Přednáška #4: **Propojovací sítě**

Typy propojovacích sítí

- (a) Sdílené komunikační médium: sběrnice (Ethernet)
- (b) Přepínané komunikační médium: uzly připojeny k přepínačům

Propojovací sítě s přepínači

- Reprezentace: souvislý graf, kde
 - vrcholy = výpočetní uzly (PE) a přepínače
 - hrany = komunikační linky,
 - každý PE je připojen k 1 přepínači,
 - přepínače propojují PE a/nebo přepínače.

Přímé/nepřímé a pravidelné/nepravidelné propojovací sítě

- (a) Přímé sítě: každý přepínač je připojen aspoň k 1 PE.
- (b)+(c) Nepřímé sítě: některé přepínače jsou připojeny pouze k jiným přepínačům.
- (a)+(b) Pravidelné sítě: topologie propojení tvoří pravidelný zobecnitelný graf.
- (c) Nepravidelné sítě: topologie propojení tvoří náhodný graf.

Zjednodušení obrázků přímých sítí:

Základní pojmy a značení

Abecedy a řetězce

$$d$$
-ární abeceda : $\mathcal{Z}_d = \{0, 1, \dots, d-1\}$

$$n$$
-znakové d -ární řetězce : $\mathcal{Z}_d^n = \{x_{n-1} \dots x_0; x_i \in \mathcal{Z}_d\}$, $n \geq 1$

$$len(x) = délka řetězce x$$

$$x^i = i$$
-násobné zřetězení x

$$rot_j(x_{n-1}...x_0) = x_{j-1}...x_0x_{n-1}...x_j$$

binární abeceda ${\cal B}$

$$\overline{b_i} = 1 - b_1 =$$
inverze bitu b_i

$$\operatorname{neg}_{i}(b) = b_{n-1} \dots b_{i+1} \overline{b_{i}} b_{i-1} \dots b_{0}$$

modulární aritmetika : \oplus_n , \ominus_n

binární logaritmy : \log

Teorie grafů

Grafy a podgrafy

Množina uzlů a hran grafu G: V(G), E(G), N=|V(G)| uvažujeme pouze jednoduché souvislé grafy bez smyček.

Sousední uzly u a $v = \text{hrana } \langle u, v \rangle$.

 $H = \mathbf{podgraf}$ grafu G, $H \subset G$: $V(H) \subset V(G)$ a $E(H) \subset E(G)$.

H = indukovaný podgraf G : maximální podgraf s <math>V(H).

 $H = \mathbf{faktor} \ \mathbf{grafu} \ G: \ V(H) = V(G).$

Klika $U_k = \text{úplný graf o } k$ uzlech.

Stupeň a regularita

Stupeň uzlu $u: \deg_G(u) = \#$ sousedů uzlu u.

Množina stupňů grafu $G: \deg(G) = \{\deg_G(u); u \in V(G)\}.$

Maximální stupeň grafu $G: \triangle(G) = \max(\deg(G))$.

Minimální stupeň grafu $G: \delta(G) = \min(\deg(G))$.

k-regulární graf G: $\triangle(G) = \delta(G) = k$.

 $\check{\mathbf{R}}$ ídký graf : |E(G)| = O(|V(G)|) (stupně uzlů jsou omezeny konstantou).

Hustý graf : $|E(G)| = \omega(|V(G)|)$ (stupně uzlů jsou rostoucí funkcí |V(G)|).

Izomorfizmus : $G_1 \equiv G_2$

Automorfizmus G: každé izomorfní zobrazení G na sebe sama.

Sjednocení a kartézský součin

Sjednocení: $G_1 \cup G_2 = (V(G_1) \cup V(G_2), E(G_1) \cup E(G_2)).$

Kartézský součin $G = G_1 \times G_2$:

$$V(G) = \{(x, y); x \in V(G_1), y \in V(G_2)\}\$$

$$E(G) = \{ \langle (x_1, y), (x_2, y) \rangle; \langle x_1, x_2 \rangle \in E(G_1) \} \cup \{ \langle (x, y_1), (x, y_2) \rangle; \langle y_1, y_2 \rangle \in E(G_2) \}$$

Výrok 1. Kartézský součin je komutativní a asociativní operace:

$$G_1 \times G_2 \equiv G_2 \times G_1$$
 a $(G_1 \times G_2) \times G_3 \equiv G_1 \times (G_2 \times G_3)$.

Značení: $G \times G = G^2$, $G \times G \times G = G^3$, atd.

Uzlová a hranová symetrie

Uzlově symetrický graf : $\forall u_1, u_2 \in V(G) \exists$ automorfizmus f takový, že $f(u_1) = u_2$. (a)

Hranově symetrický graf : $\forall e_1 = \langle u_1, v_1 \rangle, e_2 = \langle u_2, v_2 \rangle \in E(G) \exists$ automorfizmus ftakový, že $f(e_1) = e_2$. (Musí platit i pro $e_2 = \langle v_1, u_1 \rangle$.) (b)

Částečně hranově symetrický graf : \exists rozklad $E(G) = E_1 \cup \ldots \cup E_r$ pro $r \geq 2$ takový, že $\forall \ 1 \leq j \leq r \ \forall \ e_1, e_2 \in E_j \ \exists \ \mathsf{automorfizmus} \ f \ \mathsf{takov\acute{y}}, \ \mathsf{\check{z}e} \ f(e_1) = e_2. \ \mathsf{(a)+(c)}$

(a) uzlove sym.

(b) hranove sym.

(c) castecne hran. sym.

Lemma 2. (1) Jsou-li G_1 a G_2 uzl. sym., pak $G = G_1 \times G_2$ je také uzl. sym.

- (2) Je-li G hranově symetrický, pak G^k je též hranově symetrický pro každé $k \geq 2$.
- (3) Každý hranově symetrický graf je uzlově symetrický.
- (4) Každý uzlově symetrický graf je regulární.
- (5) Cykly K_k a kliky U_k jsou hranově symetrické.

Poznámka: Tato definice hranové symetrie se liší od běžné definice z teorie grafů (viz http://mathworld.wolfram.com/EdgeAutomorphism.html), která není pro propojovací sítě příliš použitelná.

Vzdálenosti a průměr

Procházka, cesta, cyklus v grafu G.

Uzlově disjunktní cesty : $V(P_1(u,v)) \cap V(P_2(x,y)) = \{u,v\} \cap \{x,y\}$

Hranově disjunktní cesty : $E(P_1(u,v)) \cap E(P_2(x,y)) = \emptyset$

Délka cesty P(u,v) : len(P(u,v)) = # hran v P(u,v).

Vzdálenost uzlů u a v: $\operatorname{dist}_G(u,v) = \operatorname{d\'elka}$ nejkratší P(u,v).

Průměrná vzdálenost v N-uzlovém G:

$$\overline{\operatorname{dist}}(G) = \frac{1}{N(N-1)} \sum_{\substack{u,v \\ u \neq v}} \operatorname{dist}_G(u,v).$$

Excentricita uzlu $u : exc(u) = \max_{v \in V(G)} dist_G(u, v)$.

Průměr grafu G: $\operatorname{diam}(G) = \max_{u,v} \operatorname{dist}_G(u,v) = \max_u \operatorname{exc}(u)$.

Poloměr grafu $G: r(G) = \min_{u} exc(u)$.

Souvislost

Uzlový řez: množina uzlů, jejichž odebrání způsobí rozpojení grafu.

Hranový řez: množina hran, jejichž odebrání způsobí rozpojení grafu.

(Uzlová) souvislost grafu $G: \kappa(G) = \text{velikost minimálního}$ uzlového řezu.

Hranová souvislost grafu $G:\lambda(G)=$ velikost **minimálního** hranového řezu.

$$\kappa(G) \le \lambda(G) \le \delta(G)$$

(a)
$$\kappa(G_1) = 1$$
, $\lambda(G_1) = \delta(G_1) = 2$. (b) $\kappa(G_2) = \lambda(G_2) = \delta(G_2) = 3$.

(b)
$$\kappa(G_2) = \lambda(G_2) = \delta(G_2) = 3$$

k-souvislý graf (hranově k-souvislý graf) : $\kappa(G) = k$ ($\lambda(G) = k$)

Optimální souvislost : $\kappa(G) = \lambda(G) = \delta(G)$

Věta 3. (Mengerova) Mezi libovolnými 2 uzly G

 \exists nejméně $\kappa(G)$ uzlově disjunktních a nejméně $\lambda(G)$ hranově disjunktních cest.

Chybová vzdálenost mezi u a v:

maximum z délek všech možných co nejkratších uzlově disjunktních cest mezi u a v.

Chybový průměr: maximum ze všech chybových vzdáleností.

Bisekce

(Hranová) bisekční šířka grafu G, $\mathrm{bw}_{\mathrm{e}}(G)$:

velikost nejmenšího hranového řezu grafu G na ${f 2}$ poloviny.

Uzlová bisekční šířka grafu G, $\mathrm{bw}_{\mathrm{v}}(G)$:

velikost nejmenšího uylového řezu grafu G na **2 poloviny** (velikosti nejvýše $\lceil N/2 \rceil$. uzlů)

Bipartitní a vyvážený bipartitní graf :

Hamiltonovská cesta (kružnice) :

cesta (uzavřená) přes všechny uzly (permutace uzlů).

Lemma 4. Bipartitní graf může mít hamiltonovskou kružnici, jestliže je vyvážený.

Hierarchická rekurzivita a škálovatelnost topologií

Topologie : množina grafů (instancí topologie), jejichž velikost a struktura je definovaná parametry (**hodnotami dimenzí**).

Hierarchicky rekurzivní topologie : instance nižších dimenzí jsou **podgrafy** instancí vyšších dimenzí.

Inkrementálně škálovatelná topologie : definovaná pro $\forall N$.

Částečně škálovatelná topologie : definovaná pro některé, ale ∞ mnoho N.

Efektivně škálovatelná topologie : pro konst. k>0 lze (N+k)-uzlovou instanci konstruovat z N-uzlové instance tak, že # odebraných hran je O(k).

Orientované grafy = digrafy :

- lacktriangle množina orientovaných hran A(G)
- lacktriangle orientovaná hrana $\langle u{
 ightarrow}v
 angle$ je incidentní z u do v
- $lacksquare \deg_G^{\mathrm{in}}(u)$ a $\deg_G^{\mathrm{out}}(u)$: vstupní stupeň a výstupní stupeň uzlu u
- orientovaná cesta
- orientovaný průměr
- silná souvislost

Požadavky na propojovací sítě

Malý a konstantní stupeň uzlu

- Technologický požadavek.
- Stupeň uzlu je omezen konstantou \implies řídký graf \implies |E(G)| = O(N).
- Levné a univerzální směrovače × malá souvislost a velké vzdálenosti.

Malý průměr a malá průměrná vzdálenost

- Algoritmický požadavek.
- Snižuje komunikační zpoždění pro
 - jak směrování citlivé na vzdálenost (např. store-and-forward),
 - tak směrování **necitlivé na vzdálenost** (např. wormhole) = viz Přednáška 6.

Věta 5. Spodní mez průměru N-uzlové řídké sítě je $\Omega(\log N)$.

Důkaz: Je-li dán N-uzlový graf s $\triangle(G) \leq k$, k je konstanta,

 \implies # uzlů G dosažitelných nejvýše i kroky je $O(k^i)$

$$\implies N = O(k^{\operatorname{diam}(G)}) \implies \operatorname{diam}(G) = \Omega(\log N).$$

Konstantní délka hran

■ Rozmístitelnost uzlů v 3-D tak, že délka kabelů je konstantní.

Symetrie

- Návrh paralelních a komunikačních algoritmů je snažší, neboť
 - nezáleží na tom, kde výpočet začne,
 - nezáleží na tom, kterým směrem začne komunikační algoritmus.
- Snažší VLSI návrh a vnořování.

Škálovatelnost

- **Efektivně inkrementálně** topologie: ideální pro dynamicky rekonfigurovatelné multiprocesorové systémy: rekonfigurace systému z N na N+k uzlový vyžaduje O(k) změn v původním propojení.
- Např. 2-D mřížky nejsou efektivně škálovatelné.

Hierarchická rekurzivita

- Návrh a konstrukce propojovacích sítí je jednodušší (dekompozice do VLSI modulů).
- Induktivní návrh a mapování paralelních algoritmů.
- Hierarchická rekurzivita ⇒ částečná škálovatelnost.

Vysoká souvislost a malé chybové vzdálenosti

- Redundantní krátké cesty v případě výpadků uzlů nebo linek.
- Obcházení přetížených nebo ucpaných uzlů nebo linek.
- Rozdělení **rozsáhlých paketů** do menších částí posílaných po **paralelních disjunktních** cestách.

- Paralelní **binární rozděl-a-panuj** (D&C) algoritmy ⇒ požadavek **vysoké přenosové kapacity** mezi oběma polovinami:
 - Rozděl řešený problém na dvě poloviny.
 - Řeš je rekurzivně v obou polovinách paralelně s případnou výměnou dat mezi polovinami.
 - Sluč výsledky z obou polovin do konečného výsledku.
- Horní mez je N/2, typické hodnoty jsou $N/\log N$ či N^{ε} , $0<\varepsilon<1$.
- VLSI návrh: velká bisekční šířka ⇒ mnoho **externích spojů mezi stavebními** moduly.

Existence hamiltonovských cest a 2-barvení

- lacktriangle Označení procesorů čísly $1,\ldots,p$ zachovávající sousednost.
- Potřebné např. pro třídící algoritmy nebo pro permutace posunu.
- Některé algoritmy používají 2-barvení.

Vnořitelnost jiných a do jiných topologií

- Existence efektivního zobrazení daného grafu procesů do sítě procesorů.
- Schopnost simulovat efektivně jiné topologie.
- Vnořitelnost do VLSI nebo rozmístitelnost v 3-D.

Podpora pro směrování a kolektivní komunikační operace

- Dvoubodové minimální směrování.
- Permutační směrování.
- Komunikační operace jeden všem.
- Komunikační operace všichni všem.

Ortogonální topologie

hyperkrychle, mřížky a toroidy

Binární hyperkrychle dimenze n, Q_n

$$V(Q_n) = \mathcal{B}^n$$
 $|V(Q_n)| = 2^n$ $E(Q_n) = \{\langle x, \text{neg}_i(x) \rangle; x \in V(Q_n), 0 \le i < n\}$ $|E(Q_n)| = n2^{n-1}$ $\deg(Q_n) = n$ $\deg(Q_n) = \{n\}$

$$|V(Q_n)| = 2^n$$
$$|E(Q_n)| = n2^{n-1}$$
$$\deg(Q_n) = \{n\}$$

Základní vlastnosti hyperkrychle

- Regulární graf s logaritmickým stupněm uzlů (⇒ řídké hyperkubické sítě).
- Hammingova vzdálenost *Q*.
- \blacksquare # uzlů ve vzdálenosti i je $\binom{n}{i}$ \Longrightarrow $\overline{\operatorname{dist}}(Q_n) \doteq \lceil n/2 \rceil$.
- Hierarchicky rekurzivní:
 - $Q_n \equiv Q_p \times Q_{n-p} \equiv Q_p \times Q_q \times Q_{n-p-q} \equiv Q_1^n$.
 - Kanonická dekompozice : $Q_n \equiv Q_{n-1}[j=0] \times Q_{n-1}[j=1]$.
 - Podkrychle : $s_{n-1} \dots s_1 s_0$, kde $s_i \in \{0, 1, *\}$, * = neutrální symbol.
 - Podkrychle = termy v boolské algebře.
- lacksquare $Q_n \equiv Q_1^n \implies \text{uzlová a hranová symetrie: } 2^n \times n! \text{ automorfizmů.}$
 - US: **přeložení** (translace) $u \to v$: zobrazení $\forall x \in V(Q_n) \ (x \mapsto x \oplus (u \oplus_2 v))$.
 - HS: rotace: permutace (přejmenování) dimenzí.
- Částečně, ale efektivně škálovatelná ⇒ **neúplné hyperkrychle**.
- Optimální souvislost: $\lambda(Q_n) = \kappa(Q_n) = n$.
- Největší možná bisekční šířka \implies Q_n je ideální pro binární D&C algoritmy.
- Vyvážený bipartitní a hamiltonovský graf.

 $Q_6 = Q_3 \times Q_3$:

- lacktriangle Jestliže $\varrho(u,v)=k$, pak v $Q_n\ \exists\ n$ uzlově disjunktních cest P(u,v), mezi kterými
 - k cest je délky k a
 - n-k cest je délky k+2.
- Chybový průměr Q_n je n+1.
- \blacksquare \exists k! různých nejkratších cest mezi dvěma uzly ve vzdálenosti k.
- Minimální *e*-**cube** směrování: bity v adresách se testují zprava doleva.
- **Optimální** algoritmy pro kolektivní komunikační operace v téměř všech komunikačních modelech.
- Simuluje efektivně téměř jakoukoli jinou známou topologii.

Poznámky k hyperkrychli

- Problém alokace podkrychlí ve víceuživatelském hyperkubickém počítači:
 - Uživatelé deklarují počty požadovaných uzlů pro své úlohy.
 - OS alokuje, je-li to možné, podkrychle potřebných velikostí.
 - Po skončení výpočtu OS uvolňuje podkrychle.
 - Vzniká problém fragmentace a potřeba zcelování.
- Testovací architektura pro obtížnost paralelizace problémů na architekturách s
 distribuovanou pamětí
 (podobná role jako PRAM pro paralelní algoritmy nad sdílenou pamětí).
- Komerční hyperkubické MPP: nCUBE 1 a 2, Intel iPSC/2 a iPSC/860, TMC CM-2, SGI Origin.
- Hlavní nedostatky = logaritmický stupeň a nedostatečná škálovatelnost.

n-rozměrná mřížka rozměrů z_1, z_2, \ldots, z_n , $M(z_1, z_2, \ldots, z_n)$

$$\begin{split} V(M(\ldots)) &= \{(a_1, a_2, \ldots, a_n); 0 \leq a_i \leq z_i - 1 \ \forall i \in \{1, \ldots, n\}\} \\ E(M(\ldots)) &= \{\langle (\ldots, a_i, \ldots), (\ldots, a_i + 1, \ldots) \rangle; 0 \leq a_i \leq z_i - 2\} \\ |V(M(\ldots))| &= \Pi_{i=1}^n z_i \qquad |E(M(\ldots))| = \sum_{i=1}^n (z_i - 1) \prod_{\substack{j=1 \ j \neq i}}^n z_j \\ \operatorname{diam}(M(\ldots)) &= \sum_{i=1}^n (z_i - 1) = \Omega(\sqrt[n]{|V(M(\ldots))|}) \\ \operatorname{deg}(M(\ldots)) &= \{n, \ldots, n + j\}, \ j = |\{z_i; z_i > 2\}| \\ \operatorname{bw}_{\mathbf{e}}(M(\ldots)) &= \begin{cases} (\prod_{i=1}^n z_i) / \max_i z_i & \text{jestliže } \max_i z_i \text{ je sudé,} \\ \Omega((\prod_{i=1}^n z_i) / \max_i z_i) & \text{v opačném případu.} \end{cases} \end{split}$$

mřížka M(3,3,4):

- Předpokládáme, že dimenze mřížky n je konstantní.
- M(k, k, ..., k) = k-ární n-krychle.
- Nejpraktičtější mřížky jsou **2-D** (čtvercové, obdélníkové) a **3-D** (krychlové, kvádrové).
- 1-D mřížky = lineární pole (inkrementálně škálovatelné) = protipól úplného grafu.
- Není regulární ⇒ není uzlově symetrická.
- Počet uzlů ve vzdálenosti i u 2-D mřížek: od i+1 do 4i.
- Velký průměr: $\sqrt{N} \ge \log N$ od N > 16, $\sqrt[3]{N} \ge \log N$ od N > 1000.
- Částečně ale neefektivně škálovatelná.
- Hierarchicky rekurzivní:
 - ullet obsahuje podmřížky stejné dimenze, např. $M([1-3],*,[2-5],*)\subset M(6,5,8,3)$,
 - ullet obsahuje podmřížky menších dimenzí, např. $M(*,1,*,3)\subset M(3,4,2,7)$,
 - ullet konstruktor = kartézský součin, např. $M(z_1,z_2,\ldots,z_n)\equiv M(z_1) imes\cdots imes M(z_n).$
- Optimální souvislost.
- Téměř optimální chybový průměr.
- Chybové vzdálenosti = nejvýše o 4 větší než nechybové.

- Pro obecné n je **přesná** hodnota bisekční šířky otevřeným problémem snadno ji lze spočítat pro 2- nebo 3-D mřížky, např. $\mathrm{bw_e}(M(11,8,6))=57.$
- Základní minimální směrovací algoritmus = dimenzně uspořádané směrování:
 2- a 3-D mřížky: XY a XYZ směrování.
- mnoho komunikačních a paralelních algoritmů optimálních vzhledem k spodním mezím topologie (velký průměr, malá bisekční šířka).
- Bipartitní (nikoli nutně vyvážená).
- Hamiltonovská, jestliže nejméně jedna strana má **sudou** délku.
- Hamiltonovská cesta existuje vždy.
- Modifikace: rekonfigurovatelné mřížky, mřížky sběrnic.

Poznámky k mřížkám

- Problém alokace, fragmentace a zcelování **podmřížek** v multiuživatelském multiprocesoru.
- Komerční paralelní počítače založené na mřížkách: Intel Paragon (2-D mřížka), MIT J-Machine (3-D mřížka), transputery (2-D mřížka), multi-core CPUs!!!!, . . .

n-rozměrný toroid dimenzí z_1, z_2, \ldots, z_n , $K(z_1, z_2, \ldots, z_n)$

toroid = toroidální nebo zabalená mřížka

$$V(K(\ldots)) = V(M(\ldots))$$

$$E(K(\ldots)) = \{\langle (\ldots, a_i, \ldots), (\ldots, a_i \oplus_{z_i} 1, \ldots) \rangle; 0 \le a_i < z_i \}$$

$$|E(K(\ldots))| = n \times \prod_{i=1}^n z_i$$

$$\operatorname{diam}(K(\ldots)) = \sum_{i=1}^n \lfloor z_i/2 \rfloor$$

$$\operatorname{deg}(K(\ldots)) = \{2n\}$$

$$\operatorname{bw}_{e}(K(\ldots)) = 2 \operatorname{bw}_{e}(M(\ldots))$$

toroid K(3, 3, 4):

Základní vlastnosti toroidu

- 1-rozměrný toroid = **kružnice** nebo **prstenec**.
- K(k, k, ..., k) = k-ární n-toroid.
- Regulární a uzlově symetrický (automorfizmy = přeložení).
- k-ární n-toroidy jsou i hranově symetrické (automorfizmy = rotace).
- Průměr/průměrná vzdálenost je **poloviční** v porovnání se stejně velkou mřížkou.
- Souvislost/bisekční šířka je dvojnásobná v porovnání se stejně velkou mřížkou.
- Částečná škálovatelnost (ještě méně efektivní v porovnání s mřížkami).
- Hierarchický (lze dekomponovat až na kartézský součin kružnic) ale: nelze rozložit na stejnorozměrné podtoroidy.
- Dimenzně uspořádané minimální směrování (existence kružnic jej činí komplikovanější).
- Hamiltonovský graf.
- Bipartitní ⇔ všechny délky stran jsou sudé (bipartitní ⇒ vyvážený).
- Topologicky optimální algoritmy existují pro mnoho základních problémů.
- Komerční MPP: Cray/SGI T3D a T3E, Convex Exemplar (3-D), Intel/CMU iWarp (2-D), KSR (1-D), IBM BlueGene (3-D).

Porovnání hyperkrychlí, mřížek a toroidů

- $lacksquare M(2,2,\ldots,2)$ je izomorfní s $Q_n.$
- lacktriangle n-rozměrné mřížky a toroidy jsou zobecněními Q_n .
- Pro určité k a n, k < n, k-rozměrná mřížka/toroid může být podgrafem Q_n .

Souvislost mezi průměrem, počtem hran a bisekční šířkou

 $M(8,8,4)\subset K(8,8,4)\subset Q_8$ a všechny grafy mají N=256.

		M(8, 8, 4)	K(8, 8, 4)	Q_8
ſ	diam()	17	10	8
ſ	E()	640	768	1024
	$bw_{e}()$	32	64	128

Hyperkubické topologie

- Řídké grafy odvozené od hyperkrychle rozvinutím každého uzlu hyperkrychle do více uzlů.
- Dva hlavní reprezentanti: kružnice propojené krychlí a motýlky.
- Společné vlastnosti:
 - O(1) stupeň a $O(\log N)$ průměr,
 - škálovatelné hůře než hyperkrychle: $N=n2^n$ nebo podobně,
 - bisekční šířka $\Omega(N/\log N)$.

Kružnice propojené krychlí dimenze n, CCC_n

$$V(CCC_n) = \{(i, x); 0 \le i < n \land x \in \mathcal{B}^n\}$$

$$E(CCC_n) = \{\langle (i, x), (i \oplus_n 1, x) \rangle, \langle (i, x), (i, \text{neg}_i(x)) \rangle; (i, x) \in V(CCC_n)\}$$

$$|V(CCC_n)| = n2^n$$

$$|E(CCC_n)| = n2^{n-1} + n2^n$$

$$\dim(CCC_n) = (2n - 2) + \lfloor n/2 \rfloor \text{ pro } n > 3, \dim(CCC_3) = 6$$

$$\deg(CCC_n) = \{3\}$$

$$\text{bw}_e(CCC_n) = 2^{n-1}$$

Základní vlastnosti topologie CCC

- CCC_n je faktor grafu $Q_n \times K(n)$.
- lacksquare Q_n i K(n) jsou uzlově symetrické \implies CCC_n je uzlově symetrický.
- Částečně hranově symetrický (∃ hyperkubické a kružnicové hrany).
- Není hierarchicky rekurzivní.
- Optimální souvislost 3 (mezi dvěma uzly ∃ 3 disjunktní cesty).
- Minimální směrování: poněkud komplikované.
- Jednoduché **neminimální** směrování:
 - 1. Zjisti, v kterých bitech se liší adresa výchozí a cílové kružnice.
 - 2. Nechť i = pozice prvního takového bitu zleva.
 - 3. Přesuň se do *i*-tého uzlu ve výchozí kružnici.
 - 4. Přejdi pomocí *e*-cube algoritmu do cílové kružnice.
 - 5. V ní se přesuň do cílového uzlu.
- lacktriangle Vyvážený bipartitní graf \iff n je sudé.
- Hamiltonovský graf.

Automorfizmy a vzdálenosti v CCC

Lemma 6. Nechť $u = (i, x_{n-1} \dots x_0)$ a $v = (j, y_{n-1} \dots y_0)$. Pak $\phi_{u \to v}((k, z_{n-1} \dots z_0)) = (k \oplus_n (j \ominus_n i), \operatorname{rot}_{(j \ominus_n i)}(z_{n-1} \dots z_0 \oplus_2 y_{n-1} \dots y_0 \oplus_2 x_{n-1} \dots x_0))$ je automorfismus.

- (a) Příklad: přeložení $\phi_{u
 ightarrow v}$ z uzlu u=(2,000) do uzlu v=(1,011) v CCC_3 .
- (b) Vzdálenost mezi uzly $(0,0^7)$ a $(4,1^7)$ v CCC_7 je rovna $diam(CCC_7)$.

Zabalený motýlek dimenze n, wBF_n

$$V(wBF_n) = \{(i, x); 0 \le i < n \land x \in \mathcal{B}^n\}$$

$$E(wBF_n) = \{\langle (i, x), (i \oplus_n 1, x) \rangle, \langle (i, x), (i \oplus_n 1, \operatorname{neg}_i(x)) \rangle \mid (i, x) \in V(wBF_n)\}$$

$$|V(wBF_n)| = n2^n$$

$$|E(wBF_n)| = n2^{n+1}$$

$$\operatorname{diam}(wBF_n) = n + \lfloor \frac{n}{2} \rfloor$$

$$\operatorname{deg}(wBF_n) = \{4\}$$

$$\operatorname{bw}_e(wBF_n) = 2^n$$

Základní vlastnosti má stejné jako CCC, až na to, že má více hran, větší bisekční šířku a menší průměr.

Obyčejný motýlek dimenze n, oBF_n

$$V(oBF_n) = \{(i, x); 0 \le i \le n \land x \in \mathcal{B}^n\}$$

$$E(oBF_n) = \{\langle (i, x), (i + 1, x) \rangle, \langle (i, x), (i + 1, neg_i(x)) \rangle \mid i < n\}$$

$$|V(oBF_n)| = (n + 1)2^n$$

$$|E(oBF_n)| = n2^{n+1}$$

$$\dim(oBF_n) = 2n$$

$$\deg(oBF_n) = \{2, 4\}$$

$$bw_e(oBF_n) = 2^n$$

Základní vlastnosti obyčejného motýlka

- Uzly oBF_n jsou organizovány do sloupců (stupňů) $0 \le i \le n$ a řad $0 \le x \le 2^n 1$.
- Dva druhy hran: přímé a křížové (hyperkubické).
- Není uzlově symetrický a není regulární.
- Není hamiltonovský.
- Je hierarchicky rekurzivní: oBF_n obsahuje dva oBF_{n-1} jako podgrafy.
- Optimální souvislost 2.
- \blacksquare pouze jediná nejkratší cesta mezi (0,x) a (n,y) (= e-cube směrování).
- Triviálně bipartitní.

Poznámky k řídkým hyperkubickým sítím

- Byly použity v prototypových počítačích.
- Jsou přirozenou topologií pro řadu základních paralelních algoritmů.
- Vynikající vlastnosti pro VLSI implementaci.

Nepřímé sítě

- 1. Vícestupňové nepřímé sítě (Multistage Indirect Networks, MIN).
- 2. Stromové sítě.
- 3. Nepravidelné sítě.

Vícestupňové nepřímé sítě (MIN)

- **Banyan** $N \times N$ MIN: \exists jedinečná cesta mezi lib. dvojicí vstupu a výstupu.
- k-ární **delta MIN**: Banyan MINs $N \times N$ skládající se ze **stupňů** N/k přepínačů $k \times k$.
- Obecná k-ární MIN = K stupňů N/k přepínačů $k \times k$, $N = k^n$.
- Typicky k = 2. Pak:
 - Spodní mez na $K = \Omega(\log N) = \Omega(n)$.
 - ullet $K = O(\log N) \implies$ levnější náhrada křížových přepínačů
 - $*K = \log N \implies \mathsf{blokující} \mathsf{MIN}$
 - * $K = 2 \log N 1 \implies$ přestavitelné MIN
- Jednosměrné nebo obousměrné.

Schéma generické jednosměrné MIN

■ Přepínače 2 × 2 mohou být v 1 ze 4 stavů:

lacktriangle Množina všech permutací realizovatelných danou MIN o K stupních je

$$\pi_0 G \pi_1 G \dots G \pi_K$$
.

■ Její mohutnost je $\left(2^{\frac{N}{2}}\right)^K$.

Příklady permutačních mezistupňů v MIN

(1)
$$\sigma = \operatorname{dokonal\acute{e}} \operatorname{prom\acute{i}ch\acute{a}n\acute{i}} = \operatorname{rot}_1^{-1}$$
: $\sigma(x_{n-1} x_{n-2} \dots x_0) = x_{n-2} \dots x_0 x_{n-1}$

(2)
$$\beta = \text{motýlek}: \quad \beta_i(x_{n-1} \dots x_{i+1} x_i x_{i-1} \dots x_0) = x_{n-1} \dots x_{i+1} x_0 x_{i-1} \dots x_i$$

(3)
$$\delta = \mathbf{z}\mathbf{\acute{a}kladn\acute{i}}: \quad \delta_i(x_{n-1}\dots x_{i+1}x_ix_{i-1}\dots x_1 x_0) = x_{n-1}\dots x_{i+1}x_0x_ix_{i-1}\dots x_1$$

Příklady jednosměrných blokujících MIN

Základní vlastnosti blokujících jednosměrných MIN

lacktriangle Počet realizovatelných permutací je menší než N!, neboť pro $K = \log N$ je

$$\left(2^{\frac{N}{2}}\right)^{\log N} = N^{\frac{N}{2}} < N! = \sqrt{2\pi N} \left(\frac{N}{e}\right)^N \left(1 + \Theta\left(\frac{1}{N}\right)\right).$$

- Všechny tyto varianty blokujících MIN jsou **topologicky equivalentní**: množina realizovaných permutací je pro všechny varianty stejná, liší se pouze v pořadí, v jakém jsou jednotlivé adresní bity vystavovány na LSB pozici, kde mohou být invertovány.
- Deterministické minimální směrování: mezi daným vstupem a výstupem ∃! cesta (Banyan).
- Auitomatické směrování (Self-routing property):
 - Směrování ze vstupního portu i na výstupní port j lye určit **přímo** y **adresy výstupního portu** j!!
 - 1. Stupeň k MIN přečte j[k] = k-tý bit adresy j.
 - 2. Je=li j[k] = 0, pak odešle paket **horním** portem.
 - 3. Je=li j[k] = 1, pak odešle paket **dolním** portem.
 - Funguje to pro jakýkoli vstupní port.

Fotografie stromu Banyan (JV Asie)

$$\blacksquare K = 2\log N - 1$$

$$\left(2^{\frac{N}{2}}\right)^{2\log N - 1} > N!$$

- Pro zadanou permutaci vstupů na výstupy lze předpočítat bezkolizní nastavení přepínačů.
- Typický představitel: **Benešova síť** = back-to-back butterfly.

Obousměrné MIN

- Přepínače realizují přenos (c) zleva doprava, (d) zprava doleva, anebo (e) zleva doleva.
- Směrovací algoritmus: Pro 2 uzly u a v, nechť m(u,v) je číslo nejvýznamnějšího bitu, v kterém se u a v liší. Pak cesta z u do v:
 - 1. Má vzestupnou část k některému kořenu nejmenšího společného podstromu u a v.
 - 2. Takových kořenů existuje $2^{m(u,v)}$.
 - 3. V kořenu se obrátí zpět a sestupuje k cílovému listu. V této sestupné části je cesta daná jednoznačně.
- Počítače IBM SP-x mají tento typ sítě (High Performance Switch), založenou na obosměrných přepínačích 8×8 (čipy Vulcan).

(3,000)

(3,001)

(3,010)

(3,011)

(3,100)

(3,101)

(3,110)

(3,111)

Srovnání přímých hyperkubických sítí a MIN

Stromové nepřímé sítě

Nepřímý úplný k-ární strom výšky h, $iCT_{k,h}$

Nepřímý úplný binární strom výšky 2, $iCT_{2,2}$

- Základní problémy: kořen je komunikačně přetížen a malá bisekční šířka.
- Řešení: (m,k)-hyperstromy (m-násobné k-ární stromy) nebo tlusté stromy.

Hyperstrom HT(m, k, h)

Definice 7. (m,k)-hyperstrom je stromový graf, ve kterém je má každý uzel m rodičů a k potomků (stupeň je m+k), kromě uzlů

- 1. bez rodičů = kořeny (stupeň je k) a
- 2. bez potomků = listy (stupeň je m).

HT(2, 4, 2)

Obousměrné MIN vs. tlusté stromy

- Obousměrná MIN s topologií motýlek je topologicky equivalentní:
- (a) jednosměrné Benešově síti, ve které jsou ztotožněny příslušné vstupní a výstupní uzly,
- (b) **tlustému stromu**, ve kterém se počet linek vedoucích nahoru ke kořenu rovná součtu počtů linek od potomků.