QUANTENMECHANIK, BLATT 2, SOMMERSEMESTER 2015, C. KOLLATH

Abgabe vor der Vorlesung am 21. April. Besprechung am 24. April

I. DE BROGLIE WELLENLÄNGE

Welches ist die de Broglie Wellenlänge

- (a) von einem Elektron mit 20 eV,
- (b) von einem thermischen Neutron mit 0.03 eV

II. ZEITENTWICKLUNG EINER WELLENFUNKTION

Wir nehmen an, dass ein Teilchen in einer Dimension durch die folgende Wellenfunktion beschrieben wird:

$$\psi(x, t_0 = 0) = \left(\frac{1}{\pi a_0^2}\right)^{1/4} \exp\left(-\frac{(x+d)^2}{2a_0^2}\right)$$
 (1)

wobei $a_0 = \sqrt{\frac{\hbar}{m\omega}}$ die Breite ist, -d die Position, m die Masse, und ω die Frequenz des harmonischen Potentials, durch welches das Wellenpaket generiert wurde.

(a) Berechnen Sie die Wahrscheinlichkeit, das Teilchen zum Zeitpunkt t mit dem Impuls p zu finden ?

Hinweis: Berechnen Sie die Amplitude der Wahrscheinlichkeit des Impulses $\varphi(p, t_0 = 0)$, wobei die Amplitude $\varphi(p, t)$ definiert ist durch :

$$\varphi(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} e^{-i\frac{p\cdot x}{\hbar}} \psi(x,t) dx$$
 (2)

Berechnen Sie $\varphi(p,t)$, wobei die Schrödingergleichung für ein freies Teilchen im Impulsraum, die Zeitentwicklung bestimmt :

$$i\hbar \frac{\partial \varphi(p,t)}{\partial t} = \frac{p^2}{2m} \varphi(p,t) \tag{3}$$

(b) Benutzten Sie die Resultate (a) und die inverse Transformation (2), und zeigen Sie, dass die Wellenfunktion zum Zeitpunkt t gegeben ist durch:

$$\psi(x,t) = \left(\frac{1}{\pi a_0^2}\right)^{\frac{1}{4}} \frac{\exp\left(-\frac{(x+d)^2}{2a_0^2} \frac{1}{1+i\omega t}\right)}{\sqrt{1+i\omega t}}$$
(4)

- (c) Was ist die Wahrscheinlichkeit $n(x,t) = |\psi(x,t)|^2$ ein Teilchen an der Position x zum Zeitpunkt t zu finden?
- (d) Zeichnen Sie die Zeitentwicklung der Wahrscheinlichkeitsverteilung im Ortsraum und im Impulsraum für ein Teilchen, welches anfänglich (i) im Ortsraum : $a_0 = 1$ (ii) im Impulsraum $a_0 = 1000$ lokalisiert ist ($\hbar = 1$ und m = 1). Geben Sie eine Näherung für die Entwicklung von Δx mit der Zeit für große Zeiten.

III. INTERFERENZ VON ZWEI GAUSS'SCHEN WELLEN

In einem Interferenzexperiment prepariert man zwei Atomwolken lokalisiert an den Orten $x = \pm d$. Jede der Wolke kann durch eine Gauss'sche Wellenfunktion beschrieben werden. Zum Zeitpunkt t_0 sind die Wellenfunktionen gegeben durch:

$$\psi_1(x, t_0 = 0) = \left(\frac{1}{\pi a_0^2}\right)^{1/4} \exp\left(-\frac{(x+d)^2}{2a_0^2}\right) \quad , \quad \psi_2(x, t_0 = 0) = \left(\frac{1}{\pi a_0^2}\right)^{1/4} e^{i\Phi} \exp\left(-\frac{(x-d)^2}{2a_0^2}\right)$$

Die Phasendifferenz zwischen den beiden Wolken ist Φ und die Distanz zwischen den Wolken ist grösser als ihre Ausdehnung. Die Gesamtwellenfunktion ist gegeben durch:

$$\Psi(x,t) = \psi_1(x,t) + \psi_2(x,t).$$
 (5)

Wir nehmen an, dass anfänglich die Wolken sich nicht überlappen : $\int_{-\infty}^{+\infty} \psi_1^*(x) \psi_2(x) dx \simeq 0$.

- (a) Berechnen Sie die Wahrscheinlichkeitsverteilung $n(x,t) = |\Psi(x,t)|^2$. Sketchen Sie diese Verteilung zu den Zeitpunkten t = 0, 3, 6, 10 für $a_0 = 1, d = 10, \hbar = 1$ und m = 1 (Sie können einen Computer verwenden). Benutzten Sie verschiedene Werte für Φ . Was beobachten Sie?
- (b) Bestimmen Sie die Periodizität von dem Interferenzmuster als Funktion der Zeit.

IV. AUSBREITUNG EINES FREIEN WELLENPAKETS

1. Wir betrachten ein freies Teilchen, welches sich entlang der x-Achse bewegt. Zeigen Sie, dass die zeitliche Entwicklung von $\langle x^2 \rangle_t$ geschrieben werden kann als:

$$\frac{\mathrm{d}\langle x^2 \rangle_t}{\mathrm{d}t} = A(t) \qquad \text{mit} \quad A(t) = \frac{i\hbar}{m} \int x \left(\psi \frac{\partial \psi^*}{\partial x} - \psi^* \frac{\partial \psi}{\partial x} \right) \mathrm{d}x$$

2. Berechnen Sie die zeitliche Ableitung von $\mathcal{A}(t)$ und zeigen Sie :

$$\frac{\mathrm{d}A}{\mathrm{d}t} = B(t) \qquad \text{mit} \quad B(t) = \frac{2\hbar^2}{m^2} \int \frac{\partial \psi}{\partial x} \frac{\partial \psi^*}{\partial x} \mathrm{d}x$$

- 3. Zeigen Sie, dass B(t) konstant ist.
- 4. Wir nehmen an:

$$v_1^2 = \frac{\hbar^2}{m^2} \int \frac{\partial \psi}{\partial x} \frac{\partial \psi^*}{\partial x} dx$$
 , $\xi_0 = A(0)$,

Zeigen Sie, dass:

$$\langle x^2 \rangle_t = \langle x^2 \rangle_0 + \xi_0 t + v_1^2 t^2$$

5. Zeigen Sie weiter:

$$\Delta x_t^2 = \Delta x_0^2 + \xi_1 t + \Delta v^2 t^2$$

 mit :

$$\Delta v^2 = v_1^2 - v_0^2 \quad , \quad v_0 = \frac{i\hbar}{2m} \int \left(\psi \frac{\partial \psi^*}{\partial x} - \psi^* \frac{\partial \psi}{\partial x} \right) dx \quad , \quad \xi_1 = \xi_0 - 2x_0 v_0$$

Kommentieren Sie die physikalische Interpretation der Ergebnisse.