Finite-size effects in quantum thermodynamics

Kamil Korzekwa

Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Poland

TEAM-NET

Outline

I. Motivation and background

- 1. Motivation
- 2. Thermodynamic setting
- 3. State interconversion and related problems

II. Results on incoherent thermodynamics

- 1. Asymptotic reversibility
- 2. Finite-size irreversibility
- 3. Resource resonance effect

III. Results on coherent thermodynamics

- 1. Fluctuation-dissipation relations
- 2. Converting coherent to incoherent states

IV. Outlook

Patryk Lipka-Bartosik University of Geneva

Marco Tomamichel
National University of Singapore

Christopher Chubb
ETH Zurich

Tanmoy Biswas University of Gdańsk

Alexssandre de Oliveira Junior Jagiellonian University

Michał Horodecki University of Gdańsk

Motivation & background

Motivation

What can we say about the dynamics without solving equations of motion?

Quantum thermodynamics:

Using minimal assumptions of the quantum theory, find constraints on the evolution of a quantum system interacting with thermal baths

Motivation

Open dynamics approach:

Exact time evolution for a given model

Resource-theoretic approach:

Allowed final states compatible with the laws of thermodynamics

Thermodynamic setting

Thermodynamic transformations modelled by **thermal operations***:

$$\mathcal{E}^{\mathbf{T}}(\cdot) = \operatorname{Tr}_{B'}\left(U\left(\cdot \otimes \gamma_{\mathbf{B}}\right) U^{\dagger}\right) \quad \text{with} \quad [U, H + H_B] = 0$$

Thermal bath γ_B

Hamiltonian: H_B

Hamiltonian: H

Hamiltonian: H'

Gibbs state γ of the system at temperature T:

$$\gamma = e^{-\frac{H}{T}}/\mathcal{Z}, \quad \mathcal{Z} = \operatorname{Tr}\left(e^{-\frac{H}{T}}\right)$$

Note: all results with units such that $k_B = 1$.

*M. Horodecki, J. Oppenheim Nature Commun. 4, 2059 (2013)

State interconversion and related problems

State interconversion:

Initial state ρ , target state σ , background temperature T

Single-shot interconversion: Does there exist \mathcal{E}^T such that $\mathcal{E}^T(\rho) = \sigma$?

(large but finite n)

Many-copies interconversion: Does there exist \mathcal{E}^T such that $\mathcal{E}^T(\rho^{\otimes n}) \approx_{\epsilon} \sigma^{\otimes R_n n}$?

Optimal rate R_n for error ϵ ?

Incoherent interconversion:

$$[\rho, H] = [\sigma, H'] = 0$$

(states represented by: $\mathbf{p} = \operatorname{eig}(\mathbf{p}), \ \mathbf{q} = \operatorname{eig}(\mathbf{\sigma})$)

$$[\boldsymbol{\gamma}, H] = 0$$

(thermal state represented by: $\gamma = eig(\gamma)$)

State interconversion and related problems

Incoherent interconversion completely described by **thermomajorisation***:

Lorenz curve segments for the initial state p:

Lorenz curve segments for the target state q:

Form convex Lorenz curves

Interconversion possible iff the initial curve is always above the target curve

*M. Horodecki, J. Oppenheim Nature Commun. 4, 2059 (2013)

State interconversion and related problems

Thermodynamic protocols are various instances of state interconversion problem

Work extraction

Thermodynamically-free communication

Information erasure

Results on incoherent thermodynamics

Asymptotic reversibility

Asymptotic rate for
$$n \to \infty^*$$
: $R_{\infty}(\mathbf{p} \to \mathbf{q}) = \frac{D(\mathbf{p}||\boldsymbol{\gamma})}{D(\mathbf{q}||\boldsymbol{\gamma})}$

Relative entropy:

$$D(\mathbf{p}||\mathbf{\gamma}) := \sum_{i=1}^{a} p_i \log \frac{p_i}{\gamma_i}$$

Physical interpretation:

$$\frac{1}{T} \left[\langle E \rangle_{\boldsymbol{p}} - TH(\boldsymbol{p}) - (-T \log \mathcal{Z}) \right]$$

Free energy F = U - TS Free energy of γ

No dissipation of free energy in the thermodynamic limit!

*F. Brandão et al., Phys. Rev. Lett. 111, 250404 (2013)

Rate for large but finite n:

Relevant quantity quantifying irreversibility:

Relative entropy variance:

$$V(\boldsymbol{p}\|\boldsymbol{\gamma}) := \sum_{i=1}^{d} p_i \left(\log \frac{p_i}{\gamma_i} - D(\boldsymbol{p}\|\boldsymbol{\gamma}) \right)^2$$

Physical interpretation:

$$V(\gamma'||\gamma) = \frac{\partial \langle E \rangle_{\gamma'}}{\partial T'} \cdot \left(1 - \frac{T'}{T}\right)^2$$

Specific heat capacity

Carnot factor

Quantum 2, 108 (2018)

Optimal conversion rate R_n with constant error ϵ :

Reversibility parameter:

$$R_n(\epsilon) = R_{\infty} + \sqrt{\frac{V(\mathbf{p}||\boldsymbol{\gamma})}{D(\mathbf{q}||\boldsymbol{\gamma})^2}} \frac{Z_{\nu}^{-1}(\epsilon)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)$$

$$\nu = \frac{V(\boldsymbol{q}\|\boldsymbol{\gamma})/D(\boldsymbol{q}\|\boldsymbol{\gamma})}{V(\boldsymbol{p}\|\boldsymbol{\gamma})/D(\boldsymbol{p}\|\boldsymbol{\gamma})}$$

Rayleigh-normal distribution Z_{ν}^* :

Quantum **2**, 108 (2018)

 Z_0 - standard normal distribution Φ

 Z_1 - Rayleigh distribution $(Z_1(x) = 0 \text{ for } x \leq 0)$

*W. Kumagai *et al.*, IEEE Trans. Inf. Theory **63**, 1829–1857 (2017)

Numerical verification of the obtained second-order asymptotic expression for optimal rate:

30

40

0.4

0.3

20

60

Number of systems n

70

50

Effects of finite-size irreversibility on work distillation and dilution processes:

Work distillation process:

Distillable work: $n \cdot W_D$

Work dilution process:

Thermal bath

Work of formation: $n \cdot W_F$

K.K. (UJ)

Resource resonance

Optimal conversion rate R_n with vanishing error $\epsilon = e^{-n^{\alpha}}$ and $\alpha \in (0,1)$:

$$R_n(\epsilon) = R_{\infty} - \sqrt{\frac{V(\mathbf{p}||\boldsymbol{\gamma})}{D(\mathbf{q}||\boldsymbol{\gamma})^2}} \frac{\left|\sqrt{1/\nu} - 1\right|}{\sqrt{n^{1-\alpha}}} + o\left(\frac{1}{\sqrt{n^{1-\alpha}}}\right)$$

When $\nu = 1$ correction term disappears for every error ϵ

No free energy dissipation! (at least up to second order asymptotics)

(recall that $\nu = 1$ means that the relative fluctuations of free energy are the same for the initial state ρ and target state σ)

Phys. Rev. A **99**, 032332 (2019)

Resource resonance

Resonance example: Heat engine with a finite-size working body:

Resource resonance

Working body: n = 200 qubits, energy gap E Background (hot) bath: $T_h = 10E$

Results on coherent thermodynamics

Fluctuation-dissipation relations

Thermodynamic distillation process

Non-zero free energy:

$$F^{N} := \frac{1}{\beta} \sum_{n=1}^{N} D(\rho_{n}^{N} || \gamma_{n}^{N})$$

Non-zero free energy fluctuations:

$$\sigma^{2}(F^{N}) := \frac{1}{\beta^{2}} \sum_{n=1}^{N} V(\rho_{n}^{N} || \gamma_{n}^{N})$$

Non-zero free energy, but vanishing free energy fluctuations

Free energy fluctuations ?

Free energy dissipated in the process

Einstein-Smoluchowski relation for a Brownian particle:

Fluctuation-dissipation relations

Optimal error in thermodynamic distillation process:

$$\lim_{N \to \infty} \epsilon_N = \lim_{N \to \infty} \Phi\left(-\frac{\Delta F^N}{\sigma(F^N)}\right)$$

 ΔF^N - Free energy difference between initial and **target** state

Minimal amount of free energy dissipated in the optimal distillation process:

$$F_{\rm diss}^N \simeq a(\epsilon_N) \sigma(F^N)$$

 $F_{
m diss}^N$ - Free energy difference between initial and **final** state

$$a(\epsilon) = -\Phi^{-1}(\epsilon)(1-\epsilon) + \exp(-[\Phi^{-1}(\epsilon)]^2/2)/\sqrt{2\pi}$$

Three regimes:

$$\lim_{N \to \infty} \frac{\Delta F^N}{\sqrt{N}} = \begin{cases} \infty, & \longrightarrow & \epsilon = 0, \quad F_{\text{diss}}^N = \Delta F^N \\ -\infty, & \longrightarrow & \epsilon = 1, \quad F_{\text{diss}}^N = 0 \end{cases}$$

$$\alpha \in \mathbb{R}$$

Also holds for initial pure states with coherence!

Phys. Rev. E **105**, 054127 (2022)

Converting coherent to incoherent states

Consider a coherent qubit state:
$$\rho = \begin{pmatrix} p & c \\ c^* & 1-p \end{pmatrix}$$

Then, dephasing many copies means:

Incoherent state

$$\rho^{\otimes 3} = \begin{pmatrix} k=0 \\ k=1 \\ k=2 \\ k=3 \end{pmatrix} \xrightarrow{\text{Each block can be diagonalised with}} \begin{pmatrix} \lambda_0^1 \\ \lambda_1^1 \\ \lambda_1^2 \\ \lambda_1^2 \\ \lambda_1^2 \\ \lambda_2^1 \\ \lambda_2^2 \\ \lambda_3^2 \\ \lambda_3^1 \end{pmatrix} =: \boldsymbol{\lambda}$$

As $n \to \infty$ such dephasing pre-processing "kills" only $O(\log n)$ of free energy!

(proof using hypothesis testing approach to the interconversion problem)

In preparation (2023)

Converting coherent to incoherent states

Optimal conversion rate R_n with constant error ϵ :

$$R_n(\epsilon) = R_{\infty} + \sqrt{\frac{V(\boldsymbol{\rho}||\boldsymbol{\gamma})}{D(\boldsymbol{\sigma}||\boldsymbol{\gamma'})^2}} \frac{S_{\nu}^{-1}(\epsilon)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right) \qquad \left[R_n(\epsilon) = R_{\infty} + \sqrt{\frac{V(\boldsymbol{p}||\boldsymbol{\gamma})}{D(\boldsymbol{q}||\boldsymbol{\gamma})^2}} \frac{Z_{\nu}^{-1}(\epsilon)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)\right]$$

Previous incoherent result

$$R_n(\epsilon) = R_{\infty} + \sqrt{\frac{V(\mathbf{p}||\boldsymbol{\gamma})}{D(\mathbf{q}||\boldsymbol{\gamma})^2}} \frac{Z_{\nu}^{-1}(\epsilon)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)$$

Optimal performance of thermodynamic protocols employing interference effects:

Extractable work:
$$w \simeq \frac{1}{\beta} \left(D(\rho \| \gamma) + \sqrt{\frac{V(\rho \| \gamma)}{n}} \Phi^{-1}(\epsilon) \right)$$

Number of bits that can be communicated without a thermodynamic cost:

Work cost of information erasure:
$$w_{\rm cost} \simeq \frac{1}{\beta} \left(S(\rho) - \sqrt{\frac{V(\rho)}{n}} \Phi^{-1}(\epsilon) \right)$$

$$\frac{\log M(\rho^{\otimes n}, \epsilon)}{n} \simeq D(\rho \| \gamma) + \sqrt{\frac{V(\rho \| \gamma)}{n}} \Phi^{-1}(\epsilon),$$

In preparation (2023)

Converting coherent to incoherent states

Predicting coherent resonance phenomenon:

Recall reversibility parameter: $\nu = \frac{V(\sigma \| \gamma)/D(\sigma \| \gamma)}{V(\rho \| \gamma)/D(\rho \| \gamma)}$

Transformation with the asymptotic rate

In preparation (2023)

Outlook

- Extend finite-size analysis to other resource-theories (asymmetry, contextuality).
- Design experimental protocols employing the resonance phenomenon.
- Generalise the formalism to include target quantum states with coherence.
- Look for resonance phenomena in other quantum information processing tasks.
- Extend resource-theoretic fluctuation-dissipation theorem to continuous variable systems

Quantum **2**, 108 (2018) Phys. Rev. A **99**, 032332 (2019) Phys. Rev. Lett. **122**, 110403 (2019) Phys. Rev. E **105**, 054127 (2022) In preparation (2023)

Thank you!