Insper

Lógica da Computação - 2019/2

Aula 26/T12 - 11/Nov/2019

Raul Ikeda - rauligs@insper.edu.br

Objetivos

1. Lógica Proposicional

Expressando Ideias

Como visto ao longo do curso, alguns tipos de linguagens, incluindo a natural, são suscetíveis à ambiguidades gramaticais e erros de interpretação semântica. Contudo, determinadas classes, as regulares e livres de contexto não ambíguas, possuem regras de produção bem definidas e sem duplo sentido.

A Lógica Proposicional (Lp) pode ser organizada como uma linguagem não ambígua e com um conjunto bem limitado de regras de produção. A Lp, ou cálculo sentencial, assim como a Lógica de Predicados, faz parte da Lógica Matemática, e baseia-se em proposições que podem assumir dois valores: verdadeiro ou falso. Isso permite analisar e concluir se um determinado conjunto de proposições simples compõem outras proposições mais complexas.

Definindo Lp como Linguagem

>> Ver Corrêa da Silva et al. Pag. 4.

Interessante notar que os quantificadores \forall , \exists e seus complementos não fazem parte da Lp e sim da Lógica de Primeira Ordem.

Revisitando Tabelas Verdade

>> Ver Corrêa da Silva et al. Pag. 4.

SAT II - A missão

Exemplo: Construir a tabela verdade para: $A = (p \lor q) \land (\neg p \lor \neg q)$

- Uma fórmula A é ${\bf satisfazível}$ se alguma linha da coluna A contiver 1.
- Uma fórmula A é **válida** ou uma **TAUTOLOGIA** se todas as linhas da coluna A contiverem 1.
- $\bullet\;$ Uma fórmula A é falsificável se alguma linha da coluna A contiver 0.
- Uma fórmula A é **insatisfazível** se todas as linhas da coluna A contiverem 0.
- 1. Quais são consequências das definições acima:

>> Ver Corrêa da Silva et al. Pag. 13.

Conseq	uências	Lógicas

Definição: Dizemos que uma fórmula B é uma **consequência lógica** de A, ou $A \models B$, se A implicar logicamente em B. Ou seja, se para todos os possíveis valores dos átomos de A e B, o resultado de A implicar no resultado de B. **Exemplo**: $p \lor q \to r \models p \to r$

>> Ver Corrêa da Silva et al. Pag. 19.

Equivalências Notáveis

>> Ver Corrêa da Silva et al. Pag. 22.

Sistema Dedutivo Axiomático

Definição: Axiomas são fórmulas lógicas que são consideradas verdades básicas.

Axiomas da Lógica Proposicional Clássica:

>> Ver Corrêa da Silva et al. Pag. 32.

Definição: Regras de inferência permitem inferir novas fórmulas a partir de outras fórmulas já inferidas.

Regra de inferência: Modus Ponens: $A \to B, \ A \vdash B$

Definição (Correia et al. Pag. 33): **Dedução** é uma sequência de fórmulas $A_1, A_2, ..., A_n$ tal que cada fórmula na sequência ou é uma **instância de um axioma** ou é obtida de fórmulas anteriores por meio de **regras de inferência**.

Definição (Correia et al. Pag. 33): **Teorema** é uma fórmula tal que, partindo de uma **teoria** ou **conjunto de hipóteses** Γ , existe uma dedução $A_1, A_2, ..., A_n = A$, tal que $\Gamma \vdash A$.

Exemplo: $p \to q, \ p \to r, \ p \vdash q \wedge r$

>> Ver Corrêa da Silva et al. Pag. 35.

Exercício: Derivar as regras de inferência abaixo.

- 1. Modus Tollens: $p \to q, \neg q \vdash \neg p$
- 2. Silogismo Hipotético: $p \rightarrow q, \ q \rightarrow r \vdash p \rightarrow q$
- 3. Reductio ad absurdum: $p \rightarrow q, \ p \rightarrow \neg \ q \vdash \neg \ p$
- 4. Resolução: $p \lor q, \neg p \lor r \vdash q \lor r$

 $Ver\ mais\ em:\ https://pt.wikipedia.org/wiki/Lista_de_regras_de_infer\%C3\%AAncia$

Lista Adicional de Exercícios

 $\bullet\,$ Corrêa da Silva et al. Exercícios: 1.6, 1.7, 1.9, 1.14, 1.20 e 1.24

Próxima Quarta: Corrêa e Silva et al. Cap. 2

- 1. Teorema da Dedução
- 2. Teorema da Incompletude de Gödel
- 3. Lógica de Primeira Ordem