

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 1 022 245 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

26.07.2000 Patentblatt 2000/30

(51) Int. Cl.⁷: B65H 19/10

(21) Anmeldenummer: 00100772.3

(22) Anmeldetag: 15.01.2000

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 21.01.1999 DE 19902179

(71) Anmelder:
Beiersdorf Aktiengesellschaft
20245 Hamburg (DE)

(72) Erfinder:

- Storbeck, Reinhard
22457 Hamburg (DE)
- Wienberg, Uwe
25436 Uetersen (DE)
- Elkmeier, Markus
22297 Halstenbek (DE)
- Wieck, Andreas
25469 Halstenbek (DE)

(54) Klebeband

(57) Klebeband mit klebender Vorderseite und nichtklebender Rückseite sowie zwei Längskanten für den fliegenden Rollenwechsel, mit

- a) einem Papierträger (P1), der einseitig an der Vorderseite mit einer Selbstklebemasse (N1) beschichtet ist, wobei
- b) ein Teil der nichtklebenden Rückseite des Papierträgers (P1) mit einem doppelseitig klebenden Klebeband (DO) ausgerüstet ist, welches einerseits einen Papierträger (P2) aus Spaltkarton aufweist, der beidseitig mit Selbstklebemasse (N2, N3) beschichtet ist dadurch gekennzeichnet, daß
- c) das doppelseitig klebende Klebeband (DO) in einem Abstand (V) von 0,5 bis 15 mm von der einen Längskante (LK) des Klebebandes angeordnet ist.

Fig. 1

EP 1 022 245 A2

Beschreibung

- [0001] Die Erfindung betrifft ein Klebeband für den fliegenden Rollenwechsel sowie ein Spliceverfahren unter Einsatz eines solchen Klebebandes, insbesondere in Papierveredelungsmaschinen, Druckmaschinen und dergleichen.
- [0002] Der fliegende Rollenwechsel ist in Papierfabriken oder dergleichen ein gängiges Verfahren, um ohne die schnell laufenden Maschinen anhalten zu müssen eine alte, fast abgespulte Papierrolle durch eine neue zu ersetzen. Dabei werden doppelseitig klebende Selbstklebebänder, sogenannte Fixe, eingesetzt, die einerseits hochklebrig und -tackig sind, andererseits aber aufgrund ihrer wasserlöslichen Selbstklebemassen und Papierträger beim Wiedereinsatz der Papierabfälle in der Papiermaschine nicht stören. Diese Fixe werden in kunstvoller Weise in Zackenform am Bahnanfang verklebt, eine Prozedur, die erfahrene Fachleute verlangt, wobei für den gesamten Arbeitsvorgang aufgrund der schnell laufenden Maschinen nur etwa 4-5 Minuten Zeit bleibt.
- [0003] Obgleich diese Technologie bewährt und eingespielt ist, hat sie doch einige Nachteile. So ist Fachpersonal nötig, Hektik ist vorgegeben, und die Verklebungen sind auch relativ dick, da jeweils zwei Papierlagen und das dazwischen liegende Fixe das Resultat sind: ein in der Papierindustrie unerwünschtes Resultat.
- [0004] Für diese „Spitzenverklebung“ beim fliegenden Rollenwechsel gibt es diverse Produkte im Handel, sogenannte Fixe, die neben einem Papierträger eine wasserlösliche Selbstklebemasse beidseits beschichtet aufweisen. Solche Klebebänder sind u.a. unter der Bezeichnung tesafix (Beiersdorf) im Handel.
- [0005] Im Stand der Technik sind vielfältige Klebebänder für derartige Zwecke beschrieben. So offenbart EP 418 527 A2 ein Verfahren zum Vorbereiten einer Rolle bahnförmigen Bedruckstoffs für automatische Rollenwechsler und einen dafür geeigneten Klebstreifen. Auch DE 40 33 900 A1 beschreibt ein für eine Splice-Stelle geeignetes Klebeband. Nachteilig sind jedoch klebende Bereiche, die nach erfolgtem Spliceverfahren offen liegen.
- [0006] Das nichtklebende Abdecken von sonst offen liegenden klebenden Bereichen lehrt US 5.702.555 für mehr statische Belastungen einer Sicherung eines Rollenanfangs, während DE 196 32 689 A2 ein derartiges Klebeband für dynamische Belastung beim Spliceverfahren offenbart, dessen Papierträger spaltet und mit seinen Resten die Klebemassen abdeckt.
- [0007] Von dieser Art ist auch ein Klebeband gemäß DE 196 28 317 A1, ebenfalls für ein Spliceverfahren. Dieses Klebeband trägt an seiner nichtklebenden Rückseite ein doppelseitig klebendes Klebeband (6), das einen splicefreudigen Papierträger (7) aufweist, der beim Spliceverfahren spaltet (7a, 7b, Figur 3) und die jeweiligen Kleber abdeckt. Dieses doppelseitig klebende Klebeband (6) schließt seitlich mit der einen Seite des Papierträgers (2) ab, ist also längs einer der Längskanten des Klebebandes angeordnet.
- [0008] In der Praxis zeigen sich auch bei diesen Klebebändern Nachteile, zunächst dadurch, daß ein Splice nicht gelingt vielmehr als Reißer endet, ohne daß ein Grund dafür ersichtlich wäre.
- [0009] Aufgabe der Erfindung war es, hier Abhilfe zu schaffen.
- [0010] Gelöst wird dies durch ein Klebeband und Spliceverfahren, wie dies im Einzelnen in den Ansprüchen näher gekennzeichnet ist. Um Wiederholungen zu vermeiden, wird auf die Ansprüche ausdrücklich Bezug genommen, insbesondere auch betreffend bevorzugte Ausführungsformen.
- [0011] Erfindungsgemäß gelingen Splice ohne Reißer, wobei das zentrale Merkmal der vorgesehene Versatz bzw. der Abstand V des doppelseitigen Klebebandes DO von der Längskante LK des Klebebandes darstellt. Anhand von Vergleichsversuchen, die in der Tabelle dargelegt sind, zeigt sich dieser Erfolg gegenüber dem Stand der Technik.

40

Spaltspapier

45

- [0012] Das spaltbare Papier hat vorteilhaft einen deutlich kleineren Spaltwiderstand als der Papierträger, der die Zugkräfte aufnehmen muß. Eine ausreichende Differenz ist hilfreich für das Funktionsprinzip des erfindungsgemäßen Produktes.
- [0013] Als Spaltspapiere kommen zum Beispiel folgende Papiere oder Papierverbundsysteme in Frage:

- Duplex Papiere: Diese Papiere sind handelsüblich und werden z.B. bei der Herstellung von Filtermaterialien und Tapeten eingesetzt.
- Leicht spaltende Papiere: Die Einstellung der Spaltarbeit erfolgt über die Verdichtung der Papierfaserstruktur. Je geringer die Verdichtung ist, desto geringer ist die Spaltarbeit. Geeignete Papiertypen sind beispielsweise einseitig glatte Naturpapiere oder auch hochsatinierte Kraftpapiere.
- Geleimte Papiersysteme: Die Spaltarbeit wird über die Chemie des Haftleims eingestellt. Der Leim soll in das Papier nur unwesentlich eindringen sein.

55

- [0014] Hilfreich sind für die Ziele der vorliegenden Erfindung auch saubere Schnittkanten. Beim Schneidvorgang sollen keine Masseausquetschungen entstehen. Die spaltfähige Ansatzfläche des Spaltmaterials soll insbesondere nicht mit Haftklebemasse bedeckt werden.

EP 1 022 245 A2

[0015] Die Einrückung des spaltbaren Materials bzw. der Abstand V soll erfindungsgemäß 0,5 - 15 mm betragen, insbesondere 1 - 7 mm und ganz besonders 1,5 mm - 3,5 mm.

[0016] Als Spaltspapier kommen diverse spaltbare Papiersysteme in Frage, wie

- 5 • Duplexpapiere (definiert zusammen laminierte Papiere, der Spaltvorgang verläuft extrem homogen, es entstehen keine Spannungsspitzen, z.B. durch inhomogene Verdichtung. Diese Papiere werden zur Herstellung von Tapeten und Filzern eingesetzt.)
- Leicht spaltbare Papiersysteme
- Definiert zusammen geleimte hochverdichtete Papiere (⇒ Papier mit einer hoher Spaltfestigkeit). Die Leimung kann beispielsweise mit Stärke, stärkehaltigen Derivaten, Tapetenkleister auf Basis von Methylcellulose (Methylan®, Henkel KGaA, Düsseldorf) aber auch auf Basis von Polyvinylalkoholderivaten erfolgen.
- 10 • Die Breite des Trägers aus Spaltspapier beträgt bevorzugt 3 - 20 mm, insbesondere 6 - 12 mm.

[0017] Als Selbstklebemassen kommen alle Basistypen von Haftklebemasse in Frage, insbesondere

- 15 • Acrylate (wasserlöslich und nicht wasserlöslich)
- Naturkautschukmassen, Synthesekautschukmassen
-

20 Das Spliceverfahren, hier die Verklebung mit dem Splicetape kann insbesondere so erfolgen, daß das Klebeband rechtwinklig zur laufenden Bahn verklebt wird (Nachteil: Spaltbares Papiersystem muß in Sekundenbruchteilen komplett gespalten), aber auch im spitzen Winkel (Vorteil: Spaltvorgang läuft als Welle durch das Klebeband), insbesondere bis zu 25°, vor allem bis zu 15°.

25 [0018] Die Zeichnung zeigt eine schematische Darstellung eines erfindungsgemäßen Klebebandes im Querschnitt und soll die Erfindung damit beispielhaft erläutern. Die Bezugzeichen sind in den Ansprüchen erläutert.

Prüfmethoden

Messung der Spaltfestigkeit von Papieren

Zweck- und Anwendungsbereich

[0019] Prüfung der Festigkeit von Papier oder anderen aus Fasern aufgebauten Materialien in z-Richtung. Ermittelt wird die Spaltfestigkeit.

35 Die Spaltfestigkeit ist die Kraft, die zu überwinden ist um einen Papierkörper in z-Richtung zu spalten.

Prinzip der Methode

40 [0020] Zwei Klebebänder werden gegenüberliegend auf dem zu prüfenden Papier aufgebracht und an der Zugprüfmaschine in einem Winkel von 180° auseinander gezogen. Die dabei zu überwindende Kraft zum Spalten des Papiers ist die Spaltfestigkeit.

Geräte und Prüfklima

45 [0021] Zugprüfmaschine
Klingen- oder Streifenschneider 15mm Breite
Handaufroller 2kg
Prüfklima: 23 +/- 1°C, 50+/- 5% rel. Feuchte

50 Materialien

[0022] Klebeband wie z.B. testband 7475
Breite 20 mm, Streifen ca. 20 cm Länge

55 Prüfmuster

[0023] DIN A4 Blätter
Die Muster müssen mind. 16 h im Normklima konditionieren.

Versuchsdurchführung

- [0024] Zwei Klebebänder werden von beiden Seiten gegenüberliegend auf das zu prüfende Papier aufgelegt und leicht mit dem Finger angestrichen, um Lufteinschlüsse zu vermeiden.
- 5 Danach wird mit dem Handroller je Seite 2* zügig über den Verbund gerollt um eine einwandfreie Verklebungsfestigkeit zu erreichen.
Die Verklebung ist so herzustellen, daß auf einer Seite die Enden des Klebebandes über den Prüfkörper herausragen und unter Falten auf sich selbst zu einem Anfasser verklebt werden können.
- [0025] Die Prüfrichtung kann je nach Prüfziel in Laufrichtung oder quer zur Laufrichtung des Prüfkörpers erfolgen.
- 10 [0026] Mit dem Stahllineal werden mittig des Verbundes 15 mm Breite Streifen in einer Länge von ca. 20 cm herausgeschnitten. Sodann werden die beiden Anfasser des übergagenden Klebebandes per Hand auseinandergezogen, bis ein Spalten des Papierprüfings erkennbar ist.
Dann wird der Prüfkörper an den Anfassern frei hängend oben und unten in die Zugprüfmaschine eingespannt und der Rest des Streifens unter konstanter Geschwindigkeit bei 300 mm/min auseinandergezogen.
- 15 Es ist bei sehr dünnen Papieren darauf zu achten, daß das Ergebnis nicht dadurch verfälscht wird, daß die gegenüberliegenden Kanten des Klebebandes am Rand des Prüfkörpers Kontakt haben und verkleben.

Auswertung und Beurteilung

- 20 [0027] Die Spaltfestigkeit des Papiers wird in cN/cm angegeben.
Aus 5 ermittelten Werte wird der Mittelwert angegeben.

Anwendungsbeispiele

- 25 [0028] Die nachfolgenden Beispiele beschreiben erprobte Versuchsprodukte für den fliegenden Rollenwechsel, die Splicebedingungen und die Spliceergebnisse. Die erprobten Produktaufbauten sind in Tabelle 1 dargestellt.
[0029] Die Zeichnung beschreibt den dazugehörigen Produktaufbau.

Beschreibung der eingesetzten Papiersysteme:

- 30 [0030] Folgende Streichrohpapiere wurden für die Spliceversuche eingesetzt:

- [A] Streichrohpapier (Flächengewicht 33 g/m², Dicke 58 µm)
z.B.: Stora Kabel GmbH, 58099 Hagen
- 35 • [B] Streichrohpapier (Flächengewicht 60 g/m², Dicke 80 µm)
z.B.: Stora Uetersen GmbH, 25436 Uetersen
- [C] Streichrohpapier (Flächengewicht 134 g/m², Dicke 167 µm)
40 z.B.: Sappi Alfeld AG, 31061 Alfeld

Folgende Spaltläufe wurden für die Versuchsprodukte eingesetzt:

- [D] Duplex Filterpapier
- 45 • Flächengewicht 51 g/m², Dicke 90 µm
Spaltarbeit quer 34 - 44 cN/ cm

- [E] Einseitig glattes Naturpapier
Flächengewicht 57 g/m², Dicke 74 µm

50 Spaltarbeit quer 33 - 38 cN/ cm

- [F] Hochsatinisiertes Kraftpapier
Flächengewicht 50 g/m², Dicke 57 µm
Spaltarbeit quer 40 - 45 cN/ cm

- 55 • [G] Geleimtes Papierverbundsystem mit definierter Spaltarbeit.
Zwei maschinenglätte Rohpapiere werden mit einem stärkehaltigen Leim zusammengeklebt. Flächengewicht jeweils 54 g/m², Dicke 66 µm. Die Spaltarbeit des Verbundes quer beträgt 28 - 32 cN/ cm.

EP 1 022 245 A2

Folgende Trägerpapiere wurden für die Versuchsprodukte eingesetzt:

- **[H] Maschinenglattes Rohpapier**
Flächengewicht 54 g/m², Dicke 66 µm, Höchstzugkraft quer 40 N/ 15 mm
- 5 • **[I] Einseitig gestrichenes glattes Rohpapier**
Flächengewicht 59 g/m², Dicke 52 µm, Höchstzugkraft quer 30 N/ 15 mm
- 10 • **[J] Beidseitig gestrichenes, verdichtetes, bedruckbares Decorepapier**
Flächengewicht 80 g/m², Dicke 62 µm, Höchstzugkraft quer 30 N/ 15 mm
- 15 • **[K] Einseitig doppel gestrichenes, holzfreies, hochglänzendes Kraftpapier**
Flächengewicht 63 g/m², Dicke 51 µm, Höchstzugkraft quer 30 N/ 15 mm

15

20

25

30

35

40

45

50

55

5
10
15
20
25
30
35
40
45
50
55

EP 1 022 245 A2

Tabelle 1: Übersicht der technischen Daten der eingesetzten Versuchsstoffe und Versuchsparameter.

Versuche Parameter	Einheit	Zeichnung	Beispiel 1	Beispiel 2	Beispiel 3	Beispiel 4	Beispiel 5	Beispiel 6	Beispiel 7	Beispiel 8	Beispiel 9	Beispiel 10	Beispiel 11	
Breite A+B	mm	A + B	75	75	75	80	80	75	75	75	75	75	75	
Breite A	mm	A	25	25	25	30	30	25	25	25	25	25	25	
Breite B	mm	B	50	50	50	50	50	50	50	50	50	50	50	
Breite C	mm	C	12	12	12	9	9	6	6	9	9	9	9	
Dicke Trennmaterial 1)	µm	L	90	90	90	90	90	90	90	90	90	90	90	
Abzugskraft Trennmaterial 2)	cN/cm	L	4	4	4	4	4	4	4	4	4	4	4	
Massenauftrag Trägerpapier 3)	g/m ²	N 1	50	50	55	55	60	60	50	50	50	50	50	
Typ Trägerpapier (Typ)	g/m ²	P 1	H	H	H	K	J	I	H	H	H	H	H	
Dicke Trägerpapier (TP) 1)	µm	P 1	68	68	68	51	62	62	66	66	66	66	66	
Höchstzugkraft quer TP 4)	N/15 mm	P 1	40	40	40	30	30	30	40	40	40	40	40	
Massenauftrag Spaltlpapier 3)	g/m ²	N 2	30	30	30	30	30	30	30	30	30	30	30	
Typ Spaltlpapier (Typ)	g/m ²	P 2	D	D	F	E	F	D	D	D	D	D	G	
Spaltfestigkeit Spaltlpapier 5)	cN/cm	P 2	34 - 44	34 - 44	40 - 45	33 - 38	40 - 45	34 - 44	34 - 44	34 - 44	34 - 44	34 - 44	34 - 44	34 - 44
Massenauftrag Spaltlpapier 3)	g/m ²	N 3	30	30	30	30	30	30	30	30	30	30	30	35
Versatz	mm	V	0	1,5	0	2	1	2	2	2	0	2	1,5	
Parameter Spliceversuche														
zu spließendes Papier (Typ)	g/m ²		B	B	B	A	B	C	B	B	C	C	C	
Bahnungsgeschwindigkeit	m/min		1200	1200	1200	800	1200	1200	540	540	950	800	800	
Spaltwinkel 6)	°		0	0	0	0	0	0	10	5	5	5	5	
Arbeitsbreite	cm		100	100	100	100	100	100	100	100	160	160	375	
Resultat der Spliceversuche														
Splice erfolgreich			X	X	X	X	X	X	X	X	X	X	X	
Splice mängelhaft			X	X	X	X	X	X	X	X	X	X	X	

- 1) Dicke nach DIN EN 20534, d = 18 mm, 20 N
- 2) Abzugskraft nach FINAT FTM 3
- 3) Massenauftrag nach FINAT FTM 12
- 4) Höchstzugkraft nach DIN EN ISO 1924-2 (300mm/min, 100 mm Einspannlänge)
- 5) Meßmethode Spaltfestigkeit wie im Text beschrieben
- 6) Spaltwinkel: rechtwinklig (= 0°) bis annähernd rechtwinklig (= max 15°) zur laufenden Papierbahn.

Patentansprüche

1. Klebeband mit klebender Vorderseite und nichtklebender Rückseite sowie zwei Längskanten für den fliegenden Rollenwechsel, mit
 - 5 a) einem Papierträger (P1), der einseitig an der Vorderseite mit einer Selbstklebemasse (N1) beschichtet ist wobei
 - 10 b) ein Teil der nichtklebenden Rückseite des Papierträgers (P1) mit einem doppelseitig klebenden Klebeband (DO) ausgerüstet ist welches einerseits einen Papierträger (P2) aus Spaltspapier aufweist, der beidseitig mit Selbstklebemasse (N2, N3) beschichtet ist, dadurch gekennzeichnet, daß
 - 15 c) das doppelseitig klebende Klebeband (DO) in einem Abstand (V) von 0,5 bis 15 mm von der einen Längskante (LK) des Klebebandes angeordnet ist.
2. Klebeband nach Anspruch 1, dadurch gekennzeichnet daß der Abstand (V) 1 bis 7 mm beträgt.
3. Klebeband nach Anspruch 1, dadurch gekennzeichnet daß der Abstand (V) 1,5 bis 3,5 mm beträgt.
- 20 4. Klebeband nach Anspruch 1, dadurch gekennzeichnet, daß die Selbstklebemassen (N1, N2, N3) Haftklebemassen auf Basis von Acrylaten oder Kautschuk sind.
5. Klebeband nach Anspruch 1, dadurch gekennzeichnet, daß die Selbstklebemassen (N1, N2, N3) wasserlösliche Haftklebemassen auf Basis von Acrylaten sind.
- 25 6. Klebeband nach Anspruch 1, dadurch gekennzeichnet, daß die Selbstklebemasse (N1) mit einem Trennmaterial (L) abgedeckt ist.
7. Klebeband nach Anspruch 6, dadurch gekennzeichnet daß das Trennmaterial (L) mit einem Schlitz (SC) versehen ist.
- 30 8. Klebeband nach Anspruch 7, dadurch gekennzeichnet daß der Schlitz (SC) in einem Abstand von 20 bis 40 mm von der Längskante (LK 2) des Klebebandes angeordnet ist, welche der Längskante (LK1) gegenüber liegt, in deren Nähe das doppelseitig klebende Klebeband (DO) angeordnet ist.
9. Klebeband nach Anspruch 1, dadurch gekennzeichnet daß das doppelseitig klebende Klebeband (DO) 3 bis 20 mm, insbesondere 6 bis 12 mm breit ist.
- 35 10. Klebeband nach Anspruch 1, dadurch gekennzeichnet, daß die Spaltfestigkeit des Papierträgers (P2) 20 bis 70 cN/cm, insbesondere 22 bis 60 cN/cm, ganz besonders 25 bis 50 cN/cm beträgt.
11. Spliceverfahren, bei dem der obersten Papierbahn einer Papierrolle ein Klebeband nach einem der Ansprüche 1 - 10 teilweise hinterklebt wird, während das auf der Rückseite des Klebebandes befindliche doppelseitig klebende Klebeband seinerseits mit der darunter liegenden Papierbahn verklebt und damit die oberste Papierbahn sichert, wobei zunächst nur ein Teil des gegebenenfalls auf der Selbstklebemasse befindlichen Trennmaterials abgezogen wurde, so daß der zum Spliceverfahren benötigte Teil der Selbstklebemasse noch mit Trennmaterial abgedeckt ist und die Papierrolle in diesem Zustand keine freie klebende Fläche aufweist, worauf zur abschließenden Vorbereitung des Spliceverfahrens das gegebenenfalls noch vorhandene restliche Trennmaterial entfernt wird, worauf die ausgerüstete neue Papierrolle neben eine fast gänzlich abgespulte, zu ersetzende alte Papierrolle plaziert wird und auf die gleiche Drehgeschwindigkeit wie diese beschleunigt wird, dann gegen die alte Papierbahn gedrückt wird, wobei die offenliegende Selbstklebemasse des Klebebandes mit der alten Papierbahn bei im wesentlichen gleichen Geschwindigkeiten der Papierbahnen verklebt, während zugleich der Papierträger aus Spaltspapier spaltet und beide Selbstklebemassen, die auf ihm beschichtet waren, mit seinen Resten nichtklebend abdeckt.
- 50 12. Spliceverfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Klebeband rechtwinklig zur laufenden Papierbahn verklebt wird oder aber im spitzen Winkel von bis zu 25°, insbesondere bis zu 15°.

Fig. 1

