Introduction to Cloud System Software

Introduction

- 1. Fundamental technologies underlying cloud computing including the programming frameworks and communication mechanisms
- 2. Concept of virtualization and associated mechanisms for virtualization in the cloud
- 3. Cloud storage systems, including key-value stores
- 4. Resource management: Automated provisioning, load balancing, and scheduling
- 5. Performance scalability and benchmarking

Setting the Stage

- 1. How to write large-scale parallel/distributed apps with scalable performance from multicores to clusters with thousands of machines?
 - Make the programming model simple
 - Liberate the developer from fine-grain concurrency control of the application components (e.g., threads, locks, etc.)
 - Dataflow graph model of the application with application components (e.g., subroutines) at the vertices, and edges denoting communication among the components
 - Exploit data parallelism
 - Require the programmer to be explicit about the data dependencies in the computation
 - Let the system worry about distribution and scheduling of the computation respecting the data dependencies
 - Use the developer provided application component as the unit of scheduling and distribution
- 2. How to handle failures transparent to the app?
 - In data centers, it is not an "if", it is a "when" question
- 3. Roadmap
 - Map-reduce
 - Dryad
 - Spark
 - Pig Latin
 - Hive
 - Apache Tez

Map Reduce

- 1. Input + output to each of map + reduce
 - <key, value> pairs
 - Example: Emit number of occurrence of names in documents
 - Key: filename, Value: contents
 - Map: look for unique names
 - Reduce: aggregate values
 - Key: unique name, Value: number
- 2. Why Map-Reduce?
 - Several processing steps in giant-scale services expressible
 - Ranks for pages
 - Domain expert writes
 - map
 - reduce
 - Runtime does the rest
 - Instantiating number of mappers, reducers
 - Data movement
- 3. Map-Reduce Summary
 - Developer resonsibility

- Input data set
- Map and reduce functions
- System runtime responsibility
 - Shard the input data and distribute to mappers
 - Use distributed file system for communication between mappers and reducers

Heavy Lifting by Map Reduce Runtime

Issues Handled by the Runtime

- 1. Master data structures
 - Location of files created by completed mappers
 - Scoreboard of mapper/reducer assignment
 - Fault tolerance
 - Start new instances if no timely response
 - Completion message from redundant stragglers
 - Locality management
 - Task granularity
 - Backup tasks

Dryad

- 1. Dryad design principles
 - Map-Reduce aims for simplicity for a large class of applications at the expense of generality and performance
 - e.g., Files for communication among application components, two-level graph (map-reduce with single input/output channel)
 - Dryad: General acylic graph representing the application

- Vertices are application components
 - * Arbitrary set of inputs and outputs
- Edges are application-specified communication channels (shared memory, TCP sockers, files)

2. Dryad primitives

- Developed at Microsoft
- App developer writes subroutines
- Uses graph composition primitives via C++ library to build the application
 - Cloning, merging, composition, fork-join
- Encapsulate
 - Create a new vertex out of a subgraph
- Specify transport for edges
 - Shared memory, files, TCP

Dryad

- 3. Dryad system
 - Application developer creates the graph describing how subroutines communicate
 - Job manager consults the name server to find out which nodes are available and launch portions of the application graph across available nodes
 - Finer granularity control compared to map-reduce

Spark

- 1. Data center programming challenges
 - Need fault tolerance
 - Map-reduce approach: Use stable storage for intermediate results
 - * Make computations idempotent

- Cons of this approach
 - * Disk I/O is expensive
 - * Inhibits efficient re-use of intermediate results in different computations
- 2. Spark design principles
 - Need performance and fault tolerance
 - Keep intermediate results in memory
 - Provide efficient fault tolerance for in-memory intermediate results
- 3. Spark secret sauce
 - Resilient distributed data (RDD)
 - In-memory immutable intermediate results
 - Fault tolerance by logging the lineage of RDD
 - * i.e., the set of transformations that produces the RDD
 - * RDD2 <- T2(T1(RDD1))
 - Regenerate the RDD using the lineage upon failure
 - * Only the missing portion of the RDD needs regeneration
- 4. Spark generality
 - Unifies many current programming models
 - Data flow models: Map-reduce, Dryad, SQL
 - Specialized models
 - * Batched stream processing, iterative Map-Reduce, iterative graph applications

Pig Latin, Hive, Apache Tez

- 1. Pig Latin (Yahoo)
 - In between the declarative style of SQL and procedural style of Map-Reduce
 - Break the rigidity of Map-Reduce
 - User-defined functions (UDF) as first class citizens
 - * Grouping, joining, filtering, etc.
 - Nested data model
 - * Atom, tuples, bags
 - * e.g. {('bala', 'falcons'), ('drew', ('braves', 'falcons'))}
- 2. Hive (Facebook)
 - System for querying and managing structured data built on top of Hadoop
 - Kev features:
 - Queries expressed in SQL-like declarative language
 - Allows embedding custom map-reduce scripts
 - Compiles into map-reduce jobs
 - Uses HDF5 for storage
- 3. Apache Tez (Fast)
 - Similar in spirit to Dryad
 - Express data processing app as a dataflow graph
 - Built on top of Hadoop resource management framework called YARN
 - Used by Pig and Hive as the execution engine

Conclusion

- 1. Covered Map-Reduce, Dryad, Spark, Pig Latin, Hive, Tez
 - Some common functionality across frameworks, but different programming models are better suited for certain applications