Testing for Compositeness Miller-Rabin vs Support Vector Machine Classification

Miguel Amezola

Department of Mathematics Pacific Lutheran University

May 9, 2017

Overview

- Introduction
- 2 Structure of \mathbb{Z}_p
- Miller-Rabin Test
- Suppose Vector Machine

Prime and Composite Numbers

Definition (Prime)

Let $p \in \mathbb{Z}$, p > 1. Then p is prime if and only if for every $a, b \in \mathbb{Z}$, p = ab implies a = 1 or b = 1. [2]

Definition (Composite)

Let $n \in \mathbb{Z}$, n > 1. Then n is composite if and only if there exists $a, b \in \mathbb{Z}$ such that n = ab, 1 < a, b < n. [2]

Overview

- Introduction
- 2 Structure of \mathbb{Z}_p
- 3 Miller-Rabin Test
- Suppose Vector Machine

Congruence Example

Definition (Congruent)

Let $a, b, n \in \mathbb{Z}$ with n > 0. We say that a is congruent to b modulo n if $n \mid (a - b)$, denoted $a \equiv b \pmod{n}$. [2]

Example

Is it true that 34 is congruent to 144 modulo 10? Subtracting 144 from 34, we have 34-144=-110. Now, does 10 divide this difference? Yes, since $-110=-11\cdot 10$. Thus, $34\equiv 144\pmod{10}$.

The Set of All Congruence Classes

Definition (Congruence Class)

Let $a, n \in \mathbb{Z}$ with n > 0. We define the congruence class of a modulo n as the set of all integers congruent to a modulo n; that is,

$$\bar{a} := \{x \in \mathbb{Z} : x \equiv a \pmod{n}\}.$$

Definition (\mathbb{Z}_n)

Let n > 0 be any integer. We define \mathbb{Z}_n to be the set of all congruence classes modulo n, i.e.

$$\mathbb{Z}_n := \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}.$$

The Structure of \mathbb{Z}_n

Table: Multiplication in \mathbb{Z}_7

	Ō	ī	2	3	4	5	<u>6</u>
ō	ō	ō	ō	ō	ō	Ō	ō
ī	Ō	ī	2	3	4	5	<u></u> 6
2	Ō	2	4	<u></u> 6	ī	3	5
3	ō	3	<u></u> 6	2	5	ī	4
4	ō	4	ī	5	2	<u></u> 6	3
5	Ō	5	3	ī	<u></u> 6	4	2
<u></u> 6	ō	<u></u> 6	5	4	3	2	ī

Table: Multiplication in \mathbb{Z}_8

	ō	ī	2	3	4	5	<u></u> 6	7
Ō	ō	ō	Ō	ō	Ō	Ō	Ō	ō
1	Ō	ī	2	3	4	5	<u></u> 6	7
2	ō	2	4	<u></u> 6	Ō	2	4	<u></u> 6
3	Ō	3	<u></u> 6	ī	4	7	2	5
4	Ō	4	Ō	4	Ō	4	Ō	4
5	Ō	5	2	7	4	ī	<u></u>	3
<u></u>	ō	<u></u> 6	4	2	ō	<u></u> 6	4	2
7	Ō	7	<u></u>	5	4	3	2	Ī,

Overview

- Introduction
- 2 Structure of \mathbb{Z}_p
- Miller-Rabin Test
- Suppose Vector Machine

Fermat's Little Theorem I

Theorem (Fermat's Little Theorem [2])

Let p be prime, and let $\bar{a} \in \mathbb{Z}_p, \bar{a} \neq \bar{0}$. Then

$$\bar{a}^{p-1} = \bar{1}.$$

Proof.

Let p be prime, and let $\bar{a}\in\mathbb{Z}_p, \bar{a}\neq\bar{0}$. By \ref{Matter} , we know that \mathbb{Z}_p contains a unique inverse for each of its elements. Furthermore, $\bar{1}^{-1}=\bar{1}$ and $\overline{p-1}^{-1}=\overline{p-1}$ by \ref{Matter} . Thus, $\bar{1}\cdot\bar{2}\cdot\bar{3}\cdots\overline{p-1}=\bar{1}\cdot\overline{p-1}=\overline{p-1}$. Then

$$(\bar{a} \cdot \bar{1})(\bar{a} \cdot \bar{2}) \cdots (\bar{a} \cdot \overline{p-1}) = \underbrace{\bar{a} \cdot \bar{a} \cdots \bar{a}}_{p-1 \text{ times}} \cdot \bar{1} \cdot \bar{2} \cdots \bar{a} \cdots \bar{a}^{-1} \cdots \bar{p-1}$$
$$= \bar{a}^{p-1} \cdot \overline{p-1}.$$

Moreover, since this multiplication is a binary operation, we know that each product is equal to a unique element in \mathbb{Z}_p . Thus, $(\bar{a} \cdot \bar{1})(\bar{a} \cdot \bar{2}) \cdots (\bar{a} \cdot \overline{p-1}) = \bar{1} \cdot \bar{2} \cdots \overline{p-1}$, where the right-hand side is some permutation of the elements in \mathbb{Z}_p .

Fermat's Little Theorem III

Proof (Cont.)

Hence,

$$\bar{a}^{p-1} \cdot \overline{p-1} = \bar{1} \cdot \bar{2} \cdots \overline{p-1}$$

$$\bar{a}^{p-1} \cdot \overline{p-1} = \overline{p-1}$$

$$\bar{a}^{p-1} \cdot \overline{p-1} \cdot \overline{p-1} = \overline{p-1} \cdot \overline{p-1}$$

$$\bar{a}^{p-1} \cdot \bar{1} = \bar{1}$$

$$\bar{a}^{p-1} = \bar{1}.$$

Therefore, if p is prime, then $\bar{a}^{p-1} = \bar{1}$ for all $\bar{a} \in \mathbb{Z}_p$, $\bar{a} \neq \bar{0}$.

Miller-Rabin Test for Compositeness

Algorithm (Miller-Rabin Test for Compositeness)

Let n > 0 be any odd integer. Then there exists an integer k > 0 such that 2^k is that largest power of two that divides n - 1. If there exists $\bar{a} \in \mathbb{Z}_n$ such that

$$\bar{a}^{\frac{n-1}{2^k}} \neq \bar{1}$$

and

$$\bar{a}^{\frac{n-1}{2^h}} \neq -\bar{1},$$

for all $h \in \mathbb{Z}$: $1 \le h \le k$, then n is composite. In this case, the integer a is called a Miller-Rabin witness to the compositeness of n.

Miller-Rabin Test Example I

Example

We would like to test the compositeness of 169. Since 2^3 is the largest power of two that divides 168, we must find an $\bar{a} \in \mathbb{Z}_{169}$ such that $\bar{a}^{\frac{168}{2^3}} \neq \bar{1}$ and $\bar{a}^{\frac{168}{2^h}} \neq -\bar{1}$ for all $h,\ h=1,2,3$. So, we randomly choose $\bar{19} \in \mathbb{Z}_{169}$ and find that

$$\overline{19}^{\frac{168}{2^3}} = \overline{70}$$

$$\overline{19}^{\frac{168}{2^2}} = -\overline{1}$$

$$\overline{19}^{\frac{168}{2^1}} - \overline{1}$$

Miller-Rabin Test Example II

Example

Because $\overline{19}^{\frac{168}{2^2}}=-\overline{1}$, we cannot conclude that 169 is composite. So we randomly select a different $\overline{a}\in\mathbb{Z}_{169}$, namely $\overline{a}=\overline{145}$, and this time discover that

$$\overline{145}^{\frac{168}{2^3}} = \overline{18}$$

$$\overline{145}^{\frac{168}{2^2}} = \overline{155}$$

$$\overline{145}^{\frac{168}{2^1}} = \overline{27}.$$

Hence, 145 is a Miller-Rabin witness to the compositeness of 169 and we conclude that 169 is not prime.

Effectiveness of the Miller-Rabin Test

Overview

- Introduction
- 2 Structure of \mathbb{Z}_p
- Miller-Rabin Test
- Suppose Vector Machine

What is a Support Vector Machine (SVM)?

- Use non-linear function K to map input vector to a higher dimensional feature space
- Linear decision function with maximal margin between vectors of different classes

Linear Classification

Support Vector Machine

Feature Space

Let $b \in \mathbb{Z}$: $b \ge 2$. Then every $N \in \mathbb{Z}$: N > 0 can be expressed uniquely in the form $N = a_k b^k + a_{k-1} b^{k-1} + \cdots + a_1 b + a_0$, where a_0, a_1, \ldots, a_k are nonnegative integers less than $b, a_k \ne 0$, and $k \ge 0$. [3]

Training Methodology

Definition (Training Set)

A **training set** is a collection of training examples, which are also called training data. It is usually denoted by

 $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\} \subset X \times Y$, where n is the number of examples. We refer to x_i as examples or instances and y_i as their labels.[1]

Comparison

References I

Nello Cristianini and John Shawe-Taylor.

An introduction to support vector machines: and other kernel-based learning methods.

Cambridge University Press, Cambridge, U.K., 2012.

T. Marks J. Pommersheim and E. Flapan. Number Theory: A Lively Introduction with Proofs, Applications, and Stories. John Wiley & Sons, 2010.

T. Koshy.

Elementary Number Theory with Applications. Harcoutrt/Academic Press, 2002.

Acknowledgements

