Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

Кафедра интеллектуальных информационных технологий

Отчет по паб	бораторной работе №2
по дисциплине «Модели реше	ения задач в интеллектуальных системах» и решения задачи на ОКМД архитектуре»
Выполнили:	студенты групы 821702 Анискович А.Д. Терехович И.Д.
Проверил:	Крачковский Д.Я.

Цель:

Реализовать и исследовать модель решения на ОКМД архитектуре задачи вычисления матрицы значений.

Дано:

Сгенерированные матрицы A, B, E, G заданных размерностей pxm, mxq, 1xm, pxq соответственно со значениями в рекомендуемом диапазоне [-1;1].

$$c_{ij} = \tilde{\wedge}_{k} f_{ijk} * (3 * g_{ij} - 2) * g_{ij} + (\tilde{\vee}_{k} d_{ijk} + (4 * (\tilde{\wedge}_{k} f_{ijk} \tilde{\vee}_{k} d_{ijk}) - 3 * \tilde{\vee}_{k} d_{ijk}) * g_{ij}) * (1 - g_{ij})$$

$$f_{ijk} = (a_{ik} \tilde{\rightarrow} b_{kj}) * (2 * e_{k} - 1) * e_{k} + (b_{kj} \tilde{\rightarrow} a_{ik}) * (1 + (4 * (a_{ik} \tilde{\rightarrow} b_{kj}) - 2) * e_{k}) * (1 - e_{k})$$

$$d_{ijk} = a_{ik} \tilde{\wedge} b_{kj}$$

Вариант задания: 5

$$\begin{split} & \tilde{\wedge}_k f_{ijk} = \prod_k f_{ijk} \\ & \tilde{\vee}_k d_{ijk} = 1 - \prod_k \left(1 - d_{ijk}\right) \\ & \tilde{\wedge}_k f_{ijk} \tilde{\circ} \tilde{\vee}_k d_{ijk} = \max\left(\left\{\tilde{\wedge}_k f_{ijk} + \tilde{\vee}_k d_{ijk} - 1\right\} \cup \left\{0\right\}\right) \\ & a_{ik} \tilde{\to} b_{kj} = a_{ik} * \left(1 - b_{kj}\right) + 1 \\ & b_{kj} \tilde{\to} a_{ik} = b_{kj} * \left(1 - a_{ik}\right) + 1 \\ & a_{ik} \tilde{\wedge} b_{kj} = a_{ik} * b_{kj} \end{split}$$

Получить: C — матрицу значений соответствующей размерности pxq.

Описание модели:

 T_1 – время выполнения программы на одном процессорном элементе. Вычисляется путем подсчета количества вызовов той или иной операции, а затем получение значение умножается на время данной операции. Данное действие повторяется для всех операций и в конце все значения суммируются. T_n – время выполнения программы на п-количестве процессорных элементов. Необходимо установить зависимости между выполняемыми операциями. Вычисляется схожим путем, что и T_1 , за исключением поиска операций, которые можно считать на различных процессорах. Время выполнения такой операции считается следующим образом, а именно находится количество вызовов данной операции и делится на количество процессорных элементов. \mathbf{K}_{v} – коэффициент ускорения равен T_1/T_n . е — эффективность равна K_y/n . D - коэффициента расхождения программы, $D = L_{sum}/L_{avg}$. L_{sum} - суммарная длина программы и равна T_n . L_{avg} средняя длина программы. Вычисляется путем подсчета количества вызовов операций на различных ветвях выполнения программы. Имея, количества вызовов операций, выполняющихся на ветвях программы, и их время выполнения, считаем данную величину.

Исходные данные:

- 1. **p, m, q** размерность матриц;
- 2. **n** количество процессорных элементов в системе;
- 3. **t**_i время (длина) выполнения операции над элементами матриц.
- 4. Матрицы A, B, E, G заполненные случайными числами в диапазоне [-1;1].

Вопросы:

1. Проверить, что модель создана верно: программа работает правильно.

Исходные данные	Matrix A: -0.09 -0.2 0.6 0.71 Matrix B: 0.86 0.11 -0.37 -0.14 Matrix E: -1 -0.86 Matrix G: -0.6 0.42 -0.63 0.46
Результат	Matrix C: -3.14344 0.605499 3.14126 1.77107
Проверка	Matrix C[0][0] = -0.93154 - 1.212 * 1.825 = -3.14344
Вывод	Модель создана верно

2. Построить графики и объяснить на них точки перегиба и асимптоты.

Асимптотой графика является прямая, параллельная оси абсцисс, а ордината всех точек этой прямой равна значению. Связано это с тем, что как только количество процессорных элементов становится больше ранга задачи, в вычислениях участвуют только **r** процессорных элементов, остальные никак не используются.

Асимптотой графика является прямая, параллельная оси абсцисс, а ордината всех точек этой прямой равна значению коэффициента ускорения при $\mathbf{n} = \mathbf{r}$. Точками перегиба являются те точки, в которых \mathbf{r} кратно \mathbf{n} . Связано это с тем, что при таких значениях \mathbf{r} , все процессорные элементы одновременно задействованы в вычислениях.

Асимптотой графика является прямая $\mathbf{e} = 0$. Связано это с тем, что как только \mathbf{n} становится равным \mathbf{r} , рост коэффициента ускорения прекращается, а \mathbf{n} продолжает увеличиваться.

Асимптотой графика является прямая $\mathbf{e} = 1$. Точками перегиба являются те точки, в которых \mathbf{r} кратно \mathbf{n} . Связано это с тем, что при таких значениях \mathbf{r} , все процессорные элементы одновременно задействованы в вычислениях.

Асимптотой графика является прямая, параллельная оси абсцисс, а ордината всех точек этой прямой равна значению коэффициенту расхождения программы при $\mathbf{n} = \mathbf{r}$. Связано это с тем, что как только количество процессорных элементов становится больше ранга задачи, в вычислениях участвуют только \mathbf{r} процессорных элементов, остальные никак не используются.

Асимптотой графика является функция \mathbf{D} = \mathbf{k} * \mathbf{r} + \mathbf{b} . При n=1: k=1, b=0; при n=2: k=0.6, b=1; при n=3: k=0.5, b=1; при n=4: k=0.45, b=0.5.

- **3.** Спрогнозировать, как изменится вид графиков при изменении параметров модели. Если модель позволяет, то проверить на ней правильность ответа.
- 1. Увеличивая \mathbf{n} , $\mathbf{K}_{\mathbf{y}}(\mathbf{n})$ увеличивается. Рост значения $\mathbf{K}_{\mathbf{y}}(\mathbf{n})$ наблюдается до тех пор, пока количество процессорных элементов не становится равным рангу задачи. После этого коэффициент ускорения не изменяется. Увеличивая \mathbf{r} , $\mathbf{K}_{\mathbf{y}}(\mathbf{r})$ увеличивается скачкообразно.

- 2. Увеличивая \mathbf{n} , $\mathbf{e}(\mathbf{n})$ уменьшается. Увеличивая \mathbf{r} , $\mathbf{e}(\mathbf{r})$ растет скачкообразно.
- 3. Увеличивая **n**, **D**(**n**) уменьшается. Падение значения **D**(**n**) наблюдается до тех пор, пока количество процессорных элементов не становится равным рангу задачи. После этого коэффициент расхождения программы не изменяется. Увеличивая **r**, **D**(**r**) растет.

Вывод:

В результате выполнения лабораторной работы была реализована модель вычисления матрицы значений на ОКМД архитектуре. Данная модель была проверена на работоспособность и правильность получаемых результатов. С помощью графиков, построенных в результате выполнения лабораторной работы, были изучены зависимости коэффициента ускорения, эффективности и коэффициента расхождения программы от количества процессорных элементов и ранга задачи.