

Final Review

MATH/STAT 394: Probability I Summer 2021 A Term

Introduction to Probability
D. Anderson, T.Seppäläinen, B. Valkó
§ 3, 4

Aaron Osgood-Zimmerman

Department of Statistics

Logistics

Course evaluation

- Course evaluation avail. at https://uw.iasystem.org/survey/238293
- Please make any constructive comments for future courses

Outline

Review

Exercises

Random variables

Random variable A r.v. is a function from a prob. space $(\Omega, \mathcal{F}, \mathbb{P})$ to \mathbb{R}^1

Discrete random variable

- A r.v X is discrete if it takes values in a finite/countable set X
 s.t. ∑_{k∈X} P(X = k) = 1
- A discrete r.v. is entirely characterized by its p.m.f.

$$p(k) = \mathbb{P}(X = k)$$
 for any $k \in \mathcal{X}$

Continuous random variable

• A r.v. is **continuous** if there exists a function f, called the **p.d.f.** of X, s.t.

$$\mathbb{P}(X \in [a, b]) = \int_a^b f(x) dx \quad \text{for any } -\infty \le a \le b \le +\infty$$

• A function f is a valid p.d.f.² if

$$\forall x \in \mathbb{R} \quad f(x) \geq 0, \qquad \int_{-\infty}^{+\infty} f(x) dx = 1$$

 $^{^{1}}$ Precisely, the pre-image of any Borel set must belong to ${\cal F}$

²Recall that changing the p.d.f. on a finite set of points does not change the computation of $\mathbb{P}(X \in [a,b])$, hence one r.v. can have multiple p.d.f. (up to a finite set of points)

Cumulative Distribution Function

c.d.f. defined for any r.v. X as

$$F(t) = \mathbb{P}(X \leq t)$$

From p.m.f./p.d.f. to c.d.f.

$$F(t) = \sum_{\substack{k \in \mathcal{X} \\ k \le t}} p(k) \qquad \text{(for discrete r.v.)}$$

$$F(t) = \int_{-\infty}^{t} f(x) dx \qquad \text{(for continuous r.v.)}$$

From c.d.f. to p.m.f./p.d.f.

$$p(k) = F(k+) - F(k-)$$
 (for discrete r.v.)
 $f(x) = F'(x)$ (for continuous r.v.)

Cumulative Distribution Function

Charac. of random variables by the c.d.f.

- $F(t) = \mathbb{P}(X \le t)$ is
 - non-decreasing
 - $F(-\infty) = 0, F(+\infty) = 1$
 - right continuous
 - $F(t-) = \mathbb{P}(X < t)$
- If F is piece-wise constant
 - \rightarrow it is the c.d.f. of a **discrete r.v.**
- If F is continuous
 - \rightarrow it is the c.d.f. of a **continuous r.v.**
- If F is discontinuous and not piece-wise constant
 - \rightarrow neither discrete nor continuous r.v.

Yet, we can compute prob. using the c.d.f.

Expectation

Expectation

Definition

$$\mathbb{E}[X] = \sum_{k \in \mathcal{X}} kp(k)$$
 (for discrete r.v.)
$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} xf(x)dx$$
 (for continuous r.v.)

Expectation of a function of r.v.

$$\mathbb{E}[g(X)] = \sum_{k \in \mathcal{X}} g(k)p(k) \qquad \text{(for discrete r.v.)}$$

$$\mathbb{E}[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx \qquad \text{(for continuous r.v.)}$$

- An expectation can be finite, infinite (positive or negative) or undefined
- For 1_A the indicator r.v. of an event A,

$$\mathbb{E}[1_A] = \mathbb{P}(A)$$

Linearity of the expectation

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b, \qquad \mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

for any r.v. X, Y and $a, b \in \mathbb{R}$

Median Quantiles

Median Quantiles

• The median of a r.v. X is a value m s.t.

$$\mathbb{P}(X \ge m) \ge 1/2$$
 $\mathbb{P}(X \le m) \ge 1/2$

Note that for a continuous r.v., the median is unique and defined by

$$\mathbb{P}(X \geq m) = \mathbb{P}(X \leq m) = 1/2$$

• The **pth quantile** of a r.v. X is a value x_p s.t.

$$\mathbb{P}(X \leq x_p) \geq p$$
 $\mathbb{P}(X \geq x_p) \geq 1 - p$

Note that for a continuous r.v., the pth quantile is unique and defined by

$$\mathbb{P}(X \le x_p) = p$$
 $\mathbb{P}(X \ge x_p) = 1 - p$

Variance

Variance

Variance

$$Var(X) = \mathbb{E}\left((X - \mathbb{E}[X])^2\right) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

- Standard deviation $\sqrt{Var(X)}$
- For $a, b \in \mathbb{R}$

$$Var(aX + b) = a^2 Var(X)$$

• $Var(X) = 0 \iff \mathbb{P}(X = a) = 1 \text{ for some } a \in \mathbb{R}$

Classical discrete random variables

Classical r.v.

• $X \sim \text{Ber}(p)$ for $p \in [0, 1]$, if

$$P(X = 1) = p$$
 $P(X = 0) = 1 - p$

so
$$\mathbb{E}[X] = p$$
, $Var(X) = p(1-p)$

• $X \sim \text{Bin}(n, p)$ for $n \in \mathbb{N} \setminus \{0\}$, $p \in [0, 1]$, if

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad \text{for } k=0,1,\ldots,n$$

so
$$\mathbb{E}[X] = np$$
, $Var(X) = np(1-p)$

• $X \sim \text{Geom}(p)$ for $p \in [0, 1]$, if

$$\mathbb{P}(X = k) = (1 - p)^{k-1}p$$
 for $k = 0, 1, ...$

so
$$\mathbb{E}[X] = 1/p$$
, $Var(X) = (1-p)/p^2$

Classical discrete r.v.

• $X \sim \mathsf{Poisson}(\lambda)$ for $\lambda > 0$ if

$$\mathbb{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!} \quad \text{for } k = 0, 1, \dots$$

so
$$\mathbb{E}[X] = \lambda$$
, $Var(X) = \lambda$

• $X \sim \text{Hypergeom}(N, N_A, n)$,

$$\mathbb{P}(X=k) = \frac{\binom{N_A}{k}\binom{N-N_A}{n-k}}{\binom{N}{n}},$$

Classical continuous r.v.

• $X \sim \text{Unif}([a, b])$ for a < b, if it has a p.d.f.

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a, b] \\ 0 & \text{if } x \notin [a, b] \end{cases}$$
so
$$\mathbb{E}[X] = \frac{a+b}{2} \quad \text{Var}(X) = \frac{(b-a)^2}{12}$$

• $X \sim \text{Exp}(\lambda)$ for $\lambda > 0$, if it has a p.d.f.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$
so $\mathbb{E}[X] = 1/\lambda \quad \text{Var}(X) = 1/\lambda^2$

• $X \sim \mathcal{N}(\mu, \sigma^2)$ for $\mu \in \mathbb{R}, \sigma^2 > 0$, if it has a p.d.f.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)} \quad \text{for } x \in \mathbb{R}$$
 so $\mathbb{E}[X] = \mu \quad \text{Var}(X) = \sigma^2$

 \bullet For $Z \sim \mathcal{N}(0,1)$ the values of the c.d.f. can be found in a table

Distribution of a function of a r.v.

Distribution of a function of a r.v.

• If *X* is discrete or *g* is discrete,

$$\mathbb{P}(g(X) = k) = \mathbb{P}(X \in g^{-1}(\{k\}))$$

- If X and g are continuous, (e.g. g strictly increasing, invertible)
 - 1. Compute $\mathbb{P}(g(X) \le t) = \mathbb{P}(X \le g^{-1}(t)) = F_X(g^{-1}(t))$
 - 2. Deduce the p.d.f. of Y = g(X) as

$$f_Y(y) = (g^{-1}(t))' f_X(g^{-1}(y))$$

If g is not invertible, apply the above method on each interval on which g
is invertible to compute the c.d.f. and deduce the p.d.f.

Law of large numbers

Law of Large Numbers

• For X_1, \ldots, X_n i.i.d. r.v. with finite mean and variance, the **empirical mean** is

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• The empirical mean "converges" to the true expectation $\mu = \mathbb{E}[X_i]$ as: for any $\varepsilon > 0$,

$$\lim_{n\to+\infty}\mathbb{P}(|\bar{X}_n-\mu|\leq\varepsilon)=1$$

Normal Approximation

Normal approximation to Binomial

• If $S_n \sim \text{Bin}(n, p)$, consider the standardization of S_n , i.e.,

$$\frac{S_n - \mathbb{E}[S_n]}{\sqrt{\mathsf{Var}(S_n)}} = \frac{S_n - np}{\sqrt{np(1-p)}}$$

• Then the standardized S_n tends to be a standard normal dist. as $n \to +\infty$, i.e.

$$\lim_{n \to +\infty} \mathbb{P}\left(a \le \frac{S_n - np}{\sqrt{np(1-p)}} \le b\right) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

this is called the central limit theorem

• Practically for np(1-p) > 10 (i.e. n large, p not too close to 0 or 1)

$$\mathbb{P}\left(a \leq \frac{S_n - np}{\sqrt{np(1-p)}} \leq b\right) \approx \Phi(b) - \Phi(a)$$

with Φ the c.d.f. of $Z\mathcal{N}(0,1)$

Normal Approximation

Continuity correction

• When approximating for k_1, k_2 integers (or $k_1 = -\infty, k_2 = +\infty$),

$$\mathbb{P}(k_1 \leq S_n \leq k_2)$$

consider approximating

$$\mathbb{P}(k_1 - 1/2 \le S_n \le k_2 + 1/2)$$

This gives a better approximation when using the normal approx.

Confidence interval

• For $X \sim \text{Ber}(p)$ and $\hat{p} = S_n/n$ an estimate of p, we saw that

$$\mathbb{P}(|p-\hat{p}| \le \varepsilon) \ge 2\Phi(2\varepsilon\sqrt{n}) - 1$$

• A confidence interval of level e.g. 95% consists of finding ε s.t.

$$\mathbb{P}(|p-\hat{p}| \leq \varepsilon) \geq 95\%$$

- To do that, compute $z_{95\%}$ s.t. $2\Phi(z_{95\%}) 1 = 95\%$ (here $z_{95\%} = 1.96$)
- Then an $\varepsilon > 0$ s.t.

$$2\varepsilon\sqrt{n} \geq z_{95\%}$$

gives you a confidence interval!

Poisson Approximation

Poisson Approximation

• For $X \sim \text{Bin}(n, p)$ and $Y \sim \text{Poisson}(np)$, for any $A \subset \{0, 1, 2, ...\}$,

$$|\mathbb{P}(X \in A) - \mathbb{P}(Y \in A)| \le np^2$$

ullet So for $np^2 \ll 1$, the Poisson dist. is a better approximation of the binomial

Outline

Review

Exercises

p.d.f., c.d.f.

Exercise

Let X be a continuous random variable with density

$$f(x) = \begin{cases} cx^{-4} & \text{when } x \ge 1, \\ 0, & \text{elsewhere,} \end{cases}$$

where c is a constant.

- 1. What must be the value of c?
- 2. Find $\mathbb{P}(0.5 < X < 2)$.
- 3. Find the cumulative distribution function F_X .

Expectation, Variance, Quantiles

Exercise

Let X be a continuous random variable with density

$$f(x) = \begin{cases} 3e^{-3x} & \text{when } x > 0, \\ 0, & \text{elsewhere.} \end{cases}$$

- 1. Verify that f is a density function.
- 2. Find $\mathbb{E}[3X + 2]$.
- 3. Find Var(2X + 8).
- 4. Find the 95% quantile of X.

Functions of r.v.

Exercise

Suppose X is $Exp(\lambda)$.

- 1. Find the probability mass function of Y = |X|.
- 2. Find the probability density function of $Z = \log X$.

Approx. of binomials

Exercise

Every day John performs the following experiment. He flips a fair coin repeatedly until he sees a T and counts the number of flips needed.

- Approximate the probability that in a year (365 days) there are at least 3 days when he needed more than 10 coin flips. Argue why this approximation is appropriate.
- Approximate the probability that in a year (365 days) there are more than 50 days when he needed exactly 3 coin flips. Argue why this approximation is appropriate.