Project 2: Ames Housing Data and Kaggle Challenge

Group 3 Linus, Kelvyn, Samuel, Fionna

Problem Statement

Develop a regression model to predict final selling price of homes based on housing features in the Ames Housing dataset.

Scenario - Real estate agents and investors want to know key characteristics that affect housing prices

Overview

The data set we are using to build our model on contains housing features from the city of Ames:

- Train data: sample size of 2051, 41 categorical and 39 numerical features and the target variable of 'SalePrice'.

 Test data: sample size of 879, 41 categorical and 39 numerical features, excluding the target variable of 'SalePrice'.

Overview

Data cleaning

- 1. For missing object:
 - Fill 'no facility':

```
df['FireplaceQu'] = df['FireplaceQu'].replace({np.nan: 'No fireplace'})
```

- 2. For missing values:
 - Fill '0' (for big missing quantities):

```
df[zero\_col] = df[zero\_col].fillna(0)
```

Fill mean (for one missing value)

Data Transformation

Data Transformation (Ordinal vars)

TA

Gd

TA

Gd

Fa

lot shape utilities exter qual exter cond bsmt qual be

Gd

Gd

TA

TA

TA

TA

TA

Gd

TA

TA

0

IR1

IR1

Reg

AllPub

AllPub

AllPub

AllPub

AllPub

Individual data dictionaries

Ordinal Scales (scale 1 being the w	vorst)	į
-------------------------------------	--------	---

Order rank 3

· garagefinish 1 unfinished 3 finished

Order rank 4 (custom dict)

- lotshape 1 irregular 4 regular -
- utilities 1 elo 4 allpub
- · poolgc 1 fair 4 excellent
- · fence 1 min wood/wire 4 good privacy

Order rank 5 (standard dict)

- · extergual 1 poor 5 excellent
- · extercond 1 poor 5 excellent
- · bsmtqual 1poor 5 excellent
- · bsmtcond 1poor 5 excellent
- · heatingqc 1 poor 5 excellent
- kitchengual 1 poor 5 excellent
- · fireplacegu 1 poor 5 excellent
- · garagequal 1 poor 5 excellent
- · garagecond 1 poor 5 excellent

Mapped over to ordinal vars

fe	utilities_ord	lot_shape_ord
	4	3
	4	3
	4	4
	4	4
	4	3

Data Transformation (Nominal vars)

MS Zoning (Nominal): Identifies the general zoning classification of the sale.

A Agriculture
C Commercial
FV Floating Village Residential
I Industrial
RH Residential High Density
RL Residential Low Density
RP Residential Low Density Park
RM Residential Medium Density

	ms_zoning	street	alley	land_contour	
0	RL	Pave	NaN	Lvl	
1	RL	Pave	NaN	Lvl	
2	RL	Pave	NaN	Lvl	
3	RL	Pave	NaN	LvI	
4	RL	Pave	NaN	Lvl	

ms_zoning_mean_enc	street_mean_enc	alley_mean_enc	land_contour_mean_enc	lo
191235.164581	181793.565558	NaN	178998.56484	
191235.164581	181793.565558	NaN	178998.56484	
191235.164581	181793.565558	NaN	178998.56484	
191235.164581	181793.565558	NaN	178998.56484	
191235.164581	181793.565558	NaN	178998.56484	
	191235.164581 191235.164581 191235.164581 191235.164581	191235.164581 181793.565558 191235.164581 181793.565558 191235.164581 181793.565558 191235.164581 181793.565558	191235.164581 181793.565558 NaN 191235.164581 181793.565558 NaN 191235.164581 181793.565558 NaN 191235.164581 181793.565558 NaN	191235.164581 181793.565558 NaN 178998.56484 191235.164581 181793.565558 NaN 178998.56484 191235.164581 181793.565558 NaN 178998.56484 191235.164581 181793.565558 NaN 178998.56484

Data Transformation (Binary vars)

ce	ntral_air	paved_drive	misc_feature	C	entral_air_dum	paved_drive_dum	misc_feature_dum
0	Υ	Υ	NaN	0	1	1	0
1	Υ	Υ	NaN	1	1	1	0
2	Υ	Υ	NaN	2	1	1	0
3	Υ	Υ	NaN	3	1	1	0
4	Υ	N	NaN	4	1	0	0

Data Transformation

1) Train-Test-Split

```
Train: 80%

X train shape, Y train shape : (1640, 19) (1640,)

X test shape, Y test shape : (411, 19) (411,)

Test: 20%
```

2) Scaling of all variables

Feature Selection I

ames_nomord_reg['targe	et'].sort_values(
lot shape ord	-0.294542
hamtfin tune 2 and	0 021020

bsmtfin type 2 ord -0.021038 utilities ord 0.026404 exter cond ord 0.036418 land slope mean enc 0.063163 street mean enc 0.069841 roof matl mean enc 0.110623 heating mean enc 0.111181 functional ord 0.125682 garage cond ord 0.152981 condition 2 mean enc 0.161266 lot config mean enc 0.164137 bsmt cond ord 0.176309 bldg type mean enc 0.201220 garage qual ord 0.209884 fence ord 0.217405 0.222024 condition 1 mean enc land contour mean enc 0.233183 0.257219 electrical mean enc roof style mean enc 0.268874 house style mean enc 0.274636 fireplace qu ord 0.321086 bsmtfin type 1 ord 0.324551 ms zoning mean enc 0.332927 sale type mean enc 0.377781 exterior 2nd mean enc 0.420871 bsmt exposure mean enc 0.421535 pool ac ord 0.422219 exterior 1st mean enc 0.438345 heating qc ord 0.458354 mas vnr type mean enc 0.460091 garage type mean enc 0.467798 garage finish ord 0.525776 0.537040 foundation mean enc alley mean enc 0.549612 bsmt qual ord 0.678307 kitchen qual ord 0.692336 exter qual ord 0.712146 neighborhood mean enc 0.760650 target 1.000000

Consolidation of all numerical and categorical variables

	overall_qual	gr_liv_area	garage_area	garage_cars	total_bsmt_sf	1st_flr_sf	year_built	year_remod/add	r
0	6	1479	475.0	2.0	725.0	725	1976	2005	
1	7	2122	559.0	2.0	913.0	913	1996	1997	
2	5	1057	246.0	1.0	1057.0	1057	1953	2007	
3	5	1444	400.0	2.0	384.0	744	2006	2007	1
4	6	1445	484.0	2.0	676.0	831	1900	1993	

overall qual gr liv area garage area garage cars total bsmt sf 1st flr sf vear built year remod/add neighbourhood mean enc exter qual ord kitchen qual ord bsmt qual ord alley mean enc foundation mean enc garage finish ord lot shape ord central air dum paved drive dum misc feature dum

80 -> 19 variables

shortlist

Feature selection II

- 1. Category variables(dummied):
- Select variables with high corr(Xi,y)
- Drop variables with high corr(Xi,Xj)
- Check P value to drop variables further
- 2. Numerical variables(scaled):
 - Use feature selections RFE
 - Drop some variables with high p values
- 3. Combine the remained features as fina feature list for model

Model Selection

K-Fold Cross Validation

```
lr_scores = cross_val_score(lr, X_train, y_train, cv=10)
print(lr_scores)
print(lr_scores.mean())

[0.86485124 0.83015069 0.79762124 0.81684913 0.81939452 0.82564035
    0.84166456 0.71798323 0.49109148 0.82608055]
    0.7831326986160876
```

Baseline Model Evaluation

```
train_score = lr.score(X_train_ss, y_train)
print("Baseline Model train_score:", train_score)

Baseline Model train_score: 0.8020482376099151

test_score = lr.score(X_test_ss, y_test)
print("Baseline Model test_score:", test_score)
```

Baseline Model test score: 0.8555231576919783

OLS Regression Results 0.813 Dep. Variable: saleprice R-squared: OLS 0.811 Model: Adj. R-squared: Least Squares 489.5 Method: F-statistic: 0.00 Thu, 21 Nov 2019 Prob (F-statistic):

Model Finetuning

- 1) Hyper-parameter tuning: Grid search with Ridge and Lasso regressions
- 2) (Manual) recursive feature elimination based on T-test p-values

foundation_mean_enc	-0.0135	0.029	-0.470	0.638
garage_finish_ord	2408.8745	1181.089	2.040	0.042
lot_shape_ord	-3223.2406	1433.652	-2.248	0.025
central_air_dum	-1312.4906	3417.409	-0.384	0.701
paved_drive_dum	197.1003	3112.480	0.063	0.950
misc_feature_dum	-5302.3653	4373.543	-1.212	0.226

Final Model Selection

Criteria: Best R^2 test-score

Option 1: Best fit Ridge regression test scores (0.853)

Option 2: Best fit Lasso regression score (0.855)

Option 3: Lin reg baseline model score (0.855)

Winner: Option 3

Final Model

Name	Туре	Description
overall_qual	int64	oridnal scale from 1-10, 1 being the poorest. rates the overall material of the house
gr_liv_area	int64	Above grade(ground) living area square feet
garage_area	float64	ordinal scale of 5. Size of garage in square feet
1st_flr_sf	int64	First floor square feet
exter_qual_ord	int64	ordinal scale of 4. Evaluates present condition of the material on the exterior
kitchen_qual_ord	int64	ordinal scale of 4. Kitchen quality
bsmt_qual_ord	float64	ordinal scale of 5. Evaluates the height of the basement
garage_finish_ord	float64	ordinal scale of 3. Interior finish of the garage
ClearCr	uint8	dummy variable of neighborhoods. Clear creek
CollgCr	uint8	dummy variable of neighborhoods. College creek
Crawfor	uint8	dummy variable of neighborhoods. Crawford
Mitchel	uint8	dummy variable of neighborhoods. Mitchell
NAmes	uint8	dummy variable of neighborhoods. Northwest Ames
NoRidge	uint8	dummy variable of neighborhoods. Northridge
NridgHt	uint8	dummy variable of neighborhoods. Northridge Heights
Sawyer	uint8	dummy variable of neighborhoods. Sawyer
Somerst	uint8	dummy variable of neighborhoods. Somerset
StoneBr	uint8	dummy variable of neighborhoods. Stonebrook
Timber	uint8	dummy variable of neighborhoods. Timberland
Veenker	uint8	dummy variable of neighborhoods. Veenker

8 variables

12 dummies for Neighborhood

Recommendations

Common features selected amongst our group members included:

- Overall material and finish quality
- Size of garage in square feet
- Above grade (ground) living area square feet
- Height of the basement
- Kitchen quality

Limitations

Limitations of model and areas for future improvement:

- Linear regression may not be the suitable model especially with so many features.
- Capture ordinal variable data on a numerical ordinal scale instead of word descriptors.
- The significance of features like 'fireplaces' and 'pool_area' on housing prices are state/climate dependant, valued more in colder cities like Ames¹. And may not be suitable to train a generalised model.

¹ Weather Spark https://weatherspark.com/y/10339/Average-Weather-in-Ames-lowa-United-States-Year-Round

Thank you for your patience!

Model Fitting and Evaluation

Use linear regression model

- Data split after scaling
- Cross validation
- Linear regression model fit
- Model score and plot

Remove later**

The optimal Lasso alpha value is: 288.3318675523569

The Lasso model has a score of: 0.9002564872787225

col names

		COT_Hallies	coer	
	2	gr_liv_area	24760.713194	
Is the problem statement clearly presented?	85	roof_matl_CompShg	22378.731419	
	87	roof_matl_Tar&Grv	15979.873272	
Does a strong narrative run through the presentation building toward a f	in: ¹⁷¹	kitchen_qual_TA	12778.909284	
2000 a onong harrante rail alloagh and proportional of ballating toward a r	0	overall_qual	12384.137330	
Are the conclusions/recommendations clearly stated?	111	exterior_2nd_MetalSd	0.000000	
	105	exterior_2nd_Brk Cmn	0.000000	
Is the level of technicality appropriate for the intended audience?	103	exterior_1st_WdShing	0.000000	
is the level of technicality appropriate for the interface addictice:		exterior_1st_VinylSd	0.000000	
	220	sale_type_WD	0.000000	
Is the student substantially over or under time?				

Does the student appropriately pace their presentation?

Does the student deliver their message with clarity and volume?

Are appropriate visualizations generated for the intended audience?

Are visualizations necessary and useful for supporting conclusions/explaining findings?