Natures de séries

Exercice 1.

Déterminer, en fonction de $\alpha > 0$, la nature de la série de terme général

$$u_n = \cos^n(1/n^\alpha).$$

EXERCICE 2.

Déterminer la nature de la série de terme général

$$u_n = \frac{\sin(1/n)}{\sqrt{n+1}}.$$

EXERCICE 3.

Convergence de la série $\sum_{n\geqslant 0} \frac{1}{\binom{2n}{n}}$.

EXERCICE 4.

Soient a, b et c > 0. Etudier la convergence de la série de terme général :

$$u_n = a^{1/n} - \frac{b^{1/n} + c^{1/n}}{2}.$$

EXERCICE 5.

Nature de la série de terme général $u_n = \left(\frac{1}{n}\right)^{1+1/n}$.

EXERCICE 6.

Nature de la série de terme général : $u_n = e^{-\sqrt{n}}$.

Exercice 7.

Déterminer la nature de la série de terme général $u_n = (\ln(n))^{-\ln(n)}$.

EXERCICE 8.

Déterminer la nature de la série de terme général $u_n = \tan(\pi(7+4\sqrt{3})^n)$.

Exercice 9.★

Soit a > 0. Étudier la nature de la série de terme général $u_n = a^{1 + \frac{1}{2} + \dots + \frac{1}{n}}$.

Exercice 10.

Soient a et b dans \mathbb{R} . Étudier la nature de la série de terme général

$$u_n = \ln(n) + a \ln(n+1) + b \ln(n+2)$$
.

Exercice 11.

Déterminer la nature de la série de terme général $u_n = \sin(\pi(2+\sqrt{3})^n)$.

Exercice 12.

Étudier la nature de la série de terme général $u_n = \frac{a^n 2^{\sqrt{n}}}{2\sqrt{n} + h^n}$ où a, b > 0.

EXERCICE 13.

Etudier la nature de la série de terme général $u_n = \frac{1! + 2! + \dots + n!}{(n+p)!}$ suivant les valeurs de $p \in \mathbb{N}$.

Exercice 14.

Soit (u_n) une suite réelle strictement positive. On pose $S_n = \sum_{p=0}^n u_p$. Comparer la nature des séries $\sum u_p$ et $\sum \frac{u_n}{u_n}$

séries
$$\sum_{n\in\mathbb{N}} u_n$$
 et $\sum_{n\in\mathbb{N}} \frac{u_n}{S_n}$.

EXERCICE 15.

Soit $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}v_n$ des séries à termes réels strictement positifs. On suppose que $\sum_{n\geqslant 0}v_n$ converge et que

$$\forall n \in \mathbb{N}, \ \frac{u_{n+2}}{u_n} \leqslant \frac{v_{n+2}}{v_n}$$

Montrer que $\sum_{n\geq 0} u_n$ converge.

Exercice 16.

- **1.** Soient (u_n) et (v_n) de suites de réels strictement positifs vérifiant $\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$ à partir d'un certain rang. Montrer que $u_n = \mathcal{O}(v_n)$.
- 2. Soit (u_n) une suite de réels strictement positifs telle que

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$$

- a. On suppose $\alpha > 1$. A l'aide d'une comparaison avec une série de Riemann, montrer que $\sum u_n$ converge.
- **b.** On suppose $\alpha < 1$. Montrer que $\sum_{n=1}^{\infty} u_n$ diverge.
- c. On suppose $\alpha = 1$. Montrer à l'aide d'exemples qu'on ne peut rien conclure en général.
- 3. Application. Déterminer la nature de la série de terme général $u_n =$ $\overline{3 \times 5 \times \cdots \times (2n+1)}$

Exercice 17.

Soit (a_n) une suite de réels positifs telle que $\sum_{n} a_n$ converge. Etudier la nature des séries suivantes:

$$1. \sum_{n \in \mathbb{N}} a_n^2$$

1.
$$\sum_{n\in\mathbb{N}}a_n^2$$
 2.
$$\sum_{n\in\mathbb{N}}\frac{a_n}{1+a_n}$$
 3.
$$\sum_{n\in\mathbb{N}}a_na_{2n}$$
 4.
$$\sum_{n\in\mathbb{N}}\frac{\sqrt{a_n}}{n}$$

$$3. \sum_{n\in\mathbb{N}} a_n a_{2n}$$

$$4. \sum_{n \in \mathbb{N}^*} \frac{\sqrt{a_n}}{n}$$

Exercice 18.

Soient $(a_n)_{n \geqslant n_0}$ et $(B_n)_{n \geqslant n_0}$ deux suites complexes. On définit deux suites $(A_n)_{n \geqslant n_0}$ et $(b_n)_{n \geqslant n_0}$ de la manière suivante :

$$\forall n \ge n_0, A_n = \sum_{k=n_0}^n a_k, b_n = B_{n+1} - B_n$$

- 1. Montrer que $\sum_{k=n}^{n} a_k B_k = A_n B_n \sum_{k=n}^{n-1} A_k b_k$ pour tout $n \ge n_0$.
- 2. Utiliser la question précédente pour étudier la convergence de $\sum_{n=1}^{\infty} \frac{\sin n}{n}$.
- 3. De manière générale, montrer que si (B_n) converge vers 0, si (A_n) est bornée et si $\sum_{n\geq n}b_n$ est absolument convergente, alors $\sum_{n>n} a_n B_n$ est convergente.

Exercice 19.

Soient $\sum_{n=0}^{\infty} u_n$ et $\sum_{n=0}^{\infty} v_n$ des séries à termes strictement positifs vérifiant

$$\forall n \in \mathbb{N}, \ \frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$$

- 1. Montrer que si $\sum_{n=0}^{\infty} v_n$ converge, alors $\sum_{n=0}^{\infty} u_n$ converge également.
- 2. Montrer que si $\sum_{n=0}^{\infty} u_n$ diverge, alors $\sum_{n=0}^{\infty} u_n$ diverge également.

Exercice 20.

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs convergentes.

- **1.** Montrer que la série $\sum \max(u_n, v_n)$ converge.
- 2. Montrer que la série $\sum \sqrt{u_n v_n}$ converge.
- 3. On suppose que $u_n + v_n$ ne s'annule pas. Montrer que la série $\sum \frac{u_n v_n}{u_n + v_n}$ converge.

Exercice 21.

Soit $\sum_{n=1}^{\infty} u_n$ une série à termes *strictement positifs*.

- 1. Montrer que si la suite de terme général $\frac{u_{n+1}}{u_n}$ admet une limite l < 1, alors $\sum_{n=1}^{\infty} u_n$ (S_{2n-1}) et (S_{2n}) sont adjacentes. En déduire la convergence de la série $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$. converge.
- 2. Montrer que si la suite de terme général $\frac{u_{n+1}}{u_n}$ admet une limite l > 1, alors $\sum_{n \in \mathbb{N}} u_n$ Soit $\sum_{n \in \mathbb{N}} u_n$ une série réelle. diverge.
- 3. Montrer à l'aide de deux exemples que l'on ne peut pas conclure si la suite de terme général $\frac{u_{n+1}}{u_n}$ admet 1 pour limite.
- **4.** Étudier la nature de la série $\sum_{n=1}^{\infty} \frac{n!}{n^n}$.

EXERCICE 22.

Soit $(\alpha, \beta) \in \mathbb{R}^2$. On pose $u_n = \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ pour $n \in \mathbb{N} \setminus \{0, 1\}$ et on s'intéresse à la convergence de la série $\sum_{n \geq 2} u_n$.

- **1.** On suppose $\alpha > 1$. Montrer que $\sum_{n \ge 2} u_n$ converge.
- **2.** On suppose $\alpha < 1$. Montrer que $\sum_{n \ge 2} u_n$ diverge.
- 3. On suppose $\alpha = 1$ et $\beta \le 0$. Montrer que $\sum_{n \ge 0} u_n$ diverge.
- 4. On suppose $\alpha=1$ et $\beta>0$. Déterminer la nature de $\sum_{n=0}^{\infty}u_n$ suivant la valeur de β via une comparaison à une intégrale.

EXERCICE 23.

Soit (u_n) une suite de réels positifs. On suppose que la suite de terme général $\sqrt[n]{u_n}$ admet une limite $l \in \mathbb{R}_+ \cup \{+\infty\}$.

- **1.** Montrer que si l < 1, la série $\sum u_n$ converge.
- 2. Montrer que si l > 1, la série $\sum u_n$ diverge.
- 3. Montrer à l'aide de deux exemples qu'on ne peut conclure dans le cas l=1.

Exercice 24.

On note (S_n) la suite des sommes partielles de la série $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$. Montrer que les suites

- 1. On suppose $\sum u_n$ à termes positifs. Montrer que si $\sum u_n$ converge, alors $\sum u_n^2$ converge. La réciproque est-elle vraie?
- 2. On ne suppose plus $\sum u_n$ à termes positifs. Montrer à l'aide d'un contre-exemple que la convergence de la série $\sum u_n$ n'implique pas la convergence de la série $\sum u_n^2$.

Exercice 26.

Soit (u_n) une suite décroissante de limite nulle. On note (S_n) la suite des sommes partielles de la série $\sum_{n=1}^{\infty} (-1)^n u_n$. Montrer que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes. Que peut-on en déduire quant à la convergence de la série $\sum (-1)^n u_n$?

Exercice 27.

Déterminer la nature des séries suivantes.

- 1. $\sum_{n \in \mathbb{N}} \left(\tan \left(\frac{1}{n} \right) \frac{1}{n} \right)$.
- 2. $\sum_{n=1}^{\infty} (\sqrt[n]{3} \sqrt[n]{2}).$
- 3. $\sum_{n=1}^{\infty} \ln \left(\cos \left(\frac{1}{\sqrt{n}} \right) \right)$.
- 4. $\sum_{n=1}^{\infty} \left(\operatorname{ch} \left(\frac{1}{\sqrt{3n}} \right) \operatorname{sh} \left(\frac{1}{\sqrt{n}} \right) \sqrt{n} \right)$.

EXERCICE 28.

Pour $n \in \mathbb{N}^*$, on pose $u_n = \frac{1}{n} - \ln(n+1) + \ln(n)$.

- 1. Montrer que la série $\sum_{n\in\mathbb{N}^*} u_n$ converge.
- 2. En déduire qu'il existe $\gamma \in \mathbb{R}$ tel que

$$\sum_{k=1}^{n} \frac{1}{k} = \lim_{n \to +\infty} \ln n + \gamma + o(1)$$

EXERCICE 29.

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite à termes positifs. Pour $n\in\mathbb{N}^*$, on pose

$$v_n = \frac{1}{n(n+1)} \sum_{k=1}^n k \, u_k$$

A l'aide d'une permutation de sommes, montrer que les séries $\sum_{n\in\mathbb{N}^*}u_n$ et $\sum_{n\in\mathbb{N}^*}v_n$ sont de même nature et, qu'en cas de convergence, elles ont même somme.

Etude asymptotique de sommes partielles ou de restes

EXERCICE 30.

Déterminer un équivalent de la somme partielle de la série $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ lorsque $\alpha \leq 1$.

Déterminer un équivalent du reste de la série $\sum_{n\geqslant 1}\frac{1}{n^{\alpha}}$ lorsque $\alpha>1$.

Exercice 31.

On pose $S_n = \sum_{k=1}^n \frac{1}{k^2 + \sqrt{k}}$ pour $n \in \mathbb{N}^*$. Montrer qu'il existe $C \in \mathbb{R}$ tel que

$$S_n = C - \frac{1}{n} + o\left(\frac{1}{n}\right)$$

EXERCICE 32.

Pour $n \in \mathbb{N}$, on pose $u_n = \ln(n!)$.

- **1.** Par une comparaison à une intégrale montrer que $u_n \sim n \ln n$.
- 2. Déterminer la nature de la série $\sum_{n\geqslant 2} \frac{1}{u_n^2}$.
- 3. Montrer que la fonction $f: x \mapsto \frac{1}{x \ln x}$ est décroissante sur]1,+ ∞ [.
- **4.** A l'aide d'une comparaison à une intégrale, déterminer la nature de la série $\sum_{n\geq 2} \frac{1}{u_n}$.

EXERCICE 33.

Montrer que pour tout $n \in \mathbb{N}$, la série $\sum_{k \in \mathbb{N}} \frac{\ln(n+2^k)}{k!}$ converge et que pour tout $m \in \mathbb{N}$

$$\sum_{k=0}^{+\infty} \frac{\ln(n+2^k)}{k!} = e \ln n + \sum_{p=1}^{m} \frac{(-1)^{p+1} e^{2^p}}{p n^p} + \mathcal{O}\left(\frac{1}{n^{m+1}}\right)$$

Calculs de sommes

Exercice 34.

Soit $\alpha \in \left]0, \frac{\pi}{2}\right[$. Convergence de la série $\sum_{n \in \mathbb{N}} \ln\left(\cos\frac{\alpha}{2^n}\right)$ et calcul de la somme.

Exercice 35.

Soit p un nombre premier. Calculer $\sum_{n\geq 0} \frac{1}{(p n)!}$.

Exercice 36.

Montrer la convergence et calculer la somme de la série $\sum_{n\geqslant 0} \frac{n}{n^4+n^2+1}$.

Exercice 37.

Montrer la convergence et déterminer la somme de la série $\sum_{n\geqslant 3} \frac{2n-1}{n^3-4n}$.

EXERCICE 38.

Soit $p \in \mathbb{N} \setminus \{0,1\}$. Convergence de la série $\sum_{n \in \mathbb{N}} \frac{1}{\binom{n+p}{n}}$ et calcul de la somme.

EXERCICE 39.

A l'aide de l'inégalité de Taylor-Lagrange prouver la convergence et déterminer la somme des séries suivantes

- 1. $\sum_{n\geq 0} \frac{x^n}{n!}$ pour $x \in \mathbb{R}$;
- 2. $\sum_{n\in\mathbb{N}} \frac{(-1)^n x^{2n}}{(2n)!}$ et $\sum_{n\in\mathbb{N}} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ pour $x\in\mathbb{R}$.
- 3. $\sum_{n \ge 1} \frac{(-1)^{n-1} x^n}{n}$ pour $x \in [0, 1]$.

Exercice 40.

Soit $x \in]-1,1]$. En remarquant que $\frac{x^k}{k} = \int_0^x t^{k-1} \, \mathrm{d}t$, montrer la convergence de la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n-1} x^n}{n} \, \mathrm{et} \, \mathrm{d}\text{\'eterminer sa somme.}$ On pourra distinguer les cas $x \le 0$ et $x \ge 0$.

Exercice 41.

En remarquant que $\frac{1}{k} = \int_0^1 t^{k-1} \, \mathrm{d}t$, montrer la convergence de la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n-1}}{n}$ et déterminer sa somme.

Exercice 42.

1. Soient $(a, b) \in \mathbb{R}^2$ tel que a < b et f une fonction de classe \mathscr{C}^1 sur [a, b] à valeurs dans \mathbb{R} . On pose pour $\lambda \in \mathbb{R}$

$$I(\lambda) = \int_{a}^{b} f(t)\cos(\lambda t) dt \qquad J(\lambda) = \int_{a}^{b} f(t)\sin(\lambda t) dt$$

Montrer que $\lim_{\lambda \to +\infty} I(\lambda) = \lim_{\lambda \to +\infty} J(\lambda) = 0$.

2. Déterminer deux réels u et v tels que pour tout $n \in \mathbb{N}^*$

$$\int_0^\pi (ux + vx^2)\cos(nx) \, \mathrm{d}x = \frac{1}{n^2}$$

3. Soit $n \in \mathbb{N}^*$. Montrer que pour $x \in]0, \pi]$,

$$\sum_{k=1}^{n} \cos(kx) = \frac{\sin\left(\left(n + \frac{1}{2}\right)x\right)}{2\sin\left(\frac{x}{2}\right)} - \frac{1}{2}$$

- **4.** Montrer que la fonction $\varphi: x \in]0,\pi] \mapsto \frac{x}{\sin(\frac{x}{2})}$ est prolongeable en une fonction de classe \mathscr{C}^1 sur $[0,\pi]$.
- 5. A l'aide des questions précédentes, déterminer la somme de la série de Riemann $\sum_{n\in\mathbb{N}^*}\frac{1}{n^2}.$
- **6.** En adaptant les deux réels u et v de la question 2, justifier la convergence et déterminer les sommes des séries $\sum_{n\in\mathbb{N}^*} \frac{(-1)^{n-1}}{n^2}$ et $\sum_{n\in\mathbb{N}^*} \frac{1}{(2n-1)^2}$.

Exercice 43.

Convergence de la série $\sum_{n\in\mathbb{N}} \frac{1}{n^2+3n}$ et calcul de la somme.

Exercice 44.★

Convergence et calcul de la somme de la série de terme général :

$$v_n = \arctan\left(\frac{1}{n^2 + n + 1}\right).$$

Exercice 45.★

Soit $n \ge 1$. On note p(n) le nombre de chiffres de l'écriture de n en base 10. Etablir la convergence et calculer la somme de la série

$$\sum_{n\geqslant 1}\frac{p(n)}{n(n+1)}.$$

Exercice 46.★★

Convergence et calcul de la somme de la série

$$\sum_{n\geqslant 2} (-1)^n \ln\left(1 - \frac{1}{n^2}\right).$$

Exercice 47.★★

Convergence et somme de la série

$$\sum_{n\geqslant 1} (-1)^n \ln\left(1+\frac{1}{n}\right).$$

Exercice 48.

Etudier la convergence et calculer somme de la série de terme général

$$u_n = \frac{\sqrt{(n-1)!}}{(1+\sqrt{1})\cdots(1+\sqrt{n})}.$$

Applications

Exercice 49.

Soient $f : \mathbb{R} \to \mathbb{R}$ k-lipschitzienne avec k < 1 et (x_n) une suite telle que $x_{n+1} = f(x_n)$ pour tout $n \in \mathbb{N}$.

- **1.** Montrer que $|x_{n+1} x_n| \le k^n |x_1 x_0|$.
- 2. En considérant la série $\sum_{n\in\mathbb{N}} x_{n+1} x_n$, montrer que la suite (x_n) converge.
- 3. En déduire que f admet un unique point fixe.

EXERCICE 50.

On pose $G(x, y) = \int_0^y \frac{t - [t]}{t(t + x)} dt$ où [t] représente la partie entière de t.

- **1.** Montrer que G est définie sur $(\mathbb{R}_+^*)^2$.
- **2.** Montrer que G(x, y) tend vers une limite finie G(x) quand y tend vers $+\infty$.
- **3.** Montrer que :

$$\forall n \in \mathbb{N}^*, G(n, y) = \frac{1}{n} \left(\int_0^n \frac{t - [t]}{t} dt - \int_y^{y+n} \frac{t - [t]}{t} dt \right)$$

4. On note H(n) = nG(n). Montrer que la série de terme général $H(n) - H(n-1) - \frac{1}{2n}$ converge et en déduire un équivalent de G(n).

Exercice 51.

Soit *x* ∈]0,1].

- 1. Montrer qu'il existe une unique suite $(q_n)_{n\in\mathbb{N}}$ d'entiers naturels supérieurs ou égaux à $2 \text{ telle que } x = \sum_{n=0}^{+\infty} \frac{1}{q_0 q_1 \dots q_n}.$
- 2. Montrer que x est rationnel si et seulement si la suite (q_n) est stationnaire.
- **3.** Montrer que *e* est irrationnel.

Exercice 52.

Montrer que le développement décimal d'un réel est périodique à partir d'un certain rang si et seulement si ce réel est rationnel.

EXERCICE 53.

Soient $k \in [0, 1[$ et $f : \mathbb{C} \to \mathbb{C}$ tels que

$$\forall (x, y) \in \mathbb{C}^2, |f(x) - f(y)| \leq k|x - y|$$

Soit $u \in \mathbb{C}^{\mathbb{N}}$ telle que $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$. En considérant la série $\sum_{n \in \mathbb{N}} u_{n+1} - u_n$, montrer que u converge.