eBook Chapter 1 Odd Problem Assignment

- Section 1.1 all odd problems
- Section 1.2 all odd problems
- Section 1.3 problems: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 103, 105, 107, 109
- Section 1.4 all odd problems
- Section 1.5 all odd problems.
 Please refer to eBook Appendix for answers to all odd problems for this section.

My Solutions for some Odd Problems

Section 1.1

- 1. <
- 3. >
- 5. <
- 7. <
- 9. >

Order from smallest to largest:

- 11. -1, |0|, |-2|, 3, 7, |-11|
- 13. -5, -2, 0, 1, |-6|, |-7|, |11|

Simplify without using a calculator:

- **15. −2**
- 17. -21
- 19. 4
- 21. -42
- 23. -7
- 25. -9
- 27. -12
- 29. -5
- 31. -45
- 33. -40
- 35. -63
- **37. −**9
- 39. -9
- 41. -7
- 43. -20
- 45. 125
- 47. 16
- 49. 64

55.
$$3+(-6)=-3$$

57.
$$4-7=-3$$

59.
$$-3-5 \cdot 5 = -3-25 = -28$$

61.
$$-10-4 \cdot (-4) = -10-(-16) = -10+16=6$$

63.
$$(3-16)-(8-10)=(-13)-(-2)=-11$$

65.
$$3+2[4(2-9)-2(5-16)]=3+2[4(-7)-2(-11)]=3+2[-28+22]=3+2[-6]$$

= 3-12 = -9

67.
$$12 - 3[3(8-8) - 2(15-9)] = 12 - 3[2 \cdot 0 - 2 \cdot 6] = 12 - 3[0 - 12] = 12 - 3[-12] = 12 + 36$$

= 12 + 36 = 48

69.
$$3\{5-2[3]-3[-4+4\cdot 3]\}=3\{5-6-3[-4+12]\}=3\{5-6-3[8]\}=3\{5-6-24\}$$

= $3\{-25\}=-75$

71.
$$-4\{2[-10]-4[8+4(-8)]\}=-4\{-20-4[8+(-32)]\}=-4\{-20-4[-24]\}$$

 $-4\{-20+96\}=-4\{76\}=-304$

73.
$$$800-4($230)-$275=$800-920-$275=-$120-$275=-$395$$

Maria has to borrow from roommate \$395

75.
$$1776 - (-753) - 1 = 2528$$
 years

Section 1.2

1.
$$36/2 \rightarrow 18/2 \rightarrow 9/3 \rightarrow 3 \Rightarrow 2 \cdot 2 \cdot 3 \cdot 3 = 2^2 \cdot 3^2$$

3.
$$100/2 \rightarrow 50/2 \rightarrow 25/5 \rightarrow 5 \Rightarrow 2 \cdot 2 \cdot 5 \cdot 5 = 2^2 \cdot 5^2$$

5.
$$220/2 \rightarrow 110/2 \rightarrow 55/5 \rightarrow 11 \Rightarrow 2 \cdot 2 \cdot 5 \cdot 11 = 2^2 \cdot 5 \cdot 11$$

7.
$$18/2 \rightarrow 9/3 \rightarrow 3 \Rightarrow 2 \cdot 3 \cdot 3 = 2 \cdot 3^2$$

 $45/3 \rightarrow 15/3 \rightarrow 5 \Rightarrow 3 \cdot 3 \cdot 5 = 3^2 \cdot 5$

least common multiple (LCM) of 18 and 45 is $2 \cdot 3^2 \cdot 5 = 90$

9.
$$120/2 \rightarrow 60/2 \rightarrow 30/2 \rightarrow 15/3 \rightarrow 5 \Rightarrow 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 = 2^{3} \cdot 3 \cdot 5$$

 $216/2 \rightarrow 108/2 \rightarrow 54/2 \rightarrow 27/3 \rightarrow 9/3 \rightarrow 3 \Rightarrow 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 = 2^{3} \cdot 3^{3}$

least common multiple (LCM) of 120 and 216 is $2^3 \cdot 3^3 \cdot 5 = 1080$

11.
$$84/2 \rightarrow 42/2 \rightarrow 21/3 \rightarrow 7 \Rightarrow 2 \cdot 2 \cdot 3 \cdot 7 = 2^2 \cdot 3 \cdot 7$$

 $108/2 \rightarrow 54/2 \rightarrow 27/3 \rightarrow 9/3 \rightarrow 3 \Rightarrow 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 = 2^2 \cdot 3^3$
 $120/2 \rightarrow 60/2 \rightarrow 30/2 \rightarrow 15/3 \rightarrow 5 \Rightarrow 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 = 2^3 \cdot 3 \cdot 5$

least common multiple (LCM) of 120 and 216 is $2^3 \cdot 3^3 \cdot 5 \cdot 7 = 7560$

13.
$$18/2 \rightarrow 9/3 \rightarrow 3 \Rightarrow 2 \cdot 3 \cdot 3 = 2 \cdot 3^2$$

 $24/2 \rightarrow 12/2 \rightarrow 6/2 \rightarrow 3 \Rightarrow 2 \cdot 2 \cdot 2 \cdot 3 = 2^3 \cdot 3$

greatest common factor (GCF) of 18 and 24 is
$$2 \cdot 3 = 6$$

15.
$$168/2 \rightarrow 84/2 \rightarrow 42/2 \rightarrow 21/3 \rightarrow 7 \Rightarrow 2 \cdot 2 \cdot 2 \cdot 3 \cdot 7 = 2^{3} \cdot 3 \cdot 7$$

 $280/2 \rightarrow 140/2 \rightarrow 70/2 \rightarrow 35/5 \rightarrow 7 \Rightarrow 2 \cdot 2 \cdot 2 \cdot 5 \cdot 7 = 2^{3} \cdot 5 \cdot 7$
greatest common factor (GCF) of 168 and 280 is $2^{3} \cdot 7 = 8 \cdot 7 = 56$

17. Find the greatest common factor (GCF) of 84. 168. and 252.

$$84/2 \rightarrow 42/2 \rightarrow 21/3 \rightarrow 7 \Rightarrow 2 \cdot 2 \cdot 3 \cdot 7 = 2^2 \cdot 3 \cdot 7$$

 $168/2 \rightarrow 84/2 \rightarrow 42/2 \rightarrow 21/3 \rightarrow 7 \Rightarrow 2 \cdot 2 \cdot 2 \cdot 3 \cdot 7 = 2^3 \cdot 3 \cdot 7$
 $252/2 \rightarrow 126/2 \rightarrow 63/3 \rightarrow 21/3 \rightarrow 7 \Rightarrow 2 \cdot 2 \cdot 3 \cdot 7 = 2^2 \cdot 3 \cdot 7$
greatest common factor (GCF) of 84. 168. and 252 = $2^2 \cdot 3 \cdot 7 = 84$

19.
$$42/2 \rightarrow 21/3 \rightarrow 7 \Rightarrow 2 \cdot 3 \cdot 7$$

 $30/2 \rightarrow 15/3 \rightarrow 5 \Rightarrow 2 \cdot 3 \cdot 5$
 $18/2 \rightarrow 9/3 \rightarrow 3 \Rightarrow 2 \cdot 3 \cdot 3 = 2 \cdot 3^{2}$

least common multiple (LCM) of 42, 30, and 18 is $2 \cdot 3^2 \cdot 5 \cdot 7 = 630$ students

21.
$$72/2 \rightarrow 36/2 \rightarrow 18/2 \rightarrow 9/3 \rightarrow 3 \Rightarrow 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 = 2^{3} \cdot 3^{2}$$

 $48/2 \rightarrow 24/2 \rightarrow 12/2 \rightarrow 6/2 \rightarrow 3 \Rightarrow 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 = 2^{4} \cdot 3$
greatest common factor (GCF) of 72 and 48 = $2^{3} \cdot 3 = 24$ exams

Section 1.3 Rational Numbers

1.
$$3\frac{1}{2} = \frac{3 \cdot 2 + 1}{2} = \frac{6 + 1}{2} = \frac{7}{2}$$

5.
$$-5\frac{4}{7} = -\frac{5\cdot 7 + 4}{7} = -\frac{35 + 4}{7} = -\frac{39}{7}$$

9.
$$\frac{23}{5} = 23 \div 5 = 4R3 = 4\frac{3}{5}$$

13.
$$-\frac{57}{12} = -57 \div 12 = -4R9 = -4\frac{9}{12} = -4\frac{3}{4}$$

21.
$$-12\frac{3}{16} = -\left(12 + \frac{3}{16}\right) = -12.1875$$

25.
$$32\frac{5}{6} = 32 + \frac{5}{6} = 32.8\overline{3}$$

29.
$$5.32 = \frac{532}{100} = \frac{2 \cdot 2 \cdot 133}{2 \cdot 2 \cdot 25} = \frac{133}{25}$$

33.
$$\frac{12}{28} = \frac{2}{2} \cdot \frac{2}{2} \cdot \frac{3}{7} = \frac{3}{7}$$

37.
$$\frac{84}{168} = \frac{2 \cdot 2 \cdot 3 \cdot 7}{2 \cdot 2 \cdot 2 \cdot 3 \cdot 7} = \frac{1}{2}$$

41.
$$\frac{7}{27} \cdot \frac{18}{42} = \frac{7 \cdot 18}{27 \cdot 42} = \frac{1 \cdot 2}{3 \cdot 6} = \frac{2}{18} = \frac{1}{9}$$

45.
$$\left(-\frac{5}{12}\right)\cdot\left(-\frac{8}{25}\right) = \frac{5\cdot 8}{12\cdot 25} = \frac{1\cdot 2}{3\cdot 5} = \frac{2}{15}$$

$$49. \quad 5\frac{1}{9} \cdot \left(-7\frac{2}{3}\right) = \left(\frac{5 \cdot 9 + 1}{9}\right) \cdot \left(-\frac{7 \cdot 3 + 2}{3}\right) = \left(\frac{46}{9}\right) \cdot \left(-\frac{23}{3}\right) = -\frac{46 \cdot 23}{9 \cdot 3} = -\frac{1058}{27} = -39\frac{5}{27}$$

53.
$$\frac{9}{14} \div \frac{27}{35} = \frac{9}{14} \cdot \frac{35}{27} = \frac{1}{2} \cdot \frac{5}{3} = \frac{5}{6}$$

57.
$$-\frac{16}{25} \div \left(-\frac{15}{8}\right) = -\frac{16}{25} \cdot \left(-\frac{8}{15}\right) = \frac{16}{25} \cdot \frac{8}{15} = \frac{128}{375}$$

61.
$$5\frac{5}{8} \div 3\frac{1}{3} = \frac{5 \cdot 8 + 5}{8} \div \frac{3 \cdot 3 + 1}{3} = \frac{45}{8} \div \frac{10}{3} = \frac{45}{8} \cdot \frac{3}{10} = \frac{9}{8} \cdot \frac{3}{2} = \frac{27}{16} = 1\frac{11}{16}$$

65.
$$-3\frac{5}{6} \div \left(-11\frac{1}{2}\right) = \frac{3 \cdot 6 + 5}{6} \div \left(\frac{11 \cdot 2 + 1}{2}\right) = \frac{23}{6} \cdot \left(\frac{2}{23}\right) = \frac{2}{6} = \frac{1}{3}$$

69.
$$\left(-\frac{5}{7}\right)^2 = \frac{25}{49}$$

73.
$$\frac{3}{7} + \frac{2}{7} = \frac{3+2}{7} = \frac{5}{7}$$

77.
$$\frac{1}{4} + \frac{2}{3} \rightarrow LCD = 12 \rightarrow \frac{3}{3} \cdot \frac{1}{4} + \frac{2}{3} \cdot \frac{4}{4} = \frac{3+8}{12} = \frac{11}{12}$$

81.
$$-\frac{5}{6} - \left(-\frac{3}{10}\right) \rightarrow LCD = 30 \rightarrow -\frac{5}{6} \cdot \left(\frac{5}{5}\right) + \frac{3}{10} \cdot \frac{3}{3} = \frac{-25 + 9}{30} = \frac{-16}{30} = -\frac{8}{15}$$

85.
$$2\frac{5}{6} + 11\frac{2}{3} \Rightarrow \text{Add Wholes then Fractions} \Rightarrow 2 + 11 \cdots \frac{5}{6} + \frac{2}{3} \cdot \frac{2}{2} = 13\frac{9}{6} = 14\frac{1}{2}$$

89.
$$3\frac{5}{6} + 4\frac{3}{4} = \frac{3 \cdot 6 + 5}{6} + \frac{4 \cdot 4 + 3}{4} = \frac{23}{6} + \frac{19}{4} \rightarrow LCD = 12 \rightarrow \frac{2}{2} \cdot \frac{23}{6} + \frac{19}{4} \cdot \frac{3}{3} = \frac{46 + 57}{12} = \frac{103}{12} = 8\frac{7}{12}$$

93.
$$\frac{\frac{5}{14} - \frac{4}{7}}{\frac{4}{21} + \frac{11}{3}} = \frac{\frac{5}{14} - \frac{4}{7} \cdot \frac{2}{2}}{\frac{4}{21} + \frac{11}{3} \cdot \frac{7}{7}} = \frac{\frac{5-8}{14}}{\frac{4+77}{21}} = \frac{\frac{-3}{14}}{\frac{81}{21}} = \frac{-3}{14} \cdot \frac{21}{81} = -\frac{1}{2} \cdot \frac{3}{27} = -\frac{1}{2} \cdot \frac{1}{9} = -\frac{1}{18}$$

97.
$$\frac{1}{2} + \frac{\frac{3}{8}}{\frac{5}{2} - 4} \cdot \frac{2}{3} = \frac{1}{2} + \frac{\frac{3}{8}}{\left(\frac{5}{2} - \frac{4 \cdot 2}{2}\right)} \cdot \frac{2}{3} = \frac{1}{2} + \frac{\frac{3}{8}}{\left(\frac{5 - 8}{2}\right)} \cdot \frac{2}{3}$$
$$= \frac{1}{2} + \frac{\frac{3}{8}}{-\frac{3}{2}} \cdot \frac{2}{3} = \frac{1}{2} + \frac{3}{8} \cdot \left(-\frac{2}{3}\right) \cdot \frac{2}{3} = \frac{1}{2} + \left(-\frac{6}{24}\right) \cdot \frac{2}{3} = \frac{1}{2} + \left(-\frac{1}{6}\right) = \frac{3}{6} + \left(-\frac{1}{6}\right) = \frac{3 - 1}{6} = \frac{1}{3}$$

101.
$$\left(-\frac{5}{6}\right) \cdot \frac{7}{15} \cdot \frac{9}{10} = \left(-\frac{1}{2}\right) \cdot \frac{7}{15} \cdot \frac{3}{2} = \left(-\frac{1}{2}\right) \cdot \frac{7}{5} \cdot \frac{1}{2} = \left(-\frac{7}{20}\right)$$

103.
$$\frac{2}{3} + \frac{4}{9} + \left(-\frac{5}{6}\right) \rightarrow LCD = 18 \rightarrow \frac{2}{3} \cdot \frac{6}{6} + \frac{4}{9} \cdot \frac{2}{2} + \left(-\frac{5}{6}\right) \cdot \frac{3}{3} = \frac{12 + 8 - 15}{18} = \frac{5}{18}$$

105.
$$\frac{11}{27} \div \frac{5}{18} = \frac{11}{27} \cdot \frac{18}{5} = \frac{11}{9} \cdot \frac{6}{5} = \frac{11}{3} \cdot \frac{2}{5} = \frac{22}{15} = 1\frac{7}{15}$$

107.
$$-4\frac{4}{7} - 2\frac{3}{14} = -\frac{4 \cdot 7 + 4}{7} - \frac{2 \cdot 14 + 3}{14} = -\frac{32}{7} - \frac{31}{14} \rightarrow LCD = 14 \rightarrow \frac{2}{2} \cdot \left(-\frac{32}{7}\right) - \frac{31}{14} = \frac{-64 - 31}{14}$$
$$= \frac{-95}{14} = -6\frac{11}{14}$$

109. Step 1: Given Car's tank = $12\frac{2}{3}$ gallons and you want to fill $\frac{3}{5}$ of tank with gas.

Unknown = How many Gallons?

Step 2: Determine relationship between Known items to find unknown.

How many Gallons are required to fill tank $60\% = 12\frac{2}{3} \cdot \frac{3}{5}$

Step 3: Solve equations for relationships

Gallons=
$$12\frac{2}{3} \cdot \frac{3}{5} = \frac{12 \cdot 3 + 2}{3} \cdot \frac{3}{5} = \frac{38}{3} \cdot \frac{3}{5} = \frac{38}{5} = 7\frac{3}{5}$$
 gallons of gas

Step 4: Check your answer by stating the word problem with the solved answer Yes, the answer is correct.

Section 1.4 Irrational Numbers

1.
$$\sqrt{49} = 7$$

3.
$$\sqrt{64} = 8$$

5.
$$9\sqrt{16} = 9.4 = 36$$

7.
$$\sqrt{157} = 12.53$$

9.
$$21\sqrt{45,693} = 4488.9434$$

11.
$$\sqrt{32} = \sqrt{16 \cdot 2} = 4\sqrt{2}$$
 or use paired prime factors $\sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} = 4\sqrt{2}$

13.
$$\sqrt{128} = \sqrt{64 \cdot 2} = \sqrt{64} \cdot \sqrt{2} = 8\sqrt{2}$$

15.
$$5\sqrt{27} = 5\sqrt{9.3} = 5.3\sqrt{3} = 15\sqrt{3}$$
 or pair prime factors $5\sqrt{3.3.3} = 5.3\sqrt{3} = 15\sqrt{3}$

17.
$$15\sqrt{242} = 15\sqrt{2 \cdot 121} = 15\sqrt{2}\sqrt{121} = 15 \cdot 11\sqrt{2} = 165\sqrt{2}$$

19.
$$\sqrt{15} \cdot \sqrt{6} = \sqrt{3.5} \cdot \sqrt{2.3} = \sqrt{2.3.3.5} = 3\sqrt{2.5} = 3\sqrt{10}$$

21.
$$\sqrt{30} \cdot \sqrt{70} = \sqrt{3} \cdot \sqrt{10} \cdot \sqrt{7} \cdot \sqrt{10} = 10\sqrt{3.7} = 10\sqrt{21}$$

23.
$$\sqrt{30} \cdot \sqrt{70} = \sqrt{3} \cdot \sqrt{10} \cdot \sqrt{7} \cdot \sqrt{10} = 10\sqrt{3.7} = 10\sqrt{21}$$

25.
$$7\sqrt{24} \cdot 5\sqrt{36} = 7\sqrt{4} \cdot 6 \cdot 5 \cdot 6 = 7 \cdot 2 \cdot 5 \cdot 6\sqrt{6} = 420\sqrt{6}$$

27.
$$\sqrt{5} \cdot (\sqrt{15} + \sqrt{5}) = \sqrt{5} \cdot \sqrt{3 \cdot 5} + \sqrt{5} \cdot \sqrt{5} = \sqrt{5} \cdot \sqrt{3} \cdot \sqrt{5} + \sqrt{5} \cdot \sqrt{5} = 5\sqrt{3} + 5$$

29.
$$\sqrt{7} \cdot (\sqrt{14} - \sqrt{7}) = \sqrt{7} \cdot (\sqrt{2} \cdot \sqrt{7} - \sqrt{7}) = 7\sqrt{2} - 7$$

31.
$$3\sqrt{5} \cdot (2\sqrt{5} - 3\sqrt{15}) = 3\sqrt{5} \cdot 2\sqrt{5} - 3\sqrt{5} \cdot 3\sqrt{3 \cdot 5} = 6 \cdot 5 - 9 \cdot 5\sqrt{3} = 30 - 45\sqrt{3}$$

33.
$$7\sqrt{2}\cdot(5\sqrt{6}-4\sqrt{2})=7\sqrt{2}\cdot5\sqrt{2}\cdot3-4\sqrt{2}\cdot7\sqrt{2}=35\cdot2\sqrt{3}-4\cdot2\cdot7=70\sqrt{3}-56$$

35.
$$4\sqrt{3}+7\sqrt{3}-2\sqrt{3}=(4+7-2)\sqrt{3}=9\sqrt{3}$$

37.
$$3\sqrt{5}+6\sqrt{5}-7\sqrt{10}=(3+6)\sqrt{5}-7\sqrt{10}=9\sqrt{5}-7\sqrt{10}$$

39.
$$12\sqrt{12}+3\sqrt{27}-4\sqrt{75}=12\sqrt{3\cdot 4}+3\sqrt{3\cdot 9}-4\sqrt{3\cdot 25}=24\sqrt{3}+9\sqrt{3}-20\sqrt{3}=13\sqrt{3}$$

41.
$$7\sqrt{2.16} + 8\sqrt{2.25} - 10\sqrt{2.36} = 7.4\sqrt{2} + 8.5\sqrt{2} - 10.6\sqrt{2} = 28\sqrt{2} + 40\sqrt{2} - 60\sqrt{2} = 8\sqrt{2}$$

43a.
$$v = 100 + 9.8\sqrt{5000} = 793 \text{ km/hour}$$

b.
$$v = 100 + 9.8\sqrt{600} = 340 \text{ km/hour}$$

c. Velocity is a function of depth. As depth decreases so does the velocity.

45.
$$t = \sqrt{0.204 \times 381} = 8.8$$
 seconds

Section 1.5 Exponents and Scientific Notation

Please note all odd problems are assigned, but only select solutions are provided. See eBook Appendix for answers to all odd problems.

1.
$$9^2 = 9.9 = 81$$

5.
$$-2^4 = -(2 \cdot 2 \cdot 2 \cdot 2) = -16$$

9.
$$-15^0 = -(1) = -1$$

13.
$$2^3 \cdot 2^2 = 2^{3+2} = 2^5 = 32$$

17.
$$(4^3)^2 = 4^{3 \cdot 2} = 4^6 = 4096$$

23.
$$(-4)^{-2} = \frac{1}{(-4)^2} = \frac{1}{16}$$

27.
$$3^5 \cdot 3^{-8} = 3^{5-8} = 3^{-3} = \frac{1}{3^3} = \frac{1}{27}$$

31.
$$\frac{2^5}{2^8} = 2^{5-8} = 2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

35.
$$\frac{7^9}{7^{11}} = 7^{9-11} = 7^{-2} = \frac{1}{7^2} = \frac{1}{49}$$

43.
$$\frac{x^{10} \cdot y^7}{x^5 \cdot y^3} = x^{10-5} \cdot y^{7-3} = x^5 \cdot y^4$$

51.
$$\frac{(x^3 \cdot y^7)^{-2}}{(x^5 \cdot y^6)^{-1}} = \frac{(x^5 \cdot y^6)}{(x^6 \cdot y^{14})} = x^{-1} \cdot y^{-8} = \frac{1}{x \cdot y^8}$$

63.
$$(2.5 \times 10^9) \cdot (2.34 \times 10^{11}) = (2.5 \times 2.34) \times 10^{9+11} = 5.85 \times 10^{20}$$

63.
$$(2.5 \times 10^{9}) \cdot (2.34 \times 10^{11}) = (2.5 \times 2.34) \times 10^{9+11} = 5.85 \times 10^{20}$$
67. $\frac{6.82 \times 10^{-6}}{2.2 \times 10^{10}} = \left(\frac{6.82}{2.2}\right) \times 10^{-6-10} = 3.1 \times 10^{-16}$

71.
$$\frac{(1.6\times10^{6})\cdot(4.5\times10^{-4})}{(1.2\times10^{-6})\cdot(3\times10^{8})} = \frac{(1.6\cdot4.5)\times(10^{6-4})}{(1.2\cdot3)\times10^{-6+8}} = \frac{7.2\times10^{2}}{3.6\times10^{2}} = \left(\frac{7.2}{3.6}\right)\times10^{2-2} = 2\times10^{0} = 2\times10^{0}$$

Given: 1 light year= 5.88×10^{12} miles AND Andromeda galaxy = 2,500,000 light years 75. Unknown: How many miles away is the Andromeda galaxy?

$$\frac{2.5\times10^{6}\,light\;years}{1}\cdot\frac{5.88\times10^{12}\,miles}{1\;light\;year}=(2.5\cdot5.88)\times10^{6+12}\,miles=14.7\times10^{18}\,miles=1.47\times10^{19}\,miles$$