Cloning guides to lentiCRISPR v2

Amit Weiner

Abstract

I have been struggling with cloning guide RNA sequences to the lentiCRISPR vector (https://www.addgene.org/52961/) for months now and have finally figured out a method that consistently works for me, so I felt like I should share this information with whomever is struggling as much as I did!

Citation: Amit Weiner Cloning guides to lentiCRISPR v2. protocols.io

dx.doi.org/10.17504/protocols.io.qx3dxqn

Published: 13 Jun 2018

Before start

Make Stbl3 chemically competent cells.

Protocol

Vector preparation

Step 1.

Digest the lentiCRISPRv2 vector:

3µg vector

2μl 10X Tango buffer (Thermo Fisher)

1µl 20mM DTT

1-1.5µl Esp3I (Thermo Fisher)

Water to 20µl

In a thermocycler:

37°C for 4 hours, inactivate at 65°C for 20 mins, keep at 4°C.

SKIP the alkaline phosphatase step.

Step 2.

Use a gel purification/PCR cleanup kit (Qiagen) WITHOUT running on a gel.

Optional: run 200ng of the purified vector on a gel to verify digestion.

Guide insert preparation:

Step 3.

Anneal and phosphorylate gRNA oligos pair:

1μl of each oligo (100μM stock)

1μl 10X T4 ligation buffer (not PNK buffer)

0.5μl T4 PNK

Water to 10µl

In a thermocycler: 37° C for 30 mins, 95° C for 5 mins, ramp down to 25° C at 0.1° C/sec (or $5-6^{\circ}$ C/min). Optional: keep at 4° C.

Step 4.

Serially dilute the annealed oligos to 1:500

Ligation:

Step 5.

Out of ligation at a vector:insert molar ratios of 1:5, 1:10, 1:20, I found that 1:5 works best.

50ng vector 1.5µl 10X T4 ligation buffer (NEB) 1µl T4 ligase (NEB) 2µl diluted oligos (1:500) Water to 15µl

Incubate at RT for 1-2 hours.

Transformation:

Step 6.

Transform 5µl of the ligation reaction to 50µl Stbl3 chemically competent cells.

If you incubate the Stbl3 cells at 30°C the colonies will be VERY small so look for them carefully. Incubating them at 37°C didn't result in LTR recombination in my hands.

Colony PCR:

Step 7.

Replica plate colonies on a new LB-Amp plate prior to inserting the tip to 10µl water.

Mix well/ vortex

Boil at 98°C for 10 mins

Colony PCR:

Step 8.

Using primers upstream and downstream of the guide insert sequence, perform colony PCR:

F primer: gca tat acg ata caa ggc tgt tag aga ga

R primer: gag cca gta cac gac atc act t

	μΙ
10X buffer	2
10mM dNTPs	0.4
F primer (10uM)	0.3

R primer (10uM)	0.3	
Boiled colony	0.5	
Taq pol	0.1	
ddH ₂ O	16.4	
Total:	20	

^{*} Can be scaled up or down.

PCR program:

1	94°C	5 min
2	94°C	30 sec
3	54°C	1 min
4	72°C	1 min/Kb
5	Go to step 2	X30
6	72°C	5 min
7	4°C	Hold

Colony PCR:

Step 9.

Run on a gel -

product of positive colonies: 500 bp product of negative colonies: 2500 bp

Colony PCR:

Step 10.

Send 2 colonies per guide for sequencing with U6_fwd commercial primer.