# Max Wisniewski, Alexander Steen

Tutor: Sebastian Scherer

## Aufgabe 1

**a**)

b) Testweise wurde  $f=\sin$  gewählt und auf dem Intervall  $[0,2\pi]$  geplottet. Vergleichend wurde ebenfalls  $s_{20}$  geplottet.



Abbildung 1: Plot von sin bzw.  $s_{20}$ .

**c**)

d) "[...] die Quadraturformeln heissen Gauss-Formeln bzw. man spricht von Gauss-Quadratur." (Wensch, Jörg: Computerorientiertes Rechnen Skript, Seite 38).

## Aufgabe 2

 $\mathbf{a)} \ \dot{x}(t) = 2x(t)$ 

(i) Gewöhnlich: Es treten nur Ableitungen nach einer Variablen auf

(ii) Linear: Gilt, da für Lösungen f, g gilt:  $(\alpha f + \beta g)' = \alpha f' + \beta g' = \alpha 2f + \beta 2g = 2(\alpha f + \alpha g)$ . Damit sind alle Linearkombinationen von Lösungen wieder Lösungen.

(iii) 1. Ordnung: Es treten nur Ableitung der 1. Ordnung auf.  $\Rightarrow$  Gewöhnliche, lineare Differentialgleichung 1. Ordnung.

**b)**  $\dot{x}(t) = 4x(t)^2 + x(t)$ 

Linearität nicht gegeben:

Für Lösungen f, g gilt:  $(f+g)' = f'+g' = 4f^2+f+4g^2+g = 4(f^2+g^2)+(f+g)$ . Da i.A.  $(f+g)^2 \neq (f^2+g^2)$ , ist (f+g) keine Lösung der Differentialgleichung.

c)  $\ddot{x}(t) = \lambda x(t) + 1$ 

Die Differentialgleichung ist nicht 1. Ordnung, da Ableitungen der 2. Ordnung auftreten.

## Aufgabe 3

Zu lösendes System von Differentialgleichungen:

$$\begin{array}{rcl} x' & = & y \\ y' & = & -y \end{array}$$

#### Lösung:

Wie aus dem Skript bekannt, lässt sich die Differentialgleichung y'=-y durch  $\alpha e^{-t}, \alpha \in \mathbb{R}$  lösen. Setzen wir den Anfangswert y(0)=1 ein, ergibt sich für  $\alpha$ :  $1=y(0)=\alpha e^0=\alpha \Leftrightarrow \alpha=1$ . Also löst  $y(t)=e^{-t}$  den unteren Teil des Gleichungssystems.

Suchen wir nun eine Funktion x(t), mit  $x'(t) = y(t) = e^{-t}$ . Durch Integrieren erhalten wir als Lösung  $x(t) = -e^{-t} + c$ ,  $c \in \mathbb{R}$ . Durch Einsetzen des Anfangswertes erhalten wir schließlich:  $0 = x(0) = -e^0 + c = -1 + c \Leftrightarrow c = 1$ .

Also ist die Lösung des Systems von Differentialgleichungen:

$$\begin{array}{rcl} x(t) & = & 1 - e^{-t} \\ y(t) & = & e^{-t} \end{array}$$