THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE:

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

Frmed Services Technical Information Agency

Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SALE DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, 0 HIO

UNCLASSIFIED

BUTYL INNER TUBE COMPOUND FOR AIRCRAFT TIRES

EMMETT B. REINBOLD

THE GENERAL TIRE & RUBBER COMPANY

JULY 1954

WRIGHT AIR DEVELOPMENT CENTER

BUTYL INNER TUBE COMPOUND FOR AIRCRAFT TIRES

Emmett B. Reinbold

The General Tire & Rubber Company

July 1954

Materials Laboratory
Contract No. AF 33(600) - 22796
RDO No. 617-12 (CoK)

Wright Air Development Center
Air Research and Development Command
United States Air Force
Wright-Patterson Air Force Base, Ohio

FCREWORD

This report was prepared by The General Tire & Rubber Company, under USAF Contract No. AF 33(600)-22796. The contract was initiated under Research and Development Order No. 617-12(C-K), "Compounding of Elastomers," and was administered under the direction of the Materials Laboratory, Directorate of Research, Wright Air Development Center, with Major H. C. Hamlin and Lt Kelble acting as project engineers.

ARSTRACT

This report deals with the development of a butyl rubber compound with requisite physical properties for fabrication into inner tubes for sireraft tires.

A large number of plasticizers of widely divergent chemical characteristics were evaluated, with special emphasis placed on their low temperature properties in butyl rubber and including the technique of using high black, high plasticizer with a high viscosity elastener. The effect of zinc oxide content in the formula was determined. Carbon blacks of all commercially available types were corrared and the effect of the various blacks on physical properties, including low temperature characteristics were determined. On blacks producing highest tensile values, series of tests were made to determine the loading which produces the maximum physical properties. A comparison of low temperature properties is made of the available commercial butyl rubbers. An extensive investigation of an outstanding low temperature material, Silicone, was carried out.

On plasticizers which produced adequate low temperature flexibility in butyl rubber a study is made on volatility and migration of the plasticizer from cured compound and then low temperature properties determined following migration treatment of cured tensile sheets. In all cases, plasticizers which produced the target low temperature requirements showed poor low temperature properties following migration treatment.

The effect of inor; his acceleration and of the recently recommended processing technique of high temperature mixing was investigated.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

M. R. WHITMORE Technical Director

Technical Director Naterials Laboratory

Directorate of Research

TABLE OF CONTENTS

INTRODUCTIO	N	Page 1
DISCUSSION.	•••••••••••	2
SUMMARY AND	CONCLUSIONS	8
TESTING MET	EODS AND PROCEDURES	9
	LIST OF TABLES	
Table	A. PLASTICIZERS INCOMPATIBLE WITH BUTYL	
I. II. IV. V. VI.	Modulus @ 300% - Pounds Per Square Inch Tensile & Break - Pounds Per Square Inch Elongation @ Break - Per Cent Tear - Pounds Per Inch Hardness (Shore Durometer Type A) Rebound - Embrittlement - TR TR - Temperature Retraction	12 13 13 14 15 16
VII.	B. SILICONE DC 510 FLUID AND ESTER PLASTICIZER IN BUFYL	;
VIII. IX. X.	Stress - Strain, Tear And Shore Durometer Rebound - Embrittlement - TR TR - Temperature Retraction	17 18 19
	C. PLASTICIZERS WITH DEFICIENT FREEZE RESISTANCE	
XAIII. XAII. XIA. XIII. XIII. XIII.	Modulus 6 300% - Pounds Per Square Inch Tensile 6 Break - Pounds Per Square Inch Elongation 6 Break - Per Cent Tear - Pounds Per Inch Hardness (Shore Durometer Type A) Rebound - Embrittlement - TR TR - Temperature Retraction TR - Temperature Retraction For Forum 40 Plasticized Stocks Following Migration Tests.	20 21 21 22 22 23 24
	D. PLASTICIZERS WITH SATISFACTORY FRUEZE RESISTANCE	
XXIA. XXIII. XXI. XXI.	Modulus @ 300% - Pounds Per Square Inch Tensile @ Break - Pounds Per Square Inch Elongation @ Break - Per Cent Tear - Pounds Per Inch Hardness (Shore Durometer Type A) Rebound - Embrittlement - TR	26 27 27 28 28 28
XXVI.	TR - Temperature Retraction TR - Temperature Retraction After 4 Weeks Migration	30
	at 158°F.	33

LIST OF TABLES (Cont'd)

三年 報本のよう

Table		Fage
TOOLE	E. HIGH PLASTICIZER HIGH CARBON BLACK	
XXVII.	Modulus @ 300% - Pounds Per Square Inch	33
XXVII.	Tensile @ Break - Pounds Per Square Inch	34
XXVIX.	Elongation @ Break - Per Cent	34
XXX.	Tear - Pounds Per Inch	35
XXXI.	Hardness (Shore Durometer Type A)	35
XXXII.	Rebound - Embrittlement - TR	35
XXXIII.	TR - Temperature Retraction	34 35 35 35 37
	F. SPECIAL ACTIVATING AGENTS - FOLYAC AND TELLURAC	
XXXIV.	Stress, Strain, Tear, Shore Durometer, Rebound,	
	Embrittlement, TR	39
XXXV.	TR - Temperature Retraction	30
	G. COMMERCIAL CARBON BLACKS IN BUTYL	
XXXVI.		þΰ
XXXAII.	Rebound - Embrittlement = TR	41
XXXIII.	TR - Temperature Retraction	42
	H. VARIABLE CARBON BLACK LOADING IN BUTYL	
XXXIX.	Stress - Strain	#3 ##
XL.	Tear - Shore Durometer	11.1
XLI.	Rebound - Embrittlement - TR	45 45
XLII.	TR - Temperature Retraction	45
	I. VARIABLE ZINC OXIDE IN BUTYL	
IIII.	Stress - Strain, Tear, Shore Durometer	<u>1.4</u>
XLIA.	Rebound - Embrittlement - TR	47
XTA.	TR - Temperature Retraction	47
	J. VARIABLE ISOPRENE CONTENT IN BUTYL	
XLYI.	Stress - Strein, Tear, Shore Durometer	54
XLVII.	Rebound, Embrittlement, TR - and Comparison TR and	• -
	Embrittlement with State of Cure	4 9
XTAIII.	TR - Temperature Retraction	50
	K. PERCYIDE CURATIVES IN BUTYL	
XLIX.	Stress - Strain, Tear, Shore Durometer	51
L.	Rebound - Embrittlement - TR	52
LI.	Nooney Scorch (MS @ 250°F.)	52
LII.	TR - Temperature Retraction	53

LIST OF TABLES (Cont'd)

Table		Page
	L. HIGH TEMPERATURE (400°F.) PROCESSING	
LIII.	Stress - Strain, Tear, Shore Durometer and Rebound.	
	Rebound at Room Temperature and at 212°F.	55
MIA.	Stress - Strain and Tear @ 212°F.	56
LV.	Rebound, Embrittlement, TR	57
LVI.	TR - Temperature Retraction - Kormal and After 4 Weeks	
	Migration at 158°P.	57
	M. VOLATILITY OF PLASTICIZERS	
LVII.	Volatility of Plasticizer Itself and Volatility of Plasticizer in Vulcanized Butyl Inner Tube Compound	58
	H. MICRATION OF PLASTICIZERS	
LVIII.	Per Cent Plasticizer Migrated from Cured Butyl Inner Tube Compound at Intervals 1 Day to 28 Days	59
	O. MIGRATION, EFFECT OF ON LOW TEMPERATURE PROPERTIES	
LIX.	Low Temperature Properties, Both Before and After Migration Tests on Butyl Tube Compounds With and Without Plasticizer	60

INTRODUCTION

Matural rubber, the elastomer currently used in inner tubes for aircraft tires is transported to this country by maritime shipping from great distances and in the event of international crisis, there is a possibility this supply could be cut off or interrupted. Under such circumstances it is highly desirable to have available a material which will be estimated for inner tubes for aircraft tires, and since at this writing butyl rubber is the elastomer with best air retentivity, it is the logical material for this application. One of the deficiencies of butyl rubber in inner tubes is lack of resilience at low temperatures.

The objective of this contract is the development of a butyl rubber compound which is flexible at temperatures down to 70°F. In compound development for low temperatures, the usual approach is the selection of suitable plasticizers. A satisfactory plasticizer must not only produce satisfactory initial low temperature properties but must not migrate into other stocks into which it will come in contact and must not be lost through extreme volatility.

Only through the use of the finer particle carbon blacks can the requisite physical properties be met.

As to processing of butyl rubber, this is a relatively new art and it is reasonable to expect that more will be learned which will help overcome some of the deficiencies of this elastomer. By virtue of General Tire's position in the rubber industry as a fabricator of elastomers commercially available and not a producer or manufacturer engaged in the development of new butyl polymers, this development is limited to a study of the butyl rubber which is commercially available. Obviously the method of attack is limited to compound development. While development of a new elastomer is a possible solution to the problem, it is beyond the scope or facilities of this contract.

DISCUSSION

On account of certain physical requirements deemed essential in service conditions to which they are subjected, inner tubes for aircraft tires are now fabricated from matural rubber. Despite superior air retention of butyl inner tubes, butyl compounds currently used in civilian applications are inadequate for military service, due largely to deficiencies in physical properties and low temperature flexibility. On account of the extreme importance of having an elastomer which is domestically available and which does not require importation, especially under adverse international situations, it is highly desirable that a butyl inner tube compound be developed which will possess the physical properties and low temperature flaxibility requirements specified for inner tubes for aircraft tires. The retentivity of air with butyl rubber is so outstanding as compared to other elastomers from which inner tubes might or could be fabricated that butyl was selected as the subject for this investigation. Of the deficiencies above mentioned for butyl compounds, it was agreed at the start of this investigation that the most important requirement of this project was solution of the low temperature flexibility problem. It was furthermore agreed that certain compromises could be made on the other physical specifications provided a compound was developed which possessed the required low temperature flexibility.

In the early period of butyl tube manufacture one of the major deficiencies of inner tubes formulated from this elastomer was low temperature buckling, particularly in passenger tires where the tire and tube underwent considerable deflection. This condition was not considered a serious problem in truck tire inner tubes. Through an extensive development program conducted by some of the inner tube manufacturers and producers of butyl rubber, low temperature buckling has been almost or entirely eliminated. This development was accomplished by the addition of relatively large quantities of moderately low viscosity mineral oil, and in order to prevent stocks in process from becoming soft and mushy, higher viscosity butyl polymers were made available to the inner tube manufacturers for use with the high oil compounding technique. The introduction of high oil/high viscosity polymer in inner tube compounds was accompanied by increased carbon black loadings, which also assisted in maintaining the desired stiffness in the uncured state. Through this development it was noted that numerous plasticizers which are capable of imparting desirable low temperature properties to a butyl inner tube compound have a tendency to migrate from the butyl in or tube into adjacent stocks. It was required, therefore, in this development that any plasticizer in order to be of value in this application must not migrate into other stocks with which the inner tube comes in contact. And for purposes of migration evaluation, the experimental compounds were placed in contact with a natural rubber simplane tire carcass compound.

In the development of elastomeric compounds for low temperature service, the result is usually achieved by selection of a proper plasticizer, and for this reason the major portion of this development deals with plasticizer evaluation. Most of the materials used in this development, therefore, were plasticizers which had demonstrated outstanding low temperature characteristics in other elastomers or had promise because of desirable viscosities and pour points at low temperature. An essential requirement for materials used in butyl formulations is that they possess little or no chemical unsaturation. However, due to insufficient information furnished by some suppliers regarding characteristics or constitution of

their materials, some items were investigated which were incompatible and on account of chemical unsaturation failed to cure.

Based on observations and data obtained, the plasticizers investigated in this development were classified in the following three categories:

- a. Plasticizers incompatible with butyl rubber.
- b. Plasticizers with inadequate freeze resistance.
- c. Plasticizers producing adequate freeze resistance.

PLASTICIZERS INCOMPATIBLE WITH BUTYL RUBBER

Materials in this category are plasticizers described by the suppliers as glycol derivatives, triglycol, polyalkylene glycol, glycol esters, polyesters, polyethers, ricinoleates and derivatives, tributoxyethyl phosphate, tributyl phosphate, dibenzyl other, dibutyl aconitate and Atlas Powder's Pycal 70.

- 1. #4141 C. P. Hall Co.
 - A glycol fatty acid ester. Supplier states this material is similar to plasticizer SC.
- Plasticizer SC Harwick Standard Chemical
 A triglycol ester of a vegetable oil fatty acid.
- 3. Plasticizer DP-520 Harwick Standard Chemicl A polyester.
- 4. <u>KP-140</u> Ohio Apex Inc.
 Tributoxyethyl phosphate.
- P-1 Baker Castor Oil Co.
 Methyl ricinoleate.
- P-8 Baker Castor Oil Co.
 Glyceryl triaceto ricinoleste.
- 7. TP 90 B = Thickol Corp.

 High molecular weight polyether.

- 8. <u>Ucon LB-65</u> Carbide & Carbon Chemicals

 Polyalkylene glycol. Water insoluble, low molecular weight and low pour point.
- 9. Dibutyl maleate Carbide & Carbon Chemicals
- 10. Tributyl phosphate Ohio Apex Inc.
- 11. Dibenzyl ether Heyden Chemical Co.
- 12. Pycal 70 Atlas Powder Co.No information or description disclosed.
- 13. Dibutyl aconitate C. P. Hall Co.

PLASTICIZERS WITH INADEQUATE FREEZE RESISTANCE

- Plasticizer MT-511 Harwick Standard Chemical
 Condensation product of a polyhydric alcohol with an alpha omega dicarboxylic acid.
- 2. VR-1 Ester (Genplast) General Tire & Rubber Co., Chemical Division

A sebacic acid ester.

- 3. Dibutyl sebacate Resinous Products Corp.
- 4. Adipol ODY Ohio Apex Inc.
 n-Octyl decyl adipate.
- 5. Ohopex R-9 Ohio Apex Inc.
 Not disclosed.
- kP-555 Ohio Apex Inc.
 Bisdimethylbenzyl ether.
- 7. Monoplex S-71 Rohm & Hass
 Monomeric ester,
- 8. Silicone oils.

These cils are linear polymers with alternate atoms of silicon and oxygen. Organic groups are attached to the silicon atoms.

The silicones are characterized by retention of fluidity at very low temperatures.

- a. Silicone L-41 is the commercial designation of the silicone bils where the organic groups are ethyl.
- b. Silicone I-45 is the commercial designation of the silicone oils where the organic groups are methyl.
- c. Silicone DC-510 fluid. This is a methyl ethyl derivative. Freezing point ranges below -70°C. and is recommended where extremely low temperatures are involved. This silicone exhibits the best low temperature properties of all the silicone fluids. Viscosity is 50 centistokes.

PLASTICIZERS PRODUCING ADEQUATE FREEZE RESISTANCE

The requirements on low temperature specified in MIL-T-5014B for inner tubes for aircraft tires specify flexibility at -70°F. (-57°C.) as measured by ASTM Test D746-44T. This requirement was met by the following plasticizers:

- Plasticizer 3890-A C. P. Hall Co.
 Dicarboxylic acid ester.
- Adipol 2 EH Ohio Apex Inc.
 Di 2 ethyl hexyl adipate.
- 3. 10-A plasticizer Ohio Apex Inc.
 Di-iso-octyl adipate.
- 4. Di-2-ethyl hexyl ether Carbon & Carbide Chemical Co.
- 5. <u>Butyl Cellosolve pelargonate</u> C. P. Hall Co. Ester of n-nonylic acid.
- 6. Butyl Carbitol pelargonate C. P. Hall Co.
- 7. Diisobutyl azelate C. P. Hall Co.

 Ester of nonanedioic acid.
- 8. Monoplex DOS Rohm & Haas
 Dioctyl sebacate.

- 9. Hexyl ether Carbide & Carbon Chemical Co.
- 10. Trioctyl phosphate Carbide & Carbon Chemical Co.

Brittle points for all of the above plasticizers are almost alike, that is, there is but a few degrees difference between the poorest and the best. The same also holds true for the physical properties in that no major differences are noted for any of the above materials. It is interesting to note, however, that almost without exception the ester plasticizers produce a more resilient compound than that produced by a paraffinic type mineral oil used in manufacture of inner tubes for truck and passenger tires.

Additional improvement can be obtained in low temperature flexibility with some plasticizers by the use of increased plasticizer. With increased plasticizer the additional increment is accompanied by a corresponding increase in carbon black in order to maintain stock plasticity which will permit normal factory processing. Normal plasticizer is considered as in the range of 20 to 25 parts per 100 parts rubber hydrocarbon.

There was some overlapping between groups 2 and 3 in that with lower loadings (20 parts) the brittle point of the resultant compound was unsatisfactory; whereas, with increased amount of plasticizer a satisfactory brittle point was obtained. Therefore, in the data tables some plasticizers may appear in both groups 2 and 3, depending on concentration of plasticizer used. For instance, C. P. Hall 3890-A produces satisfactory brittle point with 25 parts plasticizer but is deficient with 20 parts plasticizer.

Materials producing satisfactory low temperature properties were further evaluated for:

- 1. VOIATILITY of the plasticizer from the cured compound.
- 2. MIGRATION of the plasticizer from cured butyl stock to an adjacent natural rubber stock of the type airplane inner tubes would contact. For the adjacent natural rubber stock, compound K-8, General Tire's airplane tire carcass compound was used, with testing details as described under heading "testing methods and procedures."

Tensile slabs placed in contact with natural rubber carcass stock for aircraft tires were then tested for brittle point to determine effect of loss of plasticizer through migration. Essentially, the migration test involves a pressure on an assembly consisting of a sheet of experimental compound placed between two sheets of aircraft tire carcass stock and the assembly placed in an oven for 28 days at 70°C. Following this treatment, low temperature flexibility of the experimental compounds is seriously impaired and again the brittle point data for the various plasticizers is approximately equal within experimental error. On the other hand, a compound containing no plasticizer when subjected to the same treatment was improved in low temperature flexibility and after migration comes up with about the same brittle point as the compounds containing plasticizer. No explanation is offered for this unusual phenomenon.

This fact was learned just prior to the expiration of this contract and time did not allow further investigation along this line. Explanation for this improved low temperature property on unplasticized stock might be an important step toward solution of this problem. There is no apparent relationship after migration, between the amount of plasticizer retained and low temperature flexibility. This is shown in the data where with approximately the same plasticizer level the difference in brittle point before and after migration is considerable. It was also noted that the migration test resulted in considerable increase in Shore Hardness on plasticized stock. Stock without plasticizer shows no hardness change after migration treatment. No other physical properties were measured on the experimental stocks after migration.

In addition to an extensive study of various plasticizers, plasticizer combinations, etc., this program covered a study of the effect of different commercially available types of butyl rubber on low temperature brittle point, and along this line the manufacturers of butyl rubber were contacted in an effort to obtain experimental polymers. However, we were informed that no experimental polymers were available for this development.

Commercially, four grades of butyl are available, with the difference in these being in the percentage of isoprene which is copolymerized with isobutylene in preparation of the polymer. These available grades of butyl contain 1.0, 2.0, 2.5, and 3.0 per cent of isoprene. These four grades were investigated, evaluated, and compared for low temperature properties. From one of the manufacturers of butyl rubber it was learned that polymers had been prepared in which different amounts of styrene were used, and the polymers evaluated for low temperature properties. The report was that the styrene polymers were no better at low temperatures than the regular butyl which contains isoprene.

Commercial carbon blacks of different particle size, of diverse methods of manufacture, etc., were investigated to determine their effect on brittle point and on physical properties, and it was noted that brittle point on the various blacks was almost the same except for the extremely fine particle blacks, SAF and EPC, both of which imparted less desirable low temperature properties than did the coarser blacks. If maintaining highest possible tensile strength in a butyl inner tube is important, then with either SAF or EPC blacks, the black loading should be in the range of 35 parts per 100 RHC (rubber hydrocarbon). At this loading, maximum tensile values are developed and decrease with successive load increments. In this respect butyl differs with the commonly used synthetic rubbers which exhibit maximum tensile values with loadings of 60 and more of carbon black.

Whereas, the above discussed components of a butyl inner tube compound, that is, polymer, plasticizer, and carbon blacks are the major constituents in the composition, several other ingredients which are present only in smaller amount were investigated and the effect of their variation noted. In this classification, and which might be considered as of minor importance in the butyl inner tube formula, are zinc oxide, the vulcanization accelerator activator, special compounding ingredients, peroxide curing agents, and effect of high temperature processing on a butyl-carbon black mixture in a separate high temperature mixing stage, carried out prior to completion of the final mix.

In addition to the items above mentioned, the investigation included some materials which do not fall in any of the above classifications and are here listed as special materials. In this listing are the following:

- Tellurac R. T. Vanderbilt Co.
 Tellurium liethyldithiocarbamate.
- Polyac E. I. au Pont de Nemours.
 poly p-dinitroso benzene.

A recent communication from Esso laboratories indicated outstanding improvement in rebound, modulus and physical properties generally, by mixing and adding carbon black to butyl in the Banbury at temperatures in excess of 400°F. Plasticizers incidentally were added in a subsequent mix and at normal processing temperatures, 220 - 250°F. The improved rebound obtained through this treatment indicated a possibility for improved low temperature flexibility and, consequently, the suggested recommendations were investigated. This processing technique effected an improvement in low temperature properties on the stock before migration treatment; however, after migration low temperature brittle point was the same on the high temperature mixed stock as that of the normal mix.

The following butyl rubber inner tube compound will meet the military requirements including low temperature brittle point of -70°F.

GR-I 18	100
Zinc Oxide	5
Polyac	0.4
Philblack E or EPC Black	35 - 45
Plasticizer*	20 - 25
Captax/Tuads	1.54
(1:2 Blend)	
Sulfur	2

*Any one of the plasticizers or a combination of same from the list of plasticizers with satisfactory freeze resistance.

SUMMARY AND CONCLUSIONS

Plasticizers were compounded into butyl tube stock formulations which produced satisfactory low temperature properties, that is, brittle points of -70°F. or lower. Unfortunately, in the laboratory, following migration tests used for evaluation of the experimental compounds, the desirable low temperature properties were not retained. It is not known whether the laboratory conditions as used are more or less severe than service conditions. It is recommended, therefore, that to properly evaluate some of the suggested plasticizers that inner tubes for aircraft tires be fabricated using some of the plasticizers which exhibited satisfactory low temperature flexibility and that the tubes be tested both before and after a definite number of landings when mounted in airplane tires.

Results of this work demonstrate that certain plasticizers will produce adequate low temperature flexibility according to laboratory tests: however, it was found that the plasticizers are not adequately retained when placed in contact with a natural rubber compound, or, in other words, migrate to the rubber compound.

Some of the plasticizers produced improved brittle points with increased plasticizer. The range of investigation covered 20, 25 and in some instances 30 parts plasticizer per 100 parts butyl rubber.

Butyl polymers with varying percentages of isoprene and resulting variation in degree of chemical unsaturation showed slight, if any, differences in low temperature flexibility.

An investigation of the low temperature properties of different carbon blacks showed, except for the extremely fine particle size blacks, no difference in brittle point. With EPC and SAF blacks, brittle points are not as low as with the coarser blacks. However, only these two blacks will meet the military specifications on tensile strength for compounds for inner tubes to be used in aircraft tires. With these two blacks, maximum tensile values are obtained with 35 to 40 parts black per 100 parts rubber hydrocarbon. Increased black loadings result in lower tensile strength.

No significant differences were noted with variation in zinc oxide; however, indications are that with higher amounts of zinc oxide, brittle points are poorer. Therefore, the recommended amount of zinc oxide is 5 parts per 100 parts rubber hydrocarbon. This is the conventional amount used for activation.

Of the special materials investigated, silicones, peroxide curatives, etc., no improvement was obtained in low temperature flexibility.

The more recently recommended technique for mixing butyl rubber compounds at high temperatures, in excess of 400°F., failed to show appreciable improvement in low temperature flexibility or of plasticizer retentivity in butyl rubber.

TESTING METHODS AND FROCEDURES

Preparation: A.S.T.M. D 15=50T

This procedure is followed with the exceptions here listed.

The batch is mixed in a 1100 cc, volume laboratory Banbury in which all materials are added except sulfur and accelerator. The Banbury batch is sheeted on laboratory mill, allowed from two to four hours for cooling, and sulfur and accelerator then added on 6x12 mill.

Stress Strain (Tensile) etc.: A.S.T.M. D 412-49T

Tear: Crescent Method A.S.T.M. D 624-48

Hardness: Shore Durometer Type A A.S.T.M. D 676-49T

Rebound: Goodyear-Healy A.S.T.M. D 1054-49T

Low Temperature Embrittlement: American Cyanamide - Graves Modified A.S.T.M. D 746-44T

Test piece 1.5" x 0.25" x 0.075"

Test pieces are conditioned for 2.5 minutes at the testing temperature. At the end of this period the test pieces are subjected to deflection and then examined for failure. A failure is considered to have occurred if the test piece is broken into two separate pieces. A cracked or partially broken test piece is not considered a failure.

For preliminary investigation two test pieces are used at each testing temperature. At the final temperature, 10 test pieces are used and 5 or more must pass for an OK.

Considerable controversy is encountered on the merits of various low temperature test methods. Our use of the Graves apparatus shall not be construed as approval of this method and no attempt will be made to discuss the relative merits of the various test methods and testing procedures. However, suffice it to say that the Graves apparatus is now used for evaluation of compounds for inner tubes for aircraft and for this reason was selected for determining the brittle point data shown in this report.

TR Test:

This test is used for determining the freezing point, low temperature elasticity and crystallization tendencies of rubber and rubber-like materials. Details of this test are described in India Rubber World 1951, Volume 124, Page 180.

Test piece. Constricted portion 4.0° x .075" x .075" with tabby ends 0.25" square.

Original elongation 50% Freezing temperature -89°F. Conditioning period 2.5 min. Temperature rise 1.8°F.

It will be noted in the data in this report that the temperature at 40% retraction show good agreement with brittle point temperature as determined by the Graves apparatus.

Volatility Test:

A. On plasticizer itself

Heat a 10 gram sample in a glass petri dish whose diameter is approximately 2.5 inches. If available use an oven having a rotating shelf.

Heat 5 hours @ 325°F.

B. On compounded stock

Using a sample from a tensile sheet (approximately .075" gauge) cut 2" x 1" and determine loss under following conditions:

70 hours @ 212°F. 48 hours @ 300°F.

Migration Test:

Cut a piece of experimental stock from a tensile sheet (approximately .075" gauge) 2" x 1" and place between two sheets of airplane tire carcass stock of the same size, wrap the assembly in aluminum or other metallic foil and place between 8" x 10" sheets of plate glass. The load on the test pieces shall be 1 kilogram per square inch of sample area.

The asserbly shall be placed in an oven at 158°F.

The assembly and the experimental stock shall be weighed at 24 hour intervals for the first four days and at weekly intervals for a period of four weeks.

A. PLASTICIZERS INCOMPATIBLE WITH BUTYL

Formula for plasticizer evaluation:

GR-I 18	100
Zinc Oxide	5
MAF Black	55
Captax/Tuads	1.54
(1:2 Blend)	
Sulfur	2
Plasticizer	Variable
Curing Temperature	287°F.

TARLE I. Modulus @ 300% - Pounds per square inch

	Parts Per 100 Gm-1	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
C. P. Hall #4141	20	275	475	60 c	700	750
C. F. Hall #4141	25	175	325	425	500	600
Plasticizer SC	20	225	700	475	625	725
Plasticizer SC	25 25	200	400	450	600	700
Plast DP-200	20	125	225	275	325	
						325 450
Plast DP-200	25 ~~	150	250 TC	325 Y C	3 7 5 NC	
Plast DP-520	20	NC	NC	nc nc	NC NC	nc nc
Plast DP-520	25 (20)	NC OF O	NC		650	
Plast SC	(20)	250	425	550	020	725
& Silicone L-45	(5)	150	250	1,50	500	550
KP-140	20	150	350	450	500	550 500
KP-140	25	150	350	350	450	500
P-1	20	NC	NC	NC	NC	NC
P-1	25	NC	NC	AC.	NC	NC
P-8	20	NC	NC	NC	NC	NC
P-8	25	NC	NC	MC	NC	NC
TP90B	25	150	350	450	550	650
Ucon LB-65	20	150	375	475	550	650
Ucon LB-65	25	50	325	350	450	550
	@ Break - Po					
C. P. Hall #4141	20	1575	1800	1750	1625	1475
C. P. Hall #4141	25	1500	1800	1600	1700	1625
Plasticizer SC	20	1575	1925	1725	1725	1675
Plasticizer SC	25	1200	1600	1600	1600	1525
Plast DP-200	20	13.5	1 7 25	1625	1550	1525
Plast DP-200	25	1375	1750	1900	1775	1800
Plast DP-520	20	NC.	NC	NC	NC	NC
Plast DP-520	25	NC	NC	NC	NC	I/C
Plast SC	(20)	1600	1650	1550	1450	1500
& Silicone L-45	(5)				_	
KP-140	20	1500	1825	1900	1800	1700
KP-140	25	1050	1 77 5	1800	1925	1750
P-1	20	NC	NC	NC	NC	NC
P-1	25	NC	NC	NC	NC	NC
P - 8	20	NC	NC	NC.	nc	1īC
P-8	25	NC	NC	NC	NC	NC
TP90B	20	1725	1950	1900	1725	1650
TP9OB	25	1450	1850	1875	1800	1650
Ucon LB-65	20	1300	1850	1750	1650	1500
Ucon LB-65	25	1000	1675	1700	1600	1450
00011 110-03	2)	1000	1017	7100	1000	- +)0

TABLE III. Elongation @ Break - per cent

	Parts Per 100 GR-I	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
C B Fall Walks	00	71.0	600	610	-(-	500
C. P. Hall #4141 C. P. Hall #4141	20	740	690	610	565 605	500
	25	810	725	645	605	570
Plasticizer SC	20	790	710	660 565	600	555
Plasticizer SC	2 5	860 765	740	7 65	660	625
Plast DP-200	20	765 020	745	7 05	650	620 675
Plast DP-200	25 20	930	765	725 ***	685 ** 0	675
Plast DP-520 Plast DP-520	20 25	NC	NC	NC	NC	NC
Plast SC	25 (20)	NC	NC See	nc 610	NC	NC
& Silicone L-45	(20)	755	655	910	560	530
KP-140	(5)	800	77.5	680	645	610
KP-140	20	890	715 710			610
	25 20	1020	740 870	730 NO	690	650
P-1	20	NC	NC	NC	NC	NC
P-1	25	NC NC	NC	NC	NC NC	NC
P-8	20	NC	NC	NC	NC NC	NC
P-8	25	NC	NC	NC	NC 550	NC
TP90B	20	795	665	600	550 635	510
ТР9ОВ	25	610	655	660	615	555
Ucon LB-65	20	820	710	670	625	575
Ucon LB-65	25	1070	710	655	625	57 0
TABLE IV. Tear -	pounds per	inch				
C. P. Hall #4141	20	240	239	190	168	158
C. P. Hall #4141	25	196	205	187	183	147
Plasticizer SC	20	230	248	202	193	150
Plasticizer SC	25	181	239	265	266	268
Plast. DP-200	20	212	226	200	165	145
Plast. DP-200	25	216	274	252	202	190
Plast. DP-520	20	NC	NĊ	NC	NC	NC
Plast. DP-520	25	NC	NC	NC	NC	NC
Plast. SC	(20)	214	210	188	143	195
& Silicone L-45	(5)				-	
KP-140	`20′	230	232	242	182	176
KP-140	25	174	207	51ր	171	178
P-1	20	NC	NC	NC	NC	NC
P+1	25	NC	NC	NC	NC	NC
P-8	20	NC	NC	NC	NC	NC
	20	220	220	202	176	161
TP90B	25	179	216	188	149	134
TP90B	20	158	260	196	153	134
Ucon LB-65	25 25	128	224	187	168	136
Ucon IB-65	2)	120	6-SmT	_0		-5-

TABLE V. Hardness (Shore Durometer Type A)

	Parts Per 100 GR-I	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
C. P. Hall #4141	20	38	42	łł.	46	48
C. P. Hall #4141	25	35	39	40	42	ji ji
Plasticizer SC	20	36	39	41	1114	46
Plasticizer 5	25	35	38	39	* _' 1	43
Plast. DP-200	20	35	40	42	种	45
Plast. DP-200	25	35	37	39	40	40
Plast. DP-520	20	NC	NC	NC	NC	NC
Plast. DP-520	25	NC	NC	NC	NC	NC
Plast. SC & Silicone L-45	(20) (5)	38	40	42	45	46
XP-140	20	35	40	42	र्गम	44
KP-140	25	34	36	38	40	42
P-1	20	NC	NC	NC	NC	NC
P-1	25	NC	NC	NC	NC	NC
P-8	20	NC	NC	NC	NC	NC
P-8	25	NC	NC	NC	NC	NC
TP90B	20	37	j1 0	43	45	46
TP90B	25	34	38	40	42	Ja Ja
Ucon LB-65	20	36	40	j† j ‡	45	46
Ucon LB-65	25	34	39	41	43	45

TABLE VI. Rebound (Goodyear-Healy) 60 Min. @ 287°F.

Embrittlement (American Cyanamide-Graves) 60 Min. @ 287°F.

TR (40% Retraction--Original Elongation 50%) 60 Min. @ 287°F.

100 GR-I Rebound Embrittlement	<u>TR</u>
Plasticizer SC 20 50.6 " -540 Plasticizer SC 25 49.6 " -600 Plast. DP-200 20 32.9 " -560 Plast. DP-200 25 41.1 " -580 Plast. DP-520 20 NC NC NC Plast. DP-520 25 NC NC NC Plast. SC (20) 47.8 OK @ -540 EXP-140 25 36.1 - F-1 20 NC NC NC Plast. DP-520 NC NC NC NC NC Plast. SC (20) 47.8 OK @ -670 P-8 20 NC	- 38°F. - 36° - 24°? - 19° - 54° - 53° NC - 42° - NC NC NC NC NC - 58° - 58° - 52° - 53°

NOTE:

No physical data is shown on the following plasticizers which are incompatible in butyl rubber.

- a. Dibutyl maleate
- b. Tributyl phosphate
- c. Dibenzyl ether
- d. Pycal 70 From Atlas Powder Co.
- e. Dibutyl aconitate C. P. Hall Co.

TABLE VII. TR- Temperature Retraction

Cure 60 @ 287°F.

Temperature data in minus degrees Fahrenheit for percentage retractions (T-1, T-2, etc.) indicated.

	Parts Per 100 GR-I	<u>T-1</u>	<u>T-2</u>	<u>T-3</u>	<u>T-5</u>	<u>T-10</u>	<u>T-20</u>	<u>T-30</u>
C. P. Hall #4141	20	89°F.	87°F.	82°F.	740F.	63°F.	53°F.	45°F.
C. P. Hall #4141	25	-	89	87	74	63	51	42
Plasticizer SC	20		89	78	67	55	40	31
Plasticizer SC	25		89	78	67	51	36	26
Plasticizer DP-200	20	89	85	83	76	71	63	5 8
Plasticizer DP-200	25	83	83	78	73	69	52	56
Plasticizer DP-520	20	NC	NC	NC	NC	NC	NC	NC
Plasticizer DP-520	25	NC	NC	NC	NC	NC	HC	NC
Plasticizer SC	(20)	85	83	78	73	65	55	49
& Silicone L-45	(5)							-
P-1	20	NC	NC	nc	NC	NC	NC	NC
P-1	25	NC	NC	NC	NC	HC	NC	NC
P-8	20	NC	NC	NC	NC	HC	NC	NC
P-8	25	NC	NC	NC	NC	NC	NC	NC
Tr90B	20	-	89	87	80	73	65	60
Ucon LB-65	20	-	87	83	76	70	63	5 8
Ucon LB-65	25	-	87	83	76	70	63	56
	Dombo Dom							
	Parts Per	m lo	m EO	m 60	m 70	m eo	m 00	
	Parts Per 100 GR-I	T-40	<u>T-50</u>	T-60	<u>T-70</u>	<u>T-80</u>	<u>T-90</u>	
C. P. Hall #4141	100 GR-I 20	38	31	25	15			
C. P. Hall #4141	100 GR-I	38 36	31 27	25 18	15 13	9		
	20 GR-I 20 25 20	38 36 24	31 27 17	25 18 11	15 13	9 8 1		
C. P. Hall #4141 Plasticizer SC Plasticizer SC	100 GR-I 20 25	38 36 24 19	31 27 17 13	25 18 11 10	15 13 9 8	9 8 1 43	# 59 # 9 #14	
C. P. Hall #4141 Plasticizer SC Plasticizer SC Plasticizer DP-200	20 GR-I 20 25 20 25 20 25 20	38 36 24 19 54	31 27 17 13 51	25 18 11 10 46	15 13 9 8 41	9 8 1 /3 33	# 9 # 9 #14 18	
C. P. Hall #4141 Plasticizer SC Plasticizer SC Plasticizer DP-200 Plasticizer DP-200	20 GR-I 20 25 20 25 20 25 20 25	38 36 24 19 54 53	31 27 17 13 51 47	25 18 11 10 46 42	15 13 9 8 41 36	9 8 1 /3 33 27	# 9 # 9 # 14 18	
C. P. Hall #4141 Plasticizer SC Plasticizer SC Plasticizer DP-200	20 GR-I 20 25 20 25 20 25 20 25 20	38 36 24 19 54 53 NC	31 27 17 13 51 47 NC	25 18 11 10 46 42 NC	15 13 9 8 41 36 NC	9 8 1 #3 33 27	# 9 # 9 # 14 18 7	
C. P. Hall #4141 Plasticizer SC Plasticizer SC Plasticizer DP-200 Plasticizer DP-200	20 GR-I 20 25 20 25 20 25 20 25 20 25	38 36 24 19 54 53 NC	31 27 17 13 51 47 NC	25 18 11 10 46 42 NC	15 13 9 8 41 36 NC	9 8 1 #3 33 27 NC	# 9 # 9 # 14 18 7 NC NC	
C. P. Hall #4141 Plasticizer SC Plasticizer SC Plasticizer DP-200 Plasticizer DP-200 Plasticizer DP-520	20 GR-I 20 25 20 25 20 25 20 25 20 25 (20)	38 36 24 19 54 53 NC	31 27 17 13 51 47 NC	25 18 11 10 46 42 NC	15 13 9 8 41 36 NC	9 8 1 #3 33 27	# 9 # 9 # 14 18 7	
C. P. Hall #4141 Plasticizer SC Plasticizer SC Plasticizer DP-200 Plasticizer DP-520 Plasticizer DP-520 Plasticizer SC & Silicone L-45	20 GR-I 20 25 20 25 20 25 20 25 (20) (5)	38 36 24 19 54 53 NC 42	31 27 17 13 51 47 NC NC 36	25 18 11 10 46 42 NC NC 29	15 13 9 8 41 36 NC NC	9 8 1 /3 33 27 NC NC	# 9 # 9 # 14 18 7 NC NC	
C. P. Hall #4141 Plasticizer SC Plasticizer SC Plasticizer DP-200 Plasticizer DP-520 Plasticizer DP-520 Plasticizer DP-520 Plasticizer SC & Silicone L-45 P-1	20 GR-I 20 25 20 25 20 25 20 25 (20) (5) 20	38 36 24 19 54 53 NC NC 42	31 27 17 13 51 47 NC NC 36	25 18 11 10 46 42 NC NC 29	15 13 9 8 41 36 NC NC 20	9 8 1 /3 33 27 NC NC	# 9 # 9 # 14 18 7 NC NC	
C. P. Hall #4141 Plasticizer SC Plasticizer SC Plasticizer DP-200 Plasticizer DP-520 Plasticizer DP-520 Plasticizer DP-520 Plasticizer SC & Silicone L-45 P-1 P-1	20 GR-I 20 25 20 25 20 25 20 25 (20) (5) 20 25	38 36 24 19 54 53 NC NC 42 NC	31 27 17 13 51 47 NC NC 36	25 18 11 10 46 42 NC NC 29	15 13 9 8 41 36 NC NC 20	9 8 1 /3 33 27 NC NC	# 9 # 9 # 114 18 7 NC NC NC NC NC	
C. P. Hall #4141 Plasticizer SC Plasticizer SC Plasticizer DP-200 Plasticizer DP-520 Plasticizer DP-520 Plasticizer SC & Silicone L-45 P-1 P-1 P-8	20 GR-I 20 25 20 25 20 25 20 25 (20) (5) 20 25 20	38 36 24 19 54 53 NC NC 42 NC NC	31 27 17 13 51 47 NC NC 36	25 18 11 10 46 42 NC NC 29 NC NC	15 13 9 8 41 36 NC NC 20 NC	9 8 1 /3 33 27 NC NC NC	# 9 # 9 # 14 18 7 NC NC NC NC NC NC NC	
C. P. Hall #4141 Plasticizer SC Plasticizer SC Plasticizer DP-200 Plasticizer DP-520 Plasticizer DP-520 Plasticizer DP-520 Plasticizer SC & Silicone L-45 P-1 P-8 P-8	20 GR-I 20 25 20 25 20 25 20 25 (20) (5) 20 25 20	38 36 24 19 54 53 NC NC 42 NC NC NC	31 27 17 13 51 47 NC NC 36 NC NC	25 18 11 10 46 42 NC NC 29 NC NC NC	15 13 9 8 41 36 NC NC NC NC NC	9 8 1 /3 33 27 NC NC NC NC	# 9 # 9 # 14 18 7 NC NC NC NC NC NC NC	
C. P. Hall #4141 Plasticizer SC Plasticizer SC Plasticizer DP-200 Plasticizer DP-200 Plasticizer DP-520 Plasticizer DP-520 Plasticizer SC & Silicone L-45 P-1 P-8 P-8 TP90B	20 GR-I 20 25 20 25 20 25 20 (20) (5) 20 25 20 25 20	38 36 24 19 54 53 NC NC 42 NC NC NC NC NC	31 27 17 13 51 47 NC NC 36 NC NC NC	25 18 11 10 46 42 NC NC 29 NC NC NC	15 13 9 8 41 36 NC NC NC NC NC NC NC NC NC	9 8 1 43 33 27 NC NC NC NC NC NC	# 9 # 9 # 14 18 7 NC	
C. P. Hall #4141 Plasticizer SC Plasticizer SC Plasticizer DP-200 Plasticizer DP-520 Plasticizer DP-520 Plasticizer DP-520 Plasticizer SC & Silicone L-45 P-1 P-8 P-8	20 GR-I 20 25 20 25 20 25 20 25 (20) (5) 20 25 20	38 36 24 19 54 53 NC NC 42 NC NC NC	31 27 17 13 51 47 NC NC 36 NC NC	25 18 11 10 46 42 NC NC 29 NC NC NC	15 13 9 8 41 36 NC NC NC NC NC	9 8 1 /3 33 27 NC NC NC NC	# 9 # 9 # 14 18 7 NC NC NC NC NC NC NC	

MOTE: No TR data obtained for KP-140 plasticizer at 20 and 25 parts loading and for TP90B at 25 parts loading.

B. SILICONE DC 510 FLUID AND ESTER PLASTICIZER IN BUTYL

Formula:

GR-I	100
Zinc Oxide	5
MAF black	55
Captax/Tuads	1.54
(1:2 Blend)	
Sulfur	2
(DC 510 Fluid)	
(Adipol 2 EH)	25 combined total
Curing temperature	287°7.

TABLE VIII.

Modulus @ 300% - Pounds per square inch

Parts DC 510 Fluid	Parts Adipol 2 X	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
0	25	100	525	650	800	875
5	20	175	500	600	775	850
10	15	150	500	600	775	850
15	10	100	450	5 50	700	750
20	5	7 5	350	525	625	650
Tensile @	Break - Po	unds per squ	are inch			
	-					
0	25	775	1725	1900	1600	1750
5	20	1050	1825	1825	1750	1650
10	15	1150	1675	1650	1675	1450
15	10	1000	1650	1650	1500	1500
20	5	600	925	1000	1100	850
Elongatio	on @ Break -	Per cent				
0	25	830	650	630	525	510
5	2 0	810	725	645	600	545
10	15	880	685	635	590	490
15	10	930	685	650	540	520
20	5	825	555	500	460	380
Tear - P	ounds per in	<u>ich</u>				
	05	07	226	206	147	155
0	25 25	97 140	210	220 220	1.86	150
5	20	148	196	206	159	137
10	15	108	5 7 0	175	163	179
15	10		163	153	132	153
20	5	107	رس	1/3	عر	-/3

TABLE VIII. (Contd.)

Hardness: (Shore Durometer Type A)

Parts DC 510 Flwid	Parts Adipol 2 EH	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
0	25	34	43	45	48	49
5	20	36	43	45	47	49
10	15	38	44	46	48	49
15	10	38	46	49	51	52
20	5	37	43	45	47	48

TABLE IX. Rebound (Goodyear-Healy) 60 Min. @ 287°F.

Embrittlement (American Cyanamid-Graves) 60 Min. @ 287°F.

TR (40% Retraction - Original Elongation 50%) 60 Min. @ 287°F.

Parts DC 510 Fluid	Adipol 2 EH	Rebound	Embrittlement	TR
0	25	58 4%	ок -72 ^о ғ.	-72°F.
5	20	55.4	" - 72	-71
10	15	52.0	" - 72	-66
15	10	45.5	" - 53	-69
20	5	37.4	" -49	- 55

Remarks:

DC 510 fluid was incorporated into batch by first premixing this material into dry black.

Batch with 20 parts DC 510 fluid was mixed with difficulty and batch with 25 parts was impossible to mix, and therefore no data is shown for 25 parts.

TABLE X. TR - Temperature Retraction

Cure 60 @ 287°F.

Temperature in minus degrees Fahrenheit for percentage retraction indicated (T-1, T-2, etc.)

Parts DC 510 Fluid	Parts Adipol 2 EH	<u>T-1</u>	<u>T-2</u>	<u>T-3</u>	<u>T~5</u>	<u>T-10</u>	<u>T-20</u>	T-30
0 5 10 15 20	25 20 15 10 5	- - - 83	- - 87 82	- 87 85 80	88 87 84 82 76	86 83 81 78 71	82 79 74 76 63	77 73 71 74 59
Parts DC 510 Fluid	Parts Adipol 2 FH	<u>T-40</u>	T-50	<u>T-60</u>	<u>T-70</u>	<u>t-80</u>	<u>T-90</u>	
0 5 10 15 20	25 20 15 10 5	72 71 66 69 55	71 67 63 63 52	67 63 60 57 48	63 60 56 53 44	58 54 51 46 39	46 44 38 31 26	

C. PLASTICIZERS WITH DEFICIENT FREEZE RESISTANCE

The formula is the same as shown in Section A. for plasticizers incompatible with butyl.

TABLE XI. Modulus @ 300% - Founds per square inch

	Parts Per 100 GR-I	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
Forum 40 Oil	15	400	57 5	800	900	1000
Forum 40 Oil	20	350	575	700	350	1000
Forum 40 Oil	25	275	475	600	725	825
C. P. Hall 3890-A	20	275	500	625	775	850
C. P. Hall 3890-A	(20)	325	400	575	700	775
& Silicone L-45	(5)					
Plast. MT-511	20	200	375	400	500	625
Plast. MT-511	25	125	275	350	475	525
VR-1 Ester	20	175	325	375	475	575
VR-1 Ester	25	125	225	325	350	400
10-A Plast.	20	150	550	725	850	950
Dibutyl Sebacate	20	200	600	700	875	950
Dibutyl Sebacate	25	150	450	600	750	825
Adipol ODY	2C	200	525	650	800	875
Adipol ODY	25	200	475	600	725	775
Ohopex R-9	20	75	125	150	175	175
Ohopex R-O	25	NC -	75	. 75	125	75
KP-555	20	375	550	675	800	675
£₽-555	25	275	425	550	650	750
Monoplex S-71	20	150	250	300	350	350
Monoples S-71	25	125	175	225	250	250

TABLE XII. Tensile @ Break - Pounds per square inch

	Parts Per					
	100 GR-I	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
Forum 40 Oil	3.6	3505	2005	• • • •		
Forum 40 011	15	1725	1925	1950	1950	1875
	20	1675	1925	2000	1950	1750
Forum 40 Oil	25	1325	1875	1875	1825	1725
C. P. Hall 3890-A	20	1500	1750	1800	1625	1550
C. P. Hall 3890-A	(20)	1625	1625	1625	1625	1500
& Silicone L-45	(5)					
Plast. MT-521	20	1525	1775	1775	1725	1600
Plast. MT-511	25	825	1275	1325	1425	1475
VR-1 Ester	20	1275	1725	1825	1900	16 7 5
VR-1 Ester	25	1050	1775	1775	1875	1775
10-A Past.	20	1150	1825	1875	1900	1600
Dibutyl Sebacate	20	1150	1925	1800	1800	1700
Dibutyl Sebacate	25	1200	1775	1850	1675	1650
Adipol ODY	20	1.450	1975	1975	1950	1800
Adipol ODY	25	1350	1950	1950	1825	1725
Ohopex R-9	20	475	1050	1325	1450	1425
Ohopex R-9	25	NC	625	725	950	725
KP-555	20	1925	1975	1950	1750	1750
ICP-555	25	1775	1975	1825	1875	1750
Monoplex S-71	20	1400	1800	1700	1850	1800
Monoplex 8-71	25	1300	1575	1750	1825	1775
TABLE XIII. Elong	gation @ Bres	ak - Par c	ent			
Forum 40 Oil	15	810	750	655	600	555
Forum 40 011	20	800	715	690	650	520
Forum 40 Oil	25	715	745	690	630	550
C. P. Hall 3890-A	<u>2</u> 0	795	645	650	545	490
C. P. Hall 3890-A	(20)	765	670	630	580	540
& Silicone L-45	(5)	147	0,10	- 50	,	7.0
Plast. MT-511	`2ó´	805	730	660	615	585
Plast. MT-511	25	1010	780	720	685	655
VR-1 Ester	20	930	805	780	725	700
VR-1 Ester	25	935	845	790	765	720
10-A Plast,	20	770	655	605	5 75	470
Dibutyl Sebscate	20	775	655	590	520	495
Dibutyl Sebacate	25	840	645	630	555	510
Adipol ODY	20	850	730	695	620	555
Adipol ODY	25	875	735	685	610	570
	20	1060	1015	1000	980	980
Ohopex R-9		NC	1050	900	1040	885
Ohopex R-9	25 20	815	720	680	580	550
KP-555	20	825		680	645	580
KP-555	25		755 805	805	800	780
Monoplex S-71	20 25	895 940	895 875	885	845	835
Monoplex 3-71	25	540	015	W)		937

TABLE XIV Tear - Pounds per inch

	Parts Per					
	100 GR-1	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
Forum 40 011	15	224	238	232	212	198
Forum 40 Oil	20	204	216	210	202	174
Forum 40 011	25	189	555	214	182	177
C. P. Hall 3890-A	20	21.6	224	219	196	157
C. P. Hall 3890-A	(20)	245	214	190	160	210
& Silicone L-45	(5)	24)	214	190	100	210
Plast. MT-511	20	197	237	191	178	181
Plast. MT-511	25 25	167	230	256	245	297
VR-1 Ester	20	185	256	257	267	245
VR-1 Ester	25	172	245	242	232	210
10-A Plast.	20	164	214	188	173	189
Dibutyl Sebacate	20	151	214	204	190	142
Dibutyl Sebacate	25	139	202	194	159	156
Adipol ODY	20	210	254	228	200	159
Adipol ODY	25 25	199	236	240	232	156
Ohopex R-9	20	79	230 148	180	191	208
Ohopex R-9	25 25	NC	100	112		137
	20	5 /1/1	246	231	135	169
KP-555		246	230	185	175	204
KP-555	25 20	206	216	240	203 236	230
Monoplex S-71	25 25	200 174	2 2 8	222	240	218
Monoplex S-71	2)	T14	220	EEE	240	210
TABLE XV. Hardne	ess (Shows D	urometer T				
TABLE AV. Harvey	ess (pmore p	MOMEOEL 1	Jpe A)			
Forum 40 Oil	15	43	47	49	51	52
Forum 40 Oil	15 20	41	45	47 47	49	51
Forum 40 Oil			42	44	46	47
	25 20	37 38	ф ф	47	49	50
C. P. Hall 3890-A C. P. Hall 3890-A	(20)	36	43	45	47	48
		30	+3	7)	71	40
& Silicone I-45 Plast. MT-511	(5) 20	42	45	47	48	49
Plast. MT-511	25	40	种	45	46	46
VR-1 Ester	20	3 8	41	43	45	46
			38	40	41	43
VR-1 Ester	25 20	33 38	1414 JC	¥Č	48	50
10-A Plast.	20 20		45	47	49	50
Dibutyl Sebacate		3h	41	44	46	47
Dibutyl Sebacate	25 2 0	38 34 37	44	46	49	51
Adipol ODY) I	42	45	47	49
Adipol ODY	25 2 0	35 30	34	36	37	38
Ohonex R-9		30 25	3 0 30	36 32 47	33	38 33
Ohopex R-9	25 2 0	42	46	<u>عن</u> 1.7	51	52
KP- 555			种	46	48	49
KP-555	25 2 0	39 37	39	40	41	41
Monoplex 8-71	20 25	31 32	39 36	3 8	39	39
Monoplex 8-71	27	عر	Ju	J U	J	37

MC indicates no cure.

TABLE XVI.

Rebound (Goodyear-Healy) 60 Min. @ 287°F.

Embrittlement (American Cyanamide-Graves) 60 Min. @ 287°F.

TR (40% Retraction - Original Elongation 50%) 60 Min. @ 287°F.

	Parts Per			
	100 GR-I	Rebound	Embrittlement	TR
Forum 40 Oil	15	45.1%	ok @ -54° F .	-5 7°₽ .
Forum 40 011	20	46.4	-62	-58
Forum 40 011	25	50.1	-62	-61
C. P. Hall 3890-A	20	56.4	-54	-67
C. P. Hall 3890-A	(20)	56.4	-6 0	-67
& Silicone L-45	(5)	•		•
Plast. MT-511	20	35.3	-1414	-45
Plast. MT-511	25	32.9	-1414	-45
VR-1 Ester	20	43.7	-49	-54
VR-1 Ester	25	44.6	-49	-56
10-A Plast.	20	54.9	-54 -54 -54	-54
Dibutyl Sebacate	20	59.5	-54	-47
Dibutyl Sebacate	2 5	61.5	-54	-42
Adipol ODY	20	61.5	" - 56	-47
Adipol ODY	25	64.1	" - 56	-49
Ohopex R-9	20	44.2	" -56	-49
Ohopex R-9	25	43.3	" -67	-45
KP-555	20	54.9	" - 53	- 59
KP-555	25	59.0	" - 56	-60
Monoplex S-71	20	45.1		-59
Monoplex S-71	2 5	48.2	" -58	-58

TABLE XVII. TR - Temperature Retraction

Temperature in minus degrees Fahrenheit for percentage retraction indicated (T-1, T-2, etc.)

T-2, etc.)								
	Parts Per							
	100 GR-I	<u>T-1</u>	<u>T-2</u>	T-3	<u>T-5</u>	T-10	T-20	T-30
B ko 013								
Forum 40 0il	15	89	87	83	81	73	66	62
Forum 40 0il	20	87	85	83	81	74	67	62
Forum 40 0il	25	87	85	83	82	76	68	65
C. P. Hall 3890-A	20	-	-	89	88	87	76	71
C. P. Hall 3890-A	(20)	-	-	89	88	83	76	71
& Silicone L-45	(5)	0-			-1	_		
Plasticizer MT-511		82	72	70	64	60	53	49
Plasticizer MT-511		87	72	70	63	60	53 65	48
VR-I Ester	20	-	-	89	82	73	65	58 60
VR-I Ester	25	•	•	89	85	77	66	60
10-A Plasticizer	20	83	82	81	73	71	62	56
Dibutyl Sebacate	20	-	87	83	80	69	60	54 47
Dibutyl Sebacate	25	-	89	87	80	67	55	47
Adipol ODY	20	-	-	87	83	73	61	53
Adipol ODY	25	83	•	77	71	60	47	39
Ohopex R-9	20	-	87	86	83	74	62	51
Ohopex R-9	25	-	-	87	84	76	65	5 5
KP-555	20	87	86	84	8ა	74	67	53
KP-555	25	87	85	83	80	74	68	55 63 63
Monoplex S-71	20	-	87	85	83	78	71	6k
Monoplex S-71	25	-	-	87	86	81	73	6 £
No Plasticizer	(None)	82	81	77	71	64	2.0	51
NO I TOP OTCITCI	(Morre)	0_	91	1.1	1 -	04	56) ±
NO 1 LABOTCIZEI	(Mone)	02	01	11	1-	04	20)1
NO I LABUICIZEI	Parts Per	0_	01			04) <u>.</u>
30 11650101201		T-40					T-80	
	Parts Per 100 GR-I	<u>T-40</u>	<u>T-50</u>	<u>r-6</u>	<u> </u>	<u>-70</u>	<u>T-80</u>	<u>T-90</u>
Forum 40 Oil	Parts Per 100 GR-I	<u>T-40</u> 57	<u>T-50</u> 54	<u>T-6</u>	<u> </u>	<u>-70</u> 4	<u>T-80</u>	<u>T-90</u> 18
Forum 40 Oil Forum 40 Oil	Parts Per 100 GR-I 15 20	T-40 57 58	<u>T-50</u> 54 54	<u>T-6</u> ko 5≟	<u>×</u> <u>T</u>	<u>-70</u> 4 5	<u>T-80</u> 36 37	<u>T-90</u> 18 22
Forum 40 0il Forum 40 0il Forum 40 0il	Parts Per 100 GR-I 15 20 25	T-40 57 58 61	<u>T-50</u> 54 54 57	<u>T-6</u> ko 51 54	<u>SO</u> <u>T</u> 4	<u>-70</u> 4 5 8	T-80 36 37 40	T-90 18 22 28
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A	Parts Per 100 GR-I 15 20 25 20	T-40 57 58 61 67	<u>T-50</u> 54 54 57 63	<u>T-6</u> ka 5± 54 60	<u>50</u> <u>T</u> 4 4 5	<u>-70</u> 4 5 8 6	T-80 36 37 40 49	T-90 18 22 28 38
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A	Parts Per 100 GR-I 15 20 25 20 (20)	T-40 57 58 61	<u>T-50</u> 54 54 57	<u>T-6</u> ko 51 54	<u>50</u> <u>T</u> 4 4 5	<u>-70</u> 4 5 8	T-80 36 37 40	T-90 18 22 28
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45	Parts Per 100 GR-I 15 20 25 20 (20) (5)	T-40 57 58 61 67 67	<u>T-50</u> 54 54 57 63	7-6 kg 54 60 60	<u>T</u> 4 5 5	<u>-70</u> 4 5 8 6 6	T-80 36 37 40 49	T-90 18 22 28 38 38
Forum 40 011 Forum 40 011 Forum 40 011 C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-511	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20	T-40 57 58 61 67 67	T-50 54 54 57 63 63	7-6 kg 54 60 60	<u>SO</u> <u>T</u> <u>4</u> 4 5 5 5 2	<u>-70</u> 4 5 8 6 6	T-80 36 37 40 49 49	T-90 18 22 28 38 38
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-511 Plasticizer MT-511	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25	T-40 57 58 61 67 67 45 45	T-50 54 54 57 63 63 40 39	2 <u>T-6</u> ho 54 60 60 36 34	<u>SO</u> <u>T</u> <u>4</u> 4 5 5 2 2	-70 4 5 8 6 6 6	T-80 36 37 40 49 49	T-90 18 22 28 38 38
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-511 Plasticizer MT-511 VR-I Ester	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25 20	T-40 57 58 61 67 67 45 45	T-50 54 54 57 63 63 40 39	D <u>T-6</u> kg 54 60 60 36 34 46	<u>SO</u> <u>T</u> 44 55 22 4	-70 4 5 8 6 6 6 9	T-80 36 37 40 49 49 17 19 35	T-90 18 22 28 38 38 0
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-511 Plasticizer MT-511 VR-I Ester VR-I Ester	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25 20 25 20	T-40 57 58 61 67 67 45 45 54	T-50 54 57 63 63 40 39 51	2 <u>T-6</u> kg 54 60 60 36 46 47	<u>60</u> <u>T</u> 44 5 5 2 2 4 4	-70 4 5 8 6 6 9 6 2	T-80 36 37 40 49 49 17 19 35 35	18 22 28 38 38 0 19
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-511 Plasticizer MT-511 VR-I Ester VR-I Ester 10-A Plasticizer	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25 20 25 20	T-40 57 58 61 67 67 45 54 54	T-50 54 57 63 63 40 39 51 51	2 T=6 kg 45 54 60 36 46 47 46	<u>SO</u> <u>T</u> 44 55 2 2 4 4 4 4	-70 4 5 8 6 6 9 6 2 3 4	T-80 36 37 40 49 49 17 19 35 35 37	18 22 28 38 38 4 0 19 15 27
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-511 Plasticizer MT-511 VR-I Ester VR-I Ester 10-A Plasticizer Dibutyl Sebacate	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25 20 25 20 25 20	T-40 57 58 67 67 45 54 54 54	T-50 54 57 63 63 40 39 51 51 42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>SO</u> <u>T</u> 44 55 2 2 4 4 4 2	-70 4 58 66 96 23 47	T-80 36 37 40 49 49 17 19 35 35 37 19	T-90 18 22 28 38 38 4 0 19 15 27
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-511 Plasticizer MT-511 VR-I Ester VR-I Ester 10-A Plasticizer Dibutyl Sebacate Dibutyl Sebacate	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25 20 25 20 25 20 25 20 25 20	T-40 57 58 67 67 45 54 54 54 42	T-50 54 57 63 63 40 39 51 51 42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>X</u> 4 4 5 5 2 2 4 4 4 2 2	-70 4 58 66 96 23 47	T-80 36 37 40 49 17 19 35 35 37 19 13	18 22 28 38 38 4 0 19 15 27 4 0
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone I-45 Plasticizer MT-511 Plasticizer MT-511 VR-I Ester VR-I Ester 10-A Plasticizer Dibutyl Sebacate Dibutyl Sebacate Adipol ODY	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25 20 25 20 25 20 25 20	T-40 57 58 67 67 45 54 55 47 42 47	T-50 54 57 63 63 40 39 51 51 42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	XX	-70 4 58 66 96 23 47 39	T-80 36 37 40 49 17 19 35 35 37 19 13 21	18 22 28 38 38 30 19 15 27 4 0
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-511 Plasticizer MT-511 VR-I Ester VR-I Ester 10-A Plasticizer Dibutyl Sebacate Dibutyl Sebacate Adipol ODY Adipol ODY	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25 26 26 27 27 28 29 20 25 26 26 27 28 29 20 25 26 26 26 26 26 26 26 26 26 26	T-40 57 58 67 67 45 54 54 47 42 47 31	T-50 54 57 63 63 40 39 51 51 42	D T-6 kg 54460 5460 60 36467 4636 30 35 22	XX	-70 4 58 66 96 23 47 39 3	T-80 36 37 40 49 17 19 35 35 37 19 13 21	18 22 28 38 38 4 0 19 15 27 4 0 20 10
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-511 Plasticizer MT-511 VR-I Ester VR-I Ester 10-A Plasticizer Dibutyl Sebacate Dibutyl Sebacate Adipol ODY Adipol ODY Ohopex R-9	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25 20 20 25 20 20 25 20 20 20 20 20 20 20 20 20 20	T-40 57 58 61 67 45 54 47 42 47 31 43	T-50 54 57 63 63 40 39 51 51 42	D T-6 kg 54 554 60 364 467 46 36 30 35 22 22	<u>SO</u> <u>T</u> 44 5 5 2 2 4 4 4 2 2 2 1 1	-70 4 58666 9623473931	T-80 36 37 40 49 17 19 35 35 37 19 13 21	18 22 28 38 4 0 19 15 27 4 0 20 10 12 3
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-511 Plasticizer MT-511 VR-I Ester VR-I Ester 10-A Plasticizer Dibutyl Sebacate Dibutyl Sebacate Adipol ODY Adipol ODY Ohopex R-9 Ohopex R-9	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25 26 26 26 26 26 26 26 26 26 26	T-40 57 58 67 67 45 54 47 42 47 31 43	T-50 54 57 63 63 40 39 51 51 42	D T-6 kg 54 54 60 36 36 46 47 46 36 36 36 37 46 36 36 37 46 36 36 37 46 37 46 37 46 37 46 47 47 47 47 47 47 47 47 47 47	SO T 4 4 5 5 2 2 4 4 4 2 2 2 1 1 1	-70 4 58666 96234739311	T-80 36 37 40 49 49 17 19 35 37 19 13 21 11 18	T-90 18 22 28 38 38 4 0 19 15 27 4 0 20 410 423 434
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-511 Plasticizer MT-511 VR-I Ester VR-I Ester 10-A Plasticizer Dibutyl Sebacate Dibutyl Sebacate Adipol ODY Adipol ODY Ohopex R-9 Ohopex R-9 KP-555	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25 26 26 26 26 26 26 26 26 26 26	T-40 57 58 67 67 45 54 47 42 47 31 43	T-50 54 57 63 63 40 39 51 51 42	T-6 kg 54 546 60 3646 46 46 33 46 33 33 32 22 22 22 22 23	<u>1</u> 4 4 5 5 2 2 4 4 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	-70 4 58 66 96 23 47 39 31 18	T-80 36 37 40 49 17 19 35 35 37 19 13 21 41 41 41 41 41 41 41 41 41 41 41 41 41	T-90 18 22 28 38 4 0 19 15 27 4 0 20 /10 /23 /34 32
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-511 Plasticizer MT-511 VR-I Ester VR-I Ester 10-A Plasticizer Dibutyl Sebacate Dibutyl Sebacate Adipol ODY Adipol ODY Ohopex R-9 Ohopex R-9 Ohopex R-9 KP-555 KP-555	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25 26 26 26 26 26 26 26 26 26 26	T-40 57 58 67 67 45 54 47 13 45 59 60	T-50 54 57 63 63 40 39 51 51 42	T=6 kg 146 5460 60 36446 4746 30 352 22 22 25 25 25 25 25 25 25	O T 4 4 5 5 2 2 4 4 4 2 2 2 1 1 1 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6	-70 4 58 66 96 23 47 39 31 18 0	T-80 36 37 49 49 17 19 35 37 19 13 21 42 45	T-90 18 22 28 38 4 0 19 15 27 4 0 20 410 423 434 32 35
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-51l Plasticizer MT-51l VR-I Ester VR-I Ester 10-A Plasticizer Dibutyl Sebacate Dibutyl Sebacate Adipol ODY Adipol ODY Ohopex R-9 Ohopex R-9 Ohopex R-9 KP-555 KP-555 Monoplex S-71	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25 26 26 26 26 26 26 26 26 26 26	T-40 57 58 67 67 45 54 47 13 45 59 60	T-50 54 57 63 63 40 39 51 51 42	T-6 kg 14 5460 36446 30 352 22 152 53 43	O T 4 4 5 5 2 2 4 4 4 2 2 2 1 1 1 5 2 2 1 1 1 5 2 2 1 1 1 5 2 2 1 1 1 1	-70 4 58666 96234739311807	T-80 36 37 49 49 17 19 35 37 19 13 21 42 45 13	T-90 18 22 28 38 4 0 19 15 27 4 0 20 410 423 434 32 35 41
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-51l Plasticizer MT-51l VR-I Ester VR-I Ester 10-A Plasticizer Dibutyl Sebacate Dibutyl Sebacate Adipol ODY Adipol ODY Ohopex R-9 Ohopex R-9 Ohopex R-9 KP-555 KP-555 Monoplex S-71 Monoplex S-71	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25 26 26 26 26 26 26 26 26 26 26	T-40 578667 45546472713359658	T-50 54 55 57 63 40 91 51 51 28 23 31 55 55 47	T-6 14 5 14 6 6 36 34 6 7 4 6 36 3 5 2 2 2 2 5 3 3 4 3 5 3 5 2 2 2 5 5 3 3 5 2 2 2 5 5 3 3 5 2 2 2 5 5 3 3 5 2 2 2 5 5 3 5 3	O T 4 4 5 5 2 2 4 4 4 2 2 2 1 1 4 5 2 2 2 1 1 1 4 5 2 2 2 1 1 1 4 5 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-70 4 58666 962347393118072	T-80 36 37 49 49 17 19 35 37 19 13 21 42 45 13	T-90 18 22 28 38 4 0 19 15 27 4 0 20 /10 /23 /34 32 5 / 7
Forum 40 0il Forum 40 0il Forum 40 0il C. P. Hall 3890-A C. P. Hall 3890-A & Silicone L-45 Plasticizer MT-51l Plasticizer MT-51l VR-I Ester VR-I Ester 10-A Plasticizer Dibutyl Sebacate Dibutyl Sebacate Adipol ODY Adipol ODY Ohopex R-9 Ohopex R-9 Ohopex R-9 KP-555 KP-555 Monoplex S-71	Parts Per 100 GR-I 15 20 25 20 (20) (5) 20 25 26 26 26 26 26 26 26 26 26 26	T-40 57 58 67 67 45 54 47 13 45 59 60	T-50 54 57 63 63 40 39 51 51 42	T-6 kg 14 5460 36446 30 352 22 152 53 43	O T 4 4 5 5 2 2 4 4 4 2 2 2 1 1 4 5 2 2 2 1 1 1 4 5 2 2 2 1 1 1 4 5 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-70 4 58666 96234739311807	T-80 36 37 49 49 17 19 35 37 19 13 21 42 45	T-90 18 22 28 38 4 0 19 15 27 4 0 20 410 423 434 32 35 41

TABLE XVIII. TR - Temperature Retraction After 4 Weeks Migration at 158°F.

Perts	Per	100	GR-I

	Original	After Migration	<u>T-1</u>	<u>T-2</u>	<u>T-3</u>	<u>T-5</u>	<u>T-10</u>	<u>T-20</u>	T-30
Forum 40 011 Forum 40 011 Forum 40 011	15 20 25	9.5 11.6 14.0	87 87 87	85 85 85	83 83 83	78 79 79	72 72 72	64 64 65	59 60 60
No Plasticizer	None	None	88	86	83	78	71	62	56

Parts Per 100 CR-I

	Original	After Migration	<u>T-40</u>	<u>T-50</u>	<u>T-60</u>	<u>T-70</u>	<u>T-80</u>	<u>T-90</u>
Forum 40 011 Forum 40 011 Forum 40 011	15 20 25	9.5 11.6 14.0	55 56 56	51 52 52	46 47 46	42 43 41	36 36 33	18 21 17
No Plasticizer	None	None	54	48	45	40	34	24

D. PLASTICIZERS WITH SATISFACTORY PREEZE DESIGNANCE

The formula is the same as shown in Section A. for plasticizers incompatible with butyl.

TABLE XIX. Modulus @ 300% - Pounds per square inch

	Parts Per 100 GR-I	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
C. P. Hall 3890-A	25	175	400	525	600	700
Adipol 2 EH	20	160	540	680	825	910
Adipol 2 KH	25	100	525	650	800	875
10-A Plast.	25	NC	500	6 5 0	7 7 5	850
C. P. Hall 3890-A	(20)	150	450	525	675	775
& L-41 Silicone	(5)					
C. P. Hall 3890-A	(15)	150	500	560	750	825
& L-41 Silicone	(10)					
Di 2 Ethyl Hexyl Ether	20	225	425	575	700	850
Di 2 Ethyl Hexyl Ether	2 5	275	400	550	650	725
Trioctyl Phosphate	20	150	500	600	650	750
Trioctyl Phosphate	25	7 5	315	500	550	625
Butyl Cellosolve Pelargonate	20	350	600	725	875	950
Butyl Cellosolve Pelargonate	25	22 5	450	600	725	850
Butyl Carbitol Pelargonate	20	175	425	550	675	750
Butyl Carbitol Pelargonate	25	175	375	500	600	725
Diisobutyl Azelate	20	225	525	675	350	975
Diisobutyl Azelate	25	200	500	650	800	875
Monoplex DOS	20	225	525	675	825	900
Monoplex DOS	25	225	450	575	675	750
Hexyl Ether	20	450	650	800	950	1000
Hexyl Ether	25	300	475	575	750	800

MC indicates no cure.

A Company of the Comp

TABLE XX. Tensile at Break - Pounds per square inch

	Parts Per 100 GR-I	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
C. P. Hall 3890-A	25	1250	1775	1700	1650	1625
Adipol 2 EH	20	1070	1910	1870	1750	1650
Adipol 2 EH	25	775	1725	1900	1600	1750
10-A Plast.	25	NC	1900	1725	1875	1750
C. P. Hall 3890-A	(50)	1150	1875	1900	1875	1650
& L-41 Silicone	(5)	1170	1017	1900	1017	10,0
C. P. Hall 3890-A	(15)	1000	1900	1775	1650	1700
& L-41 Silicone	(10)	1000	1900	1117	10,0	1100
Di 2 Ethyl Hexyl Ether	50	1400	1800	1825	1925	1775
Di 2 Ethyl Hexyl Ether	25	1625	1775	1800	1700	1800
Trioctyl Phosphate	20	1325	2075	2075	1950	1800
Trioctyl Phosphate	25 25	1000	1875	2050	1900	1850
Butyl Cellosolve Pelargonate	20	1625	1950	1850	1750	1625
Butyl Cellosolve Pelargonate	25 25	1625	1850	1825	1 77 5	1.600
		•				1600
Butyl Carbitol Pelargonate	20	1300	1950	1925	1775	
Butyl Carbitol Pelargonate	25	1425	2000	2000	1950	1700
Diisobutyl Azelate	20	1500	1800	1900	1800	1650
Diisobutyl Azelate	25	1225	1875	1950	1825	1850
Monoplex DOS	20	1325	1925	1975	1950	1925
Monoplex DOS	25	825	2000	1875	1875	1900
Hexyl Ether	20	1675	1750	1750	1625	1550
Hexyl Ether	2 5	1500	1675	1775	1600	1425
TABLE XXI. Elongation @ Break - Fer cent						
C. P. Hall 3890-A	2 5	810	670	635	590	550
Adipol 2 EH	20	800	680	640	56 5	515
Adipol 2 EH	25	830	650	630	525	510
10-A Plast.	25	NC	680	6 1 5	595	5 30
C. P. Hall 3890-A	(20)	810	710	665	60 0	500
& L-41 Silicone	(5)		•			
C. P. Hall 3890-A	(15)	895	695	6 3 5	540	5 50
& L-41 Silicone	(10)					
Di 2 Ethyl Hexyl Ether	20	875	755	705	700	5 9 5
Di 2 Ethyl Hexyl Ether	25	800	775	715	645	640
Trioctyl Phosphate	20	955	76 5	705	670	600
Trioctyl Phosphate	25	945	745	740	67 5	635
Butyl Cellosolve Pelargonate	20	75 5	745	655	5 7 5	500
Butyl Cellosolve Pelargonate	25	870	730	655	610	540
Butyl Carbitol Pelargonate	2 0	800	750	685	6 20	505
Butyl Carbitol Pelargonate	25	840	775	725	690	570
Diisobutyl Azelate	20	900	695	68ó	600	495
Diisobutyl Azelate	2 5	785	735	700	6 2 5	5 8 5
Moroplex DOS	20	910	770	720	650	615
Monoplex DOS	25	680	815	725	680	66ó
	20	745	605	610	475	455
Hexyl Ether	25	800	700	680	265	490
Rexyl Ether	-,	-	100	400	,-,	.,,

MC indicates no cure.

TABLE XXII. Tear - Pounds per inch

	Parts Per 100 GR-I	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
						
C. P. Hall 3890-A	25	172	218	191	200	164
Adipol 2 EH	20	150	236	200	174	169
Adipol 2 EH	25	97	226	206	147	155
10-A Plast.	25	MC	274	202	178	160
C. P. Hall 3890-A	(20)	159	550	206	182	153
& L-41 Silicone	(5)					
C. P. Hall 3890-A	(15)	130	258	199	189	171
& L-41 Silicone	(10)					
Di 2 Ethyl Hexyl Ether	20	194	208	224	180	1.70
Di 2 Ethyl Hexyl Ether	25	220	218	189	178	158
Trioctyl Phosphate	20	204	280	226	220	194
Tricctyl Phosphate	25	109	224	218	195	189
Butyl Cellosolve Pelargonate	20	264	238	192	169	159
Butyl Cellosolve Pelargonate	25	188	218	179	168	145
Butyl Carbitol Pelargonate	20	250	238	195	216	150
Butyl Carbitol Pelargonate	25	202	222	212	208	178
Diisobutyl Azelate	20	194	234	236	189	189
Diisobutyl Azelate	25	222	260	208	190	206
Monoplex DOS	20	202	238	214	188	182
Monoplex DOS	25	173	224	194	189	204
Hexyl Ether	<u>2</u> 0	234	204	186	172	151
Hexyl Ether	25	226	230	192	155	144
TABLE XXIII. Hardness (Sho	re Durometer					
C. P. Hall 3890-A	25	34	40	βjî	46	47
Adipol 2 EH	20	37	lą lą	47	49	51
Adipol 2 EH	25	34	43	45	48	49
10-A Plast.	25	NC	42	45	48	49
C. P. Hall 3890-A	(20)	35	41	निर्म	46	47
& L-41 Silicone	(5)					
C. P. Hall 3890-A	(15)	3 5	41	lele	46	47
& L-41 Silicone	(10)					
Di 2 Ethyl Hexyl Ether	`20	39	43	45	47	48
Di 2 Ethyl Hexyl Ether	25	39	42	44	46	48
Trioctyl Phosphate	20	35	44	45	46	48
Trioctyl Phosphate	25	32	41	43	lalą.	المليا
Butyl Cellosolve Pelargonate	20	32 40	45	48	51	52
Butyl Cellosolve Pelargonate	25	36 38	42	45	48	49
Butyl Carbitol Pelargonate	2Ó	38	الملا	46	48	49
Butyl Carbitol Pelargonate	25	34	40	iş iş	46	ųŠ
Diisobutyl Azelate	20	39	45	48	50	
Diisobutyl Azelate	25	35	43	45	47	52 49
Monoplex DOS	2 0	39	44	46	49	50
Monoplex DOS	25	35	41	44	46	47
Hexyl Ether	20	35 42	47	50	52	53
Hexyl Ether	25	39	42	45	47	49
	-/		3.75		- 0	

NC indicates no cure.

TABLE XXIV.

Rebound (Goodyear-Healy) 60 Min. @ 2870.

Embrittlement (American Cyanamid-Graves) 60 Min. @ 287°F.

TR (40% Retraction - Original Elongation 50%) 60 Min. @ 287°F.

	Parts Per			
	100 GR-I	Rebound	Embrittlement	TR
C. P. Hall 3890-A	25	58 . 4%	ok @ -72° f	-70°F.
Adipol 2 EH	20	58.4	-71	-71
Adipol 2 EH	25	58.4	-72	-72
10-A Plast.	2 5	57.4	-72	-74
C. P. Hall 3890-A	(20)	53-9	-72	- 71
& L-41 Silicone	(5)		·	•
C. P. Hall 3890-A	(15)	50.1	-72	-67
& L-41 Silicone	(10)	-		
Di 2 Ethyl Hexyl Ether	20	57.4%	ok e −78° r.	-76 ° ₹.
Di 2 Ethyl Hexyl Ether	25	60.0	" -7 6	-74
Trioctyl Phospaste	20	51.5	" -63	-70
Trioctyl Phosphate	25	57.9	" -7 6	-72
Butyl Cellosolve Pelargonate	20	6¥.1	" -7 2	-7 4
Butyl Cellosolve Pelargonate	25	66.8	" -78	-77
Butyl Carbitol Pelargonate	20	61.5	" -7 2	-67
Butyl Carbitol Pelargonate	25	61.0	" -76	-67
Diisobutyl Azelate	20	5 7. 9		-66
Diisobutyl Azelate	25	61.0	" -7 2	-68
Monoplex DOS	20	54 . 9	" -67	-70
Monoplex DOS	25	56.9	" -72	-73
Hexyl Ether	20	64.1	" -71	-72
Hexyl Ether	25	64.1	" -74	-72

TABLE XXV. TR - Temperature Retraction

Temperature is minus degrees Fahrenheit for percentage retraction indicated (T-3, T-5, etc.)

	Parts Per 100 GK-I	<u>T-3</u>	<u>T-5</u>	<u>T-1.0</u>	<u>T-20</u>	<u>T-</u>	<u>30</u>
C. P. Hall 3690-A	25	_	89	88	81	72	í
Adipol 2 EH	20	89	88	82	78	75	
Adipol 2 EH	25	89	88	82	79	76	
10-A Plasticizer	25	-	89	87	82	78	
C. P. Hall 3890-A	(2Ó)	89	87	83	78	74	
& L-41 Silicone	(5)		•		•	•	
C. P. Hall 3890A	(15)	89	87	83	74	69)
& L-41 Silicone	(10)			_			
Di 2 Ethyl Hexyl Ether	20	-	•	87	84	81	•
Di 2 Ethyl Hexyl Ether	25	-	•	85	82	79)
Trioctyl Phosphate	20	-	-	83	78	74	
Trioctyl Phosphate	25	-	•	80	78	76	
Butyl Cellosolve Pelargonate	20	-	87	86	82	78	
Butyl Cellosolve Pelargonate	25	-	-	87	83	81	
Butyl Carbitol Pelargonate	20	-	85	83	77	72	
Butyl Carbitol Pelargonate	25	•	85	83	77	72	
Drisobutyl Azelate	20	-	85	83	77	72	
Diisobutyl Azelate	25	-	87	83	78	72	
Monoplex DOS	20	-	87	6 4	79	74	
Monoplex DOS	25	-	87	85	82	77	
Hexyl Ether	20	-	-	86	82	76	
Hexyl Ether	25	-	•	86	82	76	•
	Parte Par						
	Parts Per 100 GR-I	T-40	T-50	<u>T-6</u> 0	T-70	т-80	<u>T-90</u>
	100 GR-I		<u>T-50</u>	<u>T-60</u>	<u>T-70</u>	<u>T-80</u>	<u>T-90</u>
C. P. Hall 3890-A	100 GR-I 25	70	66	63	59	53	42
Adipol 2 EH	100 GR-I 25 20	70 71	66 69	63 63	59 62	53 54	42 44
Adipol 2 EH Adipol 2 EH	25 20 25	70 71 72	66 69 69	63 63 65	59 62 62	53 54 58	42 44 47
Adipol 2 EH Adipol 2 EH 10-A Plasticizer	25 20 25 25 25	70 71 72 74	66 69 69 71	63 63 65 67	59 62 62 62	53 54 58 57	42 44 47 45
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A	25 20 25 25 25 (20)	70 71 72	66 69 69	63 63 65	59 62 62	53 54 58	42 44 47
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone	25 20 25 25 25 25 (20) (5)	70 71 72 74 71	66 69 69 71 67	63 63 65 67 62	59 62 62 62 57	53 54 58 57 53	42 44 47 45 38
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Kall 3890-A	25 20 25 25 25 (20) (5) (15)	70 71 72 74	66 69 69 71	63 63 65 67	59 62 62 62	53 54 58 57	42 44 47 45
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Hall 3890-A & L-41 Silicone	25 20 25 25 25 (20) (5) (15) (10)	70 71 72 74 71	66 69 69 71 67	63 63 65 67 62	59 62 62 62 57	53 54 58 57 53	42 44 47 45 38
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Kall 3890-A & L-41 Silicone Di 2 Ethyl Hexyl Ether	25 20 25 25 25 (20) (5) (15) (10) 20	70 71 72 74 71 67	66 69 69 71 67 66	63 63 65 67 62 60	59 62 62 62 57 56	53 54 58 57 53 49	42 44 47 45 38 38
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Kall 3890-A & L-41 Silicone Di 2 Ethyl Hexyl Ether Di 2 Ethyl Hexyl Ether	25 20 25 25 (20) (5) (15) (10) 20 25	70 71 72 74 71 67 76 74	66 69 71 67 66	63 63 65 67 62 60 68 67	59 62 62 62 57 56	53 54 58 57 53 49 56 51	42 44 47 45 38 38 40 35
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Hall 3890-A & L-41 Silicone Di 2 Ethyl Hexyl Ether Trioctyl Phosphate	25 20 25 25 (20) (5) (15) (10) 20 25 20	70 71 72 74 71 67 76 74 70	66 69 71 67 66 72 71	63 63 65 67 62 60 68 67	59 62 62 62 57 56	53 54 58 57 53 49 56 51 54	42 44 47 45 38 38 40 35 42
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Hall 3890-A & L-41 Silicone Di 2 Ethyl Hexyl Ether Di 2 Ethyl Hexyl Ether Trioctyl Phosphate Trioctyl Phosphate	25 20 25 25 (20) (5) (15) (10) 20 25 20 25	70 71 72 74 71 67 76 74 70 72	66 69 71 67 66 72 71 67 70	63 63 65 67 62 60 68 67 63 66	59 62 62 62 57 56 63 59 59 63	53 54 58 57 53 49 56 51 54	42 44 47 45 38 38 40 35 42 45
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Eall 3890-A & L-41 Silicone Di 2 Ethyl Hexyl Ether Di 2 Ethyl Hexyl Ether Trioctyl Phosphate Trioctyl Phosphate Butyl Cellosolve Pelargomets	25 20 25 25 (20) (5) (15) (10) 20 25 20 25 20	70 71 72 74 71 67 76 74 70 72 74	66 69 71 67 66 72 71 67 70 72	63 63 65 67 62 60 68 67 63 66 68	59 62 62 62 57 56 63 59 63 64	53 54 58 57 53 49 56 51 54 55 58	42 44 47 45 38 38 40 35 45 45 45
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Kall 3890-A & L-41 Silicone Di 2 Ethyl Hexyl Ether Di 2 Ethyl Hexyl Ether Trioctyl Phosphate Trioctyl Phosphate Butyl Cellosolve Pelargonete Butyl Cellosolve Pelargonete	25 20 25 25 (20) (5) (15) (10) 20 25 20 25 20 25	70 71 72 74 71 67 76 74 70 72 74 77	66 69 71 67 66 72 71 67 70 72	63 63 65 67 62 60 68 67 63 66 62 70	59 62 62 62 57 56 63 59 64 65	53 54 58 57 53 49 56 54 55 58 60	42 44 47 45 38 38 40 35 45 45 45 45
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Hall 3890-A & L-41 Silicone Di 2 Ethyl Hexyl Ether Di 2 Ethyl Hexyl Ether Trioctyl Phosphate Trioctyl Phosphate Butyl Cellosolve Pelargonete Butyl Cellosolve Pelargonate Butyl Carbitol Pelargonate	25 20 25 25 (20) (5) (15) (10) 20 25 20 25 20 25 20	70 71 72 74 71 67 76 74 70 72 74 77	66 69 71 67 66 72 71 67 70 72	63 63 65 67 62 60 68 67 63 66 69 70	59 62 62 62 57 56 63 59 59 63 64 65	53 54 57 53 49 56 51 55 56 59 60 49	42 44 47 45 38 38 40 54 45 45 45 45 45
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Hall 3890-A & L-41 Silicone Di 2 Ethyl Hexyl Ether Di 2 Ethyl Hexyl Ether Trioctyl Phosphate Trioctyl Phosphate Butyl Cellosolye Pelargoneta Butyl Cellosolye Pelargonate Butyl Carbitol Pelargonate Butyl Carbitol Pelargonate	25 20 25 25 (20) (5) (15) (10) 20 25 20 25 20 25 20 25	70 71 72 74 71 67 76 74 70 72 74 77 67	66 69 71 67 66 72 71 67 70 72	63 63 65 67 62 60 68 67 63 66 68 70 59	59 62 62 62 57 56 63 59 59 63 64 65 55	53 54 57 57 53 49 55 55 55 56 59 49	42 44 47 45 38 38 40 34 45 45 45 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Hall 3890-A & L-41 Silicone Di 2 Ethyl Hexyl Ether Di 2 Ethyl Hexyl Ether Trioctyl Phosphate Trioctyl Phosphate Butyl Cellosolye Pelargonate Butyl Cellosolye Pelargonate Butyl Carbitol Pelargonate Butyl Carbitol Pelargonate Diisobutyl Azelate	25 20 25 25 (20) (5) (15) (10) 20 25 20 25 20 25 20 25 20	70 71 72 74 71 67 76 74 70 72 74 77 67 67 66	66 69 71 67 66 72 71 67 70 72	63 63 65 67 62 60 68 67 63 66 68 70 59 59	59 62 62 57 56 63 59 59 59 64 55 55 56	53 54 57 57 53 49 56 51 55 56 59 49 51	42 44 47 45 38 38 40 35 45 45 45 46 38 41
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Hall 3890-A & L-41 Silicone Di 2 Ethyl Hexyl Ether Di 2 Ethyl Hexyl Ether Trioctyl Phosphate Trioctyl Phosphate Butyl Cellosolve Pelargonate Butyl Carbitol Pelargonate Butyl Carbitol Pelargonate Butyl Carbitol Pelargonate Diisobutyl Azelate Diisobutyl Azelate	25 20 25 25 (20) (5) (15) (10) 20 25 20 25 20 25 20 25 20 25	70 71 72 74 71 67 76 74 77 67 67 67 66 68	66 69 71 67 66 72 71 67 70 72	63 63 65 67 62 60 68 67 63 66 68 70 59 59 60 61	59 62 62 62 57 56 63 59 59 64 65 57	53 54 57 53 55 55 55 55 55 55 55 55 55 55 55 55	42 44 47 45 38 40 54 45 45 45 45 46 38 46 38 46 38 46 38 46 38 46 47 48 49 49 49 49 49 49 49 49 49 49 49 49 49
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Kall 3890-A & L-41 Silicone Di 2 Ethyl Hexyl Ether Di 2 Ethyl Hexyl Ether Trioctyl Phosphate Trioctyl Phosphate Butyl Cellosolve Pelargonate Butyl Cellosolve Pelargonate Butyl Carbitol Pelargonate Butyl Carbitol Pelargonate Diisobutyl Azelate Diisobutyl Azelate Monoplex DOS	25 20 25 25 (20) (5) (15) (10) 20 25 20 25 20 25 20 25 20 25 20	70 71 72 74 71 67 76 74 70 72 74 77 67 66 68 70	66 69 69 71 67 66 72 71 77 70 72 73 65 65 65 65 66	63 63 65 67 62 60 68 67 63 66 68 70 59 59 60 61	59 62 62 57 56 63 59 59 64 65 57 56 57 58	53 54 57 53 55 55 55 55 55 55 56 56 56 56 56 56 57 57 57 57 57 57 57 57 57 57 57 57 57	42 44 47 45 38 40 54 45 45 40 81 40 41
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Kall 3890-A & L-41 Silicone Di 2 Ethyl Hexyl Ether Di 2 Ethyl Hexyl Ether Trioctyl Phosphate Trioctyl Phosphate Trioctyl Phosphate Butyl Cellosolve Pelargonate Butyl Carbitol Pelargonate Butyl Carbitol Pelargonate Butyl Carbitol Pelargonate Diisobutyl Azelate Diisobutyl Azelate Monoplex DOS Monoplex DOS	25 20 25 25 (20) (5) (15) (10) 20 25 20 25 20 25 20 25 20 25 20 25 20 25	70 71 72 74 71 67 76 74 70 72 74 77 67 66 68 70 73	66 69 67 67 66 72 71 67 70 72 73 65 65 65 66 70	63 63 65 67 62 60 68 67 63 66 63 66	59 62 62 62 57 56 63 59 59 64 65 57 58 62	53 54 57 53 55 55 55 55 55 55 55 55 55 55 55 55	42 44 47 45 45 45 45 45 45 45 45 45 45
Adipol 2 EH Adipol 2 EH 10-A Plasticizer C. P. Hall 3890-A & L-41 Silicone C. P. Kall 3890-A & L-41 Silicone Di 2 Ethyl Hexyl Ether Di 2 Ethyl Hexyl Ether Trioctyl Phosphate Trioctyl Phosphate Butyl Cellosolve Pelargonate Butyl Cellosolve Pelargonate Butyl Carbitol Pelargonate Butyl Carbitol Pelargonate Diisobutyl Azelate Diisobutyl Azelate Monoplex DOS	25 20 25 25 (20) (5) (15) (10) 20 25 20 25 20 25 20 25 20 25 20	70 71 72 74 71 67 76 74 70 72 74 77 67 66 68 70	66 69 67 67 66 72 71 67 70 72 73 65 65 65 65 66	63 63 65 67 62 60 68 67 63 66 68 70 59 59 60 61	59 62 62 57 56 63 59 59 64 65 57 56 57 58	53 54 57 53 55 55 55 55 55 55 56 56 56 56 56 56 57 57 57 57 57 57 57 57 57 57 57 57 57	42 44 47 45 38 40 54 45 45 40 81 40 41

TABLE XXVI. TR - Temperature Retraction After 4 Weeks Migration at 158°F.

Parts Per 100 GR-I

	Original*	After Migration**	<u> 1-2</u>	<u>T-3</u>	<u>T-5</u>	<u>T-10</u>	<u>T-20</u>	<u>T-30</u>
C. P. Hall 3890-A	25	9.6	87	85	83	75	68	63
Adipol 2 KH	20	8.8	87	84	80	74	67	62
Adipol 2 EH	25	10.9	87	86	83	74	67	63
10-A Plasticizer	25	10.7	-	86	83	75	67	63
Di 2 Ethyl Hexyl Ether	20	14.0	86	-	81	74	66	63
Di 2 Ethyl Hexyl Ether	25	18.2	87	-	80	72	64	58
Trioctyl Phosphate	20	6.6	83	-	80	72	65	60
Trioctyl Phosphate	25	7.7	83	-	80	72	66	61
Butyl Cellosolve Pelargonat	te 20	12.2	85	-	81	74	65	60
Butyl Cellosolve Pelargonat	te 25	18.9	86	-	83	73	63	58
Butyl Carbitol Pelargonate	20	9.9	85	-	80	72	65	60
Butyl Carbitol Pelargonate	25	11.8	86	-	83	75	69	63
Diisobutyl Azelate	20	8.7	87	•	85	79	71	67
Diisobutyl Azelate	25	10.8	86	-	83	77	70	63
Monoplex DOS	20	11.0	85	-	83	76	69	64
Monoplex DOS	25	4.5	85	-	83	76	69	64
Hexyl Ether	20	18.2	82	-	80	72	63	59
Hexyl Ether	25	21.6	87	-	83	81	68	62
Natural Rubber Tube Compound	4.0	4.0	83	81	80	78	75	72

HOTE:

^{*} Parts per 100 GR-I original. This refers to the parts plasticizer per 100 parts butyl hydrocarbon which was added to the compound.

Parts per 100 GR-I - after migration. Based on the weight loss of the sample during migration and assuming that the entire weight change is due to loss of plasticizer, this value is determined by subtracting the amount lost from the original and represents the amount of plasticizer retained after migration and is expressed in parts plasticizer per 100 parts butyl hydrocarbon.

Parts Per 100 GR-I

	Oniginal#	After	m ko	10 FA	m Ga	m 70	m 90	m 00
	Original*	Migration **	1-40	1-70	1-00	<u>1-10</u>	T-80	<u>T-90</u>
C. P. Hall 3890-A	25	9.6	58	54	51	46	40	29
Adipol 2 EH	20	8.8	58	54	51	46	42	32
Adipol 2 KH	25	10.9	58 58	54	51	45	39	27
10-A Plasticizer	25	10.7	58	54		46	38	27
Di 2 Ethyl Hexyl Ether	20 ,	14.0	56	54	51 49	排	38	26
Di 2 Ethyl Hexyl Ether	25	18.2	53	54 48	44	31	29	13
Trioctyl Phosphate	20	6.6	56	53	48	40	38	35
Trioctyl Phosphate	25	7.7	56	52	48	40	36	20
Butyl Cellosolve Pelargonat		12.2	56	52	47	45	38	24
Butyl Cellosolve Pelargonat	ie 25	18.5	56	52	4 7	45	38	24
Butyl Carbitol Pelargonate	20	9.9	58	53	49	45	42	29
Butyl Carbitol Pelargonate	25	11.8	60	56	53	47	40	24
Diisobutyl Azelate	50	8.7	62	58	54	49	种种	29
Diisobutyl Azelate	25	10.8	60	57	53	47	42	27
Monoplex DOS	20	11.0	60	55	52	47	41	26
Monoplex DOS	25	4.5	60	54	50 46	45	38	23
Hexyl Ether	20	18.2	54	49		41	35	2 2
Hexyl Ether	25	21.6	56	53	49	44	37	28
Matural Rubber Tube								
Compound	4.0	4.0	71	68				38

HCTE:

^{*} Parts per 100 CR-I original. This refers to the parts plasticizer per 100 parts butyl hydrocarbon which was added to the compound.

Parts per 100 GR-I - after migration. Based on the weight loss of the sample during migration and assuming that the entire weight change is due to loss of plasticizer, this value is determined by subtracting the amount lost from the original and represents the amount of plasticizer retained after migration and is expressed in parts plasticizer per 100 parts butyl hydrocarbon.

E. FIGH PLASTICIZER HIGH CARBON BLACK

Forwala

GR-I 18 100
Zinc Oxide 5
Captax/Tuads 1.54
(1:2 Blend)
Sulfur 2
MAF black* Variable
Plasticizer** Variable
Curing temperature 287°F

*MAF Black Philblack A **Plasticizers

a. C. P. Hall's 3890-A b. Ohio Apex 10-A

c. Ohio Apex Adipol 2 EH

TABLE XXVII.

Modulus @ 300% - Pounds per square inch

Parts Plasti- cizer	Parts MAF Black	lO Min.	20 Min.	30 Min.	45 Min.	60 Min.
Plasti	cizer - C	. P. Hall's	3890-A	3		
25 30 30	55 55 60	175 100 75	350 350 350	450 400 450	650 550 600	725 650 700
Ohio A	pex 10-A	Plasticizer	•			
25 30 30	55 55 60	75 50 175	400 375 425	550 475 575	725 625 675	775 700 750
Ohio A	pex Adipo	1 2 EH				
25 30 30	55 55 60	175 150 175	425 350 425	625 525 550	750 650 650	800 750 750

TABLE XXVIII.

Tensile-@ Break - Pounds per-square inch

Parts Plasti cizer	Parts MAF Black	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
Plastic	izer - C. 1	P. Hall's 38	390-A			
25 30 30	55 55 60	1250 1000 700	1900 1900 1,800	1875 1850 1925	1825 1775 1825	1750 1750 1650
Ohio Ap	ex 10-A Pl	asticizer				
25 30 30	55 55 60	750 375 1375	21 00 1875 1775	1950 1975 1900	1825 1825 1 77 5	1725 1700 1575
Ohio Ap	ex Adipol :	2 EH				
25 30 30	55 55 60	1250 1200 1400	1825 1875 1800	1975 1875 1750	1750 1700 1700	1600 1850 1650

TABLE XXVIX.

Elongation @ Break - Per cent

Plastic	Lzer - C.	P. Hall's 38	90-A			
25	55	810	770	725	650	605
30	55	800	775	730	665	630
30	60	1025	780	760	670	5 85
Ohio Apo	ex - 10-A	Plasticizer				
25	55	1050	860	730	620	570
30	55	1050 /*	780	740	640	609
30	60	900	730	715	640	565
Ohio Ap	ex Adipol	2 EH				
25	55	825	745	710	600	535
30	55	8 7 0	775	685	615	620
30	60	8 80	740	660	610	565

[&]quot;This elongation value beyond the limits of the machine.

TABLE XXX.

Tear - Pounds per inch

Parts Plasti-	Parts NAF					
cizer	Black	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
Plastic	lzer - C.	P. Hall'# 38	390-A			
25	55	162	216	214	167	152
30	55	103	190	182	149	180
30	60	99	246	224	182	181
Ohio Ape	ex 10-A PI	asticizer				
25	55	105	228	240	190	167
30	55	59	242	236	179	169
30	60	175	264	230	212	183
Ohio Ape	ex Adipol	2 KH				
25	55	175	222	194	183	178
30	55	130	230	188	169	151
30	60	170	236	208	228	182

TABLE XXXI.

Hardness (Shore Durometer Type A)

Plas	ticiser - C.	P. Hall's 3	390 - A			
25 30	55	35 33 32	#0 #0	ዶ5 ϝ 5 ጵስ	46 44 45	48 45 47
30 Ohio	Apex 10-A Pl	-	40	'#E		7(
25 30 30	5 5 5 55 60	33 29 35	41 39 41	<u>はら</u> 45	47 44 47	49 46 48
Oh10	Apex Adipol	2 EE				
25 30 30	5 55 5 55 6 60	36 33 35	42 39 41	45 ትት 45	47 45 46	49 46 48

TABLE XXXII.

Rebound (Goodyear-Heady) 60 Min. @ 287°F.

Babrittlement (American Cyanimid-Graves) 60 Min. @ 287°F.

TR (40% Retraction - Original Elongation 50%) 60 @ 287°F.

Parts Plasticizer	Parts MAF Black	Rebound	Emb	rittlement	TR
Plasticizer-C	. P. Hall's 3	890-a			
25 30 30	55	56.9%	OK	e -71°F.	-72 ⁰ F.
30	55	59.0	11	-74	-73
30	60	58.4	Ħ	-71	-72
Ohio Apex 10-	A Plasticizer				
25	55	60.0 61.5 61.5	11	-74	-71
30	55	61.5	36	-74	-72
30 30	55 55 60	61.5	Ħ	-76	-73
Ohio Apex Ad	ipol 2 EH				
25	55	61.5	11	-76	-74
3 0	55	63.6	11	-80	-76
30 30	60	60.5	14	-76 -80 -80	-7 5

Remarks: In some cases high plasticizer and high black with a high plasticity elastomer results in a compound with improved low temperature properties.

TABLE XXXIII. TR - Temperature Retraction Data

Temperature in minus degrees Fahrenheit for percentage retraction indicated (T-5, T-10, etc.)

Parts Per 100 GR-I

Plasti cizer	MAF Black	<u>T-3</u>	<u>T-5</u>	<u>T-10</u>	T-20	T-30	T-40	T-50	<u>T-60</u>	T- 70	<u>T-80</u>	T-90
				Plas	ticize	r C. F	. Hall	.'s 389	Q-A			
25 30 30	55 55 60	-	87 87 87	85 85 85	80 81 80	75 76 76	72 73 72	69 70 69	65 67 66	62 62 62	55 55 55	43 42 42
Ohio Apex 10-A Plasticizer												
25 30 30	55 55 60	- 0	87 87 87	84 84 85	79 80 81	75 76 77	71 72 73	69 70 70	65 66 67	62 62 62	56 55 56	45 42 43
Ohio Apex Adipol 2 KE												
25 30 30	55 55 60	-	88 88 88	86 ୪७ ୫७	81 82 82	7 7 79 78	74 76 75	71 72 72	67 69 68	63 65 64	58 60 59	46 48 47
TR - Te	mperatur	e Retr	action	After	4 Week	s Mig	ation	At 158	°F.			
				Plas	ticiza	er C. I	P. Hall	L's 389	X-0			
30	55	86	82	75	67	62	58	54	49	45	38	20
				Obie	Apex	10-A I	Plastic	izer				
30	55	86	81	7 4 ,	66	63	56	54	49	lele	.38	20
				Ohio	Apex	Adipo	r s eh					
30	55	86	83	76	67	63	58	52	49	45	40	24

a state in the

F. SPECIAL ACTIVATING AGENTS - POLYAC AND TELLURAC

Formula

	Polyac	Tellurac
GR-I 18	109.	100.
Zine Oxide	5•	5•
MAP Black	55•	55•
Captax/Tuads	1.54	1.54
(1:2 Blenā)	•	m .5
Sulfur	2.	2.
Adipol 2 EH	20.	20.
Polyac	•4	-
Tellurac	-	•5
	183.94	184.04

Description of Materials

Polyac - E. I. du Pont

25% poly-dinitroso benzena 75% inert material

Tellurac - R. T. Vanderbilt

Tellurium diethyldithiocarbamate

Processing

Polyse was added to batch in Banbury mixer and batch discharged after temperature reached 300°F.

Tellurac is added in final mix on 6x12 mill along with sulfur and accelerator.

TABLE XXXIV.

	10 Min.	20 Min.	30 Min.	45. Kin.	60 Min.				
Modulus at 300% -	Modulus at 300% - Pounds per square inch								
Polyac Tellurac	250 275	900 575	1050 700	1175 875	1275 925				
Tensile & Break	- Pounds per	square inch							
Polyac Tellurac	1100 1550	1875 1975	1800 1725	1750 1 52 5	1700 1400				
Elongation @ Brea	ak - Per Cent								
Polyac Tellurac	760 830	600 740	555 630	470 505	430 455				
Tear - Pounds per	rinch								
Polyac Tellurac	131 195	2 50 223	201 15 4	153 169	149 152				
Durometer									
Polyac Tellurac	36 39	<u>ነ</u> ተያ	47 48	49 50	51 52				
		Rebound	Embrittleme	ent TR					
Polyac Tellurac		61.0% 61.5	OK ● -71°F. -71	-70 ⁰ F. -69					

TABLE XXXV. TR - Taperature Retraction Data

Temperature data in minus degrees Pahrenheit for percentage retractions T-5, T-10, etc.) indicated.

	Polysc	Tellurac		
T- 5	87	85 83 77 72 69 67 63 60 55		
T-10	83	83		
T-10 T-20	7 8	77		
T-30	83 78 74	72		
T-30 T-40 T-50 T-60	70	69		
T-50	70 6 7	67		
T-60	63	63		
T-70	60	60		
T-70 T-80	63 60 56	55		
T-90	47	48		

G. COMMERCIAL CARBON BLACKS IN BUTYL

Formula	
GR-I 18	100.
Zinc Oxide	5•
Carbon Black	55.
Captax/Tuads	1.54*
(1:2 Blend)	-
Sulfur	2.
Adipol 2 KH	20.
	183.54

Curing temperature 287°F.

* Accelerator used with EPC black 2.2 parts.

TABLE XXXVI.

Black	10. Miz	. 20 Min.	30 Min.	45 Min.	<u>60 Min.</u>
Modulus @ 300% - Poun	ds per square	inch			
Thermax	MC	150	175	250	250
P-33	75	100	125	175	150
SRF	75	275	325	475	500
Maf	<u> 160</u>	540	680	825	910
HAF	225	475	625	625	950
EPC*	125	350	470	590	690
SAF	160	478	650	820	1000
Tensila & Break - Pour	nds per square	inch			
Thereax	MC	2450	2500	2375	1750
P-33	800	1.425	1775	1675	1875
SRF	325	1900	2250	2225	1925
MAP	10;3	1910	1870	1750	1650
HAP	1825	2225	2275	2200	2175
EPC#	1275	251/0	2510	2520	2570
SAF	1500	2490	2500	2400	2350
Elongation & Break -	Per cent				
Thermax	NC	88∩	855	745	690
P-33	830	755	755	715	700
Si de	1045	775	790	670	660
HAP	945	780	715	625	570 °
EPC#	1040	870	780	730	695
SAF	1020	820	725	645	590

^{*} On account of retardation to cure of EPC black, accelerator for this black is 2.2 parts instead of 1.54 parts as on all of the other blacks.

NC indicates no cure. WADC TR 54-62

'MABLE XXXVI. (Contd.)

Black	10 Mi.	20 Min.	30 Min.	45 Min.	60 Min.
Tear - Pounds per inch					
Thermax F-33 SRF MAF HAF	NC 188 63 150 280	177 152 187 236 320	133 119 125 200 280	51 89 97 174 243	41 53 107 169 233
EPC# SAF	196 232	325 346	348 348	295 310	29 <u>5</u> 296
Hardness (Shore Durometer ' Thermax P-33 SRF MAF HAP EPC* SAF	21 32 30 37 37 33 33	43 44 36 44 43 44 43	35 38 41 47 46 44 47	36 39 43 49 48 46 49	37 40 45 51 49 47

TABLE XXXVII. Rebound (Goodyear-Realy) 60 @ 287°F.
Embrittlement (American Cyanamid-Graves) 60 @ 287°F.
TR (40% Retraction--Original Elongation 50%) 60 @ 287°F.

Black	Rebound	Embrittlement	TR
Thermax P-33 SRF MAF EAF EPC* SAF	63.6% 64.1 64.6 58.4 55.9 53.7 46.0	OK @ -65°F. " -69 " -67 " -71 " -62 " -60	-77° F. -74 -71 -69 -69 -69 -68
U 110	••		

* On account of retardation to cure of EPC black, accelerator for this black is 2.2 parts instead of 1.54 parts as on all of the other blacks.

Blacks used for this program

SRF	Witco SRF
MAF	Philblack A
Haf	Philblack 0
KPC	sid Richardson's Texas E
SAF	Fhilblack E

The state of the second second

TABLE XXXVIII. TR - Temperature Retraction

Temperature data in minus degrees Fahrenheit for percentage retractions (T-3, T-5, etc.) indicated.

Black	<u>T-3</u>	<u>T-5</u>	<u>T-10</u>	T-20	<u>T-30</u>	<u>T-40</u>	T-50	T-60	<u>T-70</u>	<u>T-80</u>	T-90
Therma	c -	87	85	81	80	7 7	7 5	72	72	66	57
P-33	87	86	83	80	78	74	72	71	65	60	47
SRF	•	87	84	79	74	71	71	69	63	60	49
MAF	-	87	82	78	72	69	68	63	60	54	45
HAF	-	87	83	77	72	69	65	61	56	50	36
EPC	•	87	81	76	72	69	65	62	57	51	37
SAF	-	87	83	76	72	68	63	60	54	49	35

H. VARIABLE CARBON BLACK LOADING IN BUTYL

Formula

CR-I 18	100.
Zinc Oxide	5.
Carbon Black	Variable
Captax/Tuads	1.54*
(1:2 Blend)	·
Sulfur	2.
Adipol 2 EH	20.

* Account retarding effect of EPC black the amount of accelerator is increased and is as follows:

Parts EPC Black	Accelerator
55 45	2.20
45	2.08
35	1.96

TABLE XXXIX.

Black	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.				
Modulus @ 300% - Pounds per square inch									
MAF 55 " 45 " 35 EPC*55 " 45 " 35 SAF 55 " 45 " 35	160 150 75 125 100 75 160 125	540 450 275 350 350 250 475 400 300	680 575 325 470 400 300 650 500 375	825 700 425 590 525 350 820 700 475	910 800 500 690 600 425 1000 775 600				
Tensile & Break - Founds	per square	inch							
MAF 55 " 45 " 35 EFC#55 " 45 " 35 SAF 55 " 45 " 35	1070 1250 375 1275 1175 675 1500 1575 825	1910 2200 1575 2540 2700 2900 2490 2800 2875	1870 2250 2325 2510 2725 2875 2500 2875 2925	1750 2000 2175 2520 2725 2675 2400 2775	1650 1850 1775 2570 2675 2625 2350 2825 2625				
Elongation @ Break - Per	cent-								
MAF 55 " 45 " 35 EPC#55 " 45 " 35 SAF 55 " 45 " 35	800 980 960 1040 1070 1105 1020 845 835	680 765 800 870 845 955 &20 810 825	640 700 790 780 765 875 725 775 785	565 610 745 730 700 785 645 675	515 555 640 695 670 740 590 660 650				

^{*} See Page 42

TABLE XL.

Black	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
Tear - Pounds per inch					
MAF 55 " 45 " 35 EPC*55 " 45 " 35 SAF 55 " 45 " 35 Hardness (Shore Durometer	150 146 88 196 129 75 232 290 138	236 216 194 325 282 240 346 358 283	200 188 112 306 278 264 342 334 224	174 152 111 295 230 163 310 296 224	169 146 88 295 204 113 296 282 215
MAF 55 " 45 " 35 EPC*55 " 45 " 35 SAF 55 " 45 " 45	37 34 30 33 30 29 37 35 30	44 40 36 42 39 37 44 41 38	47 44 40 44 41 29 47 43 40	49 46 42 46 43 41 49 45	51 48 43 47 45 42 51 42

TABLE XLI.

Rebound (Goodyear-Henly) 60 Min. @ 287°F.
Embrittlement (American Cyanamid-Graves) 60 @ 287°F.
TR (40% Retraction-Original Elongation 50%) 60 @ 287°F.

Black	Rebound	Embrittlement	TR
MAP 55	58 . 4 %	ok € -71°c.	-70°C.
7)	59 ₌ 0	" -71	-7 1
" 35	59±0 62•0	" -71	-74
EPC*55	53•7	" -62	-71
" 4 5	55•4	" -6 5	-72
" 35	59.0	" -67	-72
SAF 55	46.	" -60	- 6 5
" 45	49.6	" ~ 65	-67
" 35	55.9	" -72	-72

* See Page 42

TABLE XLII. TR - Temperature Retraction Deta

Temperature data in minus degrees Fahrenheit for percentage retractions (T-3, T-5, etc.) indicated.

Black	k J	<u> </u>	<u>T-5</u>	<u>T-10</u>	<u>T-20</u>	<u>T-30</u>	T-40	T-50	<u>T-60</u>	T-70	<u>T-80</u>	<u>T-90</u>
MAF 5	55	es.	89	82	76	72	57	67	63	60	55	43
n 1	4 5	-	89	81	76	73	71	68	66	62	58	47
" 3	35	>	38	84	80	77	7 4	72	69	65	60	51
EPC 5	55	88	84	81	76	73	71	67	63	58	53	36
** 1	45	-	88	85	79	74	72	68	64	62	55	41
" 3	35	-	87	83	79	74	72	69	65	62	56	42
SAP 5	55	-	84	82	74	70	65	62	58	53	45	30
" }	45	87	85	81	75	71	67	63	60	54	47	27
" 3	35	-	87	84	80	76	72	69	65	62	54	38

I. VARIABLE ZINC OXIDE IN BUTYL

Formula

GR-I 18	100.
MAF Black	55•
Captax/Tuads	1.54
(1:2 Blend)	
Sulfur	2.
Adipol 2 MH	20.
Zinc Oxide	Variable
Curing temperature	287°F.

TABLE XLIII.

Perts Zinc Oxide Per 100 GR-I	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
Modulus @ 300% -	Pounds per s	quare inch			
3 5	175	525	675	800	875
5	160	540	680	825	910
10	150	5 co	650	800	900
20	100	450	625	800	875
Tensile @ Break -	Pounds per	square inch			
3	650	1975	1825	1725	1625
3 5	1070	1910	1870	1750	1650
10	1150	1750	1625	1650	1650
20	900	1675	1650	1675	1550
Elongation @ Brea	k - Per cent				
3 5	7 7 5	710	650	580	540
5	800	680	640	565	515
10	870	645	58∕ ∪	535	505
20	935	680	595	550	510
Tear - Pounds per	inch				
3	103	203	20)	178	160
3 5	150	2 3 6	200	174	169
10	133	226	218	198	167
20	107	216	199	194	192
Hardness (Shore I	Duroseter Ty	pe A)			
3	36	la la	46	49	51
5	37	hh	47	49	51
3 5 10	37	45	48	50	52
20	38	le l e	48	51	52

TABLE XLIV.

Rebound (Goodyear-Healy) 60 Min. @ 287°F.

Embrittlement (American Cyanamid-Graves) 60 Min. @ 287°F.

TR (40% Retraction - Original Elongation 50%) 60 Min. @ 287°F.

Parts Zinc Oxide Per 100 GR-I	Rebound	Embrittlement	TR
3	57.4% 58.4	ok @ -67° c.	-63°c.
5	5 8.4	" -71	-69
10	57.9	" - 63	-69
20	56.9	" - 63	-69

TABLE XLV. TR - Temperature Retraction Data

Temperature data in minus degrees Fahrenheit for percentage retractions (T-3, T-5, etc.) indicated.

Parts Zinc Oxide Per 100 GR-I	<u>T-3</u>	<u>T-5</u>	<u>T-10</u>	<u>T-20</u>	<u>T-30</u>	<u>T-40</u>	<u>T-50</u>	<u>T-60</u>	T-70	<u> 7-80</u>	<u>T-90</u>
3 5 10 20	89 89 89 89	87 85 87 87	83 82 85 85	78 75 76 76	68 68 72 72	63 69 69	60 64 66 66	58 58 53 63	55 55 58 58	54 51 52 53	47 44 44 45

J. VARIABLE ISOPRENE CONTENT IN BUTYL

Formula

Butyl#	100,
Zinc Oxide	5.
MAF Black	55.
Captax/Tuads	1.54
(1:2 Blend)	
Sulfur	2.
Adipol 2 EH	20.
	182 Ek

* Grades of butyl investigated are as follows:

	1 Isoprene
GR-I 35	1.0
CR-I	2.0
CR-I 15	2.5
CR-I 25	3.0

TABLE XLVI.

	Per Cent					
Butyl	Isoprene	10 Min.	20 Min.	30 Min.	45 ltin.	60 Min.
Modulus (9 300% - P	ounds per sq	uare inch			
GR-I 35	1.0%	NC	325	425	550	650
GR-I	2.0	250	450	5 5 0	750	875
CER-I 15	2.5	250	5 7 5	750	900	1025
CR-I 25	3.0	jioo	700	850	1050	1150
Manaila A	9 Dunner - '	Pounds per s	miene inch			
Tensite 4	DIEGE -	rounus per s	device then			
GR-I 35	1.0%	7C	3.525	1600	1600	1775
CR-I	2.0	1250	1750	1750	1650	1600
CR-I 15	2.5	1450	1725	1750	1575	1575
GR-I 25	3.0	1525	1600	1500	1450	1425
713	A D	D				
ELOngat1	on e break	- Per cent				
GR~I 35	1.0%	NC	730	675	650	615
GR-I	2.0	800	720	675	565	515
		820	685	635	515	460
GR-I 15	2.5		625			-
CER-I 25	3.0	780	025	530	42 5	375

NC indicates no cure.

TABLE XLVI. (Contd.)

Butyl	Per Cent Isoprene	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
Tear - Po	unds per in	<u>ch</u>				
CR-I 35	1.0%	nc	199	2 3 6	238	216
CR-I	2.0	210	240	236	222	184
GR-I 15	2.5	218	226	220	181	163
OF-I 25	3.0	246	212	194	172	160
Hardness	(Shore Duro	meter Type	<u>š.)</u>			
CER-I 35	1.0%	X C	39	42	يلول	46
GR-I	2.0	38	ர் ர் 39	46	48	49
CR-I 15	2.5	40	46	48	51	42
GR-I 25	3.0	42	47	49	52	55

TABLE XLVII.

Rebound (Goodyear-Realy) 60 @ 287°F.
Embrittlement (American Cyanamid-Craves) 60 @ 287°F.
TR (40% Retraction - Original Elongation 50%) 60 @ 287°F.

Butyl	Per Cent Isoprene	Rebound	Embrittlement	TR
GR-I 35	1.0%	49.1%	-71°F.	-68 [©] ₹.
CR-I	2.0	52.	-71	-67
GR-I 15	2.5	54.9	-71	-6 8
CR-I 25	3.0	59.0	-72	-70

Th at 40% Retraction - Comparison of versus State of Cure

		20 Min.	30 Min.	45 Min.	60 Nin.
GR-I 35	1.0%	-63 ⁰ F•	-67°F.	-68 ^c r.	-68 ⁰ 7.
GR-I	2.	-64	-68	-68	-67
GR-I 15	2.5	-66	-69	-69	-68
GR-I 25	3.0	-68	-71	-71	-70

Embrittlement - Comparison of versus State of Cure

GR-I 35	1.0%	-65°F.	-67 ⁰ F.	-69 ^c r.	-71°F.
CR-I	2.	-69	-67	-69	-71
GR-I 15	2.5	-69	-67	-69	-71
GR-I 25	3.0	<i>-</i> ₄68	-71	-7 1	-70

From this data it is noted that variation of TR and Embrittlement at different states of cure is very slight in butyl compounds. Therefore, unless extreme conditions in cure rate are encountered, comparisons based on a single cure are adequate.

NC indicates no cure.

TABLE XLVIII. TR - Temperature Retraction Data

Temperature data in minus degrees Fahrenheit for percentage retractions (T-5, T-10, etc.) indicated.

Butyl	% Isoprene	T-5	T-10	T-20	T-3 0	T-40	T-50	T-60	T-70	T-80	T-90
	\ <u></u>				e 287°	Y .					
77 T 25	1.0	36	82	74	68	63	56	45	25	10	10
CR-I 35 CR-I	1.0 2.0	85 86	81	74	69	64	60	54	35 45	19 33 42	∮ 2
GR-I 15	2.5	86	82	76	71	66 68	63 64	57 61	51 45	42	23
GR-I 25	3.0	87	83	78	72	00	04	ρŢ	4 7	49	3 3
				30	e 287°	T.					
CR-I 35	1.0	87	83	78	72	67	63	56	ks.	22	12
GER-I	2.0	86	82	77	72	68	65 66	56 60 62	45 54 58 60	33 41	24
CR-I 15	2.5	87	83 84	78 80	73	69	66 67	62 65	58 60	49 54	31 40
GR-I 25	3.0	87	04	00	74	71	01	6)	00	74	40
				45	e 287 ⁰	F.					
CR-I 35	1.0	87	83	77	72	68	64	59	53	种	27
GR-I	2.0	86	82	77 76	72	68	64	61	55	48	33
CR-I 15 CR-I 25	2.5 3.0	87 87	83 86	77 79	72 74	69 71	66 67	62 63	55 58 61	53 55	33 41 44
(a)-1 L)	J. 9	01		17	• •		•,	-3	-		• •
				60	e 287°	Pr.					
CR-I 35	1.0	87	83	76	72	68	63	59 60	52	44	26
CR-I	2.0	86	81	75	71	67 68	63	60	52 54	48	26 34 41
CER-I 15 CER-I 25	2.5 3.0	86 87	82 83	75 76	72 72	68 70	64 65	61 63	56 59	51 53	41 44
	J	~ 1	-5	, •	. –	, –	-,	,	* 2	75	

K. PEROXIDE CURATIVES IN BUTYL

Formula

	A	В	C
GR-I 18	100.	100.	100.
Philblack E	45.	45.	45.
Zinc Oxide	5.	5.	5.
Butyl Cellosolve Pelargonate	RO.	10.	10.
Monoplex DOS	J.O.	10.	10.
2 Ethyl Hexyl Ether	1.0.	10.	10.
Captax/"uads	1.54	-	-
(1:2 Blend)			_
Dibenzo GAF	-	6.	6.
Red Lead	-	10.	10.
Polyac	-	1.	•
Sulfur	2.	3	
	183.54	200.	199.

- A. Standard curative organic acceleration.B. Peroxide curative and Polyac.C. Peroxide curative without Polyac.

TABLE KLIX.

Formula	2 Min.	Min.	6 Min.	8 Min.	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.			
Modulna @	Modulus @ 300% - Pounds per squere inch											
A B C	MC 75 MC	1125 50	NC 400 275	MC 625 425	MC 650 475	175 775 6 5 0	250 850 650	350 850 725	450 925 750			
Tensile @	Break -	Pounds	per squa	re inch								
A B C	#C #00 #C	NC 775 375	IIC 1300 1175	NC 1475 1400	NC 1325 1500	2150 1200 1400	2400 1350 1400	2400 1375 1350	2350 1325 1400			
Elongatio	n @ Break	- Per	cent									
A B C	NC 885 NC	NC 6 7 5 840	HC 510 630	N C 47 5 545	ис 445 515	865 36 5 445	855 370 455	7 15 425 455	70 5 3 85 445			
Tear - Po	unds per	inch										
A B C	NC 51 NC	NC 95 47	139 116	NC 167 171	129 141	344 111 142	310 114 117	235 102 136	218 115 110			
Hardness	(Shore Du	rometer	Type A	<u>)</u>								
	NC 30 NC ates no c	#C 32 26 ure.	IIC 41 35	NC 43 42	NC 45 44	35 48 48	38 48 48	40 48 48	41 49 48			
WADC TR	5 4-62				51							

TABLE L.

Rebound (Goodyear-Healy) 60 @ 237°F.

Exertitlement (American Cyanamid-Graves) 60 @ 287°F.

TR (hO% Retraction - Original Elongation 50%) 60 @ 287°F.

Formula	Rebound	Embrittlement	TR
A	60.0%	ok @ -80°f.	-81°F.
В	60.0	" -81	- 79
C	57.9	" -80	-78

TABLE LI.

Mooney Scorch:

MS @ 2500 F.

		Formula	<u> </u>
Minutes	A.	В.	C.
ı	13	22	25
2	12	25	14
3	12	25 26	13
抻	11	33	J. 3
5	11	3 6	14
2 3 4 5 6 7 8	11 11 11 11 11 11 11	33 36 39 41 44 46	13 13 13 14 15 16
7	11	41	15
	11	44	16
9	11	46	17
9 10 11 12	11	48	17 18
11	12	50	18 21 23
12	12 12 13 13 13 14 14 15		21
13	12		23
13 14 15 16 17 18 19 20 21	12		26 31 36 40 44 47
15	13		31
16	13		36
17	13		40
18	14		神神
19	14		47
20	15		51
21	16		
22	17		
23 24	17 18 20		
24	20		
25 26	23		
26	27 30		
27	30		
27 28	33		
	-		

If the scorch time is taken as the time required to reach a viscosity of 5 points greater than the minimum, then scorch time is:

A	21 minutes
B	2 minutes
C	10 minutes

TABLE LII. TR - Temperature Retraction Data

Temperature data in minus degrees Fahrenheit for percentage retractions (T-10, T-20, etc.) indicated.

<u>Formula</u>	<u>T-10</u>	<u>T-20</u>	T-3 6	<u>T-40</u>	<u>T-50</u>	<u>T-60</u>	T-70	<u>T-80</u>	<u>T-90</u>
A	87	86	83	81	77	73	67	57	31
В	88	86	83	79	74	67	58	41	7
C	87	85	82	78	72	65	54	35	<i>‡</i> 3

Time limitations on this contract did not permit obtaining TR data after 4 weeks migration at 158°F.

L. HIGH TEMPERATURE (400°F.) PROCESSING

Formula

	<u>A</u> _	<u>B</u>	<u>c</u>
GR-I 18	100.	100.	100.
Philblack E	40.	40.	40.
Polyac	•	٥.4	0°; 0°#
Stearic Acid	-	0,4	O•‡
Zinc Oxide	5.	5-	5.
Monoplex DOS	25.	25.	25.
Captax/Tuads (1:2 Blend)	1.54	1.54	1.54
Sulfur	2.	2.	2.
	173.54	174.34	174.34

Remarks:

On A and B the preparation and handling of batches was exactly as described in this report in the section "Testing Methods and Procedures." Discharge temperatures of the batches from the Banbury mixers were 220-230°F.

Formulation for C is identical to B the difference between these two being in mixing. Method of handling C follows: The initial mix consisted of a masterbatch which was processed in the Banbury at high temperature. Formula for this masterbatch is:

GR-I 18	100	or	80
Philblack E	50		40
Polyac	0.5		0.4
Stearic Acid	0.5		0.4

This batch was mixed in the laboratory Banbury for 10 minutes after batch temperature had reached 400°F. Overall mixing time for this batch was 15 minutes. Stearic Acid was added just before batch discharge in order to assist in lubrication and prevent sticking while resheeting. After two hours for cooling, the batch was remilled, again in the Banbury, but in this step at normal processing temperatures, 200-220°F. In this step, additional GR-I 18 was added in order to reduce black content from 50 parts per 100 GR-I 18, the concentration used in the hot mix, to 40 parts per 100 GR-I 18 which is the concentration in the final mix. At this stage plasticizer and sinc oxide were added. After allowing two to four hours for cooling the batch was finished by regular procedure, that is, sulfur and accelerator added on 6 x 12 mill. It should be mentioned that the above method of processing butyl rubber is on recommendations supplied by Esso Laboratories. This method of processing purported to result in improved physical properties.

A. 6. 14.

TABLE LIII.

formula	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.
Modulus @	300% - Pounds	per square inc	<u>b</u>		
A B C	25 100 50	200 325 400	325 525 625	450 600 775	525 725 900
Tensile 8	Break - Pounds	per square in	<u>eb</u>		
A B C	8 2 5 15 7 5 425	2725 2450 2075	2775 2450 2175	2850 2625 2275	2750 2325 2200
Elongation	8 Break - Per	cent			
A B C	865 900 1115	875 750 660	775 665 550	730 630 540	665 560 495
Tear - Pos	ends per inch				
A B C	141 187 41	350 3 44 232	354 318 248	25 ¹ 4 292 216	258 195 202
Hardness (Shore Duromete	r Type A)			
A B C	30 32 25	36 37 34	39 41 38	41 42 40	42 43 41

Rebound (Test piece 2" x 1" x 1") cured 60 Min. @ 2870F.

	% Rebound	% Rebound		
	© Room Temperature	@ 212°F.	8 Room Temp.	8 212°F.
A B C	55 .4% 57 .9 59 . 0	76 .3% 76 . 9 7 7. 5	42 42 40	42 40 37

* This data obtained on $2" \times 1" \times 1"$ blocks. Shore Hardness on thicker test pieces is usually a point or more lower than the data obtained on tensile sheets.

TABLE LIV.

Physical Properties at 212°F.

Formula	10 Min.	20 Min.	30 Min.	45 Min.	60 Min.							
Modulus & 300% - Pounds per square inch												
A B C	25 75 -	125 200 175	200 250 275	300 375 425	350 475 575							
Tensile 6	Tensile 6 Break - Pounds per square inch											
A B C	300 475 -	975 975 750	925 825 725	575 700 675	575 675 700							
Elongatio	n 6 Break - Per	Cent										
A B C	900 1000	950 795 615	770 585 475	470 415 380	400 350 325							
Tear - Po	unds per inch											
A B C	107 129	134 155 120	138 150 113	126 117 133	135 130 101							

TABLE LV.

Rebound (Goodyear-Healy) 60 @ 2870F.

Embrittlement (American Cyanamid-Graves) 60 @ 287°F.

TR (10% Retraction - Original Elongation 50%) 60 @ 287°F.

Formula	Rebound	Embrittlement	TR
Á B	55 . 4 % 57 . 9	OK @ -71 ⁰ F. " -71	-73 ⁰ F• -75
С	59.0	" - 76	-76

TABLE LVI. TR - Temperature Retraction Data

Temperature data in minus degrees Fahrenheit for percentage retractions (T-1, T-2, etc.) indicated.

Formula	<u>T-1</u>	<u>T-2</u>	T-3	T- 5	<u>T-10</u>	<u>T-20</u>	<u>T-30</u>	T-40	<u>T50</u>	<u>T-60</u>	<u>T-70</u>	<u>T-80</u>	<u>T-90</u>
A	•	-	-	88	86	82	78	73	69	65	61	54	33
B	-	-	-	88	86	83	80	75	71	67	62	55	l _s o
C	-	•	-	88	87	83	81	76	72	67	63	56	41

TR - Temperature Retraction after 4 weeks migration @ 158°F.

A													
В	-	88	86	82	7 \$	66	ઇર	57	5k	48	43	35	18
C	-	86	85	81	74	66	61	57	55	49	44	36	22

M. VOLATILITY OF PLASTICIZERS

TABLE LVII.

Data indicates per cent of plasticiser lost or volatilized under conditions indicated.

Plas	Plasticizer				Compounded Stock						
Plasticizer 5 Hou	rs 8 32	5°.	70 Hou	rs 6 21	2 ⁰ F.		48 Hours @ 300°F.				
Parts Plasticizer Per 100 GR-I 18	•	15	20	25	<u>3</u> 0	15	20	25	30		
Forum 40 011	45.9%	46.15	39.0%	42.75	-	83.2%	84.1\$	87.1\$	-		
C. P. Hall 3890-A	7.2	-	10.5	10.8	10.4	-	76.8	95.4	86.7		
Adipol 2 EH	22.2	-	53.6	45.3	34.5	•	97.7	93.7	97.0		
10-A Plasticizer	17.1	-	39.4	39.9	27.0	-	95.7	93.3	98.8		
Di 2 Ethyl Hexyl Ether	99.1	-	46.4	44.5	•	-	77.2	68.6	**		
Trioctyl Phosphate	39.1	-	48.5	29.7	•	-	71.8	75.1	-		
Butyl Cellosolve Pelargonate	96.2	-	<u>+</u> 1.2	39.6		-	88.5	88.0	دد		
Butyl Carbitol Pelargonate	96.4	_	68.6	45.5	-	-	85.5	70.2	-		
Diisobutyl Azelate	98.8	-	65.5	78.1	•	-	83.4	90.0	-		
Konoplex DOS	5.5		0.0	0.0		-	43 -5	46.4			
Hexyl Ether	100.		21.1	25.1			24.1	30.7			

Compounded stock for volatility tests cured 60 @ 287°F.

N. MIGRATION OF PLASTICIZERS

TABLE LVIII

Migration temperature 158°F.

Migration pressure 1 bilogram/sq. in. Cure of stock 60 @ 287°F.

Data shows \$ plasticizer lost through migration after number of days indicated.

	Parts R 100										
<u>Plasticizer</u>	CR-I	1	2	3	4	1_	14	21	28		
Forum 40 011	15	14.6%	22.8%	27.6%	32.24	41.9%	51.0%	56.0%	57.9%		
	20	12.6	17.2	21.2	25.1	31.7	44.6	48.1	49.9		
	25	18.6	25.7	29.8	33.9	43.9	57.1	61.8	64.0		
G. P. Hall 3890-A	20	9.4	27.1	32.8	26.0	48.7	60.5	62.2	62.b,		
	25	15.1	27.9	31.8	36.1	51.2	62.7	68.7	70.0		
	30	7.1	10.8	16.2	18.8	24.8	44.0	48.3	53.4		
Adipol 2 EH	20	14.8	25.8	35.0	45.5	59.3	71.3	78.0	80.0		
	25	23.9	32.8	41.8	47.8	58.5	71.1	74.6	75.5		
	30	17.2	35.6	45.8	52.1	63.0	72.4	74.0	74.4		
lO-A Plasticizer	20	23.8	33.8	42.0	47.4	58.9	70.0	73.8	74.5		
	25	17.8	29.1	36.0	40.5	53.7	63.7	68.4	69.0		
	30	22.0	30.1	33.9	40.2	49.7	57.2	60.7	62.0		
Di 2 Ethyl Hexyl Ether	20	9.5	12.7	14.6	15.1	14.8	14.4	12.6	11.4		
	25	8.5	11.7	13.2	14.1	14.1	13.3	11.7	10.6		
Trioctyl Phosphate	20	11.7	22.7	27.3	32.1	42.0	55.0	60.2	61.4		
	25	15.8	28.1	32.5	36.7	47.6	58.5	63.0	64.0		
Butyl Cellosolve Pelerg.	20 25	8.5 8.5	10.3	11.0 12.3	113 12.9	10.5 12.8	8.7 12.3	6.8 13.3	5•5 9•9		
Butyl Carbitol Pelarg.	20	10.1	13.5	14.6	15.1	15.2	17.6	13.6	12.6		
	25	11.1	15.1	16.6	17.4	18.3	18.4	18.0	17.4		
Diisobutyl Azelate	20	19.2	27.3	31.5	33.8	36.8	37.1	36.0	34.8		
	25	22.2	30.6	34.0	36.0	37.8	37.5	36.5	35.4		
Monoplex DOS	20 25	16.7 16.7	23.0 20.9	25.2 23.5	27.5 27.5	41.8	54.6 68.5	62.5 73.0	66.5 74.6		
Hexyl Ether	20	18.1	20.1	20.5	20.5	19.5	17.7	16.8	16.3		
	25	18.0	20.0	20.6	20.6	18.9	18.1	17.5	17.3		

O. MICRATION, EFFECT OF ON LOW TEMPERATURE PROPERTIES

TABLE LVIX.

	Migration Loss % of	Parts :	Per 100	Embrit	tlement of	OK TR OF.		
Plasticizer	Plasticizer	Before		Before		Before		
Forum 40 0il	36.7	15	9.5	54	56	57	55	
11 11 11 11 11	4,1.0 lada da	20 25	11.8 14.0	62 62	53 56	58 61	56 56	
		ر.ء	_		90		70	
C. P. Hall 3890-A	56.8 61.6	20	8.6	54	53	67	53	
	00	25	9.6	72	53	70	53	
Adipol 2 EH	56.2	20	8.8	72	53	71	58	
n 11	56.6	25	10.9	72	53	72	58	
10-A Plasticizer	51.8	20	9.6	72	56	74	5 8	
H H	57.4	25	10.7	74	56	72	58	
Di 2 Ethyl Hexyl Ether	30.0	20	14.0	78	56	76	56	
n n n n	27.4	25	18.2	76	56	74	53	
Trioctyl Phosphate	67.0	20	6.6	63	56	70	54	
n n	69.2	25	7.7	76	56	72	56	
Butyl Cellosolve Pelargor	mate 39.0	20	12.2	72	56	74	56	
PACAL CELTOROTAE LETER BOT	44.4	25	14	78	53	77	56	
D. 4. 7. G 7. 44 - 3. D. 3	- FO 7	•	0.0	70	56	612	-0	
Eutyl Carbitol Pelargonat	50.7 52.8	20 25	9.9 11.8	72 76	56 56	67 67	58 60	
	-					•		
Diisobutyl Azelate	56.4 56.8	20 25	8.7 10.8	72 72	56 56	66 68	62 60	
	-			·				
Monoplex DOS	56.0	20	8.9	67	62 62	70	60	
. .	83.2	25	4.5	72	62	73	60	
Hexyl Ether	8.9	20	18.2	71	53	72	54	
# 17	13,6	25	21.6	74	56	72	56	
				_				
No plesticizer	0	0	0	45	外	45	54	

Mote: Migration tests on 6" x 6" tensile sheets. It will be noted that migration loss on 6 x 6 sheets fails to agree with the data obtained on 2" x 1" pieces, data on which is shown in Section N.

Armed Services Technical Information Agency

Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR AMY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by DOCUMENT SERVICE GENTER KNGTT BUILDING, DAYTON, 2, 0HIO

UNCLASSIFIED