Sprawozdanie z Laboratorium Metod Numerycznych

Marcel Musiałek 279704

25 października 2025

Spis treści

1	Zac	Zadanie 1: Rozpoznanie arytmetyki							
	1.1	Część	1: Wyznaczanie epsilona maszynowego (macheps)						
		1.1.1	Opis problemu						
		1.1.2	Opis rozwiązania						
		1.1.3	Wyniki i interpretacja						
		1.1.4	Wnioski						
	1.2	1.2 Część 2: Wyznaczanie najmniejszej liczby dodatniej ($\eta \ / \ MIN_{sub})$							
		1.2.1	Opis problemu						
		1.2.2	Opis rozwiązania						
		1.2.3	Wyniki i interpretacja						
		1.2.4	Wnioski						
	1.3	Część :	3: Analiza floatmin vs MIN_{nor} (i float.h)						
		1.3.1	Opis problemu						
		1.3.2	Opis rozwiązania						
		1.3.3	Wyniki i interpretacja						
		1.3.4	Wnioski						
	1.4	Cześć 4	4: Wyznaczanie największej liczby skończonej (MAX)						
		1.4.1	Opis problemu						
		1.4.2	Opis rozwiązania						
		1.4.3	Wyniki i interpretacja						
		1.4.4	Wnioski						
2	Zac	Zadanie 2: Obliczanie macheps metodą Kahana							
		2.0.1	Opis problemu						
		2.0.2	Opis rozwiązania						
		2.0.3	Wyniki i interpretacja						
		2.0.4	Wnioski						
3	Zad	lanie 3:	Rozmieszczenie liczb zmiennoprzecinkowych						
	3.1		3.1: Badanie przedziału [1, 2]						
		3.1.1	Opis problemu						
		3.1.2	Opis rozwiązania						
		3.1.3	Wyniki i interpretacja						
		3.1.4	Wnioski						
	3.2		3.2: Badanie przedziałów $[0.5, 1]$ oraz $[2, 4]$						
	~· -	3.2.1	Opis problemu						
		3.2.1	Opis rozwiązania						
		3.2.2	Wyniki i interpretacja						
		3.2.4	Wnioski						
		U.4.T	11111ODIL						

4	Zadanie 4:	Badanie tożsamości $x \cdot (1/x) = 1$	6
	4.0.1	Opis problemu	6
	4.0.2	Opis rozwiązania	ç
	4.0.3	Wyniki i interpretacja	
	4.0.4	Wnioski	10
5	Zadanie 5:	Błędy sumowania iloczynu skalarnego	11
	5.0.1	Opis problemu	11
	5.0.2	Opis rozwiązania	11
	5.0.3	Wyniki i interpretacja	11
	5.0.4	Wnioski	12
6	Zadanie 6:	Stabilność numeryczna $f(x)$ vs $g(x)$	13
	6.0.1	Opis problemu	13
	6.0.2	Opis rozwiązania	13
	6.0.3	Wyniki i interpretacja	13
	6.0.4	Wnioski	14
7	Zadanie 7:	Błąd aproksymacji pochodnej	1 4
	7.0.1	Opis problemu	14
	7.0.2	Opis rozwiązania	
	7.0.3	Wyniki i interpretacja	
	7.0.4	Wnioski	

1 Zadanie 1: Rozpoznanie arytmetyki

1.1 Część 1: Wyznaczanie epsilona maszynowego (macheps)

1.1.1 Opis problemu

Celem było iteracyjne wyznaczenie epsilona maszynowego (macheps), czyli najmniejszej liczby x>0 takiej, że $1.0+x\neq 1.0$. Zadanie wymagało porównania uzyskanej wartości z wbudowaną funkcją Julii eps(T) oraz standardowymi stałymi z pliku float.h języka C dla typów Float16, Float32 i Float64.

1.1.2 Opis rozwiązania

Zaimplementowano funkcję find_macheps (T). Funkcja inicjuje macheps jako 1.0 danego typu T. Następnie, w pętli while, wartość macheps jest iteracyjnie dzielona przez 2.0. Pętla kontynuuje działanie tak długo, jak długo warunek 1.0 + (macheps/2.0) > 1.0 jest spełniony w arytmetyce typu T. Zwracana jest ostatnia wartość macheps, dla której warunek ten nie był już prawdziwy.

1.1.3 Wyniki i interpretacja

Poniżej przedstawiono wyniki uzyskane z implementacji iteracyjnej oraz z funkcji wbudowanej.

```
--- Część 1: Wyznaczanie Epsilona Maszynowego (macheps) ---
--- Typ: Float16 ---
Iteracyjnie:
                       9.7656250000e-04
Wbudowane (eps(T)):
                       9.7656250000e-04
--- Typ: Float32 ---
                       1.1920928955e-07
Iteracyjnie:
Wbudowane (eps(T)):
                       1.1920928955e-07
--- Typ: Float64 ---
Iteracyjnie:
                       2.2204460493e-16
Wbudowane (eps(T)):
                       2.2204460493e-16
```

Interpretacja i porównanie z float.h (C): Wyniki obliczeń iteracyjnych są identyczne z funkcjami wbudowanymi Julii. Poniżej jawne zestawienie ze standardowymi stałymi C:

• Float32 (Single):

```
- Nasz wynik: 1.1920928955e-07

- Stała C FLT_EPSILON: 1.1920928955e-07 (2^{-23})

- Zgodność: Tak
```

• Float64 (Double):

1.1.4 Wnioski

Obliczenia iteracyjne dały wyniki w pełni zgodne z wbudowanymi funkcjami Julii oraz standardowymi wartościami FLT_EPSILON i DBL_EPSILON ze **standardu IEEE 754**. Wartość ta definiuje jednostkowy bląd zaokrąglenia (u = macheps/2), który jest kluczowym parametrem w analizie błędów **obliczeń maszynowych** i pokazuje granicę precyzji względnej operacji.

1.2 Część 2: Wyznaczanie najmniejszej liczby dodatniej (η / MIN_{sub})

1.2.1 Opis problemu

Zadanie polegało na iteracyjnym wyznaczeniu najmniejszej dodatniej liczby maszynowej η (najmniejszej liczby subnormalnej, MIN_{sub}) poprzez dzielenie 1.0 przez 2.0 aż do osiągnięcia 0.0. Wynik należało porównać z funkcją nextfloat(T(0.0)).

1.2.2 Opis rozwiązania

Zaimplementowano funkcję find_eta(T). Funkcja inicjuje η jako 1.0 danego typu T. W pętli while, sprawdzany jest warunek (eta / 2.0) > 0.0. Jeśli jest prawdziwy, η przyjmuje wartość eta / 2.0. Pętla zatrzymuje się, gdy następny krok dałby zero. Zwracana jest ostatnia wartość η , która była większa od zera.

1.2.3 Wyniki i interpretacja

Otrzymane wyniki z algorytmu iteracyjnego oraz funkcji wbudowanej:

```
--- Część 2: Wyznaczanie Najmniejszej Liczby Dodatniej (eta / MIN_sub) ---
--- Typ: Float16 ---
                           5.9604644775e-08
Iteracyjnie:
Wbudowane (nextfloat(0.0)):
                               5.9604644775e-08
--- Typ: Float32 ---
Iteracyjnie:
                           1.4012984643e-45
                               1.4012984643e-45
Wbudowane (nextfloat(0.0)):
--- Typ: Float64 ---
Iteracyjnie:
                           4.9406564584e-324
Wbudowane (nextfloat(0.0)):
                               4.9406564584e-324
```

Interpretacja i porównanie z float.h (C): Wyniki iteracyjne są identyczne z wartościami nextfloat(T(0.0)). Standardowy plik float.h (np. C99) nie definiuje stałych dla najmniejszych liczb subnormalnych; definiuje jedynie FLT_MIN i DBL_MIN, które odpowiadają liczbom znormalizowanym (patrz Część 3).

1.2.4 Wnioski

Eksperyment potwierdził istnienie liczb subnormalnych (zdenormalizowanych), kluczowego elementu standardu IEEE 754. Wyznaczona η (MIN_{sub}) reprezentuje mechanizm "łagodnego niedomiaru" (gradual underflow). W obliczeniach maszynowych pozwala to uniknąć gwałtownego "przeskoku"do zera, co jest krytyczne dla stabilności algorytmów operujących na bardzo małych wartościach.

1.3 Część 3: Analiza floatmin vs MIN_{nor} (i float.h)

1.3.1 Opis problemu

Celem było sprawdzenie, co zwraca funkcja floatmin(T) i jaki ma związek z MIN_{nor} (najmniejszą liczbą znormalizowaną) oraz ze stałymi FLT_MIN i DBL_MIN z float.h.

1.3.2 Opis rozwiązania

W tej części nie implementowano nowej funkcji iteracyjnej. Skrypt wywołał wbudowaną funkcję Julii floatmin(T) oraz (ponownie) funkcję find_eta(T) z Części 2, aby bezpośrednio zestawić ich wartości na wyjściu terminala w celu porównania.

1.3.3 Wyniki i interpretacja

Wyniki porównania funkcji floatmin(T) z obliczoną wcześniej η (MIN_{sub}):

```
--- Część 3: Badanie floatmin(T) vs eta --- floatmin(Float16): 6.1035156250e-05 (vs eta: 5.9604644775e-08) floatmin(Float32): 1.1754943508e-38 (vs eta: 1.4012984643e-45) floatmin(Float64): 2.2250738585e-308 (vs eta: 4.9406564584e-324)
```

Interpretacja i porównanie z float.h (C): Jak widać na wydruku, wartości floatmin(T) są znacznie większe niż η (MIN_{sub}). Porównanie ze stałymi C:

• Float32 (Single):

```
- Nasz wynik (floatmin): 1.1754943508e-38
```

- Stała C FLT_MIN: 1.1754943508e-38
- Zgodność: Tak

• Float64 (Double):

- Nasz wynik (floatmin): 2.2250738585e-308
- Stała C DBL_MIN: 2.2250738585e-308
- Zgodność: Tak

1.3.4 Wnioski

Eksperyment jasno pokazuje fundamentalne rozróżnienie w standardzie IEEE 754:

- 1. η (MIN_{sub}): Najmniejsza liczba subnormalna (obszar gradual underflow).
- 2. floatmin(T) (MIN_{nor}) : Najmniejsza liczba **znormalizowana**.

Jak widać z jawnego porównania, to właśnie MIN_{nor} (a nie MIN_{sub}) jest zdefiniowane w standardzie C (FLT_MIN, DBL_MIN). W **obliczeniach maszynowych** MIN_{nor} wyznacza początek zakresu, w którym liczby mają pełną precyzję względną.

1.4 Część 4: Wyznaczanie największej liczby skończonej (MAX)

1.4.1 Opis problemu

Zadanie polegało na iteracyjnym wyznaczeniu największej skończonej liczby maszynowej (MAX). Algorytm miał znaleźć największą potęgę dwójki $P=2^{E_{max}}$ (mnożąc do Inf), a następnie obliczyć $MAX=P\times(2.0-macheps)$. Wynik należało porównać z floatmax(T) oraz stałymi z float.h.

1.4.2 Opis rozwiązania

Zaimplementowano funkcję find_max(T). Najpierw wywołuje ona funkcję find_macheps(T) z Części 1. Następnie, w pętli while, inicjalizuje max_power_of_2 jako 1.0 i mnoży tę wartość przez 2.0, dopóki sprawdzenie !isinf(max_power_of_2 * 2.0) jest prawdziwe. Ostatnia skończona potęga dwójki (P) jest następnie używana we wzorze $MAX = P \times (2.0-macheps)$ do obliczenia wyniku.

1.4.3 Wyniki i interpretacja

Wyniki iteracyjnego obliczania MAX w porównaniu z funkcją wbudowaną:

```
--- Część 4: Wyznaczanie Największej Liczby Skończonej (MAX) ---
```

--- Typ: Float16 ---

Iteracyjnie: 6.5504000000e+04
Wbudowane (floatmax): 6.5504000000e+04

--- Typ: Float32 ---

Iteracyjnie: 3.4028234664e+38 Wbudowane (floatmax): 3.4028234664e+38

--- Typ: Float64 ---

Iteracyjnie: 1.7976931349e+308
Wbudowane (floatmax): 1.7976931349e+308

Interpretacja i porównanie z float.h (C): Wyniki iteracyjne są identyczne z wartościami floatmax (T). Porównanie ze stałymi C:

• Float32 (Single):

- Nasz wynik: 3.4028234664e+38

- Stała C FLT_MAX: 3.4028234664e+38

- Zgodność: Tak

• Float64 (Double):

- Nasz wynik: 1.7976931349e+308

- Stała C DBL_MAX: 1.7976931349e+308

Zgodność: Tak

1.4.4 Wnioski

Wyznaczona wartość MAX reprezentuje górną granicę zakresu liczb znormalizowanych. Jawne porównanie potwierdza pełną zgodność ze **standardem IEEE 754** oraz stałymi C (FLT_MAX, DBL_MAX). W **obliczeniach maszynowych**, przekroczenie tej wartości skutkuje "nadmiarem" (overflow) i jest sygnalizowane wartością Inf. Zrozumienie tego limitu jest niezbędne przy projektowaniu stabilnych numerycznie algorytmów.

2 Zadanie 2: Obliczanie macheps metodą Kahana

2.0.1 Opis problemu

Celem zadania była eksperymentalna weryfikacja formuły Williama Kahana służącej do wyznaczania epsilona maszynowego: $3 \times (4/3 - 1) - 1$. Testy przeprowadzono dla typów Float16, Float32 i Float64, porównując uzyskany wynik z wbudowaną funkcją eps(T).

2.0.2 Opis rozwiązania

Zaimplementowano funkcję kahan_macheps (T). Kluczowe było, aby wszystkie stałe (1.0, 3.0, 4.0) oraz wszystkie operacje pośrednie były wykonywane ściśle w arytmetyce badanego typu T. Funkcja krok po kroku obliczała fl(4/3), następnie fl(fl(4/3)-1), $fl(3\times...)$ i na końcu odejmowała 1.0, co pozwoliło na precyzyjne uchwycenie błędów zaokrągleń specyficznych dla każdej precyzji.

2.0.3 Wyniki i interpretacja

Poniżej przedstawiono wyniki uzyskane z implementacji formuły Kahana oraz wartości z funkcji wbudowanej.

```
--- Zadanie 2: Sprawdzanie formuły Kahana dla macheps ---
--- Typ: Float16 ---
Wynik z formuły Kahana:
                               -9.7656250000e-04
Wbudowane (eps(T)):
                              9.7656250000e-04
Czy równe eps(T)?
                            false
Czy równe -eps(T)?
                            true
--- Typ: Float32 ---
Wynik z formuły Kahana:
                              1.1920928955e-07
Wbudowane (eps(T)):
                              1.1920928955e-07
Czy równe eps(T)?
                            true
Czy równe -eps(T)?
                            false
--- Typ: Float64 ---
Wynik z formuły Kahana:
                               -2.2204460493e-16
Wbudowane (eps(T)):
                              2.2204460493e-16
Czy równe eps(T)?
                            false
Czy równe -eps(T)?
                             true
```

Interpretacja: Eksperyment dał zaskakujący i bardzo pouczający wynik. Wartość bezwzględna formuły Kahana jest zawsze równa eps(T), jednak znak wyniku zależy od typu zmiennoprzecinkowego.

```
• Float16: Wynik jest równy -eps(T).
```

- Float32: Wynik jest równy eps(T).
- Float64: Wynik jest równy -eps(T).

2.0.4 Wnioski

Stwierdzenie Kahana jest słuszne co do wartości bezwzględnej – formuła ta doskonale izoluje błąd zaokrąglenia o wielkości macheps. Różnica w znaku jest fascynującą ilustracją subtelności reguł zaokrąglania w standardzie IEEE 754.

Kluczowa jest pierwsza operacja: fl(4/3). Liczba 4/3 ma nieskończone rozwinięcie binarne: 1.01010101...₂. Standard **IEEE 754** stosuje zaokrąglanie do najbliższej wartości ("round-to-nearest").

- 1. Przypadek Float16 (p=11 bitów) i Float64 (p=53 bity): Dla obu tych precyzji, odcięta część rozwinięcia binarnego jest mniejsza niż połowa jednostki na ostatnim miejscu (ULP). Liczba 4/3 jest zaokrąglana w dół. Analiza błędu pokazuje, że $fl(4/3) = 4/3 \epsilon_1$ (błąd początkowy jest ujemny), co po kolejnych operacjach i końcowej anulacji daje wynik -macheps.
- 2. **Przypadek Float32** (p=24 bity): Dla tej konkretnej precyzji, odcięta część rozwinięcia jest większa niż połowa ULP. Liczba 4/3 jest zaokrąglana **w górę**. Analiza błędu pokazuje, że $fl(4/3)=4/3+\epsilon_1$ (błąd początkowy jest dodatni), co po propagacji błędu i końcowej anulacji daje wynik +macheps.

Eksperyment ten pokazuje, że kierunek zaokrąglenia w **obliczeniach maszynowych** zależy od konkretnej liczby bitów precyzji, co może prowadzić do pozornie sprzecznych (ale poprawnych) wyników dla różnych typów zmiennoprzecinkowych.

3 Zadanie 3: Rozmieszczenie liczb zmiennoprzecinkowych

3.1 Część 3.1: Badanie przedziału [1, 2]

3.1.1 Opis problemu

Zadanie polegało na eksperymentalnym sprawdzeniu, czy w arytmetyce Float64 (standard IEEE 754) liczby zmiennoprzecinkowe w przedziale [1,2] są równomiernie rozmieszczone. Mieliśmy zweryfikować, czy krok (odstęp) między kolejnymi liczbami jest stały i wynosi $\delta = 2^{-52}$. Weryfikacja opierała się na obliczeniu odstępu między 1.0 a następną liczbą maszynową oraz na analizie reprezentacji binarnej (używając bitstring).

3.1.2 Opis rozwiązania

Zdefiniowano teoretyczną wartość $\delta = 2^{-52}$ i porównano ją z eps(1.0). Następnie zbadano liczbę $x_1 = 1.0$ i jej reprezentację binarną. Kolejna liczba, x_2 , została wyznaczona na dwa sposoby: (1) przez dodanie delty $(1.0 + \delta)$ oraz (2) przy użyciu funkcji nextfloat(1.0). Porównano wyniki i ich reprezentacje binarne. Procedurę powtórzono dla x_3 (krok k = 2), porównując $1.0 + 2\delta$ z nextfloat(nextfloat(1.0)).

3.1.3 Wyniki i interpretacja

Poniżej przedstawiono kluczowe wyniki uzyskane z implementacji.

```
--- Część 3.1: Badanie przedziału [1.0, 2.0] ---
Teoretyczna delta (2<sup>-52</sup>):
                            2.22044604925031308e-16
Wartość eps(1.0):
                            2.22044604925031308e-16
Liczba x1 = 1.0 (k=0)
Bitstring x1:
              0 0111111111 00000000000000000000...
Liczba x2 (następna po 1.0, k=1)
Bitstring x2 (z nextfloat):
                           0 0111111111 000000000000000000000...0001
Bitstring x2 (z 1.0 + delta):
                             0 0111111111 00000000000000000000000...0001
                             1.0000000000000022e+00
Wartość x2 (z nextfloat):
Czy (1.0 + 2^{-52}) == nextfloat(1.0)?
Liczba x3 (k=2)
                           Bitstring x3 (z nextfloat):
                              Bitstring x3 (z 1.0 + 2*delta):
Czy (1.0 + 2*2^-52) == nextfloat(nextfloat(1.0))?
```

- Interpretacja: Wyniki w pełni potwierdzają hipotezę.
 - 1. **Zgodność** δ : Teoretyczna wartość $\delta = 2^{-52}$ jest identyczna z wartością eps (1.0).
 - 2. Analiza bitstring: $x_1 = 1.0$ ma wykładnik 2^0 (zapisany jako 01111111111) i zerową mantysę. Obie metody wyznaczenia x_2 (dla k = 1) dały identyczny wynik, w którym zmienił się tylko ostatni bit mantysy (...000 \rightarrow ...001). Dla k = 2, mantysa poprawnie zmieniła się na ...010.

3. Wniosek częściowy: Wszystkie liczby w przedziale [1, 2) mają ten sam wykładnik E = 0. Wartość liczby to $1.F \times 2^0$. Zmiana ostatniego bitu mantysy (o wadze 2^{-52}) przesuwa nas do kolejnej liczby maszynowej.

3.1.4 Wnioski

Eksperyment potwierdził, że w standardzie IEEE 754 dla Float64, liczby w przedziale [1,2] są rozmieszczone równomiernie (liniowo).

- Odstęp między nimi (ULP Unit in the Last Place) jest stały i wynosi $\delta = 2^{-52}$, co jest równe eps(1.0) (czyli macheps).
- Każda liczba x w tym przedziale może być zapisana jako $x=1.0+k\cdot 2^{-52}$, gdzie $k\in\{0,1,\ldots,2^{52}\}$.
- W **obliczeniach maszynowych** oznacza to, że błąd bezwzględny w tym przedziale jest stały.

3.2 Część 3.2: Badanie przedziałów [0.5, 1] oraz [2, 4]

3.2.1 Opis problemu

Należało zbadać, jak rozmieszczone są liczby Float64 w sąsiednich przedziałach potęg dwójki: [0.5,1] oraz [2,4]. Celem było znalezienie kroku δ dla każdego z tych przedziałów i określenie ogólnej formy reprezentacji liczb.

3.2.2 Opis rozwiązania

Dla przedziału [2,4] zbadano liczbę $y_1 = 2.0$ oraz $y_2 = \texttt{nextfloat}(2.0)$. Obliczono krok $\delta_y = y_2 - y_1$ i porównano go z eps(2.0) oraz 2^{-51} . Zanalizowano reprezentacje binarne y_1 i y_2 . Analogiczną procedurę zastosowano dla przedziału [0.5,1], badając $z_1 = 0.5$, $z_2 = \texttt{nextfloat}(0.5)$ i obliczając $\delta_z = z_2 - z_1$.

3.2.3 Wyniki i interpretacja

Poniżej przedstawiono wyniki dla obu przedziałów.

```
--- Część 3.2: Badanie przedziałów [2.0, 4.0] i [0.5, 1.0] ---
--- Przedział [2.0, 4.0] ---
Liczba y1 = 2.0
            Bitstring y1:
Liczba y2 (następna po 2.0)
Bitstring y2:
            Obliczony krok delta_y = y2-y1:
                             4.44089209850062616e-16
Wartość eps(2.0):
                         4.44089209850062616e-16
Czy delta_y == 2^-51?
                       true
--- Przedział [0.5, 1.0] ---
Liczba z1 = 0.5
            Bitstring z1:
Liczba z2 (następna po 0.5)
```

Obliczony krok delta_z = z2-z1: 1.11022302462515654e-16 Wartość eps(0.5): 1.11022302462515654e-16 Czy delta_z == 2^-53 ? true

Interpretacja:

- Przedział [2.0, 4.0]: $y_1 = 2.0$ ma wykładnik 2^1 (zapisany jako 100...000). Kolejna liczba y_2 ma ten sam wykładnik i mantysę ...001. Obliczony krok δ_y jest identyczny z eps(2.0) i 2^{-51} .
- Przedział [0.5, 1.0]: $z_1 = 0.5$ ma wykładnik 2^{-1} (zapisany jako 011...110). Kolejna liczba z_2 ma ten sam wykładnik i mantysę ...001. Obliczony krok δ_z jest identyczny z eps(0.5) i 2^{-53} .

3.2.4 Wnioski

Eksperyment pokazał, że liczby zmiennoprzecinkowe **nie są** rozmieszczone równomiernie w całym zakresie liczb rzeczywistych, ale są równomiernie (liniowo) rozmieszczone wewnątrz przedziałów $[2^E, 2^{E+1})$.

- W przedziałe [2,4] (E=1), krok $\delta_y=2^{-51}$, czyli $2\times\delta_{[1,2]}$. Liczby mają postać $x=2.0+k\cdot 2^{-51}$.
- W przedziałe [0.5,1] (E=-1), krok $\delta_z=2^{-53}$, czyli $\frac{1}{2}\times\delta_{[1,2]}$. Liczby mają postać $x=0.5+k\cdot 2^{-53}$.

W standardzie IEEE 754 odstęp (ULP) między liczbami podwaja się przy każdym przekroczeniu potęgi dwójki. W obliczeniach maszynowych oznacza to, że choć błąd bezwzględny rośnie wraz z wielkością liczby, błąd względny (czyli ulp(x)/x) pozostaje w przybliżeniu stały.

4 Zadanie 4: Badanie tożsamości $x \cdot (1/x) = 1$

4.0.1 Opis problemu

Zadanie polegało na (a) znalezieniu eksperymentalnie dowolnej oraz (b) znalezieniu **najmniej-szej** liczby zmiennopozycyjnej x w arytmetyce Float64 w przedziale (1,2), dla której tożsamość matematyczna $x \cdot (1/x) = 1$ nie jest spełniona. Oczekiwany błąd to $fl(x \cdot fl(1/x)) \neq 1$.

4.0.2 Opis rozwiązania

Zaimplementowano metodę "brute-force". Skrypt inicjuje x=1.0 i w pętli iteracyjnie przechodzi do następnej liczby maszynowej (x=nextfloat(x)), zliczając liczbę kroków k. Dla każdej liczby x oblicza wartość $v=fl(x\cdot fl(1/x))$. Pętla zatrzymuje się, gdy $v\neq 1.0$. Aby umożliwić analizę, program drukuje stan z ostatniej "poprawnej"iteracji (k-1) oraz z pierwszej "błędnej"iteracji (k). Skrypt został uruchomiony z terminala ('cmd'), aby zapewnić kompilację JIT i rozsądny czas wykonania.

4.0.3 Wyniki i interpretacja

Eksperyment zakończył się sukcesem, znajdując szukaną wartość po ponad 257 milionach iteracji.

```
--- Zadanie 4(a) i 4(b): Szukanie x w (1, 2) takiego, że x * (1/x) != 1 ---
Rozpoczynam poszukiwania (limit = 300000000 iteracji)...
... Przekroczono 100000000 iteracji, nadal szukam...
... Przekroczono 200000000 iteracji, nadal szukam...
--- Wyniki ---
Znaleziono najmniejszą liczbę x spełniającą warunek (odp. na 4b):
--- Ostatnia 'poprawna' iteracja (k-1) ---
                        1.0000005722899687e+00
x_{-}(k-1) =
Bitstring x_{k-1}:
                       001111111111000000000000...0101001
fl(1/x_(k-1)) =
                              9.9999942771006345e-01
fl(x * fl(1/x)) =
                      1.00000000000000000e+00
Bitstring wyniku:
                      001111111111000000000000...0000000
Wynik == 1.0:
--- Pierwsza 'błędna' iteracja (k) ---
x_k =
                        1.00000005722899710e+00
Bitstring x_k:
                       001111111111000000000000...0101010
Liczba k (x = 1.0 + k*eps(1.0)): 257736490
Sprawdzenie obliczenia dla x_k:
fl(1/x_k) =
                      9.99999942771006123e-01
fl(x_k * fl(1/x_k)) = 9.9999999999999989e-01
Bitstring wyniku:
                    00111111111011111111111111...1111111
Wynik != 1.0:
                      true
--- Koniec Zadania 4 ---
```

Interpretacja:

- Pętla zatrzymała się przy k=257,736,490. Jest to odpowiedź na zadanie (b) jest to najmniejsza liczba kroków $\delta=\text{eps}(1.0)$, dla której błąd występuje.
- Odpowiadająca jej liczba $x_k = 1.00000005722899710e + 00$ jest odpowiedzią na zadanie (a) i (b).
- Dla x_{k-1} wynik końcowy był poprawnie zaokrąglony do 1.0.
- Dla x_k wynik końcowy wyniósł 9.999...889e-01. Jest to liczba maszynowa bezpośrednio poprzedzająca 1.0, czyli prevfloat (1.0).
- Potwierdza to 'Bitstring wyniku' dla x_k , który ma wykładnik 2^{-1} i mantysę złożoną z samych jedynek, co jest reprezentacją prevfloat (1.0).

4.0.4 Wnioski

Eksperyment dowiódł, że tożsamość $x \cdot (1/x) = 1$ nie jest zachowana w **obliczeniach maszynowych**. Jest to skutek **kumulacji błędów zaokrągleń** w standardzie **IEEE 754**.

Występują tu dwa błędy:

- 1. Błąd ϵ_1 przy obliczaniu fl(1/x).
- 2. Błąd ϵ_2 przy obliczaniu $fl(x \cdot (1/x + \epsilon_1))$.

Dla k < 257,736,490 skumulowany błąd był na tyle mały, że ostateczny wynik $1 + \epsilon_{total}$ był nadal bliżej liczby maszynowej 1.0 i był do niej poprawnie zaokrąglany.

W iteracji k = 257,736,490 skumulowany błąd ϵ_{total} stał się na tyle duży (i ujemny), że "prawdziwy"wynik $1 - |\epsilon_{total}|$ przekroczył punkt środkowy między prevfloat (1.0) a 1.0, co spowodowało jego zaokrąglenie w dół do prevfloat (1.0), łamiąc tym samym tożsamość.

5 Zadanie 5: Błędy sumowania iloczynu skalarnego

5.0.1 Opis problemu

Zadanie polegało na obliczeniu iloczynu skalarnego $S = \sum_{i=1}^n x_i y_i$ dla danych wektorów x i y (n=5) przy użyciu czterech różnych algorytmów sumowania: (a) w przód, (b) w tył, (c) od największego do najmniejszego (wg wartości bezwzględnej, z osobnym sumowaniem dodatnich i ujemnych), (d) od najmniejszego do największego (przeciwnie do c). Obliczenia należało wykonać w precyzji Float32 oraz Float64 i porównać wyniki z wartością referencyjną $S_{ref} = -1.00657107000000 \cdot 10^{-11}$.

5.0.2 Opis rozwiązania

Zdefiniowano wektory x i y w precyzji Float64. Dla każdej badanej precyzji (Float32, Float64) najpierw obliczono wektor iloczynów $t_i = fl(x_i \cdot y_i)$, konwertując x i y do docelowej precyzji. Następnie zaimplementowano cztery funkcje sumujące wektor t: alg_a_forward (pętla i = 1..n), alg_b_backward (pętla i = n..1), alg_c_largest_to_smallest (sortowanie dodatnich malejąco, ujemnych rosnąco, sumowanie osobno, dodanie sum częściowych) oraz alg_d_smallest_to_largest (sortowanie przeciwne do c). Dla każdego wyniku obliczono błąd względny względem wartości referencyjnej.

5.0.3 Wyniki i interpretacja

Poniżej przedstawiono wyniki uzyskane z uruchomienia skryptu.

```
--- Zadanie 5: Błędy sumowania iloczynu skalarnego ---
```

```
--- Obliczenia dla typu: Float32 ---
--- Obliczenia dla typu: Float32 ---
Wektor obliczonych iloczynów (terms = x[i] * y[i]):
terms[1] = +4.040045654296875e+03
terms[2] = -2.759471500000000e+06
terms[3] = -3.164291381835938e+01
terms[4] = +2.7554627500000000e+06
terms[5] = +5.570529901888222e-05
```

--- Wyniki sumowania dla Float32 --
Metoda Wynik Obliczony Błąd Względny
-----(a) W przód -4.999442994594574e-01 4.967e+10

(b) W tył -4.543457031250000e-01 4.514e+10 (c) Najw.->Najm. -5.00000000000000e-01 4.967e+10

```
4.967e+10
--- Obliczenia dla typu: Float64 ---
_____
Wektor obliczonych iloczynów (terms = x[i] * y[i]):
terms[1] = +4.040045551380452e+03
terms[2] = -2.759471276702747e+06
terms[3] = -3.164291531266504e+01
terms[4] = +2.755462874010974e+06
terms[5] = +5.570529967428930e-05
--- Wyniki sumowania dla Float64 ---
               Wynik Obliczony
Metoda
                                        Błąd Względny
(a) W przód
               1.025188136829667e-10
                                        1.118e+01
(b) W tył
               -1.564330887049437e-10
                                        1.454e+01
(c) Najw.->Najm. 0.0000000000000000e+00
                                        1.000e+00
(d) Najm.->Najw. 0.000000000000000e+00
                                        1.000e+00
Wartość referencyjna:
                     -1.006571070000000e-11
--- Koniec Zadania 5 ---
```

Interpretacja:

- Float32: Wyniki są katastrofalne. Wektor iloczynów 'terms' zawiera dwie bardzo duże liczby o przeciwnych znakach ($t_2 \approx -2.76 \cdot 10^6$ i $t_4 \approx +2.76 \cdot 10^6$). Ich suma powinna być bliska zeru, ale w precyzji Float32 (ok. 7 cyfr dziesiętnych) dochodzi do **katastrofalnej anulacji**. Odejmując liczby bliskie sobie co do wartości bezwzględnej, tracimy niemal wszystkie cyfry znaczące. Ostateczne wyniki (≈ -0.5) są rzędy wielkości od wartości referencyjnej ($\approx -10^{-11}$), a błędy względne są gigantyczne ($\approx 10^{10}$). Kolejność sumowania ma niewielki wpływ przy tak dużej utracie precyzji.
- Float64: Wyniki są znacznie lepsze, rzędu 10^{-10} , ale nadal obarczone sporym błędem względnym ($\approx 10^1$). Precyzja Float64 (ok. 16 cyfr dziesiętnych) pozwala na dokładniejsze obliczenie różnicy między dużymi składnikami t_2 i t_4 , ale wynik nadal jest bardzo bliski zeru, co uwypukla błędy zaokrągleń pozostałych operacji.
 - Różne wyniki dla metod (a) i (b) potwierdzają, że dodawanie zmiennoprzecinkowe **nie jest łaczne**.
 - Metody (c) i (d), sortujące składniki, dały wynik dokładnie 0.0. Jest to mniej dokładne niż metody (a) i (b), co sugeruje, że sortowanie nie zawsze jest najlepszą strategią, szczególnie przy silnej anulacji.

5.0.4 Wnioski

Eksperyment dobitnie pokazał zjawisko **katastrofalnej anulacji** w **obliczeniach maszynowych**. Odejmując dwie bliskie sobie, duże liczby, tracimy precyzję. Skutki są druzgocące w niskiej precyzji (Float32), ale zauważalne nawet w Float64.

Potwierdzono również, że kolejność sumowania ma znaczenie (brak łączności dodawania w arytmetyce zmiennoprzecinkowej), co widać po różnych wynikach metod (a) i (b) dla Float64.

Algorytmy sortujące (c, d), często zalecane do minimalizacji błędów przez sumowanie najpierw małych liczb, w tym specyficznym przypadku dały mniej dokładny wynik (0.0) niż proste

sumowanie w przód/tył. Podkreśla to, że nie ma uniwersalnie najlepszego algorytmu sumowania, a wybór metody zależy od charakteru danych i potencjalnego występowania anulacji. Zadanie to ilustruje fundamentalne problemy **stabilności numerycznej** algorytmów.

6 Zadanie 6: Stabilność numeryczna f(x) vs g(x)

6.0.1 Opis problemu

Zadanie polegało na porównaniu wyników obliczeń dwóch matematycznie równoważnych funkcji:

$$f(x) = \sqrt{x^2 + 1} - 1$$
$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

dla malejących wartości argumentu $x=8^{-k}$ (k=1,2,...) w arytmetyce Float64. Celem było zaobserwowanie, jak błędy zaokrągleń wpływają na wyniki i określenie, która forma obliczeń jest bardziej wiarygodna (numerycznie stabilna) dla małych x.

6.0.2 Opis rozwiązania

Zaimplementowano dwie funkcje w Julii, f(x) i g(x), które dokładnie odzwierciedlają podane wzory matematyczne. Główna część skryptu iterowała przez $k=1,2,\ldots,15$, obliczając $x=8.0^{-k}$. W każdej iteracji obliczano wartości f(x) oraz g(x) i drukowano je obok siebie w celu porównania. Pętla zawierała warunek przerwania, gdy wynik f(x) stawał się dokładnie zerem, co sygnalizowało utratę precyzji. Wszystkie obliczenia wykonano w standardowej precyzji podwójnej (Float64).

6.0.3 Wyniki i interpretacja

Poniżej przedstawiono wyniki uzyskane z uruchomienia skryptu.

```
--- Zadanie 6: Porównanie f(x) = sqrt(x^2+1)-1 i g(x) = x^2/(sqrt(x^2+1)+1) --- Obliczenia w Float64 ---
```

k	$x = 8^{-(-k)}$	f(x)	g(x)
1	1.25000000e-01	7.78221853731864144e-03	7.78221853731870649e-03
2	1.56250000e-02	1.22062862828675733e-04	1.22062862828759014e-04
3	1.95312500e-03	1.90734681382309645e-06	1.90734681382656590e-06
4	2.44140625e-04	2.98023219436061026e-08	2.98023219436061159e-08
5	3.05175781e-05	4.65661287307739258e-10	4.65661287199319041e-10
6	3.81469727e-06	7.27595761418342590e-12	7.27595761415695612e-12
7	4.76837158e-07	1.13686837721616030e-13	1.13686837721609567e-13
8	5.96046448e-08	1.77635683940025046e-15	1.77635683940024889e-15
9	7.45058060e-09	0.00000000000000000e+00	2.77555756156289135e-17

Przerywam: f(x) stało się zerem lub g(x) osiągnęło limit precyzji.

--- Koniec Zadania 6 ---

Interpretacja:

• Dla dużych wartości x (małe k), wyniki f(x) i g(x) są bardzo zbliżone.

- W miarę jak x maleje (rośnie k), różnica między f(x) a g(x) staje się zauważalna, chociaż obie wartości maleją.
- Przy k=8 $(x\approx 6\cdot 10^{-8}),\ f(x)$ i g(x) dają wyniki różniące się na ostatnich cyfrach znaczących.
- Przy k=9 ($x\approx 7\cdot 10^{-9}$), następuje załamanie obliczeń dla f(x). Wynik staje się dokładnie 0.0. W tym momencie $\sqrt{x^2+1}$ jest tak bliskie 1, że w arytmetyce Float64 jest zaokrąglane do dokładnie 1.0. Operacja 1.0–1.0 daje zero. Jest to klasyczny przykład **katastrofalnej anulacji** (odejmowanie dwóch bardzo bliskich sobie liczb).
- Funkcja g(x) nadal daje poprawny, mały, ale niezerowy wynik ($\approx 2.8 \cdot 10^{-17}$). Forma g(x) unika odejmowania bliskich liczb; zamiast tego wykonuje stabilne numerycznie dodawanie $\sqrt{x^2+1}+1$.

6.0.4 Wnioski

Eksperyment pokazał, że chociaż funkcje f(x) i g(x) są matematycznie równoważne, ich **stabilność numeryczna** w **obliczeniach maszynowych** jest drastycznie różna dla małych wartości x.

- Wzór $f(x) = \sqrt{x^2 + 1} 1$ jest **niestabilny numerycznie** dla $x \to 0$ z powodu **katastrofalnej anulacji**. Prowadzi to do całkowitej utraty cyfr znaczących i błędnego wyniku (zero).
- Wzór $g(x) = x^2/(\sqrt{x^2+1}+1)$ jest **stabilny numerycznie** dla $x \to 0$. Unika on problematycznego odejmowania, zastępując je stabilnym dodawaniem i dzieleniem.

Wyniki obliczeń dla g(x) są wiarygodne w całym przetestowanym zakresie, podczas gdy wyniki dla f(x) stają się bezużyteczne dla $x < 10^{-8}$. To zadanie jest doskonałym przykładem, jak przekształcenie algebraiczne wyrażenia może radykalnie poprawić dokładność obliczeń w arytmetyce zmiennoprzecinkowej zgodnej ze standardem **IEEE 754**.

7 Zadanie 7: Błąd aproksymacji pochodnej

7.0.1 Opis problemu

Zadanie polegało na obliczeniu przybliżonej wartości pochodnej funkcji $f(x) = \sin x + \cos 3x$ w punkcie $x_0 = 1$ za pomocą wzoru różnicy skończonej w przód:

$$\tilde{f}'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h}$$

Należało zbadać zachowanie błędu bezwzględnego $|f'(x_0) - \tilde{f}'(x_0)|$ dla malejących kroków $h = 2^{-n}$, gdzie $n = 0, 1, \ldots, 54$. Obliczenia wykonano w arytmetyce Float64. Szczególną uwagę należało zwrócić na moment, od którego zmniejszanie h przestaje poprawiać wynik, oraz na zachowanie wartości 1.0 + h.

7.0.2 Opis rozwiązania

Zaimplementowano funkcję f(x) obliczającą $\sin x + \cos 3x$ oraz funkcję $f_{prime_exact}(x)$ obliczającą dokładną pochodną $\cos x - 3\sin 3x$. Główna część skryptu iterowała przez n od 0 do 54. W każdej iteracji obliczano $h = 2.0^{-n}$, $x_0 + h$, oraz wartość 1.0 + h. Następnie obliczano przybliżoną pochodną $\tilde{f}'(x_0)$ używając podanego wzoru, dbając o przypadek, gdy $x_0 + h$ zaokrąglało się do x_0 (wtedy wynik aproksymacji staje się 0). Na koniec obliczano i drukowano błąd bezwzględny $|f'(x_0) - \tilde{f}'(x_0)|$.

7.0.3 Wyniki i interpretacja

Poniżej przedstawiono wybrane wyniki uzyskane z uruchomienia skryptu (pełne wyniki w logu).

```
--- Zadanie 7: Błąd aproksymacji pochodnej f(x) = \sin(x) + \cos(3x) w x0 = 1 --- Obliczenia w Float64 ---
```

Punkt x0 = 1.0Dokładna pochodna f'(x0) = 1.16942281688538152e-01

n	h = 2^(-n)	f_approx'(x0)	f'(x0)	- f_approx'(x0)	1.0 + h (w Float
0	1.00000000e+00	2.0179892252685967	0e+00	1.90104694e+00	2.0000000000
		• • •			
25	2.98023224e-08	1.1694239825010299	7e-01	1.16561565e-07	1.0000000298
26	1.49011612e-08	1.1694233864545822	1e-01	5.69569201e-08	1.000000149
27	7.45058060e-09	1.1694231629371643	1e-01	3.46051783e-08	1.000000074
28	3.72529030e-09	1.1694228649139404	3e-01	4.80285589e-09	< Minimum błędu
29	1.86264515e-09	1.1694222688674926	8e-01	5.48017889e-08	1.000000018
30	9.31322575e-10	1.1694216728210449	2e-01	1.14406434e-07	1.000000000
	• • •	• • •		• • •	• • •
51	4.44089210e-16	0.0000000000000000	0e+00	1.16942282e-01	1.000000000
52	2.22044605e-16	-5.000000000000000	00e-01	6.16942282e-01	1.000000000
53	1.11022302e-16	0.0000000000000000	0e+00	1.16942282e-01	1.000000000
54	5.55111512e-17	0.00000000000000000	0e+00	1.16942282e-01	1.000000000

--- Koniec Zadania 7 ---

Interpretacja:

- Początkowa poprawa: Dla dużych h (małe n), błąd jest duży. W miarę zmniejszania h, błąd maleje. Jest to zgodne z teorią, ponieważ błąd obcięcia (truncation error) metody różnicy skończonej jest proporcjonalny do h (dokładniej O(h)).
- Minimum błędu: Błąd osiąga minimum w okolicach n=28, gdzie $h\approx 3.7\cdot 10^{-9}$, a błąd wynosi ok. $4.8\cdot 10^{-9}$.
- Wzrost błędu: Dalsze zmniejszanie h (zwiększanie n) powoduje, że błąd ponownie rośnie. Jest to spowodowane dominacją błędu zaokrągleń (round-off error). W liczniku $\tilde{f}'(x_0)$ odejmujemy dwie bardzo bliskie sobie wartości, $f(x_0 + h)$ i $f(x_0)$, co prowadzi do **katastrofalnej anulacji**. Dodatkowo, dzielenie przez bardzo małe h wzmacnia ten błąd.
- **Zachowanie** 1.0 + h: Obserwacja wartości 1.0 + h pokazuje, że dla n = 53 ($h \approx 1.1 \cdot 10^{-16}$), wartość 1.0 + h jest zaokrąglana do dokładnie 1.0. Wtedy $x_0 + h$ staje się równe x_0 , licznik aproksymacji pochodnej $f(x_0) f(x_0)$ staje się zero, a przybliżona pochodna również wynosi zero. Błąd aproksymacji staje się równy wartości bezwzględnej dokładnej pochodnej.
- Dziwny wynik dla n=52: Dla n=52, $h=\exp(1.0)/2$. Wtedy 1.0+h zaokrągla się do $1.0+\exp(1.0)$, a x_0+h do $x_0+\exp(1.0)$. Obliczenie $(f(x_0+\epsilon)-f(x_0))/(\epsilon/2)$ daje bardzo niedokładny wynik.

7.0.4 Wnioski

Eksperyment ilustruje fundamentalny problem w numerycznym różniczkowaniu: wybór optymalnego kroku h.

- Zbyt duże h prowadzi do dużego błędu obcięcia metody.
- Zbyt małe h prowadzi do dominacji **błędu zaokrągleń** spowodowanego **katastrofalną anulacją** w liczniku i wzmocnieniem przez mały mianownik.

Istnieje optymalna wartość h, która minimalizuje sumę tych dwóch błędów. W naszym przypadku dla Float64 było to $h\approx 10^{-8}$ do 10^{-9} .

Obserwacja 1.0 + h pokazała, jak ograniczenia precyzji maszynowej (**standard IEEE 754**) bezpośrednio wpływają na obliczenia: gdy h staje się mniejsze niż $\approx eps(1.0)/2$, dodanie go do 1.0 nie daje już oczekiwanego wyniku, co prowadzi do załamania metody różnicowej.