The Division of Labour

https://github.com/sahirbhatnagar/knitr-tutorial https://sahirbhatnagar.com/CSSC2018

Sahir Bhatnagar, @syfi_24 July 5, 2018

McGill University sahirbhatnagar.com

The Division of Labour

Figure 1: Adam Smith, author of The Wealth of Nations (1776), in which he conceptualizes the notion of the division of labour

Example: LATEX

Composition and logical structuring of text is the author's specific contribution to the production of a printed text. Matters such as the choice of the font family, should section headings be in bold face or small capitals? Should they be flush left or centered? Should the text be justified or not? Should the notes appear at the foot of the page or at the end? Should the text be set in one column or two? and so on, is the typesetter's business

Tools for Reproducible Research

Free and Open Source Software

- RStudio: Creating, managing, compiling documents
- LATEX: Markup language for typesetting a pdf
- Markdown: Markup language for typesetting an html
- R: Statistical analysis language
- knitr: Integrate LaTeXand R code. Based on Prof. Friedrich Leisch's Sweave

What knitr does

LATEX example:

Example 1: Show code and results

```
<<example-code-chunk-name, echo=TRUE>>=
x \leftarrow rnorm(50)
mean(x)
0
produces
x \leftarrow rnorm(50)
mean(x)
## [1] 0.12
```

R output within the text

- Include R output within the text
- We can do that with "S-expressions" using the command \Sexpr{...}

Example:

The iris dataset has $\Prow(iris)$ rows and $\Prow(iris)$ columns

produces

The iris dataset has 150 rows and 5 columns

Include a Figure

```
<<fre><<fig.ex, fig.cap='Linear Regression',fig.height=3,fig.width=3>>=
plot(mtcars[ , c('disp','mpg')])
fit <- lm(mpg ~ disp , data = mtcars)
abline(fit,lwd=2)
@</pre>
```


Figure 2: Linear regression

Include a Table

```
<<table.ex, results='asis'>>=
library(xtable)
tab <- xtable(iris[1:5,1:5],caption='Sample of Iris data')
print(tab, include.rownames=FALSE)
@
library(xtable)
tab <- xtable(iris[1:5,1:5], caption = 'Sample of Iris data')
print(tab, include.rownames = F)</pre>
```

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.10	3.50	1.40	0.20	setosa
4.90	3.00	1.40	0.20	setosa
4.70	3.20	1.30	0.20	setosa
4.60	3.10	1.50	0.20	setosa
5.00	3.60	1.40	0.20	setosa

Table 1: Sample of Iris data

Markdown: HTML without knowing HTML

R + Markdown = RMarkdown

What rmarkdown does

RMarkdown example:

How to choose between LATEX and Markdown?

LATEX

| Math/stat symbols beamer presentations customized documents publish to journals, arXiv

Markdown

quick and easy reports
use javascript libraries
interactive plots
publish to websites

Opinion: Reproducible research can still be wrong: Adopting a prevention approach

Jeffrey T. Leek^{a,1} and Roger D. Peng^b

^aAssociate Professor of Biostatistics and Oncology and ^bAssociate Professor of Biostatistics, Johns Hopkins University, Baltimore, MD

computational tools such as knitr, iPython notebook, LONI, and Galaxy (8) have simplified the process of distributing reproducible data analyses.

$${\rm Reproducibility} \propto \frac{1}{{\rm copy~paste}}$$