

Timofei Belinskii, SEPMP 1st year student

MIPT

22.05.2023

Introduction

Defenition [1]

Thermoacoustic effect is the conversion of heat energy to sound energy or vice versa

Figure 1: Schematic illustration of the thermoacoustic refrigerator

Theory [2], [3]

- Adiabatic compression
- Constant-pressure heat transfer
- Adiabatic expansion
- Constant-pressure heat transfer

The thermoacoustic heat flow rate along the plate [3]

$$\dot{Q} pprox -2S\delta_k p_1 u_1 \left(rac{(
abla T)_{mean}}{(
abla T)_{crit}} - 1
ight)$$

Figure 2: Heat transfer process in the stack

 δ_k – thermal penetration depth, $S\delta_k$ – contact area of gas and wall of the stack,

 p_1 – pressure oscillation, u_1 – gas particles velocity amplitude

Research design

- What happens if you remove stack?
- At what frequency the effect is more productive?
- **3** What changes when you change stack position (x)?

Experimental setup I

Figure 3: Schematic illustration of the setup

Figure 4: Setup photo

Experimental setup II

Figure 5: 3D printed stack; hole diametr 2 mm

Figure 6: Resonance tube with driver < □ > < 圖 > < 필 > < 필 >

The need for a stack I

Figure 7: Stack 45 mm long inside the resonance tube

Figure 8: Thermistors without stack

The need for a stack II

Figure 9: Dependence of the temperatures of the cold and hot sides of the stack on time

Figure 10: Dependence of the temperature difference on time

Frequency optimization

Figure 11: The dependence of the temperature difference reached in 75 seconds on the oscillation frequency of the driver

Stack position optimization

Figure 12: Dependence of the temperature difference at the ends of the stack on its position

Conclusions

Results

- A Thermoacoustic effect was observed, namely, a temperature gradient was obtained due to the acoustic wave
- The optimal frequency for my setup was found
- ullet The optimal stack position has been determined pprox 30mm from closed end. This is about 1/10 of the length of the pipe from the closed end
- It was noticed that starting from a certain distance, the direction of the temperature gradient changes to the opposite

Further study

- Measure the pressure distribution to confirm the hypothesis of the best stack position
- Extend the measurement range for the stack position
- Investigate the behavior of a thermoacoustic refrigerator when the stack length changes

References

- [1] Amirin. Experimental study of thermoacoustic cooling with parallel-plate stack in different distances. IOP Publishing Ltd, 2019.
- [2] Kajurek J. and Rusowicz A. Experimental Investigation on the Thermoacoustic Effect in Easily Accessible Porous Materials. Energies, 2021.
- [3] M. E. H. Tijani. *Loudspeaker-driven thermo-acoustic refrigeration*. Technische Universiteit Eindhoven, 2001.