AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Currently Amended) A random copolymer based on non-conjugated cyclic polyene comprising structural units originated from one or more α-olefins (A1) and originated from one or more non-conjugated cyclic polyenes (A2), the said random copolymer having characteristic features comprising:

a content of the structural unit(s) originated from the said one or more α -olefins (A1) in the range of 93 to 70 mole %,

a content of the structural units originated from the said one or more nonconjugated cyclic polyenes (A2) in the range of 7 to 30 mole %,

an intrinsic viscosity [η], determined in decahydronaphthalene at 135°C, in the range of 0.01 to 20 dl/g,

a glass transition temperature (Tg) of -30°C to +40°C, and an iodine value in the range of 50 to 150 35 to 150.

2. (Previously Presented) A random copolymer based on non-conjugated cyclic polyene comprising structural units originated from one or more α-olefins (A1), originated from one or more non-conjugated cyclic polyenes (A2) and originated from

Page 3

one or more non-conjugated linear polyenes (A3), the said random copolymer having characteristic features comprising:

a content of the structural unit(s) originated from the said one or more α -olefins (A1) in the range of 97.9 to 55 mole %,

a content of the structural unit originated from the said one or more nonconjugated cyclic polyenes (A2) in the range of 2 to 30 mole %,

a content of the structural unit originated from the said one or more nonconjugated linear polyenes (A3) in the range from 0.1 to 15 mole %,

an intrinsic viscosity [η], determined in decahydronaphthalene at 135°C, in the range of 0.01 to 20 dl/g,

a glass transition temperature (Tg) -30°C to +40°C, and an iodine value in the range of 5 to 150.

- 3. (Original) The random copolymer as claimed in claim 1 or 2, wherein the structural unit(s) originated from one or more α -olefins (A1) comprise at least a structural unit originated from ethylene in which the mole ratio of (the structural unit originated from ethylene) versus (the structural unit(s) originated from other α -olefin(s) having 3 or more carbon atoms) is in the range from 100/0 to 1/99.
- 4. (Original) The random copolymer as claimed in claim 1 or 2, wherein the structural unit(s) originated from one or more α -olefins (A1) comprise at least a structural unit originated from ethylene in which the mole ratio of (the structural unit

originated from ethylene) versus (the structural unit(s) originated from other α -olefin(s) having 3 or more carbon atoms) is in the range from 100/0 to 50/50.

Claims 5-6 (Canceled)

- 7. (Currently Amended) A rubber composition comprising
- (A) a random copolymer based on non-conjugated cyclic polyene comprising structural units originated from one or more α-olefins (A1) and originated from one or more non-conjugated cyclic polyene (A2), the said random copolymer having characteristic features comprising: a content of the structural unit(s) originated from the said one or more α-olefins (A1) in the range of 93 to 70 mole %; a content of the structural unit originated from the said one or more non-conjugated cyclic polyenes (A2) in the range of 7 to 30 mole %; an intrinsic viscosity [η], determined in decahydronaphthalene at 135°C, in the range of 0.01 to 20 dl/g; a glass transition temperature (TG) of -30°C to +40°C; and an iodine value in the range of 50 to 150; and
- (B) a rubber based on diene,
 wherein the weight proportion of (the random copolymer based on nonconjugated cyclic polyene) versus (the rubber based on diene), namely,
 (A/(B), is in the range of 60/40 to 0.1/99.9.

- 8. (Previously Presented) A rubber composition comprising:
- (A) a random copolymer based on non-conjugated cyclic polyene comprising structural units originated from one or more α-olefins (A1) and originated from one or more non-conjugated cyclic polyenes (A2) and originated from one or more non-conjugated linear polyene (A3), the said random copolymer having characteristic features comprising: a content of the structural unit(s) originated from the said one or more α-olefins (A1) in the range of 97.9 to 55 mole %; a content of the structural unit originated from the said one or more non-conjugated cyclic polyenes (A2) in the range of 2 to 30 mole %; a content of the structural unit originated from the said one or more non-conjugated linear polyene (A3) in the range of 0.1 to 15 mole %; an intrinsic viscosity [η], determined in decahydronaphthalene at 135°C, in the range of 0.01 to 20 dl/g; a glass transition temperature (Tg) of -30°C to +40°C; and an iodine value in the range of 5 to 150, and
- (B) a rubber based on diene,
 wherein the weight proportion of (the random copolymer based on non-conjugated cyclic polyene) versus (the rubber based on diene), namely,
 (A)/(B), is in the range from 60/40 to 0.1/99.9.
- 9. (Original) The rubber composition as claimed in claim 7 or 8, wherein the structural unit(s) originated from one or more α-olefins (A1) in the random copolymer

based on non-conjugated cyclic polyene comprise at least a structural unit originated from ethylene, wherein the mole ratio of (the structural unit originated from ethylene) versus (the structural unit(s) originated from other α -olefin(s) having 3 or more carbon atoms) is in the range from 100/0 to 1/99.

10. (Original) The rubber composition as claimed in claim 7 or 8, wherein the structural unit(s) originated from one or more α -olefins (A1) in the random copolymer based on non-conjugated cyclic polyene comprise at least a structural unit originated from ethylene, wherein the mole ratio of (the structural unit originated from ethylene) versus (the structural unit(s) originated from other α -olefin(s) having 3 or more carbon atoms) is in the range from 100/0 to 50/50.

Claims 11-16 (Canceled)

17. Previously Presented) The random copolymer as claimed in claim 1, wherein the non-conjugated cyclic polyene (A2) is that represented by the formula (1-1) given below:

$$\begin{array}{c}
R^1 \\
R^2 \\
R^3 \\
R^4
\end{array}$$
....(1-1)

in which m is an integer of 0 to 2, R^1 to R^4 denote each, independently of each other, an atom or a residue selected from the group consisting of hydrogen atom, halogen atoms and hydrocarbon residues which may have double bond, wherein R^1 to R^4 may be fused together to form a mono- or polycyclic ring which may have double bond or wherein an alkylidene radical may be formed from the pair of R^1 and R^2 or R^3 and R^4 or, further R^1 and R^3 or R^2 and R^4 may be fused together so as to form a double bond, with the proviso that at least one of R^1 to R^4 stands for an unsaturated hydrocarbon residue having at least one double bond, in case the mono- or polycyclic ring formed from R^1 to R^4 by being fused together has no double bond, in case the pair of R^1 and R^2 or R^3 and R^4 does not form an alkylidene radical and in case R^1 and R^3 or R^2 and R^4 are not fused together to form an endocyclic bond.

18. (Previously Presented) The random copolymer as claimed in claim 2, wherein the non-conjugated cyclic polyene (A2) is that represented by the formula (1-1) given below:

$$\begin{array}{c}
R^1 \\
R^2 \\
R^3 \\
R^4
\end{array}$$
....(1-1)

in which m is an integer of 0 to 2, R¹ to R⁴ denote each, independently of each other, an atom or a residue selected from the group consisting of hydrogen atom, halogen

atoms and hydrocarbon residues which may have double bond, wherein R^1 to R^4 may be fused together to form a mono- or polycyclic ring which may have double bond or wherein an alkylidene radical may be formed from the pair of R^1 and R^2 or R^3 and R^4 or, further, R^1 and R^3 or R^2 and R^4 may be fused together so as to form a double bond, with the proviso that at least one of R^1 to R^4 stands for an unsaturated hydrocarbon residue having at least one double bond, in case the mono- or polycyclic ring formed from R^1 to R^4 by being fused together has no double bond, in case the pair of R^1 and R^2 or R^3 and R^4 does not form an alkylidene radical and in case R^1 and R^3 or R^2 and R^4 are not fused together to form an endocyclic double bond.

- 19. (Previously Presented) The random copolymer as claimed in claim 17, wherein the structural unit(s) originated from one or more α -olefins (A1) comprise at least a structural unit originated from ethylene in which the mole ratio of (the structural unit originated from ethylene) versus (the structural unit(s) originated from other α -olefin(s) having 3 or more carbon atoms) is in the range of from 100/0 to 1/99.
- 20. (Previously Presented) The random copolymer as claimed in claim 18, wherein the structural unit(s) originated from one or more α -olefins (A1) comprise at least a structural unit originated from ethylene in which the mole ratio of (the structural unit originated from ethylene) versus (the structural unit(s) originated from other α -olefin(s) having 3 or more carbon atoms) is in the range of from 100/0 to 1/99.

Attorney's Docket No. <u>033235-005</u> Application No. <u>09/787,890</u> Page 9

- 21. (Previously Presented) The random copolymer as claimed in claim 17, wherein the structural unit(s) originated from one or more α -olefins (A1) comprise at least a structural unit originated from ethylene in which the mole ratio of (the structural unit originated from ethylene) versus (the structural unit(s) originated from other α -olefin(s) having 3 or more carbon atoms) is in the range of from 100/0 to 50/50.
- 22. (Previously Presented) The random copolymer as claimed in claim 18, wherein the structural unit(s) originated from one or more α -olefins (A1) comprise at least a structural unit originated from ethylene in which the mole ratio of (the structural unit originated from ethylene) versus (the structural unit(s) originated from other α -olefin(s) having 3 or more carbon atoms) is in the range of from 100/0 to 50/50.
- 23. (Previously Presented) The random copolymer as claimed in claim 2, wherein the non-conjugated linear polyene (A3) is represented by the formula (2-1) given below:

$$H_{2}C=CH-CH_{2} \xrightarrow{\begin{bmatrix} C \\ \\ \\ \\ CH \\ \\ CH_{3} \end{bmatrix}_{p}} \xrightarrow{\begin{bmatrix} R^{1} \\ \\ \\ \\ \\ CR^{3}=CR^{4} \\ \\ \\ \\ \\ \end{bmatrix}_{q}} \xrightarrow{\begin{bmatrix} R^{5} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{bmatrix}_{q}} CR^{7}=\overset{1}{C}-R^{9}$$
....(2-1)

in which p and q is zero or 1 with the proviso that p and q are not zero simultaneously, f is an integer of zero to 5 with the proviso that f is not zero when both p and q are 1, g is an integer of 1 to 6, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 denote each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms, R^8 denotes an alkyl group having 1-3 carbon atoms and R^9 denotes hydrogen atom, an alkyl group having 1-3 carbon atoms or a group represented by $-(CH_2)n-CR^{10}=C(R^{11})R^{12}$ in which n is an integer of 1 to 5, R^{10} and R^{11} represent each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms, with the proviso that R^9 is hydrogen atom or an alkyl group having 1-3 carbon atoms when both p and q are 1.

24. (Previously Presented) The random copolymer as claimed in claim 18, wherein the non-conjugated linear polyene (A3) is represented by the formula (2-1) given below:

$$H_{2}C=CH-CH_{2} \xrightarrow{\begin{bmatrix} R^{1} \\ C \\ CH \\ CH_{3} \end{bmatrix}_{p}} \xrightarrow{\begin{bmatrix} R^{1} \\ C \\ CR^{3}=CR^{4} \end{pmatrix}_{q}} \xrightarrow{\begin{bmatrix} R^{5} \\ C \\ CR^{5} \end{bmatrix}_{q}} CR^{7} = \overset{1}{C}-R^{9}$$

$$\dots (2-1)$$

in which p and q is zero or 1 with the proviso that p and q are not zero simultaneously, f is an integer of zero to 5 with the proviso that f is not zero when both p and q are 1, g is an integer of 1 to 6, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 denote each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms, R^8 denotes an alkyl group having 1-3 carbon atoms and R^9 denotes hydrogen atom, an alkyl group having 1-3 carbon atoms or a group represented by $-(CH_2)n-CR^{10}=C(R^{11})R^{12}$ in which n is an integer of 1 to 5, R^{10} and R^{11} represent each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms and R^{12} represents an alkyl group having 1-3 carbon atoms, with the proviso that R^9 is hydrogen atom or an alkyl group having 1-3 carbon atoms when both p and q are 1.

25. (Previously Presented) The random copolymer as claimed in claim 20, wherein the non-conjugated linear polyene (A3) is represented by the formula (2-1) given below:

in which p and q is zero or 1 with the proviso that p and q are not zero simultaneously, f is an integer of zero to 5 with the proviso that f is not zero when both p and q are 1, g is an integer of 1 to 6, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 denote each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms, R^8 denotes an alkyl group having 1-3 carbon atoms and R^9 denotes hydrogen atom, an alkyl group having 1-3 carbon atoms or a group represented by $-(CH_2)n-CR^{10}=C(R^{11})R^{12}$ in which n is an integer of 1 to 5, R^{10} and R^{11} represent each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms and R^{12} represents an alkyl group having 1-3 carbon atoms, with the proviso that R^9 is hydrogen atom or an alkyl group having 1-3 carbon atoms when both p and q are 1.

26. (Previously Presented) The random copolymer as claimed in claim 22, wherein the non-conjugated linear polyene (A3) is represented by the formula (2-1) given below:

in which p and q is zero or 1 with the proviso that p and q are not zero simultaneously, f is an integer of zero to 5 with the proviso that f is not zero when both p and q are 1, g is an integer of 1 to 6, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 denote each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms, R^8 denotes an alkyl group having 1-3 carbon atoms and R^9 denotes hydrogen atom, an alkyl group having 1-3 carbon atoms or a group represented by $-(CH_2)n-CR^{10}=C(R^{11})R^{12}$ in which n is an integer of 1 to 5, R^{10} and R^{11} represent each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms and R^{12} represents an alkyl group having 1-3 carbon atoms, with the proviso that R^9 is hydrogen atom or an alkyl group having 1-3 carbon atoms when both p and q are 1.

27. (Previously Presented) The rubber composition as claimed in claim 7, wherein the non-conjugated cyclic polyene (A2) is that represented by the formula (1-1) given below:

$$\begin{array}{c}
R^1 \\
R^2 \\
R^3 \\
R^4
\end{array}$$
....(1-1)

in which m is an integer of 0 to 2, R^1 to R^4 denote each, independently of each other, an atom or a residue selected from the group consisting of hydrogen atom, halogen atoms and hydrocarbon residues which may have double bond, wherein R^1 to R^4 may be fused together to form a mono- or polycyclic ring which may have double bond or wherein an alkylidene radical may be formed from the pair of R^1 and R^2 or R^3 and R^4 or, further, R^1 and R^3 or R^2 and R^4 may be fused together so as to form a double bond, with the proviso that at least one of R^1 to R^4 stands for an unsaturated hydrocarbon residue having at least one double bond, in case the mono- or polycyclic ring formed from R^1 to R^4 by being fused together has no double bond, in case the pair of R^1 and R^2 or R^3 and R^4 does not form an alkylidene radical and in case R^1 and R^3 or R^2 and R^4 are not fused together to form an endocyclic double bond.

28. (Previously Presented) The rubber composition as claimed in claim 8, wherein the non-conjugated cyclic polyene (A2) is that represented by the formula (1-1) given below:

$$\begin{array}{c}
R^1 \\
R^2 \\
R^3 \\
R^4
\end{array}$$
....(1-1)

in which m is an integer of 0 to 2, R^1 to R^4 denote each, independently of each other, an atom or a residue selected from the group consisting of hydrogen atom, halogen atoms and hydrocarbon residues which may have double bond, wherein R^1 to R^4 may be fused together to form a mono- or polycyclic ring which may have double bond or wherein an alkylidene radical may be formed from the pair of R^1 and R^2 or R^3 and R^4 or, further, R^1 and R^3 or R^2 and R^4 may be fused together so as to form a double bond, with the proviso that at least one of R^1 to R^4 stands for an unsaturated hydrocarbon residue having at least one double bond, in case the mono- or polycyclic ring formed from R^1 to R^4 by being fused together has no double bond, in case the pair of R^1 and R^2 or R^3 and R^4 does not form an alkylidene radical and in case R^1 and R^3 or R^2 and R^4 are not fused together to form an endocyclic double bond.

29. (Previously Presented) The rubber composition as claimed in claim 27, wherein the structural unit(s) originated from one or more α -olefins (A1) in the random copolymer based on non-conjugated cyclic polyene comprise at least a structural unit originated from ethylene, wherein the mole ratio of (the structural unit originated from ethylene) versus (the structural unit(s) originated from other α -olefin(s) having 3 or more carbon atoms) is in the range of from 100/0 to 1/99.

Attorney's Docket No. <u>033235-005</u> Application No. <u>09/787,890</u> Page 16

- 30. (Previously Presented) The rubber composition as claimed in claim 28, wherein the structural unit(s) originated from one or more α -olefins (A1) in the random copolymer based on non-conjugated cyclic polyene comprise at least a structural unit originated from ethylene, wherein the mole ratio of (the structural unit originated from ethylene) versus (the structural unit(s) originated from other α -olefin(s) having 3 or more carbon atoms) is in the range of from 100/0 to 1/99.
- 31. (Previously Presented) The rubber composition as claimed in claim 27, wherein the structural unit(s) originated from one or more α -olefins (A1) in the random copolymer based on non-conjugated cyclic polyene comprise at least a structural unit originated from ethylene, wherein the mole ratio of (the structural unit originated from ethylene) versus (the structural unit(s) originated from other α -olefin(s) having 3 or mor carbon atoms) is in the range of from 100/0 to 50/50.
- 32. (Previously Presented) The rubber composition as claimed in claim 28, wherein the structural unit(s) originated from one or more α -olefins (A1) in the random copolymer based on non-conjugated cyclic polyene comprise at least a structural unit originated from ethylene, wherein the mole ratio of (the structural unit originated from ethylene) versus (the structural unit(s) originated from other α -olefin(s) having 3 or more carbon atoms) is in the range of from 100/0 to 50/50.

33. (Previously Presented) The rubber composition as claimed in claim 8, wherein the non-conjugated linear polyene (A3) is represented by the formula (2-1_given below:

$$H_{2}C=CH-CH_{2} \xrightarrow{\begin{array}{c} C \\ \parallel \\ CH \\ \parallel \\ CH_{3} \end{array}} \xrightarrow{\begin{array}{c} R^{1} \\ \parallel \\ C \\ \parallel \\ CH_{3} \end{array}} \xrightarrow{\begin{array}{c} R^{1} \\ \parallel \\ C \\ \parallel \\ C \\ \end{array}} \xrightarrow{\begin{array}{c} C \\ \parallel \\ C \\ \parallel \\ C \\ \end{array}} CR^{7}=\overset{\begin{array}{c} C \\ \parallel \\ C \\ \parallel \\ C \\ \end{array}} CR^{7}=\overset{\begin{array}{c} C \\ \parallel \\ C \\ \parallel \\ C \\ \end{array}} \xrightarrow{\begin{array}{c} R^{8} \\ \parallel \\ C \\ \parallel \\ C \\ \end{array}} \xrightarrow{\begin{array}{c} R^{6} \\ \parallel \\ C \\ \end{array}} CR^{7}=\overset{\begin{array}{c} C \\ \parallel \\ C \\ \end{array}} \xrightarrow{\begin{array}{c} R^{6} \\ \parallel \\ C \\ \end{array}} \xrightarrow{\begin{array}{c} R^{6} \\ \parallel \\ \end{array}} \xrightarrow{\begin{array}{c} R^{6} \\ \end{array}} \xrightarrow$$

in which p and q is zero or 1 with the proviso that p and q are not zero simultaneously, f is an integer of zero to 5 with the proviso that f is not zero when both p and q are 1, g is an integer of 1, to 6, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 denote each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms, R^8 denotes an alkyl group having 1-3 carbon atoms and R^9 denotes hydrogen atom, an alkyl group having 1-3 carbon atoms or a group represented by $-(CH_2)n-CR^{10}=C(R^{11})R^{12}$ in which n is an integer of 1 to 5, R^{10} and R^{11} represent each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms and R^{12} represents an alkyl group having 1-3 carbon atoms, with the proviso that R^9 is hydrogen atom or an alkyl group having 1-3 carbon atoms when both p and q are 1.

34. (Previously Presented) The rubber composition as claimed in claim 28, wherein the non-conjugated linear polyene (A3) is represented by the formula (2-1) given below:

$$H_{2}C=CH-CH_{2} \xrightarrow{\begin{bmatrix} C \\ \parallel \\ CH \\ \parallel \\ CH_{3} \end{bmatrix}_{p}} \xrightarrow{\begin{bmatrix} R^{1} \\ \parallel \\ CR^{3}=CR^{4} \end{pmatrix}_{q}} \xrightarrow{\begin{bmatrix} R^{5} \\ \parallel \\ CR^{5} \end{bmatrix}_{q}} CR^{7}=\overset{1}{C}-R^{9}$$

$$\dots (2-1)$$

in which p and q is zero or 1 with the proviso that p and q are not zero simultaneously, f is an integer of zero to 5 with the proviso that f is not zero when both p and q are 1, g is an integer of 1 to 6, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 denote each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms, R^8 denotes an alkyl group having 1-3 carbon atoms and R^9 denotes hydrogen atom, an alkyl group having 1-3 carbon atoms or a group represented by $-(CH_2)n-CR^{10}=C(R^{11})R^{12}$ in which n is an integer of 1 to 5, R^{10} and R^{11} represent each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms and R^{12} represents an alkyl group having 1-3 carbon atoms, with the proviso that R^9 is hydrogen atom or an alkyl group having 1-3 carbon atoms when both p and q are 1.

35. (Previously Presented: The rubber composition as claimed in claim 30, wherein the non-conjugated linear polyene (A3) is represented by the formula (2-1) given below:

In which p and q is zero or 1 with the proviso that p and q are not zero simultaneously, f is an integer of zero to 5 with the proviso that f is not zero when both p and q are 1, g is an integer of 1 to 6, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 denote each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms, R^8 denotes an alkyl group having 1-3 carbon atoms and R^9 denotes hydrogen atom, an alkyl group having 1-3 carbon atoms or a group represented by $-(CH_2)n-CR^{10}=C(R^{11})R^{12}$ in which n is an integer of 1 to 5, R^{10} and R^{11} represent each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms and R^{12} represents an alkyl group having 1-3 carbon atoms, with the proviso that R^9 is hydrogen atom or an alkyl group having 1-3 carbon atoms when both p and q are 1.

36. The rubber composition as claimed in claim 32, wherein the non-conjugated linear polyene (A3) is represented by the formula (2-1) given below:

$$H_{2}C=CH-CH_{2} \xrightarrow{\begin{array}{c} C \\ \parallel \\ CH \\ \parallel \\ CH_{3} \end{array} \begin{array}{c} R^{1} \\ \parallel \\ CH_{3} \end{array} \begin{array}{c} R^{2} \\ \parallel \\ CH_{3} \end{array} \begin{array}{c} R^{2} \\ \parallel \\ CH_{3} \end{array} \begin{array}{c} R^{2} \\ \parallel \\ \end{pmatrix}_{p} \xrightarrow{\begin{array}{c} CR^{3}=CR^{4} \\ \parallel \\ \end{array}} \begin{array}{c} R^{5} \\ \parallel \\ R^{6} \end{array} \begin{array}{c} R^{8} \\ \parallel \\ R^{6} \end{array} \begin{array}{c} R^{8} \\ \parallel \\ \end{array}$$

$$\dots (2-1)$$

in which p and q is zero or 1 with the proviso that p and q are not zero simultaneously, f is an integer of zero to 5 with the proviso that f is not zero when both p and q are 1, g is an integer of 1 to 6, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 denote each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms, R^8 denotes an alkyl group having 1-3 carbon atoms and R^9 denotes hydrogen atom, an alkyl group having 1-3 carbon atoms or a group represented by $-(CH_2)n-CR^{10}=C(R^{11})R^{12}$ in which n is an integer of 1 to 5, R^{10} and R^{11} represent each, independently of each other, hydrogen atom or an alkyl group having 1-3 carbon atoms and R^{12} represents an alkyl group having 1-3 carbon atoms, with the proviso that R^9 is hydrogen atom or an alkyl group having 1-3 carbon atoms when both p and q are 1.

- 37. (Previously Presented) A rubber material for tires, comprising the random copolymer based on non-conjugated cyclic polyene as claimed in any one of claims 1, 2, 17, 18 or 23.
- 38. (Previously Presented) A rubber material for tires, comprising the rubber composition as claimed in any one of claims 7, 8, 27, 28 or 33.
- 39. (Previously Presented) A tire tread produced from the rubber material for tires as claimed in claim 37.
- 40. (Previously Presented) A tire tread produced from the rubber material for tires as claimed in claim 38.
 - 41. (Previously Presented) A tire which has a tire tread as claimed in claim 39.
 - 42. (Previously Presented) A tire which has a tire tread as claimed in claim 40.