Module-5 Audio and Video Coding

Dr. Markkandan S

School of Electronics Engineering (SENSE) Vellore Institute of Technology Chennai

Human Speech Production Mechanism

Figure 1: Human Speech Production Mechanism

Introduction to Audio Compression

- Audio compression refers to the process of reducing the amount of data required to represent audio signals while maintaining acceptable quality.
- Two main types of compression:
 - Lossy compression: Reduces data by removing some audio information, which may result in a loss of quality (e.g., MP3).
 - Lossless compression: Reduces data without any loss of quality (e.g., FLAC).
- Compression reduces file size, transmission time, and storage requirements.
- Applications: Digital media, streaming, telecommunication, and storage.

Introduction to Audio Coding

- Audio coding: compression of audio signals for efficient storage/transmission
- Objectives:
 - Reduce bit rate while maintaining perceptual quality
 - Enable efficient storage and transmission of audio
- Key approaches:
 - Waveform coding: Directly encode audio samples
 - Parametric coding: Encode model parameters (e.g., LPC)
 - Perceptual coding: Exploit human auditory system limitations
- Trade-offs:
 - Compression ratio vs. audio quality
 - Computational complexity vs. performance
 - Delay vs. coding efficiency
- Applications: Digital audio broadcasting, VoIP, music streaming, etc.

Types of Audio Coding Techniques

- Common audio coding techniques:
 - Pulse Code Modulation (PCM)
 - Differential Pulse Code Modulation (DPCM)
 - Adaptive Differential PCM (ADPCM)
 - Linear Predictive Coding (LPC)
 - Code-Excited Linear Prediction (CELP)
 - Perceptual Audio Coding (e.g., MPEG Audio)
- PCM: Direct sampling and quantization of the audio signal.
- DPCM and ADPCM: Reduces redundancy in the signal by encoding differences between samples.
- LPC and CELP: Use models of human speech production to achieve efficient compression.

Linear Predictive Coding(LPC)

Overview of Linear Predictive Coding (LPC)

- LPC: Efficient parametric coding technique for speech
- Core idea: Model speech production process
- Key components:
 - Excitation source model
 - Vocal tract filter model
- Process:
 - 1. Analyze speech to extract model parameters
 - 2. Transmit parameters (not raw audio)
 - 3. Synthesize speech at receiver using parameters
- Advantages:
 - Very low bit rate (2.4 kbps 4.8 kbps)
 - Good intelligibility for speech
- Limitations:
 - "Robotic" sound quality
 - Not suitable for non-speech audio

Linear Predictive Coding (LPC): Overview

- LPC is widely used for speech signal compression. The basic idea is to model the vocal tract as a linear filter and represent speech as the output of this filter.
- Equation for LPC model:

$$y_n = \sum_{i=1}^p a_i y_{n-i} + Ge_n \tag{1}$$

where:

- y_n is the current sample,
- a; are the LPC coefficients,
- e_n is the excitation signal,
- *G* is the gain factor.
- Applications: Speech coding, synthesis, and recognition.

LPC: Speech Production Model

- Models speech as output of a time-varying linear system
- Two main components:
 - Excitation source: Models airflow from lungs
 - Vocal tract filter: Models acoustic properties of vocal tract
- Excitation types:
 - Voiced: Quasi-periodic pulses (e.g., vowels)
 - Unvoiced: White noise (e.g., fricatives)
- Vocal tract modeled as an all-pole filter:

$$H(z) = \frac{G}{1 - \sum_{k=1}^{p} a_k z^{-k}}$$
 (2)

where G is gain, p is filter order, a_k are filter coefficients

• Time-domain representation:

$$s(n) = \sum_{k=1}^{p} a_k s(n-k) + Gu(n)$$

LPC: Encoder and Decoder

Figure 2: LPC encoder and Decoder

LPC: Speech Signal Modeling

- The speech signal is modeled by a filter that represents the vocal tract.
- The excitation signal e_n drives this filter.
- LPC analyzes the speech into frames and estimates filter coefficients for each frame.

Figure 3: Speech synthesis model

LPC: Vocal Tract Filter

- All-pole filter approximates vocal tract resonances (formants)
- Transfer function:

$$H(z) = \frac{G}{1 - \sum_{k=1}^{p} a_k z^{-k}}$$
 (4)

- Typical filter order: 10-12 for 8 kHz sampled speech
- Estimation of filter coefficients:
 - Minimize mean squared prediction error
 - Autocorrelation method:

$$R_a = r (5)$$

where R is the autocorrelation matrix, a is the coefficient vector, r is the autocorrelation vector

- Solved efficiently using Levinson-Durbin recursion
- Stability ensured by converting to reflection coefficients
- Quantization: Non-uniform quantization of reflection coefficients

LPC: Vocal Tract Filter

Figure 4: Model for speech synthesis with vocal tract filter

LPC: Excitation Source

- Two types of excitation:
 - 1. Voiced excitation:
 - Quasi-periodic pulse train
 - Parameters: Pitch period, voiced/unvoiced decision
 - Pitch detection algorithms:
 - Time-domain: Autocorrelation, AMDF
 - Frequency-domain: Harmonic peak detection
 - 2. Unvoiced excitation:
 - White noise generator
 - No additional parameters needed
- Voiced/Unvoiced decision:
 - Based on features like:
 - Short-term energy
 - Zero-crossing rate
 - First reflection coefficient
- Excitation gain:

LPC: Excitation Source

The sound /e/ in test.

LPC: Voicing and Pitch Detection

- Voicing decision: Determines if the segment is voiced or unvoiced.
- Voiced speech has a periodic structure, unvoiced speech resembles noise.
- Pitch period estimation: A critical step for voiced speech.
- The pitch period is extracted using autocorrelation or average magnitude difference function (AMDF):

$$AMDF(P) = \frac{1}{N} \sum_{i=1}^{N} |y_i - y_{i-P}|$$
 (6)

• Voicing and pitch information helps generate the excitation signal for LPC.

LPC: Voicing and Pitch Detection - AMDF

Pitch Detection

AMDF for 'e' and 's'

LPC: Parameter Estimation

- Goal: Estimate LPC model parameters from speech signal
- Process:
 - 1. Pre-emphasis: High-pass filter to flatten spectral slope
 - 2. Framing: Divide speech into 20-30 ms frames
 - 3. Windowing: Apply window function (e.g., Hamming) to each frame
 - 4. Autocorrelation: Compute autocorrelation coefficients
 - 5. Levinson-Durbin recursion: Solve for LPC coefficients

LPC: Parameter Estimation

- Levinson-Durbin algorithm:
 - 1. Initialize: $E_0 = R(0)$
 - 2. For i = 1 to p:

$$k_i = \frac{R(i) - \sum_{j=1}^{i-1} a_j^{(i-1)} R(i-j)}{E_{i-1}}$$
(7)

$$a_i^{(i)} = k_i \tag{8}$$

$$a_j^{(i)} = a_j^{(i-1)} - k_i a_{i-j}^{(i-1)}, \quad 1 \le j < i$$
 (9)

$$E_i = (1 - k_i^2) E_{i-1} (10)$$

ullet Output: LPC coefficients a_i and reflection coefficients k_i

LPC: Transmission of Parameters

- Parameters to transmit:
 - Reflection coefficients (instead of direct LPC coefficients)
 - Pitch period (for voiced frames)
 - Voiced/unvoiced decision
 - Gain
- Quantization:
 - Reflection coefficients: Non-uniform quantization

$$g_i = \frac{1 + k_i}{1 - k_i}$$

- Pitch: Logarithmic quantization
- Gain: Logarithmic quantization

(11)

• Bit allocation example (LPC-10, 2.4 kbps): Dr. Markkandan S

LPC: Transmission of Parameters

• Reflection coefficients: 41 bits

• Pitch and V/UV: 7 bits

• Gain: 5 bits

• Synchronization: 1 bit

• Frame duration: 22.5 ms (180 samples at 8 kHz)

• Resulting bit rate: 54 bits / 22.5 ms 2400 bps

LPC: Speech Synthesis at Receiver

- Process:
 - 1. Decode received parameters
 - 2. Generate excitation signal
 - 3. Synthesize speech using all-pole filter
- Excitation generation:
 - Voiced: Impulse train with decoded pitch period
 - Unvoiced: White noise generator
- All-pole filter implementation:

$$s(n) = \sum_{k=1}^{p} a_k s(n-k) + Gu(n)$$

LPC: Speech Synthesis at Receiver

- Post-processing:
 - De-emphasis filter (inverse of pre-emphasis)
 - Adaptive postfiltering to enhance formants

Module-5 Audio and Video Coding

Limitations of LPC and Need for CELP

- Limitations of basic LPC:
 - "Buzzy" or "robotic" sound quality
 - Poor representation of unvoiced and transient sounds
 - Binary voiced/unvoiced decision too simplistic
 - Limited pitch resolution
 - Sensitive to transmission errors
- Reasons for limitations:
 - Oversimplified excitation model
 - All-pole filter may not capture all spectral details
 - Frame-based analysis loses some temporal resolution

Limitations of LPC and Need for CELP

- Need for improvement:
 - Better excitation model
 - Finer pitch and spectral representation
 - Improved perceptual quality at low bit rates
- CELP as a solution:
 - Addresses LPC limitations
 - Uses codebook of excitation vectors
 - Incorporates perceptual weighting
 - Achieves better quality at similar bit rates

Code Excited Linear Prediction (CELP)

Introduction to Code Excited Linear Prediction (CELP)

- Key idea: Use codebook of excitation vectors
- Components:
 - LPC filter (as in traditional LPC)
 - Adaptive codebook (for pitch structure)
 - Fixed (stochastic) codebook (for residual excitation)
 - Perceptual weighting filter
- Process:
 - 1. LPC analysis to obtain filter coefficients
 - 2. Search codebooks for best excitation
 - 3. Minimize perceptually weighted error
 - 4. Transmit codebook indices and gains

Introduction to Code Excited Linear Prediction (CELP)

- Advantages:
 - Improved speech quality compared to LPC
 - Efficient at low bit rates (4.8-16 kbps)
 - Handles both voiced and unvoiced speech well
- Challenges:
 - Computationally intensive codebook search
 - Requires larger codebooks for higher quality

Introduction to Code Excited Linear Prediction (CELP)

VII

Figure 6: Block diagram of the ITU-T H.261 CELP Encoder and Decoder

CELP: Codebook Structure(1/2)

- Two main codebooks in CELP:
 - 1. Adaptive codebook
 - 2. Fixed (stochastic) codebook
- Adaptive codebook:
 - Models pitch periodicity and long-term correlations
 - Constructed from past excitation signals
 - Updated each subframe
 - Typically 128-256 entries

CELP: Codebook Structure(2/2)

- Fixed codebook:
 - Models residual excitation after pitch prediction
 - Designed to cover range of possible excitations
 - Typically 512-1024 entries
 - Various structures: Binary, ternary, sparse algebraic
- Excitation signal:

$$e(n) = \beta v(n) + \gamma c(n) \tag{13}$$

where v(n) is from adaptive codebook, c(n) is from fixed codebook, β and γ are respective gains

CELP: Stochastic Codebook

- Purpose: Model residual excitation not captured by adaptive codebook
- Types of stochastic codebooks:
 - Random codebook: Gaussian random sequences
 - Algebraic codebook: Structured sparse vectors
- Random codebook:
 - Entries are Gaussian random sequences
 - Typically quantized to +1, -1, or 0
 - Large storage requirement
- Algebraic codebook (ACELP):
 - Sparse vectors with few non-zero pulses
 - Pulse positions and signs determined by algebraickstructure

CELP: Adaptive Codebook

- Purpose: Model pitch periodicity and long-term correlations
- Structure:
 - Contains past excitation signals
 - Updated each subframe
 - Typically 128-256 entries
- Adaptive codebook vector:

$$v(n) = e(n-T+i), \quad i = 0, 1, ..., N-1$$
 (16)

Dr. Markkandan S

where T is pitch lag, N is subframe size

- Fractional pitch:
 - Allows finer pitch resolution (e.g., 1/3 or 1/4 sample)
 - Requires interpolation of past excitation

CELP: Perceptual Weighting

- Purpose: Shape quantization noise to be less perceptible
- Concept: Exploit masking properties of human auditory system
- Perceptual weighting filter:

$$W(z) = \frac{A(z/\gamma_1)}{A(z/\gamma_2)} \tag{18}$$

where A(z) is LPC filter, typically $\gamma_1=0.9$, $\gamma_2=0.5$

- Effect:
 - Attenuates error in formant regions
 - Amplifies error in spectral valleys

CELP: Perceptual Weighting

- Implementation:
 - Apply W(z) to error signal in codebook search
 - Minimize weighted error:

$$E_{w} = \sum_{n=0}^{N-1} [x_{w}(n) - \hat{x}_{w}(n)]^{2}$$
 (19)

- Benefits:
 - Improved subjective quality
 - Better allocation of bits to perceptually important regions

CELP: Encoder Operation

- CELP encoding steps:
 - LPC analysis: Compute coefficients, convert to LSP
 - 2. Subframe processing (typically 4 per frame)
 - Adaptive codebook search: Find best pitch lag and gain
 - 4. Fixed codebook search: Find best index and gain
 - 5. Parameter quantization: LSPs, pitch, indices, gains
 - 6. Update memories for next frame
- Computational complexity:
 - Codebook search most intensive
 - Fast search algorithms used in practice

- Bit allocation example (FS1016 4.8 kbps):
 - LSP: 34 bits/frame
 - Pitch: 8 bits/subframe
 - Fixed codebook: 9 bits/subframe
 - Gains: 5 bits/subframe

CELP: Encoder Operation

Figure 7: Block diagram of CELP encoder

CELP: Decoder Operation

- Steps in CELP decoding:
 - 1. Parameter decoding
 - 2. LSP to LPC conversion
 - 3. For each subframe:
 - Adaptive codebook contribution
 - Fixed codebook contribution
 - Excitation reconstruction
 - LPC synthesis filtering
 - 4. Post-processing

• Excitation reconstruction:

$$e(n) = \beta v(n) + \gamma c(n) \quad (20)$$

• LPC synthesis:

$$s(n) = \sum_{k=1}^{p} a_k s(n-k) + e(n)$$

(21)

CELP: Decoder Operation

Figure 8: Block diagram of CELP decoder

CELP: Examples (FS1016, G.728)

Federal Standard 1016 (4.8 kbps)

• Frame size: 30 ms

• Subframes: 4×7.5 ms

• LPC order: 10

Adaptive codebook: 128 entries

• Fixed codebook: 512 entries

• Bit allocation:

• LSP: 34 bits/frame

• Pitch: 8 bits/subframe

• Fixed codebook: 9 bits/subframe

Gains: 5 bits/subframe

ITU-T G.728 (16 kbps)

• Frame size: 0.625 ms (5 samples)

• LPC order: 50

Backward adaptive prediction

No explicit pitch prediction

Shape-gain vector quantization

• Bit allocation:

• Shape codebook: 7 bits/frame

• Gain codebook: 3 bits/frame

• Low delay: 0.625 ms

Perceptual Coding & MPEG

Introduction to Perceptual Coding

- Goal: Exploit limitations of human auditory system
- Key principles:
 - Auditory masking
 - Critical band analysis
 - Temporal masking
- General approach:
 - 1. Time-frequency analysis
 - 2. Psychoacoustic modeling
 - 3. Bit allocation based on perceptual importance
 - 4. Quantization and coding
- Advantages:

Introduction to Perceptual Coding

Figure 9: General structure of a perceptual audio coder

Psychoacoustic Principles in Audio Coding

- Auditory masking:
 - Louder sounds mask quieter sounds
 - Masking threshold varies with frequency
- Critical bands:
 - Non-uniform frequency resolution of ear
 - Approximated by bark scale
- Temporal masking:
 - Pre-masking: 20 ms before masker
 - Post-masking: up to 200 ms after masker
- Just Noticeable Distortion (JND):
 - Minimum perceivable change in sound
 - Varies with frequency and intensity

Figure 10: Frequency masking

MPEG Audio Coding: Overview

- MPEG: Moving Picture Experts Group
- Audio coding standards:
 - MPEG-1 Audio (1992)
 - MPEG-2 Audio (1994)
 - MPEG-4 Audio (1999)
- MPEG-1 Audio Layers:
 - Layer I: Simplest, lowest compression
 - Layer II: Improved compression
 - Layer III (MP3): Highest compression

MPEG Audio Coding: Overview

• Key features:

- Perceptual coding principles
- Filterbank for time-frequency mapping
- Psychoacoustic model
- Dynamic bit allocation coding

Figure 11: General structure of MPEG audio encoder

LPC: Numerical Problem 1

Problem

Given an LPC model of order 4 with the following reflection coefficients: $k_1 = 0.5$, $k_2 = -0.3$, $k_3 = 0.2$, $k_4 = 0.1$ Calculate the g-parameters for transmission using the equation: $\left[g_i = \frac{1+k_i}{1-k_i}\right]$

Solution

Calculating for each coefficient:

$$g_1 = \frac{1+0.5}{1-0.5} = \frac{1.5}{0.5} = 3$$

$$g_2 = \frac{1+(-0.3)}{1-(-0.3)} = \frac{0.7}{1.3} \approx 0.538$$

$$g_3 = \frac{1+0.2}{1-0.2} = \frac{1.2}{0.8} = 1.5$$

$$g_4 = \frac{1+0.1}{1-0.1} = \frac{1.1}{0.9} \approx 1.222$$

CELP: Numerical Problem 2

Problem

In a CELP coder, the excitation signal is given by: $[e(n) = \beta v(n) + \gamma c(n)]If\beta = 0.8$, $\gamma = 0.5$, v(n) = 1, -1, 0.5, -0.5, and c(n) = 0.2, 0.3, -0.1, 0.1 for a subframe of 4 samples, calculate the excitation signal e(n).

Solution

Calculating sample by sample:

$$e(0) = 0.8(1) + 0.5(0.2) = 0.8 + 0.1 = 0.9$$

 $e(1) = 0.8(-1) + 0.5(0.3) = -0.8 + 0.15 = -0.65$
 $e(2) = 0.8(0.5) + 0.5(-0.1) = 0.4 - 0.05 = 0.35$
 $e(3) = 0.8(-0.5) + 0.5(0.1) = -0.4 + 0.05 = -0.35$

Therefore, e(n) = 0.9, -0.65, 0.35, -0.35

LPC: Numerical Problem 3

Using the Levinson-Durbin algorithm, calculate k_2 and $a_1^{(2)}$ given: R(0)=1, R(1)=0.5, R(2)=0.2 Recall the relevant equations:

$$\begin{aligned} k_i &= \frac{R(i) - \sum_{j=1}^{i-1} a^{(i-1)} j R(i-j)}{Ei - 1} \\ a^{(i)} j &= a^{(i-1)} j - k_i a^{(i-1)} i - j, \quad 1 \le j < i \\ E_i &= (1 - k_i^2) Ei - 1 \end{aligned}$$

Solution

First, calculate k_1 : [$k_1 = \frac{R(1)}{R(0)} = \frac{0.5}{1} = 0.5$] Then, E_1 : [$E_1 = (1 - k_1^2)E_0 = (1 - 0.5^2)1 = 0.75$] Now, calculate k_2 :

$$k_2 = \frac{R(2) - a_1^{(1)}R(1)}{E_1}$$
 $= \frac{0.2 - 0.5(0.5)}{0.75} = \frac{0.2 - 0.25}{0.75} = -\frac{1}{15} \approx -0.0667$

Finally, calculate $a_1^{(2)}$:

$$a_1^{(2)} = a_1^{(1)} - k_2 a_1^{(1)}$$
 = 0.5 - (-0.0667)(1) = 0.5 + 0.0667 = 0.5667

Therefore, $k_2 \approx -0.0667$ and $a_1^{(2)} \approx 0.5667$

Video Coding

Introduction to Video Compression

- Video: time sequence of images
- Huge data rates: e.g., CCIR 601 format
 - 30 frames/second, 16 bits/pixel
 - 168 Mbits/second
- Goal: Reduce data rate while maintaining quality
- Key approach: Exploit temporal correlation between frames
- Challenges:
 - Motion video perception differs from still images
 - Artifacts may be more/less noticeable in motion

Video Compression: Basic Concept

- Use previous frame to predict current frame
- Encode and transmit prediction error (residual)
- Receiver reconstructs frame using:
 - Prediction from previous frame
 - Received prediction error
- Key technique: Motion-compensated prediction

FIGURE 19.1

Two frames of a video sequence

Two frames of a video sequence

Video Compression: Basic Concept

FIGURE 19.2

Difference between the two frames.

Video Coding: Motion Estimation and Compensation

- Problem: Objects move between frames
- Solution: Block-based motion compensation
 - Divide frame into blocks (e.g., 16x16 pixels)
 - Search previous frame for best matching block
 - Transmit motion vectors instead of pixel differences
- Advantages:
 - Exploits temporal redundancy
 - Significantly reduces data to be transmitted

Motion Estimation: Block Matching

- ullet Search area typically ± 15 pixels
- Matching criterion: Sum of Absolute Differences (SAD) $SAD = \sum_{i=0}^{15} \sum_{j=0}^{15} |C_{ij} R_{ij}| \text{ where } C_{ij} \text{ and } R_{ii} \text{ are pixels in current and reference blocks}$
- Trade-off: Block size vs. prediction accuracy

FIGURE 19.11

Effect of block size on motion compensation.

Effect of block size on motion compensation

Types of Frames in Video Coding

- I-frames (Intra-coded)
 - Encoded without reference to other frames
 - Provide random access points
- P-frames (Predictive-coded)
 - Use motion-compensated prediction from previous I or P frame
- B-frames (Bidirectionally predictive-coded)
 - Use prediction from both past and future frames
 - Highest compression, but introduce delay

Group of Pictures (GOP) Structure

- GOP: Sequence of I, P, and B frames
- Typical pattern: IBBPBBPBBPBB
- I-frame: Start of each GOP
- P-frames: Predicted from previous I or P
- B-frames: Bidirectional prediction
- Benefits:
 - Efficient compression
 - Flexible access to video

Group of Pictures (GOP) Structure

A possible arrangement for a group of pictures.

Figure 12: A possible arrangement for a group of pictures

Video Encoding Process

- 1. Motion estimation and compensation
- 2. Transform coding (usually DCT)
- 3. Quantization
- 4. Entropy coding

Video Encoding Process

Figure 13: Block diagram of a video encoder

Video Decoding Process

- 1. Entropy decoding
- 2. Inverse quantization
- 3. Inverse transform
- 4. Motion compensation

- Decoder performs inverse operations of encoder
- Reconstructs video frames from received data

Rate Control in Video Coding

- Purpose: Maintain constant output bit rate
- Methods:
 - Adjust quantization step size
 - Drop frames if necessary
- Buffer fullness guides rate control decisions
- Balances quality and bit rate

Video Coding Standard: MPEG-4

- Developed by Moving Picture Experts Group (MPEG)
- Object-oriented approach to multimedia coding
- Key features:
 - Object-based coding
 - Sprite coding for backgrounds
 - Scalability (temporal, spatial, and object)
- Applications:
 - Digital television
 - Interactive graphics applications
 - Streaming media

MPEG-4: Object-Based Coding

- Video scene as collection of objects
- Each object coded independently
- Objects can be:
 - Visual (e.g., background, talking head)
 - Aural (e.g., speech, music)
- Scene description using BIFS (Binary Format for Scenes)
- Allows flexible manipulation of objects

MPEG-4: Object-Based Coding

FIGURE 19.18

A block diagram for video coding.

MPEG-4: Sprite Coding

- Sprite: Large panoramic background image
- Transmitted once, reused in multiple frames
- Moving foreground objects placed on sprite
- Efficient for scenes with static backgrounds
- Equation for sprite warping:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

where (x, y) is the original coordinate and (x'/w', y'/w') is the warped coordinate

MPEG-4: Scalability

- Temporal Scalability:
 - Enhance frame rate
 - Base layer + enhancement layer(s)
- Spatial Scalability:
 - Enhance spatial resolution
 - Use upsampling of base layer
- SNR Scalability:
 - Enhance quality (Signal-to-Noise Ratio)
 - Refine quantization in enhancement layer
- Object Scalability:
 - Selectively transmit or decode objects

MPEG-4: Shape Coding

- Important for object-based coding
- Methods:
 - Bitmap-based
 - Contour-based
- Context-based Arithmetic Encoding (CAE) for binary alpha planes
- Equation for context number:

$$C_k = \sum_{i=0}^9 c_i \cdot 2^i$$

where c_i are binary values of neighboring pixels

MPEG-4: Facial Animation

- Facial Definition Parameters (FDPs):
 - Define shape and texture of face
- Facial Animation Parameters (FAPs):
 - Control facial expressions
- 68 FAPs defined, e.g.:
 - Jaw rotation
 - Eve movement
 - Lip deformation
- Equation for FAP interpolation:

$$\mathit{FAP}(t) = \mathit{FAP}(t_1) + rac{t-t_1}{t_2-t_1}[\mathit{FAP}(t_2) - \mathit{FAP}(t_1)]$$

Dr. Markkandan S

