4.1. Quasi Likelihood Approach

In GLM, $g(\mu_i) = \sum_j \beta_j x_{ij}$ and likelihood equations are

$$\sum_{i} \frac{(y_i - \mu_i)x_{ij}}{\operatorname{Var}(Y_i)} \frac{d\mu_i}{d\eta_i} = 0, \quad j = 0, 1, \dots, p.$$

Let the score function β be

$$S = (S_0(\beta), S_1, (\beta), \dots, S_p(\beta)).$$

Note that ML estimates depend on the distribution of Y_i only through μ_i and $Var(Y_i) = V(\mu_i)$.

Remark(Quasi likelihood approach)

- 1. Use model $g(\mu_i) = \sum_j \beta_j x_{ij}$ and variance function $V(\mu_i)$ but do not assume distribution for Y_i .
- 2. Use estimating equations $S(\beta) = 0$ even if they do not correspond to likelihood equations for distribution in exponential family.
- 3. To allow overdispersion, take $V(\mu_i) = \phi V^*(\mu_i)$, where $V^*(\mu_i)$ is variance function for common model such as $V^*(\mu_i) = \mu_i$ for count data.

Definition

A function $h(Y, \beta)$ is an unbiased estimating function if

$$E[h(Y;\beta)] = 0$$
 for all β .

 $S_i(\beta)$ is unbiased estimating function and $S(\beta) = 0$ are estimating equations.

back