

Universidade Federal da Grande Dourados - UFGD Faculdade de Engenharia - FAEN Curso de Engenharia Mecânica - Bacharelado

Combustão e Combustíveis Limites de Inflamabilidade

Engenheiro Responsável: Adrian Beppu Hirata

Engenheiro Verificador: Carlos Renan Cândido da Silva

Combustão e Combustíveis Limites de Inflamabilidade

Trabalho 2 - Limites de Inflamabilidade

A partir das instruções dadas em sala, utilizou-se o Scilab e os dados obtidos no trabalho 1, "Conservação da massa", para calcular as proporções referentes aos limites de inflamabilidade e gerar os gráficos para cada um dos combustíveis citados a seguir:

Combustível	Limite Inferior (%)	Limite Superior (%)
Metano	5,0	15,0
Propano	2,1	10,1
Gasolina	1,4	7,6
Octano	1,0	7,0
Diesel	0,6	7,5
Pentadecano	0,45	6,5
Metanol	6,7	36,0
Etanol	3,3	19,0
Nitrometano	7,3	22,2
Hidrogênio	4,0	75,0
Acetileno	2,5	81,0
Cianogênio	6,0	42,6
Amônia	15,0	28,0
Benzeno	1,35	6,65
Naftaleno	0,9	5,9
Grafite	-	-
Carvão	-	-

Tabela 1 – Limites de Inflamabilidade para cada combustível

Os dados dos limites de inflamabilidade teve como fontes principais *Engineering Tool Box* e *Merck Millipore*, utilizando o *Wikipédia* e *Mateson* como fontes auxiliares a partir dos seus respectivos links apresentados no fim deste documento na seção **Referências** (pág. 19).

Grafite e Carvão

Como mostra na tabela 1, apesar de estarem presentes no trabalho 1, tanto o grafite quanto o carvão não possuem limites de inflamabilidade, visto que são sólidos. Dessa forma, não há como obter os gráficos de barras referentes às proporções de massas de reagentes aplicando o conceito estudado em aula. Logo, este documento irá apresentar os dados dos outros 15 combustíveis baseando-se na tabela 1.

Metano:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	8,24	282,32	-	-	-	296,56
Limite superior [LS]	25,91	264,65	-	-	-	296,56
Reagentes	16,00	274,56	-	-	-	296,56
Produtos	-	-	44,00	36,00	210,56	296,56

Tabela 2 – Medidas de massas da combustão utilizando limites de inflamabilidade para metano

Gráfico 1 – Proporções de massas da combustão utilizando limites de inflamabilidade para metano

Propano:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	23,15	707,25	-	-	-	730,4
Limite superior [LS]	106,87	623,53	-	-	-	730,4
Reagentes	44,0	686,4	-	-	-	730,4
Produtos	-	-	132,0	72,0	526,4	730,4

Tabela 3 – Medidas de massas da combustão utilizando limites de inflamabilidade para propano

Gráfico 2 – Proporções de massas da combustão utilizando limites de inflamabilidade para propano

Gasolina:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	77,94	1567,46	-	-	-	1645,4
Limite superior [LS]	367,96	1277,44	-	-	-	1645,4
Reagentes	101,0	1544,4	-	-	-	1645,4
Produtos	-	-	308,0	153,0	1184,4	1645,4

Tabela 4 - Medidas de massas da combustão utilizando limites de inflamabilidade para gasolina

Gráfico 3 – Proporções de massas da combustão utilizando limites de inflamabilidade para gasolina

Octano:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	70,26	1759,74	-	-	-	1830
Limite superior [LS]	419,62	1410,38	-	-	-	1830
Reagentes	114	1716	-	-	-	1830
Produtos	-	-	352	162	1316	1830

Tabela 5 – Medidas de massas da combustão utilizando limites de inflamabilidade para octano

Gráfico 4 – Proporções de massas da combustão utilizando limites de inflamabilidade para octano

Diesel:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	120,36	2908,74	-	-	-	3029,1
Limite superior [LS]	1082,14	1946,96	-	-	-	3029,1
Reagentes	197,7	2831,4	-	-	-	3029,1
Produtos	-	-	633,6	224,1	2171,4	3029,1

Tabela 6 – Medidas de massas da combustão utilizando limites de inflamabilidade para diesel

Gráfico 5 – Proporções de massas da combustão utilizando limites de inflamabilidade para diesel

Pentadecano:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	108,36	3261,08	-	-	-	3369,44
Limite superior [LS]	1139,53	2229,91	-	-	-	3369,44
Reagentes	212,00	3157,44	-	-	-	3369,44
Produtos	-	-	660,00	288,00	2421,44	3369,44

Tabela 7 – Medidas de massas da combustão utilizando limites de inflamabilidade para pentadecano

Gráfico 6 – Proporções de massas da combustão utilizando limites de inflamabilidade para pentadecano

Metanol:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	17,56	220,36	-	-	-	237,92
Limite superior [LS]	91,43	146,49	-	-	-	237,92
Reagentes	32,00	205,92	-	-	-	237,92
Produtos	-	-	44,00	36,00	157,92	237,92

Tabela 8 – Medidas de massas da combustão utilizando limites de inflamabilidade para metanol

Gráfico 7 – Proporções de massas da combustão utilizando limites de inflamabilidade para metanol

Etanol:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	23,63	434,21	-	-	-	457,84
Limite superior [LS]	124,66	333,18	-	-	-	457,84
Reagentes	46,00	411,84	-	-	-	457,84
Produtos	-	-	88,00	54,00	315,84	457,84

Tabela 9 – Medidas de massas da combustão utilizando limites de inflamabilidade para etanol

Gráfico 8 – Proporções de massas da combustão utilizando limites de inflamabilidade para etanol

Nitrometano:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	23,41	140,55	-	-	-	163,96
Limite superior [LS]	61,71	102,25	-	-	-	163,96
Reagentes	61,00	102,96	-	-	-	163,96
Produtos	-	-	44,00	27,00	92,96	163,96

Tabela 10 – Medidas de massas da combustão utilizando limites de inflamabilidade para nitrometano

Gráfico 9 – Proporções de massas da combustão utilizando limites de inflamabilidade para nitrometano

Hidrogênio:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	0,20	70,44	-	-	-	70,64
Limite superior [LS]	12,17	58,47	-	-	-	70,64
Reagentes	2,00	68,64	-	-	-	70,64
Produtos	-	-	-	18,00	52,64	70,64

Tabela 11 – Medidas de massas da combustão utilizando limites de inflamabilidade para hidrogênio

Gráfico 10 – Proporções de massas da combustão utilizando limites de inflamabilidade para hidrogênio

Acetileno:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	8,3	360,9	-	-	-	369,2
Limite superior [LS]	293,0	76,2	-	-	-	369,2
Reagentes	26,0	343,2	-	-	-	369,2
Produtos	-	-	88,0	18,0	263,2	369,2

Tabela 12 – Medidas de massas da combustão utilizando limites de inflamabilidade para acetileno

Gráfico 11 – Proporções de massas da combustão utilizando limites de inflamabilidade para acetileno

Cianogênio:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	33,70	292,86	-	-	-	326,56
Limite superior [LS]	186,89	139,67	-	-	-	326,56
Reagentes	52,00	274,56	-	-	-	326,56
Produtos	-	-	88,00	-	238,56	326,56

Tabela 13 – Medidas de massas da combustão utilizando limites de inflamabilidade para cianogênio

Gráfico 12 – Proporções de massas da combustão utilizando limites de inflamabilidade para cianogênio

Amônia:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	11,30	108,66	-	-	-	119,96
Limite superior [LS]	22,37	97,59	-	-	-	119,96
Reagentes	17,00	102,96	-	-	-	119,96
Produtos	-	-	-	27,00	92,96	119,96

Tabela 14 – Medidas de massas da combustão utilizando limites de inflamabilidade para amônia

Gráfico 13 – Proporções de massas da combustão utilizando limites de inflamabilidade para amônia

Benzeno:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	39,5	1068,1	-	-	-	1107,6
Limite superior [LS]	178,9	928,7	-	-	-	1107,6
Reagentes	78,0	1029,6	-	-	-	1107,6
Produtos	-	-	264,0	54,0	789,6	1107,6

Tabela 15 – Medidas de massas da combustão utilizando limites de inflamabilidade para benzeno

Gráfico 14 – Proporções de massas da combustão utilizando limites de inflamabilidade para benzeno

Naftaleno:

	Combustível [g]	Ar [g]	Dióxido de Carbono [g]	Água [g]	Nitrogênio [g]	Total [g]
Limite inferior [LI]	68,79	1706,57	-	-	-	1775,36
Limite superior [LS]	386,49	1388,87	-	-	-	1775,36
Reagentes	128,00	1647,36	-	-	-	1775,36
Produtos	-	-	440,00	72,00	1263,36	1775,36

Tabela 16 – Medidas de massas da combustão utilizando limites de inflamabilidade para naftaleno

Gráfico 15 – Proporções de massas da combustão utilizando limites de inflamabilidade para naftaleno

REFERÊNCIAS

Para obter os dados da tabela 1, foram utilizadas as seguintes fontes:

Engineering Tool Box - https://www.engineeringtoolbox.com/explosive-concentration-limits-d_423.html

Merck Millipore - http://www.merckmillipore.com/BR/pt

Matheson - https://www.mathesongas.com/pdfs/products/Lower-(LEL)-&-Upper-(UEL)-Explosive-Limits-.pdf

Wikipedia - https://en.wikipedia.org/wiki/Flammability_limit