RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b)

FCC ID: 2AD2S-XDUR-840

EUT Specification

EUT	SPORT DVR					
Frequency band (Operating)	☐ WLAN: 2.412GHz ~ 2.462GHz					
	☐ WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz					
	☐ WLAN: 5.745GHz ~ 5825GHz					
	⊠ Others: 902.75~927.25MHz					
Device category	☐ Portable (<20cm separation)					
	⊠ Mobile (>20cm separation)					
	☐ Others					
Exposure classification	\square Occupational/Controlled exposure (S = 5mW/cm2)					
	⊠ General Population/Uncontrolled exposure (S=1mW/cm2)					
Antenna diversity	☐ Single antenna					
	⊠ Multiple antennas					
	☐ Tx diversity					
	☐ Rx diversity					
	☐ Tx/Rx diversity					
Max. output power	19.85dBm (0.097W)					
Antenna gain (Max)	12 dBi					
Evaluation applied	⊠MPE Evaluation					
	☐ SAR Evaluation					

Limits for Maximum Permissible Exposure(MPE)

Frequency	Electric Field	Magnetic Field Power		Average				
Range(MHz)	Strength(V/m)	Strength(A/m)	Density(mW/cm ²)	Time				
(A) Limits for Occupational/Control Exposures								
300-1500			F/300	6				
1500-100000			5	6				
(B) Limits for General Population/Uncontrol Exposures								
300-1500			F/1500	6				
1500-100000			1	30				

Friis transmission formula: $Pd=(Pout*G)\setminus(4*pi*R2)$

Where

Pd= Power density in mW/cm²

Pout=output power to antenna in Mw

G= gain of antenna in linear scale

Pi=3.1416

R= distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1mW/cm2. If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Measurement Result

Remark	Channel	Output Peak	Antenna	Power density at	Power density
	Frequency	power (mW)	Gain (dBi)	20cm (mW/ cm ²)	Limits
	(MHz)				(mW/cm^2)
ANT 1	902.75	87.70	12	0.2765	1
	915.25	96.61	12	0.3046	1
	927.25	93.11	12	0.2936	1
ANT 2	902.75	87.30	12	0.2753	1
	915.25	96.61	12	0.3046	1
	927.25	92.68	12	0.2922	1
ANT 3	902.75	87.30	12	0.2753	1
	915.25	95.72	12	0.3018	1
	927.25	92.26	12	0.2909	1
ANT 4	902.75	87.30	12	0.2753	1
	915.25	95.72	12	0.3018	1
	927.25	92.47	12	0.2916	1

Remark:

The EUT has 4 antennas, but the 4 antennas are work one by one, can't work with each other at the same time. I.e. when the EUT is transmitting, only one antenna is working.