#### Al for Games

#### **Doron Nussbaum**

Doron Nussbaum

COMP 3501 - Al for Games

1

- Introduction
- Movement and path planning
- · Games and trees
  - MinMax
  - Decision trees
- Finite State Machines
- Agents
- Other

Doron Nussbaum

COMP 3501 - Al for Games

# Intelligence Definition

- "The ability to acquire and apply knowledge and skills" (Oxford dictionary)
- Ability to understand, reason, grasp issues and complex problems/ideas as well as ability to learn from experience of self and others
- Artificial Intelligence
  - An attempt by machines (computers) to be intelligent

Doron Nussbaum

COMP 3501 - Al for Games

3

### Humans and Intellegence

- · We have the ability to:
  - Learn → look at a situation



#### Αl

- In Academia understanding intelligence (theory)
  - Thought process
    - · Behaviour prediction
  - Comprehension
    - · Machine vision
  - Natural language
    - · understanding semantics
    - · Carry out a conversation
- Engineering Use AI to solve real problems
  - Searching (Google)
  - Stock market predictions

Doron Nussbaum COMP 3501 - Al for Games

#### Are we there yet?

- Not Yet!
- Large number of applications
  - Machine vision
  - Speech recognition
  - Stock market prediction
  - ..
- · Spectrum of domain is hard to achieve
- · Some specific areas are promising
  - Chess
  - Carrying out a conversation on specific topics (e.g., whether, daily activities)
- What is in the way
  - Unscripted actions
  - Not always logical
  - Emotions

Doron Nussbaum

COMP 3501 - Al for Games

#### What about Game AI?

- Game Al is different
  - Provide entertainment
  - Attract the player
  - Should be realistic
- PACMAN
  - Is it AI?
- · Al in games provides
  - Interaction with the player
  - Level of unpredictability
  - Somewhat no repetition in the game



http://free-extras.com/images/pacman\_game-1973.htm

Doron Nussbaum COMP 3501 - Al for Games

What Should Game Al Be

- · Should be good
  - Cannot be too smart should have some built in flaws
  - Provide fun
- Provide good perception (no obvious flaws)
  - Should not look dumb
  - No unintended flaws cannot be defeated using a "secret path"t
- Must be fast (real time)
- · If possible configurable
  - Not hard coded by programmer
- · Can adjust to different level of players

Doron Nussbaum

COMP 3501 - Al for Games

8

#### What about Game AI?

- · Must be smart, but purposely flawed
  - Loose in a fun, challenging way
- No unintended weaknesses
  - No "golden path" to defeat
  - Must not look dumb
- Must perform in real time (CPU)
- · Configurable by designers
  - Not hard coded by programmer
- "Amount" and type of Al for game can vary
  - RTS needs global strategy, FPS needs modeling of individual units at "footstep" level

9

- RTS most demanding: 3 full-time AI programmers
- Puzzle, street fighting: 1 part-time Al programmer
- All of project 2. ☺

Doron Nussbaum COMP 3501 - Al for Games



#### Movement

- Movement relates to the way an NPC moves in the world
  - Wander
  - Seek
  - Chase / home in / zoom to target
  - Flee

Doron Nussbaum

COMP 3501 - Al for Games

11

#### Wander

- · NPC moves in the world
  - Without a particular goal
  - Usually aimlessly (no logic in movement)
  - Scouts an area (not exploring)
    - Guarding
    - Cleaning



Doron Nussbaum

COMP 3501 - Al for Games

#### wander

- · Address motion
- · Address orientation
- · Set up a target
  - Set up a path
  - Path can be a sequence of short line segments.
- Update the motion
  - Speed
  - Velocity
  - Orientation
- Use regular motion equations (distance, speed, velocity)

Doron Nussbaum COMP 3501 - Al for Games

#### Seek

- Similar to wander (something in mind)
- · Searching for something
  - Treasure
  - Enemy
  - Weapon
- Create constraints (when is the target visible?)
  - Distance constraints
  - Visibility colour, size, text
  - Type searching for a box, target is a sphere

Doron Nussbaum

COMP 3501 - Al for Games

14

#### Seek

- · Address motion
- · Address orientation
- · Set up a search pattern
  - Wander
  - Logical scan in circles, side to side, moving in a maze
- Update the motion
  - Speed
  - Velocity
  - Orientation

Doron Nussbaum COMP 3501 - Al for Games

#### Chase

- · Target is visible
  - Known location of target
  - Target may be stationary or in motion
- Realistic actions
  - Change of direction is affected by speed
  - Cannot change direction on the spot (e.g., a car)
- Issues
  - Overshooting the target

Doron Nussbaum COMP 3501 - Al for Games

16

### Chase

- Address motion
- Address orientation
- Set up a static path
  - Path can be direct
  - Path needs to avoid obstacles
- Set up a chase path (dynamic path)

  - Follow the pathZoom in on current location
  - Prediction of future location
- Update the motion
  - Speed
  - Velocity
  - Orientation

Doron Nussbaum COMP 3501 - Al for Games

Steeting Determine next direction Orient Orient towards direction Wander / Seek Chase / Evade Move Path following Collision avoidance Arrive Reach Target COMP 3501 - Al for Games Doron Nussbaum 18

- Determine how to move in space
  - Wander move aimlessly
  - Seek move to a particular location
- · What does one have
  - Start point
  - Target point
  - Obstacles

\_

Doron Nussbaum

COMP 3501 - Al for Games

19

### Path Planning

- · What is missing?
- Free space!!!
  - Space in which one can move freely
- This may not be trivial
  - Object has area/volume (2D/3D)

Doron Nussbaum

COMP 3501 - Al for Games

- Motion
  - Assume that object is a point →
  - Move a point in the free space
- Creating free space
  - Convert object to a point
  - Enlarge obstacles accordingly (e.g., Minkowski sums)

Doron Nussbaum

COMP 3501 - Al for Games

21

### Path Planning (last)

- How to move in free space?
  - Hard not knowing where to go, when to turn
- Visibility
  - Move in a shortest path "notion"
- Attempt to convert the space into a graph

Doron Nussbaum

COMP 3501 - Al for Games

- · Types of problems that may be of interest
- Guards placement
  - How many guards are needed to guard area
  - Where to position guards so that the guarded area is covered
- Guarding path
  - Is there a path that a guard can see the guarded area
    - · All the time
    - · At least once during the motion
  - How many guards are needed?
  - What should the paths be?
- Gaming
  - Each guard is an autonomous object
  - Place less guards then needed give the player a chance

Doron Nussbaum COMP 3501 - Al for Games

# Path Planning

- Most of the time path planning is to reach a goal.
  - Shortest path

\_

What is the meaning of shortest path?

Doron Nussbaum

COMP 3501 - Al for Games

24

- Input:
  - a graph
    - · Vertices
    - Edges
    - Weights
  - Start point
  - End point (in most cases)
- Output: a path (possible ∅)
- Algorithm?
  - Path traversing algorithms?

Doron Nussbaum

COMP 3501 - Al for Games

25

# Path traversing Algorithms

- Breadth First Search (BFS)
  - Explore closest neighbourhood first
- Depth First Search (DFS)
  - Explore furthest neighbourhood first

Doron Nussbaum

COMP 3501 - Al for Games

- · Algorithms for path planning
  - Best first
  - Dijkstra shortest path
  - A\*
  - Hierarchical shortest path

Doron Nussbaum

COMP 3501 - Al for Games

27

# **Constructing Graphs**

- · Depending on the world
  - Grid (cell based)
    - Four connected
    - Eight connected (3x3)
    - 16 connected (5x5)
  - Vector based
    - TIN
    - Obstacles
    - Free space

Doron Nussbaum

COMP 3501 - Al for Games

#### **Best First**

- Usually used on a grid based graphs
- Idea
  - Attempt to move as "fast" as possible to the target (Greedy algorithm)
  - Attraction to the target/goal position

Doron Nussbaum

COMP 3501 - Al for Games

29

### Dijkstra Shortest Path

- Search for the target around the start point until target is found.
  - No relation to the target point
- Algorithm properties
  - Triangle inequality  $cost(\pi(u,w)) <= cost(\pi(u,v)) + cost(\pi(v,w))$
  - $-\delta(u)$  is the minimum  $cost(\pi(u,v))$

Doron Nussbaum

COMP 3501 - Al for Games

# Dijkstra Shortest Path

- Let (v,u) be an edge in G $-\delta(u) \le \delta(v) + \text{weight}(u,v)$
- If  $v_0, v_1, ..., v_k$  be a shortest path from  $v_0$  to  $v_k$  then  $v_i, ..., v_j$  is a shortest path from  $v_i$  to  $v_j$  where  $0 \le i,j \le k$  and  $i \le j$

Doron Nussbaum

COMP 3501 - Al for Games

31

- $v_i \leftarrow \infty$
- s ← 0
- Insert all vertices to a priority queue Q
- While (Q ≠Ø)
  - $-u \leftarrow top(Q)$
  - for all v which are neighbours of u
    - if  $cost(\pi(s,u))$ +weight(u,v) <  $cost(\pi(s,v))$  then
      - $-\cot(\pi(s,v)) \leftarrow \cot(\pi(s,u)) + \operatorname{weight}(u,v)$
      - Update parent of u
      - Update Q with new cost of v

Doron Nussbaum

COMP 3501 - Al for Games

# What is the "problem" with Dijkstra?

Doron Nussbaum

COMP 3501 - Al for Games

3:

# What is the "problem" with Dijkstra?

- A BFS algorithm
- Search everywhere without any relatioship to the target
- Solution?

Doron Nussbaum

COMP 3501 - Al for Games

### What is the "problem" with Dijkstra?

- A BFS algorithm
- Search everywhere without any relatioship to the target
- Solution
  - Combine Best First and Dijkstra

Doron Nussbaum

COMP 3501 - Al for Games

35

# A\* Path Algorithm

- · A heuristic algorithm
- Attempts to take the best of both worlds
  - The BFS behaviour of Dijkstra
  - The DFS behaviour of Best First

Doron Nussbaum

COMP 3501 - Al for Games

# A\* Path Algorithm

- Modify the comparison statement of Dijkstra priority queue algorithm
- Instead of extracting u such that  $cost(\pi(s,u))$  is the minimum in Q
- Use  $cost(\pi(s,u))$  + Estimate(u,t)

Doron Nussbaum

COMP 3501 - Al for Games

37

# A\* Path Algorithm

· What kind of estimate one can use?

Doron Nussbaum

COMP 3501 - Al for Games

# Large Graphs

- What can be done with large graphs?
- How can many queries be handled?
- Scalability
  - Domain size
  - Number of players
- Solution
  - Speed up queries
  - Merge queries

Doron Nussbaum

COMP 3501 - Al for Games

30

# Hierarchical Graphs

- Create a hierarchy
- Similar to a highway system
  - Neighbourhood roads
  - City roads
  - Regional roads

Doron Nussbaum

COMP 3501 - Al for Games

# **Graph Hierarchy**

- Designate some paths as "high" level paths (highways)
  - Few connections
  - Few edges
- · Create a representation of the space
  - Possibly a sequence of representations  $G, G^1, G^2...$
- Operation
  - Gravitate to a high level representation
  - Find path on high level
  - Convert path back to a low level "real path"

Doron Nussbaum COMP 3501 - Al for Games 41













# Game Playing Programs

- Game playing programs obey some rules:
  - Visibility is the board visibile/partial visible
  - Turns is the game played in order
  - Chance/Luck what is the nature of a "move"
    - Governed by probability (card game, dice)

Doron Nussbaum

COMP 3501 - Al for Games

### How to play?

- · Deterministic game
- · Create a tree with all possible moves
- · Search the tree for the best move
  - DFS
- Assuming that each player plays for the best move then each try to follow a path that guarantees a "victory"

Doron Nussbaum

COMP 3501 - Al for Games

49

#### **Division Nim Game**

- Given a pile of matches
- Each player in his/her turn takes one pile and divides it into two piles of different size
- Game ends when there is non other option to play
- For example given 6 matches one can divide into
  - **1-5**
  - -2-4

Doron Nussbaum

COMP 3501 - Al for Games









```
minimax(v) = \begin{cases} value(v) & \text{if } v \text{ is a leaf} \\ \min_{u \in children(v)} \{minimax(u)\} & \text{if } v \text{ is a MIN node} \\ \max_{u \in children(v)} \{minimax(u)\} & \text{if } v \text{ is a MAX node} \end{cases}
```

Doron Nussbaum

COMP 3501 - Al for Games

```
In: node v in the tree
         Out: value of v
         MiniMax(v)
         if (children(v) = \emptyset) then
             return value(v)
         else if label(v) = MIN then
            d \leftarrow +\infty
             for all u \in children(v) do
                d \leftarrow min\{d,MiniMax(u)\}
             endfor
             return d
         else
             d \leftarrow -\infty
             for all u \in children(v) do
                d \leftarrow max\{d,MiniMax(u)\}
             endfor
             return d
         endif
                                      COMP 3501 - Al for Games
Doron Nussbaum
                                                                                                      56
```

#### Complexity

 Assuming a branching factor is b and a depth of the search tree is k then the tree size is

$$1+b+b^2+\cdots+b^k=\frac{1-b^{k+1}}{1-b}=\frac{b^{k+1}-1}{b-1}$$

- Need to traverse the tree (DFS/post order)
- $O(b^k)$

Doron Nussbaum

COMP 3501 - Al for Games

57

#### MiniMax Trees

- Complete? Yes (if tree is finite)
- Optimal? Yes (against an optimal opponent)
- Time complexity  $O(b^k)$
- Space complexity  $O(b^k)$  (depth-first exploration)
- For chess, b ≈ 35, m ≈100 for "reasonable" games
   → exact solution completely infeasible

Doron Nussbaum

COMP 3501 - Al for Games

#### **Partial Trees**

- At times it is not possible to build a full tree
  - Time complexity  $O(b^k)$
  - Space complexity  $O(b^k)$
- For example Chess game
  - Branching factor b ≈ 35,
  - A reasonable game is k ≈ 100
    - Exact solution completely infeasible
    - $35^{100} \approx 2^{500}$

Doron Nussbaum

COMP 3501 - Al for Games

59

#### **Evaluation Function**

- Solution
  - Build a partial tree
- Question
  - What value to give a node in the "middle" of the tree?
- Develop an evaluation function to assess the state of the game

Doron Nussbaum

COMP 3501 - Al for Games

# Searching

- · if search depth limit was reached
  - Evaluate/Compute state of current position
  - Return value
- else
  - if MAX level then
    - · apply MiniMax to each child
    - return maximum of results
  - else // MIN level
    - · apply MiniMax to each child
    - return minimum of results

Doron Nussbaum

COMP 3501 - Al for Games

61

#### **Evaluate Tic-Tac-Toe**

 Evaluate the number of free moves that are available to win









Doron Nussbaum

- Eval(p) –
   number of directions for Max number of
   directions for Min
- Eval(p)  $\infty$  if Max wins
- Eval(p) -∞ if Min wins
- Eval(p) 6 5 = 1



Doron Nussbaum

COMP 3501 - Al for Games

63





Doron Nussbaum

COMP 3501 - Al for Games













# Pruning the tree

- Tree can be quite large
  - Evaluation consumes computing cycles
- Trimming the tree → saves work
- Alpha-beta pruning (α-β pruning)

Doron Nussbaum

COMP 3501 - Al for Games











# Game Agents

- There are several ways of representing non-player-characters (NPC)
  - Game agents is one option which is easy to relate to
  - In most cases it is an enemy, or an ally
  - Sometimes it is neutral (background NPC)
- · Agents operate through a sense-think-act cycle



Doron Nussbaum COMP 3501 - Al for Games

77

### Game Agents

- There are several ways of representing non-player-characters (NPC)
  - Game agents is one option which is easy to relate to
  - In most cases it is an enemy, or an ally
  - Sometimes it is neutral (background NPC)
- Agents operate through a sense-think-act-learn cycle



### Sensing

- Agents use sensing to gather world information:
  - Barriers (obstacles)
  - Environment (forest, lake, urban setting)
  - Opponents (position and state)
  - Other objects/agents
- Sensing acts as a stimulator to the agent which may trigger an action
- Agents can query the game for information (cheating)
  - Impose similar constraints on data as player
  - Cannot see through walls
  - Sensing has limitation (hearing, vision)
  - Can only use what they have experienced

Doron Nussbaum COMP 3501 - Al for Games

### Sensing - Vision

- · A fundamental sense in gaming
  - An agent may ask to get a list of all enemies
    - · Not all enemies are known to agent at that point
    - · Time consuming to provide a list of all
    - · Not all enemies are relevant at this point
  - Limit knowledge to what is visible
- Visibility is compute intensive and can be complicated
  - Partial visibility of objects
  - Complex terrain

Doron Nussbaum

COMP 3501 - Al for Games

80

### Sensing - Vision

- Game must be able to answer gueries fast
  - Is the object within viewing range of agent?
  - Is the objet within viewing angle of agent?
  - Is the object unobstructed?
- Compute a vector to each object
  - Check magnitude
  - Check angle (dot-product) to determine field of view
  - Check if obstcured

Doron Nussbaum COMP 3501 - Al for Games

Sensing - Hearing

- Player crawls (tip-toe) past an enemy → enemy does not hear
  - Run by enemy → enemy hears
  - Player suddenly shoots a gun at night → agents may hear it and start to move towards sound (e.g., urban war)
- Implement as event driven
  - When player performs action then notify agents within range
    - Obstacles (compute intensive)
  - Variations
    - · Other sounds muffle player
    - Agents are listening → increase range of sound

Doron Nussbaum

COMP 3501 - Al for Games

82

#### Sensing - Communication

- Agents can communicate with each other
  - Transferring sensed knowledge to other agents
    - Instant using a two-way radio
    - Slow agents runs to other agents and informs
    - · Via sound shouting
- Agents senses data from other agents
  - Vision signs, colours, actions, not seing
  - Sound
- Reaction time
  - Sensing may take time (e.g., instant reaction to alarm)
  - Build in an artificial delay (e.g., using timer)

Doron Nussbaum COMP 3501 - Al for Games 83

#### **Thinking**

- Evaluate the gathered information
  - The crux of the AI system
- Can be complex or simple (as required)
- · Generally two ways
- 1. Pre coded expert knowledge
  - Typically handcrafted a sequence of "if-then" rules with added randomness
- 2. Search algorithm for optimal/best solution
  - 1. MinMax trees

Doron Nussbaum COMP 3501 - Al for Games

### **Thinking**

- Expert Knowledge (Finite State Machine, Decision Trees)
- Appealing
  - · Simple to create
  - Natural (can think about own behaviour)
    - If "I am tired" then "find a place to sleep"
  - · Embodies common sense and knowledge of domain
    - Is enemy weaker than me? → attack
    - Is enemy stronger than me? → run away and/or seek help
- Often not scalable
  - · Can be complex with many rules
  - · Changing one rule may affect others
- Still sufficient as most agents address a limited domain
  - · carry out very limited functionality

Doron Nussbaum COMP 3501 - Al for Games

### **Thinking**

- Search
  - Look ahead and see what to do next
    - Path finding (A\*)
    - Next move (MinMax)
  - Works well with existing knowledge
    - · Visible obstacles, current location
  - Machine learning
    - Evaluate past actions → use for future actions
    - · Techniques are improving but
      - Compute intensive
      - Domain specific

Doron Nussbaum COMP 3501 - Al for Games

86

#### **Acting**

- Sensing and thinking are invisible to player
  - No matter how sophisticated the these two steps the player is oblivious to them
- · Acting is visible to user
  - Game must demonstrate its sophistication via realizable actions
- Common actions
  - Pickup weapon
  - Fire
  - Communicate with player
  - animation

Doron Nussbaum COMP 3501 - Al for Games

#### **Acting**

87

- Learning and remembering
  - May not be important when agent is short lived
  - If agent is a live for more than 30s can be helpful
  - If player always attacks from left then shield to the left
- Implementation does not have to be complex
  - Gather stats on player behaviour (direction of attack)
  - Information can fade (limited capacity for past)
  - Simple things such as using last player's location to start a search
  - Can be done at the game level -
    - Too many agents are killed in an area → create a smell, colour the area in blood, leave part of agents on the ground (armoury, part of weapons)

Doron Nussbaum COMP 3501 - Al for Games 88

# **Acting**

- · Making agents stupid
  - Many cases agents can be superior and dominate the player
    - · Agent always makes headshot or takes cover
    - · Agents runs faster
    - · Can be considered as cheating (inside trader)
  - Dumb the agent by giving "human" traits
    - · Less accuracy
    - · Longer reaction time
    - · Engaging the player one at a time
    - · Make mistakes
    - · Make unnecessary moves
    - Run out of ammunition at critical time → force to retreat

Doron Nussbaum COMP 3501 - Al for Games

### **Acting**

- Agent Cheating
  - Ideally agents should not be superior by having an unfair advantage
    - · Better attributes
    - More attributes
    - · Inside knowledge
  - Agents may resort to "cheating" at a high level in order to challenge the player.
    - Player should be aware of it  $\rightarrow$  player will be ready
    - May challenge the player
    - · Compute intensive reasons
    - · Development time
  - Let the player know upfront

Doron Nussbaum COMP 3501 - Al for Games

90