Data Mining und Maschinelles Lernen

Wiederholung Stützvektormethode (SVM), Clustering

Basierende auf Folien von Katharina Morik, Uwe Ligges, Claus Weihs, Lutz Plümer und viele anderen. Danke fürs Offenlegen ihrer Folien

Problem: Klassifikation, trenne die Datenmengen in zwei Partitionen

Ansatz: Finde eine optimale Trenn-Hyperebene

Intuition: Maximiere Größe des Randes (Margin) Generalisierung

Ziel: Finde Hyperebene $\{\vec{x} \mid \vec{w}\vec{x} + b = 0\}$ mit maximalem Rand

Rand: Abstand zwischen nächsten Punkten

$$\frac{\vec{w} (\vec{x}_1 - \vec{x}_2)}{|\vec{w}|}$$

Normierung: $\overrightarrow{w}\overrightarrow{x}_1 + b = +1$ $\overrightarrow{w}\overrightarrow{x}_2 + b = -1$

Distanz zwischen Hyperebenen:

$$\vec{w}(\vec{x}_1 - \vec{x}_2) = 2$$

$$\frac{\vec{w}}{|\vec{w}|}(\vec{x}_1 - \vec{x}_2) = \frac{2}{|\vec{w}|}$$

-> Maximiere Rand

minimiere $|\vec{w}|$

Ziel: Finde Hyperebene $\{\vec{x} \mid \vec{w}\vec{x} + b = 0\}$ mit maximalem Rand

Zielfunktion:

Maximiere
$$\frac{2}{|\vec{w}|}$$
 Minimiere $|\vec{w}|^2$

Nebenbedingung:

Alle Trainingsdaten werden korrekt klassifiziert

$$y_i(\overrightarrow{w} \overrightarrow{x_i} + b) \ge 1, \qquad i = 1..n$$

Lagrange-Optimierung:

$$L_P = L(\vec{w}, b, \vec{\alpha}) = \frac{1}{2} |\vec{w}|^2 - \sum_{i=1}^n \alpha_i (y_i(\vec{w}\vec{x}_i + b) - 1)$$

$$\vec{\alpha} = (\alpha_1, \dots, \alpha_n), \qquad \alpha_1, \dots, \alpha_n \ge 0$$

Probleme von Hard-Margin Ansatz:

- Funktioniert nur bei vollständig linear separierbaren Daten
- Anfällig gegenüber Ausreisern

Lösungsansatz: Erlaube Fehlklassifikation bei der Optimierung, aber "bestrafe" diese mit Kosten C

Allgemeines Problem: Nicht linear-separierbare Daten

Allgemeines Problem: Nicht linear-separierbare Daten

Idee: Transformiere Daten in anderen Raum und separiere dort linear

Neues Problem: Transformation und Berechnung in hoch-dimensionalen Räumen ist sehr rechenintensiv

Kernel-Trick: Erlaubt implizite Berechnung in hochdimensionalen Merkmalsräumen ohne die Daten jemals explizit zu transformieren.

Kernel-Funktion:
$$K(\vec{x}, \vec{y}) = \phi(\vec{x})\phi(\vec{y})$$

Funktion, die zwei Inputs aus dem Original-Raum entgegen nimmt und das Skalarprodukt der Vektoren im hoch-dimensionalen Raum zurück liefert.

$$L(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} (x_{i} * x_{j})$$

$$K(x_{i}, x_{j}) = \phi(x_{i}) * \phi(x_{j})$$

Duales Optimierungsproblem

Kernel-Funktion

Cluster-Analyse: Wie würden Sie die Simpsons gruppieren?

Clusteranalyse ist subjektiv

Die Simpsons

Schulangestellte

Weiblich

Männlich

Zwei Arten der Clusteranalyse

Partitionierungsansätze: Man konstruiert Partitionierungen (Aufteilungen) der Daten und bewertet sie mittels einer Bewertungsfunktion

Hierarchische Ansätze: Konstruiere eine hierarchische Aufteilung der Daten anhand eines Kriteriums

Hierarchisch

Partition

Distanzmaße

Beide Arten benötigen im Wesentlichen eine Distanzfunktion:

•
$$D(A,B) = D(B,A)$$

•
$$D(A,A) = 0$$

•
$$D(A,B) = 0$$
 If $A = B$

• $D(A,B) \leq D(A,C) + D(B,C)$

Symmetrie

Konstanz der Selbstähnlichkeit

Positive Definitheit

Dreiecksungleichung

Beispiel: Euklidische Distanz

"We know it when we see it"

Baumdiagramm zur Darstellung von hierarschischem Clustering

Die Ähnlichkeit zweier Objekte wird in einem Dendrogram durch die Höhe (von den Blättern ausgesehen) des niedrigsten internen Knoten ausgedrückt, den beide Objekte gemeinsam haben

Murtagh: Counting dendrograms: A survey. Discrete Applied Mathematics 7)2=:191-199 1984

Die Zahl der Dendrogramme mit *n*Blättern

=
$$(2n-3)!/[(2^{(n-2)})(n-2)!]$$

Zahl der	Zahl der möglichen
Blätter	Dendrogramme
2	1
3	3
4	15
5	105
10	34,459,425

Zahl der Dendrogramme steigt sehr schnelle. Weil wir nicht alle durchtesten können, müssen wir uns auf Heuristiken beschränken:

Bottom-Up (Agglomerativ): Anfangs ist jedes Objekt sein eigenes Cluster. Finde die beiden Cluster, die sich am ähnlichsten sind, und vereinige (merge) sie. Wiederhole das solange, bis es nur noch ein Cluster gibt.

Top-Down (Aufteilend): Anfangs sind alle Objekte in einem Cluster. Finde den besten Split und führe diesen aus. Wiederhole das so oft, bis die Cluster nur noch aus einem Objekt bestehen

Bottom-Up (Agglomerativ): Anfangs ist jedes Objekt sein eigenes Cluster. Finde die beiden Cluster, die sich am ähnlichsten sind, und vereinige (merge) sie. Wiederhole das solange, bis es nur noch ein Cluster gibt.

Top-Down (Aufteilend): Anfangs sind alle Objekte in einem Cluser. Finde den besten Split und führe diesen aus. Wiederhole das so oft, bis die Cluster nur noch aus einem Objekt bestehen

Beispiel Bottom-Up

Wir haben eine Distanzmatrix, die alle paarweisen Distanzen enthält

$$D(3) = 8$$

$$D(3) = 1$$

0	8	8	7	7
	0	2	4	4
		0	3	3
			0	1
				0

Beispiel Bottom-Up

Anfangs ist jedes Objekt sein eigenes Cluster. (1) Finde die beiden Cluster, die sich am ähnlichsten sind, und vereinige (merge) sie. Wiederhole (2,3) das solange, bis es nur noch ein Cluster gibt (4).

(3)

Betrachte alle möglichen Vereinigungen

Wähle die beste

(2)

Betrachte alle möglichen Vereinigungen

Wähle die beste

(1)

Betrachte alle möglichen Vereinigungen

Wähle die beste

 $\label{eq:bildquelle$

Dendrograms / Hierarchiches Clustering

Pedro

Petros (Greek), Peter (English), Piotr (Polish), Peadar (Irish), Pierre (French), Peder (Danish), Peka (Hawaiian), Pietro (Italian), Piero (Italian Alternative), Petr (Czech), Pyotr (Russian)

Cristovao

Christoph (German), Christophe (French), Cristobal (Spanish), Cristoforo (Italian), Kristoffer (Scandinavian), Krystof (Czech), Christopher (English)

Miguel

Michalis (Greek), Michael (English), Mick (Irish!)

Distanz = Wieviele
Editieroperationen
brauchen wir um String
A in String B zu
überführen ?

Hierarchien können Strukturen aufdecken, aber auch vortäuschen

Die dichte Gruppe um Australien macht Sinn. Es sind alles Ländern aus den ehemaligen Britischen Kolonien.

Aber Nigeria und Indien (von Irland wollen wir mal gar nicht erst sprechen) haben nicht viel mit einander am Hut.

Dendrogramme können uns manchmal auch die "richtige" Anzahl an Clustern anzeigen

Die zwei stark getrennten Teilbäume legen es nahe, dass es zwei übergeordnete Cluster gibt. Normalerweise ist das aber nicht so klar!

Dendrogramme können auch Ausreißer in den Daten feststellen

Clustering ist eine Kunst

Selbst wenn wir eine gute Distanzfunktion habe, ist es nicht selbstverständlich, wie wir eine Distanz zwischen einem Objekt und einem Cluster bzw. zwischen Clustern definieren.

- Single linkage (nearest neighbor): Die Distanz ist die Distanz zwischen den beiden nächsten Nachbarn in den beiden unterschiedlichen Clustern.
- Complete linkage (furthest neighbor): Die Distanz ist die Distanz zwischen den beiden entferntesten Objekten
- Group average linkage: Durschnitt aller paarweisen Distanzen
- Wards Linkage: Man versucht die Varianz zwischen den Clustern zu minimieren bzw. den Zuwachs an Varianz bei der Zusammenführung zweiter Cluster zu minimieren.

Linkage-Kriterium kann großen Einfluss auf das Clustering Ergebnis haben

Bildquelle: https://www.analyticsvidhya.com/blog/2021/06/single-link-hierarchical-clustering-clearly-explained/

Bildquelle: https://towardsdatascience.com/machine-learning-algorithms-part-12-hierarchical-agglomerative-clustering-example-in-python-1e18e0075019

Clustering mittels Partitionierungen

Keine Hierarchie. Jedes Objekt gehört zu genau einem Cluster. Die Cluster überlappen nicht

Partitionierungsansatz: K-Means Algorithmus

Hyperparameter (muss zu Beginn festgelegt werden):

K = Anzahl an Cluster

Art der Initialisierung der Clusterzentren

Vorgehen:

(1) Initialisiere die Clusterzentren (z.B. indem K Datenpunkte zufällig gewählt werden)

Jetzt, wiederholen wir die folgenden zwei Schritte bis zur Konvergenz:

- (2) Ordne jeden Datenpunkt seinem nächsten Clusterzentrum zu
- (3) Aktualisiere jedes Clusterzentrum mit dem Mittelwert (Schwerpunkt) der zugeordneten Datenpunkte

Schritt 1 : Initialisierung der Mittelwerte

Schritt 2: Zuordnung der Datenpunkte

Schritt 3: Aktualisierung der Clusterzentren

Schritt 2 : Zuordnung der Datenpunkte

Schritt 4: Algorithmus ist konvergiert

Antennen Länge

Clustering findet Struktur in den Daten

Komplexität ist O(n * K * I)

n = Zahl der Datenpunkte

K = Zahl der Cluster

l = Zahl der Iterationen

Güte hängt von der Initialisierung ab

Ein gutes Clustering mit einem kleinen K kann besser sein als ein schlechtes Clustering mit grossem K

Unterleib Länge

Nachteile des K-Means-Verfahrens

- Probleme bei Clustern mit unterschiedlicher Größe und Dichte
- Probleme mit nicht "kugel-förmigen" (spherical) Clustern
- Resultate hängen stark von der Anzahl und initialen Festlegung der Clusterzentren ab
- Wahl der Distanzmetrik hat großen Einfluss auf Cluster
- Ausreißer und leere Cluster führen zu Verzerrungen
- Fluch der hohen Dimension: In hochdimensionalen Räumen sind alle Daten unähnlich

Nachteile: Unterschiedliche Größen

Daten

kMeans (3 Cluster)

Nachteile: Nicht-kugelförmig

kMeans (2 Cluster)

Strategien zum Umgehen der Nachteile

- Mehrfaches Durchführen + Behalten des besten Ergebnisses
- "Over-Clustering" + Nachverarbeitung
- Probabilistische oder kernelized Varianten
- Andere Verfahren zur Clusteranalyse wie z.B.
 Spectral Clustering, Random Projections, Clusteranalyse mit Randbedingungen, DBSCAN, Bi-Clustering, LDA, ...

• ...

Was wissen wir jetzt?

Die Lernaufgabe Clustering kennen Sie

Wir haben zwei Klassen von Methoden gesehen:

- hierarchisches Clustering,
- k-Means.

Die Wahl des Abstandmaßes ist entscheidend für das Clustering.

