The following table gives information on ages and cholesterol levels for a random sample of 10 men.

Age	58	69	43	39	63	52	47	31	74	36
Cholesterol level	189	235	193	177	154	191	213	165	198	181

- a. Taking age as an independent variable and cholesterol level as a dependent variable, compute SS_{xx} , SS_{yy} , and SS_{xy} .
- b. Find the regression of cholesterol level on age.
- c. Briefly explain the meaning of the values of a and b calculated in part b.
- d. Calculate r and r^2 and explain what they mean.
- e. Plot the scatter diagram and the regression line.
- f. Predict the cholesterol level of a 60-year-old man.
- g. Compute the standard deviation of errors.
- h. Construct a 95% confidence interval for B.
- i. Test at the 5% significance level if B is positive.
- j. Using $\alpha = .025$, can you conclude that the linear correlation coefficient is positive?

Answer:

- **a.** $SS_{xx} = 1895.6000$; $SS_{yy} = 4798.4000$; $SS_{xy} = 1231.8000$
- **b.** $\hat{y} = 156.3302 + .6498x$
- **d.** r = .41; $r^2 = .17$
- **f.** 195.3182
- **g.** $s_e = 22.3550$
- **h.** -.53 to 1.83
- i. H_0 : B = 0; H_1 : B > 0; critical value: t = 1.860; test statistic: t = 1.265; do not reject H_0
- j. H_0 : $\rho = 0$; H_1 : $\rho > 0$; critical value: t = 2.306; test statistic: t = 1.271; do not reject H_0