TOPOLOGY Homework 1

- 1. Are the following functions metrics on given sets?
 - (a) $\rho(x,y) = \min\{1,d(x,y)\}\$, where $x,y \in (X,d)$ and (X,d) is a metric space.
 - (b) $\rho_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$, where $x,y \in (X,d)$ and (X,d) is a metric space.
 - (c) $\rho_2(n,m) = |\frac{1}{n} \frac{1}{m}|, \text{ where } n, m \in \mathbb{N}$
- 2. Consider the set $C([0,1]) = \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}$ endowed with the supremum metric:

$$d(f,g) = \sup\{|f(x) - g(x)| : x \in [0,1]\}.$$

Which of the sets below are open in that space? Why/Why not?

- $A = \{ f \in C([0,1]) : f(x) > 0 \text{ for } x \in [0,1] \}$

- $B = \{ f \in C([0,1]) : \exists x \in [0,1] \ f(x) = 0 \}$ $C = \{ f \in C([0,1]) : \int_0^1 |f(x)| dx < 1 \}$ $D = \{ f \in C([0,1]) : f \text{ is strictly increasing} \}$
- 3. Consider the following metric on C([0,1]):

$$\rho(f,g) = \int_0^1 |f(x) - g(x)| dx.$$

Which sets A, B, C, D from the previous exercise are open in the metric space $(C([0,1]), \rho)$?

4. Let $\mathbb{N}^{\mathbb{N}}$ be the set of all sequences of positive integers (we assume here that $0 \notin \mathbb{N}$). For $a = (n_1, n_2, \ldots)$ and $b = (m_1, m_2, \ldots) \in \mathbb{N}^{\mathbb{N}}$ define

$$d(a,b) = \begin{cases} \frac{1}{\min\{i : n_i \neq m_i\}} & \text{if} \quad a \neq b \\ 0 & \text{if} \quad a = b \end{cases}$$

- (a) Prove that d is a metric on $\mathbb{N}^{\mathbb{N}}$ and $d(a,b) \leq \max\{d(a,c),d(b,c)\}$ for any $a,b,c \in \mathbb{N}^{\mathbb{N}}$.
- (b) Show that any two balls in the space $(\mathbb{N}^{\mathbb{N}}, d)$ are either disjoint or one of them is contained in the other.
- (c) Which of the following sets are open in $(\mathbb{N}^{\mathbb{N}}, d)$:
 - $A = \{(n_1, n_2, \dots) : n_i = 1 \text{ for at least three indexes } i\}$
 - $B = \{(n_1, n_2, \ldots) : n_i = 1 \text{ for infinitely many } i$'s}
- (d) Let < be the lexicographical order on $\mathbb{N}^{\mathbb{N}}$ (i.e. $(n_1, n_2, \ldots) < (m_1, m_2, \ldots)$ if for some $i, n_i < m_i$ and $n_j = m_j$ for j < i). For a < b set $(a, b) = \{x : a < x < b\}$. Show that intervals of the form (a, b) are open in $(\mathbb{N}^{\mathbb{N}}, d)$.
- 5. Show that the interval [0,1] is not a union of intervals of the form (a,b). Show that (0,1) is not an intersection of intervals of the form [a, b].
- 6. Prove that $\overline{A} = \bigcap \{K \subseteq X : K \text{ is closed in } X\}$, i.e. the closure \overline{A} of a set A in a space X is the minimal closed set in X containing A.
- 7. Prove that $Int(A) = \bigcup \{U \subseteq A : U \text{ is open in } X \}$, i.e. Int(A) is the maximal open subset of A.
- 8. Show that the closure operator has the following properties:

$$\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}, \qquad \overline{A} \setminus \overline{B} \subseteq \overline{A \setminus B}.$$

Give examples showing that the opposite inclusions do not hold.

- 9. Prove that for a topological space X we have:
 - (i) Int(X) = X
 - (ii) $Int(A) \subseteq A$
 - (iii) $\operatorname{Int}(A \cap B) = \operatorname{Int}(A) \cap \operatorname{Int}(B)$
 - (iv) Int(Int(A)) = Int(A)
- 10. Find the closure, interior and boundary of the following subsets of the real line:

$$\emptyset$$
, \mathbb{R} , \mathbb{N} , \mathbb{Q} , $\mathbb{R} \setminus \mathbb{N}$, $\mathbb{R} \setminus \mathbb{Q}$, $[3,8)$, $(0,\infty)$