MTH206M (2024-25, ODD SEMESTER) PROBLEM SET 1

1. Check whether the subsets given form subspaces of the vector space *V*?

(a)
$$V = \mathbb{R}^3$$
, $S = \{(x_1, x_2, x_3) : 2x_1 + x_2 + x_3 = 1\}$.

(b)
$$V = \mathbb{R}^2$$
, $S = \{(x_1, x_2) \mid x_1 \ge 0, x_2 \ge 0\}$.

(c)
$$V = \mathbb{R}^2$$
, $S = \{(x_1, x_2) \mid x_1 x_2 \ge 0\}$.

(d)
$$V = \mathbb{R}^2$$
, $S = \{c(2,3) + d(-3,1) \mid c,d \in \mathbb{R} \text{ and } c = d\}$.

2. Gilbert Strang Book: Problem Set 1.1 (Page 8)

Problems 15-19 and Problems 20, 22, 23, 24, and 27.

- 3. Find a subspace $V \subseteq \mathbb{R}^3$ that contains the vectors (1,0,1) and (2,3,0) but does not contain the vector (1,0,0).
- 4. For any two subsets A and B of a vector space V, show that

(i)
$$Sp(A) \cup Sp(B) \subseteq Sp(A \cup B)$$
,

(ii)
$$Sp(A \cap B) \subseteq Sp(A) \cap Sp(B)$$
,

and the proper inclusion is possible in each.

- 5. Prove or disprove: $Sp(A) \cap Sp(B) \neq \emptyset \implies A \cap B \neq \emptyset$.
- 6. Suppose V is a vector space and S is a subspace of V. If x and y are vectors in V such that $x + y \in S$ then show that either both x and y are in S or none of x and y are in S. What if $x + y + z \in S$? Further if α is a non-zero scalar and $\alpha x \in S$ then show that $x \in S$.

- 7. Show that the intersection of any family of subspaces is a subspace (the intersection of the empty family of subsets of *V* is defined to be *V*).
- 8. Show that for any set $A \subseteq V$, Sp(A) is the intersection of all subspaces of V containing A.
- 9. Show that x_1, x_2, \dots, x_k are linearly independent iff

$$\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_k x_k = \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k$$

implies

$$\alpha_1 = \beta_1, \ldots, \alpha_k = \beta_k.$$

- 10. Prove or Disprove: Suppose a vector u can be written in a unique way in terms of x_1, \ldots, x_k . Then x_1, \ldots, x_k are independent.
- 11. If x and y are linearly independent show that $x + \alpha y$ and $x + \beta y$ are linearly independent whenever $\alpha \neq \beta$.
- 12. Let A be a linearly independent subset of a subspace S. If $x \notin S$, show that $A \cup \{x\}$ is linearly independent. If $B \subseteq S \setminus A$ and B is linearly independent, does it follow that $A \cup B$ is linearly independent?
- 13. Let Sp(A) = S. Then show that no proper subset of A generates S iff A is linearly independent.
- 14. For what values of α , are the vectors $(0,1,\alpha)$, $(\alpha,1,0)$ and $(1,\alpha,1)$ in \mathbb{R}^3 linearly independent?
- 15. For two subspaces S and T, show that $S \cup T$ is a subspace if and only if either $S \subseteq T$ or $T \subseteq S$.
- 16. Let the set of vectors $A = \{x_1, \dots, x_r, y_1, \dots, y_s\}$ be linearly independent. Show that

$$Sp({x_1,...,x_r,y_1,...,y_s}) = Sp({x_1,...,x_r}) + Sp({y_1,...,y_s})$$

holds and this sum is direct.

17. From Rao and Bhimasankaram's book:

- Section 1.4: 5(*a*).
- Section 1.5: 2, 3, 7, 8, 9, 12, 15, 16, 17.
- Section 1.6: 2, 3, 5, 6, 7, 8.
- Section 1.7: 1, 2, 5, 6, 7.