KNN for outlier detection

ANOMALY DETECTION IN PYTHON

Bekhruz (Bex) Tuychiev Kaggle Master, Data Science Content Creator

Applications of KNN

- Supervised:
 - Regression
 - Classification
- Unsupervised:
 - Clustering
 - Outlier detection

Simplicity of KNN

Anomaly scores are calculated in

- Isolation Forest:
 - Tree depth
 - Sub-sample size
 - Many other components
- KNN:
 - Only the distance between instances

Ansur Male Dataset

```
import pandas as pd
males = pd.read_csv("ansur_male.csv")
males.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4082 entries, 0 to 4081
Data columns (total 95 columns):
                                                     Dtype
    Column
                                     Non-Null Count
    abdominalextensiondepthsitting 4082 non-null
                                                     int64
                                    4082 non-null
    acromialheight
                                                     int64
    acromionradialelength
                                    4082 non-null
                                                     int64
                                                    int64
3
    anklecircumference
                                    4082 non-null
    axillaheight
                                     4082 non-null
                                                    int64
```

KNN in action

```
from pyod.models.knn import KNN
knn = KNN(contamination=0.01, n_jobs=-1)
knn.fit(males)
```

KNN with outlier probabilities

```
probs = knn.predict_proba(males)
# Use 55% threshold for filtering
is_outlier = probs[:, 1] > 0.55
# Isolate the outliers
outliers = males[is_outlier]
len(outliers)
```

13

The number of neighbors

```
# k=20 when contamination is <=10%
knn = KNN(n_neighbors=20, n_jobs=-1)
knn.fit(males)
probs = knn.predict_proba(males)
is_outlier = probs[:, 1] > .55
outliers = males[is_outlier]
len(outliers)
```


15

Features of KNN

Drawbacks of KNN

- Memorizes the dataset memory-inefficient
- Slow prediction stage
- Sensitive to feature scales

Let's practice!

ANOMALY DETECTION IN PYTHON

Outlier-robust feature scaling

ANOMALY DETECTION IN PYTHON

Bekhruz (Bex) Tuychiev Kaggle Master, Data Science Content Creator

Euclidean distance

```
A = np.array([9, 1, 6])
B = np.array([25, 44, 85])

diffs = (B - A) ** 2
dist_AB = np.sqrt(np.sum(diffs))

print(dist_AB)
```

91.35644476444998

$$d(\mathbf{p,q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

p,q = two points in Euclidean n-space

 q_i, p_i = Euclidean vectors, starting from the origin of the space (initial point)

n = n-space

Euclidean in SciPy

```
from scipy.spatial.distance import \
euclidean

dist_AB = euclidean(A, B)
dist_AB
```

91.35644476444998

$$d(\mathbf{p,q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

p, q = two points in Euclidean n-space

 q_i, p_i = Euclidean vectors, starting from the origin of the space (initial point)

n = n-space

Standardization

- Mean is subtracted and divided by the STD
- Result: mean of zero and STD of 1

StandardScaler

```
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
# Extract feature and target
X = males.drop("weightkg", axis=1)
y = males[['weightkg']]
# Fit
ss.fit(X)
```

Transforming

[-1.21654894],

[0.056451235]])

fit_transform

```
ss = StandardScaler()

X_transformed = ss.fit_transform(X)
```

QuantileTransformer

```
from sklearn.preprocessing import QuantileTransformer
# Init
qt = QuantileTransformer()
X = males.drop("weightkg", axis=1)
y = males[['weightkg']]
X_transformed = qt.fit_transform(X)
X_transformed.shape
```

(4082, 94)

Preserving column names

```
qt = QuantileTransformer()

X.loc[:, :] = qt.fit_transform(X)

X.head()
```

	abdominal extension depth sitting	acromialheight	acromion radial elength	anklecircumference	axillaheight	balloffootcircumference	balloffootlength
0	0.556557	0.174675	0.263764	0.220721	0.139139	0.310811	0.310811
1	0.118619	0.778278	0.696697	0.285786	0.828829	0.405405	0.350350
2	0.046046	0.724224	0.852352	0.875375	0.720220	0.779780	0.920921
3	0.832332	0.652653	0.385886	0.480480	0.592092	0.849850	0.733233
4	0.988989	0.281782	0.440440	0.480480	0.300300	0.173173	0.506006

Uniform histogram

```
plt.hist(X['footlength'], color='red')

plt.xlabel("Foot length")
plt.title("Histogram of foot lengths")

plt.show()
```


Normal histogram

```
qt = QuantileTransformer(
  output_distribution='normal')
# Rebuild the overridden feature array
X = males.drop("weightkg", axis=1)
X.loc[:, :] = qt.fit_transform(X)
plt.hist(X['footlength'], color='r')
plt.xlabel("Foot length")
plt.title("Histogram of foot lengths")
plt.show()
```


Let's practice!

ANOMALY DETECTION IN PYTHON

Hyperparameters of KNN

ANOMALY DETECTION IN PYTHON

Bekhruz (Bex) Tuychiev Kaggle Master, Data Science Content Creator

Modify evaluate_outlier_classifier

```
def evaluate_outlier_classifier(model, data, threshold=.75):
    model.fit(data)

probs = model.predict_proba(data)
    inliers = data[probs[:, 1] <= threshold]

return inliers</pre>
```

Modifying evaluate_regressor

```
def evaluate_regressor(inliers):
   X, y = inliers.drop("weightkg", axis=1), inliers[['weightkg']]
   X_train, X_test, y_train, y_test = train_test_split(
     X, y, random_state=10, train_size=0.8)
   lr = LinearRegression()
    lr.fit(X_train, y_train)
    preds = lr.predict(X_test)
    rmse = mean_squared_error(y_test, preds, squared=False)
    return round(rmse, 3)
```

Tuning the number of neighbors

```
n_{neighbors} = [5, 10, 15, 20]
scores = dict()
for k in n_neighbors:
   # Init a KNN
    knn = KNN(n_neighbors=k)
    # Get the inliers with KNN
    inliers = evaluate_outlier_classifier(knn, males_transformed, .55)
    # Calculate and store RMSE
    scores[k] = evaluate_regressor(inliers)
```

Inspecting the result

```
print(scores)
```

```
{5: 19.463, 10: 17.965, 15: 18.817, 20: 20.597}
```

Distance metrics

• More than 40 metrics are supported

```
knn = KNN(metric='euclidean')
```


2.0

Feature 1

2.5

1.0

0.5

1.0

1.5

3.0

3.5

Manhattan distance

```
A = np.array([9, 1, 6, ...])
B = np.array([25, 44, 85, ...])
diffs = np.abs(B - A)
manhattan_dist_AB = np.sum(diffs)
manhattan_dist_AB
```

573

$$D(x,y) = \sum_{i=1}^k |x_i - y_i|$$

Manhattan distance

Manhattan distance

- Works well with high-dimensional data
- Returns larger values than euclidean
- Works best with categorical features

R datacamp

Minkowski distance

```
# Euclidean distance
knn = KNN(metric="minkowski", p=2)
```

```
# Manhattan distance
knn = KNN(metric="minkowski", p=1)
```


Minkowski distance

Distance aggregation

```
knn_largest = KNN(n_neighbors=10, method="largest")
knn_mean = KNN(n_neighbors=10, method="mean")
knn_median = KNN(n_neighbors=10, method="median")
```

Tuning distance and method

```
ps = [1, 2, 3, 4]
methods = ["largest", "mean", "median"]
scores = dict()
for p, method in product(ps, methods):
    # Init an instance of KNN
    knn = KNN(n_neighbors=10, method=method, p=p, n_jobs=-1)
    # Find the inliers with the current KNN
    inliers = evaluate_outlier_classifier(knn, males_transformed, .55)
    # Calculate and store RMSE into scores
    scores[(p, method)] = evaluate_regressor(inliers)
```

Inspecting the result

```
print(scores)
```

```
{(1, 'largest'): 23.188,
 (1, 'mean'): 23.188,
 (1, 'median'): 23.188,
 (2, 'largest'): 17.965,
 (2, 'mean'): 19.463,
 (2, 'median'): 19.463,
 (3, 'largest'): 17.965,
 (3, 'mean'): 19.463,
 (3, 'median'): 19.463, ...
```

Let's practice!

ANOMALY DETECTION IN PYTHON

Local Outlier Factor

ANOMALY DETECTION IN PYTHON

Bekhruz (Bex) Tuychiev
Data Science Writer

What is Local Outlier Factor (LOF)?

Features

- Density-based algorithm
- Proposed in 2000
- Works well with moderately high-dimensional data
- Can be faster than KNN and Isolation Forest

How does LOF work?

- Points are classified using a score called local outlier factor (LOF)
- LOF is based on the concept of local density
- Locality is chosen by setting a value to n_neighbors parameter
- Points with lower density are classified as outliers

The importance of locality

• The word local is key

 LOF score is only compared to the score of nearby points

LOF visualized

LOF visualized

LOF visualized

Transformed dataset

```
import pandas as pd

males_transformed = pd.read_csv("males_transformed.csv")

males_transformed.head()
```

	abdominalextensiondepthsitting	acromialheight	acromionradialelength	• • •
0	0.365531	0.427976	0.113152	
1	-0.492137	-0.724973	-0.529301	
2	0.857097	-0.146048	0.357496	
3	-0.462610	-1.521525	-1.467860	
4	-0.026349	2.151957	1.985876	

LOF in action

```
from pyod.models.lof import LOF

# Fit
lof = LOF(n_neighbors=20, metric="manhattan")
lof.fit(males_transformed)

print(lof.labels_)
```

```
array([0, 0, 0, ..., 0, 0, 1])
```

Filtering in LOF

```
# Isolate the outliers
probs = lof.predict_proba(males_transformed)

is_outlier = probs[:, 1] > 0.55
outliers = males_transformed[is_outlier]

len(outliers)
```

LOF details

- n_neighbors is the most important
- Rule of thumb to tune n_neighbors:
 - 20 neighbors for <10% contamination
- No aggregation allowed:
 - method is always largest

LOF drawbacks

- Hard to interpret
- LOF score combines:
 - distance between points
 - reachability distance
 - many other components
- No specific range of LOF score for outliers

Let's practice!

ANOMALY DETECTION IN PYTHON

