INDEX

RUBBER CHEMISTRY AND TECHNOLOGY VOLUME XXVIX, 1956

AUTHOR INDEX

	Page		l'age
G. R. X-Ray diffraction studies of crys-		BETS, B. See KARMIN, B. BEVILACQUA, E. M. Chain seission in the	
tallization in elastomers	438	oxidation of Hevea. I	583
ALPHEN, J. VAN. See HOUWINE, R. AMEBONGEN, G. J. VAN. See DECKEN,		II	585
AMERONGEN, G. J. VAN. See DECKEN,		III. Effect of temperature	1274
H. C. J. DE; MEY, S. DE.		Crosslinking of latex rubber	1154
	857	BIELSTEIN, G. See SCHEELE, W. BLACKWELL, R. F. Hardness of very soft	
Average I. C. See Kraussert A S	901	rubbers	852
ANGERT, L. G. See KUZMINSKII, A. S. ANGER, D. J., AND WATSON, W. F. Mastica-		BLANCHARD, A. F. Role of particle diameter	992
tion of rubber.		and linkage formation in rubber rein-	
II. Interpolymerization of natural rubber		forcement	1284
and Neoprene on cold milling	427	BLANCHETTE, J. A., AND NIELSEN, L. E.	
IV. Polymerization of vinyl monomers by		Characterization of graft polymers	1157
the cold mastication of rubber		BLOKH, G. A. See MIKLUKHIN, G. P.	- 6
Angioletti, A. Accidental factors involved in the fatigue breakdown of rubber		aulfur bonds in soft rubber and ebonite	67
articles	753		0,
		K. V. Isotope exchange between sulfur	
	743	atoms in vulcanization accelerators in	
ANTHONY, R. L. See BALDWIN, F. P.		the presence of diphenylguanidine and	
ARAKAWA, M. See SUITO, E. ARCHER, B. L., AND COCKBAIN, E. G. Proteins of Heyea brasiliensis latex. II.		phenyl-2-naphthylamine	1363
ABCHER, B. L., AND COCKBAIN, E. G. Pro-		, AND MIKLUKHIN, G. P. Mechanism	
legistics of the e-globulin of fresh later.		of the exchange reaction of elemental sulfur with mercaptobenzothiazole	63
Isolation of the a-globulin of fresh latex serum		- Reaction of sulfur with mercapto-	90
, AND SERHAR, B. C. Proteins of	1010	benzothiazole	1369
Hevea brasiliensis latex. I. Protein		benzothiazole Bloomfield, G. F., Merrett, F. M., Por- ham, F. J., and Swift, P. McL., Graft	
components of fresh latex serum	1011	HAM, F. J., AND SWIPT, P. McL. Graft	
ARKHANGELSKAYA, M. See DOGADKIN, B. A. ARNOLD, R. C. See HILL, F. B.		polymers derived from natural rubber	99
ARNOLD, R. C. See HILL, F. B.		, AND SWIFT, P. McL. Polymeriza-	
AYREY, G., MOORE, C. G., AND WATSON, W. F. Mastication. III. Chemical		tion of vinyl monomers in natural-rubber	1110
verification of the mechanical degrada-		BOONSTRA, B. B. S. T., AND DANNENBERG,	1119
tion mechanism of cold mastication		E. M. Abrasion and friction of rubber-	
		like materials	774
BALDWIN, F. P., IVORY, J. E., AND ANTHONY,		BOPP, C. D., AND SISMAN, O. How radiation	
R. L. Experimental examination of the		changes mechanical properties of poly-	
statistical theory of rubber elasticity.		mers	1239
Low extension studies	227	Radiation stability of elastomers	1233
BANDURSKI, R. S. See TEAR, H. J. BARTENEY, G. M. See DOGADKIN, B. A.		BOUCHER, (Miss) M. Comparison of differ- ent viscometers for measuring the viscos-	
Theory of two-dimension stretching		ity of latex	1509
rubber	391	BREITMAN, L. Glass transitions in polymer-	
- AND GALIL-OGLY, F. A. Dynamie		plasticizer systems	492
fatigue of rubber and the mechanism of		Bresler, S. E., Kushner, V. P., and Samin- skil, E. M. Study of the mechanism of	
failure by repeated deformations	504	SEII, E. M. Study of the mechanism of	
BATEMAN, L., AND CUNNERN, J. I. Oxida-		vulcanization of rubber by means of	980
tion of organic sulfides. III. A survey of the autoxidizability of monosulfides	71	radioactive sulfur. II	880
- AND SHIPLEY, F. W. Oxidation of		V. YA. Study of the mechanism of vul-	
organic sulfides. IV. Autoxidation of		canization of rubber by means of radio-	
cyclohex-2-enyl methyl sulfide	83	active sulfur. I	946
BAXTER, S., POTTS, P. D., AND VODDEN, H. A.		BROCK, M. J., AND LOUTH, G. D. Identifica-	
Stress relaxation in rubber. I. Simul-		tion of accelerators and antioxidants in	
taneous oxygen absorption	250	compounded rubber products	635
BENDERS, J. F. See DECKER, H. C. J. DE. BERNAL, D. E. Chromatographic determi-		BROWN G. M. See Topolary A. V.	
nation of rubber in plant lateres	1026	BROWN, G. M. See TOBOLSKY, A. V. BROWN, R. W., AND HOWLAND, L. H.	
BERRY, J. P., AND WATSON, W. F. Stress		Growth and agglomeration of particles in	
relaxation of peroxide and sulfur vul-		low-temperature GR-S type of latex	106
canizates of natural rubber	398	BURGESS, K. A., AND SWEITZER, C. W. In-	
BETHGE, P. O. Determination of sulfur by		hibition of rubber oxidation by carbon	
wet combustion with perchloric acid	1107	black	176

INDEX

RUBBER CHEMISTRY AND TECHNOLOGY VOLUME XXVIX, 1956

AUTHOR INDEX

	Page		l'age
G. R. X-Ray diffraction studies of crys-		BETS, B. See KARMIN, B. BEVILACQUA, E. M. Chain seission in the	
tallization in elastomers	438	oxidation of Hevea. I	583
ALPHEN, J. VAN. See HOUWINE, R. AMEBONGEN, G. J. VAN. See DECKEN,		II	585
AMERONGEN, G. J. VAN. See DECKEN,		III. Effect of temperature	1274
H. C. J. DE; MEY, S. DE.		Crosslinking of latex rubber	1154
	857	BIELSTEIN, G. See SCHEELE, W. BLACKWELL, R. F. Hardness of very soft	
Average I. C. See Kraussert A S	901	rubbers	852
ANGERT, L. G. See KUZMINSKII, A. S. ANGER, D. J., AND WATSON, W. F. Mastica-		BLANCHARD, A. F. Role of particle diameter	992
tion of rubber.		and linkage formation in rubber rein-	
II. Interpolymerization of natural rubber		forcement	1284
and Neoprene on cold milling	427	BLANCHETTE, J. A., AND NIELSEN, L. E.	
IV. Polymerization of vinyl monomers by		Characterization of graft polymers	1157
the cold mastication of rubber		BLOKH, G. A. See MIKLUKHIN, G. P.	- 6
Angioletti, A. Accidental factors involved in the fatigue breakdown of rubber		aulfur bonds in soft rubber and ebonite	67
articles	753		0,
		K. V. Isotope exchange between sulfur	
	743	atoms in vulcanization accelerators in	
ANTHONY, R. L. See BALDWIN, F. P.		the presence of diphenylguanidine and	
ARAKAWA, M. See SUITO, E. ARCHER, B. L., AND COCKBAIN, E. G. Proteins of Heyea brasiliensis latex. II.		phenyl-2-naphthylamine	1363
ABCHER, B. L., AND COCKBAIN, E. G. Pro-		, AND MIKLUKHIN, G. P. Mechanism	
legistics of the e-globulin of fresh later.		of the exchange reaction of elemental sulfur with mercaptobenzothiazole	63
Isolation of the a-globulin of fresh latex serum		- Reaction of sulfur with mercapto-	90
, AND SERHAR, B. C. Proteins of	1010	benzothiazole	1369
Hevea brasiliensis latex. I. Protein		benzothiazole Bloomfield, G. F., Merrett, F. M., Por- ham, F. J., and Swift, P. McL., Graft	
components of fresh latex serum	1011	HAM, F. J., AND SWIPT, P. McL. Graft	
ARKHANGELSKAYA, M. See DOGADKIN, B. A. ARNOLD, R. C. See HILL, F. B.		polymers derived from natural rubber	99
ARNOLD, R. C. See HILL, F. B.		, AND SWIFT, P. McL. Polymeriza-	
AYREY, G., MOORE, C. G., AND WATSON, W. F. Mastication. III. Chemical		tion of vinyl monomers in natural-rubber	1110
verification of the mechanical degrada-		BOONSTRA, B. B. S. T., AND DANNENBERG,	1119
tion mechanism of cold mastication		E. M. Abrasion and friction of rubber-	
		like materials	774
BALDWIN, F. P., IVORY, J. E., AND ANTHONY,		BOPP, C. D., AND SISMAN, O. How radiation	
R. L. Experimental examination of the		changes mechanical properties of poly-	
statistical theory of rubber elasticity.		mers	1239
Low extension studies	227	Radiation stability of elastomers	1233
BANDURSKI, R. S. See TEAR, H. J. BARTENEY, G. M. See DOGADKIN, B. A.		BOUCHER, (Miss) M. Comparison of differ- ent viscometers for measuring the viscos-	
Theory of two-dimension stretching		ity of latex	1509
rubber	391	BREITMAN, L. Glass transitions in polymer-	
- AND GALIL-OGLY, F. A. Dynamie		plasticizer systems	492
fatigue of rubber and the mechanism of		Bresler, S. E., Kushner, V. P., and Samin- skil, E. M. Study of the mechanism of	
failure by repeated deformations	504	SEII, E. M. Study of the mechanism of	
BATEMAN, L., AND CUNNERN, J. I. Oxida-		vulcanization of rubber by means of	980
tion of organic sulfides. III. A survey of the autoxidizability of monosulfides	71	radioactive sulfur. II	880
- AND SHIPLEY, F. W. Oxidation of		V. YA. Study of the mechanism of vul-	
organic sulfides. IV. Autoxidation of		canization of rubber by means of radio-	
cyclohex-2-enyl methyl sulfide	83	active sulfur. I	946
BAXTER, S., POTTS, P. D., AND VODDEN, H. A.		BROCK, M. J., AND LOUTH, G. D. Identifica-	
Stress relaxation in rubber. I. Simul-		tion of accelerators and antioxidants in	
taneous oxygen absorption	250	compounded rubber products	635
BENDERS, J. F. See DECKER, H. C. J. DE. BERNAL, D. E. Chromatographic determi-		BROWN G. M. See Topolary A. V.	
nation of rubber in plant lateres	1026	BROWN, G. M. See TOBOLSKY, A. V. BROWN, R. W., AND HOWLAND, L. H.	
BERRY, J. P., AND WATSON, W. F. Stress		Growth and agglomeration of particles in	
relaxation of peroxide and sulfur vul-		low-temperature GR-S type of latex	106
canizates of natural rubber	398	BURGESS, K. A., AND SWEITZER, C. W. In-	
BETHGE, P. O. Determination of sulfur by		hibition of rubber oxidation by carbon	
wet combustion with perchloric acid	1107	black	176

	Page		Page
CHUPRINA, L. P. See BLORH, G. A. COCKBAIN, E. G. See ARCRER, B. L. COLLIER, H. M. Effect of storage conditions on the properties of latex.		GATOVERAYA, T. V. See KARGIN, V. A. GANGRINOVICH, B. I. Calorific and thermal	
COLLIER, H. M. Effect of storage conditions		properties of natural rubber in the ori-	
on the properties of latex. 1	1502	ented and nonoriented states	789
COOK, A. S., AND SEKAR, K. C. Volatile acids		GENSCH, CHRISTA. See SCHEELE, W.	
	651	GENT, A. N. Crystallization in natural rubber.	
COOPER, W. T. See SVETLIK, J. F. CORRADINI, P. See NATTA, G. CRAIG, D. Mechanism of formation of zine	991	rubber. IV. Temperature dependence Gibbs, C. F. See Horne, S. E., Ja. Glander, F. See Hartmann, A. GOLUBKOVA, E. A. See BLOKH, G. A. GOUGH, S. W. See POWELL, E. F. GRAGEROV, I. P. See MIKLUKHIN, G. P. GREENSMITH, H. W., AND THOMAS, A. G. Rupture of rubber. III. Determination of teat properties.	794
CORRADINI, P. See NATTA, G.		GIBBS, C. F. See HORNE, S. E., Jn.	
CRAIG, D. Mechanism of formation of rine		GLANDER, F. See HARTMANN, A.	
dimethyldithiocarbamate (ZnDMDC) in tetramethylthiuram disulfide (TMTD)		GOLUBROVA, E. A. See BLOKH, G. A.	
vulcanisation	944	GRAGEROV. I. P. See MIKLUKHIN, G. P.	
CUNNEEN, J. I. See BATEMAN, L.		GREENSMITH, H. W., AND THOMAS, A. G.	
		Rupture of rubber. III. Determination	270
DANJARD, J. C. Apparatus for the continu-			372
ous measurement of stress relaxation in vulcanized rubber	834	GUL, V. E., KHODZHAEVA, I. V., AND DOGAD- KIN, B. A. Effect of oxidation of rubber	
		on the kinetics of its swelling, and Shvahrs, A. G. Influence of	135
B. B. S. T.		- AND SHVARTS, A. G. Influence of	
DARIN, B. R. See TAYLOR, G. R.		intermolecular reaction on the kinetics of swelling of elastomers	463
DANNENBERG, E. M. See BOONSTRA, B. B. S. T. DARIN, S. R. See TAYLOR, G. R. DECKER, H. C. J. DE, AMERONGEN, G. J. VAN, AND BENDERS, J. F. Tire wear and fuel consumption.		GURYANOVA, E. N., VASILYEVA, V. N., AND	100
consumption	1445	GURYANOVA, E. N., VASILYEVA, V. N., AND KUZINA, L. S. Sulfur exchange in poly-	
DEFRIES, MYBON G., SCHNEIDER, L., FRAM, P., AND LEONARD, F. Dilaminar elasto-		sulfides and in vulcanization accelera-	534
meric films	1345	GUYTON, C. W. See MORRIS, R. E.	334
DEGTEVA, T. G. See KUZMINSKII, A. S.	1040		
DEGTEVA, T. G. See KUZMINSKII, A. S. Oxidative		HART, V. E. See ZIMMERMAN, E. W.	
degradation of swollen vulcanizates	1266	HARTMANN, A., AND GLANDER, F. Effect of ozone on Neoprene vulcanizates and the	
Transformation by the action of heat and oxygen of sulfur bonds which form		influence of protective agents and fillers .	166
the vulcanizate network	1276	HARRIGAWA, H. See SUITO, E.	
DEWITT, T. W. See ZAPAS, L. J.		influence of protective agents and fillers. HASKGAWA, H. See SUITO, E. HILL, F. B., YOUNG, C. A., NELSON, J. A., AND ARNOLD, R. G. Urethan rubber	
DOGADETE R A See GUL V E : TARA-		from a polyether glycol. Froperties of	
the vulcanizate network. DEWITT, T. W. See Zapas, L. J. DOBROMYSLOVA, A. See DODDAKIN, B. A. DOGADKIN, B. A. See Gul, V. E.; Tarasova, Z. N.		raw polymer and vulcanizates Horikk, M. M. Chain seissions in a polymer	1398
	***	HORIKX, M. M. Chain scissions in a polymer	1166
mum vulcanization	555	network. Horne, S. E., Jie, Kiehl, J. P., Shipman, J. J., Folt, V. L., Girbs, C. F. Willson, E. A., Newton, E. B., and Reinhart,	
skil, M. M. Kinetics of high elastic		J. J., FOLT, V. L., GIBBS, C. F. WILLSON,	
	382	M. A. Ameripol SN—a cis-1,4- poly-	
Vulcanization of butadiene-styrene rub-		isoprene	687
ber in the presence of sulfenamide ac-		HOROWITZ, E. See ZIMMERMAN, E. W. HOUWINE, R. Slipping of molecules during	
	933	HOUWINE, R. Slipping of molecules during	888
Celerators. ——, Selyukova, V., Tarasova, Z., Dobbomyslova, A., Feldshtein, M., and Kaplunov, M. Theory of Vul-		the deformation of reinforced rubber AND ALPHEN, J. VAN. Reinforcing	999
AND KAPLUNOV. M. Theory of Vul-		effect of condensation polymers on rub- ber in connection with their particle size. AND JANSEN, H. J. J. Filler rein-	
canization and the action of accelerators.	917	ber in connection with their particle size.	278
M. Comparative determination of the			
molecular weight of rubber by the meth-		of thixotropy	409
ods of light scattering and osmometry	477	HOWLAND, L. H. See BROWN, R. W.	
ods of light scattering and osmometry Dugone, J. See Kraus, G. Dummen, W. See Scheele, W.		of thixotropy. Howland, L. H. See Brown, R. W. Haivíková, J. See Kellő, V. Humphreys, N. C. H. Electrical conductiv-	
DUMMEN, W. See SCHEELE, W.		ity experiments with high-abrasion fur-	
EBERT, G., AND WEIDNER, V. Abrasion and		nace black-loaded natural rubbers	1057
slippage. A correction	1118	IOLOVA, M. See TAGER, A.	
Files, S. A. Stress relaxation of vulcanized rubber in compression and tension	263	IVORY, J. E. See BALDWIN, F. P.	
EPPINGER, K. See GARTEN, V. A.		JAMES, R. R. Šee MORRIS, R. E. JANSSEN, H. J. J. See HOUWINK. Preparation and use of cyclised	
PRIOR F AND STARY C Spot test socialism		JANSSEN, H. J. J. See HOUWINK.	
Feigl, F., and Stark, C. Spot test reaction for detection of elemental sulfur	1117	rubber as a stiffening resin in rubber	1034
FELDSHTEIN, M. See DOGDKIN, B. A. FENSOM, D. S. Comparison of the flow of		rubber as a stiffening resin in rubber Johnson, B. L. See Stearns, R. S.	
FENSOM, D. S. Comparison of the flow of		KAINBADL, P. Problems concerned with the	
high polymers in the cavity of a Mooney plastometer	269	physical testing of vulcanizates:	1082
plastometer. Folt, V. L. See Horna, S. E. Frenkel, S. Ya. See Bressler, S. E. Furusawa, Y. See Suito, E.		Katage H Cut growth and flow testing of	-
FRENKEL, S. YA. See BRESSLER, S. E.		Natural rubbers and synthetic clastomers	207
		KANTOR, T. See TAGER, A.	
GALIL-OGLY, F. A. See BARTENEY, G. M. GANTMAKHER, A. R., AND MEDEVEDEY, S. S. Some features of the kinetics of catalytic polymerization. Copolymerization in the butadiene-isoprene and butadiene-		matural rubbers and synthetic elastomers KALTANOVA, K. A. See VOTUTSKII, S. S. KANTON, T. See TAGER, A. KAPLUNOV, M. See DOGADKIN, B. A.; TARABOVA, Z. N. KARGIN, V. A. See ZUBOV, P. I.	
Some features of the binetics of sately		KARGIN V A See Zungy P I	
tic polymerization. Copolymerization		AND GATOVSKAYA, T. V. Influence	
in the butadiene-isoprene and butadiene-		, and Gatovskaya, T. V. Influence of crystallization on the sorption of hydrocarbons by natural rubber and	
		hydrocarbons by natural rubber and	451
D. E. Studies of abrasion and wear of		KARMIN, B., AND BETS, B. Plasticization of	401
rubber. I. Chemistry of carbon black		butadiene-styrene rubber Kellő, V. See Tráč, A.	485
GARTEN, V. A., EPPINGER, K., AND WEISS, D. E. Studies of abrasion and wear of rubber. I. Chemistry of carbon black and its effect on abrasion as determined by the National Bureau of Standards		KELLO, V. See TKAC, A.	
method	1434	JOLANA. Reaction kinetics in the aging	

P	age	1	Page
of natural rubber by infrared spectrog-	245	MENSIK, P., AND BROULIX, D. Colorimetric determination of phenyl-2-naphthyl- amine in rubber	
otone with natural Heven and acryloni-		MERRETT, F. M., AND WOOD, R. I. Polymer-	647
trile-butadiene rubbers	332	modified natural rubber	706
KERN, W. Observations on the relation be- tween laboratory and test stand measure- ments of tire treads and their behavior		Mey, 8. 55, and Amesongen, G. J. van. Dynamic-mechanical characteristics of rubber compounds.	1215
on the road	806	Market warrer C. P. See Brown C. A.	1210
KHAINMAN, V. YA. See BRESLER, S. E. KHODZHARVA, I. V. See GUL, V. F.		REKASHEVA, A. F., KURHTENKO, I. I., SULIMA, L. V., GRAGEROV, I. P., AND BLOKH, G. A. Mobility of sulfur in	
ments of tire treads and their behavior on the road. KHAINMAN, V. YA. See BREALER, S. E. KHODEHARVA, I. V. See GUL, V. E. KHOMEHOVEIN, M. A. Thermochemical atudies of high-molecular compounds.		BLOKH, G. A. Mobility of sulfur in	
KIEHL, J. P. See Honne, S. E., Jr.	470	sulfur-carbon bonds and the mechanism of action of rubber vulcanization accel-	
KNAUERHASE, K. Observations on the phys-		eratora	516
ical aspects of resistance to skidding on dry roads and particularly on wet roads 1	425	Monnes, R. E., James, R. R., and Guyton, C. W. New method for determining the dynamic mechanical properties of	
KRAUS, G., AND DUGONE, J. Adsorption of	148	the dynamic mechanical properties of rubber	838
dry roade and particularly on wet roads. I. KRAUS, G., AND DUGONE, J. Adsorption of elastomers on earbon black		MUZHEVA, L. See TAGER, A. MOORE, C. G. See AYREY, G.	000
mination of total suntrin rubber prod-	620	MOORE, C. G. See AYREY, G.	
		NATTA, G., AND CORNADINI, P. Structure	
of curing agents in rubber products. Ultraviolet absorptiometric analysis of selective solvent extracts.		of crystalline 1,2-polybutadiene and other syndyotactic polymers	1458
Research Z. P. See Manuscript Z. P.	319	other syndyotactic polymers Nelson, J. A. See Hill, F. B. Nelson, Lawrence E. See Blanchette,	
KURSKAYA, K. V. See BLOKH, G. A.			
KUSHNER, V. P. See BRESLER, S. E. KUVSHINSKII, E. V. See VOTINOV, M. P.:		Newton, E. B. See Horne, S. E., Jr. Novikava, E. N. See Yarmolenka, N. F. ———. Influence of inhibitors on the oxida-	
YUZEFOVICH, N. A.		- Influence of inhibitors on the oxida-	
KURHTENEO, I. I. See MIELUKHIN, Z. P. KURNKAYA, K. V. See BLOKH, G. A. KURNKAYA, K. V. See BLOKH, G. A. KURNHEN, Z. P. See BREALER, S. E. KUVSHINSKII, E. V. See VOTINOV, M. P.; YUREFOVICH, N. A. KUZINA, L. L. See GUL, E. N. KUZINAKII, A. S. See DROTEVA, T. G.; LERHNEY, N. W.; POSTOVRKAYA, A. F.; ZURV, YA. S.		NOVIKOVA, E. N. See NOVIKAVA, E. N.	1047
LEZHNEV, N. W.; POSTOVSKAYA, A. F.; ZUEV, YA. S.			
oxidation of rubbers. The relation be-		OFFENBACH, J. A., AND TOBOLSKY, A. V. Chemical relaxation of stress in polyure-	
tween molecular structure and the effec-		than elastomers	735
tiveness of inhibitors, DEGTEVA, T. G., AND LAPTEVA, K. A. Mechanism of oxidation of synthetic	131	Ohlberg, S. See Alexander, L. E. Ore, Svein. Oxidative stress relaxation of	
Mechanism of oxidation of synthetic		natural rubber vulcanized with di-terti- ary-butyl peroxide	1043
	573		1040
chanical activation of the oxidation of vulcanizates by static and dynamic		PANICH, R. M. See VOYUTSKII, S. S. PAPAS See ZAPAS, L. J.	
deformationdu dynamic	770	Peyener, D. See Dogadkin, B. A. Poddubnyi, I. Ya. See Bressler, S. E. Popeham, F. J. See Bloomfreld, G. F. Popova, E. B. See Kuzminskii, A. S.	
rupture of the sulfur bonds in vulcani-		PODDUBNYI, I. YA. See BRESSLER, S. E. POPHAM, F. J. See BLOOMFIELD, G. F.	
rates	530	POPOVA, E. B. See KUZMINSKII, A. S.	
of butadiene-nitrile elastomers	607	POSTOVSKAYA, A. F., AND KUZMINSKII, A. S. Kinetics of the oxidation of rubber	
, REITLINGER, S. A., AND SHEMASTINA,		under the influence of light	598
E. V. Diffusion of antioxidants in rub- ber	145	Powell, E. F., and Gough, S. W. Con-	187
		Stant-power principle in abrasion testing . PYRADILOVA, V. I. See BRESLER, S. E.	191
Lapteva, K. A. See Kuzminskii, A. S. Lee, K. O. Studies of mastication	999	QUINN, F. A., JR. See MANDELKERN, L.	
LEIGH-DUGMORE, C. H. Measurement of	303		
LEGIN-DUGMORE, C. H. Measurement of dispersion in black-loaded rubber I. LEZHNEY, N. N., AND KUZMINSKII, A. S. Relation between the oxidation and change of structure of a butadiene-	-	RAILBBACK, H. E. See SVETLIK, J. F.	
change of structure of a butadiene-		RATNER, S. B., AND SOKOLSKATA, V. D. Influence of the hardness of rubber on its	
Styrene rubber. Lorenz, O. See Scheele, W.	126	coefficient of static friction without lubri-	829
AND SCHEELE, WALTER. Studies of the vulcanization of elastic high poly-		REINHART, M. A. See HORNE, S. E., JR.	
		REKABHEVA, A. F. See MIKLUKHIN, G. P.	
rubber by benzoyl peroxide. Part 1	901	REZNIKOVSKII, M. M. See DOGARKIN, B. A.	
rubber by benzoyl peroxide. Part 1 LOUTH, G. D. See BROCK, M. J. LYUBCHANSKAYA, L. I. See KUZMINSKII,		REINHART, M. A. See HORNE, S. E., JR. REITLINGER, S. A. See KUZMINSKII, A. S. REKASHEVA, A. F. See MIKLUEHIN, G. P. REINIGOVSKII, M. M. See DOGADKIN, B. A. ROBERTS, D. E. See MANDELKERN, L. ROBINSON, H. W. H., AND VODDEN, H. A. Stress relaxation in rubber. I. Evalution of enticyliants.	
A. S.		Stress relaxation in rubber. I. Evalu- tion of antioxidants	240
MALEEV, I. I. See YURZHENKO, A. I.		Rugg, J. S., and Scott, G. W. Urethan rubber from a polyether glycol. Factors	
MALREY, I. I. See YURZHENKO, A. I. MANDELKERN, L., QUINN, F. A., JR., AND ROBERTS, D. E. Thermodynamics of crystallization in high polymers. Gutta-		influencing processability	1405
crystallization in high polymers. Gutta-	101		
MANN, J. See KENDALL, F. H. MAREI, A. N. Mechanical method for deter-	181	Saminskii, E. M. See Bresler, S. E. Schaeffer, W. D., and Smith, W. R. Effect of heat treatment on reinforcing proper-	
mining the vitrification terroprature of		of heat treatment on reinforcing proper- ties of carbon black	286
rubberlike polymers	174	SCHALLAMACH, A. Principle considerations	
rubberlike polymers		SCHEELE, WALTER, See LORENZ, O.	781
MEER, F. G. S. See KRESS, K. E.		of high-elastic polymers. V. Vulcaniza-	
MERRETT, F. M. See BLOOMFIELD, G. F.		or nigh-elastic polymers. v. Vulcanisa-	

	Page	Down S. D. Dividions and	Page
tion of natural rubber by tetramethyl- thiuram monosulfide and sulfur (1)	48	crystallization in elastomers. TEAS, H. J., AND BANDURSKI, R. S. Enzymic	450
thiuram monosulfide and sulfur (1) AND GENSCH, C. Quantitative analysis of auxiliary rubber materials AND LORENZ, O. Limiting value of dithiccarbamate formation during the vulcanization of natural rubber with	1373		
		Твятев, D. A. Sorption of water by rubber. Тномая, А. G. See Greenmarth, H. W. Тж.с., А. See Kello, V. Infrared studies of the aging of rubber. VI. Aging under	
thiuram disulfieds. Vulcanization of high elastic polymers. IV. Investigations with model	894	the aging of rubber. VI. Aging under the influence of heat and light. Discus-	
		TOBOLSKY, A. V. See OFFENBACH, J. A.	1250
of high elastic polymers. I. Vulcanization of hatural rubber with thiuram di-		and the relaxation of stress in stretched	1
sulfides. II. Vulcanization of natural rubber with		unvulcanised natural rubber Tom, D. H. E. Reaction of natural rubber with hydrofluoric acid	1198
thiuram disulfides III. Vulcanization of natural rubber with	15	Thousaien, M. Chlorination of rubber and	1
thiuram disulfides Schunz, J. Viscosity and structure viscosity of solutions and emulsions of natural	29	some products of its partial chlorination. TUNNICLIFFE, M. E. (Miss). Determina- tion of magnesium, total phosphorus, and	
rubber	880	free phosphate in rubber latex	664
SCOTT, G. W. See RUGG, J. S. SEKAR, K. C. See COOK, A. S. SEKHAR, B. C. See ARCHER, B. L. SELYUKOYA, V. See DOGADKIN, B. A. SHANIN, L. L. Diffusion and solubility of		VASILYEVA, V. N. See GURYANOVA, E. N. VERHAAR, G. Hevea latex. I. Structure	
SELYUKOVA, V. See DOGADKIN, B. A. SHANIN, L. L. Diffusion and solubility of oxygen and hydrogen in sodium-buta-			
oxygen and hydrogen in sodium-buta- diene rubber at different stages of its		page-abrasion. Studies of the abrasion	350
Oxidation. Sheinker, A. P., and Medvedev, S. S. Effect of the temperature of polymeriza-	602	And Viscosity II. Structure and viscosity Viehmann, W. Power transmission. Slip- page-abrasion. Studies of the abrasion of tread vulcanizates. Vodden, H. A. See Baxter, S.; Robinson, H. W. H.	, oraș
eopolymers	419	Adiabatic stretching as a method of in-	
merization of isoprene in aqueous solu-		vestigation of the nature of elasticity of	
tions of emulaifiers and in emulaions STAVELY, F. W., AND COWORKERS. Coral	673	VOTUTSKII, S. S., PANICH, R. M., AND KAL- YANOVA, K. A. Possibility of recharging the surfaces of particles of rubber disper-	
SHEMANINA, E. V. See KUZMINSKII, A. S. SHEMAN, J. J. See HORNE, S. E. JR.	973	sions (latexes) stabilized with soap	1496
Hons of emulsiners and in emulsions. STAYELY, F. W., AND COWORKERS. Coral rubber. A cis-1,4-polyisoprene. SHEMASTINA, E. V. See KUZMINSKII, A. S. SHIPMAN, J. J. See HONNE, S. E., JR. SHVARTS, A. G. See GUL, V. E. SHULLER, S. L. See ZAPAS, L. J. SISMAN, O. See BOPP, C. D. SMITH, THOR L. Viscoelastic behavior of		WATSON, W. F. See Angier, D. J.; Aybey, G.; Berry, J. P. Weiss, D. E. See Garten, V. A.	,
SISMAN, O. See BOPP, C. D. SMITH, THOR L. Viscoelastic behavior of		WEISS, D. E. See GARTEN, V. A. WILLSON, E. A. See HORNE, S. E., JR.	
	1199	WILLSON, E. A. See HONNE, S. E., JR. WOOD, J. O. Pull-through adhesion test WOOD, R. I. See MERRETT, F. M.	1066
SMITH, W. R. See SCHARFFER, W. D. SOROLEVA, I. G. See DOGADKIN, B. A. SOKOLEKAYA, V. D. See RATNER, S. B. STARK, C. See FEIGL, F.		YARMOLENKA, N. F., AND NOVIKAVA, E. N. Protective action of antioxidants of the	
STEARNS, R. S., AND JOHNSON, D. L. SUPINCE		phenolic type against the aging of natural	971
for reinforcement of rubber stocks	1309	YOUNG, C. A. See HILL, F. B. YURZHENKO, A. I., and MALERY, I. I. Rela- tion between the rate of adsorption of	
SUITO, E., ARAKAWA, M., HASEGAWA, H., AND FURUSAWA, Y. Electron micro- scopic studies of fillers in rubber. III.		high polymers on carbon black and their molecular weight.	1300
Effect of milling on the dispersion of	1009	YUZEFOVICH, N. A., AND KUVSHINSKII, E. V. Mechanical properties of polymers in the	
SVETLIE, J. F., RAILSBACK, H. E., AND COOPER, W. T. 2-Methyl-5-vinylpyri-		range of their softening. Elongation dia- grams of raw and vulcanized rubber	
dine elastomers in oil-resistant service	1414	ZAPAS, J. L., SHUFLER, S. L., AND DEWITT, T. W. Comparison of the dynamic prop-	
SULIMA, L. V. See MIKLUKHIN, G. P. SWEITZER, C. W. See BURGESS, K. A. SWIFT, P. McL. See BLOOMFIELD, G. F.		erties of natural rubber and GR-8725.	. 1517
TAGER, A., IOVLOVA, M., KANTOR, T., AND		ZAPP, R. L. Abrasion of Butyl rubber ZHURKINA, Z. N. See ZUBOV, P. I. ZIMMERMAN, E. W., HART, V. E., AND HORO- WITZ, E. Determination of sulfur in	
TAGER, A., IOVLOVA, M., KANTOR, T., AND MUZHEVA, L. Temperatures of vitrifi- cation and fluidity of natural rubber of different replacular weights.	95	wirz, E. Determination of sulfur in rubber vulcanizates.	612
TARASOVA, Z. See DOGADKIN, B. A. KAPLUNOV, M. YA., AND DOGADKIN,		ZUBOV, P. I., ZHURKINA, Z. N., AND KARGIN, V. A. Gel structure. VI. Preparation	32
B. A. Application of radioactive sulfur to the study and control of the vulcaniza-		of gels and globular structures from rub- bers by vulcanization of solutions Zuev. Yu. S., and Kuzminskii, A. S. Fail-	296
Sulfur exchange reactions in vul-	509	ure of stretched rubbers under the in- fluence of oxone.	568
TAYLOR, G. R. See ALEXANDER, L. E.	511	eanized rubber in light	591

SUBJECT INDEX

	Page		Page
Abrasion	000	Chain scission in the oxidation of Hevea	
of Butyl rubber effect of carbon black on	333	I	1274
and friction of rubberlike materials	774		1166
and slippage	355	Characterization of graft polymers	1157
testing	187	Chemical relaxation of stress in polyurethan	
and wear of rubber	1434	elastomera	735
Absorptiometric microdetermination of total	-	Chemicals, analysis of rubber	1373
sulfur in rubber products	620	Chlorination of rubber and some products of its partial chlorination	302
Accelerators	917	Chromatographic determination of rubber in	
action of	635	plant latexes	1026
sulfur atoms in	1363	Coefficient of static friction	829
exchange in	534	Cold milling of natural rubber and Neoprene.	427
Accidental factors involved in the fatigue		Colorimetric determination of phenyl-2- naphthylamine in rubber	647
breakdown of rubber articles	753	Comparative determination of the molecular	041
Aerylonitrile-butadiene rubbers	1332 770	weight of rubber by the methods of light	
Activation, mechanical of oxidation	651	scattering and osmometry	477
Adhesion test, pull-through	1066	Comparison	
Adiabatic stretching as a method of investiga-		of the flow of high polymers in the cavity	269
tion of the nature of elasticity of rubber-		of a Mooney plastometer	200
like materials	1209	and GR-S	1517
Adsorption	1900	of different viscometers for measuring the	
on earbon black of high polymers	1300	Viscosity of latex	1909
Agglomeration of particles in GR-S	106	Compression, stress relaxation of vulcanized	009
Aging		Condensation relayment reinforcing effect of	263 278
accelerated by heat	1255	Condensation polymers, reinforcing effect of Conductivity electrical experiments with	219
by infrared spectrography	1255	Conductivity, electrical, experiments with furnace-black loaded rubbers	1057
infrared studies of	1255	Constant-power principle in abrasion testing.	187
of natural rubber of vulcanizates in light	971 593	Coral rubber, A cis-1,4-polyisoprene Crosslinking of latex rubber	673
a-globulin, isolation of	1018	Crossinking of latex rubber	1154
a-globulin, isolation of . Ameripol SN—a cis-1,4-polyisoprene	687	Crystallization	451
Analysis, quantitative of auxiliary rubber ma-		influence of, on sorption of hydrocarbons in élastomers	455
terials	1414	in natural rubber. IV. Temperature	
Antioxidants	140	dependence	794
diffusion of	145 240	and the relaxation of stress in stretched	
diffusion of evaluation of identification of	635	unvulcanized natural rubber	1195 1181
protective action of	971	thermodynamics of, in high polymers	438
Apparatus for the continuous measurement		Curing agents in rubber	319
of stress relaxation in vulcanized rubber.	834	Cut growth and flex testing of natural rubbers	
Application of radioactive sulfur to the study	***	and synthetic elastomers	207
and control of the vulcanization process	509	Cyclized rubber as stiffening resin in rubber Cyclohex-2-enyl methyl sulfide, autoxidation	1034
Autoxidation of cyclohex-2-enyl methyl sul- fide	83	of	83
Autoxidizability of monosulfides	71		-
		Deformation	
Birefringence and crystallisation in clastomers	455	kinetics of high elastic	382
Black-loaded rubber, dispersion in	1303	mechanism of failure by repeated	504
Bonds, sulfur, transformation by heat and		static and multiple, in oxidation of vulcan-	-
oxygen	1276	izates	770
Butadiene	1000	Degradation mechanism of cold mastication	1127
Aerylonitrile-, rubbers	1332 423	oxidative	1266
-isoprene, copolymerization nitrile clastomers	607	Detection of elemental sulfur	1117
-atyrene		Determination	
copolymers	419	comparative, of molecular weight	477
rubber, plasticization of	485 126	of magnesium, total phosphorus, and free	664
structure of	423	phosphate in rubber latex	647
systems. vulcanization of	933	of sulfur	
Butyl		by wet combustion with perchloric acid.	1107
rubber, abrasion of	333	in rubber vulcanizates	612
peroxide	1043	Diffusion	
		of antioxidants in rubber and solubility of oxygen and hydrogen in	145
Calorific and thermal properties of natural		and solubility of oxygen and hydrogen in	
rubber in the oriented and nonoriented	789	sodium-butadiene rubber at different stages of its oxidation	602
States	100	Dilaminar elastomeric films	1345
adsorption		Diphenyl-guanidine, isotope exchange in	
of elastomers	148	presence of	1363
of high polymers on	1300	Dispersion	
chemistry of	1434	in black-loaded rubber (latex) stabilized with soap	1303 1496
inhibition of oxidation by	176 286	Dithiocarbamate formation during vulcani-	1400
reinforcing properties of	423	zation	894
orang are polymeratured, amount of the tree to			

	Page		Page
Dynamic fatigue of rubber and the mechanism of		and oxygen, transformation of sulfur bonds	1276
failure by repeated deformations	504	treatment, effect of, on earbon black	286
mechanical characteristics of rubber com-		Heven latex. I. Structure and viscosity	1474
pounds	1215	II. Structure and viscosity	1484
properties of rubber and GR-S725,	838	High-molecular compounds, thermochemical studies of	470
properties of rubber and Ore-5	1011	How radiation changes mechanical proper-	
Ebonite, mobility of sulfur bonds in	67	ties of polymers	1239
Effect of		Hydrated anica pigmenta	1309
heat treatment on reinforcing properties of carbon black	286	Hydrofluoric acid, reaction of rubber with Hydrogen, solubility of, in sodium-butadiene	1316
oxidation of rubber on the kinetics of its		rubber	602
swelling ozone on Neoprene vulcanizates and the	135		
	166	Identification of	
influence of protective agents and fillers storage conditions on the properties of	100	accelerators and antioxidants in com- pounded rubber products	635
latex. I	1502	curing agents in rubber products. Ultra-	000
the temperature of polymerization on the		violet absorptiometric analysis of selec-	
structure of butadiene-styrene copoly- mers	419	tive solvent extracts	319
Elasticity		Influence of crystallization on the sorption of hydro-	
of rubberlike materials	1209	carbons by natural rubber and gutta-	
statistical theory of Electrical conductivity experiments with	227	percha	451
high-abrasion furnace black-loaded		the hardness of rubber on its coefficient of static friction without lubrication	829
natural rubbers	1057	inhibitors on the oxidation of rubber solu-	949
Electron microscopic studies of fillers in rub-		tions	1047
ber. III. Effect of milling on the dis- persion of fillers.	1003	intermolecular reaction on the kinetics of	400
Elongation		swelling of elastomers	463
diagrams of raw and vulcanized rubbers	718	spectrography, aging by	1245
of polyisobutylene	1199	studies of the aging of rubber. VI. Aging	
Emulsions	121	under the influence of heat and light.	1000
isoprepe in	121	Discussion Inhibition of	1255
of natural rubber	880 1472	oxidation of rubbers. The relation be-	
Enzymic synthesis of rubber Exchange	14/2	tween molecular structure and the	
isotope between sulfur atoms	1363	effectiveness of inhibitors	131
reaction of elemental sulfur with mercapto-	09	rubber oxidation by carbon black	176
benzothiazole. Experimental examination of the statistical	63	effectiveness of	131
theory of rubber elasticity. Low ex-		influence of, on oxidation of rubber solu-	
tension studies	227	tions	1047
Follows of stretched subbars under the in-		Interpolymerisation of natural rubber Isoprene	427
Failure of stretched rubbers under the in- fluence of ozone	568		121
Fatigue, dynamic, by repeated deformations	504	polymerization of	121
Filler	166	Isotope exchange between sulfur atoms in vul-	
influence of, on Neoprene vulcanizates reinforcement and tear resistance in light of	100	canization accelerators in the presence of diphenylguanidine and phenyl-2-naph-	
thixotropy	409	thylamine	1363
Films, dilaminar elastomeric	1345		
Flex testing of natural rubber and synthetic elastomers	207	Kinetics	
Flow of high polymers	269	of catalytic polymerization	423 382
Fluidity of natural rubber	95	of high elastic deformation	555
Friction of rubberlike materials. Fuel consumption and tire wear.	774	of the oxidation of rubber under the in-	
	2.440	fluence of light	598
Gels, preparation of	296	reaction in aging by infrared spec-	121
Gel stucture. VI. Preparation of gels and		trography	1255
globular structures from rubbers by vulcanization of solutions	296	of swelling of elastomers	463
Glass transitions in polymer-plasticizer sys-	-	of swelling of rubber	135
tems	492 296	Later	
Globular structures from rubbers. Graft polymers . characterization of . derived from natural rubber.	1157	chromatographic determination of	1026
characterization of	1157	effect of storage conditions on	1502
derived from natural rubber. Growth and agglomeration of particles in	99	GR-S type. Hevea. I and II	106 1484
low-temperature GR-8 type of latex	106	magnesium, phosphorus, and phosphate in	664
GR-S		magnesium, phosphorus, and phosphate in proteins of Hevea brasiliensis 1011,	1018
dynamic properties of	1517	rubber, crosslinking	1119
Gutta-percha Crystallization in high polymers	1181	vinyl monomers in natural rubbervolatile acids of	651
sorption of hydrocarbons by	451	viscosity of, measuring the	1509
		Light	***
Hardness influence on coefficient of static friction	829	aging of vulcanizates in light	593 1255
of very soft rubbers	852	and heat, aging under influence of	1.000
Heat		fluence of	598
aging accelerated byand light, aging under influence of	1245	scattering method for determining molec-	477
and ague, aging under innuence of	1200	ular weight	411

Limiting value of dithlocarbamate formation during the vulcanization of natural rabotal during the vulcanization of natural rabotal during the vulcanization of matural rubber and knopress on cold III. A survey of the autoxidisability of monosulfides. III. A survey of the autoxidisable		Page		Page
be with thiuram disulfides. Agressium in rubber latex Magnesium in rubber latex Magnesium in rubber latex Magnesium in rubber latex 664 Magnesium in rubber latex 664 Magnesium in rubber latex 665 Magnesium in rubber latex 666 Magnesium in rubber latex 667 Magnesium in rubber latex 668 Magnesium in rubber latex 668 Magnesium in rubber latex 669 1127 of ubber. 611 Magnesium in rubber latex 669 Magnesium in rubber latex 660 Magnesium in rubber latex	Limiting value of dithiocarbamate formation		of butadiene styrene rubber	126
Jankage formation of Martication of or or Jubber of Tubber of Tubber of Tubber of Tubber of Martication of Mart	ber with thiuram disulfides	904	of Heyes	1274
Magnesium in rubber latex Magnesium in rubber latex Magnesium in rubber latex Magnesium in rubber should be degradation mechanism of or rubber. If the properties of pubber. If the properties of pubber is a standard manufacture of rubber and benits and under the pubber. If the properties of pubber should be a standard manufacture of the pubber should be a standard manufacture of the pubber should be a standard manufacture of the pubber should be a standard manufacture of rubber should be a standard manufacture of rubbers should be a standard manufacture of rubbers should be a standard manufacture of rubbers should be a standard to shou	Linkage formation	1284	inhibition of, of rubbers	131
Materiation of degradation mechanism of 127 of rubber of tribber. II Interpolymerization of natural rubber and Neoprene on cold milling and verification of the mechanism of 117 Polymerization of 117 Polymerization of vinyl monomers by cold mastication of 117 Polymerization of vinyl monomers by cold mastication of vinyl monomers by cold mastication of vinyl monomers by cold mastication of vinyl monomers the cold of the cold dispersion in black-loaded properties of degradation of avoilen vulcanizates by static and dynamic deformation. 17 dynamic, characteristics.			of organic sulfides. III. A survey of the	71
degradation mechanism of of rubber of rubber of rubber solutions. Of rubber solutions of rubber solutions. Of rubber solutions. Of rubber solutions. Of rubber solutions of rubber solutions. Of rubbe	Mastication	604	IV. Autoxidation of eveloper-2-envl	11
degradation mechanism of the mechanical activation of matural rubber and Neoprene on cold milling. III. Chemical verification of the mechanical degradation of vinyl monomers to the control of the cont	eold		methyl sulfide	83
of rubber. II. Interpolymerization of natural rubber and Neoprene on cold milling. The state of	degradation mechanism of	1127	of rubber, effect on kinetics of swelling	
antural rubber and Neoprens on cold III Commical verification of the mechanise ical degradation of vivy monomers by cold mastication	of rubber	1140	of rubber solutions	1047
milling. III. Chemical verification of the mechantical degradation of surplementation of the mechanical degradation of the mechanical degradation of studies of the description in black loaded rubber. Measurement of dispersion in black loaded rubber. Somethod for determining the vitrification temperature of rubber in the range of their softening. Elongation diagrams of raw and vulcanizate rubbers. Mechanism of surplements of the control of the cachange reaction of elemental sulfur with mercaptobenzothiazole of failure by repeated deformations. Mercaptobenzothiazole of of sulfur of the exchange reaction of elemental sulfur with mercaptobenzothiazole of vulcanization with sulfur sulfur exchange reaction of elemental sulfur which mercaptobenzothiazole of vulcanization with sulfur sulfur exchange reaction of elemental sulfur whords in soft rubber and abonite. Mercaptobenzothiazole of vulcanization with sulfur sulfur exchange reaction of sulfur with exchange in rubber lates and measurements of tire treads and their behavior on the road. Molity of sulfur exchange in the sulfur benchmark exchange reaction of exchange reaction of the physical suboratory and test stand measurements of tire treads and their behavior on the road. More and their behavior on the road. More and the physical aspects of resistance to skidding on dry roads and particularly exchange reactio	natural rubber and Neoprens on sold		of synthetic rubbers	
III. Chemical verification of the mechanical agradation of vinyl monomers to diagradation of vinyl monomers of vinyl mechanical activation of the oxidation of vulcanizates by static and dynamic deformation. To dechanical activation of the oxidation of vulcanizates by static and dynamic deformation. To properties of rubber. To method for determining the vitrification temperature of rubberlike polymers. To properties of polymers. To destination of their softening. The range of their softening of action of vulcanization accelerators. To discontinuous accelerators		427	of vulcanizates	770
IV. Polymerization of vinyi monomers by cool mastication 1140 studies of mastication 1140 studies of measurement of dispersion in black-loaded rubber. 1140 properties of rubber of the oxidation of vulcanisates be characteristics 1215. Properties of rubber method for determining the vitrification temperature of rubber states and properties of polymers 1174 properties of polymers 1229 changed by radiation. 1229 changed by ra	III. Chemical verification of the mechan-	-	Oxidative	
by cold mastication 1140 studies of dispersion in black-loaded rubber 210 activation of the oxidation of vulcanizates by static and dynamic deformation 770 dynamic characteristics 1215 properties of rubber 270 display the determination 2126 diameter and linkage formation 326 properties and dynamic 327 properties and dynamic 327 properties and dynamic 327 properties and dynamic 327 properties of urbber 327 properties of urbber 327 diameter and linkage formation 326 properties and dynamic 327 properties and dynamic 327 properties and dynamic 327 properties and dynamic 328 properties and dynamic 328 properties and dynamic 328 properties and dynamic 328 properties and dynamic 328	ical degradation of	1127		1266
Meanairement of dispersion in black-loaded rubber. Mechanical activation of the oxidation of vulcanizates by static and dynamic deformation. 170 properties of rubbers. method for determining the vitrification temperature of rubbers. phanged by radiation. 1215 properties of polymers. changed by radiation. 1226 phanged by radiation. 1237 in the range of their softening. Elongation diagrams of raw and vulcanizate rubbers. Mechange of their softening. Elongation diagrams of raw and vulcanizate rubbers. Mechange reaction of elemental sulfur with mercaptobensothissole. of failure by repeated deformations. of failure by repeated deformations. of saliure by repeated deformation. of saliure by repeated deformation. of saliure stress polymers. of saliure stress polymers. of saliure stress repeated and saliur with mercapitobensor saliur with. of saliure stress repeated and saliur with mercapitobensor saliur with. of saliure stress repeated and saliur with mercapitobensor saliur with. of saliure stress repeated and saliur with mercapitobensor saliur with. of saliure stress repeated rubbers. of the exchange reaction of sulfur with. of saliure stress repeated rubbers. of saliure stress rubbers are saliure, stress relaxation of sulfur with. of saliure stress rubbers are saliur saliur stress repeated connections. of saliure stress rubbers are saliur saliur stress repeated connections. of saliure stress rubbers are saliur saliur stress repeated connections. of saliure stress rubbers are saliur saliur stress rubbers. of saliure stress rubbers are saliur	IV. Polymerization of vinyl monomers	1140	ized with di-tertigra-butyl peroxide and	
Meanairement of dispersion in black-loaded rubber. Mechanical activation of the oxidation of vulcanizates by static and dynamic deformation. 170 properties of rubbers. method for determining the vitrification temperature of rubbers. phanged by radiation. 1215 properties of polymers. changed by radiation. 1226 phanged by radiation. 1237 in the range of their softening. Elongation diagrams of raw and vulcanizate rubbers. Mechange of their softening. Elongation diagrams of raw and vulcanizate rubbers. Mechange reaction of elemental sulfur with mercaptobensothissole. of failure by repeated deformations. of failure by repeated deformations. of saliure by repeated deformation. of saliure by repeated deformation. of saliure stress polymers. of saliure stress polymers. of saliure stress repeated and saliur with mercapitobensor saliur with. of saliure stress repeated and saliur with mercapitobensor saliur with. of saliure stress repeated and saliur with mercapitobensor saliur with. of saliure stress repeated and saliur with mercapitobensor saliur with. of saliure stress repeated rubbers. of the exchange reaction of sulfur with. of saliure stress repeated rubbers. of saliure stress rubbers are saliure, stress relaxation of sulfur with. of saliure stress rubbers are saliur saliur stress repeated connections. of saliure stress rubbers are saliur saliur stress repeated connections. of saliure stress rubbers are saliur saliur stress repeated connections. of saliure stress rubbers are saliur saliur stress rubbers. of saliure stress rubbers are saliur	studies of		nonoxidative thermal degradation of	
Mechanical activation of the oxidation of vulcanizates by static and dynamic deformation. 770 dynamic, characteristics. 1215 properties of rubber method for determining the vitrification temperature of rubberlike polymers. 1239 in the range of their softening. Elongation diagrams of raw and vulcanized rubbers. 1239 in the range of their softening. Elongation diagrams of raw and vulcanized rubbers. 1239 of the exchanger seation of elemental sulfur with mercaptobenactinacole. 1127 of the exchange reaction of elemental sulfur with mercaptobenactinacole. 1127 of the exchange reaction of elemental sulfur with mercaptobenactinacole. 1127 of the exchange reaction of elemental sulfur with mercaptobenactinacole. 1127 of the exchange reaction of elemental sulfur with mercaptobenactinacole. 1128 of or sulfur by repeated deformations. 1128 of formation of similar trubbers. 1129 of the exchange reaction of elemental sulfur with mercaptobenactinacole. 1129 of the exchange reaction with sulfur sulfur subsers. 1129 of the exchange reaction of elemental sulfur with mercaptobenactinacole. 1129 of the exchange reaction of elemental sulfur with mercaptobenactinacole. 1129 of the exchange reaction of elemental sulfur with mercaptobenactinacole. 1129 of the exchange reaction of sulfur with mercaptobenactinacole. 1129 of the exchange reaction of sulfur with mercaptobenactinacole. 1129 of the exchange reaction with sulfur subsers. 1120 of the exchange reaction of elemental sulfur with mercaptobenactinacole. 1120 of the exchange reaction of sulfur with mercaptobenactinacole. 1120 of the exchange in presence of 1	Measurement of dispersion in black-loaded	-	rubber	857
setivation of the oxidation of vulcanizates by static and dynamic deformation. 770 dynamic, characteristics. 1215 properties of rubber. 2125 method for determining the vitrification temperature of rubberlike polymers. 1239 in the range of their softening. Elongation diagrams of raw and vulcanized rubbers. 1239 The Mechanism of action of vulcanization accelerators. 511 of setting of their softening. Elongation diagrams of raw and vulcanized rubbers. 1239 Mechanism of action of vulcanization accelerators. 511 of setting of polymers. 1239 degradation, of cold mastication. 1127 of the exchange reaction of elemental sulfur with mercaptobenzothiazole of failure by repeated deformation. 40 of siliure by repeated deformation. 40 of siliure by repeated deformation. 40 of siliure by repeated deformation. 40 of vulcanization with sulfurs. 4980 Mercaptobenzothiazole exchange reactions of sulfur with. 4980 Mercaptobenzothiazole e	rubber	1303	Oxygen	050
by static and dynamic deformation. 770 dynamics, characteristics. 1215 properties of rubber 1276 method for determining the vitrification temperature of rubberlike polymers. 1239 changed by radiation. 1239 changed by radiation and videanized 1239 changed by radiation. 1239 degradation, of cold matication of 1217 of the exchange reaction of elemental sulfur with mercaptobenothiasole. 63 of failure by repeated deformations. 504 of formation of since dimethyldithiocarbs- mate (EniDMDC) in tetramethylthiuran matual (E			absorption, simultaneous	602
dynamie-, characteristics — 1215 properties of rubbers — 1236 method for determining the vitrification temperature of rubberike polymers — 1239 changed by radiation — 1239 in the range of their softening. Elongastion diagrams of raw and vulcanized rubbers — 1239 in the range of their softening. Elongastion diagrams of raw and vulcanized rubbers — 1239 in the range of their softening. Elongastion diagrams of raw and vulcanized rubbers — 1239 in the range of their softening. Elongastion diagrams of raw and vulcanized rubbers — 1239 in the range of their softening. Elongastion diagrams of raw and vulcanized for the exchanger reaction of elemental sulfur with mercaptobenzothiazole — 63 of failure by repeated deformation — 504 of formation of sine dimethyldithiocarbs-mate (EnDM DC) in tetramethyldithiocarbs-mate (EnDM DC) in the Endmand DC	by static and dynamic deformation	770		
properties of rubber method for determining the vitrification temperature of rubberlike polymers. 1239 changed by radiation. 1230	dynamic-, characteristics	1216	Ozone	
changed by radiation	properties of rubber	838	effect of, on Neoprene vulcanizates	
changed by radiation	method for determining the vitrification	1174	reaction with natural Heyes	1332
changed by radiation. in the range of their softening. Elongation diagrams of raw and vulcanized rubbers. Mechanism of action of vulcanization accelerators. Self-anism of action of vulcanization accelerators. Singular defermance of the exchange reaction of elemental sulfur with mercaptobenzothinazole of failure by repeated deformations. of failure by repeated deformations. of of silure by repeated deformations. of of indiver by repeated deformations. of oxidation of synthetic rubbers. of oxidation of synthetic rubbers. oxidation of synthetic rubber. oxidation of synthetic rubbers. oxidation of synthetic rubber. oxidation of synthetic rubbers. oxidation of synthetic rubber. oxidation of synthetic rubbers. oxidation of synthetic rubber.	properties of polymers	1239	Touction with matural revenances.	1002
in the range of their softening. Elongation diagrams of raw and vulcanized rubbers. Mechanism Mechanism Mechanism Mechanism Mercaptobenscothiasole of salure by repeated deformations of off formation of silure the receptobenscothiasole mate (2nDMDC) in tetramethylthiurand disulfide (TMTD) vulcanization. of solution of synthetic rubbers. of vulcanization with sulfur with. of oxidation of synthetic rubbers. of vulcanization with sulfur with. reaction with sulfur with. reaction with sulfur with. bonds in soft rubber and ebonite. cearbon bonds and the mechanism of action of furber vulcanization and inhibitors. Model compounds. Nodel compounds. Nodel compounds. None pel pateometer, flow of high polymers in weight, comparative determination of alto have been also more thanical properties of rubber. New method for determining the dynamic mechanical properties of rubber. Network Observations on the physical aspects of resistance to astiding on dry roads and particularly on the relation between laboratory and test stand measurements of tire treads and their behavior on the road. Oli-resistant service, 2-methyl-5-vinylpyridine elastomers in. Oriented state of natural rubber. Oriented state of natural rubber. On molecular mechanical properties of rubber. On molecular service, 2-methyl-5-vinylpyridine elastomers in. Onempery in comparative determination of molecular weight. On the relation between laboratory and test stand measurements of tire treads and their behavior on the reads and their behavio	changed by radiation	1239		
rubbers of action of vulcanization accelerators of action of vulcanization accelerators of setion of vulcanization of suid determination of sulfur with settloric acid, determination of sulfur with mercaptobenoxthiazole of failure by repeated deformations of silure by repeated deformations of sof distriction of sine dimethyldithiccarbs mate (ZnDMDC) in tetramethylthiuram disulfide (TMTD) vulcanization of vulcanization with sulfur* of oxidation of synthetic rubbers of vulcanization with sulfur* Mercaptobenzothiazole exchange reactions of sulfur with reaction with sulfur with reaction of subter and elonite reaction with sulfur with reaction of subter and elonite reaction with sulfur with reaction of subter and elonite reaction with sulfur with reaction of subter and elonite reaction with sulfur with reaction of subter and elonite reaction with sulfur with reaction of butalisms with with sulfur with reaction of subter syndyotactic polymers reaction of sulfur with reaction of butalisms with sulfur with reaction of subter syndyotactic polymers reaction of sulfur with reaction of vulcanization of reaction of sulfur with reaction of vulcanization of reaction of sulfur with reaction of vulcanization reaction with sulfur with reaction of vulcanization of reaction of sulfur with reaction of vulcanization of reaction of sulfur with reaction of vulcanization of reaction of vulcanization of reaction of sulfur with reaction of vulcanization of reaction of sulfur with reaction of vulcanization of reaction of vulcanization of reaction of vulcanization of reaction of v	in the range of their softening. Elonga-			1284
of setson of vuicanization accelerators of the exchange reaction of elemental sulfur with mercaptobenotchiazole of failure by repeated deformations mate (ZhDMDC) in tetramethylthiuram disulfide (TMTD) vulcanization of voidation of synthetic rubbers of vuicanization with sulfur* of oxidation of synthetic rubbers of vuicanization with sulfur* mercaptobenzothiazole exchange reactions of sulfur with oraction with sulfur sulfur rubber moliting, eold, interpolymerization of total sulfur in rubber moliting, eold, interpolymerization of utility of sulfur moliting, eold, interpolymerization of utility of sulfur moliting, eold, interpolymerization of utility of sulfur moliting, eold, interpolymerization molecular structure and inhibitors moliting, eold, interpolymerization molecular structure moliting in mubber moliting in mu	tion diagrams of raw and vulcanized	710	size of condensation polymers	278
of setson of vuicanization accelerators of the exchange reaction of elemental sulfur with mercaptobenotchiazole of failure by repeated deformations mate (ZhDMDC) in tetramethylthiuram disulfide (TMTD) vulcanization of voidation of synthetic rubbers of vuicanization with sulfur* of oxidation of synthetic rubbers of vuicanization with sulfur* mercaptobenzothiazole exchange reactions of sulfur with oraction with sulfur sulfur rubber moliting, eold, interpolymerization of total sulfur in rubber moliting, eold, interpolymerization of utility of sulfur moliting, eold, interpolymerization of utility of sulfur moliting, eold, interpolymerization of utility of sulfur moliting, eold, interpolymerization molecular structure and inhibitors moliting, eold, interpolymerization molecular structure moliting in mubber moliting in mu	Mechanism	110	Perchloric acid, determination of sulfur with	
degradation, of cold mastication of the exchange reaction of elemental sulfur with mercaptobensothiasole of failure by repeated deformations 504 of formation of zine dimethyldithiocarbamate (ZnDMDC) in tetramethylthiuram disulfide (TMTD) vulcanization 944 properties of ovidation of synthetic rubbers 573 platicization of with sulfur sulf		511	Peroxide, stress relaxation of	
with mercaptobenothissoise 5 of failure by repeated deformations 5 of formation of sine dimethyldithiocarbamate (ZnDMDC) in tetramethylthiuram disulfide (TMTD) vulcanization 9 of vulcanization of synthetic rubbers 573 of vulcanization of sulfur with 673 of vulcanization of sulfur with 674 of total sulfur in rubber 675 of total s			Phenolic type antioxidants	971
of formation of sine dimethyldithocarba- mate (ZnDMDC) in tetramethylthiuram disulfide (TMTD) vulcanization 944 of oxidation of synthetic rubbers 573 of vulcanisation with sulfur* 980 Mercaptobeazothiazole exchange reactions of sulfur with 1369 Microdetermination, absorptiometric, of total sulfur in rubber and ebonite 627 Mobility of sulfur bonds in soft rubber and ebonite 637 Model compounds 647 Model compounds 647 Model compounds 647 Molecular structure and inhibitors 647 Molocular structure and inhibitors 647 Mooney plastometer, flow of high polymers in 131 weight, comparative determination of 1477 of high polymers from 136 Newpore interpolymerization of 1477 of high polymers for 156 New method for determining the dynamic mechanical properties of rubber 647 Oil-resistant ervice, 2-methyl-5-vinylpyridiae elastomers in 140 Oriented state of natural rubber 789 Oil-resistant ervice, 2-methyl-5-vinylpyridiae elastomers in 644 Phosphate in rubber latex 664 Phosphorus in rubber latex 664 Plasticization of vulcanisation of 1364 Plasticization of vulcanisation of 1365 Polybutadiae and other syndyotactic polymers 145 Polysioprene 2019 America and inhibitors 627 Model compounds 67 Amodel compounds 67 Model compounds 67 Molecular 87 Amotified, polymers 121 131 132 133 134 135 136 137 138 139 130 130 130 130 130 130 131 131 132 131 133 134 135 136 137 131 131 131 132 133 134 134 135 136 137 138 139 139 130 130 130 130 130 130		49	Phenyl-2-naphthalamine	1000
distinct (1 MTD) vulcanization	of failure by repeated deformations	504	in rubber	
distinct (1 MTD) vulcanization	of formation of sine dimethyldithiocarba-	50.78	Phosphate in rubber latex	664
distinct (1 MTD) vulcanization	mate (ZnDMDC) in tetramethylthiuram		Phosphorus in rubber latex	664
or viscansation with sulture Mercaptobenzothizatole exchange reactions of sulfur with freaction with sulfur. Milling cold, interpolymerization on of rubber rubber and eboniteearbon bonds and the mechanism of action of rubber vulcanisation accelerators. Modified, polymer-, natural rubber. Modified, polymer-, natural rubber. 706 Molecular structure and inhibitors. structure and inhibitors. structure and inhibitors. Monoperplastometer, flow of high polymers in Natural rubber, graft polymers from Neoprene interpolymerization of. vulcanisate. New method for determining the dynamic mechanical properties of rubber. Network polymer, chain scissions in. on the relation between laboratory and test stand measurements of tire treads and their behavior on the road. Oil-resistant service, 2-methyl-o-vinylpyridine elastomers in. Oriented state of natural rubber. 789 Oriented state of natural rubber. 780 Oriented state of natural rubber	disulfide (TMTD) vulcanization	1944		
Mercaptobenzothiazole exchange reactions of sulfur with 63 reaction with sulfur . 1369 Microdetermination, absorptiometric, of total sulfur in rubber	of vulcanization with sulfur#		Plasticizar polymer, systems	499
exchange reactions of sulfur with	Mercaptobenzothiazole	960	Plastometer, Mooney	269
Milling, cold, interpolymerization on doblity of sulfur bonds in soft rubber and eboniteearbon bonds and the mechanism of action of rubber vulcanization accelerators of Model compounds and the mechanism of action of rubber vulcanization accelerators of Model compounds of Mode	exchange reactions of sulfur with		Polybutadiene and other syndyotactic poly-	
Milling, cold, interpolymerization on 427 Mobility of sulfur bonds in soft rubber and ebonite 67 -earbon bonds and the mechanism of action of rubber vulcanization accelerators 516 Model compounds 7706 Molecular structure and inhibitors 7706 Molecular structure and inhibitors 7706 Molecular structure and inhibitors 7706 Molecular weight, comparative determination of 477 Mononey plastometer, flow of high polymers 1709 Mooney plastometer, flow of high polymers 1709 Natural rubber, graft polymers from 99 Natural rubber, graft polymers from 1709 Neopene 1709 Interpolymerization of 1709 Vulcanizates, effect of oxone on 1709 Network 1709 Network 1709 Network 1709 Network 1709 New method for determining the dynamic 1709 mechanical properties of rubber 1709 Observations 1709 Observati	reaction with sulfur	1369		
Milling, cold, interpolymerization on 427 Mobility of sulfur bonds in soft rubber and ebonite 677 carbon bonds and the mechanism of action of rubber vulcanization accelerators 516 Model compounds 516 Model compounds 516 Molified, polymer, natural rubber 706 Molecular structure and inhibitors 131 weight, comparative determination of 477 of high polymers 1300 Mooney plastometer, flow of high polymers in 1300 Mountain a 1300 Mooney plastometer, flow of high polymers in 1300 Mountain a 1300 Mooney plastometer, flow of high polymers in 1300 Mountain a 1300 Mooney plastometer, flow of high polymers in 1300 Mountain a 1300 Mooney plastometer, flow of high polymers in 1300 Mountain a 1300 Mooney plastometer, flow of high polymers in 1300 Mountain a 1300 Mooney plastometer, flow of high polymers in 1300 Mooney plastometer, flow of high polymer	total sulfur in rubber	620	Polyischutylene, viscoelestic behavior of	1100
Mobility of sulfur bonds in soft rubber and ebonite 67 earhon bonds and the mechanism of action of rubber vulcanization accelerators 516 Model compounds 770 Modified, polymer-, natural rubber 770 Molecular structure and inhibitors 770 molecular structure and inhibitors 131 meght, comparative determination of 477 do high polymers 1300 Mooney plastometer, flow of high polymers in 1300 Mooney plasticizer systems 490 Mooney plasticizer systems 700 plasticizer systems 490 Mooney plasticizer systems 700 plasticizer systems 490 Mooney plasticizer systems 700 plasticizer systems 70	Milling, cold, interpolymerization on		Polyisoprene	
-earbon bonds and the mechanism of action of for processes of resistance to skidding on dry roads and particularly on wet roads. Observations on the physical aspects of resistance to skidding on dry roads and particularly on wet roads. Oil-resistant service, 2-methyl-5-vinylpyridine elastomers in the polymers in the polymers of the process of molecular state of natural rubber. Oil-resistant service, 2-methyl-5-vinylpyridine elastomers in the polymers in the polymers of molecular weight. Osmometry in comparative determination of molecular weight. 516 706 706 706 707 706 706 707 706 707 706 706	Mobility of sulfur		Ameripol-SN	687
of rubber vulcanization accelerators 516 Model compounds 37 Modified, polymer-, natural rubber 706 Molecular structure and inhibitors 131 weight, comparative determination of 477 of high polymers 1300 Mooney plastometer, flow of high polymers in 259 Natural rubber, graft polymers from 269 Nework polymerization of 277 vulcanizate, effect of ozone on 166 Network polymer, chain scissions in 1166 vulcanizate 1276 New method for determining the dynamic mechanical properties of rubber 287 Observations on the physical aspects of resistance to skidding on dry roads and particularly on wet roads on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation between laboratory and test stand measurements of tire treads and their behavior on the road 280 Oli-resistant service, 2-methyl-5-vinylpyridine elastomers in 1414 Oriented state of natural rubber 280 Oriented state of natural rubber 280 Oriented state of natural rubber 281 Osmometry in comparative determination of molecular weight 477 modified natural rubber 476 plasticizer systems 49 Polymerization 478 of vinyl monomers 1119, 1144 Of vinyl monomers 1119, 1144 Of vinyl monomers 1119, 1144 Oriented state of natural rubber 789 Polymerization 419 Olymerization 410 volucianizate, effect of temperature of 4119 Osmometry in comparative determination of molecular weight 477	bonds in soft rubber and ebonite	67	Coral rubber	673
Modified, polymer-, natural rubber 706 Molecular structure and inhibitors 131 weight, comparative determination of 477 do high polymers 1300 Mooney plastometer, flow of high polymers in 1300 Obligatometer, flow of high polymers in 1300 Natural rubber, graft polymers from 200 Neoprene interpolymerization of 200 vulcanizates, effect of temperature of 411 Polysulfides, sulfur exchange in 530 Polymerhan elastomers in 530 Polymerhan elastomers in 200 vulcanizates, effect of temperature of 411 Polysulfides, sulfur exchange in 530 Polysu	of rubber vulcanization accelerators	516		706
Modified, polymer-, natural rubber 706 Molecular structure and inhibitors 477 of high polymers 1300 Mooney plastometer, flow of high polymers 1300 Mooney plastometer, flow of high polymers 1300 Mooney plastometer, flow of high polymers 1300 Netwarl rubber, graft polymers from 90 Natural rubber, graft polymers from 90 Neoprene 166 Network 90 vulcanisates, effect of ozone on 166 vulcanisates, effect of ozone on 166 vulcanisate 1276 New method for determining the dynamic 180 mechanical properties of rubber 838 New method for determining the dynamic 180 on the physical aspects of resistance to skidding on dry roads and particularly on wet roads 90 on the relation between laboratory and test stand measurements of tire treads and their behavior on the road. 90 Oil-resistant service, 2-methyl-o-vinylpyridine elastomers in 1414 Oriented state of natural rubber 970 Oil-resistant service, 2-methyl-o-vinylpyridine elastomers in 1414 Osmometry in comparative determination of molecular weight . 970 Oil-resistant service, 180 New method for determining the dynamic 180 New method for determining the dynamic 180 Observations on the physical aspects of resistance to skidding on dry roads and particularly on the relation between laboratory and test stand measurements of tire treads and their behavior on the road. 970 Oil-resistant service, 2-methyl-o-vinylpyridine elastomers in 140 Processes resulting from thermal rupture of the sulfur bonds in vulcanisates. 970 Oil-resistant service, 2-methyl-o-vinylpyridine elastomers in 180 Oriented state of natural rubber 971 Osmometry in comparative determination of molecular weight . 971 Osmometry in comparative determination of molecular weight . 971 Osmometry in comparative determination of molecular weight . 971 Osmometry in comparative determination of molecular weight . 972 Osmometry in comparative determination of molecular weight . 972 Osmometry in comparative determination of molecular weight . 973 Osmometry in comparative determination of molecular weight . 973 Osmometry in compar	Model compounds		plasticizer systems	
of high polymers and inhibitors 1311 weight, comparative determination of 477 of high polymers 1300 Mooney plastometer, flow of high polymers in 269 Mooney plastometer, flow of high polymers in 269 Natural rubber, graft polymers from 269 Neoprene 273 Natural rubber, graft polymers from 269 Neoprene 274 Neoprene 275 interpolymerization of 276 Network 277 vulcanisates, effect of oxone on 167 Network 277 Network 278 New method for determining the dynamic 278 mechanical properties of rubber 278 Observations 278 Obs	Modified, polymer-, natural rubber	706		-
of high polymers of high polymers in 269 Mooney plastometer, flow of high polymers in 269 Mooney plastometer, flow of high polymers in 269 Natural rubber, graft polymers from 278 Neoprene interpolymerization of 277 vulcanizates, effect of ozone on 166 Network polymer, chain scissions in 166 Network polymer, chain scissions in 166 New method for determining the dynamic mechanical properties of rubber 288 New method for determining the dynamic on the physical aspects of resistance to skidding on dry roads and particularly on wet roads on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation between laboratory and test stand measurements of tire treads and their behavior on the relation of the sulfur bonds in vulcanizates. 530 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 530 Processes	Molecular	191	of isoprene	121
of high polymers. Mooney plastometer, flow of high polymers in 269 Natural rubber, graft polymers from 90 Network 166 Network 167 New method for determining the dynamic 168 Methodian properties of rubber 1838 Observations on the physical aspects of resistance to skidding on dry roads and particularly on wet roads 169 Oil-resistant service, 2-methyl-0-vinylpyridine elastomers in 169 Oil-resistant service, 2-methyl-0-vinylpyridine elastomers in 169 Oriented state of natural rubber 1838 Polysulfides, sulfur exchange in 53 Possibility of recharging the surfaces of particles of rubber dispersions (latexes) stabilized with sopp 149 Power transmission. Slippage-abrasion. Studies of the abrasion of tread vulcanisates. 97 Proposessor from the service of resistance to skidding on dry roads and particularly on the relation between laboratory and test stand measurements of tire treads and their behavior on the road. 806 Oil-resistant service, 2-methyl-0-vinylpyridine elastomers in 1414 Oriented state of natural rubber 97 Osmometry in comparative determination of molecular weight. 1417 Osmometry in comparative determination of molecular weight. 1417	weight, comparative determination of		effect of temperature of	419
Natural rubber, graft polymers from 909 Possibility of recharging the surfaces of particles of rubber dispersions (latexes) stabilized with soap 1409 Power transmission. Slippage-abrasion. Studies of the abrasion of tread vulcanisate. Proparation and use of cyclized rubber as a stiffening resin in rubber. 838 Preparation and use of cyclized rubber as a stiffening resin in rubber. 789 Problems concerned with the physical testing of vulcanizates on the physical aspects of resistance to skidding on dry roads and particularly on wet roads. 91425 on the relation between laboratory and test stand measurements of tire treads and their behavior on the road. 91425 of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 9140 Processes re	of high polymers	1300	Polyaulfides sulfur exchange in	634
Natural rubber, graft polymers from 99 Neoprene interpolymerization of vulcanizates, effect of oxone on 166 Network polymer, chain scissions in 166 New method for determining the dynamic mechanical properties of rubber 1627 New method for determining the dynamic mechanical properties of rubber 1627 New throads 166 Observations on the physical aspects of resistance to skidding on dry roads and particularly on wet roads 1627 on the relation between laboratory and test stand measurements of tire treads and their behavior on the road. Oil-resistant service, 2-methyl-5-vinylpyridine elastomers in 160 Oriented state of natural rubber 1789 Osmometry in comparative determination of molecular weight 477	Mooney plastometer, flow of high polymers in	269	Polyurethan elastomers	735
Neoprene interpolymerization of vulcanisates, effect of ozone on 166 Network polymer, chain scissions in 166 vulcanisate. New method for determining the dynamic mechanical properties of rubber 838 Preparation and use of cyclized rubber as a stiffening resin in rubber 103 Problems concerned with the physical testing on the physical aspects of resistance to skidding on dry roads and particularly on wet roads on the relation between laboratory and test stand measurements of tire treads and their behavior on the road 800 Cil-resistant service, 2-methyl-5-vinylpyridine elastomers in 104 Coriented state of natural rubber 878 Proteins of Hevea brasiliensis latex. I. Protein components of fresh latex servim. 1011 II. Isolation of the apploaling from the plenolic type against the aging of natural rubber 970 agents, influence of, on Neoprene vulcanisates 160 Troteins of Hevea brasiliensis latex. II. Protein components of fresh latex servim. 1011 II. Isolation of the apploalin of fresh latex servim.	Natural rubbar graft polymer (rom	00	Possibility of recharging the surfaces of par-	
interpolymerization of		99	ticles of rubber dispersions (latexes)	
Network polymer, chain scissions in 1166 New method for determining the dynamic mechanical properties of rubber		427	stabilized with soap	
velucanizate New method for determining the dynamic mechanical properties of rubber Observations Observations on the physical aspects of resistance to skidding on dry roads and particularly on wet roads on the relation between laboratory and test stand measurements of tire treads and their behavior on the road Oil-resistant service, 2-methyl-5-vinylpyridine elastomers in. Oriented state of natural rubber Osmometry in comparative determination of molecular weight. 1166 Preparation and use of cyclized rubber as a stiffening resin in rubber. 789 Problems concerned with the physical testing of vulcanizates. 108. Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. Protective action of antivalat soft the phenolic type against the aging of natural rubber. 97. 280 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 160 Proteins of Hevea brasiliensis latex. I. Protein components of fresh latex serum. 1011 II. Isolation of the agipulin of fresh latex.	vulcanizates, effect of ozone on	166		
vulcanisate New method for determining the dynamic mechanical properties of rubber. Observations on the physical aspects of resistance to skidding on dry roads and particularly on wet roads. Oil-resistant measurements of tire treads and their behavior on the road. Oil-resistant service, 2-methyl-5-vinylpyridine elastomers in. Oriented state of natural rubber. 789 Proparation and use of cyclired rubber as a stiffening resin in rubber. 780 Frictions of oncerned with the physical testing of vulcanizates. 108 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 530 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 531 Protein of antioxidants of the phenolic type against the aging of natural rubber. 388 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 530 Proteins of antioxidants of the phenolic type against the aging of natural rubber. 389 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 530 Proteins of antioxidants of the phenolic type against the aging of natural rubber. 389 Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 531 Proteins of Alevea brasiliensis latex. I. Protein components of fresh latex serum. 161 161 161 161 161 161 163 164 165 165 166 167 168 169 169 169 169 169 169 169	Network	1166		355
New method for determining the dynamic mechanical properties of rubber			Preparation and use of cyclized rubber as a	
Observations on the physical aspects of resistance to skidding on dry roads and particularly on wet roads. on the relation between laboratory and test stand measurements of tire treads and their behavior on the road. Oil-resistant service, 2-methyl-5-vinylpyridine elastomers in	New method for determining the dynamic		stiffening resin in rubber	1034
Observations on the physical aspects of resistance to skidding on dry roads and particularly on wet roads. 1425 on the relation between laboratory and test stand measurements of tire treads and their behavior on the road. 806 Oil-resistant service, 2-methyl-5-vinylpyridine elastomers in. 1414 Oriented state of natural rubber. 789 Proteins of Hevea brasiliensis latex. I. Protein components of fresh latex serum. 1011 II. Isolation of the aging of resh latex.	mechanical properties of rubber	838	Principal considerations on tire wear	781
on the physical aspects of resistance to skidding on dry roads and particularly on wet roads. on the relation between laboratory and test stand measurements of tire treads and their behavior on the road. Oil-resistant service, 2-methyl-5-vinylpyridine elastomers in. Oirented state of natural rubber. Osmometry in comparative determination of molecular weight. Processes resulting from thermal rupture of the sulfur bonds in vulcanizates. 530 Protective action of antioxidants of the phenolic type against the aging of natural rubber. 971 472 Proteins of Hevea brasiliensis latex. I. Protein components of fresh latex serum. 1011 II. Isolation of the agioulin of fresh latex.	Observations		of vulcanizates	1082
skidding on dry roads and particularly on wet roads. on the relation between laboratory and test stand measurements of tire treads and their behavior on the road. Oil-resistant service, 2-methyl-5-vinylpyridine elastomers in. Oriented state of natural rubber. Osmometry in comparative determination of molecular weight. 1414 Protein components of fresh latex serum. 1011 II. Isolation of the against the aging of natural rubber. 97. 97. 97. 97. 97. 97. 97. 9			Processability of urethan rubbers	1408
on wet roads on the relation between laboratory and test stand measurements of tire treads and their behavior on the road. Oil-resistant service, 2-methyl-5-vinylpyridine elastomers in			Processes resulting from thermal rupture of	
stand measurements of tire treads and their behavior on the road. Oil-resistant service, 2-methyl-5-vinylpyridine elastomers in. Oriented state of natural rubber. 789 Osmometry in comparative determination of molecular weight. 477 11. Isolation of the phenolic type against the aging of natural rubber. 97: agents, influence of, on Neoprene vulcanisates. 16: Proteins of Hevea brasiliensis latex. I. Protein components of fresh latex serum. 10:11 II. Isolation of the aging of natural rubber. 97: agents, influence of, on Neoprene vulcanisates. 16: II. Isolation of the aging of natural rubber. 97: agents, influence of, on Neoprene vulcanisates. 16: II. Isolation of the phenolic type against the aging of natural rubber. 97: agents, influence of, on Neoprene vulcanisates. 16: II. Isolation of the phenolic type against the aging of natural rubber. 97: agents, influence of, on Neoprene vulcanisates. 16: II. Isolation of the aging of natural rubber. 97: agents, influence of, on Neoprene vulcanisates. 16: III. Isolation of the aging of natural rubber. 97: agents, influence of, on Neoprene vulcanisates. 16: III. Isolation of the aging of natural rubber. 97: agents, influence of, on Neoprene vulcanisates. 16: III. Isolation of the aging of natural rubber. 97: agents, influence of, on Neoprene vulcanisates. 16: III. Isolation of the aging of natural rubber. 97: agents, influence of, on Neoprene vulcanisates. 16: Agents agents agents, influence of, on Neoprene vulcanisates. 16: Agents ag	on wet roads	1425		530
their behavior on the road. 806 Oil-resistant service, 2-methyl-5-vinylpyridine elastomers in 1414 Oriented state of natural rubber. 789 Oammetry in comparative determination of molecular weight. 477 Till Isolation of the aging of natural rubber. 978 against the aging of natural rubber. 978 agents, influence of, on Neoprene vulcanisates. 164 Proteins of Hevea brasiliensis latex. I. Protein components of fresh latex serum. 1011 II. Isolation of the aging of natural rubber. 978			rotective	
Oil-resistant service, 2-methyl-5-vinylpyridine elastomers in	their behavior on the road	806	against the aging of natural rubber	971
dine elastomers in	Oil-resistant service, 2-methyl-5-vinylpyri-		agents, influence of, on Neoprene vulcani-	
Osmometry in comparative determination of molecular weight	dine elastomers in	1414	sates	166
molecular weight	Oriented state of natural rubber	789	Proteins of Heven brasiliensis latex. I.	1011
The state of the s	molecular weight	477	II. Isolation of the e-globulin of fresh later	1011
Oxidation serum	Oxidation		serum	1018
	of butadiene-acrylenitrile rubbers	607	Pull-through adhesion test	1066

	Page	0	Page
Quantatative analysis of auxiliary rubber chemicals	1373	chemical relaxation of	735
Radiation stability of elastomers	1233	relaxation of peroxide and sulfur vulcanizates of	
Radioactive sulfur study of mechanism of vulcanization	946	natural rubber. in rubber. I. Evaluation of antioxi-	398
vulcanization	509	dants	240
Reaction kinetics in the aging of natural rubber by		I. Simultaneous oxygen absorption of rubber 834, 1043,	250 1195
infrared spectrography. V. Aging ac- celerated by heat	1245	of rubber	263
of natural rubber with hydrofluoric acid	1316	Stretched	
of ozone with natural Hevea and aeryloni- trile-butadiene rubbers	1332	rubbers, failure of	1195
of sulfur with mercaptobenzothiazole	1369	Stretching	
Recharging surfaces of particles of rubber dispersions.	1496	two-dimensional, of rubber	1209
Reinforcement		Structure	
filler, in relation to thixotropy	409 1309	of butadiene-styrene	419
	1284	rubber	126
effect of condensation polymers on rubber in connection with their particle size		of crystalline 1,2-polybutadiene and other	
properties of carbon black	278 286	syndyotactic polymersviscosity of natural rubber	1458
Relation		Studies of	(SCR.)
between the rate of adsorption of high poly-		abrasion and wear of rubber. I. Chemis-	
mers on carbon black and their molecu- lar weight.	1301	try of carbon black and its effect on ab- rasion as determined by National Bureau	
between the oxidation and change of struc-		of Standards method	1434
ture of a butadiene-styrene rubber Relaxation	126		999
chemical, of stress	735	mechanism of vulcanisation of rubber by means of radioactive sulfur. II	980
ntrem	1010	kineties of polymerization of isoprene in	000
in rubber240, of peroxide	398	aqueous solutions of emulsifiers and in	
in stretched unvulcanised rubber	1195	emulsions	121
of vulcanized rubber	854 1034	vulcanization of elastic-high polymers. VI. Vulcanization of natural rubber by bensovi peroxide. Part 1.	
Resistance	1034	bensoyl peroxide. Part 1	901
to skidding, physical aspects of	1425	Study by means of radioactive sulfur of the mechanism of vulcanization of rubber.	
Role of particle diameter and linkage forma-	409		197911
tion in rubber reinforcement	1284	Sulfenamide accelerators	933
Rupture of rubber, III. Determination of		Sulfur	
tear properties	372	atoms in vulcanization accelerators1363,	1369
Scission, chain		mobility of, in soft rubber and ebonite	67
in oxidation of Hevea	1274 1166	transformation by heat and oxygen in vulcanisates, thermal rupture of	1276
Serum	1100	in vulcanisates, thermal rupture of determination of	530
o-globulin of fresh latex	1018		612
Silica, hydrated, pigments	1011	in vulcanizates	1107
Skidding, resistance to	1420	elemental63, exchange	1117
Slippage and abrasion	355	ic polysulfides and in vulcanization ac-	
Slipping of molecules during the deformation of reinforced rubber	888	celerators	534
Soap, dispersions (latexes) stabilized with	1496	reactions in vulcanised rubberradioactive	509
Soft rubber hardness of	852	reaction with mercaptobenzothiasole	1369
mobility of sulfur bonds in	67	in sulfur-carbon bondstotal, in rubber products	511 620
Softening region of polymers	718	vulcanizates of rubber	398
Solubility of oxygen in sodium-butadiene rubber	602	Surface treatment of hydrated silica pigments	1309
Molutions		for reinforcement of rubber stocks Surfaces of particles, recharging of	1496
of natural rubberrubber, oxidation of	880	Swelling	
vulcanization of	1047 296	of elastomers	463
Solvent extracts, ultraviolet absorptiometric		kinetics of	135
analysis of	319	Syndyotactic polymera Synthesis, ensymic, of rubber	1458
of the aging of vulcanized rubber in light	593	Synthesis, enzymie, of rubber	1472
of the kinetics of catalytic polymerization.		Synthetic rubbers, oxidation of	573
Copolymerization in the butadiene-iso- prene and butadiene-styrene systems	423	Tear properties, determination of	372
Sorption of hydrocarbons by rubber and		Temperature	
gutta-perchaof water by rubber	451 1321	dependence in crystallization of natural rubber	794
Spectrography, infrared, aging by 1245, Spot test reaction for detection of elemental	1255	enect of	1274
Spot test reaction for detection of elemental		vitrification, method for determining	1174
Stability, radiation, of elastomers	1117 1233	and fluidity of natural rubber of different	
Static friction, coefficient of	829	molecular weights	95
Statistical theory of rubber emeticity	227	Tension, stress relaxation in compression and tension	263
Storage conditions, effect of, on latex	1502	*****	200

SUBJECT INDEX

	Page		Page
Tetramethylthiuram		Viscoelastic behavior of polyisobutylene	
disulfide vulcanization	944	under constant rates of elongation	1199
monosulfide and sulfur	48	Viscosity	
Theory	007	of Heven latex. I	1474
statistical, of rubber elasticity	227		1484
of two-dimensional stretching of rubber of vulcanization and the action of accelera-	391 917	of later, viscometers for measuring and structure viscosity of solutions and emulsions of natural rubber	1509
tors	917	Vitrification	800
Thermal		of natural rubber	95
degradation, oxidative and nonoxidative	857	temperature, method for determining	1174
oxidation of butadiene-nitrile elastomers	607 789	Volatile acids and the quality of concentrated	111.2
properties of natural rubber	530	natural latex	651
rupture of sulfur bonds	030	Vulcanization	Our
compounds	470	of butadiene-styrene rubber in presence of	
	*10	sulfenamide accelerators	933
Thermodynamics of crystallization in high polymers. Gutta-percha	1181	of high elastic polymers. I. Vulcanization of natural rubber with thiuram di-	0.00
Thiuram disulfides, vulcanization with		sulfides	1
1, 15, 20	, 894	II. Vulcanization of natural rubber with	
Thixotropy in relation to filler reinforcement.	409		15
Tire wear		thiuram disulfides III. Vulcanization of natural rubber with	
considerations on	781	thiuram disulfides	29
and fuel consumption	1445	IV. Investigations with model com-	
Transitions, glass, in polymer-plasticizer sys-		pounds	37
tems	492	V. Vulcanisation of natural rubber by	
Tread vulcanizates	355	tetramethylthiuram monosulfide and	
Transformation by action of heat and oxygen		sulfur (1)	48
of sulfur bonds which form the vul-		radioactive sulfur in study of	509
canizate network	1276	of rubber, radioactive study of	946
Two-dimensional stretching of rubber	391	with sulfur**	980
2-Methyl-5-vinylpyridine elastomers in oil-		tetramethylthiuram disulfide	944
resistant service	1414	theory of	917
		Vulcanized rubber, exchange reactions in	511
Ultraviolet absorptiometric analysis	319	Water, sorption by rubber	1321
Urethan rubber from a polyether glycol		Wear, tire	1445
Factors influencing processability	1405		1440
Properties of raw polymer and vulcanizates	1998	x-Ray diffraction studies of crystallization in	146
Wand 1110	1140	elastomers	438
Vinyl monomers, polymerization of 1119,		Zine dimethyldithiocarbamate, formation of	944
Viscometer for measuring viscosity of latex	1000	zine dimethylchemocarbamate, formation of	