# Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution

**Aaron Lou<sup>1</sup> Chenlin Meng<sup>12</sup> Stefano Ermon<sup>1</sup>** 

ICML 2024 Oral

고경빈

2025.04.03



## Background

- Autoregressive models achieve impressive results, but face key limitations
  - Slow sequential token sampling
  - Limited controllability
  - Performance degradation without distribution annealing
- Many works have extended diffusion models to language domains
  - No approach yet matches autoregressive models without heavy tuning

## **Physical Intuition**







## **Denoising Diffusion Models**

- Forward diffusion process that gradually adds noise to input
- Reverse denoising process that learns to generate data by denoising



#### **Discrete Diffusion Process**

Forward Discrete Diffusion Process

$$\frac{dp_t}{dt} = Q_t p_t \quad p_0 \approx p_{\text{data}} \tag{1}$$

Euler Approximation of Forward Transition Probability

$$p(x_{t+\Delta t} = y | x_t = x) = \delta_{xy} + Q_t(y, x)\Delta t + O(\Delta t^2)$$
 (2)

Reverse Diffusion Process via Score-Weighted Transitions

$$\frac{dp_{T-t}}{dt} = \overline{Q}_{T-t}p_{T-t} \quad \overline{Q}_t(y,x) = \frac{p_t(y)}{p_t(x)}Q_t(x,y)$$

$$\overline{Q}_t(x,x) = -\sum_{y \neq x} \overline{Q}_t(y,x) \quad (3)$$

#### **Discrete Diffusion Models**

Concrete Score Matching

$$\mathcal{L}_{\text{CSM}} = \frac{1}{2} \mathbb{E}_{x \sim p_t} \left[ \sum_{y \neq x} \left( s_{\theta}(x_t, t)_y - \frac{p_t(y)}{p_t(x)} \right)^2 \right]$$
(4)

- L2 loss allows zero/negative values for  $\frac{p_t(y)}{p_t(x)}$ , causing divergence
- Training fails in practice (10,000× worse perplexity)

## **Score Entropy Discrete Diffusion Models**

What we want?

$$s_{\theta}(x,t) \approx \left[\frac{p_{t}(y)}{p_{t}(x)}\right]_{y \neq x}$$

Score Entropy Loss

$$\mathbb{E}_{x \sim p} \left[ \sum_{y \neq x} w_{xy} \left( s_{\theta}(x)_{y} - \frac{p(y)}{p(x)} \log s_{\theta}(x)_{y} + K \left( \frac{p(y)}{p(x)} \right) \right) \right]$$
(5)

Bregman Divergence

$$D_F\left(s(x)_y, \frac{p(y)}{p(x)}\right)$$
 when  $F = -\log D_{-log}(u, v) = u - vlog + v(log v - 1)$ 

- Non-negative
- Symmetric
- Convex
- Generalize standard cross entropy to general positive values

## **Score Entropy Properties**

- Consistency
  - With infinite data and model size, optimal  $\theta^*$  makes  $s_{\theta^*}(x)_y = \frac{p(y)}{p(x)}$  and  $L_{SE} = 0$
- Improves concrete score matching by rescaling problematic gradients

$$w_{xy} = 1, \nabla_{s_{\theta}(x)_y} \mathcal{L}_{SE} = \frac{1}{s_{\theta}(x)_y} \nabla_{s_{\theta}(x)_y} \mathcal{L}_{CSM}$$

- Score entropy is tractable without  $\frac{p(y)}{p(x)}$ 
  - Implicit Score Entropy

$$\mathcal{L}_{\text{ISE}} = \mathbb{E}_{x \sim p} \left[ \sum_{y \neq x} w_{xy} s_{\theta}(x)_y - w_{yx} \log s_{\theta}(y)_x \right]$$
(6)

Denoising Score Entropy

$$\mathbb{E}_{\substack{x_0 \sim p_0 \\ x \sim p(\cdot|x_0)}} \left[ \sum_{y \neq x} w_{xy} \left( s_{\theta}(x)_y - \frac{p(y|x_0)}{p(x|x_0)} \log s_{\theta}(x)_y \right) \right]$$
(7)

### Likelihood Bound For Score Entropy Discrete Diffusion

Score Entropy enables ELBO for likelihood-based training and evaluation

• 
$$Q_t^{\theta}(y,x) = \begin{cases} s_{\theta}(x,t)_y \cdot Q_t(x,y)_t, & x \neq y \\ -\sum_{z\neq x} Q_t^{\theta}(z,x), & x = y \end{cases}$$
 
$$\xrightarrow{dp_{T-t}^{\theta}} \overline{Q}_{T-t}^{\theta} p_{T-t}^{\theta} \quad p_T^{\theta} = p_{\text{base}} \approx p_T$$
 (8)

Log-likelihood is upper-bounded by score entropy and KL

$$-\log p_0^{\theta}(x_0) \le \mathcal{L}_{\text{DWDSE}}(x_0) + D_{KL}(p_{T|0}(\cdot|x_0) \parallel p_{\text{base}})$$
(9)

DWDSE measures score error weighted by diffusion steps

$$\int_{0}^{T} \mathbb{E}_{x_{t} \sim p_{t|0}(\cdot|x_{0})} \sum_{y \neq x_{t}} Q_{t}(x_{t}, y) \left( s_{\theta}(x_{t}, t)_{y} - \frac{p_{t|0}(y|x_{0})}{p_{t|0}(x_{t}|x_{0})} \log s_{\theta}(x_{t}, t)_{y} + K\left(\frac{p_{t|0}(y|x_{0})}{p_{t|0}(x_{t}|x_{0})}\right) \right) dt \quad (10)$$

## **Practical Implementation**

Score entropy can be scaled to high dimensional tasks

$$Q_t(x^1 \dots x^i \dots x^d, x^1 \dots \widehat{x}^i \dots x^d) = Q_t^{\text{tok}}(x^i, \widehat{x}^i) \quad (11)$$

$$(s_{\theta}(x^1 \dots x^i \dots x^d, t))_{i,\widehat{x}^i} \approx \frac{p_t(x^1 \dots \widehat{x}^i \dots x^d)}{p_t(x^1 \dots x^i \dots x^d)} \quad (12)$$

The sequence transition factorizes into independent token transitions

$$p_{t|0}^{\text{seq}}(\widehat{\mathbf{x}}|\mathbf{x}) = \prod_{i=1}^{a} p_{t|0}^{\text{tok}}(\widehat{x}^{i}|x^{i})$$
 (13)

Token transitions come from the exponential of the noise-scaled matrix

$$p_{t|0}^{\mathrm{tok}}(\cdot|x) = x\text{-th column of } \exp\left(\overline{\sigma}(t)Q^{\mathrm{tok}}\right)$$
 (14)

• 
$$\frac{dp_t}{dt} = Q_t p_t \rightarrow \frac{dp_t}{dt} = \sigma(t)Qp_t$$
,  $p_t = \exp(\int_0^t \sigma(s)ds \cdot Q)p_0$ 

## **Practical Implementation**

- But, most Q<sup>tok</sup> unusable for large scale experiment
  - Not able to store all edge weights  $Q^{tok}(i,j)$
  - Extremely slow to access
  - Avoid matrix-matrix multiplication in computing exp columns
- Solutions

$$Q^{\text{uniform}} = \begin{bmatrix} 1 - N & 1 & \cdots & 1 \\ 1 & 1 - N & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 - N \end{bmatrix}$$
 (15) 
$$Q^{\text{absorb}} = \begin{bmatrix} -1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 0 \\ 1 & 1 & \cdots & 1 & 0 \end{bmatrix}$$
 (16)

## **Practical Implementation**



#### Simulating Reverse Diffusion with Concrete Scores

#### Time-Reversal Strategies

- $\tau$ \_leaping:  $x_{t-\Delta t} \sim \delta_{x_t^i}(x_{t-\Delta t}^i) + \Delta t Q_t^{\text{tok}}(x_t^i, x_{t-\Delta t}^i) s_{\theta}(\mathbf{x}_t, t)_{i, x_{t-\Delta t}^i}$  (17)
- Discrete Tweedie's theorem

$$p_{0|t}(x_0|x_t) = \left(\exp(-tQ) \left[\frac{p_t(i)}{p_t(x_t)}\right]_{i=1}^N\right)_{x_0} \exp(tQ)(x_t, x_0)$$

Tweedie τ\_leaping

• 
$$p_{t-\Delta t|t}^{tweedie}(x_{t-\Delta t}|x_t) = \left(\exp(-\sigma_t^{\Delta t}Q)s_{\theta}(\mathbf{x}_t,t)_i\right)_{x_{t-\Delta t}^i} \exp(\sigma_t^{\Delta t}Q)(x_t^i, x_{t-\Delta t}^i)$$
 (19)

where 
$$\sigma_t^{\Delta t} = (\overline{\sigma}(t) - \overline{\sigma}(t - \Delta t))$$
 (20)

## **Arbitrary Prompting and Infilling**

- Unconditionally trained models can support arbitrary position conditioning
- Infilling:  $p_t(\mathbf{x}^{\Omega}|\mathbf{x}^{\overline{\Omega}}=\mathbf{y})$   $\Omega$  unfilled indices  $\overline{\Omega}$  filled (21)
- Apply Bayes' rule

$$\frac{p_t(\mathbf{x}^{\Omega} = \mathbf{z}' | \mathbf{x}^{\overline{\Omega}} = \mathbf{y})}{p_t(\mathbf{x}^{\Omega} = \mathbf{z} | \mathbf{x}^{\overline{\Omega}} = \mathbf{y})} = \frac{p_t(\mathbf{x} = \mathbf{z}' \oplus_{\Omega} \mathbf{y})}{p_t(\mathbf{x} = \mathbf{z} \oplus_{\Omega} \mathbf{y})}$$
(22)

## Language Modeling Comparison

Text 8 Dataset

| Type                    | Method          | <b>BPC</b> (↓) |
|-------------------------|-----------------|----------------|
| Autoregressive Backbone | IAF/SCF         | 1.88           |
|                         | AR Argmax Flow  | 1.39           |
|                         | Discrete Flow   | 1.23           |
|                         | Autoregressive  | 1.23           |
| Non-autoregressive      | Mult. Diffusion | $\leq 1.72$    |
|                         | MAC             | $\leq 1.40$    |
|                         | BFN             | $\leq 1.41$    |
|                         | D3PM Uniform    | $\leq 1.61$    |
|                         | D3PM Absorb     | $\leq 1.45$    |
| Ours (NAR)              | SEDD Uniform    | $\leq 1.47$    |
|                         | SEDD Absorb     | $\leq$ 1.39    |

• SEDD outperforms D3PM and approaches autoregressive performance

## Language Modeling Comparison

One Billion Words Dataset

| Type             | Method        | Perplexity (↓) |
|------------------|---------------|----------------|
| Autoregressive   | Transformer   | 31.98          |
| Diffusion        | D3PM Absorb   | ≤ 77.50        |
|                  | Diffusion-LM  | $\leq 118.62$  |
|                  | BERT-Mouth    | $\leq 142.89$  |
|                  | DiffusionBert | $\leq$ 63.78   |
| Ours (Diffusion) | SEDD Uniform  | ≤ 40.25        |
|                  | SEDD Absorb   | $\leq$ 32.79   |

- SEDD shows 50–75% lower perplexity than other diffusion models
- Matches autoregressive models, proving non-autoregressive can compete

## Language Modeling Comparison

GPT-2 Zero Shot Tasks

| Size   | Model        | LAMBADA | WikiText2     | PTB            | WikiText103   | 1BW          |
|--------|--------------|---------|---------------|----------------|---------------|--------------|
| Small  | GPT-2        | 45.04   | 42.43         | 138.43         | 41.60         | 75.20        |
|        | SEDD Absorb  | ≤50.92  | <b>≤41.84</b> | <b>≤114.24</b> | $\leq$ 40.62  | ≤79.29       |
|        | SEDD Uniform | ≤65.40  | $\leq$ 50.27  | ≤140.12        | $\leq 49.60$  | ≤101.37      |
|        | D3PM         | ≤93.47  | ≤77.28        | $\leq$ 200.82  | ≤75.16        | ≤138.92      |
|        | PLAID        | ≤57.28  | ≤51.80        | $\leq$ 142.60  | ≤50.86        | ≤91.12       |
| Medium | GPT-2        | 35.66   | 31.80         | 123.14         | 31.39         | 55.72        |
|        | SEDD Absorb  | ≤42.77  | <b>≤31.04</b> | <b>≤87.12</b>  | <b>≤29.98</b> | ≤61.19       |
|        | SEDD Uniform | ≤51.28  | ≤38.93        | $\leq 102.28$  | ≤36.81        | $\leq$ 79.12 |

- SEDD Absorb achieves lower perplexity than GPT-2 on 3 out of 5 datasets
- Best performance among all diffusion-based models
- First non-autoregressive model to rival GPT-2

## Language Generation Comparison

#### Unconditional Generation



(a) Generative Perplexity  $(\downarrow)$  vs. Sampling Iterations.

| S                        | a hiring platform that "includes a fun club    |
|--------------------------|------------------------------------------------|
| <u>-7</u>                | meeting place," says petitioner's AQQFred-     |
| GPT-2                    | ericks. They's the adjacent marijuana-hop.     |
|                          | Others have allowed 3B Entertainment           |
| 7                        | misused, whether via Uber, a higher-order      |
| 2.1                      | reality of quantified impulse or the No Mass   |
| GPT-2 M                  | Paralysis movement, but the most shame-        |
| $\mid \mathfrak{S} \mid$ | fully universal example is gridlock            |
| S                        | As Jeff Romer recently wrote, "The economy     |
| Q                        | has now reached a corner - 64% of house-       |
| SEDD                     | hold wealth and 80% of wealth goes to credit   |
| N                        | cards because of government austerity          |
|                          | Wyman worked as a computer science coach       |
|                          | before going to work with the U.S. Secret      |
| SEDD M                   | Service in upstate New York in 2010. With-     |
| SE                       | out a license, the Secret Service will have to |
|                          | <u> </u>                                       |

(b) Generated Text (small models)

## **Infilling Conditional Generation**

A bow and arrow is a traditional weapon that enables an attacker to attack targets at a range within a meter or maybe two meters. They have a range far longer than a human can walk, and they can be fired . . .

- ... skydiving is a fun sport that makes me feel incredibly silly. I think I may've spent too much, but it could've been amazing! While sky diving gives us exercise and fun, scuba diving is an act of physical fitness, ...
- ... no one expected the results to much better than last year's one-sided endorsement. Nearly 90 percent of the results were surveyed as "independent," an promising result for school children across the country.
- ... results show that Donald Trump and Hillary Clinton are in 38 states combined with less than 1% of the national vote. In a way, it's Trump and Hillary Clinton who will work overtime to get people to vote this ...

| Method        | Annealing            | Mauve (†) |
|---------------|----------------------|-----------|
| GPT-2         | Nucleus-0.95         | 0.955     |
|               | None                 | 0.802     |
| SSD-LM        | Logit Threshold-0.95 | 0.919     |
|               | None                 | 0.312     |
| SEDD Standard | None                 | 0.957     |
| SEDD Infill   | None                 | 0.942     |

#### Conclusion

- Proposes Score Entropy for discrete diffusion via probability ratio
- SEDD outperforms D3PM, rivals GPT-2 on some tasks
- Enables high-quality text generation without annealing
- Supports infilling and flexible prompts

## My Review

- I overlooked this paper, but that was a big mistake
- I learned a lot about diffusion and the difference between continuous and discrete data
- I think this paper breaks the belief that diffusion doesn't work in the natural language domain

## **Open Question**

- Does the scaling law apply to diffusion models?
- How can we make diffusion language models smarter?