

Table des matières

Ι	Polynômes	1
	I A Cours	1
	I B Techniques	2
II	Suites	2
	II A Cours	
	II B Techniques	3
III	Python	4
IV	Remarques	4

I Polynômes

IA Cours

1. Degré. Coefficient dominant $(a_n \neq 0)$. Terme dominant. Polynôme unitaire.	- 0 +
2. Notation X^r . Différence avec x^r .	- 0 +
3. Formule du produit de deux polynômes.	- 0 +
4. Opérations sur le degré (attention à la somme).	- 0 +
5. Degré du polynôme nul.	- 0 +
6. Racine. Lien avec la factorisation.	- 0 +
7. Racine multiple. Lien avec la factorisation.	- 0 +

9.	P et Q ont mêmes racines ne suffit pas pour dire que P se factorise par Q (ex	: P =	=(X	-1))
	et $Q = (X - 1)^2$)	-	0	+	

8. Attention «d'ordre r» et «au moins d'ordre r».

0

S

1. Dans quels cas utiliser la formule du produit.

- 0 +
- 2. Degré et terme dominant : comment le formuler dans un calcul
- 0 +

- **3.** Calcul des racines d'un polynôme :
 - a) Racines évidentes.

- 0 +

b) Multiplicité.

- 0 +

c) Conjuguées.

- 0 +

d) Factorisation de $X^2 - a$ $a \in \mathbb{C}$.

- 0 +

e) Ne pas oublier le coefficient dominant.

- 0 +

4. Si P - Q s'annule sur un ensemble infini, P = Q.

II Suites

II A Cours

- **1.** Notion de propriété asymptotiquement vérifiée sur les entiers (*i.e.* : vraie sauf au plus pour un nombre fini d'entiers).
- 2. Sous-suites des termes de rang pair/impair (savoir les écrire en général).
- 0 +

- **3.** Théorème (u_{2n}) .
- **4.** Opérations de convergence et calcul sur *o* (notation de Landau et règles)
- 0 +

5. Formes indéterminées.

- 0 +

6. Croissances comparées des suites de référence.

- 0 +

7. Équivalents.

- 0 +

8. Opérations sur les équivalents (possibles et invalides).	- 0 +
9. Suites majorées, minorées, bornées (la borne ne doit pas dépendre de n).	- 0 +
10. Passage à limite dans les inégalités (cas des inégalités strictes)	- 0 +
11. Théorème des gendarmes.	- 0 +
12. Théorème de convergence monotone.	- 0 +
13. Suites adjacentes.	- 0 +
II B Techniques	
1. Calculs de limites :	
a) Existence, puis calcul (cas non indéterminés).	- 0 +
b) Recherche d'équivalents.	- 0 +
c) Par encadrement (théorème des gendarmes).	- 0 +
2. Preuve de la convergence	
a) Convergence monotone	- 0 +
b) Suites adjacentes	- 0 +
c) Calcul d'équivalents	- 0 +
d) Utilisation du théorème u_{2n} .	- 0 +
e) Théorème des gendarmes.	- 0 +
3. Preuve de la divergence	
a) Convergence monotone.	- 0 +

b) Minoration par une suite de limite infinie.	-	0	+
c) Utilisation du théorème u_{2n} 4. Techniques de majoration et d'encadrement :			
a) Somme (sommes connues, par le nombre de termes, inégalité triangulaire) <u>-</u>	0	+
b) Quotients (minoration du dénominateur)	-	0	+
c) Études de fonctions.	-	0	+
d) Parties entières.	_	0	+

III Python

C'est l'occasion d'expérimenter la convergence des suites récurrentes en les programmant, et de stocker le calcul des n premières valeurs dans une liste (avec la méthode append p.ex).

IV Remarques

- **1.** Inutile d'aller chercher trop dans les calculs pour ce qui est de la factorisation des polynômes. Seule la factorisation sur **C** est attendue.
- **2.** Il est possible de donner l'étude de suites récurrentes $u_{n+1} = f(u_n)$. Toutes les techniques (parties stables etc.) sont hors-programme : il faudra donc donner un plan d'étude. Idéalement, coupler ce genre d'exos à une partie informatique.