

Karnaugh Maps

- Boolean expressions may be simplified by using algebraic operations
- But there is not set method to predict the steps to take
- That means not amenable to automated techniques
- Karnaugh Maps to the rescue
- Generates simplified expressions that are in SOP or POS form
- Produce two-level implementation with a minimum number of gates and a minimum number of inputs to the gates
- Sometimes two or more expressions that satisfy the simplification criteria

Two-Variable Map

X	Y	Minterms		
0	0	x'y'	m0	
0	1	x'y	m1	
1	0	xy'	m2	
1	1	ху	m3	

$$F(x,y) = xy + x'y$$

Three Variables Map

Simplify the following Boolean function

$$F(x,y,z) = \Sigma(3,4,6,7)$$

$$F(x,y,z) = xz' + yz$$

F(x,y,z) = A'C + A'B + AB'C + BC Express it in sum of minterms Find the minimal sum of products expression

y: X	Z 00	01	11	10
0		1	1	1)
1		1	1	

$$F(x,y,z) = \Sigma(1,2,3,5,7)$$

 $F(x,y,z) = C + A'B$

Four Variables Map

Simplify the following Boolean function

$$F(w,x,y,z) = \Sigma(0,1,2,4,5,6,8,9,12,13,14)$$

$$F(w,x,y,z) = y' + w'z' + xz'$$

Simplify the following Boolean function

$$F(w,x,y,z) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$$

$$F(w,x,y,z) = wx' + yz + xz + x'z'$$

Don't Care Conditions

Simplify the following Boolean function

$$F(w,x,y,z) = \Sigma(1,3,7,11,15)$$

Which has the don't care conditions $d(w,x,y,z) = \Sigma(0,2,5,8)$

wx y	z 00	01	11	10
00	×	1	1	X
01		Χ	1	
11			1	
10	Χ		1	

$$F(w,x,y,z) = w'x' + yz$$

Thank you

