

# APS 4: PROJETO DE SOFTWARE PARA ANÁLISE DE TRELIÇAS PLANAS

#### **OBJETIVO GERAL**

O objetivo da atividade é desenvolver um software para análise de treliças planas.

#### CRONOGRAMA

- 17/05 Apresentação e cronograma. Introdução ao método dos elementos finitos.
- 20/05 Sistema de coordenadas local/global.
- 24/05 Função para cálculo de tensão e deformação.
- 27/05 Técnicas numéricas para solução de sistemas de equações.
- 31/05 Estúdio.
- 03/06 Estúdio.

#### RUBRICA PARA DESENVOLVIMENTO DO SOFTWARE

- 1. O código deverá ser desenvolvido em *Python* de modo que os dados de entrada possam ser facilmente alterados a partir de uma planilha como descrito no Anexo 1.
- 2. O código deverá aplicar técnicas numéricas para solução de sistemas de equações (Método de Jacobi e/ou Gauss-Seidel).
- 3. O código deverá gerar um arquivo de saída com o pós-processamento dos dados de acordo com modelo descrito no Anexo 1.
- 4. O código deverá ser desenvolvido para aplicação geral em treliças 2D. Para isso, o grupo deverá validar os dados de saída, **usando a estrutura indicada no Anexo 2**.

**IMPORTANTE:** As funções para leitura do arquivo .xlsx, criação do gráfico para visualização da treliça e do arquivo de saída serão fornecidas. Todos os grupos deverão utilizar o mesmo modelo padrão fornecido. Procure reduzir o uso de laços de repetição ou recursão usando as ferramentas do pacote *Numpy* para vetorização das operações com matrizes.

2

### RUBRICA DE AVALIAÇÃO

Cada grupo deverá preparar e enviar um poster com o tema "Projeto de Software para análise de treliças planas", até às 23hs59 do dia 05/06 no formato "PDF" via Blackboard (Usar o template disponível no Blackboard).

- 1. [2%] **Título do trabalho**: Deve ser diferente do tema.
- 2. [10%] **Introdução**: Faça uma pesquisa e apresente uma breve revisão bibliográfica sobre o tema proposto (Use artigos e livros como referência).
- 3. [8%] Estrutura do software: Apresente uma descrição da arquitetura do software.
- 4. [60%] Validação do código desenvolvido: Apresente gráficos, tabelas, imagens... para validar os resultados obtidos com o código desenvolvido pelo grupo. Compare os resultados usando um outro software (Exemplo: Lisa). Justifique e comente os resultados. A validação deve ser feita usando a estrutura indicada no Anexo 2.
- 5. [15%] **Conclusão:** Apresente uma conclusão objetiva indicando os principais resultados do trabalho. Indique possibilidade futuras de melhorias e limitações do programa.
- 6. [5%] **Referências bibliográficas:** Apresente as referências utilizadas no trabalho. Envie o link do software desenvolvido.

Cada item será avaliado de acordo com a proficiência apresentada com base na rubrica de avalição e objetivos de aprendizado da disciplina.

### ANEXO 1: EXEMPLO

A seguir apresentamos um modelo de arquivo de entrada para análise da treliça ilustrada na Fig. 1.



Figura 1 – Treliça com três elementos de barra.

3

Nesse exemplo, cada barra possui uma área de seção transversal  $A=2\cdot 10^{-4} m^2$ , E=210 GPa. A carga pontual aplicada ao nó três na direção y é  $P_y=-100 N$ . Na direção x a carga pontual aplicada é igual a  $P_x=150 N$ . A tensão última a tração e compressão são iguais a  $\sigma_{tração}=\sigma_{compressão}=1570\cdot 10^6 Pa$ .

# Arquivo de entrada:

# Coordenadas dos nós:

| 1 | А     | В     | С | D                |
|---|-------|-------|---|------------------|
| 1 | x [m] | y [m] |   | Número de<br>nós |
| 2 | 0     | 0     |   | 3                |
| 3 | 0     | 0.4   |   |                  |
| 4 | 0.3   | 0.4   |   |                  |

# Incidência e materiais:

| 1 | А    | В    | С        | D        | Е | F                 |
|---|------|------|----------|----------|---|-------------------|
| 1 | nó 1 | nó 2 | E [Pa]   | A [m²]   |   | Número de membros |
| 2 | 1    | 2    | 2.10E+11 | 2.00E-04 |   | 3                 |
| 3 | 2    | 3    | 2.10E+11 | 2.00E-04 |   |                   |
| 4 | 3    | 1    | 2.10E+11 | 2.00E-04 |   |                   |
| 5 |      |      |          |          |   |                   |

# Carregamento:

|   | А  | В              | С         | D | E                |
|---|----|----------------|-----------|---|------------------|
| 1 | nó | 1 = x<br>2 = y | Carga [N] |   | Número de cargas |
| 2 | 3  | 1              | 150       |   | 2                |
| 3 | 3  | 2              | -100      |   |                  |

# Restrições:

| 4 | Α  | В              | С | D                |
|---|----|----------------|---|------------------|
| 1 | nó | 1 = x<br>2 = y |   | Número de apoios |
| 2 | 1  | 1              |   | 3                |
| 3 | 2  | 1              |   |                  |
| 4 | 2  | 2              |   |                  |

# Engenharia Transferência de calor e Mecânica dos Sólidos

# Insper

4

# Arquivo de saída:

Após a análise, o programa deverá escrever um arquivo de saída como o indicado abaixo para o exemplo da treliça ilustrada na Fig. 1.

```
Reacoes de apoio [N]
[[ 75.]
[-225.]
[ 100.]]
Deslocamentos [m]
[[ 0.0000000e+00]
[ -9.52380952e-07]
 [ 0.0000000e+00]
 [ 0.0000000e+00]
 [ 1.60714286e-06]
 [ -4.01785714e-06]]
Deformacoes []
[[ 2.38095238e-06]
[ 5.35723254e-06]
[ -2.97617094e-06]]
Forcas internas [N]
[[ 100.
[ 225.00376672]
[-124.99917969]]
Tensoes internas [Pa]
[[ 499999.9999911]
[ 1125018.83359206]
 [ -624995.89843168]]
```



Figura 2 - A figura ilustra o pós-processamento para a análise da treliça plana com três elementos. (Esquerda)

Treliça antes da aplicação das forças. (Direita) Treliça após a aplicação das forças.

#### ANEXO 2:

Considere a estrutura ilustrada na Fig 3. para validação do software desenvolvido. Adote a numeração indicada para os nós e elementos.



Figura 3 – Estrutura para validação

# Descrição do Modelo;

- Estrutura bidimensional e conectada por juntas do tipo rótula (Treliça).
- Estrutura pinada na esquerda, e apoiada na extremidade direita

# Engenharia Transferência de calor e Mecânica dos Sólidos



6

- Material: AISI\_310\_SS
- $A = 5,25 \text{ } mm^2$ .
- Coordenadas dos nós:

| Nó | x[mm] | Y [mm] |
|----|-------|--------|
| 1  | 0     | 0      |
| 2  | 144   | 72     |
| 3  | 192   | 0      |
| 4  | 288   | 144    |
| 5  | 384   | 0      |
| 6  | 432   | 72     |
| 7  | 576   | 0      |

#### **BIBLIOGRAFIA:**

- ✓ BITTENCOURT, M.L. COMPUTATIONAL SOLID MECHANICS: VARIATIONAL FORMULATION AND HIGH ORDER APPROXIMATION, 6A EDIÇÃO, CRC PRESS, 2014.
- ✓ CHAPRA, STEVEN C.; CANALE, RAYMOND P. NUMERICAL METHODS FOR ENGINEERS. 6TH ED. NEW YORK: MCGRAW-HILL HIGHER EDUCATION, C2010. 968 P. ISBN 9780073401065 (ENC.)
- ✓ NOTAS DE AULA E TEXTOS FORNECIDOS AO LONGO DO SEMESTRE.