Matrices, suites récurrentes

Sujet 1 : Amine Barouri

Soit $\phi : \begin{cases} \mathbb{R}^2 & \to \mathbb{R}^2 \\ (x;y) & \mapsto (x-2y;y) \end{cases}$.

Donner la matrice de ϕ dans la base $\mathcal{B} = ((2; -1); (1; 1)).$

Sujet 2 : Angèle Fouilhoux

Ex. 20.2 Soient u = (1; 3; -2), v = (0; -1; 1) et w = (2; 7; -5).

- 1) La famille (u; v; w) est-elle libre? liée?
- 2) La famille (u; v; w) est-elle génératrice de \mathbb{R}^3 ?

Sujet 3 : Nicolas Sévellec

Ex. 20.3 Soit ϕ : $\begin{cases} \mathbb{R}^2 & \to \mathbb{R}^2 \\ (x;y) & \mapsto (x+3y;x+y) \end{cases}$ Donner la matrice de ϕ dans la base $\mathcal{B} = ((1;1);(-1;1))$.

Sujet 4 : Exos supplémentaires

Soit u un endomorphisme d'un espace vectoriel de dimension finie. Ex. 20.4

- 1) Montrer que $\operatorname{Ker}(u) \subset \operatorname{Ker}(u^2)$.
- 2) Montrer que dim Ker $(u^2) \leq 2 \dim \text{Ker } (u)$.

Soit $\phi: P \in \mathbb{R}_3[X] \mapsto \phi(P) = (P(-1); P(0); P(1)) \in \mathbb{R}^3$. **Ex.** 20.5

- 1) Montrer que ϕ est linéaire.
- 2) Calculer Ker ϕ .
- 3) Calculer $\operatorname{rg} \phi$.
- 4) Montrer que ϕ est surjective.

Ex. 20.6

1) Soit $f:(x;y) \in \mathbb{R}^2 \mapsto \left(\frac{x-2y}{3}; \frac{-4x-y}{3}\right)$. Déterminer la nature de f ainsi que ses sous-espaces caractéristiques.

2) Soit $g:(x;y) \in \mathbb{R}^2 \mapsto \left(\frac{x+y}{3}; \frac{2x+2y}{3}\right)$. Déterminer la nature de q ainsi que ses sous-espaces caractéristiques. Lycée Lafayette Colles 2018/2019

Ex. 20.7 Soit $r \in \mathbb{K}^*$ (ici $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$).

On pose $R = r + \frac{1}{r}$ et pour tout entier $n \in \mathbb{N}$, $U_n = r^n + \frac{1}{r^n}$.

- 1) Montrer que si $R \in \mathbb{N}$ alors, pour tout entier $n \in \mathbb{N}$, $U_n \in \mathbb{N}$.
- 2) Soit $n \in \mathbb{N}$. Exprimer U_{n+2} en fonction de R, U_n et U_{n+1} .
- 3) Refaire la question 1) par récurrence double.
- 4) Montrer que pour tout entier n, $U_n = P_n(R)$ où P_n est un polynôme.
- 5) Donner un exemple d'*irrationnel (réel)* r tel que $R = r + \frac{1}{r}$ est entier. Écrire la propriété de la question 1) pour ce réel.
- 6) Même question mais on veut r complexe non réel (et $r \neq \pm i$).

Ex. 20.8 Soit $u \in \mathbb{R}^{\mathbb{N}}$ définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = u_n - u_n^2$.

Pour quelle valeur de u_0 u est-elle convergente?

Calculer la limite de la suite lorsqu'elle existe suivant la valeur de u_0 .