B. Claims

The following is a complete listing of the claims, and replaces all earlier versions and listings.

 (Currently Amended) A polyhydroxyalkanoate comprising at least a unit represented by a chemical formula (1) within a molecule:

wherein R represents $-A_1$ -SO₂R₁; R₁ represents OH, a halogen atom, ONa, OK or OR_{1a}; R_{1a} and A₁ each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; m represents an integer selected from 0-8_1-8; Z represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R, R₁, R_{1a}, A₁, m and Z have the aforementioned meanings are selected independently for each unit.

(Currently Amended) The polyhydroxyalkanoate according to claim
1, comprising, as the unit represented by the chemical formula (1), at least a unit
represented by a chemical formula (2), a chemical formula (3), a chemical formula (4A) or
(4B), within a molecule:

$$\begin{array}{c} SO_2R_2 \\ A_2 \\ N-H \\ C=O \\ (CH_2)M \\ C \end{array}$$

wherein R_2 represents OH, a halogen atom, ONa, OK or OR_{2a} ; R_{2a} represents a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group; A_2 represents a linear or branched alkylene group with 1 to 8 carbon atoms; m represents an integer selected from 9-8 1-8; Z_2 represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, A_2 , R_2 , R_2 , R_2 , R_3 , R_4 , R_2 , R_4 ,

wherein:

 $\underline{each\ of}\ R_{3a},\ R_{3b},\ R_{3c},\ R_{3d}\ and\ R_{3c}\ \underline{each\ independently}\ represents\ SO_2R_{3f}\\ \underbrace{R_{3f}}_{each\ independently}\ R_{3c},\ R_{3d}\ and\ R_{3c}\ \underline{each\ independently}\ representing\ OH,\ a\ halogen\ atom,\ ONa,\ OK\ or\ OR_{3f}\\ \underbrace{R_{3f},\ representing\ oH,\ a\ halogen\ atom,\ ONa,\ OK\ or\ OR_{3f}\\ \underbrace{R_{3f},\ representing\ a\ linear\ or\ branched}$

alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group with 1 - 20 carbon atoms, an alkoxy group with 1 - 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, $COOR_{3g}$ (R_{3g} representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, a-an NHPh group, a CP_3 group, a CP_3 group or a CP_3 group (Ph indicating a phenyl group), of which at least one is SO_2R_{3g} :

m represents an integer selected from θ —8_1-8; Z_3 represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R_{3a} , R_{3b} , R_{3c} , R_{3d} , R_{3e} , R_{3f} , R_{3g} , m and Z_1 have the aforementioned meanings are selected independently for each unit.

where R_{3f} is OH, a halogen atom, ONa, OK or OR_{3f1};

 R_{M} is a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group;

R₃₀ is H, Na or K; and

Ph is a phenyl group;

wherein:

each of R_{4a}, R_{4b}, R_{4c}, R_{4d}, R_{4c}, R_{4f} and R_{4g} each-independently represents SO₂R_{4o}·(R_{4a}-representing OH, a halogen atom, ONa, OK or OR_{4a}L(R_{4a}L representing a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group), a hydrogen atom, a halogen atom, an alkyl group with 1 - 20 carbon atoms, an alkoxy group with 1 - 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p}·(R_{4p}-representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group or a C₃F₇ group (Ph indicating a phenyl group), of which at least one is SO₂R_{4c};

m represents an integer selected from 0-8 1-8;

 $Z_{4a} \ represents \ a \ linear \ or \ branched \ alkyl \ group, \ an \ aryl \ group \ or \ an \ aralkyl \ group \ substituted \ with \ an \ aryl \ group; \ and$

in case plural units are present, R_{4a} , R_{4b} , R_{4c} , R_{4d} , R_{4c} , R_{1f} , R_{1g} , R_{4o} , R_{4o} , R_{4p} ,

where R40 is OH, a halogen atom, ONa, OK or OR401;

 $R_{\rm dol}$ is a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group;

R₄₀ is H, Na or K; and

Ph is a phenyl group;

wherein:

 $\frac{each\ of\ R_{4n},\ R_{4n},\ R_{4n},\ R_{4n},\ R_{4m}\ and\ R_{4n}\ each-independently represents} {SO_2R_{4o}\cdot(R_{4o}\cdot representing\ OH,\ a\ halogen\ atom,\ ONa,\ OK\ or\ OR_{4oL}(R_{4oL}\cdot representing\ a\ linear\ or\ branched\ alkyl group\ with\ 1\ to\ 8\ carbon\ atoms\ or\ a\ substituted\ or\ unsubstituted\ phenyl group)),\ a\ hydrogen\ atom,\ a\ halogen\ atom,\ an\ alkyl\ group\ with\ 1\ -\ 20\ carbon\ atoms,\ an\ alkyl\ group\ with\ 1\ -\ 20\ carbon\ atoms,\ an\ OH\ group,\ an\ NH_2\ group,\ an\ NO_2\ group,\ COOR_{4p}\cdot(R_{4p}\cdot representing\ a\ H\ atom,\ a\ Na\ atom\ or\ a\ K\ atom),\ an\ acctamide\ group,\ an\ OPh\ group,\ a\ NHPh\ group,\ a\ CF_3\ group\ or\ a\ C_3F_7\ group\ (Ph\ indicating\ a\ phenyl\ group),\ of\ which\ at\ least\ one\ is\ SO_2R_{4o};$

m represents an integer selected from 0-8 1-8;

 Z_{tb} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and

in case plural units are present, R_{4h} , R_{4i} , R_{4h} , R_{4h} , R_{4h} , R_{4n} ,

where R40 is OH, a halogen atom, ONa, OK or OR401;

 $R_{\rm dof}$ is a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group; and

R_{4n} is H. Na or a K;

Ph is a phenyl group.

- 3. (Cancelled)
- (Currently Amended) The polyhydroxyalkanoate according to claim
 further comprising a unit represented by a chemical formula (6) within a molecule:

wherein R₆ represents a linear or branched alkylene with 1 - 11 carbon atoms, <u>an</u> alkyleneoxyalkylene group, (eacheach alkylene group being, independently, with 1 - 2 carbon atoms, <u>or</u> a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms, which may be substituted with an aryl group; and in case plural units are present, R₆, has the aforementioned meanings is selected

independently for each unit.

- 5-8. (Cancelled)
- (Currently Amended) The polyhydroxyalkanoate according to claim
 further comprising a unit represented by a chemical formula (6) within a molecule:

wherein R₆ represents a linear or branched alkylene with 1 - 11 carbon atoms, an alkyleneoxyalkylene group (each, each alkylene group being, independently, with 1 - 2 carbon atoms, or a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 earbon atoms, which may be substituted with an aryl group; and in case plural units are present, R₆ has the aforementioned meanings is selected independently for each unit.

(Cancelled)