GENERAL CHEMISTRY

Chapter 2 Periodic table

Dr. Huỳnh Kỳ Phương Hạ

Office: 112 B2 Building

Phone: 38650484

Email: hkpha@hcmut.edu.vn

Arrangement of the Periodic Table

- The Periodic Table is used to organize the 114 elements in a meaningful way.
- As a consequence of this organization, there are periodic properties associated with the periodic table.

Arrangement of the Periodic Table

- The Periodic Table is used to organize the 114 elements in a meaningful way.
- As a consequence of this organization, there are periodic properties associated with the periodic table.
- Periodic Law states: When elements are arranged in order of increasing atomic number, there is a periodic repetition of their physical and chemical properties

	ΙA	II A	III B	IVB	VB	VI B	VII B		VIII B		IB	II B	III A	ΙVΑ	VA	VI A	VII A	VIII A
	1																1	2
1	Н																Н	He
	1.008																1.008	4.0026
	3	4											5	6	7	8	9	10
2	Li	Be											В	С	Ν	0	F	Ne
	6.939	9.0122											10.811	12.011	14.007	15.999	18.998	20.183
	11	12											13	14	15	16	17	18
3	Na	Mg											ΑI	Si	Р	S	CI	Ar
	22.99	24.312											26.982	28.086	30.974	32.064	35.453	39.948
	19	20	21	22	23	24	25	26	27	28	29		31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.102	40.08	44.956	47.89	50.942	51.996	54.938	55.847	58.932	58.71	63.54		69.72	72.59	74.922	78.96	79.909	83.8
	37	38	39	40	41	42	43	44	45	46	47		49	50	51	52	53	54
5	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
	85.468	87.62	88.906	91.224	92.906	95.94	* 98	101.07	102.91	106.42	107.9	112.41	114.82	118.71	121.75	127.61	126.9	131.29
	55	56	57	72	73	74	75	76	77	78	79		81	82	83	84	85	86
6	Cs	Ba	**La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97		204.38	207.2	208.98	* 209	* 210	* 222
	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116		
7	Fr	Ra	***Ac	Rf	Ha	Sg	Ns	Hs	Mt	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh		
	* 223	226.03	227.03	* 261	* 262	* 263	* 262	* 265	* 268	* 269	* 272	* 277	*284	*285	*288	*292		
														n symbol	s used by		S.M.Condr	en 2003
					58	59	60	61	62	63	64	65	66	67	68	69	70	71
	* Designates that		**Lantha	num	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	all isotopes are		Series		140.12	140.91	144.24	* 145	150.36	151.96	157.25	158.93	162.51	164.93	167.26	168.93	173.04	174.97
	radioacti	ve			90	91	92	93	94	95	96	97	98	99	100	101	102	103
			*** Actinio	um	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			Series		232.04	231.04	238.03	237.05	* 244	* 243	* 247	* 247	* 251	* 252	* 257	* 258	* 259	* 260

The Periodic Table

							T		UU			an					
1A 1																	8A
	1																18
1 H	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	3B 3	4B 4	5B 5	6B 6	7B 7	$\sqrt{8}$	8B 9	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 S c	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Z r	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112		114		116		
								,									
	Metal	s	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	

Metals	57	58	59	60	61	62	63	64	65	66	67	68	69	70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
Metalloids	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	N p	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Nonmetals

Reading the Periodic Table

- Columns in the periodic table are called *groups* (numbered from 1A to 8A or 1 to 18).
- Elements in each column have the same number of valence electrons
- Elements in each group have similar but not identical properties.
- Rows in the periodic table are called *periods*.
- Periods reflect the periodic recurrence of similar properties

Reading the Periodic Table

- Metals are located on the left hand side of the periodic table (most of the elements are metals).
- Non-metals are located in the top right hand side of the periodic table.
- Elements with properties similar to both metals and nonmetals are called metalloids and are located at the interface between the metals and non-metals.

Group A (representative elements)

- Group $IA ns^1$
- Group $IIA ns^2$
- Group IIIA ns^2np^1
- Group IVA ns²np²
- Group $VA ns^2np^3$
- Group $VIA ns^2np^4$
- Group VIIA ns²np⁵
- Group VIIIA ns²np⁶

- Alkali Metals (except Hydrogen)
- Alkaline Earth Metals
- Aluminum Group/Boron Family
- Carbon Family
- Nitrogen Family
- Oxygen Family/Chalcogens
- Halogens
- Noble Gases

Group B (transition elements)

- d: start from period 4 and f elements: period 6: subgroup (B)
- 8 main groups → 8 subgroups 3B to 8B, 1B, 2B
- Transition metals: group IIIB IIB: referred to as the d-block
- Inner transition elements (lanthanides and actinides) are found at the bottom of the table and referred to as the f-block: group 3B
- d: elements: last filled e fall in d orbital
- $ns^2 (n-1)d^{1,2,3} : 3, 4, 5 \text{ valence e } \rightarrow \text{group } 3B \ 4B \ 5B$
- $ns^2 (n-1)d^4 \rightarrow ns^1 (n-1)d^5 : 6B$
- $ns^2 (n-1)d^5 : 7B$
- ns^2 (n-1) $d^{6,7,8}$: 8,9,10 e \rightarrow 8B (3 columns) (no 9B, 10B)
- $ns^2 (n-1)d^9 \rightarrow ns^1 (n-1)d^{10} : 1B, \qquad ns^2 (n-1)d^{10} : 2B$
- $ns^1 1A$ $ns^2 : 2A$

f elements

- $ns^2 (n-2)f^x : (n-2)f (n-1)d^{0,1} ns^2 : distance from the nucleus$
- 3B ns^2 (n-1)d¹ : all f-elements : 3B
- f electron: difficult to take part in chemical rxn

Position and electron configuration

- The Number of electrons in the outermost energy level or the valence electrons resembles to the group number.
- Main group: ns and np
- Subgroup: ns and (n-1)d
- The highest main energy level occupied by the electrons of the atom corresponds to the period.

Position and electron configuration

```
• S, p elements: ns + np \rightarrow group No.
```

• d elements: ns + (n-1)d : 3-7: 3B-7B;

8,9,10:8B;

11,12: 1B, 2B

• f- elements: 3B

Exercises

- Find the position (period, group) of the elements of the last week homework
- Z=13, 27, 41, 36, 46, 52, 71, 80, 91, 87

[?] ns (n-2)f (n-1)d np

Exercises

• Find the Z of the elements

Group	Period	Group
	2	7A
	3	6A
5B	4	5A
4B	5	4A
3B	6	3A
2B	7	2A

Trends in the Periodic Table

- atomic radius
- ionic radius
- ionization energy
- electron affinity
- electronegativity

- decrease left to right across a period
 - Same No. of shells (same n) → distance from the valence e to the nucleus
 - as nuclear charge increases, number of electrons increase; however, the nucleus acts as a unit charge while the electrons act independently, pulling electrons towards the nucleus, decreasing size

- increase top to bottom down a group
 - More shell → distance increase
 - each additional electron "shell" shields the outer electrons from the nuclear charge

$$Z_{eff} = Z - S$$
 where $Z_{eff} =>$ effective nuclear charge
$$Z =>$$
 nuclear charge, atomic number
$$S =>$$
 shielding constant

• increases from upper right corner to the lower left corner

Atomic Radius vs. Atomic Number

©Houghton Mifflin Company. All rights reserved.

©Houghton Mifflin Company. All rights reserved.

Ionic Radius

• same trends as for atomic radius

then $X^{n+}>Y^{n+}$, $X^{n-}>Y^{n-}$ (same charge)

positive ions smaller than atom

Less No. of electron \rightarrow less repulsion (e-e)

Lose $e \rightarrow lose 1$ shell

 $[18]4s^1 \rightarrow [18]$

Size decreases Na⁺ < Na

negative ions larger than atom

More electron \rightarrow more repulsion \rightarrow size increases $F^- > F$ Dr. S. M. Condren

•
$$\dots < X^{2+} < X^+ < X < X^- < X^{2-} < \dots$$

• $Fe^{3+} < Fe^{2+} < Fe$

Ionic Radius

Isoelectronic Series

- series of negative ions, noble gas atom, and positive ions with the same electronic configuration (same No. of electron)
- size decreases as "positive charge" of the nucleus increases
- $C^{4-} > N^{3-} > O^{2-} > F^{-} > Ne > Na^{+} > Mg^{2+}$ > $Al^{3+} > Si^{4+} : 10e$

Ionization Energy (IE)

- energy necessary to remove an electron to form a positive ion
- Characteristic properties of metal
- low value for metals, electrons easily removed
- high value for non-metals, electrons difficult to remove
- increases from lower left corner of periodic table to the upper right corner

IE

- $X 1e \rightarrow X^+$
- Across a period: IE increases from left to right (same No. of shells, Z increases)
- Top down to bottom: No. of shells increase, shielding effect, distance increase → IE decrease

Ionization Energies

first ionization energy

• energy to remove first electron from an atom $(X - 1e \rightarrow X^+)$

second ionization energy

• energy to remove second electron from a +1 ion $(X^+ - 1e \rightarrow X^{2+})$ (not $X - 2e \rightarrow X^{2+}$)

etc.

Discuss 2^{nd} IE \rightarrow look at e. config of X^+ , not X

Ionization Energy vs. Atomic Number

CBU Chemistry

Electron Affinity (EA)

- energy released when an electron is added to an atom
 - $X + 1e \rightarrow X^{-}$ (EA= Δ H) negative number
- metals have low "EA"
- nonmetals have high "EA"
- Characteristic of non-metal: ability to receive an electron

Trends in Electron Affinity

Chemistry U

Electronegativity

Tendency of an atom to attract the sharing electron in bonding

								Н								
1A	2A					3A	4A	5A	6A	7A						
Li	Ве					В	С	N	0	F						
1.0	1.6					2.0	2.5	3.0	3.5	4.0						
Na	Mg		8B											Р	S	Cl
0.9	1.3	3B	4B	5B	6B	7B				1B	2B	1.6	1.9	2.2	2.6	3.2
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br
0.8	1.0	1.4	1.5	1.6	1.7	1.5	1.8	1.9	1.9	1.9	1.6	1.8	2.0	2.2	2.6	3.0
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
0.8	1.0	1.2	1.3	1.6	2.2	1.9	2.2	2.3	2.2	1.9	1.7	1.8	2.0	1.9	2.1	2.7
Cs	Ва	La	Hf	Ta	W	Re	0s	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At
0.8	0.9	1.1	1.3	1.5	2.4	1.9	2.2	2.2	2.3	2.5	2.0	1.6	2.3	2.0	2.0	2.2

1.5-1.9 2.

1.9 ____ 2.5-2.

Electronegativity

Magnetism

- Result of the spin of electrons
- diamagnetism no unpaired electrons
- paramagnetism one or more unpaired electrons (at least one unpaired e)
- ferromagentism case of paramagnetism where the substance retains its magnetism

Magnetism

Without applied field

With applied field Paramagnetism

Without applied field

Ferromagnetism

