Teoremas de Múltiples Variables

$$x+y=y+x$$

$$x \cdot y = y \cdot x$$

$$x+(y+z)=(x+y)+z=x+y+z$$

$$x(yz)=(xy)z=xyz$$

$$x(y+z)=xy+xz$$

$$(w+x)(y+z)=wy+xy+wz+xz$$

$$x+xy=x$$

$$x+xy=x$$

$$x+xy=x+y$$

$$\bar{x}+xy=\bar{x}+y$$

Teoremas de Morgan

$$\overline{(x+y)} = \bar{x} \cdot \bar{y}$$
$$\overline{(x\cdot y)} = \bar{x} + \bar{y}$$

Teoremas de una Variable

AND	OR		
$x \cdot 0 = 0$	x+0=x		
$x \cdot 1 = x$	x+1=1		
$x \cdot x = x$	x+x=x		
$x \cdot \overline{x} = 0$	$x + \overline{x} = 1$		

Sistema Binario y Circuitos Lógicos

Binario a Decimal

$$2^4=16$$
 $2^3=8$ $2^2=4$ $2^1=2$ $2^0=1$
1 0 1 1

Resultado: 16 + 4 + 2 + 1 = 23

Complemento de '1' y '2'

COMP₁: Negamos el valor de los bits. COMP₂: Sumamos '1' a COMP₁.

N es el Numero de Bits:

Máx. Valor (sin signo): 2^n-1 Máx. Valor (con signo): $2^{(n-1)}$ Mín. Valor (con signo): $-2^{(n-1)}+1$ Bits mínimos para representar v: $\log_2(v) \approx n$

Números Negativos en Binario

 $COMP_2$ Se utiliza para representar números negativos.

Símbolos y Equivalencias

Universalidad

Op.	Definición	Operador	Compuerta	NAND	NOR	
NOT	$ar{A}$	-	-\-\-\-	$\overline{A \cdot A}$	$\overline{A+A}$	
OR	A+B	-		$\overline{ar{A}\!\cdot\!ar{B}}$	$\overline{\overline{A+B}}$	
AND	$A \cdot B$	-		$\overline{\overline{A\cdot B}}$	$\overline{\overline{A} + \overline{B}}$	
XOR	$(A+B)(\bar{A}+\bar{B}) A\bar{B}+\bar{A}B$	$A \oplus B$		$\overline{(A\!\cdot\! ar{B})\!\cdot\! (ar{A}\!\cdot\! B)}$	$\overline{(A+B)}+\overline{(\bar{A}+\bar{B})}$	
NOR	$\overline{A} + \overline{B}$ $\overline{A} \cdot \overline{B}$	$A \downarrow B$		$\overline{\overline{ar{A}\cdotar{B}}}$	-	
NAND	$\overline{A \cdot B}$ $\overline{A} + \overline{B}$	$A \uparrow B$		-	$\overline{\overline{A} + \overline{B}}$	
XNOR	$ \begin{array}{c} (A + \overline{B})(\overline{A} + B) \\ AB + \overline{A} \ \overline{B} \end{array} $	$A \odot B$		$\overline{(A\!\cdot\! B)\!\cdot\! (ar{A}\!\cdot\! ar{B})}$	$\overline{(A+\overline{B})+(\overline{A}+B)}$	

DEC	OCT	HEX	BIN	Gray	BCD	COMP ₁	\mathtt{COMP}_2 (+)	$COMP_2$ (-)
0	0	0	000000	000000	0000-0000	111111	0000000	0000000
1	1	1	000001	000001	0000-0001	111110	0000001	1111111
2	2	2	000010	000011	0000-0010	111101	0000010	1111110
3	3	3	000011	000010	0000-0011	111100	0000011	1111101
4	4	4	000100	000110	0000-0100	111011	0000100	1111100
5	5	5	000101	000111	0000-0101	111010	0000101	1111011
6	6	6	000110	000101	0000-0110	111001	0000110	1111010
7	7	7	000111	000100	0000-0111	111000	0000111	1111001
8	10	8	001000	001100	0000-1000	110111	0001000	1111000
9	11	9	001001	001101	0000-1001	110110	0001001	1110111
10	12	A	001010	001111	0001-0000	110101	0001010	1110110
11	13	В	001011	001110	0001-0001	110100	0001011	1110101
12	14	С	001100	001010	0001-0010	110011	0001100	1110100
13	15	D	001101	001011	0001-0011	110010	0001101	1110011
14	16	E	001110	001001	0001-0100	110001	0001110	1110010
15	17	F	001111	001000	0001-0101	110000	0001111	1110001
16	20	10	010000	011000	0001-0110	101111	0010000	1110000
17	21	11	010001	011001	0001-0111	101110	0010001	1101111
18	22	12	010010	011011	0001-1000	101101	0010010	1101110
19	23	13	010011	011010	0001-1001	101100	0010011	1101101
20	24	14	010100	011110	0010-0000	101011	0010100	1101100
21	25	15	010101	011111	0010-0001	101010	0010101	1101011
22	26	16	010110	011101	0010-0010	101001	0010110	1101010
23	27	17	010111	011100	0010-0011	101000	0010111	1101001
24	30	18	011000	010100	0010-0100	100111	0011000	1101000
25	31	19	011001	010101	0010-0101	100110	0011001	1100111
26	32	1A	011010	010111	0010-0110	100101	0011010	1100110
27	33	1B	011011	010110	0010-0111	100100	0011011	1100101
28	34	1C	011100	010010	0010-1000	100011	0011100	1100100
29	35	1D	011101	010011	0010-1001	100010	0011101	1100011
30	36	1E	011110	010001	0011-0000	100001	0011110	1100010
31	37	1F	011111	010000	0011-0001	100000	0011111	1100001
32	40	20	100000	110000	0011-0010	011111	0100000	1100000