Functional Programming

Excercise Sheet 4

Emilie Hastrup-Kiil (379455), Julian Schacht (402403), Niklas Gruhn (389343), Maximilian Loose (402372)

Excercise 1

a)
$$f_{plus}: \mathbb{Z}_{\perp} \times \mathbb{Z}_{\perp} \to \mathbb{Z}_{\perp}, f_{plus}(x, y) = \begin{cases} y & x = 0 \\ x & y = 0 \\ x + y & x, y \in \mathbb{Z} \\ \perp & otherwise \end{cases}$$

b) We will show that f_{Plus} is strict, i.e. if $x_i = \bot$ for $1 \le i \le 2$ then $f_{Plus}(x_1, x_2) = \bot$.

Proof:

case 1:
$$x_1 = 0$$
 and $x_2 = \bot$. It follow: $f_{Plus}(x_1, x_2) = x_2 = \bot$ since $x_1 = 0$ case 1: $x_1 \neq 0$ and $x_2 = \bot$. It follow: $f_{Plus}(x_1, x_2) = \bot$ since $x_2 \notin \mathbb{Z}$ and $x_1 \neq 0$ case 1: $x_2 = 0$ and $x_1 = \bot$. It follow: $f_{Plus}(x_1, x_2) = x_1 = \bot$ since $x_2 = 0$ case 1: $x_2 \neq 0$ and $x_1 = \bot$. It follow: $f_{Plus}(x_1, x_2) = \bot$ since $x_1 \notin \mathbb{Z}$ and $x_2 \neq 0$

c) We will show that f_{Plus} is monotonic, i.e. if $d \sqsubseteq_{\mathbb{Z}_{\perp} \times \mathbb{Z}_{\perp}} d'$ then $f_{Plus}(d) \sqsubseteq_{\mathbb{Z}_{\perp}} f_{Plus}(d')$.

Proof:

Let $d \sqsubseteq_{\mathbb{Z}_{\perp} \times \mathbb{Z}_{\perp}} d'$ with $d, d' \in \mathbb{Z}_{\perp} \times \mathbb{Z}_{\perp}$. Then either d = d' or d is less defined than d'.

If d = d' then $f_{Plus}(d) = Plus(d')$, thus $f_{Plus}(d) \sqsubseteq Plus(d')$. Otherwise $d \neq d'$. Let's say $d = (d_1, d_2)$ and $d' = (d'_1, d'_2)$ with $(d_1, d_2) \sqsubseteq (d'_1, d'_2)$. Then there exists an index $1 \leq i \leq 2$ with $d_i \neq \bot, d'_i \in \mathbb{Z}$ as well as $j \neq i$ with $d_j = d'_j$. Since f_{Plus} is strict $f_{Plus}(d) = \bot$ because $d_i = \bot$ for $1 \leq i \leq 2$.

Case 1: $d_j = d'_j = \bot$ then we know from the strictness of f_{Plus} that $f(d') = \bot$. $f_{Plus}(d) = \bot \sqsubseteq_{\mathbb{Z}_{\bot}} \bot = f_{Plus}(d')$ holds.

Case 2: $d_j = d'_j \neq \bot$ with $d_j, d'_j \in \mathbb{Z}$ then $d' \in \mathbb{Z}_\bot \times \mathbb{Z}_\bot$ and $f(d') = a \in \mathbb{Z}$. a is more defined than \bot , thus $f_{Plus}(d) = \bot \sqsubseteq_{\mathbb{Z}_\bot} a = f_{Plus}(d'), a \in \mathbb{Z}$ holds.

Excercise 2

a)
$$-': \mathbb{Z}_{\perp} \to \mathbb{Z}_{\perp}, -'(x) = \begin{cases} -x & x \in \mathbb{Z} \\ \perp & otherwise \end{cases}$$
b)
$$*': \mathbb{N}_{\perp} \times \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}, *'(x, y) = \begin{cases} x * y & x, y \in \mathbb{N} \\ \perp & otherwise \end{cases}$$

$$max: \mathbb{N}_{\perp} \times \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}, max'(x, y) = \begin{cases} x & x > y \\ y & y \ge x \\ \perp & otherwise \end{cases}$$
This is not manufacing in it? max $\mathbb{N}_{\perp} \times \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$

This is not monotonic is it? $max: \mathbb{N}_{\perp} \times \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}, max'(x,y) = \begin{cases} x & x > y \\ y & otherwise \end{cases}$

Excercise 3

a) To show: If $\sqsubseteq_{D_1 \to D_2}$ is complete on $D_1 \to D_2$ then \bot_{D_2} exists.

Proof:

Let $\sqsubseteq_{D_1\to D_2}$ be complete on $D_1\to D_2$, then $D_1\to D_2$ has a smallest element with respect to $\sqsubseteq_{D_1\to D_2}$. This element is denoted $\bot_{D_1\to D_2}$. Since $\bot_{D_1\to D_2}$ is the smallest element $\bot_{D_1\to D_2}\sqsubseteq f$ holds for every $f:D_1\to D_2$ i.e. $\bot_{D_1\to D_2}(d)\sqsubseteq f(d)$ holds for every $d\in D_1$.

We say that $\bot_{D_1\to D_2}(d)=a\in D_2$ and $\bot_{D_1\to D_2}(d')=b\in D_2$. Then $a\sqsubseteq f(d)$ and $b\sqsubseteq f(d')$ with $d,d'\in D_1$. Now if $a\sqsubseteq b$ then a function g that maps every element of D_1 to a would exists with $g\sqsubseteq \bot_{D_1\to D_2}\sqsubseteq f$ and $a\sqsubseteq f(d)$, $a\sqsubseteq b\sqsubseteq f(d')$ for every $f:D_1\to D_2$. $\not\{\bot_{D_1\to D_2}$ is the smallest element! Therefore, $a\sqsubseteq b$ and similarly $b\sqsubseteq a$ only holds iff a=b.

With that we know that $\perp_{D_1 \to D_2}$ is a constant function.

It follows from $\perp_{D_1\to D_2}(d)=a\sqsubseteq f(d)$ (for every $d\in D_1$) that $a\sqsubseteq x$ for every $x\in D_2$. Hence, D_2 must have a smallest element a with respect to \sqsubseteq_{D_2} which we denote as \perp_{D_2} .

b) To show: If $\sqsubseteq_{D_1 \to D_2}$ is complete on $D_1 \to D_2$, then for all chains S on D_2 the least upper bound $\sqcup S$ of S exists in D_2 .

Proof:

Let $\sqsubseteq_{D_1\to D_2}$ be complete on $D_1\to D_2$, then for every chain S of $D_1\to D_2$ there exists a least upper bound $\sqcup S\in D_1\to D_2$. For functions $f,f'\in S$ either $f\sqsubseteq f'$ or $f'\sqsubseteq f$ holds, i.e. $f(d)\sqsubseteq f'(d)$ or $f'(d)\sqsubseteq f(d)$ holds for every $d\in D_1$. It follows that for every $d\in D_1$ $S_d=\{f(d)|f\in S\}$ is a chain in D_2 .

From Lemma 2.1.11 b) follows that every chain S_d has a least upper bound $\sqcup S_d$ since S has a least upper bound $\sqcup S$ ($\sqsubseteq_{D_1 \to D_2}$ is complete). Furthermore, $\sqcup S(d) = \sqcup S_d \in D_2$.

Excercise 4

a) To show: Let $a, b \in \mathbb{R}$. The standard ordering \leq on the real numbers is complete on the closed interval [a, b], i.e. [a, b] has a smallest element w.r.t. \leq and for every chain $S \subseteq [a, b]$ there exists a least upper bound $supS \in [a, b]$.

Proof:

The smallest element in $[a, b] = \{r | a \le r \le b\}$ with respect to \le is a, since $a \le x$ for every $x \in [a, b]$ (this follows from the definition of a closed interval).

Since [a, b] is bounded from above by b $(x \leq \text{for every } x \in [a, b])$, every chain $S \subseteq [a, b]$ S is bounded from above as well:

Case 1. $S = [c, b] = \{r | c \le r \le b\}$ with $c \in [a, b]$. Then S is bounded from above by

Case 2. $S = [c, d] = \{r | c \le r \le d\}$ with $c, d \in [a, b]$ and $c \le d$. Then S is bounded from above by d.

We know that \mathbb{R} is complete, therefore all chains $S \subseteq [a, b]$ have a least upper bound with supS = d for $S = [c, d] \subseteq [a, b]$.

Thus, the standard ordering \leq on the real numbers is complete on the closed interval [a, b].