第三章 气体和蒸汽的性质

- 3-1 理想气体的概念
 - 3-2 理想气体的比热容
 - 3-3 理想气体的热力性能、焓和熵
 - ●(3−4 水蒸气的饱和状态和相图
 - 3-5 水的汽化过程和临界点
 - 3−6 水和水蒸气的状态参数
 - 3-7 水蒸气表和图

No. of Contract of

工质:实现热能和机械能相互转化的媒介物质。

如空气、燃气、水蒸气、制冷剂。

分类:

1. 理想气体

满足理想气体状态方程,可用简单的关系式进行描述。 如汽车发动机和航空发动机以空气为主的燃气等

2. 实际气体

不满足理想气体状态方程,不能用简单的关系式进行描述 火力发电的水和水蒸气、制冷空调中制冷剂等

工质的性质

第三章 气体和蒸汽的性质

- 1. 理想气体的性质
- 2. 水和水蒸气的性质

第六章实际气体的性质及热力学一般关系式

第十二章 理想气体混合物及湿空气

理想气体的热力性质

• 重点内容:

- 理想气体的状态方程及基本状态参数计算;
- 理想气体比热容的计算;
- 理想气体热力学能、焓和熵的计算。

3-1 理想气体的概念

一、理想气体模型

宏观定义: 遵循克拉贝龙状态方程的气体

$$pv = R_gT$$
 称为克拉贝龙状态方程,
或理想气体状态方程。

微观定义:

假设条件:

- (1)气体分子是不占据体积的弹性质点;
- (2)气体分子相互之间没有任何作用力。

$$U=U(T)$$

(一)、理想气体的分子模型

- · 假设: (1)分子都是弹性的不占体积的质点;
 - (2) 分子相互之间没有作用力。

完全的理想气体是不存在的,它是实际气体在压力趋近于零,比体积区域无穷大的极限状态。 $p \to 0$,或 $v \to \infty$

- (二)、能否作为理想气体处理的依据
 - (1) 气体所处的状态是否远离液态;
 - (2) 工程上所允许的误差。
- (三)、工程上 可作为理想气体处理的常见气体

在常温、常压下 O_2 、 N_2 、CO、 H_2 、空气、燃气、烟气等离液态较远,可作理想气体处理。

不满足上述两点假设的气态物质称为实际气体,水蒸气、制冷剂蒸汽等。

二、理想气体状态方程式

理想气体宏观定义:凡遵循克拉贝隆(Clapeyron)方程的气体。

四种形式的克拉贝隆方程(理想气体状态方程):

三、摩尔质量和摩尔体积

摩尔: 物质的量的基本单位, mol

1 mol ~ 0.012 kg C(12)的原子数目, 6.0225×10²³

摩尔质量: 1mol物质的质量,用M表示,单位g/mol,数值上等于物质的相对分子量。

物质的量
$$n = \frac{m}{M \times 10^{-3}} \frac{物质的质量}{摩尔质量}$$

摩尔体积:1mol气体的体积

$$V_m = Mv \times 10^{-3} \frac{\text{m}^3}{\text{mol}} \left(\frac{\text{g}}{\text{mol}} \cdot \frac{\text{m}^3}{\text{kg}} \times 10^{-3} \right)$$

阿伏伽德罗假说 Avogadro's hypothesis:

相同p 和T 下各种气体的摩尔体积 V_m 相同

在标准状况下

$$(p_0 = 1.01325 \times 10^5 \text{ Pa}, T_0 = 273.15 \text{ K})$$

$$V_{m0} = 22.4141 \times 10^{-3} \, \text{m}^3 / \text{mol}$$

$$pV_{\rm m} = RT$$

$$\frac{pV_{\text{m}}}{T} = R(常数) = \frac{p_0 V_{\text{m0}}}{T_0} = 8.3145 \text{ J/(mol·K)}$$

四、摩尔气体常数

R——摩尔(通用)气体常数

$$R = 8.3145$$
 $\begin{bmatrix} J \\ mol \cdot K \end{bmatrix}$ 与气体种类无关,与状态无关

$$R_g$$
——气体常数

$$R_g = \frac{R}{M}$$
 [kJ/kg·K] 与气体种类有关,与状态无关

例如

$$R_{\text{Ad}} = \frac{R}{M_{\text{Ad}}} = \frac{8.3145}{28.97} = 0.287 \text{ kg} \cdot \text{K}$$

理想气体状态方程可有以下四种形式:

1 kg气体

$$pv = R_{\rm g}T$$

1 mol 气体

$$pV_{\rm m} = RT$$

质量为m的气体

$$pV = mR_{\rm g}T$$

物质的量为n的气体

$$pV = nRT$$

注意:

1.p, v(V), T是同一状态下的值

2. 压力: 绝对压力

3. 温度: 单位 K

4. 统一单位(最好均用国际单位)

 $p - p_a$, T - K, $v - m^3/kg$, $R_g - J/(kg \cdot K)$, $R - J/(mol \cdot K)$

计算时注意事项实例

例3-1: V=1m³的容器装有 N_2 ,温度为20 \mathbb{C} ,压力表

读数1000mmHg,
$$p_b$$
=1atm, 求N₂质量。
1) $m = \frac{pVM}{RT} = \frac{(000 \times 1.0 \times 28}{8.3145 \times 20} = 168.4 \text{ kg}$ $pV = nRT = \frac{m}{M}RT$

2)
$$m = \frac{pVM}{RT} = \frac{\frac{1000}{760} \times 1.013 \times 10^5 \times 1.0 \times 28}{8.3145 \times 293.15} = 1531.5 \text{ kg}$$

3)
$$m = \frac{pVM}{RT} = \frac{(\frac{1000}{760} + 1) \times 1.013 \times 10^5 \times 1.0 \times 28}{8.3145 \times 293.15} = 2658 \text{ kg}$$

$$m = \frac{pVM}{RT} = \frac{(\frac{1000}{760} + 1) \times 1.013 \times 10^5 \times 1.0 \times 28 \times 10^{-3}}{8.3145 \times 293.15} = 2.658 \text{ kg}$$

3-2 理想气体的比热容

比热容是一个重要参数, 计算热力学能, 焓, 熵都要用到。

一、定义与分类

1. 定义

热容:工质温度升高1度所吸收的热量, 称为热容,过程量,用C表示:

$$C = \frac{\delta Q}{\mathrm{d}T} = \frac{\delta Q}{\mathrm{d}t} \quad J/K$$

2. 分类

(1) 根据物量的单位:

比热容: 热容除以质量称为比热容,用c表示: $c = \frac{C}{m}$ J/(kg·K)

摩尔热容: 热容除以物质的量称为比热容,用 C_m 表示:

$$C_{\rm m} = \frac{C}{n} = \frac{mc}{n} = Mc$$
 J/(mol·K)

(2) 根据过程的性质

比定压热容:定压过程中,单位质量工质温度升高1度,所吸

收的热量, c_p 表示。

比定容热容:定容过程中,单位质量工质温度升高1度,所吸

收的热量, c_V 表示。

比热容是过程量还是状态量?

用的最多的某些特定过程的比热容

比定容热容 比定压热容

3. 比定容热容 c_v

任意可逆过程 $\delta q = du + pdv = dh - vdp$ u是状态量,设 u = f(T, v)

$$du = \left(\frac{\partial u}{\partial T}\right)_v dT + \left(\frac{\partial u}{\partial v}\right)_T dv$$

$$\therefore \delta q = \left(\frac{\partial u}{\partial T}\right)_{v} dT + \left[p + \left(\frac{\partial u}{\partial v}\right)_{T}\right] dV$$
 E

$$\therefore \delta q = \left(\frac{\partial u}{\partial T}\right)_{v} dT \implies$$

$$\therefore \delta q = \left(\frac{\partial u}{\partial T}\right)_{v} dT \implies \left| c_{v} = \left(\frac{\delta q}{dT}\right)_{v} = \left(\frac{\partial u}{\partial T}\right)_{v} \right|$$

4. 比定压热容 c_n

任意可逆过程

$$\delta q = du + p dv = dh - v dp$$

h是状态量,设 h = f(T, p)

$$h = f(T, p)$$

$$dh = \left(\frac{\partial h}{\partial T}\right)_p dT + \left(\frac{\partial h}{\partial p}\right)_T dp$$

$$\therefore \delta q = \left(\frac{\partial h}{\partial T}\right)_p dT + \left[\left(\frac{\partial h}{\partial p}\right)_T - v\right] dp \quad \text{定压}$$

$$\therefore \delta q = \left(\frac{\partial h}{\partial T}\right)_p dT > \Longrightarrow$$

$$\therefore \delta q = \left(\frac{\partial h}{\partial T}\right)_p dT \implies \left| c_p = \left(\frac{\delta q}{dT}\right)_p = \left(\frac{\partial h}{\partial T}\right)_p \right|$$

$$c_V = \left(\frac{\delta q}{\mathrm{d}T}\right)_V = \left(\frac{\mathrm{d}u + p\mathrm{d}v}{\mathrm{d}T}\right)_V = \left(\frac{\partial u}{\partial T}\right)_V$$

$$c_{p} = \left(\frac{\delta q}{\mathrm{d}T}\right)_{p} = \left(\frac{\mathrm{d}h - v\mathrm{d}p}{\mathrm{d}T}\right)_{p} = \left(\frac{\partial h}{\partial T}\right)_{p}$$

 c_V , c_p 热力学定义,适用于一切气体

C 是过程量,但是 c_V , c_p 仅是状态的函数

 c_v 物理意义:v时1kg工质温度升高1K,热力学能的增加量

 c_p 物理意义: (p)时1kg工质温度升高1K,焓的增加量

后面计算热力学能、焓和熵要用到 c_{V} , c_p

5. 理想气体的比定容热容和比定压热容

热力学能一内动能十内势能

分子热运动(T) 分子间的作用力(T, v)

理想气体无分子间作用力,热力学能只决定于内动能。

$$u = f(T)$$
 理想气体 u 只与 T 有关

$$h = u + pv = u + R_g T$$

$$\frac{1}{100}$$
 理想气体 h 只与 T 有关

理想气体的比热容

理想气体热力学能、焓是温度的单值函数

理想气体: u = f(T) h = f(T)

$$u = f(T)$$

$$h = f(T)$$

$$c_{v} = \left(\frac{\partial u}{\partial T}\right)_{v}^{\mathbf{z}} = \frac{\mathrm{d}u}{\mathrm{d}T}$$

$$c_p = \left(\frac{\partial h}{\partial T}\right)_p \stackrel{\text{pdd}}{=} \frac{\mathrm{d}h}{\mathrm{d}T}$$

c是过程量

迈耶公式及比热容比

理想气体:
$$c_v = \frac{\mathrm{d}u}{\mathrm{d}T}$$

$$c_p = \frac{\mathrm{d}h}{\mathrm{d}T}$$

$$\therefore c_p = \frac{\mathrm{d}h}{\mathrm{d}T} = \frac{\mathrm{d}u}{\mathrm{d}T} + \frac{\mathrm{d}(pv)}{\mathrm{d}T} = c_v + R_g$$

迈耶公式

$$c_p - c_v = R_g$$

$$C_{p,m} - C_{v,m} = R$$

$$c_v = \frac{R_g}{\gamma - 1}$$

$$c_p = \frac{\gamma R_{\rm g}}{\gamma - 1}$$

讨论:

(1) 理想气体 c_p , c_v 是温度的单值函数,那么 c_p - c_v 呢?

(2) c_p , c_v 哪个容易测准确?

$$c_p - c_v = R_g$$
$$C_{p,m} - C_{v,m} = R$$

(3) $c_p > c_{v_o}$

三、理想气体比热容及热量的计算

- 1. 真实比热容
- 2. 平均比热容表
- 3. 平均比热容的直线关系式

4. 定值比热容

$$c = \frac{\delta q}{\mathrm{d}T}$$
$$\delta q = c \mathrm{d}T$$
$$q = \int_{T_1}^{T_2} c_n \mathrm{d}T$$

1. 真实比热容

理想气体 u = f(T)

$$u = f(T)$$

$$h = f'(T)$$

$$c_{v} = \frac{\mathrm{d}u}{\mathrm{d}T} = f(T)$$

$$c_v = \frac{\mathrm{d}u}{\mathrm{d}T} = f(T)$$

$$c_p = \frac{\mathrm{d}h}{\mathrm{d}T} = f'(T)$$

根据实验结果整理

$$c = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + \dots$$

$$\int_{T_1}^{T_2} c dT = \int_{T_1}^{T_2} (a_0 + a_1 T + a_2 T^2 + a_3 T^3 + \dots) dT$$

系数的取值见附表4,温度单位K。

附表4 一些气体在理想气体状态的比定压热容

 $c_p = C_0 + C_1\theta + C_2\theta^2 + C_3\theta^3$ kJ/(kg·K) $\theta = \{T\}_K / 1000$

适用范围, 250 K~1 200 K, 带*的物质最高适用温度为500 K

适用范围: 250 K~1 200 K,带*的物质最局适用温度为500 K							
气体	分子式	C_0	C_1	C_2	C_3		
水蒸气	H ₂ O	1.79	0.107	0.586	-0.20		
乙炔	C ₂ H ₂	1.03	2.91	-1.92	0.54		
空气		1.05	-0.365	0.85	-0.39		
氨	NH ₃	1.60	1.4	1.0	-0.7		
氩	Ar	0.52	0	0	0		
正丁烷	C ₄ H ₁₀	0.163	5.70	-1.906	-0.049		
二氧化碳	CO ₂	0.45	1.67	-1.27	0.39		
一氧化碳	СО	1.10	-0.46	1.9	-0.454		
乙烷	С2Н6	0.18	5.92	-2.31	0.29		
乙醇	С ₂ Н ₅ ОН	0.2	-4.65	-1.82	0.03		
乙烯	С ₂ Н ₄	1.36	5.58	-3.0	0.63		
氦	Не	5.193	0	0	0		
氢	Н2	13.46	4.6	-6.85	3.79		
甲烷	CH ₄	1.2	3.25	0.75	-0.71		
甲醇	СН3ОН	0.66	2.21	0.81	-0.89		
氮	N_2	1.11	-0.48	0.96	-0.42		
正辛烷	C ₈ H ₁₈	-0.053	6.75	-3.67	0.775		
氧	02	0.88	-0.0001	0.54	-0.33		
丙烷	C ₃ H ₈	-0.096	6.95	-3.6	0.73		
R22*	CHCIF ₂	0.2	1.87	-1.35	0.35		
R134a*	CF ₃ CH ₂ F	0.165	2.81	-2.23	1.11		
二氧化硫	so ₂	0.37	1.05	-0.77	0.21		
	•	•					

$$c_{v} = c_{p} - R_{g}$$

2. 平均比热容表

$$c = \frac{\delta q}{\mathrm{d}t}$$

$$q = \int_{t_1}^{t_2} c dt = c \Big|_{t_1}^{t_2} (t_2 - t_1)$$

$$c\Big|_{t_1}^{t_2} = \frac{\int_{t_1}^{t_2} c dt}{t_2 - t_1}$$

$$t_1, t_2$$
均为变量,制表太繁复
$$t_1$$

$$c\Big|_0^t = \frac{\int_0^t c \mathrm{d}t}{t}$$

$$c\Big|_{t_1}^{t_2} = \frac{q\Big|_{t_1}^{t_2}}{t_2 - t_1} = \frac{q\Big|_{0}^{t_2} - q\Big|_{0}^{t_1}}{t_2 - t_1} = \frac{c\Big|_{0}^{t_2} t_2 - c\Big|_{0}^{t_1} t_1}{t_2 - t_1}$$

附表5 理想气体的平均比定压热容

$kJ/(kg\cdot K)$

温度℃	O_2	N_2	СО	CO_2	$\rm H_2O$	SO_2	空气
0	0.915	1.039	1.040	0.815	1.859	0.607	1.004
100	0.923	1.040	1.042	0.866	1.873	0.636	1.006
200	0.935	1.043	1.046	0.910	1.894	0.662	1.012
300	0.950	1.049	1.054	0.949	1.919	0.687	1.019
400	0.965	1.057	1.063	0.983	1.948	0.708	1.028
500	0.979	1.066	1.075	1.013	1.978	0.724	1.039
600	0.993	1.076	1.086	1.040	2.009	0.737	1.050
700	1.005	1.087	1.093	1.064	2.042	0.754	1.061
800	1.016	1.097	1.109	1.085	2.075	0.762	1.071
900	1.026	1.108	1.120	1.104	2.110	0.775	1.081
1 000	1.035	1.118	1.130	1.122	2.144	0.783	1.091
1 100	1.043	1.127	1.140	1.138	2.177	0.791	1.100
1200	1.051	1.136	1.149	1.153	2.211	0.795	1.108
1 300	1.058	1.145	1.158	1.166	2.243	_	1.117
1 400	1.065	1.153	1.166	1.178	2.274	_	1.124
1 500	1.071	1.160	1.173	1.189	2.305	_	1.131
1 600	1.077	1.167	1.180	1.200	2.335		1.138
1 700	1.083	1.174	1.187	1.209	2.363		1.144
1 800	1.089	1.180	1.192	1.218	2.391		1.150
1 900	1.094	1.186	1.198	1.226	2.417	_	1.156
2 000	1.099	1.191	1.203	1.233	2.442	_	1.161
2 100	1.104	1.197	1.208	1.241	2.466	_	1.166
2 200	1.109	1.201	1.213	1.247	2.489	_	1.171
2 300	1.114	1.206	1.218	1.253	2.512	_	1.176
2 400	1.118	1.210	1.222	1.259	2.533	_	1.180
2 500	1.123	1.214	1.226	1.264	2.554	_	1.184
2 600	1.127	_	_	_	2.574	_	_
2 700	1.131	_	_	_	2.594	_	_

$$c\Big|_{t_1}^{t_2} = \frac{c\Big|_0^{t_2} t_2 - c\Big|_0^{t_1} t_1}{t_2 - t_1}$$

$$c_{v} = c_{p} - R_{g}$$

求0。在100-500 ℃平均定压热容

$$c\Big|_{t_1}^{t_2} = \frac{c\Big|_0^{t_2} t_2 - c\Big|_0^{t_1} t_1}{t_2 - t_1}$$
 附表5 损失℃

$$c_{p,O_2}\Big|_0^{100} = 0.923 \text{ kJ/kgK}$$

$$c_{p,O_2}\Big|_0^{100} = 0.923 \text{ kJ/kgK}$$
 $c_{p,O_2}\Big|_0^{500} = 0.979 \text{ kJ/kgK}$

$$c_{p,O_2} \Big|_{100}^{500} = \frac{c_{p,O_2} \Big|_0^{t_2} t_2 - c_{p,O_2} \Big|_0^{t_1} t_1}{t_2 - t_1}$$

$$= \frac{0.979 \times 500 - 0.923 \times 100}{500 - 100} = 0.993 \text{ kJ/kgK}$$

附:线性插值

$$c_{p,O_2}\Big|_0^{100} = 0.923 \text{ kJ/kgK}$$

菜:
$$c_{p,O_2} \Big|_{0}^{150}$$

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{y' - y_1}{x - x_1}$$

$$c_{p,O_2}\Big|_{0}^{200} = 0.935 \text{ kJ/kgK}$$

$$y' = y_1 + \frac{x - x_1}{x_2 - x_1} (y_2 - y_1)$$

 $y' \rightarrow y$

因变量: c_p ;

自变量: t

$$y' \rightarrow y$$

$$c_{p,O_2} \Big|_0^{150}$$

$$= 0.923$$

$$= 0.929$$

$$=0.923 + \frac{150 - 100}{200 - 100} (0.935 - 0.923)$$

=0.929 kJ/kgK

3. 平均比热容的直线关系式

$$c = a + b't$$

$$q = \int_{t_1}^{t_2} c \mathrm{d}t = c \Big|_{t_1}^{t_2} \Delta t$$

$$c\Big|_{t_1}^{t_2} = \frac{\int_{t_1}^{t_2} cdt}{t_2 - t_1} = \frac{\int_{t_1}^{t_2} (a + b't)dt}{t_2 - t_1}$$

$$= \frac{a(t_2 - t_1) + b' / 2(t_2^2 - t_1^2)}{t_2 - t_1} = a + \frac{b'}{2}(t_1 + t_2)$$

$$b=b'/2$$
, $t=t_1+t_2$

$c\big|_{t_1}^{t_2} = a + bt$

附表6

摄氏℃

注意:t需用 t_1+t_2 代入

附表6 气体的平均比定压热容的直线关系式

	T
	平均比热容
空气	$ \begin{aligned} \left\{c_{y}\right\}_{\text{kJ/(kg-K)}} &= 0.708 \ 8 + 0.000 \ 093 \left\{t\right\}_{\text{c}} \\ \left\{c_{p}\right\}_{\text{kJ/(kg-K)}} &= 0.995 \ 6 + 0.000 \ 093 \left\{t\right\}_{\text{c}} \end{aligned} $
H ₂	$ \begin{split} \left\{c_{_{V}}\right\}_{_{\mathrm{kJ/(kg\cdot K)}}} &= 10.12 + 0.000\ 594\ 5\left\{t\right\}_{^{\circ}\mathrm{C}} \\ \left\{c_{_{p}}\right\}_{_{\mathrm{kJ/(kg\cdot K)}}} &= 14.33 + 0.000\ 594\ 5\left\{t\right\}_{^{\circ}\mathrm{C}} \end{split} $
N_2	$\begin{aligned} \left\{c_{\nu}\right\}_{\text{kJ/(kg-K)}} &= 0.730 \ 4 + 0.000 \ 089 \ 55 \left\{t\right\}_{\text{c}} \\ \left\{c_{\nu}\right\}_{\text{kJ/(kg-K)}} &= 1.03 + 0.000 \ 089 \ 55 \left\{t\right\}_{\text{c}} \end{aligned}$
O_2	$\begin{aligned} \left\{c_{_{V}}\right\}_{_{\mathrm{kJ/(kg\cdot K)}}} &= 0.659\ 4 + 0.000\ 106\ 5\left\{t\right\}_{_{^{\circ}\mathrm{C}}} \\ \left\{c_{_{P}}\right\}_{_{\mathrm{kJ/(kg\cdot K)}}} &= 0.919 + 0.000\ 106\ 5\left\{t\right\}_{_{^{\circ}\mathrm{C}}} \end{aligned}$
СО	$ \left\{ c_{\nu} \right\}_{\text{kJ/(kg-K)}} = 0.733 \ 1 + 0.000 \ 096 \ 81 \left\{ t \right\}_{\text{c}} $ $ \left\{ c_{p} \right\}_{\text{kJ/(kg-K)}} = 1.035 + 0.000 \ 096 \ 81 \left\{ t \right\}_{\text{c}} $
H ₂ 0	$ \begin{split} \left\{c_{_{V}}\right\}_{_{\mathrm{kJ/(kg\cdot K)}}} &= 1.372 + 0.000\ 311\ 1\left\{t\right\}_{^{\circ}\mathrm{C}} \\ \left\{c_{_{P}}\right\}_{_{\mathrm{kJ/(kg\cdot K)}}} &= 1.833 + 0.000\ 311\ 1\left\{t\right\}_{^{\circ}\mathrm{C}} \end{split} $
C0 ₂	$ \left\{ c_{\nu} \right\}_{\text{kJ/(kg-K)}} = 0.683 \ 7 + 0.000 \ 240 \ 6 \left\{ t \right\}_{\text{c}} $ $ \left\{ c_{p} \right\}_{\text{kJ/(kg-K)}} = 0.872 \ 5 + 0.000 \ 240 \ 6 \left\{ t \right\}_{\text{c}} $

注意: t=t₁+t₂

$$c_{\rm v} = c_{\rm p} - R_{\rm g}$$

4. 定值比热容

分子运动论
$$U_m = \frac{i}{2}RT$$

$$C_{v,m} = \frac{\mathrm{d}U_m}{\mathrm{d}T} = \frac{i}{2}R$$

$$C_{v,m} = \frac{\mathrm{d}U_m}{\mathrm{d}T} = \frac{i}{2}R$$

$$C_{p,m} = \frac{\mathrm{d}H_m}{\mathrm{d}T} = \frac{\mathrm{d}(U_m + RT)}{\mathrm{d}T} = \frac{i+2}{2}R$$

单原子气体,仅有三个方向的平动,i=3

双原子气体,不仅有三个方向的平动,还有两个方向的绕动,i=5

多原子气体,i=6

	单原子气体 <i>i=</i> 3	双原子气体 <i>i=</i> 5	多原子气体 <i>i</i> =6
$C_{V,\mathrm{m}}$ J/(mol•K	$(3) \frac{3}{2}R$	$\frac{5}{2}R$	$\frac{7}{2}R$
$C_{p,\mathrm{m}} \mathrm{J/(mol} \cdot \mathrm{K})$	$\frac{5}{2}R$	$\frac{7}{2}R$	$\frac{9}{2}R$
$\gamma = \frac{C_{p,m}}{C_{V,m}}$	1.67	1.40	1.29

$$c_{v} = \frac{C_{V,m}}{M} = \frac{i}{2} R_{g}$$

$$c_{p} = \frac{C_{p,m}}{M} = \frac{i+2}{2} R_{g}$$

其中:

R_o-单位kJ/kgK

当温度范围较大时,取比热容的算术平均值

$$q_v = c_{V,av}(T_2 - T_1)$$
 $q_p = c_{p,av}(T_2 - T_1)$

附表3,注意温度单位: K

附表3 低压时一些常用气体的质量热容

,										
		C_p	$c_{_{V}}$		C_p	C_V		C_p	C_V	
(T/K	J/(kg·K)	kJ/(kg·K)	γ	kJ/(kg · K)	$kJ/(kg\cdot K)$	γ	kJ/(kg · K)	$kJ/(kg\cdot K)$	γ
			空气		氦	氮气 (N ₂)		氧气 (O ₂)		
	250	1.003	0.716	1.401	1.039	0.742	1.400	0.913	0.653	1.398
	300	1.005	0.718	1.400	1.039	0.743	1.400	0.918	0.658	1.395
	350	1.008	0.721	1.398	1.041	0.744	1.399	0.928	0.668	1.389
	400	1.013	0.726	1.395	1.044	0.747	1.397	0.941	0.681	1.382
	450	1.020	0.733	1.391	1.049	0.752	1.395	0.956	0.696	1.373
	500	1.029	0.742	1.387	1.056	0.759	1.391	0.972	0.712	1.365
	550	1.040	0.753	1.381	1.065	0.768	1.387	0.988	0.728	1.358
	600	1.051	0.764	1.376	1.075	0.778	1.382	1.003	0.743	1.350
	650	1.063	0.776	1.370	1.086	0.789	1.376	1.017	0.758	1.343
	700	1.075	0:788	1:364	1.098	0.801	1.371	1.031	0.771	1.337
100	750	1.087	0.800	1.354	1.121	0.825	1.360	1.054	0.794	1.327
Mare III	800	1.099	0.812	1.354	1.121	0.825	1.360	1.054	0.794	1.327
1	900	1.121	0.834	1.344	1.145	0.849	1.349	1.074	0.814	1.319
	1000	1.142	0.855	1.336	1.167	0.870	1.341	1.090	0.830	1.313

$$c_{V,av}\Big|_{250}^{1000} = (1.003 + 1.142)/2$$

3-3 理想气体热力学能、焓和熵

1. 热力学能

理想气体

$$u = f(T)$$

$$c_{v} = \frac{\mathrm{d}u}{\mathrm{d}T}$$

$$c_{v} = \left(\frac{\partial u}{\partial T}\right)_{v}$$

$$c_p = \left(\frac{\partial h}{\partial T}\right)_p$$

 $du = c_v dT$

理想气体,任何过程

理想气体△ル的计算

$$du = c_v dT$$

理想气体。任何过程

$$\mathbf{1)} \quad c_{v} = const \quad \Delta u = c_{v} \Delta T = c_{v} (T_{2} - T_{1})$$

 $2) c_{v}$ 为真实比热

$$\Delta u = \int_{T_1}^{T_2} c_{\mathbf{v}} \mathrm{d}T$$

3) c_v 为平均比热

$$\Delta u = c_{v} \Big|_{t_{1}}^{t_{2}} \cdot (T_{2} - T_{1})$$

4) 若取0K为零点 $u = c_v \Big|_0^T \cdot T$

2. 理想气体的焓

理想气体 h = f(T)

$$h = f(T)$$

$$c_p = \frac{\mathrm{d}h}{\mathrm{d}T}$$

$$dh = c_{p} dT$$

理想气体。任何过程

理想气体△ℎ的计算

$$dh = c_p dT$$

1)
$$c_p = const$$
 $\Delta h = c_p \Delta T$

$$\Delta h = c_p \Delta T$$

$$2)$$
 c_p 为真实比热

$$\Delta h = \int_{T_1}^{T_2} c_{\rm p} \mathrm{d}T$$

3) $c_{\rm p}$ 为平均比热

$$\Delta h = c_p \Big|_{t_1}^{t_2} \cdot (T_2 - T_1)$$

4)若取0°C为零点 $h = c_p \Big|_0^t \cdot t$ 附表7, 8

$$h = c_p \Big|_0^t \cdot t$$

想气体热力学能、焓的计算公式

$$c_{\rm v} = \left(\frac{\partial u}{\partial T}\right)_{\rm v} \qquad c_{\rm p} = \left(\frac{\partial h}{\partial T}\right)_{\rm p}$$

理想气体 u = f(T) $c_v = \frac{\mathrm{d}u}{\mathrm{d}T}$

$$u = f(T)$$

$$c_{v} = \frac{\mathrm{d}u}{\mathrm{d}T}$$

$$du = c_{v}dT$$

$$h = f(T)$$

$$h = f(T) \qquad c_p = \frac{\mathrm{d}h}{\mathrm{d}T} \qquad \mathrm{d}h = c_p \mathrm{d}T$$

$$dh = c_{p} dT$$

讨论:

如图所示, b、c、d三点在同一条等温线上。某理想气体,分别经历过程a-b, a-c, a-d, 求三个过程的热力学能、焓的变化量。

$$T_b = T_c = T_d$$

对于理想气体一切同温限之间的过程 Δu 及 Δh 相同,且均可用 $c_V \Delta T$ 及 $c_p \Delta T$ 计算。

若为实际工质

$$\Delta u_{ab} \neq c_V (T_b - T_a) \qquad \Delta u_{ab} = \Delta u_{ac} = \Delta u_{ad}$$

$$\Delta h_{ac} \neq c_p (T_c - T_a) \qquad \Delta h_{ab} = \Delta h_{ac} = \Delta h_{ad}$$

$$\Delta h_{ac} \neq c_p (T_c - T_a) \qquad \Delta h_{ab} = \Delta h_{ac} = \Delta h_{ad}$$

$$\Delta u_{ab} + w_{ab}^0 = q_{a-b}$$

$$\therefore \Delta h_{ac} = c_p (T_c - T_a)$$

对于实际气体定容过程 $\Delta u = c_V \Delta T$, 定压过程 $\Delta h = c_p \Delta T$ 。

注意:实际气体 $\Delta u \mathcal{D} \Delta h$ 不仅与 ΔT 有关,还与过程有关,只有定 容和定压过程才能用上式计算。

3. 理想气体的熵

熵的定义:

$$ds = \frac{\delta q_{\rm re}}{T}$$

可逆过程

$$T d s = \delta q_R = d u + p d v = d h - v d p$$

$$\therefore ds = \frac{du}{T} + \frac{p dv}{T} = \frac{dh}{T} - \frac{v dp}{T} = \frac{c_v dT}{T} + \frac{p dv}{T} = \frac{c_p dT}{T}$$

$$= \frac{c_v dT}{T} + \frac{p dv}{T} = \frac{c_p dT}{T} - \frac{v dp}{T}$$

理想气体

$$pv = R_gT$$

$$ds = c_v \frac{dT}{T} + R_g \frac{dv}{v} \neq c_p \frac{dT}{T} - R_g \frac{dp}{p}$$

前一项取决于初末状态的温度、后一项取决于 初末状态的压力,因此熵变只与初末状态有关, 与过程无关,所以熵是状态参数。

$$ds = c_v \frac{dT}{T} + R_g \frac{dv}{v} = c_p \frac{dT}{T} - R_g \frac{dp}{p}$$

$$pv = R_g T$$

$$pv = R_g T \qquad p dv + v dp = R_g dT$$

$$\frac{\mathrm{d}v}{v} + \frac{\mathrm{d}p}{p} = \frac{\mathrm{d}T}{T}$$

$$ds = c_v \frac{dT}{T} + R_g \frac{dv}{v}$$
$$= c_p \frac{dv}{v} + c_v \frac{dp}{p}$$

仅可逆适用?

理想气体。任何过程

理想气体△ѕ的计算

$$ds = c_{v} \frac{dT}{T} + R_{g} \frac{dv}{v} = c_{p} \frac{dT}{T} - R_{g} \frac{dp}{p} = c_{p} \frac{dv}{v} + c_{v} \frac{dp}{p}$$

理想气体,任何过程

1) 若定比热

$$\Delta s = c_{v} \ln \frac{T_2}{T_1} + R_g \ln \frac{v_2}{v_1}$$

$$= c_{p} \ln \frac{T_{2}}{T_{1}} - R_{g} \ln \frac{p_{2}}{p_{1}} = c_{p} \ln \frac{v_{2}}{v_{1}} + c_{v} \ln \frac{p_{2}}{p_{1}}$$

2) 真实比热

$$\Delta s = \int_{1}^{2} c_{v} \frac{dT}{T} + R_{g} \ln \frac{v_{2}}{v_{1}} = \left(\int_{1}^{2} c_{p} \frac{dT}{T} - R_{g} \ln \frac{p_{2}}{p_{1}} \right)$$

取基准温度
$$T_0$$

$$\int_{T_0}^T c_p \cdot \frac{dT}{T} = f(T) = s^0(T)$$

$$\Delta s = \Delta s_{20} - \Delta s_{10} = \int_0^2 c_p \, \frac{\mathrm{d}T}{T} - R_g \ln \frac{p_2}{p_0} - \left(\int_0^1 c_p \, \frac{\mathrm{d}T}{T} - R_g \ln \frac{p_1}{p_0} \right)$$

$$= s_2^0 - s_1^0 - R_g \ln \frac{p_2}{p_1}$$

若为空气,查 附表7得

理想气体的热力性质小结

一、理想气体状态方程

$$p v = R_g T$$

$$pV_{\rm m} = R T$$

$$R = 8.3145 \left[\frac{J}{\text{mol} \cdot \text{K}} \right] \qquad R_g = \frac{R}{M}$$

$$R_g = \frac{R}{M}$$

 $[kJ/kg \cdot K]$

二、理想气体的比热容

四种形式的比热容计算。

理想气体的热力性质小结

三、理想气体热力学能、焓、熵的计算

$$d u = c_v d T$$

$$dh = c_p dT$$

$$ds = c_{v} \frac{dT}{T} + R_{g} \frac{dv}{v} = c_{p} \frac{dT}{T} - R_{g} \frac{dp}{p} = c_{p} \frac{dv}{v} + c_{v} \frac{dp}{p}$$

某种理想气体在刚性绝热容器内作自由膨胀,求: Δs_{12} 。

方法一: 取整个容器内的气体为研究对象,,气体作自由膨胀

$$Q = \Delta U + W$$

$$Q = 0$$
 $W = 0$ $\Delta U = 0$

理想气体
$$U = f(T)$$
 $\Delta T = 0$ 即 $T_1 = T_2$

$$\Delta s_{12} = \left[\int_{1}^{2} c_{V} \frac{dT}{T} + R_{g} \ln \frac{v_{2}}{v_{1}} \right]$$

$$V_2 = 2V_1$$

$$\Delta s_{12} = R_g \ln \frac{2v_1}{v_1} = R_g \ln 2 > 0$$
 $s_2 > s_1$ $s_2 = s_1 + R_g \ln 2$

$$s_2 = s_1 + R_g \ln 2$$

方法二:

$$ds = \frac{\delta q}{T}$$

$$\Delta s_{12} = \int_{1}^{2} ds = \int_{1}^{2} \frac{\delta q^{0}}{T} = 0$$

L述两种结论哪一个对?为什么?

结论:

1)
$$ds = \frac{\delta q}{T} \bigg|_{R}$$
 必须可逆

2) 不可逆绝热过程的熵变大于零。

第三章 气体和蒸汽的性质

——蒸汽部分

蒸汽的热力性质

• 教学要求:

- 掌握蒸气的饱和状态的特点;
- 掌握汽化过程和临界点的特征;
- 液体和蒸气的状态参数
- 熟练使用热力性质图表确定蒸汽的状态参数。

水蒸气是实际气体的代表

水蒸气 { 在空气中含量极小,当作理想气体 小蒸气 { 一般情况下,为实际气体,使用图表

- ▶ 18世纪,蒸气机的发明,是唯一工质
- **▶** 直到内燃机发明,才有燃气工质
- ▶ 目前仍是火力发电、核电、供暖、化工的工质
- ▶ 优点: 便宜,易得,无毒,膨胀性能好,传热性能好
- ➡ 是实际气体的代表

3-4 水蒸气的饱和状态和相图

一、相及相变

相:系统中物理性质和化学组成完全均匀的部分,相与相之间有明显的界面。

水和水蒸气组成的系统 两相酒精和水蒸气的蒸汽混合物 单相

相变:物质不同相之间的相互转化。

一般物质都有三种相态,即固、液、汽,任意两种相态之间均可相互转化。

热力学面:简单可压缩系统,两个独立变量,三个基本状态参数间满足,F(p, v, T)=0。在p,v,T三维坐标系中,全部热力学状态构成一个曲面,称为热力学面 P231

水的热力学面

六个区: 三个单相区、三个两相区

饱和线、三相线和临界点

三个线: 二个饱和线、一个三相线

一个点: 临界点

水的p-T相图

p-v-T热力学面在p-T坐标面上的投影,称为p-T图,也称相图。

 $p_c = 22.129 \text{MPa}$ $T_c = 647.30 \text{K}$ (374.15°C) 相平衡曲线: $v_c = 0.00326 \,\mathrm{m}^3/\mathrm{kg}$

(三条)。它只是表示饱和压力和饱和 温度的对应变化关系,在某确定的 饱和压力或饱和温度下,两相的成 分可自由变化,故比体积不确定。

三相点:三条相平衡曲线的交点, 三相点的状态是物质气、液、固三 相共存的状态,它是物质的固有属 性。注意:对任意物质,三相点的 温度、压力恒定,但比体积随组分 而变化。

水的三相点(triple pint):

$$p_{\rm tri} = 611.6 {\rm Pa}$$

$$t_{\rm tri} = 0.01^{\circ} {\rm C}$$

 $v_{\rm tri} \geq 0.00100022 \,{\rm m}^3/{\rm kg}$

$$v_1$$
=const;

$$v_{\rm v}$$
=const;

$$v_{\rm s}$$
=const.

三相点状态时,三相的成分可以自 由变化,所以三相点的比体积不是 定值,但各相的比体积是确定值。

一些物质的三相点数据

	温度 °C	压力 kPa
氢氧氮二水水锌银铜化碳	-259 -219 -210 -56.4 -39 0.01 419 961 1083	7. 194 0. 15 12. 53 520. 8 0. 00000013 0. 6113 5. 066 0. 01 0. 000079

二、汽液相变

1. 汽化和液化(vaporization and liquefaction)

汽化: 由液态到气态的过程

·蒸发:在液体表面进行的汽化过程,任何温度下均可发生。

沸腾: 在液体内部进行的强烈汽化过程, 特定温度下才能

发生。

液化: 由气相到液相的过程

2. 饱和状态(Saturated state)

汽化速率取决于? 液体的温度

液化速率取决于? 蒸汽空间的压力

当两者速率相等即达到动态平衡,此时 宏观参数不变,称为饱和状态。

饱和状态: 当汽化速度=液化速度时, 系统处于动态平衡, 宏观上气、液两 相保持一定的相对数量。

饱和状态的温度—饱和温度, $t_{\rm s}(T_{\rm s})$

饱和态时汽液的温度。

饱和状态的压力—饱和压力, $p_{\rm s}$

饱和态时蒸汽空间的压力。

加热,使温度升高如 t',保持定值,系统建立新的动态平衡。与之对应,p。变成p。'。

$$T_s \Leftrightarrow p_s$$

一一对应,只有一个独立变量,即 $t_s = f(p_s)$

饱和态时,压力和温度只有一个是独立变量。

3. 汽化潜热

定义:液体定压汽化过程中吸收的热量。

水在定压汽化过程中,温度维持不变,因此,根据 $q=\Delta u+w$, 过程中吸收的热量等于膨胀功?

-克服界面表面液体分子的引力作功(内势能增加)

-扩大比体积对外作功(膨胀功)

三、几个常用名词

饱和液(saturated liquid)—处于饱和状态的液体: $t = t_{s}$, $p = p_{s}$

未饱和液(unsaturated liquid)——处于未饱和状态的液体

- —温度低于所处压力下饱和温度的液体: $t < t_{
 m s}$
- —压力高于所处温度下饱和压力的液体: $p>p_s$

使未饱和液达饱和状态的途径:

$$(t,p) \begin{cases} t < t_s(p) - 保持p不变, t \uparrow \\ p > p_s(t) - 保持t不变, p \downarrow \end{cases}$$

加热或减压均可使未饱和液达到饱和状态。

干饱和蒸汽(dry-saturated vapor; dry vapor)

—处于饱和状态的蒸汽: $t = t_s$

过热蒸汽(superheated vapor)

—温度高于饱和温度的蒸汽: $t > t_s$,

 $-t - t_s = d$ 称过热度(degree of superheat)。

湿饱和蒸汽(wet-saturated vapor; wet vapor)

—饱和液和干饱和蒸汽的混合物: $t = t_s$

干度(dryness)

定义:湿蒸汽中干饱和蒸汽的质量分数,用w或x表示。

$$x = \frac{m_{\tilde{\Xi}}}{m_{\tilde{\Xi}} + m_{\tilde{\Xi}}}$$
 (湿度 $y = 1-x$)
$$x \begin{cases} 0 \text{ 饱和液} \\ \downarrow \text{ 湿饱和蒸汽} \\ 1 \text{ 干饱和蒸汽} \end{cases}$$

3-5 水的汽化过程和临界点

一、水定压加热汽化过程

p-v图,T-s图上的水蒸气定压加热过程

一点,二线,三区,五态

饱和水线和干饱和蒸汽线的交点——临界点。此时饱和水与干饱和蒸汽已不再有区别,即,不存在两相区。

二、水定压加热汽化过程的p-v图及T-s图

两线

未饱和水态 饱和水态 湿蒸汽态 饱和蒸汽态 过热蒸汽态

一点

临界点

 $p_{\rm cr} = 22.064 \,\mathrm{MPa}$ $t_{\rm cr} = 373.99^{\circ} \,\mathrm{C}$

 $v_{\rm cr} = 0.003106 {\rm m}^3/{\rm kg}$

{饱和水线 三区 干饱和蒸汽线

五态

过冷水区 湿蒸汽区 过热蒸汽区

3-6 水和水蒸气状态参数

- ▶ 在工程应用中水蒸气不能利用理想气体性质计算
- 水和水蒸气的状态参数可按不同区域,由给出的独立状态参数通过实际气体状态方程及其他一般关系式计算。
- 计算过程相当复杂,由专门的工作人员完成,绘制成图或表,例如水和水蒸气的热力性质图表。
- > 学会如何使用这些图表。

一、零点的规定

对于h、s、u等工程上关心的是过程中的变化量,但对于图表来说必须给出绝对值,所以必须选定一个基准点。

1985年国际水蒸气会议决定,以处于三相点的液态水作为基准点,并规定在该点状态下的液相水的热力学能和熵为零。

固、液、汽三相共存的状态点称为 三相点。它是物质固有的属性,不 同的物质三相点的参数不同。

三相点的参数是通过实验的方法测得的。

$$p_{\rm tri} = 611.6 \text{Pa}$$

$$t_{\rm tri} = 0.01^{\circ} {\rm C}$$

$$v'_{273.16} = 0.00100021 \text{m}^3/\text{kg}$$

$$u'_{273.16} = 0$$

$$s'_{273.16} = 0$$

三相点液态水的参数作为 基准点,得到*u、h、s*的 零点,进行水蒸气热力性 质图表的制作。

二、未饱和水和过热蒸汽状态参数的确定

由温度(t)和压力(p),直接从未饱和水和过热蒸汽热力性质图表中查得。

三、饱和水和饱和蒸汽状态参数的确定

由饱和温度(t_s)或饱和压力(p_s),直接从饱和水或饱和蒸汽热力性质图表中查得。

四、湿饱和蒸汽状态参数的确定

两相比例由干度x确定

定义
$$x = \frac{\text{干饱和蒸汽质量}}{\text{湿饱和蒸汽质量}} = \frac{m_v}{\text{湿饱和蒸汽质量}} + \frac{m_f}{m_f}$$
 干饱和蒸汽 饱和水

对干度x的说明:

◆ x = 0 饱和水

x=1 干饱和蒸汽

- $0 \le x \le 1$
- ◆ 在过冷水和过热蒸汽区域, x无意义

四、湿饱和蒸汽状态参数的确定

由 t_s (或 p_s)与干度x共同确定:

1、由饱和温度(t_s)或饱和压力(p_s),直接从饱和水或饱和蒸汽热力性质图表中,查得对应的饱和水和饱和蒸汽的状态参数。

饱和液体的参数用'表示;饱和蒸汽的参数用"表示。

2、根据干度x计算出对应的湿饱和状态参数

$$v_x = xv'' + (1-x)v' = v' + x(v'' - v')$$

$$h_x = xh'' + (1-x)h' = h' + x(h''-h')$$

$$s_x = xs'' + (1-x)s' = s' + x(s''-s')$$

$$u_x = h_x - p_s v_x$$

相同压力或温度下,未饱和水、饱和水、湿蒸汽、干饱和蒸汽过热蒸汽的v、h、s之间的关系。

未饱和水<饱和水<湿蒸汽<干饱和蒸汽<过热蒸汽

3-7 水蒸气表和图

一、水和水蒸气的热力性质表

(一) 热力性质表的分类

饱和水和饱和蒸汽表

按温度排列——表A

按压力排列——表B

未饱和水和过热蒸汽表——表C

表A变量是温度;

表B变量是压力;

饱和状态压力和温度只有一个是独立的,只需要1个参数即可确定状态(x=0或1)

表C变量是温度和压力。

单相区,需要两个独立 状态参数才能确定状态

饱和液体的参数用 '表示;饱和蒸汽的参数用 '表示。

(二)、热力性质表的用途

1. 饱和水和饱和蒸汽表

<mark>┌查饱和状态参数,</mark>饱和水(′),饱和蒸汽(''),需要压力或温度一个变量。

、 计算湿蒸汽的参数,需要压力和干度两个变量。

干度: x=m''/(m'+m'') 湿蒸汽中干饱和蒸汽的质量百分比。

$$v_x = xv'' + (1-x)v' = v' + x(v''-v')$$
 $h_x = xh'' + (1-x)h'$
 $s_x = xs'' + (1-x)s' = s' + x(s''-s')$ $u_x = h_x - p_s v_x$

$$x = \frac{v - v'}{(v'' - v')}$$

$$x = \frac{h - h'}{(h'' - h')}$$

$$x = \frac{s - s'}{(s'' - s')}$$

湿蒸汽的性质参数由压力和干度共同决定, 其参数在饱和水(′), 饱和蒸汽(′′)之间。

表A 饱和水和饱和水蒸气热力性质表(按温度排列)

	Name and Address of Publishers									
温度	压力	比体积		散 5	rit .	Marie Marie	熵			
		液体	蒸汽	液体	蒸汽	汽化潜热	液体	蒸汽		
t/C	p/	v'/	υ"/	h'/	h"/	r/	51	s"/		
Towns !	MPa	(m ³ /kg)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ∕kg)	[kJ/(kg·K)]	[kJ/(kg·K)]		
0.00	0.0006112	0.00100022	206.154	-0.05	2500.51	2500.6	-0.0002	9.1544		
0.01	0.0006117	0.00100021	206.012	0.00	2500.53	2500.5	0.0000	9.1541		
1 1000	0.0006571	0.00100018	192.464	4.18	2502.35	2498.2	0.0153	9.1278		
2	0.0007059	0.00100013	179.787	8.39	2504.19	2495.8	0.0306	9.1014		
4	0.0008135	0.00100008	157.151	16.82	2507.87	2491.1	0.0611	9.0493		
5	0.0008725	0.00100008	147.048	21.02	2509.71	2488.7	0.0763	9.0236		
6	0.0009352	0.00100010	137.670	25.22	2511.55	2486.3	0.0913	8.9982		
8	0.0010728	0.00100019	120.868	33.62	2515.23	2481.6	0.1213	8.9480		
10	0.0012279	0.00100034	106.341	42.00	2518.90	2476.9	0.1510	8.8988		
12	0.0014025	0.00100054	93.756	50.38	2522.57	2472.2	0.1805	8.8504		
14	0.0015985	0.00100080	82.828	58.76	2526.24	2467.5	0.2098	8.8029		
15	0.0017053	0.00100094	77.910	62.95	2528.07	2465.1	0.2243	8.7794		
16	0.0018183	0.00100110	73.320	67.13	2529.90	2462.8	0.2388	8.7562		

表B 饱和水和饱和水蒸气热力性质表(按压力排列)

压力	温度	比体积		10	1	V- /1. NF 44	熵	
		液体	蒸汽	液体	蒸汽	汽化潜热	液体	蒸汽
p/	1/C	υ'/	v"/ \	h'/	h"/ \	r/ \	s'/	5"/
MPa	Null [[Ol-ol	(m ³ /kg)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)	[kJ/(kg·K)]	[kJ/(kg·K)]
0.001	6.9491	0.0010001	129.185	29.21	2513.29	2484.1	0.1056	8.9735
0.002	17.5403	0.0010014	67.008	73.58	2532.71	2459.1	0.2611	8.7220
0.003	24.1142	0.0010028	45.666	101.07	2544.68	2443.6	0.3546	8.5758
0.004	28.9533	0.0010041	34.796	121.30	2553.45	2432.2	0.4221	8.4725
0.005	32.8793	0.0010053	28.191	137.72	2560.55	2422.8	0.4761	8.3930
0.006	36.1663	0.0010065	23.738	151.47	2566.48	2415.0	0.5208	8.3283
0.007	38.9967	0.0010075	20.528	163.31	2571.56	2408.3	0.5589	8.2737
0.008	41.5075	0.0010085	18.102	173.81	2576.06	2402.3	0.5924	8.2266
0.009	43.7901	0.0010094	16.204	183.36	2580.15	2396.8	0.6226	8.1854
0.010	45.7988	0.0010103	14.673	191.76	2583.72	2392.0	0.6490	8.1481
0.015	53.9705	0.0010140	10.022	225.93	2598.21	2372.3	0.7548	8.0065
0.020	60.0650	0.0010172	7.6497	251.43	2608.90	2357.5	0.8320	7.9068

The Contract of the Contract o

2. 未饱和水和过热蒸汽表

查未饱和水及过热蒸汽参数,需要压力和温度两个独立变量。

饱和水和饱和蒸汽表,解决了两线(饱和水线和饱和蒸汽线),一区(湿蒸汽区)的三种热力状态(饱和液、饱和蒸汽、湿蒸汽);

未饱和水和过热蒸汽表,解决了两区(未饱和水区,过热蒸汽区)的两种状态(未饱和态和过热态)。

水状态参数图上的一点、两线、三区、五态已经全部可以确定。

表C 未饱和水和过热蒸汽热力性质表

p	0.001MPa			MNE	0.005MP	a	TOTAL t_s = 45.799°C v' = 0.0010103 v'' = 14.673 h' = 191.76 h'' = 2583.7 s' = 0.6490 h'' = 8.1481		
饱和参数	h' = 0.00 $h' = 29$	h' = 29.21 $h'' = 2513.3$			7.72 The h'	"=28.191 "=2560.6			
t/	0/	6 h/	s/	0/	h h/	s/ N	v/ \	1 h/	s/ s
(Call	(m³/kg)	(kJ/kg)	[kJ/(kg·K)]	(m³/kg)	(kJ/kg)	[kJ/(kg·K)]	(m³/kg)	(kJ/kg)	[kJ/(kg·K)]
0	9.0010002	0-0.05	0.0002	0.0010002	0-0.05	0-0.0002	0.0010002	0-0.04	0-0.0002
10	130 598	2519.0	8.9938	0.0010003	42.01	000.1510	0.0010003	42.01	0.1510
2000	135.226	2537.7	9.0588	0.0010018	83.87	0.2963	0.0010018	83.87	00.0.2963
40.78	144.475	2575.2	009.1823	28.854	2574.0	8.4366	0.0010079	167.51	0.5723
50	149.096	2593.9	9:2412	29.783	2592.9	8.4961	14.869	2591.8	00 8.1732
60	153.717	2612.7	9.2984	30.712	2611.8	8.5537	15.336	2610.8	8.2313
80	162.956	2650.3	9.4080	32.566	2649.7	8.6639	16.268	2648.9	8.3422
100	172.192	2688.0	9.5120	34.418	2687.5	8.7682	17.196	2686.9	8.4471
THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED	No. of the contract of the con	Accorded to the Control of the Contr							

A STATE OF THE STA

P	0.050MPa			9M2000.10MPa			0.20MPa			
饱和参数	v' = 0.0 $h' = 340$.55 10 - /	"=3.2409 h"=2645.3	$t_s = 99.634$ °C v' = 0.0010431 $v'' = 1.6943h' = 417.52$ $h'' = 2675.1s' = 1.3028$ $s'' = 7.3589$						
1/	70/	h/	5/	0/	h/	5/	70/	h h/	s	
[ACIM	(m ³ /kg)	Service Control of the Control of th	[kJ/(kg·K)]			[kJ/(kg·K)]		(kJ/kg)	[kJ/(kg·K)]	
0.0.	0.0010002	0.00	0-0.0002	0.0010002	0.05	-0.0002	0.0010001	0 - 0.15	-0.0002	
10	0.0010003	42.05	0.1510	0.0010003	42.10	0.1510	0.0010002	42.20	0.1510	
20	0.0010018	83.91	0.2963	0.0010018	83.96	0.2963	0.0010018	84.05	0.2963	
40	0.0010079	167.54	0.5723	0.0010078	167.59	0.5723	0.0010078	167.67	0.5722	
50	0.0010121	209.36	0.7037	0.0010121	209.40	0.7037	0.0010121	209.49	0.7037	
60	0.0010171	251.18	0.8312	0.0010171	251.22	0.8312	0.0010170	251.31	0.8311	
80	0.0010290	334.93	1.0753	0.0010290	334.97	1.0753	0.0010290	335.05	1.0752	
100	3.4188	2682.1	7.6941	1.6961	2675.9	7.3609	0.0010434	419.14	1.3068	
120	3.6078	2721.2	7.7962	1.7931	2716.3	7.4665	0.0010603	503.76	1.5277	
140	3.7958	2760.2	7.8928	1.8889	2756.2	7.5654	0.93511	2748.0	7.2300	
150	3.8895	2779.6	7.9393	1.9364	2776.0	7.6128	0.95968	2768.6	7.2793	
160	3.9830	2799.1	7.9848	1.9838	2795.8	7.6590	0.98407	2789.0	7.3271	
180	4.1697		8.0727	2.0783	2835.3	7.7482	1.03241	2829.6	7.4187	
200	4.3560	2877.1	8.1571	2.1723	2874.8	7.8334	1.08030	2870.0	7.5058	
779			12 1 2 3 1 1 2	100			-913	3,6		

练习题:

- 1. 温度为100 ℃,压力为0.001MPa过热蒸汽的状态参数;
- 2. 温度为20℃,压力为0.01MPa的未饱和水的状态参数;
- 3. 温度为90℃,压力为0.001MPa的过热蒸汽的状态参数;

$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

4. 试确定温度为100℃,比体积分别为 ν_x =0.0005m³/kg,

0.00104344m³/kg, 1.0m³/kg, 1.6736m³/kg, 2.0m³/kg的水的状态;

解:已知: *t*= 100 ℃;

查饱和水及饱和蒸汽表,得v'=0.00104344m³/kg,v''=1.6736m³/kg。

所以:

(1) $v_x = 0.0005 \text{m}^3/\text{kg} < v'$

未饱和水

(2) $v_r = 0.00104344 \text{m}^3/\text{kg} = v'$

饱和水

(3) $v' < v_r = 1.0 \text{m}^3/\text{kg} < v''$

湿蒸汽

(4) $v_x = 1.6736 \text{m}^3/\text{kg} = v''$

饱和蒸汽

(5) $v_r = 2.0 \text{m}^3/\text{kg} > v''$

过热蒸汽

5. 温度为45℃,压力为0.01MPa的水的状态参数;

解:已知:p=0.01MPa, t=45°C;

查饱和水及饱和蒸汽表,得p=0.01MPa, $t_s=45.7988$ $^{\circ}$ 。

t=45℃ <*t*_s=45.7988℃,所以是未饱和水。

查未饱和水表,p=0.01MPa,t=45°C,会发现温度处在40和50°C之间,此时在这两个温度范围之间有一条横线,即未饱和水和过热蒸汽的分界线。因此,t=40°C对应的是未饱和水,而t=50°C对应的是过热蒸汽。

那么此时该如何插值呢?

如果,采用内插值法在40和50℃之间差值,是否合适?

这样的插值没有考虑到1、2两点在两个不同的状态区,显然是 不正确的。那么该如何插值呢?

(1)*t*=45℃ < *t_s*=45.7988℃,是未饱和水;

此时应该在t=45 $^{\circ}$ 和 $t_s=45.7988$ $^{\circ}$ 之间进行线性内插值得到相应的状态参数。

(2)反之,如果t=46 °C > $t_s=45.7988$ °C ,是过热蒸汽;

此时应当在 t_s 和50°C之间进行插值。

小结:在某种压力下状态点的温度处于未饱和水及过热蒸汽表的横线上下相邻的两个温度之间时,不能再用该相邻温度对应的状态参数值进行内插值,得到该点的状态参数。

- (1) t>ts, 采用饱和温度和横线下的过热蒸汽的温度对应的参数值进行内插;
- (2) t<t, 采用饱和温度和横线上的未饱和水的温度对应的参数值进行内插。

二、水和水蒸气的热力性质图

(1) p--v图(定性分析)

过程线下的面积表示功量,分析过程功量时方便。

(2) T--s图(定性分析)

过程线下的面积表示热量,分析过程热量时方便。

(3) h--s图(定量分析)

p--v图和T--s图上功量和热量以面积表示,在做计算时很不方便。在h-s图中,可以用线段的长度表示热量和功。例如,开口系的定压过程(锅炉)、绝热过程(叶轮机械),因而得到了广泛应用。

(3) h —s图 (定量分析)

临界点 定压线 定温线 定容线

1. 临界点

临界点对应最高饱和压力及最高饱和温度,因此在p-v图及T-s图上,临界点是饱和线的最高点。

临界点对应的焓值不是饱和线上焓最大值,因此在h-s图上临界点不是饱和线的最高点,饱和线上的最高点(焓值最大点)发生在饱和蒸汽线上。

水的饱和线上焓最大值 发生在:

$$p_s = 3.0 \sim 3.1 \text{MPa};$$

$$T_{\rm s}=230^{\circ}{\rm C}$$
;

$$p_{\rm cr} = 22.064 \, \text{MPa}$$

$$t_{\rm cr} = 373.99^{\circ} {\rm C}$$

2. 定压线群

$\delta q = T ds = dh - v dp$ () 五子文道大学

$$\left(\frac{\partial h}{\partial s}\right)_n = T + v \left(\frac{\partial p}{\partial s}\right)_n$$

$$\left(\frac{\partial h}{\partial s}\right)_p = T > 0$$

3. 定温线群

$\delta q = T ds = dh - v dp$ () 多步文道大学

$$\left(\frac{\partial h}{\partial s}\right)_T = T + v \left(\frac{\partial p}{\partial s}\right)_T$$

湿蒸汽区:

$$\mathrm{d}p = 0 \qquad \left(\frac{\partial h}{\partial s}\right)_T = T_s$$

直线,与等压线重合

过热蒸汽区: $\left(\frac{\partial p}{\partial s}\right)_{T} < 0$

过热区等温线较等压线平坦, 低压时趋于水平, 此时接近理 想汽体, 焓和温度——对应。

$$\left(\frac{\partial h}{\partial s}\right)_{T} = T + v \left(\frac{\partial p}{\partial s}\right)_{T} < T$$

4. 等容线群

$\delta q = T ds = dh - v dp$

$$\left(\frac{\partial h}{\partial s}\right)_{v} = T + v \left(\frac{\partial p}{\partial s}\right)_{v}$$

$$\left(\frac{\partial p}{\partial s}\right)_{y} > 0$$

$$\left(\frac{\partial h}{\partial s}\right)_{v} > \left(\frac{\partial h}{\partial s}\right)_{p} = T$$

等容线比等压线陡

5. 等干度线群

湿蒸汽区等压线上各等分点的连线,汇合于临界点。

$$\left(\frac{\partial h}{\partial s}\right)_p = T$$

$$\left(\frac{\partial h}{\partial s}\right)_{T} = T + v \left(\frac{\partial p}{\partial s}\right)_{T} < T$$

定容线的斜率:
$$\left(\frac{\partial h}{\partial s}\right)_{v} = T + v \left(\frac{\partial p}{\partial s}\right)_{v} > T$$

所以 $k_{\nu} > k_{p} > k_{T}$,

即定容线最陡、定压线次之、定温线最平缓。

小结

一、水定压加热汽化过程

五态

未饱和水态 饱和水态 湿蒸汽态 饱和蒸汽态 过热蒸汽态

一点

临界点Critical

point

 $p_{\rm cr} = 22.064 \, {\rm MPa}$

$$t_{\rm cr} = 373.99^{\circ} \,{\rm C}$$

 $v_{\rm cr} = 0.003106 {\rm m}^3/{\rm kg}$

_[饱和液体线] 饱和蒸汽线

三区

过冷水区 湿蒸汽区 过热蒸汽区

二、水和水蒸气的热力性质图表

(一) 热力性质表

1.饱和水和饱和蒸汽表

2.未饱和水和过热蒸汽表

查未饱和水及过热蒸汽参数,需要压力和温度两个独立变量。

作业

3-12、3-16、3-24、3-25

氟利昂及氨的热力性质表见教材附录

