Ejemplo comparación de resultados predictores in sillico

Cambio de estudio PIK3CD c.2808C>T (chr1:9724365 C/T, rs11121484 o NM_005026.5:c.2808C>T)

Exón 22 e intrones adyacentes:

El cambio se encuentra en segunda línea del exón 22 (la **c** en color verde pegada a la **g** amarilla).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

Donor splice	sites, direct	t strand			Donor splice sites	, direct	stran	d -		
	pos 5'->3' 314 330		confidence 0.31 0.95	5' exon intron 3' ACTAATAATA^GTGAGAAATT AATTTGAACG^GTGAGAGTGC H	pos	5'->3' 314 330	phase 1 2	strand + +	confidence 0.24 0.95	5' exon intron 3' ACTAATAATA^GTGAGAAATT AATTTGAACG^GTGAGAGTGC H
Donor splice	sites, comple	ement strand			Donor splice sites	, comple	ement st	trand		
	ite predictio	ons above thre	shold.		No donor site p	redictio	ons abov	ve thres	hold.	
Acceptor spli	ce sites, dir	rect strand			Acceptor splice si			rand		
	pos 5'->3' 183 225 231 495	phase strand 0 + 0 + 0 + 1 +	confidence 1.00 0.18 0.07 0.23	5' intron exon 3' CTCCCCTCAG^CTGTTCCACA H GAATTTCAAG^ACCAAGTTTG CAAGACCAAG^TTTGGAATCA CACCCTGCAG^TGCCCCTTTT	pos Acceptor splice si	5'->3' 183 225 495	0 1	+++++	0.97 0.17 0.23	5' intron exon 3' CTCCCCTCAG^CTGTTCCACA H GAATTTCAAG^ACCAAGTTTG CACCCTGCAG^TGCCCCTTTT
Acceptor spli pos 3'->5' 305 276		phase strand 2 - 1 -	-	5' intron exon 3' CTATTATTAG^TCTTCCCCTG ATGGACAAAG^TCGTAGGTGA	pos 3'->5' pos 305 276 270			strand - - -	confidence 0.34 0.18 0.07	5' intron exon 3' CTATTATTAG^TCTTCCCCTG ATGGACAAAG^TCATAGGTGA AAAGTCATAG^GTGAGGATGA

Aparición nuevo sitio de *splicing* en la secuencia mutante. Tiene muy poca *confidence* y está en la hebra reversa, por lo que es probable que no afecte al *splicing*.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for 85.53.15.54.21973.0:

Donor site predictions for 85.53.15.54.22001.0:

Start	End	Score	Exon Intron	Start	End	Score	Exon Intron
323	337	0.96	ttgaacg gt gagagt	323	337	0.96	ttgaacg gt gagagt
514	528	0.50	tgggcag gt ttgtgg	514	528	0.50	tgggcag gt ttgtgg
555	569	0.40	cacgggg gt cagtta	555	569	0.40	cacgggg gt cagtta

Acceptor site predictions for 85.53.15.54.21973.0:

Acceptor site predictions for 85.53.15.54.22001.0:

Start	End	Score	Intron	Exon	Start	End	Score	Intron	Exon
53	93	0.53	cctgctggcccctctgcc	t ag cacacagctctgtggcaggg	53	93	0.53	cctgctggcccctctgcct	t ag cacacagctctgtggcaggg
163	203	0.94	cctcctctcccctc	c ag ctgttccacattgattttgg	163	203	0.94	cctcctctcccctc	a g ctgttccacattgattttgg
277	317	0.67	tttgtccatgtgattcag	c ag gggaagactaataatagtga	277	317	0.67	tttgtccatgtgattcag	a g gggaagactaataatagtga
475	515	0.68	tgcccctgctccaccctg	a g tgccccttttgggcaatgtg	475	515	0.68	tgcccctgctccaccctg	agtgccccttttgggcaatgtg

No hay cambios.

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)
accta(c/t)gactt	egaett	tgactt	30563	78%

CRYP-SKIP

Exon length (bp)	146	EXSK		CR-E
PESS (<=-2.62) density	0.00	2.1011	0.5	J L
NN 5'ss score density	0.21		_+_#	
SF2/ASF score density	8.39	X/	\rightarrow	
FAS-ESS (hex2) density	4.11	- //		
EIE score density	398.66	//	/ //	
Probability of cryptic splice site activation (PcR-E)	0.61	0 —	7	- 1
>wt ctcctctcccctcccctcagCTGTTCCACATTGATTTTGGC	CACTTTCTGGGGA	o.c ATTTCAAGACCAAC		
				1.0
	0.10		0.49	0.5
CGCGAGCGTGTCCCATTCATCCTCACCTATGACTTTGTCCA	ATGTGATTCAGCAG	GGGAAGACTAATAA	TAGTGAGAAATT	0.0

Parece que hay un sitio críptico de *splicing* dentro del propio exón, pero el cambio de no lo toma en consideración, por lo que no debe considerar que tenga algún efecto en el *splicing*.

Human Splicing Finder

Alteration of auxiliary sequences	Significant	Significant alteration of ESE / ESS motifs ratio (-4)						
Algorithm/Matix		position	sequence					
ESE_ASF (ESE Site Broken)		chr1:9724361	CCTACGA					
ESE_ASFB (ESE Site Broken)		chr1:9724361	CCTACGA					
Sironi_motif3 (ESS Site Broken)		chr1:9724361	CCTACGAC					
ESE_SRp55 (ESE Site Broken)		chr1:9724363	TACGAC					
RESCUE ESE (ESE Site Broken)		chr1:9724364	ACGACT					
IIE (New ESS Site)		chr1:9724365	TGACTT					

SVM-BPfinder

seq_id	agez	ss_dis	t bp_seq bp_scr	y_cont ppt_off ppt_len ppt_scr svm_sc	r			seq_id	agez	ss_dis	t bp_seq bp_scr	y_cont ppt_off ppt_len ppt_scr svm_scr
wt	14	444	gtctgacac	2.99502765393 0.521640091116 1	48	81	2.4342323	mut	14	444	gtctgacac	2.99502765393 0.521640091116 1 48 81 2.4342323
wt	14	434	ttctcaatc	0.388726718022 0.515151515152 2	37	68	1.2272424	mut	14	434	ttctcaatc	0.388726718022 0.515151515152 2 37 68 1.2272424
wt	14	406	ccctcagct	1.29086331147 0.486284289277 2	9	13	1.0587768	mut	14	406	ccctcagct	1.29086331147 0.486284289277 2 9 13 1.0587768
wt	14	391	cattgattt	0.0540481574368 0.481865284974 7	9	18	0.30316561	mut	14	391	cattgattt	0.0540481574368 0.481865284974 7 9 18 0.30316561
wt	14	365	atttcaaga	-3.07656471962 0.47222222222 29	22	31	-2.1971888	mut	14	365	atttcaaga	-3.07656471962 0.472222222222 29 22 32 -2.187873
wt	14	347	gaatcaacc	-1.4716882453 0.476608187135 11	22	31	-0.42801751	mut	14	347	gaatcaacc	-1.4716882453 0.476608187135 11 22 32 -0.41870167
wt	14	326	cattcatcc	0.139031874197 0.470404984424 1	11	17	0.70321349	mut	14	326	cattcatcc	0.139031874197 0.470404984424 1 11 18 0.71252933
wt	14	320	tcctcacct	2.41413148315 0.463492063492 8	10	17	1.1487016	mut	14	320	tcctcacct	2.41413148315 0.463492063492 8 10 17 1.1487016
wt	14	299	atgtgattc	-0.387148056259 0.452380952381 135	29	34	-7.8322377	mut	14	313	ctatgactt	0.484197118369 0.461038961039 1 10 17 0.83533704
wt	14	295	gattcagca	-0.777165203275 0.448275862069 131	29	34	-7.7330804	mut	14	299	atgtgattc	-0.387148056259 0.452380952381 135 29 34 -7.8322377
wt	14	280	gactaataa	0.934035186093 0.461818181818 116	29	34	-6.109216	mut	14	295	gattcagca	-0.777165203275 0.448275862069 131 29 34 -7.7330804
wt	14	277	taataatag	-0.0249293398427 0.463235294118	113	29	34 -6.2943433	mut	14	280	gactaataa	0.934035186093 0.461818181818 116 29 34 -6.109216
wt	14	271	tagtgagaa	-1.85680511767 0.466165413534 107	29	34	-6.630873	mut	14	277	taataatag	-0.0249293398427
wt	14	262	atttgaacg	-0.636856455934 0.470817120623 98	29	34	-5.5820181	mut	14	271	tagtgagaa	-1.85680511767 0.466165413534 107 29 34 -6.630873
wt	14	255	cggtgagag	-0.236661987024 0.476 91 29	34	-4.980	5609	mut	14	262	atttgaacg	-0.636856455934 0.470817120623 98 29 34 -5.5820181
wt	14	245	gcctgagcc	1.37313434892 0.479166666667 81	29	34	-3.7162436	mut	14	255	cggtgagag	-0.236661987024 0.476 91 29 34 -4.9805609
wt	14	167	ggctcaggt	-0.452459714721 0.506172839506 3	29	34	0.51494126	mut	14	245	gcctgagcc	1.37313434892 0.479166666667 81 29 34 -3.7162436
wt	14	160	gtctcaacc	0.749798321109 0.503225806452 2	23	28	0.99213354	mut	14	167	ggctcaggt	-0.452459714721 0.506172839506 3 29 34 0.51494126
wt	14	140	ccctcaccc	3.06645120319 0.474074074074 27	19	26	0.28870782	mut	14	160	gtctcaacc	0.749798321109 0.503225806452 2 23 28 0.99213354
wt	14	127	tgttgatgg	1.16038468823 0.459016393443 14	19	26	0.36040762	mut	14	140	ccctcaccc	3.06645120319 0.474074074074 27 19 26 0.28870782
wt	14	56	gggtcatgt	-0.680573548496 0.333333333333 51	0	0	-2.9852563	mut	14	127	tgttgatgg	1.16038468823 0.459016393443 14 19 26 0.36040762
wt	14	23	gggtcagtt	-2.03352206854 0.33333333333 18	0	0	-1.426155	mut	14	56	gggtcatgt	-0.680573548496 0.33333333333 51 0 0 -2.9852563
wt	14	19	cagttagca	-2.60979930003 0.285714285714 14	0	0	-1.4139811	mut	14	23	gggtcagtt	-2.03352206854 0.33333333333 18 0 0 -1.426155
								mut	14	19	cagttagca	-2.60979930003 0.285714285714 14 0 0 -1.4139811

Aparece un BP nuevo con puntuación positiva en la secuencia mutante que coincide con la mutación de estudio. Por lo tanto, podría considerarlo como el final del intrón y se podría perder la parte inicial del exón (95 pb).

Variant Effect Predictor tool

ENST00000377346.8:c.2808C>T	1:9724365- 9724365	T	synonymous_variant	PIK3CD	ENSG00000171608 Transcript	ENST00000361110.6	protein_coding	21/23	2995	2880	960	Υ	TAC/TAT	<u>rs11121484</u>
ENST00000377346.8:c.2808C>T	1:9724365- 9724365	T	downstream_gene_variant	CLSTN1	ENSG00000171603 Transcript	ENST00000361311.4	protein_coding	-		-	-	-	-	<u>rs11121484</u>
ENST00000377346.8:c.2808C>T	1:9724365- 9724365	Т	downstream_gene_variant	CLSTN1	ENSG00000171603 Transcript	ENST00000377298.9	protein_coding	-	-	-	-	-	-	rs11121484
ENST00000377346.8:c.2808C>T	1:9724365- 9724365	Т	synonymous_variant	PIK3CD	ENSG00000171608 Transcript	ENST00000377346.9	protein_coding	22/24	3017	2808	936	Υ	TAC/TAT	<u>rs11121484</u>
ENST00000377346.8:c.2808C>T	1:9724365- 9724365	Т	downstream_gene_variant	CLSTN1	ENSG00000171603 Transcript	ENST00000435891.5	protein_coding	-	-	-	-	-	-	<u>rs11121484</u>
ENST00000377346.8:c.2808C>T	1:9724365- 9724365	T	downstream_gene_variant	CLSTN1	ENSG00000171603 Transcript	ENST00000477264.1	processed_transcript	-	-	-	-	-	-	<u>rs11121484</u>
ENST00000377346.8:c.2808C>T	1:9724365- 9724365	Т	synonymous_variant	PIK3CD	ENSG00000171608 Transcript	ENST00000536656.5	protein_coding	23/25	3088	2880	960	Υ	TAC/TAT	<u>rs11121484</u>
ENST00000377346.8:c.2808C>T	1:9724365- 9724365	T	synonymous_variant	PIK3CD	ENSG00000171608 Transcript	ENST00000543390.2	protein_coding	22/24	2995	2880	960	Υ	TAC/TAT	<u>rs11121484</u>
ENST00000377346.8:c.2808C>T	1:9724365- 9724365	Т	synonymous_variant	PIK3CD	ENSG00000171608 Transcript	ENST00000628140.2	protein_coding	22/24	3088	2880	960	Υ	TAC/TAT	rs11121484
ENST00000377346.8:c.2808C>T	1:9724365- 9724365	T	downstream_gene_variant	CLSTN1	ENSG00000171603 Transcript	ENST00000650348.1	nonsense_mediated_decay	-	-	-	-	-	-	<u>rs11121484</u>

ESEfinder

Aparece un resultado en la búsqueda de sitios de splicing con la posición de interés con puntuaciones positivas en las matrices de 5'SS:

		<u> </u>	
271	271	271	221
2 / 1 TACGACTTTGTCGATGTGATTCAGCAGGG 4 50500	4 / TACGACTTTGTCCATGTGATTCAGCAGGG _4 30310	2/1 TACCACTTTCTCCATGTCATTCACCAGGG 4 95540	4 / TACGACTTTGTCCATGTGATTCAGCAGGG _5 70040
, AAA TACGACIIIGICCAIGIGAIICAGCAGGGG 4.50500	/ AAA TACGACTITGICCATGIGATICAGCAGGGG -4.39310		/ AAA TACGACIIIGICCAIGIGAIICAGCAGGGG -5./9040
(-441)	(-331)	(-441)	(-447)

Cuando buscamos el resultado equivalente para la secuencia mutante, las puntuaciones se reducen un poco:

	= 1				
0.54	271		0.74		0.74
271		4 00550	271	4.07190	Z71 TATGACTTTGTCCATGTGATTCAGCAGGG -5 49100
, AAA TAIGACIIIGICCAIGIGAIICAGCAGGGG	3.84280 TATGACTTTGTCCATGTGATTCAGCAGGGG	-4.02550	, , , , IAIGACIIIGICCAIGIGAIICAGCAGGGG	4.0/190	AAA TAIGACIIIGICCAIGIGAIICAGCAGGGG -5.49100
(-441)	[[(-441)]		(-441)		(-441)

Puede que se esté debilitando el sitio 5'SS y esté afectando al splicing.

Cuando realizamos la búsqueda de ESE, para los resultados donde se encuentra la posición de interés, solo se obtienen dos resultados con puntuaciones positivas en más de una matriz (269 y 273):

267 (-445)	CACCTAC	-1.71256	267 CACCTAC -0.02073	267 (-445) CACCTACG 1.38182	267 (-445) CACCTAC -0.35075
268 (-444)	ACCTACG	-5.92067	268 ACCTACG-4.07242	268 (-444) ACCTACGA -0.80965	268 ACCTACG 0.18898
269 (-443)	CCTACGA	2.55362	269 CCTACGA 2.65201	269 (-443) CCTACGAC -5.07860	269 (-443) CCTACGA -0.76730
270 (-442)	CTACGAC	-3.22549	270 CTACGAC -0.61315	270 (-442) CTACGACT -2.31430	270 CTACGAC 1.69063
271 (-441)	TACGACT	-4.72468	271 TACGACT -3.21321	271 (-441) TACGACTT -1.38956	271 TACGACT -2.74954
272 (-440)	ACGACTT	-0.36105	272 ACGACTT -0.56714	272 (-440) ACGACTTT -6.33139	272 ACGACTT -5.04430
273 (-439)	CGACTTT	-2.15869	273 CGACTTT -0.05448	273 (-439) CGACTTTG 0.92421	273 (-439) CGACTTT 0.49615

Si buscamos las predicciones equivalentes para la secuencia mutante, se observa que para 269 las puntuaciones se reducen considerablemente y para 273 se mantienen parecidas.

267 (-445)	CACCTAT	0.14084	267 (-445) CACCTAT 1.17597	267 (-445)	2.02625	267 (-445) CACCTAT	-1.88985
268 (-444)	ACCTATG	-5.46296	268 (-444) ACCTATG -3.96842	268 ACCTATGA	-2.53866	268 ACCTATG (-444)	-1.52795
269 (-443)	CCTATGA	0.02989	269 (-443) CCTATGA 0.84022	269 (-443)	-5.83784	269 (-443) CCTATGA	0.72395
270 (-442)	CTATGAC	-4.68281	270 CTATGAC -1.86790	270 (-442) CTATGACT	-2.54514	270 (-442) CTATGAC	-0.69401
271 (-441)	TATGACT	-7.03470	271 TATGACT -5.28207	271 TATGACTT (-441)	-1.95849	271 TATGACT (-441)	-1.40127
272 (-440)	ATGACTT	0.24188	272 ATGACTT -0.31836	272 ATGACTTT (-440)	-4.94299	272 ATGACTT (-440)	-5.35635
273 (-439)	TGACTTT	-5.10918	273 TGACTTT -3.15954	273 TGACTTTG (-439)	0.90308	273 TGACTTT (-439)	0.85285

Por lo tanto, es probable que se esté debilitando el ESE 269, alterando al *splicing*.

EX-SKIP

Seq	PESS	FAS-ESS hex2	FAS-ESS hex3	IIE	IIE	NI-ESS trusted	NI-ESS all	PESE	RESCUE -ESE	EIE	EIE	NI-ESE trusted	NI-ESE all	ESS	ESE	ESS/ESE
	(count)	(count)	(count)	(count)	(sum)	(count)	(sum)	(count)	(count)	(count)	(sum)	(count)	(sum)	(total)	(total)	(ratio)
wt	0	6	4	39	605.0194	14	-26.7583	4	14	48	598.9967	35	50.7792	63	101	0.62
mut	0	6	4	40	619.0086	14	-26.7583	4	13	48	575.1791	33	48.4335	64	98	0.65

Allele mut has a higher chance of exon skipping than allele wt.

HOT-SKIP

>wt

>mut