Database Theory and Applications for Biomedical Research and Practice BMIN 502 / EPID 635 Week 10: More database implementation John H. Holmes, PhD Institute for Biomedical Informatics Agenda for today · Joins, revisited · Complex queries • The Entity-Attribute-Value model Joins, revisited

Relationships between tables

Join

 Association between a field in one table and its counterpart in another table

View (or Dynaset)

 Sets (virtual tables) created dynamically as the result of joining two or more tables

Types of joins

• Equijoin (Inner join)

 Records are combined and added to dynaset only when values are equal for the join fields

Left outer join

 Records from "left-hand" table are added to dynaset even if none in "right-hand" table match

Right outer join

 Records from "right-hand" table are added to dynaset even if none in "left-hand" table match

Complex queries

Complex queries

- Most commonly used to retrieve data from two or more tables
- Typically accomplished with JOINs
 - Left join of two tables:

SELECT Patients.ID, Admission.admitdate FROM Patients LEFT JOIN Admission on Patients.ID = Admission.ID

- Left join of three tables:

SELECT Patients.ID, Admission.admitdate, Radiology.normal FROM Patients
LEFT JOIN Admission on Patients.ID = Admission.ID
LEFT JOIN Radiology on Admission.ID = Radiology.ID

Let's try it!

Assignment 8: Exercise 1

Subqueries

- · Also called nested queries
- · You can nest any number of queries
- The inner-most query is executed first, then in succession each in turn to the outer-most
- Queries can be nested inside a SELECT, INSERT, UPDATE, or DELETE statement or inside another subquery.
- A subquery is usually added within the WHERE Clause of another SQL SELECT statement

Example of a nested query

Patients					
patient_ID	dob	sex			
1	10/1/1998	1			
2	4/16/2004	2			
3	3/7/1995	1			
4	9/1/2000	1			
5	11/15/1993	2			

Admissions				
patient_ID	adm_date	hospital		
1	10/1/1998	HUP		
2	4/16/2004	PUPMC		
3	3/7/1995	PAH		
3	9/1/2000	PAH		
4	11/15/1993	HUP		
5	11/15/1993	PAH		
5	8/1/1999	HUP		
5	3/15/2003	PAH		

SELECT patient_ID, dob FROM Patients WHERE patientID=(SELECT patientID FROM Admissions WHERE year(adm_date) >= 2000);

Pat	Patients				
patient_ID	dob				
2	4/16/2004				
3	3/7/1995				
5	11/15/1993				

Let's try it!

Assignment 8: Exercise 2

Functions

NB: x=a literal or a field

- Numeric
 - Performs arithmetic operations on a single value, but not across rows in a table
 - Example: ROUND(x,d) rounds x to d decimal places
- String
 - Example: LENGTH(x) returns the length of x
- Date/Time
 - Example: DATE(x1, x2, INTERVAL y) returns the difference between the later date (x1) and the more recent (x2), in the units expressed in y

_				
_				
_				
_				
_				
_				
_				
_				
_				
_				

	1
Let's try it!	
Lot 3 try it:	
Assignment 8: Exercise 3	
]
Aggregate Functions	1
Perform across records	
• Examples:	
- COUNT()	
- AVG()	
- STD() - MAX()	
- MIN()	
-SUM()	
Used with SELECT SELECT COUNT(*) FROM Patients	
Returns number of records in the Patient table	
	-
]
Let's try it!	
Assignment 9: Eversing 4	
Assignment 8: Exercise 4	

The Entity-Attribute-Value model

"Typical" relational tables

Patients					
patient_ID	dob	sex			
1	10/1/1998	1			
2	4/16/2004	2			
3	3/7/1995	1			
4	9/1/2000	1			
5	11/15/1993	2			

Admissions					
patient_ID	adm_date	hospital			
1	10/1/1998	HUP			
2	4/16/2004	PUPMC			
3	3/7/1995	PAH			
3	9/1/2000	PAH			
4	11/15/1993	HUP			
5	11/15/1993	PAH			
5	8/1/1999	HUP			
5	3/15/2003	PAH			

- Tables = Entities
- · Rows represent an instance of an entity
- · Columns represent specific attributes

However, sometimes this is a problem

- When you don't know how many columns to fix in a table
- When the data are likely to be sparse
- When you don't know how to model a relational database ☺

The Entity-Attribute-Value model

- Minimum of three columns in a single table!
 - Entity (table)
 - Attribute (name of the data element)
 - Value (the value of the attribute)
- Thus:

Entity	Attribute	Value
Patient	Gender	Female
Patient	BirthDate	3/10/1990
Lab	Hemoglobin	12.1
Lab	Hematocrit	35.7
Lab	Glucose	92
Lab	Potassium	4.3

Comparing traditional relational and EAV models

_	patie
Ë	1
äį	2
Sel	3
ш.	4

				Admissions		
Patients			patient ID	adm date	hospital	
patient ID	dob	sex	1	10/1/1998	HUP	
4	10/1/1998	4	2	4/16/2004	PUPMC	
		-	3	3/7/1995	PAH	
2	4/16/2004	2	3	9/1/2000	PAH	
3	3/7/1995	1	4	11/15/1993	HUP	
	9/1/2000		5	11/15/1993	PAH	
4	9/1/2000	1	5	8/1/1999	HUP	
5	11/15/1993	2	5	3/15/2003	PAH	

	Entity	Attribute	Value
	Patient	patientID	1
	Patient	dob	10/1/1998
₽	Patient	sex	1
ш	Admissions	adm_date	10/1/1998
	Admissions	hospital	HUP
	Admissions	adm_date	4/16/2004
	Admissions	hospital	PUPMC

An example of a table in EAV format

Patient ID	Age (years)	Gender	Event Type	Event Name	vent lode	Start Date	End Date	Relevant Data
1031926	31	FEMALE	Diagnostic Test	Platelet	Platelet	3/19/2012		Result: 251 THO/uL,
1031926	31	FEMALE	Diagnostic Test	nrRBCPOP	nrRBCPOP	3/19/2012		Result: Unit of Measure Not Available,
1031926	31	FEMALE	Diagnostic Test	% Neutro Auto	% Neutro Auto	3/19/2012		Result: 65 %,
1031926	31	FEMALE	Diagnostic Test	мснс	MCHC	3/19/2012		Result: 34 g/dL,
1031926	31	FEMALE	Diagnostic Test	AMC	AMC	3/19/2012		Result: 0 THO/uL,
1031926	31	FEMALE	Diagnostic Test	Chloride	Chloride	3/19/2012		Result: 100 mmol/L,
1031926	31	FEMALE	Diagnostic Test	Alk Phos	Alk Phos	3/19/2012		Result: 47 U/L,
1031926	31	FEMALE	Diagnostic Test	% Mono Auto	% Mono Auto	3/19/2012		Result: 6 %,
1031926	31	FEMALE	Diagnostic Test	ALT	ALT	3/19/2012		Result: 13 U/L,

If you wanted to obtain mean platelet counts across all patients, How would you do it?

Here are the issues for this query

- There is a record for each component of a lab test
- You would need many joins to retrieve each platelet instance, because they are spread out in separate rows
- The values have to be parsed from the units of measurement

Steps to success: 1

- 1. Import the table as-is into platelets_EAV
- 2. Create a new table:

CREATE TABLE platelets_new (
 patient_ID INT NOT NULL,
 start_date DATETIME,
 event_name VARCHAR(30),
 platelet_count FLOAT,
 PRIMARY KEY (patient_ID, lab_date));

Steps to success: 2

3. Convert and transfer the data:

INSERT INTO platelets_new
(patient_ID, start_date, event_name, platelet_count)

SELECT patient_ID,
 start_date,
 event_name,
 CASE WHEN event_name='Platelet' THEN
 CAST(relevant_data) AS
 FLOAT(SUBSTR(relevant_data,8,LOCATE(relevant_data,',9)
 IN relevant_data))

FROM platelets_EAV

How did SUBSTR and LOCATE work?

	Age				Event			
Patient ID	(years)	Gender	Event Type	Event Name	Code	Start Date	End Date	Relevant Data
1031926	31	FEMALE	Diagnostic Test	Platelet	Platelet	3/19/2012		Result: 251 THO/uL,
1031926	31	FEMALE	Diagnostic Test	nrRBCPOP	nrRBCPOP	3/19/2012		Result: Unit of Measure Not Available,
1031926	31	FEMALE	Diagnostic Test	% Neutro Auto	% Neutro Auto	3/19/2012		Result: 65 %,
1031926	31	FEMALE	Diagnostic Test	мснс	мснс	3/19/2012		Result: 34 g/dL,
1031926	31	FEMALE	Diagnostic Test	AMC	AMC	3/19/2012		Result: 0 THO/uL,
1031926	31	FEMALE	Diagnostic Test	Chloride	Chloride	3/19/2012		Result: 100 mmol/L,
1031926	31	FEMALE	Diagnostic Test	Alk Phos	Alk Phos	3/19/2012		Result: 47 U/L,
					% Mono			
1031926	31	FEMALE	Diagnostic Test	% Mono Auto	Auto	3/19/2012		Result: 6 %,
1031926	31	FEMALE	Diagnostic Test	ALT	ALT	3/19/2012		Result: 13 U/L,

Result: 251 THO/uL 123456789012345678

- 1. SUBSTR(relevant_data,9,LOCATE(relevant_data, ' ',9))

 251 THO/uL
- 2. $SUBSTR(relevant_data, 9, LOCATE(relevant_data, ``, 9))$

For Assignment 9

- 1. Get the PennOmics data in EAV format .csv file from the Files folder on Canvas
- 2. The tasks for Assignment 9 are on Canvas
- 3. Try completing the assignment- it's not due until April 9, but we will discuss it in class on March 26 and April 2