# Oracle Database Transactions

#### Oracle Database Transactions

- ► A database transaction consists of one of the following:
  - DML statements that constitute one consistent change to the data
  - One DDL statement
  - One data control language (DCL) statement

#### Oracle Database Transactions

- Begin when the first DML SQL statement is executed.
- ► End with one of the following events:
  - A COMMIT or ROLLBACK statement is issued.
  - A DDL or DCL statement executes (automatic commit).
  - The system crashes.

# Advantages of COMMIT and ROLLBACK Statements

- ► With COMMIT and ROLLBACK statements, you can:
  - Ensure data consistency
  - Preview data changes before making changes permanent
  - Group logically related operations

# Controlling Transactions



# Rolling Back Changes to a Marker

- Create a marker in a current transaction by using the SAVEPOINT statement.
- Roll back to that marker by using the ROLLBACK TO SAVEPOINT statement.

```
UPDATE...
SAVEPOINT update_done;
Savepoint created.
INSERT...
ROLLBACK TO update_done;
Rollback complete.
```

# Implicit Transaction Processing

- An automatic commit occurs under the following circumstances:
  - DDL statement is issued
  - DCL statement is issued
- An automatic rollback occurs under an abnormal termination of *i*SQL\*Plus or a system failure.

# State of the Data Before COMMIT or ROLLBACK

- The previous state of the data can be recovered.
- The current user can review the results of the DML operations by using the SELECT statement.
- Other users cannot view the results of the DML statements by the current user.
- The affected rows are *locked*; other users cannot change the data in the affected rows.

# State of the Data After COMMIT

- Data changes are made permanent in the database.
- The previous state of the data is permanently lost.
- All users can view the results.
- Locks on the affected rows are released; those rows are available for other users to manipulate.
- All savepoints are erased.

## Committing Data

Make the changes:

```
DELETE FROM employees
WHERE employee_id = 99999;
1 row deleted.

INSERT INTO departments
VALUES (290, 'Corporate Tax', NULL, 1700);
1 row created.
```

Commit the changes:

```
COMMIT;
Commit complete.
```

# State of the Data After ROLLBACK

- ► Discard all pending changes by using the ROLLBACK statement:
  - Data changes are undone.
  - Previous state of the data is restored.
  - Locks on the affected rows are released.

```
DELETE FROM copy_emp;

22 rows deleted.

ROLLBACK;

Rollback complete.
```

# State of the Data After ROLLBACK

```
DELETE FROM test;
25,000 rows deleted.
ROLLBACK;
Rollback complete.
DELETE FROM test WHERE id = 100;
1 row deleted.
SELECT * FROM test WHERE id = 100;
No rows selected.
COMMIT;
Commit complete.
```

#### Statement-Level Rollback

- If a single DML statement fails during execution, only that statement is rolled back.
- The Oracle server implements an implicit savepoint.
- All other changes are retained.
- The user should terminate transactions explicitly by executing a COMMIT or ROLLBACK statement.

## Read Consistency

- ► Read consistency guarantees a consistent view of the data at all times.
- Changes made by one user do not conflict with changes made by another user.
- Read consistency ensures that on the same data:
  - Readers do not wait for writers
  - Writers do not wait for readers

# Implementation of Read Consistency

#### **User A**



```
UPDATE employees
SET salary = 7000 —
WHERE last name = 'Grant';
```





User B



# Oracle Architectural Components

#### Oracle DB Architecture: Overview

- ► The Oracle database consists of two main components:
  - The database or the physical structures
  - The instance or the memory structures

## Database Physical Architecture



#### **Control Files**

- Contains physical database structure information
- Multiplexed to protect against loss
- Read at mount stage



# Redo Log Files

- Record changes to the database
- Multiplexed to protect against loss



## Tablespaces and Data Files

- Tablespaces consist of one or more data files.
- Data files belong to only one tablespace.



# Segments, Extents, and Blocks

- Segments exist within a tablespace.
- Segments consist of a collection of extents.
- Extents are a collection of data blocks.
- Data blocks are mapped to OS blocks.



### Oracle Instance Management



# Oracle Memory Structures



#### Oracle Processes

Server process

Server process

Server process

Server process

System Global Area SGA

System monitor SMON

Process monitor PMON

Database writer DBW0

Check point CKPT

Log writer LGWR

Archive

**Background processes** 

## Other Key Physical Structures



## Processing a SQL Statement

- Connect to an instance using:
  - ► The user process
  - ► The server process
- The Oracle server components that are used depend on the type of SQL statement:
  - Queries return rows
  - ► DML statements log changes
  - ► Commit ensures transaction recovery
- Some Oracle server components do not participate in SQL statement processing.

## Processing a Query

- Parse:
  - ► Search for identical statement
  - ► Check syntax, object names, and privileges
  - ► Lock objects used during parse
  - Create and store execution plan
- Execute: Identify rows selected
- Fetch: Return rows to user process

#### The Shared Pool

- The library cache contains the SQL statement text, parsed code, and execution plan.
- The data dictionary cache contains table, column, and other object definitions and privileges.
- The shared pool is sized by SHARED\_POOL\_SIZE.

# Shared pool Library cache Data dictionary cache



# Program Global Area (PGA)

- Not shared
- Writable only by the server process
- Contains:
  - ► Sort area
  - **▶** Session information
  - **►** Cursor state
  - ► Stack space



## Redo Log Buffer

- Has its size defined by LOG\_BUFFER
- Records changes made through the instance
- Is used sequentially
- Is a circular buffer

Database buffer cache



# Rollback Segment



# COMMIT Processing



#### **CAP Theorem**

- Three properties of a system
  - Consistency (all copies have same value)
  - Availability (system can run even if parts have failed)
  - Partitions (network can break into two or more parts)
- Brewer's CAP "Theorem": You can have at most two of these three properties for any system