

División y conquista: puntos extremos en polígonos

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Obtención de extremos de un polígono

Sea un polígono de n vértices V=(v₀,v₁,...v_{n-1},V_n)

Solución por fuerza bruta

Por cada punto vi

Realizamos la proyección ortogonal a u

Verificamos si es mayor (o menor) al mayor (o menor) de los anteriores

Complejidad algorítmica

O(n)

Se puede hacer mejor?

Si, aunque SOLO si el polígono es CONVEXO

Polígonos convexos

Un polígono es convexo si

Es monotónico para todo L segmento (Cualquier linea perpendicular a L cortará a los sumo 2 veces al polígono)

Sus ángulos interiores miden a lo sumo 180 grados

Nomenclatura

Llamaremos:

e_i ak i-esimo segmento del vértice v_i a v_{i+1} para i=0 a n-1

ev_i al vector V_{i+1} – V_i

eV_i puede, en la proyección u,

Tener sentido positivo o negativo

"para arriba" o "para abajo"

Idea

Supongamos que

el vértice máximo se encuentra en el polígono entre los vértices Va y Vb

Podemos extresar la línea poligonal como [a,b]

 $[a,b] = \{a,a+1,...a+k=b \pmod{n}\} k>0$

Seleccionamos un vértice Vc entre a y b

Dividimos en 2 lineas poligonales [a,c] y [c,b]

El máximo estará en alguno de los 2 segmentos

Idea (cont.)

Analizamos el vector eV_a y eV_c

Idea (cont.)

Analizamos el vector eV_a y eV_c (cont.)

Solución

Iniciamos con

a=0 y b=0 (todo el polígono)

c=n/2 (el punto intermedio)

Iteramos

Si solo nos quedan 3 vértices compararlos uno a uno y obtener el máximo

Sino determinar cual de los casos aplica.

Actualizar a,b y c según corresponda

Al finalizar tenemos el punto extremo

Complejidad

En cada iteración

Reducimos a la mitad la cantidad de vértices

Se convierte en un nuevo sub problema

Realizamos operaciones O(1)

Relación de recurrencia

$$T(n) = T(n/2) + c$$

Por teorema maestro

O(logn)

Presentación realizada en Abril de 2020