Lycée Buffon MPSI DS 3 Année 2020-2021

Corrigé du devoir du 07/11/2020

Exercice 1 : On considère A, B et C trois points distincts du cercle trigonométrique C dont on notera a, b et c les affixes respectives.

1. Prouver que : $M(z) \in (AB) \iff (\bar{a} - \bar{b})z + (b - a)\bar{z} + a\bar{b} - b\bar{a} = 0$.

Si M=A, alors $z+ab\bar{z}=a+b|a|^2=a+b$ car $a\in\mathbb{U}$ et $M\in(AB)$ donc l'équivalence est vérifiée

Si M=B, alors $z+ab\bar{z}=b+a|b|^2=a+b$ car $b\in\mathbb{U}$ et $M\in(AB)$ donc l'équivalence est vérifiée.

Sinon, le complexe $\frac{z-a}{a-b}$ est bien défini et non nul. On a alors :

$$\begin{split} M(z) \in (AB) &\iff Arg\left(\frac{z-a}{a-b}\right) \equiv 0[\pi] \iff \frac{z-a}{a-b} \in \mathbb{R} \iff \frac{z-a}{a-b} = \frac{z-\bar{a}}{a-\bar{b}} \\ &\iff z\bar{z} - a\bar{z} - \bar{b}z + a\bar{b} = z\bar{z} - b\bar{z} - \bar{a}z + b\bar{a} \\ &\iff (\bar{a} - \bar{b})z + (b-a)\bar{z} + a\bar{b} - b\bar{a} = 0. \end{split}$$

2. Exprimer \bar{a} en fonction de a. En déduire que : $M(z) \in (AB) \iff z + ab\bar{z} = a + b$.

Comme $a \in \mathbb{U}$, on a $\bar{a} = 1/a$.

Comme $A \neq B$, $\bar{a} - \bar{b} \neq 0$ donc

$$M(z) \in (AB) \Longleftrightarrow z + \frac{b-a}{\bar{a}-\bar{b}}\bar{z} + \frac{a\bar{b}-b\bar{a}}{\bar{a}-\bar{b}} = 0.$$

Or,
$$\frac{b-a}{\bar{a}-\bar{b}} = \frac{b-a}{1/a-1/b} = ab$$
 et $\frac{a\bar{b}-b\bar{a}}{\bar{a}-\bar{b}} = \frac{a/b-b/a}{1/a-1/b} = a+b$ donc

$$M(z) \in (AB) \iff z + ab\bar{z} = a + b$$

3. Soit D un point de C distinct de C. Prouver que les droites (AB) et (CD) sont orthogonales si, et seulement si, ab + cd = 0.

Les droites (AB) et (CD) sont orthogonales ssi $Arg\left(\frac{b-a}{d-c}\right) \equiv \frac{\pi}{2}[\pi]$ donc si,

et seulement si, $\frac{b-a}{d-c} \in i\mathbb{R}$. Or :

$$\frac{b-a}{d-c} \in i\mathbb{R} \iff \frac{b-a}{d-c} = -\frac{b-a}{d-c} \iff \frac{b-a}{d-c} = -\frac{1/b-1/a}{1/d-1/c}$$
$$\iff \frac{b-a}{d-c} = -\frac{a-b}{c-d} \times \frac{cd}{ab}$$

Comme $\frac{b-a}{d-c} \neq 0$, on en déduit que les droites (AB) et (CD) sont orthogonales si, et seulement si, ab+cd=0.

- 4. On note \mathcal{H}_C la hauteur du triangle ABC issue de C. On note D(d) le point d'intersection de \mathcal{H}_C et C distinct de C. Exprimer d en fonction de a, b et c. Comme D est un point de C et comme les droites (AB) et (CD) sont orthogonales, on a d'après la question précédente, ab + cd = 0 donc, comme $c \neq 0$, $d = -\frac{ab}{c}$.
- 5. En déduire que : $M(z) \in \mathcal{H}_C \iff z ab\bar{z} = c ab/c$. On a $M(z) \in \mathcal{H}_C \iff M(z) \in (CD) \iff z + cd\bar{z} = c + d \iff z - ab\bar{z} = c - ab/c$
- 6. En déduire que les hauteurs du triangles ABC sont concourantes et déterminer l'affixe de l'orthocentre H du triangle ABC en fonction de a, b et c.

 Un point H(z) appartient aux trois hauteurs si, et seulement si,

$$\begin{cases} (L_1) : z - ab\bar{z} = c - ab/c \\ (L_2) : z - bc\bar{z} = a - bc/a \\ (L_3) : z - ca\bar{z} = b - ca/b \end{cases}$$

Si ce système est vérifié, alors en considérant $c(L_1)-a(L_2)$, on obtient $(c-a)z = c^2 - a^2 - ab + bc = (c-a)(a+b+c)$ donc, comme $A \neq C$, z = a+b+c.

Réciproquement, si z=a+b+c, alors $z-ab\bar{z}=a+b+c-b-a-ab\bar{c}=c-ab/c$ et par symétrie $z-bc\bar{z}=a-bc/a$ et $z-ca\bar{z}=b-ca/b$.

Ainsi, les hauteurs du triangles ABC sont concourantes et l'affixe de l'orthocentre H du triangle ABC est a+b+c.

Exercice 2 : Soient E un ensemble et A une partie de E.

On note A^+ l'ensemble $\{X \in \mathcal{P}(E), A \subset X\}$, c'est-à-dire l'ensemble des parties de E qui contiennent A. On considère l'application :

$$\Phi: \begin{cases} \mathcal{P}(E) \to \mathcal{P}(A) \times A^+ \\ X \mapsto (X \cap A, X \cup A) \end{cases}$$

1. Prouver Φ est bijective.

Injectivité : Soient X et Y deux parties de E telles que : $\begin{cases} X \cap A = Y \cap A \\ X \cup A = Y \cup A \end{cases}$

Montrons que X = Y.

Soit $x \in X$. Raisonnons par disjonction de cas :

- Si $x \in A$, $x \in X \cap A$ et donc $x \in Y \cap A$, donc $x \in Y$.
- Si $x \notin A$, alors, $x \in X \cup A$ et donc $x \in Y \cup A$. Or $x \notin A$, donc $x \in Y$.

Ainsi, $X \subset Y$. Comme X et Y jouent un rôle symétrique, on a donc X = Y. Par suite, Φ est injective.

Surjectivité: Soit $(C, D) \in \mathcal{P}(A) \times A^+$. Montrons que $\Phi(C \cup (D \setminus A)) = (C, D)$.

- On a $(C \cup (D \setminus A)) \cap A = (C \cap A) \cup ((D \setminus A) \cap A)$. Or, $C \in \mathcal{P}(A)$ donc $C \cap A = C$. De plus, $(D \setminus A) \cap A = \emptyset$, donc $(C \cup (D \setminus A)) \cap A = C$.
- On a $(C \cup (D \setminus A)) \cup A = (C \cup A) \cup ((D \setminus A) \cup A)$. Puisque $C \subset A$, $C \cup A = A$. De plus, $(D \setminus A) \cup A = (D \cap \bar{A}) \cup A = D \cup A$ et comme $D \in A^+$, $A \subset D$ et donc $A \cup D = D$.

Par suite $\Phi(C \cup (D \setminus A)) = (C, D)$, ce qui prouve que Φ est surjective. Par conséquent, Φ est bijective.

2. D'après ce qui précède, on a :

$$\Phi^{-1}: \begin{cases} \mathcal{P}(A) \times A^+ \to \mathcal{P}(E) \\ (C, D) \mapsto C \cup (D \setminus A) \end{cases}$$

Exercice 3 : On considère la fonction

$$f: x \mapsto \arctan\left(\frac{x}{x+1}\right) - \arctan\left(\frac{x-1}{x}\right) - \arctan\left(\frac{1}{2x^2}\right).$$

- 1. Déterminer l'ensemble de définition de f. La fonction arctan étant définie sur \mathbb{R} , f est définie sur $\mathbb{R}^* \setminus \{-1\}$.
- 2. Étudier la dérivabilité de f et simplifier l'expression de sa dérivée. La fonction arctan étant dérivable sur \mathbb{R} , f est dérivable sur $\mathbb{R}^* \setminus \{-1\}$. Pour tout $x \in \mathbb{R}^* \setminus \{-1\}$, on a :

$$f'(x) = \frac{1}{(x+1)^2} \times \frac{1}{1 + \left(\frac{x}{x+1}\right)^2} - \frac{1}{x^2} \times \frac{1}{1 + \left(\frac{x-1}{x}\right)^2} - \frac{-2}{2x^3} \times \frac{1}{1 + \left(\frac{1}{2x}\right)^2}$$

donc

$$f'(x) = \frac{1}{2x^2 + 2x + 1} - \frac{1}{2x^2 - 2x + 1} + \frac{4x}{4x^4 + 1}$$

Or,

$$\frac{1}{2x^2 + 2x + 1} - \frac{1}{2x^2 - 2x + 1} = \frac{-4x}{(2x^2 + 1)^2 - 4x^2} = \frac{-4x}{4x^4 + 1}$$

donc f'(x) = 0.

3. Déterminer les limites de f en $-\infty$, 0^- , 0^+ et $+\infty$ puis tracer le graphe de f.

Comme $\lim_{x \to -\infty} \frac{x}{x+1} = \lim_{x \to -\infty} \frac{x-1}{x} = 1$ et $\lim_{x \to 1} \arctan(x) = \pi/4$, $\lim_{x \to -\infty} \arctan\left(\frac{x}{x+1}\right) - \arctan\left(\frac{x-1}{x}\right) = 0$.

Comme $\lim_{x \to -\infty} \frac{1}{2x^2} = 0$ et $\lim_{x \to 0} \arctan(x) = 0$, $\lim_{x \to -\infty} \arctan\left(\frac{1}{2x^2}\right) = 0$.

Ainsi, $\lim_{x \to -\infty} f(x) = 0$.

On obtient, de même que $\lim_{x\to 0^-} f(x) = -\pi$, $\lim_{x\to 0^+} f(x) = 0$ et $\lim_{x\to +\infty} f(x) = 0$.

4. Simplifier, pour $N \in \mathbb{N}^*$, $S_N = \sum_{n=1}^N \arctan\left(\frac{1}{2n^2}\right)$ et en déduire $\lim_{N \to +\infty} S_N$.

Soit $N \in \mathbb{N}^*$, pour tout $n \in [1, N]$, $\frac{1}{n} \in \mathbb{R}^{+*}$ donc

$$\arctan\left(\frac{1}{2n^2}\right) = \arctan\left(\frac{n}{n+1}\right) - \arctan\left(\frac{n-1}{n}\right)$$

puis, par télescopage:

$$S_N = \arctan\left(\frac{N}{N+1}\right) - \arctan\left(0\right) = \arctan\left(\frac{N}{N+1}\right)$$

On en déduit que $\lim_{N\to+\infty} S_N = \arctan(1) = \pi/4$.

Exercice 4: On considère la fonction $f: x \mapsto \arctan\left(\frac{\sqrt{1-x^2}}{x}\right)$

1. Déterminer l'ensemble de définition noté \mathcal{D}_f de la fonction f.

La fonction arctan étant définie sur \mathbb{R} , l'ensemble de définition de f est celui de la fonction $x \mapsto \frac{\sqrt{1-x^2}}{x}$.

La fonction $x \mapsto \frac{1}{x}$ est définie sur \mathbb{R}^* , la fonction $x \mapsto \sqrt{x}$ est définie sur \mathbb{R}^+ donc $\mathcal{D}_f = \{x \in \mathbb{R}^* : 1 - x^2 \ge 0\} = [-1, 0[\cup]0, 1].$

- 2. Quelle propriété possède le graphe Γ_f de f?

 La fonction arctan étant impaire, la fonction f aussi. Son graphe est donc symétrique par rapport à l'origine.
- 3. Étudier la dérivabilité de f et déterminer sa dérivée aux points de dérivation. La fonction arctan est dérivable sur \mathbb{R} , la fonction $x \mapsto \frac{1}{x}$ est dérivable sur \mathbb{R}^* , la fonction $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}^{+*} donc f est dérivable sur :

$${x \in \mathbb{R}^* : 1 - x^2 > 0} =] - 1,0[\cup]0,1[.$$

Soit $x \in]-1,0[\cup]0,1[$. On a:

$$f'(x) = \frac{-2x \times \frac{1}{2\sqrt{1-x^2}} \times x - \sqrt{1-x^2}}{x^2} \times \frac{1}{1 + \frac{1-x^2}{x^2}}$$

donc

$$f'(x) = \frac{-x^2 - (1 - x^2)}{x^2 \sqrt{1 - x^2}} \times x^2 = \frac{-1}{\sqrt{1 - x^2}}.$$

4. En déduire l'expression de f à l'aide d'une fonction usuelle f_0 . On remarque que $\forall x \in]-1,0[\cup]0,1[,f'(x)=\arccos'(x)$. Par conséquent, il existe deux réels C_1 et C_2 tels que :

$$\forall x \in]-1, 0[, f(x) = \arccos x + C_1 \quad \text{ et } \quad \forall x \in]0, 1[, f(x) = \arccos x + C_2.$$

De plus,
$$f\left(\frac{1}{2}\right) = \arctan\left(\sqrt{3}\right) = \frac{\pi}{3}$$
 et $\arccos\left(\frac{1}{2}\right) = \frac{\pi}{3}$ donc $C_2 = 0$.

De même,
$$f\left(\frac{-1}{2}\right) = \frac{-\pi}{3}$$
 et $\arccos\left(\frac{-1}{2}\right) = \frac{2\pi}{3}$ donc $C_1 = -\pi$.

Enfin, f(-1) = f(1) = 0, $\operatorname{arccos}(-1) = \pi$ et $\operatorname{arccos}(1) = 0$ donc :

$$\forall x \in]-1,0[\cup]0,1[,\ f(x) = \left\{ \begin{array}{ll} \arccos x - \pi & \text{si } x < 0 \\ \arccos x & \text{si } x > 0 \end{array} \right.$$

- 5. Tracer le graphe de f_0 et celui de f.
- 6. Soit $\theta \in]0, \pi/2[\cup]\pi/2, \pi[$. Simplifier $f(\cos \theta)$ et retrouver le lien entre f et f_0 .

On a
$$f(\cos \theta) = \arctan\left(\frac{\sqrt{1-\cos^2 \theta}}{\cos \theta}\right) = \arctan\left(\frac{|\sin \theta|}{\cos \theta}\right)$$
.

Comme $\theta \in]0, \pi/2[\cup]\pi/2, \pi[, \sin \theta > 0 \text{ donc } f(\cos \theta) = \arctan(\tan \theta).$

Ainsi, $f(\cos\theta)$ est l'unique réel ϕ appartenant à] $-\pi/2, \pi/2$ [tel que $\tan\phi = \tan\theta$. Par suite, si $\theta \in]0, \pi/2$ [, alors $f(\cos\theta) = \theta$ et si $\theta \in]\pi/2, \pi[$, alors $f(\cos\theta) = \theta - \pi$.

Soit $x \in]-1,0[\cup]0,1[$. En posant $\theta = \arccos x$, on a $\theta \in]0,\pi/2[\cup]\pi/2,\pi[$ et $x = \cos \theta$. De plus, $\theta \in]0,\pi/2[$ si, et seulement si, x > 0 donc on retrouve que :

$$f(x) = \begin{cases} \arccos x - \pi & \text{si } x < 0\\ \arccos x & \text{si } x > 0 \end{cases}$$

Exercice 5 : Soit \mathcal{R} une partie de $\mathbb{R} \times \mathbb{R}$. On dit que \mathcal{R} est rectangulaire si :

$$\forall (x, y, x', y') \in \mathbb{R}^4, \quad [(x, y) \in \mathcal{R} \text{ et } (x', y') \in \mathcal{R}] \Longrightarrow [(x, y') \in \mathcal{R} \text{ et } (x', y) \in \mathcal{R}].$$

- 1. Prouver que \mathcal{R} est un ensemble rectangulaire si, et seulement s'il existe deux parties de \mathbb{R} , \mathcal{A} et \mathcal{B} , telles que $\mathcal{R} = \mathcal{A} \times \mathcal{B}$.
 - Soient \mathcal{A} et \mathcal{B} deux parties de \mathbb{R} . Montrons que $\mathcal{R}=\mathcal{A}\times\mathcal{B}$ est un ensemble rectangulaire.

Soient $(x,y) \in \mathcal{R}$ et $(x',y') \in \mathcal{R}$, c'est-à-dire, $(x,x') \in \mathcal{A}^2$ et $(y,y') \in \mathcal{B}^2$. Alors, $(x,y') \in \mathcal{A} \times \mathcal{B}$ et $(x',y) \in \mathcal{A} \times \mathcal{B}$, d'où, $(x,y') \in \mathcal{R}$ et $(x',y) \in \mathcal{R}$. Ainsi, \mathcal{R} est un ensemble rectangulaire.

Réciproquement, supposons \mathcal{R} rectangulaire.

Si $\mathcal{R} = \emptyset$, alors, $\mathcal{R} = \emptyset \times \emptyset$.

Sinon, considérons un élément (a, b) de \mathcal{R} et les deux parties de \mathbb{R} :

$$\mathcal{A} = \{x \in \mathbb{R}, (x, b) \in \mathcal{R}\}$$
 et $\mathcal{B} = \{y \in \mathbb{R}, (a, y) \in \mathcal{R}\}.$

Montrons que $\mathcal{R} = \mathcal{A} \times \mathcal{B}$

- Soit $(x, y) \in \mathcal{A} \times \mathcal{B}$. Alors, $(x, b) \in \mathcal{R}$ (car $x \in \mathcal{A}$) et $(a, y) \in \mathcal{R}$ (car $y \in \mathcal{B}$). Ainsi, comme \mathcal{R} est rectangulaire, $(x, y) \in \mathcal{R}$. Par suite, $\mathcal{A} \times \mathcal{B} \subset \mathcal{R}$.
- Soit $(x,y) \in \mathcal{R}$. Puisque $(x,y) \in \mathcal{R}$ et $(a,b) \in \mathcal{R}$, alors, comme \mathcal{R} est rectangulaire, $(x,b) \in \mathcal{R}$ et $(a,y) \in \mathcal{R}$, c'est-à-dire $x \in \mathcal{A}$ et $y \in \mathcal{B}$. D'où, $\mathcal{R} \subset \mathcal{A} \times \mathcal{B}$.

On a donc prouvé que \mathcal{R} est un ensemble rectangulaire si, et seulement s'il existe deux parties de \mathbb{R} , \mathcal{A} et \mathcal{B} , telles que $\mathcal{R} = \mathcal{A} \times \mathcal{B}$.

2. Soit $\mathcal{R} = \mathcal{A} \times \mathcal{B}$ un ensemble rectangulaire non vide. On définit sur \mathcal{R} la relation \sim par :

$$\forall (x,y) \in \mathcal{R}, \ \forall (x',y') \in \mathcal{R}, \quad (x,y) \sim (x',y') \iff x = x' \text{ ou } y = y'.$$

Prouver que la relation \sim est une relation d'équivalence si, et seulement si, \mathcal{A} ou \mathcal{B} est de cardinal égal à 1.

Réflexivité : soit $(x,y) \in \mathcal{R}$, on a x=x donc $(x,y) \sim (x,y)$. Donc \sim est réflexive.

Symétrie : Soit $(x,y) \in \mathcal{R}$ et $(x',y') \in \mathcal{R}$ tels que $(x,y) \sim (x',y')$. On a x=x' ou y=y' donc x'=x ou y'=y. d'où $(x',y') \sim (x,y)$; ce qui prouve la symétrie de \sim .

Transitivité:

• Si \mathcal{A} est de cardinal 1, alors, en considérant $a \in A$, on a $\mathcal{R} = \{a\} \times \mathcal{B}$. Par conséquent, $\forall (x,y) \in \mathcal{R}, \ \forall (x',y') \in \mathcal{R}, \ x = x' \text{ donc}$:

$$\forall (x,y) \in \mathcal{R}, \ \forall (x',y') \in \mathcal{R}, \quad (x,y) \sim (x',y')$$

ce qui implique la transitivité de \sim .

- De même, si \mathcal{B} est de cardinal 1, alors \sim est transitive.
- Si ni \mathcal{A} ni \mathcal{B} ne sont des singletons, alors ils sont tous les deux de cardinal supérieur à 2 car \mathcal{R} est non vide. Il existe donc $(a,a') \in \mathcal{A}^2$ et $(b,b') \in \mathcal{B}^2$ tels que $a \neq a'$ et $b \neq b'$. On a alors (a,b), (a,b') et (a',b) qui sont trois éléments de \mathcal{R} tels que :

$$(a',b) \sim (a,b), \quad (a,b) \sim (a,b') \quad \text{et} \quad (a',b) \not\sim (a,b')$$

donc \sim n'est pas transitive.

Ainsi \sim est transitive si, et seulement si, \mathcal{A} ou \mathcal{B} est de cardinal égal à 1. Par suite, la relation \sim est une relation d'équivalence si, et seulement si, \mathcal{A} ou \mathcal{B} est de cardinal égal à 1.

3. Soit $\mathcal{R} = \mathcal{A} \times \mathcal{B}$ un ensemble rectangulaire. On définit sur \mathcal{R} la relation \lesssim par :

$$\forall (x,y) \in \mathcal{R}, \ \forall (x',y') \in \mathcal{R}, \quad (x,y) \lesssim (x',y') \iff x \leqslant x' \ \text{et} \ y \leqslant y'.$$

Montrer que la relation \lesssim est une relation d'ordre. Déterminer une condition nécessaire et suffisante pour qu'il s'agisse d'une relation d'ordre totale.

Réflexivité : Soit $(x,y) \in \mathcal{R}$, alors, puisque $x \leq x$ et $y \leq y$, $(x,y) \lesssim (x,y)$. Donc \lesssim est réflexive.

Transitivité : Soient $(x, y) \in \mathcal{R}, (x', y') \in \mathcal{R}, (x'', y'') \in \mathcal{R}$ tels que :

$$(x,y) \lesssim (x',y')$$
 et $(x',y') \lesssim (x'',y'')$

alors, $(x \leqslant x' \text{ et } y \leqslant y')$ et $(x' \leqslant x'' \text{ et } y' \leqslant y'')$, d'où par transitivité de $\leqslant \text{sur } \mathbb{R}, \ x \leqslant x'' \text{ et } y \leqslant y''$, c'est-à-dire, $(x,y) \lesssim (x'',y'')$. Ainsi, $\lesssim \text{ est transitive}$. Antisymétrie : Soient $(x,y) \in \mathcal{R}, \ (x',y') \in \mathcal{R}$ tels que :

$$(x,y) \lesssim (x',y')$$
 et $(x',y') \lesssim (x,y)$

alors, $(x \leqslant x' \text{ et } y \leqslant y')$ et $(x' \leqslant x \text{ et } y' \leqslant y)$, d'où par antisymétrie de \leqslant sur \mathbb{R} , x = x' et y = y', c'est-à-dire, (x, y) = (x', y'). Donc \lesssim est antisymétrique. Par conséquent, la relation \lesssim est une relation d'ordre.

- Si \mathcal{A} est de cardinal 1, alors, en considérant $a \in \mathcal{A}$, on a $\mathcal{R} = \{a\} \times \mathcal{B}$. Soit $(x,y) \in \mathcal{R}$ et $(x',y') \in \mathcal{R}$, on a x=x'=a. La relation \leq étant totale sur \mathbb{R} , on a $y \leq y'$ ou $y' \leq y$ donc $(x,y) \lesssim (x',y')$ ou $(x',y') \lesssim (x,y)$. La relation d'ordre \lesssim est donc totale.
- \bullet De même, si ${\mathcal B}$ est de cardinal 1, alors \lesssim est totale.
- Si ni \mathcal{A} ni \mathcal{B} ne sont des singletons, alors ils sont tous les deux de cardinal supérieur à 2 car \mathcal{R} est non vide. Il existe donc $(a, a') \in \mathcal{A}^2$ et $(b, b') \in \mathcal{B}^2$ tels que a < a' et b < b'. On a alors (a, b') et (a', b) qui ne sont pas comparables. Ainsi \leq n'est pas totale.

Par suite, la relation \lesssim est une relation d'ordre totale si, et seulement si, \mathcal{A} ou \mathcal{B} est de cardinal égal à 1.

Exercice 8 : Soient E, F deux ensembles, $f: E \to F$ une application et A une partie de E telle que la restriction de f à A, $f_{|A}: A \to F$, $x \mapsto f(x)$ soit injective. On dit que A est maximale s'il n'existe pas de partie B de E contenant strictement A telle que la restriction de f à B soit injective.

Prouver que A est maximale si, et seulement si, f(A) = f(E).

• Supposons que A soit maximale. Montrons que f(A) = f(E).

Puisque $A \subset E$, on a $f(A) \subset f(E)$. Montrons que $f(E) \subset f(A)$ en raisonnant par l'absurde. On suppose donc qu'il existe $y \in f(E)$ et $y \notin f(A)$.

Il existe alors $x \in E$ tel que y = f(x), avec $x \notin A$ car $y \notin f(A)$. Considérons $B = A \cup \{x\}$. Alors, A est strictement incluse dans B. Montrons que $f|_B$ est injective.

Soit $(u, v) \in B^2$ tel que f(u) = f(v).

Si u et v appartiennent à A, alors puisque $f|_A$ est injective, u=v.

Sinon, si l'on suppose $u \neq v$, on a u = x et $v \in A$ (ou $u \in A$ et v = x), puis f(u) = f(v) = f(x) = y et donc $y \in f(A)$, ce qui est impossible.

Donc, on a u=v, ce qui contredit la maximalité de A

Ainsi, f(A) = f(E)

• Réciproquement, supposons f(A) = f(E) et montrons la maximalité de A.

Raisonnons à nouveau par l'absurde et supposons qu'il existe une partie B de E telle que A soit strictement incluse dans B et $f|_B$ est injective.

Soit $x \in B \setminus A$, on a alors $f(x) \in f(E)$ donc $f(x) \in f(A)$. Il existe donc $a \in A$ tel que f(x) = f(a). Comme $A \subset B$, on a $(x, a) \in B^2$, f(x) = f(a) et $x \neq a$ (car $x \notin A$), ce qui contredit l'injectivité de $f|_{B}$. Par suite, A est maximale.