The λ -calculus, from intuitionistic to classical logic

Webpage of the course

Davide Barbarossa db2437@bath.ac.uk Dept of Computer Science Giulio Guerrieri g.guerrieri@sussex.ac.uk Dept of Computer Science

ESSLLI Summer School, Bochum (Germany)

28/07/2025 - 01/08/2025

The λ -calculus, from intuitionistic to classical logic

What will you (hopefully!) learn: You will have an idea of some basic but fundamental aspects of the relationship between $(\lambda\text{-}calculus\ based)$ programming language theory and $(Curry\text{-}Howard\ based)$ mathematical logic.

- Lecture 1: Topology/domain-theory of the "graph model" over $\mathcal{P}(\mathbb{N})$ Davide Barbarossa
- Lecture 2: The λ -calculus

 Davide Barbarossa
- Lecture 3: Category theory for denotational semantics Giulio Guerrieri
- Lecture 4: Curry-Howard and intuitionistic logic Giulio Guerrieri
- Lecture 5: Krivine's approach to classical logic
 Davide Barbarossa

The λ -calculus, from intuitionistic to classical logic

Lecture 1:

Topology/domain-theory of the "graph model" over $\mathcal{P}(\mathbb{N})$

Read the notes: they are full of details, proofs, explanations, exercises, bibliography!

Davide Barbarossa
db2437@bath.ac.uk
Dept of Computer Science
UNIVERSITY OF

Problem: Compute \sqrt{S} , for some given $S \in \mathbb{R}$

$$x_0 := any positive number$$

$$x_{n+1} := \frac{1}{2} \left(x_n + \frac{54899321104}{x_n} \right)$$

$$x_0 := any positive number$$

$$x_{n+1} := \frac{1}{2} \left(x_n + \frac{54899321104}{x_n} \right)$$

Then
$$\lim_{n \to +\infty} x_n = \sqrt{54899321104}$$

Problem: Compute $\sqrt{54899321104}$

$$x_0 := any positive number$$

$$x_{n+1} := \frac{1}{2} \left(x_n + \frac{54899321104}{x_n} \right)$$

Then
$$\lim_{n \to +\infty} x_n = \sqrt{54899321104}$$

Heron

We defined a function

$$H: \mathbb{N} \to \mathbb{R}, \qquad H(n) := x_n$$

such that
$$\lim_{n\to+\infty} H(n) = \sqrt{54899321104}$$

Problem: Compute $\sqrt{54899321104}$

$$x_0$$
 := any positive number
$$x_{n+1}$$
 := $\frac{1}{2} \left(x_n + \frac{54899321104}{x_n} \right)$ Then $\lim_{n \to +\infty} x_n = \sqrt{54899321104}$

We defined a function

$$H: \mathbb{N} \cup \{+\infty\} \to \mathbb{R},$$

$$H(n) := x_n$$

$$H(+\infty) := \sqrt{54899321104}$$

such that

$$\lim_{n \to +\infty} H(n) = \sqrt{54899321104} = H(+\infty) = H\left(\sup_{n < +\infty} n\right)$$

Problem: Compute all the prime numbers

Problem: Compute all the prime numbers

Problem: Compute all the prime numbers

Sieve of Eratosthenes!

Problem: Compute all the prime numbers

Sieve of Eratosthenes!

Eratosthenes We

We defined a function

 $E: \mathbb{N} \to \mathcal{P}(\mathbb{N}),$

E(n) := set of the first n prime numbers

so that

$$\bigcup_{n\in\mathbb{N}} E(n) = set \ of \ all \ the \ prime \ numbers$$

Problem: Compute all the prime numbers

Sieve of Eratosthenes!

Eratosthenes

We defined a function

$$E: \mathbb{N} \cup \{+\infty\} \to \mathcal{P}(\mathbb{N}), \qquad \begin{array}{ccc} E(n) & := & set \ of \ the \ first \ n \ prime \ numbers \\ E(+\infty) & := & set \ of \ all \ the \ prime \ numbers \end{array}$$

such that

$$\bigcup_{n\in\mathbb{N}} E(n) = set \ of \ all \ the \ prime \ numbers = E(+\infty) = E\left(\sup_{n<+\infty} n\right)$$

Why do we say that H and E are computable? What property do the share from the fact that they are given by an algorithm?

Why do we say that H and E are computable? What property do the share from the fact that they are given by an algorithm?

(potentially) infinitary entity	$a\in\mathbb{N}\cup\{+\infty\}$	$r\in\mathbb{R}$
finitary entity	$n \in \mathbb{N}$	$q\in\mathbb{Q}$
approximation of infinitary by finitary	$n<+\infty$	$q \in \mathbb{Q}$ is "close" to $r \in \mathbb{R}$
it works because	$\sup_{n \in \mathbb{N}} n = +\infty$	\mathbb{Q} is dense in \mathbb{R}

Why do we say that H and E are computable? What property do the share from the fact that they are given by an algorithm?

(potentially) infinitary entity	$a\in\mathbb{N}\cup\{+\infty\}$	$r \in \mathbb{R}$
finitary entity	$n \in \mathbb{N}$	$q\in\mathbb{Q}$
approximation of infinitary by finitary	$n<+\infty$	$q \in \mathbb{Q}$ is "close" to $r \in \mathbb{R}$
it works because	$\sup_{n\in\mathbb{N}} n = +\infty$	\mathbb{Q} is dense in \mathbb{R}

$$H:\mathbb{N}\cup\{+\infty\}\to\mathbb{R}$$

For all q close to $H(+\infty)$, there is $n < +\infty$ such that H(n) is closer to $\sqrt{54899321104}$ than q is

Why do we say that H and E are computable? What property do the share from the fact that they are given by an algorithm?

(potentially) infinitary entity	$a \in \mathbb{N} \cup \{+\infty\}$	$r \in \mathbb{R}$	$a \subseteq \mathbb{N}$
finitary entity	$n \in \mathbb{N}$	$q \in \mathbb{Q}$	$e \subseteq_{\operatorname{fin}} \mathbb{N}$
approximation of infinitary by finitary	$n < +\infty$	$q \in \mathbb{Q}$ is "close" to $r \in \mathbb{R}$	$e \subseteq_{\operatorname{fin}} a$
it works because	$\sup_{n \in \mathbb{N}} n = +\infty$	\mathbb{Q} is dense in \mathbb{R}	$\bigcup_{e \subseteq_{fin} a} e = a$

$$H: \mathbb{N} \cup \{+\infty\} \to \mathbb{R}$$
 For all q close to $H(+\infty)$,
there is $n < +\infty$ such that
 $H(n)$ is closer to $\sqrt{54899321104}$ than q is

Why do we say that H and E are computable? What property do the share from the fact that they are given by an algorithm?

(potentially) infinitary entity	$a\in\mathbb{N}\cup\{+\infty\}$	$r \in \mathbb{R}$	$a \subseteq \mathbb{N}$
finitary entity	$n \in \mathbb{N}$	$q \in \mathbb{Q}$	$e \subseteq_{\operatorname{fin}} \mathbb{N}$
approximation of infinitary by finitary	$n<+\infty$	$q \in \mathbb{Q}$ is "close" to $r \in \mathbb{R}$	$e \subseteq_{\operatorname{fin}} a$
it works because	$\sup_{n\in\mathbb{N}} n = +\infty$	\mathbb{Q} is dense in \mathbb{R}	$\bigcup_{e \subseteq fin} a = a$

$$E: \mathbb{N} \cup \{+\infty\} \to \mathcal{P}(\mathbb{N})$$
 For all $d \subseteq_{\text{fin}} E(+\infty)$,
there is $n < +\infty$ such that
 $E(n) \supseteq d$

Why do we say that H and E are computable? What property do the share from the fact that they are given by an algorithm?

(potentially) infinitary entity	$a\in\mathbb{N}\cup\{+\infty\}$	$r \in \mathbb{R}$	$a \subseteq \mathbb{N}$
finitary entity	$n \in \mathbb{N}$	$q \in \mathbb{Q}$	$e \subseteq_{\operatorname{fin}} \mathbb{N}$
approximation of infinitary by finitary	$n<+\infty$	$q \in \mathbb{Q}$ is "close" to $r \in \mathbb{R}$	$e \subseteq_{\operatorname{fin}} a$
it works because	$\sup_{n\in\mathbb{N}} n = +\infty$	\mathbb{Q} is dense in \mathbb{R}	$\bigcup_{e \subseteq fin} e = a$

A generic f

For all approximation d of f(x), there is an approximation e of x such that f(e) is a better approximation of f(x) than d is

Why do we say that H and E are computable? What property do the share from the fact that they are given by an algorithm?

(potentially) infinitary entity	$a \in \mathbb{N} \cup \{+\infty\}$	$r\in\mathbb{R}$	$a \subseteq \mathbb{N}$ amount of "information"
finitary entity	$n \in \mathbb{N}$	$q\in\mathbb{Q}$	$e \subseteq_{\text{fin}} \mathbb{N} \text{amount of} \\ \text{"information"}$
approximation of infinitary by finitary	$n < +\infty$	$q \in \mathbb{Q}$ is "close" to $r \in \mathbb{R}$	$e\subseteq_{\mathrm{fin}} a$
it works because	$\sup_{n\in\mathbb{N}} n = +\infty$	\mathbb{Q} is dense in \mathbb{R}	$\bigcup_{e\subseteq_{\mathrm{fin}}a}e=a$

A generic f

For all approximation d of f(x), there is an approximation e of x such that f(e) is a better approximation of f(x) than d is

Why do we say that H and E are computable? What property do the share from the fact that they are given by an algorithm?

(potentially) infinitary entity	$a \in \mathbb{N} \cup \{+\infty\}$	$r\in\mathbb{R}$	$a \subseteq \mathbb{N}$ amount of "information"
finitary entity	$n \in \mathbb{N}$	$q \in \mathbb{Q}$	$e \subseteq_{\mathrm{fin}} \mathbb{N} \text{amount of} \\ \text{"information"}$
approximation of infinitary by finitary	$n < +\infty$	$q \in \mathbb{Q}$ is "close" to $r \in \mathbb{R}$	$e \subseteq_{\operatorname{fin}} a$
it works because	$\sup_{n\in\mathbb{N}} n = +\infty$	\mathbb{Q} is dense in \mathbb{R}	$\bigcup_{e\subseteq_{\mathrm{fin}}a}e=a$

$$f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$$

 $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ For all $d \subseteq_{\text{fin}} f(a)$, there is $e \subseteq_{fin} a$ such that $f(e)\supseteq d$

Why do we say that H and E are computable? What property do the share from the fact that they are given by an algorithm?

(potentially) infinitary entity	$a \in \mathbb{N} \cup \{+\infty\}$	$r\in\mathbb{R}$	$a \subseteq \mathbb{N}$ amount of "information"
finitary entity	$n\in\mathbb{N}$	$q\in\mathbb{Q}$	$e \subseteq_{\text{fin}} \mathbb{N} \text{amount of} \\ \text{"information"}$
approximation of infinitary by finitary	$n < +\infty$	$q \in \mathbb{Q}$ is "close" to $r \in \mathbb{R}$	$e\subseteq_{\mathrm{fin}} a$
it works because	$\sup_{n\in\mathbb{N}} n = +\infty$	\mathbb{Q} is dense in \mathbb{R}	$\bigcup_{e \subseteq_{fin} a} e = a$

$$f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$$

For all finite portion of the output, there is a finite portion of the input such that the latter suffices to compute the former

The fastest course on topology ever:

The fastest course on topology ever:

A topology on a space X is the choice of special sets of points of X, called open sets, provide the set of points which can be approximated by each other

Continuous functions on X are those for which every set of possible outcomes that can be approximated by each other, gives rise to a set of points in the inputs that can be approximated by each other.

The fastest course on topology ever:

A topology on a space X is the choice of special sets of points of X, called open sets, provide the set of points which can be approximated by each other

Continuous functions on X are those for which every set of possible outcomes that can be approximated by each other, gives rise to a set of points in the inputs that can be approximated by each other.

For all approximation d of f(x), there is an approximation e of xsuch that f(e) is a better approximation of f(x) than d is

The fastest course on topology ever:

A topology on a space X is the choice of special sets of points of X, called open sets, provide the set of points which can be approximated by each other

Continuous functions on X are those for which every set of possible outcomes that can be approximated by each other, gives rise to a set of points in the inputs that can be approximated by each other.

For all open set O containing f(x), there is an open Q containing xsuch that $fQ \subseteq O$

The fastest course on topology ever:

A topology on a space X is the choice of special sets of points of X, called open sets, provide the set of points which can be approximated by each other

Continuous functions on X are those for which every set of possible outcomes that can be approximated by each other, gives rise to a set of points in the inputs that can be approximated by each other.

For all open set O containing f(x), there is an open Q containing xsuch that $Q \subseteq f^{-1}O$

The fastest course on topology ever:

A topology on a space X is the choice of special sets of points of X, called open sets, provide the set of points which can be approximated by each other

Continuous functions on X are those for which every set of possible outcomes that can be approximated by each other, gives rise to a set of points in the inputs that can be approximated by each other.

$$O \ open \Rightarrow f^{-1}O \ open$$

A topology on a space X is the choice of special sets of points of X, called open sets, provide the set of points which can be approximated by each other

Continuous functions on X are those for which

$$O \ open \Rightarrow f^{-1}O \ open$$

For today and tomorrow, R means $\mathcal{P}(\mathbb{N})$. For $a \in R$, let $\uparrow a := \{b \in R \mid b \supseteq a\}$.

Definition

Let us take as open sets $O \subseteq R$ the ones of shape $O = \bigcup_{e \in I} \uparrow e$, for some $I \subseteq R_{fin}$.

This is possible as $\{\uparrow e \subseteq R \mid e \subseteq_{fin} \mathbb{N}\} \subseteq \mathcal{P}(R)$ is a base for a topology on $\mathcal{P}(\mathbb{N})$.

A topology on a space X is the choice of special sets of points of X, called open sets, provide the set of points which can be approximated by each other

Continuous functions on X are those for which

$$O \ open \Rightarrow f^{-1}O \ open$$

For today and tomorrow, R means $\mathcal{P}(\mathbb{N})$. For $a \in R$, let $\uparrow a := \{b \in R \mid b \supseteq a\}$.

Definition

Let us take as open sets $O \subseteq R$ the ones of shape $O = \bigcup_{e \in I} \uparrow e$, for some $I \subseteq R_{fin}$.

This is possible as $\{\uparrow e \subseteq R \mid e \subseteq_{fin} \mathbb{N}\} \subseteq \mathcal{P}(R)$ is a base for a topology on $\mathcal{P}(\mathbb{N})$.

Theorem

The open sets of our topology are exactly the $O \subseteq R$ which satisfy the following condition for all $a \in R$:

$$a \in O \Leftrightarrow O \ni e \subseteq_{fin} a$$
, for some $e \in R$.

Theorem

Let $f: R \to R$. The following are equivalent:

- f is continuous.
- \bullet f is monotone for \subseteq and, for all $a, d \in R$ we have

$$d\subseteq_{\mathrm{fin}} f(a) \quad \Longrightarrow \quad \text{ there is } e\subseteq_{\mathrm{fin}} a \ \text{ such that } \ d\subseteq f(e).$$

 \bullet for all $a \in R$ we have

$$f(a) = \bigcup_{e \subseteq_{fin} a} f(e).$$

Theorem

Let $f: R \to R$. The following are equivalent:

- \bullet f is continuous.
- \bullet f is monotone for \subseteq and, for all $a, d \in R$ we have

$$d\subseteq_{\mathrm{fin}} f(a) \quad \Longrightarrow \quad \text{ there is } e\subseteq_{\mathrm{fin}} a \ \text{ such that } \ d\subseteq f(e).$$

 \bullet for all $a \in R$ we have

$$f(a) = \bigcup_{e \subseteq_{\mathit{fin}} a} f(e).$$

The Scott-topology of a poset

A poset is the data of a set X and a partial order relation \leq (i.e. reflexive, antisymmetric and transitive).

The Scott-topology of a poset

A poset is the data of a set X and a partial order relation \leq (i.e. reflexive, antisymmetric and transitive).

Example

R with \subseteq is a poset.

A poset is the data of a set X and a partial order relation \leq (i.e. reflexive, antisymmetric and transitive).

A subset D of a poset X is called *directed* whenever $D \neq \emptyset$ and all $d, d' \in D$ admit a common upper bound in D.

Example

In R, the set $D = \{\{5,2\},\emptyset,\{8\}\}$ is not directed, because D contains $\{5,2\},\{8\}$ but no element of D is bigger than both $\{5,2\}$ and $\{8\}$.

A poset is the data of a set X and a partial order relation \leq (i.e. reflexive, antisymmetric and transitive).

A subset D of a poset X is called *directed* whenever $D \neq \emptyset$ and all $d, d' \in D$ admit a common upper bound in D.

Example

In R, the set $D = \{e \in R \mid e \subseteq_{\text{fin}} \{5,2\}\} = \{\emptyset, \{5,2\}, \{5\}, \{2\}\}\}$ is directed (in this case it even has a maximum element).

A poset is the data of a set X and a partial order relation \leq (i.e. reflexive, antisymmetric and transitive).

A subset D of a poset X is called *directed* whenever $D \neq \emptyset$ and all $d, d' \in D$ admit a common upper bound in D.

Example

In R, given $a \in R$, the set $D = \{e \in R \mid e \subseteq_{\text{fin}} a\} =: \downarrow_{\text{fin}} a = \mathcal{P}_{\text{fin}}(a)$ is directed: the upper bound in D of $e, e' \in D$ is $e \cup e' \in D$ (in this case it is even their sup).

A poset is the data of a set X and a partial order relation \leq (i.e. reflexive, antisymmetric and transitive).

A subset D of a poset X is called *directed* whenever $D \neq \emptyset$ and all $d, d' \in D$ admit a common upper bound in D.

Example

In R, given $a \in R$, the set $D = \{e \in R \mid e \subseteq_{\text{fin}} a\} =: \downarrow_{\text{fin}} a = \mathcal{P}_{\text{fin}}(a)$ is directed: the upper bound in D of $e, e' \in D$ is $e \cup e' \in D$ (in this case it is even their sup).

Definition

Let (X, \leq) be a poset. Its Scott-topology is defined by declaring open the subsets U of X such that:

- **1** U is upward closed (i.e. $U \ni x \le y \Rightarrow U \ni y$)
- ② for all directed $D \subseteq X$ which admits $\bigvee D \in U$, we have $D \cap U \neq \emptyset$.

A poset is the data of a set X and a partial order relation \leq (i.e. reflexive, antisymmetric and transitive).

A subset D of a poset X is called *directed* whenever $D \neq \emptyset$ and all $d, d' \in D$ admit a common upper bound in D.

Example

In R, given $a \in R$, the set $D = \{e \in R \mid e \subseteq_{\text{fin}} a\} =: \downarrow_{\text{fin}} a = \mathcal{P}_{\text{fin}}(a)$ is directed: the upper bound in D of $e, e' \in D$ is $e \cup e' \in D$ (in this case it is even their sup).

Definition

Let (X, \leq) be a poset. Its *Scott-topology* is defined by declaring open the subsets U of X such that:

- **1** U is upward closed (i.e. $U \ni x \le y \Rightarrow U \ni y$)
- ② for all directed $D \subseteq X$ which admits $\bigvee D \in U$, we have $D \cap U \neq \emptyset$.

Example (Proposition)

Our topology on R coincides with the Scott-topology of the poset (R, \subseteq) .

In a poset (X, \leq) , we say that an element $e \in X$ is *compact* iff for all directed $D \subseteq X$ admitting $\bigvee D$, we have: if $e \leq \bigvee D$ then $e \leq d$ for some $d \in D$.

In a poset (X, \leq) , we say that an element $e \in X$ is *compact* iff for all directed $D \subseteq X$ admitting $\bigvee D$, we have: if $e \leq \bigvee D$ then $e \leq d$ for some $d \in D$.

Example (Proposition)

In (R,\subseteq) , the set of compact elements is R_{fin} .

In a poset (X, \leq) , we say that an element $e \in X$ is *compact* iff for all directed $D \subseteq X$ admitting $\bigvee D$, we have: if $e \leq \bigvee D$ then $e \leq d$ for some $d \in D$.

Example (Proposition)

In (R, \subseteq) , the set of compact elements is R_{fin} .

Theorem

Let X, Y be posets and $f: X \to Y$. The following are equivalent:

- ullet f is continuous wrt the Scott-topologies on X, Y.
 - **2** For all directed $D \subseteq X$ admitting $\bigvee D$ in X, there is $\bigvee (fD)$ in Y and:

$$\bigvee (fD) = f(\bigvee D).$$
 (Scott-Continuity)

If moreover X,Y are "algebraic" (like R), then the above are equivalent to:

- f is monotone for \leq and, for all $a \in X$ and $d \in Y$, we have $d \ compact < f(a) \implies there \ is \ e \ compact \leq a \ such \ that \ d \leq f(e).$
 - For all $a \in X$ we have $f(a) = \bigvee_{e \text{ compact } \leq a} f(e)$

"We can encode everything into $\mathbb{N}!$ "

"We can encode everything into $\mathbb{N}!$ "

$$\begin{aligned} & \text{pair}: \, \mathbb{N} \times \mathbb{N} \to \mathbb{N}, & \text{pair}(n,m) := 2^n (2m+1) - 1 \\ & \text{list}: \, \mathbb{N}^* \to \mathbb{N} & \text{list}([]) := 0 \quad and \quad \text{list}(n :: l) := 1 + \text{pair}(n, \text{list}(l)) \\ & \langle _, _ \rangle : \, \mathbb{N}^* \times \mathbb{N} \to \mathbb{N} & \langle l, n \rangle := \text{pair}(\text{list}(l), n) \end{aligned}$$

"We can encode everything into $\mathbb{N}!$ "

Corollary

We have a bijective encoding \langle , \rangle of $\mathbb{N}^* \times \mathbb{N}$ into \mathbb{N}

"We can encode everything into $\mathbb{N}!$ "

Corollary

We have a bijective encoding $\langle _, _ \rangle$ of $\mathbb{N}^* \times \mathbb{N}$ into \mathbb{N}

Consider the following two auxiliary functions:

$$set: \mathbb{N}^* \to R_{fin} \quad set(n_1, \dots, n_k) := \{n_1, \dots, n_k\}$$

$$kl: R \to \mathcal{P}(\mathbb{N}^*) \quad kl(a) := \{l \in \mathbb{N}^* \mid set(l) \subseteq a\}$$

"We can encode everything into $\mathbb{N}!$ "

Corollary

We have a bijective encoding $\langle _, _ \rangle$ of $\mathbb{N}^* \times \mathbb{N}$ into \mathbb{N}

Consider the following two auxiliary functions:

$$\operatorname{set}: \mathbb{N}^* \to R_{fin} \quad \operatorname{set}(n_1, \dots, n_k) := \{n_1, \dots, n_k\}$$

$$\operatorname{kl}: R \to \mathcal{P}(\mathbb{N}^*) \quad \operatorname{kl}(a) := \{l \in \mathbb{N}^* \mid \operatorname{set}(l) \subseteq a\}$$

Definition

$$\mathrm{fun}:R\to(R\Rightarrow R),\quad \mathrm{fun}(a)(b):=\{n\in\mathbb{N}\mid\ there\ is\ l\in\mathrm{kl}(b)\ s.t.\ \langle l,n\rangle\in a\}$$

$$@: R \times R \to R, \qquad @:= uncurry(fun)$$

$$\lambda: (R \Rightarrow R) \to R, \qquad \lambda(f) := \{\langle l, m \rangle \in \mathbb{N} \mid l \in \mathbb{N}^*, m \in f(\operatorname{set}(l))\}$$

"We can encode everything into $\mathbb{N}!$ "

Corollary

We have a bijective encoding $\langle _, _ \rangle$ of $\mathbb{N}^* \times \mathbb{N}$ into \mathbb{N}

Consider the following two auxiliary functions:

$$\operatorname{set}: \mathbb{N}^* \to R_{fin} \quad \operatorname{set}(n_1, \dots, n_k) := \{n_1, \dots, n_k\}$$

$$\operatorname{kl}: R \to \mathcal{P}(\mathbb{N}^*) \quad \operatorname{kl}(a) := \{l \in \mathbb{N}^* \mid \operatorname{set}(l) \subseteq a\}$$

Definition

$$\mathrm{fun}:R\to(R\Rightarrow R),\quad \mathrm{fun}(a)(b):=\{n\in\mathbb{N}\mid\ there\ is\ l\in\mathrm{kl}(b)\ s.t.\ \langle l,n\rangle\in a\}$$

$$@: R \times R \to R, \qquad @:= \mathrm{uncurry}(\mathrm{fun})$$

$$\lambda: (R \Rightarrow R) \to R, \qquad \lambda(f) := \{\langle l, m \rangle \in \mathbb{N} \mid l \in \mathbb{N}^*, \, m \in f(\operatorname{set}(l))\}$$

Theorem

We indeed have $\operatorname{Im}(\operatorname{fun}) \subseteq (R \Rightarrow R)$.

"We can encode everything into $\mathbb{N}!$ "

Corollary

We have a bijective encoding $\langle _, _ \rangle$ of $\mathbb{N}^* \times \mathbb{N}$ into \mathbb{N}

Consider the following two auxiliary functions:

$$\operatorname{set}: \mathbb{N}^* \to R_{fin} \quad \operatorname{set}(n_1, \dots, n_k) := \{n_1, \dots, n_k\}$$

$$\operatorname{kl}: R \to \mathcal{P}(\mathbb{N}^*) \quad \operatorname{kl}(a) := \{l \in \mathbb{N}^* \mid \operatorname{set}(l) \subseteq a\}$$

Definition

$$\mathrm{fun}:R\to(R\Rightarrow R),\ \ \mathrm{fun}(a)(b):=\{n\in\mathbb{N}\mid\ there\ is\ l\in\mathrm{kl}(b)\ s.t.\ \langle l,n\rangle\in a\}$$

$$@: R \times R \to R, \qquad @:= \mathrm{uncurry}(\mathrm{fun})$$

$$\lambda: (R \Rightarrow R) \to R, \qquad \lambda(f) := \{\langle l, m \rangle \in \mathbb{N} \mid l \in \mathbb{N}^*, \, m \in f(\operatorname{set}(l))\}$$

Theorem

We indeed have $\operatorname{Im}(\operatorname{fun}) \subseteq (R \Rightarrow R)$.

Theorem

- @, fun and λ are continuous.
- The pair (λ, fun) defines a topological retraction of R onto $\text{Im}(\lambda) \approx (R \Rightarrow R)$, i.e.

$$fun \circ \lambda = id_{R \Rightarrow R}. \tag{\beta}$$

• For all $f: R \Rightarrow R$ we have:

$$\lambda(\operatorname{fun}(f)) \supseteq f \quad and \quad \lambda(f) = \bigcup_{\operatorname{fun}(a) = f} a.$$

Theorem

- @, fun and λ are continuous.
- The pair (λ, fun) defines a topological retraction of R onto $\text{Im}(\lambda) \approx (R \Rightarrow R)$, i.e.

$$fun \circ \lambda = id_{R \Rightarrow R}. \tag{\beta}$$

12 / 16

• For all $f: R \Rightarrow R$ we have:

$$\lambda(\operatorname{fun}(f)) \supseteq f \quad and \quad \lambda(f) = \bigcup_{\operatorname{fun}(a)=f} a.$$

Definition

The structure $(R, \lambda, @)$ is called the *graph model*.

Theorem

- @, fun and λ are continuous.
- The pair (λ, fun) defines a topological retraction of R onto $\text{Im}(\lambda) \approx (R \Rightarrow R)$, i.e.

$$fun \circ \lambda = id_{R \Rightarrow R}. \tag{\beta}$$

12 / 16

• For all $f: R \Rightarrow R$ we have:

$$\lambda(\operatorname{fun}(f)) \supseteq f \quad and \quad \lambda(f) = \bigcup_{\operatorname{fun}(a)=f} a.$$

Definition

The structure $(R, \lambda, @)$ is called the *graph model*.

Interesting properties of continuous functions!

All continuous $f: R \to R$ admit fixed points.

The function

$$Y:(R\Rightarrow R)\to R \qquad Y(f):=@(\Delta_f,\Delta_f)$$

where $\Delta_f := \lambda(f \circ @ \circ \delta) \in R$ and $\delta : R \to R \times R$ is the diagonal, is a fixed point combinator, i.e. for all $f : R \Rightarrow R$, we have

$$f(Y(f)) = Y(f).$$

Interesting properties of continuous functions!

All continuous $f: R \to R$ admit fixed points.

The function

$$Y:(R\Rightarrow R)\to R \qquad Y(f):=@(\Delta_f,\Delta_f)$$

where $\Delta_f := \lambda(f \circ @ \circ \delta) \in R$ and $\delta : R \to R \times R$ is the diagonal, is a *fixed* point combinator, i.e. for all $f : R \Rightarrow R$, we have

$$f(Y(f)) = Y(f).$$

Interesting properties of continuous functions!

All continuous $f: R \to R$ admit fixed points.

The function

$$Y:(R\Rightarrow R)\to R \qquad Y(f):=@(\Delta_f,\Delta_f)$$

where $\Delta_f := \lambda(f \circ @ \circ \delta) \in R$ and $\delta : R \to R \times R$ is the diagonal, is a fixed point combinator, i.e. for all $f: R \Rightarrow R$, we have

$$f(Y(f)) = Y(f).$$

Theorem.

The set of RE sets is closed wrt the following rules:

$$\overline{\lambda(\lambda \circ \operatorname{curry}(\cdots (\lambda \circ \operatorname{curry}(\operatorname{proj}_{i}^{n}))\cdots))}$$

$$\frac{f: R \Rightarrow R \ and \ computable}{\lambda(f)}$$

$$\frac{a}{@(a,b)}$$

Topology/domain-theory of the graph model over $\mathcal{P}(\mathbb{N})$

- What do we intuitively mean when we say that a function is computable
- That this relates to topology
- That $R = (\mathcal{P}(\mathbb{N}), Scott)$ is a good topological space for modeling this
- That its topology only depends from the partial order ⊆
 - That actually, Scott-topology and Scott-continuity themselves are a property about "approximations" in posets
 - That Scott-continuous functions are given by their restriction on the finite elements of R. Also, they embed into their base space. This is done via the retraction (λ, fun) , i.e. equation (β)
 - That all Scott-continuous functions on R have fixed points
 - That λ produces RE sets and fun preserves them

Some exercises and details

- Do the proofs of the statements in the slides
- Look at my notes on the webpage of the course: there are plenty more exercises and details
- The exercises have **solutions** (but try to do them by yourself before looking at them!)

Some (classic) bibliography to go further

Chapter 1 and Section 1 of Chapter 18 of:
 Henk P. Barendregt, The lambda-calculus, its syntax and semantics, 1984,

https://www.sciencedirect.com/bookseries/ studies-in-logic-and-the-foundations-of-mathematics/vol/103

Domain theory chapter of:
 Handbook of logic in computer science: semantic structures.
 1995.

https://dl.acm.org/doi/book/10.5555/218742 (an updated version is available here)

- Chapter 1 of:
 - Amadio R., Curien P-L, Domains and lambda-calculi, 1996, https://www.cambridge.org/core/books/domains-and-lambdacalculi/4C6AB6938E436CFA8D5A8533B76A7F23
- Chapter 1, 5 of:
 PhD thesis of Giulio Manzonetto, Models and theories of lambda calculus, 2008,
 - https://www.irif.fr/~gmanzone/ManzonettoPhdThesis.pdf
- This conference of **Dana Scott**, **2019**. The first half is an interesting historical background, and the second half includes what we saw today