MÉMOIRE DE RECHERCHE

Approximation numérique d'ordre élevé de l'équation de Saint Venant

Auteurs :
Brice GONEL
Romain PINGUET

Professeur encadrant : Thomas REY

Table des matières

1	Description et dérivation des équations	4
	1.1 Description des équations	4
	1.2 Dérivation des équations	4
2	Découverte du modèle et premières propriétés qualitatives	6
3	Implémentation du schéma de Rusanov	7
	3.1 Présentation du schéma et résultats de convergence	7
	3.2 Validation de l'implémentation avec des tests	9
4	Utilisation des limiteurs de pente pour une montée en ordre	9
5	Passage au cas 2D	
A	Annexes	10
	A.1 Le code	10

1 Description et dérivation des équations

Ici, il s'agit d'énoncer les équations, de décrire les différentes quantités en jeu (h, u, q et Z) et d'expliquer comment on peut arriver à ces équations.

1.1 Description des équations

Le système de Saint-Venant avec terme source (qui est aussi désigné par le nom « équations d'écoulements en eau peu profonde ») est le suivant :

$$\begin{cases} \frac{\partial h}{\partial t}(t,x) + \frac{\partial q}{\partial x}(t,x) = 0\\ \frac{\partial q}{\partial t}(t,x) + \frac{\partial}{\partial x}(\frac{q^2(t,x)}{h(t,x)} + g\frac{h^2(t,x)}{2}) = -gh(t,x)\frac{\partial Z}{\partial x}(x) \end{cases}$$

Celui-ci permet de décrire un écoulement d'eau unidirectionnel où h(t,x)>0 représente la hauteur d'eau, u(t,x) désigne la vitesse du fluide, q(t,x)=h(t,x)u(t,x) le débit du fluide et Z(x) la topographie canal; $t\geq 0$ étant le temps, $x\in\mathbb{R}$ la position spatiale dans le cours d'eau et g la constante de gravitation.

Dans ce système, Z ne dépend pas du temps t. On fait ainsi l'hypothèse que le fond ne s'érode pas au cours du temps; ce qui parait raisonnable dans de nombreuses situations (un fond rocheux sur une courte durée, par exemple).

1.2 Dérivation des équations

Rappelons la règle de Leibniz qui permet de calculer la dérivée par rapport à x d'une fonction de la forme $\int_{a(x)}^{b(x)} f(x,t) dt$.

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ telle que f et $\frac{\partial f}{\partial x}$ soient continues sur \mathbb{R} , et soient a et b deux fonctions dérivables de \mathbb{R} dans \mathbb{R} . Alors, l'intégrale paramétrique F définie sur \mathbb{R} par : $F(x) = \int_{a(x)}^{b(x)} f(x,y) \, \mathrm{d}y$ est dérivable et :

$$F'(x) = f(x,b(x))b'(x) - f(x,a(x))a'(x) + \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x,y) \, \mathrm{d}y.$$

Nous allons maintenant dériver la deuxième équation du système. Il s'agit de l'**équation du moment**. Ecrivons la composante selon *x* de l'équation d'Euler :

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial x}.$$

On fait l'hypothèse que les quantités h et u sont invariantes selon l'axe (Oy). Ainsi, l'étude se ramène au plan (Oxz). Dans ces conditions, le terme $\frac{\partial u}{\partial y}$ est nul et on obtient :

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial x}.$$

On sait par l'équation de continuité pour un fluide incompressible que $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$. En multipliant par u cette équation, on arrive à $u \frac{\partial u}{\partial x} + u \frac{\partial v}{\partial y} + u \frac{\partial w}{\partial z} = 0$. D'où en sommant avec (ref) :

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}(u^2) + \frac{\partial}{\partial y}(uv) + \frac{\partial}{\partial z}(uw) = -\frac{1}{\rho}\frac{\partial P}{\partial x}.$$

De nouveau, l'hypothèse d'invariance selon (Oy) permet de dire que $\frac{\partial}{\partial y}(uv) = 0$ et on arrive à :

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}(u^2) + \frac{\partial}{\partial z}(uw) = -\frac{1}{\rho}\frac{\partial P}{\partial x}.$$

Maintenant, on intègre entre z = 0 et z = h:

$$\int_0^h \left[\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} (u^2) \right] dz + [uw]_0^h = \frac{1}{\rho} \int_0^h \frac{\partial P}{\partial x} dz.$$

Avec la règle de Leibniz, on a d'une part :

$$\frac{\partial}{\partial t} \int_0^h u \, dz = \int_0^h \frac{\partial u}{\partial t} \, dz + u_h \frac{\partial h}{\partial t} + u_0 \frac{\partial}{\partial t} (0) = \int_0^h \frac{\partial u}{\partial t} \, dz + u_h \frac{\partial h}{\partial t}$$

et d'autre part (règle de Leibniz pour l'autre morceau) :

...

Donc en injectant dans (ref) on obtient :

$$\frac{\partial}{\partial t} \left[\int_0^h u \, dz \right] - u_h \frac{\partial h}{\partial t} + \frac{\partial}{\partial x} \left[\int_0^h u^2 \, dz \right] - u_h^2 \frac{\partial h}{\partial x} + u_h w_h = -\frac{1}{\rho} \int_0^h \frac{\partial P}{\partial x} \, dz$$

Si l'on suppose que la vitesse u est constante selon l'axe z, on a que $\int_0^h u \, dz = uh$ et donc :

$$\frac{\partial}{\partial t}(uh) + \frac{\partial}{\partial x} \int_0^h u^2 dz - u_h \left(\frac{\partial h}{\partial t} + u_h \frac{\partial h}{\partial x} - w_h\right) = -\frac{1}{\rho} \int_0^h \frac{\partial u}{\partial t} dz$$

ce qui d'après la condition (de bord à la surface libre) (ref) se réduit en :

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \int_0^h u^2 dz = -\frac{1}{\rho} \int_0^h \frac{\partial P}{\partial x} dz$$

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x}(hu^2) = -\frac{1}{\rho} \int_0^h \frac{\partial P}{\partial x} \, \mathrm{d}z$$

Encore une fois avec la règle de Leibniz $\int_0^h \frac{\partial P}{\partial x} \, \mathrm{d}z = \frac{\partial}{\partial x} \int_0^h P \, \mathrm{d}z - P(h) \frac{\partial h}{\partial z} + P(0) \frac{\partial}{\partial z}(0) = \frac{\partial}{\partial x} \int_0^h P \, \mathrm{d}z$. En utilisant la formule d'équilibre hydrostatique : $\int_0^h P \, \mathrm{d}z = \frac{1}{2} \rho g h \times h \Rightarrow -\frac{1}{\rho} \int_0^h \frac{\partial P}{\partial x} \, \mathrm{d}z = -\frac{1}{2} g \frac{\partial h^2}{\partial x}$.

Et finalement on arrive à la deuxième équation en remplaçant :

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} (\frac{q^2}{h} + g \frac{h^2}{2}) = 0$$

Les deux équations obtenues forment un système d'équations aux dérivées partielles d'inconnues h et q (ou h et u). Etant données des conditions de bord et des conditions initiales, on doit pouvoir justifier qu'il existe une unique solution que l'on peut calculer numériquement à l'aide d'un schéma de type éléments finis.

2 Découverte du modèle et premières propriétés qualitatives

Proposition 1. La vitesse u vérifie la loi de conservation hyperbolique scalaire suivante :

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2} + g(h+Z) \right) = 0 \tag{1}$$

Démonstration. Puisque q = h.u, la dérivée spatiale de q s'écrit :

$$\frac{\partial q}{\partial x} = u \frac{\partial h}{\partial x} + h \frac{\partial u}{\partial x} \tag{2}$$

et la dérivée temporelle :

$$\frac{\partial q}{\partial t} = u \frac{\partial h}{\partial t} + h \frac{\partial u}{\partial t} \tag{3}$$

Alors en utilisant l'équation (mettre ici ref) du système, la dérivée temporelle donne aussi la relation

$$\frac{\partial q}{\partial t} = -u \frac{\partial q}{\partial x} + h \frac{\partial u}{\partial t} \tag{4}$$

La loi de conservation que l'on cherche à montrer est alors une réécriture de l'équation (mettre ici ref) du système. On a en effet :

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} (\frac{q^2}{h} + g\frac{h^2}{2}) = -gh\frac{\partial Z}{\partial x}$$

En développant la dérivée par rapport à x et en utilisant (4) :

$$-u\frac{\partial q}{\partial x} + h\frac{\partial u}{\partial t} + u^2\frac{\partial h}{\partial x} + 2hu\frac{\partial u}{\partial x} + gh\frac{\partial h}{\partial x} = -gh\frac{\partial Z}{\partial x}$$

$$\Leftrightarrow -u\frac{\partial q}{\partial x} + h\frac{\partial u}{\partial t} + u^2\frac{\partial h}{\partial x} + 2hu\frac{\partial u}{\partial x} + gh\frac{\partial h}{\partial x} + gh\frac{\partial Z}{\partial x} = 0$$

$$\Leftrightarrow u\left[-\frac{\partial q}{\partial x} + \frac{h}{u}\frac{\partial u}{\partial t} + u\frac{\partial h}{\partial x}\right] + h\left[u\frac{\partial u}{\partial x} + \frac{\partial}{\partial x}(\frac{u^2}{2} + g(h+Z))\right] = 0$$

$$\Leftrightarrow u\left[-\frac{\partial q}{\partial x} + \frac{h}{u}\frac{\partial u}{\partial t} + u\frac{\partial h}{\partial x} + h\frac{\partial u}{\partial x}\right] + h\left[\frac{\partial}{\partial x}(\frac{u^2}{2} + g(h+Z))\right] = 0$$

D'après (2), une simplification s'opère dans les crochets de gauche et on obtient :

$$u\left[\frac{h}{u}\frac{\partial u}{\partial t}\right] + h\left[\frac{\partial}{\partial x}(\frac{u^2}{2} + g(h+Z))\right] = 0$$

Il suffit alors de diviser par h > 0 pour obtenir le résultat (1).

3 Implémentation du schéma de Rusanov

3.1 Présentation du schéma et résultats de convergence

Dans cette partie, il s'agit de résoudre numériquement le système de Saint-Venant. Posons

$$\mathbf{U} = \begin{pmatrix} h \\ q \end{pmatrix} \in \mathbb{R}^2, \ \mathbf{F}(\mathbf{U}) = \begin{pmatrix} q \\ \frac{q^2}{h} + g \frac{h^2}{2} \end{pmatrix} \in \mathbb{R}^2 \ \text{et} \ \mathbf{B}(\mathbf{U}) = \begin{pmatrix} 0 \\ -g h \frac{\partial Z}{\partial x} \end{pmatrix} \in \mathbb{R}^2.$$

U désigne le vecteur inconnu, F(U) la fonction flux et B(U) le terme source. Avec ces notations, le système de départ se réécrit

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial}{\partial x}(\mathbf{F}(\mathbf{U})) = \mathbf{B}(\mathbf{U})$$

Proposition 2. Posons le vecteur $\mathbf{W} = (h, u)^T$ (variable dite non conservative). W vérifie le système quasi-linéaire suivant :

$$\frac{\partial \mathbf{W}}{\partial t} + \mathbf{A}(\mathbf{W}) \frac{\mathbf{W}}{\partial x} = 0$$

avec A(W) définie par :

$$\mathbb{A}(\mathbf{W}) = \begin{pmatrix} u & h \\ g & u \end{pmatrix}$$

Démonstration. □

Proposition 3. La matrice $\mathbb{A}(W)$ est diagonalisable et on a :

$$\mathbb{P}(W)^{-1}\mathbb{A}(W)\mathbb{P}(W) = \mathbb{D}(W)$$

оù

$$\mathbb{D}(\mathbf{W}) = \begin{pmatrix} u + \sqrt{gh} & 0 \\ 0 & u - \sqrt{gh} \end{pmatrix} \text{ et } \mathbb{P}(\mathbf{W}) = \begin{pmatrix} \frac{\sqrt{h}}{\sqrt{g}} & -\frac{\sqrt{h}}{\sqrt{g}} \\ 1 & 1 \end{pmatrix}.$$

Démonstration. Le résultat est direct en faisant le produit matriciel si on connait les expressions de $\mathbb{D}(\mathbf{W})$ et $\mathbb{P}(\mathbf{W})$. Dans le cas contraire, on procède comme suit :

On détermine les valeurs propres de la matrice $\mathbb{A}(\mathbf{W})$, ce qui conduit à chercher les racines du polynôme (d'indéterminée λ) suivant :

$$\det(\mathbb{A}(\mathbf{W}) - \lambda I) = \begin{vmatrix} u - \lambda & h \\ g & u - \lambda \end{vmatrix} = (u - \lambda)^2 - gh.$$

Or puisque g et h sont > 0,

$$(u - \lambda)^2 - gh = 0 \Leftrightarrow \lambda u + \sqrt{gh}$$
 ou $\lambda u - \sqrt{gh}$

et comme la matrice admet deux valeurs propres distinctes, elle est diagonalisable. La matrice diagonale est alors

$$\mathbb{D}(\mathbf{W}) = \begin{pmatrix} u + \sqrt{gh} & 0 \\ 0 & u - \sqrt{gh} \end{pmatrix}.$$

Il reste à déterminer la matrice de passage $\mathbb{P}(\mathbf{W})$. Il s'agit de trouver $\begin{pmatrix} a \\ b \end{pmatrix}$ un vecteur propre associé à $u + \sqrt{gh}$ et $\begin{pmatrix} c \\ d \end{pmatrix}$ un vecteur propre associé à $u - \sqrt{gh}$.

Pour le vecteur propre associé à $u + \sqrt{gh}$:

$$\mathbb{A}(\mathbf{W}) \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} u & h \\ g & u \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = (u + \sqrt{gh}) \begin{pmatrix} a \\ b \end{pmatrix}$$

Il s'agit d'un système lié donc il est équivalent de raisonner sur la première équation :

$$au + bh = au + a\sqrt{gh}$$

$$\Leftrightarrow bh = a\sqrt{gh}$$

et on voit que $\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \sqrt{h}/\sqrt{g} \\ 1 \end{pmatrix}$ convient.

De même, pour le vecteur propre associé à $u-\sqrt{gh}$:

Cette fois on arrive à

$$cu + dh = cu - c\sqrt{gh}$$

$$\Leftrightarrow dh = -c\sqrt{gh}$$

et on voit que $\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} -\sqrt{h}/\sqrt{g} \\ 1 \end{pmatrix}$ convient.

D'où finalement:

$$\mathbb{P}(\mathbf{W}) = \begin{pmatrix} \frac{\sqrt{h}}{\sqrt{g}} & -\frac{\sqrt{h}}{\sqrt{g}} \\ 1 & 1 \end{pmatrix}.$$

Proposition 4. La matrice jacobienne de F admet deux valeurs propres distinctes $\lambda_1(U)$ et $\lambda_2(U)$ qui sont égales aux valeurs propres de $\mathbb{A}(W)$.

Démonstration. La matrice jacobienne de F est la suivante :

$$J_{\mathbf{F}}(h,q) = \begin{pmatrix} 0 & 1\\ -\frac{q^2}{h^2} + gh & \frac{2q}{h} \end{pmatrix}$$

Pour déterminer les valeurs propres de cette matrice, il faut calculer les racines du polynôme donné par

$$\det(J_{\mathbf{F}}(h,q)) = \begin{vmatrix} 0 - \lambda & 1 \\ -\frac{q^2}{h^2} + gh & \frac{2q}{h} - \lambda \end{vmatrix}$$

$$-\lambda(\frac{2q}{h} - \lambda) + \frac{q^2}{h^2} - gh = 0$$

$$\Leftrightarrow \lambda^2 - 2u\lambda + u^2 - gh = 0.$$

Puisque $\Delta = 4u^2 - 4(u^2 - gh) = 4gh > 0$, il y a deux racines distinctes

$$\lambda_1(\mathbf{U}) = \frac{2u + 2\sqrt{gh}}{2}$$
 et $\lambda_2(\mathbf{U}) = \frac{2u - 2\sqrt{gh}}{2}$.

En simplifiant par 2 au numérateur et dénominateur, on voit qu'il s'agit des valeurs propres de $\mathbb{A}(W)$.

Dans la mesure ou la matrice jacobienne du flux a deux valeurs propres différentes, on peut appliquer le schéma de Rusanov. Cf l'énoncé du TP. Mais il faudrait pouvoir expliquer pourquoi.

3.2 Validation de l'implémentation avec des tests

Voyons quelques exemples de solutions calculées à l'aide du schéma afin de valider l'implémentation.

4 Utilisation des limiteurs de pente pour une montée en ordre

5 Passage au cas 2D

A Annexes

A.1 Le code

Bibliographie

[1] R. Leveque, *Finite Volume Methods for Hyperbolic Problems*, Cambridge University Press, 2004