Recurrence Relations

Find the first five terms of the sequence, defined by the recurrence relation: 1.

$$u_{n+2} = 3u_{n+1} - 2u_n$$
 with $u_1 = 1, u_2 = 2$

- A sequence is defined by the recurrence relation $u_{n+2} = 3u_{n+1} 2u_n$ with $u_1 = 1, u_2 = 2$. 2. Prove by induction that $u_n = 2^{n-1}$.
- 3. Find the first five terms of the sequences defined by the following recurrence relations:
 - (a) $u_{n+1} = 4u_n + 1$, $u_1 = 1$
 - (b) $u_n = 4 u_{n-1}, u_1 = 3$
 - (c) $u_{n+2} = u_{n+1}u_n$, $u_1 = 1$, $u_2 = 2$
 - (d) $u_n = nu_{n-1}, u_1 = 2$
- 4. The terms of a sequence satisfy the recurrence relation $u_{n+1} = u_n + 2n - 1$ with $u_1 = 1$. Show that $u_n = n^2$ for all $n \ge 1$.
- 5. Find the formula for u_n in terms of n for the sequences below:
 - (a) (i) $u_{n+1} = 2u_n 1$, $u_1 = 3$ (ii) $u_{n+1} = 2u_n + 3$, $u_1 = 1$

- (b) (i) $u_{n+1} = -3u_n + 2$, $u_1 = 1$ (ii) $u_{n+1} = -3u_n + 5$, $u_1 = -2$ (c) (i) $u_{n+1} = \frac{1}{2}u_n + 1$, $u_1 = 3$ (ii) $u_{n+1} = \frac{1}{2}u_n 2$, $u_1 = 8$
- Solve the recurrence relation $u_{n+2} = u_{n+1} + u_n$ with $u_1 = u_2 = 1$. 6.
- 7. Solve the recurrence relation $u_{n+2} + 4u_n = 0$ with $u_1 = 0, u_2 = 1$.
- 8. Two sequences, a_n and b_n , satisfy the recurrence relations

$$a_{n+1} = 3a_n + b_n$$
 $b_{n+1} = 5a_n - b_n$

with $a_i = 6$, $b_i = -6$.

- (a) Find the value of a₂.
- (b) Show that $a_{n+2} = 2a_{n+1} + 8a_n$.
- (c) Solve the second order recurrence relation for a_n.
- (d) Hence find an expression b, in terms of n.
- 9. A magic crystal produces several new crystals every day. The crystals that were produced the previous day produce only one new crystal, but the older ones produce 9 new crystals each.
 - (a) If c_n is the number of crystals on day n:
 - Write down the numbers of crystals on days n − 1 and n − 2.
 - (ii) Write down the number of crystals which are exactly one day old on day n.
 - (iii) Find an expression for the total number of new crystals created on day n.
 - (iv) Hence explain why $u_n = 2u_{n-1} + 8u_{n-2}$.
 - (b) Harry was given two newly-formed magic crystals on the first day of term.
 - (i) How many crystals does he have on the second day?
 - (ii) Find an expression for the number of crystals Harry has on the nth day of term.