

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

FORMUŁA OD 2015 ("NOWA MATURA")

MATEMATYKA POZIOM ROZSZERZONY

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-R1

Klucz punktowania zadań zamkniętych

Nr zad.	1	2	3	4	5
Odp.	D	В	C	C	A

Schemat oceniania zadania 6. i zadań otwartych

Zadanie 6. (0-2)

Wyznacz największą liczbę całkowitą spełniającą nierówność |x| < |x - 1025|. W poniższe kratki wpisz – kolejno – cyfrę setek, cyfrę dziesiątek i cyfrę jedności otrzymanego wyniku.

Odpowiedź

Szukaną liczbą jest 512.

Schemat oceniania

Zadanie 7. (0–2)

Prosta o równaniu $y = \frac{3}{4}x - \frac{61}{14}$ jest styczna od okręgu o środku S = (1,-4). Wyznacz promień tego okręgu.

Rozwiązanie

Zapisujemy równanie prostej w postaci ogólnej : $-3x + 4y + \frac{122}{7} = 0$. Obliczamy długość

promienia okręgu:
$$r = \frac{\left| -3 \cdot 1 + 4 \cdot (-4) + \frac{122}{7} \right|}{\sqrt{3^2 + 4^2}} = \frac{11}{35}$$
.

Odpowiedź

Promień okręg ma długość $r = \frac{11}{35}$.

Schemat oceniania

Zdający otrzymuje 1 p.

gdy zapisze równanie prostej w postaci: $-3x + 4y + \frac{122}{7} = 0$ oraz wykorzysta wzór na

odległość punktu od prostej i zapisze $r = \frac{\left| -3 \cdot 1 + 4 \cdot \left(-4 \right) + \frac{122}{7} \right|}{\sqrt{3^2 + 4^2}}$ i na tym poprzestanie lub dalej popełni błędy.

Zdający otrzymuje2 p.

gdy obliczy promień okręgu $r = \frac{11}{35}$.

Zadanie 8. (0-3)

Niech $a = \log_{12} 2$. Wykaż, że $\log_6 64 = \frac{6a}{1-a}$.

I sposób rozwiązania

Zmieniamy podstawę logarytmu i wykonujemy kolejno przekształcenia

$$\log_6 64 = \frac{\log_{12} 64}{\log_{12} 6} = \frac{\log_{12} 2^6}{\log_{12} \left(\frac{12}{2}\right)} = \frac{6\log_{12} 2}{\log_{12} 12 - \log_{12} 2} = \frac{6a}{1-a}.$$
 To kończy dowód.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania1 p.

Zdający zapisze, że

$$\log_6 64 = \frac{\log_{12} 64}{\log_{12} 6}$$

i na tym zakończy lub dalej popełni błędy.

$$\log_6 64 = \frac{\log_{12} 2^6}{\log_{12} \left(\frac{12}{2}\right)}$$

i na tym zakończy lub dalej popełni błędy.

II sposób rozwiązania

Zauważamy kolejno, że

$$\frac{6a}{1-a} = \frac{6\log_{12} 2}{\log_{12} 12 - \log_{12} 2} = \frac{\log_{12} 64}{\log_{12} 6} = \log_6 64.$$

A to kończy dowód.

Schemat oceniania II sposobu rozwiązania

Zdający zapisze, że

$$\frac{6a}{1-a} = \frac{\log_{12} 2^6}{\log_{12} 12 - \log_{12} 2}$$

i na tym zakończy lub dalej popełni błędy.

$$\frac{6a}{1-a} = \frac{\log_{12} 64}{\log_{12} 6}$$

i na tym zakończy lub dalej popełni błędy.

III sposób rozwiązania

Równość $a = \log_{12} 2$ jest równoważna równości $12^a = 2$. Podzielimy tę równość stronami przez dodatnią liczbę 2^a . Otrzymujemy równość

$$\frac{12^a}{2^a} = \frac{2}{2^a}$$
, a zatem $6^a = 2^{1-a}$.

Ponieważ obie strony równości są dodatnie, więc ta równość jest równoważna równości

$$6^{6a} = 64^{1-a}$$
, a zatem $6^{\frac{6a}{1-a}} = 64$.

Ostatnia równość oznacza, że $\log_6 64 = \frac{6a}{1-a}$. To kończy dowód.

Schemat oceniania III sposobu rozwiązania

Zdający zapisze, że

$$\frac{12^a}{2^a} = \frac{2}{2^a}$$

i na tym zakończy lub dalej popełni błędy.

$$6^{6a} = 64^{1-a}$$

i na tym zakończy lub dalej popełni błędy.

Zadanie 9. (0–3)

W trójkącie ABC kąt wewnętrzny przy wierzchołku A ma miarę 50°, a kąt wewnętrzny przy wierzchołku C ma miarę 60°. Okrąg o_1 przechodzi przez punkt A i przecina boki AB i AC trójkąta odpowiednio w punktach D i E. Okrąg o_2 przechodzi przez punkt B, przecina okrąg o_1 w punkcie D oraz w punkcie E leżącym wewnątrz trójkąta E0. Ponadto okrąg E0 przecina bok E1 trójkąta w punkcie E3.

Udowodnij, że na czworokącie CEFG można opisać okrąg.

Rozwiązanie

Trzeci kąt trójkąta ABC ma miarę: $| < ABC | = 180^{\circ} - (50^{\circ} + 60^{\circ}) = 70^{\circ}$.

Połączmy punkt F z punktami D, E i G.

Czworokąty ADFE i BDFG są wpisane odpowiednio w okręgi O_1 i O_2 , więc

$$| \angle DFE | = 180^{\circ} - 50^{\circ} = 130^{\circ} \text{ oraz } | \angle DFG | = 180^{\circ} - 70^{\circ} = 110^{\circ}. \text{ Zatem}$$

$$|\angle EFG| = 360^{\circ} - (130^{\circ} + 110^{\circ}) = 120^{\circ}.$$

Stąd $| \angle EFG | + | \angle ECG | = 120^\circ + 60^\circ = 180^\circ$, zatem na czworokącie *CEFG* można opisać okrąg, co kończy dowód.

Schemat oceniania

Rozwiązanie, w którym jest istotny postęp 1 p.

Obliczenie miary kąta DFE: $| < DFE | = 130^{\circ}$ albo miary kąta DFG: $| < DFG | = 110^{\circ}$.

Pokonanie zasadniczych trudności zadania 2 p.

Obliczenie miary kąta EFG: $| \angle EFG | = 120^{\circ}$.

Rozwiązanie pełne 3 p.

Pełne uzasadnienie, że na czworokącie CEFG można opisać okrąg.

Zadanie 10. (0-4)

Rozwiąż równanie $(4\sin^2 x - 1)\cdot \sin x = \cos^2 x - 3\sin^2 x$, dla $x \in (-\pi, 0)$.

Rozwiązanie

Korzystamy ze wzoru $\sin^2 x + \cos^2 x = 1$ i zapisujemy równanie $(4\sin^2 x - 1) \cdot \sin x = \cos^2 x - 3\sin^2 x$ w postaci równoważnej $(4\sin^2 x - 1) \cdot \sin x = 1 - 4\sin^2 x$. Przekształcamy to równanie i zapisujemy je w postaci iloczynowej: $(4\sin^2 x - 1) \cdot \sin x - 1 + 4\sin^2 x = 0$, $(4\sin^2 x - 1) \cdot (\sin x + 1) = 0$,

 $(2\sin x - 1) \cdot (2\sin x + 1) \cdot (\sin x + 1) = 0.$

Warunek $\sin x = \frac{1}{2}$ jest sprzeczny z założeniem $x \in (-\pi, 0)$, bo wtedy $\sin x < 0$.

Zatem warunki $\sin x = -\frac{1}{2}$ i $x \in (-\pi, 0)$ wyznaczają rozwiązanie $x = -\frac{\pi}{6}$ lub $x = -\frac{5\pi}{6}$,

a warunki $\sin x = -1$ i $x \in (-\pi, 0)$ wyznaczają rozwiązanie $x = -\frac{\pi}{2}$.

Schemat oceniania

rodanie wszystkich rozwiązan naiczących do przedziału (–//

$$x = -\frac{\pi}{6}$$
 lub $x = -\frac{5\pi}{6}$, lub $x = -\frac{\pi}{2}$.

Uwagi

- 1. Jeżeli zdający nie odrzuci warunku $\sin x = \frac{1}{2}$ oraz wyznaczy z pozostałych warunków poprawne rozwiązania równania, to otrzymuje **3 punkty.**
- 2. Jeżeli zdający poda ogólne rozwiązania równania bez uwzględnienia przedziału $(-\pi,0)$, to otrzymuje **3 punkty.**

Zadanie 11. (0–4)

W trójkąt prostokątny o przyprostokątnych długości 15 i 20 wpisano okrąg. Oblicz długość odcinka łączącego wierzchołek kąta prostego tego trójkąta z punktem wspólnym okręgu i przeciwprostokątnej.

Rozwiązanie

Przyjmijmy oznaczenia jak na rysunku.

Obliczamy, korzystając z twierdzenia Pitagorasa, długość przeciwprostokątnej AB: |AB| = 25 i kosinus kąta $\angle CAB$: $\cos \angle CAB = \frac{3}{5}$.

Obliczamy promień okręgu wpisanego w trójkąt prostokątny:

$$r = \frac{|AC| + |BC| - |AB|}{2} = \frac{15 + 20 - 25}{2} = 5$$
.

Z twierdzenia o odcinkach stycznych wyznaczamy długość odcinka AD: |AD| = 10.

Obliczamy |CD| stosując twierdzenie kosinusów dla trójkąta ACD:

$$|CD|^2 = |AC|^2 + |AD|^2 - 2|AC||AD|\cos \ll CAD = 225 + 100 - 2 \cdot 15 \cdot 10 \cdot \frac{3}{5} = 145$$
.
Stąd $|CD| = \sqrt{145}$.

Schemat oceniania

$$|AB| = 25$$
, $\cos \angle CAB = \frac{3}{5}$.

Uwaga

Jeżeli zdający zakłada, że odcinek CD jest prostopadły do przeciwprostokątnej AB i z tego korzysta, to za całe zadanie może otrzymać nie więcej niż **1 punkt**.

Zadanie 12. (0-4)

Dany jest trójkąt ABC, w którym |BC|=a. Z wierzchołka B poprowadzono środkową BD do boku AC. Punkt S jest środkiem odcinka BD. Przez punkty A i S poprowadzono prostą, która przecięła bok BC w punkcie P. Wykaż, że długość odcinka CP jest równa $\frac{2}{3}a$.

Rozwiązanie

Rysujemy trójkąt ABC, zaznaczamy punkty D,S,P i rysujemy odcinek SM równoległy do AC i taki, że $M \in BC$.

Trójkąty *BSM* i *BDC* są podobne, zatem $\frac{|BS|}{|DB|} = \frac{|BM|}{|BC|} = \frac{1}{2}$, stąd $|BM| = |CM| = \frac{1}{2}a$

$$i |MS| = \frac{1}{2}|DC| = \frac{1}{4}|AC|$$

Trójkąty *PSM* i *PAC* są podobne, zatem $\frac{|PM|}{|MS|} = \frac{|PC|}{|AC|}$. Stąd $\frac{|MP|}{|MS|} = \frac{|PM| + |CM|}{|AC|}$

i
$$\frac{|MP|}{\frac{1}{4}|AC|} = \frac{|MP| + \frac{1}{2}a}{|AC|}$$
, czyli $4|MP| = |MP| + \frac{1}{2}a$. Stąd $|MP| = \frac{1}{6}a$.

Szukany odcinek ma więc długość: $|CP| = |MC| + |MP| = \frac{1}{2}a + \frac{1}{6}a = \frac{2}{3}a$, co należało wykazać.

Schemat oceniania

Rozwiązanie, w którym postęp jest niewielki ale konieczny na drodze do pełnego rozwiązania
Zdający zauważy, że trójkąty <i>BSM</i> i <i>BDC</i> są podobne i zapisze proporcję $\frac{ BS }{ DB } = \frac{ BM }{ BC } = \frac{1}{2}$
i na tym poprzestanie lub dalej popełni błędy.
Rozwiązanie, w którym jest istotny postęp
Zdający obliczy długość odcinka CM oraz wyznaczy długość odcinka MS w zależności od
długości odcinka AC : $ CM = \frac{1}{2}a$, $ MS = \frac{1}{2} DC = \frac{1}{4} AC $ i na tym poprzestanie lub dalej
popełni błędy.
Pokonanie zasadniczych trudności zadania
Zdający obliczy długość odcinka MP : $ MP = \frac{1}{6}a$.
Rozwiązanie pełne 4 p.
Zdający przeprowadzi pełne rozumowania, tzn. wyznaczy długość odcinka: $ CP = \frac{2}{3}a$.

Zadanie 13. (0–5)

Oblicz, ile jest wszystkich liczb naturalnych pięciocyfrowych parzystych, w których zapisie występują co najwyżej dwie dwójki.

Rozwiązanie

W zapisie liczby mają być co najwyżej dwie dwójki, tzn. zero dwójek lub jedna dwójka, lub dwie dwójki.

- **1.** Obliczamy, ile jest liczb 5-cyfrowych parzystych, w których zapisie nie ma dwójki: na pierwszym miejscu występuje dowolna spośród 8 cyfr (bez zera i dwójki), na drugim jedna z 9 cyfr (bez dwójki), na trzecim jedna z 9 cyfr (bez dwójki), na czwartym jedna z 9 cyfr (bez dwójki) i na piątym miejscu jedna z cyfr należących do zbioru $\{0,4,6,8\}$. Zatem liczb parzystych pięciocyfrowych bez dwójki jest: $8 \cdot 9 \cdot 9 \cdot 9 \cdot 4 = 23328$.
- **2.** Obliczamy, ile jest liczb 5-cyfrowych parzystych, w których zapisie jest dokładnie jedna dwójka:
- a) dwójka występuje na pierwszym miejscu, na drugim dowolna z 9 cyfr (bez dwójki), na trzecim dowolna z 9 cyfr (bez dwójki), na czwartym dowolna z 9 cyfr (bez dwójki), na piątym dowolna z cyfr należących do zbioru $\{0,4,6,8\}$. Zatem liczb parzystych pięciocyfrowych z dwójką na pierwszym miejscu jest: $9 \cdot 9 \cdot 9 \cdot 4 = 2916$.

- **b)** dwójka występuje na drugim miejscu, na pierwszym dowolna z 8 cyfr (bez dwójki i zera), na trzecim dowolna z 9 cyfr (bez dwójki), na czwartym dowolna z 9 cyfr (bez dwójki), na piątym dowolna z cyfr należących do zbioru $\{0,4,6,8\}$. Zatem liczb parzystych pięciocyfrowych z dwójką na drugim miejscu jest: $8 \cdot 9 \cdot 9 \cdot 4 = 2592$.
- c) dwójka występuje na trzecim miejscu, na pierwszym dowolna z 8 cyfr (bez dwójki i zera), na drugim dowolna z 9 cyfr (bez dwójki), na czwartym dowolna z 9 cyfr (bez dwójki), na piątym dowolna z cyfr należących do zbioru $\{0,4,6,8\}$. Zatem liczb parzystych pięciocyfrowych z dwójką na trzecim miejscu jest: $8 \cdot 9 \cdot 9 \cdot 4 = 2592$.
- d) dwójka występuje na czwartym miejscu, na pierwszym dowolna z 8 cyfr (bez dwójki i zera), na drugim dowolna z 9 cyfr (bez dwójki), na trzecim dowolna z 9 cyfr (bez dwójki), na piątym dowolna z cyfr należących do zbioru $\{0,4,6,8\}$. Zatem liczb parzystych pięciocyfrowych z dwójką na czwartym miejscu jest: $8 \cdot 9 \cdot 9 \cdot 4 = 2592$.
- e) dwójka na piątym miejscu, na pierwszym dowolna z 8 cyfr (bez dwójki i zera), na drugim dowolna z 9 cyfr (bez dwójki), na trzecim dowolna z 9 cyfr (bez dwójki), na czwartym dowolna z 9 cyfr (bez dwójki). Zatem liczb parzystych pięciocyfrowych z dwójką na piątym miejscu jest: $8 \cdot 9 \cdot 9 \cdot 9 = 5832$.

Stąd wszystkich liczb pięciocyfrowych z jedną dwójką jest: 2916 + 2592 + 2592 + 2592 + 5832 = 16524.

- **3.** Obliczamy, ile jest liczb 5-cyfrowych parzystych, w których zapisie są dokładnie dwie dwójki:
- a) jedna dwójka występuje na pierwszym miejscu, druga na drugim, trzecim lub czwartym, zatem każdą z pozostałych środkowych dwóch cyfr wybieramy spośród 9 cyfr (bez dwójki) i piątą cyfrę spośród z cyfr należących do zbioru $\{0,4,6,8\}$. Tych liczb jest więc: $3\cdot 9\cdot 9\cdot 4=972$.
- **b**) jedna dwójka występuje na pierwszym miejscu, a druga dwójka na piątym miejscu, zatem każdą z pozostałych środkowych trzech cyfr wybieramy spośród 9 cyfr (bez dwójki). Tych liczb jest więc: $9 \cdot 9 \cdot 9 = 729$.
- c) jedna dwójka występuje na drugim miejscu, a druga dwójka na trzecim lub czwartym miejscu, zatem pierwszą cyfrę wybieramy spośród 8 (bez dwójki i zera) pozostałą środkową spośród 9 cyfr (bez dwójki) i piątą cyfrę spośród z cyfr należących do zbioru $\{0,4,6,8\}$. Tych liczb jest więc: $2 \cdot 8 \cdot 9 \cdot 4 = 576$.
- d) jedna dwójka występuje na drugim miejscu, a druga dwójka na piątym miejscu, zatem pierwszą cyfrę wybieramy spośród 8 (bez dwójki i zera), pozostałe dwie środkowe cyfry spośród 9 (bez dwójki). Tych liczb jest więc: $8 \cdot 9 \cdot 9 = 648$.
- e) jedna dwójka występuje na trzecim miejscu, a druga dwójka na czwartym miejscu, zatem pierwszą cyfrę wybieramy spośród 8 (bez dwójki i zera), drugą spośród 9 i piątą cyfrę spośród z cyfr należących do zbioru $\{0,4,6,8\}$. Tych liczb jest więc: $8\cdot 9\cdot 4=288$.

Egzamin maturalny z matematyki – nowa formuła Rozwiązania zadań i schemat punktowania – poziom rozszerzony

f) jedna dwójka występuje na trzecim lub na czwartym miejscu, a druga dwójka na piątym miejscu, zatem pierwszą cyfrę wybieramy spośród 8 (bez dwójki i zera), drugą spośród 9 (bez dwójki) i trzecią lub czwartą cyfrę spośród 9 (bez dwójki). Tych liczb jest więc: $2 \cdot 8 \cdot 9 \cdot 9 = 1296$.

Stąd wszystkich liczb pięciocyfrowych z dwiema dwójkami jest 972 + 729 + 576 + 648 + 288 + 1296 = 4509.

Zatem wszystkich liczb pięciocyfrowych parzystych, w których zapisie występują co najwyżej dwie dwójki jest: 23328+16524+4509 = 44361.

Odpowiedź: Jest 44361 liczb parzystych, w których zapisie występują co najwyżej dwie dwójki.

Schemat oceniania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełneg
rozwiązania 1 p
Zapisanie, że szukamy liczb, w których zapisie występuje zero, jedna lub dwie dwójki i obliczenie, ile jest liczb pięciocyfrowych parzystych bez dwójki: $8 \cdot 9 \cdot 9 \cdot 9 \cdot 4 = 23328$.
Rozwiązanie, w którym jest istotny postęp 3 p
Obliczenie, ile jest liczb pięciocyfrowych parzystych, w których zapisie jest dokładnie jedna
dwóika: 2016 + 2502 + 2502 + 2602 + 5832 = 16524

<u>Uwaga</u>

Zdający otrzymuje 2 punkty, gdy pominie jeden przypadek.

<u>Uwaga</u>

Zdający otrzymuje **3 punkty**, gdy pominie jeden przypadek.

Zadanie 14. (0-5)

Podstawą ostrosłupa ABCDS jest trapez ABCD. Przekątna AC tego trapezu ma długość $8\sqrt{3}$, jest prostopadła do ramienia BC i tworzy z dłuższą podstawą AB tego trapezu kąt o mierze 30° . Każda krawędź boczna tego ostrosłupa ma tę samą długość $4\sqrt{5}$. Oblicz odległość spodka wysokości tego ostrosłupa od jego krawędzi bocznej SD.

Rozwiązanie

Przyjmijmy oznaczenia jak na rysunku.

Krawędzie boczne ostrosłupa są tej samej długości, zatem spodek wysokości ostrosłupa jest środkiem okręgu opisanego na podstawie ostrosłupa i trapez ABCD jest trapezem równoramiennym, gdzie |AD|=|BC|. Przekątna d trapezu będącego podstawą ostrosłupa jest prostopadła do ramienia |BC|. Stąd środek O okręgu opisanego na podstawie jest środkiem dłuższej podstawy AB trapezu. Zatem ściana boczna ABS jest prostopadła do płaszczyzny podstawy.

Z trójkąta ABC mamy |BC| = |AD| = 8.

Dalej wyznaczamy $| \not < ODA | = 60^\circ$ i |AO| = |OD|, czyli trójkąt AOD jest trójkątem równobocznym o boku długości 8.

Z trójkąta *SOD* lub *AOS* mamy $H^2 + 8^2 = (4\sqrt{5})^2$. Stąd H = 4.

Z trójkąta SOD otrzymujemy: $|OK| = \frac{8\sqrt{5}}{5}$. Krawędzie boczne ostrosłupa są tej samej długości, zatem spodek wysokości ostrosłupa jest środkiem okręgu opisanego na podstawie ostrosłupa i trapez ABCD jest trapezem równoramiennym, gdzie |AD| = |BC|. Przekątna d

trapezu będącego podstawą ostrosłupa jest prostopadła do ramienia /BC/. Stąd środek O okręgu opisanego na podstawie jest środkiem dłuższej podstawy AB trapezu. Zatem ściana boczna ABS jest prostopadła do płaszczyzny podstawy.

Z trójkąta ABC mamy |BC| = |AD| = 8.

Dalej mamy $| \not < ODA | = 60^\circ$ i |AO| = |OD|, czyli trójkąt AOD jest trójkątem równobocznym o boku długości 8.

Z trójkąta SOD lub AOS mamy $H^2 + 8^2 = (4\sqrt{5})^2$. Stąd H = 4.

Z trójkąta *SOD* otrzymujemy: $|OK| = \frac{8\sqrt{5}}{5}$.

Schemat oceniania

Rozwiązanie, w którym postęp jest wprawdzie niewielki, ale konieczny na drodze do
całkowitego rozwiązania zadania1 pkt
Zauważenie, że spodek wysokości ostrosłupa jest środkiem krawędzi <i>AB</i> podstawy i ściana boczna <i>ABS</i> jest prostopadła do płaszczyzny podstawy.
Rozwiązanie, w którym jest istotny postęp2 pkt
Wyznaczenie długości ramienia trapezu: $ BC = AD = 8$.
Pokonanie zasadniczych trudności zadania
Obliczenie wysokości ostrosłupa: $H = 4$ i poprawnie zinterpretowanie odległości spodka wysokości od krawędzi bocznej SD .
Rozwiązanie zadania do końca lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)4 pkt
Obliczenie długości odcinka OK z błędami rachunkowymi.
Rozwiązanie pełne
Obliczenie długości odcinka OK : $ OK = \frac{8\sqrt{5}}{5}$.

Zadanie 15. (0-6)

Funkcja f jest określona wzorem $f(x) = \frac{m^2 + m - 6}{m - 5}x^2 - (m - 2)x + m - 5$ dla każdej liczby

rzeczywistej x. Wyznacz całkowite wartości parametru m, dla których funkcja f przyjmuje wartość największą i ma dwa różne miejsca zerowe o jednakowych znakach.

Rozwiązanie

Założenie $m \neq 5$

Gdy
$$\frac{m^2+m-6}{m-5}=0$$
, czyli $(m+3)(m-2)=0$, a więc dla $m=-3$ lub $m=2$ funkcja jest

liniowa i nie spełnia warunków zadania. Zatem $m \neq 5$, $m \neq -3$ i $m \neq 2$.

Wówczas funkcja f jest kwadratowa oraz:

- przyjmuje wartość największą, gdy $\frac{m^2 + m 6}{m 5} < 0$,
- ma dwa różne dwa różne miejsca zerowe wtedy i tylko wtedy, gdy $\Delta > 0$,
- ma dwa miejsca zerowe o jednakowych znakach, gdy dodatkowo $x_1 \cdot x_2 > 0$.

Rozwiązujemy nierówność $\frac{m^2+m-6}{m-5}$ < 0, otrzymując kolejno

$$\frac{m^2 + m - 6}{m - 5} < 0,$$

$$\frac{(m + 3)(m - 2)}{m - 5} < 0,$$

$$(m + 3)(m - 2)(m - 5) < 0.$$

Zatem $m \in (-\infty, -3) \cup (2, 5)$.

Rozwiązujemy nierówność $\Delta > 0$, otrzymując kolejno

$$(-(m-2))^{2}-4\cdot\frac{m^{2}+m-6}{m-5}\cdot(m-5)>0,$$

$$(m-2)^{2}-4\cdot(m^{2}+m-6)>0,$$

$$(m-2)^{2}-4\cdot(m+3)(m-2)>0,$$

$$(m-2)((m-2)-4(m+3))>0,$$

$$(m-2)(m-2-4m-12)>0,$$

$$(m-2)(-3m-14)>0.$$

Zatem $-\frac{14}{3} < m < 2$.

Rozwiązujemy nierówność $x_1 \cdot x_2 > 0$. Możemy wykorzystać wzór Viète'a na iloczyn pierwiastków trójmianu kwadratowego i wtedy nierówność ma postać

$$\frac{m-5}{\frac{m^2+m-6}{m-5}} > 0.$$

Rozwiązujemy tę nierówność, otrzymując kolejno

$$\frac{(m-5)^2}{m^2+m-6} > 0,$$

$$(m-5)^2 (m-2)(m+3) > 0,$$

$$m \in (-\infty, -3) \cup (2,5) \cup (5, +\infty).$$

Otrzymaliśmy zatem $m \in (-\infty, -3) \cup (2,5)$ i $m \in \left(-\frac{14}{3}, 2\right)$ i $m \in (-\infty, -3) \cup (2,5) \cup (5, +\infty)$.

Stąd $m \in \left(-\frac{14}{3}, -3\right)$. Jedyną liczą całkowitą z tego przedziału jest m = -4.

Schemat oceniania

Rozwiązanie zadania składa się z trzech etapów.

<u>Pierwszy etap</u> polega zapisaniu warunku, przy którym funkcja f jest kwadratowa i ma dwa różne pierwiastki, a następnie rozwiązaniu nierówności

$$(-(m-2))^2 - 4 \cdot \frac{m^2 + m - 6}{m - 5} \cdot (m - 5) > 0 : -\frac{14}{3} < m < 2.$$

Za poprawne rozwiązanie nierówności $\Delta > 0$ zdający otrzymuje **1 punkt**.

Uwaga

Jeżeli zdający zapisze $\Delta \ge 0$, to za tę część otrzymuje **0 punktów**.

<u>Drugi etap</u> polega na zapisaniu warunku, przy którym funkcja kwadratowa f przyjmuje wartość największą: $\frac{m^2 + m - 6}{m - 5} < 0$

oraz ma dwa różne miejsca zerowe o jednakowych znakach: $\frac{m-5}{\frac{m^2+m-6}{m-5}} > 0.$

Za tę część rozwiązania zdający może otrzymać **4 punkty**.

Podział punktów za drugi etap rozwiązania:

- Za rozwiązanie nierówności $\frac{m^2+m-6}{m-5} < 0$: $m \in (-\infty, -3) \cup (2,5)$ zdający otrzymuje **2 punkty.**
- Za rozwiązanie nierówności $x_1 \cdot x_2 > 0$ zdający otrzymuje **2 punkty**. Przy czym w tej części:

1 punkt zdający otrzymuje za zapisanie wyrażenia $x_1 \cdot x_2$ w postaci $\frac{m-5}{m-5}$,

2 punkty zdający otrzymuje za rozwiązanie nierówności $\frac{\left(m-5\right)^2}{m^2+m-6} > 0$:

$$m \in (-\infty, -3) \cup (2,5) \cup (5, +\infty)$$

<u>Trzeci etap</u> polega na wyznaczeniu części wspólnej rozwiązań nierówności z etapu pierwszego i drugiego oraz podaniu liczby całkowitej spełniającej warunki zadania: m = -4.

Za tę część rozwiązania zdający może otrzymać 1 punkt.

Uwaga

Za ostatni etap **1 punkt** przyznajemy jedynie wówczas, gdy zdający poprawnie wykona etap I, rozwiąże nierówność i popełnia błędy w rozwiązaniu nierówności z etapu II albo gdy popełnia błędy w etapie I i dobrze rozwiąże co najmniej jedną nierówność z etapu II i poda wszystkie całkowite wartości parametru *m*, dla których są spełnione warunki zadania.

Zadanie 16. (0-7)

Rozpatrujemy wszystkie stożki, w których suma długości tworzącej i promienia podstawy jest równa 2. Wyznacz wysokość tego spośród rozpatrywanych stożków, którego objętość jest największa. Oblicz tę objętość.

Przykładowe rozwiązanie (I sposób)

Przyjmijmy oznaczenia jak na rysunku.

Z warunków zadania wynika, że l+r=2, skąd l=2-r.

Z twierdzenia Pitagorasa dla trójkąta AOS otrzymujemy $|AS|^2 = |AO|^2 + |OS|^2$, czyli

$$l^2 = r^2 + h^2.$$

Stąd $h = \sqrt{l^2 - r^2}$. Ale l = 2 - r, więc

$$h = \sqrt{(2-r)^2 - r^2} = \sqrt{4 - 4r + r^2 - r^2} = \sqrt{4 - 4r} = 2\sqrt{1-r}$$
.

Objetość stożka jest wiec równa

$$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 \cdot 2\sqrt{1-r} = \frac{2}{3}\pi r^2 \cdot \sqrt{1-r} = \frac{2}{3}\pi \sqrt{r^4 \left(1-r\right)}.$$

Objętość jest zatem funkcją zmiennej r i jest określona wzorem

$$V(r) = \frac{2}{3}\pi\sqrt{r^4(1-r)} = \frac{2}{3}\pi\sqrt{r^4-r^5}$$
.

Z warunków geometrycznych zadania wynika, że 0 < r < 1, a więc dziedziną funkcji V jest przedział (0,1).

Rozważmy funkcję $f(r) = r^4 - r^5$ określoną dla każdej liczby rzeczywistej r.

Pochodna funkcji f jest równa

$$f'(r) = 4r^3 - 5r^4 = r^3(4-5r).$$

Miejscami zerowymi pochodnej są r = 0 lub $r = \frac{4}{5}$.

Pochodna funkcji jest ujemna dla $r \in (-\infty, 0) \cup \left(\frac{4}{5}, +\infty\right)$, a dodatnia dla $r \in \left(0, \frac{4}{5}\right)$.

Zatem w przedziale $\left(0,\frac{4}{5}\right)$ funkcja V jest rosnąca, a w przedziale $\left(\frac{4}{5},1\right)$ malejąca. W punkcie $r=\frac{4}{5}$ osiąga maksimum lokalne, które jest jednocześnie największą jej wartością. Wartość ta jest równa

$$V\left(\frac{4}{5}\right) = \frac{2}{3}\pi \cdot \left(\frac{4}{5}\right)^2 \cdot \sqrt{1 - \frac{4}{5}} = \frac{2}{3}\pi \cdot \frac{16}{25}\sqrt{\frac{1}{5}} = \frac{32\sqrt{5}}{375}\pi.$$

Schemat oceniania I sposobu rozwiązania

Rozwiązanie zadania składa się z trzech etapów.

- a) Pierwszy etap (3 punkty) składa się z trzech części:
 - zapisanie wysokości stożka jako funkcji zmiennej r: $h = \sqrt{4-4r}$,
 - zapisanie objętości stożka jako funkcji jednej zmiennej: $V(r) = \frac{2}{3}\pi r^2 \sqrt{1-r}$
 - określenie dziedziny funkcji: 0 < r < 1.

Za poprawne rozwiązanie każdej z części tego etapu zdający otrzymuje **1 punkt**, o ile poprzednia część etapu została zrealizowana bezbłędnie.

Uwaga

Jeśli zdający popełni błąd przy wyznaczaniu dziedziny albo pominie wyznaczenie dziedziny, ale funkcja objętości zostanie zapisana prawidłowo, to otrzymuje za tę cześć **2 punkty** i może otrzymać punkty, które odpowiadają kolejnym etapom rozwiązania zadania.

- b) Drugi etap (3 punkty) składa się z trzech części:
 - wyznaczenie pochodnej funkcji $f(r) = r^4 r^5$: $f'(r) = 4r^3 5r^4$
 - obliczenie miejsc zerowych pochodnej: r = 0 lub $r = \frac{4}{5}$
 - uzasadnienie (np. badanie monotoniczności funkcji), że funkcja V posiada wartość największą dla $r=\frac{4}{5}$.

Za poprawne rozwiązanie każdej z części tego etapu zdający otrzymuje **1 punkt**, o ile poprzednia część etapu została zrealizowana bezbłędnie.

c) Trzeci etap (1 punkt) – końcowe obliczenia.

Obliczenie objętości stożka dla
$$r = \frac{4}{5}$$
: $V\left(\frac{4}{5}\right) = \frac{32\sqrt{5}}{375}\pi$.

Uwaga

Punkty za realizację danego etapu przyznajemy tylko wówczas, gdy zdający rozwiązał poprawnie poprzedni etap zadania.

Przykładowe rozwiązanie (II sposób)

Przyjmijmy oznaczenia jak na rysunku.

Z warunków zadania wynika, że l+r=2, skąd l=2-r.

Z twierdzenia Pitagorasa dla trójkąta AOS otrzymujemy $|AS|^2 = |AO|^2 + |OS|^2$, czyli

$$l^2 = r^2 + h^2.$$

Stad $r^2 = l^2 - h^2$. Ale l = 2 - r, wiec

$$r^{2} = (2-r)^{2} - h^{2},$$

$$r^{2} = 4 - 4r + r^{2} - h^{2},$$

$$4r = 4 - h^{2},$$

$$r = 1 - \frac{1}{4}h^{2}.$$

Objetość stożka jest więc równa

$$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \left(1 - \frac{1}{4}h^2\right)^2 \cdot h = \frac{1}{3}\pi \left(1 - \frac{1}{2}h^2 + \frac{1}{16}h^4\right) \cdot h = \frac{1}{3}\pi \left(h - \frac{1}{2}h^3 + \frac{1}{16}h^5\right).$$

Objętość jest zatem funkcją zmiennej h i jest określona wzorem

$$V(h) = \frac{\pi}{3} \cdot \left(h - \frac{1}{2} h^3 + \frac{1}{16} h^5 \right).$$

Z warunków geometrycznych zadania wynika, że 0 < h < 2, a więc dziedziną funkcji V jest przedział (0,2).

Rozważmy funkcję $f(h) = h - \frac{1}{2}h^3 + \frac{1}{16}h^5$ określoną dla każdej liczby rzeczywistej h.

Pochodna funkcji f jest równa

$$f'(h) = 1 - \frac{3}{2}h^2 + \frac{5}{16}h^4$$
.

Miejscami zerowymi pochodnej są h = -2 lub $h = -\frac{2\sqrt{5}}{5}$ lub $h = \frac{2\sqrt{5}}{5}$ lub h = 2.

Pochodna funkcji jest ujemna dla $h \in \left(-2, -\frac{2\sqrt{5}}{5}\right) \cup \left(\frac{2\sqrt{5}}{5}, 2\right)$, a dodatnia dla

$$h \in (-\infty, -2) \cup \left(-\frac{2\sqrt{5}}{5}, \frac{2\sqrt{5}}{5}\right) \cup (2, +\infty).$$

Zatem w przedziale $\left(0, \frac{2\sqrt{5}}{5}\right)$ funkcja V jest rosnąca, a w przedziale $\left\langle\frac{2\sqrt{5}}{5}, 2\right\rangle$ malejąca.

W punkcie $h = \frac{2\sqrt{5}}{5}$ osiąga maksimum lokalne, które jest jednocześnie największą jej wartością. Wartość ta jest równa

$$V(h) = \frac{\pi}{3} \cdot \left(h - \frac{1}{2} h^3 + \frac{1}{16} h^5 \right)$$

$$V\left(\frac{2\sqrt{5}}{5}\right) = \frac{\pi}{3} \cdot \left(1 - \frac{1}{2} \left(\frac{2\sqrt{5}}{5}\right)^3 + \frac{1}{16} \left(\frac{2\sqrt{5}}{5}\right)^5 \right) = \frac{32\sqrt{5}}{375} \pi.$$

Schemat oceniania II sposobu rozwiązania

Rozwiązanie zadania składa się z trzech etapów.

- a) Pierwszy etap (3 punkty) składa się z trzech części:
 - zapisanie promienia podstawy stożka jako funkcji zmiennej h: $r = 1 \frac{1}{4}h^2$,
 - zapisanie objętości stożka jako funkcji jednej zmiennej:

$$V(h) = \frac{\pi}{3} \cdot \left(h - \frac{1}{2}h^3 + \frac{1}{16}h^5\right)$$

• określenie dziedziny funkcji: 0 < h < 2.

Za poprawne rozwiązanie każdej z części tego etapu zdający otrzymuje **1 punkt**, o ile poprzednia część etapu została zrealizowana bezbłędnie.

Uwaga

Jeśli zdający popełni błąd przy wyznaczaniu dziedziny albo pominie wyznaczenie dziedziny, ale funkcja objętości zostanie zapisana prawidłowo, to otrzymuje za tę cześć **2 punkty** i może otrzymać punkty, które odpowiadają kolejnym etapom rozwiązania zadania.

- b) Drugi etap (3 punkty) składa się z trzech części:
 - wyznaczenie pochodnej funkcji $f(h) = h \frac{1}{2}h^3 + \frac{1}{16}h^5$: $f'(h) = 1 \frac{3}{2}h^2 + \frac{5}{16}h^4$

- obliczenie miejsc zerowych pochodnej: h = -2 lub $h = -\frac{2\sqrt{5}}{5}$ lub $h = \frac{2\sqrt{5}}{5}$ lub h = 2.
- uzasadnienie (np. badanie monotoniczności funkcji), że funkcja V posiada wartość największą dla $h = \frac{2\sqrt{5}}{5}$.

Za poprawne rozwiązanie każdej z części tego etapu zdający otrzymuje **1 punkt**, o ile poprzednia część etapu została zrealizowana bezbłędnie.

c) Trzeci etap (1 punkt) – końcowe obliczenia.

Obliczenie objętości stożka dla
$$h = \frac{2\sqrt{5}}{5}$$
: $V\left(\frac{2\sqrt{5}}{5}\right) = \frac{32\sqrt{5}}{375}\pi$.

Uwaga

Punkty za realizację danego etapu przyznajemy tylko wówczas, gdy zdający rozwiązał poprawnie poprzedni etap zadania.