

Matemática Discreta – Parte 11

Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti

Revisão Conceitos Básicos

- Produto Cartesiano Dados os conjuntos A e B, o produto cartesiano de A por B, denotado A X B, é o conjunto formado por todos os pares ordenados (a, b) onde a ∈ A e b ∈ B, isto é:
 - $\blacksquare A X B = \{(a,b) \mid \forall a \in A, \forall b \in B\}$
 - Ex.: Dados A={a} e B={a,b}
 - \blacksquare A X B = {(a,a), (a,b)} / B X A = {(a,a), (b,a)}
- Relação Dados os conjuntos A e B, uma relação R de A em B, denotada R: A→B, é qualquer subconjunto do produto cartesiano A X B.
 - Ex.: Dados A={1,3,5} e B={3,9,15,20}, a relação R: A→B, tal que:
 - $R = \{(a,b) \mid b=3a\}$ é dada pelos pares ordenados $R = \{(1,3), (3,9), (5,15)\}.$

Relações Binárias

- O Produto Cartesiano de um conjunto S com ele mesmo,
 S X S ou S² é o conjunto de todos os pares ordenados de elementos de S.
- Ex. 01. Seja S={1,2}, então, S X S = {(1,1), (1,2), (2,1), (2,2)}
- Se estivermos interessados na relação de igualdade (x=y), então (1,1) e (2,2) seriam os elementos de S que satisfazem a relação.
- Se estivermos interessados na relação de um número ser menor que outro (x<y), teríamos o par (1,2) como único que atende à relação.
- Ou seja, definir uma relação binária R em um conjunto S é especificar um subconjunto de S X S.

Relações Binárias

- Em geral, uma relação binária é definida por uma descrição da relação, ao invés da lista dos pares ordenados.
- A descrição fornece uma caracterização dos elementos pertencentes à relação.
- Ex.02: Seja S= $\{1,2\}$, como no Ex. 01. Seja R a relação em S dada por R= $\{(x,y) \in S \mid x + y = \text{impar}\}$.
 - Então R = $\{(1,2), (2,1)\}$.

Tipos de Relações Binárias

- Seja uma relação em S com os pares ordenados na forma (s1, s2).
- Uma relação é do tipo um para um se cada primeira componente (s1) e cada segunda componente (s2) do par ordenado aparece uma única vez na relação.
- Uma relação é do tipo um para muitos se alguma primeira componente (s1) aparece em mais de um par.
- A relação é dita muitos para um se alguma segunda componente s2 aparecer em mais de um par.
- Finalmente, a ela é muitos para muitos se pelo menos um s1 aparece em mais de um par e pelo menos um s2 também aparece em mais de um par.

 Representação – A relação pode ser representada através de *Diagrama de Venn*.

- **Domínio e Imagem de uma Relação** O **Domínio** de uma relação R, denotado D(R), é o conjunto formado pelos primeiros elementos de cada par ordenado da relação. No exemplo anterior, o domínio é o conjunto $D(R) = \{1,3,5\}$
- A **Imagem** de uma relação *R*, denotada *I*(*R*), é o conjunto formado pelos segundos elementos de cada par ordenado da relação. exemplo anterior, o domínio é o conjunto *I*(*R*) = {3,9,15}

Relação como Grafos

- Toda relação R: A→B pode ser representada a partir de um grafo direcionado com arestas ligando cada par ordenado (a,b), com origem em a e destino em b.
- **Ex.:** Dados $A = \{1,2,3\}$ e $B = \{4,5\}$
- A X B: $\mathbf{A} \rightarrow \mathbf{B} \{(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)\}$
- $<:A\rightarrow A = \{(1,2), (1,3), (2,3)\}$

Relação como Matrizes

- A relação R: A→B pode ser representada na forma de matriz, o que facilita sua implementação em sistemas computacionais.
- Seja A={a₁, a₂, ...a_n} e B={b₁, b₂, ...b_m} dois conjuntos finitos. A representação da relação R como matriz é como se segue:
 - O número de linhas é n (número de elementos do domínio).
 - O número de colunas é m (n° de elementos do Contra-Domínio)
 - A matriz tem n * m posições e cada posição contém um valor lógico – verdadeiro ou falso.
 - Se (ai, bj) ∈ R, então a posição contém o valor verdadeiro (1); caso contrário, contém o valor falso (0).
- Ex.: Sejam A={a}, B={a,b} e C={0,1,2}. As seguintes relações são representadas como matrizes:

$$2 - S = \{(0,a), (1,b)\}: C \rightarrow B$$

Relação Dual

Seja relação R: A→B. A Relação Dual, Oposta ou Inversa é denotada por: R⁻¹: B→A e é obtida pela inversão dos componentes de cada par ordenado.

■
$$R^{-1}$$
= {(b,a) | (a,b) ∈ R}
■A X B: $A \rightarrow B$, (A X B)⁻¹ = B X A: B \rightarrow A

- A matriz da relação dual é a matriz transposta da matriz da relação.
- O grafo da relação dual é o grafo resultante da inversão dos sentidos das arestas.

Composição de Relações

Sejam as relações R: A→B e S:B →C. A composição de R e S, resultando na relação:

S • R: A
$$\rightarrow$$
 C, tal que:
S • R = {(a,c) | (\exists b \in B)(aRb \land bSc)}

Composição de Relações

- Ex: A composição das relações R: A→B e S:B →C é S•R: A → C, sendo que:
 - \blacksquare R = {(a,1), (b,3), (b,4), (d,5)}
 - \blacksquare S = {(1,x), (2,y), (5,y), (5,z)}
 - \blacksquare S \bullet R = {(a,x), (d,y), (d,z)}
 - A composição das relações é mostrada no diagrama abaixo:

- **Tipos de Relações** Uma relação pode ser classificada nos seguintes tipos, os quais não são mutuamente exclusivos:
 - Funcional
 - Injetora
 - Total
 - Sobrejetora
 - Monomorfismo
 - Epimorfismo
 - Isomorfismo
- Os tipos acima possuem noção de dualidade que pode simplificar o estudo e a respectiva compreensão de cada tipo.
 - Funcional é o dual de injetora e vice-versa
 - Total é o dual de sobrejetora e vice-versa.
 - Monomorfismo é o dual de epimorfismo e vice-versa.
 - Isomorfismo é dual de si mesmo.

- Relação Funcional define o conceito de função.
 - Seja a relação R: A \rightarrow B. R é funcional se e somente se: $(\forall a \in A)(\forall b1 \in B)(\forall b2 \in B)(aRb1 \land aRb2 \rightarrow b1=b2)$
 - Ou seja, em uma relação funcional, cada elemento de A está relacionado com, no máximo, um elemento de B.
 - Ex.: Sejam $A=\{a\}$, $B=\{a,b\}$ e $C=\{0,1,2\}$. Então:

São relações funcionais:

 \varnothing : A \rightarrow B

 $\{(0,a), (1,b)\}: C \rightarrow B$

=: A→B

Não são relações funcionais:

 $A X B: A \rightarrow B$

<: C→C

- Matriz: existe, no máximo, um valor verdadeiro em cada linha da matriz.
- Grafo: existe, no máximo, um arco partindo de cada nó.

- Relação Injetora o inverso (dual) de uma funcional.
 - Seja a relação R: A \rightarrow B. R é injetora se e somente se: $(\forall b \in B)(\forall a1 \in A)(\forall a2 \in A)(a1Rb \land a2Rb \rightarrow a1=a2)$
 - Ou seja, em uma relação injetora, cada elemento de B está relacionado com, no máximo, um elemento de A.
 - Ex.: Sejam $A=\{a\}$, $B=\{a,b\}$ e $C=\{0,1,2\}$. Então:

São relações injetoras:Não são relações injetoras: \varnothing : A \rightarrow BB X A: B \rightarrow A $\{(0,a), (1,b)\}$: C \rightarrow B<: C \rightarrow C $=: A \rightarrow$ BA X B: A \rightarrow B

- Matriz: existe, no máximo, um valor verdadeiro em cada coluna da matriz.
- Grafo: existe, no máximo, um arco chegando em cada nó.

Relação Total

- Seja a relação R: $A \rightarrow B$. R é total se e somente se: $(\forall a \in A)(\exists b \in B)(aRb)$
- Ou seja, em uma relação total, para cada elemento de
 A, existe pelo menos, um elemento de
- Ex.: Sejam $A=\{a\}$, $B=\{a,b\}$ e $C=\{0,1,2\}$. Então:

São relações totais:	Não são relações totais:
=: A→B	∅: A→B
A X B: A→B	{(0,a), (1,b)}: C→B
	<: C→C

- Matriz: existe, pelo menos, um valor verdadeiro em cada linha da matriz.
- Grafo: existe, pelo menos, um arco partindo de cada nó.

Relação Sobrejetora

- Seja a relação R: $A \rightarrow B$. R é sobrejetora se e somente se: $(\forall b \in B)(\exists a \in A)(aRb)$
 - Ou seja, em uma relação sobrejetora, para cada elemento de B, existe pelo menos, um elemento de A.
 - Ex.: Sejam A={a}, B={a,b} e C={0,1,2}. Então:

São relações sobrejetoras:	Não são relações sobrejetoras:
=: A→A	=: A→B
{(0,a), (1,b)}: C→B	∅: A→B
A X B: A→B	<: C→C

- Matriz: existe, pelo menos, um valor verdadeiro em cada coluna da matriz.
- Grafo: existe, pelo menos, um arco chegando em cada nó.

- Relação Funcional cada elemento de A está relacionado com, no máximo, um elemento de B.
- Relação Injetora cada elemento de B está relacionado com, no máximo, um elemento de A.
- Relação Total para cada elemento de A, existe pelo menos, um elemento de B.
- Relação Sobrejetora para cada elemento de
 B, existe pelo menos, um elemento de A

Monomorfismo ou monorrelação

- Seja a relação R: A→B. R é um monomorfismo se e somente se for simultaneamente **TOTAL** e **INJETORA**.
- Ou seja, em um monomorfismo, cada elemento de B, está relacionado com, no máximo, um elemento de A e para cada elemento de A, existe pelo menos, um elemento de B.
- Ex.: Sejam $A=\{a\}$, $B=\{a,b\}$ e $C=\{0,1,2\}$. Então:

São monomorfismos:

=: A→B

A X B: A→B

Não são monomorfismos:

B X C: B→C

 \varnothing : A \rightarrow B

 $\{(0,a), (1,b)\}: C \to B$

<: C→C

- Matriz: existe, pelo menos, um valor verdadeiro em cada linha (total) e no máximo um valor verdadeiro em cada coluna(injetora) da matriz.
- Grafo: existe, pelo menos, um arco partindo (total) e no máximo, um arco chegando (injetora) em cada nó.

Epimorfismo ou Epirrelação

- Seja a relação R: A→B. R é um Epimorfismo se e somente se for simultaneamente FUNCIONAL e SOBREJETORA.
- Ou seja, em um Epimorfismo, cada elemento de A, está relacionado com, no máximo, um elemento de B e para cada elemento de B, existe pelo menos, um elemento de A.
- Ex.: Sejam $A=\{a\}$, $B=\{a,b\}$ e $C=\{0,1,2\}$. Então:

São epimorfismos:	Não são epimorfismos:
=: A→A	=: A→B
{(0,a), (1,b)}: C→B	∅: A→B
	A X B: A→B
	<: C→C

- Matriz: existe, pelo menos, um valor verdadeiro em cada coluna (sobrejetora) e no máximo um valor verdadeiro em cada linha(funcional) da matriz.
- Grafo: existe, pelo menos, um arco chegando (sobrejetora)
 e no máximo, um arco partindo (funcional) em cada nó₁₉

Isomorfismo ou Isorrelação

- Seja a relação R: A→B. R é um Isomorfismo se e somente se for simultaneamente TOTAL, FUNCIONAL, INJETORA E SOBREJETORA.
- Ex.: Sejam $A=\{a\}$, $B=\{a,b\}$ e $C=\{0,1,2\}$. Então:

São isomorfismos:

$$\{(0,1), (1,2), (2,0)\}: C \rightarrow C$$

=: B \rightarrow B

Não são isomorfismos:

Ø: A→B

A X B: A→B

<: C→C

Definição para grafos e matrizes ?

Exercício

Dados os conjuntos $A = \{2,3,4,5\}$ e $B = \{3,4,5,6,10\}$, determine as relações $R_1 = A \times B$: $A \rightarrow B$ e $R_2 = <$: A $\times B$ $A \rightarrow B$, determinando o(s) tipo(s) de relação de R_1 e R_2 e faça a representação de cada uma por matriz e por grafo.

Funções Parciais

Uma função parcial é uma relação funcional. Se a relação funcional for total, então é denominada de função total ou simplesmente função.

É uma função que não é definida para todos os elementos do domínio. Normalmente, as abordagens matemáticas são focadas no conceito de função total, mas o estudo de funções parciais é tão importante quanto o de total.

Função Parcial

- Todos os conceitos vistos para uma relação funcional são válidos para funções parciais, como por exemplo:
 - As terminologias de domínio, imagem etc..
 - Os tipos injetora, sobrejetora etc...
- **Definição:** uma Função Parcial é uma relação funcional f⊂ A x B
 - Cada elemento do domínio está relacionado com no máximo, um elemento do contradomínio.
 - Uma função parcial é denotada por $f: \mathbf{A} \rightarrow \mathbf{B}$ e o par $(a,b) \in f$ é denotado por f(a)=b.
- Ex.: Sejam $A=\{a\}$, $B=\{a,b\}$ e $C=\{0,1,2\}$. Então:

São funções parciais: Não são funções parciais:

$$\varnothing$$
: A \rightarrow B

$$\{(0,a), (1,b)\}: C \rightarrow B$$

$$A X B: A \rightarrow B$$

$$T \subseteq A \times B$$
, $T = \{(a,a), (a,b)\}$

Função Parcial

- Matriz: existe, no máximo, um valor verdadeiro em cada linha da matriz.
- Grafo: existe, no máximo, um arco partindo de cada nó.
 - **Ex.:** Sejam A = $\{0,1,2\}$, B = $\{a,b\}$ e **f=\{(0,a), (1,b)\}:** A \rightarrow B

■ A operação div: $\Re \to \Re$ tal que div(x, y) = x/y é uma função parcial pois não é definida para (x, 0), qualquer que seja x∈ \Re .

Função Parcial Dual (oposta, inversa)

- A relação dual de uma função parcial não necessariamente é uma função parcial.
- Seja A={0,1,2} e a função parcial f:A x A tal que f={(0,2),(1,2)}. Assim, a relação dual (inversa) de f é f⁻¹ ={(2,0),(2,1)}, que claramente não é uma relação funcional e então, não é uma função parcial.
- Lembrar que o dual de uma relação funcional é injetora.

Composição de Funções Parciais

Por definição, a composição de relações funcionais é uma relação funcional. Daí, a composição resultante de funções parciais também é uma função parcial.

Composição de Funções Parciais

- Ex.: A composição das funções parciais f: A→B e g: B
 → C é g f: A → C, sendo que:
 - $f = \{(a,1), (c,5), (d,5)\}$
 - $g = \{(1,x), (2,y), (4,y), (5,z)\}$
 - $g \bullet f = \{(a,x), (c,z), (d,z)\}$
 - A composição das funções é mostrada no diagrama abaixo:

Função Total

- Uma função total ou simplesmente função é uma função parcial f: A→B a qual é total.
- É uma função que é definida para todos os elementos do domínio (A), ou seja devem ser válidas as seguintes proposições:

$$(\forall a \in A)(\exists b \in B)(aRb) e$$

 $(\forall a \in A)(\forall b1 \in B)(\forall b2 \in B)(aRb1 \land aRb2 \rightarrow b1 = b2)$

Sejam A={a}, B={a,b} e C={0,1,2}. Então:

São funções:

$$\mathbf{p} \subseteq A \times B$$
, $\times \mathbf{p} y \Leftrightarrow \times = y$, $p = \{(a,a)\}$
=: $A \rightarrow B$

Não são funções:

$$\mathbf{R} \subseteq A \times B, R = \emptyset$$

$$\varnothing : A \rightarrow B$$

S
$$\subseteq$$
 C X B, S={(0,a), (1,b)}

$$\{(0,a), (1,b)\}: C \rightarrow B$$

Função

- Em termos de notação como matriz ou grafo, basta considerar que uma função é uma relação funcional e total. Assim:
 - Matriz: existe, exatamente, um valor verdadeiro em cada linha da matriz.
 - Grafo: existe, exatamente, um arco partindo de cada nó.
- Função Injetora Seja a função f: A→B. f é injetora se e somente se:

$$(\forall b \in B)(\forall a1 \in A)(\forall a2 \in A)(f(a1) = b \land f(a2) = b \rightarrow a1 = a2)$$

- Ou seja, em uma função injetora, cada elemento de B está relacionado com, no máximo, um elemento de A.
 - Ex1. f: $\mathbb{R} \to \mathbb{R} \mid f(x) = x^3$, é injetora.
 - Ex2. $f: \mathbb{R} \to \mathbb{R} \mid f(x) = x^2$, não é injetora.
 - Ex3. f: N → N | $f(x) = x^2$, é injetora.

- Em uma Função injetora, cada elemento do co-domínio é imagem de no máximo, um elemento do domínio.
- Função Sobrejetora Seja a função f: A→B. f é sobrejetora se, e somente se:
 - $(\forall b \in B)(\exists a \in A)(f(a) = b)$
- Ou seja, em uma função sobrejetora, para cada elemento de B, existe pelo menos, um elemento de A.
 - Em uma Função sobrejetora, todo elemento do co-domínio é imagem de pelo menos, um elemento do domínio.
- Função bijetora (ou isomorfismo) Quando uma função é, simultaneamente, injetora e sobrejetora.
 - Em uma Função bijetora, todo elemento do co-domínio é imagem, exatamente, de um elemento do domínio.

Exercício

Considerem-se as funções *adição* sobre o conjunto dos números naturais $(+: \mathbb{N} \times \mathbb{N} \to \mathbb{N})$, *divisão*, sobre o conjunto dos números reais $(/: \mathbb{R} \times \mathbb{R} \to \mathbb{R})$, e *raiz quadrada*, sobre o conjunto dos números inteiros $(\sqrt{:} \mathbb{Z} \to \mathbb{Z})$. Verificar as propriedades (injetora, sobrejetora e total) de cada função (1).

N= Números naturais {0,1,2..}

Z=Números inteiros {...-2,-1,0,1,2...}

R= Números reais.

⁽¹⁾ Do Livro Linguagens Formais – Teorias, Modelagem e Implementação, Ramos, M. V. M., Neto, J.J. e Vega, I. S. – Bookman, 2009.

Função Dual (Oposta)

 Da mesma forma que em funções parciais, a relação dual de uma função (total) não necessariamente é uma função.

Exemplos

- ■Seja A = $\{0,1,2\}$ e a função R \subseteq A x A tal que R= $\{(0,2),(1,2),(2,1)\}$. Assim, a relação dual (inversa) de R é R⁻¹ = $\{(2,0),(2,1),(1,2)\}$, que não é uma relação funcional e então, não é uma função.
- ■Seja f: $\{0, 1\} \rightarrow \{0, 1, 2\}$ tal que f = $\{(0, 0), (1, 1)\}$. Assim, sua dual possui o mesmo conjunto de pares ordenados, $\{(0, 0), (1, 1)\}$, mas não é uma função total.

Composição de Funções Totais

- A composição das funções totais f: A→B e g: B → C é g • f: A → C, sendo que:
 - $f = \{(a,1), (b,2), (c,5), (d,5)\}$
 - $g = \{(1,x), (2,y), (3,y), (4,y), (5,z)\}$

 - A composição das funções é mostrada no diagrama abaixo:

Composição de Funções

- Sejam f: $A \rightarrow B$ e g: $B \rightarrow C$, então a função $g \bullet f$: $A \rightarrow C$, é uma função definida por $(g \bullet f)(a) = g[f(a)]$ onde $a \in A$.
- Ex. 1: Sejam $A=\{1,2,3,4,5\}$, $B=\{6,7,8,9\}$ e $C=\{10,11,12,13\}$. Sejam f: $A\rightarrow B$ e g: $B\rightarrow C$, definidas por:
 - $f = \{(1,6), (2,6), (3,9), (4,7), (5,7)\}$
 - $g = \{(6,10), (7,11), (8,12), (9,13)\}$
- Então g f = {(1,10), (2,10), (3,13), (4,11), (5,11)}
 - $(g \cdot f)(2) = g[f(2)] = g[6] = 10$

Composição de Funções

■ Ex. 2: Sejam f, g: $\mathbb{Z} \to \mathbb{Z}$ dada por f(x) = x²+1 e g(x)=2x-3. Quanto vale (g • f)(4)?

$$(g \bullet f)(4) = g[f(4)] = g(4^2+1) = g(17) = 2(17)-3 = 31.$$

De modo geral:

$$(g \bullet f)(x) = g[f(x)] = g(x^2+1) = 2(x^2+1) -3 = 2x^2+2-3 = 2x^2-1$$

- Por que g f e não f g?
 - A notação g f significa que primeiro calculamos f e em seguida g (em g • f (a), f está "mais próximo" de (a)).
- O domínio de g f é o mesmo domínio de f.
- A existência da função g f, não assegura a definição de f • g.
 - Veja g(6) no Ex. 1.
- Quando ambas são definidas, geralmente g f ≠ f g.

Composição de Funções

- **Ex.** 3: Sejam $A=\{1,2,3,4,5\}$, f: $A\rightarrow A$ e g: $A\rightarrow A$, definidas por:
 - $f = \{(1,1), (2,1), (3,1), (4,1), (5,1)\}$
 - $g = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$
- Então g f e f g são:
- $g \bullet f = \{(1,5), (2,5), (3,5), (4,5), (5,5)\}$
- $f \bullet g = \{(1,1), (2,1), (3,1), (4,1), (5,1)\}$
- \Rightarrow g f \neq f g
- Exercício: Sejam f, g: $\mathbb{Z} \to \mathbb{Z}$ dada por f(x) = x²+1 e g(x)=2x-3. Mostre que:
- a) $(g \bullet f)(4) \neq (f \bullet g)(4)$
- b) $(g \bullet f)(x) \neq (f \bullet g)(x)$

Composição de Funções

Associatividade – Sejam os conjuntos A, B, C e D e sejam
 f: A→B, g: B → C e h: D→C, então:

$$\Rightarrow h \cdot (g \cdot f) = (h \cdot g) \cdot f$$

$$[h \cdot (g \cdot f) (a)] = h [(g \cdot f) (a)] = h[g[f(a)]]$$

$$[(h \cdot g) \cdot f](a) = (h \cdot g) [f(a)] = h[g[f(a)]]$$

$$Logo: h \cdot (g \cdot f) = (h \cdot g) \cdot f$$