

Transport Layer

Transport Layer

- Session multiplexing
- Segmentation
- Flow control (when required)
- Connection-oriented (when required)
- Reliability (when required)

Reliable vs. Best-Effort Comparison

	Reliable	Best-Effort
Connection Type	Connection-oriented	Connectionless
Protocol	TCP	UDP
Sequencing	Yes	No
Uses	E-mailFile sharingDownloading	Voice streamingVideo streaming

UDP Characteristics

- Operates at transport layer of OSI and TCP/IP models
- Provides applications with access to the network layer without the overhead of reliability mechanisms
- Is a connectionless protocol
- Provides best-effort delivery
- Provides limited error checking
- Has no data-recovery features

UDP Header

16-bit source port	16-bit destination port	
16-bit UDP length	16-bit UDP checksum	
Data		

200

TCP Characteristics

- Transport layer of the TCP/IP stack
- Access to the network layer for applications
- Connection-oriented protocol
- Full-duplex mode operation
- Error checking
- Sequencing of data packets
- Acknowledgement of receipt
- Data-recovery features

TCP Header

Mapping Layer 4 to Applications

Mapping Layer 3 to Layer 4

Establishing a Connection

Three-Way Handshake

CTL = Which control bits in the TCP header are set to 1

Flow Control

TCP Acknowledgment

Fixed Windowing

TCP Sliding Windowing

Window Size = 3 Send 1

Window Size = 3 Send 2

Window Size = 3 Send 3

Window Size = 3 Send 3

Window Size = 3 Send 4

Receiver

ACK 3 Window Size = 2 Segment 3 is lost because of the congestion of the receiver.

ACK 5 Window Size = 2

Network Layer

Network Layer

Network Process to Applications

Data Representation

Interhost Communication

End-to-End Connections

Data Delivery

- Routes data packets
- Selects best path to deliver data
- Provides logical addressing and path selection

301P_058

Internet Protocol Characteristics

- Operates at network layer of OSI
- Connectionless protocol
- Packets treated independently
- Hierarchical addressing
- Best-effort delivery
- No data-recovery features

IP PDU Header

IP Address Format

IP Address Format

- All network part bits cannot be set to all binary
 0.
- If all host part bits is set to all binary 0, we have a network address.
- If all host part bits is set to all binary 1, we have a broadcast address.

IP Address Classes

Class A

Class A

- Network address:
 1.0.0.0 -> 127.0.0.0
- Network 127.0.0.0: loopback network
 ⇒Usable network address: 1.0.0.0 -> 126.0.0.0
 (126 network).
- Host part: 24 bits => Every class A network have 2^24 - 2 hosts.

Class B

Class B

Network address:

128.0.0.0 -> 191.255.0.0

There are all 2^14 networks in class B network.

Host part: 16 bits
 Every class B network have 2^16 – 2
hosts.

Class C

Class C

Network address:

192.0.0.0 -> 223.255.255.0

There are all 2^21 networks in class C network.

Host part: 8 bit
 Every class C network have 2^8 – 2 = 254 hosts.

Class D

- Network: 224.0.0.0 -> 239.255.255.255
- Multicast address.
- Example: 224.0.0.5 is used for OSPF 224.0.0.9 is used for RIPv2

Class E

• From 240.0.0.0 to the end.

Reserved.

Broadcast

- Direct broadcast
 Example: 192.168.1.255
- Local broadcast
 255.255.255.255

Private and Public

- In LAN: Private.
- In Internet: Public.
- IP private range (RFC 1918):

Class A: 10.x.x.x

Class B: 172.16.x.x -> 172.31.x.x

Class C: 192.168.x.x

- NAT: Translate private <-> public.
- IP Private address help conserve IP public address.

Subnet mask and Prefix-length

Subnet mask

Class A: 255.0.0.0

Class B: 255.255.0.0

Class C: 255.255.255.0

Prefix-length

Class A: /8

Class B: /16

Class C: /24

#