

rr www.wuolah.com/student/rr

Practica 8 Solucionada.pdf

Practicas

- 1º Lógica
- **Grado en Ingeniería Informática**
- Escuela Politécnica Superior
 UC3M Universidad Carlos III de Madrid

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

Practica 8

NOMBRE / NIE: NOMBRE / NIE: NOMBRE / NIE:

1. Transformar la siguiente fórmula a forma PRENEX:

```
\forall x \exists y \exists z ((^{\sim}\forall x Q(x) \lor R(x,y,z)) \land ^{\sim}\forall x \exists z S(x,z))
```

- 2. $\forall x \exists y \exists z ((\exists x ^Q(x) \lor R(x,y,z)) \land \exists x ^\exists z S(x,z))$
- 3. $\forall x \exists y \exists z ((\exists x \sim Q(x) \lor R(x,y,z)) \land \exists x \forall z \sim S(x,z))$
- 4. $\forall x \exists y \exists z ((\exists u ^Q(u) \lor R(x,y,z)) \land \exists v \forall w ^S(v,w))$
- 5. $\forall x \exists y \exists z \exists u \exists v \forall w ((\sim Q(u) \vee R(x,y,z)) \wedge \sim S(v,w))$
- 2. Transformar la siguiente fórmula a forma PRENEX:

$$\exists x \ (\sim (\exists y \ P(x,y)) \rightarrow (\exists z \ Q(z) \rightarrow R(x)))$$

- 1. $\exists x \ (\sim (\exists y \ P(x,y)) \rightarrow (\exists z \ Q(z) \rightarrow R(x)))$
- 2. $\exists x \ (\sim (\exists y \ P(x,y)) \ V \ (\exists z \ Q(z) \rightarrow R(x)))$
- 3. $\exists x \ (\sim (\exists y \ P(x,y)) \lor (\sim \exists z \ Q(z) \lor R(x)))$
- 4. $\exists x (\exists y P(x,y) \lor (\forall z \sim Q(z) \lor R(x)))$
- 5. $\exists x \exists y \forall z (P(x,y) \lor ^Q(z) \lor R(x))$
- 3. Transformar a la forma PRENEX cada una de las fórmulas de la siguiente deducción:

$$\forall x \exists y \ (P(x,y) \lor ^{\sim}Q(x,y) \rightarrow R(x,y)),$$

 $\exists x \forall y (\exists y \ Q(x,y) \rightarrow R(x,y))$
 $\Rightarrow \exists x \exists y \ R(x,y)$

- 1. $\forall x \exists y (P(x,y) \lor ^Q(x,y) \rightarrow R(x,y))$
- 2. ∀x ∃y (~(P(x,y) ∨ ~Q(x,y)) ∨ R(x,y))
- 3. $\forall x \exists y ((\sim P(x,y) \land Q(x,y)) \lor R(x,y))$
- 1. $\exists x \ \forall y (\ \exists y \ Q(x,y) \rightarrow R(x,y))$
- 2. $\exists x \forall y (\neg \exists y Q(x,y) \lor R(x,y))$
- 3. $\exists x \forall y (\forall y \sim Q(x,y) \lor R(x,y))$
- 4. $\exists x \forall y (\forall z \sim Q(x,z) \lor R(x,y))$

- 5. $\exists x \forall y \forall z \ (^{\sim}Q(x,z) \lor R(x,y))$
- 1. $\exists x \exists y R(x,y)$
- 4. Transformar a la forma PRENEX cada una de las fórmulas de la siguiente deducción:

```
\forall x ( \exists y ( A(x,y) \land B(y) ) \rightarrow \exists y ( C(y) \land D(x,y) ) )

\Rightarrow ( \forall x \land C(x) \rightarrow \forall x \forall y ( A(x,y) \rightarrow \land B(y) ) )
```

- 1. $\forall x (\exists y (A(x,y) \land B(y)) \rightarrow \exists y (C(y) \land D(x,y)))$
- 2. $\forall x (^{\sim} \exists y (A(x,y) \land B(y)) \lor \exists y (C(y) \land D(x,y)))$
- 3. $\forall x (\forall y \sim (A(x,y) \land B(y)) \lor \exists y (C(y) \land D(x,y)))$
- 4. ∀x(∀y (~A(x,y) ∨ ~B(y)) ∨ ∃y (C(y) ∧ D(x,y)))
- 5. $\forall x (\forall y (^{A}(x,y) \lor ^{B}(y)) \lor \exists z (C(z) \land D(x,z)))$
- 6. ∀x ∀y ∃z (~A(x,y) ∨ ~B(y) ∨ (C(z) ∧ D(x,z))
- 1. $\forall x \ ^{\sim}C(x) \rightarrow \forall x \ \forall y \ (A(x,y) \rightarrow ^{\sim}B(y))$
- 2. $^{\sim}$ Vx $^{\sim}$ C(x) \vee \forall x \forall y ($^{\sim}$ A(x,y) \vee $^{\sim}$ B(y))
- 3. $\exists x \ C(x) \lor \forall x \ \forall y \ (\ ^A(x,y) \lor ^B(y))$
- 4. ∃x C(x) ∨ ∀z ∀y (~A(z,y) ∨ ~B(y))
- 5. $\exists x \forall z \forall y (C(x) \lor ^A(z,y) \lor ^B(y))$
- 5. Transformar a la forma PRENEX cada una de las fórmulas de la siguiente deducción:

$$\forall x \exists y \ (\sim Es(x) \land Eu(x) \rightarrow \sim S(y, x))$$

 $\Rightarrow \forall x ((\forall y S(y, x) \land \sim \exists y Es(y)) \rightarrow \sim Eu(x))$

- 1. $\forall x \exists y \ (\sim Es(x) \land Eu(x) \rightarrow \sim S(y, x))$
- 2. $\forall x \exists y (\sim (\sim Es(x) \land Eu(x)) \lor \sim S(y, x))$
- 3. $\forall x \exists y ((Es(x) \lor ^Eu(x)) \lor ^S(y, x))$
- 1. $\forall x((\forall y S(y, x) \land ^{\rightarrow} \exists y Es(y)) \rightarrow ^{\sim} Eu(x))$
- 2. $\forall x (^{(} \forall y S(y, x) \land ^{=} \exists y Es(y)) \lor ^{=} Eu(x))$
- 3. $\forall x((\neg \forall y S(y, x) \lor \exists y Es(y)) \lor \neg Eu(x))$
- 4. $\forall x((\exists y \ ^S(y, x) \lor \exists y \ Es(y)) \lor ^Eu(x))$
- 5. $\forall x((\exists y ^S(y, x) \lor \exists z Es(z)) \lor ^Eu(x))$
- 6. $\forall x \exists y \exists z \ (\sim S(y, x) \lor Es(z) \lor \sim Eu(x))$
- 6. Obtener la Forma Normal de Skolem (FNS) equivalente de la siguiente fórmula:

$$\exists x \forall y \forall z \exists u \forall v \exists w [P(x, y, z) \land Q(u,v) \land ^R(w)]$$

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

- 1) En la fórmula anterior (que ya se encuentra en FNP), es necesario eliminar los cuantificadores existenciales $(\exists x, \exists u, \exists w)$.
- 2) $\exists x$ no se encuentra precedido por cuantificadores universales, se sustituye por una constante (a):

$$\forall y \forall z \exists u \forall v \exists w [P(a, y, z) \land Q(u, v) \land ^R(w)]$$

3) $\exists u$, $\exists w$ están predecidos por varios cuantificadores universales, por lo que serán sustituidos porlas fórmulas de aridad 2 f(y, z), y de aridad 3 g(y, z, v) respectivamente:

$$\forall y \forall z \forall v [P (a, y, z) \land Q(f(y, z), v) \land {}^{\sim}R(g(y, z, v))]$$

7. Obtener la Forma Normal de Skolem (FNS) equivalente de la siguiente fórmula:

$$\forall x \exists y \exists z [(^P (x, y) \land Q(x, z)) \lor R(x, y, z)]$$

1) En primer lugar se transforma la fórmula a Forma Norma Conjuntiva:

$$\forall x \exists y \exists z [(^{\sim}P(x, y) \vee R(x, y, z)) \wedge (Q(x, z) \vee R(x, y, z))]$$

2) Los cuantificadores $\exists y$, $\exists z$ están precedidos por el cuantificador universal $\forall x$ por lo que se sustituyen por dos funciones de Skolem de aridad 1: f(x) y g(x) respectivamente:

$$\forall x[(^{\sim}P(x, f(x)) \vee R(x, f(x), g(x))) \wedge (Q(x, g(x)) \vee R(x, f(x), g(x)))]$$

8. Obtener la Forma Normal de Skolem (FNS) equivalente de la siguiente fórmula:

$$\forall x \exists y \exists z [(^{\sim}P(x, y) \land Q(x, z)) \lor R(x, y, w)]$$

1) Se transforma F a FNC:

$$\forall x \exists y \exists z [(^{\sim}P(x, y) \vee R(x, y, w)) \wedge (Q(x, z) \vee R(x, y, w))]$$

2) Cierre existencial de las variables libres:

$$\exists w \forall x \exists y \exists z [(^{\sim}P(x, y) \vee R(x, y, w)) \wedge (Q(x, z) \vee R(x, y, w))]$$

3) Skolemnización:

$$\forall x \exists y \exists z [(^{P}(x, y) \lor R(x, y, a)) \land (Q(x, z) \lor R(x, y, a))]$$

 $\forall x \exists z [(^{P}(x, f(x)) \lor R(x, f(x), a)) \land (Q(x, z) \lor R(x, f(x), a))]$
 $\forall x [(^{P}(x, f(x)) \lor R(x, f(x), a)) \land (Q(x, g(x)) \lor R(x, f(x), a))]$

9. Obtener la Forma Normal de Skolem (FNS) equivalente de la siguiente fórmula:

$$\forall x [^P (x, a) \rightarrow \exists y (P (y, g(x)) \land \forall z (P (z, g(x)) \rightarrow P (y, z)))]$$

• Obtención de la FNP:


```
 \forall x [^{\sim}P (x, a) \ v \ \exists y (P (y, g(x)) \land \forall z (P (z, g(x)) \Rightarrow P (y, z)))] 
 \forall x [P (x, a) \ v \ \exists y (P (y, g(x)) \land \forall z (^{\sim}P (z, g(x)) \ v \ P (y, z)))] 
 \forall x [P (x, a) \ v \ \exists y \forall z (P (y, g(x)) \land (^{\sim}P (z, g(x)) \ v \ P (y, z)))] 
 \forall x \exists y \forall z [P (x, a) \ v \ P (y, g(x)) \land (^{\sim}P (z, g(x)) \ v \ P (y, z)))] 
 \forall x \exists y \forall z [(P (x, a) \ v \ P (y, g(x))) \land (P (x, a) \ v \ ^{\sim}P (z, g(x)) \ v \ P (y, z))]
```

- No existen variables libres...
- Skolemnización:

$$\forall x \forall z [(P(x, a) \lor P(f(x), g(x))) \land (P(x, a) \lor \neg P(z, g(x)) \lor P(f(x), z))]$$

10. Obtener la Forma Normal de Skolem (FNS) equivalente de la siguiente fórmula:

$$\forall x[(P(x) \rightarrow {}^{\sim} \forall y(Q(x, y) \rightarrow \exists zP(z))) \land \forall t(Q(x, y) \rightarrow R(t))]$$

1) Obtención de la FNP:

```
 \forall x[(\sim P(x) \vee \sim \forall y(Q(x, y) \rightarrow \exists zP(z))) \wedge \forall t(Q(x, y) \rightarrow R(t))] 
 \forall x[(\sim P(x) \vee \sim \forall y(Q(x, y) \rightarrow \exists zP(z))) \wedge \forall t(\sim Q(x, y) \vee R(t))] 
 \forall x[(\sim P(x) \vee \sim \forall y(\sim Q(x, y) \vee \exists zP(z))) \wedge \forall t(\sim Q(x, y) \vee R(t))] 
 \forall x[(\sim P(x) \vee \exists y\sim (\sim Q(x, y) \vee \exists zP(z))) \wedge \forall t(\sim Q(x, y) \vee R(t))] 
 \forall x[(\sim P(x) \vee \exists y(\sim \sim Q(x, y) \wedge \sim \exists zP(z))) \wedge \forall t(\sim Q(x, y) \vee R(t))] 
 \forall x[(\sim P(x) \vee \exists y(Q(x, y) \wedge \forall z\sim P(z))) \wedge \forall t(\sim Q(x, y) \vee R(t))] 
 \forall x[(\sim P(x) \vee \exists y\forall z(Q(x, y) \wedge \sim P(z))) \wedge \forall t(\sim Q(x, y) \vee R(t))] 
 \forall x[\exists y\forall z(\sim P(x) \vee (Q(x, y) \wedge \sim P(z))) \wedge \forall t(\sim Q(x, y) \vee R(t))] 
 \forall x[\exists u\forall z\forall t[(\sim P(x) \vee (Q(x, u) \wedge \sim P(z))) \wedge (\sim Q(x, y) \vee R(t))] 
 \forall x\exists u\forall z\forall t[(\sim P(x) \vee (Q(x, u) \wedge \sim P(z))) \wedge (\sim Q(x, y) \vee R(t))] 
 \forall x\exists u\forall z\forall t[(\sim P(x) \vee (Q(x, u) \wedge \sim P(z))) \wedge (\sim Q(x, y) \vee R(t))]
```

2) Cierre existencial de las variables libres:

```
\exists y \forall x \exists u \forall z \forall t [(P(x) \lor Q(x, u)) \land (P(x) \lor P(z)) \land (Q(x, y) \lor R(t))]
```

3) Skolemnización:

$$\forall x \exists u \forall z \forall t [(^P (x) \lor Q(x, u)) \land (^P (x) \lor ^P (z)) \land (^Q(x, a) \lor R(t))]$$

 $\forall x \forall z \forall t [(^P (x) \lor Q(x, f(x))) \land (^P (x) \lor ^P (z)) \land (^Q(x, a) \lor R(t))]$

