אלגוריתמי חלוקה הוגנת Fair Division Algorithms אראל סגל-הלוי

http://www.fourpoints.net.au/services/land-division/

חלוקה הוגנת

- קלט: משאב משותף, זכויות שוות.
 - **אתגר**: העדפות שונות.
- מטרה: חלוקה שתהיה הוגנת בעיני כולם.
 - יישומים: הרבה
 - http://spliddit.org/-
 - http://www.fairoutcomes.com/-

חלוקת עוגה בין שני ילדים

צריך לחלק עוגת
יום-הולדת בין שני
ילדים: עמי ותמי.
כל ילד מעדיף סוכריות
בצבע אחר.

אם **אנחנו** נחלק את העוגה בצורה שנראית **לנו** הוגנת – לא בטוח שזה יהיה הוגן בעיניהם!

חלוקת עוגה בין שני ילדים

הפתרון: לתת להם לחלק בעצמם!

- עמי מחלק את העוגה לשני חלקים שוים בעיניו (בשווי 1/2).
- •תמי בוחרת את החלק הטוב בעיניה.
- עמי מקבל את השאר.

חלוקת קרקע בין שני אנשים

בראשית יד9-8: וַיּאמֶר אַבְרָם אֶל לוֹט: אַל נָא תְהִי מְרִיבָה בֵּינִי וּבִינִיךּ וּבִין רֹעֵי וּבִין רֹעֵיךּ כִּי אֲנָשִׁים אַחִים אֲנָחְנוּ. הַלֹא כָל הָאָרֶץ לְפָנֶיךּ, הִפָּרֶד נָא מֵעָלָי! אָם הַשְּׁמֹאל וְאֵימִנָה, וְאִם הַיָּמִין וְאַשְּׂמְאִילָה.

אברם

לוט

אלגוריתם "חתוך ובחר"

תכונות:

1) כל משתתף חושב שהחלק שלו שווה לפחות 1/2 – חלוקה שווה לפחות 2/1 – חלוקה פרופורציונלית (proportional).

2)כל משתתף חושב שהחלק שלו טוב לפחות כמו כל האחרים – חלוקה ללא קנאה (envy-free).

הרחבות:

- •מה עושים כשיש הרבה ילדים?
- •מה עושים כשהחפצים בדידים?
- •מה עושים כשהמשתתפים לא שווים?

חלוקת עוגה – מודל כללי

העוגה **C** היא **קטע** (חד ממדי) או **מצולע** (רב ממדי). לכל משתתף יש פונקצית **צפיפות ערך** על העוגה:

$$V_i: C \to R$$

יערך של חתיכת עוגה הוא אינטגרל על צפיפות הערך: $V_i(X) = \int_x v_i(x) \, dx$

= השטח / הנפח מתחת לגרף של צפיפות הערך:

חלוקת עוגה – מודל כללי

העוגה **C** היא **קטע** (חד ממדי) או **מצולע** (רב ממדי). לכל משתתף יש פונקצית **צפיפות ערך** על העוגה:

$$V_i: C \to R$$

יערך של חתיכת עוגה הוא אינטגרל על צפיפות הערך: $V_i(X) = \int_x v_i(x) \, dx$

חלוקת עוגה להרבה אנשים

תכונות:

1. כל אחד חושב שהחלק שלו שווה לפחות

:(proportional) חלוקה פרופורציונלית – n/1

$$V_i(X_i) \geq V_i(C) / n$$

2. כל אחד חושב שהחלק שלו טוב לפחות כמו

כל האחרים – חלוקה ללא קנאה (envy-free):

$$V_i(X_i) \geq V_i(X_j)$$

חידה: מה יותר קשה?

חלוקה פרופורציונלית של קרקע -אלגוריתם "**המפחית האחרון**"

חלוקה פרופורציונלית

- בעיניו. n/1 בעיניו. עמי
- אם <mark>תמי</mark> חושבת שזה יותר מדי היא מפחיתה ל-n/1. וכן רמי וכו'.
 - האחרון שהפחית מקבל את החלק שסימן.
 - ממשיכים ברקורסיה.

הרעיון: מכרז בין השחקנים: מי שמוכן לקבל הכי מעט – זוכה.

אלגוריתם המפחית האחרון

משפט: אלגוריתם "המפחית האחרון" נותן חלוקה פרופורציונלית - כל שחקן המשחק לפי הכללים מקבל לפחות n/1 מערך העוגה בעיניו. הוכחה: נניח שערך העוגה כולה הוא n. נוכיח שכל שחקן מקבל חלק ששווה בעיניו לפחות 1. נוכיח באינדוקציה על n.

בסיס: שחקן אחד מקבל הכל.

צעד: נניח ל-n-1 שחקנים. עכשיו יש n. אחד מקבל חלק ששווה בעיניו 1. נשארים n-1 שחקנים. עבורם, החלק שנמסר שווה לכל היותר 1. לכן, החלק שנשאר שווה בעיניהם לפחות n-1. לפי הנחת האינדוקציה, כל אחד מקבל לפחות 1. ***

אלגוריתם המפחית האחרון

משפט: אלגוריתם "המפחית האחרון" משתמש ב- (O(n²) שאילתות.

הוכחה: בכל צעד שחקן אחד יוצא – n צעדים. בכל צעד צריך לשאול כל שחקן שאילתה אחת. $C(n^2)$ סה"כ $C(n^2)$

עבור כלכלנים – זה מספיק.

אבל מדעני-מחשב שואלים: האם יש אלגוריתם מהיר יותר?

חלוקה פרופורציונלית מהירה

- חותכים את העוגה בחציון של הקוים.
 - שולחים כל שחקן לחצי שמכיל את הקו שלו.
 - מחלקים כל חצי קורסיה.

אלגוריתם אבן-פז

?מה עושים כש-n איזוגי

כל שחקן מחלק לשני חלקים ביחס של:

(n-1)/2 : (n+1)/2

- חותכים את העוגה כך שבצד אחד יהיו (n-1)/2 קוים ובצד שני (n+1)/2 קוים.
- שולחים כל שחקן לחצי שמכיל את הקו שלו.

אלגוריתם אבן-פז

משפט: אלגוריתם אבן-פז נותן חלוקה פרופורציונלית - כל שחקן המשחק לפי הכללים מקבל לפחות *n*/1 מערך העוגה בעיניו.

הוכחה: נניח שערך העוגה כולה הוא *n*. נוכיח שכל שחקן מקבל חלק ששווה בעיניו לפחות 1. נוכיח באינדוקציה על *n*.

בסיס: שחקן אחד מקבל הכל.

צעד: נניח שנכון לכל מספר שחקנים עד n-1. עכשיו יש n. כל מי שמשחק לפי הכללים, מגיע לחלק ששווה בעיניו לפחות k, ויש בו k שחקנים, כאשר h הוא n/2 או k או (n+1)/2 לפי הנחת האינדוקציה, כל אחד מקבל לפחות 1. ***

אלגוריתם אבן-פז

משפט: אלגוריתם אבן-פז משתמש $C(n \log n)$ ב- ($C(n \log n)$

הוכחה: נעגל את n למעלה לחזקה הקרובה של 2. הגדלנו אותו בפחות מ-2. עכשיו, בכל צעד, גודל הקבוצות קטֵן פי 2. לכן מספר הצעדים הוא לכל היותר $\log_2(2\ n)$. בכל צעד, שואלים כל שחקן שאילתה אחת. לכן הסיבוכיות (n0 (n0).

האם יש אלגוריתם מהיר יותר? -- לא! כל אלגוריתם לחלוקה פרופורציונלית צריך לפחות (ח O(n log n) שאילתות (הוכח בשנת 2007).