ATOM

Overview

The ATOM records present the atomic coordinates for standard amino acids and nucleotides. They also present the occupancy and temperature factor for each atom. Non-polymer chemical coordinates use the HETATM record type. The element symbol is always present on each ATOM record; charge is optional.

Changes in ATOM/HETATM records result from the standardization atom and residue nomenclature. This nomenclature is described in the Chemical Component Dictionary (ftp://ftp.wwpdb.org/pub/pdb/data/monomers).

Record Format

COLUMNS	DATA TYPE	FIELD	DEFINITION
1 - 6	Record name	"ATOM "	
7 - 11	Integer	serial	Atom serial number.
13 - 16	Atom	name	Atom name.
17	Character	altLoc	Alternate location indicator.
18 - 20	Residue name	resName	Residue name.
22	Character	chainID	Chain identifier.
23 - 26	Integer	resSeq	Residue sequence number.
27	AChar	iCode	Code for insertion of residues.
31 - 38	Real(8.3)	х	Orthogonal coordinates for X in Angstroms.
39 - 46	Real(8.3)	У	Orthogonal coordinates for Y in Angstroms.
47 - 54	Real(8.3)	z	Orthogonal coordinates for Z in Angstroms.
55 - 60	Real(6.2)	occupancy	Occupancy.
61 - 66	Real(6.2)	tempFactor	Temperature factor.
77 - 78	LString(2)	element	Element symbol, right-justified.
79 – 80	LString(2)	charge	Charge on the atom.

Details

^{*} ATOM records for proteins are listed from amino to carboxyl terminus.

- * Nucleic acid residues are listed from the $5' \rightarrow 3'$ terminus.
- * Alignment of one-letter atom name such as C starts at column 14, while two-letter atom name such as FE starts at column 13.
- * Atom nomenclature begins with atom type.
- * No ordering is specified for polysaccharides.
- * Non-blank alphanumerical character is used for chain identifier.
- * The list of ATOM records in a chain is terminated by a TER record.
- * If more than one model is present in the entry, each model is delimited by MODEL and ENDMDL records.
- * AltLoc is the place holder to indicate alternate conformation. The alternate conformation can be in the entire polymer chain, or several residues or partial residue (several atoms within one residue). If an atom is provided in more than one position, then a non-blank alternate location indicator must be used for each of the atomic positions. Within a residue, all atoms that are associated with each other in a given conformation are assigned the same alternate position indicator. There are two ways of representing alternate conformation- either at atom level or at residue level (see examples).
- * For atoms that are in alternate sites indicated by the alternate site indicator, sorting of atoms in the ATOM/HETATM list uses the following general rules:
 - In the simple case that involves a few atoms or a few residues with alternate sites, the coordinates occur one after the other in the entry.
 - In the case of a large heterogen groups which are disordered, the atoms for each conformer are listed together.
- * Alphabet letters are commonly used for insertion code. The insertion code is used when two residues have the same numbering. The combination of residue numbering and insertion code defines the unique residue.
- * If the depositor provides the data, then the isotropic B value is given for the temperature factor.
- * If there are neither isotropic B values from the depositor, nor anisotropic temperature factors in ANISOU, then the default value of 0.0 is used for the temperature factor.
- * Columns 79 80 indicate any charge on the atom, e.g., 2+, 1-. In most cases, these are blank.

Verification/Validation/Value Authority Control

The ATOM/HETATM records are checked for PDB file format, sequence information, and packing.

Relationships to Other Record Types

The ATOM records are compared to the corresponding sequence database. Sequence discrepancies appear in the SEQADV record. Missing atoms are annotated in the remarks. HETATM records are formatted in the same way as ATOM records. The sequence implied by ATOM records must be identical to that given in SEQRES, with the exception that residues that have no coordinates, e.g.,

due to disorder, must appear in SEQRES.

Examples

	1		2		3		4	5	6	7	8	
12345678		3456		123								
1234567890123456789012345678901234567890123456789012345678901234567890												
ATOM	32	N	AARG	Α	-3	11.281	86.699	94.383	0.50	35.88	N	
ATOM	33	N	BARG		-3	11.296	86.721	94.521		35.60	N	
ATOM	34		AARG		-3	12.353	85.696	94.456		36.67	C	
ATOM	35		BARG		- 3	12.333	85.862	95.041		36.42	c	
ATOM	36	C	AARG		-3	13.559	86.257	95.222		37.37	C	
ATOM	37	C	BARG		-3	12.759	86.530	96.365		36.39	c	
ATOM	38	0	AARG		- 3	13.753	87.471	95.270		37.74	0	
ATOM	39	0	BARG		-3	12.924	87.757	96.420		37.26	0	
ATOM	40		AARG		-3 -3	12.774	85.306	93.039		37.25	C	
ATOM	41		BARG		-3	13.428	85.746	93.980		36.60	C	
ATOM	42		AARG		-3	11.754	84.432	92.321		38.44	C	
ATOM	43		BARG		-3	12.866	85.172	92.651		37.31	C	
ATOM	44		AARG		-3	11.698	84.678	90.815		38.51	C	
ATOM	45		BARG		-3	13.374	85.886	91.406		37.66	C	
ATOM	46		AARG		-3	12.984	84.447	90.163		39.94	N	
	47		BARG		-3 -3		85.487			38.24		
ATOM	48				-3 -3	12.644 13.202		90.195		40.03	N C	
ATOM			AARG			13.202	84.534	88.850				
ATOM	49		BARG		- 3		85.582	88.947	0.50		C	
ATOM	50 51		LAARG		- 3	12.218	84.840	88.007		40.76	N	
ATOM	51		LBARG		- 3	14.338	86.056	88.706		40.23	N	
ATOM	52	NHZ	2AARG	Α	- 3	14.421	84.308	88.373	0.50	40.45	N	
			•		•			_	_	-		
12245676	1	2457	2	1 2 2	3 45.670001		4 010045 <i>6</i> 7	5	6	7	8	
										123456789012		
ATOM	32	N	AARG		- 3	11.281	86.699	94.383		35.88	N	
ATOM	33		AARG		- 3	12.353	85.696	94.456		36.67	C	
ATOM	34	C	AARG		- 3	13.559	86.257	95.222		37.37	C	
ATOM	35	0	AARG		-3	13.753	87.471	95.270		37.74	0	
ATOM	36		AARG		-3	12.774	85.306	93.039		37.25	C	
ATOM	37		AARG		-3	11.754	84.432	92.321		38.44	C	
ATOM	38		AARG		-3	11.698	84.678	90.815		38.51	C	
ATOM	39		AARG		-3	12.984	84.447	90.163		39.94	N	
ATOM	40		AARG		-3	13.202	84.534	88.850		40.03	C	
ATOM	41		LAARG		-3	12.218	84.840	88.007		40.76	N	
ATOM	42		2AARG		-3	14.421	84.308	88.373	0.50		N	
ATOM	43	N	BARG		-3	11.296	86.721	94.521	0.50		N	
ATOM	44		BARG		-3	12.333	85.862	95.041		36.42	C	
ATOM	45	С	BARG		-3	12.759	86.530	96.365		36.39	С	
ATOM	46	0	BARG		-3	12.924	87.757	96.420		37.26	0	
ATOM	47		BARG		-3	13.428	85.746	93.980		36.60	С	
ATOM	48		BARG	Α	-3	12.866	85.172	92.651		37.31	С	
ATOM												
	49		BARG		-3	13.374	85.886	91.406		37.66	С	
ATOM	50	NE	BARG	Α	-3	12.644	85.487	90.195	0.50	38.24	N	
ATOM ATOM ATOM		NE CZ		A A					0.50 0.50			