

BS6200 Final presentation

The hospital mortality prediction for ICU- admitted HF (Heart Failure) patients using MIMIC III dataset

presented by

Han Wenhao School of Biological Science

17 / 10 / 2022

Table of content

- 1. Dataset description
- 2. Problem statement
- 3. Dataset preprocessing
- 4. Training and testing procedure
- 5. Experimental Study and analysis
- 6. Summary of the Project achievement
- 7. Future direction for further improvement

1. Dataset description

MIMIC-III ('Medical Information Mart for Intensive Care')

- Comprising Information relating to patients admitted to Intensive care units at a large tertiary care hospital
- Covering 38,597 distinct adult patients and 49,785 hospital admissions between 2001 and 2012.
- Data includes vital signs, medications, laboratory measurements, observations and notes charted by care providers.

2. Problem statement

Disease introduction:

- Heart failure (HF) is a complex clinical syndrome that causes a patient's heart to not pump enough blood (ventricular insufficiency) to meet the oxygen needs of vital organs and tissues in the body.
- HF disease worsens over time, causing progressive remodeling of the heart (change the size and shape of the heart), finally may lead to the death of the patients.

2. Problem statement

Problem:

• The predictors of in-hospital mortality for intensive care units (ICU)-admitted HF patients remain poorly characterized.

Aim of the Project:

 Develop and validate prediction models for all-cause in hospital mortality among ICU-admitted HF patients.

1) Feature engineering

- 1177 Patients with a diagnosis of HF, identified by manual review of ICD-9 codes, and who were >15 years old at the time of ICU admission.
- 50 features related to the the cause of HF are selected using Structured Query Language queries(PostgreSQL, version 9.6) from MIMIC III.

- 2) Data exploration
 - Age vs. outcome

Gender vs. outcome

4 complications improve the mortality rate of HF (might be lethal factor)

NRF+D

3) Data cleaning

Strategy to handle missing values:

- 1) Eliminating the features ('ID' and 'group').
- 2) Fill the missing values in numerical data with the mean of the available data in each column.
- 3) Eliminating the samples with missing values in categorical data.

Perform z-score normalization to convert data to the same scope

4. Training and testing procedure

UNIVERSI

The class label of the dataset is imbalanced

Strategies to handle imbalanced:

Stratified splitting

Evaluate model using AUC

Add class weight to different label

Weight 0= number of samples / (number of classes* number of sample with label 0))

- 1) Tree based model
 - Ensemble tree based model optimization

The optimal number of estimator is 80.

1) Tree based model

1) Tree based model

Evaluation scores for tree based model								
	accuracy	precision	sensitivity	specificiy	f1-score	AUC		
decision tree	0.49	0.96	0.43	0.88	0.6	0.67		
random forest	0.86	0.93	0.91	0.56	0.92	0.81		
XGBoost	0.88	0.89	0.98	0.22	0.93	0.8		

2) KNN optimization

The best K based on the evaluation: 14 The accrucay of model with best K: 0.86

3) Naïve bayes model evaluation

Evaluation scores for tree based model						
	accuracy	precision	sensitivity	f1-score	AUC	
Gaussian	0.85	0.45	0.35	0.38	0.78	
Bernoulli	0.86	0	0	0	0.64	
Categorical	0.86	0	0	0	0.64	
Complement	0.68	0.22	0.50	0.30	0.64	
Multinomial	0.68	0.22	0.50	0.30	0.64	

4) SVM model optimization

The best parameters are {'C': 1000.0, 'gamma': 0.0001} with a score of 0.88

- C:penalty coefficient

 Balance the classification interval margin and the misclassification of samples;
- gamma: A kernel parameter It control the 'spread' of kernel(how broad the decision region is).

5) Voting for KNN, GaussianNB, and SVC(rbf)

Result of Clustering

Final result

	Logistic	Decision	Random	XGboost	KNN	Naïve Baves	SVM	Voting
	Regression	tree	forest			Dayes		
Accuracy	0.85	0.86	0.87	0.88	0.83	0.83	0.85	0.86

6) Summary of project achievement

- Implement data exploration and get some insights of the dataset.
- Applied different model on the HF prediction and performed comparison and analysis.
- Achieve the optimal prediction model with 88% prediction accuracy.

7) Future direction for further improvement

- Perform further analysis on the instability of the model performance.
- Perform feature selection.

Applied other ensemble model to improve the classification accuracy.

Thank you!

