Examining the Impact of Marijuana Legalization on Fatal — Car Crashes —

Agenda

- **1** Question
- Dataset
 Variables
- Statistical Models

 Data preprocessing
- 4 Models & Test Statistics
 - Paired sample t-test
 - Decision Trees & Random Forests
- Best Models
- **6** Conclusion

Seasonality

 Hyper parameter tuning / variable selection

• Linear/Log-Linear Regression

Business Question:

Does Marijuana legalization have an impact on fatal car accidents?

Dataset

Response: Fatal vehicle crashes by state

Predictors (at State Level):

- Highway-miles-driven in billions per 100,000 people
- % of population living in urban areas
- Urban highway speed limits
- % >70 years of age by state
- Adult binge drinking by state
- Legalization of Marijuana (Pre 2022)*
- Damage per \$100,000 by hazardous weather events, 2022

Seasonality

USA Fatal Motor Vehicle Crashes by Month, 2008-2022

USA Fatal Motor Vehicle Crashes by Month, 2013

Seasonality: Decomposition of Additive Time Series

Running an Autoregression

- Use 2008-2020 as training data, 2021 and 2022 and test
- Partial autocorrelation shows that previous 12 values important
- Trend over 2021, 2022 not captured in training data

Running an Autoregression: Including 2021 in Training

- Use 2008-2021 as training data 2022 and test
- Partial autocorrelation very similar
- Trend over final years much more effectively captured

Immediate Impact?

Paired Sample t-Test: Does Legalization Have an

t-test: Generating the Response

Examine the difference between average fatal car crash in state 12 months *after* legalization vs. 12 months *before* (per 100,000)

Steps to generate response variable:

- Average number of fatal vehicle accidents in the 12 months prior to legalization
- 2. Linearly interpolate between population (in 100,000s) estimates of previous 2 years
- 3. Divide (1) by (2)
- 4. Repeat for 12 months post legalization

Ex. Oregon legalized on July 1, 2015

$$\bar{x}_{\text{pre}} = \frac{\frac{1}{12} \sum_{i=-12}^{-1} \text{fatalities}_i}{\frac{1}{2} (\text{Oregon Pop., 2015}) + (1 - \frac{1}{2}) (\text{Oregon Pop., 2014})}$$

$$\bar{x}_{\text{post}} = \frac{\frac{1}{12} \sum_{i=0}^{11} \text{fatalities}_i}{\frac{1}{2} (\text{Oregon Pop., 2015}) + (1 - \frac{1}{2}) (\text{Oregon Pop., 2016})}$$

- fatalities_i: Number of fatal car accidents i months before/after July 2015
- Proportion of 2015 that passed before legalization: **1/2**

t-test: Examining the Assumptions

n = 19

Roughly normally distributed

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

Differences of Average Fatal Crash Number, Pre/Post Legalization

T-test: Hypothesis Testing

$$H_0: \overline{X}_{post} \leq \overline{X}_{pre}$$

$$H_1: \overline{X}_{post} > \overline{X}_{pre}$$

Sample Mean Difference	0.60166
Test Statistic	2.41257
Degree of Freedom	18
p-value	0.01336
95% CI	0.1692114, ∞
Reject Null , α = 0.05	Yes

Important is Marijunana Legalization?

Decision Trees, Random Forests & Regression: How

Decision Tree: Setting up the Decision Tree

Train Test Split:

80% train

20% test

```
ii. 1 tree (for example)

set.seed(1)
train_index <- sample(1:nrow(finData),.8 * nrow(finData),replace = FALSE)
test_index <- setdiff(1:50, train_index)
rtree <- tree(resp - ., data = finData[train_index,-c(2)])
cv <- cv.tree(rtree, K = 5, FUN = prune.tree)</pre>
```

Deviance of Tree vs. Number of Leaves, corresponding alpha

Decision Tree: Corresponding Graph

Regression Tree for Fatal Crashes per 100,000

Generating the tree

Testing Tree

```
oneTree <- tree(resp - ., data = finData[train_index, -c(2)], method = "anova")
oneTree <- prune.tree(oneTree, k = 30)
predOneTree <- predict(oneTree, newdata = finData[test_index,3:9])
mseOneTree <- mean((predOneTree - finData$resp[test_index])^2)
pseudoROneTree <- 1 - (mseOneTree * 50)/(var(finData$resp) * 49)</pre>
```

Bagged Trees: An Explanation

Reduction in Variance: By averaging multiple trees, bagging reduces the variance of the prediction

Improved Accuracy: Bagging can yield improved accuracy over single decision trees

Handles Overfitting: Bagging helps mitigate overfitting by average multiple trees, each of which might overfit in different ways

Robustness to Outliers: No single outlier can influence all the trees in the ensemble

Bagged Trees: Hyperparameter Tuning

The optimal number of trees is 50

Adding more trees beyond 50 does not continue to decrease the MSE

OOB MSE as a function of the number of Trees, 5 Simulations

Variable Importance

- Highway miles traveled is the most important variable
- Adult binge drinking is slightly important
- Legalization is not important when compared to other variables

Variable	% Increase to MSE	Increase to Node Purity	
Legalization	0.04685631	1.713326	
Highway Miles Traveled	11.59499367	426.179536	
% of Pop in Urban Areas	-0.19137532	24.914778	
Urban Highway Speed Limit	-0.21115978	27.582473	
% Pop > 70	-0.33457491	31.267251	
Hazardous Weather	-0.01103727	28.871072	
Adult Binge Drinking	0.34190161	34.615816	

Regression Analysis: Examining the Response Variable

i. Testing distribution of Response

```
set.seed(1)
lambdaMLE <- mean(resp)
#hist(resp, breaks = 20)
#qqplot(resp, distribution = "poisson")
PoissonDist <- rpois(length(resp), lambdaMLE)
title <- sprintf("QQ Plot, Poisson Dist. with lambda = %.4f",lambdaMLE)
#qqplot(resp * 12, PoissonDist, main = title)
#abline(0,1,col = 'red')
hist(resp, breaks = 10)</pre>
```

Roughly Normal Distributed 🗸

Histogram of resp

Regression Analysis: Verifying Normality Through qq-plots

```
set.seed(1)
meanLogResp <- mean(log(resp))
sdLogResp <- sd(log(resp))
LogNormalDist <- rlnorm(length(resp), meanLogResp, sdLogResp)
title <- sprintf("QQ Plot, Log-Normal Dist. with mu = %.4f and sigma = %.4f", meanLogResp, sdLogResp)
qqnorm(log(resp), main = title)
coline(log(resp). col = 2. ltv = 2)</pre>
```

QQ Plot, Normal Dist. with mean = 10.2553 and SD = 3.5458

QQ Plot, Log-Normal Dist. with mu = 2.2634 and sigma = 0.3760

Regression Analysis: Feature Selection Using Best Subset

best sub

#	Predictors	R- Square	Adjusted R	СР	AIC	SBIC
1	HW_travel	0.6475	0.6382	-3.9562	179.2986	66.65335
2	HW_travel + binge	0.6818	0.6646	-5.0711	177.2081	65.69632
3	HW_travel + Speed_Lim + binge	0.6876	0.6193	4.3991	186.4687	67.88781
4	HW_travel + Speed_Lim + over_70 + binge	0.6906	0.6108	6.1259	188.0821	70.43232
5	HW_travel + Speed_Lim + over_70 + hazard + binge	0.6912	0.5986	8.0692	190.0013	73.22550
6	Legal + HW_travel + Speed_Lim + over_70 + hazard + binge	0.6920	0.5858	10.0000	191.9026	76.02018
7	Legal + HW_travel + Urban + Speed_Lim + over_70 + hazard + binge	0.6920	0.5710	12.0000	193.9026	78.87731

Based off CP, AIC, SBIC & R_{adj}^2 the best subset is : Model 2

Regression Analysis: Running Best Linear Model

iii. Running best Model

```
linBestModel <- lm("resp - HW travel + binge", data = train data)
predlinBest <- predict(linBestModel, newdata = test_data)</pre>
linBestMSE <- mean((test_data$resp - predlinBest)^2)
summary(linBestModel)
Residuals:
              10 Median
                                       Max
    Min
-5.3293 -0.9234 -0.1180 1.5654 4.1128
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
               1.7993
(Intercept)
                           3.0577
                                     0.588
                                              0.5598
HW travel
               1.2838 0.1641 7.821 2.35e-09 ***
binge
           -25.2905
                          12.6708 -1.996 0.0533 .
---
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Best Models

Results of our Models

Algorithm	MSE	Proportion of Variance Explained (R ² / pseudo R ²)
Decision Tree	6.605976	0.4375485
Bagged Forest	5.609170	0.5224193
Multiple Linear Regression	3.652816	0.6817754

- Multiple Linear Regression is the best model
- MSE calculated on test set (20% of data / 10 data points)

Conclusion

Takeaways

DON'T SMOKE AND DRIVE

- Evidence of increase in monthly fatal vehicle accidents directly preceding legalization
- Marijuana legalization not statistically significant, however when evaluated in the context of other predictors
- Variables that were important in predicting fatal vehicle accidents
 - Billions of highway miles traveled, per 100,000
 - Adult binge drinking %

Considerations for Further Study

1. Does the impact of legalization remain constant or vary over time?

2. Does the legal possession limit have a significant impact of legalization overall impact on vehicle safety?

3. In terms of miles-driven, is there an increasing hazard rate for the distributions of time of first accident?

Sources of Data - Response

- Inspiration for Project: *The Insurance Institute for Highway Safety*
 - https://www.iihs.org/topics/fatality-statistics/detail/state-by-state#yearly-snapshot
- Source of Fatal Crash Data: *National Highway Traffic Safety Administration*
 - https://www.nhtsa.gov/crash-data-systems/fatality-analysis-reporting-system
 - for Querying Data:
 - https://cdan.dot.gov/query

Sources of our Data - Predictors

- Legalization of Marijuana: *U.S News*
 - https://www.usnews.com/news/best-states/articles/where-is-marijuana-legal-a-guide-to-marijuana-legalization
- Population Estimates Data: St. Louis Fed
 - https://fred.stlouisfed.org/release/tables?rid=118
- Highway-miles-driven: Bureau of Transportation Statistics
 - https://www.bts.gov/browse-statistical-products-and-data/state-transportation-statistics/state-highway-travel
- % Urban Data: U.S Census Bureau
 - https://data.census.gov/
- 70 and Older percentage by State: *U.S Census Bureau*
 - https://www.census.gov/data/tables/time-series/demo/popest/2020s-state-detail.html#v2022
- Total Damage per 100,000 by Weather: National Oceanic and Atmospheric Administration
 - https://www.weather.gov/media/hazstat/state22.pdf
- Adult Binge Drinking Percentage: Centers for Disease Control
 - https://www.statista.com/statistics/378966/us-binge-drinking-rate-adults-by-state

THANK YOU! Questions?