Internship Progress Report

July 08

1. 신입생과정

번호	주제	진행	비고
1	데이터구조 1	О	6시간
2	데이터구조 2	О	6시간
3	데이터구조 3	О	6시간
4	Airport	О	10 시간
5	DFS,BFS	О	8 시간
6	Viterbi	О	8 시간
7	Sobel	О	2 시간
8	Omni to pano, pano to omin	О	36 시간
9	바둑판, 체스판	О	2 시간
10	이미지과제(10 개)	\triangle	진행중
11	HSV(Trackbar filter)	X	
12	Optical Flow(Matlab to C)	X	
13	Path Integration	X	
14	Visual compass & Hog	X	
15	Haarlike feature	X	
16	전기물고기(chen 논문)	X	
17	K-means	X	
18	Roomba	X	
19	6 족로봇(전진 후진 회전)	X	
20	Pioneer Control(내장컴퓨터,Aria,Low LEVEL)	X	
21	Kinect SDK	X	
22	Leap Motion	X	
23	Bioloid	X	
24	AR-drone 비행	X	
25	DAQ 사용법	X	
26	팬들럼	X	

2. 졸업연구

진동을 이용한 군집로봇 제어 <진행상황>

- 하드웨어
 - 1. WiFi 를 이용해서 원격 업로드 구현
 - 2. PCB 모터 홀 위치 수정
 - 3. Voltage regulator 회로 추가
 - 4. LED 보호저항 추가
 - 5. UART 핀헤더 크기 수정
 - 6. LED 밝기 flash 메모리를 통해 저장
 - 7. IP 주소 숫자 LED 로 표현하게 구현
 - 8. LED 색을 통한 통신 상태 state 구현

Before

After

소프트웨어

- 1. 기존 C코드 베이스에서 Matlab으로 전환
- 2. Pre-thresholding 을 통한 LED detection
- 3. 실시간 Motion Planning (프레임 수 : 초당 30 프레임)

Without Pre-thresholding

With Pre-thresholding

실시간 Motion Planning

<계획>

- 하드웨어
 - 1. OTA simultaneous multi uploading
 - 2. 충전방식 구상
- 소프트웨어
 - 1. GPU array 을 이용하여 속도향상 (Multi 객체)
 - 2. 실시간 feedback 을 통한 중간경로 제어
 - 3. Learning을 통한 제어값 설정

3. 홈페이지 관리

- Joe Leech 의 'Designing a fantastic UX with psychology' 강연 참고
- Awwwards 수상작 참고
- HTML CSS Javascript jQuery SVG PHP MySQL 등 다양한 기술 사용
- Mental Model 구상
 - 1. 메인화면 메뉴와 소식
 - 2. 연구실 소개, 교수님 소개, 연구실 인원 소개
 - 3. Research 소개
 - 4. 게재 논문 리스트, 수행 과제 리스트, 특허 출원 리스트
 - 5. 방명록 기능