Table of Contents

%V

clc

Inputs

```
%All in standard SI units unless noted
OperatingVoltage = 40
TorqueConstant = 8.474E-3
  %N.m/A
VoltageConstant = 1125
  %RPM/V
ArmatureResistance = 0.072
  %Ohms
reqOutputSpeed = 575
  %RPM
reqOutputTorque = 55
  %N.m
Efficiency = 90/100
Duty = 2000
  %Hours
%Gears
PressureAngle = 20*pi/180
FaceWidth = [1.25, 1, 0.75, 0.5, 0.375, 0.25, 0.188, 0.125]
DiametralPitch = [8, 10, 12, 16, 20, 24, 32, 48]
  %teeth/inch
k = 1
  %Teeth Depth (1 = full)
m1 = 5
 %Gear Ratio Stage 1
m2 = 4
 %Gear Ratio Stage 2
OperatingVoltage =
    40
```

```
TorqueConstant =
   0.0085
VoltageConstant =
       1125
ArmatureResistance =
   0.0720
reqOutputSpeed =
  575
reqOutputTorque =
   55
Efficiency =
   0.9000
Duty =
       2000
PressureAngle =
   0.3491
FaceWidth =
 Columns 1 through 7
   1.2500 1.0000 0.7500 0.5000 0.3750 0.2500 0.1880
 Column 8
   0.1250
DiametralPitch =
```

2

```
k = 10 12 16 20 24 32 48
k = 1
m1 = 5
```

Motor Torque-Speed

```
%point 1:
NoLoadSpeed = VoltageConstant*OperatingVoltage;
NoLoadTorque = 0;
%point 2:
StallTorque = TorqueConstant*OperatingVoltage/ArmatureResistance;
StallSpeed = 0;
%determine Torque-speed graph
points = [StallSpeed, StallTorque;
          NoLoadSpeed, NoLoadTorque];
polynomialDegree = length(points)-1;
MotorLine = polyfit(points(:,1),points(:,2),polynomialDegree);
MotorLineE = Efficiency.*MotorLine;
f1 = figure('Renderer', 'painters', 'Position', [10 10 1200 300])
subplot(1,3,1)
plot([StallSpeed:NoLoadSpeed], polyval(MotorLine,
[StallSpeed:NoLoadSpeed]))
hold on
title("Motor Torque-Speed")
xlabel("Motor Speed (rpm)")
ylabel("Motor Torque (N.m)")
hold off
f1 =
  Figure (6) with properties:
      Number: 6
       Name: ''
       Color: [0.9400 0.9400 0.9400]
```

```
Position: [10 10 1200 300]
Units: 'pixels'
```

Use GET to show all properties

Gear Ratio Target (minimization)

```
syms r
eqn = MotorLineE(1)*reqOutputSpeed*r^2 + MotorLineE(2)*r ==
 reqOutputTorque;
soln = double(solve(eqn,r))
ratioTarget = soln(1);
TargetLine = [MotorLineE(1)*ratioTarget^2, MotorLineE(2)*ratioTarget];
subplot(1,3,2)
plot([StallSpeed/ratioTarget: NoLoadSpeed/ratioTarget],
polyval(TargetLine,[StallSpeed/ratioTarget: NoLoadSpeed/
ratioTarget]))
hold on
plot(reqOutputSpeed, reqOutputTorque,'*')
title(["Drill Torque-Speed (Target), m = ", ratioTarget])
xlabel("Drill Speed (rpm)")
ylabel("Drill Torque (N.m)")
legend("Drill Output", "Given Requirement")
hold off
soln =
   16.4303
   61.8306
```


Gears

```
%pinions
P1 = ceil((2*k*(m1+(m1^2+(1-2*m1)*(sin(PressureAngle))^2)^0.5))/
((1+2*m1)*(sin(PressureAngle))^2));
P2 = ceil((2*k*(m2+(m2^2+(1-2*m2)*(sin(PressureAngle))^2)^0.5))/
((1+2*m2)*(sin(PressureAngle))^2));
%gear Limits
N11 = floor(((P1^2)*(sin(PressureAngle)^2)-4*k^2)/
(4*k-2*P1*sin(PressureAngle)^2));
N2l = floor(((P1^2)*(sin(PressureAngle)^2)-4*k^2)/
(4*k-2*P2*sin(PressureAngle)^2));
if(m1*P1 > N11)
    N1 = N11;
                %Gear Ratio m is too large
    disp("Ratio m1 Too Large, increasing P1")
    P1 = P1+1;
    N1 = floor(m1*P1);
else
    N1 = floor(m1*P1);
end
if(m2*P2 > N21);
    N2 = N21;
                 %Gear Ratio m is too large
    disp("Ratio m2 Too Large, increasing P2")
    P2 = P2+1;
    N2 = floor(m2*P2);
    N2 = floor(m2*P2);
end
mlactual = N1/P1;
m2actual = N2/P2;
ratio = mlactual*m2actual;
RatioTable = table(m1, mlactual, P1, N1, m2, m2actual, P2, N2, ratio,
 ratioTarget)
RatioTable =
  1×10 table
```

Drill Output

1000 1500 2000 2500 3000

Drill Speed (rpm)

Given Requirement

m1 ratio	m1actual Target	P1	N1	m2	m2actual	P2	N2	ratio
5 16	5 .43	16	80	4	4	16	64	20

Gear Ratio (Overall)

```
outputTorque = [0];
outputSpeed = [0];
RealLine = [MotorLineE(1)*ratio^2, MotorLineE(2)*ratio];
for x = [StallSpeed:NoLoadSpeed]
   outputSpeed = [outputSpeed, x/ratio];
   outputTorque = [outputTorque, polyval(RealLine,x/ratio)];
end
outputSpeed = outputSpeed(2:end);
outputTorque = outputTorque(2:end);
subplot(1,3,3)
plot(outputSpeed, outputTorque)
hold on
plot(reqOutputSpeed,reqOutputTorque,'*')
title(["Drill Torque-Speed (Actual) m = ", ratio])
xlabel("Drill Speed (rpm)")
ylabel("Drill Torque (N.m)")
legend("Drill Output", "Given Requirement")
hold off
```


Shaft Torque and Speed Estimation

```
%{
Motor - P1 : Shaft A
N1 - P2 : Shaft B
N2 - Chuck : Shaft C
%}
outputPower = reqOutputSpeed*reqOutputTorque*pi/30;
```

```
intermediatePower = outputPower/Efficiency^0.5;
inputPower = intermediatePower/Efficiency^0.5;
efficiency = outputPower/inputPower;
%Shaft C
SpeedC = reqOutputSpeed;
TorqueC = reqOutputTorque;
SpeedB = SpeedC*m2actual;
TorqueB = intermediatePower/(SpeedB*pi/30);
%Shaft A
SpeedA = SpeedB*mlactual;
TorqueA = inputPower/(SpeedA*pi/30);
TorqueSpeedEstimation = table(TorqueA, SpeedA, TorqueB, SpeedB,
TorqueC, SpeedC)
PowerTable = table(inputPower, intermediatePower, outputPower,
 efficiency)
TorqueSpeedEstimation =
  1×6 table
   TorqueA SpeedA TorqueB
                                  SpeedB
                                            TorqueC
                                                       SpeedC
    3.0556
              11500
                      14.494
                                 2300
                                             55
                                                       575
PowerTable =
  1×4 table
    inputPower
                 intermediatePower outputPower
                                                   efficiency
     3679.7
                      3490.9
                                       3311.8
                                                       0.9
```

Operating Gear Forces, Torques and Diameters

```
Forcelt = [0];
Forcelr = [0];
Force2t = [0];
Force2r = [0];
Pldiameter = [0];
Nldiameter = [0];
P2diameter = [0];
N2diameter = [0];
```

```
x = x/0.0254; %Teeth/inch -> teeth/meter
    Pldia = Pl/x; %Teeth / (Teeth/meter) = meter
    N1dia = N1/x;
    P2dia = P2/x;
    N2dia = N2/x;
    Pldiameter = [Pldiameter, Pldia];
    Nldiameter = [Nldiameter, Nldia];
    P2diameter = [P2diameter, P2dia];
    N2diameter = [N2diameter, N2dia];
    %Transmitted Load: Pinion 1 -> Gear 1
    Wt1 = (60000*inputPower*10^{-3})/(pi*P1dia*SpeedA);
    %Radial Load: Pinion 1 -> Gear 1
    Wr1 = tan(PressureAngle)*Wt1;
    %Transmitted Load: Pinion 2 -> Gear 2
    Wt2 = (60000*outputPower*10^-3)/(pi*N2dia*SpeedC);
    %Radial Load: Pinion 2 -> Gear 2
    Wr2 = tan(PressureAngle)*Wt2;
    Forcelt = [Forcelt, Wt1];
    Forcelr = [Forcelr, Wrl];
    Force2t = [Force2t, Wt2];
    Force2r = [Force2r, Wr2];
end
Forcelt = transpose(Forcelt(2:end));
Force2t = transpose(Force2t(2:end));
Forcelr = transpose(Forcelr(2:end));
Force2r = transpose(Force2r(2:end));
Pldiameter = transpose(Pldiameter(2:end)).*100; %meters ->
 centimeters;
Nldiameter = transpose(Nldiameter(2:end)).*100; %meters ->
 centimeters;
P2diameter = transpose(P2diameter(2:end)).*100; %meters ->
 centimeters;
N2diameter = transpose(N2diameter(2:end)).*100; %meters ->
 centimeters;
ForceDiameterTable = table(transpose(DiametralPitch), Forcelt,
 Forcelr, Pldiameter, Nldiameter, Forcelt, Forcelr, Pldiameter,
N2diameter)
응 {
Not confident that this is correct
%Wt, Tangential Forces
Forcelt = [0];
Force2t = [0];
%Wr, Radial Forces
Forcelr = [0];
```

```
Force2r = [0];
%Gear Diameters
Pldiameter = [0];
N1diameter = [0];
P2diameter = [0];
N2diameter = [0];
%Shaft Torques
AT = [0];
BT = [0];
CT = [0];
for x = DiametralPitch
DiametralPitch1 = x/0.0254;
DiametralPitch2 = x/0.0254; %Teeth/inch -> teeth/meter
Pldia = Pl/DiametralPitchl; %Teeth / (Teeth/meter) = meter
Nldia= Nl/DiametralPitch1;
P2dia= P2/DiametralPitch2;
N2dia= N2/DiametralPitch2;
%Logging diameters for the table below
Pldiameter = [Pldiameter, Pldia];
Nldiameter = [Nldiameter, Nldia];
P2diameter = [P2diameter, P2dia];
N2diameter = [N2diameter, N2dia];
%Tangential Forces
Ctorque = CopTorque;
Wt2 = Ctorque/(cos(PressureAngle2)*N2dia/2);
Btorque = (Wt2*P2dia/2)/cos(PressureAngle2);
Wt1 = Btorque/(cos(PressureAngle1)*N1dia/2);
Atorque = (Wt1*Pldia/2)/cos(PressureAngle1);
Force2t = [Force2t, Wt2];
Force1t = [Force1t, Wt1];
%Radial Forces
Forcelr = [Forcelr, tan(PressureAngle1)*Wt1];
Force2r = [Force2r, tan(PressureAngle2)*Wt2];
%Shaft Torques
AT = [AT, Atorque];
BT = [BT, Btorque];
CT = [CT, Ctorque];
end
Force1t = Force1t(2:end);
Force2t = Force2t(2:end);
Forcelr = Forcelr(2:end);
Force2r = Force2r(2:end);
Pldiameter = Pldiameter(2:end);
Nldiameter = Nldiameter(2:end);
P2diameter = P2diameter(2:end);
N2diameter = N2diameter(2:end);
```

```
AT = AT(2:end);
BT = BT(2:end);
CT = CT(2:end);
DiametralPitch = transpose(DiametralPitch);
Forcelt = transpose(Forcelt);
Force2t = transpose(Force2t);
Forcelr = transpose(Forcelr);
Force2r = transpose(Force2r)
Pldiameter = transpose(Pldiameter).*100; %meters -> centimeters
Nldiameter = transpose(Nldiameter).*100;
P2diameter = transpose(P2diameter).*100;
N2diameter = transpose(N2diameter).*100;
AT = transpose(AT);
BT = transpose(BT);
CT = transpose(CT);
ForceTorqueTable = table(DiametralPitch, AT, Forcelt, Forcelr, BT,
Force2t, Force2r, CT)
DiameterTable = table(DiametralPitch, Pldiameter, Nldiameter,
 P2diameter, N2diameter)
응 }
```

ForceDiameterTable =

8×9 table

Var1	Force1t	Force1r	P1diamete	r N1diamete	r Force2t
Force2r	P2diamet	er N2	2diameter		
8	120.3	43.785	5.08	25.4	541.34
197.03	5.08		20.32		
10	150.37	54.731	4.064	20.32	676.67
246.29	4.064		16.256		
12	180.45	65.677	3.3867	16.933	812.01
295.55	3.3867		13.547		
16	240.59	87.569	2.54	12.7	1082.7
394.06	2.54		10.16		
20	300.74	109.46	2.032	10.16	1353.3
492.58	2.032		8.128		
24	360.89	131.35	1.6933	8.4667	1624
591.09	1.6933		6.7733		
32	481.19	175.14	1.27	6.35	2165.4
788.12	1.27		5.08		
48	721.78	262.71	0.84667	4.2333	3248
1182.2	0.84667		3.3867		

Stresses

```
(Calculated in USCS then converted to metric)
ContactPinion1 = [0];
BendingPinion1 = [0];
ContactGear1 = [0];
BendingGear1 = [0];
ContactPinion2 = [0];
BendingPinion2 = [0];
ContactGear2 = [0];
BendingGear2 = [0];
for x = [1:length(DiametralPitch)]
    %Pinion 1
    [CP1, BP1] = stresses(DiametralPitch(x), P1, SpeedA, FaceWidth(x),
 Forcelt(x), mlactual, PressureAngle);
    %Gear 1
    [CN1, BN1] = stresses(DiametralPitch(x), N1, SpeedB, FaceWidth(x),
 Forcelt(x), mlactual, PressureAngle);
    %Pinion 2
    [CP2, BP2] = stresses(DiametralPitch(x), P2, SpeedB, FaceWidth(x),
 Force2t(x), m2actual, PressureAngle);
    %Gear 2
    [CN2, BN2] = stresses(DiametralPitch(x), N2, SpeedC, FaceWidth(x),
 Force2t(x), m2actual, PressureAngle);
    ContactPinion1 = [ContactPinion1, CP1];
    BendingPinion1 = [BendingPinion1, BP1];
    ContactGear1 = [ContactGear1, CN1];
    BendingGear1 = [BendingGear1, BN1];
    ContactPinion2 = [ContactPinion2, CP2];
    BendingPinion2 = [BendingPinion2, BP2];
    ContactGear2 = [ContactGear2, CN2];
    BendingGear2 = [BendingGear2, BN2];
end
ContactPinion1 = transpose(ContactPinion1(2:end));
BendingPinion1 = transpose(BendingPinion1(2:end));
ContactGear1 = transpose(ContactGear1(2:end));
BendingGear1 = transpose(BendingGear1(2:end));
ContactPinion2 = transpose(ContactPinion2(2:end));
BendingPinion2 = transpose(BendingPinion2(2:end));
ContactGear2 = transpose(ContactGear2(2:end));
BendingGear2 = transpose(BendingGear2(2:end));
StressTable = table(transpose(DiametralPitch), ContactPinion1,
BendingPinion1, ContactGear1, BendingGear1, ContactPinion2,
BendingPinion2, ContactGear2, BendingGear2)
```

```
응 {
Pd = Diametral Pitch
N = Number of Teeth on pinion
n = Angular Velocity (rpm)
F = Face Width
Wt = Tangetntial load
m = gear Ratio
phi = pressure angle
ht = tooth height
tr = rim thickness
응 }
function [CS, BS] = stresses(Pd, N, n, F, Wt, m, phi)
   dp = N/Pd;
                           %Diameter inches
    V = pi*dp*n/12;
                           %Linear Velocity
    %Ko - Overload Factor
    Ko = 1.2; %Moderate Shock
    %Kv - Dynamic Factor
    Qv = 9; %Low end of precision quality gears, Catalog: pg. 48, AGMA
 class: 9
    B = 0.25*(12 - Qv)^{(2/3)};
    A = 50 + 56*(1 - B);
    Kv = ((A + V^0.5)/A)^B;
    %Ks - Size Factor
    x = 1.5708/Pd; %Tooth Width, equation from boston
    Y = 2*x*Pd/3;
    Ks = 1.192*((F*Y^0.5)/Pd)^0.0535;
    %Km - Load Distribution Factor
    Cmc = 0.8; %Crowned
    Cpf = F/(10*dp) - 0.025;
    Cpm = 1;
    A = 0.0675; %Precision, enclosed, Table 14-9
    B = 0.0128;
    C = -0.926E-4;
    Cma = A + B*F + C*F^2;
    Ce = 1;
    Km = 1 + Cmc*(Cpf*Cpm + Cma*Ce);
    %Kb - Rim Thickness Factor
    Kb = 1; %Assumption given by professor
    응 {
    if Pd < 20 %Whole Depth Equation from Boston
       ht = 2.157/Pd;
    else
        ht = 2.2/Pd + 0.002;
    end
    tr = %Cannot find equation or values specifying rim thickness
    mb = tr/ht;
```

```
Kb = 1.6*log(2.242/mb);
   else
      Kb = 1;
   end
   응 }
   %J - Bending Strength Geometry Factor
   J = 0.275; %Figure 14-6
   %Kt - Temperature Factor
   Kt = 1;
   %Kr - Reliability Factor
   Kr = 1; %0.99 - Eq. 14-38
   %Cp - Elastic Coefficient
   Cp = 2300; %Table 14-8 steel-steel
   %I - Pitting Resistance Geometry Factor
   mn = 1; %Load sharing ratio: 1 for spur gears
   I = ((\cos(phi)*\sin(phi))/(2*mn))*(m/(m+1));
   %Cf - surface condition factor
   Cf = 1;
   %Zn - Stress-Cycle Factor
   Zn = 1;
   %Contact Stress
   CS = (Cp*sqrt(Wt*Ko*Kv*Ks*(Km/(dp*F))*(Cf/
I)))*0.00689476; %Contact stress in psi -> MPa
   %Bending Stress
   BS = (Wt*Ko*Kv*Ks*(Pd/F)*((Km*Kb)/J))*0.00689476; %Contact stress
in psi -> MPa
end
StressTable =
 8×9 table
   Var1 ContactPinion1 BendingPinion1 ContactGear1
BendingGear1 ContactPinion2 BendingPinion2 ContactGear2
 BendingGear2
    8
              429.8
                                39.46
                                               188.67
                               149.94
                855.07
 38.021
                                                 420.16
 144.81
```

if mb < 1.2

10	584.51	72.982	256.58
70.314	1169.3	280.37	574.53
270.76			
12	788.34	132.76	346.67
128.36	1583.9	514.5	779.57
498.52			
16	1239	327.95	545.84
318.22	2506.2	1288	1235.5
1252.2			
20	1740.6	647.17	767.47
629.12	3538.1	2567.2	1745.8
2500			
24	2485.5	1319.7	1099
1290	5072.1	5275.7	2509.1
5164.4			
32	3713.3	2945.5	1641.8
2879	7622.1	11914	3770.5
11662			
48	6572.1	9226.7	2905.8
9018.9	13593	37891	6724.3
37090			

Published with MATLAB® R2018b