

. In a recent publication, it was reported that the average highway gas mileage of tested models of a new car way 33.5 paper and approximately normally distributed. A consumer group conducts its own tests on a simple random sample of 12 cars of this model and finds that the mean gas mileage for their vehicles is 31.6 mpg with a standard deviation of 3.4 mpg.

- a. Perform a test to determine if these data support the contention that the true mean gas mileage of this model of car is different from the published value.
- b. Perform a test to determine if these data support the contention that the true mean gas mileage of this model of car is less than the published value.
- c. Explain why the answers to part a and part b are different.

this under i's less than the published value.

. For each of the following scenarios, state whether the null hypothesis should be rejected or not. State any assumptions that you make beyond the information that is given.

(a)
$$H_{0:} \mu = 6, H_{a:} \mu \neq 6, n=25, \bar{x}=5.6, s=2.5, \alpha=0.05$$

> qt(0.025,24)[1] -2.063899

(b) H_0 : $\mu = 6$, H_a : $\mu < 6$, n=25, $\bar{x}=5.6$, s=2.5, $\alpha=0.05$

(c)
$$H_0$$
: $\mu = 25$, H_a : $\mu > 25$, n=81, \bar{x} =26.4, s=3.2, α =0.01

(d)
$$H_{0:} \mu = 50$$
, $H_{a:} \mu \neq 50$, n=55, p-value=0.053

$$t = \frac{x - M}{(5/\sqrt{n})} = \frac{(5.6 - 6)}{(2.5/\sqrt{25})} = (-0.8)$$

$$CU = \pm 9t(40.025, 24)$$

- 0.8 is in the Mon-regention region, we fail to reject Ho.

16), left tailed test out

ov= 9t(0.05, 24) 2-1.71

> qt(0.05,24)[1] -1.710882

- 0.8 is in the non rejection region, we fail to rgent H.

For each of the following scenarios, state whether the null hany assumptions that you make beyond the information that

/ (a)
$$H_0$$
: $\mu = 6$, H_a : $\mu \neq 6$, n=25, \bar{x} =5.6, s=2.5, α =0.05

(b)
$$H_0$$
: $\mu = 6$, H_a : $\mu < 6$, $n=25$, $\bar{x}=5.6$, $s=2.5$, $\alpha=0.05$

$$\rightarrow$$
 (c) H_0 : $\mu = 25$, H_a : $\mu > 25$, n=81, \bar{x} =26.4, s=3.2, α =0.01

(d)
$$H_0$$
: $\mu = 50$, H_a : $\mu \neq 50$, n=55, p-value=0.053

> (26.4-25)/(3.2/sqrt(81)) [1] 3.9375

(c) Ha: M>25 => right-tailed test.

- use critical value prothod:

$$t = \frac{(x - u)}{(3/\sqrt{n})} = \frac{(26.4 - 25)}{(3.2/\sqrt{81})} = 3.94$$

0

> qt(1-.01,80) [1] 2.373868

$$CV = 9t(1-0.01, 80) = 2.37$$

3.94 i) in the Reject region => Regect Hs.

- p-value approach:

Proble = P(t > 3.94)= [-P(t < 3.94)]= [-Pt(3.94, df=80)]

> 1-pt(3.94,80) [1] 8.664187e-05

P-value C X
Réjert Hs. The data provide stronge evidence that
M > 25.