Machine Learning Lecture 1

Machine learning: what is it?

A brief definition

Machine learning as a discipline aims to design, understand and apply computer programs that learn from experience (i.e., data) for the purpose of modeling, prediction, or control

Machine learning is everywhere

 Search, content recommendation, image/scene analysis, machine translation, dialogue systems, automated assistants, game playing, sciences (biology, chemistry, etc), ...

Prediction problems

About future events

Aarket value

Time

→ Also collision avoidance, monitoring, medical risk, etc.

Prediction problems

About properties we don't yet know

would I like this movie?

soluble in water?

what is the image about?

7. , © Neural Information Processing Systems Foundation, Inc.

"ML is very cool"

what is it in Spanish?

Example: supervised learning

- It is easier to express tasks in terms of examples of what you want (rather than how to solve them)
- E.g., image classification (1K categories)

<u>Image</u>	<u>Category</u>
	mushroom
. © Neural Information Processing Systems Foundation, Inc.	
	cherry
8. © Geoffrey Hinton, University of Toronto.	
• • •	

Example: supervised learning

- It is easier to express tasks in terms of examples of what you want (rather than how to solve them)
- E.g., image classification (1K categories)

<u>Image</u>	<u>Category</u>
	mushroom
© Neural Information Processing Systems Foundation, Inc Geoffrey Hinton, University of Toronto.	cherry
•••	•••

 Rather than specify the solution directly (hard), we automate the process of finding one based on examples

Example: supervised learning

- It is easier to express tasks in terms of examples of what you want (rather than how to solve them)
- → E.g., image classification (1K categories)

<u>Image</u>	<u>Category</u>
$higg(egin{array}{c} ig(eta ig) \ ig) \end{array} = egin{array}{c} ig(eta ig) \ ig) \ ig)$ Reval Information Processing Systems Foundation, Inc	mushroom
© Geoffrey Hinton, University of Toronto.	cherry
•••	•••

 Rather than specify the solution directly (hard), we automate the process of finding one based on examples

Example: supervised learning

- It is easier to express tasks in terms of examples of what you want (rather than how to solve them)
- No limit to what you can learn to predict...

English Spanish

h(Is it real? ; $\theta)$ = $\dot{\epsilon}$ Es real?

Will it continue? ¿Continuará?

For how long? ¿Por cuanto tiempo?

...

Already in production for some language pairs (Google)

A concrete example

• Learning to predict preferences from just a little data...

© Black Bear Pictures

A concrete example

• Learning to predict preferences from just a little data...

A concrete example

• Learning to predict preferences from just a little data...

Supervised learning

• Learning to predict preferences from just a little data...

Supervised learning

Supervised learning: training set

Supervised learning: test set

Supervised learning: training set

Supervised learning: classifier

Supervised learning: classifier

$h(x) = -1 \qquad h(x) = +1$ $+ \qquad +$ $- \qquad x_1$

Supervised learning: classifier

Supervised learning: classifier

Supervised learning: classifier

Supervised learning: classifier

Supervised learning: generalization

Supervised learning +

Multi-way classification (e.g., three-way classification)

$$h\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = \text{politics} \qquad h: \mathcal{X} \to \{\text{politics, sports, other}\}$$

13. BBC news and the BBC logo are registered trademarks of Google LLC.

Regression

$$h\left(\begin{array}{c} \bullet \end{array}\right) = \$1,349,000 \qquad h: \mathcal{X} \to \mathbb{R}$$

Structured prediction

$$h\left(\begin{array}{c} A \text{ group of people} \\ A \text{ shopping at an} \\ A \text{ outdoor market} \end{array}\right)$$

15. © Computer Vision & Pattern Recognition Lab, 2017

Key things to understand

 $h: \mathcal{X} \to \{\text{English sentences}\}$

- Posing supervised machine learning problems
- Supervised classification
- The role of training/test sets
- A classifier
- A set of classifiers
- Errors, generalization

Types of machine learning

- Supervised learning
 - prediction based on examples of correct behavior
- Unsupervised learning
 - no explicit target, only data, goal to model/discover
- Semi-supervised learning
 - supplement limited annotations with unsupervised learning
- Active learning
 - learn to query the examples actually needed for learning
- Transfer learning
 - how to apply what you have learned from A to B
- Reinforcement learning
 - learning to act, not just predict; goal to optimize the consequences of actions
- Etc.

```
Attribution List - Lecture 1 - 6.86x Maxchine Learning
Location: Throughout course
Object Source / URL: own work
 Citation/Attribution: Instructor content (c) Tommi Jaakkola. Used with permission.
Unit 1 Lecture 1: Introduction to Machine Learning
Screenshot of a Google search of "deep learning"
Object Source / URL: Screenshot of a Google search of "deep learning"
Citation/Attribution: Google and the Google logo are registered trademarks of Google LLC.
Unit 1 Lecture 1: Introduction to Machine Learning
Screenshot of a Google search of "Netflix"
Object Source / URL: Screenshot of a Google search of "Netflix
 Citation/Attribution: (c) Netflix, Inc.
Object Source / URL: Screenshot of a Google search of "mushrooms"
 Citation/Attribution: Google and the Google logo are registered trademarks of Google LLC.
Unit 1 Lecture 1: Introduction to Machine Learning
Image of "Ear-reddening game move"
 Object Source / URL: https://senseis.xmp.net/?EarReddeningMove
Citation/Attribution: © Senseis Library
Unit 1 Lecture 1: Introduction to Machine Learning
Movie poster thumbnail for the film "Imitation Game"
 Slides: 1 at #5, #6, #7, #8. Lecture 12 at #3, #4, #5
 Object Source / URL: https://www.imdb.com/title/tt2084970/
 Citation/Attribution: © Black Bear Pictures
Unit 1 Lecture 1: Introduction to Machine Learning
 Thumbnail of two mushroon
Slides: # 5 #10 #11 #12 #13 #14
 Object Source / URL: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
 Citation/Attribution: Image from "ImageNet Classification with Deep Convolutional Neural Networks" by Alex Krizhevsky et all, © Neural Information Processing Systems
```

```
Attribution List - Lecture 1 - 6.86x Maxchine Learning

8.

Unit 1 Lecture 1: Introduction to Machine Learning
Thumbnal of one Delimetian dog
Sildes: 95, 810, 811, 812, 813, 814
Object Source / URL: https://www.sildeserve.com/rufin/an-overview-of-deep-learning
Citation/Attribution: "An Overview of Deep Learning" © Geoffrey Hinton, University of Toronto.

9.
Unit 1 Lecture 1: Introduction to Machine Learning
Movie poster thumbnall for the film "Interestellar"
Sildies: #10, 811, 812, 813, 814
Object Source / URL: https://www.imdb.com/title/title/16952/
Citation/Attribution: © 2020 The Studios At Paramount
```

10.

Unit 1 Lecture 1: Introduction to Machine Learning

Movie poster thumbnail for the film "Gone Girl"

Slides: \$10, 811, \$12, 813, \$14

Object Source / URL: https://www.imdb.com/title/tt2257998/?ref_=fn_al_tt_1

Citation/Attribution: ⊕ Twentieth Century Fox

11.

Unit 1 Lecture 1: Introduction to Machine Learning
Movie poster thumbnail for the film "Fury"
Sities: #10, #11, #12, #15, #14
Object Source / URL: https://www.imdb.com/title/tt2713180/?ref_=fn_ai_tt_1
Citation/Attribution: © 2020 Sony Pictures Digital Productions Inc.

12.
Unit 1 Lecture 1: Introduction to Machine Learning
Movie poster thumbnall for "Big Hero 6"
Sildes: #10, #11, #12, #13, #14
Object Source JURL: https://www.lmdb.com/title/tt2245084/?ref_env_sr_srsg_0
Citation/Attribution: © Disney

13.
Unit 1 Lecture 1: Introduction to Machine Learning
Screenshot of BBC news page
Sildes: #25
Object Source / URL: http://news.bbc.co.uk/2/hi/uk_news/7616996.stm
Citation/Attribution: BBC news and the BBC logo are registered trademarks of Google LLC.

14.
Unit 1 Lecture 1: Introduction to Machine Learning
Thumbnail of a living room
Sildes: #25
Object Source / URL: https://www.robertpaul.com/real-estate/150-cambridge-st-410-cambridge-ma-02141/71952983/28587689
Citation/Attribution: © Robert Paul Properties, Cambridge.

15.
Unit 1 Lecture 1: Introduction to Machine Learning
Thumbnail of a group of people shopping at an outdoor market
Sildies: #25
Object Source / URL: http://fice.fol.04231.12/iysmoon/imjp2017/iecture_note/#9*.pdf – page 2
Citation/Attribution: © Computer Vision & Pattern Recognition Lab, 2017.