

TRUY VẤN THÔNG TIN ĐA PHƯƠNG TIỆN INFORMATION RETRIEVAL

Crawler Crawler Ranking procedure Rasearch attention Doc Analyzer Doc Representation Query Rep Query Rep Query Ranker Ranker Ranker Ranker Ranker Ranker Ranker Ranker

Nội dung

- 1. Tầm quan trọng của Evaluation?
- 2. Các tiêu chí đánh giá.
- 3. Một số độ đo tương ứng với bài toán.

Tại sao phải đánh giá?

- 1. Biết được khi nào huấn luyện mô hình thành công?
- 2. Biết được **mức độ thành công** của mô hình
- 3. Biết được thời điểm dừng quá trình huấn luyện
- 4. Biết được khi nào cần cập nhật mô hình?

Môt số câu hỏi căn bản khi evaluation

- 1. Đánh giá khi nào?
- 2. Các tiêu chí đánh giá là gì?
- 3. Dữ liệu Phương pháp đánh giá?
- 4. Độ đo nào được sử dụng?

When to evaluation

2. Các tiêu chí đánh giá

- 1. Tính chính xác (Accuracy)
- 2. Tính hiệu quả (Efficiency)
- 3. Khả năng xử lý nhiễu (Robustness).
- 4. Khả năng mở rộng (Scalability).
- 5. Khả năng diễn giải(Interpretability)
- 6. Mức độ phức tap (complexity)

2. 1 Accuracy - chính xác

→ Tùy vào bài toán, dữ liệu sẽ có độ đo tương ứng.

2.2 Efficiency - hiệu quả

→ Chi phí về thời gian và tài nguyên (bộ nhớ) cần thiết cho việc huấn luyện và kiểm thử hệ thống.

2.3 Robustnesss – xử lý nhiễu

→ Khả năng xử lý của hệ thống đối với các ví dụ nhiễu (lỗi) hoặc thiếu giá trị.

2.4 Scalability – mở rộng

→ Hiệu năng của hê thống (ví dụ: tốc độ học, đô chính xác) thay đổi như thế nào đối với kích thước của tập dữ liệu

2.5 Interpretability - diễn giải

→ Mức độ dễ hiểu (đối với người sử dung) của các kết quả và hoạt động của hệ thống.

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

2.6 Complexity – mức độ phức tạp

→ Mức độ phức tạp của hệ thống (hàm hyperthesis mục tiêu) học được.

3. Một số độ đo

- 1. Accuracy/ Error
- 2. Precision/Recall
- 3. F-Score
- 4. AP/MAP

Confusion matrix (ma trận nhầm lẫn)

- TP_i (true positive): Số lượng các ví dụ thuộc lớp c_i được phân loại chính xác vào lớp c_i
- \emph{FP}_i (false positive): Số lượng các ví dụ không thuộc lớp c_i bị phân loại nhằm vào lớp c_i
- TN_i (true negative): Số lượng các ví dụ không thuộc lớp c_i được phân loại (chính xác)
- \emph{FN}_i (false negative): Số lượng các ví dụ thuộc lớp $c_{\vec{\Gamma}}$ bị phân loại nhằm (vào các lớp khác c_i)

Lớp	o c _i	Được phân lớp bởi hệ thống		
		Thuộc	Ko thuộc	
Phân lớp Thuộc		TPi	FN _i	
thực sự (đúng)	Ko thuộc	FP _i	TN _i	

Confusion matrix (ma trận nhầm lẫn)

Error Types

Null		Decision Based on test			
Нур	pothesis Accept		Reject		
uality	TRUE	✓	X Type I error		
In Actuality	FALSE	X Type II error	/		

Type 1: Loại bỏ ví dụ mà đúng ra không nên loại bỏ

Type 2: Chấp nhận ví dụ mà đúng ra không nên chấp nhận

3. 1 Accuracy – độ chính xác

→ Mức độ dự đoán (phân lớp) chính xác của hệ thống (đã được huấn luyện) đối với ví dụ kiểm chứng (test data).

Error = 1 - accuracy

3. 1 Accuracy – độ chính xác

- Là độ đo tính toán đơn giản nhất.
- Phù hợp cho các bài toán bộ dữ liệu cân bằng trong đó tỉ lệ FP (nhầm) và FN (bỏ sót) cân bằng nhau.

Hạn chế:

 Chỉ thể hiện độ chính xác không thể hiện loại lỗi trong mô hình.

3. 2 Precision/Recall

4

Precision được gọi là Positive predictive value (PPV)

Recall cũng được gọi là True Positive Rate hay Sensitivity (đô nhay) – đô phủ

3. 2 Precision/Recall

- Precision đối với lớp C,
 - ightarrow Tổng số các ví dụ thuộc lớp c_{\pm} được phân loại chính xác chia cho tổng số các ví dụ được phân loại vào lớp c_{\pm}

 $Precision(c_i) = \frac{TP_i}{TP_i + FP_i}$

Recall đối với lớp c_i

→ Tổng số các ví dụ thuộc lớp c₁ <u>được phân loại chính xác</u> chia cho tổng số các ví dụ thuộc lớp c₁

$$Recall(c_i) = \frac{TP_i}{TP_i + FN_i}$$

3. 2 Precision/Recall

		Actual			
		Spam	Not Spam		
Predict	Spam	8	32		
	Not Spam	2	8		

- Prec = 8/(8+32) = 20%
- Rec = 8/10 = 80%
- →Tỷ lệ xác suất bộ lọc chính xác khi xác định 1 mail là thư rác là 20%.
- → Tỷ lệ xác suất **một thư rác bị bộ lọc phát** hiện là 80%.

3. 2 Precision/Recall

- Làm thế nào để tính toán được giá trị Precision và Recall (một cách tổng thể) cho toàn bộ các lớp C={c_i}?
- Trung bình vi mô (Micro-averaging)

$$Precision = \frac{\sum_{i=1}^{|C|} TP_i}{\sum_{i=1}^{|C|} (TP_i + FP_i)}$$

$$Recall = \frac{\sum_{i=1}^{|C|} TP_i}{\sum_{i=1}^{|C|} (TP_i + FN_i)}$$

Trung bình vĩ mô (Macro-averaging)

$$Precision = \frac{\sum_{i=1}^{|C|} Precision(c_i)}{|C|} \qquad Recall = \frac{\sum_{i=1}^{|C|} Recall(c_i)}{|C|}$$

3. 2 Precision/Recall

- Một mô hình tốt mong muốn khi Precision và Recall đều cao.
- Chọn Precision hay Recall tùy thuộc vào bài toán.

Hạn chế:

Precision và Recall thường mất cân bằng nhau.

3. 3 F- Score

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} \cdot \text{recall}}{\beta^2 \cdot \text{precision} + \text{recall}}$$

- •Khi β>1, recall được coi trọng hơn precision
- •Khi β <1, precision được coi trọng hơn.
- •Khi β =1, precision và recall coi trọng như nhau.
- • β thường được sử dụng là β =2 và β =0.5

3. 3 F1 -Score

- F là một trung bình điều hòa (harmonic mean)
 của các tiêu chí Precision à Recall. Nó có xu hướng
 lấy giá trị gần với giá trị nào nhỏ hơn giữa 2
 tiêu chí này.
- F1 có giá trị lớn nếu cả 2 giá trị Precision và Recall đều lớn → F1 càng cao độ phân lớp càng tốt.

Which search engine do you prefer: Bing or Google?

• Tiêu chuẩn đánh giá là gì ?

•	How fast	does i	t response	to your	query
---	----------	--------	------------	---------	-------

Which search engine do you prefer: Bing or Google?

• Tiêu chuẩn đánh giá là gì ?

Retrieval evaluation

- •Mục tiêu của bất cứ hệ thống IR system
 - Satisfying users' information need
- •Tiêu chí đo lường:
 - "how well a system meets the information needs of its users." wiki
 - → Tiêu chí này khá mô hồ và khó đo đếm

Bing v.s. Google?

Quantify the IR quality measure

- Information need
 - "an individual or group's desire to locate and obtain information to satisfy a conscious or unconscious need" - wiki
 - Reflected by user query
 - · Categorization of information need
 - Navigational
 - Informational
 - Transactional

Quantify the IR quality measure

- Satisfaction
 - "the opinion of the user about a specific computer application, which they use" –
 - Reflected by
 - Increased result clicks · Repeated/increased visits
 - Result relevance

Classical IR evaluation

- Pioneer work and foundation in IR evaluation
- Basic hypothesis
 - Retrieved documents' relevance is a good proxy of a system's utility in satisfying users' information need
- Procedure
 - 1,398 abstracts of aerodynamics journal articles
 225 queries

 - Exhaustive relevance judgments of all (query, document) pairs
 - · Compare different indexing system over such collection

Classical IR evaluation

- Three key elements for IR evaluation
 - A document collection
 - 2. A test suite of information needs, expressible as queries
 - A set of relevance judgments, e.g., binary assessment of either relevant or nonrelevant for each query-document pair

Search relevance

- Users' information needs are translated into queries
- Relevance is judged with respect to the information need, not the
- E.g., Information need: "When should I renew my Virginia driver's license?" Query: "Virginia driver's license renewal" Judgment: whether a document contains the right answer, e.g., every 8 years; rather than if it literally contains those four words

Text REtrieval Conference (TREC)

- · Large-scale evaluation of text retrieval methodologies
 - Since 1992, hosted by NIST
 - Standard benchmark for IR studies
 - A wide variety of evaluation collections
 - Web track
 Question answering track
 - · Cross-language track
 - Microblog track
 - And more...

Public benchmarks

Collection

ADI

ATT

TABLE 4.3 Common Test Corpora NQrys Size (MB) Term/Doc Q-D RelAss NDocs 35 2109 14 400 >10.000 64 3204 2 24.5 1460 112 2 46.5 1400 225 2 53.1

CACM CISI Cranfield LISA 5872 35 Medline 1033 30 1 NPL 11,429 93 OSHMED 34.8566 106 400 16.140 21,578 28 Reuters 672 131 TREC 740,000 2000 89-3543 » 100,000

Table from Manning Stanford CS276, Lecture 8

Evaluation metric

- To answer the questions
 - Is Google better than Bing?
 - Which smoothing method is most effective?
 - Is BM25 better than language models?
 - Shall we perform stemming or stopword removal?
- We need a quantifiable metric, by which we can compare different IR systems
 - As unranked retrieval sets
 - As ranked retrieval results

Recap: retrieval evaluation

- · Aforementioned evaluation criteria are all good, but not essential
 - Goal of any IR system
 - · Satisfying users' information need
 - Core <u>quality</u> measure criterion
 - "how well a system meets the information needs of its users." wiki
 - Unfortunately vague and hard to execute

Recap: classical IR evaluation

- Cranfield experiments
 - Pioneer work and foundation in IR evaluation
 - Basic hypothesis
 - Retrieved documents' relevance is a good proxy of a system's utility in satisfying users' information need
 - Procedure
 - 1,398 abstracts of aerodynamics journal articles

 - 225 queries
 Exhaustive relevance judgments of all (query, document) pairs
 - · Compare different indexing system over such collection

Recap: classical IR evaluation

- Three key elements for IR evaluation
 - A document collection
 - 2. A test suite of information needs, expressible as queries
 - A set of relevance judgments, e.g., binary assessment of either relevant or nonrelevant for each query-document pair

Recap: evaluation of unranked retrieval sets

- In a Boolean retrieval system
 - Precision: fraction of retrieved documents that are relevant, i.e.,
 - p(relevant|retrieved)
 - Recall: fraction of relevant documents that are retrieved, i.e., p(retrieved | relevant)

	relevant	nonrelevant	Precision:
retrieved	true positive (TP)	false positive (FP)	$P = \frac{TP}{TP + F}$
not retrieved	false negative (FN)	true negative (TN)] "''
Pas	-		

 $=\frac{}{TP+FP}$

Recall: $R = \frac{1}{TP + FN}$

Evaluation of unranked retrieval sets

- · Precision and recall trade off against each other
 - Precision decreases as the number of retrieved documents increases (unless in perfect ranking), while recall keeps increasing
 - These two metrics emphasize different perspectives of an IR system Precision: prefers systems retrieving fewer documents, but highly relevant
 - · Recall: prefers systems retrieving more documents

Evaluation of unranked retrieval sets

· Summarizing precision and recall to a single value

- In order to compare different systems
- F-measure: weighted harmonic mean of precision and recall, α balances the trade-off

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} \quad \left(F_1 = \frac{2}{\frac{1}{P} + \frac{1}{R}} \right)$$

- Why harmonic mean?

 - System1: P:0.53, R:0.36

0.429 0.445 0.019 0.500 Equal weight between

precision and recall

• System2: P:0.01, R:0.99

Evaluation of ranked retrieval results

- Ranked results are the core feature of an IR system
 - Precision, recall and F-measure are set-based measures, that cannot assess the ranking quality
 - Solution: evaluate precision at every recall point

Precision-Recall curve

· A sawtooth shape curve

Evaluation of ranked retrieval results

- Summarize the ranking performance with a single number
 - · Binary relevance
 - Eleven-point interpolated average precision
 - Precision@K (P@K)
 - Mean Average Precision (MAP) · Mean Reciprocal Rank (MRR)
 - Multiple grades of relevance
 - Normalized Discounted Cumulative Gain (NDCG)

Eleven-point interpolated average precision

• At the 11 recall levels [0,0.1,0.2,...,1.0], compute arithmetic mean of interpolated precision over all the queries

Precision@K

- Set a ranking position threshold K
- Ignores all documents ranked lower than K
- Compute precision in these top K retrieved documents

Mean Average Precision

- Consider rank position of each <u>relevant</u> doc • E.g., K₁, K₂, ... K_R
- Compute P@K for each K_1 , K_2 , ... K_R
- Average precision = average of those P@K • E.g.,

AvgPrec is about one query

MAP is about a system

Query 1, AvgPrec=(1.0+0.67+0.5+0.44+0.5)/5=0.62 Query 2, AvgPrec=(0.5+0.4+0.43)/3=0.44

MAP = (0.62+0.44)/2=0.53

MAP metric

- If a relevant document never gets retrieved, we assume the precision corresponding to that relevant document to be zero
- MAP is macro-averaging: each query counts equally
- MAP assumes users are interested in finding many relevant documents for each query
- MAP requires many relevance judgments in text collection

Mean Reciprocal Rank

- Measure the effectiveness of the ranked results
 - Suppose users are only looking for one relevant document
 - · looking for a fact
 - known-item search
 - navigational queries
 - query auto completion
- Search duration ~ Rank of the answer
 - measures a user's effort

Mean Reciprocal Rank

- Consider the rank position, *K*, of the first relevant document
- Reciprocal Rank = $\frac{1}{\kappa}$
- · MRR is the mean RR across multiple queries

Beyond binary relevance

Beyond binary relevance

- The level of documents' relevance quality with respect to a given query varies
 - Highly relevant documents are more useful than marginally relevant documents
 - The lower the ranked position of a relevant document is, the less useful it is for the user, since it is less likely to be examined
 - Discounted Cumulative Gain

CS@UVa CS 4501: Information Retrieval

Discounted Cumulative Gain

- Uses graded relevance as a measure of usefulness, or gain, from examining a document
- Gain is accumulated starting at the top of the ranking and discounted at lower ranks
- Typical discount is 1/log (rank)
 - With base 2, the discount at rank 4 is 1/2, and at rank 8 it is 1/3

Discounted Cumulative Gain

- \bullet DCG is the total gain accumulated at a particular rank position p:
- Alternative formulation $DCG_p = rel_1 + \sum_{i=2}^p \frac{rel_i^{p^{-1}}}{\log_2 i}$ Relevance label at position
 - Standard metric in some web search companies Emphasize on retrieving highly relevable $DCG_p = \sum_{l=1}^{DC} \log_2(1+i)$

CS@UVa CS 4501: Information Retrieval 66

Normalized Discounted Cumulative Gain

- Normalization is useful for contrasting queries with varying numbers of relevant results
- Normalize DCG at rank n by the DCG value at rank n of the ideal ranking
 - The ideal ranking is achieved via ranking documents with their relevance

Recap: evaluation of unranked retrieval sets

- · Summarizing precision and recall to a single
 - In order to compare different systems
 - F-measure: weighted harmonic mean of precision and recall, α balances the trade-off

- Why harmonic mean?

• System1: P:0.53, R:0.36 0.019 0.500 • System2: P:0.01, R:0.99

Equal weight between precision and recall 0.429 0.445

Recap: evaluation of ranked retrieval results

- · Ranked results are the core feature of an IR system
 - Precision, recall and F-measure are set-based measures, that cannot assess the ranking quality
 - Solution: evaluate precision at every recall point

Recap: evaluation of ranked retrieval results

- Summarize the ranking performance with a single number
 - · Binary relevance
 - Eleven-point interpolated average precision
 - Precision@K (P@K)
 - Mean Average Precision (MAP)
 - . Mean Reciprocal Rank (MRR)
 - Multiple grades of relevance
 - Normalized Discounted Cumulative Gain (NDCG)

Recap: Precision@K

- Set a ranking position threshold K
- Ignores all documents ranked lower than K
- Compute precision in these top K retrieved documents

• E.g.,: P@3 of 2/3 Relevant Nonrelevant P@4 of 2/4 P@5 of 3/5 • In a similar fashion we have Recall(

Recap: Mean Average Precision

- Consider rank position of each relevant doc • E.g., K₁, K₂, ... K_R
- Compute P@K for each K_1 , K_2 , ... K_R
- Average precision = average of those P@K
 - E.g.,

/erage Predis*johracre*ss ကျင်္ပျည်မှာမြင့္သာမှန်မိနေ/rankings MAP is mean o

Recap: MAP is about a system

Query 1, AvgPrec=(1.0+0.67+0.5+0.44+0.5)/5=0.62 Query 2, AvgPrec=(0.5+0.4+0.43)/3=0.44 MAP = (0.62+0.44)/2=0.53 Recap: Mean Reciprocal Rank

- Measure the effectiveness of the ranked results
 - Suppose users are only looking for one relevant document
 - · looking for a fact
 - · known-item search
 - navigational queries
 - · query auto completion
- Search duration ~ Rank of the answer
 - measures a user's effort

CS@UVa CS 4501: Information Retrieval

Recap: beyond binary relevance

Recap: Discounted Cumulative Gain

- Uses graded relevance as a measure of usefulness, or gain, from examining a document
- Gain is accumulated starting at the top of the ranking and discounted at lower ranks
- Typical discount is 1/log (rank)
 - With base 2, the discount at rank 4 is 1/2, and at rank 8 it is 1/3

CS@UVa CS 4501: Information Retrieval

Recap: Discounted Cumulative Gain

 \bullet DCG is the total gain accumulated at a particular rank position p:

 $\sum_{i=1}^{n} \log_2(1+i)$

Recap: Normalized Discounted Cumulative Gain

- Normalization is useful for contrasting queries with varying numbers of relevant results
- Normalize DCG at rank n by the DCG value at rank n of the ideal ranking
 - The ideal ranking is achieved via ranking documents with their relevance labels

CS⊕UVa CS 4501: Information Retrieval 78

How about P@4, P@5, MAP and MRR?

NDCG - Example

5 documents: d₁, d₂, d₃, d₄, d₅

	Ground Truth		Ranking Function ₁		Ranking Function₂	
1	Document Order	reli	Document Order	reli	Document Order	rel _i
1	d5	4	d3	2	d5	4
2	d4	3	d4	3	d3	2
3	d3	2	d2	1	d4	3
4	d2	1	d5	4	d1	0
5	d1	0	d1	0	d2	1

$$\begin{split} DCG_{GT} &= \frac{2^4 - 1}{\log_2 2} + \frac{2^3 - 1}{\log_2 3} + \frac{2^2 - 1}{\log_2 4} + \frac{2^4 - 1}{\log_2 5} + \frac{2^0 - 1}{\log_2 6} = 21.35 \\ DCG_{RF1} &= \frac{2^2 - 1}{\log_2 2} + \frac{2^3 - 1}{\log_2 3} + \frac{2^1 - 1}{\log_2 4} + \frac{2^3 - 1}{\log_2 5} + \frac{2^0 - 1}{\log_2 6} = 14.38 \\ DCG_{RF2} &= \frac{2^4 - 1}{\log_2 2} + \frac{2^2 - 1}{\log_2 3} + \frac{2^3 - 1}{\log_2 4} + \frac{2^3 - 1}{\log_2 5} + \frac{2^4 - 1}{\log_2 5} = 20.78 \end{split}$$

What does query averaging hide?

Statistical significance tests

• How confident you are that an observed difference doesn't simply result from the particular queries you chose?

Experiment 1				Experiment 2		
Query	System A	System B	Query	System A	System B	
1	0.20	0.40	11	0.02	0.76	
2	0.21	0.41	12	0.39	0.07	
3	0.22	0.42	13	0.26	0.17	
4	0.19	0.39	14	0.38	0.31	
5	0.17	0.37	15	0.14	0.02	
6	0.20	0.40	16	0.09	0.91	
7	0.21	0.41	17	0.12	0.56	
Average	0.20	0.40	Average	0.20	0.40	

Background knowledge

- p-value in statistictest is the probability of obtaining data as extreme as was observed, if the null hypothesis were true (e.g., if observation is totally random)
- If p-value is smaller than the chosen significance level (α) , we reject the null hypothesis (e.g., observation is not random)
- We seek to reject the null hypothesis (we seek to show that the observation is a random result), and so small p-values are good

Tests usually used in IR evaluations

- Sign test
 - Hypothesis: the difference median is zero between samples from two continuous distributions
- Wilcoxon signed rank test
 - Hypothesis: data are paired and come from the same population
- Paired t-test
 - Hypothesis: difference between two responses measured on the same statistical unit has a zero mean value
- One-tail v.s. two-tail?
 - If you aren't sure, use two-tail

Query System A System B Sign Test paired t-test 0.02 0.76 +0.74 1 -0.32 0.39 0.07 2 3 0.26 0.17 -0.09 -0.07 4 0.38 0.31 -0.12 5 0.14 0.02 +0.82 6 0.09 0.91 +0.44 0.12 0.56 Average 0.20 0.40 p=0.9375p=0.292795% of outcomes

Statistical significance testing

Where do we get the relevance labels?

Human annotation

- · Domain experts, who have better understanding of retrieval tasks
- Scenario 1: Janotator lists the information needs, formalizes into queries, and judges the returned documents
- Scenario 2: given query and associated documents, annotator judges the relevance by inferring the underlying information need

Assessor consistency

Is inconsistency of assessors a concern?

- Human annotators are idiosyncratic and variable
- Relevance judgments are subjective

Studies mostly concluded that the inconsistency didn't affect relative comparison of systems

- Success of an IR system depends on how good it is at satisfying the needs of these idiosyncratic humans
- Lesk & Salton (1968): assessors mostly disagree on documents at lower ranks, but measures are more affected by top-ranked documents

Measuring assessor consistency

kappa statistic

– A measure of agreement between judges P(A) - P(E) $\kappa = \frac{1}{1 - P(E)}$

- P(A) is the proportion of the times judges agreed
- P(E) is the proportion of times they would be expected to agree by chance
- $-\kappa = 1$ if two judges always agree
- $-\kappa = 0$ if two judges agree by chance
- v / N if two judges always disagree

Example of kappa statistic

juds

judge 2 relevance						
		Yes	No	Total		
ge 1 vance	Yes	300	20	320		
	No	10	70	80		
	Total	310	90	400		

$$P(A) = \frac{300 + 70}{400} = 0.925$$

$$P(E) = \left(\frac{80 + 90}{400 + 400}\right)^2 + \left(\frac{320 + 310}{400 + 400}\right)^2 = 0.2125^2 + 0.7878^2 = 0.665$$

$$\kappa = \frac{P(A) - P(E)}{1 - P(E)} = \frac{0.925 - 0.665}{1 - 0.665} = 0.776$$

Prepare annotation collection

- Human annotation is expensive and time consuming
 - · Cannot afford exhaustive annotation of large corpus
 - Solution: pooling
 - Relevance is assessed over a subset of the collection that is formed from the top k documents returned by a number of different IR systems

Does pooling work?

- Judgments cannot possibly be exhaustive?
 - Relative rankings among the systems remain the same
- What about documents beyond top k?
 - Relative rankings among the systems remain the same
- · A lot of research work can be done here
 - Effective pool construction
 - · Depth v.s. diversity

Rethink retrieval evaluation

- Goal of any IR system
 - Satisfying users' information need
- Core quality measure criterion
 - "how well a system meets the information needs of its users." wiki

What we have considered

- The ability of the system to present all relevant documents
 - Recall-driven measures
- The ability of the system to withhold non-relevant documents
 - Precision-driven measures

CS@UVa CS 4501: Information Retrieval

Challenging assumptions in classical IR evaluations

- Assumption 1
 - Queries sent to an IR system would be the same as those sent to a librarian (i.e., sentence-length request), and users want to have high recall
- Assumption 2
 - Relevance = independent topical relevance
 - Documents are independently judged, and then ranked (that is how we get the ideal ranking)

What we have not considered

- The physical form of the output
 - User interface
- The effort, intellectual or physical, demanded of the user
 User effort when using the system
- Bias IR research towards optimizing relevance-centric metrics

CS@UVa CS 4501: Information Retrieval

What you should know

- Core criterion for IR evaluation
- Basic components in IR evaluation
- Classical IR metrics
- Statistical test
- Annotator agreement

3. 4 Average Precision

Information Retrieval

- Q to be the user query
- G to be a set of labeled data in the database

3. 4 Average Precision

- Ground truth positives (GTP) number of True of query Q.
- \bullet d(i,j) to be a score function to show how similar object i is to j
- \bullet G' which an ordered set of G according to score function d(,)

3. 4 Average Precision

$$\text{AP@k} = \frac{1}{\text{GTP}} \sum_{i=1}^{k} \frac{\text{TP seen}}{i}$$

- K to be the index of G'
- GTP refers to the total number of ground truth positives for the query
- \bullet TP seen refers to the number of true positives seen till k

3. 4 Average Precision

Overall AP = $\frac{1}{3}$ (1/1 + 0/2 + 0/3 + 2/4 + % + 0 ... + 0) = 0.7

Calculation of a AP for a given query, Q, with a GTP=3

3. 4 Average Precision

Overall AP = 1/3 (1/1 + 2/2 + 3/3 + 0/4 + 0/5 + 0 ... + 0) = 1.0

Calculation of a pefect AP for a given query, Q, with a GTP=3

3. 4 Mean Average Precision - mAP

$$ext{MAP} = rac{\sum_{q=1}^{Q} ext{AveP(q)}}{Q}$$

- Q is the number of gueries
- ullet **AveP(q)** is the average precision (AP) for a given query, q

Tài liệu tham khảo

Slide được tham khảo từ:

- http://www.cs.virginia.edu/~hw5x/Course/IR2015/ site/lectures/
- https://nlp.stanford.edu/IR-book/newslides.html
- https://course.ccs.neu.edu/cs6200s14/slides.html

