Evaluate testing data (binary-class) - XGBoost $_{EVE\ W.}$

2019-11-16

Contents

```
      0. Load Data
      1

      1. Scores
      2

      1.1 Scores per Class
      2

      1.2 Average score
      3

      2. Important Features
      4

      3. Hyper-parameters
      7

      all grid search results
      8

      over best parameter combo per cv
      12

      more about the best parameter combination selection
      17

      ## user input
      17

      project_home <- "~/EVE/examples"</td>
      17

      project_name <- "xgboostR_binary_1"</td>
      18
```

0. Load Data

```
## Warning: `cols` is now required.
## Please use cols = c(df)
## Warning: `cols` is now required.
## Please use `cols = c(df)`
## Parsed with column specification:
## cols(
     .default = col_double(),
##
     Patient_ID = col_character()
## )
## See spec(...) for full column specifications.
## 199 of samples were used
## 100 of full features
## 4 runs, each run contains 3 CVs.
## Labels:
run with XGBoost.r evaluation metric: .
```

1. Scores

1.1 Scores per Class

Prevalidation scores during RFE

Confusion Matrix

```
## confusion matrix at feature size = 100
## sum across 4 seeds

## Reference
## Prediction 0 1
## 0 197 6
## 1 3 590
```

1.2 Average score

Prevalidation scores during RFE

Table 1: best scores

metrics	size.max	${\rm median.max}$	size.min	median.min
Accuracy	100	0.987	20	0.977
F1	100	0.983	20	0.970
Precision	100	0.982	40	0.969
Recall	100	0.988	20	0.972
ROCAUC	100	0.998	40	0.997

2. Important Features

with 100 features based on Frequency

Top 20 features at 100 feature set based on Frequency

with 100 features based on Gain

Heatmap of top 20 important features

3. Hyper-parameters

- ## Warning: `cols` is now required.
- ## Please use cols = c(df)

parameter optimization file (1080 records) includes 4 seeds. Each seed generates 3 cv splits. Within each cv split, there is a 3 step RFE (at 40, 80, 100). So 1080 / 4 / 3 / 3 = 30 parameter combinations tried in each cv split.

all grid search results

eta,gamma,max_depth,max_delta_step,colsample_bytree,lambda,alpha

over best parameter combo per cv

Note the 2nd /3rd best parameter combinations might not be too bad either.

optimal eta across seed and cv

optimal max_depth across seed and cv

max_depth optimal max_delta_step across seed and cv

optimal colsample_bytree across seed and cv

optimal lambda across seed and cv

optimal alpha across seed and cv

more about the best parameter combination selection

```
select_ft_step <- 100</pre>
df1 <- subset(grid_best, size==select_ft_step & max_depth==1 & max_delta_step == 0 )</pre>
print( paste('summary of n estimator at',select_ft_step, 'feature step'))
## [1] "summary of n estimator at 100 feature step"
print(summary(df1$n_estimators))
##
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                               Max.
             66.75 104.50 112.25 150.00 195.00
##
     45.00
df2 <- subset(df.grid, size==select_ft_step & max_depth==1 & max_delta_step == 0 )</pre>
with(df2, plot(x = n_estimators, y=score, ylab=score_label))
                                                0
                                0
                         0
                                                0
     S
```


n_estimators