

## Subject Index

Volume 63 (1992)

aggregation, dextran sulfate, liposomes, stearylamine, fusion, fluorescence spectroscopy, freeze fracture electron microscopy, 15

allene fatty acids, cyclopropene fatty acids, fluorofatty acids, Z11-desaturase, inhibition, *Spodoptera littoralis*, 149

Amadori compounds, malondialdehyde, lipid oxidation, linolenic acid, non-enzymic browning, 265

antioxidant,  $\alpha$ -tocopherol, vitamin E, liposomes, spin probe, 69

autoxidation, flavonoid, linoleic acid, autoxidation, micelle, 37

argentation chromatography, steroid dienes, dehydrohalogenation, nuclear magnetic resonance spectroscopy, 115

autoxidation, flavonoid, autoxidation, linoleic acid, micelle, 37

bilayer modulation, diacetylenic phospholipids, liposomes, tubules,  $\beta$ -oxydiacetylenic acid, Langmuir film, calorimetry, cooperative unit, optical microscopy, 191

bilayer, fusion, hexagonal phase  $H_{II}$ , phospholipids, conformation, 251

bilayer-hexagonal phase transition, tight junctions, non-lamellar lipid phase, fluorescence spectroscopy, calorimetry, 213

bilayers, dimyristoylphosphatidyl glycerol, melittin, interaction, high pressures, infrared spectra, 139

C-glucopyranosides, steroidal C-glucosides, C-glucosides, C-glucosidation, steroids, naphthols, 179

C-glucosidation, steroidal C-glucosides, C-glucopyranosides, C-glucosides, steroids, naphthols, 179

C-glucosides, steroidal C-glucosides, C-glucopyranosides, C-glucosidation, steroids, naphthols, 179

$^{13}\text{C-NMR}$ , dihomo-gamma-linolenic acid, deuterium, lipid, fatty acid, 259

calorimetry, diacetylenic phospholipids, liposomes, tubules, bilayer modulation,  $\beta$ -oxydiacetylenic acid, Langmuir film, cooperative unit, optical microscopy, 191

calorimetry, tight junctions, non-lamellar lipid phase, bilayer-hexagonal phase transition, fluorescence spectroscopy, 213

cholesterol transfer, phosphatidylserine, ionic strength, pyrene, fluorescence, 55

cholesterol, phosphatidylserine, phase behaviour, differential scanning calorimetry (DSC), X-ray diffraction, 105

cholesterol, vesicles, solubilization, octylglucoside, diglycerol hexadecylether, turbidity, gel exclusion HPLC, 1

cis-unsaturated fatty acid, fatty acid mixture, phase diagram, miscibility, polymorphism, differential scanning calorimetry (DSC), 243

collapse molecular surface area, diphentanylglycerol ether (archaeol) phospholipids and glycolipids, tetraether (caldarchaeol) phospholipids and glycolipids, compression isotherms, collapse pressure, limiting molecular area, surface compressional modulus, polar headgroup conformation, 131

collapse pressure, diphentanylglycerol ether (archaeol) phospholipids and glycolipids, tetraether (caldarchaeol) phospholipids and glycolipids, compression isotherms, collapse molecular surface area, limiting molecular area, surface compressional modulus, polar headgroup conformation, 131

compression isotherms, diphentanylglycerol ether (archaeol) phospholipids and glycolipids, tetraether (caldarchaeol) phospholipids and glycolipids, collapse molecular surface area, collapse pressure, limiting molecular area, surface compressional modulus, polar headgroup conformation, 131

conformation, bilayer, fusion, hexagonal phase  $H_{II}$ , phospholipids, 251

conjugated diacetylenic fatty acids, mass spectrometry, picolinyl esters, 65

cooperative unit, diacetylenic phospholipids, liposomes, tubules, bilayer modulation,  $\beta$ -oxydiacetylenic acid, Langmuir film, calorimetry, optical microscopy, 191

cyclopropene fatty acids, allene fatty acids, fluorofatty acids, Z11-desaturase, inhibition, *Spodoptera littoralis*, 149

dehydrohalogenation, steroid dienes, argentation chromatography, nuclear magnetic resonance spectroscopy, 115

deuterium, dihomo-gamma-linolenic acid,  $^{13}\text{C-NMR}$ , lipid, fatty acid, 259

dextran sulfate, liposomes, stearylamine, aggregation, fusion, fluorescence spectroscopy, freeze fracture electron microscopy, 15

diacetylenic phospholipids, liposomes, tubules, bilayer modulation,  $\beta$ -oxydiacetylenic acid, Langmuir film, calorimetry, cooperative unit, optical microscopy, 191

differential scanning calorimetry (DSC), cis-unsaturated fatty acid, fatty acid mixture, phase diagram, miscibility, polymorphism, 243

differential scanning calorimetry (DSC), phosphatidylserine, cholesterol, phase behaviour, X-ray diffraction, 105

differential scanning calorimetry, phosphatidic acids, phase diagram, hydrated PA mixture, unhydrated PA mixture, miscibility, 203

diglycerol hexadecylether, vesicles, solubilization, octylglucoside, cholesterol, turbidity, gel exclusion HPLC, 1

dihomo-gamma-linolenic acid, deuterium,  $^{13}\text{C-NMR}$ , lipid, fatty acid, 259

dimyristoylphosphatidyl glycerol, bilayers, melittin, interaction, high pressures, infrared spectra, 139

diosmin, flavonoids, model membranes, elasticity modulus, quasi-elastic light scattering, 169

diphytanoylglycerol ether (archaeol) phospholipids and glycolipids, tetraether (caldarchaeol) phosphoglycolipids and glycolipids, compression isotherms, collapse molecular surface area, collapse pressure, limiting molecular area, surface compressional modulus, polar headgroup conformation, 131

elasticity modulus, flavonoids, diosmin, model membranes, quasi-elastic light scattering, 169

electron paramagnetic resonance (EPR), low-density lipoprotein (LDL) modification, LDL, stabilization of structure, Mn(II) binding, 159

epithelial cells, tight junctions, resistance, non-lamellar lipid phase, 223

ether lipid, phospholipid analog, monolayer, surface pressure, 27

fatty acid mixture, *cis*-unsaturated fatty acid, phase diagram, miscibility, polymorphism, differential scanning calorimetry (DSC), 243

fatty acid, dihomo-gamma-linolenic acid, deuterium, <sup>13</sup>C-NMR, lipid, 259

flavonoid, antioxidation, linoleic acid, autoxidation, micelle, 37

flavonoids, diosmin, model membranes, elasticity modulus, quasi-elastic light scattering, 169

fluorescence spectroscopy, dextran sulfate, liposomes, stearylamine, aggregation, fusion, freeze fracture electron microscopy, 15

fluorescence spectroscopy, tight junctions, non-lamellar lipid phase, bilayer-hexagonal phase transition, calorimetry, 213

fluorescence, cholesterol transfer, phosphatidylserine, ionic strength, pyrene, 55

fluorofatty acids, cyclopropene fatty acids, allene fatty acids, Z11-desaturase, inhibition, *Spodoptera littoralis*, 149

Fourier transform infrared spectrometry, pulmonary surfactant, pulmonary surfactant protein B (SP-B), pulmonary surfactant protein C, monomeric form (SP-C), secondary structure, 91

freeze fracture electron microscopy, dextran sulfate, liposomes, stearylamine, aggregation, fusion, fluorescence spectroscopy, 15

fusion, bilayer, hexagonal phase H<sub>II</sub>, phospholipids, conformation, 251

fusion, dextran sulfate, liposomes, stearylamine, aggregation, fluorescence spectroscopy, freeze fracture electron microscopy, 15

gel exclusion HPLC, vesicles, solubilization, octylglucoside, cholesterol, diglycerol hexadecylether, turbidity, 1

<sup>1</sup>H- and <sup>13</sup>C-NMR, 15-oxygenated sterols, inhibitors of sterol synthesis, 77

<sup>2</sup>H-NMR, plant sterol, soybean phosphatidylcholine, oriented bilayers, 235

hexagonal phase H<sub>II</sub>, bilayer, fusion, phospholipids, conformation, 251

high pressures, dimyristoylphosphatidyl glycerol, bilayers, melittin, interaction, infrared spectra, 139

hydrated PA mixture, phosphatidic acids, phase diagram, unhydrated PA mixture, miscibility, differential scanning calorimetry, 203

infrared spectra, dimyristoylphosphatidyl glycerol, bilayers, melittin, interaction, high pressures, 139

inhibition, cyclopropene fatty acids, allene fatty acids, fluorofatty acids, Z11-desaturase, *Spodoptera littoralis*, 149

inhibitors of sterol synthesis, 15-oxygenated sterols, <sup>1</sup>H- and <sup>13</sup>C-NMR, 77

interaction, dimyristoylphosphatidyl glycerol, bilayers, melittin, high pressures, infrared spectra, 139

ionic strength, cholesterol transfer, phosphatidylserine, pyrene, fluorescence, 55

Langmuir film, diacetylenic phospholipids, liposomes, tubules, bilayer modulation,  $\beta$ -oxydiacetylenic acid, calorimetry, cooperative unit, optical microscopy, 191

LDL, stabilization of structure, electron paramagnetic resonance (EPR), low-density lipoprotein (LDL) modification, Mn(II) binding, 159

light scattering, polymerizable lipid, phosphocholine, lipid microstructures, phase properties, 47

limiting molecular area, diphytanoylglycerol ether (archaeol) phospholipids and glycolipids, tetraether (caldarchaeol) phosphoglycolipids and glycolipids, compression isotherms, collapse molecular surface area, collapse pressure, surface compressional modulus, polar headgroup conformation, 131

linoleic acid, flavonoid, antioxidation, autoxidation, micelle, 37

linolenic acid, Amadori compounds, malondialdehyde, lipid oxidation, non-enzymic browning, 265

lipid microstructures, polymerizable lipid, phosphocholine, phase properties, light scattering, 47

lipid oxidation, Amadori compounds, malondialdehyde, linolenic acid, non-enzymic browning, 265

lipid, dihomo-gamma-linolenic acid, deuterium, <sup>13</sup>C-NMR, fatty acid, 259

liposomes,  $\alpha$ -tocopherol, vitamin E, spin probe, antioxidant, 69

liposomes, dextran sulfate, stearylamine, aggregation, fusion, fluorescence spectroscopy, freeze fracture electron microscopy, 15

liposomes, diacetylenic phospholipids, tubules, bilayer modulation,  $\beta$ -oxydiacetylenic acid, Langmuir film, calorimetry, cooperative unit, optical microscopy, 191

low-density lipoprotein (LDL) modification, electron paramagnetic resonance (EPR), LDL, stabilization of structure, Mn(II) binding, 159

malondialdehyde, Amadori compounds, lipid oxidation, linolenic acid, non-enzymic browning, 265

mass spectrometry, conjugated diacetylenic fatty acids, picolinyl esters, 65

mass spectrometry, mycolic acids, thermospray, 41

melittin, dimyristoylphosphatidyl glycerol, bilayers, interaction, high pressures, infrared spectra, 139

micelle, flavonoid, antioxidation, linoleic acid, autoxidation, 37  
 miscibility, *cis*-unsaturated fatty acid, fatty acid mixture, phase diagram, polymorphism, differential scanning calorimetry (DSC), 243  
 miscibility, phosphatidic acids, phase diagram, hydrated PA mixture, unhydrated PA mixture, differential scanning calorimetry, 203  
 $Mn(II)$  binding, electron paramagnetic resonance (EPR), low density lipoprotein (LDL) modification, LDL, stabilization of structure, 159  
 model membranes, flavonoids, diosmin, elasticity modulus, quasi-elastic light scattering, 169  
 monolayer, phospholipid analog, ether lipid, surface pressure, 27  
 mycolic acids, mass spectrometry, thermospray, 41

naphthols, steroid C-glucosides, C-glucopyranosides, C-glucosides, C-glucosidation, steroids, 179  
 non-enzymic browning, Amadori compounds, malondialdehyde, lipid oxidation, linolenic acid, 265  
 non-lamellar lipid phase, epithelial cells, tight junctions, resistance, 223  
 non-lamellar lipid phase, tight junctions, bilayer-hexagonal phase transition, fluorescence spectroscopy, calorimetry, 213  
 nuclear magnetic resonance spectroscopy, steroid dienes, dehydrohalogenation, argentation chromatography, 115

octylglucoside, vesicles, solubilization, cholesterol, diglycerol hexadecylether, turbidity, gel exclusion HPLC, 1  
 optical microscopy, diacetylenic phospholipids, liposomes, tubules, bilayer modulation,  $\beta$ -oxydiacetylenic acid, Langmuir film, calorimetry, cooperative unit, 191  
 oriented bilayers,  $^2H$ -NMR, plant sterol, soybean phosphatidylcholine, 235  
 $\beta$ -oxydiacetylenic acid, diacetylenic phospholipids, liposomes, tubules, bilayer modulation, Langmuir film, calorimetry, cooperative unit, optical microscopy, 191  
 15-oxygenated sterols, inhibitors of sterol synthesis,  $^1H$ - and  $^{13}C$ -NMR, 77  
 15-oxygenated sterols, steroids, synthesis, 23

phase behaviour, phosphatidylserine, cholesterol, differential scanning calorimetry (DSC), X-ray diffraction, 105  
 phase diagram, *cis*-unsaturated fatty acid, fatty acid mixture, miscibility, polymorphism, differential scanning calorimetry (DSC), 243  
 phase diagram, phosphatidic acids, hydrated PA mixture, unhydrated PA mixture, miscibility, differential scanning calorimetry, 203  
 phase properties, polymerizable lipid, phosphocholine, lipid microstructures, light scattering, 47  
 phosphatidic acids, phase diagram, hydrated PA mixture, unhydrated PA mixture, miscibility, differential scanning calorimetry, 203  
 phosphatidylserine, cholesterol transfer, ionic strength, pyrene, fluorescence, 55  
 phosphatidylserine, cholesterol, phase behaviour, differential scanning calorimetry (DSC), X-ray diffraction, 105

phosphocholine, polymerizable lipid, lipid microstructures, phase properties, light scattering, 47  
 phospholipid analog, ether lipid, monolayer, surface pressure, 27  
 phospholipids, bilayer, fusion, hexagonal phase  $H_{II}$ , conformation, 251  
 picolinyl esters, conjugated diacetylenic fatty acids, mass spectrometry, 65  
 plant sterol,  $^2H$ -NMR, soybean phosphatidylcholine, oriented bilayers, 235  
 polar headgroup conformation, diphentanylglycerol ether (arachaeol) phospholipids and glycolipids, tetraether (caldarachaeol) phosphoglycolipids and glycolipids, compression isotherms, collapse molecular surface area, collapse pressure, limiting molecular area, surface compressional modulus, 131  
 polymerizable lipid, phosphocholine, lipid microstructures, phase properties, light scattering, 47  
 polymorphism, *cis*-unsaturated fatty acid, fatty acid mixture, phase diagram, miscibility, differential scanning calorimetry (DSC), 243  
 pulmonary surfactant protein B (SP-B), pulmonary surfactant, pulmonary surfactant protein C, monomeric form (SP-C), Fourier transform infrared spectrometry, secondary structure, 91  
 pulmonary surfactant protein C, monomeric form (SP-C), pulmonary surfactant, pulmonary surfactant protein B (SP-B), Fourier transform infrared spectrometry, secondary structure, 91  
 pulmonary surfactant, pulmonary surfactant protein B (SP-B), pulmonary surfactant protein C, monomeric form (SP-C), Fourier transform infrared spectrometry, secondary structure, 91  
 pyrene, cholesterol transfer, phosphatidylserine, ionic strength, fluorescence, 55

quasi-elastic light scattering, flavonoids, diosmin, model membranes, elasticity modulus, 169

resistance, epithelial cells, tight junctions, non-lamellar lipid phase, 223

secondary structure, pulmonary surfactant, pulmonary surfactant protein B (SP-B), pulmonary surfactant protein C, monomeric form (SP-C), Fourier transform infrared spectrometry, 91  
 solubilization, vesicles, octylglucoside, cholesterol, diglycerol hexadecylether, turbidity, gel exclusion HPLC, 1  
 soybean phosphatidylcholine,  $^2H$ -NMR, plant sterol, oriented bilayers, 235  
 spin probe,  $\alpha$ -tocopherol, vitamin E, liposomes, antioxidant, 69  
*Spodoptera littoralis*, cyclopropene fatty acids, allene fatty acids, fluorofatty acids, Z11-desaturase, inhibition, 149  
 stearylamine, dextran sulfate, liposomes, aggregation, fusion, fluorescence spectroscopy, freeze fracture electron microscopy, 15  
 steroid dienes, dehydrohalogenation, argentation chromatography, nuclear magnetic resonance spectroscopy, 115

steroidal C-glucosides, C-glucopyranosides, C-glucosides, C-glucosidation, steroids, naphthols, 179  
steroids, 15-oxygenated sterols, synthesis, 23  
steroids, steroid C-glucosides, C-glucopyranosides, C-glucosides, C-glucosidation, naphthols, 179  
surface compressional modulus, diphentanylglycerol ether (archaeol) phospholipids and glycolipids, tetraether (caldarchaeol) phosphoglycolipids and glycolipids, compression isotherms, collapse molecular surface area, collapse pressure, limiting molecular area, polar headgroup conformation, 131  
surface pressure, phospholipid analog, ether lipid, monolayer, 27  
synthesis, steroids, 15-oxygenated sterols, 23

tetraether (caldarchaeol) phosphoglycolipids and glycolipids, diphentanylglycerol ether (archaeol) phospholipids and glycolipids, compression isotherms, collapse molecular surface area, collapse pressure, limiting molecular area, surface compressional modulus, polar headgroup conformation, 131  
thermospray, mycolic acids, mass spectrometry, 41  
tight junctions, epithelial cells, resistance, non-lamellar lipid phase, 223

tight junctions, non-lamellar lipid phase, bilayer-hexagonal phase transition, fluorescence spectroscopy, calorimetry, 213  
 $\alpha$ -tocopherol, vitamin E, liposomes, spin probe, antioxidant, 69  
tubules, diacylenic phospholipids, liposomes, bilayer modulation,  $\beta$ -oxydiacetylenic acid, Langmuir film, calorimetry, cooperative unit, optical microscopy, 191  
turbidity, vesicles, solubilization, octylglucoside, cholesterol, diglycerol hexadecylether, gel exclusion HPLC, 1

unhydrated PA mixture, phosphatidic acids, phase diagram, hydrated PA mixture, miscibility, differential scanning calorimetry, 203

vesicles, solubilization, octylglucoside, cholesterol, diglycerol hexadecylether, turbidity, gel exclusion HPLC, 1  
vitamin E,  $\alpha$ -tocopherol, liposomes, spin probe, antioxidant, 69

X-ray diffraction, phosphatidylserine, cholesterol, phase behaviour, differential scanning calorimetry (DSC), 105

Z11-desaturase, cyclopropene fatty acids, allene fatty acids, fluorofatty acids, inhibition, *Spodoptera littoralis*, 149

## Author Index

### Volume 63 (1992)

|                        |          |                          |          |
|------------------------|----------|--------------------------|----------|
| Absolom, D.R.          | 91       | Hermosin, I.             | 265      |
| Ahmed, M.K.            | 139      | Hiramatsu, N.            | 243      |
| Allevi, P.             | 179      | Horváth, J.              | 23       |
| Anastasia, M.          | 179      |                          |          |
| Arnold, K.             | 15       | Ikebata, W.              | 69       |
| Arsequell, G.          | 149      | Inoue, T.                | 203, 243 |
| Azize, B.              | 169      | Ioneda, T.               | 41       |
| Baatz, J.E.            | 91       | Jürgens, G.              | 159      |
| Bach, D.               | 105      |                          |          |
| Bakos, T.              | 23       | Kahn, B.                 | 47       |
| Baral-Tosh, S.         | 47       | Kates, M.                | 131      |
| Baxter, C.             | 91       | Kinnunen, P.K.J.         | 251      |
| Beaman, B.L.           | 41       | Krajewski-Bertrand, M-A. | 235      |
| Borochov, N.           | 105      | Kumadaki, I.             | 69       |
| Brechany, E.Y.         | 65       |                          |          |
| Brnjas-Kraljević, J.   | 159      | Lebeau, L.               | 27       |
| Camps, F.              | 149      | Ledl, F.                 | 265      |
| Cao, A.                | 169      | Lesicur, S.              | 1        |
| Chau, S.H.             | 65       | Lewin, G.                | 169      |
| Chen, Z-Y.             | 259      | Li, Q-T.                 | 55       |
| Cheung, Y.K.           | 65       | Lie Ken Jie, M.S.F.      | 65       |
| Chifu, E.              | 131      | Markowitz, M.A.          | 191      |
| Choma, C.T.            | 139      | Mädefessel, C.           | 223      |
| Christie, W.W.         | 65       | Mendy, F.                | 259      |
| Ciuffreda, P.          | 179      | Mésini, P.               | 27       |
| Cunnane, S.C.          | 259      | Milon, A.                | 235      |
| Descomps, B.           | 259      | Mioskowski, C.           | 27       |
|                        |          | Mocanu, A.               | 131      |
| Epand, R.M.            | 105      | Motoda, I.               | 243      |
| Fabriás, G.            | 149      | Ohki, S.                 | 15       |
| Fukuzawa, K.           | 69       | Ollivon, M.              | 1        |
|                        |          | Oudet, P.                | 27       |
| Galla, H-J.            | 213, 223 | Perret, G.               | 169      |
| Gómez-Sánchez, A.      | 265      | Pifat, G.                | 159      |
| Gosalbo, L.            | 149      | Pinkerton, F.D.          | 77       |
|                        |          | Post, A.                 | 213, 223 |
| Haag, B.               | 223      | Quinn, P.J.              | 131      |
| Handjani-Vila, R-M.    | 1        | Ratna, B.R.              | 47       |
| Hantz-Brachet, E.      | 169      | Richter, W.              | 15       |
| Hartmann, M-A.         | 235      | Rudolph, A.S.            | 47       |
| Haycock, P.R.          | 259      | Ruecker, K.E.            | 77       |
| Hein, M.               | 213, 223 | Sakanaka, T.             | 69       |
| Herak, J.N.            | 159      |                          |          |
| Herak-Kramberger, C.M. | 159      |                          |          |

|                      |         |                     |         |
|----------------------|---------|---------------------|---------|
| Sanvito, A.M.        | 179     | Tomoaia-Cotisel, M. | 131     |
| Sato, K.             | 243     | Tsao, L-I.          | 191     |
| Sawyer, W.H.         | 55      |                     |         |
| Scala, A.            | 179     | Urano, S.           | 69      |
| Schnur, J.M.         | 47      |                     |         |
| Schroepfer Jr., G.J. | 77, 115 | Vincze, I.          | 23      |
| Senisterra, G.       | 105     |                     |         |
| Seras, M.            | 1       | Wachtel, E.         | 105     |
| Shibata, A.          | 69      | Wang, P-F.          | 37      |
| Shimozawa, R.        | 203     | Whitsett, J.A.      | 91      |
| Siddiqui, A.U.       | 77, 115 | Williams, S.C.R.    | 259     |
| Singh, A.            | 191     | Wilson, W.K.        | 77, 115 |
| Smyth, K.L.          | 91      | Wong, P.T.T.        | 139     |
| Suzuki, M.           | 243     |                     |         |
| Swaminathan, S.      | 115     | Zheng, R-L.         | 37      |
| Taillandier, E.      | 169     | Zsako, J.           | 131     |
| Tasaka, T.           | 203     | Zschörnig, O.       | 15      |
| Teichmann, K.        | 223     | CPL2138             |         |

