

GEOMETRÍA Tomo 8

Sesión 1

RETROALIMENTACIÓN

1. Calcule el volumen de un prisma cuadrangular regular de diagonal

2. En la figura, AC = AD, calcule el área de la superficie lateral del

Resolismaniecto mostrado.

Piden: A_{SL}

$$A_{SL} = (2p_{base})h$$
 ... (1)
ABC: T.
 (AC) Pitágazás
 $(AC)^2 = 169$

$$AC = 13$$

 $AD = 13$... (2)

$$e_{N_{SL}}^{1} = (5 + 12 + 13)(13)$$

 $A_{SL} = (30)(13)$

$$A_{SL} = 390 \text{ u}^2$$

3. Calcule el área de la superficie total del paralelepípedo rectangular mostrado.

Resolución:

Piden: AT

- Del gráfico. $\sqrt{83^2} = 7^2 + b^2 + 3^2$ 25 = b^2 5 = b
 - Por teorema = 2(7.5 + 7.3 + 5.3) $A_T = 2(35 + 21 + 15)$ $A_T = 2(71)$

4. En la figura se muestra un cilindro circular recto. Calcule el área de su superficie lateral, si el área S es igual a 28 cm².

Resolución:

Piden:

$$A_{SL} A_{SL} = 2\pi .r.h$$
 ... (1)

- Por $dato = 28 u^2$ (2r)h = 28 ... (2)
- Reemplazando 2 en $A_{SL} = 28\pi \text{ cm}^2$

5. Calcule el volumen de una pirámide cuadrangular regular si su arista lateral mide 10 cm y forma con la base un ángulo que mide 53°.

Resolución:

- Piden: V $V = \frac{1}{3} \cdot A_{(base)}.h$
 - Se traza la altura
 - EOC :Notable de 53° y
 - Reemplazando $\frac{37}{4}^{\circ}$ teorema. $\frac{(12)^2}{2}$

$$V = 192 \text{ cm}^3$$

6. Calcule el área de la superficie total de una pirámide triangular regular, cuya arista de la base mide 4 m y el apotema mide Resolución:

Piden:

$$A_{ST}$$
 $A_{ST} = A_{SL} + A_{(base)}$
 $A_{ST} = (p_{base})(Ap) + \frac{a^2\sqrt{3}}{4}$
 $A_{ST} = (\frac{4+4+4}{2})(5\sqrt{3}) + \frac{4^2\sqrt{3}}{4}$
 $A_{ST} = 30\sqrt{3} + 4\sqrt{3}$
 $A_{ST} = 34\sqrt{3}$ m²

7. Calcule el área de la superficie total del cono circular recto mostrado.

Resolución:

Piden:

$$A_{ST}$$
 $A_{ST} = \pi r(r + g)$

 ΔBOC: Relaciones métriσãs. 9.1

$$r = 3$$

Reemplazando al teorem 1 (3 + 9)

$$A_{ST} = \pi . 3(12)$$

$$A_{ST} = 36\pi u^2$$

8. El volumen de una esfera es igual al quíntuplo del área de la superficie esférica. Calcule la longitud del radio.

Resolución:

- Piden: r
- Por dato:

$$V_{(Esf)} = 5(A_{(Esf)})$$
 $\frac{4}{3}\pi . r^3 = 5(4\pi . r^2)$
 $r = 15$

9. Calcule el volumen de una esfera, si el área de su círculo máximo es 9π cm².

• Piden:

$$V = \frac{4}{3}\pi r^3$$
 ... (1)
• Por dato:

$$A_{(Cir)} = 9 \pi$$

$$\pi r^2 = 9 \pi$$

$$r = 3 \qquad ... (2)$$

Reemplazando 2

en
$$V = \frac{4}{3}\pi(3)^3 = \frac{4}{3}\pi(27)$$

$$V = 36\pi \text{ cm}^3$$

10. Calcule el área de la superficie esférica circunscrita al cono circular recto mostrado de

altura 7 cm y radio $\sqrt{7}$ cm.

Resolución:

Piden:

$$A = 4\pi r^2 \qquad ... (1)$$

OQBT.

$$r^2 = \cancel{Pitago} + (\sqrt{7})^2$$

 $y^2 = 4$
 $y^2 = 4$

Reemplazando 2 en 1. $A = 4\pi(4)^2$

$$A = 64\pi \text{ cm}^2$$