Indépendance.

- 1. a) Déterminer à quelle condition un événement est indépendant de lui-même.
- b) Déterminer à quelle condition une variable aléatoire réelle est indépendante d'ellemême. On pourra étudier sa fonction de répartition.

Solution de l'exercice 1. a) Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace de probabilités. Soit $A \in \mathscr{F}$ un événement. Par définition, A est indépendant de lui-même si et seulement si $\mathbb{P}(A \cap A) = \mathbb{P}(A)\mathbb{P}(A)$, c'est-à-dire $\mathbb{P}(A) = \mathbb{P}(A)^2$. Ceci a lieu si et seulement si $\mathbb{P}(A)$ vaut 0 ou 1.

b) Soit X une variable aléatoire indépendante d'elle-même. Pour tout $x \in \mathbb{R}$, on a $\mathbb{P}(X \leq x, X \leq x) = \mathbb{P}(X \leq x)\mathbb{P}(X \leq x)$, donc $\mathbb{P}(X \leq x) = \mathbb{P}(X \leq x)^2$, donc la fonction de répartition de X ne prend que les valeurs 0 ou 1. Posons

$$a = \sup\{x \in \mathbb{R} : \mathbb{P}(X < x) = 0\}.$$

Pour tout x < a, il existe t tel que $x < t \le a$ et $\mathbb{P}(X \le t) = 0$ (sinon, x serait un majorant strictement plus petit que a de l'ensemble $\{x \in \mathbb{R} : \mathbb{P}(X \le x) = 0\}$). Donc $\mathbb{P}(X \le x) \le \mathbb{P}(X \le t) = 0$. Par ailleurs, pour tout x > a, on a $\mathbb{P}(X \le x) > 0$ (sinon a ne serait pas un majorant de $\{x \in \mathbb{R} : \mathbb{P}(X \le x) = 0\}$), donc $\mathbb{P}(X \le x) = 1$. Par continuité à droite de la fonction de répartition de X, on a donc

$$\mathbb{P}(X \le x) = \mathbb{1}_{[a, +\infty[}(x).$$

C'est la fonction de répartition de la loi constante égale à a, donc X est une variable aléatoire constante.

Réciproquement, soit X une variable aléatoire constante égale à c. Soient A et B deux boréliens de \mathbb{R} . Les deux nombres $\mathbb{P}(X \in A, X \in B)$ et $\mathbb{P}(X \in A)\mathbb{P}(X \in B)$ valent 1 si et seulement si $c \in A \cap B$, et 0 sinon. Dans tous les cas, ils sont égaux, donc X est indépendante d'elle-même.

Finalement, une variable aléatoire est indépendante d'elle-même si et seulement si elle est constante presque sûrement.

- **2.** a) Donner un exemple d'un espace de probabilités et de trois événements A, B, C sur cet espace de probabilités tels que $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$ mais tels que A, B, C ne soient pas indépendants.
- b) Donner un exemple d'un espace de probabilités et de trois événements A, B, C sur cet espace de probabilités tels que $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$, $\mathbb{P}(A \cap C) = \mathbb{P}(A)\mathbb{P}(C)$ et $\mathbb{P}(B \cap C) = \mathbb{P}(B)\mathbb{P}(C)$ mais tels que A, B, C ne soient pas indépendants.

Solution de l'exercice 2. a) On prend $\Omega = \{1, 2, 3, 4, 5\}$ muni de $\mathcal{F} = \mathscr{P}(\Omega)$. On choisit $A := \{1, 4\} \subset B := \{1, 2, 4\}$, et $C := \{3, 4\}$. On a alors $A \cap B = A$, $A \cap C = B \cap C = A \cap B \cap C$, ce qui entrainera que si on a $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$ avec $\mathbb{P}(A)$, $\mathbb{P}(B)$ et $\mathbb{P}(C)$ dans [0, 1[, alors on aura aussi $\mathbb{P}(A \cap B) = \mathbb{P}(A) \neq \mathbb{P}(A)\mathbb{P}(B)$, $\mathbb{P}(A \cap C) \neq \mathbb{P}(A)\mathbb{P}(C)$ et $\mathbb{P}(B \cap C) \neq \mathbb{P}(B)\mathbb{P}(C)$. On peut choisir par exemple $\mathbb{P}(A) = 1/3$, $\mathbb{P}(B) = 1/2$ et $\mathbb{P}(C) = 1/2$, ce qui donne la solution suivante au problème : $\mathbb{P}(\{4\}) = \mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C) = 1/12$, $\mathbb{P}(\{1\}) = \mathbb{P}(A) - \mathbb{P}(\{4\}) = 1/4$, $\mathbb{P}(\{2\}) = \mathbb{P}(B) - \mathbb{P}(A) = 1/6$, $\mathbb{P}(\{3\}) = \mathbb{P}(C) - \mathbb{P}(\{4\}) = 5/12$, $\mathbb{P}(\{5\}) = 1 - \mathbb{P}(\{1, 2, 3, 4\}) = 1/12$.

- b) On prend $\Omega = \{1, 2, 3, 4\}$ muni de $\mathcal{F} = \mathscr{P}(\Omega)$ et de la probabilité uniforme \mathbb{P} . On choisit $A = \{1, 2\}$, $B = \{1, 3\}$ et $C = \{1, 4\}$. On a donc $\mathbb{P}(A) = \mathbb{P}(B) = \mathbb{P}(C) = 1/2$ et $\mathbb{P}(A \cap B) = \mathbb{P}(A \cap C) = \mathbb{P}(B \cap C) = 1/4$, ce qui assure que A est indépendant de B, que A est indépendant de C, et que B est indépendant de C. Comme $\mathbb{P}(A \cap B \cap C) = 1/4 \neq \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C) = 1/8$, on voit que A, B et C ne sont pas indépendants.
- **3.** Soit $n \geq 1$ un entier. Soit Ω l'ensemble $\{0,1\}^n$ muni de la tribu $\mathscr{P}(\Omega)$ et de l'équiprobabilité \mathbb{P} . Pour tout $\omega = (\omega_1, \ldots, \omega_n) \in \Omega$ et tout $k \in \{1, \ldots, n\}$, on pose $X_k(\omega) = \omega_k$.
- a) Déterminer la loi des variables aléatoires X_1, \ldots, X_n et montrer qu'elles sont indépendantes.
- b) Soit $p \in [0, 1]$. Montrer qu'il existe une unique mesure de probabilités \mathbb{Q} sur $(\Omega, \mathscr{P}(\Omega))$ telle que, vues sur l'espace $(\Omega, \mathscr{P}(\Omega), \mathbb{Q})$, les variables aléatoires X_1, \ldots, X_n soient indépendantes et de loi de Bernoulli de paramètre p.

Solution de l'exercice 3.

a) Soit $k \in \{1, ..., n\}$. $\{X_k = 1\} = \{0, 1\}^{k-1} \times \{1\} \times \{0, 1\}^{n-k}$ a pour probabilité $\frac{2^{n-1}}{2^n} = 1/2$. Les variables aléatoires $X_1, ..., X_n$ suivent donc toutes la loi de Bernouilli de paramètre 1/2. Pour l'indépendance, il s'agit de montrer que pour tous $B_1, ..., B_n \subset \mathbb{R}$,

$$\mathbb{P}(\forall k \in \{1, \dots, n\}, X_k \in B_k) = \mathbb{P}(X_1 \in B_1) \dots \mathbb{P}(X_n \in B_n).$$

Si l'un des B_k a une intersection vide avec $\{0,1\}$, l'égalité est clairement vérifiée puisque les deux membres sont nuls.

On suppose donc que chaque B_k contient 0 ou 1. Plus précisément, on note i le nombre d'indices k tels que B_k ne contient que 0 ou bien que 1 -autrement dit $\mathbb{P}(X_k \in B_k) = 1/2$ -mais pas les deux (il y a donc n-i indices k tels que $\{0,1\} \subset B_k$ et donc $\mathbb{P}(X_k \in B_k) = 1$). Clairement, le membre de droite de l'égalité voulue vaut 2^{-i} . On vérifie facilement que celui de gauche vaut $\frac{2^{n-i}}{2^n} = 2^{-i}$, ce qui prouve l'indépendance.

b) Soit $p \in [0, 1]$. Montrer qu'il existe une unique mesure de probabilités \mathbb{Q} sur $(\Omega, \mathscr{P}(\Omega))$ telle que, vues sur l'espace $(\Omega, \mathscr{P}(\Omega), \mathbb{Q})$, les variables aléatoires X_1, \ldots, X_n soient indépendantes et de loi de Bernoulli de paramètre p.

4. Soient $E = \{x_1, x_2, x_3\}$ et $F = \{y_1, y_2, y_3\}$ deux parties finies de \mathbb{R} . Pour chacune des matrices $P = (P_{ij})_{i,j=1,2,3}$ ci-dessous, on considère un couple (X,Y) de variables aléatoires à valeurs dans $E \times F$ tel que pour tous $i, j \in \{1, 2, 3\}$, on ait $\mathbb{P}(X = x_i, Y = y_i) = P_{ij}$. Déterminer si les variables aléatoires X et Y sont indépendantes.

$$P = \begin{pmatrix} \frac{1}{4} & 0 & \frac{1}{12} \\ 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{6} \end{pmatrix}, \ P = \begin{pmatrix} 0 & 0 & 0 \\ \frac{3}{17} & \frac{12}{17} & \frac{2}{17} \\ 0 & 0 & 0 \end{pmatrix}, \ P = \begin{pmatrix} \frac{1}{4} & \frac{3}{32} & \frac{1}{32} \\ \frac{2}{15} & \frac{1}{20} & \frac{1}{60} \\ \frac{17}{60} & \frac{17}{160} & \frac{17}{480} \end{pmatrix} \ P = \begin{pmatrix} \frac{1}{4} & \frac{3}{32} & \frac{1}{32} \\ \frac{2}{15} & \frac{1}{20} & \frac{1}{20} \\ \frac{1}{4} & \frac{1}{10} & \frac{3}{80} \end{pmatrix}.$$

Solution de l'exercice 4. Dans chaque cas, on commence par calculer la loi de X et la loi de Y, en utilisant les relations

$$\mathbb{P}(X = x_i) = \mathbb{P}(X = x_i, Y = y_1) + \mathbb{P}(X = x_i, Y = y_2) + \mathbb{P}(X = x_i, Y = y_3) = P_{i1} + P_{i2} + P_{i3},$$

$$\mathbb{P}(Y = y_j) = \mathbb{P}(X = x_1, Y = y_j) + \mathbb{P}(X = x_2, Y = y_j) + \mathbb{P}(X = x_3, Y = y_j) = P_{1j} + P_{2j} + P_{3j}.$$

On examine ensuite si pour tous i, j on a $P_{ij} = \mathbb{P}(X = x_i)\mathbb{P}(Y = y_j)$. C'est le cas pour les trois premières matrices mais pas pour la quatrième.

5. Calculer la loi de la somme de deux variables aléatoires indépendantes, l'une de loi de binomiale de paramètres n et p, l'autre de paramètres m et p, où $p \in [0,1]$ et m,n sont deux entiers.

Solution de l'exercice 5. On peut procéder de plusieurs façons.

1. On sait que la loi binomiale de paramètres n et p est la loi de la somme de n variables aléatoires indépendantes de loi de Bernoulli de paramètre p.

Soient X_1, \ldots, X_{n+m} des variables aléatoires indépendantes identiquement distribuées de loi de Bernoulli de paramètre p. Posons $Y = X_1 + \ldots + X_n$ et $Z = X_{n+1} + \ldots + X_{n+m}$. Alors Y et Z sont indépendantes, de lois respectives $\mathcal{B}(n,p)$ et $\mathcal{B}(m,p)$. Leur somme, qui est $Y + Z = X_1 + \ldots + X_{n+m}$, suit la loi $\mathcal{B}(n+m,p)$.

2. Soient Y et Z indépendantes de lois respectives $\mathcal{B}(n,p)$ et $\mathcal{B}(m,p)$. Les fonctions génératrices de Y et Z sont $G_Y(s) = (1-p+sp)^n$ et $G_Z(s) = (1-p+sp)^m$. Puisqu'elles sont indépendantes, la fonction génératrice de leur somme est

$$G_{Y+Z}(s) = \mathbb{E}[s^{Y+Z}] = \mathbb{E}[s^Y]\mathbb{E}[s^Z] = (1 - p + sp)^{n+m}.$$

On reconnaît la fonction génératrice de la loi binomiale de paramètres n+m et p.

6. Soient N_1, \ldots, N_p des variables aléatoires indépendantes qui suivent des lois de Poisson de paramètres respectifs $\lambda_1, \ldots, \lambda_p$. Déterminer la loi de $N_1 + \ldots + N_p$.

Solution de l'exercice 6. La réponse est que $N_1 + \ldots + N_p$ suit une loi de Poisson de paramètre $\lambda_1 + \ldots + \lambda_p$. Le cas p = 2 a déjà été traité (feuille 5, exercice 8). Le cas général s'obtient immédiatement par récurrence.

7. Montrer que si la somme de deux variables aléatoires discrètes indépendantes a la loi de Bernoulli de paramètre $p \in [0, 1]$, alors l'une des deux variables aléatoires est constante.

Solution de l'exercice 7. Soient X et Y deux variables aléatoires indépendantes discrètes non constantes. Puisque X n'est pas constante, il existe x_1 et x_2 distincts tels que $\mathbb{P}(X=x_1)>0$ et $\mathbb{P}(X=x_2)>0$. De même, il existe y_1 et y_2 distincts tels que $\mathbb{P}(Y=y_1)>0$ et $\mathbb{P}(Y=y_2)>0$. On peut supposer $x_1< x_2$ et $y_1< y_2$. On a alors $x_1+y_1< x_1+y_2< x_2+y_2$. Posons $z_1=x_1+y_1$, $z_2=x_1+y_2$ et $z_3=x_2+y_2$. Alors $\mathbb{P}(X+Y=z_1)\geq \mathbb{P}(X=x_1,Y=y_1)$ et, puisque X et Y sont indépendantes, $\mathbb{P}(X+Y=z_1)\geq \mathbb{P}(X=x_1)\mathbb{P}(Y=y_1)>0$. De même, $\mathbb{P}(X+Y=z_2)>0$ et $\mathbb{P}(X+Y=z_3)>0$. Ainsi, il existe au moins trois valeurs distinctes que X+Y peut prendre avec une probabilité strictement positive. Il s'ensuit que la loi de X+Y n'est pas une loi de Bernoulli.

- 8. Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace de probabilités. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes définies sur $(\Omega, \mathscr{F}, \mathbb{P})$, toutes de loi de Bernoulli de paramètre $p \in]0,1[$.
 - a) On définit, pour tout $n \geq 1$ et tout $\omega \in \Omega$,

$$S_n(\omega) = \text{le nombre d'entiers } k \in \{1, \dots, n\} \text{ tels que } X_k(\omega) = 1.$$

Déteminer la loi de S_n . Les variables $(S_n)_{n\geq 1}$ sont-elles indépendantes?

b) On définit, pour tout $\omega \in \Omega$,

$$T_1(\omega) = \min\{n \ge 1 : X_n(\omega) = 1\},\$$

avec la convention $\min \emptyset = +\infty$. Calculer $\mathbb{P}(T_1 = +\infty)$ puis déterminer la loi de T_1 .

c) On définit maintenant, pour tout $\omega \in \Omega$,

$$T_2(\omega) = \min\{n > T_1(\omega) : X_n(\omega) = 1\}.$$

Déterminer les lois de T_2 et de $T_2 - T_1$. Les variables T_1 et T_2 sont-elles indépendantes? Qu'en est-il des variables T_1 et $T_2 - T_1$?

Solution de l'exercice 8.

a) On remarque que $S_n = X_1 + \cdots + X_n$ est la somme de n variables aléatoires de Bernouilli de paramètre p, elle suit donc la loi binomiale de paramètre n et p. Les variables $(S_n)_{n\geq 1}$ ne sont pas indépendantes. Pour le voir on peut remarquer que $S_{n+1} - S_n = X_{n+1}$. Ainsi $\mathbb{P}(S_{n+1} - S_n = 2) = 0$. Or si $n \geq 1$, $\mathbb{P}(S_{n+1} = 2)\mathbb{P}(S_n = 0) > 0$ ce qui montre qu'il ne peut y avoir indépendance.

b) Soit $k \geq 1$ un entier. Par indépendance des X_n , On définit, pour tout $\omega \in \Omega$,

$$\mathbb{P}(T_1 = k) = \mathbb{P}(X_1 = \dots = X_{k-1} = 0, X_k = 1) = \mathbb{P}(X_1 = 0) \dots \mathbb{P}(X_{k-1} = 0) \mathbb{P}(X_k = 1) = p(1-p)^{k-1}.$$

On vérifie immédiatement que $\mathbb{P}(T_1 < +\infty) = \sum_{k \geq 1} \mathbb{P}(T_1 = k) = 1$, et donc que $\mathbb{P}(T_1 = +\infty) = 0$. T_1 suit dont une loi géométrique (modifiée) de paramètre p (ou 1-p selon les conventions) : ils s'agit du temps de premier succès.

c) Soient $j \ge 1$ et $k \ge 1$ des entiers. $\mathbb{P}(T_1 = j, T_2 = k) = 0$ si $k \le j$. On suppose donc maintenant k > j.

$$\mathbb{P}(T_1 = j, T_2 = k) = \mathbb{P}(X_1 = \dots = X_{j-1} = 0, X_j = 1, X_{j+1} = \dots = X_{k-1} = 0, X_k = 1) = \mathbb{P}(X_1 = 0) \dots$$

On fixe k et on somme l'égalité précédente pour $j=1,\ldots,k-1$, ce qui donne

$$\mathbb{P}(\{T_2 = k) = (k-1)p^2(1-p)^{k-2}.$$

Là encore, on peut sommer sur k pour vérifier que $\mathbb{P}(T_2 = +\infty) = 0$. T_1 prend toutes les valeurs $\{1, 2, 3, \ldots\}$ avec probabilité strictement positive, et T_2 les valeurs $\{2, 3, 4, \ldots\}$. Comme $\mathbb{P}(T_1 < T_2) = 1$, T_1 et T_2 ne peuvent pas être indépendante (par exemple parce que $\mathbb{P}(T_1 = 2, T_2 = 2) = 0 < \mathbb{P}(T_1 = 2)\mathbb{P}(T_2 = 2)$). En posant k = i + j, on obtient

$$\mathbb{P}(T_1 = j, T_2 - T_1 = i) = \mathbb{P}(T_1 = j, T_2 = k) = p^2(1 - p)^{k-2} = p(1 - p)^{j-1}p(1 - p)^{i-1}.$$

En sommant sur j, on obtient $\mathbb{P}(T_2 - T_1 = i) = p(1-p)^{i-1}$ et on remarque que

$$\mathbb{P}(T_1 = j, T_2 - T_1 = i) = \mathbb{P}(T_1 = j) = \mathbb{P}(T_2 - T_1 = i).$$

 T_2 a donc la même loi que T_1 et est indépendante de T_1 .

9. Soient X et Y des variables aléatoires indépendantes de lois respectives $\mathcal{N}(\mu_1, \sigma_1^2)$ et $\mathcal{N}(\mu_2, \sigma_2^2)$. Soient a, b et c des réels. Déterminer la loi de aX + bY + c.

Solution de l'exercice 9. Soit q une fonction continue bornée $\mathbb{R} \to \mathbb{R}$.

$$\mathbb{E}[g(X+Y)] = \frac{1}{2\pi\sigma_1\sigma_2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(y-\mu_2)^2}{2\sigma_2^2}} g(x+y) dy dx.$$

On fait le changement de variable affine u=x+y dans l'intégrale par rapport à y:

$$\mathbb{E}[g(X+Y)] = \frac{1}{2\pi\sigma_1\sigma_2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(u-x-\mu_2)^2}{2\sigma_2^2}} g(u) du dx.$$

On écrit le trinôme dans l'exponentielle sous forme canonique :

$$\frac{(x-\mu_1)^2}{2\sigma_1^2} + \frac{(u-x-\mu_2)^2}{2\sigma_2^2} = \frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2 \sigma_2^2} \left[(x-\lambda_u)^2 \right] + \frac{\mu_1^2}{\sigma_1^2} + \frac{(u-\mu_2)^2}{\sigma_2^2} - \frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2 \sigma_2^2} \lambda_u^2,$$

avec
$$\lambda_u := \frac{\sigma_1^2 \mu_1 + \sigma_2^2 (u - \mu_2)}{\sigma_1^2 + \sigma_2^2}$$
.
En développant λ_u^2 , on obtient

$$\begin{split} &\frac{\mu_1^2}{\sigma_1^2} + \frac{(u - \mu_2)^2}{\sigma_2^2} - \frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2 \sigma_2^2} \lambda_u^2 \\ &= &\frac{\mu_1^2}{\sigma_1^2} \left(1 - \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} \right) + \frac{(u - \mu_2)^2}{\sigma_2^2} \left(1 - \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \right) - 2 \frac{\mu_1 (u - \mu_2)}{\sigma_1^2 + \sigma_2^2} \\ &= &\frac{\mu_1^2}{\sigma_1^2 + \sigma_2^2} + \frac{(u - \mu_2)^2}{\sigma_1^2 + \sigma_2^2} - 2 \frac{\mu_1 (u - \mu_2)}{\sigma_1^2 + \sigma_2^2} = \frac{(u - \mu_1 - \mu_2)^2}{\sigma_1^2 + \sigma_2^2}. \end{split}$$

Autrement dit, le trinôme de l'exponentielle s'écrit

$$\frac{(x-\mu_1)^2}{2\sigma_1^2} + \frac{(u-x-\mu_2)^2}{2\sigma_2^2} = \frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2 \sigma_2^2} \left[(x-\lambda_u)^2 \right] + \frac{(u-\mu_1 - \mu_2)^2}{\sigma_1^2 + \sigma_2^2}.$$

En remarquant que pour tout $u \in \mathbb{R}$, le changement de variable affine $x' = x - \lambda_u$ donne

$$\int_{-\infty}^{+\infty} e^{-\frac{\sigma_1^2 + \sigma_2^2}{2\sigma_1^2 \sigma_2^2} (x - \lambda_u)^2} dx = \int_{-\infty}^{+\infty} e^{-\frac{\sigma_1^2 + \sigma_2^2}{2\sigma_1^2 \sigma_2^2} x^2} dx = \sqrt{\frac{2\pi \sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}},$$

on obtient, en changeant l'ordre d'intégration :

$$\mathbb{E}[g(X+Y)] = \frac{1}{2\pi\sigma_1\sigma_2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{(u-x-\mu_2)^2}{2\sigma_2^2}} dx e^{-\frac{(u-\mu_1-\mu_2)^2}{2(\sigma_1^2+\sigma_2^2)}} g(u) du$$
$$= \frac{1}{\sqrt{2\pi(\sigma_1^2+\sigma_2^2)}} \int_{-\infty}^{+\infty} e^{-\frac{(u-\mu_1-\mu_2)^2}{2(\sigma_1^2+\sigma_2^2)}} g(u) du.$$

X + Y suit donc la loi $\mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

La question était de déterminer la loi de aX + bY + c. On va montrer que aX + c suit la loi $\mathcal{N}(a\mu_1+c,a^2\sigma_1^2)$, ce qui, appliqué aussi à bY et combiné avec le calcul précédent, permet de conclure que aX + bY + c suit la loi $\mathcal{N}(a\mu_1 + b\mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$.

Pour le voir, considérons une fonction $g: \mathbb{R} \to \mathbb{R}$ continue et bornée. On a

$$\mathbb{E}[g(aX+c)] = \frac{1}{\sqrt{2\pi\sigma_1^2}} \int_{-\infty}^{+\infty} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} g(ax+c) dx.$$

On fait le changement de variable u = ax + c (la valeur absolue vient du fait que lorsque a < 0, on échange les bornes d'intégration) :

$$\mathbb{E}[g(aX+c)] = \frac{1}{\sqrt{2\pi\sigma_1^2}} \int_{-\infty}^{+\infty} e^{-\frac{(\frac{u-c}{a}-\mu_1)^2}{2\sigma_1^2}} g(u) \frac{du}{|a|}$$
$$= \frac{1}{\sqrt{2\pi a^2 \sigma_1^2}} \int_{-\infty}^{+\infty} e^{-\frac{(u-c-a\mu_1)^2}{2a^2 \sigma_1^2}} g(u) du.$$

Ce qui achève la démonstration.

10. Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace de probabilités. Soient $N, X_1, X_2, \ldots : (\Omega, \mathscr{F}, \mathbb{P}) \to \mathbb{N}$ des variables aléatoires indépendantes. On suppose que N suit la loi de Poisson de paramètre $\lambda > 0$ et que X_1, X_2, \ldots suivent la loi de Bernoulli de paramètre $p \in [0, 1]$. On pose $R = X_1 + \ldots + X_N$, c'est-à-dire, pour tout $\omega \in \Omega$,

$$R(\omega) = \sum_{k=1}^{N(\omega)} X_k(\omega).$$

Déterminer la loi de R.

Solution de l'exercice 10. Soit $k \in \mathbb{N}$. On calcule, à l'aide des propriétés d'indépendance :

$$\mathbb{P}(R = k) = \sum_{n \ge k} \mathbb{P}(N = n, X_1 + \dots + X_n = k) = \sum_{n \ge k} \mathbb{P}(N = n) \mathbb{P}(X_1 + \dots + X_n = k).$$

Comme N suit une loi de Poisson de paramètre λ et $X_1 + \cdots + X_n$ une loi binomiale de paramètres n et p, il vient

$$\mathbb{P}(R=k) = \sum_{n \ge k} e^{-\lambda} \frac{\lambda^n}{n!} \frac{n! p^k (1-p)^{(n-k)}}{k! (n-k)!} = e^{-\lambda} \frac{(\lambda p)^k}{k!} \sum_{n \ge k} \frac{(\lambda (1-p))^{(n-k)}}{(n-k)!}.$$

En posant m = n - k, la somme devient

$$\sum_{n \ge k} \frac{(\lambda(1-p))^{(n-k)}}{(n-k)!} = \sum_{m \ge 0} \frac{(\lambda(1-p))^m}{m!} = \exp(\lambda(1-p)).$$

D'où, finalement,

$$\mathbb{P}(R=k) = e^{-\lambda p} \frac{(\lambda p)^k}{k!}.$$

R suit donc la loi de Poisson de paramètre λp .