Examenul de bacalaureat național 2014 Proba E. c)

Matematică *M_tehnologic* Simulare pentru elevii clasei a XI-a

Barem de evaluare și de notare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I		(30 de puncte)	
1.	m+8=4-2	2p	
	m = -6	3p	
2.	$x^2 - 3x + 2 = 2 \Rightarrow x^2 - 3x = 0$	3p	
	$x_1 = 0, x_2 = 3$	2 p	
3.	$2^{3x} = 2^{x-2}$	2p	
	x = -1	3 p	
4.	$\frac{5}{100} \cdot x = 3000$, unde x este profitul anual al firmei	2p	
	x = 60000 de lei	3p	
5.	$A(a,2) \in d \Rightarrow a-2\cdot 2+1=0$	2p	
	a=3	3р	
6.	BC = 5	3p	
	$\sin B = \frac{AC}{BC} = \frac{4}{5}$	2p	

SUBI	SUBIECTUL al II-lea (30 de puncte)		
1.a)	d = 4 + 16 + 3 - 12 - 8 - 2 =	3p	
	=23-22=1	2p	
b)	$D(a) = \begin{vmatrix} 4-a & a-1 \\ a+1 & 4-a \end{vmatrix} = (4-a)^2 - (a-1)(a+1) = 16-8a+a^2-a^2+1=17-8a$	3p	
	$1 = 17 - 8a \Leftrightarrow a = 2$	2p	
c)	$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & 1 \\ 3 & m & 1 \end{vmatrix} = m - 7$	2p	
	$\begin{vmatrix} 3 & m & 1 \\ m-7 = 1 \Rightarrow m = 6 \text{ sau } m = 8 \end{vmatrix}$	3р	
2.a)	$A(2) = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} $ şi $A(-2) = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$	2p	
	$A(2) + A(-2) = \begin{pmatrix} 2 & 0 \\ 4 & 2 \end{pmatrix}$	3р	
b)	$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \cdot \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \Rightarrow \begin{pmatrix} p+2q \\ 2p+q \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$	3р	
	p=2 şi $q=1$	2p	
c)		2p	
	$x \in \mathbb{Z} \Rightarrow 1-2x$ este număr impar $\Rightarrow 1-2x \neq 0 \Rightarrow \det(A(x)) \neq 0 \Rightarrow \text{matricea } A(x) \text{ es}$	ite	
	inversabilă pentru orice număr întreg x	3 p	

SUBIECTUL al III-lea (30 de pu		ncte)
1.a)	$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x}{x^2 + 1} = \frac{1}{1^2 + 1} =$	3p
	$=\frac{1}{2}$	2p
b)	$\lim_{x \to +\infty} xf(x) = \lim_{x \to +\infty} \frac{x^2}{x^2 + 1} = \lim_{x \to +\infty} \frac{x^2}{x^2 \left(1 + \frac{1}{x^2}\right)} =$	3р
	$= \lim_{x \to +\infty} \frac{1}{1 + \frac{1}{x^2}} = 1$	2p
c)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{x^2 + 1} = 0$	3p
	Ecuația asimptotei spre $+\infty$ la graficul funcției f este $y=0$	2 p
2.a)	f(1) = -1	2p
	$f(3) = 1 \Rightarrow f(1) \cdot f(3) = -1$	3p
b)	$\lim_{\substack{x \to 2 \\ x < 2}} f(x) = \lim_{\substack{x \to 2 \\ x < 2}} (x - 2) = 0$	2p
	$\lim_{\substack{x \to 2 \\ x > 2}} f(x) = \lim_{\substack{x \to 2 \\ x > 2}} (x^2 - 4x + 4) = 0$	2p
	$f(2) = 0 \Rightarrow f$ este continuă în punctul $x = 2$	1p
c)	$f(x) = 0 \Rightarrow x = 2$	1p
	f continuă pe $\mathbb{R} \Rightarrow f$ are semn constant pe $(-\infty,2)$ și pe $(2,+\infty)$	2p
	$f(1) \cdot f(3) < 0 \Rightarrow f(a) \cdot f(b) < 0$ pentru orice $a < 2$ şi $b > 2$	2p