EE332 Lab2: Simulation of Full Adder on Nexys 4 DDR

1st Qiu Kunyuan

EEE. Southern University of Science and Technology

Shenzhen, PRC

11913019@mail.sustech.edu.cn

I. Abstract

Abstract—This report focuses on the phenomenons encountered in the simulation of a simple full adder, to reveal some critical features of FPGA programming comparing to ordinary programmable devices. Among these phenomenons, jitters and the race-hazard conditions are of the most concerns.

II. Introduction

Half adder and full adder are basic elements in digital circuits used to perform addition operations on binary numbers.

A half adder

Fig. 1: Gate Level Description of Half Adder

is a combinational logic circuit that takes two binary inputs and produces two binary outputs: sum and carry.

$$HA: (x_1, x_2) \mapsto (Q, C) := \begin{cases} Q &= xor(x_1, x_2) \\ C &= and(x_1, x_2) \end{cases}$$
 (1)

The main limitation of the half adder is that it cannot handle carry inputs and therefore can only be used for 1-bit addition.

A full adder

Fig. 2: Gate Level Description of Full Adder

is an extension of the half adder that accepts three binary inputs: two additions and a rounding input, and produces two binary outputs: sum and carry. Full adders can be connected in series to achieve binary addition of any number of bits.

Implementation of full adder can be derived directly from 3-digit addition, where the final carry output is toggled if any of $X_1 + X_2$ or $C_i + Q_1$ produces a carry:

$$(q_1, c_1) = HA(x_1, x_2)$$
 (2)

$$(q_2, c_2) = \mathrm{HA}(q_1, c_i) \tag{3}$$

$$c_o = \operatorname{or}(c_1, c_2) \tag{4}$$

Therefore the gate-level circuit of the full adder can be easily captured, as shown of Figure. (II)