

1 Simulation des unkorrigierten, offenen Regelkreises.

- 1.1 Berechnung der Simulationsdauer und Schrittweite.
 - a) Simulations dauer = (T1+T2+T3)*5 = (83+74+53)*5 = 1050
 - b) Schrittweite oder Abtastzeit = Kp/10 = 38/10 = 3.8
- 1.2 Einstellung der Simulationsparameter

1.3 Laden der Parameter vom unkorrigierten, offenen Regelkreis.

1.4 Simulation des unkorrigierten, offenen Regelkreises.

1.4 Anpassung der Höhepunkt des unkorrigierten, offenen Regelkreises auf 38.

Aufgabe 2: Modellieren Sie den unkorrigierten, offenen Regelkreises.

2.1 Anwendung von Tangente, um die Verzögerungszeit und dT abzulesen.

2.2 Totzeit und PT1 Glied werden hinzugefügt.

2.3 Gelesen von 2.1 Totzeit = 46 und dT = 279.

2.4 Simulation des unkorrigierten, offenen Regelkreises und des Modells

Aufgabe 3: Untersuchung der Stabilität in der Wurzelortskurve und Notation von K_{Krit} und ω_{Krit} .

3.1.1 Blockliste wird bearbeitet.

3.1.2 Stabilität in der WOK wird untersucht.

3.1.3 Skalierung, um die Schnittstelle erreichen zu können.

3.2 Notation von K_{Krit} und ω_{Krit} .

- a) $\omega_{Krit} = 0.025$ 2
- b) $K_{Krit} = 1/4.6 = 0.2160$

Aufgabe 4: Entwerfen Sie unterschiedliche Regler und Simulieren Sie den Regelkreis.

4.a.1) Durchführung des Schwingversuchs und Nutzen von Kkrit.

4.a.2) Einsetzen von K_{Krit}

4.a.3) Schwingversuch

4.b.1) Ziegler Nichols

4.b.2) Rechnungen für Reglereinstellung nach Ziegler Nichols

Reglereinstellung nach Ziegler/Nichols

Methode 1 für bekannte Streckenparameter

Tur bekannte Streckenparameter				
$G_R(s)$	K_P	T_N	T_V	
P	$\frac{T_a}{K_a T_t}$	_	_	
PI	$0, 9 \frac{T_a}{K_a T_t}$	$3,3T_t$	_	
PID_{add}	$1, 2 \frac{T_a}{K_a T_t}$	$2T_t$	$0,5T_t$	

Methode 2 für unbekannte Streckenparameter

$G_R(s)$	K_{PR}	T_N	T_V
P	$0,5K_{krit}$	_	_
PI	$0,45K_{krit}$	$0,83T_{krit}$	_
PID_{add}	$0,6K_{krit}$	$0,5T_{krit}$	$0,125T_{krit}$

Regler	K _P nach Methode 2	T _N nach Methode 2	T _V nach Methode 2
Р	0.107	-	-
PI	0.096	207	-
PID	0.128	124	31

4.b.3)Simulation des geschlossenen Regelkreises nach Ziegler/Nichols

4.c Nach Chien/Reswick/Hornes

4.c.1 Rechnungen mit K_a = 38 , T_a = 279s und T_{ta} = 47s

Regler	K _P	T _N	Tv
Р	0.1093	-	-
PI	0.0937	279	-
PID	0.1484	377	22

4.c.2 Regelkreis nach Chien/Reswick/Hornes

4.c.3 Simulation nach Chien/Reswick/Hornes

4. Legen Sie eine Übersichtstabelle und vergleichen Sie

4.a Prozentuale Überschwingweite

4.a.1) P-Regler

4.a.2) PI-Regler

4.a.3) PID-Regler

4.b An- und Ausregelzeit

4.b.1) Einsetzen des Toleranzbands

4.b.2) P-Regler

4.b.3) PI-Regler

4.b.4) PID-Regler

4.b.5) Tabelle nach Ziegler/Nichols

Regler	Überschwingweite	An & Ausregelzeit	Stationäre
			Genauigkeit
Р	0.25 * 100 = 25%	135 & > 3000	1
PI	0.6 * 100 = 60%	125 & 1480	1
PID	0.45 * 100 = 45%	100 & 480	0.7

4.b.6) P-, PI-, und PID-Regler mit Toleranzband nach Chien/Reswick/Hornes

4.b.7) Tabelle nach Chien/Reswick/Hornes

Regler	Überschwingweite	An & Ausregelzeit	S. Genauigkeit
Р	0.25 * 100 = 25%	120 & > 3000	1
PI	0.45 * 100 = 45%	120 & 1115	1
PID	0.3 * 100 = 30%	100 & 580	0.7