

ARJUNANEET BATCH

States of Matter

LECTURE - 4

DOLLY SHARMA

Objective of today's class

Gas Laws

5L of a gas is compressed from 2 atm to 5 atm. Find decrease in volume and % decrease in volume.

$$V_1 = 50$$

Q. The pressure of gas A (P_A) is 3.0 atm when is occupies 5 L of the volume. Calculate the final pressure when it is compressed to 3L volume at constant temperature.

(2) 5 atm

(b) 2 atm

(c) 4 atm

(d) 3 atm

$$V_1 = 3.0 \text{ atm}$$
 $P_2 = ?$

$$V_1 = 5.0 L \qquad V_2 = 3 L$$

$$P_1 V_1 = P_2 V_2$$

DY

$$\frac{P_1V_1}{\gamma_1T_1} = \frac{P_2V_2}{\gamma_2T_2}$$

Q. At what temperature 25 dm³ of oxygen at 283 K is heated to make its volume 30 dm³?

(a) 339.6 K

(b) 448 K

(c) 298 K

(d) 473 K

$$T = ?$$
 $V_1 = 25 dm^3$
 $V_2 = 30 dm^3$
 $T_1 = 283 K$
 $T_2 = ?$
 $V_1 = \sqrt{2}$

$$\frac{25}{283} = \frac{30}{T_2}$$

$$T_2 = \frac{30}{5}$$

$$T_2 = \frac{30}{5}$$

$$\frac{30}{7}$$

$$\frac{339.61}{5}$$

-> Gay Lussac's Law

- Joseph Gay Lussac
- "At constant volume pressure of a fixed amount of a gas is directly proportional to the temperature.

$$M, V = Constant$$

$$P_1 = P_2$$

$$T_1 T_2$$

P = K (Constant)

Pi -> 9 mitial Tressure
Pz -> Final pressure
Ti = 9 mitial Temp.
Tz + final temp.

Physical significant of Gay Lussac's Law

- Pressure of the inflated tyres of automobiles is constant but in summers on a hot sunny day when the temperature is high, then the pressure inside the tyres increases, and they may burst.
- In winters, on a cold morning, when the temperature is low, then the pressure inside the tyres decreases considerably.

Avogadro's Law

(Volume – Temperature Relationship)

no. of moles

Avogadro's Law states that the equal volume of all gases under the same conditions of temperature and pressure contain equal number of moles or molecules.

IDEAL GAS EQUATION

Ace to Boyle's Law Pal

Charle's Law + VXT

Gaylussac's Law - PQT

Avogadro Law > Van

PVXMT

PV=MRT

Idual gas Equation

R- gas (enstant Same for au type of gases >Universal gas (onstant)

> P + SI Unil + Pa. 1 atm - 10 Pa mole -> 22.4L Volume 22.7 L ⇒ 22.7 x 10 m 1m = 1000L T = 2731

$$\Rightarrow PV = MRT$$

$$\Rightarrow R = PV$$

$$mT$$

$$R = (10^5 Pascal) (22.7 \times 10^3 m^3)$$

$$(1 mole) (273 K)$$

R > 8.314 Pam3 moi | [=1

> Lunen Prusure is in atm and Volume is in L R = (1 atm) (22.7 L)

Imole X 273 K

R = 0.083 bar atm moil k

Ideal gas Equation

PV=MRT

P-> Pressure
V-> Volume
T-> Temp.(k)
R-> gas constant

Ny no. of mole

$$PV = \underline{W}_{X}RXT$$

MM

$$d = Px MM$$
 RT

d > density of MM > Molecular mass of gas.

$$\frac{P_1V_1}{m_1T_1} = \frac{P_2V_2}{m_2T_2}$$

Combined gas Lau

P, -> Initial pressur of gas
V, -> Initial Volume of gas
M, -> Initial moles of gas
T, -> Initial moles of gas

Pz -> Final pressure of gas

V2 -> Final Volume of gas

N2 -> Final mole of gas

T2 -> Final temp of gas

Q. A sample of gas occupies 10 L under a pressure of 1 atm. What will be its volume if the pressure is increased to 2 atm? Assuming that temperature of the gas sample does not change?

(a) 2 L

(b) 5 L

(c) 10 L

(d) 1 L

Q. How much should the pressure be increased in order to decrease the volume of a gas by 5% at a constant temperature?

(a) 5%

(b) 5.26%

(c) 10%

(d) 4.26%

Q. If the density of a certain gas at 30°C and 768 torr is 1.35 kg/m³ its density at STP would be

(a) 1.48 kg/m^3

(b) $1.58b \text{ kg/m}^3$

(c) 1.25 kg/m^3

(d) 1.4 kg/m^3

The two bulbs of volume 5 litre and 10 litre containing an ideal gas at 9 atm and 6 atm respectively are connected. What is the final pressure in the two bulbs if the temperature remains constant?

(a) 15 atm

(b) 7 atm

(c) 12 atm

(d) 21 atm

Q. The density of neon will be highest at

a) STP (b) 0°C and 2 atm

(c) 273°C and 1 atm (d) 273°C and 2 atm

Q. A vessel has 6 g of oxygen at a pressure P and temperature 400 K. A small hole is made in it so that O_2 leaks out. How much O_2 leaks out if the pressure is P/2 and temperature 300K?

(a) 5 g

(b) 4 g

(c) 2 g

(d) 3 g

thanks for watching

