CSE260 Lab Report

Experiment 2 : Applications of Bootean tundamental Logic butter. Algebra.

Submitted by:

Submitted by o Name: Shihab Muhtusimas : mon

ID: 21301610

sec: 01

Date: 6-11-202105/11/08:5/11

1 Experiment name: Applications of Boolean Algebra.

2 Objective: 1. To investigate the reales of Boolean algebra.

2 To gain experience working with practical cincuits.

3 To simplify a complex function using Boolean algebra.

3 Reoyuined components and Evuipments:

1. NAND Crate

2. Logic state (input) (siA)

3. Led-blue (ontput)

4. Ground.

4. Diagram of Cincuit/ Experimental setup:

5. Results and Discussions:

Input		owle -			ontput
Α	B	(AB)	(A(AB)')'	(B(AB))	Y
0	0	l	1		0
0	1	1	INC	00	nto I pa
1	0	1	0	1	pinoni
1	1	0	1	1	0
		· · · · · · · · · · · · · · · · · · ·			

The Boolean equation of the output is, ((A(AB)')' · (B(AB)')')' simplifying the bootean extuation using De morgan's law, ((A(AB)')'.(B(AB)')') ((A(AB)')')' + ((B(AB)')')' [AB)'= A'+B') A(AB)' + B(AB)' [A"=A] A(A'+B') + B (A'+B') = (A.A') + (AB') + (A'B)+ (B.B') [A.A'=0] This is the simplified Boolean eoruation. The circuits function output represents xOR trate. Hence, 9+ is identical to x-or rate.