Thesis Proposal

Predictive Modeling with Imbalanced Data

Alyssa Forber

University of Colorado, Anschutz Medical Campus

December 2017

Outline

Problem

Objectives

Methods

Case Studies

Results

Simulation

Conclusion

Imbalanced Learning Problem

- Presents a problem of imbalanced data
- Poor sensitivity with rare outcomes
- Need to improve predictive performance

Aims

- \bullet Accurate predicting \to improving sensitivity and specificity for imbalanced outcome
- Using and comparing methods of probability cut-points and sampling

Methods

- Create sampled datasets
- Run model on sampled data
- Get predicted probabilities on the test data
- Optimize probability cutoff for outcome

Model

- Roughly 2/3 temporal split of data to get train and test set
- Cross validated lasso regression

Lasso

- Lasso:
 - Shrinks estimates
 - Performs variable selection when shrunk to 0

$$\hat{\beta}_{lasso} = argmin \sum_{j=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2$$

subject to $\sum_{j=1}^{p} |\beta_j| \leq t$ where t is the tuning parameter.

Cross Validation

- Cross validation:
 - ► Find the best "tuning measure" for model selection which determines amount of shrinkage of estimates
 - Split data into k parts and then train on each of those except one you validate against
 - Then pick the tuning measure that minimizes error

Advantages and Disadvantages

- Advantages:
 - Lower variance of the predicted values
 - More accurate predictions
 - Reduces the number of predictors
- Disadvantages:
 - ▶ Biased coefficients, inference not same as logistic regression
 - ▶ No standard errors or p-values out of the model

ROC & Cutoff Probabilities

ROC (with pROC package):

- ROC curve plots sensitivity vs specificity for each cut-off
- Top left corner is ideal
- Youden Index is the furthest upper left corner or "max"

ROC Curve

Figure 2: ROC Curve

Confusion Matrix

Correctly identify those w/ outcome:

$$\textit{Sensitivity} = \frac{\textit{TP}}{\textit{TP} + \textit{FN}}$$

Correctly identify those w/o outcome:

$$Specificity = \frac{TN}{TN + FP}$$

Correctly identify either group:

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

Predicted class P N True False Positives Negatives (TP) (FN) Actual Class False True Positives Negatives (FP) (TN)

First approach

No Sampling, Optimize Cut-off:

- Use original unsampled data and get predictions from the lasso model
 - ▶ Predictions return probability between 0 and 1 for each observation
- Use 0.5 standard probability cutoff to compare
- Find "best" probability cutoff
 - Youden Index

Second Approach

Sampling:

- Create sampled data sets that are balanced
 - ▶ Down sample
 - ▶ Up sample
 - ► SMOTE
- Predict and use both standard 0.5 and Youden Index as cutoff

Down Sampling

• Under-sample majority to equal minority

Figure 3: Down sample

Up Sampling

Over-sample minority to equal majority

Figure 4: Up sample

SMOTE

• Synthetic Minority Over-sampling Technique

Figure 5: SMOTE

Case Study 1

- Design: Denver Health retrospective analysis electronic health record (EHR) data from 2008 to 2014.
- Patients: Hospitalized patients at an urban, safety-net hospital.
- Definition of Chronic Opioid Therapy (COT) one year following the index hospital discharge:

Receipt of \geq 90-day supply of opioids with < 30-day gap in supply over a 180-day period or receipt of \geq 10 opioid prescriptions over one year.

Case Study 1: Patient Population

- 27,705 patients
- Majority had incomes <185% of the Federal Poverty Level
- 70% were ethnic minorities
- 5% with COT
- Excluded Patients:
 - ► <15 or >85 years old
 - ▶ Those in prison, jail, or police custody
 - Those who died within one year following their index hospitalization
 - ▶ Patients with <2 healthcare visits to Denver Health three years preceding their index hospitalization
 - Undocumented persons receiving emergent hemodialysis
 - Obstetric patients

Case Study 1: Results

Table 1: Results

Data	Threshold	Specificity	Sensitivity	NPV	PPV	Accuracy	AUC	Covariates
Unsampled 0.5	0.5	99	8	96	35	96	86	31
Unsampled	0.043	73	85	99	12	73	86	31
Down sampled 0.5	0.5	81	75	99	15	81	86	34
Down sampled	0.401	73	85	99	12	74	86	34
Up sampled 0.5	0.5	82	75	99	15	82	87	34
Up sampled	0.399	74	85	99	12	74	87	34
SMOTE 0.5	0.5	86	71	99	17	85	86	33
SMOTE	0.472	84	74	99	17	84	86	33

Figure 6: ROC for Original Data: Younden and 0.5 cutoffs

Case Study 2

Case Study 2: Population?

Case STudy 2: Results

Simulation

Simulation Results

Conclusions

Questions?

Questions