EPFL

 École polytechnique fédérale de Lausanne

Overview

Introduction

ReLu Networks

- Lipschitz-constrained ReLu CNNs
- Plug-and-play

B-spline Networks

- Lipschitz-constrained B-spline CNNs
- Plug-and-play

Denoiser Scaling

Introduction

Inverse problems and variational methods

Inverse problems

- Goal : Recover a signal through a set of measurements
- Model: $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$ with $\mathbf{y} \in \mathbb{R}^M$, forward operator $\mathbf{H} \in \mathbb{R}^{m \times n}$ and noise $\mathbf{n} \in \mathbb{R}^m$
- Signal to recover : $\mathbf{x} \in \mathbb{R}^N$

Variational methods

- Goal: Find a well-defined optimal solution for inverse problems
- Optimization problem : $\hat{\mathbf{x}} = \operatorname{argmin} f(\mathbf{x}) + \gamma g(\mathbf{x})$, $\gamma \geq 0$ a constant
 - Data-fidelity term $f(x): f(x) = ||y Hx||_2^2$ (MSE example)
 - Regularization/Prior term g(x): $g(x) = ||Lx||_1$ (L1-norm example)
- Algorithms: ADMM, forward-backward splitting (FBS), ...

Plug-and-Play ADMM/FBS

Proximal operator : $Prox_{\alpha h}(z) = argmin\{\alpha h(x) + (1/2)||x-z||_2^2\}$ with $\alpha > 0$ a constant

ADMM

$$x^{k+1} = \operatorname{Prox}_{\sigma^{2}g}(y^{k} - u^{k})$$

$$y^{k+1} = \operatorname{Prox}_{\alpha f}(x^{k+1} + u^{k})$$

$$u^{k+1} = u^{k} + x^{k+1} - y^{k+1}$$

$$x^{k+1} = \operatorname{H}_{\sigma}(y^{k} - u^{k})$$

$$y^{k+1} = \operatorname{Prox}_{\alpha f}(x^{k+1} + u^{k})$$

$$u^{k+1} = u^{k} + x^{k+1} - y^{k+1}$$

FBS

$$x^{k+1} = \operatorname{Prox}_{\sigma^2 g}(I - \alpha \nabla f)(x^k)$$
 \longrightarrow $x^{k+1} = \operatorname{H}_{\sigma}(I - \alpha \nabla f)(x^k)$

Plug-and-Play ADMM

$$x^{k+1} = \mathbf{H}_{\sigma}(y^k - u^k)$$

$$y^{k+1} = \operatorname{Prox}_{\alpha f}(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - y^{k+1}$$

PnP-FBS

$$x^{k+1} = \mathbf{H}_{\sigma}(I - \alpha \nabla f)(x^k)$$

Idea: Replace a proximal step by a denoisers H_{σ} with strength parameter $\sigma > 0$

Denoisers: State-of-the-art denoising convolutional networks (CNN), BM3D, ...

Lipschitz-constrained neural networks for plug-and-play methods

Plug-and-Play fixed point convergence

Previous work

(Ryu et al. May 2019)1

Residual mapping

$$H_{\sigma} = I - R_{\sigma}$$

Assumptions

f(x) strongly convex

 R_{σ} is a non-expansive CNN

Current work

(Terris et al. May 2020)²

Half-averaged mapping

$$H_{\sigma} = \frac{I + R_{\sigma}}{2}$$

Assumptions

None

 R_{σ} is a non-expansive CNN

Non-expansive operator

Operator R: $\mathcal{H} \to \mathcal{H}$ is non-expansive such that $\forall (x,y) \in \mathcal{H}^2$: $||Rx - Ry|| \leq ||x - y||$

 α -averaged operator

Operator
$$T = (1 - \alpha)I + \alpha R$$
 with $\alpha \in [0, 1]$

Half-averaged: $\alpha = 0.5$

^{1:} Ernest K. Ryu et al., Plug-and-play methods provably converge with properly trained denoiser, 2019

^{2:} M. Terris, A. Repetti, J.-C. Pesquet and Y. Wiaux, "Building Firmly Nonexpansive Convolutional Neural Networks," ICASSP 2020

CNN architectures

Simple CNN

4 convolutional layers
ReLu or B-splines
No Batch norm

DnCNN

17 convolutional layers
ReLu or B-splines
Batch norm

Train to remove additive white Gaussian noise (AWGN) with variance σ

Lipschitz-constrained ReLu CNNs

Lipschitz-constant with ℓ_2 -norm

- **Definition**: The smallest L satisfying $||f(x) f(y)||_2 \le L||x y||_2 \quad \forall x, y \in \mathbb{R}^n$ with $f : \mathbb{R}^n \to \mathbb{R}^m$
- Composition : $L \leq \prod_{i=1}^n L_i$ for $g = f_n \circ \cdots \circ f_1$
- Affine transformation : W(x) = Wx + b , $L \le \sigma_1$ (highest singular value) of $W \in \mathbb{R}^{n \times m}$
- CNNs: Control layer-wise the L_i of the different layers and activations

Lipschitz-constrained CNN methods

Fully-connected layer weight matrix : $W \in \mathbb{R}^{n \times m}$

Convolutional Kernel : $K \in \mathbb{R}^{c_{out} \times c_{in} \times h \times w}$

Spectral Normalization¹ (SN) Real Spectral Normalization¹ (RealSN)

 $\mathsf{W} \in \mathbb{R}^{n \times m}$

Compute σ_1 of W Power iteration

Fully-connected layer Constrain W with σ_1 1 iteration

Convolutional layer
Reshape K to W
W $\in \mathbb{R}^{c_{out} \times (c_{in} \cdot h \cdot w)}$ Constrain W with σ_1 1 iteration

 $K \in \mathbb{R}^{c_{out} \times c_{in} \times h \times w}$ Compute σ_1 of KKernel power iteration

Fully-connected layer

_

Convolutional layer

Constrain K with σ_1 1 iteration

Parseval Normalization²

 $W \in \mathbb{R}^{n \times m}$ Keep rows of W orthonormal $W \leftarrow (1 + \beta)W - \beta WW^TW$

Fully-connected layer

Constrain W

Convolutional layer
Reshape K to W $W \in \mathbb{R}^{c_{out} \times (c_{in} \cdot h \cdot w)}$ Divide output by $\sqrt{h} \cdot \sqrt{w}$ Constrain W

^{1:} Ernest K. Ryu et al., Plug-and-play methods provably converge with properly trained denoiser, 2019

^{2:} Moustapha Cisse et al., Parseval Networks: Improving Robustness to Adversarial Examples, 2017

Lipschitz experiments

Experimental set-up

Architecture: Simple CNN

NYU fastMRI¹ dataset : Knee MRI images

Mappings : Residual (R) and Half-averaged (H)

• Noise variance : $\sigma = 0.05$

β =0,5

Comparison of the methods

No normalization (None)

Parseval experiment

β : strength parameterResidual mapping

	No	one	S	N	Rea	ISN	Parseval		
		R	Н	R	Н	R	Н	R	Н
	Layer 1	4.81	5.9	5.00	5.2	1.03	1.04	3.0	3.0
Cincular values	Layer 2	19.42	27.14	14.05	12.17	1.01	1.0	2.94	2.98
Singular values	Layer 3	19.68	11.91	11.92	9.69	1.04	1.05	2.56	2.98
	Layer 4	1.2	0.63	3.19	3.51	1.01	1.01	1.06	2.96

Beta	0.0001	0.1	0.5	0.6	0.7	1.0	
Singular values	Layer 1	6.25	3.00	3.00	3.00	NAN	NAN
	Layer 2	4.82	2.0	2.94	2.98	NAN	NAN
	Layer 3	4.24	1.65	2.56	2.96	1.88	1.34
	Layer 4	2.58	1.05	1.06	2.88	1.14	0.99

Singular values estimated by Kernel power iterations (100) on trained networks

Compressed sensing MRI

Model

• Measurements : $y = \mathcal{F}_p x_{\text{true}} + \varepsilon_e$

• Noise : $\varepsilon_e \sim \mathcal{N}(0, \sigma_e I_m)$, $\sigma_e = 15/255$

• Forward operator : $\mathcal{F}_p:\mathbb{C}^n \to \mathbb{C}^m$ Fourier K-space subsampling

■ **Data-fidelity term**: $f(x) = \frac{1}{2}||y - \mathcal{F}_p x||_2^2$ not strongly convex

• Regularization term : CNN based denoisers H_{σ}

Sampling patterns

Sampling rate : 30%

Images

Brain Bust

PnP methods

CNNs

- Architectures : SimpleCNN (4 layers) or DnCNN (17 layers with batch norm)
- Mappings : Residual (R) or Half-averaged (H)
- Spectral Normalization : RealSN and None
- Activations : ReLu
- Noise Level σ: 15/255 or 5/255
- Convolutional layers : With or without bias

Train 3

Train 32 network combinations on **natural images** (BSD500¹)

PnP

- **ADMM**: Networks with $\sigma = 15/255$ were plugged-in (20) with $\alpha = 2.0$
- **FBS**: Networks with $\sigma = 5/255$ were plugged-in (20) with $\alpha = 0.4$
- All combinations (6) of images and sampling tested for 100 iterations

Baseline

Inverse 2-D Fourier Transform (zero-filling)

EPFL

PnP results

Sampling approach			Ran	dom		Radial				
Image		Br	ain	Βι	ıst	Br	ain	Bust		
CNN	architecture	R	Н	R	Н	R	Н	R	Н	
Z	ero-filling	9.	60	7.02		9.	29	6.21		
-	DnCNN	19.84	18.87	16.82	15.60	19.21	18.30	16.33	15.07	
PnP-FBS	Real-SN DnCNN	19.60	18.15	16.49	15.10	18.73	17.41	15.98	14.26	
r III -r Do	SimpleCNN	19.21	18.81	16.61	15.89	18.42	18.08	16.09	15.45	
	Real-SN SimpleCNN	18.57	16.91	16.23	13.83	17.74	16.42	15.75	13.37	
	DnCNN	19.80	19.83	16.99	17.09	18.85	18.91	16.61	16.61	
PnP-ADMM	Real-SN DnCNN	19.75	19.10	17.10	16.47	18.75	17.98	16.55	15.94	
r IIr -ADMINI	SimpleCNN	19.49	19.44	16.96	16.95	18.54	18.45	16.44	16.43	
	Real-SN SimpleCNN	18.79	16.87	16.48	14.69	17.79	15.96	15.93	13.92	

Drop in performance using Half-averaged instead of Residual (0,5 - 2 dB) Only PnP-ADMM DnCNN is slightly higher

Replace ReLu by B-splines to try to reduce the gap

Lipschitz-constrained B-spline CNNs

Constrained B-spline activations

B-spline activations

- Increase capacity
- Uniform grid with step size T (k coefficients)
- Linear extrapolation outside the grid (2 coefficients)
- Convolutions
 - Shared within channel, size: (number channels, (K+2))

Lipschitz-constrained B-spline activations

- One dimensional function
- Continuous piecewise linear
- L is the maximum slope

Quadratic constrained minimization problem

- 1. For m in B-spline modules do
 - 2. For $n = \{1,2,...,number of channels\}$ do
 - 3. $\widetilde{c} = c$ where $c \in \mathbb{R}^{K+2}$
 - 4. Solve $||\bar{c} \tilde{c}||_2^2$, subject to $D\tilde{c} \ge 1$ with D the first order finite difference
 - 5. $c = \bar{c}$

Python libraries : cvxpy/cvxpylayers and qpth

Maximum Projection

- 1. For m in B-spline modules do
 - 2. For $n = \{1,2,...,number of channels\}$ do
 - 3. Initialize S list of slopes
 - 4. For $c = \{1,2,...,C-1\}$ **do**
 - 5. Compute absolute slope $\{c,c+1\}$ abs(s)
 - 6. Append s to S
 - 7. $s^* = max(S)$
 - 8. **If** $s^* \leq 1$:

do nothing

9. **else** $s^* \ge 1$:

For $c = \{1,2,...,C-1\}$ **do**: $c = c/s^*$

c = c/s

B-spline activations experiments

Computational Cost

Architectures: RealSN Simple CNN and RealSN DnCNN

Mapping: Half-averaged

K = 51 (coefficients) with T = 0.1 (step size)

Dataset: BSD500

• Noise: $\sigma = 15/255$

Model	SimpleCNN	DnCNN		
ReLu	4min40s	7min44s		
B-spline	5min49s	12min53s		
B-spline maxproj	5min53s	13min7s		
B-spline orthoprojection	25min19s	1h55min		

Time per epoch

Prohibitive

PnP methods

CNNs

- Architectures : SimpleCNN (4 layers) or DnCNN (17 layers with batch norm)
- Mappings : Half-averaged (H)
- Spectral Normalization : RealSN
- Activations : B-splines or ReLu
- Noise Level σ: 15/255 or 5/255
- Convolutional layers : With or without bias

PnP

- **ADMM**: Networks with $\sigma = 15/255$ were plugged-in (20) with $\alpha = 2.0$
- **FBS**: Networks with $\sigma = 5/255$ were plugged-in (20) with $\alpha = 0.4$
- All combinations (6) of images and sampling tested for 100 iterations

Baseline

Inverse 2-D Fourier Transform (zero-filling)

EPFL

PnP results (1)

Networks with bias

S	ampling approach	Ran	dom	Radial		
	Image	Brain	Bust	Brain	Bust	
	CNN architecture	Н	Н	Н	Н	
	Zero-filling	9.60	7.02	9.29	6.21	
	Real-SN DnCNN	18.15	15.10	17.41	14.26	
PnP-FBS	Real-SN DnCNN Bspline ⁺	14.24	12.98	12.74	11.99	
riir-rds	Real-SN SimpleCNN	16.91	13.83	16.42	13.37	
	Real-SN SimpleCNN Bspline	17.55	14.81	16.91	14.34	
	Real-SN DnCNN	19.10	16.47	17.98	15.94	
PnP-ADMM	Real-SN DnCNN Bspline	19.21	16.83	18.39	16.27	
FIIF-ADMINI	Real-SN SimpleCNN	16.87	14.69	15.96	13.92	
	Real-SN SimpleCNN Bspline	17.11	14.97	16.28	14.28	

PnP-FBS

DnCNN: B-spline performance much worse Simple CNN: B-spline performance better

PnP-ADMM

Slight improvement with B-spline

PnP results (2)

B-spline activations

- Difficult learning process
 - Adam
 - ➤ Validation curve oscillates
 - > Dependent on the initialization
 - Lower learning rate does not solve the issue
 - SGD
 - > Validation curve decreases
 - ➤ No momentum
 - ➤ Lower learning rate solve the issue
- Default settings
 - No hyperparameter tuning

PnP-FBS RealSN DnCNN B-spline

SGD

Denoiser Scaling

Denoising strength

Motivation

- Noise measurements might not be available
- Optimal σ tuning

Direct approach

 σ : noise added to the images Changing σ involves retraining a network

Scaling¹ approach

 σ : noise added to the images μ : scaling parameter

$$D_{\mu}(z) = \frac{1}{\mu} D(\mu z) , z \in \mathbb{R}^n$$

D : trained denoiser where σ is dropped z : noisy input

Scaling experiments

Values of noises

- Measurement's noise : $\sigma_e = 15/255$
- PnP-ADMM denoisers : $\sigma = 15/255$
- PnP-FBS denoisers : $\sigma = 5/255$

Scaling

- Prior knowledge of σ_e
- Scale denoisers train on a "guessed" σ
- Scaling parameter μ
 - Uniform grid [0.1-3.0]
 - Step size T = 0.1

PnP-ADMM : Residual RealSN DnCNN with Random sampling

Future directions

- Test the PnP framework on other modalities.
 - Case of interest: Residual mapping does not converge
- Investigate B-spline activations
 - Careful investigation of the learning process
 - Tuning hyperparameters
- Testing the scaling method
 - No prior knowledge of measurement's noise σ_e

 École polytechnique fédérale de Lausanne

Implementation in Python

https://github.com/sebemery/Lipschitz-constrained-neural-networks

Appendix

Complete PnP result table for network with bias

S	Sampling approach		Random				Radial				Cartesian			
	Image		Brain		Bust		Brain		Bust		Brain		Bust	
(CNN architecture	R	Н	R	Н	R	Н	R	Н	R	Н	R	Н	
	Zero-filling	9.	60	7.	02	9.	29	6.	21	8.	67	6.	.03	
	DnCNN	19.84	18.87	16.82	15.60	19.21	18.30	16.33	15.07	15.00	14.27	14.22	13.43	
	Real-SN DnCNN	19.60	18.15	16.49	15.10	18.73	17.41	15.98	14.26	14.19	13.70	13.54	12.87	
PnP-FBS	Real-SN DnCNN Bspline ⁺	17.35	14.24	15.48	12.98	16.81	12.74	14.60	11.99	13.55	9.51	12.22	9.20	
F11F-FD5	SimpleCNN	19.21	18.81	16.61	15.89	18.42	18.08	16.09	15.45	14.82	14.55	14.30	13.72	
	Real-SN SimpleCNN	18.57	16.91	16.23	13.83	17.74	16.42	15.75	13.37	14.38	12.99	13.82	11.46	
	Real-SN SimpleCNN Bspline	19.05	17.55	16.57	14.81	18.13	16.91	16.09	14.34	14.80	13.15	13.80	11.92	
	DnCNN	19.80	19.83	16.99	17.09	18.85	18.91	16.61	16.61	15.07	14.70	13.99	13.61	
	Real-SN DnCNN	19.75	19.10	17.10	16.47	18.75	17.98	16.55	15.94	14.74	14.32	13.75	13.63	
PnP-ADMM	Real-SN DnCNN Bspline	19.14	19.21	16.34	16.83	18.26	18.39	16.18	16.27	14.21	14.49	12.82	13.39	
PnP-ADMM	SimpleCNN	19.49	19.44	16.96	16.95	18.54	18.45	16.44	16.43	14.65	14.67	13.82	13.82	
	Real-SN SimpleCNN	18.79	16.87	16.48	14.69	17.79	15.96	15.93	13.92	13.83	12.57	12.73	10.63	
	Real-SN SimpleCNN Bspline	18.74	17.11	16.52	14.97	17.69	16.28	15.97	14.28	13.80	12.71	12.85	11.0 0	

PnP-ADMM

Random sampling

Residual Half-averaged

SNR: 18.79 dB SNR: 16.87 dB

RealSN Simple CNN

Lipschitz-constrained neural networks for plug-and-play methods

Appendix

PnP-ADMM Random sampling

RealSN Simple CNN

RealSN DnCNN

Appendix

S	ampling approach	Random					Rac	ndial									
	Image Brain				Bust			Brain				Bust					
(CNN architecture	R	R*	Н	H*	R	R*	Н	H*	R	R*	Н	H*	R	R*	Н	H*
	Zero-filling		9.	60			7.0)2			9.	29			6.	21	
	DnCNN	19.84	19.84	18.87	18.87	16.82	16.82	15.60	15.79	19.21	19.21	18.30	18.35	16.33	16.33	15.07	15.34
	Real-SN DnCNN	19.60	19.60	18.15	18.15	16.49	16.49	15.10	15.10	18.73	18.73	17.41	17.41	15.98	15.98	14.26	14.28
PnP-FBS	Real-SN DnCNN Bspline ⁺	17.35	17.94	14.24	14.52	15.48	15.76	12.98	13.40	16.81	17.15	12.74	12.88	14.60	15.06	11.99	12.40
PIIP-FD5	SimpleCNN	19.21	19.25	18.81	18.81	16.61	16.68	15.89	15.89	18.42	18.46	18.08	18.08	16.09	16.09	15.45	15.45
	Real-SN SimpleCNN	18.57	18.60	16.91	17.31	16.23	14.24	13.83	14.49	17.74	17.79	16.42	16.70	15.75	15.77	13.37	14.02
	Real-SN SimpleCNN Bspline	19.05	19.05	17.55	17.55	16.57	16.57	14.81	14.81	18.13	18.21	16.91	16.91	16.09	16.10	14.34	14.34
	DnCNN	19.80	19.91	19.83	19.90	16.99	17.03	17.09	17.11	18.85	19.10	18.91	19.09	16.61	16.72	16.61	16.67
	Real-SN DnCNN	19.75	19.85	19.10	19.56	17.10	17.10	16.47	16.76	18.75	18.92	17.98	18.56	16.55	16.55	15.94	16.38
PnP-ADMM	Real-SN DnCNN Bspline	19.14	19.48	19.21	19.21	16.34	16.42	16.83	16.85	18.26	18.52	18.39	18.51	16.18	16.26	16.27	16.34
FIIF-ADMM	SimpleCNN	19.49	19.49	19.44	19.45	16.96	16.96	16.95	16.95	18.54	18.64	18.45	18.57	16.44	16.46	16.43	16.46
	Real-SN SimpleCNN	18.79	18.86	16.87	17.00	16.48	16.48	14.69	14.77	17.79	17.90	15.96	16.09	15.93	16.00	13.92	13.99
	Real-SN SimpleCNN Bspline	18.74	18.77	17.11	17.21	16.52	16.52	14.97	15.04	17.69	17.75	16.28	16.37	15.97	16.02	14.28	14.32

S	Cartesian								
		Br	ain		Bust				
CNN architecture			R*	Н	H*	R	R*	Н	H*
	Zero-filling		8.	67			6.	.03	
	DnCNN	15.00	15.00	14.27	14.27	14.22	14.22	13.43	13.52
	Real-SN DnCNN	14.19	14.43	13.70	13.70	13.54	13.58	12.87	12.87
PnP-FBS	Real-SN DnCNN Bspline ⁺	13.55	13.67	9.51	10.64	12.22	12.73	9.20	9.38
	SimpleCNN	14.82	14.85	14.55	14.55	14.30	14.30	13.72	13.72
	Real-SN SimpleCNN	14.38	14.46	12.99	13.13	13.82	13.84	11.46	11.75
	Real-SN SimpleCNN Bspline	14.80	14.80	13.15	13.15	13.80	13.94	11.92	11.92
	DnCNN	15.07	15.19	14.70	15.13	13.99	14.19	13.61	13.74
	Real-SN DnCNN	14.74	14.99	14.32	15.03	13.75	13.93	13.63	13.80
PnP-ADMM	Real-SN DnCNN Bspline	14.21	14.59	14.49	14.49	12.82	13.33	13.39	13.41
PnP-ADMM	SimpleCNN	14.65	14.97	14.67	14.92	13.82	14.06	13.82	14.08
	Real-SN SimpleCNN	13.83	13.96	12.57	12.67	12.73	13.00	10.63	10.79
	Real-SN SimpleCNN Bspline	13.80	13.83	12.71	12.79	12.85	13.14	11.0 0	11.16

PnP results for network with bias and scaling (*)