

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

LIFE SCIENCES P2

NOVEMBER 2018

MARKING GUIDELINES

MARKS: 150

These marking guidelines consist of 9 pages.

NSC – Marking (Guidelines
-----------------	------------

SECTION A

QUEST	ION 1		
1.1	1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.1.9	C ✓ ✓ B ✓ ✓ C ✓ ✓ B ✓ ✓ C ✓ ✓ D ✓ ✓	(18)
1.2	1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9	Hydrogen ✓ bonds Genome ✓ Cultural ✓ evidence Speciation ✓ Haemophilia ✓ Foramen magnum ✓ Alleles ✓ Discontinuous ✓ variation Gonosomes (9 x 1) (
1.3	1.3.1 1.3.2 1.3.3	A only \checkmark Both A and B \checkmark \checkmark A only \checkmark \checkmark (3 x 2)	(6)
1.4	1.4.1	D- Chromatid√ E- Centromere√	(2)
	1.4.2	23√ pairs	(1)
	1.4.3		(1) (1)
	1.4.4	(a) Nucleus√ Mitochondrion√ (Mark first TWO only)	(2)
		(b) Double helix√	(1)
			(1) (9)
1.5	1.5.1	Phylogenetic tree√/ cladogram	(1)
	1.5.2	An exoskeleton√	(1)
	1.5.3		(1) (1)
	1.5.4	(b)Helmetids√ (c) Tegopeltids√ (d)Naraoids√ (b)Tegopeltids√ (c) Helmetids√	(1) (1) (1) (1) (8)
			50

QUESTION 2

2.1	2.1.1	 Due to non-disjunction ✓ I Non-separation of a chromosome pair during Anaphase I ✓ Two chromosomes moved to the one pole ✓ and none moved to the other pole ✓ Any 	(3)
	2.1.2	 Gamete A will have 24 chromosomes√/an extra chromosome and when it fertilises a normal ovum√/gamete with 23 chromosomes the zygote will have 3 chromosomes at position 21√/47 chromosomes 	(3)
	2.1.3	(a) Prophase I√	(1)
		 (b) – Adjacent chromatids of homologous chromosomes cross√ – at a point called the chiasma√ – There is an exchange of DNA segments√/genetic material 	(3)
		 (c) – Crossing over introduces genetic variation√ in gametes – Genetic variation may result in favourable characteristics√ – that ensure a better chance of survival√ – when environmental conditions change√ 	
		OR	
		 Crossing over introduces genetic variation√ in gametes Genetic variation may result in unfavourable characteristics√ 	
		 that reduce the chance of survival√ when environmental conditions change√ Any	(3) (13)
2.2	2.2.1	 (a) Female without SCID√ (b) Male with SCID√ (c) X^DX^d√√ 	(1) (1) <mark>(2)</mark>
	2.2.2	 He inherited the recessive allele / /X^d from the mother / /individual 4 	(2) (6)

2.3	2.3.1	 (a) It allows for the production of organisms with desired characteristics√/ high average milk yield (Mark first ONE only) 	(1)
		 (b) – It reduces genetic variation√ in offspring – It results in no further genetic improvement√ – It is expensive√ – It may not be economical for commercial agriculture√ (Mark first ONE only) Any	(1)
			(')
	2.3.2	LMJC 865 had a high average milk-production yield√/ produced 78 litres per day/ had the desired characteristic	(1)
	2.3.3	 A diploid cell ✓ / a cell with all the genetic information is needed An ovum is a haploid cell ✓ / only contains half of the genetic information 	(2)
	2.3.4	 The nucleus of an ovum is removed√ and replaced with the nucleus of a somatic donor cell√/ diploid donor cell The zygote is stimulated√ for mitosis√ to occur The embryo is then placed into the uterus of an adult female√ 	
		OR	
		 Plants may be cloned by vegetative reproduction √/asexual reproduction /tissue culture/grafting A plant with the desired characteristics is selected √ A vegetative part of the "parent" plant structure is removed √/(examples) and placed inside a growth medium √/(examples) and allowed to grow √ Any 4	(4)
			(9)
2.4	2.4.1	Purple√	(1)
	2.4.2	 When purple-flowering plants and white-flowering plants are crossed ✓ all the offspring have purple flowers ✓ /have no white flowers 	(2)
	2.4.3	 The two alleles for a characteristic√ separate during meiosis√ so that each gamete contains only one allele√ for that characteristic 	(3)

2.4.4

P₁ Phenotype Genotype

Purple x Purple \checkmark Dd x Dd \checkmark

Meiosis

G/gametes

Fertilisation

F₁ Genotype

Phenotype

Purple : White√*

P₁ and

F₁✓

Meiosis and fertilisation√

*Compulsory 1 + Any 5

OR

P₁ Phenotype Genotype

Purple x Purple \checkmark Dd x Dd \checkmark

Meiosis

Fertilisation

Gametes	D	d
D	DD	Dd
d	Dd	dd

1 mark for correct gametes1 mark for correct genotypes

F₁ Phenotype

Purple: White√*

 P_1 and

F₁√
Meiosis and fertilisation√

(6) **(12)**

*Compulsory 1 + Any 5 **[40]**

NSC – Marking Guidelines

QUESTION 3

3.1 3.1.1 – The jaw is large in the chimpanzee√ and small in Homo sapiens√

- The jaw/ palate is rectangular in the chimpanzee√ and rounded in Homo sapiens√
- Large spaces between the teeth in the chimpanzee ✓ and small/no spaces in Homo sapiens ✓
- Large canines/teeth in the chimpanzee√ and small canines/teeth in Homo sapiens√ Any 1 x 2 (2)

(Mark first ONE only)

3.1.2 – The diet changed from eating raw food√ in *Australopithecus*

to a diet of cooked food√ in Homo sapiens

3.1.3 (a) A transitional species shows intermediate characteristics between two genera/species√

OR

It has characteristics common to both the ancestor species and the species that follows ✓

(1)

(2)

(b) The jaw is smaller than that of the chimpanzee but larger than that of *Homo sapiens*√√

OR

The canines/ teeth are smaller than those of the chimpanzee but larger than those of *Homo sapiens*√√

OR

The jaw/ palate shape is more rounded than that of the chimpanzee but less rounded than that of *Homo sapiens*✓✓

Any 1 x 2 (2)

DBE/November 2018

(Mark first ONE only)

(7)

3.2 3.2.1 – The bright colour pattern is associated with being poisonous ✓

thus reducing predation√ and

improving the chances of survival√ (3)

3.2.2 − There is variation in the colour of kingsnakes ✓

- Some are bright in colour √/resemble the coral snakes and
- the others are dull in colour
- Those with dull colours are killed ✓ by predators
- Those with bright colours are not eaten
- so they survive ✓ and reproduce,
- passing on the allele for bright colour to the next generation√

Any 6 (6)

(9)

 $3.3 3.3.1 1900\checkmark$ (1)

3.3.2
$$\left\{\frac{80}{20}\right\} \checkmark \times 100 \checkmark = 400 \checkmark \%$$

OR

$$\left\{\frac{(100-20)}{20}\right\} \checkmark \times 100 \checkmark = 400 \checkmark \% \tag{3}$$

3.3.3 T√

Natural selection	Artificial selection
The environment or nature is	Humans represent the selective
the selective force√	force√
Selection is in response to	Selection is in response to
suitability to the environment√	satisfying human needs√
Occurs within a species√	May involve one or more
	species√ (as in cross breeding)

1 for Table + Any 2 x 2 (5)

(Mark first TWO only) (9)

3.4 3.4.1 – They invade farm fields✓

They outcompete the crop plants for space ✓ Any (1)

3.4.2 (a) Type of herbicide ✓ (1)

(b) Time taken for development of resistance√ (1)

3.4.3 (a) Dicloflop✓ (1)

(b) Trifluralin√ (1)

NSC – Marking Guidelines

3.4.4 (a) – They would apply the herbicide to the weed ✓ and

observe if the weed survives ✓ over many generations

(b) – They used the same weed species as other weed species may have developed resistance to that herbicide✓

Each weed species may respond differently

✓ to a herbicide

OR

It allows for a single variable√

to which all results can be attributed√
 (2)

3.4.5

Guideline for assessing the graph

Ouldenine for assessing the graph	
Type: Bar graph drawn (T)	1
Title of graph	1
Correct: - Scale for Y-axis and (S) - Width and interval of bars on X-axis	1
Correct: - Label for X-axis and - Label and unit for Y-axis (L)	1
Plotting of bars	1- 1 to 4 bars plotted correctly 2- All 5 bars plotted correctly

(6) **(15)**

(2)

[40]

TOTAL SECTION B: 80

NSC – Marking Guidelines

SECTION C

QUESTION 4

Structure (S)

- RNA is single stranded✓
- and is made up of nucleotides ✓ which comprise:
- ribose√ sugar
- phosphate ✓ group
- nitrogenous bases ✓ which are
- adenine, uracil, guanine and cytosine √/ (A, U, G and C)
- The phosphate group is attached to the ribose sugar√
- and the nitrogenous base is attached to the ribose sugar√
- Bases on RNA are arranged in triplets√
- as codons on mRNA✓
- and anticodons on tRNA✓
- tRNA has a clover-leaf √/hairpin structure
- tRNA has a place of attachment for an amino acid√

Any (9)

Involvement in protein synthesis (P)

- mRNA√ forms
- during transcription ✓/by copying the coded message from DNA
- and moves out of the nucleus
- and attaches to the ribosome√
- During translation√
- the anticodon matches the codon√
- tRNA√
- brings the required amino acid

 ✓ to the ribosome
- Amino acids become attached by peptide bonds√
- to form the required protein

Any (8)

Content: Synthesis:

(3) **(20)**

(17)

ASSESSING THE PRESENTATION OF THE ESSAY

Criterion	Relevance (R)	Logical sequence (L)	Comprehensive (C)
Generally	All information provided is relevant to the question	Ideas are arranged in a logical/cause-effect sequence	All aspects required by the essay have been sufficiently addressed
In this essay in Q4	Only information relevant to the: - structure of RNA and - involvement of the different types of RNA in protein synthesis is given There is no irrelevant information	All the information regarding the - structure of RNA and - the involvement of the different types of RNA in protein synthesis is given in a logical manner	At least: - 6/9 correct points for the structure of RNA (S) - 5/8 for the involvement in protein synthesis (P)
Mark	1	1	1

TOTAL SECTION C: 20 GRAND TOTAL: 150