Matematica Atuarial Não Vida: Avaliação 1

Fenrnado Failla Foschiani, CAI 6°Termo

142594

Objetivo

Precificar o prêmio dos futuros contratos de uma Seguradora, baseado em uma série histórica previamente disponibilizada.

A base dispõe uma carteira de contratos com duas cláusulas **A** e **B**,além de informações sobre o segurado como **sexo** e **profissao**.

Segue **abaixo** a tabela:

```
df <- read.csv('P1_17.csv')
kable(head(df))</pre>
```

SexBio	Profis	IndenizaA	IndenizaB
1	1	0	0
1	1	0	0
0	1	0	0
1	2	0	0
0	2	0	0
0	2	0	0

Distribuição de Probabilidade

Para mensurar o Prêmio Médio Estatístico, é de grande importância encontrar a fdp que descreve cada uma das cláusulas, e para isso, foi adotado nesse trabalho a Distribuição Gamma para representar os dados.

Logo, para encontrar a fdp, basta estimar os parâmetros para a função Gamma de cada clausula, para isso foi utilizado o pacotefitdistrplus.

```
## shape rate
## 4.55662875 0.18500978
## (0.30616349) (0.01314187)
```

Após isso basta subistuir os parâmetros na função Gamma.

Para visualizar a FDP e o seu ajuste a distrbuição dos dados, foram plotados os Histogramas para cada uma das clausula, sobrepostas por suas funções estimadas.

```
xA <- df[df$IndenizaA != 0,3 ]
yA <- dgamma(df[df$IndenizaA != 0,3 ], gA$estimate[1],gA$estimate[2])
hist(xA,prob = TRUE, main = 'Clausula A:Histograma e Densidade')
lines(xA[order(xA)],yA[order(xA)],col='blue')</pre>
```

Clausula A:Histograma e Densidade


```
xB <- df[df$IndenizaB != 0,4 ]
yB <- dgamma(df[df$IndenizaB != 0,4 ], gB$estimate[1],gB$estimate[2])
hist(xB,prob = TRUE,main = 'Clausula B: Histrograma e Densidade')
lines(xB[order(xB)],yB[order(xB)],col='Red')</pre>
```

Clausula B: Histrograma e Densidade

Para efeito comparativo, foram plotadas as duas FDP's juntas.

Cálculo do Sinistro Médio

Com as FDP's estimadas, é possível obter a probabilidade de ocorrência de cada valor de sinistro, assim possibilitando o cálculo do Sinistro Médio de cada clausula. Sendo X a variavel Aleatória Valor de 1 Sinistro, temos que o Sinistro Médio:

$$E[x] = \int_0^\infty x \, f_x(x) dx$$

Logo, pode-se definir a seguinte função em R:

```
calc_Sinistro <- function(x,a,b){
  y = sum(x*dgamma(x,a,b))
  return(y)
}</pre>
```

Aplicando a função as Clausulas

Clausula A

```
sA <- calc_Sinistro(df[df$IndenizaA != 0,3 ],
gA$estimate[1],gA$estimate[2])
sA
## [1] 176.4586</pre>
```

Clausula B

```
sB <- calc_Sinistro(df[df$IndenizaB != 0,4 ],
gB$estimate[1],gB$estimate[2])
sB
## [1] 239.7635</pre>
```

Severidade em Relação as Variáveis Qualitativas

Com a média do preço dos sinistros já estabelecida, é importante calcular a probabilidade de ocorrência deste. Porém, deve-se realizar essa cálculo para cada perfil de cliente, para assim cobrar preços mais personalizados e adequados para cada um.

Para isso, foram criadas categorias que contemplam as variáveis **sexo** e **profissão**:

```
df$sexProf <- paste(df$SexBio, df$Profis, sep = '')
combSexProf <- unique(df$sexProf)

combSexProf
## [1] "11" "01" "12" "02" "03" "13"</pre>
```

Com essa categorias em mão, podemos indentificar a sinistralidade de cada uma delas através do Teorema de Bayes:

$$P(A \cap B)/P(B)$$

Gerando a Probabilidade para cada categoria na clausúla A:

```
#Probabilidade de A
ProbA <- nrow(df[df$IndenizaA != 0 , ])/nrow(df)
ProbA

## [1] 0.02255092

#Looping para calcular a probabilidade de cada categoria na clausula A
SinistralidadeASexProf <- c()
TotalASexProf <- c()

for (i in 1:length(combSexProf)) {
    SinistralidadeASexProf[i] <- nrow(df[df$IndenizaA != 0 & df$sexProf == combSexProf[i],])
    TotalASexProf<- nrow(df[df$sexProf == combSexProf[i],])

}
ProbASexProf <- SinistralidadeASexProf/TotalASexProf
ProbASexProf
## [1] 0.02471910 0.05393258 0.05168539 0.10112360 0.06629213 0.01573034</pre>
```

Gerando a Probabilidade para cada categoria na clausúla B:

```
#Probabilidade de B
ProbB <- nrow(df[df$IndenizaB != 0, ])/nrow(df)
ProbB

## [1] 0.03338183

#Gerando a Probabilidade de Cada Categoria de B

SinistralidadeBSexProf <- c()
TotalBSexProf <- c()
for (i in 1:length(combSexProf)) {
    SinistralidadeBSexProf[i] <- nrow(df[df$IndenizaB != 0 & df$sexProf == combSexProf[i],])
    TotalBSexProf<- nrow(df[df$sexProf == combSexProf[i],])
}

ProbBSexProf <- SinistralidadeBSexProf/TotalBSexProf
ProbBSexProf</pre>
## [1] 0.03370787 0.06853933 0.06853933 0.16741573 0.08764045 0.03820225
```

Para efeito de comparação, foi gerada uma tabela com as categorias e probabilidade de sinistro em cada clausula.

```
ProbDf <- data.frame(SexProf = combSexProf, PA = ProbASexProf, PB =
ProbBSexProf)
ProbDf[2:3] <- sapply(ProbDf[2:3], function(x) percent(x))
kable(ProbDf)</pre>
```

SexProf	PA	PB
11	2.47%	3.37%
01	5.39%	6.85%
12	5.17%	6.85%
02	10.11%	16.74%
03	6.63%	8.76%
13	1.57%	3.82%

Através dessa tabela verificamos que há relação entre as variaveis qualitativas e a ocorrência de sinistros.

Cálculo do Prêmio estatístico

Uma vez tendo o valor médio da sinistralidade, e a probabilidade de ocorrência para cada uma das categorias, pode-se calcular o Prêmio Estatíscio para cada uma delas através de:

$$P = E[S] = \int_0^\infty x f_x(x) dx \cdot P(N)N = (A, B, \dots, Z)$$

Sendo X a variável valor da indenização, e N o conjunto de clausulas de um contrato.

Através dessa fórmula chegamos na seguinte tabela de preços para Prêmio:

```
PrecosA <- round(sA * ProbASexProf, 2)
PrecosB <- round(sB * ProbBSexProf,2)
PrecosPremios <- data.frame(SexProf = combSexProf, PremioA = PrecosA,
PremioB = PrecosB)
PrecosPremios$PremioContrato <- PrecosPremios$PremioA
+PrecosPremios$PremioB
kable(PrecosPremios)</pre>
```

SexProf	PremioA	PremioB	PremioContrato
11	4.36	8.08	12.44
01	9.52	16.43	25.95
12	9.12	16.43	25.55
02	17.84	40.14	57.98
03	11.70	21.01	32.71
13	2.78	9.16	11.94

Dessa forma, foram calculados os prêmios estatísticos para cada perfil de cliente de um mesmo contrato.