Wave Direction-based Recontruction of Stiffness in Magnetic Resonance Elastography

Christopher Gillam

Department of Mathematical Sciences Clemson University cgillam@clemson.edu

March 11, 2012

Background

Magnetic Resonance Elastography, MRE:

- uses vibrating plate to propagate waves into body
- utilizes MRI (motion-encoding gradient) to capture images of wave propagation
- used for detecting early stage cancer (tumors 3-5 mm in diameter)

Because cancerous tissue is stiffer than surrounding healthy tissue, a distortion of the wave is visible

We want to be able to reconstruct the stiffness of the inclusion and healthy tissue.

Modeling

The linear isotropic elasticity model:

$$\nabla(\lambda\nabla\cdot\vec{U}) + \nabla\cdot[\mu(\nabla\vec{U} + (\nabla\vec{U})^T)] = \rho\vec{U}_{tt}$$

- $\lambda > 0$ is the compression stiffness
- $\mu > 0$ is the shear stiffness

Utilizing

- piecewise constant (locally homogeneous) medium
- Shear wave dominates compression wave

our model reduces to

$$\mu \Delta \vec{U} = \rho \vec{U}_{tt}.$$

Modeling (con't)

$$\vec{U} = (U_1, U_2, U_3)$$
 can be decoupled, i.e. if $U = U_3$, then

Then taking the Fourier Transform with respect to time, we get

$$\Delta u + k^2 u = 0$$
, where $k^2 = \frac{\rho \omega^2}{\mu}$

 $\mu \Delta U = \rho U_{tt}$.

This is the Helmholtz equation with wavenumber, k.

Statement of Problem

• In surrounding healthy tissue

$$\Delta u + k^2 u = 0$$
 in $\bar{\Omega}^c$ where $k^2 = \frac{\rho \omega^2}{u}$

• In tumor which is penetrable object

$$\Delta u + \tilde{k}^2 u = 0$$
 in Ω where $\tilde{k}^2 = \frac{\rho \omega^2}{\tilde{\mu}}$

Motivation

The goal is to reconstruct the stiffness, μ .

- This is equivalent to reconstructing $k = \sqrt{\frac{\rho\omega^2}{\mu}}$.
- The strategy is to devise a completely local algorithm

Plane Wave Assumption

On a local window, the wave will look like a plane wave, i.e.,

$$u \approx Ae^{ik\vec{d}_0 \cdot \vec{x}}$$
 where $A = |A|e^{i\phi}$.

Overview of Algorithm Steps

On a local window, the general idea is:

- Calculate propagation direction, \vec{d} .
- Along \vec{d} , the wavelength is $2\pi/k$.

Propagation Direction of $f(\vec{x})$

Let
$$f(\vec{x}) := Re(u) \approx |A| \cos \left(k\vec{d} \cdot \vec{x} + \phi\right)$$
.

- $f(x \epsilon_0 y, y) = f(x, 0)$ if $\epsilon_0 = d_2/d_1$
- Take horizontal cuts of f at distinct heights y_i .
- Shift the cuts in the x-direction by ϵy_i .

If $\epsilon = \epsilon_0$, all of the shifted cuts must be exactly the same.

Propagation Direction: Variance

Our goal is to find this optimal ϵ_0 .

Suppose our window is $S := [-L, L] \times [-L, L]$:

• Take an average of all possible horizontal crosscuts:

$$C_{\epsilon}(x) := \frac{1}{2L} \int_{-L}^{L} f(x - \epsilon y', y') \ dy'$$

2 At each x, find the average variance of the crosscuts:

$$V_{\epsilon}(x) := \frac{1}{2L} \int_{-L}^{L} \left(f(x - \epsilon y, y) - C_{\epsilon}(x) \right)^2 dy$$

Average the variance:

$$Var(\epsilon) = \frac{1}{2L} \int_{-L}^{L} V_{\epsilon}(x) dx$$

Propagation Direction: Minimize Variance

We expect, for $\epsilon = \epsilon_0$:

- The ϵ_0 -shifted cuts are perfectly stacked
- $Var(\epsilon_0) = 0$.

So we minimize $Var(\epsilon_0) = 0$.

Crosscuts along \vec{d}

Once $\epsilon_0 = d_2/d_1$ is calculated,

- Take crosscuts parallel to \vec{d} .
- Averaged crosscuts will help reduce noise

•
$$h(s) := f(s\vec{d}) = |A|\cos(ks + \phi)$$
 $s \in [-L, L]$

Estimation of k: Fourier Transform

Taking the Fourier transform, we hope to recover k. Look at the Fourier transform of h(s); for $n \in \mathbb{Z} \setminus \{0\}$,

$$\hat{h}(n) = \int_{-L}^{L} h(s)e^{-i\frac{n\pi s}{L}} ds$$

$$= |A|L \left(\operatorname{sinc}(kL - n\pi)e^{i\phi} + \operatorname{sinc}(kL + n\pi)e^{-i\phi}\right).$$

- $\hat{h}(n) = 0 \iff kL = p\pi \text{ for some } p \in \mathbb{N} \text{ and } n \neq \pm p.$
- Thus, we can always find $n \in \mathbb{N}$ such that $\hat{h}(n) \neq 0$.

For $n \in \mathbb{N}$ such that $\hat{h}(n) \neq 0$, define

$$w(n) := (-1)^n \operatorname{Re}\left(\hat{h}(n)\right) = \frac{2|A|kL^2 \cos(\phi) \sin(kL)}{(kL)^2 - (n\pi)^2}$$
$$v(n) := (-1)^n \operatorname{Im}\left(\hat{h}(n)\right) = \frac{2n|A|\pi L \sin(\phi) \sin(kL)}{(kL)^2 - (n\pi)^2}$$

which gives

$$((kL)^2 - (n\pi)^2) w(n) = 2|A|kL^2 \cos(\phi) \sin(kL),$$

$$((kL)^2 - (n\pi)^2) \frac{v(n)}{n} = 2|A|\pi L \sin(\phi) \sin(kL).$$

Note that the RHS does not depend on n, so for $m \neq n$

$$(kL)^{2}(w(n) - w(m)) = \pi^{2}(n^{2}w(n) - m^{2}w(m))$$
$$(kL)^{2}\left(\frac{v(n)}{n} - \frac{v(m)}{m}\right) = \pi^{2}(nv(n) - mv(m))$$

Take a square sum:

$$(kL)^{4} \left[\left(\frac{v(n)}{n} - \frac{v(m)}{m} \right)^{2} + (w(n) - w(m))^{2} \right]$$
$$= \pi^{4} \left[(nv(n) - mv(m))^{2} + (n^{2}w(n) - m^{2}w(m))^{2} \right]$$

And solve for k:

$$k = \frac{\pi}{L} \left(\frac{(nv(n) - mv(m))^2 + (n^2w(n) - m^2w(m))^2}{\left(\frac{v(n)}{n} - \frac{v(m)}{m}\right)^2 + (w(n) - w(m))^2} \right)^{1/2}$$

It can be shown that the denominator never vanishes.

Re(u) versus Im(u)

- Reconstructions using just Re(u) or Im(u) have unwanted patterns.
- A simple algebraic average gives a better image.

Center Crosscut

Different Window Sizes

Background

- In homogenous case, box sizes larger than λ , guaranteed less than 3.4% error.
- Expect similar results in background
- Larger boxes will also reduce the effects of noise

Inclusion

- $\lambda_{inc} > \lambda_{bg}$, so larger box is needed.
- Larger box will contain more points from background, harming resolution
- Small inclusion with high stiffness (large λ_{inc}) is the most difficult case

Different Window Sizes

Noise Effects on $\vec{d} = \tan \theta$

 \vec{d} reconstruction is extremely resilient to noise.

Overall Noise Effects

Direct Inversion Method

Recall the scalar Helmholtz equation, $\triangle u + k^2 u = 0$.

Let $u(x, y) = M(x, y)e^{i\phi(x, y)}$, where M > 0 and $\phi \in \mathbb{R}$. Plugging back into the differential equation, we get

$$[(\triangle M - M|\nabla \phi|^2) + i(M\triangle \phi + 2\nabla M \cdot \nabla \phi) + k^2 M]e^{i\phi} = 0.$$

Then solve for *k*:

$$k = \sqrt{\frac{M|\nabla \phi|^2 - \triangle M}{M}}$$

where
$$M = |u|$$
 and $|\nabla \phi|^2 = \left|\nabla \left(\frac{Re(u)}{|u|}\right)\right|^2 + \left|\nabla \left(\frac{Im(u)}{|u|}\right)\right|^2$.

Estimating the Derivatives

Assuming, $\phi, M \in C^2(\mathbb{R}^2)$, use centered difference for the gradient

$$\nabla \phi \approx \left(\frac{\phi(x+h,y) - \phi(x-h,y)}{2h}, \frac{\phi(x,y+h) - \phi(x,y-h)}{2h} \right)$$

and five point stencil for laplacian,

$$\triangle M \approx \frac{M(x-h,y) + M(x+h,y) + M(x,y-h) + M(x,y+h) - 4M(x,y)}{h^2}$$

where both give $O(h^2)$ accuracy.

Anderssen's Derivative Method

Instead of using one point in each direction, use an average of values in each direction to approximate the derivatives [MOC, 1999].

 5×5 boxes for $\triangle M$

DIM with Anderssen Results

DIM Crosscuts

DIM with Anderssen Noise

Combining Methods

- The Wave-Direction based reconstruction has a better exterior reconstruction than the Direct Inversion Method.
- The Direct Inversion Method has a better inclusion reconstruction.
- An average of the two methods is better overall than each individual method.

Combining Methods Crosscuts

Experimental Data

Combining Methods Crosscuts

Conclusion

- Wave Direction-base Reconstructions
 - Excellent in the background
 - Resilient to noise
 - The angle reconstruction is extremely resilent
 - Overestimates values in the inclusion
- Direct Inversion with Anderssen Reconstructions
 - Value-wise, it is good in the inclusion, but slightly underestimates
 - Maintains the shape of inclusion
 - Gives unwanted values behind inclusion, which could be misdiagnosed
 - Breaks down with noise
- Combination of Methods
 - Gives good reconstruction of inclusion
 - Sacrifices wave direction-base background reconstruction and resiliency to noise

Future Work

- Improve Combination of Methods
- Introduce viscoelastic medium, $k \in \mathbb{C}$
 - Both u_i and u_s will decay
 - Crosscuts will no longer be sinusoidal

