

## **Attempts in Local Mass Relations**

**Moqiong Lin** 

13.01.2020



#### Outline

- Introduction
- One-nucleon separation energy
- Beta-decay
- Conclusion



#### Outline

- Introduction
- One-nucleon separation energy
- Beta-decay
- 4 Conclusion





#### Introduction



#### Two popular local relations:

- G-K relations
- $\bullet \delta V_{\rm np}$



#### Introduction



#### Two popular local relations:

G-K relations



a) Cancel out two-body interactions approximately!

 $-M(N+1,Z)-M(N,Z+1)+M(N+1,Z+1)\cong 0$   $-M(N+1,Z)-M(N-1,Z+1)+M(N,Z+1)\cong 0$ 

**b)** RMSD for *A*≥60: ~200 keV



#### Introduction

#### Two popular local relations:

- G-K relations
- ullet  $\delta V_{
  m np}$ : Proton-neutron interaction between the last neutron and the last proton



$$\delta V_{\text{1n-1p}}(N,Z) = B(N,Z) + B(N-1,Z-1) -B(N-1,Z) - B(N,Z-1)$$

RMSD for *A*≥60: ~160 keV without any corrections

#### Outline

- 1 Introduction
- One-nucleon separation energy
- Beta-decay
- 4 Conclusion





$$S_{\rm n} = (a_1 + a_2 \cdot A^{1/3}) \cdot (Z/N) + a_3 + \delta_{\rm pair} + \delta_{\rm shell} + \delta_{\rm sv} + \delta_{\rm ss}$$

$$S_{\rm p} = (a_1 + a_2 \cdot A^{1/3}) \cdot (N/Z) + a_3 + \delta_{\rm pair} + \delta_{\rm shell} + \delta_{\rm sv} + \delta_{\rm ss} + \delta_{\rm coul}$$



 $\begin{array}{c} a_{\mathrm{pair}}/A^{1/2} \\ -a_{\mathrm{pair}}/A^{1/2} \end{array}$ 

Shell effect

 $a_{\rm shell} \cdot n$ 

Symmetry energy terms

 $\delta_{\rm sv} \approx 2a_{\rm sv}|I|$ ,  $\delta_{\rm ss} \approx 2a_{\rm ss}A^{-1/3}|I|$  Columb effect

 $a_{\text{Coul}} \cdot Z/A^{1/3}$ 



 $\mathbf{0}$ n

83-126

127-



Phys. Rev. C 87, 044313 (2013)



$$S_{\rm n} = (a_1 + a_2 \cdot A^{1/3}) \cdot (Z/N) + a_3 + \delta_{\rm pair} + \delta_{\rm shell} + \delta_{\rm sv} + \delta_{\rm ss}$$
  
 $S_{\rm p} = (a_1 + a_2 \cdot A^{1/3}) \cdot (N/Z) + a_3 + \delta_{\rm pair} + \delta_{\rm shell} + \delta_{\rm sv} + \delta_{\rm ss} + \delta_{\rm coul}$ 

# Pairing term $a_{\text{pair}}/A^{1/2}$ $-a_{\text{pair}}/A^{1/2}$

Shell effect

 $a_{\rm shell} \cdot n$ 

**Symmetry energy terms** 

 $\delta_{\rm sv} \approx 2a_{\rm sv}|I|,$   $\delta_{\rm ss} \approx 2a_{\rm ss}A^{-1/3}|I|$ 

**Columb effect** 

 $a_{\text{Coul}} \cdot \overline{Z/A}^{1/3}$ 

|                        | $a_1$ | $a_2$ | $a_3$  | $a_{ m pair}$ | $a_{\rm shell}$ | $2a_{\rm sv}$ | $2a_{\rm ss}$ | $a_{\text{Coul}}$ | RMSD | keV |
|------------------------|-------|-------|--------|---------------|-----------------|---------------|---------------|-------------------|------|-----|
| $\overline{S_{\rm n}}$ | 11467 | 3348  | -10523 | 6556          | -1566           | 13659         | -28137        | _                 | 325  | _   |
| $S_{\mathfrak{p}}$     | 18743 | 1209  | -8582  | 6178          | -1223           | -26461        | 13064         | -1182             | 342  |     |





- Four parities: ee eo oe oo
- Shell effect
- Symmetry energy
- Pairing term





- Four parities: ee eo oe oo
- Shell effect
- Symmetry energy
- Pairing term

$$\delta_{shell} = a_{shell} \cdot n$$



$$\delta_{shell}^{(2)} = \pm a_{shell}c(r - \Delta N)Sgn(r - \Delta N)$$

$$Sgn(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < = 0 \end{cases}$$





- Four parities: ee eo oe oo
- Shell effect
- Symmetry energy
- Pairing term

$$\delta_{\rm sv} \approx 2a_{\rm sv}|I|,$$
 $\delta_{\rm ss} \approx 2a_{\rm ss}A^{-1/3}|I|$ 



$$\delta_{\rm sv} \approx 2a_{\rm sv}^{(1)}|I| + 4a_{\rm sv}^{(2)}|I|^3,$$
  
 $\delta_{\rm ss} \approx 2a_{\rm ss}^{(1)}A^{-1/3}|I| - 4/3a_{\rm ss}^{(2)}A^{-1/3}|I|^2$ 





- Four parities: ee eo oe oo
- Shell effect
- Symmetry energy
- Pairing term

$$\delta_{\rm sv} \approx 2a_{\rm sv}|I|,$$
 $\delta_{\rm ss} \approx 2a_{\rm ss}A^{-1/3}|I|$ 



$$\delta_{\rm sv} \approx 2a_{\rm sv}^{(1)}|I| + 4a_{\rm sv}^{(2)}|I|^3,$$

$$\delta_{\rm ss} \approx 2a_{\rm ss}^{(1)}A^{-1/3}|I| - \frac{4/3a_{\rm ss}^{(2)}A^{-1/3}|I|^2}{4/3a_{\rm ss}^{(2)}A^{-1/3}|I|^2}$$





- Four parities: ee eo oe oo
- Shell effect
- Symmetry energy
- Pairing term





#### Parameters and RMSDs in keV

| <b>Parameters</b> |       | а     | 1     |       | $a_2$ |      |      |      |
|-------------------|-------|-------|-------|-------|-------|------|------|------|
| $S_{ m n}$        | 24545 | 19299 | 23279 | 17790 | 2077  | 2550 | 2264 | 2289 |
| $S_{p}$           | 16625 | 15828 | 15671 | 16539 | 1867  | 2203 | 2289 | 1951 |

|             |        | C      | $a_{\rm shell}^{(1)}$ | $a_{\rm shell}^{(2)}$ |      |     |
|-------------|--------|--------|-----------------------|-----------------------|------|-----|
| $S_{\rm n}$ | -17450 | -17402 | -17476                | -17430                | -943 | -27 |
| $S_{p}$     | -4834  | -8433  | -9086                 | -5623                 | -449 | -47 |

|             | $2a_{\rm sv}^{(1)}$ | $4a_{\rm sv}^{(2)}$ | $2a_{ss}$ | $a_{ m Coul}$ | RMSD |
|-------------|---------------------|---------------------|-----------|---------------|------|
| $S_{\rm n}$ | 23613               | -105190             | -4628     | -             | 272  |
| $S_{p}$     | -42679              | -72305              | 75598     | -1589         | 301  |





#### RMSDs for extrapolations in keV

| Predictions    | DZ28 | FRDM | Jiang | Bao | V-03 | V-12 |
|----------------|------|------|-------|-----|------|------|
| $RMSD(S_n)$    | 311  | 341  | 267   | 413 | 351  | 305  |
| $N(S_{\rm n})$ | 271  | 271  | 112   | 51  | 240  | 51   |
| $RMSD(S_p)$    | 421  | 439  | 341   | 511 | 358  | 413  |
| $N(S_{\rm p})$ | 266  | 266  | 115   | 49  | 235  | 49   |



$$\Delta S_{2\text{n1p}} = S_{\text{n}}(N, Z) - S_{\text{n}}(N + 2, Z - 1)$$

$$= a_{1} \frac{2Z + N}{N(N+2)} + a_{2}(N + Z)^{1/3} \frac{2Z + N}{N(N+2)} + \Delta \delta_{\text{pair}} + \Delta \delta_{\text{sv}} + \Delta \delta_{\text{ss}}$$



#### **Pairing term**

$$V_{\text{pair}}(N,Z) - V_{\text{pair}}(N-1,Z)$$
  
-  $V_{\text{pair}}(N+2,Z-1) + V_{\text{pair}}(N+1,Z-1)$ 

#### Symmetry energy terms

$$\Delta \delta_{\text{SV}} = 2a_{\text{SV}}(N+Z)^{-1}(|N-Z|-|N-Z+3|)$$
  
$$\Delta \delta_{\text{SS}} = 2a_{\text{SS}}(N+Z)^{-4/3}(|N-Z|-|N-Z+3|)$$



$$\Delta S_{2n1p} = S_{n}(N, Z) - S_{n}(N + 2, Z - 1)$$

$$= a_{1} \frac{2Z + N}{N(N+2)} + a_{2}(N + Z)^{1/3} \frac{2Z + N}{N(N+2)}$$

$$+ \Delta \delta_{pair} + \Delta \delta_{sv} + \Delta \delta_{ss}$$



#### Parameters and RMSDs in keV

| Parameters | $a_1$  | $a_2$ | $a_{\mathrm pair}$ | $2a_{\rm sv}$ | $2a_{ss}$ | RMSD |
|------------|--------|-------|--------------------|---------------|-----------|------|
| Even A     | 38019  | -1937 | 7382               | -5831         | 71042     | 210  |
| Odd A      | -27150 | 1705  | 2755               | -52899        | 2431      | 224  |







| <b>Parameters</b> |        | а                                                   | 1      |         | $a_2$ |  |      |      |
|-------------------|--------|-----------------------------------------------------|--------|---------|-------|--|------|------|
| $S_{ m n}$        | 24545  | <b>24545</b> 19299 <b>23279</b> 17790 <b>2077</b> 2 |        |         |       |  | 2264 | 2289 |
|                   |        |                                                     | Even   | N Odd Z | 7     |  |      |      |
| $S_{ m n}$        | -17450 | 0 -174                                              | 102 -1 |         |       |  |      |      |





Comparison of the RMSD (in keV) between this work and others.

| Predictions |      | AME<br>2003 | AME<br>2012 | H.<br>Jiang | DZ28 | FRDM | M.<br>Bao | V-<br>03 | V-<br>12 |
|-------------|------|-------------|-------------|-------------|------|------|-----------|----------|----------|
| A>60        | RMSD | 233         | 284         | 231         | 299  | 301  | 358       | 246      | 252      |
|             | N    | 217         | 41          | 95          | 251  | 251  | 43        | 200      | 41       |
| A>120       | RMSD | 179         | 144         | 203         | 263  | 232  | 336       | 213      | 172      |
|             | N    | 129         | 24          | 64          | 147  | 147  | 27        | 124      | 26       |

#### Outline

- 1 Introduction
- One-nucleon separation energy
- Beta-decay
- 4 Conclusion











Weisacker mass formula:

Weisacker mass formula. 
$$B(N,Z) = a_{\rm v}A - a_{\rm s}A^{\frac{2}{3}} - a_{\rm c}Z^2A^{-\frac{1}{3}}$$

$$-a_{\rm a}(N-Z)^2A^{-1} + V_{\rm p}(N,Z)$$

$$M(N-d,Z) - M(N,Z-d)$$

$$= B(N-d,Z) - B(N,Z-d) + dM_{\rm p} - dM_{\rm n}$$

$$= -a_{\rm c}d(A-K-d)(A-d)^{-\frac{1}{3}} - 8a_{\rm a}Kd$$

$$+V_{\rm p}(N-d,Z) - V_{\rm p}(N,Z-d) + d(M_{\rm p}-M_{\rm n})$$



Weisacker mass formula:

$$B(N,Z) = a_{v}A - a_{s}A^{\frac{2}{3}} - a_{c}Z^{2}A^{-\frac{1}{3}}$$

$$-a_{a}(N-Z)^{2}A^{-1} + V_{p}(N,Z)$$

$$M(N-d,Z) - M(N,Z-d)$$

$$= B(N-d,Z) - B(N,Z-d) + dM_{p} - dM_{n}$$

$$= -a_{c}d(A - K - d)(A - d)^{-\frac{1}{3}} - 8a_{a}Kd$$

K=N-Z=0 gives out Mirror Nuclei.

 $+V_{\rm p}(N-d,Z) - V_{\rm p}(N,Z-d) + d(M_{\rm p}-M_{\rm n})$ 







d=1 is similar but with odd-even staggerings.

$$\Delta M(N, Z) = a_c \delta_{\text{Coul}} + a_a K d + \delta V_{\text{p}}$$
$$+ a_{\text{sh}}^{(e)} (n_{\text{sh}} - p_{\text{sh}}) + a_{\text{sh}}^{(o)} (n_{\text{sh}} - p_{\text{sh}})$$

| _ |             |      |       |       |       |        |         |
|---|-------------|------|-------|-------|-------|--------|---------|
|   | N           | 9-20 | 21-28 | 29-50 | 51-82 | 83-126 | 127-    |
|   | $n_{ m sh}$ | 1    | 2     | 3     | 4     | 5      | 6       |
|   | Z           | 9-20 | 21-28 | 29-50 | 51-82 | 83-126 | <u></u> |
|   | $p_{sh}$    | 0    | 1     | 2     | 3     | 4      |         |



d=1









| <i>A</i> ≥60 | AME2003 | This work | <i>A</i> ≥120 | AME2003 | This work |
|--------------|---------|-----------|---------------|---------|-----------|
| RMSD         | 443     | 406       | RMSD          | 354     | 281       |
| N            | 95      | 95        | N             | 61      | 61        |

#### Outline

- 1 Introduction
- One-nucleon separation energy
- Beta-decay
- Conclusion



## **Thanks for Your Attention!**

