

What is a genetic variant?

A region of the genome that differs from the reference (or another genome)

Signifies a mutation and can be a single base-pair, or larger insertion and/or deletion of several base-pairs.

How do we find a variant?

Map and align sequences from other individuals to a reference genome

Does It matter what your reference genome is?

• Is it the same or different species?

• Is it from the same population?

Short answer: Yes, it matters!

Genomes are continually being improved

- More genomes are being sequenced all the time
- Many marine organisms don't yet have a genome sequence available

Article | Open Access | Published: 07 April 2021

The structure, function and evolution of a complete human chromosome 8

Glennis A. Logsdon, Mitchell R. Vollger, [...] Evan E. Eichler ⊠

Nature (2021) | Cite this article

12k Accesses | 317 Altmetric | Metrics

Abstract

The complete assembly of each human chromosome is essential for understanding human biology and evolution 1,2 . Here we use complementary long-read sequencing technologies to complete the linear assembly of human chromosome 8. Our assembly resolves the sequence of five previously long-standing gaps, including a 2.08-Mb centromeric α -satellite array, a 644-kb copy number polymorphism in the β -defensin gene cluster that is important for disease risk, and an 863-kb variable number tandem repeat at chromosome 8q21.2 that can function as a neocentromere. We show that the centromeric α -satellite array is generally methylated except for a 73-kb hypomethylated region of diverse higher-

Finding variants – some terminology

A reference genome is a collection of contigs

Figure modified from here https://www.ddbj.nig.ac.jp/ddbj/assembly-e.html

Finding variants – some terminology

>KN893585.1 Parastichopus parvimensis isolate Sea Cucumber 01 unplaced genomic scaffold Scaffold11424, whole genome shotgun sequence

CATATATGTGAGAGAAAAGTGCATTGACCTGGCTTTAACTTGACAACAAGACTGTTTCCCGCTCGTTACGAATAATCTTCTATATCCTAATA ATCGCTATGCAAGGCTATAAGcaatatcacataatatcacACCAGCTTGTAAGGTTACATTTAAACATCAGGTGGTTATTTCCAATTAGACA GGAGTTACAGCCTGTCTTTCATTGCCAACAACATGAGATGACATGATGTTTTCTCTGTCACATTTTTGGTGTGAATTTTTCTCGTTTGCTATA CTTGAAATTTCAGTTTGGGTGACCATCATTTGAGTTAAGGTTCACACAGTTTTAAAGATGCATAGGAATGAgacaaaaggggaaaaaagctT |ACTCCGCGTGGAAATTCAATGACACACTTCCTGTTCTATGTGATGGACATAACCCCTGTAAGATTTATCTCCTCTTCCGCTTGAATGTGTC GCATAGAGATGATCTCCTCTGAGTACAGAAGGACGATTCTCGGCTAACCCGGGGACCTGTAAATGAAGAGTTTTACACGTGAGCTAGCGAGA GGGGGAAGATCGACCACAATTGCAATTATAGTCCGACACAACTGTAATTGCCAAACATACCTGCAGCAACATACTCTTTGGATcccacgttt ttttttattaacaaatqAAATTCTAGACTTTTTGAAGACCAAAACACGTCTTATGGTTTACTATATGAAGCCTACACACTAATGATGTCCTA CCTTGCTAGCATAAGCCATATCATTTAGGAAGAAGTGTTAAAATGAGGATGTTTCCATCCTTTACAGACTCCAATCGAAAATTCAAAGACTT attaaaatatgaaaaacattgttaatGAGGGATGaatgaattttgacaaaaaagaaGAGTAAAGATGACTGGATTTGAATATTTAGaaagct ${ tttaattttaattcttaa}$ AAACCCACATGAGTCCTGCTTTTGGACATTTCAGCTGCTTTCTTGTCGTAGCGGCGAATGTCAACTTTCATTTGATGTTCTTCTGCGTAGAG

A reference genome is a collection of contigs

Typically in fasta format

Finding variants - pipeline

- Get reads and genome (download from git hub)
- Trim adapters off of reads (cutadapt)
- Index genome (bowtie2)
- Map reads to genome -> generate a sam file -> convert to bam file (bowtie2, samtools)
- Calculate genotype likelihoods (angsd, samtools)
- Happy dance

Trimming adaptors from reads

Trimming adaptors from reads

```
@SRR6805880.2151832 OCD6D:00225:02960 length=80
TGCAGAAGGCATGACCTTACCTACTGAATAAAAGATGAGACACCTTCTCATTGGCCAAGAAGAACAACACTCTATTACA
                                                                            3' Adapter
47:7775<59999995:6;;5:7664621111*/52245554404/33533/3/30436724461./,.:79999:4:9:
@SRR6805880.576388 9F8K0:05533:11649 length=80
                                                                                or
TGCAGTCGTAATCTAGGAACACACCTACGGGATTATTTACTATTTTACAATCCATAGTCGGAGTCTACAAACAGTTACCA
135445878868?;:7474889//+/665628958::2788:>;;09:9556-315447817999::;::28///27:18
@SRR6805880.501486 9F8K0:05578:13178 length=80
TGCAGCAAGACCGTAGATCTGTCAAACGCAAAGCTTTAGCGAGCTCTCTAAGTAGCTTGAGAGGGTCTGAAGAGAGCAGTG
                                                                            5' Adapter
-14556758885877766651////,18<=<4;;;<1::;;::65588::6;8888:49998<5:;;;;6:99;;:9;:;
@SRR6805880.1331889 J04RJ:03442:01185 length=80
.337787/.--,,,,),,-3355888:894:888988896:;;;:9>>:<:999766///6828:6:::9:::4:::98
@SRR6805880.2161340 OCD6D:00749:03136 length=80
TGCAGGCGATGGCCGTGGCGTCGATGCCGAACATGGTGACCTCGCAGGGCATGACATTTCAGGAACCGTTTCATAGTATG
                                                                                                              Read
15977689:8818178959988555:;5::6;=;<5:;9:59998::>2;;53378;;4;9<6<6<499;3:;;:99878
                                                                            Anchored 5' adapter
                                                                                                              Adapter
@SRR6805880.973930 J04RJ:09457:01591 length=80
Removed sequence
-/2///6764157899:,33+/451////'///3606678577,//*///14567/55688577255.....636627
```

SAM and BAM file formats

Sequence Alignment Map, Binary Alignment Map

```
VN:1.0 SO:unsorted
@HD
@SQ
        SN: KN893585.1
                          LN:22606
@S0
        SN: KN897506.1
                          LN:3832
@SQ
        SN:JXUT01146130.1
                                  LN:3328
@SQ
        SN:KN897010.1
                          LN:3247
@SQ
        SN: KN894258.1
                          LN:13593
asq
        SN: KN887772.1
                          LN:84168
@SQ
        SN:KN882209.1
                          LN:477734
@SQ
        SN:JXUT01150820.1
                                  LN:2370
@S0
        SN: JXUT01148685.1
                                  LN:1169
@SQ
        SN:KN882212.1
                          LN:364294
@SQ
        SN: KN885770.1
                          LN:75087
asq
        SN: KN896765.1
                          LN:13892
@SQ
                          LN:458863
        SN:KN882215.1
@SQ
        SN: KN885329.1
                         LN:98487
@SQ
        SN:KN885697.1
                          LN:49645
@SQ
        SN:KN888763.1
                          LN:56113
@SQ
        SN:JXUT01146289.1
                                  LN:3264
@SQ
        SN:KN891677.1
                          LN:21450
asq
        SN: KN885380.1
                          LN:53812
@S0
        SN:JXUT01150359.1
                                  LN:1236
```

```
SRR6805880.2937796
                              KN887239.1
                                             33162
                      16
3>>4/+//
9489:;89:<5<;<;;:<;7=<<7;;2<<5.56;5;;:1:::=>>?B?7<><<@;<;:3;8282;:;:::5
                                                                            AS:i:-4 XN:i:0
XM:i:1 X0:i:0 XG:i:0 NM:i:1 MD:Z:1T78
                                             YT:Z:UU
SRR6805880.1516918
                                                                                    TGCAGAAA
GTCTTGATGAGCTCTCTACAGTCAGTCTACCTTCTCTTTTAATCACACAGCCATTGGCGGAGCTTGGGGT
                                                                            4878888287552577
                                                                    YT:Z:UU
7875556111444443333336264777768::3:5:9:8879994::7<6:<5:::<-566+5
SRR6805880.2500844
                                             40076
                                                             80M
                              KN886985.1
ATAACTTGACTTATCGTGTCGGTCAAGTGCAACATGTTTCGCTGAAATAAAGAATCTGGTACCTATTTAAAGACACTGCA
                                                                                   @<7B>7<A
AB=@:<<<===6<<<6<==:5<<=><4@=::8882:9909984::::599948893>?4??<:::7663
                                                                            AS:i:-8 XS:i:-12
       XN:i:0 XM:i:2 XO:i:0 XG:i:0 NM:i:2
                                             MD:Z:32A22T24
                                                             YT:Z:UU
SRR6805880.2959118
                              KN895299.1
                                                             80M
                                             20675
TGCAGGCTGACCGAAGTCAGTCTCTTAGATTCATATTTAACGTCCATGATTATGAATTGTCAATTGTCTACAACTCTGTA
                                                                                    .337:688
966357155588:89:957553222244407.254515666757:;;5:5966436,//4787878;8;:::
                                                                            AS:i:-8 XS:i:-14
       XN:i:0 XM:i:2 X0:i:0 XG:i:0 NM:i:2
                                             MD:Z:4A46T28
                                                             YT:Z:UU
SRR6805880.1869233
                      16
                              KN889647.1
                                             242
                                                                                   0
                                                             12M2D68M
       CTTGGTCGTTTGCTGTCAAATATCTTTATAAGTTACTGCATTCACTATTGAAACATTTCAGTCTTATAAATCTAACTGCA
41;5:9:81889888882:::99818883.446:99:993-4565<<7<;4;9893;;;=<=;5975/4335303342/-
                                                                                   AS:i:-33
                                                                            YT:Z:UU
       XN:i:0 XM:i:6 X0:i:1 XG:i:2 NM:i:8 MD:Z:6G1G0A2^CT4A47C2T12
SRR6805880.2779584
                                                                                    TGCAGACC
TTACAGGAGAGAGAGAGACAAGGTACAGTACCTCGATTTATGTCTCCGTTGGGAGTCACATCTTTTTTCT
                                                                            155:988.3-/59:49
;:<99296;<;<:;4;5;;;;<A<<6<;998:0:;;;8883993:<3::6669::999999)96
                                                                    YT:Z:UU
```

Head of .sam file

SAM and BAM file formats

Sequence Alignment Map, Binary Alignment Map

Name of read

Name of contig where read aligns

Position on contig where 5' end starts

Alignment information "cigar string"

80M = contiguous match of 80bp

```
5RR6805880.2937796
3>>4/+//
9489:;89:<5<;<;;:<-7=<<7;;2<<5.56;5:::1:::=>>?B?7<><<<6
                                                                          AS:i:-4 XN:i:0
XM:i:1 X0:i:0 XG:i:0 NM:i:1
                             MD: Z: 1T78
                                                                                 TGCAGAAA
                                                                         4878888287552577
7875556111444443333336264777768::3:5:9:8879994::7<6:<5:::<-566+5
                                                                  YT:Z:UU
               GTCGGTCAAGTGCAACATGTTTCGCTGAAATAAAGAATCTGGTACCTATTTAAAGACACTGCA
                                                                                 @<7B>7<A
          =6<<<6<<==:5<<=><4@=::8882:9909984::::599948893>?4??<:::7663
                                                                         AS:i:-8 XS:i:-12
                                                                                 .337:688
                                                                         AS:i:-8 XS:i:-14
966357155588:89:957553222244407.254515666757:;;5:5966436,//4787878;8;:::
SRR6805880.1869233
41;5:9:81889888882:::99818883.446:99:993-4565<<7<;4;9893;;;=<=;5975/4335303342/-
                                                                                 AS:i:-33
                                                                         YT:Z:UU
                                            MD:Z:6G1G0A2^CT4A47C2T12
SRR6805880.2779584
                                                                                 TGCAGACC
TTACAGGAGAGAGAGACAAGGTACAGTACCTCGATTTATGTCTCCGTTGGGAGTCACATCT
                                                                         155;988.3-/59:49
;:<99296;<;<:;4;5;;;;<A<<6<;998:0:;;;8883993:<3::6669::999999)96
                                                                  YT:Z:UU
```

Genotype likelihoods

In ANGSD http://www.popgen.dk/angsd/index.php/Genotype_Likelihoods

Accounts for some uncertainty in the genotype estimation

Theory

Genotype likelihoods are in this context the likelihood the data given a genotype. This is to be understood as we take all the information from our data for a specific position for a single individual, and we use this information to calculate the likelihood for our different genotypes. Since we assume diploid individuals it follows that we have 10 different genotypes.

0	1	2	3	4	5	6	7	8	9
AA	AC	AG	AT	CC	CG	СТ	GG	GT	TT

And we write the genotype likelihood as

$$L(G = \{A_1, A_2\} | D) \propto Pr(D|G = A_1, A_2), \qquad A_1, A_2 \in \{A, C, G, T\}.$$