

Objectifs

- Construire le symétrique d'un point par rapport à un autre à la main où à l'aide d'un logiciel;
- Construire le symétrique d'une figure par rapport à un point;
- Utiliser les propriétés de la symétrie axiale ou centrale;
- Identifier des symétries dans des figures.

Compétences travaillées

- Chercher (Ch2): s'engager dans une démarche scientifique, observer, questionner, manipuler, expérimenter (sur une feuille de papier, avec des objets, à l'aide de logiciels), émettre des hypothèses, chercher des exemples ou des contre-exemples, simplifier ou particulariser une situation, émettre une conjecture;
- Raisonner (Ra3) : démontrer : utiliser un raisonnement logique et des règles établies (propriétés, théorèmes, formules) pour parvenir à une conclusion ;
- Communiquer (Co2): expliquer à l'oral ou à l'écrit (sa démarche, son raisonnement, un calcul, un protocole de construction géométrique, un algorithme), comprendre les explications d'un autre et argumenter dans l'échange;

I. Symétrie axiale

Définition

Deux figures sont symétriques par rapport à une droite (d) si elles se superposent quand on plie le long de cette droite. La droite (d) est appelée axe de symétrie.

(d) Axe de symétrie

Propriétés

Soit (d) une droite:

- Si un point A n'appartient pas à la droite (d), alors son symétrique par rapport à la droite (d) est le point A' tel que (d) est la médiatrice du segment [AA'].
- Si un point B appartient à la droite (d), alors son symétrique par rapport à la droite (d) est lui même.

II. Symétrie centrale

Définition

Deux figures sont symétriques par rapport à un point O si elles se superposent lorsqu'on effectue un demi-tour autour du point O. Le point O est appelé centre de symétrie.

III. Propriétés de la symétrie

Propriétés

- Le symétrique d'une droite par rapport à une droite ou un point est une autre droite. La symétrie conserve l'alignement.
- Si deux droites sont symétriques par rapport à un point alors elles sont parallèles.

Exemples

• Les points A, B et C sont alignés, donc A', B' et C' leur symétriques par rapport à la droite (e) sont aussi alignés.

- Les points A, B et C sont alignés, donc A', B' et C' leur symétriques par rapport à la droite (e) sont aussi alignés.
- La droite (AB) est parallèle à la droite (A'B').

Propriété

Le symétrique d'un segment par rapport à une droite ou un point est un segment de même longueur.

Exemple

Le segment [A'B'] est le symétrique du segment [AB] par rapport à la droite (d) et $[A'_1B'_1]$ le symétrique de [AB] par rapport au point O. Ils ont tous la même longueur

Propriété

Le symétrique d'une figure par rapport à une droite ou un point est une figure de même forme. La symétrie conserve les angles, les périmètres et les aires.

Exemple

La figure F2 est le symétrique de F1 par rapport à la droite (d); F3 est le symétrique de F1 par rapport au point O. Elles ont le même périmètre, la même aire et leurs angles ont la même mesure.

IV. Identifier un axe ou un centre de symétrie

Définition

Si une figure et son symétrique par rapport à une droite (d) sont confondus, alors (d) est une axe de symétrie de la figure.

Exemples

Définition

Si une figure et son symétrique par rapport à un point O sont confondus, alors O est un centre de symétrie de la figure.

Exemples

Application

Dire si les panneaux suivants ont un axe et / ou un centre de symétrie.

