误差数据处理和习题

马江岩 2021年10月20日

1 练习题

1. 用游标卡尺 (量程 125 mm, 分度值 0.02 mm, 允差请查教材表 7-1) 测量钢筒含钢体积并 计算其结果的不确定度, 即 $V \pm \sigma_V$. 直接测量结果见下表, 每个量在不同位置测 6 次, 其 中字母含义: 外径 D, 内径 d, 高 H.

表 1: 测量钢筒含钢体积的数据.

项目	D/cm	d/cm	H/cm
零点读数	$D_0 = 0.000$	$d_0 = 0.000$	$H_0 = 0.000$
1	2.514	1.680	4.210
2	2.518	1.682	4.216
3	2.512	1.678	4.214
4	2.516	1.680	4.212
5	2.514	1.680	4.210
6	2.514	1.678	4.210
平均值	2.5147	1.6797	4.212
平均值的标准差	0.0008	0.0006	0.001
考虑仪器允差后的标准差	0.0014	0.0013	0.002
修正零点后的平均值	2.5147	1.6797	4.212

游标卡尺允差为 0.002 cm.

测量结果:

 $\overline{D} \pm \sigma_D = (2.5147 \pm 0.0014) \, \mathrm{cm},$ $\overline{d} \pm \sigma_d = (1.6797 \pm 0.0013) \, \mathrm{cm},$ 1 练习题 2

$$\begin{split} \overline{H} &\pm \sigma_H = (4.212 \pm 0.002) \, \text{cm.} \\ \text{计算结果:} \\ V &= \frac{\pi}{4} \left(\overline{D}^2 - \overline{d}^2 \right) \overline{H} = 48.800 \, \text{cm}^3, \\ \sigma_V &= \sqrt{\left(\frac{\partial V}{\partial D} \sigma_D \right)^2 + \left(\frac{\partial V}{\partial d} \sigma_d \right)^2 + \left(\frac{\partial V}{\partial H} \sigma_H \right)^2} = 0.028 \, \text{cm}^3, \\ V &\pm \sigma_V = (48.800 \pm 0.028) \, \text{cm}^3. \end{split}$$

2. 用螺旋测微器 (千分尺)(允差请查教材表 7-1) 测量钢球体积并计算结果的不确定度, 即 $V\pm\sigma_V$. 在不同位置测 6 次直径 d, 测量结果如下: 零点读数 $d_0=-0.0003\,\mathrm{cm}$.

表 2: 测量小钢球直径的数据.

测量次数	d/cm	
1	1.4690	
2	1.4691	
3	1.4693	
4	1.4690	
5	1.4694	
6	1.4693	
平均值	1.46918	
平均值的标准差	0.00008	
考虑仪器允差的标准差	0.00024	
修正零点后的平均值	1.46948	

螺旋测微器允差为 0.0004 cm.

测量结果:

$$\overline{d} \pm \sigma_d = (1.46948 \pm 0.00024) \text{ cm},$$

计算结果:

$$V = \frac{\pi}{6} \overline{d}^{3} = 1.66147 \,\text{cm}^{3},$$

$$\sigma_{V} = \sqrt{\left(\frac{\partial V}{\partial d}\sigma_{d}\right)^{2}} = 0.00083 \,\text{cm}^{3},$$

$$V \pm \sigma_{V} = (1.66147 \pm 0.00083) \,\text{cm}^{3}.$$

2 课后习题 3

2 课后习题

1. (1) 1 位有效数字; (2) 4 位有效数字; (3) 2 位有效数字; (4) 6 位有效数字.

2. (1)
$$\sigma_a = 0.1 \,\text{cm}$$
, $\sigma_b = 0.1 \,\text{cm}$. $\sigma_c = \sqrt{\left(\frac{\partial c}{\partial a}\sigma_a\right)^2 + \left(\frac{\partial c}{\partial b}\sigma_b\right)^2} \approx 0.1 \,\text{cm}$. $c = \frac{ab}{b-a} \approx 10.0 \,\text{cm}$. $c = \frac{ab}{b-a} \approx 10.0 \,\text{cm}$.

(2)
$$\sigma_x = 0.01$$
. $\sigma_y = \sqrt{\left(\frac{\partial y}{\partial x}\sigma_x\right)^2} \approx 1.5 \times 10^{-38}$. $y = e^{-x^2} \approx 8.3 \times 10^{-38}$. $to y \pm \sigma_y = (8.3 \pm 1.5) \times 10^{-38}$.

(3)
$$\sigma_x = 0.1$$
. $\sigma_y = \sqrt{\left(\frac{\partial y}{\partial x}\sigma_x\right)^2} \approx 0.002$. $y = \ln x \approx 4.038$. $\not\bowtie y \pm \sigma_y = 4.038 \pm 0.002$.

(4)
$$\sigma_x = 1'$$
. $\sigma_y = \sqrt{\left(\frac{\partial y}{\partial x}\sigma_x\right)^2} \approx 0.00005$. $y = \cos x \approx 0.98657$. 故 $y \pm \sigma_y = 0.98657 \pm 0.00005$.

3. (b)
$$\sigma_{\rho} = \sqrt{\left(\frac{\partial \rho}{\partial m_{1}}\sigma_{m_{1}}\right)^{2} + \left(\frac{\partial \rho}{\partial m_{2}}\sigma_{m_{2}}\right)^{2}} = \sqrt{\frac{m_{2}^{2}\rho_{0}^{2}}{(m_{1} - m_{2})^{4}}\sigma_{m_{1}}^{2} + \frac{m_{1}^{2}\rho_{0}^{2}}{(m_{1} - m_{2})^{4}}\sigma_{m_{2}}^{2}}.$$
(c) $\sigma_{y} = \sqrt{\left(\frac{\partial y}{\partial a}\sigma_{a}\right)^{2} + \left(\frac{\partial y}{\partial b}\sigma_{b}\right)^{2}} = \sqrt{\frac{b^{2}}{a^{2}(a+b)^{2}}\sigma_{a}^{2} + \frac{a^{2}}{b^{2}(a+b)^{2}}\sigma_{b}^{2}}.$

4. 测量 L 有三种方法:

①
$$L = L_1 + \frac{d_1}{2} + \frac{d_2}{2}$$
, $\sigma_L = \sqrt{\sigma_{L_1}^2 + \left(\frac{1}{2}\sigma_{d_1}\right)^2 + \left(\frac{1}{2}\sigma_{d_2}\right)^2}$. 代入数据得 $\sigma_L \approx 0.9 \, \mu \mathrm{m}$.

②
$$L = L_2 - \frac{d_1}{2} - \frac{d_2}{2}$$
, $\sigma_L = \sqrt{\sigma_{L_2}^2 + \left(\frac{1}{2}\sigma_{d_1}\right)^2 + \left(\frac{1}{2}\sigma_{d_2}\right)^2}$. 代入数据得 $\sigma_L \approx 1.1 \,\mu\text{m}$.

③
$$L = \frac{L_1 + L_2}{2}$$
, $\sigma_L = \sqrt{\frac{\sigma_{d_1}^2}{4} + \frac{\sigma_{d_2}^2}{4}}$. 代入数据得 $\sigma_L \approx 0.6 \, \mu \text{m}$.

 $\sigma_{L_3} < \sigma_{L_1} < \sigma_{L_2}$, 故采用第 3 种方法能使 σ_L 最小.

5. 上表面面积 $S = L_1 L_2 - \frac{\pi d_1^2}{4} - \frac{\pi d_2^2}{4}$. 由题意,

$$\frac{\sigma_S}{S} = \sqrt{\left(\frac{\partial \ln S}{\partial L_1}\sigma_{L_1}\right)^2 + \left(\frac{\partial \ln S}{\partial L_2}\sigma_{L_2}\right)^2 + \left(\frac{\partial \ln S}{\partial d_1}\sigma_{d_1}\right)^2 + \left(\frac{\partial \ln S}{\partial d_2}\sigma_{d_2}\right)^2} \leqslant 0.5\%.$$

解得 $\sigma_{d_2} \leq 1.2$ cm. 故需使测量方案的 $\sigma_{d_2} \leq 1.2$ cm, 才能使 $\frac{\sigma_S}{S} \leq 0.5$ %. 用米粗尺测量即可满足这一要求.

即可满足这一要求. $7. \quad (1) \ g = \frac{2h}{t^2}. \ \$ 设实际长度和时间为 h,t, 则实际重力加速度 $g = \frac{2h}{t^2};$ 设所测得长度和时间为 h',t', 则所测得重力加速度 $g' = \frac{2h'}{t'^2}.$

2 课后习题 4

由题意, $h = h'(1+10^{-5})$, t' = 0.9999t. 解得 $g' = \frac{1}{0.9999^2(1+10^{-4})}g \approx 980.1 \,\mathrm{cm/s^2}$.

(2) 欲使测定的单摆周期准确度不低于 0.5%, 则有 $\frac{|T-T_0|}{T} \le 0.5$ %. 解得 $\theta \le 16.2$ °. 欲使测定的单摆周期准确度不低于 0.05%, 则有 $\frac{|T-T_0|}{T} \leqslant$ 0.05%. 解得 $\theta \leqslant$ 5.13°.

10.
$$y_i$$
 的标准差为 $\sigma_{y_i} = \sqrt{\left(\frac{e}{\sqrt{3}}\right)^2 + \left(\frac{e_{y_i}}{\sqrt{3}}\right)^2}$.
由最小二乘法的相关性质, λ 的标准差 $\sigma_{\lambda} = \frac{\sigma_{y_i}}{\sqrt{\sum_{k=1}^{10}(i_k - \bar{i})^2}}$, 其中 $i_k = k$.
 c 的标准差为 $\sigma_c = \sqrt{\lambda^2\sigma_f^2 + f^2\sigma_{\lambda}^2}$, 其中 $\sigma_f = \frac{e}{\sqrt{3}} \approx 0.029 \, \mathrm{kHz}$.
由最小二乘法, $\lambda = \frac{\sum_{j=1}^{10}(i_j - \bar{i})(y_j - \bar{y})}{\sum_{j=1}^{10}(i_j - \bar{i})^2}$, 其中 $i_j = j$.
联立解得 $c \pm \sigma_c = (346.44 \pm 0.25) \, \mathrm{m/s}$.

11. ① $m - \frac{1}{t^2}$ 关系图如图所示.

图 1: $m - \frac{1}{t^2}$ 关系图. 由图可知, $m - \frac{1}{t^2}$ 满足线性关系.

②
$$k_2 = \frac{\overline{m \cdot \frac{1}{t^2}} - (\overline{m})(\overline{\frac{1}{t^2}})}{\overline{m^2} - (\overline{m})^2}$$
, $b_2 = \overline{\frac{1}{t^2}} - k_2 \overline{m}$, $r_2 = \frac{\overline{m \cdot \frac{1}{t^2}} - (\overline{m})(\overline{\frac{1}{t^2}})}{\sqrt{\left(\overline{m^2} - (\overline{m})^2\right)\left(\overline{(\frac{1}{t^2})^2} - (\overline{\frac{1}{t^2}})^2\right)}}$. 代入数据解得 $k_2 \approx 0.079$, $b_2 \approx -0.206$, $r_2 \approx 0.999$.

2 课后习题 5

代入数据解得
$$k_1 \approx 12.637$$
, $b_1 \approx 2.638$, $r_1 \approx 0.999$. ②和③得到的相关系数相同,因为相关系数 $r = \frac{\overline{xy} - \overline{xy}}{\sqrt{\left(\overline{x^2} - (\overline{x})^2\right)\left(\overline{y^2} - (\overline{y})^2\right)}}$ 关于自变量和因变量是对称的. k_1, k_2 和相关系数的关系为 $k_1k_2 = r^2$.