Machine Learning Scientist

PREDICT ETH PRICE WITH DIMENSIONALITY REDUCTION USING AUTOENCODER

OCEAN DATA CHALLENGE: ETH PREDICTION ROUND 3

CONTENTS

- Context
- The question and its interpretation
- Data exploration
- Data reduction with auto encoder
- LSTM model to predict
- Conclusions
- Axes of improvement

CONTEXT

- Ocean Data Challenge
 - predict ETH Close price from Binance exchange
 - ▶ Submission deadline: Sun Feb 19, 2023 at 23:59 UTC
 - Prediction at times: Mon Feb 20, 2023 at 1:00 UTC, 2:00, ..., 12:00
 - ▶ 12 predictions total
- Using all data we need like:
 - exchange price data
 - deFi data
 - on chain data
 - traditional economy data

THE QUESTION AND ITS INTERPRETATION

- Many data are available
 - additional contraints (on my side): take only free data
 - use library: cctx, yfinance, openbb, ...
- Many technics are possible
 - ▶ RNN model with all features available (> 100)
 - a lot correlation
 - > Try to reduce dimension of data with autoencoder
 - useful without data exploration to select specific features
- Comparaison with classical LSTM

EXPLORATION: THE DATA

- CCTX data : for Price & Volume : OHLCV
 - for ETH, BTC & BNB
 - hourly data
 - Binance (exchange used by Judges!)
 - Kucoin to correct gap (missing data)

PROPORTIONAL / DIRECTLY DEPENDENT TO TOKEN PRICES (EXCEPT CHOP & RSI)

- Calculate several indicators with several time range 1h, 1day, 1week
 - Ichimoku (all indicators except lagging span)
 - VWAP (+ extra periods : 1 month, 3 months, 6 months, 1 year, all)
 - Higher high & Lower low
 - Chop & RSI 14 periods
- Other indicator (economy) (hourly) (yfinance)
 - DXY
 - US GOVERNMENT BONDS 5 YR YIELD

> SP500

BUT FREE PAST DATA LIMITED TO LAST 2 YEARS

EXPLORATION

- On chain data (daily) with openbb (Glassnode & Messari Free API)
 - Circulating supply
 - Market Cap
 - Number of active wallets on BTC chain and ETH Main net
 - Approximation with cumulative volumes from exchange:
 - MVRV: Market Value / Realized Value and z-score
 - NUPL : Net Unrealized Profit/Loss
- Crypto Fear and Greed index (from alternative.me) (daily)
- Economy Calendar with important US events (daily)
 - inflation (PPI, CPI), Fed Interest Rate
 - estimate sentiment positive if
 - 1st flag : Consensus > Previous
 - 2nd flag: Consensus > Actual
 - Day off

EXPLORATION

Add temporal data

EACH FEATURE TRANSFORMED IN 2 FEATURES COS, SIN

- Hour of the Day: 0 -> 24
- Day of the Week: 0 -> 6
- Day of the Month: 0->28-31
- Month of the year: 0->11

TO TAKE THE PERIODIC EFFECT INTO ACCOUNT

EXPLORATION

Correlation matrix

STRATEGY & DATA PREPARATION

- Lags
 - Each lags = 1h
 - Number of past lags used for prediction: 48 (2 days: 48 hours)
 - to limit training CPU time

TO BE ABLE TO DO A LAST TRAIN AT 23:00 UTC

- Number of future **Lags** to be predicted: 12 + 1 = 13
 - > to be able to do a last training + prediction with data at 23:00 UTC
 - to predict 01:00...12:00 UTC
- First Normalisation
 - divide by ETH Close price

TO PREVENT BIG IMPACT OF GLOBAL TREND

- at last lag before first prediction
 - example : t-n_lags ... t-0 t +1...t+12
- All features proportional to a price
- And apply for all features a classical StandardScaler from scikitlearn

DATA REDUCTION WITH AUTO ENCODER

- A total of 104 Features
- MODEL SIZE IS A PROBLEM
- Try to reduce the features dimension: 12 latent variables
 - auto encoder can do that!

DATA REDUCTION WITH AUTO ENCODER: RESULTS

A total of 104 Features reduce to 12 latent variables

MSE ERROR

NEED TO BE TUNED LONGER...

RECONSTRUCTION: AUTOENCODER(X) = X?

CLASSICAL LSTM: RESULTS

- A total of 104 Features
- Model: X ->

MSE ERROR

AUTOENCODER+LSTM: RESULTS

A total of 5 Features [OHLCV] + X encoded (12) = 17

MSE ERROR

CONCLUSIONS

- Autoencoder useful without in deep exploration of data
 - need to be tuned more longer
 - seems to be better than classical LSTM

- LSTM model
 - always have good results
 - but not optimal

AXES OF IMPROVEMENT

- More past data
 - limited to 2 years with FREE API
- Try with TCN model (Temporal Convolutional Model)
 - better performance
 - because parallel computing possible
 - compare to RNN model
 - to use more past lags
- Explore data in deep (lack fo time)
 - to find max past lags to use to predict next 12 hours
 - Features importances : find most useful data to reduce input space
- A lot of crash with my Apple M1 !!!

