К-ближайших соседей

∧ЕКЦИЯ 2

Цель занятия

- Алгоритм KNN (K-Nearest Neighbors)
- Как измерять расстояния
- Как оценить качество работы модели
- Общий алгоритм построения ML моделей

Как мы обучаемся?

Запоминаем примеры

Сравниваем новый объект с тем, что уже знаем

Формируем ответ на основе наиболее похожих примеров

Гипотеза компактности

Объекты, принадлежащие одному классу, будут иметь схожие признаки.

Подготовка модели

Дано: обучающая выборка

$$X = (x_i, y_i)_i^l$$

Решаем задачу классификации

$$\mathbb{Y} = \{1, 2, \dots, K\}$$

▶ Как обучаем?

Запоминаем обучающую выборку X

Применение модели

- ▶ Дано: новый объект x
- Работа модели:
- 1. Сортируем объекты обучающей выборки по расстоянию до нового объекта : $ho(x,x_{(1)}) \le
 ho(x,x_{(2)}) \le ... \le
 ho(x,x_{(l)})$
 - 2. Выбираем к соседей с минимальным расстоянием:

$$\boldsymbol{x}_{(1)}, \boldsymbol{x}_{(2)}, \ldots, \boldsymbol{x}_{(k)}$$

3. Среди k соседей выбираем наиболее встречающийся класс:

$$a(x) = argmax \sum_{i=0}^{k} [y_{(i)} = y]$$

Числовые признаки

Возраст	Пол (0-м, 1-ж)	вес	рост	Курит?	Глюкоза	Сердечно- сосудистое заболевание
27	0	81	179	1	2	1
43	1	58	168	0	0	0
32	0	78	182	0	1	0
•••	•••	•••	•••	•••	•••	•••

Манхэттенская метрика

$$\rho(x,z) = \sum_{i=1}^{d} |x_i - z_i|$$

$$\rho(x_1, x_2) = |27 - 43| + |0 - 1| + |81 - 58| + |179 - 168| + |1 - 0| + |2 - 0| = 54$$

Евклидова метрика

$$\rho(x,z) = \sqrt{\sum_{i=1}^{d} (x_i - z_i)^2}$$

$$\rho(x_1, x_2) = \sqrt{(27 - 43)^2 + (0 - 1)^2 + (81 - 58)^2 + (179 - 168)^2 + (1 - 0)^2 + (2 - 0)^2} = 30.2$$

Оценка обобщающей способности

- Обучать и тестировать модель на одних и тех же данных – плохая идея.
- Нужно разбить выборку на обучающую и тестовую.

Метрики качества

$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$

В чём может быть проблема такой метрики?

Actual Values

13	Positive (1)	Negative (0)	
ive (1)	True Positive	False Positive	
ive (0)	False Negative	True Negative	

Positive (1

Predicted Values

Negative (0

Метрики качества

$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$

Positive (1)

Negative (0)

Predicted Values

Важно следить за сбалансированностью классов!

Допустим, мы выявляем редкое заболевание. Всего было 1000 пациентов, у 50 из них на самом деле есть заболевание.

$$a(x)=0$$
 – const
accuracy = $950/1000 = 0.95$ (0.05 – доля ошибок)

Actual Values

Positive (1)	Negative (0)
True Positive	False Positive
False Negative	True Negative

Как выбрать к?

- Разделить выборку на train (80%) и test (20%)
- Обучить модель на тренировочной выборке
- Предсказать значения на тестовой выборке, посчитать метрику качества
- Выбрать К, показывающий наивысшее качество работы модели

Взвешенный KNN

$$a(x) = argmax \sum_{i=0}^{k} w_i [y_{(i)} = y]$$

Sklearn поддерживает следующие типы:

weights = "uniform"

weights = "distance"

$$w_i = \frac{1}{\rho(x, x_i)}$$

sklearn.neighbors.KNeighborsClassifier

class sklearn.neighbors.KNeighborsClassifier($n_neighbors=5$, *, weights='uniform', algorithm='auto', $leaf_size=30$, p=2, metric='minkowski', $metric_params=None$, $n_jobs=None$) [source]

Плюсы и минусы метода

- Очень простое обучение
- Мало гиперпараметров
- При большой выборке это может
 быть наилучшим вариантом

- Необходимость постоянно хранить
 в памяти всю обучающую выборку
- Время выполнения
- Другие методы обычно лучше