Power Supplies 101 DC-DC Converters

10-Feb-2018

Tonight's Agenda

- Quick primer on circuit components and basic calculations
- Examples of unregulated linear supplies
- How regulated linear supplies work
- How switching supplies work
- Some notes on capacitors
- Cover related issues that you're likely to encounter

Quick circuit component primer

Wire – carries electrical current like a pipe carries water

Voltage – like the pressure of water in a pipe or air in a tire

Current – the amount of water flowing through a specific cross section of the pipe

Resistor – resists the flow of current, like a constriction in a pipe

Capacitor – stores energy like a hydraulic accumulator

Inductor – stores energy like a heavy paddlewheel

Power supply math primer

Ohm's Law:

$$V = I \times R$$

or:
$$I = V / R$$

or:
$$R = V / I$$

V = voltage, volts, V

I = current, amps, A

R = resistance, Ohms, Ω

Units:

$$400mA = 0.4A$$

$$10mV = 0.01V$$

$$2000 \text{ m}\Omega = 2\Omega$$

Examples

What is the power rating of a 5V, 2A power supply?

Power = Voltage x Current

 $5V \times 2A = 10W$

How much current does a 60W light bulb draw?

Current = Power / Voltage

60W / 120V = 0.5A

A 100Ω resistor is connected between a 12V supply and ground, how much current does it draw?

$$I = V / R$$

= 12V / 100 Ω = 0.12A = 120mA

How much power does it dissipate?

Simple Voltage Converter/Supply

Example: 12V to 5V, 10mA load

 $R1 = 70\Omega$

 $R2 = 50\Omega$

 $I_{BIAS} = 100 \text{mA}$

 $V_{OUT, NO LOAD} = 5.0V$

 $V_{OUT, 10mA LOAD} = 4.7V$

Load regulation = 6%

Efficiency = 9.6%

Zener Voltage Reference/Supply

Decent load regulation ~2-5% Efficiency ~30%

More unregulated supplies

How does a linear regulator work?

Resistor converts extra voltage into heat

V_{OUT} will be less than V_{IN}

Efficiency =
$$V_{OUT}/V_{IN}$$

5V / 12V = 42%
3.3V / 5V = 66%

Add a control loop

Make it more real

Linear regulator in action

Power Supply Rejection

$$PSRR(dB) = 20 log \frac{V_{ripple(in)}}{V_{ripple(out)}}$$

$$20dB = 1/10$$

$$40dB = 1/100$$

$$60dB = 1/1000$$

70dB = 1/3162 -> Vin ripple of 1V results in 0.3mV at Vout

Typical Hardware

Workhorse linear regulators ICs

	V _{IN} Max	V _{out} Range	V _{DO} Dropout	Peak I _{оит}
LM317	V _{OUT} + 40V	1.25V to 37V	3V	1.5A
LM1117	15V	1.25V to 13.8V	1.3V	1A
LM7812	35V	12.0V	2V	2.2A
LM7805	35V	5.0V	2V	2.4A
LM7833	36V	3.3V	2V	1.8A

These regulators are available from multiple manufacturers. Check the data sheet for the specific part you're looking at.

DC-DC Switching Supplies

- Buck converter: $V_{OUT} < V_{IN}$
 - Very plentiful selection of products
- Boost converter: $V_{OUT} > V_{IN}$
 - Inductor-less Charge Pump, typically 10's of mA
 - Inductor based boost converter, any current
- Buck/Boost converter: $V_{OUT} >= or <= V_{IN}$
 - Useful in battery powered circuits where the battery voltage starts above the required voltage but ends below it
 - e.g. LED flashlight

How does a buck regulator work?

$$V_{OUT} = V_{IN} \times DutyCycle$$

Add a control loop (regulation)

Make it more real

Buck, Boost, Buck/Boost

Slight modifications in the schematic, operation is quite different from the earlier buck explanation

Flyback Converter

- Transformer is used in place of an inductor
- One or many outputs
- Feedback loop (regulation) based on one output or some weighted average of multiple outputs

DC-DC linear vs switching supplies

	Pros/Cons
Switching (Regulated)	 Easy to buy/use Typically preferred over ~1A of output current Typically overly-complicated for low power circuits (100's of mW)
Linear Regulators	 Easy to build, easy to buy Easy to integrate onto proto boards Becomes more difficult as P_{DISS} increases beyond a few watts Off-the-shelf options above 1A are limited

About Capacitors

Capacitance value
Physical size
Lead configuration (axial, radial)
Voltage rating
Polarized
Equivalent Series Resistance (ESR)
Equivalent Series Inductance (ESL)
Appropriate frequency range

Electrolytic Capacitors

Electrolytic (Aluminum)

- Primarily used for bulk capacitance, up to 10,000's of μF
- Lots of disadvantages:
 - Polarized (typically)
 - Need to check voltage rating, derate 20%
 - Physically large
 - High equivalent series resistance
 - High equivalent series inductance
 - Doesn't look like a capacitor much above 100l

Electrolytic (solid tantalum)

- Similar to aluminum electrolytic except:
 - Smaller
 - Better (lower) ESR, ESL
 - Frequency response to ~500kHz, maybe 1MHz
- Derate voltage by 50%
- Overvoltage or wrong polarity can cause a fire

Ceramic Capacitors

Film

- Often thought of as an alternative to ceramics for audio
- Benefits:
 - Linear response
 - No microphonics
 - Slightly higher capacitance than ceramics
 - Good heat and vibration tolerance

Film Capacitors

Ceramic

- Looks the most like an ideal capacitor
- Low capacitance value (1uF is a large of the content of the content
- Not polarized
- High voltage ratings (typ 100V)
- Very low equivalent series resistance
- Very low equivalent series inductance
- Frequency range, 10's or 100's of MHz
- Capacitance is highly voltage dependent
 - ~80% lower at rated voltage
 - Due to ferroelectric dipoles
 - Nonlinearity makes them less desirable in hifi CAPACITANCE audio
- Piezoelectric

Bypass caps, rules of thumb

Where to put them

- Where power enters a board
- Near the V_{CC} pin of each IC
- Input and output of linear regulator ICs

Values and types:

- 0.1uF ceramic is the workhorse for typical digital/analog
- Maybe add a 10μF or so where power enters the board
- AC rectifier circuits tend to use 1000's of uF

Larger bypass caps are needed with:

- Larger current swings
- Lower frequency
- Power supply feed lengths get longer

Star feed is better than daisy chain feed

Typical low current circuits -> 0.1uF ceramic cap every several inches

Measuring Current Draw of a Circuit

V_{DROP} should be large enough for a multimeter to measure it accurately but not so large that it affects the circuit being powered

•
$$0.1V < V_{DROP} < V_{SUPPLY} / 10$$

Check that resistor is rated for dissipated power

- If it's too hot to touch, measure fast
- $P_{DISS} = V_{DROP} \times I_{LOAD}$

Determining if you'll run too hot

Build it, feel the device, if it's too hot to touch for 0.5 seconds, add a heat sink, choose a larger regulator or do something else about it

Or, rules of thumb->

Thermal Rules of thumb based on packaging

Package	R_{JA}	Max Power No Heat Sink	Accommodates Heat Sink?	Picture
TO-220	~20	~2-4W	Yes	
DDPAK	44	~1-1.5W	No	MICROCHID
SOT223	90	~0.5-0.7W	No	
SOT23	200	~0.25W	No	

Or, get your calculator out->

Calculate thermal limit for TO-220

How much does a heat sink help?

θJC	θJA	
3°C/W	23°C/W	
3°C/W	19°C/W	
	3°C/W	

EV-T220-38E

Ohmite

Heat Sink Passive TO-220 Vertical Thru-Hole Aluminum 6062 5 13°C/W

- $P_{DISS,MAX} = (T_{J,MAX} T_{AMBIENT,MAX}) / (R_{JC} + R_{CA})$
- $P_{DISS,MAX} = (110) / (3+13) = 6.9W$ (compared to 5.8W bare)
- ~20% improvement, 4-5W

These numbers can be very rough:

- Air flow around part/heat sink
- Surface mount parts can be highly affected by PCB layout

Rules of thumb:

- TO-220 is good for 2-4W of power w/o heat sink, can be improved to 4-5W easily, significantly more requires very large heat sinks and/or fan cooling
- SMT is good for 0.25W to 2.5W depending on part, package and PCB layout

Appendix

A Quick Battery Primer

Important battery terms:

Voltage, e.g. 1.5V

Voltage range, 0.9 to 1.5V

Capacity, e.g. 500mAh

Discharge rate, e.g. 10C

High current applications - Killswitch

Proper schematic for a single cell

Series vs Parallel Batteries

Batteries in series:

Multiply voltage, capacity stays the same

Batteries in parallel:

Multiply capacity, voltage stays the same

4.5V @ 2800mAh + 1.5V 2800mAh + 1.5V 2800mAh + 1.5V 1.5V

2800mAh

Series combination yields

Parallel combination yields 1.5V @ 8400mAh

Battery discharge curve This is the primary challenge

Battery Chemistry Comparison

Rated: low discharge current

Actual: 1C discharge current

Battery internal resistance

Remember Ohm's law:

$$V = I \times R$$

Battery voltage depends on current Might matter for higher current circuits

Figure 5: Number of shots a digital camera can take with alkaline NiMH and lithium.

Powering off of Batteries

Options:

- Operate directly off battery if circuit allows
- Stack batteries and regulate down to desired voltage
- Buck-boost regulator if battery voltage range straddles desired voltage
- Low dropout linear regulators (e.g. 0.2V vs 1.0V) can significantly improve battery life

Battery Configuration	Voltage Range
3 alkaline cells	2.7V to 4.5V
4 alkaline cells	3.6V to 6.0V
9v cell	4.8V to 9.0V
3 NiCd cells	3.3V to 4.2V
NiMH	Similar to alkaline
1 Li+ (Li ion) cell	2.8V to 4.2V

Thermal Management First, a Fun Look Inside the LM7805

LM7805 Die

Thermal Management What are we protecting?

