

Detailed Course on Differential Equation for IIT JAM' 23 - II

Ace your preparation with Top Educators

Get 20% off* on all subscriptions

☐ August 29 - 31

Subscribe Now

Referral Code : GPSIR

*T&C apply, as available on the platform.

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Gajendra Purohit

Enroll Now

USE CODE GPSIR FOR 10% OFF

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

VARIATION OF PARAMETERS

Consider a second order differential equation as follows

$$y'' + Py' + Qy = R$$

Let u and v are parts of CF then, Complete solution of given differential

equation is
$$y = c_1 u + c_2 v + Au + Bv$$

Where c_1, c_2 are arbitrary constants & A and B are to be determined.

$$A = -\int \frac{Rv}{W} dx, B = \int \frac{Ru}{W} dx \text{ where } W = \begin{vmatrix} u & v \\ u' & v' \end{vmatrix}$$

Example 1. Using the method of variation of parameters, solve $y'' + y = \sec x$

Example2. Using the method of variation of parameters, solve

$$y'' - 3y' + 2y = \frac{e^x}{1 + e^x}$$

Q1.

Let $y(x) = u(x)\sin x + v(x)\cos x$ be a solution of differential equation $y'' + y = \sec x$ then u(x) is [IIT: JAM-2015]

- (a) $\ln \cos x + C$
- (b) -x+C

(c) x+C

(d) $\ln |\sec x| + C$

Assume that $y_1(x) = x$ and $y_2(x) = x^3$ are two linearly independent Q2. the homogeneous differential solutions equation $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 3y = 0$ using the method of variation of parameters find a

particular solution of the differential equation $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 3y = x^5$

[IIT: JAM-2012]

(a)
$$\frac{x^5}{8}$$
 (b) $-\frac{x^5}{8}$

(b)
$$-\frac{x^5}{8}$$

(c)
$$\frac{x^5}{4}$$

(d) None of these

Q3. A particular integral of the differential equation $y'' + 3y' + 2y = e^{e^x}$ is

[IIT-JAM: 2018]

(a)
$$e^{e^x}e^{-x}$$

(c)
$$e^{e^x}e^{2x}$$

(b)
$$e^{e^x}e^{-2x}$$

(d)
$$e^{e^x}e^x$$

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months ₹ 1,838	
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Using the method of variation of parameters solve the differential equation $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x^2 \text{ given that } x \& \frac{1}{x} \text{ are two solutions of the corresponding homogeneous equation}$ [IIT: JAM-2007]

(a)
$$c_1 x + c_2 \frac{1}{x} + \frac{x}{2}$$
 (b) $c_1 x + c_2 \frac{1}{x} + \frac{x^2}{3}$

(c)
$$c_1 x + c_2 \frac{1}{x} - \frac{x^3}{6}$$
 (d) None of these

Q5. PI Of
$$\frac{d^2y}{dx^2} + y = \frac{1}{1 + \sin x}$$

(a)
$$-1 + \sin x + x \cos x - \sin x \cdot \log(1 - \sin x)$$

(b)
$$-1 + \sin x + x \cos x + \sin x \cdot \log(1 - \sin x)$$

(c)
$$-1 + \sin x - x \cos x + \sin x \cdot \log(1 + \sin x)$$

(d)
$$-1 + \sin x + x \cos x + \sin x \cdot \log(1 + \sin x)$$

Q6.

Solving by variation of parameters $y'' - 2y' + y = e^x \log x$, the value of wronskian w is

(a) e^{2x} (c) e^{-2x}

For $\frac{d^2y}{dx^2} + 4y = \tan 2x$, solving by variation of parameters. The

value of wronskian w is

(a) 1

(b) 2

(c) 3

(d)4

Q8.

Using the method of variation of parameters for the particular solution of the differential equation $y'' + 4y = \frac{3}{\sin 2x}$; $0 < x < \frac{\pi}{2}$

- (a) $\frac{3}{4}\sin 2x \log \cos 2x \frac{3}{4}\cos 2x$ (b) $\frac{3}{2}\sin 2x \log \cos 2x \frac{3}{4}\cos 2x$
- (c) $\frac{3}{2}\sin 2x \log \sin 2x \frac{3}{2}x\cos 2x$
- (d) $\frac{3}{4}\sin 2x \log \sin 2x \frac{3}{2}x\cos 2x$

Ace your preparation with Top Educators

Get 20% off* on all subscriptions

☐ August 29 - 31

Subscribe Now

Referral Code : GPSIR

*T&C apply, as available on the platform.

Unacademy Unlock 20% off* on IIT JAM subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	£ 21,780	₹ 17,424	₹ 4,356 (20%)
	12 Months	2-14,974	₹ 11,979	₹ 2,995 (20%)
Plus	9 Months	¥-13,475	₹ 10,780	₹ 2,695 (20%)
	6 Months	₹ 12,252	₹ 9,802	₹ 2,450 (20%)
	3 Months	₹ 6,807	₹ 5,446	₹ 1,361 (20%)

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585.

*T&C apply, as available on the platform

Unacademy Unlock 20% off* on CSIR UGC NET subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
Plus	24 Months	£-23,100	₹ 18,480	₹ 4,620 (20%)
	12 Months	2.16,748	₹ 13,398	₹ 3,350 (20%)
	6 Months	4-13,398	₹ 10,718	₹ 2,680 (20%)
Iconic	24 Months	_R-52,975	₹ 42,380	₹ 10,595 (20%)
	12 Months	7-30,780	₹ 24,624	₹ 6,156 (20%)
	6 Months	-F-21,540	₹ 17,232	₹ 4,308 (20%)

Subscribe Now

Use code

20

*T&C apply, as available on the platform.

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR