

Bagging: Bootstrap Aggregating

Figure 5: The bagging approach. Several classifier are trained on bootstrap samples of the training data. Predictions on test data are obtained combining the predictions of the trained classifiers with a majority voting scheme.

- Classifiers are built in parallel
- Classifiers are trained on subsamples of the data
- Every classifier has a similar weight towards the final prediction

Boosting

Figure 6: The boosting approach. A classifier is trained on the original data (a). The weights of misclassified instances (dot size in the figure) are increased (b). A new classifier is trained on the new data set and weights are updated accordingly (c).

- Classifiers are built sequentially
- Classifiers are trained on all data
- Observations are given
 weights which reflect how difficult they are to classify.
- Each classifier's prediction has a different weight towards final decision, based on their accuracy

Image taken from Data Mining: Accuracy and Error Measures for Classification and Prediction. Galdi and Tagliaferri, 2018

Boosting

Figure 6: The boosting approach. A classifier is trained on the original data (a). The weights of misclassified instances (dot size in the figure) are increased (b). A new classifier is trained on the new data set and weights are updated accordingly (c).

- First classifier: all observations are given the same weight
- Second classifier: observations miss-classified by previous classifier have a higher weight.
- The weights are adjusted in each iteration, that is for each new classifier
- The classifiers also get a weight based on their accuracy, that weights their overall contribution to the final prediction

Image taken from Data Mining: Accuracy and Error Measures for Classification and Prediction. Galdi and Tagliaferri, 2018

AdaBoost

FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

Images taken from Elements of Statistical Learning, Hastie et al

Gradient Boosting Machines

AdaBoost
$$G(x) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m G_m(x)\right)$$

Generalized additive model

$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m),$$

- Gm(x) is each classifier
- ullet αm is its weight towards the final outcome

- $b(x,\gamma m)$ is each classifier
- For trees γ m refers to the tree splits
- βm is its weight towards the final outcome

Gradient Boosting Machines

Generalized additive model $f(x) = \sum_{m=1}^M \beta_m b(x; \gamma_m),$

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m=1 to M:
 - (a) Compute

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$$

(b) Set
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$
.

Gradient Boosting Machines

Generalized additive model
$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m),$$

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m=1 to M:
 - (a) Compute

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)). \implies = (y_i - f_{m-1}(x_i) - \beta b(x_i; \gamma))^2$$

$$= (r_{im} - \beta b(x_i; \gamma))^2,$$

(b) Set
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$
.

 At each iteration, that is, each new classifier, minimizes the difference between its predictions and the residuals of the previous classifier.

Residuals of previous classifier

$$(y_i - f_{m-1}(x_i) - \beta b(x_i; \gamma))^2$$
$$(r_{im} - \beta b(x_i; \gamma))^2,$$

THANK YOU

www.trainindata.com