Personalised recommendations to increase AOV of Instacart loyalists

Agenda

Introduction

- About Instacart
- Problem Statement

EDA

Exploratory Data Analysis

Modelling

- Implementation of Recommender Systems
- Evaluation and Conclusion

About Instacart

Web and mobile-based

On-demand grocery delivery service

NEW Fairway Delivery

instacart

NEW The Food Emporium Shoppe Delivery

The Market @ Mercedes House Delivery

ALDI Delivery • Pickup 18.9mi

The Food Emporium Delivery

Key Food Delivery • Pickup 6.0mi

Westside Market Delivery

Food Universe Delivery • Pickup 2.6mi

ShopRite Delivery

Key Food Marketplace Delivery

Wegmans Delivery • Pickup 20.1mi

D'Agostino Delivery

Problem Statement – The Digital Fight is On

- As online grocery sales continue to surge, Instacart is facing increasing competition in the online grocery delivery space.
- Many traditional grocers are rapidly expanding their online operations. For example, Walmart
 has been expanding its online-order offering, with same-day delivery from 1,600 stores and
 pickup from 3,100 locations as of November 2019.

Base: 599 US Internet users aged 18+ who have bought groceries online in the past 12 months Source: Coresiaht Research

Problem Statement – The Digital Fight is On

- As online grocery sales continue to surge, Instacart is facing increasing competition in the online grocery delivery space.
- Many traditional grocers are rapidly expanding their online operations. For example, Walmart
 has been expanding its online-order offering, with same-day delivery from 1,600 stores and
 pickup from 3,100 locations as of November 2019.

How can Instacart improve their customer experience so as to retain the loyalty of their top customer base?

Through personalised recommendations!

Dataset

33,819,106 rows, 12 columns

• **Orders:** 3.34 mil

• Users: 206,209

• Products: 49,688

order_id	user_id	order_number	order_dow	order_hour_of_day	days_since_prior_order	product_id	add_to_cart_order	reordered	product_name	department	aisle
2539329	1	1	2	8	NaN	196	1	0	Soda	beverages	soft drinks
2398795	1	2	3	7	15.0	196	1	1	Soda	beverages	soft drinks
473747	1	3	3	12	21.0	196	1	1	Soda	beverages	soft drinks

Sales by department

Top-selling items

Organic items contribute a disproportionate amount to sales

Zooming in on Instacart's most loyal customers

Customer segments based on past transaction behaviour

Data reduction

EDA + customer clustering

Orders: 3.34 mil

Users: 206,209

Products: 49,688

Data reduction

- Drop products that were ordered <150 times
- 2. Drop orders with <4 items
- Include only users with
 >20 orders, and keep only their last 20 orders

Utility matrix for recommenders

Orders: 830,980

Users: 41,549

Products: 16,859

Recommender system types

General workings of Matrix Factorization

1. Decompose utility matrix

Decompose M into U and V such that $U \cdot V$ closely approximates M for known entries (Number of latent factors d such that RMSE is minimised)

	items					U	ser late	nt facto	rs					
users	$\begin{bmatrix} 5\\3\\2\\2\\4 \end{bmatrix}$	2 1 5 4	4 2 3 4 5	4 4 1 3 4	3 1 4 5	=	$\left[egin{array}{c} u_{11} \ u_{21} \ u_{31} \ u_{41} \ u_{51} \end{array} ight]$	$egin{array}{c} u_{12} \ u_{22} \ u_{32} \ u_{42} \ u_{52} \end{array}$	 ×	v_{11} v_{21}	Item la v_{12} v_{22}	atent fo $v_{13} \ v_{23}$	$v_{14} \ v_{24}$	$\left[egin{array}{c} v_{15} \ v_{25} \end{array} ight]$

General workings of Matrix Factorization

1. Decompose utility matrix

Decompose M into U and V such that $U \cdot V$ closely approximates M for known entries (Number of latent factors d such that RMSE is minimised)

2. Recompose utility matrix

Use the entry in the product UV to estimate corresponding blank entries in M

Recommender implementation

Each model generates 20 final recommendations for the target user

Userbased

CANDIDATE GENERATION

- 1. Find user's 20 nearest neighbours
- 2. All past purchases of these 20 neighbours form potential recs

RANKING

- 1. Rank potential recs based on sales
- 2. Select the top 20 bestselling items as final recs

Itembased

CANDIDATE GENERATION

- 1. Select user's top 20 purchases
- 2. For each item, find 10 most similar items
- 3. 200 potential recs in total

RANKING

Same procedure as above

SVD

Select the top 20 items with the highest scores from the reconstructed utility matrix.

Train-test-split at the user level

E.g. user 32589's last 20 orders

Evaluation Metrics

$$P = \frac{\text{# of our recommendations that are relevant}}{\text{# of items we recommended}}$$

20 items

$$r = \frac{\text{# of our recommendations that are relevant}}{\text{# of all the possible relevant items}}$$

All items in user's last 5 orders (test set)

Evaluating the recommender systems

Collaborative filtering models performed the best.

Baseline: Popularity model
Non-personalised – recommend
the top 20 best-selling products

	model	eval_set	F1	precision	recall	
	content-based	train	0.045174	0.116083	0.035937	
	content-based	test	0.046903	0.068783	0.038880	
	baseline	train	0.108100	0.264833	0.074087	
	baseline	test	0.114044	0.173317	0.091570	
	CF user-based	train	0.111239	0.270417	0.076457	
١	CF user-based	test	0.117076	0.176683	0.094254	
	CF item-based	train	0.122490	0.289817	0.084993	
	CF item-based	test	0.129298	0.192200	0.105910	
	CF SVD	train	0.098514	0.239900	0.066857	
	CF SVD	test	0.114802	0.173033	0.093709	

Recommendations need to be made contextual

In reality, e-commerce retailers employ different product recommendation strategies for different pages on the site, such as:

- Homepage: "Recently viewed" / "Buy it again" / "Recommended For You"
- Category pages: "Most Popular in Category" / "Recommended For You" (category-specific)
- Product detail pages (PDPs): "Similar Products" / "Often Bought Together"
- Cart pages: "Often Bought Together" (showcasing products that are slightly cheaper than those in a user's cart can lead to quick purchase decisions)
- Search results page: Results returned from search queries can also be considered a form of recommendation. These items are ranked by probability of purchase.

More granularity needed to truly personalise the recommendations

The recommendations generated may not be user-specific enough – we need to set additional rules to generate smarter recommendations.

- We wouldn't want to recommend non-vegan items to a vegan customer.
- Consumers who have high average order values can be recommended more highly profitable items in order to maximise revenue.
- We don't want to recommend items from the user's most recent basket, especially for items that are not weekly purchase items.

Consider diversity of recommendations too

- My recommendation systems are biased towards recommending items that have relatively high sales volume, so they are probably unable to surface truly novel items that have not been discovered by many other people.
- We can improve the diversity of recommendations by recommending these long-tail items to increase the novelty factor for the user.
- Include recommendations from stores customers may have never shopped from previously.
 This is appropriate for customers who have a high unique-items-to-total-items ratio.

