Linguagens Formais e Autómatos

Vasco Pedro

Departamento de Informática Universidade de Évora 2008/2009

Alfabeto, Palavra

alfabeto – conjunto finito de símbolos (Σ, T) (elementos a, b, c, d, e)

Exemplos:

- $\bullet \ \{a,b,c,\ldots,x,y,z\}$
- $\{0, 1, \dots, 9, +, -, \div, \times, (,)\}$
- {InsereCartão, 0, 1, ..., 9, Confirmar, Corrigir, Anular, ...}

palavra sobre o alfabeto Σ – sequência finita de símbolos de Σ (p,q,u,v,w,x,y,z)

 λ – palavra **vazia** (também ϵ e ε)

Linguagem

 Σ^* – conjunto de **todas** as palavras sobre Σ Definição recursiva:

(base)
$$\lambda \in \Sigma^*$$

(passo recursivo) Se $w \in \Sigma^*$ e $a \in \Sigma$, então $wa \in \Sigma^*$

(fecho) $w \in \Sigma^*$ somente se pode ser gerada por um número finito de aplicações do passo recursivo a partir de λ

linguagem sobre o alfabeto Σ – conjunto de palavras sobre Σ ($L \subseteq \Sigma^*$)

Operações sobre Palavras

|w| – **comprimento** da palavra w

a **concatenação** de duas palavras $u, v \in \Sigma^*$, escrita u.v ou uv, é uma operação binária em Σ^* definida como:

- 1. se |v| = 0, então $v = \lambda$ e u.v = u
- 2. se |v|=n>0, então v=wa, para alguma palavra w com |w|=n-1 e algum $a\in \Sigma$, e u.v=(u.w)a

a **inversão** de $u \in \Sigma^*$, escrita u^R ou u^{-1} , é uma operação unária em Σ^* definida como:

- 1. se |u|=0, então $u=\lambda$ e $u^R=\lambda$
- 2. se |u|=n>0, então u=wa, para alguma palavra w com |w|=n-1 e algum $a\in \Sigma$, e $u^R=a.w^R$

Subpalavra

u é **subpalavra** de v se existem x, y t.q.

$$v = xuy$$

Prefixo

• se $x = \lambda$ então u é **prefixo** de v

Sufixo

ullet se $y=\lambda$ então u é **sufixo** de v

Caracterização Finita de Linguagens

- definição recursiva
- através de operações sobre conjuntos
 - concatenação de linguagens

se X e Y forem linguagens

$$XY = X \cdot Y = \{xy \mid x \in X \in Y \in Y\}$$

- exemplo

$$\{1, 2, 3\} \cdot \{1, 00, \lambda\} =$$
 $\{11, 21, 31, 100, 200, 300, 1, 2, 3\}$

Estrela de Kleene

ullet seja X um conjunto

$$X^* = \bigcup_{n \ge 0} X^n \qquad X^+ = \bigcup_{n > 0} X^n$$

em alternativa, $X^+ = XX^*$

- também conhecido como operador de fecho ou de iteração
- exemplo
 - linguagem dos números naturais sem zeros à esquerda

$$\{0\} \cup \{1, 2, \dots, 9\} \{0, 1, \dots, 9\}^*$$

Conjuntos Regulares

- ullet os **conjuntos regulares** sobre o alfabeto Σ são definidos como
 - (base) $\emptyset, \{\lambda\}$ e $\{a\}$, para todo $a \in \Sigma$, são conjuntos regulares sobre Σ
 - (passo recursivo) sejam X e Y conjuntos regulares sobre Σ ; os conjuntos

$$\begin{array}{c} X \cup Y \\ XY \\ X^* \end{array}$$

são conjuntos regulares sobre Σ

(fecho) X é um conjunto regular sobre Σ somente se puder ser construído através de um número finito de aplicações do passo recursivo a partir dos elementos base

Expressões Regulares (1)

- ullet as **expressões regulares** sobre o alfabeto Σ são definidas como
 - (base) \emptyset, λ e a, para todo $a \in \Sigma$, são expressões regulares sobre Σ
 - (passo recursivo) sejam u e v expressões regulares sobre Σ ; as expressões

$$\begin{array}{c}
(u \cup v) \\
(uv) \\
(u^*)
\end{array}$$

são expressões regulares sobre Σ

(fecho) u é uma expressão regular sobre Σ somente se puder ser construída através de um número finito de aplicações do passo recursivo a partir dos elementos base

Expressões Regulares (2)

Linguagem Representada

$$L(\emptyset) = \emptyset$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\} \qquad (a \in \Sigma)$$

$$L(u \cup v) = L(u) \cup L(v)$$

$$L(uv) = L(u)L(v)$$

$$L(u^*) = L(u)^*$$

 duas expressões regulares são equivalentes se representam a mesma linguagem

Expressões Regulares (3)

Propriedades

Autómatos Finitos Deterministas

Um autómato finito determinista (AFD) é um tuplo $M = (Q, \Sigma, \delta, q_0, F)$ onde

- Q é um conjunto finito de estados;
- Σ é um conjunto finito de símbolos (alfabeto);
- δ é a **função de transição**, uma função total de $Q \times \Sigma$ em Q;
- $q_0 \in Q$ é o **estado inicial** do autómato; e
- $F \subseteq Q$ é o conjunto dos **estados de** aceitação.

Configuração e Computação

Seja $M = (Q, \Sigma, \delta, q_0, F)$ um AFD.

A **configuração** de um AF é um par $[q, w] \in Q \times \Sigma^*$, onde q é o estado corrente do autómato e w é a parte da palavra ainda por processar.

A **computação** de um AFD M para a palavra $w=a_1a_2\dots a_n\in \Sigma^*$ é a sequência de configurações

$$[s_0,a_1a_2\dots a_n] \vdash_{\overline{M}} [s_1,a_2\dots a_n] \vdash_{\overline{M}} \dots \vdash_{\overline{M}} [s_n,\lambda]$$

$$s_0 = q_0 \in s_i = \delta(s_{i-1}, a_i),$$

para i > 0.

Linguagem Reconhecida

Seja $M = (Q, \Sigma, \delta, q_0, F)$ um AFD.

A função de transição estendida $\hat{\delta}:Q \times \Sigma^* \to Q$ de um AFD é definida por

$$\widehat{\delta}(q, \lambda) = q$$
 $\widehat{\delta}(q, a) = \delta(q, a)$
 $\widehat{\delta}(q, wa) = \delta(\widehat{\delta}(q, w), a)$

Uma palavra w é aceite pelo AFD sse

$$\hat{\delta}(q_0, w) \in F$$

A linguagem reconhecida (ou aceite) por M é o conjunto das palavras aceites por M

$$L(M) = \{ w \mid \widehat{\delta}(q_0, w) \in F \}$$

Dois autómatos finitos são **equivalentes** se reconhecem a mesma linguagem.

Autómatos Finitos Não Deterministas (1)

Um autómato finito não determinista é um tuplo $M = (Q, \Sigma, \delta, q_0, F)$ onde

- Q é um conjunto finito de **estados**;
- Σ é um conjunto finito de símbolos (alfabeto);
- δ é a **função de transição**, uma função total de $Q \times \Sigma$ em $\mathcal{P}(Q)$;
- $q_0 \in Q$ é o **estado inicial** do autómato; e
- $F \subseteq Q$ é o conjunto dos **estados de** aceitação.

Qualquer autómato finito determinista é um autómato finito não determinista.

Autómatos Finitos Não Deterministas (2)

Seja $M = (Q, \Sigma, \delta, q_0, F)$ um autómato finito não determinista.

Uma palavra w é **aceite** por M se *existe* uma computação que termina num estado de aceitação depois de terem sido processados todos os seus símbolos

$$[q_0,w]
otin (q_i,\lambda), \text{ onde } q_i \in F$$

A linguagem reconhecida por M é o conjunto das palavras aceites por M

$$L(M) = \left\{ w \; \middle| \; \begin{array}{l} \text{existe uma computação} \\ \left[q_0, w\right] \not \mid_M^* \left[q_i, \lambda\right] \text{ em que } q_i \in F \end{array} \right\}$$

Autómatos Finitos Não Deterministas com Transições λ

Um autómato finito não determinista com transições λ (AFND) é um tuplo $M=(Q, \Sigma, \delta, q_0, F)$ onde

- Q é um conjunto finito de estados;
- Σ é um conjunto finito de símbolos (alfabeto);
- δ é a **função de transição**, uma função de $Q \times (\Sigma \cup \{\lambda\})$ em $\mathcal{P}(Q)$;
- $q_0 \in Q$ é o **estado inicial** do autómato; e
- $F \subseteq Q$ é o conjunto dos **estados de aceitação**.

Eliminação do Não Determinismo

O λ -**fecho** de um estado q_i é o conjunto de todos os estados alcançáveis através de zero ou mais transições λ a partir de q_i

- $q_i \in \lambda$ -fecho (q_i)
- se $q_j \in \lambda$ -fecho (q_i) e $q_k \in \delta(q_j, \lambda)$, então $q_k \in \lambda$ -fecho (q_i)
- mais nenhum estado está em λ -fecho (q_i)

A função de transição de entrada t de um AFND M é uma função de $Q \times \Sigma$ em $\mathcal{P}(Q)$ definida por

$$t(q_i,a) = \bigcup_{q_j \in \lambda\text{-fecho}(q_i)} \lambda\text{-fecho}(\delta(q_j,a))$$

Minimização de Autómatos Finitos Deterministas

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um autómato finito determinista. Dois estados q_i e q_j são **equivalentes** se

$$\widehat{\delta}(q_i, u) \in F \equiv \widehat{\delta}(q_j, u) \in F$$

para qualquer $u \in \Sigma^*$.

Dois estados equivalentes dizem-se **indistin- guíveis**.

Cálculo dos Estados Equivalentes

Seja $M = (Q, \Sigma, \delta, q_0, F)$ um AFD.

- **1.** Seja $P = \{Q \setminus F, F\}$ uma partição de Q.
- 2. Enquanto existirem

$$p, p' \in P$$
 $a \in \Sigma$ $q_i, q_j \in p$

tais que $\delta(q_i, a) \in p'$ e $\delta(q_j, a) \not\in p'$, fazer

$$P \leftarrow P \setminus \{p\} \cup \{q \in p \mid \delta(q, a) \in p'\}$$
$$\cup \{q \in p \mid \delta(q, a) \notin p'\}$$

Este algoritmo calcula a partição P de Q tal que, para quaisquer estados q_i e q_j

- se q_i e q_j pertencem ao mesmo subconjunto, q_i e q_j são equivalentes;
- se q_i e q_j pertencem a subconjuntos distintos, q_i e q_j não são equivalentes.

Construção do AFD Mínimo

- 1. Calcular os estados equivalentes; seja P a partição determinada.
- **2.** Para todos os $p \in P$ e todos os $a \in \Sigma$, seja q um estado em p e seja p' o elemento de P a que $\delta(q,a)$ pertence; então

$$\delta'(p,a) = p'.$$

3. O AFD mínimo (ou reduzido) equivalente a M é

$$M' = (P, \Sigma, \delta', q'_0, F')$$

onde

- q_0' é o elemento de P que contém q_0 ;
- $\bullet \ F' = \{ p \in P \mid p \subseteq F \}.$

Composição de Autómatos

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um AFND. Existe um AFND

$$M' = (Q \cup \{q'_0, q_f\}, \Sigma, \delta', q'_0, \{q_f\})$$

equivalente a M em que

- ullet não há transições para o estado q_0^\prime
- ullet o único estado de aceitação é q_f
- ullet não há transições a partir do estado q_f

A função de transição de M' é obtida acrescentando a δ

- $(q'_0, \lambda, \{q_0\})$
- ullet uma transição λ de cada $q \in F$ para q_f

NB:
$$\{q_0', q_f\} \cap Q = \emptyset$$
, $q_0' \neq q_f$

Composições

Sejam M_v e M_w dois autómatos finitos nas condições do acetato anterior

$$M_{v} = (Q_{v}, \Sigma, \delta_{v}, q_{0_{v}}, \{q_{f_{v}}\})$$

$$M_{w} = (Q_{w}, \Sigma, \delta_{w}, q_{0_{w}}, \{q_{f_{w}}\})$$

Definem-se os autómatos finitos seguintes

$$\begin{split} M_{\cdot} &= (Q_{v} \cup Q_{w}, \Sigma, \delta_{\cdot}, q_{0_{v}}, \{q_{f_{w}}\}) \\ \text{com } \delta_{\cdot} &= \delta_{v} \cup \delta_{w} \cup \left\{(q_{f_{v}}, \lambda, \{q_{0_{w}}\})\right\} \\ M_{\cup} &= (Q_{v} \cup Q_{w} \cup \{q_{0}, q_{f}\}, \Sigma, \delta_{\cup}, q_{0}, \{q_{f}\}) \\ \text{com } \delta_{\cup} &= \delta_{v} \cup \delta_{w} \cup \\ & \left\{(q_{0}, \lambda, \{q_{0_{v}}, q_{0_{w}}), \\ & (q_{f_{v}}, \lambda, \{q_{f}\}), (q_{f_{w}}, \lambda, \{q_{f}\})\right\} \\ M_{*} &= (Q_{v} \cup \{q_{0}, q_{f}\}, \Sigma, \delta_{*}, q_{0}, \{q_{f}\}) \\ \text{com } \delta_{*} &= \delta_{v} \cup \left\{(q_{0}, \lambda, \{q_{0_{v}}, q_{f}\}), \\ & (q_{f_{v}}, \lambda, \{q_{0_{v}}, q_{f}\})\right\} \end{split}$$

NB:
$$\{q_0,q_f\}\cap (Q_v\cup Q_w)=\emptyset$$
, $q_0\neq q_f$ Vasco Pedro, LFA, UE, 2008/2009

Pumping Lemma

Teorema (Pumping Lemma para linguagens regulares) Seja L uma linguagem regular e seja k o número de estados de um AFD que a reconhece. Então qualquer palavra p de L, tal que $|p| \geq k$, pode ser escrita como

$$uvw$$
, com $|uv| \le k$ e $|v| > 0$

е

$$uv^iw \in L$$
, para todo o $i \ge 0$.

Exemplo de Aplicação do Pumping Lemma Para Linguagens Regulares

$$L = \{a^n b^n \mid n \ge 0\}$$

Se L for uma linguagem regular, existe um AFD que a reconhece.

Sejam k o número de estados desse autómato e $p=a^kb^k$. Qualquer decomposição de p nas condições do $Pumping\ Lemma$ será da forma

$$\begin{array}{cccc} u & v & w \\ a^j & a^l & a^{k-j-l}b^k \end{array}$$

com $j + l \le k$ e l > 0.

Como

$$uv^{0}w = a^{j}(a^{l})^{0}a^{k-j-l}b^{k} = a^{k-l}b^{k} \notin L$$

porque l>0 e $k-l\neq k$, L não é uma linguagem regular.

Gramáticas (1)

```
1. \langle frase \rangle \rightarrow \langle sujeito \rangle \langle frase-verbal \rangle
  2. \langle frase \rangle \rightarrow \langle sujeito \rangle \langle verbo \rangle \langle compl-directo \rangle
  3. \langle \text{sujeito} \rangle \rightarrow \langle \text{subst-próprio} \rangle
                        → ⟨artigo⟩ ⟨subst-comum⟩
  4.
  5. ⟨subst-próprio⟩ → John
                                     \rightarrow Jill
  6.
  7. \langle \text{subst-comum} \rangle \rightarrow \text{car}
                                 → hamburger
  8.
  9. \langle artigo \rangle \rightarrow a
10. \rightarrow the
11. \langle frase-verbal \rangle \rightarrow \langle verbo \rangle \langle advérbio \rangle
                               \rightarrow \langle verbo \rangle
12.
13. \langle \text{verbo} \rangle \rightarrow \text{drives}
14. \rightarrow eats
15. ⟨advérbio⟩ → slowly
16.
                        \rightarrow frequently
```

símbolos terminais: John, Jill, hamburger, car, a, the, drives, eats, slowly, frequently

```
símbolos não terminais: \langle frase\rangle, \langle sujeito\rangle, \langle frase-verbal\rangle, \langle verbo\rangle, \langle . . .
```

Gramáticas (2)

```
1. \langle frase \rangle \rightarrow \langle sujeito \rangle \langle frase-verbal \rangle
      → (sujeito) (verbo) (compl-directo)
  3. \langle \text{sujeito} \rangle \rightarrow \langle \text{subst-próprio} \rangle
                     \rightarrow \langleartigo\rangle \langlesubst-comum\rangle
  4.
  5. ⟨subst-próprio⟩ → John
  6.
                                  \rightarrow Jill
  7. \langle \text{subst-comum} \rangle \rightarrow \text{car}
  8.
                                 → hamburger
  9. \langle artigo \rangle \rightarrow a
10.
                 \rightarrow the
11. \langle frase-verbal \rangle \rightarrow \langle verbo \rangle \langle advérbio \rangle
                           \rightarrow \langle verbo \rangle
12.
13. \langle \text{verbo} \rangle \rightarrow \text{drives}
14.
                    \rightarrow eats
15. ⟨advérbio⟩ → slowly
16.
                      \rightarrow frequently
17. ⟨adjectivos⟩ → ⟨adjectivo⟩ ⟨adjectivos⟩
18.
19. \langle adjectivo \rangle \rightarrow big
20.
                           \rightarrow juicy
21.
                           → brown
22. \langle compl-directo \rangle \rightarrow \langle adjectivos \rangle \langle subst-próprio \rangle
                                   → ⟨artigo⟩ ⟨adjectivos⟩
23.
                                        (subst-comum)
        Vasco Pedro, LFA, UE, 2008/2009
                                                                          24
```

Gramáticas Independentes do Contexto

Uma gramática independente do contexto (GIC) é um tuplo $G = (V, \Sigma, P, S)$ onde

- V é o conjunto finito dos símbolos **não** terminais (A, B, C, ...);
- Σ é o conjunto finito dos símbolos terminais (alfabeto);
- $P \subseteq V \times (V \cup \Sigma)^*$ é um conjunto finito de **produções**; e
- $S \in V$ é o **símbolo inicial** da gramática.

NB: $V \cap \Sigma = \emptyset$.

Derivação

Seja $G = (V, \Sigma, P, S)$ uma GIC.

Se $u,v \in (V \cup \Sigma)^*$, $A \in V$ e existe uma produção $A \to w$ em P, então uAv deriva directamente uwv

$$uAv \Rightarrow_G uwv$$

Se existem $u_0, u_1, \dots, u_n \in (V \cup \Sigma)^*, n \geq 0$, tais que

$$u = u_0 \Rightarrow_G u_1 \Rightarrow_G \ldots \Rightarrow_G u_n = v$$

então u deriva v em n passos

$$u \stackrel{n}{\Rightarrow}_G v$$

Se $u \stackrel{n}{\Rightarrow}_G v$ para algum $n \ge 0$, u deriva v

$$u \stackrel{*}{\Rightarrow}_G v$$

Linguagem Gerada

Seja $G = (V, \Sigma, P, S)$ uma GIC.

O conjunto das **palavras deriváveis a partir** de $v \in (V \cup \Sigma)^*$, D(v), define-se como

$$D(v) = \{ w \mid v \stackrel{*}{\Rightarrow} w \}$$

A linguagem gerada por G, L(G), é o conjunto das palavras sobre Σ^* deriváveis a partir de S

$$L(G) = \{ w \mid w \in \Sigma^* \in S \stackrel{*}{\Rightarrow} w \}$$

L(G) é uma **linguagem independente do** contexto.

Duas gramáticas são **equivalentes** se geram a mesma linguagem.

Recursividade

Uma **produção (directamente) recursiva** tem a forma

$$A \rightarrow uAv$$

O símbolo não-terminal A é recursivo se

$$A \stackrel{+}{\Rightarrow} uAv$$

Uma derivação com a forma

$$A \Rightarrow w \stackrel{+}{\Rightarrow} uAv$$

em que A não ocorre em w, diz-se **indirec**-tamente recursiva.

$$(u, v, w \in (V \cup \Sigma)^*)$$

Independência das Sub-derivações

Lema Sejam $G=(V,\Sigma,P,S)$ uma GIC e $v\stackrel{n}{\Rightarrow} w$ uma derivação em G em que v tem a forma

$$v = w_1 A_1 w_2 A_2 \dots w_k A_k w_{k+1}$$

com $w_i \in \Sigma^*$. Então existem palavras $p_i \in (V \cup \Sigma)^*$ que satisfazem

1.
$$A_i \stackrel{t_i}{\Rightarrow} p_i$$

2.
$$w = w_1 p_1 w_2 p_2 \dots w_k p_k w_{k+1}$$

3.
$$\sum_{i=1}^{k} t_i = n$$
.

Derivação Esquerda e Direita

Numa derivação esquerda (\Rightarrow_L) , em todos os passos é reescrito o símbolo não terminal mais à esquerda.

Numa derivação direita (\Rightarrow_R) , em todos os passos é reescrito o símbolo não terminal mais à direita.

Teorema (existência de derivação esquerda) Seja $G=(V,\Sigma,P,S)$ uma GIC. Uma palavra $w\in\Sigma^*$ pertence a L(G) sse

$$S \stackrel{*}{\Rightarrow}_{\mathsf{L}} w$$

Árvore de Derivação

Seja $G = (V, \Sigma, P, S)$ uma GIC.

A árvore de derivação correspondente à derivação $S \stackrel{*}{\Rightarrow} w$ é formada de acordo com as seguintes regras:

- 1. A raiz da árvore é o símbolo inicial S;
- 2. Se $A \to x_1 x_2 \dots x_n$, com $x_i \in V \cup \Sigma$, foi a produção usada para reescrever o símbolo A, então o nó A correspondente tem filhos x_1, x_2, \dots, x_n , por esta ordem;
- 3. Se $A \to \lambda$ foi a produção usada para reescrever o símbolo A, então o nó A correspondente tem λ como único filho.

Uma palavra **tem** árvore de derivação A se for a concatenação (dos símbolos) das folhas desta.

Ambiguidade

Uma **gramática** G diz-se **ambígua** se alguma palavra de L(G) tem, pelo menos:

- duas árvores de derivação distintas; ou
- duas derivações esquerdas distintas; ou
- duas derivações direitas distintas.

Uma linguagem é inerentemente ambígua se não existir uma gramática não ambígua que a gere.

$$\{a^ib^jc^k\mid i=j \text{ ou } j=k\}$$

Expressões Aritméticas e Ambiguidade

1^a Versão (ambígua)

$$G_{\mathsf{EA}} = (\{E\}, \{n, +, -, \times, \div\}, P_{\mathsf{EA}}, E)$$

com produções P_{FA} :

$$E \rightarrow E + E \mid E - E \mid E \times E \mid E \div E \mid n$$

2^a Versão — Prioridades (ambígua)

$$E \to E + E \mid E - E \mid T$$

$$T \to T \times T \mid T \div T \mid F$$

$$F \to n$$

3^a Versão — Associatividade (à esquerda)

$$E \to E + T \mid E - T \mid T$$

$$T \to T \times F \mid T \div F \mid F$$

$$F \to n$$

Gramáticas Regulares

Uma **gramática regular** é uma gramática independente do contexto em que todas as produções têm uma das formas

$$A \rightarrow a$$

$$A \rightarrow aB$$

$$A \rightarrow \lambda$$

onde $A, B \in V$ e $a \in \Sigma$.

Uma linguagem gerada por uma gramática regular é uma **linguagem regular**.

Uma gramática não regular pode gerar uma linguagem regular.

Autómatos de Pilha (1)

Autómato de pilha = autómato finito + pilha

Um autómato de pilha (AP) é um tuplo $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ onde

- Q, Σ , q_0 e F são como nos autómatos finitos;
- Γ é o **alfabeto da pilha**, um conjunto finito de símbolos (A, B, C, ...); e
- δ é a **função de transição** do autómato, uma função de $Q \times (\Sigma \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\})$ em $\mathcal{P}(Q \times (\Gamma \cup \{\lambda\}))$.

 α , β , γ , . . . denotam palavras sobre Γ

Autómatos de Pilha (2)

Uma **configuração** de um autómato de pilha é um triplo $[q, w, \alpha] \in Q \times \Sigma^* \times \Gamma^*$

Transições:

•
$$[q', \lambda] \in \delta(q, a, \lambda)$$

 $[q, aw, \alpha] \vdash [q', w, \alpha]$

•
$$[q', \lambda] \in \delta(q, a, A)$$

$$[q, aw, A\alpha] \vdash [q', w, \alpha]$$

•
$$[q', B] \in \delta(q, a, \lambda)$$

 $[q, aw, \alpha] \vdash [q', w, B\alpha]$

•
$$[q', B] \in \delta(q, a, A)$$

 $[q, aw, A\alpha] \vdash [q', w, B\alpha]$

Configuração inicial: $[q_0, w, \lambda]$

Autómatos de Pilha (3)

Uma palavra $w \in \Sigma^*$ é **aceite** pelo autómato de pilha M se existe uma computação

$$[q_0, w, \lambda] \vdash_M^* [q_f, \lambda, \lambda]$$

com $q_f \in F$ (critério de aceitação por estado de aceitação e pilha vazia).

A linguagem **reconhecida** pelo autómato de pilha M é o conjunto de todas as palavras aceites por M.

Um autómato de pilha é **determinista** se, qualquer que seja a combinação de estado, símbolo de entrada e topo da pilha, existe no máximo uma transição aplicável.

Variantes

Um autómato de pilha **atómico** é um autómato de pilha que só tem transições das formas

$$[q_j, \lambda] \in \delta(q_i, a, \lambda)$$

 $[q_j, \lambda] \in \delta(q_i, \lambda, A)$
 $[q_j, A] \in \delta(q_i, \lambda, \lambda)$

Um autómato de pilha **estendido** pode conter transições em que são empilhados mais do que um símbolo, como

$$[q_j, BCD] \in \delta(q_i, u, A)$$

Uma linguagem reconhecida por um AP estendido é também reconhecida por um AP. Uma linguagem reconhecida por um AP é também reconhecida por um AP atómico.

Pumping Lemma (2)

Teorema (Pumping Lemma para linguagens independentes do contexto) Seja L uma linguagem independente do contexto. Então existe um k tal que para qualquer palavra p de L, com $|p| \geq k$, existe uma decomposição da forma

$$|u v w x y|$$
, com $|v w x| \le k e |v| + |x| > 0$

tal que

$$uv^iwx^iy \in L$$
, para todo o $i \ge 0$.

Hierarquia de Chomsky

Seja $G = (V, \Sigma, P, S)$ uma gramática.

G é uma gramática

• sem restrições (ou tipo 0) se todas as suas produções tiverem a forma

$$u o v$$
 com $u \in (V \cup \Sigma)^+$ e $v \in (V \cup \Sigma)^*$;

 dependente do contexto (ou tipo 1) se todas as suas produções tiverem a forma

$$u \to v$$
 com $u, v \in (V \cup \Sigma)^+$ e $|u| \le |v|$;

- independente do contexto (ou tipo 2);
 ou
- regular (ou tipo 3).

Grafo de uma Gramática

Seja $G = (V, \Sigma, P, S)$ uma GIC.

O grafo esquerdo da gramática G é o grafo orientado etiquetado g(G) = (N, P, A) onde

$$N = \{ w \in (V \cup \Sigma)^* \mid S \stackrel{*}{\Rightarrow}_{\mathsf{L}} w \}$$

$$A = \{[v, w, r] \in N \times N \times P \mid v \Rightarrow_{\perp} w \text{ por aplicação da produção } r\}$$

O grafo de uma gramática não ambígua é uma árvore.

Análise Sintáctica

Sentido

- descendente (parte de S)
- ascendente (parte da palavra)

Estratégia

- em largura
- em profundidade

Se w=uAv, $u\in \Sigma^*$ e $A\in V$, u é o **prefixo** terminal de w

Análise Sintáctica Descendente em Largura

```
entrada: GIC G = (V, \Sigma, P, S) e p \in \Sigma^*
cria T com raiz S % árvore de pesquisa
Q \leftarrow \{S\}
                         % fila
repete
   q \leftarrow \text{remove}(Q) \% q = uAv, u \in \Sigma^*, A \in V
   i \leftarrow 0
   done \leftarrow false
   repete
      se não há uma produção para A com
          número maior que i então
         done \leftarrow true
      senão
         seja A \rightarrow w a primeira produção para
            A com número j > i
         se uwv \not\in \Sigma^* e o prefixo terminal de
             uwv é um prefixo de p então
            insere(uwv, Q)
            acrescenta o nó uvw a T
         i \leftarrow j
   até done ou p = uwv
até vazia(Q) ou p = uwv
se p = uwv então ACEITA senão REJEITA
```

Análise Sintáctica Descendente em Profundidade

```
entrada: GIC G = (V, \Sigma, P, S) e p \in \Sigma^*
S \leftarrow \{[S, 0]\}
                  % pilha
repete
   [q,i] \leftarrow \mathsf{desempilha}(\mathsf{S})
   invi\'{a}vel \leftarrow false
   repete
      seja q = uAv, com u \in \Sigma^* e A \in V
      se u não é prefixo de p então
          invi\'{a}vel \leftarrow true
      se não há uma produção para A com
          número maior que i então
          invi\'{a}vel \leftarrow true
      se não inviável então
          seja A 	o w a primeira produção para
             A com número j > i
          empilha([q, j], S)
          q \leftarrow uwv
          i \leftarrow 0
   até inviável ou q \in \Sigma^*
até q = p ou vazia(S)
se q = p então ACEITA senão REJEITA
```

Análise Sintáctica Ascendente em Largura

```
entrada: GIC G=(V,\Sigma,P,S) e p\in\Sigma^* cria T com raiz p % árvore de pesquisa Q\leftarrow\{p\} % fila repete q\leftarrow \operatorname{remove}(Q) para cada produção A\to w\in P % TRANSFERÊNCIA(S) para cada decomposição uwv de q, com v\in\Sigma^* insere(uAv,Q) % REDUÇÃO acrescenta o nó uAv aos filhos de q em T até q=S ou vazia(Q) se q=S então ACEITA senão REJEITA
```

Análise Sintáctica Ascendente em Profundidade

```
entrada: GIC G = (V, \Sigma, P, S), com S não
             recursivo, e p \in \Sigma^*
S \leftarrow \{[\lambda, 0, p]\}
                                    % pilha
repete
   [u, i, v] \leftarrow \mathsf{desempilha}(\mathsf{S})
   invi\'avel \leftarrow false
   repete
       seja j > i o nº da 1ª produção da forma
           A \rightarrow w \text{ com } u = qw \text{ e } A \neq S, ou
           \cdot S \rightarrow w \text{ com } u = w \text{ e } v = \lambda
       se existe tal j então
           empilha([u, j, v], S)
           u \leftarrow qA
                                    % REDUÇÃO
           i \leftarrow 0
       se não existe tal j e v \neq \lambda então
           TRANSFERÊNCIA(u, v)
           i \leftarrow 0
       se não existe tal j e v = \lambda então
           invi\'{a}vel \leftarrow true
   até u = S ou inviável
até u = S ou vazia(S)
se vazia(S) então REJEITA senão ACEITA
```

Transformação de Gramáticas (1)

Símbolo inicial não recursivo

Qualquer que seja a gramática independente do contexto $G = (V, \Sigma, P, S)$, existe uma gramática independente do contexto equivalente $G' = (V', \Sigma, P', S')$ onde o símbolo inicial é não recursivo.

ullet Se o símbolo inicial de G é não recursivo

$$G' = G$$

ullet Se o símbolo inicial de G é recursivo

$$G' = (V \cup \{S'\}, \Sigma, P \cup \{S' \to S\}, S')$$
$$(S' \notin V)$$

Tornar o Símbolo Inicial Não Recursivo

Gramática original:

$$G = (\{L, M, N, O\}, \{a, b, c, d\}, P, L)$$

$$P : L \to Mb \mid aLb \mid \lambda$$

$$M \to Lb \mid MLN \mid \lambda$$

$$N \to NaN \mid NbO$$

$$O \to cO \mid \lambda$$

Gramática equivalente com símbolo inicial não recursivo:

$$G' = (\{L', L, M, N, O\}, \{a, b, c, d\}, P', L')$$

$$P' : L' \to L$$

$$L \to Mb \mid aLb \mid \lambda$$

$$M \to Lb \mid MLN \mid \lambda$$

$$N \to NaN \mid NbO$$

$$O \to cO \mid \lambda$$

Transformação de Gramáticas (2)

Seja $G = (V, \Sigma, P, S)$ uma GIC.

O conjunto dos **símbolos que geram** λ é

$$\Lambda = \{ A \in V \mid A \stackrel{*}{\Rightarrow} \lambda \}$$

Uma gramática **não contraível** não contém símbolos que geram λ .

Numa gramática **essencialmente não contraível** só o símbolo inicial pode gerar λ .

Introdução de produções

Se $A \stackrel{*}{\Rightarrow}_G u$, então $G' = (V, \Sigma, P \cup \{A \rightarrow u\}, S)$ é equivalente a G.

Eliminação das Produções- λ

Seja $G = (V, \Sigma, P, S)$ uma GIC com S não recursivo.

A gramática $G_L = (V, \Sigma, P_L, S)$, equivalente a G, é uma **gramática essencialmente não contraível** cujas produções P_L são:

- **1.** Todas as produções de G que não são produções- λ ;
- 2. Todas as produções que se obtêm eliminando um ou mais símbolos de Λ do corpo de uma produção de G, desde que o corpo resultante tenha pelo menos um símbolo; e
- **3.** A produção $S \to \lambda$ sse $S \in \Lambda$.

2. Eliminar Produções- λ

$$G' = (\{L', L, M, N, O\}, \{a, b, c, d\}, P', L')$$

$$P' : L' \to L$$

$$L \to Mb \mid aLb \mid \lambda$$

$$M \to Lb \mid MLN \mid \lambda$$

$$N \to NaN \mid NbO$$

$$O \to cO \mid \lambda$$

Símbolos que geram λ :

$$\Lambda = \{L', L, M, O\}$$

Gramática equivalente (essencialmente) não contraível:

$$G_{L} = (\{L', L, M, N, O\}, \{a, b, c, d\}, P_{L}, L')$$

$$P_{L} : L' \to L \mid \lambda$$

$$L \to Mb \mid aLb \mid b \mid ab$$

$$M \to Lb \mid MLN \mid b \mid LN \mid MN \mid N$$

$$N \to NaN \mid NbO \mid Nb$$

$$O \to cO \mid c$$

Eliminação das Produções Unitárias $(A \rightarrow B)$

Seja $G = (V, \Sigma, P, S)$ uma GIC essencialmente não contraível.

Para cada $A \in V$, seja CHAIN(A) o conjunto

$$\{B \in V \mid A \stackrel{*}{\Rightarrow}_G B\}$$

A gramática $G_C = (V, \Sigma, P_C, S)$ é uma gramática equivalente a G onde P_C consiste nas produções $A \to w$ que satisfazem, para algum $B \in V$:

1.
$$B \in \mathsf{CHAIN}(A)$$

2.
$$B \rightarrow w \in P$$

3.
$$w \notin V$$

Eliminar as Produções Unitárias

$$\begin{array}{c|c} & \mathsf{CHAIN} \\ \hline L' & \{L',L\} \\ L & \{L\} \\ M & \{M,N\} \\ N & \{N\} \\ O & \{O\} \end{array}$$

Gramática sem produções unitárias, equivalente a G_L :

$$G_{C} = (\{L', L, M, N, O\}, \{a, b, c, d\}, P_{C}, L')$$

$$P_{C} : L' \to \lambda \mid Mb \mid aLb \mid b \mid ab$$

$$L \to Mb \mid aLb \mid b \mid ab$$

$$M \to Lb \mid MLN \mid b \mid LN \mid MN \mid NaN \mid$$

$$NbO \mid Nb$$

$$N \to NaN \mid NbO \mid Nb$$

$$O \to cO \mid c$$

Símbolos Inúteis

Um símbolo $x \in V \cup \Sigma$ é **útil** se existe uma derivação

$$S \stackrel{*}{\Rightarrow} uxv \stackrel{*}{\Rightarrow} w$$

onde $u, v \in (V \cup \Sigma)^*$ e $w \in \Sigma^*$.

Um símbolo que não é útil é inútil.

Um símbolo não terminal $A \in \mathbf{produtivo}$ se $A \stackrel{*}{\Rightarrow} w$, com $w \in \Sigma^*$.

Um símbolo não terminal que não é produtivo é **improdutivo**.

Um símbolo não terminal A é **acessível** se $S \stackrel{*}{\Rightarrow} uAv$, com $u, v \in (V \cup \Sigma)^*$.

Um símbolo não terminal que não é acessível é inacessível.

Um símbolo é útil se for produtivo e acessível.

4. Eliminar os Símbolos Inúteis

1. PRODUTIVOS =
$$\{L', L, M, O\}$$

Produções sem símbolos improdutivos:

$$L' \to \lambda \mid Mb \mid aLb \mid b \mid ab$$

$$L \to Mb \mid aLb \mid b \mid ab$$

$$M \to Lb \mid b$$

$$O \to cO \mid c$$

2. ACESSÍVEIS =
$$\{L', L, M\} \cup \{a, b\}$$

Gramática sem símbolos inúteis (improdutivos ou inacessíveis), equivalente a G_C :

$$G_U = (\{L', L, M\}, \{a, b\}, P_U, L')$$

$$P_U : L' \to \lambda \mid Mb \mid aLb \mid b \mid ab$$

$$L \to Mb \mid aLb \mid b \mid ab$$

$$M \to Lb \mid b$$

Forma Normal de Chomsky

Uma GIC $G = (V, \Sigma, P, S)$ está na **forma nor-mal de Chomsky** se todas as suas produções têm uma das formas

- \bullet $A \rightarrow BC$
- \bullet $A \rightarrow a$
- \bullet $S \rightarrow \lambda$

onde $a \in \Sigma$ e $B, C \in V - \{S\}$.

5. Construir a Forma Normal de Chomsky

1.
$$L' \rightarrow \lambda \mid MB \mid ALB \mid b \mid AB$$

 $B \rightarrow b$
 $A \rightarrow a$
 $L \rightarrow MB \mid ALB \mid b \mid AB$
 $M \rightarrow LB \mid b$

Gramática na Forma Normal de Chomsky, equivalente a G_U :

$$G_{NC} = (\{L', L, M, A, B, X\}, \{a, b\}, P_{NC}, L')$$

$$P_{NC} : L' \to \lambda \mid MB \mid AX \mid b \mid AB$$

$$X \to LB$$

$$B \to b$$

$$A \to a$$

$$L \to MB \mid AX \mid b \mid AB$$

$$M \to LB \mid b$$

Forma Normal de Greibach

Uma GIC $G = (V, \Sigma, P, S)$ está na **forma normal de Greibach** se todas as suas produções têm uma das formas

$$\bullet$$
 $A \rightarrow aA_1A_2 \dots A_n$

$$\bullet$$
 $A \rightarrow a$

$$\bullet$$
 $S \rightarrow \lambda$

onde $a \in \Sigma$ e $A_i \in V - \{S\}$, para $i = 1, 2, \dots, n$.

6. Construir a Forma Normal de Greibach (1)

- 1. Ordem dos não terminais: $L' \ X \ B \ A \ L \ M$
- 2. Todas as produções da forma $A_1 \to A_2 w$ satisfazem $A_1 < A_2$.

$$L'
ightarrow \lambda \mid MB \mid AX \mid b \mid AB$$
 $X
ightarrow LB$
 $B
ightarrow b$
 $A
ightarrow a$
 $L
ightarrow MB \mid aX \mid b \mid aB$
 $(M
ightarrow MBB \mid aXB \mid bB \mid aBB \mid b)$
 $M
ightarrow aXBZ \mid bBZ \mid aBBZ \mid bZ \mid aXB \mid bB \mid aBB \mid b$
 $Z
ightarrow BBZ \mid BB$

$$(A_1, A_2, \in V \in w \in V^*)$$

6. Construir a Forma Normal de Greibach (2)

Gramática na Forma Normal de Greibach, equivalente a G_{NC} :

$$G_{G} = (\{L', L, M, A, B, X, Z\}, \{a, b\}, P_{G}, L')$$

$$P_{G} : L' \rightarrow \lambda \mid aXBZB \mid bBZB \mid aBBZB \mid bZB \mid aXBB \mid bBB \mid aBB \mid bB \mid aX \mid b \mid aB$$

$$A \rightarrow aXBZBB \mid bBZBB \mid aBBZBB \mid aBBBB \mid aBBBB \mid aBBBB \mid aBBB \mid aBBBB \mid aBBBBB \mid aBBBBB \mid aBBBB \mid aBBBBB \mid aBBBB$$

Eliminação da Recursividade Directa à Esquerda

Se A é um símbolo não terminal com pelo menos uma produção da forma

$$A \rightarrow Au$$

substituem-se as produções

$$A \to Au_1 \mid Au_2 \mid \dots \mid Au_j \mid v_1 \mid v_2 \mid \dots \mid v_k$$

onde o primeiro símbolo dos v_i não é A, pelas produções

$$A \to v_1 Z \mid v_2 Z \mid \dots \mid v_k Z \mid v_1 \mid v_2 \mid \dots \mid v_k$$

 $Z \to u_1 Z \mid u_2 Z \mid \dots \mid u_j Z \mid u_1 \mid u_2 \mid \dots \mid u_j$

onde Z é um novo símbolo (não terminal).

$$(u_i, v_i \in (V \cup \Sigma)^*)$$

Gramáticas LL(k)

Subclasse das gramáticas independentes do contexto que admite análise sintáctica (descendente) determinista, com k símbolos de avanço.

Gramáticas LL(1)

Subclasse das gramáticas independentes do contexto que admite análise sintáctica (descendente) determinista, com 1 símbolo de avanço.

Gramáticas LL(1)

A GIC $G = (V, \Sigma, P, S)$, com **terminador** #, é **LL(1)** se quando existem duas derivações esquerdas

$$S \stackrel{*}{\Rightarrow} u_1 A v_1 \Rightarrow u_1 x v_1 \stackrel{*}{\Rightarrow} u_1 a w_1$$

$$S \stackrel{*}{\Rightarrow} u_2 A v_2 \Rightarrow u_2 y v_2 \stackrel{*}{\Rightarrow} u_2 a w_2$$

onde $u_i, w_i \in \Sigma^*$ e $a \in \Sigma$, então x = y.

Teorema Uma gramática LL(k), para algum k > 0, é não ambígua.

Teorema Se algum símbolo não terminal de G é recursivo à esquerda, então G não é LL(k), para qualquer k > 0.

Factorização à Esquerda

Seja $G = (V, \Sigma, P, S)$ uma gramática independente do contexto.

Se algum $A \in V$ tiver produções

$$A \rightarrow uv_1 \mid uv_2 \mid \dots \mid uv_n$$

com $u \in (V \cup \Sigma)^+$, a gramática G', obtida acrescentando o novo símbolo não terminal A' e substituindo estas produções por

$$A \rightarrow uA'$$

е

$$A' \rightarrow v_1 \mid v_2 \mid \ldots \mid v_n$$

Primeiros e Seguintes

Primeiros

Os **primeiros** de $u \in (V \cup \Sigma)^*$ são os símbolos do alfabeto que podem aparecer na primeira posição de uma palavra derivada a partir de u.

$$\mathsf{PRIMEIROS}(u) = \{ a \mid u \stackrel{*}{\Rightarrow} ax \in \Sigma^* \}$$

Seguintes

Os **seguintes** de $A \in V$ são os símbolos do alfabeto que podem aparecer a seguir a A nalguma derivação.

SEGUINTES(A) =
$$\{a \mid S \stackrel{*}{\Rightarrow} uAv \ e \ a \in \mathsf{PRIMEIROS}(v)\}$$

$$(a \in \Sigma, \ x \in \Sigma^* \ {\rm e} \ u, v \in (V \cup \Sigma)^*)$$
 Vasco Pedro, LFA, UE, 2008/2009

Símbolos Directores

O conjunto dos símbolos **directores** da produção $A \rightarrow w \in P$ é

$$\mathsf{DIR}(A \to w) = \begin{cases} \mathsf{PRIMEIROS}(w) & \mathsf{se}\ w \not\stackrel{*}{\Rightarrow} \lambda \\ \mathsf{PRIMEIROS}(w) & \mathsf{se}\ w \not\stackrel{*}{\Rightarrow} \lambda \\ \mathsf{SEGUINTES}(A) \end{cases}$$

Teorema Se para todo o $A \in V$, para quaisquer produções distintas $A \to w$ e $A \to v \in P$

$$\mathsf{DIR}(A \to w) \cap \mathsf{DIR}(A \to v) = \emptyset$$

então a gramática é LL(1).

Cálculo dos Primeiros (1)

Construção do grafo dos primeiros:

- Os vértices do grafo são os elementos de V e de Σ ;
- ullet Para cada produção $A
 ightarrow u_1 u_2 \dots u_n$, $u_i \in V \cup \Sigma$
 - Acrescenta-se um arco de A para u_1 ;
 - Se $u_1 \in \Lambda$, acrescenta-se também um arco de A para u_2 ;
 - Se $u_1, u_2 \in \Lambda$, acrescenta-se também um arco de A para u_3 , e assim sucessivamente.

O grafo dos primeiros contém um caminho de $A \in V$ para $a \in \Sigma$ sse $a \in PRIMEIROS(A)$.

Cálculo dos Primeiros (2)

Define-se indutivamente PRIMEIROS(w), $w \in (V \cup \Sigma)^*$, como

$$PRIMEIROS(\lambda) = \emptyset$$

$$\mathsf{PRIMEIROS}(a) = \{a\} \qquad a \in \Sigma$$

$$\mathsf{PRIMEIROS}(A) = (\mathsf{no} \; \mathsf{grafo}) \; \; A \in V$$

$$PRIMEIROS(uv) =$$

$$= \begin{cases} \mathsf{PRIMEIROS}(u) & \mathsf{se}\ u \not \stackrel{*}{\Rightarrow} \lambda \\ \mathsf{PRIMEIROS}(u) & \mathsf{se}\ u \not \stackrel{*}{\Rightarrow} \lambda \\ \mathsf{PRIMEIROS}(v) & \mathsf{se}\ u \not \stackrel{*}{\Rightarrow} \lambda \end{cases}$$

Cálculo dos Seguintes

Construção do grafo dos seguintes:

- Os vértices do grafo são os elementos de V e de Σ ;
- ullet Para cada produção A ou uBv, $B \in V$ e $u,v \in (V \cup \Sigma)^*$
 - Acrescenta-se um arco de B para cada a pertencente a PRIMEIROS(v);
 - Se $v \stackrel{*}{\Rightarrow} \lambda$, acrescenta-se um arco de B para A.

O grafo dos seguintes contém um caminho de $A \in V$ para $a \in \Sigma$ sse $a \in SEGUINTES(A)$.

Analisador Sintáctico Descendente Recursivo (1)

```
proc E()
   se símbolo-de-avanço \in \{a, (\} \text{ então }
      \% E \rightarrow TX
      T()
      X()
   senão
      erro()
proc T()
   se símbolo-de-avanço ∈ {a} então
      % T \rightarrow a
      consome(a)
   senão se símbolo-de-avanço ∈ {(} então
      % T \rightarrow (E)
      consome(()
      E()
      consome())
   senão
      erro()
```

61-1

Vasco Pedro, LFA, UE, 2008/2009

Analisador Sintáctico Descendente Recursivo (2)

```
proc X()
    se simbolo-de-avanço \in {+} então
    % X \to Z
    Z()
    senão se simbolo-de-avanço \in {),#} então
    % X \to \lambda
    senão
    erro()

proc consome(simbolo)
    se simbolo-de-avanço = simbolo então
    se simbolo-de-avanço \neq # então
    simbolo-de-avanço \leftarrow próximo-simbolo()
    senão
    erro()
```

Gramáticas LR(0)

Seja $G = (V, \Sigma, P, S)$ uma GIC, com S não recursivo e terminador #.

uw é um **contexto-LR(0)** de $A \rightarrow w \in P$ se existe uma derivação direita

$$S \stackrel{*}{\Rightarrow}_{\mathsf{R}} uAv \Rightarrow_{\mathsf{R}} uwv$$

A um prefixo de um contexto-LR(0) chama--se **prefixo viável**.

Exemplo

$$G_{LR_0} = (\{S, X, Y\}, \{a, b, \#\}, P_{LR_0}, S)$$

 $P_{LR_0} \colon S \to X \# X \to XY \mid \lambda Y \to aYa \mid b$

$$\begin{array}{c|cccc} & \text{Contextos-LR}(0) \\ \hline S \rightarrow X \# & X \# \\ X \rightarrow XY & XY \\ X \rightarrow \lambda & \lambda \\ Y \rightarrow aYa & XaYa, XaaYa, \dots = Xa^*aYa \\ Y \rightarrow b & Xb, Xab, Xaab, \dots = Xa^*b \\ \end{array}$$

Item LR(0)

Os itens LR(0) de G são:

- \bullet $A \rightarrow u \cdot v$, se $A \rightarrow uv \in P$;
- $A \rightarrow .$, se $A \rightarrow \lambda \in P$.

Um **item completo** é um item LR(0) em que o ponto está o mais à direita possível.

Um item $A \rightarrow u \cdot v$ é **válido** para o prefixo viável xu se xuv é um contexto-LR(0).

Exemplo

Os itens LR(0) de G_{LR_0} são:

$$S \rightarrow .X\#$$
 $S \rightarrow X.\#$ $S \rightarrow X\#.$
 $X \rightarrow .XY$ $X \rightarrow X.Y$ $X \rightarrow XY.$
 $X \rightarrow .$
 $Y \rightarrow .aYa$ $Y \rightarrow a.Ya$ $Y \rightarrow aY.a$ $Y \rightarrow aYa.$
 $Y \rightarrow .b$ $Y \rightarrow b.$

Fecho de um Conjunto de Itens LR(0)

O **fecho** de um conjunto I de itens LR(0) define-se recursivamente como:

- $I \subseteq fecho(I)$;
- se $A \to u \cdot Bv \in \text{fecho}(I)$, com $B \in V$, então $B \to w \in \text{fecho}(I)$ para todas as produções $B \to w$;
- nada mais pertence a fecho(I).

Exemplo

$$fecho(\{X \to X \cdot Y\}) = \{X \to X \cdot Y, Y \to \cdot aYa, Y \to \cdot b\}$$

Autómato Finito dos Itens LR(0) Válidos

Seja $G = (V, \Sigma, P, S)$ uma gramática independente do contexto.

O autómato dos itens válidos de G, que reconhece os prefixos viáveis de G, é o autómato finito determinista

$$M = (Q, V \cup \Sigma, \delta, q_0, Q \setminus \{\emptyset\})$$

onde

•
$$q_0 = \text{fecho}(\{S \rightarrow w \mid S \rightarrow w \in P\})$$

ullet para todo o $q \in Q$ e todo o $x \in V \cup \Sigma$, $\delta(q,x) \in Q$, com

$$\delta(q,x) =$$
 fecho($\{A \rightarrow ux \cdot v \mid A \rightarrow u \cdot xv \in q\}$)

Condições LR(0)

Uma gramática independente do contexto é LR(0) se o seu autómato dos itens válidos satisfaz as seguintes condições:

- Nenhum estado contém dois itens completos;
- Se um estado contém um item completo, todos os outros itens desse estado têm o ponto imediatamente à esquerda de um símbolo não terminal da gramática.

Analisador Sintáctico LR(0)

entrada: GIC LR(0)
$$G=(V,\Sigma,P,S)$$
, AFD dos itens válidos de G $M=(Q,V\cup\Sigma,\delta,q_0,F)$ e $p\in\Sigma^*$ $u\leftarrow\lambda$ $v\leftarrow p$ $erro\leftarrow false$ repete $q\leftarrow \hat{\delta}(q_0,u)$ se q contém $A\to w$, sendo $u=xw$ então $u\leftarrow xA$ % REDUÇÃO senão se q contém $A\to y\cdot z$, com $z\neq\lambda$, e $v\neq\lambda$ então TRANSFERÊNCIA (u,v) senão

 $erro \leftarrow true$ % REJEIÇÃO

até u = S ou erro

se u = S então ACEITA senão REJEITA

Tabela de Análise Sintáctica LR(0)

Uma linha por estado do AFD dos itens válidos, excepto para o estado \emptyset .

Uma coluna por cada símbolo de $(V \cup \Sigma) \setminus \{S\}$, cujo conteúdo corresponde à função de transição do autómato.

Uma coluna ACÇÃO que, na linha q_i contém:

- ullet ACEITA se q_i contém um item completo de uma produção de S;
- TRANSF se q_i contém um item $A \rightarrow u \cdot av$, com $a \in \Sigma$;
- $A \to w$, indicando uma REDUÇÃO, se q_i contém o item completo $A \to w$., $A \neq S$.

As posições vazias da tabela indicam a RE-JEIÇÃO da palavra.

AP Reconhecedor LR(0)

Dada uma gramática LR(0) $G = (V, \Sigma, P, S)$ e o seu AFD dos itens válidos $M = (Q, V \cup \Sigma, \delta, q_0, Q \setminus \{\emptyset\})$, pode-se construir o autómato de pilha estendido que reconhece a linguagem gerada por G

$$R = (\{q_I, q\}, \Sigma, V \cup \Sigma \cup Q \setminus \{\emptyset\}, \delta', q_I, \{q\})$$
 com

- $[q, q_0] \in \delta'(q_I, \lambda, \lambda)$;
- $[q, \lambda] \in \delta'(q, \lambda, q_i \, a_n \dots q_{j_2} \, a_2 \, q_{j_1} \, a_1 \, q_0)$ para todo o $q_i \in Q$ que contém um item completo $S \to a_1 a_2 \dots a_n$, onde

$$[q_0, a_1 a_2 \dots a_n] \vdash_M [q_{j_1}, a_2 \dots a_n] \vdash_M^* [q_i, \lambda];$$

• $[q, q_j A q_{j_0}] \in \delta'(q, \lambda, q_i a_n \dots q_{j_2} a_2 q_{j_1} a_1 q_{j_0})$ para todo o $q_i \in Q$ que contém um item completo $A \to a_1 a_2 \dots a_n \cdot, A \neq S$, onde

$$q_j = \delta(q_{j_0}, A)$$
 e
$$[q_{j_0}, a_1 a_2 \dots a_n] \vdash_M [q_{j_1}, a_2 \dots a_n] \vdash_M^* [q_i, \lambda];$$

• $[q, q_j a q_i] \in \delta'(q, a, q_i) \text{ se } \delta(q_i, a) = q_j, a \in \Sigma.$

AP LR(0) para G_{LR_0}

Inicialização do AP

$$(q_I,\lambda) \stackrel{\lambda}{\longrightarrow} (q,\mathbf{0})$$

Aceitação

$$(q, \mathbf{2} \# \mathbf{1} X \mathbf{0}) \xrightarrow{\lambda} (q, \lambda)$$

Redução

$$(q, \mathbf{0})$$
 $\xrightarrow{\lambda}$ $(q, \mathbf{1}X\mathbf{0})$ $(q, \mathbf{3}Y\mathbf{1}X\mathbf{0})$ $\xrightarrow{\lambda}$ $(q, \mathbf{1}X\mathbf{0})$ $(q, \mathbf{5}b\mathbf{1})$ $\xrightarrow{\lambda}$ $(q, \mathbf{3}Y\mathbf{1})$ $(q, \mathbf{5}b\mathbf{4})$ $\xrightarrow{\lambda}$ $(q, \mathbf{6}Y\mathbf{4})$ $(q, \mathbf{7}a\mathbf{6}Y\mathbf{4}a\mathbf{1})$ $\xrightarrow{\lambda}$ $(q, \mathbf{3}Y\mathbf{1})$ $(q, \mathbf{7}a\mathbf{6}Y\mathbf{4}a\mathbf{4})$ $\xrightarrow{\lambda}$ $(q, \mathbf{6}Y\mathbf{4})$

Transferência

$$(q, \mathbf{1}) \xrightarrow{a} (q, \mathbf{4}a\mathbf{1})$$
 $(q, \mathbf{1}) \xrightarrow{b} (q, \mathbf{5}b\mathbf{1})$
 $(q, \mathbf{1}) \xrightarrow{\#} (q, \mathbf{2}\#\mathbf{1})$
 $(q, \mathbf{4}) \xrightarrow{a} (q, \mathbf{4}a\mathbf{4})$
 $(q, \mathbf{4}) \xrightarrow{b} (q, \mathbf{5}b\mathbf{4})$
 $(q, \mathbf{6}) \xrightarrow{a} (q, \mathbf{7}a\mathbf{6})$

(De acordo com o AFD dos itens LR(0) válidos obtido na aula.)

Item LR(1)

Seja $G = (V, \Sigma, P, S)$ uma gramática independente do contexto.

Os itens LR(1) de G têm a forma

$$A \rightarrow u \cdot v, L$$

onde

- $A \rightarrow u \cdot v$ é um item LR(0), o **núcleo**, e
- $L \subseteq \Sigma \cup \{\#\}$ é o conjunto de **símbolos** de avanço.

Um item $A \to u \cdot v, L$ é **válido** para xu se, para todo o $a \in L$, existe uma derivação

$$S \stackrel{*}{\Rightarrow}_{\mathsf{R}} xAy$$

com $a \in PRIMEIROS(y\#)$.

Fecho LR(1)

O **fecho** de um conjunto I de itens LR(1) define-se recursivamente como:

- $I \subseteq fecho_1(I)$;
- se $A \to u \cdot Bv, L \in \text{fecho}_1(I)$, com $B \in V$, então $B \to \cdot w, K \in \text{fecho}_1(I)$ para todas as produções $B \to w$, com

$$K = \begin{cases} \mathsf{PRIMEIROS}(v) & \mathsf{se}\ v \not \stackrel{*}{\Rightarrow} \lambda \\ \mathsf{PRIMEIROS}(v) \cup L & \mathsf{se}\ v \stackrel{*}{\Rightarrow} \lambda \end{cases}$$

• nada mais pertence a fecho₁(I).

Exemplo de Fecho LR(1)

$$G_{\mathsf{LR}_1} = (\{S, A\}, \{a, b\}, P_{\mathsf{LR}_1}, S)$$

$$P_{\mathsf{LR}_1} \colon S \to AbA$$

$$A \to Aa \mid \lambda$$

fecho₁(
$$\left\{S \to Ab \cdot A, \{\#\}\right\}$$
) = $\left\{S \to Ab \cdot A, \{\#\}\right\}$
 $\cup \left\{A \to Aa, \{\#\}, A \to Aa, \{\#\}\right\}$
 $\cup \left\{A \to Aa, \{a\}, A \to Aa, \{a\}\right\} = \left\{S \to Ab \cdot A, \{\#\}, A \to Aa, \{a, \#\}, A \to Aa, \{a, \#\}, A \to Aa, \{a, \#\}, A \to Aa, \{a, \#\}\}\right\}$

Autómato Finito dos Itens LR(1) Válidos

Seja $G = (V, \Sigma, P, S)$ uma gramática independente do contexto e seja $G' = (V \cup \{S'\}, \Sigma, P \cup \{S' \rightarrow S\}, S')$.

O autómato dos itens válidos de G' é o autómato finito determinista

$$M = (Q, V \cup \Sigma, \delta, q_0, Q \setminus \{\emptyset\})$$

onde

•
$$q_0 = \text{fecho}_1(\{S' \to .S, \{\#\}\})$$

ullet para todo o $q \in Q$ e todo o $x \in V \cup \Sigma$, $\delta(q,x) \in Q$, com

$$\delta(q,x) =$$

$$fecho_1(\{A \rightarrow ux \cdot v, L \mid A \rightarrow u \cdot xv, L \in q\})$$

Condições LR(1)

Uma gramática independente do contexto é LR(1) se o seu autómato dos itens válidos satisfaz as seguintes condições:

- Se um estado contém um item completo $A \to w \: , L$ e um item $B \to u \: av, K$, então $a \not \in L$;
- Se um estado contém dois itens completos $A \to w \cdot , L$ e $B \to u \cdot , K$, então $L \cap K = \emptyset$.

Tabela de Análise Sintáctica LR(1)

Uma linha por estado do AFD dos itens válidos, excepto para o estado \emptyset .

Uma coluna por cada símbolo de $(V \cup \Sigma) \setminus \{S\}$, cujo conteúdo corresponde à função de transição do autómato.

Uma coluna por cada símbolo $a \in \Sigma \cup \{\#\}$ que, na linha q_i contém a acção:

- ACEITA se q_i contém um item completo de uma produção de S e a=#;
- TRANSF se q_i contém um item $A \rightarrow u \cdot av, L;$
- $A \to w$, indicando uma REDUÇÃO, se q_i contém o item completo $A \to w$., L, $A \neq S$ e $a \in L$.

As posições vazias da tabela indicam a RE-JEIÇÃO da palavra.

Uma Tabela de Análise Sintáctica LR(1)

$$G_{\mathsf{LR}_1} = (\{S, A\}, \{a, b\}, P_{\mathsf{LR}_1}, S)$$

$$P_{\mathsf{LR}_1} \colon S \to AbA$$

$$A \to Aa \mid \lambda$$

	$\mid S \mid$	$\mid A \mid$	$\mid a \mid$	$\mid b \mid$	a	b	#
0	1	2			$A \rightarrow \lambda$	$A o \lambda$	
$\overline{1}$							ACEITA
2			4	3	TRANSF	TRANSF	
3		5			$A o \lambda$		$A \rightarrow \lambda$
4					$A \rightarrow Aa$	$A \rightarrow Aa$	
5			6		TRANSF		$S \to AbA$
6					$A \rightarrow Aa$		$A \rightarrow Aa$

AP Reconhecedor LR(1)

O autómato de pilha que reconhece a linguagem gerada por uma gramática LR(1) $G=(V,\Sigma,P,S)$ com AFD dos itens válidos $M=(Q,V\cup\Sigma,\delta,q_0,Q\setminus\{\emptyset\})$, é o autómato de pilha estendido

$$R = (Q_R, \Sigma \cup \{\#\}, V \cup \Sigma \cup Q \setminus \{\emptyset\}, \delta_R, q_I, F_R)$$

com

•
$$Q_R = \{q_I, q\} \cup \{q_a \mid a \in \Sigma \cup \{\#\}\}$$

•
$$F_R = \{q_\#\}$$

Função de Transição do AP LR(1)

 $[q, q_0] \in \delta_R(q_I, \lambda, \lambda).$

 $[q_a, \lambda] \in \delta_R(q, a, \lambda)$ para todo o $a \in \Sigma \cup \{\#\}.$

 $[q_{\#},\lambda] \in \delta_R(q_{\#},\lambda,q_i\,a_n\dots q_{j_2}\,a_2\,q_{j_1}\,a_1\,q_0)$ para todo o $q_i \in Q$ que contém um item completo $S \to a_1a_2\dots a_n$, L, $\# \in L$ e

$$[q_0, a_1 a_2 \dots a_n] \vdash_M [q_{j_1}, a_2 \dots a_n] \vdash_M \dots$$

 $\vdash_M [q_{j_{n-1}}, a_n] \vdash_M [q_i, \lambda].$

 $[q_a,q_j\,A\,q_{j_0}]\in \delta_R(q_a,\lambda,q_i\,a_n\dots q_{j_2}\,a_2\,q_{j_1}\,a_1\,q_{j_0})$ para todo o $q_i\in Q$ que contém um item completo $A\to a_1a_2\dots a_n$, L, $A\neq S$, $a\in L$,

$$q_j = \delta(q_{j_0}, A)$$
 e
$$[q_{j_0}, a_1 a_2 \dots a_n] \vdash_M [q_{j_1}, a_2 \dots a_n] \vdash_M \dots$$

$$\vdash_M [q_{j_{n-1}}, a_n] \vdash_M [q_i, \lambda].$$

 $[q,q_j\,a\,q_i]\in \delta_R(q_a,\lambda,q_i)$ para todo o $q_i\in Q$ que contém um item $A\to u\, {}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} av,L$, $a\in \Sigma$ e $q_j=\delta(q_i,a)$.

AP LR(1) para G_{LR_1}

$$(q_I, \lambda) \stackrel{\lambda}{\longrightarrow} (q, \mathbf{0})$$

Inicialização do AP

$$\begin{array}{ccc}
(q,\lambda) & \xrightarrow{a} & (q_a,\lambda) \\
(q,\lambda) & \xrightarrow{b} & (q_b,\lambda) \\
(q,\lambda) & \xrightarrow{\#} & (q_\#,\lambda)
\end{array}$$

Leitura do símbolo de avanço

$$(q_{\#}, \mathbf{1}S\mathbf{0}) \xrightarrow{\lambda} (q_{\#}, \lambda)$$

Aceitação

$$(q_a, \mathbf{0})$$
 $\xrightarrow{\lambda}$ $(q_a, \mathbf{2}A\mathbf{0})$ $\xrightarrow{\lambda}$ $(q_b, \mathbf{2}A\mathbf{0})$ $\xrightarrow{\lambda}$ $(q_b, \mathbf{2}A\mathbf{0})$

$$(q_a, \mathbf{3}) \qquad \xrightarrow{\lambda} (q_a, \mathbf{5}A\mathbf{3})$$

$$(q_{\#},\mathbf{3})$$
 $\xrightarrow{\lambda}$ $(q_{\#},\mathbf{5}A\mathbf{3})$

$$(q_a, \mathbf{4}a\mathbf{2}A\mathbf{0}) \qquad \stackrel{\lambda}{\longrightarrow} (q_a, \mathbf{2}A\mathbf{0})$$

Redução

$$(q_b, \mathbf{4}a\mathbf{2}A\mathbf{0}) \qquad \xrightarrow{\lambda} \quad (q_b, \mathbf{2}A\mathbf{0})$$

$$(q_{\#}, \mathbf{5}A\mathbf{3}b\mathbf{2}A\mathbf{0}) \xrightarrow{\lambda} (q_{\#}, \mathbf{1}S\mathbf{0})$$

$$(q_a, \mathbf{6}a\mathbf{5}A\mathbf{3}) \qquad \stackrel{\lambda}{\longrightarrow} (q_a, \mathbf{5}A\mathbf{3})$$

$$(q_{\#}, \mathbf{6}a\mathbf{5}A\mathbf{3}) \qquad \stackrel{\lambda}{\longrightarrow} \quad (q_{\#}, \mathbf{5}A\mathbf{3})$$

$$egin{array}{ll} (q_a,\mathbf{2}) & \stackrel{\lambda}{\longrightarrow} & (q,\mathbf{4}a\mathbf{2}) \\ (q_b,\mathbf{2}) & \stackrel{\lambda}{\longrightarrow} & (q,\mathbf{3}b\mathbf{2}) \\ (q_a,\mathbf{5}) & \stackrel{\lambda}{\longrightarrow} & (q,\mathbf{6}a\mathbf{5}) \end{array}
ight.$$
 Transferência

(De acordo com o AFD dos itens LR(1) válidos obtido na aula.)

Vasco Pedro, LFA, UE, 2008/2009

Autómato Amalgamado

Seja $M = (Q, \Sigma, \delta, q_0, F)$ o autómato dos itens LR(1) válidos de uma gramática.

O **autómato amalgamado** M_A é o autómato que resulta de fundir num só os estados de M com o mesmo núcleo LR(0).

Seja $Q_i = \{q_{i_1}, q_{i_2}, \dots, q_{i_m}\}$ um conjunto de estados de M com o mesmo núcleo. O estado \widehat{Q}_i é o resultado da **fusão dos estados** de Q_i e contém os itens $A \to u \cdot v, L_{i_1} \cup L_{i_2} \cup \ldots \cup L_{i_m}$ tais que $A \to u \cdot v, L_{i_j}$ é um item de q_{i_j} .

Seja $\{Q_1,Q_2,\ldots,Q_n\}$ uma partição de Q tal que todos os estados de Q_i têm o mesmo núcleo e os núcleos dos estados de Q_i e de Q_j são diferentes, se $i\neq j$. Então

$$M_A = (Q_A, \Sigma, \delta_A, \{\widehat{q_0}\}, Q_A \setminus \{\{\widehat{\emptyset}\}\})$$

com

•
$$Q_A = \{\widehat{Q_1}, \widehat{Q_2}, \dots, \widehat{Q_n}\};$$

•
$$\delta_A(\widehat{Q}_i, a) = \widehat{Q}_j$$
 se $\delta(q, a) \in Q_j$ para $q \in Q_i$.

LALR(1)

Uma gramática independente do contexto é LALR(1) se o seu autómato amalgamado satisfaz as condições LR(1).

LR(0) (bis)

Uma gramática independente do contexto é LR(0) se o seu autómato dos itens LR(1) válidos, considerando somente os núcleos dos estados, satisfaz as condições LR(0).

A Linguagem WHILE

Átomos (conjunto finito)

$$A = \{ \text{nil}, \text{while}, :=, \text{quote}, \text{var}, \ldots \}$$

Valores D_A (elementos d, e, f, ...)

- \bullet $A \subseteq D_A$
- ullet se d, e $\in D_A$, então (d.e) $\in D_A$
- D_A é o menor conjunto que satisfaz os pontos anteriores.

Variáveis Vars (conjunto infinito, X, Y, ...)

Expressões

$$E \rightarrow X$$
 (variável)
| d (valor)
| =? E E
| cons E E | hd E | tl E

Instruções

$$C \rightarrow X := E \mid C; C \mid while E do C$$

Programas

read X; C; write Y

Açúcar Sintáctico para a Linguagem WHILE (1)

Booleanos

```
\begin{array}{l} \texttt{false} \equiv \texttt{nil} \\ \\ \texttt{true} \equiv (\texttt{nil.nil}) \\ \\ \texttt{if E then } C_1 \texttt{ else } C_2 \equiv \\ \\ \texttt{Z} := \texttt{E}; \\ \\ \texttt{W} := \texttt{true}; \\ \\ \texttt{while Z do} \\ \\ \texttt{Z} := \texttt{false}; \texttt{W} := \texttt{false}; \texttt{C}_1 \; \}; \\ \\ \texttt{while W do \{ W := \texttt{false}; \texttt{C}_2 \; \};} \end{array}
```

(onde **Z** e **W** são variáveis que não ocorrem no resto do programa)

```
skip \equiv X := X
```

Açúcar Sintáctico para a Linguagem WHILE (2)

Listas

nil é a lista vazia

$$(e) \equiv (e \cdot nil)$$

$$(e_1 \ e_2 \ \ldots \ e_n) \equiv$$
 $(e_1 \ . \ (e_2 \ . \ \ldots \ (e_n \ . \ nil) \ldots))$

Naturais

$$0 \equiv nil$$

$$1 \equiv (nil.nil)$$

$$n \equiv (\text{nil.}n - 1)$$

Açúcar Sintáctico para a Linguagem WHILE (3)

Macros

Se p é o programa

read
$$X_p$$
; C_p ; write Y_p

então a instrução

$$W := p e;$$

é equivalente a

$$\mathbf{X}_p := \mathbf{e};$$
 $\mathbf{C}_p;$ $\mathbf{W} := \mathbf{Y}_p;$

Representação Interna de um Programa WHILE

O programa WHILE

```
read X;
Y := nil;
while X do
   Y := cons (hd X) Y;
   X := tl X;
write Y
é representado internamente pela lista
(
  (var 1)
  (; (:= (var 2) (quote nil))
     (while (var 1)
        (; (:= (var 2))
               (cons (hd (var 1)) (var 2)))
           (:= (var 1) (tl (var 1)))))
  (var 2)
)
  Vasco Pedro, LFA, UE, 2008/2009
                                          79-4
```

Problema de Decisão

Um **problema de decisão** é um problema cujas instâncias têm resposta 'sim' ou 'não'.

Exemplos

• x é um quadrado perfeito?

Instâncias:

0 é um quadrado perfeito?

1 é um quadrado perfeito?

2 é um quadrado perfeito?

. . .

- ullet A palavra w pertence à linguagem L?
- ullet O programa p termina se corre com dados d?
- A máquina de Turing M pára quando o conteúdo inicial da fita é w?

Solução de um Problema de Decisão

A **solução** de um problema de decisão é um *procedimento efectivo* (algoritmo) que permite calcular a resposta para todas as instâncias do problema.

Um algoritmo deve ser

- completo: produz uma resposta para todas as instâncias de um problema;
- executável mecanicamente: consiste num número finito de passos, que podem ser executados 'sem pensar';
- determinista: produz sempre a mesma resposta para a mesma instância do problema.

Um problema de decisão sem solução diz-se indecidível.

Tese de Church-Turing

Existe um procedimento efectivo que é solução de um problema de decisão se e só se existe uma máquina de Turing que pára sempre e que resolve todas as instâncias do problema.

Formalismos Equivalentes

Máquinas de Turing

Cálculo- λ

Funções recursivas

Sistemas de Post

URM (Unlimited Register Machine)

Linguagem WHILE

Problema da Terminação (Halting Problem) (1)

Enunciado: O programa p termina quando corre com dados d?

Seja termina a função

$$termina(p,d) = \begin{cases} \text{true} & \text{se } p \text{ termina com} \\ & \text{dados } d \end{cases}$$

$$\text{false} & \text{se } p \text{ não termina} \\ & \text{com dados } d \end{cases}$$

e seja t o programa que implementa a função termina: quando corrido com dados (p.d), o resultado de t é

- true se o programa p termina quando corre com dados d;
- false no caso contrário.

Problema da Terminação (Halting Problem) (2)

Seja t' o programa que, quando corrido com dados p, tem o seguinte comportamento

- se o resultado de t(p.p) é true, t' não termina;
- se o resultado de t(p.p) é false, o resultado de t'(p) é true.

Qual o resultado de t'(t')?

- Se t'(t') termina, então o resultado de t(t'.t') é true e t'(t') não termina;
- Se t'(t') não termina, então o resultado de t(t'.t') é false e o resultado de t'(t') é true.

Há uma contradição em ambos os casos!

Problema da Terminação (*Halting Problem*) (3)

O programa t não existe.

O problema da terminação é indecidível

A função termina é não computável.

Redução de Problemas

O problema A pode ser **reduzido** ao problema B se qualquer instância de A puder ser expressa como uma instância de B cuja resposta é a resposta à instância de A.

Se A pode ser reduzido a B e se A é um problema indecidível, então B também é indecidível.

Exemplo

O problema da terminação pode ser reduzido ao problema de saber se o programa p termina quando corre com dados nil.

Exemplo de Redução (1)

Seja N o problema de decisão: o programa p termina quando corrido com dados **nil**?

Seja \mathbf{p}_N o programa que implementa a solução de N.

Sejam p um programa e d dados para p:

```
read X_p; C_p; write Y_p
```

Seja p' o programa:

```
read X_p; X_p := d; C_p; write Y_p
```

e seja s o programa que constrói p' a partir de (p.d).

Exemplo de Redução (2)

O comportamento de p, quando corrido com quaisquer dados, é o comportamento de p quando corrido com dados d.

Seja t o programa:

```
read PD; (PD contém o par (p.d))

P' := s PD; (transforma p)

R := p_N P'; (p_N corre com dados p')

write R
```

Dados p e d, t constrói p' e calcula $p_N(p')$.

O resultado de $p_N(p')$ é true se p'(nil) termina e false caso contrário.

Como p'(nil) tem o comportamento de p(d), o programa t determina se p termina quando corrido com dados d.

Exemplo de Redução (3)

O programa t implementa uma solução para o problema da terminação.

Mas o problema da terminação é indecidível e o programa t não existe.

Como existe uma redução do problema da terminação ao problema N — o programa \mathbf{s} pode ser construído e as restantes construções usadas na construção de \mathbf{t} são possíveis —, a premissa errada é a existência do programa \mathbf{p}_N .

Logo, o programa \mathbf{p}_N não existe e o problema N também é indecidível.

Teorema de Rice

Qualquer propriedade extensional não-trivial de programas é indecidível.

Uma propriedade é **extensional** se diz respeito à função que o programa calcula.

Uma propriedade é **não-trivial** se é satisfeita por pelo menos um programa, mas não por todos.

Exemplos

- O programa termina quando corre com dados nil.
- O conjunto {d | p(d) termina} é finito.
- O programa implementa uma função total.

Problemas Indecidíveis

- A GIC G é ambígua?
- As GIC G_1 e G_2 são equivalentes?
- A intersecção das linguagens geradas pelas GIC G_1 e G_2 é não vazia?
- O programa p reconhece a linguagem vazia?
- A linguagem reconhecida pelo programa p é regular?
- A linguagem reconhecida pelo programa $p \in \Sigma^*$?