GPSA Engineering Data Book 14th Edition

REVISION	DATE	REASON(S) FOR REVISION
0	4/1/2017	Initial release

FIG. 19-1 Nomenclatur

			Nomenclature	
a' _t	=	tube flow area, ft ²	TS	=
$\mathbf{a}_{_{\mathrm{t}}}$	=	total tube flow area, ft ²	$U_{_{\mathrm{D}}}$	=
A	=	absorption factor used in Equation 19-28	v	=
A_c	=	cross sectional area, ft ²	$\mathbf{v}_{\mathrm{max}}$	=
\mathbf{A}_{t}	=	heat transfer surface, ft ²	\mathbf{v}_{i}	=
AAM	=	tray active area, ft ²	$\mathbf{v}_{_{\mathbf{o}}}$	=
ADM	=	tray downcomer area, ft ²	V	=
ATM	=	tower cross sectional area, ft ²	$\mathbf{V}_{_1}$	=
b	=	exponent used in Equations 19-5 and 19-6	V_{max}	=
В	=	bottoms product flowrate, moles/unit time	$ ext{VD}^*_{ ext{dsg}}$	=
C	=	coefficient in Equation 19.11, ft/hr	$\mathrm{VD}_{ ext{dsg}}$	=
CAF	=	vapor capacity factor, corrected, ft/sec	$ m V_{load}$	=
CAF_0	=	vapor capacity factor, uncorrected, ft/sec	$\mathbf{V}_{_0}$	=
CFS	=	vapor loading, ft³/sec	W	=
D'	=	diameter, ft	X	=
D	=	distillate (overhead) product flowrate, moles/unit time	X	=
D_{T}	=	tower diameter, ft	X_{m+1}	=
E_{a}	=	absorption efficiency, Equation 19-30	$\mathbf{x}_{_{1}}$	=
E_s	=	stripping efficiency, Equation 19-32	\mathbf{X}_0	=
f	=	friction factor (Moody friction factor/144), ft²/in²	у	=
F	=	feed rate, moles/unit time	Y_{i}	=
F_{p}	=	packing factor	Y_{n+1}	=
FF	=	flooding factor used in Equation 19-17, usually 0.82	\mathbf{Y}_0	=
FPL	=	flow path length, ft	Z	=
g_{c}	=	conversion factor, 32.174 $(ft \cdot lb_m) / (lb_f \cdot sec^2)$		
G_t	=	mass velocity, lb/(hr·ft²)	Greek	
G_{p}	=	tower vapor loading, lb/(ft2·sec)	α	=
GPM	=	tower liquid loading, gal/min	$oldsymbol{eta}_{ij}$	=

Н	=	enthalpy, Btu/lb	θ	=
HETP	=	height of packing equivalent to a theoretical plate	σ	=
HTU	=	height of a transfer unit	ρ	=
K	=	equilibrium K-value, y/x	ε	=
L_0	=	liquid reflux rate, moles/unit time	μ	=
L_{p}	=	liquid loading, lb/(ft²·sec)		
L	=	liquid rate, moles/unit time	Subscripts	
L_t	=	tube length, ft	avg	=
L_{m+1}	=	rich oil entering stripper, moles/unit time	В	=
LMTD	=	log mean temperature difference	BP	=
m	=	number of stripping stages	bottom	=
M	=	mass flowrate, lb/hr	calc	=
n	=	number of absorber stages	corr	=
$N_{_{m}}$	=	minimum number of theoretical stages	D	=
NP	=	number of passes in a tray	F	=
N_t	=	number of tubes	G	=
ΔP	=	pressure drop, psi	HK	=
q	=	moles of saturated liquid in the feed per mole of feed	i	=
Q	=	heat transfer duty, Btu/hr	L	=
Q_c	=	condenser duty, Btu/hr	LK	=
R	=	reflux ratio, moles of reflux divided by moles of net overhead product	m	=
Re	=	Reynold's number, dimensionless	n	=
S	=	specific gravity	top	=
S	=	number of stages	VF	=
$S_{_{\mathrm{T}}}$	=	stripping factor used in Equation 19-31	V	=
$S_{_{ m F}}$	=	separation factor defined by Equation 19-1		
S_{M}	=	minimum number of stages defined by Equation 19-6		

tray spacing, inches overall heat transfer coefficient, Btu/(hr·ft².°F) specific volume, ft³/lb maximum velocity, ft/hr specific volume of the inlet, ft³/lb specific volume of the outlet, ft³/lb vapor rate, moles/unit time vapor rate leaving top tray, moles/unit time volumetric vapor flow rate, ft³/hr downcomer velocity, uncorrected, gpm/ft² downcomer velocity, corrected, gpm/ft² vapor loading defined by Equation 19-13, ft³/sec stripping medium rate, moles/unit time weight flow, lb/hr liquid mole fraction liquid rate, moles/unit time

moles of a component in the rich oil entering a stripper per mole of rich oil entering the stripper moles of a component in the lean oil per mole of rich oil

moles of a component in the liquid in equilibrium with the stripping medium per mole of entering rich oil

vapor mole fraction

moles of any component in the lean gas leaving the absorber per mole of rich gas

moles of any component in the entering rich gas per mole of rich gas

moles of any component in the gas in equilibrium with the entering lean oil, per mole of rich gas static head, ft

relative volatility volatility factor defined in Equation 19-5

correlating parameter in Equations 19-7, 19-8 surface tension, dyne/cm density, lb/ft3 efficiency viscosity, cp

average value

bottoms

bubble point feed stream bottom of the column calculated value

corrected value

distillate (overhead)

feed

gas

heavy key

any component

liquid

light key

minimum

tray number top of the column vaporized feed stream vapor phase

GPSA Engineering Data Book 14th Edition

Example I For the giv							
For the giv	9-1						
	en feed stream,	estimate th	e product str	eam comp	ositions		
for 98% propane recovery in the overhead and with a maximum iso-							
outane con	tent of 1%.						
Feed	Component	Moles					
	C,	2.4					
	C,	162.8					
	iC,	31.0					
	nC ₁						
		76.7					
	C,	76.5					
		349.4 п	ioles				
To find the	propane in the o	werhead wi	th 98% reco	were:			
	propane an and a			,			
C. in overf	read = .98 * 162	8					
-1							
	159.5 m	atas.					
	159.5 m	iotes					
By steady s	state material bal	lance, the m	ioles of prop	ane in the	bottoms:		
C, in botto	$ms = C_s$ feed - C	, overhead					
	3.3 m	oles					
secause pr	opane is the ligh in the overhead	it key, all ti	ne ethane in	he feed			
siii appea	in the overness						
C in award	read = C, in feed						
-,	ican – C ₂ iii icco						
	2.4 m	oles					
To find the	amount of iso-b	utane in the	e overhead w	ith maxim	um 1%:		
The remain	der of the materi	ials in the o	werhead will	be 99% o	f the total.		
	C ₂		ioles				
	C,	159.5 п	ioles				
			ioles				
	C, C,+C,	159.5 m 161.9 m	ioles ioles				
fotal mole	C,	159.5 m 161.9 m	ioles ioles				
lotal mole	C, C,+C,	159.5 m 161.9 m	ioles ioles				
fotal mole	C, C,+C,	159.5 m 161.9 m	soles soles s/.99				
Total mole	C, C,+C,	159.5 m 161.9 m	soles soles s/.99				
	C, C,+C,	159.5 m 161.9 m 161.9 moles 163.6 m	soles soles s / .99 soles	e found b	r.		
	C_3 $C_2 + C_3$ s in overhead = 1	159.5 m 161.9 m 161.9 moles 163.6 m	soles soles s / .99 soles	e found by	r.		
Therefore,	C_3 $C_2 + C_3$ s in overhead = 1	159.5 m 161.9 m 161.9 moles 163.6 m noles of iso-	soles s/.99 soles butane can b	e found by	r.		
Therefore,	C_3 $C_2 + C_3$ s in overhead = 1 the number of m	159.5 m 161.9 m 161.9 moles 163.6 m noles of iso-	soles s/.99 soles butane can b	e found by	jc		
Therefore,	C_3 $C_2 + C_3$ s in overhead = 1 the number of m	159.5 m 161.9 m 161.9 moles 163.6 m noles of iso-	toles	e found by	jc		
Therefore,	C_3 $C_2 + C_3$ s in overhead = 1 the number of m	159.5 m 161.9 moles 163.6 m toles of iso- il moles in o	toles	e found b	jc		
Therefore, iC4 in over	C_1 $C_2 + C_3$ s in overhead = 1 the number of m thead= .01 * total	159.5 m 161.9 m 161.9 moles 163.6 m 163.6 m 1.6 m	ioles ioles ioles ioles ioles ioles butane can b overhead ioles	e found b	jc		
Therefore, iC4 in over	C_3 $C_2 + C_3$ s in overhead = 1 the number of m	159.5 m 161.9 m 161.9 moles 163.6 m 163.6 m 1.6 m	ioles ioles ioles ioles ioles ioles butane can b overhead ioles	e found by	r		
Therefore, iC4 in over The rest of	C_1 $C_2 + C_3$ is in overhead = 1 the number of m head= .01 * total	159.5 m 161.9 moles 163.6 m 163.6 m 163.6 m 1.6 m	todes todes toles	e found by	F		
Therefore, iC4 in over The rest of	C_1 $C_2 + C_3$ s in overhead = 1 the number of m thead= .01 * total	159.5 m 161.9 moles 163.6 m 163.6 m 163.6 m 1.6 m	todes todes toles	e found b	ĸ		
Therefore, iC4 in over The rest of	C_1 $C_2 + C_3$ is in overhead = 1 the number of m head= .01 * total	159.5 m 161.9 m 161.9 moles 163.6 m soles of iso- d moles in o 1.6 m sill be in th - iC _p overh	notes notes notes notes butane can b overhead notes e bottoms.	e found by	y:		
Therefore, iC4 in over The rest of	C_1 $C_2 + C_3$ is in overhead = 1 the number of m head= .01 * total	159.5 m 161.9 moles 163.6 m 163.6 m 163.6 m 1.6 m	notes notes notes notes butane can b overhead notes e bottoms.	e found by	r		
Therefore, iC4 in over The rest of iC ₂ in botto	C_1 $C_2 + C_3$ s in overhead = 1 the number of m head= .01 * tota 'the iso-butane w oms = i C_4 , feed -	159.5 m 161.9 moles 163.6 m 163.6 m 163.6 m 160 moles of iso- 1.6 m vill be in th - iC _p , overth 29.4 m	nodes nodes i./.99 nodes butane can b overhead nodes e bottoms.				
Therefore, iC4 in over The rest of iC $_4$ in botto.	C_3 $C_2 + C_3$ is in overhead = 1 the number of m head= .01 * tota the iso-butane w oms = i C_4 , feed -	159.5 m 161.9 m 161.9 moles 163.6 m 163.6 m 160 moles of iso- il moles in o 1.6 m vill be in th 29.4 m	notes soles i./.99 notes butane can b overhead notes e bottoms. ead notes codes verhead notes codes verhead notes codes verhead notes verhead notes verhead vortes verhead verh				
Therefore, iC4 in over The rest of iC $_4$ in botto.	C_1 $C_2 + C_3$ s in overhead = 1 the number of m head= .01 * tota 'the iso-butane w oms = i C_4 , feed -	159.5 m 161.9 m 161.9 moles 163.6 m 163.6 m 160 moles of iso- il moles in o 1.6 m vill be in th 29.4 m	notes soles i./.99 notes butane can b overhead notes e bottoms. ead notes codes verhead notes codes verhead notes codes verhead notes verhead notes verhead vortes verhead verh				
Therefore, iC4 in over The rest of iC $_4$ in botto.	C_3 C_2+C_3 is in overhead = 1 the sumber of m thead= .01 * tota the iso-butane w oms = iC ₂ , feed - der of the comp balance table is	159.5 m 161.9 m 161.9 moles 163.6 m 163.6 m 160 moles of iso- il moles in o 1.6 m vill be in th 29.4 m	nodes soles si/.99 nodes butane can b overhead soles e bottoms. cad nodes	I be in the	bottoms.		
Therefore, iC4 in over The rest of iC $_4$ in botto.	C_1 C_2+C_3 is in overhead = 1 the number of m head= .01 * tota the iso-butane w oms = iC_{1s} , feed - der of the compplied Feed Feed	159.5 m 161.9 moles 163.6 m 163.6 m noles of iso- al moles in o 1.6 m vill be in th 29.4 m soments (aC shown belo	nodes nodes nodes nodes nodes butane can b overhead nodes e bottoms. ead nodes over Co, will al ow.	I be in the	bettems.		
Therefore, iC4 in over The rest of iC ₂ in botto. The remain A material	C ₁ C ₂ +C ₃ s in overhead = 1 the number of m head=.01 * tota the iso-butane w oms = iC ₄ , feed - oder of the comp balance table is Feed moles iFeed	159.5 m 161.9 moles 163.6 m 163.6 m 160 moles of iso- soles of iso- oles of iso- oles in o 1.6 m vill be in th 29.4 m conents (nC shown belown below belo	notes	I be in the	Bottoms. Bottom moles n	iole %	
Therefore, iC4 in over The rest of iC ₂ in botto The remain A material	C ₁ C ₂ +C ₃ s in overhead = 1 the number of m thead=01 * tota the iso-butane w oms = iC ₂ , feed - uder of the comp balance table is Feed moles 2.4	159.5 m 161.9 moles 163.6 m 163.6 m 163.6 m 163.6 m 1.6 m 29.4 m 29.4 m 29.4 m 29.4 m 29.4 m 29.4 m	todes todes todes todes todes butane can b overhead todes to bottoms. tead todes Coverhead todes tode	ad sole %	Bottoms. Bottom modes n 0.0	10le % 0.	
Therefore, iC4 in over The rest of iC ₁ in botto The remain A material C ₂ C ₃	C_1 C_2+C_3 is in overhead = 1 the number of in head= .01 * total the kon-butane woms = iC_4 , feed— moder of the compute balance table is Feed moles 1 2.4 162.8	159.5 m 161.9 moles 161.9 moles of iso- toles of iso- al moles in a 1.6 m sill be in th -iC ₀ overh 29.4 m conents (nC shown below mole %	nodes nodes soles e bottoms. ead nodes e cottoms. ead nodes soles	ad and % 1.5 97.5	Bottoms nucles n 0.0 3.3	ole % 0. 1.	
Therefore, iC4 in over The rest of iC ₂ in botto The remain A material	C ₁ C ₂ +C ₃ s in overhead = 1 the number of m thead=01 * tota the iso-butane w oms = iC ₂ , feed - uder of the comp balance table is Feed moles 2.4	159.5 m 161.9 moles 163.6 m 163.6 m 163.6 m 163.6 m 1.6 m 29.4 m 29.4 m 29.4 m 29.4 m 29.4 m 29.4 m	todes todes todes todes todes butane can b overhead todes to bottoms. tead todes Coverhead todes tode	ad sole %	Bottoms. Bottom modes n 0.0	ole % 0. 1.	
Therefore, iC4 in over The rest of iC ₁ in botto The remain A material C ₂ C ₃	C_1 C_2+C_3 is in overhead = 1 the number of in head= .01 * total the kon-butane woms = iC_4 , feed— moder of the compute balance table is Feed moles 1 2.4 162.8	159.5 m 161.9 moles 161.9 moles of iso- toles of iso- al moles in a 1.6 m sill be in th -iC ₀ overh 29.4 m conents (nC shown below mole %	nodes nodes soles e bottoms. ead nodes e cottoms. ead nodes soles	ad and % 1.5 97.5	Bottoms nucles n 0.0 3.3	0. 1. 15.	
Therefore, iC4 in over the rest of iC ₄ in botto. The remain A material C ₂ C ₃ iC ₄ in C ₄	C ₁ C ₂ +C ₃ S is noverhead = 1 the number of m thead=.01 * tota the iso-butane w onus = iC ₂ , feed - under of the comp balance table is Feed moles 12 24 162.8 31.0 76.7	159.5 m 161.9 moles 163.6 m 163.6 m 163.6 m 165 moles in o 1.6 m vill be in th iC ₀ overth 29.4 m voncents (nC shown below 0.7 46.6 8.9 22.0	notes notes hotes butane can be overhead notes c bottoms. cad notes c bottoms. c	ad 1.5 97.5 1.0 0.0	Bottoms. Bottom moles n 0.0 3.3 29.4 76.7	0. 1. 15. 41.	
Therefore, itC4 in over the rest of itC2 in botto. The remain A material C2 C3 itC4	C_1 C_2+C_3 s in overhead = 1 the number of m thead = $01 * tota$ the iso-butune w $tota$	159.5 m 161.9 moles 161.9 moles 163.6 m 163.6 m 163.6 m 163.6 m 1.6 m 29.4 m	notes notes soles soles soles soles soles soles butane can buverhead notes e bottoms. cad notes soles soles 2.4 159.5 1.6	ad note % 1.5 97.5 1.0	Bottoms. Bottom nooles n 0.0 3.3 3.3 29.4		

Ą	pplication of 19-1 nis will calculate a material ba						
Ti	nis will calculate a material ba	lance for the follow	ing compone	ents, given the	informati	on below.	
U	ser-entered data is in BOLD	RED.					
	perating Conditions and De	sign					
	opane recovery in overhead		0.98				
	aximum iso-butane content	Component	Moles				
	:cu	Component C ₂	2.4				
		C,	162.8				
		iC,	31.0				
		nC ₄	76.7				
		C,	76.5				
			349.4	moles			
M	aterial Balance						
	C ₃ in overhead		159.5	moles			
	C ₃ in bottoms		3.3	moles			
	C ₂ in overhead	=	2.4	moles			
	iC ₄ in overhead iC ₄ in bottoms		1.6	moles			
	nC, in bottoms		29.4 76.7	moles moles			
	C, in bottoms		76.5	motes			
		Feed moles	mole %	Overho	rad mole %	Botton moles	rs mole %
	C,	2.4	0.7	2.4	1.5	0.0	0.0
	c,	162.8	46.6	159.5	97.5	3.3	1.8
	iC,	31.0	8.9	1.6	1.0	29.4	15.8
	iC, nC,		8.9 22.0				15.8 41.3
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC, nC,	31.0 76.7	22.0	1.6 0	1.0 0.0	29.4 76.7	41.3
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2
	iC _s nC _s C _s	31.0 76.7 76.5	22.0 21.9	1.6 0 0	1.0 0.0 0.0	29.4 76.7 76.5	41.3 41.2

The sample calculations, equations and questioned bernis were developed using examples published in the Engineering Data Book as published by the Gas Processor Suppliers. Association as a service to the gas processing industry. All information and calculation formulae has been completed and edited in cooperation with Gas Processors. Association (PA).

White every first has been made by present accurate and relability testing and an advanced an advanced are advanced to the processor processor. Efficiency or transference of such information. Efficience because in completence and relability testing and processor processors. Efficience or transference of such information. Efficience because in completence and processor processors. Efficiency or transference of such information. Efficience because in completence and processors. In advanced an advanced are advanced in the processor processors. Efficience or transference or districted and processors. In advanced an advanced are advanced as a processor processors. Efficience or transference or districted and processors. In advanced an advanced are advanced in the processors of the processors or processors. In advanced an advanced are advanced in the processors of the process

α	C3/iC4	=	1.643	
Гray Count				
($\chi_{ ext{AVG}}$	=	1.855	Equation 19-4
	S_{F}	=	936.2	Equation 19-1
	S_{m}	=	11.08	trays Equation 19-3
checking for changes in α	b	=	0.798	Equation 19-6
	β	=	1.759	Equation 19-6
	S_{m}	=	11.06	trays (with relative volatility correction)
	S_{m}	=	11.08	trays (without relative volatility correction)

Example 19-3

Find the diameter of a depropanizer given the following:

Vapor rate $70,418 \text{ ft}^3/\text{h}$ $19.561 \text{ ft}^3/\text{s}$

Vapor density

3.0 lb/ft³

Liquid rate

1,190 gpm

Liquid density

28.8 lb/ft³

Liquid surface tension

tray spacing

3.3 dyne/cm

24 inches

There are three methods of finding tower diameter. All three will be explored.

C Factor Method

From Figure 19.14, C was found to be approximately 425 ft/h.

Using Equation 19.11, v_{max} can be found.

V_{max} 1,261 ft/hr

This can be used in Equation 19.12 to find D.

 D_{T} 8.43 feet

101 inches

Nomograph Method

 V_{load} needs to be found in order to use Figure 19.15. V_{load} is found from Equation 19.13.

 V_{load} 6.67 ft³/s

Using Vload and the liquid rate of 1190 gpm on Figure 19.15, tower diameters were read for one and two pass tra

One pass tray 9.5 ft

114 in

Two pass tray 7.5 ft

\sim	\sim	•
u	0	ın
フ	v	ш

Detailed Method

From the equation in the bottom of Figure 19.16, the system factor for the tower was found.

System factor

0.85

Using Figure 19.17 and the given specifications, VD*dsg was found.

 VD^*_{dsg}

186 gpm/ft²

VDdsg = VD*dsg * System factor

 VD_{dsg}

158.4 gpm/ft²

From Figure 19.18, CAF_0 is 0.41.

 $CAF = CAF_0 * System factor$

CAF

0.349 ft/s

Using D_t from the nomograph method for a one pass tray (9.25 ft) and a two pass tray (7.1 ft)

$$FPL = 9 * D_T / NP$$

FPL

85.5 ft

one pass tray

33.75 ft

two pass tray

Using Equation 19.17, the active area can be found.

AAM

50.65 ft²

one pass tray

34.10 ft²

two pass tray

The area of the downcomer can be found using Equation 19.18. If it is less than 11% of AAM, use either 11% of double ADM, whichever is smaller.

ADM 9.16 ft²

0.18 one pass 0.27 two pass

In both cases, the downcomer areas are sufficiently large.

ADM / AAM

Now the cross sectional area of the tower can be found using Equation 19.19

ATM 68.98 ft^2 one pass tray 52.43 ft^2 two pass tray

Another method to find the cross sectional area of the tower is Equation 19.20.

ATM 29.88 ft²

The larger of the two ATM values is used. In this case, it will be the ones calculated from Equation 19.19. The diameter of the column can be calculated by Equation 19.21.

 D_T 9.37 ft one pass tray 8.17 ft two pass tray

A comparison of the different calculated diameters follows.

Method	Number of Passes	Estimated Diameter (in)	
C Factor	-	101	
Nomograph	1	114	
Nomograph	2	90	
Detailed	1	112	
Detailed	2	98	

The sample calculations, equations and spreadsheets presented herein were developed using examples published While every effort has been made to present accurate and reliable technical information and calculation spreadshed. The Calculation Spreadsheets are provided without warranty of any kind including warranties of accuracy or reas In no event will the GPA or GPSA and their members be liable for any damages whatsoever (including without li

These calculation spreadsheets are provided to provide an "Operational level" of accuracy calculation based on a	
These carealation spreadsheets are provided to provide an operational level of accuracy carealation sused on i	ri

Application of 19-3

This finds the diameter of a depropanizer with the following speci: User-entered data is in BOLD RED.

Operating Conditions and Design

Vapor rate	=	70,418	ft ³ /h
	=	19.561	ft ³ /s
Vapor density	=	3.0	lb/ft³
Liquid rate	=	1,190	gpm
Liquid density	=	28.8	lb/ft ³
Liquid surface tension	=	3.3	dyne/cm
tray spacing	=	24	inches

C Factor Method

Using the surface tension and tray spacing entered above, use

C	=	430	ft/h
\mathbf{V}_{max}	=	1,261	ft/h
D_{T}	=	8.43	feet

Nomograph Method

$$V_{load}$$
 = 6.67 ft³/s
 D_T - One Pass Tray = 9.5 ft
Two Pass Tray = 7.5 ft

Detailed Method

System factor	=	0.85	
$ ho_{ m V}$ - $ ho_{ m L}$	=	25.8	lb/ft³
$ ext{VD}^*_{ ext{dsg}}$	=	186	gpm/ft²
$\mathrm{VD}_{\mathrm{dsg}}$	=	158.4	gpm/ft ²
CAF_0	=	0.41	ft/s
CAF	=	0.349	ft/s
FPL - One Pass	=	85.5	ft
Two Pass	=	33.75	ft

ıys.

FF	=	0.82	
AAM - One Pass	=	50.65	ft ²
Two Pass	=	34.10	ft^2

The area of the downcomer can be found using Equation 19.18. If either 11% of AAM or double ADM, whichever is smaller.

$$ADM = 9.16 ext{ ft}^2$$
 $ADM / AAM: -One Pass = 0.18$
 $Two Pass = 0.27$
 $ATM - One Pass = 68.98 ext{ ft}^2$
 $Two Pass = 52.43 ext{ ft}^2$
 $ATM = 29.88 ext{ ft}^2$

The larger of the two ATM values is used. In this case, it will be th

$$D_{T}$$
 - One Pass = 9.37 ft
Two Pass = 8.17 ft

Method	Number of Passes	Estimated Diameter (in)
C Factor	-	101
Nomograph	1	114
Nomograph	2	90
Detailed	1	112
Detailed	2	98

AAM or

in the Engineering Data Book as published by the Gas Processors Suppliers Association as a service eets based on the GPSA Engineering Data Book sample calculations, the use of such information is v sonableness of factual or scientific assumptions, studies or conclusions, or merchantability, fitness for mitation, those resulting from lost profits, lost data or business interruption) arising from the use, ina

ather broad assumptions (including but not limited to: temperatures, pressures, compositions, imperia

fications using three methods. Figure 19.14 and input C. Figure 19-14 Equation 19-11 Equation 19-12 Equation 19-13 Figure 19-15 Figure 19-15 Figure 19-16 Figure 19-17 Equation 19-14 Figure 19-18 Equation 19-15 Equation 19-16

Equation 19-17 Equation 19-17 it is less than 11% of AAM, use must be at least 11% of AAM Equation 19-19 Equation 19-20 e ones calculated from Equation 19-19. Equation 19-21 Equation 19-21

ıl curves, site conditions etc) and do not replace detailed and accurate Desig	n Engineering taking into accor

unt actual process conditions, fluid properties, equipment condition or fowling and actual control set-point dead	l-bi

and limitations.

Example 19-4

Find the tray efficiency of the column in Example 19-2.

Figure 19.18 will be used to estimate a plate efficiency. This needs the relative volatility and the viscosity of the key component at average column conditions.

$$Tavg = (Ttop + Tbottom) / 2$$

Tavg 185 °F

It is given that at 185 F, the viscosity of the feed is 0.076 cp and the average α is 1.854.

 μ 0.076 cp α 1.854

To use Figure 19.19, the product of these two is needed.

product 0.141

From the figure, the efficiency was estimated to be 80%. The number of actual trays can be found with this number as follows. The method below counts the reboiler as a stage.

$$N_{travs} = (theoretical trays - 1) / efficiency$$

N_{trays} 25

The sample calculations, equations and spreadsheets presented herein were developed using examples published i While every effort has been made to present accurate and reliable technical information and calculation spreadshe The Calculation Spreadsheets are provided without warranty of any kind including warranties of accuracy or reason to event will the GPA or GPSA and their members be liable for any damages whatsoever (including without lir

These calculation spreadsheets as	re provided to provide a	an "Operational level" of a	accuracy calculation based on ra

Application of 19-4

This will find the tray efficiency of a column.

User-entered data is in BOLD RED

Operating Conditions and Design

$$\begin{array}{ccccccc} T_{top} & = & & \textbf{120} & °F \\ T_{bottom} & = & & \textbf{250} & °F \\ T_{avg} & = & & \textbf{185} & °F \end{array}$$

Tray Efficiency

n the Engineering Data Book as published by the Gas Processors Suppliers Association as a service to the gas procests based on the GPSA Engineering Data Book sample calculations, the use of such information is voluntary and tonableness of factual or scientific assumptions, studies or conclusions, or merchantability, fitness for a particular processing from lost profits, lost data or business interruption) arising from the use, inability to, refer

ther broad assumptions (including but not limited to: temperature	res, pressures, compositions, imperial curves, site

conditions etc) and do not replace detailed and accurate Design Engineering taking into account actual process	s coi

nditions, fluid properties, equipment condition or fowling and actual control set-point dead-band limitations.

Example 19-5

Find the diameter for a packed tower using 2" plastic Pall rings for the column in Example 19-3. The g for that problem are copied below.

Vapor rate $70,418 \text{ ft}^3/\text{h}$ $19.561 \text{ ft}^3/\text{s}$

Vapor density 3 lb/ft³
Liquid rate 1,190 gpm
Liquid density 28.8 lb/ft³
Liquid surface tension 3.3 dyne/cm
tray spacing 24 inches

Also given:

 μ 0.076 cp

 ΔP 0.5 in H₂O/ft packing

From Figure 19.26, the packing factor (F_p) for the specified packing is 26.

F_p 26

Figure 19.27 can now be used. The bottom axis is defined by (L_p / G_p) * sqrt (ρ_v / ρ_L). L_p / G_p can be s

 $M_r = (1190 \text{ gpm} * 18.8 \text{ lb/ft}^3 * 60 \text{ min/h}) / (7.48 \text{ gal/ft}^3)$

M_L 274,909 lb/h

 $M_G = 70,418 \text{ ft}^3/\text{h} * 3 \text{ lb/ft}^3$

 M_{G} 211,254 lb/h

bottom axis of 0.420

Figure 19.27

Using 0.420 on the hottom axis, following the graph up to the specified pressure drop, the left axis can

Osing 0.720 on the bottom axis, following the graph up to the specified pressure drop, the left axis can

The left axis is equal to a large equation that includes Gp, which can be solved for.

left axis 0.024

Gp $1.659 \text{ lb/ft}^{2*}\text{s}$

The cross sectional area of the column can be found by taking the mass of the gas flowrate and dividing by Gp and the conversion between seconds and hours.

Ac 35.37 ft^2

The diameter of the tower can be found using the equation for area of a circle.

 D_{T} 6.71 ft

This would likely be rounded to 7 ft

The sample calculations, equations and spreadsheets presented herein were developed using examples J While every effort has been made to present accurate and reliable technical information and calculation. The Calculation Spreadsheets are provided without warranty of any kind including warranties of accurate In no event will the GPA or GPSA and their members be liable for any damages whatsoever (including These calculation spreadsheets are provided to provide an "Operational level" of accuracy calculation by

iven data substituted with M_L / M_G. be found

Application of 19-5

This will find the diameter of a packed tower.

User-entered data is in BOLD RED.

Operating Conditions and Design

Vapor flow rate =

=

Vapor density =

Liquid rate =

Liquid density =

Liquid surface tension =

tray spacing =

u =

ΔP =

Packing Type =

Diameter

F

 $Mass_{I} =$

Mass_G

Horizontal Axis of Figure 19-27

Vertical Axis of Figure 19-27 =

G_

Ac =

 $D_{T} =$

published in the Engineering Data Book as published by the Gas Processors Suppliers Association as a service 1 spreadsheets based on the GPSA Engineering Data Book sample calculations, the use of such information is acy or reasonableness of factual or scientific assumptions, studies or conclusions, or merchantability, fitness for without limitation, those resulting from lost profits, lost data or business interruption) arising from the use, in pased on rather broad assumptions (including but not limited to: temperatures, pressures, compositions, imper

```
70,418 ft<sup>3</sup>/h
19.561 ft<sup>3</sup>/s
   3
          lb/ft<sup>3</sup>
1,190
          gpm
          lb/ft³
 28.8
 3.3
          dyne/cm
  24
          inches
0.076
          ср
          in H<sub>2</sub>O/ft packing
  0.5
     2" plastic Pall Rings
```

```
26 Figure 19.26

274,909 lb/h

211,254 lb/h

0.420

0.024 Figure 19-27

1.659 lb/ft²*s Figure 19-27

35.368592 ft²

7 ft
```


Example 19-6

Find the optimum heat exchanger for a vertical thermosyphon application given it must produce 40,800 lb/h vapressure of the column is 275 psig, has an isothermal boiling point of 228 F. The energy for the reboiler will be 125 psig. The recirculation ratio should be at least 4:1.

Tube Data

Inner Diameter	0.62 in
Surface Area	0.1963 ft ² /ft
Internal Tube Area	0.302 in ²
Vapor Density	2.27 lb/ft ³
Liquid Viscosity	0.1 cp
Liquid Specific Gravity	0.43

An energy balance should be calculated. Using thermodynamic data:

Enthalpy at 228 F and 290 psia of:

Liquid Butane 241 Btu/lb Vapor Butane 338 Btu/lb

The energy needed to make 40,800 lb/ vapor:

 $Q = m * \Delta H$

Q 3,957,600 Btu/h

To find how much steam is needed:

Enthalpy of steam at given

conditions 868 Btu/lb

m = Q/H

m 4,559 lb/h steam

ΔT 125 °F

The maximum energy flux is 12,000 Btu/ft² A = Q / flux329.8 ft² Α

This is the area that the heat exchanger must provide. Using the specification			
the number of tubes can be found. I'll start using 16 ft, 12 ft, and 10 ft long to	rubes.		
Length	Length of Tube		
16 ft 12	ft 10 ft		
N = required surface area / (length of tube * surface area of tube)		
` ` ` ` ` ` · ` · · · · · · · · · · · ·	tubes 168 tubes		
Using Equation 19.27, the static pressure of the reboiler leg can be found.	1		
$v_v = 1 / \rho_v$			
V			
V _v 0.4405 ft³/lb 0.4405	ft ³ /lb 0.4405 ft ³ /lb		
$v_L = 1 / \rho_L$			
$V_L = 1 / p_L$			
v_{L} 0.0373 ft ³ /lb 0.0373	ft³/lb 0.0373 ft³/lb		
The weight of the recirculated liquid can be found by multiplying the vapor	mass by 4 (the minimum recircula		
M _L 163,200 lb liquid/hr 163,200	lb liquid/hr 163,200 lb liquid/hr		
With this, the total volume of the reboiler outlet can be found.	1		
$V_L = M_L * V_L$			
V_{L} 6082 ft ³ 6082	ft ³ 6082 ft ³		
$V_v = M_v * V_v$			
v v v			
Vv 17,974 ft ³ 17,974	ft ³ 17,974 ft ³		
Total volume 24,056 ft ³ 24,056	ft ³ 24,056 ft ³		

The specific volume of the or	utlet can now be found using the tot	al volume and the total	mass.	
$V_o = V_o / M_o$				
0 0 0				
V _o	0.1179 ft³/lb	$0.1179 \text{ ft}^3/\text{lb}$	0.1179 ft ³ /lb	
Now that v_0 has been obtained, the static pressure of the reboiler		leg can be found using	I ; Eq. 19.27. I	
P	1.59 psi	1.19 psi	0.99 psi	
Now the frictional resistance can be found. When added to the static pressure, this will give the total resistance frictional resistance to flow, the area of flow must be found. This is $a_t = N_t * a'_t / 144$			 give the total resistance	
a_{t}	$0.220 \; \mathrm{ft^2}$	0.294 ft²	$0.352 \mathrm{ft}^2$	
The mass velocity, Gt, can be	e found by dividing the mass flowrate	te by the area of the tul	l pe. I	
G_{t}	926,351 lb/hr * ft²	694,763 lb/hr * ft²	578,969 lb/hr * ft²	
Converting the viscosity unit	s:		l I	
μ	0.242 ft*h/lb	0.242 ft*h/lb	0.242 ft*h/lb	
Converting the diameter of the	ne pipe:			
D	0.052 ft	0.052 ft	0.052 ft	
Now the Reynold's number c	an be found. Re = D * G_t / μ			
Re	197,775	148,331	123,609	
Using a Moody plot, the friction factor can be found.				
f	0.000127 ft ² /in ²	0.000135 ft²/in²	0.0001483	
The average specific gravity	The average specific gravity can be found.			
S _{avg}	0.283	0.283	0.283	
Using Bernoulli's equation th	e pressure drop can be found.			

ΔΡ	2.28 psi	1.02 psi	0.65 psi
The total resistance to flow can be c	alculated by adding the fricti	onal resistance and stat	tic resistance.
Total ΔP	3.87 psi	2.21 psi	1.64 psi
The driving force can be calculated:			
	2.98 psi	2.24 psi	1.86 psi
The difference in the driving force a	nd resistance to flow determine	ines whether or not the	flow will go into the re
	-0.89 psi	0.02 psi	0.22 psi

The sample calculations, equations and spreadsheets presented herein were developed using examples published. While every effort has been made to present accurate and reliable technical information and calculation spread. The Calculation Spreadsheets are provided without warranty of any kind including warranties of accuracy or real no event will the GPA or GPSA and their members be liable for any damages whatsoever (including without These calculation spreadsheets are provided to provide an "Operational level" of accuracy calculation based on

apor (assume pure butane). The e supplied by saturated steam at

Application of 19-6

This will find the optimum heat exchanger to User-entered data is in BOLD RED.

Operating Conditions and Design

Saturated steam heat supply =

Tube Data

Inner Diameter =

Surface Area =

Internal Tube Area =

Vapor Density =

Liquid Viscosity =

Liquid Specific Gravity

Thermodynamic Data and Energy Balance

Isothermal Boiling Point: =

Column Pressure: =

Enthalpy of bottoms liquid at

specified T, P =

Enthalpy of bottoms vapor at

specified T, P =

Enthalpy of steam at given

conditions =

Maximum Energy Flux =

Q =

m :

 $\Delta T =$

A =

Tube Calculations

g a length,

tion ratio).

GRAPHIC SOLUTION

To find the length where the difference is zer where the curve intersects with the y axis to outside the range.

Length of Tubes, ft	Difference
10	
12	
14	
16	
18	
20	
22	

GOAL SEEKING SOLUTION

To find the length where the difference is zer the What-If Analysis button and selecting Go click OK. Cell P34 will show the maximum

Length of Tube, ft	Difference
12.51	0

to flow. To find the

ed in the Engineering Data Book as published by the Gas Processors Suppliers Association as a service sheets based on the GPSA Engineering Data Book sample calculations, the use of such information is easonableness of factual or scientific assumptions, studies or conclusions, or merchantability, fitness f t limitation, those resulting from lost profits, lost data or business interruption) arising from the use, ir 1 rather broad assumptions (including but not limited to: temperatures, pressures, compositions, imper

```
ibe length for a vertical thermosyphon.
     40,800 lb vapor produced/h
                                                         recirculation ratio must be greater than or equal to
           4:1 recirculation ratio
        125 psig
                                                         °F
                                         353
    0.62
             in
  0.1963
             ft<sup>2</sup>/ft
   0.302
             in^2
            lb/ft³
    2.27
    0.1
             cp
    0.43
             °F
                             Isothermal boiling point at column pressure
    228
    290
             psia
             Btu/lb
    241
    338
             Btu/lb
    868
             Btu/lb
  12,000
             Btu/ft<sup>2</sup>
 3,957,600 Btu/h
   4559
             lb/h steam
             °F
                             Log Mean Temperature Difference
    125
   329.8
             ft^2
```

16	ft	Starting assumption
105	tubes	
0.4405	ft³/lb	
0.0373	ft³/lb	
163200	lb liquid/hr	
6,082 17,974	ft³ ft³	
24,056	ft ³	
0.1179	ft³/lb	
1.59	psi	Equation 19-27
0.220	ft ²	
926,351	lb/hr * ft ²	
0.242	ft*h/lb	
0.052	ft	
197,775		
0.000127	ft ² /in ²	Moody plot
0.283		
2.28	psi	
3.87	psi	
2.98	psi	
-0.89	psi	

o, use this curve. Enter a length in cell N64. The table will populate with lengths plus or minus 2 feet and find the maximum length where the required recirculation ratio is assured. If there is no intersect, choose

e to the gas processing industry. All information and calculation formulae has been compiled and edited in voluntary and the GPA and GPSA do not guarantee the accuracy, completeness, efficacy, or timeliness of or a particular purpose, or non-infringement of intellectual property. Inability to, reference to or reliance on the information in this Publication, whether based on warranty, contain it curves, site conditions etc.) and do not replace detailed and accurate Design Engineering taking into accurate Design Engineeri

o 4:1

calculate the difference. F difference value for N64	ind
difference value for N64	ind
calculate the difference. F difference value for N64 e Curve	ind

Example 19.17

Find the oil circulation rate and the composition of the residue gas given the following information. 75 per from 100 mol of the rich gas stream. The absorber will have six theoretical plates, the average temperature and 1000 psig. Assume the lean oil is completely stripped of rich gas components. The feed composition

Component	Mol %
C_1	90.6
C_2	4.3
C_3	3.2
iC_4	0.5
nC ₄	1.0
C_6	0.4

K values can be found from the equilibrium data in Chapter 25, using the average absorber conditions.

Component	K
C_{1}	3.250
C_2	0.900
C_3	0.370
iC_4	0.100
nC_4	0.170
C_6	0.035

From Figure 19.52, A can be found using Ea as .75 (specified efficiency for propane absorption) and n=6

A 0.8

Equation 19.29 can now be used.

 L_0 29.6 mol/h

Now, A can be calculated for the remaining components.

Component	A
$\mathbf{C}_{_{1}}$	0.091
C_2	0.329
C,	0.800

iC ₄	2.960
nC ₄	1.741
C_6	8.457

Now the absorption efficiencies can be determined for each component, using Figure 19.52.

Component	Ea
C_{1}	0.091
C_2	0.329
C_3	0.75
iC_4	0.96
nC_4	0.98
C_6	1

Now, the Ea value can be used to solve Eq 19.30 for the outlet composition of the lean gas.

Component	$\mathbf{Y}_{_{1}}$
C_1	82.36
C_2	2.89
C_3	0.80
iC ₄	0.02
nC_4	0.02
C_6	0.00

Now the moles of each component in the rich oil, I, can be calculated by steady state material balance.

Component	I
$\mathbf{C}_{_{1}}$	8.24
C_2	1.41
C_3	2.40
iC ₄	0.48
nC_4	0.98
C_6	0.40

All the calculated properties are summarized in a table below.

Component	Mol %	K	A	Ea	Y1	I
C_1	90.6	3.250	0.091	0.091	82.36	8.24
C_2	4.3	0.900	0.329	0.329	2.89	1.41
C_3	3.2	0.370	0.800	0.75	0.80	2.40

iC ₄	0.5	0.100	2.960	0.96	0.02	0.48	
nC_4	1.0	0.170	1.741	0.98	0.02	0.98	
C_6	0.4	0.035	8.457	1	0.00	0.40	
TOTAL	100.0				86.08	13.92	

The sample calculations, equations and spreadsheets presented herein were developed using examples pu While every effort has been made to present accurate and reliable technical information and calculation s The Calculation Spreadsheets are provided without warranty of any kind including warranties of accuracy In no event will the GPA or GPSA and their members be liable for any damages whatsoever (including w These calculation spreadsheets are provided to provide an "Operational level" of accuracy calculation based on the sample of the sample

ercent of the propane needs to be removed are and pressure of the absorber are 104 F is given below.

(specified trays).

Application of 19.17

This will find the oil recirculation racompletely stripped.

User-entered data is in BOLD RE

Component	Mol %
C_1	90.6
C_2	4.3
C_3	3.2
iC_4	0.5
nC_4	1.0
C_6	0.4

K values can be found from the eq

Co	component C_1 C_2 C_3 iC_4 nC_4 C_6	K 3.250 0.900 0.370 0.210 0.170 0.035
$\begin{matrix} A \\ L_0 \end{matrix}$	= =	0.8 29.6
Co	omponent	A
	C_1	0.091
	C_2	0.329
	C_3	0.800
	iC ₄	1.410
	nC_4	1.741
	C_6	8.457
Co	omponent	Ea

C_{1}	0.091
C_2	0.329
C_3	0.75
iC_4	0.96
nC_4	0.985
C_6	1
Component	\mathbf{Y}_{1}
C_{1}	82.36
C_2	2.89
C_3	0.80
iC_4	0.02
nC_4	0.01
C_6	0.00
Component	1
C_{1}	8.24
C_2	1.41
C_3	2.40
iC_4	0.48
nC_4	0.99
C_6	0.40

All the calculated properties are sur

Component	Mol %
C_1	90.6
C_2	4.3
C_3	3.2
iC ₄	0.5
nC_4	1.0
C_6	0.4
Total	100.0

blished in the Engineering Data Book as published by the Gas Processors Suppliers Association as a serv preadsheets based on the GPSA Engineering Data Book sample calculations, the use of such information y or reasonableness of factual or scientific assumptions, studies or conclusions, or merchantability, fitnes ithout limitation, those resulting from lost profits, lost data or business interruption) arising from the use sed on rather broad assumptions (including but not limited to: temperatures, pressures, compositions, imp

Figure 19-52

Equation 19-30

nmarized in a table below.

K	A	Ea	Y1	l
3.250	0.091	0.091	82.36	8.24
0.900	0.329	0.329	2.89	1.41
0.370	0.800	0.75	0.80	2.40
0.210	1.410	0.96	0.02	0.48
0.170	1.741	0.985	0.01	0.99
0.035	8.457	1_	0.00	0.40
			86.1	13.9

rice to the gas processing industry. All information and calculation formulae has been compiled and edited in cool is voluntary and the GPA and GPSA do not guarantee the accuracy, completeness, efficacy, or timeliness of such is for a particular purpose, or non-infringement of intellectual property.

, inability to, reference to or reliance on the information in this Publication, whether based on warranty, contract, t perial curves, site conditions etc) and do not replace detailed and accurate Design Engineering taking into account

peration with Gas Processors Association (GPA). information. Reference herein to any specific commercial product, calculation method, process, or service by trad

ort or any other legal theory and whether or not advised of the possibility of such damages. actual process conditions, fluid properties, equipment condition or fowling and actual control set-point dead-band

le-name, trademark, and service mark manufacturer or otherwise does not constitute or imply endorsement, recom
l limitations.

Example 19-8

Determine the number of theoretical stages given the following information. Sour water containing 2500 pp ppmw. Enough energy is provided by the reboiler to produce .75 lb steam per gallon feed. The feed rate is 1 operates at 21 psia. First, an overall material balance will be performed using the given specifications.

The feed will be converted to mass flowrate.

Now the mass of overhead steam can be calculated using the given specification.

Overhead steam 450 lb/h

Now the overall steady state material balance can be done, using the specifications given.

		Overhead	Bottoms
	Feed (lb/h)	(lb/h)	(lb/h)
H_2S	12.495	12.488	0.007
H_2O	4,985.505	450.000	4,535.505
total	4,998.000	462.488	4,535.512

The fraction of H₂S stripped can be found by dividing the H₂S in the overhead by the H₂S in the feed.

In order to estimate the top temperature, the fraction of water in the overhead and the partial pressure of water in the overhead need to be found.

Fraction of H₂O in overhead

0.973

Partial pressure of H_2O = fraction of H_2O * pressure

20.433 psi

Using the steam tables from Chapter 24, the temperature of the top was estimated to be 229 °F.

Now that the temperature is known, the K value for H_2S can be obtained. K = H / P where H is Henry's Lav

From Figure 19.53:

T (°F)	H, H_2S	(psia)
10	0	11,000
20	0	18,200
30	0	26,000

At 229 °F, the Henry's constant was interpolated and found to be 2.05 104.

Now the moles of vapor leaving the top tray can be found using the masses from the material balance and the

The same can be done for the moles of liquid leaving the top tray.

Now the stripping factor can be found. ST = K * V / L

$$S_T$$
 89.29

Now various values of Es, the efficiency, can be calculated assuming multiple values of m.

1.00000

m Es 1 0.98892 2 0.99988

In order to get the required H₂S removal fraction, 2 theoretical trays are needed.

3

The sample calculations, equations and spreadsheets presented herein were developed using examples publi While every effort has been made to present accurate and reliable technical information and calculation spre The Calculation Spreadsheets are provided without warranty of any kind including warranties of accuracy o In no event will the GPA or GPSA and their members be liable for any damages whatsoever (including with These calculation spreadsheets are provided to provide an "Operational level" of accuracy calculation based

shed in the Engineering Data Book as published by the Gas Processors Supplier adsheets based on the GPSA Engineering Data Book sample calculations, the user reasonableness of factual or scientific assumptions, studies or conclusions, or sout limitation, those resulting from lost profits, lost data or business interruption on rather broad assumptions (including but not limited to: temperatures, pressu

Application of 19-8 This will calculate the number of theoretical stages needed to strip H_2S from sour water.

User-entered data is in BOLD RED.

Feed	=	10	gpm	
	=	4,998	lb/h	
H ₂ S Concentration, inlet	=	2,500	ppmw	
outlet	=	1.5	ppmw	
operating pressure	=	21	psia	typically between 24.7 to 29.7
steam produced per gallon feed	=	0.75	lb	

Mass Balance

Overhead steam 450 lb/h

_	Feed (lb/h)	Overhead (lb/h)	Bottoms (lb/h)
H_2S	12.495	12.488	0.007
$\mathrm{H_{2}O}$	4,985.505	450.000	4,535.505
total	4,998.000	462.488	4,535.512
Fraction H ₂ S Stripped	=	0.9994	
Mass Fraction H ₂ O in Overhead	=	0.973	
Partial Pressure H ₂ O	=	20 433	nsi

Stripping Calculation

Using the steam tables from Chapter 24, estimate the temperature of the top and enter it below.

T_{top}	=	229	°F	
Н	=	20,575	psia	Figure 19-53
K	=	979.8		
V	=	25.37	mol	
L	=	277.34	mol	
S_{T}	=	89.615		Equation 19-31
	m	E_s		Equation 19-32

1	0.98896	
2	0.99988	
3	1.00000	Required fraction
4	1.00000	0.9994
5	1.00000	

s Association as a service to the gas processing industry. All information and calculation formulae has been con se of such information is voluntary and the GPA and GPSA do not guarantee the accuracy, completeness, efficac merchantability, fitness for a particular purpose, or non-infringement of intellectual property.

¹⁾ arising from the use, inability to, reference to or reliance on the information in this Publication, whether based res, compositions, imperial curves, site conditions etc) and do not replace detailed and accurate Design Enginee

psia

LIMITS

Example 19-2

Optimum operating reflux ratio are 1.2 to 1.3 times the minimum reflux ratio

Example 19-3

Use flooding factor of 0.82 for most systems

Example 19-4

Add an extra tray to tray count for each feed tray and side exchanger

Example 19-5

Pressure drop for packed columns should be 0.20 to 0.60 inches of water per foot of pack depth; 1 inch maximum

Example 19-6

Use recirculation ratios 4:1 or greater

Use the maximum allowable flux when initially determining reboiler surface area

Example 19-7

Use average absorption factor determined by Kremser and Brown, eqn. 19-28,29

Example 19-8

Typical operating conditions:

Pressure 10-15 psig Feed Temp. 200-230 °F Bottoms Temp. 240-250 °F

Reboil Heat 1000-2000 Btu/gal Residual H2S 0.5-2.0 ppmw

The sample calculations, equations and spreadsheets presented herein were developed using examples published i While every effort has been made to present accurate and reliable technical information and calculation spreadsheets. The Calculation Spreadsheets are provided without warranty of any kind including warranties of accuracy or reason no event will the GPA or GPSA and their members be liable for any damages whatsoever (including without lire These calculation spreadsheets are provided to provide an "Operational level" of accuracy calculation based on ra

