Exercice 1 - Parallélépipède percé*

B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, k') de rayon R et de hauteur H et de masse m est donnée en

son centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

La matrice d'inertie d'un parallélépipède rectangle de cotés a, b et c et de masse m est donnée en son

de cotés
$$a$$
, b et c et de masse m est donnée en son centre d'inertie par $I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)}$ avec $A = m \frac{b^2 + c^2}{12}$, $B = m \frac{a^2 + c^2}{12}$, $C = m \frac{a^2 + b^2}{12}$. Soit la pièce suivante.

$$A = m \frac{b^2 + c^2}{12}$$
, $B = m \frac{a^2 + c^2}{12}$, $C = m \frac{a^2 + b^2}{12}$. Soit la pièce suivante.

On pose
$$\overrightarrow{OA} = \frac{a}{3} \overrightarrow{x} + \frac{c}{2} \overrightarrow{z}$$
.

On pose $\overrightarrow{OA} = \frac{a}{3}\overrightarrow{x} + \frac{c}{2}\overrightarrow{z}$. **Question 1** Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Corrigé voir 11.

Exercice 2 - Mouvement RT *

C2-08

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus :

- Soit le mécanisme suivaint. On a $AB \underbrace{R_1(i_1)}_{G_1} \cdot \underbrace{L_1(i_1)}_{G_1}$, on G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\widehat{AG_1} = L_1(i_1)$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{B}_1}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 *Exprimer le torseur dynamique* $\{\mathcal{D}(1/0)\}$ en A.

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 2.

Exercice 3 - Cylindre percé*

B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \overrightarrow{k}) de rayon R et de hauteur H et de masse m est donnée en

son centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

Soit la pièce suivante.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G puis en O.

Corrigé voir 9.

Exercice 4 - Mouvement RT *

C2-08

C2-09

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{B}_1}$;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}\$ en B.

Question 2 Déterminer $\overrightarrow{R_d(1+2/0)}$. $\overrightarrow{i_0}$

Indications:

1.
$$\{\mathscr{D}(2/0)\} = \left\{ \begin{array}{l} \ddot{\lambda}(t)\overrightarrow{i_0} + R\left(\ddot{\theta}\overrightarrow{j_2} - \dot{\theta}^2\overrightarrow{i_2}\right) \\ C_1\ddot{\theta}\overrightarrow{k_1} + R\left(-\sin\theta\ddot{\lambda}(t)\overrightarrow{k_0} + R\ddot{\theta}\overrightarrow{k_2}\right) \end{array} \right\}_B$$

2. $\overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0} = m_1\ddot{\lambda}(t) + m_2(\ddot{\lambda}(t) - R\left(\ddot{\theta}\sin\theta(t) + \dot{\theta}^2\cos\theta\right))$.

Corrigé voir 4.

Exercice 5 - Parallélépipède percé*

B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \overline{k}) de rayon R et de hauteur H et de masse m est donnée en

son centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

La matrice d'inertie d'un parallélépipède rectangle de cotés a, b et c et de masse m est donnée en son

centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})}$$
 avec $A = m \frac{b^2 + c^2}{12}, B = m \frac{a^2 + c^2}{12}, C = m \frac{a^2 + b^2}{12}.$

$$A = m \frac{b^2 + c^2}{12}$$
, $B = m \frac{a^2 + c^2}{12}$, $C = m \frac{a^2 + b^2}{12}$.
Soit la pièce suivante.

On pose
$$\overrightarrow{OA} = \frac{a}{3} \overrightarrow{x} + \frac{c}{2} \overrightarrow{z}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Corrigé voir 11.

Exercice 6 - Mouvement RR 3D **

C2-08

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$. De

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$
- G_2 désigne le centre d'inertie de 2 tel que $\overrightarrow{BG_2}$ = $\ell \overrightarrow{i_2}$, on note m_2 la masse de **2** et $I_{G_2}(2) =$

Question 1 *Exprimer le torseur dynamique* $\{\mathcal{D}(1/0)\}$

Question 2 Déterminer $\delta(A, 1+2/0) \cdot \vec{k_0}$

Corrigé voir 6.

Exercice 7 - Parallélépipède percéx

B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \overrightarrow{k}) de rayon R et de hauteur H et de masse m est donnée en

son centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

La matrice d'inertie d'un parallélépipède rectangle de cotés $a,\ b$ et c et de masse m est donnée en son

centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec

$$A = m \frac{b^2 + c^2}{12}, B = m \frac{a^2 + c^2}{12}, C = m \frac{a^2 + b^2}{12}.$$

Soit la pièce suivante.

On pose
$$\overrightarrow{OA} = \frac{a}{3} \overrightarrow{x} + \frac{c}{2} \overrightarrow{z}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Corrigé voir 11.

Exercice 8 - Mouvement RR 3D **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = H \overrightarrow{j_1}$, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{B}_1}$;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}$ en B

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{j_0}$

Corrigé voir 10.

Exercice 9 - Cylindre percé*

B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \vec{k}) de rayon R et de hauteur H et de masse m est donnée en

rayon
$$R$$
 et de hauteur H et de masse m est donnée en son centre d'inertie par $I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}}$ avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

Soit la pièce suivante.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G puis en O.

Corrigé voir 9.

Exercice 10 - Mouvement RT - RSG **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} =$ $\lambda(t)$ $\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1}$ = $-\ell \overrightarrow{i_1}$, on note m_1 la masse de 1 et $I_{G_1}(1) =$
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{A_2}$

Question 1 Déterminer $\overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}$ **Question 2** Déterminer $\overrightarrow{\delta(I, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 10.

Exercice 11 - Parallélépipède percé*

B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \overrightarrow{k}) de rayon R et de hauteur H et de masse m est donnée en

son centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\overrightarrow{(i,j,k)}}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right) \text{ et } C = m\frac{R^2}{2}.$$

La matrice d'inertie d'un parallélépipède rectangle de cotés a, b et c et de masse m est donnée en son

de cotés
$$a$$
, b et c et de masse m est donnée en son centre d'inertie par $I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})}$ avec $A = m \frac{b^2 + c^2}{12}$, $B = m \frac{a^2 + c^2}{12}$, $C = m \frac{a^2 + b^2}{12}$. Soit la pièce suivante.

$$A = m \frac{b^2 + c^2}{12}$$
, $B = m \frac{a^2 + c^2}{12}$, $C = m \frac{a^2 + b^2}{12}$.
Soit la pièce suivante.

On pose
$$\overrightarrow{OA} = \frac{a}{3}\overrightarrow{x} + \frac{c}{2}\overrightarrow{z}$$

On pose $\overrightarrow{OA} = \frac{a}{3}\overrightarrow{x} + \frac{c}{2}\overrightarrow{z}$. **Question 1** Déterminer la position du centre d'inertie

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Corrigé voir 11.

2