CS 587 Software Project Management.

Assignment 4:

Given Product Size is 120 KLOC.

Defect Origin										
		Requirement	Analysis	Design	Coding	Unit Testing	Integration Testing	System Testing	Field	<u>Total</u>
	Requirement	49								49
	Analysis	34	61							95
	Design	67	34	123						224
Where	Coding	13	23	77	241					354
Found	Unit Testing	39	21	67	78	13				218
	Integration Testing	23	4	3	98	-	9			137
	System Testing	14	8	5	29	-	-	7		63
	Field	7	5	4	6	-	-	-	8	30
	<u>Total</u>	246	156	279	452	13	9	7	8	1170

1. Calculate the defect removal rate for every phase

Formula Used: Defect Removed in a Phase / Product Size (120).

<u>Phase</u>	Defect Removed	Product Size	<u>Defect Removal Rate</u>
Requirement	49	120	0.40833
Analysis	95	120	0.79167
Design	224	120	1.86667
Coding	354	120	2.95
Unit Testing	218	120	1.81667
Integration Testing	137	120	1.14167
System Testing	63	120	0.525
Field	30	120	0.25

2. Calculate the defect injection rate for every phase

Formula Used: Defects injected in the phase/Product Size (120).

<u>Phase</u>	Defects Injected	Product Size	Defect Injected Rate
Requirement	246	120	2.05
Analysis	156	120	1.3
Design	279	120	2.325
Coding	452	120	3.76667
Unit Testing	13	120	0.10833
Integration Testing	9	120	0.075
System Testing	7	120	0.05833
Field	8	120	0.06667

3. Calculate the defect escape rate for every phase

Defects Escaped Rate = Defect Escaped / Product Size (120).

Defects Escaped = Total Defects Injected – Total Defects Removed.

Phase	Defects	Defects	Defects	Product Size	Defects
	Injected		Escaped		Escaped Rate
Requirement	246	49	197	120	1.64167
Analysis	402	144	258	120	2.15
Design	681	368	313	120	2.60833
Coding	1133	722	411	120	3.425
Unit Testing	1146	940	206	120	1.71667
Integration	1155	1077	78	120	0.65
Testing					
System	1162	1140	22	120	0.18333
Testing					
Field	1170	1170	0	120	0

4. Calculate the overall defect removal effectiveness

Overall Defects Removal Effectiveness = [1 - (Defects in Field / Total Defects)] * 100= [1 - (30/1170)] * 100= 97.44 %

5. Which phase is the most effective in removing defects? Explain.

Defects Removal Effectiveness for all phases except Testing =

[Defects removed at that step / (Defects existing at that entry + Defects injected during current phase)] * 100

Defects Removal Effectiveness for Testing Phase =

[Defects removed at current phase / (Defects removed at current phase + Defects removed at subsequent phase)] * 100

<u>Phase</u>	Defects Removed	Defects Injected	Defects Escaped	Defects Removal Effectiveness	Total (%)
	Removed	mjeeteu	Locapea	Enedaveness	
Requirement	49	246	197	49/246 *100	19.92%
Analysis	95	156	258	95/ (197+156) *100	26.91%
Design	224	279	313	224/ (258+279) *100	41.71%
Coding	354	452	411	354/ (313+452) *100	46.27%
Unit Testing	218	13	206	218/ (218+137+63+30) *100	48.66%
Integration	137	9	78	137/ (137+63+30) *100	59.57%
Testing					
System	63	7	22	63/ (63+30) *100	67.74%
Testing					

As per as the above calculations and the formulas listed above. The system testing phase is the most effective in the case of defect removals, the defect removal effectiveness for system testing is **67.74% rounding off up to 2 decimals.**

6. Do you think reviews and inspections were effective? Explain.

Overall Defects Removal Effectiveness (Calculated above Q4) = 97.44 %

As we know peer review, inspections and walk-throughs helps removing defects in the stage of development itself. And above calculations clearly say that. 61.71% defects were removed the development phase itself, that's pretty big number if we are looking at Software Development Process. Also, the defective removal is greater than CMM level 5 which according to me will make an awesome product at the end of the cycle.

So, Yes Review and Inspections are always effective.

7. If the number of defects originated in design phase increased by 10% and defects detected in design review increased by 10%, do you think that will have a positive or negative impact on the defect removal effectiveness in

the coding phase? Explain your answer in detail (present data to support your answer).

Design Phase:

Current Defects = 279 Defects Detected = 224

After 10% increase:

Defect Origin, # of defects = (279 + ((279*10)/100)) = 306.9# Defects detected in Review Phase = (224 + ((224*10)/100)) = 246.4

Defects Existing in Review and Analysis (Before Design Phase Kicks in) = (246+156) – (49+95) = **258**

Defects Removal Effectiveness in Design Phase = (246.4/ (258 + 306.9)) * 100 = **43.65** %

The Defect Removal rate has increased:

Before: **41.71%** Now: **43.65 %**

Increase of = 43.65 - 41.71 = **1.94% Increase**.

Coding Phase

Current Defects = 452 Defects Detected = 354

Defects Existing in Review, Analysis and Design (Before Coding Phase Kicks in):

(246 + 156 + **306.9**) – (49 + 95 + **246.4**)

318.5

Defects Removal Effectiveness in Coding Phase = 354 / (452 + 318.5) * 100 = 45.94 %

The Defect Removal Rate Has Decreased:

Before: **46.27%** Now: **45.94** %

Decrease of = (46.27 - 45.94)= **0.33% (Decrease.)**

The above calculation clearly shows that this scenario has a negative effect on Defects Removal Effectiveness in Coding Phase.