

Data Structures

Michael Malick

Data Structures

A data structure in R is a means of storing information

- Vector
- Matrix
- Dataframe
- List
- Array (not covered)

Vectors

Vectors

A vector is a one dimensional, ordered collection of numbers, strings, etc.

- 1, 2, 3, 4, 5
- A, B, C, D, E, F
- TRUE, FALSE, FALSE, TRUE
- blue, red, purple, orange

Creating Vectors

```
x <- c(1, 2, 3, 4, 5)
y <- c("A", "B", "C", "D")
u <- c(TRUE, FALSE, FALSE, TRUE)

z <- seq(from = 1, to = 5, by = 1)
z <- 1:5

r <- rep(y, times = 10)</pre>
```

Vector Arithmetic

R does computations on whole vectors

```
x <- rep(1, times = 3)
y <- rep(2, times = 3)
x + y

z <- 1:3
z*2
z/3</pre>
```

Subsetting Vectors

Subsetting is when you extract a certain portion (subset) of the data structure

1 2 3 4 5 6 7 8 9 10

Classes

Every object in R has a class

```
x <- c(1, 2, 3, 4, 5)
y <- c("A", "B", "C", "D")
u <- c(TRUE, FALSE, FALSE, TRUE)

class(x)
class(y)
class(u)</pre>
```

You Try...

- I. Create a sequence of numbers from 1 to 10 by 0.1 and assign it to the variable z
- 2. What is the mean of z?
 - Hint: use the mean() function
- 3. What is the 87th number in the sequence?

Matrices

Matrix

A matrix is a two dimensional data structure composed of rows and columns

Creating a Matrix

```
x < - rnorm(25)
mat < - matrix(data = x)
mat <- matrix(data = x, nrow = 5,
    ncol = 5)
mat < - matrix(data = x, nrow = 5,
    ncol = 5, dimnames = list(c("A", "B",
    "C", "D", "E"), c("1", "2", "3", "4",
    "5")))
mat.na <- matrix(NA, 10, 10)
```

Subsetting Matrices

SomeMatrix[row, column]

Matrix z

					_	z [1
1	2	3	4	5		_
6	7	8	9	10		
11	12	13	14	15		Z [
16	17	18	19	20		
21	22	23	9 14 19 24	25		z [4

Subsetting Matrices Cont'd

```
x <- 1:25
mat <- matrix(data = x, nrow = 5, ncol = 5)

mat
mat[1, ]  # first row
mat[,2]  # second column
mat[4, 3]  # 4th row and 3rd column
mat[mat > 5] # all values greater than 5
```

Matrix Arithmetic

Matrices can be added, subtracted, multiplied, etc. just like vectors

```
mat1 <- matrix(1:25, 5, 5)
mat2 <- matrix(1:25, 5, 5)

mat1 + mat2
mat1 * mat2
mat1^2

summary(mat1)</pre>
```


- I. Create a sequence of numbers from 1 to 100 by 1 and assign it the variable v
- 2. Using v create a matrix with 10 rows and 10 columns and assign it to the variable m
- 3. What is the number in the 4th row and 7th column of the matrix?

Dataframes

Dataframe

A dataframe is similar to a matrix, but each column can be of a different type of data (e.g., character, numeric, logical).

Creating a Dataframe

```
number <- 1:5
weight <- c(1.2, 2.0, 1.1, 1.9, 2.9)
length <- c(25, 29, 26, 24, 30)
sex <- c("M", "M", "F", "M", "F")

dat <- data.frame(number, weight, length, sex)</pre>
```

Subsetting Dataframes

SomeDataframe[row, column]

SomeDataframe\$variablename

Dataframe z

				z[1,]
Spe	ecies	Sex	Count	_
	А	M	10	
	В	F	19	z[, 2]
	С	M	22	
	D	M	16	z\$Sex
	E	F	12	ZYDCZ

Subsetting Dataframes Cont'd

```
iris
iris[1, ]
iris[ ,1:2]
iris$Species
iris[iris$Species == "virginica", ]
iris[iris$Sepal.Length < 5, ]
subset(iris, Sepal.Length < 5)</pre>
iris[iris$Species == "virginica" &
    iris$Sepal.Length < 6, ]
```

Dataframes: Factors

By default, variables in a dataframe that consist of strings are stored as factors

```
head(iris)

class(iris$Species)
iris$Species
levels(iris$Species)

summary(iris)
```


Using the iris dataset:

- I. Subset the 17th row, what is the Petal. Width for this record?
- 2. What is the mean of Petal.Length?
- 3. What is the median of Petal.Length for the setosa Species?

Lists

Lists

A list is an arbitrary collection of R objects

- Different objects within a list are known as components
- Lists can have components made up of vectors, matrices, arrays, dataframes, and other lists

Creating a List

```
mat <- matrix(1:25, 5, 5)
number <- 1:5
sex <- c("M", "M", "F", "M", "F")

lst <- list(mat, number, sex)</pre>
```

Subsetting Lists

SomeList[[component]]

SomeDataframe\$component

Arrays

Array

An array is a three dimensional structure that consists of multiple matrices

Creating an Array

Subsetting Arrays

SomeArray[row, column, slice]

Array z

Subsetting Arrays Cont'd

```
x <- rep(1:25, 3)
arr <- array(x, dim = c(5, 5, 3))

arr[1, , ] # first row
arr[ , ,2] # second slice
arr[5, ,1] # 5th row in 1st slice</pre>
```

Array Arithmetic

Arrays can be added, subtracted, multiplied, etc. just like matrices

```
x <- rep(1:25, 3)
arr1 <- array(x, dim = c(5, 5, 3))
arr2 <- array(x, dim = c(5, 5, 3))
arr1 + arr2
arr1 * arr2
arr^2</pre>
```