Optymalizacja bez ograniczeń Metoda Hooke'a-Jeevesa Metoda Rosenbrocka Simpleks Neldera-Meada Uzupełnienia

METODY OBLICZENIOWE OPTYMALIZACJI

4

Arkadiusz Tomczyk

Instytut Informatyki Politechniki Łódzkiej

10 kwietnia 2011

Funkcja celu

$$f:\mathbb{R}^n\to\mathbb{R}$$

Metody bezgradientowe

- Metoda Hooka-Jeevesa.
- Metod Rosenbrocka.
- Simpleksu Neldera-Meada.
- Metoda Gaussa-Seidla.
- Metoda DSC.
- Metoda Powella
- Metoda Zangwilla.

Założenia

Funkcja celu jest funkcją wypukłą.

Metoda Hooke'a-Jeevesa

- Niech $\mathbf{x} \in \mathbb{R}^n$ oznacza początkowe rozwiązanie oraz niech $\mathbf{e}_i \in \mathbb{R}^n$ dla $i=1,\dots,n$ oznacza bazę wzajemnie ortogonalnych wektorów w przestrzeni \mathbb{R}^n . Ponadto niech $0<\beta<1$ oznacza współczynnik korekcyjne zmniejszający długość kroków oraz niech $\lambda \in \mathbb{R}$ oznacza początkową długość kroku.
- Zapamiętaj aktualne rozwiązanie jako $\mathbf{x}_0 = \mathbf{x}$. Jeśli jest to pierwsza iteracja oznacz również $\mathbf{x}_b = \mathbf{x}$.
- Dla każdego dla j = 1, ..., n wykonaj:
 - Wyznacz $\mathbf{x}_i = \mathbf{x}_{i-1} + \lambda \mathbf{e}_i$.
 - Jeśli $f(\mathbf{x}_j) \geqslant f(\mathbf{x}_{j-1})$ wyznacz $\mathbf{x}_j = \mathbf{x}_{j-1} \lambda \mathbf{e}_j$.
 - Jeśli wciąż $f(\mathbf{x}_j) \geqslant f(\mathbf{x}_{j-1})$ oznacz $\mathbf{x}_j = \mathbf{x}_{j-1}$.
- Jeśli wzdłuż żadnego kierunku nie udało się uzyskać poprawy przypisz $\mathbf{x} = \mathbf{x}_b$ i zmniejsz długość kroku zgodnie ze wzorem $\lambda = \beta \lambda$. Jeśli udało się uzyskać poprawę wyznacz:

$$\mathbf{x} = \mathbf{x}_n + (\mathbf{x}_n - \mathbf{x}_b) = 2\mathbf{x}_n - \mathbf{x}_b$$

oraz przypisz $\mathbf{x}_b = \mathbf{x}_n$.

• Jeśli nie jest spełniony warunek stopu wróć do punktu drugiego.

Ortogonalizacja Grama-Schmidta

Niech $k\leqslant n$ oraz niech dany będzie zestaw liniowo niezależnych wektorów $\mathbf{v}_i\in\mathbb{R}^n$ dla $i=1,\ldots,k$. W celu wyznaczenia zestawu ortogonalnych wektorów jednostkowych $\mathbf{e}_i\in\mathbb{R}^n$ dla $i=1,\ldots,k$ rozpinających tę samą popdprzestrzeń \mathbb{R}^n należy zastosować następującą procedurę:

$$\mathbf{u}_1 = \mathbf{v}_1$$
 $\mathbf{e}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|}$
 \dots
 $\mathbf{u}_i = \mathbf{v}_i - \sum_{j=1}^{i-1} \langle \mathbf{v}_i, \mathbf{e}_j \rangle \, \mathbf{e}_j$
 $\mathbf{e}_i = \frac{\mathbf{u}_i}{\|\mathbf{u}_i\|}$

dla $i=2,\ldots,k$.

Obrót współrzędnych

Niech $\mathbf{e}_i \in \mathbb{R}^n$ dla $i=1,\dots,n$ oznacza bazę wzajemnie ortogonalnych wektorów oraz niech $s_i \neq 0$ dla $i=1,\dots,n$ oznaczają długości kroków wzdłuż odpowiedniuch kierunków. Aby dokonać obrotu współrzędnych wyznacz wektory $\mathbf{v}_i \in \mathbb{R}^n$ dla $i=1,\dots,n$:

$$\mathbf{v}_i = \sum_{j=i}^n s_j \mathbf{e}_j$$

oraz zastosuj dla nich ortogonalizację Grama-Schmidta.

Metoda Rosenbrocka

- Niech $\mathbf{x} \in \mathbb{R}^n$ oznacza początkowe rozwiązanie oraz niech $\mathbf{e}_i \in \mathbb{R}^n$ dla $i=1,\dots,n$ oznacza początkową bazę wzajemnie ortogonalnych wektorów w przestrzeni \mathbb{R}^n . Ponadto niech $\alpha>0$ i $0<\beta<1$ oznaczają współczynniki korekcyjne, odpowiednio zwiększający i zmniejszający, długość kroków oraz niech $\lambda_i \in \mathbb{R}$ dla $i=1,\dots,n$ oznaczają początkowe długości kroków dla odpowiednich kierunków bazy.
- ullet Zapamiętaj aktualne rozwiązanie jako ${f x}_0={f x}.$
- ullet Dla każdego dla $j=1,\ldots,n$ wykonaj:
 - Wyznacz $\mathbf{x}_i = \mathbf{x}_{i-1} + \lambda_i \mathbf{e}_i$.
 - ullet Jeśli $f(\mathbf{x}_j) < f(\mathbf{x}_{j-1})$ zwiększ długość kroku $\lambda_j = \alpha \lambda_j$.
 - W przeciwnym razie przypisz $\mathbf{x}_j=\mathbf{x}_{j-1}$, zmień kierunek na $\lambda_j=-\lambda_j$ oraz zmniejsz długość kroku $\lambda_j=\beta\lambda_j$
- Powyższe kroki powtarzaj tak długo jak udaje się uzyskać lepsze rozwiązanie dla któregoś z kierunków bazy.
- ullet Oblicz sumaryczne długości kroków s_i dla $i=1,\dots,n$ jakie wykonane zostały w każdym z kierunków \mathbf{e}_i od czasu ostatniej zmiany bazy wktorów.
- Jeśli nie jest spełniony warunek stopu dokonaj obrotu współrzędnych w celu wyznaczenia nowej bazy wektorów, a następnie wróć do punktu drugiego.

Simpleks

Simpleksem n-wymiarowym o n+1 wierzchołkach nazywamy zbiór wszystkich punktów $\mathbf{p} \in \mathbb{R}^n$ opisanych przez wwektory wierzchołków $\mathbf{p}_i \in \mathbb{R}^n$ dla $i=1,\dots,n+1$ takich, że:

$$\mathbf{p} = \sum_{i=1}^{n+1} \theta_i \mathbf{p}_i$$

przy czym $\theta_i \geqslant 0$ oraz

$$\sum_{i=1}^{n+1} \theta_i = 1;$$

Oznaczenia

• Wierzchołek simpleksu, dla którego funkcja celu osiąga wartość największą:

$$\mathbf{p}_h \in \mathbb{R}^n$$
 dla $h \in \mathbb{N}$

• Wierzchołek simpleksu, dla którego funkcja celu osiąga wartość najmniejszą:

$$\mathbf{p}_l \in \mathbb{R}^n$$
 dla $l \in \mathbb{N}$

• Środek symetrii simpleksu po wyłączeniu wierzchołka \mathbf{p}_h :

$$\mathbf{p}^s = \frac{1}{n} \sum_{i=1}^{n+1} \mathbf{p}_i \text{ dla } i \neq h$$

Odbicie

$$\mathbf{p}^o = (1+\alpha)\mathbf{p}^s - \alpha\mathbf{p}_h \text{ dla } \alpha > 0$$

Ekspansja

$$\mathbf{p}^e = (1 - \gamma)\mathbf{p}^o - \gamma\mathbf{p}^s \text{ dla } \gamma > 1$$

Kontrakcja

$$\mathbf{p}^k = \beta \mathbf{p}_h + (1 - \beta) \mathbf{p}^s$$
 dla $0 < \beta < 1$

Redukcja

$$\mathbf{p}_i = \frac{\mathbf{p}_i + \mathbf{p}_l}{2} \text{ dla } i = 1, \dots, n+1$$

Simpleks Neldera-Meada

- Niech $\mathbf{p}_1,\dots,\mathbf{p}_{n+1}$ gdzie $\mathbf{p}_i\in\mathbb{R}^n$ dla $i=1,\dots,n+1$ oznaczają początkowe wierzchołki simpleks.
- Wyznacz $f_h = f(\mathbf{p}_h)$ oraz $f_l = f(\mathbf{p}_l)$.
- Wyznacz środek symetrii simpleksu $\mathbf{p}^s \in \mathbb{R}^n$ i przyjmij $f^s = f(\mathbf{p}^s)$, a następnie wykonaj odbicie znajdując $\mathbf{p}^o \in \mathbb{R}^n$ i przyjmij $f^o = f(\mathbf{p}^o)$.
- Jeśli $f^o < f_l$ to:
 - ullet Dokonaj ekspansji znajdując $\mathbf{p}^e \in \mathbb{R}^n$ i przyjmij $f^e = f(\mathbf{p}^e)$.
 - Jeśli $f^e < f_h$ to przyjmij $\mathbf{p}_h = \mathbf{p}^e$, w przeciwnym razie przyjmij $\mathbf{p}_h = \mathbf{p}^o$.
 - Jeśli nie jest spełniony warunek stopu to wróc do punktu drugiego.
- Jeśli $f^o \geqslant f_l$ to:
 - Jeśli $f^o \geqslant f_h$ to dokonaj kontrakcji znajdując $\mathbf{p}^k \in \mathbb{R}^n$ i przyjmij $f^k = f(\mathbf{p}^k)$. Jeśli $f^k \geqslant f_h$ to dokonaj redukcji simpleksu, w przeciwnym razie przyjmij $\mathbf{p}_h = \mathbf{p}^k$.
 - ullet W przeciwnym razie przyjmij $\mathbf{p}_h = \mathbf{p}^o$.
 - Jeśli nie jest spełniony warunek stopu to wróc do punktu drugiego.

Kryteria stopu

- Zadana liczba iteracji.
- W metodzie Hooke'a-Jeevesa można zakończyć algorytm gdy długość kroku spadnie poniżej zadanej wartości.
- W metodzi Rosenbrocka kryterium zakończenia algorytmu może być brak postępów w kolejnych kierunkach aktualnej bazy.
- W metodzie simpleksu Neldera-Meada można zakończyć algorytm gdy odległość pomiędzy wierzchołkami simpleksu spadnie poniżej zadanej wartości.

Rozwiązanie

W metodzie simpleksu Neldera-Meada za rozwiązanie można przyjąć środek ciężkości całego simpleksu.

Brak postępów

Jeśli wybór rozwiązania początkowego w metodzie Hooke'a-Jeevesa lub metodzie Rosenbrocka nie daje poprawy wyniku po pierwszej iteracji można rozpocząć algorytm z nowego punktu początkowego.