

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2010/2011

KOD UCZNIA	
	wojewódzki 8 marca 2011 r. 90 minut

Informacje dla ucznia:

- 1. Na stronie tytułowej w wyznaczonym miejscu wpisz swój kod ustalony przez komisję.
- 2. Sprawdź, czy arkusz konkursowy zawiera 8 stron i 12 zadań.
- 3. Czytaj uważnie wszystkie teksty i zadania.
- 4. Rozwiązania zapisuj długopisem lub piórem. Nie używaj korektora.
- 5. W zadaniach od 1. do 8. postaw × przy prawidłowym wskazaniu PRAWDY lub FAŁSZU.
- **6.** Staraj się nie popełniać błędów przy zaznaczaniu odpowiedzi, ale jeśli się pomylisz, błędne zaznaczenie otocz kółkiem **⊗** i zaznacz inną odpowiedź znakiem **×**.
- **7.** Rozwiązania zadań otwartych zapisz czytelnie w wyznaczonych miejscach. Pomyłki przekreślaj.
- **8.** Przygotowując odpowiedzi na pytania, możesz skorzystać z miejsc opatrzonych napisem *Brudnopis*. Zapisy w brudnopisie nie będą sprawdzane i oceniane.
- 9. Nie wolno Ci korzystać z kalkulatora.

Liczba punktów możliwych do uzyskania: 40 Liczba punktów umożliwiająca otrzymanie tytułu laureata: 34

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	Razem
Liczba punktów możliwych do zdobycia	3	3	3	3	3	3	3	3	4	4	4	4	40
Liczba punktów uzyskanych przez uczestnika konkursu													

D 1				1 1/	
Pへ付っ	nev nr	zewodniczace	$\alpha \alpha 1 c7$	けつりたうい	komicii.
ı vaı	115 V 1717	ic w ounichace	20101		KOIIIISII.

1.	Przewodniczący
2.	Członek
3	Członek

Wyrażenie $w(n) = n + \sqrt{n}$. Jeśli n jest liczbą naturalną, to w(n) może przyjąć wartość

A. 90

- □ PRAWDA
- □ FAŁSZ

B. 110

- □ PRAWDA
- □ FAŁSZ

C. 60

- □ PRAWDA
- □ FAŁSZ

Zadanie 2. (0-3)

Wiadomo, że $x^3 = 5$, wtedy

A. $2x^3 = 25$

- □ PRAWDA
- □ FAŁSZ

B. $x^9 = 15$

- \square PRAWDA
- □ FAŁSZ

C. $x = \sqrt[3]{5}$

- □ PRAWDA
- □ FAŁSZ

Zadanie 3. (0-3)

Punkty E i F są środkami boków AB i BC kwadratu ABCD, którego bok ma długość a.

- A. Pole trójkąta *AEF* stanowi $\frac{1}{8}$ pola kwadratu *ABCD*.
 - □ PRAWDA
- □ FAŁSZ
- B. Pole trójkatów AEF i EBF są równe.
 - □ PRAWDA
- □ FAŁSZ
- C. Obwód trójkąta *ABF* wynosi $\frac{3}{2}a + a\sqrt{5}$.
 - □ PRAWDA
- □ FAŁSZ

Zadanie 4. (0-3)

Określamy działanie: $a * b = \frac{a+b}{ab}$, dla liczb dodatnich a, b.

A. a * b = b * a

- \square PRAWDA
- □ FAŁSZ

- B. (a*b)*c = a*(b*c)
- \square PRAWDA
- □ FAŁSZ

- C. (a+b)*c = a*c+b*c
- □ PRAWDA
- □ FAŁSZ

Zadanie 5. (0-3) Dwa okręgi: opisany na trójkącie równobocznym i wpisany w ten trójkąt, wyznaczają pierścień o polu 12π cm ² .	BRUDNOPIS
A. Pole tego trójkąta jest większe od $12\pi \text{ cm}^2$.	
☐ PRAWDA ☐ FAŁSZ B. Promień okręgu opisanego na tym trójkącie ma długość 4 cm. ☐ PRAWDA ☐ FAŁSZ	
C. Pole koła wpisanego w ten trójkąt jest równe $4\pi~\text{cm}^2$. \square PRAWDA \square FAŁSZ	
Zadanie 6. (0-3)	
Funkcja <i>f</i> każdej liczbie naturalnej nie mniejszej niż 1000 i nie większej niż 2010 przyporządkowuje resztę z dzielenia tej liczby przez 5.	
A. Zbiorem wartości tej funkcji jest {4, 3, 2, 1, 0}.	
□ PRAWDA □ FAŁSZ	
B. Funkcja ta jest określona dla 1010 argumentów. □ PRAWDA □ FAŁSZ	
C. Funkcja przyjmuje wartość 0 dla 203 argumentów.	
□ PRAWDA □ FAŁSZ	
Todomio 7 (0.2)	
Zadanie 7. (0-3) Bankomat kwotę 370 zł wypłacił banknotami o nominałach	
50 zł i 20 zł. A. Wszystkich banknotów może być 10.	
□ PRAWDA □ FAŁSZ	
B. Banknotów o nominale 50 zł może być o 3 mniej niż o nominale 20 zł.	
□ PRAWDA □ FAŁSZ	
C. Może być jednakowa ilość banknotów każdego z dwóch nominałów 50 zł i 20 zł.	
□ PRAWDA □ FAŁSZ	
Zadanie 8. (0-3)	
Wyrażenie $w = (2x+4)^2 - 5$, gdzie x oznacza dowolną liczbę	
rzeczywistą, przyjmuje wartości, które	
A. mogą być dowolnymi liczbami rzeczywistymi.	
□ PRAWDA □ FAŁSZ B. są tylko liczbami dodatnimi.	
□ PRAWDA □ FAŁSZ	
C. są tylko liczbami nie mniejszymi niż −5.□ PRAWDA □ FAŁSZ	

Zadanie 9. (0-4) BRUDNOPIS

Plac zabaw ma kształt sześciokąta, którego każde dwa kolejne boki są do siebie prostopadłe i mają długości 16 m, 10 m, 8 m, 6 m, 5 m, 3 m. Oblicz, jakie <u>największe</u> pole może mieć taki plac i uzasadnij, że jest to największe pole.

BRUDNOPIS

Zadanie 10. (0-4)

Wykres funkcji f(x) = ax + b przechodzi przez punkty A(3,5) i B(-2,1). Uzasadnij, że punkt P(103,85) również należy do wykresu tej funkcji. Zapisz obliczenia.

Zadanie 11. (0-4)

Po spaleniu 500 kg mieszanki węgla dwóch gatunków pozostało z węgla I gatunku o 42 kg popiołu mniej niż z węgla II gatunku. Węgiel I gatunku pozostawia 12% popiołu, a węgiel II gatunku pozostawia 22% popiołu. Ile węgla każdego gatunku było w tej mieszance?

BRUDNOPIS

Zadanie 12. (0-4)

W sześciennej kostce o krawędzi 5 dm, wydrążono na wylot dwa tunele prostopadłe do ścian bocznych. Przekrojem każdego z tuneli jest prostokąt o wymiarach 1 dm i 3 dm (patrz rysunek). Oblicz, jaka jest objętość bryły po wydrążeniu tuneli. Odpowiedź uzasadnij.

BRUDNOPIS

BRUDNOPIS