ST790 Homework 2 Solution

1. (3.2)

Denote $x^T = (x_1, x_2, \dots, x_n)$ and $y^T = (y_1, y_2, \dots, y_n)$. The design matrix is $X = (1_n, x, x^2, x^3)$. The estimator of the linear function $a^T \beta$ is $a^T \hat{\beta} = a^T (X^T X)^{-1} X^T y$. Its estimated standard error is

$$\widehat{se}(a^T \hat{\beta}) = (\hat{\sigma}^2 a^T (X^T X)^{-1} a)^{\frac{1}{2}}.$$

where $\hat{\sigma}^2 = (y^T (I_n - X(X^T X)^{-1} X^T) y)/(n-4)$. The 95% confidence interval is then $[a^T \hat{\beta} \pm z_{0.975} \hat{se}(a^T \hat{\beta})]$. For the second approach, the 95% confidence set for β is

$$C_{\beta}^{(2)} = \{ \beta | (\hat{\beta} - \beta)^T X^T X (\hat{\beta} - \beta) \le \hat{\sigma}^2 \chi_{4,0.95}^2 \},$$

and the induced confidence interval for $a^T\beta$ is $[\min\{a^T\beta|\beta\in C_\beta^{(2)}\}, \max\{a^T\beta|\beta\in C_\beta^{(2)}\}]$.

The first approach treats a as known and estimates the variance of $a^T \hat{\beta}$ conditional on a while the second approach constructs a global confidence set of β without any knowledge of a. Thus the second approach is more conservative and will yield a wider interval.

2.

Write X, \tilde{X} , h(X), Y and ϵ as the stack of X_i^T , \tilde{X}_i^T , $h(X_i)$, Y_i and ϵ_i . Let $A = diag\{A_1, A_2, \dots, A_n\}$ and $\Pi = diag\{p(X_1), p(X_2), \dots, p(X_n)\}$. The posited model is

$$Y = (\tilde{X} \quad (A - \Pi)\tilde{X}) \begin{pmatrix} \gamma \\ \beta \end{pmatrix} + \epsilon_{n \times 1} =: X_* \begin{pmatrix} \gamma \\ \beta \end{pmatrix} + \epsilon.$$

The least square estimator for $(\gamma^T, \beta^T)^T$ is

$$\begin{pmatrix} \hat{\gamma} \\ \hat{\beta} \end{pmatrix} = (X_*^T X_*)^{-1} X_*^T Y = \left(\frac{1}{n} X_*^T X_* \right)^{-1} \begin{pmatrix} \frac{1}{n} \tilde{X}^T \\ \frac{1}{n} \tilde{X}^T (A - \Pi) \end{pmatrix} Y,$$

where

$$\frac{1}{n}X_*^TX_* = \frac{1}{n}\begin{pmatrix} \tilde{X}^T\tilde{X} & \tilde{X}^T(A-\Pi)\tilde{X} \\ \tilde{X}^T(A-\Pi)\tilde{X} & \tilde{X}^T(A-\Pi)(A-\Pi)\tilde{X} \end{pmatrix} =: \begin{pmatrix} \hat{\Sigma}_{n,11} & \hat{\Sigma}_{n,12} \\ \hat{\Sigma}_{n,12} & \hat{\Sigma}_{n,22} \end{pmatrix}.$$

Since $\mathbb{E}(A-\Pi|\tilde{X})=0$, the off-diagonal blocks $\hat{\Sigma}_{n,12}\to_p 0$ when $n\to\infty$ and hence

$$\left(\frac{1}{n}X_*^TX_*\right)^{-1} \to_p \begin{pmatrix} \Sigma_{11}^{-1} & 0\\ 0 & \Sigma_{22}^{-1} \end{pmatrix},$$

where Σ_{11} and Σ_{22} are the expectations of $\hat{\Sigma}_{n,11}$ and $\hat{\Sigma}_{n,22}$. Similarly, we have $\mathbb{E}[\tilde{X}^T(A-\Pi)h(X)|\tilde{X}]=0$, which indicates the orthogonality between h(X) and $(A-\Pi)\tilde{X}\beta$, and hence it can be easily verified that

$$\begin{split} \mathbb{E}[\tilde{X}^T(A-\Pi)Y] = & \mathbb{E}[\tilde{X}^T(A-\Pi)(h(X) + A\tilde{X}\beta_0 + \epsilon)] \\ = & \mathbb{E}[\tilde{X}^T(A-\Pi)(h(X) + (A-\Pi)\tilde{X}\beta_0 + \Pi\tilde{X}\beta_0 + \epsilon)] \\ = & 0 + n\Sigma_{22}\beta_0 + 0 + 0. \end{split}$$

Therefore $\tilde{X}^T(A-\Pi)Y/n \to_p \Sigma_{22}\beta_0$ as $n \to \infty$. Put it all together, we have $\hat{\beta} \to_p \Sigma_{22}^{-1}\Sigma_{22}\beta_0 = \beta_0$.