Recitation 3

Alex Dong

CDS, NYU

Fall 2020

Rank Nullity Theorem

Theorem (Rank-Nullity Theorem (!!!))

Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. Then

$$rank(L) + \dim(Ker(L)) = m.$$

- ▶ One of the most important theorems in linear algebra.
- ➤ You should be able to state and prove this theorem (with no notes).
- ▶ The 'conservation of dimension' theorem
 - ► The main rank inequality:
 - $ightharpoonup rank(AB) \le min(rank(A), rank(B))$
- ▶ If n > m, then the $dim(Im(L)) \le m$

Questions: Rank-Nullity Theorem

Let $A \in \mathbb{R}^{l \times h}$ and $B \in \mathbb{R}^{h \times l}$, and h > l.

Prove or give a counterexample to the following statements.

- 1. $\exists A, B \text{ s.t } AB \text{ is invertible.}$
- 2. $\exists A, B \text{ s.t.} BA \text{ is invertible.}$

Questions: Rank-Nullity Theorem

Let $A \in \mathbb{R}^{\ell \times h}$ and $B \in \mathbb{R}^{h \times \ell}$, and $h > \ell$. Prove or give a counterexample to the following statements.

Solution

1. $\exists A, B \text{ s.t } AB \text{ is invertible. } True$

Consider
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

2. $\exists A, B \ s.t.BA \ is \ invertible.$ False. In order for BA to be invertible, rank(BA) = h. However, $rank(BA) \leq rank(B) \leq \ell$.

Symmetric Matrices: That's cute!

- ▶ Symmetric Matrices are not just "cute"...
 - ► They are actually DEEPLY LINKED to many topics in linear algebra.
- ▶ Concepts involving Symmetric Matrices
 - ▶ Orthogonal Projections (Lec 4) are symmetric.
 - ▶ Spectral Theorem (Lec 7) "symmetric matrices have an orthonormal basis of eigenvectors".
 - ▶ PCA (Lec 7): Covariance matrix is symmetric
 - ► Convexity (Lec 9,11): Hessian Matrix (matrix of second derivative) is symmetric
- ▶ But, we will see most of this later. For now, just trust me!

Questions: Symmetric Matrices

Let $A \in \mathbb{R}^{k \times n}$.

Prove/answer the following statements.

- 1. Show that $\forall x \in \mathbb{R}^n, x^T A^T A x \geq 0$
- 2. When is $x^T A^T A x = 0$?
- 3. Show that $Ker(A) = Ker(A^T A)$
- 4. Use this to show $rank(A) = rank(A^T A)$
- 5. Now, show that $rank(A) = rank(A^T)$

Let $A \in \mathbb{R}^{k \times n}$.

Solution

- 1. Show that $\forall x \in \mathbb{R}^n$, $x^T A^T A x \geq 0$ Let y = Ax, with $y = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^T$ Then $x^T A^T A x = (Ax)^T (Ax) = y^T y = \sum_{i=1}^n y_i^2$. Since y_i is a real number, $\sum_{i=1}^n y_i^2 \geq 0$.
- 2. What happens when $x^T A^T A x = 0$? $\sum_{i=1}^n y_i^2 = 0 \iff y_i = 0 \quad \forall i \in \{1, ..., n\}$ So, $x^T A^T A x = 0 \iff x \in Ker(A)$

Let $A \in \mathbb{R}^{k \times n}$.

3. Show that $Ker(A) = Ker(A^T A)$

Solution

 $Ker(A) \subset Ker(A^T A)$ is trivial.

We now show $Ker(A^TA) \subset Ker(A)$.

Let $x \in Ker(A^TA)$.

Then $A^T A x = 0$.

Then $x^T(A^TAx) = x(0) = 0$

By the previous question, then $x \in Ker(A)$.

Let $A \in \mathbb{R}^{k \times n}$.

Prove or give a counter example to the following statements.

4. Use this to show $rank(A) = rank(A^T A)$

Solution

By the rank nullity theorem,

$$n = \dim(Ker(A)) + rank(A)$$

Now,
$$A^T A \in \mathbb{R}^{n \times n}$$
. So by the rank nullity theorem,
 $n = dim(Ker(A^T A)) + rank(A^T A)$

Setting these equations equal to each other yields:

$$dim(Ker(A)) + rank(A) = dim(Ker(A^{T}A)) + rank(A^{T}A)$$

And since
$$Ker(A) = Ker(A^T A)$$
, then $rank(A) = rank(A^T A)$

Let $A \in \mathbb{R}^{k \times n}$.

5. Now show $rank(A) = rank(A^T)$

Solution

```
By the previous question, rank(A) = rank(A^TA). \tag{1} Recall that rank(T_1T_2) \leq min(rank(T_1), rank(T_2)), and therefore, rank(T_1T_2) \leq rank(T_1). Applying this to rank(A^TA) yields rank(A^T) \geq rank(A^TA) Replacing rank(A^TA) with rank(A) gives: rank(A^T) \geq rank(A) Applying the previous result to A^T gives:
```

 $rank(A) \ge rank(A^T)$ So $rank(A) = rank(A^T)$

Solutions: Matrix Products

Let $x, y \in \mathbb{R}^{n \times 1}$.

- 1. What is the shape and rank of x^Ty ?
- 2. What is the shape and rank of xy^T ?
- 3. Let $A \in \mathbb{R}^{m \times k}$ and $B \in \mathbb{R}^{k \times n}$. Show that the matrix product AB can be expressed as: $AB = C_1 + \cdots + C_k$ s.t $rank(C_i) \leq 1$, $\forall i \in \{1, ..., k\}$.

(Hint, use 2, and try manually calculating for small values of m, k, n)

Questions: Matrix Products

Let $x, y \in \mathbb{R}^{n \times 1}$ both have rank 1.

Solution

- 1. What is the shape and rank of $x^T y$? Shape is 1×1 and rank is 1 (or 0).
- 2. What is the shape and rank of xy^T ? Shape is $n \times n$ and rank is 1 (or 0).
- 3. Let $A \in \mathbb{R}^{m \times k}$ and $B \in \mathbb{R}^{k \times n}$. Show that the matrix product AB can be expressed as: $AB = C_1 + \cdots + C_k$ s.t $rank(C_i) \leq 1$, $\forall i \in \{1, ..., k\}$.

(Hint, use 2, and manually calculating for small values of m, k, n)

$$Let A = \begin{bmatrix} | & \dots & | \\ a_1 & \dots & a_k \\ | & \dots & | \end{bmatrix} and B = \begin{bmatrix} - & b_1 & - \\ \vdots & \vdots & \vdots \\ - & b_k & - \end{bmatrix}$$