

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

THE LENGTH OF A DEGREE OF LATITUDE AND LONGITUDE FOR ANY PLACE.

By GEORGE B. McCLELLAN ZERR, A. M., Ph. D.. Professor of Chemistry and Physics, The Temple College, Philadelphia, Pa.

Let O be the center of the earth, P any place on the surface, PG the nor-

mal and PF the tangent at P, OP=p—the perpendicular from the center on the tangent. a, b the semi-axes of the earth, ρ —radius of curvature at P, OP=r—the radius vector, $\angle POX=\varphi$, $\angle PGX=FOX=\theta$, l—length of a degree of meridian, ρ' —radius of circle of latitude, L—length of degree of latitude, $e^2=\frac{a^2-b^2}{a^2}=00680349$ —square of the eccentricity,

since a=6378190 meters=3963.296 miles.

Now
$$\rho = \frac{a^2 b^2}{p^3}$$
, but $p = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} = a\sqrt{1 - e^2 \sin^2 \theta}$.

$$\therefore \rho = \frac{a(1-e^2)}{(1-e^2\sin^2\theta)^{\frac{3}{2}}}, \quad l = \frac{2\pi\rho}{360} = \frac{\pi\rho}{180}.$$

$$\therefore l = \frac{\pi a (1 - e^2)}{180 (1 - e^2 \sin^2 \theta)^{\frac{3}{2}}} = \frac{68.70175}{(1 - e^2 \sin^2 \theta)^{\frac{3}{2}}} \text{ miles} = \frac{110562.7346}{(1 - e^2 \sin^2 \theta)^{\frac{3}{2}}} \text{ meters.}$$

$$\frac{1}{(1-e^2\sin^2\theta)^{\frac{3}{2}}} = 1 + \frac{3}{2}e^2\sin^2\theta + \frac{15}{8}e^4\sin^4\theta + \frac{105}{48}e^6\sin^6\theta + \dots$$

The fourth term can be omitted as its greatest value will not affect the result more than three inches.

$$\sin^2\theta = \frac{1}{2}(1-\cos 2\theta), \sin^4\theta = \frac{1}{8}(3-4\cos 2\theta + \cos 4\theta).$$

These values, with the value of e, give

$$\frac{1}{(1-e^2\sin^2\theta)^{\frac{3}{2}}} = 1.00514058 - .00515323\cos^2\theta + .00001265\cos^2\theta.$$

$$...$$
 l =69.054917 $-.354036\cos 2\theta +.000869\cos 4\theta$ miles

=111131.09118-569.75520
$$\cos 2\theta$$
+1.39862 $\cos 4\theta$ meters.

$$\rho' = r \cos \varphi = \frac{a \cos \theta}{\sqrt{(1 - e^2 \sin^2 \theta)}}.$$

$$L = \frac{2\pi\rho'}{360} = \frac{\pi\rho'}{180} = \frac{\pi a \cos\theta}{180\sqrt{(1 - e^2 \sin^2\theta)}}.$$

.:
$$L = \frac{69.1726\cos\theta}{\sqrt{(1-e^2\sin^2\theta)}}$$
 miles $= \frac{111320.4635\cos\theta}{\sqrt{(1-e^2\sin^2\theta)}}$ meters.

$$\frac{1}{\sqrt{(1-e^2\sin^2\theta)}} = 1 + \frac{1}{2}e^2\sin^2\theta + \frac{3}{8}e^4\sin^4\theta + \frac{1}{4}\frac{5}{8}e^6\sin^6\theta + \dots$$

$$= (1 + \frac{1}{2}e^2 + \frac{3}{8}e^4) - (\frac{1}{2}e^2 + \frac{3}{4}e^4)\cos^2\theta + \frac{3}{8}e^4\cos^4\theta \dots$$

 $\cos^3\theta = \frac{1}{4}(\cos 3\theta + 3\cos \theta), \cos^5\theta = \frac{1}{16}(\cos 5\theta + 5\cos 3\theta + 10\cos \theta).$

$$\begin{array}{l} \therefore L = 111320.4635 \left[(1 + \frac{1}{8}e^2 + \frac{3}{64}e^4)\cos\theta - (\frac{1}{8}e^2 + \frac{9}{128}e^4)\cos3\theta + \frac{2}{128}e^4\cos5\theta \right] \\ = 111415.37533\cos\theta - 95 \ 03428\cos3\theta + .12022\cos5\theta. \end{array}$$

Since the greatest value of the last term is not over five inches it can be omitted.

$$L=111415.37533\cos\theta - 95.03428\cos3\theta$$
 meters
=69.23155 $\cos\theta - .05905\cos3\theta$ miles.

The following table gives the length of a degree at intervals of five degrees.

	l		L	
Degrees	Meters	Miles	Meters	Miles
0°	110562.7346	68.70175	111320.3411	69.17250
5°	110571.305	68.70701	111051.725	69.00558
10°	110596.769	68.72288	109640.673	68.12878
15°	110638.365	68.74873	107552.254	66.83108
20°	110694.879	69.78386	104648.397	65.02667
25°	110764.615	68.82719	100952.272	62 - 72996
30°	110845.514	68.87746	96489.058	59.95660
35°	110935.152	68.93315	91290.501	56.72631
40°	111030.839	68.99261	85396.151	53.06366
45°	111129.693	69.05405	78850.126	48.99608
50°	111228.715	69.11556	71698.992	44.55249
55°	111324.887	69.17532	63997.427	39.96687
60°	111415.270	69.23150	55802.722	34.67483
65°	111497.081	69.28234	47178.162	29.31568
70°	111567.789	69.32627	38188.589	23.72972
75°	111625.216	69.36194	28903.727	17.96027
80°	111667.556	69.38825	19394.797	12.05159
85°	111693.506	69.40438	9735.561	6.04951
90°	111702.245	69.40988	0.000	0.000