Graph Theory Homework 1

Due: 28 May 2019 at 3:59pm as a PDF on Submitty v1.1: Updated 23 May 2019

- 1. Construct five pairwise non-isomorphic undirected graphs each satisfying the following conditions:
 - (a) the graph has six vertices;
 - (b) the graph has eight edges; and
 - (c) the graph has a cycle containing all six vertices.

For each of the graphs, show its degree sequence. Explain why your graphs are not isomorphic to each other.

2. Draw the undirected graph G = (V, E) defined below, labeling vertices and edges, and create its adjacency matrix representation:

$$V = \{v_1, v_2, v_3, v_4, v_5\}$$

$$E = \{e_1(v_1, v_2), e_2(v_1, v_5), e_3(v_2, v_3), e_4(v_2, v_4), e_5(v_2, v_5), e_6(v_3, v_5), e_7(v_4, v_5)\}$$

Is G Eulerian? Is G bipartite? How many connected components does G have? Justify each response.

- 3. Consider a graph G = (V, E), where $|V| \le |E|$. Use induction to prove that graph G contains a cycle. Note that I didn't specify if G is connected or not.
- 4. Consider simple connected graph G and its decomposition D. Assume that |E(G)| is even. Show using induction that $\exists D = \{P_2, P_2, \dots, P_2\}$, where P_2 is path of length 2.
- 5. In class we saw that if G has no odd cycles $\implies G$ is bipartite. Re-prove this. But this time, use the magical power of induction. You only need to prove the direction of the equivalence relation given above.