Machine Learning

SUPERVISED LEARNING

Regression

Supervised Learning

classify input into categorical output

how tall is he if his weight is 80kg?

y = w1x1

회귀분석은 최적의 w를 찾는 것

y = wx w는 무엇?

y = wx

에러제곱의 합: Square Error

에러제곱의 합의 평균: Mean Square Error

1. 절대값

2. 제곱

Mean Square Error = Cost function, RSS(w)

Cost function, RSS(w)의 최소값을 찾는 것

에러제곱의 합: Square Error

y - ŷ

에러제곱의 합의 평균: Mean Square Error

경사하강법

경사하강법

w = 0.9 RSS(w) 기울기 = +

0.9 - ?

경사하강법

$$0.9 - 0.7$$

$$RSS(w) = \frac{1}{N} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y}_i = w x_i$$

$$RSS(w) = \frac{1}{N} \sum_{i=1}^{n} (y_i - (w * x_i))^2$$

$$RSS(w_1) = \frac{1}{N} \sum_{i=1}^{n} (y_i - (w_1 * x_i))^2$$

$$(a - b)^2$$

$$\rightarrow a^2 - 2ab + b^2$$

$$\rightarrow y_i^2 - 2y_i(w * x_i) + (w * x_i)^2$$

$$\frac{\partial R(w)}{\partial w} = \frac{2}{N} \sum_{i=1}^{n} -x_i * (y_i - (w * x_i)) = -\frac{2}{N} \sum_{i=1}^{n} x_1 * (y_i - \hat{y}_i)$$

$$w = w - \alpha \frac{\partial R(w)}{\partial w}$$

α 는 learning rate

y = wx

y = wx + w₁

y = wx + w₁

 $RSS(W) \rightarrow RSS(W0, W1)$

$$RSS(w_0 + w_1) = \frac{1}{N} \sum_{i=1}^{n} (y_i - \dot{y}_i)^2$$

$$\dot{y}_i = w_0 + w_1 x_i$$

$$RSS(w_0 + w_1) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (w_0 + w_1 * x_i))^2$$

$$RSS(w_0 + w_1) = \frac{1}{N} \sum_{i=1}^{n} (y_i - (w_0 + w_1 * x_i))^2$$

$$(a - b)^2$$

$$a^2 - 2ab + b^2$$

$$y_i^2 - 2y_i(w_0 + w_1 * x_i) + (w_0 + w_1 * x_i)^2$$

변수가 두개 이상일 때의 미분?

項目目是

$$\frac{\partial R(w)}{\partial w_1} = \frac{2}{N} \sum_{i=1}^{n} -x_1 * (y_i - (w_0 + w_1 * x_i)) = -\frac{2}{N} \sum_{i=1}^{n} -x_1 * (실제값_i - 예측값_i)$$

$$w_1 = w_1 - \alpha * \frac{\partial R(w)}{\partial w_1}$$

$$w_0 = w_0 - \alpha * \frac{\partial R(w)}{\partial w_0}$$

$$y = w_0 + w_1 x$$

X	y	ŷ	
1	4	0	
2	8	0	
3	7	0	w0 = 0, w1 = 0
4	10	0	
5	11	0	

$$w_1 = w_1 - \alpha * \frac{\partial R(w)}{\partial w_1}$$

$$w_0 = w_0 - \alpha * \frac{\partial R(w)}{\partial w_0}$$

$RSS(w0, w1) \rightarrow MIN$

$$w1 = 3.4$$
 $w0 = 7.8$

$$\hat{y} = 3.4x + 7.8$$

$$x = 5$$
 $\hat{y} = 24.8$

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_n x_n$$

$$\frac{\partial R(w)}{\partial w_0}$$
, $\frac{\partial R(w)}{\partial w_1}$, $\frac{\partial R(w)}{\partial w_2}$, $\frac{\partial R(w)}{\partial w_3}$, ..., $\frac{\partial R(w)}{\partial w_n}$

사이킷런

sklearn.linear_model.LinearRegression(Parameter)

PARAMETER

- fit_intercept: True/False
 - · 디폴트는 True
 - 절편 값을 계산할 것인지 여부
 - · False는 절편이 0으로 지정

- normalize: True/False
 - •디폴트는 False
 - fit_intercept가 False인 경우 이 파라미터 무시
 - True이면 회귀를 수행하기 전 입력 데이터 세트를 정규화

사이킷런 LINEAR REGRESSION을 이용한 보스턴 주택 가격 예측

- CRIM: 지역별 범죄발생율
- ZN: 25,000 평방 피트를 초과하는 거주지역 비율
- INDUS: 비 상업 지역 넓이 비율. 에이커(4050 평방미터) 기준
- CHAS: 찰스 강에 대한 더미 변수 (강의 경계에 위치한 경우 1, 그렇지 않으면 0).
- nox: 질소 산화물 농도.
- rm: 주택 당 평균 방 개수
- Age: 1940 년 이전에 지어진 집주인 주거 주택의 비율
- dis: 5 개의 보스턴 고용 센터까지의 가중 거리.
- rad: 고속도로 접근성 지수.
- tax: \$ 10,000 당 제산세율.
- ptratio: 지역별 학생-교사 비율.
- black: 1000 (Bk-0.63) ^ 2. 지역 별 흑인 비율 (인종차별?)
- Istat: 하위 계층 비율 (기준 ?)
- medv: 집주인 주거 주택 가격 (중앙값). \$ 1000 단위

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_{13} x_{13}$$

$$\frac{\partial R(w)}{\partial w_0}$$
, $\frac{\partial R(w)}{\partial w_1}$, $\frac{\partial R(w)}{\partial w_2}$, $\frac{\partial R(w)}{\partial w_3}$, ..., $\frac{\partial R(w)}{\partial w_{13}}$

회귀평가지표

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Where, \hat{y} - predicted value of y \bar{y} - mean value of y

- MAE (Mean Absolute Error)
- MSE (Mean Squared Error)
- RMSE (Root Mean Squared Error)
- · R²
- R2이 0이 되는 경우?
- 음수가 나오는 경우?

R2이 0이 되는 경우

R2이 음수가 되는 경우?

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$$

$$S^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$$

	수현	수지	효주	세영	진구	호준	서진	지우	재석	준하
₹ (cm)	177	167	160	162	174	180	176	158	172	184

$$\mu = \frac{1}{10}(177 + 167 + 160 + 162 + 174 + 180 + 176 + 158 + 172 + 184) = 171$$

										준 하	
$ X - \mu $	6	4	11	9	3	9	5	13	1	13	74
$(X-\mu)^2$	36	16	121	81	9	81	25	169	1	169	708

$$V(X) = E((X - \mu)^2) = \frac{708}{10} = 70.8$$

$$\sigma_X = \sqrt{V(X)} = \sqrt{70.8} \approx 8.4$$

다중공선성 (MULTI-COLLINEARITY)

- 다중공선성(Multi-collinearity) 문제: 다수의 독립변수가 서로 지나치게 높은 상관관계를 가지면서 회귀계수 추정의 오류가 발생하는 문제
- 분산팽창계수(VIF, Variance Inflation Factor)를 구하여 판단
- 엄밀한 기준은 없으나 보통 10보다 크면 다중공선성이 있다고 판단(5를 기준으로 하기도 함)

- 1. 산포도&상관계수확인 너무높은상관계수(약0.9이상)은 다중공선성 의심
- 2. Tolerance를 확인

한 개의 독립변수를 종속변수로 나머지 독립변수를 독립변수로 하는 회귀분석 실시 R^2 가 1이라면 독립변수 간에 심각한 상관관계가 있음을 의미

Tolerance = 1 - R^2 → Tolerance가 0에 가까워질수록 상관성이 매우 높다

3. 분산팽창지수 (VIF: Variance Inflation Factor)

VIF = $1 / \text{tolerance} = 1 / (1-R^2)$

VIF가 크다는 것은 다중공선성이 크다

일반적으로 10보다 크면 문제가 있다고 판단(연속형 변수)

더미변수가 3보다 크면 문제 (범주형 변수)

해결책

- 1. 애초에 일어나지 않게 독립 변수를 잘 선택 (무조건 넣지 않는다)
- 2. 비슷한 피처가 연구목적 피처가 아닌 경우 피처 삭제
- 3. 주성분 분석으로 변수를 재조합 (경우에 따라 이상한 결과)
- 4. 다중공선성 발생 독립변수 합체 (평균 기준. 그러나 유의하게 나왔을 때 해석은 어떻게?)
- 5. 릿지 리그레션
- 6. Mean centring

실습

Wine quality 데이터로 linear regression 분석

다항회귀

지금까지는?

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_{13} x_{13}$$

다항회귀

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^* w_3 x_2 + w_4 x_1^2 + w_5 x_2^2$$

Ifrom Vskloanv.preprodessing import PolynomialFeatures

High Bias

Degree 4 MSE = 4.32e-02(+/-7.08e-02)

High Variance

0.407

0.043

182,815,432

편향-분산 트레이드오프 (BIAS-VARIANCE TRADE OFF)

- · Bias (편향성)
- 지도학습 알고리즘이 학습데이터 내 입력변수들과 출력변수의 관계를 잘 fitting하지 못해 발생하는 오차
- · Variance (변동성)
- · 학습데이터에 내재되어 있는 변동(fluctuation)에 의해 발생하는 오차
- 학습데이터가 모집단을 완벽하게 대표할 수 없기 때문에 발생

과소적합

균형

과대적합

- 1. 편향 감소 (Underfitting 모델인 경우)
- 더 많은 피처 추가 (파생변수 생성, 데이터 통합 등)
- 더욱 세련된 알고리즘 사용 (모델에 복잡성을 더한다)

- 2. 분산 감소 (Overfitting 모델인 경우)
- 더적은 피처 사용
- 더 많은 데이터 포인트 사용
- 제약 (regularization) 사용

- 1. 편향 감소 (Underfitting 모델인 경우)
- 더 많은 피처 추가 (파생변수 생성, 데이터 통합 등)
- 더욱 세련된 알고리즘 사용 (모델에 복잡성을 더한다)

- 2. 분산 감소 (Overfitting 모델인 경우)
- 더적은 피처 사용
- 더 많은 데이터 포인트 사용
- 제약 (regularization) 사용

Question: 다음 set 중 제약(Regularization)에 사용해야 할 데이터 셋은?

Test set

Validation set

Training set

- 모델의 overfitting 방지
- 모델의 복잡도 축소
- 모델의 파라미터 탐색

지금까지 회귀모델의 목적은?

Cost function을 최소화하는 것!

지금부터는?

규제 (Regularization)

비용함수 최소화 + 회귀계수크기제어

Linear Regression

+

규제 (Regularization)

L1 규제

Rasso Regression

L2 규제

Ridge Regression

Ridge Regression

from sklearn.linear_model import Ridge

ridge = Ridge(alpha = 10)

5 folds 의 개별 Negative MSE scores: [-12.46 -26.05 -33.07 -80.76 -33.31]

5 folds 의 개별 RMSE scores: [3.53 5.1 5.75 8.99 5.77]

5 folds 의 평균 RMSE : 5.829

5 folds 의 개별 Negative MSE scores: [-11.422 -24.294 -28.144 -74.599 -28.517]

5 folds 의 개별 RMSE scores: [3.38 4.929 5.305 8.637 5.34]

5 folds 의 평균 RMSE : 5.518

alpha 0 일 때 5 folds 의 평균 RMSE: 5.829 alpha 0.1 일 때 5 folds 의 평균 RMSE: 5.788 alpha 1 일 때 5 folds 의 평균 RMSE: 5.653 alpha 10 일 때 5 folds 의 평균 RMSE: 5.518 alpha 100 일 때 5 folds 의 평균 RMSE: 5.330

	alpha:0	alpha:0.1	alpha:1	alpha:10	alpha:100
RM	3.809865	3.818233	3.854000	3.702272	2.334536
CHAS	2.686734	2.670019	2.552393	1.952021	0.638335
RAD	0.306049	0.303515	0.290142	0.279596	0.315358
ZN	0.046420	0.046572	0.047443	0.049579	0.054496
INDUS	0.020559	0.015999	-0.008805	-0.042962	-0.052826
В	0.009312	0.009368	0.009673	0.010037	0.009393
AGE	0.000692	-0.000269	-0.005415	-0.010707	0.001212
TAX	-0.012335	-0.012421	-0.012912	-0.013993	-0.015856
CRIM	-0.108011	-0.107474	-0.104595	-0.101435	-0.102202
LSTAT	-0.524758	-0.525966	-0.533343	-0.559366	-0.660764
PTRATIO	-0.952747	-0.940759	-0.876074	-0.797945	-0.829218
DIS	-1.475567	-1.459626	-1.372654	-1.248808	-1.153390
NOX	-17.766611	-16.684645	-10.777015	-2.371619	-0.262847

Rasso Regression

from sklearn.linear_model import Lasso

alpha 0 일 때 5 folds 의 평균 RMSE: 5.829 alpha 0.1 일 때 5 folds 의 평균 RMSE: 5.788 alpha 1 일 때 5 folds 의 평균 RMSE: 5.653 alpha 10 일 때 5 folds 의 평균 RMSE: 5.518 alpha 100 일 때 5 folds 의 평균 RMSE: 5.330

L2: Ridge 규제

alpha 0.07일 때 5 폴드 세트의 평균 RMSE: 5.612 alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 5.615 alpha 0.5일 때 5 폴드 세트의 평균 RMSE: 5.669 alpha 1일 때 5 폴드 세트의 평균 RMSE: 5.776 alpha 3일 때 5 폴드 세트의 평균 RMSE: 6.189

L1: Lasso 규제

	alpha:0	alpha:0.1	alpha:1	alpha:10	alpha:100
RM	3.809865	3.818233	3.854000	3.702272	2.334536
CHAS	2.686734	2.670019	2.552393	1.952021	0.638335
RAD	0.306049	0.303515	0.290142	0.279596	0.315358
ZN	0.046420	0.046572	0.047443	0.049579	0.054496
INDUS	0.020559	0.015999	-0.008805	-0.042962	-0.052826
В	0.009312	0.009368	0.009673	0.010037	0.009393
AGE	0.000692	-0.000269	-0.005415	-0.010707	0.001212
TAX	-0.012335	-0.012421	-0.012912	-0.013993	-0.015856
CRIM	-0.108011	-0.107474	-0.104595	-0.101435	-0.102202
LSTAT	-0.524758	-0.525966	-0.533343	-0.559366	-0.660764
PTRATIO	-0.952747	-0.940759	-0.876074	-0.797945	-0.829218
DIS	-1.475567	-1.459626	-1.372654	-1.248808	-1.153390
NOX	-17.766611	-16.684645	-10.777015	-2.371619	-0.262847

	alpha:0.07	alpha:0.1	alpha:0.5	alpha:1	alpha:3
RM	3.789725	3.703202	2.498212	0.949811	0.000000
CHAS	1.434343	0.955190	0.000000	0.000000	0.000000
RAD	0.270936	0.274707	0.277451	0.264206	0.061864
ZN	0.049059	0.049211	0.049544	0.049165	0.037231
В	0.010248	0.010249	0.009469	0.008247	0.006510
NOX	-0.000000	-0.000000	-0.000000	-0.000000	0.000000
AGE	-0.011706	-0.010037	0.003604	0.020910	0.042495
TAX	-0.014290	-0.014570	-0.015442	-0.015212	-0.008602
INDUS	-0.042120	-0.036619	-0.005253	-0.000000	-0.000000
CRIM	-0.098193	-0.097894	-0.083289	-0.063437	-0.000000
LSTAT	-0.560431	-0.568769	-0.656290	-0.761115	-0.807679
PTRATIO	-0.765107	-0.770654	-0.758752	-0.722966	-0.265072
DIS	-1.176583	-1.160538	-0.936605	-0.668790	-0.000000

선형회귀모델

• 일반선형회귀

• 릿지 (Ridge) = 일반선형회귀 + L2 규제

· 라쏘 (Lasso) = 일반선형회귀 + L1 규제

• 엘라스틱넷 (ElasticNet) = 일반선형회귀 + L1 규제 + L2 규제

· 로지스틱 회귀 (Logistic Regression)

ElasticNet Regression

L1 + L2

parameter: alpha, 11_ratio

$$alpha = a + b l1_ratio = a/(a+b)$$

선형회귀모델

- 엘라스틱넷 (ElasticNet) = 일반선형회귀 + L1 규제 + L2 규제
- · 로지스틱 회귀 (Logistic Regression)