

Implemented as an array of pointers to a linked list.

- For inserting an element perform following steps:
 - Compute the hash value of the element
 - Access the pointer in the array indexed by hash value, prepend to the list.
- Collisions resolved by chaining the elements in a linked list.
- For a deletion/search perform following steps:
 - Obtain the hash value
 - Access the corresponding chain to find the value.

- Simple uniform hash function means that each key is equally likely to be hashed into any slot.
- Let P(k) be the probability that k is represented in the table.
- ▶ Distributiveness means each slot j = 0, 1, ..., m-1 equally likely to be occupied:

$$\sum_{k|h(k)=j} P(k) = \frac{1}{m}.$$

▶ The expected length of any chain = $\frac{n}{m}$ which is called load factor and denoted by α .

- For an unsuccessful search, the number links traversed is α excluding the NULL.
- For successful search it is: $1 + \alpha/2$.
 - One link has to be traversed any way.
 - In an average half the links will be traversed.

4 D > 4 D > 4 E > 4 E > 4 C

Pseudo Code Initialization

```
typedef struct hTnode {
     int val:
     struct node * next;
 node:
// Initialization of pointer array for hash table
void initializeHT(node * hashTable[], int m) {
     int i:
     for (i=0; i < m; i++)
        hashTable[i] = NULL;
```

Pseudo Code for Search

```
node *searchKey (node *hashTable[], int k) {
  node *p;
  p = hashTable[h(k)];
  while ((p != NULL) && (p->val != k))
       p = p->next;
  if (p->val == k)
       return p;
  else
    return NULL;
}
```

Pseudo Code for Insert

```
void insertKey(node * hashTable[], int k) {
    node * newNode;
    node *ptr = searchKey(hashTable,k);
    if (ptr == NULL) {
        newNode = (node *) malloc(sizeof(node));
        newNode—>val = k;
        newNode—>next = hashTable[h(k)]
        hashTable[h(k)] = newNode;
    }
}
```

Pseudo Code for Delete

```
void deleteKey (node *hashTable[], int k) {
     node *save, *p;
     save = NULL:
     p = hashTable[h(k)];
     while ( p!=NULL ) {
           save = p;
           p = p \rightarrow next;
     }
if (p != NULL) {
           save \rightarrow next = p \rightarrow next;
           free(p);
      } else
            print("value %d not found\n", k);
```

- ▶ Universal hashing defines a family of hash functions \mathcal{H} .
- \blacktriangleright A randomly chosen hash is picked from ${\cal H}$ to mapp the keys.
- The idea is that a good hashing scheme may emerge through a competition among the rival developers.
 - Apart from hashing programs being tested against a bench mark suite, they can also be tested by the rivals.
 - The rivals would create test cases to defeat each other's hashing schemes.
- ► Hashing scheme is called universal, as it will work against any adversary with the promised expectation.

- ► The only way one can win is to prevent an adversary from gaining an insight by using randomization.
- ▶ So, choose one at random out of several hash functions.
- An adversary can examine your code, but does not exactly know which hash will be used.
- ▶ It guarantees that for any two distinct keys x, and y the probability of collision is: 1/m, where m is the table size.

Definition

Let U be a universe of keys, and let $\mathcal H$ be a finite collection of hash functions mapping U to $\{0, 1, \dots, m-1\}$.

Definition

$$\mathcal{H}$$
 is universal, if for all $x \neq y$, $|\{h \in \mathcal{H} : h(x) = h(y)\}| = \frac{|\mathcal{H}|}{m}$.

From definition 2, if h chosen randomly from \mathcal{H} we have:

$$\frac{\text{\# functions mapping } x \text{ and } y \text{ to same location}}{\text{Total \# of functions}} = \frac{\frac{|\mathcal{H}|}{m}}{|\mathcal{H}|} \leq \frac{1}{m}$$

4□ > 4□ > 4 = > 4 = > = 900

Theorem

Suppose n keys to be hashed into a table of size m, then choose a hash function h randomly from the set \mathcal{H} , Under the stated conditions, the expected number of collisions with any key x is given by:

$$E(\text{\# of collision with } x) = \frac{n}{m}$$

 $\frac{n}{m} = \alpha$ is known as load factor.

➤ The theorem essentially implies that if a set of universal hash function exists then choosing a hash function from this set ensures that keys are evenly distributed.

Proof.

Let ${\cal C}_x$ be the random variable denoting the number of keys in table ${\cal T}$ colliding with x. Define

$$c_{xy} = \begin{cases} 1, & \text{if } h(x) = h(y) \\ 0, & \text{otherwise} \end{cases}$$

Then
$$E(c_{xy}) = 1/m$$
 and $C_x = \sum_{y \in T - \{x\}} c_{xy}$

Proof (contd).

Now derive $E(C_x)$:

$$E(C_x) = E\left(\sum_{y \in T - \{x\}} c_{xy}\right)$$

$$= \sum_{y \in T - \{x\}} E(c_{xy}), \text{ by linearity of expectations}$$

$$\leq \sum_{y \in T - \{x\}} \frac{1}{m} = \frac{n-1}{m}$$

Proof (contd).

- ▶ In the above expression we only considered the cases when *x* and *y* are distinct.
- Since x collides with itself 1 more probe will necessary for x to account for all keys that collide with x.
- ▶ So, the expected number of probes will be $\leq 1 + \alpha$.

Constructing a Universal Hash Function

- ▶ Works when m is prime.
- ▶ Every key is decomposed into r + 1 digits of base m, where $0 \le k_i \le m 1$ (where m is table size).
- For example, let size m = 11, and key=46793.
- ▶ key is represented as vector: $\langle 4, 6, 7, 9, 3 \rangle$ and its value is $3*11^0 + 9*11^2 + 7*11^3 + 6*11^4 + 4*11^5$.
- ► Then pick a random vector $a = \langle a_0, a_1, \dots, a_r \rangle$, where $0 \le a_i \le m 1$.
 - Picking vector a actually means picking of a random hash function. In other words, a serves as an index for picking a random hash functions.
- ▶ Compute $h_a(k) = \left(\sum_{0 \le i \le r} a_i k_i\right) \mod m$

Size of Set of Hash Functions

- ▶ How many vectors of length r + 1 can be there, where each value can be a m base digit?
 - It will be m^{r+1} .
- So there are m^{r+1} hash functions or possible choices for vectors $\langle a_0, a_1, \ldots, a_r \rangle$.
- Now we have to prove that these hash functions form a universal set of hash functions.

Finite Fields: A Digression from Hashing

- Consider a result from finite field before actual proof.
- ▶ For any prime *m*, the set of integers

$$\mathcal{Z}_m = \{0, 1, \dots, m-1\}$$

with modulo m operations (+, *) defines a field.

▶ In a field every nonzero element has a unique multiplicative inverse.

Finite Field

For example consider m=7, the elements of field are $\{0, 1, 2, 3, 4, 5, 6\}$.

\overline{z}	1	2	3	4	5	6
z^{-1}	1	4	5	2	3	6

- Note that m has to be prime to become a field with modulo operation.
- ▶ Let us take m = 10, then elements of field: $\{1, 2, \dots 9\}$.
- ▶ Clearly, 2 does not have any inverse in \mathcal{Z}_{10} .

Universal Hashing

Theorem

The construction of family of hash functions as specified by random choice of $\langle a_0, a_1, \dots, a_r \rangle$ is universal.

Proof.

- ▶ We need to show that for any two distinct keys x and y, $Pr[h_a(x) = h_a(y)] \leq \frac{1}{m}$
- ▶ Given that x are y distinct, decompose each as a (r+1)-digit base m integer.
- ▶ We should have $x_i \neq y_i$ at least at one position $0 \leq i \leq r$.
- ▶ WLOG assume that $x_0 \neq y_0$.
- ▶ If they differ in another position arguments remain same.

<ロ > < 回 > < 回 > < 巨 > < 巨 > へ 豆 < り < ○

Proof for Construction of Universal Hashing

Proof (contd).

$$h_a(x) = \sum_0^r a_i x_i$$
, and $h_a(y) = \sum_0^r a_i y_i$

Therefore,

$$\begin{array}{c} \sum_0^r a_i(x_i-y_i)\equiv 0\ (\mathrm{mod}\ m)\\\\ a_0(x_0-y_0)+\sum_1^r a_i(x_i-y_i)\equiv 0\ (\mathrm{mod}\ m)\\\\ a_0(x_0-y_0)\equiv -\sum_1^r a_i(x_i-y_i)\ (\mathrm{mod}\ m) \end{array}$$

Proof for Construction of Universal Hashing

Proof (contd).

- ▶ Since, $x_0 \neq y_0$, \exists , $(x_0 y_0)^{-1}$ in \mathcal{Z}_m .
- Now multiply both side of above modulo expression by the inverse $(x_0 y_0)^{-1}$.
- ▶ We get

$$a_0 \equiv \left(-\sum_{i=1}^{r} a_i(x_i - y_i)\right) (x_0 - y_0)^{-1}$$

▶ Which implies a_0 is a fixed value computed from a function of other a_i values.

Proof for Construction of Universal Hashing

Proof (contd).

- ▶ So, once a set of a_i 's , for i > 0, has been fixed, only one value of a_0 is possible.
- ▶ The number of possible choices of a_i 's can be m^r which produces m^r different values of a_0 's.
- ▶ So, the possibility of a clash in $h_a(x)$ and $h_a(y)$ is:

$$\frac{m^r}{m^{r+1}} = \frac{1}{m}.$$

► Therefore, construction as suggested is universal.

