  $T : \mathcal{M} \to \mathcal{A}$  eine RKE von T längs K.
- Existiere für alle  $T: \mathcal{M} \to \mathcal{A}$  eine RKE  $\operatorname{Ran}_K(T)$ . Dann kann man die Zuordnung  $T \mapsto \operatorname{Ran}_K(T)$  zu einem Rechtsadjungierten von  $K^*$  ausdehnen.

**Thm.** Sei  $G: \mathcal{A} \to \mathcal{X}$  in einer 2-Kategorie. Dann sind äquivalent:

- G besitzt einen Linksadjungierten.
- $\operatorname{Ran}_G(\operatorname{Id}_A)$  existiert und  $G \circ \operatorname{Ran}_G(\operatorname{Id}_A) = \operatorname{Ran}_G(G \circ \operatorname{Id}_A)$ .

In diesem Fall gilt  $\operatorname{Ran}_G(\operatorname{Id}_{\mathcal{A}}) \dashv G$  und  $\operatorname{Ran}_G(\operatorname{Id}_{\mathcal{A}})$  wird sogar von allen Morphismen  $H: \mathcal{A} \to \mathcal{Y}$  bewahrt.

Thm. Rechtsadjungierte bewahren RKE.

Kor. Rechtsadjungierte bewahren Limiten (RAPL)

### Algebraische Strukturen in Kategorien

**Def.** Eine Retrakt ist ein Morphismus  $r: Y \to X$ , sodass ein Morphismus  $i: X \to Y$  mit  $r \circ i = \mathrm{id}_X$  existiert. Sprechweise: X ist ein Retrakt von Y (vermöge i).

**Bsp.** Ein Modul U ist genau dann Retrakt von einem Modul M, wenn U ein direkter Summand von M ist.

**Prop.** "- ist Retrakt von -" ist eine reflexive und trans. Relation.

**Def.** Ein Retrakt eines Morphismus  $(X \xrightarrow{g} Y) \in \mathcal{C}$  ist ein Mor.  $f: A \to B$ , sodass es ein komm. Diagramm folgender Form gibt:



Bem. Ein Retrakt von  $f \in \text{Mor}(\mathcal{C})$  ist ein Retrakt von  $f \in \text{Ob}(\mathcal{C}^{\rightarrow})$ .

**Prop.** • Retrakte von Isomorphismen sind Isomorphismen.

• Sei  $f \circ g = \text{id}$ . Dann ist f ein Retrakt von  $g \circ f$ .

**Prop.** Sei  $F: \mathcal{C} \to \mathcal{D}$  ein Funktor. Dann ist die Klasse  $\{f \in \operatorname{Mor}(\mathcal{C}) \mid F(f) \text{ ist ein Iso}\}\ abgeschlossen unter Retrakten.}$ 

**Def.** Sei  $i: A \to X$  und  $p: E \to B$ . Dann werden als äg. definiert:

- p ist i-injektiv i ist p-projektiv  $i \boxtimes p$
- i hat die Linkshochhebungseigenschaft (LHHE) bzgl. p
- p hat die Rechtshochhebungseigenschaft (RHHE) bzgl. i
- $\bullet$  Für alle f, g wie unten, sodass das Quadrat kommutiert, gibt es ein diagonales  $\lambda$ , sodass die Dreiecke kommutieren:

$$\begin{array}{c}
A \xrightarrow{g} E \\
\downarrow_{i} \exists \lambda \nearrow \downarrow_{p} \\
X \xrightarrow{f} B
\end{array}$$

**Bsp.** Wegeliftung aus der Topologie:  $i:\{0\} \rightarrow [0,1]$  erfüllt die LHHE bezüglich allen Überlagerungen  $\pi: E \to B$ .

**Bsp.** Ein Objekt P einer ab. Kat. A ist genau dann **projektiv**, wenn  $(0 \to P)$  die LHHE bzgl. aller Epis in  $\mathcal{A}$  hat. Dual ist  $I \in \mathrm{Ob}(\mathcal{A})$ injektiv g.d.w. alle Monos in  $\mathcal{A}$  die LHHE bzgl.  $(I \to 0)$  besitzen.

Bsp. In Set gilt: Alle Inj. haben die LHHE bzgl. aller Surjektionen.

**Lem** (Retrakt-Argument). Sei  $f = q \circ j$ .

- Ist f g-projektiv  $(f \square g)$ , so ist f ein Retrakt von j.
- Ist f j-injektiv  $(j \boxtimes f)$ , so ist f ein Retrakt von g.

# Zellenkomplexe

**Def.** Sei  $\lambda$  eine Ordinalzahl. Eine  $\lambda$ -Sequenz in einer Kategorie  $\mathcal{C}$ ist ein kolimesbewahrender Funktor  $X: \lambda \to \mathcal{C}$  (wobei man  $\lambda$  als Präordnungskategorie aller  $\beta < \lambda$  auffasst). Ihre **transfinite Komposition** ist der induzierte Morphismus  $X_0 \to \operatorname{colim}_{\beta < \lambda} X_{\beta}$ .

Bem. Kolimesbewahrung bedeutet:  $\operatorname{colim}_{\alpha < \beta} X_{\alpha} = X_{\beta}$  für alle  $\beta < \lambda$ . Modellkategorien

**Def.** Sei  $\mathcal{C}$  eine kovollständige Kategorie,  $I \subset \operatorname{Mor}(\mathcal{C})$  eine Menge.

• Ein relativer I-Zellenkomplex ist eine transf. Komp. einer  $\lambda$ -Sequenz Z, sodass  $\forall \alpha \in \mathcal{O}_n$  mit  $\alpha + 1 < \lambda$  ein Pushoutdiagramm

$$\begin{array}{ll} C \longrightarrow Z_{\alpha} & \leftarrow \textbf{Anklebeabbildung} \\ \downarrow^f & \vdash & \downarrow \\ B \longrightarrow Z_{\alpha+1} & \leftarrow \textbf{Zelle} \end{array}$$

mit  $f \in I$  existiert. Sprechweise:

 $Z_{\alpha+1}$  entsteht aus  $Z_{\alpha}$ , indem wir B längs C ankleben"

• Ein Objekt  $A \in Ob(\mathcal{C})$  heißt *I-Zellenkomplex*, wenn der Morph.  $0 \rightarrow A$  aus dem initialen Obj. ein relativer I-Zellenkomplex ist.

Bsp. CW-Komplexe aus der algebraischen Topologie sind I-Zellenkomplexe mit  $I := \{S^{n-1} \hookrightarrow B^n \mid n \geq 0\} \text{ (und } C = \mathbf{Top)}.$ 

**Bspe.** • Identitäten  $A \rightarrow A$  sind relative *I*-Zellenkomplexe.

• Das initiale Objekt ist ein absoluter I-Zellenkomplex.

**Lem.** Sei  $Z: \lambda \to \mathcal{C}$  eine  $\lambda$ -Sequenz. Sei jeder Morphismus  $Z_{\beta} \to Z_{\beta+1}$   $(\beta+1<\lambda)$  ein Pushout eines Morphismus aus I. Dann ist die transfinite Komposition von Z ein I-Zellenkomplex.

Thm. Die Klasse der relativen I-Zellenkomplex ist abgeschl. unter:

• transfiniten Kompositionen • Isomorphismen • Koprodukten

### Faktorisierungssysteme

**Def.** Eine Unterkat.  $\mathcal{L} \subseteq \mathcal{C}$  heißt links-saturiert, falls  $\mathcal{L}$  abgeschl. ist unter Pushouts, transfiniten Kompositionen und Retrakten.

**Lem.** Sei  $\mathcal{L} \subseteq \mathcal{C}$  links-saturiert. Dann ist  $\mathcal{L}$  unter Koprodukten abgeschlossen und enthält alle Isomorphismen.

**Bsp.** Sei  $R \subset \operatorname{Mor}(\mathcal{C})$ . Dann ist die Unterkategorie  $\mathcal{L} \subseteq \mathcal{C}$  mit  $\operatorname{Mor}(\mathcal{L}) := {}^{\square}R := \{i \in \operatorname{Mor}(\mathcal{C}) \mid \forall r \in R : i \boxtimes r\} \text{ links-saturiert.}$ 

**Def.** •  $L \subseteq \operatorname{Mor}(\mathcal{C})$  heißt **proj.** abgeschlossen, falls  $L \supseteq \square(L^{\square})$ .

•  $R \subseteq \operatorname{Mor}(\mathcal{C})$  heißt injektiv abgeschlossen, falls  $R \supseteq (^{\square}L)^{\square}$ .

**Prop.**  $\bullet$   $\square(L^{\square})$  ist die projektive Hülle von L, d. h. die kleinste Klasse von Morphismen, die projektiv abgeschl. ist und L umfasst.

• Die projektive Hülle von L ist links-saturiert. Ist L schon projektiv abgeschlossen, so ist L insbesondere links-saturiert.

**Def.** • Ein Paar (L,R) von Klassen von Morphismen von  $\mathcal{C}$ **faktorisiert** C, falls  $\forall f \in Mor(C) : \exists i \in L, p \in R : f = p \circ i$ .

- Ein faktorisierendes Paar (L, R) heißt schwaches **Faktorisierungssystem** (SFS), falls  $L = \mathbb{Z} R$  und  $R = L \mathbb{Z}$ .
- Ein SFS (L, R) heißt orth. Faktorisierungssystem, falls jedes  $i \in L$  die eindeutige LHHE bzgl. allen  $p \in R$  erfüllt.

**Prop.** Sei (L,R) faktorisierend. Dann ist (L,R) genau dann ein SFS, wenn  $L \bowtie R$  und L und R unter Retrakten abgeschlossen sind.

**Bsp.** ({ Surjektionen }, { Injektionen }) ist ein (S)FS in **Set** 

Motto. Modellkat. sind ein Werkzeug, math. Theorien zu studieren.

**Def.** Eine Klasse  $W \subseteq Mor(\mathcal{C})$  von Morphismen erfüllt die **2-aus-3-Eigenschaft**, falls für jede Komposition  $h = g \circ f$  in C gilt: Liegen zwei der drei Morphismen f, g, h in W, so auch der dritte.

**Def.**  $W \subseteq C$  wie eben heißt Unterkat. schwacher Äquivalenzen, falls  $\mathcal{W}$  die 2-aus-3-Eig. erfüllt und abgeschl. unter Retrakten ist.

**Bsp.** Sei  $F: \mathcal{C} \to \mathcal{D}$  ein Funktor. Dann ist  $\mathcal{W} := F^{-1}(\{ \text{Isos in } \mathcal{D} \})$ eine Unterkategorie schwacher Äquivalenzen.

**Def.** Ein Tripel  $(\mathcal{W}, \mathcal{C}, \mathcal{F})$  von Unterkategorien einer Kategorie  $\mathcal{M}$ heißt Modellstruktur auf  $\mathcal{M}$ , falls sowohl  $(\mathcal{C}, \mathcal{F} \cap \mathcal{W})$  als auch  $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$  schwache Faktorisierungssysteme sind und  $\mathcal{W}$  die 2-aus-3-Eigenschaft erfüllt.

**Def.** Eine bivollständige Kategorie  $\mathcal{M}$  zusammen mit einer Modellstruktur (W, C, F) heißt eine **Modellkategorie**.

Sprechweise. Man verwendet folgende Bezeichnungen und Pfeile:

 $\stackrel{\sim}{\rightarrow}$  schwache Äquivalenz  $\mathcal{C} \hookrightarrow \mathbf{Kofaserung}$ azyklische Kofaserung  $\mathcal{C} \cap \mathcal{W}$ Faserung azyklische Faserung

Bem. Ist  $(\mathcal{W}, \mathcal{C}, \mathcal{F})$  eine Modellstruktur auf  $\mathcal{M}$ , so ist  $(\mathcal{W}^{\mathrm{op}}, \mathcal{F}^{\mathrm{op}}, \mathcal{C}^{\mathrm{op}})$  eine Modellstruktur auf  $\mathcal{M}^{\mathrm{op}}$ .

Bem. Wegen  $\mathcal{C} = \square(\mathcal{F} \cap \mathcal{W})$  bzw.  $\mathcal{F} = (\mathcal{C} \cap \mathcal{W})^{\square}$  ist das Datum  $(\mathcal{W}, \mathcal{C}, \mathcal{F})$  überbestimmt.

**Bsp.** Sei  $\mathcal{M}$  bivollständig. Sei  $\mathcal{W} := \mathcal{C} := \{ \text{Isos in } \mathcal{M} \}.$ Dann wird  $\mathcal{M}$  mit  $\mathcal{F} := \mathcal{M}$  eine Modellkategorie.

**Prop.** In einer Modellkategorie sind  $\mathcal{C}$  und  $\mathcal{C} \cap \mathcal{W}$  links-saturiert.

**Lem.** W enthält alle Isomorphismen und ist unter Retrakten abgeschlossen, bildet also eine Unterkat. schwacher Äquivalenzen.

**Notation.** Das initiale Objekt von  $\mathcal{M}$  wird mit  $\emptyset$ , das terminale Objekt mit \* bezeichnet.

- **Def.** Ein Objekt  $X \in \text{Ob}(\mathcal{M})$  heißt **kofasernd**, falls  $\emptyset \to X$  eine Kofaserung ist. Eine azyklische Faserung  $q: QX \xrightarrow{\sim} X$  mit QXkofasernd heißt kofasernder Ersatz (oder Approx.) von X.
- Dual heißt  $X \in Ob(\mathcal{M})$  fasernd, falls X in  $\mathcal{M}^{op}$  kofasernd ist und  $X \stackrel{\sim}{\hookrightarrow} RX$  mit RX fasernd heißt fasernder Ersatz von X.

**Bsp.** Sei  $X \in \text{Ob}(\mathcal{M})$  beliebig. Dann faktorisiere  $\emptyset \to X$  wie folgt:



Man erhält also immer einen kofasernden Ersatz OX für X. Dual gibt es immer einen fasernden Ersatz RX für X.

**Prop.** Seien  $q: QX \xrightarrow{\sim} X$  und  $q': Q'X \xrightarrow{\sim} X$  zwei kofasernde Approximationen von X. Dann existiert eine schwache Äquivalenz  $\xi: QX \xrightarrow{\sim} Q'X \text{ mit } q' \circ \xi = q.$ 

**Def.** Ein Obj. X heißt **bifasernd**, falls es fasernd und kofasernd ist

**Prop.** Für alle  $X \in Ob(\mathcal{M})$  sind RQX und QRX schwach äquivalent und beide bifasernd.

**Lem** (Ken Brown). Sei  $F: \mathcal{M} \to \mathcal{N}$  ein Funktor,  $\mathcal{M}$  eine Modellkategorie,  $\mathcal{N}$  besitze eine Unterkat.  $\mathcal{W}'$  schwacher Äquivalenzen. Wenn F azyklische Kofaserungen zwischen kofasernden Objekten nach  $\mathcal{W}'$  abbildet, so bildet F alle schwachen Äquivalenzen zwischen kofasernden Objekten nach W' ab.

**Def.** Sei  $\mathcal{M}$  eine Modellkategorie. Ein **Zylinderobjekt**  $X \times I$  zu einem  $X \in Ob(\mathcal{M})$  ist ein Obj. zusammen mit Morphismen wie folgt:



Der Zylinder  $X \times I$  heißt **gut**, falls  $X \coprod X \to X \times I$  eine Kofaserung ist. Ein guter Zylinder heißt sehr gut, falls  $p: X \times I \to X$  eine azyklische Faserung ist.

Bem. Sei die Kodiagonale  $\nabla: X \coprod X \to X$  wie folgt faktorisiert:



Dann erhalten wir ein Zylinderobjekt  $X \times I$  für X.

**Def.** Zwei Morphismen  $f, g: X \to Y$  in  $\mathcal{M}$  heißen links-homotop (notiert  $f \sim^l q$ ), falls ein Zylinder  $X \times I$  und ein Diagramm der Form



existiert. Wir definieren  $\pi^l(X,Y) := \operatorname{Hom}_{\mathcal{M}}(X,Y)/\langle \sim^l \rangle$ , wobei  $\langle \sim^l \rangle$ die von der symmetrischen, refl. Relation  $\sim^l$  erzeugte Äq'relation ist. Die Homotopie heißt (sehr) gut, wenn der Zylinder  $X \times I$  es ist.

**Beob.** Sei  $X \coprod X \xrightarrow{i} C \xrightarrow{p \sim} X$  irgendein Zylinderobjekt. Faktorisiere  $i = q \circ i'$  in Kofaserung und azyklische Faserung. Dann ist auch

$$X \coprod X \stackrel{i'}{\hookrightarrow} X' \stackrel{pq \sim}{\longrightarrow} X$$

ein Zylinderobjekt, sogar ein gutes. Ebenso kann man p faktorisieren und ein ein anderes Zylinderobjekt erhalten.

**Lem.** Sei X kofasernd,  $X \coprod X \to X \times I \to X$  ein gutes Zylinderobi. Dann sind  $i_{0,1}: X \to X \coprod X \to X \times I$  azyklische Kofaserungen.

**Lem.** Sei  $h: f \simeq^l g$ . Dann:  $f \in \mathcal{W} \iff g \in \mathcal{W}$ .

**Def.** Ein **Pfadobjekt**  $X^I$  ist eine Faktorisierung

$$X \xrightarrow[\sim]{i} X^I \xrightarrow[\sim]{p} X \times X$$

des Diagonalmorph.  $\Delta: X \to X \times X$ . Das Pfadobjekt  $X^I$  heißt gut, wenn p eine Faserung und sehr gut, wenn zus. i eine Kofaserung ist.

**Def.** Eine Rechtshomotopie  $h: f \simeq^r q$  ist ein Diagramm der Form



Bem. Ein Pfadobj. in  $\mathcal{M}$  ist dasselbe wie ein Zylinderobj. in  $\mathcal{M}^{op}$ .

**Lem.** Seien  $f, q: X \to Y$  und  $e: W \to X, d: Y \to Z$ .

- $\exists h: f \simeq^l q \iff \exists h': f \simeq^{l, \text{gut}} q$ .
- Sei Y fasernd. Dann:  $\exists h : f \simeq^{l,\text{gut}} q \iff \exists h' : f \simeq^{l,\text{sehr gut}} q$
- $\exists h : f \simeq^l g \implies \exists h' : d \circ f \simeq^l d \circ g$
- $\exists h: f \simeq^{l, \text{sehr gut}} q \Longrightarrow \exists h': f \circ e \simeq^{l, \text{sehr gut}} q \circ e$
- Sei X kofasernd. Dann ist  $\simeq^l$  eine Äg'relation auf  $\operatorname{Hom}_{\mathcal{M}}(X,Y)$ .

Kor. Sei Y fasernd. Dann induziert Komposition eine Abbildung  $\pi^l(X,Y) \times \pi^l(W,X) \to \pi^l(W,Y), \quad ([g],[f]) \mapsto [g \circ f].$ 

**Prop.** Seien  $f, q: X \to Y$ .

- Sei X kofasernd. Dann:  $f \simeq^l g \implies f \simeq^r g$
- Sei Y fasernd. Dann:  $f \simeq^l q \iff f \simeq^r q$

**Notation.** Wenn X kofasernd und Y fasernd ist, schreibt man

$$\pi(X,Y):=\pi^l(X,Y)=\pi^r(X,Y).$$

**Thm.** Sei X kofasernd. Sei  $p: Z \xrightarrow{\sim} Y$  eine azyklische Faserung. Dann ist  $p_*: \pi^l(X,Z) \to \pi^l(X,Y)$ ,  $[f] \mapsto [p \circ f]$  eine Bijektion.

Thm (Whitehead).

Für einen Morphismus  $f: X \to Y$  zw. bifasernden Objekten gilt

$$\begin{split} f \in \mathcal{W} &\iff f \text{ ist eine Homotopieäquivalenz} \\ &: \iff \exists \; g: Y \to X \; : \; g \circ f \simeq \operatorname{id}_X \, \land f \circ g \simeq \operatorname{id}_Y \, . \end{split}$$

**Lem.** Sei  $f: X \to Y$ . Seien RX und RY fixierte fasernde Approx. an X bzw. Y. Dann hängt  $Rf: RX \to RY$  bis auf Rechts- und auch Linkshomotopie nur von der Rechtshomotopieklasse von  $r \circ f$  ab.

**Achtung.** I. A. ist  $f \mapsto R(f)$  nicht funktoriell.

# Die Homotopiekategorie einer Modellkategorie

**Def.** Sei  $\mathcal{C}$  ein Kategorie,  $S \subset \operatorname{Mor}(\mathcal{C})$  eine Klasse von Morphismen. Die Lokalisierung  $C[S^{-1}]$  von C ist eine Kategorie, die folgende 2-universelle Eigenschaft erfüllt:

- $\gamma: \mathcal{C} \to \mathcal{C}[S^{-1}]$  schickt Morphismen aus S aus Isos.
- Für iede Kategorie  $\mathcal{D}$  ist  $\gamma^* : [\mathcal{C}[S^{-1}], \mathcal{D}] \to [\mathcal{C}, \mathcal{D}]_{S \mapsto \mathrm{Isos}}$  eine Kategorienäquivalenz.

Bem. Die Homologische-Algebra-Zusammenfassung behandelt Lokalisierung von Kategorien.

**Def.** Die Homotopiekategorie Ho $\mathcal{M}$  einer Modellkategorie  $\mathcal{M}$  ist die Lokalisierung von  $\mathcal{M}$  an der Klasse der schwachen Äquivalenzen.

Konstruktion. Ganz explizit:

$$\mathrm{Ob}(\mathrm{Ho}\,\mathcal{M}) \coloneqq \mathrm{Ob}(\mathcal{M})$$
 $\mathrm{Hom}_{\mathrm{Ho}\,\mathcal{M}}(X,Y) \coloneqq \pi(RQX,RQY)$ 

Nach einem früheren Lemma ist die Komposition  $([f], [g]) \mapsto [f \circ g]$ wohldefiniert. Der Funktor  $\gamma: \mathcal{M} \to \operatorname{Ho} \mathcal{M}$  ist gegeben durch

$$X \mapsto X, \quad f \mapsto [RQf].$$

**Lem.** Sei  $f: X \to Y$  in  $\mathcal{M}$ . Dann gilt  $f \in \mathcal{W} \Leftrightarrow Qf \in \mathcal{W} \Leftrightarrow RQf \in \mathcal{W}$ .

**Lem.**  $\gamma$  wie definiert ist ein Funktor.

**Lem.**  $f \in \mathcal{W} \iff \gamma(f)$  ist ein Iso.

**Lem.** Sei X kofasernd und Y fasernd. Dann ist die Abbildung

$$\pi(X,Y) \to \operatorname{Hom}_{\operatorname{Ho} \mathcal{M}}(X,Y), \quad [f] \mapsto [RQf]$$

eine Bijektion.

**Lem.** Ist  $F: \mathcal{M} \to \mathcal{C}$  ein Funktor, der schwache Äq. auf Isos schickt, dann identifiziert F links- bzw. rechtshomotope Morphismen.

**Lem.** Jeder Morphismus in Ho $\mathcal{M}$  ist Komposition von Morphismen der Form  $\gamma(f)$ ,  $f \in \text{Mor}(\mathcal{M})$  und der Form  $\gamma(f)^{-1}$ ,  $f \in \mathcal{W}$ .

Lem. Obige Konstruktion erfüllt die geforderte univ. Eigenschaft.

**Lem.** Sei  $\mathcal{M}_c \subset \mathcal{M}$  die volle Unterkategorie der kofasernden Objekte und  $F: \mathcal{M}_c \to \mathcal{C}$  ein Funktor, der azvklische Kofaserungen auf Isos schickt. Dann identifiziert F rechtshomotope Morphismen.

**Thm.** Ein Morphismus  $p: Z \to Y$  zw. fasernden Objekten ist genau dann eine schwache Äquivalenz, wenn  $p_*: \pi(X,Z) \to \pi(X,Y)$ bijektiv ist für alle kofasernden Objekte  $X \in \mathcal{M}$ .

**Beob.** Sei X kofasernd und Y fasernd. Dann ist  $\operatorname{Hom}_{\operatorname{Ho}(\mathcal{M})}(X,Y) = \operatorname{Hom}_{\mathcal{M}}(X,Y)/\sim.$ 

**Def.** Eine Klasse  $W \subseteq Mor(\mathcal{C})$  besitzt die **2-aus-6-Eigenschaft**, wenn für alle Folgen von Morphismen

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} K \in \mathcal{C}$$

gilt: Wenn  $v \circ u$  und  $w \circ v$  aus W sind, so auch u, v, w und  $w \circ v \circ u$ .

Beob. Die Klasse der Isomor, besitzt die 2-aus-6-Eigenschaft.

Kor. Die Klasse der schwache Äguivalenzen in einer Modellkategorie besitzt die 2-aus-6-Eigenschaft.

# Klassen von Modellkategorien

# Lokal präsentierbare Kategorien

Motto. Eine lokal präsentierare Kategorie ist eine große Kategorie, welche erzeugt wird von kleinen Objekten unter kleinen Kolimiten.

**Def.** Eine  $\infty$ -große Kardinalzahl  $\kappa$  heißt **regulär**, wenn die Vereinigung von weniger als  $\kappa$  vielen Mengen, die alle weniger als  $\kappa$ -viele Elem. enthalten, selbst weniger als  $\kappa$ -viele Elemente enthält.

Bem. Zu jeder Kardinalzahl  $\lambda$  existiert ein reguläres  $\kappa$  mit  $\lambda \leq \kappa$ .

**Def.** Sei  $\kappa$  eine Kardinalzahl. Eine Kategorie heißt  $\kappa$ -klein, falls sie nur  $\kappa$ -viele Morphismen besitzt.

Bem. Sei  $\kappa$  regulär. Dann ist eine Kat. bereits dann  $\kappa$ -klein, falls sie nur  $\kappa$ -viele Objekte besitzt und alle Hom-Mengen  $\kappa$ -klein sind.

**Def.** Eine Kategorie heißt  $\kappa$ -filtriert, wobei  $\kappa$  eine reguläre Kardinalzahl ist, wenn iedes  $\alpha$ -kleine Diagramm in der Kategorie einen Kokegel besitzt, wobei  $\alpha < \kappa$ .

**Def.** Eine teilweise geordnete Menge  $(I, \leq)$  heißt  $\alpha$ -gerichtet, falls die zugehörige Kategorie  $\alpha$ -filtriert ist, d. h. jeweils weniger als  $\alpha$ -viele Elemente haben eine obere Schranke.

Bem. Sei  $\lambda \ge \kappa$ . Dann ist jede  $\lambda$ -filtrierte Kategorie auch  $\kappa$ -filtriert.

**Def.** Ein Objekt X einer Kat. C heißt  $\kappa$ -kompakt oder  $\alpha$ -klein, wenn  $\operatorname{Hom}(X, -) : \mathcal{C} \to \mathbf{Set}$  mit  $\kappa$ -filtrierten Kolimiten vertauscht:

$$\operatorname{colim}_i \operatorname{Hom}_{\mathcal{C}}(X, T_i) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(X, \operatorname{colim}_i T_i)$$

für alle  $\kappa$ -filtrierte Diagramme  $(T_i)_{i \in \mathcal{I}}$ .

**Def.** Ein Objekt heißt genau dann klein, wenn es  $\kappa$ -kompakt ist für irgendeine reguläre Kardinalzahl  $\kappa$ .

**Bspe.** • Jede endliche Menge ist  $\aleph_0$ -kompakt in **Set**.

- Jeder endlich-dim. VR ist  $\aleph_0$ -kompakt in  $\mathbf{Vect}(\mathbb{R})$ .
- Jeder endlich-präsentierte Modul ist  $\aleph_0$ -kompakt in  $\mathbf{Mod}(R)$ .
- Unendliche Mengen sind nicht  $\aleph_0$ -kompakt in **Set**.
- Jeder nicht diskrete topologische Raum ist nicht  $\aleph_0$ -kompakt.
- Set ist lokal  $\aleph_0$ -präsentierbar mit  $S = {\emptyset}$ .
- $\mathbf{Mod}(R)$  ist lokal  $\aleph_0$ -präsentierbar mit  $S = \{R^n / \operatorname{im}(A) \mid n \geqslant 0, A \in R^{n \times m}, m \geqslant 0\}$

**Def.** Eine lokal  $\kappa$ -präsentierbare Kategorie ist eine lokal kleine und kovollständige Kategorie, sodass eine Menge  $S \subseteq \mathrm{Ob}(\mathcal{C})$  von  $\kappa$ -kompakten Objekten existiert, sodass jedes Objekt aus  $\mathcal{C}$  kleiner Kolimes von Objekten aus S ist.

Def. Eine Kategorie heißt genau dann lokal präsentierbar, wenn sie lokal  $\kappa$ -präsentierbar für eine reguläre Kardinalzahl  $\kappa$  ist.

**Lem.** Ist  $\mathcal{C}$  lokal präsentierbar, so auch  $\mathcal{C}/X$  mit  $X \in \mathrm{Ob}(X)$ .

Bspe. • sSet ist lokal präsentierbar.

• Sei  $\mathcal{C}$  klein. Dann ist  $\mathbf{PSh}(\mathcal{C}) = [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$  lokal präsentierbar.

• FinSet ist nicht lokal präsentierbar (weil nicht kovollständig)

Fun Fact. Sei  $\mathcal{C}$  lokal präsentierbar. Wenn auch  $\mathcal{C}^{op}$  lokal präsentierbar ist, dann ist  $\mathcal{C}$  die zu einer Quasiordnung gehörige Kategorie!

**Lem.** Sei  $X: \mathcal{I} \times \mathcal{I} \to \mathbf{Set}$  ein Funktor, wobei  $\mathcal{I} \alpha$ -filtriert und  $\mathcal{I}$  $\alpha$ -klein. Dann ist der kanonische Isomorphismus  $\operatorname{colim}_{i} \lim X(i,j) \to \lim \operatorname{colim}_{i} X(i,j)$  eine Bijektion.

**Bsp.**  $\alpha$ -kleine Kolimiten  $\alpha$ -kompakter Obj. sind wieder  $\alpha$ -kompakt.

# Kombinatorische Modellkategorien

Lem (Kleines-Objekt-Argument).

Sei  $\mathcal{C}$  lokal präsentierbar,  $\mathcal{I} \subset \operatorname{Mor}(\mathcal{C})$  eine Menge,  $\operatorname{Cell}(\mathcal{I})$  die Unterkat. der relativen  $\mathcal{I}$ -Zellenkomplexe und  $Cof(\mathcal{I})$  die Unterkat. der Retrakte von Cell( $\mathcal{I}$ ). Dann ist (Cof( $\mathcal{I}$ ),  $\mathcal{I}^{\boxtimes}$ ) ein SFS.

**Def.** • Eine Modellkategorie  $(\mathcal{W}, \mathcal{C}, \mathcal{F})$  heißt kofasernd erzeugt, wenn  $Mengen \mathcal{I}, \mathcal{J} \subset Mor(\mathcal{M})$  mit  $\mathcal{C} = Cof(\mathcal{I})$  und  $\mathcal{C} \cap \mathcal{W} = \operatorname{Cof}(\mathcal{J})$  existieren.

• Lokal präsentierbare und kofasernd erzeugte Modellkategorien heißen kombinatorisch.

Sprechweise. Die Kof. in I heißen erzeugende Kofaserungen, die in  $\mathcal{J}$  azyklische erzeugende Kofaserungen.

**Satz.** Sei  $\mathcal{M}$  eine lokal präsentierbare Kategorie. Sei  $\mathcal{W} \subseteq \operatorname{Mor}(\mathcal{M})$ eine Unterkat. schw. Äquivalenzen. Seien  $\mathcal{I}, \mathcal{J} \subseteq \operatorname{Mor}(\mathcal{M})$  Mengen. Dann sind  $\mathcal{I}$  und  $\mathcal{J}$  genau dann erzeugende (azyklische) Kofaserungen einer Modellstruktur auf  $\mathcal{M}$ , falls

•  $\operatorname{Cell}(\mathcal{J}) \subseteq \mathcal{W}$  (Azyklizität) •  $\mathcal{I}^{\boxtimes} = \mathcal{J}^{\boxtimes} \cap \mathcal{W}$  (Kompatibilität) auch der ind. Mor.  $A \cup_C B \to A' \cup_{C'} B'$  eine schwache Äq. ist.

### Eigentliche Modellkategorien

**Def.** Eine Modellkategorie  $\mathcal{M}$  heißt linkseigentlich, falls für alle Pushouts der Form

$$\begin{array}{ccc}
A & \xrightarrow{\sim} & B \\
\downarrow & & \downarrow \\
X & \xrightarrow{g} & Y
\end{array}$$

auch der Morphismus  $q: X \to Y$  eine schwache Äquivalenz ist.  $\mathcal{M}$  heißt rechtseigentlich, falls  $\mathcal{M}^{\mathrm{op}}$  linkseigentlich ist, d. h. Pullbacks schwacher Äquivalenzen längs Faserungen wieder schwache Äquivalenzen sind.

Bsp. Eine Modellkategorie, in der jedes Objekt kofasernd ist, ist linkseigentlich.

**Def.**  $\mathcal{M}$  heißt eigentlich, falls  $\mathcal{M}$  links- und rechtseigentlich ist.

Prop. In jeder Modellkategorie ist der Pushout einer schwachen Äquivalenz zwischen kofasernden Objekten längs Kofaserungen wieder eine schache Äquivalenz.

Bem. Gute Homotopien kann man längs Kofaserungen erweitern:

$$\begin{array}{ccc}
A & \xrightarrow{H} & Y^I \\
\downarrow^i & \xrightarrow{\overline{h}} & \sim \downarrow^{p_0} \\
X & \xrightarrow{f} & Y
\end{array}$$

**Prop.** Eine Modellkategorie  $\mathcal{M}$  ist genau dann links-eigentlich, wenn für alle Diagramme der Form

$$A \xleftarrow{i} C \xrightarrow{k} B$$

$$\sim \downarrow f \qquad \searrow \downarrow g \qquad \sim \downarrow h$$

$$A \xleftarrow{j} C \xrightarrow{l} B$$

# Quillen-Adjunktionen

Motto. Wir wollen Modellstrukturen und -kategorien vergleichen.

**Def.** Sei  $\mathcal{M}$  eine Modellkategorie,  $\mathcal{H}$  eine beliebige Kategorie. Ein Funktor  $F: \mathcal{M} \to \mathcal{H}$  heißt **homotopisch**, falls F die schwachen Äquivalenzen in  $\mathcal{M}$  auf Isomorphismen in  $\mathcal{H}$  abbildet.

Bem. Homotopische Funktoren faktorisieren über  $\mathcal{M}[\mathcal{W}^{-1}]$ .

**Bsp.** Sei  $F: \mathcal{M} \to \mathcal{N}$  ein Funktor zw. Modellkategorien, der schwache Äquivalenzen erhält. Dann ist  $\delta \circ F: \mathcal{M} \to \operatorname{Ho}(\mathcal{N})$  homotopisch, wobei  $\delta: \mathcal{N} \to \operatorname{Ho}(\mathcal{N})$  die Lokalisierung ist.

Bem. Solch ein Funktor  $F: \mathcal{M} \to \mathcal{N}$  induziert einen Funktor  $\text{Ho}(M) \to \text{Ho}(\mathcal{N})$ .

**Def.** Ein linksabgeleiteter Funktor eine Funktors  $F: \mathcal{M} \to \mathcal{H}$  ist ein Funktor  $\mathbb{L}F: \operatorname{Ho}(\mathcal{M}) \to \mathcal{H}$  zusammen mit einer natürlichen Transformation  $\mu: \mathbb{L}F \circ \gamma \Rightarrow F$ , sodass für alle weiteren Funktoren  $G: \operatorname{Ho}(\mathcal{M}) \to \mathcal{H}$  und nat. Transformationen  $\xi: G \circ \gamma \Rightarrow F$  genau eine natürliche Transformation  $\nu: G \Rightarrow \mathbb{L}F$  existiert mit  $\xi = \mu \circ \nu$ , d. h.  $\operatorname{Nat}(G, \mathbb{L}F) \cong \operatorname{Nat}(G \circ \gamma, F)$  ist für alle G eine Bijektion, d. h. eine Linksableitung von F ist nichts anderes als eine Rechts-Kan-Erweiterung von F längs  $\gamma$ .

$$\mathcal{M} \xrightarrow{F} \mathcal{F}$$

$$\downarrow^{\gamma} \stackrel{\mathbb{L}F}{\longrightarrow} \mathcal{F}$$

$$Ho(\mathcal{M})$$

Analog ist eine Rechtsableitung  $\mathbb{R}F$  von F eine Linkskanerweiterung von F längs  $\gamma: \mathcal{M} \to \mathrm{Ho}(\mathcal{M})$ .

**Satz.** Sei  $F: \mathcal{M} \to \mathcal{H}$  ein Funktor, der azyklische Kofaserungen zwischen kof. Obj. auf Isomorphismen abbildet. Dann existiert  $\mathbb{L}F$  und  $\mu_X: \mathbb{L}F(X) \to F(X)$  ist ein Iso für alle kofasernden X.

Konstruktion. Sei  $h\mathcal{M}_c$  die volle Unterkategorie der kof. Objekte von  $\mathcal{M}$  modulo Rechts-Homotopie. Betrachte die Komposition

$$\mathcal{M} \xrightarrow{Q} h \mathcal{M}_c \xrightarrow{F_*} \mathcal{H}.$$

Dabei ist Q der kofasernde Ersatz und  $F_*$  wird induziert von F, da F homotope Morphismen identifiziert. Nach Ken Brown bildet die Komposition schwache Äquivalenzen auf Isos ab und induziert daher den gesuchten Funktor  $\mathbb{L}F: \operatorname{Ho}(\mathcal{M}) \to \mathcal{H}$  mit  $\mathbb{L}F \circ \gamma = F_* \circ Q$ . Definiere  $\mu: \mathbb{L}F \circ \gamma \to F$  durch  $\mu_X := F(q:QX \to X)$  für  $X \in \operatorname{Ob}(\mathcal{M})$ . Falls X selbst kofasernd ist, so ist q eine schwache Äquivalenz zw. kofasernden Objekten und somit  $\mu_X = F(q)$  ein Isomorphismus.

**Def.** Sei  $F: \mathcal{M} \to \mathcal{N}$  ein Funktor zwischen Modellkategorien. Eine **totale Linksableitung**  $\mathbb{L}F$  ist ein Funktor  $\mathbb{L}F: \text{Ho}(\mathcal{M}) \to \text{Ho}(\mathcal{N})$ , sodass  $\mathbb{L}F$  die Linksableitung von  $\delta \circ F$  ist:

$$\begin{array}{ccc} \mathcal{M} & \xrightarrow{F} & \mathcal{N} \\ \downarrow^{\gamma} & & \downarrow^{\delta} \\ \text{Ho}(\mathcal{M}) & \xrightarrow{\mathbb{L}F} & \text{Ho}(\mathcal{N}) \end{array}$$

Ein Funktor  $F: \mathcal{M} \to \mathcal{N}$  bilde azyklische Kofaserungen zwischen kofasernden Objekten auf schache Äquivalenzen ab. Dann existiert seine totale Linksableitung  $\mathbb{L}F: \mathrm{Ho}(\mathcal{M}) \to \mathrm{Ho}(\mathcal{N})$ .

**Def.** Eine Adjunktion  $F:\mathcal{M}\rightleftarrows\mathcal{N}:U$  von Modellkategorien heißt **Quillen-Adjunktion**, falls eine der folgenden äquivalenten Bedingungen erfüllt ist:

- F erhält Kofaserungen und U erhält Faserungen,
- $\bullet\,$  Ferhält Kofaserungen und azyklische Kofaserungen,
- U erhält Faserungen und azyklische Faserungen,
- $\bullet\,$  Ferhält azyklische Kofaserungen und Uazyklische Faserungen.

Bem. Die Äquivalenz folgt aus  $Fi \boxtimes p \iff i \boxtimes Up$ .

**Def.** Eine Quillen-Adj. (F, U) heißt Quillen-Äquivalenz, falls  $\forall X \in \mathcal{M}_c, Y \in \mathcal{N}_f : (FX \to Y) \in \mathcal{W} \iff (X \to UY) \in \mathcal{W}.$ 

**Satz.** Sei (F,U) eine Quillenadjunktion. Dann existieren  $\mathbb{L}F$ ,  $\mathbb{R}U$  und bilden eine Adjunktion  $\mathbb{L}F$ :  $\mathrm{Ho}(\mathcal{M}) \rightleftarrows \mathrm{Ho}(\mathcal{N}) : \mathbb{R}U$ . Ist (F,U) sogar eine Quillenäquivalenz, so ist  $(\mathbb{L}F,\mathbb{R}U)$  eine Adjunktion aus Äquivalenzen.

Kor. Quillenäq. Modellkat'n haben äquivalente Homotopiekat'n.

**Prop.** Für eine Quillenadjunktion  $F: \mathcal{M} \rightleftharpoons \mathcal{N}: U$  sind äquivalent:

- $\bullet$  (F, U) ist eine Quillenäquivalenz
- $(\mathbb{L}F, \mathbb{R}U)$  ist eine Adjunktion von Äquivalenzen
- F reflektiert schw. Äq'n zw. kof. Objekten und die Komposition  $FQUY \xrightarrow{F(q_{UY})} FUY \xrightarrow{\epsilon} Y$  ist eine schw. Äq. für alle fas. Y.
- U reflektiert schw. Äq'n zw. fas. Objekten und die Komposition  $X \xrightarrow{\eta} UFX \xrightarrow{U(r_{FX})} URFX$  ist eine schw. Äq. für alle kof. X.

Falls U schw. Äg'n in  $\mathcal{N}$  erzeugt, dann ist auch äguivalent:

- $\eta: X \to UFX$  ist eine schwache Äq. für alle kofasernden X.
- Falls F schw. Äq'n in  $\mathcal M$  erzeugt, dann ist auch äquivalent:
- $\eta: X \to UFX$  ist eine schwache Äg, für alle kofasernden X.

**Def.** Sei  $f: A \to B$  ein Mor. in der Modellkat.  $\mathcal{M}$ . Dieser induziert Funktoren  $f^*: B/\mathcal{M} \to A/\mathcal{M}$  und  $f_*: \mathcal{M}/A \to \mathcal{M}/B$ . Der Funktor  $f^*$  besitzt einen Linksadj.  $f_!: A/\mathcal{M} \to B/\mathcal{M}$ , der durch Pushout entlang f geg. ist, und  $f_*$  besitzt einen Rechtsadj.  $f^!: \mathcal{M}/B \to \mathcal{M}/A$ .

**Prop.**  $\mathcal{M}$  ist genau dann linkseigentlich, wenn  $(f_!, f^*)$  eine Quillenadjunktion ist und genau dann rechtseigentlich, wenn  $(f_*, f^!)$  eine Quillenadjunktion ist für alle schwachen Äquivalenzen f.

**Satz.** Sei  $F:\mathcal{M} 
ightharpoonup \mathcal{N}:U$  eine Adj. von einer komb. Modellkat.  $\mathcal{M}$  mit erz. Kofaserungen I und erz. azyklischen Kofaserungen J und einer lokal präsentierbaren Kategorie  $\mathcal{N}$ . Der Funktor U erzeuge schwache Äquivalenzen in  $\mathcal{N}$  (d. h. wir nennen  $f \in \operatorname{Mor}(\mathcal{N})$  eine schwache Äquivalenz, falls U(f) eine schwache Äquivalenz ist). Dann wird  $\mathcal{N}$  eine Modellkategorie mit erzeugenden Kofaserungen FI und erzeugenden azyklischen Kofaserungen FJ, falls gilt: Jeder relative FJ-Zellenkomplex ist eine schwache Äquivalenz (d. h.  $U(\operatorname{Cell}(FJ)) \subset \mathcal{W}_{\mathcal{M}}$ ). Bezüglich dieser Modellstruktur auf  $\mathcal{N}$  wird (F,U) zu einer Quillenadjunktion.

# Scheibenkategorien als Modellkategorien

**Lem.** Sei  $\mathcal{M}$  eine Modellkategorie,  $X \in \mathrm{Ob}(\mathcal{M})$  ein Objekt. Dann sind die Scheibenkategorien  $X/\mathcal{M}$  und  $\mathcal{M}/X$  Modellkat'n, wobei die Modellstruktur vom Vergissfunktor  $U: X/\mathcal{M} \to \mathcal{M}$  bzw.  $U: \mathcal{M}/X \to \mathcal{M}$  erzeugt wird, d. h. ein Mor. f ist genau dann eine Faserung/Kofaserung/schwache Äquivalenz, wenn U(f) es ist.

**Lem.** • Ist  $\mathcal{M}$  links- oder rechtseigentlich, so auch  $\mathcal{M}/X$  und  $X/\mathcal{M}$ 

- Ist  $\mathcal{M}$  eigentlich, so auch  $\mathcal{M}/X$  und  $X/\mathcal{M}$
- Ist  $\mathcal{M}$  kofasernd erzeugt, so auch  $\mathcal{M}/X$
- Ist  $\mathcal{M}$  kombinatorisch, so auch  $\mathcal{M}/X$

# Monoidale Modellkategorien

**Def.** Eine monoidale Kategorie ist eine Kategorie  $\mathcal C$  zusammen mit einem Bifunktor  $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ , einem Objekt  $\mathbb{1} \in \mathrm{Ob}(\mathcal{C})$ , natürlichen Isomorphismen  $\alpha: (-\otimes -) \circ - \Rightarrow -\otimes (-\circ -), \lambda: \mathbb{1} \otimes - \Rightarrow -\otimes (-\circ -)$ und  $\rho: -\otimes \mathbb{1} \Rightarrow -$ , sodass die Kohärenzdiagramme aus der Definition einer schwachen 2-Kategorie kommutieren.

Bem. Eine monoidale Kategorie ist das gleiche wie eine 2-Kategorie mit nur einem Objekt.

**Bspe.** Monoidale Kategorien sind: • (Set,  $\times$ , { $\heartsuit$ }) •  $(R\text{-}\mathbf{Mod}\text{-}R, \otimes_R, R)$  wobei R ein Ring mit Eins ist

Def. Eine symm. monoidale Kategorie ist eine monoidale Kat. zusammen mit einem nat. Isomorphismus  $\gamma: X \otimes Y \to Y \otimes X$ . sodass die geeigneten Kohärenzdiagramme kommutieren. Es reicht aus, zu zeigen, dass folgende Diagramme kommutierten:

$$(Y \otimes X) \otimes Z \xleftarrow{\gamma \otimes \operatorname{id}_{Z}} (X \otimes Y) \otimes Z \xrightarrow{\alpha} X \otimes (Y \otimes Z)$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\gamma}$$

$$Y \otimes (X \otimes Z) \xrightarrow{\operatorname{id}_{Y} \otimes \gamma} Y \otimes (Z \otimes X) \xleftarrow{\alpha} (Y \otimes Z) \otimes X$$

$$\mathbb{1} \otimes X \xrightarrow{\gamma} X \otimes \mathbb{1}$$

Def. Ein monoidaler Funktor zwischen (symm.) monoidalen Kategorien  $\mathcal{C}$  und  $\mathcal{D}$  ist ein Funktor  $F:\mathcal{C}\to\mathcal{D}$  zusammen mit natürlichen Isomorphismen  $F - \otimes_{\mathcal{D}} F - \Rightarrow F(- \otimes_{\mathcal{C}} -)$  und  $F \mathbb{1}_{\mathcal{C}} \Rightarrow \mathbb{1}_{\mathcal{D}}$ , welche verträglich mit  $\alpha$ ,  $\lambda$ ,  $\rho$  (und eventuell  $\gamma$ ) sind.

**Bsp. Set**  $\rightarrow R$ -**Mod**,  $X \mapsto$  freier R-Modul mit Basis X

**Def.** Seien  $F, G: \mathcal{C} \to \mathcal{D}$  monoidale Funktoren. Eine natürliche Transformation  $n: F \Rightarrow G$  heißt monoidal, wenn folgende Diagramme kommutieren:

$$FX \otimes FY \longrightarrow F(X \otimes Y)$$

$$\downarrow^{\eta_X \otimes \eta_Y} \qquad \downarrow^{\eta_{X \otimes Y}}$$

$$GX \otimes GY \longrightarrow G(X \otimes Y)$$

$$F(1) \xrightarrow{\eta_1} G(1)$$

**Def.** Sei  $\mathcal{C}$  eine monoidale Kategorie. Ein Rechts- $\mathcal{C}$ -Modul ist eine Kategorie  $\mathcal{D}$  mit einem Funktor  $\otimes : \mathcal{D} \times \mathcal{C} \to \mathcal{D}$  und ...

**Bsp.** Die Kat.  $\mathcal{D}$  besitze kleine Koprodukte. Dann wird  $\mathcal{D}$  zu einem **Set**-Modul durch  $\times = \otimes : \mathcal{D} \to \mathbf{Set} \to \mathcal{D}, (X, I) \mapsto \coprod_{i \in I} X$ 

**Def.** Sei  $\mathcal{C}$  monoidale Kategorie. Ein Funktor  $F: \mathcal{D} \to \mathcal{D}'$  zwischen  $\mathcal{C}$ -Rechts-Moduln  $\mathcal{D}$  und  $\mathcal{D}'$  heißt  $\mathcal{C}$ -Modulfunktor, falls  $F(X) \otimes I$ und  $F(X \otimes I)$  natürlich isomorph sind.

**Def.** Seien  $\mathcal{C}$ .  $\mathcal{D}$  monoidale Kat'en und  $i:\mathcal{C}\to\mathcal{D}$  ein monoidaler Funktor. Dann heißt  $(\mathcal{D}, i)$  eine  $\mathcal{C}$ -Algebra. Morphismen von C-Algebren sind kommutative Quadrate von monoidalen Funktoren.

**Def.** Eine C-Algebra  $\mathcal{D}$  heißt zentral, falls  $i(A) \otimes_{\mathcal{D}} B \cong B \otimes_{\mathcal{D}} i(A)$   $\bullet \otimes : \mathcal{M} \times \mathcal{M} \to \mathcal{M}$  ein Quillenbifunktor und natürlich für alle  $A \in Ob(\mathcal{C})$ ,  $B \in Ob(\mathcal{D})$ .

Bem. Ist die C-Algebra  $\mathcal{D}$  symmetrisch, so auch zentral.

Def. Seien C, D, E Kategorien. Eine Adjunktion in 2 Variablen oder Biadjunktion besteht aus Funktoren

$$\otimes: \mathcal{C} \times \mathcal{D} \to \mathcal{E}, \quad \operatorname{Hom}_r: \mathcal{D}^{\operatorname{op}} \times \mathcal{E} \to \mathcal{C}, \operatorname{Hom}_l: \mathcal{C}^{\operatorname{op}} \times \mathcal{E} \to \mathcal{D}$$

und natürlichen Isomorphismen

 $\operatorname{Hom}_{\mathcal{D}}(D, \operatorname{Hom}_{l}(C, E)) \cong \operatorname{Hom}_{\mathcal{E}}(C \otimes D, E) \cong \operatorname{Hom}_{\mathcal{C}}(C, \operatorname{Hom}_{r}(D, E)).$ 

**Notation.** 
$$^{C}E := \operatorname{Hom}_{l}(C, E), E^{D} := \operatorname{Hom}_{r}(D, E)$$

Bem. 
$$k \otimes i \boxtimes p \iff k \boxtimes \operatorname{Hom}_r(i,p) \iff i \boxtimes \operatorname{Hom}_l(k,p)$$

**Bsp.** Seien R, S, T drei Ringe,  $\mathcal{C} := R\text{-}\mathbf{Mod}\text{-}S$ ,  $\mathcal{D} := S\text{-}\mathbf{Mod}\text{-}T$ ,  $\mathcal{E} := R\text{-}\mathbf{Mod}\text{-}T$ . Eine Biadjunktion ist dann gegeben durch

**Def.** Eine monoidale Kategorie  $(\mathcal{C}, \otimes, \mathbb{1})$  heißt monoidal abgeschlossen, wenn ⊗ Teil einer Biadjunktion ist.

**Bspe.** • 
$$(R\text{-}\mathbf{Mod}\text{-}R, \otimes_R, R)$$
 •  $(\mathbf{Set}, \times, \{ \heartsuit \})$ 

**Def.** Sei  $\otimes : \mathcal{C} \times \mathcal{D} \to \mathcal{E}$  Teil einer Biadjunktion,  $\mathcal{C}$ ,  $\mathcal{D}$  und  $\mathcal{E}$ Modellkategorien. Dann heißt  $\otimes$  Quillen-Biadjunktion, falls für alle Kof'en  $(f: U \hookrightarrow V) \in \mathcal{C}, (g: W \hookrightarrow X) \in \mathcal{D}$  der Morphismus

$$f \square q : P(f,q) := V \otimes W \cup_{U \otimes W} U \otimes X \to V \otimes X$$

eine Kofaserung in  $\mathcal{E}$  ist, welche azyklisch ist, wenn f oder qazyklisch ist.

Lem. Die Bedingung ist äquivalent zu: Für alle Kofaserungen  $(q: W \hookrightarrow X) \in \mathcal{D}$  und Faserungen  $(p: Y \twoheadrightarrow Z) \in \mathcal{E}$  ist

$$\operatorname{Hom}_{r,\square}: \operatorname{Hom}_r(X,Y) \to \operatorname{Hom}_r(X,Z) \times_{\operatorname{Hom}_r(W,Z)} \operatorname{Hom}_r(W,Y)$$

eine Faserung und azyklisch, wenn q oder p es ist. Analog für  $Hom_l$ .

**Prop.** Sei  $\mathcal{C} \times \mathcal{D} \to \mathcal{E}$  ein Quillenbifunktor. Ist  $\mathcal{C} \in \text{Ob}(\mathcal{C})$  kofasernd. so ist  $C \otimes -: \mathcal{D} \to \mathcal{E}$  ein Quillenfunktor mit Rechtsadj.  $\operatorname{Hom}_l(C, -)$ .

Bem. Analog: Sei E fasernd. Dann ist  $\operatorname{Hom}_r(-, E) : \mathcal{D} \to \mathcal{C}^{\operatorname{op}}$  ein Quillen-Links-Adjungierter zu  $\operatorname{Hom}_{l}(-, E) : \mathcal{C}^{\operatorname{op}} \to \mathcal{D}$ .

**Lem.** Sei  $\otimes : \mathcal{C} \times \mathcal{D} \to \mathcal{E}$  eine Biadj,  $I \subseteq \operatorname{Mor}(\mathcal{C}), J \subseteq \operatorname{Mor}(\mathcal{D})$  Mengen. Dann gilt:  $\operatorname{Cof}(I) = \operatorname{Cof}(J) \subseteq \operatorname{Cof}(I = J)$  mit  $\operatorname{Cof}(K) := \square(K^{\square})$ .

**Satz.** Seien (C, I, J), (D, I', J') kombinatorische Modellkategorien. Dann ist  $\otimes : \mathcal{C} \times \mathcal{D} \to \mathcal{E}$  genau dann ein Quillenbifunktor, wenn  $I \square I'$  Kofaserungen in  $\mathcal{E}$  und  $I \square J'$ ,  $J \square I'$  jeweils azyklische Kofaserungen in  $\mathcal{E}$  sind.

Def. Eine monoidale Modellkategorie ist eine Modellkategorie  $\mathcal{M}$  mit monoidal abgeschlossener Struktur ( $\mathcal{M}, \otimes, \mathbb{I}$ ), sodass

- $Q\mathbb{1} \otimes X \to \mathbb{1} \otimes X \cong X$  und  $X \otimes Q\mathbb{1} \to X \otimes \mathbb{1} \cong X$  für alle kofasernden X jeweils schwache Äquivalenzen sind.

Bem. Die zweite Bedingung ist äquivalent zu:

 $X \cong \operatorname{Hom}_r(\mathbb{1}, X) \to \operatorname{Hom}_r(Q\mathbb{1}, X), \quad X \cong \operatorname{Hom}_l(\mathbb{1}, X) \to \operatorname{Hom}_l(Q\mathbb{1}, X)$ sind schwache Äquivalenzen für alle fasernden X.

**Beob.** Sei  $\mathcal{M}$  eine mon. Modellkat,  $(A \xrightarrow{i} X), (E \xrightarrow{p} B) \in \mathcal{M}$ . Es gilt

$$i \boxtimes p \iff (\operatorname{Hom}_{\mathcal{M}}(X, E) \to P(i, p)) \text{ ist surjektiv.}$$

**Def.** Eine Kategorie  $\mathcal{C}$  heißt kartesisch abgeschlossen, falls  $(\mathcal{C}, \times, *)$  eine abgeschlossene monoidale Kategorie ist.

**Bsp.** Sei  $\mathcal{C}$  eine bivollständige, kartesisch abgeschlossene Kategorie. Sei  $\mathcal{C}_* := */\mathcal{C}$ . Das initiale und terminale Objekt dieser Kategorie ist  $id_*$ , sie ist also punktiert. Für  $X, Y \in Ob(\mathcal{C}_*)$  definiere  $X \wedge Y \in \mathrm{Ob}(\mathcal{C})$  durch folgenden Pushout:



Für  $X \in \mathrm{Ob}(\mathcal{C})$  sei  $X_+ := X \coprod * \in \mathrm{Ob}(\mathcal{C}_*)$ . Es besteht die Adj.  $(-)_+: \mathcal{C} \rightleftarrows \mathcal{C}_*: U$ , wobei U der Vergissfunktor ist. Mit  $S^0 := *_+ = * \amalg * \text{ wird } (\mathcal{C}_*, \wedge, S^0)$  zu einer symmetrischen monoidalen Kategorie und (-)+ zu einem monoidalen Funktor. Für  $V, W \in \text{Ob}(\mathcal{C}_*)$  definiere  $\underline{\text{Hom}}_{\mathcal{C}_*}(V, W)$  als Pullback

$$\underbrace{\operatorname{Hom}_{\mathcal{C}_{*}}(V,W) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(V,W)}_{\bigoplus}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\underbrace{\operatorname{Hom}_{\mathcal{C}}(*,*) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(*,W)}_{\bigoplus}$$

Dann ist  $\underline{\operatorname{Hom}}_{\mathcal{C}_{\maltese}}(X,-)$ rechtsadjungiert zu <br/>  $- \wedge X$  für alle  $X \in \mathrm{Ob}(\mathcal{C}_*)$  und damit  $\mathcal{C}_*$  soagar monoidal abgeschlossen. Trage  $\mathcal{C}$  zusätzlich eine Modellstruktur, sodass  $\times : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$  ein Quillenfunktor und \* kofasernd ist (also  $(C, \times, *)$  eine monoidale Modellkategorie ist). Dann erzeugt  $U: \mathcal{C}_* \to \mathcal{C}$  eine symmetrische monoidale Modellstruktur auf  $(\mathcal{C}_*, \wedge, S^0)$  und  $(-)_+ \dashv U$  ist eine Quillenadjunktion, sogar eine monoidale:

**Def.** Seien C, D monoidale Modellkategorien. Eine Quillen-Adjunktion  $F: \mathcal{C} \rightleftarrows \mathcal{D}: U$  heißt monoidal, falls

- F monoidal ist und
- $FQ\mathbb{1}_{\mathcal{C}} \xrightarrow{Fq} F\mathbb{1}_{\mathcal{C}}$  eine schwache Äquivalenz ist.

**Def.** Sei  $\mathcal{C}$  eine mon. Modellkat. Eine  $\mathcal{C}$ -Modellkategorie ist eine Modellkat.  $\mathcal{D}$  mit Struktur  $\otimes : \mathcal{D} \times \mathcal{C} \to \mathcal{C}$  als  $\mathcal{C}$ -Rechtsmodul, sodass

- $\otimes : \mathcal{D} \times \mathcal{C} \to \mathcal{C}$  ist eine Quillenadjunktion,
- $X \otimes Q1 \xrightarrow{\operatorname{id}_X \otimes q} X \otimes 1$  ist eine schw. Äq. für alle kof.  $X \in \operatorname{Ob}(\mathcal{D})$ .

Bem. Wenn  $\mathcal{C}$  punktiert ist, so auch  $\mathcal{D}$ .

**Prop.** Sei  $(\mathcal{C}, \times, *)$  eine monoidale Modellkategorie und \* kofasernd. Ist dann  $\mathcal{D}$  eine  $\mathcal{C}$ -Modellkategorie, so ist  $\mathcal{D}_*$  eine  $\mathcal{C}_*$ -Modellkategorie. Damit gibt es eine Äquivalenz

 $\{\text{punktierte } \mathcal{C}\text{-Modellkategorie}\}\longleftrightarrow \{\mathcal{C}_{*}\text{-Modellkategorien}\}.$ 

**Prop.** Seien  $\mathcal{C}$ ,  $\mathcal{D}$ ,  $\mathcal{E}$  Modellkategorien und  $\otimes : \mathcal{C} \times \mathcal{D} \to \mathcal{E}$  eine Quillen-Biadjunktion. Dann ist  $\otimes^{\mathbb{L}} : \operatorname{Ho}(\mathcal{C}) \times \operatorname{Ho}(\mathcal{D}) \to \operatorname{Ho}(\mathcal{E})$  eine Biadjunktion mit Adjungierten  $\mathbb{R} \operatorname{Hom}_r$  und  $\mathbb{R} \operatorname{Hom}_l$ .

**Satz.** Ist  $\mathcal{C}$  eine (symm.) monoidale Modellkategorie, so ist  $Ho(\mathcal{C})$  eine monoidal abgeschlossene Kategorie.

# Simpliziale Mengen

Ref. Die Homologische-Algebra-Zusammenfassung enthält eine Einführung in simpliziale Mengen.

**Bspe.** •  $I := \Delta[1]$  heißt Intervall,

- $\Delta^{i}[n] := \{x \in \Delta[n] \mid i \notin \operatorname{im}(x)\} \subset \Delta[n] \text{ heißt } i\text{-Seite},$
- $S^n := \bigcup_{i=0}^n \Delta^i[n]$  heißt n-Sphäre.
- $\Lambda^{i}[n] := \bigcup_{i \neq i} \Delta^{j}[n]$  heißt *i*-Horn.

**Def.** Ein Morphismus  $p: E \to X$  simplizialer Mengen heißt Kan-Faserung, falls  $\{\Lambda^i[n] \hookrightarrow \Delta[n] \mid 0 \le i \le n\} \boxtimes p$ 

**Def.** Eine simpl. Menge heißt Kan-Komplex, falls  $X \to * := \Delta[0]$  eine Kan-Faserung ist.

**Def.** • Ein inneres Horn ist ein  $\Lambda^i[n] \subset \Delta[n]$  mit 0 < i < n.

• Eine simpl. Menge X heißt innerer Kan-Komplex, falls

$$\{\Lambda^i[n] \hookrightarrow \Delta[n] \mid 0 < i < n\} \boxtimes (X \to *).$$

Bem.Es ist Xalso genau dann ein (innerer) Kan-Komplex, wenn man (innere) Hörner in X füllen kann.

**Def.** Seien  $X \in \mathbf{sSet}$ ,  $x, y \in X_0$ , d. h.  $x, y : \Delta[0] \to X_0$ . Setze

$$x \sim y :\iff \exists \alpha : I \to X : \alpha(0) = x \land \alpha(1) = y.$$

mit  $\alpha(\epsilon) := \alpha \circ (\Lambda^{\epsilon}[1] \hookrightarrow I)$  für  $\epsilon = 0, 1$ . Setze  $\pi_0(X) := X/\sim$ .

**Prop.** Ist X ein Kan-Komplex, so ist  $\sim$  eine Äg'relation.

**Def.** Eine anodyne Erweiterung ist ein Morphismus  $i:A\to B$  von simpl. Mengen, welcher die LHHE bzgl. aller Kan-Faserungen hat, d. h. die Unterkategorie der anodynen Erweiterungen ist die Saturierung von  $\{\Lambda^i[n]\to\Delta[n]\}$ , also  $\mathrm{Cof}(\{\Lambda^i[n]\to\Delta[n]\})$ .

**Satz.** Die Monomorphismen in **sSet** sind genau die Retrakte von Zellkomplexen über  $\{\partial \Delta[n] \hookrightarrow \Delta[n]\}$ .

**Def.** Eine **triviale Faserung** ist ein Mor. in **sSet**, welcher die RHHE bzgl.  $\{\partial \Delta[n] \hookrightarrow \Delta[n]\}$ , d. h. bzgl. allen Monomor. hat.

Satz. (anodyne Erweiterungen, Kan-Faserungen) und (Monomorphismen, triviale Faserungen) sind jeweils schwache Faktorisierungssysteme von **sSet**.

**Satz** (Gabriel-Zisman). Sei  $k: Y \to Z$  ein Monomorphismus. Ist dann  $i: A \to B$  anodyn, so ist  $i \circ k: A \times Z \cup_{A \times Y} B \times Y \to B \times Z$  (mit  $\otimes := \times$ ) ebenfalls anodyn.

Bem. Damit wird folgen, dass **sSet** eine kartesisch abgeschlossene Modellkategorie wird (d. h.  $\times$  ist ein Quillen-Bifunktor).

**Def.** Seien X, Y simpliziale Mengen. Dann ist der **Funktionenkomplex**  $Y^X \in \text{Ob}(\mathbf{sSet})$  definiert durch

$$(Y^X)_n := \operatorname{Hom}_{\mathbf{sSet}}(\Delta[n] \times X, Y)$$

Bem. Es gilt  $\text{Hom}(Z, Y^X) \cong \text{Hom}(Z \times X, Y)$ .

**Kor.** Ist Y ein Kan-Komplex, so ist  $Y^X$  wieder ein Kan-Komplex.

**Def.** Zwei Morphismen  $f, g: X \to Y$  zwischen simpl. Mengen X, Y heißen **homotop**, falls  $f \sim g$  in  $Y^X$ , d. h. die Menge der Homotopieklassen von Morphismen ist  $\pi_0(Y^X)$ .

Kor (Homotopieerweiterungseigenschaft, HEE). Sei  $p: E \to X$  eine Kan-Faserung und  $i: Y \to Z$  ein Monomorphismus. Im kommutativen Diagramm



existiert der gestrichelte Pfeil.

**Def.** Ein Monomorphismus  $i: A \to B$  in **sSet** heißt **starker Deformationsretrakt** (SDR), falls ein  $r: B \to A$  mit  $ri = \mathrm{id}_A$  und  $[ir] = [\mathrm{id}_B] \in \pi_0(B^B \text{ in } A/\mathbf{sSet})$ , d. h. es existiert  $h: B \times I \to B$  mit  $h_0 = \mathrm{id}_B$ ,  $h_1 = ir$ ,  $h|_{A \times I} = \mathrm{id}_{A \times I}$  oder ein Zigzag solcher h's.

**Bspe.**  $\Lambda^0[1], \Lambda^1[1] \subset \Delta[1]$  sind starke Deformationsretrakte.

**Prop.** Sei  $i:A\to B$  anodyn, A,B Kan-Komplexe. Dann ist A ein SDR von B.

# Anhang: Die Ordinalzahlen

**Def.** Eine Wohlordnung auf einer Menge S ist eine Totalordnung auf S bezüglich der jede nichtleere Teilmenge  $A \subseteq S$  ein kleinstes Element besitzt. Eine wohlgeordnete Menge ist ein Tupel  $(S, \leq)$ bestehend aus einer Menge S und einer Wohlordnung  $\leq$  auf S.

Bem. Eine äquivalente Bedingung lautet: Es gibt in S keine nach rechts unendlichen absteigenden Folgen ... >  $a_i > a_{i+1} > a_{i+2} > ...$ 

Bem. Äquivalent zum Auswahlaxiom ist:

Axiom (Wohlordnungssatz). Auf jeder Menge ex. eine Wohlord.

**Def.** Zwei wohlgeordnete Mengen heißen isomorph, wenn es eine monotone Bijektion zwischen ihnen gibt.

Def. Eine Ordinalzahl ist eine Isomorphieklasse von wohlgeordneten Mengen.

Bem. Die Klasse aller Ordinalzahlen wird mit  $\mathcal{O}_n$  bezeichnet und ist eine echte Klasse, keine Menge. Sie ist selbst wohlgeordnet mittels

$$[(S, \leq_S)] \leq [(T, \leq_T)] : \iff \exists \text{ inj. monotone Abb. } (S, \leq_S) \to (T, \leq_T).$$

**Notation.** •  $0 := [\varnothing]$ , •  $n := [\{1, \ldots, n\}]$  für  $n \in \mathbb{N}$ , •  $\omega := [\mathbb{N}]$ mit der jeweils kanonischen Ordnungsrelation.

Bem. Die ersten Ordinalzahlen sind

$$0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega \cdot 2, \omega \cdot 2 + 1, \ldots, \omega \cdot 3, \ldots, \omega^{\omega}, \ldots$$

Prinzip (Transfinite Induktion).

Sei  $P: \mathcal{O}_n \to \mathbf{Prop}$  eine Aussage über Ordinalzahlen. Dann gilt:

$$(\forall \beta \in \mathcal{O}_n : (\forall \gamma < \beta : P(\gamma)) \implies P(\beta)) \implies \forall \alpha \in \mathcal{O}_n : P(\alpha)$$

Def. Arithmetik von Ordinalzahlen ist folgendermaßen definiert: Für  $\alpha = [(S, \leq_S)]$  und  $\beta = [(T, \leq_T)] \in \mathcal{O}_n$  ist

•  $\alpha + \beta := [(S \coprod T, \leq_{S \coprod T})]$ , wobei gilt:

$$\leq_{S \coprod T} |_{S \times S} := \leq_S, \quad \leq_{S \coprod T} |_{T \times T} := \leq_T, \quad S <_{S \coprod T} T.$$

•  $\alpha \cdot \beta := [(S \times T, \leq_{S \times T})]$  mit der lexikogr. Ordnung

$$(s_1, t_1) \leqslant_{S \rtimes T} (s_2, t_2) := t_1 < t_2 \lor (t_1 = t_2 \land s_1 \leqslant_S s_2)$$

•  $\alpha^{\beta} := [(\{Abb. \ f: S \to T \ \text{mit} \ f(s) = 0 \ \text{für fast alle} \ s \in S\}, \leq)] \ \text{mit}$ 

$$f < g : \iff \exists t \in T : f(t) < g(t) \land (\forall t_2 >_T t : f(t_2) = g(t_2))$$

Bem. Es gibt drei Typen von Ordinalzahlen:

- a) Die Null  $0 := [(\emptyset, \leq)] \in \mathcal{O}_n$ .
- b) Die Nachfolgerzahl  $\alpha + 1$  einer Zahl  $\alpha \in \mathcal{O}_n$ .
- c) Die Limeszahl  $\lim A := \sup A$  einer Teil*menge*  $A \subset \mathcal{O}_n$ .

Bem. Die Rechenop, können auch rekursiv definiert werden durch  $\alpha + 0 := \alpha \quad \alpha + (\beta + 1) := (\alpha + \beta) + 1 \quad \alpha + \lim A := \lim \{\alpha + \gamma \mid \gamma \in A\}$  $\alpha \cdot 0 := 0$   $\alpha \cdot (\beta + 1) := (\alpha \cdot \beta) + \alpha$   $\alpha \cdot \lim A := \lim \{\alpha \cdot \gamma \mid \gamma \in A\}$  $\alpha^0 := 1$   $\alpha^{\beta+1} := \alpha^{\beta} \cdot \alpha$  $\alpha^{\lim A} := \lim \left\{ \alpha^{\gamma} \mid \gamma \in A \right\}$ 

**Def.** Ein Fast-Halbring ist ein Tupel  $(S, +, \cdot, 0)$ , sodass (S, +, 0)ein Monoid und  $(S, \cdot)$  eine Halbgruppe ist mit

 $\bullet$   $a \cdot (b+c) = a \cdot b + a \cdot c$ ,  $\bullet$   $a \cdot 0 = 0$ .

**Lem** (Rechengeln in  $\mathcal{O}_n$ ). •  $\alpha \cdot 0 = 0 = 0 \cdot \alpha$  •  $\alpha \cdot 1 = \alpha = 1 \cdot \alpha$ 

- $\alpha^0 = 1$   $0^{\alpha} = 0$  für  $\alpha > 0$   $1^{\alpha} = 1$   $\alpha^1 = \alpha$   $\alpha^{\beta} \cdot \alpha^{\gamma} = \alpha^{\beta + \gamma}$   $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$
- $\mathcal{O}_n$  ist ein Fast-Halbring (mit einer Klasse statt Menge)
- Das andere Distributivgesetz stimmt nicht!
- Weder Addition noch Multiplikation sind kommutativ.
- Addition und Mult. erlauben das Kürzen von Elementen nur links.
- Addition, Multiplikation und Potenzieren sind in beiden Argumenten monoton, allerdings nur im zweiten strikt monoton:

$$\forall \beta < \gamma : \alpha + \beta < \alpha + \gamma, \quad \alpha \cdot \beta < \alpha \cdot \gamma \ (\alpha > 0), \quad \alpha^{\beta} < \alpha^{\gamma} \ (\alpha > 1).$$

**Lem.** Jedes  $\alpha \in \mathcal{O}_n$  kann geschrieben werden in **Cantor-NF**:

$$\alpha = \omega^{\beta_1} c_1 + \omega^{\beta_2} c_2 + \ldots + \omega^{\beta_k} c_k$$

mit  $k \in \mathbb{N}$ ,  $c_1, \ldots, c_k \in \mathbb{N}_{>0}$  und  $\beta_1 > \ldots > \beta_k \in \mathcal{O}_n$ .