Price-aware Real-time Ride-sharing at Scale - An Auction-based Approach

Speaker: Mohammad Asghari

Joint work with
Dingxiong Deng, Research Assistant at IMSC
Cyrus Shahabi, Director of IMSC & Faculty of CS Department at USC
Ugur Demiryurek, Associate Director of IMSC
Yaguang Li, Research Assistant at IMSC

Nov 1, 2016

INSC Integrated Media Systems Center

 Traditional ride-sharing focused on matching people with similar routes.

- Traditional ride-sharing focused on matching people with similar routes.
- Increasing popularity of commercial ride-sharing platforms

Monetary Incentives.

- Monetary Incentives.
- Former studies minimize total traveled distance for drivers:
 - Riders share fare for carpooling

- Monetary Incentives.
- Former studies minimize total traveled distance for drivers:
 - Riders share fare for carpooling

- Monetary Incentives.
- Former studies minimize total traveled distance for drivers:
 - Riders share fare for carpooling

- Monetary Incentives.
- Former studies minimize total traveled distance for drivers:
 - Riders share fare for carpooling
 - Do not account for the service provider's incentive

Revenue

- Monetary Incentives.
- Former studies minimize total traveled distance for drivers:
 - Riders share fare for carpooling
 - Do not account for the service provider's incentive

Revenue

Driver's Income

Rider's Fare

- Monetary Incentives.
- Former studies minimize total traveled distance for drivers:
 - Riders share fare for carpooling
 - Do not account for the service provider's incentive

- Monetary Incentives.
- Former studies minimize total traveled distance for drivers:
 - Riders share fare for carpooling
 - Do not account for the service provider's incentive
- Scalability

Match Riders to Drivers

- Monetary Incentives.
- Former studies minimize total traveled distance for drivers:
 - Riders share fare for carpooling
 - Do not account for the service provider's incentive
- Scalability

Match Riders to Drivers Schedule Trips for Drivers

- Monetary Incentives.
- Former studies minimize total traveled distance for drivers:
 - Riders share fare for carpooling
 - Do not account for the service provider's incentive
- Scalability

Outline

Ride Request

A ride request r is represented as $\langle s, e, w, \epsilon, f \rangle$ where:

- s: pickup point
- e: dropoff point
- w: max wait time
- ϵ : max detour
- *f* : rider's profile

Ride Request

A ride request r is represented as $\langle s, e, w, \epsilon, f \rangle$ where:

- s: pickup point
- e: dropoff point
- w: max wait time
- ϵ : max detour
- f: rider's profile

Driver

A driver v is represented as $\langle L, n, g \rangle$ such that:

- L: list of assigned requests
- n: max simultaneous passengers
- g: driver's profile

Schedule

For a set L with n requests, a schedule $S = \langle x_1, x_2, ..., x_2 n \rangle$ is an ordered set of pickup and dropoff points of the requests in L.

Schedule

For a set L with n requests, a schedule $S = \langle x_1, x_2, ..., x_2 n \rangle$ is an ordered set of pickup and dropoff points of the requests in L.

We call S a valid schedule if it satisfies these constraints:

- for every $r \in L$, r.s precedes r.e in S
- the rider's waiting time and detour
- the driver's capacity

Outline

Fair Pricing

For every pricing model:

- How much should the rider pay?
- How much should the driver be compensated?
- What's the revenue of the ride-sharing platform?

Fair Pricing

For every pricing model:

- How much should the rider pay?
- How much should the driver be compensated?
- What's the revenue of the ride-sharing platform?

In a fair system:

- the rider should receive a discount proportional the the detour incurred to his trip
- a driver's compensation should increase proportional to the distance of his trip

for every request r:

• d_r : shortest path between r.s and r.e

- d_r : shortest path between r.s and r.e
- ullet $F:\mathbb{R}_+ o \$$ such that $F(d_r)$ is the default fare of a ride

- d_r : shortest path between r.s and r.e
- ullet $F:\mathbb{R}_+ o \$$ such that $F(d_r)$ is the default fare of a ride
- d_r' : actual trip of r
- $\Delta d_r = d'_r d_r$

- d_r : shortest path between r.s and r.e
- ullet $F:\mathbb{R}_+ o \$$ such that $F(d_r)$ is the default fare of a ride
- d_r' : actual trip of r
- $f: \mathbb{R}_+ \to [0,1]$ specifies the discount for $\Delta d_r \in \mathbb{R}_+$

- d_r : shortest path between r.s and r.e
- ullet $F:\mathbb{R}_+ o \$$ such that $F(d_r)$ is the default fare of a ride
- d_r' : actual trip of r
- $\Delta d_r = d'_r d_r$
- $f: \mathbb{R}_+ \to [0,1]$ specifies the discount for $\Delta d_r \in \mathbb{R}_+$

$$fare(r) = F(d_r)f_r(\Delta d_r)$$

for every driver v:

• $g: \mathbb{R}_+ o \$$ specifies the monetary cost of v driving a distance $d \in \mathbb{R}_+$

for every driver v:

- $g: \mathbb{R}_+ o \$$ specifies the monetary cost of v driving a distance $d \in \mathbb{R}_+$
 - $g: \mathbb{N} \times \mathbb{R}_+ \to \$$

for every driver *v*:

- $g: \mathbb{R}_+ o \$$ specifies the monetary cost of v driving a distance $d \in \mathbb{R}_+$
 - $g: \mathbb{N} \times \mathbb{R}_+ \to \$$

for every driver v:

- $g: \mathbb{R}_+ o \$$ specifies the monetary cost of v driving a distance $d \in \mathbb{R}_+$
 - $g: \mathbb{N} \times \mathbb{R}_+ \to \$$

$$income_{v} = \int_{start_{s}}^{end_{s}} I\left(S_{v}(t) \neq \langle
angle
ight).g(d(t))dt$$

- I(): indicator function
- $S_{\nu}(t)$: driver's schedule at t.
- $start_s$: first pickup time of S_v
- end_s : last dropoff time of S_v
- d(t) traveled distance of v at t

Revenue

A driver v's profit is:

$$profit_{v} = \sum_{r_{i} \in S_{v}} fare(r_{i}) - income_{v}$$

Revenue

A driver v's profit is:

$$profit_{v} = \sum_{r_{i} \in S_{v}} fare(r_{i}) - income_{v}$$

therefore.

$$revenue = \sum_{v \in V} profit_v$$

Outline

Overview

Overview

Overview

Overview

using PATH we get the *base fare* for the new request

using PATH we get the *base fare* for the new request

using PATH we get the *current profit*

using PATH we get the *base fare* for the new request

using PATH we get the *current profit*

diff(route, route) gives Δd for new request

using PATH we get the *base fare* for the new request

using PATH we get the *current profit*

diff(route, route) gives Δd for new request

Bid

new profit current profit

Outline

- Data Set: New York City's Taxi data set
 - 40K drivers & 500K trips per day
 - pickup/dropoff points, request time

- Data Set: New York City's Taxi data set
- Algorithms:
 - APART
 - TREE (shortest traveled distance) [1]
 - NN (closest driver)

[1] Y. Huang, F. Bastani, R. Jin, and X. S. Wang, Large scale real-time ridesharing with service guarantee on road networks, Proceedings of the VLDB Endowment, vol. 7, no. 14, pp. 20172028, 2014.

- Data Set: New York City's Taxi data set
- Algorithms:
- Parameters:

Parameter	Values
Max Wait Time (w)	3min, 6min , 9min, 12min, 15min, 20min
# of Drivers	1000, 2000, 5000 , 10000, 20000
Max Passengers (n)	2, 3, 4 , 5, 6
Max Allowed Detour (ϵ)	25%, 50% , 75%, 100%

- Data Set: New York City's Taxi data set
- Algorithms:
- Parameters:
- Pricing Model:

$$F(d) = 2 \times d$$

$$\forall r, f_r(\Delta d_r) = 1 - (0.25 \times \Delta d_r^2)$$

$$\forall v, g_v(d) = 1.5 \times d$$

Algorithm Comparison

Pricing Model Comparison

If we use the frame work in [2]:

$$c.d_1 + (1+\alpha).c.d_2$$

Users that Saved Money

Users that Lost Money

[2] S. Ma, Y. Zheng, and O. Wolfson, T-share: A large-scale dynamic taxi ridesharing service, in Data Engineering (ICDE), 2013 IEEE 29th International Conference on

Effect of Profiles

- APART_T: $f_T(\Delta d_r) = \frac{1}{(\Delta d_r + 1)}$
- APART_R: $f_R(\Delta d_r) = 1 (\frac{\Delta d_r}{max\delta})$

Effect of Profiles

- APART_T: $f_T(\Delta d_r) = \frac{1}{(\Delta d_r + 1)}$
- APAR T_R : $f_R(\Delta d_r) = 1 (\frac{\Delta d_r}{max\delta})$

Questions

