Name:	
4-digit code:	

- Write your name and the last 4 digits of your SSN in the space provided above.
- The test has seven (7) pages, including this one.
- For multi-choice questions, you should circle the answer you select. On the other problems, you should enter your answer in the box(es) provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books, notes or calculators may be used on this test.

Page	Max. points	Max. points Your points		
2	20			
3	20			
4	30			
5	10			
6	10			
7	10			
Total	100			

Problem 1 (20 pts). Answer the following questions:

(a) What is the domain of the following function? (justify your answer)

$$f(x) = \frac{x}{\sqrt{x-2}}.$$

- (a) x < 2
- (b) $x \le 2$
- (c) $x \ge 2$
- (d) x > 2
- (e) $x \neq 2$

(b) Complete the following table (no explanations needed!)

x	-2	-1	0	1	2
f(x)	-1	2	0	-2	1
g(x)	2	0	-1	2	-1
$f \circ g)(x)$					
$g \circ f(x)$					

Problem 2 (10pts). Find the amplitude and period of

$$y = 3\cos\left(2x + \frac{\pi}{2}\right).$$

Problem 3 (10 pts). Solve for x:

$$\log(3x) - 3\log(x^{-1/3}) = \log 27.$$

$$x =$$

Problem 4 (30 pts). Compute the following limits:

(a)
$$\lim_{x \to 2} \frac{x^2 - 2x - 8}{x^2 - 4} =$$

(b)
$$\lim_{x \to \infty} \frac{x^2 - 2x - 8}{x^2 - 4} =$$

(c)
$$\lim_{x \to \infty} \left(1 + \frac{5}{x} \right)^{3x} = \boxed{$$

Problem 5 (10 pts). Recall the " ε - δ " definition of limit:

We say
$$\lim_{x\to a} f(x) = b$$
 if for all $\varepsilon > 0$ there exists $\delta > 0$ such that $|x-a| < \delta$ implies $|f(x)-b| < \varepsilon$.

Use this definition to prove that $\lim_{x\to 4} x^2 - 2x = 8$.

Problem 6 (10 pts). Find the value of the constant k for which the following function is continuous everywhere:

$$f(x) = \begin{cases} 2k^2x^3 & \text{if } x < 2, \\ x + 32k - 18 & \text{if } x \ge 2. \end{cases}$$

Problem 7 (10 pts). Sketch the curve by eliminating the parameter (i.e. try to write y = f(x)), and indicate the direction of increasing t

$$x = \sqrt{t}, \quad y = 2t + 4.$$

