Dijkstras Algorithms

Arnav Gupta

April 9, 2024

Contents

1	Pre	liminaries	1
	1.1	Single-Source Shortest Path Problem	1
2	Dijk	sstra's Algorithm	2
	2.1	Explanation	2
	2.2	Complexity Analysis	2

1 Preliminaries

A graph G = (V, E) is a directed graph with a weight function: $w : E \to \mathbb{R}$

• weight of the path $P = \langle v_0, \dots, v_k \rangle$ is $w(P) = \sum_{i=1}^k w(v_{i-1}, v_i)$

Shortest path does not exist for directed weighted graphs with negativeweight cycles.

Under the assumption that G has no negative-weight cycles, the shortest path weight from u to v:

$$\delta(u,v) = \begin{cases} \min\{w(P) : u \to v\} & \text{if there exists a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$

1.1 Single-Source Shortest Path Problem

- input: $G = (V, E), w : E \to \mathbb{R}$ and a source $s \in v$
- output: a shortest path from s to each $v \in V$

Consider the following: if $\langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from v_0 to v_k , then $\langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from v_0 to v_i , for any $0 \le i \le k$

2 Dijkstra's Algorithm

A greedy algorithm that takes a weighted directed graph with non-negative edge weights.

Important quantities:

- d[v]: a shortest path estimate from s to v
- $\pi[v]$: predecessor in the path (a vertex or NIL)

2.1 Explanation

- iniitialize $C = \emptyset$, repeat the following untit C = V
 - 1. add $u \in V C$ with smallest d value to C
 - 2. update d values of vertices v with $(u, v) \in E$:

$$d[v] \leftarrow \min\{d[v], d[u] + w(u, v)\}$$

- 3. update $\pi[v]$ if d[v] is changed
- Priority Queue is ADT that should be used for vertices
 - implemented as binary min-heap with costs
 - * insert: $O(\log(n))$
 - * extract-min: $O(\log(n))$
 - * update-key: $O(\log(n))$

2.2 Complexity Analysis

- array implementation has time complexity $O(|V|^2)$
- heap implementation has time complexity $O((|V| + |E|)\log(|V|))$