Cronograma de Projeto de Engenharia

Derivadores IOT

Item	Informação
Código do Projeto:	001
Cliente / Sponsor:	Alexandre
Gerente do Projeto:	Grupo 2
Data de Emissão:	28/08/2000
Versão do Documento:	1.0

Controle de Versões

Versão	Data		Descrição das Alterações
1.0		Leonardo, Matheus, Gabriel e Aruã	cronograma inicial.

1. Introdução

Os dados de encalhe de mamíferos marinhos na costa brasileira apresentam números que não refletem a saúde dos oceanos Brasileiros. Contudo, a história de cada carcaça que chega à praia é, em grande parte, um mistério. A ausência de informações sobre sua trajetória de deriva impossibilita a correlação direta entre a mortalidade e potenciais causas humanas, como a pesca ilegal, o tráfego de embarcações ou incidentes relacionados à extração de óleo e gás. Esta lacuna de conhecimento limita a eficácia das ações de conservação e fiscalização.

O **Projeto Deriva IOT** nasceu para solucionar este desafio. A missão do projeto é desenvolver e implementar um sistema de monitoramento inovador e de baixo custo para rastrear, em tempo real, a deriva de carcaças de baleias simuladas. O objetivo principal é coletar dados de trajetória precisos que alimentarão modelos oceanográficos, permitindo-nos reconstruir os caminhos percorridos e, consequentemente, inferir as possíveis áreas de mortalidade.

Ao decifrar essas trajetórias, o projeto busca fornecer evidências científicas robustas para avaliar o impacto de atividades antrópicas no ecossistema marinho. Adicionalmente, a plataforma será projetada com a capacidade de, em fases futuras, integrar sensores para coletar dados ambientais valiosos—como temperatura da água, correntes e ondas—enriquecendo ainda mais os modelos e nossa compreensão da dinâmica oceânica.

Este documento serve como o plano mestre do Projeto Deriva IOT. Ele detalha o planejamento, a execução e o controle de todas as atividades, estabelecendo os requisitos funcionais e não funcionais, o cronograma, a solução técnica proposta, as responsabilidades e as entregas chave. É a ferramenta central para alinhar todas as partes interessadas, desde a equipe científica até a de engenharia, em torno de um objetivo comum e um plano de ação claro.

2. Solução desenvolvida

A solução desenvolvida consiste num sistema de monitorização loT de ponta a ponta No seu núcleo, o sistema utiliza derivadores flutuantes de baixo custo, equipados com módulos GPS para captura precisa de localização e transceptores LoRa para comunicação de longo alcance e baixo consumo energético. Estes dispositivos autónomos transmitem a sua trajetória em tempo real para uma rede de gateways costeiros, que por sua vez encaminham os dados para uma plataforma web centralizada. Através de uma interface interativa, a equipa científica pode visualizar o percurso dos derivadores num mapa, extrair dados históricos para análise e receber alertas críticos, obtendo assim a informação empírica necessária para calibrar modelos de deriva e investigar o impacto de atividades humanas no ecossistema marinho.

2.1 Componentes e materiais

Para este projeto nós idealizamos a aplicação utilizando os seguintes componentes mecânicos e eletrônicos:

- Módulo cartão micro SD
- Cartão SD
- Bateria 6600 mAh
- Antena de fibra de vidro
- Modem 4G
- Chip 4G
- Placa de fenolite
- Carregador de bateria Cn3065
- Placa solar 6V
- Módulo LilyGo (ESP32 + LoRa + GPS)
- Módulo sensor de tensão
- Fios e conectores
- Controlador de carga solar
- Bateria estacionária 40A
- Cabo pigtail SMA macho para N fêmea

2.2 Receptores

Os receptores serão responsáveis por coletar periodicamente os dados de posição dos transmissores que se encontram à deriva. Eles estarão posicionados estrategicamente na costa para que o sinal recebido esteja ao alcance.

2.3 Transmissores

Os transmissores irão coletar informações de posição utilizando um módulo GPS e enviar para os receptores via tecnologia LoRa uma vez a cada hora. Além disso, ele irá mandar alertas caso ele chegue na costa ou se ele atingir uma distância muito grande da área de alcance do receptor.

2.4 Dashboard

O dashboard deve permitir a visualização das trajetórias dos módulos derivadores de forma amigável ao usuário, permitindo filtrar as informações de interesse, como o módulo e o período em que os dados foram coletados. Deve ser possível também visualizar a trajetória, não apenas os pontos pelos quais o módulo passou.

3. Requisitos Levantados

RF1: Módulo Transmissor

Descrição: O sistema deve possuir dois módulos transmissores idênticos, capazes de operar de forma autônoma para capturar e enviar dados de localização.

Tabela de descrição do RF1

Código & Nome	Descrição	Categoria	Prioridade	Status
NF 1.1 Captura de Localização	O módulo deve ser capaz de capturar as coordenadas de localização via GPS.	Funcionalidade	Obrigatório	A Fazer
NF 1.2 Comunicação com Receptor	O módulo deve ser capaz de comunicar e enviar os dados de localização para o receptor.	Funcionalidade	Obrigatório	A Fazer
NF 1.3 Frequência de Captura	A captura da localização via GPS deve ocorrer a cada 15 minutos.	Desempenho	Obrigatório	A Fazer
NF 1.4 Frequência de Envio	O envio do sinal com os dados para o receptor deve ocorrer a cada 1 hora.	Desempenho	Obrigatório	A Fazer
NF 1.5 Autonomia da Bateria	O transmissor deve ter uma autonomia de bateria de, no mínimo, 15	Desempenho	Obrigatório	A Fazer

	dias de operação.			
NF 1.6 Raio de Operação	A comunicação entre transmissor e receptor deve ter um alcance de, no mínimo, 10 km.	Desempenho	Obrigatório	A Fazer
NF 1.7 Sistema de Resgate	O transmissor deve incluir um sistema de resgate para ser ativado em caso de perda de sinal.	Confiabilidade	Obrigatório	A Fazer

RF2: Módulo Receptor

Descrição: O sistema deve possuir um módulo receptor central, responsável por receber os dados dos transmissores e encaminhá-los para uma plataforma externa.

Tabela de descrição do RF2

Código & Nome	Descrição	Categoria	Prioridade	Status
NF 2.1 Recepção de Sinal	O módulo deve ser capaz de receber o sinal de comunicação dos dois transmissores.	Funcionalidade	Obrigatório	A Fazer
NF 2.2 Envio para Banco de Dados	O módulo deve enviar as informações de localização recebidas para	Funcionalidade	Obrigatório	A Fazer

um banco de dados online via http.		
νια τιπρ.		

RF3: Servidor

Descrição: O servidor deve ser capaz de receber os dados dos módulos receptores através da internet, armazená-los e servir um dashboard para que os dados possam ser visualizados e analisados pelos usuários.

Tabela de descrição do RF3

Código & Nome	Descrição	Categoria	Prioridade	Status
NF 3.1 Recepção de Dados	O servidor deve ser capaz de receber os dados dos módulos transmissores pela internet via http.	Funcionalidade	Obrigatório	A Fazer
NF 3.2 Armazenament o em Banco de Dados	O servidor deve armazenar os dados de maneira persistente.	Funcionalidade	Obrigatório	A Fazer
NF 3.3 Remoção de dados duplicados	O servidor deve lidar com dados duplicados gerados pelos múltiplos receptores	Funcionalidade	Obrigatório	A Fazer

NF 3.4 Visualização da trajetória	O dashboard deve possibilitar a visualização da trajetória dos módulos em um mapa.	Funcionalidade	Obrigatório	A Fazer
---	--	----------------	-------------	---------

Glossário de Termos

- RF (Requisito Funcional): Descreve o que o sistema deve fazer.
- **NF (Requisito Não-Funcional):** Descreve *como* o sistema deve realizar uma função (critérios de qualidade).
- Categoria: Agrupa os requisitos por afinidade.
- **Prioridade:** Define a importância do requisito.
- Status: Acompanha o andamento do requisito.

4. Cronograma Detalhado

ID	Nome da Tarefa	Duração (dias)	Início	Predecessoras
1.1	Levantamento de requisitos	7	11/08/25	
1.2	Estruturação do projeto de engenharia	7	18/08/25	1.1
1.3	Elaboração da lista de materiais	7	25/08/25	1.2
1.4	Elaboração do documento e apresentação da entrega 1	7	01/09/25	1.1
2.1	Compra dos componentes e montagem parte eletrônica	14	08/09/25	1.3
2.2	Desenvolvimento da lógica de comunicação do sistema	14	22/09/25	2.1
2.3	Desenvolvimento banco de dados, página web e api	14	06/10/25	1.1
2.4	Elaboração do documento e apresentação da entrega 2	7	11/10/25	2.2
3.1	Testes em bancada	14	20/10/25	2.3
3.2	Embarcação e testes funcionais	14	03/11/25	3.1
3.3	Finalização do projeto e elaboração do relatório final	14	17/11/25	3.2

5. Conclusão

Este projeto possui potencial de gerar um impacto significativo no estudo da biologia marinha no Brasil caso seja bem sucedido. O principal desafio é implementar a comunicação via LoRa e fazer um sistema aplicável no cenário real em que será utilizado, isto é, à deriva. Tudo isso mantendo o custo baixo e visando a escalabilidade.

Nossa pretensão com esse projeto é entregar um modelo completo e funcional, com dois módulos transmissores, dois receptores e um servidor que coleta, armazena e serve os dados para o usuário final. Esse cenário já representa bem o modelo pretendido, que envolve múltiplos transmissores transmitindo para múltiplos receptores.