基于多尺度超像素融合网络的脑CT图像 分类方法

冀俊忠, 张梦隆, 宋晓, 张晓丹*

北京工业大学信息学部计算机学院,北京 100124 * Email: zhangxiaodan@bjut.edu.cn(张晓丹)

简介

- 近年来,基于深度学习的医学图像分类方法已成为一个研究热 点。其中,脑CT图像缺少亮度、颜色、纹理等易于识别的自 然视觉特征,且病灶形态位置多变,而被广泛用于图像特征提 取的卷积神经网络无法有效地挖掘病灶特征,从而影响了分类 性能。
- 本文针对脑CT图像的视觉特性,提出了一种基于多尺度超像 素融合网络的脑CT图像分类方法。该方法基于多尺度超像素 图,从图像融合和特征融合两个层面辅助卷积神经网络提取更 具有表达性的分类特征。

实验结果

	表1 脑CT图像、超值						
	Method	ACC %	SEN %	SPE %	PPV %	NPV %	F%
脑CT图 像	Baseline	90.61	56.82	96.99	78.16	92.24	65
	SH5	86.25	37.14	95.54	61.17	88.93	46.
超像素	SH10	89.14	59.88	94.67	67.98	92.58	63
冬	SH15	89.74	61.79	95.03	70.14	92.93	65
	SH20	89.83	62.04	95.09	70.49	92.98	66
	SH5,10	87.87	46.07	95.78	67.35	90.38	54
	SH10,15	88.26	48.06	95.86	68.68	90.71	56
多尺度	SH15,20	88.19	50.77	95.08	65.53	91.29	57
超像素图	SH5,10,15	89.06	62.61	94.06	66.58	93.01	64
	SH10,15,20	89.07	54.59	95.59	70.06	91.76	61
	SH5,10,15,20	88.06	42.18	96.73	70.93	89.85	52
	Add5,10	85.66	30.44	95.83	57.37	88.21	39
	Add10,15	86.39	47.19	93.61	57.63	90.59	51
	Add15,20	88.41	59.52	93.73	63.64	92.63	61
	Add5,10,15	88.70	54.59	95.59	70.06	90.31	55
	Add10,15,20	90.54	71.80	94.09	69.66	94.64	70
融合图	Add5,10,15,20	90.65	63.03	95.87	74.27	93.20	68
像	Fusion5,10	89.59	67.18	93.72	66.33	93.94	66
	Fusion10,15	89.84	66.33	94.17	67.71	93.82	67
	Fusion15,20	89.70	69.64	93.39	66.00	94.35	67
	Fusion5,10,15	91.76	72.71	95.34	74.94	94.84	73
	Fusion10,15,20	91.82	72.79	95.42	75.02	94.88	73
	Fusion5,10,15,	91.52	68.16	95.93	76.02	94.09	71

图5多尺度超像素可视化图

表2基于多尺度超像素融合网络的脑CT图像分类结果											
Method	图像 融合	特征 编码器	特征 融合	SH Scale	ACC %	SEN %	SPE %	PPV %	NPV %	F%	Para (10 ⁷)
Baseline	0	0	0	_	90.61	56.82	96.99	78.16	92.24	65.8	2.129
$MSFN_{001}$	0	0	1	_	91.57	59.64	97.61	82.49	92.75	69.2	2.272
MCEN	0	0 1	1	5,10,15	91.36	60.88	97.12	80.00	92.92	69.1	2 272
MSFN ₀₁₁	0	1	1	10,15,20	91.61	59.55	97.67	82.85	92.74	69.3	2.272
MCEN	MCEN	1 0	1	5,10,15	91.16	64.35	96.23	76.35	93.45	69.8	2 272
${ m MSFN}_{ m 101}$	1	0	1	10,15,20	91.90	68.07	96.40	78.16	94.11	72.8	2.272
MSFN ₁₀₀ 1	1 0	0 0	5,10,15	91.40	73.04	94.89	73.10	94.88	73.1	2.129	
	1	0	0	10,15,20	91.82	72.79	95.42	75.02	94.88	73.9	2.129
MSFN	1	1	1	5,10,15	92.54	73.71	96.48	79.40	94.75	75.4	2.272
	1		1	10,15,20	92.66	74.44	96.11	78.33	95.21	76.3	

表3 和其他方法的对比实验结果						
Method	ACC %	F%				
Baseline(ResNet-34)	90.61	65.63				
ResNet-101	89.38	49.48				
Inception v4	91.41	72.89				
Inception-Resnet-v2	90.52	67.69				
Residual Attn	90.52	65.10				
SENet	86.17	32.79				
MSFN	92.66	76.30				

标签信息包含的14种脑部疾病分类: 颅内出血 (Intracranial Hemorrhage) 、脑实质出血 (Intraparenchymal Hemorrhage) 、脑室出血 (Intraventricular Hemorrhage)、硬膜下出血 (Subdural Hemorrhage)、硬膜外出血(Extradural Hemorrhage)、蛛网膜下出血(Subarachnoid Hemorrhage, SAH)、左侧脑出血(Left)、右侧脑 出血(Right)、慢性出血(Chronic Bleed)、骨折 (Fracture)、颅骨骨折(Calvarial Fracture)、其他 骨折(Other Fracture)、中线偏移(Midline Shift)、 质量效应(Mass Effect)。

结论

本文提出了一种基于多尺度超像素融合网络的脑CT疾病诊断分类方法。 该方法首先使用基于多尺度超像素的脑CT图像融合模型实现脑CT图像数 据增强,得到融合图像;然后利用多尺度超像素特征编码模型提取区域和 边界信息,得到低层次特征;最后利用残差神经网络提取融合图像的高层 次特征,并通过多尺度超像素特征融合分类模型将其和低层次特征进行多 层融合,使用融合后特征进行脑CT图像分类任务来验证方法的有效性。

方法

- 超像素区域内的像素值相同,区域间的像素差异更加显著。对脑CT图 像进行超像素分割,相当于在超像素区域内进行平滑、在超像素区域 间进行锐化,能够抑制噪声并突出有效病灶区域。
- 但是,由于脑CT图像病灶区域的像素值、形状和位置有着极大的不确 定性,过低的分割尺度会导致欠分割,将病灶和周围脑组织划分为一 个超像素,不能准确分割病灶区域;过高的分割尺度不能有效清除图 像中的噪声,并且病灶内部可能会因过分割而产生新的冗余。
- 因此,本文利用超层次分割算法(Super Hierarchy, SH)生成多个分割尺 度的超像素图,以达到有效去噪并准确分割病灶区域的目的。

图1基于多尺度超像素融合网络的脑CT图像分类方法框架图

> 多尺度超像素特征编码模型

$$M_{ij}^{s,k} = egin{cases} 1 & p_{ij}^s = g_k^s \ 0 & others \end{cases}$$
 $b^s = \sum_{k=1}^{scale^s} g_k^s \cdot rac{N^2 - s_k}{N^2} igotomedow{M}^{s,k}$

$$B = [b^1, b^2, \cdots b^S]$$

图2多尺度超像素特征编码算法

Sigmoid $x \uparrow_{1 \times 14}$ Pooling & 3x3 Conv, Linear 512 f_4 $256 \times 16 \times 16$ Fusion $512 \times 16 \times 16$ Layer 4 ResNet $f_3 \mid_{256 \times 32 \times 32}$ Layer 4 Fusion $256 \times 32 \times 32$ Layer 3 ResNet $f_2 \int_{256 \times 64 \times 64}$ Layer 3 Fusion $128 \times 64 \times 64$ Layer 2 ResNet f_1 256 × 128 × 128 Layer 2 Fusion Layer 1 $64 \times 128 \times 128$ ResNet f_0 256 × 256 × 256 Layer 1 3x3 Conv, 256

图3 多尺度超像素特征编码算法

> 多尺度超像素特征融合分类模型

- 选择ResNet-34作为主干网络来 提取图像特征。将ResNet-34划 分为四个层级主干网络的高层次 特征。
- 通过多尺度超像素编码算法提取 的低层次特征B进行降维处理。
- 融合高层次和低层次特征。

图4多尺度超像素特征编码算法