Groups of small order

Compiled by John Pedersen, Dept of Mathematics, University of South Florida

Order 1 and all prime orders (1 group: 1 abelian, 0 nonabelian)

All groups of prime order p are isomorphic to C_p , the cyclic group of order p. A concrete realization of this group is Z_p , the integers under addition modulo p.

Order 4 (2 groups: 2 abelian, 0 nonabelian)

- C_4, the cyclic group of order 4
- V = C_2 x C_2 (the Klein four group) = symmetries of a rectangle. A presentation for the group is

$$\langle a, b; a^2 = b^2 = (ab)^2 = 1 \rangle$$

The Cayley table of the group is (putting c = ab):

A matrix representation is the four 2x2 matrices

$$\begin{bmatrix} 1 & 0 \end{bmatrix}$$
 $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{bmatrix} -1 & 0 \end{bmatrix}$ $\begin{bmatrix} -1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & -1 \end{bmatrix}$

A permutation representation is the following four elements of S_4:

Its lattice of subgroups is (in the notation of the Cayley table)

Order 6 (2 groups: 1 abelian, 1 nonabelian)

- C 6
- S_3, the symmetric group of degree 3 = all permutations on three objects, under composition. In cycle notation for permutations, its elements are (1), (1 2), (1 3), (2, 3), (1 2 3) and (1 3 2).

There are four proper subgroups of \$_3; they are all cyclic. There are the three of order 2 generated by (1 2), (1 3) and (2 3), and the one of order 3 generated by (1 2)

3). Only the one of order 3 is normal in \$_3.

A presentation for S_3 is (where s corresponds to $(1\ 2)$ and t to $(2\ 3)$):

$$\langle s,t; s^2 = t^2 = 1, sts = tst \rangle$$

Another presentation (with s \leftarrow > (1 2 3), t \leftarrow > (1 2)) is

$$\langle s,t; s^3 = t^2 = 1, ts = s^2 t \rangle$$

In terms of this second presentation, with $2 = s^2$, u = ts and $v = ts^2$, the Cayley table is

	1	S	2	t	u	V	
1	1	S	2	t	u	v	
S	s	2	1	V	t	u	
2	2	1	S	u	V	t	
t	t	u	V	1	S	2	
u	u	V	t	2	1	S	
V	v	t	u	S	2	1	

This shows S_3 is isomorphic to D_3 , the dihedral group of degree 3, that is, the symmetries of an equilateral triangle (this never happens for n > 3). The lattice of subgroups of S_3 is

The first three proper subgroups have order two, while <s> has order three and is the only normal one.

The center of S_3 is trivial (in fact Z(S_n) is trivial for all n.)

The automorphism group of S_3 is isomorphic to S_3.

Order 8 (5 groups: 3 abelian, 2 nonabelian)

- C_8
- C 4xC 2
- C 2xC 2xC 2
- D 4, the dihedral group of degree 4, or octic group. It has a presentation

$$\langle s, t; s^4 = t^2 = e; ts = s^3 t \rangle$$

In terms of these generators (s corresponds to rotation by pi/2 and t to a reflection about an axis through a vertex), the eight elements are 1,s,s 2 ,s 3 ,t,ts,ts 2 and ts 3 . Using the notation 2 = s 2 , 3 = s 3 , t2 = ts 2 and t3 = ts 3 , the Cayley table is

	1	S	2	3	t	ts	t2	t3	
1	+ 1				+	t.c.	+2	+3	-
S	S	2	3	1	t3	t	ts	t2	
2	2	3	1	S	t2	t3	t	ts	
3	3	1	S	2	ts	t2	t3	t	
t	t	ts	t2	t3	1	S	2	3	
ts	ts	t2	t3	t	3	1	S	2	
t2	t2	t3	t	ts	2	3	1	S	
t3	t3	t	ts	t2	S	2	3	1	

Its subgroup lattice is

Of these, the proper normal subgroups are the three of order four and <s $^2>$ of order two.

The center of D_4 is $\{1, s^2\}$, which is also its derived group.

The automorphism group of D_4 is isomorphic to D_4.

Q, the quaternion group. It has a presentation

$$\langle s, t; s^4 = 1, s^2 = t^2, sts = t \rangle$$

Q can be realized as consisting of the eight quaternions 1, -1, i, -i, j, -j, k, -k, where i is the imaginary square root of -1, and j and k also obey j 2 = k 2 = -1. These quaternions multiply according to clockwise movement around the figure

For example, ij = k and ji = -k (negative because anticlockwise).

A matrix representation is given by s and t in the above presentation corresponding to these two 2x2 matrices over the complex numbers:

$$s = [i \ 0]$$
 $t = [0 \ i]$ $[i \ 0]$

The subgroup lattice of Q is

All of these subgroups are normal in Q.

The center of Q is $\{1,s^2\}$, which is also its derived group.

The automorphism group of Q is isomorphic to S_4.

Order 9 (2 groups: 2 abelian, 0 nonabelian)

- C 9
- C 3xC 3

Order 10 (2 groups: 1 abelian, 1 nonabelian)

- C_10
- D_5

Order 12 (5 groups: 2 abelian, 3 nonabelian)

- C_12
- C_6 x C_2
- A_4, the alternating group of degree 4, consisting of the even permutations in S_4. The subgroup lattice of A_4 is

The only proper normal subgroup is <(12)(34),(13)(24)>.

- D_6, isomorphic to \$_3 x C_2 = D_3 x C_2
- T which has the presentation

$$\langle s, t; s^6 = 1, s^3 = t^2, sts = t \rangle$$

T is the semidirect product of C_3 by C_4 by the map $g: C_4 -> Aut(C_3)$ given by $g(k) = a^k$, where a is the automorphism a(x) = -x.

Another presentation for T is

$$\langle x, y; x^4 = y^3 = 1, yxy = x \rangle$$

In terms of these generators, using AB for $x^A y^B$, the Cayley table for T is

	00	10	20	30	01	02	11	21	31	12	22	32
1 = 00	00	10	20	30	01	02		21	31	 12	 22	32
x = 10	10	20	30	00	11	12	21	31	01	22	32	02
$x^2 = 20$	20	30	00	10	21	22	31	01	11	32	02	12
$x^3 = 30$	30	00	10	20	31	32	01	11	21	02	12	22
y = 01	01	12	21	32	02	00	10	22	30	11	20	31
$y^2 = 02$	02	11	22	31	00	01	12	20	32	10	21	30
xy = 11	11	22	31	02	12	10	20	32	00	21	30	01
$x^2y = 21$	21	32	01	12	22	20	30	02	10	31	00	11
$x^3y = 31$	31	02	11	22	32	30	00	12	20	01	10	21
$xy^2 = 12$	12	21	32	01	10	11	22	30	02	20	31	00
$x^2y^2 = 22$	22	31	02	11	20	21	32	00	12	30	01	10
$x^3y^2 = 32$	32	01	12	21	30	31	02	10	22	00	11	20

A 2x2 matrix representation of this group over the complex numbers is given by

where i is a square root of -1 and w is nonreal cube root of 1, for example $w = e^{2\pi i}$.

Order 14 (2 groups: 1 abelian, 1 nonabelian)

- C_14
- D_7

Order 15 (1 group: 1 abelian, 0 nonabelian)

C_15.

Order 16 (14 groups: 5 abelian, 9 nonabelian)

- C 16
- C_8 x C_2
- C 4xC 4
- C_4 x C_2 x C_2
- C_2 x C_2 x C_2 x C_2
- D_8
- D_4 x C_2
- Q x C_2, where Q is the quaternion group
- The quasihedral (or semihedral) group of order 16, with presentation

$$\langle s,t; s^8 = t^2 = 1, st = ts^3 \rangle$$

• The modular group of order 16, with presentation

$$\langle s,t; s^8 = t^2 = 1, st = ts^5 \rangle$$

The elements are $s \wedge k \uparrow \wedge m$, k = 0, 1, ..., 7, m = 0, 1.

The center is $\{1, s^2, s^4, s^6\}$.

Its subgroup lattice is

This is the same subgroup lattice structure as for the lattice of subgroups of $C_8 \times C_2$, although the groups are of course nonisomorphic.

The automorphism group is isomorphic to D_4 x C_2

Reference: Weinstein, Examples of Groups, pp. 120-123.

• The group with presentation

$$\langle s,t; s^4 = t^4 = 1, st = ts^3 \rangle$$

The elements are $s \land i \land j$ for i, j = 0, 1, 2, 3.

The center of G is $\{1,s^2,t^2,s^2,t^2\}$.

Reference: Weinstein, pp. 124--128.

The group with presentation

$$\langle a, b, c; a^4 = b^2 = c^2 = 1, cbca^2b = 1, bab = a, cac = a \rangle$$

- The group $G_{4,4}$ with presentation <s,t; $s^4 = t^4 = 1$, stst = 1, $ts^3 = st^3 > 1$
- The generalized quaternion group of order 16 with presentation <s,t; s^8 = 1, s^4 = t^2, sts = t >

Order 18 (5 groups: 2 abelian, 3 nonabelian)

- C_18
- C_6 x C_3
- D_9
- S 3xC 3
- The semidirect product of C_3 x C_3 with C_2 which has the presentation

$$\langle x, y, z; x^2 = y^3 = z^3 = 1, yz = zy, yxy = x, zxz = x \rangle$$

Order 20 (5 groups: 2 abelian, 3 nonabelian)

- C 20
- C_10 x C_2
- D 10
- The semidirect product of C_5 by C_4 which has the presentation

$$\langle s,t; s^4 = t^5 = 1, tst = s \rangle$$

The Frobenius group of order 20, with presentation

$$\langle s,t; s^4 = t^5 = 1, ts = st^2 \rangle$$

This is the Galois group of x^5 -2 over the rationals, and can be represented as the subgroup of S_5 generated by (2 3 5 4) and (1 2 3 4 5).

Order 21 (2 groups: 1 abelian, 1 nonabelian)

- C 21
- <a,b; $a \wedge 3 = b \wedge 7 = 1$, ba = ab $\wedge 2 >$ This is the Frobenius group of order 21, which can be represented as the subgroup of S_7 generated by (2 3 5)(4 7 6) and (1 2 3 4 5 6 7), and is the Galois group of $x \wedge 7 14x \wedge 5 + 56x \wedge 3 56x + 22$ over the rationals (ref: Dummit & Foote, p.557).

Order 22 (2 groups: 1 abelian, 1 nonabelian)

- C_22
- D_11

Order 24 (15 groups: 3 abelian, 12 nonabelian)

- C 24
- C_2 x C_12
- C_2xC_2xC_6
- S_4
- S 3xC 4
- S_3 x C_2 x C_2
- D 4xC 3
- Q x C_3
- A_4 x C_2

- TxC_2
- Five more nonabelian groups of order 24 Reference: Burnside, pp. 157--161.

Order 25 (2 groups: 2 abelian, 0 nonabelian)

- C_25
- C_5 x C_5

Order 26 (2 groups: 1 abelian, 1 nonabelian)

- C_26
- D_13

Order 27 (5 groups: 3 abelian, 2 nonabelian)

- C 27
- C_9 x C_3
- C 3xC 3xC 3
- The group with presentation

$$\langle s,t; s^9 = t^3 = 1, st = ts^4 \rangle$$

• The group with presentation

$$\langle x, y, z; x^3 = y^3 = z^3 = 1, yz = zyx, xy = yx, xz = zx \rangle$$

Reference: Burnside, p. 145.

Order 28 (4 groups: 2 abelian, 2 nonabelian)

- C 28
- C_2 x C_14
- D 14
- D_7 x C_2

Order 30 (4 groups: 1 abelian, 3 nonabelian)

- C_30
- D_15
- D_5 x C_3
- D_3 x C_5

Reference: Dummit & Foote, pp. 183-184.

A Catalogue of Algebraic Systems / John Pedersen / jfp@math.usf.edu