Networking: A Broad Overview

Linux Session 12

Mohannad Mahmoud

01

What even is Networking?

Introduction to networking basics

Point-to-Point Topology

Broadcast Topology

MAC Address

Collision!

CSMA/CD

Carrier-Sense Multiple Access with Collision Detection

What is a Switch?

Network Topologies

LAN (Local Area Network)

How do we know from electricity if the coming bit is a 0 or a 1?

Data Encoding Techniques

Encoding NRZ NRZI Manchester 4B/5B 8B/10B PAM

QAM

Key idea
High/low voltage per bit
Flip voltage on 1
Transition in middle of bit
Map 4 bits to 5 bits
Map 8 bits to 10 bits
Multi-level voltage signaling
Amplitude + Phase modulation

Where used
Early serial comms
USB 1.0, older Ethernet
10BASE-T Ethernet
100BASE-TX Ethernet
Gigabit Ethernet, Fibre Channel
100G Ethernet, 400G Ethernet
Wi-Fi, cable internet

Data Encoding Techniques

Ethernet

Ethernet Encoding

But what does those 1s and 0s really mean? They're just 1s and 0s in the end..

Ethernet Frame

Wireless communication

Using QAM

02

Expanding Our Network

Models, Routers and the Internet

Access Network Types

Wired

DSL Ethernet Fiber (FTTH)

Wireless

Wi-Fi Cellular When trying to scale our network, we run into two main problems...

Problem 1: No Standards

Imagine everyone doing their own LAN, using their own protocols and data transmission media standards.

Then imagine trying to connect them together.

Problem 1: No Standards

Solution:

Agree on a universal standard to allow communication on a bigger scale.

These standards is what enables you to connect to Wi-Fi or cellular anywhere with ease.

Problem 2: Circuit Switching Is Inefficient

Our current setup, which uses a dedicated line for every connection, is inefficient at a large scale.

Networking Models

TCP/IP vs OSI

Why do we have two different models?

How are they related, and how are they different?

TCP/IP Model

The model is based on what was practically needed and built.

TCP/IP vs OSI

OSI Model	TCP/IP Model
Application Layer	Application layer
Presentation Layer	
Session Layer	
Transport Layer	Transport Layer
Network Layer	Internet Layer
Data link layer	Network Access
Physical layer	

TCP/IP Model

Layer	Some Protocols
Application Layer	DNS, HTTP, FTP, SMTP, DHCP
Transport Layer	TCP, UDP
Internet Layer	IP, ICPM, ARP
Network Access Layer	Ethernet

For a WAN, switches are no longer enough. We need other devices called **Routers**.

What is a Router?

Switching Techniques

WAN (Wide Area Networks)

and here we go (this is the **internet**)

The Internet

A Network of Networks

How could a packet get from one point to another through this whole network?!

ISP (Internet Service Provider)

IP (Internet Protocol)

IP Header Format

IP vs MAC Addresses

A helpful analogy:

MAC: Your SSN

IP = your home address

ARP

Address Resolution Protocol

Maps IP to Mac address

Hardware Type		Protocol Type
Hardware Length	Protocol Length	Operation Request 1, Reply 2
	Sender Hardv	ware Address
	Sender Proto	ocol Address
	Target Hardw	vare Address
	Target Proto	ocol Address

ARP Packet Format

IP addresses are difficult to remember, so using them to connect to servers is inconvenient.

This is why we often use **domain names** instead.

URL Structure

DNS Lookup

Transport Layer Protocols

TCP

Transmission Control Protocol

Connection-oriented protocol

TCP

Closing TCP connection

UDP

Connectionless protocol

USER DATAGRAM PROTOCOL (UDP)

TCP vs UDP

Streaming a live sports game? **UDP**

Downloading a document? **TCP**

Having an online meeting? **UDP**

Playing an online game? **UDP**

Sending a message to a friend? **TCP**

TCP vs UDP

Comparison maybe, table or bullet points

We could have a quiz about different applications and what protocol could be suited for each

Eg streaming a live sports game, uploading a file online, etc

Let's Recap

Switch vs Router?

TCP/IP and OSI model

IP Protocol?

MAC vs IP address?

TCP vs UDP?

Congratulations

You now understand networking a little bit better, hopefully!

Find the quiz link in the material repo.

Thank You!

