Exercice 1 - Diagramme de Bode*

C2-02

Question 1 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_2(p) = \frac{10}{(1+10p)(10+p)}$.

Tracer asymptotique

$$F_2(p) = \frac{1}{(1+10p)(1+\frac{p}{10})}$$

	$\omega \rightarrow 0$	$\omega_1 = \frac{1}{1}$	$\frac{1}{0}$ rad/s	$\omega_2 = 1$	0 rad/s	$\omega o \infty$
$H_1(p) = \frac{1}{1+10p}$	0 dB/décade		−20 dB/décade		−20 dB/décade	
	0°		−90°		−90°	
$H_2(p) = \frac{1}{1 + \frac{p}{10}}$	0 dB/décade		0 dB/décade		−20 dB/décade	
	0°		0°		−90°	
$F_2(p)$	0 dB/décade		−20 dB/décade		−40 dB/décade	
	0°		−90°		−180°	

Positionnement du diagramme de gain Lorsque que ω tend vers 0, le gain tend vers $20 \log 1 = 0$ dB.

Question 2 Le système est sollicité par une entrée sinusoïdale de période 6 s et d'amplitude 10. Quel est le signal de sortie?

Pour une période de 60 s, la pulsation est de $\frac{2\pi}{T}$ soit $\omega = 0.1$ rad s⁻¹. Pour cette pulsation le gain est de -5 dB et le

déphasage de $-\frac{\pi}{4}$.

On a donc $20\log(S/E) = -5$ soit $S = E \times 10^{-5/20} = 10 \times 0, 56 = 5, 6$. Le signal d'entrée est donc $e(t) = 10\sin(0,1t)$ et le signal de sortie $s(t) = 5, 6\sin\left(0,1t - \frac{\pi}{4}\right)$.