Homology modeling Tutorial Sequence to structure

Homology modeling

Principle

Evolutionary related protein tend to have similar structure

Homology modeling

Predicting structure from the sequence

3d structure of template

Homology modeling/Comparative modeling

TEMPLATES TARGET

- → Predicts the three-dimensional structure of a given protein sequence (TARGET) based on an alignment to one or more known protein structures (TEMPLATES)
- → If similarity between the TARGET sequence and the TEMPLATE sequence is detected, structural similarity can be assumed.

Comparative Protein Models will be increasingly utilized to help solve biological problem

Homology modeling

Basic steps in Homology modeling:

- i) Model building based on template
- ii) Refinement
- ii) Evaluation

Building the model

Software for homology molecular modeling

- Freeware: available for all OS
 - Downloadable
 - Modeller (Sali, 1998)
 - DeepView (SwissPDB viewer)

- Web based:

- •I-TASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER/SDSC1)
- •SWISS MODEL server (<u>www.expasy.org/swissmod/SWISS-MODEL.html</u>)
- •Hhpred server (https://toolkit.tuebingen.mpg.de/tools/hhpred)
- •PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/)

Summary steps for modeling

Basic Comparative Protein Modeling Procedures

Step1

Homology modeling/Comparative modeling

Input for the modeling

> Target sequence- Sequence of the structure with unknown 3D structure

> 3D template- selected based on the highest sequence identity with the target sequence

> Alignment between the target and template

Target selection

Template selection

							From Bacillus	s Sp. K17 At Ph3.
	_		db 1V5C A Length	n: 386 Num	ber of Matche	s: 1		
▶ See	2 more	title(s)						
Range	1: 1 to	386 GenPept	Graphics			_	Next Match 🛦	Previous Match
Score		Expect	Method		Identities		Positives	Gaps
1164	bits(27	737) 0.0	Composition-ba	sed stats.	376/386(97	7%)	378/386(97%	6) 0/386(0%)
Query	1		VNYAGVIKPNHVTQE					60
Sbjct	1		VNYAGVIKPNHVTÕE VNYAGVIKPNHVTÕE					60
Query	61		GTSEGQGYGMIITVL GTSEGOGYGMIITVL					120
Sbjct	61		GTSEGÕGYGMIITVI					120
Query	121		DSATDGDLDIAYSLL DSATDGDLDIAYSLL					180
Sbjct	121		DSATDGDLDIAYSLL					180
Query	181		SSLDTRPSDWMMSHL SSLDTRPSDWMMSHL					240
Sbjct	181		SSLDTRPSDWMMSHL					240
Query	241		PQPAPKGFLNESEYT POPAPK FL+ESEYT					300
Sbjct	241		PÕPAPKDFLDESEYT					300
Query	301		SKIVDGYQLNGSNIG SKIVDGYQLNGSNIG					360
Sbjct	301	WIĞNKTNGNP	SKIVDGYĞLNGSNIG	SYPTAVEVS	PFIAASITSSN	NČKW	VNSGWDWMKNK	360
Query	361		LLTMLFITGNWWKPI					
Sbjct	361		LLTMLFITGNWWKPV					

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

Alignment

Rules for Template selection

- >The quality of the homology model is dependent on the quality of the sequence alignment and template structure
- >Model quality declines with decreasing sequence identity.
- >The approach can be complicated by the presence of alignment gaps that indicate a structural region present in the target but not in the template
- ➤Is an X-ray crystallography structure (NMR structure are usually much less resolved)?
- > All the atoms are resolved in the selected structure?
- ightharpoonup Is the chosen structure the best resolved one (typical good resolution is smaller than 2\AA)

As a rule of thumb we should never use template with an E value larger than 0.1.

Building the model

Building the model

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

Building the model

Automated mode

Alignment mode

Building the model

Basic Comparative Protein Modeling Procedures

Model Evaluation

reflecting the predicted model reliability

Model Evaluation

http://molprobity.biochem.duke.edu/

PROBITY		Main page	
Main page About hydrogens	FILE UPLOAD/RETRIEVAL (MORE OPTIONS)		
Evaluate X-ray Evaluate NMR Fix up structure Work with kins	PDB/NDB code:	type: PDB coords	Fetch >
View & download files	Browse No file selected.	type: PDB coords	Upload >

Poor rotamers Ramachandran outliers			2	0.60%	Goal: <1%			
			Ra	amachandran outliers	C)	0.00%	Goal: <0.05%
Protein Geometry		Ra	amachandran favored	3	374	97.40%	oal: >98%	
		Cf	3 deviations >0.25Å	C)	0.00%	Goal: 0	
		Ba	nd backbone bonds:	2	25 / 3149	0.79%	Goal: 0%	
			Ba	nd backbone angles:	2	29 / 4275	0.68%	Goal: <0.1%
he two	column	results, the	e left column gi	ives the raw count, right column gives the perc	entage.			
#	Alt	Alt Res High B Ramachandran		Rotamer	Cβ deviation	Bond lengths	Bond angles	
			Avg: 0.85	Outliers: 0 of 384	Poor rotamers: 2 of 334	Outliers: 0 of 357	Outliers: 17 of 38	66 Outliers: 17 of 386
A 1		ALA	0.71	-	-	0.052Å	-	-
A 2		LYS	0.6	Favored (18.81%) General / 61.3,29.8	96.1% (mttt) chi angles: 298.4,185.6,177.2,185.	8 0.036Å	-	-
A 3		GLU	0.72	Favored (58.09%) General / -60.4,137.7	25.4% (mp0) chi angles: 286.3,67.3,34	0.075Å	-	
A 4		MET	0.75	Favored (17.3%) General / -99.5,-18.6	77.8% (mtm) chi angles: 293.2,180.9,285.3	0.014Å	-	
A 5		LYS	0.76	Favored (11.06%) Pre-proline / -127.7,53.7	45.7% (mmtm) chi angles: 290,293.6,190.6,297.5	0.071Å	-	-
A 6		PRO	0.83	Favored (81.68%) Trans-proline / -63.6,141.8	98.7% (<i>Cg_endo</i>) chi angles: 30.5	0.029Å	-	
A 7		PHE	0.85	Favored (96.43%) Pre-proline / -65.7,137.8	54% (t80) chi angles: 181.9,273.7	0.069Å	-	-
A 8		PRO	0.88	Favored (3.55%) Cis-proline / -97.9,137.2	33.5% (<i>Cg_endo</i>) chi angles: 37.1	0.06Å	-	-
A 9		GLN	0.76	Favored (43.56%) General / -79.0,-28.3	26.6% (mm100) chi angles: 287.4,299.5,108.8	0.051Å		

Ramachandran PLOT

Homology Modeling Results

Many places can go wrong:

- → Bad template it doesn't have the same structure as the target
- → Bad alignment (a very common problem)
- → Bad loop construction
- → Bad side chain positioning

Model Refinement

→ Side chain optimization

KOBAMIN server, GALAXY websever

→ Loop modeling

MODLOOP

Model optimization

http://csb.stanford.edu/kobamin/

Model optimization

http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE

Model optimization

Excercise

Generate 3D model using SWISS-PDB and evaluate your model

