Dans ce qui suit, l'espace euclidien de dimension 2 est rapporté sauf mention du contraire à un repère orthonormé $(O; (\overrightarrow{u}; \overrightarrow{v}))$.

L'espace euclidien de dimension 3 est rapporté à un repère orthonormé $\left(O;\left(\overrightarrow{\imath};\overrightarrow{\jmath};\overrightarrow{k}\right)\right)$.

Sommaire

1	Rappels sur les vecteurs]
2	Calcul vectoriel dans le plan	3
3	Calcul vectoriel dans l'espace	١
4	Systèmes de coordonnées	7
5	Equations paramétriques	5

Rappels sur les vecteurs

Exercice 1 (Exercice de construction)

- 1. Construire un triangle MNP
- 2. (a) Construire le point A tel que $\overrightarrow{MP} = \overrightarrow{NA}$
 - (b) Placer le point B tel que $\overrightarrow{MP} = -\overrightarrow{NB}$
 - (c) Placer le point C tel que $-\overrightarrow{CP} = \overrightarrow{NA}$
- 3. Que peut-on en déduire sur la position de N et de P?

Exercice 2 (Exercice de construction)

1. Sur le dessin ci-dessous, placer les points M et N tels que $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$ et $\overrightarrow{MN} = \overrightarrow{AB} - \overrightarrow{AC}$.

2. Montrer que B est le milieu du segment [AN].

Soit ABC un triangle et M le point tel que $\overrightarrow{BM} = \frac{1}{3}\overrightarrow{BC}$

- 1. Montrer que $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$
- 2. Soit N le point tel que $\overrightarrow{AN}=2\overrightarrow{AB}+\overrightarrow{AC}$. Montrer que les points $A,\ M$ et N sont alignés.

Exercice 4

Le quadrilatère ABCD est un parallélogramme.

- 1. Placer les points E, F et G tels que $: \overrightarrow{AE} = \frac{4}{3}\overrightarrow{AB}, \overrightarrow{FD} = -\frac{1}{3}\overrightarrow{AD}$ et $\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB} + \overrightarrow{AD}$.
- 2. Exprimer le vecteur \overrightarrow{EF} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AD} .
- 3. Les points E, F et G sont-ils alignés ?

Exercice 5 (À propos de la relation de Chasles)

On considère un quadrilatère MNOP.

1. Simplifier les sommes :

$$\overrightarrow{MN} + \overrightarrow{NO}$$

$$\overrightarrow{MO} + \overrightarrow{PM}$$

$$\overrightarrow{MO} + \overrightarrow{PM}$$
 $\overrightarrow{MN} + \overrightarrow{OP} - \overrightarrow{ON}$

- 2. Établir la relation $:\overrightarrow{MN}+\overrightarrow{PO}-\overrightarrow{PN}-\overrightarrow{MO}=0.$
- 3. On suppose de plus que pour tout point A du plan, on a : $\overrightarrow{AM} + \overrightarrow{AN} \overrightarrow{AO} \overrightarrow{AP} = 0$
 - (a) Montrer que $\overrightarrow{PM} + \overrightarrow{ON} = 0$.
 - (b) Que peut-on en déduire pour le quadrilatère MONP.

Exercice 6

Soit [IJ] un segment et M un point du cercle de diamètre [IJ]. Faire une figure.

- 1. Que dire de l'angle $\widehat{\mathrm{IMJ}}$? Justifier.
- 2. Construire le point K tel que $\overrightarrow{MK} = \overrightarrow{IM}$.
- 3. Construire le point L tel que $\overrightarrow{JL} = \overrightarrow{JI} + \overrightarrow{JK}$.
- 4. Déterminer la nature du quadrilatère IJKL.

Soit [IJ] un segment et M un point du cercle de diamètre [IJ]. Faire une figure.

- 1. Que dire de l'angle $\widehat{\mathrm{IMJ}}$? Justifier.
- 2. Construire le point K tel que $\overrightarrow{MK} = \overrightarrow{IM}$.
- 3. Construire le point L tel que $\overrightarrow{JL} = \overrightarrow{JI} + \overrightarrow{JK}$.
- 4. Déterminer la nature du quadrilatère IJKL.

2 Calcul vectoriel dans le plan

Exercice 8

Dans un plan muni du repère orthonormé (O, I, J), placer les points : A(8; 1) B(4; 8) et C(-4; 7)

- 1. (a) Donner sans justifier les coordonnées du vecteur \overrightarrow{OC} et les coordonnées du vecteur \overrightarrow{AB} .
 - (b) Que peut-on en déduire pour le quadrilatère OABC ?
- 2. Démontrer que OABC est un losange.

Exercice 9

- 1. Dans un repère orthonormé (O, I, J) placer les points suivants : A(-1; 1), B(3; 3), C(5; -1) et D(1; L'unité est le centimètre.
- 2. Calculer les coordonnées de \overrightarrow{AB} et \overrightarrow{DC} .

En déduire la nature du quadrilatère ABCD.

- 3. Calculer la distance BC.
- 4. On admet que AB = $2\sqrt{5}$ et AC = $2\sqrt{10}$.
 - (a) Montrer que ABC est un triangle isocèle et rectangle.
 - (b) Préciser alors, en justifiant la réponse, la nature du quadrilatère ABCD.

Exercice 10

Dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, on considère les points suivants : A(-3; -2) B(-1; 9) C(9; 4)

- 1. Faire une figure en prenant 1 cm pour unité de longueur.
- 2. On note M le mileu du segment [AC]. Calculer les coordonnées du point M.
- 3. Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 4. Calculer la longueur BC. On donnera la valeur arrondie à 0,1 près.

Sur la figure ci-contre qui n'est pas en vraie grandeur, le point A est sur le segment [OB] et le point C est sur le segment [OD].

On donne:

 $\mathrm{OA}=8.5~\mathrm{cm}$; $\mathrm{AB}=11.5~\mathrm{cm}$;

OC = 5 cm; CD = 7 cm.

- 1. Calculer les longueurs OB et OD.
- 2. Les droites (AC) et (BD) sont-elles parallèles ? Justifier votre réponse.

Exercice 12

Dans le plan muni d'un repère $(O; (\overrightarrow{u}; \overrightarrow{v}))$ on donne les points A(-1;1), B(2;1) et C(-2;3)

- 1. Déterminer les coordonnées du point M tel que $\overrightarrow{AM}=2\overrightarrow{BC}$.
- 2. Déterminer les coordonnées du point P tel que $\overrightarrow{BA} + 2\overrightarrow{BC} + \frac{3}{2}\overrightarrow{BP} = \overrightarrow{0}$.
- 3. Les points B, M et P sont-ils alignés ?

Exercice 13

- 1. Quel est l'ensemble des m pour lesquels la norme du vecteur $\binom{2m-1}{4}$ égale à 7 ?
- 2. Déterminer m pour que les vecteurs $\binom{m+1}{2}$, $\binom{3}{m-1}$ soient linéairement dépendants ?
- 3. Déterminer m pour que les vecteurs $\binom{3m}{5}$, $\binom{2}{m}$ soient orthogonaux.

Exercice 14

On donne les points A(3;5), B(-2;4), C(-3;2), D(12;5); soit K et L les milieux des segments [CD] et [AB] respectivement.

- 1. Montrez que \overrightarrow{BA} et \overrightarrow{CD} sont colinéaires.
- 2. Exprimez \overrightarrow{DA} et \overrightarrow{KL} dans la base $(\overrightarrow{BA}, \overrightarrow{BC})$.
- 3. Dans le but de prouver que les droites (AD), (KL) et (BC) sont concourantes, définissons les points S_1, S_2, S_3 tels que $\overrightarrow{DS_1} = \frac{3}{2}\overrightarrow{DA}, \overrightarrow{KS_2} = \frac{3}{2}\overrightarrow{KL}, \overrightarrow{CS_3} = \frac{3}{2}\overrightarrow{CB}$
 - Faites une figure.
 - Exprimez les vecteurs $\overrightarrow{CS_1},$ $\overrightarrow{CS_2},$ $\overrightarrow{CS_3}$ dans la base $(\overrightarrow{BA},\overrightarrow{BC})$.
 - Quelles conséquences en tirez-vous ?

Exercice 15

Soit A, B, C les sommets d'un triangle quelconque, K le point milieu du segment [BC], L le milieu de [CA] et M le milieu de [AB]. Démontrez par calcul que $\overrightarrow{KA} + \overrightarrow{LB} + \overrightarrow{MC} = \overrightarrow{0}$

On considère les points suivants A(-4; -2) B(5; 4) C(7; 1) D(-2; -5) et les vecteurs $\overrightarrow{u} \begin{pmatrix} -1 \\ 6 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$.

- 1. Montrer que ABCD est un parallélogramme et calculer AB.
- 2. Calculer les coordonnées des vecteurs $\overrightarrow{u} + \overrightarrow{v}$; $3\overrightarrow{u}$ et $5\overrightarrow{u} 4\overrightarrow{v}$.
- 3. Calculer les coordonnées du point E pour que ABDE soit un parallélogramme.
- 4. Calculer les coordonnées du point I milieu de [CD].
- 5. On donne le point F(9;6), les points A, B et F sont-ils alignés?
- 6. On donne le point G(15;3). Les droites (BC) et (GF) sont-elles parallèles?
- 7. Déterminer les coordonnées du point M tel que $2\overrightarrow{MA} + 3\overrightarrow{MB} = 2\overrightarrow{AC}$
- 8. Le point L(-1;3) est-il sur la médiatrice de [AB]?
- 9. Déterminer une équation paramétrique de la droite (AB)

Exercice 17 (Critères de colinéarité et d'orthogonalité dans le plan)

Soient A(2;1), B(4;2), C(0;5); D(2;6). Déterminer la nature du quadrilatère ABCD

3 Calcul vectoriel dans l'espace

Exercice 18 (Familles libres, familles liées)

Déterminer si les vecteurs suivants sont linéairement indépendants ou non :

- 1. $\overrightarrow{u} = (1, 2, 3)$ et $\overrightarrow{v} = (-1, 3, 2)$.
- 2. $\overrightarrow{u} = (2, 1, 3), \overrightarrow{v} = (4, 2, 6).$
- 3. $\overrightarrow{u} = (3, 2, 1), \overrightarrow{v} = (3, 0, 1).$
- 4. $\overrightarrow{u} = (2,4,6), \overrightarrow{v} = (4,2,6), \overrightarrow{w} = (6,4,2).$
- 5. $\overrightarrow{u} = (-1, 0, 1), \ \overrightarrow{v} = (1, 1, 1), \ \overrightarrow{w} = (0, 1, 2).$

Exercice 19 (Bases?)

Les systèmes suivants forment-ils des bases de l'espace?

$$S_1 = \{(1, -1, 0), (2, -1, 2)\};$$

 $S_2 = \{(1, -1, 0), (2, -1, 2), (1, 0, a)\}$ avec a réel (on discutera suivant la valeur de a);

 $S_3 = \{(1,0,0), (a,b,0), (c,d,e)\}$ avec a,b,c,d,e réels (on discutera suivant leur valeur);

 $S_4 = \{(1,1,3), (3,4,5), (-2,5,7), (8,-1,9)\}.$

Exercice 20 (Base et coordonnées)

Montrer que les vecteurs $u_1 = (0, 1, 1)$, $u_2 = (1, 0, 1)$ et $u_3 = (1, 1, 0)$ forment une base de l'espace. Trouver dans cette base les coordonnées du vecteur u = (1, 1, 1).

Exercice 21 (Base à paramètres)

- 1. Pour quelles valeurs du paramètre réel t la famille ((1,t),(t,3)) est-elle une base du plan?
- 2. Même question avec la famille ((1,0,t),(1,1,t),(t,0,1)) de vecteurs de l'espace.

Exercice 22

Soient A(2;1;5), B(4;2;4), C(3;3;5); D(1;3;7).

- 1. Montrer que (AD) et (BC) sont parallèles
- 2. Montrer que (AB) et (CD) sont sécantes.

Exercice 23

Soient A(0;1;-1), B(2;1;0), C(-3;-1;1); D(7;3;-1).

- 1. Vérifier que A, B et C ne sont pas alignés.
- 2. Calculer les coordonnées du vecteur $2\overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AD}$
- 3. Qu'en déduit-on pour les points A, B, C et D?

Exercice 24

Soient A(-2;2;-1), B(2;0;3), C(-2;0;0); D(0;-4;1) et E(-2;-1;-2).

- 1. Vérifier que A, B et C déterminent un plan.
- 2. Montrer que le vecteur \overrightarrow{DE} est colinéaire au vecteur $-\overrightarrow{AB} 2\overrightarrow{Ac}$.
- 3. Qu'en déduit-on pour la droite (DE)?

Exercice 25 (Points coplanaires : deux méthodes)

ABCD est un tétradre. I, J et K sont les milieux de [AB], [BD] et [JC]. E et F sont définis par $\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AJ}$ et $\overrightarrow{BF} = \frac{2}{3}\overrightarrow{BC}$

Méthode 1:

- 1. Montrer que I, E, et D sont alignés.
- 2. Que peut-on dire des droites (IE) et (FK)?
- 3. En déduire que I, E, F et K sont coplanaires.

Méthode 2 : Dans un repère

- 1. Pourquoi $(B; \overrightarrow{BC}, \overrightarrow{BD}, \overrightarrow{BA})$ est-il un repère de l'espace?
- 2. Déterminer dans ce repère les coordonnées de tous les points de la figure (tracer là).
- 3. Montrer qu'il existe deux réels a et b tels que $\overrightarrow{IK} = a\overrightarrow{IF} + b\overrightarrow{IE}$. Qu'en déduit-on pour E, F et K?

- 1. Les vecteurs suivants sont-ils coplanaires? $\overrightarrow{v}_1 \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$, $\overrightarrow{v}_2 \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$ et $\overrightarrow{v}_3 \begin{pmatrix} -5 \\ 5 \\ 6 \end{pmatrix}$
- 2. Même question avec : $\overrightarrow{w}_1 \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$, $\overrightarrow{w}_2 \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$ et $\overrightarrow{w}_3 \begin{pmatrix} 7 \\ -9 \\ 8 \end{pmatrix}$
- 3. Déterminer le réel m pour que les vecteurs $\overrightarrow{u} \begin{pmatrix} 3 \\ -6 \\ 5 \end{pmatrix}$, $\overrightarrow{v} \begin{pmatrix} -2 \\ 4 \\ 1 \end{pmatrix}$ et $\overrightarrow{w} \begin{pmatrix} 1 \\ m \\ 3 \end{pmatrix}$ soient coplanaires. Exprimer alors le vecteur \overrightarrow{w} dans la base $(\overrightarrow{u}, \overrightarrow{v})$.

Exercice 27

Soit m un réel. On considère les vecteurs $\overrightarrow{a} \begin{pmatrix} m \\ 1 \\ 1 \end{pmatrix}$, $\overrightarrow{b} \begin{pmatrix} 1 \\ m \\ 1 \end{pmatrix}$, $\overrightarrow{c} \begin{pmatrix} 1 \\ 1 \\ m \end{pmatrix}$ et $\overrightarrow{d} \begin{pmatrix} 1 \\ 1 \\ 2 - m \end{pmatrix}$

- 1. Pour quelle(s) valeur(s) de m les vecteurs \overrightarrow{a} et \overrightarrow{b} sont-ils colinéaires ? Que peut-on dire alors des vecteurs \overrightarrow{a} , \overrightarrow{b} et \overrightarrow{c} ?
- 2. Pour quelle(s) autre(s) valeur(s) de m les vecteurs \overrightarrow{a} , \overrightarrow{b} et \overrightarrow{c} sont-ils coplanaires ?
- 3. On suppose m différent de -2 et 1. Calculer en fonction de m les coordonnées du vecteur \overrightarrow{d} dans la base $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$.

4 Systèmes de coordonnées

Exercice 28 (Coordonnées cartésiennes et polaires)

- 1. Déterminer les coordonnées cartésiennes du point M de coordonnées polaires $(6; \frac{\pi}{3})$
- 2. Déterminer les coordonnées cartésiennes du point M de coordonnées polaires $(2; \frac{7\pi}{4})$
- 3. Déterminer les coordonnées cartésiennes du point M de coordonnées polaires $(4;\frac{11\pi}{6})$
- 4. Déterminer les coordonnées polaires du point M de coordonnées cartésiennes $(-\frac{\sqrt{3}}{2}; \frac{1}{2})$.
- 5. Déterminer les coordonnées polaires du point M de coordonnées cartésiennes (0;8)
- 6. Déterminer les coordonnées polaires du point M de coordonnées cartésiennes $(\frac{3\sqrt{2}}{2}; -\frac{3\sqrt{2}}{2})$

Exercice 29 (Coordnnées cartésiennes, cylindriques et sphériques)

Convertir en coordonnées

- 1. Cartésiennes les coordonnées cylindriques $r=3,\,\theta=\frac{-\pi}{6},\,z=2.$
- 2. Cartésiennes les coordonnées sphériques $r=2,\,\theta=\frac{\pi}{6},\,\varphi=\frac{\pi}{4}$
- 3. Cylindriques les coordonnées cartésiennes $x=-\sqrt{2},\,y=\sqrt{2},\,z=1$
- 4. Sphériques les coordonnées cartésiennes x = 1, y = 1, z = 1

Exercice 30 (D'un système de coordonnées à l'autre)

Déterminer les coordonnées cylindriques puis sphériques du point $M(2, 2\sqrt{3}, 4)$.

Exercice 31

Décrire les surfaces suivantes dans le système de coordonnées le mieux adapté :

- 1. Le demi-disque supérieur de centre ${\cal O}$ et rayon 2 en polaires
- 2. La surface triangulaire de sommets A(1,0), B(1,1), C(2,0)
- 3. La portion de cylindre d'axe (Oz), de rayon 3, comprise entre les plans d'équations z=1 et z=2
- 4. Le cône droit de base circulaire de rayon R et de hauteur H
- 5. Le noyau externe de la Terre, d'épaisseur 2300km à partir de 1200km du centre

Exercice 32 (Distance terrestre)

La terre étant assimilée à une sphère de rayon R, calculer la distance à vol d'oiseau entre le point A de longitude θ_1 et de latitude ϕ_1 et le point B de longitude θ_2 et de latitude ϕ_2 . On rappelle que cette distance est donnée par la longueur de l'arc de cercle intersection de la sphère et du plan OAB.

Application numérique : Calculer la distance entre Paris (48deg 49min N, 2 deg 19 min E) et Buenos Aires (34 deg 40 min S, 58 deg 30 min O). On prendra R = 6378.

5 Equations paramétriques

Exercice 33 (Équations paramétrique de droites dans l'espace)

- 1. Donner une représentation paramétrique de la droite passant par le point A(1; -2; 3) et de vecteur directeur $\overrightarrow{u}(1; 5; -4)$
- 2. Donner une représentation paramétrique de la droite passant par les points A(-2;5;4) et B(3;0;-6)
- 3. Une droite (d) a pour représentation paramétrique $\begin{cases} x &= 2+3t \\ y &= -1+t \\ z &= 1-2t \end{cases}$
 - (a) Donner un vecteur directeur de cette droite.
 - (b) Donner deux points distincts de (d).
 - (c) Le point P(-1; -2; -5) appartient-il à (d)?

Exercice 34

Étudier les positions relatives de (d_1) et (d_2) , puis (d_2) et (d_3) et enfin (d_1) et (d_3) .

$$d_1: \begin{cases} x = -1 + 3t \\ y = -1 - 3t & t \in \mathbb{R} \\ z = 2t \end{cases} \qquad d_2: \begin{cases} x = -4 - 3t \\ y = 9 - 2t & t \in \mathbb{R} \end{cases} \qquad d_3: \begin{cases} x = -6t \\ y = 6t & t \in \mathbb{R} \\ z = -4t \end{cases}$$

Exercice 35 (Équations paramétrique de plans dans l'espace)

Montrer que les points A(3;3;0), B(5;4;-2) et C(6;2;1) définissent un plan et en donner une représentation paramétrique.

Exercice 36 (Équation d'un plan passant par trois points)

On munit l'espace d'un repère $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$.

Parmi les représentations paramétriques suivantes quelles sont celles qui correspondent à l'unique plan ${\mathcal P}$ passant les trois points A(1,1,0), B(-1,0,4) et C(2,2,-1)?

$$\mathcal{P}_{1}: \left\{ \begin{array}{lll} x = & 1-s+3t \\ y = & 1+2t \\ z = & 3s-5t \end{array} \right. \quad \mathcal{P}_{2}: \left\{ \begin{array}{lll} x = & 1-2s+t \\ y = & 1-s+t \\ z = & 4s-t \end{array} \right. \quad \mathcal{P}_{3}: \left\{ \begin{array}{lll} x = & 1-s \\ y = & -1+2t \\ z = & 2s \end{array} \right.$$

Exercice 37

Exercice 37
Le plan P apour représentation paramétrique : $\begin{cases} x = -2 + t + s \\ y = -t + 2s \\ z = 1 + 3t - s \end{cases}$

- 1. Préciser les positions relatives des plans P et $(O; \overrightarrow{i}; \overrightarrow{j})$
- 2. Déterminer une représentation paramétrique du plan π passant par A(1;3;0) et parallèle à P.
- 3. Déterminer une représentation paramétrique de la droite Δ intersection de π et du plan $(O; \overrightarrow{i}; \overrightarrow{j})$

Exercice 38 (Point d'intersection de deux droites)

L'espace est muni d'un repère $(O, \vec{i}, \vec{j}, \vec{k})$. On considère les deux droites d et d' de représentation paramétrique respective

$$\begin{cases} x = 3 + 2t \\ y = -1 - t & t \in \mathbb{R} \\ z = 4 + 3t \end{cases} \qquad \begin{cases} x = 1 - 3t \\ y = 1 + t & t \in \mathbb{R}. \\ z = 2 - 5t \end{cases}$$

Démontrer que les droites d et d' sont sécantes en un point A dont on déterminera les coordonnées.

Exercice 39 (Droites non coplanaires)

L'espace est muni d'un repère $(O, \vec{i}, \vec{j}, \vec{k})$. On considère les deux droites d et d' de représentation paramétrique respective

$$\begin{cases} x &= -2+t \\ y &= 2-t \\ z &= 1+4t \end{cases} \quad t \in \mathbb{R} \qquad \begin{cases} x &= 3+t \\ y &= -2+3t \\ z &= 1+t \end{cases}, \ t \in \mathbb{R}.$$

Démontrer que les droites d et d' ne sont pas coplanaires