Neural Sequence Generation

Не Не

February 13, 2023

• Text classification: $h: \mathcal{V}^n \to \{0, \dots, K\}$

- Text classification: $h: \mathcal{V}^n \to \{0, \dots, K\}$
- Sequence generation: $h: \mathcal{V}_{\mathsf{in}}^n \to \mathcal{V}_{\mathsf{out}}^m$
 - Summarization: document to summary
 - Open-domain dialogue: context to response
 - Parsing: sentence to linearized trees
 - In general: text to text

- Text classification: $h: \mathcal{V}^n \to \{0, \dots, K\}$
- Sequence generation: $h: \mathcal{V}_{\mathsf{in}}^n \to \mathcal{V}_{\mathsf{out}}^m$
 - Summarization: document to summary
 - Open-domain dialogue: context to response
 - Parsing: sentence to linearized trees
 - In general: text to text

- Text classification: $h: \mathcal{V}^n \to \{0, \dots, K\}$
- Sequence generation: $h: \mathcal{V}_{\mathsf{in}}^n \to \mathcal{V}_{\mathsf{out}}^m$
 - Summarization: document to summary
 - Open-domain dialogue: context to response
 - Parsing: sentence to linearized trees
 - In general: text to text

Main difference (and challenge) is that the output space is much larger.

Setup:

- Input: $x \in \mathcal{V}_{\mathsf{in}}^{n}$, e.g. Le Programme a ate mis en application
- ullet Output: $y \in \mathcal{V}_{\mathsf{out}}^{m}$, e.g., The program has been implemented

Setup:

- Input: $x \in \mathcal{V}_{\mathsf{in}}^{n}$, e.g. Le Programme a ate mis en application
- ullet Output: $y \in \mathcal{V}_{\mathsf{out}}^{m}$, e.g., The program has been implemented

Consider a probabilistic model $p(y \mid x)$

• Can we reduce it to classification (think logistic regression)?

Setup:

- Input: $x \in \mathcal{V}_{\mathsf{in}}^n$, e.g. Le Programme a ate mis en application
- ullet Output: $y \in \mathcal{V}_{\mathsf{out}}^{m}$, e.g., The program has been implemented

Consider a probabilistic model $p(y \mid x)$

- Can we reduce it to classification (think logistic regression)?
- Decompose the problem using chain rule of probability

$$p(y \mid x) = p(y_1 \mid x)p(y_2 \mid y_1, x) \dots p(y_m \mid y_{m-1}, \dots, y_1, x)$$

= $\prod_{i=1}^{m} p(y_i \mid y_{< i}, x)$

Setup:

- Input: $x \in \mathcal{V}_{\mathsf{in}}^{n}$, e.g. Le Programme a ate mis en application
- Output: $y \in \mathcal{V}_{\mathsf{out}}^m$, e.g., The program has been implemented

Consider a probabilistic model $p(y \mid x)$

- Can we reduce it to classification (think logistic regression)?
- Decompose the problem using chain rule of probability

$$p(y \mid x) = p(y_1 \mid x)p(y_2 \mid y_1, x) \dots p(y_m \mid y_{m-1}, \dots, y_1, x)$$

= $\prod_{i=1}^{m} p(y_i \mid y_{< i}, x)$

• We only need to model the next word distribution $p(y_i \mid y_{< i}, x)$ now.

We want to model the next word distribution $p(y_i \mid y_{< i}, x)$.

• Input: a sequence of tokens (prefix and input)

We want to model the next word distribution $p(y_i \mid y_{< i}, x)$.

- Input: a sequence of tokens (prefix and input)
- Output: the next word from the output vocabulary

We want to model the next word distribution $p(y_i \mid y_{< i}, x)$.

- Input: a sequence of tokens (prefix and input)
- Output: the next word from the output vocabulary
- We have reduced it to a classification problem.

We want to model the next word distribution $p(y_i \mid y_{< i}, x)$.

- Input: a sequence of tokens (prefix and input)
- Output: the next word from the output vocabulary
- We have reduced it to a classification problem.

We want to model the next word distribution $p(y_i \mid y_{< i}, x)$.

- Input: a sequence of tokens (prefix and input)
- Output: the next word from the output vocabulary
- We have reduced it to a classification problem.

We can use an RNN to model $p(y_i | y_{< i}, x)$.

Figure: From Sequence to Sequence Learning with Neural Networks [Sutskever et al., 2014]

The encoder-decoder architecture

Figure: 10.6.1 from d2l.ai

Model the input (e.g., French) and the output (e.g., English) separately.

The encoder-decoder architecture

Figure: 10.6.1 from d2l.ai

Model the input (e.g., French) and the output (e.g., English) separately.

• The **encoder** reads the input:

$$\operatorname{Encoder}(x_1,\ldots,x_n)=[h_1,\ldots,h_n]$$

where $h_i \in \mathbb{R}^d$

• The **decoder** writes the output:

$$Decoder(h_1,\ldots,h_n)=[y_1,\ldots,y_m]$$

.

RNN encoder-decoder model

Figure: 10.7.1 from d2l.ai

The encoder embeds the input recurrently and produce a context vector

$$h_t = \text{RNNEncoder}(x_t, h_{t-1}), \quad c = f(h_1, \dots, h_n)$$

 The decoder produce the output state recurrently and map it to a distribution over tokens

$$s_t = \text{RNNDecoder}([y_{t-1}; c], s_{t-1}), \quad p(y_t \mid y_{< t}, c) = \text{softmax}(\text{Linear}(s_t))$$

Bi-directional RNN encoder

The [Forbes]?? building is at 60 Fifth Ave.

Bi-directional RNN encoder

The [Forbes]?? building is at 60 Fifth Ave.

Each hidden state should summarize both left and right context

Bi-directional RNN encoder

The [Forbes]?? building is at 60 Fifth Ave.

Each hidden state should summarize both left and right context

Figure: 10.4.1 from d2l.ai

- Use two RNNs, one encode from left to right, the other from right to left
- Concatenate hidden states from the two RNNs

$$h_t = [\overleftarrow{h_t}; \overrightarrow{h_t}]$$
 $o_t = Wh_t + b$

Multilayer RNN

Figure: 10.3.1 from d2l.ai

- Improve model capacity (scaling up)
- Inputs to layer 1 are words
- Inputs to layer I are outputs from layer I-1
- Typically 2–4 layers

Motivation: should we use the same context vector for each decoding step?

We may want to "look at" different parts of the input during decoding.

Motivation: should we use the same context vector for each decoding step?

We may want to "look at" different parts of the input during decoding.

Think the database analogy:

• Query: decoder states s_{t-1}

Motivation: should we use the same context vector for each decoding step?

We may want to "look at" different parts of the input during decoding.

- Query: decoder states s_{t-1}
- Key: encoder states h_1, \ldots, h_n

Motivation: should we use the same context vector for each decoding step?

We may want to "look at" different parts of the input during decoding.

- Query: decoder states s_{t-1}
- Key: encoder states h_1, \ldots, h_n
- Value: encoder states h_1, \ldots, h_n

Motivation: should we use the same context vector for each decoding step?

We may want to "look at" different parts of the input during decoding.

- Query: decoder states s_{t-1}
- Key: encoder states h_1, \ldots, h_n
- Value: encoder states h_1, \ldots, h_n
- Attention context: $c_t = \sum_{i=1}^n \alpha(s_{t-1}, h_i) h_i$

Motivation: should we use the same context vector for each decoding step?

We may want to "look at" different parts of the input during decoding.

- Query: decoder states s_{t-1}
- Key: encoder states h_1, \ldots, h_n
- Value: encoder states h_1, \ldots, h_n
- Attention context: $c_t = \sum_{i=1}^n \alpha(s_{t-1}, h_i) h_i$
- Next state: $s_t = \text{RNNDecoder}([y_{t-1}; c_t], s_{t-1})$

Motivation: should we use the same context vector for each decoding step?

We may want to "look at" different parts of the input during decoding.

- Query: decoder states s_{t-1}
- Key: encoder states h_1, \ldots, h_n
- Value: encoder states h_1, \ldots, h_n
- Attention context: $c_t = \sum_{i=1}^n \alpha(s_{t-1}, h_i) h_i$
- Next state: $s_t = \text{RNNDecoder}([y_{t-1}; c_t], s_{t-1})$

Summary so far

The outputs of an encoder can be used by linear classifiers for classification, sequence labeling etc.

A decoder is used to generate a sequence of symbols.

RNN encoder decoder model:

- Basic unit is an RNN (or its variants like LSTM)
- Make it more expressive: bi-directional, multilayer RNN
- Encoder-decoder attention helps the model learn input-output dependencies more easily
- Bi-directional LSTM is the go-to architecture for NLP tasks until around 2017

Transformer encoder decoder model

Figure: From illustrated transformer

- Stack the tranformer block (typically 12–24 layers)
- Decoder has an additional encoder-decoder multi-head attention layer

Transformer encoder decoder model

Figure: From illustrated transformer

- Stack the tranformer block (typically 12–24 layers)
- Decoder has an additional encoder-decoder multi-head attention layer

Decoder attention masking

Recall that the output of self-attention depends on all tokens $y_1, \dots y_m$.

But the decoder is supposed to model $p(y_t \mid y_{< t}, x)$.

It should not look at the "future" $(y_{t+1}, \ldots, y_m)!$

Decoder attention masking

Recall that the output of self-attention depends on all tokens $y_1, \ldots y_m$.

But the decoder is supposed to model $p(y_t \mid y_{< t}, x)$.

It should not look at the "future" $(y_{t+1}, \ldots, y_m)!$

How do we fix the decoder self-attention?

- Mathematically, changing the input values and keys suffices.
- Practically, set $a(s_i, s_j)$ to $-\inf$ for all j > i and for $i = 1, \ldots, m$.
 - The attention matrix is a lower-triangular matrix.

Impact on NLP

- Initially designed for sequential data and obtained SOTA results on MT
- Replaced recurrent models (e.g. LSTM) on many tasks
- Enabled large-scale training which led to pre-trained models such as BERT and GPT-2 (in two weeks)

Training

Maximum likelihood estimation:

$$\max \sum_{(x,y)\in\mathcal{D}} \sum_{j=1}^{m} \log p(y_j \mid y_{< j}, x; \theta)$$

Training

Maximum likelihood estimation:

$$\max \sum_{(x,y)\in\mathcal{D}} \sum_{j=1}^{m} \log p(y_j \mid y_{< j}, x; \theta)$$

What should be the prefix $y_{< j}$?

Training

Maximum likelihood estimation:

$$\max \sum_{(x,y)\in\mathcal{D}} \sum_{j=1}^{m} \log p(y_j \mid y_{< j}, x; \theta)$$

What should be the prefix $y_{< j}$?

Option 1: whatever generated by the model

Figure: 10.7.1 from d2l.ai

Training

Maximum likelihood estimation:

$$\max \sum_{(x,y)\in\mathcal{D}} \sum_{j=1}^{m} \log p(y_j \mid y_{< j}, x; \theta)$$

What should be the prefix $y_{< j}$?

Option 2: the groundtruth prefix (teacher forcing)

Figure: 10.7.3 from d2l.ai

Inference

How do we generate sequences given a trained model?

Figure: 10.7.1 from d2l.ai

The encoder-decoder model defines a probability distribution $p(y \mid x; \theta)$ over sequences.

Which one should we output?

Inference

Argmax decoding:

$$\hat{y} = \arg\max_{y \in \mathcal{V}_{\text{out}}^n} p(y \mid x; \theta)$$

- Return the most likely sequence
- But exact search is intractable

Inference

Argmax decoding:

$$\hat{y} = \arg\max_{y \in \mathcal{V}_{\text{out}}^n} p(y \mid x; \theta)$$

- Return the most likely sequence
- But exact search is intractable

Approximate search:

Greedy decoding: return the most likely symbol at each step

$$y_t = \underset{y \in \mathcal{V}_{out}}{\operatorname{arg max}} p(y \mid x, y_{< t}; \theta)$$

Approximate decoding: beam search

Beam search: maintain k (beam size) highest-scored partial solutions at every step

Example:
$$|\mathcal{V}| = 5, k = 2$$

- At each step, rank symbols by log probability of the partial sequence
- Keep the top-k symbol out of all possible continuations
- Save **backpointer** to the previous state

Is argmax the right decoding objective?

High likelihood can be correlated with low quality outputs!

Figure: From the likelihood trap paper by Zhang et al., 2020

In practice, argmax decoding has been observed to lead to

- Repetitive generations, e.g.
 "..., was conducted by researchers from the Universidad Nacional Autonoma de Mexico (UNAM) and the Universidad Nacional Autonoma de Mexico (UNAM/Universidad Nacional Autonoma de Mexico/Universidad Nacional Autonoma..."
- Degraded generations with large beam size in MT

Sampling-based decoding

If we have learned a perfect $p(y \mid x)$, shouldn't we just sample from it?

Sampling the next word sequentially:

- While output is not EOS
 - Sample next word from $p(\cdot \mid \text{prefix}, \text{input}; \theta)$
 - Append the word to prefix

Sampling-based decoding

If we have learned a perfect $p(y \mid x)$, shouldn't we just sample from it?

Sampling the next word sequentially:

- While output is not EOS
 - Sample next word from $p(\cdot \mid \text{prefix}, \text{input}; \theta)$
 - Append the word to prefix

Standard sampling often produces non-sensical sentences:

They were cattle called Bolivian Cavalleros; they live in a remote desert uninterrupted by town, and they speak huge, beautiful, paradisiacal Bolivian linguistic thing.

Typically we modify the learned distrubtion $p_{ heta}$ before sampling the next word

Tempered sampling

Intuition: concentrate probability mass on highly likely sequences

Scale scores (from the linear layer) before the softmax layer:

$$p(y_t = w \mid y_{< t}, x) \propto \exp(\operatorname{score}(w))$$

 $q(y_t = w \mid y_{< t}, x) \propto \exp(\operatorname{score}(w)/T)$ where $T \in (0, +\infty)$

Tempered sampling

Intuition: concentrate probability mass on highly likely sequences

Scale scores (from the linear layer) before the softmax layer:

$$p(y_t = w \mid y_{< t}, x) \propto \exp(\operatorname{score}(w))$$

 $q(y_t = w \mid y_{< t}, x) \propto \exp(\operatorname{score}(w)/T)$ where $T \in (0, +\infty)$

- What happends when $T \to 0$ and $T \to +\infty$?
- Does it change the rank of y according to likelihood?
- Typically we chooose $T \in (0,1)$, which makes the distribution more peaky.

Truncated sampling

Another way to focus on high likelihood sequences: truncate the tail of the distribution

Top-k sampling:

- Rank all tokens $w \in \mathcal{V}$ by $p(y_t = w \mid y_{< t}, x)$
- Only keep the top k of those and renormalize the distribution

Truncated sampling

Another way to focus on high likelihood sequences: truncate the tail of the distribution

Top-k sampling:

- Rank all tokens $w \in \mathcal{V}$ by $p(y_t = w \mid y_{< t}, x)$
- Only keep the top k of those and renormalize the distribution

Which *k* to choose?

Figure: From the nucleus sampling paper by Holtzman et al., 2020

Truncated sampling

Top-p sampling:

- Rank all tokens $w \in \mathcal{V}$ by $p(y_t = w \mid y_{< t}, x)$
- Keep only tokens in the top p probability mass and renormalize the distribution
- The corresponding k is dynamic:
 - Start with k=1, increment until the cumulative probability mass is larger than \emph{p}

Decoding in practice

- Can combine different tricks (e.g., temperature + beam search, temperature + top-k)
- Use beam search with small beam size for tasks where there exists a correct answer, e.g. machine translation, summarization
- Use top-k or top-p for open-ended generation, e.g. story generation, chit-chat dialogue, continuation from a prompt
- As models getting better/larger, sampling-based methods tend to work better