Math 4501 - Probability and Statistics II

6.4 - Maximum likelihood and method of moments estimation

for point estimates!

Invariance property of maximum likelihood estimators

Theorem

If $\widehat{\theta}$ is the maximum likelihood estimator of θ based on a random sample from the distribution with pdf or pmf $f(x; \theta)$, and g is a one-to-one function, then $g(\widehat{\theta})$ is the maximum likelihood estimator of $g(\theta)$.

Instant, ô MLE for
$$\theta$$
 } =) $g(\theta)$ MLE for $g(\theta)$ in $g(\theta) = g(\hat{\theta})$

CONSEQUENCE: if we know $\hat{\theta}$, then we know $\hat{\theta}$ for any $\hat{\theta}$ of the form $\hat{\theta} = g(\theta)$

with $g(\theta) = g(\theta)$

Whelihool funtion

We see that $g(\theta) = g(\theta)$

MOTIVATION / Proof sketch: $L(\theta)$ is maximized by $\hat{\theta}$. Let $Y = g(\theta)$ Since g is $1-t_0-1$, then g has an inverse h so that $\theta = h(\Psi)$. Then $L(\theta) = L(h(\Psi))$ is maximized at $\hat{\theta} = h(\hat{\Psi}) \Rightarrow |\hat{\Psi} = g(\hat{\theta})|$

Example

Let X_1, X_2, \ldots, X_n be a random sample from the geometric distribution with pmf

where
$$p \in \Omega = (0,1)$$
.

Determine the maximum likelihood estimator for the mean of the population.

Recall that the mean of a scometric distribution in $\mu = E[X] = \frac{1}{p}$ Using the invariance principle for MLE, we know that the MLE of μ in $\frac{1}{p}$ $\lim_{n \to \infty} \frac{1}{p} = \frac{1}{p}$ (because the function $g(x) = \frac{1}{p}$ is 1-to-1And (0, 0))

All we have to do to find $\widehat{\mu}$ in them to find \widehat{p} and then take it we already know to do!

Let us find the MLE for the government p (neview of what we've done before!)

Define the likelihood function:

$$L(p) = \prod_{i=1}^{m} f(x_i; p) = \prod_{i=1}^{m} p(1-p)^{x_i-1} = p^{m} (1-p)^{x_i-1}$$

We obtain that

Before differentiating L(p), apply maturel logonithm:

$$\frac{d}{dp} \ln (L(p)) = \frac{d}{dp} \left[m \ln p + \left(\sum_{i=1}^{m} a_i - m \right) \ln (1-p) \right]$$

$$= \frac{m}{p} - \frac{\sum_{i=1}^{m} a_i - m}{1-p}$$

$$\frac{d}{dp} \ln (L(p)) = 0 \iff \frac{m}{p} - \frac{\sum_{i=1}^{m} a_{i}^{-} - m}{1 - p} = 0 \iff \frac{m}{1 - p} = \sum_{i=1}^{m} a_{i}^{-} - m} = 0 \iff \frac{m}{1 - p} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \iff \frac{m}{1 - p} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \iff \frac{m}{1 - p} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \iff \frac{m}{1 - p} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \iff \frac{m}{1 - m^{2}} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \implies \frac{m}{1 - m^{2}} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \implies \frac{m}{1 - m^{2}} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \implies \frac{m}{1 - m^{2}} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \implies \frac{m}{1 - m^{2}} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \implies \frac{m}{1 - m^{2}} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \implies \frac{m}{1 - m^{2}} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \implies \frac{m}{1 - m^{2}} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \implies \frac{m}{1 - m^{2}} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \implies \frac{m}{1 - m^{2}} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \implies \frac{m}{1 - m^{2}} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \implies \frac{m}{1 - m^{2}} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \implies \frac{m}{1 - m^{2}} = \sum_{i=1}^{m} a_{i}^{-} - m^{2} \implies \frac{m}{1 - m^{2}} = \sum_{i=1}^{m} a_{i}^{$$

We found out that $p = \frac{m}{\sum_{i=1}^{m} x_i}$ is a critical pt for lm(L(p)) (and L(p) as well !!!)

To check that the critical pt is indeed a maximum of L(p), we check the 2nd dervetive

$$\frac{d^2}{d\rho^2} lm \left(L(\rho)\right) = \frac{d}{d\rho} \left[\frac{m}{\rho} - \frac{\sum_{i=1}^{n} a_{i} - m}{1 - \rho} \right] =$$

expression for 1^{4} denoting

Sound earlier $\frac{m}{p^2}$ $\frac{m}{(1-p)^2}$ $\frac{m}{(1-p)^2}$ $\frac{m}{(1-p)^2}$ $\frac{m}{(1-p)^2}$ $\frac{m}{(1-p)^2}$ $\frac{m}{(1-p)^2}$

CON CLUSION

We conclude that (using the invariance primarple): $\hat{J} = \frac{1}{\hat{p}} = \frac{1}{\frac{m}{2}} = \frac{\sum_{i=1}^{m} x_i}{\sum_{i=1}^{m} x_i} = \frac{X}{m}$

Unbiased estimators

Definition Recall: a statistic is a function of the nandom sample that does not depend on any unknown parameter

The statistic $u(X_1, X_2, \dots, X_n)$ is called an unbiased estimator of θ if

$$F[u(X_1,X_2,\ldots,X_n)]=\theta.$$

Otherwise, $u(X_1, X_2, ..., X_n)$ is said to be *biased*.

Example (previous example continued)

Let X_1, X_2, \ldots, X_n be a random sample from the exponential distribution with pdf

where
$$\theta \in \Omega = (0,\infty)$$
.

Show that the maximum likelihood estimator of θ determined earlier is unbiased.

Recall that im a previous class we found that the MLE of θ is $\frac{\partial}{\partial t} = X = \frac{1}{M} \sum_{i=1}^{M} X_i$ To down the $\frac{\partial}{\partial t} = \frac{\partial}{\partial t} = \frac{\partial$

To show that $\hat{\sigma}$ in un biased, we need to check that $E[\hat{\sigma}] = \Phi$ $E[\hat{\sigma}] = E[\frac{1}{m}\sum_{i=1}^{m}X_{i}] = \frac{1}{m}\sum_{i=1}^{m}E[X_{i}] = \frac{1}{m}\sum_{i=1}^{m}\theta = \frac{1}{m}$ CONCLUSION: $\hat{\sigma}$ in un biased! expected value of experient A dust.

Example (Very important example — one was why order whatshis are important) Let X_1, X_2, \ldots, X_n be a random sample from the uniform distribution with pdf

where
$$\theta \in \Omega = (0, \infty)$$
.

Determine the maximum likelihood estimator of θ and show it is biased.

To find the MLE of
$$\theta$$
, define the likelihood function;
$$L(\theta) = \frac{m}{||} f(x_i; \theta) = \frac{m}{||} L = \begin{cases} 1 \\ 0 \end{cases}, \text{ for } \theta \text{ mich that}$$

$$U(\theta) = \frac{m}{||} f(x_i; \theta) = \frac{m}{||} L = \begin{cases} 1 \\ 0 \end{cases}, \text{ for } \theta \text{ mich that}$$

$$U(\theta) = \frac{m}{||} f(x_i; \theta) = \frac{m}{||} L = \begin{cases} 1 \\ 0 \end{cases}, \text{ for } \theta \text{ mich that}$$

To maximize $L(\theta)$, we want to take θ as small as possible. However, we must have that θ >> π_i for each i=1,2,...,m. The smallest value θ can take is $\theta=\max\{\forall_{11},...,\forall_m\}=\forall_m$ $\frac{\pi_i}{\pi_i}\frac{\pi_i}{$

To show that $\hat{\theta} = Y_m$ is biased, we need to check that $E[\hat{\theta}] \neq \theta$ Let us find the 7 df of $\hat{o} = \gamma_m$ so that we can compute $E[\hat{o}]$. Let y>0, and note that: some argument as done in Sec. 63 Gm (y)= P(Ym &y)= P(max 1x, ..., xn) &y)= = P (x, sy, x2 sy, ..., xm sy) = P(x, &y). P(x2 &y) ... P(xm &y) X1, ..., Xn $= (P(x_i \leqslant y))^m = ?$ adentically distributed y (med slids)

$$F_{x_{i}}(y) = P(x_{i} \leq y) = \int_{-\infty}^{y} f(x, \theta) dx = \int_{0}^{y} \frac{1}{\sigma} dx = \left[\frac{x_{i}}{\sigma}\right]_{x=0}^{x=y}$$

$$= \frac{y}{\sigma}, \quad o \leq y \leq \sigma$$
This, we find that
$$G_{m}(y) = \left[P(x_{i} \leq y)\right]^{m} = \left[\frac{y}{\sigma}\right]^{m} = \begin{cases} 0 & y < \sigma \\ \frac{y}{\sigma}, & o \leq y \leq \sigma \end{cases}$$
The galf of T_m in
$$g_{m}(y) = G_{m}^{2}(y) = \frac{m y^{m-1}}{\sigma^{m}}, \quad o \leq y \leq \sigma, \quad [\text{and 2ns otherwise}]$$

$$E\left[\hat{\partial}\right] = E\left[Y_{m}\right] = \int_{-\infty}^{\infty} y \cdot g_{m}(y) dy = \int_{0}^{0} y \cdot \frac{m y^{n-1}}{o^{m}} dy$$

$$= \frac{m}{o^{m}} \int_{0}^{0} y^{m} dy = \frac{m}{o^{m}} \cdot \left[\frac{y^{m+1}}{m+1}\right]_{y=0}^{y=0} =$$

$$= \frac{m}{o^{m}} \cdot \frac{o^{m+1}}{m+1} = \frac{m}{m+1} \neq 0$$

$$\Rightarrow \hat{\partial} \text{ in bianed } !$$

Example (continued from an example of a previous class)

We have seen that when sampling from $N(\theta_1, \theta_2)$, one finds that the maximum likelihood estimators of θ_1 and θ_2 are

Stimators of
$$0$$
 and 0 are $\widehat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$. From the previous example !

Show that $\widehat{\theta_1}$ is an unbiased estimator of θ_1 , but $\widehat{\theta_2}$ is not an unbiased estimator of θ_2 .

$$\hat{\theta}_{1} \text{ in an unbiased astimates for } \theta_{1} = \mu.$$

$$E[\hat{\theta}_{1}] = E[\overline{X}] = E[\frac{1}{m}\sum_{i=1}^{m}X_{i}] = \frac{1}{m}\sum_{i=1}^{m}E[X_{i}] = \frac{1}{m}\sum_{i=1}^{m}\theta_{1} = \frac{1}{m}\sum$$

Let us mow show that
$$\hat{\theta}_{2} = \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \overline{x})^{2}$$
 is a biased estimates for θ_{2} .

What can we say about the distribution of $\hat{\theta}_{2}$?

Recall: we have seen that of $S^{2} = \frac{1}{m-1} \sum_{i=1}^{m} (x_{i} - \overline{x})^{2}$

with $x_{1}, x_{2}, \dots, x_{m} \in \mathcal{N}(\mu_{1}, \overline{x}^{2})$, then

$$\frac{(m-1) S^{2}}{\nabla^{2}} = \sum_{i=1}^{m} \frac{(x_{i} - \overline{x})^{2}}{\nabla^{2}} = \sum_{i=1}^{m} \frac{(x_{i} - \overline{x})^{2}}{\nabla^{$$

$$E\left[\hat{\theta}_{2}\right] = \frac{m-1}{m} \cdot \Theta_{2} \neq \Theta_{2}$$

$$\Rightarrow \hat{\theta}_{2} \text{ in unbiased}$$

$$\Rightarrow \text{ resson why we do not use } \hat{\Theta}_{2} = \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \overline{x})^{2}$$
an an estimate for \overline{x}^{2}

Example

Let X_1, X_2, \ldots, X_n be a random sample from the $N(\theta_1, \theta_2)$ distribution, where

$$\Omega = \{(\theta_1, \theta_2) : -\infty < \theta_1 < \infty, \ 0 < \theta_2 < \infty\} .$$

Show that the sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

 $\hat{\theta}_{z} = \frac{1}{m} \sum_{i=1}^{n} \left(\times_{i} - \bar{x} \right)^{2}$

is an unbiased estimator of θ_2 .

Note that
$$S^2 = \frac{m}{m-1} \hat{\sigma}_2$$
 and m

$$E\left[S^2\right] = E\left[\frac{m}{m-1} \hat{\sigma}_2\right] = \frac{m}{m-1} E\left[\hat{\sigma}_2\right] = \frac{m}{m-1} \cdot \frac{m}{m} \hat{\sigma}_2 = \sigma_1$$