Homework 3

Solutions: 17.04.2025

- 1. Let X_1, \ldots, X_n be i.i.d. $\sim p(x|\theta)$, where $p(x|\theta) = \frac{1}{2}e^{-|x-\theta|}$.
 - (a) Compute the Cramér-Rao lower bound for the parameter $g(\theta) = \theta$. Then, compute the variance of the estimator $T_n = \frac{1}{n} \sum_{i=1}^n X_i^2$, and compare it with the Cramér-Rao lower bound. (There is no need to verify the technical conditions for the Cramér-Rao lower bound here.)
 - (b) The maximum likelihood estimator $\hat{\theta}_n$ of θ is the median of the data (X_1, \ldots, X_n) . Compute its variance for n = 5 using the following lemma: Let X_1, \ldots, X_5 be i.i.d. with density f and cumulative distribution function F. Then, the density of $X_{(3)}$ is

$$\frac{5!}{2!2!}f(x)F(x)^2(1-F(x))^2.$$

Which estimator is preferable: \hat{U}_5 or T_5 ? You may use the following result: $\int_0^{2\pi} e^{-kx} \cos x \, dx = \frac{\pi}{2}$ for $k \in \mathbb{N}$.

- (c) Justify the above lemma by a heuristic argument. Do this by expressing the event $x \le X_{(3)} \le x + dx$ in terms of X_1, \ldots, X_5 .
- (d) Recall first the definition of weak convergence. Let (X_n) be a sequence of real-valued random variables, and let X be some other real-valued random variable. We say that X_n converges weakly to X if for every continuous and bounded function $f: \mathbb{R} \to \mathbb{R}$, we have that $E[f(X_n)] \to E[f(X)]$. It is known that when f is the density of i.i.d. real-valued random variables X_1, \ldots, X_n and when f is such that

$$\int_{-\infty}^{m} f(x) \, dx = \frac{1}{2} \int_{m}^{\infty} f(x) \, dx = \frac{1}{2},$$

then the distribution of

$$\sqrt{n}(\mathrm{median}(X_1,\ldots,X_n)-m)$$

converges weakly to the distribution $\mathcal{N}(0, \frac{1}{4(f(m))^2})$. Using this result, show that the median $\hat{\theta}_n$ reaches asymptotically (i.e., as $n \to \infty$) the Cramér-Rao lower bound.

- 2. Consider an *iid* sample $X=(X_1,\ldots,X_n)$ from a normal distribution $\mathcal{N}(m,\sigma^2)$ with known mean $m\in\mathbb{R}$ and unknown variance $\sigma^2\in\mathbb{R}_{>0}$. Consider the estimator $T_{\alpha}(X)=\alpha^{-1}\sum_{j=1}^n(X_j-m)^2$
 - (a) Compute bias and variance of the estimator $T_{\alpha}(X)$.
 - (b) Show that $T_n(X)$ is UMVU by proving that it is unbiased and that it saturates the CRLB.
 - (c) Compute the MSE for $T_{\alpha}(X)$ and show that there exists $\alpha > 0$ such that $MSE(T_{\alpha}) < MSE(T_{n})$.
- 3. Let $(X, \mathcal{F}, (P_{\theta})_{\theta \in \Theta})$ be a statistical model with $\Theta \subseteq \mathbb{R}^k, k \geq 2$, that satisfies the conditions for the Cramér-Rao inequality with a strictly positive-definite Fisher Information matrix $I(\theta)$.
 - (a) Show that it always holds that $(I(\theta))_{11}(I(\theta)^{-1})_{11} > 1$. Hint: Write the first unit vector $e_1 = \sum_i \langle e_1, v_i \rangle v_i$ in an orthonormal basis (v_1, \ldots, v_k) of eigenvectors of $I(\theta)$.
 - (b) Conclude that the Cramér-Rao bound for $g(\theta) = g(\theta_1, \dots, \theta_n) = \theta_1$ is always at least $1/(I(\theta))_{11}$. In which cases does equality hold?
 - (c) Interpret this result statistically by comparing it with the model where only θ_1 is unknown, while $\theta_2, \ldots, \theta_k$ are known.

- (d) Apply the above results to compare the variance of the estimator for the mean of a $\mathcal{N}(m, \sigma^2)$ distribution given an *iid* sample of size n.
- 4. Let T(X) be an unbiased estimator of $g(\theta) \in \mathbb{R}$ for all $\theta \in \Theta \subseteq \mathbb{R}$, and assume that the statistical model $(X, \mathcal{F}, \{P_{\theta}\}_{\theta \in \Theta})$ satisfies A1-2-3 stated in class.
 - (a) Recalling the proof of the CRLB done in class, prove that if T(X) saturates the CRLB, then it holds that

$$T(X) = g(\theta) + \partial_{\theta} g(\theta) I(\theta)^{-1} s_{\theta}(X)$$

Hint: use that Cauchy-Schwarz inequality for $\mathbb{E}_{\theta}(fg)$ holds with equality if and only if $f = \alpha(\theta)g$ p_{θ} -a.s. for an $\alpha(\theta) \in \mathbb{R}$.

(b) (Optional) Rearranging the expression obtained at the previous point, show that if T(X) satisfies the CRLB, then $p_{\theta}(x)$ is a 1-dimensional exponential family, i.e., that there exist $c(\theta), d(\theta), h(x)$ such that

$$p_{\theta}(x) = \exp(c(\theta)T(x) - d(\theta))h(x),$$

and prove that it holds $g(\theta) = \partial_{\theta} c(\theta) / \partial_{\theta} d(\theta)$.

- (c) (Optional) Assume now that $c(\theta) = \theta$, i.e., that the exponential family is in canonical form. Prove that $g(\theta) = \partial_{\theta} d(\theta)$ and $I(x) = \partial_{\theta}^2 d(\theta)$.
- 5. Let X_1, \ldots, X_n be i.i.d. random variables drawn from the exponential distribution with unknown rate parameter $\theta > 0$. The probability density function is given by:

$$p_{\theta}(x) = \theta e^{-\theta x}, \quad x > 0.$$

Consider the estimator:

$$T(X) = \frac{1}{X_1}.$$

- (a) Show that T(X) is an unbiased estimator for θ .
- (b) Compute the variance of T(X). Compare it to the Cramér-Rao lower bound (CRLB) for any unbiased estimator of θ .
- (c) Explain why T(X) does not attain the CRLB, even though the model is regular and T(X) appears to estimate θ .

Hint: Consider whether the expectation $\mathbb{E}_{\theta}[1/X_1]$ is finite, and whether the estimator is sufficient or makes use of all the data.

Optional: Find an estimator that is unbiased and efficient for θ in this model, and verify that it achieves the Cramér-Rao lower bound.