

Mémoire master sciences physiques

ÉTUDE DE SPECTRES INFRAROUGES DE GÉANTES ROUGES ÉVOLUÉES

Margaux Vandererven

Supervisé par Sophie Van Eck

Étoiles de type S & étoiles à baryum

 T_{eff} étoiles S $\sim T_{eff}$ étoiles K et M Bande ZrO & enrichissement en éléments s

- de type S intrinsèques (Tc rich)
- de type S extrinsèques (Tc poor)
- à baryum

Processus s

+ de 50% éléments plus lourds que le fer

Spectre observé

Spectres infrarouges :

IGRINS (Immersion GRating INfrared Spectrometer)

Haute résolution : $R = \frac{\lambda}{\Delta \lambda} \sim 45000$

- Bande H $(1.45 1.80 \ \mu m)$
- Bande K (2.05 2.50 μ m)

$$ightarrow$$
 BD-2217 $^{\circ}$ 42 (4000K)

Normalisation & correction redshift

Etoiles

Étoile	Type spectral	T _{eff} (K)	$\log g \text{ (cm } s^{-2}\text{)}$	$\xi_{ m micro}$ (km s $^{-1}$)	[Fe/H] (dex)
HD 60197	K3.5III:Ba3.5	$3800 \pm 50^{(3)}$	$2.00 \pm 0.50^{(3)}$	2.00 ⁽³⁾	$-0.60 \pm 0.20^{(3)}$
HD 63733	S3.5/3	3700 ⁽¹⁾	$1.00^{(1)}$	-	$-0.10 \pm 0.13^{(1)}$
CR Cir	S6,2	-	-	-	-
HD 123949	K1pBa	$4378 \pm 80^{(3)}$	$1.78 \pm 0.53^{(3)}$	1.37 ⁽³⁾	$-0.31 \pm 0.13^{(3)}$
BD-22°1742	S3:*3	4000 ⁽¹⁾	$1.00^{(1)}$	-	$-0.30 \pm 0.09^{(1)}$
CD-29°5912	S4,4	3600 ⁽⁴⁾	1.00(4)	-	$-0.40 \pm 0.22^{(4)}$
BD-18°2608	S	3500 ⁽²⁾	$1.00^{(2)}$	-	$-0.31 \pm 0.16^{(2)}$
HD 116869	G8III:Ba1	$4892 \pm 30^{(3)}$	$2.59 \pm 0.07^{(3)}$	$1.38 \pm 0.04^{(3)}$	$-0.44 \pm 0.09^{(3)}$
HD 120620	K0III (Ba ⁽³⁾)	$4831 \pm 13^{(3)}$	$3.03 \pm 0.30^{(3)}$	$1.11 \pm 0.05^{(3)}$	$-0.30 \pm 0.10^{(3)}$
HD 121447	$K4III^{(3)}$ (Ba $^{(3)}$)	$4000 \pm 50^{(3)}$	$1.00 \pm 0.50^{(3)}$	$2.00^{(3)}$	$-0.90 \pm 0.13^{(3)}$
HD 100503	G/KpBa	$4000 \pm 50^{(3)}$	$2.00 \pm 0.50^{(3)}$	$2.00^{(3)}$	$-0.72 \pm 0.13^{(3)}$
HD 119185	G8IIIpBa	-	-	-	-
HD 88562	K1III (Ba ⁽³⁾)	$4000 \pm 50^{(3)}$	$2.00 \pm 0.50^{(3)}$	$2.00^{(3)}$	$-0.53 \pm 0.12^{(3)}$
V812 Oph	S5+/2.5	3500 ⁽²⁾	$1.00^{(2)}$	-	$-0.37 \pm 0.13^{(2)}$
19 Aql	F0III-IV	-	-	-	-
V915 Aql	S5+/2	3400 ⁽¹⁾	$0.00^{(1)}$	-	$-0.50\pm0.15^{(1)}$
HD 165774	S4,6	-	-	-	-

Spectre synthétique

TurboSpectrum v20

MARCS

Contributions moléculaires

	Molécules	Bande H (%)	Bande K (%)
Cat. I	¹² C ¹⁴ N	82.47	76.33
(> 10%)	¹³ C ¹⁴ N	78.52	67.18
	¹² C ¹⁶ O	71.92	71.01
	HF	1.81	47.39
	¹² C ¹² C	81.40	77.39
	¹² C ¹³ C	73.81	65.34
Cat. II	¹³ C ¹³ C	7.84	3.51
(1-10%)	¹⁶ OH	2.20	0.56
	⁵⁶ FeH	2.96	0.08
	¹² CH	5.97	8.55

Cat. III (< 1%) : $^{13}\text{C}^{17}\text{O}$, ^{13}CH , ^{14}NH , ^{48}TiO , $^{22}\text{H}_2$, HCl, H $_2$ O, ^{20}CaH , ^{28}SiH , ^{28}SiO , VO, YO, ^{48}TiO , ^{24}MgH , AlH, ^{52}CrH , H ^{12}CN , H ^{13}CN , $^{90-94}\text{ZrO}$ et ^{96}ZrO

Abondances C, N, O

Abondances:

	[Fe/H]	[C/Fe]	[N/Fe]	[O/Fe]
Ce travail	-	0.41	0.32	0.75
Shetye et al. (2018)	-0.30±0.09	0.35	-0.1	-

Paramètres stellaires

dd