Am2716/Am9716

2048 x 8-Bit UV Erasable PROM

DISTINCTIVE CHARACTERISTICS

- Direct replacement for Intel 2716
- Interchangeable with Am9218 16K ROM
- Single +5V power supply
- Low power dissipation
 - 525mW active

- 132mW standby
- Fully static operation no clocks
- Three-state outputs

GENERAL DESCRIPTION

The Am2716/Am9716 is a 16384-bit ultraviolet erasable and programmable read-only memory. It is organized as 2048 words by 8 bits per word, operates from a single +5V supply, has a static standby mode and features fast single address location programming.

Because the Am2716/Am9716 operates from a single +5V supply, it is ideal for use in microprocessor systems. All programming signals are TTL levels, requiring a single pulse. For programming outside of the system, existing EPROM programmers may be used. Locations may be programmed singly, in blocks, or at random. Total programming time for all bits is 100 seconds.

BLOCK DIAGRAM

MODE SELECT TABLE

CE/PGM (18)	OE (20)	V _{PP} (21)	Outputs (9-11, 13-17)	Mode
L	٦	Vcc	D _{OUT}	Read
Н	Х	Vcc	High Z	Standby
Pulsed L to H	Н	V _{PP}	D _{IN}	Program
, L	L	V _{PP}	DOUT	Program Verify
L	Н	Vpp	High Z	Program Inhibit

H = HIGH

L = LOW

X = Don't Care

PRODUCT SELECTOR GUIDE

Access Time	300ns	350ns	390ns	450ns		
Part Numbers	Am9716	Am2716-1	Am2716-2	Am2716		

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation

ORDERING INFORMATION

Valid Combinations					
Am9716 DC, LC					
Am2716	DC, LC, DI, LI, DL, LL, DM, LM				
Am2716-1	DC, LC, DI, LI, DL, LL				
Am2716-2	DC, LC				

ERASING THE Am2716/Am9716

In order to clear all locations of their programmed contents, it is necessary to expose the Am2716/Am9716 to an ultraviolet light source. A dosage of 15 Wseconds/cm² is required to completely erase an Am2716/Am9716. This dosage can be obtained by exposure to an ultraviolet lamp [wavelength of 2537 Angstroms (Å)] with intensity of 12000 uW/cm² for 15 to 20 minutes. The Am2716/Am9716 should be about one inch from the sourse and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am2716/Am9716, and similar devices, will erase with light sources having wavelengths shorter than 4000 Angstroms. Although erasure times will be much longer than with UV sources at 2537Å, nevertheless the exposure to florescent light and sunlight will eventually erase the Am2716/Am9716, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

PROGRAMMING THE Am2716/Am9716

Upon delivery, or after each erasure the Am2716/Am9716 has all 16384 bits in the "1," or high state. "0s" are loaded into the Am2716/Am4716 through the procedure of programming.

The programming mode is entered when +25V is applied to the Vpp pin and when \overline{OE} is at V_{IH}. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels. When both the address and data are stable, a 50msec, TTL high level pulse is applied to the \overline{CE}/PGM input to accomplish the programming.

The procedure can be done manually, address by address, randomly, or automatically via the proper circuitry. All that is required is that one 50msec program pulse be applied at each address to be programmed. It is necessary that this program pulse width not exceed 55msec. Therefore, applying a DC level to the CE/PGM input is prohibited when programming.

READ MODE

The Am2716/Am9716 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be

used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}) for all devices. Data is available at the outputs 120ns or 150ns (t_{OE}) after the falling edge of \overline{OE} , assuming that \overline{CE} has been low and addresses have been stable for at least t_{ACC} – t_{OE} .

STANDBY MODE

The Am2716/Am9716 has a standby mode which reduces the active power dissipation by 75%, from 525mW to 132mW (values for 0 to \pm 70°C). The Am2716/Am9716 is placed in the standby mode by applying a TTL high signal to the $\overline{\text{CE}}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{\text{OE}}$ input.

OUTPUT OR-TIEING

To accommodate multiple memory connections, a 2-line control function is provided to allow for:

- 1. Low memory power dissipation
- 2. Assurance that output bus contention will not occur.

It is recommended that \overline{CE} be decoded and used as the primary device selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAM INHIBIT

Programming of multiple Am2716/Am9716s in parallel with different data is also easily accomplished. Except for $\overline{\text{CE}}/$ PGM, all like inputs (including $\overline{\text{OE}}$) of the parallel Am2716/Am9716s may be common. A TTL level program pulse applied to an Am2716/Am9716's $\overline{\text{CE}}/\text{PGM}$ input with Vpp at 25V will program that Am2716/Am9716. A low level $\overline{\text{CE}}/\text{PGM}$ input inhibits the other Am2716/Am9716 from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify may be performed with Vpp at 25V. Except during programming and program verify, Vpp must be at VCC.

Symbol	Parameter	Test Conditions	Min	Max	Units
I _{LI}	Input Current	$V_{1N} = 5.25/0.45V$		10	μΑ
Ipp1	Vpp Supply Current	ČE/PGM = V _{IL}		5	mA
IPP2	Vpp Supply Current During Programming Pulse	CE/PGM = VIH		30	mA
Icc	V _{CC} Supply Current			100	mA
V _{IL}	Input Low Level		-0.1	0.8	Volts
VIH	Input High Level		2.0	V _{CC} +1	Volts
tas	Address Set-up time		2		μs
toes	Output Enable Set-up Time	ut Enable Set-up Time			μs
t _{DS}	Data Set-up Time		2		μs
t _{AH}	Address Hold Time		2		μs
^t OEH	Output Enable Hold Time		2		μs
tDH	Data Hold Time	Input tp and tp (10% to 90%) = 20ns Input Signal Levels = 0.8 to 2.2V	2		μs
toF	Output Disable to Output Float Delay(CE/PGM = V _{IL})	Input Timing Reference Level = 1V and 2V Output Timing Reference Level = 0.8V and 2V	0	120	ns
t _{OE}	Output Enable to Output Delay (CE/PGM = V _{IL})			120	ns
tpW	Program Pulse Width		45	55	ms
tPRT	Program Pulse Rise Time		5		ns
tpfT	Program Pulse Fall Time		5		ns

Notes:

- V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
- Vpp must not be greater than 26 volts including overshoot. Permanent device damage may occur if the device

is taken out of or put into the socket when Vpp = 25 volts is applied. Also, during $\overline{OE} = \overline{CE}/PGM = V_{IH}$, Vpp must not be switched from 5 volts to 25 volts or vice versa.

PROGRAMMING WAVEFORMS

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65°C to +150°C
Ambient Temperature with
Power Applied65°C to +135°C
Voltage on All Inputs/
Outputs (except Vpp+6V to -0.3V
Voltage on V _{PP} during
programming + 26.5V to -0.3V

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices Temperature	
Industrial (I) Devices Temperature ——40°C to +85°C Supply Voltage ——4.75V to +5.25V	
Military (M) Devices Temperature	

DC CHARACTERISTICS over operating range unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
l _{L1}	Input Load Current	V _{IN} = V _{CC} Max			10		
·L1	mpar zead sarrent	V _{IN} = 0V	V _{IN} = 0V			10	μΑ
lo	Output Leakage Current	V _{OUT} = V _{CC} Max	V _{OUT} = V _{CC} Max				, ,,
		V _{OUT} = 0V				10	
Ірр	Programming Current	Vpp = VCC Max				5	
ICCSB	Standby Supply Current	CE = ViH. OE = VII	C devices			25	mA
.0035		102 1111 02 112	All others			30	
	Operating Supply Current		C devices			100	
ICCOP		OE = CE = VIL	I devices			110	i
		L, M devices				115	ı
VIL	Input Low Voltage			-0.1		0.8	
V _{IH}	Input High Voltage					V _{CC} + 1.0V	: V
VOL	Output Low Voltage	I _{OL} = 2.1 mA, V _{CC} = Min				0.45	•
V _{OH}	Output High Voltage	$I_{OH} = -400 \mu A$, $V_{CC} = Min$	2.4				
CIN	Input Capacitance	V _{IN} = 0V		4	6	pF	
COUT	Output Capacitance	V _O = 0V		8	12	P.	

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

			Test	Min Values		Maximum Values					
No.	Symbol	Description	Conditions (Note 3)	All Types	9716 DC	2716-1 DC	2716-2 DC	2716 DC	2716-1 DI/DL	2716 DI/DL/DM	Units
1	tACC	Address to Output Delay	CE = OE = VIL		300	350	390	450	350	450	ns
2	tCE	CE to Output Delay	OE = VIL		300	350	390	450	350	450	ns
3	tOE	Output Enable to Output Delay	CE = V _{IL}		120	120	120	120	150	150	ns
4	t _{DF}	Output Enable High to Output Float	CE = VIL	0	100	100	100	100	130	130	ns
5	tон	Output Hold from Addresses, CE or OE, Whichever Occurred First	CE = OE = VIL	0	-						ns

Notes:

- 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after Vpp.
- 2. Vpp may be connected directly to VCC except during programming. The supply current would then be the sum of ICC and IPP1.
- 3. Other Test Conditions:
 - a) Output Load: 1 TTL gate and $C_L = 100 pF$

- b) Input Rise and Fall Times: ≤20ns
- c) Input Pulse Levels: 0.8 to 2.2V
- d) Timing Measurement Reference Level: Inputs: 1V and 2V Outputs: 0.8V and 2V
- 4. This parameter is only sampled and is not 100% tested.

SWITCHING WAVEFORMS

- Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
 - 2. $\overline{\text{OE}}$ may be delayed up to t_{ACC} t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{ACC} . 3. t_{DF} is specified from $\overline{\text{OE}}$ or $\overline{\text{CE}}$, whichever occurs first.