- 1. Consider the universal relation R = {a, b, c, d, E} and the set of functional dependencies $FD = \{\{a\} \to \{b,c\}, \{b\} \to \{d\}\} \text{ and MVD} = \{\{b\} \twoheadrightarrow \{c,d\}$
 - 1. (1) Write all the candidate keys for R.
 - 2. (6) What schema(s) would be produced by the 4NF decomposition algorithm?
 - A. R1(a,d), R2(b,c), R3(a,b), R4(a,E)
 - B. R1(b,d), R2(b,c), R3(a,b), R4(a,E)
 - C. both options are correct
 - D. both options are wrong

- 2. Consider the universal relation R = {a, b, c, d, E} and the set of functional dependencies $FD = \{\{a,b\} \rightarrow \{E\}, \{a\} \rightarrow \{d\}\} \text{ and the set of MVDs} = \{\{a\} \twoheadrightarrow \{b\}, \{a,b\} \twoheadrightarrow \{c\}\}.$
 - 1. (1) Write all the candidate keys for R.
 - 2. (4) What schema(s) would be produced by the 4NF decomposition algorithm?
 - A. $R1=\{a,b\}$, $R2=\{a,d\}$, $R3=\{a,c,E\}$
 - B. $R1=\{a,b\}, R2=\{a,E\}, R3=\{a,c\}, R4=\{a,d\}$
 - C. $R1=\{a,b\},R2=\{a,d,E\},R3=\{a,c\}$
 - D. $R1=\{a,b,E\},R2=\{a,b\},R3=\{a,c\},R4=\{a,d\}$

- 3. Consider the universal relation R = {a, b, c, d, E} and the set of functional dependencies $FD = \{\{a\} \rightarrow \{b\}, \{b\} \rightarrow \{ce\}\}\}$ and the set of MVDs = $\{\{b\} \twoheadrightarrow \{d\}\}$.
 - 1. (1) Write all the candidate keys for R.
 - 2. (3) Decompose the relation R into 4NF relations.

A	В	C	D
a1	b1	c1	d1
a1	b2	c1	d1
a1	b2	c2	d2
a1	b1	c2	d2
a2	b3	c1	d2

- 1. (4) Does the above table have a non-trivial MVD that is not a FD? If so , identify the MVD. You just have to identify one MVD.
- 2. (2) Identify one candidate key.

	A	В	C	D
4.	a1	b1	c 1	d1
	a1	b1	c2	d2
	a1	b2	c1	d1
	a1	b3	c2	d2
	a2	b2	c1	d1

- 1. (3) What functional dependencies would be satisfied by inserting the tuples (a1,b1,c2,d1) and (a1,b1,c1,d2) in the table:
 - $A. A \rightarrow B$
 - $B. \ A \twoheadrightarrow D$
 - $C. \ B \twoheadrightarrow A$
 - D. $B \rightarrow D$
 - E. none of the above
- 2. (3) What functional dependencies would be satisfied by inserting the tuples (a1,b2,c2,d2) and (a1,b3,c1,d1) in the table:
 - $A. A \rightarrow B$
 - B. $A \rightarrow D$
 - $C. \ B \twoheadrightarrow D$
 - $D. \ D \twoheadrightarrow A$
 - E. none of the above
- 3. (3) What functional dependencies would be satisfied by inserting the tuples (a1,b1,c1,d2), (a1,b2,c1,d2), (a1,b1,c2,d1) and (a1,b3,c2,d1) in the table:
 - A. $A \rightarrow B$
 - $B. \ A \twoheadrightarrow D$
 - $C. \ D \twoheadrightarrow B$
 - $D. \ B \twoheadrightarrow A$
 - E. none of the above
- 4. (3) What functional dependencies would be satisfied by inserting the tuple (a2,b1,c1,d1) in the table:
 - $A. \ B \twoheadrightarrow A$
 - $B. \ A \twoheadrightarrow D$
 - $C. \ D \twoheadrightarrow B$
 - $D. \ D \twoheadrightarrow A$
 - E. none of the above

- 5. Consider the relation R = {a, b, c, d, E} and the set of functional dependencies $FD = \{\{b\} \rightarrow \{c\}\}\}$ and the set of MVDs = $\{\{a\} \rightarrow \{b\}\{c\} \rightarrow \{d\}\}\}$.
 - 1. (1) Write all the candidate keys for R.
 - 2. (3) Decompose the relation R into 4NF relations.

6. (6) Consider a relation R(A,B,C,D) that satisfies A woheadrightarrow B and A woheadrightarrow C. Prove that A woheadrightarrow BC using some of the MVD rules I went over in class.