

Final Project Announcement

Project Logistics

- 3 students per team (1,2,3)
- 3 projects (a,b,c)
- 3 jobs
 - Requirement (R)
 - Development (D)
 - Validation (V)
- Student 1: a.R+b.D+c.V
- Student 2: b.R+c.D+a.V
- Student 3: c.R+a.D+b.V

Projects

1. Elevator

- 2. Vending Machine
- 3. Railway Control Center

Elevator

- A building with 3 floors and one basement
- 2 elevators (should be coordinated)
 - Only one elevator can reach basement (-1)
- User Interface
 - Button panels and display inside each elevator
 - Button panels and display on each floor
- Sensors
 - Door fully open, door closed (true/false)
 - Elevator move by the sensor (true/false)
- Controller actions
 - Open door, close door, move up, move down, stop
- Physical Environment
 - Door movements, acceleration, deceleration all take time

Vending Machine

- Interface
 - User Interface
 - Coin insert
 - Cash insert
 - Maintenance interface
- Sensors
 - Fake coin/cash
 - No merchandise
- Physical Environment
 - Coin/cash container
 - Merchandise

Railway Control Center

Railway

One direction, one rail

Station

- Multiple rails with switches at entry and exit
- Switching among rails takes time

Locomotives

- Type: G, D and K
- Status: Stopped, accelerating, decelerating, cruising speed, maximum speed
- Deadline: accumulated delay must be within certain value

Controller

- To the locomotives: Stop at the next section, accelerate to cruising speed, accelerate to maximum speed
- To the switches: Switch to rail i

• User Interface

- Display current status
- Manually send commands

Railway Control Center (cont.)

- Input
 - A schedule
 - A layout
- Design an automated control algorithm that ensures
 - No collision
 - All locomotives eventually reach destination
 - Cumulated delay within deadline

Iterative Software Development

• Develop "validatable" artifacts early

Requirement

- Requirement document
- UML diagrams
 - Collaborate with development guy/gal
- Model of system environment for validation
 - Collaborate with validation guy/gal
- Traceability report
 - Collaborate with both development and validation
 - Focus on requirement
- User Manual

Development

- Detailed UML diagrams reflecting actual design
 - Collaborate with requirement guy/gal
- Implementation of the design
- Traceability report
 - Collaborate with both requirement and validation
 - Focus on specification, model translation and code

Validation

- Validation planning and execution
- Risk Management
- Testing
- Model checking
- Traceability
 - Collaborate with other two guys/gals
 - Focus on test case, models in model checking

Job Allocation

- Finish job allocation at the following link by Fri Mar 12th
 - https://shimo.im/sheets/ckjdGXtjYQQQKXhq/MODOC/
- Changes in team composition and job allocation must be formally announced to the instructor team via email

Name1(1R2D3V)

Name 2(2R3D1V)

| Name 3(3R1D2V)

CS132: Software Engineering

Group meetings

- Weekly meetings (Required)
- Meeting report for each project
 - The requirement guy/gal for each project is the organizer of the meeting.
 - For each group member, summarize works done in the previous week
 - Summary of the meeting
 - For each group member, propose action items for the next week
 - Due every Fri at the end of day, starting next week
- This is an important traceability document
- Please be specific
 - "continue working on project" does not work