Biweekly Meeting

Juhyeong Kim

SKKU Visual Computing Lab wngud0811@naver.com

August 12, 2019

• Uncertainty aware audiovisual activity recognition using deep Bayesian variational inference(CVPR workshop 2019)

Importantce of uncertainty Quantification

 Deep learning models may fail in the case of noisy data or out-of-distribution data.

Train time

rabbit: **0.8** / wolf: 0.2

rabbit: 0.3 / wolf: **0.7**

Test time

rabbit: 0.1 / wolf: **0.9**

Impications

- SoftMax cannot capture confidence of model.
- In these situations, uncertainty quantification is needed.

Frequentist DNN vs Bayesian DNN

- Frequentist DNN has low computational costs at training time and inference time.
- Bayesian DNN can quantify uncertainty by calculating predictive distribution.

Uncertainty aware audiovisual activity recognition using deep Bayesian variational inference(CVPR workshop 2019)

- Solve activity recognition problem by combining standard DNN and Bayesian DNN.
- Utilize information from multiple source(Video, Audio).
- Apply Bayesian learning framework while maintaining scalability.
- Quantify uncertainty and detect out-of-distribution example.

Method

- Use pretrained model to extract deterministic feature in video domain and audio domain and
- Remove last layer of pretrained models from each domain.
- **3** Add three Variational layers for each models. $q_{\theta}(w) = \mathbf{N}(w|\mu, \sigma^2)$

Method

Train variational layer with ELBO:

$$L^{v} = -\mathbb{E}_{q_{\theta}(w)}[\log p(y|x, w)] + KL[q_{\theta}(w)||p(w)]$$

Fine-tune deterministic models with ML Loss:

$$L^d = -\sum_{c} y_c \log \hat{y_c}$$

- Combine prediction and uncertainty result from two information sources to make final descision.
- If prediction from one source has high uncertainty, only use information from sources with lower uncertainty.

Method

Evaluation

Unceratinty Metric

•
$$p(y^*|x^*, D) = \int p(y^*|x^*, w)q_{\theta}(w) dw$$

•
$$p(y^*|x^*, D) \approx \frac{1}{T} \sum_{i=1}^{T} p(y^*|x^*, w), w_i \sim q_{\theta}(w)$$

• Bayesian Active Learning by Disagreement(BALD) $= H(y^*|x^*,D) - \mathbb{E}_{p(w|D)}[H(y^*|x^*,w)]$ $H(y^*|x^*,D) = -\sum_{i=0}^{K-1} p_{i\mu} \log p_{i\mu}$

Generalization Performance

	certain	uncertair
accurate	n _{ac}	n _{au}
inaccurate	n _{ic}	n _{iu}

• Accuracy vs Uncertainty(AvU) = $\frac{n_{ac} + n_{ic}}{n_{ac} + n_{au} + n_{ic} + n_{iu}}$

Result

• Histogram comparing in- and out-distribution data predictions.

• Histogram comparing True prediction and wrong predictions.

Result

• Generalization Performace comparision

Model	Top1 (%)	Top5 (%)	
Vision			
DNN	52.65	79.79	
Bayesian DNN (MC Dropout)	52.88	80.10	
Bayesian DNN (Stochastic VI)	53.3	81.20	
Audio			
DNN	34.13	61.68	
Bayesian DNN (MC Dropout)	32.46	60.97	
Bayesian DNN (Stochastic VI)	35.80	63.40	
Audiovisual			
DNN	56.61	79.39	
Bayesian DNN (MC-Dropout)	55.04	80.34	
Bayesian DNN (Stochastic VI)	58.2	83.8	

Conclusion

- Combination of deterministic and variational layer in single model works well.
- Using Bayesian DNN, we can quantify uncertainty and detect out-distribution data.
- By considering uncertainty, model can automatically decide whether it will use information from specific sources.
- MC-dropout may yield bad quality of uncertainty.