Методы оптимизации. Семинар 7. Двойственность.

Корнилов Никита Максимович

Московский физико-технический институт

15 октября 2024г

Сопряженное множество

Выпуклые множества, содержащие точку 0, допускают двойственное описание: множество может быть описано набором векторов, являющихся нормалями опорных гиперплоскостей.

Сопряженное множество

Выпуклые множества, содержащие точку 0, допускают двойственное описание: множество может быть описано набором векторов, являющихся нормалями опорных гиперплоскостей.

Definition

Пусть $X\subseteq\mathbb{R}^n$ – произвольное непустое множество. Тогда множество

$$X^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \quad \forall x \in X \}$$

называется сопряженным (двойственным) к Х.

Н. М. Корнилов

Самосопряженное множество

Definition

Множества X_1 и X_2 называются взаимосопряженными если

$$X_1^* = X_2$$
 и $X_2^* = X_1$

Definition

Множество X называется самосопряженным, если

$$X^* = X$$

Definition

Множество

$$X^{**} = \{ x \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \quad \forall y \in X^* \}$$

называется вторым сопряженным к Х.

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽

$$X^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \quad \forall x \in X \}$$

ullet X^* всегда замкнуто, выпукло и содержит точку 0_n

$$X^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \quad \forall x \in X \}$$

- ullet X^* всегда замкнуто, выпукло и содержит точку 0_n
- ullet Для произвольного множества $X\subset \mathbb{R}^n$

$$X^{**} = cl(conv(X \cup \{0_n\}))$$

$$X^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \quad \forall x \in X \}$$

- ullet X^* всегда замкнуто, выпукло и содержит точку 0_n
- ullet Для произвольного множества $X\subset \mathbb{R}^n$

$$X^{**} = cl(conv(X \cup \{0_n\}))$$

ullet Если множество $X\subset \mathbb{R}^n$ – выпуклое и замкнутое, а также содержит точку 0_n , то $X^{**}=X$

Н. М. Корнилов

$$X^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \quad \forall x \in X \}$$

- ullet X^* всегда замкнуто, выпукло и содержит точку 0_n
- ullet Для произвольного множества $X\subset \mathbb{R}^n$

$$X^{**} = cl(conv(X \cup \{0_n\}))$$

- ullet Если множество $X\subset \mathbb{R}^n$ выпуклое и замкнутое, а также содержит точку 0_n , то $X^{**}=X$
- ullet Если $X_1\subset X_2$, то $X_2^*\subset X_1^*$

$$X^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \quad \forall x \in X \}$$

- ullet X^* всегда замкнуто, выпукло и содержит точку 0_n
- ullet Для произвольного множества $X\subset \mathbb{R}^n$

$$X^{**} = cl(conv(X \cup \{0_n\}))$$

- ullet Если множество $X\subset \mathbb{R}^n$ выпуклое и замкнутое, а также содержит точку 0_n , то $X^{**}=X$
- ullet Если $X_1\subset X_2$, то $X_2^*\subset X_1^*$
- $\bullet \ (\bigcup_{i=1}^m X_i)^* = \bigcap_{i=1}^m X_i^*$
- $X^* = (clX)^* = (conv(X))^*$

4□ > 4□ > 4□ > 4□ > 4□ > 900

Двойственная норма

Definition

Пусть $\|\cdot\|$ – норма в прямом пространстве. Тогда двойственная норма:

$$||y||_* = \sup_{||x|| \le 1} \langle x, y \rangle.$$

Двойственная норма

Definition

Пусть $\|\cdot\|$ – норма в прямом пространстве. Тогда двойственная норма:

$$||y||_* = \sup_{||x|| \le 1} \langle x, y \rangle.$$

Прямая и двойственная норма связаны следующим образом: пусть $\|\cdot\|_p$ — это прямая ℓ_p -норма, а двойственная — это ℓ_q -норма, при этом q находится из уравнения 1/p+1/q=1.

5 / 31

H. М. Корнилов 15 октября 2024г

Двойственная норма

Definition

Пусть $\|\cdot\|$ – норма в прямом пространстве. Тогда двойственная норма:

$$||y||_* = \sup_{||x|| \le 1} \langle x, y \rangle.$$

Прямая и двойственная норма связаны следующим образом: пусть $\|\cdot\|_p$ — это прямая ℓ_p -норма, а двойственная — это ℓ_q -норма, при этом q находится из уравнения 1/p+1/q=1.

Неравенство Коши-Буняковского-Шварца (КБШ):

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||_*.$$

Example

Пусть $B(0,r)=\{x\in\mathbb{R}^n:\|x\|\leq r\}$ - замкнутый шар с центром 0 и радиусом r. Найдите $(B(0,r))^*$.

Решение.

Рассмотрим по определению скалярное произведение и применим неравенство КБШ

$$\langle x, y \rangle \ge -\|x\| \|y\|_* \ge -r\|y\|_*.$$

Если $\|y\|_* \leq \frac{1}{r}$, то $\langle x,y \rangle \geq -1$ для любых $x \in B(0,r)$. То есть мы доказали, что

$$\left\{y \in \mathbb{R}^n : \|y\|_* \leq \frac{1}{r}\right\} \subseteq (B(0,r))^*.$$

Докажем включение в обратную сторону от противного.

H. М. Корнилов 15 октября 2024г 6 / 31

Шар

Example

Если $\|y\|_*>rac{1}{r}$, то по определению двойственной нормы существует $e\in\mathbb{R}^n$ с $\|e\|\leq 1$ и

$$\langle y, e \rangle > \frac{1}{r}$$

Взяв $x=rac{-\mathit{er}}{\|\mathit{e}\|}\in B(0,r)$, получим

$$\langle x,y\rangle = \left\langle \frac{-er}{\|e\|},y\right\rangle = \frac{r}{\|e\|}\left\langle -e,y\right\rangle < -\frac{r}{\|e\|}\frac{1}{r} \le -\frac{1}{\|e\|} \le -1.$$

Следовательно, $\langle x,y \rangle < -1$ и $y \notin (B(0,r))^*$.

7 / 31

Н. М. Корнилов 15 октября 2024г

Сопряженный конус

Proposition

Пусть K – конус в \mathbb{R}^n . Тогда

$$K^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge 0 \quad \forall x \in K \}$$

Сопряженный конус

Proposition

Пусть K – конус в \mathbb{R}^n . Тогда

$$K^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge 0 \quad \forall x \in K \}$$

Часто утверждение 1 понимают как определение сопряженного конуса. Для сопряженных конусов верны все те же свойства, что и для сопряженных множеств (0 всегда принадлежит конусу).

Геометрическая интерпретация

Доп свойства сопряженных конусов

ullet Для произвольного множества S и конуса K верно

$$(S+K)^*=S^*\cup K^*.$$

ullet Пусть K_1, \dots, K_m конусы, тогда

$$\left(\sum_{i=1}^m K_i\right)^* = \bigcup_{i=1}^m K_i^*.$$

• Пусть K_1, \ldots, K_m конусы, а их пересечение имеет внутреннюю точку. Тогда

$$(\bigcup_{i=1}^m K_i)^* = \sum_{i=1}^m K_i^*.$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Example

Дан неотрицательный ортант $K=\mathbb{R}^n_+$. Найдите K^* .

Доказательство.

По определению

$$K^* = \{ y \mid \langle x, y \rangle \ge 0 \quad \forall x \succcurlyeq 0 \}.$$

Следовательно $K^* = \{y \mid y \succcurlyeq 0\}$. То есть $K^* = \mathbb{R}^n_+ = K$.

Example

Дано множество симметричных положительно полуопределенных матриц \mathcal{S}_{+}^{n} . Найдите $(\mathcal{S}_{+}^{n})^{*}$ в пространстве \mathcal{S}^{n} .

Example

Дано множество симметричных положительно полуопределенных матриц \mathcal{S}_+^n . Найдите $(\mathcal{S}_+^n)^*$ в пространстве \mathcal{S}^n .

Proof.

На множестве симметричных матриц мы рассматриваем стандартное скалярное произведение $\operatorname{Tr}(XY) = \sum_{i,j=1^n} X_{ij} Y_{ij}$. По определению

$$K^* = \{ Y \in \mathcal{S}^n \mid \langle X, Y \rangle \ge 0 \quad \forall X \in \mathcal{S}^n_+ \}.$$

Пусть $Y \in \mathcal{S}^n$. Рассмотрим произвольную матрицу $X \in \mathcal{S}^n_+$. Разложим матрицу X в ортонормированном базисе из собственных векторов: $X = \sum_{i=1}^n \lambda_i q_i q_i^\top$, $\lambda_i \geq 0$ для всех $i=1,\ldots,n$. Следовательно, имеем

$$\mathsf{Tr}(YX) = \mathsf{Tr}\left(Y\sum_{i=1}^n \lambda_i q_i q_i^\top\right) = \sum_{i=1}^n \lambda_i q_i^\top Y q_i.$$

H. М. Корнилов 15 октября 2024г 12 / 31

Example

Если все значения $q_i^\top Y q_i$ будут неотрицательными, то неотрицательность останется. Значит, если $Y \in \mathcal{S}_n^n$ то $Y \in (\mathcal{S}_+^n)^*$. Докажем включение и в другую сторону.

Example

Если все значения $q_i^\top Y q_i$ будут неотрицательными, то неотрицательность останется. Значит, если $Y \in \mathcal{S}_n^n$ то $Y \in (\mathcal{S}_+^n)^*$. Докажем включение и в другую сторону.

Рассмотрим $Y \notin \mathcal{S}^n_+$. Так как матрица Y не является положительно полуопределенной, то существует вектор $q \in \mathbb{R}^n$:

$$q^{\top} Y q = \operatorname{Tr}(q q^{\top} Y) < 0$$

Введем $X=qq^{ op}\in\mathcal{S}^n$. То есть $\mathsf{Tr}(YX)\leq 0$, значит, $Y\notin (\mathcal{S}^n_+)^*$.

Example (Конус Лоренца)

Дан конус $K=\{(x,t)\in\mathbb{R}^{n+1}:\quad \|x\|\leq t\}.$ Найдите $K^*.$

Example (Конус Лоренца)

Дан конус $K=\{(x,t)\in\mathbb{R}^{n+1}: \quad \|x\|\leq t\}$. Найдите K^* .

Proof.

По определению двойственного конуса имеем

$$K^* = \{(u, v) \in \mathbb{R}^{n+1} \mid \langle x, u \rangle + tv \ge 0 \quad \forall x : ||x|| \le t\}.$$

Докажем, что это множество совпадает с $\{(u,v)\in\mathbb{R}^{n+1}\mid \|u\|_*\leq v\}$ то есть нужно показать

$$\langle x, u \rangle + tv \iff ||u||_* \le v$$
 (1)

Н. М. Корнилов

Example

Покажем, что из правой части (1) следует левая. Предположим, что $\|u\|_* \leq v$ и $\|x\| \leq t$ для некоторого t>0. Применяя определение двойственной нормы, а также $\|-x/t\| \leq 1$, получаем

$$\langle u, -x/t \rangle \le ||u||_* \le v,$$

и поэтому $\langle u, x \rangle + tv \ge 0$.

Example

Покажем, что из правой части (1) следует левая. Предположим, что $\|u\|_* \leq v$ и $\|x\| \leq t$ для некоторого t>0. Применяя определение двойственной нормы, а также $\|-x/t\| \leq 1$, получаем

$$\langle u, -x/t \rangle \le ||u||_* \le v,$$

и поэтому $\langle u, x \rangle + tv \ge 0$.

Теперь покажем, что из левой части (1) следует правая.

Предположим, что $\|u\|_*>v$, то есть что правая часть (1) не выполняется. Тогда по определению двойственной нормы существует x с $\|x\|\leq 1$ и $\langle x,u\rangle>v$. Беря t=1, получаем

$$\langle u, -x \rangle + v < 0,$$

что противоречит левой части (1).

Сопряженная функция

Позволяет описывать выпуклые замкнутые функции с помощью расстояния до прямой вдоль y через 0.

Сопряженная функция

Позволяет описывать выпуклые замкнутые функции с помощью расстояния до прямой вдоль y через 0.

Definition

Пусть $f:\mathbb{R}^n o\mathbb{R}$. Функция $f^*:\mathbb{R}^n o\mathbb{R}\cup\{+\infty\}$

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{ \langle x, y \rangle - f(x) \}$$

называется сопряженной функцией к f.

Эффективной областью определения $f^*(y)$ является множество, на котором $\sup_{x\in\mathbb{R}^n}\{\langle x,y\rangle-f(x)\}<+\infty.$

Геометрия сопряженной функции

Дополнительные определения

Definition

Функция называется замкнутой, если её надграфик является замкнутым множеством

Замкнутость функции равносильна её полунепрерывности снизу:

$$\underline{\lim}_{k\to\infty} f(x_k) \ge f(x_0)$$

для любых $x_k \to x_0$. Непрерывные функции, очевидно, являются полунепрерывными снизу.

Definition

Функция называется собственной, если она не принимает значение $-\infty$ ни в какой точке

Свойства сопряженных функций

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{ \langle x, y \rangle - f(x) \}$$

- \bullet f^* замкнутая выпуклая функция.
- Функция $f^{**} = f$ если и только если f выпуклая, замкнутая, собственная функция
- Пусть f замкнутая, собственная функция. Тогда следующие два утверждения равносильны при $\mu > 0$:
 - $oldsymbol{0}$ f является μ -сильно выпуклой
 - $oldsymbol{0}$ f^* имеет $1/\mu$ -липшицев градиент или f^*-1/μ -гладкая

Н. М. Корнилов

Fenchel-Young inequality

• Пусть f — произвольная функция:

$$f(x) + f^*(y) \ge \langle x, y \rangle, \quad \forall x, y \in \mathbb{R}^n$$

• Равенство достигается только и только если

$$f(x) + f^*(p) = \langle x, p \rangle \longleftrightarrow p \in \partial f(x)$$

• Следствие из Fenchel-Young

$$f(x) \ge f^{**}(x) \quad \forall x \in \mathbb{R}^n$$

Двойное сопряжение

Свойства сопряженных функций 2

ullet Если $f(x,y)=f_1(x)+f_2(y)$, где f_1,f_2 - выпуклые, то $f^*(p,q)=f_1^*(p)+f_2^*(q).$

Н. М. Корнилов

Примеры на сопряженные функции

По определению $f^*(y)$ найти y, где функция принимает конечные значения. Для них найти max по известным правилам. Если f(x) - выпукла, то $\langle x,y \rangle - f(x)$ - вогнута по x.

Example

Найти сопряженную функцию к линейной функции $f(x) = \langle a, x \rangle + b$, где $x \in \mathbb{R}^n$.

Н. М. Корнилов 15 октября 2024г

По определению $f^*(y)$ найти y, где функция принимает конечные значения. Для них найти max по известным правилам. Если f(x) - выпукла, то $\langle x,y \rangle - f(x)$ - вогнута по x.

Example

Найти сопряженную функцию к линейной функции $f(x) = \langle a, x \rangle + b$, где $x \in \mathbb{R}^n$.

Доказательство.

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{ \langle y, x \rangle - \langle a, x \rangle - b \} = \sup_{x \in \mathbb{R}^n} \{ \langle y - a, x \rangle - b \}.$$

Величина $\langle y-a,x\rangle-b$ как функция по x ограничена в том и только в том случае, когда y=a, в этом случае она является константой, равной -b. Тогда получаем, что сопряженная функция $f^*(y)=-b$ с областью определения $domf^*=\{a\}$.

15 октября 2024г 23 / 31

Example

Найти сопряженную функцию к экспоненте $f(x) = e^x$, где $x \in \mathbb{R}$.

H. М. Корнилов 15 октября 2024г

24 / 31

Example

Найти сопряженную функцию к экспоненте $f(x) = e^x$, где $x \in \mathbb{R}$. **Proof**.

По определению сопряженной функции

$$f^*(y) = \sup_{x \in \mathbb{R}} \{xy - e^x\}.$$

Дифференцируем $xy - e^x$ по x и приравниваем к нулю:

$$y-e^x=0.$$

Такое возможно только при y>0, а именно $xy-e^x$ достигает своего максимуму в точке $x=\log y$. Поэтому $f^*=y\log y-y$. Остальные случаи рассматриваем отдельно:

При y < 0 функция $xy - e^x$ не ограничена.

При
$$y = 0$$
, $f^*(y) = \sup_{x \in \mathbb{R}^n} -e^x = 0$.

Example

Итого сопряженная функция

$$f^*(y) = egin{cases} y \log y - y &, & y \in \mathbb{R}_+ \ +\infty &, & ext{иначе} \end{cases}$$

с областью определения $domf^*(y)=\mathbb{R}_+$ (мы доопределили $0\log 0=0)$

H. М. Корнилов 15 октября 2024г 25 / 31

Example

Логистическая функция. Найти сопряженную функцию для $f(x) = \log(1+e^x), \ x \in \mathbb{R}$

H. М. Корнилов 15 октября 2024г

26 / 31

Example

Логистическая функция. Найти сопряженную функцию для $f(x) = \log(1 + e^x), x \in \mathbb{R}$

Proof.

По определению сопряженной функции

$$f^*(y) = \sup_{x \in \mathbb{R}} \{ xy - \log(1 + e^x) \}.$$
 (2)

Беря производную от $xy - \log(1 + e^x)$ по x и приравнивая градиент к 0, получаем

$$x = \log y - \log(1 - y).$$

Эта формула корректно определена только при 0 < y < 1. Поскольку функция $xy - \log(1 + e^x)$ вогнутая по x, то найденное значение — это и есть супремум. Тогда $f^*(y) = y \log y + (1-y) \log(1-y)$. Отстальные случаи рассмотрим отдельно.

Example

Рассмотрим случай, когда y<0. Покажем, что в этом случае выражение $xy-\log(1+e^x)$ как функция по x будет не ограничено при $x\to-\infty$. Действительно, из монотонности логарифма и того, что $e^x<1$ при x<0 следует, $\log(1+e^x)<\log 2$ для всех x<0. Поэтому $xy-\log(1+e^x)>xy-\log 2$. Поскольку $yx\to\infty$ при $x\to-\infty$, то $xy-\log(1+e^x)\to\infty$ при $x\to-\infty$. Таким образом, супремум равен ∞ .

Пусть теперь y>1. Аналогичные рассуждения дают неравенство $\log(1+e^x)<\log(e^x+e^x)=\log 2+x$ при x>0. Отсюда $xy-\log(1+e^x)>(y-1)x-\log 2$ для всех x>0. Устремляя $x\to\infty$, получаем, что супремум 2 равен ∞ .

Н. М. Корнилов 15 октября 2024г 27 / 31

Example

Пусть теперь y=0. Поскольку $\log(1+e^x)\geq 0$ для всех $x\in\mathbb{R}$ и $\log(1+e^x)\to 0$ при $x\to -\infty$, то супремум 2 равен 0. Значит, $f^*(y)=0$.

Пусть y=1, покажем, что в этом случае супремум так же равен нулю. Из неравенства $\log(1+e^x)\geq x$ для всех $x\in\mathbb{R}$ следует, что супремум не может быть больше нуля. Он равен нулю, поскольку $\log(1+e^x)=x+\log(1+e^{-x})$ для всех $x\in\mathbb{R}$ и $\ln(1+e^{-x})\to 0$ при $x\to\infty$.

Итого имеем

$$f^*(y) = egin{cases} y \log y + (1-y) \log (1-y) &, y \in [0,1] \ +\infty &,$$
иначе .

H. М. Корнилов 15 октября 2024г 28 / 31

= 900 €

Example (Лог-детерминант)

Найти сопряженную функцию для $f(X) = -\log \det X$ на $X \in \mathcal{S}^n_{++}.$

29 / 31

Н. М. Корнилов 15 октября 2024г

Example (Лог-детерминант)

Найти сопряженную функцию для $f(X) = -\log \det X$ на $X \in \mathcal{S}_{++}^n$. Proof. По определению сопряженная функция

$$f^*(Y) = \sup_{X \succ 0} \{ \operatorname{Tr}(XY) + \log \det X^{-1} \},$$

где Tr(XY) – стандартное скалярное произведелние на S^n . Вычисляя градиент под супремумом по X и приравнивая его к нулю, получаем

$$\nabla_X(\operatorname{Tr}(XY) + \log \det X) = Y + X^{-1} = 0,$$

значит, $X = -Y^{-1}$, а поскольку X является положительной определенной матрицей, то Y < 0. В этом случае

$$f^*(Y) = \log \det(-Y)^{-1} - n.$$

29 / 31

Example

Покажем, что если $Y \not < 0$, то супремум равен бесконечности. Если $Y \not < 0$, то Y имеет собственный вектор v с $\|v\|_2 = 1$ и собственным значением $\lambda \ge 0$. Возьмем $X = I + tvv^\top$, тогда

$$\operatorname{Tr}(XY) + \log \det X^{-1} = \operatorname{Tr}(Y) + t\lambda + \log \det(I + tvv^{\top})$$

= $\operatorname{Tr}(Y) + t\lambda + \log(1 + t)$.

To есть супремум равен бесконечности при $t \to \infty$. Область определения $dom f^* = -\mathcal{S}^n_{++}$.

Н. М. Корнилов

Example (Норма)

Найти сопряженную функцию для произвольной нормы f(x) = ||x|| на $x \in \mathbb{R}^n$.

Example (Норма)

Найти сопряженную функцию для произвольной нормы $f(x) = \|x\|$ на $x \in \mathbb{R}^n$.

Proof.

Если $\|y\|_*>1$, тогда по определению двойственной нормы существует $z\in\mathbb{R}^n$ с $\|z\|\leq 1$ и $y^\top z>1$. Беря x=tz и устремляя $t\to\infty$, получаем

$$y^{\top}x - ||x|| = t(y^{\top}z - ||z||) \to \infty.$$

To есть $y^{\top}x - ||x||$ не ограничено.

Пусть теперь $\|y\|_* \leq 1$, тогда $\langle y,x \rangle \leq \|x\| \|y\|_*$ для всех $x \in \mathbb{R}^n$. Тогда

$$y^{\top}x - \|x\| \le 0.$$

При x = 0, выражение $y^{\top}x - ||x|| = 0$, то есть $f^*(y) = 0$. Итого $f^*(y)$ – это индикатор множества $\{||y||_* \le 1\}$.

H. M. Корнилов 15 октября 2024г 31 / 31