

Design Overview

By Kara Stephan and Navarre Hebb

Overview

- Problem Description
- Design Overview
- Scheduling
- Risks & Issues

coatimunde

- Computer Optics
- Analyzing Trajectories In
- Mostly Unknown,
- Navigation Denied, Environments

Background

- Obstacle Avoidance
- Unmanned Aircraft Systems
- Computer Vision
- Robot Operating System (ROS)

Requirements

- Movement Toward Target
- Identification of Target
- Identification of Obstacle
- Avoiding Obstacles
- Multiple Obstacles

Scope

- Small Robotics Laboratory
 - Lower Speeds
 - Smaller Obstacles
- ArUco Marker
- Require only input to commence

Design Overview

- Existing Software
 - Robot Operating System
 - Many ROS Nodes
 - Gazebo
 - OpenCV
 - ArUco

ArUco 27

ArUco 42

ArUco 43

Design Overview

Existing Hardware

- TurtleBot

AscTec Pelican

Platform Agnostic

Equipment List

Mathematical Modeling

- Flying Robot
- Robot in 3D Space
- Pose Estimation

Corresponding 3D rotation:

Matrix representation of corresponding 3D rotation:

Axis/angle of corresponding 3D rotation:

axis: (-0.00999617, 0.00999617, -0.0238004) | ang

Alternate representations:

4 × 4 real matrix form:

10

$$\begin{pmatrix} 42 & -0.42 & 0.42 & -1 \\ 0.42 & 42 & 1 & 0.42 \end{pmatrix}$$

System Architecture

ROS/Patterns

ROS Enhancement Proposals

- ROS/BestPractices
 - Needed Best Practices
 - Package Organization
 - Custom Nodes, Messages, and Services

Simplified Diagram

Target Finding

ArUco Library

- Written in Python and C++
- Input: Camera Information

Output: Vector to Marker

Obstacle Finding

- OpenCV
 - Sobel, Basic Math, Parallax Shift;
- Written in Python
- Input: Camera
- Output: Vectors to Edges

State Estimation

- Written in Python
- Input: Initially Sensor Data
 - Ideally Camera Data
- Output: Transformation Vectors

Simplified Diagram

Verification and Validation

- Individual Nodes
- Nodes Interacting
- Gazebo
- Observing Robot in Lab
- Tracking Robot in Lab

Schedule Milestones

- Turtlebot Finished Feb 20th, 2019
 - Move towards Target Nov 30th, 2018
 - Avoid Obstacles Jan 10th, 2019
 - Obstacle Memory Feb 20th, 2019
- Port to UAV April 28th, 2019

Porting to Flying Robot

- Turtlebot is not Quadcopter
- ROS Nodes are Platform Agnostic
- UAV Flying in Plane
- Same Nodes can be Used

Risks and Issues

Small Lab

Identifying Markers

Flight Control System

Computer Hardware Limitations

Summary

- Problem Description
- Design Overview
- Scheduling
- Risks & Issues

