Page No.: 2

Listing of the Claims:

The listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently Amended) A eompounds compound of formula I:

I

wherein:

R is selected from:

- 1) H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃₋₆ cycloalkyl, and heterocycle, unsubstituted or substituted with one or more substituents independently selected from:
 - a) C₁₋₆ alkyl,
 - b) C₃₋₆ cycloalkyl,
 - c) aryl, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,
 - d) heteroaryl, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,
 - e) heterocycle, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,
 - f) $(F)_pC_{1-3}$ alkyl,
 - g) halogen,
 - h) OR^4 .
 - i) $O(CH_2)_S OR^4$
 - j) CO_2R^4 .
 - k) $(CO)NR^{10}R^{11}$.

Page No.: 3

- I) $O(CO)NR^{10}R^{11}$.
- m) $N(R^4)(CO)NR^{10}R^{11}$.
- n) $N(R^{10})(CO)R^{11}$.
- o) $N(R^{10})(CO)OR^{11}$.
- p) $SO_2NR^{10}R^{11}$.
- q) $N(R^{10}) SO_2R^{11}$,
- r) $S(O)_m R^{10}$,
- s) CN,
- $NR^{10}R^{11}$,
- u) $N(R^{10})(CO)NR^4R^{11}$, and
- v) $O(CO)R^4$; and
- aryl or heteroaryl, unsubstituted or substituted with one or more substituents independently selected from:
 - a) C₁₋₆ alkyl,
 - b) C₃₋₆ cycloalkyl,
 - c) aryl, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,
 - d) heteroaryl, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,
 - e) heterocycle, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,
 - f) $(F)_pC_{1-3}$ alkyl,
 - g) halogen,
 - h) OR^4 .
 - i) $O(CH2)_sOR^4$,
 - j) CO_2R^4
 - k) $(CO)NR^{10}R^{11}$.
 - I) $O(CO)NR^{10}R^{11}$.
 - m) $N(R^4)(CO)NR^{10}R^{11}$.
 - n) $N(R^{10})(CO)R^{11}$.
 - o) $N(R^{10})(CO)OR^{11}$.
 - p) $SO_2NR^{10}R^{11}$.
 - q) $N(R^{10}) SO_2 R^{11}$.
 - r) $S(O)_m R^{10}$,
 - s) CN,

Page No.: 4

- NR¹⁰R¹¹. t)
- N(R¹⁰)(CO)NR⁴R¹¹, and u)
- O(CO)R4; and v)

$\ensuremath{\text{R}}^2$ is independently selected from H and:

- 1) C₁₋₆ alkyl,
- 2) C₃₋₆ cycloalkyl,
- aryl, unsubstituted or substituted with 1-5 substituents where the substituents are independently 3) selected from R⁴,
- heteroaryl, unsubstituted or substituted with 1-5 substituents where the substituents are 4) independently selected from R⁴,
- heterocycle, unsubstituted or substituted with 1-5 substituents where the substituents are 5) independently selected from R⁴,
- $(F)_pC_{1-3}$ alkyl, 6)
- halogen, 7)
- OR⁴. 8)
- $O(CH_2)_sOR^4$ 9)
- CO_2R^4 10)
- $(CO)NR^{10}R^{11}$. 11)
- $O(CO)NR^{10}R^{11}$. 12)
- $N(R^4)(CO)NR^{10}R^{11}$. 13)
- $N(R^{10})(CO)R^{11}$ 14)
- $N(R^{10})(CO)OR^{11}$. 15)
- SO2NR¹⁰R¹¹, 16)
- $N(R^{10}) SO_2R^{11}$. 17)
- $S(O)_{m}R^{10}$, 18)
- CN, 19)
- $NR^{10}R^{11}$, 20)
- $N(R^{10})(CO)NR^4R^{11}$, and 21)
- $O(CO)R^4$; 22)

R is selected from:

Page No.: 5

1) H, C₀-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃₋₆ cycloalkyl and heterocycle, unsubstituted or substituted with one or more substituents independently selected from:

- a) C₁₋₆ alkyl,
- b) C₃₋₆ cycloalkyl,
- aryl, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,
- d) heteroaryl, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,
- e) heterocycle, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,
- f) $(F)_pC_{1-3}$ alkyl,
- g) halogen,
- h) OR^4
- i) $O(CH_2)_sOR^4$
- j) CO_2R^4
- k) $(CO)NR^{10}R^{11}$.
- I) $O(CO)NR^{10}R^{11}$.
- m) $N(R^4)(CO)NR^{10}R^{11}$.
- n) $N(R^{10})(CO)R^{11}$.
- o) $N(R^{10})(CO)OR^{11}$.
- p) $SO_2NR^{10}R^{11}$,
- q) $N(R^{10}) SO_2R^{11}$,
- r) $S(O)_{m}R^{10}$,
- s) CN,
- t) $NR^{10}R^{11}$,
- u) $N(R^{10})(CO)NR^4R^{11}$,
- v) O(CO)R4; and
- 2) aryl or heteroaryl, unsubstituted or substituted with one or more substituents independently selected from:
 - a) C₁₋₆ alkyl,
 - b) C₃₋₆ cycloalkyl,
 - c) aryl, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,
 - d) heteroaryl, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,

Page No.: 6

e) heterocycle, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,

- f) $(F)_pC_{1-3}$ alkyl,
- g) halogen,
- h) OR^4 .
- i) $O(CH_2)_sOR^4$
- j) CO_2R^4
- k) $(CO)NR^{10}R^{11}$.
- I) $O(CO)NR^{10}R^{11}$,
- m) $N(R^4)(CO)NR^{10}R^{11}$.
- n) $N(R^{10})(CO)R^{11}$.
- o) $N(R^{10})(CO)OR^{11}$,
- p) $SO_2NR^{10}R^{11}$.
- q) $N(R^{10}) SO_2 R^{11}$.
- r) $S(O)_m R^{10}$,
- s) CN,
- t) $NR^{10}R^{11}$,
- u) $N(R^{10})(CO)NR^4R^{11}$, and
- v) $O(CO)R^4$;

 R^4 is selected from: H, C_{1-6} alkyl, $(F)_pC_{1-6}$ alkyl, C_{3-6} cycloalkyl, aryl, heteroaryl and benzyl, unsubstituted or substituted with halogen, hydroxy or C_{1} - C_{6} alkoxy;

 R^5 is independently selected from H, substituted or unsubstituted C₁-C₆ alkyl, C₃₋₆ cycloalkyl, aryl, heteroaryl, OR^4 , $N(R^4)_2$, CO_2R^4 and $(F)_pC_{1-6}$ alkyl;

W is O, NR^4 or $C(R^4)_2$;

X is C or S;

Y is O, (R⁴)₂, NCN, NSO₂CH₃ or NCONH₂, or Y is O₂ when X is S;

 R^3 is independently selected from H, substituted or unsubstituted C_1 - C_3 alkyl, CN and CO_2R^4 ;

 $R^{\mbox{\scriptsize 6}}$ is independently selected from H and:

Page No.: 7

- a) C₁₋₆ alkyl,
- b) C₃₋₆ cycloalkyl,
- c) aryl, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,
- d) heteroaryl, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,
- e) heterocycle, unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R⁴,
- f) $(F)_pC_{1-3}$ alkyl,
- g) halogen,
- h) OR^{4}
- i) $O(CH_2)_sOR^4$
- j) CO_2R^4
- k) $(CO)NR^{10}R^{11}$.
- I) $O(CO)NR^{10}R^{11}$.
- m) $N(R^4)(CO)NR^{10}R^{11}$.
- n) $N(R^{10})(CO)R^{11}$,
- o) $N(R^{10})(CO)OR^{11}$.
- p) $SO_2NR^{10}R^{11}$.
- q) $N(R^{10}) SO_2 R^{11}$,
- r) $S(O)_m R^{10}$,
- s) CN,
- t) $NR^{10}R^{11}$,
- u) $N(R^{10})(CO)NR^4R^{11}$, and
- V) O(CO)R⁴;

 R^{10} and R^{11} are independently selected from: H, C_{1-6} alkyl, $(F)_pC_{1-6}$ alkyl, C_{3-6} cycloalkyl, aryl, heteroaryl and benzyl, unsubstituted or substituted with halogen, hydroxy or C_{1} - C_{6} alkoxy, where R^{10} and R^{11} may be joined together to form a ring selected from: azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl and morpholinyl, which is unsubstituted or substituted with 1-5 substituents where the substituents are independently selected from R^4 ;

G-J is selected from: N, N-C(R⁵)₂, C=C(R⁵), C=N; C(R⁵), C(R⁵)-C(R⁵)₂, C(R⁵)-C(R⁵)₂-C(R⁵)₂, C=C(R⁵)-C(R⁵)₂, C(R⁵)-C(R⁵)₂-C(R⁵)₂-C(R⁵)₂-C(R⁵)₂-C(R⁵)₂-C(R⁵)-C(R⁵

Q, T, U and V are each independently a carbon atom or a nitrogen atom wherein at least one but no more than three of Q, T, U and V are nitrogen atoms, and wherein when any of Q, T, U, or V is a carbon atom it is unsubstituted or substituted where the substituents are independently selected from R^6 ;

```
p is 0 to 2q+1, for a substituent with q carbons; m is 0, 1 or 2; n is 0 or 1; s is 1, 2 or 3;
```

2. The compound of claim 1 of the formula Ia:

$$(R^2)_{1-4}$$
 $(R^3)_{1-9}$
 $(R^3)_{1-9}$

and pharmaceutically acceptable salts and individual diastereomers thereof.

- 3. The compound of claim 2, wherein R⁷ is phenyl, unsubstituted or substituted with one or substituents independently selected from:
 - a) C₁₋₆ alkyl,
 - b) OH,
 - c) OR^5 ,
 - d) halogen,
 - e) CO_2R^4 ,
 - f) $S(O)_m R^5$,
 - g) $N(R^4)_2$, and
 - j) CN,

- 4. The compound of claim 2, wherein R⁷ is heteroaryl, unsubstituted or substituted with one or substituents independently selected from:
 - a) C₁₋₆ alkyl,
 - b) OH,
 - c) OR^5 ,
 - d) halogen,
 - e) CO_2R^4 ,

Page No.: 10

f)
$$S(O)_m R^5$$
,

g)
$$N(R^4)_2$$
, and

and pharmaceutically acceptable salts and individual diastereomers thereof.

The compound of claim 2, wherein R7 is selected from H and C1-C6 alkyl, C1-C6 5. alkenyl, C1-C6 alkynyl, C3-C6 cycloalkyl, unsubstituted or substituted with one or substituents independently selected from:

- a) C₁₋₆ alkyl,
- C₁₋₆ alkoxy, b)
- fluorine, c)
- d) HO,
- OR^5 , e)
- CO_2R^4 , f)
- $CON(R^4)_2$, g)
- $S(O)_m R^5$, and h)
- $N(R^4)_2$; and i)

and pharmaceutically acceptable salts and individual diastereomers thereof.

The compound of claim 2, wherein R⁷ is heterocycle, unsubstituted or substituted with 6. one or substituents independently selected from:

- C₁₋₆ alkyl, a)
- C₁₋₆ alkoxy, b)
- fluorine, c)
- d) HO,
- OR⁵, e)
- CO_2R^4 , f)
- $CON(R^4)_2$, g)
- $S(O)_m R^5$, and h)
- $N(R^4)_2$; and i)

and pharmaceutically acceptable salts and individual diastereomers thereof.

7. The compound of claim 1 of the formula Ib:

$$(R^{2})_{1-4}$$
 $(R^{1})_{1-4}$
 $(R^{3})_{1-9}$
 $(R^{3})_{1-9$

and pharmaceutically acceptable salts and individual diastereomers thereof.

8. The compound of claim 1 of the formula Ic:

$$(R^{2})_{1-4} \xrightarrow{R^{7}} O \xrightarrow{H} X - N \xrightarrow{(R^{3})_{1-9}} J \xrightarrow{Q} V$$

$$(R^{3})_{1-9} \xrightarrow{V} O \xrightarrow{R^{7}} O \xrightarrow{Ic} O$$

$$(R^{2})_{1-4} \xrightarrow{R^{1}} O \xrightarrow{(R^{2})_{1-4}} CH_{2} - X - N \xrightarrow{(R^{3})_{1-9}} G \xrightarrow{(R^{3})_{1-9}} NH$$

9. The compound of claim 1 of the formula ld:

Id

and pharmaceutically acceptable salts and individual diastereomers thereof.

10. A compound selected from:

- A pharmaceutical composition which comprises an inert carrier and the compound of 11. Claim 1.
- A method for antagonism of CGRP receptor activity in a mammal which comprises the 12. administration of an effective amount of the compound of Claim 1.

13. A method for treating, controlling, ameliorating or reducing the risk of headache, migraine or cluster headache in a mammalian patient in need of such which comprises administering to the patient a therapeutically effective amount of the compound of Claim 1.

14 -57. (Canceled)