Classification of Faint X-ray Sources Associated with Globular Cluster Using Machine Learning

December 2021

Shivam Kumaran

Indian Institute of Space Science and Technology

Problem Statement

We Need to classify X-ray sources associated with Globular cluster using properties available in Chandra Source Catalogue 2.0

Globular Cluster

 System of stars gravitationally bound together

- GC dynamical Evolution
 - simulation of dynamic evolution of GC^[1]
 - Without XRB mean collapse
 time scale < mean time scale
 of Galactic GC</pre>

[1]Carretta, et al .(2000). THE ASTROPHYSICAL JOURNAL,

Globular Cluster

Improved Simulation

- Included XRB
- Mean time scale matches
- · Hypothesis -
 - XRB helps in stability against gravitational collapse

Dynamical evolution process with XRB^[1]

- Core contraction phase
- binary burning phase collapse halts
- After max-possible binaries formed, collapse restarts
- binary burning phase restarts

[1] .Pooley, D. (2009). Globular cluster x-ray sources. PNAS

Globular Cluster Evolution

- Binary Burning phase and dynamical evolution governed by - Encounter Frequency
- Directly correlated with population distribution of XRB.

GC X-ray Binaries

Low Mass X-ray Binary

- Companion Neutron star or Black hole
- Donating star mass <
 1.5 M_{solar}
- Identification : specteal studies , mostly during outburst

Cataclysmic Variable

 Binary system accretion onto White Dwarf

 Identification : Bright in UV , soft-X-ray

Millisecond Pulsar

- Rapidly rotating Neutron Star
- Formed from LMXB

 Identification : using radio timing

Example: 47-TUC, Heinke, et.al (2005)

About 47-TUC

- Mass : $10^6~M_{\odot}$

- Distance : 4.85 kpc

- Size : core radius 24"

Class	Identification Method	No of sources	No Expected
CV	Optical identification	30	24-113
MSP	Radio cross match	27	~ 700
qLMXB	Spectral studies	5	~ 300

Manual Identification is not easy.

Need Better identification

Heinke, et.al (2005). A deep chandra survey of the globular cluster 47 tucanae: Catalog of point sources.

Data Processing

Why Chandra?

Images of the core of 47-Tuc made from 8 ks of Einstein data (Left), 77 ks of ROSAT data (Center), and 240 ks of Chandra data (Right) . Image and caption credits (Pooley, 2009)

- For any such identification we need telescope like Chandra
- Higher sensitivity
- Better resolution

Chandra: Instruments

- High Resolution Camera (HRC)
 - Energy band :
 - wide band (w) 0.1-10keV

ACIS Energy bands

- Advanced CCD Imageing Spectograph
 (ACIS)
 - Resolution : 0.5 arcsec onaxis
 - Sensitivity : 4×10^{-15} ergs/cm²/s integration time 104 sec
 - Energy Band :
 - broad band (b): 0.5-7.0 keV
 - ultrasoft (u): 0.2-0.5 keV
 - soft (s): 0.5-1.2 keV
 - medium (m): 1.2-2.0 keV
 - hard (h): 2.0-7.0 keV

Chandra: Chandra Source catalogue

Number of sources - 317,000Number of sources associated with GC ~ 1700

Per-Obs Detection Table

contains detection properties based on observational data extracted independently from each individual observation

sourc e	Obs	properties
	obs1	
s1	obs2	
	obs3	
s2	obs1	
s3	obs1	
55	obs2	

Per-Stack Detection Table

The Stacked Observation Detections Table

Master Source Table

'best estimate' sources properties for each unique Xray source in the catalog

source	properties
s1	
s2	
s3	
s4	
s5	

Chandra Source catalogue : features

• What are these " Properties "?

source	Obs	properties
	obs1	
s1	obs2	
	obs3	
s2	obs1	
	obs1	
-2	obs2	
s3	obs3	

Chandra Source catalogue : features

Variability

- Inter observation Variability
- Intra Observation variability

Aparture Photometry

- Photon Flux
- Energy Flux

Spectral Properties

- · Hardness Ratio
 - Hardness hm
 - Hardness ms
 - Hardness hs
- Model-Fit properties
 - Black Body model
 - Bremestralung model
 - Powerlaw model

Chandra Source catalogue : features

Hardness

- hard hm
- hard ms
- hard hs

Hardness calculation details

- Slope of the energy band vs flux curve

0.5 keV		1.2 ke\		2.0 ke		7.0 keV
	S		m		h	

source	Obs	properties
	obs1	
s1	obs2	
	obs3	
s2	obs1	
	obs1	
s3	obs2	
\$3	obs3	

Introduction

Data Collection

Data Collection

Problem

We do not have class labels in CSC

Solution

Look for other catalogue and in published literature

Data Collection

Introduction

• CV - 314

• LMXB - 99

Data Collection

Data Processing

Design classifier

Optimize classifier

Result / Application

Data Collection

Data Preprocessing

Data Preprocessing

Introduction

Data Collection

Data Processing

Design classifier

Optimize classifier

Result / Application

Data Preprocessing

CV		LMXB		}	Pulsar	
Sources Cross matched with Chandra	Source	Obs	Source	obs	Source	Obs
Unique id, ACIS obs available	314		99		265	
Source after flag filters	301	2101	99	735	245	1183
Sources after flux filter	282	2044	74	662	232	1104
Source above 3σ	184	1582	58	521	178	1000

Data Processing

Result / Application

Machine Learning

- Finally we have Data and labels as well.
- We need to learn feature-class label relation
- Typical Machine learning problem
- Is it that simple ?
- NO

source	Obs	properties	Class label
	obs1		
s1	obs2		
	obs3		
s2	obs1		
	obs1		
•2	obs2		
s3	obs3		

We need to learn feature-class label relation

Data Preprocessing

Problems

- Very small dataset
 - CV 184
 - MSP 178
 - LMXB 58

Missing data

- About 50% missing values
- NO feature column with zero missing values
- only 7 Sources with zero
 missing values
- Reason for missing values
 - Source may be faint in some bands

We Need to fill in Missing values

Data Imputation

- Statistical Imputation
 - Impute with column mean
 - Impute with column median
 - Impute with zeros.
- Correlation Imputation
- Regression Imputation

Data Imputation

Regression Imputation

src	properties						
	flux	variability	hardness				
s1							
s2							
s3							
s4							
s5							
s6							
s7							
s8							

Data Imputation

- How to compare which regression method works correctly for classification
- Need to do classification
- Need a classifier.

Classifier

- **Logistic Regression**
- K-Nearest Neighbour
- Fully Connected Network
- Convolution Neural Network
- Random Forest Classifier

Classifier : Random Forest

Day	Rain	Wind	cloud	Temp	How is the day
Day 0	yes	30	yes	10	good
Day 1	yes	55	yes	10	Bad
Day 2	no	10	no	55	bad
Day 4	no	30	yes	20	Good

Classifier : Random Forest

Introduction

Data Collection

Data Processing

Design classifier

Optimize classifier

Result / Application

Classifier Pipeline

How to select which one works the best ?

Data Processing

Cross Validation

Algorithm

- Take randomly sampled examples
- keep them aside
- train on rest of the sample
- check preformance on the keptaside sample

· A good model

- Higher mean accuracy
- Least std in accuracy.

Monte-Carlo Evolution: Result

Data Processing

Imputer+ Classifier Result

Data Processing

Classifier selected

Validation Accuracy score

- Mean 66.1
- Std 4.3
- Min 51.46
- Max 71.31

Classifier selected

- Combine Observation
 - Improved statistics

	Mean	Std	Min	Max
Observation-wise classification	66.1	4.3	51.46	71.31
Source-wise classification	76.37	1.83	71.4	79.36

Data Processing

Design classifier

Classifier Designed..

Optimising Classifier

Optimizing RF

- Hyperparameter tuning
- Parameters to tune
 - Number of trees
 - Max-depth

Introduction

Data Collection

Data Processing

Design classifier

Optimize classifier

Optimizing RF

- Hyperparameter tuning
- Parameters to tune
 - Number of trees 500
 - Max-depth 10

Tuned RF Result: Score

- Best Random forest
 - Number of trees 500
 - Max-depth 10
- Result
 - Accuracy :

	mean	Std	Min	Max
Baseline RF	75.27	1.78	72.22	78.57
Tuned RF	75.96	0.99	73.8	77.78

Tuned RF Result : Confusion Matrix

- Confusion Matrix
- Probability quality
- Problem
 - Class imbalance
 - not able to learn LMXB

Tuned RF Result : Probability quality

- Probability quality
- Problem
 - Class imbalance
 - not able to learn LMXB class.

- SMOTE : Synthetic Minority Oversampling Technique
- Algorithm
 - In higher dimension feature space
 - Each point represent one source
 - Linear interpolation between these points (source)
 - Sample points from nearest interpolations
 - Make each class equal.

SMOTE result

Introduction Data Collection

Data Processing

Design classifier

Optimize classifier

Introduction

Data Collection

Data Processing

Design classifier

Optimize classifier

Feature optimization

- Feature-feature correlation
- Need to remove correlated features.

Introduction

Result / Application

Data Collection Data Processing Design classifier Optimize classifier

Feature optimization

- Feature-feature correlation
- Need to remove correlated features.

Introduction Data Collection

Data Processing

Design classifier

Optimize classifier

Feature optimization

- Feature -feature correlation
- why we need to remove correlated features
- · Comparison of result -

	Number of features	Mean accuracy	Std accuracy
Before removing correlated features	49	76.2	1.2
After removing correlated features	19	77.3	1.1

Feature Importance

- Contribution of each feature for classification
- Understanding physical significance
- Learn what machine has learnt.

Feature Importance

src	properties			Class	
SIC	flux	variability	hardness		label
s1					
s2					
s3					
s4					
s5					
s6					
s7					
s8					

Introduction

Data Collection

Data Processing

Design classifier

Optimize classifier

Feature Importance

- Result
- Discussion
- Important feature
 - Hardness in hm band
 - Short term variability
 - Long term variability

Result significance

- Problem with validation result
 - small sample available for validation
 - LMXB 17
 - CV 55
 - MSP 54
- Validation result training quality tradeoff

- Other method
 - Permutation Significance

Introduction

Data Collection

Data Processing

Design classifier

Optimize classifier

Permutation - Test

Null Hypothesis -

 No relation between features and the class label

p-Score

- Probability that accuracy on label-permuted data will be more than or equal to accuracy on original data
- Null-hypothesis p-score \sim 0.5

S1	features s1	LMXB
S 2	features s2	CV
S3	features s3	CV
S4	features s4	LMXB
S 5	features s5	MSP
S 6	features s6	CV
S7	features s7	MSP
S8	features s8	CV
S9	features s9	MSP
S10	features s10	LMXB

Permutation - Test : Algorithm

acc on original labels **Permute label**

S1	features s1	LMXB
S2	features s2	CV
S 3	features s3	CV
S4	features s4	LMXB
S 5	features s5	MSP
S6	features s6	CV
S7	features s7	MSP
S8	features s8	CV
S9	features s9	MSP
S10	features s10	LMXB

Permutation - Test

S1	features s1	MSP
S 2	features s2	CV
S 3	features s3	LMXB
S4	features s4	MSP
S 5	features s5	CV
S 6	features s6	CV
S7	features s7	LMXB
S8	features s8	CV
S9	features s9	LMXB
S10	features s10	MSP

Introduction Data Collection Data Processing Design classifier Optimize classifier Result / Application

Permutation - Test : Result

- Permutation test result
- p-score: 0.002

Application on 47-TUC

	Confirmed	Candidate	In CSC After Filtering
MSP	16	11	19
\mathbf{CV}	22	8	28
LMXB	2	3	0

Introduction

Data Collection

Data Processing

Design classifier

Optimize classifier

Conclusion

- Using Published catalogues, literature survey a subset catalog of CSC was created.
- Explored various methods of filling in missing values
- Imputation with RF works best
- Explored various classifier models. > RF chosen
- Classification result
 - Validation accuracy ~ 75%
 - Permutation test **p-score 0.002**
- Applied to 47-TUC

Road Blocks

- Result not accurate enough
- Predicted probabilities are low
- Data sample is small

Future Plan

Immediate Future

- Gaussian Resampling of minority class
- Upsampling of all classes
- Deep Learning Auto Encoder for missing value prediction
- Cross match with NED

Ahead

- Application on other Globular clusters
- Understanding GC dynamics
- Adding more classes
- Classification on entire Chandra Source Catalogue

Thank You

until next time....

Data Imputation

Correlation Imputation

- Feature-wise imputation
- Correlation between features
- Fill in missing value using highest correlated feature

Limitations of SMOTE

- Can not infinitely upsample
- Available data should be able to represent parent distribution

Design classifier

How flux threshold is decided

$\overline{\text{Dist} \mid L_x}$	10^{36}	10^{38}
1kPc	8.4×10^{-9}	8.4×10^{-7}
8kPc	1.3×10^{-10}	8.4×10^{-8}
$15 \mathrm{kPc}$	3.7×10^{-11}	3.7×10^{-9}

Data Collection Introduction

Data Imputation

Similarity Imputation using RF

AdaBoost

- Ensamble classifier
- Can we improve further
- No further improvement.

 RF is able to capture as much information as possible

Data Processing

Globular Cluster

Improved Simulation

- Included XRB
- Mean time scale matches
- · Hypothesis -
 - XRB helps in stability against gravitational collapse

Dynamical evolution process with XRB[1]

- Core contraction phase
- binary burning phase collapse halts
- After max-possible binaries formed, collapse restarts
- binary burning phase restarts

[1] .Pooley, D. (2009). Globular cluster x-ray sources. PNAS

Classifier : Fully Connected Net

- Working
- Reason to try-on
- Caveats

Classifier: Convolution Neural Network

Working

Reason to try-on

- We have correlated features
- can take adantage if arranged feature-wise

Caveats

Sensitive to missing values

