BLG 561E Deep Learning Lecture 0: Class Logistics

Prof. Gozde Unal (CRN 14002) and Asst. Prof. Nazim Kemal Ure (CRN 14003)

Istanbul Technical University

Fall 2018

Professors

Prof. Gozde Unal, Dep. of Computer Eng. gozde.unal@itu.edu.tr

Asst. Prof. N. Kemal Ure, Dep. of Aeronautical Eng. ure@itu.edu.tr

Course Description

- This is an introductory course on Deep Learning
- We are going to cover basic design principles and applications for
 - Machine Learning Review
 - Feedforward (Fully Connected) Neural Networks
 - Convolutional Neural Networks
 - Autoencoders
 - Recurrent Neural Networks
 - Generative Networks
 - A brief introduction to Deep Reinforcement Learning
- Applications will cover a wide array of topics from computer vision, audio processing, time series prediction and more....

Course Objectives

- The specific aims of the course are:
 - 1. To introduce main techniques in Deep Learning
 - To understand the mathematical principles of optimization and regularization of deep learning methods
 - To be able to design deep neural networks for various problems in artificial intelligence
 - 4. To implement solutions to learning problems using various deep neural network techniques using Python/Pytorch

Prerequisites

- A good understanding of basic linear algebra and probability theory
 - We can point you to references in case you need to brush up on these subjects
- At least an introductory exposition to machine learning
 - We will do a review of ML, but it might not help a lot if you have no background Machine Learning
- Basic coding (Python) skills
 - We will start by writing a lot of code for basic and important concepts in the course, then we can start using our own code as well as relying on libraries for o custom applications

Week	Date	Topic	Assignments
1	Sep 18	Deep Learning: Introduction	
2	Sep 25	Review of Machine Learning	
3	Oct 02	Short Review : Optimization Artificial Neural Networks	
4	Oct 09	Backpropagation Regularization Techniques	HW1 assigned: FCN

Week	Date	Topic	Assignments
5	Oct 16	Convolutional Neural Networks Training Networks	
6	Oct 23	Supervised Methods, Discriminative Networks Examples	
7	Oct 30	Classification Applications: Pattern and / or Speech Recognition Pytorch tutorial	HW2 assigned: CNN+AE
X	Nov 6	FALL BREAK WEEK	

Week	Date	Topic	Assignments
8	Nov 13	Unsupervised Methods and Autoencoders	
9	Nov 20	Deep Generative Networks: Adversarial methods	
10	Nov 27	Applications of Unsupervised techniques: Sound and/or Image Synthesis	HW3 assigned: GAN

Week	Date	Topic	Assignments
11	Dec 4	Sequence Models: Recurrent Neural Networks, LSTMs,	
12	Dec 11	Time Series Prediction Application	HW4 assigned: RNN
13	Dec 18	Midterm Week	
14	Dec 25	Introduction to Deep RL	

References

- We will not follow a textbook strictly. Some references for deep learning are:
 - Deep Learning, I. Goodfellow, Y. Bengio, A. Courville, 2016, MIT Press.
 - Deep Learning with Python, F. Chollet, 2017, Manning.
 - Fundamentals of Deep Learning Designing Next-Generation Machine Intelligence Algorithms, Nikhil Buduma, Reilly
 - neuralnetworksanddeeplearning.com
 - Coursera Deep Learning Online Course Series
 - Stanford CS231N Deep Learning /Computer Vision Course videos
 - Python/numpy tutorial: http://cs231n.github.io/python-numpy-tutorial/
 - https://github.com/muupan/deep-reinforcement-learning-papers

Evaluation

Midterm Exam	30%
Homework Assignments (4)	40%
Final Project (50% Accuracy, 30% Presentation/Jury, 20% Report)	30%

The final project will be an object detection challenge/competition for autonomous driving

Sponsored by Eatron Technologies!

e atron technologies

Details soon...