4 Variable K-maps (cont.)

Example: Simplify
$$F = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$+ \overline{ABCD} + \overline{ABCD}$$

With appropriate grouping:

CD^{4}	AB 00	01	11	10
00	ABCD	ĀBCD	ABCD	ABCD
01	ABCD	ABCD	ABCD	ABCD
11	ABCD	ĀBCD	ABCD	ABCD
10	ABCD	ĀBCD	ABCD	ABCD

Thus
$$F = B \cdot D + BD$$

Example: Using a K-map to write a sum of products as a product of sums. Convert $F = ABC + \overline{C}D + \overline{A}BD$ into a product of sums form.

, A	AΒ				
CD	00	01	11	10	
00	ĀBCD	$\overline{A}B\overline{C}\cdot\overline{D}$	ABCD	ABCD	
01	ĀBCD	ABCD	ABCD	ABCD	
11	—— ABCD	ĀBCD	ABCD	ABCD	
10	ABCD	ĀBCD	ABCD	ABCD	
					-

 $\overline{\overline{F}}$

\ A	AΒ			
CD^{\prime}	00	01	11	10
00	ABCD	(ABCD)	ABCD	ABCD
01	ĀBCD	ABCD	ABCD	ABCD
11	ĀBCD	ABCD	ABCD	(ABCD)
10	ABCD	(ABCD)	ABCD	(ABCD)

 $\overline{F} = \overline{C} \cdot \overline{D} + \overline{B} \cdot C + \overline{A} \cdot \overline{D}$ A sum of products form

$$F = \overline{F} = \overline{C \cdot D} + \overline{B} \cdot C + \overline{A} \cdot \overline{D}$$
$$= \overline{C} \overline{D} \overline{B} C \overline{A} \overline{D}$$
$$= (C + D)(B + \overline{C})(A + D)$$

and F is now in the Product of Sums form.

Use a Karnaugh Map to design a circuit with NAND logic

Problem: A flame detector, smoke detector and two high temperature detectors are situated in a room to produce fire detection system. Because of the number of false alarms, a fire is registered only when two or more sensors simultaneously are triggered. An output of 1 on a sensor indicates fire while 0 indicates no fire.

If the outputs of the four sensors are labeled A,B,C and D then the truth table for F (FIRE!) would look like

A	В	\mathbf{C}	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

$$F = \overline{AB}CD + \overline{AB}\overline{CD} + \overline{AB}C\overline{D} + \overline{AB}CD + A\overline{B}\cdot\overline{CD} + A\overline{B}C\overline{D} + A\overline{B}CD + AB\overline{C}D + AB\overline{C}D$$

We indicate F on a K-map

And if we group terms together

So the simplified version of F is

$$F = AB + CD + BD + AC + AD + BC$$

To eliminate the OR's

$$F = \overline{F} = \overline{AB + CD + BD + AC + AD + BC}$$
$$= \overline{AB} \overline{CD} \overline{BD} \overline{AC} \overline{AD} \overline{BC}$$

And we see we can use six 2-input NAND gates and 1 six input NAND to produce our circuit

We go to Digital Works to set up our circuit and . . .

we see we have no 6 input NAND gates available to us!

Looking at the expression again

$$F = \overline{AB} \overline{CD} \overline{BD} \overline{AC} \overline{AD} \overline{BC}$$

we realize we can "group" as follows

$$F = ABCDBDACADBC$$

A 2-input NAND, two 3-input NANDs, two 2-input NANDs (as inverters), six 2-input NANDs. Each of which is readily available!

$F = \overline{ABCDBDACADBC}$

Karnaugh Maps and don't care conditions

Example: An air conditioning system has two input sensors. One input, C, is from a cold-sensing thermostat. If the temperature is below 15° C it registers 1 (true) otherwise it registers 0 (false). The other input, H, is from a heat-sensing thermostat. If the temperature is above 22°C it registers 1 otherwise it registers 0.

Take a look at the input portion of the truth table:

C	Н	Interpretation
0	0	15 °≤ Temp ≤ 22 °
0	1	Temp >22 °
1	0	Temp<15°
1	1	Not possible, sensor failure

Often we encounter a state that cannot exist. We will refer to this as a *don't* care condition.

In terms of design, we are often free to specify the output of the function for a corresponding don't care condition.

There are of course exceptions to this: An impossible state occurring under fault conditions could indicate circuit failure. If assigning an input to a fault condition leads to a dangerous situation we are ethically bound to not assign an output which could cause harm.

For our discussion we assume we are free to assign a value of our choice as the output for a Boolean function corresponding to don't care conditions. Example: Consider the function with the following truth table

_ A	В	C	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	XXX
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	XXX
1	1	1	0	0
1	1	1	1	1

The entry of XXX indicates an impossible input condition.

CD^{A}	AB 00	01	11	10
00	ABCD	ABCD	ABCD	ABCD
01	ĀBCD	(ABCD)	XXX ABCD	XXX ABCD
11	—— ABCD	ABCD	ABCD	ABCD
10	ĀBCD	ĀBCD	ABCD	ABCD

Treating the XXX as 0's for a moment $F = \overline{A}B\overline{C}D + \overline{A}BCD + ABCD$

Which does simplify to $F = \overline{A}BD + BCD$

In this case we really don't care what the value is in positions

$$AB\overline{C}D, A\overline{B}\overline{C}D$$

So we will pick them so as to produce the most simplified expression for F.

CD^{A}	AB	0.1	1.1	10
CD	00	01	11	10
00	ABCD	ABCD	ABCD	ABCD
01	ABCD	(ABCD)	ABCD ABCD	XXX ABCD
11	ABCD	(ABCD)	ABCD	ABCD
10	ĀBCD	ĀBCD	ABCD	ABCD

And we can write F = BD