BODE DE PARCIALES

PRIMER PARCIAL 2020:

oteca Central	Español - Internacional (es) *
	$F_{(P)} = \frac{17,5*(P+30)^2*(P+660)^2(P+2750)}{P^2*(P+475)*(4P^2+6750)P+56250000)}$
	$P^2*(P+475)*(4P^2+6750 P+36230000)$

CONSIGNAS	VERDADERO Ó FALSO	VALOR CORRECTO	
) Si se realiza el escaleo de frecuencia, el			
iagrama de Bode de Módulo y de Fase, se odrá trazar correctamente con w _{MIN} = 1 rad/seg] y w _{MAX} = 10000 [rad/seg] .	FALSO +	NINGUNO	
Si se realiza el escaleo de amplitud de la ase, el diagrama de Bode de Fase, se podrá razar correctamente con fase mínima -90° fase máxima +90°.	FALSO \$	-180° y +180° \$	
B) El Diagrama de Bode de Módulo a bajas frecuencias tendrá una pendiente de -40 dB/octava.	FALSO \$	-40 dB/dec \$	
4) El Diagrama de Bode de Fase a bajas frecuencias tendrá una pendiente de –180 °/década.	FALSO +	0°/dec ¢	
5) El Diagrama de Bode de Módulo a <u>altas</u> f <u>recuencias</u> tendrá una pendiente de 0 dB/octava.	FALSO \$	NINGUNO ¢	
6) El valor de la asíntota de la constante total (KTE _{TOTAL}) será de + 76,437 dB.	FALSO \$	56,977 dB \$	
7) El diagrama Asintótico de Bode de Módulo tendrá una zona plana ó meseta con pendiente de 0 dB/dec entre 30 < w < 475 [rad/seg].	VERDADERO \$	VERDADERO •	
8) La función de 2º grado del denominador tiene una pulsación natural ωο = 2750 [rad/seg]	FALSO \$	3750 [rad/seg] ¢	
9) La función de 2° grado del denominador tiene un factor de amortiguamiento ζ = 0,9	VERDADERO :	VERDADERO \$	
10) En la función de 2º grado del denominador, no será necesario utilizar la tabla o curvas de corrección de 2º al trazar al diagrama de Bode de módulo y de fase.	VERDADERO ¢	VERDADERO \$	

Dado el siguiente diagrama de Bode de Módulo determine la función de transferencia F(P) y el valor del pedestal marcado .

A) Indique el valor de la constante = 44,506

B) Raices del numerador :

C) Raices del denominador :

D) Indique el valor en dB que tendrá el pedestal indicado = 28 [dB]

ioteca Central Espanol - Internacional (es)

Dado el siguiente diagrama de Bode de Módulo determine la función de transferencia F(P) y el valor del pedestal marcado .

A) Indique el valor de la constante = 44.506

B) Raices del numerador :

C) Raices del denominador :

D) Indique el valor en dB que tendrá el pedestal indicado = 28 [dB]

propuestos ninguno corresponde a sus cálculos, elija NINGUNO.

$$F_{(P)} = \frac{17,5*(P+30)^2*(P+650)^2(P+3650)}{P^2*(P+425)*(5P^2+8250P+70312500)}$$

CONSIGNAS	VERDADERO Ó FALSO	VALOR CORRECTO	
1) Si se realiza el escaleo de frecuencia, el diagrama de Bode de Módulo y de Fase, se podrá trazar correctamente con w _{MIN} = 1 [rad/seg] y w _{MAX} = 10000 [rad/seg] .	FALSO \$	ωmin=0,1 y wmax=100000 \$	
2) Si se realiza el escaleo de amplitud de la Fase, el diagrama de Bode de Fase, se podrá trazar correctamente con fase mínima -90° y fase máxima +90°.	FALSO \$	-180° y +180° \$	
3) El Diagrama de Bode de Módulo a bajas frecuencias tendrá una pendiente de –40 dB/octava.	FALSO \$	-40 dB/dec +	
4) El Diagrama de Bode de Fase a bajas frecuencias tendrá una pendiente de –180 º/década.	VERDADERO \$	•	
5) El Diagrama de Bode de Módulo a <u>altas</u> f <u>recuencias</u> tendrá una pendiente de 0 dB/octava.	FALSO \$	6 dB/octava 💠	
6) El valor de la asíntota de la constante total (KTE _{TOTAL}) será de + 76,437 dB.	FALSO \$	72,325 dB	
7) El diagrama Asintótico de Bode de Módulo tendrá una zona plana ó meseta con pendiente de 0 dB/dec entre 30 < w < 425 [rad/seg].	VERDADERO \$	•	
8) La función de 2º grado del denominador tiene una pulsación natural ωο = 2750 [rad/seg]	FALSO \$	3750 [rad/seg] \$	
9) La función de 2º grado del denominador tiene un factor de amortiguamiento $\zeta = 0.9$	FALSO \$	ζ = 0,22 Φ	
10) En la función de 2º grado del denominador, será necesario utilizar la tabla o curvas de corrección de 2º al trazar al diagrama de Bode de módulo y de fase.	VERDADERO \$	VERDADERO +	

Dada la siguiente gráfica de Bode de Módulo y de Fase que representa un sistema de control , indique el valor aproximado del Margen de Ganancia (MG) y del Margen de Fase [MF] y si el sistema sera ESTABLE, INESTABLE ó NO SE SABE NOTA : RECUERDE RESPONDER LAS TRES PREGUNTAS

- Selectione una n mai de una.

 A 10 [dB] > MG > 15 [dB]

 2-5 [dB] > MG > 10 [dB]

 □ 0.0 [dB] > MG > 10 [dB]

 □ 0.0 [dB] > MG > 5 [dB]

 □ 1.0 [dB] > MG > 5 [dB]

 □ 1.10 [dB] × MG × 5 [dB]

 □ 5.10 [dB] × MG × 10 [dB]

 □ 5.10 [dB] × MG × 15 [dB]

 □ 5.10 [dB] × MG × 15 [dB]

 □ 5.10 [dB] × MG × 10 [dB]

 □ 1.0 [d