

Лекция по теме «Транспортные сети»

автор – д.т.н., профессор Лисицына Л.С.

Транспортная сеть (TC) — это связный орграф G(X,U) со следующими свойствами:

- 1. $\exists! x_0 \in X(\Gamma^{-1}(x_0) = \emptyset)$, где x_0 начало или источник TC
- 2. $\exists x_i \in X(\Gamma^1(x_i) = \emptyset)$, где x_t конец или сток TC
- 3. $\forall u \in U : c(u) \ge 0$, где c(u) пропускная способность дуги

1. Понятие допустимого потока в ТС

- 2. Понятие полного потока в ТС
- 3. Алгоритм поиска полного потока в ТС
- 4. Теорема Форда-Фалкерсона (критерий для поиска максимального потока в ТС)

Понятие допустимого потока в ТС

Допустимый поток дуги $\varphi(u)$ – это такая числовая характеристика дуги, которая выбирается из условий:

$$\forall u \in U : 0 \le \varphi(u) \le c(u) \tag{1}$$

$$\forall x_j \in X \setminus \{x_0, x_t\} (\sum_{\chi_i \in \Gamma^{-1}(\chi_i)} \varphi(x_i, x_j) = \sum_{\chi_k \in \Gamma^{1}(\chi_i)} \varphi(x_j, x_k)) \tag{2}$$

Допустимый поток ТС $\varphi(G) = (\varphi(u_1),...,\varphi(u_m)) -$ это любой поток при соблюдении условий (1) и (2), его величина определяется как

$$\Phi = \sum_{\chi_i \in \Gamma^{-1}(\chi_t)} \varphi(x_i, x_t) = \sum_{\chi_k \in \Gamma^{1}(\chi_0)} \varphi(x_0, x_k)$$

1. Понятие допустимого потока в ТС

2. Понятие полного потока в ТС

- 3. Алгоритм поиска полного потока в ТС
- 4. Теорема Форда-Фалкерсона (критерий для поиска максимального потока в ТС)

Понятие полного потока в ТС

Дуга $u \in U$ называется **насыщенной**, если для допустимого потока $\varphi(G) = (\varphi(u_1),...,\varphi(u_m))$ выполняется условие, что $\varphi(u) = c(u)$.

Допустимый поток ТС $\varphi(G) = (\varphi(u_1),...,\varphi(u_m))$ будет **полным**, если в каждом пути $\mu = (x_0,...,x_t)$ есть хотя бы одна насыщенная дуга. Обозначим полный поток $\varphi_f(G)$, а его величину — Φ_f .

- 1. Понятие допустимого потока в ТС
- 2. Понятие полного потока в ТС

3. Алгоритм поиска полного потока в ТС

4. Теорема Форда-Фалкерсона (критерий для поиска максимального потока в ТС)

Алгоритм поиска полного потока в ТС

G(X,U) - исходный граф TC, G*(X*,U*) - граф TC с полным потоком

- 1. Положить, что $G^*(X^*,U^*)=G(X,U)$.
- 2. Положить, что $\forall u \in U : \varphi(u) = c(u), \Phi_i = 0.$
- 3. **ЦИКЛ до тех пор, пока** в графе G(X,U) вершина x_t достижима из вершины x_0 :
 - 3.1. Построить простой путь $\mu = (x_0, ..., x_t)$.
 - 3.2. Найти в пути $\mu = (x_0,...,x_t)$ насыщенную дугу (насыщенные дуги) и определить $MIN = \min_{\forall u \in \mu} \varphi(u)$.
 - 3.3. Увеличить значение $\Phi_f = \Phi_f + MIN$.
 - 3.4. Скорректировать $\forall u \in \mu : \varphi(u) = \varphi(u) MIN$.
 - 3.5. Удалить из графа G(X,U) насыщенную дугу (насыщенные дуги).
- 4. Определить $\forall u^* \in U^*$: $\varphi(u^*) = c(u) \varphi(u)$.

Алгоритм поиска полного потока в ТС: пример

УНИВЕРСИТЕТ ИТМО

$$\mu_2 = (x_1, x_2, x_3, x_4, x_6)$$

$$MIN = \varphi(x_2, x_3) = \varphi(x_3, x_4) = 2$$

 $\Phi_f = \Phi_f + MIN = 3 + 2 = 5$

$$\mu_4 = (x_1, x_2, x_5, x_6)$$

$$MIN = \varphi(x_1, x_2) = 2$$

$$\Phi_f = \Phi_f + MIN = 7 + 2 = 9$$

- 1. Понятие допустимого потока в ТС
- 2. Понятие полного потока в ТС
- 3. Алгоритм поиска полного потока в ТС
- **4. Теорема Форда-Фалкерсона** (критерий для поиска максимального потока в TC)

Теорема Форда-Фалкерсона

Разрезом транспортной сети G(X,U) называется разбиение множества X на два подмножества A и B таких, что: $A \cap B = \varnothing$, $A \cup B = X$, $x_0 \in A$, $x_t \in B$. Очевидно, что $A \neq \varnothing$ и $B \neq \varnothing$. Разрезы TC строятся с начала сети слева направо.

Пропускная способность разреза определяется по условию допустимости потока (1) и (2) как

$$C(A,B) = \sum_{\forall v \in A} C(v), \qquad (4)$$

где C(v) – поток, который может пройти через данный разрез из вершины v.

Принимается, что $C(x_0) = \sum_{\forall w \in B} c(x_0, w)$, а для других вершин разреза как

$$C(v) = \min(\sum_{\forall s \in A} c(s, v), \sum_{\forall w \in B} c(v, w)).$$
 (5)

T.e. поток, который может пройти через разрез из вершины v не больше, чем сумма потоков, которые могут прийти в эту вершину из других вершин множества A.

Теорема Форда-Фалкерсона

№	A	В	C(A,B)
1	$\{x_1\}$	$\{x_2, x_3, x_4, x_5, x_6\}$	$C(x_1) = 7 + 8 = 15$
2	$\{x_1, x_2, x_3\}$	$\{x_4, x_5, x_6\}$	$C(x_1) + C(x_2) + C(x_3) = 0 + 7 + 4 = 11$
3	$\{x_1, x_2, x_3, x_4, x_5\}$	{x ₆ }	$C(x_1) + C(x_2) + C(x_3) + C(x_4) + C(x_5) = 0 + 0 + 5 + 8 = 13$

Разрез ТС с минимальной пропускной способностью называется минимальным разрезом.

Теорема Форда-Фалкерсона. Величина максимального потока Φ_{\max} транспортной сети G(X,U) определяется пропускной способностью ее минимального разреза.

<u>Доказательство.</u> Для любого допустимого потока Φ в транспортной сети G(X,U) и любого ее разреза выполняется неравенство $\Phi \leq C(A,B)$, т.е. величина любого допустимого потока Φ , в т.ч. и максимального Φ_{\max} не превышает пропускную способность любого разреза TC, в т.ч. и минимального. Следовательно $\Phi_{\max} = \min_{X \in B} C(A,B)$

Спасибо за внимание!

www.ifmo.ru

ITSMOre than a UNIVERSITY