CURSO: Engenharia de Software SEMESTRE: 2025/1

DISCIPLINA: Estruturas de Dados 1 CÓDIGO: FGA0146

CARGA HORÁRIA: 60 horas CRÉDITOS: 4
PROFESSOR: John Lenon C. Gardenghi TURMA: T02

PLANO DE ENSINO

24 de março de 2025

1 Objetivos da Disciplina

Apresentar a estrutura e funcionamento das estruturas de dados básicas. Capacitar o aluno a abstrair e implementar problemas reais que demandam a utilização de técnicas de programação que envolvem alocação dinâmica de memória e estruturas de dados.

2 Ementa do Programa

1. Recursão

- 2. Ponteiros e alocação dinâmica de memória
- 3. Estruturas lineares: listas, filas e pilhas
- 4. Introdução à complexidade computacional e notação *big-O*
- 5. Algoritmos de busca
- 6. Algoritmos de ordenação $O(n^2)$
- 7. Algoritmos em árvores binárias
- 8. Organização de arquivos
- 9. Aplicações

3 Horário das aulas e atendimento

AULAS: terças e quintas-feiras, das 10h às 11h50, na sala I9.

ATENDIMENTO: Sob agendamento.

E-MAIL: john.gardenghi@unb.br.

TELEGRAM: @johngardenghi.

4 Metodologia

A metodologia consiste em aulas expositivas, com o auxílio do quadro branco e eventualmente de projetor digital. A fim de fortalecer a aprendizagem da disciplina, as aulas serão complementadas com exercícios e atividades, presenciais e extra-classe, em papel, digitais e com o uso de juízes eletrônicos. Também contaremos com conteúdos disponibilizados na página *web* da disciplina¹. Para a comunicação com a turma, o principal canal a ser utilizado será o mural de notícias do SIGAA. A cada notícia enviada, um e-mail é enviado a todos os alunos. Por isso, mantenha seu e-mail atualizado no SIGAA.

https://john.pro.br/ensino/eda1-2025-1/.

5 Critérios de Avaliação

A avaliação consistirá em 4 itens: (1) m avaliações formativas, que consistirão em questionários ou exercícios em juízes eletrônicos, (2) três avaliações somativas, que consistirão em questões no papel e/ou híbridas (papel + computador), (3) uma recuperação e (4) frequência nas aulas.

A média final de cada aluno será dada por:

$$M_{\rm F} = 0.85 \times M_{\rm AS} + 0.15 \times M_{\rm AF} + 0.1 \times R$$

em que $M_{\rm AS}$ e $M_{\rm AF}$ são, respectivamente, as médias das avaliações somativas e formativas e R, a nota da recuperação.

5.1 Avaliações e recuperação

As avaliações formativas serão divulgadas ao longo do semestre, com prazo de alguns dias para conclusão e entrega. As avaliações somativas serão resolvidas numa única aula, sem consulta a qualquer material manuscrito e/ou impresso e as datas estão previstas no cronograma na Seção 6.

As avaliações somativas serão realizadas de acordo com as datas constantes no cronograma da Seção 6. Serão realizadas no horário da aula e não será admitida entrada de alunos depois que o primeiro aluno da turma concluir a avaliação e deixar a sala de aula.

A recuperação será uma atividade publicada no final do semestre, e **poderão fazer a recuperação apenas os alunos que cumpram os seguintes requisitos** até a data da recuperação:

- 1. Não estejam reprovados por falta e
- 2. $M_{\rm F} \in [4,0;4,9] \cup [6,0;6,9] \cup [8,0;8,9]$.

Aos alunos que não cumprirem qualquer um dos dois requisitos acima é vedada a realização da recuperação. Não há avaliação formativa substitutiva tampouco recuperação substitutiva. Quem não puder comparecer a alguma Avaliação Somativa (*com falta justificada*) poderá fazer a Avaliação Somativa Substitutiva ao final do semestre, que versará sobre todo o conteúdo do semestre.

No caso de detecção de plágio em qualquer um deles, será atribuída nota zero a todos os envolvidos.

5.2 Frequência

A frequência dos alunos serão acompanhadas pelo professor com base na chamada oral que será realizada em todas as aulas. As faltas serão lançadas a cada aula no SIGAA, e o aluno tem até um dia útil após a aula para contestar falta na referida aula. *Não é possível abonar faltas*.

5.3 Aprovação e menção final

Para ser aprovado na disciplina, o aluno deve obter $M_{\rm F} \geq 5{,}0$ e ter frequência igual ou superior a 75%². A menção será atribuída de acordo com a nota $M_{\rm F}$, seguindo a equivalência estabelecida no Art. 122 do Regimento Geral da UnB³.

²Neste semestre, teremos 29 encontros (58 horas-aula), portanto o aluno deve comparecer a 22 encontros (44 horas-aula), o que significa que um aluno poderá faltar a, no máximo, 7 encontros (14 faltas no SIGAA).

³https://www.unb.br/images/Documentos/Estatuto_e_Regimento_Geral_UnB.pdf

6 Cronograma

Sem.	Aula	Data	Conteúdo
1	1	25/03	Apresentação da disciplina · Revisão de algoritmos
	2	27/03	Revisão de algoritmos
2	3	01/04	Introdução à complexidade computacional
	4	03/04	Introdução à complexidade computacional
3	5	08/04	Introdução à complexidade computacional
	6	10/04	Ponteiros
4	7	15/04	Ponteiros
	8	17/04	Ponteiros
5	9	22/04	Revisão e dúvidas
	10	24/04	Avaliação Somativa 1
6	11	29/04	Recursão
	-	01/05	Feriado (Dia do Trabalho)
7	12	06/05	Recursão
	13	08/05	Ordenação e Busca
8	14	13/05	Ordenação e Busca
	15	15/05	Ordenação e Busca
9	16	20/05	Listas encadeadas
	17	22/05	Listas encadeadas
10	18	27/05	Listas encadeadas
	19	29/05	Listas encadeadas
11	20	03/06	Revisão e dúvidas
	21	05/06	Avaliação Somativa 2
12	22	10/06	Pilhas e filas
	23	12/06	Pilhas e filas
13	24	17/06	Pilhas e filas
	_	19/06	Ponto Facultativo (Corpus Christi)
14	25	24/06	Pilhas e filas
	26	26/06	Pilhas e filas
15	27	01/07	Árvores
	28	03/07	Árvores
16	29	08/07	Avaliação Somativa 3
	_	10/07	Não haverá aula
17	30	15/07	Dúvidas, revisão e notas
	31	17/07	Avaliação Substitutiva
18	32	22/07	Recuperação
	33	24/07	Revisão de notas e faltas

7 Bibliografia

BIBLIOGRAFIA BÁSICA

BALDWIN, D.; SCRAGG, G. Algorithms and Data Structures: The Science of Computing, 1st ed. Charles River Media, 2004.

LAFORE, R. Estruturas de Dados e Algoritmos em Java. 1a. ed. Ciência Moderna, 2005.

FERRAZ, I. N. Programação com arquivos. Barueri, SP: Manole, 2003.

BIBLIOGRAFIA COMPLEMENTAR

MEHLHORN, K; SANDERS, P. **Algorithms and Data Structures**: The Basic ToolBox, 1st. ed. Springer, 2008.

AHO, A. V.; ULLMAN, J. D. **Foundations of Computer Science**: C Edition (Principles of Computer Science Series). 1st ed. W. H. Freeman, 1994.

GUIMARÃES, A. M.; LAGES. N. A. C. Algoritmos e Estruturas de Dados, 1a. ed. LTC, 1994.

SHERROD, A. **Data Structures and Algorithms for Game Developers**, 5th ed. Course Technology, 2007.

DESHPANDE, P. S.; KAKDE, O. G. C and Data Structures, 1a. ed. Charles River Media, 2004.

DAS, V. V., **Principles of Data Structures Using C and C++**. 1a. ed. New Age International, 2006.

FEOFILOFF, P. Algoritmos em Linguagem C. Elsevier, 2009; Disponível em: https://www.ime.usp.br/~pf/algoritmos-livro/downloads/Algoritmos-em-linguagem-C.pdf. Acesso em: 24 mar. 2025.

7.1 Para acesso de casa

A UnB conta com uma biblioteca online: a Minha biblioteca. Recomendo os seguintes livros:

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L; STEIN, C. **Algoritmos**: Teoria e Prática. 4 ed. LTC, 2023. Disponível em: https://integrada.minhabiblioteca.com.br/books/9788595159914. Acesso em: 11 abr. 2024.

BACKES, A. R. Algoritmos e Estruturas de Dados em Linguagem C. LTC, 2022. Disponível em: https://integrada.minhabiblioteca.com.br/books/9788521638315. Acesso em: 11 abr. 2024.

SZWARCFITER, J. L.; MARKENZON, L. Estruturas de dados e seus algoritmos. 3 ed. LTC, 2010. Disponível em: https://integrada.minhabiblioteca.com.br/books/978-85-216-2995-5/. Acesso em: 11 abr. 2024.

7.2 Bons materiais na internet

Recomendo os seguintes materiais na internet:

- Projeto de Algoritmos (Prof. Paulo Feofiloff)
- Material sobre estruturas de dados (Prof. Rafael Schouery)
- Apostila de EDA-1 e EDA-2 (Prof. Bruno Ribas)

Prof. John Lenon Cardoso Gardenghi