ML2 WEEK3

Nguyen Thi Phuong

January 2022

1 Introduction

Given a dataset $x=x_1, x_2, ...x_n$, each $x_i \in R^D$, partition the dataset into K clusters Which is a group of points and are close together and far from others

Let μ_k is cluster center of cluster k and r_{nk} is binary variable which equals to 1 if point n is in cluster k and vice versa

PROBLEM: Find μ_k, r_{nk} to minimize distortion measure:

$$J = \sum_{n} \sum_{k} (r_{nk}.||(x_n - \mu_k||^2))$$

Because r_{nk} and μ_k are dependent on each other, there fore we can't directly minimize J.

Thus, We solve this by first fixing r_{nk} and then find μ_k by taking derivative of J respect to μ_k . Simply set $r_{nk} = 1$ for the cluster center k with smallest distance

$$J = \sum_{n} \sum_{k} (r_{nk} \cdot || (x_{n} - \mu_{k} ||^{2})$$

$$\frac{d(J)}{d(\mu_{k})} = \frac{d(\sum_{n} \sum_{k} \cdot r_{nk} || (x_{n} - \mu_{k} ||^{2})}{d(\mu_{k})}$$

$$\frac{d(J)}{d(\mu_{k})} = \sum_{n} 2 \cdot r_{nk} \cdot (x_{n} - \mu_{k})$$

$$\frac{d(J)}{d(\mu_{k})} = 0$$

$$<= \sum_{n} 2 \cdot r_{nk} \cdot (x_{n} - \mu_{k}) = 0$$

$$= \sum_{n} \sum_{n} r_{nk} \cdot x_{n}$$

$$\geq \mu_{k} = \sum_{n} r_{nk} \cdot x_{n}$$