Rep the Set: Neural Networks for Learning Set representations

K. Skianis, G. Nikolentzos, S. Limnios, M. Vazirgiannis

Data Science and Mining group (DaSciM), Laboratoire d'Informatique (LIX), École Polytechnique, France http://www.lix.polytechnique.fr/dascim/ École Polytechnique, France Preprint available at: https://arxiv.org/abs/1904.01962

April 26, 2019

<u>Da</u>ta <u>Sci</u>ence & <u>M</u>ining group

LIX @ Ecole Polytechnique

Al methods for large scale Graph and Text data

M. Vazirgiannis

http://www.lix.polytechnique.fr/dascim/

Research Topics

- Machine Learning and Al
 - Al and Data Science methods (degeneracy, similarity, deep learning, multi-label classification)
 - Applications to: Text Mining/NLP, Social nets, Web marketing/advertising, Time Series
 - J. Read, M. Vazirgiannis
- Operations Research and Mathematical programming
 - Optimization for Energy apps
 - Distance Geometry, protein conformation
 - C. d'Ambrosio, L. Liberti

Graph of Words: graph based text/NLP

 bag-of-words vs. graph-of-words: graph captures word order and dependency.

```
information retrieval is the activity of obtaining information resources relevant to an information need from a collection of information resources

Bag of words: ((activity,1), (collection,1) (information,4), (relevant,1), (resources, 2), (retrieval, 1)...)
```


"Graph of word approach for ad-hoc information retrieval", F. Rousseau, M. <u>Vazirgiannis</u>, Best paper mention award ACM CIKM 2013

Graph of Words: graph based text/NLP

Graph of Words approach with applications to

- Ad Hoc Information Retrieval (tw-idf) [CIKM2013]
- Keyword Extraction [ECIR2015, EMNLP2016]
- Extractive/Abstractive summarization of text streams [EACL2017, ACL 2018]
- Event Detection in Textual Streams (twitter, banking,...) [ICWSM2015, ECIR2018]
- Text Categorization/opinion mining/sentiment analysis [ACL2015, EMNLP2015, EMNLP2016, EMNLP2017]
- Document visualization and summarization [ACL2016, ACL2018]
 - GoWis prototype software

Other production

- Software protection 2013
- Tech Transfer: Startup creation NELPER@ incubator (automated text generation for web marketing/ads)

Machine/Deep Learning methods for Graphs

- Novel metrics for node /community importance
 - Extensions of k-core to weighted, directed (D-core) and signed graphs [ASONAM2011, ICDM2011, KAIS2013, SIAMDM2013]
- Scalable Degeneracy-based graph clustering
 - Acceleration of high complexity clustering algorithms based on the k-core structure [AAAI2014]
 - 109 node graph clustering and community detection for fraud detection
- Identification of influential spreaders
 - Identification of influential spreaders [Scientific Reports/Nature 2016]
 - Novel influence metrics (citation and social networks) [PLOS2018]
 - RCG: Novel metric for academic paper influence [Infometrics2019]

Machine/Deep Learning methods for Graphs

Deep learning for graph and node embeddings

- Kernel Graph CNN [ICANN 2018]
- Learning Structural Node Representations on Directed Graphs [COMPLEX NETS 2018]
- Graph Classification with 2D Convolutional Neural Networks [https://arxiv.org/abs/1708.02218]

Deep Learning for Sets

 RepSet; Neural Networks for Learning Set Representations [https://arxiv.org/abs/1904.01962]

Graph kernels for graph similarity

- Message Passing GKs [arxiv]
- Matching Node Embeddings for Graph Similarity [AAAI 2017]
- Degeneracy framework for graph similarity [IJCAl 2018 best paper award]
- Enhancing graph kernels via successive embeddings [CIKM 2018]
- Shortest-path graph kernels for document similarity [ENMLP 2017]

Grakel: open source *graph similarity* python library: - ysig>Grakel">https://github.com>ysig>Grakel

LIN/AGORA

Industrial Collaborations and Projects

- BNP (2016 2019) CIFRE Ph.D.
- Linagora (BPI 2015 2021)
- Automated summarization for online meetings
- AXA Industrial chair (2015-18)
- Data science on insurance data AIRBUS (2014 - 17)
 - Data Analytics & Predictions of critical events
 - CIFRE PhD funding: Predictive Maintenance in Aviation: Failure Prediction for predictive maintenance [IEEE-ICDE 2018]

- Entity & event detection in online streaming documents

- HUAWEI (2018 21) CIFRE Ph.D.
 - Deep Learning for Graphs

- COM4U: Machine Learning for web marketing and advertising
- CIFRE Ph.D. funding
- Microsoft
 - Azure grant - Open academic data initiative
- Tencent
 - Fraud detection in graphs

Google

Machine Learing on Sets

 Typical ML algorithms (i.e. regression or classification) designed for fixed dimensionality objects.

<these words are in sequence for pedagogical purposes><pedagogical purposes are in sequence for these words>
vs.

{are, in, for, pedagogical, purposes, these, sequence, words}

- simalrity learning between sets should be invariant to permutation: challenging task
 - supervised tasks: set output label invariant or equivariant to the permutationi its elements.
 - population statistics estimation, giga-scale cosmology, nano-scale quantum chemistry.
 - unsupervised tasks, "set" representation needs to be learned.
 - set expansion assume a set of similar objects find similar to the set extensions, i.e. extend the set {lion, tiger, leopard} with cheetah
 - web marketing extend a set high-value customers with similar people.
 - astrophysics: assuming set of interesting celestial objects, find similar ones in sky surveys.

Background and State of the art

- NNs for sets became very popular isnpired by computer vision problems such as the automated classification of point clouds. Proposed architectures have achieved state-of-the-art results on many different tasks.
- Base approaches: PointNet [Qi et.al., CVPR2017] and DeepSets [Zaheer et.al., NIPS2017]
 - transform sets' elements vectors using several NN layers into new representations
 - apply some permutation-invariant function to the emerging vectors to generate representations for the sets.
 - Pointnet: max pooling, DeepSets: vector sum
 - representation of the set is then passed on to a standard architecture (e.g., fully connected layers,nonlinearities, etc).
 - Other efforts: PointNet++, SO-Net

Motivation and Contribution

- Data objects decomposed into sets of simpler objects: natural to represent each object as the *set* of its components or parts.
- Conventional ML algorithms operate on vectors / sequences. Thus unable to process *sets* as
 - · sets may vary in cardinality
 - set elements lack a meaningful ordering
- Challenge: Sets as input to Neural Network Architectures
- Contribution: RepSet: a new neural network architecture, handling examples as sets of vectors.
 - computes the correspondences between an input set and some hidden sets by solving a series of network flow problems.
 - resulting representation fed to a NN architecture to produce the output.
 - allows end-to-end gradient-based learning.
 - Experimental evaluation: favorable on classification (text, graph) tasks outperforming satet of the art

Repset architecture - Permutation Invariance

- Assume an example X represented as a set $X = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ of d-dimensional vectors, $\mathbf{v}_i \in \mathbb{R}^d$. (i.e the embeddings of X's elements)
- Objective: design architecture whose output is invariant for all n! permutations of *X* elements => permutation invariant function.

- propose a novel permutation invariant layer
- contains m "hidden sets" Y_1, Y_2, \ldots, Y_m of d-dimensional vectors (same dim as X elements)
- based on bipartite graph matching
- its components are trainable,
- elements of a hidden set Y_i correspond to the columns of a trainable matrix $\mathbf{W}^{(i)}$

Repset architecture - Similarity via graph matching

- to measure the similarity between X and each one of the hidden sets Y_i: comparing their components.
- capitalize on network flow algorithms specifically bipartite matching:
 compute optimal mapping between the elements of X and the elements of each hidden set Y_i.

- Each edge e connects a vertex in X to one in Y_i .
- Matching M: subset of edges each node in X connects to one in Y_i .
- optimal solution is interpreted as similarity between node sets X and Y_i .
- The bipartite graph is a matrix $|X| \times |Y|$, cell values from $\{0,1\}$

Repset architecture - bipartite matching Optimization

• Assume a set of vectors, $X = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{|X|}\}$ and a hidden set $Y = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{|Y|}\}$, the bipartite matching between the elements of the two sets is solving the optimization problem:

$$\sum_{i=1}^{|X|} \sum_{j=1}^{|Y|} x_{ij} f(\mathbf{v}_i, \mathbf{u}_j)$$
subject to:
$$\sum_{i=1}^{|X|} x_{ij} \le 1 \quad \forall j \in \{1, \dots, |Y|\}$$

$$\sum_{j=1}^{|Y|} x_{ij} \le 1 \quad \forall i \in \{1, \dots, |X|\}$$

$$x_{ij} \ge 0 \quad \forall i \in \{1, \dots, |X|\}, \forall j \in \{1, \dots, |Y|\}$$
(1)

- $f(\mathbf{v}_i, \mathbf{u}_j)$ differentiable function, and $x_{ij} = 1$ if component i of X assigned to component j of Y_i , 0 otherwise.
- we defined $f(\mathbf{v}_i, \mathbf{u}_i) = \text{ReLU}(\mathbf{v}_i^\top \mathbf{u}_i)$.

Repset architecture - Learning and output

- Given input set X and the m hidden sets Y_1, Y_2, \ldots, Y_m , formulate m bipartite matching problems,
- solving we end up with an m-dimensional vector \mathbf{v}_X : hidden representation of set X.
- ullet This m-dimensional vector can be used as features for different machine learning tasks such as set regression or set classification. For instance, in the case of a set classification problem with $|\mathcal{C}|$ classes, the output is computed as follows:

$$\mathbf{p}_X = \operatorname{softmax}(\mathbf{W}^{(c)} \mathbf{v}_X + \mathbf{b}^{(c)})$$
 (2)

where $\mathbf{W}^{(c)} \in \mathbb{R}^{m \times |\mathcal{C}|}$ is a matrix of trainable parameters and $\mathbf{b}^{(c)} \in \mathbb{R}^{|\mathcal{C}|}$ is the bias term. We use the negative log likelihood of the correct labels as training loss:

$$L = -\sum_{X} \log \mathbf{p}_{X_i} \tag{3}$$

where i is the class label of set X. Note that we can create a deeper architecture by adding more fully-connected layers.

Repset architecture - Learning and output

- Given input set X and the m hidden sets Y_1, Y_2, \ldots, Y_m , formulate m bipartite matching problems,
- end up with an m-dimensional vector \mathbf{v}_X : hidden representation of set X. Can be used as features for different machine learning tasks such as set regression or set classification. For set classification with $|\mathcal{C}|$ classes, the output is computed as:

$$\mathbf{p}_X = \operatorname{softmax}(\mathbf{W}^{(c)} \mathbf{v}_X + \mathbf{b}^{(c)}) \tag{4}$$

We use the negative log likelihood of the correct labels as training loss:

$$L = -\sum_{X} \log \mathbf{p}_{X_i} \tag{5}$$

where i is the class label of set X.

* The architecture supports permutation invariance (proof in the paper)

Repset architecture - Tackling the complexity of the bipartite matching

- major weakness the computational complexity: maximum cardinality matching in a weighted bipartite graph with n vertices and m edges takes time $\mathcal{O}(mn + n^2 \log n)$, with the classical Hungarian algorithm.
- Prohibitive for very large datasets.
 ApproxRepSet: approximation of bipartite matching problem involving operations that can be performed on a GPU
- Assuming an input set of vectors, $X = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{|X|}\}$ and a hidden set $Y = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{|Y|}\}$. Assume $|X| \ge |Y|$, optimization becomes:

$$\max \sum_{i=1}^{|X|} \sum_{j=1}^{|Y|} x_{ij} f(\mathbf{v}_i, \mathbf{u}_j)$$
subject to:
$$\sum_{i=1}^{|X|} x_{ij} \le 1 \quad \forall j \in \{1, \dots, |Y|\}$$

$$x_{ii} > 0 \quad \forall i \in \{1, \dots, |X|\}, \forall j \in \{1, \dots, |Y|\}$$

• relaxed formulation of the problem - constraint has been removed.

Repset - Experimental Evaluation - Synthetic Data

Repset - Experimental Evaluation - Text Categorization

Dataset	n	Voc	Unique Words(avg)	y
BBCSPORT	517	13243	117	5
TWITTER	2176	6344	9.9	3
RECIPE	3059	5708	48.5	15
OHSUMED	3999	31789	59.2	10
CLASSIC	4965	24277	38.6	4
REUTERS	5485	22425	37.1	8
AMAZON	5600	42063	45.0	4
20NG	11293	29671	72	20

Repset - Experimental Evaluation - Text Categorization

	BBCSPORT	TWITTER	RECIPE	OHSUMED	CLASSIC	REUTERS	AMAZON	20NG
WMD	4.60 ± 0.70	28.70 ± 0.60	42.60 ± 0.30	44.50	2.88 ± 0.10	3.50	7.40 ± 0.30	26.80
S-WMD	2.10 ± 0.50	27.50 ± 0.50	39.20 ± 0.30	34.30	3.20 ± 0.20	3.20	5.80 ± 0.10	26.80
DeepSets	25.45 ± 20.1	29.66 ± 1.62	70.25 ± 0.00	71.53	5.95 ± 1.50	10.00	8.58 ± 0.67	38.88
NN-mean	10.09 ± 2.62	31.56 ± 1.53	64.30 ± 7.30	45.37	5.35 ± 0.75	11.37	13.66 ± 3.16	38.40
NN-max	2.18 ± 1.75	30.27 ± 1.26	43.47 ± 1.05	35.88	4.21 ± 0.11	4.33	7.55 ± 0.63	32.15
NN-attention	4.72 ± 0.97	29.09 ± 0.62	43.18 ± 1.22	31.36	4.42 ± 0.73	3.97	6.92 ± 0.51	28.73
RepSet	2.00 ± 0.89	25.42 ± 1.10	38.57 ± 0.83	33.88	3.38 ± 0.50	3.15	5.29 ± 0.28	22.98
ApproxRepSet	4.27 ± 1.73	27.40 ± 1.95	40.94 ± 0.40	35.94	3.76 ± 0.45	2.83	5.69 ± 0.40	23.82

Classification test error of the proposed architecture and the baselines on the 8 text categorization datasets.

Repset - Experimental Evaluation - Text Set Extension

Hidden set	Terms similar to elements of hidden sets	Terms similar to centroids of hidden sets
1	chelsea, football, striker, club, champions	footballing
2	qualify, madrid, arsenal, striker, united, france	ARSENAL_Wenger
3	olympic, athlete, olympics, sport, pentathlon	Olympic_Medalist
4	penalty, cup, rugby, coach, goal	rugby
5	match, playing, batsman, batting, striker	batsman

Terms of the employed pre-trained model that are most similar to the elements and centroids of elements of5 hidden sets

Repset - Experimental Evaluation - Graph classification

Dataset	#Graphs	y	Nodes(avg)	Edges(avg)
MUTAG	188	2	17.93	19.79
PROTEINS	1113	2	39.06	72.82
IMDB BINARY	1000	2	19.77	96.53
IMDB MULTI	1500	3	13.00	65.94
REDDIT BINARY	2000	2	429.63	497.75

Repset - Experimental Evaluation - Graph Classification

	MUTAG	PROTEINS	IMDB BINARY	IMDB MULTI	REDDIT BINARY
$\overline{PSCNk = 10}$	88.95 (± 4.37)	75.00 (± 2.51)	71.00 (± 2.29)	45.23 (± 2.84)	86.30 (± 1.58)
Deep GR	$82.66 (\pm 1.45)$	$71.68 (\pm 0.50)$	$66.96 (\pm 0.56)$	$44.55 (\pm 0.52)$	$78.04 (\pm 0.39)$
EMD	$86.11 (\pm 0.84)$	-	-	-	-
DGCNN	$85.80 (\pm 1.70)$	$75.50 (\pm 0.90)$	$70.03 (\pm 0.86)$	$47.83 (\pm 0.85)$	-
SAEN	$84.99 (\pm 1.82)$	75.31 (\pm 0.70)	$71.59 (\pm 1.20)$	$48.53 (\pm 0.76)$	$87.22 (\pm 0.80)$
RetGK	90.30 (\pm 1.10)	$76.20 (\pm 0.50)$	$72.30 (\pm 0.60)$	$48.70 (\pm 0.60)$	92.60 (\pm 0.30)
DiffPool	-	76.25	-	-	-
DeepSets	86.26 (± 1.09)	$60.82 (\pm 0.79)$	69.84 (± 0.64)	47.62 (± 1.18)	52.01 (± 1.47)
NN-mean	$87.55 (\pm 0.98)$	$73.00 (\pm 1.21)$	$71.48 (\pm 0.48)$	$49.92 (\pm 0.82)$	$84.57 (\pm 0.84)$
NN-max	$85.84 (\pm 0.99)$	$71.05 (\pm 0.54)$	$69.56 (\pm 0.91)$	$48.28 (\pm 0.43)$	$80.98 (\pm 0.79)$
NN-attention	$85.92 (\pm 1.16)$	74.48 (\pm 0.22)	72.40 (\pm 0.45)	$49.56 (\pm 0.47)$	$88.74 (\pm 0.53)$
RepSet	88.63 (± 0.86)	73.04 (± 0.42)	72.40 (± 0.73)	49.93 (± 0.60)	87.45 (± 0.86)
ApproxRepSet	$86.33 \ (\pm \ 1.48)$	$70.74~(\pm~0.85)$	$71.46 (\pm 0.91)$	$48.92~(\pm~0.28)$	$80.30~(\pm~0.56)$

Classification accuracy (\pm standard deviation) of proposed architecture(s) and the baselines. For MU-TAG, PROTEINS (bioinformatics datasets) the node embeddings that we generated do not incorporate information about them.

Repset - Experimental Evaluation - Runtimes

Runtimes with respect to the number of hidden setsm, the size of the hidden sets—Yi—(left)and embeddings with different dimensions (right).

Repset - Experimental Evaluation - Runtimes

Runtimes with respect to the number of input setsN(left) and the size of the input sets—Xi—(right).

Repset - Conclusion

- Machine learning with sets is increasingly important
- Sets may vary in cardinality and their elements lack a meaningful ordering: standard machine learning algorithms fail to learn high-quality representations.

We proposed RepSet, a neural network approach for learning set representations.

- exhibits powerful permutation invariance properties.
- computes mappings between input sets and some hidden sets by solving a graph matching/network flow problems.
- Since matching/network flow algorithms are differentiable, we can use standard backpropagation for learning the parameters of the hidden sets.
- for large sets we introduced a relaxedversion (ApproxRepSet) - fast matrix operations and scales to very large datasets.
- Repsets performs favorably on text/ graph classification

Future Work

: apply Repset on Group Recommentation (i.e. gaming)

THANK YOU!

Acknowledgements
Dr. I. Nikolentzos, Dr. K. Skianis, Dr. P. Meladianos

http://www.lix.polytechnique.fr/dascim/

Software and data sets:

http://www.lix.polytechnique.fr/dascim/software_datasets/ Repset preprint available at: https://arxiv.org/abs/1904.01962