grow The

Wt = Wt - 1 - n'. 2L Nt = 13. Vt - 1 . (1-7s) . (2L Adam Alaphive Mome Ringry 1 Adv. of RMS pmp: Npd; grady values similarion. Wt = Wt - 1 + n'. 3L DW.	
M'= n9 Vy = B. Vy 1 (1-73) . (3L) Adam Adam Adaptive Mome Ringing it Adv. of RM sprip: Updy grady values similtanor.	
Y = B. V ₁₋₁ (1-73) · (DL) Adam Adam Adaptive Mome Rhipy it Adv. of RMs prop: Updy grady values. similtamors.	
Adam Adaptive Mome Ring Mome Ring Adam Adaptive Mome Ring Mome Rin	
Adv. of RMS Jorp: Updy grady values. similtanors.	
similtamor.	6
$W_{t} = W_{t-1} + \eta' \cdot \frac{\partial L}{\partial u}$	
$\omega_t = \omega_{t-1} + \eta' \cdot m_t$	
$m_{t} = \beta \cdot m_{t-1} + (1-\beta) \cdot \frac{\partial L}{\partial \omega_{t-1}}$	
$\gamma' = \frac{1}{\sqrt{v_{t+4}}}$ $V_{t} = \frac{1}{\sqrt{2v_{t+4}}} + (1-1)(\frac{\partial L}{\partial w})^{2}$	
$\frac{1-\beta_{1}^{t}}{1-\beta_{2}^{t}} = \frac{mt}{1-\beta_{1}^{t}}$	
30	

Date:_

1205 Training typs in Deep Neural Network Normalization 1) Min Max Normalization X-Xmin (0-1 range) Xmax-Xmin 2) 10 Z-Score Normalization N(0,1) $\times -M$ N(4, 5) 3) 15 Batch Normalization Blackbox Normalization done at this layer also X is normalized, but when w. x and non-linear function is used, it, may no longer be normalized. Internal covariate shift." occurs when samples of one distribution has difference within the class Eg: - Actual class: cato When Plotted: Black and orange cats one separate. It can be avoided if normalized data is used. Telosely paged people.

	Date:
	For mini-batch B= {X1, X2,, XB's
4	y=BN 8, B(XB)
5	X = BNy (XB)
	x' is considered as IP to next hidden layer.
10	$\mathcal{U}_{\mathcal{B}} = \underbrace{1}_{\mathcal{B}} \underbrace{\sum_{i=1}^{\mathcal{B}} \chi_{i}}$
	$\overline{B} = \frac{1}{B} \sum_{i=1}^{B} (x_i - \mu_B)^2$
15	$\chi'_{i} = \chi_{i} - \mu_{B}$ $\sqrt{\sigma_{B} + \epsilon}$
	Xi'= YXi'+ B Scaling Shifting
20	OVERFITTING AND UNDERFITTING;
	Mutually exclusive datasets for training, validation and testing.
25	Colution: Regularization
	Regularization:
→ → 30	used for better model generalization. General cost function with replin join for
	training is defined as cost function = Loss+ Regularization Jerm.