Algebra para la Computación: MAT1185 Guía de Trabaio N°04

ACTIVIDADES

1) Determinar el valor o la expresión que representa el resultado de las siguientes sumatorias:

a)
$$\sum_{i=1}^{79} 8 k^2$$

b)
$$\sum_{k=10}^{80} (2k)^2$$

c)
$$\sum_{k=1}^{n} (2k-1)$$

a)
$$\sum_{k=4}^{79} 8 k^2$$
 b) $\sum_{k=10}^{80} (2k)^2$ c) $\sum_{k=1}^{n} (2k-1)$

e)
$$\sum_{n=21}^{301} (n^3 - n)$$

e)
$$\sum_{n=21}^{301} (n^3 - n)$$
 f) $\sum_{i=1}^{n} (i^3 + (i-1)^3)$ g) $\sum_{k=1}^{100} (\frac{1}{k} - \frac{1}{k+1})$ h) $\sum_{k=0}^{100} (a_k - a_{k-1})$

g)
$$\sum_{k=1}^{100} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

h)
$$\sum_{k=9}^{100} (a_k - a_{k-1})$$

2) Determinar la suma de:

- a) los números naturales pares desde el 28 hasta el 2320
- b) los cuadrados de los 172 primeros números naturales
- c) los múltiplos de 6 desde el 48 hasta el 3780
- d) los cubos de los 122 primeros números naturales
- e) las diferencias entre el cubo del sucesor de un número y el cubo del antecesor del número, desde el 2648 hasta el 290402
- f) los primeros 322 productos entre el cuadrado de un número natural y el sucesor del número
- g) los productos entre el triple de un número menos 1 y el doble del número más 3, desde el 800 hasta el 39930

3) Demostrar, usando el principio de inducción, que para todo $n \in \mathbb{N}$ las igualdades siguientes

a)
$$\sum_{m=1}^{n} m(m+1) = \frac{n(n+1)(n+2)}{3}$$

b)
$$\sum\limits_{i=1}^n (k\cdot a_i)=k\sum\limits_{i=1}^n a_i$$
 (k constante)

c)
$$\sum_{i=1}^{n} k = n \cdot k$$
 (k constante)

d)
$$\sum_{i=1}^{n} (a_i - a_{i-1}) = a_n - a_0$$

4) Determinar el valor de las siguientes sumatorias dobles:

a)
$$\sum_{i=1}^{20} \sum_{j=1}^{17} (ij+3)$$

b)
$$\sum_{j=1}^{18} \sum_{i=1}^{22} (2ij - 3j^2)$$

a)
$$\sum_{i=1}^{20} \sum_{j=1}^{17} (ij+3)$$
 b) $\sum_{j=1}^{18} \sum_{i=1}^{22} (2ij-3j^2)$ c) $\sum_{i=1}^{50} \sum_{j=3}^{100} ij (2i+j)(3i-2j)$

d)
$$\sum_{i=3}^{31} \sum_{j=1}^{25} \frac{3i}{2^j}$$

e)
$$\sum_{i=3}^{31} \sum_{j=1}^{25} ij(i^2 - 9j^2)$$

d)
$$\sum_{i=3}^{31} \sum_{j=1}^{25} \frac{3i}{2^j}$$
 e) $\sum_{i=3}^{31} \sum_{j=1}^{25} ij(i^2 - 9j^2)$ f) $\sum_{i=1}^{80} \sum_{j=1}^{20} j(i+j)(i-3j)$

g)
$$\sum_{i=5}^{23} \sum_{j=7}^{35} (i+2j)^{2j}$$

g)
$$\sum_{i=5}^{23} \sum_{i=7}^{35} (i+2j)^2$$
 h) $\sum_{i=2}^{53} \sum_{i=8}^{42} i^2 j^2 (5i+3j+1)$ i) $\sum_{i=2}^{22} \sum_{i=11}^{18} 3i^2 + 4j - 2ij^2$

i)
$$\sum_{i=2}^{22} \sum_{j=11}^{18} 3i^2 + 4j - 2ij^2$$

5) Demostrar, usando el principio de inducción, que para todo $n \in \mathbb{N}$ las igualdades siguientes

a)
$$\sum_{j=1}^{n} \frac{1}{(2j-1)(2j+1)} = \frac{n}{2n+1}$$

b)
$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$