

8. Übungsblatt zu Physik B2

Prof. Dr. Thomas Weis

SS 2017 Abgabe in der Vorlesung

Ausgabe: Do, 08.06.2017 Abgabe: Mi, 14.06.2017

Aufgabe 25: Felder in Materie

- a) Erläutern Sie für elektrische Felder den Unterschied zwischen einem E- und einem D-Feld.
- b) Erläutern Sie für magnetische Felder den Unterschied zwischen einem B- und einem H-Feld.
- c) Die Dielektrizitätskonstante ϵ_r und die magnetische Permeabilität μ_r sind ähnlich definiert. Welcher prinzipielle Unterschied besteht zwischen beiden Größen? Wodurch ist dieser Unterschied mikroskopisch begründet? Hinweis: Sehen Sie sich die Folien der Vorlesung zu diesem Thema an!
- d) Wie lauten die 4 Maxwell-Gleichungen in Materie in der integralen und differentiellen Schreibweise?

Aufgabe 26: Feldenergie eines stromdurchflossenen Leiters

Ein langer gerader Kupferdraht mit der Länge $L=10\,\mathrm{m}$ und einem Durchmesser von $d=1\,\mathrm{mm}$ wird von einem Strom von $I=10\,\mathrm{A}$ durchflossen. Sowohl innerhalb als auch außerhalb des Drahtes existiert ein Magnetfeld B.

- a) Berechnen Sie das B-Feld außerhalb des Drahtes als Funktion des Abstandes r von der Drahtmitte. Benutzen Sie hierzu das Amperesche Gesetz. Das ist eine schon bekannte Aufgabe.
- b) Geben Sie nun das B-Feld innerhalb des Drahtes an. Auch hier benutzen Sie das Amperesche Gesetz, müssen aber berücksichtigen, dass jetzt der Strom nur anteilig berücksichtigt werden muss.
- c) Geben Sie die magnetische Feldenergiedichte ω_m als Funktion des Abstandes r von der Drahtmitte an für $0 < r < \infty$. Nehmen Sie dazu an, dass die Stromdichte auf dem Drahtquerschnitt homogen sei. Für Kupfer gilt in guter Näherung $\mu_r = 1$.
- d) Berechnen Sie die magnetische Feldenergie außerhalb und innerhalb des Drahtes. Sie müssen dazu über die Feldenergiedichte integrieren. Eigentlich müssten Sie dazu Zylinderkoordinaten benutzen. Die Energiedichte hängt aber weder vom Winkel φ noch von der z-Koordinate ab. Somit müssen Sie nur über den Abstand r integrieren. Überlegen Sie wie das Volumenintegral aussehen könnte.
- e) Können Sie die Gesamtenergie W des inneren und äußeren Magnetfeldes explizit angeben?

Aufgabe 27: Schwingkreis und Energieerhaltung

Wir betrachten eine Parallelschaltung eines Kondensators der Kapazität $C = 10 \,\mu\text{F}$ mit einer Spule der Induktivität $L = 4 \,\text{mH}$. Vernachlässigen Sie ohmsche Verluste.

- a) Fertigen Sie eine Skizze an.
- b) Am Kondensator liege zum Zeitpunkt t die Spannung U(t) an. Wie groß ist die im elektrischen Feld zwischen den Kondensatorplatten gespeicherte Energie $W_{\rm e}(t)$? Drücken Sie die Spannung U(t) durch die Ladung Q(t) aus.
- c) Durch die Spule fließe zum Zeitpunkt t der Strom I(t). Wie groß ist die im magnetischen Feld der Spule gespeicherte Energie $W_m(t)$? Drücken Sie den Strom I(t) durch die Ladung Q(t) aus.
- **d)** Bestimmen Sie die Gesamtenergie $W_{\text{ges}}(t) = W_e(t) + W_m(t)$ unter der Bedingung $Q(t) = Q_0 \cos(\omega t)$.

- e) Aufgrund der Energieerhaltung muss die Gesamtenergie $W_{\rm ges}$ konstant sein. Unter welcher Bedingung ist das der Fall? $Hinweis: \cos^2(\omega t) + sin^2(\omega t) = 1$. Bestimmen Sie ω
- f) Skizzieren Sie den zeitlichen Verlauf von $W_e(t)$, $W_m(t)$ und W_{ges} . Vergleichen Sie Ihr Ergebnis mit der Vorlesung.
- **g)** Berechnen Sie ω mit den gegebenen Zahlenwerten.
- h) Geben Sie Ausdrücke für den Strom I(t) und die Spannung U(t) an.