Università Ca' Foscari Venezia, Corso di Laurea in Informatica

Algebra Lineare

Prova d'esame - Prof. R. Ghiselli Ricci, D. Pasetto Tema B - 20/06/2024 Tempo a disposizione: 2h

Cognome	Nome	Matricola	Aula-Posto
Cognome	Nome	Matricola	Auia-1 08t0

Norme generali:

- Non girare il foglio fino all'inizio dell'esame.
- Tenere sul tavolo solo lo stretto necessario per l'esame.
- NON è permesso utilizzare libri o quaderni, calcolatrici che facciano grafici o calcolino integrali, telefoni cellulari o altri dispositivi atti a comunicare. È permesso utilizzare un formulario personale scritto su un foglio A4 (fronte/retro).
- Al termine della prova, i docenti passeranno fila per fila per raccogliere gli scritti. Si potrà abbandonare l'aula solo al termine delle operazioni di consegna, rispettando le indicazioni dei docenti.

Esercizio 1 (6 punti)

Risolvere l'equazione $z^2 - i|z| = 0$ e rappresentare le soluzioni sia in forma algebrica che polare.

Esercizio 2 (8 punti)

Si consideri l'omomorfismo $T_k : \mathbb{R}^4 \to \mathbb{R}^3$, dipendente dal parametro reale k, la cui matrice A_k rispetto alle basi canoniche é data da:

$$A_k = \begin{pmatrix} 1 & 0 & k & k \\ 4 & k & k & 0 \\ k & k & 4 & 4 - k \end{pmatrix}$$

- 2.1 Si determini per quali valori di k la funzione T_k é suriettiva e per quali é iniettiva.
- 2.2 Si determini un vettore $\mathbf{v} \in \mathbb{R}^3$ tale che $\mathbf{v} \notin \text{Im}(T_0)$.

Esercizio 3 (9 punti)

Sia T l'endomorfismo di \mathbb{R}^3 rappresentato, rispetto alla base canonica, da:

$$A = \begin{pmatrix} -1 & 1 & 0 \\ -2 & 2 & 0 \\ -6 & 3 & 3 \end{pmatrix}$$

- 3.1 Stabilire se T è diagonalizzabile.
- 3.2 Determinare una base di \mathbb{R}^3 formata da autovettori di T.
- 3.3 Sia V la matrice le cui colonne sono date dai vettori della base trovata al punto precedente. Determinare la sua inversa V^{-1} .
- 3.4 Determinare la matrice $V^{-1}AV$.

Esercizio 4 (6 punti)

Consideriamo il seguente sistema lineare

$$\begin{cases} x_1 - x_2 + 3x_3 + x_5 = 2\\ 2x_1 + x_2 + 8x_3 - 4x_4 + 2x_5 = 3\\ x_1 + 2x_2 + 5x_3 - 3x_4 + 4x_5 = 1 \end{cases}$$

di tre equazioni nelle cinque incognite x_1, x_2, x_3, x_4, x_5 .

- 4.1 Discutere la risolubilitá del sistema.
- 4.2 In caso di risolubilitá, trovare le soluzioni.

Esercizio 5 (3 punti)

Stabilire se $W = \{ \mathbf{v} = (v_1, v_2, v_3, v_4) \in \mathbb{R}^4 : v_1 + v_4 = 0 \}$ sia un sottospazio vettoriale di \mathbb{R}^4 .

Soluzioni

Esercizio 1 (6 punti)

Risolvere l'equazione $z^2 - i|z| = 0$ e rappresentare le soluzioni sia in forma algebrica che polare.

Attraverso la sostituzione z = x + iy, si ottiene l'equazione $(x + iy)^2 - i\sqrt{x^2 + y^2} = 0$. Svolgendo il quadrato del binomio a primo membro, si giunge a

$$x^2 - y^2 + i(2xy - \sqrt{x^2 + y^2}) = 0,$$

da cui, separando i termini reali da quelli immaginari, si arriva al sistema (2p)

$$\begin{cases} x^2 - y^2 = 0\\ 2xy - \sqrt{x^2 + y^2} = 0 \end{cases}$$

Conviene partire dalla prima equazione, che conduce a $y^2 = x^2$, ossia $y = |x| = \pm x$. Iniziamo ad inserire y = x nella seconda equazione: si ottiene

$$2x^2 - \sqrt{2x^2} = 2x^2 - \sqrt{2} \cdot \sqrt{x^2} = 2x^2 - \sqrt{2}|x| = 0.$$

Noi ora proseguiamo tenendoci il modulo di x e utilizzando la banale identitá $x^2 = |x| \cdot |x|$, ma si sarebbe potuto proseguire in modo equivalente studiando i due casi separati $x \ge 0$ e x < 0 al fine di sciogliere il modulo. Con tale metodo (certamente piú veloce) si ha $\sqrt{2}|x| \cdot (\sqrt{2}|x|-1) = 0$. Se x = 0 troviamo $z_1 = 0$, mentre $\sqrt{2}|x|-1 = 0$ conduce a $|x| = 1/\sqrt{2}$. Di conseguenza, troviamo altre due soluzioni date da: (1p)

$$z_2 = \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}, \ z_3 = -\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}.$$

Invece, per y = -x, si trova

$$-2x^2 - \sqrt{2}|x| = 0.$$

Si noti che il primo membro è negativo, essendo una somma di quantità negative, quindi si deve necessariamente avere x = 0, da cui, di nuovo, $z_1 = 0$. (1p)

Si noti che si poteva anche risolvere l'equazione nella forma polare: sarebbe stato molto più veloce, ma bisognava assolutamente ricordare che la funzione $\exp\{it\}$ é periodica di periodo 2π , ossia $\exp\{it\} = \exp\{i(t+2k\pi)\}$ per ogni numero naturale $k \geq 0$. Se z é espresso in forma polare come $z = \rho \cdot \exp\{i\theta\}$, l'equazione diviene

$$\rho^2 \cdot \exp\{i2\theta\} - i\rho = 0,$$

da cui

$$\rho^2 \cdot \exp\{i2\theta\} = i\rho = \rho \cdot \exp\{i\pi/2\}.$$

Tale equazione conduce al sistema

$$\begin{cases} \rho^2 = \rho \\ \theta = \frac{1}{4}\pi + k\pi. \end{cases}$$

La prima delle due equazioni diviene $\rho(\rho-1)=0$ le cui soluzioni sono $\rho=0$ e $\rho=1$. La seconda invece porta alle due soluzioni

$$\theta_1 = \frac{1}{4}\pi, \quad \theta_2 = \frac{5}{4}\pi,$$

rispettivamente per k=0,1 (si osservi che non si puó andare oltre con k, perché θ é vincolato a stare in $[0,2\pi]$).

Le soluzioni in forma polare, ricavabili direttamente dal secondo metodo o, indirettamente, dal primo sono: (2p)

$$z_1 = (0,0), \ z_2 = \left(1, \frac{\pi}{4}\right), \ z_3 = \left(1, \frac{5\pi}{4}\right).$$

Esercizio 2 (8 punti)

Si consideri l'omomorfismo $T_k : \mathbb{R}^4 \to \mathbb{R}^3$, dipendente dal parametro reale k, la cui matrice A_k rispetto alle basi canoniche é data da:

$$A_k = \begin{pmatrix} 1 & 0 & k & k \\ 4 & k & k & 0 \\ k & k & 4 & 4 - k \end{pmatrix}$$

2.1 Si determini per quali valori di k la funzione T_k é suriettiva e per quali é iniettiva.

(6p totali) La suriettivitá di T_k equivale a richiedere che il rango di A_k sia massimo, ossia $rg(A_k) = 3$. Per studiare il problema del rango di A_k al variare di $k \in \mathbb{R}$ noi utilizzeremo l'algoritmo di Gauss, ma, evidentemente, gli stessi risultati si possono ottenere con il teorema degli orlati.

Notazioni per l'algoritmo di Gauss: $R_i \to R_i + \alpha \cdot R_j$ significa che al posto della riga *i*-esima mettiamo la riga *i*-esima sommata alla riga *j*-esima precedentemente moltiplicata per un fattore α , con $\alpha \neq 0$; $R_i \leftrightarrow R_j$ significa che scambiamo la riga *i*-esima con la riga *j*-esima.

Dopo la prima operazione $R_2 \to R_2 - 4 \cdot R_1$ otteniamo la matrice

$$\begin{pmatrix} 1 & 0 & k & k \\ 0 & k & -3k & -4k \\ k & k & 4 & 4-k \end{pmatrix}$$

Ora, proseguiamo distinguendo i due casi $k \neq 0$ e k = 0: nel primo, dopo le due operazioni $R_3 \to R_3 - k \cdot R_1$ e $R_3 \to R_3 - R_2$ otteniamo la matrice a scala

$$\tilde{A}_k = \begin{pmatrix} 1 & 0 & k & k \\ 0 & k & -3k & -4k \\ 0 & 0 & 4+3k-k^2 & 4+3k-k^2 \end{pmatrix}$$

Il termine $4 + 3k - k^2$ si annulla per $k \in \{k_1, k_2\}$, ove $k_1 = -1$ e $k_2 = 4$. Pertanto, ricordando che siamo comunque nel sottocaso $k \neq 0$, si ha che per $k \notin \{0, -1, 4\}$ la matrice \tilde{A}_k ha tre pivot diversi da zero, dunque il rango di A_k é massimo e T_k é suriettiva. (3p)

Invece, per $k \in \{k_1, k_2\}$, la matrice \tilde{A}_k ha due soli pivot diversi da zero, quindi il suo rango é due e conseguentemente T_{k_i} non é suriettiva per i = 1, 2. (1p)

Recuperiamo ora il solo caso lasciato in sospeso, ossia k=0: dopo l'operazione $R_2 \leftrightarrow R_3$ si trova la matrice

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 4 & 4 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

ossia una matrice a scala di rango due, quindi T_0 non é suriettiva. (1p)

Infine, se applichiamo il teorema della dimensione, si trova che

$$dim Ker(T_k) + rg(A_k) = n = 4$$

dunque

$$dim Ker(T_k) = 4 - rg(A_k),$$

e siccome, come giá osservato in precedenza, il rango massimo di A_k é tre, la dimensione del nucleo di T_k non potrá mai essere zero, quindi T_k non é mai iniettiva. (1p)

2.2 Si determini un vettore $\mathbf{v} \in \mathbb{R}^3$ tale che $\mathbf{v} \notin \text{Im}(T_0)$.

Nel caso k=0 la matrice A_0 che rappresenta T_0 rispetto alle basi canoniche é

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 \\
0 & 0 & 4 & 4
\end{pmatrix}$$

Sappiamo giá che il suo rango é due ed é facile vedere che le due colonne linearmente indipendenti sono date dai vettori $\mathbf{u} = (1, 4, 0)$ e $\mathbf{w} = (0, 0, 4)$. Il metodo piú veloce per selezionare un vettore $\mathbf{v} = (v_1, v_2, v_3) \in \mathbb{R}^3$ non appartenente all'immagine di T_0 é fare in modo che i tre vettori \mathbf{u} , \mathbf{w} e \mathbf{v} formino una base di \mathbb{R}^3 , ossia siano linearmente indipendenti. Se consideriamo la matrice, denotata B_0 , le cui colonne siano appunto \mathbf{u} , \mathbf{w} e \mathbf{v} , si trova

$$B_0 = \begin{pmatrix} 1 & 0 & v_1 \\ 4 & 0 & v_2 \\ 0 & 4 & v_3 \end{pmatrix}$$

Utilizzando lo sviluppo di Laplace sulla seconda colonna, il calcolo del determinante di B_0 é immediato e si giunge a $det(B_0) \neq 0$ se e solo se $4v_1 \neq v_2$. Pertanto, siccome il rango di B_0 é tre se e solo se $det(B_0) \neq 0$, la condizione richiesta su \mathbf{v} é appunto $4v_1 \neq v_2$. (2p)

Altro metodo, decisamente meno veloce, é quello di scriversi in forma esplicita la funzione T_0 data da

$$T_0(x, y, z, w) = (x, 4x, 4z + 4w).$$

Se ora vogliamo che $\mathbf{v} = (v_1, v_2, v_3) \in \mathbb{R}^3$ appartenga all'immagine di T_0 , é necessario che $x = v_1$ e contemporaneamente $4x = v_2$ e quindi $4v_1 = v_2$, il che equivale alla precedente conclusione.

Esercizio 3 (9 punti)

Sia T l'endomorfismo di \mathbb{R}^3 rappresentato, rispetto alla base canonica, da:

$$A = \begin{pmatrix} -1 & 1 & 0 \\ -2 & 2 & 0 \\ -6 & 3 & 3 \end{pmatrix}$$

3.1 Stabilire se T è diagonalizzabile. (3p totali)

L'equazione secolare $det(A - \lambda I) = 0$ diviene, dopo qualche raccoglimento algebrico,

$$-\lambda(\lambda - 1)(\lambda - 3) = 0$$

da cui si hanno i tre autovalori $\lambda_1 = 0, \lambda_2 = 1, \lambda_3 = 3$. (2p)

Siccome la matrice A ammette 3 autovalori distinti, essa é certamente diagonalizzabile. (1p)

3.2 Determinare una base di \mathbb{R}^3 formata da autovettori di T. (3p totali)

In corrispondenza di λ_i , calcoliamo l'autospazio V_{λ_i} con il solito metodo della risoluzione del sistema lineare omogeneo $(A - \lambda_i I)\mathbf{x} = \mathbf{0}$, ove $\mathbf{x} = (x, y, z)$, per ogni i = 1, 2, 3 e si trova: (2p)

$$V_0 = \{(x, x, x) : x \in \mathbb{R}\},\$$

$$V_1 = \{(x, 2x, 0) : x \in \mathbb{R}\},\$$

$$V_3 = \{(0, 0, x) : x \in \mathbb{R}\},\$$

quindi una possibile base di autovettori è data da $\mathcal{B} = \{w_1, w_2, w_3\}, (1p)$ ove

$$w_1 = (1, 1, 1) ; w_2 = (1, 2, 0) ; w_3 = (0, 0, 1).$$

3.3 Sia V la matrice le cui colonne sono date dai vettori della base trovata al punto precedente. Determinare la sua inversa V^{-1} . (2p)

Per calcolare l'inversa V^{-1} della matrice V, data da

$$V = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

utilizziamo l'algoritmo di Gauss-Jordan (GJ), che parte dalla matrice V affiancata alla matrice identica, ossia

$$V \vdots I = \begin{pmatrix} 1 & 1 & 0 \vdots 1 & 0 & 0 \\ 1 & 2 & 0 \vdots 0 & 1 & 0 \\ 1 & 0 & 1 \vdots 0 & 0 & 1 \end{pmatrix}$$

Dopo le tre operazioni $R_2 \to R_2 - R_1$, $R_3 \to R_3 - R_1$ e $R_3 \to R_3 + R_2$ otteniamo la matrice

$$\begin{pmatrix} 1 & 1 & 0 : 1 & 0 & 0 \\ 0 & 1 & 0 : -1 & 1 & 0 \\ 0 & 0 & 1 : -2 & 1 & 1 \end{pmatrix}$$

Ora, dopo l'operazione $R_1 \to R_1 - R_2$, otteniamo la matrice definitiva

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & 1 \end{pmatrix}$$

L'algoritmo di GJ ci dice che l'inversa di V é data da

$$V^{-1} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 1 & 0 \\ -2 & 1 & 1 \end{pmatrix}$$

3.4 Determinare la matrice $V^{-1}AV$. (1p)

Dalla teoria, essendo V la matrice di cambiamento di base per passare dalla base canonica alla base \mathcal{B} di autovettori di A, sappiamo che $V^{-1}AV = D$, ove D é la matrice diagonale che ha sulla diagonale principale gli autovalori di A. Pertanto, si ha che

$$V^{-1}AV = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Esercizio 4 (6 punti)

Consideriamo il seguente sistema lineare

$$\begin{cases} x_1 - x_2 + 3x_3 + x_5 = 2\\ 2x_1 + x_2 + 8x_3 - 4x_4 + 2x_5 = 3\\ x_1 + 2x_2 + 5x_3 - 3x_4 + 4x_5 = 1 \end{cases}$$

di tre equazioni nelle cinque incognite x_1, x_2, x_3, x_4, x_5 .

4.1 Discutere la risolubilitá del sistema.

(4p totali)

Detto $\mathbf{b} = (2, 3, 1)$ il vettore dei termini noti, la matrice completa $A:\mathbf{b}$ associata al sistema é

$$A:\mathbf{b} = \begin{pmatrix} 1 & -1 & 3 & 0 & 1 & 2 \\ 2 & 1 & 8 & -4 & 2 & 3 \\ 1 & 2 & 5 & -3 & 4 & 1 \end{pmatrix}$$

Utilizzando l'algoritmo di Gauss, dopo le tre operazioni $R_2 \to R_2 - 2 \cdot R_1$, $R_3 \to R_3 - R_1$ e $R_3 \to R_3 - R_2$, si arriva alla matrice a scala S data da: (2p)

$$S = \begin{pmatrix} 1 & -1 & 3 & 0 & 1 & 2 \\ 0 & 3 & 2 & -4 & 0 & -1 \\ 0 & 0 & 0 & 1 & 3 & 0 \end{pmatrix}$$

che ha tre pivot diversi da zero (specificamente, 1 sulla prima colonna, 3 sulla seconda e 1 sulla quarta colonna). Dunque, il rango della completa coincide con quello della incompleta ed é pari a tre; per il teorema di Rouché-Capelli, il sistema ammette ∞^2 soluzioni, ossia infinite soluzioni dipendenti da due parametri liberi. (2p)

4.2 In caso di risolubilitá, trovare le soluzioni.

(2p totali)

Come visto al termine del punto precedente, le colonne dominanti sono la prima, la seconda e la quarta, quindi le incognite reali sono x_1, x_2 e x_4 e le soluzioni si troveranno in funzione dei due parametri liberi dati da x_3 e x_5 , che denoteremo rispettivamente u e v:

La matrice a scala S si riconverte nel seguente sistema lineare equivalente a quello originario: (1p)

$$\begin{cases} x_1 - x_2 = 2 - 3u - v \\ 3x_2 - 4x_4 = -1 - 2u \\ x_4 = -3v \end{cases}$$

Procedendo a ritroso a partire dall'ultima equazione su su fino alla prima, non é difficile mostrare che le soluzioni sono date da: (1p).

$$\begin{cases} x_1 = \frac{5}{3} - \frac{11}{3}u - 5v \\ x_2 = -\frac{1}{3} - \frac{2}{3}u - 4v \\ x_4 = -3v \end{cases}$$

Esercizio 5 (3 punti)

Stabilire se $W = \{ \mathbf{v} = (v_1, v_2, v_3, v_4) \in \mathbb{R}^4 : v_1 + v_4 = 0 \}$ sia un sottospazio vettoriale di \mathbb{R}^4 .

Il sottoinsieme W di \mathbb{R}^4 é effettivamente un sottospazio vettoriale di \mathbb{R}^4 . Per dimostrarlo, conviene scrivere W nella forma equivalente

$$W = \{ \mathbf{v} = (v_1, v_2, v_3, -v_1) : v_1, v_2, v_3 \in \mathbb{R} \}$$

Cominciamo a mostrare che W é chiuso nella somma: dati $\mathbf{v}, \mathbf{w} \in W$, siccome $\mathbf{v} = (v_1, v_2, v_3, -v_1)$ e $\mathbf{w} = (w_1, w_2, w_3, -w_1)$, la loro somma, data da

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, v_3 + w_3, -v_1 - w_1),$$

appartiene ancora a W. Infine, se $\mathbf{v} \in W$ e $\lambda \in \mathbb{R}$, allora $\lambda \mathbf{v} = (\lambda v_1, \lambda v_2, \lambda v_3, -\lambda v_1)$ appartiene ancora a W. (3p)