MODUL V

Implementasi Rangkaian Digital dengan FPGA

- 1 Tujuan
- 2 Alat dan Bahan
- 3 Dasar Teori
- 4 Praktikum
- 4.1 Pengenalan IO

Perlu gambar board FPGA yang akan digunakan

Beberapa daftar port dari board FPGA yang digunakan:

Tabel 1: Beberapa port yang digunakan pada board FPGA

Clock	PIN_23						
Reset Push Button	PIN_25						
Buzzer	PIN_110						
IR	PIN_100						
Push Button							
key1	PIN_88						
key2	PIN_89						
key3	PIN_90						
key4	PIN_91						
LED							
LED1	PIN_87						
LED2	PIN_86						
LED3	PIN_85						
LED4	PIN_84						
Seven-segment	t LED						
DIG1	PIN_133						
DIG2	PIN_135						
DIG3	PIN_136						
DIG4	PIN_137						
SEGo	PIN_128						
SEG1	PIN_121						
SEG2	PIN_125						
SEG3	PIN_129						
SEG4	PIN_132						
SEG5	PIN_126						
SEG6	PIN_124						
SEG7	PIN_127						

Untuk PIN assignment, buat skematik atau file Verilog terlebih dahulu, kemudian compile. Buka PIN assignment, set pin yang diperlukan.

Prosedur ini diberikan pada contoh menyalakan LED.

4.1.1 LED

Buat project baru dengan nama led_light, misalnya. Kemudian tambahkan file Verilog berikut ke project. Kode Verilog ini memberikan nilai logika ke tiap LED (hardwired, tanpa ada input).

```
module led_light(led);
  output[3:0] led;
  assign led = 4'b0000; // coba ubah-ubah nilai ini untuk tiap LED
endmodule
```

Compile file ini dengan cara klik icon Compile atau dengan menu Processing -> Start Compilation atau menggunakan shortcut Ctrl + L.

Jika tidak ada kesalahan pada saat proses kompilasi, maka langkah selanjutnya adalah melakukan PIN assignment, yang dapat dilakukan dengan memilih menu Assignment -> Pin Planner atau menggunakan shortcut Ctrl + N. Atur PIN assigment sesuai dengan Tabel 1.

Gambar 1: PIN Assignment untuk 4 LED

Compile lagi file tersebut.

Jika tidak ada pesan error, langkah selanjutnya adalah mendownload program ini ke FPGA. Proses ini dapat dilakukan dengan cara memilih menu Tools -> Programmer. Klik button Add File untuk menambahkan file led_light.sof. File ini biasanya ada di dalam subdirektori output dari direktori project. Pastikan juga hardware terdeteksi. Jika belum terdeteksi, tambahkan melalui dengan mengklik button Hardware Setup.

Gambar 2: Tampilan tool Programmer

Catatan

Pada board FPGA yang digunakan urutan LED dari kiri ke kanan adalah LED1, LED2, LED3, dan LED4. Misalkan memberikan assignment sebagai berikut.

- LED1 diwakili dengan led[0]
- LED2 diwakili dengan led[1]

- LED3 diwakili dengan led[2]
- LED4 diwakili dengan led[3]

Misalkan juga kita memberikan nilai logika pada led dengan kode Verilog berikut.

```
led = 4'b1010;
```

Maka nilai o (nilai bit paling kanan atau LSB) diberikan pada led[0] atau LED1. Nilai pada bit kedua dari kanan diberikan untuk led[1], bit ketiga untuk led[2], dan bit keempat (paling kiri atau MSB) untuk led[3].

Bagian output [3:0] led pada kode di atas dapat diganti dengan output [1:4] led untuk memudahkan assignment nilai logika sesuai dengan urutan LED di board yang digunakan. Sehingga kita dapat melakukan assigment sebagai berikut.

- LED1 diwakili dengan led[1]
- LED2 diwakili dengan led[2]
- LED3 diwakili dengan led[3]
- LED4 diwakili dengan led[4]

Cobalah bereksprimen dengan cara mengganti-ganti nilai logika dari led, kemudian isilah tabel berikut.

Nilai logika	Keadaan LED (on/off)
0	
1	

4.1.2 Push buttons

Buat project baru, dan buat file Verilog dengan mendefiniskan satu modul dengan input dari push button dan output ke LED.

```
module test_buttons( buttons, led );
  input [3:0] buttons;
  output [3:0] led;
  assign led = buttons;
  endmodule
```

Bisa juga menggunakan potongan kode berikut.

```
assign led[0] = buttons[0];
assign led[1] = buttons[1];
assign led[2] = buttons[2];
assign led[3] = buttons[3];
```

Cobalah bereksperimen dengan kode Verilog yang ada dan juga menggukan operator Verilog seperti

Nilai logika	Keadaan PB
О	
1	

4.1.3 Seven segments

Lihat Modul 1.

4.1.4 Clock

Berapa frekuensi clock yang digunakan? 50 MHz?

LED blinking (sudah menggunakan counter, implementasinya mudah pada Verilog)

4.1.5 IR

Menggunakan protokol NEC.

Ubah kode Verilog yang sudah ada menjadi blok yang menampilkan

4.2 Rangkaian kombinasional

- rangkaian pendeteksi genap ganjil, input 4 PB, output 1 LED
- Input PB -> BCD -> seven segment
- IR -> BCD -> seven segment
- Implementasi XOR
- half adder dan full adder
- Menyalakan satu atau beberapa LED dengan kombinasi input 4 push button yang diberikan.
 - LED1 menyala jika button1 dan button3 ditekan atau button1 dan button 4 ditekan
 - LED2 menyala jika button2 dan button4 ditekan atau button1 ditekan
- Input BCD (dari) ke output seven segment. Buat tabel kebenaran dan rangkaian (dalam skematik atau Verilog struktural).

Input		Output									
PB1	PB2	PB3	PB4	a	b	c	d	e	f	g	dp
0	О	О	0								
О	О	О	1								
0	О	1	О								
•••	•••	•••									
1	1	1	1								

4.3 Rangkaian sekuensial

- Implementasi D flip-flop
- Implementasi J-K flip-flop dan

- Implementasi T flip-flip. Toggle operation: buzzer dan LED
- register, counter
- Kalkulator sederhana, input dari remote IR?
- Rangkaian multiplexing LED
- Menampilkan LED perdigit

5 Tugas Pendahuluan