MÉTODOS COMPUTACIONALES

Guía 2 - Ecuaciones Lineales, parte II Primer Semestre 2025

Ejercicio 1. Resolver el siguiente sistema escribiendo la solución como una traslación de la solución del sistema homogéneo asociado, por una solución particular.

$$\begin{cases} 2x_2 - x_3 + x_4 = 0\\ 3x_1 + x_2 + 10x_3 + 5x_4 = 3\\ x_1 + 3x_3 + x_4 = 1 \end{cases}$$

Ejercicio 2. Encontrar todos los valores de a y b para los cuales (2,0,-1) es la única solución del sistema

$$2x_1 - ax_2 + 2x_3 = 2$$
$$x_1 + x_2 - bx_3 = 3$$
$$2x_2 - 3x_3 = 3$$

Ejercicio 3. Se tiene el siguiente sistema lineal en función de $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

(i)
$$\begin{cases} a_1 x_1 + a_2 x_2 = y_1 \\ a_3 x_1 + a_4 x_2 = y_2 \end{cases}$$

Donde $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ es solución al sistema

(ii)
$$\begin{cases} b_1 y_1 + b_2 y_2 = c_1 \\ b_3 y_1 + b_4 y_2 = c_2 \end{cases}$$

1

- a) Escribir el sistema (ii) únicamente en función de x
- b) ¿Cuál es la matriz asociada a éste?
- c) ¿Se llega al mismo resultado planteando los sistemas de forma matricial?

Ejercicio 4. Para cada una de las siguientes matrices, decidir si sus columnas generan \mathbb{R}^4 .

a)
$$\begin{bmatrix} 7 & 2 & -5 & 8 \\ -5 & -3 & 4 & -9 \\ 6 & 10 & -2 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

b)
$$\begin{bmatrix} 5 & -7 & -4 & 9 \\ 6 & -8 & -7 & 5 \\ 4 & -4 & -9 & -9 \\ -9 & 11 & 16 & 7 \end{bmatrix}$$

c)
$$\begin{bmatrix} 12 & -7 & 11 & -9 & 5 \\ -9 & 4 & -8 & 7 & -3 \\ -6 & 11 & -7 & 3 & -9 \\ 4 & -6 & 10 & -5 & 12 \end{bmatrix}$$

d)
$$\begin{bmatrix} 8 & 11 & -6 & -7 & 13 \\ -7 & -8 & 5 & 6 & -9 \\ 11 & 7 & -7 & -9 & -6 \\ -3 & 4 & 1 & 8 & 7 \end{bmatrix}$$

Ejercicio 5. Hallar, si es posible, una columna en la matriz del ítem (c) del ejercicio anterior que pueda ser eliminada y que las columnas restantes generen \mathbb{R}^4 .

Ejercicio 6. Hallar, si es posible, una columna en la matriz del ítem (d) del ejercicio anterior que pueda ser eliminada y que las columnas restantes generen \mathbb{R}^4 . ¿Es posible eliminar más de una columna?

Ejercicio 7. Considerando los vectores v_1, v_2, v_3 y b en \mathbb{R}^2 que se ven en la figura 1. La ecuación

$$x_1v_1 + x_2v_2 + x_3v_3 = b$$

¿Tiene solución? ¿Es única? Usar la figura para explicar sus respuestas.

Figura 1: Figura correspondiente al ejercicio 7.

Ejercicio 8. Estudiar la dependencia o independencia lineal de los siguientes conjuntos de vectores

- a) $\{(-1,1,5),(1,-4,0),(2,-2,4)\}$
- b) $\{(5,1,2,3,0)\}$
- c) $\{(0,3,1,-1),(0,1,0,1),(1,3,-2,1),(2,1,-1,4)\}$

Ejercicio 9. Determinar los valores reales de k para los cuales cada conjunto de vectores es linealmente independiente.

- a) $\{(0,1,-2),(1,-1,k),(1,-3,0)\}$
- b) $\{(1,-1,3),(k,k+1,k+4),(k+1,k+1,k)\}$

Ejercicio 10. Sean v y $w \in \mathbb{R}^n$ probar las siguientes afirmaciones e interpretarlas geométricamente (para la interpretación geométrica se sugiere buscar ejemplos en \mathbb{R}^2).

- 1. $||v w|| = ||v + w|| \Leftrightarrow v \cdot w = 0$
- 2. $||v + w||^2 = ||v||^2 + ||w||^2 \Leftrightarrow v \cdot w = 0$ (Teorema de Pitágoras)

Ejercicio 11. Sean (1,3,1), (2,2,4) y (2,0,4) soluciones de un sistema lineal no homogéneo.

- 1. Hallar dos vectores v y w no paralelos que sean soluciones del sistema homogéneo asociado.
- 2. Encontrar cuatro soluciones del sistema no homogéneo, distintas de las dadas.

Ejercicio 12. Encontrar todos los $x \in \mathbb{S}_0$ tales que $Bx = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$. Donde, $\mathbb{S}_0 = \{x \in \mathbb{R}^4 / Ax = 0\}$,

$$A = \begin{bmatrix} -1 & 1 & 1 & 4 \\ 0 & 1 & 2 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 1 & -1 \\ 2 & 1 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{bmatrix}.$$

Ejercicio 13. Sea $A \in \mathbb{R}^{n \times m}$. Verificar que la función T(x) = Ax es una transformación lineal.

Ejercicio 14. Dadas dos transformaciones lineales $T_1: \mathbb{R}^n \to \mathbb{R}^n, T_2: \mathbb{R}^n \to \mathbb{R}^n$.

- 1. Verificar que la función $T_3(x) = T_2(T_1(x))$ también es una transformación lineal.
- 2. Sea $T_4(x)=T_1(T_2(x))$. ¿Es cierto que $T_3(x)=T_4(x)$ para todo $x\in\mathbb{R}^n$? ¿De qué depende?

Ejercicio 15. A partir de la matriz $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, se define la transformación lineal $T : \mathbb{R}^2 \to \mathbb{R}^2$ como T(x) = Ax. Hallar la imagen de $u = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ y $v = \begin{bmatrix} a \\ b \end{bmatrix}$ bajo la transformación T.

Ejercicio 16. Hallar una transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que:

$$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-2\end{bmatrix}, \ \mathbf{y} \ T\left(\begin{bmatrix}2\\3\end{bmatrix}\right) = \begin{bmatrix}-2\\5\end{bmatrix}$$

Ejercicio 17. En cada caso, considerar la transformación lineal T asociada a la matriz dada, es decir, T(x) = Ax, y hallar un vector x tal que su imagen es el vector b.

a)
$$A = \begin{bmatrix} 1 & 0 & -2 \\ -2 & 1 & 6 \\ 3 & -2 & -5 \end{bmatrix}, b = \begin{bmatrix} -1 \\ 7 \\ -3 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & -3 & 2 \\ 0 & 1 & -4 \\ 3 & -5 & -9 \end{bmatrix}, b = \begin{bmatrix} 6 \\ -7 \\ -9 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{bmatrix}, b = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

d)
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix}$$

Ejercicio 18. Sea A una matriz de 4×6 . ¿Cuáles son los valores de a y b correspondientes para poder definir la transformación $T : \mathbb{R}^a \to \mathbb{R}^b$ como T(x) = Ax?

Ejercicio 19. En cada caso hallar todos los vectores $x \in \mathbb{R}^4$ cuya imágen bajo la transformación $x \mapsto Ax$ es el vector nulo.

a)
$$A = \begin{bmatrix} 1 & -4 & 7 & -5 \\ 0 & 1 & -4 & 3 \\ 2 & -6 & 6 & -4 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & 3 & 9 & 2 \\ 1 & 0 & 3 & -4 \\ 0 & 1 & 2 & 3 \\ -2 & 3 & 0 & 5 \end{bmatrix}$$

Ejercicio 20. Graficar los vectores $u = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$ y $v = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$ junto con sus imágenes bajo las transformaciones dadas en cada caso, donde $x = [x_1, x_2]$:

a)
$$T(x) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

b)
$$T(x) = \begin{bmatrix} 0.5 & 0\\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$

c)
$$T(x) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

d)
$$T(x) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Ejercicio 21. Sean $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $v_1 = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2 \\ 9 \end{bmatrix}$, y $T : \mathbb{R}^2 \to \mathbb{R}^2$ la transformación lineal dada por $T(x) = x_1v_1 + x_2v_2$. Hallar la matriz asociada a T, es decir una matriz $A \in \mathbb{R}^{2 \times 2}$ tal que T(x) = Ax.

Ejercicio 22. Sea $T: \mathbb{R}^m \to \mathbb{R}^n$ una transformación lineal. Sean w_1, w_2, \dots, w_k vectores en \mathbb{R}^n y v_1, v_2, \dots, v_k vectores en \mathbb{R}^m tales que $T(v_j) = w_j$ para todo $1 \le j \le k$.

- a) Mostrar que si los w_1, w_2, \dots, w_k son linealmente independientes entonces los v_1, v_2, \dots, v_k también lo son.
- b) Mostrar con un contraejemplo que si los v_1, v_2, \ldots, v_k son linealmente independientes no necesariamente implica que w_1, w_2, \ldots, w_k también lo sean.

Ejercicio 23. Implementar una función en Python que reciba un vector en \mathbb{R}^2 y dos parámetros α y β , y que devuelva el vector de entrada escaleado en α unidades en la dirección x y β unidades en la dirección y. Realizar lo mismo para rotaciones a partir de un parámetro ϕ que denote el ángulo de rotación. Graficar las transformaciones sobre de los vectores

$$\{[0,0],[1,0],[0,1],[1,1]\}$$

Ejercicio 24. Determinar el o los valores de a para que $\left\{ \begin{bmatrix} 1 \\ a \end{bmatrix}, \begin{bmatrix} a \\ a+2 \end{bmatrix} \right\}$ sea linealmente independiente

Ejercicios opcionales:

Ejercicio 25. Sea $T: \mathbb{R}^2 \to \mathbb{R}^3$ la transformación lineal dada por

$$T(x_1, x_2) = (x_1 - 2x_2, -x_1 + 3x_2, 3x_1 - 2x_2)$$

Hallar $v \in \mathbb{R}^2$ tal que T(v) = (-1, 1, -3) y $w \in \mathbb{R}^2$ tal que T(w) = (-1, 4, 9).