Semester Project

Aaron Green

December 2020

1 Cases

1.1 Case 1

Happens 85 percent of the time. This happens because of 2 percent infection rate and on average 98 percent of the population is uninfected

1.2 Case 2

Happens the rest of the time which is 14.96 percent.

1.3 Case 3

Happens slightly less than 0.04 percent. Because the likelihood of randomly choosing more than two infected samples is low.

2 1000 People

- 1. Case 1: $125 \times 0.872 = 109$ instances requiring 109 tests
- 2. Case 2: $125 \times 0.128 = 16$ instances requiring 116 tests
- 3. Case 3: $125 \times 0 = 0$ instances requiring 0 tests

4. Test Required: 225

3 10000 People

- 1. Case 1: $1250 \times 0.8664 = 1083$ instances requiring 1083 tests
- 2. Case 2: $1250 \times 0.124 = 155$ instances requiring 1169 tests
- 3. Case 3: $1250 \times 0.0096 = 12$ instances requiring 104 tests
- 4. Test Required: 2356

4 100000 People

- 1. Case 1: $12500 \times 0.88376 = 11047$ instances requiring 11047 tests
- 2. Case 2: $12500 \times 0.09848 = 1231$ instances requiring 9357 tests
- 3. Case 3: $12500 \times 0.01776 = 222$ instances requiring 1962 tests
- 4. Test Required: 22366

5 1M People

- 1. Case 1: $125000 \times 0.967704 = 120963$ instances requiring 120963 tests
- 2. Case 2: $125000 \times 0.002608 = 2460$ instances requiring 2502 tests

- 3. Case 3: 125000 x 0.029688 = 3711 instances requiring 37409 tests
- 4. Test Required: 160874