-
2 (m)
Ü
I
Africania
5:
[=≟,

APPROPRIATION OF FIG.

$ \begin{array}{ccc} & & & & & & & & & \\ & & & & & & & & \\ & & & & $		
	10	
BOH O	-	C coating, µg/ml
LONGOL PORT	0.1	antibody concentration in RBC coating, µg/ml
	0.01	antibody con
00 00 00 00 00 00 00 00 00 00	0.001	
% B2KA cells rosetted		

Figure 1

SLASS SUBCLASS

7

DRAFISHAN

APPG0V3 3

Figure 2

Figure 3

CLASS SUBCLASS

Figure 4

Figure 5

CLASS SUBCLASS

5-------

Figure 6

5/14

Figure 8

Figure 9

CLASS SUBCLASS

70

Figure 10a

Figure 10b 80 70 **-**G1 -←G1Δ a 60 **-**G1Δ b 50 -Δ-G1Δ c -**x**--G1∆ ab 40 % lysis +—G1∆ ac 30 **⊙**—G2 **♦**—G2∆ a 20 •-- G4 10 **−**G4Δ b -G4Δ c 0 -10 0.01 0.001 0.1 10 100 1000 10000 antibody concentration, ng/ml

Figure 11a

Figure 11b 45 40 -←G1∆a 35 -**□**--G1Δ b 30 Δ-G1Δ c -x-Gl∆ ab 25 +--G1∆ ac **-**G2 20 **←** G2Δ a **−**G4 15 ■-G4Δ b ▲ G4Δ c 10 5 0.001 0.01 0.1 10 100 1000 1 10000

inhibitor antibody concentration, ng/ml

Figure 12

Figure 13q

Figure 13b

0.1

Figure 14q 350 300 -G1 -GlΔa -g-GlΔb 250 <u>-</u>Δ--G1Δ c -**x**-Gl∆ ab 200 -Gl∆ ac .**o_**G2 **o**—G2Δ a 150 _G4 **⊑**—G4Δ b 100 –G4Δ c cross-linker only 50 _agiycosyl

10 antibody concentration, μg/ml

10/14

1000

100

APPEGYON O. R. FIG. 17. FIG. 1

APPRIOTED (1.G. F.IG.

Figure 14b

antibody concentration, µg/ml

Figure 15

Table 1 A comparison of the mutations made to the wildtype G1, G2 and G4 antibodies

	222	234	235	236	327	330	331
Antibody	233	234 I	1	G	Α	Α	P
G1	E	L	ī	Ğ	G	S	S
G1∆a	E	L	L	•	Ä	Α	P
G1∆b	P	V	A	Č	A	A	P
G1∆c	P	V	Α	G		S	
Gl∆ab	P	V	Α	-	G	_	s c
G1 Dac	P	V	Α	G	G	S	3
	p P	v .	Α	- '	G	Α	P
G2	D	v	Α	-	G	S	S
G2∆a	r r	F	1.	G	G	S	S
G4	E	V	Ā	-	G	S	S
G4∆b	P	V		G	Ğ	S	S
G4∆c	P	V	Α	G	Ü	Ū	

,	LASS	
FIG	SU	
0.6.1	CLASS.	
* * ****	13	
APPROVE:	7-33	DRAFTS#.AT.

All then the time of time of time of the time of time

LA LA La La I. I. I.

Figure 16

Assay system	Series	ß	G1∆a	GIAb	GΙΔc	G1 Aab	GΙΔac	G2	G2∆а	G4	G4∆b	G4∆c
FcyRI: rosetting	ㅂ	‡	+++	-	i	-	-	_	_	+	-	١.
FcyRI: fluorescent staining	CF	+++	+++	-	+/	-	+/-	1	1	‡	١	+
						i						
FcyRIIa H/H: fluorescent staining	CF	+ ++	‡	+	+/-	+	*/	‡	‡	*	+	,
FcyRIIa R/R: fluorescent staining	ഥ	+++	+++	-/+	-/+	+	-/+	‡	‡	+	+	+
FcyRIIb1*: fluorescent staining	ц,	+ + + +	++++	+	+	‡	#	+	+++	+++	+	+
FcyRIIIb NA1: rosetting	F	‡	+	-/+	-/+	+/-	+/-	-/+				
FcyRIIIb NA1: fluor. staining	႕	‡	‡	ı	+	ı	-	1	1	-/+	1	
FcyRIIIb NA2: fluor. staining	H	+++	‡	J	+	1	1	1	ı	-/+	,	
FcyRI/II: chemiluminescence	11.	+++	‡	_	-/+	-	+/-	_	-	+		‡
Complement lysis	၁	++++	-/+	+/-	+/-	+/-	+/-	‡	_	1		
ADCC	၁	‡	‡	-/+	+	1	-/+	+	-/+	+	1	‡
ADCC	ഥ	++++	‡	+	‡	,	-	-/+	+/-	-/+	-	1

Inhibition of G1 activity in assay	Series	GI	GΙΔa	GI∆b	G1Ab G1Ac	G1∆ab G1∆ac	G1∆ас	G2	G2Δa	2	G4∆b	G4Ac
FcyRI: rosetting	ㅂ								+		+	_
FcyRI/II: chemiluminescence	[Ľ,			+++	‡	+++	+++	+	ŧ		‡	‡
Complement lysis	၁								+			
ADCC	(L,		1	++	+	‡	++	ı	+	ι	‡	‡

CAMPATH-1 (C) or Fog-1 (F) antibodies tested relative level of activity in assay low level of activity which is significantly above background low level of activity which is slightly above background no activity above background not tested ++++,+++, ++ or + Series

-blank

APPIGNOR O.G. FIG.

DY FIG.

DRAFTSMAN

Full $C_{\rm H}2$ Sequences Of the Parental and Mutated Antibodies

Figure 17

134	apriloopsvelpperdylaibrypevvvvvdvbhedprufinhvvdovevhhartichresoongvyfvvorutvlegdmingkeykevvekvenkalpabi ektiskak appvalopsvelpppketiaibatekvecvvvdvbhedprukehmvvdovevhhartichresoonutvileddmingkeykevenkultaibathokeykektesekek appvalopsvelpppketiaibatekvecvvvdvbhedppvkehmvvdovevhhartichresoonutvileddmingkeykevbenkolpbe ektekak appvalopsvelpppketiaibatekvecvvvdvbhedpbvkehmvvdovevhhartichresoonutvileddmingeevekvenkolpbesetektekak	appua_opsutlepperplotlai bripeutcuvudushedpzu ip navudgveveraritereeqfnstfavusvijumingret korusnkolpbsi ektibkir	appva, op <i>svele</i> ppkprotlatentezvicvvvdveodetvotnivvdgvevhdartkpreedothbitkvbvl <i>tvla</i> ndalikekkkkvbnkolpbeiektekak Appvalgpbv <i>ele</i> ppkprotlaiertpevtcvvvdveodedpevotnivvdgvevidatekothbitkvbvltv1240dalnokekkkkvbnkolpbeiekterak
5 8 8 5	010a 010b 010b 010c Seq 10 1 010ab	See 102 asda	04 Δb 04 Δb

14/14