Mata Kuliah :Sistem Digital

Abstract...

- Kompleksitas fungsi boolean berdampak pada kerumitan rangkaian sehingga biaya implementasi mahal.
- Fungsi boolean bisa disederhanakan tanpa mengurangi nilai kebenarannya
- Metode yang bisa digunakan diantaranya dengan postulat/teorema, peta karnough, dan tabulasi

Peta Karnough

- Merepresentasikan fungsi dalam matriks persegi panjang dengan banyak sel 2ⁿ (n adalah banyak literal)
- Tiap minterm punya nomor yang tersusun dari bilangan biner sesuai dengan indeks literal penyusunnya

Peta Karnough 2 literal minterm

х\у	0	1
0	x'y'	x'y
1	ху'	ху

x\y	0	1
0	\mathbf{m}_0	m ₁
1	\mathbf{m}_2	m _β

Peta Karnough 3 literal

x\yz	00	01	11	10
0	x'y'z'	x'y'z	x'yz	x'yz'
1	xy'z'	xy'z	xyz	xyz'

x\yz	00	01	11	10
0	\mathbf{m}_0	m ₁	m ₃	\mathbf{m}_2
1	m_4	m_5	m_7	m_6

Peta Karnough 4 literal

wx\yz	00	01	11	10
00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
01	w'xy'z'	w'xy'z	w'x yz	w'xyz'
11	wxy'z'	wxy'z	wxyz	wxyz'
10	wx'y'z'	wx'y'z	wx'yz	wx'yz'

wx\yz	00	01	11	10
00	\mathbf{m}_0	m ₁	m ₃	\mathbf{m}_2
01	m_4	m_5	m ₇	m_6
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	m ₈	m ₉	m ₁₁	m ₁₀

Peta Karnough 5 Literal

∨wx\yz	00	01	11	10
000	∨'w'x'y'z'	∨'w'x'y'z	∨'w'x'yz	v'w'x'yz'
001	∨'w'xy'z'	∨'w'xy'z	∨'w'xyz	∨'w'xyz'
011	∨'wxy'z'	∨'wxy'z	∨'wxyz	∨'wxyz'
010	∨'wx'y'z'	∨'wx'y'z	∨'wx'yz	∨'wx'yz'
110	∨wx'y'z'	∨wx'y'z	∨wx'yz	∨wx'yz'
111	∨wxy'z'	∨wxy'z	∨wxyz	∨wxyz'
101	∨w'xy'z'	∨w'xy'z	∨w'xyz	∨w'xyz'
100	∨w'x'y'z'	∨w'x'y'z	∨w'x'yz	∨w'x'yz'

Peta Karnough 5 Literal Minterm

∨wx\yz	00	01	11	10
000	\mathbf{m}_0	m ₁	m_3	\mathbf{m}_2
001	m_4	m ₅	\mathbf{m}_7	m_6
011	m ₁₂	m ₁₃	m ₁₅	m ₁₄
010	m ₈	m ₉	m ₁₁	m ₁₀
110	m ₂₄	m ₂₅	m ₂₇	m ₂₆
111	m ₂₈	m ₂₉	m ₃₁	m 30
101	m ₂₀	m ₂₁	m ₂₃	m ₂₂
100	m ₁₆	m ₁₇	m ₁₉	m ₁₈

Langkah Pereduksian

- Kelompokkan sel bertetangga bernilai 1 menjadi bentuk persegi panjang dengan jumlah sel 2ⁿ.
 Tiap sel boleh menjadi anggota lebih dari satu persegi panjang.
- Dari persegi panjang yang terbentuk, cari literal antar sel yang punya nilai sama. Literal antar sel yang tidak sama dihilangkan.
- Hasil pereduksian adalah gabungan dari literal antar sel yang mempunyai nilai sama

Sel Bertetangga

- Sel-sel yang berdekatan
- Sel-sel sudut persegi panjang yang berada dalam satu kolom atau satu baris
- Sel-sel baris terluar yang berada dalam satu kolom
- Sel-sel kolom terluar yang berada dalam satu baris

$F(x,y)=(m_0,m_1,m_3)$

x\y	0	1
0	\mathbf{m}_0	m_1
1	\mathbf{m}_2	m ₃

- Persegi panjang mendatar merah (2 sel) menghasilkan x' karena nilai x=0 dan nilai y tidak sama
- Persegi panjang vertikal biru (2 sel) menghasilkan y karena y=1 dan nilai x tidak sam
- Hasil Reduksi = F(x,y)= x'+y

$F(x,y,z)=(m_1, m_3, m_4, m_5, m_6, m_7)$

x\yz	00	01	11	10
0	\mathbf{m}_0	\mathbf{m}_1	\mathbf{m}_3	m ₂
1	m ₄	m ₅	m ₇	m ₆

- Persegi kotak biru (4 sel) menghasilkan z, sebab z=1 dan nilai x,y tidak ada yang sama
- Persegi panjang merah (4 sel) menghasilkan x, sebab x=1 dan nilai y,z tidak ada yang sama
- Hasil Reduksi = F(x,y,z)=x+z

$F(x,y,z)=(m_0, m_1, m_6, m_7)$

x\yz	00	01	11	10
0	\mathbf{m}_0	\mathbf{m}_1	\mathbf{m}_3	m ₂
1	m ₄	m_5	m ₇	m ₆

x/yz	00	01	11	10
0			0	0
1	0	0		

- Persegi panjang merah (2 sel) menghasilkan x'y', sebab nilai x=0 dan y=0
- Persegi panjang biru (2 sel) menghasilkan xy, sebab x=1 dan y=1
- Hasil Reduksi = F(x,y,z)=x'y'+x+y

$F(w,x,y,z)=(m_0,m_1,m_3,m_4,m_6,m_9,m_{11},m_{12},m_{14})$

wx\yz	00	01	11	10
00	\mathbf{m}_0	m ₁	m ₃	m ₂
01	m_4	m ₅	m ₇	m ₆
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	m ₈	m ₉	m ₁₁	m ₁₀

- Persegi hijau (2 sel) menghasilkan w'x'y'
- Persegi mendatar biru (4 sel) menghasilkan xz'
- Persegi vertikal merah (4 sel) menghasilkan x'z
- Fungsi Reduksi F(w,x,y,z) = w'x'y'+x'z+xz'

$F(w,x,y,z)=\Sigma(0,2,4,6,9,11,13,15,17,21,25,27,29,31)$

∨wx\yz	00	01	11	10
000	\mathbf{m}_0	m ₁	m ₃	\mathbf{m}_2
001	m_4	m ₅	m ₇	m ₆
011	m ₁₂	m ₁₃	m ₁₅	m ₁₄
010	m ₈	m ₉	m ₁₁	m ₁₀
110	m ₂₄	m ₂₅	m ₂₇	m ₂₆
111	m ₂₈	m ₂₉	m ₃₁	m ₃₀
101	m ₂₀	m ₂₁	m ₂₃	m ₂₂
100	m ₁₆	m ₁₇	m ₁₉	m ₁₈

- Persegi mendatar biru (4 sel) menghasilkan v'w'z'
- Persegi kotak merah (8 sel) menghasilkan wz
- Persegi vertikal hijau (4 sel) menghasilkan vy'z
- Fungsi Reduksi F(w,x,y,z) = v'w'z' + wz+vy'z

Peta Karnough dengan Maxterm

- Metode ini kurang disukai karena lebih rumit
- Langkah paling sederhana dengan disubstitusi dengan metode minterm dengan sifat dualisme

$F(w,x,y,z) = \Pi(3,4,6,7,11,12,13,14,15)$

 $F(w,x,y,z) = \Sigma(0,1,2,5,8,9,10)$

Implementasi NAND & NOR

- Rangkaian digital umumnya terbentuk dari AND, OR, NAND, dan NOR.
- Pada faktanya, IC yang dibuat pabrik hanya mengacu pada satu gerbang
- Untuk mengantisipasi, harus dibuat rangkaian ekuivalen yang hanya terdiri dari salah satu gerbang AND, OR, AND, dan NAND saja

Implementasi Gerbang NAND

- Sederhanakan
- Gambar Rangkaian Fungsinya
- Paksakan gerbang AND menjadi NAND dengan memberi Inverter 2 kali
- Ubah gerbang OR dengan input inverter menjadi gerbang NAND
- Rangkaian terakhir hanya terdiri dari NAND

F=AB+CD+E

Rangkaian asal

Rangkaian dengan Inverter 2 x Dengan Input Inverter Gerbang OR diganti Gerbang NAND

Implementasi NOR

- Sederhanakan
- Gambar rangkaian fungsinya
- Paksakan gerbang OR menjadi gerbang NOR dengan memberi inverter 2 kali
- Ubang gerang AND dengan input inverter menjadi gerbang NOR
- Rangkaian terakhir hanya terdiri dari gerbang NOR

F(A+B)(C+D)E

Rangkaian asal

Rangkaian dengan Inverter 2 x

Dengan Input Inverter Gerbang AND diganti Gerbang NOR

Don't Care Condition

- Nilai suatu fung si boolean sangat ditentukan oleh kombinasi literal input yang menghasilkan 1
- Dalam kasus tidak semua kombinasi literal diperlukan, nilai dari kombinasi yang tidak diperlukan tidak mempengaruhi nilai fungsi

Fungsi boolean F(A,B,C,D)=Σ(1,3,7,11,15)
dan fungsi don't care d(A,B,C,D)=Σ(0,2,5)

AB\CD	00	01	11	10
00	Х	1	-	х
01	0	X	1	0
11	0	0	1	0
10	0	0	1	0

Persegi Merah (4 sel) menghasilkan = A'D

Persegi Biru (4 sel) menghasilkan = CD

Fungsi reduksi menjadi F= A'D+CD

Operasi Logika Lain (1)

Fungsi Boolean	Simbol	Nama	Makna
$F_0 = 0$		Null	Fungsi konstan 0
$F_1 = xy$	x.y	AND	x AND y
$F_2 = xy'$	x/y	Inhibitasi	x tapi tidak y
$F_3 = x$		Transfer	X
$F_4 = x'y$	y/x	Inhibitasi	y tapi tidak x
$F_5 = y$		Transfer	у
$F_6 = xy' + x'y$	х⊕у	Eksklusif OR	x atau y atau tidak keduanya
$F_7 = x+y$	х+у	OR	x atau y
$F_8 = (x+y)'$	x↓y	NOR	Tidak OR

Operasi Logika Lain (2)

Fungsi Boolean	Simbol	Nama	Makna
$F_9 = xy' + x'y$	х⊗у	Ekivakeb	x sama dengan y
$F_{10} = y'$	y'	Komplemen	Tidak y
$F_{11} = x + y'$	ху	Implikasi	Jika x maka y
$F_{12} = x'$	X'	Komplemen	Tidak x
$F_{13} = x'y$	ху	Implikasi	Jika y maka x
$F_{14} = (xy)'$	x↑y	NAND	Tidak AND
F ₁₅ = 1		Identitas	Fungsi Konstan 1

IC Digital

- Gerbang logika yang dipaket dalam sebuah wadah
- Sebuah IC terdiri dari sejumlah gerbang yang sama