Exercise 1. Suppose \mathcal{F} is a presheaf and \mathcal{G} is a sheaf, both of sets, on X. Let $\mathcal{H}om(\mathcal{F},\mathcal{G})$ be the collection of data

$$\mathcal{H}om(\mathfrak{F},\mathfrak{G})(U) := \operatorname{Mor}(\mathfrak{F}|_{U},\mathfrak{G}|_{U}).$$

Show that this is a sheaf of sets on *X*.

Answer

We first need to show that $\mathcal{H}om(\mathcal{F}, \mathcal{G})$ is a presheaf, this requires a sensible notion of restriction mapping which satisfies the following:

- i) $res_{U,U} = id_{(*)}$ where the identity map is over the object $\mathcal{H}om(\mathcal{F}, \mathcal{G})(U)$.
- ii) If $U \subseteq V \subseteq W$ then $res_{W,U} = res_{V,U} \circ res_{W,V}$.

Let us consider two objects $\operatorname{Mor}(\mathfrak{F}|_U,\mathfrak{G}|_U)$ and $\operatorname{Mor}(\mathfrak{F}|_V,\mathfrak{G}|_V)$ with $U\subseteq V$. A restriction mapping acts on sections, and sections on these sets are morphisms of sheaves. Our restriction mapping takes $\varphi\in\operatorname{Mor}(\mathfrak{F}|_V,\mathfrak{G}|_V)$ to $\operatorname{res}_{V,U}(\varphi)\in\operatorname{Mor}(\mathfrak{F}|_U,\mathfrak{G}|_U)$, but recall vf is a collection of maps of objects of the form

$$\varphi(W): \mathfrak{F}(W) \to \mathfrak{G}(W), \text{ with } W \subseteq V.$$

In this sense, it suffices to only consider the open sets contained in U. We declare that $\operatorname{res}_{V,U}(\varphi)$ is the collection of maps

$$\varphi(W): \mathfrak{F}(W) \to \mathfrak{G}(W), \text{ with } W \subseteq U.$$

i) The map $\operatorname{res}_{U,U}(\varphi)$ acts as follows, every map of the form $\varphi(W)$ with $W\subseteq U$ is sent to the map $\varphi(W)$ between the same objects because $W\subseteq U$ is still itself.

This means that $res_{U,U}$ is the identity map in $Mor(\mathcal{F}|_U, \mathcal{G}|_U)$.

ii) Now suppose $U\subseteq V\subseteq W$ are open sets, then $\operatorname{res}_{V,U}\circ\operatorname{res}_{W,V}$ acts on φ