Introduction to Bayesian linear regression with brms

Stefano Coretta 18/01/2020 [mention installation]

Random variables

- We have a question about the world, so we collect data (sample from a population).
 - $y = (y_1, y_2, y_3, y_4, ..., y_n)$
- We want to know how the data (the sample) was generated.
- In probability theory, data is generated by a random variable Y.

Random variables

- Y is uncertain.
 - We can describe Y as a probability distribution, expressed by a set of parameters $\Theta = (\theta_1, ..., \theta_n)$.
- Probability distributions:
 - $Normal(\mu, \sigma)$,
 - Binomial(n, p),
 - · ...

Random variables

$$vot_i \sim Normal(\mu, \sigma)$$

$$voiced_i \sim Bernoulli(p)$$

$$DoubleDative_i \sim Poisson(\lambda)$$

Frequentist vs Bayesian view

- Parameters: μ , σ , p, λ , ...
- Frequentist view:
 - The parameters are **fixed** (they are unknown but certain).
 - They take on a specific value.
- Bayesian view:
 - The parameters are random variables (they are unkown and uncertain).
 - We describe each parameter as a probability distribution, expressed by a set of hyperparameters.

Continous random variable

$$\begin{aligned} vot_i \sim Normal(\mu, \sigma) \\ \mu \sim Normal(\mu_1, \sigma_1) \\ \sigma \sim HalfCauchy(x_0, \gamma) \end{aligned}$$

Bayes' Theorem

Priors

- We can incorporate previous knowledge about the hyperparameters as priors (prior distributions).
- Priors are chosen based on expert knowledge, previous studies, pilot data...
 - Priors must not be chosen based on the data to be analysed.

Priors

- Informative and weakly informative priors.
- Uninformative or diffuse priors.
 - Uniform distribution.
- Regularising priors.

Normal prior

[empirical rule]

- Previous literature on VOT in Italian (Esposito, 2002;
 Stevens & Hajek, 2010) report VOT values for voiceless stops in the range of 20–60 ms.
 - We can express this knowledge with the prior Normal(40, 10).
 - This is a somewhat strongly informative prior.

$$\begin{aligned} vot_i \sim Normal(\mu, \sigma) \\ \mu \sim Normal(40, 10) \\ \sigma \sim HalfCauchy(x_0, \gamma) \end{aligned}$$

Cauchy prior

Cauchy prior

$$vot_i \sim Normal(\mu, \sigma)$$

$$\mu \sim Normal(40, 10)$$

$$\sigma \sim HalfCauchy(0, 10)$$

- We have a model which incorporates our knowledge about VOT (through the priors for μ and σ).
- Now we want to obtain the posterior distributions of μ and σ.
 - The posterior distribution is the prior distribution conditioned on the data.
- brms R package: Bayesian Regression Models using Stan (Bürkner, 2018).

brms

- Stan (Stan Development Team, 2017).
 - Statistical programming language written in C++ for fitting Bayesian models (calculate posterior distributions).
 - Calculation can be complex and/or impossible, so we take many samples from the data and from the possible parameter values to find the posterior distributions of the hyperparameters.
 - Markov Chain Monte Carlo (MCMC) sampling using the No-U-Turn sampler (NUTS).
- brms is an interface between R and Stan.
- brm() function from brms.
 - Ime4 syntax $(y \sim x + (1|w))$.
 - Creates a Stan model, which is compiled and run.

brms

```
library(brms)
vot1 <- brm(</pre>
  <model_formula>,
  <family>,
  <pri>>,</pri>
  <data>,
  chains = 4,
  iter = 2000
```

brms

```
library(brms)
vot1 <- brm(</pre>
  vot ~ 1,
  family = gaussian(),
  <prior>,
  data = ita_egg,
  chains = 4,
  iter = 2000
```

Get prior

```
get_prior(
  vot ~ 1,
  family = gaussian(),
  data = ita egg
##
                   prior class coef group resp dpa
## 1 student t(3, 19, 14) Intercept
## 2 student t(3, 0, 14) sigma
```

Prior predictive checks

Set prior

Run the model

Start sampling

```
vot1 <- brm(
  vot ~ 1,
  family = gaussian(),
  prior = priors,
  data = ita egg,
  chains = 4,
  iter = 2000
## Compiling the C++ model
```

SAMPLING FOR MODEL '961f2bb5e5a5d9700f8d42812e2ac9a

References

- Bürkner, Paul-Christian. 2018. Advanced Bayesian multilevel modeling with the R package brms. The R Journal 10(1). 395-411. doi:10.32614/RJ-2018-017.
- Esposito, Anna. 2002. On vowel height and consonantal voicing effects: Data from Italian. *Phonetica* 59(4). 197–231. doi:10.1159/000068347.
- Stan Development Team. 2017. Stan: A C++ library for probability and sampling, version 2.14.0. http://mc-stan.org/.

Stevens, Mary & John Hajek. 2010. Post-aspiration in standard Italian: some first cross-regional acoustic evidence. Paper presented at Interspeech, 26-30 September 2010, Makuhari, Chiba, Japan.