数据选择器 与加法器

实验目的 —— 数据选择器

- 熟悉中规模集成电路数据选择器的工作原理和 逻辑功能。
- 了解数据选择器的应用,掌握组合逻辑电路的 设计方法。

实验原理 —— 数据选择器

数据选择器又称多路选择器,是一个数据开关,它从N路源数据中 选择一路送至输出端。

• 双4选1数据选择器74LS153

四选一数据选择器原理示意图

$D_{11} = \frac{(5)}{2}$ $D_{12} = \frac{(4)}{}$ $D_{13} = \frac{(3)}{2}$ $D_{20}^{(10)}$ $D_{21} \stackrel{(11)}{=}$ $D_{22} \stackrel{(12)}{=}$ D_{23} (13)

½双四选1为例:

½ 74LS153功能表

#	輸入	输出
$S_{1}^{'}$	$A_1 A_0$	Y_1
1	××	0
0	0 0	D_{10}
0	0 1	D_{11}
0	1 0	D_{12}
0	1 1	D_{13}

数据选择器的扩展

数据选择器的扩展

$$Y = (A_{2}^{'}A_{1}^{'}A_{0}^{'})D_{0} + (A_{2}^{'}A_{1}^{'}A_{0})D_{1} + (A_{2}^{'}A_{1}A_{0}^{'})D_{2} + (A_{2}^{'}A_{1}A_{0})D_{3}$$
$$+ (A_{2}^{'}A_{1}^{'}A_{0}^{'})D_{4} + (A_{2}^{'}A_{1}^{'}A_{0})D_{5} + (A_{2}^{'}A_{1}^{'}A_{0}^{'})D_{6} + (A_{2}^{'}A_{1}^{'}A_{0})D_{7}$$

74LS151是8选1数据选择器,三个控制端A₀、A₁、A₂,
 有8种组合,000、001、010、011、100、101、110、111。

$$Y = (A_{2}'A_{1}'A_{0}')D_{0} + (A_{2}'A_{1}'A_{0})D_{1} + (A_{2}'A_{1}A_{0}')D_{2}$$

$$+ (A_{2}'A_{1}A_{0})D_{3} + (A_{2}A_{1}'A_{0}')D_{4} + (A_{2}A_{1}'A_{0})D_{5}$$

$$+ (A_{2}A_{1}A_{0}')D_{6} + (A_{2}A_{1}A_{0})D_{7}$$

74LS151功能表

	输入	输出
S'	$A_2 A_1 A_0$	Y
1	\times \times \times	0
0	0 0 0	D_0
0	0 0 1	D_1
0	0 1 0	D_2
0	0 1 1	D_3
0	1 0 0	D_4
0	1 0 1	D_5
0	1 1 0	D_6 D_7
0	1 1 1	D_7

数据选择器实现组合逻辑函数

具有n位地址输入的数据选择器,可产生任何形式的输入 变量不大于n+1的组合函数

数据选择器的主要特点:

(1) 具有标准与或表达式的形式,即:

$$Y = \sum_{i=0}^{2^n - 1} D_i m_i$$

- (2)提供了地址变量的全部最小项;
- (3)通常D_i可以当作一个变量处理。

数据选择器实现组合逻辑函数

例:用四选一实现函数 $F(A,B,C) = \sum m(3,4,6,7)$

$$F = A'BC + AB'C' + ABC' + ABC$$

$$= A'B' \cdot 0 + A'B \cdot C + AB' \cdot C' + AB \cdot 1$$

$$= A'_1A'_0 \cdot 0 + A'_1A_0 \cdot C + A_1A'_0 \cdot C' + A_1A_0 \cdot 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$D_0 \qquad D_1 \qquad D_2 \qquad D_3$$

$$Y = A_1' A_0' D_0 + A_1' A_0 D_1 + A_1 A_0' D_2 + A_1 A_0 D_3$$

实验内容 —— 数据选择器

- 一、验证4选1数据选择器74LS153的逻辑功能并记录真值表。
- 二、将74LS153的两个4选1数据选择器扩展成8选1数据选择器, 并实现逻辑函数Σm(0,3,5,6), 画出简图、搭建电路并记录真值表。(验收) (掌握用一半153实现类似函数的方法。)
- 三、验证8选1数据选择器74LS151的逻辑功能并记录真值表。
- 四、用两个8选1数据选择器74LS151扩展成16选1数据选择器,实现逻辑函数 Σ m(6,7,8,11,13),画出简图、搭建电路并记录真值表。(验收)(掌握用一片151实现类似函数的方法。)

(Note:所用芯片的Vcc要接+5V,GND要接地)

实验目的 —— 加法器

- 掌握组合逻辑电路的设计方法,理解半加器和全加器的逻辑功能。
- 掌握中规模集成电路加法器的工作原理及其逻辑功能。

实验原理——加法器

- 在数字系统中,经常需要进行算术运算,逻辑操作 及数字大小比较等操作,实现这些运算功能的电路 是加法器。
- 加法器是一种组合逻辑电路,主要功能是实现二进制数的算术加法运算。

• 半加器

- 半加器完成两个一位二进制数相加,若只考虑两个加数本身,而不考虑来自相邻低位的进位,称为半加,实现半加运算功能的电路称为半加器。
- 由真值表可得出半加器的逻辑表 达式:

$$S_{i} = A_{i}'B_{i} + A_{i}B_{i}' = A_{i} \oplus B_{i}$$

$$C_{o} = A_{i}B_{i}$$

$A_i \longrightarrow$	_	=1		⊸	S_i
B_i •—		&			C
				— 0 (C_o

(a) 半加器电路

半加器真值表

A_i	B_i	S_i	C_o
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

全加器

两个多位数相加是每一位都是带进位相加,所以必须用全加器。这时只要依次将低位的进位输出接到高位的输入,就可构成多位加法器了。

全加器是一种由被加数、加数和来自低位的进位数三者相加的运算器。基本功能是实现二进制加法。

全加器真值表

A_i	B_i	C_I	S_i	Co
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

全加器

逻辑表达式:

$$S_{i} = m_{1} + m_{2} + m_{4} + m_{7} = A_{i}'B_{i}'C_{I} + A_{i}'B_{i}C_{I}' + A_{i}B_{i}'C_{I}' + A_{i}B_{i}C_{I}$$

$$= A_{i}'(B_{i}'C_{I} + B_{i}C_{I}') + A_{i}(B_{i}'C_{I}' + B_{i}C_{I}) = A_{i}'(B_{i} \oplus C_{I}) + A_{i}(B_{i} \oplus C_{I})'$$

$$= A_{i} \oplus B_{i} \oplus C_{I}$$

$$C_{o} = m_{3} + m_{5} + A_{i}B_{i} = A_{i}'B_{i}C_{I} + A_{i}B_{i}'C_{I} + A_{i}B_{i} = (A_{i}'B_{i} + A_{i}B_{i}')C_{I} + A_{i}B_{i}$$
$$= (A_{i} \oplus B_{i})C_{I} + A_{i}B_{i}$$

(b)国标符号

(a)逻辑图

• 串行进位加法器

特点:结构简单 运算速度慢

• 超前进位并行加法器

- 超前并行进位电路构成的位全加器 电路74LS283,可实现两个四位二 进制数的全加运算。
- 加进位输入 C_I和进位输出C₀主要用来扩大加法器字长,作为组间进位之用。由于它采用超前进位方式,所以运算速度快。

74LS283集成芯片引脚图

• 用74LS283构成一位8421BCD码加法器

输出:H(个位:S₃S₂S₁S₀) J(十位)

输出范围: 00~18 (H:四位 J:一位)

输入:A ($A_3A_2A_1A_0$) + B ($B_3B_2B_1B_0$)

输入范围: A:0~9 B:0~9

- 1、先用第一片283(1)实现A+B的全加, 得到 S
- 2、题目要求中的BCD和个位H与S的关系

$$H = \begin{cases} S & (S<10) \\ S-1010 & (S\geq10) \end{cases}$$

$$H = \begin{cases} S & (S<10) \\ S+0110 & (S\geq10) \end{cases}$$

$$H = \begin{cases} S+0000 & (S<10) \\ S+0110 & (S\geq10) \end{cases}$$

- 4、第二片283 (2)的A:0000或0110
- 5、A3A0直接接地,把A2A1值标为J

$$J = \begin{cases} 0 & (S<10) \\ 1 & (S\geq10) \end{cases}$$

6、J和S的关系式如何处理

 $J=S_3 S_2+S_3 S_1$

 $J=S_3 S_2+S_3 S_1+C_{10}$

式子有没有问题?

8421BCD码

加法器

最终的电路:

Note:所用芯片的Vcc要接+5V,GND要接地。

74LS08(四2输入与门)

74LS32 (四2输入或门)

实验内容——加法器

- 1. 用一片74LS283实现并行四位全加,将A置为1001,B 置为0000~1001,依次计算A+B并记录结果表列。
- 2. 用一片74LS283实现数据比较功能,要求输入(四位 二进制)<10时输出一位低电平,≥10时输出一位高电平 ,要求设计逻辑电路图、搭接电路并记录结果。
- 3. 用两片74LS283和必要的门电路实现两个8421BCD码 求和运算,结果仍为8421BCD码,要求设计逻辑电路图
- 、搭接电路并记录结果。(验收)

芯片分布

数码管输入及电源

思考题

• 1. 用一片74LS151设计实现如下逻辑函数:

$$Z = AC'D + BC + BC'D' + A'B'CD$$

 2. 用两片74LS283和必要的门电路实现一个带借位 输入和借位输出的8421BCD码减法器,要求电路输 出为原码。

实验报告要求

- 本次实验不写报告,将数据记录整理好,上交,就可以
- 思考题要求自觉做,考试可能会有类 似题型

下周实验:112实验室 编码器和译码器

或 112实验室 抢答器