

Recovering the homology of immersed manifolds Raphaël Tinarrage arxiv.org/abs/1912.03033

Recovering the homology of immersed manifolds

Raphaël Tinarrage

(may self-intersect)

arxiv.org/abs/1912.03033

We are observing an immersed manifold $\mathcal{M} \subset \mathbb{R}^n$.

Abstract manifold

Immersed manifold

$$\mathcal{M}_0$$

$$\mathcal{M} = u(\mathcal{M}_0) \subset \mathbb{R}^n$$

We are observing an immersed manifold $\mathcal{M} \subset \mathbb{R}^n$.

Abstract manifold **Immersion** Immersed manifold u \mathcal{M}_0 $\mathcal{M} = u(\mathcal{M}_0) \subset \mathbb{R}^n$ Klein bottle Klein bottle ∪ sphere

[Martin, Coutsias, Thompson, Topology of Cyclooctane Energy Landscape]

We are observing an immersed manifold $\mathcal{M} \subset \mathbb{R}^n$.

Abstract manifold

Immersion

Immersed manifold

$$\mathcal{M}_0$$

$$\mathcal{M} = u(\mathcal{M}_0) \subset \mathbb{R}^n$$

Question 1:

Given \mathcal{M} , compute the (singular) homology groups of \mathcal{M}_0 .

Question 2:

Given $X \subset \mathbb{R}^n$ close to \mathcal{M} , compute the homology groups of \mathcal{M}_0 .

$$H_0 = \mathbb{Z}/2\mathbb{Z}$$

$$H_1 = \mathbb{Z}/2\mathbb{Z}$$

We are observing an immersed manifold $\mathcal{M} \subset \mathbb{R}^n$.

A bit of context

 [Arias-Castro, Ery, Gilad Lerman and Teng Zhang. Spectral clustering based on local PCA.]

- [Memoli, Smith and Wan. The Wasserstein transform.]
- [Díaz Martínez, Mémoli and Mio. The shape of data and probability measures.]

We will use persistent homology.

Unfortunately, the persistent homology of the Čech filtration of \mathcal{M} does not reveal the homology of \mathcal{M}_0 .

We will use persistent homology.

Unfortunately, the persistent homology of the Čech filtration of \mathcal{M} does not reveal the homology of \mathcal{M}_0 .

We will try to lift \mathcal{M} in a higher dimensional space, where the Čech filtration reveals a circle.

How to lift \mathcal{M} ?

Choose f such that \check{u} is an embedding.

•

How to lift \mathcal{M} ?

$$\mathcal{M}_{0} \xrightarrow{u} \qquad \longrightarrow \mathcal{M} \subset \mathbb{R}^{n}$$

$$x_{0} \qquad \longrightarrow u(x_{0}) \qquad \qquad \text{lifted manifold}$$

$$\mathcal{M}_{0} \qquad \longrightarrow \check{\mathcal{M}} \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$$

$$x_{0} \qquad \longmapsto (u(x_{0}), f(x_{0}))$$

Choose f such that \check{u} is an embedding.

Our choice is

$$f \colon x_0 \longmapsto T_{x_0} \mathcal{M}_0$$

(tangent space of \mathcal{M}_0 at x_0)

- ullet \check{u} is an embedding under a reasonable assumption
- ullet we are actually estimating the tangent bundle of \mathcal{M}_0 [T., Computing Stiefel-Whitney classes of line bundles]

Notations:

- $u \colon \mathcal{M}_0 \to \mathcal{M} \subset \mathbb{R}^n$ is an immersion
- For $x_0 \in \mathcal{M}_0$, $x = u(x_0)$
- For $x_0 \in \mathcal{M}_0$, $T_x \mathcal{M}$ denotes the tangent space of \mathcal{M}_0 seen in \mathbb{R}^n
- $M(\mathbb{R}^n)$ denotes the space of $n \times n$ matrices
- $p_{T_x\mathcal{M}} \in M(\mathbb{R}^n)$ denotes the orthogonal projection matrix on $T_x\mathcal{M}$
- Lift space: $\mathbb{R}^n \times M(\mathbb{R}^n)$
- Lifted manifold: $\check{\mathcal{M}} = \{(x, p_{T_x \mathcal{M}}), x_0 \in \mathcal{M}_0\} \subset \mathbb{R}^n \times M(\mathbb{R}^n)$
- Lifting map: $\check{u} \colon \mathcal{M}_0 \to \check{\mathcal{M}}$

(PCA dimension reduction)

Recipe in practice

- ullet We observe a point cloud $X\subset \mathbb{R}^n$ close to \mathcal{M} .
- Let r > 0 be a parameter. For every $x \in X$, compute a local covariance matrix

$$\Sigma_X(x,r) = \frac{1}{|A|} \sum_{y \in A} (x - y)^{\otimes 2} \in M(\mathbb{R}^n)$$

where $A = \{y \in X, ||x - y|| \le r\}$.

Consider the set

$$\dot{X} = \{(x, \Sigma_X(x,r)), x \in X\} \subset \mathbb{R}^n \times M(\mathbb{R}^n).$$

Recipe in practice

Consider the set

$$\check{X} = \{(x, \Sigma_X(x,r)), x \in X\} \subset \mathbb{R}^n \times M(\mathbb{R}^n).$$

Recipe in practice

Consider the set

$$\check{X} = \{(x, \Sigma_X(x,r)), x \in X\} \subset \mathbb{R}^n \times M(\mathbb{R}^n).$$

Recipe (that does not work) in practice

 $\check{\mathcal{M}}$ and \check{X} are not close in Hausdorff distance :(

$$\check{X} = \{(x, \Sigma_X(x, r)), x \in \mathcal{M}\}\$$

$$\check{\mathcal{M}} = \{(x, p_{T_x \mathcal{M}}), x_0 \in \mathcal{M}_0\}$$

A measure-theoretic setting

$$\check{\mu}_0$$
 can be defined as follows: for every test function $\phi \colon \mathbb{R}^n \times M(\mathbb{R}^n) \to \mathbb{R}$,

$$\int \phi(x,A) \cdot d\check{\mu}_0(x,A) = \int \phi\left(x, \frac{1}{d+2} p_{T_x \mathcal{M}}\right) \cdot d\mu_0(x_0).$$

A measure-theoretic setting

 $\check{\mu}_0$ can be defined as follows: for every test function $\phi \colon \mathbb{R}^n \times M(\mathbb{R}^n) \to \mathbb{R}$,

$$\int \phi(x,A) \cdot d\check{\mu}_0(x,A) = \int \phi\left(x, \frac{1}{d+2} p_{T_x \mathcal{M}}\right) \cdot d\mu_0(x_0).$$

Now, we are observing a measure ν close to μ

Define $\check{\nu}$ as follows: for every test function $\phi \colon \mathbb{R}^n \times M(\mathbb{R}^n) \to \mathbb{R}$,

$$\int \phi(x,A) \cdot d\check{\nu}(x,A) = \int \phi\left(x, \frac{1}{r^2} \Sigma_{\nu}(x,r)\right) \cdot d\nu(x),$$

where $\Sigma_{\nu}(x,r)$ is the local covariance matrix.

A measure-theoretic setting

Theorem:

Let r > 0. Suppose that $W_1(\mu, \nu)$ is small enough. Under several assumptions on \mathcal{M}_0 and μ_0 , we have

$$W_p(\check{\nu},\check{\mu}_0) \leq \operatorname{constant} \cdot r^{\frac{1}{p}}$$

where W_p denote the p-Wasserstein distance.

 $\check{\mu}_0$ can be defined as follows: for every test function $\phi \colon \mathbb{R}^n \times M(\mathbb{R}^n) \to \mathbb{R}$,

$$\int \phi(x,A) \cdot d\check{\mu}_0(x,A) = \int \phi\left(x, \frac{1}{d+2} p_{T_x \mathcal{M}}\right) \cdot d\mu_0(x_0).$$

Now, we are observing a measure ν close to μ

Define $\check{\nu}$ as follows: for every test function $\phi \colon \mathbb{R}^n \times M(\mathbb{R}^n) \to \mathbb{R}$,

$$\int \phi(x,A) \cdot d\check{\nu}(x,A) = \int \phi\left(x, \frac{1}{r^2} \Sigma_{\nu}(x,r)\right) \cdot d\nu(x),$$

where $\Sigma_{\nu}(x,r)$ is the local covariance matrix.

Persistent homology for measures

[Anai, Chazal, Glisse, Ike, Inakoshi, T., Umeda. DTM-based filtrations]

ullet Usual Čech filtration: with $X\subset \mathbb{R}^k$,

$$X^t = \bigcup_{x \in X} \overline{\mathcal{B}}(x, t)$$

ullet DTM-filtration: with μ measure on \mathbb{R}^k ,

$$V^{t} = \bigcup_{x \in \text{supp}(\mu)} \overline{\mathcal{B}}(x, t - d_{\mu}(x))$$

where d_{μ} is the distance-to-measure (DTM) associated to μ

Persistent homology for measures

A last illustration

