Gesture Recognition Case Study

Problem Statement:

We need to develop a cool feature in the smart-TV that can recognise five different gestures performed by the user which will help users control the TV without using a remote.

The gestures are continuously monitored by the webcam mounted on the TV. Each gesture corresponds to a specific command:

• Thumbs up: Increase the volume

• Thumbs down: Decrease the volume

· Left swipe: 'Jump' backwards 10 seconds

Right swipe: 'Jump' forward 10 seconds

• Stop: Pause the movie

Dataset:

The training data consists of a few hundred videos categorized into one of the five classes. Each video (typically 2-3 seconds long) is divided into a **sequence of 30 frames(images)**. These videos have been recorded by various people performing one of the five gestures in front of a webcam - similar to what the smart TV will use.

The following table consists of the experiments done to build a model to predict the gestures from the given data set.

Experiment Number	Model	Result	Decision + Explanation
1	Conv3D	Train Accuracy: 0.15, Validation Accuracy: 0.15	The model isn't showing any improvement during training, as the loss remains unchanged across epochs. Hence

			the batch size reduced
			further to address this
2	TimeDistributed	Train Accuracy:	Reduce the size of the
	Conv2D + GRU	0.9554,	image/Reduce the
		Validation	number of layers along
		Accuracy: 0. 8203	with dropout layer
3	Time		This seems to be the
	Distributed +		best model we've
	ConvLSTM2D		achieved so far. The
			validation accuracy is
			solid, with 13,589
			parameters.
			Additionally, the model
			size is quite smaller
			compared to other
			models.

Please note that, due to storage limitations on the JarvisLab instances, I was unable to continue training the final model, which also caused a delay in the submission.