The Reproducibility Crisis: p-value Misuse or Lack of an Evidence Measure?

Yes!

Jeffrey D. Blume, PhD
School of Data Science
University of Virginia

Reproducibility

- Reproduce what?
 - Convincing results ?
 - Study conclusions ?
 - Subsequent decisions ?
 - Statistical Evidence ? (how to define?)
- Complications
 - Lack of consensus study goals
 - Lack of consensus of what should be reproducible
 - What does it mean for a random variable to be reproducible?
- Simpler approach may be to be less granular
 - Data support alternative, null or were inconclusive

Evidential metrics

Example:
Diagnostic Test

- 1. Measure of the strength evidence
 - \rightarrow Axiomatic and intuitive justification
 - → Summary statistic, yardstick

Positive Test Negative Test

- 2. Propensity to collect data that will yield a
 misleading #1
 - → Error rates

→ Properties of the study design (!)

Sensitivity Specificity

- 3. Probability that an observed #1 is misleading
 - → False Discovery rate, False Confirmation rate
 - → Chance that an observed result is mistaken
 - → Properties of the observed data (!)

NPV

PPV

This is now

Evidential Metric	What it measures	Hypothesis Testing	Significance Testing
1	strength of the evidence	Absent	$\begin{array}{c} \textbf{Tail-area} \\ \textbf{probability} \\ (\textit{p}\text{-value}) \end{array}$
2	propensity for study to yield misleading evidence	Tail-area probability (error rates)	Absent
3	propensity for observed results to be misleading	misinterpret #2	misinterpret #1

- Confusion: the tail-area probability is used to measure <u>three</u> distinct quantities.
- Reproducibility: Depends on the intended metric

Move to interval nulls

Point null hypothesis H_0 and interval null hypothesis $[H_0^-, H_0^+]$ Data-supported hypothesis \widehat{H} and confidence interval $[CI^-, CI^+]$

Reproduce this

works with confidence, credible, and support intervals

Definition

Second-generation *p*-value (SGPV)

$$p_{\delta} = \frac{|I \cap H_0|}{|I|} \times \max\left\{\frac{|I|}{2|H_0|}, 1\right\}$$

Proportion of data-supported hypotheses that are also null hypotheses

shrinks proportion to $\frac{1}{2}$ when |I| wide

when $|I| > 2|H_0|$

Second-generation p-value

- Statistical properties detailed in recent pubs
- Retains strict error control
- StatisticalEvidence.com

Evidential Metric	What it measures	Likelihood
1	Summary measure	SGPV (p_{δ})
2	Operating characteristics	$P(p_{\delta} = 0 \mid H_0)$ $P(p_{\delta} = 1 \mid H_1)$ $P(0 < p_{\delta} < 1 \mid H)$
3	False discovery rates	$P(H_0 \mid p_{\delta} = 0)$ $P(H_1 \mid p_{\delta} = 1)$

The p-value (what it is)

- Number between 0 and 1
- Smaller ⇒ support for an alternative hypothesis
- Larger ⇒ data are inconclusive
- Clinical significance is ignored
- Sample size confounds comparisons
- Interpretation
 - awkward
 - assumes null hypothesis true
 - rooted in inductive reasoning
- Not clear if/when 'adjustments' are necessary

The p-value (what it is)

- Number between 0 and 1 \longrightarrow near 0 supports alt near 1 supports null near $\frac{1}{2}$ inconclusive
 - ✓ Smaller ⇒ support for an alternative hypothesis
 - Larger ⇒ data are inconclusive support null
 - Clinical significance is -ignored incorporated
 - X Sample size confounds comparisons
 - - · awkward straightforward
 - assumes null hypothesis true conditions on observed data
 - rooted in inductive reasoning descriptive, summarizes
 - Not clear if/when 'adjustments' are necessary never

Second-generation p-value

- SGPV is in [0,1] and denoted by p_{δ}
- δ for scientific significance
 - 1. $p_{\delta} = 0 \Rightarrow \text{null incompatible with data}$
 - 2. $p_{\delta} = 1 \Rightarrow \text{null compatible with data}$
 - 3. $0 < p_{\delta} < 1 \Rightarrow \text{data are inconclusive}$

- Fraction of data-supported hypotheses that are null
- Retains strict error control, all rates → 0

Systolic Blood Pressure

- → SBP is reported to the nearest 2 mmHg
- → Null Hypothesis: mean SPB is 145 mmHg
- → Interval Null hypothesis: mean is 143 to 147 mmHg
- → Results from 8 mock studies

Statistical Properties

Suppose interval I has coverage probability 1- α , then

Three 'Error' Rates

1.
$$P(p_{\delta} = 0|H_0) \le \alpha \text{ and } \to 0 \text{ as } n \to \infty$$

Will not examine

- 2. $P(p_{\delta} = 1|H_1) \le \alpha$ and $\to 0$ as $n \to \infty$
- 3. $P(0 < p_{\delta} < 1|H)$ controlled through sample size

Two False Discovery Rates

1.
$$P(H_0 | p_{\delta} = 0)$$

2.
$$P(H_1 | p_{\delta} = 1)$$

Will graph if illustrate, if time allows

False discovery rates

• Impact of α =0.05 vs α =0.05/7128 (7128 comparisons)

• False Discovery Rate (FDR) $P(H_0|p<\alpha) = \left[1 + \frac{(1-\beta)}{\alpha}r\right]^{-1}$

• False Confirmation Rate (FCR)

$$P(H_1|p>\alpha) = \left[1 + \frac{(1-\alpha)1}{\beta}\right]^{-1}$$

$$r = P(H_1)/P(H_0)$$
Error rates

False discovery rates

- Second-generation p-values
- False Discovery Rate (FDR)

$$P(H_0|p_{\delta} = 0) = \left[1 + \frac{P(p_{\delta} = 0|H_1)}{P(p_{\delta} = 0|H_0)}r\right]^{-1}$$

• False Confirmation Rate (FCR)

$$P(H_1|p_{\delta} = 1) = \left[1 + \frac{P(p_{\delta} = 1|H_0)}{P(p_{\delta} = 1|H_1)} \frac{1}{r}\right]^{-1}$$
Error Rates

Error Rates

Remarks

- Critical to establish evidential metrics & role
- Second-generation p-values...
 - Indicate compatibility with null or alternative
 - Indicate when the data are inconclusive (!)
 - Straightforward to compute and interpret
 - Controls error rate using science
 - Reduces the false discovery rate
- Anchoring the scale of the effect size…
 - Eliminates most Type I Errors
 - Improves scientific translation of statistical model

Acknowledgements

• Students

- Yi Zuo (Variable Selection with SGPVs; TAS 2021)
- Valerie Welty (FDR and SGPVs)
- Megan Murray (SGPVs & Equivalence Tests)

• Website / Papers / Code

- statisticalevidence.com
- Google "Second-Generation p-value"
- Cran packages (CRAN.R-project.org w/ vignettes)
 - SGPV
 - ProSgpv
 - FDRestimation

Thank you for your attention.

Questions?