University of Utah

Spring 2024

MATH 2270-002 Midterm 3 Questions

Instructor: Alp Uzman

April 12 2024, 8:35 AM - 9:25 AM

Surname:	KEY	
First Name:		
uNID:		71

Before turning the page make sure to read and sign the exam policy document, distributed separately.

1. [90 points] Consider the following matrix:

(a) [points] Write the characteristic equation of A.

$$S = \begin{pmatrix} 72 \\ 24 \end{pmatrix} \Rightarrow A = \begin{pmatrix} 500 \\ 500 \\ 500 \\ 500 \\ 600$$

=> Chareq: 1) (1-3)2(3-8)2=0

20

(b) [points] Compute all eigenvalues of A.

Eigenvalues of the chair.

≥ [0,3,8]

(c) [15 points] For each distinct eigenvalue of A find a basis of the associated eigenspace.

$$\left(\begin{array}{c} 2 & -2 \\ -2 & L \end{array}\right) \Rightarrow M_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ \end{array}$$

$$V_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 2 \end{pmatrix}$$

$$\lambda_2 = 3$$

$$\begin{pmatrix} 3-7 & -2 \\ -2 & 3-4 \end{pmatrix}$$

$$W_2 = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$$

120

Sor o Sours for (d) [10 points] Compute the algebraic and geometric multiplicities of each distinct eigenvalue of A.

Ainsonalizable = LAM = GM TAM(O) = 1; FM(G) = 2; FM/8

(e) [10 points] Is A diagonalizable? If it is, find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

D= \\ \frac{9000}{0000} \\ \fr

(f) **[points]** Is A orthogonally diagonalizable? If it is, find an orthogonal matrix Q and a diagonal matrix E such that $A = QEQ^T$.

|V|=|V|=|V|=|V|=|24,2=15

(g) [m points] Compute the orthogonal projection of the vector

$$b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

to the columnspace of A.

(h) [5 points] Compute the singular value decomposition of A.

+ Symmetric => singular values are abs. values

2. [7 points] Compute the singular values of the following matrix:

$$A = \begin{pmatrix} 3 & 5 \\ 4 & 0 \end{pmatrix}.$$

$$A = \begin{pmatrix} 3 & 5 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 25 & 15 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 3 & 5 \\ 5 & 0 \end{pmatrix} \begin{pmatrix} 3 & 5 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 15 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 3 & 5 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 3 & 5 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 3 & 5 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 3 & 5 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 25 \end{pmatrix}.$$

$$A = \begin{pmatrix} 5 & 5 \\ 15 & 2$$

3. **[3 points]** Let A be an $m \times n$ matrix and b be a vector in \mathbb{R}^m . Assume that the rank of A is n. Verify that the orthogonal projection of b onto the columnspace of A is given by

 $A(A^{T}A)^{-1}A^{T}b$.) => For some & ERM: [A b-BECOLAT = NOW (AT) = ATB= اع ا

2270-002 M3

Page 11 of 12

Initials: