Modelli Probabilistici per le Decisioni

Amrani Hamza 807386

Brumana Mattia 808374

Carta Costantino 808417

Obiettivi

 Sviluppo di un modello predittivo che date in input le coordinate di quattro accelerometri posti su un soggetto riconosce l'azione che esso sta compiendo.

Dataset Iniziale (1)

- Dati raccolti durante 8 ore di attività
- 4 soggetti (due uomini e due donne)
- 165.633 campioni

Subject	Genre	Age	Height	Weight	Instances
A	Female	46 y.o.	1.62m	67kg	51,577
В	Female	28 y.o.	1.58m	53kg	49,797
C	Male	31 y.o.	1.71m	83kg	51,098
D	Male	75 y.o.	1.67m	67kg	13,161*

Dataset Iniziale (2)

- Dati anagrafici
- Rilevazione di sensori
- Azione compiuta

	user	gender	age	how_tall_in_meters	 x4	у4	z4	class
0	debora	Woman	46	1,62	 -150	-103	-147	sitting
1	debora	Woman	46	1,62	 -149	-104	-145	sitting
2	debora	Woman	46	1,62	 -151	-104	-144	sitting
3	debora	Woman	46	1,62	 -153	-103	-142	sitting
4	debora	Woman	46	1,62	 -153	-104	-143	sitting

Preprocessing - W. Ugolino et al.

- 20 partizioni (4 utenti per 5 classi differenti)
- per ogni <u>accelerometro</u> (una lettura): *roll, pitch, modulo* accelerazione

- per ogni <u>finestra</u> di 1 secondo (8 letture): *varianza di roll e pitch, media e deviazione standard dell'accelerazione*
- Dataset finale: 20.695 record

Normalizzazione e Discretizzazione

- Operazioni svolte con l'obiettivo di rendere più efficiente la distribuzione dei dati
- Normalizzazione: dati ridimensionati in intervallo [0,1]
- <u>Discretizzazione</u>: dati distribuiti nell'intervallo di interi [0,10]

Preprocessing - la "nostra" versione

- Analisi più accurata dei valori iniziali contenuti nel dataset
- Rilevazione (e conseguente eliminazione) di alcuni record che non rispettano la distribuzione
- Dataset finale: 20.665 record

Pulizia dataset

Originale

Dopo la pulizia

Calcolo della media

Nella nostra versione sostituiamo il calcolo della varianza con il calcolo della media, in quanto quest'ultima denota una distinzione più marcata tra le classi.

Confronto tra varianza (sinistra) e media (destra) dei valori di pitch1

HILL-CLIMB

Algoritmo:

- Inizia con una soluzione vuota o casuale (detta best solution);
- 2. Si fa una copia della soluzione, dopodiché la si muta leggermente;
- 3. Valutazione della nuova soluzione: se e migliore della best solution, quest'ultima viene sostituita con la nuova soluzione;
- 4. Si ritorna al punto 2. e si ripete il procedimento.

GREEDY

L'algoritmo greedy usato nella Pomegranate costruisce l'ordinamento topologico in maniera *greedy*, ovvero sceglie la variabile successiva migliore da aggiungere all'ordinamento già esistente ad ogni step. Trovata la struttura migliore, i parametri vengono stimati utilizzando la *Maximum Likelihood Estimation*.

PGMPY

· W. Ugolino et al.

"Nostra" versione

Pomegranate

• W. Ugolino et al.

"Nostra" versione

Risultati Ottenuti

		Accuracy	Precision	Recall	F1-Score
TT 1' 37 '	PGMPY	0.68%	0.68%	0.62%	0.62%
Ugolino Version	POMEGRANATE	0.53%	0.38%	0.41%	0.37%
Our Version	PGMPY	0.89%	0.86%	0.85%	0.82%
	POMEGRANATE	$\boldsymbol{0.94\%}$	$\boldsymbol{0.89\%}$	$\boldsymbol{0.91\%}$	$\boldsymbol{0.90\%}$

```
Precision = TP/TP+FP
Recall = TP/TP+FN
F1 Score = 2*(Recall * Precision) / (Recall + Precision)
```

W. Ugolino et al.

	Sitting Down	$Standing\ Up$	Walking	Standing	Sitting
F1-Score	0.51	0.58	0.87	0.43	0.71
Precision	0.54	0.67	0.86	0.73	0.58
Recall	0.48	0.50	0.88	0.31	0.93

La "nostra" versione

	Sitting Down	$Standing\ Up$	Walking	Standing	Sitting
F1- $Score$	0.83	0.78	0.94	0.96	0.98
Precision	0.80	0.74	0.95	0.98	0.98
Recall	0.86	0.84	0.93	0.94	0.98

Demo

Ambient Assisted Living Demo

This is a demonstration showing the demo of AAL(Ambient Assisted Living Demo).

Scheme of accelerometers positioning

Please select a position:

Random

Roll Pitch Module acceleration vector 1 Accelerometer 150.391 1.892 179.036 57.056 -17.033 49.425 2 Accelerometer 3 Accelerometer 142,568 -4.2649,425 167.703 4 Accelerometer -138.606 53.816

Load example

True prediction: sittingdown	Class predicted: sittingdown	Classes	Probabilities
		sittingdown	0.84
		standingup	0.16
		sitting	0.0
		standing	0.0
		walking	0.0

Conclusioni

- Reti Bayesiane: ottime prestazioni in termini di accuracy
- In particolare:
 - 68% (W. Ugolino *et al.*)
 - 94% ("nostra" versione)
- <u>Sviluppi futuri</u>: ampliare il dataset con rilevazioni effettuate su un numero maggiore di soggetti, con caratteristiche differenti

GRAZIE PER L'ATTENZIONE