Diffie – Hellman

Key Exchange

- Using public key cryptography is expensive.
- A better way is to use it in limited amount to generate a key for a private key cryptosystem
- If p is prime then there is a primitive root modulo p, that is a number g such that $\{1,2,\ldots,p-1\}=\{g,g^2,g^3,\ldots,g^{p-1}\}$

Key Exchange (cntd)

- Diffie Hellman protocol:
 - Alice chooses a prime q and finds a primitive root g
 - Alice chooses a random X from $\{1,2,\ldots,q-2\}$ and sends g,q and $\hat{X}\equiv g^X(\bmod{q})$ to Bob
 - Bob chooses random Y from $\{1,2,\ldots,q-2\}$ and sends $\widehat{Y}\equiv g^Y(\bmod q)$ to Alice
 - Alice and Bob compute $k \equiv g^{XY} \pmod{q}$ (by computing \hat{Y}^X and \hat{X}^Y respectively. They use k as a private key

Diffie – Hellman Protocol

Alice
$$\xrightarrow{g^X}$$
 Bob $X \in \mathbb{Z}_p^*$ $Y \in \mathbb{Z}_p^*$

$$k = \left(g^Y\right)^X \qquad \qquad k = \left(g^X\right)^Y$$

Diffie – Hellman Protocol

If Eve can compute discrete logarithm, that is find X and Y, then the protocol is insecure.

However, this is not enough

Decisional Diffie – Hellman (DDH) Assumption.

For every prime p and a primitive root g modulo p the following two distributions over triplets are computationally indistinguishable:

$$\langle g^X, g^Y, g^{XY} \rangle$$
 $\langle g^X, g^Y, g^Z \rangle$
 $X, Y \text{ are random}$ $X, Y, Z \text{ are random}$

it is not true !!

Man in the Middle

- Eve masquerades as Bob for Alice and as Alice for Bob.
- So she can read all messages they send

Other Problems

- How do we know that p is prime and g is a primitive root?
- What if Eve replaces g^X with 1?
- What if Eve replaces g^X with an element of small order
- Safe primes:

$$p = 2q + 1$$

where q is a prime.

Hard Problems in Number Theory

Factorization:

There is a superpolynomial pair (T,ε) such that for any probabilistic algorithm Alg with time complexity less than T(n) the following holds

Pr[Alg finds factorization of a random n-bit integer] $< \varepsilon(n)$

Discrete Logarithm

There is a superpolynomial pair (T,ε) such that for any probabilistic algorithm Alg with time complexity less than T(n) the following holds:

Pr[given g^X and g, a random primitive root mod p and random X Alg finds X] $< \varepsilon(\log p)$

Factorization

There are many algorithms for factorization

Baby-step giant-step

Function field sieve

Index calculus algorithm

Number field sieve

Pohlig-Hellman algorithm

Pollard's rho algorithm for logarithms

- Significant success, still cannot factorize long numbers
- RSA challenge
- Smallest number resisting factoring:

RSA-230 = 796949159794106673291612844957324615636756180801260007088891883 55317264634149093349337224786865075523085586419992922181443668472287 40520652579374956943483892631711525225256544109808191706117425097 02440718010364831638288518852689

El Gamal Encryption Scheme

ullet K, key generation:

Choose a prime p and a primitive root $g \mod p$

Choose random $X \in \mathbb{Z}_p^*$.

Compute $h = g^X$

- Public key: p, g, h
- Private key: X
- \bullet E, encryption:

Choose random $Y \in \mathbb{Z}_p^*$

Compute $c_1 = g^Y$ and a shared secret $s = h^Y = g^{XY}$

Compute $c_2 = P \cdot s$

Cyphertext $(c_1, c_2) = (g^Y, P \cdot g^{XY})$

El Gamal Encryption Scheme (cntd)

ullet D, decryption:

Compute the shared secret
$$s = c_1^X = (g^Y)^X = g^{XY}$$

Compute $P = c_2 \cdot s^{-1} = (P \cdot s) \cdot s^{-1}$

Generalizations of El Gamal

- ullet \mathbb{Z}_p^* is a cyclic group it is generated by the primitive root
- Replace it with some other `efficient' cyclic group
- Examples:

elliptic curve group

braid group

Suzuki 2-group

Thompson's group

Baumslag-Solitar group

. . . .

Elliptic Curves Cryptosystem

- Elliptic curves are defined in algebraic geometry difficult
- One specific type of elliptic curves

$$y^2 = x^3 + ax + b$$

• Depending on the parameters a, b these elliptic curves come in different shapes

Elliptic Curves Group

We can define group operations on elliptic curves

The unity 1 is the infinite point

Discrete Elliptic Curves Group

- ullet Elliptic curves can be defined over \mathbb{Z}_p :
- All pairs (x, y) with $x, y \in \mathbb{Z}_p$ satisfying the equation $y^2 = x^3 + ax + b$
- This group $E(\mathbb{Z}_p)$ contains approximately p elements

$$y^2 = x^3 - x$$
$$p = 71$$

Multiplication and inverse can be defined in a `similar' way