STA 437/2005: Methods for Multivariate Data

Week 4: Gaussian Processes

Piotr Zwiernik

University of Toronto

Table of contents

1. Introduction to Gaussian Processes (GPs)

2. GPs for Spatial Data

3. Nonparametric Regression with GPs

Marginal distribution of MVN

Consider the following reformulation of the earlier result:

Suppose $X \sim N_m(\mu, \Sigma)$. Let $T := \{1, \dots, m\}$ and define

- $lackbox{}{}m:T
 ightarrow\mathbb{R}$ such that $m(t):=\mu_t$ (mean function)
- $ightharpoonup k: T imes T o \mathbb{R}$ such that $k(s,t) := \Sigma_{st}$ (kernel function)

Then for every $A = \{t_1, \dots, t_n\} \subseteq T$, the vector $X_A = (X_{t_1}, \dots, X_{t_n})$ is Gaussian with

- ▶ The mean μ_A whose *i*-th entry is $m(t_i)$.
- ▶ The covariance matrix Σ_{AA} whose (i, j)-th entry is $k(t_i, t_j)$.

Gaussian Processes - an immediate generalization

A Gaussian Process (GP) is a generalization of the multivariate normal distribution to a collection of random variables indexed by an arbitrary set T.

Definition

A Gaussian Process is a collection of random variables $\{X_t\}_{t\in\mathcal{T}}$ such that for any finite set of points $\{t_1,\ldots,t_n\}\subset\mathcal{T}$, the corresponding vector (X_{t_1},\ldots,X_{t_n}) follows a multivariate normal distribution.

In what follows we assume $T \subseteq \mathbb{R}^d$ with the Euclidean distance metric.

The mean and the kernel functions

A GP is characterized by:

- ▶ A mean function $m: T \to \mathbb{R}$: $m(t) = \mathbb{E}[X_t]$
- ▶ A kernel function $k: T \times T \to \mathbb{R}$: $k(t, t') = \text{Cov}(X_t, X_{t'})$

Note that m is pretty much arbitrary (often set to be zero) but k is highly constrained: **POsitive semi-definitness:** For any finite set $\{t_1, \ldots, t_n\}$, the covariance matrix Σ with entries $\Sigma_{ij} = k(t_i, t_j)$ is positive semi-definite.

We can use feature maps $\psi : \mathbb{R}^d \to \mathbb{R}^p$ to define kernels:

$$k(s,t) = \psi(s)^{\top} \psi(t).$$

Feature maps define kernels but not all kernels are like that (this can be generalized to "infinite dimensional" feature maps).

Feature map defines a kernel

- ► Let $k(\mathbf{x}, \mathbf{x}') = \psi(\mathbf{x})^{\top} \psi(\mathbf{x}')$
- ▶ The kernel matrix is given as $\Sigma_{ij} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}), \ \Sigma = \mathbf{y}\mathbf{y}^{\top}.$
- lacktriangle We show that this matrix is positive semi-definite, $\forall \mathbf{u} \in \mathbb{R}^N$,

$$\mathbf{u}^{\top} \Sigma \mathbf{u} = \mathbf{u}^{\top} \mathbf{y} \mathbf{y}^{\top} \mathbf{u} = (\mathbf{y}^{\top} \mathbf{u})^{\top} \mathbf{y}^{\top} \mathbf{u} = \|\mathbf{y}^{\top} \mathbf{u}\|^{2} \geq 0.$$

Main points:

- ► Forget the feature map.
- ► We can directly choose a kernel and work with it!
- ▶ The dimension of the feature space does not matter anymore.
- ightharpoonup Kernels provide a measure of proximity between x and x'.

Kernels: Examples

Example 1:

▶ D-dimensional inputs: $\mathbf{x} = (x_1, x_2, ..., x_D)^{\top}$ and $\mathbf{z} = (z_1, z_2, ...z_D)^{\top}$

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^{2} = (x_{1}z_{1} + x_{2}z_{2} + ...)^{2}$$

$$= x_{1}^{2}z_{1}^{2} + 2x_{1}z_{1}x_{2}z_{2} + x_{2}^{2}z_{2}^{2} + ...$$

$$= (x_{1}^{2}, x_{2}^{2}, ..., \sqrt{2}x_{1}x_{2}, ...)^{\top} (z_{1}^{2}, z_{2}^{2}, ..., \sqrt{2}z_{1}z_{2}, ...)$$

$$= \psi(\mathbf{x})^{\top} \psi(\mathbf{z})$$

Example 2 (Gaussian kernel): $k(\mathbf{x}, \mathbf{z}) = \exp(-\|\mathbf{x} - \mathbf{z}\|^2/2\sigma^2)$.

► The feature vector has infinite dimension here! (a bit of functional analysis)

Common Kernels in GPs

► Squared Exponential (RBF) Kernel:

$$k_{\mathrm{E}}(t,t') = \sigma^2 \exp\left(-rac{\|t-t'\|^2}{2\ell^2}
ight).$$

- Controls smoothness of the functions sampled from the GP.
- ▶ Length scale ℓ : Correlation distance.
- ▶ Signal variance σ^2 : Scale of the output.

Matérn Kernel:

$$k_{\mathrm{M}}(t,t') = \sigma^2 rac{2^{1-
u}}{\Gamma(
u)} \left(\sqrt{2
u} rac{\|t-t'\|}{\ell}
ight)^
u K_
u \left(\sqrt{2
u} rac{\|t-t'\|}{\ell}
ight).$$

- $\triangleright \nu$: Smoothness parameter.
- ▶ More flexible than the RBF kernel for modeling rough functions.

Constructing kernels from kernels

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}') \quad \text{for } c > 0,$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') \cdot k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\top} A \mathbf{x}' \qquad (A \text{ PSD})$$

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$

where q polynomial with ≥ 0 coefficients.

Modelling perspective

Working with Gaussian Processes we fix a kernel function.

Data: Suppose we observed $(X_{t_1}, \ldots, X_{t_n})$ for some $t_1, \ldots, t_n \in T$.

- ▶ If the kernel function comes with some hyperparameters α , we can learn them maximizing the log-likelihood.
 - ▶ By definition, $(X_{t_1}, ..., X_{t_n})$ is MVN with covariance that depends on α .
 - ▶ This may be a complicated optimization procedure.

- ▶ Suppose we want to predict the value of the process at t_{n+1}
 - ▶ By definition $(X_{t_1}, \ldots, X_{t_n}, X_{t_{n+1}})$ is jointly Gaussian so simply compute the conditional distribution: $X_{t_{n+1}} | X_{t_1}, \ldots, X_{t_n}$

Example: Modeling Spatial Data with GPs

GPs are widely used in spatial statistics, e.g. temperature across a grid of locations.

Handling a 10000-dimensional Gaussian comes with its own computational challenges.

Spatial GP: Prediction

- 1. Combine training and test locations.
- 2. Compute the covariance matrix using the kernel function.
- 3. Use Gaussian conditioning formulas:

$$\begin{split} \mathbb{E}[\textbf{y}_{\mathsf{test}}|\textbf{y}_{\mathsf{train}}] &= \boldsymbol{\Sigma}_{\mathsf{test},\mathsf{train}}^{\top} \boldsymbol{\Sigma}_{\mathsf{train},\mathsf{train}}^{-1} \textbf{y}_{\mathsf{train}}, \\ \mathsf{Cov}(\textbf{y}_{\mathsf{test}}|\textbf{y}_{\mathsf{train}}) &= \boldsymbol{\Sigma}_{\mathsf{test},\mathsf{test}} - \boldsymbol{\Sigma}_{\mathsf{test},\mathsf{train}}^{\top} \boldsymbol{\Sigma}_{\mathsf{train},\mathsf{train}}^{-1} \boldsymbol{\Sigma}_{\mathsf{test},\mathsf{train}}. \end{split}$$

Nonparametric Regression

GPs can be used for nonparametric regression:

$$y_i = f(\mathbf{x}_i) + \epsilon, \quad \varepsilon_i \sim N(0, \sigma^2), \quad i = 1, \dots, n.$$

Prior over $f: \mathbb{R}^d \to \mathbb{R}$: GP defined by $m(\mathbf{x})$ and $k(\mathbf{x}, \mathbf{x}')$.

▶ In this sense GP defines a distribution over (random) functions $f: \mathbb{R}^d \to \mathbb{R}$.

We have $f(\mathbf{X}) = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_n)) \sim N_n(\nu, C)$

- $\triangleright \ \nu_i = m(\mathbf{x}_i)$

Say d = 1. Given m(x) and k(x, x'), how would you plot random samples of the corresponding random functions on \mathbb{R} ?

Nonparametric Regression

We have $\mathbf{y} = f(\mathbf{x}) + \varepsilon$, and so $\mathbf{y} \sim N(m(\mathbf{x}), \Sigma + \sigma^2 I_n)$ Prediction involves computing the posterior GP.

Summary

- ► Gaussian Processes are a versatile tool for regression and spatial modeling.
- ► Key components:
 - ▶ Mean function.
 - Kernel function.
- Next: Applications of GPs in high-dimensional data.