

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНАЯ ИНЖЕНЕРИЯ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

По лабораторной работе № __1__

Название: Обработка больших чисел

Дисциплина: Типы и структуры данных

Студент	ИУ7-31Б	К. В. Морозов
	(Группа)	(И.О. Фамилия)
Преподаватель		

Условие задачи

Смоделировать операцию умножения целого числа длиной до 30 десятичных цифр на действительное число в форме \pm m.n \to \pm K, где суммарная длина мантиссы (m+n) - до 30 значащих цифр, а величина порядка K - до 5 цифр. Результат выдать в форме \pm 0.m1 \to \pm K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр.

Описание ТЗ

1. Описание входных данных

На вход поступает 2 строки:

- 1-я вида: (+ | -)XX...X, где:
 - \circ X десятичная цифра (0...9)
 - \circ (+ | -) возможный знак плюс или минус
- 2-я вида: (+ | -)XX...X(.)XX...X(e | E)(+ | -)XX...X, где:
 - \circ X десятичная цифра (0...9)
 - \circ (+ | -) возможный знак плюс или минус
 - \circ (.) возможная точка
 - o (e | E) возможный вид экспоненциальной формы записи

Ограничения и особенности реализации:

- Максимальная разрешенная длина целого числа в первом поле 30 десятичных цифр
- Максимальная длина мантиссы во втором поле 30 значащих цифр
- Максимальная длина порядка во втором поле 5 десятичных цифр
- В оба поля ввода запрещается вводить неликвидные символы
- Ограничение длины первой строки 31 символ
- Ограничение длины второй строки 40 символов
- Если явно не задан знак числа число является положительным
- В порядке могут быть записаны первые незначащие нули
- Нельзя начинать ввод вещественной части с экспоненциальной формы
- Если используется экспоненциальная форма, то обязательно должна присутствовать хотя бы одна цифра после нее
- При вводе вещественного числа нельзя использовать экспоненциальную форму с нулём $(0(e\mid E)...)$
- Если число в первом поле не является нулём, то число не может с него начинаться
- Если число во втором поле не является нулём, то число не может с него начинаться при условии, что после него не стоит точка

• Если в первом и во втором поле введены нули, то они обязательно должны быть без знака

Примеры ввода первого числа:

Допустимый ввод	Недопустимый ввод
0	-0
123	/* пустой ввод */
+123	123.123
-123	++2
123456789012345678901234567890	1234567890123456789012345678901234
9123	A
-999999999999999999999999	01234

Примеры ввода второго числа:

Допустимый ввод	Недопустимый ввод
123	123.123.123
123.123	Кошка
123.123e123	1234g123
123.123E-123	/* пустой ввод */
0.0	0e14
-14e-88888	1234567890123456789012345678901234
+88E+88	1e5000005
24E40	E40
+0.1234	+00.1234

2. Описание результата работы программы

Программа осуществляет ввод чисел в указанном диапазоне значений и выдаёт результат в нормализованной форме $\pm 0.m1$ Е $\pm K1$, где число m1 определено до 30 значащих цифр, число K1 – до 5 цифр. При невозможности произвести вычисления выдаётся соответствующее сообщение. Если в процессе вычислений количество значащих цифр мантиссы превосходит 30, то происходит округление.

3. Описание задачи, реализуемой программой

Программа реализует умножение длинного целого числа (длиной до 30 десятичных цифр) и длинного вещественного числа (длина мантиссы до 30 значащих цифр, длина порядка по модулю не превосходит 5 десятичных цифр). Основной алгоритм, применённый в программе, по сути, выполняет умножение "столбиком" над значащими цифрами мантиссы.

4. Описание обращения к программе

Обращение к программе происходит посредством вызова исполняемого файла app.out из командной строки.

5. Описание возможных аварийных ситуаций и ошибок пользователя

- Некорректный ввод строк на вход программе
- Результат работы программы выходит за допустимые пределы (напр. более 5 цифр порядка)

Описание внутренних структур данных и алгоритма

1. Описание внутренних структур данных

Описание структуры, представляющей хранение числа в системе:

```
struct big_double
{
    char sign;
    int order;
    int mantissa[MAX_MANT_LEN];
    size_t n_sign_value;
};
```

- char sign поле хранит знак числа
- int order поле хранит значение порядка числа
- int mantissa[MAX_MANT_LEN] поле хранит значение мантиссы числа
- size_t n_sign_value поле хранит количество значащих цифр мантиссы значащего числа

2. Алгоритм

- 1. Начало
- 2. Ввод первого целого числа
- (2.) Вывод ошибки, при некорректности ввода
- 3. Ввод второго вещественного числа
- (3.) Вывод ошибки, при некорректности ввода
- 4. Парсирование строчного представления целого числа в структурное
- 5. Парсирование строчного представления вещественного числа в структурное
- 6. Умножение чисел
- (6.) Вывод ошибки, при выходе результата умножения за допустимые пределы
- 7. Вывод результата умножения в нормализованном виде

Тестирование программы

1. Позитивные тесты

- 1) Целое число ноль (вещественное число корректно)
- 2) Целое число одна цифра (вещественное число корректно)
- 3) Целое число 30 цифр (вещественное число корректно)
- 4) Целое число записано со знаком + (вещественное число корректно)
- 5) Целое число записано со знаком (вещественное число корректно)
- 6) Вещественное число ноль (целое число корректно)
- 7) Вещественное число представлено как целое (целое число корректно)
- 8) Вещественное число представлено как с целой частью, так и вещественной (целое число корректно)
- 9) Вещественное число представлено как с целой частью, так и вещественной, так и экспоненциальной формой (целое число корректно)
- 10) Вещественное число записано со знаком + (целое число корректно)
- 11) Вещественно число записано со знаком (целое число корректно)
- 12) Вещественное число имеет 30 значащих цифр мантиссы (целое число корректно)
- 13) Вещественно число имеет 5 цифр порядка (целое число корректно)
- 14) Порядок вещественного числа записан с + (целое число корректно)
- 15) Порядок вещественного числа записан с (целое число корректно)
- 16) Первое число положительно, второе отрицательно
- 17) Первое число отрицательно, второе положительно
- 18) Первое число отрицательно, второе число отрицательно
- 19) Результат умножения округляется без изменения (число следующее за последним, которое нужно вывести <= 4)
- 20) Результат умножения округляется с изменениями (число следующее за последним, которое нужно вывести >= 5)

Входные данные	Результат
0	0
0.1	
2	0.2e0
0.1	
9999999999999999999999999	0.999999999999999999999999999999999999
0.1	
+3	0.3e0
0.1	
-3	-0.3e0
0.1	
2	0
0	
2	0.4e1

2	
2	
2	0.44e1
2.2	
2	0.44e3
2.2e2	
1	0.11e1
+1.1	
1	-0.11e1
-1.1	
2	0.246913578024691357802469135782e0
0.123456789012345678901234567891	
3	0.9e55556
3e55555	
3	0.9e4
3e+3	
3	0.9e-2
3e-3	
3	-0.9e1
-3	
-3	-0.9e1
3	
-3	0.9e1
-3	
900000000000000000000000000000000000000	0.18e31
2	
90000000000000000000000000000	0.1800000000000000000000000000000000000
2	

2. Негативные тесты

- 1) В поле целого числа введён пустой ввод
- 2) В поле целого числа введён длинный ввод
- 3) В поле целого числа введено много десятичных цифр
- 4) В поле целого числа введён некорректный символ
- 5) В поле вещественного числа введён пустой ввод
- 6) В поле вещественного числа введён длинный ввод
- 7) В поле вещественного числа введён некорректный символ
- 8) В поле вещественного числа введён слишком длинный по модулю порядок
- 9) В поле вещественного числа введена слишком длинная мантисса
- 10) В ответе получился слишком длинный по модулю порядок

Входные данные	Результат
/* пустой ввод */	Ошибка! Пустой ввод
99999999999999999999999999	Ошибка! Длинный ввод

99999999999999999999999999	Ошибка! Слишком много
	десятичных цифр
a	Ошибка! Некорректный ввод
1	Ошибка! Пустой ввод
/* пустой ввод */	-
1	Ошибка! Длинный ввод
99999999999999999999999999999999999	
1	Ошибка! Некорректный ввод
a	
1	Ошибка! Слишком длинный по
1e999999	модулю порядок
1	Ошибка! Слишком длинная
0.1234567890123456789012345678901	мантисса
100000	Слишком большой порядок в
1e99999	ответе!

Выводы

В ходе выполнения данной лабораторной работы были получены навыки работы с "длинными" числами, превышающими разрядную сетку персонального компьютера. Разработчик должен самостоятельно придумывать и реализовывать алгоритмы и структуры данных, которые будут позволять выполнение операций с такими числами.

Ответы на контрольные вопросы

- 1) Диапазон чисел в компьютере может изменяться в зависимости от следующих параметров: Размер выделенной под данное число области памяти, является ли данное число знаковым или беззнаковым, является ли данное число представленным в виде целого или вещественного.
- 2) Вещественные числа обычно хранятся и используются в представлении с плавающей точкой в виде: $X = M * E^{**}p$, где M мантисса со знаком, E основание (10 или 16), p целый порядок со знаком. Если десятичная точка расположена в мантиссе перед первой значащей цифрой числа, то при фиксированном количестве разрядов, отведённых под мантиссу, 2 обеспечивается возможность сохранить максимальное количество значащих цифр, то есть обеспечить максимальную точность представления числа в ПК.
- 3) Сложение, вычитание, умножение, деление и сравнение целых чисел.
- 4) Программист может выбрать разные способы хранения и представления таких чисел. В общем случае это может быть структура со следующими полями (количество и значение полей может изменяться в зависимости от выбранной реализации): знак числа (символьный тип), порядок числа (целочисленный тип), мантисса числа (целочисленный массив), количество значащих цифр числа (целочисленный тип).

5)	Операции над такими числами удобно выполнять путём последовательного почленного выполнения операций над всеми цифрами, хранящимися в полеструктуры, отвечающим за мантиссу.
	orpyktijpin, orbo imiominiooj.
	0