Reinforcement Learning

Kushal Shah @ Sitare University

Unsupervised Learning

Supervised Learning

$$Y = f(X)$$

Handwriting Recognition Face Detection Speech Recognition

Supervised Learning

$$Y = f(X)$$

Handwriting Recognition Face Detection Speech Recognition

Supervised Learning

$$Y = f(X)$$

Handwriting Recognition Face Detection Speech Recognition

$$Y = f(X)$$

Handwriting Recognition
Face Detection
Speech Recognition

Unsupervised Learning

Reinforcement Learning

Reinforcement Learning

Learning to perform action in a certain environment, closest to what biological systems do.

A STATE OF THE PARTY OF THE PAR

Environment

Agent

Total Number of States: 39

Win!

value = +1

Lose!

value = -1

Draw!

value = 0

Total Number of States: 39

Total Number of States: 39

Total Number of States: 39

$$V(S_t) = V(S_t) + \alpha \left[V(S_{t+1}) - V(S_t) \right]$$

$$V(S_t) = V(S_t) + \alpha \left[V(S_{t+1}) - V(S_t) \right]$$

$$V(S_t) = V(S_t) + \alpha \left[V(S_{t+1}) - V(S_t) \right]$$

$$V(S_t) = V(S_t) + \alpha \left[V(S_{t+1}) - V(S_t) \right]$$

$$\to V(S_4) = 0 + \alpha [1 - 0] = \alpha$$

$$V(S_t) = V(S_t) + \alpha \left[V(S_{t+1}) - V(S_t) \right]$$

$$V(S_4) = 0 V(S_5) = 1$$

$$\rightarrow V(S_4) = 0 + \alpha [1 - 0] = \alpha$$

$$V(S_t) = V(S_t) + \alpha \left[V(S_{t+1}) - V(S_t) \right]$$

$$V(S_4) = 0 V(S_5) = 1$$

$$\to V(S_4) = 0 + \alpha [1 - 0] = \alpha$$

$$\to V(S_3) = 0 + \alpha \left[\alpha - 0\right] = \alpha^2$$

$$V(S_t) = V(S_t) + \alpha \left[V(S_{t+1}) - V(S_t) \right]$$

× Exploration o x o

$$V(S_4) = 0$$
Polify $S_4 = 0 + \alpha \left[1 - \sqrt{S_4} \right]$

$$V(S_5) = 1$$

$$\begin{array}{c|c} x & x & o \\ \hline x & & & \\ x & & \\ x & & & \\ x & &$$

$$\rightarrow V(S_3) = 0 + \alpha \left[\alpha - 0\right] = \alpha^2$$

