

Advanced Macroeconomics

Section 2 - Growth (I): The mechanics of capital accumulation and growth

Daniele Girardi King's College London

AY 2024-25, Semester I

The hockey stick of history

Section 2: Growth (I)

The Plan

- 1. Harrod-Domar
- 2. Solow
- 3. Ramsey-Cass-Koopmans
- 4. Diamond's overlapping-generations (OLG)

- ► Variable *t* represents time
 - o continuous (except in the OLG model)

- Variable t represents time
 o continuous (except in the OLG model)
- ► X(t) → X can change over time.

- Variable t represents time
 o continuous (except in the OLG model)
- ► X(t) → X can change over time.
- ▶ $\frac{dX}{dt}$ → rate of change of X.

- Variable t represents time
 o continuous (except in the OLG model)
- ► X(t) → X can change over time.
- ▶ $\frac{dX}{dt}$ → rate of change of X.
- ▶ $\dot{X}(t)$ → shorthand for $\frac{dX}{dt}$

- Variable t represents time
 o continuous (except in the OLG model)
- ► X(t) → X can change over time.
- ▶ $\frac{dX}{dt}$ → rate of change of X.
- \blacktriangleright $\dot{X}(t) \rightarrow$ shorthand for $\frac{dX}{dt}$
- $\sum_{X(t)}^{X(t)} = growth \ rate \ of \ X$

- Variable t represents time
 o continuous (except in the OLG model)
- ► X(t) → X can change over time.
- ▶ $\frac{dX}{dt}$ → rate of change of X.
- \blacktriangleright $\dot{X}(t) \rightarrow$ shorthand for $\frac{dX}{dt}$
- $ightharpoonup \frac{X(t)}{X(t)} = growth \ rate \ of \ X$
- ▶ g_X is a shorthand for $\frac{X(t)}{X(t)}$

Intertemporal equilibrium

- ► Static analysis: equilibrium condition → equilibrium relations.
 - I=S → equilibrium level of Y
 - MRS=MRT → optimal quantity consumed
 - ...
- ► Growth theory is *dynamic*: intertemporal equilibrium.

Intertemporal equilibrium

- Static analysis: equilibrium condition → equilibrium relations.
 - I=S → equilibrium level of Y
 - MRS=MRT → optimal quantity consumed
 - ...
- ► Growth theory is *dynamic*: intertemporal equilibrium.

Main concepts:

- o Intertemporal equilibrium
- Steady state
- o Dynamic stability

The Harrod-Domar model

There's an old joke. Two elderly women are at a Catskill restaurant. One of them says, 'Boy, the food at this place is just terrible.' The other one says, 'Yeah I know. And such small portions.'

(Woody Allen, 'Annie Hall')

The Harrod-Domar model

- o 'Grandfather' of modern growth theory.
- o Premise 1: aggregate investment has a dual effect
 - 1. multiplier effect (demand side)
 - 2. capacity-creating effect (supply side)
- o Premise 2: investment depends on output (accelerator)

The Harrod-Domar model

- o 'Grandfather' of modern growth theory.
- o Premise 1: aggregate investment has a dual effect
 - 1. multiplier effect (demand side)
 - 2. capacity-creating effect (supply side)
- o Premise 2: investment depends on output (accelerator)
- ► Main findings:
 - unique equilibrium path: $g_W = sa$ (warranted rate)
 - warranted rate does not guarantee full (nor stable) employment
 - instability: economy won't converge to g_w , except by a fluke

o One-good economy, closed, no government: Y(t) = C(t) + I(t)

- o One-good economy, closed, no government: Y(t) = C(t) + I(t)
- o Costant saving rate: S(t) = sY(t)

- o One-good economy, closed, no government: Y(t) = C(t) + I(t)
- o Costant saving rate: S(t) = sY(t)
- o No depreciation: $\dot{K}(t) = I(t)$

- o One-good economy, closed, no government: Y(t) = C(t) + I(t)
- o Costant saving rate: S(t) = sY(t)
- o No depreciation: $\dot{K}(t) = I(t)$
- o Potential output $Y^*(t)$: output level if firms utilize their productive capacity at the planned/desired level

- o One-good economy, closed, no government: Y(t) = C(t) + I(t)
- o Costant saving rate: S(t) = sY(t)
- o No depreciation: $\dot{K}(t) = I(t)$
- o Potential output $Y^*(t)$: output level if firms utilize their productive capacity at the planned/desired level
- o Linear technology: $Y^*(t) = aK(t)$

- o One-good economy, closed, no government: Y(t) = C(t) + I(t)
- o Costant saving rate: S(t) = sY(t)
- o No depreciation: $\dot{K}(t) = I(t)$
- o Potential output $Y^*(t)$: output level if firms utilize their productive capacity at the planned/desired level
- o Linear technology: $Y^*(t) = aK(t)$
- o Rate of capacity utilization: $u(t) = \frac{Y(t)}{Y^*(t)}$

- o One-good economy, closed, no government: Y(t) = C(t) + I(t)
- o Costant saving rate: S(t) = sY(t)
- o No depreciation: $\dot{K}(t) = I(t)$
- o Potential output $Y^*(t)$: output level if firms utilize their productive capacity at the planned/desired level
- o Linear technology: $Y^*(t) = aK(t)$
- o Rate of capacity utilization: $u(t) = \frac{Y(t)}{Y^*(t)}$
- o Investment rate: $\dot{g}_K(t) = \alpha(u(t) 1)$ with $\alpha > 0$

Assumptions:

$$Y(t) = C(t) + I(t);$$
 $S(t) = sY(t);$ $Y^*(t) = aK(t);$ $u(t) = \frac{Y(t)}{Y^*(t)}$

$$g_K(t) = \frac{\dot{K}(t)}{K(t)} = \frac{I(t)}{K(t)}; \qquad \dot{g}_K(t) = \alpha(u(t) - 1) \qquad \text{with } \alpha > 0$$

Assumptions:

$$Y(t) = C(t) + I(t);$$
 $S(t) = sY(t);$ $Y^*(t) = aK(t);$ $u(t) = \frac{Y(t)}{Y^*(t)}$

$$g_{K}(t) = \frac{\dot{K}(t)}{K(t)} = \frac{I(t)}{K(t)};$$
 $\dot{g}_{K}(t) = \alpha(u(t) - 1)$ with $\alpha > 0$

Investment rate at each point in time:

$$I(t) = S(t) \rightarrow g_K(t) = sa[u(t)]$$

Assumptions:

$$Y(t) = C(t) + I(t);$$
 $S(t) = sY(t);$ $Y^*(t) = aK(t);$ $u(t) = \frac{Y(t)}{Y^*(t)}$

$$g_{K}(t) = \frac{\dot{K}(t)}{K(t)} = \frac{I(t)}{K(t)};$$
 $\dot{g}_{K}(t) = \alpha(u(t) - 1)$ with $\alpha > 0$

Investment rate at each point in time:

$$I(t) = S(t) \rightarrow g_K(t) = sa[u(t)]$$

Intertemporal equilibrium ('warranted' growth rate):

$$\dot{g}_K(t) = 0 \quad \rightarrow u = 1 \quad \rightarrow g_W = sa$$

The equilibrium ('warranted') rate of growth

Warranted vs natural growth rate:

$$g_Y = sa \neq n$$

The equilibrium ('warranted') rate of growth

Warranted vs natural growth rate:

$$g_Y = sa \neq n$$

Dynamic instability:

$$g_K = u(sa) > g_W = sa \implies u > 1 \implies \dot{g}_K > 0$$

$$g_K = u(sa) < g_W = sa \implies u < 1 \implies \dot{g}_K < 0$$

The equilibrium ('warranted') rate of growth

Warranted vs natural growth rate:

$$g_Y = sa \neq n$$

► Dynamic instability:

$$g_K = u(sa) > g_W = sa \implies u > 1 \implies \dot{g}_K > 0$$

$$g_K = u(sa) < g_W = sa \implies u < 1 \implies \dot{g}_K < 0$$

► More formally (by plugging I=S condition into investment function):

$$\dot{g}_{K} = \alpha \left[\frac{g_{K}}{g_{W}} - 1 \right]$$

$$\dot{g}_K = \alpha \left[\frac{g_K}{g_W} - 1 \right]$$
 with $\alpha > 0$

- Phase diagram.
- positive slope
 → instability