

Kanały i kształtki wentylacyjne

Opis produktu

Przewody wentylacyjne prostokątne wykorzystuje się do przesyłania świeżego powietrza (nawiew), powietrza recyrkulacyjnego oraz powietrza usuwanego (wywiew). Instalacje wentylacji wykonuje się oraz wyposaża w zależności od warunków zastosowania zgodnie z wymaganiami technicznymi.

Sposób wykonania przewodów wentylacyjnych zależy od następujących czynników:

- prędkości powietrza w kanale wentylacyjnym
- ciśnienia w kanale wentylacyjnym
- transportowanego medium
 - powietrze przeciętnie zanieczyszczone
 - powietrze zanieczyszczone mechanicznie
 - powietrze zanieczyszczone chemicznie

Wykonanie kanałów wentylacyjnych prostokątnych

Kanał wentylacyjny felcowany z ramką formowaną

Kanał wentylacyjny felcowany z ramką z profila SBM

Kanał wentylacyjny spawany z ramką zaginaną na prasie krawędziowej

Kanał wentylacyjny spawany z ramką z kątownika

Kanały wentylacyjne spawane z ramką zaginaną na prasie krawedziowej

Warunek przy najwyższych wymaganiach szczelności klasy D (np. wykonanie elementów z możliwością odkażania)

Kanały wentylacyjne spawane z ramką z kątownika Specjalne wymagania zastosowania, osiągalna klasa szczelności D

^{*)} numer katalogowy

^{*)} numer katalogowy

^{*)} numer katalogowy

^{*)} numer katalogowy

Wykonanie elementów kanałów

Wymagania techniczne		Materiał				
	stal ocynkowana	stal czarna	stal nierdzewna	FAL	aluminium	blacha powlekana tworzywem sztucznym
Wykonanie						
felcowane	•		•		•	•
spawane	•	•	•	•	•	
Połączenia						
za pomocą ramki z profila	•		•		•	•
wsuwane	•	•	•	•	•	
kołnierzowe	•	•	•	•	•	
spawane stykowo		•	•	•		
Szczelność						
klasa szczelności A	•		•			
klasa szczelności B	•		•		•	
klasa szczelności C	•		•		•	
klasa szczelności D	•	•	•	•		
uszczelnienie odporne na kwasy tłuszczowe	•		•			
Powierzchnia						
ocynkowana ogniowo		•				
gruntowana / lakierowana	•	•			•	
lakierowana z odpornością na chlor	•	•				
lakierowana z odpornością na kwasy tłuszczowe	•	•				
pokryta proszkowo	•	•	•		•	
Izolacja						
podwójny płaszcz	•		•		•	•
wełna mineralna na welonie	•		•			•
wełna mineralna na welonie / blacha perforowana	•		•		•	

Kanały i kształtki wentylacyjne

Normy i dyrektywy

Technika wentylacyjna i klimatyzacyjna znajduje się pod względem dotyczących jej normalizacji i przepisów w fazie przełomowej: normy DIN zostały częściowo usunięte i zastąpione przez normy europejskie.

Pomimo tego, że istnieje dowolność zawierania umów, nie wolno stosować wycofanych norm DIN.

W przypadkach sporów prawnych ważne są tylko normy europejskie.

Dlatego też istnieje obowiązek stałej kontroli aktualności norm.

Aktualne normy, które powinny być uwzględnione w zakresie systemów wentylacyjnych to:

DIN EN 1505	Przewody proste i kształtki wentylacyjne z blachy o przekroju prostokątnym, wymiary
DIN EN 1507	Przewody wentylacyjne z blachy o przekroju prostokątnym, wytrzymałość, szczelność
DIN EN 12097	Stopnie wymagań w zakresie konserwacji przewodów wentylacyjnych
DIN EN 12236	Zawieszenia i podpory przewodów wentylacyjnych
DIN EN 12599	Procesy kontrolne i pomiarowe przy przekazaniu urządzeń wentylacyjnych
DIN EN 13779	Wentylacja budynków niemieszkalnych
DIN 18379	Znormalizowane warunki zlecania i wykonywania robót budowlanych,
	Część C Przepisy dotyczące zlecania robót i zawierania umów
DIN 18869 T4	Urządzenia do wentylacji przemysłowych pomieszczeń kuchennych
DIN 24193 T1	Kanały wentylacyjne do urządzeń wentylacyjnych Kołnierze kątowe Seria 1
DIN 24193 T2	Kanały wentylacyjne do urządzeń wentylacyjnych Kołnierze kątowe Seria 2
DIN 1946 T4	Urządzenia wentylacyjne w szpitalach
VDI 2052	Wymagania dotyczące urządzeń wentylacyjnych w dużych pomieszczeniach kuchennych
VDI 2087	Przewody wentylacyjne, podstawy pomiarów
VDI 2089	Techniczne wyposażenie budynków pływalni
VDI 3803	Wymagania budowlane i techniczne centralnych urządzeń wentylacyjnych
VDI 6022	Wymagania higieniczne urządzeń wentylacyjnych

Zgodność z VDI 6022

Przewody wentylacyjne firmy BerlinerLuft. Komponenten und Systemtechnik GmbH są zgodne z VDI 6022 i zostały umieszczone w rejestrze HKP/D/011-5a/8/BL/0910/0913/M2.

Materialy

Blachy

Przewody wentylacyjne mogą być produkowane z blach w różnych gatunkach w zależności od ich poźniejszego zastosowania.

Wykonanie felcowane i spawane

Rodzaj materiału	Gatunek	Norma	Max temperatura zastosowania t _{max} (°C)
Stal ocynkowana (blacha ocynkowana metodą Sendzimira)	DX51D + Z275 M-A-C	DIN 10327	+ 250 °C
Blachy VA (powierzchnia III C)	1.4301 (V2A) 1.4571 (V4A)	DIN 17440 DIN17440	+ 500 °C + 500 °C
Aluminium	ALMg ³	DIN EN 485-2 DIN EN 573-3	+ 350 °C
FAL (blacha stalowa aluminiowana ogniowo)		DIN EN 1396	+ 700 °C
Blacha platerowana tworzywem sztucznym (tylko wykonanie felcowane)	DX510 + ZA255 OS: 200 μm PVC St. Nr US: 5 μm + K -	DIN 10327	- 20 °C / + 80 °C
Blacha stalowa czarna (tylko wykonanie spawane)	S 235 JRG 2	DIN 10130	+ 250 °C
Materiały uszczelniające 1)2)			
Składniki materiałów uszczelniających Baza:	Nie zawierające silikonu Kauczuk butylowy Żywica syntetyczna odporność na kwasy tłuszczowe	VDI 6022 trwale elastyczne odporne na promienie UV	+ 80 °C certyfikat

¹⁾ Wszystkie środki uszczelniające zawierają wyłącznie materiały bez silikonu

Ochrona powierzchni

Na życzenie Klienta mogą zostać wykonane dodatkowe zabezpieczenia zgodne z wymaganiami antykorozyjnymi. Klient określa wymagane grubości warstwy w zależności od przeznaczenia i z uwzględnieniem obowiązujących wytycznych z zakresu ochrony antykorozyjnej.

Dodatkowe specjalne wykonania przy:
Stali czarnej i ocynkowanej
przygotowanie podłoża / mycie i pasywacja
gruntowanie lub nałożenie podkładu
lakierowanie
pokrycie proszkowe

²⁾ Uszczelnienia specjalne w zależności od zastosowania są wykonywane na życzenie Klienta

Stopnie ciśnienia i obciążenia ciśnieniowe (zgodnie z VDI 3803), grubości blach

					Grubość	ścianki s (mm) ³⁾			
Montofoli			,	Wykonanie	felcowane)		Wykonanie spawane		
Wartości nominalne (długości boków) ^{1) 2)} zgodnie z EN 1505		Ciśnieni N			Ciśnienie średnie M		e wysokie I ^E		e wysokie H	
zgouiiic z		Ciśnien	ie max.	Ciśnier	ie max.	Ciśnier	nie max.	Ciśnien	ie max.	
		Pa	Pa	Pa Pa		Pa	Pa	Pa	Pa	
а	b	+1000	-500	+2000	-750	+3000	-1500	+6000	-2500	
100	100									
150	150			0,7			1,5			
200	200							.,0		
250	250	0,	6							
300	300					1,0				
400	400									
500	500							2,0		
600	600									
800	800	0,	8	0	,9					
1000	1000									
1200	1200									
1400	1400									
1600	1600	1,	0	1	,1	1	,2	3	,0	
1800	1800									
2000	2000									
Wartości r poza DIN > 2000 e	EN 1505	Klient po	winien pod		konkretne	wymagania	zyczenie Klie grubości bla	enta. ach i połączeń i	ramek.	

¹⁾ Można dokonywać dowolnej kombinacji długości boków a i b

²⁾ Dla wielkości pośrednich podaje się grubość blachy dla najbliższej większej długości boku

³⁾ Grubości ścianek są wartościami nominalnymi zgodnie z DIN 10143

H^E Wykonanie przemysłowe felcowane dla ograniczonego zakresu ciśnienia wysokiego z podwyższoną grubością blachy i dodatkowym usztywnieniem (dostarczane w klasie szczelności B), maksymalna długość kanału 1000 mm

Kierownice

Układ kierownic w kształtkach o kącie 90° (zgodnie z DIN 18379¹)

Szerokość kanału wentylacyjnego mm	llość kierownic	Odstęp (wa		
		b1	b2	b3
400 < b ≤ 1250	1	b/3	-	-
1251 < b ≤ 2000	2	b / 4	b/2	-
b ≥ 2001	3	b/8	b/3	b/2

Wskazówka: Przy kątach ≤ 45° nie stosuje się kierownic

Układ kierownic

Kierownice standardowo mocowane są za pomocą dybli z uszczelnieniem.

Układ kierownic zgodnie z DIN 18379 Długość boków b zgodnie z DIN 18379 (Znormalizowane warunki zlecania i wykonywania robót budowlanych Część C)

Szczelność

W celu spełnienia funkcji i energooszczędnego trybu pracy urządzeń wentylacyjnych sieci wentylacyjnej stawiane są określone wymagania szczelności.

W normie DIN EN 1507 zdefiniowany został dopuszczalny strumień objętości nieszczelności na m² powierzchni kanału w zależności od statycznego ciśnienia wewnętrznego.

Za pomocą diagramu 1 można oszacować oczekiwane nieszczelności sieci wentylacyjnej lub jej części. W tym celu, zaczynając od średniego ciśnienia wewnętrznego¹¹, odczytana zostaje odpowiednia wartość nieszczelności z diagramu i pomnożona przez powierzchnię kanału.

W tabeli znajdującej się poniżej przedstawione zostały wymagania szczelności zgodnie z DIN EN 1507 i zalecenia zastosowania zgodnie z DIN 13779 i VDI 3803.

Wartości graniczne nieszczelności m³ x s⁻¹m⁻²	Zalecenia zastosowania zgodnie z VDI 3803
0,027 x p _t ^{0,65} x 10 ⁻³	Nie zalecane
0,009 x p _t ^{0,65} x 10 ⁻³	Wymagania minimalne
0,003 x pt ^{0,65} x 10 ⁻³	Wymagania standardowe
0,001 x p _t ^{0,65} x 10 ⁻³	Wymagania najwyższe
	$m^{3} x s^{-1}m^{-2}$ $0,027 x p_{t}^{0.65} x 10^{-3}$ $0,009 x p_{t}^{0.65} x 10^{-3}$ $0,003 x p_{t}^{0.65} x 10^{-3}$

p,= ciśnienie wewnętrzne statyczne

Wysoka jakość montażu kanałów wentylacyjnych ma wpływ na szczelność instalacji wentylacyjnej.

Podstawowym wymogiem osiągnięcia klasy szczelności jest zastosowanie odpowiednich elementów przeznaczonych dla danej klasy szczelności oraz montaż o wysokiej jakości.

W procesie montażowym należy zgodnie z DIN EN 15599 przewidzieć wyrywkową próbę szczelności.

Świadectwa szczelności

Dokumenty dotyczące szczelności należy prowadzić zgodnie z DIN EN 12599.

Procesy kontrolne i pomiarowe przy przekazaniu wbudowanych urządzeń wentylacyjnych.

różnica ciśnienia statycznego między kanałem ciśnieniem wewnętrznym a ciśnieniem otoczenia (przy ciśnieniu wyższym jak i niższym).

Diagramy doboru ze względu na oszczędności kosztów energii

Oszczędność kosztów energii poprzez zastosowanie klasy szczelności C

Poniższy diagram przedstawia korzyści wynikające z zastosowania przewodów wentylacyjnych o klasie szczelności C w porównaniu z dotychczas powszechnie stosowaną klasą szczelności A:

^{*)} Przyporządkowanie klas SFP do rodzaju urządzenia zawiera tylko koszty wentylacji (wartości orientacyjne)

W diagramie uwzględniono następujące założenia:

Koszty energii 10 centów/kWh

Czas pracy urządzenia 24h/dobę

Koszty dodatkowe przewodu wentylacyjnego 5,00 EUR/m²

Wyceny rzeczywistego czasu amortyzacji można dokonać za pomocą następującej formuły uwzględniając aktualny poziom kosztów i czas pracy:

$$A[lata] = \frac{10 \text{ Ct.}}{\text{Ek}[\text{Ct.}]} \times \frac{\text{Bd}[h]}{24 \text{ h}} \times \frac{\text{Mk}[\text{Euro}]}{5 \text{ Euro}}$$

A czas amortyzacji

Ek rzeczywiste koszty energii na kWh

Bd przeciętny czas pracy

Mk koszty dodatkowe przewodu wentylacyjnego na m²

Połączenia elementów - granice wymiarów

Stopień	Połączenie profili LP C+ 1) LP 2)				Kołnierz wywijany	Kołnierz z narożnikiem	Kołnierz płaski	
ciśnienia	N	M	N	М	н	н	Н	
Długość boku	mm	mm	mm	mm	mm	mm	mm	
100 do 500	20	20	20	0 20	20 20	40 30 x		30 x 5
501 do 1000								30 x 3
1001 do 1250	30	30	30	30	40		60 x 6	
1251 do 2500						40 x 4		
Powyżej 2501 ³⁾			40	40	40	50 x 5	60 x 10	

¹⁾ LP C+ Formowana ramka profila kanału i kształtki (poza US, UA, HS, BE, BD)

Usztywnienia elementów

Podstawą rozkładu usztywnienia ścianek kanału są wymagania stawiane danemu elementowi zgodnie z DIN EN 1507 z uwzględnieniem wartości granicznych wytrzymałości i stabilności formy.

Konkretne ustalenia w tym zakresie są przedstawione w wewnętrznej normie.

Ogólnie wykonywane są następujące usztywnienia:

Ścianki kanałów i kształtek do grubości 1,25 mm są usztywniane za pomocą falowania.

Trapezowe rowkowanie wykonywane w firmie BerlinerLuft ma optymalne głębokości, które nie przekraczają dopuszczalnych wartości tarcia w przewodach.

W zależności od stopnia ciśnienia i wymiarów elementów wymagane są częściowo dodatkowo usztywnienia bocznych ścianek. Są one wykonywane jako:

- stężenia wewnętrzne
- wewnętrzne lub zewnętrzne szyny profili z blachy
- użebrowania zewnętrzne (tylko w wykonaniu spawanym w razie konieczności).

²⁾ LP Ramka z profila SBM w w/w kształtkach i elementach specjalnych

Elementy o długości boku > 2000 mm znajdują się poza normą i są produkowane jako elementy specjalne. Rodzaj połączenia zależy od wymagań zastosowania i jest ustalane przez Klienta.

Połączenia kołnierzy

Elementy felcowane

Oznaczenie kołnierza	Skrót	Szkic	Połączenie ¹⁾ poprzez	elem	wa długość entu (mm)
Połączenie profila formowane	LP C		4 otwory śruby plus zaciski	15	00
Połaczenie profila SBM	LP		4 otwory śruby plus zaciski	15	00
Kołnierz z narożnikiem poza obrzeżem	W 1		śruby otwory zgodnie z DIN 24193 cz. 1 lub otwory specjalne	14	80
Elementy spawane			<i>t</i> 1	eleme	ve długości entów ości blachy
Kołnierz zaginany	WA	- -	śruby otwory zgodnie	do 2,0 mm	> 2,0 mm
			z DIN 24193 cz. 1 lub otwory specjalne	WA30 - 1420 WA40 - 1400	WA40 - 1390
Kołnierz z narożnikiem spawany	W 2		śruby otwory zgodnie z DIN 24193 cz. 2 lub otwory specjalne	15	00
Kołnierz płaski spawany	F 2		śruby otwory zgodnie z DIN 24193 cz. 2 lub otwory specjalne	1500	

¹⁾ prosimy zwrócić uwagę na zalecenia montażowe

Zalecenia montażowe dotyczące wykonania połączeń (kołnierzy) kanałów

Zakres ciśnienia Pa	Stopień ciśnienia	Klasa szczelności	Materiał uszczelniający kołnierz	Rozstawzacisków lub śrub
+ 1000 / - 500	N	А	taśma uszczelniająca 12 x 6	przy a lub b > 750 max 400 mm
		В	masa uszczelniająca 12 x 6	przy a lub b > 750 max 400 mm
		С	masa uszczelniająca 12 x 6	przy a lub b > 400 max 200 mm
+ 2000 / - 750	М	В	masa uszczelniająca 12 x 6	przy a lub b > 750 max 400 mm
		С	masa uszczelniająca 12 x 6	przy a lub b > 400 max 200 mm
+ 3000 / -1500 (wykonanie przemysłowe felcowane)	H ^E	С	masa uszczelniająca 12 x 6	przy a lub b > 550 max 300 mm
+ 6000 / -2500	Н	С	masa uszczelniająca 12 x 6	połączenia za pomocą śrub zgodnie z DIN 24193 cz. 1
		D	masa uszczelniająca 12 x 6	połączenia za pomocą śrub zgodne z DIN 24193 cz. 2

H^E Wykonanie przemysłowe felcowane w ograniczonym zakresie wysokiego ciśnienia z podwyższoną grubością blachy i dodatkowym usztywnieniem (dostarczane w klasie szczelności B), maksymalna długość kanału 1000 mm

Tolerancje

Kanały wentylacyjne

Długość boku [mm] a lub b	Dopuszczalne odchylenie [mm]
100 – 1000	0
	-3
1001 – 2000	0
	-4
> 2000	0
	-5
Długość elementu [mm]	0,005 x L

Kształtki wentylacyjne

Wymiar elementu	Dopuszczalne odchylenie [mm]
a, b, c, d, e, f	0
	-4
l, lp, r	
> 15 / < 100 mm	0
	-5
> 100	0
	-10
Tolerancja kąta	+ / - 1°

Stopnie wymagań czystości przewodów wentylacyjnych (VDI 6022)

W zależności od wymagań higienicznych kanały i kształtki należy zabezpieczyć podczas transportu i na budowie przed zanieczyszczeniami wzgl. należy je wyczyścić przed montażem.

Zgodnie z normą VDI 6022 wymagania czystości elementów podzielone zostały na trzy stopnie.

Wykonaniem standardowym producenta są elementy czyste niezapakowane.

Wymagania odbiegające od powyższych (np. czyszczenie, zamknięcie czołowych części kanałów, kompletne proste opakowania lub kompletne opakowania złożone) należy ustalić w fazie planowania.

Stopień	Opakowanie w zakładzie	Zabezpieczenie podczas transportu	Zabezpieczenie podczas składowania	Czyszczenie na budowie	Zamknięcie otworów na budowie
stopień podstawowy	nie	nie	nie	nie	tylko piony instalacyjne
stopień średni	nie	nie	tak	tak	tak
stopień najwyższy	tak	tak	tak	tak	tak

Jednostki obliczeniowe

Obliczenia kanałów i kształtek wentylacyjnych zostały ujednolicone i dokonuje się ich na bazie powierzchni w m².

Podstawę stanowi:

DIN 18379 Znormalizowane warunki zlecania

i wykonywania robót budowlanych (VOB), Część C Warunki techniczne dot. zlecenia robót i zawierania umów (ATV), urządzenia wentylacyjne

Obliczeń dokonuje się na podstawie powierzchni w m². Formuły obliczeniowe zostały ujednolicone w odniesieniu do każdego elementu.

Obliczeń dokonuje się wg grup obliczeniowych.

Kanały proste do długości 900 mm przeliczane są jako kształtki.

Obliczeniową wielkością minimalną jest 1 m².

Grupa obliczeniowa		Długość	
Kanały wentylacyjne	Kształtki wentylacyjne	największego boku [mm]	
L1	F1	do 500	
L2	F2	> 500 do 1000	
L3	F3	> 1000 do 1500	
L4	F4	> 1500 do 2000	
L5	F5	> 2000 (poza normą)	

Wykonania specjalne

Przewody wentylacyjne w pomieszczeniach kuchennych

Z powodów higienicznych i technicznych systemom wentylacyjnym w kuchniach stawiane są wymagania szczególne.

Podstawę stanowi DIN 18869 cz. 4 i VDI 2052.

Przewody wentylacyjne wywiewne i recyrkulacyjne w kuchniach powinny być odporne na tłuszcze i aerozole. Stosuje się w tym przypadku blachę stalową ocynkowaną i nierdzewną (V2A-1.4301).

Zalecane zastosowanie

Rodzaj systemu wentylacyjnego	Stal ocynkowana	Stal nierdzewna	Klasa szczelności	Uszczelnienie	Wskazówki
Powietrze zewnętrzne / nawiew	x	х	С	odporne na tłuszcze trwale elastyczne	Wykonanie felcowane z dodatkowym uszczelnieniem
Wywiew / powietrze odprowadzane	x	x	С	felcowane i uszczelnione	Zastosowanie warunkowe, wysoki nakład przy uszczelnianiu podczas wykonywania i montażu
	X	х	D	spawane	Elementy są odporne na tłuszcze i areozole, wymagana wysoka jakość montażu

Przewody wentylacyjne ocynkowane, przez które aerozole mogłyby sie dostać do miejsc z artykułami żywnościowymi, należy pomalować.

Przewody wentylacyjne na pływalniach

Wymagania technicznego wyposażenia budynków pływalni reguluje VDI 2089.

Dla przewodów wentylacyjnych z materiałów metalowych stosowanych do wentylacji pływalni nie ustalono specjalnych wymagań.

Częściowo stosuje się ustalenia dotyczące systemów wentylacyjnych w pomieszczeniach kuchennych.

W przypadku przewodów wentylacyjnych ze stali ocynkowanej zalecane jest dodatkowe lakierowanie powierzchni. Warstwę ochronną powierzchni należy nanieść w zależności od zastosowania wewnątrz i/lub zewnątrz.

Przewody wentylacyjne z izolacją cieplną i dźwiękową

Wymagania izolacyjne systemów wentylacyjnych stawiane są w celu:

zmniejszenia utraty ciepła poniżej punktu skraplania zmniejszenia rozchodzenia się dźwięku

Oprócz izolacji po kompletnym montażu przewodów wentylacyjnych istnieje możliwość zastosowania

elementów wcześniej izolowanych.

Ten wariant jest stosowany szczególnie tam, gdzie z powodu braku miejsca wykonanie izolacji nie jest już możliwe.

Ze względu na zastosowanie można wyszczególnić następujące warianty izolacji:

Izolacja cieplna podwójna - Wełna mineralna z pokrywą blaszaną i mostkiem izolacyjnym

Grubość izolacji mm	Ciężar kg/m²	Współczynnik przenikania ciepła W/m²K
50		0,9
kanał o długości do 1000 > 1000	16 19	
100		0,45
kanał o długości do 1000 > 1000	17,5 20,5	

Izolacja cieplna wewnętrzna (kauczuk samoklejący)

Grubość izolacji mm	Ciężar kg/m²	Współczynnik przenikania ciepła W/m²K
19		1,736
kanał o długości do 1000	8,4	
> 1000	9,5	

Izolacja cieplna zewnętrzna (kauczuk samoklejący)

Przewody wentylacyjne z izolacją cieplną i dźwiękową

Izolacja dźwiękowa - Wełna mineralna odporna na ścieranie bez blachy perforowanej

Grubość izolacji mm	Ciężar kg/m²	
30		
kanał o długości do 1000 > 1000	8,5 10	
50		
kanał o długości do1000 > 1000	9 10,5	

Izolacja dźwiękowa Wełna mineralna z pokrywą z blachy perforowanej

Grubość izolacji mm	Ciężar kg/m²
50	
kanał o długości do1000 > 1000	12,5 14
100	
kanał o długości do1000 > 1000	15 16,5

Przewody wentylacyjne oddymiające (XDuct [®])

Przewody wentylacyjne oddymiające kategorii 2 zgodnie z DIN V 18232-6, którym nie stawia się żadnych wymagań przeciwpożarowych.

Świadectwo kontrolne P.-TUM-4.

Elementy wbudowane

Podstawa kanału zamontowana

Podstawa kanału luzem

Kanał z przepustnicą (przełącznik klapy z zaznaczeniem ustawienia)

Podstawa kanału z króćcem prostokątnym lub okrągłym

a_{max} = 800 mm

 $b_{max} = 500 \text{ mm}$

Elementy wbudowane

Pokrywa rewizyjna - owalna

Nielkość nominalna	Wymiary	
Тур		RD
Klasa szczelności		В
Zakres stosowania		-70°C/+70°C
21	200 x 100	Wymienione wymiary dostępne są w wykonaniu ze stali ocynkowanej
32	300 x 200	
43	400 x 300	
54	500 x 400	
65	600 x 500	

RD = Pokrywa rewizyjna

Króćce odpływowe	1/2" 3/4" 1/0"	
Ramka z narożnikiem	30 x 30 x 3	
(Perforacja na życzenie Klienta)	40 x 40 x 4	
	50 x 50 x 5	
Materiał montażowy	Śruby sześciokątne M8 x 25	
	Nakrętki sześciokątne M8	
	Podkładki DN 9	
	Zaciski lub Suwak (zasuwa)-C (dł. 100 mm)	
	Taśma samoklejąca (tylko klasa szczelności A)	
	Masa uszczelniająca kauczukowa (dla klasy szczelności B, C, D)	

Wymagane dodatkowe wyposażenie dostarczane jest na życzenie Klienta.

Opis wykonania

Kanały i kształtki wentylacyjne felcowane, stal ocynkowana

Kanały i kształtki wentylacyjne ze stali ocynkowanej felcowane zgodnie z DIN EN 1505, DIN EN 1507 i VDI 3803.

Stopień ciśnienia N (ciśnienie niskie) +1000/-500 Pa

Stopień ciśnienia M (ciśnienie średnie) +2000/-750 Pa

Grubość blachy w zależności od w/w stopni ciśnienia (patrz dokumentacja firmy BerlinerLuft).

Elementy nadające się do wykonania przewodów wentylacyjnych

w klasie szczelności B zgodnie z DIN EN 1507

Systemy wentylacyjne BerlinerLuft BDuct

Systemy wentylacyjne BerlinerLuft C+Duct

Systemy wentylacyjne BerlinerLuft C+Duct

Połączenie kołnierzy za pomocą wzmocnienia z 4-ma otworami, wykonanie z profilem zaginanym

Dodatkowe uszczelnienie felców i narożników jest trwale elastyczne, wodoodporne, odporne na chemikalia i nie zawiera silikonu.

Wzmocnienie ścianek kanałów profilem trapezowym z optymalnymi wartościami oporu tarcia w przewodach.

Wzmocnienia dodatkowe (wewnętrzne) wykonywane są pod względem technicznym i akustycznym w zależności od ciśnienia, grubości blachy i wymiarów elementów zgodnie z normami.

Wymagania dodatkowe (w razie potrzeby)

W celu zagwarantowania czystości przewodów wentylacyjnych zgodnie z DIN EN 12097 względnie VDI 6022.

Stopień podstawowy: dostawa: bez opakowania i ochrony podczas transportu

montaż: zamknięcie tylko pionów wentylacyjnych

Stopień średni: dostawa: bez opakowania i ochrony podczas transportu

montaż: ochrona podczas składowania, czyszczenie przed montażem

zamknięcie otworów

Stopień wysoki: dostawa: opakowania i ochrona podczas transportu (np. zamknięcia czołowych części)

montaż: ochrona podczas składowania, czyszczenie przed montażem,

zamknięcie otworów

Przewody wentylacyjne stosowane w pomieszczeniach kuchennych (Tekst jak wyżej)

Uszczelnienie dodatkowe felców i narożników - trwale elastyczne, wodoodporne, odporne na kwasy tłuszczowe, aerozole i nie zawiera silikonu.

Wszystkie elementy należy pokryć z zewnątrz i/lub wewnątrz lakierem dwuskładnikowym, odpornym na kwasy tłuszczowe i chemikalia, kolor RAL

Przewody wentylacyjne stosowane na pływalniach (Tekst jak wyżej)

Uszczelnienie dodatkowe felców i narożników - trwale elastyczne, wodoodporne, odporne na chemikalia, nie zawiera silikonu.

Wszystkie elementy należy pokryć z zewnątrz i/lub wewnątrz lakierem odpornym na chemikalia, kolor RAL

Opis wykonania

Kanały i kształtki wentylacyjne felcowane, stal nierdzewna (1.4301) kwasoodporna (1.4404)

Kanały i kształtki wentylacyjne ze stali VA 1.4301 felcowane **Stopień ciśnienia N (ciśnienie niskie) +1000/-500 Pa**Stopień ciśnienia M (ciśnienie średnie) +2000/-750 Pa

Grubość blachy min. 0,5 mm, max. 1,0 mm

Elementy nadające się do wykonania przewodów wentylacyjnych

w klasie szczelności B zgodnie z DIN EN 1507 Systemy wentylacyjne BerlinerLuft BDuct

lub w klasie szczelności C zgodnie z DIN EN 1507 Systemy wentylacyjne BerlinerLuft C+Duct

Połączenie kołnierzy za pomocą wzmocnienia z 4-ma otworami, wykonanie z profilem SBM.

Uszczelnienie dodatkowe felców i narożników - trwale elastyczne, wodoodporne, odporne na chemikalia i nie zawiera silikonu.

Wzmocnienie ścianek kanałów profilem trapezowym z optymalnymi wartościami oporu tarcia w przewodach.

Wzmocnienia dodatkowe (wewnętrzne) wykonywane są pod względem technicznym i akustycznym w zależności od ciśnienia, grubości blachy i wymiarów elementów zgodnie z normami.

Wymagania dodatkowe (w razie potrzeby)

W celu zagwarantowania czystości przewodów wentylacyjnych zgodnie z DIN EN 12097 względnie VDI 6022.

Stopień podstawowy: dostawa: bez opakowania i ochrony podczas transportu

montaż: zamknięcie tylko pionów wentylacyjnych

Stopień średni: dostawa: bez opakowania i ochrony podczas transportu

montaż: ochrona podczas składowania, czyszczenie przed montażem,

zamknięcie otworów

Stopień wysoki: dostawa: opakowania i ochrona podczas transportu (np. zamknięcia czołowych części)

montaż: ochrona podczas składowania, czyszczenie przed montażem,

zamknięcie otworów

Przewody wentylacyjne stosowane w pomieszczeniach kuchennych (Tekst jak wyżej)

Uszczelnienie dodatkowe felców i narożników - trwale elastyczne, wodoodporne, odporne na kwasy tłuszczowe, aerozole, nie zawiera silikonu.

Opis wykonania

Kanały i kształtki wentylacyjne felcowane, wykonanie przemysłowe, stal ocynkowana

Kanały i kształtki wentylacyjne ze stali ocynkowanej felcowane

Stopień ciśnienia H^E (ograniczone ciśnienie wysokie) +3000/-1500 Pa

Grubość blachy min. 1,0 mm, max. 1,2 mm

Elementy nadające się do wykonania przewodów wentylacyjnych w klasie szczelności B zgodnie z DIN EN 1507 Systemy wentylacyjne BerlinerLuft BDuct

Połączenie kołnierzy za pomocą wzmocnienia z 4-ma otworami, wykonanie z profilem SBM.

Uszczelnienie dodatkowe felców i narożników - trwale elastyczne, wodoodporne, odporne na chemikalia i nie zawiera silikonu.

Wzmocnienie ścianek kanałów profilem trapezowym z optymalnymi wartościami oporu tarcia w przewodach.

Wzmocnienia dodatkowe (wewnętrzne) wykonywane są pod względem technicznym i akustycznym w zależności od ciśnienia, grubości blachy i wymiarów elementów zgodnie z normami.

Wymagania dodatkowe (w razie potrzeby)

W celu zagwarantowania czystości przewodów wentylacyjnych zgodnie z DIN EN 12097 względnie VDI 6022.

Stopień podstawowy: dostawa: bez opakowania i ochrony podczas transportu

montaż: zamknięcie tylko pionów wentylacyjnych

Stopień średni: dostawa: bez opakowania i ochrony podczas transportu

montaż: ochrona podczas składowania, czyszczenie przed montażem,

zamknięcie otworów

Stopień wysoki: dostawa: opakowania i ochrona podczas transportu (np. zamknięcia czołowych części)

montaż: ochrona podczas składowania, czyszczenie przed montażem,

zamknięcie otworów

Opis wykonania

Kanały i kształtki wentylacyjne spawane

Kanały i kształtki wentylacyjne spawane zgodnie z DIN EN 1505, DIN EN 1507 i VDI 3803 ze stali ocynkowanej, spawy ocynkowane na zimno ze stali nierdzewnej 1.4301 (1.4571), spawy szczotkowane z aluminium AIMg 3

Spawy nie mogą być szlifowane.

Stopień ciśnienia H (ciśnienie wysokie) +6000/-2500 Pa

Grubość blachy z uwzględnieniem w/w stopni ciśnienia i przekrojów elementów (patrz dokumentacja firmy BerlinerLuft), jednak min. 1,5 mm.

Elementy nadające się do wykonania przewodów wentylacyjnych

w klasie szczelności D zgodnie z DIN EN 1507 Systemy wentylacyjne BerlinerLuft DDuct

Połączenie kołnierzy za pomocą wzmocnienia z 4-ma otworami, wykonanie z profilem zaginanym 30/40 i otworami zgodnie z DIN 24193/1 lub DIN 24193/2 (???).

Wzmocnienie ścianek kanałów na zewnątrz w zależności od podanego ciśnienia zgodnie z normami.

Wymagania dodatkowe (w razie potrzeby)

Wszystkie elementy należy pokryć z zewnątrz i/lub wewnątrz lakierem odpornym na kwasy tłuszczowe i chemikalia, kolor RAL, grubość warstwyµm.

W celu zagwarantowania czystości przewodów wentylacyjnych zgodnie z DIN EN 12097 wzgl. VDI 6022.

Stopień podstawowy: dostawa: bez opakowania i ochrony podczas transportu

montaż: zamknięcie tylko pionów wentylacyjnych

Stopień średni: dostawa: bez opakowania i ochrony podczas transportu

montaż: ochrona podczas składowania, czyszczenie przed montażem

zamknięcie otworów

Stopień wysoki: dostawa: opakowania i ochrona podczas transportu (np. zamknięcia czołowych części)

montaż: ochrona podczas składowania, czyszczenie przed montażem,

zamknięcie otworów

Opis wykonania

Wskazówki montażowe dot. systemów wentylacyjnych z klasą szczelności C zgodnie z DIN EN 1507

Uzyskanie określonej klasy szczelności jest uzależnione od wielu czynników. Największy wpływ ma tu staranne wykonanie elementów. Osiągnięcie tego celu uzależnione jest przede wszystkim od odpowiedniego zamówienia z podaniem wymaganej klasy szczelności. Równie ważną rolę odgrywa montaż na budowie.

Jako producent chcielibyśmy udzielić kilku ważnych wskazówek:

Dostawa i rozładunek na budowie:

- wszystkie elementy należy poddać kontroli optycznej pod względem uszkodzeń zewnętrznych
- kontrola oznakowań elementu z uwzględnieniem klasy szczelności C
- ostrożny rozładunek elementów unikając uszkodzeń
- transport elementów za pomocą odpowiednich środków transportu (nie ciągnąć za ramki)
- bezpieczne składowanie na budowie

Montaż

- ponowna kontrola optyczna pod względem uszkodzeń
- sprawdzić czystość ramek
- na powierzchnie czołowe nanieść równomiernie masę uszczelniającą butyl
- narożniki połączyć śrubami, zwrócić uwagę na to, aby masa uszczelniająca się nie przesunęła
- przykleić taśmę uszczelniajacą w narożnikach profili
- przykręcić śruby
- przy długościach boków > 400 mm zastosować zaciski, odstęp maks. 200 mm
- zaleca się sprawdzenie w odpowiednim odstępie czasu (po około 2 dniach) zamocowania śrub przy ramkach
- dopasować elementy tylko za pomocą specjalnej ramki (materiał uszczelniający znajdujący się wewnątrz)
- przymocować ramki tylko za pomocą uszczelniających nitów zaślepiających (a nie śrubami)
- zwrócić uwagę na umocowanie
- uzupełnić uszczelnienie w naroznikach profila wewnątrz
- elementów wbudowywanych nie mocować śrubami, tylko za pomocą nitów zaślepiających
- przed montażem nanieść na elementy wbudowywane masę uszczelniającą butyl zgodnie z VDI 6022
- produkty, takie jak króćce elastyczne, przepustnice, tłumiki, itd. muszą być odpowiednio dobrane do klasy szczelności C.

Kontrola szczelności

Zaleca się przeprowadzenie kontroli szczelności na budowach zgodnie z DIN EN 12599 przez niezależne jednostki zewnętrzne. Kontrole powinny być określone już w fazie planowania i przeprowadzone w fazie montażu, patrz: Broszura informacyjna "Pomiary szczelności systemów wentylacyjnych" (www.Berlinerluft.de/de/Luftfuehnung)

Notatki

Notatki

ul. Lniana 13 75-213 Koszalin Tel. 94 347 05 50 Fax 94 343 51 92

ul. Chocimska 13 78-200 Białogard Tel. 94 311 24 62 Fax 94 311 36 67

ul. Gościejowicka 4 49-100 Niemodlin Tel. 77 402 36 00 Fax 77 402 36 09 e-mail: biuro@berlinerluft.pl www.berlinerluft.pl