

# DRAM MODULE

# 1 MEG, 2 MEG x 32

4, 8 MEGABYTE, 5V, FAST PAGE OR EDO PAGE MODE

#### **FEATURES**

- JEDEC- and industry-standard pinout in a 72-pin, single-in-line memory module (SIMM)
- · High-performance CMOS silicon-gate process.
- Single +5V ±10% power supply
- All device pins are TTL-compatible
- Low power, 48mW standby; 1,824mW active, typical (8MB)
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- Multiple RAS lines allow x16 or x32 width
- · 1,024-cycle refresh distributed across 16ms
- FAST PAGE MODE (FPM) operating mode or Extended Data-Out (EDO) PAGE MODE operating mode

# OPTIONS • Timing 60ns access 70ns access (FAST PAGE MODE only) • Packages 72-pin SIMM 72-pin SIMM (gold) • Operating Modes FAST PAGE MODE Blank

#### **KEY TIMING PARAMETERS**

#### **EDO Operating Mode**

EDO PAGE MODE

| ĺ | SPEED | tRC   | <sup>t</sup> RAC | ¹PC  | <sup>1</sup> AA | †CAC | tCAS |
|---|-------|-------|------------------|------|-----------------|------|------|
|   | -6    | 110ns | 60ns             | 26ns | 30ns            | 17ns | 13ns |

Х

#### FPM Operating Mode

| SPEED | <sup>t</sup> RC | <sup>t</sup> RAC | · tPC | 1AA  | 1CAC | tRP  |
|-------|-----------------|------------------|-------|------|------|------|
| -6    | 110ns           | 60ns             | 35ns  | 30ns | 15ns | 40ns |
| -7    | 130ns           | 70ns .           | 40ns  | 35ns | 20ns | 50ns |

## PIN ASSIGNMENT (Front View)

#### 72-Pin SIMM

(DD-3) 1 Meg x 32 (DD-4) 2 Meg x 32



| PIN# | SYMBOL | PIN# | SYMBOL   | PIN# | SYMBOL   | PIN# | SYMBOL |
|------|--------|------|----------|------|----------|------|--------|
| 1    | Vss    | 19   | NC       | 37   | NC       | 55   | DQ12   |
| 2    | DQ1    | 20   | DQ5      | 38   | NC       | 56   | DQ28   |
| 3    | DQ17   | 21   | DQ21     | 39   | Vss      | 57   | DQ13   |
| 4    | DQ2    | 22   | DQ6      | 40   | CASO     | 58   | DQ29   |
| 5    | DQ18   | 23   | DQ22     | 41   | CAS2     | 59   | Vcc    |
| 6    | DQ3    | 24   | DQ7      | 42   | CAS3     | 60   | DQ30   |
| 7    | DQ19   | 25   | DQ23     | 43   | CAS1     | 61   | DQ14   |
| 8    | DQ4    | 26   | DQ8      | 44   | RAS0     | 62   | DQ31   |
| 9    | DQ20   | 27   | DQ24     | 45   | NC*/RAS1 | 63   | DQ15   |
| 10   | Vcc    | 28   | A7       | 46   | NC       | 64   | DQ32   |
| 11   | NC     | 29   | NC       | 47   | WE       | 65   | DQ16   |
| 12   | . A0   | 30   | Vcc      | 48   | NC       | 66   | NC     |
| 13   | A1     | 31   | A8       | 49   | DQ9      | 67   | PRD1   |
| 14   | A2     | 32   | A9       | 50   | DQ25     | 68   | PRD2   |
| 15   | A3     | 33   | NC*/RAS3 | 51   | DQ10     | 69   | PRD3   |
| 16   | A4     | 34   | RAS2     | 52   | DQ26     | 70   | PRD4   |
| 17   | A5     | 35   | NC       | 53   | DQ11     | 71   | NC     |
| 18   | A6     | 36   | NC       | 54   | DQ27     | 72   | Vss    |

<sup>\*4</sup>MB version only

#### PART NUMBERS

**EDO Operating Mode** 

| PART NUMBER    | DESCRIPTION               |
|----------------|---------------------------|
| MT8D132G-xx X  | 1 Meg x 32, EDO, Gold     |
| MT8D132M-xx X  | 1 Meg x 32, EDO, Tin/Lead |
| MT16D232G-xx X | 2 Meg x 32, EDO, Gold     |
| MT16D232M-xx X | 2 Meg x 32, EDO, Tin/Lead |

## xx = speed

#### FPM Operating Mode

| PART NUMBER  | DESCRIPTION          |
|--------------|----------------------|
| MT8D132G-xx  | 1 Meg x 32, Gold     |
| MT8D132M-xx  | 1 Meg x 32, Tin/Lead |
| MT16D232G-xx | 2 Meg x 32, Gold     |
| MT16D232M-xx | 2 Meg x 32, Tin/Lead |

xx = speed

#### GENERAL DESCRIPTION

The MT8D132(X) and MT16D232(X) are randomly accessed 4MB and 8MB solid-state memories organized in a x32 configuration. During READ or WRITE cycles each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. RAS is used to latch the first 10 bits and CAS the latter 10 bits. A READ or WRITE cycle is selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. EARLY WRITE occurs when WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle.

#### FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined (A0-A9) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

#### **EDO PAGE MODE**

EDO PAGE MODE, designated by the "X" version, is an accelerated FAST PAGE MODE cycle. The primary advantage of EDO is the availability of data-out even after CAS goes back HIGH. EDO provides for CAS precharge time (<sup>t</sup>CP) to occur without the output data going invalid. This elimination of CAS output control provides for pipeline READs.

FAST PAGE MODE modules have traditionally turned the output buffers off (High-Z) with the rising edge of CAS. EDO operates as any DRAM READ or FAST-PAGE-MODE READ, except data will be held valid after CAS goes HIGH, as long as RAS and OE are held LOW and WE is held HIGH (reference MT4C4007] DRAM data sheet for additional information on EDO functionality).

#### REFRESH

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR or HIDDEN) so that all 1,024 combination of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence.

#### x16 CONFIGURATION

For x16 applications, the corresponding DQ and  $\overline{CAS}$ pins must be connected together (DQ1 to DQ17, DQ2 to DQ18 and so forth, and CASO to CASO and CASO to  $\overline{\text{CAS3}}$ ). Each  $\overline{\text{RAS}}$  is then a bank select for the x16 memory organization.



## FUNCTIONAL BLOCK DIAGRAM MT8D132(X) (4MB)



FAST PAGE MODE U1-U8 = MT4C4001JDJ

EDO PAGE MODE U1-U8 = MT4C4007JDJ

# FUNCTIONAL BLOCK DIAGRAM MT16D232(X) (8MB)



FAST PAGE MODE U1-U16 = MT4C4001J

EDO PAGE MODE U1-U16 = MT4C4007JDJ



#### **TRUTH TABLE**

|                  |                          |       | ADDR | ESSES | DATA-IN/OUT    |                |          |
|------------------|--------------------------|-------|------|-------|----------------|----------------|----------|
| FUNCTION         |                          | RAS   | CAS  | WE    | t <sub>R</sub> | <sup>t</sup> C | DQ1-DQ32 |
| Standby          |                          | Н     | H→X  | Х     | Х              | X              | High-Z   |
| READ             |                          | L     | L    | Н     | ROW            | COL            | Data-Out |
| EARLY WRITE      |                          | L     | L    | L     | ROW            | COL            | Data-In  |
| EDO/FAST-PAGE-   | 1st Cycle                | L     | H→L  | Н     | ROW            | COL            | Data-Out |
| MODE READ 2nd Cv |                          | L     | H→L  | Н     | n/a            | COL            | Data-Out |
| •                | Any Cycle<br>(X version) | L     | L→H  | Н     | n/a            | n/a            | Data-Out |
| EDO/FAST-PAGE-   | 1st Cycle                | L     | H→L  | L     | ROW            | COL            | Data-In  |
| MODE EARLY WRITE | 2nd Cycle                | L     | H→L  | L     | n/a            | COL            | Data-In  |
| RAS-ONLY REFRESH |                          | L     | Н    | Х     | ROW            | n/a            | High-Z   |
| HIDDEN           | READ                     | L→H→L | L    | Н     | ROW            | COL            | Data-Out |
| REFRESH          | WRITE                    | L→H→L | L    | L     | ROW            | COL            | Data-In  |
| CBR REFRESH      |                          | H→L   | L    | Н     | Х              | Х              | High-Z   |

# JEDEC DEFINED PRESENCE-DETECT - MT8D132(X) (4MB)

| SYMBOL | PIN# | -6  | -7  |
|--------|------|-----|-----|
| PRD1   | 67   | Vss | Vss |
| PRD2   | 68   | Vss | Vss |
| PRD3   | 69   | NC  | Vss |
| PRD4   | 70   | NC  | NC  |

# JEDEC DEFINED PRESENCE-DETECT - MT16D232(X) (8MB)

| SYMBOL | PIN# | -6 | -7  |
|--------|------|----|-----|
| PRD1   | 67   | NC | NC  |
| PRD2   | 68   | NC | NC  |
| PRD3   | 69   | NC | Vss |
| PRD4   | 70   | NC | NC  |

## ABSOLUTE MAXIMUM RATINGS\*

| Voltage on Vcc Supply Relative to Vss | 1V to +7V |
|---------------------------------------|-----------|
| Operating Temperature, TA (ambient).  |           |
| Storage Temperature (plastic)         |           |
| Power Dissipation                     | 8W        |
| Short Circuit Output Current          |           |

\*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## **ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS**

(Notes: 1, 3, 6) ( $Vcc = +5V \pm 10\%$ )

| PARAMETER/CONDITION                                             |           | SYMBOL        | MIN  | MAX   | UNITS | NOTES |
|-----------------------------------------------------------------|-----------|---------------|------|-------|-------|-------|
| Supply Voltage                                                  |           | Vcc           | 4.5  | 5.5   | V     | ,     |
| Input High (Logic 1) Voltage, all inputs                        |           | ViH           | 2.4  | Vcc+1 | V     |       |
| Input Low (Logic 0) Voltage, all inputs                         |           | VIL           | -1.0 | 0.8   | V     |       |
| INPUT LEAKAGE CURRENT                                           | CASO-CAS3 | [H            | -8   | 8     | μА    | -:    |
| Any input 0V ≤ Vin ≤ Vcc +1.0V                                  | A0-A9, WE | , <b>l</b> ı2 | -32  | 32    | μA    | 25    |
| (All other pins not under test = 0V)                            | RAS0-RAS3 | · li3         | -8   | 8     | μΑ    | 25    |
| OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le Vout \le 5.5V$ ) | DQ1-DQ32  | loz           | -20  | 20    | μΑ    | 25    |
| OUTPUT LEVELS                                                   | -         | Vон           | 2.4  |       | ٧     |       |
| High Voltage (Ioυτ = -5mA)                                      |           | Vol           |      | 0.4   | ٧     |       |
| Low Voltage (lout = 4.2mA)                                      |           |               |      |       |       |       |

|                                                                                                                                                         |                  |            | M          | AX         | ]     |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|------------|------------|-------|-------|
| PARAMETER/CONDITION                                                                                                                                     | SYMBOL           | SIZE       | -6         | -7         | UNITS | NOTES |
| STANDBY CURRENT: (TTL)<br>(RAS = CAS = VIH)                                                                                                             | Icc1             | 4MB<br>8MB | 16<br>32   | 16<br>32   | mA    |       |
| STANDBY CURRENT: (CMOS) (RAS = CAS = other inputs = Vcc -0.2V)                                                                                          | lcc2             | 4MB<br>8MB | 8<br>16    | 8<br>16    | mA    |       |
| OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, address cycling: <sup>†</sup> RC = <sup>†</sup> RC [MIN])                  | lccs             | 4MB<br>8MB | 880<br>896 | 800<br>816 | mA    | 2, 24 |
| OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, address cycling: \text{VPC} = \text{VPC} [MIN])                         | Icc4             | 4MB<br>8MB | 640<br>656 | 560<br>576 | mA    | 2, 24 |
| OPERATING CURRENT: EDO PAGE MODE  Average power supply current  (RAS = V <sub>IL</sub> , CAS, address cycling: <sup>t</sup> PC = <sup>t</sup> PC [MIN]) | lccs<br>(X only) | 4MB<br>8MB | 640<br>656 | _          | mA    | 2     |
| REFRESH CURRENT: RAS ONLY Average power supply current (RAS cycling, CAS = VIH: RC = RC [MIN])                                                          | Icce             | 4MB<br>8MB | 880<br>896 | 800<br>816 | mA    | 2, 24 |
| REFRESH CURRENT: CBR Average power supply current (RAS, CAS, address cycling: <sup>t</sup> RC = <sup>t</sup> RC [MIN])                                  | lcc7             | 4MB<br>8MB | 880<br>896 | 800<br>816 | mA    | 2, 19 |

MT8D132(X), MT16D232(X) DM53.pm5 - Rev. 12/95

5-22

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.



| CAPACITANCE                        |                 | М   | AX  | ]     |       |
|------------------------------------|-----------------|-----|-----|-------|-------|
| PARAMETER                          | SYMBOL          | 4MB | 8MB | UNITS | NOTES |
| Input Capacitance: A0-A9           | C <sub>I1</sub> | 48  | 95  | pF    | 17    |
| Input Capacitance: WE              | Cl2             | 64  | 127 | pF    | 17    |
| Input Capacitance: RAS0-RAS3       | C14             | 32  | 32  | pF    | 17    |
| Input Capacitance: CAS0-CAS3       | C <sub>15</sub> | 16  | 32  | pF    | 17    |
| Input/Output Capacitance: DQ1-DQ32 | Cio             | 10  | 18  | pF    | 17    |

# FAST PAGE MODE ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 6, 7, 10, 11, 16) ( $Vcc = +5V \pm 10\%$ )

| AC CHARACTERISTICS - FAST PAGE MODE OPTION   | DE OPTION        |     | 6       | -7  |         |       |           |
|----------------------------------------------|------------------|-----|---------|-----|---------|-------|-----------|
| PARAMETER                                    | SYM              | MIN | MAX     | MIN | MAX     | UNITS | NOTES     |
| Access time from column-address              | tAA .            |     | 30      |     | 35      | ns    |           |
| Column-address hold time (referenced to RAS) | <sup>t</sup> AR  | 45  |         | 50  |         | ns    |           |
| Column-address setup time                    | †ASC             | 0   |         | 0   |         | ns    |           |
| Row-address setup time                       | tASR             | 0   |         | 0   |         | пѕ    |           |
| Access time from CAS                         | <sup>t</sup> CAC |     | 15      |     | 20      | ns    | 9         |
| Column-address hold time                     | <sup>t</sup> CAH | 10  |         | 15  |         | ns    |           |
| CAS pulse width                              | †CAS             | 15  | 10,000  | 20  | 10,000  | ns    |           |
| CAS hold time (CBR REFRESH)                  | tCHR             | 10  |         | 10  |         | ns    | 19        |
| CAS to output in Low-Z                       | †CLZ             | 0   |         | 0   |         | ns    |           |
| CAS precharge time                           | <sup>1</sup> CP  | 10  |         | 10  |         | ns    | 18        |
| Access time from CAS precharge               | ¹CPA             |     | 35      |     | 40      | ns    |           |
| CAS to RAS precharge time                    | <sup>t</sup> CRP | 10  |         | 10  |         | ns    |           |
| CAS hold time                                | <sup>t</sup> CSH | 60  |         | 70  |         | ns    |           |
| CAS setup time (CBR REFRESH)                 | <sup>1</sup> CSR | 10  |         | 10  |         | ns    | 19        |
| Write command to CAS lead time               | tCWL             | 15  |         | 20  |         | ns    |           |
| Data-in hold time                            | tDH              | 10  |         | 15  |         | ns    | 15        |
| Data-in hold time (referenced to RAS)        | <sup>†</sup> DHR | 45  |         | 55  |         | ns    |           |
| Data-in setup time                           | †DS              | . 0 |         | 0   |         | ns    | 15        |
| Output buffer turn-off delay                 | †OFF             | 3   | 15      | 3   | 20      | ns    | 12, 23, 2 |
| FAST-PAGE-MODE READ or WRITE cycle time      | <sup>t</sup> PC  | 35  |         | 40  |         | ns    |           |
| Access time from RAS                         | tRAC             |     | 60      |     | 70      | ns    | 8         |
| RAS to column-address delay time             | †RAD             | 15  | 30      | 15  | 35      | ns    | 22        |
| Row-address hold time                        | †RAH             | 10  |         | 10  |         | ns    |           |
| Column-address to RAS lead time              | <sup>t</sup> RAL | 30  |         | 35  |         | ns    |           |
| RAS pulse width                              | †RAS             | 60  | 10,000  | 70  | 10,000  | ns    |           |
| RAS pulse width (FAST PAGE MODE)             | †RASP            | 60  | 100,000 | 70  | 100,000 | ns    |           |
| Random READ or WRITE cycle time              | <sup>t</sup> RC  | 110 |         | 130 |         | ns    |           |
| RAS to CAS delay time                        | †RCD             | 20  | 45      | 20  | 50      | ns    | 13        |
| Read command hold time (referenced to CAS)   | †RCH             | 0   |         | 0   |         | ns    | 14        |
| Read command setup time                      | t <sub>RCS</sub> | 0   |         | 0   |         | ns    |           |
| Refresh period (1,024 cycles)                | tREF.            |     | 16      |     | 16      | ms    |           |



# FAST PAGE MODE ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 6, 7, 10, 11, 16) ( $Vcc = +5V \pm 10\%$ )

| AC CHARACTERISTICS - FAST PAGE MODE OPTION  |                  |     | -6  |     | -7       | ,     |       |
|---------------------------------------------|------------------|-----|-----|-----|----------|-------|-------|
| PARAMETER                                   | SYM              | MIN | MAX | MIN | MAX      | UNITS | NOTES |
| RAS precharge time                          | t <sub>RP</sub>  | 40  |     | 50  | <u> </u> | ns    |       |
| RAS to CAS precharge time                   | <sup>t</sup> RPC | 0   |     | 0   |          | ns    |       |
| Read command hold time                      | <sup>t</sup> RRH | 0   |     | 0   |          | ns    | 14    |
| RAS hold time                               | tRSH             | 15  |     | 20  |          | ns    |       |
| Write command to RAS lead time              | tRWL             | 15  |     | 20  |          | ns    |       |
| Transition time (rise or fall)              | ţΤ               | 3   | 50  | 3   | 50       | ns    | -     |
| Write command hold time                     | †WCH             | 10  | 1   | 15  |          | ns    |       |
| Write command hold time (referenced to RAS) | †WCR             | 45  |     | 55  |          | ns    |       |
| WE command setup time                       | †WCS             | 0   | İ   | 0   | <u> </u> | ns    |       |
| Write command pulse width                   | <sup>t</sup> WP  | 10  | ,   | 15  |          | ns    |       |
| WE hold time (CBR REFRESH)                  | <sup>†</sup> WRH | 10  |     | 10  |          | ns    |       |
| WE setup time (CBR REFRESH)                 | ¹WRP             | 10  |     | 10  |          | ns    |       |



# EDO PAGE MODE ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 6, 7, 10, 11, 16) (Vcc = +5V ±10%)

| AC CHARACTERISTICS - EDO PAGE MODE OPTION          |                  |     | -6      |       |           |
|----------------------------------------------------|------------------|-----|---------|-------|-----------|
| PARAMETER                                          | SYM              | MIN | MAX     | UNITS | NOTES     |
| Access time from column-address                    | t <sub>AA</sub>  |     | 30      | ns    |           |
| Column-address setup to CAS precharge during WRITE | <sup>1</sup> ACH | 15  |         | ns    |           |
| Column-address hold time (referenced to RAS)       | tAR .            | 45  |         | ns    |           |
| Column-address setup time                          | tASC             | 0   |         | ns ·  |           |
| Row-address setup time                             | tasr.            | 0   |         | ns    |           |
| Access time from CAS                               | †CAC             |     | 17      | ns    | 9         |
| Column-address hold time                           | <sup>t</sup> CAH | 10  |         | ns    |           |
| CAS pulse width                                    | <sup>t</sup> CAS | 13  | 10,000  | ns    |           |
| CAS hold time (CBR REFRESH)                        | tCHR             | 10  |         | пѕ    | 19        |
| CAS to output in Low-Z                             | tCLZ             | 3   |         | . ns  | 23        |
| Data output hold after CAS LOW                     | tCOH             | 5   |         | ns    |           |
| CAS precharge time                                 | <sup>†</sup> CP  | 10  |         | ns    | 18        |
| Access time from CAS precharge                     | †CPA             |     | 35      | ns .  |           |
| CAS to RAS precharge time                          | ¹CRP             | 10  |         | ns    |           |
| CAS hold time                                      | †CSH             | 50  |         | ns    |           |
| CAS setup time (CBR REFRESH)                       | †CSR             | 10  |         | ns    | 19        |
| Write command to CAS lead time                     | tCWL             | 15  |         | ns    |           |
| Data-in hold time                                  | tDH              | 9   |         | ns    | 15        |
| Data-in hold time (referenced to RAS)              | <sup>t</sup> DHR | 45  |         | ns    | 1         |
| Data-in setup time                                 | <sup>t</sup> DS  | 0   |         | ns    | 15        |
| Output buffer turn-off delay                       | <sup>†</sup> OFF | 3   | 15      | ns    | 12, 23, 2 |
| FAST-PAGE-MODE READ or WRITE cycle time            | · tPC            | 26  |         | ns    |           |
| Access time from RAS                               | <sup>t</sup> RAC |     | 60      | ns    | 8         |
| RAS to column-address delay time                   | <sup>t</sup> RAD | 15  | 30      | ns    | 22        |
| Row-address hold time                              | <sup>t</sup> RAH | 10  |         | ns    |           |
| Column-address to RAS lead time                    | <sup>t</sup> RAL | 30  |         | ns    |           |
| RAS pulse width                                    | <sup>t</sup> RAS | 60  | 10,000  | ns    |           |
| RAS pulse width (FAST PAGE MODE)                   | †RASP            | .60 | 100,000 | ns    |           |
| Random READ or WRITE cycle time                    | <sup>t</sup> RC  | 110 |         | ns    |           |
| RAS to CAS delay time                              | †RCD             | 20  | 45      | ns    | 13        |
| Read command hold time (referenced to CAS)         | <sup>t</sup> RCH | 0   |         | ns    | 14        |
| Read command setup time                            | tRCS             | 0   |         | ns    | 1         |
| Refresh period (1,024 cycles)                      | ¹REF             |     | 16      | ms    |           |

#### **EDO PAGE MODE**

## **ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS**

(Notes: 3, 4, 5, 6, 7, 10, 11, 16) ( $Vcc = +5V \pm 10\%$ )

| AC CHARACTERISTICS - EDO PAGE MODE OPTION       |                  |     | -6  |       |                                         |
|-------------------------------------------------|------------------|-----|-----|-------|-----------------------------------------|
| PARAMETER                                       | SYM              | MIN | MAX | UNITS | NOTES                                   |
| RAS precharge time                              | tRP              | 40  |     | ns    |                                         |
| RAS to CAS precharge time                       | tRPC             | 5   |     | ns    |                                         |
| Read command hold time                          | †RRH             | 0   |     | ns    | 14                                      |
| RAS hold time                                   | <sup>t</sup> RSH | 15  |     | ns    |                                         |
| Write command to RAS lead time                  | t <sub>RWL</sub> | 15  |     | ns    |                                         |
| Transition time (rise or fall)                  | ŀΤ               | 1.5 | 50  | ns    | 4, 5                                    |
| Write command hold time                         | †WCH             | 10  |     | ns    |                                         |
| Write command hold time (referenced to RAS)     | ¹WCR             | 45  |     | ns    |                                         |
| WE command setup time                           | ¹wcs             | 0   |     | ns    |                                         |
| Output disable delay from WE (CAS HIGH)         | <sup>t</sup> WHZ | 3   | 15  | ns .  |                                         |
| Write command pulse width                       | †WP              | 10  |     | ns    |                                         |
| WE pulse width for output disable when CAS HIGH | †WPZ             | 10  |     | ns    | *************************************** |
| WE hold time (CBR REFRESH)                      | <sup>t</sup> WRH | 10  | ·.  | nş    |                                         |
| WE setup time (CBR REFRESH)                     | tWRP             | 10  |     | ns    |                                         |



#### NOTES

- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the <sup>t</sup>REF refresh requirement is exceeded.
- AC characteristics assume <sup>t</sup>T = 5ns for FAST PAGE MODE and <sup>t</sup>T = 1.5ns for EDO PAGE MODE.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T<sub>A</sub> ≤ 70°C) is assured.
- 7. Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that <sup>t</sup>RCD < <sup>t</sup>RCD (MAX). If <sup>t</sup>RCD is greater than the maximum recommended value shown in this table, <sup>t</sup>RAC will increase by the amount that <sup>t</sup>RCD exceeds the value shown.
- Assumes that <sup>†</sup>RCD ≥ <sup>†</sup>RCD (MAX).
- 10. If  $\overline{\text{CAS}}$  and  $\overline{\text{RAS}}$  = V<sub>IH</sub>, data output is High-Z.
- If CAS = VIL, data output may contain data from the last valid READ cycle.
- OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 13. Operation within the <sup>t</sup>RCD (MAX) limit ensures that <sup>t</sup>RAC (MAX) can be met. <sup>t</sup>RCD (MAX) is specified as a reference point only; if <sup>t</sup>RCD is greater than the specified <sup>t</sup>RCD (MAX) limit, then access time is controlled exclusively by <sup>t</sup>CAC.

- Either <sup>t</sup>RCH or <sup>t</sup>RRH must be satisfied for a READ cycle.
- 15. These parameters are referenced to  $\overline{\text{CAS}}$  leading edge in EARLY WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIII and VIII. (or between VIII and VIII) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is measured using MIL-STD-883C, Method 3012.1 (1 MHz AC, Vcc = 4.5V, DC bias = 2.4V at 15mV RMS).
- 18. If <del>CAS</del> is LOW at the falling edge of <del>RAS</del>, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, <del>CAS</del> must be pulsed HIGH for <sup>t</sup>CP.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 21. LATE WRITE, READ WRITE or READ-MODIFY-WRITE cycles are not available due to OE being grounded on U1-U8/U16.
- 22. Operation within the <sup>t</sup>RAD (MAX) limit ensures that <sup>t</sup>RCD (MAX) can be met. <sup>t</sup>RAD (MAX) is specified as a reference point only; if <sup>t</sup>RAD is greater than the specified <sup>t</sup>RAD (MAX) limit, then access time is controlled exclusively by <sup>t</sup>AA.
- 23. The 3ns minimum is a parameter guaranteed by design.
- 24. Column-address changed once each cycle.
- 25. 4MB module values will be half of those shown.
- 26. For FAST PAGE MODE option, <sup>t</sup>OFF is determined by the first RAS or CAS signal to transition HIGH. In comparison, <sup>t</sup>OFF on an EDO option is determined by the latter of the RAS and CAS signal to transition HIGH.
- 27. Applies to both EDO and FAST PAGE MODEs.

# READ CYCLE (FAST PAGE MODE Module)



DON'T CARE

UNDEFINED

# FAST PAGE MODE TIMING PARAMETERS

|                  |     | -6     | -7  |        |       |
|------------------|-----|--------|-----|--------|-------|
| SYM              | MIN | MAX    | MIN | MAX    | UNITS |
| <sup>t</sup> AA  |     | 30     |     | 35     | ns    |
| <sup>t</sup> AR  | 45  |        | 50  |        | ns    |
| tASC             | 0   |        | 0   |        | ns    |
| <sup>t</sup> ASR | 0   |        | 0   |        | ns    |
| tCAC             |     | 15     |     | 20     | ns    |
| <sup>t</sup> CAH | 10  |        | 15  |        | ns    |
| <sup>†</sup> CAS | 15  | 10,000 | 20  | 10,000 | ns    |
| †CLZ             | 0   | T      | 0   | 1.     | ns    |
| <sup>t</sup> CRP | 10  |        | 10  |        | ns    |
| <sup>t</sup> CSH | 60  |        | 70  |        | ns    |
| <sup>t</sup> OFF | 3   | 15     | 3   | 20     | ns    |
| <sup>t</sup> RAC |     | 60     |     | 70     | ns    |

|                  | -6  |        | -7  |        |       |
|------------------|-----|--------|-----|--------|-------|
| SYM              | MIN | MAX    | MIN | MAX    | UNITS |
| <sup>t</sup> RAD | 15  | 30     | 15  | 35     | ns    |
| <sup>t</sup> RAH | 10  |        | 10  |        | ns    |
| <sup>t</sup> RAL | 30  |        | 35  |        | ns    |
| <sup>t</sup> RAS | 60  | 10,000 | 70  | 10,000 | ns    |
| <sup>t</sup> RC  | 110 |        | 130 |        | ns    |
| <sup>t</sup> RCD | 20  | 45     | 20  | 50     | ns    |
| <sup>t</sup> RCH | 0   |        | 0   | 1      | ns    |
| <sup>t</sup> RCS | 0   |        | 0   |        | ns    |
| †RP              | 40  |        | 50  |        | ns    |
| <sup>t</sup> RRH | 0   |        | 0   |        | ns    |
| <sup>†</sup> RSH | 15  |        | 20  |        | ns    |

## **READ CYCLE** (EDO PAGE MODE Module)



NOTE:

- 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.
- 2. OFF is referenced from rising edge of RAS or CAS, whichever occurs last.

## **EDO PAGE MODE TIMING PARAMETERS**

|                  |      | -6     |       |
|------------------|------|--------|-------|
| SYM              | MIN  | MAX    | UNITS |
| †AA              |      | 30     | ns    |
| <sup>t</sup> AR  | 45   |        | ns    |
| <sup>1</sup> ASC | 0    |        | ns    |
| <sup>t</sup> ASR | 0    |        | ns    |
| ¹CAC             |      | 17     | ns    |
| <sup>t</sup> CAH | 10   |        | ns    |
| <sup>t</sup> CAS | 13   | 10,000 | ns    |
| <sup>t</sup> CLZ | 3    |        | ns    |
| <sup>1</sup> CRP | . 10 |        | ns    |
| ¹CSH             | 50   |        | ns    |
| <sup>t</sup> OFF | 3    | 15     | ns    |
| <sup>t</sup> RAC |      | 60     | ns    |
| <sup>t</sup> RAD | 15   | 30     | ns    |

| SYM              | MIN | MAX    | UNITS |
|------------------|-----|--------|-------|
| <sup>t</sup> RAH | 10  |        | ns    |
| <sup>t</sup> RAL | 30  |        | ns    |
| <sup>t</sup> RAS | 60  | 10,000 | ns    |
| <sup>t</sup> RC  | 110 |        | ns    |
| <sup>t</sup> RCD | 20  | 45     | ns    |
| <sup>t</sup> RCH | 0   |        | ns    |
| †RCS             | 0   |        | ns    |
| <sup>t</sup> RP  | 40  |        | ns    |
| <sup>t</sup> RRH | 0   |        | ns    |
| <sup>t</sup> RSH | 15  |        | ns    |
| tWRH             | 10  |        | ns    |
| †WRP             | 10  |        | ns    |

MT8D132(X), MT16D232(X) DM53.pm5 - Rev. 12/95

## **EARLY WRITE CYCLE 27**



NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

# FAST PAGE MODE AND EDO PAGE MODE TIMING PARAMETERS

|                        | -6  |        | -7  |        |       |
|------------------------|-----|--------|-----|--------|-------|
| SYM                    | MIN | MAX    | MIN | MAX    | UNITS |
| tACH (EDO)             | 15  |        |     |        | ns    |
| <sup>t</sup> AR        | 45  |        | 50  |        | ns    |
| tASC                   | 0   |        | 0   |        | ns    |
| <sup>t</sup> ASR       | 0   |        | 0   |        | ns    |
| <sup>†</sup> CAH       | 10  |        | 15  |        | ns    |
| <sup>t</sup> CAS (FPM) | 15  | 10,000 | 20  | 10,000 | ns    |
| <sup>t</sup> CAS (EDO) | 13  | 10,000 |     | _      | ns    |
| <sup>t</sup> CRP       | 10  |        | 10  |        | ns    |
| tCSH (FPM)             | 60  |        | 70  |        | ns    |
| <sup>t</sup> CSH (EDO) | 50  |        |     |        | ns    |
| <sup>t</sup> CWL       | 15  |        | 20  |        | ns    |
| <sup>†</sup> DH (FPM)  | 10  |        | 15  |        | ns    |
| <sup>t</sup> DH (EDO)  | . 9 |        | _   |        | ns    |
| <sup>t</sup> DHR       | 45  |        | 55  | 1      | ns    |
| <sup>t</sup> D\$       | 0   |        | 0   |        | ns    |

|                  |     | -6     |     | -7     |       |
|------------------|-----|--------|-----|--------|-------|
| SYM              | MIN | MAX    | MIN | MAX    | UNITS |
| <sup>t</sup> RAD | 15  | 30     | 15  | 35     | ns    |
| <sup>t</sup> RAH | 10  |        | 10  |        | ns    |
| <sup>t</sup> RAL | 30  |        | 35  |        | ns    |
| †RAS             | 60  | 10,000 | 70  | 10,000 | пѕ    |
| †RC              | 110 |        | 130 |        | ns    |
| <sup>†</sup> RCD | 20  | 45     | 20  | 50     | 'ns   |
| <sup>t</sup> RP  | 40  |        | 50  |        | ns    |
| <sup>t</sup> RSH | 15  |        | 20  |        | ns    |
| <sup>t</sup> RWL | 15  |        | 20  |        | ns    |
| tMCH             | 10  |        | 15  |        | ns    |
| <sup>t</sup> WCR | 45  |        | 55  |        | ns.   |
| twcs             | 0   | ·      | 0   |        | ns    |
| <sup>†</sup> WP  | 10  |        | 15  |        | ns    |
| ™RH              | 10  |        | 10  |        | ns    |
| tWRP             | 10  |        | 10  |        | ns    |



### **FAST-PAGE-MODE READ CYCLE**



# UNDEFINED

## FAST PAGE MODE TIMING PARAMETERS

|                  |     | -6     |     |        |       |
|------------------|-----|--------|-----|--------|-------|
| SYM              | MIN | MAX    | MIN | MAX    | UNITS |
| †AA              |     | 30     |     | 35     | ns    |
| tAR              | 45  |        | 50  |        | ns    |
| <sup>t</sup> ASC | 0   |        | 0   |        | ns    |
| <sup>t</sup> ASR | 0   |        | 0   |        | ns    |
| <sup>t</sup> CAC |     | 15     |     | 20     | ns    |
| <sup>t</sup> CAH | 10  |        | 15  |        | ns    |
| <sup>t</sup> CAS | 15  | 10,000 | 20  | 10,000 | ns    |
| <sup>t</sup> CLZ | 0   |        | 0   |        | ns    |
| <sup>t</sup> CP  | 10  |        | 10  |        | ns    |
| <sup>t</sup> CPA |     | 35     |     | 40     | ns    |
| <sup>t</sup> CRP | 10  |        | 10  |        | ns    |
| tCSH             | 60  |        | 70  |        | ns    |
| <sup>t</sup> OFF | 3   | 15     | 3   | 20     | ns    |

|                  | -6  |         | -7  |         |       |
|------------------|-----|---------|-----|---------|-------|
| SYM              | MIN | MAX     | MIN | MAX     | UNITS |
| <sup>t</sup> PC  | 35  |         | 40  |         | ns    |
| <sup>t</sup> RAC |     | 60      |     | 70      | ns    |
| <sup>t</sup> RAD | 15  | 30      | 15  | 35      | ns    |
| <sup>t</sup> RAH | 10  |         | 10  |         | ns    |
| <sup>t</sup> RAL | 30  |         | 35  |         | ns    |
| †RASP            | 60  | 100,000 | 70  | 100,000 | ns    |
| †RCD             | 20  | 45      | 20  | 50      | ns    |
| <sup>t</sup> RCH | 0   |         | 0   |         | ns    |
| †RCS             | 0   |         | 0   |         | ns    |
| <sup>t</sup> RP  | 40  |         | 50  |         | ns    |
| <sup>t</sup> RRH | 0   |         | 0   |         | ns    |
| <sup>t</sup> RSH | 15  |         | 20  |         | ns    |



#### **EDO-PAGE-MODE READ CYCLE**



DON'T CARE

₩ UNDEFINED

NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

## **EDO PAGE MODE** TIMING PARAMETERS

|                  |     | -6     |       |
|------------------|-----|--------|-------|
| SYM              | MIN | MAX    | UNITS |
| <sup>t</sup> AA  |     | 30     | ns    |
| <sup>t</sup> AR  | 45  |        | ns    |
| tASC :           | . 0 |        | ns    |
| <sup>t</sup> ASR | 0   |        | ns    |
| <sup>t</sup> CAC |     | 17     | ns    |
| <sup>t</sup> CAH | 10  |        | ns    |
| <sup>t</sup> CAS | 13  | 10,000 | ns    |
| †CLZ             | 3   |        | ns    |
| <sup>†</sup> COH | 5   |        | ns    |
| <sup>†</sup> CP  | 10  |        | ns    |
| <sup>t</sup> CPA |     | 35     | ns    |
| <sup>†</sup> CRP | 10  |        | ns    |
| <sup>t</sup> CSH | 50  |        | ns    |
| <sup>t</sup> OFF | 3   | 15     | ns    |

|                  |     | -6      |       |
|------------------|-----|---------|-------|
| SYM              | MIN | MAX     | UNITS |
| <sup>t</sup> PC  | 26  |         | ns    |
| †RAC             |     | 60      | ns    |
| <sup>†</sup> RAD | 15  | 30      | ns    |
| <sup>t</sup> RAH | 10  |         | ns    |
| <sup>t</sup> RAL | 30  | ١,      | ns    |
| tRASP            | 60  | 100,000 | ns    |
| <sup>t</sup> RCD | 20  | 45      | ns    |
| <sup>t</sup> RCH | 0   |         | ns    |
| <sup>t</sup> RCS | 0   |         | ns -  |
| <sup>t</sup> RP  | 40  |         | ns    |
| <sup>t</sup> RRH | 0   |         | ns    |
| <sup>t</sup> RSH | 15  |         | ns    |
| tWRH             | 10  |         | ns    |
| tWRP             | 10  |         | ns    |



#### **FAST-PAGE-MODE EARLY-WRITE CYCLE**



W UNDEFINED

## **FAST PAGE MODE TIMING PARAMETERS**

|                  |     | -6     |     | -7                                    |       |
|------------------|-----|--------|-----|---------------------------------------|-------|
| SYM              | MIN | MAX    | MIN | MAX                                   | UNITS |
| <sup>t</sup> AR  | 45  |        | 50  |                                       | ns    |
| †ASC             | 0   |        | 0   |                                       | ns    |
| tASR             | 0   | 1      | 0   |                                       | ns    |
| <sup>t</sup> CAH | 10  |        | 15  |                                       | ns    |
| tCAS             | 15  | 10,000 | 20  | 10,000                                | ns    |
| <sup>t</sup> CP  | 10  |        | 10  |                                       | ns    |
| <sup>t</sup> CRP | 10  |        | 10  |                                       | ns    |
| <sup>1</sup> CSH | 60  |        | 70  | · · · · · · · · · · · · · · · · · · · | ns    |
| <sup>t</sup> CWL | 15  |        | 20  |                                       | ns    |
| ¹DH              | 10  |        | 15  |                                       | ns    |
| <sup>t</sup> DHR | 45  |        | 55  |                                       | ns    |
| <sup>t</sup> DS  | 0   |        | 0   |                                       | ns    |
| <sup>t</sup> PC  | 35  |        | 40  |                                       | ns    |

|                   | -6  |         | -7  |         |       |
|-------------------|-----|---------|-----|---------|-------|
| SYM               | MIN | MAX     | MIN | MAX     | UNITS |
| <sup>t</sup> RAD  | 15  | 30      | 15  | 35      | ns    |
| <sup>t</sup> RAH  | 10  |         | 10  |         | ns    |
| <sup>t</sup> RAL  | 30  |         | 35  |         | ns    |
| <sup>t</sup> RASP | 60  | 100,000 | 70  | 100,000 | ns    |
| <sup>t</sup> RCD  | 20  | 45      | 20  | 50      | ns    |
| <sup>t</sup> RP   | 40  |         | 50  |         | ns    |
| <sup>t</sup> RSH  | 15  |         | 20  |         | ns    |
| <sup>t</sup> RWL  | 15  |         | 20  |         | ns    |
| †WCH              | 10  |         | 15  |         | ns    |
| †WCR              | 45  |         | 55  |         | ns    |
| twcs              | 0   |         | 0   |         | ns    |
| <sup>t</sup> WP   | 10  |         | 15  |         | ns    |

## **EDO-PAGE-MODE EARLY-WRITE CYCLE**



NOTE:

Although WE is a "don't care" at FAS time during an access cycle (READ or WRITE), the system designer should implement
WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

## EDO PAGE MODE TIMING PARAMETERS

|                  |      | -6     |       |
|------------------|------|--------|-------|
| SYM              | MIN  | MAX    | UNITS |
| <sup>t</sup> AR  | 45   |        | ns    |
| <sup>t</sup> ASC | 0    |        | ns    |
| <sup>t</sup> ASR | 0    |        | ns    |
| <sup>t</sup> CAH | . 10 |        | ns    |
| <sup>1</sup> CAS | 13   | 10,000 | ns    |
| <sup>t</sup> CP  | 10   | ,      | ns    |
| <sup>t</sup> CRP | 10   |        | ns    |
| <sup>t</sup> CSH | 50   |        | ns    |
| tCML             | 15   |        | ns    |
| <sup>t</sup> DH  | 9    | 1      | ns    |
| <sup>t</sup> DHR | 45   |        | ns    |
| <sup>t</sup> DS  | 0    |        | ns    |
| <sup>t</sup> PC  | 26   |        | ns    |
| <sup>t</sup> RAD | 15   | 30     | пѕ    |

|                   |      | -6      |       |
|-------------------|------|---------|-------|
| SYM               | MIN  | MAX     | UNITS |
| <sup>1</sup> RAH  | 10   |         | ns    |
| <sup>†</sup> RAL  | 30   |         | ns    |
| <sup>t</sup> RASP | 60   | 100,000 | ns    |
| <sup>t</sup> RCD  | 20   | 45      | ns    |
| <sup>t</sup> RP   | 40   |         | ns    |
| <sup>t</sup> RSH  | 15   |         | ns    |
| <sup>t</sup> RWL  | . 15 |         | ns    |
| tWCH              | 10   |         | ns    |
| tWCR              | 45   |         | ns    |
| †WCS              | 0    |         | ns    |
| <sup>t</sup> WP   | 10   |         | ns    |
| <sup>t</sup> WRH  | 10   |         | ns    |
| <sup>†</sup> WRP  | 10   |         | ns    |

UNDEFINED



## **EDO-PAGE-MODE READ-EARLY-WRITE CYCLE**

(Pseudo READ-MODIFY-WRITE)



NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for \(^1\)WRP and \(^1\)WRP. This design implementation will facilitate compatibility with future EDO DRAMs.

# EDO PAGE MODE TIMING PARAMETERS

|                  |     | -6     |       |
|------------------|-----|--------|-------|
| SYM              | MIN | MAX    | UNITS |
| <sup>t</sup> AA  |     | 30     | ns    |
| <sup>t</sup> ACH | 15  |        | ns    |
| <sup>t</sup> AR  | 45  |        | ns    |
| <sup>t</sup> ASC | 0 . |        | ns    |
| <sup>t</sup> ASR | 0   |        | ns    |
| <sup>t</sup> CAC |     | 17     | ns    |
| tCAH             | 10  |        | ns    |
| tCAS             | 13  | 10,000 | ns    |
| tCOH             | 5   |        | ns    |
| <sup>t</sup> CP  | 10  |        | ns    |
| <sup>t</sup> CPA |     | 35     | ns    |
| <sup>t</sup> CRP | 10  |        | ns    |
| tCSH             | 50  |        | ns    |
| <sup>t</sup> DH  | 9   |        | ns    |
| <sup>t</sup> DS  | . 0 |        | ns    |
| <sup>t</sup> PC  | 26  |        | ns    |

|                   | T    | •       |       |
|-------------------|------|---------|-------|
|                   |      | -6      |       |
| SYM               | MIN  | MAX     | UNITS |
| <sup>t</sup> RAC  |      | 60      | ns    |
| <sup>t</sup> RAD  | 15   | 30      | ns    |
| <sup>t</sup> RAH  | 10   |         | ns    |
| <sup>t</sup> RAL  | 30   |         | ns    |
| <sup>1</sup> RASP | 60   | 100,000 | ns    |
| <sup>†</sup> RCD  | 20   | 45      | ns    |
| <sup>t</sup> RCH  | 0    |         | ns    |
| tRCS              | 0    |         | ns    |
| <sup>t</sup> RP   | 40   |         | ns    |
| <sup>t</sup> RSH  | 15   |         | ns    |
| tWCH              | . 10 |         | ns    |
| †WCS              | 0    |         | ns    |
| †WHZ              | 3    | 15      | ns    |
| †WRH              | 10   |         | ns    |
| †WRP              | . 10 |         | ns    |



# FAST-PAGE-MODE READ-EARLY-WRITE CYCLE

(Pseudo READ-MODIFY-WRITE)



DON'T CARE

NOTE:

1. Do not drive data prior to tristate.

₩ UNDEFINED

# FAST PAGE MODE TIMING PARAMETERS

|                  |     | -6     |     | -7     |       |
|------------------|-----|--------|-----|--------|-------|
| SYM              | MIN | MAX    | MIN | MAX    | UNITS |
| <sup>t</sup> AA  |     | 30     |     | 35     | ns    |
| <sup>t</sup> AR  | 45  |        | 50  |        | ns    |
| <sup>t</sup> ASC | 0   |        | 0   | 1      | ns    |
| <sup>t</sup> ASR | 0   |        | 0   |        | ns    |
| CAC              |     | 15     |     | 20     | ns    |
| <sup>t</sup> CAH | 10  |        | 15  |        | ns    |
| tCAS             | 15  | 10,000 | 20  | 10,000 | ns    |
| <sup>†</sup> CLZ | 0.  |        | 0   |        | ns    |
| <sup>†</sup> CP  | 10  |        | 10  |        | ns    |
| <sup>†</sup> CRP | 10  |        | 10  |        | ns .  |
| <sup>t</sup> CSH | 60  |        | 70  |        | пѕ    |
| tCML             | 15  |        | 20  | T .    | пѕ    |
| <sup>t</sup> DH  | 10  |        | 15  |        | ns    |
| tDS .            | 0   |        | 0   |        | ns    |
| <sup>t</sup> OFF | 3   | 15     | 3   | 20     | ns    |

|                   |     | -6      |     | -7      |       |
|-------------------|-----|---------|-----|---------|-------|
| SYM               | MIN | MAX     | MIN | MAX     | UNITS |
| <sup>t</sup> PC   | 35  |         | 40  |         | ns    |
| <sup>t</sup> RAC  |     | 60      |     | 70      | ns    |
| <sup>t</sup> RAD  | 15  | 30      | 15  | 35      | ns    |
| <sup>t</sup> RAH  | 10  |         | 10  |         | ns    |
| <sup>t</sup> RAL  | 30  |         | 35  |         | ns    |
| <sup>t</sup> RASP | 60  | 100,000 | 70  | 100,000 | ns    |
| <sup>t</sup> RCD  | 20  | 45      | 20  | 50      | ns    |
| tRCS              | 0   |         | 0   |         | ns    |
| <sup>t</sup> RP   | 40  |         | 50  |         | ns    |
| <sup>t</sup> RSH  | 15  |         | 20  |         | ns    |
| †RWL              | 15  |         | 20  |         | ns    |
| †WCH              | 10  |         | 15  |         | ns    |
| †WCS              | 0   |         | 0   |         | ns    |
| tWP               | 10  |         | 15  |         | ns    |



# EDO READ CYCLE

(with WE-controlled disable)



NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

# EDO PAGE MODE TIMING PARAMETERS

| SYM              | MIN | MAX    | UNITS |
|------------------|-----|--------|-------|
| <sup>t</sup> AA  |     | 30     | ns    |
| <sup>t</sup> AR  | 45  |        | ns    |
| †ASC             | 0   |        | ns    |
| <sup>t</sup> ASR | 0   |        | ns    |
| <sup>t</sup> CAC |     | 17     | ns    |
| <sup>t</sup> CAH | 10  |        | ns    |
| tCAS             | 13  | 10,000 | ns    |
| <sup>t</sup> CLZ | 3   |        | ns    |
| <sup>t</sup> CP  | 10  |        | ns    |
| <sup>t</sup> CRP | 10  |        | пѕ    |
| <sup>†</sup> CSH | 50  |        | ns    |

|                  |       | 6   |       |
|------------------|-------|-----|-------|
| SYM              | MIN . | MAX | UNITS |
| †RAC             |       | 60  | ns    |
| †RAD             | 15    | 30  | пѕ    |
| <sup>t</sup> RAH | 10    |     | ns    |
| <sup>1</sup> RCD | 20    | 45  | ns    |
| <sup>t</sup> RCH | - 0   | 1   | ns    |
| <sup>t</sup> RCS | 0     |     | ns    |
| tWHZ             | 3     | 15  | ns    |
| <sup>t</sup> WPZ | 10    |     | ns    |
| <sup>t</sup> WRH | 10    |     | ns    |
| <sup>†</sup> WRP | 10    |     | ns    |



## **RAS-ONLY REFRESH CYCLE 27**



## **CBR REFRESH CYCLE 29**

(Addresses = DON'T CARE)



NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for \(^1\)WRP and \(^1\)WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

# FAST PAGE MODE AND EDO PAGE MODE TIMING PARAMETERS

| SYM              | -6  |        | -7  |        |       |
|------------------|-----|--------|-----|--------|-------|
|                  | MIN | MAX    | MIN | MAX    | UNITS |
| <sup>t</sup> ASR | 0   |        | 0   |        | ns    |
| <sup>t</sup> CHR | 10  |        | 10  |        | ns    |
| <sup>1</sup> CP  | 10  |        | 10  |        | ns    |
| <sup>t</sup> CRP | 10  |        | 10  |        | ns    |
| <sup>t</sup> CSR | 10  |        | 10  |        | ns    |
| <sup>t</sup> RAH | 10  |        | 10  |        | ns    |
| tRAS             | 60  | 10,000 | 70  | 10,000 | ns    |

|                  | -6  |     | -7  |     |       |
|------------------|-----|-----|-----|-----|-------|
| SYM              | MIN | MAX | MIN | MAX | UNITS |
| <sup>t</sup> RC  | 110 |     | 130 |     | ns    |
| <sup>t</sup> RP  | 40  |     | 50  |     | ns    |
| tRPC (FPM)       | 0   |     | 0   |     | ns    |
| tRPC (EDO)       | 5   | ·   |     |     | ns    |
| tWRH .           | 10  |     | 10  |     | ns    |
| <sup>t</sup> WRP | 10  |     | 10  |     | ns    |

UNDEFINED

**W** UNDEFINED





# FAST PAGE MODE AND EDO PAGE MODE TIMING PARAMETERS

|                        | -6  |     | -7  |     |       |
|------------------------|-----|-----|-----|-----|-------|
| SYM                    | MIN | MAX | MIN | MAX | UNITS |
| <sup>t</sup> AA        |     | 30  |     | 35  | ns    |
| <sup>t</sup> AR        | 45  | l   | 50  |     | ns    |
| <sup>†</sup> ASC       | 0   |     | 0   |     | ns    |
| <sup>t</sup> ASR       | 0   |     | 0   |     | ns    |
| ¹CAC (FPM)             |     | 15  |     | 20  | ns    |
| <sup>†</sup> CAC (EDO) |     | 17  |     | _   | ns    |
| <sup>t</sup> CAH       | 10  |     | 15  |     | ns    |
| <sup>t</sup> CHR       | 10  |     | 10  |     | ns    |
| <sup>†</sup> CLZ       | 3   |     | 3   |     | ns    |
| <sup>†</sup> CRP       | 10  |     | 10  |     | ns    |

|                    | -6  |        | -7  |        |       |
|--------------------|-----|--------|-----|--------|-------|
| SYM                | MIN | MAX    | MIN | MAX    | UNITS |
| ¹OFF               | 3   | 15     | 3   | 20     | ns    |
| <sup>t</sup> RAC · |     | 60     |     | 70     | ns    |
| †RAD               | 15  | 30     | 15  | 35     | ns    |
| <sup>t</sup> RAH   | 10  |        | 10  |        | ns    |
| tRAL.              | 30  |        | 35  |        | ns    |
| <sup>t</sup> RAS   | 60  | 10,000 | 70  | 10,000 | пѕ    |
| <sup>t</sup> RCD   | 20  | 45     | 20  | 50     | ns    |
| <sup>t</sup> RP    | 40  |        | 50  |        | ns    |
| <sup>t</sup> RSH   | 15  |        | 20  |        | nş    |