Day 51

Day 51

Find the maxima & minimal for
$$f(sc_1y) = x^3 + y^3 - 3xc - 12y + 20$$

Given s

Step 2:

Soln:

Day 51

 $f(x,y) = xc^3 + y^3 - 3xe - 120 + 20$ Step 1: $f(x) = 3x^2 + 0 - 3(1) - 0 + 0$ $f(x) = 3x^2 - 3$ fy = 0+ 342-0-12+0 $f(y) = 3x^2 - 12$

A = fxx

A = 6x - 8

A = 61

DEST 10281- 0851

B = fxy

B=0

C = fyy C = 69

$$fx = 0$$

 $3x^2 - 3 = 0$
 $3x^2 = 3$
 $x^2 = 3/3 = 1$
 $x = \pm 1$
 $x = -1$

$$fy = 0$$

$$3y^{2} - 12 = 0$$

$$3y^{2} = 12$$

$$y^{2} = \frac{12}{3}$$

$$y^{2} = 4$$

$$y = \pm 2$$

$$y = 2, y = -2$$

Stationary points are (01,2) = (1,2), (1,-2), (-1,2), (-1,2)

Step 4:

		4		
points	(1,2)	(1,-2)	(-1,2)	(-1, -2)
A=6x	6>0	6>0	-640	-600
B=0	0	0	0 10	0
c= 69	12>0	-12 < 0	12>0	-12 < 0
AC-B2	72>0	-72<0	-72 <0	72 > 0
+36×4				

Condustion ; and the second second

min	smoodle.	max	saddle
Point	point	point	point

Step s:

Maximum point is (1,2)

Maximum point is (-1,2)

$$f(x,y) = x^3 + y^3 - 3x - 12y + 20$$

 $f(1,2) = (1)^2 + (2)^3 - 3(1) - 12(2) + 20 = -27 + 29$

$$f(1,2) = 2 \text{ is minimum value}$$

$$f(-1,2) = (-1)^3 + (2)^3 - 3(-1) - 12(2) + (20)$$

$$= -25 + 31$$

f(-1,2) = 6 is maximum value