Problem 1.

1. Adataset: N hew Adataset: N H Class: 2 H Class: K H Classifier: 1 H Classifier: Cx
CIV time = # classifier * thre/classifier = C2 * 9(2N) = C2 * 9(2N) = C2 * 8 N3 = Q * N3 =
= \(\alpha \) (\(\begin{array}{c} \cdot \) \(\delta^2 \) \(\de

Problem 2.

Problem 3.

$$E\left[\left(\widetilde{w}\cdot\overline{\mathbf{p}}(x')-\gamma\right)^{\frac{1}{2}}\right]$$

$$=E\left[\gamma'\right]^{\frac{1}{2}}+Vav(\gamma')$$

$$=E\left[x+\varepsilon\right]^{\frac{1}{2}}+Vav(x+\varepsilon)$$

$$=0+\frac{x}{3}+1=\frac{4}{3}$$

Problem 4.

$$\hat{z} = \begin{bmatrix} -x_1 - x_1 - x_2 -$$

$$\begin{aligned} & \{ E \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{3} \right) = \} E\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \\ & = E\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{3} \right) = N E\left(\frac{1}{2}, \frac{1}{4} \right) \\ & = N \left[E\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{3} \right) + Var\left(\frac{1}{2}, \frac{1}{4} \right) \right] \\ & = N \left[E\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) + Var\left(\frac{1}{2}, \frac{1}{4} \right) \right] \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) = 2 \times X + \left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) = 2 \times X + \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) = 2 \times X + \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) = 2 \times X + \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) = 2 \times X + \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) = 2 \times X + \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) = 2 \times X + \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) = 2 \times X + \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) = 2 \times X + \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) \\ & = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4$$

Problem 5.

5.
$$\nabla E_{aug}(w) = \nabla E_{in}(w) + \frac{2\lambda}{N} W$$
 $W_{t+1} = W_t - \eta \nabla E_{aug}(w)$
 $= W_t - \eta \nabla E_{in}(w_t) - \frac{2\lambda}{N} \eta W_t$
 $= W_t - \eta \nabla E_{in}(w_t) - \frac{2\lambda}{N} \eta W_t$
 $= \omega W_t - \omega B \nabla E_{in}(w_t)$
 $\Delta \beta = \eta \qquad 0$
 $\Delta \beta = \eta \qquad 0$

Problem 6.

6.
$$min \frac{1}{N} \sum_{n=1}^{N} (wx_n \cdot y_n) + \sum_{N} w^2$$
 $\int_{N}^{N} \sum_{n=1}^{N} (wx_n - x_n y_n) + \sum_{N} w = 0$
 $\int_{N}^{N} \sum_{n=1}^{N} \sum_{N} \sum_{n=1}^{N} (wx_n - x_n y_n) + \sum_{N} w = 0$
 $\int_{N}^{N} \sum_{n=1}^{N} \sum_{N} \sum_{n=1}^{N} \sum_{n=1}$

$$\left(\frac{x^{T}y}{\lambda + x^{T}x}\right)^{2} = C$$

$$\frac{(x^{T}y)^{2}}{(\lambda + x^{T}x)^{2}} = C$$

$$\frac{(x^{T}y)^{2}}{(\lambda + x^{T}x)^{2}} = (\lambda + x^{T}x)^{2}$$

$$C$$

$$\frac{(x^{T}y)^{2}}{C} = (\lambda + x^{T}x)^{2}$$

$$C$$

$$\frac{(x^{T}y)^{2}}{C} = (\lambda + x^{T}x)^{2}$$

$$C$$

$$\frac{(x^{T}y)^{2}}{C} = \lambda + x^{T}x$$

$$\frac{(x^{T}y)^{2}}{C}$$

Problem 7.

Problem 8.

Problem 9.

Problem 10.

The best $\log_{10} \lambda^*$ is -6

Problem 11.

Problem 12.

Describe your findings : 我們發現 $\log_{10}\lambda^*=-6$ 不存在,整個分布更向右傾,可推測出當 $\log_{10}\lambda^*$ 落在 -2 與 0 所給予的限制最適當。