Basic information and policies

- Name: Yijia Zhao
- Office Hour: Friday 10 am 12 pm in MS 8349
- Email: yijiazhao@ucla.edu (with lecture section number in the subject)
- Homework policy:
 - Must be turned in through the respective submission portals on Bruinlearn.
 No grace period for late submissions.
 - A 72-hour extension if submitted with a documentation showing the date and reason for inability to submit on time. Do not email the documentation.
 - \bullet Extensions beyond 72 hours will only be granted in person by the instructor.
 - Regrade requests should be sent to the TA and the instructor. Submissions
 will be graded in their entirety and any grade adjustments will be
 considered final.
 - It is the student's responsibility to check grades on BruinLearn in a timely manner so that any grade issues are resolved before the quarter is over.

Yijia Zhao April 4, 2025 1/5

Optimization Problem

• The objective of this course is to study algorithms of how to solve

$$\min_{x \in D} f(x)$$

where $f(\cdot)$ is the objective function we aim to minimize, x is the argument of the function, D is the domain of interest of the argument x.

- We primarily focus on unconstrained optimization problem, assuming constrained problems have been transformed to unconstrained ones, i.e., $D = \mathbb{R}^n$.
- Example Linear regression:

$$\min_{\beta \in \mathbb{R}^p} \frac{1}{2n} \|y - X\beta\|_2^2$$

Yijia Zhao April 4, 2025 2 / 5

Unconstrained Optimization Problem

To solve the problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

we require:

- Solve the gradient equation $\nabla f(x) = 0$.
- **②** For the solution x^* of the gradient equation, evaluate the Hessian matrix of f(x) at x^* :
 - If $H(x^*) \succ 0$, then x^* is a (local) minimum.
 - If $H(x^*) \prec 0$, then x^* is a (local) maximum.
 - Otherwise, x^* is a saddle point.

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (で)

Gradient Calculation

Rules

- $g(x) = w^{\top} x \text{ where } w, x \in \mathbb{R}^n, \text{ then } \nabla g(x) = w.$

- **6** Chain rule: $\nabla_x f(g(x)) = \frac{df}{dg} \times \nabla_x g$.

Examples

$$f(x_1, x_2) = \frac{1}{1 + e^{-(ax_1 + bx_2 + c)}}$$

$$f(x_1, x_2) = \ln(1 + e^{-(ax_1 + bx_2 + c)})$$

4□ > 4□ > 4□ > 4□ > □
● 900

Yijia Zhao April 4, 2025

Iterative Descent Algorithm

- Iterative descent algorithm:
 - Initial guess: x_0 .
 - ② Iteratively generate $x_1, x_2, \dots, x_k, x_{k+1}, \dots$ according to the rule $x_{k+1} = x_k + \eta_k d_k$ such that $f(x_{k+1}) \leq f(x_k)$.
- Factors in design:
 - Descent direction d_k such that $[\nabla f(x_k)]^{\top} d_k < 0$.
 - ② Step size η_k which makes the algorithm converge in fewer iterations. (Selection of η_k matters!)
 - Stopping criterion
- Gradient descent algorithm: $d_k = -\nabla f(x_k)$, i.e., $x_{k+1} = x_k \eta_k \nabla f(x_k)$.

Yijia Zhao April 4, 2025 5/5