ARCHITETTURA DEGLI ELABORATORI

A.A. 2020-2021

Università di Napoli Federico II Corso di Laurea in Informatica

Docenti

Proff. Luigi Sauro gruppo 1 (A-G)

Silvia Rossi gruppo 2 (H-Z)

ALGEBRA DI BOOLE E RETI COMBINATORIE

Boolean Axioms

Number	Axiom	Dual	Name
A1	B = 0 if B ≠ 1	B = 1 if B ≠ 0	Binary Field
A2	0 = 1	1 = 0	NOT
A3	0 • 0 = 0	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	0 + 0 = 0	AND/OR
A5	0 • 1 = 1 • 0 = 0	1+0=0+1=1	AND/OR

Dual: Replace: • with +

0 with 1

Boolean Theorems of One Variable

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
T3	B • B = B	B + B = B	Idempotency
T4	$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	$B + \overline{B} = 1$	Complements

Dual: Replace: • with +

0 with 1

Boolean Theorems of Several Vars

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C=C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
T9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

Warning: T8' differs from traditional algebra: OR (+) distributes over AND (●)

Simplification methods

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$\overline{PA} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$P\overline{A} + A = P + A$$

$$PA + \overline{A} = P + \overline{A}$$

Simplifying Boolean Equations

Example 6:

$$Y = (A + BC)(A + DE)$$

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Simplifying Boolean Equations

Example 6:

$$Y = (A + BC)(A + DE)$$

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = BC, Z = DE and rewrite equation

Y = (A+X)(A+Z)

substitution (X=BC, Z=DE)

= A + XZ

T8': Distributivity

= A + BCDE

substitution

or

$$Y = AA + ADE + ABC + BCDE T8$$
: Distributivity

$$= A + ADE + ABC + BCDE$$

Simplifying Boolean Equations

Example 6:

$$Y = (A + BC)(A + DE)$$

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = BC, Z = DE and rewrite equation

Y = (A+X)(A+Z)

substitution (X=BC, Z=DE)

= A + XZ

T8': Distributivity

= A + BCDE

substitution

or

Y = AA + ADE + ABC + BCDE T8: Distributivity

= A + ADE + ABC + BCDE T3: Idempotency

= A + ADE + ABC + BCDE

= A + ABC + BCDE T9': Covering

= A + BCDE T9': Covering

This is called multiplying out an expression to get sum-of-products (SOP) form.

Multiplying Out: SOP Form

An expression is in **sum-of-products** (**SOP**) form when all products contain literals only.

- SOP form: Y = AB + BC' + DE
- NOT SOP form: Y = DF + E(A'+B)
- SOP form: Z = A + BC + DE'F

Multiplying Out: SOP Form

Example:

$$Y = (A + C + D + E)(A + B)$$

Apply T8' first when possible: $\mathbb{Q} + \mathbb{Z} = \mathbb{Q} + \mathbb{Z} = \mathbb{Q} + \mathbb{Z}$

Make: X = (C+D+E), Z = B and rewrite equation

$$Y = (A+X)(A+Z)$$

$$= A + XZ$$

$$= A + (C+D+E)B$$

$$= A + BC + BD + BE$$

substitution (X=(C+D+E), Z=B)

T8': Distributivity

substitution

T8: Distributivity

or

$$Y = AA + AB + AC + BC + AD + BD + AE + BE$$

$$A + A \times A = A + AB + AC + AD + AE + BC + BD + BE$$

$$= A + BC + BD + BE$$

T8: Distributivity

T3: Idempotency

T9': Covering

Factoring: POS Form

An expression is in **product-of-sums** (**POS**) form when all sums contain literals only.

- POS form: Y = (A+B)(C+D)(E'+F)
- **NOT** POS form: Y = (D+E)(F'+GH)
- POS form: Z = A(B+C)(D+E')

Factoring: POS Form

Example 1:

$$Y = (A + B'CDE)$$

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = B'C, Z = DE and rewrite equation

Y = (A+XZ)

 $= (A + \overline{B}'C)(A + DE)$

= (A+B')(A+C)(A+D)(A+E)

substitution (X=B'C, Z=DE)

T8': Distributivity

T8': Distributivity

Factoring: POS Form

Example 2:

$$Y = AB + C'DE + F$$

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: W = AB, X = C', Z = DE and rewrite equation

Y = (W+XZ) + F

substitution W = AB, X = C', Z = DE

= (W+X)(W+Z) + F

T8': Distributivity

= (AB+C')(AB+DE)+F

substitution

= (A+C')(B+C')(AB+D)(AB+E)+F T8': Distributivity

= (A+C')(B+C')(A+D)(B+D)(A+E)(B+E)+F

T8': Distributivity

= (A+C'+F)(B+C'+F)(A+D+F)(B+D+F)(A+E+F)(B+E+F) T8': Distributivity

DeMorgan's Theorem

Number	Theorem	Name
T12	$\overline{B_0 \bullet B_1 \bullet B_2 \dots} = \overline{B_0} + \overline{B_1} + \overline{B_2} \dots$	DeMorgan's Theorem

- La negata di un prodotto è uguale alla somma delle negate
- La negata di una somma è uguale al prodotto delle negate

DeMorgan's Theorem: Dual

#	Theorem	Dual	Name
T12	$\overline{B_0 \bullet B_1 \bullet B_2 \dots} =$		DeMorgan's
	$B_0 + B_1 + B_2$	$B_0 \bullet B_1 \bullet B_2 \dots$	Theorem

The complement of the product is the sum of the complements.

Dual: The complement of the sum is the product of the complements.

DeMorgan's Theorem

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

•
$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$

$$Y = (A + \overline{BD})\overline{C}$$

$$Y = (\overline{A} + \overline{BD})\overline{C}$$

$$= (\overline{A} + \overline{BD}) + \overline{C}$$

$$= (\overline{A} \bullet (\overline{BD})) + \overline{C}$$

$$Y = (\overline{ACE} + \overline{D}) + B$$

$$Y = (\overline{ACE} + \overline{D}) + B$$

$$= (\overline{ACE} + \overline{D}) \bullet \overline{B}$$

$$= (\overline{ACE} \bullet \overline{D}) \bullet \overline{B}$$

$$= ((\overline{AC} + \overline{E}) \bullet D) \bullet \overline{B}$$

$$= ((AC + \overline{E}) \bullet D) \bullet \overline{B}$$

$$= ((AC + \overline{E}) \bullet D) \bullet \overline{B}$$

$$= (ACD + D\overline{E}) \bullet \overline{B} \bullet \overline{AC} = \overline{ACC} = \overline{ACC$$

Teoremi di De Morgan e forme SOP/POS

I teoremi di De Morgan possono essere usati per ridurre una generica espressione E in forma SOP/POS senza «passare» per la tabella di verità

- Applica esaustivamente «De Morgan» per spingere la negazione nella struttura della formula
- Applica esaustivamente la proprietà distributiva dell'AND sull'OR (SOP)
- Applica esaustivamente la proprietà distributiva dell'OR sull'AND (POS)

Esercizi

 Sfruttando i teoremi precedenti verificare le seguenti proprietà della porta XOR

$$\begin{cases} a \oplus a = 0 & \land \overrightarrow{A} + \overrightarrow{A} \land = 0 + 0 = 0 \\ a \oplus 0 = a & \land \overrightarrow{A} \overrightarrow{D} + \overrightarrow{A} 0 = \overrightarrow{A} 1 + \overrightarrow{A} 0 = \overrightarrow{A} \\ a \oplus 1 = \sim a, \text{ where } \sim \text{ is bit complement.} \\ a \oplus c \sim a = 1 & \land \overrightarrow{A} + \overrightarrow{A} \cdot \overrightarrow{A} = \overrightarrow{A} + \overrightarrow{A} = 1 \\ a \oplus b = b \oplus a \text{ (commutativity)} \\ a \oplus (b \oplus c) = (a \oplus b) \oplus c \text{ (associativity)} \end{cases}$$

Ricordarsi che, date due espressioni booleane E e F,

$$E \oplus F = E\overline{F} + \overline{E}F$$

$$\begin{array}{c|c} & & & & & & & \\ \hline \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\$$

Esercizi

Esercizi del libro "Digital Design and Computer Architecture – ARM edition"

ARM edition"

2.1 — ©
$$JOP$$
 $\overrightarrow{AB}C + \overrightarrow{AB}C + \overrightarrow{AB}C + \overrightarrow{AB}C + \overrightarrow{AB}C$

2.2

2.3 — POS $\overrightarrow{A+B+C}(A+B+C)(A+B+C)$

2.4

 POS $\overrightarrow{A+B+C}(A+B+C)$

Verificare in maniera proof-teoretica che

$$\rightarrow$$
 a \oplus b = $(\overline{a} + \overline{b})(a + b)$,

Dimostrare che la porta NAND è da sola un insieme completo (e minimale) di operatori booleani

$$a \oplus b = = \overline{AB+BA} =$$

Perché semplificare una espressione?

- Importanza della minimizzazione: utilizzare meno porte logiche
- Esercizio: mostrare che $\bar{A}\bar{B}\bar{C} + A\bar{B}\bar{C} + A\bar{C}\bar{C} + A\bar{C}\bar{C}$

$$Y = \overline{B} \overline{C} + A\overline{B}$$

Esempio 1

```
Y = A(AB + ABC)
```

=A(AB(1+C))

=A(AB(1))

=A(AB)

= (AA)B

= AB

T8: Distributivity

T2': Null Element

T1: Identity

T7: Associativity

T3: Idempotency

Esempio 2

$$Y = \overline{A}BC + \overline{A}$$

 $=\overline{A}$

Recall: A' = A

T9' Covering: X + XY = X

oppure

= A(BC + 1)

 $=\underline{A}(1)$

= A

T8: Distributivity

T2': Null Element

T1: Identity

Schemi circuitali

 Ad ogni espressione booleana corrisponde in circuito combinatorio

$$Y = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}C$$

Schemi circuitali SOP

- Le formule in forma SOP hanno degli schemi circuitali molto regolari:
 - Disegna una linea di input per ogni variabile che occorre positiva
 - Aggiungi delle linee con un NOT per ogni variabile che occorre negata
 - Per ogni mintermine disegna una porta AND e aggiungi in ingresso le linee che corrispondono ai relativi litterali
 - Collega tutte le uscite delle porte AND in un unico OR
- Per questo la forma SOP viene detta una logica a due livelli AND-OR

Semplificare formule SOP

- Per T10 $P\bar{B}$ + PB = P per ogni implicante P.
- Un implicante è detto implicante primo se non può essere combinato con altri implicanti della formula per ottenere un nuovo implicante con meno litterali.
- Una espressione SOP è minimale se tutti i suoi implicanti sono primi
- Minimizzazione: ridurre il numero di implicanti e per ogni implicante ridurre il numero di litterali

Semplificare formule SOP

 Nel minimizzare una SOP, può essere necessario «sdoppiare» un implicante allorché questo può essere ridotto in modi differenti.

Step	Equation	Justification
	$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$	
1	$\overline{B} \overline{C} (\overline{A} + A) + A \overline{B} C$	T8: Distributivity
2	$\overline{B} \overline{C}(1) + A \overline{B} C$	T5: Complements
3	$\overline{B} \overline{C} + A \overline{B} C$	T1: Identity

Non è minimale $A \bar{B} C$ e $A \bar{B} \bar{C}$ possono ridursi in $A \bar{B}$

Semplificare formule SOP

Step	Equation	Justification
	$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$	
1	$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C}$	T3: Idempotency
2	$\overline{B} \ \overline{C}(\overline{A} + A) + A\overline{B}(\overline{C} + C)$	T8: Distributivity
3	$\overline{B} \ \overline{C}(1) + A\overline{B}(1)$	T5: Complements
4	$\overline{B} \ \overline{C} + A \overline{B}$	T1: Identity

Il numero di implicanti è lo stesso ma $A\bar{B}$ ha meno letterali di $A\bar{B}$ C

Schemi circuitali e minimizzazione

Semplificare le forme POS

- Come si semplifica una forma POS?
- La proprietà principale che si usa è il combining (B+C) •
 (B+C) = B
- Esempio:

$$(A + \bar{B} + \bar{C})(\bar{A} + B + \bar{C})(\bar{A} + \bar{B} + C)(\bar{A} + \bar{B} + \bar{C}) = (A + \bar{B} + \bar{C})(\bar{A} + B + \bar{C})(\bar{A} + B + \bar{C})(\bar{A} + \bar{B} + \bar{C}) = (B + \bar{C})(\bar{A} + \bar{B} + \bar{C})(\bar{A} + \bar{B} + \bar{C})(\bar{A} + \bar{B} + \bar{C}) = (B + \bar{C})(\bar{A} + \bar{C})(\bar{A} + \bar{B} + \bar{C})(\bar{A} + \bar{B} + \bar{C}) = (B + \bar{C})(\bar{A} + \bar{C})(\bar{A} + \bar{C})(\bar{A} + \bar{C})(\bar{A} + \bar{C}) = (B + \bar{C})(\bar{A} + \bar{C})(\bar{A} + \bar{C})(\bar{A} + \bar{C})(\bar{C} +$$

Bubble Pushing

Backward:

- Body changes
- Adds bubbles to inputs

Forward:

- Body changes
- Adds bubble to output

Bubble Pushing

What is the Boolean expression for this circuit?

Bubble Pushing

What is the Boolean expression for this circuit?

$$Y = AB + CD$$

Bubble Pushing Rules

- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel

