Lecture 2: Tokenization and Morphology

Overview

- 1. Corpus
- 2. Word definition
- 3. Tokenization
- 4. Vocabulary

General workflow of an NLP system

Process common to all if not most NLP task

raw text corpus \rightarrow tokenized text \rightarrow corpus vocabulary \rightarrow text representation \rightarrow NLP task

- 1. Raw text corpus: like data collection in any ML system
- 2. Tokenized: corpus reduced to unique tokens
- 3. Vocabulary: normalized tokens collecting of unique symbols of meaning
- 4. Text representation: encoding meaning into text
- 5. NLP task: machine translation, searching etc.

Corpus in NLP

- An unbiased copy of text collected in a natural communicative setting for a specific purpose.
 - monolingual corpus: contain texts in a single language
 - multilingual corpus: text data in multiple languages

Text Data Hierarchy Corpora Corpus Corpus

Corpus design

- Though language is infinite, a corpus has to be finite in size.
 - should be a representative sample of the language under investigation.
- Corpus design considerations
 - Representativeness: findings from corpus can be generalized
 - Balance: cover a wide range of text categories
 - Sampling: related to representativeness ⇔ samples should cover variability in language
 - Corpus size: no scientific guidelines should be task dependent

Examples of NLP corpora

- The Brown corpus (US English) :
 - a million words
- The Lancaster-Oslo-Bergen (LOB) corpus (British English)
 - about 1 million words
- The British National Corpus (BNC)
 - contains approx. 100 million words and includes 20 million words of spoken English
- The Bank of English corpus
 - 650 Million words.

How do we identify words and sentences in a text?

Word in English: any sequence of characters between whitespaces

- Text boundaries can be relative to...
 - Words, Phrase, Sentence, Paragraph
- Consider the following sentences

Looking to get started with NLP? Here's the perfect first step.

[[Looking, to, get, started, with, NLP?], [Here, 's, the, perfect, first, step, .]]

Easy to identify boundaries for languages like French and English

How do we identify words in a text?

- This is good for first approximation but insufficient
 - What about compount words New York-based, New York, ice scream?
 - What about contractions like doesn't, couldn't, 've, l'ensemble?
 - Are these one or two words?

Whitespaces is not sufficient what about Punctuations?

- doesn't ⇔ doesn, t
- *l'ensemble ⇔ l?, L'? Le?*
- What about abbrevaitions like D.C.?
- What about names like SARS-Cov-2, R2-D2?

How do we identify words in a text?

What about languages without whitespaces (e.g. Chinese and Japanese)

```
   Chinese: 我开始写小说 =
   我 开始 写 小说

   I start(ed) writing novel(s)
```

- Further Japanese have multiple alphabets intermingled
- Languages where a single word can represent an entire sentence (e.g. Turkish)

Finding boundaries

Finding word or sentence boundaries is not a trivial task.

- boundaries may interact with morphology
- and may include normalization
 - Normalization convert words to their base form (more on this later).

• Finding boundaries in text is referred to as tokenization or segmentation

Finding boundaries

How can we identify that this is two sentences?

Mr. Smith went to D.C. Ms. Johnson went to Chicago instead.

Challenge: punctuation marks in abbreviations (Mr., D.C, Ms,...)

How many sentences are in this text?

"The San Francisco-based restaurant," they said, "doesn't charge \$10".

• One sentence, even though "they said" appears in the middle of another sentence.

Tokenization – identifying word boundaries

Tokenization is essentially splitting a phrase, sentence, paragraph, or an entire text document into atomic units of meaning called *tokens*.

The most common way of forming tokens is based on whitespace.

What time is it? ⇔ [What, time, is, it?]

Main question?

 Tokenization aims at handling word boundaries and should account for some variations in the text

What is a word?

Which words appear in this text?

- Most off the Actual text doesn't often consist of only dictionary entries
- Consider the sentence below

"Of course he wants to take the advanced course too. He already took two beginners' courses."

- wants is a form of want
- courses is a form of course

What is a word?

- Linguistic distinguish between two forms of words
 - 1. the **(surface) forms** that occur in text: want, wants, beginners', took
 - 2. the **lemmas** that are the uninflected forms of these words: want, beginner, take
- In NLP we often map words to lemmas (stems), but raw text consists of surface forms

How many different words are there?

- Inflection creates different forms of the same word:
 - Verbs: to be, being, I am, you are, he is, I was,
 - Nouns: one book, two books
- Derivation creates different words from the same lemma:
 - $grace \Rightarrow disgrace \Rightarrow disgracefull \Rightarrow disgracefully$
- New words from compounding:
 - cream \Rightarrow ice cream \Rightarrow ice cream cone \Rightarrow ice cream cone bakery
- Word formation is productive:
 - New words are subject to all of these processes:
 - Google ⇒ Googler, to google

Inflectional morphology

• Verbs:

- Infinitive/present tense: walk, go
- 3rd person singular present tense (s-form): walks, goes
- Simple past: walked, went
- Past participle (ed-form): walked, gone
- Present participle (ing-form): walking, going

Nouns:

- Common nouns inflect for number:
 - singular (book) vs. plural (books)
- Personal pronouns inflect for person, number, gender, case:

I saw him; he saw me; you saw her; we saw them; they saw us.

Derivational morphology

Nominalization:

- V + -ation: computerization
- V+ -er: singer

Negation:

- un-: unkind, undo, unseen,...
- mis-: mistake,...

Adjectivization:

- V+ -able: doable
- N + -al: national

Morphemes: stems, affixes

dis-grace-ful-ly
prefix-stem-suffix-suffix

- word forms consist of a **stem** + a number of *affixes* (*prefixes* or *suffixes*)
 - Exceptions: *Infixes* are inserted inside the stem
 - *Circumfixes* surround the stem
- Morphemes: the smallest (meaningful/grammatical) parts of words.
 - Stems are often free morphemes can occur by themselves as words.
 - Affixes (dis-, -ful, -ly) are usually bound morphemes.
 - Bound morphemes have to combine with others to form words.

Morphemes and morphs

- The same information (plural, past tense, ...) is often expressed in different ways in the same language.
 - Some representations may be more common than others, and exceptions may depend on specific words:
 - Most plural nouns: add -s to singular: book-books
 - However others have: box-boxes, fly-flies, child-children
 - Most past tense verbs add -ed to infinitive: walk-walked,
 - However others have: like-liked, leap-leapt
 - Such exceptions are called *irregular* word forms

How do we handle spelling variants and typos?

The same word can be written in different ways (spelling variants, typos):

- with different capitalizations: fox, Fox, FOX
- with different abbreviation or hyphenation styles:

```
US-based, US based, U.S.-based, U.S. based US-EU relations, U.S./E.U. relations, ...
```

• with **spelling variants** (e.g., regional variants of English):

```
labor vs labour
neighbor vs neighbour
```

with typos: teh instead of the

How do we represent the structure of words?

Words as atomic symbols

- each word form its own symbol
- add generalization by mapping different forms of a word to the same atomic symbol
 - 1. Normalization: map all variants of the same word (form) to the same canonical variant (e.g. lowercase everything, normalize spellings, perhaps spell-check)
 - US-based, US based, U.S.-based, U.S. based ⇔ us-based
 - labor , labour ⇔ labour

How do we represent the structure of words?

- 2. Lemmatization: maps each word to its lemma a lemma maybe a word, (lemmatized text is no longer grammatical).
 - Reduce inflections or variant forms to base form
 - am, are, is ⇔ be
 - Car, cars, car's, cars' ⇔ car

The boy's cars are different colours \Leftrightarrow the boy car are be different colour

• Lemmatization finds correct dictionary headwords but the resulting sentence must not necessarily be grammatically correct.

How do we represent the structure of words?

- 3. Stemming: remove endings that differ among word forms (no guarantee that the resulting symbol is an actual word)
 - Reduces words/terms to their stem i.e. crude chopping of affixes
 - Automates, automatic, automation automat

for example compressed and compression are both accepted as equivalent to compress

for exampl compress and compress are both accept as equival to compress

How do we represent the structure of a words?

Represent the structure of each word

- "books" => "book N pl" or "book V 3rd sg"
- This representation will require a morphological analyser

- The output of such representation is often
 - a lemma ("book") plus
 - morphological information ("N pl" i.e. plural noun)

Handling unknown words

Many NLP systems assume a fixed vocabulary, but still have to handle **out-of-vocabulary (OOV)** words.

1. The unknown – UNK token

- Replace all rare words in your training vocabulary with an UNK token (UNK = "Unknown word").
 - Rare words are words with a frequency below a given threshold, e.g. 2, 3, or 5)
- Replace all unknown words during testing or in production (including rare training words) with the same UNK token

Vocabulary

- The vocabulary is a holding area for processed text before it is transformed into some representation for the impending NLP task.
- The vocabulary of a language is the set of (unique) word types in the language corpus:

```
V = \{a, able \dots, zebra\}
```

- The tokens in a document include all occurrences of the word types
- The frequency of a word (type) in a document is the number of occurrences (tokens) of that type.

Vocabulary – how many words?

Consider the following sentence

"they lay back on the San Francisco grass and looked at the stars and their"

[they, lay, back, on, the, San Francisco, grass, and, looked, at, their, stars]

Type: and element of the vocabulary

How many types (13, 12, or 11?)

Token: an instance of a type in a running text

How many tokens (15, 14 or 13)

Vocabulary – counting words

How large is the vocabulary of the English language:

Vocabulary size = number of distinct word types

- Google n-gram corpus: 1 trillion tokens, 13M word types that appear 40+ times
- For most corpus of text in the English language
 - close class words are very frequent (the, be, to, of, and, a, in, that,...)
 - all open class words are very rare

Word frequency: the number of occurrences of a word type in a text (or in a collection of texts)

Biased towards open class words

Vocabulary – Zipf's Law

Zipf's Law is a discrete probability distribution that tells you the probability of encountering a word in a given corpus.

Vocabulary – Zipf's Law

The input is the **rank** of a word (in terms of is frequency) so you can use this distribution to ask questions like:

- What is the probability of encountering the most common word in a corpus with 100,000 words?
- What is the probability of encountering the 10th most common word in a corpus of 100,000 words?
- What is the probability of encountering the least common word in a corpus of 100,000 words?

Vocabulary – Zipf's Law

Probability mass function in Zipf's law is defined as:

$$f(k; s, N) = \frac{1/k^{s}}{\sum_{n=1}^{N} (1/n^{s})}$$

where

- K: rank of the word we are interested in finding out the probability of appearing
- N: size of the vocabulary
- s: parameter of the probability distribution and is set to 1 in classic Zipf's law

Implication of Zipf's Law

- Useful in identifying the very common words in a vocabulary
 - These are words seen very often that it's easily understood
 - These are words that help humans understand the structure and meaning of the text.
- Bias towards rare words
 - Words we haven't seen enough to easily know everything about them
 - They may occur with a meaning or an unseen part of speech
- Bias towards unknown words
 - Any text will contain a number of words that are unknown to us. We have never seen them before, but we still need to get at the structure (and meaning) of these texts.

Dealing with biases in Zipf's Law

Every NLP systems need to be able to generalize to unseen samples.

There are two (complementary) approaches to generalization

- Linguistics provides us with insights about the rules and structures in language that we can exploit in the (symbolic) representations we use
 - e.g.: a finite set of grammar rules is enough to describe an infinite language
- Machine Learning/Statistics allows us to learn models from real data that often work well empirically on unseen data
 - e.g. most statistical or neural NLP

Sentence segmentation

- !, ? are relatively unambiguous
- Period "." is quite ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Build a binary classifier
 - Looks at a "."
 - Decides EndOfSentence/NotEndOfSentence
 - Classifiers: hand-written rules, regular expressions, machine-learning

Determining end-of-sentence – Decision Tree

More sophisticated decision tree features

- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number

- Numeric features
 - Length of word with "."
 - Probability (word with "." occurs at end-of-s)
 - Probability(word after "." occurs at beginning-of-s)