184056G HIRIMUTHUGODA I.A.

1. I. Cache lines =
$$\frac{cache \ size}{block \ size} = \frac{512*2^{10}}{4*4} = 2^{15}$$

II. $16 = 2^4$

Associative mapping cache - format of memory address

28bits	4bits

III. Cache lines = 2¹⁵

Direct mapping cache - format of memory address

13bits	15bits	4bits

- IV. If the cache is 8-way set associative, sets of cache = $2^15 / 8 = 2^12$ sets
- V. sets of cache = 2^12}

8-way set associative mapping cache - format of memory address

16bits	12 bits	4 bits

VI. 0x B1AC95F9 = 0b 1011000110101100100101111111001

Tag	Set	Word	
1011000110101100	100101011111	1001	

Set number = 10010101111112

2.

$$X = (A*B-C) + (A/C)$$

I. Stack based

PUSH A

PUSH B

MUL

PUSH C

SUB

PUSH A

PUSH C

DIV

ADD

POP X

II. Accumulator based

LOAD A

DIV C

STORE P

LOAD A

MUL B

SUB C

ADD P

STORE X

III. Memory-memory based

3 operands

DIV N, A, C

MULL, A, B

SUB M, L, C

ADD X, M, N

2 operands

MOV P, A

DIV P, C

MOV R, A

MULR, B

SUB R, C

ADD R, P

IV. Register-Register based

LOAD R1, A

LOAD R2, B

LOAD R3, C

DIV R4, R1, R3

MUL R5, R1, R2

SUB R5, R5, R3

ADD R4, R5, R4

STORE X, R4

3.

$$-6 = (00110) => 11010_2 = M$$

$$9 = 01001_2 = \mathbf{Q}$$

184056G HIRIMUTHUGODA I.A.

A	Q	Q ₋₁	M	Cycle
00000	01001	0	11010	Initial state
00110	01001	0	11010	First cycle
00011	00100	1	11010	
11101	00100	1	11010	Second cycle
11110	10010	0	11010	
11111	01001	0	11010	Third cycle
00101	01001	0	11010	Forth cyclo
00010	10100	1	11010	Forth cycle
11100	10100	1	11010	- Fifth cycle
11110	01010	0	11010	

Final answer = 1111001010 => reverse 2's compliment => -54

4.

 $MAR \leftarrow [PC]$

MBR \leftarrow [Memory]_{MARaddress}; PC \leftarrow [PC] + 1 (increment the PC for next cycle at the same time) CIR \leftarrow [MBR]

[CIR] decoded then executed

5.

