Проект

Перед началом выполнения проекта, необходимо изменить имя вашего ноутбука/ПК на вашу фамилию на английском языке (например: Ivanov). Затем обязательно выполнить код в ячейках ниже (их 4) (в случае не выполнения, будут вычиляться 5 баллов из проекта). В случае если модуль datetime не установлен нужно установить.

```
In [177]:
import os
os.getlogin()

Out[177]:
'Home'

In [178]:
import socket
socket.gethostbyname(socket.gethostname())

Out[178]:
'192.168.1.68'

In [179]:
!whoami
rogozhina\home
```

In [180]:

```
from datetime import datetime

current_time = datetime.now()

print(current_time)

print("Rogozhina N.A.") # написать здесь свою фамилию и инициалы
```

2023-01-05 23:54:46.160507 Rogozhina N.A.

Скачайте таблицы в формате .csv из pgadmin и далее считайте данные таблицы.

Предобработка данных и их изучения.

- 1. Выведите по 5 строк с каждой таблицы.
- 2. Введите информацию о каждой таблицы и изучите их (возможно есть какие-то странности. Опишите полученные данные.
- 3. Проверьте данные на пропуски и дубликаты.
- 4. Вычислите сводную (описательную) статистику о данных датафреймов (таблиц) и выведите ее. Опишите полученный результат.
- 5. Если в некоторых столбцах нужно изменить данные, измените их и аргументируйте зачем их стоит изменить (например, дата должна иметь тип данных datetime64, а не object).

Задания:

- 1. Найдите все параметры ПК, имеющие 8х или 40х CD и цену более 600. Отсортируйте по скорости и цене.
- 2. Для каждого производителя, выпускающего лаптоты с объёмом жесткого диска не менее 10 Гбайт и ОЗУ не менее 64 мб, найти скорости таких лаптопов. Выведите производителей и скорость. Нарисуйте график зависимости скоростей от полученных моделей ноутбуков. *Опишите* полученный арафик.
- 3. Найдите номера моделей, тип и цены всех ноутбуков производителя А. Отсортируйте по убыванию цены. Постройте гистограмму изменения цены. Опишите полученный результат и гистограмму.
- 4. Найдите производителя, номер модели и цену среди ноутбуков с наибольшей стоимостью до 1000; Нарисуйте график зависимости цен от всех производителей ноутбуков. *Опишите полученный график*.
- 5. Найдите для каждой модели ПК их количество и максимальное и минимальное ram, сгруппируйте по моделям; переименуйте колонки макс. и мин. в "max/min ram";
- 6. Проверти гипотезу: «Самые дорогие ноутбуки у производителя А». Опишите полученный результат.
- 7. Постройте матрицы корреляции для всех таблиц. *Опишите полученный результат*. Необязательно, но, если будет желание, нарисовать график тепловой карты матриц корреляции используя функцию heatmap из библиотеки seaborn. *Опишите полученный графики*.
- 8. Нарисуйте график (не графики, на одном графики должно отображаться всё) зависимости цены ноутбук/ПК от объёма жесткого диска. Опишите ваши наблюдения, существует ли какая-то зависимость и т.п.
- 9. Найдите:
 - а. количество товаров каждого типа у каждого производителя; постройте график ріе, на должно отображаться доля каждого производителя. Опишите полученные графики.
 - b. самый дорогой товар каждого типа, вывести тип и цену;

- с. производителей, делающих ноутбуки и пк ценой более 600\$, но которые не производят принтеры, вывести производителя.
- 10. Выведите новую цену каждого ноутбука и ПК получив её как модель+цена+ram. Дайте колонке название 'strange_sum';
- 11. Найти производителей, делающих ноутбуки и ПК, но не принтеры;
- 12. Найдите производителя ПК и модель, чья цена ниже средней цены ноутбука, а гат и скорость больше в 1.5 и 1.2 раза соответственно;
- 13. Написать общий вывод о полученных результатах (какие важные закономерности были вами обнаружены или получены и т.п.).

```
In [5]:
```

```
import pandas
import seaborn
```

1. Прочитаем данные из скачанных нами таблиц - для этого используем pandas.read_csv('луть к файлу')

```
In [6]:
```

```
pc = pandas.read_csv('C:/Users/Home/Documents/pc.csv')
printer = pandas.read_csv('C:/Users/Home/Documents/printer.csv')
laptop = pandas.read_csv('C:/Users/Home/Documents/laptop.csv')
product = pandas.read_csv('C:/Users/Home/Documents/product.csv')
```

Предобработка данных и их изучение

Первым шагом выведем по 5 строк с каждой таблицы:

```
In [105]:
```

```
pc.head(5)
```

Out[105]:

	code	model	speed	ram	hd	cd	price
0	1	1232	500	64	5	12x	600.0
1	10	1260	500	32	10	12x	350.0
2	11	1233	900	128	40	40x	980.0
3	12	1233	800	128	20	50x	970.0
4	2	1121	750	128	14	40x	850.0

In [39]:

printer.head(5)

Out[39]:

	code	model	color	type	price
0	1	1276	n	Laser	400.0
1	2	1433	у	Jet	270.0
2	3	1434	у	Jet	290.0
3	4	1401	n	Matrix	150.0
4	5	1408	n	Matrix	270.0

In [40]:

laptop.head(5)

Out[40]:

	code	model	speed	ram	hd	price	screen
0	1	1298	350	32	4	700.0	11
1	2	1321	500	64	8	970.0	12
2	3	1750	750	128	12	1200.0	14
3	4	1298	600	64	10	1050.0	15
4	5	1752	750	128	10	1150.0	14

```
In [41]:
```

```
product.head(5)
```

Out[41]:

	maker	model	type
0	Α	1232	PC
1	Α	1233	PC
2	Α	1276	Printer
3	Α	1298	Laptop
4	Α	1401	Printer

Выведем информацию о каждой таблице:

```
In [42]:
```

```
pc.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12 entries, 0 to 11
Data columns (total 7 columns):
    Column Non-Null Count Dtype
#
    -----
0
    code
            12 non-null
                           int64
    model
            12 non-null
                           int64
1
    speed 12 non-null
                           int64
 3
                           int64
            12 non-null
    ram
 4
    hd
            12 non-null
                           int64
    cd
            12 non-null
                           object
6
    price 12 non-null
                           float64
dtypes: float64(1), int64(5), object(1)
memory usage: 800.0+ bytes
```

In [43]:

```
laptop.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 7 columns):
    Column Non-Null Count Dtype
    -----
            6 non-null
                           int64
0
    code
 1
    model
           6 non-null
                           int64
           6 non-null
                           int64
2
    speed
3
            6 non-null
                           int64
    ram
 4
    hd
            6 non-null
                           int64
 5
    price 6 non-null
                           float64
    screen 6 non-null
                           int64
dtypes: float64(1), int64(6)
memory usage: 464.0 bytes
```

In [44]:

```
printer.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 5 columns):
#
    Column Non-Null Count Dtype
0
     code
            6 non-null
                            int64
 1
     model
            6 non-null
                            int64
           6 non-null
    color
                            object
3
    type
            6 non-null
                            object
           6 non-null
                            float64
    price
dtypes: float64(1), int64(2), object(2)
memory usage: 368.0+ bytes
```

```
In [45]:
```

В таблице **pc** колонка *cd* имеет тип *object*.

Проверим данные на пропуски с помощью метод <u>isna()</u> (<u>https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.isna.html)</u>

```
In [7]:
```

```
pc_none = pc[pc.isna().any(axis=1)]
if len(pc_none) == 0:
    print('Пропусков нет')
else:
    print(pc_none)
```

Пропусков нет

In [8]:

```
laptop_none = laptop[laptop.isna().any(axis=1)]
if len(laptop_none) == 0:
    print('Προπусков нет')
else:
    print(laptop_none)
```

Пропусков нет

In [9]:

```
printer_none = printer[printer.isna().any(axis=1)]
if len(printer_none) == 0:
    print('Пропусков нет')
else:
    print(printer_none)
```

Пропусков нет

In [10]:

```
product_none = product[product.isna().any(axis=1)]
if len(product_none) == 0:
    print('Пропусков нет')
else:
    print(product_none)
```

Пропусков нет

Проверим дубликаты с помощью duplicated() (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.duplicated.html):

In [11]:

```
pc_duplicated = pc[pc.duplicated()]
if len(pc_duplicated) == 0:
    print('Дубликатов нет')
else:
    print(pc_duplicated)
```

Дубликатов нет

In [12]:

```
laptop_duplicated = laptop[laptop.duplicated()]
if len(laptop_duplicated) == 0:
    print('Дубликатов нет')
else:
    print(laptop_duplicated)
```

Дубликатов нет

In [13]:

```
printer_duplicated = printer[printer.duplicated()]
if len(printer_duplicated) == 0:
    print('Дубликатов нет')
else:
    print(printer_duplicated)
```

Дубликатов нет

In [14]:

```
product_duplicated = product[product.duplicated()]
if len(product_duplicated) == 0:
    print('Дубликатов нет')
else:
    print(product_duplicated)
```

Дубликатов нет

Опишите сводный полученный результат:

In [125]:

```
pc.describe()
```

Out[125]:

	code	model	speed	ram	hd	price
count	12.000000	12.000000	12.000000	12.000000	12.000000	12.000000
mean	6.500000	1206.916667	608.333333	88.000000	13.666667	675.000000
std	3.605551	52.397880	153.494645	43.417634	9.670323	261.342687
min	1.000000	1121.000000	450.000000	32.000000	5.000000	350.000000
25%	3.750000	1204.250000	500.000000	56.000000	8.000000	387.500000
50%	6.500000	1232.000000	550.000000	96.000000	10.000000	725.000000
75%	9.250000	1233.000000	750.000000	128.000000	15.500000	875.000000
max	12.000000	1260.000000	900.000000	128.000000	40.000000	980.000000

В данной таблице колонка *cd* имеет тип object, а метод <u>describe()</u> (https://pandas.pydata.org/pandasdocs/stable/reference/api/pandas.DataFrame.describe.html) выводит статистику только на целочисленные показатели и показа

- count: количество объектов
- mean: среднее значение
- std: стандартное отклонение
- min: миниммальное значение
- N%: значение, за которым "лежит" N% меньших значений выборки
- тах: максимальное значение

In [128]:

laptop.describe()

Out[128]:

	code	model	speed	ram	hd	price	screen
count	6.000000	6.000000	6.000000	6.000000	6.00000	6.000000	6.000000
mean	3.500000	1452.833333	566.666667	80.000000	9.00000	1003.333333	13.000000
std	1.870829	231.131492	163.299316	39.191836	2.75681	177.951304	1.549193
min	1.000000	1298.000000	350.000000	32.000000	4.00000	700.000000	11.000000
25%	2.250000	1298.000000	462.500000	64.000000	8.50000	955.000000	12.000000
50%	3.500000	1309.500000	550.000000	64.000000	10.00000	1010.000000	13.000000
75%	4.750000	1642.750000	712.500000	112.000000	10.00000	1125.000000	14.000000
max	6.000000	1752.000000	750.000000	128.000000	12.00000	1200.000000	15.000000

В таблице **laptop** все значения имеют типы *int* либо *float*, поэтому все значения просчитаны.

```
In [129]:
```

```
printer.describe()
```

Out[129]:

	code	model	price
count	6.000000	6.000000	6.000000
mean	3.500000	1373.333333	296.666667
std	1.870829	72.060160	94.162979
min	1.000000	1276.000000	150.000000
25%	2.250000	1316.250000	270.000000
50%	3.500000	1404.500000	280.000000
75%	4.750000	1426.750000	372.500000
max	6.000000	1434.000000	400.000000

В таблице **printer** колонки *color* и *type* имеют тип **object**, следовательно описания по этим колонкам не будет.

In [131]:

```
product.describe()
```

Out[131]:

```
        count
        16.000000

        mean
        1464.500000

        std
        305.022622

        min
        1121.000000

        25%
        1272.000000

        50%
        1361.000000

        75%
        1513.000000

        max
        2113.000000
```

Так как у таблицы **product** колонки *maker* и *type* имеют тип object, по ним не будет описания.

В данном случае, я бы привела колонки **model и code** к типу *object*, так как эти колонки являются скорее описательными характеристиками, чем численными, и высчитывать статистику по этим данным некорректно в рамках текущей задачи.

```
In [7]:
```

```
pc['model'] = pc['model'].astype(object)
pc['code'] = pc['code'].astype(object)
```

In [8]:

```
pc.info()
```

In [9]:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12 entries, 0 to 11
Data columns (total 7 columns):
#
    Column Non-Null Count Dtype
0
     code
            12 non-null
                             object
 1
     model
            12 non-null
                             object
     speed 12 non-null
                             int64
3
            12 non-null
                             int64
     ram
 4
    hd
            12 non-null
                            int64
    cd
            12 non-null
                            object
            12 non-null
                            float64
    price
dtypes: float64(1), int64(3), object(3)
memory usage: 800.0+ bytes
```

laptop['model'] = laptop['model'].astype(object)
laptop['code'] = laptop['code'].astype(object)

```
In [10]:
laptop.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 7 columns):
    Column Non-Null Count Dtype
a
     code
            6 non-null
                             object
 1
     model
            6 non-null
                             object
     speed 6 non-null
                             int64
3
            6 non-null
                             int64
     ram
            6 non-null
 4
    hd
                             int64
                             float64
5
    price 6 non-null
 6
    screen 6 non-null
                             int64
dtypes: float64(1), int64(4), object(2)
memory usage: 464.0+ bytes
In [11]:
printer['model'] = printer['model'].astype(object)
printer['code'] = printer['code'].astype(object)
In [12]:
printer.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 5 columns):
# Column Non-Null Count Dtype
     code
            6 non-null
 1
    model 6 non-null
                             object
    color
           6 non-null
                             object
 3
    type
            6 non-null
                             object
    price
            6 non-null
                             float64
dtypes: float64(1), object(4)
memory usage: 368.0+ bytes
In [13]:
product['model'] = product['model'].astype(object)
In [14]:
product.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16 entries, 0 to 15
Data columns (total 3 columns):
# Column Non-Null Count Dtype
0
    maker
            16 non-null
                             object
           16 non-null
                             object
    model
            16 non-null
                             object
    tvpe
```

Задания

dtypes: object(3)

memory usage: 512.0+ bytes

Задание №1

Найдите все параметры ПК, имеющие 8x или 40x CD и цену более 600. Отсортируйте по скорости и цене.

```
In [15]:
```

рс

Out[15]:

	code	model	speed	ram	hd	cd	price
0	1	1232	500	64	5	12x	600.0
1	10	1260	500	32	10	12x	350.0
2	11	1233	900	128	40	40x	980.0
3	12	1233	800	128	20	50x	970.0
4	2	1121	750	128	14	40x	850.0
5	3	1233	500	64	5	12x	600.0
6	4	1121	600	128	14	40x	850.0
7	5	1121	600	128	8	40x	850.0
8	6	1233	750	128	20	50x	950.0
9	7	1232	500	32	10	12x	400.0
10	8	1232	450	64	8	24x	350.0
11	9	1232	450	32	10	24x	350.0

In [16]:

```
# В качестве проверки посмотрим, какие значения принимает колонка 'cd' pc.cd.value_counts()
```

Out[16]:

```
12x 4
40x 4
50x 2
24x 2
```

Name: cd, dtype: int64

Как мы видим, у нас нет ни одного пк с cd == '8x'

In [23]:

```
pc_first_selection = pc[pc['cd'] == '40x']
pc_second_selection = pc[pc['cd'] == '8x']
(pandas.concat([pc_first_selection,pc_second_selection],keys=['40x', '8x'])).sort_values(['speed','price'])
```

Out[23]:

		code	model	speed	ram	hd	cd	price
	6	4	1121	600	128	14	40x	850.0
40x	7	5	1121	600	128	8	40x	850.0
401	4	2	1121	750	128	14	40x	850.0
	2	11	1233	900	128	40	40x	980.0

Таким образом, у нас была выведена таблица со всеми параметрами компьютеров, имеющих **cd == 40x** или **cd == 8x**, отсортированную по скорости и цене.

Задание 2

Для каждого производителя, выпускающего лаптоты с объёмом жесткого диска не менее 10 Гбайт и ОЗУ не менее 64 мб, найти скорости таких лаптопов. Выведите производителей и скорость. Нарисуйте график зависимости скоростей от полученных моделей ноутбуков. Опишите полученный график

In [44]:

```
# Прежде всего выведем модели, подходящие под критерии отвора:

lp_1 = laptop[(laptop['hd'] >= 10) & (laptop['ram'] >= 64)]

# Для выполнения задания нам нужно соединить две таблицы по колонке 'model'

res1 = pandas.merge(lp1, product, on='model')

res1
```

Out[44]:

	code	model	speed	ram	hd	price	screen	maker	type
0	3	1750	750	128	12	1200.0	14	В	Laptop
1	4	1298	600	64	10	1050.0	15	Α	Laptop
2	6	1298	450	64	10	950.0	12	Α	Laptop
3	5	1752	750	128	10	1150.0	14	Α	Laptop

In [45]:

```
# Выведем производителей и скорость этих ноутбуков:
res1[['maker','speed']]
```

Out[45]:

	maker	speed
0	В	750
1	Α	600
2	Α	450
3	Δ	750

Теперь построим график зависимости скоростей от полученных моделей ноутбуков по получившейся таблице:

In [27]:

```
import matplotlib.pyplot as plt
import seaborn
```

В рамках данной задачи, более корректным способом визуализации данных является гистограмма:

In [46]:

```
index = list(res1.index)
values = list(res1['speed'])
ticks = list(res1['model'])

plt.bar(index, values, alpha = 0.3, color = 'b', tick_label = ticks, edgecolor = 'b', label = 'speed')
plt.tick_params(axis = 'both', which = 'major', direction = 'in', bottom = False)
plt.ylim(0,800)
plt.title('Зависимость скоростей от моделей ноутбуков')
plt.ylabel('Скорость ноутбуков')
plt.ylabel('Корость ноутбуков')
plt.xlabel('Модель')
plt.legend()
plt.show()
```


На данном графике мы видим: самые высокие (и равные друг другу) показатели у моделей № 1750 и №1752.

Задание 3

Найдите номера моделей, тип и цены всех ноутбуков производителя А. Отсортируйте по убыванию цены. Постройте гистограмму изменения цены. Опишите полученную гистограмму.

In [47]:

```
# Для начала объединим таблицы Laptop и product по модели:

res = pandas.merge(laptop, product, on='model').sort_values('maker')
res
```

Out[47]:

	code	model	speed	ram	hd	price	screen	maker	type
0	1	1298	350	32	4	700.0	11	Α	Laptop
1	4	1298	600	64	10	1050.0	15	Α	Laptop
2	6	1298	450	64	10	950.0	12	Α	Laptop
5	5	1752	750	128	10	1150.0	14	Α	Laptop
4	3	1750	750	128	12	1200.0	14	В	Laptop
3	2	1321	500	64	8	970.0	12	С	Laptop

In [48]:

```
# Выведем модели, тип и цены всех ноутвуков производителя A, с сортировкой по убыванию цены:

result_lap = res[res['maker'] == 'A'].sort_values('price', ascending = False)

result = result_lap[['model','type', 'price']]

result
```

Out[48]:

	model	type	price
5	1752	Laptop	1150.0
1	1298	Laptop	1050.0
2	1298	Laptop	950.0
0	1298	Laptop	700.0

In [49]:

```
# Построим график по получившимся данным:

index = list(range(len(result_lap.index)))

values = list(result_lap['price'])

ticks = list(result_lap['model'])

plt.bar(index, values, alpha = 0.3, color = 'g', tick_label = ticks, edgecolor = 'g', label = 'Стоимость')

plt.tick_params(axis = 'both', which = 'major', direction = 'in', bottom = False)

plt.ylim(0,1200)

plt.title('Зависимость цен от моделей ноутбуков')

plt.ylabel('Стоимость')

plt.ylabel('Стоимость')

plt.legend()

plt.show()
```


На данной гистаграмме мы видим, что самый высокий показатель стоимости также у модели №1752. Все три ноутбука модели №1298 занимают оставшиеся позиции.

Задание 4

Найдите производителя, номер модели и цену среди ноутбуков с наибольшей стоимостью до 1000; Нарисуйте график зависимости цен от всех производителей ноутбуков. Опишите полученный график.

In [55]:

```
# Делаем выборку ноутбуков со стоимостью до 1000:
lap4 = laptop[laptop['price'] < 1000].sort_values('price', ascending=False)

# Соединяем две таблицы:
res4 = pandas.merge(lap4, product, on='model')

# В данной таблице искомые нами данные по заданным характеристикам для ноутбуков:
res4[['maker','model','price']]
```

Out[55]:

	maker	model	price
0	С	1321	970.0
1	Α	1298	950.0
2	Α	1298	700.0

In [56]:

```
# Нам нужен только один ноутбук с наибольшей стоимостью до 1000:
res4[['maker','model','price']].head(1)
```

Out[56]:

	maker	model	price
0	С	1321	970.0

In [57]:

```
# Нарисуем график зависимости цен от всех производителей ноутбуков

# Для начала объединим таблицы Laptop и product по модели с сортировкой по производителю и цене:

res4_1 = pandas.merge(laptop, product, on='model').sort_values(['maker','price'])

res4_1
```

Out[57]:

	code	model	speed	ram	hd	price	screen	maker	type
0	1	1298	350	32	4	700.0	11	Α	Laptop
2	6	1298	450	64	10	950.0	12	Α	Laptop
1	4	1298	600	64	10	1050.0	15	Α	Laptop
5	5	1752	750	128	10	1150.0	14	Α	Laptop
4	3	1750	750	128	12	1200.0	14	В	Laptop
3	2	1321	500	64	8	970.0	12	С	Laptop

In [58]:

```
# А затем по полученным данным построим график:

index = list(range(len((res4_1.index))))

values = list(res4_1['price'])

ticks = list(res4_1['maker'])

plt.bar(index, values, alpha = 0.3, color = 'r', tick_label = ticks, edgecolor = 'r', label = 'Стоимость')

plt.tick_params(axis = 'both', which = 'major', direction = 'out')

plt.ylim(0,1400)

plt.title('График зависимости цен от производителей ноутбуков')

plt.ylabel('Стоимость')

plt.xlabel('Производитель')

plt.legend()

plt.show()
```


На данном графике мы видим, что минимальное значение стоимости у производителя **A**, максимальное - у производителя **B**. У производителя **C** средние показания стоимости продукции.

Задание 5

Найдите для каждой модели ПК их количество и максимальное и минимальное ram, сгруппируйте по моделям; переименуйте колонки макс. и мин. в "max/min_ram";

In [95]:

```
# Объединим таблицы рс и product по модели:

res_5 = pandas.merge(pc,product, on='model')

# Найдем количество для каждой модели ПК:

data_5 = pandas.pivot_table(res_5, index='model', values = 'type', aggfunc = len)

# Для удобства значения дзяла из столбца 'type'

# Найдем для каждой модели:

import numpy as np

data5 = pandas.pivot_table(res_5, index='model', values='ram', aggfunc=np.max) # максимальное значение

data5_1 = pandas.pivot_table(res_5, index='model', values='ram', aggfunc=np.min) # минимальное значение

data5_fin = data5.join(data5_1, on ='model', lsuffix = "_max", rsuffix = '_min') # объединим полученные данные через join

# с подписями где какая колонка

data_res_5 = pandas.merge(data_5, data_5_fin, on='model') # объединим с пербой таблицей

data_res_5.rename(columns={'ram_max': 'max_ram', 'ram_min': 'min_ram', 'type': 'amount'}, inplace=True) # переименуем колонки

data_res_5.
```

Out[95]:

amount max_ram min_ram

model			
1121	3	128	128
1232	4	64	32
1233	4	128	64
1260	1	32	32

Задание 6

Проверте гипотезу: «Самые дорогие ноутбуки у производителя А». Опишите полученный результат.

In [73]:

```
# Объединим таблицы по модели и отсортируем по производителю и цене для удобства:

res6 = pandas.merge(laptop, product, on='model').sort_values(['maker','price'])
res6
```

Out[73]:

	code	model	speed	ram	hd	price	screen	maker	type
0	1	1298	350	32	4	700.0	11	Α	Laptop
2	6	1298	450	64	10	950.0	12	Α	Laptop
1	4	1298	600	64	10	1050.0	15	Α	Laptop
5	5	1752	750	128	10	1150.0	14	Α	Laptop
4	3	1750	750	128	12	1200.0	14	В	Laptop
3	2	1321	500	64	8	970.0	12	С	Laptop

In [74]:

```
# вывела себе для проверки
res6.describe()
```

Out[74]:

	speed	ram	hd	price	screen
count	6.000000	6.000000	6.00000	6.000000	6.000000
mean	566.666667	80.000000	9.00000	1003.333333	13.000000
std	163.299316	39.191836	2.75681	177.951304	1.549193
min	350.000000	32.000000	4.00000	700.000000	11.000000
25%	462.500000	64.000000	8.50000	955.000000	12.000000
50%	550.000000	64.000000	10.00000	1010.000000	13.000000
75%	712.500000	112.000000	10.00000	1125.000000	14.000000
max	750.000000	128.000000	12.00000	1200.000000	15.000000

In [75]:

```
result_6 = pandas.pivot_table(res6, index = 'maker', values = 'price', aggfunc = np.mean, margins = True)
result_6.reset_index(inplace=True)
```

In [76]:

result_6

Out[76]:

	maker	price
0	Α	962.500000
1	В	1200.000000
2	С	970.000000
3	All	1003.333333

В таблице **result_6** видно, что средняя стоимость ноутбуков производителей А меньше средней стоимости среди ноутбуков всех производителей. Сделаем проверку (если у нас будет не 3 производителя, а допустим 45, это облегчит дело):

In [77]:

```
if (result_6.at[0,'price'] == result_6.at[len(result_6.index)-1,'price']):
    print('Самые дорогие ноутбуки у производителя A')
else:
    print('Самые дорогие ноутбуки не у производителя A')
```

Самые дорогие ноутбуки не у производителя А

Задание 7

Постройте матрицы корреляции для всех таблиц. Опишите полученный результат.

Для всех матриц делается выборка **только числовых значений**. Для построения матриц корреляции воспользуемся функцией <u>corr()</u> (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html)

In [78]:

```
pc_corr = pc.corr(method = 'pearson', numeric_only = True)
pc_corr
```

Out[78]:

	speed	ram	hd	price
speed	1.000000	0.818463	0.859476	0.884962
ram	0.818463	1.000000	0.547365	0.955008
hd	0.859476	0.547365	1.000000	0.622303
price	0.884962	0.955008	0.622303	1.000000

По результатам анализа видно, что стоимость ПК преимущественно зависит от размера оперативной памяти и гораздо менее от объёма жесткого диска. Скорость преимущественно зависит от стоимости, в связи с чем можно сделать вывод, что чем больше размер оперативной памяти, тем выше стоимость, и тем больше скорость.

In [79]:

```
laptop_corr = laptop.corr(method = 'pearson', numeric_only = True)
laptop_corr
```

Out[79]:

	speed	ram	hd	price	screen
speed	1.000000	0.950000	0.799671	0.954369	0.830098
ram	0.950000	1.000000	0.770054	0.908486	0.632456
hd	0.799671	0.770054	1.000000	0.929516	0.749269
price	0.954369	0.908486	0.929516	1.000000	0.819788
screen	0.830098	0.632456	0.749269	0.819788	1.000000

По результатам анализа видно, что стоимость ноутбуков преимущественно зависит от скорости и объёма жесткого диска, где скорость также тесно связана с размером оперативной памяти.

In [80]:

```
printer_corr = printer.corr(method = 'pearson', numeric_only = True)
printer_corr
```

Out[80]:

price 1.0

В таблице printer числовые значения принимает только колонка price

In [61]:

```
product_corr = product.corr(method = 'pearson', numeric_only = True)
product_corr
```

Out[61]:

_

Так как у таблицы product нет числовых данных, после применения функции у нас получился пустой датафрейм.

In [81]:

```
pc_heat = seaborn.heatmap(pc_corr, annot=True)
pc_heat.set(title = 'PC Heatmap')
plt.show()
```


На тепловой карте наглядна видна зависимость, чем светлее цвет, тем она больше. В данном случае - самый высокий показатель (не считая диагоналей) - между стоимостью и размером оперативной памяти.

In [82]:

```
lp_heat = seaborn.heatmap(laptop_corr, annot=True)
lp_heat.set(title='Laptop Heatmap')
plt.show()
```


Так же, как и в предыдущем хитмэпе - чем светлее цвет, тем больше зависимость. Здесь мы можем наглядно видеть, что между скоростью и стоимостью, и скоростью и размером оперативной памяти прямая зависимость.

Тепловая карта для матрицы корреляции по принтерам будет состоять из одной ячейки со значением 1.

Задание 8

Нарисуйте график (не графики, на одном графики должно отображаться всё) зависимости цены ноутбука/ПК от объёма жесткого диска. Опишите ваши наблюдения, существует ли какая-то зависимость и т.п.

In [85]:

```
plt.plot(laptop['hd'], laptop['price'], marker = 'o', color='b', label = 'Laptop', linestyle=':')
plt.plot(pc['hd'], pc['price'], marker = 'o', color='r', label = 'PC', linestyle=':')
plt.xlabel('Объём жесткого диска')
plt.ylabel('Стоимость')
plt.title('График зависимости стоимости ноутбуков от объёма жесткого диска')
plt.legend()
plt.show()
```

График зависимости стоимости ноутбуков от объёма жесткого диска

В рамках этого задания, более корректным способом визуализации будет гистограмма:

In [257]:

```
# Объединим таблицы Laptop и рс с таблицей product по модели:

prod_lp_8 = product[product['type']=='Laptop']

prod_pc_8 = product[product['type']=='PC']

lp_8 = pandas.merge(laptop, prod_lp_8, on='model').sort_values('hd')

pc_8 = pandas.merge(pc, prod_pc_8, on='model').sort_values('hd')

# Строим гистограмму:

plt.bar(lp_8['hd'], lp_8['price'], alpha = 0.2, color = 'r', edgecolor = 'r', label = 'Laptop')

plt.bar(pc_8['hd'], pc_8['price'], alpha = 0.2, color = 'b', edgecolor = 'b', label = 'PC')

plt.tick_params(axis = 'both', which = 'major', direction = 'out')

plt.ylam(0,1400)

plt.ylame(0,1400)

plt.ylame('Стоимость')

plt.ylabel('Стоимость')

plt.xlabel('Объем жесткого диска')

plt.legend()

plt.show()
```


Судя по графику, можно отметить, что среди выбранных нами типов - у пк могут быть существенно бОльшие по объему жесткие диски (максимальный показатель - 40, тогда как у ноутбуков - до 15).

Среди ноутбуков - чем больше объем жесткого диска, тем выше стоимость. Среди ПК можно сказать точно также, однако некоторые модели, несмотря на относительно небольшой объем жесткого диска, имеют достаточно высокую стоимость.

Задание 9

Найдите:

- количество товаров каждого типа у каждого производителя; постройте график ріе, на должно отображаться доля каждого производителя. Опишите полученный график
- самый дорогой товар каждого типа, вывести тип и цену;
- производителей, делающих ноутбуки и пк ценой более 600\$, но которые не производят принтеры, вывести производителя.

In [97]:

```
# количество товаров каждого типа у каждого производителя
df9 = pandas.pivot_table(product, index=['maker','type'], aggfunc = len)
df9
```

Out[97]:

model

naker	type	
	Laptop	2
A	PC	2
	Printer	3
В	Laptop	1
ь	PC	1
С	Laptop	1
D	Printer	2
E	PC	3
	Printer	1

In [111]:

```
# постройте график pie, на котором должна отображаться доля каждого производителя. Опишите полученный график plt.figure(figsize=(20,20)) df9.plot(kind='pie', subplots=True, cmap="YlOrRd", ylabel = '', title = 'Количество продукции каждого производителя', autopct='%1.1f%%') plt.legend(loc='center left', bbox_to_anchor=(1.2, 0.5)) plt.show()
```

<Figure size 2000x2000 with 0 Axes>

Количество продукции каждого производителя

На данной диаграмме мы видим, что преимущественно больше всего товаров у производителя *А*, меньше всего - у *С*. Принтеры производителя А и ПК производителя Е делят "первое место" в объеме продукции по отношению ко всей продукции рынка.

```
In [76]:
```

```
# самый дорогой товар каждого типа, вывести тип и цену;

# Для начала соединим таблицы Laptop,pc u printer c maблицей product:
lp_pr = pandas.merge(laptop, product, how='left', on='model').sort_values('price', ascending = False)
pc_pr = pandas.merge(pc, product, how='left', on='model').sort_values('price', ascending = False)
printer_pr = pandas.merge(printer, product, how='left', on='model').sort_values('price', ascending = False)

# Найдем максимальные значения:
lp_exp = lp_pr[lp_pr['price'] == lp_pr['price'].max()]
pc_exp = pc_pr[pc_pr['price'] == pc_pr['price'].max()]
printer_exp = printer_pr[printer_pr['price'] == printer_pr['price'].max()]
# Соединим полученные таблицы в одну
result = pandas.concat([lp_exp,pc_exp,printer_exp], keys=['Laptop','PC','Printer'])
result[['price']]
```

Out[76]:

Как мы видим, у принтеров 2 самых дорогих товара.

In [172]:

```
# производителей, делающих ноутбуки и пк ценой более 600$, но которые не производят принтеры, вывести производителя

# Определим списки производителей ноутбуков, ПК и принтеров с нужными нам характеристиками:

1p9 = laptop[laptop['price']>600]
1p_9 = pandas.merge(1p9, product,on='model')[['maker']] # производители ноутбков

pc9 = pc[pc['price']>600]
pc_9 = pandas.merge(pc9, product,on='model')[['maker']] # производители ПК

printer_9 = pandas.merge(printer, product,on='model')[['maker']] # производители принтеров

# Найдем производителей И ПК, И ноутбуков
1p_pc = pandas.merge(1p_9, pc_9, how='inner', on='maker') # производители ПК и ноутбуков

# Объединим таблицы
res = pandas.merge(1p_pc, printer_9, how = 'left', indicator=True).query("_merge == 'left_only'")[['maker']]

# indicator=True покажет, как были объединены таблицы
# методом query определить какие производители есть ТОЛЬКО в lp_pc, а какие есть и в lp_pc, и в printer_9
# метод ипіque поможет определить уникальные значения:
res['maker'].unique()
```

Out[172]:

```
array(['B'], dtype=object)
```

В итоге, у нас один производитель - В.

In [405]:

```
# В качестве проверки простроим pivot_table с объединением по производителю и типу: pandas.pivot_table(product, index = ['maker','type'])
```

Out[405]:

model

maker	type	
	Laptop	1525.000000
Α	PC	1232.500000
	Printer	1361.666667
В	Laptop	1750.000000
	PC	1121.000000
С	Laptop	1321.000000
D	Printer	1360.500000
_	PC	1828.333333
E	Printer	1434.000000

Как мы видим, только производитель В выпускает И ноутбуки, И пк, но НЕ принтеры.

Задание 10

Выведите новую цену каждого ноутбука и ПК получив её как модель+цена+ram. Дайте колонке название 'strange_sum'

```
In [335]:
```

```
# Сохраним таблицу Laptop для изменения в другую переменную и добавим колонку 'strange_sum':
lp_10 = laptop
lp_10.insert(len(laptop.columns), 'strange_sum', 0)
```

Для того, чтобы просуммировать построчно применим функцию <u>sum()</u> (<u>sum()</u> (<u>https://pandas.pydata.org/pandas.docs/stable/reference/api/pandas.DataFrame.sum.html</u>)

```
In [354]:
```

```
# Сделаем выборку нужных нам колонок

1_10 = lp_10[['model','price','ram']]

# Добавим суммированные колонки в основную рабочую таблицу:

lp_10['strange_sum'] = l_10.sum(axis=1)
```

```
In [360]:
```

```
lp_10[['strange_sum']]
```

Out[360]:

strange_sum		
0	2030.0	
1	2355.0	
2	3078.0	
3	2412.0	
4	3030.0	
5	2312.0	

То же самое сделаем и для ПК:

```
In [361]:
```

```
pc_10 = pc
pc_10.insert(len(pc.columns), 'strange_sum', 0)
```

```
In [362]:
```

```
p_10 = pc_10[['model','price','ram']]
pc_10['strange_sum'] = p_10.sum(axis=1)
pc_10[['strange_sum']]
```

Out[362]:

strange_sum			
0	1896.0		
1	1642.0		
2	2341.0		
3	2331.0		
4	2099.0		
5	1897.0		
6	2099.0		
7	2099.0		
8	2311.0		
9	1664.0		
10	1646.0		

Задание 11

1614.0

11

Найти производителей, делающих ноутбуки и ПК, но не принтеры;

In [176]:

```
# Определим списки производителей ноутбуков, ПК и принтеров:

lp_12 = pandas.merge(laptop, product,on='model')[['maker']] # производители ноутбков

pc_12 = pandas.merge(pc, product,on='model')[['maker']] # производители ПК

printer_12 = pandas.merge(printer, product,on='model')[['maker']] # производители принтеров

# Найдем производителей И ПК, И ноутбуков

lp_pc = pandas.merge(lp_12, pc_12, how='inner', on='maker') # производители ПК и ноутбуков

# Объединим таблицы

res = pandas.merge(lp_pc, printer_12, how = 'left', indicator=True).query("_merge == 'left_only'")[['maker']]

# методом query определим, какие производители есть ТОЛЬКО в lp_pc, а какие есть и в lp_pc, и в printer_12

# метод unique поможет определить уникальные значения:

res['maker'].unique()

Out[176]:

array(['B'], dtype=object)
```

Задание 12

Найдите производителя ПК и модель, чья цена ниже средней цены ноутбука, а гат и скорость больше в 1.5 и 1.2 раза соответственно;

In [112]:

```
# Подготовим таблицу пк, по которой будем делать выборку:

pc_12 = pandas.merge(pc, product, on='model')

pc_12

# Найдем нужные значения для выборки:

avg_price = np.mean(laptop['price'])

avg_ram = np.mean(laptop['ram'])

avg_speed = np.mean(laptop['speed'])

# Выведем производителя и модель:

pc_12[(pc_12['price'] < avg_price)&(pc_12['ram'] > avg_ram*1.5)&(pc_12['speed']>avg_speed*1.2)][['maker', 'model']]
```

Out[112]:

5	Α	1233
6	Α	1233
8	Α	1233
9	В	1121

maker model

Задание 13

Написать общий вывод о полученных результатах (какие важные закономерности были вами обнаружены или получены и т.п.)

- 1. Производитель А самый крупный из всех представленных. Единственный из всех производит все виды товаров.
- 2. Построив диаграммы (см. ниже) по каждому производителю по производимой продукции мы видим, что производитель С производит только ноутбуки, а производитель D только принтеры. В условиях рынка такая узная специализация не совсем уместна.

In [113]:

<Figure size 640x480 with 0 Axes>

Производимая продукция А

Производимая продукция В

Производимая продукция С

Производимая продукция D

Производимая продукция Е

