Jaeho, Chang

Date: May 11, 2020

G-test, Information Entropy, p-value

Suppose that we have an entire dataset of size $d:D_1,D_2,\cdots,D_d$. Through tokenization, we got tokens for each data as t_{ij} where $j=1,\cdots,d$ and $i=1,\cdots,n_j$.

Then, there are T unique tokens $t_1^*, t_2^*, \cdots, t_T^*$ and their counts O_1, O_2, \cdots, O_T . Each count O_k is defined as $\sum_{j=1}^d \sum_{i=1}^{n_j} 1(t_k^* = t_{ij})$ and denote N by the sum of counts O_1, O_2, \cdots, O_T .

Token_Count	Token_Value	Token_Type
$O_1^{\it plain}$	t_1^*	plain
O_1^{sqli}	t_1^*	sqli
$O_2^{\it plain}$	t_2^*	plain
:	:	:

If we convert this dataset to the crosstable, we get:

token\type	plain	sqli	Total
t_1^*	$O_1^{\it plain}$	O_1^{sqli}	O_1
t_2^*	$O_2^{\it plain}$	O_2^{sqli}	O_2
:	:	:	:
t_T^*	O_T^{plain}	O_T^{sqli}	O_T
Total	$N^{\it plain}$	N^{sqli}	N

G-test score of a token t_k^* with label $j \in \{\text{plain, sqli}\}\$ is defined as:

$$G_{kj} = 2 \cdot O_{kj} \ln \left(\frac{O_{kj}}{E_{kj}} \right)$$

where E_{kj} is the expected count under multinomial distribution, that is, calculated by

$$E_{kj} = N_j \cdot \frac{O_k}{N}$$

by the Maximum Likelihood estimation. Here, note that $\sum_{k=1}^T E_{kj} = N_j$.

Shannon Entropy of a token t_k^* is calculated as:

$$H(t_k^*) = -\sum_{j \in \{\text{plain, sqli}\}} \hat{\pi}_{kj} \log_2 \hat{\pi}_{kj}$$

where $\hat{\pi}_{kj} = O_{kj}/O_k$.

It is well known that the asymptotic distribution of the log-likelihood ratio test statistics approaches to χ^2 distribution. Let's denote the log-likelihood at $\theta = \hat{\theta}$ as $l(\hat{\theta})$ where $\hat{\theta}$ is an MLE of $\theta \in \Theta \subset \mathbb{R}^k$. Suppose that n samples were drawn from an identical distribution independently. Then,

$$l(\hat{\theta}) \approx l(\theta_0) + (\hat{\theta} - \theta_0)' \nabla^2 l(\theta_0) (\hat{\theta} - \theta_0)/2$$

$$\therefore 2[l(\hat{\theta}) - l(\theta_0)] \approx n(\hat{\theta} - \theta_0)' \nabla^2 l_1(\theta_0) (\hat{\theta} - \theta_0).$$

Since
$$-\sqrt{n}I_1(\hat{\theta})^{-\frac{1}{2}}(\hat{\theta}-\theta_0)\overset{d}{\to}\mathcal{N}_k(0,I_k)$$
 and $\left\{I_1(\hat{\theta})\right\}^{-1}\nabla^2l_1(\theta_0)\to 1$ as $n\to\infty$,

$$2[l(\hat{\theta}) - l(\theta_0)] \stackrel{d}{\to} \chi_k^2.$$

Therefore, we can interpret the p-value of the observed G-test defined as

$$G_o = 2 \cdot \sum_{k,j} O_{kj} \ln \left(\frac{O_{kj}}{E_{kj}} \right)$$

as

$$P(|G| > G_o|Multinomial) \approx 2 \cdot \min \left[P(\chi_{T-1}^2 > G_o), P(\chi_{T-1}^2 < G_o) \right].$$

Note that we estimate T-1 parameters because $\sum_{i=1}^{T} \theta_i = 1$.