David D'Attile Prof. Kauchak CS158 13 February 2022

Assignment 04: KNN and Normalization Experiment Writeup

1. Calculate the performance of the perceptron classifier on the 10-fold cross validation of the data (i.e. you should have 10 numbers) with the AveragePerceptronClassifier on the old binary data, i.e. "titanic-train.csv". Use a reasonable number of iterations based on your experience from the last assignment or from a small experiment:

Fold 0: 70.18%

Fold 1: 75.86%

Fold 2: 52.17%

Fold 3: 87.32%

Fold 4: 84.13%

Fold 5: 76.13%

Fold 6: 78.38%

Fold 7: 73.92%

Fold 8: 73.32%

Fold 9: 87.29%

Average: 75.87%

2. Calculate the accuracy on the 10 folds on the new non-binary data, i.e. "titanic-train.real.csv". You should notice a pretty big difference here.

Fold 0: 40.85%

Fold 1: 59.15%

Fold 2: 73.24%

Fold 3: 58.44%

Fold 4: 62.20%

Fold 5: 60.58%

Fold 6: 53.52%

Fold 7: 57.75%

Fold 8: 62.08%

Fold 9: 62.67%

Average: 59.05%

3. Repeat experiments 1 and 2 for your new k-NN classifier:

Binary Titanic -	Real-Valued Titanic -		
Fold 0: 66.20%	Fold 0: 67.61%		
Fold 1: 61.97%	Fold 1: 66.20%		
Fold 2: 52.11%	Fold 2: 71.83%		
Fold 3: 73.24%	Fold 3: 61.97%		
Fold 4: 83.10%	Fold 4: 63.38%		
Fold 5: 77.46%	Fold 5: 56.34%		
Fold 6: 74.65%	Fold 6: 56.34%		
Fold 7: 80.28%	Fold 7: 63.38%		
Fold 8: 70.42%	Fold 8: 74.65%		
Fold 9: 68.00%	Fold 9: 52.00%		
Average: 70.74%	Average: 63.37%		

- 4. Now, generate a table of scores with the individual 10-fold scores and the 10-fold average on the following algorithm variants:
 - k-NN with length normalization
 - k-NN with feature normalization
 - k-NN with length and feature normalization
 - perceptron with length normalization
 - perceptron with feature normalization
 - perceptron with length and feature normalization

	Avg. Perceptron			k-NN		
	Length Norm	Feature Norm	Both	Length Norm	Feature Norm	Both
Fold 0	40.85%	64.70%	55.11%	76.06%	59.15%	42.66%
Fold 1	59.15%	76.62%	80.11%	73.24%	67.61%	76.06%
Fold 2	74.65%	81.61%	81.75%	70.42%	84.51%	81.73%
Fold 3	56.34%	80.21%	78.10%	66.20%	76.06%	76.07%
Fold 4	63.38%	78.20%	71.38%	64.79%	74.65%	64.89%
Fold 5	60.56%	78.90%	79.28%	57.75%	74.65%	76.24%
Fold 6	53.52%	84.38%	76.42%	52.11%	83.10%	82.89%
Fold 7	59.15%	82.69%	74.14%	73.24%	77.46%	73.52%
Fold 8	63.38%	80.59%	76.20%	70.42%	74.65%	67.80%
Fold 9	62.67%	84.78%	79.59%	53.33%	81.33%	77.33%
Average	59.37%	79.27%	75.21%	65.76%	75.32%	71.92%

5. Pick a few (say 4-5) of these results (including the earlier results) and calculate their t-test score to figure out if the differences are significant. Pick a couple of the experimental results that are close and a couple where they're further apart:

KNN Binary vs. Real-Valued T-Test: 0.1261434474

Perceptron vs. KNN (Length Normalized): 0.150956921

Perceptron vs. KNN (Feature Normalized): 0.003168984925

Perceptron Length vs. Feature Normalized: 0.000004584620964

KNN Length vs. Feature Normalized: 0.06491672726

6. Write a short (3-4 sentence) paragraph summarizing your results:

Based on the results above, we can make a few interesting conclusions. With the first result, we can see that the KNN classifier does not perform much differently when classifying binary or real-valued data. Looking at the second and third results, we see that there *is* a significant performance difference between the Avg. Perceptron and KNN classifiers when the test/train data has been feature normalized (Avg. Perceptron performing better), whereas there is no significant performance between the same classifiers leveraging length normalization of the test/train data. Finally, with the fourth and fifth results, we see that utilizing a length-wise vs. feature-wise normalizer for train/test data for the Perceptron classifier yields significant evidence that feature-wise normalization is a characteristic of a more effective classifier, and contrastingly, length-wise vs. feature-wise normalization for the KNN classifier does not yield decidedly different performance.