ODAF: Out-of-Distribution Detection and Fallback for Autonomous Vehicles

Jack, Barney, Weihang, Heramb

Motivation

- What is OOD in general?
 - Testing data point does not belong to the training dataset
- What is OOD for AVs:
 - Unpredictable Actions
 - Environmental Challenges
- What is OOD in our scope
 - Varying weather conditions impacting visual sensors
 - Industry pushing to visual-based ADS
- Learning-based approach does not work well
 - Our approach: experiment with other methods for OOD detection

Pipeline

- 1. Modify camera input with given parameters
- 2. Pass through OOD detection mechanism
- 3. Feed the modified camera input to LBC agent
 - a. State-of-the-Art vision-based ADS
- 4. If OOD, enable fallback mode
 - a. When applying controls, limit throttling and encourage braking

Comparing with Native Weather Parameters

Camera input in native "Heavy Rain" weather in CARLA

Our modification

Camera Input Modification

- Rain
 - Parameters: rain intensity
 - Get randomised image drops from a pool of hard-coded drops
 - Add drops to image such that: number of drops = intensity, alpha for each randomized
- Shade
 - Parameters: shadow intensity
 - Use shadow_intensity as a translucent image with alpha = intensity
 - Combine existing and translucent image
- Haze
 - Parameters: haze intensity
 - Draw a random number of random sized square blocks with white bg and alpa = intensity
 - From centroid of each square, convolute the haze square with image using a edge smoothing algorithm

OOD Detection via Mahalanobis (Maha) Distance

$$d_M(ec x,Q) = \sqrt{(ec x - ec \mu)^\mathsf{T} S^{-1} (ec x - ec \mu)}.$$

- Intuition/summary
- What is the input data?
- Implementation: using covariance matrix, mean vector
- Challenges: too many data points -> extremely slow matrix construction (time complexity O(n^2*m))
- Solution: use PCA model to reduce dimension. Retained 95% of variance
- OOD only if all three images are OOD

OOD Detection via Autoencoders

- **Intuition:** Learning neural networks that capture essential features and discard noise.
- **Structure** (12 layers in total):
 - **Encoder:** 3 linear layers & 3 activation layers.
 - Input: 1D vector of size 147456
 - Output: 1024 features -> 512 features -> 256 features
 - **Decoder:** 3 linear layers & 3 activation layers.
 - Input: 256 features
 - Output: 512 features -> 1024 features -> 147456 features
- Model Use: Trained to contrast with newly fed images for out-of-distribution OOD detection, with a predetermined threshold.
- **Detection:** OOD only if all three images are OOD.

OOD Detection Testing Strategy

Does OOD detection work on unmodified images? (False Negative)

- Tested on all unmodified images
- All images are in distribution!

Does OOD detection work on modified images? (True Positive)

- Using a single sample camera input, tried 50 weather intensities on all weathers
- Result is presented on the next slides

OOD distribution single frame - Maha distance

OOD distribution single frame - Autoencoder

Fallback Method Experimentation Setup

- Testing scenario: lead slowdown
- Testing parameters:
 - o 11 variations of the lead slowdown scenario
 - They do not contain accidents on their own
 - 3 weathers
 - 10 intensities of weather changes
- Running modes for comparison
 - Without weather modification to generate original images (11 configurations)
 - Baseline with modified input but using vanilla LBC (330 configurations)
 - With fallback method using only Mahalanobis Distance (330 configurations)
 - Why not Autoencoders

Results

Baseline

Event metric	Haze	Shade	Rain
Route diversion percentage	0	0	50
Route diversion degree	0	0	15.42
Vehicle collision percentage	100	10	10
Wall collision percentage	0	0	35.45

Maha

Event metric	Haze	Shade	Rain
Route diversion percentage	0	0	4.55
Route diversion degree	0	0	16.61
Vehicle collision percentage	9.09	0.91	1.82
Wall collision percentage	0	0	2.73

Discussion

- OOD-Maha is not good at identifying Hazed images, however Autoencoder is.
- Could experiment more to obtain more reasonable thresholds for determining
 OOD
- ODAF performs 11x better than baseline

Future Work

- 1. To improve robustness, could have a perception module to denoise the image.
- 2. Having a real fallback mode with a safer agent that specializes in parking the car on the road.

Contributions

- Jack
 - Testing and modifying OOD detection method and fallback mode
 - Integrating OOD detection method and fallback mode into pipeline
 - Designing and running experiments
 - Experiment analysis
- Barney
 - Implementation & testing of OOD detectors
 - OOD distribution results analysis & visualization
- Weihang
 - Implementation & testing of OOD detectors
 - OOD distribution results analysis
- Heramb
 - Implementation of image noise modification.
 - o Implement automated pipeline to analyse results from testing