Examen_Reposición

Álgebra Lineal

9/1/2025

Responder

1- Sean $S = \{(-1,2,1), (0,1,1), (-2,2,1)\}$ y $\mathcal{T} = \{(-1,1,0), (0,1,0), (0,1,1)\}$ dos conjuntos de vectores de \mathbb{R}^3 .

- a) Verificar que S es una base de \mathbb{R}^3 usando la definición de base de un espacio vectorial.
- b) Encontrar la matriz cambio de base de \mathcal{T} a S, puede calcular la matriz directamente o bien calculando $Q_{\mathcal{T} \to \mathcal{C}}$ y de $Q_{\mathcal{C} \to S}$.
- c) Si $(v)_S = (1, 0, -2)_S$ calcular las coordenadas del vector con respecto a \mathcal{T} .
- 2- Sea W el conjunto de vectores que son ortogonales a $\mathbf{w} = (-1, 2, 1)$.
 - a) Obtener una expresión del conjunto W.
 - b) Determinar si es un subespacio vectorial de \mathbb{R}^3 .
 - c) Calcular una base para W y su dimensión.
- 3- Construir una base ortonormal para \mathbb{R}^3 a partir del siguiente conjunto de vectores $\mathcal{A}=\{\mathtt{v}_1=(1,-1,1),\mathtt{v}_2=(-2,3,1),\mathtt{v}_3=(-3,5,1),\mathtt{v}_4=(1,2,-4)\}$. (!!) 'cuántos elementos debe tener una base de \mathbb{R}^3 .
- 4- Para qué valores de k, los siguientes vectores
 - i) son linealmente independientes,
 - ii) generan una recta.
 - iii) un plano.

$$A = \{(1, 2, 3), (3, k, k + 3), (2, 4, k)\}$$

- 5- Considere el subespacio W de \mathbb{R}^4 generado por los vectores $A = \{ \mathbf{v}_1 = (0,1,-3,2), \ \mathbf{v}_2 = (1,-1,0,1), \ \mathbf{v}_3 = (3,0,1,-1) \ \mathbf{v}_4 = (3,0,1,-1,13) \}.$
 - i) Es una base de \mathbb{R}^4 ?
 - ii) Extraer una base del subespacio generado y su dimensión
 - iii) Obtener la ecuación o conjunto de ecuaciones que describan al subespacio.
- 6- Deomstrar que el siguiente conjunto es un subespacio vectorial. Encontrar una base para el subespacio. Sea $V=M^{2,2}(R)$ y

$$W_1 = \left\{ A \in M^{2,2}(\mathbb{R}) : A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \right\}, \quad W_2 = \left\{ A \in M^{2,2}(\mathbb{R}) : A = \begin{pmatrix} 0 & -a \\ a & c \end{pmatrix} \right\}$$

Demostrar que W_1 y W_2 son subespacios de V y encontrar las dimensiones de W_1 , W_2 y $W1 \cap W2$.