Evaluating these sums produces the approximation

$$S_3(z) = 0.76201 + 0.77177\cos z + 0.017423\cos 2z + 0.0065673\cos 3z - 0.38676\sin z + 0.047806\sin 2z,$$

and converting back to the variable x gives

$$S_3(x) = 0.76201 + 0.77177 \cos \pi (x - 1) + 0.017423 \cos 2\pi (x - 1)$$

+ 0.0065673 \cos 3\pi (x - 1) - 0.38676 \sin \pi (x - 1) + 0.047806 \sin 2\pi (x - 1).

Table 8.12 lists values of f(x) and $S_3(x)$.

Table 8.12

x $f(x)$ $S_3(x)$ $ f(x) -$ 0.125 0.26440 0.24060 2.38 × 0.375 0.84081 0.85154 1.07 × 0.625 1.36150 1.36248 9.74 × 0.875 1.61282 1.60406 8.75 ×	G ()
$\begin{array}{ccccc} 0.375 & 0.84081 & 0.85154 & 1.07 \times \\ 0.625 & 1.36150 & 1.36248 & 9.74 \times \end{array}$	$S_3(x)$
0.625 1.36150 1.36248 9.74 ×	10^{-2}
	10^{-2}
0.875 1.61282 1.60406 $8.75 \times$	10^{-4}
	10^{-3}
1.125 1.36672 1.37566 $8.94 \times$	10^{-3}
$1.375 \hspace{1.5cm} 0.71697 \hspace{1.5cm} 0.71545 \hspace{1.5cm} 1.52 \times \\$	10^{-3}
$1.625 \hspace{1.5cm} 0.07909 \hspace{1.5cm} 0.06929 \hspace{1.5cm} 9.80 \times \\$	10^{-3}
$1.875 \qquad -0.14576 \qquad -0.12302 \qquad 2.27 \times \\$	10^{-2}

EXERCISE SET 8.5

- 1. Find the continuous least squares trigonometric polynomial $S_2(x)$ for $f(x) = x^2$ on $[-\pi, \pi]$.
- 2. Find the continuous least squares trigonometric polynomial $S_n(x)$ for f(x) = x on $[-\pi, \pi]$.
- 3. Find the continuous least squares trigonometric polynomial $S_3(x)$ for $f(x) = e^x$ on $[-\pi, \pi]$.
- **4.** Find the general continuous least squares trigonometric polynomial $S_n(x)$ for $f(x) = e^x$ on $[-\pi, \pi]$.
- **5.** Find the general continuous least squares trigonometric polynomial $S_n(x)$ for

$$f(x) = \begin{cases} 0, & \text{if } -\pi < x \le 0, \\ 1, & \text{if } 0 < x < \pi. \end{cases}$$

6. Find the general continuous least squares trigonometric polynomial $S_n(x)$ in for

$$f(x) = \begin{cases} -1, & \text{if } -\pi < x < 0. \\ 1, & \text{if } 0 \le x \le \pi. \end{cases}$$

- 7. Determine the discrete least squares trigonometric polynomial $S_n(x)$ on the interval $[-\pi, \pi]$ for the following functions, using the given values of m and n:
 - **a.** $f(x) = \cos 2x, m = 4, n = 2$
- **b.** $f(x) = \cos 3x, m = 4, n = 2$
- **c.** $f(x) = \sin \frac{x}{2} + 2\cos \frac{x}{3}, m = 6, n = 3$
- **d.** $f(x) = x^2 \cos x, m = 6, n = 3$
- **8.** Compute the error $E(S_n)$ for each of the functions in Exercise 7.
- 9. Determine the discrete least squares trigonometric polynomial $S_3(x)$, using m = 4 for $f(x) = e^x \cos 2x$ on the interval $[-\pi, \pi]$. Compute the error $E(S_3)$.
- **10.** Repeat Exercise 9 using m = 8. Compare the values of the approximating polynomials with the values of f at the points $\xi_j = -\pi + 0.2j\pi$, for $0 \le j \le 10$. Which approximation is better?