

TripAdvisor Hotel Review Analysis

Business Intelligence Spring 2024

Table of contents

01 Dataset Description & Data Preprocessing

Brief description about the dataset and the process of cleaning data

02 Scenario 1

- Explanatory Data Analysis
- Models' constructions
- Model Selection and Predictive Performance Checks
- Conclusion

03 Scenario 3

- Explanatory Data Analysis
- Models' constructions
- Model Selection and Predictive Performance Checks
- Conclusion

Data Processing

Using Weka, R, and Python, we process the data such that it is usable for the analysis. **Details**

<u>Attribute</u>	Task
------------------	------

Author_location	Extract country name	Used " Web scrapping " to categorize locations into countries.
Rating location	Fill missing values	Considering that all missing ratings are considered neutral, the missing values were filled with a rating of 3.
Author_num_hel pful_votes	Fill missing values	All missing values are filled with 0.
Revisit	Convert to a binary variable	Convert 'Trigger_revisit' to 1 and 'No_revisit' to 0.
Author_num_cit	Convert to a binary variable	Created a new column "Visit > 15" in the dataset to classify authors visiting more than 15 cities (value True) or not (value False)
'title' and 'text'	Text mining	Concatenated into a single 'review_concat' column Remove numbers and non-word characters, non-English text from the column. ⇒ Extract sentimental adjectives to express "good" or "bad" review. Example: "Splendor and Elegance The beauty of the lobby is only exceeded by the fabulous attention to excellent service. It is rich in history and yet modern-day amenities. Superb on every level. And pet friendly." ⇒ "fabulous excellent rich modern friendly"

01 Scenario 1

Can we model the hotel's overall ratings using reviews?

Scenario 1 – Business Motivation

Understand customer sentiments and preferences from reviews to making informed marketing strategies

Reputation Management

Promptly recognize and tackle adverse feedback to uphold customer confidence and safeguard your reputation

Competitivity Study

Evaluate customer satisfaction levels through competitive benchmarking to uncover both strengths and weaknesses relative to competitors.

Scenario 1 – Explanatory Data Analysis

The word cloud distribution after processing text columns

The **correlation matrix** for some selected attributes.

Scenario 1 - Model Validation and Selection

Model	Precision	Recall	F1- score	Accuracy	ROC Area
Naïve Bayes (Benchmark)	0,627	0,686	0,655	76.555%	0,793
Naïve Bayes Multinominal Updatable	0,874	0,481	0,620	80.909%	0,871
Voted perceptron	0,749	0,597	0,664	80.430%	0,754
Logistic regression with Ridge Regulation (alpha = 1.0E-6)	0,735	0,633	0,680	80.669%	0,782
Random Forest (default config)	0,769	0,569	0,654	80.478%	0,758
SMO (Support Vector Machine – Logistic, PolyKernel)	0,763	0,606	0,675	81.101%	0,758

Best model is selected based on the combination of metrics including precision, recall, F1score, and accuracy.

Test options		
Use training set		
O Supplied test set		Set
Cross-validation	Folds	5
O Percentage split	%	
More	option	s
(Nom) Rating_overall		_
Start		Stop
Result list (right-click fo	or optio	ns)
20:25:02 - bayes.NaiveB	ayes	
20:26:47 - bayes.NaiveB	ayesMı	ultinomialUpdateable
20:28:17 - functions.Vote	edPerc	eptron
20:29:34 - functions.Log	istic	
20:30:54 - trees.Random	Forest	
20:33:26 - functions SM(2	

The models are trained using the training set (2090 data points/80% of the total data set) and validated by cross-validation with the number of folds equal to 5.

Based on the metrics score, SMO is the best model and is chosen to be tested with the testing set.

Scenario 1 – Model Performance Testing

Model	Precision	Recall	F1- score	Accuracy	ROC Area
SMO (Support Vector Machine – Logistic, PolyKernel)	0,800	0,588	0,678	81.835%	0,759

The main goal is to point out whether an overall rating is a bad review (i.e., classified as "low"). Therefore, the metrics for the "low" class were considered.

	=== Summary ===									
	Correctly Classified Instances			428		81.8356	&			
	Incorrectly Classified Instances			95		18.1644	%			
	Kappa statistic			0.55	55					
	Mean absolute er	ror		0.18	16					
	Root mean squared error			0.42	62					
	Total Number of Instances			523	523					
••	=== Detailed Acc									
••		TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
		0,588	0,071	0,800	0,588	0,678	0,568	0,759	0,604	low
		0,929	0,412	0,824	0,929	0,874	0,568	0,759	0,814	high
••	Weighted Avg.	0,818	0,301	0,816	0,818	0,810	0,568	0,759	0,746	
••	=== Confusion Ma	trix ===								

<-- classified as
 a = low</pre>

25 328 | b = high

The models are tested with the testing dataset (523 data points/20% of the total data set) and achieved the outputs similar to the validation outputs, indicating that the results are reliable.

Conclusion

It is recommended for the company to use the SMO model to predict the sentiment of a review.

Just by taking into account the review title and its text, we can accurately predict whether the attitude of the reviewer is positive or negative.

The final model achieves a predictive accuracy of 81.8%, which is fairly similar to the accuracy achieved with cross-validation on the training set, indicating a stable performance.

Recommendation

Employing the model to analyze the company's perceived strengths and weaknesses allows for benchmarking against competitors, leading to the discovery of unique selling points and enhanced competitive advantages.

Scenario 3

Can we model the influence of the review author?

Scenario 3 – Business Motivation

Companies might target authors having visited many cities with promotions or information about hotels in cities they haven't visited yet.

Customer Segmentation

Companies can segment customers into different categories (e.g., frequent travelers, occasional travelers) for more effective service and product offerings.

Influencer Identification

Authors visiting many cities may be considered influencers. Their opinions might have a broader impact, making them valuable partners for promotions or brand ambassadorships.

Scenario 3 – Explanatory Data Analysis

- 0.2

- The target variable 'Author_num_cities' exhibits a strong correlation with 'Author_num_helpful_votes' and 'Author_num_reviews'. However, these two columns are also strongly correlated.

- The other columns seem to not help predict whether an author has visited more than 15 cities.

The **correlation matrix** for selecting features.

Scenario 3 – Feature Engineer and Data Processing

- Constructed a new attribute called 'Visit 15' as an indicator of whether the corresponding author has visited more than 15 countries.
- SMOTE: We had to **rebalance** the training data! The distribution of Author num cities (Visit > 15 cities) is imbalanced.

70: Author_num_helpful_votes_per_review Numeric
0.4
0.875
1.6
0.636364
0.625
3.5
0.25
2.294118
0.923077
0.647059
1.75
0.5
0.25
0.272727
1.2
0.133333
0.0
0.0
1.666667
0.368421
1.0
0.5
0.307692
0.454545
1.227273
1.0
0.72973
0.214286
N 1420E7

We aggregate two features 'Author_num_helpful_votes' and 'Author_num_reviews' by constructing a new one called

'Author_num_helpful_votes
_per_review' by taking
'Author_num_helpful_votes
' divided by
'Author_num_reviews' to

'Author_num_reviews' to resolve the multicollinearity.

Scenario 3 - Model Validation and Selection

Model	Precision	Recall	Recall F1- Score		ROC Area	Best model is selected based on the combination of metrics including precision, recall, F1-score, and accuracy.		
ZeroR (Baseline model)	NA	0	NA	59.8%	0,499	Test options Use training set		
Logistic regression with Ridge Regulation (alpha = 1.0E-6)	0,909	0,885	0,897	91.8%	0,947	Supplied test set Set Cross-validation Folds 5		
SMO (Support Vector Machine – Logistic, PolyKernel)	0,929	0,852	0,889	91.4%	0,851	More options		
Random Forest (default config)	0,906	0,933	0,919	93.4%	0,974	(Nom) Author_num_cities Start Stop		
DecisionTree (min 10 instances per leaf)	0,877	0,940	0,907	92.3%	0,964	Result list (right-click for options) 00:29:22 - rules.ZeroR 00:29:37 - functions.Logistic 00:34:28 - functions.SMO		
Naïve Bayes	0,908	0,775	0,836	87.8%	0,924	00:36:09 - trees.RandomForest 00:39:34 - trees.J48 00:43:50 - bayes.NaiveBayes		

The models are trained using the training (2476 instances) and validated by cross-validation with the number of folds equal to 5.

Based on the metrics score, Random Forest is chosen to be tested with the testing set since they have the best performances.

Scenario 3 – Model Performance Testing

Model	Precision	Recall	F1- score	Accuracy	ROC Area
Random Forest (default config)	0,863	0,904	0,883	94%	0,974

The objective is to predict whether an author has visited more than 15 cities (i.e., classified as True).

Therefore, the metrics for the

True class were considered.

Correctly Classified Instances				466		93.9516	÷			
	Incorrectly Clas	sified In	stances	30		6.0484	8			
	Kappa statistic		0.8421							
	Mean absolute er		0.16	44						
	Root mean squared error Total Number of Instances			0.24	42					
				496						
•	=== Detailed Acc	TP Rate		Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	(
•		0,904	0,049	0,863	0,904	0,883	0,843	0,974	0,889	
	Weighted Avg.	0,940	0,084	0,941	0,940	0,940	0,843	0,974	0,966	
•	=== Confusion Ma	trix ===								
		lassified False	l as							

12 113 | b = True

The models are tested with the testing dataset (496 data points) and achieved outputs similar to the validation outputs, indicating that the results are reliable.

Class

Conclusion

Research indicates that authors garnering a high volume of reviews and positive votes are more likely to visit over 15 countries, with prediction models demonstrating up to 94% accuracy in identifying such behavior.

The correlation seems to stem from authors receiving more reviews as they explore various cities, with their vast travel experiences likely enhancing the quality of their reviews.

Recommendation

The company is advised to implement a Random Forest and data rebalancing for predicting authors who visit more than 15 countries.

Leveraging these predictions, companies can uncover insights into customer travel behaviors, enabling the development of tailored travel products or targeted marketing strategies. These initiatives are particularly useful in catering to the demands and preferences of frequent travelers, aligning with the company's objectives for its key customer segments.

