TEMPLATE FOR NOTES

Create by

CHEN HUANNENG

Update at 23 February 2025

Final review by Abel

Template for Notes

Mira hacia el cielo, eres infinito Romperás el capullo, volarás tan alto Sigue avanzando, has llegado lejos

> Mira Hacia El Cielo G.E.M.

Chen Huaneng (Abel)
Xiamen University
huanengchen@foxmail.com

Contents

1	Usage Examples · · · · · · · · · · · · · · · · · · ·	1
1	Citation · · · · · · · · · · · · · · · · · · ·	3
	1.1 Traveling Salesman Problem · · · · · · · · · · · · · · · · · · ·	3
2	Formula	5
	2.1 Flying Sidekick Traveling Salesman Problem · · · · · · · · · · · · · · · · · · ·	5
Re	eferences·····	7

B CONTENTS

1
Usage Examples

1 Citation

1.1 Traveling Salesman Problem

旅行商问题(Traveling Salesman Problem, TSP)是组合优化领域的经典问题之一,其核心目标是给定城市列表和每对城市之间的距离,求恰好访问每个城市一次并返回起始城市的最短可能路线。该问题于 1930 年正式提出,是优化中研究最深入的问题之一,被用作许多优化方法的基准。自从该问题被正式提出以来,一直是运筹学、计算机科学和物流管理等领域的研究热点,尽管该问题在计算上很困难,但许多启发式方法和精确算法是已知的[1-2]。

图 1-1: TSP 示意图

TSP 可以表述为整数线性规划模型^[3]:假设共有 N 个城市,每个城市的编号为 $1, \dots, N$,从城市 i 到城市 j 的旅行成本(距离)为 $c_{ij} > 0$ 。旅行商的目标是从任意一个城市出发访问完所有的城市,每个城市只能访问一次,最后回到最初的城市,目标是找到一条依次访问所有城市且访问城市不重复

CITATION

的最短路线。TSP 中的决策变量为 $x_{ij} = \begin{cases} 1, & \text{存在从城市 } i \text{ 到城市 } j \text{ 的路径} \\ 0, & \text{其他} \end{cases}$,城市节点集合表示为

V(|V|=N)。由于可能存在子回路,所以在构建 TSP 模型时需要消除会产生子回路的情况,这里采 用 Miller-Tucker-Zemlin(MTZ) 约束进行子回路的消除 [4], 引入连续变量 $u_i(\forall i \in V, u_i > 0)$, 其取值可 以为任何非负实数(实数集合表示为 R)。这里用 u_i 表示编号为 i 的城市的访问次序,比如当 $u_i = 5$ 时表示编号为1的城市是从出发点开始,第5个被访问到的点。因此,TSP的数学模型可以表示为:

$$\min \quad \sum_{i \in V} \sum_{j \in V, i \neq j} c_{ij} x_{ij} \tag{1-1}$$

s.t.
$$\sum_{i \in V} x_{ij} = 1,$$

$$\forall j \in V, i \neq j$$

$$\sum_{j \in V} x_{ij} = 1,$$

$$\forall i \in V, i \neq j$$
 (1-2)

$$\sum_{i \in V} x_{ij} = 1, \qquad \forall i \in V, i \neq j$$
 (1-3)

$$u_i - u_j + Nx_{ij} \le N - 1, \qquad \forall i, j \in V; i \ne j$$
 (1-4)

$$u_i \ge 0, u_i \in R (1-5)$$

$$x_{ij} \in \{0, 1\},$$
 $i, j \in V; i \neq j$ (1-6)

目标函数1-1表示最小化访问所有城市的成本(距离),约束1-2和1-3保证每个城市节点的入度和出度 为 1, 即每个城市只进入一次和出去一次, 保证了每个城市只访问一次, 不会被重复访问, 约束1-4消 除子回路,约束1-5和1-6表示变量的取值范围。

2

Formula

2.1 Flying Sidekick Traveling Salesman Problem

Flying Sidekick Traveling Salesman Problem (FSTSP) 由 Murray(2015) 等^[5]提出。FSTSP 数学模型的符号含义如表**2**-1所示。

表 2-1: FSTSP 模型符号及含义

符号	含义
0	起点车场
c+1	终点车场
$\mathbf{C} = \{1, 2, \cdots, c\}$	全部客户集合
$\mathbf{C}'\subseteq\mathbf{C}$	无人机可访问的客户集合
$N_0 = \{0, 1, 2, \cdots, c\}$	流出节点集合
$N_{+} = \{1, 2, \cdots, c+1\}$	流入节点集合
$N = \{0, 1, 2, \cdots, c, c+1\}$	全部节点集合
$\langle i, j, k \rangle \in P, i \in N_0, j \in \mathbf{C}', j \neq i, k \in N_+, k \neq i, k \neq j$	无人机飞行路径集合(符合模型约束的路
	径)
$ au_{ij}'/ au_{ij}$	弧 (i,j) 的飞行/行驶时间成本
S_L/S_R	无人机发射/回收耗时
e	无人机续航时长
$x_{ij} \in \{0, 1\}$	卡车路由决策变量
$y_{ijk} \in \{0,1\}$	无人机路由决策变量
$1 \le u_i \le c + 2$	卡车破子圈辅助变量
t_i'/t_i	无人机/卡车有效到达时间戳辅助变量
$p_{ij} \in \{0,1\}$	无人机架次先后辅助变量

FSTSP 数学模型(部分)如下:

FORMULA FORMULA

$$\min \quad t_{c+1} \tag{2-1}$$

s.t.
$$\sum_{\substack{i \in N_0 \\ i \neq j}} x_{ij} + \sum_{\substack{i \in N_0 \\ i \neq j}} \sum_{\substack{k \in N_+ \\ \langle i, j, k \rangle \in P}} y_{ijk} = 1, \quad \forall j \in C$$
 (2-2)

$$\sum_{j \in N_+} x_{0j} = 1$$
, (卡车出发约束) (2-3)

$$\sum_{i \in N_0} x_{i,c+1} = 1 \tag{2-4}$$

$$u_i - u_j + 1 \le (c+2)(1 - x_{ij}), \quad \forall i \in C, j \in \{N_+ : j \ne i\}$$
 (2-5)

也可以如下表示:

$$\min \quad t_{c+1} \tag{2-6}$$

s.t.
$$\sum_{\substack{i \in N_0 \\ i \neq j}} x_{ij} + \sum_{\substack{i \in N_0 \\ i \neq j}} \sum_{\substack{k \in N_+ \\ \langle i, j, k \rangle \in P}} y_{ijk} = 1 , \quad \forall j \in C$$
 (2-7)

$$\sum_{j \in N_+} x_{0j} = 1 \tag{2-8}$$

$$\sum_{i \in N_0} x_{i,c+1} = 1 \tag{2-9}$$

$$u_i - u_j + 1 \le (c+2)(1-x_{ij}), \quad \forall i \in C, j \in \{N_+ : j \ne i\}$$
 (2-10)

References

- [1] OENCAN T, ALTINEL I K, LAPORTE G. A comparative analysis of several asymmetric traveling salesman problem formulations[J/OL]. Computers & Operations Research, 2009, 36(3): 637-654. DOI: 10.1016/j.cor.2007.11.008.
- [2] ROBERTI R, TOTH P. Models and algorithms for the asymmetric traveling salesman problem: an experimental comparison[J/OL]. Euro Journal on Transportation & Logistics, 2012, 1(1-2): 113-133. DOI: 10.1007/s13676-012-0010-0.
- [3] PAPADIMITRIOU C H, STEIGLITZ K. Combinatorial optimization: algorithms and complexity[M]. Dover edition ed. Mineola, NY: Dover Publications, 1998: 308-309.
- [4] MILLER C E, TUCKER A W, ZEMLIN R A. Integer programming formulation of traveling salesman problems[J/OL]. Journal of the Acm, 1960, 7(4): 326-329. DOI: 10.1145/321043.321046.
- [5] MURRAY C C, CHU A G. The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery[J/OL]. Transportation Research Part C: Emerging Technologies, 2015, 54: 86-109. DOI: 10.1016/j.trc.2015.03.005.