ANALISI 1 LEZIONE 104 05/04/2017 [Assioui di IR] ~ weierstrass VIA DIRETTA (che passa per Bolzano - Weienstrass) Februa (B.W.) Sia au ma succ. di numeri reali Dimitata (aoè ∃MERt.c. |an] ≤ M per agui m∈N). Allora esiste una s. succ. che ha limite reale, vioè Fax ER Fmx succ. crescente strett. de naturali t-c. $a_{m_{\kappa}} \rightarrow a_{\infty}$ Dim 1 (bounds living / livery) Sia 1. := Diusup au. Poidie - M < au < M + M & N, di siano -M ≤ L ≤ M, quiudi in particolare L ∈ R Per la canatterize asi one del li usup come maxim, esiste ank -> L Poters fore de ses discorso con il Dinning. Dim. 2] (Usando solo ofi assioni di R, cioè sup/inf) Rendo la succ. au e considero D'insienne A = { x e R t.c. au < x per infiniti indici me M} L'ausieure A contierre almeno almeno 41 e vou contierre hulla < - 4 Inolne a ∈ A e b>a => b∈ A, quindi À è una semiretta,

Corollanio Sia	ASR uu	insieme chin	. 02.
Sìa	{an } ⊆ A	una succession	oue Dimitata.
	_		ucc. di naturali crescente t.c.
	$a_{m_k} \longrightarrow a$	\$	
Dim J Essendo	au Dimitato	per B-W.	esiste ank -> ane R.
Dico che	an e Clos	(A) = A	
		perdú Aè	cluuso
Devo d'u	. du sopri	intervallo (a	los-E, aso+E) contiene
			e del forto che contiene
		astawa grau	
, ,		0 0 -	
Definizione (In	rsieure courpos	tho) Uu soth	volusieure A S TR si dice
COMPATTO Se			
Escupio Uu i	utemallo [a	16] è compat	40
		1	eupatho (no chiuso)
una s			sa una uon compatta.
TEOREMA DI W	EIERSTRASS	Sia ASR	e sia f: A → R
une feminione			
(i) & continuo	''		
Cii) A compatto			
Allora esistom			
	To		
U	uax {f(x):	x e A }	
	min { f (x):		
		1	
	e (A) =	= immagine d	elle funcione
	T	(sous "dell	
		2000 2.01	

Esercizio (che uou ha a che fore con W.)
Sia A = R cu insieure compatto. Allora esistamo per forza
min A e max A
Diu. Facciausco per il min. Pougo D:= cuf A ∈ R v {-∞}
Essendo A Dimitorto, di sicuro l ∈ R.
Per il solito Denna esiste una succ. {on j ⊆ A t.c. on → l. Essendo À chiuso, di siceno l ∈ A, e quiadi l= mia A.
Oss. Tutto R è un cluiuso, ma non un compatto
Re sous gli cuici sottoiusieuri de sous contempora
heamente aperti e chiusi.
Oss, Nou è vero che
o de feurideir continue mandaire durai in chinsi
Escupio $f(x) = avotau \times A := [0, +\infty) cluiuso$ $f(A) = [0, \frac{\pi}{2}] \text{ non cluiuso}$
· De funcioni continue mandano Dianitati in Dimitati
Esempio $f(x) = \frac{1}{x}$ $A = (0,1)$ Dimitato
P(A) = (1, too) non Dinitato.
Agginuto dopo video: nel finale della din. di veienstrass a sono 2 indiai stagliati
e la prima disugnaplianta è vera ma inutile