

Practice Production Hardening

Intro to Production Hardening

Vault

CERTIFIED
OPERATIONS
PROFESSIONAL

There are many best practices for a production hardened deployment of Vault.

Practice defense in depth and follow the Vault security model

Product Hardening is broken down into multiple categories:

- General Recommendations
- Operating System Recommendations
- Vault-Specific Recommendations

Note for this Section

This will be a conceptual discussion with no demos

In the exam, you will NOT be expected to know how to perform Operating System-level configurations, like disabling swap or make file permission changes.

However, you may be asked questions (multiple choice) on HOW to make a configuration or deployment MORE secure based on provided examples.

General Topics

Deployment Model

- The fewer shared resources, the better
- Think "single tenancy" where possible
- Secure deployments: Hardware > VMs > Containers
- Ultimately comes down to protecting memory contents

 Many customers will still use virtualization (VMware/Cloud) or containerization (Docker/K8s) but will deploy to dedicated clusters

Deployment Model

Dedicated Vault Cluster

Application Clusters

Limit Access to Vault Nodes

- Reduce or eliminate access to Vault nodes
- Includes SSH/RDP and through platform-based access (i.e., AWS SSM, kubectl exec -it <pod>, etc)
- Instead, access Vault via API or CLI from your workstation or jump box

If you REALLY need access, use HashiCorp Boundary to limit/control access

Limit Services Running on Vault Nodes

- Vault nodes should be dedicated to Vault services
- You should not have other services contending for resources
- More services = more firewall requirements
- Don't forget: Encryption keys are stored in memory
- Exception to this rule may include:
 - Telemetry agent
 - Log file agent (Splunk, SumoLogic, DataDog)

Permit Only Required Ports on Firewall

- Vault and Consul use dedicated ports for communication
- Permit only the required ports to reduce attack surface
- Many enterprise Vault deployments don't even allow SSH or UI ports
- Default ports include:
 - Vault: 8200, 8201
 - Consul: 8500, 8201, 8301

More Ports May Be Needed for Your Implementation

Vault Cluster

Permit Only Required Ports on Firewall

Consul Example

Permit Only Required Ports on Firewall

Integrated Storage Example

Immutable Upgrades

- Immutable upgrades guarantee a known state because you know the result of your automation configurations
- Easy to bring new nodes online, destroy the old nodes
- Consul and Raft can use AutoPilot to assist with upgrades

 Care must be taken when using Raft because you need to ensure replication has been completed to newly added nodes

Operating System

Run Vault as an Unprivileged User

- Never run Vault as Root
- Running as root can expose Vault's sensitive data
- Limit access to configuration files and folders to the Vault user
- Normally, I create a user named "vault"

- Don't forget that the Vault user will need access to write local files, such as the database, audit logs, and snapshots
 - chmod -R vault:vault /opt/vault/data

Secure Files and Directories

- Protect and audit critical Vault directories and files, including directory for snapshots
- Ensure unauthorized changes can't be made
- Includes binaries, config files, plugins files and directory, service configurations, audit device files and directory, etc.

```
# Set permissions on Vault folder
$ chmod 740 -R /etc/vault.d
```


Protect the Storage Backend

- Vault writes all configuration and data to the storage backend
- No storage backend = No Vault!

- Consul Storage Backend:
 - Use Consul ACLs when running on Consul
 - Limit access to any Consul node
 - Enable verify_server_hostname in config file

Disable Shell History

- Disabling history prevents retrieval of commands
- Possible to discover credentials/tokens in history
- Can also disable just 'vault' command in history

Configure SELinux/AppArmor

- Don't disable to make install/management easier
- Provides additional layers of protection for the OS
- Adhere to CIS or DISA to improve posture of the host OS

Hardening HashiCorp Vault with SELinux

We have developed a baseline SELinux policy for securing Vault on Red Hatbased Linux Distributions

Turn Off Core Dumps

- Core dumps could reveal encryption keys
- Different process to disable depending on the OS

 You won't have to do this in the exam, just know it's something that you SHOULD do in a production environment

Protect and Audit the vault.service File

- Make sure you know if this file is modified or replaced
- An attacker could point to compromised binaries to leak data

 This assumes you are running systemd, but any "service" file should be monitored and secured

Patch the Operating System Frequently

- Make sure to patch the OS frequently
- Follow your standards or be more stringent for Vault
- Options include Satellite, SpaceWalk, or other solution

 If you use an immutable architecture, then replace the nodes often with known good "patched" images. Use Packer to help simplify this workflow.

Disable Swap

- Vault stores sensitive data in-memory, unencrypted
- That data should never be written to disk
- Disabling swap provides an extra layer of protection

- Different process for different operating systems but again, you don't have to do this on the exam
- Example is enabling mlock to prevent memory swap

Vault-Specific Configurations

Secure Vault with TLS

- Vault contains sensitive data
- Communications should never occur without TLS in place
- Load Balancers used with Vault can terminate TLS or instead use pass through to the Vault nodes.
- Verify tls disable configuration does not equal true or 1
 - Default is false (not disabled)

Secure Consul

- Consul contains your sensitive data
- Communications should never occur without TLS in place
- Issue a certificate from a trusted CA
- Enable Consul ACLs
- Configure gossip encryption (use consul keygen)

In short, follow the Consul Security Model

Enable Auditing

- Use multiple Audit Devices to log all interactions
- Send that data to a collection server
- Archive log data based upon security policies
- Create alerts based on certain actions

Say No to Cleartext Credentials

Vault

CERTIFIED

OPERATIONS

PROFESSIONAL

- Don't put credentials in configuration files
- Use Environment Variables, where supported
- Use cloud-integrated services, such as AWS IAM Roles or Azure Managed Service Identities

```
seal "awskms" {
    region = "us-east-1"
    kms_key_id = "12345678-abcd-1234-abcd-123456789101",
    endpoint = "example.kms.us-east-1.vpce.amazonaws.com"
    access_key="AKIAIOSFODNN7EXAMPLE"
    secret_key="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"
    }

Don't do this....
```


Upgrade Vault Frequently

- New updates frequently include security fixes
- New cipher suites can be enabled or supported
- New functionality enabled

Stop Using Root Tokens, Seriously

- Root tokens have unrestricted access to Vault with no TTL
- Not bound by ACL policies, ERPs, or RGPs

- Get rid of the initial root token after initial setup

Verify the Integrity of the Vault Binary

- Always get Vault binaries directly from HashiCorp
- Use the HashiCorp checksum to validate
- Modified version of Vault binary could leak data

Disable the UI – if Not in Use

- Vault UI is disabled by default
- Configured in the Vault configuration file
- Do the same for Consul UI, as well

```
1 ui = false
2 log_level = "INFO"
3 license_path = "/opt/vault/vault.hcl"
```


Encrypt the Gossip Protocol (Consul)

- TLS only secures the interfaces, not Consul gossip traffic
- Use the –encrypt flag in the Consul configuration file
- Uses a 32-byte key can use consul keygen to generate

Secure the Unseal/Recovery Keys

- Initialize Vault using PGP keys, such as keybase.io
- Distribute to multiple team members, no single person should have all the keys
- Don't store the keys in Vault itself

Minimize the TTLs for Leases and Tokens

- Use the smallest TTL possible for tokens
- Define Max TTLs to prevent renewals beyond reasonable timeframe

Minimizing TTL also helps reduce burden on the storage backend

Follow the Principle of Least Privilege

- Only give tokens access to paths required for business function
- Separate policies for applications and users
- Limit use of * and + in policies, where possible
- Templated policies can help with policy creation and maintenance

Perform Regular Backups

- Backup configuration files and directories
- Automate Vault backup using snapshots or equivalent depending on the storage backend
- Regularly test backups to ensure functionality

- vault operator raft snapshot save monday.snap
- vault write sys/storage/raft/snapshot-auto/config/daily (Enterprise)

Integrate with Existing Identity Providers

- Use your existing IdP to provide access to users
- If/when users leave, they immediately lose access to Vault
- The fewer places a user has credentials, the better
- Using locally defined credentials is an administrative burden

Monitoring and Alerting

Vault Security Monitoring

☐ Vault requests originating from unrecognized subnets

☐ Transit Minimum Decryption Version Config

□ Use of a root token
 □ Creation of a new root token
 □ Vault Log Failures
 □ Vault policy modification
 □ Enabling a new auth method
 □ Updates to Vault Policies
 □ Modification of an auth method role
 □ Creation of a new auth method role
 □ Cloud-based resource changes
 □ Permission denied (403) responses
 □ Use of Vault by human-related accounts outside of regular business hours

Done via Audit Log and Log Collection Tool