

(11) EP 0 601 135 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:

 02.11.2005 Bulletin 2005/44
- (21) Application number: 93900497.4
- (22) Date of filing: 28.08.1992

- (51) Int Cl.⁷: **A61K 38/17**, A61K 38/18, C07K 14/51
- (86) International application number: PCT/US1992/007432
- (87) International publication number: WO 1993/005751 (01.04.1993 Gazette 1993/09)

(54) OSTEOGENIC PROTEINS IN THE TREATMENT OF METABOLIC BONE DISEASES

OSTEOGENISCHE PROTEINE IN DER BEHANDLUNG VON METABOLISCHEN KNOCHENKRANKHEITEN

PROTEINES OSTEOGENIQUES POUR LE TRAITEMENT DES MALADIES OSSEUSES METABOLIQUES

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL

SE

(30) Priority: 30.08.1991 US 752857 30.08.1991 US 752764 30.08.1991 US 752861 31.07.1992 US 923780

- (43) Date of publication of application: 15.06.1994 Bulletin 1994/24
- (73) Proprietor: Curis, Inc.
 Cambridge, MA 02138 (US)
- (72) Inventors:
 - KUBERASAMPATH, Thangavel Medway, MA 02053 (US)
 - COHEN, Charles, M. Medway, MA 02053 (US)
 - OPPERMANN, Hermann Medway, MA 02053 (US)
 - OZKAYNAK, Engin Milford, MA 01757 (US)
 - RUEGER, David, C.
 Hopkinton, MA 01748 (US)
 - PANG, Roy, H., L.
 Etna, NH 03750 (US)
 - SMART, John, E.
 Weston, MA 02193 (US)

(74) Representative: Price, Vincent Andrew et al Fry Heath & Spence LLP The Gables Massetts Road Horley Surrey RH6 7DQ (GB)

(56) References cited:

EP-A- 0 416 578 EP-A- 0 512 844 EP-A- 0 514 720 WO-A-89/09788 WO-A-89/10409 WO-A-91/05802 WO-A-92/15323 WO-A-92/21365

- PROCEEDINGS OF THE NATIONAL ACADEMY
 OF SCIENCES OF USA. vol. 87, March 1990,
 WASHINGTON US pages 2220 2224 WANG, E.A.
 ET AL 'Recombinant human bone
 morphogenetic protein induces bone formation'
- PROCEEDINGS OF THE NATIONAL ACADEMY
 OF SCIENCES OF USA. vol. 86, November 1989,
 WASHINGTON US pages 8793 8797
 VUKICEVIC, S. ET AL 'Stimulation of the
 expression of osteogenic and chondrogenic
 phenotipes in vitro by osteogenin'
- JOURNAL OF BIOLOGICAL CHEMISTRY. (MICROFILMS) vol. 267, no. 28, 5 October 1992, BALTIMORE, MD US pages 20352 - 20362 SAMPATH T.K. ET AL 'Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differenciation in vitro'

P 0 601 135 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

5

10

15

20

25

30

35

40

50

55

[0001] This invention relates to means for increasing the bone mass and/or preventing the loss of bone mass in a mammal. In particular it relates to use of a morphogen in the manufacture of a medicament for treatment of metabolic bone disease.

Background of the Invention

[0002] WO 92/21365 discloses a method for generating new bone growth in a mammal comprising administering to the mammal a safe and effective amount of Vitamin D compound in combination with a safe and effective amount of osteoinductive extract or at least one BMP.

[0003] EP 0 514 720 discloses bone growth factors used to stimulate bone formation when administered with agents that inhibit bone resorption.

[0004] Throughout adult life, bone is continually undergoing remodeling through the interactive cycles of bone formation and resorption (bone turnover). Bone resorption typically is rapid, and is mediated by osteoclasts (bone resorbing cells), formed by mononuclear phagocytic precursor cells at bone remodeling sites. This process then is followed by the appearance of osteoblasts (bone forming cells) which form bone slowly to replace the lost bone. The activities of the various cell types that participate in the remodeling process are controlled by interacting systemic (e.g., hormones, lymphokines, growth factors, vitamins) and local factors (e.g., cytokines, adhesion molecules, lymphokines and growth factors). The fact that completion of this process normally leads to balanced replacement and renewal of bone indicates that the molecular signals and events that influence bone remodeling are tightly controlled.

[0005] A number of bone growth disorders are known which cause an imbalance in the bone remodeling cycle. Chief among these are metabolic bone diseases, such as osteoporosis, osteoplasia (osteomalacia), chronic renal failure and hyperparathyroidism, which result in abnormal or excessive loss of bone mass (osteopenia). Other bone diseases, such as Paget's disease, also cause excessive loss of bone mass at localized sites.

[0006] Osteoporosis is a structural deterioration of the skeleton caused by loss of bone mass resulting from an imbalance in bone formation, bone resorption, or both, such that the resorption dominates the bone formation phase, thereby reducing the weight-bearing capacity of the affected bone. In a healthy adult, the rate at which bone is formed and resorbed is tightly coordinated so as to maintain the renewal of skeletal bone. However, in osteoporotic individuals an imbalance in these bone remodeling cycles develops which results in both loss of bone mass and in formation of microarchitectural defects in the continuity of the skeleton. These skeletal defects, created by perturbation in the remodeling sequence, accumulate and finally reach a point at which the structural integrity of the skeleton is severely compromised and bone fracture is likely. Although this imbalance occurs gradually in most individuals as they age ("senile osteoporosis"), it is much more severe and occurs at a rapid rate in postmenopausal women. In addition, osteoporosis also may result from nutritional and endocrine imbalances, hereditary disorders and a number of malignant transformations.

[0007] Patients suffering from chronic renal (kidney) failure almost universally suffer loss of skeletal bone mass (renal osteodystrophy). While it is known that kidney malfunction causes a calcium and phosphate imbalance in the blood, to date replenishment of calcium and phosphate by dialysis does not significantly inhibit osteodystrophy in patients suffering from chronic renal failure. In adults, osteodystrophic symptoms often are a significant cause of morbidity. In children, renal failure often results in a failure to grow, due to the failure to maintain and/or to increase bone mass.

[0008] Osteoplasia, also known as osteomalacia ("soft bones"), is a defect in bone mineralization (e.g., incomplete mineralization), and classically is related to vitamin D deficiency (1,25-dihydroxy vitamin D_3). The defect can cause compression fractures in bone, and a decrease in bone mass, as well as extended zones of hypertrophy and proliferative cartilage in place of bone tissue. The deficiency may result from a nutritional deficiency (e.g., rickets in children), malabsorption of vitamin D or calcium, and/or impaired metabolism of the vitamin.

[0009] Hyperparathyroidism (overproduction of the parathyroid hormone) is known to cause malabsorption of calcium, leading to abnormal bone loss. In children, hyperparathyroidism can inhibit growth, in adults the skeleton integrity is compromised and fracture of the ribs and vertebrae are characteristic. The parathyroid hormone imbalance typically may result from thyroid adenomas or gland hyperplasia, or may result from prolonged pharmacological use of a steroid. Secondary hyperparathyroidism also may result from renal osteodystrophy. In the early stages of the disease osteoclasts are stimulated to resorb bone in response to the excess hormone present. As the disease progresses, the trabecular bone ultimately is resorbed and marrow is replaced with fibrosis, macrophages and areas of hemorrhage as a consequence of microfractures. This condition is referred to clinically as osteitis fibrosa.

[0010] Paget's disease (osteitis deformans) is a disorder currently thought to have a viral etiology and is characterized by excessive bone resorption at localized sites which flare and heal but which ultimately are chronic and progressive, and may lead to malignant transformation. The disease typically affects adults over the age of 25.

[0011] To date, osteopenia treatments are based on inhibiting further bone resorption, e.g., by 1) inhibiting the dif-

ferentiation of hemopoietic mononuclear cells into mature osteoclasts, 2) by directly preventing osteoclast-mediated bone resorption, or 3) by affecting the hormonal control of bone resorption. Drug regimens used for the treatment of osteoporosis include calcium supplements, estrogen, calcitonin and diphosphonates. Vitamin D₃ and its metabolites, known to enhance calcium and phosphate absorption, also are being tried. None of the current therapies stimulate regeneration of new bone tissue. In addition, all of these agents have only a transient effect on bone remodeling. Thus, while in some cases the progression of the disease may be halted or slowed, patients with significant bone deterioration remain actively at risk. This is particularly prevalent in disorders such as osteoporosis where early diagnosis is difficult and/or rare and significant structural deterioration of the bone already may have occurred.

[0012] It is an object of the present invention to develop medical use of a morphogen for treatment of metabolic bone disease in an individual who, for example, is afflicted with a disease which decreases skeletal bone mass, particularly where the disease causes an imbalance in bone remodeling. Another object is use to enhance bone growth in children suffering from bone disorders, including metabolic bone diseases. Still another object is to prevent or inhibit bone deterioration in individuals at risk for loss of bone mass, including postmenopausal women, aged individuals, and patients undergoing dialysis. Yet another object is to provide methods and compositions for repairing defects in the microstructure of structurally compromised bone, including repairing bone fractures. Thus, the invention is aimed at stimulating bone formation and increasing bone mass, optionally over prolonged periods of time, and particularly to decrease the occurrence of new fractures resulting from structural deterioration of the skeleton. These and other objects and features of the invention will be apparent from the description, drawings, and claims which follow.

Summary of the Invention

15

20

25

30

35

40

45

55

[0013] The present invention provides use of a morphogen as defined in the appended claims.

[0014] In one aspect, the invention features use of a morphogen in the manufacture of a medicament for treatment of metabolic bone disease in a mammal. The treatment includes administering to the individual a therapeutically effective morphogen in an amount and for a time sufficient to inhibit the loss of bone mass, and/or to increase bone mass in the individual.

[0015] A therapeutic treatment method and composition for preventing loss of bone mass and/or for increasing bone mass in a mammal could include administering to the mammal a compound that stimulates in vivo a therapeutically effective concentration of an endogenous morphogen in the body of the mammal sufficient to prevent loss of and/or to increase bone mass in the individual. These compounds are referred to herein as morphogen-stimulating agents, and are understood to include substances which, when administered to a mammal, act on tissue(s) or organ(s) that normally are responsible for, or capable of, producing a morphogen and/or secreting a morphogen, and which cause the endogenous level of the morphogen to be altered. The agent may act, for example, by stimulating expression and/or secretion of an endogenous morphogen.

[0016] The morphogens described herein are believed to play a significant role in maintaining appropriate bone mass in an individual. Thus, a morphogen may be administered to any individual who requires assistance in maintaining appropriate bone mass and/or who suffers from a bone remodeling imbalance. For example, the morphogen or morphogen-stimulating agent may be administered to an adult suffering from renal failure to prevent bone deterioration which is associated with that disease, e.g., to correct bone loss due to late stage kidney failure. Similarly, the administration of a morphogen to a child suffering from renal failure is expected not only to alleviate loss of bone mass in the child, but also to stimulate bone formation and thus growth. In addition, administration of a morphogen or morphogen-stimulating agent to an individual suffering from defects in skeletal microstructure is expected to result in repair of that defect, and to enhance the weight-bearing capacity of the treated bone.

[0017] Accordingly, treatment methods and compositions may be used to treat a bone fracture or any disease which causes or results in bone fractures or other defects in skeletal microstructure, including loss of bone mass, and which compromise the weight-bearing capacity of bone. Such diseases include, for example, chronic renal failure and other kidney diseases, particularly those requiring dialysis; osteomalacia; vitamin D deficiency-induced osteopenia or osteoporosis; postmenopausal or senile osteoporosis; hyperparathyroidism and Paget's disease.

[0018] A morphogen or morphogen-stimulating agent could be administered systemically to the individual, e.g., orally or parenterally. In another embodiment the morphogen may be provided directly to the bone, e.g., by injection to the bone periosteum or endosteum. Direct injection is particularly useful for repairing defects in the microstructure of the bone, including bone fractures.

[0019] In any treatment method "administration of morphogen" refers to the administration of the morphogen, either alone or in combination with other molecules. For example, the mature form of the morphogen may be provided in association with its precursor "pro" domain, which is known to enhance the solubility of the protein. Other useful molecules known to enhance protein solubility include casein and other milk components, as well as various serum proteins. Additional useful molecules which may be associated with the morphogen or morphogen-stimulating agent include tissue targeting molecules capable of directing the morphogen or morphogen-stimulating agent to bone. Tissue targeting molecules capable of directing the morphogen or morphogen-stimulating agent to bone.

geting molecules envisioned to be useful in the treatment protocols include tetracycline, diphosphonates, and antibodies or other binding proteins which interact specifically with surface molecules on bone tissue cells.

[0020] Still another useful tissue targeting molecule is the morphogen precursor "pro" domain, particularly that of OP-1, BMP2 or BMP4. These proteins are found naturally associated with bone tissue but likely are synthesized in other tissues and targeted to bone tissue after secretion from the synthesizing tissue. For example, the primary source of OP-1 synthesis appears to be the tissue of the urinary tract (e.g., renal tissue), while the protein has been shown to be active in bone tissue (see below.) Moreover, the protein has been identified in serum, saliva and various milk forms. In addition, the secreted form of the protein comprises the mature dimer in association with the pro domain of the intact morphogen sequence. Accordingly, the associated morphogen pro domains may act to target specific morphogens to different tissues in vivo.

[0021] Associated tissue targeting or solubility-enhancing molecules also may be covalently linked to the morphogen using standard chemical means, including acid-labile linkages, which likely will be preferentially cleaved in the acidic environment of bone remodeling sites.

[0022] The morphogens or morphogen-stimulating agents also may be administered together with other "co-factors" known to have a beneficial effect on bone remodeling, including parathyroid hormone, vitamin D_3 , prostaglandins, dexamethasone, IGF (I, II) and their binding proteins, and other agents known to enhance osteoblast activity. Other useful confactors include calcitonin and estrogen and other agents which inhibit bone resorption.

[0023] Among the morphogens useful in this invention are proteins originally identified as osteogenic proteins, such as the OP-1, OP-2 and CHMP2 proteins, as well as amino acid sequence-related proteins such as DPP (from Drosophila), Vgl (from Xenopus), Vgr-1 (from mouse, see U.S. 5,011,691 to Oppermann et al.), GDF-1 (from mouse, see Lee (1991) PNAS 88:4250-4254), all of which are presented in Table II and Seq. ID Nos.5-14), and the recently identified 60A protein (from Drosophila, Seq. ID No. 24, see Wharton et al. (1991) PNAS 88:9214-9218.) The members of this family, which include members of the TGF-β super-family of proteins, share substantial amino acid sequence homology in their C-terminal regions. The proteins are translated as a precursor, having an N-terminal signal peptide sequence, typically less than about 30 residues, followed by a "pro" domain that is cleaved to yield the mature sequence. The signal peptide is cleaved rapidly upon translation, at a cleavage site that can be predicted in a given sequence using the method of Von Heijne ((1986) Nucleic Acids Research 14:4683-4691.) Table I, below, describes the various morphogens identified to date, including their nomenclature as used herein, their Seq. ID references, and publication sources for the amino acid sequences of the full length proteins not included in the Seq. Listing.

30

5

10

15

20

25

TABLE I

"OP-1" Refers generically to the group of morphogenically active proteins expressed from part or all of a DNA sequence encoding OP-1 protein, including allelic and species variants thereof, e.g., human OP-1 ("hOP-1", Seq. ID No. 5, mature protein amino acid sequence), or mouse OP-1 ("mOP-1", Seq. 35 ID No. 6, mature protein amino acid sequence.) The conserved seven cysteine skeleton is defined by residues 38 to 139 of Seq. ID Nos. 5 and 6. The cDNA sequences and the amino acids encoding the full length proteins are provided in Seq. Id Nos. 16 and 17 (hOP1) and Seq. ID Nos. 18 and 19 (mOP1.) The mature proteins are defined by residues 293-431 (hOP1) and 292-430 (mOP1). The "pro" regions of the proteins, cleaved to yield the mature, morphogenically active proteins are defined 40 essentially by residues 30-292 (hOP1) and residues 30-291 (mOP1). "OP-2" refers generically to the group of active proteins expressed from part or all of a DNA sequence encoding OP-2 protein, including allelic and species variants thereof, e.g., human OP-2 ("hOP-2", Seq. ID No. 7, mature protein amino acid sequence) or mouse OP-2 ("mOP-2", Seq. ID No. 8, mature protein amino acid sequence). The conserved seven cysteine skeleton is defined by residues 38 to 45 139 of Seq. ID Nos. 7 and 8. The cDNA sequences and the amino acids encoding the full length proteins are provided in Seq. ID Nos. 20 and 21 (hOP2) and Seq. ID Nos. 22 and 23 (mOP2.) The mature proteins are defined essentially by residues 264-402 (hOP2) and 261-399 (mOP2). The "pro" regions of the proteins, cleaved to yield the mature, morphogenically active proteins are defined essentially 50 by residues 18-263 (hOP2) and residues 18-260 (mOP2). (Another cleavage site also occurs 21 residues further upstream for both OP-2 proteins.)

TABLE I (continued)

	"CBMP2"	refers generically to the morphogenically active proteins expressed from a DNA sequence encoding
		the CBMP2 proteins, including allelic and species variants thereof, e.g., human CBMP2A ("CBMP2A
-		(fx)", Seq ID No. 9) or human CBMP2B DNA ("CBMP2B(fx)", Seq. ID No. 10). The amino acid
5		sequence for the full length proteins, referred to in the literature collectively as BMP2A and BMP2B,
		or BMP2 and BMP4, appear in Wozney, et al. (1988) Science 242:1528-1534. The pro domain for
		BMP2 (BMP2A) likely includes residues 25-248 or 25-282; the mature protein, residues 249-396 or
		283-396. The pro domain for BMP4 (BMP2B) likely includes residues 25-256 or 25-292; the mature
10		protein, residues 257-408 or 293-408.
	"DPP(fx)"	refers to protein sequences encoded by the Drosophila DPP gene and defining the conserved seven
		cysteine skeleton (Seq. ID No. 11). The amino acid sequence for the full length protein appears in
		Padgett, et al (1987) Nature 325: 81-84. The pro domain likely extends from the signal peptide
	M3.7 17.6 3.11	cleavage site to residue 456; the mature protein likely is defined by residues 457-588.
15	"Vgl(fx)"	refers to protein sequences encoded by the Xenopus Vgl gene and defining the conserved seven
		cysteine skeleton (Seq. ID No. 12). The amino acid sequence for the full length protein appears in Weeks (1987) Cell 51: 861-867. The pro domain likely extends from the signal peptide cleavage site
		to residue 246; the mature protein likely is defined by residues 247-360.
	"Vgr-1(fx)"	refers to protein sequences encoded by the murine Vgr-1 gene and defining the conserved seven
	V91-1(1A)	cysteine skeleton (Seq. ID No. 13). The amino acid sequence for the full length protein appears in
20		Lyons, et al. (1989) PNAS 86: 4554-4558. The pro domain likely extends from the signal peptide
		cleavage site to residue 299; the mature protein likely is defined by residues 300-438.
	"GDF-1(fx)"	refers to protein sequences encoded by the human GDF-1 gene and defining the conserved seven
		cysteine skeleton (Seq. ID No. 14). The cDNA and encoded amino sequence for the full length protein
25		is provided in Seq. ID. No. 32. The pro domain likely extends from the signal peptide clavage site to
20		residue 214; the mature protein likely is defined by residues 215-372.
	"60A"	refers generically to the morphogenically active proteins expressed from part or all of a DNA sequence
		(from the Drosophila 60A gene) encoding the 60A proteins (see Seq. ID No. 24 wherein the cDNA
		and encoded amino acid sequence for the full length protein is provided). "60A(fx)" refers to the
30		protein sequences defining the conserved seven cysteine skeleton (residues 354 to 455 of Seq. ID
		No. 24.) The pro domain likely extends from the signal peptide cleavage site to residue 324; the
		mature protein likely is defined by residues 325-455.
	"BMP3(fx)"	refers to protein sequences encoded by the human BMP3 gene and defining the conserved seven
0.5		cysteine skeleton (Seq. ID No. 26). The amino acid sequence for the full length protein appears in
35		wozney et al. (1988) Science 242: 1528-1534. The pro domain likely extends from the signal peptide cleavage site to residue 290; the mature protein likely is defined by residues 291-472.
	"BMP5(fx)"	refers to protein sequences encoded by the human BMP5 gene and defining the conserved seven
	BIVIES(IX)	cysteine skeleton (Seq. ID No. 27). The amino acid sequence for the full length protein appears in
		Celeste, et al. (1991) PNAS 87: 9843-9847. The pro domain likely extends from the signal peptide
40		cleavage site to residue 316; the mature protein likely is defined by residues 317-454.
	"BMP6(fx)"	refers to protein sequences encoded by the human BMP6 gene and defining the conserved seven
		cysteine skeleton (Seq. ID No. 28). The amino acid sequence for the full length protein appear sin
		Celeste, et al. (1990) PNAS 87: 9843-5847. The pro domain likely includes extends from the signal
		peptide cleavage site to residue 374; the mature sequence likely includes residues 375-513.
45	·	

[0024] The OP-2 proteins have an additional cysteine residue in this region (e.g., see residue 41 of Seq. ID Nos. 7 and 8), in addition to the conserved cysteine skeleton in common with the other proteins in this family. The GDF-1 protein has a four amino acid insert within the conserved skeleton (residues 44-47 of Seq. ID No. 14) but this insert likely does not interfere with the relationship of the cysteines in the folded structure. In addition, the CBMP2 proteins are missing one amino acid residue within the cysteine skeleton.

50

[0025] The morphogens are inactive when reduced, but are active as oxidized homodimers and when oxidized in combination with other morphogens of this invention. Thus, as defined herein, a morphogen is a dimeric protein comprising a pair of polypeptide chains, wherein each polypeptide chain comprises at least the C-terminal six cysteine skeleton defined by residues 43-139 of Seq. ID No. 5, including functionally equivalent arrangements of these cysteines (e.g., amino acid insertions or deletions which alter the linear arrangement of the cysteines in the sequence but not their relationship in the folded structure), such that, when the polypeptide chains are folded, the dimeric protein species comprising the pair of polypeptide chains has the appropriate three-dimensional structure, including the appropriate

intra- or inter-chain disulfide bonds such that the protein is capable of acting as a morphogen as defined herein. Specifically, the morphogens generally are capable of all of the following biological functions in a morphogenically permissive environment: stimulating proliferation of progenitor cells; stimulating the differentiation of progenitor cells; stimulating the proliferation of differentiated cells; and supporting the growth and maintenance of differentiated cells, including the "redifferentiation" of transformed cells. In addition, it also is anticipated that these morphogens are capable of inducing redifferentiation of committed cells under appropriate environmental conditions.

[0026] The morphogens used in this invention comprise one of two species of generic amino acid sequences: Generic Sequence 1 (Seq. ID No. 1) or Generic Sequence 2 (Seq. ID No. 2); where each Xaa indicates one of the 20 naturally-occurring L-isomer, α-amino acids or a derivative thereof. Generic Sequence 1 comprises the conserved six cysteine skeleton and Generic Sequence 2 comprises the conserved six cysteine skeleton plus the additional cysteine identified in OP-2 (see residue 36, Seq. ID No. 2). In another preferred aspect, these sequences further comprise the following additional sequence at their N-terminus:

[0027] Preferred amino acid sequences within the foregoing generic sequences include: Generic Sequence 3 (Seq. ID No. 3), Generic Sequence 4 (Seq. ID No. 4), Generic Sequence 5 (Seq. ID No. 30) and Generic Sequence 6 (Seq. ID No. 31), listed below. These Generic Sequences accommodate the homologies shared among the various preferred members of this morphogen family identified in Table II, as well as the amino acid sequence variation among them. Specifically, Generic Sequences 3 and 4 are composite amino acid sequences of the following proteins presented in Table II and identified in Seq. ID Nos. 5-14: human OP-1 (hOP-1, Seq. ID Nos. 5 and 16-17), mouse OP-1 (mOP-1, Seq. ID Nos. 6 and 18-19), human and mouse OP-2 (Seq. ID Nos. 7, 8, and 20-22), CBMP2A (Seq. ID No. 9), CBMP2B (Seq. ID No. 10), DPP (from Drosophila, Seq. ID No. 11), Vgl, (from Xenopus, Seq. ID No. 12), Vgr-1 (from mouse, Seq. ID No. 13), and GDF-1 (from mouse, Seq. ID No. 14.) The generic sequences include both the amino acid identity shared by the sequences in Table II, as well as alternative residues for the variable positions within the sequence. Note that these generic sequences allow for an additional cysteine at position 41 or 46 in Generic Sequences 3 or 4, respectively, providing an appropriate cysteine skeleton where inter- or intramolecular disulfide bonds can form, and contain certain critical amino acids which influence the tertiary structure of the proteins.

Generic Sequence 3

[0028]

5		Lei	и Ту	r Vai	l Xaa	a Pho	е		
		1				5			
10	Xaa	Xaa	Xaa	Gly	Trp	Xaa	Xaa	Trp	Xaa
					10				
	Xaa	Ala	Pro	Xaa	Gly	Xaa	Xaa	Ala	
15	15					20			
	Xaa	Tyr	Cys	Xaa	Gly	Xaa	Cys	Xaa	
20			25					30	
	Xaa	Pro	Xaa	Xaa	Xaa	Xaa	Xaa		
					35				
25	Xaa	Xaa		Asn	His	Ala	Xaa		
			40					45	
30	Xaa	Xaa	Leu	Xaa	Xaa	Xaa	Xaa	Xaa	
					50				
	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa		Cys	
35		55			•		60		
	Cys	Xaa	Pro		Xaa	Xaa	Xaa	Xaa	
				65					
40									
	X	aa Xa	aa X	aa L	eu X	aa X	aa X	aa	
45	,	70					75		
	X	aa Xa	aa Xa	aa X	aa V	al X	aa L	eu Xa	aa
				1	80				
50	X	aa Xa	aa Xa	aa Xa	aa M	et X	aa V	al Xa	aa
	1	85					90		
55	Xá	aa Cy	ys G	ly C	ys Xa	aa			

wherein each Xaa is independently selected from a group of one or more specified amino acids defined as follows: "Res." means "residue" and Xaa at res.4 = (Ser, Asp or Glu); Xaa at res.6 = (Arg, Gln, Ser or Lys); Xaa at res.7 = (Asp or Glu); Xaa at res.8 = (Leu or Val); Xaa at res.11 = (Gln, Leu, Asp, His or Asn); Xaa at res.12 = (Asp, Arg or Asn); Xaa at res.14 = (Ile or Val); Xaa at res.15 = (Ile or Val); Xaa at res.18 = (Glu, Gln, Leu, Lys, Pro or Arg); Xaa at res.20 = (Tyr or Phe); Xaa at res.21 = (Ala, Ser, Asp, Met, His, Leu or Gln); Xaa at res.23 = (Tyr, Asn or Phe); Xaa at res.26 = (Glu, His, Tyr, Asp or Gln); Xaa at res.28 = (Glu, Lys, Asp or Gln); Xaa at res.30 = (Ala, Ser, Pro or Gln); Xaa at res. 31 = (Phe, Leu or Tyr); Xaa at res.33 = (Leu or Val); Xaa at res.34 = (Asn, Asp, Ala or Thr); Xaa at res.35 = (Ser, Asp, Glu, Leu or Ala); Xaa at res.36 = (Tyr, Cys, His, Ser or IIe); Xaa at res.37 = (Met, Phe, Gly or Leu); Xaa at res.38 = (Asn or Ser); Xaa at res.39 = (Ala, Ser or Gly); Xaa at res.40 = (Thr, Leu or Ser); Xaa at res.44 = (Ile or Val); Xaa at res.45 = (Val or Leu); Xaa at res.46 = (Gln or Arg); Xaa at res.47 = (Thr, Ala or Ser); Xaa at res.49 = (Val or Met); Xaa at res.50 = (His or Asn); Xaa at res.51 = (Phe, Leu, Asn, Ser, Ala or Val); Xaa at res.52 = (Ile, Met, Asn, Ala or Val); Xaa at res.53 = (Asn, Lys, Ala or Glu); Xaa at res.54 = (Pro or Ser); Xaa at res.55 = (Glu, Asp, Asn, or Gly); Xaa at res.56 = (Thr, Ala, Val, Lys, Asp, Tyr, Ser or Ala); Xaa at res.57 = (Val, Ala or Ile); Xaa at res.58 = (Pro or Asp); Xaa at res.59 = (Lys or Leu); Xaa at res.60 = (Pro or Ala); Xaa at res.63 = (Ala or Val); Xaa at res.65 = (Thr or Ala); Xaa at res.66 = (Gln, Lys, Arg or Glu); Xaa at res.67 = (Leu, Met or Val); Xaa at res.68 = (Asn, Ser or Asp); Xaa at res.69 = (Ala, Pro or Ser); Xaa at res.70 = (Ile, Thr or Val); Xaa at res.71 = (Ser or Ala); Xaa at res.72 = (Val or Met); Xaa at res.74 = (Tyr or Phe); Xaa at res.75 = (Phe, Tyr or Leu); Xaa at res.76 = (Asp or Asn); Xaa at res.77 = (Asp, Glu, Asn or Ser); Xaa at res.78 = (Ser, Gln, Asn or Tyr); Xaa at res.79 = (Ser, Asn, Asp or Glu); Xaa at res.80 = (Asn, Thr or Lys); Xaa at res.82 = (Ile or Val); Xaa at res.84 = (Lys or Arg); Xaa at res.85 = (Lys, Asn, Gln or His); Xaa at res.86 = (Tyr or His); Xaa at res.87 = (Arg, Gln or Glu); Xaa at res.88 = (Asn, Glu or Asp); Xaa at res.90 = (Val, Thr or Ala); Xaa at res.92 = (Arg, Lys, Val, Asp or Glu); Xaa at res.93 = (Ala, Gly or Glu); and Xaa at res.97 = (His or Arg);

Generic Sequence 4

[0029]

5

10

15

20

25

30

35

40

45

55

Xaa Pro Xaa Xaa Xaa Xaa 40 Xaa Xaa Xaa Asn His Ala Xaa Xaa 50 45 Xaa Xaa Leu Xaa Xaa Xaa Xaa 55 Xaa Xaa Xaa Xaa Xaa Xaa Cys 65 60 Cys Xaa Pro Xaa Xaa Xaa Xaa Xaa 70 Xaa Xaa Xaa Leu Xaa Xaa Xaa 80 75 Xaa Xaa Xaa Xaa Val Xaa Leu Xaa 85 Xaa Xaa Xaa Xaa Met Xaa Val Xaa 90 95 Xaa Cys Gly Cys Xaa 100

5

10

15

20

25

30

35

40

50

55

wherein each Xaa is independently selected from a group of one or more specified amino acids as defined by the following: "Res." means "residue" and Xaa at res.2 = (Lys or Arg); Xaa at res.3 = (Lys or Arg); Xaa at res.4 = (His or Arg); Xaa at res.5 = (Glu, Ser, His, Gly, Arg or Pro); Xaa at res.9 = (Ser, Asp or Glu); Xaa at res.11 = (Arg, Gln, Ser or Lys); Xaa at res.12 = (Asp or Glu); Xaa at res.13 = (Leu or Val); Xaa at res.16 = (Gln, Leu, Asp, His or Asn); Xaa at res.17 = (Asp, Arg, or Asn); Xaa at res.19 = (Ile or Val); Xaa at res.20 = (Ile or Val); Xaa at res.23 = (Glu, Gln, Leu, Lys, Pro or Arg); Xaa at res.25 = (Tyr or Phe); Xaa at res.26 = (Ala, Ser, Asp, Met, His, Leu, or Gln); Xaa at res.28 = (Tyr, Asn or Phe); Xaa at res.31 = (Glu, His, Tyr, Asp or Gln); Xaa at res.33 = Glu, Lys, Asp or Gln); Xaa at res.35 = (Ala, Ser or Pro); Xaa at res.36 = (Phe, Leu or Tyr); Xaa at res.38 = (Leu or Val); Xaa at res.39 = (Asn, Asp, Ala or Thr); Xaa at res.40 = (Ser, Asp, Glu, Leu or Ala); Xaa at res.41 = (Tyr, Cys, His, Ser or Ile); Xaa at res.42 = (Met, Phe, Gly or Leu); Xaa at res.44 = (Ala, Ser or Gly); Xaa at res.45 = (Thr, Leu or Ser); Xaa at res.49 = (Ile or Val); Xaa at res. 50 = (Val or Leu); Xaa at res.51 = (Gin or Arg); Xaa at res.52 = (Thr, Ala or Ser); Xaa at res.54 = (Val or Met); Xaa at res.55 = (His or Asn); Xaa at res.56 = (Phe, Leu, Asn, Ser, Ala or Val); Xaa at res.57 = (Ile, Met, Asn, Ala or Val); Xaa at res.58 = (Asn, Lys, Ala or Glu); Xaa at res.59 = (Pro or Ser); Xaa at res.60 = (Glu, Asp, or Gly); Xaa at res.61 = (Thr, Ala, Val, Lys, Asp, Tyr, Ser or Ala); Xaa at res.62 = (Val, Ala or Ile); Xaa at res.63 = (Pro or Asp); Xaa at res.64 = (Lys or Leu); Xaa at res.65 = (Pro or Ala); Xaa at res.68 = (Ala or Val); Xaa at res.70 = (Thr or Ala); Xaa at res.71 = (Gln, Lys, Arg or Glu); Xaa at res.72 = (Leu, Met or Val); Xaa at res.73 = (Asn, Ser or Asp); Xaa at res.74 = (Ala, Pro or Ser); Xaa at res.75 = (Ile, Thr or Val); Xaa at res.76 = (Ser or Ala); Xaa at res.77 = (Val or Met); Xaa at res.79 = (Tyr or Phe); Xaa at res.80 = (Phe, Tyr or Leu); Xaa at res.81 = (Asp or Asn); Xaa at res.82 = (Asp, Glu, Asn or Ser); Xaa at res.83 = (Ser, Gln, Asn or Tyr); Xaa at res.84 = (Ser, Asn, Asp or Glu); Xaa at res.85 = (Asn, Thr or Lys); Xaa at res.87 = (Ile or Val); Xaa at res.89 = (Lys or Arg); Xaa at res.90 = (Lys, Asn, Gln or His); Xaa at res.91 = (Tyr or His); Xaa at res. 92 = (Arg, Gln or Glu); Xaa at res.93 = (Asn, Glu or Asp); Xaa at res.95 = (Val, Thr or Ala); Xaa at res.97 = (Arg, Lys, Val, Asp or Glu); Xaa at res.98 = (Ala, Gly or Glu); and Xaa at res.102 = (His or Arg).

[0030] Similarly, Generic Sequence 5 (Seq. ID No. 30) and Generic Sequence 6 (Seq. ID No. 31) accommodate the homologies shared among all the morphogen protein family members identified in Table II. Specifically, Generic Sequences 5 and 6 are composite amino acid sequences of human OP-1 (hOP-1, Seq. ID Nos. 5 and 16-17), mouse OP-1 (mOP-1, Seq. ID Nos. 6 and 18-19), human and mouse OP-2 (Seq. ID Nos. 7, 8, and 20-22), CBMP2A (Seq. ID No. 9), CBMP2B (Seq. ID No. 10), DPP (from Drosophila, Seq. ID No. 11), Vgl, (from Xenopus, Seq. ID No. 12), Vgr-1 (from mouse, Seq. ID No. 13), and GDF-1 (from mouse, Seq. ID No. 14 and 32), human BMP3 (Seq. ID No. 26), human BMP5 (Seq. ID No. 27), human BMP6 (Seq. ID No. 28) and 60A (from Drosophila, Seq. ID No. 24). The generic sequences include both the amino acid identity shared by these sequences in the C-terminal domain, defined by the six and seven cysteine skeletons (Generic Sequences 5 and 6, respectively), as well as alternative residues for the

variable positions within the sequence. As for Generic Sequences 3 and 4, Generic Sequences 5 and 6 allow for an additional cysteine at position 41 (Generic Sequence 5) or position 46 (Generic Sequence 6), providing an appropriate cysteine skeleton where inter- or intramolecular disulfide bonds can form, and containing certain critical amino acids which influence the tertiary structure of the proteins.

Generic Sequence 5

[0031]

Leu Xaa Xaa Xaa Phe

Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa

	Хаа	Xaa	Pro	Xaa	Xaa	xaa	xaa	Ala
5	15					20		
	Хаа	Tyr	Cys	Xaa	Gly	Xaa	Cys	Xaa
			25					30
10	Xaa	Pro	Xaa	Xaa	Xaa	Xaa	Xaa	
					35			
15	Xaa	Xaa	Xaa	Asn	His	Ala	Xaa	Xaa
13			. 40					45
	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa
20					50			
	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Cys
		55					60	
25	Cys	Xaa	Pro	Xaa	Xaa	Xaa	Xaa	Xaa
				65	٠			
30	Xaa	Xaa	Xaa	Leu	Xaa	Xaa	Xaa	
	70					75		
	Xaa	Xaa	Xaa	Xaa	Val	Xaa	Leu	Xaa
35				80				
	Xaa	Xaa	Xaa	Xaa	Met	Xaa	Val	Xaa
	85					90		
40	Xaa	Cys	Xaa	Cys	Xaa			
			95					

45 wherein each Xaa is independently selected from a group of one or more specified amino acids defined as follows: "Res." means "residue" and Xaa at res.2 = (Tyr or Lys); Xaa at res.3 = Val or Ile); Xaa at res.4 = (Ser, Asp or Glu); Xaa at res.6 = (Arg, Gln, Ser, Lys or Ala); Xaa at res.7 = (Asp, Glu or Lys); Xaa at res.8 = (Leu, Val or Ile); Xaa at res.11 = (Gln, Leu, Asp, His, Asn or Ser); Xaa at res.12 = (Asp, Arg, Asn or Glu); Xaa at res.14 = (Ile or Val); Xaa at res.15 = (Ile or Val); Xaa at res.16 (Ala or Ser); Xaa at res.18 = (Glu, Gln, Leu, Lys, Pro or Arg); Xaa at res.19 = (Gly or Ser); Xaa at res.20 = (Tyr or Phe); Xaa at res.21 = (Ala, Ser, Asp, Met, His, Gln, Leu or Gly); Xaa at res.23 = (Tyr, Asn or Phe); Xaa at res.26 = (Glu, His, Tyr, Asp, Gln or Ser); Xaa at res.28 = (Glu, Lys, Asp, Gln or Ala); Xaa at res.30 = (Ala, Ser, Pro, Gln or Asn); Xaa at res.31 = (Phe, Leu or Tyr); Xaa at res.33 = (Leu, Val or Met); Xaa at res.34 = (Asn, Asp, Ala, Thr or Pro); Xaa at res.35 = (Ser, Asp, Glu, Leu, Ala or Lys); Xaa at res.36 = (Tyr, Cys, His, Ser or Ile); Xaa at res. 37 = (Met, Phe, Gly or Leu); Xaa at res.38 = (Asn, Ser or Lys); Xaa at res.39 = (Ala, Ser, Gly or Pro); Xaa at res.40 = 55 (Thr, Leu or Ser); Xaa at res.44 = (Ile, Val or Thr); Xaa at res.45 = (Val, Leu or Ile); Xaa at res.46 = (Gin or Arg); Xaa at res.47 = (Thr, Ala or Ser); Xaa at res.48 = (Leu or lle); Xaa at res.49 = (Val or Met); Xaa at res.50 = (His, Asn or Arg); Xaa at res.51 = (Phe, Leu, Asn, Ser, Ala or Val); Xaa at res.52 = (Ile, Met, Asn, Ala, Val or Leu); Xaa at res.53 = (Asn, Lys, Ala, Glu, Gly or Phe); Xaa at res.54 = (Pro, Ser or Val); Xaa at res.55 = (Glu, Asp, Asn, Gly, Val or Lys); Xaa

at res.56 = (Thr, Ala, Val, Lys, Asp, Tyr, Ser, Ala, Pro or His); Xaa at res.57 = (Val, Ala or Ile); Xaa at res.58 = (Pro or Asp); Xaa at res.59 = (Lys, Leu or Glu); Xaa at res.60 = (Pro or Ala); Xaa at res.63 = (Ala or Val); Xaa at res.65 = (Thr, Ala or Glu); Xaa at res.66 = (Gln, Lys, Arg or Glu); Xaa at res.67 = (Leu, Met or Val); Xaa at res.68 = (Asn, Ser, Asp or Gly); Xaa at res.69 = (Ala, Pro or Ser); Xaa at res.70 = (Ile, Thr, Val or Leu); Xaa at res.71 = (Ser, Ala or Pro); Xaa at res.72 = (Val, Met or Ile); Xaa at res.74 = (Tyr or Phe); Xaa at res.75 = (Phe, Tyr, Leu or His); Xaa at res.76 = (Asp, Asn or Leu); Xaa at res.77 = (Asp, Glu, Asn or Ser); Xaa at res.78 = (Ser, Gln, Asn, Tyr or Asp); Xaa at res.79 = (Ser, Asn, Asp, Glu or Lys); Xaa at res.80 = (Asn, Thr or Lys); Xaa at res.82 = (Ile, Val or Asn); Xaa at res.84 = (Lys or Arg); Xaa at res.85 = (Lys, Asn, Gln, His or Val); Xaa at res.86 = (Tyr or His); Xaa at res.87 = (Arg, Gln, Glu or Pro); Xaa at res.88 = (Asn, Glu or Asp); Xaa at res.90 = (Val, Thr, Ala or Ile); Xaa at res.92 = (Arg, Lys, Val, Asp or Glu); Xaa at res.93 = (Ala, Gly, Glu or Ser); Xaa at res.95 = (Gly or Ala) and Xaa at res.97 = (His or Arg).

Generic Sequence 6

[0032]

Cys Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Phe Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa Xaa Xaa Pro Xaa Xaa Xaa Ala Xaa Tyr Cys Xaa Gly Xaa Cys Xaa Xaa Pro Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn His Ala Xaa Cys Cys Xaa Pro Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Val Xaa Leu Xaa Xaa Xaa Xaa Xaa Met Xaa Val Xaa Xaa Cys Xaa Cys Xaa

wherein each Xaa is independently selected from a group of one or more specified amino acids as defined by the following: "Res." means "residue" and Xaa at res.2 = (Lys, Arg, Ala or Gln); Xaa at res.3 = (Lys, Arg or Met); Xaa at

5

10

15

25

30

35

40

50

55

res.4 = (His, Arg or Gln); Xaa at res.5 = (Glu, Ser, His, Gly, Arg, Pro, Thr, or Tyr); Xaa at res.7 = (Tyr or Lys); Xaa at res.8 = (Val or Ile); Xaa at res.9 = (Ser, Asp or Glu); Xaa at res.11 = (Arg, Gln, Ser, Lys or Ala); Xaa at res.12 = (Asp, Glu, or Lys); Xaa at res.13 = (Leu, Val or Ile); Xaa at res.16 = (Gln, Leu, Asp, His, Asn or Ser); Xaa at res.17 = (Asp, Arg, Asn or Glu); Xaa at res.19 = (Ile or Val); Xaa at res.20 = (Ile or Val); Xaa at res.21 = (Ala or Ser); Xaa at res.23 = (Glu, Gln, Leu, Lys, Pro or Arg); Xaa at res.24 = (Gly or Ser); Xaa at res.25 = (Tyr or Phe); Xaa at res.26 = (Ala, Ser, Asp, Met, His, Gln, Leu, or Gly); Xaa at res.28 = (Tyr, Asn or Phe); Xaa at res.31 = (Glu, His, Tyr, Asp, Gln or Ser); Xaa at res.33 = Glu, Lys, Asp, Gln or Ala); Xaa at res.35 = (Ala, Ser, Pro, Gln or Asn); Xaa at res.36 = (Phe, Leu or Tyr); Xaa at res.38 = (Leu, Val or Met); Xaa at res.39 = (Asn, Asp, Ala, Thr or Pro); Xaa at res.40 = (Ser, Asp, Glu, Leu, Ala or Lys); Xaa at res.41 = (Tyr, Cys, His, Ser or Ile); Xaa at res.42 = (Met, Phe, Gly or Leu); Xaa at res.43 = (Asn, Ser or Lys); Xaa at res.44 = (Ala, Ser, Gly or Pro); Xaa at res.45 = (Thr, Leu or Ser); Xaa at res.49 = (Ile, Val or Thr); Xaa at res.50 = (Val, Leu or Ile); Xaa at res.51 = (Gln or Arg); Xaa at res.52 = (Thr, Ala or Ser); Xaa at res.53 = (Leu or Ile); Xaa at res.54 = (Val or Met); Xaa at res.55 = (His, Asn or Arg); Xaa at res.56 = (Phe, Leu, Asn, Ser, Ala or Val); Xaa at res.57 = (Ile, Met, Asn, Ala, Val or Leu); Xaa at res.58 = (Asn, Lys, Ala, Glu, Gly or Phe); Xaa at res.59 = (Pro, Ser or Val); Xaa at res.60 = (Glu, Asp, Gly, Val or Lys); Xaa at res.61 = (Thr, Ala, Val, Lys, Asp, Tyr, Ser, Ala, Pro or His); Xaa at res.62 = (Val, Ala or Ile); Xaa at res.63 = (Pro or Asp); Xaa at res.64 = (Lys, Leu or Glu); Xaa at res.65 = (Pro or Ala); Xaa at res.68 = (Ala or Val); Xaa at res.70 = (Thr, Ala or Glu); Xaa at res.71 = (Gln, Lys, Arg or Glu); Xaa at res.72 = (Leu, Met or Val); Xaa at res.73 = (Asn, Ser, Asp or Gly); Xaa at res.74 = (Ala, Pro or Ser); Xaa at res.75 = (lle, Thr, Val or Leu); Xaa at res.76 = (Ser, Ala or Pro); Xaa at res.77 = (Val, Met or Ile); Xaa at res.79 = (Tyr or Phe); Xaa at res.80 = (Phe, Tyr, Leu or His); Xaa at res.81 = (Asp, Asn or Leu); Xaa at res.82 = (Asp, Glu, Asn or Ser); Xaa at res.83 = (Ser, Gln, Asn, Tyr or Asp); Xaa at res.84 = (Ser, Asn, Asp, Glu or Lys); Xaa at res.85 = (Asn, Thr or Lys); Xaa at res.87 = (Ile, Val or Asn); Xaa at res.89 = (Lys or Arg); Xaa at res.90 = (Lys, Asn, Gln, His or Val); Xaa at res.91 = (Tyr or His); Xaa at res.92 = (Arg, Gln, Glu or Pro); Xaa at res.93 = (Asn, Glu or Asp); Xaa at res.95 = (Val, Thr, Ala or Ile); Xaa at res.97 = (Arg, Lys, Val, Asp or Glu); Xaa at res.98 = (Ala, Gly, Glu or Ser); Xaa at res. 100 = (Gly or Ala); and Xaa at res.102 = (His or Arg).

[0033] Particularly useful sequences for use as morphogens include the C-terminal domains, e.g., the C-terminal 96-102 amino acid residues of VgI, . Vgr-1, DPP, OP-1, OP-2, CBMP-2A, CBMP-2B, GDF-1 (see Table II, below, and Seq. ID Nos. 5-14), as well as proteins comprising the C-terminal domains of 60A, BMP3, BMP5 and BMP6 (see Table II, below, and Seq. ID Nos. 24-28), all of which include at least the conserved six or seven cysteine skeleton. In addition, biosynthetic constructs designed from the generic sequences, such as COP-1, 3-5, 7, 16, disclosed in U.S. Pat. No. 5,011,691, also are useful. Other sequences include the inhibins/activin proteins (see, for example, U.S. Pat. Nos. 4,968,590 and 5,011,691). Accordingly, other useful sequences are those sharing at least 70% amino acid sequence homology or "similarity", and preferably 80% homology or similarity with any of the sequences above. These are anticipated to include allelic and species variants and mutants, and biosynthetic muteins, as well as novel members of this morphogenic family of proteins. Particularly envisioned in the family of related proteins are those proteins exhibiting morphogenic activity and wherein the amino acid changes from the preferred sequences include conservative changes, e.g., those as defined by Dayoff et al., Atlas of Protein Sequence and Structure; vol. 5, Suppl. 3, pp. 345-362, (M.O. Dayoff, ed., Nat'l BioMed. Research Fdn., Washington, D.C. 1979). As used herein, potentially useful sequences are aligned with a known morphogen sequence using the method of Needleman et al. ((1970) J.Mol.Biol. 48:443-453) and identities calculated by the Align program (DNAstar, Inc.). "Homology" or "similarity" as used herein includes allowed conservative changes as defined by Dayoff et al.

[0034] The currently most preferred protein sequences useful as morphogens include those having greater than 60% identity, preferably greater than 65% identity, with the amino acid sequence defining the conserved six cysteine skeleton of hOP1 (e.g., residues 43-139 of Seq. ID No.5). These most preferred sequences include both allelic and species variants of the OP-1 and OP-2 proteins, including the Drosophila 60A protein. Accordingly, useful morphogens include active proteins comprising species of polypeptide chains having the generic amino acid sequence herein referred to as "OPX", which accommodates the homologies between the various identified species of OP1 and OP2 (Seq. ID No. 29).

[0035] The morphogens useful in the use of this invention include proteins whether isolated from naturally-occurring sources, or produced by recombinant DNA or other synthetic techniques, and includes allelic and species variants of these proteins, naturally-occurring or biosynthetic mutants thereof, as well as various truncated and fusion constructs. Deletion or addition mutants also are envisioned to be active, including those which may alter the conserved C-terminal cysteine skeleton, provided that the alteration does not functionally disrupt the relationship of these cysteines in the folded structure. Accordingly, such active forms are considered the equivalent of the specifically described constructs disclosed herein. The proteins may include forms having varying glycosylation patterns, varying N-termini, a family of related proteins having regions of amino acid sequence homology, and active truncated or mutated forms of native or biosynthetic proteins, produced by expression of recombinant DNA in host cells.

[0036] The morphogenic proteins can be expressed from intact or truncated cDNA or from synthetic DNAs in procaryotic or eucaryotic host cells, and purified, cleaved, refolded, and dimerized to form morphogenically active compositions. Currently preferred host cells include E. coli or mammalian cells, such as CHO, COS or BSC cells.

[0037] Thus, in view of this disclosure, skilled genetic engineers can isolate genes from cDNA or genomic libraries of various different species which encode appropriate amino acid sequences, or construct DNAs from oligonucleotides, and then can express them in various types of host cells, including both procaryotes and eucaryotes, to produce large quantities of active proteins capable of enhancing bone formation and/or inhibiting abnormal bone deterioration in a variety of mammals, including humans, for use in maintaining appropriate bone mass and bone remodeling in developing and adult bone tissue.

Brief Description of the Drawings

5

10

15

20

25

30

35

55

[0038] The foregoing and other objects and features of this invention, as well as the invention itself, may be more fully understood from the following description, when read together with the accompanying drawings, in which:

- **FIG. 1** compares the mitogenic effect of hOP-1 and TGF-β on rat osteoblasts;
- FIG. 2 illustrates the effect of human osteogenic protein-1 (hOP-1) on the collagen synthesis of osteoblasts;
- FIG. 3 compares the alkaline phosphatase induction effect of hOP-1 and TGF-β on rat osteoblasts;
- FIG. 4 shows the long-term effect of hOP-1 on the production of alkaline posphatase by rat osteoblasts;
 - FIG. 5 shows the effect of hOP-1 on parathyroid hormone-mediated cAMP production using rat osteoblasts in culture;
- FIG. 6A and B graphs the effect of morphogen on osteoclacin synthesis (A), and the effect of morphogen on the rate of mineralization (B);
 - FIG. 7 shows Western Blot analysis of bovine colostrum using OP-1 and BMP2-specific antibodies;
- FIG. 8A and B show results of in vivo and in vitro activity assays, respectively, for mammary extract purified OP-1;
 - FIG. 9 is a photomicrograph of an immunoblot showing the presence of hOP-1 in serum; and
 - FIG. 10 (A and B) are photomicrographs showing new endosteum bone formation following morphogen injection onto the endosteal surface (A), and new periosteum bone formation following morphogen injection onto the periosteal surface (B);
 - FIG. 11 is a graphic representation of the dose-dependent effect of morphogen on bone resorption; and
- FIG. 12 (A and B) are schematic representations of morphogen inhibition of early mononuclear phagocytic cell multinuclearization in vivo;

Detailed Description of the Invention

- [0039] It now has been discovered that the proteins described herein are effective agents for preventing loss of bone mass and/or for stimulating bone formation when provided systemically or injected directed into bone tissue in a mammal. As described herein, these proteins ("morphogens") may be used in the treatment of metabolic bone diseases and other disorders that cause an imbalance of the bone remodeling cycle, and/or which cause deterioration of the skeletal microstructure.
 - **[0040]** The invention is based on the discovery of a family of morphogenic proteins capable of inducing tissue morphogenesis in a mammal. More particularly, the invention is based on the discovery that these proteins play an important role, not only in embryogenesis, but also in the growth, maintenance and repair of bone tissue in juvenile and adult mammals.
 - [0041] It has been shown that implantation of a morphogen (including OP-1, CBMP2, DPP and 60A protein, and various biosynthetic constructs, such as COPS and COP7) together with a suitable matrix in subcutaneous sites in mammals induces a sequence of cellular events which leads to the formation of fully functional new bone, as determined by the specific activity of alkaline phosphatase, calcium content and histology of day 12 implants (see, for example, U.S. Pat. Nos. 4,968,590 and 5,011,691).

[0042] The morphogen-containing implants recruit nearby mesenchymal stem cells and trigger their differentiation into chondrocytes within 5-7 days. Upon capillary invasion, the chondrocytes hypertrophy, become calcified and subsequently are replaced by newly formed bone within 9-12 days. The mineralized bone then is remodeled extensively and becomes occupied by ossicles filled with functional bone marrow elements by 14-21 days.

[0043] As described herein, the morphogens provided herein stimulate the proliferation, growth and differentiation of osteoblasts in vitro (see Examples 2-7, below), and can induce bone formation in osteoporotic bone tissue in vivo when provided systemically to a mammal, or directly to bone tissue, without an associated matrix carrier (see Examples 8, 9, below.) In addition, the morphogens inhibit multinucleation of activated early mononuclear phagocytic cells (see Example 12, below). Moreover, inhibition of endogenous morphogen activity can inhibit normal skeleton development in a mammal (see Example 13, below.)

[0044] As described in Example 1 the naturally-occurring morphogens are widely distributed in the different tissues of the body. For example, as determined by northern blot hybridization, OP-1 is expressed primarily in the tissue of the urogental tract (e.g., renal and bladder tissues). By contrast, Vgr-1, BMP3, BMP4 and BMP5 appear to be expressed primarily in the heart and lung. BMP5 also appears to be expressed significantly in liver tissue. GDF-1 appears to be expressed primarily in brain tissue. (See, for example, Ozkaynak et al. (1992) JBC, in publication.) Moreover, the tissue of synthesis may differ from the natural site of action of specific morphogens. For example, although OP-1 appears to be primarily synthesized in renal tissue, the protein is active in bone tissue. In addition, at least one morphogen, OP-1, is present in a number of body fluids, including saliva, milk (including mammary gland extract, colostrum and 57-day milk) and serum (see Example 11, below.) Accordingly, without being limited to a given theory, the morphogens described herein may behave as endocrine factors, e.g., proteins secreted from a factor-producing tissue in response to particular stimuli, and capable of being transported to, and acting on, a distant tissue. These findings further distinguish morphogens from other members of the TGF-β superfamily of proteins, including TGF-β, which act as local or autocrine factors produced by the tissue on which they act.

[0045] The pro domain may function to enhance protein solubility and/or to assist in tissue targeting of morphogens to particular tissues. For example, the mature, active form of OP-1 appears to be secreted from cells in association with the pro domain of the intact sequence. Accordingly, while, as explained herein, the morphogens useful in this invention have significant amino acid sequence homologies within the active domains and are similar in their ability to induce tissue morphogenesis, without being limited to any theory, it is hypothesized that the sequence variation within the morphogenic protein family members may reflect the different specific roles each morphogen plays in specific tissues under natural occurring conditions. For example, the significant sequence variation within the pro domains may mean that these regions of the protein sequence are important for targeting specific morphogens to different tissues for morphogenic activity therein.

[0046] Accordingly, the present disclosure comprises two fundamental aspects. In one aspect, the methods and compositions comprise a morphogen which, when administered to an individual, is capable of inhibiting loss of bone mass and/or stimulating bone formation in the individual. In another aspect, the methods and compositions comprise a morphogen-stimulating agent which, when administered to an individual, is capable of inducing the expression and/or secretion of sufficient endogenous morphogen within the individual to provide therapeutically effective concentrations capable of inhibiting loss of bone mass and/or stimulating bone formation in the individual.

[0047] Example 14 describes an assay for screening compounds to identify candidate morphogen-stimulating agents. Candidate agents then may be tested for their efficacy in vivo using, for example, the osteoporosis model described in Examples 8 and 9 below.

[0048] Provided below are detailed descriptions of suitable morphogens useful in the methods and compositions of this invention, as well as methods for the administration and application of these morphogens and/or of morphogenstimulating agents. Also provided are numerous, nonlimiting examples which 1) illustrate the suitability of the morphogens and morphogen-stimulating agents described herein as therapeutic agents for inhibiting abnormal bone loss and/or for enhancing bone formation in a human, and 2) provide assays with which to test candidate morphogens and morphogen-stimulating agents for their efficacy.

I. Useful Morphogens

5

10

15

25

30

35

40

45

50

55

[0049] As defined herein a protein is morphogenic if it is capable of inducing the developmental cascade of cellular and molecular events that culminate in the formation of new, organ-specific tissue and comprises at least the conserved C-terminal six cysteine skeleton or its functional equivalent (see supra). Specifically, the morphogens generally are capable of all of the following biological functions in a morphogenically permissive environment: stimulating proliferation of progenitor cells; stimulating the differentiation of progenitor cells; stimulating the proliferation of differentiated cells; and supporting the growth and maintenance of differentiated cells, including the "redifferentiation" of transformed cells.

[0050] As disclosed therein, the morphogens may be purified from naturally-sourced material or recombinantly produced from procaryotic or eucaryotic host cells, using the genetic sequences disclosed therein. Alternatively, novel

morphogenic sequences may be identified following the procedures disclosed therein.

[0051] Particularly useful proteins include those which comprise the naturally derived sequences disclosed in Table II. Other useful sequences include biosynthetic constructs such as those disclosed in U.S. Pat. 5,011,691 (e.g. COP-1, COP-3, COP-4, COP-5, COP-7, and COP-16).

[0052] The morphogens useful in this invention also can be described by any of the 6 generic sequences described herein (Generic Sequences 1, 2, 3, 4, 5 and 6). Generic sequences 1 and 2 also may include, at their N-terminus, the sequence

[0053] Table II, set forth below, compares the amino acid sequences of the active regions of native proteins that have been identified as morphogens, including human OP-1 (hOP-1, Seq. ID Nos. 5 and 16-17), mouse OP-1 (mOP-1, Seq. ID Nos. 6 and 18-19), human and mouse OP-2 (Seq. ID Nos. 7, 8, and 20-23), CBMP2A (Seq. ID No. 9), CBMP2B (Seq. ID No. 10), BMP3 (Seq. ID No. 26), DPP (from Drosophila, Seq. ID No. 11), Vgl, (from Xenopus, Seq. ID No. 12), Vgr-1 (from mouse, Seq. ID No. 13), GDF-1 (from mouse, Seq. ID No. 14, 32 and 33), 60A protein (from Drosophila, Seq. ID Nos. 24 and 25), BMP5 (Seq. ID No. 27) and BMP6 (Seq. ID No. 28). The sequences are aligned essentially following the method of Needleman et al. (1970) J. Mol. Biol., 48:443-453, calculated using the Align Program (DNAstar, Inc.) In the table, three dots indicates that the amino acid in that position is the same as the amino acid in hOP-1. Three dashes indicates that no amino acid is present in that position, and are included for purposes of illustrating homologies. For example, amino acid residue 60 of CBMP-2A and CBMP-2B is "missing". Of course, both these amino acid sequences in this region comprise Asn-Ser (residues 58, 59), with CBMP-2A then comprising Lys and Ile, whereas CBMP-2B comprises Ser and Ile.

TABLE II

05	hOP-1	Cys	Lys	Lys	His	Glu	Leu	Tyr	Val
35	mOP-1	• • •	• • •		• • •	• • •	• • •	• • •	
	hOP-2		Arg	Arg	• • •		• • •	• • •	• • •
	mOP-2	• • •	Arg	Arg	• • •	• • •	• • •	• • •	• • •
40	DPP		Arg	Arg	•••	Ser	• • •	• • •	• • •
	Vgl	• • •	• • •	Lys	Arg	His	• • •	• • •	• • •
	Vgr-1		•••	• • •	• • •	Gly	• • •	• • •	
45	CBMP-2A	• • •	• • •	Arg	• • •	Pro	• • •	• • •	
40	CBMP-2B	• • •	Arg	Arg	• • •	Ser	• • •	• • •	
	внрз		Ala	Arg	Arg	Tyr	• • •	Lys	•••

50

5

10

15

	GDF-1	• • •	Arg	Ala	Arg	Arg	• • •			
	60A	• • •	Gln	Het	Glu	Thr	• • •			
5	BMP5			• • •	• • •	• • •				
	вир6	• • •	Arg		• • •					
		1				5		, , ,		
10		_								
10										
	h0P-1	Ser	Phe	Arg	Asp	Leu	Gly	Trp	Gln	Asp
	mOP-1	• • •		• • •		•••				
15	hOP-2			Gln	• • •	•••		• • •	Leu	• • •
	mOP-2	Ser				• • •	• • •	• • •	Leu	
	DPP	Asp		Ser		Val		• • •	Asp	
20	Vgl	Glu	• • •	Lys		Val			• • •	Asn
	Vgr-l	• • •	• • •	Gln	• • •	Val			• • •	• • •
	CBMP-2A	Asp	• • •	Ser		Val			Asn	• • •
	CBMP-2B	Asp	• • •	Ser	• • •	Val			Asn	• • •
25	BMP3	Asp	• • •	Ala		Ile		•••	Ser	Glu
	GDF-1	• • •	• • •	• • •	Glu	Val		•••	His	Arg
	60A	Asp	• • •	Lys		•••		•••	His	• • •
30	BMP5	• • •	• • •	• • •		• • •		• • •	• • •	
	BMP6	• • •		Gln				• • •	• • •	
			10					15		
35										
	hOP-1	Trp	Ile	Ile	Ala	Pro	Glu	Gly	Tyr	Ala
	mOP-1		• • •		• • •	• • •	•••		• • •	• • •
	hOP-2		Val	• • •	• • •		Gln			Ser
40	mOP-2	• • •	Val				Gln		• • •	Ser
	DPP		• • •	Val			Leu	• • •		Asp
	Vgl	• • •	Val			• • •	Gln			Met
45	Vgr-1	• • •	• • •		• • •	• • •	Lys	• • •	• • •	• • •
	CBMP-2A	• • •	• • •	Val	• • •		Pro	• • •		His
	CBMP-2B	• • •	• • •	Val			Pro	• • •		Gln
	вир3		• • •	• • •	Ser		Lys	Ser	Phe	Asp
50										•

	GDF-1	• • •	Val		• • •	• • •	Arg		Phe	Leu
	60A	• • •	• • •		• • •		• • •			Gly
5	BMP5	• • •		• • •	• • •		• • •	• • •		
	BMP6	• • •				•••	Lys	• • •		
				20					25	
10										
	hOP-1	Ala	Tyr	Tyr	Cys	Glu	Gly	Glu	Cys	Ala
	mOP-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
15	hOP-2	• • •	• • •	• • •	•••	• • •	• • •	•••	• • •	Ser
	mOP-2	• • •	• • •	•••	• • •	• • •	• • •		• • •	• • •
	DPP	• • •	• • •	• • •	• • •	His	• • •	Lys	• • •	Pro
	Vgl	• • •	Asn	• • •	• • •	Tyr	• • •	• • •	• • •	Pro
20	Vgr-1	• • •	Asn	• • •	• • •	Asp	• • •	• • •	• • •	Ser
	CBMP-2A	• • •	Phe	• • •	• • •	His		Glu	•••	Pro
	CBMP-2B	• • •	Phe	• • •	• • •	His		Asp	• • •	Pro
25	внрз				• • •	Ser		Ala		Gln
	GDF-1	• • •	Asn	• • •	• • •	Gln		Gln	• • •	
	60A	• • •	Phe		• • •	Ser		• • •		Asn
	BMP5	• • •	Phe	• • •	• • •	Asp			• • •	Ser
30	BMP6		Asn	• • •		Asp			• • •	Ser
					30					35
35	h0P-1	Phe	Pro	Leu	Asn	Ser	Tyr	Met	Asn	Ala
	mOP-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •		• • •
	hOP-2	• • •	• • •	• • •	Asp	• • •	Cys	• • •		• • •
40	mOP-2	• • •	• • •	• • •	Asp	• • •	Cys	• • •	• • •	• • •
	DPP	• • •	• • •	• • •	Ala	Asp	His	Phe	• • •	Ser
	Vgl	Tyr	• • •	• • •	Thr	Glu	Ile	Leu	• • •	Gly
	Vgr-1	• • •	• • •	• • •	• • •	Ala	His	• • •		• • •
45	CBHP-2A	• • •	• • •	• • •	Ala	Asp	His	Leu		Ser
	CBMP-2B	• • •	• • •	• • •	Ala	Asp	His	Leu		Ser
	GDF-1	Leu		Val	Ala	Leu	Ser	Gly	Ser**	

	ВНРЗ	• • •	• • •	Het	Pro	Lys	Ser	Leu	Lys	Pro
	60A	• • •	• • •	• • •		Ala	His		• • •	• • •
5	BHP5	• • •	• • •			Ala	His	Met		
	BMP6	• • •	• • •			Ala	His	Het		• • •
						40				
10	·									
	h0P-1	Thr	Asn	His	Ala	Ile	Val	Gln	Thr	Leu
	mOP-1	• • •	• • •	• • •	• • •		• • •	• • •		• • •
	hOP-2	• • •	• • •	• • •			Leu		Ser	• • •
15	mOP-2	• • •					Leu	• • •	Ser	• • •
	DPP	• • •	• • •	• • •		Val	• • •	• • •	• • •	• • •
	Vgl	Ser		• • •		• • •	Leu		• • •	• • •
20	Vgr-1	• • •		• • •	• • •		• • •	• • •		
	CBMP-2A	• • •		• • •	• • •		• • •			• • •
	CBMP-2B	• • •	• • •	• • •			• • •	• • •		
	вир3	Ser		• • •		Thr	Ile	•••	Ser	Ile
25	GDF-1	Leu	• • •	• • •	• • •	Val	Leu	Arg	Ala	
	60A	• • •	• • •	•••		• • •	• • •	• • •	• • •	• • •
	BMP5	• • •	• • •	• • •	• • •	• • •	• • •	• • •		• • •
30	BMP6	• • •	• • •		•••			• • •		
		45					50			
35										
33	h0P-1	Val	His	Phe	Ile	Asn	Pro	Glu	Thr	Val
	mOP-1	•••	• • •			• • •		Asp	• • •	• • •
	hOP-2	•••	His	Leu	Het	Lys	•••	Asn	Ala	• • •
40	mOP-2	• • •	His	Leu	Het	Lys		Asp	Val	• • •
	DPP	• • •	Asn	Asn	Asn	• • •		Gly	Lys	• • •
	Vgl		• • •	Ser		Glu	• • •	•••	Asp	Ile
45	Vgr-1	• • •		Val	Het	• • •	• • •	•••	Tyr	
40	CBMP-2A		Asn	Ser	Val	• • •	Ser		Lys	Ile
	CBMP-2B		Asn	Ser	Val	• • •	Ser		Ser	Ile
	вирз		Arg	Ala**	Gly	Val	Val	Pro	Gly	Ile
50			_		-				,	-

. 55

	GDF-1	Het	• • •	Ala	Ala	Ala	• • •	Gly	Ala	Ala
	60A			Leu	Leu	Glu	• • •	Lys	Lys	• • •
5	BMP5			Leu	Het	Phe	• • •	Asp	His	• • •
	BMP6			Leu	Het	• • •	• • •		Tyr	• • •
			55					60		
10										
	hOP-1	Pro	Lys	Pro	Cys	Cys	Ala	Pro	Thr	Gln
	mOP-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
15	hOP-2	• • •	• • •	Ala	• • •		• • •	• • •	• • •	Lys
	mOP-2	• • •	• • •	Ala		• • •	• • •	• • •	• • •	Lys
	DPP	• • •	• • •	Ala	• • •	• • •	Val	•••	• • •	• • •
	Vgl		Leu	• • •	• • •		Val		• • •	Lys
20	Vgr-1	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	Lys
	CBMP-2A		• • •	Ala	• • •		Val		• • •	Glu
	CBMP-2B	• • •		Ala	• • •	• • •	Val	• • •	• • •	Glu
25	BMP3	• • •	Glu	• • •	• • •	• • •	Val		Glu	Lys
	GDF-1	Asp	Leu	• • •	• • •	• • •	Val	•••	Ala	Arg
	60A			• • •			• • •		• • •	Arg
	BMP5			• • •	• • •	• • •	• • •		• • •	Lys
30	BMP6	• • •		• • •	• • •		• • •	• • •	• • •	Lys
				65					70	
35	hOP-1	Leu	Asn	Ala	Ile	Ser	Val	Leu	Tyr	Phe
	mOP-1	• • •	• • •	•••	• • •	• • •	• • •	• • •	• • •	•••
	hOP-2	• • •	Ser	• • •	Thr	• • •	• • •	• • •	• • •	Tyr
40	mOP-2	• • •	Ser	• • •	Thr	• • •	• • •	• • •	• • •	Tyr
	Vgl	Het	Ser	Pro	• • •	• • •	Met	• • •	Phe	Tyr
	Vgr-l	Val		• • •		• • •	• • •		• • •	• • •
	DPP	• • •	Asp	Ser	Val	Ala	Het		• • •	Leu
45	CBMP-2A	• • •	Ser	• • •	• • •	• • •	Met	• • •	• • •	Leu
	CBMP-2B	• • •	Ser	• • •	:	• • •	Met		• • •	Leu
	внр3	Met	Ser	Ser	Leu	• • •	Ile	• • •	Phe	Tyr

	GDF-1	• • •	Ser	Pro					Phe	• • •
	60A	• • •	Gly		Leu	Pro	•••		• • •	His
5	BMP5	• • •	•••		• • •		• • •		• • •	• • •
	BMP6	• • •	•••	• • •	• • •	• • •	• • •		• • •	• • •
	•				75					80
10	•									
70	hOP-1	Asp	Asp	Ser	Ser	Asn	Val	Ile	Leu	Lys
	mOP-1	• • •	• • •		• • •		• • •			• • •
	hOP-2	• • •	Ser	• • •	Asn	• • •	•••		• • •	Arg
15	mOP-2	• • •	Ser	• • •	Asn				• • •	Arg
	DPP	Asn	• • •	Gln	• • •	Thr	• • •	Val		
	Vgl	•••	Asn	Asn	Asp		• • •	Val	• • •	Arg
20	Vgr-1	• • •	• • •	Asn	• • •					•••
	CBMP-2A	• • •	Glu	Asn	Glu	Lys		Val		• • •
	CBMP-2B	• • •	Glu	Tyr	Asp	Lys		Val		
	внрз	• • •	Glu	Asn	Lys		• • •	Val	• • •	
25	GDF-1	• • •	Asn	• • •	Asp			Val	• • •	Arg
	60A	Leu	Asn	Asp	Glu	• • •		Asn	• • •	
	BMP5	• • •	• • •	• • •	• • •		• • •		• • •	
30	BMP6	• • •	• • •	Asn	• • •				• • •	
						85				
35	hOP-1	Lys	Tyr	Arg	Asn	Het	Val	Val	Arg	
	mOP-1	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	
	h0P-2	• • •	His	• • •	• • •	• • •	• • •	• • •	Lys	
40	mOP-2	• • •	His	• • •		• • •	• • •		Lys	
	DPP	Asn	• • •	Gln	Glu	•••	Thr		Val	
	Vgl	His		Glu	• • •	• • •	Ala		Asp	
45	Vgr-1	• • •		• • •	• • •		•••	• • •	• • •	
43	CBMP-2A	Asn		Gln	Asp	• • •	• • •	• • •	Glu	
	CBMP-2B	Asn		Gln	Glu	• • •	• • •		Glu	
	ВНР3	Val	• • •	Pro	• • •		Thr		Glu	
50										

	GDF-1	Gln		Glu	Asp	• • •	•••		Asp
	60A	• • •			•••	• • •	Ile		Lys
5	вир5	• • •		• • •	•••	• • •	•••		• • •
	вир6	• • •	• • •		Trp	• • •	•••	•••	
		90					95		
10		•							
	hOP-1	Ala	Cys	Gly	Cys	His			
	mOP-1	• • •	• • •	• • •	• • •	• • •			
15	hOP-2	• • •	• • •	• • •	• • •	•••			
	mOP-2	• • •	• • •	• • •	• • •	• • •			
	DPP	Gly	• • •	• • •	• • •	Arg			
20	Vgl	Glu	• • •	• • •	•••	Arg			
	Vgr-1	•••	• • •		• • •				
	CBMP-2A	Gly	• • •		• • •	Arg			
	CBHP-2B	Gly	• • •		• • •	Arg			
25	BMP3	Ser	• • •	Ala	• • •	Arg			
	GDF-1	Glu	• • •	• • •	• • •	Arg			
	A06	Ser	• • •	• • •	• • •	• • •			
30	BMP5	Ser	• • •	• • •	• • •	• • •			
	BMP6	• • •	• • •						
				100					
	**Between	residues	56 ar	nd 57 o	f BMP3	is a	Val re	sidue;	
35		betve	en res	idues	43 and	44 of	GDF-1	lies	

40 [0054] As is apparent from the foregoing amino acid sequence comparisons, significant amino acid changes can be made within the generic sequences while retaining the morphogenic activity. For example, while the GDF-1 protein sequence depicted in Table II shares only about 50% amino acid identity with the hOP-1 sequence described therein, the GDF-1 sequence shares greater than 70% amino acid sequence homology (or "similarity") with the hOP-1 sequence, where "homology" or "similarity" includes allowed conservative amino acid changes within the sequence as defined by Dayoff, et al., Atlas of Protein Sequence and Structure vol.5, supp.3, pp.345-362, (M.O. Dayhoff, ed., Nat'l BioMed. Res. Fd'n, Washington D.C. 1979.)

the amino acid sequence Gly-Gly-Pro-Pro.

[0055] The currently most preferred protein sequences useful as morphogens in this disclosure include those having greater than 60% identity, preferably greater than 65% identity, with the amino acid sequence defining the conserved six cysteine skeleton of hOP-1 (e.g., residues 43-139 of Seq. ID No. 5). These most preferred sequences include both allelic and species variants of the OP-1 and OP-2 proteins, including the Drosophila 60A protein. Accordingly, the invention includes use of a morphogen in the manufacture of a medicament wherein the morphogen comprises a species of polypeptide chains having the generic amino acid sequence referred to herein as "OPX", which defines the seven cysteine skeleton and accommodates the identities between the various identified mouse and human OP1 and OP2 proteins. OPX is presented in Seq. ID No. 29. As described therein, each Xaa at a given position independently is selected from the residues occurring at the corresponding position in the C-terminal sequence of mouse or human OP1 or OP2 (see Seq. ID Nos. 5-8 and/or Seq, ID Nos. 16-23).

II. Formulations and Methods for Administering Therapeutic Agents

5

10

15

25

30

35

40

45

55

[0056] The morphogens may be provided to an individual by any suitable means, preferably directly, parenterally or orally. Where the morphogen is to be provided directly (e.g., locally, as by injection, to a bone tissue site), or parenterally, such as by intravenous, subcutaneous, intramuscular, intraorbital, ophthalmic, intraventricular, intracranial, intracapsular, intraspinal, intracisternal, intraperitoneal, buccal, rectal, vaginal, intranasal or by aerosol administration, the morphogen preferably comprises part of an aqueous solution. The solution is physiologically acceptable so that in addition to delivery of the desired morphogen to the patient, the solution does not otherwise adversely affect the patient's electrolyte and volume balance. The aqueous medium for the morphogen thus may comprise normal physiologic saline (9.85% NaCl, 0.15M), pH 7-7.4. The aqueous solution containing the morphogen can be made, for example, by dissolving the protein in 50% ethanol containing acetonitrile in 0.1% trifluoroacetic acid (TFA) or 0.1% HCI, or equivalent solvents. One volume of the resultant solution then is added, for example, to ten volumes of phosphate buffered saline (PBS), which further may include 0.1-0.2% human serum albumin (HSA). The resultant solution preferably is vortexed extensively. If desired, a given morphogen may be made more soluble by association with a suitable molecule. For example, association of the mature dimer with the pro domain of the morphogen increases solubility of the protein significantly. In fact, the endogenous protein is thought to be transported in this form. Another molecule capable of enhancing solubility and particularly useful for oral administrations, is casein. For example, addition of 0.2% casein increases solubility of the mature active form of OP-1 by 80%. Other components found in milk and/or various serum proteins also may be useful.

[0057] Useful solutions for oral or parenteral administration may be prepared by any of the methods well known in the pharmaceutical art, described, for example, in Remington's Pharmaceutical Sciences, (Gennaro, A., ed.), Mack Pub., 1990. Formulations may include, for example, polyalkylene glycols such as polyethylene glycol, oils of vegetable origin, hydrogenated naphthalenes, and the like. Formulations for direct administration, in particular, may include glycerol and other compositions of high viscocity. Biocompatible, preferablly bioresorbable polymers, including, for example, hyaluronic acid, collagen, tricalcium phosphate, polybutyrate, lactide and lactide/glycolide copolymers, may be useful excipients to control the release of the morphogen in vivo. Other potentially useful parenteral delivery systems for these morphogens include ethylene-vinyl acetate copolymer particles, osmotic pumps, implantable infusion systems, and liposomes. Formulations for inhalation administration contain as excipients, for example, lactose, or may be aqueous solutions containing, for example, polyoxyethylene-9-lauryl ether, glycocholate and deoxycholate, or oily solutions for administration in the form of nasal drops, or as a gel to be applied intranasally. Formulations for parenteral administration may also include glycocholate for buccal administration, methoxysalicylate for rectal administration, or cutric acid for vaginal administration.

[0058] Alternatively, the morphogens described herein may be administered orally. Oral administration of proteins as therapeutics generally is not practiced as most proteins readily are degraded by digestive enzymes and acids in the mammalian digestive system before they can be absorbed into the bloodstream. However, the morphogens described herein typically are acid-stable and protease-resistant (see, for example, U.S. Pat. No. 4,968,590.) In addition, at least one morphogen, OP-1, has been identified in bovine mammary gland extract, colostrum and milk (see Example 10, below) as well as saliva. Moreover, the OP-1 purified from mammary gland extract has been shown to be morphogenically active. Specifically, this protein has been shown to induce endochondral bone formation in mammals when implanted subcutaneously in association with a suitable matrix material, using a standard in vivo bone assay, such as is disclosed in U.S. Pat.No. 4,968,590. In addition, endogenous morphogen also has been detected in the bloodstream (see Example 11). These findings indicate that oral and parenteral administration are viable means for administering morphogens to an individual. In addition, while the mature forms of certain morphogens described herein typically are sparingly soluble, the morphogen form found in milk (and mammary gland extract and colostrum) is readily soluble, probably by association of the mature, morphogenically active form with the pro domain of the intact sequence and/or by association with one or more milk components. Accordingly, the compounds provided herein also may be associated with molecules capable of enhancing their solubility in vitro or in vivo, including, for example, part or all of a morphogen pro domain, and casein, as described above.

[0059] The compounds provided herein also may be associated with molecules capable of targeting the morphogen or morphogen-stimulating agent to bone tissue. For example, tetracycline and diphosphonates are known to bind to bone mineral, particularly at zones of bone remodeling, when they are provided systemically in a mammal. Alternatively, an antibody or other binding protein that interacts specifically with a surface molecule on bone tissue cells also may be used. Such targeting molecules further may be covalently associated to the morphogen or morphogen-stimulating agent with, for example, an acid labile bond such as an Asp-Pro linkage, using standard chemical means well known in the art. Because the local environment at bone remodeling sites is acidic, acid-labile linkages are expected to be preferentially cleaved at these sites, yielding active morphogen or morphogen-stimulating agent at the desired site. Useful targeting molecules may be designed, for example, using the single chain binding site technology disclosed, for example, in U.S. Pat. No. 5,091,513.

[0060] As described above, the morphogens provided herein share significant sequence homology in the C-terminal active domains. By contrast, the sequences diverge significantly in the sequences which define the pro domain. Accordingly, the pro domain may be morphogen-specific. As described above, it is also known that the various morphogens identified to date are differentially expressed in the different tissues. Accordingly, without being limited to any given theory, it is likely that, under natural conditions in the body, selected morphogens typically act on a given tissue. Accordingly, part or all of pro domains, which have been identified associated with the active form of the morphogen in solution, may serve as targeting molecules for the morphogens described herein. For example, the pro domains may interact specifically with one or more molecules at the target tissue to direct the morphogen associated with the pro domain to that tissue. Accordingly, another useful targeting molecule for targeting morphogen to bone tissue is part or all of a morphogen pro domain, particularly part or all of the pro domains of OP-1, BMP2 or BMP4, all of which proteins are found naturally associated with bone tissue.

[0061] Finally, the morphogens or morphogen-stimulating agents provided herein may be administered alone or in combination with other molecules known to have a beneficial effect on maintaining appropriate bone remodeling cycles in an individual at risk for excessive bone loss. Examples of useful cofactors include vitamin D₃, calcitonin, prostaglandins, parathyroid hormone, dexamethasone, estrogen and IGF.

[0062] The compounds provided herein can be formulated into pharmaceutical compositions by admixture with pharmaceutically acceptable nontoxic excipients and carriers. As noted above, such compositions may be prepared for parenteral administration, particularly in the form of liquid solutions or suspensions; for oral administration, particularly in the form of tablets or capsules; or intranasally, particularly in the form of powders, nasal drops, or aerosols.

[0063] The compositions can be formulated for parenteral or oral administration to humans or other mammals in therapeutically effective amounts, e.g., amounts which provide appropriate concentrations of a morphogen to bone tissue for a time sufficient to inhibit loss of bone mass and/or to stimulate bone formation in individuals suffering from metabolic bone diseases and other bone remodeling disorders as described above. Therapeutic concentrations also are sufficient to repair fractures and other defects in skeletal microstructure, and to enhance maintenance of appropriate bone mass in developing juveniles and adults, including protecting individuals at risk for bone mass deterioration.

[0064] As will be appreciated by those skilled in the art, the concentration of the compounds described in a therapeutic composition will vary depending upon a number of factors, including the dosage of the drug to be administered, the chemical characteristics (e.g., hydrophobicity) of the compounds employed, and the route of administration. The preferred dosage of drug to be administered also is likely to depend on such variables as the type and extent of bone loss or defect, the overall health status of the particular patient, the relative biological efficacy of the compound selected, the formulation of the compound excipients, and its route of administration. In general terms, the compounds of this invention may be provided in an aqueous physiological buffer solution containing about 0.1 to 10% w/v compound for parenteral administration. Typical dose ranges are from about 10 ng/kg to about 1 g/kg of body weight per day; a preferred dose range is from about 0.1 µg/kg to 100 mg/kg of body weight per day. Optimally, the morphogen dosage given in all cases is between 2-20 µg of protein per kilogram weight of the patient per day. Currently preferred dose ranges for local injection of soluble morphogen to bone tissue are 0.1-50 µg morphogen/injection. No obvious morphogen-induced pathological lesions are induced when mature morphogen (e.g., OP-1, 20 µg) is administered daily to normal growing rats for 21 consecutive days. Moreover, 10 µg systemic injections of morphogen (e.g., OP-1) injected daily for 10 days into normal newborn mice does not produce any gross abnormalties.

III. Examples

5

10

15

25

30

35

40

55

Example 1. Identification of Morphogen-Expressing Tissue

[0065] Determining the tissue distribution of morphogens may be used to identify different morphogens expressed in a given tissue, as well as to identify new, related morphogens. Tissue distribution also may be used to identify useful morphogen-producing tissue for use in screening and identifying candidate morphogen-stimulating agents. The morphogens (or their mRNA transcripts) readily are identified in different tissues using standard methodologies and minor modifications thereof in tissues where expression may be low. For example, protein distribution may be determined using standard Western blot analysis or immunofluorescent techniques, and antibodies specific to the morphogen or morphogens of interest. Similarly, the distribution of morphogen transcripts may be determined using standard Northern hybridization protocols and transcript-specific probes.

[0066] Any probe capable of hybridizing specifically to a transcript, and distinguishing the transcript of interest from other, related transcripts may be used. Because the morphogens described herein share such high sequence homology in their active, C-terminal domains, the tissue distribution of a specific morphogen transcript may best be determined using a probe specific for the pro region of the immature protein and/or the N-terminal region of the mature protein. Another useful sequence is the 3' non-coding region flanking and immediately following the stop codon. These portions of the sequence vary substantially among the morphogens of this invention, and accordingly, are specific for each

protein. For example, a particularly useful Vgr-1-specific probe sequence is the Pvull-SacI fragment, a 265 bp fragment encoding both a portion of the untranslated pro region and the N-terminus of the mature sequence (see Lyons et al. (1989) PNAS 86:4554-4558 for a description of the cDNA sequence). Similarly, particularly useful mOP-1-specific probe sequences are the BstX1-BgII fragment, a 0.68 Kb sequence that covers approximately two-thirds of the mOP-1 pro region; a Stul-Stul fragment, a 0.2 Kb sequence immediately upstream of the 7-cysteine domain; and the Ear1-Pst1 fragment, an 0.3 Kb fragment containing a portion of the 3'untranslated sequence (See Seq. ID No. 18, where the pro region is defined essentially by residues 30-291.) Similar approaches may be used, for example, with hOP-1 (Seq. ID No. 16) or human or mouse OP-2 (Seq. ID Nos. 20 and 22.)

[0067] Using these morphogen-specific probes, which may be synthetically engineered or obtained from cloned sequences, morphogen transcripts can be identified in mammalian tissue, using standard methodologies well known to those having ordinary skill in the art. Briefly, total RNA is prepared from various adult murine tissues (e.g., liver, kidney, testis, heart, brain, thymus and stomach) by a standard methodology such as by the method of Chomczyaski et al. ((1987) Anal. Biochem 162:156-159) and described below. Poly (A)+ RNA is prepared by using oligo (dT)-cellulose chromatography (e.g., Type 7, from Pharmacia LKB Biotechnology, Inc.). Poly (A)+ RNA (generally 15 μg) from each tissue is fractionated on a 1% agarose/formaldehyde gel and transferred onto a Nytran membrane (Schleicher & Schuell). Following the transfer, the membrane is baked at 80°C and the RNA is cross-linked under UV light (generally 30 seconds at 1 mW/cm²). Prior to hybridization, the appropriate probe is denatured by heating. The hybridization is carried out in a lucite cylinder rotating in a roller bottle apparatus at approximately 1 rev/min for approximately 15 hours at 37°C using a hybridization mix of 40% formamide, 5 x Denhardts, 5 x SSPE, and 0.1% SDS. Following hybridization, the non-specific counts are washed off the filters in 0.1 x SSPE, 0.1% SDS at 50°C.

[0068] Examples demonstrating the tissue distribution of various morphogens, including Vgr-1, OP-1, BMP2, BMP3, BMP4, BMP5, GDF-1, and OP-2 in developing and adult tissue are disclosed in co-pending USSN 752,764, and in Ozkaynak, et al., (1991) Biochem. Biophys. Res. Commn. 179:116-123, and Ozkaynak, et al. (1992) (JBC, in press), the disclosures of which are incorporated herein by reference. Using the general probing methodology described herein, northern blot hybridizations using probes specific for these morphogens to probe brain, spleen, lung, heart, liver and kidney tissue indicate that kidney-related tissue appears to be the primary expression source for OP-1, with brain, heart and lung tissues being secondary sources. Lung tissue appears to be the primary tissue expression source for Vgr-1, BMP5, BMP4 and BMP3. Lower levels of Vgr-1 also are seen in kidney and heart tissue, while the liver appears to be a secondary expression source for BMP4. GDF-1 appears to be expressed primarily in brain tissue. To date, OP-2 appears to be expressed primarily in early embryonic tissue. Specifically, northern blots of murine embryos and 6-day post-natal animals shows abundant OP2 expression in 8-day embryos. Expression is reduced significantly in 17-day embryos and is not detected in post-natal animals.

Example 2. Mitogenic Effect of Morphogen on Rat and Human Osteoblasts

5

10

15

25

30

35

40

50

55

[0069] The ability of a morphogen to induce proliferation of osteoblasts may be determined in vitro using the following assay. In this and all examples involving osteoblast cultures, rat osteoblast-enriched primary cultures preferably are used. Although these cultures are heterogeneous in that the individual cells are at different stages of differentiation, the culture is believed to more accurately reflect the metabolism and function of osteoblasts in vivo than osteoblast culture obtained from established cell lines. Unless otherwise indicated, all chemicals referenced are standard, commercially available reagents, readily available from a number of sources, including Sigma Chemical, Co., St. Louis; Calbiochem, Corp., San Diego, and Aldrich Chemical Co., Milwaukee.

[0070] Rat osteoblast-enriched primary cultures were prepared by sequential collagenase digestion of newborn suture-free rat calvaria (e.g., from 1-2 day-old animals, Long-Evans strain, Charles River Laboratories, Wilmington, MA), following standard procedures, such as are described, for example, in Wong et al., (1975) PNAS 72:3167-3171. Rat osteoblast single cell suspensions then were plated onto a multi-well plate (e.g., a 48 well plate) at a concentration of 50,000 osteoblasts per well in alpha MEM (modified Eagle's medium, Gibco, Inc., Long Island) containing 10% FBS (fetal bovine serum), L-glutamine and penicillin/streptomycin. The cells were incubated for 24 hours at 37°C, at which time the growth medium was replaced with alpha MEM containing 1% FBS and the cells incubated for an additional 24 hours so that cells were in serum-deprived growth medium at the time of the experiment.

[0071] The cell culture then was divided into three groups: (1) wells which received 0.1, 1.0, 10.0, 40 and 80.0 ng of morphogen; (2) wells which received 0.1, 1.0, 10.0 and 40 ng of a local-acting growth factor; and (3) the control group, which received no growth factors. In this example, OP-1 was the morphogen tested, and TGF- β was the local-acting growth factor. The cells then were incubated for an additional 18 hours after which the wells were pulsed with 2μ Ci/well of 3 H-thymidine and incubated for six more hours. The excess label then was washed off with a cold solution of 0.15 M NaCl, 250 μ l of 10% tricholoracetic acid then was added to each well and the wells incubated at room temperature for 30 minutes. The cells then were washed three times with cold distilled water, and lysed by the addition of 250

 μ I of 1% sodium dodecyl sulfate (SDS) for a period of 30 minutes at 37°C. The cell lysates then were harvested using standard means well known in the art, and the incorporation of 3 H-thymidine into cellular DNA was determined by liquid scintillation as an indication of mitogenic activity of the cells. The results, shown in FIG. 1, demonstrate that OP-1 (identified in the figure by squares) stimulates 3 H-thymidine incorporation into DNA, and thus promotes osteoblast cell proliferation. The mitogenesis stimulated by 40 ng of OP-1 in serum-free medium was equivalent to the mitogenic effect of 10% fresh serum alone. By contrast, the effect of TGF- β (indicated by diamonds in Fig. 1) is transient and biphasic. At high concentrations, TGF- β has no significant effect on osteoblast cell proliferation. This system may be used to test other morphogens for their effect on cell proliferation.

[0072] The in vitro effect of a morphogen on osteoblast proliferation also was tested on human primary osteoblasts (obtained from bone tissue of a normal adult patient and prepared as described above) and on osteosarcoma-derived cells, and in all cases induced cell proliferation. In addition, similar experiments, performed using BMP4 (BMP2B) and BMP3 shows these morphogens also can stimulate osteoblast proliferation and growth. (See Chen et al., (1991) J. Bone and Min. Res. 6: 1387-1393, and Vukicevic, (1989) PNAS 86: 8793-8797.)

[0073] The effect of a given morphogen on bone cell growth and/or development also may be tested using a variety of bone cell markers: e.g., collagen synthesis, alkaline phosphatase activity, parathyroid hormone-mediated cyclic AMP (cAMP) production, osteocalcin synthesis, and by assessing the rate of mineralization in osteoblasts. Of these, alkaline phophatase activity, parathyroid hormone-mediated cAMP production, osteocalcin synthesis and mineralization promotion are specific markers for the differentiated osteoblast phenotype. Experimental systems for testing these parameters as well as collagen synthesis are described below in Examples 3-7. In all cases morphogen alone stimulated expression of these phenotype-specific markers. In Examples 3-7 OP-1 was the morphogen tested. Similar experiments, performed using BMP4 (BMP2B) shows that this morphogen also induces osteoblast differentiation. (See Chen, et al. (1991) T. Bone and Min. Res. 6: 1387-1392, and Vukicevic, (1989) PNAS 86: 8793-8797.)

Example 3. Effect of Morphogen on Collagen Synthesis in Rat Osteoblasts

5

15

20

25

30

40

45

55

[0074] The effect of a morphogen on collagen production in rat osteoblasts in vitro may be determined as follows. [0075] Rat osteoblasts were prepared and cultured in a multi-well plate as described for Example 2. In this example a 24-well plate was used. The cultured cells then were divided into three groups: (1) wells which received 1, 10 or 40 ng of morphogen per ml of medium; (2) wells which received 1, 10 or 40 ng of a local-acting growth factor per ml of medium; and (3) a control group which received no growth factors. In this example, OP-1 was the morphogen tested, and TGF-B was the local-acting growth factor.

[0076] The samples were incubated for 68 hours at 37° C with 5% CO₂ in a humidified incubator. Twenty-five (25) μ Ci of 3 H proline were added into each well and incubated for six additional hours. The cells then were frozen at -20°C until the collagen assay was performed. The cells then were assayed for collagen production by detecting incorporation of 3 H-proline into total collagenase-digestible protein (CDP). The results, shown in FIG. 2, demonstrate that OP-1 stimulates type-I collagen synthesis, as measured by 3 H-proline incorporation into total CDP. Thus, OP-1 promotes collagen synthesis in vitro by preosteoblasts and mature osteoblasts.

Example 4. Alkaline Phosphatase Induction of Osteoblasts by Morphogen

4.1 Morphogen-specific Alkaline Phosphatase Induction

[0077] Since alkaline phosphatase production is an indicator of bone formation by differentiated, functional osteoblasts, a morphogen may be assessed for its potential osteogenic effects using this osteoblast marker in the following in vitro test system.

[0078] Rat osteoblasts were prepared and cultured in a multi-well plate as described for Example 2. In this example a 24-well plate was used. The cultured cells then were divided into three groups: (1) wells which received varying concentrations of morphogen; (2) wells which received varying concentrations of a local-acting growth factor; and (3) a control group which received no growth factors. In this example OP-1 was the morphogen tested at the following concentrations: 0.1, 1.0, 10.0, 40.0 or 80.0 ng/ml medium; and TGF- β was the local-acting growth factor, tested at 0.1, 1.0, 10.0, 40.0 or 80.0 ng/ml medium. The cells then were incubated for 72 hours. After the incubation period the cell layer was extracted with 0.5 ml of 1% Triton X-100. The resultant cell extract was centrifuged, 100 μ l of the extract was added to 90 μ l of paranitrosophenylphospate (PNPP)/glycerine mixture and incubated for 30 minutes in a 37°C water bath and the reaction stopped with 100 μ l NaOH. The samples then were run through a plate reader (e.g., Dynatech MR700 plate reader, and absorbance measured at 400 nm, using p-nitrophenol as a standard) to determine the presence and amount of alkaline phosphate activity. Protein concentrations were determined by the Biorad method. Alkaline phosphatase activity was calculated in units/ μ g protein, where 1 unit=1 nmol p-nitrophenol liberated/30 minutes at 37°C. [0079] The results, shown in FIG. 3, illustrate that morphogen alone stimulates the production of alkaline phosphatase

in osteoblasts, and thus promotes the growth and expression of the osteoblast differentiated phenotype. In the figure, squares represent OP-1 concentrations, and diamonds represent TGF-β concentrations.

4.2. Long Term Effect of Morphogen on the Production of Alkaline Phosphatase by Rat Osteoblasts

5

10

15

20

25

30

35

45

55

[0080] In order to determine the long term effect of a morphogen on the production of alkaline phosphatase by rat osteoblasts, the following assay may be performed.

[0081] Rat osteoblasts were prepared and cultured in multi-well plates as described in Example 2. In this example six sets of 24 well plates are plated with 50,000 rat osteoblasts per well. The wells in each plate, prepared as described above, then were divided into three groups: (1) those which received 1 ng of morphogen per ml of medium; (2) those which received 40 ng of morphogen/ml of medium; and (3) those which received 80 ng of morphogen/ml of medium. Each plate then was incubated for different lengths of time: 0 hours (control time), 24 hours, 48 hours, 96 hours, 120 hours and 144 hours. After each incubation period, the cell layer was extracted with 0.5 ml of 1% Triton X-100. The resultant cell extract was centrifuged, and alkaline phosphatase activity determined as for Example 4, using paranitrosophenylphosphate (PNPP). The results, shown in FIG. 4, illustrate that morphogen alone stimulates the production of alkaline phosphatase in osteoblasts, that increasing doses of OP-1 further increase the level of alkaline phosphatase production, and that the morphogen-stimulated elevated levels of alkaline phosphatase in the treated osteoblasts lasts for an extended period of time. In the figure, circles represent 1 ng OP-1; squares, 40 ng OP-1; and diamonds, 80 ng OP-1.

Example 5. Morphogen-Induced Parathyroid Hormone Mediated cAMP Production in Rat Osteoblasts

[0082] The effect of a morphogen on parathyroid hormone-mediated cAMP production in rat osteoblasts <u>in vitro</u> may be determined as follows.

[0083] Rat osteoblasts were prepared and cultured in a multiwell plate as described for Example 2 above. In this example a 24-well plate was used. The cultured cells then were divided into three groups: (1) wells which received varying concentrations of morphogen (in this example, OP-1, at 1.0, 10.0 and 40.0 ng/ml medium); (2) wells which received varying concentrations of a local-acting growth factor (in this example, TGF-β, at 0.1, 1.0, and 5.0 ng/ml medium); and (3) a control group which received no growth factors. The plate was then incubated for another 72 hours. At the end of the 72 hours the cells were treated with medium containing 0.5% bovine serum albumin (BSA) and 1mM 3-isobutyl-1-methyl xanthine for 20 minutes followed by the addition into half of the wells of human recombinant parathyroid hormone (hPTH, Sigma, St. Louis) at a concentration of 200ng/ml for 10 minutes. The cell layer was extracted from each well with 0.5 ml of 1% Triton X-100. The cAMP levels were then determined using a radioimmunoassay kit (Amersham, Arlington Heights, Illinois). The results, shown in FIG. 5, demonstrate that morphogen alone stimulates an increase in the PTH-mediated cAMP response, and thus promotes the growth and expression of the osteoblast differentiated phenotype.

Example 6. Effect of Morphogen on Osteocalcin Synthesis and the Rate of Mineralization by Osteoblasts in Culture

40 [0084] Osteocalcin is a bone-specific protein synthesized by osteoblasts which plays an integral role in the rate of bone mineralization in vivo. Circulating levels of osteocalcin in serum are used as a marker for osteoblast activity and bone formation in vivo. Induction of osteocalcin synthesis in osteoblast-enriched cultures can be used to assay morphogen efficacy in vitro.

[0085] Rat osteoblasts are prepared and cultured in a multi-well plate as for Example 2. In this example cells were cultured in a 24-well plate. In this experiment the medium was supplemented with 10%FBS, and on day 2, cells were fed with fresh medium supplemented with fresh 10 mM β-glycerophosphate (Sigma, Inc.). Beginning on day 5 and twice weekly thereafter, cells were fed with a complete mineralization medium containing all of the above components plus fresh L(+)-ascorbate, at a final concentration of 50μg/ml medium. Morphogen then was added to the wells directly. In this example, OP-1 in 50% acetonitrile (or 50% ethanol) containing 0.1% trifluoroacetic acid (TFA) was added at no more than 5μl morphogen/ml medium. Control wells received solvent vehicle only. The cells then were re-fed and the conditioned medium sample diluted 1:1 in standard radioimmunoassay buffer containing standard protease inhibitors and stored at -20° C until assayed for osteocalcin. Osteocalcin synthesis then was measured by standard radioimmoassay using a commercially available rat osteocalcin-specific antibody.

[0086] Mineralization was determined on long term cultures (13 day) using a modified von Kossa staining technique on fixed cell layers: cells were fixed in fresh 4% paraformaldehyde at 23° C for 10 mn, following rinsing cold 0.9% NaCl. Fixed cells then were stained for endogenous alkaline phosphatase at pH 9.5 for 10 min, using a commercially available kit (Sigma, Inc.) Purple stained cells then were dehydrated with methanol and air dried after 30 min incubation in 3% AgNO₃ in the dark, H₂O-rinsed samples were exposed for 30 sec to 254 nm UV light to develop the black silver-

stained phosphate nodules. Individual mineralized foci (at least 20 µm in size) were counted under a dissecting microscope and expressed as nodules/culture (see Fig. 6B).

[0087] As can be seen in Fig. 6A OP-1 stimulates osteocalcin synthesis in oseoblast cultures. The increased osteocalcin synthesis in response to OP-1 is dose dependent and showed a 5-fold increase over the basal level using 25 ng of OP-1/10 ml medium after 13 days of incubation. The enhanced osteocalcin synthesis also can be confirmed by detecting the elevated osteocalcin mRNA message (20-fold increase) using a rat osteocalcin-specific probe. In addition, the increase in osteoclacin synthesis correlates with increased mineralization in long term osteoblast cultures as determined by the appearance of mineral nodules (compare Fig. 6A and 6B.) OP-1 increases the initial mineralization rate about 20-fold compared to untreated cultures. Similar experiments performed using TGF-β indicate that TGF-β does not induce osteocalcin synthesis or promote the mineralization process. Thus, morphogen alone promotes the growth and expression of the osteoblast differentiated phenotype.

Example 7. Effect of Morphogen on Bone Derived Growth Factor Induction in vitro

5

10

15

20

25

30

35

40

45

50

55

[0088] IGF-I and IGF-II are bone-derived growth factors involved in coupling bone formation with bone resorption in the bone remodeling cycle. The effect of morphogen on the production of these and other bone-derived growth factors, including TGF-β, may be evaluated using the following procedure.

[0089] Rat or human osteoblasts were prepared and cultured in a multiwell plate as for Example 2. The wells of the plate were divided in to groups in which different concentrations of morphogen were added (e.g., 0, 1, 10, and 100 ng). In this example, OP-1 was the morphogen used. The plate then was incubated for a prescribed period of time, e. g., 72 hours, and the level of IGF detected, e.g., by immunolocalization, using a commercially available antibody specific for IGFs. OP-1 induced the level of both IGF-I and IGF-II significantly. Greater than six fold IGF-I and two fold IGF-II were induced following exposure to 100 ng OP-1/ml. In addition, OP-1 stimulated production of the IGF-I stimulating factor, BP3 (IGF-I binding protein 3).

Example 8. Effect of Morphogen on Trabecular Bone in Ovariectomized (OVX) Rats

[0090] As indicated above, serum alkaline phosphatase and osteocalcin levels are indicators of bone formation within an individual. In order to determine the effect of a morphogen on bone production in vivo, these parameters are measured under conditions which promote osteoporosis, e.g., wherein osteoporosis is induced by ovary removal in rats. [0091] Forty Long-Evans rats (Charles River Laboratories, Wilmington) weighing about 200g each are ovariectomized (OVX) using standard surgical procedures, and ten rats are sham-operated. The ovariectomization of the rats produces an osteoporotic condition within the rats as a result of decreased estrogen production. Food and water are provided ad libitum. Eight days after ovariectomy, the rats, prepared as described above, were divided into five groups: (A), 10 sham-operated rats; (B), 10 ovariectomized rats receiving 1 ml of phosphate-buffered saline (PBS) i.v. in the tail vein; (C) 10 ovariectomized rats receiving about 1 mg of $17\beta E_2$ ($17-\beta$ -estradiol E_2) by intravenous injection through the tail vein; (D) 9 ovariectomized rats receiving daily injections of approximately 2 μ g of morphogen by tail vein for 22 days; and (E) 9 ovariectomized rats receiving daily injections of approximately 20 μ g of morphogen by tail vein for 22 days. In this example, OP-1 was the morphogen tested.

[0092] On the 15th and 21st day of the study, each rat was injected with 5 mg of tetracycline, and on day 22, the rats were sacrificed. The body weights, uterine weights, serum alkaline phosphate levels, serum calcium levels and serum osteocalcin levels then were determined for each rat. The results are shown in Tables III and IV.

Table III

Body Wei	ghts, Uterine Weigl	nts and Alkaline Ph	osphatase
Group	Body Weights	Uterine Weights	Alk. Phosphatase
	(g)	(g)	(U/L)
A-SHAM	250.90 ± 17.04	0.4192 ± 0.10	43.25 ± 6.11
B-OVX+PBS	273.40 ± 16.81	0.1650 ± 0.04	56.22 ± 6.21
C-OVX+E2	241.66 ± 21.54	0.3081 ± 0.03	62.66 ± 4.11

Table III (continued)

Body Weights, Uterine Weights and Alkaline Phosphatase									
Group	Body Weights	Uterine Weights	Alk. Phosphatase						
	(g)	(g)	(U/L)						
D-OVX+OP-1 (2μg)	266.67 ± 10.43	0.1416 ± 0.03	58.09 + 12.97						
E-OVX+OP-1 (20 μg)	272.40 ± 20.48	0.1481 ± 0.05	66.24 ± 15.74						

TABLE IV

Serum Calcium and Serum Osteocalcin Levels								
Group	Serum Calcium	Serum Osteocalcin (ng/ml)						
	(ng/dl)							
A-SHAM	8.82 ± 1.65	64.66 ± 14.77						
B-OVX+PBS	8.95 ± 1.25	69.01 ± 10.20						
C-OVX+E2	9.20 ± 1.39	67.13 ± 17.33						
D-OVX+OP-1 (2μg)	8.77 ± 0.95	148.50 ± 84.11						
E-OVX+OP-1 (20μg)	8.67 ± 1.94	182.42 ± 52.11						

[0093] The results presented in Table III and IV show that intravenous injection of morphogen into ovariectomized rats produces a significant increase in serum alkaline phosphatase and serum osteocalcin levels and demonstrates that systemic administration of the morphogen stimulates bone formation in osteoporotic bone.

Example 9. Histomorphometric Analysis of Morphogen on the Tibia Diaphysis in Ovariectomized (OVX) Rats

[0094] Fifteen female Long-Evans rats weighing about 160 g were ovariectomized (OVX) to produce an osteoporotic condition and five rats were sham operated (Charles River Laboratories, Wilmington, MA.) as described for Example 8. Food and water were provided ad libitum. Twenty-two days after ovariectomy, the rats were divided into four groups: (A) sham-operated (1 ml of PBS by intravenous injection through tail vein (5 rats); (B) OVX, into which nothing was injected (5 rats); (C) OVX, receiving about 1 mg of 17βE₂ by intravenous injection through the tail vein (5 rats). In this example, OP-1 was morphogen tested.

[0095] The rats were injected daily as described for seven days, except no injections were given on the thirteenth day. The rats then were sacrificed on the nineteenth day. The tibial diaphyseal long bones then were removed and fixed in ethanol and histomorphometric analysis was carried out using standard procedures well known in the art. The results are shown in Table V.

Table V

	(A)	(B)	(C)	(D)
MEASUREMENT	CONTROL	OVX	OVX + E ₂	OVX + OP-1
Longitudinal Growth Rate (µm/day) Cancellous Bone Volume (BV/TV, bone vol/total vol) Cancellous Bone Perimeter (mm)	20.2 ± 0.3 20.2 ± 1.5 16.2 ± 1.8	19.4 ± 0.2 13.0 ± 1.6 9.6 ± 0.9	4.9 ± 0.5 13.7 ± 2.1 11.5 ± 1.1	17.9 ± 0.9 16.6 ± 1.8 12.2 ± 0.7
Labeled Cancellous Perimeter (%) Mineral Apposition Rate (µm/day)	35.5 ± 1.5 1.76 ± 0.14	51.9 ± 5.6 2.25 ± 0.16	58.0 ± 4.2 1.87 ± 0.08	39.2 ± 1.9 1.86 ± 0.20

[0096] The results presented in Table V confirm the results of Example 8, that intravenous injection of OP-1 into ovariectomized rats stimulates bone growth for bone which had been lost due to the drop in estrogen within the individual

10

15

5

20

25

30

35

40

45

50

rat. Specifically, the inhibition of cancellous bone volume in OVX rats is repaired by the systemically provided morphogen. In addition, in morphogen-treated rats the labelled cancellous perimeter and mineral apposition rate now return to levels measured in the control, sham-operated rats. Moreover, morphogen treatment does not inhibit longitudinal bone growth, unlike estrogen treatment, which appears to inhibit bone growth significantly. Accordingly, systemic administration of a morphogen in therapeutically effective concentations effectively inhibits loss of bone mass in a mammal without inhibiting natural bone formation.

Example 10. Determination of the Presence of Morphogen in Body Fluids

[0097] OP-1 has been identified in saliva, human blood serum, and various milk forms, including mammary gland extract, colostrum, and 57-day bovine milk. Moreoever, as described below, the body fluid extracted protein is morphogenically active. The discovery that the morphogen naturally is present in milk, together with the known observation that mature, active OP-1 is acid-stable and protease-resistant, indicate that oral administration is a useful route for therapeutic administration of morphogen to a mammal. Oral administration typically is the preferred mode of delivery for extended or prophylactic therapies. In addition, the identification of morphogen in all milk forms, including colostrum, indicates that the protein plays a significant role in tissue development, including skeletal development of juveniles (see Example 13, below).

10.1 Morphogen Detection in Milk

5

10

15

20

25

35

40

50

55

[0098] OP-1 was partially purified from rat mammary gland extract and bovine colostrum and 57 day milk by passing these fluids over a series of chromatography columns: (e.g., cation-exchange, affinity and reverse phase). At each step the eluant was collected in fractions and these were tested for the presence of OP-1 by standard immunoblot. Immunoreactive fractions then were combined and purified further. The final, partially purified product then was examined for the presence of OP-1 by Western blot analysis using OP-1-specific antisera, and tested for in vivo and in vitro activity.

[0099] OP-1 purified from the different milk sources were characterized by Western blotting using antibodies raised against OP-1 and BMP2. Antibodies were prepared using standard immunology protocols well known in the art, and as described generally in Example 14, below, using full-length <u>E. coli-produced OP-1</u> and BMP2 as the immunogens. [0100] As shown in Fig. 7 OP-1 purified from colostrum reacts with the anti-OP-1 antibody, but not with anti-BMP2 antibody. In Fig. 7 lane 1 contains reduced, purified, recombinantly-produced OP-1; lane 2 contains purified bovine colostrum, and lane 3 contains reduced COP-16, a biosynthetic contruct having morphogenic activity and an amino acid sequence modeled on the proteins described herein, but having highest amino acid sequence homology with BMP2 (see US Pat. No. 5,011,691 for the COP-16 amino acid sequence.) In Fig. 7A the gel was probed with anti-OP-1 antibody; in Fig. 17B, the gel was probed with anti-BMP2 antibody. As can be seen in the figure, anti-OP-1 antibody hybridizes only with protein in lanes 1 and 2, but not 3; while anti-BMP2 antibody hybridizes with lane 3 only.

[0101] Column-purified mammary gland extract and 57-day milk also reacts specifically with anti-OP-1 antibodies, including antibody raised against the full length <u>E. coli</u> OP-1, full length mammalian-produced OP-1, and the OP-1 Ser-17-Cys peptide (e.g., the OP-1 N-terminal 17 amino acids).

[0102] The morphogenic activity of OP-1 purified from mammary gland extract was evaluated in vivo as follows. A sample was prepared from each OP-1 immunoreactive fraction of the mammary gland extract-derived OP-1 final product by lyophilizing a portion (33%) of the fraction and resuspending the protein in 220µl of 50% acetonitrile/0.1% TFA. After vortexing, 25 mg of collagen matrix was added. The samples were lyophilized overnight, and implanted in Long Evans rats (Charles River Laboratories, Wilmington, MA, 28-35 days old). Each fraction was implanted in duplicate. For details of the collagen matrix implantation procedure, see, for example, U.S. Pat. No. 4,968,590, hereby incorporated by reference. After 12 days, the implants were removed and evaluated for new bone formation by histological observation.

[0103] The results are presented in Fig.8A, where "% activity" refers to the percent of bone formation/total area covered by bone in the histology sample. In the figure, solid bars represent implants using mammary extract-derived OP-1, each bar corresponding to an immunoreactive fraction of the purified product, the fraction number being indicated on the x-axis. The hatched bar represents an implant using recombinantly produced OP-1 (600 ng). As can be seen in the figure, all immunoreactive fractions are osteogenically active.

[0104] Similarly, the morphogenic activity of OP-1 purified from mammary gland extract was evaluated <u>in vitro</u> by measuring alkaline phosphatase activity <u>in vitro</u> using the following assay. Test samples were prepared as for the <u>in vivo</u> assay, using 15-20% of individual immunoreactive fractions collected from the final product. Alkaline phosphatase activity was tested as described above in Example 4. The results, presented in Fig. 8B, indicate that the immunoreactive fractions can stimulate alkaline phosphatase activity <u>in vitro</u>. Moreover, the activity correlates well with that produced by highly purified, recombinantly produced, OP-1. In Fig. 8B solid bars represent assays performed with mammary

gland-purified OP-1, each bar corresponding to an immunoreactive fraction of column-purified OP-1, the fraction numbers being indicated on the x-axis; the hatched bar represents the assay performed with purified, recombinantly-produced OP-1 (100 ng ml); and the cross-hatched bar represents background.

10.2 Morphogen Detection in Serum

5

10

15

20

25

30

40

45

55

[0105] Morphogen may be detected in serum using morphogen-specific antibodies. The assay may be performed using any standard immunoassay, such as Western blot (immunoblot) and the like. Preferably, the assay is performed using an affinity column to which the morphogen-specific antibody is bound and through which the sample serum then is poured, to selectively extract the morphogen of interest. The morphogen then is eluted. A suitable elution buffer may be determined empirically by determining appropriate binding and elution conditions first with a control (e.g., purified, recombinantly-produced morphogen.) Fractions then are tested for the presence of the morphogen by standard immunoblot, and the results confirmed by N-terminal sequencing. Preferably, the affinity column is prepared using monoclonal antibodies. Morphogen concentrations in serum or other fluid samples then may be determined using standard protein quantification techniques, including by spectrophotometric absorbance or by quantitation of conjugated antibody.

[0106] Presented below is a sample protocol for identifying OP-1 in serum. Following this general methodology other morphogens may be detected in body fluids, including serum. The identification of morphogen in serum further indicates that systemic administratrion is a suitable means for providing therapeutic concentrations of a morphogen to an individual, and that morphogens likely behave systemically as endocrine-like factors. Finally, using this protocol, fluctuations in endogenous morphogen levels can be detected, and these altered levels may be used as an indicator of bone tissue dysfunction. Alternatively, fluctuations in morphogen levels may be assessed by monitoring morphogen transcription levels, either by standard northern blot analysis as described in Example 1, or by in situ hybridization, using a labelled probe capable of hybridizing specifically to morphogen RNA, and standard RNA hybridization protocols well described in the art and described generally in Example 1.

[0107] OP-1 was detected in human serum using the following assay. A monoclonal antibody raised against mammalian, recombinantly produced OP-1 using standard immunology techniques well described in the art and described generally in Example 14, was immobilized by passing the antibody over an agarose-activated gel (e.g., Affi-Gel™, from Bio-Rad Laboratories, Richmond, CA, prepared following manufacturer's instructions) and used to purify OP-1 from serum. Human serum then was passed over the column and eluted with 3M K-thiocyanate. K-thiocyanante fractions then were dialyzed in 6M urea, 20mM PO₄, pH 7.0, applied to a C8 HPLC column, and eluted with a 20 minute, 25-50% acetonitrile/0.1% TFA gradient. Mature, recombinantly produced OP-1 homodimers elute between 20-22 minutes. Fractions then were collected and tested for the presence of OP-1 by standard immunoblot using an OP-1 specific antibody as for Example 10.A. Fig. 9 is an immunoblot showing OP-1 in human sera under reducing and oxidized conditions. In the figure, lanes 1 and 4 are OP-1 standards, run under oxidized (lane 1) and reduced (lane 4) conditions. Lane 5 shows molecular weight markers at 17, 27 and 39 kDa. Lanes 2 and 3 are human sera OP-1, run under oxidized (lane 2) and reduced (lane 3) conditions.

[0108] Morphogens may be used in diagnostic applications by comparing the quantity of morphogen present in a body fluid sample with a predetermined reference value, with fluctuations in fluid morphogen levels indicating a change in the status of bone tissue. Alternatively, fluctuations in the level of endogenous morphogen antibodies may be detected by this method, most likely in serum, using an antibody or other binding protein capable of interacting specifically with the endogenous morphogen antibody. Detected fluctuations in the levels of the endogenous antibody may be used as indicators of a change in tissue status.

Example 11. Morphogen-induced Periosteal and Endosteal Bone Formation

[0109] Osteoclast-induced bone resorption occurs primarily at the endosteal surface of bone tissue. Accordingly, in bone remodeling disorders the marrow cavity is enlarged unnaturally, weakening the weight bearing capacity of the remaining bone. The following example provides means for evaluating the ability of the morphogens decribed herein to increase endosteal and preiosteal bone mass in a mammal. In this example, both periosteal and endosteal bone formation are induced by direct injection of a morphogen in a biocompatible solution directly to the bone tissue. As demonstrated below, morphogens can induce new bone formation and increase bone mass at both surfaces when provided to the bone by direct injection. Direct injection may be a preferred mode of administration for providing therapeutically effective concentrations to reduce an enlarged marrow cavity, and/or to repair fractures and other damage to bone tissue microstructure.

[0110] Morphogen was provided to either the periosteum (outer or peripheral bone surface) and endosteum (interior bone surface, e.g., that surface lining the marrow cavity) of a rat femur by a single injection in each case. Specifically, morphogen (e.g., OP-1, 2-20 µg) was provided to the bone tissue as an insoluble colloidal suspension in phosphate-

buffered saline. Endosteal injection was performed through a microhole made with a hand-held orthopedic drill. After 7 days, the treated bones were removed and prepared for histological evaluation as described in U.S. Pat. No. 4,968,590. As little as 2 µg morphogen is sufficient to induce new bone formation at the site of injection within 4-7 days. In addition, bone induction is dose-dependent. Photomicrographs of the histology are presented in Fig. 10. In the figure, "ob" means old bone, "bm" means bone marrow, "nb" means new bone, and "m" means muscle. Fig.10A shows new bone formed following injection of morphogen to the endosteal surface. As can be seen in the figure, new bone has formed within the bone marrow cavity, filling in the periphery of the cavity. Fig 10B shows new bone formed following injection of morphogen to the periosteal surface, replacing the muscle normally present.

Example 12. Effect of Morphogen on Bone Resorption

5

10

15

25

30

35

40

45

55

[0111] The effect of morphogen on bone resorption may be evaluated using rat osteoclasts on bovine bone slices, in the presence and absence of morphogen, and the effect of morphogen on pit formation (resorption index) determined. Under standard conditions rat osteoclasts begin resorbing the bone tissue, causing pit formation on the bone slice surface. In this experiment OP-1 was the morphogen tested, at concentrations of 0, 5, 10, 20, 40, 50, and 100 ng/ml. [0112] The results are presented in figure 11, where the resorption index is calculated as a percent of the control (e. g., bone resorption in the absence of morphogen), calculated as the number of pits per a given slice surface area. Below 40 ng bone resorption is enhanced; above 40 ng, OP-1 has no apparent effect on bone resorption. The results highlight the integral role the morphogen plays in bone remodeling. OP-1 is stored in bone tissue in vivo. In a normal bone remodeling cycle, the local concentration of OP-1 at the surface likely is low when osteoclasts begin resorbing bone, and the low concentration may enhance and/or stimulate bone resorption. As resorption continues, the local concentration of OP-1 at the surface likely increases, to a concentration that no longer has an effect on osteoclasts, but continues to affect osteoblast growth and activity (see Examples 2-7), stimulating bone growth.

[0113] In addition, morphogens can inhibit multinucleation of mononuclear phagocytic cells under conditions where these cells normally would be activated. For example, in the absence of morphogen, an implanted substrate material (e.g., implanted subcutaneously) composed of, for example, mineralized bone, a ceramic such as titanium oxide or any other substrate that provokes multinucleated giant cell formation, rapidly becomes surrounded by multinucleated giant cells, e.g., activated phagocytes stimulated to respond and destroy the foreign object. In the presence of morphogen however, the recruited cells remain in their mononuclear precursor form and the matrix material is undisturbed. Figure 12 illustrates this effect of morphogens, in a schematic representation of histology results of a titanium oxide substrate implanted subcutaneously. In the figure, "mg" means multinucleated giant cells and "ob" means osteoblasts. The substrate represented in Fig. 12B was implanted together with morphogen (OP-1) and newly formed osteoblasts are evident surrounding the substrate. By contrast, the substrate represented in Fig. 12A was implanted without morphogen and extensive multinucleated giant cell formation is evident surrounding the substrate. Accordingly, the morphogens' effect in inhibiting excessive bone mass loss in a mammal also may include inhibiting activation of these cells.

Example 13. Effect of Morphogen Neutralization on Bone Growth

[0114] The effect of the morphogens described herein on bone growth in developing mammals also may be evaluated using neutralizing antibodies specific for particular morphogens and assessing the effect of these antibodies on bone development. Specifically, anti-morphogen monoclonal and/or polyclonal antibodies may be prepared using standard methodologies including, for example, the protocol provided in Example 14, below.

[0115] Purified antibodies then are provided regularly to new born mice, e.g., 10-100μg/injection/day for 10-15 days. At 10 or 21 days, the mice are sacrificed and the effect of morphogen on bone development assessed by body veight, gross visual examination and histology. In this example, anti-OP-1 antibodies were used. Morphogen neutralization significantly stunted body growth, including bone growth, as indicated by the reduced body weight and reduced bone length of the treated mammals.

[0116] Similarly, morphogen activity may be assessed in fetal development in the mouse model using the following assay. Single lip injections comprising $10-100\mu g/injection$ of morphogen-specific antibody are administered to pregnant female mice during each day of the gestation period and bone development in treated and control new mice evaluated by standard histomorphometric analysis at birth. Similarly, single lip injections also may be provided to juvenile and adult mice (e.g., $10-100 \mu g$) over a prolonged time (e.g., 10-15 days) to evaluate the effect on bone growth and bone integrity and to evaluate the onset of osteoporosis. The antibodies are anticipated to inhibit tissue morphogenesis, including bone growth and bone development, in the developing embryos.

Example 14. Screening Assay for Candidate Compounds which Alter Endogenous Morphogen Levels

[0117] Candidate compound(s) which may be administered to affect the level of a given morphogen may be found

using the following screening assay, in which the level of morphogen production by a cell type which produces measurable levels of the morphogen is determined with and without incubating the cell in culture with the compound, in order to assess the effects of the compound on the cell. This can be accomplished by detection of the morphogen either at the protein or RNA level.

14.1 Growth of Cells in Culture

5

10

15

25

30

35

40

45

55

[0118] Cell cultures of kidney, adrenals, urinary bladder, brain, or other organs, may be prepared as described widely in the literature. For example, kidneys may be explanted from neonatal or new born or young or adult rodents (mouse or rat) and used in organ culture as whole or sliced (1-4 mm) tissues. Primary tissue cultures and established cell lines, also derived from kidney, adrenals, urinary, bladder, brain, mammary, or other tissues may be established in multiwell plates (6 well or 24 well) according to conventional cell culture techniques, and are cultured in the absence or presence of serum for a period of time (1-7 days). Cells may be cultured, for example, in Dulbecco's Modified Eagle medium (Gibco, Long Island, NY) containing serum (e.g., fetal calf serum at 1%-10%, Gibco) or in serum-deprived medium, as desired, or in defined medium (e.g., containing insulin, transferrin, glucose, albumin, or other growth factors).

[0119] Samples for testing the level of morphogen production includes culture supernatants or cell lysates, collected periodically and evaluated for morphogen production by immunoblot analysis (Sambrook et al., eds., 1989, Molecular Cloning, Cold Spring Harbor Press, Cold Spring Harbor, NY), or a portion of the cell culture itself, collected periodically and used to prepare polyA+ RNA for RNA analysis. To monitor de novo morphogen synthesis, some cultures are labeled according to conventional procedures with an 35S-methionine/35S-cysteine mixture for 6-24 hours and then evaluated for morphogenic protein synthesis by conventional immunoprecipitation methods.

14.2 Determination of Level of Morphogenic Protein

[0120] In order to quantitate the production of a morphogenic protein by a cell type, an immunoassay may be performed to detect the morphogen using a polyclonal or monoclonal antibody specific for that protein. For example, OP-1 may be detected using a polyclonal antibody specific for OP-1 in an ELISA, as follows.

[0121] 1 μg/100 μl of affinity-purified polyclonal rabbit IgG specific for OP-1 is added to each well of a 96-well plate and incubated at 37°C for an hour. The wells are washed four times with 0.167M sodium borate buffer with 0.15 M NaCl (BSB), pH 8.2, containing 0.1% Tween 20. To minimize non-specific binding, the wells are blocked by filling completely with 1% bovine serum albumin (BSA) in BSB and incubating for 1 hour at 37°C. The wells are then washed four times with BSB containing 0.1% Tween 20. A 100 µl aliquot of an appropriate dilution of each of the test samples of cell culture supernatant is added to each well in triplicate and incubated at 37°C for 30 min. After incubation, 100 µl biotinylated rabbit anti-OP-1 serum (stock solution is about 1 mg/ml and diluted 1:400 in BSB containing 1% BSA before use) is added to each well and incubated at 37°C for 30 min. The wells are then washed four times with BSB containing 0.1% Tween 20. 100 µl strepavidin-alkaline (Southern Biotechnology Associates, Inc. Birmingham, Alabama, diluted 1:2000 in BSB containing 0.1% Tween 20 before use) is added to each well and incubated at 37°C for 30 min. The plates are washed four times with 0.5M Tris buffered Saline (TBS), pH 7.2, 50 µl substrate (ELISA Amplification System Kit, Life Technologies, Inc., Bethesda, MD) is added to each well incubated at room temperature for 15 min. Then, 50 μl amplifier (from the same amplification system kit) is added and incubated for another 15 min at room temperature. The reaction is stopped by the addition of 50 μl 0.3 M sulphuric acid. The OD at 490 nm of the solution in each well is recorded. To quantitate OP-1 in culture media, a OP-1 standard curve is performed in parallel with the test samples.

[0122] Polyclonal antibody may be prepared as follows. Each rabbit is given a primary immunization of 100 ug/500 μ l E. coli-produced OP-1 monomer (amino acids 328-431 in SEQ ID NO:5) in 0.1% SDS mixed with 500 μ l Complete Freund's Adjuvant. The antigen is injected subcutaneously at multiple sites on the back and flanks of the animal. The rabbit is boosted after a month in the same manner using incomplete Freund's Adjuvant. Test bleeds are taken from the ear vein seven days later. Two additional boosts and test bleeds are performed at monthly intervals until antibody against OP-1 is detected in the serum using an ELISA assay. Then, the rabbit is boosted monthly with 100 μ g of antigen and bled (15 ml per bleed) at days seven and ten after boosting.

[0123] Monoclonal antibody specific for a given morphogen may be prepared as follows. A mouse is given two injections of <u>E. coli</u> produced OP-1 monomer. The first injection contains $100\mu g$ of OP-1 in complete Freund's adjuvant and is given subcutaneously. The second injection contains $50 \mu g$ of OP-1 in incomplete adjuvant and is given intraperitoneally. The mouse then receives a total of $230 \mu g$ of OP-1 (amino acids 307-431 in SEQ ID NO:5) in four intraperitoneal injections at various times over an eight month period. One week prior to fusion, both mice are boosted intraperitoneally with $100 \mu g$ of OP-1 (307-431) and $30 \mu g$ of the N-terminal peptide (Ser_{293} -Asn₃₀₉-Cys) conjugated through the added cysteine to bovine serum albumin with SMCC crosslinking agent. This boost was repeated five days (IP), four days (IP), three days (IP) and one day (IV) prior to fusion. The mouse spleen cells are then fused to com-

mercially available myeloma cells at a ratio of 1:1 using PEG 1500 (Boeringer Mannheim, Germany), and the cell fusion is plated and screened for OP-1-specific antibodies using OP-1 (307-431) as antigen. The cell fusion and monoclonal screening then are according to standard procedures well described in standard texts widely available in the art.

5 SEQUENCE LISTING

[0124]

(1) GENERAL INFORMATION:

10

(i) APPLICANTS: Thangavel Kuberasampath

Charles Cohen Hermann Oppermann Engin Ozkayanak David C. Rueger

Roy H.L. Pang

(ii) TITLE OF INVENTION: TREATMENT TO PREVENT LOSS OF AND/OR INCREASE BONE MASS IN METABOLIC BONE DISEASE

20

25

30

35

15

- (iii) NUMBER OF SEQUENCES: 33
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Testa, Hurwitz & Thib eault
 - (B) STREET: 53 State Street
 - (C) CITY: Boston
 - (D) STATE: Massachusetts
 - (E) COUNTRY: U.S.A.
- (F) ZIP: 02109
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy Disk
 - (B) COMPUTER: IBM XT
 - (C) OPERATING SYSTEM: DOS 3.30
 - (D) SOFTWARE: PatentIn Release 1.0, Version 1.25
 - (vi) CURRENT APPLICATION DATA:

40

45

- (B) FILING DATE:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 752,857
 - (B) FILING DATE: 30-AUG-1991
- (viii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 667,274
 - (B) FILING DATA: 11-MAR-1991
- (2) INFORMATION FOR SEQ ID NO:1:
- 55 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids(B) TYPE: amino acids

(C) TOPOLOGY: linear

5	(ii) MOLECULE TY (ix) FEATURE: (A) NAME: Ge (D) OTHER INI or a derivative	neric S	Seque:		Xaa ir	ndicate	es one	of the	20 nat	urally-	-occurr	ing L-i	somer, α-ε	ımino ad	cids
10	(xi) SEQUENCE D	ESCR	IPTIO	N: SEC	Q ID N	0:1:									
						•		Xaa :	Xaa	Xaa .	Xaa	Xaa			
15							1				5				
		Xaa	Xaa	Xaa		Xaa	Xaa	Xaa	Xaa		Xaa	Xaa			
					10					15					
		Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Cys	Xaa	Xaa	Xaa			
20				20					25						
		Cys	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa			
			30					35							
25		Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa			
		40					45					50			
		Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Cys			
						55					60				
30		Суs	Хаа	Хаа	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa			
					65					70					
35															
		Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xáa	Xaa			
				75					80						
		Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa		Xaa	Xaa	Cvs			
40			85					90				-,-			
		Xaa		Xaa											
		95	-,0												
4.5		,,													
45	(2) INFORMATION FO	R SEC) ID N	0:2:											
	(i) SEQUENCE CH	IARAC	TERIS	STICS:											
` 50	(A) LENGTH: 97 amino acids (B) TYPE: amino acids (C) TOPOLOGY: linear														
	(ii) MOLECULE TY	PE: pr	rotein												
55	(ix) FEATURE:	•													
	(A) NAME: Ge	neric S	Sequei	nce 2											

(D) OTHER INFORMATION: Each Xaa indicates one of the 20 naturally-occurring L-isomer, α -amino acids or a derivative thereof.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

20

5

25

30

35

40

45

50

55

 Xaa
 Cys
 60
 Cys
 60
 Cys
 60
 Cys
 60
 Cys
 70
 Xaa
 Cys
 Xaa
 Xaa
 Xaa
 Xaa
 Cys
 Xaa
 Xaa</t

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

95

(A) LENGTH: 97 amino acids

(B) TYPE: amino acids(C) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 3
 - (D) OTHER INFORMATION: wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Leu Tyr Val Xaa Phe 1 5 5 Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa 10 10 Xaa Ala Pro Gly Xaa Xaa Xaa Ala 15 20 15 Xaa Tyr Cys Xaa Gly Xaa Cys Xaa 25 30 Xaa Pro Xaa Xaa Xaa Xaa Xaa 35 20 Xaa Xaa Xaa Asn His Ala Xaa Xaa 40 45 Xaa Xaa Leu Xaa Xaa Xaa Xaa 25 50 Xaa Xaa Xaa Xaa Xaa Xaa Cys 55 Cys Xaa Pro Xaa Xaa Xaa Xaa 30 65 Xaa Xaa Xaa Leu Xaa Xaa Xaa 70 35 Xaa Xaa Xaa Xaa Val Xaa Leu Xaa 80 Xaa Xaa Xaa Xaa Het Xaa Val Xaa 85 90 40 Xaa Cys Gly Cys Xaa 95 45

50

55

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 4

(D) OTHER INFORMATION: wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

5

45

50

55

Cys Xaa Xaa Xaa Xaa Leu Tyr Val Xaa Phe 1 5 10 10 Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa 15 Xaa Ala Pro Xaa Gly Xaa Xaa Ala 25 20 15 Xaa Tyr Cys Xaa Gly Xaa Cys Xaa 30 35 Xaa Pro Xaa Xaa Xaa Xaa 20 40 Asn Xaa Xaa Asn His Ala Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Xaa 25 55 Xaa Xaa Xaa Xaa Xaa Xaa Cys 65 60 30 Cys Xaa Pro Xaa Xaa Xaa Xaa 70 Xaa Xaa Xaa Leu Xaa Xaa Xaa 75 80 35 Xaa Xaa Xaa Xaa Val Xaa Leu Xaa 85 Xaa Xaa Xaa Xaa Het Xaa Val Xaa 40 90 95

> Xaa Cys Gly Cys Xaa 100

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 139 amino acids

(B) TYPE: amino acids(C) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(ix) FEATURE:

(A) NAME: hOP-1 (mature form)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

_									
5	Ser	Thr	Gly	Ser	Lys	Gln	Arg	Ser	Gln
	1				5				
	Asn	Arg	Ser	Lys	Thr	Pro	Lys	Asn	Gln
10	10					15			
	Glu	Ala	Leu	Arg	Het	Ala	Asn	Val	Ala
		20					25		
15	Glu	Asn	Ser	Ser	Ser	Asp	Gln	Arg	Gln
			30					35	
	Ala	Cys	Lys	Lys	His	Glu	Leu	Tyr	Val
				40					45
20	Ser	Pł.e	Arg	Asp	Leu	Gly	Trp	Gln	Asp
					50				
	Trp	Ile	Ile	Ala	Pro	Glu	Gly	Tyr	Ala
25	55					60			
	Ala	Tyr	Tyr	Cys	Glu	Gly	Glu	Cys	Ala
		65					70		
	Phe	Pro	Leu	Asn	Ser	Tyr	Het	Asn	Ala
30			75					80	
	Thr	Asn	His	Ala	Ile	Val	Gln	Thr	Leu
				85					90
35									
	Val	His	Phe	Ile	Asn	Pro	Glu	Thr	Val
					95				
40	Pro	Lys	Pro	Cys	Cys	Ala	Pro	Thr	Gln
	100					105			
	Leu	Asn	Ala	Ile	Ser	Val	Leu	Tyr	Phe
45		110					115		
	Asp	Asp	Ser	Ser	Asn	Val	Ile	Leu	Lys
			120					125	
5 0	Lys	Tyr	Arg	Asn	Het	Val	Val	Arg	Ala
50				130					135
	Cys	Gly	Cys	His					

(2) INFORMATION FOR SEQ ID NO:6:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 139 amino acids(B) TYPE: amino acids(C) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(ix) FEATURE:

(A) NAME: mOP-1 (mature form)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

45	Ser	Thr	Gly	Gly	Lys	Gln	Arg	Ser	Gln
15	1				5				
	Asn	Arg	Ser	Lys	Thr	Pro	Lys	Asn	Gln
	10					15			
20	Glu	Ala	Leu	Arg	Het	Ala	Ser	Val	Ala
		20					25		
	Glu	Asn	Ser	Ser	Ser	Asp	Gln	Arg	Gln
0.5			30					35	
25									

30

5

10

35

40

50

45

	Ala	Cys	Lys	Lys 40	His	Glu	Leu	Tyr	Val 45
5	Ser	Phe	Arg	Asp	Leu 50	Gly	Trp	Gln	Asp
10	Trp 55	Ile	Ile	Ala	Pro	Glu 60	Gly	Tyr	Ala
	Ala	Tyr 65	Tyr	Cys	Glu	Gly	Glu 70	Cys	Ala
15	Phe	Pro	Leu 75	Asn	Ser	Tyr	Het	Asn 80	Ala
	Thr	Asn	His	Ala 85	Ile	Val	Gln	Thr	Leu 90
20	Val	His	Phe	Ile	Asn 95	Pro	Asp	Thr	Val
	Pro 100	Lys	Pro	Cys	Cys	Ala 105	Pro	Thr	Gln
25	Leu	Asn 110	Ala	Ile	Ser	Val	Leu 115	Tyr	Phe
30	Asp	Asp	Ser 120	Ser	Asn	Val	Ile	Leu 125	Lys
	Lys	Tyr	Arg	Asn 130	Met	Val	Val		Ala 135
35	Cys	Gly	Cys	His					

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 139 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: hOP-2 (mature form)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

40

45

	Ala	Val	Arg	Pro	Leu	Arg	Arg	Arg	Gln
	1.				5				
5	Pro	Lys	Lys	Ser	Asn	Glu	Leu	Pro	Gln
	10					15			
	Ala	Asn	Arg	Leu	Pro	Gly	Ile	Phe	Asp
10		20					25		
	Asp	Val	His	Gly	Ser	His	Gly	Arg	Gln
			30					35	
	Val	Cys	Arg	Arg	His	Glu	Leu	Tyr	Val
15				40					45
	Ser	Phe	Gln	Asp		Gly	Trp	Leu	Asp
					50				
20	-	Val	Ile	Ala	Pro		Gly	Tyr	Ser
	55					60			
	Ala	-	Tyr	Cys	Glu	Gly		Cys	Ser
		65					70		_
25	Phe	Pro		Asp	Ser	Cys	Het	Asn	Ala
			75			_		80	
	Thr	Asn	His	Ala	Ile	Leu	GIn	Ser	Leu
30		•	_	85	_	_			90
	Val	His	Leu	Met	Lys	Pro	Asn	Ala	Val
	~	•	47.	C	95			6 00	•
35		Lys	VIS	Cys	Cys		rro	Thr	Lys
••	100	C	42.5	Th ==	C	105	7	7	~
	Leu	Ser	Ala	Thr	Ser	vaı		Tyr	lyr
	4.00	110	C	A = =	4.55	1/-1	115	T	A
40	ASP	261		Asn	ASII	vaı	116	Leu	Arg
		11: -	120		W = 4	V-1	V - 1	125	43.
	Lys	nıs	arg	Asn	лет	vaı	vaı	Lys	Ala
45	Char	C1	C***	130					135
	Cys	Gly	cys	His					

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 139 amino acids

(B) TYPE: amino acids (C) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(ix) FEATURE:

50

(A) NAME: mOP-2 (mature form)

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

5									
	Ala	Ala	Arg	Pro	Leu	Lys	Arg	Arg	Gln
	1				5				
40	Pro	Lys	Lys	Thr	Asn	Glu	Leu	Pro	His
10	10					15			
	Pro	Asn	Lys	Leu	Pro	Gly	Ile	Phe	Asp
		20					25		
15	Asp	Gly	His	Gly	Ser	Arg	Gly	Arg	Glu
			30					35	
	Val	Cys	Arg	Arg	His	Glu	Leu	Tyr	Val
20				40					45
20	Ser	Phe	Arg	Asp	Leu	Gly	Trp	Leu	Asp
					50				
	Trp	Val	Ile	Ala	Pro	Gln	Gly	Tyr	Ser
25	55					60			
	Ala	Tyr	Tyr	Cys	Glu	Gly	Glu	Cys	Ala
		65				•	70	_	
30	Phe	Pro	Leu	Asp	Ser	Cys	Het	Asn	Ala
30			75					80	
	Thr	Asn	His	Ala	Ile	Leu	Gln	Ser	Leu
				85					90
35									
	Val	His	Leu	Het	Lvs	Pro	Asp	Val	Val
40					95				
	Pro	Lys	Ala	Cvs		Ala	Pro	Thr	l.vs
	100	•		-,		105			-, 5
		Ser	Ala	Thr	Ser		Leu	Tyr	Tvr
45		110			•		115	-3-	-,-
	Asp	Ser	Ser	Asn	Asn	Val		Leu	Arg
	•		120					125	6
50	Lys	His		Asn	Het	Val	Val	Lys	Ala
••	•		J	130				,	135
	Cys	Gly	Cys						
	•	•	-						

(2) INFORMATION FOR SEQ ID NO:9:

55

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 96 amino acids(B) TYPE: amino acids(C) TOPOLOGY: linear
5	(ii) MOLECULE TYPE: protein
	(ix) FEATURE:
10	(A) NAME: CBMP2A(fx)
70	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
15	Cys Lys Arg His Pro Leu Tyr Val Asp Phe Ser
	1 5 10
	Asp Val Gly Trp Asn Asp Trp Ile Val Ala Pro 15 20
20	Pro Gly Tyr His Ala Phe Tyr Cys His Gly Glu
	25 30 Cys Pro Phe Pro Leu Ala Asp His Leu Asn Ser
25	35 40
30	Thr Asn His Ala Ile Val Gln Thr Leu Val Ass
	45 50 59
	Ser Val Asn Ser Lys Ile Pro Lys Ala Cys Cys 60 65
35	Val Pro Thr Glu Leu Ser Ala Ile Ser Het Leu
	70 75
40	Tyr Leu Asp Glu Asn Glu Lys Val Val Leu Lys 80 85
,,	Asn Tyr Gln Asp Het Val Val Glu Gly Cys Gly
	90 95
45	Cys Arg 100
	(2) INFORMATION FOR SEQ ID NO:10:
50	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 101 amino acids (B) TYPE: amino acids (C) TOPOLOGY: linear
55	(ii) MOLECULE TYPE: protein
	(ix) FEATURE:

(A) NAME: CBMP2B(fx)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

5 Cys Arg Arg His Ser Leu Tyr Val Asp Phe Ser Asp Val Gly Trp Asn 10 10 15 Asp Trp Ile Val Ala Pro Pro Gly Tyr Gln Ala 20 Phe Tyr Cys His Gly Asp Cys Pro Phe Pro Leu 15 30 35 20 Ala Asp His Leu Asn Ser Thr Asn His Ala Ile 40 Val Gln Thr Leu Val Asn Ser Val Asn Ser Ser 25 50 55 60 Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu 65 Ser Ala Ile Ser Met Leu Tyr Leu Asp Glu Tyr 30 **75** 80 Asp Lys Val Val Leu Lys Asn Tyr Gln Glu Het 85 90 35 Val Val Glu Gly Cys Gly Cys Arg 95 100 (2) INFORMATION FOR SEQ ID NO:11: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 102 amino acids 45 (B) TYPE: amino acids (C) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 50 (ix) FEATURE: (A) NAME: DPP(fx)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

		Cys	Arg	Arg	His	Ser	Leu	Tyr	Val	Asp	Phe	Ser
		1				5					10	
5		Asp	Val	Gly	Trp	Asp	Asp	Trp	Ile	Val	Ala	Pro
					15					20		•
		Leu	Gly	Tyr	Asp	Ala	Tyr	Tyr	Cys	His	Gly	Lys
10				25					30			
15		Cys	Pro	Phe	Pro	Leu	Ala	Asp	His	Phe	Asn	Ser
			35					40				
		Thr	Asn	His	Ala	Val	Val	Gln	Thr	Leu	Val	Asn
20		45					50					55
		Asn	Asn	Asn	Pro	Gly	Lys	Val	Pro	Lys	Ala	Cys
						60					65	
		Cys	Val	Pro	Thr	Gln	Leu	Asp	Ser	Val	Ala	Het
25					70					75		
		Leu	Tyr	Leu	Asn	Asp	Gln	Ser	Thr	Val	Val	Leu
				80					85			
30		Lys	Asn	Tyr	Gln	Glu	Het	Thr	Val	Val	Gly	Cys
			90					95				
		Gly	Cys	Arg								
		100										
35												
	(2) INFORMATION FO	OR SE	QIDN	10:12:								
	(i) SEQUENCE C	нара	CTED	ISTICS	2.							
40	(I) SEQUENCE C		CILIX	131100	,							
	(A) LENGTH:			acids								
	(B) TYPE: an (C) TOPOLO											
	, ,											
45	(ii) MOLECULE T	YPE: p	orotein									
	(ix) FEATURE:											
	(A) NAME: V	al(fx)										
50												
	(xi) SEQUENCE I	DESCF	RIPTIC	N: SE	Q ID N	10:12:						

	Cys	Lys	Lys	Arg	His	Leu	Tyr	Val	Glu	Phe	Lys
	1				5					10	
5	Asp	Val	Gly	Trp	Gln	Asn	Trp	Val	Ile	Ala	Pro
				15					20		
	Gln	Gly	Tyr	Het	Ala	Asn	Tyr	Cys	Tyr	Gly	Glu
10			25					30			
	Cys	Pro	Tyr	Pro	Leu	Thr	Glu	Ile	. Leu	Asr	ı Glv
15	•	35					40				,
	Ser	Asn	His	Ala	Ile	Leu	Gln	Thr	Leu	Val	His
	45					50					55
20	Ser	Ile	Glu	Pro	Glu	Asp	Ile	Pro	Leu	Pro	Cys
					60					65	
	Cys	Val	Pro		Lys	Het	Ser	Pro		Ser	Het
25	1	nt.		70		Â		ā	75		_
	ren	rne	Tyr 80	Asp	Asn	Asn	ASP	Asn 85	Val	Val	Leu
	Aro	His	Tyr	Clu	Acn	Hot	Δla		Acn	C) "	Cve
30	••• 6	90	-,-	010	ngu		95	741	лэр	GIU	СУЗ
	Gly		Arg								
	100										
35	(2) INFORMATION FOR SEQ	ID NO	D:13:								
	(i) SEQUENCE CHARAC	TERIS	TICS:								
	(A) LENGTH: 102 am	ino ac	ids								
40	(B) TYPE: amino acid (C) TOPOLOGY: linea										
	(ii) MOLECULE TYPE: pro	otein									
45	(ix) FEATURE:										
	(A) NAME: Vgr-1(fx)										
	(xi) SEQUENCE DESCRI	PTION	N: SEC	ID NO	D:13:						
50											

		Cys 1	Lys	Lys	His	Glu 5	Leu	Tyr	Val	Ser	Phe (Gln
5		_	Val	Gly	Trp 15		Asp	Trp	Ile	Ile 20	Ala I	Pro
		Xaa	Gly	Туг		Ala	Asn	Tyr	Cys		Gly (Glu
10				25					30			
15		Cys	Ser 35		e Pr	o Le	u As:	n Ala		s Het	t Asn	Ala
		Thr			s Ala	a Ile	e Vai			Let	ı Val	His
20		45					56					55
20		Val	Het	Ası	n Pro			r Val	Pro	Lys	Pro	Cys
		Cys	Ala	Pro	o Thi	60 Lys		l Asn	Ala	Ile	65 Ser	Val
25		·			70					75		
		Leu	Tyr		_	Asp	o Asr	ı Ser			Ile	Leu
		Lys	Lvs	80 TVI		. Asr	ı Het	: Val	85 Val		Ala	Cvs
30			90			,		95				0,0
		=	Cys	His	;							
35		100										
	(2) INFORMATION FO	OR SE	Q ID N	IO:14	:							
	(i) SEQUENCE C	HARA	CTER	ISTIC	S:							
40	(A) LENGTH: (B) TYPE: pro (C) STRANDI (D) TOPOLO	otein EDNE	SS: sir									
45	(ii) MOLECULE T	YPE: p	orotein									
	(vi) ORIGINAL SC	DURCE	Ξ:									
50	(A) ORGANIS (F) TISSUE T			l								
	(ix) FEATURE:											
55	(D) OTHER II	NFOR	MATIO	N: /pr	oduct=	= "GDF	F-1 (fx))"				
JJ	(xi) SEQUENCE [DESCF	RIPTIC	N: SE	EQ ID	NO:14	:					

		Cys 1	Arg	Ala	Arg	Arg 5	Leu	Tyr	Val	Ser	Phe 10	Arg	Glu '	Val (Gly
5	Trp 15	His	Arg	Trp	Val	Ile 20	Ala	Pro	Arg	Gly	Phe 25	Leu	Ala A	Asn 1	lyr
	Cys 30	Gln	Gly	Gln	Cys	Ala 35	Leu	Pro	Val	Ala	Leu 40	Ser	Gly S	Ser (Gly
10															
15	Gly 45		Pro	Ala	Leu	Asn 50		Ala	Val	l Leu	Arg 55		Leu	Het	His
	Ala 60		Ala	Pro	Gly	Ala 65	Ala	Asp	Let	Pro	Cys 70	•	. Val	Pro	Ala
20	Arg 75	Leu	Ser	Pro	Ile	Ser 80	Val	Leu	Phe	Phe	Asp 85		Ser	Asp	Asn
	Val 90	Val	Leu	Arg	Gln	Tyr 95	Glu	Asp	Het	. Val	Val 100		Glu	Cys	Gly
25	Cys 105	Arg													
	(2) INFORMATIO	ON FO	R SE	Q ID N	O:15:										
30	(i) SEQUEN	CE CI	HARAG	CTERI	STICS	:									
35	(A) LEN (B) TYP (C) STR (D) TOP	E: am	ino ac DNES	id SS: sin											
	(ii) MOLECU	JLE TY	YPE: p	eptide											
40	(xi) SEQUEN	NCE D	ESCF	RIPTIO	N: SE	Q ID N	IO:15:								
						Cys 1	Xaa	Xaa	Xaa	Xaa 5					
45	(2) INFORMATIO	ON FO	R SEC	N DI C	O:16:										
	(i) SEQUEN	CE CH	HARAG	CTERI	STICS	:									
50	(A) LEN (B) TYP (C) STR (D) TOP	E: nuc ANDE	leic ac	cid SS: sin											
e e	(ii) MOLECU	ILE TY	/PE: c	DNA											
55	(vi) ORIGINA	AL SO	URCE	<u>:</u>											

(A) ORGANISM: HOMO SAPIENS

	(F) TISSUE TYPE: HIPPOCAMPUS	
	(ix) FEATURE:	
5	(A) NAME/KEY: CDS (B) LOCATION: 491341 (D) OTHER INFORMATION:/standard_name= "hOP1"	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
	GGTGCGGCCC CGGAGCCCGG AGCCCGGGTA GCGCGTAGAG CCGGCGCG ATG CAC GTG Met His Val 1	7
15		
20		
25		
30		
35		
40		
45		
50		
55		

	CGC										105
5	CCC Pro 20										153
10	GAG Glu										201
15	CGG (249
20	CCG (PrBo) He	ATG Het	297
20	CTG (345
25	GGC (Gly (100										393
30	CCC (441
35	ATG (Het								489
	CAC (Pro									537
40	CCA (585
45	TAC A										633
50	CAG (Gln \										681

		Arg							GAC Asp	729
5			AGC Ser						CTG Leu	771
10			TCG Ser							825
15			CTG Leu							873
			TTC Phe 280							921
20			AGC Ser							969
25			GCC Ala							1017
30			CAG Gln							1065
			TGG Trp							1113
35			GAG Glu 360							1161
40			CAC His							1209
45			CCC Pro							1257
			TAC Tyr							1305

5	TAC AGA AA Tyr Arg A: 420	AC AT	G GT(t Va)	G GT 1 Va 42	l Arg	G GC(g Ala	TG:	r GG s Gl	C TG(y Cys 43(s His	TAG	CTCC	TCC			135	l
J	GAGAATTCAC	G ACC	CTTT(GGG (GCCAA	GTT	T TO	CTGG	ATCC	CCA	TTGC	TCG	CCTI	GGCC	AG	1411	l
	GAACCAGCAG	ACC	AACTO	SCC 3	TTTT	TGAC	SA CO	CTTC	CCTC	CCI	ATCC	CCA	ACTT	TAAA	GG	1471	L
10	TGTGAGAGTA	ATTA(GAAA	ACA I	r gago	AGCA	ra Ta	rggc	TTT	ATC	AGTT	TTT	CAGT	GGCA	GC	1531	
	ATCCAATGAA	CAAC	GATCO	TA (CAAGO	TGTG	C AC	GCAA	AACC	TAG	CAGG.	AAA .	AAAA	AACA	AC	1591	
	GCATAAAGAA	CAAA A	rggco	CGG (GCCAG	GTCA	T TO	GCT	GGAA	GTC	TCAG	CCA	TGÇA	CGGA	CT	1651	
15	CGTTTCCAGA	GGTA	ATTA	TG A	AGCGC	CTAC	C AG	CCAG	GCCA	ccc	AGCC	GTG (GGAG	GAAG	GG	1711	
	GGCGTGGCAA	GGGG	TGGG	CA C	CATTG	GTGT	C TG	TGCG	AAAG	GAA	AATT	GAC (CCGG	AAGT	TC	1771	
20	CTGTAATAAA	TGTC	ACAA	TA A	LAACG	AATG	A AT	'GAAA	AAAA	AAA	AAAA	AAA A	A			1822	
	(2) INFORM	ATION	FOR S	EQ ID	NO:1	7:											
25	(i) SEQU	JENCE	CHAR	ACTE	RISTIC	CS:											
25	(B) 1	ENGTI TYPE: a	amino a	acid	o acids												
30	(ii) MOLE	ECULE	TYPE:	prote	ein												
	(ix) FEAT	ΓURE:															
0.5	(D) (OTHER	INFO	RMAT	ION: /F	Produc	t="OP	1-PP"									
35	(xi) SEQ	UENCE	E DESC	CRIPT	TION: S	EQ ID	NO:1	7:									
40	Het 1	His	Val	Arg	Ser 5				Ala			His	Ser	Phe	Val 15	Ala	
	Leu	Trp	Ala	Pro 20	Leu	Phe	Leu	Leu	Arg 25	Ser	Ala	Leu	Ala	Asp 30	Phe	Ser	
45	Leu	Asp	Asn 35	Glu	Val	His	Ser	Ser 40	Phe	Ile	His	Arg	Arg 45	Leu	Arg	Ser	
	Gln	Glu 50	Arg	Arg	Glu	Het	Gln 55	Arg	Glu	Ile	Leu	Ser 60	Ile	Leu	Gly	Leu	
50	Pro 65	His	Arg	Pro	Arg	Pro 70	His	Leu	Gln	Gly	Lys 75	His	Asn	Ser	Ala	Pro 80	
	Het	Phe	Het	Leu	Asp 85	Leu	Tyr	Asn	Ala	Het 90	Ala	Val	Glu	Glu	Gly 95	Gly	
55										70							

	Gly	Pro	Gly	Gly 100	Gln	Gly	Phe	Ser	Tyr 105		Tyr	Lys	Ala	Val 110		Ser
5	Thr	Gln	Gly 115	Pro	Pro	Leu	Ala	Ser 120		Gln	Asp	Ser	His 125		Leu	Thr
40	Asp	Ala 130	Asp	Het	Val	Het	Ser 135		Val	Asn	Leu	Val 140		His	Asp	Lys
10	Glu 145	Phe	Phe	His	Pro	Arg 150	Tyr	His	His	Arg	Glu 155	Phe	Arg	Phe	Asp	Leu 160
15	Ser	Lys	Ile	Pro	Glu 165	Gly	Glu	Ala	Val	Thr 170	Ala	Ala	Glu	Phe	Arg 175	Ile
	Tyr	Lys		Tyr 180	Ile	Arg	Glu	Arg	Phe 185	Asp	Asn	Glu	Thr	Phe 190	Arg	Ile
20	Ser	Val	Tyr 195	Gln	Val	Leu	Gln	Glu 200	His	Leu	Gly	Arg	Glu 205	Ser	Asp	Leu
	Phe	Leu 210	Leu	Asp	Ser	Arg	Thr 215	Leu	Trp	Ala	Ser	Glu 220	Glu	Gly	Trp	Leu
25	Val 225	Phe	Asp	Ile	Thr	Ala 230	Thr	Ser	Asn	His	Trp 235	Val	Val	Asn	Pro	Arg 240
30	His	Asn	Leu	Gly	Leu 245	Gln	Leu	Ser	Val	Glu 250	Thr	Leu	Asp	Gly	Gln 255	Ser
	Ile	Asn	Pro	Lys 260	Leu	Ala	Gly	Leu	Ile 265	Gly	Arg	His	Gly	Pro 270	Gln	Asn
35	Lys	Gln	Pro 275	Phe	Het	Val	Ala	Phe 280	Phe	Lys	Ala	Thr	Glu 285	Val	His	Phe
	Arg	Ser 290	Ile	Arg	Ser	Thr	Gly 295	Ser	Lys	Gln	Arg	Ser 300	Gln	Asn	Arg	Ser
40	Lys 305	Thr	Pro	Lys	Asn	Gln 310	Glu	Ala	Leu	Arg	Het 315	Ala	Asn	Val	Ala	Glu 320
	Asn	Ser	Ser	Ser	Asp 325	Gln	Arg	Gln	Ala	Cys 330	Lys	Lys	His	Glu	Leu 335	Tyr
45	V [Ba	ıl Se		e Ar 40	g As	p Le	u Gl	y Tr	p G1 345	n As	р Тг	p Il	e Il	e Al 350	a Pr	o Glu
50	Gly	Tyr	Ala 355	Ala	Tyr	Tyr	Cys	Glu 360	Gly	Glu	Cys	Ala	Phe 365	Pro	Leu	Asn

		\$	Ser	Tyr 370	Het	Asn	Ala	Thr	Asn 375	His	Ala	Ile	Val	Gln 380	Thr	Leu	Val	His
5		3	he 85	Ile	Asn	Pro	Glu	Thr 390	Val	Pro	Lys	Pro	Cys 395	Cys	Ala	Pro	Thr	Gln 400
10		I	eu	Asn	Ala	Ile	Ser 405	Val	Leu	Tyr	Phe	Asp 410	Asp	Ser	Ser	Asn	Val 415	Ile
,,		L	eu	Lys	Lys 4	Tyr 20	Arg	Asn	Met	Val	Val 425	Arg	Ala	Cys	Gly	Cys 430	His	
15	(2)	INFO	RMA	NOIT	FOR S	SEQ II	D NO:1	8:										
		(i) S	EQU	ENCE	CHA	RACTI	ERISTI	CS:										
20			(B) T (C) S	YPE:	nuclei	c acid NESS:	e pairs	3										
25		(ii) N	OLE	CULE	TYPE	E: cDN	IA											
		(vi) (ORIG	INAL	SOUR	RCE:												
20					NISM: E TYPI		DAE BRYO											
30		(ix) F	EAT	URE:														
35			(B) L	OCAT	KEY: (ION: 1 R INFO	10413	393 ГІОN: /	note=	"MOP	1 (CD	NA)"							
		(xi) \$	SEQL	JENC	E DES	CRIP	TION:	SEQ I	D NO:	18:								
40	CTG	CAGC	AAG	TGA	CCTC	GGG	TCGT	GGAC	CG CI	CCCC	TGCC	ccc	TCCG	CTG (CCAC	CTGGC	G	60
	CGG	CGCG	GGC	CCG	GTGC	CCC	GGAT(GCG	CG TA	.GAGC	CGGC	GCG		CAC His				115
45	TCG Ser 5	CTG Leu	CGC	G GC'	T GCC	G GC a Ala	G CCA a Pro	CAC His	AGC Ser	TTC Phe	GTG Val 15	GCG Ala	CTC Leu	TGG Trp	GCG Ala	CCT Pro 20		163
50	CTG Leu	TTC Phe	TT(CTO	G CGC	g Se	C GCC	CTG Leu	GCC Ala	GAT Asp 30	TTC Phe	AGC Ser	CTG Leu	GAC Asp	AAC Asn 35	GAG Glu		211
55	GTG Val	CAC His	TCC	Ser 40	r Phe	C ATO	C CAC His	CGG Arg	CGC Arg 45	CTC Leu	CGC Arg	AGC Ser	CAG Gln	GAG Glu 50	CGG Arg	CGG Arg		259

5	GAG Ģlu	ATG Het	CAC Gln 55	Arg	GAG Glu	ATC	CTG Leu	TCC Ser 60	Ile	TTA Leu	GGG Gly	Leu	CCC Pro 65	His	CGC	CCG Pro	307
J	CGC Arg	CCG Pro 70	His	CTC Leu	CAG Gln	GGA Gly	AAG Lys 75	His	AAT Asn	TCG Ser	GCG	CCC Pro	Met	TTC Phe	ATG Het	TTG	355
10	GAC Asp 85	Leu	TAC Tyr	AAC Asn	GCC Ala	ATG Het 90	GCG Ala	GTG Val	GAG Glu	GAG Glu	AGC Ser 95	Gly	CCG Pro	GAC Asp	GGA Gly	CAG Gln 100	403
15	GGC Gly	TTC Phe	TCC Ser	TAC Tyr	CCC Pro 105	TAC Tyr	AAG Lys	GCC Ala	GTC Val	TTC Phe 110	AGT Ser	ACC	CAG Gln	GGC Gly	CCC Pro 115	CCT Pro	451
20	TTA Leu	GCC Ala	AGC Ser	CTG Leu 120	CAG Gln	GAC Asp	AGC Ser	CAT His	TTC Phe 125	CTC Leu	ACT Thr	GAC Asp	GCC Ala	GAC Asp 130	ATG Het	GTC Val	499
	ATG Het	AGC Ser	TTC Phe 135	GTC Val	AAC Asn	CTA Leu	GTG Val	GAA Glu 140	CAT His	GAC Asp	AAA Lys	GAA Glu	TTC Phe 145	TTC Phe	CAC His	CCT Pro	547
25	CGA Arg	TAC Tyr 150	CAC	CAT His	CGG Arg	GAG Glu	TTC Phe 155	CGG	TTT Phe	GAT Asp	CTT Leu	TCC Ser 160	AAG	ATC Ile	CCC Pro	GAG Glu	595
30	GGC Gly 165	GAA Glu	CGG Arg	GTG Val	ACC Thr	GCA Ala 170	GCC Ala	GAA Glu	TTC Phe	AGG Arg	ATC Ile 175	TAT Tyr	AAG Lys	GAC Asp	TAC Tyr	ATC Ile 180	643
	CGG Arg	GAG Glu	CGA Arg	TTT Phe	GAC Asp 185	AAC Asn	GAG Glu	ACC Thr	TTC Phe	CAG Gln 190	ATC Ile	ACA Thr	GTC Val	TAT Tyr	CAG Gln 195	GTG Val	691
35	CTC Leu	CAG Gln	GAG Glu	CAC His 200	TCA Ser	GGC	AGG Arg	GAG Glu	TCG Ser 205	GAC Asp	CTC Leu	TTC Phe	TTG Leu	CTG Leu 210	GAC Asp	AGC Ser	739
40	CGC Arg	ACC Thr	ATC Ile 215	TGG Trp	GCT Ala	TCT Ser	GAG Glu	GAG Glu 220	GGC Gly	TGG Trp	TTG Leu	GTG Val	TTT Phe 225	GAT Asp	ATC Ile	ACA Thr	787
45	GCC Ala	ACC Thr 230	AGC Ser	AAC Asn	CAC His	TGG Trp	GTG Val 235	GTC Val	AAC Asn	CCT Pro	CGG Arg	CAC His 240	AAC Asn	CTG Leu	GGC Gly	TTA Leu	835
	CAG Gln 245	CTC Leu	TCT Ser	GTG Val	Glu	ACC Thr 250	CTG Leu	GAT Asp	GGG Gly	Gln	AGC Ser 255	ATC Ile	AAC Asn	CCC Pro	AAG Lys	TTG Leu 260	883

	GCA Ala	GGC	CTG Leu	ATT	GGA Gly 265	Arg	CAT	GGA Gly	CCC Pro	CAG Gln 270	Asn	Lys	CAA Gln	Pro	TTC Phe 275	Het	931
5	GTG Val	GCC Ala	TTC Phe	TTC Phe 280	AAG Lys	GCC Ala	ACG Thr	GAA Glu	GTC Val 285	His	CTC Leu	CGT Arg	AGT Ser	ATC Ile 290	Arg	TCC Ser	979
10	ACG Thr	GGG Gly	GGC Gly 295	AAG Lys	CAG Gln	CGC Arg	AGC Ser	CAG Gln 300	Asn	CGC Arg	TCC Ser	AAG Lys	ACG Thr 305	CCA Pro	AAG Lys	AAC Asn	1027
15	CAA Gln	GAG Glu 310	GCC Ala	CTG Leu	AGG Arg	ATG Met	GCC Ala 315	AGT Ser	GTG Val	GCA Ala	GAA Glu	AAC Asn 320	AGC Ser	AGC Ser	AGT Ser	GAC Asp	1075
	CAG Gln 325	AGG Arg	CAG Gln	GCC Ala	TGC Cys	AAG Lys 330	AAA Lys	CAT His	GAG Glu	CTG Leu	TAC Tyr 335	GTC Val	AGC Ser	TTC Phe	CGA Arg	GAC Asp 340	1123
20	CTT Leu	GGC Gly	TGG Trp	CAG Gln	GAC Asp 345	TGG Trp	ATC Ile	ATT Ile	GCA Ala	CCT Pro 350	GAA Glu	GGC Gly	TAT Tyr	GCT Ala	GCC Ala 355	TAC Tyr	1171
25	TAC Tyr	TGT Cys	Glu	GGA Gly 60	GAG Glu	TGC Cys	GCC Ala	TTC Phe	CCT Pro 365	CTG Leu	AAC Asn	TCC Ser	TAC Tyr	ATG Met 370	AAC Asn	GCC Ala	1219
30	ACCE Thr	AAC Asn	CAC His 375	GCC Ala	: ATC	GTC Val	CAG Gln	ACA Thr 380	CTC Leu	GTT Val	CAC His	Phe	Ile 385	AAC Asn	CCA Pro	GAC Asp	1267
	ACA Thr	GTA Val 390	CCC Pro	AAG Lys	CCC Pro	Cys	TGT Cys 395	GCG Ala	CCC Pro	ACC Thr	CAG Gln	CTC Leu 400	AA€ Asn	GCC Ala	ATC Ile	TCT Ser	1315
35	GTC Val 405	CTC Leu	TAC Tyr	TTC Phe	GAC Asp	GAC Asp 410	AGC Ser	TCT Ser	AAT Asn	GTC Val	ATC Ile 415	CTG Leu	AAG Lys	AAG Lys	TAC Tyr	AGA Arg 420	1363
40	AAC Asn	ATG Met	GTG Val	GTC Val	CGG Arg 425	GCC Ala	TGT Cys	GGC Gly	Cys	CAC His 430	TAGC	TCTT	CC T	GAGA	CCCT	G	1413
	ACCT	TTGC	GG G	GCCA	CACC	T TT	CCAA	ATCT	TCG	ATGT	CTC	ACCA	TCTA	AG T	CTCT	CACTG	1473
45	CCCA	CCTT	GG C	GAGG	AGAA	C AG	ACCA	ACCT	CTC	CTGA	GCC	TTCC	CTCA	CC I	CCCA	ACCGG	1533
	AAGC	ATGT	AA G	GGTT	CCAG	A AA	CCTG	AGCG	TGC	AGCA	GCT	GATG	AGCG	сс с	TTTC	CTTCT	1593
	GGCA	CGTG	AC G	GACA	AGAT	C CT	ACCA	GCTA	CCA	CAGC.	AAA	CGCC	TAAG.	AG C	AGGA.	TAAAA	1653

	GTCTGCCAGG	AAA	GTGT(CCA	GTGT	CCACA	T GO	SCCCC	TGGC	GCI	CTGA	GTC	TTTG	AGGA	GT	1713
5	AATCGCAAGC	CTC	GTTC	AGC	TGCA	GCAGA	LA GO	GAAGG	GCTT	AGC	CAGG	GTG	GGCG	CTGG	CG	1773
3	TCTGTGTTGA	AGG	GAAA	CCA	AGCA	GAAGC	C AC	TGTA	ATGA	TAT	GTCA	CAA	TAAA	ACCC	AT	1833
	GAATGAAAA	AAA	AAAA	AAA	AAAA	AAAAA	A AA	LAAGA	ATTC							1873
10	(2) INFORM	ATION	FOR S	SEQ I	D NO:	19:										
	(i) SEQU	JENCE	CHAF	RACT	ERIST	ICS:										
15	(B) 1	TYPE:	TH: 430 amino _OGY:	acid	no acid	s										
	(ii) MOLE	ECULE	TYPE	E: prof	tein											
20	(ix) FEAT	TURE:														
25	(D) ((xi) SEQ					/produc			P"							
	Met 1	His	Val	Arg	Ser 5	Leu	Arg	Ala	Ala	Ala 10	Pro	His	Ser	Phe	Val 15	Ala
30	Leu	Trp	Ala	Pro 20	Leu	Phe	Leu	Leu	Arg 25	Ser	Ala	Leu	Ala	Asp 30	Phe	Ser
35	Leu	Asp	Asn 35	Glu	Val	His	Ser	Ser 40	Phe	Ile	His	Arg	Arg 45	Leu	Arg	Ser
	Gln	Glu 50	Arg	Arg	Glu	Het	Gln 55	Arg	Glu	Ile	Leu	Ser 60		Leu	Gly	Leu
40	Pro 65	His	Arg	Pro	Arg	Pro 70	His	Leu	Gln	Gly	Lys 75	His	Asn	Ser	Ala	Pro 80
	Het	Phe	Met	Leu	Asp 85	Leu	Tyr	Asn	Ala	Met 90	Ala	Val	Glu	Glu	Ser 95	Gly
45	Pro	Asp	Gly	Gln 100	Gly	Phe	Ser	Tyr	Pro 105	Tyr	Lys	Ala	Val	Phe 110	Ser	Thr
50	Gln	Gly	Pro 115	Pro	Leu	Ala	Ser	Leu 120	Gln	Asp	Ser	His	Phe 125	Leu	Thr	Asp
	Ala	Asp 130	Het	Val	Het	Ser	Phe 135	Val	Asn	Leu	Val	Glu 140	His	Asp	Lys	Glu
55	Phe 145	Phe	His	Pro	Arg	Tyr 150	His	His	Arg	Glu	Phe 155	Arg	Phe	Asp	Leu	Ser 160

	Ly	s Ile	e Pro	o Glu	165	Glu	ı Arg	g Val	l Thi	170	Ala	Glu	Phe	e Arg	3 Ile 17:	e Tyr
5	Lys	s Asp	Туг	11e	Arg	Glu	Arg	? Phe	8 Asp 185	Asn	Glu	Thr	Phe	Glr 190		e Thr
10	Va]	l Tyr	Glr 195	val	Leu	Gln	Glu	His 200	Ser	Gly	Arg	Glu	Ser 205	Asp	Let	. Phe
70	Leu	210	Asp	Ser	Arg	Thr	Ile 215	Trp	Ala	Ser	Glu	Glu 220		Trp	Leu	Val
15	Phe 225	Asp	Ile	Thr	Ala	Thr 230	Ser	Asn	His	Trp	Val 235	Val	Asn	Pro	Arg	His 240
	Asn	Leu	Gly	Leu	Gln 245	Leu	Ser	Val	Glu	Thr 250	Leu	Asp	Gly	Gln	Ser 255	
20	Asn	Pro	Lys	Leu 260	Ala	Gly	Leu	Ile	Gly 265	Arg	His	Gly	Pro	Gln 270		Lys
	Gln	Pro	Phe 275	Het	Val	Ala	Phe	Phe 280	Lys	Ala	Thr	Glu	Val 285	His	Leu	Arg
25	Ser	Ile 290	Arg	Ser	Thr	Gly	Gly 295	Lys	Gln	Arg	Ser	Gln 300	Asn	Arg	Ser	Lys
30	Thr 305	Pro	Lys	Asn	Gln	Glu 310	Ala	Leu	Arg	Het	Ala 315	Ser	Val	Ala	Glu	Asn 320
	Ser	Ser	Ser	Asp	Gln 325	Arg	Gln	Ala	Cys	Lys 330	Lys	His	Glu	Leu	Tyr 335	Val
35	Ser	Phe	Arg	Asp 340	Leu	Gly	Trp	Gln	Asp 345	Trp	Ile	Ile		Pro 350	Glu	Gly
	Tyr	Ala	Ala 355	Tyr	Tyr	Cys	Glu	Gly 360	Glu	Cys	Ala		Pro 365	Leu	Asn	Ser
40	Tyr	Met 370	Asn	Ala	Thr	Asn	His 375	Ala	Ile	Val		Thr 380	Leu	Val	His	Phe
	11e 385	Asn	Pro	Asp	Thr	Val 390	Pro	Lys	Pro	Cys	Cys 395	Ala	Pro		Gln 00	Leu
45	Asn	Ala	Ile	Ser	Val 405	Leu	Tyr	Phe	Asp	Asp 410	Ser	Ser .	Asn		Ile 415	Leu
50	Lys	Lys	Tyr 4	Arg . 20	Asn I	Met	Val		Arg 425	Ala	Cys	Gly (His 430		

(2) INFORMATION FOR SEQ ID NO:20:

55

(i)SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1723 base pairs (B) TYPE: nucleic acid

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
-	(ii)MOLECULE TYPE: cDNA	
5	(vi)ORIGINAL SOURCE:	
10	(A) ORGANISM: Homo sapiens (F) TISSUE TYPE: HIPPOCAMPUS	
70	(ix)FEATURE:	
15	(A) NAME/KEY: CDS (B) LOCATION: 4901696 (D) OTHER INFORMATION: /note= "hOP2 (cDNA)"	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO:20:	
20	GGCGCCGGCA GAGCAGGAGT GGCTGGAGGA GCTGTGGTTG GAGCAGGAGG TGGCACGGCA	60
	GGGCTGGAGG GCTCCCTATG AGTGGCGGAG ACGGCCCCAGG AGGCGCTGGA GCAACAGCTC	120
25	CCACACCGCA CCAAGCGGTG GCTGCAGGAG CTCGCCCATC GCCCCTGCGC TGCTCGGACC	180
23	GCGGCCACAG CCGGACTGGC GGGTACGGCG GCGACAGAGG CATTGGCCGA GAGTCCCAGT	240
	CCGCAGAGTA GCCCCGGCCT CGAGGCGGTG GCGTCCCGGT CCTCTCCGTC CAGGAGCCAG	300
30	GACAGGTGTC GCGCGGGGG GCTCCAGGGA CCGCGCCTGA GGCCGGCTGC CCGCCCGTCC	360
	CGCCCCGCCC CGCCCCCCC CGCCCGCCGA GCCCAGCCTC CTTGCCGTCG GGGCGTCCCC	420
	AGGCCCTGGG TCGGCCGCGG AGCCGATGCG CGCCCGCTGA GCGCCCCAGC TGAGCGCCCC	480
35	CGGCCTGCC ATG ACC GCG CTC CCC GGC CCG CTC TGG CTC CTG GGC CTG Het Thr Ala Leu Pro Gly Pro Leu Trp Leu Leu Gly Leu 1 5 10	528
40	GCG CTA TGC GCG CTG GGC GGG GGC CCC GGC CTG CGA CCC CCG CCC Ala Leu Cys Ala Leu Gly Gly Gly Gly Pro Gly Leu Arg Pro Pro Pro 15	576
45	GGC TGT CCC CAG CGA CGT CTG GGC GCG CGC GAG CGC CGG GAC GTG CAG Gly Cys Pro Gln Arg Arg Leu Gly Ala Arg Glu Arg Arg Asp Val Gln 30 40 45	624
	CGC GAG ATC CTG GCG GTG CTC GGG CTG CCT GGG CGG C	672

			Ala	TCC Ser		Ala			Phe	ATG Met	720
5				GCC Ala						GCG Ala	768
10				CTG Leu							816
15				GAC Asp 115							864
				GAC Asp							912
20				CGG Arg						CTC Leu	960
25				GTC Val							1008
30				TTG Leu							1056
				CTG Leu 195							1104
35				CAC His							1152
40				AGC Ser							1200
45	CAA Gln			TCC Ser							1248
				ATC Ile							1296

		He	et Th	nr Al	la L	eu P	ro G 5	ly P	ro I	Leu 1	լեն	Leu 10	Leu	Gly	Leu	Ala I	Leu 15	Cys
50		(xi)Si	EQUEI	NCE [ESCF	RIPTIC	N: SE	Q ID	NO:21	l :								
		(A)OTH	IER IN	IFOR	MATIO	N: /pr	oduct=	= "hOF	P2-PP'	•							
45		(ix)FE	EATUF	RE:														
45		(ii)MC	DLECU	JLE T	YPE: p	orotein												
40		(A) LEN B) TYF D) TO	PE: an	nino a		acids											
		••				CTER		S:										
	(2)	INFO	RMATI	ON F	OR SE	Q ID I	NO:21	:										
35			400															
			Gly			T GA	GTCA	GCCC	GCC	CAGO	CCT	ACTO	CAG					1723
30															GTC Val			1680
25															TAT Tyr 380			1632
20															AAG Lys			1584
20															GCC Ala			1536
15															GGG Gly			1488
10																GAC Asp		1440
5																TGC Cys		1392
		Arg										Gln				Leu 285		1344

	Ala	Leu	Gly	Gly 20		Gly	Pro	Gly	Leu 25		Pro	Pro	Pro	Gly 30		Pro
5	Gln	Arg	Arg 35	Leu	Gly	Ala	Arg	Glu 40		Arg	Asp	Val	Gln 45		Glu	Ile
10	Leu	Ala 50	Val	Leu	Gly	Leu	Pro 55		Arg	Pro	Arg	Pro 60		Ala	Pro	Pro
	Ala 65	Ala	Ser	Arg	Leu	Pro 70		Ser	Ala	Pro	Leu 75		Het	Leu	Asp	Leu 80
15	Tyr	His	Ala	Het	Ala 85	Gly	Asp	Asp	Asp	Glu 90	Asp	Gly	Ala	Pro	Ala 95	Glu
	Arg	Arg	Leu	Gly 100	Arg	Ala	Asp	Leu	Val 105	Het	Ser	Phe	Val	Asn 110	Het	Val
20	Glu	Arg	Asp 115	Arg	Ala	Leu	Gly	His 120	Gln	Glu	Pro	His	Trp 125	Lys	Glu	Phe
25	Arg	Phe 130	Asp	Leu	Thr	Gln	Ile 135	Pro	Ala	Gly	Glu	Ala 140	Val	Thr	Ala	Ala
25	Glu 145	Phe	Arg	Ile	Tyr	Lys 150	Val	Pro	Ser	Ile	His 155	Leu	Leu	Asn	Arg	Thr 160
30	Leu	His	Val	Ser	Met 165	Phe	Gln	Val	Val	Gln 170	Glu	Gln	Ser	Asn	Arg 175	Glu
	Ser	Asp	Leu	Phe 180	Phe	Leu	Asp	Leu	Gln 185	Thr	Leu	Arg	Ala	Gly 190	Asp	Glu
35	Gly	Trp	Leu 195	Val	Leu	Asp	Val	Thr 200	Ala	Ala	Ser	Asp	Cys 205	Trp	Leu	Leu
	Lys	Arg 210	His	Lys	Asp	Leu	Gly 215	Leu	Arg	Leu	Tyr	Val 220	Glu	Thr	Glu	Asp
40	Gly 225	His	Ser	Val	Asp	Pro 230	Gly	Leu	Ala	Gly	Leu 235	Leu	Gly	Gln	Arg	Ala 240
45	Pro	Arg	Ser	Gln	Gln 245	Pro	Phe	Val	Val	Thr 250	Phe	Phe	Arg	Ala	Ser 255	Pro
	Ser	Pro	Ile	Arg 260	Thr	Pro	Arg	Ala	Val 265	Arg	Pro	Leu	Arg	Arg 270	Arg	Gln
50	Pro		Lys 275	Ser	Asn	Glu	Leu	Pro 280	Gln	Ala	Asn		Leu 285	Pro	Gly	Ile
	Phe	Asp 290	Asp	Val	His	Gly	Ser 295	His	Gly	Arg		Val 300	Cys	Arg	Arg	His

	30	u Leu 15	Tyr	Val	Ser	Phe 310	Gin	ASP	Leu	Gly	315	Leu	Asp	Trp	Val	11e 320
5	Al	a Pro	Gln	Gly	Tyr 325	Ser	Ala	Tyr	Tyr	Cys 330	Glu	Gly	Glu	Cys	Ser 335	Phe
10	Pr	o Leu	Asp	Ser 340	Cys	Met	Asn	Ala	Thr 345	Asn	His	Ala	Ile	Leu 350	Gln	Ser
	Le	u Val	His 355	Leu	Het	Lys	Pro	Asn 360	Ala	Val	Pro	Lys	Ala 365	Cys	Cys	Ala
15	Pr	o Thr 370	Lys	Leu	Ser	Ala	Thr 375	Ser	Val	Leu	Tyr	Tyr 380	Asp	Ser	Ser	Asn
	As 38	n Val 5	Ile	Leu	Arg	Lys 390	His	Arg	Asn	Het	Val 395	Val	Lys	Ala	Cys	Gly 400
20	Су	s His														
	(2) INFOR	MATION	FOR S	SEQ IC	NO:2	22:										
25	(i) SEC	QUENCE	CHAF	RACTE	RISTI	CS:										
	(B (C) LENGT) TYPE:) STRAN	nucleid NDEDN	acid IESS:		S										
30	·	TOPOL			^											
		LECULE			A											
		RIGINAL														
35	•) ORGAI) TISSUI														
	(ix) FE	ATURE:														
40	(B) NAME/) LOCAT) OTHEF	ION: 9	3128		'note=	"mOP	2 cDN	IA"							
45	(xi) SE	QUENC	E DES	CRIP	ΓΙΟΝ:	SEQ II	D NO:	22:								
	G	CCAGG	CACA	GGT	CGCC	CT C	TGGT	CCTO	cc cc	GTCT	GGCG	TCA	GCCG	AGC		50
50	CCGACCAGC	T ACC.	AGTG(GAT (CGCC	CCGG	C TG	AAA(STCCO		ATG (Het /					104
55	CCC GGG C Pro Gly P 5				Leu					ı Cys	-					152

5	GGC Gly	CAC His	GGT Gly	CCG Pro	CGT Arg 25	Pro	CCG Pro	CAC	ACC	TGT Cys 30	Pro	CAG Gln	CGI Arg	CGC	CTC Leu 35	GGA Gly		200
	GCG Ala	CGC	GAG Glu	CGC Arg 40	Arg	GAC Asp	ATG Met	CAG Gln	CGT Arg 45	GAA Glu	ATC Ile	CTG Leu	GCG	GTC Val 50	Leu	GGG		248
10	CTA Leu	CCG Pro	GGA Gly 55	Arg	CCC Pro	CGA Arg	CCC Pro	CGT Arg 60	GCA Ala	CAA Gln	CCC	GCG Ala	GCT Ala 65	GCC Ala	CGG	CAG Gln		296
15	CCA Pro	GCG Ala 70	Ser	GCG Ala	CCC	CTC Leu	TTC Phe 75	ATG Het	TTG Leu	GAC Asp	CTA Leu	TAC Tyr 80	CAC His	GCC Ala	ATG Het	ACC Thr		344
20	GAT Asp 85	GAC Asp	GAC Asp	GAC Asp	GGC Gly	GGG Gly 90	CCA Pro	CCA Pro	CAG Gln	GCT Ala	CAC His 95	TTA Leu	GGC Gly	CGT	GCC	GAC Asp 100		392
	CTG Leu	GTC Val	ATG Het	AGC Ser	TTC Phe 105	GTC Val	AAC Asn	ATG Het	GTG Val	GAA Glu 110	CGC Arg	GAC Asp	CGT Arg	ACC Thr	CTG Leu 115	GGC Gly		440
25	TAC Tyr	CAG Gln	GAG Glu	CCA Pro 120	CAC His	TGG Trp	AAG Lys	GAA Glu	TTC Phe 125	CAC His	TTT Phe	GAC Asp	CTA Leu	ACC Thr 130	CAG Gln	ATC Ile		488
30	CCT Pro	GCT Ala	GGG Gly 135	GAG Glu	GCT Ala	GTC Val	ACA Thr	GCT Ala 140	GCT Ala	GAG Glu	TTC Phe	CGG Arg	ATC Ile 145	TAC Tyr	AAA Lys	GAA Glu		536
35	CCC Pro	AGC Ser 150	ACC Thr	CAC His	CCG Pro	CTC Leu	AAC Asn 155	ACA Thr	ACC Thr	CTC Leu	CAC His	ATC Ile 160	AGC Ser	ATG Met	TTC Phe	GAA Glu	:	584
	GTG Val 165	GTC Val	CAA Gln	GAG Glu	CAC His	TCC Ser 170	AAC Asn	AGG Arg	GAG Glu	TCT Ser	GAC Asp 175	TTG Leu	TTC Phe	TTT Phe	TTG Leu	GAT Asp 180	•	532
40	CTT Leu	CAG Gln	ACG Thr	Leu	CGA Arg 185	TCT Ser	GGG Gly	GAC Asp	GAG Glu	GGC Gly 190	TGG Trp	CTG Leu	GTG Val	CTG Leu	GAC Asp 195	ATC Ile	•	580
45	ACA Thr	GCA Ala	Ala	AGT Ser 200	GAC Asp	CGA Arg	TGG Trp	Leu	CTG Leu 205	AAC Asn	CAT His	CAC His	AAG Lys	GAC Asp 210	CTG Leu	GGA Gly	7	728
50	CTC Leu	Arg	CTC Leu 215	TAT Tyr	CTG Val	GAA Glu	ACC Thr	GCG Ala 220	GAT Asp	GGG Gly	CAC His	Ser	ATG Met 225	GAT Asp	CCT Pro	GGC Gly	7	76

	CTG Leu	GCT Ala 230	Gly	CTG Leu	CTT Leu	GGA Gly	CGA Arg 235	CAA Gln	GCA Ala	CCA Pro	CGC	TCC Ser 240	AGA Arg	CAG Gln	CCT Pro	TTC Phe	824
5	ATG Met 245	Val	ACC Thr	TTC Phe	TTC Phe	AGG Arg 250	GCC Ala	AGC Ser	CAG Gln	AGT Ser	CCT Pro 255	GTG Val	CGG Arg	GCC Ala	CCT Pro	CGG Arg 260	872
10	GCA Ala	GCG Ala	AGA Arg	CCA Pro	CTG Leu 265	AAG Lys	AGG Arg	AGG Arg	CAG Gln	CCA Pro 270	AAG Lys	AAA Lys	ACG Thr	AAC Asn	GAG Glu 275	CTT Leu	920
15	CCG Pro	CAC His	CCC Pro	AAC Asn 280	AAA Lys	CTC Leu	CCA Pro	GGG Gly	ATC Ile 285	TTT Phe	GAT Asp	GAT Asp	GGC Gly	CAC His 290	GGT Gly	TCC Ser	968
	CGC Arg	GGC Gly	AGA Arg 295	GAG Glu	GTT Val	TGC Cys	CGC Arg	AGG Arg 300	CAT His	GAG Glu	CTC Leu	TAC Tyr	GTC Val 305	AGC Ser	TTC Phe	CGT Arg	1016
20	GAC Asp	CTT Leu 310	GGC	TGG Trp	CTG Leu	GAC Asp	TGG Trp 315	GTC Val	ATC Ile	GCC Ala	CCC Pro	CAG Gln 320	GGC Gly	TAC Tyr	TCT Ser	GCC . Ala	1064
25	TAT Tyr 325	TAC Tyr	TGT Cys	GAG Glu	GGG Gly	GAG Glu 330	TGT Cys	GCT Ala	TTC Phe	CCA Pro	CTG Leu 335	GAC Asp	TCC Ser	TGT Cys	ATG Het	AAC Asn 340	1112
30	GCC Ala	ACC Thr	AAC Asn	CAT His	GCC Ala 345	ATC Ile	TTG Leu	CAG Gln	TCT Ser	CTG Leu 350	GTG Val	CAC His	CTG Leu	Met	AAG Lys 355	CCA Pro	1160
	GAT Asp	GTT Val	Val	CCC Pro 360	AAG Lys	GCA Ala	TGC Cys	TGT Cys	GCA Ala 365	CCC Pro	ACC Thr	AAA Lys	CTG Leu	AGT Ser 370	GCC Ala	ACC Thr	1208
35	TCT Ser	Val	CTG Leu 375	TAC Tyr	TAT Tyr	GAC Asp	Ser	AGC Ser 380	AAC Asn	AAT Asn	GTC Val	Ile	CTG Leu 385	CGT Arg	AAA Lys	CAC His	1256
40	Arg .					Lys						TGAG	GCCC	CG C	CCAG	CATCC	1309
	TGCT	TCTA	CT A	CCTT	ACCA	т ст	GGCC	GGGC	ccc	TCTC	CAG	AGGC	AGAA	AC C	CTTC	TATGT	1369
45	TATC	ATAG	CT C	AGAC	AGGG	G CA	ATGG	GAGG	ccc	TTCA	CTT	cccc	TGGC	CA C	TTCC	TGCTA	1429
	AAAT	TCTG	GT C	TTTC	CCAG	т тс	CTCT	GTCC	TTC	ATGG	GGT	TTCG	CCCC.	TA T	CACC	CCGCC	1489
	CTCT	CCAT	сс т	CCTA	CCCC	A AG	CATA	GACT	GAA	TGCA	CAC	AGCA	TCCC.	AG A	GCTA	TGCTA	1549

ACTGAGAGGT	CTGGGGTCAG	CACTGAAGGC	CCACATGAGG	AAGACTGATC	CTTGGCCATC	160
CTCAGCCCAC	AATGGCAAAT	TCTGGATGGT	CTAAGAAGGC	CGTGGAATTC	TAAACTAGAT	1669
GATCTGGGCT	CTCTGCACCA	TTCATTGTGG	CAGTTGGGAC	ATTTTTAGGT	ATAACAGACA	1729
CATACACTTA	GATCAATGCA	TCCCTGTACT	CCTTGAAATC	AGAGCTAGCT	TCTTAGAAAA	1789
AGAATCAGAG	CCAGGTATAG	CGGTGCATGT	CATTAATCCC	AGCGCTAAAG	AGACAGAGAC	1849
AGGAGAATCT	CTGTGAGTTC	AAGGCCACAT	AGAAAGAGCC	TGTCTCGGGA	CCAGGAAAAA	1909
ОАААААААА	GGAATTC					1926

15

20

25

30

55

5

10

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 399 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (D) OTHER INFORMATION: /product= "mOP2-PP"

120

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Ala Met Arg Pro Gly Pro Leu Trp Leu Leu Gly Leu Ala Leu Cys
Ala Leu Gly Gly Gly His Gly Pro Arg Pro Pro His Thr Cys Pro Gln
20
Arg Arg Leu Gly Ala Arg Glu Arg Arg Asp Met Gln Arg Glu Ile Leu Ala
Val Leu Gly Leu Pro Gly Arg Pro Arg Pro Arg Ala Gln Pro Ala Ala
50
Ala Arg Gln Pro Ala Ser Ala Pro Leu Phe Met Leu Asp Leu Tyr His Ala
70
Ala Asp Leu Val Met Ser Phe Val Asn Met Val Glu Arg Asp Arg Thr
Leu Gly Tyr Gln Glu Pro His Trp Lys Glu Phe His Phe Asp Leu Thr

	Gln	Ile	Pro	Ala	Gly 135	Glu	Ala	Val	Thr	Ala 140		Glu	Phe	Arg	Ile 145	Tyr
5	Lys	Glu	Pro	Ser 150	Thr	His	Pro	Leu	155		Thr	Leu	His	11e 160		Het
10	Phe	Glu	Val 165	Val	Gln	Glu	His	Ser 170	Asn	Arg	Glu	Ser	Asp 175		Phe	Phe
70	Leu	Asp 180	Leu	Gln	Thr	Leu	Arg 185	Ser	Gly	Asp	Glu	Gly 190		Leu	Val	Leu
15	Asp 195	Ile	Thr	Ala	Ala	Ser 200	Asp	Arg	Trp	Leu	Leu 205	Asn	His	His	Lys	Asp 210
	Leu	Gly	Leu	Arg	Leu 215	Tyr	Val	Glu	Thr	Ala 220	Asp	Gly	His	Ser	Met 225	Asp
20	Pro	Gly	Leu	Ala 230	Gly	Leu	Leu	Gly	Arg 235	Gln	Ala	Pro	Arg	Ser 240	Arg	Gln
	Pro	Phe	Met 245	Val	Thr	Phe	Phe	Arg 250	Ala	Ser	Gln	Ser	Pro 255	Val	Arg	Ala
25	Pro	Arg 260	Ala	Ala	Arg	Pro	Leu 265	Lys	Arg	Arg	Gln	Pro 270	Lys	Lys	Thr	Asn
3 <i>0</i>	Glu 275	Leu	Pro	His	Pro	Asn 280	Lys	Leu	Pro	Gly	Ile 285	Phe	Asp	Asp	Gly	His 290
	Gly	Ser	Arg	Gly	Arg 295	Glu	Val	Cys	Arg	Arg 300	His	Glu	Leu	Tyr	Val 305	Ser
35	Phe	Arg	Asp	Leu 310	Gly	Trp	Leu	Asp	Trp 315	Val	Ile	Ala	Pro	Gln 320	Gly	Tyr
	Ser	Ala	Tyr 325	Tyr	Cys	Glu	Gly	Glu 330	Cys	Ala	Phe	Pro	Leu 335	Asp	Ser	Cys
40	Het	Asn 340	Ala	Thr	Asn	His	Ala 345	Ile	Leu	Gln	Ser	Leu 350	Val	His	Leu	Het
	Lys 355	Pro	Asp	Val		Pro 360	Lys	Ala	Cys	Cys	Ala 365	Pro	Thr	Lys	Leu	Ser 370
4 5	Ala	Thr	Ser	Val	Leu 375	Tyr	Tyr	Asp	Ser	Ser 380	Asn	Asn	Val		Leu 385	Arg
50	Lys	His	Arg	Asn 390	Неt	Val	Val		Ala 395	Cys	Gly	Cys	His			

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1368 base pairs
 - (B) TYPE: nucleic acid

				EDNE: GY: lin	SS: sii iear	ngle									
5	(ii) M((ix) FE			YPE: (CDNA										
10	(E	B) LOC D) OTH	CATIO HER II		1368 HATIC		'ANDA	.RD N	AME=	:"60A"					
	(x) PL	JBLIC	ATION	INFC	RMAT	TION:									
15	(E (C (E (F	B) TITI C) JOU D) VOI E) REU F) PAG	LE: DF JRNAI LUME LEVAN GES: 9	ROSO L: PRO : 88	PHILA DC. NA SIDUE 218	. 60A (AT'L A	GENE CAD.	 SCI. L	ISA			ELBE	RT, W	ILLIAM M	
20	·				RIPTIO	ON: SI	EQ ID	NO:24	1 :						
25					AAC Asn										48
30					GTT Val										96
					CAG Gln										144
35					AGA Arg										192
4 0					GAG Glu 70										240
1 5					TTG Leu										288
					CGC Arg										336
=0															

5				Asp					Gly					Arg		GCC Ala	384
			Glu													GAC Asp	432
10		Asp										Ile				CTG Leu 160	480
15						AAT Asn											528
20						GTC Val											576
						ATC Ile											624
25	ACC Thr	GCC Ala 210	Asn	AGG Arg	GAG Glu	TTC Phe	ACC Thr 215	ATC Ile	ACG Thr	GTA Val	TAC Tyr	GCC Ala 220	ATT Ile	GGC Gly	ACC Thr	GGC Gly	672
30	ACG Thr 225	CTG Leu	GGC Gly	CAG Gln	CAC His	ACC Thr 230	ATG Met	GAG Glu	CCG Pro	CTG Leu	TCC Ser 235	TCG Ser	GTG Val	AAC Asn	ACC Thr	ACC Thr 240	720
35						TGG Trp											768
55	GAG Glu	TGG Trp	CTG Leu	GTC Val 260	AAG Lys	TCG Ser	AAG Lys	GAC Asp	AAT Asn 265	CAT His	GGC Gly	ATC Ile	TAC Tyr	ATT Ile 270	GGA Gly	GCA Ala	816
40	CAC His	GCT Ala	GTC Val 275	AAC Asn	CGA Arg	CCC Pro	GAC Asp	CGC Arg 280	GAG Glu	GTG Val	AAG Lys	CTG Leu	GAC Asp 285	GAC Asp	ATT Ile	GGA Gly	864
45						GTG Val											912
5 <i>0</i>						GAG Glu 310											960

	Leu	Gly	Leu	Gly 20	Het	Val	Leu	Leu	Met 25	Phe	Val	Ala	Thr	Thr		Pro	
50	Met 1	Ser	Gly	Leu	Arg 5	Asn	Thr	Ser	Glu	Ala 10		Ala	Val	Leu	Ala 15		
+0		(xi) S	SEQU	ENCE	DESC	RIPTI	ON: S	EQ ID	NO:2	5:							
45		(ii) M	IOLEC	CULE T	YPE:	protei	n										
40		(B) TY	NGTH PE: an	nino a	ıcid	acids										
		(i) SI	EQUE	NCE C	HAR	ACTEF	RISTIC	S:									
35	(2)	INFO	RMAT	ION F	OR SI	EQ ID	NO:25	i:									
				TGC Cys				TGA									1368
30			435	Asp				440	reu	Lys	Ly5	lyr	Arg 445	ASN	пет	TTE	
				GAC										AAC			1344
25				TGC Cys 420													1296
	Ala	Ile	Val	Gln	Thr 405	Leu	Val	His	Leu	Leu 410	Glu	Pro	Lys	Lys	Val 415	Pro	
20		ATC	GTC	CAG	ACC		ርፓር	CAC	CTC	СТС		ככר	AAG	AAG	стс		1248
				AAT Asn													1200
15				ATC Ile													1152
10				ATG Het													1104
5				AAC Asn 340													1056
				AAG Lys													1008

	ATA	vaı	35	wra	ınr	GIN	ser	40		lyr	116	жър	45	GIY	Lys	ASI
5	Gln	Thr 50	Ile	Het	His	Arg	Val 55	Leu	Ser	Glu	Asp	Asp 60	Lys	Leu	Asp	Val
	Ser 65	Tyr	Glu	Ile	Leu	Glu 70	Phe	Leu	Gly	Ile	Ala 75	Glu	Arg	Pro	Thr	His 80
	Leu	Ser	Ser	His	Gln 85	Leu	Ser	Leu	Arg	Lys 90	Ser	Ala	Pro	Lys	Phe 95	Leu
15	Leu	Asp	Val	Tyr 100	His	Arg	Ile	Thr	Ala 105	Glu	Glu	Gly	Leu	Ser 110	Asp	Gln
	Asp	Glu	Asp 115	Asp	Asp	Tyr	Glu	Arg 120	Gly	His	Arg	Ser	Arg 125	Arg	Ser	Ala
20	Asp	Leu 130	Glu	Glu	Asp	Glu	Gly 135	Glu	Gln	Gln	Lys	Asn 140	Phe	Ile	Thr	Asp
	Leu 145	Asp	Lys	Arg	Ala	11e 150	Asp	Glu	Ser	Asp	11e 155	Ile	Het	Thr	Phe	Leu 160
25	Asn	Lys	Arg	His	His 165	Asn	Val	Asp	Glu	Leu 170	Arg	His	Glu	His	Gly 175	Arg
30	Arg	Leu	Trp	Phe 180	Asp	Val	Ser	Asn	Val 185	Pro	Asn	Asp	Asn	Tyr 190	Leu	Val
	Het	Ala	Glu 195	Leu	Arg	Ile	Tyr	Gln 200	Asn	Ala	Asn	Glu	Gly 205	Lys	Trp	Leu
35	Thr	Ala 210	Asn	Arg	Glu	Phe	Thr 215	Ile	Thr	Val	Tyr	Ala 220	Ile	Gly	Thr	Gly
	Thr 225	Leu	Gly	Gln	His	Thr 230	Het	Glu	Pro	Leu	Ser 235	Ser	Val	Asn	Thr	Thr 240
40	Gly	Asp	Tyr	Val	Gly 245	Trp	Leu	Glu	Leu	Asn 250	Val	Thr	Glu	Gly	Leu 255	His
	Glu	Тгр	Leu	Val 260	Lys	Ser	Lys	Asp	Asn 265	His	Gly	Ile	Tyr	Ile 270	Gly	Ala
45	His	Ala	Val 275	Asn	Arg	Pro	Asp	Arg 280	Glu	Val	Lys	Leu	Asp 285	Asp	Ile	Gly
50	Leu	Ile 290	His	Arg	Lys	Val	Asp 295	Asp	Glu	Phe	Gln	Pro 300	Phe	Met	Ile	Gly
	Phe 305	Phe	Arg	Gly	Pro	Glu 310	Leu	Ile	Lys	Ala	Thr 315	Ala	His	Ser	Ser	His 320

	HIS	Arg	Ser	Lys	325	Ser	Ala	Ser	His	Pro 330		Lys	Arg	Lys	Lys 335	Ser
5	Val	Ser	Pro	Asn 340	Asn	Val	Pro	Leu	Leu 345	Glu	Pro	Het	Glu	Ser 350	Thr	Arg
	Ser	Cys	Gln 355	Het	Gln	Thr	Leu	Tyr 360	Ile	Asp	Phe	Lys	Asp 365	Leu	Gly	Trp
10	His	Asp 370	Trp	Ile	Ile	Ala	Pro 375	Glu	Gly	Tyr	Gly	Ala 380	Phe	Tyr	Cys	Ser
15	Gly 385	Glu	Cys	Asn	Phe	Pro 390	Leu	Asn	Ala	His	Het 395	Asn	Ala	Thr	Asn	His 400
	Ala	Ile	Val	Gln	Thr 405	Leu	Va'l	His	Leu	Leu 410	Glu	Pro	Lys	Lys	Val 415	Pro
20	Lys	Pro	Cys	Cys 420	Ala	Pro	Thr	Arg	Leu 425	Gly	Ala	Leu	Pro	Val 430	Leu	Tyr
	His	Leu	Asn 435	Asp	Glu	Asn	Val	Asn 440	Leu	Lys	Lys	Tyr	Arg 445	Asn	Het	Ile
25	Val	Lys 450	Ser	Cys	Gly	Cys	His 455									
	(2) INFORM	ATION	FOR	SEQ I	D NO:	26:										
30	(i) SEQL	JENCE	CHA	RACT	ERIST	ICS:										
	(B) ⁻	LENGT TYPE: TOPOL	amino	acid												
35	(ii) MOLI															
	(iii) ORIO			·	CIII											
40	(A) (ORGAI	NISM:	Homo	Sapie	ens										
	(ix) FEA	TURE:														
45	(B) L	NAME/ OCAT	ION: 1	1102		/note=	"BHP3	"								
	(2) INFORM	ATION	FOR:	SEQ II	D NO:2	26:										
50	(i)SEQU	ENCE	CHAF	RACTE	RISTI	CS:										
55	(B) 1 (C) 5	TYPE:	amino IDEDI	acid NESS:	no acid single											
	(ii)HOLE															

(ix)FEATUR	RE	U	AΤ	FE	(ix	(
------------	----	---	----	----	-----	---

55

5		(B) L	OCATI	KEY: P ON: 1 INFO	104	ION: /	note="	ВМР3	11								
	(xi)	SEQU	ENCE	DESC	CRIPT	ION: S	SEQ ID	NO:2	6:								
10		Cys 1	Ala	Arg	Arg	Tyr 5	Leu	Lys	Val	Asp	Phe 10	Ala	Asp	Ile	Gly	Trp 15	Se
15		Glu	Trp	Ile	Ile 20	Ser	Pro	Lys	Ser	Phe 25	Asp	Ala	Tyr	Try	Cys 30	Ser	G1
		Ala	Cys	Gln 35	Phe	Pro	Met	Pro	Lys 40	Ser	Leu	Lys	Pro	Ser 45	Asn	His	Ala
20		Thr	Ile 50	Gln	Ser	Ile	Val	Ala 55	Arg	Ala	Val	Gly	Val 60	Val	Pro	Gly	Ile
		Pro 65	Glu	Pro	Cys	Cys	Val 70	Pro	Glu	Lys	Het	Ser 75	Ser	Leu	Ser	Ile	Let 80
25		Phe	Phe	Asp	Glu	Asn 85	Lys	Asn	Val	Val	Leu 90	Lys	Val	Tyr	Pro	Asn 95	Het
		Thr	Val	Glu	Ser 100	Cys	Ala	Cys	Arg								
30	(2) INF	ORMA ⁻	TION	FOR S	EQ ID	NO:2	7:										
	(i) s	SEQUE	ENCE	CHAR	ACTE	RISTI	CS:										
35		(B) T (C) S	YPE: a TRAN	H: 102 amino DEDN OGY: I	acid ESS: s		5										
40	(ii)	MOLE	CULE	TYPE	: prote	in											
	(vi)	ORIG	INAL S	SOUR	CE:												
45		(A) O	RGAN	IISM: ł	ОМО	SAPI	ENS										
	(ix)	FEAT	URE:														
50		(B) L(CATI	(EY: P ON: 1. INFO	.102	ION: /	note= '	"BHP5	5"								
	(xi)	SEQU	IENCE	E DES	CRIPT	ION: S	SEQ ID) NO:2	27:								

Cys Lys Lys His Glu Leu Tyr Val Ser Phe Arg Asp Leu Gly Trp Gln 1 5 15

	A	sp	Trp	Ile	Ile 20	Ala	Pro	Glu	Gly	Tyr 25	Ala	Ala	Phe	Tyr	Cys 30	Asp	Gly
5	G	lu	Cys	Ser 35	Phe	Pro	Leu	Asn	Ala 40	His	Het	Asn	Ala	Thr 45	Asn	His	Ala
10	I	le	Val 50	Gln	Thr	Leu	Val	His 55	Leu	Het	Phe	Pro	Asp 60	His	Val	Pro	Lys
	P:		Cys	Cys	Ala	Pro	Thr 70	Lys	Leu	Asn	Ala	Ile 75	Ser	Val	Leu	Tyr	Phe 80
15	A:	sp	Asp	Ser	Ser	Asn 85	Val	Ile	Leu	Lys	Lys 90	Tyr	Arg	Asn	Het	Val 95	Val
	A	rg	Ser	Cys	Gly 100	Cys	His										
20	(2) INFOR	MA	TION	FOR S	SEQ IE	NO:2	8:										
	(i) SE	QUE	ENCE	CHAF	RACTE	RISTI	CS:										
25	(E (C) T ;) S	YPE: a	H: 102 amino DEDN OGY:	acid ESS:		3										
30	(ii) MC	LE	CULE	TYPE	: prote	ein											
30	(vi) Of	RIG	INAL :	SOUR	CE:												
	(Δ) 0	RGAN	IISM: I	НОМС	SAPI	ENS										
35	(ix) FE	AT	URE:														
40	(B	Ĺ	OCATI	KEY: F ON: 1 INFO	102		note=	"ВМР6)"								
	(xi) SE	QL	IENCE	E DES	CRIPT	TON:	SEQ II) NO:2	28:								
45	Су 1	s .	Arg	Lys	His	Glu 5	Leu	Tyr	Val	Ser	Phe	Gln .	Asp	Leu		Trp (Gln
	As	p '	Trp		Ile 20	Ala	Pro	Lys	Gly	Tyr 25	Ala .	Ala	Asn	-	Cys / 30	Asp (Gly
50	G1	u (Ser 35	Phe	Pro	Leu	Asn	Ala 40	His	Het .	Asn /	Ala	Thr 45	Asn I	His I	Ala
	11		Val (Gln	Thr	Leu		His 55	Leu	Het .	Asn :		Glu 60	Tyr	Val 1	Pro 1	Lys
55	Pr 65	0 (Cys	Cys	Ala		Thr 70	Lys	Leu	Asn .	Ala :	Ile : 75	Ser	Val	Leu :	-	Phe 30

Asp Asp Asn Ser Asn Val Ile Leu Lys Lys Tyr Arg Trp Het Val Val 90 5 Arg Ala Cys Gly Cys His 100 (2) INFORMATION FOR SEQ ID NO:29: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 102 amino acids (B) TYPE: amino acid 15 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (ix) FEATURE: 20 (A) NAME/KEY: Protein (B) LOCATION: 1..102 (D) OTHER INFORMATION: /label= OPX /note= "WHEREIN XAA AT EACH POS'N IS INDEPENDENTLY SELECTED FROM THE RESIDUES OCCURRING AT THE CORRESPONDING POS'N IN THE C-TER-HINAL SEQUENCE OF MOUSE OR HUMAN OP1 OR OP2 (SEE SEQ. ID NOS. 5,6,7 and 8 or 16,18,20 25 and 22.)" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29: 30 Cys Xaa Xaa His Glu Leu Tyr Val Xaa Phe Xaa Asp Leu Gly Trp Xaa Asp Trp Xaa Ile Ala Pro Xaa Gly Tyr Xaa Ala Tyr Tyr Cys Glu Gly 20 35 Glu Cys Xaa Phe Pro Leu Xaa Ser Xaa Het Asn Ala Thr Asn His Ala Ile Xaa Gln Xaa Leu Val His Xaa Xaa Xaa Pro Xaa Xaa Val Pro Lys 40 55 Xaa Cys Cys Ala Pro Thr Xaa Leu Xaa Ala Xaa Ser Val Leu Tyr Xaa 80 45 Asp Xaa Ser Xaa Asn Val Xaa Leu Xaa Lys Xaa Arg Asn Het Val Val 90 Xaa Ala Cys Gly Cys His 100 50 (2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 97 amino acids(B) TYPE: amino acids(C) TOPOLOGY: linear

	(ii) HOLECULE TYPE: protein
	(ix) FEATURE:
5	(A) NAME: Generic Sequence 5(D) OTHER INFORMATION: wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification.
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:
	Leu Xaa Xaa Yhe
	1 5.
15	Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa
	10
	Xaa Xaa Pro Xaa Xaa Xaa Ala
20	15 20
20	Xaa Tyr Cys Xaa Gly Xaa Cys Xaa
	25 30
	Xaa Pro Xaa Xaa Xaa Xaa
25	35
	Xaa Xaa Xaa Asn His Ala Xaa Xaa
	40 45
30	Xaa Xaa Xaa Xaa Xaa Xaa Xaa
	50
	Xaa Xaa Xaa Xaa Xaa Xaa Cys
	55 60
35	
	Cys Xaa Pro Xaa Xaa Xaa Xaa
40	65
10	Xaa Xaa Xaa Leu Xaa Xaa
	70 75
	Xaa Xaa Xaa Val Xaa Leu Xaa
45	80
	Xaa Xaa Xaa Het Xaa Val Xaa
	85 90
50	Xaa Cys Xaa Cys Xaa
••	95
(2)	INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 102 amino acids

	(B) TYPE: ami (C) TOPOLOG													
_	(ii) MOLECULE TY	PE: pro	otein											
5	(ix) FEATURE:													
10	(A) NAME: Ge (D) OTHER IN specified amin	iFORM/	ATION	: wher				depen	dently	select	ed from a	group of	one or r	more
	(xi) SEQUENCE D	ESCRII	PTION	: SEQ	ID NO	D:31:								
15		Cys	Xaa	Xaa	Xaa	Xaa	Leu	Xaa	Xaa	Xaa	Phe			
		1				5					10			
			Xaa	Xaa	Gly	Trp	Xaa	Xaa	Trp	Xaa				
20					•	15			·					
		Xaa	Xaa	Pro	Xaa	Xaa	Xaa	Xaa	Ala					
		20					25							
25														
			Xaa	Tyr	Cys	Xaa	Gly	Xaa	Cys	Xaa	l .			
					30					35	•			
30			Xaa	Pro	Xaa	Xaa			Xaa	l .				
							40							
			Xaa	Xaa		Asn	His	Ala	Xaa					
35			Va-	V	45 V	V	V	٧	٧.,	50 V				
			лаа	Xdd	хаа	Xaa	хаа 55	хаа	хаа	хаа				
			Xaa	Yaa	Xaa	Xaa		Yaa	Yaa	Cvs				
40				60					65	-				
			Cys		Pro	Xaa	Xaa	Xaa						
			•			70								
45			Xaa	Xaa	Xaa	Leu	Xaa	Xaa	Xaa					
70			75					80						
			Xaa	Xaa	Xaa	Xaa	Val	Xaa	Leu	Xaa				
						85								
50				Xaa	Xaa	Xaa	Het		Val	Xaa				
			90	_				95						
			Xaa	Cys	Xaa	Cys	Xaa							

100

	(i) SEQUENCE CHARACTERISTICS:
5	(A) LENGTH: 1238 base pairs, 372 amino acids(B) TYPE: nucleic acid, amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: cDNA
10	(iii) ORIGINAL SOURCE:
	(A) ORGANISM: human (F) TISSUE TYPE: BRAIN
15	(iv) FEATURE:
20	(A) NAME/KEY: CDS (B) LOCATION: (D) OTHER INFORMATION:
	/product= "GDF-1" /note= "GDF-1 CDNA"
25	(x) PUBLICATION INFORMATION:
	(A) AUTHORS: Lee, Se-Jin(B) TITTLE: Expression of Growth/Differentiation Factor 1(C) JOURNAL: Proc. Nat'l Acad. Sci.
30	(D) VOLUME: 88 (E) RELEVANT RESIDUES: 1-1238 (F) PAGES: 4250-4254 (G) DATE: May-1991
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:
40	
45	

	GGGGACACCG	CCCCCC	CCCT	CAGC	CCAC	TG G	TCCC	GGGC	C GC	CGCG	GACC	CTC	CGCA	CTC	60
5	TCTGGTCATC	GCCTGG	GAGG						CAG Gln 5						113
10	CAC His	CAC CTO	C CTC u Leu	CTC Leu 15	CTC Leu	CTG Leu	GCC	CTG Leu	CTG Leu 20	Leu	CCC Pro	TCG Ser	CTG Leu	CCC Pro 25	158
70	CTG Leu	ACC CGC Thr Arg	C GCC g Ala	CCC Pro 30	GTG Val	CCC Pro	CCA	GGC	CCA Pro 35	GCC Ala	GCC Ala	GCC Ala	CTG Leu	CTC Leu 40	203
15	CAG Gln	GCT CTA	A GGA 1 Gly	CTG Leu 45	CGC Arg	GAT Asp	GAG Glu	CCC	CAG Gln 50	GGT Gly	GCC Ala	CCC Pro	AGG Arg	CTC Leu 55	248
20	CGG Arg	CCG GTT Pro Val	CCC Pro	CCG Pro 60	GTC Val	ATG Het	TGG Trp	CGC Arg	CTG Leu 65	TTT Phe	CGA Arg	CGC Arg	CGG Arg	GAC Asp 70	293
	CCC Pro	CAG GAC Gln Glu	ACC Thr	AGG Arg 75	TCT Ser	GGC Gly	TCG Ser	CGG Arg	CGG Arg 80	ACG Thr	TCC Ser	CCA Pro	GGG Gly	GTC Val 85	338
25	ACC Thr	CTG CAA Leu Gln	CCG Pro	TGC Cyc 90	CAC His	GTG Val	GAG Glu	GAG Glu	CTG Leu 95	GGG Gly	GTC Val	GCC Ala	GGA Gly	AAC Asn 100	383
30	ATC Ile	GTG CGC Val Arg	CAC His	ATC Ile 105	CCG Pro	GAC Asp	CGC Arg	GGT Gly	GCG Ala 110	CCC Pro	ACC Thr	CGG Arg	GCC Ala	TCG Ser 115	428
35	GAG Glu	CCT GTC Pro Val	TCG Ser	GCC Ala 120	GCG Ala	GGG Gly	CAT His	TGC Cys	CCT Pro 125	GAG Glu	TGG Trp	ACA Thr	GTC Val	GTC Val 130	473
		GAC CTG Asp Leu													518
40															

5											Ala				GAG Glu 160	563
	GGC Gly	GGC	TGG Trp	GAG Glu	CTG Leu 165	AGC Ser	GTG Val	GCG Ala	CAA Gln	GCG Ala 170	Gly	CAG Gln	GGC	GCC	GGC Gly 175	608
10	GCG Ala	GAC Asp	CCC Pro	GCG GCG	CCG Pro 180	GTG Val	CTG Leu	CTC Leu	CGC	CAG Gln 185	TTG Leu	GTG Val	CCC	GCC	CTG Leu 190	653
15	GGG Gly	CCG Pro	CCA Pro	GTG Val	CGC Arg 195	GCG Ala	GAG Glu	CTG Leu	CTG Leu	GGC Gly 200	GCC Ala	GCT Ala	TGG Trp	GCT Ala	CGC Arg 205	698
20	AAC Asn	GCC Ala	TCA Ser	TGG Trp	CCG Pro 210	CGC Arg	AGC Ser	CTC Leu	CGC Arg	CTG Leu 215	GCG Ala	CTG Leu	GCG Ala	CTA Leu	CGC Arg 220	743
	CCC Pro	CGG Arg	GCC Ala	CCT Pro	GCC Ala 225	GCC Ala	TGC Cys	GCG Ala	CGC Arg	CTG Leu 230	GCC Ala	GAG Glu	GCC Ala	TCG Ser	CTG Leu 235	788
25	CTG Leu	CTG Leu	GTG Val	ACC Thr	CTC Leu 240	GAC Asp	CCG Pro	CGC Arg	CTG Leu	TGC Cys 245	CAC His	CCC Pro	CTG Leu	GCC Ala	CGG Arg 250	833
30	CCG Pro	CGG Arg	CGC Arg	GAC Asp	GCC Ala 255	GAA Glu	CCC Pro	GTG Val	TTG Leu	GGC Gly 260	GGC Gly	GGC Gly	CCC Pro	GGG Gly	GGC Gly 265	878
35	GCT Ala	TGT Cys	CGC Arg	GCG Ala	CGG Arg 270	CGG Arg	CTG Leu	TAC Tyr	GTG Val	AGC Ser 275	TTC Phe	CGC Arg	CAG Glu	GTG Val	GGC Gly 280	923
40	TGG Trp	CAC His	CGC Arg	Trp	GTC Val 285	ATC Ile	GCG Arg	CCG Pro	CGC Arg	CCC Gly 290	TTC Phe	CTG Leu	GCC Ala	AAC Asn	TAC Tyr 295	968
40	TGC Cys	CAG Gln	GGT Gly	Gln	TGC Cys 300	GCG Ala	CTG Leu	CCC Pro	GTC Val	GCG Ala 305	CTG Leu	TCG Ser	GGG Gly	TCC Ser	GGG Gly 310	1013
45	GGG Gly	CCG Pro	CCG Pro	Ala	CTC Leu 315	AAC Asn	CAC His	GCT Ala	Val	CTG Leu 320	CGC Arg	GCG Ala	CTC Leu	ATG Het	CAC His 325	1058
50	GCG Ala	GCC (GCC Ala	Pro	GGA Gly 330	GCC Ala	GCC Ala	GAC Asp	Leu	CCC Pro 335	TGC Cys	TGC Cys	GTG Val	Pro	GCG Ala 340	1103

5	CGC CTG TCG CCC ATC TCC GTG CTC TTC TTT GAC AAC AGC GAC AAC Arg Leu Ser Pro Ile Ser Val Leu Phe Phe Asp Asn Ser Asp Asn 345 350 355	;													
	GTG GTG CTG CGG CAG TAT GAG GAC ATG GTG GTG GAC GAG TGC GGC Val Val Leu Arg Gln Tyr Glu Asp Met Val Val Asp Glu Cys Gly 360 365 370														
10	TGC CGC TAACCCGGGG CGGGCAGGGA CCCGGGCCCA ACAATAAATG CCGCGTGG 1238 Cys Arg 372														
15	(34) INFORMATION FOR SEQ ID NO:33:														
	(i) SEQUENCE CHARACTERISTICS:														
20	(A) LENGTH: 372 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear														
25	(ii) MOLECULE TYPE: cDNA														
	(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO														
	(iv) ANTI-SENSE: NO														
30	(vi) ORIGINAL SOURCE:														
35	(A) ORGANISM: human (F) TISSUE TYPE: BRAIN														
35	(ix) FEATURE:														
40	(A) NAME/KEY: CDS (B) LOCATION: (D) OTHER INFORMATION: /function= /product= "GDF-1"														
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:														
45	Het Pro Pro Pro Gln Gln Gly Pro Cys Gly 1 5 10														
	His His Leu Leu Leu Leu Leu Leu Leu Leu Pro Ser Leu Pro 15 20 25														
50	Leu Thr Arg Ala Pro Val Pro Pro Gly Pro Ala Ala Ala Leu Leu 30 35 40														
55	Gln Ala Leu Gly Leu Arg Asp Glu Pro Gln Gly Ala Pro Arg Leu 45 50 55														

	Arg	Pro	Val	Pro	Pro 60	Val	. Het	Trp	Arg	Leu 65	Phe	Arg	Arg	Arg	70
5	Pro	Gln	Glu	Thr	Arg 75	Ser	Gly	Ser	Arg	Arg 80	Thr	Ser	Pro	Gly	Val 85
	Thr	Leu	Gln	Pro	Сус 90	His	Val	Glu	Glu	Leu 95	Gly	Val	Ala	Gly	Asn 100
10	Ile	Val	Arg	His	11e 105	Pro	Asp	Arg	Gly	Ala 110	Pro	Thr	Arg	Ala	Ser 115
15	Glu	Pro	Val	Ser	Ala 120	Ala	Gly	His	Cys	Pro 125	Glu	Trp	Thr	Val	Val 130
	Phe	Asp	Leu	Ser	Ala 135	Val	Glu	Pro	Ala	Glu 140	Arg	Pro	Ser	Arg	Ala 145
20	Arg	Leu	Glu	Leu	Arg 150	Phe	Ala	Ala	Ala	Ala 155	Ala	Ala	Ala	Pro	Glu 160
	Gly	Gly	Trp	Glu	Leu 165	Ser	Val	Ala	Gln	Ala 170	Gly	Gln	Gly	Ala	Gly 175
25	Ala	Asp	Pro	Gly	Pro 180	Val	Leu	Leu	Arg	Gln 185	Leu	Val	Pro	Ala	Leu 190
	Gly	Pro	Pro	Val	Arg 195	Ala	Glu	Leu	Leu	Gly 200	Ala	Ala	Trp	Ala	Arg 205
30	Asn	Ala	Ser	Trp	Pro 210	Arg	Ser	Leu	Arg	Leu 215	Ala	Leu	Ala	Leu	Arg 220
35	Pro	Arg	Ala	Pro	Ala 225	Ala	Cys	Ala	Arg	Leu 230	Ala	Glu	Ala	Ser	Leu 235
	Leu	Leu	Val	Thr	Leu 240	Asp	Pro	Arg	Leu	Cys 245	His	Pro	Leu	Ala	Arg 250
40	Pro	Arg	Arg	Asp	Ala 255	Glu	Pro	Val	Leu	Gly 260	Gly	Gly	Pro	Gly	Gly 265
	Ala	Cys	Arg	Ala	Arg 270	Arg	Leu	Tyr		Ser 275	Phe	Arg	Glu		Gly 280
45	Trp	His	Arg	Trp	Val 285	Ile	Arg	Pro		Gly 290	Phe	Leu	Ala		Tyr 295
50	Cys	Gln	Gly		Cys 300	Ala	Leu	Pro		Ala 305	Leu	Ser	Gly		Gly 310
	Gly	Pro	Pro .	Ala	Leu 315	Asn	His	Ala		Leu . 320	Arg .	Ala	Leu		His 325

Ala Ala Ala Pro Gly Ala Ala Asp Leu Pro Cys Cys Val Pro Ala 330

Arg Leu Ser Pro Ile Ser Val Leu Phe Phe Asp Asn Ser Asp Asn 355

Val Val Leu Arg Gln Tyr Glu Asp Het Val Val Asp Glu Cys Gly 360

Cys Arg 372

Claims

5

10

15

20

25

30

35

40

45

55

- 1. Use of a morphogen in the manufacture of a medicament for the treatment of metabolic bone disease by oral administration, wherein said morphogen:
 - (i) stimulates endochondral bone formation in an in vivo bone assay; and
 - (ii) comprises an amino acid sequence selected from the group consisting of any of: OPX sequence defined by SEQ ID NO: 29, human OP-1 (SEQ ID NOS: 5, 16, and 17), mouse OP-1 (SEQ ID NOS: 6, 18, and 19), human. OP-2 (SEQ ID NOS: 7, 20, and 21), mouse OP-2 (SEQ ID NOS: 8, 22 and 23), 60A (SEQ ID NO: 24), GDF-1 (SEQ ID NOS: 14, 32, and 33), BMP2A (SEQ ID NO: 9), BMP2B (SEQ ID NO: 10), DPP (SEQ ID NO: 23), VgI (SEQ ID NO: 12), Vgr-1 (SEQ ID NO: 13), BMP3 (SEQ ID NO: 26), BMP5 (SEQ ID NO: 27), and BMP6 (SEQ ID NO: 28); and
 - (iii) is suitable for administration in an amount effective for increasing the ratio of cancellous bone volume to total bone volume in said mammal

wherein the medicament does not comprise vitamin D or another bone resorption inhibitor.

- 2. Use of a morphogen in the manufacture of a medicament for the treatment of metabolic bone disease by parenteral administration, wherein said morphogen:
 - (i) stimulates endochondral bone formation in an in vivo bone assay; and
 (ii) comprises an amino acid sequence selected from the group consisting of any of: human OP-1 (SEQ ID NOS: 5, 16, and 17), mouse OP-1 (SEQ ID NOS: 6, 18, and 19), human OP-2 (SEQ ID NOS: 7, 20, and 21), mouse OP-2 (SEQ ID NOS: 8, 22 and 23), 60A (SEQ ID NO: 24), GDF-1 (SEQ ID NOS: 14, 32, and 33), DPP (SEQ ID NO: 23), Vgl (SEQ ID NO: 12), BMP5 (SEQ ID NO: 27), and BMP6 (SEQ ID NO: 28); and
 - (iii) is suitable for administration in an amount effective for increasing the ratio of cancellous bone volume to total bone volume in said mammal

wherein the medicament does not comprise vitamin D or another bone resorption inhibitor.

- 3. The use of claim 1 or 2 wherein said morphogen is in a soluble form.
- 4. The use of claim 3 wherein said soluble form comprises a morphogen associated with a morphogen pro-domain.
- The use of any one of the preceding claims wherein said metabolic bone disorder is any of osteoporosis, osteomalacia and renal osteodystrophy.
 - **6.** The use of any one of the preceding claims wherein said metabolic bone disorder is caused by a nutritional or hormonal deficiency.
 - 7. The use of claim 2, wherein the morphogen is formulated for injection.
 - 8. The use of claim 7, wherein the morphogen is formulated for intravenous injection.

Patentansprüche

5

10

15

20

25

35

55

- 1. Verwendung eines Morphogens bei der Herstellung eines Medikaments zur Behandlung einer metabolischen Knochenerkrankung durch orale Verabreichung, wobei das Morphogen:
 - (i) endochondrale Knochenbildung in einem in vivo Knochenassay stimuliert; und
 - (ii) eine Aminosäuresequenz umfasst, ausgewählt aus der Gruppe bestehend aus irgendeinem von: OPX Sequenz definiert durch SEQ ID NO:29, menschlichem OP-1 (SEQ ID NO: 5, 16 und 17), OP-1 von der Maus (SEQ ID NO: 6, 18 und 19), menschlichem OP-2 (SEQ ID NO: 7, 20 und 21), OP-2 von der Maus (SEQ ID NO: 8, 22 und 23), 60A (SEQ ID NO: 24), GDF-1 (SEQ ID NO: 14, 32 und 33), BMP2A (SEQ ID NO: 9), BMP2B (SEQ ID NO: 10), DPP (SEQ ID NO: 23), Vgl (SEQ ID NO: 12), Vgr-1 (SEQ ID NO: 13), BMP3 (SEQ ID NO: 26), BMP5 (SEQ ID NO: 27) und BMP6 (SEQ ID NO: 28); und
 - (iii) zur Verabreichung in einer zum Erhöhen des Verhältnisses von Spongiosavolumen zu gesamten Knochenvolumen in dem Säuger effektiven Menge geeignet ist;

wobei das Medikament kein Vitamin D oder einen anderen Knochenresorptionsinhibitor enthält.

- 2. Verwendung eines Morphogens bei der Herstellung eines Medikaments zur Behandlung einer metabolischen Knochenerkrankung durch parenterale Verabreichung, wobei das Morphogen:
 - (i) endochondrale Knochenbildung in einem in vivo Knochenassay stimuliert; und
 - (ii) eine Aminosäuresequenz umfasst, ausgewählt aus der Gruppe bestehend aus irgendeinem von: menschlichem OP-1 (SEQ ID NO: 5, 16 und 17), OP-1 von der Maus (SEQ ID NO: 6, 18 und 19), menschlichem OP-2 (SEQ ID NO: 7, 20 und 21), OP-2 von der Maus (SEQ ID NO: 8, 22 und 23), 60A (SEQ ID NO: 24), GDF-1 (SEQ ID NO: 14, 32 und 33), DPP (SEQ ID NO: 23), Vgl (SEQ ID NO: 12), BMP5 (SEQ ID NO: 27) und BMP6 (SEQ ID NO: 28); und
 - (iv) zur Verabreichung in einer zum Erhöhen des Verhältnisses von Spongiosavolumen zu gesamten Knochenvolumen in dem Säuger effektiven Menge geeignet ist;
- 30 wobei das Medikament kein Vitamin D oder einen anderen Knochenresorptionsinhibitor enthält.
 - 3. Verwendung nach Anspruch 1 oder 2, wobei das Morphogen in einer löslichen Form vorliegt.
 - Verwendung nach Anspruch 3, wobei die lösliche Form ein Morphogen umfasst, das mit einer morphogenen Pro-Domäne zusammenhängt.
 - 5. Verwendung nach einem der vorstehenden Ansprüche, wobei die metabolische Knochenkrankheit eine von Osteoporose, Osteomalazie und Nieren-Osteodystrophie ist.
- Verwendung nach einem der vorstehenden Ansprüche, wobei die metabolische Knochenkrankheit durch einen Ernährungs- oder Hormonmangel verursacht ist.
 - 7. Verwendung nach Anspruch 2, wobei das Morphogen zur Injektion formuliert ist.
- 8. Verwendung nach Anspruch 7, wobei das Morphogen zur intravenösen Injektion formuliert ist.

Revendications

- 50 1. Utilisation d'un morphogène dans la préparation d'un médicament pour le traitement de la maladie du métabolisme osseux par administration orale, ledit morphogène :
 - (i) stimulant la formation d'os endochondral dans un examen des os in vivo ; et
 - (ii) comprenant une séquence d'acides aminés choisie parmi le groupe constitué par : une séquence OPX définie par SEQ ID NO : 29, la OP-1 humaine (SEQ ID NO : 5, 16 et 17), la OP-1 de souris (SEQ ID NO : 6, 18 et 19), la OP-2 humaine (SEQ ID NO : 7, 20 et 21), la OP-2 de souris (SEQ ID NO : 8, 22 et 23), 60A (SEQ ID NO : 24), GDF-1 (SEQ ID NO : 14, 32 et 33), BMP2A (SEQ ID NO : 9), BMP2B (SEQ ID NO : 10), DPP (SEQ ID NO : 23), Vgl (SEQ ID NO : 12), Vgr-1 (SEQ ID NO : 13), BMP3 (SEQ ID NO : 26), BMP5 (SEQ ID NO : 27),

et BMP6 (SEQ ID NO: 28); et

- (iii) étant approprié pour une administration en une quantité efficace pour augmenter le volume d'os spongieux par rapport au volume osseux total dans ledit mammifère,
- 5 le médicament ne comprenant pas de vitamine D ou un autre inhibiteur de la résorption osseuse.
 - 2. Utilisation d'un morphogène dans la préparation d'un médicament pour le traitement de la maladie du métabolisme osseux par administration parentérale, ledit morphogène :
 - (i) stimulant la formation d'os endochondral dans un examen des os in vivo ; et
 - (ii) comprenant une séquence d'acides aminés choisie parmi le groupe constitué par : une séquence OPX définie par SEQ ID NO : 29, la OP-1 humaine (SEQ ID NO : 5, 16 et 17), la OP-1 de souris (SEQ ID NO : 6, 18 et 19), la OP-2 humaine (SEQ ID NO: 7, 20 et 21), la OP-2 de souris (SEQ ID NO: 8, 22 et 23), 60A (SEQ ID NO: 24), GDF-1 (SEQ ID NO: 14, 32 et 33), BMP2A (SEQ ID NO: 9), BMP2B (SEQ ID NO: 10), DPP (SEQ ID NO: 23), VgI (SEQ ID NO: 12), Vgr-1 (SEQ ID NO: 13), BMP3 (SEQ ID NO: 26), BMP5 (SEQ ID NO: 27), et BMP6 (SEQ ID NO: 28); et
 - (iii) étant approprié pour une administration en une quantité efficace pour augmenter le volume d'os spongieux par rapport au volume osseux total dans ledit mammifère,
- 20 le médicament ne comprenant pas de vitamine D ou un autre inhibiteur de la résorption osseuse.
 - 3. Utilisation selon la revendication 1 ou 2, dans laquelle ledit morphogène est présent sous une forme soluble.
 - 4. Utilisation selon la revendication 3, dans laquelle ladite forme soluble comprend un morphogène en association avec un prodomaine de morphogène.
 - 5. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle ledit trouble du métabolisme osseux représente un trouble quelconque choisi parmi le groupe comprenant l'ostéoporose, l'ostéomalacie et l'ostéodystrophie rénale.
 - **6.** Utilisation selon l'une quelconque des revendications précédentes, dans laquelle ledit trouble du métabolisme osseux est provoqué par une déficience nutritionnelle ou hormonale.
 - 7. Utilisation selon la revendication 2, dans laquelle le morphogène est formulé pour injection.
 - 8. Utilisation selon la revendication 2, dans laquelle le morphogène est formulé pour injection intraveineuse.

10

15

25

30

35

40

Fig. 1

EIN CONCE	PROTEIN CONCENTRATION (ng/ml)	cAMP (PICOMOLE/WELL)	וב/WELL)
		Ť	######################################
BACKGROUND		1.30	2.20
0p - 1	1.0	1.25	3.45 3.80
	40.0	1.25	4.45
1GF - β	0.1	0.95	1.42
	<u>o</u> (0.83	1.25
	5.0	0.68	0.88
	Fig. 3		

Fig. 6A

Fig. 6B

Fig. 7

Fig. 9

Fig. 8B

Fig. 10A

Fig. 11

