Package 'pmcalibration'

September 6, 2023

Type Package

Title Calibration Curves for Clinical Prediction Models

Version 0.1.0

Maintainer Stephen Rhodes <steverho89@gmail.com>

Description Fit calibrations curves for clinical prediction models and calculate several associated metrics (Eavg, E50, E90, Emax). Ideally predicted probabilities from a prediction model should align with observed probabilities. Calibration curves relate predicted probabilities (or a transformation thereof) to observed outcomes via a flexible non-linear smoothing function. 'pmcalibration' allows users to choose between several smoothers (regression splines, generalized additive models/GAMs, lowess, loess). Both binary and time-to-event outcomes are supported. See Van Calster et al. (2016) <doi:10.1016/j.jclinepi.2015.12.005>;
Austin and Steyerberg (2019) <doi:10.1002/sim.8281>;
Austin et al. (2020) <doi:10.1002/sim.8570>.

License GPL-3
Encoding UTF-8

RoxygenNote 7.2.3

URL https://github.com/stephenrho/pmcalibration

BugReports https://github.com/stephenrho/pmcalibration/issues

Imports Hmisc, MASS, checkmate, chk, mgcv, splines, graphics, stats, methods, survival, pbapply, parallel

Suggests knitr, rmarkdown, data.table, ggplot2, rms, simsurv

VignetteBuilder knitr

NeedsCompilation no

Author Stephen Rhodes [aut, cre, cph]

Repository CRAN

Date/Publication 2023-09-06 17:50:02 UTC

2 cal_metrics

R topics documented:

	cs			
get_c			 	3
logist	eal		 	2
plot.p	alibration		 	4
pmca	ation		 	6
print.	stic_cal		 	8
print.	stic_calsummary		 	Ģ
print.	calibration		 	10
print.	calibrationsummary		 	10
sim_c			 	11
sumn	.logistic_cal		 	12
sumn	pmcalibration		 	12
				14

cal_metrics

Calculate calibration metrics from calibration curve

Description

Calculates metrics used for summarizing calibration curves. See Austin and Steyerberg (2019)

Usage

Index

```
cal_metrics(p, p_c)
```

Arguments

p predicted probabilities

p_c probabilities from the calibration curve

Value

a named vector of metrics based on absolute difference between predicted and calibration curve implied probabilities $d = abs(p - p_c)$

- Eavg average absolute difference (aka integrated calibration index or ICI)
- E50 median absolute difference
- E90 90th percentile absolute difference
- Emax maximum absolute difference
- ECI average squared difference. Estimated calibration index (Van Hoorde et al. 2015)

get_cc 3

References

Austin PC, Steyerberg EW. (2019) The Integrated Calibration Index (ICI) and related metrics for quantifying the calibration of logistic regression models. *Statistics in Medicine*. 38, pp. 1–15. https://doi.org/10.1002/sim.8281

Van Hoorde, K., Van Huffel, S., Timmerman, D., Bourne, T., Van Calster, B. (2015). A spline-based tool to assess and visualize the calibration of multiclass risk predictions. *Journal of Biomedical Informatics*, 54, pp. 283-93

Van Calster, B., Nieboer, D., Vergouwe, Y., De Cock, B., Pencina M., Steyerberg E.W. (2016). A calibration hierarchy for risk models was defined: from utopia to empirical data. *Journal of Clinical Epidemiology*, 74, pp. 167-176

Examples

```
library(pmcalibration)

LP <- rnorm(100) # linear predictor
p_c <- invlogit(LP) # actual probabilities
p <- invlogit(LP*1.3) # predicted probabilities that are miscalibrated

cal_metrics(p = p, p_c = p_c)</pre>
```

get_cc

Extract plot data from pmcalibration object

Description

Extract plot data from pmcalibration object

Usage

```
get_cc(x, conf_level = 0.95)
```

Arguments

x pmcalibration object

conf_level width of the confidence interval (0.95 gives 95% CI). Ignored if call to pmcalibration didn't request confidence intervals

Value

data frame for plotting with 4 columns

- p values for the x-axis (predicted probabilities note these are *not* from your data and are only used for plotting)
- p_c probability implied by the calibration curve given p
- lower and upper bounds of the confidence interval

4 logistic_cal

Examples

```
library(pmcalibration)
# simulate some data with a binary outcome
n <- 500
dat <- sim_dat(N = n, a1 = .5, a3 = .2)
head(dat)
# predictions
p \leftarrow with(dat, invlogit(.5 + x1 + x2 + x1*x2*.1))
# fit calibration curve
cal <- pmcalibration(y = dat$y, p = p, smooth = "gam", k = 20, ci = "pw")</pre>
cplot <- get_cc(cal, conf_level = .95)</pre>
head(cplot)
if (requireNamespace("ggplot2", quietly = TRUE)){
library(ggplot2)
ggplot(cplot, aes(x = p, y = p_c, ymin=lower, ymax=upper)) +
  geom_abline(intercept = 0, slope = 1, lty=2) +
  geom_line() +
  geom_ribbon(alpha = 1/4) +
  lims(x=c(0,1), y=c(0,1))
}
```

logistic_cal

Run logistic calibration

Description

Assess 'weak' calibration (see, e.g., Van Calster et al. 2019) via calibration intercept and calibration slope.

Usage

```
logistic_cal(y, p)
```

Arguments

y binary outcome

p predicted probabilities (these will be logit transformed)

Value

an object of class logistic_cal containing glm results for calculating calibration intercept and calibration slope

References

Van Calster, B., McLernon, D. J., Van Smeden, M., Wynants, L., & Steyerberg, E. W. (2019). Calibration: the Achilles heel of predictive analytics. BMC medicine, 17(1), 1-7.

plot.pmcalibration 5

Examples

```
library(pmcalibration)
# simulate some data
n <- 500
dat <- sim_dat(N = n, a1 = .5, a3 = .2)
# predictions
p <- with(dat, invlogit(.5 + x1 + x2 + x1*x2*.1))
logistic_cal(y = dat$y, p = p)</pre>
```

plot.pmcalibration

Plot a calibration curve (pmcalibration object)

Description

This is for a quick and dirty calibration curve plot. Alternatively you can use get_cc() to get the data required to plot the calibration curve.

Usage

```
## S3 method for class 'pmcalibration'
plot(x, conf_level = 0.95, ...)
```

Arguments

```
    x a pmcalibration curve
    conf_level width of the confidence interval (0.95 gives 95% CI). Ignored if call to pmcalibration didn't request confidence intervals
    ... other args for plot() (lim and lab can be specified)
```

Value

No return value, called for side effects

Examples

```
library(pmcalibration)
# simulate some data with a binary outcome
n <- 500
dat <- sim_dat(N = n, a1 = .5, a3 = .2)
head(dat)
# predictions
p <- with(dat, invlogit(.5 + x1 + x2 + x1*x2*.1))
# fit calibration curve
cal <- pmcalibration(y = dat$y, p = p, smooth = "gam", k = 20, ci = "pw")
plot(cal)</pre>
```

6 pmcalibration

pmcalibration

Create a calibration curve

Description

Assess calibration of clinical prediction models (agreement between predicted and observed probabilities) via different smooths. Binary and time-to-event outcomes are supported.

Usage

```
pmcalibration(
 у,
  smooth = c("none", "ns", "bs", "rcs", "gam", "lowess", "loess"),
  time = NULL,
  ci = c("sim", "boot", "pw", "none"),
  n = 1000,
  transf = NULL,
  eval = 100,
)
```

Arguments

У

a binary or a right-censored time-to-event outcome. Latter must be an object created via survival::Surv.

predicted probabilities from a clinical prediction model. For a time-to-event object time must be specified and p are predicted probabilities of the outcome happening by time units of time follow-up.

smooth

what smooth to use. Available options:

- 'rcs' = restricted cubic spline using rms::rcs. Optional arguments for this smooth are nk (number of knots; defaults to 5) and knots (knot positions; set by Hmisc::rcs.eval if not specified)
- 'ns' = natural spline using splines::ns. Optional arguments are df (default = 6), knots, Boundary.knots (see ?splines::ns)
- 'bs' = B-spline using splines::bs. Optional arguments are df (default = 6), knots, Boundary.knots (see ?splines::bs)
- 'gam' = generalized additive model via mgcv::gam and mgcv::s. Optional arguments are bs, k, fx, method (see ?mgcv::gam and ?mgcv::s)
- 'lowess' = uses lowess(x, y, iter = 0) based on rms::calibrate. Only for binary outcomes.
- 'loess' = uses loess with all defaults. Only for binary outcomes.
- 'none' = logistic or Cox regression with single predictor variable (for binary outcome performs logistic calibration when transf = "logit"). See logistic_cal

p

pmcalibration 7

'rcs', 'ns', 'bs', and 'none' are fit via glm or survival::coxph and 'gam' is fit via mgcv::gam with family = Binomial(link="logit") for a binary outcome or mgcv::cox.ph when y is time-to-event.

time

what follow up time do the predicted probabilities correspond to? Only used if y is a Surv object

ci

what kind of confidence intervals to compute?

- 'sim' = simulation based inference. Note this is currently only available for binary outcomes. n samples are taken from a multivariate normal distribution with mean vector = coef(mod) and variance covariance = vcov(model).
- 'boot' = bootstrap resampling with n replicates. y and p are sampled with replacement and the calibration curve is reestimated. If knots are specified the same knots are used for each resample (otherwise they are calculated using resampled p or transformation thereof)
- 'pw' = pointwise confidence intervals calculated via the standard errors produced by relevant predict methods. Only for plotting curves; if selected, CIs are not produced for metrics (not available for smooth = 'lowess')

Calibration metrics are calculated using each simulation or boot sample. For both options percentile confidence intervals are returned.

n

number of simulations or bootstrap resamples

transf

transformation to be applied to p prior to fitting calibration curve. Valid options are 'logit', 'cloglog', 'none', or a function (must retain order of p). If unspecified defaults to 'logit' for binary outcomes and 'cloglog' (complementary log-log) for time-to-event outcomes.

eval

number of points (equally spaced between min(p) and max(p)) to evaluate for plotting (0 or NULL = no plotting). Can be a vector of probabilities.

. . .

additional arguments for particular smooths. For ci= 'boot' the user is able to run samples in parallel (using the parallel package) by specifying a cores argument

Value

a pmcalibration object containing calibration metrics and values for plotting

References

Austin P. C., Steyerberg E. W. (2019) The Integrated Calibration Index (ICI) and related metrics for quantifying the calibration of logistic regression models. *Statistics in Medicine*. 38, pp. 1–15. https://doi.org/10.1002/sim.8281

Van Calster, B., Nieboer, D., Vergouwe, Y., De Cock, B., Pencina M., Steyerberg E.W. (2016). A calibration hierarchy for risk models was defined: from utopia to empirical data. *Journal of Clinical Epidemiology*, 74, pp. 167-176. https://doi.org/10.1016/j.jclinepi.2015.12.005

Austin, P. C., Harrell Jr, F. E., & van Klaveren, D. (2020). Graphical calibration curves and the integrated calibration index (ICI) for survival models. *Statistics in Medicine*, 39(21), 2714-2742. https://doi.org/10.1002/sim.8570

8 print.logistic_cal

Examples

```
# binary outcome -----
library(pmcalibration)
# simulate some data
n <- 500
dat <- sim_dat(N = n, a1 = .5, a3 = .2)
head(dat)
# predictions
p \leftarrow with(dat, invlogit(.5 + x1 + x2 + x1*x2*.1))
# fit calibration curve
cal <- pmcalibration(y = daty, p = p, smooth = "gam", k = 20, ci = "pw")
summary(cal)
plot(cal)
# time to event outcome -----
library(pmcalibration)
if (requireNamespace("survival", quietly = TRUE)){
library(survival)
data('transplant', package="survival")
transplant <- na.omit(transplant)</pre>
transplant = subset(transplant, futime > 0)
transplant$ltx <- as.numeric(transplant$event == "ltx")</pre>
# get predictions from coxph model at time = 100
# note that as we are fitting and evaluating the model on the same data
# this is internal calibration (see vignette("internal-validation", package = "pmcalibration"))
cph <- coxph(Surv(futime, ltx) ~ age + sex + abo + year, data = transplant)</pre>
time <- 100
newd <- transplant; newd$futime <- time; newd$ltx <- 1</pre>
p <- 1 - exp(-predict(cph, type = "expected", newdata=newd))</pre>
y <- with(transplant, Surv(futime, ltx))</pre>
cal <- pmcalibration(y = y, p = p, smooth = "rcs", nk=5, ci = "pw", time = time)</pre>
summary(cal)
plot(cal)
}
```

Description

Print a logistic_cal object

Usage

```
## S3 method for class 'logistic_cal'
print(x, digits = 2, conf_level = 0.95, ...)
```

Arguments

```
x a logistic_cal object
digits number of digits to print
```

conf_level width of the confidence interval (0.95 gives 95% CI)

... optional arguments passed to print

Value

prints a summary

Description

Print a logistic_cal summary

Usage

```
## S3 method for class 'logistic_calsummary'
print(x, digits = 2, ...)
```

Arguments

```
x a logistic_calsummary objectdigits number of digits to printignored
```

Value

prints a summary

Description

print a pmcalibration object

Usage

```
## S3 method for class 'pmcalibration'
print(x, digits = 2, conf_level = 0.95, ...)
```

Arguments

```
x a pmcalibration object
digits number of digits to print
```

conf_level width of the confidence interval (0.95 gives 95% CI)

... optional arguments passed to print

Value

prints a summary

print.pmcalibrationsummary

Print summary of pmcalibration object

Description

Print summary of pmcalibration object

Usage

```
## S3 method for class 'pmcalibrationsummary'
print(x, digits = 2, ...)
```

Arguments

x a pmcalibrationsummary objectdigits number of digits to print

... ignored

Value

invisible(x) - prints a summary

sim_dat

sim_dat	Simulate a binary outcome with either a quadratic relationship or interaction

Description

Function for simulating data either with a single 'predictor' variable with a quadratic relationship with logit(p) or two predictors that interact (see references for examples).

Usage

```
sim_dat(N, a1, a2 = NULL, a3 = NULL)
```

Arguments

N	number of observations to simulate
a1	value of the intercept term (in logits). This must be provided along with either a2 or a3.
a2	value of the quadratic coefficient. If specified the linear predictor is simulated as follows: $LP \leftarrow a1 + x1 + a2*x1^2$ where x1 is sampled from a standard normal distribution.
a3	value of the interaction coefficient. If specified the linear predictor is simulated as follows: $LP <- a1 + x1 + x2 + x1*x2*a3$ where x1 and x2 are sampled from independent standard normal distributions.

Value

a simulated data set with N rows. Can be split into 'development' and 'validation' sets.

References

Austin, P. C., & Steyerberg, E. W. (2019). The Integrated Calibration Index (ICI) and related metrics for quantifying the calibration of logistic regression models. Statistics in medicine, 38(21), 4051-4065.

Rhodes, S. (2022, November 4). Using restricted cubic splines to assess the calibration of clinical prediction models: Logit transform predicted probabilities first. https://doi.org/10.31219/osf.io/4n86q

Examples

```
library(pmcalibration)
# simulate some data with a binary outcome
n <- 500
dat <- sim_dat(N = n, a1 = .5, a3 = .2)
head(dat) # LP = linear predictor</pre>
```

```
summary.logistic_cal Summarize a logistic_cal object
```

Description

Summarize a logistic_cal object

Usage

```
## S3 method for class 'logistic_cal'
summary(object, conf_level = 0.95, ...)
```

Arguments

```
object a logistic_cal object
```

conf_level width of the confidence interval (0.95 gives 95% CI)

... ignored

Value

estimates and conf_level*100 confidence intervals for calibration intercept and calibration slope. The former is estimated from a glm (family = binomial("logit")) where the linear predictor (logit(p)) is included as an offset.

```
summary.pmcalibration Summarize a pmcalibration object
```

Description

Summarize a pmcalibration object

Usage

```
## S3 method for class 'pmcalibration'
summary(object, conf_level = 0.95, ...)
```

Arguments

object created with pmcalibration

conf_level width of the confidence interval (0.95 gives 95% CI). Ignored if call to pmcalibration

didn't request confidence intervals

... ignored

summary.pmcalibration 13

Value

prints a summary of calibration metrics. Returns a list of two tables: metrics and plot

Examples

```
library(pmcalibration)
# simulate some data with a binary outcome
n <- 500
dat <- sim_dat(N = n, a1 = .5, a3 = .2)
head(dat)
# predictions
p <- with(dat, invlogit(.5 + x1 + x2 + x1*x2*.1))
# fit calibration curve
cal <- pmcalibration(y = dat$y, p = p, smooth = "gam", k = 20, ci = "pw")
summary(cal)</pre>
```

Index

```
cal_metrics, 2
get_cc, 3
logistic_cal, 4, 6
plot.pmcalibration, 5
pmcalibration, 6
print.logistic_cal, 8
print.logistic_calsummary, 9
print.pmcalibration, 10
print.pmcalibrationsummary, 10
sim_dat, 11
summary.logistic_cal, 12
summary.pmcalibration, 12
```