Міністерство освіти і науки України Національний університет «Запорізька Політехніка»

Кафедра програмних засобів

3BIT

з лабораторної роботи №2 з дисципліни «Моделювання та Аналіз Програмного Забезпечення» на тему:

«Моделювання систем масового обслуговування з одним обслуговуючим приладом та чергою»

Виконав:	
Студент групи КНТ-122	О. А. Онищенко
Прийняли:	
Викладач:	Ж. К. Камінська

МОДЕЛЮВАННЯ СИСТЕМ МАСОВОГО ОБСЛУГОВУВАННЯ З ОДНИМ ОБСЛУГОВУЮЧИМ ПРИЛАДОМ ТА ЧЕРГОЮ Мета роботи

Вивчити методи моделювання різних дисциплін обслуговування в СМО з одним приладом та чергою, аналізувати вихідні дані моделювання з метою вибору оптимального варіанту реалізації системи, що моделюється.

Індивідуальне завдання

У механічний цех, відразу ж з початком робочого дня, кожні 3хв надходять червної деталі з масою 2кг, кожні 5хв червоні деталі з масою 2,4кг і кожні 20хв зелені з масою 3кг та температурою 85С і двома отворами. Червоні деталі надходять для обробки на свердлильному верстаті. У кожній з них свердлять по одному отвору. Час обслуговування: червоні — 15хв. Зелені поступають на токарний верстат і обробляються 20хв. Час встановлення на верстат та зняття з нього становить 4хв для кожної деталі. Промоделювати роботу цеху протягом 8 годин робочого дня. Визначити чергу перед свердлильним верстатом.

Опис термінів

Прилад - динамічний об'єкт для моделювання апарату, що обслуговує транзакти

Черга - динамічний об'єкт для просування транзактів на ділянках моделі та статистики

Результати виконання

Код програми

Загальне завдання

```
#include "../simc/simc.h"
#include <iostream>
using namespace std;
int TOTAL_HOURS = 28800;
int FIRST_INTERVAL = 510;
int FIRST_DURATION = 300;
int SECOND_INTERVAL = 420;
int SECOND_DURATION = 100;
pair<double, double> model(bool givePriorityToYellow = false)
  pqueue partsQueue;
  pfacility warehousePerson;
  int totalPeopleInQueue = 0;
  int totalIterations = 0;
  initlist(TOTAL_HOURS);
  initcreate(1, 0);
  initcreate(8, 0);
  newqueue(partsQueue, "\"Orders Order\"");
  newfac(warehousePerson, "\"Warehouse\"");
  while (systime < TOTAL_HOURS)</pre>
  {
    plan();
    switch (sysevent)
    case 1:
      create(FIRST_INTERVAL);
      break;
    case 2:
      inqueue(partsQueue);
      trans->prty = 1;
      totalPeopleInQueue += 1;
      break;
    case 3:
      seize(warehousePerson);
      break;
    case 4:
      outqueue(partsQueue);
      totalPeopleInQueue -= 1;
      break;
```

```
case 5:
      delayt(FIRST_DURATION);
      break;
    case 6:
      outfac(warehousePerson);
    case 7:
      destroy();
      break;
    case 8:
      create(SECOND_INTERVAL);
      break;
    case 9:
      inqueue(partsQueue);
      if (givePriorityToYellow == true)
        trans->prty = 2;
      }
      else
        trans->prty = 1;
      totalPeopleInQueue += 1;
      break;
    case 10:
      seize(warehousePerson);
      break;
    case 11:
      outqueue(partsQueue);
      totalPeopleInQueue -= 1;
      break;
    case 12:
      delayt(SECOND_DURATION);
      break;
    case 13:
      outfac(warehousePerson);
      break;
    case 14:
      destroy();
      break;
    }
    totalIterations += 1;
  }
  printall();
  double averagePeopleInQueue = (double)totalPeopleInQueue /
totalIterations;
```

```
double totalMoneyLost = totalPeopleInQueue * 0.25 * FIRST_DURATION +
totalPeopleInQueue * 0.25 * SECOND_DURATION;
  return make_pair(averagePeopleInQueue, totalMoneyLost);
}
int main()
  pair<double, double> resOne = model(false);
  pair<double, double> resTwo = model(true);
  cout << endl
       << "Average people in queue without prioritization: " <</pre>
resOne.first << endl;
  cout << "Average people in queue with prioritization: " << resTwo.first</pre>
<< endl;
  cout << "Total money lost without prioritization: " << resOne.second <<</pre>
  cout << "Total money lost with prioritization: " << resTwo.second <<</pre>
endl;
 return 0;
}
```

Індивідуальне завдання

```
#include "../simc/simc.h"
#include <iostream>
using namespace std;
auto STARTING_TIME = 0;
auto TIME_TO_TAKE_PARTS = 4;
auto TIME_TO_WORK = 480;
auto RED_MASS = 2;
auto RED_INTERVAL = 3;
auto RED_HOLES = 0;
auto HEFTY_RED_MASS = 2.4;
auto HEFTY_RED_INTERVAL = 5;
auto HEFTY_RED_HOLES = 0;
auto GREEN_MASS = 3;
auto GREEN_INTERVAL = 20;
auto GREEN_TEMPERATURE = 85;
auto GREEN_HOLES = 2;
```

```
auto DRILLING_MACHINE_DURATION = 15;
auto LATHE_DURATION = 20;
auto DRILLING_MACHINE_NAME = "\"Drilling Machine\"";
auto LATHE_NAME = "\"Lathe\"";
auto TOTAL_WORKING_TIME = 0;
auto TOTAL_DRILLING_MACHINE_TIME = 0;
auto TOTAL_LATHE_TIME = 0;
auto TOTAL_HOLES = 0;
void model()
  pstorage drillingMachine;
  pstorage lathe;
  initlist(TIME_TO_WORK);
  // red drill
  initcreate(1, STARTING_TIME);
  // hefty red drill
  initcreate(4, STARTING_TIME);
  // green lathe
  initcreate(7, STARTING_TIME);
  newstorage(drillingMachine, DRILLING_MACHINE_NAME, HEFTY_RED_INTERVAL);
  newstorage(lathe, LATHE_NAME, GREEN_INTERVAL);
  const int drillDelay = TIME_TO_TAKE_PARTS + DRILLING_MACHINE_DURATION;
  const int latheDelay = TIME_TO_TAKE_PARTS + LATHE_DURATION;
  cout << "Drilling machine queue: " << endl;</pre>
  while (systime < TIME_TO_WORK)</pre>
    plan();
    switch (sysevent)
    {
    case 1:
      enter(drillingMachine, 1);
      TOTAL_HOLES += 1;
      cout << "Transact " << trans->nom << " in queue" << endl;</pre>
      break;
    case 2:
      delayt(drillDelay);
      TOTAL_WORKING_TIME += drillDelay;
      TOTAL_DRILLING_MACHINE_TIME += drillDelay;
      break;
    case 3:
      leave(drillingMachine, 1);
      cout << "Transact " << trans->nom << " out of queue" << endl;</pre>
```

```
break;
    case 4:
      enter(drillingMachine, 1);
      TOTAL_HOLES += 1;
      cout << "Transact " << trans->nom << " in queue" << endl;</pre>
      break;
    case 5:
      delayt(drillDelay);
      TOTAL_WORKING_TIME += drillDelay;
      TOTAL_DRILLING_MACHINE_TIME += drillDelay;
      break;
    case 6:
      leave(drillingMachine, 1);
      cout << "Transact " << trans->nom << " out of queue" << endl;</pre>
      break;
    case 7:
      enter(lathe, 1);
      cout << "Transact " << trans->nom << " in queue" << endl;</pre>
      break;
    case 8:
      delayt(latheDelay);
      TOTAL_WORKING_TIME += latheDelay;
      TOTAL_LATHE_TIME += latheDelay;
      break;
    case 9:
      leave(lathe, 1);
      cout << "Transact " << trans->nom << " out of queue" << endl;</pre>
      break;
    case 10:
      next(1);
      cout << endl;</pre>
      break;
    }
  }
  printall();
  clear();
  destrs(drillingMachine);
  cout << endl
       << "Modeling finished, praise Jesus Christ our Holy Lord Almighty</pre>
Living GOD Most High" << endl
       << " - Total time the machines worked: " << TOTAL_WORKING_TIME <<</pre>
" minutes" << endl</pre>
       << " - Total time the drill worked: " <<
TOTAL_DRILLING_MACHINE_TIME << " minutes" << endl
```

```
<< " - Total time the lathe worked: " << TOTAL_LATHE_TIME << "</pre>
minutes" << endl
       << " - Total number of holes: " << TOTAL_HOLES << endl;</pre>
}
int main()
 model();
 return 0;
}
// g++ ind.cpp ../simc/simc.cpp -o ind
```

Виконання програми

Середній час виконання події

CIM-CI++ v1.2	НУ"3П"	2024
Ж. К. Камінська		
С. М. Сердюк		

Загальні параметри середовища:					
Поточний час	28860.000				
Поточна подія	6				
Поточний транзакт	4				
Усього подій	929.000				
Час моделювання	0.00 сек.				

0.00000 сек/подія

подія	1	2	3	4	5	6	7	8	9	10
УСЬОГО	57	57	69	57	57	57	56	69	69	109
•										
подія	11	12	13	14	15	16	17	18	19	20
УСЬОГО	68	68	68	68						

Черги									
	Кількість входжень Макс. довжина Середній час очікування			9/					
Черга	3 нульовим часом	Поточна довжина	Без урахування нульових	Середня довжина	% входжень у порожню чергу				
	очікування	Поточна довжина	входжень		чергу				
"Orders Order"	126	1	56.640	0.248	57,937				
"Orders Order"	73	1	133.585	0.248	37.937				

прилади								
Прилад	Кількість входжень	Середній час обробки	Завантаження	Кількість захоплень	Стан			
"Warehouse"	125	191.200	0.828	0	FREE			

Рисунок 1.1 – Загальне завдання – браузер

```
Enter a name for the Report HTML file: gen
 Enter a name for the Report HTML file: gen
Average people in queue without prioritization: 0.00107643
Average people in queue with prioritization: 0.00107643
Total money lost without prioritization: 100
Total money lost with prioritization: 100
```

Рисунок 1.2 – Загальне завдання – консолька †

CIM-CI++ v1.2	НУ"3П"	2024
Ж. К. Камінська		
С. М. Сердюк		

Загальні параметри середовища:

Поточний час	496.000
Поточна подія	9
Поточний транзакт	1
Усього подій	237.000
Час моделювання	0.00 сек.
Середній час виконання події	0.00000 сек/подія

подія	1	2	3	4	5	6	7	8	9	10
УСЬОГО	24	24	23	24	24	23	24	24	24	23

Накопичувачі

и	Comina	2	C:×		TC:		
Накопичувач	пичувач Емність Завантажені		Середній час перебування	Поточн. Макс. Середн.		Кількість входжень	
"Drilling Machine"	5	0.366	18.596	2	3	1.83	48
"Lathe"	20	0.058	24.000	0	2	1.16	24

Рисунок 1.3 – Індивідуальне завдання – браузер

```
Transact 2 in queue
Transact 3 out of queue
Transact 3 in queue
Transact 1 out of queue
Transact 1 in queue
Transact 2 out of queue
Transact 2 in queue
Transact 3 out of queue
Transact 3 in queue
Transact 1 out of queue
Transact 1 in queue
Transact 2 out of queue
Transact 2 in queue
Transact 3 out of queue
Transact 3 in queue
Transact 1 out of queue
Transact 1 in queue
Transact 2 out of queue
Transact 2 in queue
Transact 3 out of queue
Transact 3 in queue
Transact 1 out of queue
Modeling finished, praise Jesus Christ our Holy Lord Almighty Living GOD Most High
  - Total time the machines worked: 1488 minutes
  - Total time the drill worked: 912 minutes
  - Total time the lathe worked: 576 minutes
 - Total number of holes: 48
```

Рисунок 1.4 – Індивідуальне завдання – консолька

Висновки

Таким чином, ми вивчили методи моделювання різних дисциплін обслуговування в СМО з одним приладом та чергою; а також проаналізували вихідні дані моделювання з метою вибору оптимального варіанту реалізації системи, що моделюється.

Контрольні питання

Основні дисципліни обслуговування в СМО

Основними дисциплінами обслуговування в Системах Масового Обслуговування ϵ First in First out (FIFO) та Last in First out (LIFO). Також існують інші нестандартні дисципліни.

Множинні типи даних "ПРИЛАД" та "ЧЕРГА" CIM

Прилад -динамічний об'єкт для моделювання апарату, що обслуговує транзакти. Транзакт може очікувати входу до приладу, займати чи звільняти його.

Черга -динамічний об'єкт для просування транзактів на ділянках моделі та статистики.

Процедури створення, знищення, реєстрації черги

Для створення черги можна використати void newqueue(посилання на чергу, ймення черги); для реєстрації черги або void inqueue(pqueue), або void outqueue(pqueue); для знищення черги можна використати void destrq(pqueue).