Teoría de la Computación

Clase 5: Teorema de Kleene

Mauro Artigiani

09 agosto 2021

Universidad del Rosario, Bogotá

Repaso

Expresiones regulares

Definición

Decimos que R es una expresión regular si R es

- 1. a para algún elemento del alfabeto Σ ;
- 2. ε ;
- 3. ∅;
- 4. $(R_1 \cup R_2)$, donde R_1 y R_2 son expresiones regulares;
- 5. $(R_1 \circ R_2)$, donde R_1 y R_2 son expresiones regulares;
- 6. R_1^* , donde R_1 es una expresión regular;

Teorema de Kleene

Hemos enunciado el siguiente

Teorema de Kleene

Un lenguaje es regular si y solo si hay una expresión regular que lo describe.

Teorema de Kleene

Hemos enunciado el siguiente

Teorema de Kleene

Un lenguaje es regular si y solo si hay una expresión regular que lo describe.

La otra vez hemos visto una implicación. Hoy veremos la otra.

GNFAs

Ejemplo

Ejemplo

Ejemplo

Ejemplo

Ejemplo

Ejemplo

Procesamiento de w = (abb)(a)(ab)(a): Cómputo interrumpido

Ejemplo

Ejemplo

Ejemplo

Ejemplo

Ejemplo

Procesamiento de w = (abb)(aa)(ba): Cadena aceptada

Para simplificar nuestro trabajo, vamos a pedir unas condiciones adicionales a nuestros GNFAs.

- El estado inicial tiene flechas que salen de él para *cualquier* otro estado y *no* tiene ninguna flecha entrante.
- Hay un único estado de aceptación, distinto del estado inicial.
 Este estado no tiene ninguna flecha que sale de él y todos los demás estados tienen una flecha que sale de ellos para llegar al estado final.
- Cualquier estado que no sea ni final ni inicial tiene una única flecha que lo conecta a cada uno de los otros estados (incluyéndolo a él mismo).

GNFA

Siempre se puede transformar un DFA en un GNFA equivalente que satisface las condiciones de antes:

• Añadimos un estado inicial nuevo con una transición ε al viejo estado inicial;

Siempre se puede transformar un DFA en un GNFA equivalente que satisface las condiciones de antes:

- Añadimos un estado inicial nuevo con una transición ε al viejo estado inicial;
- Añadimos un nuevo estado final con una transición ε hacia él desde todos los viejos estados finales (que ya no lo son);

Siempre se puede transformar un DFA en un GNFA equivalente que satisface las condiciones de antes:

- Añadimos un estado inicial nuevo con una transición ε al viejo estado inicial;
- Añadimos un nuevo estado final con una transición ε hacia él desde todos los viejos estados finales (que ya no lo son);
- Si hay múltiples flechas conectados dos estados, ponemos una sola flecha cuya etiqueta sea la unión de las etiquetas de antes;

Siempre se puede transformar un DFA en un GNFA equivalente que satisface las condiciones de antes:

- Añadimos un estado inicial nuevo con una transición ε al viejo estado inicial;
- Añadimos un nuevo estado final con una transición ε hacia él desde todos los viejos estados finales (que ya no lo son);
- Si hay múltiples flechas conectados dos estados, ponemos una sola flecha cuya etiqueta sea la unión de las etiquetas de antes;
- Finalmente, añadimos flechas Ø entre estados que antes no estaban conectados.

Ejemplo

Ejemplo

Teorema de Kleene: segunda parte

Teorema de Kleene: segunda parte

Lema

Si A es un lenguaje regular, entonces existe una expresión regular R tal que L(R)=A.

Teorema de Kleene: segunda parte

Lema

Si A es un lenguaje regular, entonces existe una expresión regular R tal que L(R)=A.

Demostración

Sea A un lenguaje regular y sea M un DFA que lo reconoce. Empezamos convirtiendo M en un GNFA G que satisface nuestro requerimientos. Mostraremos que podemos reducir G a G' un GNFA con solo dos estados. La etiqueta entre los dos estados será la expresión regular que corresponde a A.

Casos de simplificación (1/2)

Casos de simplificación (1/2)

Casos de simplificación (2/2)

Casos de simplificación (2/2)

Ejemplos $\overline{(1/2)}$

las

 q_0

$\overline{\text{CONVERT}(G)}$

1. Sea k el número de estados de G.

- 1. Sea *k* el número de estados de *G*.
- Si k = 2, entonces G tiene solamente un estado inicial y uno final. La única flecha que conecta el estado inicial con el estado final tiene como etiqueta una expresión regular R. Retornamos R.

- 1. Sea k el número de estados de G.
- Si k = 2, entonces G tiene solamente un estado inicial y uno final. La única flecha que conecta el estado inicial con el estado final tiene como etiqueta una expresión regular R. Retornamos R.
- 3. Si k > 2, escogemos un estado $q_r \in Q$ diferente de los estados inicial y final.

- 1. Sea k el número de estados de G.
- Si k = 2, entonces G tiene solamente un estado inicial y uno final. La única flecha que conecta el estado inicial con el estado final tiene como etiqueta una expresión regular R. Retornamos R.
- 3. Si k>2, escogemos un estado $q_r\in Q$ diferente de los estados inicial y final.

4. Retornamos CONVERT(G')

Mostramos que el procedimiento es correcto:

Afirmación

Para cualquier GNFA G, CONVERT(G) es equivalente a G.

Mostramos que el procedimiento es correcto:

Afirmación

Para cualquier GNFA G, CONVERT(G) es equivalente a G.

Demostración

La demostración es por inducción sobre k.

Caso base: Si k=2, entonces G tiene solamente un estado inicial y uno final. La única flecha que conecta el estado inicial con el estado final tiene como etiqueta una expresión regular R, la cual describe el lenguaje que G reconoce. Entonces R es equivalente a G.

Paso inductivo: Supongamos que la afirmación es cierta para k-1. Demostraremos para k que L(G)=L(G').

Paso inductivo: Supongamos que la afirmación es cierta para k-1. Demostraremos para k que L(G) = L(G').

 \Rightarrow) Supongamos que G acepta una palabra w. Esto significa que hay una forma de procesar w por los estados $q_{\text{start}}, q_1, \ldots, q_{\text{accept}}$. Tenemos dos casos:

Paso inductivo: Supongamos que la afirmación es cierta para k-1. Demostraremos para k que L(G) = L(G').

- \Rightarrow) Supongamos que G acepta una palabra w. Esto significa que hay una forma de procesar w por los estados q_{start} , q_1 , ..., q_{accept} . Tenemos dos casos:
 - A. Ninguno de los estados es q_r . Entonces G' también acepta w.

Paso inductivo: Supongamos que la afirmación es cierta para k-1. Demostraremos para k que L(G) = L(G').

- \Rightarrow) Supongamos que G acepta una palabra w. Esto significa que hay una forma de procesar w por los estados q_{start} , q_1 , ..., q_{accept} . Tenemos dos casos:
 - A. Ninguno de los estados es q_r . Entonces G' también acepta w.
 - B. Alguno de los estados es q_r , es decir, el procesamiento pasa por q_{start} , q_1 , ..., q_i , q_r , q_j , ..., q_{accept} . Por el proceso de simplificación (ver paso 3 del algoritmo), en G' existe una flecha entre q_i y q_j con una expresión regular que describe cómo moverse de q_i a q_j pasando por q_r . Entonces G' también acepta w.

Paso inductivo: Supongamos que la afirmación es cierta para k-1. Demostraremos para k que L(G) = L(G').

- \Rightarrow) Supongamos que G acepta una palabra w. Esto significa que hay una forma de procesar w por los estados q_{start} , q_1 , ..., q_{accept} . Tenemos dos casos:
 - A. Ninguno de los estados es q_r . Entonces G' también acepta w.
 - B. Alguno de los estados es q_r , es decir, el procesamiento pasa por q_{start} , q_1 , ..., q_i , q_r , q_j , ..., q_{accept} . Por el proceso de simplificación (ver paso 3 del algoritmo), en G' existe una flecha entre q_i y q_j con una expresión regular que describe cómo moverse de q_i a q_j pasando por q_r . Entonces G' también acepta w.

En cualquier caso, G' también acepta w.

←) Supongamos que G' acepta una palabra w. Cada flecha entre dos estados de G' me dice cómo moverme entre los mismos estados en G. Entonces, G también acepta w.

Por lo tanto, G y G' son equivalentes.

 \Leftarrow) Supongamos que G' acepta una palabra w. Cada flecha entre dos estados de G' me dice cómo moverme entre los mismos estados en G. Entonces, G también acepta w.

Por lo tanto, G y G' son equivalentes. Como G' tiene k-1 estados, por hipótesis de inducción se sigue que $\mathtt{CONVERT}(G')$ es equivalente a G' y en consecuencia G es equivalente a $\mathtt{CONVERT}(G)$.

 \Leftarrow) Supongamos que G' acepta una palabra w. Cada flecha entre dos estados de G' me dice cómo moverme entre los mismos estados en G. Entonces, G también acepta w.

Por lo tanto, G y G' son equivalentes. Como G' tiene k-1 estados, por hipótesis de inducción se sigue que $\mathtt{CONVERT}(G')$ es equivalente a G' y en consecuencia G es equivalente a $\mathtt{CONVERT}(G)$.

Hemos demostrado para todo G que G es equivalente a $\mathtt{CONVERT}(G)$.

Resumen

Resumen

Hoy aprendimos:

- La definición de los autómatas finitos no deterministas generalizados (GNFA);
- Encontrar el lenguaje regular reconocido por un DFA;
- A construir un GNFA que reconozca el mismo lenguaje de un DFA.