# CHAPTER 8 SEARCHING ALGORITHM

ผศ.ดร.สิลดา อินทรโสธรฉันท์

สาขาวิชาวิทยาการคอมพิวเตอร์

คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น

#### SEARCHING ALGORITHM

- Linear Search
- Binary Search
- Interpolation Search
- Hash Table

## LINEAR SEARCH

- Linear search is a very simple search algorithm.
- A sequential search is made over all items one by one.
- Every item is checked and if a match is found then that particular item is returned.
- Otherwise the search continues till the end of the data collection.

## LINEAR SEARCH



• Searching Data = 33

## LINEAR SEARCH

```
Linear_Search (list A, value x)

for each item in the list

if match item == value

return the item's location

end if

end for
```

- Binary search is a fast search algorithm with run-time complexity of O(log n).
- This search algorithm works on the principle of divide and conquer.
- This algorithm to work properly, the data collection should be in the sorted form.

- Binary search looks for a particular item by comparing the middle most item of the collection.
  - -If a match occurs, then the index of item is returned.
  - -If the middle item is greater than the item, then the item is searched in the sub-array to the left of the middle item.
  - -Otherwise, the item is searched for in the sub-array to the right of the middle item.
  - -This process continues on the sub-array as well until the size of the subarray reduces to zero.

#### BINARY SEARCH (EXAMPLE 1)

 Assume that we need to search the location of value 31 using binary search.



• First, we shall determine half of the array by using this formula mid = low + (high - low)/2

- **Round I**: low = 0, high = 9
- mid = 0 + (9 0) / 2 = 4 (integer value of 4.5).
- So, 4 is the mid of the array.



 Compare the value stored at location 4, with the value being searched, i.e. 31.

- The value at location 4 is 27, which is not a match.
- As the value is greater than 27 and we have a sorted array, so we also know that the target value must be in the upper portion of the array.



- Round 2: Change our low = mid + I = 4 + I = 5, high = 9 mid = 5 + (9 5) / 2 = 5 + 2 = 7
- New mid is 7. Compare the value stored at location 7 with our target value 31.



- The value stored at location 7 is not a match, rather it is more than what we are looking for.
- So, the value must be in the lower part from this location.
- Round 3: Change our high = mid I = 7 I = 6, low = 5 mid = 5 + (6 5) / 2 = 5 (integer value of 5.5)

Calculate the mid again. This time it is 5.



- Compare the value stored at location 5 with our target value.
- It is a match.



- Conclude that the target value 31 is stored at location 5.
- Binary search halves the searchable items and thus reduces the count of comparisons to be made to very less numbers.

#### BINARY SEARCH (EXAMPLE 2)

 Assume that we need to search the location of value 32 using binary search.



• First, we shall determine half of the array by using this formula mid = low + (high - low)/2

- **Round I** : low = 0 , high = 9
- mid = 0 + (9 0) / 2 = 4 (integer value of 4.5).
- So, 4 is the mid of the array.



 Compare the value stored at location 4, with the value being searched, i.e. 31.

- The value at location 4 is 27, which is not a match.
- As the value is greater than 27 and we have a sorted array, so we also know that the target value must be in the upper portion of the array.



- Round 2 : Change our low = mid + I = 4 + I = 5, high = 9 mid = 5 + (9 5) / 2 = 5 + 2 = 7
- New mid is 7. Compare the value stored at location 7 with our target value 32.



- The value stored at location 7 is not a match, rather it is more than what we are looking for.
- So, the value must be in the lower part from this location.
- Round 3: Change our high = mid I = 7 I = 6, low = 5 mid = 5 + (6 5) / 2 = 5 (integer value of 5.5)

Calculate the mid again. This time it is 5.



- Compare the value stored at location 5 with our target value.
- As the value is greater than 31 and we have a sorted array, so we also know that the target value must be in the upper portion of the array.

- Round 4: Change our low = mid + I = 5 + I = 6, high = 6 mid = 6 + (6 6) / 2 = 6
- New mid is 6. Compare the value stored at location 6 with our target value 32.



- The value stored at location 6 is not a match, rather it is more than what we are looking for.
- So, the value must be in the lower part from this location.
- Round 5 : Change our high = mid I = 6 I = 5, low = 6 high < low : not found

```
Procedure binary search
  A ← sorted array
  n ← size of array
  x ← value to be searched
  Set lowerBound = 1
  Set upperBound = n
  while x not found
      if upperBound < lowerBound
         EXIT: x does not exists.
      set midPoint = lowerBound + ( upperBound - lowerBound ) / 2
      if A[midPoint] < x</pre>
         set lowerBound = midPoint + 1
      if A[midPoint] > x
         set upperBound = midPoint - 1
      if A[midPoint] = x
         EXIT: x found at location midPoint
  end while
end procedure
```

- Interpolation search is an improved variant of binary search.
- This search algorithm works on the probing position of the required value.
- For this algorithm to work properly, the data collection should be in a sorted form and equally distributed.

- Binary search has a huge advantage of time complexity over linear search.
- Linear search has worst-case complexity of O(n) whereas binary search has O(log n).

- Initially, the probe position is the position of the middle most item of the collection.
- If a match occurs, then the index of the item is returned.
- If the middle item is greater than the item, then the probe position is again calculated in the sub-array to the right of the middle item.
- Otherwise, the item is searched in the subarray to the left of the middle item.

• This process continues on the sub-array as well until the size of subarray reduces to zero.

```
// when element to be searched is closer to arr[hi]. And
// smaller value when closer to arr[lo]
pos = lo + [ (x-arr[lo])*(hi-lo) / (arr[hi]-arr[Lo]) ]

arr[] ==> Array where elements need to be searched
x ==> Element to be searched
lo ==> Starting index in arr[]
hi ==> Ending index in arr[]
```

**Step I:** In a loop, calculate the value of "pos" using the probe position formula.

**Step2:** If it is a match, return the index of the item, and exit.

**Step3:** If the item is less than arr[pos], calculate the probe position of the left sub-array. Otherwise calculate the same in the right sub-array.

**Step4:** Repeat until a match is found or the sub-array reduces to zero.

#### Example 1

- arr[] = [2, 3, 5, 7, 9]
- Target = 7
- lo = 1, hi = 5
- Round I:

```
• Step I : pos = I + [(7-2)*(5-1)/(9-2)]
pos = I + [5*4/7] = I + 2 = 3
```

```
Step 2 : compare Target and arr[3] :
       7 > 5: update low index (lo = pos + I = 3 + I = 4)
lo = 4, hi = 5
Round 2:
Step I : pos = 4 + [(7-7)*(5-4)/(9-7)]
       pos = 4 + [0 * 1 / 2] = 4 + 0 = 4
Step 2 : compare Target and arr[4] :
       7 = 7: return pos
```

#### Example II

- arr[] = [2, 3, 5, 7, 9]
- Target = 4
- lo = 1, hi = 5
- Round I:

Step I : pos = I + [ 
$$(4-2)*(5-1)/(9-2)$$
 ]  
pos = I + [ $2*4/7$ ] = I + I = 2

```
Step 2 : compare Target and arr[2] : 4 > 3 : update low index (lo = pos + I = 2 + I = 3) lo = 3, hi = 5 Round 2 : Step I : pos = 3 + [(4-5)*(5-3)/(9-5)] pos = 3 + [-1*2/-4] = 3 + 0 = 3
```

```
Step 2 : compare Target and arr[3] : 4 < 5 : update high index (hi = pos - I = 3 - I = 2)
```

lo = 3, hi = 2

lo > hi : not found

End loop

Return: not found

- Hash Table is a data structure which stores data in an associative manner.
- In a hash table, data is stored in an array format, where each data value has its own unique index value.
- Access of data becomes very fast if we know the index of the desired data.

- Thus, it becomes a data structure in which insertion and search operations are very fast irrespective of the size of the data.
- Hash Table uses an array as a storage medium and uses hash technique to generate an index where an element is to be inserted or is to be located from.

- Hashing is a technique to convert a range of key values into a range of indexes of an array.
- We're going to use modulo operator to get a range of key values.
- Consider an example of hash table of size 20, and the following items are to be stored.
- Item are in the (key, value) format.

- (key, value)
- **(1,20)**
- (2,70)
- **42,80**
- (4,25)
- (12,44)



| Sr.No. | Key | Hash         | Array Index |
|--------|-----|--------------|-------------|
| 1      | 1   | 1 % 20 = 1   | 1           |
| 2      | 2   | 2 % 20 = 2   | 2           |
| 3      | 42  | 42 % 20 = 2  | 2           |
| 4      | 4   | 4 % 20 = 4   | 4           |
| 5      | 12  | 12 % 20 = 12 | 12          |
| 6      | 14  | 14 % 20 = 14 | 14          |
| 7      | 17  | 17 % 20 = 17 | 17          |
| 8      | 13  | 13 % 20 = 13 | 13          |
| 9      | 37  | 37 % 20 = 17 | 17          |

#### LINEAR PROBING

- It may happen that the hashing technique is used to create an already used index of the array.
- In such a case, we can search the next empty location in the array by looking into the next cell until we find an empty cell.
- This technique is called linear probing.

## LINEAR PROBING

| Sr.No. | Key | Hash         | Array Index | After Linear Probing, Array<br>Index |
|--------|-----|--------------|-------------|--------------------------------------|
| 1      | 1   | 1 % 20 = 1   | 1           | 1                                    |
| 2      | 2   | 2 % 20 = 2   | 2           | <b>→</b> 2                           |
| 3      | 42  | 42 % 20 = 2  | 2           | <b>→</b> 3                           |
| 4      | 4   | 4 % 20 = 4   | 4           | 4                                    |
| 5      | 12  | 12 % 20 = 12 | 12          | 12                                   |
| 6      | 14  | 14 % 20 = 14 | 14          | 14                                   |
| 7      | 17  | 17 % 20 = 17 | 17          | 17                                   |
| 8      | 13  | 13 % 20 = 13 | 13          | 13                                   |
| 9      | 37  | 37 % 20 = 17 | 17          | 18                                   |