- 6. Em cada uma das alíneas seguintes define-se indutivamente um conjunto L de palavras sobre $A = \{a, b\}$. Em cada caso dê uma definição explícita para L.
- (c) (i) $a \in L$; (ii) se $x \in L$, então $ax, xb \in L$.

Exemplo de palaveas de L: a, aa, ab, aab, aabb, aabbb, aabbbb, ...

Exemplo de palavear que nã pur knæm a L: E, b, ba, bba, bab, aba

-> E [[[] [] [] [] [] []] = a b n>0 L'= 1 a b : n>1, m>0 {

Para completar o exercício com tida a formalidade, teríamo de provan qu h= h'.

- (h) (i) $\varepsilon \in L$; (ii) se $x \in L$, então, caso x = yb, para $y \in A^*$, $xa \in L$, senão $xb \in L$. Exempla de palavra de L: ε , b, ba, bab, baba, ... Exemplo de palavora que nos pentencem a L. a, B, az, aba, L' = { E } U { (ba) b : n>0, m = 10,15 } = z=ba -ozb = bab $= \left\{ \left(ba \right)^n b^m : n > 0, m \in \left\{ 0, 1 \right\} \right\} = \left\{ ba \right\}^* \cdot \left\{ b, \varepsilon \right\}$ L = L'
- 7. Sejam $k, n \in \mathbb{N}$ e A um alfabeto com k letras.
 - (a) Determine o número de palavras sobre A de comprimento 4.

(a) Determine o número de palavras sobre
$$A$$
 de comprimento A .

$$A = \{a_1, \dots, a_k\}$$

$$\{a_1, \dots, a_k\}$$

$$\{a_1,$$

(c) Indique, mais geralmente, o número de palavras sobre A de comprimento não su-

) Indique, mais geralmente, o número de palavras sobre
$$A$$
 de comprimento não superior a n .

$\{ u \in A^{+} : |u| \le n \} = 1 + k + k^{2} + k + k^{4} + \dots + k^{4} + \dots + k^{4} \}$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \} = \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \le n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \ge n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \ge n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \ge n \}$$

$$= \frac{n}{k} \{ u \in A^{+} : |u| \ge n \}$$

$$= \frac{n$$

- 10. Sejam $A = \{a, b\}, X = \{a, ab\}$ e $Y = \{\varepsilon, bab, ab\}.$
 - (a) Dê exemplos de palavras dos conjuntos Y^+ e Y^* e constate que $Y^+ = Y^*$.
 - (b) Determine $X^0 \in X^3$.
 - (c) Calcule X⁺ e X*.
 - (d) Determine $L = abb(Y^2 \cup X)$.

 $y^{+} = \bigcup_{n \in \mathbb{N}} y^{n} = y' \cup y^{2} \cup \dots \cup y^{n} \cup y^{n}$ $Y^{2} = \left\{ \begin{array}{l} \mathcal{E} \mathcal{E} \\ \mathcal{I} \end{array} \right\}$ \mathcal{E} bab, \mathcal{E} ab, babé, babbab, babab, babab, abbab, $y^{3} = y^{2} \cdot y = \frac{1}{2} \{ bab, ab, bab^{2}ab, (ba)^{2}b, ab^{2}ab, (ab)^{2} \} \cdot \frac{1}{2} \{ bab, ab \} = \frac{1}{2}$ $= \frac{1}{2} \{ av : ue y^{2}, ve y \} = \frac{1}{2} ue : ue y^{2} \} \cup \frac{1}{2} uv : ue y^{2}, ve \}$ $= \frac{1}{2} uv : ue y^{2}, ve y \} = \frac{1}{2} ue : ue y^{2} \} \cup \frac{1}{2} uv : ue y^{2}, ve \}$ $= \frac{1}{2} uv : ue y^{2}, ve y \} = \frac{1}{2} ue : ue y^{2} \} \cup \frac{1}{2} uv : ue y^{2}, ve \}$ $= \frac{1}{2} uv : ue y^{2}, ve y \} = \frac{1}{2} ue : ue y^{2} \} \cup \frac{1}{2} uv : ue y^{2}, ve \}$ $= \frac{1}{2} uv : ue y^{2}, ve y \} = \frac{1}{2} ue : ue y^{2} \} \cup \frac{1}{2} uv : ue y^{2}, ve \}$ $= \frac{1}{2} uv : ue y^{2}, ve y \} = \frac{1}{2} ue : ue y^{2} \} \cup \frac{1}{2} uv : ue y^{2}, ve \}$ $= \frac{1}{2} uv : ue y^{2}, ve y \} = \frac{1}{2} ue : ue y^{2} \} \cup \frac{1}{2} uv : ue y^{2}, ve \}$ $= \frac{1}{2} uv : ue y^{2}, ve y \} = \frac{1}{2} ue : ue y^{2} \} \cup \frac{1}{2} uv : ue y^{2}, ve \}$ $= \frac{1}{2} uv : ue y^{2}, ve y \} = \frac{1}{2} ue : ue y^{2} \} \cup \frac{1}{2} uv : ue y^{2}, ve \}$ $= \frac{1}{2} ue : ue y^{2}, ve y \} = \frac{1}{2} ue : ue y^{2} \} \cup \frac{1}{2$

 $y^* = y^+ \cup \{ \xi \} = y^+$ pagu $\xi \in y^+$, or sign, pague $\xi \in y$.

y* = y+ U dEf = y+ pagu E E y+, ou sija, parque E E y.

- b) X° = {a, ab }° = {E} $\chi^3 = \chi^2 \times = \{a^2, (ab)^2, a^2b, aba\} \{a, ab\} =$ $X^{2} = X \cdot X = \{a,ab\} \cdot \{a,ab\} = \{uv : u,vex\} = \{a^{2},(ab)^{2},a^{2}b,aba\}$
 - C) $X^{+} = U \times^{n} = \{a, ab, a^{2}, (ab)^{2}, a^{2}b, a^{2}ba, a^{3}, (ab)^{2}a, a^{2}ba, aba^{2}, a^{2}b, (ab)^{3}, a^{2}bab,$ = {u ∈ A* : a é prefixu de u, b° nos e fator de u } X* = X† U det
 - = abb $(y^2 \cup X)$ = abb $(\{\xi, bab, ab, (bab)^2, (ab)^2, babab, ab^2ab\}\cup\{a, ab\})$ 1) = abb. { E, a, ab, bab, (bab)2, (ab)2, (ba)2, abab } $= |ab^{2}, ab^{2}a, ab^{2}ab, ab^{3}ab, ab^{2}(bab)^{2}, ab^{2}(ab)^{2}, ab^{2}(ba)^{2}b, (ab^{2})$
 - e) · (ab) L = {b, ba, bab, bab, b(bab)2, b(ab)2, b(ba)2b, babab}

Alternativa: $U \times) = b (Y^2 \cup X).$ $(ab)^{\prime}L = (ab)^{\prime}(abb(y^2ux)) = (ab)^{\prime}abb$

$$(ab)^{-1}$$
 ε , bab, ab, babab, babbab, abab, abbab $= \frac{1}{ab^{-1}}$, bab $= \frac{1}{ab^{-1}}$

Alternative 1: $(ab)^2y^2 = b^2(a^2y^2) = b^2(b, bab, bab) = \lambda \epsilon, ab, bab) = y$

 $(ab)^{-1} y^{2} = b^{-1} (a^{-1} y^{2}) = b^{-1} ((a^{-1} y^{2}) - b^{-1} ((a^{-1} y^{2}) - y^{2}) = b^{-1} ((a^{-1} y^{2}) - b^{-1} ((a^{-1} y^{2}) - y^{2}) = b^{-1} ((a^{-1} y^{2}) - b^{-1} ((a^{-1} y^{2}) - y^{2}) = b^{-1} ((a^{-1} y^{2}) - b^{-1} ((a^{-1} y^{2}) - y^{2}) = b^{-1} ((a^{-1} y^{2}) - b^{-1} ((a^{-1}$ $=b^{\prime}\{b\} y, \cup b^{\prime}\{b\} = y \cup \{\epsilon\} = y.$

- $L_1 \subseteq L_2 \implies L_2 \subseteq L_2 \land L_1 L \subseteq L_2 L \longrightarrow a$ **16**. Seja A um alfabeto e sejam $L, L_1, L_2 \subseteq A^*$. Mostre que: (a) se $L_1 \subseteq L_2$, então $LL_1 \subseteq LL_2$ e $L_1L \subseteq L_2L$. LL, ≤ LL, ∧ L, L ⊆ L2 L → L, ⊆ L2 . — b) (b) pode ter-se $LL_1\subseteq LL_2,\, L_1L\subseteq L_2L$ e $L_1\not\subseteq L_2.$
- a) Suponhamon que Li Elz, o que quer chizer que, se me Li, entas melz, onche ME AT.

Vama mostrar que LL, E Lhz.

LL1 = { Vun E A* : VE L, M, E L, }

Suja (WE LL). Entas existem VEL e u. El, tan qui W = Vu,.

Como u, EL, entas u, EL2 por hipótese. Logo vu, ELLZ; on sige WELLZ. Logo LL, ELLZ.

Falta prova que LIL E L2 L. Ademonstral e similar à anteror a menor da orden dan polavear envolusion ma concetengle.

b) Querema motrar que LL, ELL, e L, L E L, L no implica que L, EL2.

Bosta mente can en contrar um exemplo (um alfabeta A e linguagens L, L, eL2)

em que se verifique LL, ELL2 + GLE L, mas em que L, \$\frac{1}{2}\text{L}

dependo do encollea

de L

influência?

Exemplo 1:
$$A = \{a, b\}$$

$$L_1 = \{a\}, b\}$$

$$\{L_1 = \{a\}\} = \{a\} = \{a\}\} = \{b\}\} = L_2$$

$$\{L_1 L_2 = \{a\}\} = \{a\}\} = \{a\}\} = \{a\}\} = \{a\}$$

14. Sejam Aum alfabeto, Luma linguagem sobre Ae $u,v,w\in A^*.$ Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:

(a) $uv = uw \Rightarrow v = w$; (b) $vu = wu \Rightarrow v = w$.

(c) $\varepsilon L = L\varepsilon = L$;

(d) $\emptyset L = \emptyset$;

(e) $L\varnothing = L$;

(f) $L = L^1$;

(g) $L^{+} = L^{*}L$;

 $(h) \varnothing^+ = \varnothing;$

(i) $\emptyset^* = \{\varepsilon\};$

(j) $\varepsilon \in L^+, \forall L;$ (l) $L^+ \neq L^*, \forall L;$

(k) $L^+ \cup \{\varepsilon\} = L^*$; (m) $L^+ \subseteq L^*$;

(n) $L^* \subseteq L^+$.