GUÍA: SUCESIÓN DE NUMEROS REALES

1. Escriba los cinco primeros términos de la sucesión $(a_n)_{n\in\mathbb{N}}$ definida por:

a)
$$a_n = \frac{3n!}{(n-1)!}$$
 e)
$$a_n = \sin\left(\frac{n\pi}{2}\right)$$
 b)

b)
$$a_n = \frac{\cos(nx)}{n^2 + n} \qquad \qquad a_n = \frac{2^n - 1}{2^n}$$

c)
$$a_1 = 1; \ a_n = \sqrt{2a_{n-a}}$$

$$a_1 = 2; \ a_{n+1} = \frac{(-1)^{n+1}a_n}{2}$$

d)
$$a_1 = 1; \ a_n = \frac{1}{2} \left(a_{n-1} + \frac{2}{a_{n-1}} \right)$$
 h)
$$a_1 = 2; \ a_2 = -1; \ a_{n+2} = \frac{a_{n+1}}{a_n}$$

2. Los siguientes conjuntos, contienen los primeros elementos de la imagen de la sucesión $(a_n)_{n\in\mathbb{N}}$. Determine a_n .

a) c)
$$\{-1,1,-1,1,-1,\ldots\}$$
 d)
$$\{1,5,9,13,17,\ldots\}$$
 b)
$$\{1,-\frac{1}{4},\frac{1}{9},-\frac{1}{16},\frac{1}{25},\ldots\}$$

$$\{\frac{1}{25},\frac{8}{125},\frac{27}{625},\frac{64}{3125},\ldots\}$$

3. Proporcione suficientes términos de la sucesión y, con base en ellos determine si las siguientes sucesiones podrían ser convergentes.

a) c) d)
$$a_n = \frac{1 + \sqrt{2n}}{\sqrt{n}}$$

$$a_n = \frac{4^{n+1} + 3^n}{4^n}$$

$$a_1 = 1; \ a_{n+1} = 2a_n - 3$$

4. Determine si las siguientes suceciones son monótonas

a)
$$a_n = \frac{2n+1}{n+1}$$
 b) $a_n = \frac{n}{2^n}$ c) $a_n = \frac{2^n \cdot 3^n}{n!}$ d) $a_n = 2 - \frac{2}{n} - \frac{1}{2^n}$

5. Determine el límite de las siguientes sucesiones:

a)
$$\lim_{n \to \infty} \frac{n+3}{n^2+5n+6}$$
 c) $\lim_{n \to \infty} \frac{n^2-2n+1}{n-1}$
b) $\lim_{n \to \infty} \sin\left(\frac{\pi}{2} + \frac{1}{n}\right)$ d) $\lim_{n \to \infty} \frac{\sin^2(n)}{2^n}$

e)
$$\lim_{n\to\infty} \sqrt[n]{n^2}$$

f)
$$\lim_{n \to \infty} \left(\frac{4n+7}{4n+4} \right)^n$$

g)
$$\lim_{n \to \infty} \frac{(2n+4)(3n^2+1)^2}{(4n+7)(1-2n^2)^2}$$

h)
$$\lim_{n\to\infty} \frac{5}{\sqrt{n^4+3n}-\sqrt{n^3+3}}$$

i)
$$\lim_{n \to \infty} \left(1 + \frac{7}{n} \right)^n$$

k)
$$\lim_{n \to \infty} (\ln(n) - \ln(n+1))$$

l)
$$\lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n$$

m)
$$\lim_{n \to \infty} \frac{3+6+9+\dots+3n}{5+10+15+\dots+5n}$$

n)
$$\lim_{n \to \infty} \sqrt[n]{n^2 + n}$$

6. Una sucesión de números racionales se describe como sigue

$$\frac{1}{1}, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \dots, \frac{a}{b}, \frac{a+2b}{a+b}, \dots$$

Los numeradores forman una sucesión, los denominadores una segunda sucesión y sus cocientes una tercera. Sean x_n y y_n , respectivamente el numerador y denominador de la n-ésima fracción $r_n = \frac{x_n}{y_n}$.

- a) Verifique que $x_1^2 2y_1^2 = -1$, $x_2^2 2y_2^2 = +1$ y, con mayor generalidad, que si $a^2 2b^2 = -1$ o +1, entonces $(a+2b)^2 2(a+b)^2 = +1$ o -1, respectivamente.
- b) Las fracciones $r_n = \frac{x_n}{y_n}$ tienden a un límite cuando n se hace grande. ¿ Cúal es ese límte? (Ayuda: Utilice el item [a)] para demostrar que $r_n^2 2 = \pm (1/y_n)^2$.)
- 7. Se define la sucesión $(a_n)_{n\in\mathbb{N}}$ por recurrencia: $a_1=\sqrt{3}, \quad a_{n+1}=\sqrt{3+a_n}$ para todo $n\geq 1$.
 - a) Demuestre que esta sucesión es monótona creciente.
 - b) Demuestres que esta sucesión está acotada superiormente por 8.
 - c) Analice la existencia del límite de la sucesión.
 - d) Calcule $\lim_{n\to\infty} a_n$.
- 8. Se define la sucesión $(x_n)_{n\in\mathbb{N}}$ por recurrencia: $x_1=1, \quad x_n=\sqrt[4]{x_{n-1}^2+1}$ para todo $n\geq 2$.
 - a) Demuestre que esta sucesión es monótona creciente.
 - b) Demuestres que esta sucesión está acotada superiormente por 3.
 - c) Analice la existencia del límite de la sucesión.
 - d) Calcule $\lim_{n\to\infty} x_n$.