

Rgression Linaire Simple/Multiple

Exercice 1

Soit X et Y deux variables statistiques qui sont dpendant; $\rho(X,Y)$ est le coefficient de corrélation qui mesure la liaison statistique (dépendance) entre X et Y.

1°) Donner l'expression de $\rho(X,Y)$.

Supposons qu'on a un échantillon de taille n, soit $x_1, x_2, x_3, \ldots, x_n; y_1, y_2, y_3, \ldots, y_n$ les n réalisations de X et Y.

- 2°) Donner l'expression empirique de $\rho(X,Y)$.
- 3°) Le modèle linéaire de la régression simple est donné par : $Y = \beta_0 + \beta_1 X + \varepsilon$ où β_0 et β_1 sont deux paramétres à estimer. Le résidu ε est une variable aléatoire suit une loi normale donnée par : $\mathcal{N}(0, \sigma^2)$ et représente l'erreur du modèle linéaire sur l'échantillo. Pour i = 1, 2, ..., n, le résidu est donné par la formule suivante : $\varepsilon_i = Y_i \beta_0 \beta_1 X_i$ où Y_i et X_i sont deux variables aléatoires. Notons **l'erreur d'estimation** ou résidu observé par $e_i = y_i \beta_0 \beta_1 x_i$.

Déterminer les expressions de β_0 et β_1 en fonction de $x_1, x_2, x_3, \ldots, x_n; y_1, y_2, y_3, \ldots, y_n$ en minimisant la fonction suivante :

$$f(\beta_0, \beta_1) = \sum_{i=1}^n (y_i \quad \beta_0 \quad \beta_1 x_i)^2 = \sum_{i=1}^n e_i^2$$

par rapport aux deux paramétres β_0 et β_1 .

Exercice 2

Les deux tableaux représentent les résultats de la régression linéaire simple d'une variable dépendante par rapport à une autre variable explicative. Les deux variables sont Prix de vente : $Prix\ V$ et Prix à l'achat : $Prix\ A$.

Récapitulatif du modèle b

				Erreur
				standard de
Modèle	R	R-deux	R-deux ajusté	l'estimation
1	,959 ^a	,919	,916	3,6273

a. Valeurs prédites : (constantes), Prix_A

b. Variable dépendante : Prix_V

Coefficients

		Coefficients non standardisés		Coefficients standardisés			Intervalle de confiance à 95% de B	
Modèle		В	Erreur standard	Bêta	t	Signification	Borne inférieure	Borne supérieure
1	(constante)	-43,615	7,668		-5,688	,000	-59,323	-27,908
	Prix_A	1,775	,100	,959	17,816	,000	1,571	1,979

a. Variable dépendante : Prix_V

Figure1: Tableaux récapilatif et coefficients du modèle.

ANOVA

	Somme des carrés	ddl	Carré moyen	F	Signification
Régression	4206,671	1	4206,671	348,374	,000a
Résidu	338,105	28	12,075		
Total	4544,775	29			

a. Valeurs prédites : (constantes), Prix_Achat

b. Variable dépendante : Prix_Vente

Figure 2: Table de l'anova.

- 1°) Quel la variable à expliquer (dépendante) et la variables explicative pour notre cas.
- $2^\circ)$ Quel sont les deux critères qui permet de confirmer l'application de la méthode.
- $3^\circ)$ Quel est le critère qui mesure la qualité du modèle suivant le 1er tableau.
- 4°) Tirer les coefficients du modèle linéaire simple correspond l'exemple traité.
- 5°) Que représente le coefficient Bêta et donner la formule qui permet de le calculer.
- 6°) Que représente les intervalles de confiance.
- 7°) Calculer en utilisant le modèle le prix estimé de vente d'une maison dont la valeur l'achat est de 67K.