

Description

The VSM25P06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge .This device is well suited for high current load applications.

General Features

- V_{DS} =-60V, I_{D} =-25A $R_{DS(ON)}$ <45m Ω @ V_{GS} =-10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- High side switch for full bridge converter
- DC/DC converter for LCD display

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM25P06-TC	VSM25P06	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	-60	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	-25	А	
Drain Current-Continuous(T _C =100°ℂ)	I _D (100℃)	-17.7	Α	
Pulsed Drain Current	I _{DM}	-60	А	
Maximum Power Dissipation	P _D	90	W	
Derating factor		0.72	W/℃	

Shenzhen VSEEI Semiconductor Co., Ltd

Single pulse avalanche energy (Note 5)	E _{AS}	300	mJ	
Operating Junction and Storage Temperature Range	T_J, T_STG	-55 To 150	$^{\circ}\!\mathbb{C}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	R _{0JC}	1.4	°C/W
--	------------------	-----	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics	·		•				
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-60	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	-1	μΑ	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)	·		•				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-2	-2.9	-3.5	V	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-20A	-	39	45	mΩ	
Forward Transconductance	g Fs	V _{DS} =-10V,I _D =-10A	-	25	-	S	
Dynamic Characteristics (Note4)	•		•			•	
Input Capacitance	C _{lss}	1/ 00/// 01/	-	3430	-	PF	
Output Capacitance	C _{oss}	V_{DS} =-30V, V_{GS} =0V,	-	391	-	PF	
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	272	-	PF	
Switching Characteristics (Note 4)	•		•			•	
Turn-on Delay Time	t _{d(on)}		-	12	-	nS	
Turn-on Rise Time	t _r	V_{DD} =-30V, R_L =1.5 Ω ,	-	15	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{G} =3 Ω	-	38	-	nS	
Turn-Off Fall Time	t _f		-	15	-	nS	
Total Gate Charge	Qg	V 201 20A	-	46		nC	
Gate-Source Charge	Q _{gs}	V_{DS} =-30, I_{D} =-20A, V_{GS} =-10V	-	9.5		nC	
Gate-Drain Charge	Q_{gd}	V _{GS} =-10V	-	10.5		nC	
Drain-Source Diode Characteristics	•		•			•	
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-10A	-		-1.2	V	
Diode Forward Current (Note 2)	Is		-	-	-25	Α	
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =- 10A	-	47		nS	
Reverse Recovery Charge	Qrr	di/dt = -100A/µs(Note3)	-	53		nC	
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD					

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition: $Tj=25^{\circ}C$, $V_{DD}=-20V$, $V_{G}=-10V$,L=1mH, $Rg=25\Omega$, $I_{AS}=33A$

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 6 Source- Drain Diode Forward

BV_{DSS} (norm) $V_{\text{CS}} = 0$ $I_{\text{D}} = 250 \mu\text{A}$ 1.2 1.1 1.0 0.9 0.8 -50 0 50 100 $T_{\text{J}}(^{\circ}\text{C})$ T_J-Junction Temperature($^{\circ}\text{C}$)

Figure 9 BV_{DSS} vs Junction Temperature

25

(V) tuesum 10

10

0 25 50 75 100 125 150

TJ-Junction Temperature(°C)

Figure 11 Normalized Maximum Transient Thermal Impedance