

# PROGRAMACIÓN DE ACTIVIDADES

# Opt. Análisis de datos estadísticos en R

Profesora Valentina Andrade /valentinaandrade@uchile.cl

# No.de clase 2255

# Segundo semestre 2021

### I. PROPÓSITOS DE APRENDIZAJE

Se espera que al término del curso los estudiantes sean capaces de:

- ✓ Manejar R y herramientas asociadas a su utilización (rOpensci), utilizando prácticas que les permitan
  - avanzar en su aprendizaje de manera autónoma (Unidad 1)
- ✓ Manipular, procesar y limpiar datos sociales utilizando R (Unidad 2)
- ✓ Aplicar herramientas para análisis estadísticos descriptivos en R (Unidad 3)
- ✓ Aplicar herramientas para análisis estadísticos inferenciales en R (Unidad 4)
- ✓ Presentar de resultados, a partir de la visualización de datos y construcción de documentos (transversal a todas las unidades)

### II. CONTENIDOS

### Unidad 1: Elementos y herramientas básicos de R

- 1.1 R enviroment: interfaz de RStudio, elementos de script, workspace
- 1.2 Prácticas y herramientas de consulta: CRAN, stackoverflow, Rcommunity
- 1.3 Herramientas para la colaboración y comunicación: Rprojects, GitHub y Slack
- 1.4 Librerías y funciones para las ciencias sociales: tidyverse y sj (sjmisc y sjPlot)
- 1.5 Construcción de reportes reproducibles e integrados con código: RMarkdown

## Unidad 2: Manipulación y limpieza de datos

- 2.1 Importar y exportar datos en diferentes formatos
- 2.2 Validación y limpieza de variables (missing values)
- 2.3 Transformación y selección de variables
- 2.4 Transformación de datos en tidydata con tidyr

### Unidad 3: Análisis estadístico descriptivo en R

- 3.1 Análisis descriptivos univariados: medidas de tendencia central, dispersión y frecuencias
- 3.2 Análisis descriptivo bivariado: tablas de contingencia, correlaciones y ANOVA
- 3.3 Representación gráfica con siPlot: Likert, proporciones agrupadas y distribuciones

#### Unidad 4: Análisis estadístico inferencial en R

- 4.1 Muestras complejas y precisión de inferencia estadística con survey y srvyr
- 4.2 Pruebas de hipótesis y representación gráfica
- 4.3 Regresiones lineales, predictores categóricos y representación gráfica
- 4.4 Regresiones logísticas, exponenciación y representación gráfica
- 4.5 Ajuste de modelos (performance) y otras representaciones gráficas (predicción, efectos marginales e interacciones)

#### II. METODOLOGÍA

Dado el contexto de pandemia se tendrán tres espacios principales de aprendizaje:

- 1. **Sesiones de clases lectivas**, donde se presentarán los aspectos centrales de los contenidos correspondientes a la semana vía Zoom. Tanto el documento de presentación como el video de la clase se encontrará disponible en la pestaña de Contenidos de este sitio web del curso.
- 2. **Prácticas guiadas**: cada tema de las sesiones se acompaña de una guía práctica de aplicación de contenidos. Estas guías están diseñadas para ser desarrolladas de manera autónoma por cada estudiante semana a semana. También serán desarrolladas y revisadas cada semana en grupos pequeños con supervisión de ayudantes para dar mayor oportunidad de participación y resolver las dudas respectivas.

Existe un **reporte de progreso** asociado a estas guías que deberá ser completado semanalmente con fines de monitoreo y retroalimentación.

3. **Evaluaciones**: se desarrollarán **tareas** periódicas que permitirán a las/os estudiantes aplicar contenidos y replicar lo aprendido en los prácticos en base a una base de datos seleccionada por ellas/os a inicio de semestre. Esto permitirá no solo recibir retroalimentación constante, sino que aprender con datos que puedan ser útiles para otros proyectos de investigación. Al finalizar el curso, el/la estudiante deberá entregar como examen un **proyecto de investigación**.

# 1. Sitio web (https://learn-r-uah.netlify.app/)

El curso estará disponible en un sitio web programado por la docente, en tanto permite integrar texto y código de R. Esto permitirá que los participantes del curso puedan interactuar comentando sus dudas asociadas a cada ejercicio práctico a través del foro Disqus. Sumado a ello, permite registrar y dar disponibilidad el material del curso de manera libre.

### 2. R, RStudio y RStudio Cloud

El software que se utilizará principalmente será R y su interfaz RStudio. Ahora bien, muchos usuario/as de R presentan problemas de instalación dada la capacidad de sus computadores y sistemas operativos. Por ello se promoverá el uso del servicio gratuito de RStudio.cloud, que permite ejecutar la interfaz de RStudio en el navegador web y compartir el código de manera sincrónica con la docente. Dado el enfoque *rOpensci*, las plantillas para ejemplos, ejercicios y mini proyectos podrán ser implementados en esta plataforma. Si

bien no es ideal pues tiene limitantes de memoria, mientras las/os estudiantes asimilan el programa será una buena herramienta

### 3. Slack

Slack es una herramienta de uso frecuente en equipos de trabajo que utilizan R pues permite integrar script de distintos lenguajes en el chat. Se tendrá un espacio de trabajo en la app Slack que permite que cualquier persona del curso pueda hacer preguntas y cualquiera pueda responder. Esta es una de las prácticas que se promoverán en el curso pues es probable que los estudiantes tengan dudas similares a las de sus compañeros, por lo que las respuestas de la docente, ayudante y otros compañeros/as serán de libre disposición de todo el curso. Dentro de Slack se tendrán canales para hacer preguntas sobre las sesiones, tareas y proyectos, y el link que permite unirse a este estará disponible en el sitio del curso.

#### 4. GitHub

Github es una plataforma online que permite depositar archivos y el control de versiones (VCS), por lo que se ha transformado una herramienta fácil y popular para corregir, colaborar y compartir códigos de distintos lenguajes (no solo R). Utilizaremos esta plataforma para subir las tareas, ayudarlos/as de manera directa con su código y darles feedback.

### 5. Zotero

Zotero es un gestor bibliográfico que permite sistematizar las referencias y archivos utilizados en una investigación o informe. Enseñaremos este de manera complementaria pues este software se puede integrar en los documentos escritos hechos en R.

#### III. EVALUACIÓN DE APRENDIZAJES

Las evaluaciones del curso se componen de **tareas** (70% de la nota final) y la entrega de una **investigación** (30% de la nota final), en dónde en ambos casos la/el estudiante deberá seleccionar datos y temas de interés de modo de acercar la aplicación del software a contextos de investigación propios de la/el estudiante. En concreto, cada evaluación consiste en:

- **1. Tareas** (70% de la nota final): consisten en evaluaciones parciales temáticas que buscan poner en práctica los aprendizajes expuestos en la sesión de *clases* y herramientas reforzadas en los *prácticos*. El **promedio de notas las de tareas** será calculado solo con las **cuatro mejores entregas** a partir de la **Tarea**  $1 (25\% \text{ c/u})^1$ . La evaluación es de carácter **individual o en parejas**.
- **2. Investigación final** (30% de la nota final): consiste en una evaluación final que aplica los conocimientos y herramientas entregadas a lo largo de curso, a un proyecto de investigación de elección por el/la estudiante. La evaluación es de carácter **individual**.

<sup>1</sup> Es decir, a lo largo del semestre deberá entregar 6 tareas: 5 calificadas (Tarea 1 a Tarea 5) y 1 no (Tarea 0). De las 5 tareas restantes, solo las 4 mejores serán consideradas en su promedio de las tareas.

# IV. CALENDARIZACIÓN DE ACTIVIDADES

| Sesión | Fecha   | Unidad                                                   | Contenido de cada sesión                                                                      | Práctico                                                         | Evaluaciones                       |
|--------|---------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------|
| 1      | 09-ago  | Unidad 1.<br>Elementos y<br>herramientas<br>básicos de R | 1.1 R enviroment: interfaz de RStudio, elementos de script, workspace                         | Práctico 1: Creando<br>un script, R project y<br>Github          | Tarea 0: Colaborando en<br>Github  |
|        |         |                                                          | 1.2 Prácticas y herramientas de consulta: CRAN, stackoverflow, Rcommunity                     |                                                                  |                                    |
|        |         |                                                          | 1.3 Herramientas para la colaboración y comunicación: Rprojects, GitHub y Slack               |                                                                  |                                    |
| 2      | 16-ago  |                                                          | 1.4 Librerías y funciones para las ciencias sociales:<br>tidyverse y sj (sjmisc y sjPlot)     | Práctico 2: Reporte en<br>Rmarkdown                              | Tarea 1: Reporte en<br>Rmarkdown   |
|        |         |                                                          | 1.5 Construcción de reportes reproducibles e integrados con código: Rmarkdown                 |                                                                  |                                    |
| 3      | 23-ago  | - Unidad 2.<br>Manipulación y<br>limpieza de datos       | 2.1 Importar/exportar datos en diferentes formatos  2.2 Validación y limpieza de variables    | Taller N°1: Datos y<br>proyecto de<br>investigación              | Tarea 2: Procesamiento de<br>datos |
| 4      | 30-ago  |                                                          | 2.3 Transformación y selección de variables                                                   | Práctico 3: Limpieza<br>de datos                                 |                                    |
| 5      | 06-sept |                                                          | 2.4 Transformación de datos en tidydata                                                       | Práctico 4:<br>Transformación y<br>selección de variables        |                                    |
|        | 13-sept | Unidad 3. Análisis<br>estadístico<br>descriptivo en R    | 3.1 Análisis descriptivos univariados: medidas de tendencia central, dispersión y frecuencias | Práctico 5:                                                      | Tarea 3: Análisis descriptivo      |
| 6      |         |                                                          | 3.2 Análisis bivariado: tablas de contingencia, correlaciones y ANOVA                         | Transformación de estructura de datos                            |                                    |
|        | 20-sept |                                                          | Receso                                                                                        | TallerN°2: Proyecto<br>de investigación +<br>Zotero              |                                    |
| 7      | 27-sept | Unidad 4. Análisis<br>estadístico<br>inferencial en R    | 4.1 Muestras complejas y precisión de inferencia estadística con survey y srvyr               | Práctico 6: Análisis<br>descriptivos y<br>representación gráfica | Tarea 4: Muestras complejas        |
| 8      | 04-oct  |                                                          | 4.2 Pruebas de hipótesis y representación gráfica                                             | Práctico 7: Muestras<br>en R                                     |                                    |
|        | 11-oct  |                                                          | Feriado                                                                                       | Práctico 8: Pruebas de hipótesis                                 |                                    |
| 9      | 18-oct  |                                                          | 4.3 Regresiones lineales, predictores categóricos y representación gráfica                    | Práctica 9:<br>Regresiones lineales<br>en R                      | Tarea 5: Regresiones en R          |
| 10     | 25-oct  |                                                          | 4.4 Regresiones logísticas, exponenciación y representación gráfica                           | Práctico 10:<br>Regresiones logísticas<br>en R                   |                                    |
|        | 01-nov  |                                                          | Feriado                                                                                       |                                                                  |                                    |
| 11     | 08-nov  |                                                          | 4.5 Calidad de modelos y otras técnicas de estimación                                         | Práctico 11:<br>Representación<br>gráfica de<br>modelamiento     |                                    |
| 15     | 15-nov  |                                                          | Re                                                                                            | eceso                                                            |                                    |
| 16     | 22-nov  |                                                          |                                                                                               |                                                                  | Entrega investigación final (30%)  |
| 17     | 29-nov  |                                                          |                                                                                               |                                                                  |                                    |

# V. RECURSOS PEDAGÓGICOS

## 1. Bibliografía Básica

- Wickham, H., & Grolemund, G. (2016). R for data science: import, tidy, transform, visualize, and model data (First edition). Sebastopol: O'Reilly. Libro con enfoque en el aprendizaje de R. Disponible en español como "R para ciencia de datos"
- Daniel Lüdecke (2021) Data Visualization for Statistics in Social Science R package versión 2.8.7.
   https://CRAN.R-project.org/package=sjPlot
- Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686
- Yihui Xie, J. J. Allaire, Garrett Grolemund (2021) R Markdown: The Definitive Guide
- Bryan, Jenny (2019) Happy Git in R

### 2. Sitios de consulta

- rOpensci (R Open Science Tools)
- Laboratorio de Ciencia Social Abierta, Centro de Estudios de Conflicto y Cohesión Social (LISA-COES)
- Stackoverflow
- RStudio Community
- RMarkdown
- sjPlot
- tidyverse