XXXX

Contents

Ta	ble of contents	j
1	Introduction	1
2	question 1	2
3	question 2	3
4	question 34.1 Analytical method4.2 Numerical method	4 5
5	conclusion	7
Lis	st of references	8
6	Appendix 6.1 Question 1	9 9

1 Introduction

2 question 1

We want to solve the following equation for $F(t) = F_0 cos(\omega t)$:

$$m\ddot{x}(t) + m\frac{\omega}{Q}\dot{x}(t) + m\omega^2 x(t) = F(t) \tag{1}$$

Equation 1 is a second order linear differential equation. According to theorem 3.5.2 in Boyce [1]:

$$x(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$$
(2)

With Y(t), any solution to the nonhomogeneous differential equation and with $y_1(t)$ and $y_2(t)$ that form a fundamental set of solutions to the homogeneous differential equation.

$$\ddot{y}(t) + \frac{\omega}{Q}\dot{y}(t) + \omega^2 y(t) = 0 \tag{3}$$

We first solve y(t) by seeing that, for constant values of ω,m and Q, a solution for equation 3 is $y(t)=e^{rt}$. Applying to equation 3 yields:

$$(r^2 + \frac{\omega}{Q}r + \omega^2)y(t) = 0 \implies r^2 + \frac{\omega}{Q}r + \omega^2 = 0$$
(4)

We find two solutions for r:

$$r_1 = \frac{-1}{2} \left(\frac{\omega}{Q} + \sqrt{\left(\frac{\omega}{Q}\right)^2 - 4\omega^2} \right) , \quad r_2 = \frac{1}{2} \left(-\frac{\omega}{Q} + \sqrt{\left(\frac{\omega}{Q}\right)^2 - 4\omega^2} \right)$$

We use this to define:

$$y_1(t) = e^{r_1 t}$$
 , $y_2(t) = e^{r_2 t}$

 r_1 and r_2 will be complex numbers for $|Q| > \frac{1}{2}$ meaning that differential equation 1 will lead to a (damped) oscillator. Just as expected.

The method to find Y(t) is the method of undetermined coefficients described in section 3.5 of Boyce [1].

We assume the Y(t) is of the shape:

$$Y(t) = a_1 cos(\omega t) + a_2 sin(\omega t)$$

We find $a_1=0$ and $a_2=\frac{F_0Q}{\omega^2m}$ (see appendix). Therefore we find:

$$x(t) = c_1 y_1(t) + c_2 y_2(t) + \frac{F_0 Q}{\omega^2 m} sin(\omega t)$$

By imposing the initial conditions on the latter result (see appendix) we obtain:

$$c_1 = \frac{1}{r_2 - r_1} \left(-\dot{x}_0 + \frac{F_0 Q}{\omega m} + x_0 (2 r_2 - r_1) \right)$$

$$c_2 = \frac{1}{r_2 - r_1} \left(\dot{x}_0 - \frac{F_0 Q}{\omega m} - x_0 r_2 \right)$$

3 question 2

4 question 3

4.1 Analytical method

We want to solve equation 5 when a amplitude modulated external force is applied, this force follows from equation 6.

$$m\ddot{x}(t) + m\frac{\omega}{Q}\dot{x}(t) + m\omega^2 x(t) = F(t)$$
(5)

$$F(t) = F_0 t \frac{T - t}{T^2} = F_0 \frac{t}{T} - F_0 \frac{t^2}{T^2}$$
 (6)

Since this equation 6 is relatively simple, it can be solved using the method of undetermined coefficients as outlined in paragraph 3.5 of Boyce [1].

The homogenous form has already been solved in the previous questions, the resulting roots are shown below in equation 7 and the solution in 8.

$$r_1 = -1/2 \left(\frac{\omega}{Q} + \sqrt{\frac{\omega^2}{Q^2} - 4\omega^2} \right), r_2 = 1/2 \left(-\frac{\omega}{Q} + \sqrt{\frac{\omega^2}{Q^2} - 4\omega^2} \right)$$
 (7)

$$y_1(t) = e^{r_1 t}, y_2(t) = e^{r_2 t}$$
 (8)

Now for the particular solution $y_p(t)$ we use the aforementioned method, the derivation is show below. We start by assuming that $y_p(t)$ is of the shape:

$$y_p(t) = c_1 + c_2 \cdot t + c_3 \cdot t^2$$

If we then differentiate $y_p(t)$ two times and substitute the result into equation 5 we get the following:

$$y'_{n}(t) = c_{2} + 2c_{3} \cdot t, y_{p}"(t) = 2c_{3}$$

$$my''(t) + \frac{m\omega}{Q}y'(t) + m\omega^2 y(t) = F_0 \frac{t}{T} - F_0 \frac{t^2}{T^2}$$
$$m(2a_3) + \frac{m\omega}{Q}(a_2 + 2a_3t) + m\omega^2 (a_1 + a_2t + a_3t^2) = F_0 \frac{t}{T} - F_0 \frac{t^2}{T^2}$$

If we then equate the terms in front of the functions and it's derivatives we get the following:

$$\begin{split} m\omega^2a_1 + \frac{m\omega a_2}{Q} + 2ma_3 &= 0\\ m\omega^2a_2 + \frac{2m\omega a_3}{Q} &= \frac{F_0}{T}\\ m\omega^2a_3 &= -\frac{F_0}{T^2} \end{split}$$

Solving the system of equations and substituting back into $y_p(t)$ yields:

$$a_{1} = \frac{F_{0}(2Q^{2} - QT\omega - 2)}{mQ^{2}T^{2}\omega^{4}}$$

$$a_{2} = \frac{F_{0}(QT\omega + 2)}{mQT^{2}\omega^{3}}$$

$$a_{3} = \frac{-F_{0}}{mT^{2}\omega^{2}}$$

$$y_{p}(t) = \frac{F_{0}t}{mT\omega^{2}}(1 - t/T) + \frac{F_{0}}{mQT\omega^{3}} \left[\frac{2(t+Q)}{T} - \frac{2}{QT\omega} - 1 \right]$$
(9)

4.2 Numerical method

To solve equation 5 numerically we first have to split the second order differential equations into a system of two first order equations. We do this by substituting two new time dependant functions for y, namely u(t) and v(t) equal to y(t) and y'(t) respectively. We can then derive the following system:

$$\begin{cases} u(t) = y(t) \\ v(t) = y'(t) \end{cases}$$

So that their derivatives become:

$$\begin{cases} u'(t) = y'(t) = v(t) \\ v'(t) = y''(t) \end{cases}$$

If we then substitute in these equations into the second order differential equation we get the following system:

$$\begin{split} u'(t) &= y'(t) = v(t) \\ v'(t) &= y''(t) \\ F(t) &= my''(t) + m\frac{\omega}{Q}y'(t) + m\omega^2 y(t) \end{split}$$

$$v'(t) = y''(t) = 1/m \cdot F(t) - \omega/Q \cdot y'(t) - \omega^2 \cdot y(t)$$
$$v'(t) = 1/m \cdot F(t) - \omega/Q \cdot v(t) - \omega^2 \cdot u(t)$$

So that we now have the following system of of first-order linear differential equations:

$$v'(t) = 1/m \cdot F(t) - \omega/Q \cdot v(t) - \omega^2 \cdot u(t)$$

$$u'(t) = v(t)$$
(10)

This system can be easily solved numerically using the following python code:

```
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from scipy.integrate import solve ivp as solve
" " "
                                code in between lines
#Defining constants
m = 1
                   #Mass in kilogramme
Q = 1
                  #Quality factor
F_naught = 1 #force in newton
freqT = 0.1 #wT dimensionless
tmax = 10 #Maximum time to
tmax = 10
                  #Maximum time to elapse
#Variables
T = 1
```

```
freq = freqT/T
#Defining our timepoints
time = np.linspace(0,tmax,100)
def force(t):
    if t < T:
        return F_naught*t*(T-t)/(T**2)
    else:
        return 0
def system(t , func_array):
    u prime = func array[1]
    v_prime = 1/m * force(t) - freq/Q*func_array[1] -freq**2 *func_array[0]
    #function that takes in a vector [u, v]^T and returns [u', v']^T
    return [u_prime, v_prime]
solution = solve(system, (0,tmax), [0,0], t_eval=time)
                                    ^ \ Timepoints to evaluate at.
                              \ The initial values for u(t) and v(t)
                            \ The timespace in which system needs evaluating.
                     \ The system defining our system of first order ODE's
plt.plot(solution.t, solution.y[0])
plt.show()
```

5 conclusion

References

[1] W. E. Boyce, R. C. Dirpima, and D. B. Meade, *Elementary Differential Equations and Boundary Value Problems*. John Wiley and Sons, Inc., 11 ed., 2017.

6 Appendix

6.1 Question 1

6.1.1 Solving Y(t)

In order to solve the particular solution to the differential equation we assume Y(t) is of the shape:

$$Y(t) = a_1 cos(\omega t) + a_2 sin(\omega t)$$

Differentiating with respect to t once and twice yields:

$$\dot{Y}(t) = -a_1 \omega \sin(\omega t) + a_2 \omega \cos(\omega t)$$
$$\ddot{Y}(t) = -a_1 \omega^2 \cos(\omega t) - a_2 \omega^2 \sin(\omega t)$$

If we substitute this for x(t) in equation 1 and with $F(t) = F_0 \cos(\omega t)$ we find:

$$\begin{split} F(t)m &= \ddot{x}(t) + m\frac{\omega}{Q}\dot{x}(t) + m\omega^2x(t) \\ F_0\cos(\omega t) &= m\left[-a_1\omega^2\cos(\omega t) - a_2\omega^2\sin(\omega t)\right] + m\frac{\omega}{Q}\left[-a_1\omega\sin(\omega t) + a_2\omega\cos(\omega t)\right] + m\omega^2\left[a_1\cos(\omega t) + a_2\sin(\omega t)\right] \\ F_0\cos(\omega t) &= omega^2m\cos(\omega t)\left(a_1 + \frac{a_2}{Q} - a_1\right) + \omega^2m\sin(\omega t)\left(a_2 - \frac{a_1}{Q} - a_2\right) \\ F_0\cos(\omega t) &= a_2\frac{\omega^2m}{Q}\cos(\omega t) - a_1\frac{\omega^2m}{Q}\sin(\omega t) \end{split}$$

From this follows:

$$-a_1 \frac{\omega^2 m}{Q} = 0$$

$$a_1 = 0$$

$$a_2 \frac{\omega^2 m}{Q} = F_0$$

$$a_2 = \frac{F_0 Q}{\omega^2 m}$$

Therefore the solution to differential equation 1 is:

$$x(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} + \frac{F_0 Q}{\omega^2 m} sin(\omega t)$$

We can find c_1 and c_2 by imposing the initial conditions on the latter equation:

$$x(0) = x_0 = c_1 + c_2$$
$$c_1 = x_0 - c_2$$

$$\dot{x}(t) = c_1 r_1 e^{r_1 t} + c_2 r_2 e^{r_2 t} + \frac{F_0 Q}{\omega m} \cos(\omega t)$$

$$\dot{x}(0) = \dot{x}_0 = c_1 r_1 + c_2 r_2 + \frac{F_0 Q}{\omega m}$$

$$\dot{x}_0 = [x_0 - c_2] r_1 + c_2 r_2 + \frac{F_0 Q}{\omega m}$$

$$c_2(r_2 - r_1) = \dot{x}_0 - \frac{F_0 Q}{\omega m} - x_0 r_1$$

$$c_2 = \frac{1}{r_2 - r_1} \left(\dot{x}_0 - \frac{F_0 Q}{\omega m} - x_0 r_2 \right)$$

We substitute this back into the equation for c_1 :

$$\begin{split} c_1 &= x_0 - c_2 \\ &= x_0 - \frac{1}{r_2 - r_1} \left(\dot{x}_0 - \frac{F_0 Q}{\omega m} - x_0 r_2 \right) \\ &= \frac{1}{r_2 - r_1} \left(-\dot{x}_0 + \frac{F_0 Q}{\omega m} + x_0 (2 r_2 - r_1) \right) \end{split}$$