任课教师:	专业:	年级:	学号:	姓名:	成绩
得分一、填空	ど 题(本题共14分, 每空	₹2分).			
(i). 设 X_1,\ldots,X_n	X_n 为来自二项分布 $B(x_n)$	N, p)iid样本,则参数 p^2 的	りMLE为	_	
(ii). 设 X_1,\ldots,X_n	X_n 为来自正态分布 $N($	$(\mu, \sigma^2)(\mu, \sigma$ 均未知)iid样本	Γ ,则参数 σ^2 的矩	估计为	
(iii). 设 X_1,\ldots,X_n	X_n 为来自正态分布 $N($	$(\mu, \sigma^2)(\mu, \sigma$ 均未知) iid 样本	x ,则参数 μ 的 $1-a$	α的CI为	
. ,	X_n 为来自正态分布 $N($	μ,σ^2)(μ,σ 均未知)iid样本 拒绝域为	κ ,则检验假设 H_0	$ \mu_0: \mu \leq \mu_0 \leftrightarrow H_1: \mu $	$> \mu_0$ 的
(v) . 设 X_1,\ldots,X_n	X_n 为来自均匀分布 $U(0)$	$(0,\theta)(\theta>0)$ 的IID样本,「	则 $X_{(n)}$ 的概率密度	函数为	
(vi). 自由度为(1,	, n)F分布的上侧分位	数与t分布的分位数间的	关系为: $F_{\alpha}(1,n)$:	=	
得分二、(165	分)叙述NP引理前两/	个结论,并证明之。			

草稿区

草稿 区

得分

三、(16分)设 X_1,\ldots,X_m 为来自正态总体 $N(\mu_1,\sigma_1^2)$ 的iid样本, Y_1,\ldots,Y_n 为来自正态总体 $N(\mu_2,\sigma_2^2)$ 的iid样本,且全样本独立,记 $\bar{X}=\sum_{i=1}^m X_i/m, \bar{Y}=\sum_{i=1}^n Y_i/n, S_{1m}^2=\sum_{i=1}^m (X_i-\bar{X})^2/(m-1), S_{2n}^2=\sum_{i=1}^n (Y_i-\bar{Y})^2/(n-1), S_{mn}^2=[(m-1)S_{1m}^2+(n-1)S_{2n}^2]/(m+n-2).$ 关于两样本正态总体显著性检验,请填写如下表格:

参数	讨厌参数	假设(一个双边、两个单边)	检验统计量	拒绝域
$\mu_1 - \mu_2$				
	$\sigma_1/\sigma_2 = c$ 呂知			
	m=n			
σ_1^2/σ_2^2				
	$\mu_1 = \mu_2 = 0$			
	μ_1,μ_2 均未知			

年级: 学号: 姓名:

草稿区

得 分

四、(10分)设 X_1,\cdots,X_m 独立,且 $X_i\sim N(a_i,\sigma_i^2),1\leq i\leq n$. 记 $Y=\frac{\sum_{i=1}^n\sigma_i^{-2}X_i}{\sum_{i=1}^n\sigma_i^{-2}},Z=\sum_{i=1}^n\sigma_i^{-2}(X_i-Y)^2$. 证明

- (1) Y, Z相互独立;
- (2) $Z \sim \chi^2(n-1,\delta)$, $\sharp + \delta^2 = \sum_{i=1}^n \sigma_i^{-2} (a_i EY)^2$.

年级: 学号: 姓名:

草稿区

得 分

五、(10分)设 X_1, X_2 为来自总体X的样本,X的概率密度函数为

$$f(x,\theta) = \begin{cases} \frac{2(\theta-x)}{\theta^2}, & 0 < x < \theta \\ 0, & \sharp \Xi \end{cases}$$

试求 θ 的MLE和总体均值 μ 的MLE。

年级: 学号: 姓名:

草稿区

得 分

六、(10分)已知在一次试验中,事件A发生的概率是一个未知常数p,今在n次重复试验中观察到事件A发生f 次,试求p的有效估计。

得 分

七、(12分) 设 X_1,\ldots,X_n 为来自总体U(0,p)的iid样本,其中p未知,试求假设

$$H_0: p = 1 \leftrightarrow H_1: p = p_1(>1)$$

的水平为 α 的MP检验,并把它非随机化.

年级:

学号:

姓名:

草稿区

得 分

八、(12分) 设 X_1,\ldots,X_n 为来自总体PDF为 $f(x,\theta)=\theta x^{\theta-1}I_{(0,1)}(x)$ 的iid样本,其中 $\theta>0$ 为未知参数.

- (i). 求 $\log X_1$ 的分布;
- (ii). 求关于假设 $H_0: \theta \leq \theta_0 \leftrightarrow H_1: \theta > \theta_0$ 的水平为 α 的UMPT, 其中 $\theta_0 > 0$ 已知.

年级:

学号:

姓名:

草稿区

第7页 共7页