Contents

1	Classes			2
	1.1	1 round2 - the round 2 method		
		1.1.1	ModuleWithDenominator – bases of Z-module with de-	
			nominator.	3
			1.1.1.1 get_rationals – get the bases as a list of rationals	4
			1.1.1.2 get_polynomials – get the bases as a list of poly-	
			nomials	4
			1.1.1.3 determinant – determinant of the bases	4
		1.1.2	round2(function)	5
		1 1 3	Dedekind (function)	5

Chapter 1

Classes

1.1 round2 - the round 2 method

- Classes
 - $-\ Module With Denominator$
- Functions
 - round2
 - Dedekind

The round 2 method is for obtaining the maximal order of a number field from an order generated by a root of a defining polynomial of the field.

This implementation of the method is based on [1] (Algorithm 6.1.8) and [2] (Chapter 3).

1.1.1 Module With Denominator – bases of \mathbb{Z} -module with denominator.

Initialize (Constructor)

ModuleWithDenominator(basis: *list*, denominator: *integer*, **hints: *dict*)

$\rightarrow \textit{ModuleWithDenominator}$

This class represents bases of \mathbb{Z} -module with denominator. It is not a general purpose \mathbb{Z} -module, you are warned. basis is a list of integer sequences.

denominator is a common denominator of all bases.

†Optionally you can supply keyword argument dimension if you would like to postpone the initialization of basis.

Operations

operator	explanation
A + B	sum of two modules
a * B	scalar multiplication
B / d	divide by an integer

Methods

1.1.1.1 get_rationals – get the bases as a list of rationals

```
\mathtt{get\_rationals}(\mathtt{self}) 	o \mathit{list}
```

Return a list of lists of rational numbers, which is bases divided by denominator.

1.1.1.2 get polynomials – get the bases as a list of polynomials

$$ext{get}$$
 $ext{polynomials(self)} o ext{\it list}$

Return a list of rational polynomials, which is made from bases divided by denominator.

1.1.1.3 determinant – determinant of the bases

$\operatorname{determinant}(\operatorname{self}) \to \mathit{list}$

Return determinant of the bases (bases ought to be of full rank and in Hermite normal form).

1.1.2 round2(function)

```
{\tt round2(minpoly\_coeff:}\ list) 	o (\mathit{list, integer})
```

Return integral basis of the ring of integers of a field with its discriminant. The field is given by a list of integers, which is a polynomial of generating element θ . The polynomial ought to be monic, in other word, the generating element ought to be an algebraic integer.

The integral basis will be given as a list of rational vectors with respect to θ .

1.1.3 Dedekind(function)

```
egin{aligned} 	ext{Dedekind(minpoly_coeff: } \textit{list}, \ 	ext{p: } \textit{integer}, \ 	ext{e: } \textit{integer}) \ & 	o (\textit{bool}, \ \textit{ModuleWithDenominator}) \end{aligned}
```

This is the Dedekind criterion.

minpoly_coeff is an integer list of the minimal polynomial of θ . p**e divides the discriminant of the minimal.

The first element of the returned tuple is whether the computation about ${\tt p}$ is finished or not. polynomial.

Bibliography

- [1] Henri Cohen. A Course in Computational Algebraic Number Theory. GTM138. Springer, 1st. edition, 1993.
- [2] Kida Yuuji. 代数体の整数基底と素数の素イデアル分解 (japanese). http://www.rkmath.rikkyo.ac.jp/~kida/intbasis.pdf.