Assignment 1 Solutions

Madhav P. Desai

January 23, 2018

The solutions use some of the theorems proved in class.

- 1. The 0 and 1 elements in a Boolean algebra are unique.
 - Let u, v be two 0- elements. Then

$$u = (u + v) = v$$

Thus the 0-element is unique. If p, q are two 1-elements, then

$$p = (p.q) = q$$

and thus the 1-element is unique.

- 2. a.0 = 0 for each element a.
 - a.0 + 0 = a.0 + 1.0 = (a + 1).0 = 1.0 = 0 (we have used 1.u = u here).
- 3. For each element a, a + a = a.
 - $a = a + 0 = a + a.\overline{a} = (a + \overline{a}).(a + a) = 1.(a + a) = a + a.$
- 4. Prove the second De Morgan law:

$$\overline{a.b} = \overline{a} + \overline{b}$$

• $(\overline{a} + \overline{b}).(a.b) = \overline{a}.a.b + \overline{b}.a.b = 0 + 0 = 0$. Further, $\overline{a} + \overline{b} + a.b = \overline{a} + a.b + \overline{b} + a.b$. Now $\overline{a} + a.b = (\overline{a} + a).(\overline{a} + b) = \overline{a} + b$. Similarly, $\overline{b} + a.b = \overline{b} + a$. Thus,

$$\overline{a} + \overline{b} + a.b = \overline{a} + a + \overline{b} + b = 1 + 1 = 1.$$

where the last equality used a + a = a, proved above.

- 5. If $a \leq b$ and $a \neq b$, then $\overline{a}.b \neq 0$.
 - $a \le b$ implies a + b = b. Assume that $\overline{a}.b = 0$. Then $a = a + \overline{a}.b = (a + \overline{a}).(a + b) = 1.b = b$, a contradiction. Thus, $\overline{a}.b \ne 0$.
- 6. If $a \le b$ and $c \le b$, then $(a + c) \le b$.
 - (a+c).b = a.b + c.b = a + c.
- 7. If $a \leq b$ then $\overline{b} \leq \overline{a}$.
 - $a \le b$ implies that a.b = a (also a + b = b). Thus $\overline{a} + \overline{b} = \overline{a}$. This implies that $\overline{b} \le \overline{a}$.
- 8. If $a \leq b$ and $a \leq c$, then $a \leq b.c$.
 - a.(b.c) = (a.b).c = a.c = a.
- 9. Prove that $\overline{a}.b + a.b = b$.
 - $\overline{a}.b + a.b = (\overline{a} + a).b = 1.b = b.$
- 10. Prove that

$$a.\overline{b}.c + a.\overline{b}.\overline{c} + \overline{a}.\overline{b} = \overline{b}$$

• Combine $a.\overline{b}.c + a.\overline{b}.\overline{c} = a.\overline{b}.(c + \overline{c}) = a.\overline{b}$, and then $a.\overline{b} + \overline{a}.\overline{b} = (a + \overline{a}).\overline{b} = 1.\overline{b} = \overline{b}$.