Deck

a Go package for presentations

DECK: a package for presentations

Deck is a package written in Go

That uses a singular markup language

With elements for text, lists, code, and graphics

All layout and sizes are expressed as percentages

Clients are interactive or create formats like PDF or SVG

Servers use a RESTful API to list, upload, stop, start, remove decks

Elements

text element

Hello, World (plain text)

A block of text, word-wrapped to a specified width. You may specify size, font, color, and opacity.

```
package main

import "fmt"

func main() {
    fmt.Println("hello, world")
}
```

list element

- Point A
- Point B
- Point C
- Point D

```
xp="5" yp="70" sp="3"
    type="bullet"
    font="sans"
    color="rgb(0,127,0)">
    Point A
    Point B
    Point C
    Point D
```

First item

Second item

The third item

the last thing

```
<list xp="35" yp="70" sp="3"
    type="plain"
    font="serif"
    color="rgb(0,0,127)">
    First item
    Second item
    The third item
    the last thing
```

- 1. This
- 2. That
- 3. The other
- 4. One more

```
<list xp="70" yp="70" sp="3"
    type="number"
    font="mono"
    color="black">
    This
    That
    The other
    One more
```

image element

height

rect element

height (relative to element or canvas width)

<rect xp="50" yp="50" wp="20" hr="100"/>

ellipse element

height (relative to element or canvas width)

polygon element

line element

arc element

Markup and Layout

```
Start the deck
                    <deck>
Set the canvas size
                       <canvas width="1024" height="768" />
Begin a slide
                      <slide bg="white" fg="black">
Place an image
                           <image xp="70" yp="60" width="256" height="179" name="work.png" caption="Desk"/>
Draw some text
                           <text xp="20" yp="80" sp="3" link="http://goo.gl/Wm05Ex">Deck elements</text>
Make a bullet list
                           <list xp="20" yp="70" sp="2" type="bullet">
                              text, list, image
                              line, rect, ellipse
                              arc, curve, polygon
End the list
                           </list>
Draw a line
                           ne
                                   xp1="20" yp1="10" xp2="30" yp2="10"/>
Draw a rectangle
                                    xp="35" yp="10" wp="4" hr="75" color="rqb(127,0,0)"/>
                           <rect
Draw an ellipse
                           <ellipse xp="45" yp="10" wp="4" hr="75" color="rgb(0,127,0)"/>
Draw an arc
                                    xp="55" yp="10" wp="4" hp="3" a1="0" a2="180" color="rgb(0,0,127)"/>
                           <arc
Draw a quadratic bezier
                                   xp1="60" yp1="10" xp2="75" yp2="20" xp3="70" yp3="10" />
                           <curve
                           <polygon xc=75 75 80" yc="8 12 10" color="rgb(0,0,127)"/>
Draw a polygon
End the slide
                      </slide>
                                                                                  Anatomy of a Deck
End of the deck
                    </deck>
```

Deck elements

- text, list, image
- line, rect, ellipse
- arc, curve, polygon

Desk

Text and List Markup

Attributes

```
Position, size
               <text xp="..." yp="..." sp="...">
Block of text
                <text ... type="block">
Lines of code
               <text ... type="code">
Attributes
                 <text ... color="..." opacity="..." font="..." align="..." link="...">
Position, size
               <list xp="..." yp="..." sp="...">
Bullet list
                <list ... type="bullet">
Numbered list
            <list ... type="number">
```

<list ... color="..." opacity="..." font="..." align="..." link="...">

Common Attributes for text and list

```
horizontal percentage
хp
           vertical percentage
ур
           font size percentage
sp
           "bullet", "number" (list), "block", "code" (text)
type
           "left", "middle", "end"
align
           SVG names ("maroon"), or RGB "rgb(127,0,0)"
color
opacity percent opacity (0-100, transparent - opaque)
           "sans", "serif", "mono"
font
           URL
link
```

Scaling the canvas

Left

Left

Center

Center

Right

Right

Portrait

Landscape

1	0 2	0 3() 4	0 5	0 6	0 7	0 8	0 9	0
90									
80									
00									
70									
60									
50			P	ercer	nt Gr	id			
40									
30									
20									
10									
10									

Percentage-based layout


```
package main
import (
    "github.com/ajstarks/deck"
    "log"
func main() {
    presentation, err := deck.Read("deck.xml", 1024, 768) // open the deck
    if err != nil {
        log.Fatal(err)
    for _, slide := range presentation.Slide { // for every slide...
        for _, t := range slide. Text { // process the text elements
            x, y, size := deck.Dimen(presentation.Canvas, t.Xp, t.Yp, t.Sp)
            slideText(x, y, size, t)
        for _, l := range slide.List { // process the list elements
            x, y, size := deck.Dimen(presentation.Canvas, 1.Xp, 1.Yp, 1.Sp)
            slideList(x, y, size, 1)
```



```
package main
                                             Generating a Barchart
import (
   "fmt."
   "github.com/ajstarks/deck/generate"
type Bardata struct {
   label string
   value float64
func vmap(value float64, low1 float64, high1 float64, low2 float64, high2 float64) float64 {
   return low2 + (high2-low2)*(value-low1)/(high1-low1)
func main() {
   benchmarks := []Bardata{
       {"Macbook Air", 154.701}, {"MacBook Pro (2008)", 289.603}, {"BeagleBone Black", 2896.037}, {"Raspberry Pi", 5765.568},
   maxdata := 5800.0
   ts := 2.5
   hts := ts / 2
   x, y := 10.0, 60.0
   bx1 := x + (ts * 12)
   bx2 := bx1 + 50.0
   linespacing := ts * 2.0
   deck := generate.NewSlides(os.Stdout, 0, 0)
   deck.StartDeck()
   deck.StartSlide("rqb(255,255,255)")
   deck.Text(x, y+20, "Go 1.1.2 Build and Test Times", "sans", ts*2, "black")
   for , data := range benchmarks -
       deck.Text(x, y, data.label, "sans", ts, "rgb(100,100,100)")
       bv := vmap(data.value, 0, maxdata, bx1, bx2)
       deck.Line(bx1, y+hts, bv, y+hts, ts, "lightgray")
       deck.Text(bv+0.5, y+(hts/2), fmt.Sprintf("%.1f", data.value), "sans", hts, "rgb(127,0,0)")
       y -= linespacing
   deck.EndSlide()
   deck . EndDeck ( )
```

Go 1.1.2 Build and Test Times

Macbook Air MacBook Pro (2008) BeagleBone Black Raspberry Pi

go get github.com/ajstarks/deck/cmd/vgdeck

go get github.com/ajstarks/deck/cmd/pdfdeck

go get github.com/ajstarks/deck/cmd/svgdeck

pdfdeck [options] file.xml...

- -sans, -serif, -mono [font] specify fonts
- -pagesize [w,h, or Letter, Legal, Tabloid, A2-A5, ArchA, Index, 4R, Widescreen]
- -stdout (output to standard out)
- -outdir [directory] directory for PDF output
- -fontdir [directory] directory containing font information
- -author [author name] set the document author
- -title [title text] set the document title
- -grid [percent] draw a percent grid on each slide

svgdeck [options] file.xml...

- -sans, -serif, -mono [font] specify fonts
- -pagesize [Letter, Legal, A3, A4, A5]
- -pagewidth [canvas width]
- -pageheight [canvas height]
- -stdout (output to standard out)
- -outdir [directory] directory for PDF output
- -title [title text] set the document title
- -grid [percent] draw a percent grid on each slide

vgdeck [options] file.xml...

- -loop [duration] loop, pausing [duration] between slides
- -slide [number] start at slide number
- -w [width] canvas width
- -h [height] canvas height
- -g [percent] draw a percent grid

vgdeck Commands

+, Ctrl-N, [Return]	Next slide
-, Ctrl-P, [Backspace]	Previous slide
^, Ctrl-A	First slide
\$, Ctrl-E	Last slide
r, Ctrl-R	Reload
x, Ctrl-X	X-Ray
/, Ctrl-F [text]	Search
s, Ctrl-S	Save
q	Quit

Deck Web API

sex -dir [start dir] -listen [address:port] -maxupload [bytes]

GET	/	List the API		
GET	/deck/	List the content on the server		
GET	/deck/?filter=[type]	List content filtered by deck, image, video		
POST	/deck/content.xml?cmd=1s	Play a deck with the specified duration		
POST	/deck/content.xml?cmd=stop	Stop playing a deck		
POST	/deck/content.xml?slide=[num]	Play deck starting at a slide number		
DELETE	/deck/content.xml	Remove content		
POST	/upload/ Deck:content.xml	Upload content		
POST	/table/ Deck:content.txt	Generate a table from a tab-separated list		
POST	/table/?textsize=[size]	Specify the text size of the table		
POST	/media/ Media:content.mov	Play the specified video		

deck [command] [argument]

```
deck play file [duration]
                                        Play a deck
                                        Stop playing a deck
deck stop
deck list [deck|image|video]
                                        List contents
                                        Upload content
deck upload file...
                                        Remove content
deck remove file...
                                        Play video
deck video file
                                        Make a table
deck table file [textsize]
$ deck upload *.jpg
                                        # upload images
$ mkpicdeck *.jpg | deck upload /dev/stdin
                                        # generate the slide show deck
$ deck play stdin
                                        # play it
```

Display

Controller

- > list
- > upload
- > play/stop
- > delete

Design Examples

hello, world

-op

Left

Right

Bottom

20%

30%

70%

Header (top 20%) Detail Summary (30%)(70%)

Footer (bottom 20%)

bullet

- Point A
- Point B
- Point C
- Point D

plain

First item

Second item

The third item

the last thing

3. The other

number

1. This

2. That

4. One more

t>...</list>

BOS

Virgin America 351

Gate B38

8:35am

SFO

On Time

US Airways 1207 Gate C31C 5:35pm

Delayed

AAPL 503.73 -16.57 (3.18%)
AMZN 274.03 +6.09 (2.27%)

COOC 797.50 19.03(2.2770)

GOOG 727.58 -12.41 (1.68%)

Two Columns

build	compile packages and dependencies
clean	remove object files
env	print Go environment information
fix	run go tool fix on packages
fmt	run gofmt on package sources
get	download and install packages and dependencies
install	compile and install packages and dependencies
list	list packages
run	compile and run Go program
test	test packages
tool	run specified go tool
version	print Go version
vet	run go tool vet on packages

go

Code

```
package main
import (
    "github.com/ajstarks/svgo"
    "os"
func main() {
   canvas := svg.New(os.Stdout)
   width, height := 500, 500
   a, ai, ti := 1.0, 0.03, 10.0
   canvas.Start(width, height)
   canvas.Rect(0, 0, width, height)
   canvas.Gstyle("font-family:serif;font-size:144pt")
   for t := 0.0; t <= 360.0; t += ti {
       canvas.TranslateRotate(width/2, height/2, t)
       canvas.Text(0, 0, "i", canvas.RGBA(255, 255, 255, a))
       canvas.Gend()
       a -= ai
   canvas.Gend()
   canvas.End()
```


A few months ago, I had a look at the brainchild of a few serious

package managed, object oriented, easily parallelizable, cluster fuck of genius with an unique class inheritance system. It doesn't

have one.

heavyweights working at Google. Their project, the Go programming language, is a static typed, c lookalike, semicolon-less, self formatting,

The Go Programming Language

is a static typed,

c lookalike,

semicolon-less,

self formatting,

package managed,

object oriented,

easily parallelizable,

cluster fuck of genius

with an unique class inheritance system.

The Go Programming Language

is a static typed,

c lookalike,

semicolon-less,

self formatting,

package managed,

object oriented,

easily parallelizable,

cluster fuck of genius

with an unique class inheritance system.

The Go Programming Language

is a static typed, c lookalike, semicolon-less, self formatting, package managed, object oriented, easily parallelizable, cluster fuck of genius with an unique class inheritance system.

It doesn't have one

So, the next time you're about to make a subclass, think hard and ask yourself

what would Go do

Python and Ruby programmers come to Go because they don't have to surrender much expressiveness, but gain performance and get to play with concurrency.

Less is exponentially more Rob Pike

FOR, LO,

the winter is past,
the rain is over and gone;
The flowers appear on the earth;
the time for the singing of birds is come,
and the voice of the turtle is heard in our land.

Good Design

is innovative

makes a product useful

is aesthetic

makes a product understandable

is unobtrusive

is honest

is long-lasting

is thorough down to the last detail

is environmentally-friendly

is as little design as possible

github.com/ajstarks/deck

ajstarks@gmail.com @ajstarks