NAME____SOLUTION

A bonded cantilever-type strain-gage sensor was connected to an instrumentation preamplifier and output voltages (y) measured for a series of applied masses in grams (x). The data and scatter plot are presented below, courtesy of Andrew Bleakley (BME 4550L, Fall 2021).

Mass (g)	Voltage (V)	1.6
0	1.082	V
10	1.112	
20	1.138	1.2
30	1.164	
40	1.189	0.8
50	1.215	0.6
60	1.24	0.4
70	1.265	0.2
80	1.291	0
90	1.317	0 20 40 60 80 100 120
100	1.339	

Determine least-squares estimated linear regression coefficients for this data. Write the resulting regression equation (with unit!) and <u>draw the line</u> on the scatter plot.

$$\sum_{i} y_{i} = 550$$

$$\sum_{i} y_{i} = 13.352$$

$$\begin{cases}
y = 1.2138
\end{cases} \begin{cases}
x = 50
\end{cases}$$

$$\begin{cases}
y = 1.2138
\end{cases} \begin{cases}
x = 50
\end{cases}$$

$$\begin{cases}
y = 1.2138
\end{cases} \begin{cases}
x = 50
\end{cases}$$

$$\begin{cases}
y = 1.2138
\end{cases} \begin{cases}
x = 50
\end{cases}$$

$$\begin{cases}
y = 1.2138
\end{cases} \begin{cases}
y = 1.2138
\end{cases} \\
y = 1.2138
\end{cases} \begin{cases}
y = 1.2138
\end{cases} \\
y = 1.2138
\end{cases} \\
y = 1.2138
\end{cases} \begin{cases}
y = 1.2138
\end{cases} \\
y = 1.2138
\end{cases}$$

= 0.2561 + 1.086 = 1.3421

Determine the coefficient of determination for this relationship. Would you say there is a strong linear relationship between applied mass and output voltage for this strain gage system?

$$R^{2} = \left| -\frac{S\xi}{SST} \right|$$

$$= \left| -\frac{0.0004418}{0.07259} \right|$$

$$R^{2} = 0.9939 \qquad (+2)$$

$$yes, strong linear relationship! (+1)$$

An unknown mass was applied to the end of the cantilever and an output voltage of 1.177 V recorded. Use your regression line to astimate the value of mass. X = 35,53 g Write a 95% prediction interval on a 12th measurement @ 120 g. SST = 16.279 - 11.1.2138 = 0.07259 SSE = 0.07259 - 0.002561 · 28.17 = 0.0004418 $\sigma = \frac{0.0004418}{11-7} = 0.00004909$ t.025,9 = 2.262 (+1) Yo 1209 = 0.002561 120 + 1.086 = 1.393 V $1.393 \pm 2.262 \setminus 0.00004909 \left[1 + \frac{1}{11} + \frac{(120 - 50)^2}{11000}\right]$