International TOR Rectifier

IRS2184/IRS21844(S)PbF

HALF-BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V and 5 V input logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5 V offset
- Lower di/dt gate driver for better noise immunity
- Output source/sink current capability 1.4 A/1.8 A
- RoHS compliant

8-Lead PDIP IRS2184 14-Lead PDIP IRS21844 8-Lead SOIC IRS2184S 14-Lead SOIC IRS21844S

Description

The IRS2184/IRS21844 are high voltage, high speed power MOSFET and IGBT drivers with dependent high-side and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a

Feature Comparison

Packages

Part	Input logic	Cross- conduction prevention logic	Deadtime (ns)	Ground Pins	ton/toff (ns)
2181	HIN/LIN	no	no none	COM	180/220
21814	I IIIN/LIIN	110	none	Vss/COM	100/220
2183	HIN/LIN	1400	Internal 400	COM	180/220
21834	TIIN/LIIN	yes	Program 400-5000	Vss/COM	100/220
2184	IN/SD	VOS	Internal 400	COM	680/270
21844	114/3D	yes	Program 400-5000	Vss/COM	000/270

high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

International IOR Rectifier

IRS2184/IRS21844(S)PbF

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High-side floating absolute voltage	-0.3	620 (Note 1)		
Vs	High-side floating supply offset voltage		V _B - 20	V _B + 0.3	
VHO	High-side floating output voltage		Vs - 0.3	V _B + 0.3	
Vcc	Low-side and logic fixed supply voltage		-0.3	20 (Note 1)	V
V _{LO}	Low-side output voltage		-0.3	V _{CC} + 0.3	V
DT	Programmable deadtime pin voltage (IRS2	1844 only)	V _{SS} - 0.3	V _{CC} + 0.3	
VIN	Logic input voltage (IN & SD)	Vss - 0.3	V _{CC} + 0.3		
V _{SS}	Logic ground (IRS21844 only)	V _{CC} - 20	V _{CC} + 0.3		
dVs/dt	Allowable offset supply voltage transient	_	50	V/ns	
	(8-lear	(8-lead PDIP)	_	1.0	W
D-		(8-lead SOIC)	_	0.625	
P _D	Package power dissipation @ T _A ≤ +25 °C	(14-lead PDIP)	_	1.6	
		(14-lead SOIC)	_	1.0	
		(8-lead PDIP)	_	125	
RthJA	Thermal registence, junction to embient	(8-lead SOIC)	_	200	
Кизд	Thermal resistance, junction to ambient	(14-lead PDIP)	_	75	°C/W
	(14-lead S		_	120	•
TJ	Junction temperature	_	150		
Ts	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Note 1: All supplies are fully tested at 25 V and an internal 20 V clamp exists for each supply.

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset rating are tested with all supplies biased at a 15 V differential.

Symbol	Definition	Min.	Max.	Units
VB	High-side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High-side floating supply offset voltage	Note 2	600	
VHO	High-side floating output voltage	Vs	VB	
V _{CC}	Low-side and logic fixed supply voltage	10	20	
V _{LO}	Low-side output voltage	0	Vcc	V
V _{IN}	Logic input voltage (IN & SD)	V _{SS}	V _{CC}	
DT	Programmable deadtime pin voltage (IRS21844 only)	V _{SS}	Vcc	
V _{SS}	Logic ground (IRS21844 only)	-5	5	
TA	Ambient temperature	-40	125	°C

Note 2: Logic operational for V_S of -5 V to +600 V. Logic state held for V_S of -5 V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25° C, DT = VSS unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	680	900		V _S = 0 V
toff	Turn-off propagation delay	_	270	400		V _S = 0 V or 600 V
tsd	Shut-down propagation delay	_	180	270		
MTon	Delay matching, HS & LS turn-on		0	90	ns	
MToff	Delay matching, HS & LS turn-off		0	40		
t _r	Turn-on rise time		40	60		Vs = 0 V
tf	Turn-off fall time	_	20	35		VS = 0 V
DT	Deadtime: LO turn-off to HO turn-on(DTLO-HO) &	280	400	520		R _{DT} = 0 Ω
וט	HO turn-off to LO turn-on (DTHO-LO)	4	5	6	μs	$R_{DT} = 200 \text{ k}\Omega$
MDT	Deadtime matching - DTLO LIQ DTLIQ LQ	_	0	50	ns	R _{DT} =0 Ω
וטועו	Deadtime matching = DTLO - HO - DTHO-LO		0	600		$R_{DT} = 200 \text{ k}\Omega$

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, V_{SS} = COM, DT= V_{SS} and T_A = 25 °C unless otherwise specified. The V_{IL} , V_{IH} , and I_{IN} parameters are referenced to V_{SS} /COM and are applicable to the respective input leads: IN and \overline{SD} . The V_O , I_O , and R_{OD} parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "1" input voltage for HO & logic "0" for LO	2.5	_	_		
V _{IL}	Logic "0" input voltage for HO & logic "1" for LO	_	_	0.8		V _{CC} = 10 V to 20 V
V _{SD,TH+}	SD input positive going threshold	2.5	_	_	V	
V _{SD,TH} -	SD input negative going threshold		_	0.8	V	
V _{OH}	High level output voltage, V _{BIAS} - V _O	_	_	1.4		I _O = 0 A
V _{OL}	Low level output voltage, VO	-	_	0.2		$I_O = 20 \text{ mA}$
I _{LK}	Offset supply leakage current	-	_	50		$V_B = V_S = 600 \text{ V}$
I _{QBS}	Quiescent V _{BS} supply current	20	60	150	μA)/ 0)/ = = 5.\/
lacc	Quiescent V _{CC} supply current 0.4 1.0 1.6 r		mA	$V_{IN} = 0 \text{ V or 5 V}$		
I _{IN+}	Logic "1" input bias current		25	60	μA	IN = 5 V, SD = 0 V
I _{IN-}	Logic "0" input bias current	-	_	5.0	μΑ	IN = 0 V, SD = 5 V
V _{CCUV+} V _{BSUV+}	V_{CC} and V_{BS} supply undervoltage positive going threshold	8.0	8.9	9.8		
V _{CCUV} - V _{BSUV} -	V_{CC} and V_{BS} supply undervoltage negative going threshold	7.4	8.2	9.0	V	
V _{CCUVH} V _{BSUVH}	Hysteresis	0.3	0.7	_	V	
I _{O+}	Output high short circuit pulsed current	1.4	1.9	_	_	$V_O = 0 V$, $PW \le 10 \mu s$
lo-	Output low short circuit pulsed current	1.8	2.3	_	A	V _O = 15 V, PW ≤ 10 μs

Functional Block Diagrams

Lead Definitions

Symbol	Description
IN	Logic input for high-side and low-side gate driver outputs (HO and LO), in phase with HO
IIN	(referenced to COM for IRS2184 and VSS for IRS21844)
SD	Logic input for shutdown (referenced to COM for IRS2184 and VSS for IRS21844)
DT	Programmable deadtime lead, referenced to VSS. (IRS21844 only)
VSS	Logic ground (IRS21844 only)
V _B	High-side floating supply
НО	High-side gate drive output
Vs	High-side floating supply return
Vcc	Low-side and logic fixed supply
LO	Low-side gate drive output
СОМ	Low-side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Shutdown Waveform Definitions

Figure 4. Deadtime Waveform Definitions

Figure 5. Delay Matching Waveform Definitions

International TOR Rectifier

IRS2184/IRS21844(S)PbF

Figure 6A. Turn-On Propagation Delay vs. Temperature

Figure 6B. Turn-On Propagation Delay vs. Supply Voltage

Figure 7A. Turn-Off Propagation Delay vs. Temperature

Figure 7B. Turn-Off Propagation Delay vs. Supply Voltage

Figure 8A. SD Propagation Delay vs. Temperature

Figure 8B. SD Propagation Delay vs. Supply Voltage

Figure 9A. Turn-On Rise Time vs.
Temperature

Figure 9B. Turn-On Rise Time vs. Supply Voltage

Figure 10A. Turn-Off Fall Time vs. Temperature

Figure 10B. Turn-Off Fall Time vs. Supply Voltage

Figure 11A. Deadtime vs. Temperature

Figure 11B. Deadtime vs. Supply Voltage

Figure 11C. Deadtime vs. $R_{\rm DT}$

Figure 12A. Logic "1" Input Voltage vs. Temperature

Figure 12B. Logic "1" Input Voltage vs. Supply Voltage

Figure 13A. Logic "0" Input Voltage vs. Temperature

Figure 13B. Logic "0" Input Voltage vs. Supply Voltage

Figure 14B. SD input positive going threshold (+) vs. Supply Voltage

Figure 14A. SD input positive going threshold (+) vs. Temperature

Figure 15A. SD Input Negative Going Threshold vs. Temperature

Figure 15B. SD Input Negative Going Threshold vs. Supply Voltage

Figure 16A. High Level Output Voltage vs. Temperature $(I_0 = 0 \text{ mA})$

Figure 16B. High Level Output Voltage vs. Supply Voltage (I_O = 0 mA)

Figure 17A. Low Level Output vs. Temperature

Figure 17B. Low Level Output vs. Supply Voltage

Figure 18A. Offset Supply Leakage Current vs. Temperature

Figure 18B. Offset Supply Leakage Current vs. $V_{\rm B}$ Boost Voltage

Figure 19A. V_{BS} Supply Current vs. Temperature

Figure 19B. $V_{\rm BS}$ Supply Current vs. $V_{\rm BS}$ Floating Supply Voltage

Figure 20A. $V_{\rm CC}$ Supply Current vs. Temperature

Figure 20B. $V_{\rm CC}$ Supply Current vs. $V_{\rm CC}$ Supply Voltage

Figure 21A. Logic "1" Input Bias Current vs. Temperature

Figure 21B. Logic "1" Input Bias Current vs. Supply Voltage

Figure 22A. Logic "0" Input Bias Curremt vs. Temperature

Figure 22B. Logic "0" Input Bias Curremt vs. Voltage

Figure 23. $\rm V_{\rm CC}$ and $\rm V_{\rm BS}$ Undervoltage Threshold (+) vs. Temperature

Figure 24. $\rm V_{CC}$ and $\rm V_{BS}$ Undervoltage Threshold (-) vs. Temperature

Figure 25A. Output Source Current vs. Temperature

Figure 25B. Output Source Current vs. Supply Voltage

Figure 26A. Output Sink Current vs. Temperature

Figure 26B. Output Sink Current vs. Supply Voltage

Figure 27. IRS2181 vs. Frequency (IRFBC20), $\rm R_{\rm qate}$ =33 $\Omega, \rm V_{\rm cc}$ =15 V

Figure 28. IRS2181 vs. Frequency (IRFBC30), $\rm R_{\rm gate}$ =22 $\Omega,\,\rm V_{\rm CC}$ =15 V

Figure 29. IRS2181 vs. Frequency (IRFBC40), $\rm R_{gate}$ =15 $\Omega,\,\rm V_{cc}$ =15 V

Figure 30. IRS2181 vs. Frequency (IRFPE50), $\rm R_{\rm gate}$ =10 W, $\rm V_{\rm cc}$ =15 V

Figure 31. IRS21814 vs. Frequency (IRFBC20), $\rm R_{\rm gate} = 33~W,~V_{\rm CC} = 15~V$

Figure 32. IRS21814 vs. Frequency (IRFBC30), $\rm R_{oate}$ =22 W, $\rm V_{cc}$ =15 V

Figure 33. IRS21814 vs. Frequency (IRFBC40), $\rm R_{\rm qate}$ =15 $\rm W$, $\rm V_{\rm CC}$ =15 V

Figure 34. IRS21814 vs. Frequency (IRFPE50), $\rm R_{\rm gate}$ =10 W, $\rm V_{\rm cc}$ =15 V

Figure 35. IRS2181s vs. Frequency (IRFBC20), $\rm R_{oate}$ =33 W, $\rm V_{cc}$ =15 V

Figure 36. IRS2181s vs. Frequency (IRFBC30), $\rm R_{\rm gate} = 22~W$, $\rm V_{\rm cc} = 15~V$

Figure 37. IRS2181s vs. Frequency (IRFBC40), $\rm R_{\rm gate} = 15~W,~V_{\rm CC} = 15~V$

Figure 38. IRS2181s vs. Frequency (IRFPE50), $\rm R_{oate}$ =10 $\rm W$, $\rm V_{cc}$ =15 V

Figure 39. IRS21814s vs. Frequency (IRFBC20), $\rm R_{\rm gate} = 33~W,\,V_{\rm cc} = 15~V$

Figure 40. IRS21814s vs. Frequency (IRFBC30), $\rm R_{\rm gate}$ =22 W, $\rm V_{\rm CC}$ =15 V

Figure 41. IRS21814s vs. Frequency (IRFBC40), $\rm R_{\rm gate}$ =15 $\rm W$, $\rm V_{\rm cc}$ =15 V

Figure 42. IRS21814s vs. Frequency (IRFPE50), $\rm R_{\rm gate} = 10~W$, $\rm V_{\rm CC} = 15~V$

Cast Outlines

International IOR Rectifier

IRS2184/IRS21844(S)PbF

Tape & Reel 8-lead SOIC

CARRIER TAPE DIMENSION FOR 8SOICN					
	Ме	tric	lm p erial		
Code	Min	Max	Min	Max	
Α	7.90	8.10	0.311	0.318	
В	3.90	4.10	0.153	0.161	
С	11.70	12.30	0.46	0.484	
D	5.45	5.55	0.214	0.218	
E	6.30	6.50	0.248	0.255	
F	5.10	5.30	0.200	0.208	
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.062	

REEL DIMENSIONS FOR 8SOICN						
	Me	tric	lm p erial			
Code	Min	Max	Min	Max		
Α	329.60	330.25	12.976	13.001		
В	20.95	21.45	0.824	0.844		
С	12.80	13.20	0.503	0.519		
D	1.95	2.45	0.767	0.096		
E	98.00	102.00	3.858	4.015		
F	n/a	18.40	n/a	0.724		
G	14.50	17.10	0.570	0.673		
Н	12.40	14.40	0.488	0.566		

International TOR Rectifier

IRS2184/IRS21844(S)PbF

Tape & Reel 14-lead SOIC

CARRIER TAPE DIMENSION FOR 14SOICN

	M e	tric	lm p erial	
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	15.70	16.30	0.618	0.641
D	7.40	7.60	0.291	0.299
E	6.40	6.60	0.252	0.260
F	9.40	9.60	0.370	0.378
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 14SOICN

	M e	tric	Im p	erial	
Code	Min	Max	Min	Max	
Α	329.60	330.25	12.976	13.001	
В	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E	98.00	102.00	3.858	4.015	
F	n/a	22.40	n/a	0.881	
G	18.50	21.10	0.728	0.830	
H	16.40	18.40	0.645	0.724	

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

8-Lead PDIP IRS2184PbF 8-Lead SOIC IRS2184SPbF 8-Lead SOIC Tape & Reel IRS2184STRPbF 14-Lead PDIP IR2S1844PbF 14-Lead SOIC IRS21844SPbF 14-Lead SOIC Tape & Reel IRS21844STRPbF

International

TOR Rectifier

The SOIC-8 is MSL2 qualified.
The SOIC-14 is MSL3 qualified.
This product has been designed and qualified for the industrial level.

Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 11/27/2006