§6.2集合之间的运算

- *并集、交集
- *相对补集、对称差、绝对补
- *广义并集、广义交集

并集(union)

- * 并集: $A \cup B = \{ x \mid (x \in A) \lor (x \in B) \}$ $x \in A \cup B \Leftrightarrow (x \in A) \lor (x \in B)$
- *初级并:

$$A_{1} \bigcup A_{2} \bigcup \cdots \bigcup A_{n} = \{x \mid \exists i (1 \leq i \leq n \land x \in A_{i})\}$$

$$\bigcup_{i=1}^{n} A_{i} = A_{1} \bigcup A_{2} \bigcup \cdots \bigcup A_{n}$$

$$\bigcup_{i=1}^{\infty} A_{i} = A_{1} \bigcup A_{2} \bigcup \cdots$$

并集(举例)

- *例1: 设 $A_n = \{x \in R \mid n-1 \le x \le n\}, n=1,2,...,10,$ $\bigcup_{i=1}^{10} A_i = \{x \in R \mid 0 \le x \le 10\} = [0,10]$
- 参例2: 设A_n={x∈R|0≤x≤1/n},n=1,2,...,则

$$\bigcup_{i=1}^{\infty} A_i = \{ x \in R \mid 0 \le x \le 1 \} = [0,1]$$

并集的性质

定理 设集合A⊆C,B⊆D,则(A∪B)⊆(C∪D)

证明 对任意的x, 若 $x \in A \cup B \Leftrightarrow x \in A \lor x \in B$ $\Rightarrow x \in C \lor x \in D$ (由于 $A \subseteq C$, $B \subseteq D$)

 $\Leftrightarrow x \in C \cup D$

由集合的包含关系的定义可得(A∪B) ⊆(C∪D)

交集(intersection)

- *交集: $A \cap B = \{ x \mid (x \in A) \land (x \in B) \}$ $x \in A \cap B \Leftrightarrow (x \in A) \land (x \in B)$
- *初级交:

$$A_{1} \cap A_{2} \cap \cdots \cap A_{n} = \{x \mid \forall i (1 \le i \le n \to x \in A_{i})\}$$

$$\bigcap_{i=1}^{n} A_{i} = A_{1} \cap A_{2} \cap \cdots \cap A_{n}$$

$$\bigcap_{i=1}^{\infty} A_{i} = A_{1} \cap A_{2} \cap \cdots$$

交集(举例)

$$\bigcap_{i=1}^{10} A_i = \emptyset$$

参例2: 设A_n={x∈R|0≤x≤1/n},n=1,2,...,则

$$\bigcap_{i=1}^{\infty} A_i = \{0\}$$

交集的性质

定理 设集合A⊆B,则(A∩C)⊆(B∩C)

证明对任意的x,若

 $x \in A \cap C$

 $\Leftrightarrow x \in A \land x \in C$

 \Rightarrow x ∈B \land x∈C (由于A⊆B)

 $\Leftrightarrow x \in B \cap C$

由集合的包含的定义可知 (A∩C) ⊆(B∩C)

不相交(disjoint)

- * 不相交: A∩B=∅
- *互不相交: 设 $A_1,A_2,...$ 是可数多个集合,若对于任意的 $i\neq j$,都有 $A_i \cap A_j = \emptyset$,则说它们互不相交
- * 例: 设 A_n={x∈R|n-1<x<n}, n=1,2,...,10, 则 A₁,A₂,...是不相交的

相对补集(set difference)

*相对补集:属于A而不属于B的全体元素, 称为B对A的相对补集,记作A-B

 $A-B = \{ x \mid (x \in A) \land (x \notin B) \}$

A-B

对称差(symmetric difference)

**对称差:属于A而不属于B,或属于B而不属于A的全体元素,称为A与B的对称差,记作A⊕B

 $A \oplus B = \{x | (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\}$

 $A \oplus B = (A - B) \cup (B - A) = (A \cup B) - (A \cap B)$

绝对补(complement)

**绝对补: ~A=E-A, E是全集, A⊆E~A={x|(x∈E∧x∉A)}~A={x∈E|x∉A)}

相对补、对称差、补(举例)

```
A-B= \{x \in R | 0 \le x < 1\} = [0,1)
B-A= \{x \in R | 2 \le x < 3\} = [2,3)
A\(\oplus B=\{x \in R | (0 \le x < 1) \cup (2 \le x < 3)\} = [0,1) \cup [2,3)
```

广义并集(big union)

*广义并:设A是集族,A中所有集合的元素的全体,称为A的广义并,记作 $\cup A$.

$$\bigcup \mathcal{A} = \{ x \mid \exists z (x \in Z \land Z \in \mathcal{A}) \}$$

* 当是以S为指标集的集族时

$$U \mathcal{A} = U \{A_{\alpha} | \alpha \in S\} = \bigcup_{\alpha \in S} A_{\alpha}$$

◆例: 设 A={{a,b},{c,d},{d,e,f}}, 则U A={a,b,c,d,e,f}

广义交集(big intersection)

*广义交: 设A是集族,A中所有集合的公共元素的全体,称为A的广义交,记作 $\cap A$.

$$\cap \mathcal{A} = \{ x \mid \forall z (z \in \mathcal{A} \rightarrow x \in z) \}$$

* 当是以S为指标集的集族时

$$\bigcap \mathcal{A} = \bigcap \{ A_{\alpha} | \alpha \in S \} = \bigcap_{\alpha \in S} A_{\alpha}$$

广义交、广义并(举例)

* 设 $A_1 = \{a,b,\{c,d\}\}, A_2 = \{\{a,b\}\}, A_3 = \{a\},$ $\mathcal{A}_4=\{\emptyset,\{\emptyset\}\},\ \mathcal{A}_5=a(a\neq\emptyset),\ \mathcal{A}_6=\emptyset,\$ 则 $\bigcup A_1 = a \bigcup b \bigcup \{c,d\}, \quad \bigcap A_1 = a \bigcap b \bigcap \{c,d\},$ $\cup \mathcal{A}_2 = \{a,b\},\$ $\cap \mathcal{A}_2 = \{a,b\},\$ $\bigcup A_3 = a$, $\cap A_3 = a$ $\bigcup \mathcal{A}_{4} = \emptyset \bigcup \{\emptyset\} = \{\emptyset\}, \quad \bigcap \mathcal{A}_{4} = \emptyset \cap \{\emptyset\} = \emptyset,$ $UA_5 = Ua$ $\cap A_5 = \cap a$ $\bigcup \mathcal{A}_6 = \emptyset$, $\cap \mathcal{A}_6 = \mathsf{E}$

```
例 设 A={{a, b, c}, {a, c, d}, {a, e, f}}
               B = \{ \{a\} \}
               C = \{a, \{c, d\}\}\
               UA = \{a, b, c, d, e, f\}
               UB = \{a\}
               UC=aU\{c,d\}
               U\varnothing = \varnothing
               \bigcap A = \{a\}
               \cap B = \{a\}
               \bigcap C = a \bigcap \{c, d\}
```

广义并与广义交的说明

- * 若A={A₁,A₂,...,A_n},则 \cap A=A₁ \cap A₂ \cap ... \cap A_n
- *在后面的叙述中,若只说并或交,则这都是指集合的初级并或初级交;如果在并或交前边冠以"广义"两个字,则指集合的广义并或广义交。
- *为了使得集合表达式更为简洁,我们对集合运算的优先顺序做如下规定:
 - 称广义并、广义交、幂集、绝对补运算为一类运算
 - 并、交、相对补、对称差运算为二类运算。
 - 一类运算优先于二类运算
 - 一类运算之间由右向左顺序进行
 - 二类运算之间由括号决定先后顺序。

```
例设A={{a},{a,b}}
計算UUA, NNA, NUAU(UUA-UNA)
解答 ∪A={a,b}
      \cap A = \{a\}
      \cup \cup A = a \cup b
      \cap \cap A = a
      \cap \cup A \cup (\cup \cup A - \cup \cap A)
      =(a\capb)\cup(a\cupb-a)
      =(a\capb)\cup(b-a)
```

文氏图(Venn diagram)

- *文氏图: 平面上的n个圆(或椭圆),使得任何可能的相交部分,都是非空的和连通的
- John Venn, 1834~1923
- * 例:

文氏图(Venn Diagram)

- 集合之间的关系和运算可以用文氏图给予形象的描述。
 - 文氏图的构造方法如下:
 - 画一个大矩形表示全集E(有时为简单起见可将 全集省略)。
 - 生年形内画一些圆(或任何其它的适当的闭曲线),用圆的内部表示集合。
 - 不同的圆代表不同的集合。如果没有关于集合不交的说明,任何两个圆彼此相交。
 - ●图中阴影的区域表示新组成的集合。
 - 可以用实心点代表集合中的元素。

文氏图(应用)

*文氏图可表示集合运算(结果用阴影表示)

