Organización de Computadoras 2012

Clase 2

Temas de Clase

- Representación de datos
 - Números con signo
- Operaciones aritméticas
- Banderas de condición
- Representación de datos alfanuméricos

Representación en BCS

Con n bits, 1 bit representa al signo y n-1 bits a la magnitud

<u>n-1</u>	n-2		0
SIGNO		MAGNITUD	

- ➤ El bit n-1 (extremo izquierdo) representa sólo al signo
- Los bits 0 a n-2 la magnitud

Binario con signo

- Un 0 en el bit de signo indica que el número es positivo
- Un 1 en el bit de signo indica que el número es negativo
- ▶ Los bits 0 — n-2 representan el valor absoluto en binario
- ► El rango: $-(2^{n-1} 1) \rightarrow +(2^{n-1} 1)$ con 2 ceros

Binario con signo (2)

Ejemplos +
$$32_{10} = 001000000$$
 $-32_{10} = 101000000$ 32 32 $-7_{10} = 100000111$ $-7_{10} = 10100111$ $-41_{10} = 00101001$

Binario con signo (3)

➤ Ejemplo: n=8 bits negativos | ... | 10000000 --- - 0 | ... | positivos { ... 00000000 --- +0

Binario con signo (4)

> Ejemplo con n= 3 bits $111 = -3 = -(2^{n-1} - 1)$ 110 = -2101 = -1100 = -0 $011 = +3 = +(2^{n-1} - 1)$ 010 = +2001 = +1000 = +0

Resumen: BCS

- ✓ El intervalo es simétrico
- ✓ El primer bit sólo indica el signo
- ✓ Los positivos empiezan con cero (0)
- ✓ Los negativos empiezan con uno (1)
- ✓ Hay dos ceros
- ✓ Números distintos: 2ⁿ

Técnica de Complementos

 El complemento a un número N de un número A (A menor que N) es igual a la cantidad que le falta a A para ser N

Complemento a N de A = N - A

 El complemento a un número N del número (N-A) es igual a A.

Complemento a N de (N-A) = N - (N-A) = A

Técnica de Complementos (2)

En un sistema con n dígitos podemos tener:

- Complemento a la base disminuida
 - si N= baseⁿ − 1

En sistema binario es Complemento a 1 ó Ca1

- Complemento a la base
 - si N= baseⁿ

En sistema binario es Complemento a 2 ó Ca2

Representación en Ca1

Los n bits representan al número

Información del signo

- Si el número es positivo, los n bits tienen la representación binaria del número (como siempre)
- ➤ Si el número es negativo, los n bits tienen el Ca1 del valor deseado.
- ➤ El Ca1 de un número en base 2 se obtiene invirtiendo todos los bits

- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- El rango va desde

$$-(2^{n-1}-1)$$
 a $+(2^{n-1}-1)$ con dos ceros

Ejemplos


```
➤ Ejemplo: n=8 bits
Números \( 111111111 \cdots \) -0
negativos
         Números \int 011111111 + (2^{n-1} - 1) = +127
positivos <
```

Ca1

> Ejemplo con n= 3 bits

$$111 = -0$$

$$110 = -1$$

$$101 = -2$$

$$100 = -3 = -(2^{n-1} - 1)$$

$$011 = +3 = +(2^{n-1} - 1)$$

$$010 = +2$$

$$001 = +1$$

$$000 = +0$$

Dada una cadena de bits ¿qué número decimal representa si lo interpretamos en Ca1?

Cuando es positivo:

$$01100000 = 1 \times 2^6 + 1 \times 2^5 = 64 + 32 = 96$$

Como siempre

- Cuando es negativo, puedo hacer dos cosas:
- ✓ Ca1 del número y obtengo el positivo Ej.

Ca1

✓ Otro método: el peso que tiene el primer dígito ahora es –(2ⁿ⁻¹ –1) y el resto de los dígitos con pesos positivos como siempre

$$11100000 = -1x(2^7 - 1) + 1x2^6 + 1x2^5 =$$
= -127 + 64 + 32 = -31

➤ O por definición de Complemento a la base disminuida

$$ightharpoonup$$
 Ca1 = (bⁿ-1) - N^o

Resumen Ca1

- El intervalo es simétrico
- Los n bits representan al número
- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- Hay dos ceros
- ❖Números distintos 2ⁿ

Representación en Ca2

Los n bits representan al número

Información del signo

Representación en Ca2

- ➤ Si el número es positivo, los n bits tienen la representación binaria del número (como siempre)
- Si el número es negativo, los n bits tienen el Ca2 del valor deseado.
- ➤ El Ca2 de un número (en base 2) se obtiene invirtiendo todos los bits (Ca1) y luego sumándole 1.

- Otra forma: "mirando" desde la derecha se escribe el número (base 2) igual hasta el primer "1" uno inclusive y luego se invierten los demás dígitos
- Otra forma: por definición de Complemento a la base

$$ightharpoonup$$
 Ca2 = b^n - N^o

- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- El rango es asimétrico y va desde
 (2ⁿ⁻¹) a +(2ⁿ⁻¹-1)
- Hay un solo cero

Ejemplos

$$+32_{10} = 001000000 \leftarrow$$
 "mirando" desde la derecha

$$-32_{10} = 11100000$$

- ✓ Los dígitos en rojo se copiaron igual
- ✓ Los dígitos en azul se invirtieron

4

Ca2 (otra forma)

```
+32_{10}=00100000

1111

11011111 invierto todos los bits

+ 1 le sumo 1

-32_{10}=11100000 ← en Ca2
```


Ca2 (otra forma)

- Ca2 = $b^n N^o = 2^8 32 = 256-32=224$
- Hagamos la cuenta en base 2

```
\begin{array}{c}
0 & 1 & 1 \\
-1101010 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
-32 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & \leftarrow
\end{array}

en Ca2
```

Ca2

```
➤ Ejemplo: n=8 bits
negativos
        10000000 - (2^{n-1}) = -128
Números \int 011111111 + (2^{n-1} - 1) = +127
positivos
```

Ca2

Ejemplo con n= 3 bits

$$111 = -1$$

$$110 = -2$$

$$101 = -3$$

$$100 = -4 = -(2^{n-1})$$

$$011 = +3 = +(2^{n-1} - 1)$$

$$010 = +2$$

$$001 = +1$$

$$000 = +0$$

Dada una cadena de bits ¿qué número decimal representa si lo interpretamos en Ca2?

Cuando es positivo:

$$01100000=1 \times 2^{6} + 1 \times 2^{5} = 64+32=96$$

Como siempre

- Cuando es negativo, puedo hacer dos cosas:
- ✓ Ca2 el número y obtengo el positivo Ej.

32

00100000 = +32

✓ Otro método: el peso que tiene el primer dígito ahora es –(2ⁿ⁻¹) y el resto de los dígitos con pesos positivos *como siempre*

$$111000000 = -1x(2^7) + 1x2^6 + 1x2^5$$
$$= -128 + 64 + 32 = -32$$

Resumen Ca2

- El intervalo es asimétrico, hay un más
- Los n bits representan al número
- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- Hay un solo cero
- ❖Números distintos 2ⁿ

Técnica del Exceso

 La representación de un número A es la que corresponde a la SUMA del mismo y un valor constante E (o exceso).

Exceso E de
$$A = A + E$$

 Dado un valor, el número representado se obtiene RESTANDO el valor del exceso.

$$A = (Exceso E de A) - E$$

- El signo del número A resulta de una resta
 - En binario, NO sigue la regla del bit mas significativo

Rango

Números en punto fijo (1)

- Se considera que todos los números a representar tienen exactamente la misma cantidad de dígitos y la coma fraccionaria está siempre ubicada en el mismo lugar.
- ➤ En sistema decimal: 0,23 ó 5,12 ó 9,11
 - En los ejemplos cada número tiene tres dígitos, y la coma está a la derecha del mas significativo

Números en punto fijo (2)

- En sistema binario: $11,10 (3,5)_{10} \acute{o} 01,10 (1,5)_{10} \acute{o} 00,11 (0,75)_{10}$
 - Hay 4 dígitos y la coma está entre el 2^{do} y 3^{er} dígito.
- La diferencia principal entre la representación en el papel y su almacenamiento en computadora, es que no se guarda coma alguna, se supone que está en un lugar determinado.

Punto Fijo: Rango y Resolución

Rango: diferencia entre el número mayor y el menor

Resolución: diferencia entre dos números consecutivos

 Para el ejemplo anterior en sistema decimal Rango es de 0,00 a 9,99 ó [0,00...9,99] Resolución es 0,01

$$2,32 - 2,31 = 0,01$$
 o $9,99 - 9,98 = 0,01$

Rango y Resolución(2)

- Notar que hay un compromiso entre rango y resolución.
- Si mantenemos tres dígitos y desplazamos la coma dos lugares a la derecha, el rango pasa a ser [0,...,999] y la resolución valdrá 1.

En cualquiera de los casos hay 10³ números distintos

Ejemplo en BSS con 4 bits

4 parte ent. y 0 parte frac.

_ _ _ _

Resolución $0001 - 0000 = 0001_2 = 1_{10}$

Binario	Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

Ejemplo en ... (1)

3 parte ent. y 1 parte frac.

---,-

Resolución $000,1-000,0=000,1_2=0,5_{10}$

Binario	Decimal
0,000	0
000,1	0,5
001,0	1
001,1	1,5
010,0	2
010,1	2,5
011,0	3
011,1	3,5
100,0	4
100,1	4,5
101,0	5
101,1	5,5
110,0	6
110,1	6,5
111,0	7
111,1	7,5

Ejemplo en ... (2)

2 parte ent. y 2 parte frac.

--,--

Resolución

$$00,01 - 00,00 = 00,01_2 = 0,25_{10}$$

Binario	Decimal
00,00	0
00,01	0,25
00,10	0,5
00,11	0,75
01,00	1
01,01	1,25
01,10	1,5
01,11	1,75
10,00	2
10,01	2,25
10,10	2,5
10,11	2,75
11,00	3
11,01	3,25
11,10	3,5
11,11	3,75

42

Ejemplo en ... (3)

1 parte ent. y 3 parte frac.

- , - - -

Resolución

$$0,001 - 0,000 = 0,001_2 = 0,125_{10}$$

Decimal
0
0,125
0,25
0,375
0,5
0,625
0,75
0,875
1
1,125
1,25
1,375
1,5
1,625
1,75
1,875

Ejemplo en ... (4)

parte ent. y 4 parte frac.

, - - - -

Resolución $0001 - 0000 = 00001_2 = 00001_2$

Decimal
0
0,0625
0,125
0,1875
0,25
0,3125
0,375
0,4375
0,5
0,5625
0,625
0,6875
0,75
0,8125
0,875
0,9375

Representación y error

- Al convertir un número decimal a sistema binario tendremos 2 casos:
 - Sin restricción en la cantidad de bits a usar
 - \bullet 3,125₁₀ = 11,001₂
 - Con restricción, por ejemplo 3 bits para parte entera y 4 bits para parte fraccionaria
 - \bullet 3,125₁₀ = 011,0010₂

No cometemos error

Representación y error (2)

- Convertir 3,2₁₀ con distintas restricciones
 - 3 bits para parte fraccionaria: $011,001_2 = 3,125_{10}$
 - Error = 3.2 3.125 = 0.075
 - 4 bits para parte fraccionaria: 011,0011₂ = 3,1875₁₀
 - Error = 3.2 3.1875 = 0.0125
 - 5 bits para parte fraccionaria: $011,00111_2 = 3,21875_{10}$
 - Error = 3.2 3.21875 = -0.01875
- El error más pequeño es 0,0125 entonces 3,1875 es la representación más cercana a 3,2 y podría utilizar sólo 4 bits para la parte fraccionaria.

Bits de condición (banderas)

- ✓ Son bits que el procesador establece de modo automático acorde al resultado de cada operación realizada.
- ✓ Sus valores permitirán tomar decisiones como:
 - ✓ Realizar o no una transferencia de control.
 - ✓ Determinar relaciones entre números (mayor, menor, igual).

Banderas aritméticas

- Z (cero): vale 1 si el resultado de la operación son todos bits 0.
- C (carry): en la suma vale 1 si hay acarreo del bit más significativo; en la resta vale 1 si hay 'borrow' hacia el bit más significativo.
 - Cuando la operación involucra números sin signo, C=1 indica una condición fuera de rango.

Banderas aritméticas

- N (negativo): igual al bit más significativo del resultado.
 - Es 1 si el resultado es negativo
- ❖ V (overflow): en 1 indica una condición de fuera de rango (desborde) en Ca2.
 - El resultado no se puede expresar con el número de bits utilizado.

Suma en Ca2

- Para sumar dos números en Ca2 se suman los n bits directamente.
- Si sumamos dos números + y el resultado es ó si sumamos dos – y el resultado es + hay overflow, en otro caso no lo hay.
- ➤ Si los Nos son de distinto signo nunca puede haber overflow.

Resta en Ca2

- Para restar dos números en Ca2, se restan los n bits directamente. También se puede Ca2 el sustraendo y transformar la resta en suma.
- Si a un Nº + le restamos un Nº − y el resultado es − ó si a un Nº − le restamos un + y el resultado es + hay overflow en la resta.
- Si son del mismo signo nunca hay overflow

Operación NZVC

Ca2

Sin signo

$$egin{array}{c} -0100 \ 0010 \ \hline 0110 \ \end{array}$$

0000

✓ Los dos resultados son correctos.

Operación NZVC Ca2 Sin signo

$$-0101$$
 $+5$ $+5$ $+7$ -4 overf. $+12$

✓ Ca2 incorrecto, sin signo correcto.

Operación NZVC Ca2 Sin signo

✓ Ca2 correcto, sin signo incorrecto.

Operación NZVC Ca2 Sin signo

✓ Los dos resultados son incorrectos.

Operación NZVC Ca2 Sin signo

$$1 \longrightarrow 0101 \qquad 1001 \qquad +5 \qquad 5$$

$$0111 \qquad +7 \qquad 7$$

$$1110 \qquad -2 \qquad B 14$$

✓ Ca2 correcto, sin signo incorrecto.

Operación NZVC Ca2 Sin signo

✓ Ca2 incorrecto, sin signo correcto.

Suma en BCS

$$+rac{1\ 001}{1\ 010}$$

Para pensar.

Representación alfanumérica

- Letras (mayúsculas y minúsculas)
- Dígitos decimales (0, ..., 9)
- Signos de puntuación
- Caracteres especiales
- "Caracteres" u órdenes de control

Ejemplo

A cada símbolo un código en binario

```
Ejemplo: x, y, \alpha, \beta, #, @, [, ]
```

```
Ocho símbolos ¿Cuántos bits? ¿Por qué?
         000
                      @
         001 y
         010
             \alpha
                      \alpha
         011
               #
         100
               @
         101
         110
                      X
         111
```


Algunos códigos

FIELDATA

- 26 letras mayúsculas + 10 dígitos + 28 caracteres especiales
- Total 64 combinaciones ⇒ Código de 6 bits

ASCII

American Standard Code for Information Interchange

- FIELDATA + minúsculas + ctrl
- Total 128 combinaciones ⇒ Código de 7 bits

Algunos códigos (2)

- ASCII extendido
 - ASCII + multinacional + semigráficos + matemática
 - Código de 8 bits
- EBCDIC Extended BCD Interchange Code
 - similar al ASCII pero de IBM
 - Código de 8 bits

Tabla ASCII

Dec	H)	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	: Нx	Oct	Html C	<u>hr</u>
0	0	000	NUL	(null)	32	20	040	a#32;	Space	64	40	100	۵#64;	0	96	60	140	a#96;	8
1	1	001	SOH	(start of heading)	33	21	041	@#33;	1	65	41	101	A ;	A	97	61	141	<u>@</u> #97;	a
2	2	002	STX	(start of text)	34	22	042	@#3 4 ;	"	66	42	102	B	В	98	62	142	<u>@</u> #98;	b
3	3	003	ETX	(end of text)				@#35;					a#67;					~~~,	C
4	4	004	EOT	(end of transmission)	36	24	044	@#36;	ş				D					d	
5	5	005	ENQ	(enquiry)	37			a#37;					E					e	
6				(acknowledge)	38			@#38;					a#70;					f	
7	7	007	BEL	(bell)	39			@#39;					G					a#103;	
8		010		(backspace)	40			a#40;					@#72;					a#104;	
9		011		(horizontal tab)				@# 41 ;					a#73;					i	
10		012		(NL line feed, new line)				@# 4 2;					a#74;					j	
11		013		(vertical tab)				a#43;					a#75;					a#107;	_
12	_	014		(NP form feed, new page)				a#44;					a#76;					4#108;	
13		015		(carriage return)				a#45;					M					a#109;	
14		016		(shift out)				a#46;					a#78;					n	
15		017		(shift in)				a#47;					a#79;					o	
		020		(data link escape) 📗				a#48;					6#80;					p	
				(device control 1)	49			a#49;					4#81;					q	
				(device control 2)	50			a#50;					4#82;					r	
				(device control 3)				a#51;					S					s	
				(device control 4)				6#52;					a#84;					t	
				(negative acknowledge)				a#53;					a#85;					u	
				(synchronous idle)				a#54;					4#86;					v	
				(end of trans. block)				a#55;					6#87;					w	
				(cancel)				a#56;					۵#88;					x	
		031		(end of medium)	57			a#57;					a#89;					y	
		032		(substitute)				a#58;					6#90;					z	
		033		(escape)	59			6#59;	-				[{	
		034		(file separator)	60			4#60;					a#92;					a#124;	
29		035		(group separator)				=					6#93;					}	
		036		(record separator)				a#62;					«#94;					~	
31	1F	037	បន	(unit separator)	63	ЗF	077	4#63;	?	95	5F	137	_	_	127	7 F	177	6#127;	DEL

Una extensión al ASCII

			100				4,4,4,5								
128	Ç	144	Ė	160	á	176	1000 1000	193	T	209	₹	225	ß	241	±
129	ü	145	æ	161	í	177	******	194	т	210	π	226	Γ	242	≥
130	é	146	Æ	162	ó	178		195	F	211	Ш	227	π	243	≤
131	â	147	ô	163	ú	179		196	-	212	F	228	Σ	244	ſ
132	ä	148	ö	164	ñ	180	4	197	+	213	F	229	σ	245	J
133	à	149	ò	165	Ñ	181	4.0	198	. ∤ ∖	214	П	230	μ	246	÷
134	å	150	û	166	•	182	-1	199	ll.	215	#	231	τ	247	æ
135	ç	151	ù	167	۰	183	en A	200	L	216	+	232	Ф	248	۰
136	ê	152	_	168	3	184	7	201	F	217	J	233	•	249	
137	ë	153	Ö	169	M	185	4	202	<u>JL</u>	218	Г	234	Ω	250	
138	è	154	Ü	170		186		203	īĒ	219		235	δ	251	$\sqrt{}$
139	ï	156	£	171	1/2	187	ħ	204	ŀ	220		236	ထ	252	_
140	î	157	¥	172	1/4	188	ī	205	=	221		237	ф	253	2
141	ì	158	77.	173	i	189	Ш	206	井	222		238	ε	254	
142	Ä	159	f	174	«	190	4	207	<u>_</u>	223		239	\wedge	255	
143	Å	192	L	175	»	191	٦	208	Ш	224	αL	240	≡		

mayor información ...

- Capítulo 8: Aritmética del computador (8.1., 8.2., 8.3.)
 - Stallings, 5° Ed.
- Sistemas enteros y Punto fijo
 - Apunte 1 de Cátedra
- Capítulo 3: Lógica digital y representación numérica
 - Apuntes COC Ingreso 2012