OM nucleic - nucleic search, using sw model

Run on: February 21, 2005, 09:37:08; Search time 11131 Seconds

(without alignments)

11583.805 Million cell updates/sec

Title: US-10-039-272-1

Perfect score: 2661

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 4708233 seqs, 24227607955 residues

Total number of hits satisfying chosen parameters: 9416466

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : GenEmbl:*

1: gb ba:*

2: gb htg:*

3: gb_in:*

4: gb om:*

5: gb ov:*

6: gb_pat:*

7: gb ph:*

8: gb pl:*

9: gb pr:*

10: gb ro:*

11: gb sts:*

12: gb sy:*

13: gb_sy.

14: gb_vi:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID	Description
1 2	2650 2547.8	99.6 95.7		-	AF322909 AR018808	AF322909 Homo sapi AR018808 Sequence
3	2547.8	95.7	2669	6	AR018814	AR018814 Sequence

	4	2547.8	95.7	2669	6	CQ776677	CQ776677 Sequence
	5	2547.8	95.7	2669	6	AX818137	AX818137 Sequence
	6	2547.8	95.7	2669	9	HSNMB	X76534 H.sapiens N
	7	2533.6	95.2	2658	6	CQ727007	CQ727007 Sequence
	8	2522	94.8	2787	9	BC032783	BC032783 Homo sapi
	9	2485	93.4	2683	6	AX358788	AX358788 Sequence
	10	2485	93.4	2683	6	AX362281	AX362281 Sequence
	11	2485	93.4	2683	9	AY359124	AY359124 Homo sapi
	12	1671	62.8	1683	6	AX677738	AX677738 Sequence
	13	1051.2	39.5	2282	10	BC061725	BC061725 Rattus no
	14	1051.2	39.5	2303	6	AR439670	AR439670 Sequence
	15	1051.2	39.5	2303	6	BD062749	BD062749 Modulator
	16	1049.8	39.5	2279	10	AF322054	AF322054 Mus muscu
	17	1049.8	39.5	2299	10	BC026375	BC026375 Mus muscu
	18	1047.8	39.4	2213	6	AR156839	AR156839 Sequence
	19	1047.8	39.4	2213	6	BD269857	BD269857 The poly
	20	1046.4	39.3	2320	10	AF184983	AF184983 Rattus no
	21	1045	39.3	2305	6	CQ777541	CQ777541 Sequence
	22	1045	39.3	2305	10	MMU251685	AJ251685 Mus muscu
	23	1002.6	37.7	169739	9	AC005082	AC005082 Homo sapi
С	24	988.2	37.1	221255	9	AC145883	AC145883 Pan trogl
	25	854.2	32.1	898	11	G26743	G26743 human STS S
	26	673.6	25.3	820	6	CQ427083	CQ427083 Sequence
	27	584.6	22.0	2467	5	CJQNR71	X94144 C.japonica
	28	572	21.5	1690	9	BC011595	BC011595 Homo sapi
	29	568.8	21.4	1593	9	HSA505015	AJ505015 Homo sapi
	30	546.4	20.5	621	9	BT007074	BT007074 Homo sapi
	31	546.4	20.5	621	12	BT007499	BT007499 Synthetic
	32	545.6	20.5	619	6	AR176427	AR176427 Sequence
	33	545.6	20.5	619	6	BD226040	BD226040 Compound
	34	545.6	20.5	619	6	BD226053	BD226053 Compound
	35	545.6	20.5	619	6	BD275711	BD275711 COMPOUNDS
	36	545.6	20.5	619	6	BD275724	BD275724 COMPOUNDS
	37	545.6	20.5	619	6	AR220496	AR220496 Sequence
	38	545.6	20.5	619	6	AR220509	AR220509 Sequence
	39	545.6	20.5	619	6	AR255490	AR255490 Sequence
	40	545.6	20.5	619	6	AR255503	AR255503 Sequence
	41	545.6	20.5	619	6	AR281060	AR281060 Sequence
	42	545.6	20.5	619	6	AR281073	AR281073 Sequence
	43	545.6	20.5	619	6	AR437851	AR437851 Sequence
	44	545.6	20.5	619	6	AR437864	AR437864 Sequence
	45	545.6	20.5	619	6	AR476387	AR476387 Sequence
							•

```
RESULT 1
AF322909
LOCUS
           AF322909
                                   2662 bp
                                              mRNA
                                                      linear
                                                              PRI 23-APR-2003
DEFINITION Homo sapiens transmembrane glycoprotein HGFIN mRNA, complete cds.
ACCESSION
           AF322909
           AF322909.1 GI:11993664
VERSION
KEYWORDS
SOURCE
           Homo sapiens (human)
```

ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

```
Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
              (bases 1 to 2662)
REFERENCE
           Bandari, P.S., Qian, J., Yehia, G., Joshi, D.D., Maloof, P.B.,
 AUTHORS
           Potian, J., Oh, H.S., Gascon, P., Harrison, J.S. and Rameshwar, P.
 TITLE
           Hematopoietic growth factor inducible neurokinin-1 type: a
           transmembrane protein that is similar to neurokinin 1 interacts
           with substance P
 JOURNAL
           Regul. Pept. 111 (1-3), 169-178 (2003)
           22498106
 MEDLINE
  PUBMED
           12609765
REFERENCE
           2
              (bases 1 to 2662)
           Rameshwar, P.
 AUTHORS
           Direct Submission
 TITLE
 JOURNAL
           Submitted (20-NOV-2000) Medicine, UMDNJ-New Jersey Medical School,
           185 South Orange Ave, MSB, Rm. E-579, Newark, NJ 07103, USA
FEATURES
                   Location/Qualifiers
                   1. .2662
    source
                   /organism="Homo sapiens"
                   /mol type="mRNA"
                   /db xref="taxon:9606"
                   /tissue type="bone marrow peripheral blood"
    CDS
                   60. .1742
                   /note="hematopoietic growth factor-inducible neurokinin-1
                   protein"
                   /codon start=1
                   /product="transmembrane glycoprotein HGFIN"
                   /protein id="AAG42839.1"
                   /db xref="GI:11993665"
                   /translation="MECLYYFLGFLLLAARLPLDAAKRFHDVLGNERPSAYMREHNQL
                   NGWSSDENDWNEKLYPVWKRGDMRWKNSWKGGRVQAVLTSDSPALVGSNITFAVNLIF
                   PRCQKEDANGNIVYEKNCRNEAGLSADPYVYNWTAWSEDSDGENGTGQSHHNVFPDGK
                   PFPHHPGWRRWNFIYVFHTLGQYFQKLGRCSVRVSVNTANVTLGPQLMEVTVYRRHGR
                   AYVPIAQVKDVYVVTDQIPVFVTMFQKNDRNSSDETFLKDLPIMFDVLIHDPSHFLNY
                   STINYKWSFGDNTGLFVSTNHTVNHTYVLNGTFSLNLTVKAAAPGPCPPPPPPPRPSK
                   PTPSLGPAGDNPLELSRIPDENCQINRYGHFQATITIVEGILEVNIIQMTDVLMPVPW
                   PESSLIDFVVTCQGSIPTEVCTIISDPTCEITQNTVCSPVDVDEMCLLTVRRTFNGSG
                   TYCVNLTLGDDTSLALTSTLISVPDRDPASPLRMANSALISVGCLAIFVTVISLLVYK
                   KHKEYNPIENSPGNVVRSKGLSVFLNRAKAVFFPGNOEKDPLLKNOEFKGVS"
ORIGIN
                        99.6%; Score 2650; DB 9; Length 2662;
 Query Match
                        100.0%; Pred. No. 0;
 Best Local Similarity
 Matches 2661; Conservative
                              0; Mismatches
                                                0;
                                                   Indels
                                                             1;
                                                                 Gaps
                                                                        1;
           1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCCTGCGTCCGTGAGAATTCAGCA 60
Qу
             Db
           1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCCTGCGTCCGTGAGAATTCAGCA 60
          61 TGGAATGTCTCTACTATTTCCTGGGATTTCTGCTCCTGGCTGCAAGATTGCCACTTGATG 120
Qу
             Db
          61 TGGAATGTCTCTACTATTTCCTGGGATTTCTGCTCCTGGCTGCAAGATTGCCACTTGATG 120
         121 CCGCCAAACGATTTCATGATGTGCTGGGCAATGAAAGACCTTCTGCTTACATGAGGGAGC 180
Qy
             Db
         121 CCGCCAAACGATTTCATGATGTGCTGGGCAATGAAAGACCTTCTGCTTACATGAGGGAGC 180
         181 ACAATCAATTAAATGGCTGGTCTTCTGATGAAAATGACTGGAATGAAAAACTCTACCCAG 240
Qу
```

Db	181	ACAATCAATTAAATGGCTGGTCTTCTGATGAAAATGACTGGAATGAAAAACTCTACCCAG	240
Qу	241	TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGG	300
Db	241	TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGG	300
Qy .	301	TCCTGACCAGTGACTCACCAGCCCTCGTGGGCTCAAATATAACATTTGCGGTGAACCTGA	360
Db	301	TCCTGACCAGTGACTCACCAGCCCTCGTGGGCTCAAATATAACATTTGCGGTGAACCTGA	360
Qу	361	TATTCCCTAGATGCCAAAAGGAAGATGCCAATGGCAACATAGTCTATGAGAAGAACTGCA	420
Db	361	TATTCCCTAGATGCCAAAAGGAAGATGCCAATGGCAACATAGTCTATGAGAAGAACTGCA	420
Qy	421	GAAATGAGGCTGGTTTATCTGCTGATCCATATGTTTACAACTGGACAGCATGGTCAGAGG	480
Db	421	GAAATGAGGCTGGTTTATCTGCTGATCCATATGTTTACAACTGGACAGCATGGTCAGAGG	480
Qу	481	ACAGTGACGGGGAAAATGGCACCGGCCAAAGCCATCATAACGTCTTCCCTGATGGGAAAC	540
Db	481	ACAGTGACGGGGAAAATGGCACCGGCCAAAGCCATCATAACGTCTTCCCTGATGGGAAAC	540
Qу	541	CTTTTCCTCACCACCCGGATGGAGAAGATGGAATTTCATCTACGTCTTCCACACACTTG	600
Db	541	CTTTTCCTCACCACCCGGATGGAGAAGATGGAATTTCATCTACGTCTTCCACACACTTG	600
Qy	601	GTCAGTATTTCCAGAAATTGGGACGATGTTCAGTGAGAGTTTCTGTGAACACAGCCAATG	660
Db	601	GTCAGTATTTCCAGAAATTGGGACGATGTTCAGTGAGAGTTTCTGTGAACACAGCCAATG	660
QУ	661	TGACACTTGGGCCTCAACTCATGGAAGTGACTGTCTACAGAAGACATGGACGGCATATG	720
Db	661	TGACACTTGGGCCTCAACTCATGGAAGTGACTGTCTACAGAAGACATGGACGGGCATATG	720
QУ	721	TTCCCATCGCACAAGTGAAAGATGTGTACGTGGTAACAGATCAGATTCCTGTGTTTGTGA	780
Db	721	TTCCCATCGCACAAGTGAAAGATGTGTACGTGGTAACAGATCAGATTCCTGTGTTTGTGA	780
QУ	781	CTATGTTCCAGAAGAACGATCGAAATTCATCCGACGAAACCTTCC-CAAAGATCTCCCCA	839
Db	781	CTATGTTCCAGAAGAACGATCGAAATTCATCCGACGAAACCTTCCTCAAAGATCTCCCCA	840
QУ	840	TTATGTTTGATGTCCTGATTCATGATCCTAGCCACTTCCTCAATTATTCTACCATTAACT	899
Db	841	TTATGTTTGATGTCCTGATTCATGATCCTAGCCACTTCCTCAATTATTCTACCATTAACT	900
Qу	900	ACAAGTGGAGCTTCGGGGATAATACTGGCCTGTTTGTTTCCACCAATCATACTGTGAATC	959
Db	901	ACAAGTGGAGCTTCGGGGATAATACTGGCCTGTTTGTTTCCACCAATCATACTGTGAATC	960
Qу	960	ACACGTATGTGCTCAATGGAACCTTCAGCCTTAACCTCACTGTGAAAGCTGCAGCACCAG	1019
Db	961	ACACGTATGTGCTCAATGGAACCTTCAGCCTTAACCTCACTGTGAAAGCTGCAGCACCAG	1020
Qу	1020	GACCTTGTCCGCCACCGCCACCACCACCAGACCTTCAAAACCCACCC	1079

Db	1021	GACCTTGTCCGCCACCGCCACCACCACCAGACCTTCAAAACCCACCC	1080
Qy	1080	CTGCTGGTGACAACCCCCTGGAGCTGAGTAGGATTCCTGATGAAAACTGCCAGATTAACA	1139
Db	1081		1140
Qу	1140	GATATGGCCACTTTCAAGCCACCATCACAATTGTAGAGGGAATCTTAGAGGTTAACATCA	1199
Db	1141	GATATGGCCACTTTCAAGCCACCATCACAATTGTAGAGGGAATCTTAGAGGTTAACATCA	1200
Qу	1200	TCCAGATGACAGACGTCCTGATGCCGGTGCCATGGCCTGAAAGCTCCCTAATAGACTTTG	1259
Db	1201	TCCAGATGACAGACGTCCTGATGCCGGTGCCATGGCCTGAAAGCTCCCTAATAGACTTTG	1260
Qу	1260	TCGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCATCATTTCTGACCCCACCT	1319
Db	1261		1320
Qу	1320	GCGAGATCACCCAGAACACAGTCTGCAGCCCTGTGGATGTGAGATGTGTCTGCTGA	1379
Db	1321	GCGAGATCACCCAGAACACAGTCTGCAGCCCTGTGGATGTGGATGAGATGTGTCTGCTGA	1380
Qу	1380	CTGTGAGACGAACCTTCAATGGGTCTGGGACGTACTGTGTGAACCTCACCCTGGGGGATG	1439
Db	1381	CTGTGAGACGAACCTTCAATGGGTCTGGGACGTACTGTGTGAACCTCACCCTGGGGGATG	1440
QУ	1440	ACACAAGCCTGGCTCTCACGAGCACCCTGATTTCTGTTCCTGACAGAGACCCAGCCTCGC	1499
Db	1441	ACACAAGCCTGGCTCTCACGAGCACCCTGATTTCTGTTCCTGACAGAGACCCAGCCTCGC	1500
Qу	1500	CTTTAAGGATGGCAAACAGTGCCCTGATCTCCGTTGGCTGCTTGGCCATATTTGTCACTG	1559
Db	1501	CTTTAAGGATGGCAAACAGTGCCCTGATCTCCGTTGGCTGCTTGGCCATATTTGTCACTG	1560
Qу	1560	TGATCTCCCTCTTGGTGTACAAAAAACACAAGGAATACAACCCAATAGAAAATAGTCCTG	1619
Db	1561	TGATCTCCCTCTTGGTGTACAAAAAACACAAGGAATACAACCCAATAGAAAATAGTCCTG	1620
Qу	1620	GGAATGTGGTCAGAAGCCAAAGGCCTGAGTGTCTTTCTCAACCGTGCAAAAGCCGTGTTCT	1679
Db .	1621	GGAATGTGGTCAGAAGCAAAGGCCTGAGTGTCTTTCTCAACCGTGCAAAAGCCGTGTTCT	1680
Qу	1680	TCCCGGGAAACCAGGAAAAGGATCCGCTACTCAAAAACCAAGAATTTAAAGGAGTTTCTT	1739
Db	1681	TCCCGGGAAACCAGGAAAAGGATCCGCTACTCAAAAACCAAGAATTTAAAGGAGTTTCTT	1740
QУ	1740	AAATTTCGACCTTGTTTCTGAAGCTCACTTTTCAGTGCCATTGATGTGAGATGTGCTGGA	1799
Db	1741	AAATTTCGACCTTGTTTCTGAAGCTCACTTTTCAGTGCCATTGATGTGAGATGTGCTGGA	1800
Qy	1800	GTGGCTATTAACCTTTTTTTCCTAAAGATTATTGTTAAATAGATATTGTGGTTTTGGGGAA	1859
Db	1801	GTGGCTATTAACCTTTTTTCCTAAAGATTATTGTTAAATAGATATTGTGGTTTGGGGAA	1860
QУ	1860	GTTGAATTTTTTATAGGTTAAATGTCATTTTAGAGATGGGGAGAGGGATTATACTGCAGG	1919
Db	1861	GTTGAATTTTTATAGGTTAAATGTCATTTTAGAGATGGGGAGAGGGATTATACTGCAGG	1920

Qу	1920	CAGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTTTCATTATT	1979
Db	1921	CAGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTTTCATTATT	1980
Qу	1980	TTTTATGTTTCACTTATAAAGTCTTAGGTAACTAGTAGGATAGAAACACTGTGTCCCGAG	2039
Db	1981	TTTTATGTTTCACTTATAAAGTCTTAGGTAACTAGTAGGATAGAAACACTGTGTCCCGAG	2040
QУ	2040	AGTAAGGAGAAGCTACTATTGATTAGAGCCTAACCCAGGTTAACTGCAAGAAGAGGCG	2099
Db	2041	AGTAAGGAGAAGCTACTATTGATTAGAGCCTAACCCAGGTTAACTGCAAGAAGAGGCG	2100
QУ	2100	GGATACTTTCAGCTTTCCATGTAACTGTATGCATAAAGCCAATGTAGTCCAGTTTCTAAG	2159
Db	2101	GGATACTTTCAGCTTTCCATGTAACTGTATGCATAAAGCCAATGTAGTCCAGTTTCTAAG	2160
Qу	2160	ATCATGTTCCAAGCTAACTGAATCCCACTTCAATACACACTCATGAACTCCTGATGGAAC	2219
Db	2161	ATCATGTTCCAAGCTAACTGAATCCCACTTCAATACACACTCATGAACTCCTGATGGAAC	2220
QУ	2220	AATAACAGGCCCAAGCCTGTGGTATGATGTGCACACTTGCTAGACTCAGAAAAAATACTA	2279
Db	2221	AATAACAGGCCCAAGCCTGTGGTATGATGTGCACACTTGCTAGACTCAGAAAAAATACTA	2280
Qу	2280	CTCTCATAAATGGGTGGGAGTATTTTGGTGACAACCTACTTTGCTTGGCTGAGTGAAGGA	2339
Db	2281	CTCTCATAAATGGGTGGGAGTATTTTGGTGACAACCTACTTTGCTTGGCTGAGTGAAGGA	2340
Qу	2340	ATGATATTCATATATTCATTTATTCCATGGACATTTAGTTAG	2399
Db	2341	ATGATATTCATATTCATTTATTCCATGGACATTTAGTTAG	2400
Qу	2400	CATGATGCTGAGTGACACTCTTGTGTATATTTCCAAATTTTTGTATAGTCGCTGCACATA	2459
Db	2401	CATGATGCTGAGTGACACTCTTGTGTATATTTCCAAATTTTTGTATAGTCGCTGCACATA	2460
QУ	2460	TTTGAAATCAAAATATTAAGACTTTCCAAAAATTTGGTCCCTGGTTTTTCATGGCAACTT	2519
Db	2461	TTTGAAATCAAAATATTAAGACTTTCCAAAAATTTGGTCCCTGGTTTTTCATGGCAACTT	2520
Qy	2520	GATCAGTAAGGATTTCCCCTCTGTTTGGAACTAAAACCATTTACTATATGTTAGACAAGA	2579
Db	2521	GATCAGTAAGGATTTCCCCTCTGTTTGGAACTAAAACCATTTACTATATGTTAGACAAGA	2580
Qу	2580	CATTTTTTTTTTTCCTTCCTGAAAAAAATGAGGGAAGAGACAAAAAAAA	2639
Db	2581	CATTTTTTTTTTCCTTCCTGAAAAAAATGAGGGAAGACAAAAAAAA	2640
Qy .	2640	AAAAAAAAAAAAAAAAA 2661 	
Db	2641	AAAAAAAAAAAAAAAAAAAA 2662	

RESULT 2 AR018808

LOCUS AR018808 2669 bp DNA linear PAT 05-DEC-1998

```
Sequence 91 from patent US 5783182.
        AR018808
ACCESSION
VERSION
        AR018808.1 GI:3973922
KEYWORDS
SOURCE
        Unknown.
 ORGANISM
        Unknown.
        Unclassified.
           (bases 1 to 2669)
REFERENCE
 AUTHORS
        Thompson, T.C.
 TITLE
        Method for identifying metastatic sequences
 JOURNAL
        Patent: US 5783182-A 91 21-JUL-1998;
FEATURES
               Location/Qualifiers
               1. .2669
   source
               /organism="unknown"
               /mol type="unassigned DNA"
ORIGIN
                   95.7%;
                        Score 2547.8;
                                   DB 6;
                                        Length 2669;
 Query Match
 Best Local Similarity
                   99.2%;
                        Pred. No. 0;
                        0; Mismatches
 Matches 2591; Conservative
                                    17;
                                        Indels
                                                        3;
                                               3:
                                                  Gaps
        28 AACCTTGGTGCCTGCGTCGTGAGAATTCAGCATGGAATGTCTCTACTATTTCCTGGGAT 87
Qу
          60 ACCTTGAGTGCCTGCGTCCGTGAGAATTCAGCATGGAATGTCTCTACTATTTCCTGGGAT 119
Db
        88 TTCTGCTCCTGGCTGCAAGATTGCCACTTGATGCCGCCAAACGATTTCATGATGTGCTGG 147
Qу
          120 TTCTGCTCCTGGCTGCAAGATTGCCACTTGATGCCGCCAAACGATTTCATGATGTGCTGG 179
Db
       Qу
          Db
       208 ATGAAAATGACTGGAATGAAAAACTCTACCCAGTGTGGAAGCGGGGAGACATGAGGTGGA 267
Qу
          240 ATGAAAATGACTGGAATGAAAAACTCTACCCAGTGTGGAAGCGGGGAGACATGAGGTGGA 299
Db
       268 AAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGGTCCTGACCAGTGACTCACCAGCCCTCG 327
Qу
          Db
       300 AAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGGTCCTGACCAGTGACTCACCAGCCCTCG 359
       328 TGGGCTCAAATATAACATTTGCGGTGAACCTGATATTCCCTAGATGCCAAAAGGAAGATG 387
Qу
          360 TGGGCTCAAATATAACATTTGCGGTGAACCTGATATTCCCTAGATGCCAAAAGGAAGATG 419
Db
       388 CCAATGGCAACATAGTCTATGAGAAGAACTGCAGAAATGAGGCTGGTTTATCTGCTGATC 447
Qу
          420 CCAATGGCAACATAGTCTATGAGAAGAACTGCAGAAATGAGGCTGGTTTATCTGCTGATC 479
Db
       448 CATATGTTTACAACTGGACAGCATGGTCAGAGGACAGTGACGGGGAAAATGGCACCGGCC 507
Qу
          480 CATATGTTTACAACTGGACAGCATGGTCAGAGGACAGTGACGGGGAAAATGGCACCGGCC 539
Db
       508 AAAGCCATCATAACGTCTTCCCTGATGGGAAACCTTTTCCTCACCACCCCGGATGGAGAA 567
Qу
          540 AAAGCCATCATAACGTCTTCCCTGATGGGAAACCTTTTCCTCACCACCCCGGATGGAGAA 599
Db
```

DEFINITION

QУ	568	GATGGAATTTCATCTACGTCTTCCACACACTTGGTCAGTATTTCCAGAAATTGGGACGAT	627
Db	600	GATGGAATTTCATCTACGTCTTCCACACACTTGGTCAGTATTTCCAGAAATTGGGACGAT	659
Qу	628	GTTCAGTGAGAGTTTCTGTGAACACAGCCAATGTGACACTTGGGCCTCAACTCATGGAAG	687
Db	660	GTTCAGTGAGAGTTTCTGTGAACACAGCCAATGTGACACTTGGGCCTCAACTCATGGAAG	719
QУ	688	TGACTGTCTACAGAAGACATGGACGGGCATATGTTCCCATCGCACAAGTGAAAGATGTGT	747
Db	720	TGACTGTCTACAGAAGACATGGACGGGCATATGTTCCCATCGCACAAGTGAAAGATGTGT	779
QУ	748	ACGTGGTAACAGATCAGATTCCTGTGTTTGTGACTATGTTCCAGAAGAACGATCGAAATT	807
Db	780	ACGTGGTAACAGATCAGATTCCTGTGTTTGTGACTATGTTCCAGAAGAACGATCGAAATT	839
Qу	808	CATCCGACGAAACCTTCC-CAAAGATCTCCCCATTATGTTTGATGTCCTGATTCATGATC	866
Db	840	CATCCGACGAAACCTTCCTCAAAGATCTCCCCATTATGTTTGATGTCCTGATTCATGATC	899
Qу	867	CTAGCCACTTCCTCAATTATTCTACCATTAACTACAAGTGGAGCTTCGGGGATAATACTG	926
Db	900	CTAGCCACTTCCTCAATTATTCTACCATTAACTACAAGTGGAGCTTCGGGGATAATACTG	959
Qу	927	GCCTGTTTGTTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA	986
Db	960	GCCTGTTTGTTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA	1019
Qу	987	GCCTTAACCTCACTGTGAAAGCTGCAGCACCAGGACCTTGTCCGCCACCGCCACCACCAC	1046
Db	1020	GCCTTAACCTCACTGTGAAAGCTGCAGCACCAGGACCTTGTCCGCCACCGCCACCACCAC	1079
Qу	1047	CCAGACCTTCAAAACCCACCCCTTCTTTAGGACCTGCTGGTGACAACCCCCTGGAGCTGA	1106
Db	1080	CCAGACCTTCAAAACCCACCCCTTCTTTAGGACCTGCTGGTGACAACCCCCTGGAGCTGA	1139
Qу	1107	GTAGGATTCCTGATGAAAACTGCCAGATTAACAGATATGGCCACTTTCAAGCCACCATCA	1166
Db	1140	GTAGGATTCCTGATGAAAACTGCCAGATTAACAGATATGGCCACCTTTCAAGCCACCATCA	1199
Qу	1167	CAATTGTAGAGGGAATCTTAGAGGTTAACATCATCCAGATGACAGACGTCCTGATGCCGG	1226
Db	1200	CAATTGTAGAGGGAATCTTAGAGGTTAACATCATCCAGATGACAGACGTCCTGATGCCGG	1259
Qу	1227	TGCCATGGCCTGAAAGCTCCCTAATAGACTTTGTCGTGACCTGCCAAGGGAGCATTCCCA	1286
Db	1260	TGCCATGGCCTGAAAGCTCCCTAATAGACTTTGTCGTGACCTGCCAAGGGAGCATTCCCA	1319
Qу	1287	CGGAGGTCTGTACCATCATTTCTGACCCCACCTGCGAGATCACCCAGAACACAGTCTGCA	1346
Db		CGGAGGTCTGTACCATCATTTCTGACCCCACCTGCGAGATCACCCAGAACACAGTCTGCA	
Qy		GCCCTGTGGATGTGGATGAGATGTGTCTGCTGACTGTGAGACGAACCTTCAATGGGTCTG	
Db	1380	GCCCTGTGGATGTGGATGAGATGTGTCTGCTGACTGTGAGACGAACCTTCAATGGGTCTG	1439
Ov	1407	GGACGTACTGTGTGAACCTCACCCTGGGGGATGACACAAGCCTGGCTCTCACGAGCACCC	1466

Db	1440	GGACGTACTGTGAACCTCACCCTGGGGGATGACACAAGCCTGGCTCTCACGAGCACCC	1499
Qу	1467	TGATTTCTGTTCCTGACAGAGACCCAGCCTCGCCTTTAAGGATGGCAAACAGTGCCCTGA	1526
Db	1500	TGATTTCTGTTCCTGACAGAGACCCAGCCTCGCCTTTAAGGATGGCAAACAGTGCCCTGA	1559
Qу	1527	TCTCCGTTGGCTGCTTGGCCATATTTGTCACTGTGATCTCCCTCTTGGTGTACAAAAAC	1586
Db	1560	TCTCCGTTGGCTGCCATATTTGTCACTGTGATCTCCCTCTTGGTGTACAAAAAAC	1619
Qy	1587	ACAAGGAATACAACCCAATAGAAAATAGTCCTGGGAATGTGGTCAGAAGCAAAGGCCTGA	1646
Db	1620	ACAAGGAATACAACCCAATAGAAAATAGTCCTGGGAATGTGGTCAGAAGCCAAAGGCCTGA	1679
Qу	1647	GTGTCTTTCTCAACCGTGCAAAAGCCGTGTTCTTCCCGGGAAACCAGGAAAAGGATCCGC	1706
Db	1680	GTGTCTTTCTCAACCGTGCAAAAGCCGTGTTCTTCCCGGGAAACCAGGAAAAGGATCCGC	1739
Qу	1707	TACTCAAAAACCAAGAATTTAAAGGAGTTTCTTAAATTTCGACCTTGTTTCTGAAGCTCA	1766
Db	1740	TACTCAAAAACCAAGAATTTAAAGGAGTTTCTTAAATTTCGACCTTGTTTCTGAAGCTCA	1799
Qу	1767	CTTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTAACCTTTTTTTCCTAAAG	1826
Db	1800	CTTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTAACCTTTTTTTCCTAAAG	1859
ΟУ	1827	ATTATTGTTAAATAGATATTGTGGTTTGGGGAAGTTGAATTTTTT	1886
Db	1860	ATTATTGTTAAATAGATATTGTGGTTTGGGGAAGTTGAATTTTTT	1919
Qу	1887	TTTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTTCAGCCATGTTGTGAAACTGAT	1946
Db	1920	${\tt TTTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTTCAGCCATGTTGTGAAACTGAT}$	1979
Qу	1947	AAAAGCAACTTAGCAAGGCTTCTTTTCATTATTTTTTTTT	2006
Db	1980	AAAAGCAACTTAGCAAGGCTTCTTTTCATTATTTTTTTTT	2039
QΥ	2007	GTAACTAGTAGGATAGAAACACTGTGTCCCGAGAGTAAGGAGAGAAGCTACTATTGATTA	2066
Db		GTAACTAGTAGGATAGAAACACTGTGTCCCGAGAGTAAGGAGAGAAGCTACTATTGATTA	
QУ	2067	GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCGGGATACTTTCAGCTTTCCATGTAACTG	2126
Db	2100	GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCGGGATACTTTCAGCTTTCCATGTAACTG	2159
QУ		TATGCATAAAGCCAATGTAGTCCAGTTTCTAAGATCATGTTCCAAGCTAACTGAATCCCA	
Db	2160	TATGCATAAAGCCAATGTAGTCCAGTTTCTAAGATCATGTTCCAAGCTAACTGAATCCCA	2219
QУ		CTTCAATACACACTCATGAACTCCTGATGGAACAATAACAGGCCCAAGCCTGTGGTATGA	
Db	2220	CTTCAATACACACTCATGAACTCCTGATGGAACAATAACAGGCCCAAGCCTGTGGTATGA	2279
Qу	2247	TGTGCACACTTGCTAGACTCAGAAAAATACTACTCTCATAAATGGGTGGG	2306

Db	2280	TGTGCACACTTGCTAGACTCAGAAAAAATACTACTCTCATAAATGGGTGGG
QУ	2307	GTGACAACCTACTTTGCTTGGCTGAGTGAAGGAATGATATTCATATATTCATTTATTCCA 2366
Db	2340	GTGACAACCTACTTTGCTTGGCTGAGTGAAGGAATGATATTCATATATTCATTTATTCCA 2399
QУ	2367	TGGACATTTAGTTAGTGCTTTTTATATACCAGGCATGATGCTGAGTGACACTCTTGTGTA 2426
Db	2400	TGGACATTTAGTTAGTGCTTTTTATATACCAGGCATGATGCTGAGTGACACTCTTGTGTA 2459
QУ	2427	TATTTCCAAATTTTTGTATAGTCGCTGCACATATTTGAAATCAAAATATTAAGACTTTCC 2486
Db	2460	TATTTCCAAATTTTTGTATAGTCGCTGCACATATTTGAAATC-ATATATTAAGACTTTCC 2518
QУ	2487	AAAAATTTGGTCCCTGGTTTTTCATGGCAACTTGATCAGTAAGGATTTCCCCTCTGTTTG 2546
Db	2519	AAAGATGAGGTCCCTGGTTTTCATGGCAACTTGATCAGTAAGGATTTCACCTCTGTTTG 2578
Qу	2547	GAACTAAAACCATTTACTATATGTTAGACAAGACATTTTTTTT
Db	2579	TAACTAAAACCATCTACTATATGTTAGACATGACATTCTTTTTCTCTCCTCCTGAAAAA 2638
Qy	2607	-AAAATGAGGGAAGAGACAAAAAAAAAAAA 2636
Db	2639	TAAAGTGTGGGAAGACAAAAAAAAAAAA 2669

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

February 21, 2005, 08:39:53; Search time 1308 Seconds Run on:

(without alignments)

12043.143 Million cell updates/sec

Title: US-10-039-272-1

Perfect score: 2661

Sequence:

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

4390206 seqs, 2959870667 residues Searched:

Total number of hits satisfying chosen parameters: 8780412

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

N Geneseq 16Dec04:* Database :

> 1: geneseqn1980s:* 2: geneseqn1990s:*

3: geneseqn2000s:*
4: geneseqn2001as:*
5: geneseqn2001bs:*
6: geneseqn2002as:*
7: geneseqn2002bs:*
8: geneseqn2003as:*
9: geneseqn2003bs:*
10: geneseqn2003cs:*
11: geneseqn2003ds:*
12: geneseqn2004as:*
13: geneseqn2004bs:*

ક

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	2661	100.0	2661	6	ABQ78551	Abq78551 Nucleotid
2	2571.2	96.6	2845	12	ADQ22838	Adq22838 Human sof
3	2559.2	96.2	2952	11	ACN89693	Acn89693 Breast ca
4	2547.8	95.7	2669	2	AAT69328	Aat69328 Murine me
5	2547.8	95.7	2669	2	AAT69318	Aat69318 Murine me
6	2547.8	95.7	2669	3	AAC55715	Aac55715 Human NMB
7	2547.8	95.7	2669	6	ABQ88185	Abq88185 Human ost
8	2547.8	95.7	2669	8	ABX76321	Abx76321 Lung canc
9	2547.8	95.7	2669	10	ADL14996	Adl14996 Human NMB
10	2547.8	95.7	2669	11	ADN39723	Adn39723 Cancer/an
11	2547.8	95.7	2669	12	ADJ75111	Adj75111 Marker ge
12	2547.8	95.7	2669	12	ADQ18309	Adq18309 Human sof
13	2547.8	95.7	2669	13	ADR24918	Adr24918 Breast ca
14	2547.8	95.7	2669	13	ADP23126	Adp23126 PRO polyp
15	2547.8	95.7	2669	13	ADR66172	Adr66172 Human pro
16	2547.8	95.7	2669	13	ADR66150	Adr66150 Human pro
17	2531.6	95.1	2666	10	ADJ56363	Adj56363 Human cDN
18	2505.6	94.2	2728	10	ADD78274	Add78274 Human CGD
19	2485	93.4	2683	6	ABK33556	Abk33556 cDNA enco
20	2485	93.4	2683	8	ACA68517	Aca68517 Novel hum
21	2485	93.4	2683	9	ABT44246	Abt44246 Human PRO
22	2485	93.4	2683	9	ABT44529	Abt44529 Human PRO
23	2485	93.4	2683	9	ACD82196	Acd82196 Human sec
24	2485	93.4	2683	9	ABT43902	Abt43902 Human mem
25	2485	93.4	2683	9	ADB83531	Adb83531 Novel hum
26	2485	93.4	2683	9	ADB80637	Adb80637 Novel hum
27	2485	93.4	2683	9	ADB73178	Adb73178 Novel hum
28	2485	93.4	2683	9	ADB78260	Adb78260 Novel hum
29	2485	93.4	2683	10	ADB84908	Adb84908 Human PRO
30	2485	93.4	2683	10	ADB78014	Adb78014 Novel hum
31	2485	93.4	2683	10	ADB87080	Adb87080 Human PRO
32	2485	93.4	2683	10	ADB84662	Adb84662 Human PRO
33	2485	93.4	2683	10	ADB83777	Adb83777 Novel hum
34	2485	93.4	2683	10	ADB72932	Adb72932 Novel hum
35	2485	93.4	2683	10	ADC36770	Adc36770 Human PRO
36	2485	93.4	2683	10	ADC21760	Adc21760 Human PRO

```
37
     2485
            93.4
                  2683 10 ADC49791
                                                     Adc49791 Novel hum
38
     2485
            93.4
                  2683 10 ADC48990
                                                     Adc48990 Novel hum
                  2683
                        10 ADC49507
39
     2485
            93.4
                                                     Adc49507 Novel hum
40
     2485
            93.4
                  2683
                        10 ADC47368
                                                     Adc47368 Novel hum
                 2683
41
     2485
            93.4
                        10 ADC47113
                                                     Adc47113 Novel hum
                                                     Adc77988 Novel hum
42
     2485
            93.4 2683
                        10 ADC77988
43
     2485
            93.4
                  2683
                        10 ADD06223
                                                     Add06223 Novel hum
44
     2485
            93.4 2683
                        10 ADC77742
                                                     Adc77742 Novel hum
                  2683 10 ADD50705
                                                     Add50705 Novel hum
45
     2485
            93.4
```

```
RESULT 1
ABQ78551
     ABQ78551 standard; DNA; 2661 BP.
ID
XX
AC
     ABQ78551;
XX
     25-NOV-2002 (first entry)
DT
XX
     Nucleotide sequence of human HGFIN.
DE
XX
KW
     Human; cell differentiation; white blood cell; bone marrow cell;
     haematopoietic growth factor inducible neurokin-1; HGFIN;
KW
     progenitor proliferation; acute myeloid leukemia; non-Hodgkin's disease;
KW
     acute lymphocytic leukemia; chronic myeloid leukemia;
KW
KW
     chronic lymphocytic leukemia; Hodgkin's disease; gene; ss.
XX
os
     Homo sapiens.
XX
FH
                     Location/Qualifiers
     Key
                     60. .1741
FT
     CDS
                     /*tag= a
FT
                     /product= "HGFIN"
FT
                     /transl except= (825. .826,aa:Leu)
FT
XX
ΡN
     WO200262947-A2.
XX
PD
     15-AUG-2002.
XX
     20-OCT-2001; 2001WO-US050204.
PF
XX
PR
     20-OCT-2000; 2000US-0241881P.
XX
PΑ
     (UYNE-) UNIV NEW JERSEY MEDICINE & DENTISTRY.
XX
PΙ
     Pranela R;
XX
     WPI; 2002-657531/70.
DR
     P-PSDB; ABB78200.
DR
XX
     Hematopoietic growth factor inducible neurokin-1 type polypeptide and
PT
     polynucleotide for treating a disease associated with abnormal bone
PT
PT
     marrow cell differentiation or proliferation, e.g. leukemia.
XX
```

```
PS
    Claim 2; Page 121-123; 125pp; English.
XX
CC
    The present sequence encodes human haematopoietic growth factor inducible
    neurokin-1 type (HGFIN) polypeptide. HGFIN induces white blood cell
CC
    differentiation and inhibits progenitor proliferation. HGFIN polypeptides
CC
    and polynucleotides are useful for treating a disease associated with
CC
CC
    abnormal bone marrow cell differentiation or proliferation, especially
    acute myeloid leukemia, acute lymphocytic leukemia, chronic myeloid
CC
    leukemia, chronic lymphocytic leukemia, Hodgkin's and non-Hodgkin's
CC
CC
    disease
XX
SQ
    Sequence 2661 BP; 772 A; 586 C; 587 G; 716 T; 0 U; 0 Other;
 Query Match
                    100.0%; Score 2661; DB 6;
                                           Length 2661;
 Best Local Similarity
                    100.0%; Pred. No. 0;
 Matches 2661; Conservative
                          0; Mismatches
                                        0;
                                           Indels
                                                   0;
                                                       Gaps
                                                             0;
         1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCCTGCGTCCGTGAGAATTCAGCA 60
Qу
           1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCCTGCGTCCGTGAGAATTCAGCA 60
Db
        61 TGGAATGTCTCTACTATTTCCTGGGATTTCTGCTCCTGGCTGCAAGATTGCCACTTGATG 120
Qy
           61 TGGAATGTCTCTACTATTTCCTGGGATTTCTGCTCCTGGCTGCAAGATTGCCACTTGATG 120
Db
        121 CCGCCAAACGATTTCATGATGTGCTGGGCAATGAAAGACCTTCTGCTTACATGAGGGAGC 180
Qу
           121 CCGCCAAACGATTTCATGATGTGCTGGGCAATGAAAGACCTTCTGCTTACATGAGGGAGC 180
Db
        181 ACAATCAATTAAATGGCTGGTCTTCTGATGAAAATGACTGGAATGAAAAACTCTACCCAG 240
Qу
           181 ACAATCAATTAAATGGCTGGTCTTCTGATGAAAATGACTGGAATGAAAAACTCTACCCAG 240
Db
        241 TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGG 300
Qу
           241 TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGG 300
Db
        301 TCCTGACCAGTGACTCACCAGCCCTCGTGGGCTCAAATATAACATTTGCGGTGAACCTGA 360
Qy
           301 TCCTGACCAGTGACTCACCAGCCCTCGTGGGCTCAAATATAACATTTGCGGTGAACCTGA 360
Db
        361 TATTCCCTAGATGCCAAAAGGAAGATGCCAATGGCAACATAGTCTATGAGAAGAACTGCA 420
Qy
           361 TATTCCCTAGATGCCAAAAGGAAGATGCCAATGGCAACATAGTCTATGAGAAGAACTGCA 420
Db
        421 GAAATGAGGCTGGTTTATCTGCTGATCCATATGTTTACAACTGGACAGCATGGTCAGAGG 480
Qу
           421 GAAATGAGGCTGGTTTATCTGCTGATCCATATGTTTACAACTGGACAGCATGGTCAGAGG 480
Db
        481 ACAGTGACGGGGAAAATGGCACCGGCCAAAGCCATCATAACGTCTTCCCTGATGGGAAAC 540
Qу
           481 ACAGTGACGGGGAAAATGGCACCGGCCAAAGCCATCATAACGTCTTCCCTGATGGGAAAC 540
Db
        541 CTTTTCCTCACCACCCCGGATGGAGAAGATGGAATTTCATCTACGTCTTCCACACACTTG 600
Qу
           Db
        541 CTTTTCCTCACCACCCCGGATGGAAGATGGAATTTCATCTACGTCTTCCACACACTTG 600
```

QУ	601	GTCAGTATTTCCAGAAATTGGGACGATGTTCAGTGAGAGTTTCTGTGAACACAGCCAATG	660
Db	601		660
Qу	661	TGACACTTGGGCCTCAACTCATGGAAGTGACTGTCTACAGAAGACATGGACGGGCATATG	720
Db	661	TGACACTTGGGCCTCAACTCATGGAAGTGACTGTCTACAGAAGACATGGACGGGCATATG	720
Qy	721	TTCCCATCGCACAAGTGAAAGATGTGTACGTGGTAACAGATCAGATTCCTGTGTTTGTGA	780
Db	721		780
Qy	781	CTATGTTCCAGAAGAACGATCGAAATTCATCCGACGAAACCTTCCCAAAGATCTCCCCAT	840
Db	781		840
Qy	841	TATGTTTGATGTCCTGATTCATGATCCTAGCCACTTCCTCAATTATTCTACCATTAACTA	900
Db	841		900 ·
Qy	901	CAAGTGGAGCTTCGGGGATAATACTGGCCTGTTTGTTTCCACCAATCATACTGTGAATCA	960
Db	901	CAAGTGGAGCTTCGGGGATAATACTGGCCTGTTTGTTTCCACCAATCATACTGTGAATCA	960
Qy	961	CACGTATGTGCTCAATGGAACCTTCAGCCTTAACCTCACTGTGAAAGCTGCAGCACCAGG	1020
Db	961	CACGTATGTGCTCAATGGAACCTTCAGCCTTAACCTCACTGTGAAAGCTGCAGCACCAGG	1020
Qy	1021	ACCTTGTCCGCCACCGCCACCACCACCAGACCTTCAAAACCCACCC	1080
Db	1021	ACCTTGTCCGCCACCACCACCACCACCACCACCCACCCCTTCTTTAGGACC	1080
Qу	1081	TGCTGGTGACAACCCCCTGGAGCTGAGTAGGATTCCTGATGAAAACTGCCAGATTAACAG	1140
Db	1081	TGCTGGTGACAACCCCCTGGAGCTGAGTAGGATTCCTGATGAAAACTGCCAGATTAACAG	1140
Qу	1141	ATATGGCCACTTTCAAGCCACCATCACAATTGTAGAGGGAATCTTAGAGGTTAACATCAT	1200
Db	1141	ATATGGCCACTTCAAGCCACCATCACAATTGTAGAGGGAATCTTAGAGGTTAACATCAT	1200
Qу	1201	CCAGATGACAGACGTCCTGATGCCGGTGCCATGGCCTGAAAGCTCCCTAATAGACTTTGT	1260
Db	1201	CCAGATGACAGACGTCCTGATGCCGGTGCCATGGCCTGAAAGCTCCCTAATAGACTTTGT	1260
Qу	1261	CGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCATCATTTCTGACCCCACCTG	1320
Db	1261	CGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCATCATTTCTGACCCCACCTG	1320
Qу	1321	CGAGATCACCCAGAACACAGTCTGCAGCCCTGTGGATGTGGATGAGATGTGTCTGCTGAC	1380
Db	1321	CGAGATCACCCAGAACACAGTCTGCAGCCCTGTGGATGTGATGAGATGTGTCTGCTGAC	1380
Qу	1381	TGTGAGACGAACCTTCAATGGGTCTGGGACGTACTGTGTGAACCTCACCCTGGGGGATGA	1440
Db	1381	TGTGAGACGAACCTTCAATGGGTCTGGGACGTACTGTGTGAACCTCACCCTGGGGGATGA	1440
Qv	1441	CACAAGCCTGGCTCTCACGAGCACCCTGATTTCTGTTCCTGACAGAGACCCAGCCTCGCC	1500

Db	1441	CACAAGCCTGGCTCTCACGAGCACCCTGATTTCTGTTCCTGACAGAGACCCAGCCTCGCC	1500
Qу	1501	TTTAAGGATGGCAAACAGTGCCCTGATCTCCGTTGGCTGCTTGGCCATATTTGTCACTGT	1560
Db	1501	TTTAAGGATGGCAAACAGTGCCCTGATCTCCGTTGGCTGCTTGGCCATATTTGTCACTGT	1560
Qу	1561	GATCTCCCTCTTGGTGTACAAAAACACAAGGAATACAACCCAATAGAAAATAGTCCTGG	1620
Db	1561	GATCTCCCTCTTGGTGTACAAAAACACAAGGAATACAACCCAATAGAAAATAGTCCTGG	1620
Qу	1621	GAATGTGGTCAGAAGCCAAAGGCCTGAGTGTCTTTCTCAACCGTGCAAAAGCCGTGTTCTT	1680
Db	1621	GAATGTGGTCAGAAGCCAAAGGCCTGAGTGTCTTTCTCAACCGTGCAAAAGCCGTGTTCTT	1680
Qу	1681	CCCGGGAAACCAGGAAAAGGATCCGCTACTCAAAAACCAAGAATTTAAAGGAGTTTCTTA	1740
Db	1681	CCCGGGAAACCAGGAAAAGGATCCGCTACTCAAAAACCAAGAATTTAAAGGAGTTTCTTA	1740
Qу	1741	AATTTCGACCTTGTTTCTGAAGCTCACTTTTCAGTGCCATTGATGTGAGATGTGCTGGAG	1800
Db	1741	AATTTCGACCTTGTTTCTGAAGCTCACTTTTCAGTGCCATTGATGTGAGATGTGCTGGAG	1800
Qу	1801	TGGCTATTAACCTTTTTTCCTAAAGATTATTGTTAAATAGATATTGTGGTTTGGGGAAG	1860
Db	1801	TGGCTATTAACCTTTTTTTCCTAAAGATTATTGTTAAATAGATATTGTGGTTTTGGGGAAG	1860
Qу	1861	TTGAATTTTTATAGGTTAAATGTCATTTTAGAGATGGGGAGAGGGATTATACTGCAGGC	1920
Db	1861	TTGAATTTTTATAGGTTAAATGTCATTTTAGAGATGGGGAGAGGGATTATACTGCAGGC	1920
Qу	1921	AGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTTTCATTATTT	1980
Db	1921	AGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTTTCATTATTT	1980
Qу	1981	TTTATGTTTCACTTATAAAGTCTTAGGTAACTAGTAGGATAGAAACACTGTGTCCCGAGA	2040
Db	1981	TTTATGTTTCACTTATAAAGTCTTAGGTAACTAGTAGGATAGAAACACTGTGTCCCGAGA	2040
Qу	2041	GTAAGGAGAAGCTACTATTGATTAGAGCCTAACCCAGGTTAACTGCAAGAAGAGGCGG	2100
Db	2041	GTAAGGAGAGAGCTACTATTGATTAGAGCCTAACCCAGGTTAACTGCAAGAAGAGGCGG	2100
Qу	2101	GATACTTCAGCTTTCCATGTAACTGTATGCATAAAGCCAATGTAGTCCAGTTTCTAAGA	2160
Db	2101	GATACTTTCAGCTTTCCATGTAACTGTATGCATAAAGCCAATGTAGTCCAGTTTCTAAGA	2160
Qу	2161	TCATGTTCCAAGCTAACTGAATCCCACTTCAATACACACTCATGAACTCCTGATGGAACA	2220
Db	2161	TCATGTTCCAAGCTAACTGAATCCCACTTCAATACACACTCATGAACTCCTGATGGAACA	2220
Qу	2221	ATAACAGGCCCAAGCCTGTGGTATGATGTGCACACTTGCTAGACTCAGAAAAAATACTAC	2280
Db	2221	ATAACAGGCCCAAGCCTGTGGTATGATGTGCACACTTGCTAGACTCAGAAAAAATACTAC	2280
Qy	2281	TCTCATAAATGGGTGGGAGTATTTTGGTGACAACCTACTTTGCTTGGCTGAGTGAAGGAA	2340

```
Db
      2281 TCTCATAAATGGGTGGGAGTATTTTGGTGACAACCTACTTTGCTTGGCTGAGTGAAGGAA 2340
Qу
      Db
      Qy
      2401 ATGATGCTGAGTGACACTCTTGTGTATATTTCCAAATTTTTGTATAGTCGCTGCACATAT 2460
         Db
      2401 ATGATGCTGAGTGACACTCTTGTGTATATTTCCAAATTTTTGTATAGTCGCTGCACATAT 2460
Qу
      2461 TTGAAATCAAAATATTAAGACTTTCCAAAAATTTGGTCCCTGGTTTTTCATGGCAACTTG 2520
         Db
      2461 TTGAAATCAAAATATTAAGACTTTCCAAAAATTTGGTCCCTGGTTTTTCATGGCAACTTG 2520
      2521 ATCAGTAAGGATTTCCCCTCTGTTTGGAACTAAAACCATTTACTATATGTTAGACAAGAC 2580
Qу
         Db
      2521 ATCAGTAAGGATTTCCCCTCTGTTTGGAACTAAAACCATTTACTATATGTTAGACAAGAC 2580
      Qу
         Db
      2641 AAAAAAAAAAAAAAAAAAA 2661
Qy
         Db
      2641 AAAAAAAAAAAAAAAAAAA 2661
RESULT 2
ADQ22838
   ADQ22838 standard; DNA; 2845 BP.
TD
XX
AC
   ADQ22838;
XX
DT
   26-AUG-2004
           (first entry)
XX
DE
   Human soft tissue sarcoma-upregulated DNA - SEQ ID 5658.
XX
KW
   soft tissue sarcoma; cytostatic; gene therapy; vaccine; screening; human;
KW
   ds.
XX
OS
   Homo sapiens.
XX
PN
   WO2004048938-A2.
XX
PD
   10-JUN-2004.
XX
   26-NOV-2003; 2003WO-US038193.
PF
XX
   26-NOV-2002; 2002US-0429739P.
PR
XX
   (PROT-) PROTEIN DESIGN LABS INC.
PA
XX
ΡI
   Aziz N, Ginsburg WM,
                  Zlotnik A;
XX
DR
   WPI; 2004-441208/41.
XX
PT
   Early detection of soft tissue sarcoma comprises determining expression
```

PΤ of a gene in a first soft tissue sample and a normal soft tissue sample РT and comparing the gene expression, also useful in treating soft tissue PТ sarcoma. XX PS Example 2; SEQ ID NO 5658; 210pp; English. XX CC The invention relates to a novel method for detecting soft tissue sarcoma which comprises obtaining a first soft tissue sample from an individual CC CC and a normal soft tissue sample from the same or different individual, CC determining the expression of a gene in both samples and comparing the CC expression of the gene in both soft tissue samples, where a higher level of protein expression in the first soft tissue sample indicates the CC CC presence of soft tissue sarcoma. The method of the invention has CC cytostatic applications and may be useful for detecting soft tissue CC sarcoma, possibly via gene therapy or vaccine production. The nucleic CC acid sequences may be useful in diagnostic and screening applications. CC The current sequence is that of a human soft tissue sarcoma-upregulated CC DNA of the invention. The current sequence is not shown within the CC specification per se but was submitted in CD format by the inventor. XX SQ Sequence 2845 BP; 873 A; 617 C; 614 G; 741 T; 0 U; 0 Other; Query Match 96.6%; Score 2571.2; DB 12; Length 2845; Best Local Similarity 99.2%; Pred. No. 0: Matches 2615; Conservative 0; Mismatches 18; Indels 3; Gaps 3; 28 AACCTTGGTGCCTGCGTCGTGAGAATTCAGCATGGAATGTCTCTACTATTTCCTGGGAT 87 Qу Db 140 ACCTTGAGTGCCTGCGTCGGGAATTCAGCATGGAATGTCTCTACTATTTCCTGGGAT 199 88 TTCTGCTCCTGGCTGCAAGATTGCCACTTGATGCCGCCAAACGATTTCATGATGTGCTGG 147 Qy Db 200 TTCTGCTCCTGGCTGCAAGATTGCCACTTGATGCCGCCAAACGATTTCATGATGTGCTGG 259 Qу Db 208 ATGAAAATGACTGGAATGAAAAACTCTACCCAGTGTGGAAGCGGGGAGACATGAGGTGGA 267 Qy 320 ATGAAAATGACTGGAATGAAAAACTCTACCCAGTGTGGAAGCGGGGAGACATGAGGTGGA 379 Db 268 AAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGGTCCTGACCAGTGACTCACCAGCCCTCG 327 Qу 380 AAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGGTCCTGACCAGTGACTCACCAGCCCTCG 439 Db 328 TGGGCTCAAATATAACATTTGCGGTGAACCTGATATTCCCTAGATGCCAAAAGGAAGATG 387 Qу 440 TGGGCTCAAATATAACATTTGCGGTGAACCTGATATTCCCTAGATGCCAAAAGGAAGATG 499 Db 388 CCAATGGCAACATAGTCTATGAGAAGAACTGCAGAAATGAGGCTGGTTTATCTGCTGATC 447 Qу

> 448 CATATGTTTACAACTGGACAGCATGGTCAGAGGACAGTGACGGGGAAAATGGCACCGGCC 507

560 CATATGTTTACAACTGGACAGCATGGTCAGAGGACAGTGACGGGGAAAATGGCACCGGCC 619

Db

Qу

Db

Qу	508	AAAGCCATCATAACGTCTTCCCTGATGGGAAACCTTTTCCTCACCACCCCGGATGGAGAA	567
Db	620	AAAGCCATCATAACGTCTTCCCTGATGGGAAACCTTTTCCTCACCACCCCGGATGGAGAA	679
Qу	568	GATGGAATTTCATCTACGTCTTCCACACACTTGGTCAGTATTTCCAGAAATTGGGACGAT	627
Db	680		739
Qу	628	GTTCAGTGAGAGTTTCTGTGAACACAGCCAATGTGACACTTGGGCCTCAACTCATGGAAG	687
Db	740	GTTCAGTGAGAGTTTCTGTGAACACAGCCAATGTGACACTTGGGCCTCAACTCATGGAAG	799
Qу	688	TGACTGTCTACAGAAGACATGGACGGGCATATGTTCCCATCGCACAAGTGAAAGATGTGT	747
Db	800	TGACTGTCTACAGAAGACATGGACGGCCATATGTTCCCCATCGCACAAGTGAAAGATGTGT	859
Qу	748	ACGTGGTAACAGATCAGATTCCTGTGTTTGTGACTATGTTCCAGAAGAACGATCGAAATT	807
Db	860		919
Qу	808	CATCCGACGAAACCTTCC-CAAAGATCTCCCCATTATGTTTGATGTCCTGATTCATGATC	866
Db	920	CATCCGACGAAACCTTCCTCAAAGATCTCCCCATTATGTTTGATGTCCTGATTCATGATC	979
Qу	867	CTAGCCACTTCCTCAATTATTCTACCATTAACTACAAGTGGAGCTTCGGGGATAATACTG	926
Db	980	CTAGCCACTTCCTCAATTATTCTACCATTAACTACAAGTGGAGCTTCGGGGGATAATACTG	1039
Qу	927	GCCTGTTTGTTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA	986
Db	1040	GCCTGTTTGTTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA	1099
Qу	987	GCCTTAACCTCACTGTGAAAGCTGCAGCACCAGGACCTTGTCCGCCACCGCCACCACCAC	1046
Db	1100		1159
Qу	1047	CCAGACCTTCAAAACCCACCCCTTCTTTAGGACCTGCTGGTGACAACCCCCTGGAGCTGA	1106
Db	1160	CCAGACCTTCAAAACCCACCCCTTCTTTAGGACCTGCTGGTGACAACCCCCTGGAGCTGA	1219
Qу	1107	GTAGGATTCCTGATGAAAACTGCCAGATTAACAGATATGGCCACTTTCAAGCCACCATCA	1166
Db	1220	GTAGGATTCCTGATGAAAACTGCCAGATTAACAGATATGGCCACTTTCAAGCCACCATCA	1279
Qу	1167	CAATTGTAGAGGGAATCTTAGAGGTTAACATCATCCAGATGACAGACGTCCTGATGCCGG	1226
Db	1280	CAATTGTAGAGGGAATCTTAGAGGTTAACATCATCCAGATGACAGACGTCCTGATGCCGG	1339
Qу	1227	TGCCATGGCCTGAAAGCTCCCTAATAGACTTTGTCGTGACCTGCCAAGGGAGCATTCCCA	1286
Db	1340	TGCCATGGCCTGAAAGCTCCCTAATAGACTTTGTCGTGACCTGCCAAGGGAGCATTCCCA	1399
Qу	1287	CGGAGGTCTGTACCATCATTTCTGACCCCACCTGCGAGATCACCCAGAACACAGTCTGCA	1346
Db	1400	CGGAGGTCTGTACCATCATTTCTGACCCCACCTGCGAGATCACCCAGAACACAGTCTGCA	1459

.

Qу	1347	GCCCTGTGGATGTGGATGAGATGTGTCTGCTGACTGTGAGACGAACCTTCAATGGGTCTG	1406
Db	1460	GCCCTGTGGATGTGAGATGTGTCTGCTGACTGTGAGACGAACCTTCAATGGGTCTG	1519
Qy	1407	GGACGTACTGTGAACCTCACCCTGGGGGATGACACAAGCCTGGCTCTCACGAGCACCC	1466
Db	1520	GGACGTACTGTGTGAACCTCACCCTGGGGGATGACACAAGCCTGGCTCTCACGAGCACCC	1579
Qу	1467	TGATTTCTGTTCCTGACAGAGACCCAGCCTCGCCTTTAAGGATGGCAAACAGTGCCCTGA	1526
Db	1580	TGATTTCTGTTCCTGACAGAGACCCAGCCTCGCCTTTAAGGATGGCAAACAGTGCCCTGA	1639
Qу	1527	TCTCCGTTGGCTGCTTGGCCATATTTGTCACTGTGATCTCCCTCTTGGTGTACAAAAAC	1586
Db	1640	TCTCCGTTGGCTGCTTGGCCATATTTGTCACTGTGATCTCCCTCTTGGTGTACAAAAAAC	1699
Qу	1587	ACAAGGAATACAACCCAATAGAAAATAGTCCTGGGAATGTGGTCAGAAGCAAAGGCCTGA	1646
Db	1700	ACAAGGAATACAACCCAATAGAAAATAGTCCTGGGAATGTGGTCAGAAGCAAAGGCCTGA	1759
Qу	1647	GTGTCTTTCTCAACCGTGCAAAAGCCGTGTTCTTCCCGGGAAACCAGGAAAAGGATCCGC	1706
Db	1760	GTGTCTTTCTCAACCGTGCAAAAGCCGTGTTCTTCCCGGGAAACCAGGAAAAGGATCCGC	1819
Qу	1707	TACTCAAAAACCAAGAATTTAAAGGAGTTTCTTAAATTTCGACCTTGTTTCTGAAGCTCA	1766
Db	1820	TACTCAAAAACCAAGAATTTAAAGGAGTTTCTTAAATTTCGACCTTGTTTCTGAAGCTCA	1879
Qу	1767	CTTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTAACCTTTTTTTCCTAAAG	1826
Db	1880	CTTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTAACCTTTTTTTCCTAAAG	1939
Qу	1827	ATTATTGTTAAATAGATATTGTGGTTTGGGGAAGTTGAATTTTTT	1886
Db	1940	${\tt ATTATTGTTAAATAGATATTGTGGTTTGGGGAAGTTGAATTTTTT$	1999
Qy	1887	TTTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTTCAGCCATGTTGTGAAACTGAT	1946
Db	2000	TTTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTTCAGCCATGTTGTGAAACTGAT	2059
Qу	1947	AAAAGCAACTTAGCAAGGCTTCTTTTCATTATTTTTTTTT	2006
Db	2060	AAAAGCAACTTAGCAAGGCTTCTTTTCATTATTTTTTTTT	2119
Qу	2007	GTAACTAGTAGGATAGAAACACTGTGTCCCGAGAGTAAGGAGAGAAGCTACTATTGATTA	2066
Db	2120	GTAACTAGTAGGATAGAAACACTGTGTCCCGAGAGTAAGGAGAGAAGCTACTATTGATTA	2179
Qу	2067	GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCGGGATACTTTCAGCTTTCCATGTAACTG	2126
Db	2180	GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCGGGATACTTTCAGCTTTCCATGTAACTG	2239
Qу	2127	TATGCATAAAGCCAATGTAGTCCAGTTTCTAAGATCATGTTCCAAGCTAACTGAATCCCA	2186
Db	2240	TATGCATAAAGCCAATGTAGTCCAGTTTCTAAGATCATGTTCCAAGCTAACTGAATCCCA	2299
Qv	2187	CTTCAATACACACTCATGAACTCCTGATGGAACAATAACAGGCCCAAGCCTGTGGTATGA	2246

Db	2300	
Qу	2247	TGTGCACACTTGCTAGACTCAGAAAAAATACTACTCTCATAAATGGGTGGG
Db	2360	TGTGCACACTTGCTAGACTCAGAAAAATACTACTCTCATAAATGGGTGGG
Qу	2307	GTGACAACCTACTTTGCTTGGCTGAGTGAAGGAATGATATTCATATATTCATTTATTCCA 2366
Db	2420	GTGACAACCTACTTTGCTTGGCTGAGTGAAGGAATGATATTCATATATTCATTTATTCCA 2479
QУ	2367	TGGACATTTAGTTAGTGCTTTTTATATACCAGGCATGATGCTGAGTGACACTCTTGTGTA 2426
Db	2480	TGGACATTTAGTTAGTGCTTTTTATATACCAGGCATGATGCTGAGTGACACTCTTGTGTA 2539
Qу	2427	TATTTCCAAATTTTTGTATAGTCGCTGCACATATTTGAAATCAAAATATTAAGACTTTCC 2486
Db	2540	TATTTCCAAATTTTTGTACAGTCGCTGCACATATTTGAAATC-ATATATTAAGACTTTCC 2598
Qу	2487	AAAAATTTGGTCCCTGGTTTTTCATGGCAACTTGATCAGTAAGGATTTCCCCTCTGTTTG 2546
Db	2599	AAAGATGAGGTCCCTGGTTTTTCATGGCAACTTGATCAGTAAGGATTTCACCTCTGTTTG 2658
Qy	2547	GAACTAAAACCATTTACTATATGTTAGACAAGACATTTTTTTT
Db	2659	TAACTAAAACCATCTACTATATGTTAGACATGACATTCTTTTTCTCCTCCTTCCT
Qу	2607	-AAAATGAGGGAAGAGACAAAAAAAAAAAAAAAAAAAAAA
Db	2719	TAAAGTGTGGGAAGACAAAAAAAAAAAAAAAAAAAAAAA

OM nucleic - nucleic search, using sw model

Run on: February 21, 2005, 10:32:04; Search time 458 Seconds

(without alignments)

9506.839 Million cell updates/sec

Title: US-10-039-272-1

Perfect score: 2661

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 1202784 seqs, 818138359 residues

Total number of hits satisfying chosen parameters: 2405568

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Issued Patents NA:*

ક્ર

1: /cgn2_6/ptodata/1/ina/5A_COMB.seq:*
2: /cgn2_6/ptodata/1/ina/5B_COMB.seq:*
3: /cgn2_6/ptodata/1/ina/6A_COMB.seq:*
4: /cgn2_6/ptodata/1/ina/6B_COMB.seq:*
5: /cgn2_6/ptodata/1/ina/PCTUS_COMB.seq:*
6: /cgn2_6/ptodata/1/ina/backfiles1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result		∘ Query				
No.	Score		Length	DB	ID	Description
1	2547.8	95.7	2669	1	US-09-985-799-91	Sequence 91, Appl
2	2547.8	95.7	2669	1	US-09-985-799-101	Sequence 101, App
3	2547.8	95.7	2669	1	US-09-977-371-91	Sequence 91, Appl
4	2547.8	95.7	2669	1	US-09-977-371-101	Sequence 101, App
5	2547.8	95.7	2669	1	US-08-594-031-91	Sequence 91, Appl
6	2547.8	95.7	2669	1	US-08-594-031-101	Sequence 101, App
7	1664.6	62.6	1683	4	US-09-943-075A-8	Sequence 8, Appli
8	1051.2	39.5	2303	4	US-09-197-970B-4	Sequence 4, Appli
9	1047.8	39.4	2213	3	US-09-383-586-27	Sequence 27, Appl
10	1047.8	39.4	2213	4	US-09-823-038A-27	Sequence 27, Appl
11	1046.4	39.3	2320	4	US-09-943-075A-1	Sequence 1, Appli
12	1010.2	38.0	1725	4	US-09-943-075A-7	Sequence 7, Appli
13	545.6	20.5	619	3	US-09-123-912-105	Sequence 105, App
14	545.6	20.5	619	3	US-09-643-597-105	Sequence 105, App
15	545.6	20.5	619	3	US-09-643-597-121	Sequence 121, App
16	545.6	20.5	619	4	US-09-480-884A-105	Sequence 105, App
17	545.6	20.5	619	4	US-09-480-884A-121	Sequence 121, App
18	545.6	20.5	619	4	US-09-542-615A-105	Sequence 105, App
19	545.6	20.5	619	4	US-09-542-615A-121	Sequence 121, App
20	545.6	20.5	619	4	US-09-606-421B-105	Sequence 105, App
21	545.6	20.5	619	4	US-09-606-421B-121	Sequence 121, App
22	545.6	20.5	619	4	US-09-221-107-105	Sequence 105, App
23	545.6	20.5	619	4	US-09-221-107-121	Sequence 121, App
24	545.6	20.5	619	4	US-09-466-396A-105	Sequence 105, App
25	545.6	20.5	619	4	US-09-466-396A-121	Sequence 121, App
26	545.6	20.5	619	4	US-09-476-496A-105	Sequence 105, App
27	545.6	20.5	619	4	US-09-476-496A-121	Sequence 121, App
28	545.6	20.5	619	4	US-09-630-940B-105	Sequence 105, App
29	545.6	20.5	619	4	US-09-630-940B-121	Sequence 121, App
30	545.6	20.5	619	4	US-09-285-479-105	Sequence 105, App
31	545.6	20.5	619	4	US-09-285-479-121	Sequence 121, App
32	493	18.5	494	4	US-09-389-681-449	Sequence 449, App
33	493	18.5	494	4	US-09-620-405B-449	Sequence 449, App
34	493	18.5	494	4	US-09-433-826B-449	Sequence 449, App
35	493	18.5	494	4	US-09-604-287A-449	Sequence 449, App
36	493	18.5	494	4	US-09-834-759-449	Sequence 449, App
37	493	18.5	494	4	US-09-590-751A-449	Sequence 449, App
38	493	18.5	494	4	US-09-551-621-449	Sequence 449, App

39	480.8	18.1	698	3	US-09-040-984-5	Sequence 5, Appli
40	480.8	18.1	698	3	US-09-123-912-5	Sequence 5, Appli
41	480.8	18.1	698	3	US-09-643-597-5	Sequence 5, Appli
42	480.8	18.1	698	4	US-09-480-884A-5	Sequence 5, Appli
43	480.8	18.1	698	4	US-09-542-615A-5	Sequence 5, Appli
44	480.8	18.1	698	4	US-09-606-421B-5	Sequence 5, Appli
45	480.8	18.1	698	4	US-09-221-107-5	Sequence 5, Appli

```
RESULT 1
US-09-985-799-91
; Sequence 91, Application US/09985799
; Patent No. RE38392
   GENERAL INFORMATION:
         APPLICANT: THOMPSON, Timothy C.
         TITLE OF INVENTION: METHOD FOR IDENTIFYING METASTATIC SEQUENCES
         NUMBER OF SEQUENCES: 175
         CORRESPONDENCE ADDRESS:
              ADDRESSEE: BAKER & BOTTS, L.L.P.
              STREET: 1299 Pennsylvania Avenue, N.W.
              CITY: Washington
              STATE: DC
              COUNTRY: USA
              ZIP: 20004-2400
         COMPUTER READABLE FORM:
              MEDIUM TYPE: Diskette
              COMPUTER: IBM Compatible
              OPERATING SYSTEM: DOS
              SOFTWARE: FastSEQ Version 1.5
         CURRENT APPLICATION DATA:
              APPLICATION NUMBER: US/09/985,799
              FILING DATE: 06-No. RE38392-2001
              CLASSIFICATION: <Unknown>
         PRIOR APPLICATION DATA:
              APPLICATION NUMBER: US/08/594,031
              FILING DATE: 30-JAN-1996
              APPLICATION NUMBER: 60/006,838
              FILING DATE: 16-NOV-1995
         ATTORNEY/AGENT INFORMATION:
              NAME: Remenick, James
              REGISTRATION NUMBER: 36,902
              REFERENCE/DOCKET NUMBER: 0A146-0110
         TELECOMMUNICATION INFORMATION:
              TELEPHONE: 202-639-7700
              TELEFAX: 202-639-7890
              TELEX: <Unknown>
   INFORMATION FOR SEQ ID NO: 91:
         SEQUENCE CHARACTERISTICS:
              LENGTH: 2669 base pairs
              TYPE: nucleic acid
              STRANDEDNESS: single
              TOPOLOGY: linear
        MOLECULE TYPE: cDNA
         HYPOTHETICAL: NO
```

```
ANTI-SENSE: NO
      FRAGMENT TYPE: <Unknown>
      ORIGINAL SOURCE:
      SEQUENCE DESCRIPTION: SEQ ID NO: 91:
US-09-985-799-91
 Query Match
                  95.7%;
                       Score 2547.8;
                                 DB 1; Length 2669;
 Best Local Similarity
                  99.2%;
                       Pred. No. 0;
 Matches 2591; Conservative
                      0; Mismatches
                                  17;
                                     Indels
                                             3;
                                               Gaps
                                                     3;
       28 AACCTTGGTGCCTGCGTCCGTGAGAATTCAGCATGGAATGTCTCTACTATTTCCTGGGAT 87
Qу
         60 ACCTTGAGTGCCTGCGTCCGTGAGAATTCAGCATGGAATGTCTCTACTATTTCCTGGGAT 119
Db
       88 TTCTGCTCCTGGCTGCAAGATTGCCACTTGATGCCGCCAAACGATTTCATGATGTGCTGG 147
Qу
         120 TTCTGCTCCTGGCTGCAAGATTGCCACTTGATGCCGCCAAACGATTTCATGATGTGCTGG 179
Db
       Qу
         Db
       208 ATGAAAATGACTGGAATGAAAAACTCTACCCAGTGTGGAAGCGGGGAGACATGAGGTGGA 267
Qу
         240 ATGAAAATGACTGGAATGAAAAACTCTACCCAGTGTGGAAGCGGGGAGACATGAGGTGGA 299
Db
       268 AAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGGTCCTGACCAGTGACTCACCAGCCCTCG 327
Qу
         300 AAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGGTCCTGACCAGTGACTCACCAGCCCTCG 359
Db
       328 TGGGCTCAAATATAACATTTGCGGTGAACCTGATATTCCCTAGATGCCAAAAGGAAGATG 387
Qу
         360 TGGGCTCAAATATAACATTTGCGGTGAACCTGATATTCCCTAGATGCCAAAAGGAAGATG 419
Db
       388 CCAATGGCAACATAGTCTATGAGAAGAACTGCAGAAATGAGGCTGGTTTATCTGCTGATC 447
Qу
         420 CCAATGCAACATAGTCTATGAGAAGAACTGCAGAAATGAGGCTGGTTTATCTGCTGATC 479
Db
       448 CATATGTTTACAACTGGACAGCATGGTCAGAGGACAGTGACGGGGAAAATGGCACCGGCC 507
Qy
         480 CATATGTTTACAACTGGACAGCATGGTCAGAGGACAGTGACGGGGAAAATGGCACCGGCC 539
Db
       508 AAAGCCATCATAACGTCTTCCCTGATGGGAAACCTTTTCCTCACCACCCCGGATGGAGAA 567
Qу
         540 AAAGCCATCATAACGTCTTCCCTGATGGGAAACCTTTTCCTCACCACCCCGGATGGAGAA 599
Db
       568 GATGGAATTTCATCTACGTCTTCCACACACTTGGTCAGTATTTCCAGAAATTGGGACGAT 627
Qу
         600 GATGGAATTTCATCTACGTCTTCCACACACTTGGTCAGTATTTCCAGAAATTGGGACGAT 659
Db
       628 GTTCAGTGAGAGTTTCTGTGAACACAGCCAATGTGACACTTGGGCCTCAACTCATGGAAG 687
Qу
         660 GTTCAGTGAGAGTTTCTGTGAACACAGCCAATGTGACACTTGGGCCTCAACTCATGGAAG 719
Db
       688 TGACTGTCTACAGAAGACATGGACGGCCATATGTTCCCATCGCACAAGTGAAAGATGTGT 747
Qу
          720 TGACTGTCTACAGAAGACATGGACGGGCATATGTTCCCATCGCACAAGTGAAAGATGTGT 779
Db
```

Qу	748	ACGTGGTAACAGATCAGATTCCTGTGTTTGTGACTATGTTCCAGAAGAACGATCGAAATT	807
Db	780		839
Qу	808	CATCCGACGAAACCTTCC-CAAAGATCTCCCCATTATGTTTGATGTCCTGATTCATGATC	866
Db	840	CATCCGACGAAACCTTCCTCAAAGATCTCCCCATTATGTTTGATGTCCTGATTCATGATC	899
Qу	867	CTAGCCACTTCCTCAATTATTCTACCATTAACTACAAGTGGAGCTTCGGGGATAATACTG	926
Db	900	CTAGCCACTTCCTCAATTATTCTACCATTAACTACAAGTGGAGCTTCGGGGATAATACTG	959
QУ	927	GCCTGTTTGTTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA	986
Db	960	GCCTGTTTGTTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA	1019
Qу	987	GCCTTAACCTCACTGTGAAAGCTGCAGCACCAGGACCTTGTCCGCCACCGCCACCACCAC	1046
Db	1020	GCCTTAACCTCACTGTGAAAGCTGCAGCACCAGGACCTTGTCCGCCACCGCCACCACCAC	1079
Qу	1047	CCAGACCTTCAAAACCCACCCCTTCTTTAGGACCTGCTGGTGACAACCCCCTGGAGCTGA	1106
Db	1080	CCAGACCTTCAAAACCCACCCCTTCTTTAGGACCTGCTGGTGACAACCCCCTGGAGCTGA	1139
QУ	1107	GTAGGATTCCTGATGAAAACTGCCAGATTAACAGATATGGCCACTTTCAAGCCACCATCA	1166
Db	1140	GTAGGATTCCTGATGAAAACTGCCAGATTAACAGATATGGCCACTTTCAAGCCACCATCA	1199
Qу	1167	CAATTGTAGAGGGAATCTTAGAGGTTAACATCATCCAGATGACAGACGTCCTGATGCCGG	1226
Db	1200	CAATTGTAGAGGGAATCTTAGAGGTTAACATCATCCAGATGACAGACGTCCTGATGCCGG	1259
QУ	1227	TGCCATGGCCTGAAAGCTCCCTAATAGACTTTGTCGTGACCTGCCAAGGGAGCATTCCCA	1286
Db	1260	TGCCATGGCCTGAAAGCTCCCTAATAGACTTTGTCGTGACCTGCCAAGGGAGCATTCCCA	1319
Qу	1287	CGGAGGTCTGTACCATCATTTCTGACCCCACCTGCGAGATCACCCAGAACACAGTCTGCA	
Db	1320	CGGAGGTCTGTACCATCATTTCTGACCCCACCTGCGAGATCACCCCAGAACACAGTCTGCA	
QУ	1347	GCCCTGTGGATGTGGATGAGATGTGTCTGCTGACTGTGAGACGAACCTTCAATGGGTCTG	1406
Db	1380	GCCCTGTGGATGTGGATGAGATGTGTCTGCTGACTGTGAGACGAACCTTCAATGGGTCTG	1439
Qу	1407	GGACGTACTGTGTGAACCTCACCCTGGGGGATGACACAAGCCTGGCTCTCACGAGCACCC	1466
Db	1440	GGACGTACTGTGTGAACCTCACCCTGGGGGATGACACAAGCCTGGCTCTCACGAGCACCC	1499
Qу	1467	TGATTTCTGTTCCTGACAGAGACCCAGCCTCGCCTTTAAGGATGGCAAACAGTGCCCTGA	1526
Db	1500	TGATTTCTGTTCCTGACAGAGACCCAGCCTCGCCTTTAAGGATGGCAAACAGTGCCCTGA	1559
Qу	1527	TCTCCGTTGGCTGCCTTGGCCATATTTGTCACTGTGATCTCCCTCTTGGTGTACAAAAAAC	1586
Db	1560	TCTCCGTTGGCTGCTTGGCCATATTTGTCACTGTGATCTCCCTCTTGGTGTACAAAAAAC	1619

.

Qу	1587	ACAAGGAATACAACCCAATAGAAAATAGTCCTGGGAATGTGGTCAGAAGCAAAGGCCTGA	1646
Db	1620	ACAAGGAATACAACCCAATAGAAAATAGTCCTGGGAATGTGGTCAGAAGCAAAGGCCTGA	1679
Qy	1647	GTGTCTTTCTCAACCGTGCAAAAGCCGTGTTCTTCCCGGGAAACCAGGAAAAGGATCCGC	1706
Db	1680	GTGTCTTCTCAACCGTGCAAAAGCCGTGTTCTTCCCGGGAAAACCAGGAAAAGGATCCGC	1739
Qу	1707	TACTCAAAAACCAAGAATTTAAAGGAGTTTCTTAAATTTCGACCTTGTTTCTGAAGCTCA	1766
Db	1740	TACTCAAAAACCAAGAATTTAAAGGAGTTTCTTAAATTTCGACCTTGTTTCTGAAGCTCA	1799
Qу	1767	CTTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTAACCTTTTTTTCCTAAAG	1826
Db	1800	CTTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTAACCTTTTTTTCCTAAAG	1859
Qу	1827	ATTATTGTTAAATAGATATTGTGGTTTGGGGAAGTTGAATTTTTT	1886
Db	1860	ATTATTGTTAAATAGATATTGTGGTTTGGGGAAGTTGAATTTTTT	1919
Qy	1887	TTTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTTCAGCCATGTTGTGAAACTGAT	1946
Db	1920	TTTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTTCAGCCATGTTGTGAAACTGAT	1979
Qy	1947	AAAAGCAACTTAGCAAGGCTTCTTTTCATTATTTTTTTTT	2006
Db	1980	AAAAGCAACTTAGCAAGGCTTCTTTTCATTATTTTTTTTT	2039
Qy	2007	GTAACTAGTAGGATAGAAACACTGTGTCCCGAGAGTAAGGAGAGAAGCTACTATTGATTA	2066
Db	2040	GTAACTAGTAGGATAGAAACACTGTGTCCCGAGAGTAAGGAGAGAAGCTACTATTGATTA	2099
Qу	2067	GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCGGGATACTTTCAGCTTTCCATGTAACTG	2126
Db	2100	GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCGGGATACTTTCAGCTTTCCATGTAACTG	2159
Qy	2127	TATGCATAAAGCCAATGTAGTCCAGTTTCTAAGATCATGTTCCAAGCTAACTGAATCCCA	2186
Db	2160	TATGCATAAAGCCAATGTAGTCCAGTTTCTAAGATCATGTTCCAAGCTAACTGAATCCCA	2219
Qу	2187	CTTCAATACACACTCATGAACTCCTGATGGAACAATAACAGGCCCAAGCCTGTGGTATGA	2246
Db	2220	CTTCAATACACACTCATGAACTCCTGATGGAACAATAACAGGCCCAAGCCTGTGGTATGA	2279
Qу	2247	TGTGCACACTTGCTAGACTCAGAAAAAATACTACTCTCATAAATGGGTGGG	2306
Db	2280	TGTGCACACTTGCTAGACTCAGAAAAATACTACTCTCATAAATGGGTGGG	2339
Qу	2307	GTGACAACCTACTTTGCTTGGCTGAGTGAAGGAATGATATTCATATATTCATTTATTCCA	2366
Db	2340		2399
Qу	2367	TGGACATTTAGTTAGTGCTTTTTATATACCAGGCATGATGCTGAGTGACACTCTTGTGTA	2426
Db	2400	TGGACATTTAGTTAGTGCTTTTTATATACCAGGCATGATGCTGAGTGACACTCTTGTGTA	2459
Qy	2427	TATTTCCAAATTTTTGTATAGTCGCTGCACATATTTGAAATCAAAATATTAAGACTTTCC	2486

Db	2460	
Qy	2487	AAAAATTTGGTCCCTGGTTTTTCATGGCAACTTGATCAGTAAGGATTTCCCCTCTGTTTG 2546
Db	2519	AAAGATGAGGTCCCTGGTTTTTCATGGCAACTTGATCAGTAAGGATTTCACCTCTGTTTG 2578
Qy	2547	GAACTAAAACCATTTACTATATGTTAGACAAGACATTTTTTTT
Db	2579	TAACTAAAACCATCTACTATATGTTAGACATGACATTCTTTTTCTCTCCTTCCT
Qу	2607	-AAAATGAGGGAAGAGACAAAAAAAAAAAA 2636
Db	2639	TAAAGTGTGGGAAGAGAAAAAAAAAAAAAAAAAAAAAA

OM nucleic - nucleic search, using sw model

Run on: February 21, 2005, 14:08:32; Search time 1392 Seconds

(without alignments)

11298.729 Million cell updates/sec

Title: US-10-039-272-1

Perfect score: 2661

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 5384158 seqs, 2955248155 residues

Total number of hits satisfying chosen parameters: 10768316

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Published Applications NA:*

1: /cgn2 6/ptodata/1/pubpna/US07 PUBCOMB.seq:*

2: /cgn2_6/ptodata/1/pubpna/PCT_NEW_PUB.seq:*

3: /cgn2_6/ptodata/1/pubpna/US06_NEW_PUB.seq:*

4: /cgn2 6/ptodata/1/pubpna/US06 PUBCOMB.seq:*

: /cgn2 6/ptodata/1/pubpna/US07 NEW PUB.seq:*

5: /cgn2_6/ptodata/1/pubpna/PCTUS_PUBCOMB.seq:*

7: /cgn2 6/ptodata/1/pubpna/US08 NEW PUB.seq:*

8: /cgn2_6/ptodata/1/pubpna/US08_PUBCOMB.seq:*

9: /cgn2 6/ptodata/1/pubpna/US09A PUBCOMB.seg:*

10: /cgn2 6/ptodata/1/pubpna/US09B PUBCOMB.seq:*

11: /cgn2 6/ptodata/1/pubpna/US09C PUBCOMB.seq:*

12: /cgn2 6/ptodata/1/pubpna/US09 NEW PUB.seq:*

```
13: /cgn2_6/ptodata/1/pubpna/US10A_PUBCOMB.seq:*
14: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:*
15: /cgn2_6/ptodata/1/pubpna/US10C_PUBCOMB.seq:*
16: /cgn2_6/ptodata/1/pubpna/US10D_PUBCOMB.seq:*
17: /cgn2_6/ptodata/1/pubpna/US10E_PUBCOMB.seq:*
18: /cgn2_6/ptodata/1/pubpna/US10F_PUBCOMB.seq:*
19: /cgn2_6/ptodata/1/pubpna/US10_NEW_PUB.seq:*
20: /cgn2_6/ptodata/1/pubpna/US11_NEW_PUB.seq:*
21: /cgn2_6/ptodata/1/pubpna/US60_NEW_PUB.seq:*
22: /cgn2_6/ptodata/1/pubpna/US60_PUBCOMB.seq:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

ક

Result		Query				
No.	Score	_	Length	DB	ID	Description
1	2661	100.0	2661	13	US-10-039-272-1	Sequence 1, Appli
2	2661	100.0	2661	17	US-10-463-106-1	Sequence 1, Appli
3	2571.2	96.6	2845	18	US-10-723-860-5658	Sequence 5658, Ap
4	2559.2	96.2	2952	14	US-10-198-846-10843	Sequence 10843, A
5	2547.8	95.7	2669	10	US-09-525-978B-82	Sequence 82, Appl
6	2547.8	95.7	2669	17	US-10-172-118-779	Sequence 779, App
7	2547.8	95.7	2669	17	US-10-295-027-1041	Sequence 1041, Ap
8	2547.8	95.7	2669	17	US-10-342-887-779	Sequence 779, App
9	2547.8	95.7	2669	18	US-10-450-826-92	Sequence 92, Appl
10	2547.8	95.7	2669	18	US-10-723-860-1127	Sequence 1127, Ap
11	2531.6	95.1	2666	15	US-10-084-817-169	Sequence 169, App
12	2485	93.4	2683	14	US-10-227-884-41	Sequence 41, Appl
13	2485	93.4	2683	14	US-10-230-163-41	Sequence 41, Appl
14	2485	93.4	2683	14	US-10-230-338-41	Sequence 41, Appl
15	2485	93.4	2683	14	US-10-218-631-41	Sequence 41, Appl
16	2485	93.4	2683	14	US-10-230-414-41	Sequence 41, Appl
17	2485	93.4	2683	14	US-10-232-224-41	Sequence 41, Appl
18	2485	93.4	2683	14	US-10-216-159A-41	Sequence 41, Appl
19	2485	93.4	2683	14	US-10-218-849-41	Sequence 41, Appl
20	2485	93.4	2683	14	US-10-227-873-41	Sequence 41, Appl
21	2485	93.4	2683	14	US-10-227-883-41	Sequence 41, Appl
22	2485	93.4	2683	14	US-10-219-076-41	Sequence 41, Appl
23	2485	93.4	2683	14	US-10-230-434-41	Sequence 41, Appl
24	2485	93.4	2683	14	US-10-219-003-41	Sequence 41, Appl
25	2485	93.4	2683	14	US-10-219-075-41	Sequence 41, Appl
26	2485	93.4	2683	14	US-10-219-464-41	Sequence 41, Appl
27	2485	93.4	2683	14	US-10-219-466-41	Sequence 41, Appl
28	2485	93.4	2683	14	US-10-219-479-41	Sequence 41, Appl
29	2485	93.4	2683	14	US-10-219-481-41	Sequence 41, Appl
30	2485	93.4	2683	14	US-10-230-260-41	Sequence 41, Appl
31	2485	93.4	2683	14	US-10-232-231-41	Sequence 41, Appl
32	2485	93.4	2683	14		Sequence 41, Appl
33	2485	93.4	2683	14		Sequence 41, Appl
34	2485	93.4	2683	14	US-10-218-956-41	Sequence 41, Appl
35	2485	93.4	2683	14		Sequence 41, Appl
36	2485	93.4	2683	14		Sequence 41, Appl
37	2485	93.4	2683	14	US-10-219-536-41	Sequence 41, Appl

38	2485	93.4	2683	14	US-10-233-205-41	Sequence	41,	Appl
39	2485	93.4	2683	14	US-10-219-072-41	Sequence	41,	Appl
40	2485	93.4	2683	14	US-10-219-470-41	Sequence	41,	Appl
41	2485	93.4	2683	14	US-10-219-474-41	Sequence	41,	Appl
42	2485	93.4	2683	14	US-10-219-524-41	Sequence	41,	Appl
43	2485	93.4	2683	14	US-10-219-528-41	Sequence	41,	Appl
44	2485	93.4	2683	14	US-10-227-880-41	Sequence	41,	Appl
45	2485	93.4	2683	14	US-10-227-881-41	Sequence	41,	Appl

```
RESULT 1
US-10-039-272-1
; Sequence 1, Application US/10039272
; Publication No. US20020168653A1
; GENERAL INFORMATION:
  APPLICANT: RAMESHWAR, Pranela
  TITLE OF INVENTION: HEMATOPOIETIC GROWTH FACTOR INDUCIBLE NEUROKININ-TYPE
  FILE REFERENCE: 267/033 University of Medicine & Dentistry of New Jersey
  CURRENT APPLICATION NUMBER: US/10/039,272
  CURRENT FILING DATE: 2001-10-20
  PRIOR APPLICATION NUMBER: US 60/241,881
  PRIOR FILING DATE: 2000-10-20
  NUMBER OF SEQ ID NOS: 2
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 1
   LENGTH: 2661
   TYPE: DNA
   ORGANISM: Homo sapiens
US-10-039-272-1
                     100.0%; Score 2661; DB 13; Length 2661;
 Query Match
                     100.0%; Pred. No. 0;
 Best Local Similarity
                                                                0;
                                                      0;
                                                         Gaps
 Matches 2661; Conservative
                          0; Mismatches
                                          0;
                                             Indels
          1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCCTGCGTCCGTGAGAATTCAGCA 60
Qу
           1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCCTGCGTCCGTGAGAATTCAGCA 60
Db
         61 TGGAATGTCTCTACTATTTCCTGGGATTTCTGCTCCTGGCTGCAAGATTGCCACTTGATG 120
Qу
            61 TGGAATGTCTCTACTATTTCCTGGGATTTCTGCTCCTGGCTGCAAGATTGCCACTTGATG 120
Db
        121 CCGCCAAACGATTTCATGATGTGCTGGGCAATGAAAGACCTTCTGCTTACATGAGGGAGC 180
Qу
            121 CCGCCAAACGATTTCATGATGTGCTGGGCAATGAAAGACCTTCTGCTTACATGAGGGAGC 180
Db
        181 ACAATCAATTAAATGGCTGGTCTTCTGATGAAAATGACTGGAATGAAAAACTCTACCCAG 240
Qy
            181 ACAATCAATTAAATGGCTGGTCTTCTGATGAAAATGACTGGAATGAAAAACTCTACCCAG 240
Db
        241 TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGG 300
Qу
            241 TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGG 300
Db
```

Qy	301	TCCTGACCAGTGACTCACCAGCCCTCGTGGGCTCAAATATAACATTTGCGGTGAACCTGA	360
Db	301	TCCTGACCAGTGACTCACCAGCCCTCGTGGGCTCAAATATAACATTTGCGGTGAACCTGA	360
Qу	361	TATTCCCTAGATGCCAAAAGGAAGATGCCAATGGCAACATAGTCTATGAGAAGAACTGCA	420
Db	361	TATTCCCTAGATGCCAAAAGGAAGATGCCAATGGCAACATAGTCTATGAGAAGAACTGCA	420
Qу	421	GAAATGAGGCTGGTTTATCTGCTGATCCATATGTTTACAACTGGACAGCATGGTCAGAGG	480
Db	4 21	GAAATGAGGCTGGTTTATCTGCTGATCCATATGTTTACAACTGGACAGCATGGTCAGAGG	480
Qy	481	ACAGTGACGGGGAAAATGGCACCGGCCAAAGCCATCATAACGTCTTCCCTGATGGGAAAC	540
Db	481	ACAGTGACGGGGAAAATGGCACCGGCCAAAGCCATCATAACGTCTTCCCTGATGGGAAAC	540
Qy	541	CTTTTCCTCACCACCCGGATGGAGAAGATGGAATTTCATCTACGTCTTCCACACACTTG	600
Db	541	CTTTTCCTCACCACCCGGATGGAGAAGATGGAATTTCATCTACGTCTTCCACACACTTG	600
Qу	601	GTCAGTATTTCCAGAAATTGGGACGATGTTCAGTGAGAGTTTCTGTGAACACAGCCAATG	660
Db	601	GTCAGTATTTCCAGAAATTGGGACGATGTTCAGTGAGAGTTTCTGTGAACACAGCCAATG	660
Qу	661	TGACACTTGGGCCTCAACTCATGGAAGTGACTGTCTACAGAAGACATGGACGGGCATATG	720
Db	661	TGACACTTGGGCCTCAACTCATGGAAGTGACTGTCTACAGAAGACATGGACGGCATATG	720
Qу	721	TTCCCATCGCACAAGTGAAAGATGTGTACGTGGTAACAGATCAGATTCCTGTGTTTGTGA	780
Db	721	TTCCCATCGCACAAGTGAAAGATGTGTACGTGGTAACAGATCAGATTCCTGTGTTTGTGA	780
Qу	781	CTATGTTCCAGAAGAACGATCGAAATTCATCCGACGAAACCTTCCCAAAGATCTCCCCAT	840
Db	781	CTATGTTCCAGAAGAACGATCGAAATTCATCCGACGAAAACCTTCCCAAAGATCTCCCCAT	840
Qу	841	TATGTTTGATGTCCTGATTCATGATCCTAGCCACTTCCTCAATTATTCTACCATTAACTA	900
Db	841	TATGTTTGATGTCCTGATTCATGATCCTAGCCACTTCCTCAATTATTCTACCATTAACTA	900
Qу	901	CAAGTGGAGCTTCGGGGATAATACTGGCCTGTTTGTTTCCACCAATCATACTGTGAATCA	960
Db	901	CAAGTGGAGCTTCGGGGATAATACTGGCCTGTTTGTTTCCACCAATCATACTGTGAATCA	960
Qу	961	CACGTATGTGCTCAATGGAACCTTCAGCCTTAACCTCACTGTGAAAGCTGCAGCACCAGG	1020
Db	961	CACGTATGTGCTCAATGGAACCTTCAGCCTTAACCTCACTGTGAAAGCTGCAGCACCAGG	1020
Qу	1021	ACCTTGTCCGCCACCACCACCACCAGACCTTCAAAACCCACCC	1080
Db	1021	ACCTTGTCCGCCACCGCCACCACCACCAGACCTTCAAAACCCACCC	1080
Qу	1081	TGCTGGTGACAACCCCCTGGAGCTGAGTAGGATTCCTGATGAAAACTGCCAGATTAACAG	1140
Db	1081	TGCTGGTGACAACCCCCTGGAGCTGAGTAGGATTCCTGATGAAAACTGCCAGATTAACAG	1140
Ov	1141	ATATGGCCACTTTCAAGCCACCATCACAATTGTAGAGGGAATCTTAGAGGTTAACATCAT	1200

Db	1141		1200
Qy	1201	CCAGATGACAGACGTCCTGATGCCGGTGCCATGGCCTGAAAGCTCCCTAATAGACTTTGT	1260
Db	1201		1260
Qy	1261	CGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCATCATTTCTGACCCCACCTG	1320
Db	1261	CGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCATCATTTCTGACCCCACCTG	1320
Qу	1321	CGAGATCACCCAGAACACAGTCTGCAGCCCTGTGGATGTGGATGAGATGTGTCTGCTGAC	1380
Db	1321	CGAGATCACCCAGAACACAGTCTGCAGCCCTGTGGATGTGGATGAGATGTGTCTGCTGAC	1380
Qу	1381	TGTGAGACGAACCTTCAATGGGTCTGGGACGTACTGTGTGAACCTCACCCTGGGGGATGA	1440
Db	1381	TGTGAGACGAACCTTCAATGGGTCTGGGACGTACTGTGTGAACCTCACCCTGGGGGATGA	1440
Qу	1441	CACAAGCCTGGCTCTCACGAGCACCCTGATTTCTGTTCCTGACAGAGACCCAGCCTCGCC	1500
Db	1441	CACAAGCCTGGCTCTCACGAGCACCCTGATTTCTGTTCCTGACAGAGACCCAGCCTCGCC	1500
Qу	1501	TTTAAGGATGGCAAACAGTGCCCTGATCTCCGTTGGCTGCTTGGCCATATTTGTCACTGT	1560
Db	1501	TTTAAGGATGGCAAACAGTGCCCTGATCTCCGTTGGCTGCTTGGCCATATTTGTCACTGT	1560
Qy	1561	GATCTCCCTCTTGGTGTACAAAAAACACAAGGAATACAACCCAATAGAAAATAGTCCTGG	1620
Db	1561	GATCTCCCTCTTGGTGTACAAAAAACACAAGGAATACAACCCAATAGAAAATAGTCCTGG	1620
Qу	1621	GAATGTGGTCAGAAGCCAAAAGCCTGAGTGTCTTTCTCAACCGTGCAAAAGCCGTGTTCTT	1680
Db	1621	GAATGTGGTCAGAAGCCAAAAGCCTGAGTGTCTTTCTCAACCGTGCAAAAGCCGTGTTCTT	1680
Qу		CCCGGGAAACCAGGAAAAGGATCCGCTACTCAAAAACCAAGAATTTAAAGGAGTTTCTTA	
Db		CCCGGGAAACCAGGAAAAGGATCCGCTACTCAAAAACCAAGAATTTAAAGGAGTTTCTTA	
Qу		AATTTCGACCTTGTTTCTGAAGCTCACTTTTCAGTGCCATTGATGTGAGATGTGCTGGAG	
Db	1741	AATTTCGACCTTGTTTCTGAAGCTCACTTTTCAGTGCCATTGATGTGAGATGTGCTGGAG	1800
Qу		TGGCTATTAACCTTTTTTCCTAAAGATTATTGTTAAATAGATATTGTGGTTTGGGGAAG	
Db		${\tt TGGCTATTAACCTTTTTTCCTAAAGATTATTGTTAAATAGATATTGTGGTTTGGGGAAG}$	
Qy		TTGAATTTTTATAGGTTAAATGTCATTTTAGAGATGGGGAGAGGGATTATACTGCAGGC	
Db		TTGAATTTTTATAGGTTAAATGTCATTTTAGAGATGGGGAGAGGGATTATACTGCAGGC	
Qу		AGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTTTCATTATTT	
Db		AGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTTTCATTATTT	
Qу	1981	TTTATGTTTCACTTATAAAGTCTTAGGTAACTAGTAGGATAGAAACACTGTGTCCCGAGA	2040

Db	1981	TTTATGTTTCACTTATAAAGTCTTAGGTAACTAGTAGGATAGAAACACTGTGTCCCGAGA	2040
Qy	2041	GTAAGGAGAAGCTACTATTGATTAGAGCCTAACCCAGGTTAACTGCAAGAAGAGGCGG	2100
Db	2041	GTAAGGAGAAGCTACTATTGATTAGAGCCTAACCCAGGTTAACTGCAAGAAGAGGCGG	2100
Qу	2101	GATACTTCAGCTTTCCATGTAACTGTATGCATAAAGCCAATGTAGTCCAGTTTCTAAGA	2160
Db	2101	GATACTTTCAGCTTTCCATGTAACTGTATGCATAAAGCCAATGTAGTCCAGTTTCTAAGA	2160
Qy	2161	TCATGTTCCAAGCTAACTGAATCCCACTTCAATACACACTCATGAACTCCTGATGGAACA	2220
Db	2161	TCATGTTCCAAGCTAACTGAATCCCACTTCAATACACACTCATGAACTCCTGATGGAACA	2220
Qу	2221	ATAACAGGCCCAAGCCTGTGGTATGATGTGCACACTTGCTAGACTCAGAAAAAATACTAC	2280
Db	2221	ATAACAGGCCCAAGCCTGTGGTATGATGTGCACACTTGCTAGACTCAGAAAAAAATACTAC	2280
Qу	2281	TCTCATAAATGGGTGGGAGTATTTTGGTGACAACCTACTTTGCTTGGCTGAGTGAAGGAA	2340
Db	2281	TCTCATAAATGGGTGGGAGTATTTTGGTGACAACCTACTTTGCTTGGCTGAGTGAAGGAA	2340
QУ	2341	TGATATTCATATATTCATTATTCCATGGACATTTAGTTAG	2400
Db	2341	TGATATTCATATATTCATTTATTCCATGGACATTTAGTTAG	2400
Qy	2401	ATGATGCTGAGTGACACTCTTGTGTATATTTCCAAATTTTTGTATAGTCGCTGCACATAT	2460
Db	2401	ATGATGCTGAGTGACACTCTTGTGTATATTTCCAAATTTTTGTATAGTCGCTGCACATAT	2460
Qy	2461	TTGAAATCAAAATATTAAGACTTTCCAAAAATTTGGTCCCTGGTTTTTCATGGCAACTTG	2520
Db	2461	TTGAAATCAAAATTTAAGACTTTCCAAAAATTTGGTCCCTGGTTTTTCATGGCAACTTG	2520
Qу	2521	ATCAGTAAGGATTTCCCCTCTGTTTGGAACTAAAACCATTTACTATATGTTAGACAAGAC	2580
Db	2521	ATCAGTAAGGATTTCCCCTCTGTTTGGAACTAAAACCATTTACTATATGTTAGACAAGAC	2580
Qy	2581	ATTTTTTTTTTTCCTTCCTGAAAAAAAATGAGGGAAGAGACAAAAAAAA	2640
Db	2581	ATTTTTTTTTTTCCTTCCTGAAAAAAATGAGGGAAGACAAAAAAAA	2640
QУ	2641	AAAAAAAAAAAAAAAAA 2661 	
Db	2641	AAAAAAAAAAAAAAAAAAA 2661	

RESULT 2

US-10-463-106-1

- ; Sequence 1, Application US/10463106
- ; Publication No. US20030202938A1
- ; GENERAL INFORMATION:
- ; APPLICANT: RAMESHWAR, Pranela
- ; TITLE OF INVENTION: HEMATOPOIETIC GROWTH FACTOR INDUCIBLE NEUROKININ-1 GENE
- ; FILE REFERENCE: 267/033 University of Medicine & Dentistry of New Jersey
- ; CURRENT APPLICATION NUMBER: US/10/463,106
- ; CURRENT FILING DATE: 2003-06-17

```
PRIOR APPLICATION NUMBER: US 10/039,272
  PRIOR FILING DATE: 2001-10-20
  PRIOR APPLICATION NUMBER: US 60/241,881
  PRIOR FILING DATE: 2000-10-20
  NUMBER OF SEQ ID NOS: 2
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 1
   LENGTH: 2661
   TYPE: DNA
   ORGANISM: Homo sapiens
US-10-463-106-1
                                     DB 17; Length 2661;
 Query Match
                    100.0%; Score 2661;
 Best Local Similarity
                    100.0%; Pred. No. 0;
 Matches 2661; Conservative
                         0; Mismatches
                                       0;
                                          Indels
                                                  0;
                                                     Gaps
                                                           0;
         1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCCTGCGTCCGTGAGAATTCAGCA 60
Qу
           1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCCTGCGTCCGTGAGAATTCAGCA 60
Db
        61 TGGAATGTCTCTACTATTTCCTGGGATTTCTGCTCCTGGCTGCAAGATTGCCACTTGATG 120
Qу
           61 TGGAATGTCTCTACTATTTCCTGGGATTTCTGCTCCTGGCTGCAAGATTGCCACTTGATG 120
Db
       121 CCGCCAAACGATTTCATGATGTGCTGGGCAATGAAAGACCTTCTGCTTACATGAGGGAGC 180
Qу
           121 CCGCCAAACGATTTCATGATGTGCTGGGCAATGAAAGACCTTCTGCTTACATGAGGGAGC 180
Db
       181 ACAATCAATTAAATGGCTGGTCTTCTGATGAAAATGACTGGAATGAAAAACTCTACCCAG 240
Qy
           181 ACAATCAATTAAATGGCTGGTCTTCTGATGAAAATGACTGGAATGAAAAACTCTACCCAG 240
Db
Qу
       241 TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGG 300
           241 TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGG 300
Db
       301 TCCTGACCAGTGACTCACCAGCCCTCGTGGGCTCAAATATAACATTTGCGGTGAACCTGA 360
Qу
           301 TCCTGACCAGTGACTCACCAGCCCTCGTGGGCTCAAATATAACATTTGCGGTGAACCTGA 360
Db
       361 TATTCCCTAGATGCCAAAAGGAAGATGCCAATGGCAACATAGTCTATGAGAAGAACTGCA 420
Qу
           Db
       361 TATTCCCTAGATGCCAAAAGGAAGATGCCAATGGCAACATAGTCTATGAGAAGAACTGCA 420
       421 GAAATGAGGCTGGTTTATCTGCTGATCCATATGTTTACAACTGGACAGCATGGTCAGAGG 480
Qу
           Db
       421 GAAATGAGGCTGGTTTATCTGCTGATCCATATGTTTACAACTGGACAGCATGGTCAGAGG 480
       481 ACAGTGACGGGGAAAATGGCACCGGCCAAAGCCATCATAACGTCTTCCCTGATGGGAAAC 540
Qy
           Db
       481 ACAGTGACGGGGAAAATGGCACCGGCCAAAGCCATCATAACGTCTTCCCTGATGGGAAAC 540
       541 CTTTTCCTCACCCCCGGATGGAGAGATGGAATTTCATCTACGTCTTCCACACACTTG 600
Qу
           541 CTTTTCCTCACCACCCCGGATGGAAGATGGAATTTCATCTACGTCTTCCACACACTTG 600
Db
       601 GTCAGTATTTCCAGAAATTGGGACGATGTTCAGTGAGAGTTTCTGTGAACACAGCCAATG 660
Qу
```

Db	601	GTCAGTATTTCCAGAAATTGGGACGATGTTCAGTGAGAGTTTCTGTGAACACAGCCAATG	660
Qу	661	TGACACTTGGGCCTCAACTCATGGAAGTGACTGTCTACAGAAGACATGGACGGGCATATG	720
Db	661	TGACACTTGGGCCTCAACTCATGGAAGTGACTGTCTACAGAAGACATGGACGGGCATATG	720
Qу	721	TTCCCATCGCACAAGTGAAAGATGTGTACGTGGTAACAGATCAGATTCCTGTGTTTGTGA	780
Db	721	TTCCCATCGCACAAGTGAAAGATGTGTACGTGGTAACAGATCAGATTCCTGTGTTTGTGA	780
Qу	781	CTATGTTCCAGAAGAACGATCGAAATTCATCCGACGAAACCTTCCCAAAGATCTCCCCAT	840
Db	781	CTATGTTCCAGAAGAACGATCGAAATTCATCCGACGAAACCTTCCCAAAGATCTCCCCAT	840
Qу	841	TATGTTTGATGTCCTGATTCATGATCCTAGCCACTTCCTCAATTATTCTACCATTAACTA	900
Db	841	TATGTTTGATGTCCTGATTCATGATCCTAGCCACTTCCTCAATTATTCTACCATTAACTA	900
Qу	901	CAAGTGGAGCTTCGGGGATAATACTGGCCTGTTTGTTTCCACCAATCATACTGTGAATCA	960
Db	901	CAAGTGGAGCTTCGGGGATAATACTGGCCTGTTTGTTTCCACCAATCATACTGTGAATCA	960
Qу	961	CACGTATGTGCTCAATGGAACCTTCAGCCTTAACCTCACTGTGAAAGCTGCAGCACCAGG	1020
Db	961	CACGTATGTGCTCAATGGAACCTTCAGCCTTAACCTCACTGTGAAAGCTGCAGCACCAGG	1020
Qy	1021	ACCTTGTCCGCCACCGCCACCACCACCAGACCTTCAAAACCCACCC	1080
Db	1021	ACCTTGTCCGCCACCACCACCACCAGACCTTCAAAACCCACCC	1080
Qу	1081	TGCTGGTGACAACCCCCTGGAGCTGAGTAGGATTCCTGATGAAAACTGCCAGATTAACAG	1140
Db	1081	TGCTGGTGACAACCCCCTGGAGCTGAGTAGGATTCCTGATGAAAACTGCCAGATTAACAG	1140
Qy	1141	ATATGGCCACTTTCAAGCCACCATCACAATTGTAGAGGGAATCTTAGAGGTTAACATCAT	1200
Db	1141	ATATGGCCACTTCAAGCCACCATCACAATTGTAGAGGGAATCTTAGAGGTTAACATCAT	1200
Qу	1201	CCAGATGACAGACGTCCTGATGCCGGTGCCATGGCCTGAAAGCTCCCTAATAGACTTTGT	1260
Db	1201	CCAGATGACAGACGTCCTGATGCCGGTGCCATGGCCTGAAAGCTCCCTAATAGACTTTGT	1260
Qу	1261	CGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCATCATTTCTGACCCCACCTG	1320
Db	1261	CGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCATCATTTCTGACCCCACCTG	1320
Qу	1321	CGAGATCACCCAGAACACAGTCTGCAGCCCTGTGGATGTGGATGAGATGTGTCTGCTGAC	1380
Db	1321	CGAGATCACCCAGAACACAGTCTGCAGCCCTGTGGATGTGGATGAGATGTGTCTGCTGAC	1380
Qу	1381	TGTGAGACGAACCTTCAATGGGTCTGGGACGTACTGTGTGAACCTCACCCTGGGGGATGA	1440
Db	1381	TGTGAGACGAACCTTCAATGGGTCTGGGACGTACTGTGAACCTCACCCTGGGGGATGA	1440
Qу	1441	CACAAGCCTGGCTCTCACGAGCACCCTGATTTCTGTTCCTGACAGAGACCCAGCCTCGCC	1500

Db	1441	CACAAGCCTGGCTCTCACGAGCACCCTGATTTCTGTTCCTGACAGAGACCCAGCCTCGCC	1500
QУ	1501	TTTAAGGATGGCAAACAGTGCCCTGATCTCCGTTGGCTGCTTGGCCATATTTGTCACTGT	1560
Db	1501	TTTAAGGATGGCAAACAGTGCCCTGATCTCCGTTGGCTGCTTGGCCATATTTGTCACTGT	1560
Qу	1561	GATCTCCCTCTTGGTGTACAAAAAACACAAGGAATACAACCCAATAGAAAATAGTCCTGG	1620
Db	1561	GATCTCCCTCTTGGTGTACAAAAACACAAGGAATACAACCCAATAGAAAATAGTCCTGG	
QУ	1621	GAATGTGGTCAGAAGCCAAAGGCCTGAGTGTCTTTCTCAACCGTGCAAAAGCCGTGTTCTT	1680
Db	1621	GAATGTGGTCAGAAGCCAAAGGCCTGAGTGTCTTTCTCAACCGTGCAAAAGCCGTGTTCTT	1680
QУ	1681	CCCGGGAAACCAGGAAAAGGATCCGCTACTCAAAAACCAAGAATTTAAAGGAGTTTCTTA	1740
Db	1681	CCCGGGAAACCAGGAAAAGGATCCGCTACTCAAAAACCAAGAATTTAAAGGAGTTTCTTA	1740
Qу	1741	AATTTCGACCTTGTTTCTGAAGCTCACTTTTCAGTGCCATTGATGTGAGATGTGCTGGAG	1800
Db	1741	AATTTCGACCTTGTTTCTGAAGCTCACTTTTCAGTGCCATTGATGTGAGATGTGCTGGAG	1800
Qу	1801	TGGCTATTAACCTTTTTTTCCTAAAGATTATTGTTAAATAGATATTGTGGTTTGGGGAAG	1860
Db	1801	TGGCTATTAACCTTTTTTTCCTAAAGATTATTGTTAAATAGATATTGTGGTTTTGGGGAAG	1860
Qу	1861	TTGAATTTTTATAGGTTAAATGTCATTTTAGAGATGGGGAGAGGGATTATACTGCAGGC	1920
Db	1861	TTGAATTTTTATAGGTTAAATGTCATTTTAGAGATGGGGAGAGGGATTATACTGCAGG	1920
Qу	1921	AGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTTTCATTATTT	1980
Db	1921	AGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTTTCATTATTT	1980
Qу	1981	TTTATGTTTCACTTATAAAGTCTTAGGTAACTAGTAGGATAGAAACACTGTGTCCCGAGA	2040
Db	1981	TTTATGTTTCACTTATAAAGTCTTAGGTAACTAGTAGGATAGAAACACTGTGTCCCGAGA	2040
Qу	2041	GTAAGGAGAGAGCTACTATTGATTAGAGCCTAACCCAGGTTAACTGCAAGAAGAGGCGG	2100
Db	2041	GTAAGGAGAAGCTACTATTGATTAGAGCCTAACCCAGGTTAACTGCAAGAAGAGGCGG	2100
Qy	2101	GATACTTTCAGCTTTCCATGTAACTGTATGCATAAAGCCAATGTAGTCCAGTTTCTAAGA	2160
Db	2101	GATACTTTCAGCTTTCCATGTAACTGTATGCATAAAGCCAATGTAGTCCAGTTTCTAAGA	2160
Qу	2161	TCATGTTCCAAGCTAACTGAATCCCACTTCAATACACACTCATGAACTCCTGATGGAACA	2220
Db	2161	TCATGTTCCAAGCTAACTGAATCCCACTTCAATACACACTCATGAACTCCTGATGGAACA	2220
Qу	2221	ATAACAGGCCCAAGCCTGTGGTATGATGTGCACACTTGCTAGACTCAGAAAAAATACTAC	2280
Db	2221	ATAACAGGCCCAAGCCTGTGGTATGATGTGCACACTTGCTAGACTCAGAAAAAATACTAC	2280
Qу	2281	TCTCATAAATGGGTGGGAGTATTTTGGTGACAACCTACTTTGCTTGGCTGAGTGAAGGAA	2340
Db	2281	TCTCATAAATGGGTGGGAGTATTTTGGTGACAACCTACTTTGCTTGGCTGAGTGAAGGAA	2340

Qу	2341	TGATATTCATATTCATTTATTCCATGGACATTTAGTTAGT	2400
Db	2341		2400
Qy	2401	ATGATGCTGAGTGACACTCTTGTGTATATTTCCAAATTTTTGTATAGTCGCTGCACATAT	2460
Db	2401	ATGATGCTGAGTGACACTCTTGTGTATATTTCCAAATTTTTGTATAGTCGCTGCACATAT	2460
Qу	2461		2520
Db	2461	TTGAAATCAAAATATTAAGACTTTCCAAAAATTTGGTCCCTGGTTTTTCATGGCAACTTG	2520
QУ	2521	ATCAGTAAGGATTTCCCCTCTGTTTGGAACTAAAACCATTTACTATATGTTAGACAAGAC	2580
Db	2521	ATCAGTAAGGATTTCCCCTCTGTTTGGAACTAAAACCATTTACTATATGTTAGACAAGAC	2580
Qу	2581	ATTTTTTTTTTTCCTTCCTGAAAAAAAAATGAGGGAAGAGACAAAAAAAA	2640
Db	2581	ATTTTTTTTTTTCCTTCCTGAAAAAAATGAGGGAAGAGACAAAAAAAA	2640
Qy	2641	АААААААААААААААААА 2661	
Db	2641		•

OM nucleic - nucleic search, using sw model

Run on: February 21, 2005, 10:29:04; Search time 7723 Seconds

(without alignments)

13115.243 Million cell updates/sec

Title: US-10-039-272-1

Perfect score: 2661

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 34239544 seqs, 19032134700 residues

Total number of hits satisfying chosen parameters: 68479088

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100%

Listing first 45 summaries

Database : EST:*

1: gb_est1:* 2: gb_est2:*

```
3: gb_htc:*
4: gb_est3:*
5: gb_est4:*
6: gb_est5:*
7: gb_est6:*
8: gb_gss1:*
9: gb_gss2:*
```

ક

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result			Query				
No.		Score	Match	Length	DB	ID	Description
							
	1	2550	95.8	2636	3	BC025297	BC025297 Homo sapi
	2	1698	63.8	1757	3	CR620418	CR620418 full-leng
	3	1664.8	62.6	1695	3	CR625459	CR625459 full-leng
	4	1617	60.8	1726	3	CR626032	CR626032 full-leng
	5	1049.8	39.5	3615	3	AK044764	AK044764 Mus muscu
	6	1046.6	39.3	2265	3	AK076347	AK076347 Mus muscu
С	7	1017.4	38.2	1106	5	BX397314	BX397314 BX397314
С	8	1013.6	38.1	1050	5	BX379978	BX379978 BX379978
	9	943.8	35.5	2431	3	AK079220	AK079220 Mus muscu
C	10	932.6	35.0	971	5	BX423077	BX423077 BX423077
С	11	926.6	34.8	1015	5	BX458448	BX458448 BX458448
	12	918	34.5	1029	5	BX406949	BX406949 BX406949
	13	913.6	34.3	998	5	BX379979	BX379979 BX379979
	14	910.6	34.2	1063	5	BX336884	BX336884 BX336884
	15	906.4	34.1	1067	5	BX364871	BX364871 BX364871
	16	885.6	33.3	947	5	BX458449	BX458449 BX458449
	17	867.4	32.6	895	7	CF552020	CF552020 AGENCOURT
	18	864.4	32.5	949	5	BX423078	BX423078 BX423078
С	19	863.4	32.4	1011	5	BX406948	BX406948 BX406948
С	20	862.2	32.4	905	1	AL542811	AL542811 AL542811
С	21	851.2	32.0	930	5	BX364870	BX364870 BX364870
	22	844.6	31.7	987	5	BX381217	BX381217 BX381217
С	23	835.4	31.4	1035	1	AL575920	AL575920 AL575920
С	24	827.2	31.1	957	5	BX396828	BX396828 BX396828
	25	823	30.9	858	1	AL542812	AL542812 AL542812
	26	816.6	30.7	891	5	BX452668	BX452668 BX452668
	27	815.8	30.7	911	4	BI521316	BI521316 603081887
	28	799.8	30.1	910	5	BX396829	BX396829 BX396829
	29	796.8	29.9	858	4	BG742951	BG742951 602632050
	30	788	29.6	1107	4	BM550298	BM550298 AGENCOURT
	31	779	29.3	1089	4	BM547872	BM547872 AGENCOURT
	32	776	29.2	835	4	BG576651	BG576651 602597538
	33	775	29.1	808	4	BG742272	BG742272 602631402
	34	775	29.1	962	4	BG676576	BG676576 602623049
	35	758.2	28.5	810	1	AU139997	AU139997 AU139997
С	36	749.8	28.2	993	1	AL564958	AL564958 AL564958
	37	745	28.0	754	4	BG211992	BG211992 RST31703
	38	743.8	28.0	892	5	BU157659	BU157659 AGENCOURT
С	39	742.4	27.9	878	5	BX437190	BX437190 BX437190
	40	737.8	27.7	855	5	BU178305	BU178305 AGENCOURT

	41	733.8	27.6	807	4	BG696053	BG696053 602658007
	42	731.6	27.5	905	6	CD109017	CD109017 AGENCOURT
	43	728.2	27.4	857	5	BU150501	BU150501 AGENCOURT
	44	722.2	27.1	808	6	CD108927	CD108927 AGENCOURT
С	45	715.2	26.9	894	1	AL550419	AL550419 AL550419

ALIGNMENTS

RESULT 1 BC025297

LOCUS BC025297 2636 bp mRNA linear HTC 08-MAR-2002

DEFINITION Homo sapiens, glycoprotein (transmembrane) nmb, clone

IMAGE: 4877773, mRNA.

ACCESSION BC025297

VERSION BC025297.1 GI:19264140

KEYWORDS HTC.

SOURCE Homo sapiens (human)

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1 (bases 1 to 2636)

AUTHORS Strausberg, R.
TITLE Direct Submission

JOURNAL Submitted (05-MAR-2002) National Institutes of Health, Mammalian

Gene Collection (MGC), Cancer Genomics Office, National Cancer Institute, 31 Center Drive, Room 11A03, Bethesda, MD 20892-2590,

USA

REMARK NIH-MGC Project URL: http://mgc.nci.nih.gov

COMMENT Contact: MGC help desk

Email: cgapbs-r@mail.nih.gov
Tissue Procurement: ATCC/DCTD/DTP

cDNA Library Preparation: Rubin Laboratory

cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)

DNA Sequencing by: Genome Sequence Centre, BC Cancer Agency, Vancouver, BC, Canada

info@bcgsc.bc.ca

Steven Jones, Jennifer Asano, Ian Bosdet, Yaron Butterfield, Susanna Chan, Readman Chiu, Chris Fjell, Erin Garland, Ran Guin, Letticia Hsiao, Martin Krzywinski, Reta Kutsche, Oliver Lee, Soo Sen Lee, Victor Ling, Carrie Mathewson, Candice McLeavy, Steven Ness, Pawan Pandoh, Anna-Liisa Prabhu, Parvaneh Saeedi, Jacqueline Schein, Duane Smailus, Michael Smith, Lorraine Spence, Jeff Stott, Michael Thorne, Miranada Tsai, Natasja van den Bosch, Jill Vardy, George Yang, Scott Zuyderduyn, Marco Marra.

Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov Series: IRAL Plate: 42 Row: i Column: 5

This clone was selected for full length sequencing because it passed the following selection criteria: matched mRNA gi: 4505404 This clone has the following problem: frame shifted.

FEATURES

Location/Qualifiers

source

1. .2636

/organism="Homo sapiens"

/mol_type="mRNA"

```
/db_xref="LocusID:10457"
/db_xref="taxon:9606"
/clone="IMAGE:4877773"
/tissue_type="Skin, melanotic melanoma, high MDR."
/clone_lib="NIH_MGC_49"
/lab_host="DH10B-R"
/note="Vector: pOTB7"
```

ORIGIN

```
95.8%;
                      Score 2550; DB 3; Length 2636;
 Query Match
 Best Local Similarity
                 99.1%;
                      Pred. No. 0;
 Matches 2595; Conservative
                        Mismatches
                      0;
                                 20;
                                     Indels
                                           3;
                                              Gaps
                                                    3;
       28 AACCTTGGTGCCTGCGTCCGTGAGAATTCAGCATGGAATGTCTCTACTATTTCCTGGGAT 87
Qу
         20 ACCTTGAGTGCCTGCGTCCGTGAGAATTCAGCATGGAATGTCTCTACTATTTCCTGGGAT 79
Db
       88 TTCTGCTCCTGGCTGCAAGATTGCCACTTGATGCCGCCAAACGATTTCATGATGTGCTGG 147
Qy
         80 TTCTGCTCCTGGCTGCAAGATTGCCACTTGATGCCGCCAAACGATTTCATGATGTGCTGG 139
Db
      Qу
         Db
      208 ATGAAAATGACTGGAATGAAAAACTCTACCCAGTGTGGAAGCGGGGAGACATGAGGTGGA 267
Qу
         200 ATGAAAATGACTGGAATGAAAAACTCTACCCAGTGTGGAAGCGGGGAGACATGAGGTGAA 259
Db
      268 AAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGGTCCTGACCAGTGACTCACCAGCCCTCG 327
Qу
         260 AAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGGTCCTGACCAGTGACTCACCAGCCCTCG 319
Db
      328 TGGGCTCAAATATAACATTTGCGGTGAACCTGATATTCCCTAGATGCCAAAAGGAAGATG 387
Qу
         320 TGGGCTCAAATATAACATTTGCGGTGAACCTGATATTCCCTAGATGCCAAAAGGAAGATG 379
Db
      388 CCAATGGCAACATAGTCTATGAGAAGAACTGCAGAAATGAGGCTGGTTTATCTGCTGATC 447
Qу
         380 CCAATGGCAACATAGTCTATGAGAAGAACTGCAGAAATGAGGCTGGTTTATCTGCTGATC 439
Db
      448 CATATGTTTACAACTGGACAGCATGGTCAGAGGACAGTGACGGGGAAAATGGCACCGGCC 507
Qу
         Db
      440 CGTATGTTTACAACTGGACAGCATGGTCAGAGGACAGTGACGGGGAAAATGGCACCGGCC 499
      508 AAAGCCATCATAACGTCTTCCCTGATGGGAAACCTTTTCCTCACCACCCCGGATGGAGAA 567
Qу
         500 AAAGCCATCATAACGTCTTCCCTGATGGGAAACCTTTTCCTCACCACCCCGGATGGAGAA 559
Db
      568 GATGGAATTTCATCTACGTCTTCCACACACTTGGTCAGTATTTCCAGAAATTGGGACGAT 627
Qу
         560 GATGGAATTTCATCTACGTCTTCCACACACTTGGTCAGTATTTCCAGAAATTGGGACGAT 619
Db
      628 GTTCAGTGAGAGTTTCTGTGAACACCCAATGTGACACTTGGGCCTCAACTCATGGAAG 687
Qy
         620 GTTCAGTGAGAGTTTCTGTGAACACAGCCAATGTGACACTTGGGCCTCAACTCATGGAAG 679
Db
```

Qу	688	TGACTGTCTACAGAAGACATGGACGGGCATATGTTCCCATCGCACAAGTGAAAGATGTGT	747
Db	680	TGACTGTCTACAGAAGACATGGACGGGCATATGTTCCCATCGCACAAGTGAAAGATGTGT	739
Qy	748	ACGTGGTAACAGATCAGATTCCTGTGTTTGTGACTATGTTCCAGAAGAACGATCGAAATT	807
Db	740	ACGTGGTAACAGATCAGATTCCTGTGTTTGTGACTATGTTCCAGAAGAACGATCGAAATT	799
Qy	808	CATCCGACGAAACCTTCC-CAAAGATCTCCCCATTATGTTTGATGTCCTGATTCATGATC	866
Db	800	CATCCGACGAAACCTTCCTCAAAGATCTCCCCATTATGTTTGATGTCCTGATTCATGATC	859
Qу	867	CTAGCCACTTCCTCAATTATTCTACCATTAACTACAAGTGGAGCTTCGGGGATAATACTG	926
Db	860		919
Qу	927	GCCTGTTTGTTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA	986
Db	920		979
Qy	987	GCCTTAACCTCACTGTGAAAGCTGCAGCACCAGGACCTTGTCCGCCACCGCCACCACCAC	1046
Db	980		1039
Qу	1047	CCAGACCTTCAAAACCCACCCCTTCTTTAGGACCTGCTGGTGACAACCCCCTGGAGCTGA	1106
Db	1040	CCAGACCTTCAAAACCCACCCCTTCTTTAGGACCTGCTGGTGACAACCCCCTTGGAGCTGA	1099
Qу	1107	GTAGGATTCCTGATGAAAACTGCCAGATTAACAGATATGGCCACTTTCAAGCCACCATCA	1166
Db	1100		1159
QУ	1167	CAATTGTAGAGGGAATCTTAGAGGTTAACATCATCCAGATGACAGACGTCCTGATGCCGG	1226
Db	1160	CAATTGTAGAGGGAATCTTAGAGGTTAACATCATCCAGATGACAGACGTCCTGATGCCGG	1219
QУ	1227	TGCCATGGCCTGAAAGCTCCCTAATAGACTTTGTCGTGACCTGCCAAGGGAGCATTCCCA	1286
Db	1220	TGCCATGGCCTGAAAGCTCCCTAATAGACTTTGTCGTGACCTGCCAAGGGAGCATTCCCA	1279
QУ	1287	CGGAGGTCTGTACCATCATTTCTGACCCCACCTGCGAGATCACCCAGAACACAGTCTGCA	1346
Db	1280	CGGAGGTCTGTACCATCATTTCTGACCCCACCTGCGAGATCACCCAGAACACAGTCTGCA	1339
Qу	1347	GCCCTGTGGATGTGGATGAGATGTGTCTGCTGACTGTGAGACGAACCTTCAATGGGTCTG	1406
Db	1340	GCCCTGTGGATGTGAGATGTGTCTGCTGACTGTGAGACGAACCTTCAATGGGTCTG	1399
QУ	1407	GGACGTACTGTGTGAACCTCACCCTGGGGGATGACACAAGCCTGGCTCTCACGAGCACCC	1466
Db	1400	GGACGTACTGTGTGAACCTCACCCTGGGGGATGACACAAGCCTGGCTCTCACGAGCACCC	1459
Qy	1467	TGATTTCTGTTCCTGACAGAGACCCAGCCTCGCCTTTAAGGATGGCAAACAGTGCCCTGA	1526
Db	1460	TGATTTCTGTTCCTGACAGAGACCCAGCCTCGCCTTTAAGGATGGCAAACAGTGCCCTGA	1519
Ov	, 1527	TCTCCGTTGGCTGCTTGGCCATATTTGTCACTGTGATCTCCCTCTTGGTGTACAAAAAAC	1586

Db	1520		1579
Qу	1587	ACAAGGAATACAACCCAATAGAAAATAGTCCTGGGAATGTGGTCAGAAGCCAAAGGCCTGA	1646
Db	1580		1639
Qу	1647	GTGTCTTTCTCAACCGTGCAAAAGCCGTGTTCTTCCCGGGAAACCAGGAAAAGGATCCGC	1706
Db	1640		1699
Qy	1707	TACTCAAAAACCAAGAATTTAAAGGAGTTTCTTAAATTTCGACCTTGTTTCTGAAGCTCA	1766
Db	1700	TACTCAAAAACCAAGAATTTAAAGGAGTTTCTTAAATTTCGACCTTGTTTCTGAAGCTCA	1759
Qу	1767	CTTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTAACCTTTTTTTCCTAAAG	1826
Db	1760	CTTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTAACCTTTTTTTCCTAAAG	1819
Qу	1827	ATTATTGTTAAATAGATATTGTGGTTTGGGGAAGTTGAATTTTTT	1886
Db	1820	ATTATTGTTAAATAGATATTGTGGTTTGGGGAAGTTGAATTTTTATAGGTTAAATGTCA	1879
Qy	1887	TTTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTTCAGCCATGTTGTGAAACTGAT	1946
Db	1880	TTTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTTCAGCCATGTTGTGAAACTGAT	1939
Qу		AAAAGCAACTTAGCAAGGCTTCTTTTCATTATTTTTTTTT	
Db	1940	AAAAGCAACTTAGCAAGGCTTCTTTTCATTATTTTTTTTT	1999
QУ		GTAACTAGTAGGATAGAAACACTGTGTCCCGAGAGTAAGGAGAGAAGCTACTATTGATTA	
Db		GTAACTAGTAGGATAGAAACACTGTGTCCCGAGAGTAAGGAGAGAAGCTACTATTGATTA	
Qу		GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCGGGATACTTTCAGCTTTCCATGTAACTG	
Db		GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCGGGATACTTTCAGCTTTCCATGTAACTG	
ΟУ		TATGCATAAAGCCAATGTAGTCCAGTTTCTAAGATCATGTTCCAAGCTAACTGAATCCCA	
Db		TATGCATAAAGCCAATGTAGTCCAGTTTCTAAGATCATGTTCCAAGCTAACTGAATCCCA	
QУ		CTTCAATACACACTCATGAACTCCTGATGGAACAATAACAGGCCCAAGCCTGTGGTATGA	
Db		CTTCAATACACACTCATGAACTCCTGATGGAACAATAACAGGCCCAAGCCTGTGGTATGA	
QУ		TGTGCACACTTGCTAGACTCAGAAAAATACTACTCTCATAAATGGGTGGG	
Db		TGTGCACACTTGCTAGACTCAGAAAAAATACTACTCTCATAAATGGGTGGG	
Qу		GTGACAACCTACTTTGCTTGGCTGAGTGAAGGAATGATATTCATATATTCATTTATTCCA	
Db		GTGACAACCTACTTTGCTTGGCTGAGTGAAGGAATGATATTCATATATTCATTTATTCCA	
QУ	2367	TGGACATTTAGTTAGTGCTTTTTATATACCAGGCATGATGCTGAGTGACACTCTTGTGTA	2426

Db	2360	TGGACATTTAGTTAGTGCTTTTTATATACCAGGCATGATGCTGAGTGACACTCTTGTGTA	2419
Qу	2427	TATTTCCAAATTTTGTATAGTCGCTGCACATATTTGAAATCAAAATATTAAGACTTTCC	2486
Db	2420	TATTTCCAAATTTTTGTACAGTCGCTGCACATATTTGAAATC-ATATATTAAGACTTTCC	2478
Qу	2487	AAAAATTTGGTCCCTGGTTTTTCATGGCAACTTGATCAGTAAGGATTTCCCCTCTGTTTG	2546
Db	2479	AAAGATGAGGTCCCTGGTTTTCATGGCAACTTGATCAGTAAGGATTTCACCTCTGTTTG	2538
Qy .	2547	GAACTAAAACCATTTACTATATGTTAGACAAGACATTTTTTTT	2606
Db	2539	TAACTAAAACCATCTACTATATGTTAGACATGACATTCTTTTTCTCCTCCTGAAAAA	2598
Qу	2607	-AAAATGAGGGAAGACAAAAAAAAAAAAAAAAAAAA 2643	
Db	2599	TAAAGTGTGGGAAGACAAAAAAAAAAAAAAAAAAAAAAA	

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - protein search, using frame plus n2p model Run on: February 18, 2005, 22:03:33; Search time 355 Seconds (without alignments) 5798.137 Million cell updates/sec Title: US-10-039-272-1 Perfect score: 4850 Sequence: Scoring table: BLOSUM62 Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fqapop 6.0, Fgapext 7.0 6.0 , Delext 7.0 Delop 2105692 seqs, 386760381 residues Searched: Total number of hits satisfying chosen parameters: 4211384 Minimum DB seq length: 0 Maximum DB seq length: 2000000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Command line parameters: -MODEL=frame+ n2p.model -DEV=xlp Q=/cgn2 1/USPTO_spool p/US10039272/runat_18022005_095204_14690/app_query.fasta_1 -DB=A_Geneseq_16Dec04 -QFMT=fastan -SUFFIX=rag -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -USER=US10039272 @CGN 1 1 398 @runat 18022005 095204 14690 -NCPU=6 -ICPU=3 -NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 Database : A Geneseq 16Dec04:* 1: geneseqp1980s:* 2: geneseqp1990s:* 3: geneseqp2000s:*

Pred. No. is the number of results predicted by chance to have a

4: geneseqp2001s:*
5: geneseqp2002s:*
6: geneseqp2003as:*
7: geneseqp2003bs:*
8: geneseqp2004s:*

score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

_		용				
Result	C = 0 × 0	Query	Tanath	DB	TD	Doggrintion
No.	Score	Match	Length 		ID 	Description
1	3014	62.1	563	8	ADR66659	Adr66659 Human pro
2	3014	62.1	563	8	ADR66317	Adr66317 Human pro
3	3014	62.1	563	8	ADR66339	Adr66339 Human pro
4	3014	62.1	563	8	ADR66681	Adr66681 Human pro
5	2999	61.8	560	2	AAW35382	Aaw35382 Murine me
6	2999	61.8	560	3	AAB11329	Aab11329 Human lun
. 7	2999	61.8	560	5	ABB78200	Abb78200 Amino aci
8	2999	61.8	560	5	ABB74961	Abb74961 Human lun
9	2999	61.8	560	5	ABP61881	Abp61881 Human lun
10	2999	61.8	560	6	ABU56592	Abu56592 Lung canc
11	2999	61.8	560	6	ABG72962	Abg72962 Human ost
12	2999	61.8	560	6	ABU70852	Abu70852 Human adi
13	2999	61.8	560	7	ADA28315	Ada28315 Human lun
14	2999	61.8	560	7	ADE95620	Ade95620 Human NOV
15	2999	61.8	560	7	ADH36879	Adh36879 Human lun
16	2999	61.8	560	7	ADJ68660	Adj68660 Human hea
17	2999	61.8	560	7	ADL14995	Adl14995 Human NMB
18	2999	61.8	560	7	ADN39940	Adn39940 Cancer/an
19	2999	61.8	560	8	ADH56342	Adh56342 Human nmb
20	2999	61.8	560	8	ADJ75569	Adj75569 Marker ge
21	2999	61.8	560	8	ADM56682	Adm56682 Human lun
22	2999	61.8	560	8	ADQ18310	Adq18310 Human sof
23	2999	61.8	560	8	ADP23127	Adp23127 PRO polyp
24	2980	61.4	572	7	ADD78235	Add78235 Human CGD
25	2979	61.4	572	5	AAU83612	Aau83612 Human PRO
26	2979	61.4	572	6	ABU80759	Abu80759 Human PRO
27	2979	61.4	572	6	AB033725	Abo33725 Novel hum
28	2979	61.4	572	6	ABU82068	Abu82068 Novel hum
29	2979	61.4	572	6	ABJ72248	Abj72248 Human PRO
30	2979	61.4	572	6	ABJ72376	Abj72376 Human PRO Abo34271 Human sec
31	2979	61.4	572	6	ABO34271	Abij72078 Human mem
32	2979	61.4		7	ABJ72078	Adb83532 Novel hum
33	2979	61.4		7 7	ADB83532	Adb80638 Novel hum
34	2979	61.4		7	ADB80638 ADB73179	Adb73179 Novel hum
35	2979	61.4	572 572			Adb78261 Novel hum
36	2979	61.4			ADB/0201 ADB84909	Adb84909 Human PRO
37	2979	61.4			ADB78015	Adb78015 Novel hum
38	2979 2979	61.4 61.4			ADB70013	Adb87081 Human PRO
39 40	2979	61.4			ADB84663	Adb84663 Human PRO
40	2979	61.4			ADB83778	Adb83778 Novel hum
41	2979	61.4			ADB72933	Adb72933 Novel hum
43	2979	61.4			ADC36771	Adc36771 Human PRO
44	2979	61.4			ADC21761	Adc21761 Human PRO
45	2979	61.4			ADC49792	Adc49792 Novel hum
3.0	20.0	51.1		•	·	•

OM nucleic - protein search, using frame plus n2p model Run on: February 18, 2005, 22:15:00; Search time 73 Seconds (without alignments) 5442.224 Million cell updates/sec Title: US-10-039-272-1 Perfect score: 4850 Sequence: BLOSUM62 Scoring table: Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext Fgapop 6.0, Fgapext 7.0 6.0 , Delext 7.0 Delop 513545 segs, 74649064 residues Searched: 1027090 Total number of hits satisfying chosen parameters: Minimum DB seq length: 0 Maximum DB seq length: 2000000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Command line parameters: -MODEL=frame+ n2p.model -DEV=xlp Q=/cgn2 1/USPTO_spool_p/US10039272/runat_18022005_095206_14721/app_query.fasta_1 -DB=Issued_Patents AA -QFMT=fastan -SUFFIX=rai -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -USER=US10039272 @CGN 1_1_72_@runat 18022005 095206_14721 -NCPU=6 -ICPU=3 -NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database: Issued Patents AA:*

1: /cgn2_6/ptodata/1/iaa/5A_COMB.pep:*
2: /cgn2_6/ptodata/1/iaa/5B_COMB.pep:*
3: /cgn2_6/ptodata/1/iaa/6A_COMB.pep:*
4: /cgn2_6/ptodata/1/iaa/6B_COMB.pep:*
5: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*
6: /cgn2_6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		8				
Result		Query				
No.	Score	Match	Length	DB 	ID	Description
1	2999	61.8	560	1	US-09-985-799-90	Sequence 90, Appl
2	2999	61.8	560	1	US-09-977-371-90	Sequence 90, Appl
3	2999	61.8	560	1	US-08-594-031-90	Sequence 90, Appl
4	2999	61.8	560	4	US-09-643-597-225	Sequence 225, App
5	2999	61.8	560	4	US-09-480-884A-225	Sequence 225, App
6	2999	61.8	560	4	US-09-542-615A-225	Sequence 225, App
7	2999	61.8	560	4	US-09-606-421B-225	Sequence 225, App
8	2999	61.8	560	4	US-09-476-496A-225	Sequence 225, App
9	2999	61.8	560	4	US-09-630-940B-225	Sequence 225, App
10	2999	61.8	560	4	US-09-943-075A-6	Sequence 6, Appli
11	2170	44.7	574	3	US-09-383-586-36	Sequence 36, Appl
12	2170	44.7	574	4	US-09-823-038A-36	Sequence 36, Appl
13	2170	44.7	574	4	US-09-943-075A-5	Sequence 5, Appli
14	2152	44.4	572	4	US-09-197-970B-5	Sequence 5, Appli
15	2136	44.0	572	4	US-09-943-075A-2	Sequence 2, Appli
16	950.5	19.6	376	1	US-09-985-799-100	Sequence 100, App
17	950.5	19.6	376	1	US-09-985-799-102	Sequence 102, App
18	950.5	19.6	376	1	US-09-977-371-100	Sequence 100, App
19	950.5	19.6	376	1	US-09-977-371-102	Sequence 102, App
20	950.5	19.6	376	1	US-08-594-031-100	Sequence 100, App
21	950.5	19.6	376	1	US-08-594-031-102	Sequence 102, App
22	593	12.2	661	2	US-08-417-174-121	Sequence 121, App
23	593	12.2	661	3	US-09-267-439-121	Sequence 121, App
24	593	12.2	661	4	US-08-388-852B-2	Sequence 2, Appli
25	593	12.2	661	4	US-09-073-138-121	Sequence 121, App
26	592	12.2	661	2	US-08-417-174-27	Sequence 27, Appl
27	592	12.2	661	2	US-08-231-565A-27	Sequence 27, Appl
28	592	12.2	661	2	US-09-007-961-27	Sequence 27, Appl
29	592	12.2	661	3	US-09-267-439-27	Sequence 27, Appl
30	592	12.2	661	4	US-09-073-138-27	Sequence 27, Appl
31	574.5	11.8	668	1	US-07-891-942G-6	Sequence 6, Appli
32	327.5	6.8	460		US-09-949-016-8029	Sequence 8029, Ap
33	238.5	4.9	190	4	US-08-388-852B-35	Sequence 35, Appl
34	236	4.9	202	4	US-08-388-852B-38	Sequence 38, Appl
35	233.5	4.8	192	4	US-08-388-852B-37	Sequence 37, Appl
36	233	4.8	197	4		Sequence 36, Appl
37	124	2.6			US-09-985-799 - 98	Sequence 98, Appl
38	124	2.6			US-09-977-371-98	Sequence 98, Appl
39	124	2.6			US-08-594-031-98	Sequence 98, Appl
40	120	2.5		4	US-09-784-358-8	Sequence 8, Appli
41	120	2.5			US-09-784-358-12	Sequence 12, Appl
42	120	2.5			US-09-784-358-2	Sequence 2, Appli
43	112.5	2.3			US-09-248-796A-26860	Sequence 26860, A
44	111	2.3			US-09-976-594-64	Sequence 64, Appl
45	111	2.3	525	4	US-09-919-039-62	Sequence 62, Appl

GenCore version 5.1.6
Copyright (c) 1993 - 2005 Compugen Ltd.

```
Run on:
               February 18, 2005, 22:44:56; Search time 303.5 Seconds
                                          (without alignments)
                                          5738.309 Million cell updates/sec
Title:
               US-10-039-272-1
Perfect score:
Sequence:
               Scoring table:
               BLOSUM62
               Xgapop 10.0 , Xgapext 0.5
               Ygapop 10.0 , Ygapext
                                     0.5
               Fgapop 6.0 , Fgapext
                                     7.0
               Delop
                       6.0 , Delext
                                      7.0
               1380268 seqs, 327241040 residues
Searched:
Total number of hits satisfying chosen parameters:
                                                  2760536
Minimum DB seq length: 0
Maximum DB seq length: 2000000000
Post-processing: Minimum Match 0%
                Maximum Match 100%
                Listing first 45 summaries
Command line parameters:
-MODEL=frame+ n2p.model -DEV=xlp
Q=/cgn2 1/USPTO spool p/US10039272/runat 18022005 095208 14781/app query.fasta 1
-DB=Published Applications AA -QFMT=fastan -SUFFIX=rapb -MINMATCH=0.1
-LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62
-TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100
-THR MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0
-MAXLEN=2000000000 -USER=US10039272 @CGN 1 1 393 @runat 18022005 095208 14781
-NCPU=6 -ICPU=3 -NO_MMAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPBLOCK=100
-LONGLOG -DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5
-FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
               Published Applications AA:*
Database :
               1: /cgn2 6/ptodata/2/pubpaa/US07 PUBCOMB.pep:*
                   /cgn2 6/ptodata/2/pubpaa/PCT NEW PUB.pep:*
               2:
                   /cgn2 6/ptodata/2/pubpaa/US06 NEW PUB.pep:*
               3:
                   /cgn2_6/ptodata/2/pubpaa/US06_PUBCOMB.pep:*
               4:
               5:
                   /cgn2 6/ptodata/2/pubpaa/US07 NEW PUB.pep:*
                   /cgn2_6/ptodata/2/pubpaa/PCTUS PUBCOMB.pep:*
               6:
                   /cgn2 6/ptodata/2/pubpaa/US08 NEW PUB.pep:*
               7:
                  /cgn2 6/ptodata/2/pubpaa/US08 PUBCOMB.pep:*
                  /cgn2 6/ptodata/2/pubpaa/US09A PUBCOMB.pep:*
               10: /cgn2 6/ptodata/2/pubpaa/US09B PUBCOMB.pep:*
                    /cgn2_6/ptodata/2/pubpaa/US09C_PUBCOMB.pep:*
               11:
               12: /cgn2_6/ptodata/2/pubpaa/US09 NEW PUB.pep:*
               13: /cgn2 6/ptodata/2/pubpaa/US10A PUBCOMB.pep:*
               14: /cgn2 6/ptodata/2/pubpaa/US10B PUBCOMB.pep:*
               15: /cgn2 6/ptodata/2/pubpaa/US10C PUBCOMB.pep:*
```

16: /cgn2 6/ptodata/2/pubpaa/US10D PUBCOMB.pep:*

```
17: /cgn2_6/ptodata/2/pubpaa/US10_NEW_PUB.pep:*
18: /cgn2_6/ptodata/2/pubpaa/US11_NEW_PUB.pep:*
19: /cgn2_6/ptodata/2/pubpaa/US60_NEW_PUB.pep:*
20: /cgn2_6/ptodata/2/pubpaa/US60_PUBCOMB.pep:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		0.			SUMMATES	
		8				
Result	_	Query				
No.	Score	Match	Length	DB	ID	Description
	2000					
1	2999	61.8	560	9	US-09-735-705-225	Sequence 225, App
2	2999	61.8	560	9	US-09-850-716A-225	Sequence 225, App
3	2999	61.8	560	9	US-09-897-778-225	Sequence 225, App
4	2999	61.8	560	9	US-09-943-075A-6	Sequence 6, Appli
5	2999	61.8	560	13	US-10-039-272-2	Sequence 2, Appli
6	2999	61.8	560	14	US-10-007-700-225	Sequence 225, App
7	2999	61.8	560	14	US-10-117-982-225	Sequence 225, App
8	2999	61.8	560	15	US-10-463-106-2	Sequence 2, Appli
9	2999	61.8	560	15	US-10-295-027-1258	Sequence 1258, Ap
10	2999	61.8	560	15	US-10-313-986-225	Sequence 225, App
11	2999	61.8	560	15	US-10-309-290-152	Sequence 152, App
12	2999	61.8	560	16	US-10-408-765A-466	Sequence 466, App
13	2979	61.4	572	14	US-10-227-884-42	Sequence 42, Appl
14	2979	61.4	572	14	US-10-230-163-42	Sequence 42, Appl
15	2979	61.4	572	14	US-10-230-338-42	Sequence 42, Appl
16	2979	61.4	572	14	US-10-218-631-42	Sequence 42, Appl
17	2979	61.4	572	14	US-10-230-414-42	Sequence 42, Appl
' 18	2979	61.4	572	14	US-10-232-224-42	Sequence 42, Appl
19	2979	61.4	572	14	US-10-216-159A-42	Sequence 42, Appl
20	2979	61.4	572	14	US-10-218-849-42	Sequence 42, Appl
21	2979	61.4	572	14	US-10-227-873-42	Sequence 42, Appl
22	2979	61.4	572	14	US-10-227-883-42	Sequence 42, Appl
23	2979	61.4	572	14	US-10-219-076-42	Sequence 42, Appl
24	2979	61.4	572	14	US-10-230-434-42	Sequence 42, Appl
25	2979	61.4	572	14	US-10-219-003-42	Sequence 42, Appl
26	2979	61.4	572	14	US-10-219-075-42	Sequence 42, Appl
27	2979	61.4	572	14	US-10-219-464-42	Sequence 42, Appl
28	2979	61.4	572	14	US-10-219-466-42	Sequence 42, Appl
29	2979	61.4	572	14	US-10-219-479-42	Sequence 42, Appl
30	2979	61.4	572	14	US-10-219-481-42	Sequence 42, Appl
31	2979	61.4	572	14	US-10-230-260-42	Sequence 42, Appl
32	2979	61.4	572	14	US-10-232-231-42	Sequence 42, Appl
33	2979	61.4	572	14	US-10-232-231-42	Sequence 42, Appl
34	2979	61.4	572	14	US-10-216-165-42	Sequence 42, Appl
35	2979	61.4	572	14	US-10-218-956-42	Sequence 42, Appl
35 36	2979	61.4	572	14	US-10-219-468-42	Sequence 42, Appl
			572			
37	2979 2979	61.4 61.4	572	14 14	US-10-219-478-42 US-10-219-536-42	Sequence 42, Appl
38						Sequence 42, Appl
39	2979	61.4	572	14	US-10-233-205-42	Sequence 42, Appl
40	2979	61.4	572	14	US-10-219-072-42	Sequence 42, Appl
41	2979	61.4	572	14	US-10-219-470-42	Sequence 42, Appl
42	2979	61.4	572	14	US-10-219-474-42	Sequence 42, Appl
43	2979	61.4	572	14	US-10-219-524-42	Sequence 42, Appl

```
44 2979 61.4 572 14 US-10-219-528-42 Sequence 42, Appl 45 2979 61.4 572 14 US-10-227-880-42 Sequence 42, Appl
```

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - protein search, using frame plus n2p model

Run on: February 18, 2005, 22:06:53; Search time 91 Seconds

(without alignments)

5627.095 Million cell updates/sec

Title: US-10-039-272-1

Perfect score: 4850

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5
Ygapop 10.0 , Ygapext 0.5
Fgapop 6.0 , Fgapext 7.0
Delop 6.0 , Delext 7.0

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters: 566832

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+_n2p.model -DEV=xlp

Q=/cgn2_1/USPTO_spool_p/US10039272/runat_18022005_095205_14708/app_query.fasta_1 .2823

-DB=PIR 79 -QFMT=fastan -SUFFIX=rpr -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0

-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45

-DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL

-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000

-USER=US10039272 @CGN 1 1 135 @runat 18022005 095205 14708 -NCPU=6 -ICPU=3

-NO MMAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG

-DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6

-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database: PIR 79:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

			8				
Resu			Query				
N	lo.	Score	Match	Length	DB	ID	Description
	1	2999	61.8	560	2	 I38065	gene NMB protein -
	2	635	13.1	626	2	S53871	Pmel 17 protein -
	3	593.5	12.2	662	2	I38400	melanoma-associate
	4	588.5	12.1	668	2	A41234	melanocyte-specifi
	5	436.5	9.0	491	2	A49179	melanoma antigen h
	6	135	2.8	446	2	T07907	hydroxyproline-ric
	7	129	2.7	926	1	A41105	protein-tyrosine-p
	8	118	2.4	2869	2	T18518	apolipoprotein(a)
	9	116.5	2.4	555	2	S21766	dihydrolipoamide S
	10	114	2.4	2395	1	S50820	surface protein ty
	11	113	2.3	1541	2	T02831	AAA protein L4171.
	12	112.5	2.3	457	2	I55976	dihydrolipoamide S
	13	111.5	2.3	2946	2	T15840	hypothetical prote
	14	111	2.3	525	1	KGHUGH	histidine-rich gly
	15	110.5	2.3	1874	1	JQ0533	genome polyprotein
	16	109.5	2.3	492	2	C96521	protein F21D18.18
	17	109	2.2	1737	2	A59235	unconventional myo
	18	108.5	2.2	348	2	AB3260	hypothetical membr
	19	108.5	2.2	588	2	T45564	hypothetical prote
	20	107.5	2.2	768	2	A87722	protein ZC123.1 [i
	21	107.5	2.2	1208	2	T27822	hypothetical prote
	22	106	2.2	658	2	T08153	cysteine proteinas
	23	106	2.2	1537	2	S53465	flocculation prote
	24	106	2.2	1585	2	T31611	hypothetical prote
C	25	105	2.2	499	2	S52422	chitinase (EC 3.2.
	26	104.5	2.2	4006	2	T09070	probable tenascin
	27	· 104	2.1	435	2	D41602	transcription fact
	28	103	2.1	626	1	NBHUIA	platelet glycoprot
	29	103	2.1	921	2	A33718	retinoblastoma pro
	30	103	2.1		2	C64483	hypothetical prote
С	31	102.5	2.1	394	2	E82572	ABC transporter so
	32	102.5	2.1	826	2	G90283	hypothetical prote
	33	102.5	2.1	979	2	A35913	regulatory factor
	34	102	2.1		2	T29150	hypothetical prote
	35	102	2.1	393	2	T33103	lin-1 protein - Ca
	36	102	2.1	1213	2		limb deformity (ld
	37	102	2.1		2	T21560	hypothetical prote
	38	101.5	2.1		2	D81716	hypothetical prote
	39	101.5	2.1		2	T21371	hypothetical prote
	40	101	2.1		2	T23694	hypothetical prote
	41	101	2.1		2	S26058	probable transform
	42	100.5	2.1		2	T07176	extensin homolog - platelet-derived g
	43	100.5	2.1		2	T30815	twitching motility
	44	100	2.1		2	AB2222 I38344	titin, cardiac mus
	45	100	2.1	26926	1	130344	cicin, cardiac mus

Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - protein search, using frame plus n2p model

Run on: February 18, 2005, 22:04:28; Search time 445 Seconds

(without alignments)

6124.237 Million cell updates/sec

Title: US-10-039-272-1

Perfect score: 4850

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5
Ygapop 10.0 , Ygapext 0.5
Fgapop 6.0 , Fgapext 7.0
Delop 6.0 , Delext 7.0

Searched: 1612378 seqs, 512079187 residues

Total number of hits satisfying chosen parameters: 3224756

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+ n2p.model -DEV=xlp

Q=/cgn2_1/USPTO_spool_p/US10039272/runat_18022005_095205_14696/app_query.fasta_1 .2823

-DB=UniProt 03 -QFMT=fastan -SUFFIX=rup -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0

-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45

-DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL

-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000

-USER=US10039272 @CGN 1 1 518 @runat 18022005 095205 14696 -NCPU=6 -ICPU=3

-NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG

-DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6

-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database: UniProt 03:*

1: uniprot_sprot:*
2: uniprot trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

No. Score Match Length DB ID Description

1	2999	61.8	560	1	NMB_HUMAN	Q14956	homo sapien
2	2983	61.5	572	2	Q8N1A1	Q8n1a1	homo sapien
3	2979	61.4	572	2	Q6UVX1	Q6uvx1	homo sapien
4	2170	44.7	574	2	Q99P91	Q99p91	mus musculu
5	2170	44.7	574	2	Q8BVV9		mus musculu
6	2170	44.7	574	2	Q9QXA0	Q9qxa0	mus musculu
7	2166	44.7	574	2	Q8BXL4	Q8bx14	mus musculu
8	2152	44.4	572	2	Q6P7C7	Q6p7c7	rattus norv
9	2136	44.0	572	2	Q9QZF6	Q9qzf6	rattus norv
10	2015	41.5	526	2	Q8BVA0		mus musculu
11	1563.5	32.2	559	1	QNR COTJA	Q90372	coturnix co
12	1029	21.2	206	2	Q96F58	Q96f58	homo sapien
13	1022	21.1	206	2	Q8IXJ5	Q8ixj5	homo sapien
14	711.5	14.7	721	2	Q6DDN6		xenopus lae
15	704.5	14.5	746	2	Q6DIR2	Q6dir2	xenopus tro
16	644.5	13.3	626	2	Q9CZB2	Q9czb2	mus musculu
17	635	13.1	626	1	PM17 MOUSE	Q60696	mus musculu
18	631.5	13.0	760	2	$Q6DW\overline{6}4$	Q6dw64	gallus gall
19	630	13.0	733	2	093391		coturnix co
20	629.5	13.0	764	2	Q6DW63	Q6dw63	gallus gall
21	628	12.9	763	2	Q6DW62		gallus gall
22	620.5	12.8	788	2	Q6DW65		gallus gall
23	617	12.7	762	1	P115 CHICK	Q98917	gallus gall
24	612	12.6	783	2	Q6DW60		gallus gall
25	609	12.6	759	2	Q6DW61		gallus gall
26	593	12.2	661	1	PM17 HUMAN		homo sapien
27	436.5	9.0	491	1	PM17 BOVIN		bos taurus
28	372	7.7	461	2	097884	097884	equus cabal
29	247.5	5.1	236	2	Q9QY67		mus musculu
30	198.5	4.1	423	2	Q8N0W9	Q8n0w9	homo sapien
31	198.5	4.1	435	2	Q8N3G9	Q8n3g9	homo sapien
32	192	4.0	397	2	Q8N3R2	Q8n3r2	homo sapien
33	167	3.4	141	2	Q9QY70	Q9qy70	mus musculu
34	154.5	3.2	419	2	Q6NXM3	Q6nxm3	mus musculu
35	151	3.1	354	2	Q8IY46 .	Q8iy46	homo sapien
36	141.5	2.9	906	2	Q8TPY9	Q8tpy9	methanosarc
37	135	2.8	446	2	022458	022458	chlamydomon
38	134.5	2.8	1817	2	Q8TI59	Q8ti59	methanosarc
39	131	2.7	879	2	Q8PWJ6	Q8pwj6	methanosarc
40	129.5	2.7	1131	2	Q75DJ5	Q75dj5	ashbya goss
41	129	2.7	926	1	PTN4_HUMAN	P29074	homo sapien
42	128.5	2.6	688	2	Q8TR88	Q8tr88	methanosarc
43	127.5	2.6	3988	2	Q8TPZ1	Q8tpz1	methanosarc
44	126	2.6	603	2	Q7U5X8	Q7u5x8	synechococc
45	125.5	2.6	881	2	Q6H7U3	Q6h7u3	oryza sativ