Computational Introduction to Number Theory Part II

Ferucio Laurențiu Țiplea

Department of Computer Science "Al.I.Cuza" University of Iași Iași 700506, Romania e-mail: ferucio.tiplea@uaic.ro

Spring 2020

 $Linear\ congruential\ equations$

The Chinese remainder theorem

 $Quadratic\ residues$

 $The\ Legendre\ symbol$

The Jacobi symbol

$Linear\ congruential\ equations$

The Chinese remainder theorem

Quadratic residues

The Legendre symbol

The Jacobi symbo

Linear congruential equations

Theorem 1

Let $a, b, m \in \mathbb{Z}$ with $m \ge 1$. Then, the equation

$$ax \equiv b \mod m$$

is solvable in \mathbb{Z} iff (a, m)|b. Moreover, if it is solvable, then it has exactly (a, m) solutions in \mathbb{Z}_m which are of the form

$$\left(x_0+i\frac{m}{(a,m)}\right) \mod m,$$

where x_0 is an arbitrary integer solution and $0 \le i < (a, m)$.

Example 2

The equation

$$5x \equiv 25 \mod 10$$

has (5,10) = 5 solutions in \mathbb{Z}_{10} : 1, 3, 5, 7, 9.

Linear congruential equations

Algorithm 1: Solving linear congruential equations

```
input: m > 1 and a, b \in \mathbb{Z};
output: all solutions modulo m of ax \equiv b \mod m;
begin
   compute gcd(a, m) := \alpha a + \beta m;
   if gcd(a, m)|b then
       b' := b/gcd(a, m);
       x_0 := \alpha b':
       for i := 0 to gcd(a, m) - 1 do
        print ((x_0 + im/gcd(a, m)) \mod m)
   else
        "no integer solutions"
```

Linear congruential equations

The Chinese remainder theorem

Quadratic residues

The Legendre symbol

The Jacobi symbo

The Chinese remainder theorem

According to D.Wells, the following problem was posed by Sun Tsu Suan-Ching (4th century AD):

There are certain things whose number is unknown. Repeatedly divided by 3, the remainder is 2; by 5, the remainder is 3; and by 7, the remainder is 2. What will be the number?

The mathematical form of this problem is:

$$\begin{cases} x \equiv 2 \mod 3 \\ x \equiv 3 \mod 5 \\ x \equiv 2 \mod 7 \end{cases}$$

This system of equations has a least integer solution which is x = 23.

The Chinese remainder theorem

Theorem 3 (Chinese Remainder Theorem)

Let $k \geq 1$ and m_1, \ldots, m_k be pairwise co-prime integers. Then, for any $b_1, \ldots, b_k \in \mathbb{Z}$, the following system (S) of equations has a unique solution modulo $m_1 \cdots m_k$

$$(S) \left\{ \begin{array}{l} x \equiv b_1 \mod m_1 \\ \cdots \\ x \equiv b_k \mod m_k \end{array} \right.$$

The solution can be obtained as follows:

- compute $c_i = \prod_{j=1, i \neq i}^k m_j$;
- compute an integer solution x_i of the equation $c_i x \equiv b_i \mod m_i$, for any i;
- $x = (c_1x_1 + \cdots + c_kx_k) \mod (m_1 \cdots m_k)$ is the unique solution modulo $m_1 \cdots m_k$ of the system.

The Chinese remainder theorem: example

Example 4

Let (S) be the system

$$(S) \left\{ \begin{array}{l} x \equiv 2 \mod 3 \\ x \equiv 3 \mod 5 \\ x \equiv 2 \mod 7 \end{array} \right.$$

Then:

- $c_1 = 35$, $c_2 = 21$, and $c_3 = 15$:
- $x_1 = 1$ is a solution of $35x \equiv 2 \mod 3$;
- $x_2 = 3$ is a solution of $21x \equiv 3 \mod 5$:
- $x_3 = 2$ is a solution of $15x \equiv 2 \mod 7$:
- $x = (35 \cdot 1 + 21 \cdot 3 + 15 \cdot 2) \mod 105 = 128 \mod 105 = 23$ is the unique solution modulo 105 of the system (S).

The Chinese remainder theorem: application

There is an important application of CRT to the problem of solving equations of the form $f(x) \equiv 0 \mod m$, where f(x) is a polynomial with integer coefficients and variables x.

Theorem 5

Let f(x) be a polynomial with integer coefficients, and m_1, \ldots, m_k be pairwise co-prime integers. Then, $a \in \mathbb{Z}$ is a solution to the equation

$$f(x) \equiv 0 \mod m_1 \cdots m_k \tag{1}$$

if and only if a is a solution to each of the equations

$$f(x) \equiv 0 \mod m_i, \quad 1 \le i \le k. \tag{2}$$

Moreover, the number of solutions in $\mathbb{Z}_{m_1\cdots m_k}$ of the equation (1) is the product of the numbers of solutions in \mathbb{Z}_{m_i} of the equations (2).

The Chinese remainder theorem: application

Example 6

1. The equation

$$x^2 \equiv 1 \mod p$$
,

where p > 2 is a prime number, has exactly 2 solutions in \mathbb{Z}_p , namely x = 1 and x = p - 1.

2. The equation

$$x^2 \equiv 1 \mod p_1 \cdots p_k$$

where p_1, \ldots, p_k are distinct odd primes $(k \ge 2)$, has exactly 2^k solutions in $\mathbb{Z}_{p_1 \cdots p_k}$.

Linear congruential equations

The Chinese remainder theorem

 $Quadratic\ residues$

The Legendre symbol

The Jacobi symbo

Quadratic residues - motivation

Proposition 1 (Solving quadratic congruences)

Let p > 2 be a prime and $a, b, c \in \mathbb{Z}$ such that (a, p) = 1. Then, the quadratic congruence

$$ax^2 + bx + c \equiv 0 \mod p$$

has

- 1. two roots in \mathbb{Z}_p , if $\Delta \equiv y^2 \mod p$ for some $y \in \mathbb{Z}$ with $p \nmid y$;
- 2. one root in \mathbb{Z}_p , if $\Delta \equiv 0 \mod p$;
- 3. no roots, otherwise,

where $\Delta = b^2 - 4ac$.

How hard is to decide if a given $a \in \mathbb{Z}_p^*$ satisfies $a \equiv y^2 \mod p$ for some $y \in \mathbb{Z}$?

Quadratic residues and non-residues

Definition 7

Let p > 2 be a prime and $a \in \mathbb{Z}$ non-divisible by p. a is called a quadratic residue modulo p if $a \equiv x^2 \mod n$ for some integer x.

If a is neither divisible by p nor a quadratic residue modulo p then a is called a quadratic non-residue modulo p.

Remark 1

An integer a non-divisible by a prime p > 2 is a quadratic (non-)residue modulo p if and only if a mod p is a quadratic (non-)residue modulo p.

Denote

- $QR_p = \{a \in \mathbb{Z}_p^* | a \text{ is a quadratic residue modulo } p\}$
- $QNR_p = \{a \in \mathbb{Z}_p^* | a \text{ is a quadratic non-residue modulo } p\}$

Quadratic residues. Basic properties

Proposition 2

Let p > 2 be a prime. Then, $|QR_p| = |QNR_p| = \frac{p-1}{2}$.

Proposition 3

Let p > 2 be a prime. Then:

- 1. $a, b \in QR_p \Rightarrow (ab \mod p) \in QR_p$;
- 2. $a \in QR_p \land b \in QNR_p \Rightarrow (ab \mod p) \in QNR_p$;
- 3. $a, b \in QNR_p \Rightarrow (ab \mod p) \in QR_p$.

Theorem 8 (Euler's Criterion)

Let p > 2 be a prime and $a \in \mathbb{Z}_p^*$. Then,

- 1. $a \in QR_p$ if and only if $a^{\frac{p-1}{2}} \equiv 1 \mod p$;
- 2. $a \in QNR_p$ if and only if $a^{\frac{p-1}{2}} \equiv -1 \mod p$.

Linear congruential equations

The Chinese remainder theorem

Quadratic residues

The Legendre symbol

The Jacobi symbo

Introduced by Adrien-Marie Legendre in 1798 when trying to prove the law of quadratic reciprocity.

Definition 9

Let p > 2 be a prime. The Legendre symbol of $a \in \mathbb{Z}$, denoted $\left(\frac{a}{p}\right)$, is defined by

$$\left(\frac{a}{p}\right) = \begin{cases} 0, & \textit{if } p \mid a \\ 1, & \textit{if } p \not\mid a \textit{ and } a \textit{ is a quadratic residue modulo } p \\ -1, & \textit{if } p \not\mid a \textit{ and } a \textit{ is a quadratic non-residue modulo } p \end{cases}$$

Remark that the Legendre symbol is only defined for primes p > 2. For p=2, all even integers are divisible by p and all odd integers are quadratic residues modulo p.

Proposition 4

Let p > 2 be a prime and $a, b \in \mathbb{Z}$. If $a \equiv b \mod p$ then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$. Therefore, $\left(\frac{a}{p}\right) = \left(\frac{a \mod p}{p}\right)$.

Proposition 5

Let p > 2 be a prime. Then, for any $a \in \mathbb{Z}$, $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$.

Proposition 6

Let p > 2 be a prime. Then, for any $a, b \in \mathbb{Z}$, $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$.

According to the above properties, computing the Legendre symbol modulo p comes down to computing $\left(\frac{-1}{p}\right)$ and $\left(\frac{q}{p}\right)$, for any prime q with 2 < q < p.

Proposition 7

Let p > 2 be a prime. Then,

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = \begin{cases} 1, & \text{if } p \equiv 1 \mod 4 \\ -1, & \text{if } p \equiv 3 \mod 4 \end{cases}$$

Theorem 10 (Gauss' Criterion)

Let p > 2 be a prime and $a \in \mathbb{Z}$ non-divisible by p. Then, $\left(\frac{a}{p}\right) = (-1)^r$, where

$$r = |\{i \in \{1, \dots, (p-1)/2\}| \text{ia mod } p > p/2\}|.$$

Proposition 8

Let p > 2 be a prime. Then,

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}} = \begin{cases} 1, & \text{if } p \equiv \pm 1 \mod 8 \\ -1, & \text{if } p \equiv \pm 3 \mod 8 \end{cases}$$

Theorem 11 (Quadratic reciprocity law)

Let p, q > 2 be distinct primes. Then,

$$\left(\frac{q}{p}\right)\left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}.$$

Equivalently,

$$\left(\frac{q}{p}\right) = \begin{cases} -\left(\frac{p}{q}\right), & \text{if } p, q \equiv 3 \mod 4 \\ \left(\frac{p}{q}\right), & \text{otherwise} \end{cases}$$

Example 12

$$\left(\frac{7}{59}\right) = -\left(\frac{59}{7}\right) = -\left(\frac{3}{7}\right) = \left(\frac{7}{3}\right) = \left(\frac{1}{3}\right) = 1$$

Basic rules for computing the Legendre symbol (review):

1. if
$$a \equiv b \mod p$$
 then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$

$$2. \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$

3.
$$\left(\frac{1}{p}\right) = 1$$

$$4. \left(\frac{-1}{p}\right) = \begin{cases} 1, & \text{if } p \equiv 1 \mod 4 \\ -1, & \text{if } p \equiv 3 \mod 4 \end{cases}$$

5.
$$\left(\frac{2}{p}\right) = \begin{cases} 1, & \text{if } p \equiv \pm 1 \mod 8 \\ -1, & \text{if } p \equiv \pm 3 \mod 8 \end{cases}$$

6.
$$\left(\frac{q}{p}\right) = \begin{cases} \left(\frac{p}{q}\right), & \text{if } p \equiv 1 \mod 4 \text{ or } q \equiv 1 \mod 4 \\ -\left(\frac{p}{q}\right), & \text{if } p \equiv q \equiv 3 \mod 4 \end{cases}$$

for any distinct primes p, q > 2 and $a, b \in \mathbb{Z}$.

Linear congruential equations

The Chinese remainder theorem

Quadratic residues

The Legendre symbol

 $The\ Jacobi\ symbol$

The Jacobi symbol

Introduced by Carl Gustav Jacob Jacobi in 1837 as a generalization of the Legendre symbol.

Definition 13

Let n > 0 be an odd integer. The Jacobi symbol of $a \in \mathbb{Z}$, denoted $\left(\frac{a}{n}\right)$, is defined by

$$\left(\frac{a}{n}\right) = \begin{cases} 1, & \text{if } n = 1\\ \left(\frac{a}{p_1}\right)^{e_1} \cdots \left(\frac{a}{p_k}\right)^{e_k}, & \text{otherwise} \end{cases}$$

where $n = p_1^{e_1} \cdots p_k^{e_k}$ is the prime factorization of n.

Remark 2

- 1. The Jacobi symbol is defined only for odd integers n > 0.
- 2. (a, n) = 1 if and only if $(\frac{a}{n}) \neq 0$, for all $a \in \mathbb{Z}$ and n > 0 odd.

The Jacobi symbol

Theorem 14

The following properties hold:

1. if
$$a \equiv b \mod n$$
 then $\left(\frac{a}{n}\right) = \left(\frac{b}{n}\right)$

2.
$$\left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right) \left(\frac{b}{n}\right)$$

3.
$$\left(\frac{1}{n}\right) = 1$$

$$4. \ \left(\frac{-1}{n}\right) = \begin{cases} 1, & \text{if } n \equiv 1 \mod 4 \\ -1, & \text{if } n \equiv 3 \mod 4 \end{cases}$$

5.
$$\left(\frac{2}{n}\right) = \begin{cases} 1, & \text{if } n \equiv \pm 1 \mod 8 \\ -1, & \text{if } n \equiv \pm 3 \mod 8 \end{cases}$$

6.
$$\left(\frac{m}{n}\right) = \begin{cases} \left(\frac{n}{m}\right), & \text{if } n \equiv 1 \mod 4 \text{ or } m \equiv 1 \mod 4 \\ -\left(\frac{n}{m}\right), & \text{if } n \equiv m \equiv 3 \mod 4 \end{cases}$$

for any distinct odd integers n, m > 0 and $a, b \in \mathbb{Z}$.

The Jacobi symbol

Algorithm 2: Computing the Jacobi symbol

```
input: integer a and odd integer n > 0;
output: (\frac{a}{n})
begin
    b := a \mod n: c := n: s := 1:
   while b > 2 do
        while 4|b| do b := b/4;
       if 2|b then
           if c \mod 8 \in \{3,5\} then s := -s;
           b := b/2;
       if b = 1 then quit;
       if b \mod 4 = 3 = c \mod 4 then
         | s := -s; 
 (b, c) := (c \mod b, b); 
    return s \cdot b;
```

Linear congruential equations

The Chinese remainder theorem

Quadratic residues

The Legendre symbol

The Jacobi symbo

- 1. F.L. Ţiplea: *Fundamentele Algebrice ale Informaticii*, Ed. Polirom, Iași, 2006, pag. 164–172.
- 2. M. B. Nathanson: *Elementary Methods in Number Theory*, Graduate Texts in Mathematics, Springer-Verlag, 2000, pag. 100–120.