Моделирование длинной линии связи с потерями энергии

Представим длинную линию связи, как распределённую активную и реактивную нагрузку. Выдели бесконечно короткий участок такой линии на котором этот участок характеризуется постоянным активным, ёмкостным и индуктивным сопротивлением переменному току — R,

Puc. 1: RLC пассивный четырёхполюсник

- L и C. Построим эквивалентную модель бесконечно малого участка линии в виде классического линейного четырёхполюсника, описываемого двумя законами Кирхгофа:
- 1) алгебраическая сумма токов, подтекающих к какому-либо узлу схемы, равна нулю;

$$I_R = I_L = I_{\text{BMX}} - I_c \qquad (1)$$

2) алгебраическая сумма падений напряжения в любом замкнутом контуре равна алгебраической сумме ЭДС, входящих в данный контур:

$$U_{ex} = U_L + U_R + U_C$$
 (2)

$$i_c = \frac{dU_c}{dt}$$
 , $U_l = L\frac{dI_l}{dt}$ (3)

проинтегрируем уравнения (3)

$$U_c = U_{c0} + \frac{1}{C} \int_0^t i_c d\tau$$
, $I_l = I_{l0} + \frac{1}{L} \int_0^t U_l d\tau$ (4)

Предположим, что помимо эффектов ёмкости и самоиндукции и рассеяния энергии электричества в линии связи не наблюдается других физических эффектов, тогда участок линии связи может быть приближённо смоделирован пассивным RLC четырёхполюсником (см. рис. 2).

Puc. 2: Имитационная модель четырёхполюсника в приложении XCOS пакета SciLab

При предельном переходе $n \to \infty$ система уравнений (1-4) должны быть эквивалентна системе уравнений Максвелла моделирующих электромагнитное поле вокруг проводника с током. Определим параметры распределённой модели как активное сопротивление, индуктивность и ёмкость метрической единицы кабеля: n=10:

 $R_0 = 10 \text{ Om/m};$

 $L_0=250 \ \Gamma H/M;$

 $C_0 = 1 \Phi/M$.

тогда на $\Delta x = L/n$ метров кабеля придётся $R = R_0/n$, $C = C_0/n$, $L = L_0/n$ а на входе приложено напряжение U_0 , правее конденсатора в горизонтельной ветви течёт выходной ток I_0 .

Рис. 3: Индуктивно-емкостная модель линии связи

Промоделируем четырёхполюсник (рис. 1,2) в среде подсистемы хсоз прикладного пакета программ SciLab, а затем расширим функциональные возможности этой модели до возможности моделировать цепь из п четырёхполюсников (см. рис. 3,4). Формулы (4) представленные блоками суммирования, умножения и сложения. Разница напряжений между входными и выходными клеймами четырёхполюсника вычисляется блоками diff. Переходные процессы в модели протекают за счёт внешних переключательных воздействий на 100-й и 500-й секунде повышающих напряжение на 0.5В и понижающих выходной ток в два раза.

Рис. 4: Имитационная модель длинной линии связи

Рис. 5: Переходный процесс по току в модели линии связи из 10 четырёхполюсников

Рис. 6: Переходный процесс по напряжению на конденсаторе в модели линии связи из 10 четырёхполюсников

Переходные процессы (Рис.5,6) показывают движение волны в линии электрической связи слева направо.

Класс имитационного блока	Параметры
Step function №1	Step time=100 U _{start} =12 U _{finish} =12.5
Step function №1	$ \begin{array}{l} \text{Step time=500} \\ I_{\text{start}} = 1 \\ U_{\text{finish}} = 0.5 \end{array} $
Scilab function block_m №1,2	Input port size: [n+1,1] output port size: [n,1] function computes the output: y1=diff(u1)
Multiplex (MUX) №1	[1,n]
Multiplex (MUX) №2	[n,1]
Summation block	Sign vector: [1;1]
Gain_f №1	Gain: -(n/L)*eye(n,n)
Gain_f №2	R/n*eye(n,n)
Gain_f №2	Gain: -n/C*eye(n,n)
Integral_m №1	Initial condition: ones(n,1)

Integral_m №2	Initial condition: U0-[R/n:1*R/n:(1*R)]'
CSCOPE №1	y_min: 0.9 y_max: 1.1
CSCOPE №2	y_min: 0 y_max: 12