

UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA

DEPARTAMENTO DE INGENIRIA MECÁNICA VALPARAISO- CHILE

"ESTUDIO EXPERIMENTAL DEL COMPORTAMIENTO DE FATIGA PARA EL MATERIAL ABS IMPRESO EN 3D"

Sebastián Orlando Cueto del Fierro

Ingeniería Mećanica Industrial

Julio - 2019

UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE INGENIRIA MECÁNICA VALPARAISO- CHILE

"ESTUDIO EXPERIMENTAL DEL COMPORTAMIENTO DE FATIGA PARA EL MATERIAL ABS IMPRESO EN 3D"

SEBASTIÁN ORLANDO CUETO DEL FIERRO

Memoria de Títulación para optar al título de Ingeniería Mećanica Industrial

Profesor Guia: Phd. Alejandro Pacheco Sanjuan

Profesor Correferente: Dra. Sheila Lascano Farak

Marzo - 2019

TITULO DE LA TESIS:

"ESTUDIO EXPERIMENTAL DEL COMPORTAMIENTO DE FATIGA PARA EL MATERIAL ABS IMPRESO EN 3D"

AUTOR:	
Sebastián Orlando Cueto de	el Fierro
TRABAJO DE TESIS, presentado en cumplimiento parcia Ingeniería Mećanica Industrial de la Universidad To	
Phd. Alejandro Pacheco Sanjuan	
Dra. Sheila Lascano Farak	

VALPARAISO, CHILE- 2019

Toda experiencia cognoscitiva involucra al que conoce de manera personal, enraizada en su estructura biológica, donde toda experiencia de certidumbre es un fenómeno individual ciego al acto cognoscitivo del otro, en una soledad que sólo se trasciende en el mundo que se crea con él. Humberto Maturana - Francisco Varela

Agradecimientos

Abstract

Resumen

Índice general

Ag	rade	cimient	OS	7
Ab	strac	t		9
Re	sume	en		11
1.	Intro	oducció	n	17
2.	Esta	do del A	Arte	19
3.	Mar	co Teór	ico	20
	3.1.	Fatiga		20
		3.1.1.	Definiciones	21
		3.1.2.	Curva S-N o de Wöhler	23
		3.1.3.	Esfuerzo medio, S_m	25
		3.1.4.	Medición de la fatiga	28
		3.1.5.	Correlación entre distintos métodos de medición de la fatiga	29
	3.2.	Dinám	ica	33
		3.2.1.	Ecuaciones de movimiento de un cuerpo rígido	33
		3.2.2.	Energía cinética de un cuerpo rígido	34
	3.3.	Vibrac	iones	34
		3.3.1.	Rigidez	34
		3.3.2.	Damping	35
		3.3.3.	Vibraciones forzadas	36
		3.3.4.	Modeling	37
		3.3.5.	Sistema de múltiples grados de libertad	37
		3.3.6.	Método de energía	39
		3.3.7.	Ecuaciones de energía para un sistema con amortiguamiento y	
			forzado	40

Índice general 14

Α.	Norr	na de c	álculo en madera - NCh1198	41
	A.1.	Propied	dades de la madera y factores de modificación	41
		A.1.1.	Contenido de humedad	41
		A.1.2.	Densidad	42
		A.1.3.	Tensiones admisibles y módulo de elasticidad	42
		A.1.4.	Factores de modificación	43
	A.2.	Diseño	de piezas	43
		A.2.1.	Flexión	44
		A.2.2.	Cizalle	45
		A.2.3.	Compresión paralela a la fibra	46
		A.2.4.	Compresión normal a la fibra	46
			Tracción paralela	47
			Nomenclatura y tipos de madera	47
	A.3.		es en la madera estrutural	48
			Generalidades	49
			Verificaciones tensionales	50
		A.3.3.	Número de elementos de unión	51
		A.3.4.	Uniones con perno	52
			Uniones con tirafondos	54
В.	Cotia	zacione	S	59

Índice de figuras

3.1.	Diagrama de vida constante para aluminio 7075-T6	26
3.2.	Diagrama CFL normalizado	27
3.3.	Sección transversal de probetas sujetas a esfuerzo alternante uniaxial. a)	
	push-pull, b) alternating bending y c) rotating bending	31

Índice de cuadros

3.1.	Número mínimo de pruebas según tipo de prueba	24
3.2.	Factores de modificación por tipo de carga, según el modelo de Lee	33
A.1.	Espesor	48
A.2.	Ancho	48

Capítulo 1

Introducción

Las prótesis y la impresion 3D son tópicos que han ido tomando importancia durante la última década. La impresión 3D, como tecnología, ha crecido fuertemente desde la aparición de las impresoras de escritorio, las cuales permiten a cualquier persona sin conocimientos específicos de ingeniería, poder imprimir piezas u objetos diseñados por el propio usuario sin tener que contar con equipo especializado. Un ejemplo de este rápido crecimiento se puede notar en una noticia del periódico The Economist de hace una década:

If you really want to impress your friends with high-tech wizardry in 2008 then consider shopping for a three-dimensional printer. ("A Whole New Dimension", 2007)

Esta transición de una tecnología restringida a la industria especializada hacia lo privado o industrias de pequeña escala, llevó a un desarrollo y aplicación de la impresión 3D más disgregada, independiente de las principales marcas fabricantes de impresoras, permitiendo el surgimiento de comunidades, startups o incluso iniciativas universitarias centradas en la investigación o desarrollo de aplicaciones y mejoras de esta tecnología. Como consecuencia de esto se crearon nuevas marcas de impresión 3D como MakerBot, surgieron comunidades de libre acceso como RepRap y también diversas inciativas desarrollaron prótesis, principalmente de brazo, impresas en 3D.

Así, la impresión 3D surge como una solución a las diversas problemáticas que enfrentaba el desarrollo de las prótesis, entre ellas, la reducción de costos y la adaptabilidad de cada paciente. De esta forma, distintos diseños, desarrollos y alternativas surgen desde distintos lugares y con objetivos distintos. Por un lado, existe un desarrollo de libre acceso destinado a solucionar de manera rápida y autónoma las

problemáticas de las personas con discapacidad motora, buscando que cada usuario pueda modificar e imprimir sus prótesis. Y por otro, empresas han buscado crear o mejorar diseños existentes con el objetivo de poder entregar un producto que se adapte mejor a cada paciente y situación, sin los grandes costos que implica la compra de una prótesis tradicional.

HABLAR DE LA FATIGA

Bajo este contexto, es que el presente trabajo de título está enmarcado en el proyecto del análisis de una prótesis transtibial impresa en 3D. A través de este proyecto se busca conocer el comportamiento mecánico de la prótesis y, de esta forma, lograr predecir su vida útil.

Capítulo 2

Estado del Arte

Capítulo 3

Marco Teórico

3.1. Fatiga

El fenómeno en el cual una estructura se daña e incluso falla por cargas fluctuantes, es llamado fatiga. El estudio de este problema comenzó tempranamente en europa durante la mitad del siglo XIX, en pleno auge de la industralización europea, producto de la falla repentina de algunos componentes en máquinas y los ejes de los trenes de la época. Estos experimentaban un gradual debilitamiento de la resistencia, fallando aún cuando su esfuerzo último no fuese alcanzado.

Así, en 1837 fueron publicados los resultados del primer ensayo de fatiga, realizado a una cadena transportadora utilizada en minas de hierro en Alemania. Wilhelm Albert, quien realizó esta investigación, se vió motivado a realizar los estudios por los altos costos que significaba la falla de este componente producto de las cargas cílicas a las que estaba sometida. Los pocos conocimientos existentes del fenómeno en esa época, llevo a que la solución al problema fuese la invención del cable de acero.

Por otro lado, las primeras investigaciones enfocadas a comprender el fenómeno comenzaron en 1858 con August Wölher. Su acucioso estudio lo llevó a conclusiones que siguen teniendo importancia y validez hasta el día de hoy. Diseñó, durante la década de 1860, una máquina de ensayos de flexión y flexión rotativa. En 1870 presentó un informe en el cual parte de sus conclusiones cualitativas son llamadas "Ley de Wöhler", al establecer el esfuerzo alternante como el parámetro más importante para la vida de un componente, señalanado que "the stress amplitudes are decisives for the destruction of the cohesion of the material. The maximum stress is of influence only in so far as the higher it is, the lower are the stress amplitudes which lead to failure" citar schutz history of fatigue, aunque destacando también que el esfuerzo medio tiene una influencia perjudicial en el

material.

Es decir, desde 1853 hasta hoy, han transcurrido más de 160 años de investigación sobre la fatiga, logrando comprender distintas aristas del fenómeno, pero con muchas preguntas aún sin resolver. Por eso, la fatiga sigue siendo un problema necesario de abordar y seguir comprendiendo, por sus grandes implicaciones de costo que tiene en la industria y en distintos elementos que utilizamos en la vida diaria. Por otro lado, si bien muchas preguntas no han sido resueltas científicamente, diversas empresas han logrado evitar las fallas por fatiga y optimizar los diseños de manera operativa, sin comprender cabalmente el trasfondo de estos.

3.1.1. Definiciones

La fatiga se puede definir, desde la perspectiva del material, como el proceso en el cual el daño se acumula producto de la aplicación de cargas repetitivas que se encuentran bajo el punto de fluencia. En metales, este proceso se divide en tres fases o etapas las cuales, dependiendo del autor, pueden ser llamadas: fase de iniciación de la grieta, fase de crecimiento de la grieta y fractura.

La primera fase es el inicio de una o más microgrietas, la cual ocurre tempranamente en la vida a fatiga de un material y que, incluso, pueden ocurrir inmediatamente si el esfuerzo cíclico se encuentra sobre el límite de fatiga. Lo característico de esta etapa es que las grietas no pueden verse a simple vista, fase que representa una parte considerable de la vida a fatiga total. Estas crecerán lentamente y de manera errática, debido al efecto de las microestructuras como los bordes de grano. Durante este período, las concentraciones de esfuerzo juegan un importante papel, al ser los lugares donde comenzará la nucleación de las grieta, sumado a las pocas restricciones de deslizamiento de la superficie del material, hace que esta sea relevante en el inicio de este proceso.

En la segunda etapa, las microgrietas pasan a ser macrogrietas, es decir, son visibles al ojo humano. Estas grietas comienzan a tomar una dirección de crecimiento que es perpendicular a los esfuerzos principales producidos por la carga alternante. La resistencia al crecimiento de las grietas, cuando esta penetra el material, dependerá de las propiedades de grano. Así, se puede definir cualitativamente una separación entre ambas etapas, donde el periodo de iniciación o nucleación de las grietas termina cuando su crecimiento no es dependiente de las condiciones superficiales del material. Producto de la micro-deformación plástica cíclica se forman bandas de crecimiento conocidos como *marcas de playa* o "striations patterns", abriendo, cerrandose y frotandose entre sí, como se puede ver en la imagen Añadir figura 2.24 de Fatigueofstructuresandmaterial 2009,

dejando en evidencia el frente de grieta, las variaciones en la carga, su velocidad de crecimiento y la naturaleza corrosiva del entorno.

Finalmente, la última etapa es la falla del material, que ocurre en el último ciclo de la carga, al no poder soportarla con el material restante. Esta fractura es rápida y es producto de una macro-deformación plástica, pudiendo ser frágil, dúctil o una combinación de ambas.

Con esto en cuenta, es posible definir ciertos conceptos en base a las distintas etapas que experimenta un material. La vida a fatiga de un material ($fatigue\ life,\ N_f$) es el número de ciclos aplicados a una probeta para lograr el criterio de falla referencia a ISO 23718. El límite de resistencia a la fatiga ($endurance\ limit$) es frecuentemente explicado como la amplitud de esfuerzo para el cual la vida a fatiga tiende a infinito o a la asíntota de la curva S-N. Sin embargo, al comprender la fatiga como un proceso, es posible dar una definición más acertada para el límite a la fatiga, pasando a ser el umbral para el crecimiento de las microgrietas. Es decir, bajo este límite existe nucleación e iniciación de grites, sin embargo, su crecimiento está limitado a los bordes de grano del material.

Por otra parte, para el estudio de este fenómeno existen tres modelos de falla por fatiga: de *esfuerzo-vida* (S-N), de *deformación-vida* (ε -N) y de la *mecánica de fractura lineal elástica* (LEFM). Cada uno de ellos tiene ventajas y desventajas, sin embargo, la máquina que es objeto de evaluación en este trabajo utiliza el método *esfuerzo-vida*. El criterio de elección entre los distintos modelos se divide principalmente por la cantidad de ciclos que se hará la medición, los que se clasifican en régimen de fatiga de ciclo bajo (*low-cycle fatigue*, LCF) o un régimen de fatiga de ciclo alto (*high-cycle fatigue*, HCF). La división entre ambos régimen dependerá de distintos autores, no obstante, por lo general se establece la separación en $10^3 \le LCF$ y $10^3 > HCF$ referencia al shigley-pag. 265, debido a que la zona LCF está asociada a la existencia de macro-deformaciones plásticas en cada ciclo. De esta manera, el método de esfuerzo-vida se utiliza para ensayos de alto ciclaje debido a su poca precisión en casos LCF. A su vez, los métodos de deformación-vida y LEFM se aplican para casos LCF.

En el método de esfuerzo-vida las muestras o probetas son sometidas a fuerzas de magnitudes especificadas, al mismo tiempo que se cuentan la cantidad de ciclos. Es por esto que es un modelo con base en el esfuerzo, con el cual se busca determinar una resistencia de fatiga o un límite de resistencia a la fatiga.

Estas fuerzas especificadas pueden ser constantes o variables en el tiempo y magnitud, sin embargo, se abordará principalmente los casos donde los esfuerzos fluctúan de manera constante en el tiempo y de una amplitud fija debido a las características de la máquina analizada en este trabajo. Esto permite trazar la curva de fatiga (S-N) del componente o

material para distintas cargas con su respectivo número de ciclos que falla.

Por esto, se hace necesario describir y definir elementos que surgen producto de una carga cíclica. Esta se caracteriza por el esfuerzo alternante (alternate stress o amplitude stress, S_a) y el esfuerzo medio (mean stress, S_m) que se muestran en la ecuación 3.1.1 y 3.1.2, respectivamente. A su vez, estas se definen por el esfuerzo máximo S_{max} y S_{min} , siendo el esfuerzo máximo y mínimo alcanzado por la carga cíclica. Finalmente, el rango del esfuerzo, ΔS (eq. 3.1.3), y la razón de esfuerzos, R (eq. 3.1.4), también son opciones para caracterizar la fatiga.

$$S_a = \frac{S_{max} - S_{min}}{2} (3.1.1)$$

$$S_m = \frac{S_{max} + S_{min}}{2} (3.1.2)$$

$$\Delta S = S_{max} - S_{min} = 2S_a \tag{3.1.3}$$

$$R = \frac{S_{min}}{S_{max}} \tag{3.1.4}$$

Estos términos se pueden ver claramente en la figura Insertar imagen que muestra Sa Sm etc. Existen dos casos específicos, el primero en donde $S_m = 0$, y así R = -1, se llama esfuerzo de ciclo invertido. El segundo, cuando $S_{min} = 0$, y R = 0, se llama esfuerzo repetido.

3.1.2. Curva S-N o de Wöhler

Como se señaló en el punto anterior, la curva S-N es el resultado de la aplicación del método esfuerzo-vida. Es quizás uno de las herramientas más importantes en el desarrollo empírico para lograr cuantificar el proceso de fatiga y poder diseñar contra este. El diagrama S-N se obtiene como resultado de un número de ensayos de fatiga a distintos niveles de esfuerzo, donde S puede ser la amplitud (S_a) , el rango de esfuerzo (ΔS) o el esfuerzo máximo (S_{max}) que es aplicado a la probeta, siendo la amplitud lo más común. La variable N hace referencia a la vida a fatiga del material, es decir, la cantidad de ciclos hasta que la probeta falle. Debido a que se desea analizar fallas en LCF y HCF, la cantidad de ciclos necesarios para fallar la probeta pueden llegar a ser demasiado altos, por esto, N se grafica en escala logarítmica.

La cantidad de ensayos requeridos para construir la curva S-N dependerá de distintos factores como, por ejemplo, la confiabilidad esperada, el uso final de la información o de los recursos disponibles. La norma E739-10 – "Statistical Analysis of Linear or Linearized

Tipo de prueba	Cantidad mínima de probetas
Preliminar y exploratorio (investigación exploratoria y ensayos de desarrollo)	6 a 12
Pruebas de desarrollo e investigación de componentes y probetas	6 a 12
Datos de diseños permisibles Datos de confiabilidad	12 a 24 12 a 24

Cuadro 3.1: Número mínimo de pruebas según tipo de prueba

Stress-Life (S-N) and Strain-Life $(\varepsilon-N)$ Fatigue Data", establece una guía dependiendo del tipo de prueba a realizar como se muestra en al tabla 3.1. Además, se recomienda realizar la medición con, al menos, tres puntos de esfuerzos distintos. Con esto, es posible obtener el diagrama S-N como el que se puede apreciar en la figura Añadir figura 6-10, Shigley, pag 266, donde se puede apreciar la diferencia entre la zona LCF, HCF y de vida infinita, para el caso de los aceros.

La curva S-N varía ámpliamente sus resultados para distintos tipos de materiales y, a su vez, estos se ven afectados por una variedad de factores. Estos pueden ser por modificaciones en las condiciones de ensayo, de la geometría de la probeta, de la naturaleza del material o de la forma de fabricación de la probeta. Todos estos factores crean ciertas tendencias en la obtención de datos que los distinguen unos de otros.

En concreto, las condiciones medioambientales hostiles, ya sean químicas o térmicas, pueden acelerar el proceso de iniciación y crecimiento de grietas. Una probeta sometida a creep, fatiga y altas temperaturas puede disminuir drásticamente sus vida útil y, por tanto, la vida a fatiga del material. También es posible realizar ensayos en una solución de sal para homologar las condiciones marinas, afectando también su vida a fatiga. Otro factor que afecta los resultados de los ensayos es la frecuencia de los ciclos de carga ejercidos, al aumentar la temperatura de la probeta durante su ensayo. Agregar imagen, pag. 387 y 388 - Dowling

El esfuerzo residual también tiene incidencia en la curva de Wöhler, la cual puede incluso ser beneficiosa al utilizar técnicas como el granallado (*shot peening*). El mecánizado de las piezas, como en el caso de la probeta utilizada por la máquina de fatiga, verá afectado los resultados de la curva S-N dependiendo de las características con las que sea manufacturado. Como se indicó anteriormente, la primera etapa de la fatiga, la inicación de las grietas, es un fenómeno que depende de la superficie del material y como consecuencia, un mecánizado grueso o fino tendrá un impacto en esa etapa de la

fatiga y no en la posterior, como se puede apreciar en la imagen Imagen página 54 - Book of fatigue. Así, aquellas probetas que tengan una mejor calidad superficial producto del afinado, tendrán una mejor resistencia a la fatiga respecto a otras.

Es posible encontrar otros factores que inciden en los resultados de la curva, como pueden ser la geometría de la probeta o componente, sus dimensiones, el esfuerzo último (σ_{uts}) , su microestructura, tratamientos químicos y el esfuerzo medio (S_m) . Este último será analizado en la sección siguiente, debido a la importancia que posee al estar presente en la máquina a analizar.

3.1.3. Esfuerzo medio, S_m

Como se escribió anteriormente, el esfuerzo medio tiene influencia en los resultados de la curva S-N, dependiendo del tipo de ensayo realizado, con tal de lograr comparar los datos obtenidos entre distintas pruebas realizadas, como se muestra en la figura añadir imagen 925 Dowling. Para esto, se han desarrollado ecuaciones que buscan estimar el efecto una carga media dada cuando no existe información disponible.

Existen distintas maneras de representar la información de un ensayo donde $S_m \neq 0$. Una forma es recolectar la información de distintos ensayos con distintos valores de carga media y graficarlos como se muestra en la figura añadir imagen anterior como rf. Una segunda opción es realizar un diagrama de vida constante (constant fatigue life diagram, CFL), mostrada en la figura 3.1, el cual muestra claramente que un incremento del esfuerzo medio tiene como resultado una disminución del esfuerzo alternante, para la misma vida de la probeta, N_f . Finalmente, es posible graficar un ensayo para distintos valores de R, como se muestra en la figura imagen 935 Dowling.

Diseño para esfuerzos uniaxiales fluctuantes

Cuando elementos están sometidos a esfuerzos repetidos con componentes medios distintos de cero, estos deben tomarse en cuenta para el diseño. Para esto, se utiliza un diagrama de esfuerzo alternante versus esfuerzo normal en el cual se ajustan distintas curvas a los datos obtenidos. Como se muestra en la figura añadir imagen 442 norton pag 324, existe la línea de Goodman modificada, la parábola de Gerber y la línea de Soderberg. La parábola de Gerber es la que mejor se ajusta a los datos de falla experimental, de acuerdo a la ecuación 3.1.5; mientras que la línea de Goodman modificada, ecuación 3.1.6, se ajusta por debajo de la dispersión de datos. Ambas curvas utilizan en el eje σ_a el límite de resistencia a la fatiga S_e y el esfuerzo último S_u o S_{ut} en el eje σ_m . En cambio, la línea de Soderberg, ecuación 3.1.7, une S_e con la resistencia a la fluencia del material

Figura 3.1: Diagrama de vida constante para aluminio 7075-T6

 S_y y es, por lo tanto, un criterio de falla más conservador que los demás. Sin embargo, la línea punteada que une ambos S_y se debe utilizar en las dos primeras curvas como límite del primer ciclo de esfuerzo para evitar que ceda o falle. Referencia a libro norton

Parábola de Gerber:
$$\frac{\sigma_a}{S_e} + \frac{\sigma_m^2}{S_u^2} = 1 \qquad (3.1.5)$$
 Goodman modificada:
$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_u} = 1 \qquad (3.1.6)$$
 Soderberg:
$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_y} = 1 \qquad (3.1.7)$$

Diagramas de esfuerzos alternantes normalizados y medios

La normalización del diagrama mostrado en la figura 3.1 responde a la necesidad de consolidar los datos de mediciones para distintos esfuerzos medios y vida de fatiga dentro una sola curva. Esto da la oportunidad de ajustar la curva a una ecuación que represente todos los datos obtenidos. Así para el caso particular de $S_m=0$, el esfuerzo alternante se designará por σ_{ar} . Por lo tanto, en el diagrama CFL, σ_{ar} es el intercepto en $\sigma_m=0$ de la curva para cualquier vida N_f . Por consiguiente, el gráfico puede ser normalizado utilizando la relación σ_a/σ_{ar} en la ordenada y el esfuerzo medio σ_m en la abscisa. De esta manera, se cumplirá que $\sigma_a/\sigma_{ar}=1$ cuando $\sigma_m=0$ y, además, cuando el esfuerzo alternante es cercano a cero, el valor del esfuerzo medio debe aproximarse al esfuerzo último del material, σ_u . El resultado de esto se puede apreciar en la figura 3.2 buscar otra imagen de referencia.

Figura 3.2: Diagrama CFL normalizado

Al igual a como se vio en la sección anterior, las curvas que se ajustan a estos valores pueden ser rectas o una parábola. La ecuación modificada de Goodman normalizada sigue siendo una aproximación conservadora, y su versión normalizada es:

$$\frac{\sigma_a}{\sigma_{ar}} + \frac{\sigma_m}{\sigma_u} = 1 \tag{3.1.8}$$

La parábola de Gerber queda expresada como:

$$\frac{\sigma_a}{\sigma_{ar}} + \left(\frac{\sigma_m}{\sigma_u}\right)^2 = 1\tag{3.1.9}$$

Y una segunda modificación de la ecuación de Goodman, propuesta por J. Morrow, para metales dúctiles, en la cual se reemplaza σ_u por el esfuerzo verdadero de fractura corregido $\tilde{\sigma}_{fB}$.

$$\frac{\sigma_a}{\sigma_{ar}} + \frac{\sigma_m}{\tilde{\sigma}_{fB}} = 1 \tag{3.1.10}$$

3.1.4. Medición de la fatiga

Existen distintas técnicas para cuantificar la respuesta de un material o componente frente a esfuerzos o deformaciones fluctuantes. La primera de ellas, como se habló anteriormente, corresponde a una viga giratoria sometida a flexión en voladizo, diseñada por A. Wöhler. Con respecto a la información existente en la literatura la mayoría de los datos disponibles de resistencia a la fatiga se encuentra en las pruebas de viga giratoria (rotating bending, en inglés) en ciclo de flexión invertida, seguido por cargas axiales (push-pull, en inglés), flexión en voladizo (alternating bending, en inglés) y en menor medida, en las pruebas de fatiga por torsión. citar norton seccion 45

Ensayo de fatiga con una viga giratoria en flexión

Su uso es el más extendido para determinar la vida a fatiga de un material. La principal ventaja frente a otros sistemas radica en su capacidad de aplicar ciclos de cargas a altas velocidades, es decir, realizar pruebas de fatiga a altas frecuencias. Sin embargo, no es posible aplicar una carga media distinta de cero, por lo tanto, su uso principal se encuentra en la obtención de datos para el rango HCF y de ciclo invertido. Los datos obtenidos son más altos respecto a otros tipos de medición, como se puede ver en la figura REF.

Ensayo de fatiga axial

Esta configuración de prueba es más flexible que el resto, siendo posible cualquier combinación de esfuerzo alternante y medio, además de poder realizar ensayos con el modelo de deformación-vida. Su principal diferencia respecto al método de viga giratoria se encuentra en que la sección transversal está sometida a esfuerzos de manera uniforme, provocando que los resultados de resistencia a la fatiga obtenidos sean usualmente menores que las obtenidas por *rotating bending* y *alternating bending*. Se considera que esto se debe a la probabilidad más alta de hallar una microgrieta en un campo de esfuerzos más grande. Asimismo, la superposición de momentos de flexión sobre las cargas axiales, producto de la dificultad de crear cargas axiales sin excentricidad, son un factor en la disminución en la obtención de valores de resistencia menores. En concreto, la reducción de las resistencias a la fatiga obtenidos pueden variar entre un 10 % y un 30 % o más si hay flexión producto de la excentricidad de las cargas. La figura REF sacar imagen de paper A Esin muestra las diferencias de los datos obtenidos entre un ensayo de fatiga axial y uno de viga giratorio.

Ensayo de fatiga de flexión en voladizo

Esta prueba consiste en someter a una viga en voladizo a oscilaciones en su extremo libre a través de algún mecanismo, pudiendo lograr combinaciones de esfuerzos medios y alternantes. La máquina analizada en esta memoria, utiliza este método para la obtención de los datos de vida de fatiga del material a analizar. Los resultados de este tipo de prueba son inferiores a los obtenidos por *rotating bending* y mayores a los obtenidos por *push-pull*.

3.1.5. Correlación entre distintos métodos de medición de la fatiga

Como se señaló anteriormente y se aprecia en la imagen REF, cada prueba entrega valores distintos aún cuando los niveles de esfuerzo sean iguales. Por esto, existen distintos intentos en la literatura de crear correlaciones entre los datos, evitando los costos asociados a realizar nuevos ensayos experimentales del mismo material o componente. La forma en que se ha abordado esta problemática es la utilización de un factor de corrección (ϕ) calculado con distintas propuestas.

Algunos de estos modelos son: Manson y Muralidharan, Philipp, Lee y Esin. Cada metodología aborda de distinta forma el cálculo del factor de corrección ϕ , ahora bien, se abordarán los modelos de Lee y Esin en este trabajo, ya que, de acuerdo a agregar cita de

analysis of axial papre, son los modelos que se ajustan mejor al comportamiento de los datos empíricos entre ensayos de *rotating bending* y de *push-pull*. **corregir**

Modelo de Esin

El modelo propuesto por Esin en "A method for correlating different types of fatigue curve", relaciona las curvas S-N de los ensayos push-pull, alternating bending y rotating bending. Éste depende del esfuerzo alternante, asumiendo que la curva base y la calculada por este método se intersectarán en el punto (S_e, N_f) , es decir, el factor de correción es $\phi = 1$ en esa posición.

El método se basa en el análisis de la dependencia de la micro-plasticidad en la distribución de esfuerzos en la sección transversal, definiéndose la micro-plasticidad como el flujo plástico de un material sin haber alcanzado su punto de fluencia. Ésta ocurre sobre cierto nivel de esfuerzos en el rango elástico, llamado límite elástico real ($true\ elastic\ limit$, en inglés o TEL) y bajo el límite de resistencia a la fatiga, S_e . Así, siempre se cumplirá que:

$$TEL \leq S_e \leq S_u$$

La micro-plasticidad es un fenómeno altamente localizado que depende de las propiedades probabilísticas micro-estructurales del material como su micro-inhomogeneidad, anisotropía y micro-concentraciones de esfuerzos, los cuales explican la dispersión de datos en los ensayos de fatiga. Así, cuando los esfuerzos alternantes están sobre valor del *TEL*, la micro-plasticidad influye en los macro-elementos. Dicho de otra forma, el comportamiento mecánico observado a un nivel macro es el comportamiento integrado de los micro-elementos.

En la figura 3.3, se puede apreciar las áreas afectadas por fatiga para cada tipo de ensayo, los cuales, por sí mismo podrían explicar las diferencias en los resultados de cada prueba. Sin embargo, basándose en el criterio de fatiga de la deformación micro-plástica, la falla ocurre cuando la energía acumulada por la histérsis plástica, a una cantidad de ciclos N_f , es igual al valor de la energía de ruptura real (área bajo la curva de un diagrama σ - ε real), como queda expresado en la ecuación 3.1.11.

$$N_f = \frac{U \cdot T_t}{W} \tag{3.1.11}$$

Donde:

• N_f : Número de ciclos a la falla.

Figura 3.3: Sección transversal de probetas sujetas a esfuerzo alternante uniaxial. *a)* push-pull, *b)* alternating bending y c) rotating bending

- *U*: Energía total real bajo la curva del diagrama esfuerzo-deformación.
- W: Energía total plástica disipada.
- T_t : Número total de macro-elementos.

De esta forma, el método utiliza varios factores para crear una correlación entre las distintas curvas, ocupando el esfuerzo alternante, S, como valor de entrada. El primero de ellos es el concepto de esfuerzo alternante equivalente, S_{eq} (ecuación 3.1.12), utilizado para denotar un esfuerzo hipotético actuando sobre todos los elementos sometidos a fatiga.

$$S_{eq} = \frac{\sum \sigma_i A_i}{\sum A_i} \tag{3.1.12}$$

Donde A_i es el número o área de los macro-elementos con igual esfuerzo equivalente. A partir de esto, el esfuerzo equivalente para ensayos de *rotating bending* y *alternating bending*, están dados por las ecuaciones 3.1.13 y 3.1.14, respectivamente.

$$S_{eq,rt} = \frac{2S \cdot \sin^3 \theta}{3C} \tag{3.1.13}$$

$$S_{eq,ab} = \frac{2S}{3} \cdot \left(\frac{1 - c^3}{1 - c^2}\right) \tag{3.1.14}$$

Donde las variables C y c se definen cómo:

$$C = \left(\frac{\pi\theta}{180} - \frac{\sin(2\theta)}{2}\right) \qquad ; \qquad c = \frac{r}{R} \tag{3.1.15}$$

Los valores de θ , r y R son propios de la geometría de la probeta utilizada y se definen de acuerdo a la figura 3.3. De igual forma, se debe calcular el factor de fatiga, FF, ecuación que representa el ratio entre el área total de la sección transversal y el área de los elementos que contribuyen al proceso de fatiga. Así, las ecuaciones 3.1.16 y 3.1.17 representan los factores de fatiga para calcular la vida a fatiga equivalente, N_{eq} , de *alternating bending* y rotating bending, respectivamente.

$$FF_{ab} = \frac{\pi}{2} \left(\frac{\pi \theta}{180} - \frac{\sin(2\theta)}{2} \right) \tag{3.1.16}$$

$$FF_{rb} = \frac{R^2}{(R^2 - r^2)} \tag{3.1.17}$$

Finalmente, con estos elementos es posible tomar del diagrama S-N un punto (S_i, N_i) y, a través de las correlaciones, obtener un nuevo punto (S'_i, N'_i) que equivale a la curva S-N de otro tipo de ensayo.

La metodología consiste en tomar un valor de esfuerzo alternante conveniente S y calcular su esfuerzo alternante equivalente, S_{eq} . Utilizando este valor, se determinará a partir de la curva S-N original el número de ciclos a la falla que se llamará vida a fatiga equivalente, N_{eq} . Este valor debe ser multiplicado por el factor de fatiga FF, obteniendo la vida a fatiga modificada, N. Así, el punto P = (S, N), como se muestra en la figura REF añadir fig 3 es el valor equivalente obtenido, teniendo que repetirse el procedimiento para todos los puntos que se requieran.

Modelo de Lee

La estimación del límite de fatiga, S_e , se calcula a través de distintos factores de modificación según el tipo de carga, calidad superficial, tamaño y confiabilidad de la muestra. El factor de modificación según el tipo de carga C_L varía entre 0,7 y 0,9 para probetas sin muescas. Las recomendaciones para cada valor de C_L se realizaron considerando los efectos del gradiente de esfuerzos y el tipo de esfuerzo involucrado, es decir, cortantes y normales. Estos también varían según el tipo de material, los cuales fueron obtenidos de manera empírica. Así la tabla 3.2 muestra los factores de modificación para algunos tipos de carga.

Además, es posible apreciar en la imagen REF colocar imagen 416 del texto de Lee las diferencias que se generan por la aplicación del factor de corrección para los distintos tipos de carga que se buscan.

AÑADIR IMAGEN COMPARANDO AMBOS SISTEMAS.

Tipo de Carga	C_L	Observaciones
Carga axial pura	0,9	-
Carga axial con leve flexión	0,7	-
Rotating bending	1,0	-
Torsional	0,58	Para aceros

Cuadro 3.2: Factores de modificación por tipo de carga, según el modelo de Lee.

3.2. Dinámica

AGREGAR APOSTROFE A TODOS LOS DALEMBERT, buscar por Alembert

El movimiento y la relación existente entre las fuerzas que actúan sobre un cuerpo rígido es estudiado por la dinámica, la cual busca predecir el movimiento y explicar su origen. En esta sección se hablará de cuerpos rígidos y no partículas, debido las características de lo que se analizará posteriormente, además, de ser la rotación un elemento importante a considerar.

3.2.1. Ecuaciones de movimiento de un cuerpo rígido

Para describir el movimiento de un cuerpo es necesario recurrir a la segunda ley de movimiento de Newton, la cual permite trazar y predecir el movimiento de traslación y rotación del cuerpo.

Si sobre una masa m constante actúa una fuerza $\vec{F}(t)$ que da como resultado un vector de desplazamiento $\vec{x}(t)$, la segunda ley de Newton se expresa:

$$\vec{F}(t) = \frac{d}{dt} \left(m \frac{d\vec{x}(t)}{dt} \right) = m \frac{d^2 \vec{x}(t)}{dt^2}$$
 (3.2.1)

De manera análoga para el mismo cuerpo rígido, de momento de inercia I, es sometido a un momento $\vec{M}(t)$, entonces el cuerpo girará con un vector de desplazamiento angular $\vec{\theta}$.

$$\vec{M}(t) = I \frac{d^2 \vec{\theta}(t)}{dt^2} \tag{3.2.2}$$

Con las ecuaciones 3.2.1 y 3.2.2 se puede describir el movimiento de un sólido rígido.

Por otro lado, el principio de DÁlembert nos permite establecer un equilibrio dinámico entre las suma de las fuerzas externas o momentos y el producto entre su masa y la aceleración resultante del sólido, que se le denominará fuerza efectiva. Ambos términos deben ser equipolentes sobre el sistema que actúan, de esta manera las ecuaciones 3.2.3 y

3.2.4 son el resultado de la aplicación de este principio.

$$\sum \mathbf{F_i} = m\ddot{\mathbf{x_i}} \tag{3.2.3}$$

$$\sum \mathbf{M_i} = I\ddot{\theta_i} \tag{3.2.4}$$

3.2.2. Energía cinética de un cuerpo rígido

Un cuerpo rígido en movimiento tiene asociada una energía cinética que depende de su masa m, el momento de inercia I, su velocidad v y la velocidad de rotación ω . Así la energía cinética T queda definida por la ecuación 3.2.5.

$$T = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 \tag{3.2.5}$$

3.3. Vibraciones

Es el estudio del movimiento repetitivo de los objetos relativo a un marco de referencia estacionario y que oscila respecto a una posición nominal. Es un fenómeno que se da en todos los objetos, afectando naturalmente el diseño en ingeniería, pudiendo ser perjudicial o útil, dependiendo del objetivo que se busca. Por esto, es necesario conocer cabalmente el fenómeno de la vibración, es decir, saber como analizarlo, medirlo y controlarlo para poder manejar las distintas variables que lo afectan.

Físicamente, la vibración es la interacción entre la energía potencial y cinética. De esta manera, un sistema vibratorio debe tener un componente que almacene la energía y la libere en forma de movimiento de una masa para, asimismo, este vuelva a ser almacenado en forma de energía potencial. Los elementos que componen un sistema mecánico y los métodos para describir los movimientos se explicarán en esta sección.

3.3.1. Rigidez

El comportamiento como resorte se puede aplicar a distintos elementos y componentes, dependiendo de su geometría y las propiedades del material. Así, a partir de la configuración del sistema, es posible calcular una rigidez k para el movimiento longitudinal, transversal o torsional.

El cálculo de la constante de rigidez para una viga de área A, módulo de Young E, largo L y el segundo momento de área I, se puede obtener a través de las ecuaciones de

energía. Así, la ecuación 3.3.1, muestra el valor de k para una viga en voladizo con una carga P en su extremo.

$$k = \frac{3EI}{L^3} \tag{3.3.1}$$

Por otro lado, la ecuación 3.3.2, muestra la energía potencial elástica asociada a un elemento que se comporta como un resorte.

$$U_k = \frac{1}{2}k \, x(t) \tag{3.3.2}$$

3.3.2. Damping

Los sistemas vibratorios predicen oscilaciones indefinidas si solo se considera la rígidez del resorte y la masa del sistema, sin embargo, la experiencia nos indica que los sistemas tienden a eventualmente reducir su movimiento hasta cero si estos no están afectados por fuerzas externas. Para esto es necesario añadir un modelo físico para disipar la energía y amortiguar el sistema mecánico. Así, el modelo expresado anteriormente debe ser modificado para considerar la reducción de movimiento en el tiempo. Para esto, se añade a las ecuaciones diferenciales un término de la forma $c\dot{x}(t)$, donde c es una constante, el cual da como resultado una solución donde x(t) tiende a un punto de reposo. Este tipo de *damping* se llama amortiguamiento viscoso, en el cual su fuerza (f_c) es proporcional a la velocidad del sistema en la dirección opuesta del movimiento. Por lo tanto, la ecuación 3.3.3 muestra la fuerza de amortiguamiento, de tipo viscoso, presente en un sistema mecánico.

$$f_c = c\dot{x}(t) \tag{3.3.3}$$

Producto del amortiguamiento de la oscilación del sistema, la frecuencia es menor que la de un sistema no amortiguado, disminuyendo exponencialmente. A partir del valor de la constante c, existen tres casos posibles:

- 1. **Subamortiguado**: El sistema continúa teniendo un movimiento oscilatorio, con un decaimiento exponencial de la amplitud hasta llegar a la posición de reposo.
- 2. **Sobreamortiguado**: El movimiento del sistema no alcanza a ser oscilatorio, sin embargo, vuelve a la posición de reposo exponencialmente.
- Críticamente amortiguado: Es el caso que separa si el decaimiento es oscilatorio, siendo el movimiento que retorna al resposo más rápido sin oscilaciones.

Por lo tanto, la ecuación que describe el movimiento de un sistema amortiguado es:

$$m\ddot{x} = -f_c - f_k$$

$$m\ddot{x}(t) + c\dot{x}(t) + kx(t) = 0$$

Desde la perspectiva del método de eneríga, el amortiguamiento viscoso es una fuerza no conservativa que puede ser modelada por la función de disipación de Reyleigh, que toma la forma 3.3.4.

$$R = \frac{1}{2}c\,\dot{q_i}^2\tag{3.3.4}$$

Donde n es el número de coordenadas generalizadas y q cada coordenada generalizada. De esta manera, se puede obtener las fuerzas generalizadas para amortiguamiento viscoso derivando R respecto a cada variable generalizada q, como se muestra en la ecuación 3.3.5.

$$Q_{Rj} = -\frac{\partial R}{\partial \dot{q}_i}$$
, para cada $j = 1, 2, ..., n$ (3.3.5)

3.3.3. Vibraciones forzadas

Los sistemas mecánicos están sometidos a una gama bastante amplia de fuerzas externas que actúan sobre ellos, las que pueden ser aleatorias, periódicas, no periódicas o transientes. La fuente puede ser variada, pero todas ellas pueden causar vibraciones en el sistema, las cuales se denominarán F(t). Para el caso de este trabajo, el sistema a analizar contiene un disco sometido a rotación constante, impulsado por un motor eléctrico, que produce una fuerza periódica producto de su desbalanceo.

Si consideramos un desequilibrio de masa m_0 , a una distancia e del centro de rotación y rotando a una velocidad ϕ , como se muestra en la figura Hacer figura similar a 219 y 220 de Inman, la componente vertical de la fuerza centrífuga F(t) es:

$$F_y(t) = m_0 \ddot{y}(t) \tag{3.3.6}$$

Tomando el centro de rotación como el punto cero del sistema de coordenadas y que la aceleración angular es distinta de cero, entonces las coordenadas de posición, velocidad y aceleración quedan de la siguiente manera:

$$y(t) = e \sin \phi$$
$$\dot{y}(t) = e \dot{\phi} \cos \phi$$
$$\ddot{y}(t) = e (\ddot{\phi} \cos \phi - \dot{\phi}^2 \sin \phi)$$

Por lo tanto, la ecuación 3.3.7, muestra la fuerza centrífuga en dirección del eje y cuando una masa desbalanceada m_0 gira a una velocidad angular $\dot{\phi}$ y su aceleración angular es $\ddot{\phi} \neq 0$.

$$F_{\nu}(t) = m_0 e(\ddot{\phi}\cos\phi - \dot{\phi}^2\sin\phi) \tag{3.3.7}$$

3.3.4. Modeling

Es el proceso en el que se representan todos los detalles importantes del sistema con el objetivo de derivar las ecuaciones que rigen el comportamiento del mismo. Para esto, los métodos existentes son la ley de movimiento de Newton, el principio de D'Alembert y principio de conservación de la energía. Los primeros, vistos en la sección 3.2.1, se utilizan a través de un diagrama de cuerpo libre y la correcta identificación de las fuerzas y momentos que actúan sobre un cuerpo. Por otra parte, el método de conservación de la energía tiene la capacidad de derivar las ecuaciones de movimiento de un cuerpo sin la necesidad de recurrir a un diagrama de cuerpo libre, es decir, no se requiere identificar fuerzas ni momentos en el sistema. Éste método se verá en mayor profundidad en la sección 3.3.6.

Si consideramos un sistema amortiguado forzado y de un solo grado de libertad, x(t) o $\theta(t)$ según sea el caso, entonces la ecuación que describe el movimiento tendrá la siguiente forma:

$$m \ddot{x}(t) + c \dot{x}(t) + k x(t) = F(t)$$
 (3.3.8a)

$$I\ddot{\theta}(t) + c\dot{\theta}(t) + k\,\theta(t) = M(t) \tag{3.3.8b}$$

Tanto la ecuación lineal (3.3.8a) y angular (3.3.8b) son el resultado de derivarlas a través de cualquiera de los métodos expuestos anteriormente.

3.3.5. Sistema de múltiples grados de libertad

El número de grados de libertad de un sistema es la cantidad de parámetros independientes necesarios para definir los movimientos que posee cada masa involucrada en el sistema. Para cada grado de libertad de una masa, corresponde una coordenada $x_i(t)$, describiendo su movimiento en esa dimensión. La figura REF{imagen 47 de Inman} muestra las posibilidades de movimiento de un elemento de masa m que no está sometido a ninguna restricción.

La forma de describir el movimiento de cada masa es a través del uso de matrices y vectores, de tal forma que es posible agrupar los distintos componentes que se vieron

en las ecuaciones 3.3.8a y 3.3.8b de un solo grado de libertad. De esta manera, las coordenadas $x_i(t)$ pueden ser escritas como un vector $\mathbf{x}(t)$ de $n \times 1$, donde n es la cantidad de grados de libertad del sistema. Asimismo, se puede representar matricialmente la información de la masa del sistema y la rigidez de cada resorte, donde M es la matriz de masas y K es la matriz rigidez, ambas de dimensión $n \times n$.

$$M\ddot{\mathbf{x}}(t) + K\mathbf{x}(t) = 0 \tag{3.3.9}$$

La forma de la ecuación 3.3.9 permite resolver un sistema de n grados de libertad, por lo tanto, la forma de la matriz de masas será:

$$M = diag(m_1, m_2, ..., m_n)$$

Y el vector $\mathbf{x}(t)$ es:

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$

Por otra parte, para sistemas con amortiguamiento viscoso se añade la matriz de amortiguamiento C de dimensión $n \times n$.

$$M\ddot{\mathbf{x}}(t) + C\dot{\mathbf{x}}(t) + K\mathbf{x}(t) = 0 \tag{3.3.10}$$

Finalmente, se tendrá un sistema de n ecuaciones diferenciales de segundo orden, con coeficientes constantes, cada una de las cuales requiere dos condiciones iniciales.

$$\mathbf{x}(t_0) = \begin{bmatrix} x_{10}(t_0) \\ x_{20}(t_0) \\ \vdots \\ x_{n0}(t_0) \end{bmatrix} \quad ; \quad \dot{\mathbf{x}}(t_0) = \begin{bmatrix} \dot{x}_{10}(t_0) \\ \dot{x}_{20}(t_0) \\ \vdots \\ \dot{x}_{n0}(t_0) \end{bmatrix}$$
(3.3.11)

Donde los valores de $\mathbf{x}(t)$, $\dot{\mathbf{x}}(t)$ y de las matrices M, K, y C se deben conocer para poder resolver el sistema de ecuaciones.

3.3.6. Método de energía

El método de conservación de la energía puede ser combinado con los conceptos de trabajo virtual, lo cual lleva a las ecuaciones de Lagrange que pueden ser usadas para obtener la descripción del moviemiento del sistema, incluso si son amortiguados y forzados. Sin embargo, antes de explicar su funcionamiento se debe introducir el concepto de coordenadas generalizadas.

Las ecuaciones de movimiento de un sistema vibratorio pueden estar compuestas por distintos sistemas de coordenadas, no obstante, aquellos sistemas de coordenadas independientes entre sí y de las condiciones de restricción se les llama coordenadas generalizadas, q_j . De igual forma, se designará como Q_j a las fuerzas generalizadas que estén actuando sobre el sistema. Estas fuerzas se definen según la ecuación 3.3.12, donde U_j es el trabajo realizado al cambiar las coordenadas generalizadas q_j y δq_j la cantidad desplazada.

$$Q_j = \frac{U_j}{\delta q_j} \tag{3.3.12}$$

Análogamente a como se ha desarrollado anteriormente, Q_j puede adquirir el valor de una fuerza o momento, así como q_j puede ser una coordenada de desplazamiento lineal o angular. Así mismo, \dot{q}_j y $Q_j^{(n)}$ representan la velocidad generalizada y la fuerza generalizada no conservativa, respectivamente.

Con esto en consideración, el método de Lagrange define el concepto de lagrangiano L, como la resta entre la energía cinética T y la energía potencial U del sistema, ambos en términos de las coordenadas generalizadas $q_i(t)$.

$$L = T - U \tag{3.3.13}$$

Así, el método establece que para un sistema conservativo sin amortiguamiento, la ecuación 3.3.14 tiene la forma:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0 \tag{3.3.14}$$

Si se sustituye la ecuación 3.3.13 en 3.3.14, entonces se obtiene:

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_i}\right) - \frac{\partial T}{\partial q_i} + \frac{\partial U}{\partial q_i} = 0 \tag{3.3.15}$$

Lo que resultará en una ecuación para cada coordenada generalizada. En resumen, es importante para que el sistema esté correctamente definido la identificación de los

sistemas de energía y el uso de las coordenadas generalizadas.

3.3.7. Ecuaciones de energía para un sistema con amortiguamiento y forzado

Finalmente, es posible obtener las ecuaciones de movimiento a través del método de conservación de energía para un sistema con dos grados de libertad, forzado y con amortiguamiento viscoso. Para esto, se utilizarán los elementos mostrados anteriormente y se derivará la ecuación. Además se añadirá el efecto de la energía potencial gravitatoria, factor importante en el caso estudiado en este trabajo, según la ecuación 3.3.16.

$$U_g = mg \, q_i \tag{3.3.16}$$

Por lo tanto, la energía potencial total del sistema, tendrá la siguiente forma:

$$U = U_k + U_g = \frac{1}{2}k q_i^2 + mg q_i$$
 (3.3.17)

utilizar figura 425 pag 382 Inman como referencia del sistema de coordenadas

A partir de la ecuación 3.3.14, considerando los valores de la energía cinética y potencial de las ecuaciones 3.2.5 y 3.3.17, es necesario añadir las fuerzas de amortiguamiento y las fuerzas externas no conservativas. La suma de estas fuerzas fue desarrollada en las secciones 3.3.2 y 3.3.3, dando como resultado las ecuaciones 3.3.5 y 3.3.7. Revisar parrafo y ecuación, definir letras

$$Q_i = F_i(t) + Q_{Ri} = F_i(t) - \frac{\partial R}{\partial \dot{q}_i}$$
 (3.3.18)

De esta manera, una vez identificado todos los sistemas de energía y sus respectivos valores, se obtiene:

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_i}\right) - \frac{\partial T}{\partial q_i} + \frac{\partial R}{\partial \dot{q}_i} + \frac{\partial U}{\partial q_i} = F_i(t)$$
(3.3.19)

El cual, una vez derivado y escrito de forma matricial, adquiere la siguiente forma:

$$M\ddot{\mathbf{q}}_{i} + C\dot{\mathbf{q}}_{i} + K\mathbf{q}_{i} = \mathbf{F}_{i} \tag{3.3.20}$$

Apéndice A

Norma de cálculo en madera - NCh1198

La norma NCh 1198 - Cálculo de construcciones en madera - establece los métodos y procedimientos de diseño estructural que determinarán las condiciones mínimas que debe cumplir cada elemento de la estructura. Esta incluye las construcciones de madera aserrada, elaborada, laminada-encolada y postes de madera, como también las uniones a través de elementos mecánicos, tales como: clavos, tirafondos, pernos, barras de acero, tornillos y conectores para madera.

A.1. Propiedades de la madera y factores de modificación

A.1.1. Contenido de humedad

El contenido de humedad de una madera debe ser considerado por su susceptibilidad a los cambios de forma, volumen y para la determinación de las tensiones admisibiles debido a que es un material higroscópico. Para esto, se debe tomar en cuenta su humedad durante la construcción (H_c) , como también, la humedad a la que estará en servicio (H_s) o humedad de equilibrio. La humedad de equilibrio depende de la ubicación que tengan los elementos. Si se encuentra en un recinto cerrado sin calefacción o intermitente $H_s=12\,\%$. Si es un recinto cerrado continuamente calefaccionado, entonces $H_s=9\,\%$. Si es un recinto cubierto abierto, entonces la humedad de equilibrio será igual a la humedad medida del lugar donde se ubicará. Finalmente, si los elementos se encuentran a la interperie, se puede utilizar la tabla que se encuentra en el anexo D, de la norma NCh 1198, para las diferentes regiones geográficas de Chile.

Así la Tabla (Tabla 3 norma) se utiliza de criterio para clasificar la madera como verde o seca, las cuales se designan con las letras E y ES, respectivamente. Además,

son agrupadas con un número que agrupa las especies madereras que crecen en Chile, de acuerdo a la norma NCh 1989 - Agrupamiento de especies madereras según su resistencia - mostrada en el anexo A de la norma NCh 1198. Para el pino radiata se considera la clasificación de la norma NCh 1207 - Pino radiata, clasificación visual para uso estructural, especificaciones de los grados de calidad.

COLOCAR TABLA 3

A.1.2. Densidad

Debido a la característica higroscópica de la madera, su masa y volumen varían respecto al contenido de humedad. Por lo tanto, existen distintos tipos de densidad dependiendo de la información que sea necesaria o de los cálculos que se realicen. De acuerdo a la norma NCh 176/2, se definen los siguientes valores de densidad:

- Densidad anhidra: Relaciona la masa y el volumen de la madera completamente seca (anhidra)
- Densidad normal: Aquella que relaciona la masa y el volumen de la madera con un contenido de humedad del 12 %.
- Densidad básica: Relaciona la masa anhidra de la madera y su volumen con humedad igual o superior al 30 %.
- Densidad nominal: Es la que relaciona la masa anhidra de la madera y su volumen con un contenido de humedad del 12 %.
- Densidad de referencia: Aquella que relaciona la masa y el volumen de la madera ambos con igual contenido de humedad.

A.1.3. Tensiones admisibles y módulo de elasticidad

La madera es un material no homogéneo constituido por fibras naturales que mantienen su dirección, las cuales inciden en que su comportamiento mecánico, su flexibilidad y la resistencia a los esfuerzos sea distinta respecto al eje en que se usa, siendo un material ortotrópico donde su resistencia es mayor en el eje paralelo a las fibras que el normal a las fibras.

Además, sus propiedades varían respecto a la especie del árbol, su edad, condiciones climáticas, humedad y la presencia de defectos, como nudos, rajaduras o agujeros. Para esto, la norma NCh 1970/1 y 1970/2 - Clasificación visual para uso estructural, especificaciones de los grados de calidad - junto a la norma NCh 1207, determinan el grado estructural desde el N°1 al N°4, a partir de una inspección visual de la madera procesada. Con esta clasificación, junto a la clasificación de madera seca o verde, determinan la clase estructural de la madera aserrada. Finalmente, con esta información es posible obtener la tensión admisible en flexión (F_f) , compresión paralela a las fibras (F_{cp}) , tracción paralela a las fibras (F_{cp}) , cizalle (F_{cz}) , compresión normal a las fibras (F_{cn}) y el módulo de elasticidad en flexión (E_f) , de las tablas 4.a para todas las especias y 4.b para el pino radiata.

A.1.4. Factores de modificación

Existen otras variables externas a la madera que pueden afectar su correcto desempeño. Para esto, existen los factores de modificación que buscan corregir la tensión admisible para las distintas condiciones a las que puede estar sometido el elemento. Estas son:

- Factor de modificación por contenido de humedad, K_H .
- Factor de modificación por duración de la carga, K_D .
- Factor de modificación por trabajo conjunto, K_C .
- Factor de modificación por temperatura.
- Factor de modificación por tratamiento químico

A.2. Diseño de piezas

Para el diseño de piezas es necesario calcular las tensiones de diseño, que se determinan como el producto de las tensiones admisibles por los factores de modificación que resulten pertinentes y que se definen para cada tipo de solicitación a la que está sometida cada pieza de la estructura. Por lo tanto, las tensiones de trabajo no pueden ser superiores a las de diseño, debiendo establecerse, un factor de seguridad para los cálculos.

A continuación, se hablará solo de las solicitaciones a las que está sometida la estructura.

A.2.1. Flexión

La tensión de trabajo de flexión de la fibra extrema de una viga simple de madera se debe determinar de acuerdo con la expresión:

$$f_f = \frac{M_{max}}{W_n} \qquad \text{(MPa)} \tag{A.2.1}$$

Donde M_{max} es el momento máximo de flexión en N·mm y W_n el módulo de flexión de la sección transversal neta respecto al eje neutro en mm.

Para el diseño de elementos en flexión, se debe calcular la tensión de diseño en flexión en la zona flexo-traccionada ($F_{ft,dis}$) y flexo-comprimida ($F_{fv,dos}$). Que se definen según las ecuaciones A.2.2a y A.2.2b.

$$F_{ft,dis} = F_f \cdot K_H \cdot K_D \cdot K_C \cdot K_{hf}$$
 (MPa) (A.2.2a)

$$F_{fv,dis} = F_f \cdot K_H \cdot K_D \cdot K_C \cdot K_V \tag{MPa}$$

Donde:

 K_{hf} : Factor de modificación por altura.

 K_V : Factor de modificación por volcamiento.

Factor de modificación por altura, K_{hf} .

Para todas las especies forestales, con excepción del pino radiata, en piezas traccionadas o vigas rectangulares de ancho o altura superior de 50 mm, este factor se evualúa de acuerdo con la expresión A.2.3a. Para pieza de Pino radiata de altura superior a 90 mm, se considera la expresión A.2.3a.

$$K_{hf} = \left(\frac{50}{h}\right)^{\frac{1}{9}} \tag{A.2.3a}$$

$$K_{hf,radiata} = \left(\frac{90}{h}\right)^{\frac{1}{5}} \tag{A.2.3b}$$

Donde h es el ancho de la viga traccionada o altura de la viga, en mm.

Factor de modificación por volcamiento, K_V .

Aquellos elementos estructurales que estén sometidos a flexión deben estar apoyados laterlamente en sus extremos para impedir desplazamientos laterales y rotaciones en el eje axial, donde se denomina luz a la distancia entre puntos de apoyo de un elemento de estructura. Para esto existen tres posible casos dependiendo de la configuración, donde h es la altura de la viga y b su ancho.

- 1. Cuando los elementos en flexión cumplen con las especificaciones de la **Tabla 11**, de la sección **8.2.2.4** de la norma, $K_V = 1$.
- 2. Si los elementos no poseen apoyos laterales a lo largo de su luz, $K_V = 1$, si la razón (h/b) < 2.
- 3. Si en el punto anterior (h/b) > 2, H_V se calcula en función de la esbeltez de volcamiento λ_V , de acuerdo a la sección **8.2.1.8**, la **Tabla 10** y **Tabla 12** de la norma.

A.2.2. Cizalle

La tensión de trabajo máximo de cizalle longitudinal en elementos flexionados de madera, se calcula mediante la siguiente expresión:

$$f_{cz} = \frac{1, 5 \cdot Q}{h \cdot h} \cdot 10^{-3}$$
 (MPa) (A.2.4)

La tensión de diseño de cizalle longitudinal se determina de la expresión A.2.5. El cizalle transversal no es necesario calcular o verificar debido a que nunca va a fallar por este esfuerzo, según la sección **8.2.3.1** de la norma.

$$F_{cz,dis} = F_{cz} \cdot K_H \cdot K_D \cdot K_C \cdot K_r \qquad (MPa) \tag{A.2.5}$$

Donde K_r es el factor de modificación por rebaje (inferior o superior), calculado según la sección **8.2.3.5**. Debido a que no es una condición que se encuentra en este trabajo, no se profundizará en este factor.

Cizalle en viga simple

CALCULAR

A.2.3. Compresión paralela a la fibra

La tensión de trabajo de una columna simple sometida a compresión paralela a su fibra, se calcula:

$$f_{cp} = \frac{N}{A} \cdot 10^{-3}$$
 (MPa) (A.2.6)

Donde N es la carga axial aplicada en kN, y A el área de la sección transversal en mm².

El cálculo de la tensión de diseño en compresión paralela ($F_{cp,dis}$) dependerá de la inestabilidad lateral (λ), la cual, dependiendo de su valor, será necesario calcular un factor de modificación por esbeltez, como también pondrá restricciones al diseño. Así, se puede obtener $F_{cp,dis}$ a partir de las ecuaciones A.2.7a y A.2.7b.

La esbeltez se define como $\lambda = l_p/i$, donde l_p es la longitud efectiva de pandeo, e i corresponde al radio de giro. Para el cálculo de la longitud efectiva de pandeo, se pueden utilizar los valores de la **Tabla 18** o las recomendaciones establecidas en el anexo K, según la norma.

$$F_{cp,dis} = F_{cp} \cdot K_H \cdot K_D \cdot K_C \tag{A.2.7a}$$

$$F_{cp,\lambda,dis} = F_{cp,dis} \cdot K_{\lambda} \tag{A.2.7b}$$

Donde K_{λ} es el factor de modificación por esbeltez, calculado según la sección **8.3.2.3** de la norma. Por lo tanto, si $\lambda < 5$, la tensión de diseño se calculará según A.2.7a. Por otro lado, si $\lambda \geq 5$, entonces determina mediante la ecuación A.2.7b debido a que el elemento presenta inestabilidad lateral.

A.2.4. Compresión normal a la fibra

La tensión de trabajo por aplastamiento en superficies de apoyo, solicitadas ortogonalmente a la fibra, se determina según la siguiente expresión:

$$f_{cn} = \frac{R}{A_n} \qquad \text{(MPa)} \tag{A.2.8}$$

Donde R es la carga aplicada, en N y A_n la sección neta aplastada, en mm². La tensión de diseño en compresión normal, se calcula a partir de la siguiente expresión:

$$F_{cn,dis} = F_{cn} \cdot K_H \cdot K_C \cdot K_{cn} \tag{A.2.9}$$

Donde K_{cn} es el factor de modificación por aplastamiento, que se calcula a partir de la sección **8.5.3** de la norma.

A.2.5. Tracción paralela

LO COLOCO????? página 58.

A.2.6. Nomenclatura y tipos de madera

Más allá de la especie, en el mercado es posible encontrar madera con distintas terminaciónes y dimensiones. Las principales diferencias se definen respecto al grado de manipulación del material y su uso final. Los tipos de madera relevantes a este trabajo son los siguientes:

- Madera dimensionada: Tal como dice su nombre, es una madera cortada sin cepillar, conservando sus dimensiones en bruto.
- Madera cepillada: Es el siguiente paso a la madera dimensionada. Recibe su nombre por el uso de la herramienta cepillo, la cual desbasta la superficie de la madera para suavizarla. Este formato mantiene sus dimensiones nominales en bruto, sin embargo, pierde sección respecto a la madera dimensionada.
- Madera laminada: También conocida como laminada-encolada, es la unión de tablas similares, de canto o de tope, manteniendo la misma dirección de las fibras, utulizando adhesivos sobre sus caras.

Por otro lado, existen distintas configuraciones dependiendo de la escuadría y la forma de la sección:

- Listón: Elemento de escuadría 1x2", 2x2", 2x3" y 2x4".
- Tabla: Elemento donde prevalece el alto por sobre el espesor, comúnmente de escuadrías 1x4", 1x5" o 1x6".
- Tablón: Elemento más grueso que una tabla, de escuadría 2x6", 2x8" o 2x10".
- Cuartón: Elemento de sección cuadrada. Su nombre se debe a la sección 4x4", pero puede ser de 5x5" o 6x6".
- Base: Elemento de escuadría de 10x10" o superior.

Todas las dimensiones, independiente del formato o el tipo, son respecto a la madera en bruto. Por lo tanto, a pesar que las dimensiones reales de una madera cepillada o dimensionada son menores, se sigue denominando según su escuadría original. Así, las tablas A.2 y A.1 muestran los valores reales para cada dimensión nominal.

Cuadro A.1: Espesor

Espesor Nominal [in]	Dimensionado [mm]		Cepillado [mm]
	Verde	Seco	Seco
1	23	22	19
2	48	45	41
Tolerancia [mm]	0/+2	0/+3	0/+2

Cuadro A.2: Ancho

Ancho Nominal [in]	Dimensionado [mm]		Cepillado [mm]
	Verde	Seco	Seco
2	48	45	41
3	73	69	65
4	99	94	90
5	127	120	115
6	150	142	138
8	200	190	185
10	248	235	230
Tolerancia [mm]	0/+2	0/+3	0/+2

A.3. Uniones en la madera estrutural

Existen diversas formas de unir dos o más elementos de madera. Uno de ellos es el ensamble entre las piezas, en cual, modificando la geometría de ambos elementos, se busca unirlas sin añadir objetos externos. Sin embargo, actualmente se opta por el uso de elementos externos para unir elementos de tipo estructural. Así, la norma NCh 1198 dispone de un capítulo para el correcto uso de estos elementos mecánicos.

A.3.1. Generalidades

Antes de comenzar a hablar de las expresiones que determinan el comportamiento de las unionse mecácnicas, se deben realizar definiciones previas.

- 1. Elementos mecánicos de unión: Son aquellos que, al quedar solicitados por fuerza de cizalle, admiten corrimientos relativos entre ls piezas conectadas. Dependiendo de su disposición pueden quedar solicitados en su dirección axial también.
- Borde cargado: Borde de la pieza de madera que se encuentra afectado por la acción de la fuerza que transmite el elemento de unión o por alguna de las fuerzas de las componentes de esta.
- 3. Borde descargado: Borde que no está sometido a las fuerzas señaladas en el punto anterior.
- 4. Espaciamientos: Es la distancia entre centros de elementos de unión adyacentes o entre centros de elementos de unión vecinos a un borde y éste, los que se clasifican de la siguiente manera:
 - a) Espaciamiento mínimo entre elementos de unión medido en dirección paralela a la fibra de la pieza: s_p .
 - b) Espaciamiento mínimo entre elementos de unión medido en dirección normal a la fibra de la pieza: s_n .
 - c) Espaciamiento mínimo entre un elemento de unión y un borde cargado medido en dirección paralela a la fibra de la pieza: s_{bcp} .
 - d) Espaciamiento mínimo entre un elemento de unión y un borde cargado medido en dirección normal a la fibra de una pieza: s_{bcn} .
 - e) Espaciamiento mínimo entre un elemento de unión y un borde descargado medido en dirección paralela a la fibra de la pieza: s_{bdp} .
 - f) Espaciamiento mínimo entre un elemento de unión y un borde descargado medido en dirección normal a la fibra de la pieza: s_{bdn} .

Y se muestran en la figura dsafasfsa.description AGREGAR FIGURA 17 DE LA NORMA

5. Duración de la carga: Las cargas admisibles definidas en este capítulo son aplicables para cargas de una duración de 10 años. Para valores distintos, se se debe seguir las indicaciones de la sección **7.1.2**.

- 6. Extracción directa: Se refiere a cuando una unión está siendo solicitada axialmente respecto al eje del elemento de unión.
- 7. Extracción lateral: Se refiere a cuando una unión está siendo solicitada perpendicularmente al eje del elemento de unión, sometiendolo a esfuerzos de cizalle en su sección transversal, siendo el tipo de solicitación más común.
- 8. Condición de la madera: En relación a los medios de unión, se define respecto al contenido de humedad (H) en la madera, así se establecen tres casos:
 - a) Seca: Si su contenido de humedad es menor a 20% (H < 20%).
 - b) Semiseca: Si su contenito de humedad está comprendido entre 20 % y el punto de saturación de la fibra (P.S.F.), $(20 \% \ge PSF)$.
 - c) Verde: Si su contenido de humedad es igual o superior a PSF. ($H \le PSF$)
- 9. Punto de saturación de la fibra (PSF): Corresponde al valor del contenido de humedad en el cual una madera ha perdido teóricamente toda su agua libre y sus paredes celulares están saturadas de agua higroscópica, representando el punto donde la madera se comprime o hincha, en procesos de secado o adsorción respectivamente. Su valor depende de distintos factores, como el tipo de secado o el tipo de madera, sin embargo, la norma asume un valor H = 28 % como PSF.

Las cargas admisibles especificadas en el capítulo 10 de la norma son para uniones colocadas en madera seca y que se mantendrá seca después de su construcción. Para madera semiseca o verde durante su construcción y madera seca que durante su servicio aumenta su contenido de humedad por sobre el 19%, se le deberá aplicar el factor de modificación K_{UH} señalado en las tablas 28 y 29, de la sección **10.1.7** de la norma.

A.3.2. Verificaciones tensionales

Sección transversal neta

La capacidad soportante de carga de las piezas debe verificarse en la menor sección transversal neta que condiciona la ejecución de las uniones, deduciendo de la sección transversal bruta las áreas de perforaciones o de cualquier otra remoción de madera. Así, el área neta requerida en piezas traccionadas y comprimidas, se determina dividiendo la carga total que se traspasa a través de la sección transversal neta crítica, por los correspondientes valores de diseño $F_{tp,dis}$ o $F_{cp,dis}$. Para las solicitaciones donde existen elementos de unión alineados de forma alternada, estos se deben considerar dispuestos en

una misma sección transversal, a excepción que el espaciamiento entre estos sea mayor o igual a:

- 8 diámetros para pernos, barras de acero y tirafondos.
- 2 diámetros en caso de conectores.

Tensiones de cizalle

En uniones de pernos, barras de acero, tirafondos o conectores, solicitadas por fuerzas de corte, se debe verificar que las tensiones de cizalle de trabajo f_{cz} no excedan los siguientes valores indicados:

■ En uniones separadas del extemo de la pieza, por una distancia s_{bp} mayor o igual que 5 veces la altura de la misma:

$$f_{cz} = \frac{3 \cdot Q}{2 \cdot b \cdot h_e} \le 1, 5 \cdot F_{cz,dis} \tag{A.3.1}$$

■ En uniones separadas del extremo de la pieza, por una distancia s_{bp} menor que 5 veces la altura de la misma:

$$f_{cz} = \frac{3Q}{2bh_e} \frac{h}{h_e} \le F_{cz,dis} \tag{A.3.2}$$

• Se debe verificar que la sección transversal bruta cumple con la relación:

$$f_{cz} = \frac{3 \cdot Q}{2 \cdot b \cdot h} \le F_{cz,dis} \tag{A.3.3}$$

Los valores h y h_e se muestran en la figura COLOCAR FIGURA 19 DE LA NORMA. El valor h_e será distinto para conectores o para pernos, barras de acero y tirafondos. Para conectores h_e corresponde a la altura de la pieza menos la distancia desde el borde descargado hasta el borde del conector más cercano, mientras que en el caso del resto de las uniones, se evalúa deduciendo de la altura, la distancia entre el borde descargado y el centro de la unión más próxima.

A.3.3. Número de elementos de unión

Las cargas admisibles que se indican en esta norma, rigen para un elemento de unión individual, según las solicitaciones correspondientes. Una hilera de elementos de unión

consiste en dos o más elementos del mismo tipo y tamaño alineados. En madera, es usual el uso de más de un elemento para unir dos o más maderas, debido a las restricciones existentes en su tamaño y distanciamiento.

Carga admisible y factor de modificación por longitud de hilera

La capacidad de carga admisible de una hilera es la suma de las capacidades de cada elemento que constituye la unión, sin embargo, no debe sobrepasar el valor P_h , determinado por la ecuación A.3.4.

$$P_h = K_u \cdot \sum P_i \tag{A.3.4}$$

Donde $\sum P_i$ es la suma de los valores admisibles de los elementos de unión individuales existentes en la hilera y K_u es el factor de modificación por longitud de hilera, señalado en la sección **10.3.2.2** y las tablas 30 y 31 de la norma.

A.3.4. Uniones con perno

Las especificaciones para pernos son aplicables para cualquier elemento cilíndrico de acero que atrevise perpendicularmente los planos de cizalle de la unión y que quedan solicitados preponderantemente en flexión induciendo sobre la madera tensiones de aplastamiento.

Para su correcta instalación es necesario que los agujeros y las arandelas cumplan con ciertas dimensiones. El diámetro del agujero se debe mayorar respecto al del perno en función del tamaño del perno y las conduciones de humedad de servicio, siguiendo la tabla 33 de la sección **10.5.1.2** de la norma. Para las arandelas o golillas, se debe seleccionar primero si se utilizará una de forma circular o cuadrada, dando preferencia a esta última por ofrecer mayor resistencia al incustramiento en la madera. Luego , sus respectivas dimensiones están en función del diámetro del perno, siguiendo la tabla 34 de la norma.

Respecto a las características del perno, su diámetro nominal debe estar entre los 10 y 30 mm. Además, se exige una disposición mínima de dos pernos, exceptuando los casos donde un único perno no queda solicitado en un porcentaje superior al 50 % de su capacidad de diseño.

Cargas admisibles para un perno

Las cargas admisibles para este tipo de unión solo son aplicables cuando la dirección de la solicitación es perpendicular a su eje para duración normal y de madera seca que permanecerá seca en servicio. Para casos distintos es necesario aplicar los factores de modificación correspondientes. Por otro lado, en esta norma existen condiciones distintas para cizalle simple, doble o múltiple, sin embargo, cizalle simple y múltiple se calculan realizando modificaciones al cizalle doble, por lo tanto, sólo se efectuara una explicación de este caso.

La capacidad de carga admisible (P_{ad}) se calcula estableciendo que la unión está establecida por la unión de tres piezas de la misma especia, con las piezas laterales paralelas entre sí y cada una de ellas de espesor igual a la mitad del espesor de la pieza central, e, como se muestra en la figura COLOCAR FIGURA 23. Así, es posible obtenerla a través de la tensión admisible de aplastamiento nominal F_{ap} (A.3.6), la esbeltez de la unión λ_u y el diámetro del perno (D), de acuerdo a la siguiente expresión:

$$P_{ad} = F_{ap} \cdot \lambda_u \cdot D^2 \le Z \cdot D^2 \tag{A.3.5}$$

Y la tensión admisible de aplastamiento nominal se define como:

$$F_{ap} = \frac{0,00065 \cdot \rho_{12,k} \cdot (100 - D)}{\eta(2,75 \cdot \sin^2(\theta) + \cos^2(\theta))}$$
 (MPa) (A.3.6)

Donde:

 $\rho_{12,k}$: Es la densidad normal característica de la especie forestal, en kg/m³, según

tabla E2 del anexo E de la norma. D es el diámetro del perno, en mm.

Diámetro del perno, en mm

 η : Es el factor de reducción de la zona elástica, según tabla 35 de la norma.

 θ : Es la desangulación fuerza-fibra.

 $\lambda_u = \frac{e}{R}$: Esbeltez del perno en la pieza central

 $Z = 1,15 \cdot \sqrt{\frac{F_{ap} \cdot F_y}{\eta}}$ (MPa)

 F_y : Tensión de fluencia del acero, usando 240 MPa como referencia

Para casos distintos al establecido anteriormente, se deben realizar arreglos en la forma de cálcular P_{ad} . En caso que las piezas laterales tengan un espesor menor que la mitad del espesor de la pieza central e, la carga admisibles es igual a la de una unión de cizalle doble con una pieza central de espesor ficticio, e*, equivalente al doble del espesor de la pieza lateral más delgada. Si las piezas laterales están constituidas de una especie

maderera distinta a la pieza central, se debe considerar la menor entre:

- El valor determinado para una unión equivalente con todas sus piezas de la especie usada en las piezas laterales.
- El valor determinado para una unión equivalente con todas sus piezas constituidas con la especie de la pieza central.

Cuando se usen planchas de acero como piezas laterales, las cargas admisibles para solicitaciones orientadas según la dirección de la fibra, se peden mayorar en un 25 %, sin embargo estas mayoraciones no se permiten para las cargas admisibles calculadas con solicitaciones normales a la fibra.

El valor obtenido de P_{ad} según la ecuación A.3.5, considera el eventual aflojamiento de tuercas inherentes a la contracción de la madera.

Finalmente, para cizalle simple existen dos casos a considerar. Cuando la unión está constituida por dos piezas de espesores diferentes, la carga admisible se determina como el menor valor entre:

- La mitad de la carga admisible de una unión de cizalle doble con una pieza central de espesor igual al de la pieza más gruesa.
- La mitad de la carga admisible de una unión de cizalle doble con una pieza central de espesor igual al doble del espesor de la pieza más delgada.

El segundo caso, cuando las piezas son de igual espesor, la carga admisible equivale a la mitad de la correspondiente a la de una unión de cizalle doble con una pieza central de espsor igual al de cada pieza.

Espaciamientos mínimos para pernos

Los espaciamientos mínimos que se deben respetar en las uniones con pernos se esquematizan en la figura AÑADIR FIUGRA 26 NORMA. El espaciemiento mínimo entre los pernos y los bordes cargados o descargados se establecen en función del diámetro del mismo, determinados por la tabla 36 de la sección 10.5.4 de la norma. El espaciamiento mínimo ente los pernos mismos, se establecen en la tabla 37 de la misma sección.

A.3.5. Uniones con tirafondos

Los tirafondos son un tipo de unión mecánica similar a un tornillo, del cual se diferencia porque su longitud total está dividida en una zona roscada y otra lisa llamada vástago, como se muestra en la figura AÑADIR IMAGEN 28 tirafondo. Las especificaciones y cálculos indicado en esta norma son válidos para tirafondos que cumplan con las características del anexo M de la norma.

Para obtener los valores de diseño para este tipo de unión, es necesario clasificar las especies madereras utilizadas según su densidad anhidra ρ_o (obtenidas en el anexo E), de acuerdo a la tabla 38 de la norma.

Perforaciones guía

Los tirafondos deben ser instalados en perforaciones guías con las características siguientes:

- El agujero en donde se alojará el vástago del tirafondo debe tener el mismo diámetro D de dicho vástago y una profundidad igual a la longitud, V, de la zona sin rosca del tirafondo.
- El agujero para la zona con rosca del tirafondo debe tener una profundidad de al menos igual a la longitud de la zona roscada del tirafondo, R-P y un diámetro comprendido entre:
 - 40 % 70 % del diámetro del vástago para las especies del grupo A de la tabla 38 de la norma.
 - 60 % 75 % de dicho diámetro para las especies del grupo B.
 - 65 % 85 % para las de los grupos C y D.

Para tirafondos de diámetros iguales o mayores que 3/4" (ver anexo M) ocupar los porcentajes del límite superior de los intervalos señalados. Cuando los tirafondos con diámetros menores o iguales a 3/8çolocados en maderas del grupo A y B son sometidos a extracción directa, se puede evitar la perforación guía si los espaciamientos entre tirafondos y las distancias a los bordes de la pieza cumplen con las seccionas 10.5.4.1 y 10.5.4.2. La zona con rosca debe ser colocada en la perforación guía con una llave de tuerca. Se prohibe la aplicación de golpes de martillo en esta operación. Para facilitar la introducción y evitar daños en el tirafondo se acepta el empleo de lubricantes en la rosca o en la perforación.

Arandelas

Las arandelas siguien las especificaciones de la tabla 34 de la norma, señaladas en la sección de la unión con pernos, excepto que se dipongan planchas de acero.

Solicitaciones de extracción lateral

La carga admisible de extracción lateral de tirafondos colocados en su eje normal a las fibras de la madera y sometidos a una carga paralela a dichas fibras, se obtiene a partir de la siguiente expresión:

$$P_{el.ad} = K \cdot D^2 \cdot 10^{-3}$$
 (kN) (A.3.7)

Donde $P_{el,ad}$ es la carga admisible de extracción lateral, D el diámetro del vástago del tirafondo, en mm, y K es la constante que depende de la densidad anhidra y cuyo valor se puede obtener de la tabla 39 de la norma. Las cargas admisibles son aplicables sólo si se cumplen las siguientes condiciones:

- 1. El espesor e_L de la pieza lateral atravesada por el tirafondo es igual a 3, 5D.
- 2. La profundidad mínima de penetración en la pieza principal (la que recibe la punta del tirafondo), asciende a:
 - 7D en maderas de los grupos C y D.
 - 11D en maderas de los grupos A y B.
- La penetración del vástago es completa en la pieza lateral, sin que él penetre en la pieza principal, como se muestra en la figura 29 de la norma. corregir si se añade la figura 29

En caso de no cumplirse las condiciones señaladas, es necesario multiplicas el valor $P_{el,ad}$ obtenido en la ecuación A.3.7 por los factores de modificación correspondientes.

- 1. Factor de modificación por espesor de la pieza lateral, K_{te} Para espesores de piezas laterales diferentes a 3, 5D, se debe utilizar la tabla 40 de la norma.
- 2. Factor de modificación por penetración del vástago en la pieza principal, K_{tv} Cuando el vástago toca la pieza principal, se debe utilizar el factor de modificación señalado en la tabla 41 de la norma, utilizando la razón P_v/D como dato de entrada, donde P_v se especifica en la figura 30 de la norma.

Además, siempre se debe multiplicar la carga admisible a la extracción lateral de la ecuación A.3.7 por el factor de modificación por diámetro, K_{tD} , que se entrega en la tabla 42 de la norma.

Cuando $P_{el,ad}$ es calculado para tirafondos colocados con su eje paralelo a las fibras de la madera de la pieza principal y sometidos a una carga normal a dichas fibras se debe considerar igual a 2/3 de la multiplicación de $P_{el,ad} \cdot K_{tD}$. Por otro lado, cuando se usen cubrejuntas metálicas, la carga admisible de extracción lateral se debe amplificar en un 25 % para cargas paralelas de la dirección de la fibra. Esta mayoración no se aplica sobre la carga admisible normal a la dirección de la fibra.

Solicitaciones de extracción directa

La carga admisible de extracción directa de tirafondos colocados con su eje normal a las fibras de la madera, se determina con la expresión:

$$P_{ed,ad} = \frac{P_o^{1,5} \cdot D^{0,75} \cdot l_{crit}}{978} \cdot 10^{-3}$$
 (kN) (A.3.8)

Donde:

 $P_{ed,ad}$ = carga admisible de extracción directa

 P_o = Densidad anhidra de la madera en kg/m^3

D = Diámetro del vástago del tirafondo en mm

l = Longitud de penetración de la zona roscada del tirafondo (R-P) en la madera, en mm

 l_{crit} = Longitud de penetración de la zona roscada que desarrolla la capacidad admisible de tracción en la sección transversal crítica del tirafondo, según tabla 43 de la norma.

En caso que la solicitación de la extracción directa quede con su eje colocado paralelo a las fibras de la madera, se debe considerar una carga admisible igual al 75 % de aquella calculada para tirafondos colocados con su eje normal a las fibras de la madera.

Combinación de solicitaciones de extracción directa y lateral

Cuando un tirafondo esté solicitado tanto en extracción directa como lateral, el análisis se realiza por separado, no debiendo exceder la carga de diseño de extracción para ninguno de los dos casos.

Espaciamiento

Las distancias entre tirafondos y entre tirafondos y bordes debe seguir lo establecido en la tabla 36 del capítulo de pernos de la norma, donde se reemplaza el diámetro del perno por el diámetro del vástago.

Apéndice B

Cotizaciones