POLARIS axes & rotations

(Sanity checks)

Mock cube with constant B, n, n_{cr}, n_e

- Example tests of a 16³ cube
- Break symmetry with slices with $n_{cr} = 0$ (at x = 0 and at z = 10) helps identify axes at a glance
- Run octree conversion and POLARIS synchrotron emission (various detectors, i.e. observer locations)

Detector rotated around x by 90°

Detector rotated around z by 90°

Detector rotated first around x by 90° and then around (old) z by 90°

Magnetic field vector

Polarization angle defined in POLARIS (derived from these tests - not what is shown in manual)

Stokes parameters, no rotation

Stokes for rotation around x by 90°

Observed:

$$\theta = 0_{\rm o}$$

$$U = 0$$

Stokes for rotation around z by 90°

Detector rotated first around x by 90° and then around (old) z by 90°

Observed:

$$\theta = 276^{\circ}$$

Detector rotated first around x by 90° and then around (old) y by 90°

Observed: $\theta = 90^{\circ}$ Q < 0U = 0

- Done: B orientations consistent now
- To do: Check if RM consistent with direction of B