6. List of formulae and tables of the normal distribution

PURE MATHEMATICS

Algebra

For the quadratic equation $ax^2 + bx + c = 0$:

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

For an arithmetic series:

$$u_n = a + (n-1)d$$
, $S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n\{2a + (n-1)d\}$

For a geometric series:

$$u_n = ar^{n-1},$$
 $S_n = \frac{a(1-r^n)}{1-r} \quad (r \neq 1),$ $S_{\infty} = \frac{a}{1-r} \quad (|r| < 1)$

Binomial expansion:

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \binom{n}{3}a^{n-3}b^{3} + \dots + b^{n}, \text{ where } n \text{ is a positive integer}$$

$$\text{and } \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3} + \dots, \text{ where } n \text{ is rational and } |x| < 1$$

Trigonometry

Arc length of circle
$$= r\theta$$
 (θ in radians)
Area of sector of circle $= \frac{1}{2}r^2\theta$ (θ in radians)

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cos^2 \theta + \sin^2 \theta = 1, \qquad 1 + \tan^2 \theta = \sec^2 \theta, \qquad \cot^2 \theta + 1 = \csc^2 \theta$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

Principal values:

$$-\frac{1}{2}\pi \le \sin^{-1} x \le \frac{1}{2}\pi$$
$$0 \le \cos^{-1} x \le \pi$$
$$-\frac{1}{2}\pi < \tan^{-1} x < \frac{1}{2}\pi$$

Differentiation

$$f(x) x^n nx^{n-1}$$

$$\ln x \frac{1}{x}$$

$$e^x e^x e^x$$

$$\sin x \cos x$$

$$\cos x -\sin x$$

$$\tan x \sec^2 x$$

$$u^y u \frac{d^y}{dx} + v \frac{d^u}{dx}$$

$$\frac{u}{v} \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$
If $x = f(t)$ and $y = g(t)$ then $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$

Integration

$$f(x) \qquad \int f(x) dx$$

$$x^{n} \qquad \frac{x^{n+1}}{n+1} + c \quad (n \neq -1)$$

$$\frac{1}{x} \qquad \ln|x| + c$$

$$e^{x} \qquad e^{x} + c$$

$$\sin x \qquad -\cos x + c$$

$$\cos x \qquad \sin x + c$$

$$\sec^{2} x \qquad \tan x + c$$

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

Vectors

If
$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
 and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ then
$$\mathbf{a}.\mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Numerical integration

Trapezium rule:

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} h\{y_0 + 2(y_1 + y_2 + \dots + y_{n-1}) + y_n\}, \text{ where } h = \frac{b - a}{n}$$

MECHANICS

Uniformly accelerated motion

$$v = u + at$$
, $s = \frac{1}{2}(u + v)t$, $s = ut + \frac{1}{2}at^2$, $v^2 = u^2 + 2as$

Motion of a projectile

Equation of trajectory is:

$$y = x \tan \theta - \frac{gx^2}{2V^2 \cos^2 \theta}$$

Elastic strings and springs

$$T = \frac{\lambda x}{l}, \qquad E = \frac{\lambda x^2}{2l}$$

Motion in a circle

For uniform circular motion, the acceleration is directed towards the centre and has magnitude

$$\omega^2 r$$
 or $\frac{v^2}{r}$

Centres of mass of uniform bodies

Triangular lamina: $\frac{2}{3}$ along median from vertex

Solid hemisphere or radius r: $\frac{3}{8}r$ from centre

Hemispherical shell of radius r: $\frac{1}{2}r$ from centre

Circular arc of radius r and angle 2α : $\frac{r \sin \alpha}{\alpha}$ from centre

Circular sector of radius r and angle 2α : $\frac{2r\sin\alpha}{3\alpha}$ from centre

Solid cone or pyramid of height h: $\frac{3}{4}h$ from vertex

PROBABILITY AND STATISTICS

Summary statistics

For ungrouped data:

$$\overline{x} = \frac{\sum x}{n}$$
, standard deviation $= \sqrt{\frac{\sum (x - \overline{x})^2}{n}} = \sqrt{\frac{\sum x^2}{n} - \overline{x}^2}$

For grouped data:

$$\overline{x} = \frac{\sum xf}{\sum f}$$
, standard deviation $= \sqrt{\frac{\sum (x - \overline{x})^2 f}{\sum f}} = \sqrt{\frac{\sum x^2 f}{\sum f} - \overline{x}^2}$

Discrete random variables

$$E(X) = \sum xp$$

$$Var(X) = \sum x^2 p - \{E(X)\}^2$$

For the binomial distribution B(n, p):

$$p_r = \binom{n}{r} p^r (1-p)^{n-r}, \qquad \mu = np, \qquad \sigma^2 = np(1-p)$$

For the Poisson distribution Po(a):

$$p_r = e^{-a} \frac{a^r}{r!}, \qquad \qquad \mu = a, \qquad \qquad \sigma^2 = a$$

Continuous random variables

$$E(X) = \int x f(x) dx$$
$$Var(X) = \int x^2 f(x) dx - \{E(X)\}^2$$

Sampling and testing

Unbiased estimators:

$$\overline{x} = \frac{\sum x}{n},$$
 $s^2 = \frac{1}{n-1} \left(\sum x^2 - \frac{(\sum x)^2}{n} \right)$

Central Limit Theorem:

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Approximate distribution of sample proportion:

$$N\left(p, \frac{p(1-p)}{n}\right)$$

THE NORMAL DISTRIBUTION FUNCTION

If Z has a normal distribution with mean 0 and variance 1 then, for each value of z, the table gives the value of $\Phi(z)$, where

$$\Phi(z) = P(Z \le z).$$

For negative values of z use $\Phi(-z) = 1 - \Phi(z)$.

z	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5 DD	6	7	8	9
0.0	0.5000	0.5040	0.5000	0.5100	0.51.60	0.5100	0.5220	0.5070	0.5210	0.5250	4	0	1.0			-	20	- 22	26
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	4	8	12		20			32	
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	4	8	12		20			32	
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	4	8	12		19			31	
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	4	7	11		19			30	
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	4	7	11	14		22		29	-
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	3	7	10			20		27	
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	3	7	10			19		26	
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	3	6	9		15			24	
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	3	5	8	11		16		22	
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	3	5	8	10	13	15			
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	2	5	7	9		14		19	
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	2	4	6	8	10	12		16	
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	2	4	6	7	9	11			17
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	2	3	5	6	8	10	11		14
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	1	3	4	6	7	8	10		13
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	1	2	4	5	6	7	8	10	11
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	1	2	3	4	5	6	7	8	9
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	1	2	3	4	4	5	6	7	8
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	1	1	2	3	4	4	5	6	6
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	1	1	2	2	3	4	4	5	5
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	0	1	1	2	2	3	3	4	4
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	0	1	1	2	2	2	3	3	4
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	0	1	1	1	2	2	2	3	3
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	0	1	1	1	1	2	2	2	2
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	0	0	1	1	1	1	1	2	2
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	0	0	0	1	1	1	1	1	1
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	0	0	0	0	1	1	1	1	1
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	0	0	0	0	0	1	1	1	1
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	0	0	0	0	0	0	0	1	1
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	0	0	0	0	0	0	0	0	0

Critical values for the normal distribution

If Z has a normal distribution with mean 0 and variance 1 then, for each value of p, the table gives the value of z such that

$$P(Z \le z) = p$$
.

p	0.75	0.90	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995
Z	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291