A Cumulative distribution functions

Definition A.1 Let $X : (\Omega, \mathcal{A}, \mu) \longrightarrow \mathbb{R}$ be a \mathbb{R} -valued random variable. The **cumulative distribution function** of X is, by definition, the function $F_X : \mathbb{R} \longrightarrow [0, 1]$ defined as follows:

$$F_X(x) := P(X \le x) = \mu(\{\omega \in \Omega \mid X(\omega) \le x\}), \text{ for each } x \in \mathbb{R}.$$

Definition A.2 A function $f: D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ is said to be

- non-decreasing if $f(x) \leq f(y)$, for any $x, y \in D$ with $x \leq y$.
- non-increasing if $f(x) \ge f(y)$, for any $x, y \in D$ with $x \le y$.
- monotone if f is either non-decreasing or non-increasing.

Theorem A.3 A function $F : \mathbb{R} \longrightarrow [0,1]$ is a cumulative distribution function of some \mathbb{R} -valued random variable if and only if each of following four conditions holds:

- F is non-decreasing.
- F is right-continuous.
- $\lim_{x\to-\infty} F(x) = 0$.
- $\lim_{x\to +\infty} F(x) = 1$.

PROOF If $F : \mathbb{R} \longrightarrow [0,1]$ is a cumulative distribution function of some \mathbb{R} -valued random variable $X : (\Omega, \mathcal{A}, \mu) \longrightarrow \mathbb{R}$, then the four conditions follow immediately from the property of the probability measure μ . Conversely, suppose the four conditions hold. Let $\Omega := (0,1)$ and $\mathcal{B}(\Omega)$ the Borel subsets of Ω . Let μ be the Lebesgue measure on $(\Omega, \mathcal{B}(\Omega))$, i.e. μ is determined by:

$$\mu((0,\omega)) := \omega$$
, for each $\omega \in \Omega = (0,1)$.

Define the random variable $X:(\Omega,\mathcal{B}(\Omega),\mu)\longrightarrow \mathbb{R}$ by:

$$X(\omega) := \sup F^{-1}((0,\omega)), \text{ for each } \omega \in \Omega = (0,1).$$

Then,

Theorem A.4 Let $f: D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ be a monotone function. Then,

$$\lim_{x \to a^-} f(x)$$
 and $\lim_{x \to a^+} f(x)$

exist for every $a \in interior(D)$.

Definition A.5 Let $f: D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$. A point $a \in \text{interior}(D)$ is a jump discontinuity of f if both

$$\lim_{x \to a^-} f(x)$$
 and $\lim_{x \to a^+} f(x)$

exist but they are unequal.

Corollary A.6 A monotone \mathbb{R} -valued function defined on an interval of \mathbb{R} can have only jump discontinuities.

Theorem A.7 (Darboux-Froda)

The set of discontinuities of a monotone \mathbb{R} -valued function defined on an interval of \mathbb{R} is at most countable.

Study Notes April 26, 2015 Kenneth Chu

B The O_P and o_P notations; convergence in distribution implies boundedness in probability

[1]

Definition B.1 (The Big- O_P notation)

Let $\{X_n : (\Omega_n, \mathcal{A}_n, \mu_n) \longrightarrow \mathbb{R}^k\}_{n \in \mathbb{N}}$ be a sequence of \mathbb{R}^k -valued random variables. Let $\{a_n\}_{n \in \mathbb{N}}$ be sequence of positive numbers. The notation $X_n = O_p(a_n)$ means:

For every $\varepsilon > 0$, there exist $C_{\varepsilon} > 0$ and $n_{\varepsilon} \in \mathbb{N}$ such that $P(|X_n| \leq C_{\varepsilon} \cdot a_n) > 1 - \varepsilon$, for every $n \geq n_{\varepsilon}$.

Proposition B.2 The following are equivalent:

- (a) $X_n = O_P(a_n)$.
- (b) For every $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that $P(|X_n| \le C_{\varepsilon} \cdot a_n) > 1 \varepsilon$, for each $n \in \mathbb{N}$.
- (c) For every $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that $\limsup_{n \to \infty} P(|X_n| > C_{\varepsilon} \cdot a_n) \le \varepsilon$.
- (d) For every $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that $\sup_{n \in \mathbb{N}} P(|X_n| > C_{\varepsilon} \cdot a_n) \le \varepsilon$.
- (e) $\lim_{C \to \infty} \limsup_{n \to \infty} P(|X_n| > C \cdot a_n) = 0.$
- (f) $\lim_{C \to \infty} \sup_{n \in \mathbb{N}} P(|X_n| > C \cdot a_n) = 0.$

Proof

$$(a) \Longrightarrow (b)$$

Let $\varepsilon > 0$ be given. By (a), there exist $B_{\varepsilon} > 0$ and $n_{\varepsilon} \in \mathbb{N}$ such that $P(|X_n| \leq B_{\varepsilon} \cdot a_n) > 1 - \varepsilon$, for each $n \geq n_{\varepsilon}$.

Claim: Let Y be an \mathbb{R}^k -valued random variable. Then, for each $\varepsilon > 0$, there exists $A_{\varepsilon} > 0$ such that $P(|Y| \le A_{\varepsilon}) > 1 - \varepsilon$.

Proof of Claim: Suppose the Claim were false. Then, there exists some $\varepsilon>0$ such that $P(|Y|\leq A)\leq 1-\varepsilon$, for every A>0; equivalently, $P(|Y|>A)>\varepsilon$, for every A>0. This implies $\lim_{A\to\infty}P(|Y|>A)=\limsup_{A\to\infty}P(|Y|>A)\geq\varepsilon>0$. But this is a contradiction since $\lim_{A\to\infty}P(|Y|>A)=0$, for every \mathbb{R}^k -valued random variable Y. This proves the Claim.

By the Claim, for each $i=1,2,\ldots,n_{\varepsilon}-1$, there exists $B_{\varepsilon}^{(i)}>0$ such that $P\Big(|X_i|\leq B_{\varepsilon}^{(i)}\cdot a_i\Big)>1-\varepsilon$. Now, let $C_{\varepsilon}:=\max\Big\{B_{\varepsilon}^{(1)},B_{\varepsilon}^{(1)},\ldots,B_{\varepsilon}^{(n_{\varepsilon}-1)},B_{\varepsilon}\Big\}$. Then, $P\big(|X_n|\leq C_{\varepsilon}\cdot a_n\big)>1-\varepsilon$, for every $n\in\mathbb{N}$. This proves the implication (a) \Longrightarrow (b).

- (b) \Longrightarrow (a) Trivial: Suppose (b) holds. Then (a) immediately follows with $n_{\varepsilon} = 1$.
- (a) \iff (c) Let $\varepsilon > 0$ be given.
 - (a) \iff There exist $C_{\varepsilon} > 0$ and $n_{\varepsilon} \in \mathbb{N}$ such that $P(|X_n| \leq C_{\varepsilon} \cdot a_n) > 1 \varepsilon$, for every $n \geq n_{\varepsilon}$.
 - \iff There exist $C_{\varepsilon} > 0$ and $n_{\varepsilon} \in \mathbb{N}$ such that $P(|X_n| > C_{\varepsilon} \cdot a_n) \leq \varepsilon$, for every $n \geq n_{\varepsilon}$.
 - \iff There exist $C_{\varepsilon} > 0$ such that $\limsup_{n \to \infty} P(|X_n| > C_{\varepsilon} \cdot a_n) \le \varepsilon \iff$ (c)

Study Notes April 26, 2015 Kenneth Chu

(b) \iff (d) Let $\varepsilon > 0$ be given.

- (b) \iff There exists $C_{\varepsilon} > 0$ such that $P(|X_n| \le C_{\varepsilon} \cdot a_n) > 1 \varepsilon$, for every $n \in \mathbb{N}$.
 - \iff There exists $C_{\varepsilon} > 0$ such that $P(|X_n| > C_{\varepsilon} \cdot a_n) \leq \varepsilon$, for every $n \in \mathbb{N}$.
 - \iff There exist $C_{\varepsilon} > 0$ such that $\sup_{n \in \mathbb{N}} P(|X_n| > C_{\varepsilon} \cdot a_n) \leq \varepsilon \iff$ (d)
- $(d) \iff (f)$ Let $\varepsilon > 0$ be given. We first establish that $(f) \implies (d)$.
 - (f) \iff There exists $C_{\varepsilon} > 0$ such that $\sup_{n \in \mathbb{N}} P(|X_n| > C \cdot a_n) \le \varepsilon$, for each $C \ge C_{\varepsilon}$.
 - \implies There exists $C_{\varepsilon} > 0$ such that $\sup_{n \in \mathbb{N}} P(|X_n| > C_{\varepsilon} \cdot a_n) \le \varepsilon \iff$ (d)

Conversely, suppose (d) holds and $C \geq C_{\varepsilon}$. Then, $|X_n| > C \cdot a_n \Longrightarrow |X_n| > C_{\varepsilon} \cdot a_n$. Hence, $\{|X_n| > C \cdot a_n\} \subseteq \{|X_n| > C_{\varepsilon} \cdot a_n\}$, which in turn implies $P(|X_n| > C \cdot a_n) \leq P(|X_n| > C_{\varepsilon} \cdot a_n)$. Thus, we have

$$\sup_{n\in\mathbb{N}} P(|X_n| > C \cdot a_n) \leq \sup_{n\in\mathbb{N}} P(|X_n| > C_\varepsilon \cdot a_n) \leq \varepsilon,$$

i.e. (f) holds.

- (c) \iff (e) Let $\varepsilon > 0$ be given. We first establish that (e) \implies (c).
 - (e) \iff There exists $C_{\varepsilon} > 0$ such that $\limsup_{n \to \infty} P(|X_n| > C \cdot a_n) \leq \varepsilon$, for each $C \geq C_{\varepsilon}$.
 - $\implies \text{ There exists } C_{\varepsilon} > 0 \text{ such that } \limsup_{n \to \infty} P(|X_n| > C_{\varepsilon} \cdot a_n) \le \varepsilon \iff (c)$

Conversely, suppose (c) holds and $C \geq C_{\varepsilon}$. Then, $|X_n| > C \cdot a_n \Longrightarrow |X_n| > C_{\varepsilon} \cdot a_n$. Hence, $\{|X_n| > C \cdot a_n\} \subseteq \{|X_n| > C_{\varepsilon} \cdot a_n\}$, which in turn implies $P(|X_n| > C \cdot a_n) \leq P(|X_n| > C_{\varepsilon} \cdot a_n)$. Thus, we have

$$\limsup_{n \to \infty} P(|X_n| > C \cdot a_n) \leq \limsup_{n \to \infty} P(|X_n| > C_{\varepsilon} \cdot a_n) \leq \varepsilon,$$

i.e. (e) holds.

This completes the proof of the Proposition.

Definition B.3 (Bounded in probability)

A sequence $\{X_n : (\Omega_n, \mathcal{A}_n, \mu_n) \longrightarrow \mathbb{R}^k\}_{n \in \mathbb{N}}$ of \mathbb{R}^k -valued random variables is said to be **bounded in probability** if $X_n = O_P(1)$.

Theorem B.4

If a sequence $\{X_n : (\Omega_n, \mathcal{A}_n, \mu_n) \longrightarrow \mathbb{R}^k\}_{n \in \mathbb{N}}$ of \mathbb{R}^k -valued random variables converges in distribution to some random variable $X : (\Omega, \mathcal{A}, \mu) \longrightarrow \mathbb{R}^k$, then the sequence $\{X_n\}$ is bounded in probability.

Proof Let

References

[1] DEVILLE, J.-C., AND SÄRNDAL, C.-E. Calibration estimators in survey sampling. *Journal of the American Statistical Association* 87, 418 (1992), 376–382.