GATE 2022 IN 36

EE23BTECH11065 - prem sagar

Question:

A signal $V_{in}(t)$ shown is applied from t=0ms to t=6ms to the circuit shown Given the intial voltage across capacitor is 0.3V, and that the diode is ideal, the open circuit voltage $V_{out}(t)$ at t=5ms is

Fig. 1.

- 1) 0.3V
- 2) 0.6V
- 3) 0.7V
- 4) 1.0V

(GATE 2022 IN 36)

Solution:

Symbol	Value	Description
$V_{in}\left(t ight)$		input signal
$V_{c}\left(t\right)$		voltage across capacitor
$V_{c}\left(0\right)$	0.3V	intial voltage across capacitor
$v_{out}(t)$		open circuit voltage
V_D		Voltage across diode
I_D		Diode current
I_S		Saturation current
V_T	kt q	Thermal voltage
TABLE 1		

INPUT PARAMETERS

the circuit is a positive peak detector circuit

$$I_D = I_S \left(e^{\frac{V_D}{V_T}} - 1 \right) \tag{1}$$

At t=3ms; $V_D > 0$

: diode is forward biased

(2)

$$V_{out}(t) = V_c(t) \tag{3}$$

$$=1V\tag{4}$$

After t > 3ms; $V_D < 0$ \therefore diode is reverse biased the capacitor voltage remains at 1V \therefore at t=5ms

$$V_{out}(t) = 1V (5)$$

Fig. 1.