

Ù&@^œ^¦ £ \$Q}&È		G€»Á/ājoÁ, EÐ, ÁÙ^ãa { ã&ÁÖ^•ãt }
PÔX	Ùœ) 忦åÁÚXTæ¢ÁÜæ&∖ā),*ÁÛ^•c^{	
	Ü^]¦^•^} ææãç^ÁÔæk&` ææãi}•ÁËÄŒÜÔÒÁIËF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	20.62 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.91	
$C_{\circ} =$	0.90	

1.20

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 19.00 psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the danage.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>765.79</u>	<u>4093.81</u>	k
Compressive Load =	4263.58	<u>4583.65</u>	k
Lateral Load =	<u>13.51</u>	1888.24	k
Moment (Weak Axis) =	0.03	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 98671.6 in-lbs Resisting Force Required = 1495.02 lbs A minimum 132in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2491.71 lbs to resist overturning. Minimum Width = Weight Provided = 4386.25 lbs Sliding 435.28 lbs Force = Use a 132in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 1088.20 lbs ballast foundation to resist sliding. Resisting Weight = 4386.25 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 435.28 lbs Cohesion = 130 psf Use a 132in long x 22in wide x 18in tall 20.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2193.13 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width				
	22 in	23 in	24 in	<u>25 in</u>	
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(1.83 \text{ ft}) =$	4386 lbs	4586 lbs	4785 lbs	4984 lbs	

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	1630 lbs	1630 lbs	1630 lbs	1630 lbs	1205 lbs	1205 lbs	1205 lbs	1205 lbs	1992 lbs	1992 lbs	1992 lbs	1992 lbs	-343 lbs	-343 lbs	-343 lbs	-343 lbs
FB	1665 lbs	1665 lbs	1665 lbs	1665 lbs	1436 lbs	1436 lbs	1436 lbs	1436 lbs	2189 lbs	2189 lbs	2189 lbs	2189 lbs	-1879 lbs	-1879 lbs	-1879 lbs	-1879 lbs
F_V	187 lbs	187 lbs	187 lbs	187 lbs	791 lbs	791 lbs	791 lbs	791 lbs	720 lbs	720 lbs	720 lbs	720 lbs	-871 lbs	-871 lbs	-871 lbs	-871 lbs
P _{total}	7682 lbs	7881 lbs	8081 lbs	8280 lbs	7027 lbs	7227 lbs	7426 lbs	7625 lbs	8568 lbs	8767 lbs	8967 lbs	9166 lbs	409 lbs	529 lbs	649 lbs	768 lbs
M	4121 lbs-ft	4121 lbs-ft	4121 lbs-ft	4121 lbs-ft	3523 lbs-ft	3523 lbs-ft	3523 lbs-ft	3523 lbs-ft	5395 lbs-ft	5395 lbs-ft	5395 lbs-ft	5395 lbs-ft	1610 lbs-ft	1610 lbs-ft	1610 lbs-ft	1610 lbs-ft
е	0.54 ft	0.52 ft	0.51 ft	0.50 ft	0.50 ft	0.49 ft	0.47 ft	0.46 ft	0.63 ft	0.62 ft	0.60 ft	0.59 ft	3.93 ft	3.04 ft	2.48 ft	2.10 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	269.5 psf	267.2 psf	265.1 psf	263.2 psf	253.2 psf	251.6 psf	250.2 psf	248.9 psf	278.9 psf	276.3 psf	273.8 psf	271.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	492.4 psf	480.4 psf	469.5 psf	459.4 psf	443.8 psf	433.9 psf	424.9 psf	416.6 psf	570.8 psf	555.4 psf	541.3 psf	528.4 psf	95.0 psf	74.9 psf	71.6 psf	72.2 psf

Maximum Bearing Pressure = 571 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 814.4 \text{ ft-lbs}$

Resisting Force Required = 888.44 lbs S.F. = 1.67

Weight Required = 1480.73 lbs Minimum Width = 22 in in Weight Provided = 4386.25 lbs A minimum 132in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		22 in			22 in		22 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	250 lbs	671 lbs	250 lbs	908 lbs	2704 lbs	908 lbs	73 lbs	196 lbs	73 lbs	
F _V	1 lbs	0 lbs	1 lbs	5 lbs	0 lbs	5 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	5680 lbs	4386 lbs	5680 lbs	6077 lbs	4386 lbs	6077 lbs	1661 lbs	4386 lbs	1661 lbs	
М	5 lbs-ft	0 lbs-ft	5 lbs-ft	18 lbs-ft	0 lbs-ft	18 lbs-ft	1 lbs-ft	0 lbs-ft	1 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft	
f _{min}	280.9 psf	217.5 psf	280.9 psf	298.5 psf	217.5 psf	298.5 psf	82.3 psf	217.5 psf	82.3 psf	
f _{max}	282.5 psf	217.5 psf	282.5 psf	304.2 psf	217.5 psf	304.2 psf	82.4 psf	217.5 psf	82.4 psf	

Maximum Bearing Pressure = 304 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.280 k 12.808 k 7.421 k <u>44%</u>	Rear Strut Maximum Axial Load = 3.330 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 45%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.311 k 12.808 k 7.421 k <u>18%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
		Struts under compression are shown to demor transfer from the girder. Single M12 bolts are end of the strut and are subjected to double sh

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 40.12 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 0.802 in Max Drift, $\Delta_{MAX} =$ 0.052 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 126 \text{ in}$$
 $J = 0.432$
 348.575
 $R_{C} = \frac{\theta_y}{2} E_{CV}$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 27.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 126$$
 $J = 0.432$
 221.673

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 28.5$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$b = k_1 B v$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$k_1Bp$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

 $\phi F_L = 23.1 \text{ ksi}$

$\phi F_L =$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_1 = 1.17 \varphi y Fcy$$

38.9 ksi

3.4.18

$$h/t = 37.0588$$

 $\phi F_L =$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$k = 897074 \text{ mm}^4$$

$$2.155 \text{ in}^4$$

$$y = 41.015 \text{ mm}$$

$$Sx = 1.335 \text{ in}^3$$

$$M_{max}St = 2.788 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 23.1 ksi

$$Iy = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$Sy = 0.599 \text{ in}^3$$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16.1
$$\underline{l}$$
 Rb/t = 18.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L St = 29.4 \text{ ksi}$$

$$|x| = 984962 \text{ mm}^4$$

$$2.366 \text{ in}^4$$

$$y = 43.717 \text{ mm}$$

$$Sx = 1.375 \text{ in}^3$$

$$M_{max} St = 3.363 \text{ k-ft}$$

43.2 ksi

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

 $\phi F_L =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}}Fcy}{Dt}\right)^{2}$$
S1 = 6.87
S2 = 131.3
 $\phi F_{L} = \phi c[Bt-Dt^{*}\sqrt{(Rb/t)}]$
 $\phi F_{L} = 31.09 \text{ ksi}$
 $\phi F_{L} = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$61 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

Cc =

$$\phi F_L = 1.3 \phi y F c y$$

27.5

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

0.621 in³

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: 3.4.14	Weak Axis: 3.4.14
$L_{b} = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
$S1 = 0.51461$ $S2 = \left(\frac{C_c}{1.6}\right)^2$	$S1 = 0.51461$ $S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56 $\varphi F_L = \varphi b[Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^*)}]$	S2 = 1701.56 $((yJ)/2)$)] $\phi F_1 = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(yJ)/2))}}]$
$\phi F_L = \frac{\phi E_L - 1.0DC}{4} = \frac{4}{100} $	$\varphi F_L = 29.6$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \ ksi \\ lx = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ y = & 27.5 \ mm \\ Sx = & 0.621 \ in^3 \\ M_{max} St = & 1.460 \ k\text{-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.621 in³

1.460 k-ft

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$

$$J = 0.942$$

87.2529

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L =$$

Weak Axis:

$$L_b = 55.91$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S1 = \begin{pmatrix} Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy \\ \hline 1.6Dt \\ S1 = 1.1 \\ S2 = C_t \\ S2 = 141.0 \\ \phi F_L = 1.17 \phi y Fcy \end{pmatrix}^2$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \ ksi \\ lx = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ y = & 27.5 \ mm \\ Sx = & 0.621 \ in^3 \\ M_{max} St = & 1.460 \ k\text{-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.76107 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

3.4.9

Rev. 11.05.2015

$$\begin{array}{lll} \textbf{9} \\ \text{b/t} = & 24.5 \\ \text{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \text{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \text{S1} = & 12.21 \\ \text{S2} = & 32.70 \\ \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \end{array}$$

PVMax 60 Cell 2V 20° 110mph 30psf 10.5ft 7-10 NS.xlsx | Page 16

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	Υ	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-55.629	-55.629	0	0
2	M14	V	-55.629	-55.629	0	0
3	M15	V	-87.418	-87.418	0	0
4	M16	V	-87.418	-87.418	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	127.153	127.153	0	0
2	M14	V	97.484	97.484	0	0
3	M15	V	52.98	52.98	0	0
4	M16	V	52 98	52 98	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Y		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Y		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes			2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	335.479	2	1034.548	1	.95	1	.005	1	Ó	1	Ó	1
2		min	-460.837	3	-956.103	3	.04	15	0	15	0	1	0	1
3	N7	max	.046	1	1172.799	1	392	15	0	15	0	1	0	1
4		min	071	2	-158.897	3	-10.395	1	022	1	0	1	0	1
5	N15	max	.027	9	3279.677	1	0	2	0	2	0	1	0	1
6		min	996	2	-589.068	3	0	1	0	1	0	1	0	1
7	N16	max	1385.028	2	3525.888	1	0	5	0	5	0	1	0	1
8		min	-1452.492	3	-3149.082	3	0	9	0	1	0	1	0	1
9	N23	max	.046	1	1172.799	1	10.395	1	.022	1	0	1	0	1
10		min	071	2	-158.897	3	.392	15	0	15	0	1	0	1
11	N24	max	335.479	2	1034.548	1	04	15	0	15	0	1	0	1
12		min	-460.837	3	-956.103	3	95	1	005	1	0	1	0	1
13	Totals:	max	2054.848	2	11220.259	1	0	2						
14		min	-2374.487	3	-5968.149	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	110.443	1	468.707	1	-6.185	15	0	3	.263	1	0	1
2			min	4.032	15	-480.905	3	-169.933	1	012	1	.01	15	0	3
3		2	max	110.443	1	328.497	1	-4.759	15	0	3	.088	1	.478	3
4			min	4.032	15	-338.435	3	-130.711	1	012	1	.003	15	465	1
5		3	max	110.443	1	188.286	1	-3.333	15	0	3	0	12	.79	3
6			min	4.032	15	-195.965	3	-91.49	1	012	1	042	1	766	1
7		4	max	110.443	1	48.076	1	-1.907	15	0	3	004	12	.935	3
8			min	4.032	15	-53.494	3	-52.268	1	012	1	125	1	904	1
9		5	max	110.443	1	88.976	3	482	15	0	3	006	12	.914	3
10			min	4.032	15	-92.135	1	-13.047	1	012	1	164	1	879	1
11		6	max	110.443	1	231.446	3	26.175	1	0	3	006	15	.728	3
12			min	4.032	15	-232.345	1	.61	12	012	1	156	1	689	1
13		7	max	110.443	1	373.917	3	65.396	1	0	3	004	15	.374	3
14			min	4.032	15	-372.556	1	2.035	12	012	1	102	1	337	1
15		8	max	110.443	1	516.387	3	104.618	1	0	3	0	10	.18	1
16			min	4.032	15	-512.766	1	3.461	12	012	1	003	1	145	3
17		9	max	110.443	1	658.857	3	143.839	1	0	3	.142	1	.86	1
18			min	4.032	15	-652.977	1	4.886	12	012	1	.004	12	83	3
19		10	max	110.443	1	801.328	3	183.061	1	0	3	.332	1	1.704	1
20			min	4.032	15	-793.187	1	6.312	12	012	1	.01	12	-1.682	3
21		11	max	110.443	1	652.977	1	-4.886	12	.012	1	.142	1	.86	1
22			min	4.032	15	-658.857	3	-143.839	1	0	3	.004	12	83	3
23		12	max	110.443	1	512.766	1	-3.461	12	.012	1	0	10	.18	1
24			min	4.032	15	-516.387	3	-104.618	1	0	3	003	1	145	3
25		13	max	110.443	1	372.556	1	-2.035	12	.012	1	004	15	.374	3
26			min	4.032	15	-373.917	3	-65.396	1	0	3	102	1	337	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
27		14	max	110.443	1	232.345	1_	61	12	.012	1	006	15	.728	3
28			min	4.032	15	-231.446	3	-26.175	1	0	3	156	1	689	1
29		15	max	110.443	1	92.135	1	13.047	1	.012	1	006	12	.914	3
30			min	4.032	15	-88.976	3	.482	15	0	3	164	1	879	1
31		16	max	110.443	1	53.494	3	52.268	1	.012	1	004	12	.935	3
32			min	4.032	15	-48.076	1	1.907	15	0	3	125	1	904	1
33		17	max	110.443	1	195.965	3	91.49	1	.012	1	0	12	.79	3
34			min	4.032	15	-188.286	1	3.333	15	0	3	042	1	766	1
35		18	max	110.443	1	338.435	3	130.711	1	.012	1	.088	1	.478	3
36			min	4.032	15	-328.497	1	4.759	15	0	3	.003	15	465	1
37		19	max	110.443	1	480.905	3	169.933	1	.012	1	.263	1	0	1
38			min	4.032	15	-468.707	1	6.185	15	0	3	.01	15	0	3
39	M14	1	max	49.863	1	492.609	1	-6.368	15	.006	3	.299	1	0	1
40			min	1.824	15	-373.235	3	-174.987	1	01	1	.011	15	0	3
41		2	max	49.863	1	352.398	1	-4.943	15	.006	3	.117	1	.373	3
42			min	1.824	15	-265.379	3	-135.765	1	01	1	.004	15	493	1
43		3	max	49.863	1	212.188	1	-3.517	15	.006	3	0	3	.619	3
44			min	1.824	15	-157.522	3	-96.544	1	01	1	018	1	822	1
45		4	max	49.863	1	71.977	1	-2.091	15	.006	3	003	12	.74	3
46			min	1.824	15	-49.666	3	-57.322	1	01	1	108	1	988	1
47		5	max	49.863	1	58.191	3	665	15	.006	3	005	12	.735	3
48			min	1.824	15	-68.233	1	-18.101	1	01	1	152	1	99	1
49		6	max	49.863	1	166.047	3	21.121	1	.006	3	005	15	.604	3
50			min	1.824	15	-208.444	1	.431	12	01	1	15	1	829	1
51		7	max	49.863	1	273.904	3	60.342	1	.006	3	004	15	.348	3
52			min	1.824	15	-348.654	1	1.856	12	01	1	103	1	504	1
53		8	max	49.863	1	381.76	3	99.564	1	.006	3	0	10	- <u>504</u> 0	15
54		0	min	1.824	15	-488.865	1	3.282	12	01	1	009	1	035	3
55		9		49.863	1	489.617	3	138.785	1		3	.13	1	.637	1
		9	max	1.824	15	-629.075	1	4.707	12	.006 01	1	.003	12	543	3
<u>56</u> 57		10	min	49.863	1	597.473	3	178.007	1	.006	3	.315	1	1.453	1
		10	max	1.824	15	-769.286	1	6.133	12	01	1	.01	12	-1.455 -1.177	3
58		11	min					-4.707			1		1		1
59		11	max	49.863	1	629.075	1	-138.785	12	.01	3	.13		.637	3
60		40	min	1.824	15	-489.617	3			006		.003	12	543	
61		12	max	49.863	1	488.865	1	-3.282	12	.01	1	0	10	0	15
62		40	min	1.824	15	-381.76	3	-99.564	1	006	3	009	1	035	3
63		13	max	49.863	1	348.654	1_	-1.856	12	.01	1	004	15	.348	3
64		4.4	min	1.824	15	-273.904	3	-60.342	1	006	3	103	1	<u>504</u>	1
65		14	max	49.863	1	208.444	1_	431	12	.01	1	005	15	.604	3
66		4.5	min	1.824	15	-166.047	3	-21.121	1	006	3	15	1	829	1
67		15		49.863	1	68.233	1		1	.01	1	005	12	.735	3
68		1.0	min	1.824	15	-58.191	3	.665	15	006	3	152	1	<u>99</u>	1
69		16	max		1	49.666	3	57.322	1	01	1	003	12	74	3
70			min	1.824	15	-71.977	1_	2.091	15	006	3	108	1	988	1
71		17	max	49.863	1	157.522	3	96.544	1	.01	1	0	3	.619	3
72			min	1.824	15	-212.188	1_	3.517	15	006	3	018	1	822	1
73		18	max	49.863	1	265.379	3	135.765	1	.01	1	.117	1	.373	3
74			min	1.824	15	-352.398	<u>1</u>	4.943	15	006	3	.004	15	493	1
75		19	max	49.863	1	373.235	3_	174.987	1	.01	1_	.299	1	0	1
76			min	1.824	15	-492.609	1_	6.368	15	006	3	.011	15	0	3
77	M15	1	max	-1.923	15	555.172	1_	-6.367	15	.01	1	.298	1	0	2
78			min	-52.556	1	-198.146	3	-174.958	1	005	3	.011	15	0	12
79		2	max	-1.923	15	396.418	1_	-4.941	15	.01	1	.117	1	.199	3
80			min	-52.556	1	-142.211	3	-135.736	1	005	3	.004	15	555	1
81		3	max	-1.923	15	237.664	1_	-3.515	15	.01	1	0	3	.332	3
82			min	-52.556	1	-86.276	3	-96.515	1	005	3	018	1	925	1
83		4	max	-1.923	15	78.91	1_	-2.09	15	.01	1	003	12	.4	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-52.556	1	-30.341	3	-57.293	1	005	3	108	1	-1.11	1
85		5	max	-1.923	15	25.594	3	664	15	.01	1	005	12	.403	3
86			min	-52.556	1	-79.844	1	-18.071	1	005	3	152	1	-1.109	1
87		6	max	-1.923	15	81.529	3	21.15	1	.01	1	005	15	.34	3
88			min	-52.556	1	-238.598	1	.457	12	005	3	15	1	923	1
89		7	max	-1.923	15	137.465	3	60.372	1	.01	1	004	15	.212	3
90			min	-52.556	1	-397.352	1	1.883	12	005	3	103	1	552	1
91		8	max	-1.923	15	193.4	3	99.593	1	.01	1	0	10	.019	3
92			min	-52.556	1	-556.106	1	3.308	12	005	3	009	1	003	9
93		9	max	-1.923	15	249.335	3	138.815	1	.01	1	.13	1	.745	1
94		9	min	-52.556	1	-714.86	1	4.734	12	005	3	.003	12	239	3
95		10	max	-1.923	15	305.27	3	178.036	1	.01	1	.315	1	1.672	1
96		10		-52.556	1	-873.615	1	6.159	12	005	3	.01	12	562	3
		44	min												
97		11	max	-1.923	15	714.86	1	-4.734	12	.005	3	.13	1	.745	1
98		10	min	-52.556	1_	-249.335	3	-138.815	1	01	1	.003	12	239	3
99		12	max	-1.923	15	556.106	1	-3.308	12	.005	3	0	<u>10</u>	.019	3
100			min	-52.556	1	-193.4	3	-99.593	1	01	1	009	_1_	003	9
101		13	max	-1.923	15	397.352	1	-1.883	12	.005	3	004	15	.212	3
102			min	-52.556	1	-137.465	3	-60.372	1	01	1	103	1_	552	1
103		14	max	-1.923	15	238.598	1	457	12	.005	3	005	<u>15</u>	.34	3
104			min	-52.556	1	-81.529	3	-21.15	1	01	1	15	1	923	1
105		15	max	-1.923	15	79.844	1	18.071	1	.005	3	005	12	.403	3
106			min	-52.556	1	-25.594	3	.664	15	01	1	152	1	-1.109	1
107		16	max	-1.923	15	30.341	3	57.293	1	.005	3	003	12	.4	3
108			min	-52.556	1	-78.91	1	2.09	15	01	1	108	1	-1.11	1
109		17	max	-1.923	15	86.276	3	96.515	1	.005	3	0	3	.332	3
110			min	-52.556	1	-237.664	1	3.515	15	01	1	018	1	925	1
111		18	max	-1.923	15	142.211	3	135.736	1	.005	3	.117	1	.199	3
112			min	-52.556	1	-396.418	1	4.941	15	01	1	.004	15	555	1
113		19	max	-1.923	15	198.146	3	174.958	1	.005	3	.298	1	0	2
114		13	min	-52.556	1	-555.172	1	6.367	15	01	1	.011	15	0	12
115	M16	1		-4.285	15	531.44	1	-6.19	15	.011	1	.265	1	0	1
116	IVITO		max	-117.194	1	-186.164	3	-170.132	1	007	3	.01	15	0	3
117			min					-4.765			_				
		2	max	-4.285	15	372.686	1		15	.011	1	.089	1_	.185	3
118			min	-117.194	1_	-130.229	3	-130.91	1_	007	3	.003	15	527	1
119		3	max	-4.285	15	213.931	1	-3.339	15	.011	1	0	12	.304	3
120			min	-117.194	1_	-74.294	3	<u>-91.689</u>	1_	007	3	041	1_	87	1
121		4	max	-4.285	15	55.177	1	-1.913	15	.011	1	004	12	.358	3
122			min	-117.194		-18.359	3	-52.467	1	007	3	125	1_	-1.027	1
123		5	max	-4.285	15	37.576	3	487	15	.011	1	006	12	.347	3
124				-117.194		-103.577		-13.246	1	007	3	163	_1_	998	1
125		6	max		15	93.512	3	25.976	1	.011	1	006	15	.27	3
126			min	-117.194		-262.331	1	.693	12	007	3	156	1_	785	1
127		7	max		15	149.447	3	65.198	1	.011	1	004	15	.129	3
128			min		1	-421.085	1	2.119	12	007	3	103	1	386	1
129		8	max	-4.285	15	205.382	3	104.419	1	.011	1	0	10	.198	1
130			min	-117.194	1	-579.839	1	3.544	12	007	3	004	1	078	3
131		9	max		15	261.317	3	143.641	1	.011	1	.141	1	.967	1
132				-117.194		-738.593	1	4.97	12	007	3	.004	12	351	3
133		10	max		15	317.252	3	182.862	1	.011	1	.331	1	1.921	1
134				-117.194		-897.347	1	6.395	12	007	3	.011	12	688	3
135		11	max		15	738.593	1	-4.97	12	.007	3	.141	1	.967	1
136			min		1	-261.317	3	-143.641	1	011	1	.004	12	351	3
137		12	max		15	579.839	1	-3.544	12	.007	3	0	10	.198	1
138		14	min			-205.382	3	-104.419		011	1	004	1	078	3
139		13			15	421.085	-	-2.119	12	.007	3	004	15	.129	3
		13	max				1								1
140			min	-117.194	1	-149.447	3	-65.198	1	011	1	103	_1_	386	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
141		14	max	-4.285	15	262.331	1	693	12	.007	3	006	15	.27	3
142			min	-117.194	1	-93.512	3	-25.976	1	011	1	156	1_	785	1
143		15	max	-4.285	15	103.577	1	13.246	1_	.007	3	006	12	.347	3
144			min	-117.194	1	-37.576	3	.487	15	011	1	163	1	998	1
145		16	max	-4.285	15	18.359	3	52.467	1	.007	3	004	12	.358	3
146			min	-117.194	1	-55.177	1	1.913	15	011	1	125	1	-1.027	1
147		17	max	-4.285	15	74.294	3	91.689	1	.007	3	0	12	.304	3
148			min	-117.194	1	-213.931	1	3.339	15	011	1	041	1	87	1
149		18	max	-4.285	15	130.229	3	130.91	1	.007	3	.089	1	.185	3
150			min	-117.194	1	-372.686	1	4.765	15	011	1	.003	15	527	1
151		19	max	-4.285	15	186.164	3	170.132	1	.007	3	.265	1	0	1
152			min	-117.194	1	-531.44	1	6.19	15	011	1	.01	15	0	3
153	M2	1	max	1029.442	1	2.025	4	1.029	1	0	3	0	3	0	1
154			min	-853.381	3	.477	15	.037	15	0	1	0	1	0	1
155		2	max		1	1.992	4	1.029	1	0	3	0	1	0	15
156			min	-853.097	3	.469	15	.037	15	0	1	0	15	0	4
157		3	max	1030.2	1	1.959	4	1.029	1	0	3	0	1	0	15
158			min	-852.813	3	.462	15	.037	15	0	1	0	15	001	4
159		4	max		1	1.925	4	1.029	1	0	3	0	1	0	15
160			min	-852.528	3	.454	15	.037	15	0	1	0	15	002	4
161		5	max		1	1.892	4	1.029	1	0	3	.001	1	0	15
162			min	-852.244	3	.446	15	.037	15	0	1	0	15	002	4
163		6		1031.338	1	1.859	4	1.029	1	0	3	.001	1	0	15
164			min	-851.959	3	.438	15	.037	15	0	1	0	15	002	4
165		7		1031.717	1	1.825	4	1.029	1	0	3	.002	1	0	15
166			min	-851.675	3	.43	15	.037	15	0	1	0	15	003	4
167		8	max		1	1.792	4	1.029	1	0	3	.002	1	0	15
168		0	min	-851.39	3	.422	15	.037	15	0	1	0	15	003	4
169		9		1032.476	1	1.758	4	1.029	1	0	3	.002	1	0	15
170		3	min	-851.106	3	.414	15	.037	15	0	1	0	15	004	4
171		10		1032.855	1	1.725	4	1.029	1	0	3	.002	1	004	15
172		10	min	-850.821	3	.407	15	.037	15	0	1	0	15	004	4
173		11		1033.234	1	1.692	4	1.029	1	0	3	.003	1	004	15
174			min	-850.537	3	.399	15	.037	15	0	1	0	15	005	4
175		12		1033.614	1	1.658	4	1.029	1	0	3	.003	1	003	15
176		12	min	-850.253	3	.391	15	.037	15	0	1	0	15	005	4
177		13		1033.993	1	1.625	4	1.029	1	0	3	.003	1	003	15
178		13	min	-849.968	3	.383	15	.037	15	0	1	0	15	006	4
179		14		1034.372	1	1.591	4	1.029	1	0	3	.003	1 1	000 001	15
180		14	min	-849.684	3	.375	15	.037	15	0	1	.003	15	006	4
181		15		1034.751	1	1.558	4	1.029	1	0	3	.004		002	
		13			2				15		1		1_		15
182		16	min			.367	15	.037 1.029		0	3	0	<u>15</u>	006	15
183		10		1035.131	1	1.525	4		15	0	1	.004	1 15	002	
184		17		<u>-849.115</u> 1035.51		.36	15	.037		0		_		007	15
185		17			1	1.491	4	1.029	1	0	3	.004	1_	002	15
186		10	min		3	.352	15	.037	15	0		0	<u>15</u>	007	15
187		18		1035.889	1	1.458 .344	4 15	1.029 .037	1_15	0	3	.004	<u>1</u> 15	002	15
188		10	min	-848.546	3				1 <u>5</u>	_			<u>15</u> 1	008	_
189		19		1036.268	1	1.424	4	1.029		0	3	.005	15	002	15
190	M2	1	min	-848.261	3	.336	15	.037	15	0		0		008	4
191	<u>M3</u>	1		290.977	2	7.981	4	.081	1	0	3	0	1_	.008	4
192		2	min	-417.919	3	1.877	15	.003	15	0	1	0	<u>15</u>	.002	15
193		2	max		2	7.211	4	.081	1_15	0	3	0	1_	.005	4
194		2	min		3	1.696	15	.003	15	0		0	<u>15</u>	.001	15
195		3	max		2	6.441	4	.081	1	0	3	0	1_	.002	2
196		1	min		3	1.515	15	.003	15	0	1	0	<u>15</u>	0	3
197		4	max	290.466	2	5.671	4	.081	_ 1	0	3	0	_1_	0	2

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

199	001 3
200	
201 6 max 290.126 2 4.131 4 .081 1 0 3 0 11 202 min -418.557 3 .972 15 .003 15 0 1 0 .151 203 7 max 289.955 2 3.361 4 .081 1 0 3 0 11 204 min -418.685 3 .791 15 .003 15 0 1 0 151 205 8 max 289.785 2 2.591 4 .081 1 0 3 0 11 206 min -418.813 3 .61 15 .003 15 0 1 0 151 207 9 max 289.614 2 1.821 4 .081 1 0 3 0 11 208 min -418.941 3 .429 15 .003 15 0 1 0 151 209 10 max 289.444 2 1.051 4 .081 1 0 3 0 11 210 min -419.068 3 .248 15 .003 15 0 1 0 151 211 11 max 289.274 2 .329 2 .081 1 0 3 0 11 212 min -419.196 3 .012 3 .003 15 0 1 0 151 213 12 max 289.103 2114 15 .081 1 0 3 0 11 214 min -419.324 3 .489 4 .003 15 0 1 0 151 215 13 max 288.933 2295 15 .081 1 0 3 0 11 216 min -419.452 3 -1.259 4 .003 15 0 1 0 151 217 14 max 288.763 2476 15 .081 1 0 3 0 11 218 min -419.58 3 .2.029 4 .003 15 0 1 0 151 219 15 max 288.592 2657 15 .081 1 0 3 0 11 220 min -419.707 3 -2.799 4 .003 15 0 1 0 151 221 min -419.707 3 -2.799 4 .003 15 0 1 0 151 222 min -419.835 3 -3.569 4 .003 15 0 1 0 151 223 min -419.835 3 -3.569 4 .003 15 0 1 0 151 224 min -419.963 3 -4.339 4 .003 15 0 1 0 151 224 min -419.963 3 -4.339 4 .003 15 0 1 0 151 224 min -419.963 3 -4.339 4 .003 15 0 1 0 151	
202 min -418.557 3 .972 15 .003 15 0 1 0 15 1 203 7 max 289.955 2 3.361 4 .081 1 0 3 0 1 1 204 min -418.685 3 .791 15 .003 15 0 1 0 15 1 205 8 max 289.785 2 2.591 4 .081 1 0 3 0 1 1 206 min -418.813 3 .61 15 .003 15 0 1 0 15 1 207 9 max 289.614 2 1.821 4 .081 1 0 3 0 1 1 208 min -418.941 3 .429 15 .003 15 0 1 0 15	
203 7 max 289.955 2 3.361 4 .081 1 0 3 0 1 204 min -418.685 3 .791 15 .003 15 0 1 0 15 205 8 max 289.785 2 2.591 4 .081 1 0 3 0 1 206 min -418.813 3 .61 15 .003 15 0 1 0 15 207 9 max 289.614 2 1.821 4 .081 1 0 3 0 1 209 10 max 289.444 2 1.051 4 .081 1 0 3 0 1 210 min -419.068 3 .248 15 .003 15 0 1 0 <	
204	
205 8 max 289.785 2 2.591 4 .081 1 0 3 0 1 1 206 min -418.813 3 .61 15 .003 15 0 1 0 15 1 207 9 max 289.614 2 1.821 4 .081 1 0 3 0 1 1 208 min -418.941 3 .429 15 .003 15 0 1 0 15 1 209 10 max 289.444 2 1.051 4 .081 1 0 3 0 1 1 210 min -419.068 3 .248 15 .003 15 0 1 0 15 1 211 11 max 289.274 2 .329 2 .081 1 0 3 0 1<	
206 min -418.813 3 .61 15 .003 15 0 1 0 15 1 207 9 max 289.614 2 1.821 4 .081 1 0 3 0 1 1 208 min -418.941 3 .429 15 .003 15 0 1 0 15 1 209 10 max 289.444 2 1.051 4 .081 1 0 3 0 1 1 210 min -419.068 3 .248 15 .003 15 0 1 0 15 1 211 11 max 289.274 2 .329 2 .081 1 0 3 0 1 1 212 min -419.196 3 .012 3 .003 15 0 1 0 15	
207 9 max 289.614 2 1.821 4 .081 1 0 3 0 1 208 min -418.941 3 .429 15 .003 15 0 1 0 15 209 10 max 289.444 2 1.051 4 .081 1 0 3 0 1 210 min -419.068 3 .248 15 .003 15 0 1 0 15 211 11 max 289.274 2 .329 2 .081 1 0 3 0 1 212 min -419.196 3 .012 3 .003 15 0 1 0 15 213 12 max 289.103 2 114 15 .081 1 0 3 0	
208 min -418.941 3 .429 15 .003 15 0 1 0 15 1 209 10 max 289.444 2 1.051 4 .081 1 0 3 0 1 1 210 min -419.068 3 .248 15 .003 15 0 1 0 15 1 211 11 max 289.274 2 .329 2 .081 1 0 3 0 1 1 212 min -419.196 3 .012 3 .003 15 0 1 0 15 1 213 12 max 289.103 2 114 15 .081 1 0 3 0 1 1 214 min -419.324 3 489 4 .003 15 0 1 0 15 <	
209 10 max 289.444 2 1.051 4 .081 1 0 3 0 1 210 min -419.068 3 .248 15 .003 15 0 1 0 15 211 11 max 289.274 2 .329 2 .081 1 0 3 0 1 212 min -419.196 3 .012 3 .003 15 0 1 0 15 213 12 max 289.103 2 114 15 .081 1 0 3 0 1 214 min -419.324 3 489 4 .003 15 0 1 0 15 215 13 max 288.933 2 295 15 .081 1 0 3 0	
210 min -419.068 3 .248 15 .003 15 0 1 0 15 211 11 max 289.274 2 .329 2 .081 1 0 3 0 1 212 min -419.196 3 .012 3 .003 15 0 1 0 15 213 12 max 289.103 2 114 15 .081 1 0 3 0 1 214 min -419.324 3 489 4 .003 15 0 1 0 15 215 13 max 288.933 2 295 15 .081 1 0 3 0 1 216 min -419.452 3 -1.259 4 .003 15 0 1 0 15	
211 11 max 289.274 2 .329 2 .081 1 0 3 0 1 1 212 min -419.196 3 .012 3 .003 15 0 1 0 15 1 213 12 max 289.103 2 114 15 .081 1 0 3 0 1 1 214 min -419.324 3 489 4 .003 15 0 1 0 15 1 215 13 max 288.933 2 295 15 .081 1 0 3 0 1 1 216 min -419.452 3 -1.259 4 .003 15 0 1 0 15 1 217 14 max 288.763 2 476 15 .081 1 0 3 0 1 1 218 min -419.58 3 -2.029 4 .0	002 13
212 min -419.196 3 .012 3 .003 15 0 1 0 15 213 12 max 289.103 2 114 15 .081 1 0 3 0 1 214 min -419.324 3 489 4 .003 15 0 1 0 15 215 13 max 288.933 2 295 15 .081 1 0 3 0 1 216 min -419.452 3 -1.259 4 .003 15 0 1 0 15 217 14 max 288.763 2 476 15 .081 1 0 3 0 1 218 min -419.58 3 -2.029 4 .003 15 0 1 0 15 219 15 max 288.592 2 657 15 .081 1 0 3	
213 12 max 289.103 2 114 15 .081 1 0 3 0 1 1 214 min -419.324 3 489 4 .003 15 0 1 0 15 1 215 13 max 288.933 2 295 15 .081 1 0 3 0 1 1 216 min -419.452 3 -1.259 4 .003 15 0 1 0 15 1 217 14 max 288.763 2 476 15 .081 1 0 3 0 1 1 218 min -419.58 3 -2.029 4 .003 15 0 1 0 15 1 219 15 max 288.592 2 657 15 .081 1 0 3 0 1 1 220 min -419.707 3 -2.799 4 .003 15 0 1 </td <td></td>	
214 min -419.324 3 489 4 .003 15 0 1 0 15 215 13 max 288.933 2 295 15 .081 1 0 3 0 1 216 min -419.452 3 -1.259 4 .003 15 0 1 0 15 217 14 max 288.763 2 476 15 .081 1 0 3 0 1 218 min -419.58 3 -2.029 4 .003 15 0 1 0 15 219 15 max 288.592 2 657 15 .081 1 0 3 0 1 220 min -419.707 3 -2.799 4 .003 15 0 1 0 15 <	002 15
215 13 max 288.933 2 295 15 .081 1 0 3 0 1 1 216 min -419.452 3 -1.259 4 .003 15 0 1 0 15 1 217 14 max 288.763 2 476 15 .081 1 0 3 0 1 1 218 min -419.58 3 -2.029 4 .003 15 0 1 0 15 1 219 15 max 288.592 2 657 15 .081 1 0 3 0 1 1 220 min -419.707 3 -2.799 4 .003 15 0 1 0 15 1 221 16 max 288.422 2 838 15 .081 1 0 3 0 1 1 222 min -419.835 3 -3.569 4 <	002 13
216 min -419.452 3 -1.259 4 .003 15 0 1 0 15 217 14 max 288.763 2 476 15 .081 1 0 3 0 1 218 min -419.58 3 -2.029 4 .003 15 0 1 0 15 219 15 max 288.592 2 657 15 .081 1 0 3 0 1 220 min -419.707 3 -2.799 4 .003 15 0 1 0 15 221 16 max 288.422 2 838 15 .081 1 0 3 0 1 222 min -419.835 3 -3.569 4 .003 15 0 1 0 15 223 17 max 288.252 2 -1.019 15 .	
217 14 max 288.763 2 476 15 .081 1 0 3 0 1 218 min -419.58 3 -2.029 4 .003 15 0 1 0 15 219 15 max 288.592 2 657 15 .081 1 0 3 0 1 220 min -419.707 3 -2.799 4 .003 15 0 1 0 15 221 16 max 288.422 2 838 15 .081 1 0 3 0 1 222 min -419.835 3 -3.569 4 .003 15 0 1 0 15 223 17 max 288.252 2 -1.019 15 .081 1 0 3 0 1 224 min -419.963 3 -4.339 4 .003 15 0 1	
218 min -419.58 3 -2.029 4 .003 15 0 1 0 15 219 15 max 288.592 2 657 15 .081 1 0 3 0 1 220 min -419.707 3 -2.799 4 .003 15 0 1 0 15 221 16 max 288.422 2 838 15 .081 1 0 3 0 1 222 min -419.835 3 -3.569 4 .003 15 0 1 0 15 223 17 max 288.252 2 -1.019 15 .081 1 0 3 0 1 224 min -419.963 3 -4.339 4 .003 15 0 1 0 15	
219 15 max 288.592 2 657 15 .081 1 0 3 0 1 1 220 min -419.707 3 -2.799 4 .003 15 0 1 0 15 1 221 16 max 288.422 2 838 15 .081 1 0 3 0 1 1 222 min -419.835 3 -3.569 4 .003 15 0 1 0 15 1 223 17 max 288.252 2 -1.019 15 .081 1 0 3 0 1 1 224 min -419.963 3 -4.339 4 .003 15 0 1 0 15 1	008 4
220 min -419.707 3 -2.799 4 .003 15 0 1 0 15 221 16 max 288.422 2 838 15 .081 1 0 3 0 1 222 min -419.835 3 -3.569 4 .003 15 0 1 0 15 223 17 max 288.252 2 -1.019 15 .081 1 0 3 0 1 224 min -419.963 3 -4.339 4 .003 15 0 1 0 15	
221 16 max 288.422 2 838 15 .081 1 0 3 0 1 222 min -419.835 3 -3.569 4 .003 15 0 1 0 15 223 17 max 288.252 2 -1.019 15 .081 1 0 3 0 1 224 min -419.963 3 -4.339 4 .003 15 0 1 0 15	002 13
222 min -419.835 3 -3.569 4 .003 15 0 1 0 15 0 223 17 max 288.252 2 -1.019 15 .081 1 0 3 0 1 0 224 min -419.963 3 -4.339 4 .003 15 0 1 0 15 0	
223	
224 min -419.963 3 -4.339 4 .003 15 0 1 0 15	
	004 4
225 18 max 288.081 2 -1.2 15 .081 1 0 3 0 1	0 15
	002 4
	0 1
	0 1
	0 1
	0 1
	0 1
	0 1
	0 1
234 min -160.941 3 0 1 -10.777 1 0 1002 1	0 1
	0 1
	0 1
237 5 max 1170.414 1 0 1392 15 0 1 0 15	0 1
	0 1
	0 1
	0 1
	0 1
	0 1
	0 1
	0 1
	0 1
	0 1
	0 1
	0 1
	0 1
	0 1
	0 1
	0 1
254 min -159.664 3 0 1 -10.777 1 0 1014 1	0 1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec		Axial[lb]						Torque[k-ft]		I' ' -			
255		14		1171.947	1	0	1	392	15	0	<u>1</u> 1	0	15 1	0	1
256 257		15		-159.536 1172.117	<u>3</u> 1	0	1	-10.777 392	1 15	0	1	016 0	15	0	1
258		13		-159.408	3	0	1	-10.777	1	0	1	017	1	0	1
259		16		1172.288	_ <u></u>	0	1	392	15	0	1	0	15	0	1
260		10		-159.28	3	0	1	-10.777	1	0	1	018	1	0	1
261		17		1172.458	1	0	1	392	15	0	1	0	15	0	1
262				-159.152	3	0	1	-10.777	1	0	1	019	1	0	1
263		18		1172.629	1	0	1	392	15	0	1	0	15	0	1
264				-159.025	3	0	1	-10.777	1	0	1	02	1	0	1
265		19		1172.799	1	0	1	392	15	0	1	0	15	0	1
266			min	-158.897	3	0	1	-10.777	1	0	1	022	1	0	1
267	M6	1	max	3322.94	1	2.282	2	0	1	0	1	0	1	0	1
268			min	-2807.551	3	.307	12	0	1	0	1	0	1	0	1
269		2	max	3323.319	1	2.256	2	0	1	0	1	0	1	0	12
270			min	-2807.267	3	.294	12	0	1	0	1	0	1	0	2
271		3	max	3323.698	<u>1</u>	2.23	2	0	1	0	1	0	1	0	12
272			min	-2806.982	3	.281	12	0	1	0	1	0	1	001	2
273		4	max	3324.078	_1_	2.204	2	0	1	0	1	0	1	0	12
274			min	-2806.698	3	.268	12	0	1	0	1	0	1	002	2
275		5		3324.457	_1_	2.178	2	0	1_	0	_1_	0	1	0	12
276		_	min	-2806.413	3	.255	12	0	1	0	1_	0	1	002	2
277		6		3324.836	1_	2.152	2	0	1	0	1	0	1	0	12
278		_		-2806.129	3	.242	12	0	1	0	1	0	1	003	2
279		7		3325.215	1_	2.126	2	0	1	0	1	0	1	0	12
280			min		3	.229	12	0	1_	0	1	0	1	003	2
281		8		3325.595	1_	2.1	2	0	1	0	1	0	1	0	12
282			min	-2805.56	3	.216	12	0	1_	0	1_	0	1	004	2
283		9		3325.974	1	2.074	2	0	1	0	1	0	1	0	12
284 285		10	min	-2805.276 3326.353	<u>3</u> 1	.203 2.048	<u>12</u>	0	1	0	<u>1</u> 1	0	1	004 0	12
286		10	min	-2804.991	3	.19	12	0	1	0	1	0	1	005	2
287		11		3326.733	<u> </u>	2.022	2	0	1	0	+	0	1	005 0	12
288			min	-2804.707	3	.177	12	0	1	0	1	0	1	006	2
289		12		3327.112	1	1.996	2	0	1	0	1	0	1	0	12
290		12	min	-2804.422	3	.164	3	0	1	0	1	0	1	006	2
291		13		3327.491	1	1.97	2	0	1	0	1	0	1	0	12
292			min		3	.144	3	0	1	0	1	0	1	007	2
293		14	max		1	1.944	2	0	1	0	1	0	1	0	12
294			min	-2803.853	3	.125	3	0	1	0	1	0	1	007	2
295		15		3328.25	1	1.918	2	0	1	0	1	0	1	0	12
296			min	-2803.569	3	.105	3	0	1	0	1	0	1	008	2
297		16	max	3328.629	1	1.892	2	0	1	0	1	0	1	0	12
298				-2803.284	3	.086	3	0	1	0	1	0	1	008	2
299		17	max	3329.008	1	1.866	2	0	1	0	1	0	1	0	12
300			min		3	.066	3	0	1	0	1	0	1	009	2
301		18		3329.387	<u>1</u>	1.84	2	0	1	0	1	0	1	0	12
302				-2802.716	3	.047	3	0	1	0	1	0	1	009	2
303		19		3329.767	_1_	1.814	2	0	1	0	1	0	1	0	12
304			min	-2802.431	3	.027	3	0	1	0	1	0	1	009	2
305	<u>M7</u>	1		1254.02	2	8.022	4	0	1	0	1	0	1	.009	2
306			min	-1308.328	3	1.882	15	0	1	0	1	0	1	0	12
307		2		1253.85	2	7.252	4	0	1	0	1	0	1	.007	2
308				-1308.456	3	1.701	15	0	1_	0	1_	0	1	0	3
309		3		1253.679	2	6.482	4	0	1	0	1	0	1	.004	2
310		A	min		3	1.52	<u>15</u>	0	1	0	1	0	1	002	3
311		4	max	1253.509	2	5.712	4	0	_1_	0	_1_	0	1	.002	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
312			min	-1308.711	3	1.339	15	0	1	0	1	0	1	003	3
313		5	max	1253.338	2	4.942	4	0	1	0	1	0	_1_	0	2
314			min	-1308.839	3	1.158	15	0	1	0	1	0	1_	005	3
315		6	max	1253.168	2	4.172	4	0	1	0	1	0	_1_	001	15
316			min	-1308.967	3	.977	15	0	1	0	1	0	1	005	3
317		7	max		2	3.402	4	0	1	0	_1_	0	_1_	001	15
318			min	-1309.095	3	.796	15	0	1	0	1	0	1	006	3
319		8		1252.827	2	2.632	4	0	1	0	1	0	_1_	002	15
320			min	-1309.222	3	.615	15	0	1	0	1	0	1	007	4
321		9	max	1252.657	2	1.862	4	0	1	0	_1_	0	_1_	002	15
322			min	-1309.35	3	.416	12	0	1	0	1	0	1	008	4
323		10	max	1252.487	2	1.248	2	0	1	0	_1_	0	<u>1</u>	002	15
324			min	-1309.478	3	.116	12	0	1	0	1	0	1_	009	4
325		11	max	1252.316	2	.648	2	0	1	0	1	0	_1_	002	15
326			min	-1309.606	3	326	3	0	1	0	1	0	1	009	4
327		12	max		2	.048	2	0	1	0	_1_	0	_1_	002	15
328			min	-1309.733	3	776	3	0	1	0	1	0	1	009	4
329		13	max	1251.976	2	29	15	0	1	0	1	0	_1_	002	15
330			min	-1309.861	3	-1.226	3	0	1	0	1	0	1	009	4
331		14	max	1251.805	2	471	15	0	1	0	1	0	1	002	15
332			min	-1309.989	3	-1.988	4	0	1	0	1	0	1	008	4
333		15	max	1251.635	2	652	15	0	1	0	_1_	0	<u>1</u>	002	15
334			min	-1310.117	3	-2.758	4	0	1	0	1	0	1	007	4
335		16	max	1251.465	2	833	15	0	1	0	1	0	1	001	15
336			min	-1310.244	3	-3.528	4	0	1	0	1	0	1	006	4
337		17	max	1251.294	2	-1.014	15	0	1	0	1	0	1	001	15
338			min	-1310.372	3	-4.298	4	0	1	0	1	0	1	004	4
339		18	max	1251.124	2	-1.195	15	0	1	0	1	0	1	0	15
340			min	-1310.5	3	-5.068	4	0	1	0	1	0	1	002	4
341		19	max	1250.954	2	-1.376	15	0	1	0	1	0	1	0	1
342			min	-1310.628	3	-5.838	4	0	1	0	1	0	1	0	1
343	M8	1	max	3276.611	1	0	1	0	1	0	1	0	1	0	1
344			min	-591.367	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3276.781	1	0	1	0	1	0	1	0	1	0	1
346			min	-591.24	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3276.951	1	0	1	0	1	0	1	0	1_	0	1
348			min	-591.112	3	0	1	0	1	0	1	0	1	0	1
349		4	max	3277.122	1	0	1	0	1	0	1	0	_1_	0	1
350			min	-590.984	3	0	1	0	1	0	1	0	1	0	1
351		5	max	3277.292	_1_	0	1	0	1	0	_1_	0	_1_	0	1
352				-590.856	3	0	1	0	1	0	1	0	1	0	1
353		6	max	3277.462	1	0	1	0	1	0	1	0	_1_	0	1
354			min		3	0	1	0	1	0	1	0	1	0	1
355		7		3277.633		0	1	0	1	0	1	0	1_	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8	1	3277.803	1	0	1	0	1	0	_1_	0	_1_	0	1
358				-590.473	3	0	1	0	1	0	1	0	1_	0	1
359		9		3277.973	1	0	1	0	1	0	1	0	_1_	0	1
360				-590.345	3	0	1	0	1	0	1	0	1	0	1
361		10		3278.144	1	0	1	0	1	0	1	0	1_	0	1
362				-590.218	3	0	1	0	1	0	1	0	1	0	1
363		11	max	3278.314	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12	max	3278.484	1	0	1	0	1	0	1	0	1	0	1
366			min	-589.962	3	0	1	0	1	0	1	0	1	0	1
367		13	max	3278.655	1	0	1	0	1	0	1	0	1	0	1
368			min	-589.834	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

000	Member	Sec		Axial[lb]						Torque[k-ft]	LC	11 1	LC	_	LC
369		14		3278.825	1	0	1	0	1	0	1	0	1	0	1
370		4.5	min	-589.707	3	0	1_	0	1_	0	1	0	1	0	1
371		15		3278.995	1	0	1	0	1	0	1	0	1	0	1
372		4.0		-589.579	3	0		0	•	0		0		0	
373		16		3279.166 -589.451	1	0	1	0	1	0	<u>1</u>	0	1	0	1
374		17			3	0		0	_	0		0		0	
375		17		3279.336	1_	0	1	0	1_	0	1_	0	1	0	1
376		4.0	min	-589.323	3	0	1_	0	1_	0	1_	0	1	0	1
377		18		3279.506	1_	0	1_	0	1	0	1_	0	1_	0	1
378		40	min	-589.196	3	0	1_	0	1	0	1_	0	1_	0	1
379		19		3279.677	1_	0	1	0	1	0		0	1	0	1
380			min	-589.068	3	0	1	0	1_	0	1	0	1	0	1
381	M10	1		1029.442	_1_	2.025	4	037	15	0	1	0	1	0	1
382				-853.381	3	.477	15	-1.029	1	0	3	0	3	0	1
383		2	max	1029.821	_1_	1.992	4	037	15	0	_1_	0	15	0	15
384			min	-853.097	3	.469	15	-1.029	1	0	3	0	1	0	4
385		3	max	1030.2	_1_	1.959	4	037	15	0	_1_	0	15	0	15
386			min	-852.813	3	.462	15	-1.029	1	0	3	0	1	001	4
387		4	max	1030.58	_1_	1.925	4	037	15	0	_1_	0	15	0	15
388			min	-852.528	3	.454	15	-1.029	1	0	3	0	1	002	4
389		5	max	1030.959	1_	1.892	4	037	15	0	1	0	15	0	15
390			min	-852.244	3	.446	15	-1.029	1	0	3	001	1	002	4
391		6	max	1031.338	1	1.859	4	037	15	0	1	0	15	0	15
392			min	-851.959	3	.438	15	-1.029	1	0	3	001	1	002	4
393		7	max	1031.717	1	1.825	4	037	15	0	1	0	15	0	15
394			min	-851.675	3	.43	15	-1.029	1	0	3	002	1	003	4
395		8	max	1032.097	1	1.792	4	037	15	0	1	0	15	0	15
396			min	-851.39	3	.422	15	-1.029	1	0	3	002	1	003	4
397		9	max	1032.476	1	1.758	4	037	15	0	1	0	15	0	15
398			min	-851.106	3	.414	15	-1.029	1	0	3	002	1	004	4
399		10	max	1032.855	1	1.725	4	037	15	0	1	0	15	001	15
400			min	-850.821	3	.407	15	-1.029	1	0	3	002	1	004	4
401		11	max	1033.234	1	1.692	4	037	15	0	1	0	15	001	15
402				-850.537	3	.399	15	-1.029	1	0	3	003	1	005	4
403		12		1033.614	1	1.658	4	037	15	0	1	0	15	001	15
404			min	-850.253	3	.391	15	-1.029	1	0	3	003	1	005	4
405		13		1033.993	1	1.625	4	037	15	0	1	0	15	001	15
406			min	-849.968	3	.383	15	-1.029	1	0	3	003	1	006	4
407		14		1034.372	1	1.591	4	037	15	0	1	0	15	001	15
408				-849.684	3	.375	15	-1.029	1	0	3	003	1	006	4
409		15		1034.751	1	1.558	4	037	15	0	1	0	15	002	15
410				-849.399	3	.367	15	-1.029	1	0	3	004	1	006	4
411		16		1035.131	1	1.525	4	037	15	0	1	0	15	002	15
412				-849.115	3	.36	15	-1.029	1	0	3	004	1	007	4
413		17		1035.51	1	1.491	4	037	15	0	1	0	15	002	15
414		- ' '		-848.83	3	.352	15	-1.029	1	0	3	004	1	002	4
415		18		1035.889	1	1.458	4	037	15	0	1	0	15	002	15
416		10		-848.546	3	.344	15	-1.029	1	0	3	004	1	002	4
417		19		1036.268	<u> </u>	1.424	4	037	15	0	<u> </u>	0	15	002	15
418		13		-848.261	3	.336	15	-1.029	1	0	3	005	1	002	4
419	M11	1			2	7.981		003	15	0	<u>ာ</u> 1		15		
	IVI I I		max				15					0		.008	15
420		0	min	-417.919	3	1.877	<u>15</u>	081	1_	0	3	0	1_	.002	15
421		2		290.807	2	7.211	4 1E	003	15	0	1	0	15	.005	4
422		_		-418.046	3	1.696	15	081	1_	0	3	0	1	.001	15
423		3		290.637	2	6.441	4 1E	003	15	0	1	0	15	.002	2
424		-		-418.174	3	1.515	15	081	1_	0	3	0	1_	0	3
425		4	max	290.466	2	5.671	4	003	15	0	_1_	0	15	0	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]		_			LC
426		_	min		3	1.334	15	081	1_	0	3	0	1	001	3
427		5	max	290.296	2	4.901	4	003	15	0	1	0	15	0	15
428			min	-418.43	3	1.153	15	081	1_	0	3	0	1_	003	4
429		6	max	290.126	2	4.131	4	003	15	0	1	0	15	001	15
430		_	min	-418.557	3	.972	15	081	1_	0	3	0	1_	005	4
431		7	max	289.955	2	3.361	4	003	15	0	1	0	15	001	15
432			min	-418.685	3	.791	15	081	1_	0	3	0	1	006	4
433		8	max	289.785	2	2.591	4	003	15	0	1	0	15	002	15
434			min	-418.813	3	.61	15	081	1_	0	3	0	1_	008	4
435		9	max	289.614	2	1.821	4	003	15	0	1_	0	15	002	15
436		4.0	min	-418.941	3	.429	15	081	1_	0	3	0	1	009	4
437		10	max	289.444	2	1.051	4	003	15	0	1	0	15	002	15
438			min	-419.068	3	.248	15	081	1_	0	3	0	1_	009	4
439		11	max	289.274	2	.329	2	003	15	0	1	0	15	002	15
440		4.0	min	-419.196	3	.012	3	081	1_	0	3	0	1_	009	4
441		12	max	289.103	2	114	15	003	15	0	1	0	15	002	15
442			min	-419.324	3_	489	4	081	1_	0	3	0	1_	009	4
443		13	max	288.933	2	295	15	003	15	0	1_	0	15	002	15
444				-419.452	3	-1.259	4	081	1	0	3	0	1	009	4
445		14	max	288.763	2	476	15	003	15	0	_1_	0	15	002	15
446			min	-419.58	3	-2.029	4	081	1_	0	3	0	1_	008	4
447		15	max	288.592	2	657	15	003	15	0	1_	0	15	002	15
448			min	-419.707	3	-2.799	4	081	1	0	3	0	1_	007	4
449		16	max		2	838	15	003	15	0	1	0	15	001	15
450			min	-419.835	3	-3.569	4	081	1	0	3	0	1	006	4
451		17	max	288.252	2	-1.019	15	003	15	0	_1_	0	15	001	15
452			min	-419.963	3	-4.339	4	081	1	0	3	0	1	004	4
453		18	max	288.081	2	-1.2	15	003	15	0	_1_	0	15	0	15
454			min	-420.091	3	-5.109	4	081	1	0	3	0	1	002	4
455		19	max	287.911	2	-1.381	15	003	15	0	_1_	0	15	0	1
456			min	-420.218	3	-5.879	4	081	1	0	3	0	1	0	1
457	M12	1	max	1169.733	_1_	0	1	10.777	1	0	_1_	0	15	0	1
458			min	-161.197	3	0	1	.392	15	0	1_	0	1	0	1
459		2		1169.903	1_	0	1	10.777	1	0	1_	0	1	0	1
460				-161.069	3	0	1	.392	15	0	1_	0	12	0	1
461		3	max	1170.073	_1_	0	1	10.777	1	0	_1_	.002	1_	0	1
462			min	-160.941	3	0	1	.392	15	0	_1_	0	15	0	1
463		4		1170.244	_1_	0	1	10.777	1	0	_1_	.003	1	0	1
464			min	-160.813	3	0	1	.392	15	0	1	0	15	0	1
465		5		1170.414	_1_	0	1	10.777	1	0	_1_	.004	1_	0	1
466				-160.686	3	0	1	.392	15	0	1	0	15	0	1
467		6		1170.584	1_	0	1	10.777	1	0	1	.006	1	0	1
468				-160.558	3	0	1	.392	15	0	1_	0	15	0	1
469		7		1170.755	_1_	0	1	10.777	1	0	_1_	.007	1	0	1
470				-160.43	3	0	1	.392	15	0	1	0	15	0	1
471		8		1170.925	_1_	0	1	10.777	1	0	_1_	.008	1	0	1
472				-160.302	3	0	1	.392	15	0	1	0	15	0	1
473		9		1171.095	_1_	0	1	10.777	1	0	_1_	.009	1	0	1
474				-160.175	3	0	1	.392	15	0	1	0	15	0	1
475		10		1171.266	_1_	0	1	10.777	1	0	1	.011	1	0	1
476				-160.047	3	0	1	.392	15	0	1	0	15	0	1
477		11	max	1171.436	1	0	1	10.777	1	0	1	.012	1	0	1
478				-159.919	3	0	1	.392	15	0	1	0	15	0	1
479		12	max	1171.606	1	0	1	10.777	1	0	1	.013	1	0	1
480			min	-159.791	3	0	1	.392	15	0	1	0	15	0	1
481		13	max	1171.777	1	0	1	10.777	1	0	1	.014	1	0	1
482			min	-159.664	3	0	1	.392	15	0	1	0	15	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14	max	1171.947	1	0	1	10.777	1	0	1	.016	1	0	1
484			min		3	0	1	.392	15	0	1	0	15	0	1
485		15	max	1172.117	1	0	1	10.777	1	0	1	.017	1	0	1
486			min	-159.408	3	0	1	.392	15	0	1	0	15	0	1
487		16	max	1172.288	1	0	1	10.777	1	0	1	.018	1	0	1
488			min	-159.28	3	0	1	.392	15	0	1	0	15	0	1
489		17	max	1172.458	1	0	1	10.777	1	0	1	.019	1	0	1
490			min	-159.152	3	0	1	.392	15	0	1	0	15	0	1
491		18	max	1172.629	1	0	1	10.777	1	0	1	.02	1	0	1
492			min	-159.025	3	0	1	.392	15	0	1	0	15	0	1
493		19	max	1172.799	1	0	1	10.777	1	0	1	.022	1	0	1
494			min	-158.897	3	0	1	.392	15	0	1	0	15	0	1
495	M1	1	max	169.937	1	480.892	3	-4.031	15	0	1	.263	1	0	3
496			min	6.185	15	-467.388	1	-110.313	1	0	3	.01	15	012	1
497		2	max	170.427	1	479.883	3	-4.031	15	0	1	.205	1	.235	1
498			min	6.332	15	-468.734	1	-110.313	1	0	3	.007	15	253	3
499		3	max	247.673	3	517.07	1	-3.994	15	0	3	.147	1	.471	1
500			min	-155.346	2	-341.878	3	-109.544	1	0	1	.005	15	496	3
501		4	max		3	515.724	1	-3.994	15	0	3	.089	1	.198	1
502			min	-154.856	2	-342.887	3	-109.544	1	0	1	.003	15	316	3
503		5	max		3	514.378	1	-3.994	15	0	3	.031	1	003	15
504			min	-154.366	2	-343.897	3	-109.544	1	0	1	.001	15	134	3
505		6	max		3	513.032	1	-3.994	15	0	3	0	15	.047	3
506			min	-153.876	2	-344.906	3	-109.544	1	0	1	026	1	345	1
507		7	max	249.143	3	511.686	1	-3.994	15	0	3	003	15	.23	3
508		,	min	-153.386	2	-345.916	3	-109.544	1	0	1	084	1	615	1
509		8	max		3	510.34	1	-3.994	15	0	3	005	15	.412	3
510			min	-152.896	2	-346.925	3	-109.544	1	0	1	142	1	885	1
511		9	max		3	32.07	2	-5.819	15	0	9	.083	1	.483	3
512			min	-83.553	2	.409	15	-159.432	1	0	3	.003	15	-1.008	1
513		10	max		3	30.724	2	-5.819	15	0	9	0	15	.469	3
514			min	-83.063	2	.003	15		1	0	3	001	1	-1.017	1
515		11	max	260.712	3	29.378	2	-5.819	15	0	9	003	15	.456	3
516			min	-82.573	2	-1.651	4	-159.432	1	0	3	085	1	-1.025	1
517		12	max	271.136	3	222.54	3	-3.896	15	0	1	.14	1	.397	3
518		12	min	-49.148	10	-544.1	1	-106.94	1	0	3	.005	15	905	1
519		13	max		3	221.53	3	-3.896	15	0	1	.084	1	.28	3
520			min	-48.74	10	-545.446	1	-106.94	1	0	3	.003	15	618	1
521		14	max		3	220.521	3	-3.896	15	0	1	.027	1	.163	3
522			min	-48.331	10	-546.792	1	-106.94	1	0	3	0	15	329	1
523		15	max	272.238		219.511			15	0	1	001	15		3
524			min		10	-548.138		-106.94	1	0	3	029	1	04	1
525		16		272.605	3	218.502	3	-3.896	15	0	1	003	15	.249	1
526			min		10	-549.484	1	-106.94	1	0	3	086	1	069	3
527		17	max		3	217.492	3	-3.896	15	0	1	005	15	.539	1
528		- ' '	min	-47.106	10	-550.83	1	-106.94	1	0	3	142	1	184	3
529		18	max		15	534.033	1	-4.285	15	0	3	007	15	.27	1
530		10	min		1	-185.19	3	-117.321	1	0	1	203	1	091	3
531		19	max		15	532.687	1	-4.285	15	0	3	01	15	.007	3
532		13	min	-170.129	1	-186.199	3	-117.321	1	0	1	265	1	011	1
533	M5	1	max		1	1602.606	3	0	1	0	1	0	1	.024	1
534	IVIO		min	12.624	12	-1578.442	1	0	1	0	1	0	1	0	3
535		2		366.604	<u>12</u> 1	1601.596		0	1	0	1	0	1	.858	1
536			min		12	-1579.788	1	0	1		1	0	1		3
		3			3	1590.21	1	0	1	0	1		1	846 1.654	1
537 538		3	max	796.399 -575.514	2	-1106.625	3	0	1	0	1	0	1	-1.658	3
539		4	min												
539		4	шах	796.766	3	1588.864	1	0	1	0	1	0	1	.815	1

Model Name

Schletter, Inc. HCV

. псv :

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-575.024	2	-1107.635	3	0	1	0	1	0	1	-1.074	3
541		5	max	797.134	3	1587.518	1	0	1	0	1	0	1	.009	9
542			min	-574.534	2	-1108.644	3	0	1	0	1	0	1	489	3
543		6	max	797.501	3	1586.172	1	0	1	0	1	0	1	.096	3
544			min	-574.044	2	-1109.654	3	0	1	0	1	0	1	861	1
545		7	max	797.869	3	1584.826	1	0	1	0	1	0	1	.682	3
546			min	-573.554	2	-1110.663	3	0	1	0	1	0	1	-1.697	1
547		8	max	798.236	3	1583.48	1	0	1	0	1	0	1_	1.268	3
548			min	-573.065	2	-1111.673	3	0	1	0	1	0	1	-2.533	1
549		9	max	816.894	3	105.958	2	0	1	0	1	0	1_	1.462	3
550			min	-431.174	2	.407	15	0	1	0	1	0	1	-2.865	1
551		10	max	817.261	3	104.612	2	0	1	0	1	0	1	1.414	3
552			min	-430.684	2	.001	15	0	1	0	1	0	1	-2.895	1
553		11	max	817.629	3	103.266	2	0	1	0	1	0	1	1.367	3
554			min	-430.194	2	-1.497	4	0	1	0	1	0	1	-2.924	1
555		12	max	836.373	3	709.468	3	0	1	0	1	0	1	1.199	3
556			min	-288.312	2	-1697.643	1	0	1	0	1	0	1	-2.605	1
557		13	max	836.74	3	708.459	3	0	1	0	1	0	1	.825	3
558			min	-287.822	2	-1698.989	1	0	1	0	1	0	1	-1.708	1
559		14	max	837.108	3	707.449	3	0	1	0	1	0	1	.451	3
560			min	-287.333	2	-1700.335	1	0	1	0	1	0	1	812	1
561		15	max	837.475	3	706.44	3	0	1	0	1	0	1	.133	2
562			min	-286.843	2	-1701.681	1	0	1	0	1	0	1	004	13
563		16	max	837.842	3	705.43	3	0	1	0	1	0	1	.984	1
564			min	-286.353	2	-1703.027	1	0	1	0	1	0	1	294	3
565		17	max	838.21	3	704.421	3	0	1	0	1	0	1	1.883	1
566			min	-285.863	2	-1704.373	1	0	1	0	1	0	1	666	3
567		18	max	-13.035	12	1803.488	1	0	1	0	1	0	1	.974	1
568		1	min	-366.22	1	-633.714	3	0	1	0	1	0	1	348	3
569		19	max	-12.79	12	1802.142	1	0	1	0	1	0	1	.022	1
570		1.0	min	-365.73	1	-634.724	3	0	1	Ö	1	0	1	014	3
571	M9	1	max	169.937	1	480.892	3	110.313	1	0	3	01	15	0	3
572	1110		min	6.185	15	-467.388	1	4.031	15	0	1	263	1	012	1
573		2	max	170.427	1	479.883	3	110.313	1	0	3	007	15	.235	1
574		_	min	6.332	15	-468.734	1	4.031	15	0	1	205	1	253	3
575		3	max	247.673	3	517.07	1	109.544	1	0	1	005	15	.471	1
576			min	-155.346	2	-341.878	3	3.994	15	0	3	147	1	-,496	3
577		4	max	248.041	3	515.724	1	109.544	1	0	1	003	15	.198	1
578			min	-154.856	2	-342.887	3	3.994	15	0	3	089	1	316	3
579		5	max		3	514.378	1	109.544	1	0	1	001	15	003	15
580				-154.366	2	-343.897	3	3.994	15	0	3	031	1	134	3
581		6	max		3	513.032	1	109.544	1	0	1	.026	1	.047	3
582		Ť	min	-153.876	2	-344.906		3.994	15	0	3	0	15	345	1
583		7		249.143	3	511.686	1	109.544	1	0	1	.084	1	.23	3
584					2	-345.916	3	3.994	15	0	3	.003	15	615	1
585		8		249.511	3	510.34	1	109.544	1	0	1	.142	1	.412	3
586			min	-152.896	2	-346.925	3	3.994	15	0	3	.005	15	885	1
587		9	max		3	32.07	2	159.432	1	0	3	003	15	.483	3
588					2	.409	15	5.819	15	0	9	083	1	-1.008	1
589		10		260.345	3	30.724	2	159.432	1	0	3	.001	1	.469	3
590		10	min		2	.003	15	5.819	15	0	9	0	15	-1.017	1
591		11	max		3	29.378	2	159.432	1	0	3	.085	1	.456	3
592			min	-82.573	2	-1.651	4	5.819	15	0	9	.003	15	-1.025	1
593		12		271.136	3	222.54	3	106.94	1	0	3	005	15	.397	3
594		14	min	-49.148	10	-544.1	1	3.896	15	0	<u> </u>	005	1	905	1
595		12			3	221.53	3	106.94	1		3	14	15		3
		13	max							0				.28	1
596			min	-48.74	10	-545.446	_1_	3.896	15	0	_1_	084	_1_	618	

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	271.871	3	220.521	3	106.94	1	0	3	0	15	.163	3
598			min	-48.331	10	-546.792	1	3.896	15	0	1	027	1	329	1
599		15	max	272.238	3	219.511	3	106.94	1	0	3	.029	1	.047	3
600			min	-47.923	10	-548.138	1	3.896	15	0	1	.001	15	04	1
601		16	max	272.605	3	218.502	3	106.94	1	0	3	.086	1	.249	1
602			min	-47.515	10	-549.484	1	3.896	15	0	1	.003	15	069	3
603		17	max	272.973	3	217.492	3	106.94	1	0	3	.142	1	.539	1
604			min	-47.106	10	-550.83	1	3.896	15	0	1	.005	15	184	3
605		18	max	-6.338	15	534.033	1	117.321	1	0	1	.203	1	.27	1
606			min	-170.619	1	-185.19	3	4.285	15	0	3	.007	15	091	3
607		19	max	-6.19	15	532.687	1	117.321	1	0	1	.265	1	.007	3
608			min	-170.129	1	-186.199	3	4.285	15	0	3	.01	15	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate	r LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.101	1	.005	3 8.073e		NC	1_	NC	1
2			min	0	15	01	3	002	2 -8.638e	-4 3	NC	1	NC	1
3		2	max	0	1	.253	3	.046	1 9.33e-		NC	5	NC	2
4			min	0	15	135	1	.002	15 -8.863e	-4 3	957.545	3	5818.144	1
5		3	max	0	1	.466	3	.109	1 1.059e		NC	5	NC	3
6			min	0	15	322	1	.004	15 -9.088e	-4 3	529.168	3	2364.947	1
7		4	max	0	1	.595	3	.164	1 1.184e	-2 1	NC	5	NC	3
8			min	0	15	427	1	.006	15 -9.313e	-4 3	416.206	3	1559.407	1
9		5	max	0	1	.625	3	.193	1 1.31e-		NC	5	NC	3
10			min	0	15	437	1	.007	15 -9.538e		396.722	3	1324.615	1
11		6	max	0	1	.557	3	.187	1 1.436e		NC	5	NC	3
12			min	0	15	353	1	.007	15 -9.763e		443.926	3	1367.934	1
13		7	max	0	1	.413	3	.147	1 1.562e		NC	5	NC	3
14			min	0	15	196	1	.006	15 -9.988e		595.704	3	1735.674	1
15		8	max	0	1	.229	3	.087	1 1.687e	-2 1	NC	4	NC	3
16			min	0	15	011	9	.003	15 -1.021e	-3 3	1052.425	3	2973.66	1
17		9	max	0	1	.167	1	.027	1 1.813e	-2 1	NC	4	NC	1
18			min	0	15	.005	15	003	10 -1.044e	-3 3	3451.492	3	NC	1
19		10	max	0	1	.243	1	.014	3 1.939e		NC	3	NC	1
20			min	0	1	013	3	009	2 -1.066e		1771.588	1	NC	1
21		11	max	0	15	.167	1	.027	1 1.813e	-2 1	NC	4	NC	1
22			min	0	1	.005	15	003	10 -1.044e	-3 3	3451.492	3	NC	1
23		12	max	0	15	.229	3	.087	1 1.687e		NC	4	NC	3
24			min	0	1	011	9	.003	15 -1.021e	-3 3	1052.425	3	2973.66	1
25		13	max	0	15	.413	3	.147	1 1.562e	-2 1	NC	5	NC	3
26			min	0	1	196	1	.006	15 -9.988e	-4 3	595.704	3	1735.674	1
27		14	max	0	15	.557	3	.187	1 1.436e	-2 1	NC	5	NC	3
28			min	0	1	353	1	.007	15 -9.763e	-4 3	443.926	3	1367.934	1
29		15	max	0	15	.625	3	.193	1 1.31e-	2 1	NC	5	NC	3
30			min	0	1	437	1	.007	15 -9.538e		396.722	3	1324.615	1
31		16	max	0	15	.595	3	.164	1 1.184e		NC	5	NC	3
32			min	0	1	427	1	.006	15 -9.313e		416.206	3	1559.407	1
33		17	max	0	15	.466	3	.109	1 1.059e		NC	5	NC	3
34			min	0	1	322	1	.004	15 -9.088e		529.168	3	2364.947	1
35		18	max	0	15	.253	3	.046	1 9.33e-		NC	5	NC	2
36			min	0	1	135	1	.002	15 -8.863e		957.545	3	5818.144	1
37		19	max	0	15	.101	1	.005	3 8.073e	-3 1	NC	1	NC	1
38			min	001	1	01	3	002	2 -8.638e	-4 3	NC	1	NC	1
39	M14	1	max	0	1	.142	3	.004	3 5.083e	-3 1	NC	1	NC	1
40			min	0	15	33	1	001	2 -2.576e	-3 3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

41 2 max 0 1 .388 3 .032 1 6.123e-3 42 min 0 15 687 1 .001 15 -3.151e-3 43 3 max 0 1 .594 3 .088 1 7.163e-3 44 min 0 15 993 1 .003 15 -3.726e-3	NC 15 NC 3 380.172 1 2933.8 NC 15 NC	2
42 min 0 15 687 1 .001 15 -3.151e-3 43 3 max 0 1 .594 3 .088 1 7.163e-3 44 min 0 15 993 1 .003 15 -3.726e-3	NC 15 NC 3 380.172 1 2933.8 NC 15 NC	
44 min 0 15993 1 .003 15 -3.726e-3	3 380.172 1 2933.8 NC 15 NC	3
44 min 0 15993 1 .003 15 -3.726e-3	NC 15 NC	
4		82 1
45 4 max 0 1 .735 3 .141 1 8.203e-3		3
46 min 0 15 -1.211 1 .005 15 -4.3e-3	3 286.018 1 1814.20	08 1
	9260.77 15 NC	3
48 min 0 15 -1.324 1 .006 15 -4.875e-3		25 1
	9227.888 15 NC	3
50 min 0 15 -1.332 1 .006 15 -5.45e-3		
1 1111111111111111111111111111111111111	NC 15 NC	3
52 min 0 15 -1.251 1 .005 15 -6.025e-3		
	NC 15 NC	3
	3 320.032 1 3174.63	
	NC 15 NC	1_
56 min 0 15984 1002 10 -7.174e-3		1
	NC 5 NC	1
58 min 0 192 1008 2 -7.749e-3		1
	NC 15 NC	1
60 min 0 1984 1002 10 -7.174e-3		1
	NC 15 NC	3
	3 320.032 1 3174.6	
	NC 15 NC	3
64 min 0 1 -1.251 1 .005 15 -6.025e-3		
65 14 max 0 15 .782 3 .17 1 1.028e-2		3
66 min 0 1 -1.332 1 .006 15 -5.45e-3		
	9260.77 15 NC	3
68 min 0 1 -1.324 1 .006 15 -4.875e-3		
10 1110111 0 1101 0 11111 1 110000	NC 15 NC	3
70 min 0 1 -1.211 1 .005 15 -4.3e-3		
1	NC 15 NC	3
72 min 0 1993 1 .003 15 -3.726e-3		
	NC 5 NC 3 705.264 1 8459.6	2
1	8 705.264 1 8459.6 NC 1 NC	57 <u>1</u> 1
	B NC 1 NC	1
	NC 1 NC	1
	NC 1 NC	1
	NC 5 NC	2
	643.818 1 8420.8	
	B NC 15 NC	3
82 min 0 1 -1.054 1 .003 15 -7.32e-3		
	B NC 15 NC	3
84 min 0 1 -1.289 1 .005 15 -8.387e-3		
	3 9270.963 15 NC	3
86 min 0 1 -1.406 1 .006 15 -9.454e-3		
	3 9240.041 15 NC	3
88 min 0 1 -1.404 1 .006 15 -1.052e-2		
	NC 15 NC	3
90 min 0 1 -1.305 1 .005 15 -1.159e-2		
	8 NC 15 NC	3
	308.169 1 3162.83	
	NC 15 NC	1
	380.474 1 NC	1
	NC 5 NC	1
	427.78 1 NC	1
97	NC 15 NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
98		40	min	0	15	992	1	002		.372e-2	1_	380.474	1_	NC NC	1
99		12	max	0	1	.506	3	.082		.565e-3	3	NC 000 400	<u>15</u>	NC 0400,000	3
100		40	min	0	15	<u>-1.147</u>	1	.003		.266e-2	1_	308.169	1_	3162.833	
101		13	max	0	1	.555	3	.137		.079e-3	3	NC OF0 404	15	NC	3
102		4.4	min	0	15	<u>-1.305</u>	1	.005		.159e-2	1_	258.404	1_	1873.018	1
103		14	max	0	1	.582	3	.17		.593e-3	3	9240.041	<u>15</u>	NC	3
104		4.5	min	0	15	<u>-1.404</u>	1	.006		.052e-2	1	234.483	1_	1500.218	1
105		15	max	0	1	.573	3	.172		.107e-3	3	9270.963	<u>15</u>	NC 1485.368	3
106		16	min	0	15	<u>-1.406</u>	1	.006		.454e-3	1	234.172 NC	1_		1
107 108		16	max min	0	1 15	. <u>521</u> -1.289	3	.142 .005		.621e-3	<u>3</u>	262.656	<u>15</u> 1	NC 1810.468	3
109		17		0	1	<u>-1.269 </u>	3	.005		3.387e-3 .135e-3	3	NC	15	NC	3
110		17	max	0	15	-1.054	1	.003	15 -	7.32e-3	1	347.806	1	2926.034	1
111		18	max	0	1	.296	3	.032		.649e-3	3	NC	5	NC	2
112		10	min	0	15	721	1	.001		5.253e-3	1	643.818	1	8420.883	1
113		19	max	0	1	.145	3	.001		.163e-3	3	NC	1	NC	1
114		19	min	0	15	33	1	001		5.186e-3	1	NC NC	1	NC	1
115	M16	1	max	0	15	.099	1	.003		3.78e-3	3	NC	1	NC	1
116	IVITO		min	001	1	048	3	003		7.598e-3	1	NC NC	1	NC NC	1
117		2	max	0	15	.042	3	.045		.485e-3	3	NC	5	NC	2
118			min	001	1	172	1	.002		3.738e-3	1	930.853	1	5856.623	1
119		3	max	0	15	.113	3	.108		5.19e-3	3	NC	5	NC	3
120		-	min	0	1	387	1	.004		0.879e-3	1	518.367	1	2372.675	1
121		4	max	0	15	.151	3	.163		.894e-3	3	NC	5	NC	3
122		-	min	0	1	511	1	.006		.102e-2	1	413.585	1	1561.705	1
123		5	max	0	15	.151	3	.192		.102e-2	3	NC	5	NC	3
124			min	0	1	525	1	.007		.216e-2	1	404.327	1	1324.665	1
125		6	max	0	15	.115	3	.187		.304e-3	3	NC	5	NC	3
126			min	0	1	432	1	.007		1.33e-2	1	474.536	1	1365.749	1
127		7	max	0	15	.049	3	.148		.009e-3	3	NC	5	NC	3
128		<u> </u>	min	0	1	261	2	.006		.444e-2	1	708.417	1	1728.328	1
129		8	max	0	15	.001	13	.088		.714e-3	3	NC	3	NC	3
130			min	0	1	066	2	.003		.558e-2	1	1733.789	2	2942.07	1
131		9	max	0	15	.151	1	.028		.418e-3	3	NC	4	NC	2
132			min	0	1	099	3	002		.672e-2	1	4845.526	1	9869.748	1
133		10	max	0	1	.237	1	.01		.012e-2	3	NC	5	NC	1
134			min	0	1	13	3	007		.786e-2	1	1822.389	1	NC	1
135		11	max	0	1	.151	1	.028		.418e-3	3	NC	4	NC	2
136			min	0	15	099	3	002		.672e-2	1	4845.526	1	9869.748	1
137		12	max	0	1	.001	13	.088		.714e-3	3	NC	3	NC	3
138			min	0	15	066	2	.003	15 -1	.558e-2		1733.789	2	2942.07	1
139		13	max	0	1	.049	3	.148		.009e-3	3	NC	5	NC	3
140			min	0	15	261	2	.006	15 -1	.444e-2	1	708.417	1	1728.328	1
141		14	max	0	1	.115	3	.187	1 7	.304e-3	3	NC	5	NC	3
142			min	0	15	432	1	.007	15 -	1.33e-2	1	474.536	1	1365.749	1
143		15	max	0	1	.151	3	.192	1 6	.599e-3	3	NC	5	NC	3
144			min	0	15	525	1	.007	15 -1	.216e-2	1	404.327	1	1324.665	1
145		16	max	0	1	.151	3	.163	1 5	.894e-3	3	NC	5	NC	3
146			min	0	15	511	1	.006	15 -1	.102e-2	1	413.585	1	1561.705	1
147		17	max	0	1	.113	3	.108	1 5	5.19e-3	3	NC	5	NC	3
148			min	0	15	387	1	.004		.879e-3	1	518.367	1	2372.675	
149		18	max	.001	1	.042	3	.045		.485e-3	3	NC	5	NC	2
150			min	0	15	172	1	.002		3.738e-3	1	930.853	1_	5856.623	1
151		19	max	.001	1	.099	1	.003		3.78e-3	3	NC	1_	NC	1
152			min	0	15	048	3	001		.598e-3	1	NC	1	NC	1
153	M2	1	max	.006	1	.003	2	.008		3.339e-6	15	NC	1_	NC	2
154			min	005	3	006	3	0	15 -	2.29e-4	1	NC	1	6514.932	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
155		2	max	.005	1	.002	2	.008	1	-7.779e-6	15	NC	1	NC	2
156			min	004	3	006	3	0	15	-2.136e-4	1	NC	1	7106.8	1
157		3	max	.005	1	.002	2	.007	1_	-7.219e-6	<u>15</u>	NC	<u>1</u>	NC	2
158			min	004	3	006	3	0	15	-1.982e-4	1_	NC	1	7812.396	1
159		4	max	.005	1	.001	2	.006	1	-6.659e-6	15	NC	_1_	NC	2
160			min	004	3	006	3	0	15	-1.828e-4	1_	NC	1_	8661.936	1
161		5	max	.004	1	00	2	.006	1_	-6.099e-6	<u>15</u>	NC	_1_	NC	2
162			min	004	3	005	3	0		-1.674e-4	<u>1</u>	NC	1_	9696.692	1
163		6	max	.004	1	0	2	.005	1	-5.539e-6	15	NC	1	NC	1
164		_	min	003	3	<u>005</u>	3	0	15	-1.52e-4	_1_	NC	_1_	NC	1
165		7	max	.004	1	0	2	.004	1	-4.979e-6	<u>15</u>	NC	1	NC	1
166			min	003	3	<u>005</u>	3	0	15	-1.367e-4	1_	NC	1_	NC	1
167		8	max	.003	1	0	2	.004	1	-4.419e-6	<u>15</u>	NC	1	NC	1
168			min	003	3	005	3	0	15	-1.213e-4	1_	NC	1_	NC	1
169		9	max	.003	1	0	15	.003	1	-3.859e-6	<u>15</u>	NC	1	NC NC	1
170		40	min	003	3	005	3	0	15	-1.059e-4	1_	NC NC	1_	NC NC	1
171		10	max	.003	3	0	15	.003	1	-3.299e-6	<u>15</u>	NC NC	1	NC NC	1
172		11	min	002 .002	1	004 0	15	0	15	-9.05e-5	1_	NC NC	<u>1</u> 1	NC NC	1
173		11	max		3		3	.002	1	-2.739e-6 -7.511e-5	<u>15</u> 1		1	NC NC	1
174 175		12	min max	002 .002	1	004 0	15	<u> </u>	1 <u>5</u>	-7.511e-5 -2.179e-6	15	NC NC	1	NC NC	1
176		12	min	002	3	004	3	<u>.002</u>	15	-5.973e-5	1	NC	1	NC	1
177		13	max	.002	1	004	15	.001	1	-1.619e-6	15	NC	1	NC	1
178		13	min	002	3	003	3	0	15	-4.434e-5	1	NC	1	NC	1
179		14	max	.002	1	<u>.005</u>	15	0	1	-1.059e-6	15	NC	1	NC	1
180		14	min	001	3	003	3	0	15	-2.896e-5	1	NC	1	NC	1
181		15	max	.001	1	0	15	0	1	-4.988e-7	15	NC	1	NC	1
182		10	min	001	3	003	4	0		-1.357e-5	1	NC	1	NC	1
183		16	max	0	1	0	15	0	1	1.813e-6	1	NC	1	NC	1
184			min	0	3	002	4	0		-2.023e-7	3	NC	1	NC	1
185		17	max	0	1	0	15	0	1	1.72e-5	1	NC	1	NC	1
186			min	0	3	001	4	0	15	5.503e-7	12	NC	1	NC	1
187		18	max	0	1	0	15	0	1	3.258e-5	1	NC	1	NC	1
188			min	0	3	0	4	0	15	1.181e-6	15	NC	1	NC	1
189		19	max	0	1	0	1	0	1	4.797e-5	1	NC	1	NC	1
190			min	0	1	0	1	0	1	1.741e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-5.479e-7	15	NC	1	NC	1
192			min	0	1	0	1	0	1	-1.509e-5	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	1.079e-5	1	NC	1	NC	1
194			min	0	2	002	4	0	15	3.935e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0	1	3.667e-5	1	NC	1	NC	1
196			min	0	2	003	4	0	15	1.335e-6	15	NC	1	NC	1
197		4	max	0	3	001	15	0	1	6.254e-5	1_	NC	1	NC	1
198			min	0	2	005	4	0	15	2.276e-6	15	NC	1	NC	1
199		5	max	0	3	002	15	.001	1	8.842e-5	1_	NC	1	NC	1
200			min	0	2	007	4	0	15	3.218e-6	15	NC	1_	NC	1
201		6	max	.001	3	002	15	.001	1	1.143e-4	1_	NC	_1_	NC	1
202			min	0	2	009	4	0	15	4.159e-6	15	NC	1	NC	1
203		7	max	.001	3	002	15	.002	1	1.402e-4	_1_	NC	1_	NC	1
204			min	0	2	<u>01</u>	4	0	15	5.1e-6		8923.064	4	NC	1
205		8	max	.001	3	003	15	.002	1	1.66e-4	1_	NC	1	NC NC	1
206			min	0	2	012	4	0	15	6.042e-6		7983.869	4_	NC NC	1
207		9	max	.002	3	003	15	.002	1	1.919e-4	1_	NC	2	NC	1
208		40	min	001	2	013	4	0	15	6.983e-6		7425.501	4_	NC NC	1
209		10	max	.002	3	003	15	.003	1	2.178e-4	1_	NC	3_	NC NC	1
210		4.4	min	001	2	013	4	0	15	7.924e-6	<u>15</u>		4	NC NC	1
211		11	max	.002	3	003	15	.003	1	2.437e-4	<u> 1</u>	NC	3	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			LC
212			min	001	2	013	4	0	15	8.866e-6		7115.925	4	NC	1
213		12	max	.002	3	003	15	.004	1	2.696e-4	_1_	NC	2	NC	1
214			min	002	2	013	4	0	15	9.807e-6	15	7324.356	4	NC	1
215		13	max	.002	3	003	15	.004	1_	2.954e-4	_1_	NC	_1_	NC	1
216			min	002	2	012	4	0	15	1.075e-5	15	7819.346	4	NC	1
217		14	max	.003	3	003	15	.005	1_	3.213e-4	_1_	NC	_1_	NC	1
218			min	002	2	011	4	0	15	1.169e-5	<u> 15</u>	8712.023	4_	NC	1
219		15	max	.003	3	002	15	.005	1_	3.472e-4	_1_	NC	_1_	NC	1
220			min	002	2	009	4	0	15	1.263e-5	15	NC	1_	NC	1
221		16	max	.003	3	002	15	.006	1_	3.731e-4	_1_	NC	_1_	NC	1_
222			min	002	2	008	1	0	15	1.357e-5	15	NC	1	NC	1
223		17	max	.003	3	001	15	.007	1	3.989e-4	_1_	NC	_1_	NC	1
224			min	002	2	006	1	0	15	1.451e-5	15	NC	1_	NC	1
225		18	max	.003	3	0	15	.007	1	4.248e-4	1_	NC	1_	NC	1
226			min	002	2	005	1	0	15	1.546e-5	15	NC	1_	NC	1
227		19	max	.004	3	0	15	.008	1_	4.507e-4	_1_	NC	_1_	NC	1
228			min	003	2	003	1	0	15	1.64e-5	15	NC	1_	NC	1
229	M4	1	max	.003	1	.002	2	0	15	2.056e-5	<u>1</u>	NC	_1_	NC	3
230			min	0	3	004	3	008	1	7.573e-7	15	NC	1	3063.347	1
231		2	max	.003	1	.002	2	0	15	2.056e-5	1_	NC	1_	NC	3
232			min	0	3	003	3	007	1	7.573e-7	15	NC	1	3334.183	1
233		3	max	.002	1	.002	2	0	15	2.056e-5	_1_	NC	_1_	NC	3
234			min	0	3	003	3	007	1	7.573e-7	15	NC	1	3656.349	1
235		4	max	.002	1	.002	2	0	15	2.056e-5	1	NC	1	NC	2
236			min	0	3	003	3	006	1	7.573e-7	15	NC	1	4043.211	1
237		5	max	.002	1	.002	2	0	15	2.056e-5	1	NC	1	NC	2
238			min	0	3	003	3	005	1	7.573e-7	15	NC	1	4512.931	1
239		6	max	.002	1	.001	2	0	15	2.056e-5	1	NC	1	NC	2
240			min	0	3	003	3	005	1	7.573e-7	15	NC	1	5090.694	1
241		7	max	.002	1	.001	2	0	15	2.056e-5	1	NC	1	NC	2
242			min	0	3	002	3	004	1	7.573e-7	15	NC	1	5812.255	1
243		8	max	.002	1	.001	2	0	15	2.056e-5	1	NC	1	NC	2
244			min	0	3	002	3	004	1	7.573e-7	15	NC	1	6729.761	1
245		9	max	.002	1	.001	2	0	15	2.056e-5	1	NC	1	NC	2
246			min	0	3	002	3	003	1	7.573e-7	15	NC	1	7921.725	1
247		10	max	.001	1	.001	2	0	15	2.056e-5	1	NC	1	NC	2
248			min	0	3	002	3	003	1	7.573e-7	15	NC	1	9510.893	1
249		11	max	.001	1	0	2	0	15	2.056e-5	1	NC	1	NC	1
250			min	0	3	002	3	002	1	7.573e-7	15	NC	1	NC	1
251		12	max	.001	1	0	2	0	15	2.056e-5	1	NC	1	NC	1
252			min	0	3	001	3	002	1	7.573e-7	15	NC	1	NC	1
253		13	max	0	1	0	2	0	15	2.056e-5	1	NC	1	NC	1
254			min	0	3	001	3	001	1	7.573e-7	15	NC	1	NC	1
255		14	max	0	1	0	2	0	15	2.056e-5	1	NC	1	NC	1
256			min	0	3	001	3	0	1	7.573e-7	15	NC	1	NC	1
257		15	max	0	1	0	2	0	15	2.056e-5	1	NC	1	NC	1
258			min	0	3	0	3	0	1	7.573e-7	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15		1	NC	1	NC	1
260			min	0	3	0	3	0	1	7.573e-7	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	2.056e-5	1	NC	1	NC	1
262			min	0	3	0	3	0	1	7.573e-7	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	2.056e-5	1	NC	1	NC	1
264			min	0	3	0	3	0	1	7.573e-7	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	2.056e-5	1	NC	1	NC	1
266			min	0	1	0	1	0	1	7.573e-7	15	NC	1	NC	1
267	M6	1	max	.018	1	.013	2	0	1	0	1	NC	3	NC	1
268			min	015	3	019	3	0	1	0	1	4142.076	2	NC	1
				1010	_	1010	_				-		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

269		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
271	269		2	max	.017			2	0	1	0	_1_		3	NC	1
272				min					0							1
273			3_						_							
274																
275			4													-
276			-													
277			5													
278									<u> </u>							
279			ь								_					
280			7									•				
281			+													
282			0													
283			0						_							1
284			0													1
285			1 3													-
286			10									_		_		
288			10													
288			11					1	<u> </u>							
1289																
290			12							1		_		_		
291			<u> </u>							1		1				
292			13						0	1		1		1		1
293									0	1		1		1		1
294			14						0	1		1		1		1
296						3	006	3	0	1		1		1		1
297	295		15	max	.004	1	0	2	0	1	0	1	NC	1	NC	1
17 18 17 18 18 19 19 19 19 19 19	296			min	003	3	005	3	0	1	0	1	NC	1	NC	1
17	297		16	max	.003		0	2	0	1	0	1	NC	1	NC	1
300				min		3	003		0	1		1		1		1
301			17	max												
302				min												
303			18						_							1
304																1
305			19			-		-								-
306		2.47										_		_		
307		<u> </u>	1		-		-		-		_					
308									<u> </u>			•		•		
309 3 max .001 3 0 15 0 1 0 1 NC 1 NC 1 310 min001 2004 3 0 1 0 1 NC 1 NC 1 311 4 max .002 3001 15 0 1 0 1 NC 1 NC 1 NC 1 312 min002 2006 3 0 1 0 1 NC 1 NC 1 NC 1 NC 1 313 5 max .003 3002 15 0 1 0 1 NC 1 NC 1 NC 1 314 min002 2007 3 0 1 0 1 NC 1 NC 1 NC 1 NC 1 315 6 max .003 3002 15 0 1 0 1 NC 1 NC 1 NC 1 316 min003 2009 4 0 1 0 1 NC 1 NC 1 NC 1 317 7 max .004 3002 15 0 1 0 1 NC 1 NC 1 NC 1 318 min004 201 4 0 1 0 1 NC 1 NC 1 NC 1 320 min004 2012 4 0 1 0 1 NC 1 NC 1 NC 1 321 9 max .005 3003 15 0 1 0 1 NC 1 NC 1			2		-											_
310			2					3 1E				_		_		
311 4 max .002 3 001 15 0 1 0 1 NC 1 NC 1 312 min 002 2 006 3 0 1 0 1 NC 1 NC 1 313 5 max .003 3 002 15 0 1 0 1 NC 1 NC 1 314 min 002 2 007 3 0 1 0 1 NC 1 NC 1 315 6 max .003 3 002 15 0 1 0 1 NC 1 NC 1 316 min 003 2 009 4 0 1 0 1 NC 1 NC 1 317 7 max .004 3 002 15 0 1			3													
312 min 002 2 006 3 0 1 0 1 NC 1 NC 1 313 5 max .003 3 002 15 0 1 0 1 NC 1 NC 1 314 min 002 2 007 3 0 1 0 1 NC 1 NC 1 315 6 max .003 3 002 15 0 1 0 1 NC 1 NC 1 316 min 003 2 009 4 0 1 0 1 NC 1 NC 1 317 7 max .004 3 002 15 0 1 0 1 NC 1 NC 1 318 min 004 2 01 4 0 1 0			1													
313 5 max .003 3 002 15 0 1 0 1 NC 1 NC 1 314 min 002 2 007 3 0 1 0 1 NC 1 NC 1 315 6 max .003 3 002 15 0 1 0 1 NC 1 NC 1 316 min 003 2 009 4 0 1 0 1 NC 1 NC 1 317 7 max .004 3 002 15 0 1 0 1 NC 1 NC 1 318 min 004 2 01 4 0 1 0 1 NC 1 NC 1 319 8 max .004 3 003 15 0 1			4													
314 min 002 2 007 3 0 1 0 1 NC 1 NC 1 315 6 max .003 3 002 15 0 1 0 1 NC 1 NC 1 316 min 003 2 009 4 0 1 0 1 NC 1 NC 1 317 7 max .004 3 002 15 0 1 0 1 NC 1 NC 1 318 min 004 2 01 4 0 1 0 1 9173.396 4 NC 1 319 8 max .004 3 003 15 0 1 0 1 NC 1 NC 1 320 min 004 2 012 4 0 1 0 </td <td></td> <td></td> <td>5</td> <td></td> <td>_</td> <td></td> <td></td>			5											_		
315 6 max .003 3 002 15 0 1 0 1 NC 1 NC 1 316 min 003 2 009 4 0 1 0 1 NC 1 NC 1 317 7 max .004 3 002 15 0 1 0 1 NC 1 NC 1 318 min 004 2 01 4 0 1 0 1 9173.396 4 NC 1 319 8 max .004 3 003 15 0 1 0 1 NC 1 NC 1 320 min 004 2 012 4 0 1 0 1 NC 1 NC 1 321 9 max .005 3 003 15 0 1 </td <td></td> <td></td> <td> 5</td> <td></td>			5													
316 min 003 2 009 4 0 1 0 1 NC 1 NC 1 317 7 max .004 3 002 15 0 1 0 1 NC 1 NC 1 318 min 004 2 01 4 0 1 0 1 9173.396 4 NC 1 319 8 max .004 3 003 15 0 1 0 1 NC 1 NC 1 320 min 004 2 012 4 0 1 0 1 8190.615 4 NC 1 321 9 max .005 3 003 15 0 1 0 1 NC 1 NC 1 322 min 005 2 013 4 0 1 <			6									•		_		
317 7 max .004 3 002 15 0 1 0 1 NC 1 NC 1 318 min 004 2 01 4 0 1 0 1 9173.396 4 NC 1 319 8 max .004 3 003 15 0 1 0 1 NC 1 NC 1 320 min 004 2 012 4 0 1 0 1 8190.615 4 NC 1 321 9 max .005 3 003 15 0 1 0 1 NC 1 NC 1 322 min 005 2 013 4 0 1 0 1 NC 1 NC 1 323 10 max .006 3 003 15 0 1 0 1 NC 1 NC 1																
318 min 004 2 01 4 0 1 0 1 9173.396 4 NC 1 319 8 max .004 3 003 15 0 1 0 1 NC 1 NC 1 320 min 004 2 012 4 0 1 0 1 8190.615 4 NC 1 321 9 max .005 3 003 15 0 1 0 1 NC 1 NC 1 322 min 005 2 013 4 0 1 0 1 7604.59 4 NC 1 323 10 max .006 3 003 15 0 1 0 1 NC 1 NC 1			7											•		
319 8 max .004 3 003 15 0 1 0 1 NC 1 NC 1 320 min 004 2 012 4 0 1 0 1 8190.615 4 NC 1 321 9 max .005 3 003 15 0 1 0 1 NC 1 NC 1 322 min 005 2 013 4 0 1 0 1 7604.59 4 NC 1 323 10 max .006 3 003 15 0 1 0 1 NC 1 NC 1										-						
320 min 004 2 012 4 0 1 0 1 8190.615 4 NC 1 321 9 max .005 3 003 15 0 1 0 1 NC 1 NC 1 322 min 005 2 013 4 0 1 0 1 7604.59 4 NC 1 323 10 max .006 3 003 15 0 1 0 1 NC 1 NC 1			8									_		•		•
321 9 max .005 3 003 15 0 1 0 1 NC 1 NC 1 322 min 005 2 013 4 0 1 0 1 7604.59 4 NC 1 323 10 max .006 3 003 15 0 1 0 1 NC 1 NC 1																
322 min 005 2 013 4 0 1 0 1 7604.59 4 NC 1 323 10 max .006 3 003 15 0 1 0 1 NC 1 NC 1			9													
323 10 max .006 3003 15 0 1 0 1 NC 1 NC 1			Ĭ						_							
			10							1						
										1						
325 11 max .006 3003 15 0 1 0 1 NC 1 NC 1			11						0	1		1		1		1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
326			min	006	2	013	4	0	1	0	1	7268.24	4	NC	1
327		12	max	.007	3	003	15	0	1	0	1_	NC	1	NC	1
328			min	007	2	013	4	0	1	0	1	7473.548	4	NC	1
329		13	max	.008	3	003	15	00	1	0	_1_	NC	_1_	NC	1
330			min	007	2	012	4	0	1	0	1	7971.854	4	NC	1
331		14	max	.008	3	003	15	0	1	0	1_	NC	1_	NC	1
332			min	008	2	011	4	0	1	0	1	8875.697	4	NC	1
333		15	max	.009	3	002	15	0	1	0	1	NC	1	NC	1
334			min	009	2	011	1	0	1	0	1	NC	1	NC	1
335		16	max	.01	3	002	15	0	1	0	1	NC	1	NC	1
336			min	009	2	01	1	0	1	0	1	NC	1	NC	1
337		17	max	.01	3	001	15	0	1	0	1	NC	1	NC	1
338			min	01	2	009	1	0	1	0	1	NC	1	NC	1
339		18	max	.011	3	0	15	0	1	0	1	NC	1	NC	1
340			min	01	2	008	1	0	1	0	1	NC	1	NC	1
341		19	max	.011	3	0	15	0	1	0	1	NC	1	NC	1
342			min	011	2	006	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.01	2	0	1	0	1	NC	1	NC	1
344			min	001	3	011	3	0	1	0	1	NC	1	NC	1
345		2	max	.007	1	.009	2	0	1	0	1	NC	1	NC	1
346		_	min	001	3	011	3	0	1	0	1	NC	1	NC	1
347		3	max	.007	1	.009	2	0	1	0	1	NC	1	NC	1
348			min	001	3	01	3	0	1	0	1	NC	1	NC	1
349		4	max	.007	1	.008	2	0	1	0	1	NC	1	NC	1
350			min	001	3	01	3	0	1	0	1	NC	1	NC	1
351		5	max	.006	1	.007	2	0	1	0	1	NC	1	NC	1
352			min	001	3	009	3	0	1	0	1	NC	1	NC	1
353		6	max	.006	1	.007	2	0	1	0	1	NC	1	NC	1
354		 	min	001	3	008	3	0	1	0	1	NC	1	NC	1
355		7	max	.005	1	.006	2	0	1	0	1	NC	1	NC	1
356			min	0	3	008	3	0	1	0	1	NC	1	NC	1
357		8	max	.005	1	.006	2	0	1	0	1	NC	1	NC	1
358		- 0	min	0	3	007	3	0	1	0	1	NC NC	1	NC	1
359		9	max	.004	1	.005	2	0	1	0	1	NC	1	NC	1
360		9	min	0	3	006	3	0	1	0	1	NC	1	NC	1
361		10		.004	1	.005	2	0	1		+	NC NC	1	NC	1
		10	max		3				1	0			1		
362		11	min	003		006	3	0	1	0	1	NC NC		NC NC	1
363		11	max	.003	1	.004	2	0	1	0	1		1	NC NC	1
364		40	min	0	3	005	3	0	-	0	1_	NC NC	_	NC NC	1
365		12	max	.003	1	.004	2	0	1	0	1	NC NC	1	NC NC	1
366		40	min	0	3	004	3	0	1	0	1	NC NC	1	NC NC	
367		13	max	.003	1	.003	2	0	1	0	1	NC NC	1	NC NC	1
368		4.4	min	0	3	004	3	0	1	0	1_	NC NC	1_	NC NC	1
369		14	max	.002	1	.003	2	0	1	0	1_	NC	1_	NC	1
370		4-	min	0	3	003	3	0	1	0	1_	NC NC	1_	NC	1
371		15	max	.002	1	.002	2	0	1	0	1	NC	1	NC	1
372		4 -	min	0	3	003	3	0	1	0	1_	NC	1	NC	1
373		16	max	.001	1	.002	2	0	1	0	_1_	NC	1_	NC	1
374			min	0	3	002	3	0	1	0	1_	NC	1	NC	1
375		17	max	0	1	.001	2	0	1	0	_1_	NC	1	NC	1
376			min	0	3	001	3	0	1	0	1	NC	1_	NC	1
377		18	max	0	1	0	2	0	1	0	_1_	NC	_1_	NC	1
378			min	0	3	0	3	0	1	0	1	NC	1_	NC	1
379		19	max	0	1	00	1	0	1	0	1_	NC	1	NC	1
380			min	0	1	0	1	0	1	0	1_	NC	1	NC	1
381	M10	1	max	.006	1	.003	2	0	15	2.29e-4	_1_	NC	_1_	NC	2
382			min	005	3	006	3	008	1	8.339e-6	15	NC	1	6514.932	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				
383		2	max	.005	1	.002	2	0	15	2.136e-4	_1_	NC	_1_	NC	2
384			min	004	3	006	3	008	1	7.779e-6	15	NC	1_	7106.8	1
385		3	max	.005	1	.002	2	0	15		_1_	NC	_1_	NC	2
386			min	004	3	006	3	007	1	7.219e-6	15	NC	1_	7812.396	1
387		4	max	.005	1	.001	2	0	15	1.828e-4	_1_	NC	_1_	NC	2
388			min	004	3	006	3	006	1	6.659e-6	15	NC	1_	8661.936	
389		5	max	.004	1	0	2	0	15	1.674e-4	_1_	NC	_1_	NC	2
390			min	004	3	005	3	006	1	6.099e-6	15	NC	1_	9696.692	1
391		6	max	.004	1	0	2	0	15	1.52e-4	_1_	NC	_1_	NC	1
392			min	003	3	005	3	<u>005</u>	1	5.539e-6	15	NC	1_	NC	1
393		7	max	.004	1	0	2	0	15	1.367e-4	_1_	NC	1	NC	1
394			min	003	3	005	3	004	1	4.979e-6	15	NC	1_	NC	1
395		8	max	.003	1	0	2	0	15		_1_	NC	1_	NC NC	1
396			min	003	3	005	3	004	1	4.419e-6	15	NC	1_	NC	1
397		9	max	.003	1	0	15	0	15	1.059e-4	1_	NC	1_	NC	1
398		40	min	003	3	005	3	003	1_	3.859e-6	15	NC	1_	NC	1
399		10	max	.003	1	0	15	0	15	9.05e-5	1_	NC	1	NC NC	1
400		4.4	min	002	3	004	3	003	1	3.299e-6	15	NC NC	1_	NC NC	1
401		11	max	.002	1	0	15	0	15	7.511e-5	1_	NC		NC NC	1
402		40	min	002	3	004	3	002	1	2.739e-6	<u>15</u>	NC NC	1_	NC NC	1
403		12	max	.002	1	0	15	0	15	5.973e-5	1_	NC NC	1	NC NC	1
404		40	min	002	3	004	3	002	1	2.179e-6	15	NC NC	1_	NC NC	1
405		13	max	.002	1	0	15	0	15	4.434e-5	1_	NC NC	1	NC NC	1
406		4.4	min	002	3	003	3	001	1	1.619e-6	15	NC NC	1_	NC NC	1
407		14	max	.002	1	0	15	0	15	2.896e-5	1_	NC NC	<u>1</u> 1	NC NC	1
408		4.5	min	001	3	003	3	0	1	1.059e-6	<u>15</u>	NC NC		NC NC	
409		15	max	.001	3	0	15	0	15	1.357e-5	1_	NC NC	1_	NC NC	1
410		4.0	min	<u>001</u>		003	4	0	1	4.988e-7	<u>15</u>	NC NC	1_	NC NC	1
411		16	max	0	1	0	15	0	15		3	NC NC	<u>1</u> 1	NC NC	1
412		17	min	<u> </u>	3	002 0	15	<u> </u>	15	-1.813e-6 -5.503e-7	<u>1</u> 12	NC NC	1	NC NC	1
414		17	max	0	3	001	4	0	1	-1.72e-5	1	NC NC	1	NC NC	1
415		18	min	0	1	<u>001</u> 0	15	0	15	-1.72e-5 -1.181e-6	15	NC NC	1	NC NC	1
416		10	max min	0	3	0	4	0	1	-3.258e-5	10	NC NC	1	NC NC	1
417		19		0	1	0	1	0	1	-1.741e-6	15	NC	1	NC	1
418		19	max min	0	1	0	1	0	1	-4.797e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.509e-5	1	NC	1	NC	1
420	IVIII		min	0	1	0	1	0	1	5.479e-7	15	NC	1	NC	1
421		2	max	0	3	0	15	0	15	-3.935e-7	15	NC	1	NC	1
422			min	0	2	002	4	0	1	-1.079e-5	1	NC	1	NC	1
423		3	max	0	3	0	15	0		-1.335e-6			1	NC	1
424			min	0	2	003	4	0	1	-3.667e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0		-2.276e-6		NC	1	NC	1
426			min	0	2	005	4	0	1	-6.254e-5	1	NC	1	NC	1
427		5	max	0	3	002	15	0	15	-3.218e-6	•	NC	1	NC	1
428			min	0	2	007	4	001	1	-8.842e-5	1	NC	1	NC	1
429		6	max	.001	3	002	15	0		-4.159e-6	•	NC	1	NC	1
430			min	0	2	009	4	001	1	-1.143e-4	1	NC	1	NC	1
431		7	max	.001	3	002	15	0	15		15	NC	1	NC	1
432			min	0	2	01	4	002	1	-1.402e-4	1	8923.064	4	NC	1
433		8	max	.001	3	003	15	0	15		•	NC	1	NC	1
434			min	0	2	012	4	002	1	-1.66e-4	1	7983.869	4	NC	1
435		9	max	.002	3	003	15	0	15			NC	2	NC	1
436			min	001	2	013	4	002	1	-1.919e-4	1	7425.501	4	NC	1
437		10	max	.002	3	003	15	0	15		15	NC	3	NC	1
438			min	001	2	013	4	003	1	-2.178e-4	1	7149.826	4	NC	1
439		11	max	.002	3	003	15	0	15	-8.866e-6	15	NC	3	NC	1
													_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
440			min	001	2	013	4	003	1	-2.437e-4	1	7115.925	4	NC	1
441		12	max	.002	3	003	15	0	15		15	NC	2	NC	1
442			min	002	2	013	4	004	1	-2.696e-4	1_	7324.356	4	NC	1
443		13	max	.002	3	003	15	0	15		15	NC	_1_	NC	1
444			min	002	2	012	4	004	1	-2.954e-4	1_	7819.346	4_	NC	1
445		14	max	.003	3	003	15	0	15		<u>15</u>	NC 0740,000	1	NC NC	1
446		45	min	002	2	011	4	005	1	-3.213e-4	1_	8712.023	4	NC NC	1
447		15	max	.003	3	002	15	0	15		<u>15</u>	NC NC	1_	NC NC	1
448		40	min	002	2	009	4	005	1	-3.472e-4	1_	NC NC	1_	NC NC	1
449		16	max	.003	3	002 008	15	0 006	15	-1.357e-5	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
450 451		17	min	002 .003	3		15	<u>006</u> 0	15	-3.731e-4 -1.451e-5	1_	NC NC	1	NC NC	1
451		11/	max	002	2	001 006	1	007	1	-3.989e-4	<u>15</u>	NC NC	1	NC NC	1
452		18	max	.002	3	<u>006</u> 0	15	<u>007</u> 0	15		<u>1</u> 15	NC NC	1	NC NC	1
454		10	min	002	2	005	1	007	1	-4.248e-4	1	NC	1	NC	1
455		19	max	.004	3	<u>005</u> 0	15	<u>007</u> 0	15	-1.64e-5	15	NC	1	NC	1
456		13	min	003	2	003	1	008	1	-4.507e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.002	2	.008	1	-7.573e-7	15	NC	1	NC	3
458	IVIIZ		min	0	3	004	3	0	15		1	NC	1	3063.347	1
459		2	max	.003	1	.002	2	.007	1	-7.573e-7	15	NC	1	NC	3
460		_	min	0	3	003	3	0	15	-2.056e-5	1	NC	1	3334.183	1
461		3	max	.002	1	.002	2	.007	1	-7.573e-7	15	NC	1	NC	3
462			min	0	3	003	3	0	15	-2.056e-5	1	NC	1	3656.349	1
463		4	max	.002	1	.002	2	.006	1	-7.573e-7	15	NC	1	NC	2
464			min	0	3	003	3	0	15	-2.056e-5	1	NC	1	4043.211	1
465		5	max	.002	1	.002	2	.005	1	-7.573e-7	15	NC	1	NC	2
466			min	0	3	003	3	0	15	-2.056e-5	1	NC	1	4512.931	1
467		6	max	.002	1	.001	2	.005	1	-7.573e-7	15	NC	1	NC	2
468			min	0	3	003	3	0	15	-2.056e-5	1	NC	1	5090.694	1
469		7	max	.002	1	.001	2	.004	1	-7.573e-7	<u>15</u>	NC	1_	NC	2
470			min	0	3	002	3	0	15	-2.056e-5	1_	NC	1	5812.255	
471		8	max	.002	1	.001	2	.004	1	-7.573e-7	15	NC	_1_	NC	2
472			min	0	3	002	3	0	15	-2.056e-5	1_	NC	1_	6729.761	1
473		9	max	.002	1	.001	2	.003	1	-7.573e-7	<u>15</u>	NC	_1_	NC	2
474			min	0	3	002	3	0	15	-2.056e-5	_1_	NC	_1_	7921.725	1
475		10	max	.001	1	.001	2	.003	1	-7.573e-7	<u>15</u>	NC	_1_	NC	2
476			min	0	3	002	3	0	15	-2.056e-5	_1_	NC	1_	9510.893	1
477		11	max	.001	1	0	2	.002	1	-7.573e-7	<u>15</u>	NC	1_	NC NC	1
478		40	min	0	3	002	3	0	15		1_	NC	_1_	NC NC	1
479		12	max	.001	1	0	2	.002	1	-7.573e-7	<u>15</u>	NC	1_	NC NC	1
480		40	min		3	001	3	0		-2.056e-5		NC NC	1	NC NC	1
481		13	max	0	3	0	2	.001	1	-7.573e-7		NC NC	1	NC NC	1
482		1.1	min	0	1	<u>001</u>	2	0		-2.056e-5	1_	NC NC	<u>1</u> 1	NC NC	1
483 484		14	max	<u> </u>	3	0 001	3	0 0	1 15	-7.573e-7 -2.056e-5	<u>15</u> 1	NC NC	1	NC NC	1
485		15	min	0	1	<u>001</u> 0	2	0	1	-2.030e-3 -7.573e-7	15	NC NC	1	NC NC	1
486		10	max min	0	3	0	3	0	15		1	NC	1	NC	1
487		16	max	0	1	0	2	0	1	-7.573e-7		NC	1	NC	1
488		10	min	0	3	0	3	0	15		1	NC	1	NC	1
489		17		0	1	0	2	0	1	-7.573e-7	15	NC	1	NC	1
490		17	max min	0	3	0	3	0	15		15 1	NC NC	1	NC NC	1
491		18	max	0	1	0	2	0	1	-7.573e-7	15	NC	1	NC	1
492		10	min	0	3	0	3	0	15	-2.056e-5	1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-7.573e-7		NC	1	NC	1
494		1.5	min	0	1	0	1	0	1	-2.056e-5	1	NC	1	NC	1
495	M1	1	max	.005	3	.101	1	.001	1	1.752e-2	1	NC	1	NC	1
496			min	002	2	01	3	0	15		3	NC	1	NC	1
				1002	_				- 10	11000 2			_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio L			LC
497		2	max	.005	3	.05	1	0	15	8.517e-3	_1_			<u>VC</u>	1
498			min	002	2	005	3	006	1	-9.647e-3	3	2223.036		NC	1
499		3	max	.005	3	.006	3	0	15	1.367e-5	10			NC	1
500			min	002	2	006	1	009	1	-1.729e-4	1	1062.676		NC	1
501		4	max	.004	3	.027	3	0	15	4.719e-3	_1_			NC	1
502			min	002	2	071	1	008	1	-3.431e-3	3	663.178		<u>VC</u>	1
503		5	max	.004	3	.053	3	0	15	9.611e-3	1_			VC	1
504			min	002	2	14	1	005	1	-6.767e-3	3	474.044		VC	1
505		6	max	.004	3	.082	3	0	15	1.45e-2	1_		5 I	VC	1_
506			min	001	2	207	1	002	1	-1.01e-2	3	370.616	1 1	VC	1
507		7	max	.004	3	.111	3	0	1	1.939e-2	1	9674.843 1	5 I	NC	1
508			min	001	2	267	1	0	12	-1.344e-2	3	309.933	1 1	VC	1
509		8	max	.004	3	.134	3	0	1	2.429e-2	1	8592.37 1	5 I	VC	1
510			min	001	2	316	1	0	15	-1.677e-2	3	274.199	1 1	VC	1
511		9	max	.004	3	.15	3	0	15	2.671e-2	1	8028.295 1	5 I	NC	1
512			min	001	2	346	1	0	1	-1.678e-2	3	255.655	1 1	NC	1
513		10	max	.004	3	.155	3	0	1	2.75e-2	1	7856.573 1	5 I	NC	1
514			min	001	2	356	1	0	12	-1.458e-2	3	250.097	1 1	VC	1
515		11	max	.004	3	.152	3	0	1	2.829e-2	1		5 I	NC .	1
516			min	001	2	346	1	0	15	-1.238e-2	3	255.942		NC	1
517		12	max	.004	3	.139	3	0	15	2.668e-2	1			NC	1
518			min	001	2	315	1	001	1	-1.024e-2	3	275.098		VC	1
519		13	max	.004	3	.118	3	0	15	2.146e-2	1			NC	1
520			min	001	2	266	1	0	1	-8.199e-3	3	312.168		NC	1
521		14	max	.004	3	.092	3	.002	1	1.624e-2	1			NC	1
522			min	001	2	204	1	0	15	-6.154e-3	3	375.444		NC	1
523		15	max	.004	3	.062	3	.005	1	1.102e-2	1			NC	1
524			min	001	2	136	1	0	15	-4.109e-3	3	484.047		NC	1
525		16	max	.003	3	.031	3	.008	1	5.794e-3	1			VC	1
526		10	min	001	2	067	1	0	15	-2.064e-3	3	684.357		VC	1
527		17	max	.003	3	.002	3	.008	1	5.718e-4	1			VC	1
528			min	001	2	004	2	0	15	-1.87e-5	3	1110.824		VC	1
529		18	max	.003	3	.05	1	.006	1	1.017e-2	1			VC	1
530		10	min	001	2	024	3	0	15	-3.293e-3	3	2345.703		VC	1
531		19	max	.003	3	.099	1	0	15	2.011e-2	1	NC -		VC	1
532		13	min	001	2	048	3	001	1	-6.692e-3	3	NC -		VC	1
533	M5	1	max	.014	3	.243	1	0	1	0	1	NC -		VC	1
534	IVIO		min	009	2	013	3	0	1	0	1	NC -		VC	1
535		2	max	.014	3	.119	1	0	1	0	1			VC	1
536			min	009	2	005	3	0	1	0	1	918.862		VC VC	1
537		3	max	.014	3	.021	3	0	1	0	1			VC	1
538		٦	min	009	2	023	1	0	1	0	1			VC VC	1
539		4		.014	3	023 .077	3	0	1	0	1			VC	1
540		4	max	009	2	195	1	0	1	0	1			NC NC	1
541		E			3		3		1		1				1
		5	max	.014		.154	1	0	1	0	1			VC	1
542		e	min	009	2	383		0		0		.02.000		VC	-
543		6	max	.013	3	.242	3	0	1	0	1			NC NC	1
544		-	min	008	2	<u>571</u>	1	0	1	0	1_	140.226		NC NC	1
545		7	max	.013	3	.327	3	0	1	0	1			VC	1
546		_	min	008	2	742	1	0	1	0	1_	115.919		<u>VC</u>	1
547		8	max	.013	3	.399	3	0	1	0	1			VC	1
548			min	008	2	<u>879</u>	1	0	1	0	1_			VC	1
549		9	max	.013	3	.445	3	0	1	0	1			VC	1
550			min	008	2	965	1	0	1	0	1_	94.541		VC	1
551		10	max	.012	3	.462	3	0	1	0	1			VC	1
552			min	008	2	994	1	0	1	0	<u>1</u>	0=:00=		VC	1
553		11	max	.012	3	.451	3	0	1	0	1_	3324.174 1	5 I	VC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
554			min	008	2	964	1	0	1	0	1	94.657	1	NC	1
555		12	max	.012	3	.412	3	0	1	0	1	3577.253	15	NC	1
556			min	007	2	876	1	0	1	0	1	102.168	1	NC	1
557		13	max	.011	3	.349	3	0	1	0	1		15	NC	1
558			min	007	2	736	1	0	1	0	1	116.914	1	NC	1
559		14	max	.011	3	.269	3	0	1	0	1		15	NC	1
560			min	007	2	561	1	0	1	0	1	142.463	1	NC	1
561		15	max	.011	3	.181	3	0	1	0	1		15	NC	1
562		10	min	007	2	371	1	0	1	0	1	187.153	1	NC	1
563		16	max	.011	3	.091	3	0	1	0	1		15	NC	1
564		10	min	007	2	182	1	0	1	0	1	271.584	1	NC NC	1
565		17		.01	3	.007	3	0	1	0	1		15	NC	1
		17	max						1						
566		40	min	007	2	012	1	0	-	0	1_	455.866	1_	NC NC	1
567		18	max	.01	3	.122	1	0	1	0	1	NC 000.004	5	NC NC	1
568		10	min	007	2	065	3	0	1	0	1_	988.984	1_	NC	1
569		19	max	.01	3	.237	1	0	1	0	1	NC	1_	NC NC	1
570			min	007	2	13	3	0	1_	0	1_	NC	1_	NC	1
571	<u>M9</u>	1	max	.005	3	.101	1	0	15	1.95e-2	3	NC	1_	NC	1
572			min	002	2	01	3	001	1	-1.752e-2	1_	NC	1	NC	1
573		2	max	.005	3	.05	1	.006	1	9.647e-3	3_	NC	3	NC	1
574			min	002	2	005	3	0	15	-8.517e-3	1_	2223.036	1	NC	1
575		3	max	.005	3	.006	3	.009	1	1.729e-4	1_	NC	5	NC	1
576			min	002	2	006	1	0	15	-1.367e-5	10	1062.676	1	NC	1
577		4	max	.004	3	.027	3	.008	1	3.431e-3	3	NC	5	NC	1
578			min	002	2	071	1	0	15	-4.719e-3	1	663.178	1	NC	1
579		5	max	.004	3	.053	3	.005	1	6.767e-3	3	NC	15	NC	1
580			min	002	2	14	1	0	15	-9.611e-3	1	474.044	1	NC	1
581		6	max	.004	3	.082	3	.002	1	1.01e-2	3		15	NC	1
582			min	001	2	207	1	0	15	-1.45e-2	1	370.616	1	NC	1
583		7	max	.004	3	.111	3	0	12	1.344e-2	3		15	NC	1
584		1	min	001	2	267	1	0	1	-1.939e-2	1	309.933	1	NC	1
585		8	max	.004	3	.134	3	0	15	1.677e-2	3		15	NC	1
586		—	min	001	2	316	1	0	1	-2.429e-2	1	274.199	1	NC	1
587		9	max	.004	3	.15	3	0	1	1.678e-2	3		15	NC	1
588		-	min	001	2	346	1	0	15	-2.671e-2	1	255.655	1	NC NC	1
589		10	max	.004	3	.155	3	0	12	1.458e-2	3		15	NC	1
590		10	min	001	2	356	1	0	1	-2.75e-2	1	250.097	1	NC NC	1
		11			3		3								
591		11	max	.004		.152		0	15	1.238e-2	3		<u>15</u>	NC NC	1
592		10	min	001	2	346	1	0	1 1	-2.829e-2	1	255.942	1_	NC NC	1
593		12	max	.004	3	.139	3	001	1	1.024e-2	3		<u>15</u>	NC NC	1
594		40	min		2	315	1	0		-2.668e-2			1_	NC NC	1
595		13	max	.004	3	.118	3	0	11	8.199e-3	3		15	NC NC	1
596			min	001	2	266	1	0		-2.146e-2	1_	312.168	1_	NC NC	1
597		14	max	.004	3	.092	3	0	15		3		15	NC	1
598			min	001	2	204	1	002	1	-1.624e-2	_1_	375.444	1_	NC	1
599		15	max	.004	3	.062	3	0	15	4.109e-3	3		15	NC	1
600			min	001	2	136	1	005	1	-1.102e-2	1	484.047	1_	NC	1
601		16	max	.003	3	.031	3	0	15	2.064e-3	3	NC	5	NC	1
602			min	001	2	067	1	008	1	-5.794e-3	1	684.357	1	NC	1
603		17	max	.003	3	.002	3	0	15	1.87e-5	3	NC	5	NC	1
604			min	001	2	004	2	008	1	-5.718e-4	1	1110.824	1	NC	1
605		18	max	.003	3	.05	1	0	15	3.293e-3	3	NC	4	NC	1
606			min	001	2	024	3	006	1	-1.017e-2	1	2345.703	1	NC	1
607		19	max	.003	3	.099	1	.001	1	6.692e-3	3	NC	1	NC	1
608		1	min	001	2	048	3	0		-2.011e-2	1	NC	1	NC	1
					_	.0.10							-		

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.