ML module #5 (Recap & Metrics)

Benjamin Sanchez-Lengeling

CrossTALK: Cross-Training in AI and Laboratory Knowledge for Drug Discovery.

Panorama

Panorama

Recap: From Problem to Experiment

Simplified:

Some diseases are caused by malfunctioning Proteins, To "fix them" we need to physically interact with it using a "drug molecule".

A4D1P6 (WDR91_HUMAN)

18 molecules with binding data

(https://www.bindingdb.org/u
niprot/A4D1P6)

DEL Experiments
Allow us to test MASSIVE number of
molecules

Recap: Computational solutions

Desired solution: "Molecular search engine"

Filters:
Lipinski's rule of 5

Does it bind?
Orally bioavailable?
Toxic?
Animal/Tissue evals?
Human evals?

More hits, more shots on goal!

Recap: Caveats, Hits are not drugs

- Low potency
- Low specificity
- Insoluble in water
- Unstable
- Unable to get into cells
- False positives

Recap: Starting from the "simplest" problem (but still hard!)

Recap: Which model is the best? (and why?)

Metrics!

Panorama

Section slides prepared by Cait Harrigan

Recap

Metrics

Working sesh

AUROC - area under receiver operating characteristic

Asks: what is the probability that a random true positive will be ranked higher than a random true negative? *Measures ranking at all thresholds*

	Predict hit	Predict no hit		
ASMS hit	TP	FN	TP TP + FN	True positive rate aka recall
ASMS no hit	FP	TN	FP + TN	False positive rate

AUROC - area under receiver operating characteristic

Asks: what is the probability that a random true positive will be ranked higher than a random true negative? *Measures ranking at all thresholds*

	Predict hit	Predict no hit
ASMS hit	TP	FN
ASMS no hit	FP	TN

Perfect model	Predict hit	Predict no hit
ASMS hit	100%	0%
ASMS no hit	0%	100%

Random model	Predict hit	Predict no hit
ASMS hit	50%	50%
ASMS no hit	50%	50%

Row percentages _____

AUROC - area under receiver operating characteristic

	Predict hit	Predict no hit
ASMS hit	TP	FN
ASMS no hit	FP	TN

AUPRC - area under precision recall curve

Asks: how hit-rich are my top ranked predictions? *Measures expected precision* at all thresholds

Interested in a row % and a column %

Precision

TP + FP

AUPRC - area under precision recall curve

Asks: how hit-rich are my top ranked predictions? *Measures expected precision* at all thresholds

	Predict hit	Predict no hit
ASMS hit	TP	FN
ASMS no hit	FP	TN

We care most about the top ranked molecules not necessarily performance at all thresholds

Predictions from model

Molecule	Predicted probability
E	0.65
В	0.40
F	0.20
Α	0.12
С	0.03
D	0.01

Test labels from ASMS

Molecule	ASMS Hit (ground truth)
А	1
В	1
С	0
D	1
E	1
F	0

Hits at 3 How many TP are in top 3?

Molecule	Predicted probability
E	0.65
В	0.40
F	0.20
Α	0.12
С	0.03
D	0.01

Molecule	ASMS Hit (ground truth)
А	1
В	1
С	0
D	1
E	1
F	0

Hits at 3 = 2

Molecule	Predicted probability	
E	0.65	
В	0.40	
F	0.20	
Α	0.12	
С	0.03	
D	0.01	

Molecule	ASMS Hit (ground truth)
А	1
В	1
С	0
D	1
E	1
F	0

Precision at 3 what % of top 3 are TP?

Molecule	Predicted probability		
E	0.65		
В	0.40		
F	0.20		
Α	0.12		
С	0.03		
D	0.01		

Molecule	ASMS Hit (ground truth)		
А	1		
В	1		
С	0		
D	1		
E	1		
F	0		

Precision at 3 = 2/3 = 0.66

Molecule	Predicted probability	
Е	0.65	V
В	0.40	V
F	0.20	X
А	0.12	
С	0.03	
D	0.01	

Molecule	ASMS Hit (ground truth)
Α	1
В	1
С	0
D	1
E	1
F	0

Recall at 3 what % of TP are in the top 3?

Molecule	Predicted probability		
E	0.65		
В	0.40		
F	0.20		
Α	0.12		
С	0.03		
D	0.01		

Molecule	ASMS Hit (ground truth)
А	1
В	1
С	0
D	1
E	1
F	0

Recall at 3 = 2/4 = 0.5

Molecule	Predicted probability	
Е	0.65	V
В	0.40	V
F	0.20	
Α	0.12	X
С	0.03	
D	0.01	X

Molecule	ASMS Hit (ground truth)
А	1
В	1
С	0
D	1
E	1
F	0

Why not threshold? It's too stringent Want to get credit for ranking B highly!

Molecule	Predicted probability	Pred proba >0.5	
E	0.65	1	V
В	0.40	0	X
F	0.20	0	
Α	0.12	0	X
С	0.03	0	
D	0.01	0	X

Molecule	ASMS Hit (ground truth)		
А	1		
В	1		
С	0		
D	1		
E	1		
F	0		

Summary

- AUROC measures ranking ability at all thresholds
- AUPRC measures expected precision at all thresholds
- **Hits @ K** measures number of True Positives in top K
- Precision @ K measures percentage of top K which are True Positives
- Recall @ K measures percentage of True Positives which are in the top K

Drumrolls

Leaderboard! (as of monday night)

Team 🗸	# auroc 🗸	# auprc 🗸	# hits_at_200 🗸	# precision_at_200 🗸	# hits_at_2000 🗸	# precision_at_2000 🗸
NOKEYUAN	0.894	0.003	0	0.00	7	0.00
SilvaLeung	0.889	0.004	2	0.01	18	0.01
dataloaders	0.883	0.004	1	0.01	15	0.01
Nilooushka	0.863	0.004	3	0.02	15	0.01
Kevin Zhu	0.816	0.002	1	0.01	5	0.00
Lee MICKEY	0.791	0.002	3	0.02	9	0.00
Tech SunMead	0.776	0.001	0	0.00	3	0.00
dhawanikita	0.653	0.001	0	0.00	3	0.00
Sangwook Kim	0.108	0.000	0	0.00	0	0.00

Kaggle: Final Eval Metric has landed

Hits @ 200

Teams agree on 6 molecules

UMAP on AVALON fingerprints

Panorama

Some "ML tricks"

- XGboost Tricks / Feature engineering
- Ensembles are always better, many models and average predictions
- Uncertainties help to re-rank stuff
- Hyperparameter tuning
- "Balanced" /"Adversarial" splits
- Compute, get a 24GB RAM computer
- Internet / Reddit
 - r/MachineLearning
 - Kaggle forums (<u>example</u>)

For color palette

https://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3

Dark2 Set3 Cividis (continuous) PiYG (divergent)