Western States DNF Model - Appendix

I. Code for Setup and Data Wrangling

Below is the commented code used to perform the data import and wrangling.

```
# Relevant Libraries
library(dplyr)
library(data.table)
library(tidyr)
library(stringr)
library(ggplot2)
library(ggthemes)
library(corrplot)
library(caTools)
library(ROCR)
library(caret)
library(kernlab)
library(rpart)
library(rattle)
library(randomForest)
library(nnet)
library(Boruta)
# Setting up the workspace
setwd("E:/Users/Mas/OneDrive/School/Springboard/FoundationsDS/CapstoneProject/Final Files - WSER/")
wser <- read.csv("data/wserFull.csv", stringsAsFactors = FALSE, na.strings = c(""))</pre>
# All the wrangling
## Specify columns for aidstations
keycol <- 'AS_time_name'</pre>
valuecol <- 'AS_time'</pre>
## Use the underscore (_) to easily select headers
gathercols <- colnames(wser)[grep('_', colnames(wser))]</pre>
### A regex expression is used to group the titles in the way we want
wserLong <- wser %>%
  gather_(keycol, valuecol, gathercols) %>%
  extract_(keycol, c("AS_indicator", "AS_distance", "AS_InOut"),
           "(^.)([0-9.]*)\\_([:alpha:]*)") %>%
  spread(AS_indicator, AS_time)
# Rename Column Names for p --> AS_Place, t --> AS_Time
colnames(wserLong) [which(names(wserLong) == "p")] <- "AS_Place"</pre>
colnames(wserLong) [which(names(wserLong) == "t")] <- "AS_Time"</pre>
# Reformat a few of the columns, remove empty aid station values
wserLong$AS_distance <- as.double(wserLong$AS_distance)</pre>
wserLong$AS_Place <- as.integer(wserLong$AS_Place)</pre>
wserLong$Year <- as.factor(wserLong$Year)</pre>
wserLong$Place <- as.integer(wserLong$Place)</pre>
```

```
wserLong$First.Name <- str_trim(wserLong$First.Name)</pre>
wserLong <- wserLong %>% filter(!is.na(AS_Time)) %>% arrange(Year, Place, Last.Name)
# Convert Aid Station Splits from Time to a Number
wserLong$AS_Time_NUM <- (as.numeric(as.POSIXct(paste("2000-01-01",</pre>
                                                       wserLong$AS_Time),
                                                 format = "%Y-%m-%d %H:%M")) -
  as.numeric(as.POSIXct("2000-01-01 0:0:0")))/60
## Change pre-2010 split times to "Time Elapsed"
wserLong$YearInt <- as.numeric(levels(wserLong$Year))[wserLong$Year]</pre>
wserLong <- wserLong %>% mutate(AS_Time_NUM =
                                   ifelse(AS_distance >= 55 &
                                           AS_Time_NUM <= 690 &
                                            YearInt < 2010,
                                           AS_Time_NUM + 1440,
                                           AS_Time_NUM))
# Times over 24 hours (recorded as time elapsed) return NA - fix
wserLong <- wserLong %>%
  mutate(AS_Time_NUM = ifelse(!is.na(AS_Time_NUM),
                               AS_Time_NUM,
                               sapply(strsplit(AS_Time, ":"),
                                      function(x) {
                                        x <- as.numeric(x)
                                        x[1]*60 + x[2] + x[3]/60
                                       })))
# Convert Time Elapsed field into number
wserLong <- wserLong %>%
  mutate(timeElapsed_MIN =
           ifelse(is.na(timeElapsed),
                  sapply(strsplit(timeElapsed, ":"),
                          function(x) {
                            x <- as.numeric(x)</pre>
                            x[1]*60 + x[2] + x[3]/60
                          })))
## Change pre-2010 split times to "Time Elapsed"
wserLong$YearInt <- as.numeric(levels(wserLong$Year))[wserLong$Year]</pre>
wserLong <- wserLong %>%
  mutate(AS Time NUM = ifelse(YearInt < 2010,</pre>
                               AS_Time_NUM - 300,
                               AS_Time_NUM))
# Setup for Age Group bins
ageBin \leftarrow c(0,20,30,40,50,60,70,200)
# Transform for Age Groups
# Initialize Grade Rank Column
```

```
wserLong$ageGroup <- 0
# Step through list of grades and categorize
for (i in 1:(length(ageBin) - 1)) {
  wserLong <- wserLong %>%
    mutate(ageGroup =
             ifelse((ageGroup == 0 & Age >= ageBin[i] & Age < ageBin[i + 1]),</pre>
                    ageGroup))
}
# Transform for DNF
wserLong <- wserLong %>%
  mutate(DNF = ifelse(is.na(timeElapsed), 1, 0))
# DNF as factor and a label
wserLong$DNF <- factor(wserLong$DNF, levels = c("1", "0"), labels = c("DNF", "Finished"))</pre>
## Only interested in "Time In"
wserLong <- wserLong %>% filter(AS_InOut != "out") %>% select(-AS_InOut)
## Re-Rank All AS Splits
wserLong <- wserLong %>% group_by(Year, AS_distance) %>%
  mutate(AS_Place = rank(AS_Time_NUM,
                         na.last = "keep",
                         ties.method = "random")) %>%
  ungroup()
# Create Long DF containing decile rank of for pace grouped by:
# 1. Years
   2. Aid Stations (distance)
   3. Overall
wser.long <- wserLong %>%
  mutate(qRank.overall = ntile(timeElapsed_MIN, 10),
         pace.overall = timeElapsed_MIN/100) %>%
  group_by(distFact = factor(AS_distance)) %>%
  mutate(qRank.as = ntile(AS_Time_NUM, 10),
         pace.as = AS_Time_NUM/AS_distance) %>%
  ungroup() %>%
  group by(Year) %>%
  mutate(qRank.year = ntile(timeElapsed_MIN, 10)) %>%
  ungroup()
## Add Index for which Aid Station number
iAS <- unique(wser.long$AS_distance)</pre>
iAS <- sort(iAS)</pre>
re.ind <- function(x) {</pre>
  which(iAS == x, arr.ind = TRUE)
}
```

```
## Quickly apply index number to different aid stations for all years
wser.long$AS.Num <- sapply(wser.long$AS_distance, re.ind)</pre>
## Add in key for an individual runner per year
wser.long <- wser.long %>%
  mutate(key = paste(Year, Place, sep = "-"))
## Determine distance, time, and pace between current and previous aid station
### First we'll distinguish between the aid station number overall (AS.Num), and aid station they hit f
wser.long$AS.count <- as.integer(ave(wser.long$key, wser.long$key, FUN = seq_along))
### Set up the differential times and distances between each aid station
### Use of IFELSE to set the 1st aid station reached as the differential as well since the differential
### Use of data.table::shift function to return previous value in a row's value to get differential
wser.long <- wser.long %>% group_by(key) %>%
  mutate(diff.dist = ifelse(AS.count == 1,
                           AS_distance,
                           AS_distance - shift(AS_distance, 1L, type = "lag")),
         diff.time = ifelse(AS.count == 1,
                           AS Time NUM,
                           AS_Time_NUM - shift(AS_Time_NUM, 1L, type = "lag")),
         diff.pace = diff.time/diff.dist) %>%
  ungroup()
## Format DNF as a factor
wser.long$DNF <- factor(wser.long$DNF,</pre>
                       levels = rev(levels(wser.long$DNF)))
rm(wserLong)
rm(wser)
# Transform Long Data set (wser.long) into a wide format
## Set up key column and identifiers
wserWide <- wser.long %>%
  mutate(key = paste(Year, Place, sep = "-"),
         AS_T = paste(AS_distance, "T", sep = "_")) %>%
  select(-AS_distance, -AS_Time)
## Reorganize DF
wserTemp \leftarrow wserWide[c(25,14,1:7,16,15,17:19,23)] \%\% distinct(key, .keep_all = TRUE)
## Create 2 temp DF for converting to wide
wideTime <- wserWide %>% select(key, AS_Time_NUM, AS_T)
## Spread varying data
wideTime <- wideTime %>% spread(AS_T, AS_Time_NUM)
## Merge back into single dataframe
wserT <- merge(wserTemp, wideTime, by = "key")</pre>
```

```
wserTemp <- wser.long %>%
  group_by(key) %>%
  mutate(pace.avg = mean(diff.pace),
         pace.sd = sd(diff.pace),
         as.max = as.numeric(ifelse(DNF == "Finished",
                         \max(AS.count) + 1,
                         max(AS.count)))) %>%
  ungroup() %>%
  select(key, pace.avg, pace.sd, as.max) %>%
  distinct(key, .keep_all = TRUE)
## Get all the info into one DataFrame
wserT <- merge(wserT, wserTemp, by = "key")</pre>
## Standardize the name
wser.wide <- wserT
wser.wide <- wser.wide %>% mutate(bibNo = as.integer(gsub("[a-zA-Z]","", Bib)))
wser.wide <- wser.wide %>% mutate(bibNo = ifelse(is.na(bibNo), 150, bibNo))
## Tidy up our Workspace
rm(wserT)
rm(wideTime)
rm(wserTemp)
rm(wserWide)
wser.long <- wser.long %>%
  mutate(sex.male = ifelse(Sex == "M",1,0),
         DNF = ifelse(DNF == "Finished", 0, 1))
wser.wide <- wser.wide %>%
  mutate(sex.male = ifelse(Sex == "M",1,0),
         DNF = ifelse(DNF == "Finished", 0, 1))
```

II. Table for Long Data Frame

The long data frame is split so that each row not only represents a specific runner for each year, but also represents a given aid station.

Variable Name	type	Explanation	
key	chr	Unique ID of year and overall place (e.g., 1995-3)	
Year	factor	Year of race (1986 - 2016)	
YearInt	num	Conversion of Year to a number	
Place	int	Finishing place for that year	
Last.Name	chr	Last name of racer	
First.Name	chr	First name of racer	
Bib	chr	Bib number of racer (contains alphanumeric)	
Sex	chr	Male or Female ("M" or "F")	
sex.male	num	Binary version of Sex ("0" = Female, "1" = Male)	
Age	int	Age of runner for given year	
ageGroup	num	Index number for 7 bins - $(0,20,30,40,50,60,70,200)$	
City	chr	Listed city of origin	
State	chr	Listed state of origin	
timeFinish	chr	Time of day runner finished (NA for DNF)	
timeElapsed	chr	Overall time elapsed for runner (NA for DNF)	
${\tt timeElapsed_MIN}$	num	Conversion of timeElapsed to number	
qRank.overall	int	Decile ranking of runner's finish time to overall times	
pace.overall	num	Average pace held for entire race	
DNF	num	Finish status - " 0 " = Finished, " 1 " = DNF	
AS_distance	num	Distance of aid station from start	
distFact	factor	Conversion of AS_distance as factor	
AS_Place	int	Place ranking of runner into given aid station	
AS_Time	chr	Time of runner's arrival into given aid station	
AS_Time_NUM	num	Conversion of AS_Time to elapsed minutes from start	
qRank.as	int	Decile ranking of runner's place into an aid station	
pace.as	num	Pace runner averaged to the distance of given aid station	
$\mathtt{qRank.year}$	int	Decile ranking of runner's finish time to current year	
AS.Num	int	Index number of aid station for all aid stations (1-22)	
AS.count	int	Index number of given aid station within given year	
diff.dist	num	Distance between current aid station and previous	
diff.time	num	Time to reach current aid station from previous	
diff.pace	num	Average pace to reach current aid station from previous	

III. Table for Wide Data Frame

The wide data frame is split so that each row represents a specific runner for each year

Variable Name	type	Explanation	
key	chr	Unique ID of year and overall place (e.g. 1995-3)	
YearInt	num	Year of race (1986-2016)	
Year	factor	Year of race as a factor	
Place	int	Overall place	
Last.Name	chr	Last name of runner	
First.Name	chr	First name of runner	
Bib	chr	Bib number of runner (mostly numbers, some alpha numeric)	
Sex	chr	Male or Female (M or F)	
Age	int	Age of runner for given year	
ageGroup	num	Index number for 7 bins - $(0,20,30,40,50,60,70,200)$	
timeElapsed_MIN	num	Overall time for race (NA if DNF)	
DNF	num	Finish status - "Finished" = 0 , "DNF" = 1	
qRank.overall	int	Decile rank based on overall time vs all years	
pace.overall	num	Overall pace for duration of race (assumes distance of 100 miles)	
qRank.year	int	Decile rank based on overall time vs given year	
** AID STATIONS **	num	Time elapsed (in minutes) to reach given aid station	
pace.avg	num	Average pace between each aid station	
pace.sd	num	Standard deviation of the paces between each aid station	
as.max	num	Maximum number of aid stations given runner checked in to	
bibNo	num	Reformatted Bib removing the ALPHA characters	
sex.male	num	Reformatted Sex - "Female" = 0 , "Male" = 1	

IV. Table of all Aid Stations

Checkpoint	Distance
Talbot Creek (snow)	15.2
Poppy (snow)	20.3
Lyon Ridge	10
Red Star	16
Duncan Canyon	23.8
Robinson Flat	29.7
Millers Defeat	34.4
Dusty Corners	38
Last Chance	43.3
Devils Thumb	47.8
El Dorado Creek	52.9
Michigan Bluff	55.7
Foresthill	62
Cal-1 (Dardanelle)	65.7
Cal-2 (Peaches)	70.7
Rucky Chucky/River	78
Green Gate	79.8
Auburn Lake Trails	85.2
Browns Bar	89.9
HWY 49	93.5
No Hands Bridge	96.8
Robie Point	98.9
Placer High School	100.2