Energy Estimation of Spiking Neural Networks

Yuga Hanyu

m5291018

27 May 2025

- Research Introduction
- System architecture
- Research progress
 - Done
 - Doing
 - Todo
- Schedule

- Research Introduction
- System architecture
- Research progress
 - Done
 - Doing
 - Todo
- Schedule

Research introduction

• Estimation of energy consumption of SNNs.

Estimation of solar energy.

• Part of carbon neutral E3STDP.

• Estimation provides energy requirements to achieve Net Zero.

- Research Introduction
- System Architecture
- Research progress
 - Done
 - Doing
 - Todo
- Schedule

Framework

Estimation:

- SNN Training / Inference
- Data Transfer / Merging
- Solar energy harvested
- Battery degradation

Output -> Energy requirement(%)

1. SNN Training / Inference

1.1 Collect data points.

n_neurons	n_input	Wh
50	3000	0.56
100	6000	1.93
150	6000	2.92
200	12000	5.14

1.2 Apply curve fitting method (scipy.optimize library)

```
n_neurons:50
n_inputs:5000
Estimated energy consumption (Wh): 0.93
```

2. Data Transfer / Merge

- 2.1 Obtain data size of trained models.
 - 10 Bindsnet models: 6.2 MB

2.2 Calculate transfer energy from device specs.

For Raspberry Pi Pico W:

 $3.3 (V) \times 0.072(A) \times 6.2 (MB) / 6 (Mbps) = 0.24 (J) = 0.00066 (Wh)$

3. Solar Energy

open-sauce-quarts-solar-forecast

Input:

Location

Weather

Panel Capacity

1.53 Wh (Sunny)

1.43 Wh (Cloudy)

0.43 Wh (Rainy)

4. Battery Degradation (1)

4.1 Obtain capacity degradation data (battery dataset code library).

One battery cycle:

Charging to 100%, then discharging to 0%.

*In reality, battery does not follow perfect battery cycle.

4. Battery Degradation (2)

4.2 Take summation at each cycle

$$E_{\text{total}}(N) = \int_0^N E_{\text{cap}}(n), dn$$

Capacity Degradation:

[1.0, 0.9, 0.8, 0.7...]

Total extracted energy at each cycle: [1.0, 1.9, 2.7, 3.4...]

4.3 Obtain current battery cycle N from total energy system used

4. Battery Degradation (3)

4.4 Capacity Degradation[N]: Degraded Capacity.

4.5 Set upper bound to the solar energy harvested.
(Solar Energy Harvested) <= (Degraded Capacity)</p>

- Research Introduction
- Overall system/architecture
- Research progress
 - Done
 - Doing
 - Todo
- Schedule

- Framework to provide energy requirement in (%)
- Evaluation for inference energy
- Evaluation for solar energy harvest
- Solar energy harvested under different weathers
- Battery degradation under different weathers

Solar energy harvested under different weathers

- 1. Compare prediction vs actual of a month
- 2. Average of each weather
- 3. Calculate MAE, Error (%)

	Prediction (kWh)	Actual (kWh)	MAE (kWh)
Sunny	0.34	0.23	0.12 (3.5%)
Cloudy	0.31	0.20	0.13 (3.8%)
Rainy	0.04	0.02	0.02 (0.5%)

Battery degradation under different weathers

- 1. Load a degradation data
- 2. Scale the degradation data
- 3. Calculate energy stored and used in 24 hours
- 4. Simulate battery degradation

Battery Degradation on Weather Conditions

- Drafting the framework evaluation section
- Description of the framework diagram
- Predicted vs actual energy consumption (scatter plot)
- Predicted vs actual solar energy (time series plot)
- 5 sets of input and output (energy requirement)

-> 2 plots and 1 table

Research Progress | Todo

• Finish the framework evaluation section

- Research Introduction
- Overall system/architecture
- Research progress
 - Done
 - Doing
 - Todo
- Schedule

Schedule

• Task 1: Finish the evaluation section of the paper

Thank you for your attention!