Meeting Discussion 23rd May 2021

Lunar Lander Pseudo Code

- 1. Initialize Policy parameters θ and State Value function parameters W
- 2. For each episode:
 - 1. Initialize State S_0 (first state of the episode)
 - 2. While S is not terminal:
 - 1. Sample action a_t , based on actor's policy μ_{θ}

$$a \sim \pi(S,..,\theta)$$

- 2. Receive reward R_{t+1} and update to next state (S_t to S_{t+1}).
- 3. Save the action and the Value of the state into a list.

$$S_a$$
. insert($ln\mu_{\theta}(s_t, a_t), V_w(s_t)$)

where.

 $ln\mu_{\theta}(s_t, a_t)$ = Log probability of selecting an action at time t

 $V_w(s_t)$ = Value of the state at time t

 S_a = List of saved actions and Value of the state

4. Add the rewards to the episode's total rewards

$$E_r = E_r + R_{t+1}$$

where,

 E_r = Episode Reward,

3. Update Average Reward:

$$avg_r = (E_r + avg_r)/2$$

where,

 avg_r = Average Reward,

- 4. Update the Loss functions and the parameters of critic and actor:
 - 1. Compute all n-step returns of the episode

$$G_t = \sum_{k=0}^{k=n-t} \gamma^k R_{k+t+1}$$

Where,

 G_t = t step total return

R = Reward

2. Compute the total Policy Loss, i.e.

$$\delta_{policy \ loss} = \sum_{t=0}^{t=n} (-\ln \mu_{\theta}(s_t, a_t)(G_t - V_w(s_t)))$$

3. Compute the total Value loss, i.e.

$$\delta_{value\ loss} = \sum_{t=0}^{t=n} s\ mooth_{L_1}(V_w(s_t), G_t))$$

4. Compute total loss, i.e.

$$total_{loss} = \delta_{policy\ loss} + \delta_{value\ loss}$$

- 5. Update the parameters based on $total_{loss}$
- 6. Hence updating the weights θ and w of the networks.