PDF.js viewer 2020/7/26 下午8:38

第 10 讲 一次函数与二次函数

学习目标点

- 1.掌握一次函数和二次函数的性质及图象特征.
- 2.运用一次函数与二次函数的性质解决有关问.

■ 知识集装箱

一、一次函数

函数 y = kx + b $(k \neq 0)$ 叫做一次函数,它的定义域是 R,值域是 R

- 1、一次函数的图象是直线, 所以一次函数又叫线性函数;
- 2、一次函数 y = kx + b $(k \neq 0)$ 中, k 叫直线的斜率, b 叫直线在 y 轴上的截距; k > 0 时

函数是增函数, k < 0 时, 函数是减函数;

b=0 时该函数是奇函数且为正比例函数,直线过原点; $b\neq 0$ 时,它既不是奇函数,也

不是偶函数;

二、二次函数

函数 $v = ax^2 + bx + c$ $(a \neq 0)$ 叫做二次函数,它的定义域为是 R,图象是一条抛物线;

- 1、当b=0 时,该函数为偶函数,其图象关于y 轴对称;
- 2、当a > 0时,抛物线 $y = ax^2 + bx + c$ 开口向上,二次函数的单调减区间为 $(-\infty, -\infty)$

单调增区间为
$$\left[-\frac{b}{2a},+\infty\right)$$
,值域为 $\left[\frac{4ac-b^2}{4a},+\infty\right)$;

3、当a < 0时,抛物线 $y = ax^2 + bx + c$ 开口向下,二次函数的单调增区间为 $(-\infty, -1)$

单调减区间为
$$\left[-\frac{b}{2a},+\infty\right)$$
,值域为 $\left(-\infty,\frac{4ac-b^2}{4a}\right]$;

三、二次函数的补充

- 1.二次函数的三种表示形式
- (1) 一般式: $v = ax^2 + bx + c \ (a \neq 0)$.
- (2) 顶点式: $y = a(x m)^2 + h (a \neq 0)$, 其中 (m, h) 为抛物线的顶点坐标.
- (3) 两根式: $y = a(x x_1)(x x_2)(a \neq 0)$, 其中 $x_1 \in x_2$ 是抛物线与 x 轴交点的横坐标
- 2.利用配方法求二次函数 $y = ax^2 + bx + c$ $(a \neq 0)$ 的对称轴方程为: $x = -\frac{b}{2a}$.
- 3.若二次函数 $f(x) = ax^2 + bx + c$ $(a \neq 0)$ 对应方程 f(x) = 0 的两根为 x_1 、 x_2 ,那么函数

$$f(x) = ax^2 + bx + c \ (a \neq 0)$$
 图象的对称轴方程为: $x = \frac{x_1 + x_2}{2} = -\frac{b}{2a}$.

4.用待定系数法求解析式时,要注意函数对解析式的要求,一次函数、正比例函数、反比例函数的比例系数、二次函数的二次项系数等;要应视具体问题,灵活地选用其形式,再根据题设条件列方程组,确定其系数。

(1) 畲例研究室

案例 1

已知函数 y = (2m-1)x+1-3m, 求当 m 为何值时:

- (1)这个函数为正比例函数?
- (2)这个函数为奇函数?
- (3)函数值y随x的增大而减小?

答案: (1)由题意,得 $\begin{cases} 1-3m=0\\ 2m-1\neq 0 \end{cases}$,解得 $\begin{cases} m=\frac{1}{3}\\ m\neq \frac{1}{2} \end{cases}$. $\therefore m=\frac{1}{3}$. (2) \therefore 函数为奇函数,

$$\begin{cases} 1-3m=0\\ 2m-1\neq 0 \end{cases} : m=\frac{1}{3}.$$

(3)由题意,得
$$2m-1 < 0$$
; $m < \frac{1}{2}$.

实验 1-1

已知一次函数 y = 2x + 1,

- (1)当y≤3时,求x的范围;
- (2)当 $y \in [-3,3]$ 时,求x的范围;
- (3)求图象与两坐标轴围成的三角形的面积.

答案: (1)
$$x \le 1$$
. (2) $-2 \le x \le 1$ (3) $S = \frac{1}{2} \times \frac{1}{2} \times 1 = \frac{1}{4}$.

实验 1-2

求直线 y = -3x + 1 和直线 y = 2x + 6 以及 x 轴围成的三角形的面积.

案例 2

已知一次函数的图象经过点 A(1,1)、 B(-2,7), 求这个一次函数的解析式.

答案: 设 y 关于 x 的函数解析式为 $y = ax + b(a \neq 0)$,把 A(1,1)、B(-2,7) 的坐标分别代

入
$$y = ax + b$$
 , 得 $\begin{cases} 1 = a + b \\ 7 = -2a + b \end{cases}$, 解得 $\begin{cases} a = -2 \\ b = 3 \end{cases}$.

 $\therefore y$ 关于 x 的函数解析式为 y = -2x + 3.

实验 2-1

已知函数 f(x) 为一次函数, 其图象如图, 求 f(x) 的解析式.

答案: f(x) = -1.5x + 1.5.

页码: 3/10

实验 2-2

已知一次函数 y = kx + b 的图象经过点($\frac{5}{2}$, 0), 且与坐标轴围成的三角形面积为 $\frac{25}{4}$, 求该一

次函数的解析式.

答案: y = 2x - 5 或 y = -2x + 5.

例 3: 已知函数 $f(x) = x^2 + x - 2$, 则函数 f(x) 在区间[-1,1)上(

- A. 最大值为 0, 最小值为 - .
- B. 最大值为 0, 最小值为 2
- C. 最大值为 0, 无最小值
- D. 无最大值,最小值为 - 4

答案: D

实验 3-1

已知函数 $f(x) = x^2 + 2x + 4, x \in [-2,2]$,则 f(x) 的值域是

答案: [3,12]

实验 3-2

函数 $y = x^2 - 6x + 7$ 的值域是(

$$A.\{y|y<-2\}$$

$$B\{y|y>-2\}$$

$$C\{y|y\geq -2\}$$

$$D\{y | y \le -2\}$$

答案: C

案例 4

已知二次函数 $y = 4x^2 - 4ax + a^2 - 2a + 2$ 在 $0 \le x \le 2$ 上的最小值为 3,求 a 的值。

答案: $a=1-\sqrt{2}$ 或 $a=5+\sqrt{10}$

页码: 4/10

PDF.js viewer 2020/7/26 下午8:38

实验 4

已知二次函数 $y=x^2-4x+a-3b$ 在 $0 \le x \le 5$ 上的最小值为 -1 ,最大值为 4a ,求 a,b 的 值。

答案:
$$a=2, b=-\frac{1}{3}$$

案例 5

求 $f(x) = x^2 - 2ax - 1$ 在[0,2]上的最大值 M(a) 和最小值 m(a) 的表达式.

答案: $f(x) = (x - a)^2 - a^2 - 1, x \in [0,2]$, 顶点是 $(a, -a^2 - 1)$, 二次项系数为正,图象开口向上,对称轴 x = a.由 f(x) 在顶点左边(即 $x \le a$)单调递减,在顶点右边(即 $x \ge a$)单调递增,所以 f(x) 图象的对称轴 x = a 与闭区间[0,2]的位置关系(求两种最值)分 4 种情况求解.如图①~④中抛物线的实线部分.

在 图 ① 中 , 当 a < 0 时 , f(x) 在 [0,2] 上 单 调 递 增 , 所 以 M(a) = f(2) = -4a + 3, m(a) = f(0) = -1.在图②中,当 $0 \le a < 2$,且 $f(0) \le f(2)$,即 $0 \le a \le 1$ 时,f(x)在[a,2]上单调递增,所以M(a) = f(2) = -4a + 3, $m(a) = f(a) = -a^2 - 1$.

在图③中, $\begin{cases} 0 < a \le 2 \\ f(0) > f(2) \end{cases}$,即 $1 < a \le 2$ 时, f(x) 在 $\begin{bmatrix} 0, a \end{bmatrix}$ 上单调递减,最大值 M(a) = f(0) = -1,最小值 $m(a) = f(a) = -a^2 - 1$.

在图④中,当a>2时,f(x)在[0,2]上单调递减,所以 M(a)=f(0)=-1, m(a)=f(2)=-4a+3.

综上可知,f(x)在[0,2]上的最大值与最小值分别为

$$M(a) = \begin{cases} -4a+3, a \le 1 \\ -1, a > 1 \end{cases}, m(a) = \begin{cases} -1, a < 0 \\ -a^2 - 1, 0 \le a \le 2 \\ -4a+3, a > 2 \end{cases}$$

实验 5-1

函数 $f(x) = -x^2 + 2ax + 1 - a$ 在区间[0,1]上有最大值 2, 求实数 a 的值.

答案: a = -1, 或 a = 2

实验 5-2

若函数 $y = x^2 + (a+2)x + 3, x \in [a,b]$ 的图象关于直线 x = 1 对称,则 b = 2_____.

答案: 6

案例 6

已 知 函 数 $f(x) = x^2 - 2(a+2)x + a^2, g(x) = -x^2 + 2(a-2)x - a^2 + 8$ 。 设

 $H_1(x) = \max\{f(x), g(x)\}, H_2(x) = \min\{f(x), g(x)\}.$ 记 $H_1(x)$ 的最小值为A, $H_2(x)$ 的最

大值为B,则A-B=()。

$$A.a^2 - 2a - 16$$
 $B.a^2 + 2 - 16$ $C.-16$ $D.16$

答案: C

实验 6

a 为实数,函数 $f(x) = |x^2 - ax|$ 在区间[0,1]上的最大值记为 g(a) .当 a =_______

时, g(a) 的值最小.

答案: $2\sqrt{2}-2$

案例 7

已知 $f(x) = x^2 - 2kx + k$ 在区间[0,1]上的最小值 $\frac{1}{4}$,则 $k = _____.$

答案: $\frac{1}{2}$

实验 7

若函数 $f(x) = 2x^2 - mx + 3$,当 $x \in [-2,+\infty)$ 时是增函数,当 $x \in (-\infty,-2)$ 时是减函数,则 f(1) =______.

■ 思维军械店

- 1.二次函数最值问题,一定要考虑自变量的取值范围;
- 2.二次函数最值问题,要注意对称轴的位置,以及对称轴左边与右边函数的增减性;
- 3.分类讨论时,要注意连续性和完整性;
- 4.分类讨论思想在这里运用广泛。

M 能力训练场

1. 若函数 y = (2m-3)x + (3n+1) 的图象经过第一、二、三象限,则 m 与 n 的取值是(

$$A.m > \frac{3}{2}, n > -\frac{1}{3}$$

$$B.m > 3, n > -3$$

$$C.m < -\frac{3}{2}, n < -\frac{1}{3}$$

$$D.m > \frac{3}{2}, n < \frac{1}{3}$$

答案: A

2. 如果 ab > 0 , bc < 0 , 那么一次函数 ax + by + c = 0 的图象的大致形状是(

答案: A

13hxz,

3. 已知函数 $f(x) = -x^2 + bx + c f(x) = -x^2 + bx + c$ 的图象的对称轴为 x = 2, 则()

A. f(0) < f(1) < f(3)

B. f(3) < f(1) < f(0)

C. f(3) < f(1) = f(0)

D. f(0) < f(1) = f(3)

答案: D

4. 函数 $y = x^2 - 2x + 3$ 在区间[0, m]上有最大值 3,最小值 2,则 m 的取值范围是()

 $A[1,+\infty)$

B[0,2]

 $C.(-\infty,2]$

D[1,2]

答案: D

5. 已知二次函数 y=f(x) 满足 f(3+x)=f(3-x) ,且 f(x)=0 有两个实根 x_1 、 x_2 ,则

x₁ + x₂ 等于()

A. 0

B. 3

C. 6

D. 不确定

答案: C

6. 一次函数 y = (3a - 7)x + a - 2 的图象与 y 轴的交点在 x 轴上方, 且 y 随 x 的增大而减小,

则 a 的取值范围是

答案: (2, ⁷) 3

7. 若函数 $y = (2m-9)x + m^2 - 9m + 15$ 是正比例函数, 其图象经过第二、四象限,则

 $m = \underline{\hspace{1cm}}$

答案: 2

8. 若函数 $f(x) = x^2 - 3x - 4$ 的定义域为 $\left[0,4\right]$, 值域为 $\left[-\frac{25}{4}, -4\right]$, 则 m 的取值范围

是_____

3 答案: [[−], 3] 9. 已知函数 $f(x) = \frac{1}{2}(x-1)^2 + n$ 的定义域和值域都是区间[1, m], 求 m、n 的值.

答案:
$$\begin{cases} m=3\\ n=1 \end{cases}$$

10. 已知函数 $f(x) = x^2 - 4x + 2$ 在区间[t, t+2]上的最小值为 g(t), 求 g(t)的表达式.

答案:
$$g(t) = \begin{cases} t^2 - 2 & t \le 0 \\ -2 & 0 < t < 2 \\ t^2 - 4t + 2 & t \ge 2 \end{cases}$$

PDF.js viewer 2020/7/26 下午8:38