ВПИ кафедра ВИТ Игумнов А.Ю. Математическое обеспечение программных систем Практическая работа. Интерполяционный многочлен Лагранжа

1 Теоретическая часть

Пусть на отрезке [a,b] заданы точки $a=x_0 < x_1 < \ldots < x_n = b$. Набор функций

$$\alpha_i(x) = \prod_{\substack{j=0 \ j \neq i}}^n (x - x_j), \quad i = 0, \dots, n,$$

образует базис в пространстве $\mathcal{P}_n[a,b]$ многочленов степени n, заданных на отрезке [a,b]. Набор функций

$$\Phi_i(x) = \frac{\alpha_i(x)}{\alpha_i(x_i)}, \quad i = 0, \dots, n,$$
 (I)

также является базисом и удовлетворяет условиям

$$\Phi_i(x_j) = \begin{cases} 0, & j \neq i \\ 1, & j = i \end{cases}, \quad i = 0, \dots, n.$$

Пусть $g: \{x_0, x_1, \dots, x_n\} \to \mathbb{R}$ — некоторая функция. Интерполяционным многочленом Лагранжа функции g называется линейная комбинация функций (I) следующего вида:

$$L_n(x) = g(x_0) \cdot \Phi_0(x) + g(x_1) \cdot \Phi_1(x) + \ldots + g(x_n) \cdot \Phi_n(x)$$
 (II)

Функция $L_n(x)$ является полиномом степени n и $L_n(x_i)=g(x_i), i=0,\ldots,n$. Точки x_0,x_1,\ldots,x_n называются узлами интерполяции. Если $g=f|_{\{x_0,x_1,\ldots,x_n\}},$ где $f\in \mathbb{C}^{n+1}[a,b],$ то $L_n(x)$ имеет вид

$$L_n(x) = f(x_0) \cdot \Phi_0(x) + f(x_1) \cdot \Phi_1(x) + \ldots + f(x_n) \cdot \Phi_n(x)$$
 (III)

— интерполяционная формула Лагранжа. Остаточный член интерполяционной формулы Лагранжа имеет вид:

$$f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i) , \qquad (IIII)$$

где ξ — некоторая точка отрезка [a,b], и оценивается выражением

$$|f(x) - L_n(x)| \le \frac{M_{n+1}}{(n+1)!} \left| \prod_{i=0}^n (x - x_i) \right| \le \frac{M_{n+1}}{(n+1)!} \max_{[a,b]} \left| \prod_{i=0}^n (x - x_i) \right| \le \frac{M_{n+1}}{(n+1)!} \prod_{i=0}^n \max_{[a,b]} |x - x_i|, (V)$$

где
$$M_{n+1} = \max_{[a,b]} |f^{(n+1)}(x)|.$$

2 Задания

Задание 1. Построить интерполяционный многочлен для таблично заданной функции и составить таблицу его значений на [a,b] с шагом $h=0.1\,(b-a)$.

ВПИ кафедра ВИТ Игумнов А.Ю. Математическое обеспечение программных систем Практическая работа. Интерполяционный многочлен Лагранжа

ว	x	0	2	3	5
ა.	f(x)	2.1	3.3	4.5	1.4

1	x	3	7	9	10
4.	f(x)	1.9	6.6	4.3	6.5

 ${\rm B}\Pi{\rm H}$ кафедра ${\rm B}{\rm H}{\rm T}$ Игумнов А.Ю. Математическое обеспечение программных систем Практическая работа. Интерполяционный многочлен Лагранжа

10	x	-2	0	1	4
19.	f(x)	1.9	6.6	4.3	6.5

Задание 2. Для функции $f:[a,b] \to \mathbf{R}$:

- 1. составить интерполяционный многочлен Лагранжа L_1 (полагая $x_0=a,\ x_1=b)$ и L_2 (полагая $x_0=a,\ x_1=\frac{a+b}{2},\ x_2=b)$
- 2. составить таблицу значений функций $f,\,L_1,\,L_2$ на [a,b] с шагом $h=0.1\,(b-a)$ следующего вида:

x	
f(x)	
$L_1(x)$	
$L_2(x)$	

На основании данных в таблице получить значение $\max |f(x) - L_1(x)|$, $\max |f(x) - L_2(x)|$ и сравнить с оценкой (V).

	$\frac{f(x)}{\ln x}$	[a,b]
1 8	$\overline{\operatorname{in} x}$	[0 /0]
		$[0, \pi/2]$
2 l	gx	[1, 10]
3 l	nx	[1, e]
	$\operatorname{g} x$	$[0, \pi/4]$
$5 \mid ar$	ctgx	[0, 1]
6 8	sh x	[0, 1]
7 s	$\operatorname{in} x$	$[0, \pi/4]$
8 <i>l</i>	g x	[1, 100]
9 1	n x	$[1, e^2]$
10 s	sh x	[0, 5]
11 c	os x	$[0, \pi/2]$
12 l	g x	[1, 1000]
13 6	ch x	[0, 1]
14	hx	[0, 5]
15 c	os x	$[0, \pi/4]$
	g x	[1, 10000]
$\begin{array}{ c c c c }\hline 17 & l \end{array}$	n x	$[1, e^4]$
18 σ	eh x	[0, 5]
19 t	h x	[0, 5]
20 s	h x	[0, 1]