Induction Statique

#chapitre30 #electromagnetique #magnetique #electricite

Auto-induction

Inductance propre

Flux propre et flux appliqué

Flux propre ϕ_n

Le circuit génère un flux magnétique à travers lui-même.

Flux appliqué ϕ_a

Flux de un champ extérieur $\vec{B_{ext}}$

Flux total ϕ

$$\phi = \phi_p + \phi_a$$

- Le flux qui intervienne dans la Loi de Faraday c'est le flux total
- Alors le phénomène d'induction peut se produire sans recourir à un inducteur "extérieur".

Coefficient d'auto-induction L

$$\phi_p = L imes i(t)$$

- L ne dépend que de la géométrie du circuit. Alors constante si la géométrie ne varie pas.
- Unité usuelle : henry (H) avec 1H = 1Wb/A.
- L>0 toujours

Cas du solénoïde long

$$L=\mu_0rac{N^2}{l}S$$

- avec μ_0 la perméabilité magnétique du vide.
- avec S la surface de d'une spire

Force électromotrice auto-induite

Déduit de la Loi de Faraday

- Convention générateur : $\boxed{e_p(t) = -L \dfrac{di}{dt}}$
- Convention récepteur : $u(t) = L rac{di}{dt}$

Etude énergétique

$$E_m(t) = rac{1}{2}Li^2$$

Induction mutuelle

On a deux circuits C_1 et C_2 d'inductances propres L_1 et L_2 et parcourus par des courantes $i_1(t)$ et $i_2(t)$

Coefficient d'induction mutuelle M

$$egin{aligned} \Phi_{1 o 2} &= M imes i_1(t) \ \Phi_{2 o 1} &= M imes i_2(t) \end{aligned} M$$
 exprimé en Henry

- Dépend de la géométrie des deux circuits et de la position et orientation relative entre eux.
- Positif si le flux appliqué s'ajoute au flux propre, négative sinon.

Influence totale entre deux bobines longues

Deux circuits sont en influence totale lorsque chacun capte l'integralité du flux magnétique envoyé par l'autre.

$$\bullet \ \ M=L_1L_2$$

$$ullet \ |M| = \mu_0 rac{N_1 N_2}{\sqrt{l_1 l_2}} S$$

• Dans le cas où il n'y a pas d'influence totale : $|M| = k\sqrt{L_1L_2}$; $0 \le k \le 1$

Circuits couplés

Etablissement du système d'équations couplées

$$egin{cases} e_1(t) = -L_1rac{di_1}{dt}-Mrac{di_2}{dt} \ e_2(t) = -L_2rac{di_2}{dt}-Mrac{di_1}{dt} \end{cases}$$

Régime sinusoïdal forcé

$$egin{align} rac{E_g}{Z} &= rac{Z}{Z} imes rac{I_1}{2} \ &= R_1 + j \omega L_1 + rac{(\omega M)^2}{R_2 + j \omega L_2} \ \end{matrix}$$

 Donc du POV du circuit n°1, la bobine se comporte comme un dipôle dont l'impédance complexe dépend des caractéristiques de deux circuits et leur positions relatives.

Etude énergétique

$$E_m(t) = rac{1}{2} L_1 i_1^2 + rac{1}{2} L_2 i_2^2 + M i^1 i^2$$

Transformateur électrique

Système électrique utilisé pour modifier un signal électrique alternatif en un signal de même forme et même fréquence mais d'amplitudes de tensions et de courants différents.

Loi de tensions

$$m=rac{v_2(t)}{v_1(t)}=rac{N_2}{N_1}$$