than m) the idea is to generate the $n \times n$ Hessenberg submatrix H_n of the full Hessenberg matrix H (such that $A = UHU^*$) consisting of its first n rows and n columns; the matrix U_n consisting of the first n columns of U is also produced. The Rayleigh–Ritz method consists in computing the eigenvalues of H_n using the QR- method with shifts. These eigenvalues, called $Ritz\ values$, are approximations of the eigenvalues of A. Typically, extreme eigenvalues are found first.

Arnoldi iteration can also be viewed as a way of computing an orthonormal basis of a Krylov subspace, namely the subspace $\mathcal{K}_n(A,b)$ spanned by (b,Ab,\ldots,A^nb) . We can also use Arnoldi iteration to find an approximate solution of a linear equation Ax = b by minimizing $||b - Ax_n||_2$ for all x_n is the Krylov space $\mathcal{K}_n(A,b)$. This method named GMRES is discussed in Section 18.5.

The special case where H is a symmetric (or Hermitian) tridiagonal matrix is discussed in Section 18.6. In this case, Arnoldi's algorithm becomes Lanczos' algorithm. It is much more efficient than Arnoldi iteration.

We close this chapter by discussing two classical methods for computing a single eigenvector and a single eigenvalue: power iteration and inverse (power) iteration; see Section 18.7.

18.1 The Basic QR Algorithm

Let A be an $n \times n$ matrix which is assumed to be diagonalizable and invertible. The basic QR algorithm makes use of two very simple steps. Starting with $A_1 = A$, we construct sequences of matrices (A_k) , (Q_k) (R_k) and (R_k) as follows:

Factor	$A_1 = Q_1 R_1$
Set	$A_2 = R_1 Q_1$
Factor	$A_2 = Q_2 R_2$
Set	$A_3 = R_2 Q_2$
	÷
Factor	$A_k = Q_k R_k$
Set	$A_{k+1} = R_k Q_k$
	÷

Thus, A_{k+1} is obtained from a QR-factorization $A_k = Q_k R_k$ of A_k by swapping Q_k and R_k . Define P_k by

$$P_k = Q_1 Q_2 \cdots Q_k.$$

Since $A_k = Q_k R_k$, we have $R_k = Q_k^* A_k$, and since $A_{k+1} = R_k Q_k$, we obtain

$$A_{k+1} = Q_k^* A_k Q_k. (*_1)$$