Lecture 2: Machine Learning 1

Course plan

Roadmap

Machine learning overview

Linear regression

Linear classification

Course plan

Course plan

Reflex-based models

Binary classification

classifier
$$x \longrightarrow f \qquad y \in \{+1, -1\} \text{ label}$$

Fraud detection: credit card transaction ightarrow fraud or no fraud

Toxic comments: online comment \rightarrow toxic or not toxic

Higgs boson: measurements of event ightarrow decay event or background

Extension: multiclass classification: $y \in \{1, \dots, K\}$

Regression

$$x \longrightarrow \boxed{f} \longrightarrow y \in \mathbb{R} \text{ response}$$

Poverty mapping: satellite image \rightarrow asset wealth index

Housing: information about house \rightarrow price

Arrival times: destination, weather, time \rightarrow time of arrival

Structured prediction

$$x \longrightarrow f \longrightarrow y$$
 is a complex object

Machine translation: English sentence \rightarrow Japanese sentence

Dialogue: conversational history \rightarrow next utterance

Image captioning: image \rightarrow sentence describing image

Image segmentation: image \rightarrow segmentation

Roadmap

Tasks

Linear regression
Linear classification
K-means

Optimization Algorithms

Gradient descent
Stochastic gradient descent
Backpropagation

Models

Non-linear features Feature templates Neural networks

Considerations

Generalization
Best practices

18

Roadmap

Machine learning overview

Linear regression

Linear classification

CS221 20

The discovery of Ceres

1801: astronomer Piazzi discovered Ceres, made 19 observations of location before it was obscured by the sun

Time	Right ascension	Declination
Jan 01, 20:43:17.8	50.91	15.24
Jan 02, 20:39:04.6	50.84	15.30
	•••	
Feb 11, 18:11:58.2	53.51	18.43

When and where will Ceres be observed again?

Gauss's triumph

September 1801: Gauss took Piazzi's data and created a model of Ceres's orbit, makes prediction

December 7, 1801: Ceres located within 1/2 degree of Gauss's prediction, much more accurate than other astronomers

Method: least squares linear regression

S221

Linear regression framework

Design decisions:

Which predictors are possible? hypothesis class

How good is a predictor? loss function

How do we compute the best predictor? optimization algorithm

Hypothesis class: which predictors?

$$f(x) = 1 + 0.57x$$

$$f(x) = 2 + 0.2x$$

$$f(x) = w_1 + w_2 x$$

Vector notation:

weight vector
$$\mathbf{w} = [w_1, w_2]$$

feature extractor
$$\phi(x) = [1,x]$$
 feature vector

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x)$$
 score

$$f_{\mathbf{w}}(3) = [1, 0.57] \cdot [1, 3] = 2.71$$

Hypothesis class:

$$\mathcal{F} = \{ f_{\mathbf{w}} : \mathbf{w} \in \mathbb{R}^2 \}$$

Loss function: how good is a predictor?

training data $\mathcal{D}_{\text{train}}$

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x)$$
$$\mathbf{w} = [1, 0.57]$$
$$\phi(x) = [1, x]$$

$$\operatorname{Loss}(x,y,\mathbf{w}) = (f_{\mathbf{w}}(x) - y)^2$$
 squared loss

$$Loss(1, 1, [1, 0.57]) = ([1, 0.57] \cdot [1, 1] - 1)^2 = 0.32$$

$$Loss(2, 3, [1, 0.57]) = ([1, 0.57] \cdot [1, 2] - 3)^2 = 0.74$$

$$\mathsf{Loss}(4,3,[1,0.57]) = ([1,0.57] \cdot [1,4] - 3)^2 = 0.08$$

$$\mathsf{TrainLoss}(\mathbf{w}) = \tfrac{1}{|\mathcal{D}_{\mathsf{train}}|} \textstyle \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} \mathsf{Loss}(x,y,\mathbf{w})$$

TrainLoss $([1, 0.57]) = 0.38_{30}$

Loss function: visualization

$$\mathsf{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} (f_{\mathbf{w}}(x) - y)^2$$

 $\min_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w})$

CS221 32

Optimization algorithm: how to compute best?

Goal: $\min_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w})$

Definition: gradient

The gradient $\nabla_{\mathbf{w}} \text{TrainLoss}(\mathbf{w})$ is the direction that increases the training loss the most.

Algorithm: gradient descent-

Initialize
$$\mathbf{w} = [0, \dots, 0]$$
 For $t = 1, \dots, T$: epochs
$$\mathbf{w} \leftarrow \mathbf{w} - \underbrace{\eta}_{\text{step size}} \underbrace{\nabla_{\mathbf{w}} \text{TrainLoss}(\mathbf{w})}_{\text{gradient}}$$

Computing the gradient

Objective function:

TrainLoss(w) =
$$\frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} (\mathbf{w} \cdot \phi(x) - y)^2$$

Gradient (use chain rule):

$$\nabla_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} 2(\underbrace{\mathbf{w} \cdot \phi(x) - y}_{\mathsf{prediction-target}}) \phi(x)$$

CS221 3

Gradient descent example

training data $\mathcal{D}_{\text{train}}$

$$\nabla_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} 2(\mathbf{w} \cdot \phi(x) - y) \phi(x)$$
 Gradient update: $\mathbf{w} \leftarrow \mathbf{w} - 0.1 \nabla_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w})$

CS221

Summary

Which predictors are possible?

Hypothesis class

How good is a predictor?

Loss function

How to compute best predictor?

Optimization algorithm

Linear functions

$$\mathcal{F} = \{ f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x) \}, \phi(x) = [1, x]$$

Squared loss

$$\mathsf{Loss}(x, y, \mathbf{w}) = (f_{\mathbf{w}}(x) - y)^2$$

Gradient descent

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla \mathsf{TrainLoss}(\mathbf{w})$$

Roadmap

Machine learning overview

Linear regression

Linear classification

CS221 42

Linear classification framework

Design decisions:

Which classifiers are possible? hypothesis class

How good is a classifier? loss function

How do we compute the best classifier? optimization algorithm

An example linear classifier

$$f(x) = \operatorname{sign}([-0.6, 0.6] \cdot [x_1, x_2])$$

$$sign(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z < 0 \\ 0 & \text{if } z = 0 \end{cases} \qquad \begin{bmatrix} x_1 & x_2 & f(x) \\ 0 & 2 & 1 \\ -2 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix}$$

$$\begin{split} f([0,2]) &= \mathsf{sign}([-0.6,0.6] \cdot [0,2]) = \mathsf{sign}(1.2) = 1 \\ f([-2,0]) &= \mathsf{sign}([-0.6,0.6] \cdot [-2,0]) = \mathsf{sign}(1.2) = 1 \\ f([1,-1]) &= \mathsf{sign}([-0.6,0.6] \cdot [1,-1]) = \mathsf{sign}(-1.2) = -1 \end{split}$$

Decision boundary: x such that $\mathbf{w} \cdot \phi(x) = 0$

46

Hypothesis class: which classifiers?

$$\begin{split} \phi(x) &= [x_1, x_2] \\ f(x) &= \mathrm{sign}([-0.6, 0.6] \cdot \phi(x)) \\ f(x) &= \mathrm{sign}([0.5, 1] \cdot \phi(x)) \end{split}$$

General binary classifier:

$$f_{\mathbf{w}}(x) = \operatorname{sign}(\mathbf{w} \cdot \phi(x))$$

Hypothesis class:

$$\mathcal{F} = \{ f_{\mathbf{w}} : \mathbf{w} \in \mathbb{R}^2 \}$$

Loss function: how good is a classifier?

training data
$$\mathcal{D}_{train}$$

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x)$$
$$\mathbf{w} = [0.5, 1]$$
$$\phi(x) = [x_1, x_2]$$

$$\mathsf{Loss}_{\mathsf{0-1}}(x,y,\mathbf{w}) = \mathbf{1}[f_{\mathbf{w}}(x) \neq y]$$
 zero-one loss

$$\begin{aligned} & \mathsf{Loss}([0,2],1,[0.5,1]) = \mathbf{1}[\mathsf{sign}([0.5,1]\cdot[0,2]) \neq 1] = 0 \\ & \mathsf{Loss}([-2,0],1,[0.5,1]) = \mathbf{1}[\mathsf{sign}([0.5,1]\cdot[-2,0]) \neq 1] = 1 \\ & \mathsf{Loss}([1,-1],-1,[0.5,1]) = \mathbf{1}[\mathsf{sign}([0.5,1]\cdot[1,-1]) \neq -1] = 0 \end{aligned}$$

TrainLoss([0.5, 1]) = 0.33

Score and margin

Predicted label: $f_{\mathbf{w}}(x) = \operatorname{sign}(\mathbf{w} \cdot \phi(x))$

Target label: y

Definition: score-

The score on an example (x,y) is $\mathbf{w} \cdot \phi(x)$, how **confident** we are in predicting +1.

Definition: margin-

The margin on an example (x,y) is $(\mathbf{w}\cdot\phi(x))y$, how **correct** we are.

CS221 [score,margin]

Zero-one loss rewritten

CS221 5

Optimization algorithm: how to compute best?

Goal: $\min_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w})$

To run gradient descent, compute the gradient:

$$\nabla_{\mathbf{w}} \operatorname{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} \nabla \mathsf{Loss}_{\mathsf{0-1}}(x,y,\mathbf{w})$$

$$\nabla_{\mathbf{w}}\mathsf{Loss}_{0\text{-}1}(x,y,\mathbf{w}) = \nabla\mathbf{1}[(\mathbf{w}\cdot\phi(x))y \leq 0]$$

Gradient is zero almost everywhere!

Hinge loss

$$\mathsf{Loss}_{\mathsf{hinge}}(x, y, \mathbf{w}) = \max\{1 - (\mathbf{w} \cdot \phi(x))y, 0\}$$

58

Digression: logistic regression

$$\mathsf{Loss}_{\mathsf{logistic}}(x, y, \mathbf{w}) = \log(1 + e^{-(\mathbf{w} \cdot \phi(x))y})$$

Intuition: Try to increase margin even when it already exceeds 1

Gradient of the hinge loss

$$\mathsf{Loss}_{\mathsf{hinge}}(x,y,\mathbf{w}) = \max\{1 - (\mathbf{w} \cdot \phi(x))y, 0\}$$

$$\nabla \mathsf{Loss}_{\mathsf{hinge}}(x,y,\mathbf{w}) = \begin{cases} -\phi(x)y & \text{if } \{1-(\mathbf{w}\cdot\phi(x))y\} > \{0\} \\ 0 & \text{otherwise} \end{cases}$$

62

Hinge loss on training data

training data \mathcal{D}_{train}

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x)$$
$$\mathbf{w} = [0.5, 1]$$
$$\phi(x) = [x_1, x_2]$$

$$\mathsf{Loss}_{\mathsf{hinge}}(x, y, \mathbf{w}) = \max\{1 - (\mathbf{w} \cdot \phi(x))y, 0\}$$

$$\begin{aligned} &\mathsf{Loss}([0,2],1,[0.5,1]) = \max\{1-[0.5,1]\cdot[0,2](1),0\} = 0 & \nabla \mathsf{Loss}([0,2],1,[0.5,1]) = [0,0] \\ &\mathsf{Loss}([-2,0],1,[0.5,1]) = \max\{1-[0.5,1]\cdot[-2,0](1),0\} = 2 & \nabla \mathsf{Loss}([-2,0],1,[0.5,1]) = [2,0] \\ &\mathsf{Loss}([1,-1],-1,[0.5,1]) = \max\{1-[0.5,1]\cdot[1,-1](-1),0\} = 0.5 & \nabla \mathsf{Loss}([1,-1],-1,[0.5,1]) = [1,-1] \\ &\mathsf{TrainLoss}([0.5,1]) = 0.83 & \nabla \mathsf{TrainLoss}([0.5,1]) = [1,-0.33] \end{aligned}$$

$$\nabla \mathsf{Loss}([0,2],1,[0.5,1]) = [0,0]$$

$$\nabla \mathsf{Loss}([-2,0],1,[0.5,1]) = [2,0]$$

$$= 0.5 \qquad \nabla \mathsf{Loss}([1,-1],-1,[0.5,1]) = [1,-1]$$

$$\nabla \mathsf{TrainLoss}([0.5,1]) = [1,-0.33]$$

Summary so far

$$\underbrace{\mathbf{w} \cdot \phi(x)}_{\text{score}}$$

	Regression	Classification
Prediction $f_{\mathbf{w}}(x)$	score	sign(score)
Relate to target y	residual (score $-y$)	margin (score y)
Loss functions	squared absolute deviation	zero-one hinge logistic
Algorithm	gradient descent	gradient descent

homework

due: next week

作业 1-周1-pytorch安装