Comments for MEDB 5501, Week 8

Review multiple comparisons issue

- Type I error: rejecting the null hypothesis when the null hypothesis is true.
 - Multiple simultaneous hypotheses increase the Type I error rate.

Bonferroni inequality for two simultaneous hypotheses

Define

- E_1 = Type I error for Hypothesis 1
- E_2 = Type I error for Hypothesis 2
 - $lacksquare P[E_1 \ \cup \ E_2] = P[E_1] + P[E_2] P[E_1 \ \cap \ E_2]$
 - $lacksquare P[E_1 \ \cup \ E_2] \ \le \ P[E_1] + P[E_2]$
 - $lacksquare P[E_1 \ \cup \ E_2] \ \le \ P[E_1] + P[E_2]$
 - $lacksquare P[E_1 \cup E_2] \leq 2\alpha$

Bonferroni adjustment

- For m hypotheses
 - $lacksquare P[E_1 \cup \ldots \cup E_m] \leq m\alpha$
- ullet Test each hypothesis at lpha/m
 - Preserves overall Type I error rate
- Example, 3 simultaneous hypotheses
 - Reject H0 if p-value < 0.0133</p>

Controversies over Bonferroni adjustment

- Increases Type II errors
- Impractical for large values of m
- Works poorly for highly correlated tests
- Ambiguity in definition of "simultaneous" hypotheses

Alternatives to Bonferroni adjustment

- False discovery rate
- Designation of primary and secondary outcomes
- Subjective assessment of simultaneous hypotheses

Review two-sample t-test

- $ullet \ H_0: \ \mu_1 = \mu_2$
- $H_1: \mu_1 \neq \mu_2$
 - Or a one tailed alternative

$$ullet \ T=rac{ar{X_1}-ar{X_2}}{SE(ar{X_1}-ar{X_2})}$$

Accept H0 if T is close to zero.

You saw how to compare two means last week. Here is the general framework.

What to do with three or more groups?

- $ullet \ H_0: \ \mu_1 = \mu_2 = \ldots = \mu_k$
- $H_1: \ \mu_i
 eq \mu_j$ for some i, j
 - Note: one-tailed test is tricky.
- Accept H0 if the F ratio (defined below) is close to 1.

Important assumptions

- Same as independent-samples t-test
 - Normality
 - Equal variances
 - Independence

How to check assumptions

- Boxplots
- ullet Analysis of residuals, e_{ij}
 - e_{ij} = Observed Predicted
 - $lacksquare e_{ij} = Y_{ij} ar{Y}_i$

Tukey post hoc tests

- If you reject H0, which values are unequal
 - With k groups, there are k(k-1)/2 comparisons
- Studentized range (Tukey test)
 - Requires equal sample sizes per group
 - Uses harmonic mean approximation for unequal sample sizes.
 - Do not use harmonic means if seriously different sample sizes.

Alternatives to Tukey post hoc tests

- Bonferroni adjustment
 - Works for unequal sample sizes per group
 - Works for unequal variances
- Dunnett's test
 - Treatment versus multiple controls
- Scheffe's test
 - Works for complex comparison
 - \circ Example $\mu_1 \ vs. \ rac{\mu_2 + \mu_3 + \mu_4}{3}$

Artificial data

```
9 Y
1 1 23
2 1 30
3 1 25
4 2 33
5 2 36
6 2 41
7 2 37
8 2 43
9 3 24
10 3 29
11 3 31
```

Speaker notes To motivate some of the calculations in Analysis of Variance, I created an artificial data set with numbers that are easy to work with.

Scatterplot

Here is a plot of the data.

Total SS = 452

Total sums of squares is the squared deviation between each individual value and the overall mean.

Within SS = 116

Speaker notes Within sums of squares is the squared deviation between each individual value and the group means.

Between SS = 336

Between SS is the squared deviation between the group means and the overall mean.

Degrees of freedom

- For Total SS, df = 10
- For Within SS, df = 8
- For Between SS, df = 2
- In general,
 - N = number of observations
 - k = number of groups
 - Total df = N-1
 - \circ Within df = N-k
 - Between df = k-1

The concept of degrees of freedom is tricky. It is the number of "independent" observations, or the number of observations minus the number of estimated parameters.

For Total SS, you have 11 observations, but one estimated parameter, the overall mean of 32. The degrees of freedom is 11-1 = 10.

For Within SS, you also have 11 observations, but there are 3 estimated parameters, the three group means. The degrees of freedom is 11-3 = 8

For Between SS, you only have three observations, the three group means. There is one estimated parameter, the overall mean. The degrees of freedom is 3-1 = 2.

In general, if you let N represent the total number of observations across all groups and let k represent the number of groups, then the degrees of freedom are N-1, N-k, and k-1.

ANOVA table, 1 of 4

	Sum of Squares	df
Between Groups	336.000	2
Within Groups	116.000	8
Total	452.000	10

Speaker notes You can lay out the sums of squares and the degrees of freedom in a table.

ANOVA table, 2 of 4

	Sum of Squares	df	Mean Square
Between Groups	336.000	2	168.000
Within Groups	116.000	8	14.500
Total	452.000	10	

Define the mean squares as the sum of squares divided by the degrees of freedom.

ANOVA table, 3 of 4

	Sum of Squares	df	Mean Square	F
Between Groups	336.000	2	168.000	11.586
Within Groups	116.000	8	14.500	
Total	452.000	10		

Calculate the F ratio as the Between Groups Mean Square divided by the Within Groups Mean Square.

ANOVA table, 4 of 4

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	336.000	2	168.000	11.586	.004
Within Groups	116.000	8	14.500		
Total	452.000	10			

Calculate the F ratio as the Between Groups Mean Square divided by the Within Groups Mean Square.

ANOVA table from the general linear model

Dependent Variable: y

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	336.000ª	2	168.000	11.586	.004
Intercept	9766.154	1	9766.154	673.528	<.001
g	336.000	2	168.000	11.586	.004
Error	116.000	8	14.500		
Total	11716.000	11			
Corrected Total	452.000	10			

a. R Squared = .743 (Adjusted R Squared = .679)

Speaker notes You can lay out the sums of squares and the degrees of freedom in a table.

Regression approach to ANOVA, 1 of 4

Regression approach to ANOVA, 2 of 4

Regression approach to ANOVA, 3 of 4

Parameter Estimates

Dependent Variable: y

					95% Confidence Interval	
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	28.000	2.198	12.736	<.001	22.930	33.070
i1	-2.000	3.109	643	.538	-9.170	5.170
i2	10.000	2.781	3.596	.007	3.587	16.413

Regression approach to ANOVA, 4 of 4

Dependent Variable: y

					95% Confidence Interval	
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	26.000	2.198	11.826	<.001	20.930	31.070
i2	12.000	2.781	4.315	.003	5.587	18.413
i3	2.000	3.109	.643	538	-5.170	9.170

Predicted values and residuals, 1 of 2

Predicted values and residuals, 2 of 2

What belongs in an interpretation

"Sixty-six women with osteoporosis were alternately assigned to one of three treatment groups: Group 1 (n=22), group 2 (n=22), and controls (n=22). After 6 weeks, the change in bone mineral density from baseline was measured. Analysis with one-way ANOVA indicated a statistically significant difference between the groups ($F_2,63=61.07$, P < 0.001). Further analysis with Tukey's pair-wise comparison procedure to control for multiple testing revealed that the mean change (+/- SD) of group 2 (1.6 g/cm² +/-0.2) was significantly greater than that of group 1 (1.1 g/cm² +/- 0.2) and that of the controls (1.0 g/cm² +/- 0.2) with an overall alpha level of 0.05."

Identify the dependent variable

"Sixty-six women with osteoporosis were alternately assigned to one of three treatment groups: Group 1 (n=22), group 2 (n=22), and controls (n=22). After 6 weeks, the change in bone mineral density from baseline was measured. Analysis with one-way ANOVA indicated a statistically significant difference between the groups ($F_2,63=61.07$, P < 0.001). Further analysis with Tukey's pair-wise comparison procedure to control for multiple testing revealed that the mean change (+/- SD) of group 2 (1.6 g/cm² +/-0.2) was significantly greater than that of group 1 (1.1 g/cm² +/- 0.2) and that of the controls (1.0 g/cm² +/- 0.2) with an overall alpha level of 0.05."

Summarize each group

"Sixty-six women with osteoporosis were alternately assigned to one of three treatment groups: Group 1 (n=22), group 2 (n=22), and controls (n=22). After 6 weeks, the change in bone mineral density from baseline was measured. Analysis with one-way ANOVA indicated a statistically significant difference between the groups ($F_2,63=61.07$, P < 0.001). Further analysis with Tukey's pair-wise comparison procedure to control for multiple testing revealed that the mean change (+/- SD) of group 2 (1.6 g/cm² +/-0.2) was significantly greater than that of group 1 (1.1 g/cm² +/- 0.2) and that of the controls (1.0 g/cm² +/- 0.2) with an overall alpha level of 0.05."

Explain how subjects were assigned

"Sixty-six women with osteoporosis were alternately assigned to one of three treatment groups: Group 1 (n=22), group 2 (n=22), and controls (n=22). After 6 weeks, the change in bone mineral density from baseline was measured. Analysis with one-way ANOVA indicated a statistically significant difference between the groups ($F_2,63=61.07$, P < 0.001). Further analysis with Tukey's pair-wise comparison procedure to control for multiple testing revealed that the mean change (+/- SD) of group 2 (1.6 g/cm² +/-0.2) was significantly greater than that of group 1 (1.1 g/cm² +/- 0.2) and that of the controls (1.0 g/cm² +/- 0.2) with an overall alpha level of 0.05."

Describe the statistical test

"Sixty-six women with osteoporosis were alternately assigned to one of three treatment groups: Group 1 (n=22), group 2 (n=22), and controls (n=22). After 6 weeks, the change in bone mineral density from baseline was measured. Analysis with one-way ANOVA indicated a statistically significant difference between the groups ($F_2,63=61.07$, P < 0.001). Further analysis with Tukey's pair-wise comparison procedure to control for multiple testing revealed that the mean change (+/- SD) of group 2 (1.6 g/cm² +/-0.2) was significantly greater than that of group 1 (1.1 g/cm² +/- 0.2) and that of the controls (1.0 g/cm² +/- 0.2) with an overall alpha level of 0.05."

Specify the alpha level

"Sixty-six women with osteoporosis were alternately assigned to one of three treatment groups: Group 1 (n=22), group 2 (n=22), and controls (n=22). After 6 weeks, the change in bone mineral density from baseline was measured. Analysis with one-way ANOVA indicated a statistically significant difference between the groups ($F_2,63=61.07$, P < 0.001). Further analysis with Tukey's pair-wise comparison procedure to control for multiple testing revealed that the mean change (+/- SD) of group 2 (1.6 g/cm² +/-0.2) was significantly greater than that of group 1 (1.1 g/cm² +/- 0.2) and that of the controls (1.0 g/cm² +/- 0.2) with an overall alpha level of 0.05."

Specify the F statistic with degrees of freedom

"Sixty-six women with osteoporosis were alternately assigned to one of three treatment groups: Group 1 (n=22), group 2 (n=22), and controls (n=22). After 6 weeks, the change in bone mineral density from baseline was measured. Analysis with one-way ANOVA indicated a statistically significant difference between the groups ($F_2,63=61.07$, P < 0.001). Further analysis with Tukey's pair-wise comparison procedure to control for multiple testing revealed that the mean change (+/- SD) of group 2 (1.6 g/cm² +/-0.2) was significantly greater than that

of group 1 (1.1 g/cm² +/- 0.2) and that of the controls (1.0 g/cm² +/- 0.2) with an overall alpha level of 0.05."

Lang and Secic, How to Report Statistics in Medicine, p110.

State the p-value

"Sixty-six women with osteoporosis were alternately assigned to one of three treatment groups: Group 1 (n=22), group 2 (n=22), and controls (n=22). After 6 weeks, the change in bone mineral density from baseline was measured. Analysis with one-way ANOVA indicated a statistically significant difference between the groups ($F_2,63=61.07$, P < 0.001). Further analysis with Tukey's pair-wise comparison procedure to control for multiple testing revealed that the mean change (+/- SD) of group 2 (1.6 g/cm² +/-0.2) was significantly greater than that of group 1 (1.1 g/cm² +/- 0.2) and that of the controls (1.0 g/cm² +/- 0.2) with an overall alpha level of 0.05."

Describe any post hoc analyses

"Sixty-six women with osteoporosis were alternately assigned to one of three treatment groups: Group 1 (n=22), group 2 (n=22), and controls (n=22). After 6 weeks, the change in bone mineral density from baseline was measured. Analysis with one-way ANOVA indicated a statistically significant difference between the groups ($F_2,63=61.07$, P < 0.001). Further analysis with Tukey's pair-wise comparison procedure to control for multiple testing revealed that the mean change (+/- SD) of group 2 (1.6 g/cm² +/-0.2) was significantly greater than that of group 1 (1.1 g/cm² +/- 0.2) and that of the controls (1.0 g/cm² +/- 0.2) with an overall alpha level of 0.05."

Yeast activation experiment

"To shorten the time it takes him tomake his favorite pizza, a student designed an experiment to test the effect of sugar and milk on the activation times for baking yeast. Specifically, he tested four different recipes and measured how many seconds it took for the same amount of dough to rise to the top of a bowl. He randomized the order of the recipes and replicated each treatment 4 times."

DASL, Activating baking yeast

Yeast analysis, descriptive statistics

Descriptive Statistics

Dependent Variable: ActivationTimes

Recipe	Mean	Std. Deviation	N
Α	486.25	79.622	4
В	196.25	67.004	4
С	656.00	74.099	4
D	183.75	52.182	4
Total	380.56	215.421	16

Yeast analysis, ANOVA table

Dependent Variable: ActivationTimes

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	638967.688ª	3	212989.229	44.739	<.001
Intercept	2317245.063	1	2317245.063	486.746	<.001
Recipe	638967.687	3	212989.229	44.739	<.001
Error	57128.250	12	4760.688		
Total	3013341.000	16			
Corrected Total	696095.938	15			

a. R Squared = .918 (Adjusted R Squared = .897)

Yeast analysis, parameter estimates

Dependent Variable: ActivationTimes

					95% Confidence Interval	
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	183.750	34.499	5.326	<.001	108.583	258.917
[Recipe=A]	302.500	48.789	6.200	<.001	196.198	408.802
[Recipe=B]	12.500	48.789	.256	.802	-93.802	118.802
[Recipe=C]	472.250	48.789	9.679	<.001	365.948	578.552
[Recipe=D]	0 ^a					

a. This parameter is set to zero because it is redundant.

Yeast analysis, Tukey post hoc, 1 of 2

Dependent Variable: Activation Times

Tukey HSD

		Mean			95% Confide	ence Interval
(I) Recipe	(J) Recipe	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Α	В	290.00 [*]	48.789	<.001	145.15	434.85
	С	-169.75 [*]	48.789	.021	-314.60	-24.90
	D	302.50 [*]	48.789	<.001	157.65	447.35
В	А	-290.00 [*]	48.789	<.001	-434.85	-145.15
	С	-459.75 [*]	48.789	<.001	-604.60	-314.90
	D	12.50	48.789	.994	-132.35	157.35
С	Α	169.75	48.789	.021	24.90	314.60
	В	459.75 [*]	48.789	<.001	314.90	604.60
	D	472.25 [*]	48.789	<.001	327.40	617.10
D	А	-302.50 [*]	48.789	<.001	-447.35	-157.65
	В	-12.50	48.789	.994	-157.35	132.35
	С	-472.25 [*]	48.789	<.001	-617.10	-327.40

Based on observed means.

The error term is Mean Square(Error) = 4760.688.

^{*.} The mean difference is significant at the .05 level.

Yeast analysis, Tukey post hoc, 2 of 2

ActivationTimes

Tukey HSDa,b

		Subset					
Recipe	N	1	2	3			
D	4	183.75					
В	4	196.25					
А	4		486.25				
С	4			656.00			
Sig.		.994	1.000	1.000			

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 4760.688.

- a. Uses Harmonic Mean Sample Size = 4.000.
- b. Alpha = .05.

Yeast analysis, interpretation, 1 of 3

- The average activation times were compared using oneway ANOVA with a Tukey post hoc follow-up test.
- All tests used a two-sided alpha level of 0.05.

Yeast analysis, interpretation, 2 of 3

• There were statistically significant differences (p < 0.001) in the activation times of the four recipes. Recipes D and B had similar average activation times which were significantly faster than Recipe A, which itself was significantly faster than recipe C.

Yeast analysis, interpretation, 3 of 3

 Recipes D and B were similar and had the fastest activation times. These differences were more than four minutes faster than the next best recipe which represents a practical as well as statistically significant result.

Recode into different variables dialog box

Old and new Values dialog box

General Linear Model | Univariate dialog box

Descriptives output

school_night_hours_sleep_recoded

race	Mean	Ν	Std. Deviation
American Indian or Alaska Native	6.6207	290	1.65990
Asian	6.5326	522	1.41689
Black or African American	6.6353	2830	1.63252
NA	6.8004	2575	1.48907
Native Hawaiian or Other Pacific Islander	6.6500	200	1.66172
White	6.8207	5918	1.39864
Total	6.7543	12335	1.48824

Boxplot

Analysis of variance table

Dependent Variable: school_night_hours_sleep_recoded

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	104.643 ^a	5	20.929	9.482	<.001
Intercept	142334.965	1	142334.965	64484.295	<.001
race	104.643	5	20.929	9.482	<.001
Error	27213.568	12329	2.207		
Total	590044.000	12335			
Corrected Total	27318.212	12334			

a. R Squared = .004 (Adjusted R Squared = .003)

Analysis of variance table with irrelevant rows removed

Dependent Variable: school_night_hours_sleep_recoded

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
race Between	104.643	5	20.929	9.482	<.001
Error Within	27213.568	12329	2.207		
Corrected Total	27318.212	12334			

a. R Squared = .004 (Adjusted R Squared = .003)

Parameter estimates

Dependent Variable: school_night_hours_sleep_recoded

					95% Confidence Interva		
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound	
Intercept	6.821	.019	353.174	<.001	6.783	6.859	
[race=American Indian or Alaska Native]	200	.089	-2.239	.025	375	025	
[race=Asian]	288	.068	-4.248	<.001	421	155	
[race=Black or African American]	185	.034	-5.460	<.001	252	119	
[race=NA]	020	.035	580	.562	089	.048	
[race=Native Hawaiian or Other Pacific Islander]	171	.107	-1.598	.110	380	.039	
[race=White]	0 ^a						

a. This parameter is set to zero because it is redundant.

Tukey post hoc test, 1 of 7

		Mean			95% Confide	ence Interval
(I) race	(J) race	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
American Indian or Alaska	Asian	.0881	.10881	.966	2220	.3983
Native	Black or African American	0146	.09160	1.000	2757	.2464
	NA	1797	.09202	.370	4420	.0826
	Native Hawaiian or Other Pacific Islander	0293	.13656	1.000	4185	.3599
	White	2000	.08935	.220	4547	.0546

Tukey post hoc test, 2 of 7

Asian	American Indian or Alaska Native	0881	.10881	.966	3983	.2220
	Black or African American	1028	.07077	.695	3045	.0989
	NA	2678 [*]	.07131	.002	4711	0646
	Native Hawaiian or Other Pacific Islander	1174	.12355	.933	4696	.2347
	White	2881 [*]	.06783	<.001	4815	0948

Tukey post hoc test, 3 of 7

Black or African American	American Indian or Alaska Native	.0146	.09160	1.000	2464	.2757
	Asian	.1028	.07077	.695	0989	.3045
	NA	1651	.04046	<.001	2804	0497
	Native Hawaiian or Other Pacific Islander	0147	.10870	1.000	3245	.2952
	White	1854 [*]	.03395	<.001	2822	0886

Tukey post hoc test, 4 of 7

NA	American Indian or Alaska Native	.1797	.09202	.370	0826	.4420
	Asian	.2678*	.07131	.002	.0646	.4711
	Black or African American	.1651*	.04046	<.001	.0497	.2804
	Native Hawaiian or Other Pacific Islander	.1504	.10906	.740	1604	.4612
	White	0203	.03507	.992	1203	.0796

Tukey post hoc test, 5 of 7

Native Hawaiian or Other Pacific Islander	American Indian or Alaska Native	.0293	.13656	1.000	3599	.4185
	Asian	.1174	.12355	.933	2347	.4696
	Black or African American	.0147	.10870	1.000	2952	.3245
	NA	1504	.10906	.740	4612	.1604
	White	1707	.10681	.600	4752	.1337

Tukey post hoc test, 6 of 7

White	American Indian or Alaska Native	.2000	.08935	.220	0546	.4547
	Asian	.2881*	.06783	<.001	.0948	.4815
	Black or African American	.1854*	.03395	<.001	.0886	.2822
	NA	.0203	.03507	.992	0796	.1203
	Native Hawaiian or Other Pacific Islander	.1707	.10681	.600	1337	.4752

Based on observed means.

The error term is Mean Square(Error) = 2.207.

^{*.} The mean difference is significant at the .05 level.

Tukey post hoc test, 7 of 7

school_night_hours_sleep_recoded

Tukey HSD^{a,b,c}

		Subset	
race	N	1	2
Asian	522	6.5326	
American Indian or Alaska Native	290	6.6207	6.6207
Black or African American	2830	6.6353	6.6353
Native Hawaiian or Other Pacific Islander	200	6.6500	6.6500
NA	2575		6.8004
White	5918		6.8207
Sig.		.791	.239

Means for groups in homogeneous subsets are displayed. Based on observed means.

The error term is Mean Square(Error) = 2.207.

- a. Uses Harmonic Mean Sample Size = 532.166.
- The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = .05.

Checking assumptions, boxplots

Checking assumptions, descriptive statistics

Descriptive Statistics

Dependent Variable: school_night_hours_sleep_recoded

grade	Mean	Std. Deviation	N
9	7.0084	1.56499	3204
10	6.8518	1.47786	2840
11	6.6531	1.44953	2917
12	6.5146	1.39146	3278
Total	6.7551	1.48449	12239

Residual analysis, 1 of 2

Residual analysis, 2 of 2

Analysis of school year, 1 of 4

Dependent Variable: school_night_hours_sleep_recoded

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	452.050 ^a	3	150.683	69.525	<.001
Intercept	556744.740	1	556744.740	256882.565	<.001
grade	452.050	3	150.683	69.525	<.001
Error	26517.066	12235	2.167		
Total	585456.000	12239			
Corrected Total	26969.116	12238			

a. R Squared = .017 (Adjusted R Squared = .017)

Analysis of school year, 2 of 4

Parameter Estimates

Dependent Variable: school_night_hours_sleep_recoded

					95% Confidence Interval	
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	6.515	.026	253.358	<.001	6.464	6.565
[grade=9]	.494	.037	13.501	<.001	.422	.565
[grade=10]	.337	.038	8.933	<.001	.263	.411
[grade=11]	.138	.037	3.694	<.001	.065	.212
[grade=12]	0 ^a					

a. This parameter is set to zero because it is redundant.

Analysis of school year, 3 of 4

Multiple Comparisons

Dependent Variable: school_night_hours_sleep_recoded

Tukey HSD

-		Mean			95% Confide	ence Interval
(I) grade	(J) grade	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
9	10	.1567*	.03794	<.001	.0592	.2542
	11	.3554*	.03768	<.001	.2586	.4522
	12	.4938*	.03657	<.001	.3998	.5878
10	9	1567 [*]	.03794	<.001	2542	0592
	11	.1987*	.03881	<.001	.0990	.2984
	12	.3371*	.03774	<.001	.2401	.4341
11	9	3554 [*]	.03768	<.001	4522	2586
	10	1987 [*]	.03881	<.001	2984	0990
	12	.1384*	.03747	.001	.0421	.2347
12	9	4938 [*]	.03657	<.001	5878	3998
	10	3371 [*]	.03774	<.001	4341	2401
	11	1384 [*]	.03747	.001	2347	0421

Based on observed means.

The error term is Mean Square(Error) = 2.167.

^{*.} The mean difference is significant at the .05 level.

Analysis of school year, 4 of 4

school_night_hours_sleep_recoded

Tukey HSDa,b,c

		Subset				
grade	Ν	1	2	3	4	
12	3278	6.5146				
11	2917		6.6531			
10	2840			6.8518		
9	3204				7.0084	
Sig.		1.000	1.000	1.000	1.000	

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 2.167.

- a. Uses Harmonic Mean Sample Size = 3048.538.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = .05.