Matematika pro dementy

Fantomas

Únor 2025

Abstrakt

Vypracované otázky z matematiky, tipy a triky a tak

1 Výroková logika a množiny

Množiny

Množinou rozumíme souhrn nějakých objektů (prvků). Zápis $x \in M$ znamená že prvek x náleží množině M. Množinu můžeme určit výčtem prvků, charakteristickou vlastností nebo množinovými operacemi. Rovnost množin znamená, že každý prvek množiny M je prvkem množiny N a současně každý prvek množiny N je prvkem množiny M.

Podmnožina

Množinu M nazýváme podmnožinou množiny N, právě když je každý prvek množiny M prvkem množiny N. Zápis symbolem \subseteq nebo \subset ; $M \subset N$ značí, že M je vlastní podmnožinou množiny N, tedy $M \neq N$; $M \subseteq N$ značí nevlastní podmnožinu, tedy $M \subset N$ nebo M = N.

Charakteristická vlastnost

Zápis $A = \{x \in M; vlastnost\}$, kde každý prvek z množiny M, mající danou vlastnost, patří do množiny A.

Množinové operace

Sjednocení $A \cup B$, je množina všech prvků, patřících alespoň do jedné z množin A, B.

Průnik $A \cap B$, je množina všech prvků, patřících zároveň do obou množin A. B.

Rozdíl $A \setminus B$, je množina všech prvků, patřících do množiny A a **nepatřících** do množiny B.

! Sjednocení i průnik jsou komutativní a asociativní operace.

Doplněk A'_M množiny A v množině M je množina všech prvků množiny M, které nepatří do množiny A $\Rightarrow A'_M = M \setminus A$.

Intervaly

Nechť a, b jsou dvě reálná čísla, že a < b, pak

 $(a,b) = \{x \in \mathbb{R}; a < x < b\}$ je otevřený interval

 $(a,b) = \{x \in \mathbb{R}; a < x \leq b\}$ je polootevřený interval

 $\langle a, b \rangle = \{x \in \mathbb{R}; a \le x < b\}$ je polouzavřený interval

 $\langle a,b\rangle = \{x \in \mathbb{R}; a \le x \le b\}$ je uzavřený interval

Výroky

Výrokem rozumíme sdělení, o kterém má smysl uvažovat jeho pravdivost. Každý výrok má **pravdivostní hodnotu**, 0 (nepravda) nebo 1 (pravda). **Hypotéza** je výrok jehož pravdivostní hodnotu neznáme.

Výroková formule je tvrzení s proměnou, po dosazení se stane výrokem.

Negace výroku

Negace výroku, "Není pravda, že A", zapisujeme $\neg A$, vždy opačná pravdivostní hodnota.

Logické operátory

Pomocí těchto operátorů tvoříme složené výroky nebo formule. Konjunkce, "A a současně (et) B", zapisujeme $A \wedge B$

A	В	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

Disjunkce, "A nebo (vel) B", zapisujeme $A \vee B$

A	В	$A \lor B$
0	0	0
0	1	1
1	0	1
1	1	1

Ostrá disjunkce, "Buď A, nebo B", zapisujeme $A \veebar B$

A	В	$A \veebar B$
0	0	0
0	1	1
1	0	1
1	1	0

Implikace, "Z A plyne B", zapisujeme $A \Rightarrow B$

A	В	$A \Rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Ekvivalence, "A je ekvivalentní s B.", "A právě tehdy, když B.", zapisujeme $A \Leftrightarrow B$

A	В	$A \Leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

Tautologie

Tautologie je výrok/formule, který je vždy pravdivý. Kontradikce je výrok/formule, který je vždy nepravdivý. Důležité tautologie:

- $\neg(\neg A) \equiv A$
- $\neg (A \Rightarrow B) \equiv A \land \neg B$
- $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$
- $\bullet \neg (A \land B) \equiv \neg A \lor \neg B$
- $A \Rightarrow B \equiv \neg A \lor B$
- $\neg (A \Leftrightarrow B) \equiv A \veebar B$
- $\neg (A \lor B) \equiv \neg A \land \neg B$
- $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$
- $\neg (A \veebar B) \equiv A \Leftrightarrow B$

Kvantifikace výrokových formulí

Výroková formule $\varphi(x)$, obsahující proměnnou x, se stane výrokem po kvantifikaci x.

Obecný kvantifikátor ∀, "pro každé, pro všechna, ..."

Malý kvantifikátor ∃, "existuje alespoň jedno, nějaké, ..."

Př.: Formuli $\varphi(x) \sim x > 0$ lze kvantifikovat:

 $(\forall x \in \mathbb{N})x > 0$... Všechna přirozená čísla jsou kladná.

 $(\exists x \in \mathbb{N}) x > 0$... Existuje alespoň jedno přirozené číslo větší než 0.

Negace kvantifikátorů

Negace výroku $(\forall x)\varphi(x)$ je výrok $(\exists x)\neg\varphi(x)$. Negace výroku $(\exists x)\varphi(x)$ je výrok $(\forall x)\neg\varphi(x)$.

Věta, definice, důkaz, správné úsudky

Matematická věta je důležité, netriviální a dostatečně obecné tvrzení neboli výrok. Věta obsahuje předpoklad a závěr. Axiom (postulát) je tvrzení, které se předem předpokládá za platné. Definice slouží k zavedení nových pojmů; stanoví nový pojem a určí ho pomocí již stanovených.

Správný úsudek

Správný úsudek je takový, kdy je z pravdivých premis vyvozen pravdivý závěr.

Zákon vyloučení možnosti:

$p \lor q$
$\neg p$
\overline{q}

Zákon odloučení:

$$p \Rightarrow q$$

$$p$$

$$q$$

Zákon nepřímé úvahy:

${\bf Z\'{a}kon\ kontrapozice:}$

$$\begin{array}{c}
p \Rightarrow q \\
 \neg q \Rightarrow \neg p
\end{array}$$

2 Mnohočleny, mocniny a odmocniny

Zápis $1 + \sqrt{1,5625 - (\frac{3}{4})^2}$ je **číselný výraz** s hodnotou 2.

Zápis $x^2 + 2xy + 1$ je výraz s proměnnými x, y.

Definiční obor výrazu je množina všech přípustných hodnot proměnné, pro které má výraz smysl.

Výraz $V=x^2+1$ má definiční obor $\mathbb R$

Výraz $V = \frac{1}{y}$ má smysl pro nenulové hodnoty y

 $\Rightarrow D_V: y \in \mathbb{R} \setminus \{0\} \text{ nebo } D_V = (-\infty, 0) \cup (0, +\infty)$

Mnohočleny

Mnohočlen (polynom) s jednou proměnnou je výraz $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x^1 + a_0$, kde n je stupeň mnohočlenu.

 $a_1x + a_0$, resp. ax + b je linearní dvojčlen.

 $a_2x^2 + a_1x + a_0$, resp. $ax^2 + bx + c$ je kvadratický trojčlen.

Dělení mnohočlenu mnohočlenem

$$(4x^3 + 3x^2 - 2x - 5) : (x - 1) = 4x^2 + 7x + 5$$
$$4x^3 - 4x^2$$

$$0x^3 + 7x^2 - 2x$$
$$0x^3 + 7x^2 - 7x$$

$$0x^3 + tx^2 - tx$$

$$0x^3 + 0x^2 + 5x - 5$$

$$0x^3 + 0x^2 + 5x - 5$$

$$0x^3 + 0x^2 + 0x - 0$$

pozn. zbytek stejně jako u číselného dělení

Umocňování

- $\bullet \ (AB)^n = A^n B^n$
- $(A+B)^2 = A^2 + 2AB + B^2$
- $(A-B)^2 = A^2 2AB + B^2$

$$(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$$

•
$$(A-B)^3 = A^3 - 3A^2B + 3AB^2 - B^3$$

•
$$A^2 - B^2 = (A - B)(A + B)$$

•
$$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$$

•
$$A^3 + B^3 = (A+B)(A^2 - AB + B^2)$$

•
$$(-A+B)^2 = (A-B)^2$$

•
$$(-A - B)^2 = (A + B)^2$$

•
$$(A+B)^n = \sum \binom{n}{k} a^{n-k} b^k$$

3 Lomené výrazy

Rozšiřování a krácení lomených výrazů

Rozšířit lomený výraz znamená vynásobit čitatele i jmenovatele stejným číslem.

$$\frac{x}{x+2} = \frac{x(x-2)}{(x+2)(x-2)} = \frac{x^2 - 2x}{x^2 - 4}$$

Krátit lomený výraz znamená vydělit čitatele i jmenovatele stejným číslem.

$$\frac{a^2bc^3}{abc^2} = \frac{a^2bc^3:abc}{abc^2:abc} = \frac{ac^2}{c} = ac$$

Sčítání a odčítání lomených výrazů

Nejdříve rozložíme všechny jmenovatele na součin, určíme společný jmenovatel jako NSN všech jmenovatelů, každý LV rozšíříme na společný jmenovatel, sečteme a odečteme čitatele, rozložíme čitatele na součin a zkrátíme (je-li to možné) a určíme podmínky.

$$V = \frac{3+2x}{2-x} - \frac{2-3x}{2+x} + \frac{x(16-x)}{x^2-4}$$

$$V = \frac{3+2x}{2-x} - \frac{2-3x}{2+x} + \frac{x(16-x)}{(x+2)(x-2)}$$

$$V = -\frac{(3+2x)(x+2)}{(x-2)(x+2)} - \frac{(2-3x)(x-2)}{(x+2)(x-2)} + \frac{x(16-x)}{(x+2)(x-2)}$$

$$V = \frac{-7x - 6 - 2x^2 - 8x + 4 + 3x^2 + 16x - x^2}{(x-2)(x+2)}$$

$$V = \frac{x-2}{(x-2)(x+2)}$$

$$V = \frac{1}{x+2}$$

Vyjadřování neznámé ze vzorce

Při vyjadřování neznámé ze vzorce využíváme:

- záměna stran vzorce
- vynásobení/vydělení vzorce nenulovým číslem nebo výrazem
- přičtení/odečtení libovolného čísla nebo výrazu
- pokud jsou ve vzorci nezáporné veličiny, pak umocnění nebo odmocnění

Výrazy s mocninami a odmocninami

Pro každá reálná a, b a pro každá reálná r, s platí:

- $\bullet \ a^r \cdot a^s = a^{r+s}$
- \bullet $(a^r)^s = a^{r \cdot s}$
- \bullet $\frac{a^r}{a^s} = a^{r-s}$
- $(ab)^r = a^r b^r$
- $\bullet \left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$
- $a^0 = 1, a \neq 0$
- $\bullet \ a^{-r} = \frac{1}{a^r}$
- $\bullet \sqrt[s]{a^r} = a^{\frac{r}{s}}$

- 4 Lineární rovnice a nerovnice
- 5 Soustavy rovnic a nerovnice
- 6 Kvadratická rovnice a nerovnice
- 7 Lineární funkce a její vlastnosti
- 8 Kvadratická funkce a její vlastnosti
- 9 Mocninná a lomená funkce a její vlastnosti
- 10 Exponenciální a logaritmická funkce
- 11 Goniometrické funkce
- 12 Množiny bodů dané vlastnosti
- 13 Konstrukce trojúhelníků a čtyřúhelníků
- 14 Shodná zobrazení
- 15 Podobná zobrazení
- 16 Pythagorova a Eukleidovy věty
- 17 Trigonometrie obecného trojúhelníku
- 18 Stereometrie polohové vlastnosti
- 19 Stereometrie metrické vlastnosti
- 20 Stereometrie objem a povrch těles
- 21 Analytická geometrie body a vektory
- 22 Analytická geometrie přímka a polorovina v E2
- 23 Analytická geometrie přímka a rovina v E3