

AD-A058 137

GEORGE WASHINGTON UNIV WASHINGTON D C PROGRAM IN LOG--ETC F/G 12/2
MINIMIZING A PROJECT COST WITH BOUNDS ON THE EXPECTATION AND VA--ETC(U)

N00014-75-C-0729

UNCLASSIFIED

SERIAL-T-381

NL

| OF |
ADA
058137

END
DATE
FILED
10-78
DDC

6
LEVEL HD

ADA058137

J No.
DDC FILE COPY

STUDENTS FACULTY STUDY R
ESEARCH DEVELOPMENT FUT
URE CAREER CREATIVITY CO
MMUNITY LEADERSHIP TECH
NOLOGY FRONTIERS DESIGN
ENGINEERING APPENDIX
GEORGE WASHINGTON UNIV

D D C
REF ID: A
AUG 30 1978
REGULAR
A

INSTITUTE FOR MANAGEMENT
SCIENCE AND ENGINEERING
SCHOOL OF ENGINEERING
AND APPLIED SCIENCE

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED

AD No. _____
DDC FILE COPY

ADA058137

⑥ MINIMIZING A PROJECT COST WITH BOUNDS ON THE
EXPECTATION AND VARIANCE OF THE DELAY TIME.

⑦ by

⑩ James E. Falk

⑨ Scientific rept.,

⑭

Serial-T-381
30 June 1978

⑪ 30 Jun 78

⑫ 15 p.

The George Washington University
School of Engineering and Applied Science
Institute for Management Science and Engineering

⑯ Program in Logistics
Contract N00014-75-C-0729
Project NR 347 020
Office of Naval Research

This document has been approved for public
sale and release; its distribution is unlimited.

405337

78 08 21 033 LB

NONE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER T-381	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) MINIMIZING A PROJECT COST WITH BOUNDS ON THE EXPECTATION AND VARIANCE OF THE DELAY TIME		5. TYPE OF REPORT & PERIOD COVERED SCIENTIFIC
7. AUTHOR(s) JAMES E. FALK		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS THE GEORGE WASHINGTON UNIVERSITY PROGRAM IN LOGISTICS WASHINGTON, D. C. 20037		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS OFFICE OF NAVAL RESEARCH ARLINGTON, VIRGINIA 22217 ATTN: CODE 430D		12. REPORT DATE 30 JUNE 1978
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 12
		15. SECURITY CLASS. (of this report) NONE
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) DISTRIBUTION OF THIS REPORT IS UNLIMITED.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) NONLINEAR PROGRAMMING PROJECT SCHEDULING INFINITELY CONSTRAINED PROGRAMMING		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) In this paper we discuss a problem involving a project consisting of a number of tasks, each of which must be performed in a sequential manner. Any of the tasks is subject to a potential delay of known duration beyond its scheduled starting time. The task delay times may be decreased with the addition of funding. We seek to minimize the cost of completing the project, subject to bounds on both the expectation and variance of the total delay time. (cont'd)		

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

S/N 0102-014-6601 |

NONE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Page

NONE

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract continued.

cont. An algorithm is presented to solve the general problem. An example illustrates the method.

ACCESSION NO.	
AT&T	White Section <input checked="" type="checkbox"/>
GTE	Buff Section <input type="checkbox"/>
UNARMED	
NOTIFICATION	
DISTRIBUTION/AVAILABILITY CODES	
DISL	AVAIL AND OR <input type="checkbox"/>
A	

NONE

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering
Program in Logistics

Abstract
of
Serial T-381
30 June 1978

MINIMIZING A PROJECT COST WITH BOUNDS ON THE
EXPECTATION AND VARIANCE OF THE DELAY TIME

by
James E. Falk

In this paper we discuss a problem involving a project consisting of a number of tasks, each of which must be performed in a sequential manner. Any of the tasks is subject to a potential delay of known duration beyond its scheduled starting time. The task delay times may be decreased with the addition of funding.

We seek to minimize the cost of completing the project, subject to bounds on both the expectation and variance of the total delay time.

An algorithm is presented to solve the general problem. An example illustrates the method.

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics

MINIMIZING A PROJECT COST WITH BOUNDS ON THE
EXPECTATION AND VARIANCE OF THE DELAY TIME

by

James E. Falk

Introduction

We consider here a "project" consisting of a set of ordered "tasks" numbered $1, \dots, n$. In this paper, we make the simplifying assumption that these tasks must be performed serially, and in the order in which they are numbered. The results contained herein, however, can be easily generalized to partially ordered tasks (see Falk [2]).

We suppose that each task j may be delayed s_j units beyond its scheduled start time. A delay in any task will thus result in a delay of the project completion time. The total project delay is therefore (see Rose [4]):

$$S = \max_{1 \leq j \leq n} \{s_j\}.$$

If each task will undergo a delay of s_j units with probability p_j , the expected project delay, $E(S)$, can be computed. If we further assume that each delay time s_j is a variable which can be controlled at a cost $c_j(s_j)$, we may consider the problem

$$\text{minimize} \sum_{j=1}^n c_j(s_j)$$

$$\text{subject to } E(S) \leq e \\ S \geq 0 ,$$

where e is a given, prescribed upper bound on the project delay. This problem was solved by Falk and Rose [3], who showed that $E(S)$ was representable as the maximum of a set of linear functions of s_1, \dots, s_n .

Thus $E(S)$ is convex. An efficient solution procedure was then realized for infinitely constrained problems [1].

In this paper, an additional constraint of the form

$$V(S) \leq v$$

is imposed, where $V(S)$ is the variance of the random variable S and v is a given, prescribed upper bound on this variance. It will be shown that $V(S)$ can also be realized as the maximum of a set of convex functions in a manner similar to the development of $E(S)$. It turns out that $V(S)$ is, therefore, convex. A modification of the previously developed algorithm is presented to treat the new constraint.

Background

A project consists of tasks $1, \dots, n$, which must be performed in order. Each task may undergo a delay of s_j time units, with given probability p_j . The project delay is then

$$S = \max_{1 \leq j \leq n} \{s_j\} .$$

Let $\sigma = (\sigma_1, \dots, \sigma_n)$ denote a permutation of the set $\{1, \dots, n\}$ which ranks the quantities s_j , i.e.:

$$s_{\sigma_1} \geq s_{\sigma_2} \geq \dots \geq s_{\sigma_n} . \quad (1)$$

Then the *expected* project delay is derived to be [4]:

$$E(S) = \sum_{j=1}^n \left[p_{\sigma_j} \prod_{k=1}^{j-1} (1 - p_{\sigma_k}) \right] s_{\sigma_j}, \quad (2)$$

where

$$\prod_{k=1}^0 (1 - p_{\sigma_k}) \doteq 1. \quad (3)$$

Note that the expression (2) depends on the ranking of the quantities s_j . In particular, if the s_j are considered to be variables, the linear expression (2) representing $E(S)$ changes whenever the ranking of the s_j changes.

Define, for each permutation σ of $\{1, \dots, n\}$,

$$E_\sigma(S) = \sum_{j=1}^n \left[p_{\sigma_j} \prod_{k=1}^{j-1} (1 - p_{\sigma_k}) \right] s_{\sigma_j}, \quad (4)$$

where (3) holds. Thus $E_\sigma(S) = E(S)$ if the ranking of the set $\{s_j\}$ is that prescribed by σ , i.e., if (1) holds. In any event, $E_\sigma(S)$ is a linear function of s_1, \dots, s_n , defined for all s_1, \dots, s_n .

It was shown in [3] that

$$E(S) = \max_{\sigma \in \Sigma} E_\sigma(S), \quad (5)$$

where Σ is the set of all permutations of the integers $1, \dots, n$. This result is important as it establishes the convexity of E , and also allows the set $\{S: E(S) \leq e\}$ to be represented as the intersection of a finite (albeit very large) number of half spaces.

We now assume that there is given a cost function $c_j(s_j)$, representing the cost of reducing the potential delay of task j to s_j units. For applications, c_j would normally be decreasing, reflecting the fact that long delays are cheap, but reduction in such delays would require some expense, e.g., additional servers or service facilities.

The problem becomes

$$\text{minimize } C(S) = \sum_{j=1}^n c_j(s_j)$$

$$\text{subject to } E_\sigma(S) \leq e, \quad \text{for all } \sigma \in \Sigma, \\ S \geq 0.$$

This is the program solved in [3]. Because of the potentially large number of constraints (if $n = 10$, $|\Sigma| = 3,628,800$), the Blankenship-Falk method for infinitely constrained problems [1] is applied. As specialized to the above problem, this algorithm becomes

Step 0: Set $k = 0$, select $\sigma^0 \in \Sigma$, set $F_0 = \{\sigma^0\}$.

Step 2: Given $F_k = \{\sigma^0, \dots, \sigma^k\}$, solve the problem

$$\text{minimize } C(S)$$

$$\text{subject to } E_\sigma(S) \leq e, \quad \text{for all } \sigma \in F_k, \\ S \geq 0,$$

to get a trial solution S^k .

Step 3: Test the trial solution S^k as a possible solution of the desired problem. To do this, we generate a permutation σ^{k+1} by simply ranking the components of S^k . If $\sigma^{k+1} \in S^k$, we are done, since then $E_\sigma(S^k) \leq 0$ for all $\sigma \in \Sigma$. Otherwise set $F_{k+1} = F_k \cup \{\sigma^{k+1}\}$ and return to Step 2.

This method will converge in a finite number of steps, provided only that $C(S)$ is lower semicontinuous. If $C(S)$ is strictly convex, we can modify the rule for updating F_k by dropping constraints which are not binding at S^k , and then keep the total number of constraints imposed on the subproblems manageable.

The Variance

For a given set of task delays ordered by

$$s_{\sigma_1} \geq s_{\sigma_2} \geq \dots \geq s_{\sigma_n}, \quad (6)$$

the variance $V(S)$ may be written

$$\begin{aligned} V(S) &= E((S - E(S))^2) \\ &= \sum_{j=0}^n p_{\sigma_j} (s_{\sigma_j} - E(S))^2 \end{aligned}$$

where $s_{\sigma_0} = 0$, $p_{\sigma_0} = \prod_{k=1}^n (1 - p_k)$, and

$$p_{\sigma_j} = p_{\sigma_j} \prod_{k=1}^{j-1} (1 - p_{\sigma_k}), \quad (j \neq 0).$$

This expression for $V(S)$ is, of course, only valid over the region defined by (6). It is easy to show that $V(S)$ is convex over that region. To simplify notation in the following theorem, we shall assume $\sigma_j = j$, i.e., σ is the identity permutation I.

Theorem. The function

$$V_I(S) \triangleq \sum_{j=0}^n p_j (s_j - E_I(S))^2$$

is convex, where $\sum_{j=0}^n p_j = 1$, $p_j \geq 0$.

Proof. $\sum_{j=0}^n p_j (s_j - E_I(S))^2 = \sum_j p_j s_j^2 - \left(\sum_j p_j s_j \right)^2$. Therefore

$$\nabla V_I(S) = 2 \begin{pmatrix} p_0 s_0 \\ \vdots \\ p_n s_n \end{pmatrix} - 2 \left(\sum_j p_j s_j \right) \begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix},$$

so that

$$\nabla^2 V_I(S) = 2 \left[\begin{pmatrix} p_0 & 0 & \dots & 0 \\ 0 & \ddots & & \\ \vdots & & \ddots & \\ 0 & 0 & \dots & p_n \end{pmatrix} - \begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix}^{(p_0, \dots, p_n)} \right],$$

and this is positive semidefinite by the Cauchy-Schwartz Inequality.

Following the treatment of $E(S)$, define

$$V_\sigma(S) = E_\sigma(S^2) - (E_\sigma(S))^2.$$

This expression is defined for all S , but gives the correct value for $V(S)$ only when the components of S are ordered as prescribed by σ .

We may write

$$V(S) = \max_{\sigma} E_\sigma(S^2) - \max_{\sigma} (E_\sigma(S))^2,$$

and, even though both of the above maxima are attained at the same σ , we may not write $V(S) = \max_{\sigma} V_{\sigma}(S)$. It is true, however, that

$$V(S) = \max_{\sigma} E_\sigma((S - E(S))^2),$$

as follows from the result (5). We now show that the function being maximized is convex in S .

Theorem. $E_\sigma((S - E(S))^2)$ is convex for all S .

Proof. $E_\sigma((S - E(S))^2) = \sum_{j=0}^n p_{\sigma_j} (S_{\sigma_j} - E(S))^2$, where $p_{\sigma_0} = \prod_{k=1}^n (1 - p_k)$ and $p_{\sigma_j} = p_{\sigma_j} \prod_{k=1}^{j-1} (1 - p_{\sigma_k})$. Then

$$\begin{aligned}
 E_{\sigma}((S - E(S))^2) &= \sum_{j=0}^n p_{\sigma_j} \left(S_{\sigma_j}^2 - 2S_{\sigma_j} E(S) + E^2(S) \right) \\
 &= E_{\sigma}(S^2) - 2E_{\sigma}(S)E(S) + E^2(S) \\
 &= E_{\sigma}(S^2) + (E(S) - E_{\sigma}(S))^2 - E_{\sigma}^2(S).
 \end{aligned}$$

Now $E(S) - E_{\sigma}(S)$ is a convex, nonnegative function of S . Therefore, its square is convex. Also, $E_{\sigma}(S^2) - E_{\sigma}^2(S)$ is convex by the previous theorem. The result is immediate.

It follows immediately that $V(S)$ is convex.

The Problem

We now address a natural generalization of the problem outlined in the introduction by adding a restriction on the variance of the project delay time. The problem becomes

$$\begin{array}{ll}
 \text{minimize} & C(S) \\
 \text{subject to} & \left. \begin{array}{l} E(S) \leq e \\ V(S) \leq v \\ S \geq 0 \end{array} \right\} \text{Problem P,}
 \end{array}$$

where e and v are given upper bounds on the expectation and variance of the project delay time.

Unfortunately, imposition of the family of constraints

$$E_{\sigma} (S - E(S))^2 \leq v, \quad \text{for all } \sigma$$

appears difficult to work with. We therefore consider a related problem

$$\begin{array}{ll}
 \text{minimize} & C(S) \\
 \text{subject to} & \left. \begin{array}{l} E_{\sigma}(S) \leq e \\ V_{\sigma}(S) \leq v \\ S \geq 0 \end{array} \right\} \text{Problem P'.}
 \end{array}$$

The feasible region of Problem P' is contained in the feasible region of Problem P . This follows since

$$V_\sigma(S) \leq v, \quad \text{for all } \sigma$$

implies

$$\bar{V}_\sigma(S) \leq v,$$

for that $\bar{\sigma}$ agreeing with the order on S .

The solution of Problem P' follows the algorithm prescribed in the preceding section. Step 3 is implemented in precisely the same manner as before, i.e., a trial solution S^t is checked as the actual solution by ranking its components to get σ^t . If both $E_{\sigma^t}(S^t) \leq e$ and $V_{\sigma^t}(S^t) \leq v$, we are done. Otherwise we add σ^t to the set F_k , thus forming F_{k+1} , and continue.

Note that there is some chance that a solution of P' is not a solution of P , since P is a relaxation of P' . If $C(S)$ is convex, any local solution of P is global. Therefore, a solution of P' can be checked for local (and thus global) optimality of P . Furthermore, it is possible that the solution of P' is sufficient for a decision maker. The variance is simply a measure of distance from the mean, but so is the function $\bar{V}(S) = \max\{V_\sigma(S) : \sigma \in \Sigma\}$. Furthermore, in all of the problems which we solved, $V(S) = \bar{V}(S)$ at a solution.

Example

$$\text{minimize } C(S) = -5S_1 - 10S_2 - 2S_3 + 138$$

$$\text{subject to } E(S) \leq 6$$

$$V(S) \leq 3$$

$$R \begin{cases} 0 \leq S_1 \leq 10 & P_1 = 0.4 \\ 0 \leq S_2 \leq 8 & P_2 = 0.5 \\ 0 \leq S_3 \leq 4 & P_3 = 0.8 \end{cases}$$

We select (arbitrarily) $\sigma^0 = (1, 2, 3)$, and form the problem

minimize $C(S)$

$$\text{subject to } 0.4S_1 + 0.3S_2 + 0.24S_3 \leq 6$$

$$0.4S_1^2 + 0.3S_2^2 + 0.24S_3^2$$

$$- (0.4S_1 + 0.3S_2 + 0.24S_3)^2 \leq 3$$

$$S \in R.$$

The solution of this problem is $S^0 = (5.9584, 6.8779, 4)$. This cannot be the desired solution, as the ranking it implies is $\sigma^1 = (2, 1, 3)$. We therefore impose the additional constraints

$$0.2S_1 + 0.5S_2 + 0.24S_3 \leq 6$$

$$0.2S_1^2 + 0.5S_2^2 + 0.24S_3^2$$

$$- (0.2S_1 + 0.5S_2 + 0.24S_3)^2 \leq 3,$$

and obtain a solution $S^1 = (6.4601, 6.4601, 4)$ with value 33.0985.

Since the ranking of S^1 is either $(2, 1, 3)$ or $(1, 2, 3)$, both of which have already been imposed, we are done.

REFERENCES

[1] BLANKENSHIP, JERRY and JAMES E. FALK (1976). Infinitely constrained optimization problems. *J. Optimization Theory Appl.* $\sim\sim$ (2) (June)

[2] FALK, JAMES E. (1976). Minimizing the cost of completing a project subject to a bound on the expected delay time. *Advances in Operations Research*, proceedings of *EURO II*, Second European Congress on Operations Research, Stockholm (Marc Roubens, ed.). North-Holland (November-December).

[3] FALK, JAMES E. and MARSHALL ROSE (1976). Minimizing the cost of servicing a project subject to an expected completion time constraint. *Operations Res.* $\sim\sim$ (4) (July-August).

[4] ROSE, MARSHALL (1971). Computing the expected end-produce service time using stochastic item delays. *Operations Res.* $\sim\sim$ 19 524-540.

THE GEORGE WASHINGTON UNIVERSITY
Program in Logistics
Distribution List for Technical Papers

The George Washington University
Office of Sponsored Research
Library
Vice President H. F. Bright
Dean Harold Liebowitz
Mr. J. Frank Doubleday

ONR
Chief of Naval Research
(Codes 200, 430D, 1021P)
Resident Representative

OPNAV
OP-40
DCNO, Logistics
Navy Dept Library
OP-911
OP-964

Naval Aviation Integrated Log Support

NAVCOSACT

Naval Cmd Sys Sup Activity Tech Library

Naval Electronics Lab Library

Naval Facilities Eng Cmd Tech Library

Naval Ordnance Station
Louisville, Ky.
Indian Head, Md.

Naval Ordnance Sys Cmd Library

Naval Research Branch Office
Boston
Chicago
New York
Pasadena
San Francisco

Naval Research Lab
Tech Info Div
Library, Code 2029 (ONRL)

Naval Ship Engng Center
Philadelphia, Pa.
Hyattsville, Md.

Naval Ship Res & Dev Center

Naval Sea Systems Command
Tech Library
Code 073

Naval Supply Systems Command
Library
Capt W. T. Nash

Naval War College Library
Newport

BUPERS Tech Library

FMSO

Integrated Sea Lift Study

USN Ammo Depot Earle

USN Postgrad School Monterey
Library
Dr. Jack R. Borsting
Prof C. R. Jones

US Marine Corps
Commandant
Deputy Chief of Staff, R&D

Marine Corps School Quantico
Landing Force Dev Ctr
Logistics Officer

Armed Forces Industrial College

Armed Forces Staff College

Army War College Library
Carlisle Barracks

Army Cmd & Gen Staff College

US Army HQ
LTC George L. Slyman
Army Trans Mat Command

Army Logistics Mgmt Center
Fort Lee

Commanding Officer, USALDSRA
New Cumberland Army Depot

US Army Inventory Res Ofc
Philadelphia

HQ, US Air Force
AFADS 3

Griffiss Air Force Base
Reliability Analysis Center

Maxwell Air Force Base Library

Wright-Patterson Air Force Base
HQ, AF Log Command
Research Sch Log

Defense Documentation Center

National Academy of Science
Maritime Transportation Res Board Library

National Bureau of Standards
Dr E. W. Cannon
Dr Joan Rosenblatt

National Science Foundation

National Security Agency

WSEG

British Navy Staff

Logistics, OR Analysis Establishment
National Defense Hdqtrs, Ottawa

American Power Jet Co
George Chernowitz

ARCON Corp

General Dynamics, Pomona

General Research Corp
Dr Hugh Cole
Library

Planning Research Corp
Los Angeles

Rand Corporation
Library

Carnegie-Mellon University
Dean H. A. Simon
Prof G. Thompson

Case Western Reserve University
Prof B. V. Dean
Prof John R. Isbell
Prof M. Mesarovic
Prof S. Zacks

Cornell University
Prof R. E. Bechhofer
Prof R. W. Conway
Prof J. Kiefer
Prof Andrew Schultz, Jr.

Cowles Foundation for Research
Library
Prof Herbert Scarf
Prof Martin Shubik

Florida State University
Prof R. A. Bradley

Harvard University
Prof K. J. Arrow
Prof W. G. Cochran
Prof Arthur Schleifer, Jr.

New York University
Prof O. Morgenstern

Princeton University
Prof A. W. Tucker
Prof J. W. Tukey
Prof Geoffrey S. Watson

Purdue University	Prof J. F. Hannan
Prof S. S. Gupta	Michigan State University
Prof H. Rubin	
Prof Andrew Whinston	
Stanford	Prof H. O. Hartley
Prof T. W. Anderson	Texas A & M Foundation
Prof G. B. Dantzig	
Prof F. S. Hillier	
Prof D. L. Iglehart	
Prof Samuel Karlin	
Prof G. J. Lieberman	
Prof Herbert Solomon	
Prof A. F. Veinott, Jr.	
University of California, Berkeley	Mr Gerald F. Hein
Prof R. E. Barlow	NASA, Lewis Research Center
Prof D. Gale	
Prof Rosedith Sitgreaves	
Prof L. M. Tichinsky	
University of California, Los Angeles	Prof W. M. Hirsch
Prof J. R. Jackson	Courant Institute
Prof Jacob Marschak	
Prof R. R. O'Neill	
Numerical Analysis Res Librarian	
University of North Carolina	Dr Alan J. Hoffman
Prof W. L. Smith	IBM, Yorktown Heights
Prof M. R. Leadbetter	
University of Pennsylvania	Dr Rudolf Huesser
Prof Russell Ackoff	University of Bern, Switzerland
Prof Thomas L. Saaty	
University of Texas	Prof J. H. K. Kao
Prof A. Charnes	Polytech Institute of New York
Yale University	Prof W. Kruskal
Prof F. J. Anscombe	University of Chicago
Prof I. R. Savage	
Prof M. J. Sobel	
Dept of Admin Sciences	
Prof Z. W. Birnbaum	Prof C. E. Lemke
University of Washington	Rensselaer Polytech Institute
Prof B. H. Bissinger	
The Pennsylvania State University	Prof Loynes
Prof Seth Bonder	University of Sheffield, England
University of Michigan	
Prof G. E. P. Box	Prof Steven Nahmias
University of Wisconsin	University of Pittsburgh
Dr Jerome Bracken	
Institute for Defense Analyses	Prof D. B. Owen
Prof H. Chernoff	Southern Methodist University
MIT	
Prof Arthur Cohen	Prof E. Parzen
Rutgers – The State University	State University New York, Buffalo
Mr Wallace M. Cohen	
US General Accounting Office	Prof H. O. Posten
Prof C. Derman	University of Connecticut
Columbia University	
Prof Paul S. Dwyer	Prof R. Remage, Jr.
Mackinaw City, Michigan	University of Delaware
Prof Saul I. Gass	Dr Fred Rigby
University of Maryland	Texas Tech College
Dr Donald P. Gaver	
Carmel, California	Mr David Rosenblatt
Dr Murray A. Geisler	Washington, D. C.
Logistics Mgmt Institute	
	Prof M. Rosenblatt
	University of California, San Diego
	Prof Alan J. Rowe
	University of Southern California
	Prof A. H. Rubenstein
	Northwestern University
	Dr M. E. Salveson
	West Los Angeles
	Prof Edward A. Silver
	University of Waterloo, Canada
	Prof R. M. Thrall
	Rice University
	Dr S. Vajda
	University of Sussex, England
	Prof T. M. Whitin
	Wesleyan University
	Prof Jacob Wolfowitz
	University of Illinois
	Mr Marshall K. Wood
	National Planning Association
	Prof Max A. Woodbury
	Duke University

THE GEORGE WASHINGTON UNIVERSITY

BENEATH THIS PLAQUE
IS BURIED
A VAULT FOR THE FUTURE
IN THE YEAR 2056

THE STORY OF ENGINEERING IN THIS YEAR OF THE PLACING OF THE VAULT AND
ENGINEERING HOPES FOR THE TOMORROWS AS WRITTEN IN THE RECORDS OF THE
FOLLOWING GOVERNMENTAL AND PROFESSIONAL ENGINEERING ORGANIZATIONS AND
THOSE OF THIS GEORGE WASHINGTON UNIVERSITY.

BOARD OF COMMISSIONERS DISTRICT OF COLUMBIA
UNITED STATES ATOMIC ENERGY COMMISSION
DEPARTMENT OF THE ARMY UNITED STATES OF AMERICA
DEPARTMENT OF THE NAVY UNITED STATES OF AMERICA
DEPARTMENT OF THE AIR FORCE UNITED STATES OF AMERICA
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
NATIONAL BUREAU OF STANDARDS U.S. DEPARTMENT OF COMMERCE
AMERICAN SOCIETY OF CIVIL ENGINEERS
AMERICAN INSTITUTE OF ELECTRICAL ENGINEERS
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
THE SOCIETY OF AMERICAN MILITARY ENGINEERS
AMERICAN INSTITUTE OF MINING & METALLURGICAL ENGINEERS
DISTRICT OF COLUMBIA SOCIETY OF PROFESSIONAL ENGINEERS INC.
THE INSTITUTE OF RADIO ENGINEERS INC.
THE CHEMICAL ENGINEERS CLUB OF WASHINGTON
WASHINGTON SOCIETY OF ENGINEERS
FAULKNER KINGSBURY & STENHOUSE ARCHITECTS
CHARLES H. TOMPKINS COMPANY - BUILDERS
SOCIETY OF WOMEN ENGINEERS
NATIONAL ACADEMY OF SCIENCES NATIONAL RESEARCH COUNCIL

THE PURPOSE OF THIS VAULT IS INSPIRED BY AND IS DEDICATED TO
CHARLES HOOK TOMPKINS, DOCTOR OF ENGINEERING
BECAUSE OF HIS ENGINEERING CONTRIBUTIONS TO THIS UNIVERSITY, TO HIS
COMMUNITY, TO HIS NATION, AND TO OTHER NATIONS.

BY THE GEORGE WASHINGTON UNIVERSITY

ROBERT V. FLEMING
CHAIRMAN OF THE BOARD OF TRUSTEES

GEOYD H. MARVIN
PRESIDENT

JUNE THE TWENTIETH
1956

To cope with the expanding technology, our society must be assured of a continuing supply of rigorously trained and educated engineers. The School of Engineering and Applied Science is completely committed to this objective.