3. SAYISAL LOJİK DEVRELER

Tümleştirme Seviyelerine, Üretim teknolojilerine, ... göre gruplara ayrılır.

5.Aşırı Büyük Çapta Tümleştirme, 99999'dan fazla kapı (Large-Scale Integration, LSI) Bellekler Aritmetik Lojik İşlem (<u>U</u>ltra <u>L</u>arge-<u>S</u>cale <u>I</u>ntegration, ULSI) Işlemciler, Bellekler 4.Çok Büyük Çapta Tümleştirme, 10000-99999 kapı (Very Large-Scale Integration, VLSI) Mikrodenetleyiciler (Medium-Scale Integration, MSI) Yazmaçlar, Sayıcılar 1.Küçük Çapta Tümleştirme, 12'den az kapı 3.Büyük Çapta Tümleştirme, 100-9999 kapı (Small-Scale Integration, SSI) Lojik kapılar, FF 2.Orta Çapta Tümleştirme, 12-99 kapı

3.1. Sayısal Lojik Tümleşik Devre Teknolojisi

Şekil 3-1 Sayısal Tümleşik Devrelerin Lojik Gerilim Seviyeleri

Tablo 3-1 Sayısal Tümleşik Devre Teknolojileri

Lojik Aile	Çıkış Yılı	Teknoloji	Güç Harcaması	Sürme (-l₀н / l₀∟)	Çalışma Hızı (ns)	Standart Paket Tipleri	V _{oue} Gürültü
표	1968	Bipolar	Yüksek	-15 / 24	18	DIP, SO	< 0.8 V
S	1974	Bipolar	Yüksek	-15 / 64	6	DIP, SO	< 0.8 V
ST	1976	Bipolar	Orta	-15 / 24	18	DIP, SO	< 0.8 V
ALS	1979	Bipolar	Orta	-15 / 24	10	DIP, SO, SSOP	< 0.8 V
нс/нст	1975	CMOS	-Düşük	-8 /18	25	DIP, SO	<17
F	1983	Bipolar	+ Yüksek	-15 / 64	6.5	DIP, SO, SSOP	< 0.8 V
AS	1982	Bipolar	+ Yüksek	-15 / 64	6.2	DIP, SO	< 0.8 V
FCT	1986	CMOS	Düşük	-32 / 64	6.5 / 4.8	DIP, SO	>2V
ВСТ	1987	BICMOS	+ Düşük	-15 / 64	5.5	DIP, SO	< 0.8 V
AC/ACT	1985	CMOS	Düşük	-24 / 24	10	DIP, SO	.>2V
ABT	1990	BICMOS	Düşük	-32 / 64	4.1	DIP, SO, SSOP, TSSOP	< 0.8 V
FCT - T	1991	CMOS	Düşük	-32 / 64	6.5/4.8/4.1	DIP, SO, SSOP, QSOP	<17
LVT	1992	BICMOS	- Düşük	-32 / 64	4.2	SO, SSOP, TSSOP	< 0.8 V
LVC / ALVC	1993	CMOS	Düşük	-24 / 24	7/3.6	SO, SSOP, TSSOP	< 0.8 V
ETL/ABTE	1993	BICMOS	Düşük	-60 / 90	4.6	SSOP, TSSOP	< 0.8 V
СВТ	1994	BICMOS	Düşük	0	250 ps	SOIC, SSOP, TSSOP	< 0.8 V
AHC/AHCT	1996	CMOS	- Düşük	-8/8	8.5	DIP, SOIC, SSOP, TSSOP	<11

3.1.1. Sayısal Tümleşik Devre Üretim Teknolojisi

Tümleşik devreler, Şekil 3-2'de görülen işlemler yapılarak üretilirler.

Şekil 3-2 Yarıiletken Yonga Üretim basamakları

Şekil 3-3 Bazı tümleşik devrelerin fiziki görünümleri

3.1.2. Kod Çözücü Tümleşik Devreleri

Şekil 3-4 74LS138 3'den 8'e İzin Denetimli Kod Çözücü

		77	I	I	I	I	I	I	I	I	I	_
		Y6	Н	I	I	I	I	I	I	I	١	Н
		٧5	I	I	I	I	I	I	I	_	I	I
2	1 1	Υ4	I	I	I	I	I	I	_	I	I	I
Cikiclar	Š	Y3	I	I	I	I	I	_	I	I	I	I
		Y2	H	I	I	I	٦	I	I	I	I	I
		۲1	Н	I	I	٦	I	I	I	I	I	I
		YO	Ŧ	I	١	I	I	I	I	I	I	I
	n	A	×	×	ب	I	ب	I	ب	I	J	I
<u> </u>	Seçim	В	X	×	_	_	I	I	_	_	I	I
şleı	S	၁	X	×	_	_	_	_	I	I	I	I
Girişler	zin	G2*	I	×	_	٦	٦	٦	_	ب	_	٦
	į	G1	×	_	I	I	I	I	I	I	I	I

* G2 = G2A + G2BH = yüksek seviye , L = düşük seviye , X = dikkate alınmayacak

Tablo 3-2 74LS138 3'den 8'e Kod Çözücünün Çalışma Tablosu

Şekil 3-5 74LS139 Çift 2'den 4'e İzin Denetimli Kod Çözücü

Θ	Girişler			į	relaid.	
İzin	Seçim	im		<u>¥</u>	ışıdı	
5	В	A	٨٥	۲1	Y2	£Å
I	×	X	Н	Н	Н	Н
_	_	_	٦	I	I	I
_	ب	I	I	٦	I	I
٦	I	٦	I	I	٦	I
_	I	I	I	I	I	_

H = yüksek seviye , L = düşük seviye , X = dikkate alınmayacak

Tablo 3-3 74LS139 Çift 2'den 4'e Kod Çözücünün Çalışma Tablosu

3.2. Yazmaçlar ve Uygulamaları

3.2.1. Paralel Veri Transferi Uygulaması

3.2.2. Seri Veri Transfer Uygulaması

3.3. Veri Yolu Kavramı

Şekil 3-8b 3-durumlu lojik ile yol oluşturma

Şekil 3-9 74LS244 Çift 4'lü 3-durumlu Schmitt tetikleyicili tek yönlü tampon kapısı

Tablo 3-4 Çift 4'lü 3-durumlu tek yönlü tampon kapısının çalışma tablosu

Çıkış	٨	٦	I	Z
şler	A	٦	I	×
Girişler	5	٦	_	I

L = Düşük Lojik Seviye

H = Yüksek Lojik Seviye X = Düşük veya Yüksek Lojik Seviye L = Yüksek Empedans

Şekil 3-10 3-durumlu yazmaçların veri yoluna bağlanması

Şekil 3-12 İki yönlü yazmaçlar ve iki yönlü yol kavramı

3.3.1. Mikroişlemcili Sistemlerde Kullanılan 3-Durumlu Tümleşik Devreler

Şekil 3-13 74LS245 8'li 3-durumlu Schmitt tetikleyicili iki yönlü tampon kapısı Tablo 3-5 74LS245 8'li 3-durumlu iki yönlü tampon kapısının çalışma tablosu

Çalışma	B veriden A yoluna A veriden B yoluna Izolasyon	
Yön Kontrol DIR	×I×	
lzin G	T	

H = yūksek seviye, L = dūşūk seviye, X = dikkate alınmayacak

Şekil 3-14 8'li 3-durumlu 74373 seviye tetiklemeli saydam tutucu iç yapısı

Tablo 3-6 8'li 3-durumlu 74373 seviye tetiklemeli tutucunun çalışma tablosu

Çıkış	н С 20 Z
D	ххгн
izin G	тт¬х
Çıkış Kontrol	

H=yüksek seviye , L=düşük seviye , X=dikkate alınmayacak $Q_0=c$ ıkışın bir önceki girişlerin duruma göre gerçekleşen seviyesi

Şekil 3-15 74374 kenar tetiklemeli D tipi FF 'un iç yapı

Tablo 3-7 74374 kenar tetiklemeli D tipi FF 'un çalışma tablosu

Çıkış Kontrol	Saat	Q	Çıkış
7	↓	н	I
ب	←	_	_
_	_	×	රි
I	×	×	Z

H = yüksek seviye, L = düşük seviye, X = dikkate alınmayacak
 ↑ = çıkan kenar, Z = Yüksek Empedans
 Q₀ = çıkışın bir önceki girişlerin duruma göre gerçekleşen seviyesi

3.4. Programlanabilir Sayısal Lojik Devreler

Girişier

Girişier

(PROGRAMLANABILIR)

Şekil 3-19 Programlanabilir Lojik Eleman

"VE" DIZISI (SABIT)

Tablo 3-8 Programlanabilir lojik devrelerin özellikleri

	VE	VEYA	VEYA ÇIKIŞ SEÇENEKLERİ
PROM	Sabit	Prog.	Prog. TS, OC
PLA	Prog.	Prog. Prog.	TS, OC, Prog. Lojik seviye
PAL	Prog.	Prog. Sabit	TS, Saklayıcılı Geribesleme,

T = /A*/B*CI + A*/B*/CI + A*B*CI + /A*B*/CI/CO = /A*B*CI + A*B*CI + A*B*/CI

Şekil 3-18 PLA ile tam toplayıcı tasarımı