Quantum Computing Course

Sugata Gangopadhyay, Abhishek Chakraborty, C. A. Jothishwaran
Department of Computer Science and Engineering
Indian Institute of Technology Roorkee

Module 1

Lecture 1: Introducing qubits

- Learn the definition of a qubit
- Decide whether a complex vector represents a qubit-state or not
- Learn the difference between a bit and a qubit

Qubits

- A quantum bit or a qubit is a fundamental unit of quantum information processing just as a bit is a fundamental unit of classical information processing.
- A single qubit state is represented by a pair of complex numbers $\binom{a}{b}$ where $|a|^2 + |b|^2 = 1$.
- So a single qubit can exist in an infinite number of states whereas a bit can exist in either in 0 state or 1 state.

Writing conventions

• It is customary to write
$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Then, a single qubit state is

$$\binom{a}{1} = \binom{1}{1} + \binom{0}{1} = \binom{0}{1} + \binom{1}{1}$$

 $\binom{a}{b} = a \binom{1}{0} + b \binom{0}{1} = a|0\rangle + b|1\rangle$

• We must not forget that
$$|a|^2 + |b|^2 = 1$$

Recalling complex numbers

• A complex number is written as z = x + iy where x, y are real numbers, and $i^2 = -1$.

- The conjugate of z is $\bar{z} = x iy$.
- The modulus of a complex number is |z| where

$$|z|^2 = z\bar{z} = x^2 + y^2$$

A single-bit system

• A single-bit system can exist in one of the two states: 0 and 1. Such a system can be visualized as

- In a classical computer it is possible to set a bit to the 0 or 1 state. It is also possible to read (measure) that state, and reading from a bit does not change its state.
- On a quantum computer it is possible to create a single-qubit state, but it is not possible to measure it without changing the state.

Physical realization of a Qubit Practical Quantum Computing using Qiskit and IBMQ

Jothishwaran C.A.

Department of Electronics and Communication Engineering Indian Institute of Technology Roorkee

September 12, 2020

Outline

The Physical Bit Information and Computation

Polarization and Superposition

Polarization of light waves Linear combinations and Polarizers

From waves to particles

Angles and Intensities A Physical Qubit

Conclusion

Concluding Remarks
One final point

Information and Computation

- ► The classical bit may exist in one of two states, these states are labelled as "0" and "1". This is the most fundamental unit of information.
- ▶ A physical realization of the bit is required for performing computation. In a classical computer, bits are realised in the states of a register.
- By the same token, a physical realization of a qubit is required for performing quantum computation.

Polarization of light waves

- ► The polarization of an electromagnetic wave propagating along the *z*-axis is in the *xy*-plane.
- Any vector in the *xy*-plane can be represented in terms of its *x* and *y* components.

Manday

Figure 1: Horizontally Polarized Wave

Figure 2: Vertically Polarized Wave

A little bit of Vector Algebra

- The linearly independent vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ to represent vertical and horizontal polarizations respectively.
- A polarization vector inclined at an angle
 θ to the vertical is represented as follows:

$$\cos\theta\begin{pmatrix}1\\0\end{pmatrix} + \sin\theta\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix} \qquad (1$$

Figure 3: An obliquely polarized wave

Fun with polarizers

- ▶ Polarizers are optical filters that allow light waves of a particular polarization to pass through them.
- ► A vertically aligned polarizer will block all horizontally polarized light from passing through and vice versa.
- But what will happen when an obliquely polarized light wave is incident on a vertically (or horizontally) aligned polarizer?
- ► The following video answers the above question through demonstrations:
 - https://www.youtube.com/watch?v=6N3bJ7Uxpp0

A classical result

- When a light wave with polarization as defined in equation (1) is incident on a vertically aligned polarizer, only a fraction of this wave emerges.
- ► The fraction of the intensity that is transmitted is given by $|\cos\theta|^2$. In the case of a horizontally aligned polarizer, the same fraction is $|\sin\theta|^2$.
- ▶ In general, the fraction of the intensity that is transmitted is given by $|\cos \alpha|^2$ where α is the angle between the polarization vector and the direction along which the polarizer is aligned.
- ▶ It should be remembered that the polarization of the transmitted light wave is along the alignment of the polarizer.

The Quantum Perspective

- One of the earliest conclusions of quantum theory was that light waves exhibited particle like behaviour and these particles were named photons.
- ► Light waves discussed thus far may be visualised as a stream of a very large number of photons.
- ► The reduction of intensity when a light wave passes through a polarizer implies that only a fraction of the incident photons are transmitted. This fraction as mentioned before is $|\cos \alpha|^2$.
- It is once again emphasized that the polarization of the photons emerging is along the direction in which the polarizer is aligned.

The Photon as a Qubit

- ▶ Based on the ideas discussed so far, it is possible to state the following about single photons incident on a polarizer.
- ▶ It is in general not possible to state with certainty if an incident photon will be transmitted by a polarizer.
- ▶ A photon polarized along the direction of a polarizer will certainly be transmitted. A photon with a polarization that is orthogonal to a polarizer's alignment will certainly not be transmitted.
- ► The probability of a photon being transmitted by a polarizer is once again given by $|\cos \alpha|^2$.
- ► The aforementioned facts have all been verified through experiments.

Concluding Remarks

- ► The photon is a particle that can exist simultaneously in both (orthogonal) polarization states.
- ► The polarization of the photon may be represented as a linear combination of these orthogonal states.
- ▶ The outcome of an experiment to estimate the polarization of a photon can only be interpreted statistically. The experiment also leaves the state of the photon changed.
- Such photon based qubits are used extensively in Quantum Information and Communication, most notably in Quantum Key Distribution (QKD).

But what of the complex numbers?

- ► The photon states described so far have all been real linear combinations of the vertical and the horizontal polarization states.
- Complex linear combination of these states are used to define polarization states such as circular and elliptical polarization.

Figure 4: A circularly polarized wave

Module 1

Lecture 2: Mathematical Preliminaries

- Definition of a basis of $\mathbb{C}^2 = \mathbb{C} \times \mathbb{C}$
- Perform the inner product operation on \mathbb{C}^2
- Orthonormal basis
- Dirac notation
- Superposition of states

Quantum bits - Qubits

· Quantum bits - Qubits:

A qubit is the fundamental unit of quantum information just as a bit is the fundamental unit of classical information.

- A bit can exist in two states: 0 and 1.
- A qubit is a vector having two complex components.

Consider the vector space
$$\mathbb{C}^2 = \mathbb{C} \times \mathbb{C} = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} : a, b \in \mathbb{C} \right\}$$
.

A vector of the form $\binom{a}{b}$ defines a state of a qubit if and only if

$$|a|^2 + |b|^2 = 1.$$

Basis of \mathbb{C}^2

• The set of vectors $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ is said to be a basis is \mathbb{C}^2 since any element in \mathbb{C}^2 can be written uniquely as a linear combination $\begin{pmatrix} a \\ b \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

• Any set of vectors with this property is said to be a basis of \mathbb{C}^2 . For example: $\left\{\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix},\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}\right\}, \ \left\{\frac{1}{\sqrt{2}}\begin{pmatrix}1\\\mathbf{i}\end{pmatrix},\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-\mathbf{i}\end{pmatrix}\right\}$ where $\mathbf{i}^2=-1$.

Inner product on \mathbb{C}^2

• Inner product of two vectors
$$\binom{a}{b}$$
, $\binom{c}{d} \in \mathbb{C}^2$ is

Two vector are said to be orthogonal if

 ${\binom{a}{b}}^{\dagger}{\binom{c}{d}} = (\bar{a} \quad \bar{b}){\binom{c}{d}} = \bar{a}c + \bar{b}d.$

 $\begin{pmatrix} a \\ b \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} c \\ d \end{pmatrix} = (\bar{a} \quad \bar{b}) \begin{pmatrix} c \\ d \end{pmatrix} = \bar{a}c + \bar{b}d = 0.$

Orthonormal basis of \mathbb{C}^2

• Suppose
$$\{\binom{b}{b}, \binom{d}{d}\}$$
 is a basis such that

and

$${\binom{a}{b}}^{\dagger}{\binom{c}{d}} = (\bar{a} \quad \bar{b}){\binom{c}{d}} = \bar{a}c + \bar{b}d = 0$$

• Suppose
$$\left\{ inom{a}{b}, inom{c}{d} \right\}$$
 is a basis such that

 $\binom{a}{b}^{\dagger} \binom{a}{b} = (\bar{a} \quad \bar{b}) \binom{a}{b} = \bar{a}a + \bar{b}b = |a|^2 + |b|^2 = 1$

 $\begin{pmatrix} c \\ d \end{pmatrix}^{\dagger} \begin{pmatrix} c \\ d \end{pmatrix} = (\bar{c} \quad \bar{d}) \begin{pmatrix} c \\ d \end{pmatrix} = \bar{c}c + \bar{d}d = |c|^2 + |d|^2 = 1$

Orthonormal basis of \mathbb{C}^2

• Computational basis:
$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$
:
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\dagger} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = (\bar{1} \quad \bar{0}) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \bar{1}0 + \bar{0}1 = 0$$

• Computational basis:
$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$
 :

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = (\overline{1} \quad \overline{0}) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \overline{1}1 + \overline{0}0 = 1$

 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = (\overline{0} \quad \overline{1}) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \overline{0}0 + \overline{1}1 = 1$

Orthonormal basis of \mathbb{C}^2 : Examples

• Hadamard basis: $\mathcal{H} = \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$.

• Nega-Hadamard basis: $\mathcal{N} = \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \mathbf{i} \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -\mathbf{i} \end{pmatrix} \right\}$.

• Verify that $\mathcal H$ and $\mathcal N$ are orthonormal bases.

Dirac's bra/ket notation

- A vector $\binom{a}{b} \in \mathbb{C}^2$ is written as $|\psi\rangle$ read as "ket psi".
- The vector $\begin{pmatrix} a \\ b \end{pmatrix}^{\dagger} = (\bar{a} \quad \bar{b})$ is written as $\langle \psi |$.
- Inner product of two vectors $|\phi\rangle = {c \choose d}$, and $|\psi\rangle = {a \choose b}$ is $\langle \psi | \phi \rangle = {a \choose b}^{\dagger} {c \choose d} = (\bar{a} \quad \bar{b}) {c \choose d} = \bar{a}c + \bar{b}d$.

The order in the which $|\phi\rangle$ and $|\psi\rangle$ appear matters. This is the inner product of $|\phi\rangle$ and $|\psi\rangle$ and not $|\psi\rangle$ and $|\phi\rangle$.

Computational, Hadamard and Nega-Hadamard Bases in Dirac's notation

• Computational basis:
$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

• Hadamard basis:
$$|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
, $|-\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$

• Nega-Hadamard basis:

$$|\mathbf{i}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \mathbf{i} \end{pmatrix} = \frac{|0\rangle + \mathbf{i}|1\rangle}{\sqrt{2}}, |-\mathbf{i}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -\mathbf{i} \end{pmatrix} = \frac{|0\rangle - \mathbf{i}|1\rangle}{\sqrt{2}}$$

Verify that all the above bases are orthonormal.

Superposition of states

• The state of a single-qubit is of the form

$$|\psi\rangle = {a \choose b} = a {1 \choose 0} + b {0 \choose 1} = a|0\rangle + b|1\rangle$$

where $|a|^2 + |b|^2 = 1$.

• If $a \neq 0$ and $b \neq 0$ the qubit is said to be in the superposition of two states $|0\rangle$ and $|1\rangle$.

Once a superposition, always a superposition?

- $|\psi\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$ is a superposition of two states $|0\rangle$, and $|1\rangle$.
- We say that $|\psi\rangle$ is in superposition with respect to the basis $\{|0\rangle, |1\rangle\}$.
- However, the representation of $|\psi\rangle$ with respect to the basis $\mathcal{H}=\{|+\rangle,|-\rangle\}$ is $|\psi\rangle=|+\rangle.$
- ullet Therefore, $|\psi
 angle$ is not in superposition with respect to the basis ${\mathcal H}.$

Changing a Qubit representation from computational to Hadamard basis

- $|\psi\rangle = a|0\rangle + b|1\rangle$ is a single-qubit state written in computational basis.
 - The Hadamard hasis vectors in terms of computational hasis vectors are:

• The Hadamard basis vectors in terms of computational basis vectors are:
$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}, \qquad |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}.$$

• Solving for $|0\rangle$ and $|1\rangle$ yields:

$$|0\rangle = \frac{|+\rangle + |-\rangle}{\sqrt{2}}, \qquad |1\rangle = \frac{|+\rangle - |-\rangle}{\sqrt{2}}.$$

•
$$|\psi\rangle = a\left(\frac{|+\rangle+|-\rangle}{\sqrt{2}}\right) + b\left(\frac{|+\rangle-|-\rangle}{\sqrt{2}}\right) = \frac{a+b}{\sqrt{2}}|+\rangle + \frac{a-b}{\sqrt{2}}|-\rangle.$$

Global phase versus relative phase

• Two single-qubit states $|\psi\rangle=a|0\rangle+b|1\rangle$ and $|\phi\rangle=c|0\rangle+d|1\rangle$ are said to differ by the global phase θ if

$$|\psi\rangle = a|0\rangle + b|1\rangle = e^{i\theta}(c|0\rangle + d|1\rangle) = e^{i\theta}|\phi\rangle.$$

- If two quantum states differ by a global phase, they are considered to be same. We write $|\psi\rangle \sim |\phi\rangle$.
- The relative phase of a single-qubit state $|\psi\rangle=a|0\rangle+b|1\rangle$ is a number φ which satisfies the equation $\frac{a}{b}=e^{i\varphi}\frac{|a|}{|b|}.$
- Two quantum states with different relative phases are not the same quantum state.

Examples of qubits differing by a global phase

• Consider:
$$\frac{1}{\sqrt{2}}\Big(|0\rangle+e^{\frac{\mathrm{i}\pi}{4}}|1\rangle\Big)$$
 and $\frac{1}{\sqrt{2}}\Big(e^{-\frac{\mathrm{i}\pi}{4}}|0\rangle+|1\rangle\Big)$

• Consider:
$$\frac{1}{\sqrt{2}} (|0\rangle + e^{-4} |1\rangle)$$
 and $\frac{1}{\sqrt{2}} (e^{-4} |0\rangle + |1\rangle)$

• The qubit state $\frac{1}{\sqrt{2}} \left(e^{-\frac{\mathrm{i}\pi}{4}} |0\rangle + |1\rangle \right) = \frac{e^{-\frac{\mathrm{i}\pi}{4}}}{\sqrt{2}} \left(|0\rangle + e^{\frac{\mathrm{i}\pi}{4}} |1\rangle \right)$

• Therefore, these two quantum states are the same.

Examples of qubits differing by relative phases

• Consider:
$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
 and $\frac{1}{\sqrt{2}}(-|0\rangle + \mathbf{i}|1\rangle)$

• Let
$$a|0\rangle + b|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
 and
$$a'|0\rangle + b'|1\rangle = \frac{1}{\sqrt{2}}(-|0\rangle + \mathbf{i}|1\rangle).$$

$$\frac{a}{b} = \frac{1}{\sqrt{2}}\frac{\sqrt{2}}{4} = e^{0\mathbf{i}}\frac{|a|}{|b|}, \text{ and } \frac{a'}{b'} = -\frac{1}{\sqrt{2}}\frac{\sqrt{2}}{2} = -\frac{1}{4} = \mathbf{i} = e^{\frac{\pi\mathbf{i}}{2}}\frac{|a'|}{|b|}.$$

By definition the relative phase of the first qubit is 0 and the relative phase of the second qubit is $\frac{\pi}{2}$. Since they have different relative phases they are different quantum states.