

Sobi **Abbreviations** f_u - Fraction unbound GFR - Glomerular filtration rate GLP - Good laboratory practice A-B - Apical-to-basolateral ADME - absorption, distribution, metabolism, excretion AUC - Area under plasma concentration-time curve B-A - Basolateral-to-apical B.I.D. - Bis in die, twice daily BW - Body weight BSA - Body surface area C_w - Average concentration C_r - Plasma concentration C_r - Tissue concentration C_r - Tissue concentration C_r - Unbound concentration C_r - Unbound concentration C_r - Condidate drug IP - Intraperitoneal IV - Intravenous K_p- Tissue-to-plasma partition coefficient MDR - Multi-drug resistance P_{app} - Apparent permeability PD – Pharmacodynamics P-gp - P-glycoprotein PK - Pharmacokinetics Cu- Unbound concentration CD - Candidate drug CL - Clearance CL_n - Hepatic clearance CL_n - Renal clearance CL_n - Renal clearance CL_n - Non-renal clearance CRO - Contract research organization PM - Poor metabolizers PO - Oral, Per os POC - Proof-of-concept QWBAR - Quantitative whole-body autoradiography R&D - Research and development SC - Subcutaneous t_K - Half-life TK - Toxicokinetics CSF - Cerebrospinal fluid DMPK - Drug metabolism and Pharmacokinetics E_H - Extraction ratio t_{max} - time point of maximum plasma concentration (fraction lost during first-pass in liver) **EM** - Extensive metabolizers **F**_a - Fraction absorbed τ - Dosing interval V - Volume of distribution f_b - Fraction bound f_e - Fraction excreted wt - wild-type

Focus

- Drug metabolism and pharmacokinetics
- Oral administration
- Small molecules

sobi Causes of attrition in drug development 20% 30% 40% 50% **Clinical Safety** Efficacy **Formulation** PK/Bioavailability Commercial Toxicology **Cost of Goods** Unknown/Other ■ 1991 **■** 2000 AstraZeneca, BMS, Lilly, Glaxo, J&J, Novartis, Pfizer, Pharmacia, Roche, Schering, SmithKline Beecham – over 500 programs surveyed. PMA/FDA Survey 1991, Pharmaceutical R&D Benchmarking Forum, General Metrics 2001

Drug metabolism

sobi

• Phase I reactions

- Introduction of functional group (-OH, -COOH, -NH₂) by oxidation, reduction, hydrolysis, etc.
- Preparation for Phase II metabolism or excretion

Phase II reactions

- Addition of endogenous component by glucuronide conjugation, sulfate conjugation, glutathione conjugation, methylation, acetylation
- Increase in xenobiotic hydrophilicity resulting in excretion

Genetic polymorphism in particular P450 isoform

- Poor metabolizers (PM) and extensive metabolizers (EM) of drugs metabolized by polymorph isoforms
- Criteria for therapeutically important genetic polymorphism:
 - An essential fraction of the given dose is metabolized by an polymorphic enzyme
 - A drug with a narrow therapeutic index
- CYP2D6
 - 5-10% Caucasians, and 0.9% Asians and Africans are PM
- CYP2C19
 - 2-5% Caucasians and 12-23% Asians are PM

ADME in preclinical development

sobi

- Prediction of ADME in humans
- Pharmacology support
- Toxicology support

"Ideal" pharmacokinetic properties

- Complete absorption of an oral dose
- Elimination 50% via metabolism 50% via renal excretion
- Low clearance
- Low/moderate binding to plasma proteins

- No major metabolism via polymorphic enzymes
- No drug-drug interactions
- Linear pharmacokinetics
- No interaction with food

Metabolic stability studies

- Prediction of hepatic clearance and oral bioavailability (first-pass metabolism)
- Liver microsomes, hepatocytes, recombinant expressed individual CYP's, liver slices, etc.

Metabolic stability studies

sobi

- Percent of parent compound remaining at each time point compared to control (0 min)
- Plot In relative amount of parent compound remaining vs. time $in \ vitro \ t_{1/2} \qquad \qquad calculation \ (prediction) \ of \ CL_H \ and \ E_H$

Metabolic stability studies

Interpretation of results

- Risk for high clearance
 - $-E_{H} > 0.8$
- Intermediate compounds
 - $-0.2 < E_{H} < 0.8$
- Low clearance compound
 - E_H < 0.2

Cell permeability studies

- Prediction of oral bioavailability (fraction absorbed in gastrointestinal tract) and distribution (e.g. CNS)
- Caco-2 cells (human colon cancer cell line)
- MDCK (Madin-Darby Canine Kidney) cells
 - Wild-type cells vs. MDR gene-transfected cells

Plasma protein binding studies

- Determination of free fraction (i.e. fraction that is responsible for pharmacological and toxic effects) in plasma from humans as well as pharmacological and toxicological species
- In vitro methods such as equilibrium dialysis, ultrafiltration and ultracentrifugation

Plasma protein binding studies

Interpretation of results

fb = bound fraction

fb > 99 % Predicted as very high fb > 90 % Predicted as high fb > 50 - 90 % Predicted as moderate fb < 50 % Predicted as low

Stability > 80% Stable

Recovery 80-120 % Normal recovery

Cytochrome P450 inhibition studies

- Identify potent metabolic based CYP inhibitors and hence potential risk for drug-drug interaction(s)
- Recombinant expressed human CYPs or human liver microsomes
- 1A2, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4

Cytochrome P450 inhibition studies SOOI Interpretation of results

Inhibitor conc. [µM]	Percent of inhibiton [%]	Predicted K _i [μΜ]	Risk for interaction in vivo
1	> 50	< 1	Most likely
10	> 50	> 1 < 10	Possibly
100	> 50	> 10 < 100	Unlikely
100	< 50	> 100	None

Bjornsson, T.D. et al., 2003.

Prediction of clinical relevance of competitive P450 inhibition

[1]/K _i	Prediction/Risk	
C _{max} /K _i > 1	Likely / High risk	
$1 > C_{max}/K_i > 0.1$	Possible / Medium risk	
$0.1 > C_{max}/K_i$	Remote / Low risk	

Tucker G.T. et al., 2001.

Metabolite characterization and quantitation

- In vitro
 - Liver microsomes, hepatocytes, recombinant expressed enzymes
- In vivo
 - Plasma, urine or bile samples from pharmacokinetic, pharmacology or toxicology studies
- Identification of pharmacologically active metabolites as well as toxic metabolites
- Guidance in driving chemistry towards compounds with better metabolic stability or non-toxic metabolites
- Guidance in choice of toxicological species

Preclinical pharmacokinetic studies

- Single-dose exposure in rodents (PO/SC/IP)
 - Support for planning of pharmacology studies (prediction of pharmacologically effective dose and dosing frequency)
- Single-dose PK in rodents (PO/IV)
 - Characterization of the plasma pharmacokinetic parameters e.g. oral bioavailability, clearance and volume of distribution
 - Urine sampling for determination of renal clearance

Preclinical pharmacokinetic studies

- Single-dose exposure in rodents (PO/SC/IP)
 - Support for planning of pharmacology studies (prediction of pharmacologically effective dose and dosing frequency)
- Single-dose PK in rodents (PO/IV)
 - Characterization of the plasma pharmacokinetic parameters e.g. oral bioavailability, clearance and volume of distribution
 - Urine sampling for determination of renal clearance

sobi PK of BVT.A in male C57Bl mice Some PK parameters Method Value **Parameter** (AUC_{oral} / AUC_{IV}) • (Dose_{IV} / Dose_{oral}) Oral bioavailability, F (%) 50 Total plasma clearance, CL (L/h·kg) Dose_{IV} / AUC_{IV} 1.7 0.08 Fraction excreted unchanged in urine, $\rm f_e$ (%) $A_e/Dose_{IV}$ Renal clearance, CL_R (L/h·kg) $\mathsf{CL} \bullet \mathsf{f}_{\mathsf{e}}$ 0.001 CL - CL_R Non-renal clearance, CL_{NR} (L/h·kg) 1.7

PK of BVT.A in male C57Bl mice

In vitro-in vivo comparison

Parameter	Actual value	Value predicted from in vitro data
Oral bioavailability (%)	50	37
Hepatic clearance, CL _H (L/h·kg)	1.7*	2.6
Renal clearance, CL _R (L/h·kg)	0.001	0.013 (i.e. GFR x f _u)

^{*}Assumption: non-renal clearance = hepatic clearance

Preclinical pharmacokinetic studies

- Repeat-dose exposure in connection with pharmacology studies
 - Support to interpretation of pharmacology results
 - Determination of clinically relevant plasma concentrations
- CNS distribution in rodents
 - Brain distribution in P-gp deficient mice (vs. wild-type)
 - Brain and CSF distribution in rats

Preclinical pharmacokinetic studies

- Repeat-dose exposure in connection with pharmacology studies
 - Support to interpretation of pharmacology results
 - Determination of clinically relevant plasma concentrations
- CNS distribution in rodents
 - Brain distribution in P-gp deficient mice (vs. wild-type)
 - Brain and CSF distribution in rats

CNS distribution of BVT.2989 in P-gp deficient mice

10 mg/kg by subcutaneous infusion using osmotic minipumps during 24 h $\,$

Wild-type and P-gp deficient CF-1 male mice

Plasma and brain sampling

	Wild-type	P-gp deficient
Plasma C _{ss} (μM)	0.35	0.46
Brain C _{ss} (nmol/g brain)	0.09	4.5
Brain C _{ss} /Plasma C _{ss}	0.27	9.9

37-fold difference in brain distribution between P-gp deficient and wild-type mice indicates limited CNS distribution of BVT.2989 due to P-gp dependent active transport

CNS distribution of BVT.2989 in rats

 $30~\rm mg/kg$ by subcutaneous infusion using osmotic minipumps during 24 h Sprague Dawley male rats

Plasma and CSF sampling

Plasma C _{ss} (μM)	0.59
Plasma C _{ss,u} (μΜ)	0.44
CSF C _{ss} (μM)	0.03
CSF C _{ss} /Plasma C _{ss,u}	0.07

~15-fold difference between CSF and unbound plasma concentration indicates limited CNS distribution of BVT.2989

Preclinical pharmacokinetic studies

- Single-dose PK in non-rodents (PO/IV)
 - Characterization of the plasma pharmacokinetic parameters e.g. oral bioavailability, clearance and volume of distribution
 - Urine sampling for determination of renal clearance
 - PK-data from at least three species-more accurate prediction of PK in humans by means of allometric scaling
- Repeat-dose TK in rodents and non-rodents
 - Support to interpretation of toxicology results
 - Determination of marigin of exposure
 - Dose/time/gender dependent pharmacokinetics?

Preclinical pharmacokinetic studies

- Single-dose PK in non-rodents (PO/IV)
 - $-\,$ Characterization of the plasma pharmacokinetic parameters e.g. oral bioavailability, $\,$ clearance and volume of distribution
 - Urine sampling for determination of renal clearance
 - PK-data from at least three species-more accurate prediction of PK in humans by means of allometric scaling
- Repeat-dose TK in rodents and non-rodents
 - Support to interpretation of toxicology results
 - Determination of marigin of exposure
 - Dose/time/gender dependent pharmacokinetics?

Prediction of PK in humans

Allometric scaling

- The relationship between different physiological processes and body weight known for a long time
- Based on allometric relationships found for liver weight, blood flow, enzyme content, etc., common application of allometry in PK started in 1980s
- Body weight (BW) from several species is plotted against PK-parameter of interest

 $Y = a \cdot (BW)^b$ $\log Y = \log a + b \cdot \log$

Allometric scaling

What we have learned so far

- Most useful for scaling of clearance and volume of distribution
- Inclusion of correction factors may improve accuracy of the prediction
 - MLP, brain weight, metabolic stability in vitro, plasma protein binding, bile flow, GFR, etc.
- As compared to clearance of metabolized drugs, tendency of more accurate predictions for volume of distribution in general as well as clearance of renally excreted drugs and protein therapeutics
- Choice of animal species included in allometry may influence accuracy of predictions
- In general, regarded to be a useful approach, however there are examples of poor predictions

Allometric scaling Sobi Prediction of PK in humans for BVT.3498 Allometric scaling of clearance and volume of distribution and prediction of AUC (=Dose/CL) and half-life (=In2·V/CL) Predicted AUC (μM·h) 5.2 5.3 Half-life (h) 7.0 R2 = 0.9654 V_{z,unbound} (L) 100 Monkey 0.01 0.1 0.01 0.01 100 Body weight (kg) Body weight (kg)

Allometric scaling

Susalimod

- Antireumatic agent in clinical development at Pharmacia & Upjohn during 1990s
- Extensivelly excreted in bile
 - In all species tested, 90% or more of administered dose was excreted in bile as unchanged drug
- Poor accuracy of prediction of clearance using allometric scaling
 - More than 20-fold overestimation of clearance in humans (125 ml/min vs. 5.2 ml/min)

Adapted from Påhlman et.al., Pharm Pharmacol Commun 1998

Identification of metabolizing enzymes

Enzyme kinetics in liver microsomes or hepatocytes $\text{Determination of V}_{\text{max}}\text{, }K_{\text{m}}\text{ and }\text{Cl}_{\text{int}}$

Formation of metabolite(s) in incubations with recombinantly expressed CYPs

Effect of specific chemical inhibitors against CYPs

Characterization of CYP isoforms involved in metabolic pathway(s)

Metabolism of tolterodine

Recombinantly expressed CYPs

Rate of formation (pmol/pmol P450 x min) for 5-HM and N-dealkylated tolterodine in recombinantly expressed P450 isoenzymes

CYP isoform	5-HM	N-dealkylated
1A1,1A2, 2C8	ND	ND
2C9	ND	0.25
2C19	ND	1.51
2D6	5.0	ND
3A4	ND	0.23

ND = Not detected

Postlind et al., Drug Metab Dispos 1998

Metabolism of tolterodine

Clinical significance

- Binding affinity to muscarinic receptors in urinary bladder
 - Tolterodine ~ 5-HM > N-dealkylated tolterodine
- Fraction unbound in human plasma
 - Tolterodine 3.7%5-HM 36%
 - N-dealkylated tolterodine
 14%
- Unbound 5-HM is assumed to significantly contribute to the clinical efficacy of tolterodine in CYP2D6 EMs
- AUC $_{\rm u}$ for tolterodine in PMs $^{\sim}$ AUC $_{\rm u}$ for tolterodine + AUC $_{\rm u}$ for 5-HM in EMs

No significant difference in antimuscarinic effect between EMs and PMs