

Smart Glasses for Gait Analysis in Parkinson Disease

Electronic Technologies and Biosensors Laboratory

Professor: Cerveri Pietro Tutor: Marsilio Luca

Students: Barbieri Lorenzo Camporeale Giulia Crippa Mattia

Oriolo Giovanni Maria

A.Y. 2022/2023

Introduzione e contesto

Obiettivo del device? Classificare camminata del paziente

Come?

TUG test Acquisizione parametri inerziali e temporali

Contesto di utilizzo?

Ausilio valutazione condizione del paziente, test di prima valutazione/conoscitivo.

Può essere utilizzato sia in ambito clinico che domiciliare con ausilio persona esterna (anche non qualificata).

Stato dell'arte: revisione della letteratura

Smart Glasses for Gait Analysis in Parkinson's Disease: A preliminary study

Ivana Kiprijanovska, Simon Stankoski, Martin Gjoreski, James Archer William Archer, John Broulidakis. Ifigencia Mavridou, Bradley Hayes, Charles Nduka, Hristijan Gjoreski

doi: https://doi.org/10.1101/2022.10.22.22281214

Posted October 25, 2022.

https://doi.org/10.1101/2022.10.22.22281214

Obiettivo:

Analisi preliminare della capacità di fornire informazioni oggettive sullo stato motorio di pazienti Parkinson da parte di occhiali smart

Protocollo sperimentale:

TUG test indossando occhiali e compilazione due questionari (target)

Conclusioni:

Occhiali smart si sono dimostrati potenzialmente utili a fornire informazioni quantitative riguardo lo stato dei pazienti Parkinson

Hardware setup

Device in 2 moduli:

Software integration

Experimental setup

Protocollo sperimentale

Posizionamento sensore

Soggetti coinvolti

4 soggetti sani, età 24 anni (20 –30 sessioni) Cammino anomalo simulato (FOG, ridotta mobilità)

Classificazione a 3 stati

Ai soggetti è stato richiesto il tipo di cammino simulato alla fine di ogni sessione. Target inserito manualmente.

[0] = normal [1] = anomalous [2] = assistance

Data processing e model training

Tempo (t) come discriminante assoluta:

normal gait t < 10.65 s

anomalous gait 10.65 s < t < 18.4 s

Ö

need assistance t > 18.4 s

Conclusioni

Connessione tra *microcontrollore* e *PC* stabile e veloce tramite *bluetooth*

Definito un valido algoritmo per il conteggio dei passi

Implementazione di una semplice interfaccia grafica con l'utente (GUI)

Classificazione three-state del paziente tramite modello ML

Progetto e realizzazione PCB

POLITECNICO DI MILANO

Thank you for your attention!

Any question?

