CS 181 Spring 2017 Section 4

1 Naive Bayes

A Naive Bayes classifier is a generative classifier, meaning that we are building a model for the joint distribution $p(\mathbf{x}, y)$. What we are actually interested in during classification is $p(y|\mathbf{x})$, which is related to the joint $p(\mathbf{x}, y)$ through Bayes' Rule:

$$p(y|\mathbf{x}) = \frac{p(y)p(\mathbf{x}|y)}{p(\mathbf{x})} \tag{1}$$

$$\propto p(y)p(\mathbf{x}|y)$$
 (2)

The p(y) is the prior over the classes. In the case of binary classification, $p(y;\theta) \sim \text{Bern}(\theta)$. $p(\mathbf{x})$ is constant and therefore we can disregard it as a normalizing constant, allowing us to go from (1) to (2).

The "naive" of Naive Bayes means that we assume that each feature in \mathbf{x} is independently distributed, conditioned on the class. In the case of Multinomial Naive Bayes, we have $p(\mathbf{x}|y; \boldsymbol{\pi}_0, \boldsymbol{\pi}_1) \propto \prod_{j=1}^m \pi_{yj}^{x_j}$.

If we are doing MLE, we then find the values of our parameters θ, π_0, π_1 that maximize the log-likelihood:

$$\max_{\theta, \boldsymbol{\pi}_0, \boldsymbol{\pi}_1} \sum_{i=1}^n \ln p(\mathbf{x}_i, y_i) = \max_{\boldsymbol{\pi}_1, \boldsymbol{\pi}_2} \sum_{i=1}^n \ln p(\mathbf{x}_i | y_i; \boldsymbol{\pi}_0, \boldsymbol{\pi}_1) + \max_{\theta} \sum_{i=1}^n \ln p(y_i; \theta)$$
(3)

Why is it that Naive Bayes is a linear classifier? When we classify a new example \mathbf{x} , we choose the class that is more likely by comparing $p(y|\mathbf{x})$ for every possible class value of y. In particular, for a binary classifier, we can compute the value of $h(\mathbf{x})$, which is the difference of the log of $p(y=1|\mathbf{x})$ and the log of $p(y=0|\mathbf{x})$:

$$h(\mathbf{x}) = [\ln p(\mathbf{x}|y=1) + \ln p(y=1)] - [\ln p(\mathbf{x}|y=0) + \ln p(y=0)]$$
(4)

$$= \left[\ln \prod_{j=1}^{m} \pi_{1j}^{x_j} - \ln \prod_{j=1}^{m} \pi_{0j}^{x_j}\right] + \left[\ln \theta - \ln(1-\theta)\right]$$
 (5)

$$= \sum_{j=1}^{m} x_j \ln \frac{\pi_{1j}}{\pi_{0j}} + \ln \left(\frac{\theta}{1-\theta} \right)$$
 (6)

$$= \mathbf{x}^{\top} \mathbf{ln}(\frac{\boldsymbol{\pi}_1}{\boldsymbol{\pi}_0}) + \ln\left(\frac{\theta}{1-\theta}\right), \tag{7}$$

where $\ln(\mathbf{q})$ for vector \mathbf{q} applies in elementwise, and we write π_1/π_0 to mean elementwise division. The resulting equation is in the same form as linear regression, and in particular the decision boundary $h(\mathbf{x}) = 0$ is linear in \mathbf{x} . With different Naive Bayes models, the only difference would be the corresponding weight and bias terms.

1. Redundant Features in Naive Bayes

Suppose, as in Bishop 4.2.3, that we use a Naive Bayes classifier to classify binary feature vectors $\mathbf{x}_i \in \mathbb{R}^m$ into two classes. The class conditional distributions will then be of the form

$$p(\mathbf{x} \mid y = C_k) = \prod_{i=1}^{m} \pi_{ki}^{x_i} (1 - \pi_{ki})^{(1 - x_i)},$$
 (Bishop 4.81)

where $x_i \in \{0, 1\}$, and $\pi_{ki} = p(x_i = 1 \mid y = C_k)$. This is a Bernoulli Naive Bayes, where all the features are binary instead of representing count data, as in the Multinomial case. Assume also that the class priors are $p(y = C_1) = p(y = C_2) = \frac{1}{2}$.

- a. How is the quantity $\ln(p(y=C_1|\mathbf{x})/p(y=C_2|\mathbf{x}))$ used for classification of a new example \mathbf{x} ?
- b. If m=1 (i.e., there is only one feature), use the equations above to write out $\ln \frac{p(y=C_1 \mid x)}{p(y=C_2 \mid x)}$ for a single binary feature x.
- c. Now suppose we change our feature representation so that instead of using just a single feature, we use two redundant features (i.e., two features that always have the same value). With this feature representation, instead of x we will use $\mathbf{x} = [x, x]^{\top}$. What is $\ln \frac{p(y=C_1 \mid \mathbf{x})}{p(y=C_2 \mid \mathbf{x})}$ in terms of the value for $\ln \frac{p(y=C_1 \mid x)}{p(y=C_2 \mid x)}$ you calculated in part (a.)? d. Is this a bug or a feature?

2 Gaussian Probabilistic Classification

Shapes of Decision Boundaries - Part I

Consider now a generative model with c > 2 classes, and output label **y** encoded as a "one hot" vector of length c.

We adopt class prior $p(\mathbf{y} = C_k; \boldsymbol{\pi}) = \pi_k$ for all $k \in \{1, ..., c\}$ (where π_k is a parameter of the prior). Let $p(\mathbf{x} | \mathbf{y} = C_k)$ denote the class-conditional density of features \mathbf{x} (in this case for class C_k). Let the class-conditional probabilities be Gaussian distributions

$$p(\mathbf{x} \mid \mathbf{y} = C_k) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k), \text{ for } k \in \{1, \dots, c\}$$
 (8)

We will predict the class of a new example \mathbf{x} as the class with the highest conditional probability, $p(\mathbf{y} = C_k \mid \mathbf{x})$.

Luckily, a little bird came to the window of your dorm, and claimed that you can classify an example \mathbf{x} by finding the class that maximizes the following function:

$$f_k(\mathbf{x}) = \ln(\pi_k) - \frac{1}{2}\ln(|\mathbf{\Sigma}_k|) - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \mathbf{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k).$$

Derive this formula by comparing two different classes' conditional probabilities. What can we claim about the shape of the decision boundary given this formula?

Shapes of Decision Boundaries - Part II

Let's say the little bird comes back and now tells you that every class has the same covariance matrix, and so $\Sigma_{\ell} = \Sigma'_{\ell}$ for all classes C_{ℓ} and $C_{\ell'}$. Simplify this formula down further. What can we claim about the shape of the decision boundaries now?

3 Neural Networks

Recall that in the case of binary classification, we can think about neural network as being equivalent to logistic regression with parameterized, adaptive basis functions.

Let's think about a neural network binary classifier with $\mathbf{x} \in \mathbb{R}^2$ (and thus m = 2 features) and with two a single hidden layer.

For the activation function, we use the ReLU function defined by the following:

$$ReLU(z) = \begin{cases} z & \text{if } z > 0\\ 0 & \text{otherwise} \end{cases}$$
 (9)

Let's consider a function h defined by the following:

$$h(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}) + w_0 \tag{10}$$

$$= \mathbf{w}^{\mathsf{T}} \mathbf{ReLU} \left(\mathbf{W}^{1} \mathbf{x} + \mathbf{w}_{0}^{1} \right) + w_{0}, \tag{11}$$

where example $\mathbf{x} \in \mathbb{R}^{2\times 1}$, weights in the hidden layer $\mathbf{W}^1 \in \mathbb{R}^{2\times 2}$, bias in the hidden layer $\mathbf{w}_0^1 \in \mathbb{R}^{2\times 1}$, output weight vector $\mathbf{w} \in \mathbb{R}^{2\times 1}$, and output bias $w_0 \in \mathbb{R}$.

Suppose we want to fit the following data:

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad y_1 = 1, \quad \mathbf{x}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad y_2 = -1$$

$$\mathbf{x}_3 = \begin{pmatrix} -1\\1 \end{pmatrix}$$
 $y_3 = -1$, $\mathbf{x}_4 = \begin{pmatrix} -1\\-1 \end{pmatrix}$ $y_4 = 1$

This looks as follows (blue = 1, red = -1):

Why can't we solve this problem with a linear classifier? What values of parameters $\mathbf{W}^1, \mathbf{w}_0^1, \mathbf{w}$, and w_0 will allow the neural network to solve the problem?

Hint: Think carefully about why we need a nonlinearity in finding a basis function for the examples. What can the ReLU do for us? What does it do to various kinds of vectors?