Do Now: Graphing practice

1. Graph the line $y = \frac{3}{2}x - 4$ after filling in the values in the blanks.

y-intercept = _____

 $Slope = \underline{\hspace{1cm}}$

In the following two problems, solve for the value of x.

2.
$$x - 4 = 3x - 4$$

$$3. \ \frac{1}{3}(6-9x) = -1$$

4. Graph the two inequalities. Write an "S" to mark the solution set.

$$y \ge \frac{1}{3}x - 3$$

$$y < -x + 5$$

Solve each equation for y.

(a)
$$2x + y = 5$$

(a)
$$3x - 6y = 12$$

Name:

Fitting linear models and interpreting correlation

5. Dr. Huson is saving money each week in his piggy bank. The amount in his bank after a number of weeks is shown in the table.

Wee	eks	3	5	6	10
Savi	ings	\$15.00	20.00	21.50	29.00

State, to the *nearest tenth*, the linear regression equation that approximates the savings balance, y, after x weeks.

Explain what the y-intercept means in the context of the problem.

Explain what the slope means in the context of the problem.

Simplifying polynomials, standard form

6. Simplify the expresion 2x + 3(x + 5) + 4.

7. Write the expression $3x + 2x^2 - 6x^2 + 9x + 5 + 3x$ as a polynomial in standard form.

8. Write the expression $5x + 4x^2(2x + 7) - 6x^2 - 9x$ as a polynomial in standard form.

Graphing quadratic functions

9. Given the quadratic function $f(x) = x^2 + 1$, find the row differences.

x	f(x)
-3	10
-2	5
-1	2
0	1
1	2
2	5
3	10

Graph the function as a line over the domain $-3 \le x \le 3$.

Rate of change

10. Find the slope of the function from the ratio of the line differences.

	x	f(x)
	-2	-1
(a)	-1	1
(a)	0	3
	1	5
	2	7

Change in $y = \underline{\hspace{1cm}}$

Change in $y = \underline{\hspace{1cm}}$

Change in x =

Change in x =

Slope = _____

Slope = _____

11. Find the slope of the function. If the rate of change is not constant, write, "Non-linear. The rate of change is not constant."

	x	f(x)
	-3	0
(a)	-1	2
(a)	0	3
	1	4
	3	6

$$\begin{array}{c|cccc}
 & x & f(x) \\
 & -4 & -9 \\
 & -2 & -3 \\
\hline
 & 0 & +1 \\
 & 2 & -3 \\
\hline
 & 4 & -9 \\
\end{array}$$

Slope = _____

Slope = _____

12. Fill in the T-chart, plot the points, and draw the line.

Write down the slope and y-intercept of the line.

m =

b =

Circle the row for the y-intercept.