

Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Unidade Acadêmica de Matemática Disciplina: Álgebra Linear I

Lista 1 – Matrizes

1. Determine os valores de $x, y, z, w \in \mathbb{R}$ de modo que

$$\begin{bmatrix} x+2 & 2y-6 \\ z-3 & x+y \\ w+1 & 2w \end{bmatrix} = \begin{bmatrix} 2x+2y & -2 \\ -z+w & 2-y \\ x+2z & x \end{bmatrix}.$$

2. Determine e, se possível, classifique em um tipo especial as seguintes matrizes:

(a)
$$A = [a_{ij}]_{3\times 3}$$
 tal que $a_{ij} = \begin{cases} i^2, & \text{se } i = j \\ 0, & \text{se } i < j \\ i - 2j, & \text{se } i > j \end{cases}$

- (b) $B = [b_{ij}]_{4\times 4}$ tal que $b_{ij} = ij$.
- (c) $C = [c_{ij}]_{3\times 3}$ tal que $c_{ij} = i^2 + j^2$.

(d)
$$D = [d_{ij}]_{3\times 3}$$
 tal que $d_{ij} = \begin{cases} i^2 - 2, & \text{se } i = j \\ 0, & \text{se } i \neq j \end{cases}$

- 3. Considere as matrizes $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $B = \begin{bmatrix} a & 6 \\ -1 & 2d \end{bmatrix}$ e $C = \begin{bmatrix} 4 & a+b \\ c+d & 3 \end{bmatrix}$. Determine $a, b, c, d \in \mathbb{R}$ de modo que 3A = B + C.
- 4. Sejam $A = [a_{ij}]_{2\times 2}$ e $B = [b_{ij}]_{2\times 2}$ matrizes quadradas de ordem 2 tais que:

$$a_{ij} = \begin{cases} i^i, & \text{se } i = j \\ \frac{i}{j}, & \text{se } i \neq j \end{cases} \quad \text{e} \quad b_{ij} = \begin{cases} (i+1)^i, & \text{se } i = j \\ \frac{1}{j+1}, & \text{se } i \neq j \end{cases}.$$

Determine 6A - 12B.

- 5. Considere as matrizes $A = \begin{bmatrix} 1 & 3 \\ -2 & 2 \end{bmatrix}$ e $B = \begin{bmatrix} 4 & x \\ y & 3 \end{bmatrix}$. Determine $x, y \in \mathbb{R}$ de modo que AB = BA.
- 6. Sejam $A = [a_{ij}]_{2\times 3}$ e $B = [b_{ij}]_{3\times 2}$, matrizes tais que:

$$a_{ij} = \begin{cases} 0, & \text{se } i = j \\ i+j-1, & \text{se } i \neq j \end{cases}$$
 e $b_{ij} = (-1)^{i+j}$.

Determine $A + B^T$.

- 7. Seja $A = \begin{bmatrix} 5 & 6x 9 \\ x^2 & 10 \end{bmatrix}$. Determine $x \in \mathbb{R}$ de modo que A seja uma matriz simétrica.
- 8. Sejam $x,y,z,w\in\mathbb{R}$ de modo que

$$\left[\begin{array}{cc} x & y \\ z & w \end{array}\right] \left[\begin{array}{cc} 2 & 5 \\ 5 & 4 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right].$$

Então, o resultado da expressão 3(x-z)+w-y é:

- (a) 2.
- (b) 1.
- (c) 0.
- (d) -1.
- (e) -2.
- 9. Sejam $A = [a_{ij}]_{3\times 3}$ e $B = [b_{ij}]_{3\times 3}$ matrizes quadradas de ordem 3 tais que: A é simétrica, B é triangular inferior, $a_{ij} = 2j i$ se $i \leq j$, e $b_{ij} = 2i j$ se $i \geq j$. Determine $(2A + B)^T$.

10. Sejam
$$A = \begin{bmatrix} 1 & x^2 \\ 10 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & x & 0 \\ 1 & 0 & x \end{bmatrix}$ e $C = \begin{bmatrix} 1 & 6 \\ 0 & -1 \\ x & 0 \end{bmatrix}$ matrizes com entradas

reais, com $x \in \mathbb{R}$ de modo que A = BC. O que podemos afirmar sobre o x? Escolha a alternativa correta:

- (a) x é um número real no intervalo aberto (-5,1).
- (b) x é um número primo maior que 10.
- (c) x é um número inteiro menor que -4.
- (d) x é um número real no intervalo aberto (-2, 8).
- (e) Não existe $x \in \mathbb{R}$ tal que A = BC.

GABARITO - Lista 1

1.
$$x = -2, y = 2, z = 1, w = -1$$

- 2. (a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 1 & -1 & 9 \end{bmatrix}$ (triangular inferior).
 - (b) $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16 \end{bmatrix}$ (simétrica).
 - (c) $\begin{bmatrix} 2 & 5 & 10 \\ 5 & 8 & 13 \\ 10 & 13 & 18 \end{bmatrix}$ (simétrica).
 - (d) $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{bmatrix}$ (diagonal).

3.
$$a = 2, b = 4, c = 1, d = 3$$

$$4. \begin{bmatrix} -18 & -1 \\ 6 & -84 \end{bmatrix}$$

5.
$$x = -3, y = 2$$

$$6. \left[\begin{array}{rrr} 1 & 1 & 4 \\ 1 & 1 & 3 \end{array} \right]$$

7.
$$x = 3$$

$$9. \begin{bmatrix} 3 & 9 & 15 \\ 6 & 6 & 12 \\ 10 & 8 & 9 \end{bmatrix}$$