Lecture 19 Linear Temporal Logic (LTL)

David Garlan
Carnegie Mellon University

Models of Software Systems Fall 2016

This Lecture

- Linear Temporal Logic
 - > safety & liveness review
 - > basic temporal logic (always, eventually, next)
 - > examples and common patterns

Models of Software Systems © Garlan 2016 Temporal Logic - 2

Recall: Safety versus Liveness

- As we have noted, sometimes a distinction is made between safety and liveness properties of a model
 - > safety: a property that guarantees that no system invariant is violated
 - > liveness: a property that guarantees that something useful actually happens
- Thus far we have mostly concentrated on safety properties

Models of Software Systems © Garlan 2016 Temporal Logic - 3

All Behaviors

Desired Behaviors

Safety

Safety: "nothing bad happens"

- > This is usually phrased as an invariant of the system representing "good" states
 - » Then we show that each initial state is a good state, and that every transition takes us from a good state to another good state.
- > Notations like Z are particularly well-suited to this kind of property
- Note: a system that does nothing usually satisfies its safety properties
- > Examples
 - » the # of candies is never more than the # coins
 - » dom birthday = names
 - » no two threads can execute the same critical code at the same time

Liveness

Liveness: "something good happens"

- > Usually phrased as promise of an eventual outcome
 - » Then we must show that every/some trace of the system leads to desired state
- Note: these are statements about what a system will do over time
- > A stopped system will, in general, not satisfy these conditions
- > Examples
 - » the system will eventually halt
 - » whenever a happens b will eventually follow
 - » a system is in the ready state infinitely often
 - » if a certain transition is enabled, it will eventually occur

Temporal Logics

- A "Temporal Logic" characterizes the behavior of systems by specifying some property about system traces
- We have already seen such specifications in FSP
- Examples

```
property PROP = (req -> reply -> PROP).
```

Guarantees that requests and replies strictly alternate

```
progress {heads}
```

Guarantees that the "heads" event happens infinitely often

Temporal Logics

But now a couple of things will be different

1. We focus on state-based traces

 $\langle s_1, s_2, ..., s_{n,...} \rangle$, where s_i is a state of the system, and traces start with index 1

- 2. We consider all traces to be infinite for finite traces, the final state is simply repeated
- 3. We then introduce new notation to express common kinds of properties about these traces such as
 - » Some property always holds
 - » Some property will eventually hold
 - » Some property always follows after another property becomes true
 - » Some property is true infinitely often

(Linear) Temporal Logic: Syntax

```
tempformula =
   predicate
   l "∼", tempformula
   | "(", tempformula, "∨", tempformula, ")"
   | "(", tempformula, "∧", tempformula, ")"
   l "(", tempformula, "⇒", tempformula, ")"
   | "(", tempformula, "⇔", tempformula, ")"
   I "□", tempformula
   l "♦", tempformula
                                         Note: No
   tempformula, "U", tempformula
                                         Quantification
   tempformula, "Uw", tempformula
                                         over temporal
                                        formulae
   "o", tempformula;
```

(Linear) Temporal Logic: Semantics

- Temporal formulae are interpreted over traces.
- Let $\sigma = \langle s_1, s_2, ..., s_i, ... \rangle$ be a (state-based) trace, and P be a temporal logic formula
- We write
 (σ, i) ⊨ P and say "P holds in the ith state of trace σ".
- When we write just P, we will mean that P holds in the <u>first</u> state of the sequence σ
 that is, P is the same as (σ,1) ⊨ P

Temporal Operators: Semantic Intuition

- □ P "always": P holds in every state of a trace.
- P "eventually": P holds in at least one state of a trace.
- OP "next": P holds in the next state in a trace.
- P U Q— "until": P holds until Q becomes true

Temporal Operators (always)

- - > Pronounced "box", "henceforth", "always", "from now on", "forever"

When we write just

 P, we will mean

 P holds for all states in the trace starting at
 i = 1

That is, \Box P is the same as $(\sigma, 1) \models \Box$ P

Temporal Operators (eventually)

- ◊
 - > Pronounced "diamond", "eventually", "sometime"

means
$$(\sigma, i) \models \Diamond P$$

 $\exists j: i... \bullet (\sigma, j) \models P$

 When we write just ◊P, we will mean starting at i = 1, there is some state in the trace for which P holds

That is, $\lozenge P$ is the same as $(\sigma, 1) \models \lozenge P$

Note on Operators

- Note that we have just introduced a new way to define predicates
 - > The difference is that the predicates are applied to traces: i.e., to sequences of states (not to individual states)
- Operators such as □ and ◊ are sometimes called "modalities"
 - > they are similar to existential and universal "quantifiers" in "quantified expressions" for FOPL
- A predicate of the form OP is called an "eventuality"

Precedence Rules

- □ and ◊ bind tighter than other logical operators
- So if we want to say that the predicate
 P ⇒ Q is true in every state, we would
 write □ (P ⇒ Q)
- In contrast, □ P ⇒ Q means (□ P) ⇒ Q,
 which as a very different meaning
 - > We'll see what that is in a few slides

Formally Defining ⊨

(σ, i) ⊨ P ⇔ P(σ (i)) is true
 provided P contains no modalities
 (i.e., P is a FOPL predicate, may include quantifiers)

$$(\sigma, i) \models P \lor Q \Leftrightarrow (\sigma, i) \models P \lor (\sigma, i) \models Q$$

 $(\sigma, i) \models P \Rightarrow Q \Leftrightarrow (\sigma, i) \models P \Rightarrow (\sigma, i) \models Q$
other operators $(\sim, \land, \text{ etc.})$ are similar

$$(\sigma, i) \models \Box P \Leftrightarrow \forall j: i... \bullet (\sigma, j) \models P$$

 $(\sigma, i) \models \Diamond P \Leftrightarrow \exists j: i... \bullet (\sigma, j) \models P$

Models of Software Systems © Garlan 2016 Temporal Logic - 15

Example

- Suppose we our state consists of two values: x, y: Z
- Consider the following two predicates:

$$P(x,y) == x > 0 \text{ and } Q(x,y) == x > y$$

- Let $\sigma == <(-1,0), (0,1), (1,2), (2,3), ... >$ (increments both x and y)
- Which of the following are true of σ ?
 - 1. P

- 2. Q
- 3. 🗆 P

4. ♦ P

- 5. ♦ P
- 6. $P \wedge Q$ 7. $\square (P \wedge Q)$ 8. $\square P \wedge Q$
- 9. $\square P \vee Q$ 10. $\sim \square P$ 10. $P \Rightarrow Q$
- 11. \square (P \Rightarrow Q)

Examples using Box

```
• \Box (x > 0)
    an invariant of the model
• \Box ( ~ ( in_crit(p<sub>1</sub>) \land in_crit(p<sub>2</sub>) ) )
    mutual exclusion
• (\sigma, 2) \models \sim at(init)
• (\sigma, 2) \models \Box (\sim at(init))
• (\sigma, 2) \models \neg \Box (at(init))
                                                       Is this really
                                                     what we want?
• at(halt) \Rightarrow \Box ( at(halt) )
• \square (P \Rightarrow \square P)
    once P, always P
```

Nested Modalities

```
at(halt) \Rightarrow \Box at(halt)
   = (\sigma, 1) \models at(halt) \Rightarrow \Box at(halt)
   = (\sigma, 1) \models at(halt) \Rightarrow (\sigma, 1) \models \Box at(halt)
   = (\sigma, 1) \models at(halt) \Rightarrow \forall j: 1... \bullet (\sigma, j) \models at(halt)
Compare this to
\square (at(halt) \Rightarrow \square at(halt))
   = (\sigma, 1) \models \Box (at(halt) \Rightarrow \Box at(halt)
   = \forall i: 1... \bullet (\sigma, i) \models (at(halt)) \Rightarrow \Box at(halt))
   = \forall i: 1... \bullet (\sigma, i) \models at(halt)) \Rightarrow (\sigma, i) \models \Box at(halt)
   = \forall i: 1... \bullet (\sigma, i) \models at(halt) \Rightarrow
                                             \forall j: i... • (\sigma, j) \models at(halt)
```

Partial Correctness

For systems characterized in terms of

```
pre: P
post: Q

• P \Rightarrow \Box ( at(halt) \Rightarrow Q )

Note operator precedence requires ()
```

- > specifies partial correctness, assuming that at(halt) means the program has terminated
- > i.e., if P is true initially, and the program terminates, then Q will be true
- P ∧ □ (at(halt) ⇒ Q)
 alternative partial correctness definition

Qn: What is the difference?

Examples using Diamond

• $\Diamond (x > 0)$ • \Diamond (\sim in_crit(p₁) \land \sim in_crit(p₂)) • $(\sigma, 2) \models \Diamond (\sim at(init))$ at(init) ⇒ ◊ (at(halt)) • $in_{crit}(p_1) \Rightarrow \Diamond (\sim in_{crit}(p_1))$ • (P \Rightarrow (\square (at(halt) \Rightarrow Q)) \wedge (\lozenge at(halt))) > total correctness

Combining Box and Diamond

- ◊ □ P
 - "Eventually P will be true forever"
 - > Example: ♦ 🗆 at(halt)
- □ ◊P
 - "Henceforth P will eventually be true"
 - > In every state from now on P will eventually become true
 - P is true infinitely often
 - Note that if traces are finite, then P must hold in the final state

Example: Expanding ◊ □ P

```
\Diamond \square P
=
(\sigma, 1) \models \Diamond \square P
=
\exists j: 1 ... \bullet (\sigma, j) \models \square P
=
\exists j: 1 ... \bullet (\forall k: j ... \bullet (\sigma, k) \models P)
```

Example: Expanding □ **◊P**

Leads To

- \Box (P \Rightarrow \Diamond Q)
- If P is true then eventually Q will be true
- This is sometimes read: P leads to Q
- Examples:
 - > P might be "makes a request" and Q might be "receives a reply"
 - > P might be "enters a critical region" and Q might be "exits that region"

Qn: how is this different from $P \Rightarrow \Diamond Q$?

Qn: how is this different from $\Diamond P \Rightarrow \Diamond Q$?

Box and Diamond are "Dual"

- Temporal logic has a number of important algebraic properties
- Two of the most useful are

Sometimes you see G for □
 F for ◊

Summary of Some Common Forms

- P ⇒ ◊ Q
 - > if initially P then eventually Q
- \Box (P \Rightarrow \Diamond Q)
 - > every P-position is followed by a Q-position
- □ ◊ Q
 - > Q happens infinitely often
- ◊ □ **Q**
 - > eventually permanently Q
 - > alt: the sequence contains only finitelymany ~Q-positions
- □ (P ⇒ □ P)
 - > once P, always P

Until

We can express "P is true until Q holds"

```
(\sigma, i) \models P \cup Q \Leftrightarrow

\exists k: i... \bullet (\sigma, k) \models Q \land (\forall j: i... k-1 \bullet (\sigma, j) \models P)
```

- Example
 - □ (request_made ⇒
 (request_registered U request_answered))
- Until requires that Q becomes true eventually
- We also have weak version U_w, defined as P U_w Q ⇔ □ P ∨ (P U Q) sometimes written P W Q

What's Next?

Circle: the Next state operator

$$(\sigma, i) \models O P \Leftrightarrow (\sigma, i+1) \models P$$

- That is, P is true at position i ⇔ P is true at position i+1
- As usual, \bigcirc P, by itself, means $(\sigma, 1) \models \bigcirc$ P
- Sometimes Ois represented by the letter "X"
- Some argue people that Ois not a good operator for specification
 - > specifications should be insensitive to orderings, particularly when concurrency is represented by interleaving

Other Temporal Logics

- We have presented a particular temporal logic called "Linear Temporal Logic" (LTL)
- But there are other varieties
- One that is often used with model checkers is "Computation Tree Logic" (CTL)
 - > It views the behavior of a state machine as a tree in which each node is a state and branches represent possible next states
 - > One can then quantify over paths in the tree
 - > Neither LTL nor CTL is strictly more expressive