M. Caramihai, © 2020

. 4

STRUCTURI DE DATE & ALGORITMI

CURS 11

Programarea dinamica.

Algoritmul backtracking

Programarea dinamica (PD)

- Programarea dinamica reprezinta o paradigma de proiectarea principiala a algoritmilor:
 - ☐ Rezolvarea iterativa a unor sub-probleme (mai mici) ceea ce permite (prin combinare) rezolvarea problemei globale.
- □ Principii:
 - □ Problema este "sparta" in subprobleme
 - □ Cel mai dificil
 - ☐ Sub-problemele sunt *shared*
 - □ Solutia optima de rezolvare a sub-problemei contribuie la rezolvarea problemei globale (optimalitatea sub-problemei)
 - ☐ Solutiile se calculeaza la nivelul sub-problemelor
 - □ Solutiile calculate se combina in solutii pentru sub-problele "mai mari"

Elemente de PD

- ° □ Sub-structura optimala:
 - □ O problema prezinta substructuri optimale (optimal substructure) daca o solutie optimala (globala) contine solutii optimale pentru *sub-probleme*.
 - Suprapunerea sub-problemelor (Overlapping subproblems):
 - ☐ Multe sub-probleme *share* sub-sub-probleme.

Substructura optimala

- Q problema prezinta substructuri optimale (optimal substructure) daca o solutie optimala (globala) contine if solutii optimale pentru subprobleme.
- Astfel, o solutie optimala globala se poate construi pe baza solutiilor optimale aferente sub-problemelor.
- ☐ Solutiile sub-problemelor sunt parti ale solutiei finale.
- Exemplu: Longest Common Subsequence LCS contine solutiile optimale la prefixele pentru cele doua secvente de intrare.

Problema...

- Exemplu: studiul similaritatii dintre lanturile AND (bioinformatica).
- □ Lanturile AND sunt considerate ca siruri de litere; se compara apoi similaritatile dintre siruri.
- ☐ Exemplu: X = ABCBDAB, Y=BDCABA
- ☐ Subsecventele pot fi: ABA, BCA, BCB, BBA

BCBA

BDAB etc.

- ...dar Longest Common Subsequences (LCS) este **BCBA** si **BDAB**.
- Cum poate fi identificat LCS in mod eficient?

Brute Force

- □ Daca |X| = m, |Y| = n, atunci exista 2^m subsecvente ale lui
 X; fiecare dintre ele trebui comparata cu Y (n comparari)
- □ Astfel timpul de rulare pentru algoritmul brute-force este O(n 2^m)
 - → nu este practic pentru secvente lungi.
- □ Problema LCS contine mai multe *substructuri optimale* : solutii ale subproblemelor fac parte din solutia finala.
- Subprobleme: "sa se gaseasca LCS pentru perechile de prefixe ale lui X si Y"

LCS: substructura optimala

fie $X = \langle x_1, x_2, \dots, x_m \rangle$ si $Y = \langle y_1, y_2, \dots, y_n \rangle$ doua secvente si fie $Z = \langle z_1, z_2, \dots, z_k \rangle$ orice LCS a lui X si Y.

If $x_m = y_n$, then $z_k = x_m = y_n$ si Z_{k-1} este LCS pentru X_{m-1} si Y_{n-1}

If $x_m \neq y_n$, then $z_k \neq x_m$

 \Rightarrow Z este un LCS al lui X_{m-1} si Y

If $x_m \neq y_n$, then $z_k \neq y_n$

 \Rightarrow Z este un LCS al lui X si Y_{n-1}

LCS: Setup pentru Dynamic Programming

۵

- □ Fie X_i , Y_j prefixele lui X si Y de lungime i si respectiv j.
- \square Fie c[i,j] lungimea lui LCS pentru X_i si Y_j
- □ Prin urmare, lungimea LCS pentru X si Y va fi c[m,n]

Recurenta LCS

- ☐ Recurenta este exponentiala (problema!).
- □ Nu se cunoaste *a priori* durata.
- □ Pentru a gasi LCS, este necesar a se gasi in prealabil
 LCS pentru c[i, j-1] si pentru c[i-1, j]

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i, j-1], c[i-1, j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j \end{cases}$$

Algoritmul LCS

- □ Pentru inceput trebuie gasita lungimea LCS. Ulterior, algoritmul trebuie modificat pentru a gasi chiar LCS.
- □ Fie **X**_i, **Y**_j prefixele lui X si Y de lungime *i* si *j* (dupa cum s'a mentionat anterior)
- \square Se defineste c[i,j] = lungimea lui LCS pentru X_i si Y_j
- → LCS pentru X si Y va fi c[m,n]

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{in } rest \end{cases}$$

Solutia recursiva LCS

- \square Se porneste cu i = j = 0 (substrurti goale ale lui x si y)
- Deoarece X_0 si Y_0 sunt substrurt goale \rightarrow LCS este totdeauna gol (i.e. c[0,0]=0)
- □ LCS pentru un sir gol \rightarrow pentru orice i si j: c[0, j] = c[i, 0] = 0
- \square Cand se calculeaza c[i,j], se iau in considerare doua cazuri:
 - □ Cazul 1: x[i]=y[j]: sirurile X si Y au cate un element comun in plus; lungimea lui LCS X_i si Y_i este egala cu lungimea LCS a sirurilor X_{i-1} si Y_{i-1} , plus 1
 - □ Cazul 2: x[i] != y[j]: daca cele doua siruri nu au nici un element comun, solutia nu se imbunatateste \rightarrow lungimea LCS(X_i , Y_j) este identica cu cea de la pasul anterior (i.e. maximum ((LCS(X_i , Y_{j-1}) and LCS(X_{i-1} , Y_j)))

Exemplu LCS (1)

Fie urmatorul exemplu:

$$X = ABCB$$

$$Y = BDCAB$$

Care este Longest Common Subsequence (LCS) pentru X si Y?

$$LCS(X, Y) = BCB$$

$$X = ABCB$$

$$Y = BDCAB$$

Exemplu LCS (2)

$$X = ABCB$$
; $m = |X| = 4$
 $Y = BDCAB$; $n = |Y| = 5$
Se va loca matricea c[6,5]

Exemplu LCS (3)

for
$$i = 1$$
 to m $c[i,0] = 0$

$$c[i,0] = 0$$

Exemplu LCS (4)

	j	0	1	2	3	4	5
ì		Yj	В	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0					
2	В	0					
3	C	0					
4	В	0					

$$for j = 0 \ to \ n$$
 $c[0,j] = 0$

$$c[0,j] = 0$$

Exemplu LCS (5)


```
case i=1 and j=1

A!=B

dar c[0,1] >= c[1,0]

\rightarrow c[1,1] = c[0,1], si b[1,1] = \uparrow
```

Exemplu LCS (6)


```
case i=1 and j=2

A!= D

dar c[0,2]>=c[1,1]

\rightarrow c[1,2] = c[0,2], si b[1,2] = \uparrow
```

Exemplu LCS (7)


```
case i=1 and j=3

A!= C

dar c[0,3]>=c[1,2]

\rightarrow c[1,3] = c[0,3] si b[1,3] = \uparrow
```

Exemplu LCS (8)

case i=1 and j=4

$$A = A$$

 $\Rightarrow c[1,4] = c[0,3]+1 \text{ sib}[1,4] = \$

Exemplu LCS (9)

case i=1 and j=5
A!= B
acum c[0,5]\rightarrow c[1,5] = c[1,4] si b[1,5] = \leftarrow

Exemplu LCS (10)

case i=2 and j=1
B = B

$$\rightarrow$$
 c[2, 1] = c[1, 0]+1 si b[2, 1] =

Exemplu LCS (11)

case i=2 and j=2
B!= D
si c[1, 2] < c[2, 1]

$$\rightarrow$$
 c[2, 2] = c[2, 1] si b[2, 2] = \leftarrow

Exemplu LCS (12)

case i=2 and j=3
B!= D
si c[1, 3] < c[2, 2]

$$\rightarrow$$
 c[2, 3] = c[2, 2] si b[2, 3] = \leftarrow

Exemplu LCS (13)

case i=2 and j=4
B!= A
si c[1, 4] = c[2, 3]

$$\rightarrow$$
 c[2, 4] = c[1, 4] si b[2, 2] = \uparrow

Exemplu LCS (14)

case i=2 and j=5

$$B = B$$

 $\Rightarrow c[2, 5] = c[1, 4]+1$ si $b[2, 5] = \$

Exemplu LCS (15)


```
case i=3 and j=1

C != B

si c[2, 1] > c[3, 0]

\Rightarrow c[3, 1] = c[2, 1] si b[3, 1] = 1
```

Exemplu LCS (16)

case i=3 and j=2

$$C != D$$

 $si c[2, 2] = c[3, 1]$
 $\rightarrow c[3, 2] = c[2, 2] si b[3, 2] = 1$

Exemplu LCS (17)

case i=3 and j=3

$$C = C$$

 \Rightarrow c[3, 3] = c[2, 2]+1 si b[3, 3] =

Exemplu LCS (18)

case i=3 and j=4

$$C != A$$

 $c[2, 4] < c[3, 3]$
 $\rightarrow c[3, 4] = c[3, 3]$ si $b[3, 3] = \longleftarrow$

Exemplu LCS (19)


```
case i=3 and j=5

C != B

c[2, 5] = c[3, 4]

\rightarrow c[3, 5] = c[2, 5] \text{ si b}[3, 5] = \uparrow
```

Exemplu LCS (20)

case i=4 and j=1
B = B

$$\rightarrow$$
 c[4, 1] = c[3, 0]+1 si b[4, 1] =

Exemplu LCS (21)


```
case i=4 and j=2

B!= D

c[3, 2] = c[4, 1]

\rightarrow c[4, 2] = c[3, 2] si b[4, 2] = \uparrow
```

Exemplu LCS (22)

case i=4 and j=3
B!= C

$$c[3, 3] > c[4, 2]$$

 $\rightarrow c[4, 3] = c[3, 3]$ si $b[4, 3] = 1$

Exemplu LCS (23)


```
case i=4 and j=4

B!= A

c[3, 4] = c[4, 3]

\rightarrow c[4, 4] = c[3, 4] si b[3, 5] = \uparrow
```

Exemplu LCS (24)

case i=4 and j=5
B= B

$$\rightarrow$$
 c[4, 5] = c[3, 4]+1 si b[4, 5] =

Algoritmul LCS

```
LCS-Length(X, Y)
   m = length(X), n = length(Y)
     for i = 1 to m do
          c[i, 0] = 0
     for j = 0 to n do
          c[0, j] = 0
     for i = 1 to m do
         for j = 1 to n do
               if (x_i = y_i) then
                        c[i, j] = c[i - 1, j - 1] + 1
                         b[i, j] = " \leftarrow \uparrow"
               else if c[i - 1, j] > = c[i, j - 1] then
                         c[i, j] = c[i - 1, j]
                         b[i, j] = "\uparrow"
                      c[i, j] = c[i, j - 1]
              else
                         b[i, j] = "\leftarrow"
     return c and b
```

Cum lucreaza algoritmul LCS

- □ Algoritmul LCS algorithm calculeaza valorile pentru fiecare intrare a matricii c[m,n]
- □ Timp de lucru: O(mn)
- Cum poate fi gasita solutia urmatoare? Sagetile introduse reprezinta "un ghid" in acest scop. Sagetile sunt urmarite pentru a ajunge "inapoi" la base case 0

Cum poate fi gasit LCS (1)

Cum poate fi gasit LCS (2)

LCS: B C B

Cum poate fi gasit LCS (3)

- Print_LCS (X, i, j)
 - if i = 0 or j = 0 then return
 - if b[i, j] = "\(\infty\)" then
 - Print_LCS (X, i-1, j-1)
 - Print X[i]
 - elseif b[i, j] = " **↑**" then
 - Print_LCS (X, i-1, j)
 - else
 - Print_LCS (X, i, j-1)

Cost: O(m+n)

Backtracking

- □ Sa presupunem ca trebuiesc luate o serie de *decizii*, in raport cu mai multe *optiuni*, in urmatoarele conditii:
 - □ Nu exista suficiente informatii pentru a cunoaste exact ce solutie trebuie aleasa
 - ☐ Fiecare decizie conduce la un nou set de optiuni
 - ☐ Orice secventa de optiuni poate fi o solutie a problemei.
- Backtracking reprezinta o solutie metodica de a verifica diferite secvente de optiuni in scopul gasirii uneia functionale

Solutia labirintului

- □ Fiind dat un labirint, sa se gaseasca drumul de la intrare la iesire
- La fiece intersectie trebuie luata o decizie in raport cu (max) trei variante:
 - □ inainte
 - □ stanga
 - □ dreapta
- □ Nu exista suficiente informatii pentru alegerea corecta
- ☐ Fiecare optiune conduce la un alt set de optiuni
- Una sau mai multe secvente de optiuni poate / nu poate conduce la o solutie
- Algoritmul backtracking poate oferi o rezolvare pentru aceasta problema

Alte probleme...

- □ Colorarea unei harti cu 4 culori:
 - □ Rosu, galben, verde, albastru
 - □ Tarile adiacente trebuie sa fie in culori diferite

- In acest puzzle, toate gaurile (cu exceptia uneia) sunt umplute cu pioni albi
- Se poate sari cu un pion peste altul
- ☐ Pionii peste care s'a sarit ies din joc
- Scop: eliminarea tuturor pionilor (cu exceptia unuia)

Backtracking (parcurgere)

Algoritmul backtracking

- Împlementare: se exploreaza fiecare nod (al unui arbore) in felul urmator :
 - □ Pentru nodul N:
 - 1. If N is a goal node, return "success"
 - 2. If N is a leaf node, return "failure"
 - 3. For each child C of N,
 - 3.1. Explore C
 - 3.1.1. If C was successful, return "success"
 - 4. Return "failure"

Problema hartii — structura de date

- ☐ Structura de date trebuie sa permita:
 - □ Setarea unei culori pentru fiecare tara
 - □ Stabilirea vecinilor pentru fiecare tara
- Variante
 - □ Stabilirea unei matrici a culorilor: countryColor[i] este culoarea pentru tara *i*
 - O matrice pentru definirea vecinilor (tarilor adiacente)
 map[i][j] semnifica faptul ca tara j este adiacenta tarii i
 - □ Exemplu: map[5][3]==8 → a treia tara adiacenta tarii 5 este tara 8

Crearea hartii

```
int map[][];
void createMap() {
   map = new int[][] { \{1, 3, 5\}, // adj to 0
                        { 0, 2, 3, 5, 6, 7 }, // adj to 1
                        { 1, 4, 6, 7 }, // adj to 2
                        { 0, 1, 5, 7 }, // adj to 3
                        { 2, 6, 7 }, // adj to 4 { 0, 1, 3, 6, 7 }, // adj to 5
                        { 1, 2, 4, 5, 7 }, // adj to 6
                        { 1, 2, 3, 4, 5, 6 } }; // adj to 7
```

Exemplu preluat dupa Recursive Back Tracking & Dynamic Programming, Jeff Edmonds, York University

Setare culori initiale

```
static final int NONE = 0;
static final int RED = 1;
static final int YELLOW = 2;
static final int GREEN = 3;
static final int BLUE = 4;
int mapColors[] = { NONE, NONE };
```

Programul principal

```
(Clasa: ColoredMap)
  public static void main(String args[]) {
    ColoredMap m = new ColoredMap();
    m.createMap();
    boolean result = m.explore(0, RED);
    System.out.println("Solutie = " + result);
    m.printMap();
```

Metoda backtracking

```
boolean explore(int country, int color) {
    if (country >= map.length) return true;
    if (okToColor(country, color)) {
        mapColors[country] = color;
        for (int i = RED; i <= BLUE; i++) {
            if (explore(country + 1, i)) return true;
        }
    }
    mapColors[country] = NONE;
    return false;
}</pre>
```

Verificare utilizare culoare

```
boolean okToColor(int country, int color) {
    for (int i = 0; i < map[country].length; i++) {
        int ithAdjCountry = map[country][i];
        if (mapColors[ithAdjCountry] == color) {
            return false;
        }
    }
    return true;
}</pre>
```

Solutie

Solutie gasita = true
map[0] is red
map[1] is yellow
map[2] is green
map[3] is blue
map[4] is yellow
map[5] is green
map[6] is blue
map[7] is red

