x1, x2 are highly correlated:

x1	x2
1.5	2.1
0.7	0.5
-1	-1.3
-2	-1.8

Mean of x1, x2, and its density:

MSE₁, MSE₂, .. MSE_n are highly correlated:

MSE ₁	MSE ₂	MSE ₃	 MSE _n
1.3	0.8	1.2	1.6
-1.9	-2	-1.85	-1.5
0.2	0.1	0.11	0.3
1.8	1.2	1.4	1.9

Mean of MSE_1 , MSE_2 ... = estimate of test $MSE(CV_n)$, and its density:

5_variance_of_correlated_quantities_Kaggle.pdf 5_variance_of_correlated_quantities.irnb Training set for LOOCV:

Observations in each training set are almost identical => MSE₁, MSE₂, .. MSE_n are highly (positively) correlated!