Results are obtained with h_0^P estimated

θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
ω	4.2779e - 09	3.2992e - 07	3.3648e - 08	3.8491e - 07	1.2740e - 07	4.4131e - 08	2.5272e - 08	3.9321e - 08	3.5832e - 08
std	(1.6791e - 08)	(1.5604e - 06)	(1.6574e - 07)	(1.3052e - 06)	(4.5656e - 07)	(2.0662e - 07)	(1.4770e - 07)	(1.7009e - 07)	(2.2433e - 07)
median	5.6987e - 10	1.1448e - 09	8.8539e - 10	1.3899e - 09	7.4251e - 10	1.5039e - 09	9.8128e - 10	4.0373e - 10	6.8337e - 10
α	1.8528e - 05	1.6271e - 05	9.0589e - 06	6.1070e - 06	7.2899e - 06	7.4979e - 06	5.1346e - 06	2.3951e - 06	1.2962e - 05
std	(1.9304e - 05)	(2.1985e - 05)	(1.2012e - 05)	(7.9519e - 06)	(9.5083e - 06)	(7.4506e - 06)	(5.8307e - 06)	(3.0938e - 06)	(1.6573e - 05)
median	1.0906e - 05	7.6580e - 06	4.5292e - 06	3.1281e - 06	2.9569e - 06	4.4564e - 06	2.9817e - 06	1.4483e - 06	2.9910e - 06
β	0.6378	0.5560	0.7245	0.7258	0.6358	0.5416	0.6269	0.7263	0.5087
\mathbf{std}	(0.2696)	(0.2971)	(0.2146)	(0.2478)	(0.2980)	(0.2557)	(0.2257)	(0.2586)	(0.3869)
median	0.7368	0.6567	0.8002	0.8149	0.7673	0.6562	0.6945	0.8054	0.7176
_	1010505	101 5100	100.0011	25.4.4020	252 5500	250 0010	202 2202	201 0000	205 2052
γ* -4.1	134.9727	191.7168	186.9011	254.4028	272.7593	278.9618	298.3299	331.9039	235.2952
$_{ m median}$	(47.8695) 128.3648	(93.1766) 175.8916	(76.3909) 175.0860	(194.7410) 184.1932	(235.2371) 222.8042	(174.4594) 257.3391	(157.3293) 297.1472	(112.0556) 333.3806	(131.0076) 208.0581
median	120.3040	175.5510	175.0000	104.1302	222.0042	201.3331	231.1412	333.3000	200.0001
h_0^Q	1.3056e - 04	2.2460e - 04	8.4830e - 05	4.8801e - 05	4.5782e - 05	0.0001	7.5242e - 05	1.9048e - 05	1.2394e - 04
$\operatorname{\mathbf{std}}$	(1.3959e - 04)	(2.3120e - 04)	(5.7765e - 05)	(4.5932e - 05)	(5.6510e - 05)	(1.1225e - 04)	(1.0294e - 04)	(1.9023e - 05)	(1.7026e - 04)
median	9.1311e - 05	1.1465e - 04	6.1522e - 05	3.3426e - 05	2.6020e - 05	5.5393e - 05	3.7873e - 05	1.3922e - 05	3.5407e - 05
persistency	0.8865	0.9140	0.9172	0.9104	0.8766	0.9156	0.9374	0.9523	0.7879
std	(0.1325)	(0.0899)	(0.1260)	(0.1125)	(0.1771)	(0.0779)	(0.0690)	(0.0709)	(0.2623)
median	0.9423	0.9529	0.9643	0.9574	0.9469	0.9466	0.9650	0.9764	0.9247
MSE	6.6208	9.6246	3.0009	2.8549	4.8542	5.1813	5.2586	4.2732	46.3117
median MSE	1.6873	2.2653	1.9560	1.6406	2.6091	3.3077	3.0598	2.8385	10.1798
IVRMSE	0.1325	0.1547	0.1087	0.1092	0.1174	0.1317	0.1280	0.1214	0.1867
MAPE	0.1441	0.1555	0.1532	0.1645	0.2022	0.2441	0.2002	0.2112	0.2706
OptLL Norm	-1.4752	-1.7562	-1.4687	-1.5111	-1.5355	-1.6427	-1.7021	-1.5878	-2.3994
OptLL	-84.2648	-104.1643	-108.8070	-149.2560	-165.1390	-207.4354	-253.2435	-269.2569	-439.3125
*									
AIC	92.2648	112.1643	116.8070	157.2560	176.3770	215.4354	261.2435	277.2569	465.6172
AICc	93.0800	112.9448	117.4037	157.7082	176.7844	215.7987	261.5356	277.5252	465.8443