Classification and Regression Trees... a bit more

Categorical and Numerical values in Classification trees

Categorical and Numerical values in Classification trees (1/4)

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

		Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

Categorical and Numerical values in Classification trees (2/4)

Compute average for all adjacent rows

Categorical and Numerical values in Classification trees (3/4)

Compute the Information Gain for all possible binary options.

Consider the value with the highest gain as representative of the feature

Age < 9.5

Age < 15

Categorical and Numerical values in Classification trees (4/4)

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

Compare the Information Gain for all the features and select the one with the highest value.

Continue until you build the whole tree.

Missing values

Missing categorical values

Chest Pain	Good Blood Circulation	Blocked Arteries	Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

Missing categorical values

Chest Pain	Good Blood Circulation	Blocked Arteries	Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	YES	Yes
etc	etc	etc	etc

Add the most frequent value

Missing categorical values

Find a correlated feature and use it as guideline

Chest Pain	Good Blood Circulation	Blocked Arteries	Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
No	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

Missing continuous values

	Good Blood Circulation	Weight	Heart Disease
5'7"	No	155	No
6'	Yes	180	Yes
5'4"	Yes	120	No
5'8"	No	???	Yes
etc	etc	etc	etc

Missing continuos values

Height	Good Blood Circulation	Weight	Heart Disease
5'7"	No	155	No
6'	Yes	180	Yes
5'4"	Yes	120	No
5'8"	No	???	Yes
etc	etc	etc	etc

Pruning Regression Trees

Regression Tree

Residual Sum of Squares on the Test Set

Sum of Squared Residuals on the Test Set

Reduce the precision of the tree

Reduce overfitting

Further pruning

Further pruning

What is the best tree?

Compute the SSR for each tree

Weakest Link Pruning

introducing a penalty proportionally of the depth of the tree

Tree Score = SSR + Tree Complexity Penalty = SSR + $\alpha \cdot T$

alpha is a higher parameter that needs to be tuned

Weakest Link Pruning

Tree Score = SSR + $\alpha \cdot T$ Example with $\alpha = 10.000$

Tree Score = 40,543.8

the second seems to be the best. because it balance the SSR and penalty

Weakest Link Pruning

Tree Score = SSR + $\alpha \cdot T$ Example with $\alpha = 10.000$

Tree Score = 40,543.8

How to evaluate the best α

Build a tree considering all the data

we use all the data()

How to evaluate the best α

3) i calculate the SSR with the test set

4)choose the tree with the lowest SSR in the TEST set

Train the tree again using the Training set only

i train the different tree, and when we train this new tree we compute the error in the

Compute SSR on the Test set for all the trees

Vote for the one with the lowest SSR

Repeat the process with new Training and Test sets --> K-fld cross-validation

