Kako foton zna kud treba ići?

(IRB, 9.1.2008.)

Mladen Pavičić

pavicic@grad.hr ; http://m3k.grad.hr/pavicic

Gradjevinski fakultet

MZOS projekti

Kvantno računanje: paralelizam i vizualizacija (082-0982562-3160)

Voditelj: Mladen Pavičić, suradnici: Danko Bosanac i Krešimir Fresl

MZOS projekti

Kvantno računanje: paralelizam i vizualizacija (082-0982562-3160)

Voditelj: Mladen Pavičić, suradnici: Danko Bosanac i Krešimir Fresl

Eksperimentalne tehnike kvantne komunikacije i kvantne informatike

(098-0352851-2873)

Voditelj: Mario Stipčević, suradnici: Branka Medved, Hrvoje Skenderović i Mladen Pavičić

Kvantni kompjutori: dostignuća i planovi

LA-UR-04-1778

A Quantum Information Science and Technology Roadmap

Part 1: Quantum Computation

Report of the Quantum Information Science and Technology Experts Panel

Implementacije

		The DiVincenzo Criteria													
QC Approach		Quantum Computation													
	#1	#2	#3	#4	#5		#6	#7							
NMR	a	6	6	&	8		6	•							
Trapped Ion	€	<u>&</u>	6	₽	&		€	8							
Neutral Atom	€	&	€	6	<u>&</u>		€	8							
Cavity QED	€	&	6	⊗	&		€	₩							
Optical	€	6	&	8	&		⊗	₽							
Solid State	€	6	6	8	<u>&</u>		<u> </u>	a							
Superconducting	€	₽	€	8	6		<u>6</u>	<u></u>							
Unique Qubits	This fi	eld is so dive	rse that it is 1	not feasible to	label the cri	teria wit	th "Promise" s	vmbols.							

Legend: 😓 = a potentially viable approach has achieved sufficient proof of principle

🧔 = a potentially viable approach has been proposed, but there has not been sufficient proof of principle

= no viable approach is known

The column numbers correspond to the following QC criteria:

- #1. A scalable physical system with well-characterized qubits.
- #2. The ability to initialize the state of the qubits to a simple fiducial state.
- #3. Long (relative) decoherence times, much longer than the gate-operation time.
- #4. A universal set of quantum gates.
- #5. A qubit-specific measurement capability.
- #6. The ability to interconvert stationary and flying qubits.
- #7. The ability to faithfully transmit flying qubits between specified locations.

Uspjesi

QC Approach	1	1.1	2	2.1	2.2	2.3	3	3.1	3.2	T	3.3	3.4	3.5	18	3.6	4	4.1	4.2	4.3	
NMR		<u>₩</u>		<u>~~~</u>	<u> </u>	<u>△\\</u>		224	///	T	M	<u>M</u>	<i>△</i> ′′′′	-	M		M	M	₩.	1
Trapped Ion		<u>m</u>		<u>₩</u>	△ **	<i>△</i>		<u> </u>	<u>₩</u>	_	///	///	∕ ∕∕		////		// ^	//A	27	-
Neutral Atom		△		<u> </u>	A	/ //▲		<i>//</i>	<i>///</i>		222	₩	<i>///</i>	1	// /		/// /	//A	₩.	1
Cavity QED		M		<u>~***</u>	<u>₩</u>	M		///	M	T	///	///	//A		///		///	<i>it</i>	<i>M</i>	t
Optical		△		<u>~~~</u>	_₩	<u>~</u>	À	A	<u>₩</u>		^	<i>₩</i>	<u>₩</u>		<u>////</u>		A	/// ▲	///▲	T
Solid State:																				Ì
Charged or exitonic qubits		<u>M</u>			△ *	<i>/</i> /▲	2	△	₩		AV	///	<i>///</i>	1	///		<i>M</i> ▲	// /	274	
Spin qubits		<u>~~~</u>		<u>~~</u>	2	△		///	274		200	// ▲	///A	1	// <u>*</u>		//A	//A	△ // △	1
Superconducting		△		<u>~~~</u>	△ ***	M		**	224	1	△	// /	///A	1	///		///A	///A	<i>7</i> 2	1
							125					- V.			- y			CIT:	,	
QC Approach	4	4.5	5	4.6	4.7	4.8		5 5.1	5.2	6	6.1	6.2	2 1	6.3	7	7.1	7.2	7.3	7.4	į
NMR		△ΥΥ	Δ	₩.	△ **	M		224	AX		<u>△₩</u>	/	A Z	224		///	<i>™</i>	///A		-
Trapped Ion		///		///A	<i>∆</i> ′∕	<i>M</i> ▲		224	<i>/</i> /∕▲		224	///	L 4	?		///	///	<i>/</i> ∕∕▲		4
Neutral Atom		///		2224	2004	274		<i>M</i>	<i>I</i> ∕∕∕▲		<i>™</i>	/270	A /	7/4		₩				i
Cavity QED		1/2		<i>///</i>	224	<i>///</i>	1	<i>///</i>	///		<i>****</i>	///	. 1	**		// /	<i>///</i>	///	//	ĺ
Optical		// <u>/</u>	Δ	///A	///	<i>M</i> ▲	5	///	/AX		224		L Z	224		///	///	///A		ĺ
150																2011				ĺ
Solid State:			41	464	///A	///		///A	///		//A	///	L 1	***		//	//A	//A		ĺ
Solid State: Charged or exitonic qubits		222	<u> </u>	<i>∆</i> 22≜		325 A	1	118 6	122		100000	111111111111111111111111111111111111111	1					The second second		
		270		222	222	274		<i>*************************************</i>	<i>₩</i>		272		\ \ \ \	224				///A		

Legend: ____ = sufficient experimental demonstration

= preliminary experimental demonstration, but further experimental work is required

- no experimental demonstration and - a change in the development status between Versions 1.0 and 2.0

Uspjesi - legenda

- 1. Creation of a qubit
 - 1.1 Demonstrate preparation and readout of both qubit states.
- Single-qubit operations
 - Demonstrate Rabi flops of a qubit.
 - Demonstrate decoherence times much longer than the Rabi oscillation period.
 - Demonstrate control of both degrees of freedom on the Bloch sphere.
- Two-qubit operations
 - Implement coherent two-qubit quantum logic operations.
 - 3.2 Produce and characterize the Bell entangled states.
 - Demonstrate decoherence times much longer than two-qubit gate times.
 - 3.4 Demonstrate quantum state and process tomography for two qubits.
 - Demonstrate a two-qubit decoherence-free subspace (DFS).
 - Demonstrate a two-qubit quantum algorithm.
- Operations on 3–10 physical qubits
 - 4.1 Produce a Greenberger, Horne, and Zeilinger (GHZ) entangled state of three physical qubits.
 - 4.2 Produce maximally-entangled states of four or more physical qubits.
 - 4.3 Quantum state and process tomography.
 - 4.4 Demonstrate DFSs.

- 4.5 Demonstrate the transfer of quantum information (e.g., teleportation, entanglement swapping, multip SWAP operations etc.) between physical qubits.
- 4.6 Demonstrate quantum error-correcting codes.
- Demonstrate simple quantum algorithms (e.g., Deu Josza).
- 4.8 Demonstrate quantum logic operations with faulttolerant precision.
- Operations on one logical qubit
 - 5.1 Create a single logical qubit and "keep it alive" usir repetitive error correction.
 - Demonstrate fault-tolerant quantum control of a sir logical qubit.
- 6. Operations on two logical qubits
 - 6.1 Implement two-logical-qubit operations.
 - 6.2 Produce two-logical-qubit Bell states.
 - 6.3 Demonstrate fault-tolerant two-logical-qubit operat
- Operations on 3–10 logical qubits
 - 7.1 Produce a GHZ-state of three logical qubits.
 - 7.2 Produce maximally-entangled states of four or mor logical qubits.
 - 7.3 Demonstrate the transfer of quantum information between logical qubits.
 - 7.4 Demonstrate simple quantum algorithms (e.g., Deu Josza) with logical qubits.
 - 7.5 Demonstrate fault-tolerant implementation of simp quantum algorithms with logical qubits.

Bit i qubit

Jedan klasični tranzistor ima dva stanja:

 $0 \quad i \quad 1$

Stanje klasičnog tranzistora (0 ili 1) nazivamo bitom.

Jedan kvantni tranzistor (foton, elektron, atom, molekual) ima takodjer dva osnovna stanja

 $|0\rangle$ i $|1\rangle$

koja nazivamo qubit-om (kvantni bit).

Paralelizam

Medjutim, dok klasični tranzistor mora biti ili u jednom ili u drugom svom osnovnom stanju, kvantni transistor je općenito u superpoziciji svoja dva osnovna stanja ($|0\rangle$ i $|1\rangle$):

$$\alpha|0\rangle + \beta|1\rangle$$

a broj tih superpozicija je beskonačan. Idealno bi samo 50 atoma odgovaralo računalnoj moći jednog miliona miliardi klasičnih tranzistora, tj. nekoliko miliona klasinih kompjutera spojenih u cluster. Realistične procjene za takvu moć predvidjaju oko 1000 qubita (atoma).

Atom-photon

Mladen Pavičić, Quantum Computation and Quantum Communication: Theory and Experiments, *Springer Verlag*, New York (2005)

Atom-photon path

Mladen Pavičić, Nondestructive interaction-free atom-photon controlled-NOT gate, *Physical Review A*, **75**, 032342-1-8 (2007)

Prstenasti rezonator

Mladen Pavičić, Resonance Energy-Exchange-Free Detection and 'Welcher Weg' Experiment, *Physics Letters A*, **223**, 241-245 (1996):

Naš eksperiment

Naš eksperiment

STIRAP $|g_1\rangle \leftrightarrow |g_2\rangle$

Interaction-free CNOT gate

- (a) atom je u stanju $|g_1\rangle$ i može absorbirati $|1\rangle$;
- (b) atom je u stanju $|g_2\rangle$ i može absorbirati $|0\rangle$;

$$|00\rangle \rightarrow |00\rangle, |01\rangle \rightarrow |01\rangle, |10\rangle \rightarrow |11\rangle, |11\rangle \rightarrow |10\rangle$$

Atom u superpoziji stanja

Spregnuta atom-foton stanja

Potpisan ugovor po pozivu za

Mladen Pavičić, Companion to Quantum Compution and Communication, John Wiley & Sons & VCH (2009).