CE394M: Stress-strain-strength relationship of clay

Krishna Kumar

University of Texas at Austin

krishnak@utexas.edu

April 21, 2019

Overview

Stress-strain-strength relationship

Simple shear

L-soil v D-soil

L-soils:

D-soils:

Simple shear

Initial consolidation Void ratio e₀

Undrained test

NCL: L-soil (drained v undrained)

SS: LOC-soil (L-soils)

SS: LOC-soil (L-soils) (drained v undrained)

SS: HOC-soil (D-soils)

SS: HOC-soil (D-soils) (drained v undrained)

TXC: Drained strength and volume at failure using CS

Initial consolidation condition

$$e_0 = Gsw_0$$

TXC: Drained (Mohr-Coulomb ESA)

TXC: Drained Cam-Clay yield and failure

TXC Drained (axial loading)

TXC Drained (axial loading)

TXC: Undrained strength and excess PWP at failure

Increase in σ_1 and σ_1 '= σ_1 -u

Measure pore pressure (u) by a pressure transducer

Excess pore pressure $\Delta u = u - u_0$

e₀ or w₀ is kept constant

Initial consolidation condition

$$e_0 = Gsw_0$$

TXC: Undrained (Mohr-Coulomb ESA)

TXC Undrained (axial loading)

TXC Undrained (axial loading)

Critical state concept

Critical state concept

Interchangeable parameters for stress at yield and $d\varepsilon^p$.

System	Effective	Plastic	Effective	Plastic	Critical	Plastic	Critical
	normal	normal	shear	shear	stress	normal	normal
	stress	strain	stress	strain	ratio	stress	stress
General	σ*	ε*	τ*	γ*	μ* _{crit}	σ* _c	σ* _{crit}
SSA	σ΄	3	τ	γ	tan φ _{crit}	σ' _c	$\sigma'_{ m crit}$
BA-PS	s'	$\epsilon_{ m v}$	t	ϵ_{γ}	sin φ _{crit}	s′ c	s' crit
TA-AS	p'	$\epsilon_{\rm v}$	q	$\epsilon_{\rm s}$	M	p'c	p' _{crit}

Plastic work and dissipation: $\sigma^*\partial \varepsilon^* + \tau^*\partial \gamma^* = \mu^*_{\it crit}\sigma^*\partial \gamma^*$. General yield surface: $\frac{\tau^*}{\sigma^*} = \mu^* = \mu^*_{\it crit} \ln \left[\frac{\sigma^*_{\it c}}{\sigma}\right]$

Critical state concept: 1D compression

Plastic compression stress σ_c' is taken as the larger of the initial aggregate crushing stress and the historic maximum effective vertical stress. Clay muds are taken to begin with $\sigma_c'=1$ kPa.

Plastic compression (normal compression line): $v = v_l ambda - \lambda \ln \sigma'$ for $\sigma' = \sigma'_c$.

Elastic swelling and recompression line $(\kappa$ -line): $v = v_c + \kappa (\ln \sigma'_c - \ln \sigma'_v)$.