

GPIG – Initial Report

Department of Computer Science, University of York

Group D

Kieran McHugh (KM)

Liam Wellacott (LW)

Andrei Zisu (AZ)

Lloyd Still (LS)

Oliver Lea (OL)

Mark Woosey (MW)

Paulius Kazakas (PK)

Submission on 11th May 2017

Contents

1	Introduction	1
2	The Shipping Industry	2
3	Collaborative Autonomy in 2030	3
4	System Description	4
5	Advantages and Benefits	5
6	System Prototype	6
7	Team Structure	7
8	Key Processes	8
9	Communication Strategy	9
10	Risk Register	10
11	Conclusion	11
	References	12

1 Introduction

2 The Shipping Industry

3 Collaborative Autonomy in 2030

4 System Description

5 Advantages and Benefits

6 System Prototype

7 Team Structure

8 Key Processes

9 Communication Strategy

10 Risk Register

We identified the following ongoing risks, assigning a mitigation strategy to each, as well as a relevant owner based on the roles described in Section 7.

ID	Description	Likelihood	Impact	Owner	Mitigation
1	Team members are unable to complete writing tasks in a timely fashion due to illness or preoccupation with other work.	Low	High	KM/LW	
2	Team members struggle to complete assigned programming tasks in time due to lack of experience with the chosen technologies.	Medium	High	OL	
3	The chosen languages, frameworks, or libraries are too difficult to learn, have compatibility issues, or do not have the expected capabilities.	Medium	High	MW	
4	Progress on programming tasks is delayed due to poor code quality, duplication of ef- fort, or conflicting code commits by team members.	Medium	Medium	AZ	
5	The customer is not available to give comments on proposed changes or additions to the system specification.	Medium	Low	PK	
6	Incomplete metrics due to members not completing the daily online 'stand-up', forgetting to log their activity, or not maintaining their action tickets.	High	Low	LS	
7	Loss of writing or code due to failure of team members' hardware and lack of regular backup/commit.	Low	High	KM/OL	
8	Team members are not aware of assigned tasks, or complete the wrong tasks, due to not attending meetings, or being late to meetings.	High	Medium	LW	
9	Difficulty completing programming tasks on time due to underestimation of work involved or too broad a scope.	Medium	High	MW/OL	
10	Delays in creating the prototype due to the identification of a major design flaw in the system specification.	Low	High	KM/LW	

11 Conclusion

References