

Visualizaciones del espacio químico

Antonio de la Vega de León

Contenido

Introducción

Proyecciones de espacios multidimensionales

Redes de compuestos químicos

Introducción

Espacio químico

Espacio compuesto por todos los compuestos químicos que es posible crear

Espacio químico

 Análisis del espacio químico proporciona información sobre relaciones de estructura y propiedad

Visualizaciones

 Gráficos deben mostrar relaciones entre compuestos y las propriedades que son de interés

¿Porqué visualizar?

 Visualizaciones son capaces de mostrar relaciones difíciles de detectar con análisis estadísticos

¿Porqué visualizar?

 Visualizaciones son capaces de mostrar relaciones difíciles de detectar con análisis estadísticos

Representaciones de compuestos

Representaciones de compuestos

Descriptores fisico-químicos

Tamaño
logP
Número de aceptores de hidrogeno
Porcentaio de átemas aremáticas

Porcentaje de átomos aromáticos Suma de cargas

180 1.19	3	0.46	0
----------	---	------	---

Representaciones de compuestos

Huellas digitales químicas

Proyecciones de espacios multidimensionales

Mostrar espacios multidimensionales

Problemas de mostrar más de dos dimensiones

Mostrar espacios multidimensionales

Problemas de mostrar más de dos dimensiones

Mostrar espacios multidimensionales

Problemas de mostrar más de dos dimensiones

Reducción dimensional

- Distintos tipos de técnicas para reducir la dimensionalidad:
 - Análisis de componentes principales (PCA): obtienen una serie de ejes ortogonales que mantienen el máximo de variabilidad
 - Reducción multidimensional (MDS): proporciona coordenadas en dos dimensiones que mejor aproximan las distancias en el espacio químico

Paisajes de actividad

 Reducir la dimensionalidad y añadir la actividad en el eje Z

Paisajes de actividad

Reducir a 2D y usar actividad como 3^{ra} dimension

Interpolar una superficie entre los datos

Expandir paisajes a multiples actividades

- Una limitación es que solo es capaz de mostrar una propiedad y no varias
- Sería interesante poder mostrar relaciones entre estructura y diferentes propriedades en un gráfico
- Por ejemplo, actividad contra un panel de quinasas
- Para ello, utilizamos técnicas de visualización multidimensional como RadViz

- Es una técnica de proyección
- Utiliza una serie de anclas dimensionales (A-E)
- La posición de los datos depende de los valores para cada ancla dimensional

865 3334 Paisajes de multiactividad 3D Actividad parecida, diferente estructura Diferente actividad, estructura parecida B) 151 338 3702 **-**762 В Α Α CLK2 MAP4K4 GSK3B CLK4 MAP4K4 6.0 6.1 6.7 7.8 CLK4 8.0 7.7 8.5 7.2 0.3 nM GSK3B 7.2 6.9 6.1 7.8 100 μΜ CLK2 7.0 7.1 7.8 5.7 1141

3782

7.3

DYRK1A

7.0

6.9

7.3

Redes de compuestos químicos

Redes de compuestos químicos

Concepto similar al de redes sociales

Semejanza entre compuestos

 Compuestos se consideran similares si su semejanza es mayor que un valor específico

$$Tc(i,j) = \frac{c}{a+b-c}$$

Disposición de redes

Redes de compuestos

Limitación de estas redes

 Las distancias entre compuestos no tienen significado químico

 La red depende del valor límite que determina cuando dos compuestos son similares

 Cambiar el valor, cambia la disposición completamente

 Adaptamos una técnica de disposición que ayuda con estos problemas: Kamada-Kawai (KK)

Es capaz de mostrar la semejanza entre compuestos

	Α	В	C	D
Α	1.0-0.9	0.8-0.7	0.6-0.5	0.1-0.0
В	0.8-0.7	1.0-0.9	0.4-0.3	0.1-0.0
С	0.6-0.5	0.4-0.3	1.0-0.9	0.1-0.0
D	0.1-0.0	0.1-0.0	0.1-0.0	0.1-0.0

 Cuando se reduce el valor límite, el número de conexiones en un grupo se incrementa mucho pero no tanto el número de conexiones entre grupos

 La disposición Kamada-Kawau proporciona mucha más información sobre la relación entre compuestos

Conclusiones

 Visualización es un técnica muy útil para analizar grupos de moléculas e intentar extraer relaciones de estructura y actividad

 Las dos formas típicas de visualizar datos químicos son usar proyecciones multidimensionales o redes de compuestos

Muchas gracias por su atención