Dr. Andrey Soldatenkov

Übungen zur Einführung in die komplexe Analysis – Blatt 5

Aufgabe 28. (Umlaufzahl, 2+3 Punkte)

Die Umlaufzahl $n(\gamma, z_0)$ eines geschlossenen Weges $\gamma \colon [a, b] \to \mathbb{C}$ um einen Punkt $z_0 \notin \text{Im}(\gamma)$ war definiert durch die Gleichung

$$n(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz.$$

- (i) Man zeige, dass $n(\gamma, z_0)$ immer eine ganze Zahl ist. Hinweis: Man betrachte die Ableitung der Funktion $e^{-h(t)}(\gamma(t)-z_0)$, wobei $h(t) := \int_a^t \frac{\gamma'(s)}{\gamma(s)-z_0} ds$.
- (ii) Man beweise, dass $n(\gamma, z_0) = n(\gamma, z_1)$ solange $[z_0, z_1] \cap \operatorname{Im}(\gamma) = \emptyset$, das heißt für z_0, z_1 in der selben Zusammenhangskomponente des offenen Komplements $\mathbb{C} \setminus \operatorname{Im}(\gamma)$.

Aufgabe 29. (Logarithmen, 1+1+1 Punkte)

Man bestimme alle Logarithmen folgender komplexer Zahlen: 0, $(1+i)^{\sqrt{2}}$, $i^{1/\pi}$.

Aufgabe 30. (Schwarz Lemma, 4 Punkte)

Sei $f: D_1(0) \to \mathbb{C}$ holomorph, so dass $|f(z)| \le 1$ und f(0) = 0. Man beweise, dass dann $|f(z)| \le |z|$ für alle $z \in D_1(0)$ und $|f'(0)| \le 1$ und dass Gleichheit genau dann gilt, falls f(z) = cz mit |c| = 1. Hinweis: Man betrachte die Funktion f(z)/z.

${\bf Aufgabe~31.~(Bilder~holomorpher~Funktionen,~3~Punkte)}$

Man konstruiere eine surjektive holomorphe Abbildung

$$f: D_1(0) \to D_1(0) \setminus \{0\}$$

oder beweise, dass keine solche Abbildung existiert.

Aufgabe 32. (Anti-holomorphe Integrale, 3 Punkte)

Sei P(z) ein Polynom, $z_0 \in \mathbb{C}$ und r > 0. Man bestimme (vgl. Aufgabe 25)

$$\int_{\partial D_r(z_0)} P(z) d\bar{z}.$$

Aufgabe 33. (Umkehrfunktion von cos, 3 Punkte)

Man diskutiere die Formel

$$\arccos(w) = -i\log(w \pm \sqrt{w^2 - 1}) = \pm i\log(w + \sqrt{w^2 - 1}).$$

Abgabe: Freitag 18.5. vor(!) der Vorlesung.