10

15

20

25

cycles, 96 lines (each line corresponding to one well) were tested for specific proliferation and cytokine production in response to the stimulating pools with an irrelevant pool of peptides derived from mammaglobin being used as a control.

One line (referred to as 1-F9) was identified from pool #1 that demonstrated specific proliferation (measured by 3H proliferation assays) and cytokine production (measured by interferon-gamma ELISA assays) in response to pool #1 of P703P peptides. This line was further tested for specific recognition of the peptide pool, specific recognition of individual peptides in the pool, and in HLA mismatch analyses to identify the relevant restricting allele. Line 1-F9 was found to specifically proliferate and produce interferongamma in response to peptide pool #1, and also to peptide 4 (SEQ ID NO: 781). Peptide 4 corresponds to amino acids 126-140 of SEQ ID NO: 327. Peptide titration experiments were conducted to assess the sensitivity of line 1-F9 for the specific peptide. The line was found to specifically respond to peptide 4 at concentrations as low as 0.25 ng/ml, indicating that the T cells are very sensitive and therefore likely to have high affinity for the epitope.

To determine the HLA restriction of the P703P response, a panel of antigen presenting cells (APC) was generated that was partially matched with the donor used to generate the T cells. The APC were pulsed with the peptide and used in proliferation and cytokine assays together with line 1-F9. APC matched with the donor at HLA-DRB0701 and HLA-DQB02 alleles were able to present the peptide to the T cells, indicating that the P703P-specific response is restricted to one of these alleles.

Antibody blocking assays were utilized to determine if the restricting allele was HLA-DR0701 or HLA-DQ02. The anti-HLA-DR blocking antibody L243 or an irrelevant isotype matched IgG2a were added to T cells and APC cultures pulsed with the peptide RMPTVLQCVNVSVVS (SEQ ID NO: 781) at 250 ng/ml. Standard interferongamma and proliferation assays were performed. Whereas the control antibody had no effect on the ability of the T cells to recognize peptide-pulsed APC, in both assays the anti-HLA-DR antibody completely blocked the ability of the T cells to specifically recognize peptide-pulsed APC.

15

20

25

To determine if the peptide epitope RMPTVLQCVNVSVVS (SEQ ID NO: 781) was naturally processed, the ability of line 1-F9 to recognize APC pulsed with recombinant P703P protein was examined. For these experiments a number of recombinant P703P sources were utilized; *E. coli*-derived P703P, Pichia-derived P703P and baculovirus-derived P703P. Irrelevant protein controls used were *E. coli*-derived L3E a lung-specific antigen) and baculovirus-derived mammaglobin. In interferon-gamma ELISA assays, line 1-F9 was able to efficiently recognize both *E. coli* forms of P703P as well as Pichia-derived recombinant P703P, while baculovirus-derived P703P was recognized less efficiently. Subsequent Western blot analysis revealed that the *E coli* and Pichia P703P protein preparations were intact while the baculovirus P703P preparation was approximately 75% degraded. Thus, peptide RMPTVLQCVNVSVVS (SEQ ID NO: 781) from P703P is a naturally processed peptide epitope derived from P703P and presented to T cells in the context of HLA-DRB-0701

In further studies, twenty-four 15-mer peptides overlapping by 10 amino acids and derived from the N-terminal fragment of P703P (corresponding to amino acids 27-154 of SEQ ID NO: 525) were generated by standard procedures and their ability to be recognized by CD4 cells was determined essentially as described above. DC were pulsed overnight with pools of the peptides with each peptide at a final concentration of 10 microgram/ml. A large number of individual CD4 T cell lines (65/480) demonstrated significant proliferation and cytokine release (IFN-gamma) in response to the P703P peptide pools but not to a control peptide pool. The CD4 T cell lines which demonstrated specific activity were restimulated on the appropriate pool of P703P peptides and reassayed on the individual peptides of each pool as well as a peptide dose titration of the pool of peptides in a IFN-gamma release assay and in a proliferation assay.

Sixteen immunogenic peptides were recognized by the T cells from the entire set of peptide antigens tested. The amino acid sequences of these peptides are provided in SEQ ID NO: 799-814, with the corresponding cDNA sequences being provided in SEQ ID NO: 783-798, respectively. In some cases the peptide reactivity of the T cell line could be mapped to a single peptide, however some could be mapped to more than one

15

20

25

peptide in each pool. Those CD4 T cell lines that displayed a representative pattern of recognition from each peptide pool with a reasonable affinity for peptide were chosen for further analysis (I-1A, -6A; II-4C, -5E; III-6E, IV-4B, -3F, -9B, -10F, V-5B, -4D, and -10F). These CD4 T cells lines were restimulated on the appropriate individual peptide and reassayed on autologous DC pulsed with a truncated form of recombinant P703P protein made in E. coli (a.a. 96 - 254 of SEQ ID NO: 525), full-length P703P made in the baculovirus expression system, and a fusion between influenza virus NS1 and P703P made in E. coli. Of the T cell lines tested, line I-1A recognized specifically the truncated form of P703P (E. coli) but no other recombinant form of P703P. This line also recognized the peptide used to elicit the T cells. Line 2-4C recognized the truncated form of P703P (E. coli) and the full length form of P703P made in baculovirus, as well as peptide. The remaining T cell lines tested were either peptide-specific only (II-5E, II-6F, IV-4B, IV-3F, IV-9B, IV-10F, V-5B and V-4D) or were non-responsive to any antigen tested (V-10F). These results demonstrate that the peptide sequence RPLLANDLMLIKLDE (SEQ ID NO: 814; corresponding to a.a. 110-124 of SEQ ID NO: 525) recognized by the T cell line I-1A, and the peptide sequences SVSESDTIRSISIAS (SEQ ID NO: 811; corresponding to a.a. 125-139 of SEQ ID NO: 525) and ISIASQCPTAGNSCL (SEQ ID NO: 810; corresponding to a.a. 135-149 of SEQ ID NO: 525) recognized by the T cell line II-4C may be naturally processed epitopes of the P703P protein.

In further studies, forty 15-mer peptides overlapping by 10 amino acids and derived spanning amino acids 47 to 254 of P703P (SEQ ID NO: 525) were generated by standard procedures and their ability to be recognized by CD4 cells was determined essentially as described above. DC were prepared from PBMC of a donor having distinct HLA DR and DQ alleles from that used in previous experiments. DC were pulsed overnight with pools of the peptides with each peptide at a final concentration of 0.25 microgram/ml, and each pool containing 10 peptides. Twelve lines were identified that demonstrated specific proliferation and cytokine production (measured in gamma-interferon ELISA assays) in response to the stimulating peptide pool. These lines were further tested for specific recognition of the peptide pool, specific recognition of individual

peptides in the pool, and specific recognition of recombinant P703P protein. Lines 3A5H and 3A9H specifically proliferated and produced gamma-interferon in response to recombinant protein and one individual peptide as well as the peptide pool. Following restimulation on targets loaded with the specific peptide, only 3A9H responded specifically to targets exposed to lysates of fibroblasts infected adenovirus expressing full-length P703P. These results indicates that the line 3A9H can respond to antigenic peptide derived from protein synthesized in mammalian cells. The peptide to which the specific CD4 line responded correspond to amino acids 155-170 of P703P (SEQ ID NO: 943). The DNA sequence for this peptide is provided in SEQ ID NO: 942.

10

15

20

25

EXAMPLE 11

EXPRESSION OF A BREAST TUMOR-DERIVED ANTIGEN IN PROSTATE

Isolation of the antigen B305D from breast tumor by differential display is described in US Patent Application No. 08/700,014, filed August 20, 1996. Several different splice forms of this antigen were isolated. The determined cDNA sequences for these splice forms are provided in SEQ ID NO: 366-375, with the predicted amino acid sequences corresponding to the sequences of SEQ ID NO: 292, 298 and 301-303 being provided in SEQ ID NO: 299-306, respectively. In further studies, a splice variant of the cDNA sequence of SEQ ID NO: 366 was isolated which was found to contain an additional guanine residue at position 884 (SEQ ID NO: 530), leading to a frameshift in the open reading frame. The determined DNA sequence of this ORF is provided in SEQ ID NO: 531. This frameshift generates a protein sequence (provided in SEQ ID NO: 532) of 293 amino acids that contains the C-terminal domain common to the other isoforms of B305D but that differs in the N-terminal region.

The expression levels of B305D in a variety of tumor and normal tissues were examined by real time PCR and by Northern analysis. The results indicated that B305D is highly expressed in breast tumor, prostate tumor, normal prostate and normal

testes, with expression being low or undetectable in all other tissues examined (colon tumor, lung tumor, ovary tumor, and normal bone marrow, colon, kidney, liver, lung, ovary, skin, small intestine, stomach). Using real-time PCR on a panel of prostate tumors, expression of B305D in prostate tumors was shown to increase with increasing Gleason grade, demonstrating that expression of B305D increases as prostate cancer progresses.

EXAMPLE 12

GENERATION OF HUMAN CTL IN VITRO USING WHOLE GENE PRIMING AND STIMULATION TECHNIQUES WITH THE PROSTATE-SPECIFIC ANTIGEN P501S

10

15

20

25

5

Using in vitro whole-gene priming with P501S-vaccinia infected DC (see, for example, Yee et al, The Journal of Immunology, 157(9):4079-86, 1996), human CTL lines were derived that specifically recognize autologous fibroblasts transduced with P501S (also known as L1-12), as determined by interferon-γ ELISPOT analysis as described above. Using a panel of HLA-mismatched B-LCL lines transduced with P501S, these CTL lines were shown to be likely restricted to HLAB class I allele. Specifically, dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal human donors by growing for five days in RPMI medium containing 10% human serum, 50 ng/ml human GM-CSF and 30 ng/ml human IL-4. Following culture, DC were infected overnight with recombinant P501S vaccinia virus at a multiplicity of infection (M.O.I) of five, and matured overnight by the addition of 3 µg/ml CD40 ligand. Virus was inactivated by UV irradiation. CD8+ T cells were isolated using a magnetic bead system, and priming cultures were initiated using standard culture techniques. Cultures were restimulated every 7-10 days using autologous primary fibroblasts retrovirally transduced with P501S and Following four stimulation cycles, CD8+ T cell lines were identified that CD80. specifically produced interferon-y when stimulated with P501S and CD80-transduced autologous fibroblasts. A panel of HLA-mismatched B-LCL lines transduced with P501S were generated to define the restriction allele of the response. By measuring interferon-γ in

15

20

25

an ELISPOT assay, the P501S specific response was shown to be likely restricted by HLA B alleles. These results demonstrate that a CD8+ CTL response to P501S can be elicited.

To identify the epitope(s) recognized, cDNA encoding P501S was fragmented by various restriction digests, and sub-cloned into the retroviral expression vector pBIB-KS. Retroviral supernatants were generated by transfection of the helper packaging line Phoenix-Ampho. Supernatants were then used to transduce Jurkat/A2Kb cells for CTL screening. CTL were screened in IFN-gamma ELISPOT assays against these A2Kb targets transduced with the "library" of P501S fragments. Initial positive fragments P501S/H3 and P501S/F2 were sequenced and found to encode amino acids 106-553 and amino acids 136-547, respectively, of SEQ ID NO: 113. A truncation of H3 was made to encode amino acid residues 106-351 of SEQ ID NO: 113, which was unable to stimulate the CTL, thus localizing the epitope to amino acid residues 351-547. Additional fragments encoding amino acids 1-472 (Fragment A) and amino acids 1-351 (Fragment B) were also constructed. Fragment A but not Fragment B stimulated the CTL thus localizing the epitope to amino acid residues 351-472. Overlapping 20-mer and 18-mer peptides representing this region were tested by pulsing Jurkat/A2Kb cells versus CTL in an IFNgamma assay. Only peptides P501S-369(20) and P501S-369(18) stimulated the CTL. Nine-mer and 10-mer peptides representing this region were synthesized and similarly tested. Peptide P501S-370 (SEQ ID NO: 539) was the minimal 9-mer giving a strong response. Peptide P501S-376 (SEQ ID NO: 540) also gave a weak response, suggesting that it might represent a cross-reactive epitope.

In subsequent studies, the ability of primary human B cells transduced with P501S to prime MHC class I-restricted, P501S-specific, autologous CD8 T cells was examined. Primary B cells were derived from PBMC of a homozygous HLA-A2 donor by culture in CD40 ligand and IL-4, transduced at high frequency with recombinant P501S in the vector pBIB, and selected with blastocidin-S. For *in vitro* priming, purified CD8+ T cells were cultured with autologous CD40 ligand + IL-4 derived, P501S-transduced B cells in a 96-well microculture format. These CTL microcultures were re-stimulated with P501S-transduced B cells and then assayed for specificity. Following this initial screen,

20

25

microcultures with significant signal above background were cloned on autologous EBV-transformed B cells (BLCL), also transduced with P501S. Using IFN-gamma ELISPOT for detection, several of these CD8 T cell clones were found to be specific for P501S, as demonstrated by reactivity to BLCL/P501S but not BLCL transduced with control antigen. It was further demonstrated that the anti-P501S CD8 T cell specificity is HLA-A2-restricted. First, antibody blocking experiments with anti-HLA-A,B,C monoclonal antibody (W6.32), anti-HLA-B,C monoclonal antibody (B1.23.2) and a control monoclonal antibody showed that only the anti-HLA-A,B,C antibody blocked recognition of P501S-expressing autologous BLCL. Secondly, the anti-P501S CTL also recognized an HLA-A2 matched, heterologous BLCL transduced with P501S, but not the corresponding EGFP transduced control BLCL.

A naturally processed, CD8, class I-restricted peptide epitope of P501S was identified as follows. Dendritic Cells (DC) were isolated by Percol gradient followed by differential adherence, and cultured for 5 days in the presence of RPMI medium containing 1% human serum, 50ng/ml GM-CSF and 30ng/ml IL-4. Following culture, DC were infected for 24 hours with P501S-expressing adenovirus at an MOI of 10 and matured for an additional 24 hours by the addition of 2ug/ml CD40 ligand. CD8 cells were enriched for by the subtraction of CD4+, CD14+ and CD16+ populations from PBMC with magnetic beads. Priming cultures containing 10,000 P501S-expressing DC and 100,000 CD8+ T cells per well were set up in 96-well V-bottom plates with RPMI containing 10% human serum, 5ng/ml IL-12 and 10ng/ml IL-6. Cultures were stimulated every 7 days using autologous fibroblasts retrovirally transduced to express P501S and CD80, and were treated with IFN-gamma for 48-72 hours to upregulate MHC Class I expression. 10u/ml IL-2 was added at the time of stimulation and on days 2 and 5 following stimulation. Following 4 stimulation cycles, one P501S-specific CD8+ T cell line (referred to as 2A2) was identified that produced IFN-gamma in response to IFN-gamma-treated P501S/CD80 expressing autologous fibroblasts, but not in response to IFN-gamma-treated P703P/CD80 expressing autologous fibroblasts in a γ -IFN Elispot assay. Line 2A2 was cloned in 96-well plates with 0.5 cell/well or 2 cells/well in the presence of 75,000 PBMC/well, 10,000 B-LCL/well,

15

20

25

30ng/ml OKT3 and 50u/ml IL-2. Twelve clones were isolated that showed strong P501S specificity in response to transduced fibroblasts.

Fluorescence activated cell sorting (FACS) analysis was performed on P501S-specific clones using CD3-, CD4- and CD8-specific antibodies conjugated to PercP, FITC and PE respectively. Consistent with the use of CD8 enriched T cells in the priming cultures, P5401S-specific clones were determined to be CD3+, CD8+ and CD4-.

To identify the relevant P501S epitope recognized by P501S specific CTL, pools of 18-20 mer or 30-mer peptides that spanned the majority of the amino acid sequence of P501S were loaded onto autologous B-LCL and tested in γ-IFN Elispot assays for the ability to stimulate two P501S-specific CTL clones, referred to as 4E5 and 4E7. One pool, composed of five 18-20 mer peptides that spanned amino acids 411-486 of P501S (SEQ ID NO: 113), was found to be recognized by both P501S-specific clones. To identify the specific 18-20 mer peptide recognized by the clones, each of the 18-20 mer peptides that comprised the positive pool were tested individually in y-IFN Elispot assays for the ability to stimulate the two P501S-specific CTL clones, 4E5 and 4E7. Both 4E5 and 4E7 specifically recognized one 20-mer peptide (SEQ ID NO: 853; cDNA sequence provided in SEQ ID NO: 854) that spanned amino acids 453-472 of P501S. Since the minimal epitope recognized by CD8+ T cells is almost always either a 9 or 10-mer peptide sequence, 10-mer peptides that spanned the entire sequence of SEQ ID NO: 853 were synthesized that differed by 1 amino acid. Each of these 10-mer peptides was tested for the ability to stimulate two P501S-specific clones, (referred to as 1D5 and 1E12). One 10-mer peptide (SEQ ID NO: 855; cDNA sequence provided in SEQ ID NO: 856) was identified that specifically stimulated the P501S-specific clones. This epitope spans amino acids 463-472 of P501S. This sequence defines a minimal 10-mer epitope from P501S that can be naturally processed and to which CTL responses can be identified in normal PBMC. Thus, this epitope is a candidate for use as a vaccine moiety, and as a therapeutic and/or diagnostic reagent for prostate cancer.

To identify the class I restriction element for the P501S-derived sequence of SEO ID NO: 855, HLA blocking and mismatch analyses were performed. In γ -IFN Elispot

20

25

5

assays, the specific response of clones 4A7 and 4E5 to P501S-transduced autologous fibroblasts was blocked by pre-incubation with 25ug/ml W6/32 (pan-Class I blocking antibody) and B1.23.2 (HLA-B/C blocking antibody). These results demonstrate that the SEQ ID NO: 855-specific response is restricted to an HLA-B or HLA-C allele.

For the HLA mismatch analysis, autologous B-LCL (HLA-A1,A2,B8,B51, Cw1, Cw7) and heterologous B-LCL (HLA-A2,A3,B18,B51,Cw5,Cw14) that share the HLAB51 allele were pulsed for one hour with 20ug/ml of peptide of SEQ ID NO: 855, washed, and tested in γ-IFN Elispot assays for the ability to stimulate clones 4A7 and 4E5. Antibody blocking assays with the B1.23.2 (HLA-B/C blocking antibody) were also performed. SEQ ID NO: 855-specific response was detected using both the autologous (D326) and heterologous (D107) B-LCL, and furthermore the responses were blocked by pre-incubation with 25ug/ml of B1.23.2 HLA-B/C blocking antibody. Together these results demonstrate that the P501S-specific response to the peptide of SEQ ID NO: 855 is restricted to the HLA-B51 class I allele. Molecular cloning and sequence analysis of the HLA-B51 allele from D3326 revealed that the HLA-B51 subtype of D326 is HLA-B51011.

Based on the 10-mer P501S-derived epitope of SEQ ID NO: 855, two 9-mers with the sequences of SEQ ID NO: 857 and 858 were synthesized and tested in Elispot assays for the ability to stimulate two P501S-specific CTL clones derived from line 2A2. The 10-mer peptide of SEQ ID NO: 855, as well as the 9-mer peptide of SEQ ID NO: 858, but not the 9-mer peptide of SEQ ID NO: 857, were capable of stimulating the P501S-specific CTL to produce IFN-gamma. These results demonstrate that the peptide of SEQ ID NO: 858 is a 9-mer P501S-derived epitope recognized by P501S-specific CTL. The DNA sequence encoding the epitope of SEQ ID NO: 858 is provided in SEQ ID NO: 859.

To identify the class I restricting allele for the P501S-derived peptide of SEQ ID NO: 855 and 858 specific response, each of the HLA B and C alleles were cloned from the donor used in the *in vitro* priming experiment. Sequence analysis indicated that the relevant alleles were HLA-B8, HLA-B51, HLA-Cw01 and HLA-Cw07. Each of these alleles were subcloned into an expression vector and co-transfected together with the P501S gene into VA-13 cells. Transfected VA-13 cells were then tested for the ability to

15

20

25

specifically stimulate the P501S-specific CTL in ELISPOT assays. VA-13 cells transfected with P501S and HLA-B51 were capable of stimulating the P501S-specific CTL to secrete gamma-IFN. VA-13 cells transfected with HLA-B51 alone or P501S + the other HLA-alleles were not capable of stimulating the P501S-specific CTL. These results demonstrate that the restricting allele for the P501S-specific response is the HLAB51 allele. Sequence analysis revealed that the subtype of the relevant restricting allele is HLA-B51011.

To determine if the P501S-specific CTL could recognize prostate tumor cells that express P501S, the P501S-positive lines LnCAP and CRL2422 (both expressing "moderate" amounts of P501S mRNA and protein), and PC-3 (expressing low amounts of P501S mRNA and protein), plus the P501S-negative cell line DU-145 were retrovirally transduced with the HLA-B51011 allele that was cloned from the donor used to generate the P501S-specific CTL. HLA-B51011- or EGFP-transduced and selected tumor cells were treated with gamma-interferon and androgen (to upregulate stimulatory functions and P501S, respectively) and used in gamma-interferon Elispot assays with the P501S-specific CTL clones 4E5 and 4E7. Untreated cells were used as a control.

Both 4E5 and 4E7 efficiently and specifically recognized LnCAP and CRL2422 cells that were transduced with the HLA-B51011 allele, but not the same cell lines transduced with EGFP. Additionally, both CTL clones specifically recognized PC-3 cells transduced with HLA-B51011, but not the P501S-negative tumor cell line DU-145. Treatment with gamma-interferon or androgen did not enhance the ability of CTL to recognize tumor cells. These results demonstrate that P501S-specific CTL, generated by *in vitro* whole gene priming, specifically and efficiently recognize prostate tumor cell lines that express P501S.

A naturally processed CD4 epitope of P501S was identified as follows.

CD4 cells specific for P501S were prepared as described above. A series of 16 overlapping peptides were synthesized that spanned approximately 50% of the amino terminal portion of the P501S gene (amino acids 1- 325 of SEQ ID NO: 113). For priming, peptides were combined into pools of 4 peptides, pulsed at 4 µg/ml onto dendritic cells (DC) for 24 hours, with TNF-alpha. DC were then washed and mixed with negatively

15

20

25

selected CD4+ T cells in 96 well U-bottom plates. Cultures were re-stimulated weekly on fresh DC loaded with peptide pools. Following a total of 4 stimulation cycles, cells were rested for an additional week and tested for specificity to APC pulsed with peptide pools using γ -IFN ELISA and proliferation assays. For these assays, adherent monocytes loaded with either the relevant peptide pool at 4ug/ml or an irrelevant peptide at μ g/ml were used as APC. T cell lines that demonstrated either specific cytokine secretion or proliferation were then tested for recognition of individual peptides that were present in the pool. T cell lines could be identified from pools A and B that recognized individual peptides from these pools.

From pool A, lines AD9 and AE10 specifically recognized peptide 1 (SEQ ID NO: 862), and line AF5 recognized peptide 39 (SEQ ID NO: 861). From pool B, line BC6 could be identified that recognized peptide 58 (SEQ ID NO: 860). Each of these lines were stimulated on the specific peptide and tested for specific recognition of the peptide in a titration assay as well as cell lysates generated by infection of HEK 293 cells with adenovirus expressing either P501S or an irrelevant antigen. For these assays, APCadherent monocytes were pulsed with either 10, 1, or 0.1 µg/ml individual P501S peptides, and DC were pulsed overnight with a 1:5 dilution of adenovirally infected cell lysates. Lines AD9, AE10 and AF5 retained significant recognition of the relevant P501S-derived peptides even at 0.1 mg/ml. Furthermore, line AD9 demonstrated significant (8.1 fold stimulation index) specific activity for lysates from adenovirus-P501S infected cells. These results demonstrate that high affinity CD4 T cell lines can be generated toward P501Sderived epitopes, and that at least a subset of these T cells specific for the P501S derived sequence of SEQ ID NO: 862 are specific for an epitope that is naturally processed by human cells. The DNA sequences encoding the amino acid sequences of SEQ ID NO: 860-862 are provided in SEQ ID NO: 863-865, respectively.

To further characterize the P501S-specific activity of AD9, the line was cloned using anti-CD3. Three clones, referred to as 1A1, 1A9 and 1F5, were identified that were specific for the P501S-1 peptide (SEQ ID NO: 862). To determine the HLA restriction allele for the P501S-specific response, each of these clones was tested in class II

antibody blocking and HLA mismatch assays using proliferation and gamma-interferon assays. In antibody blocking assays and measuring gamma-interferon production using ELISA assays, the ability of all three clones to recognize peptide pulsed APC was specifically blocked by co-incubation with either a pan-class II blocking antibody or a HLA-DR blocking antibody, but not with a HLA-DQ or an irrelevant antibody. Proliferation assays performed simultaneously with the same cells confirmed these results. These data indicate that the P501S-specific response of the clones is restricted by an HLA-DR allele. Further studies demonstrated that the restricting allele for the P501S-specific response is HLA-DRB1501.

10

15

EXAMPLE 13

IDENTIFICATION OF PROSTATE-SPECIFIC ANTIGENS By Microarray Analysis

This Example describes the isolation of certain prostate-specific polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library as described above was screened using microarray analysis to identify clones that display at least a three fold over-expression in prostate tumor and/or normal prostate tissue, as compared to non-prostate normal tissues (not including testis). 372 clones were identified, and 319 were successfully sequenced. Table I presents a summary of these clones, which are shown in SEQ ID NOs:385-400. Of these sequences SEQ ID NOs:386, 389, 390 and 392 correspond to novel genes, and SEQ ID NOs: 393 and 396 correspond to previously identified sequences. The others (SEQ ID NOs:385, 387, 388, 391, 394, 395 and 397-400) correspond to known sequences, as shown in Table I.

25

20

<u>Table I</u> <u>Summary of Prostate Tumor Antigens</u>

Known Genes	Previously Identified Genes	Novel Genes
T-cell gamma chain	P504S	23379 (SEQ ID NO:389)
Kallikrein	P1000C	23399 (SEQ ID NO:392)
Vector	P501S	23320 (SEQ ID NO:386)
CGI-82 protein mRNA (23319; SEQ ID NO:385)	P503S	23381 (SEQ ID NO:390)
PSA	P510S	
Ald. 6 Dehyd.	P784P	
L-iditol-2 dehydrogenase (23376; SEQ ID NO:388)	P502S	
Ets transcription factor PDEF (22672; SEQ ID NO:398)	P706P	
hTGR (22678; SEQ ID NO:399)	19142.2, bangur.seq (22621; SEQ ID NO:396)	
KIAA0295(22685; SEQ ID NO:400)	5566.1 Wang (23404; SEQ ID NO:393)	
Prostatic Acid Phosphatase(22655; SEQ ID NO:397)	P712P	
transglutaminase (22611; SEQ ID NO:395)	P778P	
HDLBP (23508; SEQ ID NO:394)		
CGI-69 Protein(23367; SEQ ID NO:387)		
KIAA0122(23383; SEQ ID NO:391)		
TEEG		

15

20

25

CGI-82 showed 4.06 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 43% of prostate tumors, 25% normal prostate, not detected in other normal tissues tested. L-iditol-2 dehydrogenase showed 4.94 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 90% of prostate tumors, 100% of normal prostate, and not detected in other normal tissues tested. Ets transcription factor PDEF showed 5.55 fold overexpression in prostate tissues as compared to other normal tissues tested. It was overexpressed in 47% prostate tumors, 25% normal prostate and not detected in other normal tissues tested. hTGR1 showed 9.11 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 63% of prostate tumors and is not detected in normal tissues tested including normal prostate. KIAA0295 showed 5.59 fold over-expression in prostate tissues as compared to other normal tissues tested. It was overexpressed in 47% of prostate tumors, low to undetectable in normal tissues tested including normal prostate tissues. Prostatic acid phosphatase showed 9.14 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 67% of prostate tumors, 50% of normal prostate, and not detected in other normal tissues tested. Transglutaminase showed 14.84 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 30% of prostate tumors, 50% of normal prostate, and is not detected in other normal tissues tested. High density lipoprotein binding protein (HDLBP) showed 28.06 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 97% of prostate tumors, 75% of normal prostate, and is undetectable in all other normal tissues tested. CGI-69 showed 3.56 fold over-expression in prostate tissues as compared to other normal tissues tested. It is a low abundant gene, detected in more than 90% of prostate tumors, and in 75% normal prostate tissues. The expression of this gene in normal tissues was very low. KIAA0122 showed 4.24 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 57% of prostate tumors, it was undetectable in all normal tissues tested including normal prostate tissues. 19142.2 bangur showed 23.25 fold over-expression in prostate tissues as compared to other normal tissues tested. It

15

20

25

was over-expressed in 97% of prostate tumors and 100% of normal prostate. It was undetectable in other normal tissues tested. 5566.1 Wang showed 3.31 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 97% of prostate tumors, 75% normal prostate and was also over-expressed in normal bone marrow, pancreas, and activated PBMC. Novel clone 23379 (also referred to as P553S) showed 4.86 fold over-expression in prostate tissues as compared to other normal tissues tested. It was detectable in 97% of prostate tumors and 75% normal prostate and is undetectable in all other normal tissues tested. Novel clone 23399 showed 4.09 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 27% of prostate tumors and was undetectable in all normal tissues tested including normal prostate tissues. Novel clone 23320 showed 3.15 fold over-expression in prostate tissues as compared to other normal tissues tested. It was detectable in all prostate tumors and 50% of normal prostate tissues. It was also expressed in normal colon and trachea. Other normal tissues do not express this gene at high level.

Subsequent full-length cloning studies on P553S, using standard techniques, revealed that this clone is an incomplete spliced form of P501S. The determined cDNA sequences for four splice variants of P553S are provided in SEQ ID NO: 702-705. An amino acid sequence encoded by SEQ ID NO: 705 is provided in SEQ ID NO: 706. The cDNA sequence of SEQ ID NO: 702 was found to contain two open reading frames (ORFs). The amino acid sequences encoded by these two ORFs are provided in SEQ ID NO: 707 and 708.

EXAMPLE 14

IDENTIFICATION OF PROSTATE-SPECIFIC ANTIGENS By Electronic Subtraction

This Example describes the use of an electronic subtraction technique to identify prostate-specific antigens.

15

20

Potential prostate-specific genes present in the GenBank human EST database were identified by electronic subtraction (similar to that described by Vasmatizis et al., *Proc. Natl. Acad. Sci. USA 95*:300-304, 1998). The sequences of EST clones (43,482) derived from various prostate libraries were obtained from the GenBank public human EST database. Each prostate EST sequence was used as a query sequence in a BLASTN (National Center for Biotechnology Information) search against the human EST database. All matches considered identical (length of matching sequence >100 base pairs, density of identical matches over this region > 70%) were grouped (aligned) together in a cluster. Clusters containing more than 200 ESTs were discarded since they probably represented repetitive elements or highly expressed genes such as those for ribosomal proteins. If two or more clusters shared common ESTs, those clusters were grouped together into a "supercluster," resulting in 4,345 prostate superclusters.

Records for the 479 human cDNA libraries represented in the GenBank release were downloaded to create a database of these cDNA library records. These 479 cDNA libraries were grouped into three groups: Plus (normal prostate and prostate tumor libraries, and breast cell line libraries, in which expression was desired), Minus (libraries from other normal adult tissues, in which expression was not desirable), and Other (libraries from fetal tissue, infant tissue, tissues found only in women, non-prostate tumors and cell lines other than prostate cell lines, in which expression was considered to be irrelevant). A summary of these library groups is presented in Table II.

10

15

<u>Table II</u>
Prostate cDNA Libraries and ESTs

Library	# of Libraries	# of ESTs
Plus	25	43,482
Normal	11	18,875
Tumor	11	21,769
Cell lines	3	2,838
Minus	166	
Other	287	

Each supercluster was analyzed in terms of the ESTs within the supercluster.

The tissue source of each EST clone was noted and used to classify the superclusters into four groups: Type 1- EST clones found in the Plus group libraries only; no expression detected in Minus or Other group libraries; Type 2- EST clones derived from the Plus and Other group libraries only; no expression detected in the Minus group; Type 3- EST clones derived from the Plus, Minus and Other group libraries, but the number of ESTs derived from the Plus group is higher than in either the Minus or Other groups; and Type 4- EST clones derived from Plus, Minus and Other group libraries, but the number derived from the Plus group is higher than the number derived from the Minus group. This analysis identified 4,345 breast clusters (*see* Table III). From these clusters, 3,172 EST clones were ordered from Research Genetics, Inc., and were received as frozen glycerol stocks in 96-well plates.

10

15

20

<u>Table III</u>

Prostate Cluster Summary

Туре	# of Superclusters	# of ESTs Ordered
1	688	677
2	2899	2484
3	85	11
4	673	0
Total	4345	3172

The EST clone inserts were PCR-amplified using amino-linked PCR primers for Synteni microarray analysis. When more than one PCR product was obtained for a particular clone, that PCR product was not used for expression analysis. In total, 2,528 clones from the electronic subtraction method were analyzed by microarray analysis to identify electronic subtraction breast clones that had high levels of tumor vs. normal tissue mRNA. Such screens were performed using a Synteni (Palo Alto, CA) microarray, according to the manufacturer's instructions (and essentially as described by Schena et al., *Proc. Natl. Acad. Sci. USA 93*:10614-10619, 1996 and Heller et al., *Proc. Natl. Acad. Sci. USA 94*:2150-2155, 1997). Within these analyses, the clones were arrayed on the chip, which was then probed with fluorescent probes generated from normal and tumor prostate cDNA, as well as various other normal tissues. The slides were scanned and the fluorescence intensity was measured.

Clones with an expression ratio greater than 3 (*i.e.*, the level in prostate tumor and normal prostate mRNA was at least three times the level in other normal tissue mRNA) were identified as prostate tumor-specific sequences (Table IV). The sequences of these clones are provided in SEQ ID NO: 401-453, with certain novel sequences shown in SEQ ID NO: 407, 413, 416-419, 422, 426, 427 and 450.

<u>Table IV</u> <u>Prostate-tumor Specific Clones</u>

SEQ ID NO.	Sequence Designation	Comments
401	22545	previously identified P1000C
	22547	previously identified P704P
402	22548	known
403	22550	known
404	<u> </u>	PSA
405	22551 22552	prostate secretory protein 94
406		novel
407	22553	previously identified P509S
408	22558	glandular kallikrein
409	22562	
410	22565	previously identified P1000C
411	22567	PAP
412	22568	B1006C (breast tumor antigen)
413	22570	novel
414	22571	PSA
415	22572	previously identified P706P
416	22573	novel
417	22574	novel
418	22575	novel
419	22580	novel
420	22581	PAP
421	22582	prostatic secretory protein 94
422	22583	novel
423	22584	prostatic secretory protein 94
424	22585	prostatic secretory protein 94
425	22586	known
426	22587	novel
427	22588	novel
428	22589	PAP
429	22590	known
430	22591	PSA
431	22592	known
432	22593	Previously identified P777P
433	22594	T cell receptor gamma chain
434	22595	Previously identified P705P
435	22596	Previously identified P707P

436	22847	PAP
437	22848	known
438	22849	prostatic secretory protein 57
439	22851	PAP
440	22852	PAP
441	22853	PAP
442	22854	previously identified P509S
443	22855	previously identified P705P
444	22856	previously identified P774P
445	22857	PSA
446	23601	previously identified P777P
447	23602	PSA
448	23605	PSA
449	23606	PSA
450	23612	novel
451	23614	PSA
452	23618	previously identified P1000C
453	23622	previously identified P705P

Further studies on the clone of SEQ ID NO: 407 (also referred to as P1020C) led to the isolation of an extended cDNA sequence provided in SEQ ID NO: 591. This extended cDNA sequence was found to contain an open reading frame that encodes the predicted amino acid sequence of SEQ ID NO: 592. The P1020C cDNA and amino acid sequences were found to show some similarity to the human endogenous retroviral HERV-K pol gene and protein.

EXAMPLE 15

10 FURTHER IDENTIFICATION OF PROSTATE-SPECIFIC ANTIGENS BY MICROARRAY ANALYSIS

This Example describes the isolation of additional prostate-specific polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library as described above was
screened using microarray analysis to identify clones that display at least a three fold overexpression in prostate tumor and/or normal prostate tissue, as compared to non-prostate

15

20

25

normal tissues (not including testis). 142 clones were identified and sequenced. Certain of these clones are shown in SEQ ID NO: 454-467. Of these sequences, SEQ ID NO: 459-460 represent novel genes. The others (SEQ ID NO: 454-458 and 461-467) correspond to known sequences. Comparison of the determined cDNA sequence of SEQ ID NO: 461 with sequences in the Genbank database using the BLAST program revealed homology to the previously identified transmembrane protease serine 2 (TMPRSS2). The full-length cDNA sequence for this clone is provided in SEQ ID NO: 894, with the corresponding amino acid sequence being provided in SEQ ID NO: 895. The cDNA sequence encoding the first 209 amino acids of TMPRSS2 is provided in SEQ ID NO: 896, with the first 209 amino acids being provided in SEQ ID NO: 897.

The sequence of SEQ ID NO: 462 (referred to as P835P) was found to correspond to the previously identified clone FLJ13518 (Accession AK023643; SEQ ID NO: 917), which had no associated open reading frame (ORF). This clone was used to search the Geneseq DNA database and matched a clone previously identified as a G protein-coupled receptor protein (DNA Geneseq Accession A09351; amino acid Geneseq Accession Y92365), that is characterized by the presence of seven transmembrane domains. The sequences of fragments between these domains are provided in SEQ ID NO: 921-928, with SEQ ID NO: 921, 923, 925 and 927 representing extracellular domains and SEQ ID NO: 922, 924, 926 and 928 representing intracellular domains. SEQ ID NO: 921-928 represent amino acids 1-28, 53-61, 83-103, 124-143, 165-201, 226-238, 263-272 and 297-381, respectively, of P835P. The full-length cDNA sequence for P835P is provided in SEQ ID NO: 916. The cDNA sequence of the open reading frame for P835P, including stop codon, is provided in SEQ ID NO: 918, with the open reading frame without stop codon being provided in SEQ ID NO: 919 and the corresponding amino acid sequence being provided in SEQ ID NO: 920.

10

15

20

25

EXAMPLE 16

FURTHER CHARACTERIZATION OF PROSTATE-SPECIFIC ANTIGEN P710P

This Example describes the full length cloning of P710P.

The prostate cDNA library described above was screened with the P710P fragment described above. One million colonies were plated on LB/Ampicillin plates. Nylon membrane filters were used to lift these colonies, and the cDNAs picked up by these filters were then denatured and cross-linked to the filters by UV light. The P710P fragment was radiolabeled and used to hybridize with the filters. Positive cDNA clones were selected and their cDNAs recovered and sequenced by an automatic Perkin Elmer/Applied Biosystems Division Sequencer. Four sequences were obtained, and are presented in SEQ ID NO: 468-471. These sequences appear to represent different splice variants of the P710P gene. Subsequent comparison of the cDNA sequences of P710P with those in Genbank releaved homology to the DD3 gene (Genbank accession numbers AF103907 & AF103908). The cDNA sequence of DD3 is provided in SEQ ID NO: 690.

EXAMPLE 17

PROTEIN EXPRESSION OF PROSTATE-SPECIFIC ANTIGENS

This example describes the expression and purification of prostate-specific antigens in *E. coli*, baculovirus and mammalian cells.

a) Expression of P501S in E. coli

Expression of the full-length form of P501S was attempted by first cloning P501S without the leader sequence (amino acids 36-553 of SEQ ID NO: 113) downstream of the first 30 amino acids of the *M. tuberculosis* antigen Ra12 (SEQ ID NO: 484) in pET17b. Specifically, P501S DNA was used to perform PCR using the primers AW025 (SEQ ID NO: 485) and AW003 (SEQ ID NO: 486). AW025 is a sense cloning primer that contains a HindIII site. AW003 is an antisense cloning primer that contains an EcoRI site.

15

20

25

DNA amplification was performed using 5 µl 10X Pfu buffer, 1 µl 20 mM dNTPs, 1 µl each of the PCR primers at 10 µM concentration, 40 µl water, 1 µl Pfu DNA polymerase (Stratagene, La Jolla, CA) and 1 µl DNA at 100 ng/µl. Denaturation at 95°C was performed for 30 sec, followed by 10 cycles of 95°C for 30 sec, 60°C for 1 min and by 72°C for 3 min. 20 cycles of 95°C for 30 sec, 65°C for 1 min and by 72°C for 3 min, and lastly by 1 cycle of 72°C for 10 min. The PCR product was cloned to Ra12m/pET17b using HindIII and EcoRI. The sequence of the resulting fusion construct (referred to as Ra12-P501S-F) was confirmed by DNA sequencing.

The fusion construct was transformed into BL21(DE3)pLysE, pLysS and CodonPlus *E. coli* (Stratagene) and grown overnight in LB broth with kanamycin. The resulting culture was induced with IPTG. Protein was transferred to PVDF membrane and blocked with 5% non-fat milk (in PBS-Tween buffer), washed three times and incubated with mouse anti-His tag antibody (Clontech) for 1 hour. The membrane was washed 3 times and probed with HRP-Protein A (Zymed) for 30 min. Finally, the membrane was washed 3 times and developed with ECL (Amersham). No expression was detected by Western blot. Similarly, no expression was detected by Western blot when the Ra12-P501S-F fusion was used for expression in BL21CodonPlus by CE6 phage (Invitrogen).

An N-terminal fragment of P501S (amino acids 36-325 of SEQ ID NO: 113) was cloned down-stream of the first 30 amino acids of the *M. tuberculosis* antigen Ra12 in pET17b as follows. P501S DNA was used to perform PCR using the primers AW025 (SEQ ID NO: 485) and AW027 (SEQ ID NO: 487). AW027 is an antisense cloning primer that contains an EcoRI site and a stop codon. DNA amplification was performed essentially as described above. The resulting PCR product was cloned to Ra12 in pET17b at the HindIII and EcoRI sites. The fusion construct (referred to as Ra12-P501S-N) was confirmed by DNA sequencing.

The Ra12-P501S-N fusion construct was used for expression in BL21(DE3)pLysE, pLysS and CodonPlus, essentially as described above. Using Western blot analysis, protein bands were observed at the expected molecular weight of 36 kDa. Some high molecular weight bands were also observed, probably due to aggregation of the

15

20

25

recombinant protein. No expression was detected by Western blot when the Ra12-P501S-F fusion was used for expression in BL21CodonPlus by CE6 phage.

A fusion construct comprising a C-terminal portion of P501S (amino acids 257-553 of SEQ ID NO: 113) located down-stream of the first 30 amino acids of the *M. tuberculosis* antigen Ra12 (SEQ ID NO: 484) was prepared as follows. P501S DNA was used to perform PCR using the primers AW026 (SEQ ID NO: 488) and AW003 (SEQ ID NO: 486). AW026 is a sense cloning primer that contains a HindIII site. DNA amplification was performed essentially as described above. The resulting PCR product was cloned to Ra12 in pET17b at the HindIII and EcoRI sites. The sequence for the fusion construct (referred to as Ra12-P501S-C) was confirmed.

The Ra12-P501S-C fusion construct was used for expression in BL21(DE3)pLysE, pLysS and CodonPlus, as described above. A small amount of protein was detected by Western blot, with some molecular weight aggregates also being observed. Expression was also detected by Western blot when the Ra12-P501S-C fusion was used for expression in BL21CodonPlus induced by CE6 phage.

A fusion construct comprising a fragment of P501S (amino acids 36-298 of SEQ ID NO: 113) located down-stream of the *M. tuberculosis* antigen Ra12 (SEQ ID NO: 848) was prepared as follows. P501S DNA was used to perform PCR using the primers AW042 (SEQ ID NO: 849) and AW053 (SEQ ID NO: 850). AW042 is a sense cloning primer that contains a EcoRI site. AW053 is an antisense primer with stop and Xho I sites. DNA amplification was performed essentially as described above. The resulting PCR product was cloned to Ra12 in pET17b at the EcoRI and Xho I sites. The resulting fusion construct (referred to as Ra12-P501S-E2) was expressed in B834 (DE3) pLys S *E. coli* host cells in TB media for 2 h at room temperature. Expressed protein was purified by washing the inclusion bodies and running on a Ni-NTA column. The purified protein stayed soluble in buffer containing 20 mM Tris-HCl (pH 8), 100 mM NaCl, 10 mM β-Me and 5% glycerol. The determined cDNA and amino acid sequences for the expressed fusion protein are provided in SEQ ID NO: 851 and 852, respectfully.

10

15

20

b) Expression of P501S in Baculovirus

The Bac-to-Bac baculovirus expression system (BRL Life Technologies, Inc.) was used to express P501S protein in insect cells. Full-length P501S (SEQ ID NO: 113) was amplified by PCR and cloned into the XbaI site of the donor plasmid pFastBacI. The recombinant bacmid and baculovirus were prepared according to the manufacturer's instructions. The recombinant baculovirus was amplified in Sf9 cells and the high titer viral stocks were utilized to infect High Five cells (Invitrogen) to make the recombinant protein. The identity of the full-length protein was confirmed by N-terminal sequencing of the recombinant protein and by Western blot analysis (Figure 7). Specifically, 0.6 million High Five cells in 6-well plates were infected with either the unrelated control virus BV/ECD_PD (lane 2), with recombinant baculovirus for P501S at different amounts or MOIs (lanes 4-8), or were uninfected (lane 3). Cell lysates were run on SDS-PAGE under reducing conditions and analyzed by Western blot with the anti-P501S monoclonal antibody P501S-10E3-G4D3 (prepared as described below). Lane 1 is the biotinylated protein molecular weight marker (BioLabs).

The localization of recombinant P501S in the insect cells was investigated as follows. The insect cells overexpressing P501S were fractionated into fractions of nucleus, mitochondria, membrane and cytosol. Equal amounts of protein from each fraction were analyzed by Western blot with a monoclonal antibody against P501S. Due to the scheme of fractionation, both nucleus and mitochondria fractions contain some plasma membrane components. However, the membrane fraction is basically free from mitochondria and nucleus. P501S was found to be present in all fractions that contain the membrane component, suggesting that P501S may be associated with plasma membrane of the insect cells expressing the recombinant protein.

25 c) Expression of P501S in mammalian cells

Full-length P501S (553 amino acids; SEQ ID NO: 113) was cloned into various mammalian expression vectors, including pCEP4 (Invitrogen), pVR1012 (Vical, San Diego, CA) and a modified form of the retroviral vector pBMN, referred to as pBIB.

15

20

25

Transfection of P501S/pCEP4 and P501S/pVR1012 into HEK293 fibroblasts was carried out using the Fugene transfection reagent (Boehringer Mannheim). Briefly, 2 ul of Fugene reagent was diluted into 100 ul of serum-free media and incubated at room temperature for 5-10 min. This mixture was added to 1 ug of P501S plasmid DNA, mixed briefly and incubated for 30 minutes at room temperature. The Fugene/DNA mixture was added to cells and incubated for 24-48 hours. Expression of recombinant P501S in transfected HEK293 fibroblasts was detected by means of Western blot employing a monoclonal antibody to P501S.

Transfection of p501S/pCEP4 into CHO-K cells (American Type Culture Collection, Rockville, MD) was carried out using GenePorter transfection reagent (Gene Therapy Systems, San Diego, CA). Briefly, 15 µl of GenePorter was diluted in 500 µl of serum-free media and incubated at room temperature for 10 min. The GenePorter/media mixture was added to 2 µg of plasmid DNA that was diluted in 500 µl of serum-free media, mixed briefly and incubated for 30 min at room temperature. CHO-K cells were rinsed in PBS to remove serum proteins, and the GenePorter/DNA mix was added and incubated for 5 hours. The transfected cells were then fed an equal volume of 2x media and incubated for 24-48 hours.

FACS analysis of P501S transiently infected CHO-K cells, demonstrated surface expression of P501S. Expression was detected using rabbit polyclonal antisera raised against a P501S peptide, as described below. Flow cytometric analysis was performed using a FaCScan (Becton Dickinson), and the data were analyzed using the Cell Quest program.

d) Expression of P703P in Baculovirus

The cDNA for full-length P703P-DE5 (SEQ ID NO: 326), together with several flanking restriction sites, was obtained by digesting the plasmid pCDNA703 with restriction endonucleases Xba I and Hind III. The resulting restriction fragment (approx. 800 base pairs) was ligated into the transfer plasmid pFastBacI which was digested with the same restriction enzymes. The sequence of the insert was confirmed by DNA sequencing.

15

The recombinant transfer plasmid pFBP703 was used to make recombinant bacmid DNA and baculovirus using the Bac-To-Bac Baculovirus expression system (BRL Life Technologies). High Five cells were infected with the recombinant virus BVP703, as described above, to obtain recombinant P703P protein.

5 e) Expression of P788P in E. Coli

A truncated, N-terminal portion, of P788P (residues 1-644 of SEQ ID NO: 777; referred to as P788P-N) fused with a C-terminal 6xHis Tag was expressed in *E. coli* as follows. P788P cDNA was amplified using the primers AW080 and AW081 (SEQ ID NO: 815 and 816). AW080 is a sense cloning primer with an NdeI site. AW081 is an antisense cloning primer with a XhoI site. The PCR-amplified P788P, as well as the vector pCRX1, were digested with NdeI and XhoI. Vector and insert were ligated and transformed into NovaBlue cells. Colonies were randomly screened for insert and then sequenced. P788P-N clone #6 was confirmed to be identical to the designed construct. The expression construct P788P-N #6/pCRX1 was transformed into *E. coli* BL21 CodonPlus-RIL competent cells. After induction, most of the cells grew well, achieving OD600 of greater than 2.0 after 3 hr. Coomassie stained SDS-PAGE showed an over-expressed band at about 75 kD. Western blot analysis using a 6xHisTag antibody confirmed the band was P788P-N. The determined cDNA sequence for P788P-N is provided in SEQ ID NO: 817, with the corresponding amino acid sequence being provided in SEQ ID NO: 818.

20 f) Expression of P510S in E. coli

The P510S protein has 9 potential transmembrane domains and is predicted to be located at the plasma membrane. The C-terminal protein of this protein, as well as the predicted third extracellular domain of P510S were expressed in *E. coli* as follows.

The expression construct referred to as Ra12-P501S-C was designed to have a 6 HisTag at the N-terminal enc, followed by the *M. tuberculosis* antigen Ra12 (SEQ ID NO: 819) and then the C-terminal portion of P510S (amino residues 1176-1261 of SEQ ID NO: 538). Full-length P510S was used to amplify the P510S-C fragment by PCR using the

15

20

25

primers AW056 and AW057 (SEQ ID NO: 820 and 821, respectively). AW056 is a sense cloning primer with an EcoRI site. AW057 is an antisense primer with stop and XhoI sites. The amplified P501S fragment and Ra12/pCRX1 were digested with EcoRI and XhoI and then purified. The insert and vector were ligated together and transformed into NovaBlue. Colonies were randomly screened for insert and sequences. For protein expression, the expression construct was transformed into E. coli BL21 (DE3) CodonPlus-RIL competent cells. A mini-induction screen was performed to optimize the expression conditions. After induction the cells grew well, achieving OD 600 nm greater than 2.0 after 3 hours. Coomassie stain SDS-PAGE showed a highly over-expressed band at approx. 30 kD. Though this is higher than the expected molecular weight, western blot analysis was positive, showing this band to be the His tag-containing protein. The optimized culture conditions are as follows. Dilute overnight culture/daytime culture (LB + kanamycin + chloramphenicol) into 2xYT (with kanamycin and chloramphenicol) at a ratio of 25 ml culture to 1 liter 2xYT. Allow to grow at 37 °C until OD600 = 0.6. Take an aliquot out as T0 sample. Add 1 mM IPTG and allow to grow at 30 °C for 3 hours. Take out a T3 sample, spin down cells and store at -80 °C. The determined cDNA and amino acid sequences for the Ra12-P510S-C construct are provided in SEQ ID NO: 822 and 825, respectively.

The expression construct P510S-C was designed to have a 5' added start codon and a glycine (GGA) codon and then the P510S C terminal fragment followed by the in frame 6x histidine tag and stop codon from the pET28b vector. The cloning strategy is similar to that used for Ra12-P510S-C, except that the PCR primers employed were those shown in SEQ ID NO: 828 and 829, respectively and the NcoI/XhoI cut in pET28b was used. The primer of SEQ ID NO: 828 created a 5' NcoI site and added a start codon. The antisense primer of SEQ ID NO: 829 creates a XhoI site on P510S C terminal fragment. Clones were confirmed by sequencing. For protein expression, the expression construct was transformed into *E. coli* BL21 (DE3) CodonPlus-RIL competent cells. An OD600 of greater than 2.0 was obtained 30 hours after induction. Coomassie stained SDS-PAGE showed an over-expressed band at about 11 kD. Western blot analysis confirmed that the

15

20

25

band was P510S-C, as did N-terminal protein sequencing. The optimized culture conditions are as follows: dilute overnight culture/daytime culture (LB + kanamycin + chloramphenicol) into 2x YT (+ kanamycin and chloramphenicol) at a ratio of 25 mL culture to 1 liter 2x YT, and allow to grow at 37 °C until an OD 600 of about 0.5 is reached. Take out an aliquot as T0 sample. Add 1 mM IPTG and allow to grow at 30 °C for 3 hours. Spin down the cells and store at -80 °C until purification. The determined cDNA and amino acid sequences for the P510S-C construct are shown in SEQ ID NO: 823 and 826, respectively.

The predicted third extracellular domain of P510S (P510S-E3; residues 328-676 of SEQ ID NO: 538) was expressed in E. coli as follows. The P510S fragment was amplified by PCR using the primers shown in SEQ ID NO: 830 and 831. The primer of SEO ID NO: 830 is a sense primer with an NdeI site for use in ligating into pPDM. The primer of SEO ID NO: 831 is an antisense primer with an added XhoI site for use in ligating into pPDM. The resulting fragment was cloned to pPDM at the NdeI and XhoI Clones were confirmed by sequencing. For protein expression, the clone ws transformed into E. coli BL21 (DE3) CodonPlus-RIL competent cells. After induction, an OD600 of greater than 2.0 was achieved after 3 hours. Coomassie stained SDS-PAGE showed an over-expressed band at about 39 kD, and N-terminal sequencing confirmed the N-terminal to be that of P510S-E3. Optimized culture conditions are as follows: dilute overnight culture/daytime culture (LB + kanamycin + chloramphenicol) into 2x YT (kanamycin and chloramphenicol) at a ratio of 25 ml culture to 1 liter 2x YT. Allow to grow at 37 °C until OD 600 equals 0.6. Take out an aliquot as T0 sample. Add 1 mM IPTG and allow to grow at 30 °C for 3 hours. Take out a T3 sample, spin down the cells and store at -80 °C until purification. The determined cDNA and amino acid sequences for the P501S-E3 construct are provided in SEQ ID NO: 824 and 827, respectively.

g) Expression of P775S in E. Coli

The antigen P775P contains multiple open reading frames (ORF). The third ORF, encoding the protein of SEQ ID NO: 483, has the best emotif score. An expression

15

20

25

fusion construct containing the *M. tuberculosis* antigen Ra12 (SEQ ID NO: 819) and P775P-ORF3 with an N-terminal 6x HisTag was prepared as follows. P775P-ORF3 was amplified using the sense PCR primers of SEQ ID NO: 832 and the anti-sense PCR primer of SEQ ID NO: 833. The PCR amplified fragment of P775P and Ra12/pCRX1 were digested with the restriction enzymes EcoRI and XhoI. Vector and insert were ligated and then transformed into NovaBlue cells. Colonies were randomly screened for insert and then sequenced. A clone having the desired sequence was transformed into E. coli BL21 (DE3) CodonPlus-RIL competent cells. Two hours after induction, the cell density peaked at OD600 of approximately 1.8. Coomassie stained SDS-PAGE showed an over-expressed band at about 31 kD. Western blot using 6x HisTag antibody confirmed that the band was Ra12-P775P-ORF3. The determined cDNA and amino acid sequences for the fusion construct are provided in SEQ ID NO: 834 and 835, respectively.

H) Expression of a P703P His tag fusion protein in E. coli

The cDNA for the coding region of P703P was prepared by PCR using the primers of SEQ ID NO: 836 and 837. The PCR product was digested with EcoRI restriction enzyme, gel purified and cloned into a modified pET28 vector with a His tag in frame, which had been digested with Eco72I and EcoRI restriction enzymes. The correct construct was confirmed by DNA sequence analysis and then transformed into *E. coli* BL21 (DE3) pLys S expression host cells. The determined amino acid and cDNA sequences for the expressed recombinant P703P are provided in SEQ ID NO: 838 and 839, respectively.

I) Expression of a P705P His tag fusion protein in E. coli

The cDNA for the coding region of P705P was prepared by PCR using the primers of SEQ ID NO: 840 and 841. The PCR product was digested with EcoRI restriction enzyme, gel purified and cloned into a modified pET28 vector with a His tag in frame, which had been digested with Eco72I and EcoRI restriction enzymes. The correct construct was confirmed by DNA sequence analysis and then transformed into *E. coli* BL21 (DE3) pLys S and BL21 (DE3) CodonPlus expression host cells. The determined amino

10

15

20

25

acid and cDNA sequences for the expressed recombinant P705P are provided in SEQ ID NO: 842 and 843, respectively.

J) Expression of a P711P His tag fusion protein in E. coli

The cDNA for the coding region of P711P was prepared by PCR using the primers of SEQ ID NO: 844 and 845. The PCR product was digested with EcoRI restriction enzyme, gel purified and cloned into a modified pET28 vector with a His tag in frame, which had been digested with Eco72I and EcoRI restriction enzymes. The correct construct was confirmed by DNA sequence analysis and then transformed into *E. coli* BL21 (DE3) pLys S and BL21 (DE3) CodonPlus expression host cells. The determined amino acid and cDNA sequences for the expressed recombinant P711P are provided in SEQ ID NO: 846 and 847, respectively.

K) Expression of P767P in E. coli

The full-length coding region of P767P (amino acids 2-374 of SEQ ID NO: 590) was amplified by PCR using the primers PDM-468 and PDM-469 (SEQ ID NO: 935 and 936, respectively). DNA amplification was performed using 10 µl 10X Pfu buffer, 1 µl 10 mM dNTPs, 2 µl each of the PCR primers at 10 µM concentration, 83 µl water, 1.5 µl Pfu DNA polymerase (Stratagene, La Jolla, CA) and 1 µl DNA at 100 ng/µl. Denaturation at 96°C was performed for 2 min, followed by 40 cycles of 96°C for 20 sec, 66°C for 15 sec and by 72°C for 2 min., and lastly by 1 cycle of 72°C for 4 min. The PCR product was digested with XhoI and cloned into a modified pET28 vector with a histidine tag in frame on the 5' end that was digested with Eco72I and XhoI. The construct was confirmed to be correct through sequence analysis and transformed into *E. coli* BL21 pLysS and BL21 CodonPlus RP cells. The cDNA coding region for the recombinant B767P protein is provided in SEQ ID NO: 938, with the corresponding amino acid sequence being provided in SEQ ID NO: 941. The full-length P767P did not express at high enough levels for detection or purification.

A truncated coding region of P767P (referred to as B767P-B; amino acids 47-374 of SEQ ID NO: 590) was amplified by PCR using the primers PDM-573 and PDM-469 (SEQ ID NO: 937 and 936, respectively) and the PCR conditions described above for full-length P767P. The PCR product was digested with XhoI and cloned into the modified pET28 vector that was digested with Eco72I and XhoI. The construct was confirmed to be correct through sequence analysis and transformed into *E. coli* BL21 pLysS and BL21 CodonPlus RP cells. The protein was found to be expressed in the inclusion body pellet. The coding region for the expressed B767P-B protein is provided in SEQ ID NO: 939, with the corresponding amino acid sequence being provided in SEQ ID NO: 940.

10

20

25

EXAMPLE 18

PREPARATION AND CHARACTERIZATION OF ANTIBODIES AGAINST PROSTATE-SPECIFIC POLYPEPTIDES

a) Preparation and Characterization of Polyclonal Antibodies against P703P, P504S and P509S

Polyclonal antibodies against P703P, P504S and P509S were prepared as follows.

Each prostate tumor antigen expressed in an *E. coli* recombinant expression system was grown overnight in LB broth with the appropriate antibiotics at 37°C in a shaking incubator. The next morning, 10 ml of the overnight culture was added to 500 ml to 2x YT plus appropriate antibiotics in a 2L-baffled Erlenmeyer flask. When the Optical Density (at 560 nm) of the culture reached 0.4-0.6, the cells were induced with IPTG (1 mM). Four hours after induction with IPTG, the cells were harvested by centrifugation. The cells were then washed with phosphate buffered saline and centrifuged again. The supernatant was discarded and the cells were either frozen for future use or immediately processed. Twenty ml of lysis buffer was added to the cell pellets and vortexed. To break open the *E. coli* cells, this mixture was then run through the French Press at a pressure of

15

20

25

16,000 psi. The cells were then centrifuged again and the supernatant and pellet were checked by SDS-PAGE for the partitioning of the recombinant protein. For proteins that localized to the cell pellet, the pellet was resuspended in 10 mM Tris pH 8.0, 1% CHAPS and the inclusion body pellet was washed and centrifuged again. This procedure was repeated twice more. The washed inclusion body pellet was solubilized with either 8 M urea or 6 M guanidine HCl containing 10 mM Tris pH 8.0 plus 10 mM imidazole. The solubilized protein was added to 5 ml of nickel-chelate resin (Qiagen) and incubated for 45 min to 1 hour at room temperature with continuous agitation. After incubation, the resin and protein mixture were poured through a disposable column and the flow through was collected. The column was then washed with 10-20 column volumes of the solubilization buffer. The antigen was then eluted from the column using 8M urea, 10 mM Tris pH 8.0 and 300 mM imidazole and collected in 3 ml fractions. A SDS-PAGE gel was run to determine which fractions to pool for further purification.

As a final purification step, a strong anion exchange resin such as HiPrepQ (Biorad) was equilibrated with the appropriate buffer and the pooled fractions from above were loaded onto the column. Each antigen was eluted off the column with a increasing salt gradient. Fractions were collected as the column was run and another SDS-PAGE gel was run to determine which fractions from the column to pool. The pooled fractions were dialyzed against 10 mM Tris pH 8.0. The proteins were then vialed after filtration through a 0.22 micron filter and the antigens were frozen until needed for immunization.

Four hundred micrograms of each prostate antigen was combined with 100 micrograms of muramyldipeptide (MDP). Every four weeks rabbits were boosted with 100 micrograms mixed with an equal volume of Incomplete Freund's Adjuvant (IFA). Seven days following each boost, the animal was bled. Sera was generated by incubating the blood at 4°C for 12-4 hours followed by centrifugation.

Ninety-six well plates were coated with antigen by incubating with 50 microliters (typically 1 microgram) of recombinant protein at 4 °C for 20 hours. 250 microliters of BSA blocking buffer was added to the wells and incubated at room temperature for 2 hours. Plates were washed 6 times with PBS/0.01% Tween. Rabbit sera

15

20

25

was diluted in PBS. Fifty microliters of diluted sera was added to each well and incubated at room temperature for 30 min. Plates were washed as described above before 50 microliters of goat anti-rabbit horse radish peroxidase (HRP) at a 1:10000 dilution was added and incubated at room temperature for 30 min. Plates were again washed as described above and 100 microliters of TMB microwell peroxidase substrate was added to each well. Following a 15 min incubation in the dark at room temperature, the colorimetric reaction was stopped with 100 microliters of 1N H₂SO₄ and read immediately at 450 nm. All polyclonal antibodies showed immunoreactivity to the appropriate antigen.

b) Preparation and Characterization of Antibodies against P501S

A murine monoclonal antibody directed against the carboxy-terminus of the prostate-specific antigen P501S was prepared as follows.

A truncated fragment of P501S (amino acids 355-526 of SEQ ID NO: 113) was generated and cloned into the pET28b vector (Novagen) and expressed in *E. coli* as a thioredoxin fusion protein with a histidine tag. The trx-P501S fusion protein was purified by nickel chromatography, digested with thrombin to remove the trx fragment and further purified by an acid precipitation procedure followed by reverse phase HPLC.

Mice were immunized with truncated P501S protein. Serum bleeds from mice that potentially contained anti-P501S polyclonal sera were tested for P501S-specific reactivity using ELISA assays with purified P501S and trx-P501S proteins. Serum bleeds that appeared to react specifically with P501S were then screened for P501S reactivity by Western analysis. Mice that contained a P501S-specific antibody component were sacrificed and spleen cells were used to generate anti-P501S antibody producing hybridomas using standard techniques. Hybridoma supernatants were tested for P501S-specific reactivity initially by ELISA, and subsequently by FACS analysis of reactivity with P501S transduced cells. Based on these results, a monoclonal hybridoma referred to as 10E3 was chosen for further subcloning. A number of subclones were generated, tested for specific reactivity to P501S using ELISA and typed for IgG isotype. The results of this

15

5

analysis are shown below in Table V. Of the 16 subclones tested, the monoclonal antibody 10E3-G4-D3 was selected for further study.

<u>Table V</u>

<u>Isotype analysis of murine anti-P501S monoclonal antibodies</u>

Hybridoma clone	Isotype	Estimated [Ig] in supernatant (µg/ml)
4D11	IgG1	14.6
1G1	IgG1	0.6
4F6	IgG1	_ 72
4H5	IgG1	13.8
4H5-E12	IgG1	10.7
4H5-EH2	IgG1	9.2
4H5-H2-A10	IgG1	10
4H5-H2-A3	IgG1	12.8
4H5-H2-A10-G6	IgG1	13.6
4H5-H2-B11	IgG1	12.3
10E3	IgG2a	3.4
10E3-D4	IgG2a	3.8
10E3-D4-G3	IgG2a	9.5
10E3-D4-G6	IgG2a	10.4
10E3-E7	IgG2a	6.5
8H12	IgG2a	0.6

The specificity of 10E3-G4-D3 for P501S was examined by FACS analysis. Specifically, cells were fixed (2% formaldehyde, 10 minutes), permeabilized (0.1% saponin, 10 minutes) and stained with 10E3-G4-D3 at 0.5 – 1 µg/ml, followed by incubation with a secondary, FITC-conjugated goat anti-mouse Ig antibody (Pharmingen, San Diego, CA). Cells were then analyzed for FITC fluorescence using an Excalibur fluorescence activated cell sorter. For FACS analysis of transduced cells, B-LCL were retrovirally transduced with P501S. For analysis of infected cells, B-LCL were infected with a vaccinia vector that expresses P501S. To demonstrate specificity in these assays, B-LCL transduced with a different antigen (P703P) and uninfected B-LCL vectors were

15

20

25

utilized. 10E3-G4-D3 was shown to bind with P501S-transduced B-LCL and also with P501S-infected B-LCL, but not with either uninfected cells or P703P-transduced cells.

To determine whether the epitope recognized by 10E3-G4-D3 was found on the surface or in an intracellular compartment of cells, B-LCL were transduced with P501S or HLA-B8 as a control antigen and either fixed and permeabilized as described above or directly stained with 10E3-G4-D3 and analyzed as above. Specific recognition of P501S by 10E3-G4-D3 was found to require permeabilization, suggesting that the epitope recognized by this antibody is intracellular.

The reactivity of 10E3-G4-D3 with the three prostate tumor cell lines Lncap, PC-3 and DU-145, which are known to express high, medium and very low levels of P501S, respectively, was examined by permeabilizing the cells and treating them as described above. Higher reactivity of 10E3-G4-D3 was seen with Lncap than with PC-3, which in turn showed higher reactivity that DU-145. These results are in agreement with the real time PCR and demonstrate that the antibody specifically recognizes P501S in these tumor cell lines and that the epitope recognized in prostate tumor cell lines is also intracellular.

Specificity of 10E3-G4-D3 for P501S was also demonstrated by Western blot analysis. Lysates from the prostate tumor cell lines Lncap, DU-145 and PC-3, from P501S-transiently transfected HEK293 cells, and from non-transfected HEK293 cells were generated. Western blot analysis of these lysates with 10E3-G4-D3 revealed a 46 kDa immunoreactive band in Lncap, PC-3 and P501S-transfected HEK cells, but not in DU-145 cells or non-transfected HEK293 cells. P501S mRNA expression is consistent with these results since semi-quantitative PCR analysis revealed that P501S mRNA is expressed in Lncap, to a lesser but detectable level in PC-3 and not at all in DU-145 cells. Bacterially expressed and purified recombinant P501S (referred to as P501SStr2) was recognized by 10E3-G4-D3 (24 kDa), as was full-length P501S that was transiently expressed in HEK293 cells using either the expression vector VR1012 or pCEP4. Although the predicted molecular weight of P501S is 60.5 kDa, both transfected and "native" P501S run at a slightly lower mobility due to its hydrophobic nature.

15

25

Immunohistochemical analysis was performed on prostate tumor and a panel of normal tissue sections (prostate, adrenal, breast, cervix, colon, duodenum, gall bladder, ileum, kidney, ovary, pancreas, parotid gland, skeletal muscle, spleen and testis). Tissue samples were fixed in formalin solution for 24 hours and embedded in paraffin before being sliced into 10 micron sections. Tissue sections were permeabilized and incubated with 10E3-G4-D3 antibody for 1 hr. HRP-labeled anti-mouse followed by incubation with DAB chromogen was used to visualize P501S immunoreactivity. P501S was found to be highly expressed in both normal prostate and prostate tumor tissue but was not detected in any of the other tissues tested.

To identify the epitope recognized by 10E3-G4-D3, an epitope mapping approach was pursued. A series of 13 overlapping 20-21 mers (5 amino acid overlap; SEQ ID NO: 489-501) was synthesized that spanned the fragment of P501S used to generate 10E3-G4-D3. Flat bottom 96 well microtiter plates were coated with either the peptides or the P501S fragment used to immunize mice, at 1 microgram/ml for 2 hours at 37 °C. Wells were then aspirated and blocked with phosphate buffered saline containing 1% (w/v) BSA for 2 hours at room temperature, and subsequently washed in PBS containing 0.1% Tween 20 (PBST). Purified antibody 10E3-G4-D3 was added at 2 fold dilutions (1000 ng - 16 ng) in PBST and incubated for 30 minutes at room temperature. This was followed by washing 6 times with PBST and subsequently incubating with HRP-conjugated donkey anti-mouse IgG (H+L)Affinipure F(ab') fragment (Jackson Immunoresearch, West Grove, PA) at 1:20000 for 30 minutes. Plates were then washed and incubated for 15 minutes in tetramethyl benzidine. Reactions were stopped by the addition of 1N sulfuric acid and plates were read at 450 nm using an ELISA plate reader. As shown in Fig. 8, reactivity was seen with the peptide of SEQ ID NO: 496 (corresponding to amino acids 439-459 of P501S) and with the P501S fragment but not with the remaining peptides, demonstrating that the epitope recognized by 10E3-G4-D3 is localized to amino acids 439-459 of SEQ ID NO: 113.

In order to further evaluate the tissue specificity of P501S, multi-array immunohistochemical analysis was performed on approximately 4700 different human

tissues encompassing all the major normal organs as well as neoplasias derived from these tissues. Sixty-five of these human tissue samples were of prostate origin. Tissue sections 0.6 mm in diameter were formalin-fixed and paraffin embedded. Samples were pretreated with HIER using 10 mM citrate buffer pH 6.0 and boiling for 10 min. Sections were stained with 10E3-G4-D3 and P501S immunoreactivity was visualized with HRP. All the 65 prostate tissues samples (5 normal, 55 untreated prostate tumors, 5 hormone refractory prostate tumors) were positive, showing distinct perinuclear staining. All other tissues examined were negative for P501S expression.

c) Preparation and Characterization of Antibodies against P503S

A fragment of P503S (amino acids 113-241 of SEQ ID NO: 114) was expressed and purified from bacteria essentially as described above for P501S and used to immunize both rabbits and mice. Mouse monoclonal antibodies were isolated using standard hybridoma technology as described above. Rabbit monoclonal antibodies were isolated using Selected Lymphocyte Antibody Method (SLAM) technology at Immgenics Pharmaceuticals (Vancouver, BC, Canada). Table VI, below, lists the monoclonal antibodies that were developed against P503S.

Table VI

20

15

10

Antibody	Species
20D4	Rabbit
JA1	Rabbit
1A4	Mouse
1C3	Mouse
1C9	Mouse
1D12	Mouse
2A11	Mouse
2H9 .	Mouse
4H7	Mouse
8A8	Mouse

10

15

20

25

Antibody	Species
8D10	Mouse
9C12	Mouse
6D12	Mouse

The DNA sequences encoding the complementarity determining regions (CDRs) for the rabbit monoclonal antibodies 20D4 and JA1 were determined and are provided in SEQ ID NO: 502 and 503, respectively.

In order to better define the epitope binding region of each of the antibodies, a series of overlapping peptides were generated that span amino acids 109-213 of SEQ ID NO: 114. These peptides were used to epitope map the anti-P503S monoclonal antibodies by ELISA as follows. The recombinant fragment of P503S that was employed as the immunogen was used as a positive control. Ninety-six well microtiter plates were coated with either peptide or recombinant antigen at 20 ng/well overnight at 4 °C. Plates were aspirated and blocked with phosphate buffered saline containing 1% (w/v) BSA for 2 hours at room temperature then washed in PBS containing 0.1% Tween 20 (PBST). Purified rabbit monoclonal antibodies diluted in PBST were added to the wells and incubated for 30 min at room temperature. This was followed by washing 6 times with PBST and incubation with Protein-A HRP conjugate at a 1:2000 dilution for a further 30 min. Plates were washed six times in PBST and incubated with tetramethylbenzidine (TMB) substrate for a further 15 min. The reaction was stopped by the addition of 1N sulfuric acid and plates were read at 450 nm using at ELISA plate reader. ELISA with the mouse monoclonal antibodies was performed with supernatants from tissue culture run neat in the assay.

All of the antibodies bound to the recombinant P503S fragment, with the exception of the negative control SP2 supernatant. 20D4, JA1 and 1D12 bound strictly to peptide #2101 (SEQ ID NO: 504), which corresponds to amino acids 151-169 of SEQ ID NO: 114. 1C3 bound to peptide #2102 (SEQ ID NO: 505), which corresponds to amino acids 165-184 of SEQ ID NO: 114. 9C12 bound to peptide #2099 (SEQ ID NO: 522),

20

25

which corresponds to amino acids 120-139 of SEQ ID NO: 114. The other antibodies bind to regions that were not examined in these studies.

Subsequent to epitope mapping, the antibodies were tested by FACS analysis on a cell line that stably expressed P503S to confirm that the antibodies bind to cell surface epitopes. Cells stably transfected with a control plasmid were employed as a negative control. Cells were stained live with no fixative. 0.5 ug of anti-P503S monoclonal antibody was added and cells were incubated on ice for 30 min before being washed twice and incubated with a FITC-labelled goat anti-rabbit or mouse secondary antibody for 20 min. After being washed twice, cells were analyzed with an Excalibur fluorescent activated cell sorter. The monoclonal antibodies 1C3, 1D12, 9C12, 20D4 and JA1, but not 8D3, were found to bind to a cell surface epitope of P503S.

In order to determine which tissues express P503S, immunohistochemical analysis was performed, essentially as described above, on a panel of normal tissues (prostate, adrenal, breast, cervix, colon, duodenum, gall bladder, ileum, kidney, ovary, pancreas, parotid gland, skeletal muscle, spleen and testis). HRP-labeled anti-mouse or anti-rabbit antibody followed by incubation with TMB was used to visualize P503S immunoreactivity. P503S was found to be highly expressed in prostate tissue, with lower levels of expression being observed in cervix, colon, ileum and kidney, and no expression being observed in adrenal, breast, duodenum, gall bladder, ovary, pancreas, parotid gland, skeletal muscle, spleen and testis.

Western blot analysis was used to characterize anti-P503S monoclonal antibody specificity. SDS-PAGE was performed on recombinant (rec) P503S expressed in and purified from bacteria and on lysates from HEK293 cells transfected with full length P503S. Protein was transferred to nitrocellulose and then Western blotted with each of the anti-P503S monoclonal antibodies (20D4, JA1, 1D12, 6D12 and 9C12) at an antibody concentration of 1 ug/ml. Protein was detected using horse radish peroxidase (HRP) conjugated to either a goat anti-mouse monoclonal antibody or to protein A-sepharose. The monoclonal antibody 20D4 detected the appropriate molecular weight 14 kDa recombinant P503S (amino acids 113-241) and the 23.5 kDa species in the HEK293 cell lysates

15

20

transfected with full length P503S. Other anti-P503S monoclonal antibodies displayed similar specificity by Western blot.

d) Preparation and Characterization of Antibodies against P703P

Rabbits were immunized with either a truncated (P703Ptr1; SEQ ID NO: 172) or full-length mature form (P703Pfl; SEQ ID NO: 523) of recombinant P703P protein was expressed in and purified from bacteria as described above. Affinity purified polyclonal antibody was generated using immunogen P703Pfl or P703Ptr1 attached to a solid support. Rabbit monoclonal antibodies were isolated using SLAM technology at Immgenics Pharmaceuticals. Table VII below lists both the polyclonal and monoclonal antibodies that were generated against P703P.

Table VII

Antibody	Immunogen	Species/type
Aff. Purif. P703P (truncated); #2594	P703Ptrl	Rabbit polyclonal
Aff. Purif. P703P (full length); #9245	P703Pfl	Rabbit polyclonal
2D4	P703Ptrl	Rabbit monoclonal
8H2	P703Ptrl	Rabbit monoclonal
7H8	P703Ptrl	Rabbit monoclonal

The DNA sequences encoding the complementarity determining regions (CDRs) for the rabbit monoclonal antibodies 8H2, 7H8 and 2D4 were determined and are provided in SEQ ID NO: 506-508, respectively.

Epitope mapping studies were performed as described above. Monoclonal antibodies 2D4 and 7H8 were found to specifically bind to the peptides of SEQ ID NO: 509 (corresponding to amino acids 145-159 of SEQ ID NO: 172) and SEQ ID NO: 510 (corresponding to amino acids 11-25 of SEQ ID NO: 172), respectively. The polyclonal antibody 2594 was found to bind to the peptides of SEQ ID NO: 511-514, with the polyclonal antibody 9427 binding to the peptides of SEQ ID NO: 515-517.

15

20

25

The specificity of the anti-P703P antibodies was determined by Western blot analysis as follows. SDS-PAGE was performed on (1) bacterially expressed recombinant antigen; (2) lysates of HEK293 cells and Ltk-/- cells either untransfected or transfected with a plasmid expressing full length P703P; and (3) supernatant isolated from these cell cultures. Protein was transferred to nitrocellulose and then Western blotted using the anti-P703P polyclonal antibody #2594 at an antibody concentration of 1 ug/ml. Protein was detected using horse radish peroxidase (HRP) conjugated to an anti-rabbit antibody. A 35 kDa immunoreactive band could be observed with recombinant P703P. Recombinant P703P runs at a slightly higher molecular weight since it is epitope tagged. In lysates and supernatants from cells transfected with full length P703P, a 30 kDa band corresponding to P703P was observed. To assure specificity, lysates from HEK293 cells stably transfected with a control plasmid were also tested and were negative for P703P expression. Other anti-P703P antibodies showed similar results.

Immunohistochemical studies were performed as described above, using anti-P703P monoclonal antibody. P703P was found to be expressed at high levels in normal prostate and prostate tumor tissue but was not detectable in all other tissues tested (breast tumor, lung tumor and normal kidney).

e) Preparation and Characterization of Antibodies against P504S

Full-length P504S (SEQ ID NO: 108) was expressed and purified from bacteria essentially as described above for P501S and employed to raise rabbit monoclonal antibodies using Selected Lymphocyte Antibody Method (SLAM) technology at Immgenics Pharmaceuticals (Vancouver, BC, Canada). The anti-P504S monoclonal antibody 13H4 was shown by Western blot to bind to both expressed recombinant P504S and to native P504S in tumor cells.

Immunohistochemical studies using 13H4 to assess P504S expression in various prostate tissues were performed as described above. A total of 104 cases, including 65 cases of radical prostatectomies with prostate cancer (PC), 26 cases of prostate biopsies and 13 cases of benign prostate hyperplasia (BPH), were stained with the anti-P504S

20

25

monoclonal antibody 13H4. P504S showed strongly cytoplasmic granular staining in 64/65 (98.5%) of PCs in prostatectomies and 26/26 (100%) of PCs in prostatic biopsies. P504S was stained strongly and diffusely in carcinomas (4+ in 91.2% of cases of PC; 3+ in 5.5%; 2+ in 2.2% and 1+ in 1.1%) and high grade prostatic intraepithelial neoplasia (4+ in all cases). The expression of P504S did not vary with Gleason score. Only 17/91 (18.7%) of cases of NP/BPH around PC and 2/13 (15.4%) of BPH cases were focally (1+, no 2+ to 4+ in all cases) and weakly positive for P504S in large glands. Expression of P504S was not found in small atrophic glands, postatrophic hyperplasia, basal cell hyperplasia and transitional cell metaplasia in either biopsies or prostatectomies. P504S was thus found to be over-expressed in all Gleason scores of prostate cancer (98.5 to 100% of sensitivity) and exhibited only focal positivities in large normal glands in 19/104 of cases (82.3% of specificity). These findings indicate that P504S may be usefully employed for the diagnosis of prostate cancer.

15 EXAMPLE 19

CHARACTERIZATION OF CELL SURFACE EXPRESSION AND
CHROMOSOME LOCALIZATION OF THE PROSTATE-SPECIFIC ANTIGEN P501S

This example describes studies demonstrating that the prostate-specific antigen P501S is expressed on the surface of cells, together with studies to determine the probable chromosomal location of P501S.

The protein P501S (SEQ ID NO: 113) is predicted to have 11 transmembrane domains. Based on the discovery that the epitope recognized by the anti-P501S monoclonal antibody 10E3-G4-D3 (described above in Example 17) is intracellular, it was predicted that following transmembrane determinants would allow the prediction of extracellular domains of P501S. Fig. 9 is a schematic representation of the P501S protein showing the predicted location of the transmembrane domains and the intracellular epitope described in Example 17. Underlined sequence represents the predicted transmembrane domains, bold sequence represents the predicted extracellular domains, and italicized

20

25

sequence represents the predicted intracellular domains. Sequence that is both bold and underlined represents sequence employed to generate polyclonal rabbit serum. The location of the transmembrane domains was predicted using HHMTOP as described by Tusnady and Simon (Principles Governing Amino Acid Composition of Integral Membrane Proteins: Applications to Topology Prediction, *J. Mol. Biol. 283*:489-506, 1998).

Based on Fig. 9, the P501S domain flanked by the transmembrane domains corresponding to amino acids 274-295 and 323-342 is predicted to be extracellular. The peptide of SEQ ID NO: 518 corresponds to amino acids 306-320 of P501S and lies in the predicted extracellular domain. The peptide of SEQ ID NO: 519, which is identical to the peptide of SEQ ID NO: 518 with the exception of the substitution of the histidine with an asparginine, was synthesized as described above. A Cys-Gly was added to the C-terminus of the peptide to facilitate conjugation to the carrier protein. Cleavage of the peptide from the solid support was carried out using the following cleavage mixture: trifluoroacetic acid:ethanediol:thioanisol:water:phenol (40:1:2:2:3). After cleaving for two hours, the peptide was precipitated in cold ether. The peptide pellet was then dissolved in 10% v/v acetic acid and lyophilized prior to purification by C18 reverse phase hplc. A gradient of 5-60% acetonitrile (containing 0.05% TFA) in water (containing 0.05% TFA) was used to elute the peptide. The purity of the peptide was verified by hplc and mass spectrometry, and was determined to be >95%. The purified peptide was used to generate rabbit polyclonal antisera as described above.

Surface expression of P501S was examined by FACS analysis. Cells were stained with the polyclonal anti-P501S peptide serum at 10 μg/ml, washed, incubated with a secondary FITC-conjugated goat anti-rabbit Ig antibody (ICN), washed and analyzed for FITC fluorescence using an Excalibur fluorescence activated cell sorter. For FACS analysis of transduced cells, B-LCL were retrovirally transduced with P501S. To demonstrate specificity in these assays, B-LCL transduced with an irrelevant antigen (P703P) or nontransduced were stained in parallel. For FACS analysis of prostate tumor cell lines, Lncap, PC-3 and DU-145 were utilized. Prostate tumor cell lines were dissociated from tissue culture plates using cell dissociation medium and stained as above.

20

25

All samples were treated with propidium iodide (PI) prior to FACS analysis, and data was obtained from PI-excluding (*i.e.*, intact and non-permeabilized) cells. The rabbit polyclonal serum generated against the peptide of SEQ ID NO: 519 was shown to specifically recognize the surface of cells transduced to express P501S, demonstrating that the epitope recognized by the polyclonal serum is extracellular.

To determine biochemically if P501S is expressed on the cell surface, peripheral membranes from Lncap cells were isolated and subjected to Western blot analysis. Specifically, Lncap cells were lysed using a dounce homogenizer in 5 ml of homogenization buffer (250 mM sucrose, 10 mM HEPES, 1mM EDTA, pH 8.0, 1 complete protease inhibitor tablet (Boehringer Mannheim)). Lysate samples were spun at 1000 g for 5 min at 4 °C. The supernatant was then spun at 8000g for 10 min at 4 °C. Supernatant from the 8000g spin was recovered and subjected to a 100,000g spin for 30 min at 4 °C to recover peripheral membrane. Samples were then separated by SDS-PAGE and Western blotted with the mouse monoclonal antibody 10E3-G4-D3 (described above in Example 17) using conditions described above. Recombinant purified P501S, as well as HEK293 cells transfected with and over-expressing P501S were included as positive controls for P501S detection. LCL cell lysate was included as a negative control. P501S could be detected in Lncap total cell lysate, the 8000g (internal membrane) fraction and also in the 100,000g (plasma membrane) fraction. These results indicate that P501S is expressed at, and localizes to, the peripheral membrane.

To demonstrate that the rabbit polyclonal antiserum generated to the peptide of SEQ ID NO: 519 specifically recognizes this peptide as well as the corresponding native peptide of SEQ ID NO: 518, ELISA analyses were performed. For these analyses, flat-bottomed 96 well microtiter plates were coated with either the peptide of SEQ ID NO: 519, the longer peptide of SEQ ID NO: 520 that spans the entire predicted extracellular domain, the peptide of SEQ ID NO: 521 which represents the epitope recognized by the P501S-specific antibody 10E3-G4-D3, or a P501S fragment (corresponding to amino acids 355-526 of SEQ ID NO: 113) that does not include the immunizing peptide sequence, at 1 μg/ml for 2 hours at 37 °C. Wells were aspirated, blocked with phosphate buffered saline

15

20

25

containing 1% (w/v) BSA for 2 hours at room temperature and subsequently washed in PBS containing 0.1% Tween 20 (PBST). Purified anti-P501S polyclonal rabbit serum was added at 2 fold dilutions (1000 ng - 125 ng) in PBST and incubated for 30 min at room temperature. This was followed by washing 6 times with PBST and incubating with HRP-conjugated goat anti-rabbit IgG (H+L) Affinipure F(ab') fragment at 1:20000 for 30 min. Plates were then washed and incubated for 15 min in tetramethyl benzidine. Reactions were stopped by the addition of 1N sulfuric acid and plates were read at 450 nm using an ELISA plate reader. As shown in Fig. 11, the anti-P501S polyclonal rabbit serum specifically recognized the peptide of SEQ ID NO: 519 used in the immunization as well as the longer peptide of SEQ ID NO: 520, but did not recognize the irrelevant P501S-derived peptides and fragments.

In further studies, rabbits were immunized with peptides derived from the P501S sequence and predicted to be either extracellular or intracellular, as shown in Fig. 9. Polyclonal rabbit sera were isolated and polyclonal antibodies in the serum were purified, as described above. To determine specific reactivity with P501S, FACS analysis was employed, utilizing either B-LCL transduced with P501S or the irrelevant antigen P703P, of B-LCL infected with vaccinia virus-expressing P501S. For surface expression, dead and non-intact cells were excluded from the analysis as described above. For intracellular staining, cells were fixed and permeabilized as described above. Rabbit polyclonal serum generated against the peptide of SEQ ID NO: 548, which corresponds to amino acids 181-198 of P501S, was found to recognize a surface epitope of P501S. Rabbit polyclonal serum generated against the peptide SEQ ID NO: 551, which corresponds to amino acids 543-553 of P501S, was found to recognize an epitope that was either potentially extracellular or intracellular since in different experiments intact or permeabilized cells were recognized by the polyclonal sera. Based on similar deductive reasoning, the sequences of SEQ ID NO: 541-547, 549 and 550, which correspond to amino acids 109-122, 539-553, 509-520, 37-54, 342-359, 295-323, 217-274, 143-160 and 75-88, respectively, of P501S, can be considered to be potential surface epitopes of P501S recognized by antibodies.

25

In further studies, mouse monoclonal antibodies were raised against amino acids 296 to 322 to P501S, which are predicted to be in an extracellular domain. A/J mice were immunized with P501S/adenovirus, followed by subsequent boosts with an *E. coli* recombinant protein, referred to as P501N, that contains amino acids 296 to 322 of P501S, and with peptide 296-322 (SEQ ID NO: 898) coupled with KLH. The mice were subsequently used for splenic B cell fusions to generate anti-peptide hybridomas. The resulting 3 clones, referred to as 4F4 (IgG1,kappa), 4G5 (IgG2a,kappa) and 9B9 (IgG1,kappa), were grown for antibody production. The 4G5 mAb was purified by passing the supernatant over a Protein A-sepharose column, followed by antibody elution using 0.2M glycine, pH 2.3. Purified antibody was neutralized by the addition of 1M Tris, pH 8, and buffer exchanged into PBS.

For ELISA analysis, 96 well plates were coated with P501S peptide 296-322 (referred to as P501-long), an irrelevant P775 peptide, P501S-N, P501TR2, P501S-long-KLH, P501S peptide 306-319 (referred to as P501-short)-KLH, or the irrelevant peptide 2073-KLH, all at a concentration of 2 ug/ml and allowed to incubate for 60 minutes at 37 °C. After coating, plates were washed 5X with PBS + 0.1% Tween and then blocked with PBS, 0.5% BSA, 0.4% Tween20 for 2 hours at room temperature. Following the addition of supernatants or purified mAb, the plates were incubated for 60 minutes at room temperature. Plates were washed as above and donkey anti-mouse IgHRP-linked secondary antibody was added and incubated for 30 minutes at room temperature, followed by a final washing as above. TMB peroxidase substrate was added and incubated 15 minutes at room temperature in the dark. The reaction was stopped by the addition of 1N H₂SO₄ and the OD was read at 450 nM. All three hybrid clones secreted mAb that recognized peptide 296-322 and the recombinant protein P501N.

For FACS analysis, HEK293 cells were transiently transfected with a P501S/VR1012 expression constructs using Fugene 6 reagent. After 2 days of culture, cells were harvested and washed, then incubated with purified 4G5 mAb for 30 minutes on ice. After several washes in PBS, 0.5% BSA, 0.01% azide, goat anti-mouse Ig-FITC was added to the cells and incubated for 30 minutes on ice. Cells were washed and resuspended in

15

25

wash buffer including 1% propidium iodide and subjected to FACS analysis. The FACS analysis confirmed that amino acids 296-322 of P501S are in an extracellular domain and are cell surface expressed.

The chromosomal location of P501S was determined using the GeneBridge 4 Radiation Hybrid panel (Research Genetics). The PCR primers of SEQ ID NO: 528 and 529 were employed in PCR with DNA pools from the hybrid panel according to the manufacturer's directions. After 38 cycles of amplification, the reaction products were separated on a 1.2% agarose gel, and the results were analyzed through the Whitehead (http://www-Institute/MIT Center for Genome Research web server genome.wi.mit.edu/cgi-bin/contig/rhmapper.pl) to determine the probable chromosomal location. Using this approach, P501S was mapped to the long arm of chromosome 1 at WI-9641 between q32 and q42. This region of chromosome 1 has been linked to prostate cancer susceptibility in hereditary prostate cancer (Smith et al. Science 274:1371-1374, 1996 and Berthon et al. Am. J. Hum. Genet. 62:1416-1424, 1998). These results suggest that P501S may play a role in prostate cancer malignancy.

EXAMPLE 20

REGULATION OF EXPRESSION OF THE PROSTATE-SPECIFIC ANTIGEN P501S

Steroid (androgen) hormone modulation is a common treatment modality in prostate cancer. The expression of a number of prostate tissue-specific antigens have previously been demonstrated to respond to androgen. The responsiveness of the prostate-specific antigen P501S to androgen treatment was examined in a tissue culture system as follows.

Cells from the prostate tumor cell line LNCaP were plated at 1.5 x 10⁶ cells/T75 flask (for RNA isolation) or 3 x 10⁵ cells/well of a 6-well plate (for FACS analysis) and grown overnight in RPMI 1640 media containing 10% charcoal-stripped fetal calf serum (BRL Life Technologies, Gaithersburg, MD). Cell culture was continued for an additional 72 hours in RPMI 1640 media containing 10% charcoal-stripped fetal calf

10

25

serum, with 1 nM of the synthetic androgen Methyltrienolone (R1881; New England Nuclear) added at various time points. Cells were then harvested for RNA isolation and FACS analysis at 0, 1, 2, 4, 8, 16, 24, 28 and 72-hours post androgen addition. FACS analysis was performed using the anti-P501S antibody 10E3-G4-D3 and permeabilized cells.

For Northern analysis, 5-10 micrograms of total RNA was run on a formaldehyde denaturing gel, transferred to Hybond-N nylon membrane (Amersham Pharmacia Biotech, Piscataway, NJ), cross-linked and stained with methylene blue. The filter was then prehybridized with Church's Buffer (250 mM Na₂HPO₄, 70 mM H₃PO₄, 1 mM EDTA, 1% SDS, 1% BSA in pH 7.2) at 65 °C for 1 hour. P501S DNA was labeled with 32P using High Prime random-primed DNA labeling kit (Boehringer Mannheim). Unincorporated label was removed using MicroSpin S300-HR columns (Amersham Pharmacia Biotech). The RNA filter was then hybridized with fresh Church's Buffer containing labeled cDNA overnight, washed with 1X SCP (0.1 M NaCl, 0.03 M Na₂HPO₄.7H₂O, 0.001 M Na₂EDTA), 1% sarkosyl (n-lauroylsarcosine) and exposed to X-ray film.

Using both FACS and Northern analysis, P501S message and protein levels were found in increase in response to androgen treatment.

20 EXAMPLE 21

PREPARATION OF FUSION PROTEINS OF PROSTATE-SPECIFIC ANTIGENS

The example describes the preparation of a fusion protein of the prostate-specific antigen P703P and a truncated form of the known prostate antigen PSA. The truncated form of PSA has a 21 amino acid deletion around the active serine site. The expression construct for the fusion protein also has a restriction site at 3' end, immediately prior to the termination codon, to aid in adding cDNA for additional antigens.

The full-length cDNA for PSA was obtained by RT-PCR from a pool of RNA from human prostate tumor tissues using the primers of SEQ ID NO: 607 and 608,

15

20

25

and cloned in the vector pCR-Blunt II-TOPO. The resulting cDNA was employed as a template to make two different fragments of PSA by PCR with two sets of primers (SEQ ID NO: 609 and 610; and SEQ ID NO: 611 and 612). The PCR products having the expected size were used as templates to make truncated forms of PSA by PCR with the primers of SEQ ID NO: 611 and 613, which generated PSA (delta 208-218 in amino acids). The cDNA for the mature form of P703P with a 6X histidine tag at the 5' end, was prepared by PCR with P703P and the primers of SEQ ID NO: 614 and 615. The cDNA for the fusion of P703P with the truncated form of PSA (referred to as FOPP) was then obtained by PCR using the modified P703P cDNA and the truncated form of PSA cDNA as templates and the primers of SEQ ID NO: 614 and 615. The FOPP cDNA was cloned into the NdeI site and XhoI site of the expression vector pCRX1, and confirmed by DNA sequencing. The determined cDNA sequence for the fusion construct FOPP is provided in SEQ ID NO: 616, with the amino acid sequence being provided in SEQ ID NO: 617.

The fusion FOPP was expressed as a single recombinant protein in E. coli as follows. The expression plasmid pCRX1FOPP was transformed into the E. coli strain BL21-CodonPlus RIL. The transformant was shown to express FOPP protein upon induction with 1 mM IPTG. The culture of the corresponding expression clone was inoculated into 25 ml LB broth containing 50 ug/ml kanamycin and 34 ug/ml chloramphenicol, grown at 37 °C to OD600 of about 1, and stored at 4 °C overnight. The culture was diluted into 1 liter of TB LB containing 50 ug/ml kanamycin and 34 ug/ml chloramphenicol, and grown at 37 °C to OD600 of 0.4. IPTG was added to a final concentration of 1 mM, and the culture was incubated at 30 °C for 3 hours. The cells were pelleted by centrifugation at 5,000 RPM for 8 min. To purify the protein, the cell pellet was suspended in 25 ml of 10 mM Tris-Cl pH 8.0, 2mM PMSF, complete protease inhibitor and 15 ug lysozyme. The cells were lysed at 4 °C for 30 minutes, sonicated several times and the lysate centrifuged for 30 minutes at 10,000 x g. The precipitate, which contained the inclusion body, was washed twice with 10 mM Tris-Cl pH 8.0 and 1% CHAPS. The inclusion body was dissolved in 40 ml of 10 mM Tris-Cl pH 8.0, 100 mM sodium phosphate and 8 M urea. The solution was bound to 8 ml Ni-NTA (Qiagen) for one hour at room temperature. The mixture was poured into a 25 ml column and washed with 50 ml of 10 mM Tris-Cl pH 6.3, 100 mM sodium phosphate, 0.5% DOC and 8M urea. The bound protein was eluted with 350 mM imidazole, 10 mM Tris-Cl pH 8.0, 100 mM sodium phosphate and 8 M urea. The fractions containing FOPP proteins were combined and dialyzed extensively against 10 mM Tris-Cl pH 4.6, aliquoted and stored at - 70 °C.

EXAMPLE 22

REAL-TIME PCR CHARACTERIZATION OF THE PROSTATE-SPECIFIC ANTIGEN P501S IN PERIPHERAL BLOOD OF PROSTATE CANCER PATIENTS

10

15

20

25

Circulating epithelial cells were isolated from fresh blood of normal individuals and metastatic prostate cancer patients, mRNA isolated and cDNA prepared using real-time PCR procedures. Real-time PCR was performed with the TaqmanTM procedure using both gene specific primers and probes to determine the levels of gene expression.

cells were enriched from blood samples using Epithelial immunomagnetic bead separation method (Dynal A.S., Oslo, Norway). Isolated cells were lysed and the magnetic beads removed. The lysate was then processed for poly A+ mRNA isolation using magnetic beads coated with Oligo(dT)25. After washing the beads in buffer, bead/poly A+ RNA samples were suspended in 10 mM Tris HCl pH 8.0 and subjected to reversed transcription. The resulting cDNA was subjected to real-time PCR using gene specific primers. Beta-actin content was also determined and used for normalization. Samples with P501S copies greater than the mean of the normal samples + 3 standard deviations were considered positive. Real time PCR on blood samples was performed using the TagmanTM procedure but extending to 50 cycles using forward and reverse primers and probes specific for P501S. Of the eight samples tested, 6 were positive for P501S and β-actin signal. The remaining 2 samples had no detectable β-actin or P501S. No P501S signal was observed in the four normal blood samples tested.

10

20

EXAMPLE 23

EXPRESSION OF THE PROSTATE-SPECIFIC ANTIGENS P703P AND P501S IN SCID MOUSE-PASSAGED PROSTATE TUMORS

When considering the effectiveness of antigens in the treatment of prostate cancer, the continued presence of the antigens in tumors during androgen ablation therapy is important. The presence of the prostate-specific antigens P703P and P501S in prostate tumor samples grown in SCID mice in the presence of testosterone was evaluated as follows.

Two prostate tumors that had metastasized to the bone were removed from patients, implanted into SCID mice and grown in the presence of testosterone. Tumors were evaluated for mRNA expression of P703P, P501S and PSA using quantitative real time PCR with the SYBR green assay method. Expression of P703P and P501S in a prostate tumor was used as a positive control and the absence in normal intestine and normal heart as negative controls. In both cases, the specific mRNA was present in late passage tumors. Since the bone metastases were grown in the presence of testosterone, this implies that the presence of these genes would not be lost during androgen ablation therapy.

EXAMPLE 24

ANTI-P503S MONOCLONAL ANTIBODY INHIBITS TUMOR GROWTH IN VIVO

The ability of the anti-P503S monoclonal antibody 20D4 to suppress tumor formation in mice was examined as follows.

Ten SCID mice were injected subcutaneously with HEK293 cells that expressed P503S. Five mice received 150 micrograms of 20D4 intravenously at day 0 (time of tumor cell injection), day 5 and day 9. Tumor size was measured for 50 days. Of the five animals that received no 20D4, three formed detectable tumors after about 2 weeks which continued to enlarge throughout the study. In contrast, none of the five mice that received 20D4 formed tumors. These results demonstrate that the anti-P503S Mab 20D4 displays potent anti-tumor activity *in vivo*.

EXAMPLE 25

CHARACTERIZATION OF A T CELL RECEPTOR CLONE FROM A P501S-SPECIFIC T CELL CLONE

5

10

15

20

25

T cells have a limited lifespan. However, cloning of T cell receptor (TCR) chains and subsequent transfer essentially enables infinite propagation of the T cell specificity. Cloning of tumor-antigen TCR chains allows the transfer of the specificity into T cells isolated from patients that share the TCR MHC-restricting allele. Such T cells could then be expanded and used in adoptive transfer settings to introduce the tumor antigen specificity into patients carrying tumors that express the antigen. T cell receptor alpha and beta chains from a CD8 T cell clone specific for the prostate-specific antigen P501S were isolated and sequenced as follows.

Total mRNA from 2 x 10⁶ cells from CTL clone 4E5 (described above in Example 12) was isolated using Trizol reagent and cDNA was synthesized. To determine Va and Vb sequences in this clone, a panel of Va and Vb subtype-specific primers was synthesized and used in RT-PCR reactions with cDNA generated from each of the clones. The RT-PCR reactions demonstrated that each of the clones expressed a common Vb sequence that corresponded to the Vb7 subfamily. Futhermore, using cDNA generated from the clone, the Va sequence expressed was determined to be Va6. To clone the full TCR alpha and beta chains from clone 4E5, primers were designed that spanned the initiator and terminator-coding TCR nucleotides. The primers were as follows: TCR Valpha-6 5'(sense): GGATCC---GCCGCCACC—ATGTCACTTTCTAGCCTGCT (SEQ ID NO: 899) BamHI site Kozak TCR alpha sequence TCR alpha 3' (antisense): GTCGAC---TCAGCTGGACCACAGCCGCAG (SEQ ID NO: 900) Sall site TCR alpha constant GGATCC---GCCGCCACC-sequence **TCR** Vbeta-7. 5'(sense): ATGGGCTGCAGGCTGCTCT (SEQ ID NO: 901) BamHI site Kozak TCR alpha sequence TCR beta 3' (antisense): GTCGAC---TCAGAAATCCTTTCTCTTGAC (SEQ ID NO: 902) Sall site TCR beta constant sequence. Standard 35 cycle RT-PCR reactions were established using cDNA synthesized from the CTL clone and the above primers, employing the proofreading thermostable polymerase PWO (Roche, Nutley, NJ).

The resultant specific bands (approx. 850 bp for alpha and approx. 950 for beta) were ligated into the PCR blunt vector (Invitrogen) and transformed into *E. coli*. *E. coli* transformed with plasmids containing full-length alpha and beta chains were identified, and large scale preparations of the corresponding plasmids were generated. Plasmids containing full-length TCR alpha and beta chains were submitted for sequencing. The sequencing reactions demonstrated the cloning of full-length TCR alpha and beta chains with the determined cDNA sequences for the Vb and Va chains being shown in SEQ ID NO: 903 and 904, respectively. The corresponding amino acid sequences are shown in SEQ ID NO: 905 and 906, respectively. The Va sequence was shown by nucleotide sequence alignment to be 99% identical (347/348) to Va6.2, and the Vb to be 99% identical to Vb7 (336/338).

15

20

25

10

EXAMPLE 26

CAPTURE OF PROSTATE SPECIFIC CELLS USING THE PROSTATE ANTIGEN P503S

As described above, P503S is found on the surface of prostate cells. Secondary coated microsphere beads specific for mouse IgG were coupled with the purified P503S-specific monoclonal antibody 1D12. The bound P503S antibody was then used to capture HEK cells expressing recombinant P503S. This provides a model system for prostate-specific cell capture which may be usefully employed in the detection of prostate cells in blood, and therefore in the detection of prostate cancer.

P503S-transfected HEK cells were harvested and redissolved in wash buffer (PBS, 0.1% BSA, 0.6% sodium citrate) at an appropriate volume to give at least 5⁴ cells per sample. Round bottom Eppendorf tubes were used for all procedures involving beads. The stock concentrations were as shown below in Table VIII.

10

15

20

Table VIII

Stock concentrations	Sample concentration	Amount needed
Epithelial enrich beads 48	1 ⁷ beads/ml	125 ul stock per 5 ml
beads/ml (Dynal Biotech		volume
Inc. Lake Success, NY)		
1D12 ascites antibody 2	0.1 ug/ml (0.1X) to 5 ug/ml	0.05 ul to 2.5 ul stock per
mg/ml	(5X) titrations	sample
α- Mamma Mu 0.9 mg/ml	1 ug/ml (1X)	1.1 ul stock per sample
Pan-mouse IgG beads 48	1 ⁷ beads/ml	125 ul stock per 5 ml
beads/ml (Dynal Biotech)		volume

Blocked immunomagnetic beads were pre-washed as follows: all beads needed were pooled and washed once with 1 ml wash buffer. The beads were resuspended din a 3X volume of 1% BSA (v/v) in wash buffer and incubated for 15 min rotating at 4 °C. The beads were then washed three times with 2X volume of wash buffer and resuspended to original volume. Non-blocked beads were pooled, washed three times with 2X volume of wash buffer and resuspended to original volume.

Primary antibody was incubated with secondary beads in a fresh Eppendorf for 30 minutes, rotating at 4 °C. Approximately 200 ul wash buffer was added to increase the total volume for even mixing of the sample. The antibody-bead solution was transferred to a fresh Eppendorf, washed twice with an equal volume of wash buffer and resuspended to original volume. Target cells were added to each sample and incubated for 45 minutes, rotating at 4 °C. The tubes were transferred to a magnet, the supernatant removed, taking care not the agitate the beads, and the samples were washed twice with 1 ml wash buffer. The samples were then ready for RT-PCR using a Dynabeads mRNA direct microkit (Dynal Biotech).

Epithelial cell enrichment was placed in a magnet and supernant was removed. The epithelial enrichment beads were then resuspendedin 100 ul lysis/binding buffer fortified with Rnasin (2 U/ul per sample), and sotred at ~70 °C until use. Oligo (dT₂₅) Dynabeads were pre-washed as follows: all beads needed were pooled (23 ul/sample), washed three times with an excess volume of lysis/binding buffer, and resuspsended ot original volume. The lysis supernant was separated with a magnet and

10

transferred to a fresh Eppendorf. 20 ul oligo(dT25) Dynabeads were added per samplem ad rolled for 5 min at room temperature. Supernant was separated using a magnet and discarded, leaving the mRNA annealed of the beads. The bead/mRNA complex was washed with buffer and resuspended in cold Tris-HCl.

For RT-PCR, the Tris-HCl supernatant was separated and discarded using MPS. For each sample containing 1⁵ cells or less, the following was added to give a total volume of 30 ul: 14.25 ul H₂O; 1.5 ul BSA; 6 ul first strand buffer; 0.75 mL 10 mM dNTP mix; 3 ul Rnasin; 3 ul 0.1M dTT; and 1.5 ul Superscript II. The resulting solution was incubated for 1 hour at 42 °C, diluted 1:5 in H2O, heated at 80°C for 2 min to detach cDNA from the beads, and immediately placed on MPS. The supernatant containing cDNA was transferred to a new tube and stored at -20 °C.

Table IX shows the percentage of capture of P503S-transfected HEK cells as determined by RT-PCR.

15 <u>Table IX</u>

	% capture P503S-transfected HEK cells	% capture LnCAP cells
0.1 ug/ml P503S Mab	36.90	0.00
0.5 ug/ml P503S Mab	67.40	2.93
1 ug/ml P503S Mab	40.22	0.00
5 ug/ml P503S Mab	13.11	0.00
Anti-Mu beads only, non-blocked	1.42	0.00
Anti-Mu beads only, blocked	15.65	20.21
Absolute control, non-capture cells	100.00	100.00

From the foregoing it will be appreciated that, although specific 20 embodiments of the invention have been described herein for purposes of illustration,

various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.