

SOM Thoughts on Bilingual Lexical Development

Benjamin Zinszer & Ping Li Pennsylvania State University

18 May 2011

Brain, Language, and **Computation Lab**

Cognitive and Neural correlates of language development, focusing on bilingualism:

- **Behavioral Study**
 - **Picture Naming**
 - L2 Acquisition Training
- **Functional Neuroimaging**
 - **fMRI**
 - **fNIRS**
- Computational Modeling 🔶

Self Organizing Feature Maps (SOM)

Semantic Map

• SOM: DevLex & DevLex-II (Li, Zhao, & MacWhinney, 2007)

Monolingual lexical development

Observations in Lexical Attrition

• "die idea der jungen Leute" (Hutz, 2004)

"On chasto sprashivajet, chtoby ya gotovila."
 (Schmitt, 2009)

• "Das ist feine mit mir." (Hutz, 2004) ("Damit bin ich einverstanden.")

Observations in Lexical Attrition

Hutz, 2004

The Model – Architecture & Parameters

- Phonological [40x40]
 & Semantic [30x30] SOMs
 - Gaussian neighborhoods
 - Dynamically decreasing radius (15 to 1)
 - Alpha 0.2 (constant)
- Two sets of saturating Hebbian connections
 - Every P-node to every
 S-node and vice versa (2.88 million)
 - Beta 0.1 (constant)
 - Saturation at 100 (constant)

The Model – Training

- Stimuli 116 English & Chinese translation equivalents
 - 63-dimensional phonological vector (PatPho)
 - 200-dimensional semantic vector (CTM)

- Age of Onset (AoO) conditions: 50, 150, 250, 350
- 500 epochs of attrition for all models

The Model – Testing

- 1st map activated with a stimulus
- Activation propagated via Hebbian connections
- Activation measured on 2nd map
- Comprehension:
 P-Map → S-Map
- Production:
 S-Map → P-Map

The Model – Results

The Model - Results

The Model - Results

	Production		Comprehension	
AoO	R	р	R	р
50	-0.59	<0.001	-0.95	<0.001
150	-0.95	<0.001	-0.98	<0.001
250	-0.96	<0.001	-0.95	<0.001
350	-0.96	<0.001	-0.97	<0.001
450	-0.95	<0.001	-0.96	<0.001

Discussion

- Dissociated comprehension and production performance
- L1 lexical decay is plausible & orderly
- Domain-general exponential decay may describe change in lexical performance
- Acquisition-like (see Johnson & Newport, 1989) AoA effects in L1 attrition

Opportunities for Collaboration

- Behavioral Validation
 - Identifying and studying bilinguals undergoing L1 change
 - Longitudinal corpora needed for developmental accounts
- Model Elaboration
 - More complex language behaviors than naming (e.g., syntax and morphology)
 - Rich contextual learning and testing

Thanks

The Center for Language Science

