ME 55600/I0200

Homework #6: Solution

Using force balance:

$$F_D + F_B = W$$

$$6\pi\mu UR + \rho_{air}g\frac{4}{3}\pi R^3 = \rho_pg\frac{4}{3}\pi R^3$$

Solving for *U*:

$$U = \frac{2}{9\mu} g R^2 \rho_p \left(1 - \frac{\rho_{air}}{\rho_p} \right)$$

Since.
$$\frac{\rho_{air}}{\rho_p} \ll 1$$
 then $U = \frac{2}{9\mu} g R^2 \rho_p \sim \frac{\rho_p}{\mu} R^2 [m/s]$ Here $\frac{2g}{9} \sim O(1)$

Let
$$\rho_p \sim 10^3 \ kg/m^3$$
, $\mu \sim 10^{-5} \ kg/m - s$

For
$$R = 10^{-4} m$$
 $U = \frac{10^3}{10^{-5}} (10^{-4})^2 \sim 1 \, m/s$ $Re = \frac{UR}{v} \sim 10 \gg 1$. (not valid); $(v_{air} \sim 10^{-5} \, m^2/s)$

For
$$R = 10^{-5} m$$
 $U = 0.01 m/s$ $Re \sim 0.01$

A particle falling form 1 km, $t = \frac{10^3}{0.01} = 10^5 \text{ s}$ or 28 hrs.

A particle falling from 10 km, $t \sim 12 \text{ days}$.