S.-T. Yau College Student Mathematics Contests 2023

Geometry and Topology

Solve every problem.

- 1. (a) Let G be a Lie group, \mathfrak{g} be its Lie algebra. The Maurer-Cartan form on G is the unique left-invariant \mathfrak{g} -valued 1-form such that $\omega|_e: T_eG \to \mathfrak{g}$ is the identity map, where e is the identity in G. Show that the Maurer-Cartan form ω satisfies the Maurer-Cartan equation $d\omega + \frac{1}{2}[\omega, \omega] = 0$.
 - (b) Let G be a matrix group $GL(n,\mathbb{R})$, give detailed computation to find the Maurer-Cartan form ω .
 - (c) Let SE(3) be the special Euclidean group, i.e. it contains all transformations of \mathbb{R}^3 (as 3-dim Euclidean space) of the form $\mathbf{x} \mapsto t + A\mathbf{x}$, where $\mathbf{t} \in \mathbb{R}^3$ and $A \in SO(3)$. Find an expression of the Maurer Cartan form ω of SE(3), also check it satisfies the standard Cartan structure equations in Eulidean space.
- 2. Let M, N be closed, connected, oriented 3-manifolds with the first fundamental groups

$$\pi_1(M_1) = \mathbb{Z}_3 \oplus \mathbb{Z}^2, \quad \pi_1(M_2) = \mathbb{Z}_6 \oplus \mathbb{Z}^3,$$

- (a) Find all homology groups $H_n(M_1, \mathbb{Z})$ and $H_n(M_2, \mathbb{Z})$.
- (b) Find all homology groups $H_n(M_1 \times M_2, \mathbb{Q})$.
- (c) Does there exist a closed connected oriented 3-manifold M with

$$\pi_1(M) = \mathbb{Z}_3 \oplus \mathbb{Z}^2$$
 or $\pi_1(M) = \mathbb{Z}_6 \oplus \mathbb{Z}^3$?

- 3. (a) Let f be a diffeomorphism goup of a circle S^1 , assume f has no fixed point and it is generated by a smooth vector field, show that f must be conjugate to a rotation.
 - (b) Show that there is a diffeomorphism $f: S^1 \to S^1$, such that f can not be generated by a smooth vector field but it is arbitrarily closed the identity map $i: S^1 \to S^1$ in C^{∞} -topology.

- 4. (a) State the Leray-Hirsh theorem.
 - (b) Let

$$Fl_k(\mathbb{C}^n) = \{ \text{ all k-flags in } \mathbb{C}^n \}$$

$$= \{ (F_0, \dots, F_k) | F_i \text{ is an } i\text{-dim subspace of } \mathbb{C}^n, \text{ s.t. } F_0 \subset F_1 \subset \dots \subset F_k \subset \mathbb{C}^n \}$$

Let $\Phi: Fl_k(\mathbb{C}^n) \to Fl_{k-1}(\mathbb{C}^n)$ be the projection map sending a k-flag (F_0, \dots, F_k) to a (k-1)-flag (F_0, \dots, F_{k-1}) , it is known this is a fiber bundle. What is the fiber of Φ ?

- (c) Compute the Euler Characteristic $\chi(Fl_n(\mathbb{C}^n))$.
- 5. On the Euclidean space \mathbb{R}^n , we consider an n-1 form α , which is of class C^1 , such that both α and $d\alpha$ are in L^1 . Show that $\int_{\mathbb{R}^n} d\alpha = 0$.
- 6. A complete Riemannian metric g_{ij} on a smooth manifold M^n is called a gradient expanding Ricci soliton if there exists a smooth function f on M^n such that the Ricci tensor Ric of the metric g is given by

$$Ric + Hess f = \lambda g$$
,

for some negative constant $\lambda < 0$. Show that if M is compact, then a gradient expanding Ricci soliton must be an Einstein metric.