# Understanding and Applying Logistic Regression

# MODELLING RELATIONSHIPS BETWEEN VARIABLES USING REGRESSION



Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

#### Overview

Given causes, predict probability of effects - that's logistic regression

Linear regression and logistic regression are similar, yet quite different

Unlike linear regression, logistic regression can be used for categorical y-variables

Forecasting and classifying are important applications of logistic regression

### Playing the Odds with Logistic Regression

"I love deadlines. I love the whooshing noise they make as they go by."

**Douglas Adams** 

#### Two Approaches to Deadlines



Start 5 minutes before deadline
Good luck with that



Start 1 year before deadline

Maybe overkill

Neither approach is optimal

#### Starting a Year in Advance

Probability of meeting the deadline

100%

Probability of getting other important work done



#### Starting Five Minutes in Advance

Probability of meeting the deadline

0%

Probability of getting other important work done

100%

#### The Goldilocks Solution

Work fast

Start very late and hope for the best

Work smart

Start as late as possible to be sure to make it

Work hard

Start very early and do little else

As usual, the middle path is best

#### Working Smart

Probability of meeting the deadline

95%

Probability of getting other important work done

95%

Probability of meeting deadline

(1 year,100%)

Start 1 year before deadline 100% probability of meeting deadline

Start 5 minutes before deadline 0% probability of meeting deadline

(5 mins,0%)

Time to deadline



Time to deadline



Time to deadline



Time to deadline



Time to deadline



Time to deadline

# Logistic Regression helps find how probabilities are changed by actions



Time to deadline



Time to deadline

Start too late, and you'll definitely miss



Time to deadline

Start too early, and you'll definitely make it



Time to deadline

Working smart is knowing when to start



Y-axis: probability of meeting deadline

X-axis: time to deadline

Meeting or missing deadline is binary

Probability curve flattens at ends

- floor of O
- ceiling of 1



y: hit or miss? (0 or 1?)

x: start time before deadline

p(y): probability of y = 1

#### Categorical and Continuous Variables

#### Continuous

Can take an infinite set of values (height, weight, income...)

#### Categorical

Can take a finite set of values (Male/ Female, Day of week...)

Categorical variables that can take just two values are called binary variables



#### Hitting Deadlines

Probability of hitting deadline p(y)

Deadline: Hit or miss?

y = 1 or O

Time of starting work

X

#### Surviving the Titanic

Probability of surviving shipwreck

p(y)

Survive or die? y = 1 or 0 Gender, age, class of ticket X1, X2, X3

#### Predicting Stock Markets

Probability of market rising tomorrow

p(y)

Up or down? y = 1 or 0 Economic growth, oil prices, interest rates...

X1, X2, X3...

# Applications of Logistic Regression

# Common Applications of Logistic Regression



# Common Applications of Logistic Regression



### Analysing Consequences

Past events Observed causes

Actual outcomes Probabilities



#### Past events

- Sinking of the Titanic
- 2008-09 subprime mortgage crisis
- Software supplier's history of meeting deadlines



#### **Actual outcomes**

- 1,514 deaths, 710 survivors on the Titanic
- Several banks, hedge funds collapsed
- Billions of dollars of cost overruns



#### **Observed causes**

- Sex, age, passenger class
- Interest rates, economic growth, oil prices
- Budget, leadership, technical know-how



#### **Probabilities**

- Survived or perished?
- Made or lost money?
- Ship or slip?

# Who Would Survive the Titanic Shipwreck



# Surviving the Titanic



# Surviving the Titanic



# Surviving the Titanic





Only 3% of women with first class tickets perished

92% of men with second class tickets perished

# Common Applications of Logistic Regression



## Allocating Resources

**Economic opportunities** 

Catastrophic losses

Resources to avoid losses

**Probabilities** 

## The Goldilocks Solution

Work fast

Start very late and hope for the best

Work smart

Start as late as possible to be sure to make it

Work hard

Start very early and do little else

As usual, the middle path is best

# Go Big or Go Home



Resourcing

Inadequate resource allocation

# Nothing Ventured, Nothing Gained



Resourcing

**Excessive resource allocation** 

# Common Applications of Logistic Regression



# Working Smart

Probability of meeting the deadline

95%

Probability of getting other important work done

95%

# Working Hard, Fast, Smart



Time to deadline

# Working Hard, Fast, Smart



Time to deadline

# Working Hard, Fast, Smart



Time to deadline

# Predicting Future Events

Future events Possible outcomes

Likely causes Probabilities



#### **Future events**

- Investing savings in stocks
- Applying for a job at Google



#### Possible outcomes

- Make or lose money?
- Hired or not?



### Likely causes

- interest rates, global growth, politics
- interview preparedness, quality of resume, hiring environment



#### **Probabilities**

- portfolio up or down?
- job application hired or not?

# Common Applications of Logistic Regression



## Whales: Fish or Mammals



**Mammal** 

Member of the infraorder *Cetacea* 



**Fish** 

Looks like a fish, swims like a fish, moves like a fish

# Rule-based Binary Classifier



# ML-based Binary Classifier



Corpus

Classification Algorithm

**ML-based Classifier** 

# Applying Logistic Regression



If probability < 50%, it's a mammal

# Applying Logistic Regression



If probability > 50%, it's a fish

# Logistic Regression and Linear Regression

## X Causes Y



Cause Independent variable



**Effect**Dependent variable

## X Causes Y



Cause

**Explanatory variable** 



**Effect** 

Dependent variable









# Similar, yet Different



## Similar, yet Different

#### **Linear Regression**

Effect variable (y) must be continuous

# y A

#### **Logistic Regression**

Effect variable (y) must be categorical



# Similar, yet Different

#### **Linear Regression**

Cause variables (x) can be continuous or categorical

#### **Logistic Regression**

Cause variables (x) can be continuous or categorical





#### **Linear Regression**

Connect the dots with a straight line



#### **Logistic Regression**

Connect the dots with an S-curve



#### **Linear Regression**

$$y_i = A + Bx_i$$



#### **Logistic Regression**

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$



#### **Linear Regression**

$$y_i = A + Bx_i$$

Objective of regression is to find A, B that "best fit" the data

#### **Logistic Regression**

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Objective of regression is to find A, B that "best fit" the data

#### Linear Regression

$$y_i = A + Bx_i$$

Relationship is already linear (by assumption)

#### **Logistic Regression**

$$ln(\frac{p(y_i)}{1-p(y_i)}) = A + Bx_i$$

Relationship can be made linear (by log transformation)

#### **Linear Regression**

$$y_i = A + Bx_i$$

#### **Logistic Regression**

$$logit(p) = A + Bx_i$$

$$logit(p) = ln(\frac{p}{1-p})$$

Solve regression problem using cookiecutter solvers Solve regression problem using cookiecutter solvers

#### **Linear Regression**

Easily extended to multiple dimensions

# X<sub>2</sub>

#### **Logistic Regression**

Easily extended to multiple dimensions



#### **Linear Regression**

Easily extended to multiple dimensions

# X<sub>2</sub>

#### **Logistic Regression**

Easily extended to multiple dimensions



# Connecting the Dots with Regression

#### **Linear Regression Equation:**

$$y = A + Bx$$

$$y_1 = A + Bx_1$$
  
 $y_2 = A + Bx_2$   
 $y_3 = A + Bx_3$   
...
$$y_n = A + Bx_n$$

# Connecting the Dots with Regression

#### **Linear Regression Equation:**

$$y = A + Bx$$

$$y_1 = A + Bx_1 + e_1$$
  
 $y_2 = A + Bx_2 + e_2$   
 $y_3 = A + Bx_3 + e_3$   
...
$$y_n = A + Bx_n + e_n$$

# Residuals of Linear Regression



Residuals of a regression are the difference between actual and fitted values of the dependent variable

# Logistic Regression

#### Logistic Regression Equation:

$$p(y) = \frac{1}{1 + e^{-(A+Bx)}}$$

$$p(y_1) = \frac{1}{1 + e^{-(A+Bx_1)}}$$

$$p(y_2) = \frac{1}{1 + e^{-(A+Bx_2)}}$$

---

$$p(y_n) = \frac{1}{1 + e^{-(A+Bx_n)}}$$

# Residuals of Linear Regression



# Residuals of Linear Regression



#### **Linear Regression**

Residuals assumed to be normally distributed

#### **Logistic Regression**

Residuals cannot be normally distributed

# Logistic Regression and Machine Learning

# Whales: Fish or Mammals



**Mammal** 

Member of the infraorder *Cetacea* 



**Fish** 

Looks like a fish, swims like a fish, moves like a fish

# Rule-based Binary Classifier



# ML-based Binary Classifier



Corpus

Classification Algorithm

**ML-based Classifier** 

# ML-based Binary Classifier



# ML-based Binary Classifier



### Rule-based or ML-based?

**ML-based** 

Rule-based

**Dynamic** 

Static

**Experts optional** 

**Experts required** 

Corpus required

**Corpus optional** 

**Training step** 

No training step

# ML-based Predictor



Corpus

**Logistic Regression** 

ML-based Predictor  $p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$ 

### ML-based Predictor





Whales: Fish or Mammals?





If probability < 50%, it's a mammal



If probability > 50%, it's a fish



Probability of whales being Fish < 50%





Probability of whales being Fish > 50%

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Logistic regression involves finding the "best fit" such curve

- A is the intercept
- B is the regression coefficient

(e is the constant 2.71828)

## Diffusion of Innovation



## Diffusion of Innovation



# Summary

Logistic regression is a way to predict probabilities from causes

Linear regression and logistic regression are similar, yet quite different

Unlike linear regression, logistic regression can be used for categorical y-variables

Forecasting and classifying are important applications of logistic regression