Théorie des groupes

Pierron Théo

ENS Ker Lann

Table des matières

1	Gro	upes et sous-groupes	3
	1.1	Groupes	3
		1.1.1 Définitions	3
			3
	1.2	1	4
			4
			5
	1.3	1	5
			5
		1	6
			6
		1	7
2	Mo	rphismes, isomorphismes	9
	2.1		9
	2.2		0
3	Thé	orème de Lagrange 1	5
Ŭ	3.1		6
	3.2	1 /	7
4	Act	ions d'un groupe sur un ensemble 1	9
-	4.1	9	9
	4.1		22
	4.3	1	22
5	Cro	upes symétriques 2	5
J	5.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 25
	$5.1 \\ 5.2$	1 1	.5 26
	5.3	<i>v</i> 11	28 28
	5.3		10 19
	0.4	GIOUPE ancine	IJ

ii	TABLE DES MATIÈRE	ES
	*****	29
	0 1	30
5.5	Simplicité	30
6 Gr	oupes quotients	33
7 For	rmule des classes	37
8 Pro	oduits directs et semi-directs	41
8.1	Produit direct	41
	8.1.1 Définitions	41
	8.1.2 Propriétés	41
	8.1.3 Applications	42
8.2	Produit semi-direct	43
	8.2.1 Définitions	43
8.3	Suites exactes	46
9 Th	éorèmes de Sylow	47

Introduction

• Groupes en arithmétique (Galois) :

Pour $P \in \mathbb{Z}[X]$, on dit que P est résoluble ssi on peut écrire ses racines en fonction de ses coefficients.

À P, on associe son groupe de Galois G. La théorie de Galois repose sur P résoluble ssi G résoluble.

Or G est résoluble si $\operatorname{Card}(G) \leq 24$ ie P est résoluble si $\operatorname{deg} P \leq 4$.

- Groupes en géométrie (Klein) :
 - Une géométrie est composée d'un ensemble S de points et d'un groupe G de transformations de S.
 - Dans une géométrie, on a des figures (parties de S) et des propriétés stables par G.
- Groupes en analyse:

<u>Théorème 0.1</u> Un système différentiel hamiltonien (pendule, toupie, problème à trois corps,...) est intégrable ssi son groupe de Galois est presque commutatif.

Chapitre 1

Groupes et sous-groupes

1.1 Groupes

1.1.1 Définitions

<u>Définition 1.1</u> Un groupe G est un ensemble muni d'une loi de composition interne associative, possédant un neutre et inversible. On dit que G est abélien quand cette loi est commutative.

<u>Définition 1.2</u> L'ordre d'un groupe G est son cardinal.

Proposition 1.1 Il y a unicité du neutre et de l'inverse.

<u>Définition 1.3</u> On définit récursivement la puissance n^e de $g \in G$ par $g^n = gg^{n-1}, g^{-n} = (g^{-1})^n$ et $g^0 = e$.

1.1.2 Propriétés

<u>Définition 1.4</u> On appelle translation à gauche l'application :

$$t_g: \begin{cases} G & \to & G \\ h & \mapsto & gh \end{cases}$$

qui est une bijection d'inverse t_{q-1} .

Remarque 1.1 On obtient une nouvelle loi par transfert de structure : $h*k = t_g(t_{g^{-1}}(h)t_{g^{-1}}(k)) = hg^{-1}k$.

Proposition 1.2

$$\sigma: \begin{cases} G & \to & G \\ g & \mapsto & g^{-1} \end{cases}$$

est une bijection.

Remarque 1.2 On obtient aussi une nouvelle loi par transport de structure : g * h = hg (groupe opposé).

<u>Définition 1.5</u> (Tables de Cayley) Il s'agit d'une table de multiplication dans laquelle chaque élément de G ne doit apparaître qu'une seule fois par ligne et par colonne.

Exemple 1.1

$$\bullet \ G = \{1\} \boxed{\begin{array}{c|c} 1 \\ \hline 1 & 1 \\ \hline \end{array}}$$

•
$$G = 1, g$$
 $\begin{bmatrix} 1 & g \\ 1 & 1 & g \\ g & g & 1 \end{bmatrix}$

	1	g	h	k
1	1	g	h	k
g	g	k	1	h
h	h	1	k	60
k	k	h	g	1

Si pour tout $g, h, gh \neq 1$:

	1	g	h	k
1	1	g	h	k
g	g	1	k	h
h	h	k	1	g
k	k	h	g	1

Proposition 1.3 Card $(GL_n(\mathbb{F}_q)) = \prod_{i=0}^{n-1} (q^n - q^i).$

1.2 Sous-groupes

1.2.1 **Définitions**

Définition 1.6 Soit G un groupe. Un sous-groupe de G est une partie $H \subset G$ telle que :

- $1 \in H$
- $\forall (g,h) \in H^2, gh \in H$.
- $\forall g \in H, g^{-1} \in H$.

1.2.2 Propriétés

<u>Définition 1.7</u> Un sous-groupe H de G est dit distingué (ou normal) ssi pour tout $h, g \in H \times G$, $ghg^{-1} \in H$.

On écrit parfois H < G si H est un sous-groupe de G et $H \lhd G$ si H est en plus distingué.

Exemple 1.2

- Pour tout groupe G, $\{1\} \triangleleft G$ et $G \triangleleft G$.
- Pour tout espace vectoriel V, $SL(V) \triangleleft GL(V)$.
- $n\mathbb{Z} \triangleleft (\mathbb{Z}, +)$.

Remarque 1.3 Si G est abélien, tout sous-groupe de G est distingué.

THÉORÈME 1.1 Si
$$(H_i)_{i \in I} < G$$
 alors $\bigcap_{i \in I} H_i < G$.

Remarque 1.4 La distinction passe aussi à l'intersection.

Définition 1.8 Si $X \subset G$, il existe un plus petit sous-groupe de G contenant X appelé sous-groupe engendré par X et noté $\langle X \rangle$. C'est $\bigcap_{X \subset H < G} H$.

<u>Définition 1.9</u> G est dit cyclique (ou monogène) ssi il existe $g \in G$ tel que $G = \langle g \rangle$.

Exemple 1.3 $(\mathbb{Z}/4\mathbb{Z}, +)$ est cyclique, de même que $(\mathbb{Z}/5\mathbb{Z}^*, \times)$.

Théorème 1.2 Si F est un corps fini, F* est cyclique.

1.3 Applications

1.3.1 Opérations élémentaires sur les matrices

<u>Définition 1.10</u> Soit M une matrice. Il y a trois types d'opérations élémentaires :

- échanger les lignes L_i et L_j
- remplacer L_i par λL_i avec $\lambda \neq 0$
- remplacer L_i par $L_i + \lambda L_j$ avec $i \neq j$

<u>Définition 1.11</u> Une matrice élémentaire est la matrice obtenue en effectuant une opération élémentaire sur I_n .

<u>Théorème 1.3</u> Effectuer une opération élémentaire revient à multiplier à gauche par une matrice élémentaire.

THÉORÈME 1.4 Si $A \in GL_n(\mathbb{K})$, il existe $(E_i)_i$ un p – uplet de matrices élémentaires telles que $E_p \dots E_1 A = I_n$ ie $A = E_1^{-1} \dots E_n^{-1}$.

Donc $GL_n(\mathbb{K})$ est engendré par les matrices élémentaires.

Exemple 1.4
$$GL_2(\mathbb{Z}/2\mathbb{Z}) = \left\langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \right\rangle$$
.

1.3.2 Mots

<u>Définition 1.12</u> Un mot en $X \subset G$ est un élément $x_1 \dots x_n \in G$ avec $(x_i)_i \in X^n$ pas nécessairement distincts. On note $\mathcal{M}(X)$ cet ensemble.

Proposition 1.4 Si $X \subset G$, $\langle X \rangle = \mathcal{M}(X \cup X^{-1})$ avec $X^{-1} = \{x^{-1}, x \in X\}$.

Démonstration. On a $\langle X \rangle = \langle X \cup X^{-1} \rangle$ donc on peut supposer $X = X^{-1}$. On doit montrer que $\mathcal{M}(X) = \langle X \rangle$ sachant $X = X^{-1}$.

 $\mathcal{M}(X)$ est un sous-groupe de X qui contient X.

De plus, si H < G contient X, pour tout $(x_1, \ldots, x_n) \in X^n$, on a $(x_1, \ldots, x_n) \in H^n$ et $x_1 \ldots x_n \in H$ donc $\mathcal{M}(X) \subset H$.

$$Donc \langle X \rangle = \mathcal{M}(X).$$

Remarque 1.5 Dans le cas abélien, $\langle g_1, \ldots, g_n \rangle = \mathbb{Z}g_1 + \ldots + \mathbb{Z}g_n$.

Exemple 1.5 $n\mathbb{Z} = \langle n \rangle$.

Proposition 1.5 Si H est un sous-groupe de \mathbb{Z} , il existe un unique $n \in \mathbb{N}$ tel que $H = n\mathbb{Z}$.

Démonstration.

- Les $n\mathbb{Z}$ sont clairement des sous-groupes de \mathbb{Z} .
- Soit H un sous-groupe de \mathbb{Z} . Si $H = \{0\}$, alors $H = 0\mathbb{Z}$.

Sinon, $H \setminus \{0\} \neq \emptyset$ donc il existe $n \neq 0 \in H$.

H est un groupe donc $|n| \in H$ donc on peut supposer $n \ge 0$. On pose ensuite $n_0 = \min\{n \in H, n > 0\}$.

Tout élément de $n_0\mathbb{Z}$ est dans H.

Réciproquement, si $x \in H$, $x = n_0 q + r$ avec $r < n_0$.

On a alors $r \in H$ donc r = 0 donc $x \in n_0 \mathbb{Z}$.

Donc
$$H = n_0 \mathbb{Z}$$
.

<u>Définition 1.13</u> L'ordre de $g \in G$ est l'ordre de $\langle g \rangle$.

Exemple 1.6 Dans $GL_2(\mathbb{Z}/2\mathbb{Z})$, il y a 1 élément d'ordre 1, 3 éléments d'ordre 2 et 2 éléments d'ordre 3.

1.3.3 Groupe diédral

<u>Définition 1.14</u> Le groupe diédral D_n $(n \ge 3)$ est le groupe des isométries du plan qui laissent (globalement) invariant le polynôme régulier (A_0, \ldots, A_{n-1}) , convexe, centré, orienté et normalisé à n côtés.

Proposition 1.6 D_n est d'ordre 2n et $D_n = \langle r, s \rangle$ où r est la rotation d'angle $\frac{2\pi}{n}$ et s la symétrie par rapport à l'axe des abscisses.

Démonstration.

- Les isométries sont affines donc préservent les barycentres donc O. Elles sont déterminées par leurs images de OA₀ et OA₁.
 Tout élément de D_n envoie A₀ sur A_k et A_i sur A_{i+1 mod n} ou A_{i-1 mod n}.
 Donc D_n a au plus 2n éléments.
- r et s sont des éléments de D_n donc $\langle r, s \rangle \subset D_n$. Dans $\langle r, s \rangle$, il y a 2n éléments : $1, r, \ldots, r^{n-1}$ et $s, rs, \ldots, r^{n-1}s$ qui sont distincts deux à deux.

Donc
$$D_n = \langle r, s \rangle$$
 et D_n est d'ordre $2n$.

1.3.4 Commutateurs, groupe dérivé

Définition 1.15

- Soit G un groupe. On appelle commutateur de $(g,h) \in G^2$ et on note [g,h] le produit $ghg^{-1}h^{-1}$.
- Le groupe dérivé de G, noté D(G) est le sous-groupe engendré par les commutateurs de G.

Remarque 1.6 Les commutateurs ne forment pas toujours un sous-groupe si G a au moins 96 éléments.

Proposition 1.7 $D(G) \triangleleft G$

 $D\'{e}monstration.$

- On a $[g, h]^{-1} = [h, g]$ et $k[g, h]k^{-1} = [kgk^{-1}, khk^{-1}]$
- Si X est l'ensemble des commutateurs, $X^{-1} = X$ et $kXk^{-1} = X$ d'après le point précédent.

Remarque 1.7 $D(G) = \{1\}$ ssi G est abélien.

Exemple 1.7 $D(D_n)$ $[r^i, r^j] = \operatorname{Id}$, $[r^i s, r^j s] = (r^2)^{i-j}$, $[r^i s, r^j] = r^{-2j}$ et $[r^i, r^j s] = r^{2i}$. Donc $D(D_n) = \langle r^2 \rangle$ (qui vaut aussi $\langle r \rangle$ si n impair).

Chapitre 2

Morphismes, isomorphismes

2.1 Définitions

<u>Définition 2.1</u> Un morphisme de groupes (homomorphisme) entre deux groupes G et H est une application $\varphi: G \to H$ telle que pour tout $g, h \in G^2$, $\varphi(gh) = \varphi(g)\varphi(h)$.

 φ est un isomorphisme ssi il est bijectif.

 φ est un endomorphisme ssi H=G.

 φ est un automorphisme ssi H=G et φ bijectif.

Remarque 2.1 $\varphi(1) = \varphi(1.1) = \varphi(1).\varphi(1)$ donc $1 = \varphi(1)$.

$$1 = \varphi(1) = \varphi(gg^{-1}) = \varphi(g)\varphi(g^{-1}) \ donc \ \varphi(g)^{-1} = \varphi(g^{-1}).$$

Plus généralement, $\varphi(g)^n = \varphi(g^n)$ pour tout $n \in \mathbb{Z}$.

Exemple 2.1

• Soit
$$H = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, a \in K \right\} < GL_2(K)$$
.

$$f: \begin{cases} H & \to & K \\ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} & \mapsto & a \end{cases}$$

est un isomorphisme de groupes. En effet, la bijectivité est claire et $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix}$.

- ln et exp sont deux isomorphismes de groupe réciproques : $\mathbb{R}^+_* \stackrel{\ln}{\underset{\exp}{\rightleftharpoons}} \mathbb{R}$
- \bullet Si G est un groupe,

$$\cdot^{-1}: \begin{cases} G & \to & G \\ g & \mapsto & g^{-1} \end{cases}$$

n'est pas un automorphisme en général (pas un morphisme). Prendre par exemple G non commutatif.

En revanche,

$$\cdot^{-1}: \begin{cases} G_{op} & \to & G \\ g & \mapsto & g^{-1} \end{cases}$$

est un automorphisme.

Proposition 2.1

- Si $\varphi: G \to H$ et $\psi: H \to K$ sont des morphismes de groupes, alors $\psi \circ \varphi: G \to K$ est un morphisme de groupes.
- Si $\varphi: G \to H$ est un isomorphisme de groupes, φ^{-1} aussi.

Démonstration.

- Soit $g, h \in G^2$, $\psi(\varphi(gh)) = \psi(\varphi(g)\varphi(h)) = \psi(\varphi(g))\psi(\varphi(h))$.
- Soit $g', h' \in H^2$.

$$\varphi^{-1}(g'h') = \varphi^{-1}(g')\varphi^{-1}(h') \quad \text{ssi} \quad g'h' = \varphi(\varphi^{-1}(g')\varphi^{-1}(h'))$$

Or $\varphi(\varphi^{-1}(g')\varphi^{-1}(h')) = \varphi(\varphi^{-1}(g'))\varphi(\varphi^{-1}(h')) = g'h'.$

<u>Définition 2.2</u> Le noyau d'un morphisme $\varphi: G \to H$ est $Ker(\varphi) = \varphi^{-1}(\{1_H\}) \subset G$.

L'image de φ est $\operatorname{Im}(\varphi) = \{\varphi(g), g \in G\} \subset H$.

2.2 Propriétés

Proposition 2.2 Soit φ un morphisme. Si $X \subset G$, $\langle \varphi(X) \rangle = \varphi(\langle X \rangle)$.

Démonstration. On a $\varphi(X^{-1}) = \varphi(X)^{-1}$ donc on peut supposer $X = X^{-1}$. On montre alors $\varphi(\mathcal{M}(X)) = \mathcal{M}(\varphi(X))$, ce qui est clair car $\varphi(x_1 \dots x_n) = \varphi(x_1) \dots \varphi(x_n)$.

Proposition 2.3 Soit $\varphi: G \to H$ un morphisme. Alors $\operatorname{Im}(\varphi)$ est un sous-groupe de H et $\operatorname{Ker}(\varphi)$ un sous-groupe distingué de G.

Démonstration.

- La propriété précédente appliquée à X=G, on a $\operatorname{Im}(\varphi)=\varphi(\langle G\rangle)=\langle \varphi(G)\rangle$ est donc un sous-groupe).
- $\varphi(1) = 1 \text{ donc } 1 \in \text{Ker}(\varphi)$ Si $g \in \text{Ker}(\varphi)$, $\varphi(g^{-1}) = \varphi(g)^{-1} = 1^{-1} = 1 \text{ donc } g^{-1} \in \text{Ker}(\varphi)$. Si $g, h \in \text{Ker}(\varphi) \text{ alors } \varphi(gh) = \varphi(g)\varphi(h) = 1 \text{ donc } gh \in \text{Ker}(\varphi)$. Si $g \in G \text{ et } h \in \text{Ker}(\varphi)$, $\varphi(ghg^{-1}) = \varphi(g)\varphi(h)\varphi(g^{-1}) = \varphi(g)\varphi(g)^{-1} = 1$ Donc $ghg^{-1} \in \text{Ker}(\varphi)$.

Exemple 2.2 $SL_n(\mathbb{C})$ est un sous-groupe distingué de $GL_n(\mathbb{C})$ car c'est le noyau de det.

Remarque 2.2 Deux groupes sont isomorphes ssi il existe un isomorphisme entre eux. C'est équivalent à dire su'ils ont même tables de Cayley quitte à renommer les éléments.

Application : Soient G_1 et G_2 deux groupes isomorphes.

Les deux groupes ont même ordre et ont le même nombre d'éléments d'ordre k.

 G_1 est cyclique ssi G_2 l'est. G_1 est commutatif ssi G_2 l'est.

À isomorphisme près, on a :

ii isomorphisme pres, on a .			
Ordre	Groupes		
1	$\{0\}$		
2	$\mathbb{Z}/2\mathbb{Z}$		
3	$\mathbb{Z}/3\mathbb{Z}$		
4	$\mathbb{Z}/4\mathbb{Z},\ \mathbb{F}_2^2$		
5	$\mathbb{Z}/5\mathbb{Z}$		
6	$\mathbb{Z}/6\mathbb{Z}, \mathfrak{S}_3 \simeq GL_2(\mathbb{Z}/2\mathbb{Z}) \simeq D_3$		
7	$\mathbb{Z}/7\mathbb{Z}$		
8	$\mathbb{Z}/8\mathbb{Z}, \mathbb{F}_2^3, \mathbb{F}_2 \times \mathbb{Z}/4\mathbb{Z}, D_4, Q_8$		
:	:		

Remarque 2.3 Si H < G, l'application :

$$f: \begin{cases} H & \to & G \\ g & \mapsto & g \end{cases}$$

est un morphisme de groupes.

Proposition 2.4 Soit $\varphi : G \to H$ un morphisme de groupes. φ est sujectif ssi $\operatorname{Im}(\varphi) = H$. φ est injectif ssi $\operatorname{Ker}(\varphi) = \{1\}$.

 $D\acute{e}monstration.$ La première équivalence est immédiate (définition d'une surjection).

Si φ est injectif, soit $g \in \text{Ker}(\varphi)$. $\varphi(g) = 1 = \varphi(1)$ donc g = 1. Donc $\text{Ker}(\varphi) = \{1\}$.

Si $\operatorname{Ker}(\varphi) = \{1\}$, soit $g, h \in G^2$ tel que $\varphi(g) = \varphi(h)$.

On a $\varphi(gh^{-1}) = \varphi(g)\varphi(h)^{-1} = 1$. Donc $gh^{-1} \in \text{Ker}(\varphi)$ donc $gh^{-1} = 1$ et g = h. Donc φ est injectif.

Proposition 2.5 Soit G un groupe.

• Si $\varphi : \mathbb{Z} \to G$ est un morphisme, il existe un unique $g \in G$ tel que $\varphi(n) = g^n$ pour tout $n \in \mathbb{Z}$.

• Si $g \in G$, il existe un unique $\varphi : \mathbb{Z} \to G$ tel que $\varphi(1) = g$. On a alors $\varphi(n) = g^n$ pour tout $n \in \mathbb{Z}$.

Démonstration.

• Il y a unicité car $\mathbb Z$ est monogène. Il suffit de fixer $\varphi(1)$ qui vaut, par définition, g.

De plus ce morphisme existe car si on pose $g = \varphi(1)$, $\varphi(n) = \varphi(n.1) = \varphi(1)^n = g^n$.

• Il y a unicité car si $\varphi(1) = g$, les valeurs de φ sur \mathbb{Z} sont fixées. Ce morphisme existe car $\varphi : n \mapsto g^n$ est bien un morphisme.

Théorème 2.1 Soit G un groupe et $g \in G$.

• Si g est d'ordre infini alors $\langle g \rangle$ est isomorphe à \mathbb{Z} et

$$\langle g \rangle = \{ \dots, g^{-2}, g^{-1}, 1, g, g^2, \dots \}$$

avec $g^i \neq g^j$ si $i \neq j$.

• Si g est d'ordre fini n, alors $\langle g \rangle = \{1, g, g^2, \dots, g^{n-1}\}$ avec $g^i \neq g^j$ si $(i, j) \in [0, n-1]^2$ avec $i \neq j$. De plus, on a $g^k = 1$ ssi $n \mid k$.

Démonstration. On considère le morphisme :

$$\varphi: \begin{cases} \mathbb{Z} & \to & G \\ n & \mapsto & g^n \end{cases}$$

On a $\operatorname{Im}(\varphi) = \varphi(\langle 1 \rangle) = \langle \varphi(1) \rangle = \langle g \rangle$.

- Si φ est injective, φ induit un isomorphisme de $\mathbb{Z} \to \langle g \rangle$. On a alors $\langle g \rangle = \{ g^i, i \in \mathbb{Z} \}$.
- Si φ n'est pas injective, $\operatorname{Ker}(\varphi) \neq \{0\}$. $\operatorname{Ker}(\varphi)$ est un sous-groupe de \mathbb{Z} donc il existe $n \in \mathbb{N}^*$ tel que $\operatorname{Ker}(\varphi) = n\mathbb{Z}$.

Pour tout $k \in \mathbb{Z}$, k = nq + r avec $r \in [0, n - 1]$. On a alors $g^k = (g^n)^d g^r = g^r$ donc $\langle g \rangle = \{1, g, \dots, g^{n-1}\}.$

Si $g^i = g^j$ avec $0 \le i \le j \le n - 1$.

 $g^{j-i} = 1$ et j - i < n donc $g^{j-i} \in \text{Ker}(\varphi)$ donc n | j - i donc j = i.

Si
$$g^k = 1$$
, $g^r = 1 = g^0$ avec $r < n$ donc $r = 0$ et $n | k$.

Exemple 2.3 $G = \mathbb{C}^*, g = e^{i\theta}$

Si $\theta=\pi\frac{m}{n}$ avec $\frac{m}{n}$ irréductible, g est d'ordre n si m est pair et 2n sinon. Sinon, g est d'ordre infini.

<u>Définition 2.3</u> Le centre d'un groupe G est $Z(G) = \{g \in G, \forall h \in G, gh = hg\}.$

Remarque 2.4 G est commutatif ssi G = Z(G) et $g \in Z(G)$ ssi $\forall h \in G, [g,h] = 1$.

Proposition 2.6 Soit G un groupe.

- L'ensemble $\operatorname{Aut}(G)$ des automorphismes de G est un sous-groupe de $(\mathfrak{S}(G),\cdot)$.
- Si $h \in G$, l'application :

$$\sigma_h: \begin{cases} G & \to & G \\ g & \mapsto & hgh^{-1} \end{cases}$$

est un automorphisme de G dit intérieur.

- L'ensemble des automorphismes intérieurs de G, noté Int(G) est un sous-groupe distingué de Aut(G).
- Enfin, l'application :

$$f: \begin{cases} G & \to & \operatorname{Int}(G) \\ h & \mapsto & \sigma_h \end{cases}$$

est un morphisme surjectif de noyau Z(G). En particulier, Z(G) est un sous-groupe distingué de G.

Démonstration.

- Id_G est un automorphisme et si φ et ψ sont des automorphismes, $\psi \circ \varphi$ et φ^{-1} en sont. Donc $\operatorname{Aut}(G) < \mathfrak{S}(G)$.
- $\sigma_h(g_1)\sigma_h(g_2) = hg_1h^{-1}hg_2h^{-1} = hg_1g_2h^{-1}$ donc σ_h est un morphisme d'inverse $\sigma_{h^{-1}}$. C'est donc un automorphisme.
- $f(h_1h_2)(g) = h_1h_2g(h_1h_2)^{-1} = h_1(h_2gh_2^{-1})h_1^{-1} = f(h_1)(f(h_2)(g))$ et f(1) = Id donc f est Int(G) < Aut(G). $(\varphi \circ \sigma_h \circ \varphi^{-1})(g) = \varphi(h\varphi^{-1}(g)h^{-1}) = \varphi(h)g\varphi^{-1}(h)) = \sigma_{\varphi(h)}(g).$ Donc $\text{Int}(G) \lhd \text{Aut}(G).$
- Le point précédent assure que f est un morphisme surjectif (par définition de $\mathrm{Int}(G)$).

$$\sigma_h = \text{Id ssi pour tout } g \in G, \ hgh^{-1} = g \text{ ie ssi } h \in Z(G). \text{ Donc } \text{Ker}(f) = Z(G) \text{ donc } Z(G) \triangleleft \text{Int}(G).$$

THÉORÈME 2.2 Soit G un groupe cyclique d'ordre n fini.

 $\operatorname{Aut}(G)$ est un groupe abélien d'ordre $\varphi(n)$ où φ est l'indicatrice d'Euler.

Proposition 2.7 Si G est cyclique d'ordre n, Aut(G) est l'ensemble des :

$$\varphi_k: \begin{cases} G & \to & G \\ g & \mapsto & g^k \end{cases}$$

avec $k \in [1, n]$ tel que $k \wedge n = 1$.

CHAPITRE 2. MORPHISMES, ISOMORPHISMES

Démonstration.

• Comme G est cyclique, $G = \langle g \rangle$ avec $g \in G$. φ_k est bien un morphisme pour tout $k \in \mathbb{Z}$.

Soit $\varphi: G \to G$ un morphisme. $\varphi(g) \in G$ donc $\varphi(g) = g^k$. On a alors $\varphi(g^i) = \varphi(g)^i = (g^k)^i = g^{ki} = (g^i)^k = \varphi_k(g^i)$ pour tout i donc $\varphi = \varphi_k$.

Donc les seuls morphismes sont les φ_k .

• $\operatorname{Im}(\varphi_k) = \varphi_k(G) = \langle \varphi(g) \rangle = \langle g^k \rangle$. $\operatorname{Im}(\varphi_k) = G$ ssi l'ordre de g^k vaut n.

$$\exists m < n, (g^k)^m = 1$$
 ssi $\exists m < n, n | km$ ssi $n \land m \neq 1$

Par contraposée, l'ordre de g^k vaut n ssi $n \wedge k = 1$.

Donc $\varphi_k \in \text{Aut}(G)$ ssi $n \wedge k = 1$.

Il y a donc $\varphi(n)$ automorphismes.

Chapitre 3

Théorème de LAGRANGE

Introduction

 $\underline{\mathbf{D\acute{e}finition~3.1}}$ Un ensemble X est une collection d'éléments dans laquelle :

- l'ordre n'a pas d'importance : $\{1,2\} = \{2,1\}$
- les répétitions n'ont pas d'importance : $\{1,1\} = \{1\}$

On note |X| son nombre d'éléments (éventuellement infini).

<u>Définition 3.2</u> Une relation \mathcal{R} dans un ensemble X est une relation d'équivalence ssi elle est réflexive, symétrique et transitive.

Une relation \mathcal{R} dans un ensemble X est une relation d'ordre ssi elle est réflexive, antisymétrique et transitive.

Il y a une surjection entre toute partition P de X et X (application

quotient):

$$\pi: \begin{cases} X & \to & P \\ x & \mapsto & Y & \text{ssi} \quad x \in Y \end{cases}$$

À chaque relation d'équivalence, on peut associer une partition : $X/\mathcal{R} = \{\overline{x}, x \in X\}.$

De même, à chaque partition, on peut associer une relation d'équivalence par $x\mathcal{R}y$ ssi $\exists Y \in P, (x,y) \in Y^2$.

On peut aussi associer une surjection à chaque partition et réciproquement.

3.1 Groupes, relations d'équivalence, indice

Définition 3.4 Soit G un groupe et H un sous-groupe. On définit une relation d'équivalence sur G par $g_1\mathcal{R}g_2$ ssi $\exists h \in H, g_2 = g_1h$.

La classe de $g \in G$ est gH (classe à gauche)

Le quotient se note G/H.

Remarque 3.1 Si on applique ça à G^{op} et H^{op} , on obtient une autre relation dont les classes sont les classes à droite (Hg).

On note le quotient $H \setminus G = \{Hg, g \in G\}$.

On $a \, \forall g \in G, gH = Hg$ ssi $G/H = H \backslash G$ ssi $H \lhd G$.

Proposition 3.1 Si H < G et $g \in G$ alors |gH| = |Hg| = |H|.

Démonstration. On montre que :

$$f: \begin{cases} H & \to & gH \\ h & \mapsto & gh \end{cases}$$

est bijective.

Elle est surjective par définition. De plus, si $gh_1 = gh_2$, alors $h_1 = h_2$. Donc f est bijective. Donc |H| = |gh|.

<u>Définition 3.5</u> Si H < G, l'indice de H dans G, noté (G : H), vaut |G/H| **Exemple 3.1**

- $G/\{1\} \simeq G$.
- $G/G \simeq \{1\}.$
- Dans $\mathbb{Z}/n\mathbb{Z}$, $\overline{k} = \{k + nq, q \in \mathbb{Z}\}.$

3.2 Théorèmes

Proposition 3.2 Tout sous-groupe d'indice 2 est distingué.

Démonstration. |G/H|=2 donc $G/H=\{H,H^c\}=H\backslash G$. Donc H est distingué.

Exemple 3.2 Dans D_n , $\langle r \rangle$ est distingué.

$$D_n/\langle r \rangle = \{\{1, r, \dots, r^{n-1}\}, \{s, sr, \dots, sr^{n-1}\}\}$$

et
$$\langle r \rangle$$
 $D_n = \{\{1, \dots, r^{n-1}\}, \{s, rs, \dots, r^{n-1}s\}\}.$

Théorème 3.1 Si
$$H < G$$
, $|G| = |H|(G:H)$.

Démonstration. On a une injection de H dans G et une surjection de G dans G/H.

Donc $|H| \leq |G|$ et $|G| \geq |G/H|$.

On peut supposer |H| et |G/H| finis. On a alors $G/H = \{g_1H, \ldots, g_kH\}$. les (g_iH) ont |H| éléments

On a
$$G = \bigcup_{1 \leq i \leq k} g_i H$$
. Comme les $(g_i H)$ sont disjoints, $|G| = |G/H||H|$.

COROLLAIRE 3.1 DE LAGRANGE L'ordre d'un sous-groupe divise le cardinal du groupe.

COROLLAIRE 3.2 Tout groupe d'ordre premier p est cyclique et tout élément différent de 1 en est un générateur.

Démonstration. Soit $g \in G$. L'ordre de $\langle g \rangle$ divise p donc c'est $\{1\}$ ou G.

Chapitre 4

Actions d'un groupe sur un ensemble

Rappels sur le groupe symétrique

<u>Définition 4.1</u> Pour tout ensemble X, on note $\mathfrak{S}(X)$ l'ensemble des bijections de X.

Remarque 4.1 Si |X| = n, $\mathfrak{S}(X) \simeq \mathfrak{S}_n$.

4.1 Actions de groupes

<u>Définition 4.2</u> Une action (ou une opération) (à gauche) d'un groupe G sur un ensemble X est une application :

$$f: \begin{cases} G \times X & \to & X \\ (g, x) & \mapsto & gx \end{cases}$$

telle que $\forall x \in X, f(1,x) = x$ et $\forall (x,g,h) \in X \times G^2, f(gh,x) = f(g,f(h,x)).$

Exemple 4.1

- $\mathfrak{S}(X)$ opère sur X.
- Les isométries opèrent sur \mathbb{R}^2 .
- GL(V) opère sur V pour tout V espace vectoriel sur K.

Théorème 4.1 Si G opère sur X,

$$\varphi: \begin{cases} G \to \mathfrak{S}(X) \\ g \mapsto \sigma_g: \begin{cases} X \to X \\ x \mapsto gx \end{cases}$$

est un morphisme de groupes.

 $Si \varphi : G \to \mathfrak{S}(X)$ est un morphisme de groupes, on a une action :

$$\psi: \begin{cases} G \times X & \to & X \\ (g, x) & \mapsto & \varphi(g)x \end{cases}$$

Démonstration.

- On a $\sigma_{gh}(x) = (gh)x$ et $\sigma_g(\sigma_h(x)) = \sigma_g(hx) = g(hx)$. Comme G opère sur X, g(hx) = (gh)x. De plus, $\sigma_1(x) = x$. Il faut montrer que $\sigma_g \in \mathfrak{S}(X)$. σ_g est bijective car $\sigma_g \circ \sigma_{g^{-1}} = \operatorname{Id} \operatorname{car} G$ opère sur X. Donc φ est un morphisme.
- $(gh) \cdot x = \varphi(gh)(x) = (\varphi(g) \circ \varphi(h))(x) = \varphi(g)(\varphi(h)(x)) = g \cdot (h \cdot x)$ Donc ψ est une action.

<u>Définition 4.3</u> Une action à droite de G sur X est une action à gauche de G^{op} sur X:

$$f: \begin{cases} G \times X & \to & X \\ (g, x) & \mapsto & xg \end{cases}$$

tel que x1 = x et x(gh) = (xg)h.

Proposition 4.1 Si $\varphi: G \to H$ est un morphisme de groupes et X muni d'une action de H, alors X est muni d'une action de G.

Démonstration. Il suffit de composer par φ un morphisme $\psi: H \to \mathfrak{S}(X)$ (théorème précédent).

Exemple 4.2

$$\cdot^{-1}: \begin{cases} G & \to & G^{op} \\ g & \mapsto & g^{-1} \end{cases}$$

transforme une action à droite en une action à gauche.

• Si H < G, toute action de G sur X induit une action de H sur X car l'injection canonique de H dans G est un morphisme.

COROLLAIRE 4.1 Si X est un ensemble fini à n éléments, toute action de G sur X donne un morphisme $G \to \mathfrak{S}_n$. (et réciproquement)

Définition 4.4 Soit G un groupe opérant sur un ensemble X. On définit, pour chaque $x \in X$, le stabilisateur de x, noté G_x , l'ensemble $\{g \in G, gx = x\} \subset G$.

L'orbite de x, notée $G.x = \{gx, g \in G\} \subset X$.

L'opération est dite transitive s'il existe une unique orbite (ie $\forall x, y \in X^2, \exists g \in G, gx = y$).

L'opération est libre si les stabilisateurs sont triviaux (ie $\forall (x, g) \in X \times G$, $gx = x \Rightarrow g = 1$).

Remarque 4.2 Pour tout $x, G_x < G$.

Proposition 4.2 Les orbites forment une partition de X. Ce sont les classes d'équivalences de :

$$x\mathcal{R}y$$
 ssi $y = qx$

On notera $G \setminus X$ l'ensemble quotient (et $X/G = G^{op} \setminus X$)

Démonstration. x = 1x donc $x\mathcal{R}x$. Si $x\mathcal{R}y$, y = gx donc $x = g^{-1}y$ donc $y\mathcal{R}x$.

Si
$$x\mathcal{R}y$$
 et $y\mathcal{R}z$, $y = gx$ et $z = hy$ donc $z = hgx$ et $x\mathcal{R}z$.

<u>Définition 4.5</u> Si G agit sur X et H < G, on dit qu'une partie Y de X est H-stable ssi $HY \subset Y$.

Exemple 4.3

- Si $Y = \{x\}$, on dit que x est fixe.
- Si $H = \langle g \rangle$, on dit que Y est g-stable.

Remarque 4.3 Si Y stable sous H, on obtient une action de H sur Y donné par :

$$f: \begin{cases} H \times Y & \to & Y \\ (h, y) & \mapsto & hy \end{cases}$$

Proposition 4.3 Si G agit sur X, H < G, $Y \subset X$, Y est H-stable ssi Y est une union d'orbites de X sous l'action de H

Proposition 4.4 Si G agit sur X et $\varphi: G \to \mathfrak{S}(X)$ le morphisme associé.

$$Ker(\varphi) = \bigcap_{x \in X} G_x$$

Démonstration.

$$g \in \text{Ker}(\varphi)$$
 ssi $\varphi(g) = \text{Id}$ ssi $\forall x \in X, gx = x$
ssi $\forall x, g \in G_x$ ssi $g \in \bigcap_{x \in X} G_x$

<u>Définition 4.6</u> Una action est dite fidèle si le morphisme associé est injectif.

Remarque 4.4 Si les stabilisateurs sont triviaux, alors l'action est fidèle. La réciproque est fausse.

Exemple 4.4 G est l'ensemble des isométries du plan, $X = \mathbb{R}^2$, $X = D_n$ et $Y = \mathcal{P}_n$ (polygône régulier à n côtés).

L'action de D_n sur \mathcal{P}_n est transitive ($\langle r \rangle$ agit transitivement), pas libre $(s \in (D_n)_{A_0})$ mais fidèle (pour $n \geq 3$) (une isométrie est affine et si elle fixe trois points non alignés de \mathbb{R}^2 , elle est égale à Id).

En particulier $D_3 \simeq \mathfrak{S}_3$.

4.2 Opérations par translation

<u>Définition 4.7</u> Pour tout groupe G, sa loi · est une action de G sur G à droite et à gauche. De plus $G \setminus G = G/G = \{1\}$.

Si H < G, $\cdot : G \times H \to G$ est un action à droite de H sur G.

Les orbites par l'action à droite de H sur G sont les classes à gauche gH.

Proposition 4.5 Soit H < G.

On a une action de G à gauche sur G/H donnée par :

$$f: \begin{cases} G \times G/H & \to & G/H \\ (g, g'H) & \mapsto & gg'H \end{cases}$$

Remarque 4.5 Si (G:H) est fini, on obtient un morphisme $G \to \mathfrak{S}_{(G:H)}$.

Exemple 4.5
$$G = GL_2(\mathbb{Z}/2\mathbb{Z} > H = \left\langle \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \right\rangle$$
.

|H|=2 donc (G:H)=3 et on obtient $G\to\mathfrak{S}_3$. L'action est fidèle donc $G\simeq\mathfrak{S}_3$.

<u>Théorème 4.2</u> Cayley Tout groupe fini est isomorphe à un sous-groupe d'un groupe symétrique.

Démonstration. G agit à gauche sur G donc on a un morphisme φ de $G \to \mathfrak{S}(G)$. Or $\mathfrak{S}(G) \simeq \mathfrak{S}_{|G|}$

Ce morphisme est fidèle donc G est isomorphe à $\operatorname{Im}(\varphi) < \mathfrak{S}(G)$ donc isomorphe à un sous-groupe de \mathfrak{S}_n .

4.3 Opérations par conjugaison

<u>Définition 4.8</u> G agit sur G par conjugaison (à gauche) par :

$$f_g: \begin{cases} G \times G & \to & G \\ (g,h) & \mapsto & ghg^{-1} \end{cases}$$

<u>Définition 4.9</u> La classe de h sous l'action par conjugaison de G est appelée classe de conjugaison de h. Le stabilisateur de h est appelé centralisateur : $Z_G(h) = \{g \in G, gh = hg\}.$

Exemple 4.6 $D_n = \langle r, s \rangle$.

$$r^{i}r^{j}r^{-i} = r^{j}, (r^{i}s)r^{j}sr^{-i} = r^{-j}, r^{i}(r^{j}s)r^{-i} = r^{j+2i}s \text{ et } (r^{i}s)(r^{j}s)sr^{-i} = r^{2i-j}s$$

Donc les classes de conjugaison sont :

• pour n impair :

$$\{1\}, \{r, r^{n-1}\}, \dots, \{r^{\frac{n-1}{2}}, r^{\frac{n+1}{2}}\}, \{s, rs, \dots r^{n-1}s\}$$

 \bullet pour n pair :

$$\{1\}, \{r^{\frac{n}{2}}\}, \{r, r^{n-1}\}, \dots, \{r^{\frac{n}{2}-1}, r^{\frac{n}{2}+1}\}, \{s, r^2s, \dots r^{\frac{n}{2}}s\}, \{rs, \dots r^{\frac{n}{2}+1}s\}$$

Donc $Z(D_n) = \{1\}$ si n impair et $\{1, r^{\frac{n}{2}}\}$ si n pair.

De plus, $Z_{D_n}(r) = \langle r \rangle, \dots$

Proposition 4.6 Soit G un groupe. Aut(G) agit sur les sous-groupes H de G par $\varphi \cdot H = \varphi(H)$.

Remarque 4.6

- $H \triangleleft G$ ssi $\operatorname{Int}(G) \subset \operatorname{Stab}_{\operatorname{Aut}(G)}(H)$ $En\ effet,\ \operatorname{Int}(G) \subset \operatorname{Stab}_{\operatorname{Aut}(G)}(H)\ ssi\ \forall g \in G, gHg^{-1} = H$ ssi $H \triangleleft G$.
- $K \triangleleft H \triangleleft G \not\Rightarrow K \triangleleft G$ en général.

<u>Définition 4.10</u> Un sous-groupe H d'un groupe G est dit caractéristique ssi son stabilisateur sous l'action de Aut(G) est Aut(G).

Remarque 4.7 H < G caractéristique $\Rightarrow H \triangleleft G$.

Exemple 4.7

• D(G) est caractéristique.

$$\alpha([g,h]) = \alpha(ghg^{-1}h^{-1}) = \alpha(g)\alpha(h)\alpha(g)^{-1}\alpha(h)^{-1} = [\alpha(g), \alpha(h)]$$

 $D(G) = \langle X \rangle$ avec $X = \{[g, h], g, h \in G^2\}$.

$$\alpha(D(G)) = \langle \alpha(X) \rangle \subset \langle X \rangle = D(G).$$

De même, $\alpha^{-1}(D(G)) \subset D(G)$ donc $\alpha(D(G)) = D(G)$.

• Z(G) est caractéristique.

$$\alpha(g)h = \alpha(g\alpha^{-1}(h)) = \alpha(\alpha^{-1}(h)g) = h\alpha(g)$$

Proposition 4.7 Soient G un groupe et $K \triangleleft H \triangleleft G$.

Si K est caractéristique dans H, $K \triangleleft G$.

Si, de plus, H est caractéristique, K est caractéristique dans G.

Démonstration. Soit $\alpha \in Aut(G)$ intérieur.

 $\alpha(H) = H \text{ car } H \triangleleft G. \text{ Donc } \alpha \text{ induit } \alpha' \text{ sur } H.$

Comme K est caractéristique dans H, $\alpha'(K) = K$. Or $\alpha(K) = \alpha'(K)$. Donc $\alpha(K) = K$. Donc $K \triangleleft G$.

Soit $\alpha \in Aut(G)$ caractéristique.

 $\alpha(H) = H \operatorname{car} H \triangleleft G$. Donc α induit $\alpha' \operatorname{sur} H$.

Comme K est caractéristique dans H, $\alpha'(K) = K$. Or $\alpha(K) = \alpha'(K)$. Donc $\alpha(K) = K$. Donc K est caractéristique dans G.

Remarque 4.8

- α' n'est pas un automorphisme intérieur de H en général, même si α est intérieur sur G.
- Par composition avec

$$\varphi: \begin{cases} G \to \operatorname{Aut}(G) \\ g \mapsto \sigma_g: \begin{cases} G \to G \\ h \mapsto ghg^{-1} \end{cases}$$

G agit sur ses sous-groupes par conjugaison.

<u>Définition 4.11</u> Le normalisateur $N_G(H)$ est le stabilisateur de H sous l'action de G par conjugaison.

$$N_G(H) = \{g \in G, gHg^{-1} = H\}$$

Remarque 4.9 $N_G(H)$ est le plus grand sous-groupe de G dans lequel H est distingué.

Chapitre 5

Groupes symétriques

5.1 Groupe des permutations

<u>Définition 5.1</u> On note \mathfrak{S}_n le groupe symétrique ie l'ensemble des permutations de $[\![1,n]\!]^{[\![1,n]\!]}$.

Proposition 5.1 $Card(\mathfrak{S}_n) = n!$.

Notation:

 $\sigma \in \mathfrak{S}_n$ s'écrit :

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Exemple 5.1

•
$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
 et $\rho = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$.
On a $\sigma \rho = \mathrm{Id} = 1$.

•
$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
 et $\rho = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$.
• $\sigma \rho = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \end{pmatrix} \neq \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \rho \sigma$.

Remarque 5.1 \mathfrak{S}_3 n'est pas commutatif.

 \mathfrak{S}_n agit naturellement sur [1, n].

Les permutations qui fixent [m+1, n] forment un sous-groupe isomorphe à \mathfrak{S}_m .

Donc \mathfrak{S}_n n'est pas abélien pour $n \geqslant 3$.

5.2 Cycles et support

<u>Définition 5.2</u> Le support de $\sigma \in \mathfrak{S}_n$, noté supp (σ) , est le complémentaire de l'ensemble des points fixes de σ .

Proposition 5.2 Soient $\sigma, \rho \in \mathfrak{S}_n$.

 $\operatorname{supp}(\sigma\rho) \subset \operatorname{supp}(\sigma) \cup \operatorname{supp}(\rho)$ avec égalité ssi $\operatorname{supp}(\sigma) \cap \operatorname{supp}(\rho) = \emptyset$. Dans ce cas, on a $\sigma\rho = \rho\sigma$.

Démonstration.

- Si $i \notin \operatorname{supp}(G)$ et $i \notin \operatorname{supp}(\rho)$, alors $(\sigma \rho)(i) = \sigma(\rho(i)) = \sigma(i) = i$. Donc $i \notin \operatorname{supp}(\sigma \rho)$.
- Suppsons $\operatorname{supp}(\sigma) \cap \sigma(\rho) = \emptyset$. Soit $i \in \operatorname{supp}(\sigma)$. $(\sigma\rho)(i) = \sigma(i)$ car $i \in \operatorname{supp}(\sigma) \subset \operatorname{supp}(\rho)^c$. De même, si $i \in \operatorname{supp}(\rho)$, $\rho(i) \in \operatorname{supp}(\rho) \subset \operatorname{supp}(\sigma)^c$. Donc $(\sigma\rho)(i) = \rho(i)$.

Si $i \notin \text{supp}(\sigma)$ et $i \notin \text{supp}(\rho)$ alors $(\sigma \rho)(i) = \sigma(i) = i$.

Les résultats en découlent.

<u>Définition 5.3</u> Soient $(i_1, ..., i_l \in [1, n']]$ distincts avec $l \ge 2$. Alors, le l-cycle $(i_1, ..., i_l)$ est la permutation de \mathfrak{S}_n de support $\{i_1, ..., i_l\}$ telle que $\sigma(i_1) = i_2, \, \sigma(i_2) = i_3, \, ..., \, \sigma(i_l) = i_1$.

l est la longueur du cycle.

Exemple 5.2

$$(142) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} = (421) \neq (124)$$

Remarque 5.2 Le support d'un cycle est l'unique orbite non triviale sous l'action du cycle.

<u>Définition 5.4</u> Si G agit sur X et $g \in G$, on appelle action de g sur X l'action de $\langle g \rangle$ sur X.

Remarque 5.3 Un l-cycle est d'ordre l.

<u>Théorème 5.1</u> Toute permutation s'écrit de manière unique comme produit de cycles à support disjoints.

Démonstration.

! Supposons $\sigma = \gamma_1 \dots \gamma_p$. On a supp $(\sigma) = \bigcup_{i=1}^p \operatorname{supp}(\gamma_i)$ qui forment une partition de supp (σ) .

Donc $\gamma_i(i) = \sigma(i)$ si $i \in \text{supp}(\gamma_i)$ et i sinon.

D'où l'unicité (car supp (γ_j) est une orbite sous l'action de σ .

 \exists On écrit $\operatorname{supp}(\sigma) = \bigcup_{i=1}^{p} X_i$ avec $(X_i)_i$ formant la partition de $\operatorname{supp}(\sigma)$ associée à l'action de G.

Soit X une orbite de supp(G) sous l'action de σ et $i \in X$.

Soit l le plus petit entier tel que $\sigma^l(i) = i$. Par division euclidienne, on peut montrer que $\operatorname{Card}(X) = l$ et $X = \{i, \sigma(i), \dots, \sigma^{l-1}(i)\}$.

On pose $\gamma = (i, \sigma(i), \dots, \sigma^{l-1}(x))$. γ et σ agissent de la même manière sur X.

On le fait pour chaque orbite X_j qui nous donne un γ_j . On a alors $\sigma = \gamma_1 \dots \gamma_p$.

Exemple 5.3

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 1 & 3 & 6 \end{pmatrix} = (124)(35)$$

<u>Définition 5.5</u> Si $(X_i)_{i \in [\![1,p]\!]}$ est la partition de $[\![1,n]\!]$ sous $\sigma \in \mathfrak{S}_n$ avec $l_1 \geqslant l_2 \geqslant \ldots \geqslant l_p$ $(l_j = \operatorname{Card}(X_j))$, on dit que $[l_1,\ldots,l_p]$ est le type de σ .

Remarque 5.4 On a alors $\sigma = \gamma_1 \dots \gamma_r$ avec γ_i des cycles de longueur l_i pour i tel que $l_i \neq 1$.

Exemple 5.4 $(124) \in \mathfrak{S}_4$ est de type [3,1].

Proposition 5.3 Si σ est de type $[l_1, \ldots, l_r]$, alors $Or(\sigma) = \bigvee_{1 \le i \le r} l_i$.

Démonstration. On a $\sigma = \gamma_1 \dots \gamma_r$ avec γ_i de longueur l_i .

$$\sigma^k = \text{Id} \quad \text{ssi} \quad \forall i, \sigma^k(i) = i$$
$$\text{ssi} \quad \forall i, j, \gamma_j^k(i) = i$$
$$\text{ssi} \quad \forall j, \gamma_j^k = \text{Id}$$

Donc
$$Or(\sigma) = \bigvee_{1 \leq i \leq r} Or(\gamma_i)$$
.

Proposition 5.4 Deux permutations sont conjuguées ssi elles ont même type.

Démonstration.

Lemme 5.1.1

$$\omega \underbrace{(i_1,\ldots,i_l)}_{\gamma} \omega^{-1} = (\omega(i_1),\ldots,\omega(i_l)) = \gamma'.$$

Démonstration. $(\omega \gamma \omega^{-1})(\omega(i_j)) = \omega(i_{j+1})$ et $(\omega \gamma \omega^{-1})(\omega(i_l)) = \omega(i_1)$. Si $j \in \omega(\text{supp}(\gamma))$ alors $(\omega \gamma \omega^{-1})(j) = \gamma'(j)$.

Sinon,
$$\omega^{-1}(j) \notin \operatorname{supp}(\gamma)$$
. On a alors $\gamma(\omega^{-1}(j)) = \omega^{-1}(j)$ et $(\omega \gamma \omega^{-1})(j) = j = \gamma'(j)$.

Si $\sigma \in \mathfrak{S}_n$ et $\sigma = \gamma_1 \dots \gamma_r$ sa décomposition.

 $\omega \sigma \omega^{-1} = (\omega \gamma_1 \omega^{-1}) \dots (\omega \gamma_r \omega^{-1})$ qui sont disjoints donc le type de σ est celui de $\omega \sigma \omega^{-1}$.

Réciproquement, si σ et ρ sont de type $[l_1, \ldots, l_r]$.

Notons (X_1, \ldots, X_r) les orbites de σ et (Y_1, \ldots, Y_r) ceux de ρ .

On a donc $|X_j| = |Y_j| = l_j$. Pour chaque j, soit $i_j \in X_j$ et $k_j \in Y_j$ on définit ω par $\omega(\sigma^t(i_j)) = \rho^t(k_j)$ pour $t \in [1, l_j]$.

On vérifie que
$$\omega \sigma \omega^{-1} = \rho$$
.

Exemple 5.5 Dans \mathfrak{S}_4 , il y a 4 types possibles :

types	nombre de permutations
[1, 1, 1, 1]	1
[2, 1, 1]	6
[2, 2]	3
[3, 1]	8
[4]	6

5.3 Générateurs et signature

Proposition 5.5 \mathfrak{S}_n est engendré par les transpositions.

Démonstration. Tout cycle est un produit de transpositions : $(i_1, \ldots, i_l) = (i_1, i_2) \ldots (i_{l-1}, i_l)$ et les cycles engendrent \mathfrak{S}_n .

Remarque 5.5 Autre démonstration : par récurrence, n=1 débile.

Si $\sigma(n) = n$, $\sigma \in \mathfrak{S}_{n-1}$ donc l'hypothèse de récurrence conclut. Si $\sigma(n) = k \neq n$, $\rho = (k, n)\sigma$ vérifie $\rho(n) = n$ et le cas précédent conclut à $\sigma = (k, n)\rho = (k, n)\prod_{i=1}^p \tau_i = \prod_{i=1}^{p+1} \tau_i$.

Proposition 5.6 \mathfrak{S}_n est engendré par les $\{(1i), i \in [\![1,n]\!]\}$.

Démonstration. Pour tout i, j, (ij) = (1j)(1i)(1j). D'où le résultat.

<u>Définition 5.6</u> On note \mathscr{P}_n l'ensemble des paires d'éléments de [1, n]. Si $\sigma \in \mathfrak{S}_n$, on pose :

$$\varepsilon(\sigma) = \prod_{\{i,j\} \in \mathscr{P}_n} \frac{\sigma(i) - \sigma(j)}{i - j} = \prod_{1 \le i < j \le n} \frac{\sigma(i) - \sigma(j)}{i - j}$$

Remarque 5.6

- $\{i,j\} = \{j,i\}$ et $\{i,i\} \notin \mathscr{P}_n$ alors que $(i,j) \neq (j,i)$ et (i,i) est un couple.
- \mathscr{P}_n est muni d'une action de \mathfrak{S}_n par $\sigma(\{i,j\}) = \{\sigma(i), \sigma(j)\}.$
- Par conséquent, on a :

$$\varepsilon(\sigma) = \frac{\prod_{i < j} \sigma(i) - \sigma(j)}{\prod_{\sigma(i) < \sigma(j)} \sigma(i) - \sigma(j)} = (-1) \underbrace{\operatorname{Card}\{(i, j), i < j \text{ et } \sigma(i) > \sigma(j)\}}_{nombre \text{ d'inversions}}$$

$$et \ \varepsilon(\mathfrak{S}_n) = \{1, -1\}.$$

• $\varepsilon(k,l) = -1$.

Proposition 5.7

- $\varepsilon: \mathfrak{S}_n \to \{-1,1\}$ est un morphisme de groupes.
- Si σ est produit d'un nombre pair de transpositions, $\varepsilon(\sigma) = 1$ et -1 sinon.
- Si $\gamma_1 \dots \gamma_p$ est la décomposition de σ en l_i -cycles à support disjoints, $\varepsilon(\sigma) = \prod_{i=1}^p (-1)^{l_i-1}.$

Démonstration.

• On a:

$$\begin{split} \varepsilon(\sigma\rho) &= \prod_{\{i,j\} \in \mathscr{P}_n} \frac{\sigma(\rho(i)) - \sigma(\rho(j))}{i - j} \\ &= \prod_{\{i,j\} \in \mathscr{P}_n} \frac{\sigma(\rho(i)) - \sigma(\rho(j))}{\rho(i) - \rho(j)} \times \prod_{\{i,j\} \in \mathscr{P}_n} \frac{\rho(i) - \rho(j)}{i - j} \\ &= \prod_{\{i,j\} \in \mathscr{P}_n} \frac{\sigma(i) - \sigma(j)}{i - j} \times \prod_{\{i,j\} \in \mathscr{P}_n} \frac{\rho(i) - \rho(j)}{i - j} \\ &= \varepsilon(\sigma) \varepsilon(\rho) \end{split}$$

- Clair par le point précédent et la remarque ci-dessus.
- Clair par les points précédents et par la décomposition de tout cycle en produit de transpositions : $(i_1, \ldots, i_l) = (i_1, i_2) \ldots (i_{l-1}, i_l)$.

5.4 Groupe alterné

5.4.1 Définition

Définition 5.7 Le noyau de la sigmature $\varepsilon : \mathfrak{S}_n \to \{1, -1\}$ est le groupe alterné \mathfrak{A}_n .

Proposition 5.8 $\mathfrak{A}_n \triangleleft \mathfrak{S}_n$ et $Card(\mathfrak{A}_n) = \frac{n!}{2}$.

Démonstration.
$$\mathfrak{S}_n = \mathfrak{A}_n \cup (1 \, 2) \mathfrak{A}_n \text{ donc } \operatorname{Card}(\mathfrak{A}_n) = \frac{n!}{2}.$$

Exemple 5.6

- $\mathfrak{A}_2 = \{1\}.$
- $\mathfrak{A}_3 = \{ \mathrm{Id}, (132), (123) \}.$

•

$$\mathfrak{A}_4 = \{ \mathrm{Id}, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (234), (243), (134), (143) \}$$

5.4.2 Sous-groupes

Ordre	Sous-groupe
1	{1}
2	$\langle (12)(34)\rangle, \langle (13)(24)\rangle, \langle (14)(23)\rangle$
3	$\langle (123)\rangle, \langle (124)\rangle, \langle (234)\rangle, \langle (134)\rangle$
4	$\{1, (12)(34), (13)(24), (14)(23)\}^{1}$
6	Il n'y en a pas
12	{1}

Proposition 5.9 \mathfrak{A}_n est engendré par les 3-cycles, et aussi par les cycles de la forme (1 i j).

Démonstration. On sait que
$$(1 i j) = (1 j)(1 i)$$
 et que les $\{(1 i)(1 j), (i, j) \in [1, n]^2\}$ engendrent \mathfrak{A}_n .

5.5 Simplicité

<u>Définition 5.8</u> Un groupe G est dit simple si ses seuls sous-groupes distingués sont $\{1\}$ et G.

Exemple 5.7

- $\mathbb{Z}/p\mathbb{Z}$ avec p premier est simple.
- $\mathbb{Z}/4\mathbb{Z}$ n'est pas simple.
- \mathfrak{S}_n , D_n et \mathfrak{A}_4 ne sont pas simples.

THÉORÈME 5.2 Pour tout $n \ge 5$, \mathfrak{A}_n est simple.

Démonstration. Soit N un sous-groupe distingué de \mathfrak{A}_n tel que $N \neq \mathfrak{A}_n$.

• Supposons que N contienne un cycle de la forme $(ijk) = \sigma$. Si $\sigma' = (i'j'k')$ est un 3-cycle, il existe $\rho \in \mathfrak{S}_n$ tel que $\sigma' = \rho \sigma \rho^{-1}$ car ils ont même type.

Si $\rho \in \mathfrak{A}_n$, $\sigma' \in N$ donc N contient tout les 3-cycles donc $N = \mathfrak{A}_n$ donc contradiction.

Sinon, $\rho \notin \mathfrak{A}_n$, on remplace ρ par $\rho(l m) \in \mathfrak{A}_n$ avec i, j, k, l, m distincts (possible car $n \geq 5$). D'où une contradiction par le cas précédent.

Donc il n'y a pas de cycles d'ordre 3 dans N.

• Soit $\sigma \in N$ qui s'écrit $\sigma = (i_1 \dots i_p)\gamma_2 \dots \gamma_m$ avec $p \geqslant 4$. On conjugue avec $(i_1, i_2, i_3) \in \mathfrak{A}_n$ et on a $\sigma' = (i_2 i_3 i_1 \dots i_p)\gamma_2 \dots \gamma_m \in N$.

Donc, comme N est un groupe, $\sigma'\sigma^{-1} = (i_2 i_4 i_1) \in N$. D'où la contradiction.

Donc tous les cycles dans la décomposition de $\sigma \in N$ sont de longueur 2 ou 3.

• Si σ est de type $[3, 2, \dots, 2]$, σ^2 est de type $[3, 1, \dots, 1]$ donc contradiction.

Il reste donc les permutations associées aux types $[3, \ldots, 3]$ et $[1, \ldots, 1]$.

- Type $[3, \ldots, 3]$: soit $\sigma = (i_1 i_2 i_3)(i'_1 i'_2 i'_3)\gamma_3 \ldots \gamma_p$. On conjugue avec $(i'_1 i'_2 i_3)$ et on a $\sigma' = (i_1 i_2 i'_1)(i'_2 i_3 i'_3)\gamma_3 \ldots \gamma_p$ et on obtient un cycle à plus de quatre éléments dans $\sigma \sigma'$. D'où une contradiction.
- Type $[2, \ldots, 2]$: $\sigma = (i_1 i_2)(i_3 i_4)$ On conjugue avec $(i_1 i_5 i_2)$ et on trouve $\sigma' = (i_5 i_1)(i_3 i_4)$ et $\sigma'\sigma = (i_2 i_5 i_1)$, d'où une contradiction.
- Cas où $\sigma = (i_1 i_2)(i_3 i_4)(i_5 i_6)\gamma_4 \dots \gamma_m$. On conjugue avec $(i_5 i_4)(i_3 i_2)$ et on a $\sigma' = (i_1 i_3)(i_2 i_5)(i_4 i_6)\gamma_4 \dots \gamma_m$ et $\sigma'\sigma = (i_1 i_5 i_4) \dots$ d'où une contradiction. OUF!!!

Proposition 5.10

- Les groupes commutatifs simples sont les groupes cycliques d'ordre p avec p premier.
- Il n'y a aucun groupe simple non abélien à moins de 60 éléments.
- À isomorphisme près, il n'y a qu'un seul groupe simple de cardinal compris entre 60 et 360 : c'est $PSL_2(\mathbb{Z}/7\mathbb{Z}) = SL_2(\mathbb{Z}/7\mathbb{Z})/\mu_2(\mathbb{Z}/7\mathbb{Z})$ avec $\mu_2(\mathbb{Z}/7\mathbb{Z}) = \{a \in \mathbb{Z}/7\mathbb{Z}, a^2 = 1\}.7$
- Le premier groupe de Mathieu (7920 éléments) noté M_1 est :

$$\langle (1\,2\,3\,4\,5\,6\,7\,8\,9\,10\,11), (3\,7\,11\,8)(4\,10\,5\,6) \rangle \subset \mathfrak{S}_{11}$$

est simple.

CHAPITRE 5. GROUPES SYMÉTRIQUES

Exemple 5.8 En notant
$$PSL_n(q) = PSL_n(\mathbb{Z}/q\mathbb{Z})$$
, on a

$$\mathfrak{A}_5 \simeq PSL_2(4) \simeq PSL_2(5)$$

$$PSL_2(7) \simeq PSL_3(2)$$
 et $\mathfrak{A}_6 \simeq PSL_2(9)$

Groupes quotients

Proposition 6.1

$$H \lhd G$$
 ssi $G/H = H \backslash G$
ssi $\forall g \in G, gH = Hg$
ssi H stable sous $\mathrm{Int}(G)$
ssi H est réunion de classes de G

Théorème 6.1 Soit H < G.

 $H \triangleleft G$ ssi il existe une structure de groupe sur G/H telle que l'application :

$$\pi : \begin{cases} G & \to & G/H \\ g & \mapsto & gH \end{cases}$$

soit un morphisme de groupe. Celle-ci est alors unique et π est un morphisme surjectif de noyau H.

Démonstration.

 \Leftarrow Si G/H est muni d'une structure de groupe telle que π soit un morphisme. On aura alors

$$gH \cdot g'H = \pi(g)\pi(g') = \pi(gg') = gg'H$$

D'où l'unicité. La surjectivité est connue. De plus,

$$g \in \operatorname{Ker}(\pi)$$
 ssi $\pi(g) = H$ ssi $gH = H$ ssi $g \in H$

Donc $H = \text{Ker}(\pi)$ donc est distingué.

 \Rightarrow Si $H \triangleleft G$, gHg'H = gg'H car g'H = Hg'.

Donc $(gH, g'H) \mapsto gg'H$ est bien définie et fait de G/H un groupe. De plus, π est bien un morphisme.

<u>Définition 6.1</u> Si $H \triangleleft G$ et $g \in G$, on note $\overline{g} = \overline{g}^H = gH = Hg$.

Exemple 6.1

- $\mathfrak{A}_n \triangleleft \mathfrak{S}_n$ et $\mathfrak{S}_n/\mathfrak{A}_n = {\mathfrak{A}_n, (12)\mathfrak{A}_n}.$
- $V_4 \triangleleft \mathfrak{A}_4$ et $V_4 \triangleleft \mathfrak{S}_4$.

$$\mathfrak{A}_4/V_4 = \{\overline{1}, \overline{(123)}, \overline{132}\}$$

$$\mathfrak{S}_4/V_4 = \{\overline{1}, \overline{(123)}, \overline{(132)}, \overline{(12)}, \overline{(14)}, \overline{(13)}\}\$$

COROLLAIRE 6.1 Un sous-groupe est distingué ssi c'est le noyau d'un morphisme.

Théorème 6.2 Soit G un groupe.

- $G^{ab} = G/D(G)$ est un groupe abélien.
- Soit H < G. $D(G) \subset H$ ssi $H \triangleleft G$ et G/H abélien.

Démonstration. Le deuxième point implique le premier donc on montre le deuxième.

 \Leftarrow On suppose $H \lhd G$ et on note $\pi: g \mapsto \overline{g}$. $\overline{[g,h]} = [\overline{g},\overline{h}]$ car π est un morphisme. Donc $[g,h] \in H$ ssi $\overline{[g,h]} = 0$ ssi $\overline{[g,\overline{h}]} = 0$.

Donc $D(G) \subset H$ ssi $\forall (g,h), [\overline{g},\overline{h}] = 0$ ssi G/H abélien.

⇒ Il reste à montrer que $D(G) \subset H$ ssi $H \triangleleft G$. Soit $(g,h) \in G \times H$. $[g,h] \in D(G) \subset H$ donc $ghg^{-1}h \in H$ donc $ghg^{-1} \in H$.

Théorème 6.3 (Propriété universelle du Quotient) Soit $\varphi: G \to G'$ un morphisme et $H \lhd G$. $H \subset \operatorname{Ker}(\varphi)$ ssi il existe un morphisme $\overline{\varphi}: G/H \to G'$ tel que $\varphi = \overline{\varphi} \circ \pi$.

Remarque 6.1

- \bullet $\overline{\varphi}$ est l'unique morphisme vérifiant cette propriété.
- On écrit :

- $\operatorname{Ker}(\overline{\varphi}) = \operatorname{Ker}(\varphi)/H$.
- $\overline{\varphi}$ est injective ssi $H = \text{Ker}(\varphi)$.
- H < K < G et $H \triangleleft G$ implique $H \triangleleft K$.

Démonstration.

 \Leftarrow Soit $h \in H$.

$$\varphi(h) = \overline{\varphi}(\overline{h}) = \overline{\varphi}(\overline{1}) = 1 \text{ donc } h \in \text{Ker}(\varphi). \text{ Donc } H \subset \text{Ker}(\varphi).$$

 \Rightarrow On définit $\overline{\varphi}(\overline{g}) = \varphi(g)$.

Il faut montrer que c'est bien défini. Si $\overline{g} = \overline{g'}$, $g^{-1}g' \in H \subset \text{Ker}(\varphi)$ donc $\varphi(g) = \varphi(g')$.

Le reste est vraie par définition.

Théorème 6.4 Soit $\varphi: G \to G'$ un morphisme de groupes.

$$\psi: \begin{cases} G/\operatorname{Ker}(\varphi) & \to & \operatorname{Im}(\varphi) \\ \overline{g} & \mapsto & \varphi(g) \end{cases}$$

est un isomorphisme et c'est le seul.

 $D\acute{e}monstration$. φ est à valeurs dans $Im(\varphi)$ donc on a un morphisme surjectif $G \to Im(\varphi)$. Son noyau est $Ker(\varphi)$ donc il existe un morphisme injectif de $G/Ker(\varphi) \to Im(G)$ qui reste surjectif.

COROLLAIRE 6.2 Tout groupe cyclique est isomorphe à un $\mathbb{Z}/n\mathbb{Z}$.

Exemple 6.2

• $G/Z(G) \simeq \operatorname{Int}(G)$ car

$$\varphi: \begin{cases} G & \to & \operatorname{Aut}(G) \\ g & \mapsto & \sigma_g: \begin{cases} G & \to & G \\ h & \mapsto & ghg^{-1} \end{cases}$$

a pour noyau Z(G) et pour image Int(G).

- $GL_n(\mathbb{C})/SL_n(\mathbb{C}) \simeq \mathbb{C}^*$. (considérer det)
- $\mathfrak{S}_n/\mathfrak{A}_n \simeq \{\pm 1\}$ (considérer ε)

Théorème 6.5 Soit K < H < G avec $K \triangleleft G$ et $H \triangleleft G$.

$$(G/K)/(H/K) \simeq G/H$$

Démonstration. Il suffit de considérer le graphe suivant :

<u>Définition 6.2</u> Soit X un ensemble et $\mathcal{M}(X \cup X^{-1})$ l'ensemble des mots sur X. On définit une relation d'équivalence \sim sur cet ensemble en contractant les produits xx^{-1} et $x^{-1}x$.

On note $\mathscr{F}(X)=\mathcal{M}(X\cup X^{-1})/\sim$ le quotient. $\mathscr{F}(X)$ est le groupe libre sur X

Proposition 6.2 C'est un groupe.

Proposition 6.3 Soit G un groupe, $Y \subset G$ et X en ensemble quelconque. Pour tout $f: X \to Y$, il existe un unique morphisme $\varphi: \mathscr{F}(X) \to G$ tel que $\varphi(x) = f(x)$ pour tout $x \in X$.

Si f est surjective et $G = \langle Y \rangle$, φ est surjective.

Remarque 6.2 Si φ est surjective, $G \simeq \mathcal{F}(X)/\operatorname{Ker}(\varphi)$.

Exemple 6.3 Pour $X = \{x, y\}, R = \langle x^n, y^2, xyxy \rangle, \mathscr{F}(X)/R \simeq D_n$.

Formule des classes

Proposition 7.1 Si G agit sur X, pour tout $x \in X$,

$$\varphi: \begin{cases} G/G_x & \to & Gx \\ gG_x & \mapsto & gx \end{cases}$$

est une bijection.

Démonstration. La surjectivité est claire.

Soit $g, g' \in G$.

$$gx = g'x$$
 ssi $x = g^{-1}g'x$ ssi $g^{-1}g' \in G_x$ ssi $g'G_x = gG_x$

D'où l'injectivité et la bonne définition.

Remarque 7.1 Si x et x' sont dans la même orbite, leurs stabilisateurs sont conjugués et $|G_x| = |G_{x'}|$.

En effet, si x' = gx, on a:

$$h \in G_{x'}$$
 ssi $hx' = x'$ ssi $hgx = gx$ ssi $g^{-1}hgx = x$
ssi $g^{-1}hg \in G_x$ ssi $h \in gG_xg^{-1}$

COROLLAIRE 7.1 $|G| = |Gx||G_x|$

 $D\acute{e}monstration.$ Clair par le théorème avant Lagrange et par la proposition précédente.

Exemple 7.1 Quels sont les groupes finis avec exactement deux classes de conjugaison?

Soit G un tel groupe.

La classe de 1 est $\{1\}$ donc l'autre classe est $G \setminus \{1\}$. Donc |G| - 1 divise |G| et donc |G| = 2.

COROLLAIRE 7.2 (FORMULE DES CLASSES) Soit G fini agissant sur X et $(x_1, \ldots, x_r) \in X$ un élément dans chaque orbite.

On
$$a |X| = \sum_{i=1}^{r} \frac{|G|}{|G_{x_i}|}$$
.

Démonstration. On a $X = \bigcup_{i=1}^r Gx_i$ qui est disjointe donc $|X| = \sum_{i=1}^r |Gx_i| = \sum_{i=1}^r \frac{|G|}{|G_{x_i}|}$ par la proposition.

<u>Définition 7.1</u> On note $X^G = \{x \in X, \forall g \in G, gx = x\}, X^g = X^{\langle g \rangle} = \{x \in X, gx = x\}$ et $G \setminus X$ l'ensemble des orbites sous l'action de G.

Proposition 7.2 On a
$$|G \setminus X| = \sum_{g \in G} \frac{|X^g|}{|G|}$$

Démonstration. On a :

$$\sum_{g \in G} |X^g| = \operatorname{Card}(\{(g, x) \in G \times X, gx = x\})$$

$$= \sum_{x \in X} |G_x|$$

$$= \sum_{i=1}^r \sum_{x \in Gx_i} |G_x|$$

$$= \sum_{i=1}^r |G_{x_i}| |Gx_i|$$

$$= \sum_{i=1}^r |G|$$

$$= |G||G \setminus X|$$

<u>Définition 7.2</u> Soit p premier. Un p-groupe fini est un groupe dont l'ordre est une puissance de p.

Remarque 7.2 Tout groupe abélien fini est somme de p-groupes abéliens finis.

Proposition 7.3 Si un *p*-groupe fini agit sur un ensemble X, $|X^G| \equiv |X| \mod p$.

Démonstration. On a par la formule des classes :

$$|X| = \sum_{i=1}^{r} |Gx_i| = \sum_{\substack{i=1\\|Gx_i|=1\\r \text{ divise } |Gx_i|}}^{r} |Gx_i| = \sum_{\substack{i=1\\|Gx_i|=1\\r \text{ divise } |Gx_i|}}^{r} |Gx_i| = |X^G|$$

Théorème 7.1 de Cauchy $Si\ G$ est un groupe fini d'ordre n et p premier divisant n alors il existe un élément d'ordre p dans G.

 $D\acute{e}monstration$. On fait agir \mathfrak{S}_p sur G^p par

$$(\sigma, (g_1, \ldots, g_p)) \mapsto (g_{\sigma(1)}, \ldots, g_{\sigma(n)})$$

On se limite au sous-groupe $\langle \gamma \rangle \in \mathfrak{S}_p$ avec $\gamma = (1 \, 2 \, 3 \dots p)$.

Posons $X = \{(g_1, ..., g_p) \in G^p, g_1 ... g_p = 1\} \subset G^p$.

X est stable sous l'action de $\langle \gamma \rangle$.

On a de plus $|\langle \gamma \rangle| = p$ et $|X| = |G|^{p-1} = n^{p-1}$.

Donc, comme p|n, p||X| donc $p||X^{\gamma}|$ car $|X^{\gamma}| \equiv |X| \mod p$.

Donc, comme $X^{\gamma} \neq \emptyset$ (contient (11...1)), il existe $(g_1, ..., g_p) \in X^{\gamma}$ avec au moins un des g_i différent de 1.

On a donc
$$(g_2, g_3, ..., g_p, g_1) = (g_1, ..., g_p)$$
 donc $g_1 = g_2 = ... = g_p$.
Donc $(g_1, ..., g_1) \in X$ donc $g_1^p = 1$.

Proposition 7.4

- Le centre d'un p-groupe fini non trivial est non trivial.
- Si G est un p-groupe fini simple, |G| = 1 ou |G| = p.

Démonstration.

 \bullet On fait agir G sur lui-mêm par conjugaison.

On a $|Z(G)| \equiv |G| \mod p$.

Si $Z(G) = \{1\}, |G| \equiv 1 \mod p$. Comme $p||G|, |G| = 1 \text{ donc } G = \{1\}$.

• On a $Z(G) \triangleleft G$. Si G est simple, on a Z(G) = G ou Z(G) = 1. Si Z(G) = G, G est abélien. Si $G \neq \{1\}$, comme G est un p-groupe, p||G| donc il existe un élément g d'ordre p.

Alors $\langle g \rangle \lhd G$. Donc $G = \langle g \rangle$ et |G| = p.

Si
$$Z(G) = \{1\}, G = \{1\}$$
 par le point précédent.

Proposition 7.5 Un groupe d'ordre p^2 est abélien.

Remarque 7.3 Les groupes d'ordre p aussi.

Démonstration. Soit G un groupe d'ordre p^2 et $g \in G$.

Si
$$g \in Z(G)$$
, $Z_G(g) = G$.

Sinon, $g \in Z_G(g)$ et $Z(G) \subset Z_G(g)$ donc $|Z_G(g)| > p$ car Z(G) est non trivial.

Or $|Z_G(g)||p^2$ donc $Z_G(g) = G$.

Donc
$$Z_G(g) = G$$
 pour tout $g \in G$, ce qui conclut.

Proposition 7.6 Soit G est un p-groupe et H < G.

Si $J \neq G$ alors $H \neq N_G(H)$.

CHAPITRE 7. FORMULE DES CLASSES

Démonstration. On suppose qu'il existe un p-groupe G fini et un sous-group H de G avec $H \neq G$ et $N_G(H) = H$.

On prend G tel que |G| minimal.

On a $Z(G) \subset N_G(H) = H$.

On pose G' = G/Z(G) et H' = H/Z(G).

H' est un sous-groupe de G', $H' \neq G'$ et |G'| < |G| car $Z(G) \neq \{1\}$.

De plus, $N_{G'}(H') = N_G(H)/Z(G) = H/Z(G) = H'$. D'où la contradiction.

Produits directs et semi-directs

8.1 Produit direct

8.1.1 Définitions

Théorème 8.1 Si H et K sont deux groupes, il existe une unique structure de groupe sur $H \times K$ telle que les projections soient des morphismes.

Démonstration. Unicité : Clair

Existence: le premier truc qui vous passe par la tête marche ¹

<u>Définition 8.1</u> $H \times K$ est le produit direct de H et K.

8.1.2 Propriétés

Proposition 8.1 (universelle) Étant donnés deux morphismes de groupes $\varphi: G \to H$ et $\psi: G \to K$, il existe un unique morphisme $\theta: G \to H \times K$ qui redonne ϕ et ψ après composition avec les projections.

Démonstration. Il suffit de considérer :

Exemple 8.1 D'où le théorème chinois : $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} \simeq \mathbb{Z}/mn\mathbb{Z}$.

Remarque 8.1 On peut définir $\prod_{i \in I} G_i$ de la même façon. Il est abélien si les G_i le sont.

Théorème 8.2 Soient H et K deux sous-groupes d'un groupe G.

- $Si\ K \subset N_G(H)$, alors HK est un sous-groupe de G et HK = KH.
- $Si\ H \cap K = \{1\}$, l'application $(h, k) \mapsto hk$ est injective.

^{1.} encore faudrait-il que quelque chose passe...

• Si $H \subset N_G(K)$, $K \subset N_G(H)$ et $H \cap G = \{1\}$, alors $(h,k) \to hk$ est un morphisme qui induit un isomorphisme de $H \times K \to HK$. (considérer les commutateurs)

Démonstration. Clair

Exemple 8.2
$$K = \langle (12) \rangle, H = \mathfrak{A}_3 \text{ et } G = \mathfrak{S}_3.$$
 $H \cap K = \{1\}, H \triangleleft G \text{ et } HK = G. \text{ Mais } H \not\subset N_G(K) \text{ car}$

$$1 \neq (1\,2\,3)(1\,2)(1\,3\,2) = (1\,3) \neq (1\,2)$$

Et ça marche pas : $(\sigma, \tau) \mapsto \sigma \tau$ n'est pas un morphisme. Seulement une bijection.

8.1.3 Applications

COROLLAIRE 8.1 Tout groupe d'ordre 4 est isomorphe à $\mathbb{Z}/4\mathbb{Z}$ ou bien à $(\mathbb{Z}p/2\mathbb{Z})^2$.

 $D\acute{e}monstration.$ Tout groupe d'ordre 4 est d'ordre p^2 avec p=2 donc il est abélien.

Si G est cyclique, alors $G \simeq \mathbb{Z}/4\mathbb{Z}$.

Sinon, tous les éléments sont d'ordre 1 ou 2. Donc il y a trois éléments d'ordre 2:g,h et k.

On a
$$\langle g \rangle \cap \langle h \rangle = \{1\}$$
 donc $G \simeq \langle g \rangle \times \langle h \rangle \simeq (\mathbb{Z}/2\mathbb{Z})^2$.

Proposition 8.2 Si G est un sous-groupe d'ordre 6 alors $G \simeq \mathbb{Z}/6\mathbb{Z}$ ou $G \simeq \mathfrak{S}_3$.

 $D\acute{e}monstration$. Par Cauchy, il existe un élément d'ordre 2 qui engendre H et un élément d'ordre 3 qui engendre K.

On a $K \triangleleft G$ car il est d'indice 2. On a bien sur $H \cap K = \{1\}$ par Lagrange. Si $H \triangleleft G$, $G \simeq H \times K \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \simeq \mathbb{Z}/6\mathbb{Z}$.

Sinon, il y a trois éléments d'ordre 2. G agit par cojugaison sur les groupes engendrés par ces trois éléments.

On a donc un morphisme φ de $G \to \mathfrak{S}_3$. Montrons que $\operatorname{Ker}(\varphi) = \{1\}$. On aura alors φ bijectif.

Or
$$\operatorname{Ker}(\varphi) = \bigcap_{\operatorname{ordre}(g)=2} N_G(g) = \bigcap_{\operatorname{ordre}(g)=2} \langle g \rangle = \{1\}.$$

Remarque 8.2 Le nombre de conjugués d'un sous-groupe H dans un groupe G divise (G:H). En effet, c'est le nombre d'orbites de H sous l'action par conjugaison de G ie $(G:N_G(H))$ par la formule des classes.

8.2 Produit semi-direct

8.2.1 Définitions

THÉORÈME 8.3 Soient Q et N deux groupes et $\varphi:Q\to \operatorname{Aut}(N)$ un morphisme.

La formule $(n_1, q_1)(n_2, q_2) = (n_1\varphi(q_1)(n_1), q_1q_2)$ définit une structure de groupe sur $N \times Q$.

<u>Définition 8.2</u> Le groupe obtenu, noté $N \rtimes_{\varphi} Q$ est le produit semi-direct de N par Q le long de φ .

Remarque 8.3 On aura un morphisme surjectif $N \rtimes_{\varphi} Q \to Q$ dont le noyau est N.

Démonstration. On a $(1,1)(n,q) = (\varphi(1)(n),q) = (n,q)$ et $(n,q)(1,1) = (n\varphi(q)(1),q) = (n,q)$.

$$(n,q)(n',q') = (1,1)$$
 ssi $q' = q^{-1}$ et $n' = \varphi(q^{-1})(n^{-1})$.

L'associativité marche aussi.

THÉORÈME 8.4 Soient N et Q deux sous-groupes de G avec $N \triangleleft G$ et $N \cap Q = \{1\}$.

NQ est un sous-groupe de G et l'application :

$$\times : \begin{cases} N \rtimes_{\varphi} Q & \to & G \\ (n,q) & \mapsto & nq \end{cases}$$

avec $\varphi(q)(n) = qnq^{-1}$ induit un isomorphisme avec NQ.

Démonstration. On a NQ < G et $N \rtimes_{\varphi} Q \to G$ est injective.

 $\varphi(q)$ est un automorphisme de N car $N \triangleleft G$ et que $q \mapsto \varphi(q)$ est un morphisme.

De plus,
$$(n_1, q_1)(n_2, q_2) = n_1 q_1 n_2 q_1^{-1} q_1 q_2 = n_1 \varphi(q_1)(n_2) q_2$$
.

Exemple 8.3

• $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$.

 $\varphi: \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/3\mathbb{Z}) \simeq \mathbb{F}_3^*$.

Si φ est trivial, ça fait le produit direct des deux ie $\mathbb{Z}/6\mathbb{Z}$.

Sinon, ça fait D_3 car $\varphi(0) = \text{Id et } \varphi(1)(1) = 2 \text{ et } \varphi(1)(2) = 1 \text{ et on peut faire correspondre } r \ \text{à} \ (1,0) \text{ et } s \ \text{à} \ (0,1).$

• $\mathbb{Z}/2\mathbb{Z} \rtimes \mathbb{Z}/3\mathbb{Z}$

Le seul morphisme φ est le morphisme trivial donc ça fait $\mathbb{Z}/6\mathbb{Z}$.

Remarque 8.4 Si NQ=G et G fini, on a $N\rtimes_{\varphi}Q\simeq G$ et |N||Q|=|G|

Théorème 8.5 Soit $\varphi: G \to G'$ un morphisme de groupes et $N = \text{Ker}(\varphi)$.

- Si K < G, $\varphi^{-1}(\varphi(K)) = NK = KN$.
- $Si \ K' < G', \ \varphi(\varphi^{-1}(K')) = K' \cap \operatorname{Im}(\varphi).$
- φ et φ^{-1} induisent des bijections réciproques entre l'ensemble des sousgroupes de G contenant $\operatorname{Ker}(\varphi)$ et les sous-groupes de $\operatorname{Im}(\varphi)$.
- Lorsque φ est surjective, cette bijection préserve les sous-groupes distingués.

Remarque 8.5 $K \triangleleft G \not\Rightarrow \varphi(K) \triangleleft G'$ en général. Par exemple, $K = \langle (1\,2) \rangle$, G = K, $G' = \mathfrak{S}_3$ et $\varphi = \mathrm{Id}$.

Démonstration.

• On a:

$$g \in \varphi^{-1}(\varphi(K)) \quad \text{ssi} \quad \varphi(g) \in \varphi(K)$$

$$\text{ssi} \quad \exists h \in K, \varphi(g) = \varphi(h)$$

$$\text{ssi} \quad \exists h \in K, \varphi(gh^{-1}) = 1$$

$$\text{ssi} \quad \exists h \in K, gh^{-1} \in N$$

$$\text{ssi} \quad g \in NK$$

De même pour KN.

• On a:

$$g' \in \varphi(\varphi^{-1}(K'))$$
 ssi $\exists g \in \varphi^{-1}(K'), g' = \varphi(g)$
ssi $\exists g' \in K' \cap \operatorname{Im}(\varphi)$

- Si $N \subset K$, alors $\varphi^{-1}(\varphi(K)) = NK = K$. Si $K' < \operatorname{Im}(\varphi), \ \varphi(\varphi^{-1}(K')) = K' \cap \operatorname{Im}(\varphi) = K'$.
- Si $K' \triangleleft G'$, on regarde $\overline{\varphi} = \varphi \circ \pi$ avec π la surjection canonique de G' dans G'/H'.

 $g \in \operatorname{Ker}(\overline{\varphi})$ ssi $\overline{\varphi}(g) = 0$ ssi $\varphi(g) \in K'$ ssi $g \in \varphi^{-1}(K')$. Donc $\varphi^{-1}(K') = \operatorname{Ker}(\overline{\varphi}) \triangleleft G$.

Si $K \triangleleft G$ et φ surjective, $\varphi(K) \triangleleft G'$.

Soit $h \in K$ et $g' \in G'$. Comme φ est surjectif, $g' = \varphi(g)$ avec $g \in G$. On a $g'\varphi(h)g'^{-1} = \varphi(ghg^{-1}) \in \varphi(K)$.

Remarque 8.6 Quels sont les sous-groupes de $\mathbb{Z}/10\mathbb{Z}$?

Ce sont ceux de \mathbb{Z} qui contiennent $10\mathbb{Z}$ ie $p\mathbb{Z}$ avec $p \in \{1, 2, 5, 10\}$.

Donc les sous-groupes en question sont $\{0\}$, $\mathbb{Z}/10\mathbb{Z}$, $2\mathbb{Z}/10\mathbb{Z}$ et $5\mathbb{Z}/10\mathbb{Z}$.

COROLLAIRE 8.2 Soit G un groupe cyclique d'ordre n et d un diviseur de n. Il existe un unique sous-groupe de G cyclique d'ordre d.

Démonstration. Le problème est stable par isomorphisme donc on peut supposer $G = \mathbb{Z}/n\mathbb{Z}$. On a n = md.

Dans $\mathbb{Z}/n\mathbb{Z}$, les sous-groupes d'ordre d sont exactement ceux d'indice m. Ce sont les sous-groupes d'indice m de \mathbb{Z} contenant $n\mathbb{Z}$.

Or il y en n'a qu'un seul : $m\mathbb{Z}$. Ce qui conclut.

Théorème 8.6 (Deuxième théorème d'isomorphisme) Soient H et K deux sous-groupes de G tels que $K \subset N_G(H)$.

On a
$$HK/H \simeq K/(K \cap H)$$
.

Démonstration. On a $K \subset N_G(H)$ et $H \subset N_G(H)$ donc $HK \subset N_G(H)$ car $N_G(H)$ est un groupe.

Donc $H \triangleleft HK$.

Notons π la surjection canonique de $HK \to HK/H$. Posons $\varphi : K \to HK/H$ l'injection canonique de K dans HK composée avec π .

On a φ surjective de noyau $H \cap K$ donc $K/(H \cap K) \simeq HK/K$.

COROLLAIRE 8.3 Si G est de plus fini, $|HK||H \cap K| = |H||K|$.

8.3 Suites exactes

<u>Définition 8.3</u> On appelle suite exacte une suite de morphismes φ_i tels que $Ker(\varphi_i) = Im(\varphi_{i-1})$.

On dit qu'elle est courte ssi il existe i tel que φ_i est injective et φ_{i+1} est surjective.

Exemple 8.4
$$1 \to \operatorname{Ker}(\varphi) \to G \to \operatorname{Im}(\varphi) \to 1$$
.
 $1 \to G_1 \to G_1 \times G_2 \to G_2 \to 1$
Si $G = N \rtimes_{\varphi} Q$, $1 \to N \to G \to Q \to 1$ en est une.

Définition 8.4 On appelle scindage d'une suite exacte courte un morphisme σ tel que $\pi \circ \sigma = \operatorname{Id}$ avec π un morphisme surjectif de la suite.

Proposition 8.3 G est un produit semi direct ssi il existe un scindage.

Exemple 8.5

- $Q_8 \not\simeq D_4$ car Q_8 n'est pas un produit semi-direct (tout sous-groupe non trivial de Q_8 contient le centre $\{\pm I\}$) alors que D_4 si, c'est $\langle r \rangle \langle s \rangle$.
- $V_4 \triangleleft \mathfrak{S}_4$, $\mathfrak{S}_3 < \mathfrak{S}_4$ et $V_4 \cap \mathfrak{S}_4 = \{ \mathrm{Id} \}$. De plus $|V_4||\mathfrak{S}_3| = |\mathfrak{S}_4|$ et $\mathfrak{S}_4 \simeq V_4 \rtimes \mathfrak{S}_3 = V_4\mathfrak{S}_3$. Et $\mathfrak{S}_4/V_4 = V_4\mathfrak{S}_3/V_4 \simeq \mathfrak{S}_3/(\mathfrak{S}_3 \cap V_4) \simeq \mathfrak{S}_3/\{1\} \simeq \mathfrak{S}_3$.

Théorèmes de Sylow

Définition 9.1 Soit G un groupe fini et p un nombre premier. Un p-Sylow de G est un p-sous-groupe maximal pour l'inclusion.

Proposition 9.1 D < G est un p-Sylow ssi D est un p-groupe et si D < H < G avec H un p-groupe, alors D = H.

Proposition 9.2 Soit G un groupe et p premier.

L'intersection de tous les p-Sylow de G est caractéristique.

Si N est un p-sous-groupe distingué de G alors N est inclus dans cette intersection.

Démonstration. Si P est un p-Sylow de G et $\sigma: G \to G$ un automorphisme, alors $\sigma(P)$ est un p-Sylow de G.

On a donc, pour
$$\sigma \in \operatorname{Aut}(G)$$
, $\sigma\left(\bigcap_{p\text{-Sylow}}P\right) = \bigcap_{p\text{-Sylow}}\sigma(P) \subset \bigcap_{p\text{-Sylow}}P$ et il y a égalité car les cardinaux sont égaux.

Si N est distingué et P un $p\text{-Sylow},\,NP$ est un sous-groupe donc $|NP|=\frac{|N||P|}{|N\cap P|}$ donc |NP| est une puissance de p

Donc NP est un p-groupe qui contient P donc NP = P et $N \subset P$.

Exemple 9.1 Dans \mathfrak{S}_4 de cardinal $24 = 2^3 \times 3$, il y a quatre 3-Sylow (les sous-groupes engendrés par les cycles) et trois 2-Sylow : $\langle (1j), V_4 \rangle$ avec $j \in \{2, 3, 4\}$.

Définition 9.2 Un p-sous-groupe P d'un groupe fini G est dit p-clos ssi il contient tous les éléments d'ordre une puissance de p.

Remarque 9.1

- L'existence n'est pas assurée.
- On a l'unicité si on a l'existence.
- S'il existe, c'est l'unique p-Sylow de G.

COROLLAIRE 9.1 Soit G un groupe fini, p premier.

Soit P < G. P est p-clos ssi P est un p-Sylow distingué.

Dans ce cas, l'ordre de P est la plus grande puissance de p qui divise |G|.

Démonstration.

- $\Rightarrow P$ est un p-Sylow,son conjugué aussi donc comme Pest l'unique p-Sylow, Pest distingué.
- \Leftarrow Si P est un p-Sylow distingué, il est contenu dans tous les autres p-Sylow car il est distingué et par maximalité, il est égal aux autres. P est donc l'unique p-Sylow et donc il est p-clos.
- On a $|G| = p^e m$ avec $p \wedge m = 1$ et on veut montrer $|P| = 2^e$. Par Lagrange, il suffit de montrer $p \not ||G/P|$. Si p||G/P|, par Cauchy, il existe H' < G/P d'ordre p. Mais on a une bijection entre les sous-groupes de G/P et ceux de G qui contiennent P.

Donc il existe un unique H < G tel que $P \subset H$ qui correspond à H'. Les théorèmes d'isomorphismes donnent (H:P) = |H'| donc p = (H:P) donc H est un p-groupe par Lagrange.

Donc
$$H = P$$
 et $p = 1$.

THÉORÈME 9.1 DE SYLOW Soit G un groupe fini et p premier. On écrit $|G| = p^e m$ avec $p \wedge m = 1$. Notons n_p le nombre de p-Sylow de G.

- Les p-Sylow sont les sous-groupes d'ordre p^e .
- Tous les p-Sylow sont conjugués et $n_p = (G : N_G(P))$
- $n_p \equiv 1 \mod p \ et \ n_p | m$.

Remarque 9.2 En général, $(G:N_G(H))$ est le cardinal de l'orbite de H sous l'action par conjugaison de G. C'est donc le nombre de conjugués distincts de H dans G.

Démonstration.

2 Soient P et P' deux p-Sylow de G.

On sait que G agit sur $G/N_G(P) = X$ et on peut regarder la restriction de l'action à P'.

Comme P' est un p-groupe, on a $|X^{P'}| \equiv |X| \mod p$.

De plus on a:

$$gN_G(P) \in X^{P'}$$
 ssi $\forall h \in P', hgN_G(P) = gN_G(P)$
ssi $\forall h \in P', g^{-1}hgN_G(P) = N_G(P)$
ssi $g^{-1}P'gN_G(P) = N_G(P)$
ssi $g^{-1}P'g \subset N_G(P)$
ssi $g^{-1}P'g \subset P$

- Si P' = P, $gN_G(P) \in X^P$ ssi $g^{-1}Pg \subset P$ ssi $g \in N_G(P)$. Donc $X^P = \{N_G(P)\}$ donc $|X| \equiv |X^P| \equiv 1 \mod p$.
- Si $P \neq P'$, on a $|X^{P'}| \equiv |X| \equiv 1 \mod p$ donc $|X^{P'}| \neq 0$ et $X^{P'} \neq \emptyset$. $g^{-1}P'g \subset P$ et comme P et P' jouent des rôles symétriques, P et P' sont conjugués. On a donc le deuxième point.

1 et 3 On a $|G| = (G:P)|P| = (G:N_G(P))(N_G(P):P)|P|$.

 $(N_G(P):P) \not\equiv 0 \mod p \text{ et } (G:N_G(P)) = n_p \equiv 1 \mod p.$

En effet, P est un p-Sylow de $N_G(P)$ et $P \triangleleft N_G(P)$.

Donc P est p-clos dans $N_G(P)$ donc $p \not| (N_G(P) : P)$ donc $(N_G(P) : P) \not\equiv 0 \mod p$.

On a donc (G:P)=m et $|P|=p^e$.

Exemple 9.2 Tout groupe G d'ordre 15 est cyclique.

 $n_3 \equiv 1 \mod 3$ et $n_3 \mid 5$ donc $n_3 = 1$. De même, $n_5 = 1$.

Donc on a un 3-Sylow H et un 5-Sylow K distingués.

 $H \cap K = \{1\}$ car son ordre doit diviser 3 et 5.

On a $G \simeq H \times K \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \simeq \mathbb{Z}/15\mathbb{Z}$.

COROLLAIRE 9.2 Si P est un p-Sylow et H un p-sous-groupe.

Il existe g tel qie $H \subset gPg^{-1}$.

<u>Théorème 9.2</u> Il existe un unique groupe simple d'ordre 60 (à isomorphisme près).

 $D\acute{e}monstration$. Soit G un groupe simple d'ordre 60.

Soit H un sous-groupe d'indice k dans G. On fait agir G sur G/H pour obtenir un morphisme $\varphi: G \to \mathfrak{S}_k$.

On a $\operatorname{Ker}(\varphi) \triangleleft F$ donc $\operatorname{Ker}(\varphi) = \{1\}$ ou $\operatorname{Ker}(\varphi) = G$.

Mais si $\operatorname{Ker}(\varphi) = \{1\}$, φ est injectif donc $k! \ge 60$ donc $k \ge 5$ et si $\operatorname{Ker}(\varphi) = \{G\}$, pour tout $g \in G$, gH = H donc G = H et k = 1.

Supposons k = 5. On a un isomorphisme entre G et H qui est d'indice 2 dans \mathfrak{S}_5 donc $H = \mathfrak{A}_5$.

Supposons que pour tout H < G, on ait $(G : H) \ge 6$. On applique les théorèmes de Sylow : $n_2 \ge 6$, $n_2 \equiv 1 \mod 2$ et $n_2|30$ donc $n_2 = 15$.

De même, $n_3 = 10$ et $n_5 = 6$. Il y a donc 24 = 6(5-1) éléments d'ordre 5 et 20 = 10(3-1) éléments d'ordre 3.

Soient $P \neq Q$ des 2-Sylow de G et $K = P \cap Q$. Si $K \neq \{1\}$, on pose $H = \langle P, Q \rangle$.

Comme ils sont d'ordre 4, ils sont abéliens donc $K \triangleleft P$ et $K \triangleleft Q$ donc $K \triangleleft \langle P, Q \rangle$.

Donc H n'est pas simple donc $H \neq G$ donc (G:H) > 5. Donc H = P.

Donc contradiction avec $P \neq Q$. Donc $K = \{1\}$ et on a 45 éléments d'ordre 2 ou 4. Donc $|G| \geqslant 24 + 20 + 45 + 1 > 60$ et on a une contradiction.

CHAPITRE 9. THÉORÈMES DE SYLOW

Remarque 9.3 \mathfrak{A}_n est le seul espace d'indice 2 dans \mathfrak{S}_n car ε est le seul morphisme non trivial de \mathfrak{S}_n dans $\{\pm 1\}$.

Si $N < \mathfrak{S}_n$ est d'indice 2, $N = \operatorname{Ker}(\pi) = \operatorname{Ker}(\varepsilon) = \mathfrak{A}_n$ avec π la surjection canonique dans \mathfrak{S}_n/N .