

Group 2 Wan Xian - Janet - Soon Poh

AGENDA

Introduction

- Who are we?
- Problem statement

2

Exploratory Data Analysis

- Overview of Data
- Methodology
- Treatment of Missing Data/Outliers
- Top 5 Key features
- Multicollinearity

3

Model Preparation

- Data Pre-processing
- Feature Engineering
- Scaling

Model Evaluation

Model Performance

5

Conclusion

- Recommendation
- Limitations/Opportunities
- What's next?

PROBLEM STATEMENT

Client = A property agency (IowaGuru) based in Ames, Iowa

To develop a suitable regression model capable of predicting the prices of property in Ames accurately

To figure out the key features of the property that are strong predictors to the sale price

BACKGROUND

- Housing market in Ames is highly competitive in recent years
 - Exponential surge in prices driven by rising demand
- lowaGuru wants to predict prices based on the property's features only
 - Dataset was taken from property sales data for 2006 to 2010 (Normal volatility in prices)
- The model will be evaluated based on regression model metrics & scores in Kaggle

OUR DATA

METHODOLOGY

DATA CLEANING & ENCODING

Identify & address null value Categorize Features to Ordinal, Nominal & Numeric Encode Ordinal & Nominal Features

BASELINE MODEL

Linear, Lasso, Ridge, ElasticNet Regression

RECOMMENDATIONS

CONCLUSION &

VISUALISATION & DATA PRE-PROCESSING

Plot graphs to identify & address outliers Train-Test Split Standard Scaler

FINAL MODEL

Feature Engineering - Polynomial Lasso & Ridge Regression

FEATURES CATEGORY

NOMINAL FEATURE

Neighborhood, H<mark>ouse Style, Sale Type, etc</mark>

These variables are to be encoded using One Hot Encoding [0, 1] 1

NUMERIC FEATURE

Year Built, Bathrooms, Floor SF, etc

2

ORDINAL FEATURE

External Qualities, Basement Conditions, etc.

These variables are to be encoded as per ordinal manner stated in data dictionary by integer mapping

MISSING VALUES

These values should be "NA" / 0.0, not genuine missing

These features do not exist in the property

TOP 5 FEATURES CORRELATED WITH SALE PRICE

- Overall Quality (0.8)
- Exterior material quality (0.71)
- Above Grade Living Area (0.7)
- Kitchen Quality (0.7)
- Total Basement Area (0.65)

IDENTIFYING & REMOVING OUTLIERS

- No outliers in Overall Quality data series
- 1 outlier in Kitchen Quality data series & to be dropped

IDENTIFYING & REMOVING OUTLIERS

- 2 outliers spotted in Ground Living Area & Total Bsmt SF data series
- To be dropped from analysis

IDENTIFYING & REMOVING OUTLIERS

 No outliers for both Exterior Material Quality data series

FEATURE CORRELATION

- Identify features that has high correlation with each other (> 0.75)
- Drop features that has lower correlation with Sale Price

Feature 1 (Corr with Sale Price)	ure 1 (Corr with Sale Price) Feature 2 (Corr with Sale Price)	
Garage Qual (0.28)	Garage Cond (0.26)	0.95
Garage Area (0.65)	Garage Cars (0.64)	0.89
Yr Blt (0.57)	Garage Yr Blt (0.55)	0.86
Total Bsmt SF (0.66)	1st Flr SF (0.64)	0.81
Gr Liv Area (0.72)	TotRms AbvGrd (0.51)	0.81

^{*}In red: Feature has lower correlation with Sale Price -> Dropped

DATA PRE-PROCESSING

BASELINE MODEL PERFORMANCE

	REGRESSION MODEL	TRAIN SCORE	TEST SCORE	CROSS-VAL (R2 SCORE)	RMSE SCORE	REMARKS
BASELINE MODEL	LINEAR REGRESSION	0.936	-9.811E+23	-7.681E+22	3.62E+15	Poor Performance
BASELINE MODEL	LASSO	0.929	0.903	0.908	24167	Selected for Model Tuning
BASELINE MODEL	RIDGE	0.931	0.898	0.906	24718	Selected for Model Tuning
BASELINE MODEL	ELASTICNET	0.929	0.903	0.908	24163	Similar to Lasso (l1 ratio = 1)

FEATURE ENGINEERING

BEFORE FEATURE ENGINEERING

AFTER FEATURE ENGINEERING

FINAL MODEL PERFORMANCE

	REGRESSION MODEL	TRAIN SCORE	TEST SCORE	CROSS-VAL (R2 SCORE)	RMSE SCORE	REMARKS
BASELINE MODEL	LASSO	0.929	0.903	0.908	24167	-
BASELINE MODEL	RIDGE	0.931	0.898	0.906	24718	-
FINAL MODEL	LASSO	0.942	0.920	0.925	21990	Selected for Kaggle Submission
FINAL MODEL	RIDGE	0.946	0.913	0.920	22853	-

Submission and Description

Private Score

Public Score

kaggle_submission.csv

20833.27812

22350.95249

a day ago

Final Submission

KAGGLE LEADERBOARD (PUBLIC)

#	Team	Members	Score	Entries	Last	Code
1	CharlesRice		0.00000	3	2Y	
2	rhys		19309.24031	16	2Y	
3	Griffin		19333.48211	16	2Y	
4	weisja4	4	20286.14799	30	2Y	
5	Luke McKinley	4	20507.68177	11	2Y	
6	Stephanie Caress		20817.46675	11	2Y	
7	JulKel	4	21539.40770	3	2Y	
8	Marina Baker	Ø	21860.96015	39	2Y	
9	Jeong Huh	3	22182.01037	5	2Y	
9A	Group 2	%	22350.95249	10	1D	
10	Scott Armstrong	9	22764.22164	11	2Y	

PREDICTED VS ACTUAL PRICE

- Model are relatively accurate in predicting house prices under \$500,000
- Only 12 houses (0.5%) are priced above \$500,000 in the datasets
- Need more data for houses priced above \$500,000 to improve model accuracy

TOP FEATURES AFFECTING SALE PRICE

POSITIVE CORRELATION

- Ground Living Area
- Overall Quality
- Kitchen Quality
- Basement Quality
- External Quality

HouseArea*HouseQual

NEGATIVE CORRELATION

- House Age
- Mas Veneer Type N.A.
- Garage Type Detached
- Foundation CBlock
- Lot Shape

Conclusion

- Summary
- Limitation/ Opportunities
- What's next?

SUMMARY

BEST MODEL: LASSO REGRESSION MODEL

• RMSE Score: **21990**

Kaggle Private Score: 20833

 Performance increases for houses below \$500,000 (that is 99.5% of houses in the dataset)

TOP FEATURES WITH BEST CORRELATION (> 0.6)

- House Area*House Quality (Combination of 4 features): 0.91
- External Quality
- Total Bsmt SF
- Garage Area/ Garage Cars
- 1st Floor SF
- Number of Bathrooms

LIMITATION

OPPORTUNITIES

Coverage

OPPORTUNITIES

FORTUNE

FINANCE · ECONOMY

Prepare for a 'long and ugly' recession, says Dr. Doom, the economist who predicted the 2008 crash

BY TRISTAN BOVE

September 22, 2022 at 12:56 AM GMT+8

FINANCE · HOUSING

The U.S. housing market downturn will be worse in 2023, forecasts Goldman Sachs

BY LANCE LAMBERT

August 31, 2022 at 5:10 PM GMT+8

US home prices could plunge 20% by next summer as a housing recession kicks in, a top economist says

Theron Mohamed Sep 23, 2022, 5:51 PM

Danger ahead: The U.S. economy has yet to face its biggest recession challenge

PUBLISHED FRI, AUG 5 2022-3:41 PM EDT | UPDATED FRI, AUG 19 2022-8:58 PM EDT

OPPORTUNITIES

Other Factors

WHAT'S NEXT?

Improve Our Current Model

Introduce a working API for closed BETA

Instantiate a mobile application

