VECTEURS – CORRIGÉ DES NOTES DE COURS

Page 1 – Exemple 1

a) scalaire b) vectorielle c) scalaire d) vectorielle e) scalaire f) vectorielle

Page 3 – Exercice

a) 297° b) 270° c) 180° d) 135° e) 58° f) 110° g) 155° h) 245°

Page 5 – Exemple 2

a) Vrai b) Vrai c) Faux : $|\overrightarrow{F_1} + \overrightarrow{F_2}| = \overrightarrow{0}$ d) Faux : $||\overrightarrow{F_1} + \overrightarrow{F_2}|| = 0$ e) Vrai f) Faux : $||\overrightarrow{F_1} + \overrightarrow{F_2}|| = ||\overrightarrow{F_1}|| - ||\overrightarrow{F_2}||$ g) Vrai h) Faux : $|\overrightarrow{F_1}| = -|\overrightarrow{F_2}|$

Page 5 – Exemple 3

a) $\vec{r} : 20 \text{ km à } 290^{\circ}$ b) $\vec{u} : 40 \text{ km à } 20^{\circ}$ et $\vec{w} : 40 \text{ km à } 200^{\circ}$

Page 6 – Exemple 4

a) D(9, 0) b) $-\overrightarrow{CD} = (-8, 10)$

Page 7 – Exemple 5 Page 7 – Exemple 6

 $\overrightarrow{AB} = (8, -7)$ $\overrightarrow{BA} = (-8, 7)$ $-\overrightarrow{BA} = \overrightarrow{AB} = (8, -7)$ $\vec{v} = (-3, -5)$

Pages 8-9 – Exercices sur les composantes des vecteurs

1. D(9, 4) 4. D(-4, 0)

2. c = -4, d = 3 et $\|\vec{u}\| = \|\vec{v}\| = 5$ 5. a) $\|\vec{p}\| = 13$ b) $-\vec{p} = (5, -12)$ et $\|-\vec{p}\| = 13$

3. $\vec{t} = (8, -1)$ 6. $\vec{v} = \left(-4, \frac{-2}{5}\right)$

Page 10 – Exemple 7

1er cas:
$$\theta = \tan^{-1}\left(\frac{5}{3}\right) \approx 59,04^{\circ}$$

Formule:
$$\theta = \tan^{-1} \left| \frac{\Delta y}{\Delta x} \right|$$

3º cas:
$$\theta = 180^{\circ} + \tan^{-1} \left(\frac{6}{5} \right) \approx 230,19^{\circ}$$

Formule:
$$\theta = 180^{\circ} + \tan^{-1} \left| \frac{\Delta y}{\Delta x} \right|$$

2º cas:
$$\theta = 180^{\circ} - \tan^{-1} \left(\frac{5}{6} \right) \approx 140,19^{\circ}$$

Formule:
$$\theta = 180^{\circ} - \tan^{-1} \left| \frac{\Delta y}{\Delta x} \right|$$

4º cas :
$$\theta = 360^{\circ} - \tan^{-1} \left(\frac{6}{2} \right) \approx 288,43^{\circ}$$

Formule:
$$\theta = 360^{\circ} - \tan^{-1} \left| \frac{\Delta y}{\Delta x} \right|$$

Page 11 – Exemple 8

$$\theta_{\vec{w}} = 180^{\circ} - \tan^{-1} \left(\frac{11}{17} \right) \approx 147,09^{\circ}$$

Page 11 – Exemple 9

$$\overrightarrow{CD}: \left(\left\| \overrightarrow{CD} \right\| = \sqrt{4^2 + (-7)^2} \approx 8,06 u \right)$$

$$\theta_{\overrightarrow{CD}} = 360^\circ - \tan^{-1} \left(\frac{7}{4} \right) \approx 299,74^\circ$$

Page 11 – Exemple 10

a)
$$\theta_{\vec{r}} = 180^{\circ} + \tan^{-1} \left(\frac{7}{4}\right) \approx 240,26^{\circ}$$
 b) $\theta_{\vec{s}} = tan^{-1} \left(\frac{6}{2}\right) \approx 71,57^{\circ}$

b)
$$\theta_{\vec{s}} = tan^{-1} \left(\frac{6}{2}\right) \approx 71,57^{\circ}$$

Page 12 – Exemple 11

$$F_x: 8\sqrt{3}$$
 $F_y: 8$ $\overrightarrow{F} = (8\sqrt{3}, 8) \approx (13,86; 8)$

Page 13 – Exemple 12

	En x	En y
F_1	$15 \cos 55^{\circ} \approx 8,60 \text{ N}$	$15 \sin 55^{\circ} \approx 12,29 \text{ N}$
\overrightarrow{F}_2	$10\cos 255^{\circ} \approx -2,59 \text{ N}$	10 sin 255° ≈ −9,66 N
F ₃	$20 \cos 325^{\circ} \approx 16{,}38 \text{ N}$	$20 \sin 325^{\circ} \approx -11,47 \text{ N}$
→ Fp	≈ 22,40 N	≈ -8,84 N

Page 14 – Exemple 1

Page 15 – Exemple 3

Oui, car
$$220^{\circ} - 40^{\circ} = 180^{\circ}$$

Oui, car
$$\frac{7}{-3} = \frac{-14}{6}$$

Page 16 – Exemple 4

Page 16 – Exemple 5

... *colinéaires* : $3 \times 35 - 7 \times 15 = 0$

$$b = -6$$

$$\vec{v} = (5 \times 3, 5 \times 7) = 5(3, 7)$$

 $\vec{v} = 5\vec{r}$ ou $\vec{r} = \frac{1}{5}\vec{v}$

Page 16 – Exemple 6

a)
$$\overrightarrow{AB}$$
 et \overrightarrow{EF} b) \overrightarrow{AB} et \overrightarrow{GH} c) \overrightarrow{AB} , \overrightarrow{CD} , \overrightarrow{EF} et \overrightarrow{GH} d) \overrightarrow{AB} et \overrightarrow{II}

c)
$$\overrightarrow{AB}$$
, \overrightarrow{CD} , \overrightarrow{EF} et \overrightarrow{GH}

d)
$$\overrightarrow{AB}$$
 et \overrightarrow{IJ}
 \overrightarrow{CD} et \overrightarrow{IJ}
 \overrightarrow{EF} et \overrightarrow{IJ}
 \overrightarrow{GH} et \overrightarrow{IJ}

Page 18 – Exemple 1

$$\vec{R}: \begin{pmatrix} \left\| \vec{R} \right\| \approx 6.7 \ u \\ \theta_{\vec{R}} \approx 209.6^{\circ} \end{pmatrix}$$

$$\vec{R}: \begin{pmatrix} \|\vec{R}\| \approx 2,24 \ u \\ \theta_{\vec{R}} \approx 255,3^{\circ} \end{pmatrix}$$

Page 22 – Exercice

$$\vec{R} = (-41,83; 26,96)$$

$$\|\vec{R}\| \approx 49,77 \,\text{N}$$

$$\vec{R} = (-41,83; 26,96)$$
 $||\vec{R}|| \approx 49,77 \,\text{N}$ Orientation: $180^{\circ} - \tan^{-1} \left(\frac{26,96}{41,83}\right) \approx 147,2^{\circ}$

Page 24 – Exemple 3

$$\vec{R}: \begin{pmatrix} \|\vec{R}\| \approx 9.7 \ u \\ \theta_{\vec{R}} \approx 38.9^{\circ} \end{pmatrix}$$

a)
$$\overrightarrow{PM}$$
 b) $\overrightarrow{0}$ c) \overrightarrow{BC} d) $\overrightarrow{0}$

c)
$$\bar{I}$$

d)
$$\vec{0}$$

e)
$$\vec{0}$$

$$\overrightarrow{MA}$$

$$g)\vec{0}$$

e)
$$\vec{0}$$
 f) \overrightarrow{MA} g) $\vec{0}$ h) \overrightarrow{FD}

Page 26 – Exemple 5

a)
$$\vec{v} = (6, -15)$$

a)
$$v = (6, -15)$$

b) $w = (-5, 12, 5)$

c)
$$\vec{s} = (0, 0) = \vec{0}$$

a)
$$\vec{R}$$
: $\left(\begin{vmatrix} \vec{R} \end{vmatrix} = 6 u \right)$
 $\theta_{-} = 50^{\circ}$

a)
$$\overrightarrow{R}$$
: $\left(\begin{vmatrix} \overrightarrow{R} \end{vmatrix} = 6 u \\ \theta_{\overrightarrow{R}} = 50^{\circ} \end{vmatrix}$ b) \overrightarrow{R} : $\left(\begin{vmatrix} \overrightarrow{R} \end{vmatrix} = 6 u \\ \theta_{\overrightarrow{R}} = 180^{\circ} + 50^{\circ} = 230^{\circ} \end{vmatrix} \right)$

Pages 27-28 – Exercices sur la multiplication d'un vecteur par un scalaire

1. a)
$$\vec{v} = (-4, 10)$$
 b) $||\vec{v}|| \approx 10,77 \ u$ c) $\theta_{\vec{v}} = 180^{\circ} - \tan^{-1} \left(\frac{10}{4}\right) \approx 111,8^{\circ}$

2.
$$t = \frac{18}{-12} = \frac{-10.8}{7.2} = \frac{-3}{2}$$
 ou -1.5

3. a) Oui, car
$$\frac{7}{5} = \frac{8.4}{6}$$
 b) $\vec{v} = \frac{5}{6}\vec{n}$

4.
$$k_1(k_2u) = (k_1k_2) u$$
 a) $\vec{n} = (6, -18)$ b) non c) oui

5. a)
$$\vec{t} = (22, 5)$$
 b) $||\vec{t}|| = 22,56 u$ c) $\theta_{\vec{t}} \approx 12,8^{\circ}$

6.
$$a = -3$$
 et $b = 7$

Page 31 – Exemples

$$\vec{u} \cdot \vec{v} = \frac{65\sqrt{3}}{4} \approx 28.15$$
 $\vec{u} \cdot \vec{v} = 2.5 \cdot \cos 140^{\circ} \approx -7.66$ $\vec{u} \cdot \vec{v} = -1 \times 4 + 2 \times 2 = 0$ donc $\vec{u} \perp \vec{v}$

Pages 32-33 – Exercices sur le produit scalaire de deux vecteurs

1. et 2. correction en classe...

3.
$$\overrightarrow{q} \bullet \overrightarrow{v} \approx 743,14 \text{ Nm ou } 743,14 \text{ J}$$

- 4. Puisque les vecteurs \overrightarrow{q} et \overrightarrow{p} sont orthogonaux, le produit scalaire sera nul : $\overrightarrow{q} \bullet \overrightarrow{p} = 0$.
- 5. Un angle obtus $\theta \in]90^{\circ}$, $180^{\circ}]$ a un cosinus négatif, donc le produit scalaire sera négatif.

6.
$$\theta_{\vec{s},\vec{t}} \approx 48^{\circ}$$

7.
$$\vec{q} \cdot \vec{t} = 5 \cdot 1 + (-2) \cdot 3 = -1u^2$$

8.
$$\overrightarrow{s} \bullet \overrightarrow{v} = 0$$

9.
$$\vec{C} \cdot \vec{D} = 2 \cdot 5 \cdot \cos(105^{\circ} - 25^{\circ}) \approx 1,74u^{2}$$

Page 34 – Exercice

Page 34 – Question bonus

a)
$$\overrightarrow{w} \approx 2\overrightarrow{u} - 2.5\overrightarrow{v}$$

b) impossible!

w ne peut être exprimé comme une combinaison linéaire de u et v si u et v sont colinéaires entre eux mais non colinéaires avec w.

Page 35 – Exemple 1

a)
$$a = 2$$

b)
$$a = 2$$
 et $b = -3$

a)
$$a = 2$$
 b) $a = 2$ et $b = -3$ $\vec{v} = -10\vec{s} + 9\vec{r}$

$$\vec{w} = 2\vec{u} + 4\vec{v}$$

Page 36 – Exemple 4

$$\vec{u} = 3\vec{i} + 4\vec{j}$$

$$\vec{v} = -5\vec{i} + 2\vec{i}$$

$$\overrightarrow{w} = -4\overrightarrow{i} - 2\overrightarrow{j}$$

$$\vec{u} = 3\vec{i} + 4\vec{j}$$
 $\vec{v} = -5\vec{i} + 2\vec{j}$ $\vec{w} = -4\vec{i} - 2\vec{j}$ $\vec{s} = 5\vec{i} - 3\vec{j}$ $\vec{t} = -4\vec{j}$

$$\vec{t} = -4\vec{j}$$

Page 36 – Exemple 5

Page 37 – Exemple 6

a)
$$\vec{w} = 2\vec{i} + 3\vec{j}$$

a)
$$\vec{w} = 2\vec{i} + 3\vec{j}$$
 b) $\vec{w} = 10\vec{i} - 13.5\vec{j}$

$$\overrightarrow{w} = -\frac{3}{5}\overrightarrow{u} + \frac{4}{5}\overrightarrow{v}$$

Page 37 – Exemple 7

Oui, car (1, 0) et (1, 1) sont linéairement indépendants (c'est-à-dire non colinéaires), donc on peut dire qu'ils forment une base vectorielle dans le plan. En effet, n'importe quel vecteur $\vec{v} = (x, y)$ peut s'exprimer comme suit : $\vec{v} = (x - y) \cdot (1, 0) + y \cdot (1, 1)$.

Pages 38-39 – Exercices récapitulatifs

1.
$$\overrightarrow{BA} = (-10, 1)$$

2.
$$\theta_{\vec{v}} - 210^{\circ} = 300^{\circ} - 210^{\circ} = 90^{\circ}$$
 ou bien $\vec{u} \cdot \vec{v} \approx -10,39 \cdot 10 + -6 \cdot -17,32 \approx 0$

4.
$$\vec{s} \bullet \vec{p} = 0$$
 car $\theta_{\vec{s},\vec{p}} = 90^{\circ}$

5.
$$d = \frac{6}{5}$$

6.
$$\vec{q} \cdot \vec{t} = 0.17 \cos 337^{\circ} + -21.17 \sin 337^{\circ} \approx 139,49 \ u^{2}$$

7. Faux, car même s'ils sont orthogonaux, \vec{r} et \vec{s} ne sont pas des vecteurs unitaires.

8.
$$\vec{v} = 50\sqrt{3}\vec{i} + 50\vec{j}$$

Pages 40-43 – Exercices récapitulatifs (suite)

9.
$$\|\vec{v}\| \approx 3{,}61 \text{ u}$$

10.
$$\vec{i} \cdot \vec{j} = 0$$
 car $\theta_{\vec{i},\vec{j}} = 90^{\circ}$

11.
$$\vec{r} - \vec{s} + 2\vec{n} = (-6, -5)$$
 donc $\left| \begin{vmatrix} ||\vec{r} - \vec{s} + 2\vec{n}|| \approx 7,81 \ u \\ \theta_{\vec{r} - \vec{s} + 2\vec{n}} \approx 219,81^{\circ} \end{vmatrix} \right|$

12. Impossible, car \vec{p} et \vec{n} sont colinéaires!

13. a)
$$\vec{p} = -5\vec{i} + 12\vec{j}$$
 b) $\vec{p} = 0.5\vec{i} - 1.5\vec{j}$ c) $\vec{p} = -24\vec{i} + 60\vec{j}$

- 14. $\overrightarrow{u} \bullet \overrightarrow{v} \approx 24,32 \ u^2$ (peu importe la méthode)
- 15. a) vrai b) vrai c) vrai d) vrai e) vrai

16. Si
$$a = \frac{-1}{2}$$
, alors $\vec{v} = \left(\frac{1}{2}, \frac{-1}{2}\right)$ et $\vec{t} = \left(\frac{-3}{2}, \frac{-3}{2}\right)$ sont orthogonaux.

- 17. a) v et w sont opposés b) v et w sont orthogonaux c) v et z sont colinéaires
 - d) s est un vecteur nul e) s et v sont colinéaires f) s et p sont colinéaires

18. a) vrai b) vrai c)
$$\overrightarrow{w} = 2\sqrt{2} \overrightarrow{i} - 4\sqrt{2} \overrightarrow{j}$$
 d) $\overrightarrow{z} = \left(0, \frac{\sqrt{2}}{5}\right)$

Page 44 – Problème 1

Le temps requis est environ 0,32 heure (ou 19 minutes et 21 secondes).

Page 45 – Problème 2

La combinaison linéaire est $\overrightarrow{DT} = 70\overrightarrow{u} + 3.5\overrightarrow{v}$.

La clé pourrait donc se trouver à (6 132,18 ; 3 520) ou (10,83 ; 146,89).