

Módulo 6: Camada de Ligação de Dados

Versão original: Cisco Network Academy Versão modificada: Eduardo Costa

Introdução às redes v7.0 (ITN)

Objetivos do módulo

Título do Módulo: Camada de Ligação de Dados

Objetivo do módulo: Explique como o controlo de acesso ao meio na camada de ligação de dados suporta a comunicação entre redes.

Título do Tópico	Objetivo do Tópico
Finalidade da camada de ligaçãode dados	Descrever o objetivo e a função da camada de ligação de dados na preparação da comunicação para transmissão em determinado meio físico.
Topologias	Comparar as características dos métodos de controlo de acesso ao meio físico nas topologias WAN e LAN.
Quadro da ligação de dados	Descrever as características e as funções do quadro da camada de ligação de dados.

6.1 Finalidade da camada de ligação de dados

Objetivo da camada de ligação de dados A camada de ligação de dados

- A camada de ligação de dados é responsável pelas comunicações entre as placas de interface de rede dos dispositivos finais.
- Permite que os protocolos da camada superior acedam ao meio da camada física. Encapsula pacotes da Camada 3 (IPv4 e IPv6) em Frames da Camada 2.
- Executa a detecção de erros e rejeita quadros corrompidos.

Objetivo da camada de ligação de dados IEEE 802 LAN/MAN Data Link Sublayers

Os padrões IEEE 802 LAN/MAN são específicos para o tipo de rede (Ethernet, WLAN, WPAN, etc).

A Camada de Ligação de Dados consiste em duas subcamadas. Controle de Ligação Lógico (LLC) e Controle de Acesso ao Meio (MAC).

- A subcamada LLC trata da comunicação entre o software (de rede) nas camadas superiores e o hardware do dispositivo nas camadas inferiores.
- A subcamada MAC é responsável pelo encapsulamento de dados e controlo de acesso ao meio.

Objetivo da camada de ligação de dados Fornecendo acesso ao meio

Pacotes trocados entre nós podem passar por várias camadas de ligação de dados e serem transportados transições por diferentes meio.

Em cada salto ao longo do caminho, um router executa quatro funções básicas da Camada 2:

- Aceita um quadro do meio de rede.
- Desencapsula o quadro para expor o pacote encapsulado.
- Encapsula novamente o pacote num novo quadro.
- Encaminha o novo quadro no meio do próximo segmento de rede.

Objetivo da camada de ligação de dados Standards da camada de ligação de dados

Os protocolos de camada de ligação de dados são definidos por organizações de engenharia:

- Instituto de Engenheiros Elétricos e Eletrônicos (IEEE).
- União Internacional de Telecomunicações (UIT).
- Organizações Internacionais de Normalização (ISO).
- Instituto Nacional Americano de Padrões (ANSI).

6.2 Topologias

Topologias Topologias físicas e lógicas

A topologia de uma rede é a organização e o relacionamento dos dispositivos de rede e as interconexões entre eles.

Existem dois tipos de topologias usadas ao descrever redes:

- Topologia física mostra as conexões físicas e como os dispositivos estão interligados.
- **Topologia lógica** identifica as conexões virtuais entre dispositivos usando interfaces de dispositivo e esquemas de endereçamento IP.

Topologias WAN

Existem três topologias físicas comuns de WAN:

- Ponto a ponto a topologia WAN mais simples e comum. Consiste numa ligação permanente entre dois pontos finais.
- Hub e spoke semelhante a uma topologia em estrela, na qual um site central interconecta sites de filiais por meio de links ponto a ponto.
- Malha fornece alta disponibilidade, mas requer que todos os sistemas finais estejam conectados a todos os outros sistemas finais.

Topologias Topologia WAN ponto a ponto

- As topologias ponto a ponto físicas conectam diretamente dois nós.
- Os nós não podem compartilhar o meio com outros hosts.
- Como todos os quadros no meio só podem viajar de ou para os dois nós, os protocolos WAN Ponto a Ponto podem ser muito simples.

Topologias LAN

Os dispositivos finais nas LANs são normalmente interconectados usando uma topologia em estrela ou estrela estendida. Topologias em estrela e estrelas estendidas são fáceis de instalar, muito escaláveis e fáceis de solucionar problemas.

As tecnologias Early Ethernet e Token Ring Legacy fornecem duas topologias adicionais:

- Barramento Todos os sistemas finais encadeados e terminados em cada extremidade.
- Anel Cada sistema final é conectado aos seus respectivos vizinhos para formar um anel.

Physical Topologies

Topologias Comunicação Half e Full Duplex

Comunicação half-duplex

- Só permite que um dispositivo envie ou receba de cada vez num meio partilhado.
- Usado em WLANs e topologias de barramento herdadas com hubs Ethernet.

Comunicação full-duplex

- Permite que ambos os dispositivos transmitam e recebam simultaneamente num meio partilhado.
- Os switches Ethernet funcionam no modo full-duplex.

Topologias Métodos de controlo de acesso

Acesso baseado em contenção

Todos os nós funcionam em half-duplex, competindo pelo uso do meio. Os exemplos são:

- A operadora detecta o acesso múltiplo com detecção de colisão (CSMA / CD) conforme é usado na Ethernet com a topologia de barramento herdada.
- A operadora detecta o acesso múltiplo com prevenção de colisão (CSMA / CA), conforme é usado nas LANs sem fios.

Acesso controlado

- Acesso determinístico onde cada nó tem seu próprio tempo no meio.
- Usado em redes herdadas, como Token Ring e ARCNET.

Topologias

- Acesso baseado em contenção - CSMA/CD

CSMA/CD

- Usado por LANs Ethernet herdadas.
- Funciona no modo half-duplex onde apenas um dispositivo envia ou recebe de cada vez.
- Usa um processo de detecção de colisão para controlar quando um dispositivo pode enviar e o que acontece se vários dispositivos enviarem ao mesmo tempo.

Processo de detecção de colisão CSMA/CD:

- Se os dispositivos transmitirem simultaneamente o resultado será uma colisão de sinal no meio partilhado.
- Dispositivos detectam a colisão.
- Os dispositivos aguardam um período aleatório de tempo e retransmitem dados.

Topologias

Acesso baseado em contenção - CSMA/CA

CSMA/CA

- Usado nas WLANs IEEE 802.11.
- Funciona no modo half-duplex onde apenas um dispositivo envia ou recebe de cada vez.
- Usa um processo de prevenção de colisão para controlar quando um dispositivo pode enviar e o que acontece se vários dispositivos enviarem ao mesmo tempo.

Processo de prevenção de colisão CSMA/CA:

- Ao transmitir, os dispositivos também incluem a duração de tempo necessária para a transmissão.
- Outros dispositivos no meio partilhado recebem as informações de duração do tempo e sabem por quanto tempo o meio ficará indisponível.

6.3 Quadro de ligação de dados

Quadro de ligação de dados O quadro

Os dados são encapsulados pela camada de ligação de dados com um cabeçalho e um trailer para formar um quadro.

Um quadro de ligação de dados é composto por três partes:

- Cabeçalho
- Dados
- Trailer

Os campos do cabeçalho e do trailer variam de acordo com o protocolo da camada de ligação de dados.

A quantidade de informações de controlo transportadas no quadro varia de acordo com as informações de controlo de acesso e a topologia lógica.

Quadro de ligação de dados Campos do quadro

Campo	Descrição
Frame Start e Stop	Identifica o início e o fim do quadro
Endereçamento	Indica nós de origem e destino
Tipo	Identifica o protocolo encapsulado da Camada 3
Controle	Identifica serviços de controle de fluxo
Dados	Contém a carga útil do quadro
Detecção de erros	Usado para determinar erros de transmissão

Quadro de ligação de dados Endereço da Camada 2

- Também referido como um endereço físico.
- Contido no cabeçalho do quadro.
- Usado apenas para entrega local de um quadro de ligação de dados.
- Atualizado por cada dispositivo que encaminha o quadro.

Quadro de Ligação de Dados LAN e WAN Frames

A topologia lógica e o meio física determinam o protocolo de ligação de dados usado:

- Ethernet
- 802.11 sem fios
- Ponto a ponto (PPP)
- Controle de Enlace de Dados de Alto Nível (HDLC)
- Frame-Relay

Cada protocolo executa o controle de acesso ao meio para topologias lógicas especificadas.

6.4 - Sumários

Sumário

O que aprendi neste módulo?

- A camada de ligação de dados do modelo OSI (Camada 2) prepara dados de rede para a rede física.
- A camada de ligação de dados é responsável pela placa de interface de rede (NIC) para comunicações de placa de interface de rede.
- A camada de ligação de dados IEEE 802 LAN/MAN consiste nas seguintes duas subcamadas:
 LLC e MAC.
- Os dois tipos de topologias usados em redes LAN e WAN são físicos e lógicos.
- Três tipos comuns de topologias WAN físicas são: ponto a ponto, hub e spoke e malha.
- As comunicações Half-duplex trocam dados numa direção de cada vez. Full-duplex envia e recebe dados simultaneamente.
- Em redes multiacesso baseadas em contenção, todos os nós funcionam em half-duplex.
- Exemplos de métodos de acesso baseados em contenção incluem: CSMA/CD para LANs Ethernet de topologia barramento e CSMA/CA para WLANs.
- O quadro do ligação de dados tem três partes básicas: cabeçalho, dados e reboque.
- Os campos do quadro incluem: sinalizadores de indicador de início e fim de quadros, endereçamento, tipo, controle, dados e detecção de erros.
- Endereços de ligação de dados também são conhecidos como endereços físicos.
- Endereços de ligação de dados são usados somente para a entrega local de quadros de ligação.

 ESTIG IPB :: Eduardo Costa (raposo@ipb.pt)