

1.产品特点

- 采用高集成读写芯片作为射频基站
- 支持 IS014443 TYPE A 标准, Mifare 标准卡片, 模块集成了自动寻卡、读、写、初始化电子钱包 、增值、减值、查询余额等指令,用户使用命令 集简单操作卡片:

支持 ISO14443 TYPE B 标准, 读取二代身份证 ID。

- 天线一体设计
- 超低静态功耗: ≤30uA
- 支持串口协议(UART TTL 或者 RS232): 串口位数 据(8),校验位(无),停止位(1),波特率可设置,

默认:19200

- 超小体积,仅62mm×34.5mm
- 读卡距离远,最大7CM(标准卡片测试)
- 带蜂鸣器、LED 指示灯
- 模块软件扩展功能很强,**可根据用户要求定制**个 性化模块
- 自带看门狗

3.产品简介

NFCM-A6读写模块采用13.56MHZ 非接触射频技术,内 嵌高集成读写芯片作为射频基站。用户只需通过简单 的指令发送命令就可以实现对卡片完全的操作。该系 列读写模块支持

ISO14443 TYPE A:

MF0: Ultralight、Ultralight C、NTAG203、NTAG213; MF1:S50、S70、FM11RF08;

CPU: FM1208:

IS014443 TYPE B:

二代身份证,

及其兼容卡片。NFCM-A6模块软件、硬件扩展功能很强,可根据用户要求定制个性化模块。

2.应用

- 电子班牌
- 智能水、电、气三表
- 交通一卡通读写器,桌面发卡器
- 门禁考勤读写器
- 酒店读写器,发卡器
- 酒店、家用门锁
- 汽车电子感应锁配套
- 办公/商场/洗浴中心储物箱的安全控制
- 各种防伪系统及生产过程控制

4.产品图片

Rev 1.1 1 of 27

5.产品选型

区别	支持卡片型号
UART 接口 TTL 电平	ISO14443 TYPE A: MF0:Ultralight, Ultralight C, NTAG203, NTAG213 MF1: S50, S70, FM11RF08
UART 接口 RS232 电平	CPU: FM1208 及其兼容卡片 IS014443 TYPE B: 二代身份证

6.技术参数

参数	技术参数				状态
少 数	最小值	典型值	最大值	单位	1八心
电源					
供电电压	3.3	-	5.0	V	
读卡峰值电流	-	-	60	mA	
平均静态电流	-	-	30	uA	
读卡距离	-	5	7	CM	标准卡片测试
频率					
频率范围	-	13.56	-	MHz	

Rev 1.0 3 of 27

7.引脚功能

7.1 端子: 1. 25mm 间距立式贴片针座

引脚	信号名	方向	描述
J1_1	RXD	Ι	模块串口数据输入,接安卓或者 x86 主板串口的 TXD
J1_2	TXD	0	模块串口数据输出,接安卓或者 x86 主板串口的 RXD
J1_3	GND	G	电源地
J1_4	VCC	Pwr/I	DC3. 3V 或者 5. 0V 电源输入(只能二选一)
J2_1	B+	0	外接蜂鸣器+
J2_2	В-	0	外接蜂鸣器-

8.数据通信协议

8.1 UART 接口:

起始位: 1

数据位: 8

奇偶校验位:无

停止位: 1

波特率: 默认 19200

时序图:

8.2 发送数据格式:

数据包内容:

模块地址(2Byte)	长度(1Byte)	命令(1Byte)	数据(nByte)	校验(1Byte)

模块地址:对于单独使用的模块来说固定为0x0000;

对网络版模块来说为0x0001~0xFFFE;

0xFFFF 为广播。

长度: 长度(1Byte) + 命令(1Byte) + 数据(nByte)

命令: 本条命令的含义

数据: 有效数据

校验: 长度(1Byte) + 命令(1Byte) + 数据(nByte)的异或和

Rev 1.0 5 of 27

8.3 返回数据格式:

数据包内容:

旨	命令头(1Byte)	长度(1Byte)	成功/失败值(1Byte)	数据(nByte)	校验(1Byte)

命令头: 0xFE

长度: 长度(1Byte) + 命令(1Byte) + 数据(nByte)

成功/失败值:返回命令执行成功; 0xE0---0xFF执行错误

数据:如果有数据返回,则为有效数据

校验: 长度(1Byte) + 命令(1Byte) + 数据(nByte)的异或和

9.命令列表

9.1 设置模块进入睡眠模式

功能描述: 用于设置模块进入睡眠模式,降低功耗≤30uA,模块睡眠期间发送除本条命令的其它命令都可唤醒。

发送数据序列:

模块地址	长度	命令	数据	校验
0x00, 0x00	0x02	0x01	空	0x03

注:发送唤醒命令时,需要发送2次命令,由于模块启动需要时间,第1次发送的命令只用于唤醒,可能不被解析,需要发送2次命令。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0x02	0x01	空	0x03

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xE0	空	0xE2
				1

发送与返回正确举例:

【发送数据:】00 00 02 01 03;设置模块进入睡眠模式

【接收数据:】FE 02 01 03

Rev 1.0 7 of 27

9.2 设置天线和寻卡模式

功能描述:用于设置模块RF天线的开关和寻卡模式。自动寻卡是指用户只需要发送一条读/写等命令就可操作卡片数据块,不需要发送寻卡命令,简化流程。手动模式先发送寻卡命令,才能发送读/写等命令操作卡片数据块,比较繁琐。 关闭天线可以降低模块功耗。**模块默认为:打开天线、打开自动寻卡**

发送数据序列:

模块地址	长度	命令	数据	校验
0x00, 0x00	0x03	0x02	1字节参数:	0" x" XX
			BITO 天线状态 →	
			BITO=0: OFF	
			BITO=1: ON	
			BIT1 自动寻卡 →	
			BIT1=0: OFF	
			BIT1=1: ON	

注: 只有自动寻卡模式模块才能主动输出卡号,详见9.3 此参数掉电不保存。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0x02	0x02	空	0x00

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xE1	空	0xE3

发送与返回正确举例:

【发送数据:】00 00 03 02 03 02 ;打开天线和打开自动寻卡 【发送数据:】00 00 03 02 01 00 ;打开天线和关闭自动寻卡 【发送数据:】00 00 03 02 00 01 ;关闭天线和关闭自动寻卡

【接收数据:】FE 02 02 00

深圳市博裕纳科技有限公司 Tel:(+86)0755-29013865 Fax: (+86)0755-23445955

www.breana.cn ShenZhen BreanaTechnology Copyright © 2012-2018 All Rights Reserved.

9.3 设置主动输出卡片ID模式

功能描述: 当有卡进入该射频区域内时,蜂鸣器滴一声,主动输出卡片ID(4-7字节),低字节在前。打开主动输出卡片ID模式,不用发送寻卡命令获取卡片ID,简单方便。模块默认为: 主动输出卡片ID

发送数据序列:

模块地址	长度	命令	数据	校验
0x00, 0x00	0x03	0x0C	1字节参数:	0" x" XX
			00: 开启自动读卡号	
			01: 关闭自动读卡号	

注: 只有自动寻卡模式模块才能主动输出卡号,详见9.2 此参数掉电保存。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0x02	0x0C	空	0x0E

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xEB	空	0xE9

主动输出卡片ID数据序列:

命令头	长度	成功(命令值)		数据	校验
			卡片类型	4或7字节序列号	
0xFE	0x0B(MF0)	0x03	44 00	XX XX XX XX XX XX XX	0" x" XX
0xFE	0x08 (MF1 S50)	0x03	04 00	XX XX XX XX	0" x" XX
0xFE	0x08 (MF1 S70)	0x03	02 00	XX XX XX XX	0" x" XX
0xFE	0x08(CPU FM1208)	0x03	04 00	XX XX XX XX	0" x" XX
0xFE	0x0C(二代身份证)	0x03	09 00	XX XX XX XX XX XX XX	0" x" XX

发送与返回正确举例:

【发送数据:】00 00 03 0C 00 0F ;打开主动输出卡片ID模式 【发送数据:】00 00 03 0C 01 0E ;关闭主动输出卡片ID模式

【接收数据:】FE 02 0C 0E

Rev 1.0 9 of 27

9.4 设置LED状态

功能描述: 设置模块LED开关状态。模块默认为: 关闭

发送数据序列:

模块地址	长度	命令	数据	校验
0x00, 0x00	0x03	0x0D	1字节参数:	0" x" XX
			00: 关闭LED	
			01: 打开LED	

注: 此参数掉电不保存。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0x02	0x0D	空	0x0F

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xEC	空	0xEE

发送与返回正确举例:

【发送数据:】00 00 03 0D 01 0F ;打开LED 【发送数据:】00 00 03 0D 00 0E ;关闭LED

【接收数据:】FE 02 0D 0F

深圳市博裕纳科技有限公司 Tel:(+86)0755-29013865 Fax: (+86)0755-23445955 www.breana.cn ShenZhen BreanaTechnology Copyright © 2012-2018 All Rights Reserved.

9.5 设置蜂鸣器打开时间

功能描述: 设置模块蜂鸣器打开时间0-255mS(00-FF)。模块默认值为:255

发送数据序列:

模块地址 长	度命令	数据	校验
0x00, 0x00 0x	0x0E	1字节参数: 0x00-0xFF	0" x" XX

注:此参数掉电不保存。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0x02	0x0E	空	0x0C

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xED	空	0xEF

发送与返回正确举例:

【发送数据:】00 00 03 0E 00 0D ;设置蜂鸣器打开时间0mS 【发送数据:】00 00 03 0E FF F2 ;设置蜂鸣器打开时间255mS

【接收数据:】FE 02 0E 0C

Rev 1.0 11 of 27

9.6 设置串口波特率

功能描述:设置模块串口通讯波特率。模块默认波特率:19200

发送数据序列:

模块地址	长度	命令	数据	校验
0x00, 0x00	0x03	0x0F	1字节参数:	0" x" XX
			01: 9600	
			02: 14400	
			03: 19200	
			04: 28800	
			05: 38400	
			06: 57600	
			07: 115200	

注:此参数掉电不保存。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0x02	0x0F	空	0x0D

错误返回数据序列:

	命令头	长度	失败(错误值)	数据	校验
Ī	0xFE	0x02	0xEE	空	0xEC

发送与返回正确举例:

【发送数据:】00 00 03 0F 01 0D ;设置串口波特率为9600 【发送数据:】00 00 03 0F 02 0E ;设置串口波特率为14400 【发送数据:】00 00 03 0F 03 0F ;设置串口波特率为19200 【发送数据:】00 00 03 0F 04 08 ;设置串口波特率为28800 【发送数据:】00 00 03 0F 05 09 ;设置串口波特率为38400 【发送数据:】00 00 03 0F 06 0A ;设置串口波特率为57600 【发送数据:】00 00 03 0F 07 0B ;设置串口波特率为115200

【接收数据:】FE 02 0F 0D

深圳市博裕纳科技有限公司 Tel:(+86)0755-29013865 Fax: (+86)0755-23445955 www.breana.cn ShenZhen BreanaTechnology Copyright © 2012-2018 All Rights Reserved.

9.7 IS014443 TYPE A/B寻卡

功能描述: ISO14443 TYPE A寻卡获取卡片类型和ID。包含卡片: ISO14443 TYPE A: MF0:Ultralight、Ultralight C、NTAG203、NTAG213;MF1: S50、S70、FM11RF08; CPU: FM1208; ISO14443 TYPE B: 二代身份证。

发送数据序列:

模块地址	长度	命令	数据	校验
0x00, 0x00	0x03	0x03	1字节参数: 00: 寻天线区内所有卡	0" x" XX
			01: 寻未休眠状态的卡	

正确返回数据序列:

命令头	长度	成功(命令值)		数据						
			卡片类型	4或7字节序列号						
0xFE	0x0B(MF0)	0x03	44 00	XX XX XX XX XX XX XX	0" x" XX					
0xFE	0x08 (MF1 S50)	0x03	04 00	XX XX XX XX	0" x" XX					
0xFE	0x08 (MF1 S70)	0x03	02 00	XX XX XX XX	0" x" XX					
0xFE	0x08(CPU FM1208)	0x03	04 00	XX XX XX XX	0" x" XX					
0xFE	0x0C(二代身份证)	0x03	09 00	XX XX XX XX XX XX XX XX	0" x" XX					

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xE2	空	0xE0

发送与返回正确举例:

【发送数据:】00 00 03 03 00 00 ;寻天线区内所有卡 【发送数据:】00 00 03 03 01 01 ;寻未休眠状态的卡

【接收数据:】FE OB O3 44 OO O4 1A 70 8A 12 49 81 72 ;MFO NTAG213

【接收数据:】FE 08 03 04 00 50 F2 12 57 E8 ;MF1 S50 【接收数据:】FE 08 03 02 00 EB 86 6D 38 31 ;MF1 S70 【接收数据:】FE 08 03 04 00 5D A2 F2 9A 98 ;CPU FM1208

【接收数据:】FE OC 03 90 00 31 F1 87 96 80 05 86 AA E7 ;二代身份证

Rev 1.0 13 of 27

9.8 Mifare one卡读块

功能描述: Mifare one: S50、S70、FM11RF08卡读块。

发送数据序列:

模块地址	长度	命令		数据		
			密钥标识	块号	密钥	
			(1Byte)	(1Byte)	(6Byte)	
0x00, 0x00	0x0A	0x04	BITO =0: A 密钥	S50: 0∼63	出厂默认:	0" x" XX
			=1: B 密钥	S70: 0∼255	FF FF FF FF FF	
			BIT1 =0: 使用指令中			
			6字节密钥			

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
			读取的16字节数据	
0xFE	0x12	0x04	xx	0" x" XX
			xx xx xx xx	

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xE3	空	0xE1

发送与返回正确举例:

【发送数据:】00 00 0A 04 00 01 FF FF FF FF FF FF OF ;读块1数据

【接收数据:】FE 12 04 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 16;蓝色部分为读取的块 1 数据

9.9 Mifare one卡写块

功能描述: Mifare one: S50、S70、FM11RF08卡写块。

发送数据序列:

模块地址	长度	命令		数据			
			密钥标识	块号	密钥	写入块的16字节数据	
			(1Byte)	(1Byte)	(6Byte)		
0x00, 0x00	0x0A	0x05	BITO =0: A 密钥	S50: 0∼63	出厂默认:	xx xx xx xx xx xx	0" x" XX
			=1: B 密钥	S70: 0∼255	FF FF FF FF	xx xx xx xx xx xx	
			BIT1 =0: 使用指		FF FF	xx xx xx xx	
			令中6字节密钥				

注:每个扇区的第3块为密钥块,如果写该块等同于改密钥。Philips/NXP在2001年对S50芯片有重要更新:当B密钥可以被读出时,B密钥失效。如果要使用B密钥,将密钥控制位原始数据FF 07 80 69修改为7F 07 88 69;修改此控制位后:密钥A、B的修改(写扇区的块3),必须使用B密钥;扇区的块0-2,使用A、B密钥都可以读写。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0x02	0x05	空	0x07

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xE4	空	0xE6

发送与返回正确举例:

【发送数据:】00 00 1A 05 00 03 FF FF FF FF FF FF 01 02 03 04 05 06 7F 07 88 69 01 02 03 04 05 06 85 ;写块3修改0扇区A、B密钥都为01 02 03 04 05 06,密钥控制位为7F 07 88 69

【接收数据:】FE 02 05 07

Rev 1.0 15 of 27

9.10 Mifare one卡初始化钱包

功能描述: Mifare one: S50、S70、FM11RF08卡设置某个块为钱包并初始化钱包值。

发送数据序列:

模块地址	长度	命令		数据				
			密钥标识	块号	密钥	写入钱包初始值4字		
			(1Byte)	(1Byte)	(6Byte)	节		
						(低字节在前)		
0x00, 0x00	0x0E	0x06	BITO =0: A 密钥	S50: 0∼63	出厂默认:	xx xx xx xx	0" x" XX	
			=1: B 密钥	S70: 0∼255	FF FF FF FF			
			BIT1 =0: 使用指		FF FF			
			令中6字节密钥					

注:每个扇区的第3块为密钥块,不能用于钱包块。4字节钱包初始值低字节在前。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0x02	0x06	空	0x04

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xE5	空	0xE7

发送与返回正确举例:

【发送数据:】00 00 0E 06 00 05 FF FF FF FF FF FF 00 00 00 0D ;初始化钱包块5,蓝色值为0,低字节在

【接收数据:】FE 02 06 04

深圳市博裕纳科技有限公司 Tel:(+86)0755-29013865 Fax: (+86)0755-23445955 www.breana.cn ShenZhen BreanaTechnology Copyright © 2012-2018 All Rights Reserved.

9.11 Mifare one卡读钱包

功能描述: Mifare one: S50、S70、FM11RF08卡读或查询钱包块。

发送数据序列:

模块地址	长度	命令	数据		校验	
			密钥标识	块号	密钥	
			(1Byte)	(1Byte)	(6Byte)	
0x00, 0x00	0x0A	0x07	BITO =0: A 密钥	S50: 0∼63	出厂默认:	0" x" XX
			=1: B 密钥	S70: 0∼255	FF FF FF FF FF	
			BIT1 =0: 使用指令中			
			6字节密钥			

注:每个扇区的第3块为密钥块,不能用于钱包块。此块必须提前初始化为钱包。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
			读取的4字节钱包值	
			(低字节在前)	
0xFE	0x06	0x07	xx xx xx xx	0" x" XX

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xE6	空	0xE4

发送与返回正确举例:

【发送数据:】00 00 0A 07 00 05 FF FF FF FF FF FF 08 ;读块5钱包值

【接收数据:】FE 06 07 00 00 00 01;蓝色部分为读取的块5钱包值,低字节在前

Rev 1.0 17 of 27

9.12 Mifare one卡充值钱包

功能描述: Mifare one: S50、S70、FM11RF08卡充值钱包块。

发送数据序列:

模块地址	长度	命令		数据			
			密钥标识	块号	密钥	充入钱包值4字节	
			(1Byte)	(1Byte)	(6Byte)	(低字节在前)	
0x00, 0x00	0x0E	0x08	BITO =0: A 密钥	S50: 0∼63	出厂默认:	XX XX XX XX	0" x" XX
			=1: B 密钥	S70: 0∼255	FF FF FF FF		
			BIT1 =0: 使用指		FF FF		
			令中6字节密钥				

注:每个扇区的第3块为密钥块,不能用于钱包块。4字节钱包值低字节在前。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0x02	0x08	空	0x0A
				,

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xE7	空	0xE5

发送与返回正确举例:

【发送数据:】00 00 0E 08 00 05 FF FF FF FF FF FF FF 02 00 00 00 01 ;钱包块5的值充入2,蓝色值为2,低字节 在前

【接收数据:】FE 02 08 0A

9.13 Mifare one卡扣款钱包

功能描述: Mifare one: S50、S70、FM11RF08卡扣款钱包块。

发送数据序列:

模块地址	长度	命令		数据			
			密钥标识	块号	密钥	扣款钱包值4字节	
			(1Byte)	(1Byte)	(6Byte)	(低字节在前)	
0x00, 0x00	0x0E	0x09	BITO =0: A 密钥	S50: 0∼63	出厂默认:	XX XX XX XX	0" x" XX
			=1: B 密钥	S70: 0∼255	FF FF FF FF		
			BIT1 =0: 使用指		FF FF		
			令中6字节密钥				

注:每个扇区的第3块为密钥块,不能用于钱包块。4字节钱包值低字节在前。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0x02	0x09	空	0x0B

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xE8	空	0xEA

发送与返回正确举例:

【发送数据:】00 00 0E 09 00 05 FF FF FF FF FF FF FF 01 00 00 00 03 ;钱包块5的值扣款1,蓝色值为1,低字节 在前

【接收数据:】FE 02 09 0B

Rev 1.0 19 of 27

9.14 Mifare one卡备份钱包

功能描述: Mifare one: S50、S70、FM11RF08卡备份钱包块。

发送数据序列:

模块地址	长度	命令		数据				
			密钥标识	当前钱包块	备份钱包块	密钥		
			(1Byte)	号	号	(6Byte)		
				(1Byte)	(1Byte)			
0x00, 0x00	0x0B	0x0A	BITO =0: A 密钥	S50: 0∼63	S50: 0∼63	出厂默认:	0" x" XX	
			=1: B 密钥	S70: 0∼255	S70: 0∼255	FF FF FF FF FF		
			BIT1 =0: 使用指					
			令中6字节密钥					

注:每个扇区的第3块为密钥块,不能用于钱包块。备份钱包跨扇区,当前钱包块号密钥和备份钱包块号密钥要相同,建议使用同一扇区备份。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0x02	0x0A	空	0x08

错误返回数据序列:

	命令头	长度	失败(错误值)	数据	校验
	0xFE	0x02	0xE9	空	0xEB
Ĺ					

发送与返回正确举例:

【发送数据:】00 00 0B 0A 00 05 06 FF FF FF FF FF FF O2 ;将钱包块5备份到块6

【接收数据:】FE 02 0A 08

www.breana.cn ShenZhen BreanaTechnology Copyright © 2012-2018 All Rights Reserved.

9.15 Mifare Ultralight (MO) 卡读页

功能描述: Ultralight C、NTAG203、NTAG213卡读页。

发送数据序列:

模块地址	长度	命令	数据	校验
			起始页号	
			(1Byte)	
0x00, 0x00	0x03	0x14	Ultralight:0-15	0" x" XX
			Ultralight C:0-47	
			NTAG203: 0-41	
			NTAG213:0-44	

注:连续读取起始页号开始的4页16字节数据,每页4字节数据。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
			读取的连续4页16字节数据	
0xFE	0x12	0x14	xx	0" x" XX
			xx xx xx xx	

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xE3	空	0xE1

发送与返回正确举例:

【发送数据:】00 00 03 14 04 13 ;读第4页起始的16个字节

【接收数据:】FE 12 14 11 11 11 11 22 22 22 22 00 00 00 00 00 00 00 00 06 :红蓝部分为读取的数据

Rev 1.0 21 of 27

9.16 Mifare Ultralight(MO)卡写页

功能描述: Ultralight C、NTAG203、NTAG213卡写页。

发送数据序列:

模块地址	长度	命令		数据		
			页号	写入页的4字节数据		
			(1Byte)			
0x00, 0x00	0x0A	0x05	Ultralight:0-15	xx xx xx xx	0" x" XX	
			Ultralight C:0-47			
			NTAG203:0-41			
			NTAG213:0-44			

注:每页4字节数据。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0x02	0x15	空	0x17

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xE4	空	0xE6

发送与返回正确举例:

【发送数据:】00 00 07 15 04 11 11 11 16 ;写第4页数据,蓝色部分为写入的4字节数据

【接收数据:】FE 02 15 17

9.17 Mifare one/Ultralight卡休眠

功能描述: Mifare one/Ultralight卡休眠。

发送数据序列:

模块地址	长度	命令	数据	校验
0x00, 0x00	0x02	0x0B	空	0x09

注: 只有自动寻卡模式关闭(设置为手动模式),此命令才有效,详见9.2

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0x02	0x0B	空	0x09

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xEA	空	0xE8

发送与返回正确举例:

【发送数据:】00 00 02 0B 09 【接收数据:】FE 02 0B 09

Rev 1.0 23 of 27

9.18 ISO14443 TYPE A CPU卡复位

功能描述:用于进行满足IS014443 TYPE A CPU 卡复位操作,正确返回卡片复位信息。

发送数据序列:

模块地址	长度	命令	数据	校验
0x00, 0x00	0x02	0x20	0x26表示寻天线范围内的未休眠卡	0" x" XX
			0x52表示寻天线范围内的所有卡	

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0x16	0x20	4字节CSN+16字节信息	0" x" XX

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xF0	空	0xF2

发送与返回正确举例:

【发送数据:】00 00 03 20 26 05 ;CPU卡复位,寻天线区内所有卡【发送数据:】00 00 03 20 52 71 ;CPU卡复位,寻未休眠状态的卡

【接收数据:】FE 16 20 5D A2 F2 9A 10 78 80 90 02 20 90 00 00 00 00 5D A2 F2 9A FC ;颜色部分为

返回的信息

9.19 ISO14443 TYPE A CPU卡发送COS指令

功能描述: 用于发送ISO14443 TYPE A CPU卡COS 指令。

发送数据序列:

模块地址	长度	命令	数据	校验
0x00, 0x00	0" x" XX	0x21	COS指令	0" x" XX

注: 先发送CPU卡复位指令,此指令才有效。

正确返回数据序列:

命令头	长度	成功(命令值)	数据	校验
0xFE	0" x" XX	0x21	针对COS指令的返回数据	0" x" XX

错误返回数据序列:

命令头	长度	失败(错误值)	数据	校验
0xFE	0x02	0xF1	空	0xF3

发送与返回正确举例:

【发送数据:】00 00 07 21 00 84 00 00 04 A6 ;取4字节随机数指令(蓝色部分)。先发送CPU卡复位指令,此指令才有效。

【接收数据:】FE 08 21 EE 6E E2 F3 90 00 28 ;红色为 4 字节随机数;蓝色 90 00 卡片返回表示成功

Rev 1.0 25 of 27

10.尺寸参数

单位: mm

注意:模块安装为避免干扰,导致读卡距离短,影响读卡效果,天线面外壳不能为金属,玻璃、塑胶材料都可以。如果是金属面板,则需要开窗,开窗要大于模块天线的尺寸,周边要留 5-10mm 的间隙。模块天线的背面(非天线面)如果有金属,最好距离大于 3CM。具体因结构干扰的情况,要做实验确定,在读卡距离效果和结构上做一个均衡。

附录 1: 指令汇总表

序号	指令	描述	执行正确返回	执行错误返回		
模块设置						
1	0x01	设置模块进入睡眠模式	0x01	0xE0		
2	0x02	设置天线和寻卡模式	0x02	0xE1		
3	0x0C	设置主动输出卡片 ID 模式	0x0C	0xEB		
4	0x0D	设置 LED 状态	0x0D	0xEC		
5	0x0E	设置蜂鸣器打开时间	0x0E	0xED		
6	0x0F	设置串口波特率	0x0F	0xEE		
	卡片操作					
7	0x03	IS014443 TYPE A/B 寻卡	0x03	0xE2		
8	0x04	Mifare one 卡读块	0x04	0xE3		
9	0x05	Mifare one 卡写块	0x05	0xE4		
10	0x06	Mifare one 卡初始化钱包	0x06	0xE5		
11	0x07	Mifare one 卡读钱包	0x07	0xE6		
12	0x08	Mifare one 卡充值钱包	0x08	0xE7		
13	0x09	Mifare one 卡扣款钱包	0x09	0xE8		
14	0x0A	Mifare one 卡备份钱包	0x0A	0xE9		
15	0x14	Mifare Ultralight(MO)卡读页	0x14	0xE3		
16	0x15	Mifare Ultralight(MO)卡写页	0x15	0xE4		
17	0x0B	Mifare one/Ultralight 卡休眠	0x0B	0xEA		
18	0x20	ISO14443 TYPE A CPU卡复位	0x20	0xF0		
19	0x21	ISO14443 TYPE A CPU卡发送COS指令	0x21	0xF1		

Rev 1.0 27 of 27