Substitution Method

The substitution method

1. Guess a solution

Use induction to prove that the solution works

Substitution method

- Guess a solution
 - $\bullet T(n) = O(g(n))$
 - Induction goal: apply the definition of the asymptotic notation
 - $T(n) \le d g(n)$, for some d > 0 and $n \ge n_0$ (strong induction)
 - Induction hypothesis: $T(k) \le d g(k)$ for all k < n
- Prove the induction goal
 - Use the induction hypothesis to find some values of the constants d and n₀ for which the induction goal holds

$$T(n) = c + T(n/2)$$

- Guess: T(n) = O(lgn)
 - Induction goal: T(n) ≤ d lgn, for some d and n ≥ n₀
 - Induction hypothesis: T(n/2) ≤ d lg(n/2)
- Proof of induction goal:

$$T(n) = T(n/2) + c \le d \lg(n/2) + c$$

= $d \lg n - d + c \le d \lg n$
if: $-d + c \le 0, d \ge c$

$$T(n) = T(n-1) + n$$

- Guess: $T(n) = O(n^2)$
 - Induction goal: $T(n) \le dn^2$, for some d and $n \ge n_0$
 - Induction hypothesis: $T(n-1) \le d(n-1)^2$ for all k < n
- Proof of induction goal:

T(n) = T(n-1) + n
$$\le$$
 d (n-1)² + n
= dn² - (2dn - d - n) \le dn²
if: 2dn - d - n \ge 0 \Leftrightarrow d \ge n/(2n-1) \Leftrightarrow d \ge 1/(2 - 1/n)

For $n \ge 1 \Rightarrow 2 - 1/n \ge 1 \Rightarrow$ any $d \ge 1$ will work

$$T(n) = 3T(n/4) + cn^2$$

- Guess: $T(n) = O(n^2)$
 - Induction goal: $T(n) \le dn^2$, for some d and $n \ge n_0$
 - Induction hypothesis: T(n/4) ≤ d (n/4)²
- Proof of induction goal:

T(n) =
$$3T(n/4) + cn^2$$

 $\le 3d (n/4)^2 + cn^2$
= $(3/16) d n^2 + cn^2$
 $\le d n^2$ if: $d \ge (16/13)c$

• Therefore: $T(n) = O(n^2)$

$$T(n) = 2T(n/2) + cn$$

- **Guess**: $T(n) = O(n \log n)$
- **Proof** by <u>Mathematical Induction</u>:

```
Prove that T(n) \le d \ n \log n for d > 0
T(n) \le 2(d \cdot n/2 \cdot \log n/2) + cn
(where T(n/2) \le d \cdot n/2 (log n/2) by induction hypothesis)
\le dn \log n/2 + cn
= dn \log n - dn + cn
= dn \log n + (c-d)n
\le dn \log n \qquad \text{if } d \ge c
```

• Therefore, $T(n) = O(n \log n)$

$$T(n) = 2T(n/2) + n$$

- Guess: T(n) = O(nlgn)
 - Induction goal: T(n) ≤ dn lgn, for some d and n ≥ n₀
 - Induction hypothesis: T(n/2) ≤ dn/2 lg(n/2)
- Proof of induction goal:

T(n) = 2T(n/2) + n
$$\leq$$
 2d (n/2)lg(n/2) + n
= dn lgn - dn + n \leq dn lgn
if: - dn + n \leq 0 \Rightarrow d \geq 1