1. 给出一例线性映射T满足 \dim null T=3且 \dim range T=2.

Solution.

$$T(x_1,\cdots,x_5)=(x_1,x_2)$$

于是null $T=\{(0,0,x,y,z)\in\mathbb{R}^5: x,y,z\in\mathbb{R}\},$ 故dim null T=3.

又range $T = \mathbb{R}^2$,于是dim range T = 2.这样就构造出了符合题设的线性映射T.

2. 设 $S, T \in \mathcal{L}(V)$ 使得range $S \subseteq T$,证明 $(ST)^2 = \mathbf{0}$

Proof.

对于任意 $v \in V$ 都有 $S(Tv) \in \text{range } S$,于是 $STv \in T$,于是 $T(STv) = \mathbf{0}$, 于是 $S(T(STv)) = S(\mathbf{0}) = \mathbf{0}$,进 而 $(ST)^2v = \mathbf{0}$. 从而 $(ST)^2 = \mathbf{0}$.

3. 设 v_1, \dots, v_m 是V中一组向量,定义 $T \in \mathcal{L}(\mathbb{F}^m, V)$ 为

$$T(z_1, \cdots, z_m) = z_1 v_1 + \cdots + z_m v_m$$

- (1) 当 v_1, \dots, v_m 张成V时,指出T具有的性质.
- (2) 当 v_1, \dots, v_m 在V中线性无关时,指出T具有的性质.

Solution.

- (1) T是满射.
- (2) T是单射.
- 4. 证明:集合 $\{T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^4) : \dim \text{null } T > 2\}$ 不是 $\mathcal{L}(\mathbb{R}^5, \mathbb{R}^4)$ 的子空间.

Proof.

取 $T_1, T_2 \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^4)$ 满足

$$T_1(x_1,\dots,x_5)=(x_1,x_2,0,0), T_2(x_1,\dots,x_5)=(0,0,x_3,x_4)$$

易知null $T_1 = \{(0,0,x,y,z) \in \mathbb{R}^5 : x,y,z \in \mathbb{R}\}$, null $T_2 = \{(x,y,0,0,z) \in \mathbb{R}^5 : x,y,z \in \mathbb{R}\}$.

于是dim null $T_1 = \dim$ null $T_2 = 3 > 2$,故 $T_1, T_2 \in \{T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^4) : \dim$ null $T > 2\}$.

然而 $(T_1 + T_2)(x_1, \dots, x_5) = (x_1, x_2, x_3, x_4)$,null $(T_1 + T_2) = \{(0, 0, 0, 0, x) \in \mathbb{F}^5 : x \in \mathbb{F}\}$,于是dim null $(T_1 + T_2) = 1$, 进而 $T_1 + T_2 \notin \{T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^4) : \text{dim null } T > 2\}$,于是该集合对加法不封闭,不是 $\mathcal{L}(\mathbb{R}^5, \mathbb{R}^4)$ 的子空间.

5. 给出一例使得range T = null T的 $T \in \mathcal{L}(\mathbb{R}^4)$.

Solution.

对于任意 $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$,令 $T(x_1, x_2, x_3, x_4) = (x_1, x_2, 0, 0)$ 即可满足题意.

6. 试证明不存在 $T \in \mathcal{L}(\mathbb{R}^5)$ 使得range T = null T.

Proof.

由线性映射基本定理可知dim range $T + \dim \text{null } T = \dim V = 5$.

于是不存在T满足 $\dim \operatorname{range} T = \dim \operatorname{null} T$,因而 $\operatorname{range} T \neq \operatorname{null} T$ 对所有 $T \in \mathcal{L}(\mathbb{R}^5)$ 成立.

7. 设V和W是有限维的且满足 $2 \leq \dim V \leq \dim W$,试证明 $\{T \in \mathcal{L}(V, W) : T$ 不是单射 $\}$ 不是 $\mathcal{L}(V, W)$ 的子空间.

Proof.

设 v_1, \dots, v_n 为V的一个基 $, w_1, \dots, w_n$ 是W中的一组线性无关向量.

令 $T_1, T_2 \in \mathcal{L}(V, W)$ 满足

$$\begin{cases} T_1 v_1 = \mathbf{0} \\ T_1 v_k = w_k, k \in \{2, \dots, n\} \end{cases} \begin{cases} T_2 v_2 = \mathbf{0} \\ T_2 v_k = w_k, k \in \{1, \dots, n\} \setminus \{2\} \end{cases}$$

不难证明 T_1, T_2 均不是单射.然而,对于任意一组标量 $a_1, \dots, a_n \in \mathbb{F}$ 有

$$(T_1 + T_2) (a_1v_1 + \dots + a_nv_n) = a_1T_1v_1 + \dots + a_nT_1v_n + a_1T_2v_1 + \dots + a_nT_2v_n$$

$$= a_2w_2 + \dots + a_nw_n + a_1w_1 + \dots + a_nw_n$$

$$= a_1w_1 + a_2w_2 + \dots + 2a_nw_n$$

因为 w_1, \dots, w_n 线性无关,于是 $T_1 + T_2$ 是单射,于是该集合对加法不封闭.命题得证.

8. 设V和W是有限维的且满足 $2 \le \dim W \le \dim V$,试证明 $\{T \in \mathcal{L}(V, W) : T$ 不是满射 $\}$ 不是 $\mathcal{L}(V, W)$ 的子空间.

Proof.

设 v_1, \dots, v_n 为V的一个基 $, w_1, \dots, w_m$ 是W的一个基.

$$\begin{cases} T_1 v_1 = \mathbf{0} \\ T_1 v_j = w_j, j \in \{2, \dots, m\} \\ T_1 v_k = \mathbf{0}, k \in m + 1, \dots, n \end{cases} \begin{cases} T_2 v_2 = \mathbf{0} \\ T_2 v_j = w_j, j \in \{1, \dots, m\} \setminus \{2\} \\ T_2 v_k = \mathbf{0}, k \in m + 1, \dots, n \end{cases}$$

不难证明 T_1, T_2 均不是满射.然而,对于任意一组标量 $a_1, \dots, a_n \in \mathbb{F}$ 有

$$(T_1 + T_2) (a_1v_1 + \dots + a_nv_n) = a_1T_1v_1 + \dots + a_nT_1v_n + a_1T_2v_1 + \dots + a_nT_2v_n$$
$$= a_1w_1 + a_2w_2 + \dots + 2a_mw_m$$

由于 w_1, \dots, w_m 是W的基,于是 $T_1 + T_2$ 是满射,于是该集合对加法不封闭,命题得证.

9. 设 $T \in \mathcal{L}(V, W)$ 是单射, v_1, \dots, v_n 在V中线性无关.试证明 Tv_1, \dots, Tv_n 在W中线性无关.

Proof.

设一组标量 $a_1, \dots, a_n \in \mathbb{F}$,于是 $T(a_1v_1 + \dots + a_nv_n) = a_1Tv_1 + \dots + a_nTv_n$.

由 v_1, \dots, v_n 线性无关可得当且仅当 $a_1 = \dots = a_n = 0$ 时 $a_1v_1 + \dots + a_nv_n = \mathbf{0}$.

又 $T(\mathbf{0}) = \mathbf{0}$,于是 $a_1 T v_1 + \dots + a_n T v_n = \mathbf{0}$ 当且仅当 $a_1 = \dots = a_n = 0$.

于是 Tv_1, \cdots, Tv_n 在W中线性无关.

10. 设 $V = \text{span } (v_1, \dots, v_n), T \in \mathcal{L}(V, W)$. 试证明range $T = \text{span } (Tv_1, \dots, Tv_n)$.

Proof.

由于 $V = \text{span}(v_1, \dots, v_n)$,故对于任意 $v \in V$ 均存在一组标量 $a_1, \dots, a_n \in \mathbb{F}$ 使得

$$v = a_1 v_1 + \dots + a_n v_n$$

于是对于任意 $Tv \in \text{range } T$ 都有

$$Tv = T (a_1v_1 + \dots + a_nv_n)$$
$$= a_1Tv_1 + \dots + a_nTv_n$$

从而range $T = \text{span } (Tv_1, \cdots Tv_n)$,命题得证.

11. 设V是有限维的, $T \in \mathcal{L}(V,W)$.

试证明:存在V的一个子空间U使得 $U \cap \text{null } T = \{\mathbf{0}\}$ 且range $T = \{Tu : u \in U\}$.

Proof.

设 u_1,\cdots,v_m 为null T的一个基,于是它可以被扩展为V的一个基 $u_1,\cdots,u_n,v_1,\cdots,v_m$. 根据线性映射基本定理可知 Tv_1,\cdots,Tv_m 为range T的基.

于是令 $U = \operatorname{span}(v_1, \dots, v_m)$ 即可满足题意.

12. 设线性映射 $T: \mathbb{F}^4 \to \mathbb{F}^2$ 使得

null
$$T = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 : x_1 = 5x_2, x_3 = 7x_4\}$$

试证明T是满射.

Proof.

不难发现(5,1,0,0),(0,0,7,1)是null T的一个基,于是dim null T=2.

由线性映射基本定理, $\dim \operatorname{range} T = \dim V - \dim \operatorname{null} T = 2 = \dim \mathbb{R}^2$,从而 $\dim \operatorname{range} T = \mathbb{R}^2$,故T是满射.

13. 设U是 \mathbb{R}^8 的子空间, $\dim U=3$,线性映射 $T:\mathbb{R}^8\to\mathbb{R}^5$ 且 $\mathrm{null}\ T=U$.试证明T是满射.

Proof.

由线性映射基本定理, $\dim \operatorname{range} T = \dim V - \dim \operatorname{null} T = \dim V - \dim U = 8 - 3 = 5$,于是range $T = \mathbb{R}^5$,故T是满射.

14. 试证明:不存在 $T \in \mathcal{L}(\mathbb{F}^5, \mathbb{F}^2)$ 使得

null
$$T = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}^5 : x_1 = 3x_2 \boxplus x_3 = x_4 = x_5 \}$$

Proof.

注意到(3,1,0,0,0),(0,0,1,1,1)是null T的一个基,于是dim null T=2.

根据线性映射基本定理可知 $\dim \operatorname{range} T = \dim V - \dim \operatorname{null} 5 - 2 = 3 > 2$,于是不存在这样的线性映射.

15. 设V上的线性映射T,满足T的零空间和值域都是有限维的.试证明:V是有限维的.

Proof.

不妨设dim null T = n, dim range T = m, 于是 $m, n \in \mathbb{N}$.

于是 $\dim V = m + n \in \mathbb{N}$,故V是有限维的,命题得证.

16. 设V和W都是有限维的,试证明:存在V到W的单射,当且仅当 $\dim V \leq \dim U$.

Proof.

首先证明 $\dim V \leq \dim W$ 时存在这样的单射.

设 v_1, \dots, v_n 是V的一个基 $, w_1, \dots, w_n$ 是W中的一组线性无关的向量.

设 $T \in \mathcal{L}(V, W)$ 使得 $Tv_k = w_k, k \in \{1, \dots, n\}.$

对于 $v \in V$,设一组标量 a_1, \dots, a_n 满足 $v = a_1v_1 + \dots + a_nv_n$.于是

$$Tv = T (a_1v_1 + \dots + a_nv_n)$$
$$= a_1Tv_1 + \dots + a_nTv_n$$
$$= a_1w_1 + \dots + a_nw_n$$

又 w_1, \dots, w_n 线性无关,于是 $Tv = \mathbf{0}$ 当且仅当 $a_1 = \dots = a_n = 0$,此时 $v = \mathbf{0}$, 即 $\operatorname{null} T = \{\mathbf{0}\}$,于是T为单射. 我们已经证明,当 $\dim V > \dim W$ 时,不存在V到W的单射.

综上,命题得证.

17. 设V和W都是有限维的,试证明:存在V到W的满射,当且仅当 $\dim V \geqslant \dim U$.

Proof.

首先证明 $\dim V \ge \dim W$ 时存在这样的满射.

设 w_1, \dots, w_m 是W的一个基 $,v_1, \dots, v_n$ 是V的一个基.

设 $T \in \mathcal{L}(V, W)$ 使得

$$\begin{cases} Tv_k = w_k, k \in 1, \dots, m \\ Tv_k = \mathbf{0}, k \in m+1, \dots, n \end{cases}$$

对于任意 $w \in W$,存在一组标量 a_1, \dots, a_m 使得 $w = a_1w_1 + \dots + a_mw_m$,于是

$$w = a_1 w_1 + \dots + a_m w_m$$
$$= a_1 T v_1 + \dots + a_m T v_m$$
$$= T (a_1 v_1 + \dots + a_m v_m)$$

又 v_1, \dots, v_m 线性无关,于是 $a_1v_1 + \dots + a_mv_m$ 唯一对应了V中的一个向量.于是T为满射. 我们已经证明,当 $\dim V < \dim W$ 时,不存在V到W的满射.

综上,命题得证.

18. 设V和W都是有限维的,U是V的子空间.试证明:存在 $T \in \mathcal{L}(V,W)$ 使得 $\mathrm{null}\ T = U$,当且仅当 $\mathrm{dim}\ U \geqslant \mathrm{dim}\ V - \mathrm{dim}\ W$.

Proof.

设 u_1, \dots, u_m 为U的一组基,于是它可以被扩展为V的一组基 $u_1, \dots, u_m, v_1, \dots, v_n$.

于是 $\dim U = m$, $\dim V = m + n$.

一方面,当 $\dim U \ge \dim V - \dim W$ 时有 $\dim W \ge n$,于是存在 w_1, \dots, w_n 在W中线性无关.

$$\begin{cases} Tu_j = \mathbf{0}, j \in \{1, \dots, m\} \\ Tv_k = w_k, k \in \{1, \dots, n\} \end{cases}$$

于是null $T = \text{span}(u_1, \dots, u_m) = U$,于是存在这样的T满足题意.

另一方面,当存在 $T \in \mathcal{L}(V, W)$ 使得null T = U时,应对于任意 $v \in V \setminus U$ 有 $Tv \neq \mathbf{0}$.

即对于任意 $a_1, \dots, a_m \in \mathbb{F}$ 和不全为0的 $b_1, \dots, b_n \in \mathbb{F}$,都有

$$Tv = T (a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n)$$

= $T (a_1u_1 + \dots + a_mu_m) + T (b_1v_1 + \dots + b_nv_n)$
= $b_1Tv_1 + \dots + b_nTv_n$

若dim W < n,必然 Tv_1, \dots, Tv_n 线性相关,于是存在这样的 b_1, \dots, b_n 使得 $Tv = \mathbf{0}$,矛盾.

于是 $\dim W \ge n$,即 $\dim U \ge \dim V - \dim W$.

综上,命题得证.

19. 设W是有限维的, $T \in \mathcal{L}(V, W)$.试证明:T是单射,当且仅当存在 $S \in \mathcal{L}(W, V)$ 使得ST是V上的恒等算子.

Proof.

若T是单射,对于任意 $w \in \text{range } T$ 都存在唯一的 $v \in V$ 使得Tv = w.

设range T的基为 w_1, \cdots, w_m ,它可以被扩展为W的一组基 $w_1, \cdots, w_m, u_1, \cdots, u_n$.

定义映射 $S:V\to W$ 满足

$$\begin{cases} Sw_k = v_k, k \in \{1, \dots, m\} \ \exists Tv_k = w_k \\ Su_j = \mathbf{0}, j \in \{1, \dots, n\} \end{cases}$$

容易验证S是线性映射.

于是对于任意 $v \in V$ 都有ST(v) = S(Tv) = Sw = v,即存在这样的S使得ST为V上的恒等算子. 若存在 $S \in \mathcal{L}(W,V)$ 使得ST为V上的恒等算子,那么对于任意 $v_1, v_2 \in V$ 有

$$STv_1 = S(Tv_1) = v_1, STv_2 = S(Tv_2) = v_2$$

于是 $Tv_1 = Tv_2$ 当且仅当 $v_1 = v_2$ (否则S会将一个向量映射为两个不同的值),从而T是单射. 综上,命题得证.

20. 设W是有限维的, $T \in \mathcal{L}(V, W)$.试证明:T是满射,当且仅当存在 $S \in \mathcal{L}(W, V)$ 使得TS是W上的恒等算子.

Proof.

若T是满射,于是对于任意 $w \in W$ 都存在 $v \in V$ 使得Tv = w.

定义映射 $S:W\to V$ 满足 $\forall w\in W, Sw=v$ 其中Tv=w(如果存在多个满足条件的v,则任取一个即可).容易验证S是线性的.

于是TSw = Tv = w,从而存在这样的S使得TS是W上的恒等算子.

若存在线性映射S使得TS是W上的恒等算子,那么对于任意 $w \in W$ 均有TSw = T(Sw) = w.

于是range T = W,因而T是满射.

综上,命题得证.

21. 设V是有限维的, $T \in \mathcal{L}(V,W)$,U是W的子空间. 试证明:集合 $\{v \in V : Tv \in U\}$ 是V的子空间,且满足

$$\dim \{v \in V : Tv \in U\} = \dim \operatorname{null} T + \dim(U \cap \operatorname{range} T)$$

Proof.

我们先证明 $\{v \in V : Tv \in U\}$ 是V的子空间.记这个集合为S.

对于 $v_1, v_2 \in S$,不妨令 $Tv_1 = u_1, Tv_2 = u_2$.因为U是W的子空间,于是

$$T(v_1 + v_2) = Tv_1 + Tv_2 = u_1 + u_2 \in U$$

从而 $v_1 + v_2 \in S$,即S对加法封闭.

验证S对乘法封闭也是类似的,在这里略去.

未完待续.

22. 设U和V是有限维向量空间, $S \in \mathcal{L}(V,W)$ 和 $T \in \mathcal{L}(U,V)$,试证明

 $\dim \operatorname{null} \, ST \leqslant \dim \operatorname{null} \, S + \dim \operatorname{null} \, T$

Proof.

根据线性映射基本定理,我们有

$$\begin{split} \dim \operatorname{null} \, ST &= \dim U - \dim \operatorname{range} \, ST \\ &= \dim \operatorname{null} \, T + \dim \operatorname{range} \, T - \dim \operatorname{range} \, ST \\ &\leqslant \dim \operatorname{null} \, T + \dim V - \dim \operatorname{range} \, ST \\ &= \dim \operatorname{null} \, T + \dim \operatorname{null} \, S + \dim \operatorname{range} \, S - \dim \operatorname{range} \, ST \end{split}$$

我们只需证明dim range $S \ge \dim \operatorname{range} ST$.

对于任意 $w \in \text{range } ST$,都存在 $u \in U$ 使得STu = w.于是对于任意w总存在 V中的向量Tu使得S将其映射到w.从而range $ST \subseteq \text{range } S$,于是dim range $ST \leqslant \text{dim range } S$,命题得证.

23. 设U和V是有限维向量空间, $S \in \mathcal{L}(V,W)$ 和 $T \in \mathcal{L}(U,V)$,试证明

 $\dim \operatorname{range} ST \leqslant \min \{\dim \operatorname{range} S, \dim \operatorname{range} T\}$

Proof.

在**22.**中我们已经证明了dim range $ST \leq \dim \operatorname{range} S$.

设 v_1, \dots, v_m 是range T的一组基.容易知道range $ST = \mathrm{span}\,(Tv_1, \dots, Tv_m)$.

于是我们有dim range $ST = \dim \operatorname{range} \operatorname{span} (Tv_1, \dots, Tv_m) \leq m$.

这就证明了 $\dim \operatorname{range} ST \leq \dim \operatorname{range} T$.

命题得证.

- 24. 回答下列问题.
- (1) 设dim V = 5,且 $S, T \in \mathcal{L}(V)$ 使得ST = 0.试证明:dim range $TS \leq 2$.
- (2) 给出一例: $S, T \in \mathcal{L}(\mathbb{F}^5), ST = \mathbf{0}$ 且dim range ST = 2.

(1) Proof.

假定dim range TS > 2. 根据**23.**可得dim range T > 2, dim range S > 2.

从而dim null $T \leq 2$, dim null $S \leq 2$.

由于dim null $T \leq 2$,于是至多有两个基向量 v_k 满足 $Tv_k = \mathbf{0}$.

设 v_1, \dots, v_5 为V的一组基.设 $v = v_1 + \dots + v_5 \in V$.

不妨假定 $Tv_1, \dots, Tv_3 \neq \mathbf{0}$,于是 $STv = STv_1 + \dots + STv_3$.

由于 v_1, \dots, v_5 线性无关,于是 Tv_1, \dots, Tv_3 线性无关.

由于dim null $S \leq 2$,于是至多有两个 Tv_k 满足 $S(Tv_k) = \mathbf{0}$.

不妨假定 $STv_1 \neq \mathbf{0}$,这与 $ST = \mathbf{0}$ 矛盾.于是命题得证.

(2) Solution.

略.

25. 设W是有限维的, $S,T \in \mathcal{L}(V,W)$.证明:null $S \subseteq \text{null } T$,当且仅当存在 $E \in \mathcal{L}(W)$ 使得T = ES.

Proof.

当null $S\subseteq$ null T时,假定 v_1,\cdots,v_m 是null S的一组基, $v_1,\cdots,v_m,u_1,\cdots,u_n$ 是null T的一组基. 再假定 $v_1,\cdots,v_m,u_1,\cdots,u_n,w_1,\cdots,w_k$ 是V的一组基.