The New-Keynesian Model: Conceptual Underpinnings

Livio Maya

The Price Level

- What determines the price level? Inflation?
- How to model modern institutions? Central banks, interest targets, forward guidance etc?
- Theory accompanies institutional change. Metallic standards, fiduciary money, central banking, credit cards, crypto...
- This presentation: some old theory, but mainly the New-Keynesian Model
 - How does it pin down the price level? Does it indeed?
 - What are its dynamic properties?
 - What story does it tell? What vision of the economy does it translate?

Private sector block:

$$y_t = E_t y_{t+1} - \gamma (i_t - E_t \pi_{t+1})$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa y_t$$

$$i_t = \phi \pi_t + u_t$$
 $\phi > 1$
 $u_t = \rho u_{t-1} + \varepsilon_t$

- Effect of monetary shock $\varepsilon_0 = 1$
 - Low persistency $\rho = 0.5$

Private sector block:

$$y_t = E_t y_{t+1} - \gamma (i_t - E_t \pi_{t+1})$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa y_t$$

$$i_t = \phi \pi_t + u_t \qquad \phi > 1$$

 $u_t = \rho u_{t-1} + \varepsilon_t$

- Effect of monetary shock $\varepsilon_0 = 1$
 - Low persistency $\rho = 0.5$

Private sector block:

$$y_t = E_t y_{t+1} - \gamma (i_t - E_t \pi_{t+1})$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa y_t$$

$$i_t = \phi \pi_t + u_t \qquad \phi > 1$$

 $u_t = \rho u_{t-1} + \varepsilon_t$

- Effect of monetary shock $\varepsilon_0 = 1$
 - Low persistency $\rho = 0.5$
 - High persistency $\rho = 0.9$

Private sector block:

$$y_t = E_t y_{t+1} - \gamma (i_t - E_t \pi_{t+1})$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa y_t$$

$$i_t = \phi \pi_t + u_t \qquad \phi > 1$$

 $u_t = \rho u_{t-1} + \varepsilon_t$

- Effect of monetary shock $\varepsilon_0 = 1$
 - Low persistency $\rho = 0.5$
 - High persistency $\rho = 0.9$

Private sector block:

$$y_t = E_t y_{t+1} - \gamma (i_t - E_t \pi_{t+1})$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa y_t$$

$$i_t = \phi \pi_t + u_t$$
 $\phi > 1$
 $u_t = \rho u_{t-1} + \varepsilon_t$

- Effect of monetary shock $\varepsilon_0 = 1$
 - Low persistency $\rho = 0.5$
 - High persistency $\rho = 0.9$

Private sector block:

$$y_t = E_t y_{t+1} - \gamma (i_t - E_t \pi_{t+1})$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa y_t$$

$$i_t = \phi \pi_t + u_t \qquad \phi > 1$$

 $u_t = \rho u_{t-1} + \varepsilon_t$

- Effect of monetary shock $\varepsilon_0 = 1$
 - Low persistency $\rho = 0.5$
 - High persistency $\rho = 0.9$
- Role of interest? CB magical powers?

Private sector block:

$$y_t = E_t y_{t+1} - \gamma (i_t - E_t \pi_{t+1})$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa y_t$$

• $i_t = \phi \pi_t + u_t$, different u_t (more later)

Private sector block:

$$y_t = E_t y_{t+1} - \gamma (i_t - E_t \pi_{t+1})$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa y_t$$

• $i_t = \phi \pi_t + u_t$, different u_t (more later)

Private sector block:

$$y_t = E_t y_{t+1} - \gamma (i_t - E_t \pi_{t+1})$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa y_t$$

• $i_t = \phi \pi_t + u_t$, different u_t (more later)

Private sector block:

$$y_t = E_t y_{t+1} - \gamma (i_t - E_t \pi_{t+1})$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa y_t$$

- $i_t = \phi \pi_t + u_t$, different u_t (more later)
- Where is inflation coming from?

Some Monetary Theory History

How did we get here? Theories of the Price Level:

- Commodity Money ("I value because I can eat")
- Commodity Standard ("I value because I can trade for something I can eat")
- The Quantity Theory ("I value because it is convenient")
 - Fisher, Pigou
 - $\blacksquare MV = PY$
 - $\bullet i_t = r_t + E_t \pi_{t+1}$

Some Monetary Theory History

How did we get here? Theories of the Price Level:

- Original Keynesianism ("It is not about money")
 - Wage price spirals, unions, bargaining power, NRA...
 - Static Phillips curve in the 60s:

$$\pi_t = \kappa y_t$$

- Monetarism ("It is all about money; and who controls it")
 - Central banks at the center stage
 - Fed action causes business cycles, inflation: 4% rule
 - Friedman (1968): long-run neutrality + "central banks can't peg interest rate"

Interest Targeting

Criticism of interest pegs

- Instability (Friedman, Bernanke, Krugman...)
 - Unstable equilibria: interest pegs lead to spirals
 - Adaptive expectations and Old-Keynesian models
- Indeterminacy (Sargent and Wallace (1975))
 - Frictionless model with constant output: $i_t = E_t \pi_{t+1}$

$$i_t = 0 \implies E_t \pi_{t+1} = 0$$

- What about unexpected inflation $\Delta E_t \pi_t = (E_t E_{t-1}) \pi_t$?
- Rational expectations and New-Keynesian models

Interest Targeting

Original system

$$y_t = y_{t+1}^e - \gamma \left(i_t - \pi_{t+1}^e \right)$$

$$\pi_t = \beta \pi_{t+1}^e + \kappa y_t$$

• Static IS, $\beta = 1$, Taylor rule

$$y_t = -\gamma (i_t - \pi_{t+1}^e)$$

$$\pi_t = \pi_{t+1}^e + \kappa y_t$$

$$i_t = \phi \pi_t + u_t$$

- When necessary, $\phi = 0$ captures interest peg
- Replace and re-organize:

$$(1 + \kappa \gamma \phi) \pi_t = (1 + \kappa \gamma) \pi_{t+1}^e - \kappa \gamma u_t$$

$$(1 + \kappa \gamma \phi)\pi_t = (1 + \kappa \gamma)\pi_{t+1}^e - \kappa \gamma u_t$$

• Adaptive expectations: $\pi_{t+1}^e = \pi_{t-1}$

$$\pi_t = \frac{1 + \kappa \gamma}{1 + \kappa \gamma \phi} \pi_{t-1} - c u_t$$

$$(1 + \kappa \gamma \phi)\pi_t = (1 + \kappa \gamma)\pi_{t+1}^e - \kappa \gamma u_t$$

• Adaptive expectations: $\pi_{t+1}^e = \pi_{t-1}$

$$\pi_t = \frac{1 + \kappa \gamma}{1 + \kappa \gamma \phi} \pi_{t-1} - c u_t$$

$$\pi_t = (1 + \kappa \gamma) \pi_{t-1} - c u_t$$

$$(1 + \kappa \gamma \phi)\pi_t = (1 + \kappa \gamma)\pi_{t+1}^e - \kappa \gamma u_t$$

• Adaptive expectations: $\pi_{t+1}^e = \pi_{t-1}$

$$\pi_t = \frac{1 + \kappa \gamma}{1 + \kappa \gamma \phi} \pi_{t-1} - c u_t$$

$$\pi_t = (1 + \kappa \gamma) \pi_{t-1} - c u_t$$

- **Taylor Principle**: $\phi > 1$ in $i_t = \phi \pi_t + u_t$
 - ↑ Interest \implies ↓ "Aggregate Demand" \implies ↓ Inflation
 - Feedback rules stabilizes an unstable steady state

$$(1 + \kappa \gamma \phi)\pi_t = (1 + \kappa \gamma)\pi_{t+1}^e - \kappa \gamma u_t$$

• Adaptive expectations: $\pi_{t+1}^e = \pi_{t-1}$

$$\pi_t = \frac{1 + \kappa \gamma}{1 + \kappa \gamma \phi} \pi_{t-1} - c u_t$$

$$\pi_t = (1 + \kappa \gamma) \pi_{t-1} - c u_t$$

- **Taylor Principle**: $\phi > 1$ in $i_t = \phi \pi_t + u_t$
 - \uparrow Interest $\implies \downarrow$ "Aggregate Demand" $\implies \downarrow$ Inflation
 - Feedback rules stabilizes an unstable steady state

$$(1 + \kappa \gamma \phi)\pi_t = (1 + \kappa \gamma)\pi_{t+1}^e - \kappa \gamma u_t$$

• Adaptive expectations: $\pi_{t+1}^e = \pi_{t-1}$

$$\pi_t = \frac{1 + \kappa \gamma}{1 + \kappa \gamma \phi} \pi_{t-1} - c u_t$$

$$\pi_t = (1 + \kappa \gamma) \pi_{t-1} - c u_t$$

- **Taylor Principle**: $\phi > 1$ in $i_t = \phi \pi_t + u_t$
 - \uparrow Interest $\implies \downarrow$ "Aggregate Demand" $\implies \downarrow$ Inflation
 - Feedback rules stabilizes an unstable steady state

New Keynesian Models

$$(1 + \kappa \gamma \phi) \pi_t = (1 + \kappa \gamma) \pi_{t+1}^e - \kappa \gamma u_t$$

• Rational Expectations: $\pi_{t+1}^e = E_t \pi_{t+1}$

$$E_t \pi_{t+1} = \frac{1 + \kappa \gamma \phi}{1 + \kappa \gamma} \pi_t - c u_t$$

• Interest peg $\phi = 0$ is stable, but indeterminate (unexpected inflation?):

$$E_t \pi_{t+1} = \left(\frac{1}{1+\kappa\gamma}\right) \pi_t - c u_t$$

New Keynesian Models

$$(1 + \kappa \gamma \phi) \pi_t = (1 + \kappa \gamma) \pi_{t+1}^e - \kappa \gamma u_t$$

• Rational Expectations: $\pi_{t+1}^e = E_t \pi_{t+1}$

$$E_t \pi_{t+1} = \frac{1 + \kappa \gamma \phi}{1 + \kappa \gamma} \pi_t - c u_t$$

- Interest peg $\phi = 0$ is stable, but indeterminate (unexpected inflation?): $E_t \pi_{t+1} = \left(\frac{1}{1+\kappa\gamma}\right) \pi_t cu_t$
- $\phi > 1$ is unstable. Solve forward (present as function of future)

$$\pi_t = \alpha E_t \pi_{t+1} + u_t \qquad |\alpha| < 1$$
$$= \sum_{i=0}^{\infty} \alpha^i E_t u_{t+i} + \lim_{i \to \infty} \alpha^i E_t \pi_{t+i}$$

• Can we do $\lim_{i\to\infty} \alpha^i E_t \pi_{t+i} = 0$?

- Can we do $\lim_{t\to\infty} \alpha^i E_t \pi_{t+i} = 0$?
- Non-linear deterministic model:

$$1 + i_t = (1 + r)\Phi(\Pi_t)$$

$$\Pi_{t+1} = \beta(1 + i_t)$$

• Equilibrium: $\beta = (1+r)$, $\Pi_{t+1} = \Phi(\Pi_t)$

- Can we do $\lim_{i\to\infty} \alpha^i E_t \pi_{t+i} = 0$?
- Non-linear deterministic model:

$$1 + i_t = (1 + r)\Phi(\Pi_t)$$

$$\Pi_{t+1} = \beta(1 + i_t)$$

- Equilibrium: $\beta = (1+r)$, $\Pi_{t+1} = \Phi(\Pi_t)$
- "Good" steady state: $\Phi'(\Pi^*) > 1$
- Rule out explosiveness?
 - "Unreasonable"
 - CB "intervention"
 - = Diameter the second
 - Blow up the world

- Can we do $\lim_{i\to\infty} \alpha^i E_t \pi_{t+i} = 0$?
- Non-linear deterministic model:

$$1 + i_t = (1 + r)\Phi(\Pi_t)$$

$$\Pi_{t+1} = \beta(1 + i_t)$$

- Equilibrium: $\beta = (1+r)$, $\Pi_{t+1} = \Phi(\Pi_t)$
- "Good" steady state: $\Phi'(\Pi^*) > 1$
- Rule out explosiveness?
 - "Unreasonable"
 - CB "intervention"
 - Blow up the world
- "Bad" equilibrium $\Phi'(\Pi_L) < 1$?

- Anomalies still haunt
- Frictionless case $i_t = E_t \pi_{t+1}$ with peg $i_t = 0$:

$$E_t \pi_{t+1} = 0$$

1 stable root to 1 forward-looking ⇒ indeterminacy

• $\phi > 1$ introduces an unstable root and yields determinacy if spirals ruled out

$$E_t \pi_{t+1} = \phi \pi_t \implies \pi_t = 0$$

$$i_t = E_t \pi_{t+1}$$

• Concept generalizes to stochastic target π_t^*

$$i_t = E_t \pi_{t+1}$$

- Concept generalizes to stochastic target π_t^*
- Just set up the right interest rule!

$$i_{t} = E_{t} \pi_{t+1}^{*} + \phi \left(\pi_{t} - \pi_{t}^{*} \right)$$

$$\implies E_{t} \left(\pi_{t+1} - \pi_{t+1}^{*} \right) = \phi \left(\pi_{t} - \pi_{t}^{*} \right)$$

$$i_t = E_t \pi_{t+1}$$

- Concept generalizes to stochastic target π_t^*
- Just set up the right interest rule!

$$i_{t} = E_{t} \pi_{t+1}^{*} + \phi \left(\pi_{t} - \pi_{t}^{*} \right)$$

$$\implies E_{t} \left(\pi_{t+1} - \pi_{t+1}^{*} \right) = \phi \left(\pi_{t} - \pi_{t}^{*} \right)$$

• $\phi > 1 \implies$ unstable $\implies \pi_t = \pi_t^*$

$$i_t = E_t \pi_{t+1}$$

- Concept generalizes to stochastic target π_t^*
- Just set up the right interest rule!

$$i_{t} = E_{t} \pi_{t+1}^{*} + \phi \left(\pi_{t} - \pi_{t}^{*} \right)$$

$$\implies E_{t} \left(\pi_{t+1} - \pi_{t+1}^{*} \right) = \phi \left(\pi_{t} - \pi_{t}^{*} \right)$$

- $\phi > 1 \implies$ unstable $\implies \pi_t = \pi_t^*$
- Now, define $u_t = E_t \pi_{t+1}^* \phi \pi_t^*$:

$$i_t = \phi \pi_t + u_t$$

This is where we started! (But not AR(1))

Summary and Interpretation:

- The model does not pin down unexpected inflation $\Delta E_t \pi_t$
 - 1 forward-looking variable, 0 explosive roots
- $\phi > 1$ provides unstable root, selects $\Delta E_t \pi_t$. How?
 - Via interest rule, central bank threats spiral $|\pi_t| \to \infty$
 - Agents abominate spirals, jump to π_t^* (problem is here)
- The central bank chooses $\Delta E_t \pi_t$
- No "stimulate demand" (no Phillips curve, constant *y*)

Interpreting the NK Model

$$y_t = E_t y_{t+1} - \gamma (i_t - E_t \pi_{t+1})$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa y_t$$

- 2 forward-looking variables, 1 explosive root (indeterminacy)
- Model pins down $\Delta E_t y_t$ or $\Delta E_t \pi_t$, but not both
- Suppose $E_t \pi_{t+1}$ given. Choose $\{i_t^*\}$ stable, stochastic target π_t^*

$$i_t^* - E_t \pi_{t+1}^* = i_t - E_t \pi_{t+1}$$

 $i_t = i_t^* + \phi (\pi_t - \pi_t^*)$

(Private Sector) (Policy Rule)

• Equilibrium:

$$i_t = i_t^*$$

$$\pi_t = E_{t-1}\pi_t + \Delta E_t \pi_t^* = \pi_t^*$$

Interpreting the NK Model

- ϕ is unidentified, interest equation reads $i_t = i_t^*$
- $\phi > 1$ is not exactly the Taylor Principle / Rule (threat, not action)
 - Taylor Rule would be $i_t^* = \phi \pi_t$
- Unexpected inflation is not the result of "aggregate demand"
 - Recall pricing condition in the NK model: $p = (1 \beta \theta) \sum_i (\beta \theta)^i (\mu + w_t)$
- Blanchard-Khan is a tool, not a first-order condition
- Zero Lower Bound: what if we pin inflation in the future? Forward-Guidance Puzzle

Interest and Inflation in the Data

Figure: Interest and Inflation in the US

NK: The List of Issues

Problems with the New-Keynesian Model

- Central banks do not threat spirals
- First-order conditions do not rule out spirals
- No model of unexpected inflation determination; AR(1) = blind selection
- Inconsistent with experience in the Zero Lower Bound period
- Forward Guidance Puzzle

and ...

NK: The List of Issues

Problems with the New-Keynesian Model

- Central banks do not threat spirals
- First-order conditions do not rule out spirals
- No model of unexpected inflation determination; AR(1) = blind selection
- Inconsistent with experience in the Zero Lower Bound period
- Forward Guidance Puzzle

and ...

Assumes irrealistic commitment of fiscal policy

Appendix: Neutrality and the Long-Term

• Fisher equation:

$$r_t = i_t - E_t \pi_{t+1}$$

- In the long-run, either:
 - +1 nominal interest ⇒ +1 inflation
 - Monetary policy not neutral

Appendix: Neutrality and the Long-Term

• Fisher equation:

$$r_t = i_t - E_t \pi_{t+1}$$

- In the long-run, either:
 - +1 nominal interest ⇒ +1 inflation
 - Monetary policy not neutral

Appendix: Neutrality and the Long-Term

• Fisher equation:

$$r_t = i_t - E_t \pi_{t+1}$$

- In the long-run, either:
 - +1 nominal interest ⇒ +1 inflation
 - Monetary policy not neutral

