ECON 204C - Macroeconomic Theory Aiyagari Model

Woongchan Jeon

University of California, Santa Barbara

Week 3 - April 17, 2020

Learning Objective

- o Aiyagari Model (1994)
 - * Heterogeneous agents
 - * A single exogenous vehicle for borrowing and lending
 - * Limits on amounts individual agents may borrow
 - * Stationary Rational Expectations Equilibrium
 - Computation using Discrete State Dynamic Programming

Aiyagari Model - Household's Problem

$$v(a, z; \Omega) = \max_{c \ge 0, \ a' \in \mathcal{A}} \left\{ u(c) + \beta \mathbb{E}_z \left[v(a', z'; \Omega) \right] \right\}$$

$$s.t. \quad c + a' \le wz + \left[1 + r \right] a$$

$$c \ge 0$$

$$a' \ge -\phi$$

The exogenous process $\{z_t\}$ follows a finite state Markov chain with given stochastic matrix P. Let a'(a,z) be an associated policy function for saving, then price to capital stock is given by

$$K^{s}(r) = \sum_{(a,z)\in\mathcal{A}\times\mathcal{Z}} \Omega(a,z)a'(a,z)$$

Aiyagari Model - Firm's Problem

$$\max_{K,\ N}\ \left\{AK^{\alpha}N^{1-\alpha}-(r+\delta)K-wN\right\}$$

$$A\alpha\left(\frac{N^D}{K^D}\right)^{1-\alpha}-(r+\delta)=0 \tag{FOC w.r.t. K}$$

$$A(1-\alpha)\left(\frac{K^D}{N^D}\right)^{\alpha}-w=0 \tag{FOC w.r.t. N}$$

Equilibrium wage associated with a given interest rate is given by

$$w(r) = A(1 - \alpha) \left\{ \left(\frac{A\alpha}{r + \delta} \right) \right\}^{\frac{\alpha}{1 - \alpha}}$$

Inverse demand for capital is given by

$$r(K^D) = A\alpha \left(\frac{N^D}{K^D}\right)^{1-\alpha} - \delta$$

Aiyagari Model - Stationary Equilibrium

Definition A stationary recursive competitive equilibrium is a value function $v: \mathcal{A} \times \mathcal{Z} \to \mathbb{R}$, policy function for the household $c: \mathcal{A} \times \mathcal{Z} \to \mathbb{R}$ and $a': \mathcal{A} \times \mathcal{Z} \to \mathbb{R}$, firm's choices N^* and K^* , prices r and w, and stationary measure Ω^* such that

- 1. Given (r, w), c and a' solve the household's problem and v is the associated value function.
- 2. Given (r, w), the firm chooses optimally its capital K and its labor N.
- 3. Capital and labor markets clear:

$$\sum_{(a,z)\in A\times Z} a'(a,z)\Omega^*(a,z) = K^* \qquad \sum_{(a,z)\in A\times Z} z\Omega^*(a,z) = N^*$$

4. Ω^* is consistent with a'(a,z).

Discrete State Dynamic Programming

$$v(s) = \max_{d \in D(s)} \left\{ r(s, d) + \beta \sum_{s' \in S} v(s') Q(s, d, s') \right\}$$

- \circ s is the state variable.
- \circ d is the action.
- \circ β is a discount factor.
- $\circ r(s,d)$ is a current reward when the state is s and the action chosen is d.
- $\circ\ Q(s,d,s')$ is a transitional probability.

Aiyagari Model - Discrete State Dynamic Programming

$$\mathcal{Z}=\{.1,1\}$$
 $\mathcal{A}=\{1e-10,\cdots,20\}$ where $n(\mathcal{A})=200$
 $P=\begin{pmatrix}.9&.1\\.1&.9\end{pmatrix}$
 $u(c)=\ln(c)$
 $\beta=.96$
 $\alpha=.33$
 $\delta=.05$
 $A=1$

Aiyagari Model - Discrete State Dynamic Programming

$$r(s,d)=r(a,z,a')=\ln c=\left\{\begin{array}{ll} \ln \left(wz+[1+r]a-a'\right) & \text{if} \quad c>0\\ \\ -\infty & \text{otherwise} \end{array}\right.$$

$$Q(s,d,s')=Q(a,z,a',z')=P_{zz'}$$

Trick on indexing

$$S = \{(a_{i_{\mathcal{A}}}, z_{i_{\mathcal{Z}}})\} = \{\underbrace{(a_{0}, z_{0})}_{i_{S} = 0}, \underbrace{(a_{0}, z_{1})}_{i_{S} = 1}, \underbrace{(a_{1}, z_{0})}_{i_{S} = 2}, \underbrace{(a_{1}, z_{1})}_{i_{S} = 3}, \cdots, \underbrace{(a_{199}, z_{0})}_{i_{S} = 398}, \underbrace{(a_{199}, z_{1})}_{i_{S} = 399}\}$$

$$i_{S} = i_{\mathcal{A}} \times 2 + i_{\mathcal{Z}}$$

Aiyagari Model - Discrete State Dynamic Programming

$$\begin{split} K^S &= \sum_{(a,z) \in \mathcal{A} \times \mathcal{Z}} a'(a,z) \Omega^*(a,z) = \sum_{a \in \mathcal{A}} a \times Pr(a) \quad \text{ where } \quad Pr(a) = \sum_{z \in \mathcal{Z}} \Omega^*(a,z) \\ N^S &= \sum_{(a,z) \in \mathcal{A} \times \mathcal{Z}} z \Omega^*(a,z) = \sum_{z \in \mathcal{Z}} z \times Pr(z) \quad \text{ where } \quad Pr(z) = \sum_{a \in \mathcal{A}} \Omega^*(a,z) \end{split}$$

Reference

Aiyagari, S. R. (1994). Uninsured idiosyncratic risk and aggregate saving. The Quarterly Journal of Economics, 109(3), 659-684.

Sargent, T. S. & Stachurski, J. (2020, March 30). The Aiyagari Model. Retrieved from https://python-intro.quantecon.org/aiyagari.html