IIIT Sri City.ToC -- Quiz-3;

For each statement find out whether it is **True** or **False**. Write your answer in the given space only. Correct answer will get +1 mark, wrong answer will get -0.75 mark.

- 1. $\overline{HALT}_{TM} \in RE$
- 2. The language consisting of prime numbers is in R.
- 3. $(L \in RE) \Rightarrow (L \in R)$.
- 4. $(L \in R) \Rightarrow (L \in RE)$.
- 5. $\overline{A}_{TM} \leq_m E_{TM}$
- 6. $(L_1 \in R \text{ and } L_2 \in RE R) \Rightarrow (L_2 L_1 \text{is in } RE)$.
- 7. $(L_3 \in RE R) \Rightarrow (\overline{L_3} \text{ is in } RE)$.
- 8. $(L_1 \in R \text{ and } L_3 \in RE R) \Rightarrow (L_1 L_3 \text{ is in } RE)$.
- 9. $(L_1 \in R \text{ and } L_2 \in RE R) \Rightarrow (L_2 \cup L_1 \text{ is in } RE)$.
- 10. REis closed under intersection.
- 11. $(L_1 \in R \text{ and } L_2 \in RE R) \Rightarrow (L_2L_1 \text{ is in } R)$.
- 12. $(L_2 \text{ not in } RE) \Rightarrow (\overline{L_2} \text{ is not in } RE)$.
- 13. $(L_1 \in R) \Rightarrow (\overline{L_1} \text{ is not in } R)$.
- 14. $(L_4 \text{ not in } RE) \Rightarrow (\overline{L_4} \text{ is in } RE)$.
- 15. $(L \in CFL) \Rightarrow \overline{(L} \in R)$.

Big Answer Questions (2.5 + 2.5 = 5 Marks)

- **16.** Big Answer Question: Prove or disprove: $(A \leq_m B \text{ and } B \text{ is regular}) \Rightarrow (A \text{ is regular})$
- 17. Big Answer Question: Prove or disprove: $(A \in RE \text{ and } A \leq_m \overline{A}) \Rightarrow (A \text{ is undecidable })$

Do not write anything in this page. Your answers should be written backside of this sheet.

Write your answers below.

Clearly write **TRUE** or **FALSE** (Do not write T or F or 1 or 0. Do not overwrite.)

Q.No	Answer	Q.No	Answer	Q.No	Answer	Q.No	Answer
1	FALSE	2	TRUE	3	FALSE	4	TRUE
5	TRUE	6	TRUE	7	FALSE	8	FALSE
9	TRUE	10	TRUE	11	FALSE	12	FALSE
13	FALSE	14	FALSE	15	TRUE		

16. No. For example, Let $A = \{0^n 1^n | n \ge 0\}$ and $B = \{0^n | n \ge 0\}$, here A is context free language (non regular language) and B is regular language. Then $A \le_m B$, by the mapping $\Sigma^* \to \Sigma^*$, where $\Sigma = \{0, 1\}$. The function defined by,

$$f(s) = \begin{cases} 0; & \text{if } s = 0^n 1^n \text{ for } n \ge 0 \\ 1; & \text{Otherwise} \end{cases}$$

17. No. A is decidable.

Given
$$A \leq_m \bar{A}$$
 and $A \in R.E$
 $A \leq_m \bar{A} \Longrightarrow \bar{A} \leq_m A$

Since
$$A \in RE$$
, So $\overline{A} \in R.E$,

Now, we have
$$A \in R$$
. E and $\bar{A} \in R$. E

$$\Rightarrow A \in R$$

Hence A is decidable.