

Systeme II

4. Die Vermittlungsschicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 13.06.2017

Circuit Switching oder Packet Switching

Circuit Switching

- Etablierung einer Verbindung zwischen lokalen Benutzern durch Schaltstellen
 - mit expliziter Zuordnung von realen Schaltkreisen
 - oder expliziter Zuordnung von virtuellen Ressourcen, z.B. Slots
- Quality of Service einfach, außer bei
 - Leitungsaufbau
 - Leitungsdauer
- Problem
 - Statische Zuordnung
 - Ineffiziente Ausnutzung des Kommunikationsmedium bei dynamischer Last
- Anwendung
 - Telefon
 - Telegraf
 - Funkverbindung

Circuit Switching oder Packet Switching

Packet Switching

- Grundprinzip von IP
 - Daten werden in Pakete aufgeteilt und mit Absender/Ziel-Information unabhängig versandt
- Problem: Quality of Service
 - Die Qualität der Verbindung hängt von einzelnen Paketen ab
 - Entweder Zwischenspeichern oder Paketverlust
- Vorteil:
 - Effiziente Ausnutzung des Mediums bei dynamischer Last

Resümee

- Packet Switching hat Circuit Switching in praktisch allen Anwendungen abgelöst
- Grund:
 - Effiziente Ausnutzung des Mediums

Taktik der Schichten

Transport

- muss gewisse
 Flusskontrolle
 gewährleisten
- z.B. Fairness
 zwischen gleichzeiten
 Datenströmen

Vermittlung

 Quality of Service (virtuelles Circuit Switching)

Sicherung

 Flusskontrolle zur Auslastung des Kanals

Layer	Policies		
Transport	Retransmission policy		
	 Out-of-order caching policy 		
	 Acknowledgement policy 		
	Flow control policy		
	Timeout determination		
Network	 Virtual circuits versus datagram inside the subnet Packet queueing and service policy Packet discard policy Routing algorithm Packet lifetime management 		
Data link	Retransmission policy Out-of-order caching policy Acknowledgement policy Flow control policy		

Die Schichtung des Internets - TCP/IP-Layer

Anwendung	Application	Telnet, FTP, HTTP, SMTP (E-Mail),
Transport	Transport	TCP (Transmission Control Protocol) UDP (User Datagram Protocol)
Vermittlung	Network	IP (Internet Protocol) + ICMP (Internet Control Message Protocol) + IGMP (Internet Group Management Protoccol)
Verbindung	Host-to-network	LAN (z.B. Ethernet, Token Ring etc.)

OSI versus TCP/IP

Warum eine Vermittlungsschicht

- Lokale Netzwerke können nicht nur über Hubs,
 Switches oder Bridges verknüpft werden
 - Hubs: Kollisionen nehmen überhand
 - Switches:
 - Routen-Information durch Beobachtung der Daten ineffizient
 - Broadcast aller Nachrichten schafft Probleme
 - Es gibt über 100 Mio. lokale Netzwerke im Internet...
- Zur Beförderung von Paketen in großen Netzwerken braucht man Routeninformationen
 - Wie baut man diese auf?
 - Wie leitet man Pakete weiter?
- Das Internet-Protokoll ist im wesentlich ein Vermittlungsschichtprotokoll

Routing-Tabelle und Paket-Weiterleitung

IP-Routing-Tabelle

- enthält für Ziel (Destination) die Adresse des nächsten Rechners (Gateway)
- Destination kann einen Rechner oder ganze Sub-nets beschreiben
- Zusätzlich wird ein Default-Gateway angegeben

Packet Forwarding

- früher Packet Routing genannt
- IP-Paket (datagram) enthält Start-IP-Adresse und Ziel-IP-Adresse
 - Ist Ziel-IP-Adresse = eigene Rechneradresse dann Nachricht ausgeliefert
 - Ist Ziel-IP-Adresse in Routing-Tabelle dann leite Paket zum angegeben Gateway
 - Ist <u>Ziel-IP-Subnetz</u> in Routing-Tabelle dann leite Paket zum angegeben Gateway
 - Ansonsten leite zum Default-Gateway

Paket-Weiterleitung im Internet Protokoll

- IP-Paket (datagram) enthält unter anderen
 - TTL (Time-to-Live): Anzahl der Hops (Pv 6 hop-count
 - Start-IP-Adresse
 - Ziel-IP-Adresse
- Behandlung eines Pakets
 - Verringere TTL (Time to Live) um 1
 - Falls TTL ≠ 0 dann Packet-Forwarding aufgrund der Routing-Tabelle
 - Falls TTL = 0 oder bei Problemen in Packet-Forwarding:
 - Lösche Paket
 - Falls Paket ist kein ICMP-Paket dann
 - Sende ICMP-Paket mit
 - Start= aktuelle IP-Adresse und
 - Ziel = alte Start-IP-Adresse

Statisches und Dynamisches Routing

Forwarding:

- Weiterleiten von Paketen

Routing:

- Erstellen Routen, d.h.
 - Erstellen der Routing-Tabelle

Statisches Routing

- Tabelle wird manuell erstellt
- sinnvoll für kleine und stabile LANs

- Tabellen werden durch Routing-Algorithmus erstellt
- Zentraler Algorithmus, z.B. Link State
 - Einer/jeder kennt alle Information, muss diese erfahren
- Dezentraler Algorithmus, z.B. Distance Vector
 - arbeitet lokal in jedem Router
 - verbreitet lokale Information im Netzwerk

Distance Vector Routing Protocol

Distance Table Datenstruktur

- Jeder Knoten besitzt eine
 - Zeile für jedes mögliches Ziel
 - Spalte für jeden direkten Nachbarn

Verteilter Algorithmus

- Jeder Knoten kommuniziert nur mit seinem Nachbarn

Asynchroner Betrieb

- Knoten müssen nicht Informationen austauschen in einer Runde

Selbst Terminierend

 läuft bis die Knoten keine Informationen mehr austauschen

Distance Table für A

von A	übe l B	Routing Tabellen Eintrag	
		<u>E</u>	
nach B	2	15	B
. c	[3]	14	Bc-
. D	7	10	В
• E	8	9	E
· _ '	ı		1

Distance Table für C

		über	Routing Tabellen	
von C	В	D	Е	Eintrag
nach A	3	11	18	В
В	1	9	16	В
D	6	4	11	D
Е	7	5	10	D
	,			•

Beispiel für Distance-Vector für Ziel t

Distance-Vector für ein Ziel

Distance-Vector für ein Ziel

Irrlichter im Routing

Das "Count to Infinity" - Problem

- Gute Nachrichten verbreiten sich schnell
 - Neue Verbindung wird schnell veröffentlicht

Das "Count to Infinity" - Problem

Schlechte
Nachrichten
verbreiten sich
langsam

В

 Nachbarn erhöhen wechselseitig ihre Entfernung

"Count to Infinity" Problem

Das "Count to Infinity" - Problem für Ziel t

Link-State Protocol

Link State Router

- tauschen Information mittels Link State Packets (LSP) aus

 Jeder verwendet einen eigenen Kürzeste-Wege-Algorithmus zu Anpassung der Routing-Tabelle

LSP enthält

- ID des LSP erzeugenden Knotens
- Kosten dieses Knotens zu jedem direkten Nachbarn
- Sequenznr. (SEQNO)
- TTL-Feld für dieses Feld (time to live)

Verlässliches Fluten (Reliable Flooding)

- Die aktuellen LSP jedes Knoten werden gespeichert
- Weiterleitung der LSP zu allen Nachbarn
 - bis auf den Knoten der diese ausgeliefert hat
- Periodisches Erzeugen neuer LSPs
 - mit steigender SEQNOs
- Verringern der TTL bei jedem Weiterleiten

Die Grenzen des flachen Routing

Link State Routing

- benötigt O(g n) Einträge für n Router mit maximalen Grad g
- Jeder Knoten muss an jeden anderen seine Informationen senden
- Distance Vector
 - benötigt O(g n) Einträge
 - kann Schleifen einrichten tempovar
 - Konvergenzzeit steigt mit Netzwerkgröße
- Im Internet gibt es mehr als 10⁷ Router
 - damit sind diese so genannten flachen Verfahren nicht einsetzbar
- Lösung:
 - Hierarchisches Routing

AS, Intra-AS und Inter-AS

- Autonomous System (AS)
 - liefert ein zwei Schichten-Modell des Routing im Internet
 - Beispiele für AS:
 - uni-freiburg.de
- Intra-AS-Routing (Interior Gateway Protocol)
 - ist Routing innerhalb der AS
 - z.B. RIP, OSPF, IGRP, ...
- Inter-AS-Routing (Exterior Gateway Protocol)
 - Übergabepunkte sind Gateways
 - ist vollkommen dezentrales Routing
 - Jeder kann seine
 Optimierungskriterien vorgeben
 - z.B. EGP (früher), BGP

