Discrete Math-2022 Fall-Quiz-2

Name:

Problem 1. (11 Points) Determine whether each of the following statements is correct or not.

$2. \ \{\emptyset\} \in \{\{\emptyset\}\} $	true true	<i>'</i> .	false)
		/	folgo)
$3. \{\emptyset\} \subset 2^{\emptyset}$,	false)
ο. (ν) C -	true	/	false)
$4. \{\emptyset\} \subset \{\emptyset, \{\emptyset\}\} $	true	/	false)
$5. \{\{\emptyset\}\} \subset \{\emptyset, \{\emptyset\}\} $	true	/	false)
6. $\emptyset \in 2^{\emptyset}$	true	/	false)
7. $\emptyset \subseteq \emptyset$	true	/	false)
8. If $A \subseteq B$ and $B \in C$, then $A \in C$ (true	/	false)
9. If $A \in B$ and $B \not\subseteq C$, then $A \notin C$	true	/	false)
10. If $A \notin B$ and $B \subseteq C$, then $A \notin C$	true	/	false)
11. If $A \notin B$ and $B \not\subseteq C$, then $A \notin C$	true	/	false)

Answer:

1-5. F,T,F,T,T

6-11. T,T,F,F,F,F.

Problem 2. (6 Points) Determine the cardinality for each of the following sets

- 1. $2^{2^{\emptyset}} (\emptyset \times \{a, b\})$
- 2. $\emptyset \cup (2^{\{\emptyset\}} \{\emptyset\})$
- 3. $2^{2^{\emptyset}} 2^{\emptyset}$

Answer:

- 1. $\{\emptyset, \{\emptyset\}\}, 2.$
- 2. $\{\{\emptyset\}\}, 1.$
- 3. $\{\{\emptyset\}\}, 1.$

Problem 3. (10 Points) A relation $R \subseteq A \times A$ is called *circular* if

$$(\forall x)(\forall y)(\forall z)((x \in A \land y \in A \land z \in A \land xRy \land yRz) \rightarrow zRx)$$

- 1. Provide a relation that is circular but is not transitive
- 2. Provide a relation that is transitive but is not circular
- 3. Prove that, for any non-empty relation R, it is an equivalence relation if and only if it is both reflexive and circular.

Answer:

$$1. \stackrel{a \longleftrightarrow b \longrightarrow}{\longrightarrow} c$$

$$a \xrightarrow{b} c$$

- 3. Let the binary relation be R on a non-empty set S. The relation R is called circular if aRb and bRc, then cRa. A relation is called equivalence if it is reflexive, symmetric, and transitive.
 - (\Leftarrow) Let the relation R be reflexive and circular with $(a,b) \in R$. By reflexivity, we have

$$(\forall b \in S)(\langle b, b \rangle \in R).$$

Then

$$\langle a, b \rangle, \langle b, b \rangle \in R.$$

For circular, we have $\langle b, a \rangle \in R$, so the relation is symmetric. Since R is symmetric and circular, R is transitive. So, the relation R is an equivalence relation.

 (\Longrightarrow) Since R is transitive and symmetric, we know that R is circular. Thus R is reflexive and circular.

Problem 4. (8 Points)

Suppose that $A \neq \emptyset$ is a non-empty set. Determine whether or not each of the following statements is correct. If correct, provide a short argument for why it is correct (do not need formal proof). Otherwise, provide a counter example.

- 1. If $R \subseteq A \times A$ is inreflexive, then R^2 is also inreflexive.
- 2. If $R \subseteq A \times A$ is anti-symmetric, then R^2 is also anti-symmetric.

Answer:

- 1. No, for instance $R = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle\},\$
- 2. No, for instance $R = \{\langle 1, 3 \rangle, \langle 2, 4 \rangle, \langle 3, 2 \rangle, \langle 4, 1 \rangle\}.$

Problem 5. (15 Points) For poset $\langle A, R \rangle$, where

$$A = \{a, b, c, d, e\}$$
 and $R = \{\langle a, d \rangle, \langle a, c \rangle, \langle a, b \rangle, \langle a, e \rangle, \langle b, e \rangle, \langle c, e \rangle, \langle d, e \rangle\} \cup I_A$

- 1. Draw the Hasse diagram of $\langle A, R \rangle$
- 2. Final all minimal elements and all maximal elements of A, respectively
- 3. Find the greatest element and the least element exist of A, respectively
- 4. Find all upper bounds and the least upper bound of $\{d, b, c\}$.
- 5. Find all lower bounds and the greatest lower bound of $\{e\}$.

Answer:

- 1.
- 2. minimal elements: a, maximal elements: e.
- 3. greatest element: e; least element: a.
- 4. upper bounds: e; least upper bound: e.
- 5. upper bounds: a,b,c,d,e; greatest lower bound: e.