Mobility-Spending Classification

Project Report

Parikshith T (91)-9901665577

thriyambaka.p@northeastern.edu

Problem Setting:

The problem that was selected for analysis involves predicting the consumer spending behavior based on human mobility measures.

During initial stages of COVID-19, a greater number of people are tested as COVID positive. The main reason for this is not knowing how coronavirus is transmitted. After finding that coronavirus spreads between people through direct, indirect (through contaminated objects or surfaces), or close contact with infected people via mouth and nose secretions, government suggested people maintain at least 1metre distance from each other and to self – quarantine. This impacted the consumer spending behavior as most of the work places and shops are closed. The seven models, if successfully created and implemented, could potentially help in understanding the pattern of spending in this pandemic.

Problem Definition:

In this project, the problem is to find how mobility measures impact consumer spending by building models, one for each of the response variables: spend_acf, spend_aer, spend_apg, spend_tws, spend_all_inchigh, spend_all_incmiddle, spend_all_inclow using mobility attributes as input variables. The main objective of the project is analyze and compare the performance of seven models.

Data Sources:

The mobility variables indicate how visits to places, such as grocery stores and parks, are changing in each geographic region are provided by Google - https://www.google.com/covid19/mobility/.

The consumer spending measures are provided by affinity solutions and are used in opportunity insights database https://github.com/OpportunityInsights/EconomicTracker. For this project use the encoded dataset mobility-spending-encoded.csv. The encoded dataset has 1s and 0s introduced in the variables related to consumer spending. All values less than -0.1 are replaced by 0s. Similarly, all values greater than -0.1 are replaced by 1s. A 0 indicates a large drop in consumer spending and a 1 indicates a small drop in consumer spending.

Data Description:

The following table details the attributes that were present in the original dataset.

Table 1: Mobility measures

Attribute	Definition
gps_away_from_home	Time spent outside of residential locations.
gps_retail_and_recreation	Time spent at retail and recreation locations.
gps_grocery_and_pharmacy	Time spent at grocery and pharmacy locations.
gps_parks	Time spent at parks.
gps_transit_stations	Time at inside transit stations.
gps_workplaces	Time spent at work places.
gps_residential	Time spent at residential locations.

Table 2: Consumer Spending Measures

Attribute	Definition			
spend_all	Seasonally adjusted credit/debit card spending relative to January 4-31 2020 in all merchant category codes (MCC), 7 day moving average.			
spend_acf	Seasonally adjusted credit/debit card spending relative to January 4-31 2020 in accommodation and food service (ACF) MCCs, 7 day moving average, 7 day moving average.			
spend_aer	Seasonally adjusted credit/debit card spending relative to January 4-31 2020 in arts, entertainment, and recreation (AER) MCCs, 7 day moving average.			
spend_apg	Seasonally adjusted credit/debit card spending relative to January 4-31 2020 in general merchandise stores (GEN) and apparel and accessories (AAP) MCCs, 7 day moving average.			
spend_grf	Time at inside transit Seasonally adjusted credit/debit card spending relative to January 4-31 2020 in grocery and food store (GRF) MCCs, 7 day moving average.			
spend_hcs	Seasonally adjusted credit/debit card spending relative to January 4-31 2020 in health care and social assistance (HCS) MCCs, 7 day moving average.			
spend_tws	Seasonally adjusted credit/debit card spending relative to January 4-31 2020 in transportation and warehousing (TWS) MCCs, 7 day moving average.			
spend_all_inchigh	Seasonally adjusted credit/debit card spending by consumers living in ZIP codes with high (top quartile) median income, relative to January 4-31 2020 in all merchant category codes (MCC), 7 day moving average.			
spend_all_incmiddle	Seasonally adjusted credit/debit card spending by consumers living in ZIP codes with middle (middle two quartiles) median income, relative to January 4-31 2020 in all merchant category codes (MCC), 7 day moving average.			
spend_all_inclow	Seasonally adjusted credit/debit card spending by consumers living in ZIP codes with low (bottom quartiles) median income, relative to January 4-31 2020 in all merchant category codes (MCC), 7 day moving average			

Data Exploration and Processing:

The first step of Data exploration is to understand the data, the type of input variables and output variables. In this project the input variables are mobility measures which are continuous variables and output variable or response variable is consumer spending variable which is a categorical variable.

As part of data preprocessing missing values should be handled, either by deleting rows with missing values or by assigning median as value to continuous variable and mode as value to categorical variable.

Table 3: Variable and number of missing records

Variable	gps_parks	spend_all_inchigh	spend_all_inclow
# Missing Records	25	131	262

Data set has total of 6681 records, out of which there 418 records are having missing values. Using XLMiner, transform feature, we can delete these records.

Table 4: Handling missing records

Variable	gps_parks	spend_all_inchigh	spend_all_inclow	Other variables
Reduction Type	DELETE RECORD	DELETE RECORD	DELETE RECORD	NONE
# Records Treated	25	131	262	0
Missing Value Code	NA			
# Output Records	6263			
#Records Deleted	418			

After handling missing values, the first visualization tool implemented was a scatterplot matrix.

Figure 1: Scatterplot Matrix evaluating attribute correlation

Correlation matrix:

	gps	s_retail_and_recreation	gps_g	grocery_and_pharmacy	gı	ps_parks	gps_t	ransit_stations	gp:	s_workplaces	gps_residentia	gps_away_fro	m_home
gps_retail_and_recreation	企	1											
gps_grocery_and_pharmacy	1	0.789776455	Ŷ	1									
gps_parks	=>	0.352394315	1	0.460670368	Ŷ	1							
gps_transit_stations	1	0.886646162	1	0.778125473	r	0.370731	P	1					
gps_workplaces	1	0.788049293	P	0.613528891	-	0.1265962	P	0.803761754	P	1			
gps_residential	1	-0.831698431	Ψ.	-0.658886397	攴.	-0.2780845	Φ.	-0.831174304	1	-0.94783379	·	L	
gps_away_from_home	Ŷ	0.929464671	Ŷ	0.744997489	→	0.3028153	Ŷ	0.88728299	俞	0.900540016	-0.92195158	企	1

Based on the above scatter plot and correlation matrix, we can observe that gps_away_from_home, gps_transit_stations and gps_retail_and_recreation is strongly correlated.

The data exploration and visualization tools utilized in the initial data examination assist in the eventual determination of which attributes to focus on as predictors when building the classification model.

Data Mining Tasks:

As empty records are handled as part of data preprocessing, the next step is to partition data. For all the models, data is partitioned into 3 parts -70% training data, 15% validation data and 15% testing data.

Model 1 (response variable - spend_acf)

Using Data mining, classify feature, we can build classification tree considering five mobility variables as input variables and spend_acf as output variable. Here, (based on feature importance) we can ignore gps_retail_and_recreation, gps_transit_stations as they as highly correlated with gps_away_from_home.

Table 5: Variables used for building Classification tree for response variable spend_acf

Variables								
# Variables	5							
Scale Variables	gps_grocery_and_pharmacy	gps_parks	gps_workplaces	gps_residential	gps_away_from_home			
Output Variable	spend_acf							

Of the set of variables included, each was given a relative importance in the model. The most important variables turned out to be "gps_grocery_and_pharmacy" and "gps_parks"

Table 6: Classification tree predicting feature importance

Feature	Importance
gps_grocery_and_pharmacy	0.179744526
gps_parks	0.263001825
gps_workplaces	0.333257299
gps_residential	0.036268248
gps_away_from_home	0.218065693

Figure 2: Fully grown tree

Based on the above tree, we can create rules to predict if new record results in large drop or small drop in accommodation and food service spending.

Model 2 (response variable - spend_aer)

Using Data mining, classify feature, we can build classification tree considering five mobility variables as input variables and spend_aer as output variable. Here, we can ignore gps_away_from_home, gps_transit_stations as they as highly correlated with gps_retail_and_recreation.

Table 7: Variables used for building Classification tree for response variable spend_aer

Variables							
# Variables	5						
Scale Variables	gps_retail_and_recreation	gps_grocery_and_pharmacy	gps_parks	gps_workplaces	gps_residential		
Output Variable	spend_aer						

Of the set of variables included, each was given a relative importance in the model. The most important variables turned out to be "gps_retail_and_recreation" and "gps_grocery_and_pharmacy"

Table 8: Classification tree predicting feature importance

Feature	Importance
gps_retail_and_recreation	0.993385036
gps_grocery_and_pharmacy	0.981751825
gps_parks	0.433166058
gps_workplaces	0.563640511
gps_residential	0.342381387

Model 3 (response variable - spend_apg)

Using Data mining, classify feature, we can build classification tree considering five mobility variables as input variables and spend_aer as output variable. Here, we can ignore gps_away_from_home, gps_transit_stations as they as highly correlated with gps_retail_and_recreation.

Table 9: Variables used for building Classification tree for response variable spend_apg

Variables							
# Variables	5						
Scale Variables	gps_retail_and_recreation	gps_grocery_and_pharmacy	gps_parks	gps_workplaces	gps_residential		
Output Variable	spend_apg						

Of the set of variables included, each was given a relative importance in the model. The most important variables turned out to be "gps_retail and recreation" and "gps_grocery and pharmacy"

Table 10: Classification tree predicting feature importance

Feature	Importance
gps_retail_and_recreation	1.244525547
gps_grocery_and_pharmacy	1.093978102
gps_workplaces	1.042427007
gps_parks	0.892791971
gps_residential	0.480839416

Model 4 (response variable - spend_tws)

Using Data mining, classify feature, we can build classification tree considering five mobility variables as input variables and spend_aer as output variable. Here, we can ignore, gps_retail_and_recreation, gps_transit_stations as they as highly correlated with gps_away_from_home.

Table 11: Variables used for building Classification tree for response variable spend_tws

Variables								
# Variables	5							
Scale Variables	gps_grocery_and_pharmacy	gps_parks	gps_workplaces	gps_residential	gps_away_from_home			
Output Variable	spend_tws							

Of the set of variables included, each was given a relative importance in the model. The most important variables turned out to be "gps_parks" and "gps_away from home"

Table 12: Classification tree predicting feature importance

Feature	Importance
gps_parks	0.960994526
gps_away_from_home	0.826870438
gps_workplaces	0.510036496
gps_grocery_and_pharmacy	0.419251825
gps_residential	0.057481752

Model 5 (response variable - spend_all_inchigh)

Using Data mining, classify feature, we can build classification tree considering five mobility variables as input variables and spend_all_inchigh as output variable. Here, we can ignore, gps_away_from_home, gps_transit_stations as they as highly correlated with gps_retail_and_recreation.

Table 13: Variables used for building Classification tree for response variable spend_all_inchigh

Variables					
# Variables	5				
Scale Variables	gps_retail_and_recreation	gps_grocery_and_pharmacy	gps_parks	gps_workplaces	gps_residential
Output Variable	spend_all_inchigh				

Of the set of variables included, each was given a relative importance in the model. The most important variables turned out to be "gps workplaces" and "gps_paks"

Table 14: Classification tree predicting feature importance

Feature	Importance
gps_workplaces	1.113366788
gps_parks	0.900547445
gps_retail_and_recreation	0.807709854
gps_grocery_and_pharmacy	0.658759124
gps_residential	0.438868613

Model 6 (response variable - spend_all_incmiddle)

Using Data mining, classify feature, we can build classification tree considering five mobility variables as input variables and spend_all_incmiddle as output variable. Here, we can ignore, gps_away_from_home, gps_transit_stations as they as highly correlated with gps_retail_and_recreation.

Table 15: Variables used for building Classification tree for response variable spend_all_incmiddle

Variables					
# Variables	5				
Scale Variables	gps_retail_and_recreation	gps_grocery_and_pharmacy	gps_parks	gps_workplaces	gps_residential
Output Variable	spend_all_incmiddle				

Of the set of variables included, each was given a relative importance in the model. The most important variables turned out to be "gps_grocery_and_pharmacy" and "gps_retail_and_recreation"

Table 16: Classification tree predicting feature importance

Feature	Importance
gps_grocery_and_pharmacy	1.484489051
gps_retail_and_recreation	1.45415146
gps_workplaces	1.363138686
gps_parks	1.052919708
gps_residential	0.936359489

Model 7 (response variable - spend_all_inclow)

Using Data mining, classify feature, we can build classification tree considering five mobility variables as input variables and spend_all_incmiddle as output variable. Here, we can ignore, gps_away_from_home, gps_transit_stations as they as highly correlated with gps_retail_and_recreation.

Table 17: Variables used for building Classification tree for response variable spend_inclow

Variables					
# Variables	5				
Scale Variables	gps_retail_and_recreation	gps_grocery_and_pharmacy	gps_parks	gps_workplaces	gps_residential
Output Variable	spend_all_inclow				

Of the set of variables included, each was given a relative importance in the model. The most important variables turned out to be "gps_workplaces" and "gps_retail_and_recreation"

Table 18: Classification tree predicting feature importance

Feature	Importance
gps_workplaces	2.180885036
gps_retail_and_recreation	1.881386861
gps_parks	1.397810219
gps_grocery_and_pharmacy	1.167427007
gps_residential	0.784899635

Performance Evaluation:

The following sections report the performance metrics found for each of the models built.

Model 1 (response variable - spend_acf)

The following table shows the confusion matrices, error reports, and performance metrics (accuracy, specificity, sensitivity, precision, and success class) for the model built.

Validation: Classification Summary **Training: Classification Summary Confusion Matrix** Confusion Matrix 17 727 # Cases # Errors 88 2.51860332 3494 744 17 2.284946237 890 32 3.595505618 195 4.615384615 26 2.768903088 120 2.737226277, Metrics Metrics 4264 97.2627737 97.23109691 Accuracy (%correct) 0.97481397 0.977150538 0.96404494 0.953846154 0.90697674 0.916256158 0.93464052 0.934673367 iccess Class

Table 19: Confusion matrix, error report and metrics for Model 1

0.5

The model shows 2% error rate in all the data sets. The model is performing good on training, validation and testing sets with an accuracy of 97%.

Figure: Lift chart and ROC curve for model with AUROC = 0.976

The AUROC for the model is 0.97, which shows the percentage of correctly classified records. As another indicator of model performance, the lift chart compares the number of correctly classified cases to the total number of records. The higher the lift, the better the model's performance. In this case, the lift chart is far from the red line, which indicates that the model is performing good.

Model 2 (response variable - spend aer)

The following table shows the confusion matrices, error reports, and performance metrics (accuracy, specificity, sensitivity, precision, and success class) for the model built.

Table 20: Confusion matrix, error report and metrics for Model 2

Validation: Classification Summary **Confusion Matrix** Actual\Predicted ▼ Confusion Matrix 211 3618 70 485 769 56 25 89 **Error Report** # # Errors ▼ % Error **Error Report** 3829 211 5.510577174 # Erro 555 70 12.61261261 56 6.787878788 825 4384 281 6.409671533 114 25 21.92982456 81 8.626198083 939 Metrics Metrics Metric 4103 Accuracy (#correct) 858 Accuracy (%correct) 93.5903285 Accuracy (%correct) 91.37380192 0.94489423 Specificity 0.932121212 Specificity Sensitivity (Recall) 0.87387387 0.780701754 ensitivity (Recall) 0.69683908 Precision 0.613793103 0.7753797 0.687258687 uccess Class ccess Probability

Testing: Classification Summary

Training: Classification Summary

The model shows 6% error rate in training and testing data sets. But error rate increased to 8% in validation data set, this might be due to overfitting of training data. The model is performing better on training and testing sets with an accuracy of 93%.

Figure: Lift chart and ROC curve for model with AUROC = 0.9441

The AUROC for the model is 0.9334, which shows the percentage of correctly classified records. Lift chart is far from the red line, which indicates that the model is performing better.

Model 3 (response variable - spend_apg)

The following table shows the confusion matrices, error reports, and performance metrics (accuracy, specificity, sensitivity, precision, and success class) for the model built.

Training: Classification Summary Validation: Classification Summary **Confusion Matrix** Confusion Matrix ¥ **v** 1 Actual\Predicted ▼ 0 Actual\Predicted **▼** 207 2357 483 48 254 1566 55 353 Error Report **▼** # Errors ▼ % Error # Errors ▼ % Error 2564 207 8.073322933 531 48 9.039548023 254 13.95604396 1820 408 55 13.48039216 4384 461 10.51551095 103 10.96911608 939 Metrics Metrics Metric Metric 3923 836 Accuracy (#correct) Accuracy (%correct) 89 4844891 89.03088392 Accuracy (%correct) 0.91926677 Specificity 0.90960452 Specificity Sensitivity (Recall) 0.86043956 0.865196078 Sensitivity (Recall) 0.88324873 0.880299252 Precision F1 score 0.87169496 0.872682324 F1 score uccess Class Success Class Success Probabilit 0.5 **Testing: Classification Summary Confusion Matrix** 511 50 65 314 **Error Report** # Error ▼ % Error 561 50 8.912655971 379 65 17.15039578 940 115 12.23404255,

Table 21: Confusion matrix, error report and metrics for Model 3

The model shows 10% error rate in training and validation data sets. But error rate increased to 12% in testing data set, this might be due to overfitting of data. The model is performing better on training and testing sets with an accuracy of 87%.

825

87.7659574 0.91087344

0.82849604 0.86263736 0.84522207

Metrics
Metric
Accuracy (#correct)

Accuracy (%correct)

Sensitivity (Recall)

Success Class Success Probability

Figure: Lift chart and ROC curve for model with AUROC = 0.9311

The AUROC for the model is 0.8811, which shows the percentage of correctly classified records. Lift chart is not much lifted from the red line, which indicates that the model is performing average.

Model 4 (response variable - spend_tws)

The following table shows the confusion matrices, error reports, and performance metrics (accuracy, specificity, sensitivity, precision, and success class) for the model built.

The model shows 7% error rate in training and validation data sets. But error rate decreased to 6% in validation data set. The model is performing good on testing sets with an accuracy of 94%.

Validation: Classification Summary **Training: Classification Summary Confusion Matrix** Confusion Matrix ▼ 1 Actual\Predicted > 823 22 125 3839 188 232 47 **Error Report Error Report** 125 3.153380424 845 22 2.603550296 420 188 44.76190476 94 47 50 4384 313 7.13959854 Metrics 4071 870 Accuracy (#correct) Accuracy (#correct) 92.65175719 92.8604015 Accuracy (%correct) 0.9684662 0.973964497 0.55238095 0.68115942 0.64985994 Precision 0.5971686 0.576687117 Success Class 0.5

Table 22: Confusion matrix, error report and metrics for Model 4

Testing: Classification Summary

Confusion Matrix			
Actual\Predicted	0 ~	1	
0	836	22	
1	34	48,	
Error Report			
-	# Cases	# Errors 🔻	% Error
0	858	22	2.564102
1	82	34	41.46341
Overall	940	56	5.957446
Metrics Metric	▼ Value ▼		
Accuracy (#correct)		ĺ	
Accuracy (%correct			
Specificity	0.974358974		
Sensitivity (Recall)	0.585365854		
Precision	0.685714286		
F1 score	0.631578947		
Success Class	1		
Success Probability	0.5		

The AUROC for the model is 0.9111, which shows the percentage of correctly classified records. Lift chart is not much more lifted than the red line representing the cumulative actual using average.

Figure: Lift chart and ROC curve for model with AUROC = 0.9119

Model 5 (response variable - spend_all_inchigh)

The following table shows the confusion matrices, error reports, and performance metrics (accuracy, specificity, sensitivity, precision, and success class) for the model built.

The model shows 11% error rate in training and 12% in validation and testing data sets. The model is performing average on testing sets with an accuracy of 87%.

Table 23: Confusion matrix, error report and metrics for Model 5

Figure: Lift chart and ROC curve for model with AUROC = 0.8987

The AUROC for the model is 0.89, which shows the percentage of correctly classified records. Lift chart is not much more lifted than the red line representing the cumulative actual — using average.

Model 6 (response variable - spend_all_inmiddle)

The following table shows the confusion matrices, error reports, and performance metrics (accuracy, specificity, sensitivity, precision, and success class) for the model built.

Table 23: Confusion matrix, error report and metrics for Model 6

The model shows 15% error rate in training, 14% in validation and 18% in testing data sets. This may be due to the overfitting of data. The model is performing average on testing sets with an accuracy of 81%.

The AUROC for the model is 0.8311, which shows the percentage of correctly classified records. Lift chart is not much more lifted than the red line representing the cumulative actual using average.

Figure: Lift chart and ROC curve for model with AUROC = 0.8310

Model 7 (response variable - spend_all_inclow)

The following table shows the confusion matrices, error reports, and performance metrics (accuracy, specificity, sensitivity, precision, and success class) for the model built.

Training: Classification Summary # Erro 67 15.8392435 423 398 18.9433603 2101 173 18.42385517 902 20.57481752 3482 81.57614483 79.42518248 0.841607565 0.810566397 nsitivity (Recall) 0.794573643 0.779237845 0.859538784 0.817179605 0.825780463

Table 24: Confusion matrix, error report and metrics for Model 7

Validation: Classification Summary

The model shows 18% error rate for training and validation data sets. But, error rate increased to 22% for testing data sets. This may be due to the overfitting of data. The model is performing average on testing sets with an accuracy of 78%.

Testing: Classification Summary

Table 24: Confusion matrix, error report and metrics for Model 7

Figure: Lift chart and ROC curve for model with AUROC = 0.8088

The AUROC for the model is 0.80, which shows the percentage of correctly classified records. Lift chart is not much more lifted than the red line representing the cumulative actual using average.

Project Results:

Based on the performance metrics of each model, the best model is Model 1(response variable spend_acf). With the highest Area Under the ROC curve of 0.97, it proves to be the best classifier among the seven models. Additionally, it demonstrates a low error rate of 2%.

On the contrary, model 7 does not perform very well. It has high error of 21% rate among all seven models.

Impact of the Project Outcomes:

From the above models, we can observe that gps_workplaces, gps_away_from_home, and gps_retail_and_recreation are important variables and have a high impact on consumer spending behavior.

The government can take action to improve safety at the places which affect consumer spending.

For example, if we consider Model-1 (response variable – spend_acf) best-pruned tree, we can see that there is huge drop in consumer spending "If $gps_workplaces < -0.04$ and if $gps_away_from_home < -0.05$ ".

Improper safety precautions (sanitization etc.) at workplaces might be one of the main reasons for this. So, by implementing the required safety precautions at the workplace, we can improve consumer spending on accommodation and food services.

Figure: Model 1 best pruned tree