autogluon each location

October 7, 2023

```
[69]: import pandas as pd
      import numpy as np
      import warnings
      warnings.filterwarnings("ignore")
      def fix_datetime(X, name):
          # Convert 'date_forecast' to datetime format and replace original columnu
       with 'ds'
          X['ds'] = pd.to_datetime(X['date_forecast'])
          X.drop(columns=['date_forecast'], inplace=True, errors='ignore')
          X.sort_values(by='ds', inplace=True)
          X.set_index('ds', inplace=True)
          # Drop rows where the minute part of the time is not 0
          X = X[X.index.minute == 0]
          return X
      def convert to datetime(X_train observed, X_train_estimated, X_test, y_train):
          X_train_observed = fix_datetime(X_train_observed, "X_train_observed")
          X train_estimated = fix_datetime(X_train_estimated, "X_train_estimated")
          X_test = fix_datetime(X_test, "X_test")
          # add sample weights, which are 1 for observed and 3 for estimated
          X_train_observed["sample_weight"] = 1
          X_train_estimated["sample_weight"] = 3
          X_test["sample_weight"] = 3
          X_train_observed["estimated_diff_hours"] = 0
          X_train_estimated["estimated_diff_hours"] = (X_train_estimated.index - pd.
       ato_datetime(X_train_estimated["date_calc"])).dt.total_seconds() / 3600
          X_test["estimated_diff_hours"] = (X_test.index - pd.
       oto_datetime(X_test["date_calc"])).dt.total_seconds() / 3600
```

```
X_train_estimated["estimated_diff_hours"] =__

¬X_train_estimated["estimated_diff_hours"].astype('int64')

    # the filled once will get dropped later anyways, when we drop y nans
   X_test["estimated_diff_hours"] = X_test["estimated_diff_hours"].fillna(-50).
 ⇔astype('int64')
   X_train_estimated.drop(columns=['date_calc'], inplace=True)
   X_test.drop(columns=['date_calc'], inplace=True)
   y_train['ds'] = pd.to_datetime(y_train['time'])
   y_train.drop(columns=['time'], inplace=True)
   y_train.sort_values(by='ds', inplace=True)
   y_train.set_index('ds', inplace=True)
   return X_train_observed, X_train_estimated, X_test, y_train
def preprocess_data(X_train_observed, X_train_estimated, X_test, y_train, __
 →location):
    # convert to datetime
   X_train_observed, X_train_estimated, X_test, y_train =
 Gonvert_to_datetime(X_train_observed, X_train_estimated, X_test, y_train)
   y_train["y"] = y_train["pv_measurement"].astype('float64')
   y_train.drop(columns=['pv_measurement'], inplace=True)
   X_train = pd.concat([X_train_observed, X_train_estimated])
   # fill missng sample_weight with 3
   \#X\_train["sample\_weight"] = X\_train["sample\_weight"].fillna(0)
   # clip all y values to 0 if negative
   y_train["y"] = y_train["y"].clip(lower=0)
   X_train = pd.merge(X_train, y_train, how="inner", left_index=True,_
 →right_index=True)
    # print number of nans in sample_weight
   print(f"Number of nans in sample_weight: {X_train['sample_weight'].isna().
 →sum()}")
    # print number of nans in y
   print(f"Number of nans in y: {X_train['y'].isna().sum()}")
```

```
X_train["location"] = location
    X_test["location"] = location
    return X_train, X_test
# Define locations
locations = ['A', 'B', 'C']
X trains = []
X tests = []
# Loop through locations
for loc in locations:
    print(f"Processing location {loc}...")
    # Read target training data
    y_train = pd.read_parquet(f'{loc}/train_targets.parquet')
    # Read estimated training data and add location feature
    X_train_estimated = pd.read_parquet(f'{loc}/X_train_estimated.parquet')
    # Read observed training data and add location feature
    X_train_observed= pd.read_parquet(f'{loc}/X_train_observed.parquet')
    # Read estimated test data and add location feature
    X_test_estimated = pd.read_parquet(f'{loc}/X_test_estimated.parquet')
    # Preprocess data
    X_train, X_test = preprocess_data(X_train_observed, X_train_estimated,__
  →X_test_estimated, y_train, loc)
    X_trains.append(X_train)
    X_tests.append(X_test)
# Concatenate all data and save to csv
X_train = pd.concat(X_trains)
X_test = pd.concat(X_tests)
Processing location A...
Number of nans in sample_weight: 0
Number of nans in y: 0
Processing location B...
Number of nans in sample_weight: 0
Number of nans in y: 4
Processing location C...
Number of nans in sample_weight: 0
Number of nans in y: 6059
```

1 Feature enginering

```
[66]: # temporary
      X_train["hour"] = X_train.index.hour
      X_train["weekday"] = X_train.index.weekday
      # weekday or is_weekend
      X_{\text{train}}["is_{\text{weekend}}"] = X_{\text{train}}["weekday"].apply(lambda x: 1 if x >= 5 else 0)
      # drop weekday
      #X_train.drop(columns=["weekday"], inplace=True)
      X_train["month"] = X_train.index.month
      X_train["year"] = X_train.index.year
      X_test["hour"] = X_test.index.hour
      X_test["weekday"] = X_test.index.weekday
      # weekday or is_weekend
      X_test["is_weekend"] = X_test["weekday"].apply(lambda x: 1 if x >= 5 else 0)
      # drop weekday
      #X_test.drop(columns=["weekday"], inplace=True)
      X_test["month"] = X_test.index.month
      X_test["year"] = X_test.index.year
      to_drop = ["snow_drift:idx", "snow_density:kgm3"]
      X_train.drop(columns=to_drop, inplace=True)
      X_test.drop(columns=to_drop, inplace=True)
      X_train.dropna(subset=['y'], inplace=True)
      X_train.to_csv('X_train_raw.csv', index=True)
      X_test.to_csv('X_test_raw.csv', index=True)
[67]: import autogluon.eda.auto as auto
      auto.dataset_overview(train_data=X_train, test_data=X_test, label="y",_

¬sample=None)
```

train_data dataset summary

	count	unique top	freq	mean	\
absolute_humidity_2m:gm3	92951	165		6.017608	
air_density_2m:kgm3	92951	293		1.255435	
ceiling_height_agl:m	72276	40993		2802.587891	
clear_sky_energy_1h:J	92951	48602		515154.03125	
clear_sky_rad:W	92951	7815		143.101395	
cloud_base_agl:m	84404	34862		1692.934692	

dew_or_rime:idx	92951	3			0.007025	
dew_point_2m:K	92951	436			275.237823	
diffuse_rad:W	92951	2870			39.495811	
diffuse_rad_1h:J	92951	48553			142180.03125	
direct_rad:W	92951	5296			50.205017	
direct_rad_1h:J	92951	41885			180740.1875	
effective_cloud_cover:p	92951	1001			67.013527	
elevation:m	92951	3			11.401738	
estimated_diff_hours	92951	26			3.143516	
fresh_snow_12h:cm	92951	125			0.116175	
fresh_snow_1h:cm	92951	39			0.00963	
fresh_snow_24h:cm	92951	161			0.229894	
fresh_snow_3h:cm	92951	70			0.029001	
fresh_snow_6h:cm	92951	96			0.058069	
hour	92951	24			11.501339	
is_day:idx	92951	2			0.483341	
is_in_shadow:idx	92951	2			0.565384	
is_weekend	92951	2			0.286775	
location	92951	3	Α	34061		
month	92951	12			6.294521	
msl_pressure:hPa	92951	874			1009.502563	
precip_5min:mm	92951	64			0.005674	
precip_type_5min:idx	92951	7			0.083259	
pressure_100m:hPa	92951	888			995.81897	
pressure_50m:hPa	92951	897			1001.949646	
prob_rime:p	92951	700			0.756834	
rain_water:kgm2	92951	11			0.009677	
relative_humidity_1000hPa:p	92951	788			73.669556	
sample_weight	92951	2			1.23507	
sfc_pressure:hPa	92951	902			1008.107849	
snow_depth:cm	92951	165			0.193203	
<pre>snow_melt_10min:mm</pre>	92951	19			0.000275	
snow_water:kgm2	92951	42			0.090324	
sun_azimuth:d	92951	69692			182.386337	
sun_elevation:d	92951	49376			-1.207574	
<pre>super_cooled_liquid_water:kgm2</pre>	92951	15			0.056944	
t_1000hPa:K	92951	447			279.431091	
total_cloud_cover:p	92951	1001			73.604256	
visibility:m	92951	85686			33027.933594	
weekday	92951	7			3.002184	
wind_speed_10m:ms	92951	119			3.037911	
wind_speed_u_10m:ms	92951	188			0.662565	
wind_speed_v_10m:ms	92951	167			0.6824	
wind_speed_w_1000hPa:ms	92951	3			-0.000016	
У	92951	12423			287.232321	
year	92951	5			2020.693193	
		std		min	25%	\

absolute_humidity_2m:gm3	2.714546	0.5	4.0
air_density_2m:kgm3	0.036608	1.139	1.23
ceiling_height_agl:m	2521.408447	27.799999	1037.099976
clear_sky_energy_1h:J	820525.5	0.0	0.0
clear_sky_rad:W	228.507324	0.0	0.0
cloud_base_agl:m	1790.963745	27.4	572.200012
dew_or_rime:idx	0.246032	-1.0	0.0
dew_point_2m:K	6.83461	247.300003	270.700012
diffuse_rad:W	60.647518	0.0	0.0
diffuse_rad_1h:J	215907.21875	0.0	0.0
direct_rad:W	112.946068	0.0	0.0
direct_rad_1h:J	401735.03125	0.0	0.0
effective_cloud_cover:p	35.044811	0.0	41.299999
elevation:m	7.877236	6.0	6.0
estimated_diff_hours	8.935328	0.0	0.0
fresh_snow_12h:cm	0.780374	0.0	0.0
fresh_snow_1h:cm	0.112621	0.0	0.0
fresh_snow_24h:cm	1.218249	0.0	0.0
fresh_snow_3h:cm	0.28067	0.0	0.0
fresh_snow_6h:cm	0.481389	0.0	0.0
hour	6.920153	0.0	6.0
is_day:idx	0.499725	0.0	0.0
is_in_shadow:idx	0.495709	0.0	0.0
is_weekend	0.452258	0.0	0.0
location			
month	3.585604	1.0	3.0
msl_pressure:hPa	13.089046	944.299988	1001.400024
<pre>precip_5min:mm</pre>	0.033511	0.0	0.0
<pre>precip_type_5min:idx</pre>	0.384904	0.0	0.0
pressure_100m:hPa	13.008334	929.799988	987.799988
pressure_50m:hPa	13.067102	935.599976	993.900024
<pre>prob_rime:p</pre>	5.434649	0.0	0.0
rain_water:kgm2	0.042968	0.0	0.0
relative_humidity_1000hPa:p	14.328553	19.5	64.199997
sample_weight	0.644117		1.0
sfc_pressure:hPa		941.400024	1000.0
snow_depth:cm	1.254293	0.0	0.0
<pre>snow_melt_10min:mm</pre>	0.004312	-0.0	-0.0
snow_water:kgm2	0.250991	0.0	0.0
sun_azimuth:d	102.913605	0.008	92.794003
sun_elevation:d	24.010485	-49.979	-18.511
<pre>super_cooled_liquid_water:kgm2</pre>	0.111482	0.0	0.0
t_1000hPa:K	6.520342		274.899994
total_cloud_cover:p	34.993042	0.0	51.700001
visibility:m	18319.150391		15798.950195
weekday	2.001722	0.0	1.0
wind_speed_10m:ms	1.778505	0.0	1.7
wind_speed_u_10m:ms	2.808995	-7.3	-1.4

wind_speed_v_10m:ms	1.896996	-9.3	-0.6	
wind_speed_w_1000hPa:ms	0.006502	-0.1	0.0	
у	766.670114	-0.0	0.0	
year	1.18587	2019.0	2020.0	
	50%	75%	max	\
absolute_humidity_2m:gm3	5.4	7.8	17.5	
air_density_2m:kgm3	1.255	1.279	1.441	
<pre>ceiling_height_agl:m</pre>	1803.25	3814.824951	12431.299805	
clear_sky_energy_1h:J	4544.899902	778247.25	3006697.25	
clear_sky_rad:W	0.0	220.949997	835.299988	
cloud_base_agl:m	1128.550049	2016.699951	11688.900391	
dew_or_rime:idx	0.0	0.0	1.0	
dew_point_2m:K	275.0	280.5	293.799988	
diffuse_rad:W	0.0	66.0	340.100006	
diffuse_rad_1h:J	9951.700195	236502.75	1182265.375	
direct_rad:W	0.0	29.0	684.299988	
direct_rad_1h:J	0.0	113366.25	2445897.0	
effective_cloud_cover:p	80.800003	99.300003	100.0	
elevation:m	7.0	24.0	24.0	
estimated_diff_hours	0.0	0.0	39.0	
fresh_snow_12h:cm	0.0	0.0	37.400002	
fresh_snow_1h:cm	0.0	0.0	7.1	
fresh_snow_24h:cm	0.0	0.0	37.400002	
fresh_snow_3h:cm	0.0	0.0	20.6	
fresh_snow_6h:cm	0.0	0.0	34.0	
hour	12.0	17.0	23.0	
is_day:idx	0.0	1.0	1.0	
is_in_shadow:idx	1.0	1.0	1.0	
is_weekend	0.0	1.0	1.0	
location				
month	6.0	10.0	12.0	
msl_pressure:hPa	1010.299988	1018.599976	1044.099976	
<pre>precip_5min:mm</pre>	0.0	0.0	1.38	
<pre>precip_type_5min:idx</pre>	0.0	0.0	6.0	
pressure_100m:hPa	996.799988	1004.900024	1030.900024	
pressure_50m:hPa	1002.900024	1011.099976	1037.300049	
<pre>prob_rime:p</pre>	0.0	0.0	97.199997	
rain_water:kgm2	0.0	0.0	1.4	
relative_humidity_1000hPa:p	76.0	85.099998	100.0	
sample_weight	1.0	1.0	3.0	
sfc_pressure:hPa	1009.0	1017.200012	1043.800049	
snow_depth:cm	0.0	0.0	18.299999	
<pre>snow_melt_10min:mm</pre>	0.0	-0.0	0.18	
<pre>snow_water:kgm2</pre>	0.0	0.1	6.9	
sun_azimuth:d	179.526001	271.503494	359.997009	
sun_elevation:d	-0.99	15.538	49.917999	
<pre>super_cooled_liquid_water:kgm2</pre>	0.0	0.1	1.4	

t_1000hPa:K	278.700012	283.899994	303.299988
total_cloud_cover:p	94.800003	100.0	100.0
visibility:m	37350.300781	48679.550781	76737.796875
weekday	3.0	5.0	6.0
wind_speed_10m:ms	2.7	4.1	15.2
wind_speed_u_10m:ms	0.3	2.5	12.2
wind_speed_v_10m:ms	0.7	1.9	9.0
wind_speed_w_1000hPa:ms	0.0	0.0	0.1
у	0.0	173.3625	5733.42
year	2021.0	2022.0	2023.0

dtypes missing_count missing_ratio raw_type \ absolute_humidity_2m:gm3 float32 float air_density_2m:kgm3 float32 float ceiling_height_agl:m float32 20675 0.222429 float clear_sky_energy_1h:J float32 float clear_sky_rad:W float32 float cloud_base_agl:m float32 8547 0.091952 float dew_or_rime:idx float32 float dew point 2m:K float32 float diffuse_rad:W float32 float diffuse_rad_1h:J float32 float direct_rad:W float32 float float32 float direct_rad_1h:J effective_cloud_cover:p float32 float elevation:m float32 float estimated_diff_hours int64 int fresh_snow_12h:cm float32 float fresh_snow_1h:cm float32 float fresh_snow_24h:cm float32 float fresh_snow_3h:cm float32 float fresh_snow_6h:cm float32 float hour int64 int float32 float is_day:idx is_in_shadow:idx float32 float is weekend int64 int location object object month int64 int msl_pressure:hPa float32 float precip_5min:mm float32 float precip_type_5min:idx float32 float pressure_100m:hPa float32 float pressure_50m:hPa float32 float prob_rime:p float32 float rain_water:kgm2 float32 float relative_humidity_1000hPa:p float32 float sample_weight int64 int sfc_pressure:hPa float32 float

float32	float
float32	float
int64	int
float32	float
float64	float
int64	int
	float32 float32 float32 float32 float32 float32 float32 int64 float32 float32 float32 float32 float32

variable_type special_types

absolute_humidity_2m:gm3	numeric	
air_density_2m:kgm3	numeric	
ceiling_height_agl:m	numeric	
clear_sky_energy_1h:J	numeric	
<pre>clear_sky_rad:W</pre>	numeric	
cloud_base_agl:m	numeric	
dew_or_rime:idx	category	
dew_point_2m:K	numeric	
diffuse_rad:W	numeric	
diffuse_rad_1h:J	numeric	
direct_rad:W	numeric	
direct_rad_1h:J	numeric	
effective_cloud_cover:p	numeric	
elevation:m	category	
estimated_diff_hours	numeric	
fresh_snow_12h:cm	numeric	
fresh_snow_1h:cm	numeric	
fresh_snow_24h:cm	numeric	
fresh_snow_3h:cm	numeric	
fresh_snow_6h:cm	numeric	
hour	numeric	
is_day:idx	category	
is_in_shadow:idx	category	
is_weekend	category	
location	category	
month	category	
msl_pressure:hPa	numeric	
<pre>precip_5min:mm</pre>	numeric	
<pre>precip_type_5min:idx</pre>	category	
pressure_100m:hPa	numeric	

numeric
numeric
category
numeric
category
numeric
numeric
category
numeric
numeric
numeric
category
numeric
numeric
numeric
category
numeric
numeric
numeric
category
numeric
category

${\tt test_data}\ {\tt dataset}\ {\tt summary}$

	count	unique	top freq	mean	\
absolute_humidity_2m:gm3	2160	106		8.206482	
air_density_2m:kgm3	2160	153		1.232807	
<pre>ceiling_height_agl:m</pre>	1473	1391		2938.389648	
clear_sky_energy_1h:J	2160	1807		1227746.75	
clear_sky_rad:W	2160	1044		341.056641	
cloud_base_agl:m	1879	1771		1797.160156	
dew_or_rime:idx	2160	3		0.040741	
dew_point_2m:K	2160	202		280.783203	
diffuse_rad:W	2160	985		84.915688	
diffuse_rad_1h:J	2160	1806		305696.5	
direct_rad:W	2160	916		114.279816	
direct_rad_1h:J	2160	1634		411408.875	
effective_cloud_cover:p	2160	590		64.113792	
elevation:m	2160	3		12.333333	
estimated_diff_hours	2160	24		27.5	
fresh_snow_12h:cm	2160	2		0.000185	
fresh_snow_1h:cm	2160	2		0.000185	
fresh_snow_24h:cm	2160	2		0.000185	
fresh_snow_3h:cm	2160	2		0.000185	
fresh_snow_6h:cm	2160	2		0.000185	
hour	2160	24		11.5	
is_day:idx	2160	2		0.795833	
is_in_shadow:idx	2160	2		0.24537	

is_weekend	2160	2			0.366667	
location	2160	3	Α	720		
month	2160	3			5.666667	
msl_pressure:hPa	2160	321			1016.805786	
precip_5min:mm	2160	27			0.00775	
precip_type_5min:idx	2160	3			0.065741	
pressure_100m:hPa	2160	359			1002.970825	
pressure_50m:hPa	2160	356			1009.007202	
prob_rime:p	2160	3			0.01588	
rain_water:kgm2	2160	8			0.013056	
relative_humidity_1000hPa:p	2160	538			70.920792	
sample_weight	2160	1			3.0	
sfc_pressure:hPa	2160	363			1015.070374	
snow_depth:cm	2160	1			0.0	
snow_melt_10min:mm	2160	1			0.0	
snow_water:kgm2	2160	16			0.060972	
sun_azimuth:d	2160	1830			183.166199	
sun_elevation:d	2160	1623			20.292332	
<pre>super_cooled_liquid_water:kgm2</pre>	2160	7			0.065463	
t_1000hPa:K	2160	254			284.737732	
total_cloud_cover:p	2160	553			69.298981	
visibility:m	2160	2155	33304.636719			
weekday	2160	7			3.233333	
wind_speed_10m:ms	2160	83	2.946759			
wind_speed_u_10m:ms	2160	123			1.650694	
wind_speed_v_10m:ms	2160	80			-0.187176	
wind_speed_w_1000hPa:ms	2160	2			0.000324	
year	2160	1			2023.0	
		std		min	25%	\
absolute_humidity_2m:gm3	2.2	01396		3.2	6.6	
air_density_2m:kgm3	0.0	32116		1.142	1.209	
ceiling_height_agl:m	2913.6	41113		30.6	891.799988	
clear_sky_energy_1h:J	110446	8.625		0.0	64338.124023	
clear_sky_rad:W	307.7	29095		0.0	13.65	
cloud_base_agl:m	2046.3	94409	29.	799999	486.899994	
dew_or_rime:idx	0.2	02365		-1.0	0.0	
dew_point_2m:K	4.3	78817		268.0	277.899994	
diffuse_rad:W	78.4	22508		0.0	6.925	
diffuse_rad_1h:J	2781	46.25		0.0	36756.901367	
direct_rad:W	171.8	38226		0.0	0.0	
direct_rad_1h:J	61148	0.125		0.0	86.575001	
effective_cloud_cover:p	37.9	47498		0.0	30.700001	
elevation:m	8.2	61587		6.0	6.0	
estimated_diff_hours	6.9	23789		16.0	21.75	
fresh_snow_12h:cm	0.0	08607		0.0	0.0	
fresh_snow_1h:cm	0.0	08607		0.0	0.0	
fresh_snow_24h:cm	0.0	08607		0.0	0.0	

fresh_snow_3h:cm	0.008607	0.0	0.0	
fresh_snow_6h:cm	0.008607	0.0	0.0	
hour	6.923789	0.0	5.75	
is_day:idx	0.403185	0.0	1.0	
is_in_shadow:idx	0.430406	0.0	0.0	
is_weekend	0.482006	0.0	0.0	
location				
month	0.596423	5.0	5.0	
msl_pressure:hPa	9.728754	986.099976	1011.5	
<pre>precip_5min:mm</pre>	0.033776	0.0	0.0	
<pre>precip_type_5min:idx</pre>	0.249747	0.0	0.0	
pressure_100m:hPa	9.644145	971.799988	997.799988	
pressure_50m:hPa	9.74076	977.700012	1003.799988	
<pre>prob_rime:p</pre>	0.551282	0.0	0.0	
rain_water:kgm2	0.055256	0.0	0.0	
relative_humidity_1000hPa:p	15.725973	23.9	60.275	
sample_weight	0.0	3.0	3.0	
sfc_pressure:hPa	9.840412	983.5	1009.799988	
<pre>snow_depth:cm</pre>	0.0	0.0	0.0	
<pre>snow_melt_10min:mm</pre>	0.0	-0.0	-0.0	
snow_water:kgm2	0.219562	0.0	0.0	
sun_azimuth:d	109.193207	8.27	85.359253	
sun_elevation:d	18.681047	-11.617	1.96475	
<pre>super_cooled_liquid_water:kgm2</pre>	0.115824	0.0	0.0	
t_1000hPa:K	5.839595	273.700012	279.799988	
total_cloud_cover:p	38.41222	0.0	32.799999	
visibility:m	15624.633789	874.400024	19635.100098	
weekday	2.186573	0.0	1.0	
wind_speed_10m:ms	1.733865	0.0	1.5	
wind_speed_u_10m:ms	2.578466	-4.3	-0.2	
wind_speed_v_10m:ms	1.50826	-4.4	-1.3	
wind_speed_w_1000hPa:ms	0.005685	-0.0	0.0	
year	0.0	2023.0	2023.0	
	50%	7	75% max	\
absolute_humidity_2m:gm3	8.0	10	0.0 14.2	
air_density_2m:kgm3	1.238	1.	.26 1.301	
ceiling_height_agl:m	1553.900024	4021.3000	049 11468.0	
clear_sky_energy_1h:J	1056303.125	2372037	7.5 3005707.0	
clear_sky_rad:W	273.849991	646.8749	985 835.099976	
cloud_base_agl:m	997.799988	2298.3000	049 11467.799805	
dew_or_rime:idx	0.0	(1.0	
dew_point_2m:K	281.0	284.2999	988 290.200012	
diffuse_rad:W	73.700001	135.6000	312.600006	
diffuse_rad_1h:J	272526.046875	488256.033	125 1086246.25	
direct_rad:W	16.200001	180.3999	994 668.0	
<pre>direct_rad_1h:J</pre>	60416.199219	686746.8593	375 2403444.25	
effective_cloud_cover:p	77.75	100	0.0 100.0	

elevation:m	7.0	24.0	24	.0
estimated_diff_hours	27.5	33.25	39	.0
fresh_snow_12h:cm	0.0	0.0	0	.4
fresh_snow_1h:cm	0.0	0.0	0	.4
fresh_snow_24h:cm	0.0	0.0	0	.4
fresh_snow_3h:cm	0.0	0.0	0	.4
fresh_snow_6h:cm	0.0	0.0	0	.4
hour	11.5	17.25	23	.0
is_day:idx	1.0	1.0	1	.0
is_in_shadow:idx	0.0	0.0	1	.0
is_weekend	0.0	1.0	1	.0
location				
month	6.0	6.0	7	.0
msl_pressure:hPa	1020.599976	1023.799988	1029.5999	76
<pre>precip_5min:mm</pre>	0.0	0.0	0.3	34
<pre>precip_type_5min:idx</pre>	0.0	0.0	2	.0
pressure_100m:hPa	1006.25	1010.099976	1016.4000	24
pressure_50m:hPa	1012.299988	1016.200012	1022	.5
<pre>prob_rime:p</pre>	0.0	0.0	23	.0
rain_water:kgm2	0.0	0.0	0	.7
relative_humidity_1000hPa:p	73.900002	83.699997	98.9000	02
sample_weight	3.0	3.0	3	.0
sfc_pressure:hPa	1018.299988	1022.299988	1028.6999	
snow_depth:cm	0.0	0.0	0	.0
snow_melt_10min:mm	0.0	0.0	0	.0
snow_water:kgm2	0.0	0.0		.4
sun_azimuth:d	184.236	279.576248	356.9840	
sun_elevation:d	18.54	38.102499	49.9	
<pre>super_cooled_liquid_water:kgm2</pre>	0.0	0.1		.6
t_1000hPa:K	284.799988	288.299988	302.2000	
total_cloud_cover:p	95.300003	100.0	100	
visibility:m	37623.050781	45378.099609	63863.8007	
weekday	3.0	5.0		.0
wind_speed_10m:ms	2.7	4.0		.8
wind_speed_u_10m:ms	1.6	3.525		.8
wind_speed_v_10m:ms	-0.3	0.8		.0
wind_speed_w_1000hPa:ms	0.0	0.0		.1
year	2023.0	2023.0	2023	.0
1 1 1 1 111 0 0	• • • • • • • • • • • • • • • • • • • •	g_count missing		0 1
absolute_humidity_2m:gm3	float32			loat
air_density_2m:kgm3	float32	607		loat
ceiling_height_agl:m	float32	687 0.		loat
clear_sky_energy_1h:J	float32			loat
clear_sky_rad:W	float32	001		loat
cloud_base_agl:m	float32	281 0.		loat
dew_or_rime:idx	float32			loat
dew_point_2m:K	float32		Í.	loat

diffuse_rad:W	float32	float
diffuse_rad_1h:J	float32	float
direct_rad:W	float32	float
direct_rad_1h:J	float32	float
effective_cloud_cover:p	float32	float
elevation:m	float32	float
estimated_diff_hours	int64	int
fresh_snow_12h:cm	float32	float
fresh_snow_1h:cm	float32	float
fresh_snow_24h:cm	float32	float
fresh_snow_3h:cm	float32	float
fresh_snow_6h:cm	float32	float
hour	int64	int
is_day:idx	float32	float
is_in_shadow:idx	float32	float
is_weekend	int64	int
location	object	object
month	int64	int
msl_pressure:hPa	float32	float
<pre>precip_5min:mm</pre>	float32	float
<pre>precip_type_5min:idx</pre>	float32	float
pressure_100m:hPa	float32	float
pressure_50m:hPa	float32	float
<pre>prob_rime:p</pre>	float32	float
rain_water:kgm2	float32	float
relative_humidity_1000hPa:p	float32	float
sample_weight	int64	int
sfc_pressure:hPa	float32	float
<pre>snow_depth:cm</pre>	float32	float
<pre>snow_melt_10min:mm</pre>	float32	float
snow_water:kgm2	float32	float
sun_azimuth:d	float32	float
sun_elevation:d	float32	float
<pre>super_cooled_liquid_water:kgm2</pre>	float32	float
t_1000hPa:K	float32	float
total_cloud_cover:p	float32	float
visibility:m	float32	float
weekday	int64	int
wind_speed_10m:ms	float32	float
wind_speed_u_10m:ms	float32	float
wind_speed_v_10m:ms	float32	float
wind_speed_w_1000hPa:ms	float32	float
year	int64	int

variable_type special_types

absolute_humidity_2m:gm3 numeric air_density_2m:kgm3 numeric ceiling_height_agl:m numeric

clear_sky_energy_1h:J	numeric
clear_sky_rad:W	numeric
cloud_base_agl:m	numeric
dew_or_rime:idx	category
dew_point_2m:K	numeric
diffuse_rad:W	numeric
diffuse_rad_1h:J	numeric
direct_rad:W	numeric
direct_rad_1h:J	numeric
effective_cloud_cover:p	numeric
elevation:m	category
estimated_diff_hours	numeric
fresh_snow_12h:cm	category
fresh_snow_1h:cm	category
fresh_snow_24h:cm	category
fresh_snow_3h:cm	category
fresh_snow_6h:cm	category
hour	numeric
is_day:idx	category
is_in_shadow:idx	category
is_weekend	category
location	category
month	category
msl_pressure:hPa	numeric
precip_5min:mm	numeric
precip_type_5min:idx	category
pressure_100m:hPa	numeric
pressure_50m:hPa	numeric
prob_rime:p	
rain_water:kgm2	category category
relative humidity_1000hPa:p	numeric
_	
sample_weight	category
sfc_pressure:hPa	numeric
snow_depth:cm	category
snow_melt_10min:mm	category
snow_water:kgm2	category
sun_azimuth:d	numeric
sun_elevation:d	numeric
<pre>super_cooled_liquid_water:kgm2</pre>	category
t_1000hPa:K	numeric
total_cloud_cover:p	numeric
visibility:m	numeric
weekday	category
wind_speed_10m:ms	numeric
wind_speed_u_10m:ms	numeric
wind_speed_v_10m:ms	numeric
wind_speed_w_1000hPa:ms	category
year	category

Types warnings summary

1.0.1 Feature Distance

The following feature groups are considered as near-duplicates:

Distance threshold: ≤ 0.01 . Consider keeping only some of the columns within each group:

- elevation:m, location distance 0.00
- absolute_humidity_2m:gm3, dew_point_2m:K distance 0.00
- precip_5min:mm, precip_type_5min:idx distance 0.00
- estimated_diff_hours, sample_weight distance 0.00
- msl_pressure:hPa, pressure_100m:hPa, pressure_50m:hPa, sfc_pressure:hPa distance 0.00
- hour, sun_azimuth:d distance 0.01

Feature interaction between absolute_humidity_2m:gm3/dew_point_2m:K

Feature interaction between msl_pressure:hPa/pressure_100m:hPa

```
KeyboardInterrupt
                                            Traceback (most recent call last)
/Users/jorgensandhaug/Desktop/tdt4173/data/autogluon_each_location.ipynb Cell 4
 ⇒line 2
 <a href='vscode-notebook-cell:/Users/jorgensandhaug/Desktop/tdt4173/data/
→autogluon_each_location.ipynb#X65sZmlsZQ%3D%3D?line=0'>1</a> import autogluon
 ⇔eda.auto as auto
----> <a href='vscode-notebook-cell:/Users/jorgensandhaug/Desktop/tdt4173/data/
 →autogluon each location.ipynb#X65sZmlsZQ%3D%3D?line=1'>2</a> auto.
 dataset overview(train data=X train, test data=X test, label="y", sample=None
File ~/.local/lib/python3.10/site-packages/autogluon/eda/auto/simple.py:639, in
 adataset_overview(train_data, test_data, val_data, label, state, return_state,)
 ⇔sample, fig_args, chart_args)
                         interactions.append(MarkdownSectionComponent(f"Feature
 631
                         interactions.append(
                             FeatureInteractionVisualization(
    632
    633
                                  key=f"{nodes[0]}:{n}",
   (...)
    636
                             )
    637
                         )
  > 639
                 analyze(
                     train_data=train_data,
    640
    641
                     state=state,
                     anlz_facets=[FeatureInteraction(key=f"{nodes[0]}:{n}",__
    642
 \rightarrowx=nodes[0], y=n) for n in nodes[1:]],
```

```
643
                    viz_facets=[
    644
                        *interactions,
    645
                    ],
    646
                )
    648 return state if return state else None
File ~/.local/lib/python3.10/site-packages/autogluon/eda/auto/simple.py:182, in
 ⊶analyze(train data, test data, val data, model, label, state, sample, u
 →anlz_facets, viz_facets, return_state, verbosity, **kwargs)
    166 analysis = BaseAnalysis(
    167
            state=state,
    168
            train_data=train_data,
   (...)
    175
            ],
    176 )
    178 state = analysis.fit()
    180 SimpleVerticalLinearLayout(
            facets=viz facets,
--> 182 ).render(state)
    184 root_logger.setLevel(root_log_level) # Reset log level
    186 return state if return_state else None
File ~/.local/lib/python3.10/site-packages/autogluon/eda/visualization/base.py:
 →96, in AbstractVisualization.render(self, state)
     94 state = self._get_namespace_state(state)
     95 if self.can handle(state):
---> 96
            self._render(state)
File ~/.local/lib/python3.10/site-packages/autogluon/eda/visualization/layouts.
 ⇔py:43, in SimpleVerticalLinearLayout. render(self, state)
     41 def render(self, state: AnalysisState) -> None:
            for facet in self.facets:
---> 43
                facet.render(state)
File ~/.local/lib/python3.10/site-packages/autogluon/eda/visualization/base.py:
 ⇔96, in AbstractVisualization.render(self, state)
     94 state = self._get_namespace_state(state)
     95 if self.can_handle(state):
---> 96
            self._render(state)
File ~/.local/lib/python3.10/site-packages/autogluon/eda/visualization/
 →interaction.py:306, in FeatureInteractionVisualization._render(self, state)
    303 if "figsize" not in fig_args:
    304
            fig_args["figsize"] = (12, 6)
--> 306 renderer.render(
    307
            state=state,
    308
            ds=ds,
    309
            params=(x, y, hue),
```

```
310
                         param_types=(x_type, y_type, hue_type),
        311
                         data=data,
        312
                         fig_args=fig_args,
                         chart_args=chart_args,
        313
        314)
File ~/.local/lib/python3.10/site-packages/autogluon/eda/visualization/
   ⇔interaction.py:116, in _AbstractFeatureInteractionPlotRenderer.render(self,_
   →state, ds, params, param_types, data, fig_args, chart_args)
         114 def render(self, state, ds, params, param_types, data, fig_args, ___
   ⇔chart_args):
        115
                         fig, ax = plt.subplots(**fig_args)
--> 116
                         self._render(state, ds, params, param_types, ax, data, chart_args)
                         plt.show(fig)
        117
File ~/.local/lib/python3.10/site-packages/autogluon/eda/visualization/
   ⇒interaction.py:454, in FeatureInteractionVisualization. RegPlotRenderer.
   → render(self, state, ds, params, param_types, ax, data, chart_args)
        453 def _render(self, state, ds, params, param_types, ax, data, chart_args)
                         sns.regplot(ax=ax, data=data, **chart_args)
--> 454
File /opt/homebrew/anaconda3/envs/ag/lib/python3.10/site-packages/seaborn/
  →regression.py:759, in regplot(data, x, y, x_estimator, x_bins, x_ci, scatter, fit_reg, ci, n_boot, units, seed, order, logistic, lowess, robust, logx, x_partial, y_partial, truncate, dropna, x_jitter, y_jitter, label, color, units, seed, order, y_jitter, y_jitter, label, color, y_jitter, y_jitter, label, color, y_jitter, y
   →marker, scatter kws, line kws, ax)
        757 scatter_kws["marker"] = marker
        758 line_kws = {} if line_kws is None else copy.copy(line_kws)
--> 759 plotter.plot(ax, scatter_kws, line_kws)
        760 return ax
File /opt/homebrew/anaconda3/envs/ag/lib/python3.10/site-packages/seaborn/
   oregression.py:368, in RegressionPlotter.plot(self, ax, scatter kws, line kws
                         self.scatterplot(ax, scatter_kws)
         367 if self.fit_reg:
--> 368
                         self.lineplot(ax, line_kws)
        370 # Label the axes
        371 if hasattr(self.x, "name"):
File /opt/homebrew/anaconda3/envs/ag/lib/python3.10/site-packages/seaborn/
   oregression.py:413, in RegressionPlotter.lineplot(self, ax, kws)
        411 """Draw the model."""
        412 # Fit the regression model
--> 413 grid, yhat, err_bands = self.fit_regression(ax)
        414 edges = grid[0], grid[-1]
        416 # Get set default aesthetics
```

```
File /opt/homebrew/anaconda3/envs/ag/lib/python3.10/site-packages/seaborn/
 oregression.py:219, in _RegressionPlotter.fit_regression(self, ax, x_range, __
 ⇔grid)
            yhat, yhat_boots = self.fit_logx(grid)
    217
    218 else:
--> 219
            yhat, yhat_boots = self.fit_fast(grid)
    221 # Compute the confidence interval at each grid point
    222 if ci is None:
File /opt/homebrew/anaconda3/envs/ag/lib/python3.10/site-packages/seaborn/
 regression.py:240, in RegressionPlotter.fit_fast(self, grid)
    237 if self.ci is None:
            return yhat, None
    238
--> 240 beta_boots = algo.bootstrap(X, y,
                                    func=reg func,
    241
    242
                                    n_boot=self.n_boot,
    243
                                    units=self.units,
    244
                                    seed=self.seed).T
    245 yhat_boots = grid.dot(beta_boots).T
    246 return yhat, yhat_boots
File /opt/homebrew/anaconda3/envs/ag/lib/python3.10/site-packages/seaborn/
 →algorithms.py:98, in bootstrap(*args, **kwargs)
            resampler = integers(0, n, n, dtype=np.intp) # intp is indexing

∪
 ⊶dtype
            sample = [a.take(resampler, axis=0) for a in args]
            boot_dist.append(f(*sample, **func_kwargs))
---> 98
     99 return np.array(boot_dist)
File /opt/homebrew/anaconda3/envs/ag/lib/python3.10/site-packages/seaborn/
 oregression.py:232, in _RegressionPlotter.fit_fast.<locals>.reg_func(_x, _y)
    231 def reg_func(_x, _y):
--> 232
           return np.linalg.pinv(_x).dot(_y)
File <__array_function__ internals>:200, in pinv(*args, **kwargs)
File /opt/homebrew/anaconda3/envs/ag/lib/python3.10/site-packages/numpy/linalg/
 ⇔linalg.py:1983, in pinv(a, rcond, hermitian)
            return wrap(res)
   1981
   1982 a = a.conjugate()
-> 1983 u, s, vt = svd(a, full_matrices=False, hermitian=hermitian)
   1985 # discard small singular values
   1986 cutoff = rcond[..., newaxis] * amax(s, axis=-1, keepdims=True)
File <__array_function__ internals>:200, in svd(*args, **kwargs)
File /opt/homebrew/anaconda3/envs/ag/lib/python3.10/site-packages/numpy/linalg/
slinalg.py:1642, in svd(a, full_matrices, compute_uv, hermitian)
```


[]: auto.target_analysis(train_data=X_train, label="y")

1.1 Target variable analysis

1.1.1 Distribution fits for target variable

• none of the attempted distribution fits satisfy specified minimum p-value threshold: 0.01

1.1.2 Target variable correlations

train_data - spearman correlation matrix; focus: absolute correlation for y >= 0.5 (sample size: 10000)

Feature interaction between clear_sky_rad:W/y in train_data (sample size: 10000)

Feature interaction between diffuse_rad:W/y in train_data (sample size: 10000)

Feature interaction between clear_sky_energy_1h:J/y in train_data (sample size: 10000)

Feature interaction between direct_rad:W/y in train_data (sample size: 10000)

Feature interaction between diffuse_rad_1h:J/y in train_data (sample size: 10000)

Feature interaction between $sun_elevation:d/y$ in train_data (sample size: 10000)

Feature interaction between $direct_rad_1h:J/y$ in $train_data$ (sample size: 10000)

Feature interaction between is_day:idx/y in train_data (sample size: 10000)

Feature interaction between is_in_shadow:idx/y in train_data (sample size: 10000)

2 Starting

```
[]: import os
     # Get the last submission number
     last_submission_number = int(max([int(filename.split('_')[1].split('.')[0]) for_
      ⇔filename in os.listdir('submissions') if "submission" in filename]))
     print("Last submission number:", last_submission_number)
     print("Now creating submission number:", last_submission_number + 1)
     # Create the new filename
     new_filename = f'submission_{last_submission_number + 1}'
     hello = os.environ.get('HELLO')
     if hello is not None:
         new_filename += f'_{hello}'
     print("New filename:", new_filename)
    Last submission number: 78
    Now creating submission number: 79
    New filename: submission_79_jorge
[]: from autogluon.tabular import TabularDataset, TabularPredictor
     train_data = TabularDataset('X_train_raw.csv')
     train_data.drop(columns=['ds'], inplace=True)
```

```
label = 'y'
metric = 'mean_absolute_error'
time_limit = 60
presets = 'best_quality'
sample_weight = 'sample_weight' #None
weight_evaluation = True #False
```

Loaded data from: X_train_raw.csv | Columns = 53 / 53 | Rows = 93024 -> 93024

```
[]: predictors = [None, None]
```

Warning: path already exists! This predictor may overwrite an existing predictor! path="AutogluonModels/submission_79_jorge_A"

Presets specified: ['best_quality']

Stack configuration (auto_stack=True): num_stack_levels=1, num_bag_folds=8, num_bag_sets=20

Training model for location A...

```
ValueError
                                                Traceback (most recent call last)
/Users/jorgensandhaug/Desktop/tdt4173/data/autogluon_each_location.ipynb Cell 1
       <a href='vscode-notebook-cell:/Users/jorgensandhaug/Desktop/tdt4173/data/</pre>
 -autogluon_each_location.ipynb#Y104sZmlsZQ%3D%3D?line=0'>1</a> loc = "A"
       <a href='vscode-notebook-cell:/Users/jorgensandhaug/Desktop/tdt4173/data/</pre>
 →autogluon each location.ipynb#Y104sZmlsZQ%3D%3D?line=1'>2</a> print(f"Trainin ;
 →model for location {loc}...")
 ---> <a href='vscode-notebook-cell:/Users/jorgensandhaug/Desktop/tdt4173/data/
 →autogluon_each_location.ipynb#Y104sZmlsZQ%3D%3D?line=2'>3</a> predictor =
 TabularPredictor(label=label, eval_metric=metric, path=f"AutogluonModels/

←{new_filename}_{loc}", sample_weight=sample_weight,

←weight_evaluation=weight_evaluation).fit(train_data[train_data["location"] == ]
 →loc], time_limit=time_limit, presets=presets)
       <a href='vscode-notebook-cell:/Users/jorgensandhaug/Desktop/tdt4173/data/</pre>
 →autogluon_each_location.ipynb#Y104sZmlsZQ%3D%3D?line=3'>4</a> predictors[0] =
 →predictor
File /opt/homebrew/anaconda3/envs/ag/lib/python3.10/site-packages/autogluon/cor/
 outils/decorators.py:31, in unpack.<locals>._unpack_inner.<locals>._call(*args_u
 ↔**kwargs)
```

```
28 @functools.wraps(f)
           29 def _call(*args, **kwargs):
           30
                          gargs, gkwargs = g(*other_args, *args, **kwargs)
---> 31
                          return f(*gargs, **gkwargs)
File /opt/homebrew/anaconda3/envs/ag/lib/python3.10/site-packages/autogluon/
  →tabular/predictor/predictor.py:986, in TabularPredictor.fit(self, train_data, journal of tuning_data, time_limit, presets, hyperparameters, feature_metadata, infer_limit, infer_limit_batch_size, fit_weighted_ensemble, fit_wei
   ⇔calibrate decision threshold, num cpus, num gpus, **kwargs)
                          aux kwargs["fit weighted ensemble"] = False
         985 self.save(silent=True) # Save predictor to disk to enable prediction,
   ⇒and training after interrupt
--> 986 self._learner.fit(
         987
                          X=train_data,
         988
                          X_val=tuning_data,
         989
                          X_unlabeled=unlabeled_data,
         990
                          holdout_frac=holdout_frac,
         991
                          num_bag_folds=num_bag_folds,
         992
                          num_bag_sets=num_bag_sets,
         993
                          num_stack_levels=num_stack_levels,
         994
                          hyperparameters=hyperparameters,
         995
                          core kwargs=core kwargs,
         996
                          aux_kwargs=aux_kwargs,
         997
                          time limit=time limit,
                          infer limit=infer limit,
         998
         999
                          infer limit batch size=infer limit batch size,
      1000
                          verbosity=verbosity,
      1001
                          use_bag_holdout=use_bag_holdout,
      1002)
      1003 self._set_post_fit_vars()
      1005 self._post_fit(
                          keep_only_best=kwargs["keep_only_best"],
      1006
                          refit_full=kwargs["refit_full"],
      1007
       (...)
      1012
                          infer_limit=infer_limit,
      1013 )
File /opt/homebrew/anaconda3/envs/ag/lib/python3.10/site-packages/autogluon/
   utabular/learner/abstract_learner.py:158, in AbstractTabularLearner.fit(self,_
   →X, X_val, **kwargs)
         156 if self.is_fit:
                          raise AssertionError("Learner is already fit.")
--> 158 self._validate_fit_input(X=X, X_val=X_val, **kwargs)
         159 return self._fit(X=X, X_val=X_val, **kwargs)
File /opt/homebrew/anaconda3/envs/ag/lib/python3.10/site-packages/autogluon/
   atabular/learner/abstract_learner.py:376, in AbstractTabularLearner.
   →_validate_fit_input(self, X, **kwargs)
```

```
raise KeyError(f"Label column '{self.label}' is missing from
       →training data. Training data columns: {list(X.columns)}")
          375 X_val = kwargs.get("X_val", None)
     --> 376 self._validate_sample_weight(X, X_val)
          377 self. validate groups(X, X val)
     File /opt/homebrew/anaconda3/envs/ag/lib/python3.10/site-packages/autogluon/
       otabular/learner/abstract_learner.py:390, in AbstractTabularLearner.
       →_validate_sample_weight(self, X, X_val)
          388 weight_vals = X[self.sample_weight]
          389 if weight_vals.isna().sum() > 0:
      --> 390
                  raise ValueError(f"Sample weights in column '{self.sample_weight}'u
       ⇔cannot be nan")
          391 if weight_vals.dtype.kind not in "biuf":
                  raise ValueError(f"Sample weights in column '{self.sample weight}'
       →must be numeric values")
     ValueError: Sample weights in column 'sample_weight' cannot be nan
[]: loc = "B"
     print(f"Training model for location {loc}...")
     predictor = TabularPredictor(label=label, eval_metric=metric,__
      path=f"AutogluonModels/{new filename} {loc}", sample weight=sample weight,
      weight_evaluation=weight_evaluation).fit(train_data[train_data["location"]]
      →== loc], time_limit=time_limit, presets=presets)
     predictors[1] = predictor
    Presets specified: ['best quality']
    Stack configuration (auto_stack=True): num_stack_levels=1, num_bag_folds=8,
    num bag sets=20
    Beginning AutoGluon training ... Time limit = 60s
    AutoGluon will save models to "AutogluonModels/submission_81_jorge_B/"
    AutoGluon Version: 0.8.1
    Python Version:
                        3.10.12
    Operating System:
                        Darwin
    Platform Machine:
                        arm64
    Platform Version:
                        Darwin Kernel Version 22.1.0: Sun Oct 9 20:15:09 PDT 2022;
    root:xnu-8792.41.9~2/RELEASE_ARM64_T6000
    Disk Space Avail:
                        29.45 GB / 494.38 GB (6.0%)
    Train Data Rows:
                        32844
    Train Data Columns: 49
    Label Column: y
    Preprocessing data ...
    AutoGluon infers your prediction problem is: 'regression' (because dtype of
    label-column == float and many unique label-values observed).
            Label info (max, min, mean, stddev): (1152.3, -0.0, 96.82478, 193.94649)
            If 'regression' is not the correct problem type, please manually specify
```

```
the problem_type parameter during predictor init (You may specify problem_type
as one of: ['binary', 'multiclass', 'regression'])
Using Feature Generators to preprocess the data ...
Fitting AutoMLPipelineFeatureGenerator...
        Available Memory:
                                             4331.9 MB
        Train Data (Original) Memory Usage: 14.52 MB (0.3% of available memory)
        Inferring data type of each feature based on column values. Set
feature_metadata_in to manually specify special dtypes of the features.
        Stage 1 Generators:
                Fitting AsTypeFeatureGenerator...
                        Note: Converting 1 features to boolean dtype as they
only contain 2 unique values.
        Stage 2 Generators:
                Fitting FillNaFeatureGenerator...
        Stage 3 Generators:
                Fitting IdentityFeatureGenerator...
        Stage 4 Generators:
                Fitting DropUniqueFeatureGenerator...
        Stage 5 Generators:
                Fitting DropDuplicatesFeatureGenerator...
        Useless Original Features (Count: 1): ['location']
                These features carry no predictive signal and should be manually
investigated.
                This is typically a feature which has the same value for all
rows.
                These features do not need to be present at inference time.
        Types of features in original data (raw dtype, special dtypes):
                ('float', []): 44 | ['absolute_humidity_2m:gm3',
'air_density_2m:kgm3', 'ceiling_height_agl:m', 'clear_sky_energy_1h:J',
'clear_sky_rad:W', ...]
                ('int', []) : 4 | ['hour', 'weekday', 'month', 'year']
        Types of features in processed data (raw dtype, special dtypes):
                ('float', [])
                                  : 43 | ['absolute_humidity_2m:gm3',
'air_density_2m:kgm3', 'ceiling_height_agl:m', 'clear_sky_energy_1h:J',
'clear sky rad:W', ...]
                ('int', []) : 4 | ['hour', 'weekday', 'month', 'year']
                ('int', ['bool']) : 1 | ['elevation:m']
        0.1s = Fit runtime
        48 features in original data used to generate 48 features in processed
data.
        Train Data (Processed) Memory Usage: 12.38 MB (0.3% of available memory)
Data preprocessing and feature engineering runtime = 0.12s ...
AutoGluon will gauge predictive performance using evaluation metric:
'mean_absolute_error'
        This metric's sign has been flipped to adhere to being higher_is_better.
```

To change this, specify the eval_metric parameter of Predictor()

The metric score can be multiplied by -1 to get the metric value.

User-specified model hyperparameters to be fit:

```
{
        'NN_TORCH': {},
        'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {},
'GBMLarge'],
        'CAT': {},
        'XGB': {},
        'FASTAI': {},
        'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini',
'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args':
{'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}},
{'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE',
'problem_types': ['regression', 'quantile']}}],
        'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini',
'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args':
{'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}},
{'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE',
'problem_types': ['regression', 'quantile']}}],
        'KNN': [{'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}},
{'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}],
AutoGluon will fit 2 stack levels (L1 to L2) ...
Fitting 11 L1 models ...
Fitting model: KNeighborsUnif_BAG_L1 ... Training model for up to 39.91s of the
59.88s of remaining time.
Training model for location B...
        Not enough time to generate out-of-fold predictions for model. Estimated
time required was 195.85s compared to 51.85s of available time.
        Time limit exceeded... Skipping KNeighborsUnif_BAG_L1.
Fitting model: KNeighborsDist_BAG_L1 ... Training model for up to 36.88s of the
56.85s of remaining time.
        Not enough time to generate out-of-fold predictions for model. Estimated
time required was 220.95s compared to 47.91s of available time.
        Time limit exceeded... Skipping KNeighborsDist_BAG_L1.
Fitting model: LightGBMXT BAG L1 ... Training model for up to 33.46s of the
53.43s of remaining time.
        Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
        -25.7449
                         = Validation score (-mean_absolute_error)
        28.32s = Training
                              runtime
        65.73s
                = Validation runtime
Completed 1/20 k-fold bagging repeats ...
Fitting model: WeightedEnsemble_L2 ... Training model for up to 59.88s of the
14.16s of remaining time.
        -25.7449
                         = Validation score (-mean_absolute_error)
        0.01s
                = Training
                              runtime
        0.0s
                 = Validation runtime
Fitting 9 L2 models ...
```

```
14.06s of remaining time.
            Fitting 8 child models (S1F1 - S1F8) | Fitting with
    ParallelLocalFoldFittingStrategy
            -24.2516
                             = Validation score (-mean absolute error)
            5.29s
                     = Training
                                  runtime
            1.3s
                     = Validation runtime
    Fitting model: LightGBM_BAG_L2 ... Training model for up to 4.97s of the 4.94s
    of remaining time.
            Fitting 8 child models (S1F1 - S1F8) | Fitting with
    ParallelLocalFoldFittingStrategy
            -23.6458
                             = Validation score (-mean_absolute_error)
            1.99s
                    = Training
                                  runtime
            0.19s
                     = Validation runtime
    Fitting model: RandomForestMSE_BAG_L2 ... Training model for up to 0.91s of the
    0.89s of remaining time.
            -22.1865
                             = Validation score (-mean_absolute_error)
            25.62s = Training
                                  runtime
            0.85s
                     = Validation runtime
    Completed 1/20 k-fold bagging repeats ...
    Fitting model: WeightedEnsemble_L3 ... Training model for up to 59.88s of the
    -25.95s of remaining time.
            -22.1865
                             = Validation score (-mean absolute error)
            0.14s = Training
                                  runtime
                   = Validation runtime
    AutoGluon training complete, total runtime = 86.12s ... Best model:
    "WeightedEnsemble_L3"
    TabularPredictor saved. To load, use: predictor =
    TabularPredictor.load("AutogluonModels/submission_81_jorge_B/")
[]: loc = "C"
    print(f"Training model for location {loc}...")
    predictor = TabularPredictor(label=label, eval_metric=metric,__
      →path=f"AutogluonModels/{new_filename}_{loc}", sample_weight=sample_weight,
      weight_evaluation=weight_evaluation).fit(train_data[train_data["location"]]
      →== loc], time_limit=time_limit, presets=presets)
    predictors[2] = predictor
    Presets specified: ['best_quality']
    Stack configuration (auto_stack=True): num_stack_levels=1, num_bag_folds=8,
    num_bag_sets=20
    Beginning AutoGluon training ... Time limit = 60s
    AutoGluon will save models to "AutogluonModels/submission_81_jorge_C/"
    AutoGluon Version: 0.8.1
    Python Version:
                        3.10.12
    Operating System:
                        Darwin
    Platform Machine:
                        arm64
    Platform Version: Darwin Kernel Version 22.1.0: Sun Oct 9 20:15:09 PDT 2022;
```

Fitting model: LightGBMXT_BAG_L2 ... Training model for up to 14.1s of the

```
root:xnu-8792.41.9~2/RELEASE_ARM64_T6000
Disk Space Avail:
                    28.83 GB / 494.38 GB (5.8%)
Train Data Rows:
                    26095
Train Data Columns: 49
Label Column: y
Preprocessing data ...
AutoGluon infers your prediction problem is: 'regression' (because dtype of
label-column == float and label-values can't be converted to int).
        Label info (max, min, mean, stddev): (999.6, -0.0, 77.63106, 165.81688)
        If 'regression' is not the correct problem_type, please manually specify
the problem type parameter during predictor init (You may specify problem type
as one of: ['binary', 'multiclass', 'regression'])
Using Feature Generators to preprocess the data ...
Fitting AutoMLPipelineFeatureGenerator...
        Available Memory:
                                             4428.79 MB
        Train Data (Original) Memory Usage: 11.53 MB (0.3% of available memory)
        Inferring data type of each feature based on column values. Set
feature_metadata_in to manually specify special dtypes of the features.
        Stage 1 Generators:
                Fitting AsTypeFeatureGenerator...
                        Note: Converting 1 features to boolean dtype as they
only contain 2 unique values.
        Stage 2 Generators:
                Fitting FillNaFeatureGenerator...
        Stage 3 Generators:
                Fitting IdentityFeatureGenerator...
        Stage 4 Generators:
                Fitting DropUniqueFeatureGenerator...
        Stage 5 Generators:
                Fitting DropDuplicatesFeatureGenerator...
        Useless Original Features (Count: 1): ['location']
                These features carry no predictive signal and should be manually
investigated.
                This is typically a feature which has the same value for all
rows.
                These features do not need to be present at inference time.
        Types of features in original data (raw dtype, special dtypes):
                ('float', []): 44 | ['absolute_humidity_2m:gm3',
'air_density_2m:kgm3', 'ceiling_height_agl:m', 'clear_sky_energy_1h:J',
'clear_sky_rad:W', ...]
                ('int', []) : 4 | ['hour', 'weekday', 'month', 'year']
        Types of features in processed data (raw dtype, special dtypes):
                ('float', [])
                                 : 43 | ['absolute_humidity_2m:gm3',
'air_density_2m:kgm3', 'ceiling_height_agl:m', 'clear_sky_energy_1h:J',
'clear_sky_rad:W', ...]
                               : 4 | ['hour', 'weekday', 'month', 'year']
                ('int', ['bool']) : 1 | ['elevation:m']
        0.1s = Fit runtime
```

48 features in original data used to generate 48 features in processed data. Train Data (Processed) Memory Usage: 9.84 MB (0.2% of available memory) Data preprocessing and feature engineering runtime = 0.13s ... AutoGluon will gauge predictive performance using evaluation metric: 'mean_absolute_error' This metric's sign has been flipped to adhere to being higher is better. The metric score can be multiplied by -1 to get the metric value. To change this, specify the eval_metric parameter of Predictor() User-specified model hyperparameters to be fit: 'NN_TORCH': {}, 'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {}, 'GBMLarge'], 'CAT': {}, 'XGB': {}, 'FASTAI': {}, 'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}], 'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}], 'KNN': [{'weights': 'uniform', 'ag args': {'name_suffix': 'Unif'}}, {'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}], AutoGluon will fit 2 stack levels (L1 to L2) ... Fitting 11 L1 models ... Fitting model: KNeighborsUnif_BAG_L1 ... Training model for up to 39.9s of the 59.87s of remaining time. Training model for location C... Not enough time to generate out-of-fold predictions for model. Estimated time required was 99.89s compared to 51.85s of available time. Time limit exceeded... Skipping KNeighborsUnif_BAG_L1. Fitting model: KNeighborsDist_BAG_L1 ... Training model for up to 37.94s of the 57.9s of remaining time. Not enough time to generate out-of-fold predictions for model. Estimated time required was 86.14s compared to 49.3s of available time. Time limit exceeded... Skipping KNeighborsDist_BAG_L1. Fitting model: LightGBMXT_BAG_L1 ... Training model for up to 36.25s of the 56.21s of remaining time. Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy

```
-17.0996
                        = Validation score (-mean_absolute_error)
        23.53s = Training
                             runtime
       44.64s = Validation runtime
Fitting model: LightGBM_BAG_L1 ... Training model for up to 4.44s of the 24.41s
of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -19.0788
                        = Validation score (-mean_absolute_error)
       4.37s
              = Training
                             runtime
                = Validation runtime
        1.22s
Completed 1/20 k-fold bagging repeats ...
Fitting model: WeightedEnsemble L2 ... Training model for up to 59.87s of the
17.79s of remaining time.
                        = Validation score
       -17.0784
                                             (-mean_absolute_error)
       0.09s
                = Training
                             runtime
       0.0s
                = Validation runtime
Fitting 9 L2 models ...
Fitting model: LightGBMXT_BAG_L2 ... Training model for up to 17.69s of the
17.68s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -17.7999
                        = Validation score (-mean absolute error)
       2.08s
                = Training
                             runtime
                = Validation runtime
       0.4s
Fitting model: LightGBM_BAG_L2 ... Training model for up to 13.48s of the 13.48s
of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -17.2792
                        = Validation score (-mean_absolute_error)
       1.61s
              = Training runtime
                = Validation runtime
Fitting model: RandomForestMSE_BAG_L2 ... Training model for up to 10.02s of the
10.01s of remaining time.
       -17.0599
                        = Validation score (-mean_absolute_error)
       19.24s = Training
                             runtime
                = Validation runtime
       0.52s
Completed 1/20 k-fold bagging repeats ...
Fitting model: WeightedEnsemble_L3 ... Training model for up to 59.87s of the
-9.96s of remaining time.
       -16.9596
                        = Validation score (-mean absolute error)
       0.14s
                = Training runtime
                = Validation runtime
AutoGluon training complete, total runtime = 70.12s ... Best model:
"WeightedEnsemble_L3"
TabularPredictor saved. To load, use: predictor =
TabularPredictor.load("AutogluonModels/submission_81_jorge_C/")
```

3 Submit

```
[]: import pandas as pd
    import matplotlib.pyplot as plt
    train_data_with_dates = TabularDataset('X_train_raw.csv')
    train_data_with_dates["ds"] = pd.to_datetime(train_data_with_dates["ds"])
    test_data = TabularDataset('X_test_raw.csv')
    test data["ds"] = pd.to datetime(test data["ds"])
    #test data
    Loaded data from: X_train_raw.csv | Columns = 51 / 51 | Rows = 93024 -> 93024
    Loaded data from: X_test_raw.csv | Columns = 50 / 50 | Rows = 2160 -> 2160
[]: test_ids = TabularDataset('test.csv')
    test_ids["time"] = pd.to_datetime(test_ids["time"])
    # merge test_data with test_ids
    test_data_merged = pd.merge(test_data, test_ids, how="inner", right_on=["time",_
      #test_data_merged
    Loaded data from: test.csv | Columns = 4 / 4 | Rows = 2160 -> 2160
[]: # predict, grouped by location
    predictions = []
    location_map = {
        "A": 0,
        "B": 1,
        "C": 2
    for loc, group in test_data.groupby('location'):
        i = location_map[loc]
        subset = test data merged[test data merged["location"] == loc].
      →reset_index(drop=True)
         #print(subset)
        pred = predictors[i].predict(subset)
        subset["prediction"] = pred
        predictions.append(subset)
[]: # plot predictions for location A, in addition to train data for A
    for loc, idx in location_map.items():
        fig, ax = plt.subplots(figsize=(20, 10))
        # plot train data
        train_data_with_dates[train_data_with_dates["location"] == loc].plot(x='ds',_

y='y', ax=ax, label="train data")
```

```
# plot predictions
predictions[idx].plot(x='ds', y='prediction', ax=ax, label="predictions")
# title
ax.set_title(f"Predictions for location {loc}")
```



```
[]: # concatenate predictions
submissions_df = pd.concat(predictions)
submissions_df = submissions_df[["id", "prediction"]]
submissions_df
```

```
[]:
            id prediction
            0
                 1.474567
     1
            1
                 1.537354
     2
            2
                 1.680374
     3
            3
                47.797668
     4
            4
              300.030823
                83.732719
     715
        2155
    716 2156
                61.742329
    717 2157
                29.696980
     718 2158
                 3.763743
     719 2159
                 2.140930
```

[2160 rows x 2 columns]

Saving submission to submissions/submission_81_jorge.csv

```
[]: # save this notebook to submissions folder
     import subprocess
     import os
     subprocess.run(["jupyter", "nbconvert", "--to", "pdf", "--output", os.path.
      ⇒join('notebook_pdfs', f"{new_filename}.pdf"), "autogluon_each_location.
      →ipynb"])
    [NbConvertApp] Converting notebook autogluon each location.ipynb to pdf
    [NbConvertApp] Support files will be in notebook_pdfs/submission_81_jorge_files/
    [NbConvertApp] Making directory
    ./notebook_pdfs/submission_81_jorge_files/notebook_pdfs
    [NbConvertApp] Writing 121410 bytes to notebook.tex
    [NbConvertApp] Building PDF
    [NbConvertApp] Running xelatex 3 times: ['xelatex', 'notebook.tex', '-quiet']
    [NbConvertApp] Running bibtex 1 time: ['bibtex', 'notebook']
    [NbConvertApp] WARNING | bibtex had problems, most likely because there were no
    citations
    [NbConvertApp] PDF successfully created
    [NbConvertApp] Writing 372019 bytes to notebook pdfs/submission 81 jorge.pdf
[]: CompletedProcess(args=['jupyter', 'nbconvert', '--to', 'pdf', '--output',
     'notebook_pdfs/submission_81_jorge.pdf', 'autogluon_each_location.ipynb'],
     returncode=0)
[]: # feature importance
    location="A"
     split_time = pd.Timestamp("2022-10-28 22:00:00")
     estimated = train_data_with_dates[train_data_with_dates["ds"] >= split_time]
     estimated = estimated[estimated["location"] == location]
     predictors[0].feature_importance(feature_stage="original", data=estimated,__
      →time limit=60*10)
    These features in provided data are not utilized by the predictor and will be
    ignored: ['location']
    Computing feature importance via permutation shuffling for 48 features using
    1440 rows with 5 shuffle sets...
            639.68s = Expected runtime (127.94s per shuffle set)
[]: # feature importance
     observed = train_data_with_dates[train_data_with_dates["ds"] < split_time]</pre>
     observed = observed[observed["location"] == location]
     predictor.feature_importance(feature_stage="original", data=observed,__
      →time_limit=60*10)
[]: subprocess.run(["jupyter", "nbconvert", "--to", "pdf", "--output", os.path.
      →join('notebook_pdfs', f"{new_filename}_with_feature_importance.pdf"),

¬"autogluon_each_location.ipynb"])
```

```
NameError Traceback (most recent call last)

/Users/skog/Documents/1-2023-autumn/school/TDT4173-machine-learning/project/

otherwise of the project of the p
```

```
[]: import subprocess
     def execute_git_command(directory, command):
         """Execute a Git command in the specified directory."""
         try:
             result = subprocess.check_output(['git', '-C', directory] + command,__
      ⇒stderr=subprocess.STDOUT)
             return result.decode('utf-8').strip(), True
         except subprocess.CalledProcessError as e:
             print(f"Git command failed with message: {e.output.decode('utf-8').
      ⇔strip()}")
             return e.output.decode('utf-8').strip(), False
     git_repo_path = "."
     new_filename = "henrik"
     branch_name = new_filename
     # add datetime to branch name
     branch name += f" {pd.Timestamp.now().strftime('%Y-%m-%d %H-%M-%S')}"
     commit msg = "run result"
     execute_git_command(git_repo_path, ['checkout', '-b',branch_name])
     # Navigate to your repo and commit changes
     execute_git_command(git_repo_path, ['add', '.'])
     execute_git_command(git_repo_path, ['commit', '-m',commit_msg])
     # Push to remote
     output, success = execute_git_command(git_repo_path, ['push',u

¬'origin',branch_name])
```

```
# If the push fails, try setting an upstream branch and push again
if not success and 'upstream' in output:
    print("Attempting to set upstream and push again...")
    execute_git_command(git_repo_path, ['push', '--set-upstream',
    'origin',branch_name])
    execute_git_command(git_repo_path, ['push', 'origin', 'henrik_branch'])
execute_git_command(git_repo_path, ['checkout', 'main'])
```