Exercices

Exercice 1

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. Montrer l'équivalence entre :

- (a) Pour tout $C \in \mathcal{M}_n(\mathbb{C})$, il existe un unique $X \in \mathcal{M}_n(\mathbb{C})$ tel que AX XB = C.
- (b) Pour tout $X \in \mathcal{M}_n(\mathbb{C})$, si AX = XB alors X = 0.
- (c) Le polynôme $\chi_B(A)$ est inversible.
- (d) A et B n'ont pas de valeur propre en commun.

Exercice 2

Soient $A, B \in \mathcal{M}_n(K)$.

- 1. Montrer que AB et BA ont les mêmes valeurs propres.
- 2. Montrer que si A ou B est inversible, alors AB et BA ont même polynôme caractéristique.

Exercice 3

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ ayant même polynôme caractéristique. Montrer que :

- 1. $tr(A^2) = tr(B^2)$.
- 2. Montrer l'équivalence entre :
 - (a) $\forall M \in \mathcal{M}_n(\mathbb{C}), \ AM + B \ \text{et} \ AM \ \text{ont même polynôme caractéristique}$;
 - (b) B est nilpotente et BA = 0.

Exercice 4

- 1. Calculer det(A).
- 2. Calculer $(A xI)(A^T xI)$ et en déduire $\chi_A(x)$.
- 3. Montrer que A est \mathbb{C} -diagonalisable.

Exercice 5

Soit E un \mathbb{R} -espace vectoriel de dimension finie n > 1. Soit $P = X^2 + \alpha X + \beta \in \mathbb{R}[X]$ sans racine réelle et $f \in L(E)$ tel que P(f) = 0. Montrer qu'il existe une base de E dans laquelle la matrice de f est diagonale par blocs avec pour blocs diagonaux

$$\begin{pmatrix} 0 & 1 \\ -\beta & -\alpha \end{pmatrix}.$$

Exercice 6

Soit E un espace vectoriel de dimension finie et $u \in L(E)$. On considère l'application Φ_u qui à $v \in L(E)$ associe $v \circ u$.

- 1. Montrer que $\Phi_u \in L(L(E))$.
- 2. Montrer l'équivalence suivante :

 $(u \text{ est diagonalisable}) \iff (\Phi_u \text{ est diagonalisable}).$

- (a) En considérant les polynômes annulateurs de u et de Φ_u .
- (b) En considérant les spectres et sous-espaces propres de u et de Φ_u .

Exercice 7

Soit K un corps de caractéristique nulle, E un K-espace vectoriel de dimension finie et $f,g\in L(E), \alpha\in K^*$ tels que $f\circ g-g\circ f=\alpha f.$

- 1. Montrer pour tout entier naturel $n: f^n \circ g g \circ f^n = n\alpha f^n$.
- 2. Montrer qu'il existe $n \in \mathbb{N}$ tel que $f^n = 0$ (raisonner par l'absurde).

Exercice 8

Soit E un espace vectoriel de dimension finie et $f \in L(E)$ tel que P(f) = 0 pour un certain polynôme $P \in K[X]$. Montrer que si P est un polynôme scindé, alors E admet une décomposition en sous-espaces stables par f associés aux racines de P.

Exercice 9

Soit $A \in \mathcal{M}_n(K)$ non nulle et $M = \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{2n}(K)$. Montrer que M n'est pas diagonalisable.

Exercice 10

Soit $A \in GL_n(\mathbb{C})$ et $M = \begin{pmatrix} 0 & A \\ I & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C})$. Montrer que M est diagonalisable si et seulement si A l'est (chercher les sous-espaces propres de M en fonction de ceux de A).

Exercice 11

Soit n > 2 un entier. On considère la matrice $J \in \mathcal{M}_n(\mathbb{R})$ dont tous les coefficients valent 1.

- 1. Justifier que J est diagonalisable.
- 2. Calculer J^2 et en déduire que $Sp(J) \subset \{0, n\}$.
- 3. Déterminer le rang de J. En déduire que $0 \in \operatorname{Sp}(J)$. Donner la dimension et une base du sous-espace propre E_0 associé à cette valeur propre.
- 4. Montrer que $Sp(J) = \{0, n\}$.
- 5. Calculer JV où V est le vecteur colonne dont tous les coefficients valent 1. En déduire une base de $\mathcal{M}_{n,1}(\mathbb{R})$ constituée de vecteurs propres de J.

6. Soit
$$a, b \in \mathbb{R}$$
. On pose $M = \begin{pmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ b & b & \cdots & a \end{pmatrix}$.

- (a) Justifier que M est diagonalisable.
- (b) Exprimer M comme une combinaison linéaire de J et $I = I_n$.
- (c) En déduire une factorisation de M sous la forme $M = PDP^{-1}$ avec D diagonale, puis déterminer le spectre de M.

Exercice 12

Soit K un corps commutatif, E un K-espace vectoriel de dimension finie n>0, u un endomorphisme de E et $x\in E\setminus\{0\}$. On appelle sous-espace u-cyclique engendré par x le sous-espace :

$$\langle x \rangle_u = K[u](x) = \{P(u)(x) \mid P \in K[X]\} = \text{vect}(u^i(x) \mid i \in \mathbb{N}).$$

1. Montrer que $\langle x \rangle_u$ est le plus petit sous-espace vectoriel de E stable par u contenant x et que $e_x = \{u^i(x) \mid i \in \{0, \dots, m_x\}\}$ est une base de $\langle x \rangle_u$, où $m_x = \max\{j \in \mathbb{N} \mid (u^i(x))_{i \in \{0, \dots, j\}}$ est libre $\}$.

On note $u_{\langle x \rangle_u}$ la restriction de u à $\langle x \rangle_u$, $\pi_{u,x}$ son polynôme minimal et $\chi_{u,x}$ son polynôme caractéristique.

2. Montrer que:

$$I_x = \{ P \in K[X] \mid P(u)(x) = 0 \} = \pi_{u,x} K[X].$$

Montrer que si on note $\pi_{u,x}(X)=X^d+\sum_{i=1}^d a_iX^{d-i}$, alors la matrice de $u_{\langle x\rangle_u}$ dans la base e_x est de la forme :

$$\begin{pmatrix} 0 & \cdots & 0 & -a_d \\ 1 & \ddots & \vdots & -a_{d-1} \\ & \ddots & 0 & \vdots \\ & & 1 & -a_1 \end{pmatrix}.$$

En déduire que $\pi_{u,x} = \chi_{u,x}$.

3. En déduire que $\pi_u \mid \chi_u$ (théorème de Cayley-Hamilton).