• Линейные рекуррентности (Linear recurrences)

$$\underbrace{k_1a_n+k_2a_{n-1}+k_3a_{n-2}+\dots}_{$$
динейная комб. рекуррентных членов функция от n

Линейное рекуррентное соотношение -
$$\begin{cases} f=0 \Longrightarrow \text{гомогенное (однородное)} \\ f \neq 0 \Longrightarrow \text{негомогенное (неоднородное)} \end{cases}$$

Ех. Последовательность Фибоначчи:

$$F(n) = \begin{cases} 0, & n = 0 \\ 1, & n = 1 \\ F(n-1) + F(n-2) \end{cases}$$

$$F(n) - F(n-1) - F(n-2) = 0$$
 - однородное

• Операторы:

Сумма: (f+g)(n) = f(n) + g(n)

Умножение на число: $(\alpha \cdot f)(n) = \alpha f(n)$

Сдвиг: (Ef)(n) = f(n+1)

Ex.
$$E(f - 3(g - h)) = Ef + (-3)Eg + 3Eh$$

Составные операторы:

$$(E-2)f = Ef + (-2)f = f(n+1) - 2f(n)$$

 $E^2f = E(Ef) = f(n+2)$

$$Ex. \ f(n) = 2^n$$

$$2f = 2 \cdot 2^n$$

$$Ef = 2^{n+1}$$

$$(E^2 - 1)f(n) = E^2 f(n) - f(n) = 2^{n+2} - 2^n = 3 \cdot 2^n$$

• **Аннигилятор** (Annihilator) - оператор, который трансформирует f в функцию, тождественную 0

Ex. Оператор (E-2) аннигилирует функцию $f(n)=2^n$

Ex. (E-c) аннигилирует c^n

Ex. (E-3)(E-2) аннигилирует $2^{n}+3^{n}$

 $Ex. \ (E-c)^d$ аннигилирует любую функцию формы $p(n)\cdot C^n$, где p(n) - многочлен степени не больше d-1

Nota. Любой составной оператор аннигилирует класс функций

Nota. Любая функция, составленная из полинома и экспоненты, имеет свой единственный аннигилятор

Если X аннигилирует f, то X также аннигилирует Ef

Если X аннигилирует f и Y аннигилирует g, то XY аннигилирует $f \pm g$

- Аннигилирование рекуррентностей:
 - 1. Запишите рекуррентное соотношение в форме операторов
 - 2. Выделите аннигилятор для соотношения
 - 3. Разложите на множители (если понадобится)

- 4. Выделите общее решение из аннигилятора
- 5. Найдите коэффициенты используя базовые случаи (если даны)

$$Ex. \ r(n) = 5r(n-1), r(0) = 3$$

1.
$$r(n+1) - 5r(n) = 0$$
 $(E-5)r(n) = 0$

- 2. (E-5) аннигилирует r(n)
- 3. (E-5) уже разложен
- 4. $r(n) = \alpha \cdot 5^n$
- 5. $r(0) = 3 \Longrightarrow \alpha = 3$

$$Ex. T(n) = 2T(n-1) + 1, T(0) = 0$$

1.
$$(E-2)T(n) = 1$$

- 2. (E-2) не аннигилирует T(n), остается 1. Тогда добавим аннигилятор (E-1), получим, что (E-1)(E-2) аннигилирует T(n)
- 3. Разложение не требуется
- 4. $T(n) = \alpha \cdot 2^n + \beta$ общее решение

5.
$$T(0) = 0 = \alpha \cdot 2^0 + \beta$$

$$T(1) = 1 = \alpha \cdot 2^1 + \beta$$

$$\alpha = 1, \beta = -1$$

• Псевдонелинейные уравнения (Pseudo-non-linear equations)

Ex.
$$a_n = 3a_{n-1}^2, a_0 = 1$$

 $\log_2 a_n = \log_2(3a_{n-1}^2)$

Пусть
$$b_n = \log_2 a_n$$

$$b_n = 2b_{n-1} + \log_2 3, b_0 = 0$$

$$b_n = (2^n - 1)\log_2 3$$

$$b_n = (2^n - 1) \log_2 3$$

$$a_n = 2^{(2^n - 1) \log_2 3} = 3^{2^n - 1}$$