YUV_2xy_scaler 使用说明

前言

YUV_2xy_scaler模块用于将YUV4:4:4的axis视频流数据,分辨率放大到2倍,并且将视频格式转换为YUV4:2:2。举个例子,1920x1080@60放大为3840x2160@60。只有当需求很旺盛的时候,才能参数化编程的优势,不然只会徒增烦恼。

数据mapping

每一帧的数据放大原理如下图所示,利用YUV的特性,UV数据可以像素间共用,完成这种异构的双线性插值。

下图所示为模块内部数据mapping关系,模块内部主要分为两次放大。

第一次放大将YUV4:4:4转化为YUV4:2:2,即可实现每一行像素个数从1920到3840的转换,新的像素在偶数位,第3840个像素采用第3839像素的值。

第二次放大实现像素行插值,帧行数从1080插值到2160,利用3个BRAM实现,新的像素在偶数位,第 2160行采用第2159行的数据。

	V00 V01 V0					
	U00 U01 U0					
	Y00 Y01 Y0: V10 V11 V1:					
Data_in_map						
	V10 V11 V1 Y10 Y11 Y11					
	V20 V21 V2					
	U20 U21 U2					
	Y20 Y21 Y2:					
	120 121 12.					
	V00	V01	V02		V0(X-1)	V0X
Data_temp_map	(Y00+Y01)/2 = Y'00	(Y01+Y02)/2 = Y'01	(Y02+Y03)/2 = Y'02		(Y0(X-1)+Y0X)/2 = Y'0(X-1)	(Y0X+Y0X)/2 = Y'0X
	U00	U01	U02		U0(X-1)	U0X
	Y00	Y01	Y02		Y0(X-1)	Y0X
	V10	V11	V12		V1(X-1)	V1X
	(Y10+Y11)/2 = Y'10	(Y11+Y12)/2 = Y'11	(Y12+Y13)/2 =Y'12		(Y1(X-1)+Y1X)/2 = Y'(X-1)	(Y1X+Y1X)/2 = Y'1X
	U10	U11	U12		U1(X-1)	U1X
	Y10	Y11	Y12		Y1(X-1)	Y1X
	V20	V21	V22		V2(X-1)	V2X
	(Y20+Y21)/2 = Y'20	(Y21+Y22)/2 = Y'21	(Y22+Y23)/2 = Y'22		(Y2(X-1)+Y2X)/2 = Y'2(X-1)	(Y2X+Y2X)/2 = Y'2X
	U20	U21	U22		U2(X-1)	U2X
	Y20	Y21	Y22		Y2(X-1)	Y2X
Data_output_map	V00	V01	V02		V0(X-1)	V0X
	Y'00	Y'01	Y'02		Y'0(X-1)	Y'0X
	U00	U01	U02		U0(X-1)	U0X
	Y00	Y01	Y02		Y0(X-1)	YOX
	(V00+V10)/2	(V01+V11)/2	(V02+V12)/2		(V0(X-1)+V1(X-1))/2	(V0X+V1X)/2
	(Y'00+Y'10)/2	(Y'01+Y'11)/2	(Y'02+Y'12)/2		(Y'0(X-1)+Y'1(X-1))/2	(Y'0X+Y'1X)/2
	(U00+U10)/2	(U01+U11)/2	(U02+U12)/2		(U0(X-1)+U1(X-1))/2	(U0X+U1X)/2
	(Y00+Y10)/2	(Y01+Y11)/2	(Y02+Y12)/2		(Y0(X-1)+Y1(X-1))/2	(Y0X+Y1X)/2
	V10	V11	V12		V1(X-1)	V1X
	Y'10	Y'11	Y'12		Y'1(X-1)	Y'1X
	U10	U11	U12		U1(X-1)	U1X
	Y10	Y11	Y12		Y1(X-1)	Y1X
	(V10+V20)/2	(V11+V21)/2	(V12+V22)/2		(V1(X-1)+V2(X-1))/2	(V1X+V2X)/2
	(Y'10+Y'20)/2	(Y'11+Y'21)/2	(Y'12+Y'22)/2	***	(Y'1(X-1)+Y'2(X-1))/2	(Y'1X+Y'2X)/2
	(U10+U20)/2	(U11+U21)/2	(U12+U22)/2		(U1(X-1)+U2(X-1))/2	(U1X+U2X)/2
	(Y10+Y20)/2	(Y11+Y21)/2	(Y12+Y22)/2		(Y1(X-1)+Y2(X-1))/2	(Y1X+Y2X)/2
	V20	V21	V22		V2(X-1)	V2X
	Y'20	Y'21	Y'22		Y'2(X-1)	Y'2X
	U20	U21	U22		U2(X-1)	U2X
	Y20	Y21	Y22		Y2(X-1)	Y2X
	V20	V21	V22		V2(X-1)	V2X
	Y'20	Y'21	Y'22		Y'2(X-1)	Y'2X
	U20	U21	U22		U2(X-1)	U2X
	Y20	Y21	Y22		Y2(X-1)	Y2X

IP 配置

本模块相对复杂,如果参数化编程会相当的麻烦,所以我按照实际使用情况,将部分参数固定,读者如若有特殊需求,可以自行修改代码。在固定参数过后模块好用多了,只需要配置分辨率信息即可。

输入输出时序图

整个模块是以pipeline形式进行缩放,输出相对输入延迟1.5行的时间(输入的行计数),结构精巧,资源节省,画质不俗(容我得意一下)。

下图主要展示行插值的时序关系。输入行依次进入bram0/bram1/bram2,做三元乒乓,同时pix per clock扩张到4,这样就恰好可以完成FHD(1920x1080)到UHD(3840x2160)的放大。

