4 Types of Subgroups

10/24: 1. Let H and K be normal subgroups of G such that $H \cap K$ is trivial. Prove that xy = yx for all $x \in H$ and $y \in K$. (Exercise 3.1.42 of Dummit and Foote (2004).)

Proof. Let $x \in H$ and $y \in K$ be arbitrary.

Since H is normal, $gxg^{-1} \in H$ for all $g \in G$. Choosing $g = y^{-1}$ reveals that $y^{-1}xy \in H$. Additionally, we know since H is a subgroup that $x^{-1} \in H$. It similarly follows that $x^{-1}y^{-1}xy \in H$.

Similarly, $x^{-1}y^{-1}x \in K$ and $y \in K$ imply that $x^{-1}y^{-1}xy \in K$.

Having proven that $x^{-1}y^{-1}xy \in H$ and $x^{-1}y^{-1}xy \in K$, we know that $x^{-1}y^{-1}xy \in H \cap K = \{e\}$. Therefore,

$$x^{-1}y^{-1}xy = e$$
$$xy = yx$$

as desired. \Box

2. Show that S_4 does not have a normal subgroup of order 3 or order 8.

Proof. Suppose for the sake of contradiction that N be a normal subgroup of order 3 or 8. We know that N is a subgroup; thus, $e \in N$. We also know that N is a union of conjugacy classes. Thus, if we include any other cycle of a given shape in N, we know that all cycles of that shape are elements of N. Since there are 5 cycles of shape (xx), 8 cycles of shape (xx), 6 cycles of shape (xx), and 3 cycles of shape (xx), and 1 plus the sum of any combination of these numbers does not equal 3 or 8, we have arrived at a contradiction.

3. If H is a subgroup of G, define the **normalizer** of H to be

$$N_G(H) = \{ g \in G \mid gHg^{-1} = H \}$$

(a) Prove that $N_G(H) = G$ if and only if H is normal.

Proof. Suppose first that $N_G(H) = G$. Then $gHg^{-1} = H$ for all $g \in G$. It follows that $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$. Therefore, by the definition of normality, H is normal, as desired. Now suppose that H is normal. Then $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$. Additionally, if $h' \in H$, then $h = g^{-1}h'g \in H$ by hypothesis, so $h' = ghg^{-1} \in gHg^{-1}$. It follows by the definition of set equality that $gHg^{-1} = H$ for all $g \in G$. But by the definition of $N_G(H)$, this means that

(b) Prove that $N_G(H)$ contains H.

 $N_G(H) = G$, as desired.

Proof. Let $h \in H$ be arbitrary. To prove that $h \in N_G(H)$, it will suffice to show that $hHh^{-1} = H$. We will do this with a bidirectional inclusion argument. Suppose first that $hh'h^{-1} \in hHh^{-1}$. Then since $h, h' \in H$ by hypothesis and H is a subgroup (i.e., is closed under multiplication), we have that $hh'h^{-1} \in H$, as desired. Now let $h'' \in H$. Then choosing $h' = h^{-1}h''h \in H$, we have that $h'' = hh'h^{-1} \in hHh^{-1}$, as desired.

(c) Prove that H is a **normal** subgroup of $N_G(H)$.

Proof. H is a clearly a subgroup of $N_G(H)$: H is a subset of $N_G(H)$ by part (b) and H is nonempty, closed under multiplication, closed under inverses, and associative as a subgroup of G. All that remains now is to prove that H is normal.

To prove that $H \triangleleft N_G(H)$, it will suffice to show that for all $g \in N_G(H)$, $gHg^{-1} \subset H$. But we have this by the definition of $N_G(H)$, as desired.

- (d) Compute $N_G(H)$ for the following pairs (G, H).
 - i. $(S_4, \langle (1, 2, 3, 4) \rangle)$.

Proof. We will first prove a lemma.

Lemma: Let $H = \langle x \rangle = \langle y \rangle$ be a subgroup of G. If $gxg^{-1} = y$, then $gHg^{-1} = H$. Proof: We proceed via a bidirectional inclusion argument. Suppose first that $ghg^{-1} \in gHg^{-1}$. Since $h \in H$ by hypothesis, $h = x^n$ for some $n \in \mathbb{N}$. Therefore, since $gxg^{-1} = y \in H$ and by the closure of H, $ghg^{-1} = gx^ng^{-1} = (gxg^{-1})^n \in H$, as desired. Now suppose that $h' \in H$. Then $h' = y^n = gx^ng^{-1} \in gHg^{-1}$, as desired. Q.E.D.

Let x = (1, 2, 3, 4). We know that

$$gxg^{-1} = (g(1), g(2), g(3), g(4))$$

There are two 4-cycles in H, each of which can be written in four ways:

(1, 2, 3, 4)	(1,4,3,2)
(2, 3, 4, 1)	(2,1,4,3)
(3,4,1,2)	(3, 2, 1, 4)
(4, 1, 2, 3)	(4, 3, 2, 1)

Thus, the values of g that make gxg^{-1} equal to one of the above are

$$\begin{array}{ccc} e & & (2,4) \\ (1,2,3,4) & & (1,2)(3,4) \\ (1,3)(2,4) & & (1,3) \\ (1,4,3,2) & & (1,4)(2,3) \end{array}$$

Letting y=(4,3,2,1), we have $H=\langle x\rangle=\langle y\rangle$ and $gxg^{-1}\in\{x,y\}$ for all of the above g and our chosen x. Thus, by the lemma, $gHg^{-1}=H$ for all of the above g. It follows that they are all elements of $N_G(H)$.

Moreover, any value of g that would make $g(1,3)(2,4)g^{-1}$ equal to some other value of H has already been included in the above list, so we have no additional cases to check from there. Of course, all $g \in G$ satisfy $geg^{-1} \in H$, the g there that have not already been mentioned would take gxg^{-1} outside of H.

Therefore,

$$N_G(H) = \{e, (2, 4), (1, 2, 3, 4), (1, 2)(3, 4), (1, 3)(2, 4), (1, 3), (1, 4, 3, 2), (1, 4)(2, 3)\}$$

ii. $(S_5, \langle (1, 2, 3, 4, 5) \rangle)$.

Proof. Let x = (1, 2, 3, 4, 5). As before, we know that

$$gxg^{-1} = (g(1),g(2),g(3),g(4),g(5))$$

There are four 5-cycles in H, each of which can be written in five ways:

(1, 2, 3, 4, 5)	(1, 3, 5, 2, 4)	(1,4,2,5,3)	(1, 5, 4, 3, 2)
(2, 3, 4, 5, 1)	(2,4,1,3,5)	(2,5,3,1,4)	(2,1,5,4,3)
(3,4,5,1,2)	(3, 5, 2, 4, 1)	(3, 1, 4, 2, 5)	(3, 2, 1, 5, 4)
(4, 5, 1, 2, 3)	(4, 1, 3, 5, 2)	(4, 2, 5, 3, 1)	(4, 3, 2, 1, 5)
(5,1,2,3,4)	(5, 2, 4, 1, 3)	(5,3,1,4,2)	(5,4,3,2,1)

Thus, the values of g that make gxg^{-1} equal to one of the following are

e	(2, 3, 5, 4)	(2, 4, 5, 3)	(2,5)(3,4)
(1, 2, 3, 4, 5)	(1, 2, 4, 3)	(1, 2, 5, 4)	(1,2)(3,5)
(1, 3, 5, 2, 4)	(1, 3, 2, 5)	(1, 3, 4, 2)	(1,3)(4,5)
(1,4,2,5,3)	(1, 4, 5, 2)	(1, 4, 3, 5)	(1,4)(2,3)
(1, 5, 4, 3, 2)	(1, 5, 3, 4)	(1, 5, 2, 3)	(1,5)(2,4)

Since each of the four 5-cycles generates H, we have by the lemma to part (d)i that gHg^{-1} for all of the above g. It follows that they are all elements of $N_G(H)$. Therefore,

$$N_G(H) = \{e, (2, 3, 5, 4), (2, 4, 5, 3), (2, 5)(3, 4), (1, 2, 3, 4, 5), (1, 2, 4, 3), (1, 2, 5, 4), (1, 2)(3, 5) (1, 3, 5, 2, 4), (1, 3, 2, 5), (1, 3, 4, 2), (1, 3)(4, 5) (1, 4, 2, 5, 3), (1, 4, 5, 2), (1, 4, 3, 5), (1, 4)(2, 3) (1, 5, 4, 3, 2), (1, 5, 3, 4), (1, 5, 2, 3), (1, 5)(2, 4)\}$$

4. Prove that the subgroup N generated by elements of the form $x^{-1}y^{-1}xy$ for all $x, y \in G$ is normal. (Exercise 3.1.41 of Dummit and Foote (2004).)

Proof. To prove that N is normal, it will suffice to show that for all $z \in N$ and $g \in G$, $gzg^{-1} \in N$. Let $x^{-1}y^{-1}xy \in N$ and $g \in G$ be arbitrary. Then

$$\begin{split} gx^{-1}y^{-1}xyg^{-1} &= gx^{-1}(g^{-1}g)y^{-1}(g^{-1}g)x(g^{-1}g)yg^{-1} \\ &= (gx^{-1}g^{-1})(gy^{-1}g^{-1})(gxg^{-1})(gyg^{-1}) \\ &= (gxg^{-1})^{-1}(gyg^{-1})^{-1}(gxg^{-1})(gyg^{-1}) \\ &\in N \end{split}$$

as desired. \Box

5. Prove that if G/Z(G) is cyclic, then G is abelian. (For a hint, see Exercise 3.1.36 of Dummit and Foote (2004).)

Proof. We first prove the hint. Let $G/Z(G) = \langle xZ(G) \rangle$ and let $\sigma \in G$ be arbitrary. Then $\sigma \in [xZ(G)]^a$ for some $a \in \mathbb{Z}$. It follows by the rules of coset multiplication that $\sigma \in x^aZ(G)$. Therefore, $\sigma = x^az$ for some $a \in \mathbb{Z}$ and $z \in Z(G)$, as desired.

To prove that G is abelian, it will suffice to show that for all $\sigma, \tau \in G$, $\sigma\tau = \tau\sigma$. Let $\sigma, \tau \in G$ be arbitrary. Let $\sigma = x^az$ and $\tau = x^bz'$. Then since elements of Z(G) — such as z, z' — commute with any $g \in G$ and exponents commute with each other, we have that

$$\sigma\tau = x^a z x^b z' = z x^a x^b z' = z x^b x^a z' = x^b z' x^a z = \tau \sigma$$

as desired. \Box

6. Let G be a finite group, and let $H \subset G$ be a subgroup of index two — i.e., |G|/|H| = 2. Prove that H is normal.

Proof. To prove that H is normal, it will suffice to show that gH = Hg for all $g \in G$. Let $g \in G$ be arbitrary. We divide into two cases $(g \in H \text{ and } g \notin H)$.

Suppose first that $g \in H$. Let $gh \in gH$ be arbitrary. Then by closure under multiplication, $gh \in H$. Choosing $h' = ghg^{-1} \in H$, it follows that $gh = h'g \in Hg$, as desired. The proof that $gH \supset Hg$ is analogous.

Now suppose that $g \notin H$. Since [G:H] = 2, G can be partitioned into the disjoint union of H and the coset gH or, symmetrically, H and the coset Hg. It follows that

$$gH = G \setminus H = Hg$$

as desired. \Box

7. Let G be a finite group, and let $H \subset G$ be a subgroup of index three — i.e., |G|/|H| = 3. Show that H is not necessarily normal.

Proof. Let $G = S_3$, $H = \langle (1,2) \rangle$, h = (1,2), and g = (1,3). Since |G| = 6 and |H| = 2, [G:H] = 6/2 = 3. Additionally, $ghg^{-1} = (2,3) \notin H$, so H is not normal, as desired. □

- 8. **Automorphism Groups**. Define an automorphism of a group G to be an isomorphism $\phi: G \to G$ from G to itself. (See §4.4 of Dummit and Foote (2004).)
 - (a) Prove that the identity map is an automorphism.

Proof. To prove that the identity map ι on an arbitrary group G is an automorphism, it will suffice to show that ι is a homomorphism, injective, surjective, and sends $G \mapsto G$.

Homomorphism:

$$\iota(xy) = xy = \iota(x)\iota(y)$$

Injective:

$$\iota(x) = \iota(x') \iff x = x'$$

Surjective: If $x \in G$, $\iota(x) = x$.

Naturally, $\iota: G \to G$.

(b) Prove that the composition of two automorphisms is an automorphism.

Proof. Suppose ϕ, ψ are automorphisms on a group G; we seek to prove that $\phi \circ \psi$ is an automorphism. To do so, it will suffice to show that $\phi \circ \psi$ is a homomorphism, injective, surjective, and sends $G \to G$.

Homorphism:

$$[\phi \circ \psi](xy) = \phi(\psi(xy)) = \phi(\psi(x)\psi(y)) = \phi(\psi(x))\phi(\psi(y)) = [\phi \circ \psi](x) \cdot [\phi \circ \psi](y)$$

Injective:

$$[\phi \circ \psi](x) = [\phi \circ \psi](x')$$
$$\phi(\psi(x)) = \phi(\psi(x'))$$
$$\psi(x) = \psi(x')$$
$$x = x'$$

Surjective: If $z \in G$, then the surjectivity of ϕ implies that there exists $y \in G$ such that $\phi(y) = x$. Similarly, there exists $x \in G$ such that $\psi(x) = y$. It follows that

$$z = \phi(\psi(x)) = [\phi \circ \psi](x)$$

 $\psi(G) = G$ and $\phi(G) = G$, so

$$[\phi \circ \psi](G) = \phi(\psi(G)) = \phi(G) = G$$

as desired.

(c) Prove that the set of automorphisms forms a group under composition. We will call this group Aut(G).

Proof. To prove that Aut(G) is a group, it will suffice to show that Aut(G) contains an identity element, is closed under inverses, and is associative.

Identity: Per part (a), we may choose ι to be the identity element of $\operatorname{Aut}(G)$. Indeed, if $\phi \in \operatorname{Aut}(G)$ and $g \in G$ are arbitrary, then

$$[\phi \circ \iota](g) = \phi(\iota(g)) = \phi(g) = \iota(\phi(g)) = [\iota \circ \phi](g)$$

Inverses: Since ϕ is a bijection, $\phi^{-1}: G \to G$ is a well-defined automorphism in its own right. We can prove in an analogous manner to the above that $\phi \circ \phi^{-1} = \phi^{-1} \circ \phi = e$.

Associativity: Let $f, g, h \in Aut(G)$ and $x \in G$ be arbitrary. Then

$$[(f \circ g) \circ h](x) = [f \circ g](h(x)) = f(g(h(x))) = f([g \circ h](x)) = [f \circ (g \circ h)](x)$$

(d) If $g \in G$ is a fixed element, prove that the map $\phi_g : G \to G$ given by $\phi_g(x) = gxg^{-1}$ is an isomorphism.

Proof. To prove that ϕ_g is an isomorphism, it will suffice to show that it is a homomorphism, injective, and surjective.

Homomorphism:

$$\phi_q(xy) = gxyg^{-1} = gx(g^{-1}g)yg^{-1} = (gxg^{-1})(gyg^{-1}) = \phi_q(x)\phi_q(y)$$

Injective:

$$\phi_g(x) = \phi_g(x')$$
$$gxg^{-1} = gx'g^{-1}$$
$$x = x'$$

Cancellation Lemma

Surjective: Let $y \in G$ be arbitrary. Choose $x = g^{-1}yg$. Then

$$y=(gg^{-1})y(gg^{-1})=g(g^{-1}yg)g^{-1}=gxg^{-1}=\phi_g(x)$$

(e) Prove that the map $\psi: G \to \operatorname{Aut}(G)$ given by $\psi(g) = \phi_g$ (sending the element g to the automorphism ϕ_g) is a homomorphism of groups.

Proof. Let $x, y, g \in G$ be arbitrary. Then we have that

$$[\psi(xy)](g) = \phi_{xy}(g) = (xy)g(xy)^{-1} = xygy^{-1}x^{-1} = x\phi_y(g)x^{-1} = \phi_x(\phi_y(g)) = [\phi_x \circ \phi_y](g)$$

as desired. \Box

(f) Prove that the kernel of the map $\psi: G \to \operatorname{Aut}(G)$ is the center

$$Z(G) = \{ g \in G \mid gx = xg, \ \forall x \in G \}$$

Proof. To prove that $\ker \psi = Z(G)$, we will use a bidirectional inclusion argument.

Suppose first that $g \in \ker \psi$. Then $\iota = \psi(g) = \phi_g$. It follows that $gxg^{-1} = \phi_g(x) = \iota(x) = x$ for all $x \in X$, but this directly implies that gx = xg for all $x \in G$.

The proof is symmetric in the reverse direction.

(g) Define the inner automorphism group Inn(G) of G to be the subgroup of Aut(G) given by the image of G under ψ . Prove that Inn(G) is a normal subgroup of Aut(G).

Proof. We have from the lemma in class that $\text{Inn}(G) = \text{im } \psi$ is a subgroup of Aut(G) since ψ is a homomorphism.

To prove that $\operatorname{Inn}(G)$ is normal, it will suffice to show that if $\phi_g = \psi(g) \in \operatorname{Inn}(G)$ and $\varphi \in \operatorname{Aut}(G)$, then $\varphi \phi_g \varphi^{-1} \in \operatorname{Inn}(G)$. Let $\phi_g \in \operatorname{Inn}(G)$, $\varphi \in \operatorname{Aut}(G)$, and $x \in G$ be arbitrary. Then we have that

$$[\varphi \phi_g \varphi^{-1}](x) = \varphi(\phi_g(\varphi^{-1}(x)))$$

$$= \varphi(g\varphi^{-1}(x)g^{-1})$$

$$= \varphi(g)\varphi(\varphi^{-1}(x))\varphi(g^{-1})$$

$$= \varphi(g)x\varphi(g)^{-1}$$

$$= \phi_{\varphi(g)}(x)$$

$$\in \operatorname{Inn}(G)$$

as desired.

(h) Show that if G is abelian, then Inn(G) is trivial.

Proof. Suppose G is abelian. Then gx = xg for all $g, x \in G$. It follows that Z(G) = G. Thus, by part (f), ker $\phi = Z(G) = G$, meaning that $Inn(G) = \operatorname{im} \psi = \{\iota\}$, as desired.

- (i) Let Out(G) = Aut(G) / Inn(G). Prove that...
 - i. $\operatorname{Aut}(\mathbb{Z}/3\mathbb{Z}) = \operatorname{Out}(\mathbb{Z}/3\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z};$

Proof. $\mathbb{Z}/3\mathbb{Z}$ is abelian. Thus, by part (h), $\operatorname{Inn}(\mathbb{Z}/3\mathbb{Z})$ is trivial. It follows that $\operatorname{Aut}(\mathbb{Z}/3\mathbb{Z}) = \operatorname{Out}(\mathbb{Z}/3\mathbb{Z})$ as desired.

Constructing ψ : Let ψ : Aut $(G) \to \mathbb{Z}/2\mathbb{Z}$ be the isomorphism we seek to construct. First notice that since $\mathbb{Z}/3\mathbb{Z}$ is cyclic, any homomorphism $\phi: \mathbb{Z}/3\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ is uniquely determined by $\phi(1)$. Indeed, if we know $\phi(1)$, then $\phi(n) = n\phi(1)$. Since $\phi(1)$ can have three possible values, we divide into three cases. If $\phi_1(1) = 0$, then ϕ_1 sends every element of $\mathbb{Z}/3\mathbb{Z}$ to zero. Thus, ϕ_1 is not surjective, so $\phi_1 \notin \operatorname{Aut}(G)$. If $\phi_2(1) = 1$, then $\phi_2(n) = n$, i.e., $\phi_2 = \iota$. Thus, take $\psi(\phi_2) = 0$. It follows that ϕ_3 defined by

$$1 \mapsto 2$$
 $2 \mapsto 1$ $0 \mapsto 0$

must be sent by ψ to $1 \in \mathbb{Z}/2\mathbb{Z}$.

Verifying that ψ is an isomorphism: We have mapped the two distinct elements of $\operatorname{Aut}(G)$ to the two distinct elements of $\mathbb{Z}/2\mathbb{Z}$. Therefore, ψ is injective and surjective. Moreover, ψ is a homomorphism since

$$\psi(\phi_2 \circ \phi_2) = \psi(\phi_2) = 0 = 0 + 0 = \psi(\phi_2) + \psi(\phi_2)$$

$$\psi(\phi_2 \circ \phi_3) = \psi(\phi_3) = 1 = 0 + 1 = \psi(\phi_2) + \psi(\phi_3)$$

$$\psi(\phi_3 \circ \phi_2) = \psi(\phi_3) = 1 = 1 + 0 = \psi(\phi_3) + \psi(\phi_2)$$

$$\psi(\phi_3 \circ \phi_3) = \psi(\phi_2) = 0 = 1 + 1 = \psi(\phi_3) + \psi(\phi_3)$$

ii. $Out(S_3) = \{1\};$

Proof. S_3 is not abelian. In fact, it contains no nontrivial elements which commute: We know that disjoint cycles commute, but in S_3 , any nontrivial cycle is of length at least 2 and thus must share an element with another cycle of length at least 2. Thus $Z(S_3) = \{e\}$. It follows by part (f) that $\psi: S_3 \to \operatorname{Aut}(S_3)$ is an isomorphism. Thus, $\operatorname{Inn}(G) = \operatorname{Aut}(G)$. It follows that $\operatorname{Out}(G) = \{1\}$, as desired.

iii. $\operatorname{Aut}(K) \cong \operatorname{Out}(K) \cong S_3$, where $K = (\mathbb{Z}/2\mathbb{Z})^2$ is the Klein 4-group.

Labalme 6

Proof. K is abelian; hence, by part (h), $Aut(K) \cong Out(K)$.

 $K = \langle (0,1), (1,0) \rangle$; hence, any $\phi \in \operatorname{Aut}(K)$ is uniquely defined by its action on (0,1) and (1,0). In particular, since ϕ is a homomorphism, we know $\phi(0,0) = (0,0)$. Additionally, whichever element of $\{(0,1),(1,0),(1,1)\}$ is not in $\phi(\{(0,1),(1,0)\})$ is the element to which ϕ maps (1,1). Thus, we can define an isomorphism from $\psi : \operatorname{Aut}(G) \to S_3$ as follows. Let $f : K \setminus \{(0,0)\} \to [3]$ be defined by

$$(0,1) \mapsto 1 \qquad (1,0) \mapsto 2 \qquad (1,1) \mapsto 3$$

Then define ψ by

$$\psi(\phi) = f \circ \phi \circ f^{-1}$$

It follows by an analogous argument to that used in part (d) that ψ is an isomorphism. \Box

9. Let p be an odd prime number. Prove that there are no surjective homomorphisms from S_n to $\mathbb{Z}/p\mathbb{Z}$ for any prime p. (Hint: Consider the image of the two-cycles).

Proof. Let $\phi: S_n \to \mathbb{Z}/p\mathbb{Z}$ be an arbitrary homomorphism. Let $(a,b) \in S_n$ be an arbitrary 2-cycle. By Lagrange's theorem, $|\phi(a,b)|$ divides $|\mathbb{Z}/p\mathbb{Z}|$, i.e, $|\phi(a,b)| \in \{1,p\}$. Additionally, we have that

$$2\phi(a,b) = \phi[(a,b) \circ (a,b)] = \phi(e) = 0$$

i.e., $|\phi(a,b)| \leq 2$. Thus, $|\phi(a,b)| = 1$. It follows that $\phi(a,b) = 0$ for all $(a,b) \in S_n$. But since a homomorphism is uniquely defined by its action on the generators and the 2-cycles generate S_n , this means that ϕ is the trivial homomorphism. Therefore, since all homomorphisms from S_n to $\mathbb{Z}/p\mathbb{Z}$ are equal to the trivial one (which is not surjective), we know that there are no surjective homomorphisms from S_n to $\mathbb{Z}/p\mathbb{Z}$, as desired.