Name	e: Student ID:							
UNS	W School of Mathematics and Statistics							
MATH3411 Information Codes and Ciphers								
2018	3 S2 TEST 3	VERSION A						
• Tin	ne Allowed: 45 minutes							
ea Fo	or the multiple choice questions, circle the correct answer ; ch multiple choice question is worth 1 mark . or the true/false and written answer questions, use extra paper. aple everything together at the end.							
1.	$(0.25 \ 0.6)$	/						
	distribution $\mathbf{p} = \frac{1}{13} \begin{pmatrix} 8 \\ 5 \end{pmatrix}$. The (binary) Markov entropy H_M is a	pproximately						
	(a) 0.716 (b) 0.961 (c) 0.891 (d) 0.873	(e) 0.910						
2.	A source $S = \{s_1, s_2\}$ has probabilities $P(s_1) = \frac{4}{5}$, $P(s_2) = \frac{1}{5}$. likely codewords in the binary Shannon-Fano code for the third length	extension S^3 have						
	(a) 2 (b) 3 (c) 4 (d) 5 (e)	6						
3.	Consider a binary channel with source symbols $\{a_1, a_2\}$ and output symbols $\{b_1, b_2\}$ such that $P(a_1) = \frac{3}{7}$, $P(b_1 \mid a_1) = \frac{4}{5}$ and $P(b_2 \mid a_2) = \frac{5}{8}$. Recall the function							
$H(x) = -x \log_2 x - (1 - x) \log_2 (1 - x).$								
The noise entropy $H(B \mid A)$ can be written as								
	(a) $\frac{4}{7}H(\frac{4}{5}) + \frac{3}{7}H(\frac{5}{8})$ (b) $\frac{4}{7}H(\frac{1}{5})$ (c) $\frac{3}{7}H(\frac{1}{5}) + \frac{4}{7}H(\frac{3}{8})$ (d) $\frac{3}{7}H(\frac{5}{8})$	(e) $H(\frac{1}{5}) + H(\frac{3}{8})$						
4.	4. Use Euler's Theorem or otherwise to calculate $10^{1001} \pmod{1001}$. The answer is							
	(a) 1 (b) 10 (c) 100 (d) 101 (e)	901						
5. For which of the following numbers a is $n = 28$ a pseudo-prime to base a ?								
	(a) 3 (b) 9 (c) 12 (d) 18 (e) none	e of these						

6. [5 marks] For each of the following, say whether the statement is true or false, giving a brief reason or showing your working. You will get $\frac{1}{2}$ mark for a correct true/false answer, and if your true/false answer is correct, then you will get $\frac{1}{2}$ mark for a good reason.

Begin each answer with the word "True" or "False".

- i) There are 11 units in \mathbb{Z}_{22} .
- ii) $\mathbb{Z}_2[x]/\langle x^3+x+1\rangle$ is a field.
- iii) When applied to n = 17 with a = 3, Lucas' test indicates that n is prime.
- iv) Given that 5 is a primitive element of \mathbb{Z}_{18} , 11 is also a primitive element of \mathbb{Z}_{18} .
- v) There are 60 primitive elements in \mathbb{U}_{125} .
- 7. [5 marks] Let $\mathbb{F} = \mathbb{Z}_3[x]/\langle x^2 + x + 2 \rangle$.
 - (i) Express each nonzero element of \mathbb{F} as a power of a primitive element α and as a linear combination over \mathbb{Z}_3 of 1 and α .
 - (ii) Simplify $\frac{\alpha^2 + 1}{\alpha^3 + \alpha^4}$, giving your answer as a linear combination of 1 and α . Show your working.
 - (iii) Find the minimal polynomial of α^2 .

UNSW SCHOOL OF MATHEMATICS AND STATISTICS							
MATH3411 Information Codes and Ciphers							
2018 S2		TES'	Γ 3		VERSION B		
• Time Allowed: 45 minutes							
For the multiple choice questions, circle the correct answer ; each multiple choice question is worth 1 mark . For the true/false and written answer questions, use extra paper. Staple everything together at the end.							
1. A 2 symbol Markov source has transition matrix $M = \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix}$ and equilibrium distribution $\mathbf{p} = \frac{1}{5} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. The (binary) Markov entropy H_M is approximately							
2. If a cha	annel has inp	out entropy H	(A) = 0.93,		(e) 0.786 H(B) = 0.76 and B) is approximately		
	(a) 1.69	(b) 0.20	(c) 1.13	(d) 0.73	(e) 0.37		

(c) 25

(c) 6, 9

(c) 4

5. A source $S = \{s_1, s_2\}$ has probabilities $P(s_1) = \frac{5}{7}$, $P(s_2) = \frac{2}{7}$. The second most likely codewords in the ternary Shannon-Fano code for the third extension S^3 have

(d) 125

(d) 10, 6

(d) 5

(e) 625

(e) 6

(e) 13, 5

3. Use Euler's Theorem or otherwise to calculate 5^{2018} (mod 2018).

4. Which of the following pairs consists of **two** primitive elements in \mathbb{Z}_{17} ?

(b) 5

You may use the fact that 5 is a primitive element of \mathbb{Z}_{17} .

(b) 3

(b) 4, 11

(Note that 1009 is prime.) The answer is

(a) 1

2, 13

(a) 2

length

Student ID:

Name:

6. [5 marks] For each of the following, say whether the statement is true or false, giving a brief reason or showing your working. You will get $\frac{1}{2}$ mark for a correct true/false answer, and if your true/false answer is correct, then you will get $\frac{1}{2}$ mark for a good reason.

Begin each answer with the word "True" or "False".

- i) There are 24 units in \mathbb{Z}_{48} .
- ii) The polynomial $m(x) = x^3 + x^2 + 1 \in \mathbb{Z}_2[x]$ is irreducible.
- iii) There are 8 primitive elements in \mathbb{U}_{31} .
- iv) n = 65 is a pseudo-prime to base 5.
- v) When applied to n = 61 with a = 3, Lucas' test indicates that n is prime.
- 7. [5 marks] Let $\mathbb{F} = \mathbb{Z}_3[x]/\langle x^2 + 2x + 2 \rangle$.
 - (i) Express all nonzero elements of \mathbb{F} as a power of a primitive element α and as a linear combination over \mathbb{Z}_3 of 1, α .
 - (ii) Solve the set of linear equations

$$\begin{pmatrix} \alpha^4 & \alpha^5 \\ \alpha^2 & \alpha^7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ \alpha^3 \end{pmatrix}$$

in \mathbb{F} .

(iii) Find the minimal polynomial of α^5 . Show your working.