Chapter 12

Multilevel model

Several equivalent names:

- Multilevel models
- Hierarchical models
- Random effect models

Frog data

Data survival of hatching of reed frogs.

Figure : African reed frog, Hyperolius spinigularis

Ecology, 86(6), 2005, pp. 1580-1591 © 2005 by the Ecological Society of America

COMPENSATORY LARVAL RESPONSES SHIFT TRADE-OFFS ASSOCIATED WITH PREDATOR-INDUCED HATCHING PLASTICITY

JAMES R. VONESH¹ AND BENJAMIN M. BOLKER

Department of Zoology, University of Florida, 223 Bartram Hall, Gainesville, Florida 32611 USA

Abstract. Many species with complex life histories can respond to risk by adaptively altering the timing of key life history switch points, including hatching. It is generally thought that such hatching plasticity involves a trade-off between embryonic and hatching predation risk, e.g., hatching early to escape egg predation comes at the cost of increased vulnerability to hatching predators. However, most empirical work has focused on simply detecting predator-induced hatching responses or the short-term consequences of hatching plasticity. Short-term studies may not allow sufficient time for hatchings to exhibit compensatory responses, which may extend to subsequent life stages and could alter the

Figure: Article

Simple binomial model

Frogs hatched in different tanks:

$$y_i \sim Bin(n_i, p_i),$$

 $g(p_i) = \alpha_i,$
 $\alpha_i \sim N(0, 10).$

Simple binomial model

Figure: Posterior mean for each tank

Figure: A DAG (directed acyclic graph) describing the model.

Hierarchicals model DAG

Simple binomial model

Multilevel model:

$$y_i \sim Bin(n_i, p_i),$$

 $g(p_i) = \alpha_i,$
 $\alpha_i \sim N(\alpha, \sigma),$
 $\alpha \sim N(0, 10),$
 $\sigma \sim HC(0, 1).$

Multilevel binomial model

Figure: Posterior mean for each tank

Lets examine, $y_2 = 10$, $n_2 = 10$

Figure: Prior + likelihood for a.

Figure: Posterior for a.

Figure : Figure on the left prior + likelihood for p. Figure on the right posterior p.

WAIC for varying σ

Multilevel binomial model

Figure: Posterior mean for each tank

Histogram of the α

Figure : Histogram of the α_i

Simple binomial model

Multilevel mixture model:

$$y_i \sim Bin(n_i, p_i),$$
 $g(p_i) = \alpha_i,$
 $\alpha_i \sim \theta N(\mu_1, \sigma_1) + (1 - \theta)N(\mu_2, \sigma_2),$
 $\mu_1 \sim N(0, 10),$
 $\mu_2 \sim N(0, 10),$
 $\sigma_1 \sim HC(0, 1).$
 $\sigma_2 \sim HC(0, 1).$
 $\theta \sim B(2, 2).$

Stan model

```
parameters {
  ordered[2] a0;
  real a[ntank];
  real < lower = 0> sigma 0;
  real < lower = 0 > sigma 1;
  real < lower = 0, upper = 1> theta;
model{
  vector[N] mu;
  theta ~ beta(2, 2);
        ~ normal(0,10);
  sigma 0 \sim cauchy (0,1);
  sigma 1 ~ cauchy (0,1);
  for(i in 1:ntank){
   target += log_sum exp(
     bernoulli lpmf(\overline{1}|theta) + normal | pdf(a[i]| a0[1], sigma 0),
     bernoulli lpmf(0|theta) + normal lpdf(a[i]| a0[2], sigma 1)
  for(i in 1:N)
    mu[i] = a[tank[i]];
  y ~ binomial logit(n, mu);
```

Multilevel mixture binomial model

Figure : Histogram of the α_i

Multilevel mixture binomial model

Figure: Posterior mean for each tank

Voting in Malmö, data

Voting in Malmö, model

$$s_i \sim bin(n_i, p_i),$$

 $g(p_i) = \alpha + med_i\beta,$
 $\alpha \sim N(0, 10)$
 $\beta \sim N(0, 10)$

Independent model DAG

Posterior parameter

Predictions

• By the model the prediction given the data is

$$\hat{Y}_i \sim Bin(n_i, p_i),$$
 $p_i \sim p(\cdot|y_1, y_2, \dots, y_n)$

Predictions

• By the model the prediction given the data is

$$\hat{Y}_i \sim Bin(n_i, p_i),$$
 $p_i \sim p(\cdot|y_1, y_2, \dots, y_n)$

The variance is:

$$V[\hat{Y}|p_i, n_i] = n_i(1 - p_i)p_i$$
$$V[\frac{\hat{Y}}{n_i}|p_i, n_i] = \frac{(1 - p_i)p_i}{n_i}$$

Figure: Predicition by district

Overdispertion

- Both binomial and Poisson has only one parameter.
- These models are extremely sensitivity to incorrect parameter.
- They can not adjust it variance to the data.

Solution

 This is typically solved by overdispersion model. Like Beta-binomial.

Solution

- This is typically solved by overdispersion model. Like Beta-binomial.
- For each observation one adds a random non-negative parameter:

$$p(y_i|n_i) = \int Bin(y_i|n_i, p_i)h(p_i|p, \theta)p(p, \theta)dp_idpd\theta,$$

Then one puts covariates on p not p_i .

Solution

- This is typically solved by overdispersion model. Like Beta-binomial.
- For each observation one adds a random non-negative parameter:

$$p(y_i|n_i) = \int Bin(y_i|n_i, p_i)h(p_i|p, \theta)p(p, \theta)dp_idpd\theta,$$

Then one puts covariates on p not p_i .

• overdisperation is typically a multilevel model.

multilevel

$$y_i \sim Bin(n_i, p_i)$$
 $g(p_i) \sim \alpha_0 + med_i\beta + Z_i$
 $Z_i \sim N(0, \sigma)$
 $\alpha_0 \sim N(0, 10)$
 $\sigma \sim HC(0, 5)$.

multilevel

$$y_i \sim Bin(n_i, p_i)$$
 $g(p_i) \sim \alpha_0 + med_i\beta + Z_i$
 $Z_i \sim N(0, \sigma)$
 $\alpha_0 \sim N(0, 10)$
 $\sigma \sim HC(0, 5)$.

or equivalently

$$y_i \sim Bin(n_i, p_i)$$
 $g(p_i) \sim \alpha_i + med_i\beta$
 $\alpha_i \sim N(\alpha_0, \sigma)$
 $\alpha_0 \sim N(0, 10)$
 $\sigma \sim HC(0, 5)$.

PI for model

Figure : Prediction by district multilevel, a B > Q @ 29/4

PI for multilevel

Figure : Prediction unconditional by district multilevel

Heuristically

• The variance is:

$$egin{split} V[\hat{Y}|n_i] &pprox n_i (1-\hat{p}_i)\hat{p}_i + n_i^2 ilde{\sigma} \ V[rac{\hat{Y}}{n_i}|n_i] &pprox rac{(1-\hat{p}_i)\hat{p}_i}{n_i} + ilde{\sigma} \end{split}$$

Where $\tilde{\sigma}$ is the variation from

PI for multilevel without cheating

Figure: Look at parameter certainty

Loss Developments

 Loss Developments - The goal is to estimate the ultimate cumulative loss for each accident year using historical data.

```
org / dev
                                    10
 1991
       4 11 17 22 27 33 35 36 38
                                    39
 1992
     4 12
             22 34 38 41 46
                             49
                                 53
 1993
     3 13
             22 32
                   40 41 46
     3 14
             22 38 40 44 46
 1994
 1995
     4 11
             21 29 34
                       39
     4 13
             22 30 37
 1996
     4 13
             24 35
 1997
 1998
       4 14
             29
 1999
       4 14
 2000
```

Table: Loss triangle. First column original year, the columns after are the development of the loss over months.

Loss triangle

Cumulative development by origin year

Model

• A to capture this is the growth curve:

$$G(t|\omega,\theta) = (1 - e^{-(\frac{t}{\theta})^{\omega}})$$

t- time after original year, $\omega, \theta-$ parameters to be fitted.

• Loss in the loss triangle is given by:

$$L_{i,j} = L_F G(12j|\omega,\theta)$$

Figure : G(t|1.4, 46)

A first model

$$L_{i}(t) \sim N(\mu_{t}, \sigma)$$

$$\mu_{t} = L_{F}G(t|\omega, \theta)$$

$$\sigma = \sigma_{0}\sqrt{\mu_{t}}$$

$$\omega \sim HN(1.4, 1)$$

$$\theta \sim HN(46, 10)$$

$$\sigma_{0} \sim HC(0, 2)$$

$$L_{F} \sim N(5000, 5000)$$

Stan model

```
parameters {
   real < lower = 0> theta;
   real < lower = 0> omega;
   real<lower=0> Lf;
   real < lower = 0> sigma0;
model {
   real mu[N];
   real disp sigma[N];
   theta ~ normal(46, 10);
   omega ~ normal(1.4, 1);
   sigma0 ~ cauchy (0,5);
   Lf ~ normal(5000, 5000);
   for (i in 1:N){
      mu[i] = Lf * (1-exp(-pow(dev[i] / theta, omega)));
      disp sigma[i] = sigma0 * sqrt(mu[i]);
   cum ~ normal(mu, disp sigma);
```

Result

Multilevel version

$$L_{i}(t) \sim N(\mu_{t,i}, \sigma)$$

$$\mu_{t,i} = L_{F,i}G(t|\omega, \theta)$$

$$\sigma = \sigma_{0}\sqrt{\mu_{t}}$$

$$L_{F,i} \sim N(L_{F}, \sigma_{F})$$

$$\omega \sim HN(1.4, 1)$$

$$\theta \sim HN(46, 10)$$

$$\sigma_{0} \sim HC(0, 2)$$

$$\sigma_{F} \sim HC(0, 2)$$

$$L_{F} \sim N(5000, 5000)$$

Result

Result

