Etude linéaire des solutions d'une équation différentielle

L'objectif de ce problème est de résoudre l'équation différentielle :

$$y^{(4)} + 2y^{(2)} + y = 0$$

F désigne l'espace vectoriel des fonctions de classe \mathcal{C}^{∞} sur \mathbb{R} et à valeurs dans \mathbb{R} .

Questions préliminaires :

- a. Soit Δ l'application, définie sur F, qui à une fonction f associe sa dérivée f'. Montrer que Δ est un endomorphisme de F. Est-ce un automorphisme ?
- b. Soit y une solution sur $\mathbb R$ de l'équation $y^{(4)} + 2y^{(2)} + y = 0$. Montrer que y est de classe $\mathcal C^\infty$ sur $\mathbb R$.

On considère le sous-ensemble E de F constitué des fonctions de la forme :

$$x \mapsto (ax+b)\sin x + (cx+d)\cos x$$
 avec a,b,c,d réels quelconques.

- 1. Montrer que E est un sous-espace vectoriel de F de base $\mathcal{B}=(f_1,f_2,f_3,f_4)$ où $f_1:x\mapsto\sin x$, $f_2:x\mapsto x\sin x$, $f_3:x\mapsto\cos x$ et $f_4:x\mapsto x\cos x$.
- 2. D désigne la restriction de Δ au départ de E.
- 2.a Montrer que D est un endomorphisme de E et calculer les images par D des fonctions constituant la base $\mathcal B$.
- 2.b Déterminer $\ker D$. En déduire que D est une bijection de E vers E.
- 3. Id_E désigne l'application identité de E.
- 3.a Déterminer une base et la dimension du noyau et de l'image de $D^2 + Id_E$.
- 3.b En déduire que $D^4 + 2D^2 + \text{Id}_E$ est l'application nulle de E.
- 3.c Retrouver ainsi que D est bijective et calculer D^{-1} en fonction de D.
- 4. On note V le sous-espace vectoriel de $\mathcal{L}(E)$ engendré par Id_E et D^2 .
- 4.a Justifier que la famille (Id_E, D^2) est une base de V.
- 4.b Vérifier que V est stable pour le produit de composition des applications.
- 4.c Soit M l'application qui à $\varphi = \alpha \operatorname{Id}_E + \beta D^2 \in V$ associe $M(\varphi) = \alpha \beta$.

 Montrer que M est une forme linéaire sur V et que pour tout $\varphi, \psi \in V$, $M(\varphi \circ \psi) = M(\varphi)M(\psi)$.
- 5.a Résoudre sur \mathbb{R} l'équation différentielle : y'' + y = 0.
- 5.b Déterminer le noyau de $\Delta^2 + \operatorname{Id}_F$.
- 5.c Montrer que le noyau de $(\Delta^2 + \mathrm{Id}_F)^2$ est E puis que E est exactement l'espace des solutions de l'équation différentielle $y^{(4)} + 2y^{(2)} + y = 0$.