

Ingeniería Técnica Industrial

Definición

Es el componente pasivo diseñado y fabricado para ofrecer una resistencia eléctrica al paso de la corriente.

Tipos de resistores

- Fijos
- Variables
- No lineales
 - Dependientes de Temperatura
 - Dependientes de la Tensión
 - Dependientes del campo magnético
 - Dependientes de la intensidad luminosa

Valor de resistencia al paso de corriente definida y constante.

Características

- Resistencia nominal. (R_n)
- Potencia nominal. (P_n)
- Tensión nominal. (U_n)
- Tolerancia:

Tolerancia =
$$\pm 100 \cdot \frac{\max(R_{\text{medida}} - R_{\text{n}})}{R_{\text{n}}} \%$$

Coeficiente de temperatura: Se expresa en %/°C o ppm/°C.

$$R = R_{N} \cdot [1 + \alpha (T - T_{N})]$$

La resistencia nominal, se establece en series, definidas por su tolerancia.

Para obtener los valores correspondientes a cada serie se divide la década en el número de zonas que indica la serie.

Serie **E24**. Se emplea para tolerancias de ± 5% la serie se compone de

valores redondeados de los números teóricos:

 $R_n = 10^{\frac{n}{24}}$, para $0 \le n \le 23$

Serie E12. Se emplea para tolerancias de ± 10%.

$$R_n = 10^{\frac{n}{12}}, \quad \text{para } 0 \le n \le 11$$

Serie E6. Se emplea para tolerancias de ± 20%.

$$R_n = 10^{\frac{n}{6}}, \quad \text{para } 0 \le n \le 5$$

Para tolerancias menores de 5% se emplean las series E192, E96, E48.

Series

SERIE E24	SERIE E12	SERIE E6	
Tolerancia ± 5%	Tolerancia ± 10%	Tolerancia ± 20%	
1.0	1.0	1.0	
1.1			
1.2	1.2		
1.3			
1.5	1.5	1.5	
1.6			
1.8	1.8		
2.0			
2.2	2.2	2.2	
2.4			
2.7	2.7		
3.0			

SERIE E24	SERIE E12	SERIE E6	
Tolerancia ± 5%	Tolerancia ± 10%	Tolerancia ± 20%	
3.3	3.3	3.3	
3.6			
3.9	3.9		
4.3			
4.7	4.7	4.7	
5.1			
5.6	5.6		
6.2			
6.8	6.8	6.8	
7.5			
8.2	8.2		
9.1			

Marcado

Existen principalmente dos tipos de marcado:

- Código de colores.
- Alfanumérico.

Marcado por código de colores

Series E6,E12 y E24. Series E48 y E96.

Marcado por código de colores

Se quiere una resistencia de 2200 Ohmios (2.2 $k\Omega$):

1ª cifra: 2 → color rojo

2^a cifra: 2 -> color rojo

multiplicador: $100 \text{ o } 10^2 \Rightarrow \text{color rojo}$

Marcado alfanumérico

- El valor nominal del resistor se indica mediante2, 3 ó 4 números y 2 letras.
- La primera letra corresponde al multiplicador y la segunda a la tolerancia.
- La letra se coloca en el lugar correspondiente a la coma decimal.

Marcado alfanumérico

Multiplicador

R= 1

 $K = 10^3$

 $M = 10^6$

 $G = 10^9$

 $T=10^{12}$

Tolerancia

 $B = \pm 0.1\%$

 $C = \pm 0.25\%$

 $D = \pm 0.50\%$

 $F = \pm 1\%$

 $G = \pm 2\%$

 $J = \pm 5\%$

 $K = \pm 10\%$

 $M = \pm 20\%$

 $N = \pm 30\%$

Ejemplos:

R68 J = $68 \Omega \pm 5\%$

 $2K2 K = 2.2 k\Omega \pm 10\%$

10M M=10 M Ω ± 20%

Potencia nominal

El tamaño del resistor depende de la potencia que

puede disipar.

Resistores lineales

- Aglomerados.
- De película de carbón.
- De película metálica.
- Bobinados.
- Integrados

Resistores aglomerados

- El elemento resistivo está constituido por un bloque mezcla de carbono y resinas o partículas metálicas.
- Son los más utilizados.
- Coeficientes de temperatura de ±1200 ppm/°C.

Resistores de película de carbón

- Sobre una barra de cerámica se deposita una capa de carbón mediante la descomposición de un vapor de hidrocarburo a temperatura de unos 1000 °C.
- Coeficientes de temperatura de > 300 ppm/°C.

Resistores de película metálica

- El proceso de fabricación es prácticamente el mismo, salvo que, sobre la barra de cerámica, se deposita un metal, en vez de carbón.
- Coeficientes de temperatura de < 200 ppm/°C.</p>

Resistores bobinados

- Realizados con hilos de aleaciones metálicas.
 (Ni-Cr, Ni-Cr-Fe-Al)
- Resistores bobinados de precisión.
 - 🧶 Realizados con materiales de bajo coeficiente de 🛮 temperatura.
 - Normalmente recubiertos de pintura.
 - Coeficiente de temperatura: ± 50 ppm/°C.
- · Resistores bobinados de potencia.
 - Disipan hasta 250 W de potencia.
 - © Coeficiente de temperatura: ± 130 ppm/°C
 - Cementados.
 - Vitrificados.

Resistores integrados

- De película gruesa.
 - Tolerancia 2%.
 - Coefiente de temperatura ± 100 ppm/°C
 - Bajo precio.
- De película delgada.

Tabla comparativa de resistores fijos

TIPO DE RESISTOR	VALOR NOMI NAL	TOLERANCIA [%]	POTENCIA [W]	°T máx [°C]	COEFICIENTE DE TEMPERATURA (ppm/°C)
Composición	1 a 100M	5, 10, 20	1/8 a 2	115	± 1200
Película carbón	1 a 22M	0.5 a 10	1/10 a 2	150	> 300
Pel. metálica	1 a 10M	0.1 a 5	1/8 a 1	175	< 200
Bobinados de precisión	0.1 a 1M	0.01 a 1	1/8 a 2	125	± 50
Bobinados de potencia	1 a 220k	5 a 10	hasta 500	400	± 130
Integrados	5 a 5M	1 a 10	50m a 600m	125	± 100

Resistores variables

- Leyes de variación :
 - · Lineales.
 - Logarítmica positiva.
 - Logarítmica negativa.

Contactos en los extremos del cuerpo resistivo

Contacto del cursor (móvil)

Resistores variables

- Lineales.
- Logarifimica positiva.
- Logarítmica negativa.

$$R(x) = K_1 \cdot x$$

$$R(x) = 10^{\frac{x}{K_2}} - 1$$

$$R(x) = K_3 \cdot \log(x+1)$$

Resistores no lineales

- Termistores.
 - NTC.
 - PTC.
- Termoresistores.
 - RTD.

VDR

Termistores(I)

- Dos tipos
 - NTC (Coeficiente negativo de temperatura)
 - PTC y RTD (Coeficiente positivo de temperatura)

Termistores(II)

Aplicaciones

- Medidor de temperatura → Láser.
- Fiabilidad de sistemas serie.
- Protección filamentos, altavoces.
- Estabilizaciones de tensión y retardos.
- Medidores de caudal, nivel de líquidos, vacío y altitud.
- Anemómetros.

Termorresitores

RTD

(Resistance Temperature Detector)

- Coeficiente de temperatura positivo: aumenta el valor óhmico al aumentar la temperatura.
- Pueden ser bobinados o de película metálica.

Varistores

VDR

(Voltage Dependent Resistors)

- Su valor óhmico varía con la tensión en sus extremos.
- Se emplean como protectores contra sobretensiones.
- Se construyen de óxido de Zinc.

$$R = \frac{1}{K \cdot V^{1-n}}$$