

第十章 集成运算放大器及应用

有源音箱电路原理图

集成运算放大器简介

集成电路

把整个电路的各个元件以 及相互之间的连接同时制 造在一块半导体芯片上, 组成一个不可分的整体

集成运算放大器

简称集成运放

一种集成的具有很高放大倍数的多级直接耦合放大电路

集成运放的符号

集成运放主要参数

摘自秦曾煌《电子技术》

类型	通用型	高精度型	高阻型	高速型	低功耗型
参数 号	CF741 (F007)	CF7650	CF3140	CF715	CF3078C
电源电压±U _{CC} (U _{DD})/V	±15	±5	±15	±15	±6
开环差模电压增益 Auo/ 很大!	106	134	100	90	92
输入失调电压 U10/mV	1	±7×10 ⁻⁴	5	2	1.3
输入失调电流 I ₁₀ /nA	20	5×10 ⁻⁴	5×10 ⁻⁴	70	6
输入偏置电流 IIB/nA	80	1. 5×10 ⁻³	10-2	400	60
最大共模输入电压 U _{ICM} /V	±15	+2.6	+12. 5 -15. 5	±12	+5. 8 -5. 5
最大差模输入电压 II NM/V	+30		±8	±15	±6
共模抑制比 K _{CMR} /dB 很大!	90	130	90	92	110
输入由阳 r./MO. 很大!	2	106	1 5×10 ⁶	1	

理想集成运放

理想化条件:

$$r_{\rm id} \rightarrow \infty \cup_{d-U_N}$$

$$r_0 \rightarrow 0$$

$$K_{\rm CMRR} \to \infty$$

实际运算放大器的技术指标接近理想化条件,用理想运算放大器分析电路可使问题大大简化!

集成运放的两种工作状态

非线性区(饱和区):

$$u_P > u_N$$
 时, $u_o = +U_{o(sat)}$ $u_P < u_N$ 时, $u_o = -U_{o(sat)}$

线性区:

$$u_{\mathrm{o}} = A_{\mathrm{od}} (u_{\mathrm{P}} - u_{\mathrm{N}})$$

例: 若 $U_{o(sat)}$ =12V, A_{od} =10 6 , 则 u_i 满足什么条件时,运放处于线性区?

$$|u_i| < 12 \mu V$$

A_{od}越大,运放的线性范围越小,必须<u>在运放输出与输入之</u> 间加负反馈才能扩大运放输入信号的线性范围

运放在线性区的应用---运算电路运放在非线性区的应用---电压比较器

运放工作在线性区的特点

为保证运放工作在线性区, 电路都引入了深度负反馈

分析多个运放级联的电路时可不考虑前后级的相互影响

运放在线性区的应用---运算电路

反相比例运算电路

结构特点:

反馈电阻R_F跨接在输出 端和反相输入端间

信号从反相端输入

同相输入端通过电阻R₂接地

平衡电阻

使输入端对地的静态电阻相等消除静态基级电流对输出的影响

反相比例运算电路

电压放大倍数

同相比例运算电路

电压放大倍数

- ✓反馈引到反相输入端
- ✓信号从同相端输入

同相比例运算电路的特例

电压跟随器

$$A_{uf} = 1 + \frac{R_F}{R_1}$$

$$A_{uf} = 1$$

$$u_o = u_- = u_+ = u_i$$

作用与分离元件的射极输出器相同, 电压跟随性能更好

当负载R_L变化时,其两端电压 u_o不会随之变化!

电压跟随器

用两个电阻直接分压可以吗?

当负载 R_L 变化时, u_o 会随之变化

两级运算电路

例: R_1 =50 $K\Omega$, R_F =100 $K\Omega$, 若输入电压 u_i =1V, 求输出 u_o

反相输入求和

 $R' = R_1 // R_2 // R_3 // R_F$

实际应用时可适当增加 或减少输入端的个数

虚断 $i_1 + i_2 + i_3 = i_F$

$$\frac{u_{\text{I1}}}{R_1} + \frac{u_{\text{I2}}}{R_2} + \frac{u_{\text{I3}}}{R_3} = -\frac{u_0}{R_F}$$

$$u_{\rm O} = -\left(\frac{R_{\rm F}}{R_{\rm 1}}u_{\rm I1} + \frac{R_{\rm F}}{R_{\rm 2}}u_{\rm I2} + \frac{R_{\rm F}}{R_{\rm 3}}u_{\rm I3}\right)$$

同相输入求和

加减运算

实际应用时可适当增加或减少输入端的个数,以适应不同的需要

加减运算

差分运算电路

叠加定理

三运放构成的测量放大电路

测量放大电路用于放大从测量电路或传感器送来的微弱信号, 对电路的主要要求是输入电阻高和共模抑制比大。

对被测电路的影响小

放大差模信号

$$u_{o} = \frac{R_{2}}{R_{1}} \left(u_{o2} - u_{o1} \right)$$

$$u_{o} = \frac{U_{o1} - U_{o}}{R_{1} + R_{2}} R_{1} + \frac{R_{2}}{R_{1} + R_{2}}$$

$$U_{o1} = \frac{U_{o1} - U_{o}}{R_{1} + R_{2}} R_{1} + \frac{U_{o2} R_{2}}{R_{1} + R_{2}}$$

$$R_{1} = \frac{U_{o2} - U_{o1}}{R_{1} + R_{2}} R_{2}$$

$$R_{1} = \frac{R_{2}}{R_{2} + R_{2}}$$

$$R_{2} = \frac{R_{2}}{R_{2} + R_{2}}$$

$$R_{1} = \frac{R_{2}}{R_{2} + R_{2}}$$

$$R_{2} = \frac{R_{2}}{R_{2} + R_{2}}$$

$$R_{2} = \frac{R_{2}}{R_{2} + R_{2}}$$

$$R_{3} = \frac{R_{2}}{R_{2} + R_{2}}$$

$$R_{4} = \frac{R_{2}}{R_{1} + R_{2}}$$

$$R_{2} = \frac{R_{2}}{R_{2} + R_{2}}$$

三运放构成的测量放大电路

电平变换电路

A/D变换器要求其输入电压的幅度为0~+5V,现有信号变化范围为-5V~+5V。试设计一电平变换电路,将其变化范围变为0~+5V。

$$u_o = 0.5u_i + 2.5$$
 V

$$u_o = 0.5u_i + 2.5$$
 V
= 0.5 ($u_i + 5$) V

$$u_{o1} = -\frac{10}{20} \times (u_i + 5) = -0.5(u_i + 5) \qquad u_o = -\frac{20}{20} \times u_{o1} = 0.5(u_i + 5)$$

$$u_o = -\frac{20}{20} \times u_{o1} = 0.5(u_i + 5)$$

微分运算电路与积分运算电路

复习: 电容器上的电容量, 电流, 电压的关系

$$i = c \frac{du}{dt}$$

$$u = \frac{1}{c} \int i dt$$

积分运算电路

$$\begin{cases}
i_1 = \frac{u_i}{R} \\
i_F = -C \frac{du_o}{dt}
\end{cases}$$

$$u_o = -\frac{1}{RC} \int u_i dt$$

应用:

- 1. 在电子开关中用于延迟
- 2. 波形变换
- 3. A/D转换中,将电压量变为时间量
- 4. 移相

三角波

输出?

波形变换

如果输入是正弦波,输出波形怎样?

移相

比例-积分运算电路

$$i_{1} = i_{f}$$

$$u_{0} = -(R_{F}i_{f} + u_{C})$$

$$= -(R_{F}i_{1} + \frac{1}{C_{F}} \int i_{1}dt)$$

$$= -(\frac{R_{F}}{R_{I}}u_{i} + \frac{1}{R_{I}C_{F}} \int u_{i}dt)$$

自动控制系统中的 PI 调节器

微分运算电路

$$i_F = -\frac{u_o}{R}$$

$$i_1 = C \frac{du_i}{dt}$$

$$i_1 = i_F$$

比例-积分-微分运算电路

工程中应用最为广泛的控制调节器

$$u_{o} = -\left(\frac{R_{F}}{R_{1}}u_{i} + R_{F}C_{1}\frac{du_{i}}{dt}\right)$$

集成运放在非线性区的应用

电压比较器 比较输入电压和参考电压的大小

工作于非线性区 输出电压为: $u_o = \pm U_{o(sat)}$

简单比较器

 U_R : 参考电压

u_i从同相端输入

 u_i : 比较信号

u_i从反相端输入

u_i 从同相端输入

u_i 从反相端输入

过零比较器: (U_R=0 时)

WCH, Department of Electrical & Electronic Technology, SAEE, USTB

利用稳压管将输出电压限定在某一特定值

另一种形式限幅形式

—— 将双向稳压管接在 负反馈回路上

电压比较器应用:波形变换

将正弦波变为方波

电压比较器应用:监控报警装置

 U_R 为参考电压, u_i 为由传感器检测的电压值

当 u_i 超过正常值时,报警灯亮

综合应用电路: 火灾报警电路

 u_{i1} , u_{i2} 分别来自两个温度传感器. 它们安装在室内同一处:一个安装在塑料壳内, 另一个安装在金属板上.

无火情时, $u_{i1} = u_{i2}$ 声光报警电路不响不亮

一旦发生火情,安装在金属板上的传感器因金属板导热快而温度升高快,另一个升高慢,于是产生差值电压,当差值达到一定数值时,电路报警。

试设计相应的电路

