Поддержка оконечной схемы в чипе (ОСТ)

Средство ОСТ чипов Cyclone III предназначено для согласования входного сопротивления I/O и оконечной схемы. ОСТ помогает предотвратить отражения и получить чистый сигнал, за счёт минимизации необходимости во внешних резисторах для корпусов многочисленных массивов сетки шариков (BGA). Чипы Cyclone III имеют I/O драйверы в чипе для согласования входного сопротивления и последовательной оконечной схемы в чипе для несимметричных выходов и двунаправленных выводов.

Когда вы используете последовательную оконечную схему в чипе, программирование силы тока не возможно.

Существует два пути реализации ОСТ схемы в чипах Cyclone III:

- ОСТ с калибровкой и
- ОСТ без калибровки.

Оконечная схема в чипе с калибровкой

Чипы Cyclone III поддерживают оконечную последовательную схему с калибровкой во всех банках. Оконечная последовательная схема с калибровкой сравнивает общее сопротивление I/O буфера с внешними резисторами 25 Ω ±1% или 50 Ω ±1%, подключенными к выводам RUP и RDN, и динамически вычисляет импеданс I/O буфера (как показано на рисунке 7-7).

Rs, показанный на рисунке 7-7, - это внутренний импеданс транзисторов, образующих I/O буфер.

Figure 7–7. Cyclone III On-Chip Series Termination with Calibration

ОСТ с калибровкой достигается использованием схемы блока калибровки ОСТ. Существует один калибровочный блок в банках 2, 4, 5 и 7. Каждый калибровочный блок поддерживает каждую сторону I/O банков. Поскольку два I/O банка используют один калибровочный блок, оба банка должны иметь одно VCCIO, если в обоих банках разрешена ОСТ калибровка. Если два соседних банка имеют различные VCCIO, калибровка будет разрешена только для банка, в котором расположен блок калибровки ОСТ.

На рисунке 7-8 показан главный вид размещения калибровочных блоков ОСТ.

Figure 7–8. Cyclone III OCT Block Placement

Каждый блок калибровки имеет пару выводов RUP и RDN. Когда используется калибровка оконечной последовательной схемы, вывод RUP подключается к VCCIO через внешний резистор 25 Ω ±1% ог 50 Ω ±1%. Вывод RDN подключается к GND через внешний резистор 25 Ω ±1% ог 50 Ω ±1%, для значений оконечной последовательной схемы 25 Ω или 50 Ω соответсвенно. Внешние резисторы сравниваются со внутренними резисторами на компараторах. Результирующий выход компараторов используется блоком ОСТ калибровки для динамического вычисления импеданса буфера.

Во время калибровки, сопротивления на выводах RUP и RDN меняются. Для достижения максимально точного тока через внешние калибровочные резисторы, допускайте минимальное сопротивление 0 Ω на выводах RUP и RDN во время калибровки.

На рисунке 7-9 показаны установки внешних калибровочных резисторов на выводах RUP и RDN, и ассоциированная схема калибровки ОСТ.

Figure 7–9. Cyclone III On-Chip Series Termination with Calibration Setup

Выводы RUP и RDN переходят в третье состояние, когда калибровка завершена или не запущена. Эти два I/O вывода двойного назначения могут функционировать как обычные I/O, если вы не используете схему калибровки.

В таблице 7-3 преведены I/O стандарты, поддерживающие согласование входного сопротивления и последовательную оконечную схему.

Table 7–3. Selectable I/O Drivers for On-Chip Termination with Calibration

	On-Chip Series Termination with Calibration Setting, in ohms (Ω)		
I/O Standard	Row I/O	Column I/O	
3.0-V LVTTL	50	50	
	25	25	
3.0-V LVCMOS	50	50	
	25	25	
2.5-V LVTTL/ LVCMOS	50	50	
	25	25	
1.8-V LVTTL/LVCMOS	50	50	
	25	25	
1.5-V LVCMOS	50	50	
	25	25	
1.2-V LVCMOS	50	50	
	_	25	
SSTL-2 Class I	50	50	
SSTL-2 Class II	25	25	
SSTL-18 Class I	50	50	
SSTL-18 Class II	25	25	
HSTL-18 Class I	50	50	
HSTL-18 Class II	25	25	
HSTL-15 Class I	50	50	
HSTL-15 Class II	25	25	
HSTL-12 Class I	50	50	
HSTL-12 Class II	_	25	

Оконечная схема в чипе без калибровки

Чипы Cyclone III поддерживают драйвер согласования импеданса с импедансом передающей линии, который обычно 25 или 50 Ω . Когда используется выходной драйвер, оконечная схема устанавливает драйвер согласования на 25 или 50 Ω . Чипы Cyclone III также поддерживают I/O драйвер последовательной оконечной схемы (RS =50 Ω) для SSTL-2 и SSTL-18.

На рисунке 7-10 показаны несимметричные I/O стандарты для ОСТ без калибровки. RS показывает внутренний импеданс транзисторов.

Cyclone III Driver
Series Impedance

VCCIO

Rs

Receiving
Device

Figure 7–10. Cyclone III On-Chip Series Termination without Calibration

Все I/O банки и I/O выводы поддерживают согласование импеданса и последовательную оконечную схему. Специальные конфигурационные выводы и выводы JTAG не поддерживают огласование импеданса или последовательную оконечную схему.

В таблице 7-4 представлены I/O стандарты, поддерживающие согласование импеданса и последовательную оконечную схему.

Table 7-4. Selectable I/O Drivers for On-Chip Termination without Calibration (Part 1 of 2)

	On Chip Series Termination without Calibration Setting, in ohms (Ω)	
I/O Standard	Row I/O	Column I/O
3.0-V LVTTL	50	50
	25	25
3.0-V LVCMOS	50	50
	25	25
2.5-V LVTTL/LVCMOS	50	50
	25	25
1.8-V LVTTL/LVCMOS	50	50
	25	25
1.5-V LVCMOS	50	50
	25	25
1.2-V LVCMOS	50	50
	_	25
SSTL-2 Class I	50	50
SSTL-2 Class II	25	25
SSTL-18 Class I	50	50
SSTL-18 Class II	25	25
HSTL-18 Class I	50	50
HSTL-18 Class II	25	25
HSTL-15 Class I	50	50
HSTL-15 Class II	25	25

Table 7-4. Selectable I/O Drivers for On-Chip Termination without Calibration (Part 2 of 2)

	On Chip Series Termination without Calibration Setting, in ohms (Ω)	
I/O Standard	Row I/O	Column I/O
HSTL-12 Class I	50	50
HSTL-12 Class II	_	25

Оконечная последовательная схема поддерживается в любом I/O банке. VCCIO и VREF должны быть совместимы со всеми I/O выводами, чтобы позволить оконечную последовательную схему в выбранном I/O банке. Стандарты I/O, которые поддерживают различные значения Rs, должны размещаться в одном I/O банке, а его VCCIO и VREF не должны конфликтовать.

Согласование импеданса реализовывается с использованием свойств выходного драйвера и подчиняется изменению основных величин, зависит от процессов, напряжения и температуры.

За дополнительной информацией о спецификации допустимых отклонений, обратитесь к главе "DC и характеристики переключений" в томе 2 Настольной книги чипов Сусlone III.