Visual Analytics—Color

Dr. Ab Mosca (they/them)

Plan for Today

- Color
- Lab

Flashback: Mapping to visual dimensions

- Remember... Big idea behind visualization
 - Map data dimensions to visual dimensions in a principled way
 - Not all visual dimensions can represent all data types

Jacques Bertin, Semiologie Graphique (Semiology of Graphics), 1967. Color 101

Kinds of light

How we see color

How we see color

What do you notice here?

RGB

RGB

Issues

 Distance between colors nowhere near how we perceive differences

A: (5, 7, 15) B: (15, 17, 25)

rgb(0, 128, 0) rgb(10, 138, 10)

rgb(128, 0, 0) rgb(138, 10, 10)

HSV/L

HUE = Pure colors (not mixed with white or black)

SATURATION = Amount of white mixed with pure color

VALUE/LIGHTNESS =
Amount of black
mixed with pure color

HSV/L

Issues

 Distance between colors is closer, but not identical to how we perceive differences

A: (5, 7, 15)

B: (15, 17, 25)

hsv(120, 100, 50) hsv(130, 110, 60)

hsv(0, 100, 50) hsv(10, 110, 60)

CIELAB

L* = Perceptual lightness

a* = unique color (red – green)

b* = unique color (blue – yellow)

CIELAB

Issues

 Given numerical change corresponds to perceived change in color, but is computationally complex

A: (5, 7, 15)

B: (15, 17, 25)

lab(46.05, <u>-51.55</u>, 49.76)

lab(56.05, -41.55, 59.76)

lab(25.42, 47.91, 37.91)

lab(35.42, 57.91, 47.91)

Color phenomena

Caveat 1: color is perceived in context

Color phenomena

Which small square is darker green?

Caveat 2: difference is relative

Color phenomena

Caveat 2a: so are brightness and contrast

Caveat 3: mental models > perception

Color phenomena

• Using a poor color scheme can also cause issues with your visualization

Color palettes

Color Problems

Fun fact: "colorblindness"

1 out of every 8 people has just 2 types of color receptors (rather than 3)

What happens when you print?

Need color scheme that converts well to grey scale

- <u>colorbrewer.org</u> provides a whole bunch of palettes that can help us avoid these issues
- This makes life a lot easier for us!

Colorbrewer palettes

- <u>colorbrewer.org</u> provides a whole bunch of palettes that can help us avoid these issues
- This makes life a lot easier for us!

Colorbrewer palettes

When should we use each type of color palette?

Mini-lab: color tricks

- Find a partner
- Open a dataset of your choosing
- Build two visualizations on this dataset
 - One that tells the "real" story in the data (as you understand it), using color to represent at least one variable
 - One that uses color in an intentionally misleading way

- What did you try?
- What did you learn about the data?
- Can you imagine a scenario that might incline someone to choose your "bad" visualization instead of a better one?

Discussion