

Рис. 5. Принципиальная схема экспериментальной установки

Рис. 2. Представление твердого тела в виде потенциальной ямы, в которой находится электронный газ. Для простоты считается, что в металле есть только электроны проводимости. Слева показана функция распределения электронов в металле по энергиям (число электронов с заданными значением энергии) при $T=0~{\rm K}$ (занятые состояния заштрихованы), $E_{\rm max}$ — уровень энергии электрона, покоящегося в вакууме, $E_{\rm F}$ — энергия Ферми, W — работа выхода

Рис. 1. График зависимости $T = f(T_{\rm \pipk})$ для вольфрама

Таблица 1. Поправочные коэффициенты излучения для вольфрама

	T, K	$\varepsilon_{\lambda,T}$ ($\lambda = 6500$ Å)	ϵ_T
	800	0,460	0,067
	900	0,458	0,081
	1000	0,456	0,105
	1100	0,454	0,119
	1200	0,452	0,133
	1300	0,450	0,144
	1400	0,448	0,164
	1500	0,446	0,179
	1600	0,443	0,195
	1700	0,441	0,209
	1800	0,439	0,223
	1900	0,437	0,236
	2000	0,435	0,249

Рис. 3. Схема экспериментальной установки: 1 — блок питания; 2 — тумблер включения питания пирометра и образцов; 3 — тумблер нагрева нити пирометра: «Быстро» — вверх, «Медленно» — вниз; 4 — кнопка «Нагрев нити»; 5 — кнопка «охлаждение нити»; 6 — тумблер переключения образцов; 7 — регулятор мощности нагрева образцов; 8 — окуляр пирометра; 9 — корпус пирометра; 10 — объектив пирометра; 11 — переключение диапазонов; 700—1200°С — вниз, 1200—2000°С — вверх; 12 — ручка перемещения красного светофильтра; 13 — регулировочный винт; 14 — вольтметр (напряжение на лампе накаливания); 15 — амперметр (ток через образцы); 16 — вольтметр в цепи термопары; 17 — модель АЧТ; 18 — трубка с кольцами из материалов с разной излучательной способностью; 19 — лампа накаливания; 20 — неоновая лампочка

