STALGCM Exam #2 Reviewer

Prepared By:

Ryan Austin Fernandez (ryan.fernandez@dlsu.edu.ph)

1. Given the following three languages:

```
• L_1 = \{ \omega \in \{0,1\}^* \mid \omega = (1^*0)^* \}
```

•
$$L_2 = \{ \omega \in \{0,1\}^* \mid \omega = 0^* 1 (0 \cup 10^* 1)^* \}$$

•
$$L_3 = \{ \omega \in \{0,1\}^* \mid \omega = 0(00)^* \}$$

represented by the following DFA's:

	0	1
$\rightarrow A^*$	A	В
B	Α	В

Table 1: DFA for L_1

	0	1
$\rightarrow C$	С	D
D^*	D	С

Table 2: DFA for L_2

	0	1
$\rightarrow E$	F	G
F^*	Ε	G
G	G	G

Table 3: DFA for L_3

Provide the transition table for the λ – NFA that recognizes $(\overline{(L_1^R \cup L_3) - L_2})^*$. (10 points)

- 2. Using the pumping lemma for regular languages, prove that $L = \{\alpha\alpha \mid \alpha \in \{0,1\}^*\}$ is NOT regular. (10 points)
- 3. Given the grammar G given by:

$$G=(N,T,P,\Sigma)$$

$$N = \{A, B, C, D\}$$

$$T=\{0,1\}$$

P:

$$\Sigma \to A$$

$$A \rightarrow 0B11 \mid 0C1$$

$$B \rightarrow 0A11 \mid 0D1 \mid 01$$

$$C \rightarrow 0A1 \mid 0D11 \mid 011$$

$$D \rightarrow 0C11 \mid 0B1$$

For the items below, write TRUE if the string is generated by G and FALSE otherwise (2 points each)

- (a) 000011111
- (b) 00111
- (c) λ
- (d) 00001111
- (e) 01
- 4. Given the language $L=\{\omega\in\{a,b,c\}^*\mid \omega=a^nb^ncb^ma^m\wedge n, m\geq 0\}$, design a Pushdown Automaton (PDA), M, that recognizes language L. (Provide the state diagram. Follow the constraint $|Q|\leq 5$.) (10 points)
- 5. Prove that the language $L = \{\omega \in \{0,1\}^* \mid 0^n 1^m \land n \neq m\}$ is context-free by:
 - (a) Creating a Push-Down Automaton (PDA) that recognizes L (Provide the state diagram. Follow the constraint $|Q| \le 4$) (10 points), and
 - (b) Designing the Context-Free Grammar (CFG) that generates L (Follow the constraints $|N| \le 5 \land |P| \le 12$). (10 points)
 - $\bullet \ \, \mathsf{Accept:} \ \, 001,00111,0001111,00011$
 - $\bullet \ \mathsf{Reject:} \ 01,0011,000111,\lambda$

- - END OF REVIEWER - -

STALGCM Exam #2 Reviewer Answer Key

Prepared By:

Ryan Austin Fernandez (ryan.fernandez@dlsu.edu.ph)

$1. \ \ \hbox{Given the following three languages:}$

Answered in 13 minutes, 49 seconds

	0	1	λ
$\rightarrow q_0^*$			ACE
ACE	BCF	HDG	
ACF	BCE	HDG	q_0
ACG	BCG	HDG	
ADE	BDF	HCG	
ADF	BDE	HCG	q_0
ADG	BDG	HCG	
BCE	BCF	BDG	
BCF	BCE	BDG	q_0
BCG	BCG	BDG	
BDE	BDF	BCG	
BDF	BDE	BCG	q_0
BDG	BDG	BCG	
HCE	HCF	HDG	q_0
HCF	HCE	HDG	q_0
HCG	HCG	HDG	q_0
HDE	HDF	HCG	
HDF	HDE	HCG	q_0
HDG	HDG	HCG	

Table 4: Transition Table for the $\lambda - NFA$ for $(\overline{(L_1^R \cup L_3) - L_2})^*$

2. Answered in 4 minutes, 41 seconds

For any positive integer p, we can generate a string $0^p1^p0^p1^p \in L$.

Let

$$\begin{split} x &= 0^{\alpha} \\ y &= 0^{(}p - \alpha) \\ z &= 1^{p}0^{p}1^{p} \text{, where } \alpha$$

In this case, xy^*z will generate the language $L'=\{\omega\in\{0,1\}^*\mid \omega=0^{kp-(k-1)\alpha}1^p0^p1^p, k\geq 0\}$. Since $kp-(k-1)\alpha\neq p$ for all $k\neq 1$, only the string in L' where k=1 is a member of the original language L.

Therefore, L is not regular.

3. Answered in 47 seconds

- (a) TRUE
- (b) TRUE
- (c) FALSE
- (d) FALSE
- (e) TRUE

4. Answered in 6 minutes

Figure 1: State Diagram for the PDA for #4a

(a)

5. (a) Answered in 3 minutes, 43 seconds

Figure 2: State Diagram for #5a

(b) Answered in 2 minutes, 35 seconds

$$\begin{split} G &= (N, T, P, \Sigma) \\ N &= \{A, B, C, D, E\} \\ T &= \{0, 1\} \\ P : \\ \Sigma &\to A \mid B \\ A &\to CD \mid C \\ B &\to DE \mid E \\ C &\to 0C \mid 0 \\ D &\to 0D1 \mid 01 \\ E &\to 1E \mid 1 \end{split}$$

-- END OF REVIEWER ANSWER KEY --