SoccerCPD: Change-Point Detection Framework for Analyzing Team Formations and Role Changes in Soccer Matches

Omar El mansouri Mohammed Benyahia

Master MVA

January 18, 2025

Outline

- Introduction
- 2 Method
 - Role Assignment via Expectation-Maximization
 - Delaunay Triangulation and Adjacency Matrices
- 3 Data
 - Preprocessing Methods
 - Effect of Smoothing and Outliers Removal
 - Comparison Between Different Formation Change Point Detection Methods
 - Experimenting with Various Hyperparameter Values
- 4 Conclusion

Présentation du problème

Problem:

 \bullet Detection of tactical breaking points in football matches \to essential for understanding how formations and player roles evolve based on strategy

Challenges et état de l'art

Challenges:

- Coaches initially assign a unique role to each player, but they can change their instruction throughout the match.
- Players temporarily switch roles with their teammates.
- Abnormal situations such as set-pieces sometimes occur, in which all the players ignore the team formation.

Litterature:

- Managing to capture temporary role switches between players, but we need to make the asumption that the team formation is consistent throughout half of a match.
- Window approach to estimate formations but there is a trade-off between the reliability of detected change-points and the robustness against the abnormal situations

Input Data

Input Data: The input data consists of spatio-temporal data obtained via a GPS tracking system:

- Player Positions: For each time frame t, each player is represented by their coordinates $(x_p(t), y_p(t))$.
- **Sampling Frequency:** The data is collected at 10 Hz, meaning each second contains 10 frames.
- Number of Players (N): Generally, N = 10, corresponding to 10 field players for a team.
- Initial Constraints:
 - Each player must have a unique role assigned at every moment.

Step 1: Initialization and E-Step

Initialization:

- Each player is initialized with a unique role X_p , where $X_p \in \{1, 2, ..., N\}$.
- The initial spatial distributions of roles are estimated from the observed average positions.

E-Step (Expectation): Role Assignment

 For each time frame t, roles are assigned to players by minimizing a cost:

$$C_{p,k}(t) = -\log P(X_k \mid (x_p(t), y_p(t))),$$

where $P(X_k \mid (x_p(t), y_p(t)))$ is the probability that role X_k generates player p's position at time t.

 The problem is solved using the Hungarian algorithm to minimize the total cost.

Step 2: M-Step (Maximization)

Update of Spatial Distributions:

- After roles are assigned, the spatial distributions of roles are updated to maximize their fit with the data.
- For example, if D_k is the set of player positions assigned to role X_k :

$$\mu_k = \frac{1}{|D_k|} \sum_{(x,y) \in D_k} (x,y),$$

where μ_k is the mean (center) of the spatial distribution associated with role X_k .

Iteration: Repeat until convergence.

Step 3: Output (Results)

Final Result:

 Each player p is associated with a role X_k at each time frame t, represented by a function:

$$\beta_t(p): P \to X$$
, where $\beta_t(p) = X_k$.

This function is called the Player-to-Temporary-Role (P-TR) Map.

Properties:

• Uniqueness: Each player has a unique role at every time frame:

$$\beta_t(p) \neq \beta_t(q), \quad \forall p \neq q.$$

 Adaptability: Roles reflect the dynamic movements of players while remaining consistent with overall team formations.

Delaunay Triangulation and Role Adjacency Matrix

Role Adjacency Matrix A(t) using Delaunay Triangulation:

- Each time frame t produces an adjacency matrix A(t) of size $N \times N$, where N is the number of players.
- The elements of the matrix are defined as:

$$a_{k,l}(t) = \begin{cases} 1, & \text{if roles } X_k \text{ and } X_l \text{ are spatially adjacent} \\ 0, & \text{otherwise.} \end{cases}$$

Sequence of Matrices $\{A(t)\}_{t\in\mathcal{T}}$:

• The matrices A(t) are observed over the time interval T, typically corresponding to one half-time period.

Step 5: Matrix Distance Calculation

Matrix Representations:

• The matrices A(t) are binary representations of spatial relationships between roles.

Distance Between Two Matrices:

• The distance between two matrices A(t) and A(t') is defined using the $L_{1,1}$ norm (Manhattan distance):

$$d_{M}(A(t),A(t')) = \sum_{k=1}^{N} \sum_{l=1}^{N} |a_{k,l}(t) - a_{k,l}(t')|,$$

where:

- N: Number of players (matrix dimensions are $N \times N$).
- $a_{k,l}(t)$: Element in row k, column l of matrix A(t).

Purpose:

 This measure captures the structural differences between two formations at different time points.

Step 2: Breakpoint Detection with Discrete Segmentation

Objective: Identify moments when the formation changes using a graph-based segmentation method called **discrete g-segmentation**. **Key Steps:**

• Similarity Graph (MST):

- Construct a graph based on the sequence $\{A(t)\}$, where nodes represent matrices.
- Edges between nodes are weighted by $d_M(A(t), A(t'))$, the distance between matrices.

• Scan Statistic R(t):

- Compute R(t), which measures the imbalance between segments before and after t.
- A higher R(t) indicates that t is a probable change point.

Scan Statistic R(t)

Definition: At a given time t, the scan statistic R(t) evaluates the separation between observations before and after t. It is defined as:

$$R(t) = \frac{1}{|E|} \sum_{e \in E} w(e),$$

where:

- E is the set of edges connecting nodes in the first segment (before t) to nodes in the second segment (after t).
- w(e) is the weight of edge e, corresponding to the distance between the connected observations.

Interpretation:

ullet A higher R(t) indicates a larger difference between the two segments.

Detection Criteria and Recursive Segmentation

Detection Criteria: A point τ is considered a significant breakpoint if:

- $R(\tau)$ exceeds a statistical threshold (p-value < 0.01).
- ullet Segments before and after au last at least 5 minutes.
- The average distance between A(t) before and after τ exceeds an empirical threshold (set to 7.0).

Recursive Segmentation:

- If a point τ is detected, the method is recursively applied to the subintervals before and after τ .
- The process stops when no significant points are found.

Output Results

Results Obtained:

- **Periods of Consistent Formation:** The temporal sequence T is segmented into m periods T_1, T_2, \ldots, T_m , where each period corresponds to a constant tactical formation.
- Average Matrices for Each Period: Each period T_i is represented by an average role adjacency matrix:

$$\bar{A}(T_i) = \frac{1}{|T_i|} \sum_{t \in T_i} A(t),$$

where $\bar{A}(T_i)$ is the average adjacency matrix for period T_i , and $|T_i|$ is the number of time frames in T_i .

• Formation Clustering: The average matrices $\bar{A}(T_i)$ are clustered into groups (e.g., "4-4-2", "3-5-2", etc.) using clustering methods.

Role Change-Point Detection (RoleCPD)

Objective: Extend formation change detection to a more detailed level: the individual roles of players. The goal is to detect tactical changes involving durable role exchanges between players while filtering out temporary permutations.

Input Data:

- Formation Periods (T_i) : Each period T_i corresponds to a stable formation phase (e.g., "4-4-2", "3-5-2").
- Temporary Role Assignments ($\beta_t(p)$): At each time t, a function $\beta_t(p)$ assigns a temporary role to each player p.

Objective for Each Formation Period (T_i) :

• Decompose T_i into sub-periods $T_{i,1}, T_{i,2}, \ldots$, where roles are consistent and durable for each player.

Step 1: Role Permutation Representation

Role Representation:

- Each time t is represented by a permutation of roles relative to an initial configuration.
- Initially, each player p is associated with a role X_p .
- At any time t, the temporary assignment $\beta_t(p)$ is expressed as a permutation π_t of the initial roles:

$$\beta_t(p) = \pi_t(X_p).$$

• Here, $\pi_t \in S(X)$, the symmetric group of permutations over the set of roles.

Step 2: Distance Calculation Between Permutations

Hamming Distance:

• To compare two time points t and t', the Hamming distance is used between the permutations π_t and $\pi_{t'}$:

$$d_{H}(\pi_{t}, \pi_{t'}) = |\{X : \pi_{t}(X) \neq \pi_{t'}(X)\}|.$$

- This distance measures the number of roles assigned differently between t and t'.
- Follow same steps as Form CPD.

Final Result: Role Period Decomposition

Decomposition of Role Periods:

- Each formation period T_i is divided into sub-periods $T_{i,1}, T_{i,2}, \ldots$, where:
 - Each player maintains a constant role during a sub-period $(\pi_{i,j})$.
 - Temporary permutations (σ_t) are treated as minor variations within a sub-period.

Data Description

- Source: GPS data from K League 1 and 2 (2019 and 2020 seasons)
- Sessions: 809 sessions (match halves)
- Data Split:
 - 864 formation periods
 - 2,152 role periods
- Data Components:
 - ugp: Player movements and speed
 - player periods: Player participation and session transitions
 - roster: Player information
 - role tags true.csv: Ground truth annotations

Preprocessing Methods

• Handling Missing Values:

 Replace NaNs with valid entries from other dataframes. It ensures the completeness of the data while maintaining consistency, thereby minimizing the impact of missing information on subsequent analyses.

Data Smoothing via Moving Average:

 Apply moving average with window size 3 to x and y coordinates. This smoothing reduced noise while preserving movement trends, ensuring cleaner positional data for analysis.

Detecting and Removing Outliers:

- Use z-score method with threshold 3
- Remove rows exceeding the threshold
- Compare original vs. cleaned data using boxplots

Preprocessing Methods

Figure: Outliers in X-Y Coordinates

Figure: Outliers Boxplots

- The blue dots represent the main data points, while the red dots signify the outliers scattered around the edges.
- The boxplots show :
 - Before Removing Outliers: Wide range with high variability.
 - After Removing Outliers: Narrower range with reduced variability.

Naive Experiment: Detection and Visualization of Change-Points using directly X-Y Coordinate Data

- Calculated mean 'x' and 'y' coordinates by 'index' and combined them.
- Applied the PELT algorithm to detect change-points in the combined data.
- It didn't perform really well because by averaging the players position coordinates we don't exploit fully the data.

Effect of Smoothing and Outliers Removal

- Visualization: Gantt charts for ground truth vs. predicted change points
- Observation:
 - Improved detection accuracy with preprocessing
 - Example: Detected change point closer to ground truth

Predicted Change Points with Preprocessing (gSegAvg)

Figure: Predicted change points with preprocessing (gSegAvg)

Predicted Change Points without Preprocessing (gSegAvg)

Figure: Predicted change points without preprocessing (gSegAvg)

Comparison of CPD Methods

- Methods Compared:
 - gSeg Union
 - Kernel Linear
- Results:
 - Visualization of predicted change points for each method

Predicted Change Points (Kernel Linear)

Figure: Predicted change points (Kernel Linear)

Experimenting with Hyperparameters

- Maximum Switch Rate:
 - Original: $0.8 \rightarrow 4$ formation periods detected
 - Modified: $0.1 \rightarrow 3$ formation periods detected
- Observation:
 - Lower switch rate results in fewer detected formation periods

Detected Formation and Role Periods (Max Switch Rate=0.1)

Figure: Detected Formation and Role Periods (Max Switch Rate=0.1)

Other hyperparameters

Modifications:

- We modified the thresholds of the scan statistic:
 - p-value,
 - minimum Manhattan distance, and
 - minimum segment duration.
- However, no significant differences were observed.

Change in Distance Metric:

- For FormCPD, we replaced Manhattan distance with Frobenius distance.
- The algorithm detected only 2 formations instead of the previous 4.
- This behavior was expected:
 - Manhattan distance is less sensitive to outliers and better suited for sparse data.

Conclusion

- Summary of SoccerCPD framework and its contributions
- Key findings from the results
- Potential future work and improvements

Thank You

Thank You!

Questions?