(12)

DEMANDE DE BREVET FUROPEFN

(43) Date de publication: 03.03.1999 Bull tin 1999/09

(51) Int CL⁶: **C12N 9/64**, A61K 38/48, C07K 14/435, A61K 7/48

(21) Numéro de dépôt: 98402037.0

(22) Date de dépôt: 11.08.1998

(84) Etats contractants désignés: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Etats d'extension désignés: AL LT V MK RO SI

(30) Priorité: 29.08.1997 FR 9710818

(71) Demandeur: L'OREAL 75008 Paris (FR)

(72) Inventeurs:

Bernard, Dominique
 75015 Paris (FR)

Kermici, Michei

75012 Paris (FR)

• Bernard-Bourbon

 Bernard-Bourboulon, Marie-Alix 93130 Noisy-Le-Sec (FR)

(74) Mandataire: Tezler Herman, Béatrice L'OREAL, Département Propriété Industrielle, 90, rue du Gal Roguet 92583 Clichy Cédex (FR)

(54) Polypeptide isolé de l'épiderme et son utilisation

(57) L'invention a pour objet un polypeptide isolé ayant un rôle dans la cohésion intercoméocytaire. L'invention a également pour objet un mélange de polypeptides issus de la protéolyse du polypeptide isolé, des compositions les contenant et un procédé de traitement cosmétique destiné à diminuer la cohésion intercoméocytaire, donc à favoriser la desquamation.

EP 0 899 330 A1

Description

[0001] L'invention a pour objet un polypeptide isolé, un mélange de polypeptides issus de la protéctyes du polypeptide isolé, des compositions les contenant et un procédé de traitement cosmétique destiné à diminuer la cohésion intercoméocytaire, donc à l'avoriser la desniamation

[0002] La peau constitue une barrière physique entre l'organisme et son environnement. Elle est constituée de deux tissus: l'épiderme et le derme.

Le derme fournit à l'épiderme un support solide. C'est également son étément nourricier. Il est principalement constitué de fibroblastes et d'une matrice extracellulaire composée elle-même principalement de collagène, 15 d'élastine et d'une substance dies substance fondamentale, ces composants étant synthétisés par le fibroblaste. On y trouve aussi des leucocytes, des mastocytes ou encore des macrophages tissulaires. Il set également constitué de vaisseaux sanguins et de fibres nerveuses.

[0003] L'épiderme est un épithélium pluristratifié desquamant, de 100 µm d'épaisseur en moyenne et est
conventionnellement divisé en une couche basale de
kératinocytes qui constitue la couche germinative de
fépiderme, une couche dité épineuse constitué de plusieurs couches de cellules polyàdriques disposées sur
les cellules germinatives, une couche dite granuleuse
constituée de cellules aplaties contenant des inclusions
cytoplasmiques distinctes, les grains de kératohyaline,
et enfin une couche supérieure appetée couche comée
(ou stratum corneum), constituée de kératinocytes au
stade terminal de leur différenciation appetés comécoyles. Ceux-ci sont des cellules momifiées, anucléées qui
dérivent des kéraţinocytes.

Les comécoyles sont principalement composés d'une matrice fibreuse contenant des cylokératines, entourés d'une structure très résistante de 15 nm d'épaisseur, appelée enveloppe comée ou comifiée. L'empilement de ces comécoyles constitue la couche cornée qui est responsable de la forction de brairier de l'épiderme.

Le stratum corneum possède une perméabilité sélective qui, en contrôlant la perte en eau, assure une hydratation physiologique de la peau. Il constitue de plus une barrière contre les agressions de l'environnement, de qu'elles soient chimiques ou physiouse.

Le stratum corneum se compose de deux parties :

- le stratum corneum compactum dont l'organisation cellulaire correspond à un empilement en colonne des coméocytes au-dessus des cellules granuleuses dont ils sont issus. Chaque cornéocyte présente un recouvrement maximum avec les cornéocytes sus et sous-iacents.
- le stratum disjunctum constitué des dernières assises de la couche cornée, moins cohésives que les précédentes et lieu de la desquamation des cornécovtes.

- [0004] Dans le stratum corneum l'espace intercornéocytaire est rempli par des feuillets lipidiques provenant des corps lamellaires.
- La differenciation épidermique représente un processus 5 de maturation continu et orienté qui, des kératinocytes basaux aboutit à la formation de corridocytes, cellules mortes totalement kératinisées. Cette différenciation est la résultante de phénombnes parfaitement coordonnés qui vont conduire au maintien d'une épalsseur constande et assurer ainsi l'homéostasie de l'épiderme. Cetle-ci passe par une régulation du nombre de cellulos qui entrent dans le processus de différenciation et du nombre de cellules qui desquament.
- Au cours du processus normal de desquamation, seuls 15 les cornéccytes les plus superficiels se détachent de la surface de l'épiderme
 - De la couche basale à la couche granuleuse, la cohésion est assurée par le réseau transcellulaire formé par les desmosomes et les filaments intermédiaires de cytokératines. Ce réseau est ancré sur la membrane basale par les hémidesmosomes.
- Dans la couche cornée, la cohésion est assurée par des structures intercellulaires dérivant des desmosomes, appelées cornéosomes ou cornéodesmosomes, qui soci lidairisent les enveloppes cornées des cornéocytes. Dans l'épiderme (non palmo-plantaire), les cornéodesmosomes sont présents sur toute la surface coméocytaire dans la partie inférieure de la couche cornée, mais suit les cornéodesmosomes périphériques persistent dans la partie supérieure.
 - Des études récentes ont montré l'importance majeure des coméodesmosomes dans la cohésion intercoméocytaire ainsi que dans le processus de desquamation. En particulier, une corrélation étroite existe entre la dissociation cellulaire et la profedyse de certains composants coméodesmosomaux comme la desmogléne l. L'étude de la desquamation permet de mettre à jour
- l'existence d'une régulation biochimique fine jusque dans les couches dites «montes» de l'épiderme. Ce sont 40 des enzymes produites dans les couches vivantes plus profondes qui vont agir de façon séquentielle et complémentaire pour aboutir à la libbration finale des cornécoxtes à la surface cutanée.
- Les principales enzymes soupconnées de participer à 5 la desquamation ont été décrites depuis peu. Elles appartiennent à deux families d'enzymes : les glycosidases et les proféases. Les protéases ne peuvent agir seules et une action préalable de glycosidases démasquant des sites de protéolyse semble nécessaire.
- Des protéases constituent le type d'enzymes qui est probablement le plus impliqué dans la desquamation. Elles se subdivisent en quatre familles.
- protéases à acide aspartique possédant un acide aspartique dans leur site actif.
- protéases à sérine avec une sérine dans leur site actif.
- protéases à cystéine comportant une cystéine dans

lour site actif

 métalloprotéases qui possèdent le plus fréquemment un atome de zinc dans leur site actif ou parfois un atome de calcium.

[0005] Parmi ces protéases, les protéases à cystéine d'origine lysosomiale (cathepsines B, H et L) sont sans doute les protéases les plus actives du corps humain. Ce sont elles qui participeraient au renouvellement quoticien des protéines d'un individu (de 200 à 300 g pour un individu de 70 kg).

A cet égard, le brevet n° WO 95/07686 décrit 2 protéases à cystéine de poids moléculaire apparent de 34 et 35 kilodaltons.

[0006] De nombreuses pathologies cutanées se caractérisent par la production d'une couche comée épaissie et par une desquamation anormale, c'est-à-dire par une hyperkératose. Celle-dipeut survenir sur tout territoire anatomique cutané et dans des contextes cliniques très variés. Son substratum physiopathologique et as cause son Variés.

A titre d'exemples on peut citer :

- la xérose (ou sécheresse cutanée).
- · les ichthyoses,
- le psoriasis
- certaines lésions tumorales bénignes ou malignes, les hyperkératoses réactionnelles.

[0007] D'autres pathologies se caractérisent par une l'transdifférenciation ou métaplasie, au niveau de muqueuses, majoliphiennes ou non, mais normalement non comifiées, qui deviennent cornifiées, c'est-à-dire se revêtent d'un épithélium anomal, producteur à sa surface d'une couche comée. Bien que les muqueuses gésons et celles des voies aérodigestives supérieures soient le plus souvent concernées, ces métaplasies peuvent siéger dans divers territoires anatomiques. A littre d'exemples on peut citer .

- la leukokératose du col utérin au cours du prolapsus.
- les leukokératoses buccales.
- les lésions tumorales bénignes kératosiques des muqueuses malpighiennes,

[0008] Sans vouloir se lier à une quelconque théorie de l'invention, il est possible de penser que ces pathologies peuvent être liées à un déficit, qualitatif ou quantitatif, en enzymes soupçonnées de participer à la desquamation dont en particulier des protésses.

[0009] La purification et la comaissance de polypepidee nouveaux impliqués dans la cohésion intercomécortaire, en particulier de protéases, est une des voies qui pourrait permettre l'élaboration de nouveaux produits destinés à tutter contre les effets d'un excès ou d'un défaut en polypeptides, en particulier en protéases, principalement à la surface de la peau ou des mouueus**es**.

[0010] Un des objets de l'invention est donc de fournir sous forme isolée un polypeptide impliqué dans la cohésion intercornéocytaire.

10011] Agràe de longe et laborieux travaux, la demanderesse a mis en évidence, isolé et purifié par des techniques biochimiques, à partir d'épiderme humain, un polypeptide impliqué dans la cohésion intercornéccytiaire. (D012] L'invention a donc pour objet un poytepetide isolé, appartenant à la famille des protéases à cystérie de type cathepeines L. ayant un poids moléculaire apparent compris entre 15 et 32 kilodations et un point isolétectique apparent compris entre 6 et 9.

[0013] On entend par poids moléculaire apparent, le poids moléculaire obtenu pour le polypaptide par comparaison de la mobilité électrophorétique de celui-ci avec celles de protéries standards de poids moléculaires connus sur gel de polyacylamidé/sodium dodeçi sulfate, ou encore par comparaison du volume d'étule du polypaptide avec celui de protéries standard de poids moléculaires connus en chromatographie d'exclusin (sélon les techniques décrites dans "Protein Purification", J.C. Janson et L. Ryden, VCH Publisher Inc. N.Y. 1989).

[0014] On entend par point isoélectrique apparent le point isoélectrique obtenu pour le pohypetide par comparaison avec celui obtenu pour des protéines standards de point isoélectrique connue dans des expériences de chromatofocalisation (chromatofocusing) telles que décrites dans "Protein Purification", J.C. Janson et L. Ryden, VCH Publisher Inc. NY., 1989.

[0015] Le polypepide de l'invention peut être d'origine naturelle ou synthétique. Par synthétique, on entendi cit lout polypeptide obtenu chimiquement ou par producfion dans un organisme après introduction dans cet organisme des éléments nécessaires à cate production. [0016] Le polypeptide de l'invention peut être issu de toute origine possible à sevoir soit animale, en particulier de mammifères et encore plus particulièrement humaine, soit végétale, soit de micro-organismes (virus, phages, bactéries entre autres) ou encore de champignons, sans préjuger du fait qu'il soit présent de manière naturelle ou non dans ledit organisme d'origine.

[0017] Préférentiellement, le polypeptide de l'inven-5 tion est d'origine naturelle, isolé à partir de tissus de mammifères, particulièrement à partir de peau de mammifères.

[0018] Prélérentiellement, le polypeptide de l'invention est isolé à partir de peau humaine et encore plus prélérentiellement à partir d'épiderme humain.

[0019] Comme indiqué précédemment, la cohésion intercoméocytaire est apparemment due entre autres à l'axistence dans la couche comée, de polypeptides spécifiques des structures impliquées dans la jonction intercoméocytaire.

[0020] Ainsi, le polypeptide de l'invention est présent dans la couche cornée et il intervient dans la diminution de la cohésion intercornéocytaire en dégradant les structures impliquées dans la jonction intercornéocytaire, particulièrement des coméodesmosomes.

[0021] Il est par alleurs connu que les polypeptides et en particulier les enzymes, donc les protéases, peuvent se présenter sous une forme dite mature qui correspond à une séquence primaire en acides aminés compatible avec leur activité. Mais, fon sait que souvent ces polypeptides matures sont issus, par phénomène de maturation, de polypeptides de taille supérieure, précurseurs, qui contiennent dans leur séquence primaire en acides aminés la séquence primaire du polypeptide mature. Il peut en être de même pour le polypeptide de l'invention.

[0022] Ainsi, l'invention a également pour objet tout polypeptide constitué en partie par le polypeptide de l'invention.

[0023] Il est connu également que les polypepildes peuvent subir des modifications post-traductionnelles comme la formation de liaisons disulture, los ciivages proteolyliques spécifiques, l'addition de glucides (glycosylation), la phosphorylation, en particulter au riveau des sérines et/ou des thréonines et/ou des tyrosines, et/ ou l'association à des lipides.

[0024] L'invention concerne donc plus particulièrement le polypeptide de l'invention ayant subi ou non des 25 modifications post-traductionnelles.

[0025] Le polypeptide de l'invention peut avoir subi une ou plusieurs modifications post-traductionnelles. [0026] Préférentiellement, le polypeptide selon l'invention est divcosvié et/ou phosphorylé.

[0027] Le polypeptide de l'invention a un poids moléculaire apparent compris entre 15 et 32 kilodations et préférentiellement compris entre 25 et 30 kilodations. [0028] Il est bien connu que les enzymes en général, les protéases en particulier, présentent une activité maximale dans des milieux à plr défini.

[0029] Ainsi, le polypeptide de l'invention est caractérisé par le fait que son activité est maximale a un pH compris entre 2 et 9, préférentiellement entre 3,5 et 6,5. Par exemple l'activité maximale du polypeptide sur la desérine est à un pH compris entre 4,6 et 5,6

[0030] Il est également connu que la séquence primaire en acides aminés d'un polypeptide détermine des sites spécifiquement reconnus par des protéases qui une lois la reconnaissance de ces sites effective vont, avec ou sans fixation audit polypeptide, induire son clivace par protéolyse.

[0031] Ainsi, l'invention concerne également au moins un fragment de protéolyse du polypeptide de l'invention

[0032] Il s'ensuit que par la suite dans le texte et sans indication contraire par polypeptide il faut entendre le polypeptide naturel ou synthétique de l'invention ou au moins l'un de ses fragments, qu'il soit obtenu par protéolyse ou de manière synthétique.

[0033] La cohésion intercornéocytaire est apparemment due à l'existence, dans la couche cornée, de polypeptides spécifiques des structures impliquées dans la jonction intercornéocytaire. On a vu que certaines pathologies hyperkératosiques pourraient être liées à un excès de cohésion intercoméocytaire.

[0034] La demanderesse a pu montrer que le polypeptide de l'invention intervient dans les phénomènes de destruction des structures impliquées dans la jonction intercoméocytaire donc dans la cohésion intercornéocytaire. Le polypeptide de l'invention peut donc être utilisé dans des compositions cosmétiques ou pharmaceutiques destinées à diminuer la cohésion intercomécytaire et donc à favoriser la desquamation.

[0035] Un autre objet de l'invention est donc de fournir des compositions cosmétiques ou pharmaceutiques comprenant, dans un milieu physiologiquement acceptable, au moins un polypeptide tel que décrit précédemment.

[0036] De préférence, les compositions de l'invention sont appliquées sur la peau ou les muqueuses.

[0037] L'invention conceme également une composition pharmaceutique comprenant au moins un polypertide de l'invention, destinée à traiter les troubles de la desquarration, comme les hyperkératoses, par exemple la xérose (ou sécheresse cutanée), les ichihyoses, le psoriasis, hyperkératose de certaines lésions tumorales bénignes ou malignes, les kératoses réactionnelles.

[0038] L'invention conceme également une composition pharmaceutique comprenant au moins un polypetide de l'invention, desifiné à traiter les pathologies se caractérisant par une transdifférenciation ou métaplasie, au nivaux de muqueuses, malpighiennes ou non, mais normalement non comifiées, qui deviennent conifiées comme par exemple la leukokératose du col utérin au cours du prolapsus, les leukokératoses buccates, ou encore les fésions tumorates hypenkératosiques bénignes ou malignes des muqueuses malpighiennes.

[0039] La quantité de polypeptide contenue dans la composition de l'invention est bien entendu fonction de l'effet recherché et peut donc varier dans une large mesure.

[0040] Pour donner un ordre de grandeur la composition peut contenir le polypopité de l'invention en une quantité représentant de 0,0001% à 50% du poids total de la composition et préférentiellement en une quantité représentant de 0,001% à 10% du poids total de la composition et encore plus préférentiellement en une quantité représentant de 0,1% à 1% du poids total de la composition.

[0041] Dans l'art antérieur, certains composés sont décrits comme des activateurs de protéase.

On connaît par exemple l'effet bénéfique du glycérol sur les xéroses, effet qui est expliqué par un effet activateur des systèmes enzymatiques, du à son action hydratante par laquelle il favoriserait l'action des protéases qui dégradent les cornéodesmosemes et par la même la desquamation (brevet N° WO 95/07687).

[0042] L'urée, et ses dérivés, est aussi connue depuis longtemps pour améliorer l'état de surface des peaux Ités séches et même ichtyosiques (Ewanback, Acta Dermatologica and Venereologica, 1968, 48, 123-127). Wiederanders et col. (Biomedical Biochemistry Acta, 1986, 48, (11-12), 1477-1483), en montré qu'une cathepaine atxiatie de poisson est blus active en présence d'urée. Cas auteurs parviennent ainsi à doser spédifiquement les cathepaines L et D dont l'activité est respectivement multipliée par un facteur 2,5 et 6 en présence d'urée.

[0043] Des agents réducteurs sont également décrits 19 comme activateurs des profésess. On citera par exemple les sulfures, les thiols comme le dithiothreitel ou la irrithiohaxitol, la cystérine, la N-acétylcystérine, les protéines un les nyérolyseats de protéines riches en cystérine, le mercaptoéthanol, le thioglycérol, les acides thioalca- 15 noiques et les acides mercaptocarboxyliques et leurs anakogues comme par exemple l'acide mercaptosuccinique, l'acide thiolacitupe, l'acide indipologique et leurs sols, le coenzyme A ou encore le glutathion réduit (SSH)

Ces agents réducteurs peuvent se trouver dans la composition sous leur forme active ou sous la forme de leur précurseur comme par exemple l'oxothiazolidine carboxylate qui est un précurseur des cystèines.

[0044] L'éthylène diamine tétraacétate (EDTA) est 25 connu pour prévenir l'inactivation par les métaux lourds des protéases, particulièrement de type cathepsine. A ce titre l'EDTA est considéré comme un activateur de protéase

[0045] On pout également assimiller les transglutamis 30 mases à un activateur de protéase. Ces enzymes appartiennent à la famille des transpeptidases. Elles sont calcium-dépendantes et catalysent la formation des ponts isopeptidiques cryfqultamiy) Lysine: réaction du groupe carboxyle (sur le carbone y) du résidu glutamine et du 57 groupe aminé d'un résidu Lysine ou d'une polyamine. Les transglutaminases E (ou épidermique), cytosolique, de PM 50-6 KD ayant un précurseur de 70 kD, et la transglutaminase K ou type I, membranaire, de PM 92 kD.

Les transglutarrinases E et K sont toutes deux impiquées dans la formation de l'enveloppe comée par pontage entre elles de nombreuses protéines, dont les principates sont l'involucine, la toricrine, félatine, les cystatines, les panormulines (ou SPR: Small Protine Rich), des cytokératines, les desmoplakines I et II, des desmogléines et la coméedodesmosine.

Les cystatines sont des protéines possédant une activité inhibitrice des protéases à cystéine (Takahashi et 50 col. FEBS letters, 1990, 2, 261-264).

Ainsi, si l'on augmente l'activité des transglutaminases, soit par la foumiture d'activateur de transglutaminase, soit par la bumiture d'activatione constitutives de sugmente alors la quantité de protétines constitutives de l'anveloppe comée qui sont piégées dans la formation de cette demière sous l'influence de la transglutaminase. On prive abrs le strattum comeum de ses protéines

endogènes, dont en particulier les cystatines. La disparition des cystatines dans l'épiderme et particulièrement dans le siratum cornéum, a alors pour effat de libérer les protéases à cystéline dont l'activité est alors augmentée ce qui a pour conséquence de diminuer la cohésion intercoméccytair et donc de favoriser la desouvametion.

Ainsi, l'invention à également pour objet une composition cosmétique ou pharmaceutique comprenant au moins un polypeptide selon l'invention et en outre au moins un activateur de protéase,

[0046] Parmi les activateurs de protéase on peut citer le glycérol, l'urée, l'EDTA, la transglutaminase, les agents réducteurs.

[0047] La quantité d'activateur de protéase contenue dans la composition de l'invention est bien entendu fonction de l'effet recherché et peut donc varier dans une large mesure.

[0048] Pour donner un ordre de grandeur la composition peut contenir l'activateur de protéase en une quantité représentant de 0,0001% à 15% ut poids total de la composition et préférentiellement en une quantité représentant de 0,001% à 10% du poids total de la composition.

5 [0049] Dans la composition les activateurs de protéase peuvent être seuls ou en mélange.

[059] Cuelle que soit feur nature, les compositions de l'invention peuvent être ingérées, injectées ou appliquées sur la peau (sur toute zone cutanée du corps) ou les muqueuses (buccale, jugale, gingivale, génitale, conionctivale, ...).

[0051] Selon le mode d'administration, les compositions selon l'invention peuvent se présenter sous toutes les formes galéniques normalement utilisées.

combine guardiques infinitariam unissess.
(D052) Pour une application topique sur la peau, la composition peut avoir la forme notamment de solution aqueuse ou huileuse ou de dispersion du type lotion ou sérum, d'émulsions de consistance liquide ou semiliquide du type lait, botenues par dispersion d'une phase grasse dans une phase aqueuse (H/E) ou inversement (E/H), ou de suspensions ou émulsions de consistance molle du type crême ou gel aqueux ou anhydres, ou encore de microcapsules ou microparticules, ou de dispersions vésiculaires de type ionique el/ou non ionique ou 5 de mouseas ou encore sous forme de compositions pour aérosol comprenant également un agent propulseur sous pression. Ces compositions sont préparées selon les méthodes usuelles.

[0053] Pour l'injection, la composition peut se présenter sous forme de toiton aqueuse, huileuse ou sous forme de sérum. Pour les yeux, elle peut se présenter sous Jorme de gouttes et pour l'ingestion, elle peut se présenter sous forme de capsules, de granulés, de sirops ou de compriés.

[0054] Les quantités des différents constituants des compositions selon l'invention sont celles classiquement utilisées dans les domaines considérés.

[0055] Ces compositions constituent notamment des

crèmes de nettovage, de protection, de traitement ou de soin pour le visage, pour les mains, pour les pieds, pour les grands plis anatomiques ou pour le corps (par exemple crèmes de jour, crèmes de nuit, crèmes démaquillantes, crèmes de fond de teint, crèmes anti-solaires), des fonds de teint fluides, des laits de démaquillage, des laits corporels de protection ou de soin, des laits anti-solaires, des laits après-soleil, des lotions, gels ou mousses pour le soin de la peau, comme des lotions de nettovage, des lotions anti-solaires, des lotions aprèssoleil, des lotions de bronzage artificiel, des compositions pour le bain, des compositions désodorisantes comprenant un agent bactéricide, des gels ou lotions après-rasage, des crèmes épilatoires, des compositions contre les piqures d'insectes, des compositions anti-douleur, des compositions pour traiter certaines maladies de la peau comme l'eczéma, la rosasée, le psoriasis, les lichens, les prurits sévères, l'ichthyose.

[0056] Les compositions selon l'invention peuvent également consister en des préparations solides constituant des savons ou des pains de nettoyage.

[0057] Les compositions peuvent aussi être conditionnées sous forme de composition pour aérosol comprenant également un agent propulseur sous pression.
[0058] La composition selor l'invention peut aussi
être une composition pour les soins du cuir chevelu, et
notamment un shampooing, une lotion de mise en plis,
une lotion traitante, une crême ou un gel colfant, une
composition de teintures (notamment teintures d'oxydation) éventuellement sous forme de shampooings cototrants, des lotions restructurantes pour les cheveux, une
composition de permanente (notamment une composition pour le premier temps d'une permanente), une lotion pour le premier temps d'une permanente), une lotion ou un gel antichute, un shampooing antiparasitaire,
les compositions antipelliculaires, etc. .

[0059] La composition peut aussi être à usage buccochentaire, par exemple une pête dentifrice. Dans ce cas, la composition peut contenir des adjuvants et acidifité usuels pour les compositions à usage buccal et notamment des agents tensioacelfis, des agents épaississants, des agents humaciants, des agents de polissage tels que la silice, divers ingrédients actifs comme les fluorures, en particulier le fluorure de sodium, et éventuellement des agents édulcorants comme le saccharinate de sordium.

[0060] Lorsque la composition est une émulsion. Le proportion de la phase grasse peut aller de 5 % à 80 %, en poids, et de préférence de 5 % à 50 % en poids, par rapport au poids total de la composition. Les hulles, les cires, les émulsionnants et lies cières, les émulsionnants et les coémulsionnants utilisés dans le composition exposition de d'émulsion sont choisis parmi ceux classiquement utilisés dans le domaine cosmétique. L'émulsionnant et le coémulsionnant sont présents, dans la composition, en une proportion allant de 0,3 % à 30 % en poids, et de préférence de 0,5 à 20 % en poids par rapport au poids total de la composition. L'émulsion peut, en outre, contenir des vésicules lipidicuses

[0061] Lorsque la composition est une solution ou un gel huileux, la phase grasse peut représenter plus de 90 % du poids total de la composition.

[062] De façon comus, la composition cosmétique peut contain également des adjuvants habituels dans le domaine cosmétique, tels que les gélifiants hydrophiles ou lipophiles, les addiffs hydrophiles ou lipophiles, les conservieurs, les antivoyadants, les écvents, les parfums, les charges, les filtres, les absorbeurs d'odeur of et les matières colorantes. Les quantités de ces différents adjuvants sont celles classiquement utilisées dans le domaine cosmétique, et per avemple de 0,01 % à 10 % du poids total de la composition. Ces adjuvants, selon leur nature, peuvend être introduits dans la phase gras-se se, dans la phase aqueuse et/ou dans les sphérules in-pictiques.

comme huiles ou cires utilisables dans l'invention, on peut citer les huiles minérales (huile de vaseine), les huiles végétales (traction iquicie du beurre de karité, huile de tournesol), les huiles animales (perhydrosquatine), les huiles de synthèse (huile de Purcellin), les huiles ou cires siliconées (cyclornéthicone) et les huiles ou cires siliconées (cyclornéthicone) et les huiles de ucréas (perfluoropolyéthers), les cires d'abelia, de currauba ou paraffine. On peut ajouter à ces huiles des alcools gras et des acides gras (acide stéarique). Comme émulsionnaits utilisables dans l'invention, on peut citer par exemple le stéarate de glyécfrol, le polysorbate do et le mélange de PEG-479C-93/2(layoc) Stéarate vendu sous la dénomination de Tefose ⁹63 par la société Gattletoses

[0063] Comme solvants utilisables dans l'invention, on peut citer les alcools inférieurs, notamment l'éthanol et l'isopropanol, le propylène glycol.

Comme gélifiants hydrophiles utilisables dans l'inversités on, on peut dist le solymères carboxyrinjiques (carbomer), les copolymères acryliques tels que les copolymères d'acryliales alsiylacrylates, les polyacrylamides, les polyacrylamides, les polyacrylamides, les gommes naturelles et les argiles, et, comme géligiants lipophiles, on peut citer les argiles modifiées comme les bentones, les sels médialiques d'accides gras comme les stéarates d'aluminum et la silice hydrophobe, d'hydrelludes, polydityline.

[0064] La composition peut contenir d'autres actifs b hydrophiles comme les protéines ou les hydrolysats de protéines, les acides aminés, les polyols, l'urée, l'allantoine, les sucres et les dérivés de sucre, les vitamines hydrosolubles, les extraits végétaux et les hydroxyacides.

Ø [0065] Comme acifis lipophiles, on peut utiliser le rétinol (vitamine A) et ses dérivés, le tocophérol (vitamine E) et ses dérivés, les acides gras essentiels, les céramides, les huiles essentielles, l'acide salicyfique et ses dérivés.

55 [0066] Selon l'invention la composition peut associer au moins un extrait d'au moins une Iridacée à d'autres agents actifs destinés notamment à la prévention et/ou au traitement des affections cutanées. Parmi ces agents actifs, on peut citer à titre d'exemple :

- los agents diminuant la différenciation e/ou la proilération e/ou la pigmentation cutanée tels que l'acide rétinoique et ses isomères, le rétinol et ses esters, la vitamine D et ses dérivés, les cestrogènes tels que l'oostradiol, l'acide kojique ou l'hydroquinone:
- les antibactériens tels que le phosphate de clindamycine, l'érythromycine ou les antibiotiques de la 10 classe des tétracyclines;
- les antiparasitaires, en particulier le métronidazole, le crotamiton ou les pyréthrinoïdes ;
- les antifongiques, en particulier les composés appartenant à la classe des imidazoles tels que l'éconazole, le kétoconazole ou le miconazole ou leurs sels, les composés polyènes, tels que l'amphotéricine B, les composés de la famille des allytamines, tels que la terbinafine, ou encore l'octopirox;
- les agents antiviraux tels que l'acyclovir;
- les agents anti-inflammatoires stéroidions, tols que l'hydrocontison, le valérate de bétaméthasene ou le propionate de clobétasol, ou les agents anti-inflammatoires non-tétroidiens comme par exemple l'huprofène et ses sels, le dictolénac et ses sels, l'acide acétylsalioyilque, l'acétaminophène ou l'acide devermitations :
- les agents anesthésiques tels que le chlorhydrate de lidocaïne et ses dérivés :
- les agents antiprurigineux comme la thénaldine, la 30 triméprazine ou la cyproheptadine;
- les agents kératolytiques tels que les acides a et le h-hydroxycarboxyliques ou β-célocarboxyliques, lours sols, amides ou esters et plus particulièrement les hydroxyacides tels que l'acide glycolique, l'acide acique, l'acide salicylique, l'acide clinique et de manière générale les acides de fruits, et l'acide nocotanovi6-salicylique;
- les agents hydratants comme le glycérol et ses dérivés;
- les agents anti-radicaux libres, tels que l'α-tocophérol ou ses esters, les superoxyde dismutases, certains chélatants de métaux ou l'acide ascorbique et ses esters;
- les antiséborrhéiques tels que la progestérone;
 les antipelliquieires comme l'octobiros ou la puris
- les antipelliculaires comme l'octopirox ou la pyrithione de zinc;
- les antiacnéiques comme l'acide rétinoïque ou le peroxyde de benzoyle;
- les extraits d'origine végétale ou bactérienne.

[0087] Ainsi, selon un mode particulier, la composition soton l'invention comprend également au moins un agent choisi parmi les agents antibactériens, antipara-sitaires, antiforagiques, antiviraux, antiforagiques, antiviraux, antiforagiques, antiviraux, anti-radicaux libres, anti-adorrhéiques, antipelliculaires, anti-adoráuse sitou les agents diminuant la différenciation

et/ou la prolifération et/ou la pigmentation cutanée.

[0068] Un autre objet de l'invention est de proposer un procédé de traitement cosmétique pour futter contre les excès de corbésion intercornécoyaire et donc pour augmenter la desquamation, procédé qui consiste à appliquer sur la peau une composition cosmétique comprenant au moins un polypeptide de l'invention.

[0069] L'invention a également pour objet l'utilisation du polypeptide de l'invention pour préparer ou purifier. éventuellement à partir d'épiderme, toute molécule, structurale ou fonctionnelle, susceptible de se lier spécificuement audit polypeptide isolé ou auxdits fragments de protéolyse isolés ou audit peptide synthétique. Cette molécule peut notamment correspondre à d'autres protéines structurales spécifiques des coméodesmosomes et diverses enzymes de la couche comée, de type "protéases", "glycosidases" ou "phosphatases" [0070] L'invention a également pour objet l'utilisation du polypeptide de l'invention pour préparer des antisérums et anticorps monoclonaux spécifiques, visant notamment à purifier cette protéine et ses fragments. Par extension, l'invention a également pour objet toute utilisation dudit polypeptide pour produire des anticorps ou fragments d'anticorps recombinants, quel que soit le système biologique utilisé pour produire ces demiers [0071] La figure 1 représente les profils d'activité des protéases contenues dans les échantillons de protéines du stratum corneum en présence ou en absence de cystéine

La figure 2 représente les profils d'activité des protéases du pic G4 en fonction du pH.

La figure 3 représente les profils d'activité des protéases du pic G4 en présence de l'inhibiteur E 64 (Proteolytic enzymes: a practical approach, R.J. Beyton et J.S. Bond, IRL press, Oxford, 1989).

La figure 4 représente les profils d'activité des protéases du pic G4 en présence de leupeptine.

La figure 5 représente les profils d'activité des protéases du pic G4 en présence de chymostatine.

La figure 6 représente les profils d'activité des protéases du pic G4 en présence de l'inhibiteur CA 074 (Inubushi et col., J. of Biochemistry, 116, 282-284, 1994). La figure 7 représente les profils d'activité des protéases

La ligure / représente les profils d'activité des protéases du pic G4 en présence de pepstatine.

La figure 8 représente les profils d'activité des protéases

du pic G4 en présence d'un substrat peptidique préférentiel des cathepsines L. La ligure 9 représente les profils obtenus lors des expé-

riences chromatofocalisation pour la détermination du point isoélectrique apparent.

EXEMPLE:

isolement et caractérisation du polypeptide :

[0072] Les protéines du stratum corneum sont prélevées par le procédé dit de «grattage». Cette technique ne nécessite pas de phase d'extraction par solvant or-

ganique et donc est susceptible de moins détruire les activités enzymatiqu s. Elle permet en outre d'obtenir de bonne quantité de matériel

Le grattage est effectué sur la face antérieure de la jambe. La zone de prélèvement est lavée avec 200 ml d'un tampon constitué de 50 ml de tampon phosphate de sodium, pH 7, 5 mM d'EDTA, 150 mM de NaCl et 0.1 % de triton X100, distribué au moyen d'une pompe à débit constant de 100 ml/mis

La zone est alors grattée superficiellement avec le bord d'une lame de microscope.

Le liquide contenant les cellules est recueilli dans un récipient situé sous la jambe. Le tampon ainsi récolté est recyclé pour de nombreux passages (15). Les échantillons sont ensuite regroupés ou non selon le type 15 d'expérimentation

La solution ainsi obtenue est d'abord filtrée sur papier Whatman n°4, puis sur filtre Millipore 0.45 µm et enfin sur filtre Millipore 0.22 µm. Cette solution clarifiée est concentrée jusqu'à 12 ml par ultrafitration tangentielle avec un seuil de coupure de 10 ND à 4°C avec une contre-pression de 1 bar et un débit de sortie de filtrat de 2 ml/min. au moyen de l'appareil IK.BL.™ et des membranes Sartocom "(SARTORIUS).

Pour un individu peau saine, la concentration des proteines extraites par cette méthode est de l'ordre de 0.15 mg/ml pour 12 ml final avec 15 passages pour la technique

Séparation des protéines :

[0073] Une colonne Superdax G200 HR10/30TM (Pharmacia Biotach) and tillede pour la separation des protéines avec un domaine de résolution allant de 600 kD à 10 kD. Cette technique basée sur la séparation inoctroin du poids moléculaire permet d'avoir une première estimation des poids moléculaires des protéines. Le profil de chomatographie obteun montre que le spics protéiques se situent majoritairement vers les bas poids moléculaires (20 à 40 kD).

Une colonne plus résolutive est alors utilisée. L'échantillon (250 µl) est injecté sur une colonne d'exclusion Superdex G75 HR10/30™ (Pharmacia Biotech) pour laquelle la séparation optimale se situe pour des poids moléculaires allant de 70 kD à 3 kD.

La sortie de colonne est collectée sur plaque 96 puits, à 4°C, à raison de 150 µl / puiss, après un temps d'attente de 15 minutes après injection (Ce dernier correspond à un peu moins que le volume mort de la colonne et laisse une marge de sécurité pour le cas oû un composé ne serait absolument pas reteru) et un volume de mort de 0,24 ml. Le débit de la pompe est de 0,5 ml/mn, la longueur d'onde de détection de 280 mn (Pompe série 10 : Perkin Elmer, Détecteur SP6450 : Specter Physics, Intégrateur LC1-100 : Perkin Elmer, Collecteur de fraction modèle 20 I : Gilson).

Les profils chromatographiques obtenus sur différentes injections étant reproductibles, les fractions obtenues sont mélangées «puits à puits» afin d'avoir un volume de travail d'environ 800ul par fraction.

Les différentes fractions sont maintenues au froid, réfrigérateur ou glace pilée, afin de conserver les activités enzymatiques.

Les poids moléculaires correspondants au différentes fractions sont déterminés par une électrophorèse sur gel de polyacrylamide avec un gradient d'acrylamide 8-16 %. Les échantillons sont ditiées au ¼ dans un tampon Laemmil modifié (0.0625 M Tris, ph 16.8, 2% SDS et sans DTT) et les dépôts sont de 20 µi. Les bandes protéiques sont révélées par une coloration au nifrate d'argent selon le protocole Pharmacia Biotech. (Kit: Silvers staining blusone "M).

Dosage des activités protéasiques :

[0074] Un dosage des activités protéasiques contenues dans les fractions obtenues par passage sur la colonne d'exclusion Superdex G75 HR10/30™ est effectué par fluorimétrie à l'aide du kit Enzcheck™ (Moíscular Probes).

Ce kit est un procédé rapide et simple de mesure des activités protésques, sans phase de précipitation ni de séparation et est donc adapté pour un criblage rapide des activités protéasiques des différentes fractions. Ce protocole utilise comme substrat le BODIPYII-caséne¹¹ qui devient fluorescent après digestion enzymatique. La fluorescence ainsi libéré es et directement proportionnelle à Tactivité protéasique contenue dans féchantillos. La fluorescence est mesurée sur le spectrofluorimètre LS50B, Perkin Elmer, avec une longueur d'onde d'excitation de 485 nm (fente de 25 nm), une longueur d'onde d'émission de 535 nm (fente de 8 nm) tu nt emps d'influération de 1 seconde par puitis.

Les dosages sont effectués en présence ou en absence de cystéine à 5 mM en concentration finale afin de mettre en évidence d'éventuelles activités de protéases à cystéine.

Les résultats sont montrés dans la figure 1.

[0075] Le profil protéasique révèle l'existence d'un pic (G4) présent lorsque le tampon contient de la cystérine et absent lorsque le tampon ne contient pas de cystérine. Ce pic révèle donc dans les fractions 34 à 47 l'existence d'une protéase cystérine dépendante. Cette protéase a un poids moléculaire de l'Ordre de 28 K0.

pH optimal d'activité des protéases :

(0076) Pour caractériser le pH optimal d'activité des protéases du pic G4, deux tampons, tels que décrits dans 'Data for Biochemical Research', (Dawson et col., 3ème édition, Cxford science publications, 1990), ont été préparés pour couvrir une gamme de pH allant de 5 40 a 8 25.

> tampon acétate 0,1M, pH 4,0 à 5,75; tampon phosphate 0.1M, pH 5,75 à 8,25.

Tous les tampons contiennent 5 mM d'EDTA et 0,1 % de triton X100. Les activités sont mesurées toutes les 0.25 unités d. pH.

La technique précédente de mesure de l'activité protéasique est utilisé avec chacun des 2 tampons, sur chaque 5 fraction

Les résultats sont montrés dans la figure 2.

Le pH optimal des protéases extraîtes du stratum corneum, agissant sur le substrat BODIPYfl-caséine™ se situe dans les pH acides, de 4,0 à 6,25.

[0077] La plus forte activité a été obtenue pour entre les pH 5,0 et 5,5 avec le tampon acétate. Le tampon acétate à pH 5,0 est donc le tampon utilisé pour la suite des expérimentations.

Caractérisation des pics de protéases par l'utilisation d'inhibiteurs :

[0078] Alin de mieux caractériser la protéase cystéine dépendante isolée précédemment, des test c'inh billion par des inhibiteurs comus des protéases sont réalisés. Les mesures sont effectuées de manière i dentique a ux mesures précédentes en présence de cystéine à 5 mM en concentration finale et en présence ou en absence (démon) de l'inhibiteur considéré.

Inhibiteur E 64:

[0079] E 64 est un inhibiteur des protéases à cystéine et en particulier des cathepsines B, H, L (Proteolitic 30 enzymes : a practical approach, R.J. Beyton et J.S. Bond, IRL press, Oxford, 1989).

[0080] Le test est réalisé à une concentration de 1,4 µM en inhibiteur E64. Les résultats sont montrés dans la figure 3.

L'E64 à 1,4 pM inhibe à environ 71% l'activité de la protéase cystéine dépendante du pic G4.

Au regard de la spécificité de cet inhibiteur, G4 est une cathepsine B. H ou L.

Leupeptine:

[0081] La leupeptine, à la dose utilisée, est spécifique des cathepsines B ou L et sans effet sur les cathepsines H (Schwartz et col. 1980).

Le test est réalisé à une concentration de 1 μM en leupeptine.

Les résultats sont montrés dans la figure 4. La Leupeptine à 1 µM, en présence de cystéine réduit d'environ 41% l'activité protéasique de G4. G4 n'est pas une cathepsine H.

Chymostatine:

[0082] La chymostatine est spécifique des cathepsines L et inactive à la concentration utilisée sur les cathepsines B (Inubushi et col., J. of Biochemistry, 116, 282-284, 1994).

Le test est réalisé à une concentration de 2,5 pM en chymostatine. Les résultats sont montrés dans la figure 5. Utilisée à 2.5 µM, la chymostatine inhibe à plus de 50 % la protéase cystéine dépendante de pic G4.

5 G4 est une protéase du type cathepsine L.

Inhibiteur CA 074:

[0083] L'inhibiteur CA 074 inhibe spécifiquement les cathepsines B et est sans action sur les cathepsines L (Inubushi et col. 1994).

Le test est réalisé à une concentration de 1 µM en chymostatine.

Les résultats sont montrés dans la figure 6.

L'inhibiteur CA 074 n'affecte pratiquement pas le profil

d'activité de la protéase cystéine dépendante de pic G4. G4 n'est pas une protéase du type cathepsine B.

Pepstatine:

[0084] La pepstatine est un inhibiteur spécifique des protéases à acide aspartique (Proteolytic enzymes : a practical approach, R.J. Beyton et J.S. Bond, IRL press, Oxford, 1989).

5 [0085] Le test est réalisé à une concentration de 1 pM en pepstatine.

Les résultats sont montrés dans la figure 7. La pepstatine est sans action sur G4.

G4 n'est pas une protéase à acide aspartique.

Utilisation d'un substrat spécifique des cathepsines L[Z] (phe-arg 2R110) (AssfalgMachleidt et col. 1992)) pour confirmer la caractérisation de G4:

[0086] Les résultats d'identification de G4, obtenus par les différents tests inhibiteurs, ont été vérifiés par l'utilisation d'un substrat poptidique préférentiel des cathepsines L marqué à la rhodamine 110. Ce substrat est 550 lois plus sensible à l'action des cathepsines L que des cathepsines B.

Les résultats du bilan d'activité protéases en présence de cystéine, témoin sans cystéine soustrait, sont présentés dans la figure B.

Les résultats montrent que l'hydrolyse intense du substrat peptidique spécifique se superpose parfaitement à celle de la caséine, confirmant la nature cathepsine L de G4.

Evaluation du point isoélectrique apparent de G4 :

[0087] Cette évaluation est réalisée par la technique de chromatofocalisation (chromatofocusing) telles que décrites dans 'Protein Purification', J-C. Janson et L. Ryden, VCH Publisher Inc. N.Y., 1989, dans les conditions suivantes ;

Colonne: Mono PTM HR 5/20 Pharmacia. Echantillon: extrait de SC humain équilibré dans un tampon 0.075M tris/acétate, pH 9.3).

Tampon d'élution: 10 ml polybuffer 96/acétate, pH 6.0, (*Protein Purification*, J-C. Janson et L. Ryden, VCH Publisher Inc. N.Y., 1989).

Débit : 1ml/min.

Fractions: 0.5 ml à partir de l'injection sur 48 ml totaux. 5
Détection : Activités cathepsine L sur Z(phe-Arg)2F110
10 mM dans tampon acétate 0,1 M pH50, 0,1% Triton
X100, SmM EDTA, SmM cystéine. Incubation de 10 µl de
fraction + 200 µl de substrat à 37°C pandant 2h30. Lecture sur BioluminTM de Molecular Dynamics dont le
photomultiplicateur est régié à 700 V, excitation : 485/10
m. émission : 520/10 mm.

Les résultats sont présentés dans la figure 9. Ces résultats montrent un point isoélectrique apparent compris entre 6 et 9.

Mise en évidence du rôle probable de G4 dans le processus de desquamation :

[0088] La coméodesmosine est une protéine essentielle du coméodesmosome qui est dégradée lors de la desquamation (Serre G. et col. J.I.D., 1991, 97(6), 1081-1072)

Le test est pratiqué sur de la cornéodesmosine extraite de stratum comeum selon la technique développée par Munerot C. (Rapport de DEA., 1996, Université de Marne la Vallée).

Un immunotransfert pratiqué sur de la cornéodesmosine après incubation sur stratum comeum entier en présence ou en absence de la protéase du pic G4 montre 30 une dégradation prononcée de celle-ci.

La protéase du pic G4 présente dans le stratum corneum dégrade la coméodesmosine.

[0089] Ürnsemble des résultats des essais pratiqués permet de conclure que le polypeptide extrait du stratum 3 corneum est une profésse cystéine dépendante de type cathepsine L ayant un poids moléculaire apparent de 28 RD et un point isoélectrique comroire sorte 6 et 9.

Revendications

- Polypeptide naturel ou synthétique isolé, appartenant à la famille des protéases à cystéine de type cathepsines L, ayant un poids moléculaire apparent compris entre 15 et 32 kilodaltons.
- Polypeptide selon la revendication 1, caractérisé par le fait qu'il un point isoélectrique compris entre 6 et 9.
- Polypeptide selon l'une quelconque des revendications précédentes, caractérisé par le fait qu'il est isolé à partir de mammifères.
- Polypeptide selon l'une quelconque des revendications précédentes, caractérisé par le fait qu'il est isolé à partir de peau de mammifères.

- Polypeptide selon l'une quelconque des revendications précédentes, caractérisé par le fait qu'il est isolé à partir de peau humaine.
- Polypeptide selon l'une quelconque des revendications précédentes, caractérisé par le fait qu'il est isolé à partir d'épiderme humain.
- Polypeptide selon l'une quelconque des revendications précédentes, caractérisé par le fait qu'il intervient dans la diminution de la cohésion intercoméocytaire.
- Polypeptide selon l'une quelconque des revendications précédentes, caractérisé par le fait qu'il a un poids moléculaire apparent compris entre 25 et 30 kilodations.
- Polypeptide selon l'une quelconque des revendications précédentes, caractérisé par le fait que son activité est maximale à un pH compris entre 2 et 9, préférentiellement entre 3,5 et 6,5.
- Polypeptide constitué en partie par le polypeptide
 tel que décrit dans les revendications 1 à 9.
 - Fragment du polypeptide tel que décrit dans les revendications 1 à 10 obtenus par protéolyse ou de manière synthétique.
- Composition cosmétique ou pharmaceutique comprenant, dans un milieu physiologiquement acceptable, au moins un polypeptide ou au moins un fragment tels que décrits dans l'une des revendications 1 à 11
- Composition selon la revendication 12, caractérisée par le fait que le polypeptide ou le fragment est en une quantité comprise entre 0,00001% et 50%, de préférence comprise entre 0,001% et 10% en poids par rapport au poids total de la composition.
- Composition selon l'une quelconque des revendications 12 ou 13, caractérisée par le fait qu'elle comprend en outre au moins un activateur de protéase.
 - Composition selon la revendication 14, caractérisé par le fait que l'activateur de protéase est choisi parmi le glycérol, l'urée et ses dérivés, la transglutaminase, l'EDTA, les agents réducteurs.
- 16. Composition selon l'une quelconque des revendications 14 ou 15, caractérisée par le fait que l'activateur de protéase est en une quantité comprise entre 0,00001% et 15% et de préférence comprise entre 0,00% et 10% en poids par rapport au poids total de la composition.

50

- 17. Procédé de traitement cosmétique pour lutter contre les excès de la cohésion intercomécytaire ou pour favoriser la desquamation, caractérisé par le fait que l'on applique sur la peau du sujet à traiter une composition telle que décrite dans l'une quelconques des revendications 10 à 16.
- Composition pharmaceutique selon l'une quelconque des revendications 10 à 16, destinée à traiter les troubles de la desquamation.
- Composition pharmaceutique selon la revendication 18 destinée à traiter l'hyperkératose.
- Composition pharmaceutique selon l'une quelconque des revendications 18 ou 19, destinée à traiter
 la xérose, les ichthyoses, le psoriasis, les lésions
 tumorales bénignes ou malignes ou les kératoses
 réactionnelles.
- 21. Composition pharmaceutique selon l'une quelconque des revendications 18 ou 19, destinée à traiter la leukokératose du ou lutérin au cours du prolapsus, les leukokératoses buccales, ou encore les lésions tumorales bénignes kératosiques des muqueuses matiohànemes.
- 22. Utilisation du polypeptide isolé ou de ses fragments tels que décrits dans les revendications 1 à 11, pour préparer ou purifier toute molécule susceptible de se lier spécifiquement audit polypeptide isolé ou auxdits fragments de protéolyse isolés ou audit peptide synthétique.
- Utilisation selon la revendication précédente pour préparer ou purifier des protéines structurales spécifiques de cornéodesmosomes.
- 24. Utilisation du polypeptide isolé ou de ses fragments tels que décrits dans les revendications 1 à 11, pour préparer ou purifier des antisérums ou des anticorps monoclonaux spécifiques.

50

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 7

Figure 8

Chromatofocusing "CF4" extrait de SC

Figure 9

Office européen des brevets RAPPORT DE RECHERCHE EUROPEENNE

EP 98 40 2037

atégorie	Citation du document avec	indication, en cas de besoin.	Revendication	
ategorie	des parties perti		concernée	DEMANDE (Int.Cl.6)
x	A. KAWADA ET AL.,: "Processing of cathepsins L, B and D in psoriatic epidermis" RRCHIVES OF DERMATOLOGICAL REARCH, vol. 289, no. 2, 1 janvier 1997, pages 87-93, XP002067217 EBRILIN, DE BERLIN, DE * le document en entier *		1,3-8	C12N9/64 A61K38/48 C07K14/435 A61K7/48
x	sequence of a cDNA pro-(cathepsin-L)" THE BIOCHEMICAL JOU vol. 253, 1988, pag LONDON, GB	RNAL, es 303-306, XP00206721 ent and specially page:	1	4
x	GB 2 306 961 A (ZEM * page 1-5; exemple	ECA LTD) 14 mai 1997	1,3,7,1	2 DOMAINES TECHNIQUES
D,A	MO 95 07686 A (UNILEVER PLC :UNILEVER NV) 23 mars 1995 + le document en entier + DE 196 19 366 A (HOECHST AG) 20 novembre 1997 + le document en entier +		I,10-12 17-21	I, 10-12, RECHERCHES (Int.Cl.6)
P,X				
P,X	US 5 710 014 A (S. 20 janvier 1998 * colonne 1, ligne * colonne 2, ligne	19-38 *	1,3,20-24	
	résent rapport a été établi pour to	utes les revendications Date d'achèvement de la recheiche	1	Exeminatour
	BERLIN	10 décembre 199	8 Ma	teo Rosell, A.M.
X : par Y : par autr A : anti	CATEGORIE DES DOCUMENTS CITI ticulièrement pertinent à lui seul ticulièrement pertinent en combination re document de la même catégorie alre-plan technologique uspation non-acritie	E : document de l date de dépôt D : cité dans la de L : caté pour d'aut	orevet antérieur, s ou après cette da emande ses raisons	mais publié à la