

Computer vision

Computer Vision Problems

 \longrightarrow Cat? (0/1)

Object detection

此之地

Neural Style Transfer

Andrew Nø

Deep Learning on large images

More edge detection

Vertical edge detection examples

Vertical and Horizontal Edge Detection

Learning to detect edges

-1

-1

0

1

1

) .	-1	
		1	1	1000	
3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1/	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Strided convolutions

Strided convolution

Summary of convolutions

$$n \times n \text{ image}$$
 $f \times f \text{ filter}$ padding p stride s

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \qquad \times \qquad \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

Technical note on <u>cross-correlation</u> vs. convolution

Convolution in math textbook:

			7	17	
27	3	7 ⁵	4	6	2
69	6 ^t	94	8	7	4
3	41	83	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

Convolutions over volumes

Convolutions on RGB images

One layer of a convolutional

Number of parameters in one layer

If you have 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?

$$N_{H} \times N_{w} \times N_{c}^{[L+1]} \rightarrow \dots$$

$$\left(N_{H}^{[\ell]} = \frac{N_{H}^{[\ell-1]} + 2p^{[\ell]} - f^{[\ell]}}{s^{[\ell]}} + 1\right)$$

$$\left(N_{W}^{[\ell]} = \frac{N_{W}^{[\ell+1]} + 2p^{[\ell]} - f^{[\ell]}}{s^{[\ell]}} + 1\right)$$

Summary of notation

If layer l is a convolution layer:

[1-17 [1-17 $f^{[l]}$ = filter size Input: $p^{[l]} = padding$ $s^{[l]} = \text{stride}$ $|n_c^{[l]}|$ = number of filters → Each filter is: fux tux x (L-1) Activations: $Q^{(2)} \rightarrow Q^{(2)} \rightarrow Q$

就品 吃比→ 玩味和→ 執い · 许

A simple convolution network example

येनित रिष्णेस मार्य अवसे अस्म!

Types of layer in a convolutional network:

- Convolution (CONV) ←
- Pooling (POOL) ←
- Fully connected (FC) ←

Pooling layer: Max pooling

Convolutional Neural Networks

Pooling layers

Pooling layer: Max pooling

Pooling layer: Average pooling

Summary of pooling

Hyperparameters:

f: filter size
$$\begin{cases} \xi = 2, \xi = 2 \\ \xi = 3, \xi = 2 \end{cases}$$
 s: stride

Max or average pooling

Andrew Ng

Layer 2

Neural network example

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	_ 3,072 a ^{tol}	0
CONV1 (f=5, s=1)	(28,28,8)	6,272	608 🥌
POOL1	(14,14,8)	1,568	0 ←
CONV2 (f=5, s=1)	(10,10,16)	1,600	3216 <
POOL2	(5,5,16)	400	0 <
FC3	(120,1)	120	48120 7
FC4	(84,1)	84	10164
Softmax	(10,1)	10	850

Andrew Ng

Andrew Ng

Why convolutions?

Why convolutions

Why convolutions

				0			1
)	10	10	10	0	0	0	
	10	10	10	0	0	0	
	10	10	10	Ø	0	0	
(10	10	10	Ø	9	0	*
{	10	10	10	0	10.	0	-
	10	10	10	0	0	0	0

1	0	-1
1	0	-1
1	0	-1

runs lotion	(Marana			
	1		1	
	0	30	30	0
	0	30	30	0
=	0	30	30	0
	0	30	30	0
	:	1		

- Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.
- Sparsity of connections: In each layer, each output value depends only on a small number of inputs.

Putting it together

医类物是 型流 切帐 割印记

$$\operatorname{Cost} J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J