Call-Control in Ringnetzwerken

Seminar "Algorithmen und Datenstrukturen" Universität Augsburg

Michael Markl

Gliederung

- 1. Problemdefinition
- 2. Call-Control in Ketten
 - 2.1 Das gierige Verfahren
 - 2.2 Identische Kapazitäten
 - 2.3 Willkürliche Kapazitäten
- 3. Call-Control in Ringen

Problemdefinition

Problem in allgemeinen Graphen

Definition (Netzwerk)

Sei (V,E) ein ungerichteter Graph mit Knoten V und Kanten E, und $c:E\to\mathbb{N}$ eine Kapazitätsfunktion. Das Tupel (V,E,c) heißt (ungerichtetes) Netzwerk.

Problem in allgemeinen Graphen

Definition (Netzwerk)

Sei (V,E) ein ungerichteter Graph mit Knoten V und Kanten E, und $c:E\to\mathbb{N}$ eine Kapazitätsfunktion. Das Tupel (V,E,c) heißt (ungerichtetes) Netzwerk.

Definition (Call-Control)

Seien (V, E, c) ein ungerichtetes Netzwerk und P eine (Multi-)Menge von $m \in \mathbb{N}$ Pfaden in (V, E, c).

 $Q\subseteq P$ heißt *zulässig*, falls für alle $e\in E$ die Anzahl aller Pfade in Q, die e enthalten, höchstens c(e) ist.

 ${\it Call-Control}$ besteht darin, eine zulässige Menge Q maximaler Mächtigkeit zu finden.

Definition (Kette)

Eine Kette (V, E) ist ein Weg mit den Kanten $E = \{(v_0, v_1), \dots, (v_{n-2}, v_{n-1})\}$ mit $v_i \neq v_j$ für $i \neq j$.

Definition (Kette)

Eine Kette (V, E) ist ein Weg mit den Kanten $E = \{(v_0, v_1), \dots, (v_{n-2}, v_{n-1})\}$ mit $v_i \neq v_j$ für $i \neq j$.

Definition (Kette)

Eine Kette (V, E) ist ein Weg mit den Kanten $E = \{(v_0, v_1), \dots, (v_{n-2}, v_{n-1})\}$ mit $v_i \neq v_j$ für $i \neq j$.

Call-Control in Ringen

Definition (Ring)

Ein $Ring\ (V,E)$ ist ein Weg mit den Kanten $E=\{(v_0,v_1),\ldots,(v_{n-1},v_n)\}$ mit $v_0=v_n$ und $v_i\neq v_j$ für alle anderen $i\neq j$.

Call-Control in Ringen

Definition (Ring)

Ein Ring (V, E) ist ein Weg mit den Kanten $E = \{(v_0, v_1), \ldots, (v_{n-1}, v_n)\}$ mit $v_0 = v_n$ und $v_i \neq v_j$ für alle anderen $i \neq j$.

Call-Control in Ringen

Definition (Ring)

Ein Ring (V,E) ist ein Weg mit den Kanten $E=\{(v_0,v_1),\ldots,(v_{n-1},v_n)\}$ mit $v_0=v_n$ und $v_i\neq v_j$ für alle anderen $i\neq j$.

Gierige Ordnung

Definition (Gierige Ordnung)

Auf einer Menge P von Pfaden in einer Kette nennen wir eine Totalordnung \leq_G mit zugehöriger strenger Totalordnung $<_G$ gierig, falls $\forall p,q \in P \colon t_p < t_q \Rightarrow p <_G q$.

Gierige Ordnung

Definition (Gierige Ordnung)

Auf einer Menge P von Pfaden in einer Kette nennen wir eine Totalordnung \leq_G mit zugehöriger strenger Totalordnung $<_G$ gierig, falls $\forall p,q \in P \colon t_p < t_q \Rightarrow p <_G q$.

Eine gierige Ordnung \leq_G ist bereits gegeben.

Menge der akzeptierten Pfade ist optimale Lösung.

- Menge der akzeptierten Pfade ist optimale Lösung.
- Einfache Implementierung in $\mathcal{O}(m \cdot n)$ Zeit möglich (m Anzahl Pfade, n Anzahl Knoten).

• Seien $A = \{a_1, \dots, a_k\}$ und $B = \{b_1, \dots, b_k\}$ Teilmengen der Pfade P mit $a_1 \leq_G \cdots \leq_G a_k$ und $b_1 \leq_G \cdots \leq_G b_k$. Wir schreiben $A \leq_G B$, falls $\forall i \leq k : a_i \leq_G b_i$.

- Seien $A = \{a_1, \dots, a_k\}$ und $B = \{b_1, \dots, b_k\}$ Teilmengen der Pfade P mit $a_1 \leq_G \cdots \leq_G a_k$ und $b_1 \leq_G \cdots \leq_G b_k$. Wir schreiben $A \leq_G B$, falls $\forall i \leq k : a_i \leq_G b_i$.
- Bsp.: $\{p_1, p_3, p_6\} \leq_G \{p_1, p_4, p_6\}.$

- Seien $A = \{a_1, \ldots, a_k\}$ und $B = \{b_1, \ldots, b_k\}$ Teilmengen der Pfade P mit $a_1 \leq_G \cdots \leq_G a_k$ und $b_1 \leq_G \cdots \leq_G b_k$. Wir schreiben $A \leq_G B$, falls $\forall i \leq k \colon a_i \leq_G b_i$.
- Bsp.: $\{p_1, p_3, p_6\} \leq_G \{p_1, p_4, p_6\}.$
- Eine zulässige Menge A heißt minimal, falls $A \leq_G B$ für alle zulässigen Mengen B mit |A| = |B|.

Lemma (Optimalität des gierigen Verfahrens)

Existiert eine zulässige Teilmenge Q_0 mit $k \in \mathbb{N}$ Pfaden, so ist die Menge G der in gieriger Ordnung \leq_G kleinsten k Pfade, die das gierige Verfahren berechnet, eine minimale Menge.

Lemma (Optimalität des gierigen Verfahrens)

Existiert eine zulässige Teilmenge Q_0 mit $k \in \mathbb{N}$ Pfaden, so ist die Menge G der in gieriger Ordnung \leq_G kleinsten k Pfade, die das gierige Verfahren berechnet, eine minimale Menge.

Beweisskizze:

• Transformiere Q_0 in k Schritten in G und erhalte: Q_i zulässig, $Q_{i+1} \leq_G Q_i$ und Q_i stimmt auf ersten i Pfaden mit G überein.

Lemma (Optimalität des gierigen Verfahrens)

Existiert eine zulässige Teilmenge Q_0 mit $k \in \mathbb{N}$ Pfaden, so ist die Menge G der in gieriger Ordnung \leq_G kleinsten k Pfade, die das gierige Verfahren berechnet, eine minimale Menge.

- Transformiere Q_0 in k Schritten in G und erhalte: Q_i zulässig, $Q_{i+1} \leq_G Q_i$ und Q_i stimmt auf ersten i Pfaden mit G überein.
- I.S.: p sei i-ter Pfad von G

Lemma (Optimalität des gierigen Verfahrens)

Existiert eine zulässige Teilmenge Q_0 mit $k \in \mathbb{N}$ Pfaden, so ist die Menge G der in gieriger Ordnung \leq_G kleinsten k Pfade, die das gierige Verfahren berechnet, eine minimale Menge.

- Transformiere Q₀ in k Schritten in G und erhalte: Q_i zulässig, $Q_{i+1} \leq_G Q_i$ und Q_i stimmt auf ersten i Pfaden mit G "uberein".
- I.S.: p sei i-ter Pfad von G mit $p \notin Q_{i-1}$.

Lemma (Optimalität des gierigen Verfahrens)

Existiert eine zulässige Teilmenge Q_0 mit $k \in \mathbb{N}$ Pfaden, so ist die Menge G der in gieriger Ordnung \leq_G kleinsten k Pfade, die das gierige Verfahren berechnet, eine minimale Menge.

- Transformiere Q₀ in k Schritten in G und erhalte: Q_i zulässig, $Q_{i+1} \leq_G Q_i$ und Q_i stimmt auf ersten i Pfaden mit G "uberein".
- I.S.: p sei i-ter Pfad von G mit $p \notin Q_{i-1}$. q sei Pfad aus Q_{i-1} mit $q >_G p$ und kleinstem Startknoten.

Lemma (Optimalität des gierigen Verfahrens)

Existiert eine zulässige Teilmenge Q_0 mit $k \in \mathbb{N}$ Pfaden, so ist die Menge G der in gieriger Ordnung \leq_G kleinsten k Pfade, die das gierige Verfahren berechnet, eine minimale Menge.

- Transformiere Q₀ in k Schritten in G und erhalte: Q_i zulässig, $Q_{i+1} \leq_G Q_i$ und Q_i stimmt auf ersten i Pfaden mit G "uberein".
- I.S.: p sei i-ter Pfad von G mit $p \notin Q_{i-1}$. q sei Pfad aus Q_{i-1} mit $q >_G p$ und kleinstem Startknoten. Erhalte Q_i durch Ersetzen von q durch p in Q_{i-1} .

Lemma (Optimalität des gierigen Verfahrens)

Existiert eine zulässige Teilmenge Q_0 mit $k \in \mathbb{N}$ Pfaden, so ist die Menge G der in gieriger Ordnung \leq_G kleinsten k Pfade, die das gierige Verfahren berechnet, eine minimale Menge.

- Transformiere Q₀ in k Schritten in G und erhalte: Q_i zulässig, $Q_{i+1} \leq_G Q_i$ und Q_i stimmt auf ersten i Pfaden mit G "uberein".
- I.S.: p sei i-ter Pfad von G mit $p \notin Q_{i-1}$. q sei Pfad aus Q_{i-1} mit $q >_G p$ und kleinstem Startknoten. Erhalte Q_i durch Ersetzen von q durch p in Q_{i-1} . Dann $Q_i \leq_G Q_{i-1}$.

Lemma (Optimalität des gierigen Verfahrens)

Existiert eine zulässige Teilmenge Q_0 mit $k \in \mathbb{N}$ Pfaden, so ist die Menge G der in gieriger Ordnung \leq_G kleinsten k Pfade, die das gierige Verfahren berechnet, eine minimale Menge.

- Transformiere Q₀ in k Schritten in G und erhalte: Q_i zulässig, $Q_{i+1} \leq_G Q_i$ und Q_i stimmt auf ersten i Pfaden mit G "uberein".
- I.S.: p sei i-ter Pfad von G mit $p \notin Q_{i-1}$. q sei Pfad aus Q_{i-1} mit $q >_G p$ und kleinstem Startknoten. Erhalte Q_i durch Ersetzen von q durch p in Q_{i-1} . Dann $Q_i \leq_G Q_{i-1}$. Mit I.V.: Q_i zulässig, da keine Kantenkapazität verletzt wird.

Algorithmus für identische Kapazitäten

• Feste Kapazität $C \in \mathbb{N}$ für alle Kanten.

Algorithmus für identische Kapazitäten

- Feste Kapazität $C \in \mathbb{N}$ für alle Kanten.
- Beispiel mit C=2:

Algorithmus für identische Kapazitäten

- Feste Kapazität $C \in \mathbb{N}$ für alle Kanten.
- Beispiel mit C=2:

Algorithmus für identische Kapazitäten

- Feste Kapazität $C \in \mathbb{N}$ für alle Kanten.
- Beispiel mit C=2:

ullet Call-Control-Problem entspricht maximaler C-Färbung.

ullet Füge virtuelle Pfade v_1,\ldots,v_C , je unterschiedlich gefärbt in einer der C Farben, vor allen Pfaden ein.

- Füge virtuelle Pfade v_1, \ldots, v_C , je unterschiedlich gefärbt in einer der C Farben, vor allen Pfaden ein.
- Speichere zu jeder Farbe c den aktuellen Anführer von c (den in \leq_G größten c-gefärbten Pfad). Zu Beginn: Der zugehörige virtuelle Pfad.

- Füge virtuelle Pfade v_1, \ldots, v_C , je unterschiedlich gefärbt in einer der C Farben, vor allen Pfaden ein.
- Speichere zu jeder Farbe c den aktuellen Anführer von c (den in \leq_G größten c-gefärbten Pfad). Zu Beginn: Der zugehörige virtuelle Pfad.

• Suche bei Bearbeitung von Pfad p den optimalen Anführer von p, d.h. den aktuell größten Anführer, der sich nicht mit p überschneidet.

- Füge virtuelle Pfade v_1, \ldots, v_C , je unterschiedlich gefärbt in einer der C Farben, vor allen Pfaden ein.
- Speichere zu jeder Farbe c den aktuellen Anführer von c (den in \leq_G größten c-gefärbten Pfad). Zu Beginn: Der zugehörige virtuelle Pfad.

- Suche bei Bearbeitung von Pfad p den optimalen Anführer von p, d.h. den aktuell größten Anführer, der sich nicht mit p überschneidet.
- Ist das möglich in gesamt-linearer Zeit?

• Füge weiteren Pfad f, den fiktiven Anführer, als ersten Pfad ein.

- Füge weiteren Pfad f, den fiktiven Anführer, als ersten Pfad ein.
- Ermittle für jeden Pfad p seinen bevorzugten Anführer, d.h. den in \leq_G größten Pfad q mit $t_q \leq s_p$.

- Füge weiteren Pfad f, den fiktiven Anführer, als ersten Pfad ein.
- Ermittle für jeden Pfad p seinen bevorzugten Anführer, d.h. den in \leq_G größten Pfad q mit $t_q \leq s_p$.

- Füge weiteren Pfad f, den fiktiven Anführer, als ersten Pfad ein.
- Ermittle für jeden Pfad p seinen bevorzugten Anführer, d.h. den in \leq_G größten Pfad q mit $t_q \leq s_p$.

• Erstelle Union-Find-Instanz mit jedem Pfad in eigener Gruppe.

• Invarianten:

- Invarianten:
 - Repräsent einer Gruppe ist in \leq_G kleinster Pfad der Gruppe.

- Invarianten:
 - Repräsent einer Gruppe ist in \leq_G kleinster Pfad der Gruppe.
 - Gruppen enthalten nur in \leq_G aufeinanderfolgende Pfade

- Invarianten:
 - Repräsent einer Gruppe ist in \leq_G kleinster Pfad der Gruppe.
 - Gruppen enthalten nur in \leq_G aufeinanderfolgende Pfade
 - Nicht verarbeitete Pfade sind in Einzelgruppen; Repräsentant einer verarbeiteten Gruppe ist Anführer einer Farbe oder der fiktive Anführer.

- Invarianten:
 - Repräsent einer Gruppe ist in \leq_G kleinster Pfad der Gruppe.
 - Gruppen enthalten nur in \leq_G aufeinanderfolgende Pfade
 - Nicht verarbeitete Pfade sind in Einzelgruppen; Repräsentant einer verarbeiteten Gruppe ist Anführer einer Farbe oder der fiktive Anführer.
- Bei Bearbeitung von Pfad p mit bevorzugtem Anführer q:

- Invarianten:
 - Repräsent einer Gruppe ist in \leq_G kleinster Pfad der Gruppe.
 - Gruppen enthalten nur in \leq_G aufeinanderfolgende Pfade
 - Nicht verarbeitete Pfade sind in Einzelgruppen; Repräsentant einer verarbeiteten Gruppe ist Anführer einer Farbe oder der fiktive Anführer.
- Bei Bearbeitung von Pfad p mit bevorzugtem Anführer q:
 - find(q) = f: Verwerfe p und vereinige die Gruppe von p mit der des Vorgängers von p.

• Invarianten:

- Repräsent einer Gruppe ist in \leq_G kleinster Pfad der Gruppe.
- Gruppen enthalten nur in \leq_G aufeinanderfolgende Pfade
- Nicht verarbeitete Pfade sind in Einzelgruppen; Repräsentant einer verarbeiteten Gruppe ist Anführer einer Farbe oder der fiktive Anführer.
- Bei Bearbeitung von Pfad p mit bevorzugtem Anführer q:
 - find(q) = f: Verwerfe p und vereinige die Gruppe von p mit der des Vorgängers von p.
 - find(q) ist c-gefärbter Anführer: Akzeptiere p, färbe p in c und vereinige die Gruppe von find(q) mit der des Vorgängers von find(q).

initial: $v_1 v_2 p_1 p_2 p_3 p_4 p_5 p_6$

 $\mathsf{nach}\ p_1\colon \ \ \ | \ \ v_1 \ \ v_2 \ \ | \ \ p_1 \ \ | \ p_2 \ \ | \ p_3 \ \ | \ p_4 \ \ | \ p_5 \ \ | \ p_6$

 $\mathsf{nach}\ p_3 \colon \ \ ^{\nwarrow}\!\! f \quad {}^{\bullet}\!\! v_1 \quad {}^{\bullet}\!\! v_2 \quad {}^{\bullet}\!\! p_1 \ \Big[\ ^{\bigstar}\!\! p_2 \ \Big] \ \Big[\ p_4 \ \Big] \ \Big[\ p_5 \ \Big] \ \Big[\ p_6 \ \Big]$

$C ext{-}\mathsf{F\"{a}rbung} - \mathsf{Union} ext{-}\mathsf{Find} ext{-}\mathsf{Algorithmus}$ am Beispiel

 $\mathsf{nach}\ p_4 \colon \left[{}^{\!\!\!\!\!\!\!^{\,\mathrm{t}}} \! f \quad {}^{\!\!\!\!\!^{\,\mathrm{t}}} \! f \quad {}^{\!\!\!\!^{\,\mathrm{t}}} \! v_1 \quad {}^{\!\!\!\!^{\,\mathrm{t}}} \! v_2 \quad p_1 \right] \left[{}^{\!\!\!\!\!\!\!^{\,\mathrm{t}}} \! p_2 \right] \left[{}^{\!\!\!\!\!^{\,\mathrm{t}}} \! p_3 \quad {}^{\!\!\!\!^{\,\mathrm{t}}} \! p_4 \right] \left[p_5 \right] \left[p_6 \right]$

$C ext{-}\mathsf{F\"{a}rbung} - \mathsf{Union} ext{-}\mathsf{Find} ext{-}\mathsf{Algorithmus}$ am Beispiel

nach p_5 : $[f] v_1 v_2 p_1 [f] p_2 [f_3 p_4 p_5] [f_6]$

$C ext{-}\mathsf{F\"{a}rbung} - \mathsf{Union} ext{-}\mathsf{Find} ext{-}\mathsf{Algorithmus}$ am Beispiel

 $\mathsf{nach}\ p_6 \colon \ \ {}^{\overleftarrow{x}} \! f \quad v_1 \quad v_2 \quad p_1 \ \ {}^{\overleftarrow{x}} \! p_2 \quad p_3 \quad {}^{\circ} \! p_4 \quad {}^{\circ} \! p_5 \ \ {}^{\overleftarrow{x}} \! p_6$

ullet Wir benötigen m find- und union-Aufrufe.

- Wir benötigen m find- und union-Aufrufe.
- Alle Vereinigungen geschehen entlang einer Kette.

- Wir benötigen m find- und union-Aufrufe.
- Alle Vereinigungen geschehen entlang einer Kette.
- Mit Static-Tree-Set-Union benötigen wir $\mathcal{O}(m)$ Zeit dafür (Gabow und Tarjan in [3]).

- Wir benötigen m find- und union-Aufrufe.
- Alle Vereinigungen geschehen entlang einer Kette.
- Mit Static-Tree-Set-Union benötigen wir $\mathcal{O}(m)$ Zeit dafür (Gabow und Tarjan in [3]).
- Das Call-Control-Problem mit identischen Kapazitäten ist in $\mathcal{O}(m)$ Zeit optimal lösbar, wenn die Menge der Pfade bereits in gieriger Ordnung sortiert ist.

- Wir benötigen m find- und union-Aufrufe.
- Alle Vereinigungen geschehen entlang einer Kette.
- Mit Static-Tree-Set-Union benötigen wir $\mathcal{O}(m)$ Zeit dafür (Gabow und Tarjan in [3]).
- Das Call-Control-Problem mit identischen Kapazitäten ist in $\mathcal{O}(m)$ Zeit optimal lösbar, wenn die Menge der Pfade bereits in gieriger Ordnung sortiert ist.
- Genauere Analyse des Verfahrens durch Carlisle und Lloyd in [2].

Anpassen für willkürliche Kapazitäten

Anpassen für willkürliche Kapazitäten

• Betrachten willkürliche Kapazitäten $c: E \to \mathbb{N}$.

Anpassen für willkürliche Kapazitäten

- Betrachten willkürliche Kapazitäten $c: E \to \mathbb{N}$.
- Anpassung der Idee für identische Kapazitäten:

- Betrachten willkürliche Kapazitäten $c: E \to \mathbb{N}$.
- Anpassung der Idee für identische Kapazitäten:
 - Setze $C := \max_{e \in E} c(e)$ als neue Kapazität jeder Kante.

- Betrachten willkürliche Kapazitäten $c: E \to \mathbb{N}$.
- Anpassung der Idee für identische Kapazitäten:
 - Setze $C := \max_{e \in E} c(e)$ als neue Kapazität jeder Kante.
 - Füge an Kanten mit überflüssigen Kapazitäten Platzhalterpfade ein:

- Betrachten willkürliche Kapazitäten $c: E \to \mathbb{N}$.
- Anpassung der Idee f
 ür identische Kapazit
 äten:
 - Setze $C := \max_{e \in E} c(e)$ als neue Kapazität jeder Kante.
 - Füge an Kanten mit überflüssigen Kapazitäten Platzhalterpfade ein:

- Sorge dafür, dass alle Platzhalterpfade akzeptiert werden.

- Betrachten willkürliche Kapazitäten $c: E \to \mathbb{N}$.
- Anpassung der Idee f
 ür identische Kapazit
 äten:
 - Setze $C := \max_{e \in E} c(e)$ als neue Kapazität jeder Kante.
 - Füge an Kanten mit überflüssigen Kapazitäten Platzhalterpfade ein:

- Sorge dafür, dass alle Platzhalterpfade akzeptiert werden.
- Probleme: Anzahl Platzhalter? Wie akzeptieren wir alle Platzhalter?

 Für bestimmte Kettennetzwerke kann es passieren, dass wir $\Omega(n\cdot m)$ Platzhalter einfügen:

• Für bestimmte Kettennetzwerke kann es passieren, dass wir $\Omega(n\cdot m)$ Platzhalter einfügen:

• Flache die Kapazitäten ab mit

$$c'(e_i) = \begin{cases} \min(c(e_0), n_0) & \text{für } i = 0\\ \min(c(e_i), c'(e_{i-1}) + n_i) & \text{für } i \ge 1 \end{cases}$$

wobei n_i die Anzahl der Pfade in P mit Anfangsknoten i ist.

• Für bestimmte Kettennetzwerke kann es passieren, dass wir $\Omega(n\cdot m)$ Platzhalter einfügen:

• Flache die Kapazitäten ab mit

$$c'(e_i) = \begin{cases} \min(c(e_0), n_0) & \text{für } i = 0\\ \min(c(e_i), c'(e_{i-1}) + n_i) & \text{für } i \ge 1 \end{cases}$$

wobei n_i die Anzahl der Pfade in P mit Anfangsknoten i ist.

• Damit werden nur $\mathcal{O}(m)$ Platzhalter generiert.

• Für bestimmte Kettennetzwerke kann es passieren, dass wir $\Omega(n\cdot m)$ Platzhalter einfügen:

• Flache die Kapazitäten ab mit

$$c'(e_i) = \begin{cases} \min(c(e_0), n_0) & \text{für } i = 0\\ \min(c(e_i), c'(e_{i-1}) + n_i) & \text{für } i \ge 1 \end{cases}$$

wobei n_i die Anzahl der Pfade in P mit Anfangsknoten i ist.

- Damit werden nur $\mathcal{O}(m)$ Platzhalter generiert.
- Anpassen der Kapazitäten und Auffüllen mit Platzhaltern in $\mathcal{O}(n+m)$ Zeit möglich.

Ähnliches Vorgehen wie zuvor, versuche nun aber Platzhalterpfade möglichst früh zu bearbeiten:

Ahnliches Vorgehen wie zuvor, versuche nun aber Platzhalterpfade möglichst früh zu bearbeiten:

• Erstelle eine Liste L der Endknoten aller Pfade (zu jedem Eintrag der Liste speichere eine Referenz auf zugehörigen Pfad):

Ahnliches Vorgehen wie zuvor, versuche nun aber Platzhalterpfade möglichst früh zu bearbeiten:

- Erstelle eine Liste L der Endknoten aller Pfade (zu jedem Eintrag der Liste speichere eine Referenz auf zugehörigen Pfad):
 - Nach Endknoten aufsteigend sortiert
 - Bei gleichem Endknoten sollen Anfangsknoten vor Zielknoten geordnet werden

Ahnliches Vorgehen wie zuvor, versuche nun aber Platzhalterpfade möglichst früh zu bearbeiten:

- Erstelle eine Liste L der Endknoten aller Pfade (zu jedem Eintrag der Liste speichere eine Referenz auf zugehörigen Pfad):
 - Nach Endknoten aufsteigend sortiert
 - Bei gleichem Endknoten sollen Anfangsknoten vor Zielknoten geordnet werden
- Erhalte \leq_G durch Ersetzen von Zielknoten der Liste durch die zug. Pfade.

Ahnliches Vorgehen wie zuvor, versuche nun aber Platzhalterpfade möglichst früh zu bearbeiten:

- Erstelle eine Liste L der Endknoten aller Pfade (zu jedem Eintrag der Liste speichere eine Referenz auf zugehörigen Pfad):
 - Nach Endknoten aufsteigend sortiert
 - Bei gleichem Endknoten sollen Anfangsknoten vor Zielknoten geordnet werden
- Erhalte \leq_C durch Ersetzen von Zielknoten der Liste durch die zug. Pfade.
- Füge wieder C virtuelle Pfade sowie den fiktiven Anführer vor den anderen Pfaden ein und ordne bevorzugte Anführer zu.

Ahnliches Vorgehen wie zuvor, versuche nun aber Platzhalterpfade möglichst früh zu bearbeiten:

- Erstelle eine Liste L der Endknoten aller Pfade (zu jedem Eintrag der Liste speichere eine Referenz auf zugehörigen Pfad):
 - Nach Endknoten aufsteigend sortiert
 - Bei gleichem Endknoten sollen Anfangsknoten vor Zielknoten geordnet werden
- Erhalte \leq_C durch Ersetzen von Zielknoten der Liste durch die zug. Pfade.
- Füge wieder C virtuelle Pfade sowie den fiktiven Anführer vor den anderen Pfaden ein und ordne bevorzugte Anführer zu.
- Statt die Pfade in der Reihenfolge von \leq_G zu bearbeiten wird nun die Liste L durchlaufen und
 - Platzhalterpfade bei Antreffen ihres Anfangsknotens
 - Originalpfade bei Antreffen ihres Zielknotens

wie im vorherigen Algorithmus verarbeitet.

Lemma (Korrektheit des Algorithmus)

Der beschriebene Algorithmus U ist eine korrekte Implementierung des gierigen Verfahrens G für willkürliche Kapazitäten.

Beweisskizze:

Lemma (Korrektheit des Algorithmus)

Der beschriebene Algorithmus U ist eine korrekte Implementierung des gierigen Verfahrens G für willkürliche Kapazitäten.

Beweisskizze:

• *U* berechnet wieder *C*-Färbung der Pfade.

Lemma (Korrektheit des Algorithmus)

Der beschriebene Algorithmus U ist eine korrekte Implementierung des gierigen Verfahrens G für willkürliche Kapazitäten.

Beweisskizze:

- *U* berechnet wieder *C*-Färbung der Pfade.
- U akzeptiert alle Platzhalterpfade (U berechnet insb. eine zulässige Menge).

Lemma (Korrektheit des Algorithmus)

Der beschriebene Algorithmus U ist eine korrekte Implementierung des gierigen Verfahrens G für willkürliche Kapazitäten.

Beweisskizze:

- *U* berechnet wieder *C*-Färbung der Pfade.
- U akzeptiert alle Platzhalterpfade (U berechnet insb. eine zulässige Menge).
- ullet U akzeptiert alle Pfade, die das gierige Verfahren akzeptiert.

Was haben wir erreicht?

Was haben wir erreicht?

 Das gierige Verfahren löst das Call-Control-Problem für willkürliche Kapazitäten optimal.

Was haben wir erreicht?

- Das gierige Verfahren löst das Call-Control-Problem für willkürliche Kapazitäten optimal.
- Mit einer speziellen Union-Find-Struktur finden wir eine Implementierung für identische Kapazitäten mit Laufzeit $\mathcal{O}(m)$.

Was haben wir erreicht?

- Das gierige Verfahren löst das Call-Control-Problem für willkürliche Kapazitäten optimal.
- Mit einer speziellen Union-Find-Struktur finden wir eine Implementierung für identische Kapazitäten mit Laufzeit $\mathcal{O}(m)$.
- Wir verwenden dann eine angepasste Version mit Platzhalterpfaden, um willkürliche Kapazitäten zu erlauben, und erhalten:

Was haben wir erreicht?

- Das gierige Verfahren löst das Call-Control-Problem für willkürliche Kapazitäten optimal.
- Mit einer speziellen Union-Find-Struktur finden wir eine Implementierung für identische Kapazitäten mit Laufzeit $\mathcal{O}(m)$.
- Wir verwenden dann eine angepasste Version mit Platzhalterpfaden, um willkürliche Kapazitäten zu erlauben, und erhalten:

Theorem

Das gierige Verfahren berechnet eine optimale Lösung für Call-Control in Ketten mit willkürlichen Kapazitäten und kann in einer Laufzeit von $\mathcal{O}(n+m)$ implementiert werden.

 Teile Pfade P auf in die Pfade P₁, die 0 nicht als inneren Knoten haben, und die Pfade P₂, die 0 als inneren Knoten haben.

- Teile Pfade P auf in die Pfade P₁, die 0 nicht als inneren Knoten haben, und die Pfade P₂, die 0 als inneren Knoten haben.
- Hänge zwei Kopien der Kanten e_0, \ldots, e_n aneinander und erhalte mit zugehörigen Knoten $0, \ldots, 2n-1$ eine Kette.

- Teile Pfade P auf in die Pfade P₁, die 0 nicht als inneren Knoten haben, und die Pfade P₂, die 0 als inneren Knoten haben.
- Hänge zwei Kopien der Kanten e_0, \ldots, e_n aneinander und erhalte mit zugehörigen Knoten $0, \ldots, 2n-1$ eine Kette.
- Wir schreiben statt $n, \ldots, 2n-1$: $0', \ldots, (n-1)'$.

- Teile Pfade P auf in die Pfade P₁, die 0 nicht als inneren Knoten haben, und die Pfade P₂, die 0 als inneren Knoten haben.
- Hänge zwei Kopien der Kanten e_0, \ldots, e_n aneinander und erhalte mit zugehörigen Knoten $0, \ldots, 2n-1$ eine Kette.
- Wir schreiben statt $n, \ldots, 2n-1$: $0', \ldots, (n-1)'$.

Belastung und Profil

Belastung und Profil

Mit $Q \subseteq P$ ist die Belastung $L_1(Q,e_i)$ die Anzahl Pfade in Q, die die erste Kopie der Kante e_i enthalten. Analog dazu: $L_2(Q,e_i)$.

Belastung und Profil

Mit $Q \subseteq P$ ist die Belastung $L_1(Q,e_i)$ die Anzahl Pfade in Q, die die erste Kopie der Kante e_i enthalten. Analog dazu: $L_2(Q,e_i)$.

Definition (Profil)

Mit $Q\subseteq P$ heißt die monoton fallende Folge $\pi_Q:=(L_2(Q,e_0),\ldots,L_2(Q,e_{n-1}))$ das Profil von Q. Außerdem $\pi_Q(e_i):=L_2(Q,e_i)$ und für zwei Profile π,π' schreiben wir $\pi\leq\pi'$, falls $\pi(e_i)\leq\pi'(e_i)$ für alle Kanten e_i .

Kettenzulässigkeit

Kettenzulässigkeit

Definition (Kettenzulässig)

Eine Menge $Q\subseteq P$ heißt kettenzulässig, falls $L_1(Q,e)\leq c(e)$ für alle Kanten e. Gilt weiterhin $L_1(Q,e)+\pi(e)\leq c(e)$, so heißt Q kettenzulässig zum Startprofil π .

Kettenzulässigkeit

Definition (Kettenzulässig)

Eine Menge $Q\subseteq P$ heißt kettenzulässig, falls $L_1(Q,e)\leq c(e)$ für alle Kanten e. Gilt weiterhin $L_1(Q,e)+\pi(e)\leq c(e)$, so heißt Q kettenzulässig zum Startprofil π .

Insbesondere:

Q zulässig im Ring $\iff Q$ kettenzulässig zum Startprofil π_Q .

• Der Algorithmus ist nun wie folgt aufgebaut:

- Der Algorithmus ist nun wie folgt aufgebaut:
- Suche mit binärer Suche nach größtem $k \in \{0,\dots,m\}$, für das wir eine (im Ring) zulässige Menge Q mit |Q|=k finden können.

- Der Algorithmus ist nun wie folgt aufgebaut:
- Suche mit binärer Suche nach größtem $k \in \{0,\dots,m\}$, für das wir eine (im Ring) zulässige Menge Q mit |Q|=k finden können.
- Das zugehörige ${\cal Q}$ ist dann optimale Lösung des Call-Control-Problems.

• Starten mit $\pi_0 = (0, \dots, 0)$ und i = 1.

- Starten mit $\pi_0 = (0, ..., 0)$ und i = 1.
- In der *i*-ten Runde:

- Starten mit $\pi_0 = (0, ..., 0)$ und i = 1.
- In der *i*-ten Runde:
 - Initialisiere Kapazitäten beider Kopien jeder Kante e mit c(e), in der ersten Kopie um $\pi_{i-1}(e)$ reduziert.

- Starten mit $\pi_0 = (0, ..., 0)$ und i = 1.
- In der *i*-ten Runde:
 - Initialisiere Kapazitäten beider Kopien jeder Kante e mit c(e), in der ersten Kopie um $\pi_{i-1}(e)$ reduziert.
 - Wende darauf gieriges Verfahren an und erhalte $G \subseteq P$.

- Starten mit $\pi_0 = (0, ..., 0)$ und i = 1.
- In der *i*-ten Runde:
 - Initialisiere Kapazitäten beider Kopien jeder Kante e mit c(e), in der ersten Kopie um $\pi_{i-1}(e)$ reduziert.
 - Wende darauf gieriges Verfahren an und erhalte $G \subseteq P$.
 - Ist |G| < k, gibt die Prozedur zurück, dass keine k-elementige zulässige Menge existiert.

- Starten mit $\pi_0 = (0, ..., 0)$ und i = 1.
- In der *i*-ten Runde:
 - Initialisiere Kapazitäten beider Kopien jeder Kante e mit c(e), in der ersten Kopie um $\pi_{i-1}(e)$ reduziert.
 - Wende darauf gieriges Verfahren an und erhalte $G \subseteq P$.
 - Ist |G| < k, gibt die Prozedur zurück, dass keine k-elementige zulässige Menge existiert.
 - Sonst sei G_i die Menge der in \leq_G kleinsten k Pfade von G und $\pi_i := \pi_{G_i}$.

- Starten mit $\pi_0 = (0, ..., 0)$ und i = 1.
- In der *i*-ten Runde:
 - Initialisiere Kapazitäten beider Kopien jeder Kante e mit c(e), in der ersten Kopie um $\pi_{i-1}(e)$ reduziert.
 - Wende darauf gieriges Verfahren an und erhalte $G \subseteq P$.
 - Ist |G| < k, gibt die Prozedur zurück, dass keine k-elementige zulässige Menge existiert.
 - Sonst sei G_i die Menge der in \leq_G kleinsten k Pfade von G und $\pi_i := \pi_{G_i}$.
 - Ist $\pi_i = \pi_{i-1}$, gibt die Prozedur G_i als zulässige Menge zurück.

- Starten mit $\pi_0 = (0, ..., 0)$ und i = 1.
- In der *i*-ten Runde:
 - Initialisiere Kapazitäten beider Kopien jeder Kante e mit c(e), in der ersten Kopie um $\pi_{i-1}(e)$ reduziert.
 - Wende darauf gieriges Verfahren an und erhalte $G \subseteq P$.
 - Ist |G| < k, gibt die Prozedur zurück, dass keine k-elementige zulässige Menge existiert.
 - Sonst sei G_i die Menge der in \leq_G kleinsten k Pfade von G und $\pi_i := \pi_{G_i}.$
 - Ist $\pi_i = \pi_{i-1}$, gibt die Prozedur G_i als zulässige Menge zurück.
 - Sonst gehe in (i + 1)-te Runde.

- Starten mit $\pi_0 = (0, ..., 0)$ und i = 1.
- In der i-ten Runde:
 - Initialisiere Kapazitäten beider Kopien jeder Kante e mit c(e), in der ersten Kopie um $\pi_{i-1}(e)$ reduziert.
 - Wende darauf gieriges Verfahren an und erhalte $G \subseteq P$.
 - Ist |G| < k, gibt die Prozedur zurück, dass keine k-elementige zulässige Menge existiert.
 - Sonst sei G_i die Menge der in \leq_G kleinsten k Pfade von G und $\pi_i := \pi_{G_i}.$
 - Ist $\pi_i = \pi_{i-1}$, gibt die Prozedur G_i als zulässige Menge zurück.
 - Sonst gehe in (i+1)-te Runde.

Beispiel für k = 5 und c(e) = 2 für alle $e \in E$:

- Starten mit $\pi_0 = (0, ..., 0)$ und i = 1.
- In der i-ten Runde:
 - Initialisiere Kapazitäten beider Kopien jeder Kante e mit c(e), in der ersten Kopie um $\pi_{i-1}(e)$ reduziert.
 - Wende darauf gieriges Verfahren an und erhalte $G \subseteq P$.
 - Ist |G| < k, gibt die Prozedur zurück, dass keine k-elementige zulässige Menge existiert.
 - Sonst sei G_i die Menge der in \leq_G kleinsten k Pfade von G und $\pi_i := \pi_{G_i}.$
 - Ist $\pi_i = \pi_{i-1}$, gibt die Prozedur G_i als zulässige Menge zurück.
 - Sonst gehe in (i+1)-te Runde.

Beispiel für k=5 und c(e)=2 für alle $e \in E$:

- Starten mit $\pi_0 = (0, ..., 0)$ und i = 1.
- In der i-ten Runde:
 - Initialisiere Kapazitäten beider Kopien jeder Kante e mit c(e), in der ersten Kopie um $\pi_{i-1}(e)$ reduziert.
 - Wende darauf gieriges Verfahren an und erhalte $G \subseteq P$.
 - Ist |G| < k, gibt die Prozedur zurück, dass keine k-elementige zulässige Menge existiert.
 - Sonst sei G_i die Menge der in \leq_G kleinsten k Pfade von G und $\pi_i := \pi_{G_i}.$
 - Ist $\pi_i = \pi_{i-1}$, gibt die Prozedur G_i als zulässige Menge zurück.
 - Sonst gehe in (i+1)-te Runde.

Beispiel für k = 5 und c(e) = 2 für alle $e \in E$:

- Starten mit $\pi_0 = (0, ..., 0)$ und i = 1.
- In der i-ten Runde:
 - Initialisiere Kapazitäten beider Kopien jeder Kante e mit c(e), in der ersten Kopie um $\pi_{i-1}(e)$ reduziert.
 - Wende darauf gieriges Verfahren an und erhalte $G \subseteq P$.
 - Ist |G| < k, gibt die Prozedur zurück, dass keine k-elementige zulässige Menge existiert.
 - Sonst sei G_i die Menge der in \leq_G kleinsten k Pfade von G und $\pi_i := \pi_{G_i}.$
 - Ist $\pi_i = \pi_{i-1}$, gibt die Prozedur G_i als zulässige Menge zurück.
 - Sonst gehe in (i+1)-te Runde.

Beispiel für k=5 und c(e)=2 für alle $e\in E$:

- Starten mit $\pi_0 = (0, ..., 0)$ und i = 1.
- In der i-ten Runde:
 - Initialisiere Kapazitäten beider Kopien jeder Kante e mit c(e), in der ersten Kopie um $\pi_{i-1}(e)$ reduziert.
 - Wende darauf gieriges Verfahren an und erhalte $G \subseteq P$.
 - Ist |G| < k, gibt die Prozedur zurück, dass keine k-elementige zulässige Menge existiert.
 - Sonst sei G_i die Menge der in \leq_G kleinsten k Pfade von G und $\pi_i := \pi_{G_i}.$
 - Ist $\pi_i = \pi_{i-1}$, gibt die Prozedur G_i als zulässige Menge zurück.
 - Sonst gehe in (i+1)-te Runde.

Beispiel für k = 5 und c(e) = 2 für alle $e \in E$:

- Starten mit $\pi_0 = (0, ..., 0)$ und i = 1.
- In der i-ten Runde:
 - Initialisiere Kapazitäten beider Kopien jeder Kante e mit c(e), in der ersten Kopie um $\pi_{i-1}(e)$ reduziert.
 - Wende darauf gieriges Verfahren an und erhalte $G \subseteq P$.
 - Ist |G| < k, gibt die Prozedur zurück, dass keine k-elementige zulässige Menge existiert.
 - Sonst sei G_i die Menge der in \leq_G kleinsten k Pfade von G und $\pi_i := \pi_{G_i}.$
 - Ist $\pi_i = \pi_{i-1}$, gibt die Prozedur G_i als zulässige Menge zurück.
 - Sonst gehe in (i+1)-te Runde.

Beispiel für k = 5 und c(e) = 2 für alle $e \in E$:

Beobachtungen:

Beobachtungen:

• Existiert ein i mit $\pi_i=\pi_{i+1}$, so ist G_{i+1} eine gesuchte zulässige Menge, die von der Prozedur auch zurückgegeben wird.

Beobachtungen:

- Existiert ein i mit $\pi_i=\pi_{i+1}$, so ist G_{i+1} eine gesuchte zulässige Menge, die von der Prozedur auch zurückgegeben wird.
- Das ist die einzige Möglichkeit, dass eine Menge zurückgegeben wird.

Beobachtungen:

- Existiert ein i mit $\pi_i = \pi_{i+1}$, so ist G_{i+1} eine gesuchte zulässige Menge, die von der Prozedur auch zurückgegeben wird.
- Das ist die einzige Möglichkeit, dass eine Menge zurückgegeben wird.

Beobachtungen:

- Existiert ein i mit $\pi_i=\pi_{i+1}$, so ist G_{i+1} eine gesuchte zulässige Menge, die von der Prozedur auch zurückgegeben wird.
- Das ist die einzige Möglichkeit, dass eine Menge zurückgegeben wird.

Beweisskizze für die Korrektheit der Prozedur:

• Die Folge der π_i ist monoton wachsend.

Beobachtungen:

- Existiert ein i mit $\pi_i = \pi_{i+1}$, so ist G_{i+1} eine gesuchte zulässige Menge, die von der Prozedur auch zurückgegeben wird.
- Das ist die einzige Möglichkeit, dass eine Menge zurückgegeben wird.

- Die Folge der π_i ist monoton wachsend.
- Existiert eine zulässige Lösung Q^* mit k Pfaden, dann $\pi_i \leq \pi_{Q^*}$ für alle i.

Beobachtungen:

- Existiert ein i mit $\pi_i = \pi_{i+1}$, so ist G_{i+1} eine gesuchte zulässige Menge, die von der Prozedur auch zurückgegeben wird.
- Das ist die einzige Möglichkeit, dass eine Menge zurückgegeben wird.

- Die Folge der π_i ist monoton wachsend.
- Existiert eine zulässige Lösung Q^* mit k Pfaden, dann $\pi_i \leq \pi_{Q^*}$ für alle i.
- Die Prozedur macht höchstens $n \cdot c(e_0)$ Runden.

Beobachtungen:

- Existiert ein i mit $\pi_i = \pi_{i+1}$, so ist G_{i+1} eine gesuchte zulässige Menge, die von der Prozedur auch zurückgegeben wird.
- Das ist die einzige Möglichkeit, dass eine Menge zurückgegeben wird.

- Die Folge der π_i ist monoton wachsend.
- Existiert eine zulässige Lösung Q^* mit k Pfaden, dann $\pi_i \leq \pi_{Q^*}$ für alle i.
- Die Prozedur macht höchstens $n \cdot c(e_0)$ Runden.
 - Die Folge der Profile kann höchstens $\sum_{j=0}^{n-1} \pi_{Q^*}(e_j)$ mal echt wachsen.

Beobachtungen:

- Existiert ein i mit $\pi_i = \pi_{i+1}$, so ist G_{i+1} eine gesuchte zulässige Menge, die von der Prozedur auch zurückgegeben wird.
- Das ist die einzige Möglichkeit, dass eine Menge zurückgegeben wird.

- Die Folge der π_i ist monoton wachsend.
- Existiert eine zulässige Lösung Q^* mit k Pfaden, dann $\pi_i \leq \pi_{Q^*}$ für alle i.
- Die Prozedur macht höchstens $n \cdot c(e_0)$ Runden.
 - Die Folge der Profile kann höchstens $\sum_{j=0}^{n-1} \pi_{Q^*}(e_j)$ mal echt wachsen.
 - $-\sum_{j=0}^{n-1} \pi_{Q^*}(e_j) \le n \cdot \pi_{Q^*}(e_0) \le n \cdot (e_0)$

Zeige $\pi_i \leq \pi_{i+1}$ per Induktion (für i = 0 klar, da $\pi_0 = 0$).

Zeige $\pi_i \leq \pi_{i+1}$ per Induktion (für i=0 klar, da $\pi_0=0$).

• Es gelte $\pi_{i-1} \leq \pi_i$.

Zeige $\pi_i \leq \pi_{i+1}$ per Induktion (für i=0 klar, da $\pi_0=0$).

- Es gelte $\pi_{i-1} \leq \pi_i$.
- G_i ist minimale zulässige Menge auf der Kette mit den durch π_{i-1} reduzierten Kapazitäten, da sie mit dem gierigen Verfahren berechnet wurde.

Zeige $\pi_i \leq \pi_{i+1}$ per Induktion (für i=0 klar, da $\pi_0=0$).

- Es gelte $\pi_{i-1} \leq \pi_i$.
- G_i ist minimale zulässige Menge auf der Kette mit den durch π_{i-1} reduzierten Kapazitäten, da sie mit dem gierigen Verfahren berechnet wurde.
- Da G_i zulässig zum Startprofil π_{i-1} und $\pi_{i-1} \leq \pi_i$, ist G_i auch zulässig zum Startprofil π_i .

Zeige $\pi_i \leq \pi_{i+1}$ per Induktion (für i=0 klar, da $\pi_0=0$).

- Es gelte $\pi_{i-1} \leq \pi_i$.
- G_i ist minimale zulässige Menge auf der Kette mit den durch π_{i-1} reduzierten Kapazitäten, da sie mit dem gierigen Verfahren berechnet wurde.
- Da G_i zulässig zum Startprofil π_{i-1} und $\pi_{i-1} \leq \pi_i$, ist G_i auch zulässig zum Startprofil π_i .
- Da G_i minimal, ist also $G_i \leq_G G_{i+1}$ und damit $\pi_i \leq \pi_{i+1}$.

Sei Q^* zulässige Lösung mit k Pfaden. Zeige $\pi_i \leq \pi_{Q^*}$ per Induktion (für i=0 klar, da $\pi_0=0$).

• Es gelte $\pi_i \leq \pi_{Q^*}$.

- Es gelte $\pi_i \leq \pi_{Q^*}$.
- Da Q^* kettenzulässig zu π_{Q^*} ist mit I.V. Q^* auch kettenzulässig zu π_i .

- Es gelte $\pi_i \leq \pi_{Q^*}$.
- Da Q^* kettenzulässig zu π_{Q^*} ist mit I.V. Q^* auch kettenzulässig zu π_i .
- G_{i+1} ist minimale kettenzulässige Menge zu π_i , da sie mit dem gierigen Verfahren berechnet wurde.

- Es gelte $\pi_i \leq \pi_{Q^*}$.
- Da Q^* kettenzulässig zu π_{Q^*} ist mit I.V. Q^* auch kettenzulässig zu π_i .
- G_{i+1} ist minimale kettenzulässige Menge zu π_i , da sie mit dem gierigen Verfahren berechnet wurde.
- Also gilt $G_{i+1} \leq_G Q^*$, insbesondere $\pi_{i+1} \leq \pi_{Q^*}$.

Wir fassen unser Ergebnis zusammen:

Wir fassen unser Ergebnis zusammen:

• Wir benötigen also pro Runde $\mathcal{O}(n+m) = \mathcal{O}(m)$ Zeit.

Wir fassen unser Ergebnis zusammen:

- Wir benötigen also pro Runde $\mathcal{O}(n+m) = \mathcal{O}(m)$ Zeit.
- Davon gibt es maximal $n \cdot c_{\min}$.

Wir fassen unser Ergebnis zusammen:

- Wir benötigen also pro Runde $\mathcal{O}(n+m) = \mathcal{O}(m)$ Zeit.
- Davon gibt es maximal $n \cdot c_{\min}$.
- Mit binärer Suche wird die Prozedur $\mathcal{O}(\log m)$ mal aufgerufen.

Wir erhalten:

Wir fassen unser Ergebnis zusammen:

- Wir benötigen also pro Runde $\mathcal{O}(n+m) = \mathcal{O}(m)$ Zeit.
- Davon gibt es maximal $n \cdot c_{\min}$.
- Mit binärer Suche wird die Prozedur $\mathcal{O}(\log m)$ mal aufgerufen.

Wir erhalten:

Theorem

Das Call-Control-Problem in Ringen kann in $\mathcal{O}(m \cdot n \cdot c_{\min} \cdot \log m)$ Zeit gelöst werden, wobei n die Anzahl der Knoten, m die Anzahl der Pfade und c_{\min} die kleinste Kantenkapazität ist.

Literatur I

 Udo Adamy, Christoph Ambühl, R. Sai Anand, and Thomas Erlebach.
 Call control in rings.

Algorithmica, 47:217–238, 2007.

- [2] Martin C. Carlisle and Errol. L. Lloyd. On the k-coloring of intervals. Discrete Applied Mathematics, 59:225–235, 1995.
- [3] Harold N. Gabow and Robert Endre Tarjan.

 A linear-time algorithm for a special case of disjoint set union.

 Journal of Computer and System Sciences, 30:209–221, 1985.

Literatur II

- [4] Michael R. Garey, David S. Johnson, Gary L. Miller, and Christos H. Papadimitriou. The complexity of coloring circular arcs and chords. SIAM Journal on Algebraic and Discrete Methods, 1:216–227, 1980.
- [5] Dorit S. Hochbaum and Asaf Levin. Cyclical scheduling and multi-shift scheduling: Complexity and approximation algorithms. *Discrete Optimization*, 3(4):327–340, 2006.