Trig Final (Practice v24)

- You can use a calculator (like Desmos)
- You should have a unit-circle with special angles and coordinates marked.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 2.5 meters. The angle measure is 3.9 radians. How long is the arc in meters?

Question 2

Consider angles $\frac{19\pi}{6}$ and $\frac{-11\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{19\pi}{6}\right)$ and $\cos\left(\frac{-11\pi}{4}\right)$ by using a unit circle (provided separately).

Find $sin(19\pi/6)$

Find $cos(-11\pi/4)$

If $\sin(\theta) = \frac{15}{17}$, and θ is in quadrant II, determine an exact value for $\tan(\theta)$.

Question 4

A mass-spring system oscillates vertically with a midline at y = -2.45 meters, an amplitude of 5.95 meters, and a frequency of 4.6 Hz. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).