# CSEE 3827: Fundamentals of Computer Systems, Spring 2022

Lecture 3

Prof. Dan Rubenstein (danr@cs.columbia.edu)

# Agenda (M&K 2.3-2.5)

- Standard Forms
  - Product-of-Sums (PoS)
  - Sum-of-Products (SoP)
    - converting between
  - Min-terms and Max-terms
- Simplification via Karnaugh Maps (K-maps)
  - 2, 3, and 4 variable
  - Implicants, Prime Implicants, Essential Prime Implicants
  - Using K-maps to reduce
  - PoS form
  - Don't Care Conditions

#### Standard Forms

There are many ways to express a boolean expression

$$F = XYZ + XYZ + XZ$$
$$= XY(Z + Z) + XZ$$
$$= XZ$$

- It is useful to have a standard or canonical way
- Derived from truth table
- Generally not the simplest (fewest literals) form

# Two principle standard forms

Sum-of-products (SoP)

Product-of-sums (PoS)

We will deal mostly in this course with SoP

#### Product and sum terms

- Product term: logical AND of literals (e.g., XYZ)
- Sum term: logical OR of literals (e.g.,  $A + \overline{B} + C$ )

#### PoS & SoP

Sum of products (SoP): OR of ANDs (OR of product terms)

e.g., 
$$F = \overline{Y} + \overline{X}Y\overline{Z} + XY$$

Product of sums (PoS): AND of ORs (AND of sum terms)

e.g., 
$$G = X(\overline{Y} + Z)(X + Y + \overline{Z})$$

## PoS and SoP not always simplest form

- e.g., F = ABD + ABE + C(D+E)
  - (AB+C) (D+E) is simplest (fewest literals) form (5 literals)
    - know it's simplest because each literal appears only once
  - simplest SoP form: ABD + ABE + CD + CE (10 literals)
  - simplest PoS form: (A+C)(B+C)(D+E) is (6 literals)

## Converting any expression to SoP

Just "multiply" through and simplify

•e.g., 
$$G = X(Y + Z)(X + Y + Z)$$

•= XY + XZ (removed repeated prod. terms)

# Converting from SoP to PoS

Complement, multiply through, complement (swap + and · ops, flip literals)

• e.g., 
$$F = \overline{YZ} + X\overline{YZ} + XY\overline{Z}$$

swap ops, flip literals

• 
$$\vec{F} = (Y+Z)(\vec{X} + Y + \vec{Z})(\vec{X} + \vec{Y} + Z)$$

• = YZ + XY + XZ (after lots of simplifying) simplify F

• 
$$F = (Y+Z)(X+Y)(X+Z)$$

swap ops, flip literals

- Why did this work?
  - Since F = YZ + XY + XZ in SoP form
  - Complementing F in SoP form yields F in PoS form

# Minterms and Maxterms

#### **Minterms**

#### e.g., Minterms for 3 variables A,B,C

| Α | В | С | minterm         |
|---|---|---|-----------------|
| 0 | 0 | 0 | m0 ĀĒŌ          |
| 0 | 0 | 1 | m1 ĀBC          |
| 0 | 1 | 0 | m2 ĀBŌ          |
| 0 | 1 | 1 | m3 ĀBC          |
| 1 | 0 | 0 | m4 AĒŌ          |
| 1 | 0 | 1 | m5 A <b>Ē</b> C |
| 1 | 1 | 0 | m6 ABŌ          |
| 1 | 1 | 1 | m7 ABC          |

- A product term in which all variables appear exactly once, either complemented or uncomplemented.
- Each minterm evaluates to 1 for exactly one assignment of values to all variables (one row in truth table), 0 for all others.
- e.g., for what values of A,B,C does ĀBC evaluate to 1?

#### **Minterms**

e.g., Minterms for 3 variables A,B,C

| Α | В | С | minterm         |
|---|---|---|-----------------|
| 0 | 0 | 0 | m0 ĀĒŌ          |
| 0 | 0 | 1 | m1 ĀBC          |
| 0 | 1 | 0 | m2 ĀBŌ          |
| 0 | 1 | 1 | m3 ĀBC          |
| 1 | 0 | 0 | m4 AĒŌ          |
| 1 | 0 | 1 | m5 A <b>Ē</b> C |
| 1 | 1 | 0 | m6 ABŌ          |
| 1 | 1 | 1 | m7 ABC          |

- A product term in which all variables appear exactly once, either complemented or uncomplemented.
- Each minterm evaluates to 1 for exactly one assignment of values to all variables (one row in truth table), 0 for all others.
- e.g., for what values of A,B,C does ĀBC evaluate to 1?
- Ans: A=0, B=0, C=1 (that's the only one)

#### **Minterms**

#### e.g., Minterms for 3 variables A,B,C

| A | В | С | minterm         |
|---|---|---|-----------------|
| 0 | 0 | 0 | m0 ĀĒC          |
| 0 | 0 | 1 | m1 ĀBC          |
| 0 | 1 | 0 | m2 ĀBŌ          |
| 0 | 1 | 1 | m3 ĀBC          |
| 1 | Ο | 0 | m4 AĒC          |
| 1 | О | 1 | m5 A <b>Ē</b> C |
| 1 | 1 | 0 | m6 ABC          |
| 1 | 1 | 1 | m7 ABC          |

- A product term in which all variables appear exactly once, either complemented or uncomplemented.
- Each minterm evaluates to 1 for exactly one assignment of values to all variables (one row in truth table), 0 for all others.
- Each product term denoted by mX where X corresponds to the row of the truth table where variable value assignments cause that midterm to equal 1.

# Minterm examples (with 3 variables, A,B,C)

- ABC is a minterm, and is true when and only when A=1,B=1,C=1
- ABC is a minterm and is true when and only when A=0,B=1, C=0
- A function can be described as a sum of its minterms

• e.g., 
$$F = B(A \oplus \overline{C}) = B(AC + \overline{AC}) = ABC + \overline{ABC}$$

- F=1 when ABC is true OR ABC is true
  - i.e., F = 1 when A=1 & B=1 & C=1 OR when A=0 & B=1 & C=0
- F = 0 otherwise

## A few more Minterm examples (of 3 variables A,B,C)

- G(A,B,C) = BC (G's value is independent of A)
  - $G = ABC + \overline{ABC}$  (G is defined over A,B,C, minterms contain all vars)
    - G = 1 when & only when A=1,B=1,C=1 OR A=0,B=1,C=1
- H(A,B,C) = A
  - $H = ABC + AB\overline{C} + \overline{ABC} + \overline{ABC}$  (all combos of B,C when A=1)

• F = A + BC

• = H + G = 
$$\overrightarrow{ABC}$$
 +  $\overrightarrow{ABC}$  +  $\overrightarrow{ABC}$  +  $\overrightarrow{ABC}$  (note minterm ABC repeated)

#### Minterms to describe a function

• sometimes also called a minterm expansion: OR (SUM) appropriate minterms together



Function and its complement function use all midterms, share none in common

#### Sum of minterms form

• The logical OR of all minterms for which F = 1.

| Α | В | С | minterm | F |
|---|---|---|---------|---|
| 0 | 0 | 0 | m0 ĀĒŌ  | 0 |
| 0 | 0 | 1 | m1 ĀBC  | 1 |
| 0 | 1 | 0 | m2 ĀBŌ  | 1 |
| 0 | 1 | 1 | m3 ĀBC  | 1 |
| 1 | 0 | 0 | m4 ABC  | 0 |
| 1 | 0 | 1 | m5 ABC  | 0 |
| 1 | 1 | 0 | m6 ABŌ  | 0 |
| 1 | 1 | 1 | m7 ABC  | 0 |
|   |   |   |         |   |

$$F = \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= m1 + m2 + m3$$

$$= \sum m(1,2,3)$$

#### Minterm form cont'd

|   |   |   |   |   |         | (variables appear once in each minterm)                                                                                                                                                                |
|---|---|---|---|---|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α | В | С | F | F | minterm |                                                                                                                                                                                                        |
| 0 | 0 | 0 | 1 | 0 | m0 ĀBC  | $F = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C}$ |
| 0 | 0 | 1 | 1 | 0 | m1 ĀBC  |                                                                                                                                                                                                        |
| 0 | 1 | 0 | 1 | 0 | m2 ĀBŌ  | $= m0 + m1 + m2 + m4 + m5$ $= \sum m(0,1,2,4,5)$                                                                                                                                                       |
| 0 | 1 | 1 | 0 | 1 | m3 ĀBC  | $- Z^{(1)}(0,1,2,4,0)$                                                                                                                                                                                 |
| 1 | 0 | 0 | 1 | 0 | m4 ABC  | $\overline{F} = \overline{A}BC + AB\overline{C} + ABC$                                                                                                                                                 |
| 1 | 0 | 1 | 1 | 0 | m5 AĒC  | = m3 + m6 + m7                                                                                                                                                                                         |
| 1 | 1 | 0 | 0 | 1 | m6 ABC  | $=\sum m(3,6,7)$                                                                                                                                                                                       |
| 1 | 1 | 1 | 0 | 1 | m7 ABC  |                                                                                                                                                                                                        |

#### Minterms as a circuit



# Simplest Form v. SoP Form v. Minterm Form

Can be the same, but not always

• e.g.,  $F = WX (Y\overline{Z} + \overline{Y}Z)$ 

SoP form: WXY + WXZ

• SoP form: WXYZ + WXYZ

Minterm form: WXYZ + WXYZ + WXYZ

• Minterm form: WXYZ + WXYZ

#### Maxterms - "Dual" of minterms

| Α | В | С | maxterm  |
|---|---|---|----------|
| 0 | 0 | 0 | M0 A+B+C |
| 0 | 0 | 1 | M1 A+B+C |
| 0 | 1 | 0 | M2 A+B+C |
| 0 | 1 | 1 | M3 A+B+C |
| 1 | 0 | 0 | M4 Ā+B+C |
| 1 | 0 | 1 | M5 Ā+B+Ō |
| 1 | 1 | 0 | M6 A+B+C |
| 1 | 1 | 1 | M7 Ā+Ē+C |

- A sum term in which all variables appear once, either complemented or uncomplemented.
- Each maxterm evaluates to 0 for exactly one variable assignment, 1 for all others.
- Denoted by MX where X corresponds to the variable assignment for which MX = 0.

#### Maxterms: not as intuitive as minterms

- turns out F = 1 when (A=1 or B=0 or C=0) AND (A=0 or B=0 or C=1) AND (A=0 or B=0 or C=0),
- i.e.,  $F = (A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)(\overline{A} + \overline{B} + \overline{C})$
- Think of it as forcing F to 0 when F doesn't equal a maxterm
  - e.g., F = 0 when A=1,B=1,C=1.
  - In other words, for F=1, it is necessary (but not sufficient) that either A=0 OR B=0 OR C=0, i.e., (A+B+C = 1) AND some other conditions
  - Thus, the maxterm  $(\overline{A}+\overline{B}+\overline{C})$  is included in the sum for F

# Maxterm description of a function

This "term" is FAI SF when • sometimes also called **conjunctive normal form** (CNF) A=1 & B=1 & C=0 • sometimes also called a maxterm expansion  $F = (A+B+C)(\overline{A}+B+C)(\overline{A}+B+\overline{C})$ Force to 0

When inputs "satisfy" a Maxterm, the function equals 0

#### Product of maxterms form

• The logical AND of all maxterms for which F = 0.

| A | В | С | maxterm  | F |                                                                                           |
|---|---|---|----------|---|-------------------------------------------------------------------------------------------|
| 0 | 0 | 0 | M0 A+B+C | 0 |                                                                                           |
| 0 | 0 | 1 | M1 A+B+C | 1 | $F = (A+B+C) \overline{(A+B+C)} \overline{(A+B+C)} \overline{(A+B+C)} \overline{(A+B+C)}$ |
| 0 | 1 | 0 | M2 A+B+C | 1 | = (M0) (M4) (M5) (M6) (M7)                                                                |
| 0 | 1 | 1 | M3 A+B+C | 1 | $= \prod M(0,4,5,6,7)$                                                                    |
| 1 | 0 | О | M4 A+B+C | 0 |                                                                                           |
| 1 | 0 | 1 | M5 Ā+B+Ō | 0 |                                                                                           |
| 1 | 1 | 0 | M6 Ā+B+C | 0 |                                                                                           |
| 1 | 1 | 1 | M7 Ā+B+C | 0 |                                                                                           |

# Summary of Minterms and Maxterms

F

F

Minterms (SOP)

Maxterms (POS)

$$\sum m(F = 1)$$

$$\sum m(F = 0)$$

$$\prod M(F = 0)$$

$$\prod M(F = 1)$$

# One final example

| Α | В | С | F | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 1 |

Minterms (SOP)

Maxterms (POS)

## Standard Form Example

| Α | В | С | F | F | m/M |
|---|---|---|---|---|-----|
| 0 | 0 | 0 | 0 | 1 | 0   |
| 0 | 0 | 1 | 1 | 0 | 1   |
| 0 | 1 | 0 | 0 | 1 | 2   |
| 0 | 1 | 1 | 1 | 0 | 3   |
| 1 | 0 | 0 | 0 | 1 | 4   |
| 1 | 0 | 1 | 1 | 0 | 5   |
| 1 | 1 | 0 | 1 | 0 | 6   |
| 1 | 1 | 1 | 0 | 1 | 7   |

Sum of products (SOP)

Product of sums (POS)

| $\sum m(1,3,5,6)$ | Σm | (1,3, | ,5,6) |
|-------------------|----|-------|-------|
|-------------------|----|-------|-------|

∑m(0,2,4,7)

$$\prod M(0,2,4,7)$$

 $\Pi M(1,3,5,6)$ 

## Converting between canonical forms



#### DeMorgans: same terms

$$\overline{\sum m(F=1)} = \prod M(F=1)$$

# Simplification Methods

# Simplification Example

• Simplify  $F = XY + X\overline{Y} + \overline{X}Y$ 

| Χ | Υ | F | m  |
|---|---|---|----|
| 0 | 0 | 0 | XY |
| 0 | 1 | 1 | XY |
| 1 | 0 | 1 | ΧŸ |
| 1 | 1 | 1 | XY |

• 
$$F = X (Y + \overline{Y}) + \overline{X}Y = X + \overline{X}Y$$

Can this be simplified further?

# Simplification example cont'd

• 
$$F = X + \overline{X}Y$$

- Note important identity: X + XY = X or...X = X+XY
  - e.g., X=female, Y = red hair: Say "yes" if X (you are female) or XY (you are female and have red hair) it's enough just ask if female

• so 
$$F = X + \overline{X}Y = (X + \overline{X}Y) + XY = X + XY + XY = X + (X + X)Y = X + Y$$

so most simplified, F = X+Y
 (just ask if female or have red hair)

The point: simplification not always so easy / obvious Additional tools are needed!

| Χ | Υ | F | m  |
|---|---|---|----|
| 0 | 0 | 0 | XY |
| 0 | 1 | 1 | ΧΥ |
| 1 | 0 | 1 | ΧŸ |
| 1 | 1 | 1 | XY |

# Karnaugh Maps

# Karnaugh Maps (K-Maps)

- K-maps are a nice structure to help simplify functions in sum-of-product form (or product-of-sums form)
  - Gets functions simplified to either SoP or PoS form which is not necessarily absolute simplest, but it's good enough (for this course)
- We will use it to simplify functions to SoP form with up to 4 variables

# Karnaugh maps (a.k.a., K-maps)

- All functions can be expressed with a K-map
- There is one square in the map for each minterm in a function's truth table



A K-map is just a 2-dimensional way of representing the function in a truth table

#### Karnaugh maps

- All functions can be expressed with a map
- There is one square in the map for each minterm in a function's truth table



A K-map is just a 2-dimensional way of representing the function in a truth table

#### Karnaugh maps

- All functions can be expressed with a map
- There is one square in the map for each minterm in a function's truth table

| X | Υ | F  |
|---|---|----|
| 0 | 0 | m0 |
| 0 | 1 | m1 |
| 1 | 0 | m2 |
| 1 | 1 | m3 |











#### Simplification using a k-map

 Whenever two squares share an edge and both are 1, those two terms can be combined to form a single term with one less variable



$$F = \overline{X}Y + X\overline{Y} + XY$$



$$F = X + \overline{XY}$$
(combined  $X\overline{Y} + XY = X$ )



(combined 
$$\overline{X}Y + XY = Y$$
)



$$F = X + Y$$

(combined  $X\overline{Y} + XY = X$  and  $\overline{X}Y + XY = Y$ )

#### Simplification using a k-map

 Whenever two squares share an edge and both are 1, those two terms can be combined to form a single term with one less variable



$$F = \overline{X}Y + X\overline{Y} + XY$$



$$F = X + \overline{XY}$$
(combined  $X\overline{Y} + XY = X$ )



(combined 
$$\overline{XY} + XY = Y$$
)



$$F = X + Y$$

(combined 
$$X\overline{Y} + XY = X$$
 and  $\overline{XY} + XY = Y$ )

$$(= X\overline{Y} + XY + \overline{X}Y + XY)$$
: XY term "repeated" to obtain simplified form

#### Simplification using a k-map (2)

- "Circle" contiguous squares of 1s (# of squares covered must be a power of 2)
- There is a correspondence between circles on a k-map and terms in a function expression
- The bigger the circle, the simpler the term
- Add circles (and terms) until all 1s on the k-map are circled



$$F = X + Y$$

- Use gray ordering on edges with multiple variables
- Gray encoding: order of values such that only one bit changes at a time
- Two minterms are considered adjacent if they differ in only one variable (this means maps "wrap")



- Use gray ordering on edges with multiple variables
- Gray encoding: order of values such that only one bit changes at a time
- Two minterms are considered adjacent if they differ in only one variable (this means maps "wrap")



- Use gray ordering on edges with multiple variables
- Gray encoding: order of values such that only one bit changes at a time
- Two minterms are considered adjacent if they differ in only one variable (this means maps "wrap")



- Use gray ordering on edges with multiple variables
- Gray encoding: order of values such that only one bit changes at a time
- Two minterms are considered adjacent if they differ in only one variable (this means maps "wrap")



- Use gray ordering on edges with multiple variables
- Gray encoding: order of values such that only one bit changes at a time
- Two minterms are considered adjacent if they differ in only one variable (this means maps "wrap")



- Use gray ordering on edges with multiple variables
- Gray encoding: order of values such that only one bit changes at a time
- Two minterms are considered adjacent if they differ in only one variable (this means maps "wrap")



- Use gray ordering on edges with multiple variables
- Gray encoding: order of values such that only one bit changes at a time
- Two minterms are considered adjacent if they differ in only one variable (this means maps "wrap")



Extension of 3-variable maps



#### Product terms are just 2<sup>i</sup> x 2<sup>j</sup> boxes (that might wrap around)

• A product term, which, viewed in a K-Map is a 2<sup>i</sup> x 2<sup>j</sup> size "rectangle" (possibly wrapping around) where i=0,1,2, j=0,1,2





#### Product terms are just 2<sup>i</sup> x 2<sup>j</sup> boxes (that might wrap around)

• A product term, which, viewed in a K-Map is a 2<sup>i</sup> x 2<sup>j</sup> size "rectangle" (possibly wrapping around) where i=0,1,2, j=0,1,2



Note: bigger rectangles = fewer literals

# 4-variable Karnaugh maps example

| W | X | Y | Z | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |



#### 4-variable Karnaugh maps example

| W | X | Υ | Z | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |



K-maps make F expressed as SoP easy to see, e.g.,

$$\overline{Y} + \overline{W}Y\overline{Z} + W\overline{X}Y\overline{Z}$$

Can the expression for F be simplified further?

#### 4-variable Karnaugh maps example

| W | X | Υ | Z | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |



$$\overline{Y} + \overline{W}\overline{Z} + \overline{X}\overline{Z}$$

Rule when picking product terms: Must cover only 1's, but OK to overlap. Bigger rectangles are better (fewer literals)

#### Implicant terminology for a function F

- Given a function F:
  - An implicant is a product term (i.e., a "box" whose dimensions are powers
    of 2) comprised of minterms for which the function F evaluates to 1
    - i.e., the "box" must only cover squares that are 1
- **prime implicant**: An implicant not contained within another implicant (remember that implicant dimensions must be powers of 2!)
- essential prime implicant: a prime implicant that is the only prime implicant to cover some minterm.

- List all all of the prime implicants for this function
- Is any of them an essential prime implicant?
- What is a simplified expression for this function?



- List all all of the prime implicants for this function
- Is any of them an essential prime implicant?
- What is a simplified expression for this function?



- List all all of the prime implicants for this function
- Is any of them an essential prime implicant?
- What is a simplified expression for this function?



- List all of the prime implicants for this function
- Is any of them an essential prime implicant?
- What is a simplified expression for this function?



- List all of the prime implicants for this function
- Is any of them an essential prime implicant?
- What is a simplified expression for this function?

The blue and red are essential: each has 1 minterm not covered by any other prime implicant

Green not
essential: every
covered minterm
also covered by
blue or red prime
implicant

#### Using K-maps to build simplified circuits

- Step 1: Identify all PIs and essential PIs
- Step 2: Include all Essential Pls in the circuit (Why?)
- Step 3: If any 1-valued minterms are uncovered by EPIs, choose PIs that are "big" and do a good job covering
  - Selection Rule: a heuristic for usually choosing "good" Pls: choose the Pls that minimize overlap with one another and with EPIs

| 1 | 1 | 1 | 0 |
|---|---|---|---|
| 0 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 |

| 1 | 1 | О | О |
|---|---|---|---|
| 0 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 |

#### Using K-maps to build simplified circuits

- Step 1: Identify all PIs and essential PIs
- Step 2: Include all Essential Pls in the circuit (Why?)
- Step 3: If any 1-valued minterms are uncovered by EPIs, choose PIs that are "big" and do a good job covering
- Selection Rule: a heuristic for usually choosing "good" Pls: choose the Pls that minimize overlap with one another and with EPls

Red bounds are EPIs (solo-covered minterm shown in red)



Also need (purple or blue) and (yellow or green)



#### Design example : 2-bit multiplier

| a <sub>1</sub> | <b>a</b> <sub>0</sub> | b <sub>1</sub> | b <sub>0</sub> | <b>Z</b> 3 | <b>Z</b> 2 | Z <sub>1</sub> | Z <sub>0</sub> |
|----------------|-----------------------|----------------|----------------|------------|------------|----------------|----------------|
| 0              | 0                     | 0              | 0              |            |            |                |                |
| 0              | 0                     | 0              | 1              |            |            |                |                |
| 0              | 0                     | 1              | 0              |            |            |                |                |
| 0              | 0                     | 1              | 1              |            |            |                |                |
| 0              | 1                     | 0              | 0              |            |            |                |                |
| 0              | 1                     | 0              | 1              |            |            |                |                |
| 0              | 1                     | 1              | 0              |            |            |                |                |
| 0              | 1                     | 1              | 1              |            |            |                |                |
| 1              | 0                     | 0              | 0              |            |            |                |                |
| 1              | 0                     | 0              | 1              |            |            |                |                |
| 1              | 0                     | 1              | 0              |            |            |                |                |
| 1              | 0                     | 1              | 1              |            |            |                |                |
| 1              | 1                     | 0              | 0              |            |            |                |                |
| 1              | 1                     | 0              | 1              |            |            |                |                |
| 1              | 1                     | 1              | 0              |            |            |                |                |
| 1              | 1                     | 1              | 1              |            |            |                |                |

two 2-bit #'s multiplied together to give a 4-bit solution

e.g.,  $a_1a_0 = 10$ ,  $b_1b_0 = 11$ ,  $z_3z_2z_1z_0 = 0110$ 

# Design example: 2-bit multiplier (SOLUTION)

| a1 | a0 | b1 | b0 | z3 | z2 | z1 | zO |
|----|----|----|----|----|----|----|----|
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
| 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  |
| 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0  | 1  | 0  | 1  | 0  | 0  | 0  | 1  |
| 0  | 1  | 1  | 0  | 0  | 0  | 1  | 0  |
| 0  | 1  | 1  | 1  | 0  | 0  | 1  | 1  |
| 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1  | 0  | 0  | 1  | 0  | 0  | 1  | 0  |
| 1  | 0  | 1  | 0  | 0  | 1  | 0  | 0  |
| 1  | 0  | 1  | 1  | 0  | 1  | 1  | 0  |
| 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1  | 1  | 0  | 1  | 0  | 0  | 1  | 1  |
| 1  | 1  | 1  | 0  | 0  | 1  | 1  | 0  |
| 1  | 1  | 1  | 1  | 1  | 0  | 0  | 1  |

#### Design example: 2-bit multiplier (SOLUTION)

 $D_1$ 

| a1 | a0 | b1 | b0 | z3 | z2 | z1 | z0 |                |                     | k             | 00            |             |       |
|----|----|----|----|----|----|----|----|----------------|---------------------|---------------|---------------|-------------|-------|
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |                | 0                   | 0             | 0             | 0           |       |
| 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |                | $\int_{0}^{\infty}$ | $\frac{1}{0}$ | 10            | $\dagger_0$ | 1     |
| 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |                |                     | $\perp$       | 1             | +           | -∤a₀  |
| 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 2              | 0                   | 0             | 1             | 0           |       |
| 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | a <sub>1</sub> | 0                   | О             | 0             | 0           |       |
| 0  | 1  | 0  | 1  | 0  | 0  | 0  | 1  |                | L                   |               |               |             |       |
| 0  | 1  | 1  | 0  | 0  | 0  | 1  | 0  |                |                     |               |               | <b>O</b> 1  |       |
| 0  | 1  | 1  | 1  | 0  | 0  | 1  | 1  |                | Z <sub>3</sub>      | = a           | .1 <b>a</b> 0 | 01b         | O     |
| 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |                | Z1 :                | = (e          | exer          | cise        | 9)    |
| 1  | 0  | 0  | 1  | 0  | 0  | 1  | 0  |                |                     | r             | <b>)</b> ∩    |             |       |
| 1  | 0  | 1  | 0  | 0  | 1  | 0  | 0  | Г              |                     |               |               |             |       |
| 1  | 0  | 1  | 1  | 0  | 1  | 1  | 0  |                | O                   | 0             | 0             | 0           |       |
| 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |                | 0                   | 0             | 1             | 1           |       |
| 1  | 1  | 0  | 1  | 0  | 0  | 1  | 1  |                | 0                   | 1             | 0             | 1           | $a_0$ |
| 1  | 1  | 1  | 0  | 0  | 1  | 1  | 0  | aı             |                     | <u> </u>      | 0             | <u> </u>    |       |
| 1  | 1  | 1  | 1  | 1  | 0  | 0  | 1  |                | 0                   | 1             | 1             | 0           |       |
|    |    |    |    |    |    |    |    | -              |                     |               |               |             |       |







# Finding F

Find prime implicants corresponding to the 0s on a k-map



$$F = \overline{Y} + \overline{X}\overline{Z} + \overline{W}\overline{Z}$$

$$\overline{F} = YZ + WXY$$

#### PoS expressions from a k-map

- Find F as SoP and then apply DeMorgan's
- or: Cover the boxes with all "0"s the sum term "0's out" that box



# Don't Care Conditions

#### Don't care conditions

- There are circumstances in which the value of an output doesn't matter
- For example, in that 2-bit multiplier, what we
- are told neither a nor b will be input as 0
  - "don't care" what the output looks like for the input cases that will not occur
- Don't care situations are denoted by an "X" in a truth table and in Karnaugh maps.
- Can also be expressed in minterm form:

$$z2 = \sum m(10,11,14)$$
  
 $d2 = \sum m(0,1,2,3,4,8,12)$ 

| a1 | a0 | b1 | b0 | z3 | z2 | z1 | z0 |
|----|----|----|----|----|----|----|----|
| 0  | 0  | 0  | 0  | Χ  | Χ  | Χ  | Χ  |
| 0  | 0  | 0  | 1  | Χ  | Χ  | Χ  | Χ  |
| 0  | 0  | 1  | 0  | Χ  | Χ  | Χ  | Χ  |
| 0  | 0  | 1  | 1  | Χ  | Χ  | Χ  | Χ  |
| 0  | 1  | 0  | 0  | Χ  | Χ  | Χ  | Χ  |
| 0  | 1  | 0  | 1  | 0  | 0  | 0  | 1  |
| 0  | 1  | 1  | 0  | 0  | 0  | 1  | 0  |
| 0  | 1  | 1  | 1  | 0  | 0  | 1  | 1  |
| 1  | 0  | 0  | 0  | Χ  | Χ  | Χ  | Χ  |
| 1  | 0  | 0  | 1  | 0  | 0  | 1  | 0  |
| 1  | 0  | 1  | 0  | 0  | 1  | 0  | 0  |
| 1  | 0  | 1  | 1  | 0  | 1  | 1  | 0  |
| 1  | 1  | 0  | 0  | Χ  | X  | Χ  | Χ  |
| 1  | 1  | 0  | 1  | 0  | 0  | 1  | 1  |
| 1  | 1  | 1  | 0  | 0  | 1  | 1  | 0  |
| 1  | 1  | 1  | 1  | 1  | 0  | 0  | 1  |

- Let F = AB + AB
- Suppose we know the input combo A=1, B=0 will never occur
- Can we replace F with a simpler function G whose output matches for all inputs we do care about?
- Let H be the function with Don't-care conditions for obsolete inputs

| Α | В | F |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

- Let F = AB + AB
- Suppose we know the input combo A=1, B=0 will never occur
- Can we replace F with a simpler function G whose output matches for all inputs we do care about?



- Let F = AB + AB
- Suppose we know the input combo A=1, B=0 will never occur
- Can we replace F with a simpler function G whose output matches for all inputs we do care about?
- Let H be the function with Don't-care conditions for obsolete inputs

|             | А | В | F | Н |
|-------------|---|---|---|---|
|             | 0 | 0 | 1 | 1 |
| Inputs will | 0 | 1 | 0 | 0 |
| not occur 🔪 | 1 | 0 | 0 | X |
|             | 1 | 1 | 1 | 1 |

- Let F = AB + AB
- Suppose we know the input combo A=1, B=0 will never occur
- Can we replace F with a simpler function G whose output matches for all inputs we do care about?
- Let H be the function with Don't-care conditions for obsolete inputs

|             | Α | В | F | Н | G |
|-------------|---|---|---|---|---|
|             | 0 | 0 | 1 | 1 | 1 |
| Inputs will | 0 | 1 | 0 | 0 | 0 |
| not occur   | 1 | 0 | 0 | X | 1 |
|             | 1 | 1 | 1 | 1 | 1 |

- Let F = AB + AB
- Suppose we know the input combo A=1, B=0 will never occur
- Can we replace F with a simpler function G whose output matches for all inputs we do care about?
- Let H be the function with Don't-care conditions for obsolete inputs

|             | Α | В | F | Ι | G |
|-------------|---|---|---|---|---|
|             | 0 | 0 | 1 | 1 | 1 |
| Inputs will | 0 | 1 | 0 | 0 | 0 |
| not occur   | 1 | 0 | 0 | X | 1 |
|             | 1 | 1 | 1 | 1 | 1 |

Both F & G are appropriate functions for H

- Let F = AB + AB
- Suppose we know the input combo A=1, B=0 will never occur
- Can we replace F with a simpler function G whose output matches for all inputs we do care about?
- Let H be the function with Don't-care conditions for obsolete inputs

|             | Α | В | F | Н | G |
|-------------|---|---|---|---|---|
|             | 0 | 0 | 1 | 1 | 1 |
| Inputs will | 0 | 1 | 0 | 0 | 0 |
| not occur   | 1 | 0 | 0 | X | 1 |
|             | 1 | 1 | 1 | 1 | 1 |

Both F & G are appropriate functions for H

$$G = AB + \overline{B}$$

• G is (slightly) simpler than F (3 instead of 4 literals), and gets the job done!

#### 2-bit multiplier non-0 multiplier (SOLUTION)

| a1 | a0 | b1 | b0 | z3 | z2 | z1 | zO          |
|----|----|----|----|----|----|----|-------------|
| 0  | 0  | 0  | 0  | X  | Χ  | Χ  | Χ           |
| 0  | 0  | 0  | 1  | X  | X  | X  | X           |
| 0  | 0  | 1  | 0  | Χ  | Χ  | Χ  | X           |
| 0  | 0  | 1  | 1  | X  | Χ  | Χ  | Χ           |
| 0  | 1  | 0  | 0  | X  | Χ  | Χ  | X<br>1<br>0 |
| 0  | 1  | 0  | 1  | 0  | 0  | 0  | 1           |
| 0  | 1  | 1  | 0  | 0  | 0  | 1  | 0           |
| 0  | 1  | 1  | 1  | 0  | 0  | 1  | 1<br>X      |
| 1  | 0  | 0  | 0  | Χ  | Χ  | Χ  |             |
| 1  | 0  | 0  | 1  | 0  | 0  | 1  | 0           |
| 1  | 0  | 1  | 0  | 0  | 1  | 0  | 0           |
| 1  | 0  | 1  | 1  | 0  | 1  | 1  | 0           |
| 1  | 1  | 0  | 0  | Χ  | Χ  | Χ  | Χ           |
| 1  | 1  | 0  | 1  | 0  | 0  | 1  | X<br>1<br>0 |
| 1  | 1  | 1  | 0  | 0  | 1  | 1  | 0           |
| 1  | 1  | 1  | 1  | 1  | 0  | 0  | 1           |



Revised rule for "implicant":

1's must be covered

0's must not be covered

X's are optionally covered

#### 2-bit multiplier non-0 multiplier (SOLUTION)

| a1    | a0 | b1 | b0 | z3 | z2     | z1 | z0          |
|-------|----|----|----|----|--------|----|-------------|
| 0     | 0  | 0  | 0  | Χ  | Χ      | Χ  | Χ           |
| 0     | 0  | 0  | 1  | Χ  | Χ      | Χ  | Χ           |
| 0     | 0  | 1  | 0  | Χ  | Χ      | Χ  | Χ           |
| 0 0 0 | 0  | 1  | 1  | Χ  | Χ      | Χ  | X<br>X<br>1 |
| 0     | 1  | 0  | 0  | Χ  | X<br>0 | Χ  | Χ           |
| 0     | 1  | 0  | 1  | 0  | 0      | 0  | 1           |
| 0     | 1  | 1  | 0  | 0  | 0      | 1  | 0           |
| 0     | 1  | 1  | 1  | 0  | 0      | 1  | 1           |
| 1     | 0  | 0  | 0  | Χ  | Χ      | Χ  | Χ           |
| 1     | 0  | 0  | 1  | 0  | 0      | 1  | 0           |
| 1     | 0  | 1  | 0  | 0  | 1      | 0  | 0           |
| 1     | 0  | 1  | 1  | 0  | 1      | 1  | 0           |
| 1     | 1  | 0  | 0  | Χ  | Χ      | Χ  | Χ           |
| 1     | 1  | 0  | 1  | 0  | 0      | 1  | 1           |
| 1     | 1  | 1  | 0  | 0  | 1      | 1  | 0           |
| 1     | 1  | 1  | 1  | 1  | 0      | 0  | 1           |

# Still have prime and essential prime implicants



All above prime implicants are essential

#### Final thoughts on Don't care conditions

Sometimes "don't cares" greatly simplify circuitry



#### High-level Summary

 minterm (of k variables): a product term formed from the literals of each variable (exist without function)

ABC

 A function (e.g., for F = A + ABC) can be constructed by ORing (summing) together the minterms for which the function = 1

ABC+ABC+ABC+ABC

implicant (of a function): a product term (of literals)
that is "contained" within the function (formed from
minterms where the function = 1)

AB

- prime implicant: a product term which, if any literal is remove, is no longer "contained" within the function
- essential prime implicant: when a function is expressed as an OR (sum) of prime implicants, this one must be included.