Chapter 1: Galois Theory

Author: Meng-Gen Tsai Email: plover@gmail.com

Section 1.1: Field Extensions

Problem 1.1.1. Let K be a field extension of F. By defining scalar multiplication for $\alpha \in F$ and $a \in K$ by $\alpha \cdot a = \alpha a$, the multiplication in K, show that K is an F-vector space.

Proof.

(1) K is an additive group.

(2) Show that $(\alpha\beta) \cdot a = \alpha \cdot (\beta \cdot a)$ for $\alpha, \beta \in F$ and $a \in K$. In fact,

$$(\alpha\beta) \cdot a = \alpha\beta a \in K,$$

 $\alpha \cdot (\beta \cdot a) = \alpha\beta a \in K.$

(3) Show that $(\alpha + \beta) \cdot a = \alpha \cdot a + \beta \cdot a$ for $\alpha, \beta \in F$ and $a \in K$.

$$(\alpha + \beta) \cdot a = (\alpha + \beta)a$$
$$= \alpha a + \beta a \in K,$$
$$\alpha \cdot a + \beta \cdot a = \alpha a + \beta a \in K.$$

(4) Show that $\alpha \cdot (a+b) = \alpha \cdot a + \alpha \cdot b$ for $\alpha \in F$ and $a, b \in K$.

$$\alpha \cdot (a+b) = \alpha(a+b)$$

$$= \alpha a + \alpha b \in K,$$

$$\alpha \cdot a + \alpha \cdot b = \alpha a + \alpha b \in K.$$

(5) Show that $1 \cdot a = a$ for $a \in K$. $1 \cdot a = 1a = a \in K$.

By (1) to (5), K is an F-vector space. \square

Problem 1.1.2. If K is a field extension of F, prove that [K : F] = 1 if and only if K = F.

Proof.

(1) $[K:F] = 1 \iff K = F$. Take a basis $\{1\}$ for K as an F-vector space.

(2) $[K:F] = 1 \Longrightarrow K = F$. Take a basis $\{a\}$ for K as an F-vector space where $a \in K$. Since $1 \in K$ as an F-vector space, there exists $\alpha \in F$ such that $1 = \alpha a$. $a = \alpha^{-1} \in F$, or $K \subseteq F$, or K = F.

Problem 1.1.5. Show that $\mathbb{Q}(\sqrt{5}, \sqrt{7}) = \mathbb{Q}(\sqrt{5} + \sqrt{7})$.

Proof.

(1) $\mathbb{Q}(\sqrt{5}, \sqrt{7}) \supseteq \mathbb{Q}(\sqrt{5} + \sqrt{7})$ since $\sqrt{5} + \sqrt{7} \in \mathbb{Q}(\sqrt{5}, \sqrt{7})$.

(2)

$$(\sqrt{7} + \sqrt{5})^{-1} = \frac{1}{\sqrt{7} + \sqrt{5}}$$

$$= \frac{\sqrt{7} - \sqrt{5}}{(\sqrt{7} + \sqrt{5})(\sqrt{7} - \sqrt{5})}$$

$$= \frac{\sqrt{7} - \sqrt{5}}{2} \in \mathbb{Q}(\sqrt{5} + \sqrt{7}),$$

Or $\sqrt{7} - \sqrt{5} \in \mathbb{Q}(\sqrt{5} + \sqrt{7})$. Thus

$$\begin{split} \sqrt{7} &= \frac{1}{2} \cdot ((\sqrt{7} + \sqrt{5}) + (\sqrt{7} - \sqrt{5})) \in \mathbb{Q}(\sqrt{5} + \sqrt{7}), \\ \sqrt{5} &= \frac{1}{2} \cdot ((\sqrt{7} + \sqrt{5}) - (\sqrt{7} - \sqrt{5})) \in \mathbb{Q}(\sqrt{5} + \sqrt{7}). \end{split}$$

Thus, $\mathbb{Q}(\sqrt{5}, \sqrt{7}) \subset \mathbb{Q}(\sqrt{5} + \sqrt{7})$.

By
$$(1)(2)$$
, $\mathbb{Q}(\sqrt{5}, \sqrt{7}) = \mathbb{Q}(\sqrt{5} + \sqrt{7})$. \square

Problem 1.1.9. If K is an extension of F such that [K : F] is prime, show that there are no intermediate fields between K and F.

Proof. Let L be any field such that $F \subseteq L \subseteq K$. By Proposition 1.20,

$$[K:F] = [K:L][L:F].$$

Since [K:F] is prime, [K:L]=1 or [L:F]=1. By Problem 1.1.2, L=K or L=F, or there are no intermediate fields between K and F. \square

Problem 1.1.23. Recall that the characteristic of a ring R with identity is the smallest positive integer n for which $n \cdot 1 = 0$, if such an n exists, or else the characteristic is 0. Let R be a ring with identity. Define $\varphi : \mathbb{Z} \to R$ by

 $\varphi(n) = n \cdot 1$, where 1 is the identity of R. Show that φ is a ring homomorphism and that $\ker(\varphi) = m\mathbb{Z}$ for a unique nonnegative integer m, and show that m is the characteristic of R.

Proof.

- (1) φ is a ring homomorphism.
 - (a) $\varphi(a+b) = \varphi(a) + \varphi(b)$. $\varphi(a+b) = (a+b) \cdot 1 = a \cdot 1 + b \cdot 1 = \varphi(a) + \varphi(b)$.
 - (b) $\varphi(ab) = \varphi(a)\varphi(b)$. $\varphi(ab) = (ab) \cdot 1 = (a \cdot 1)(b \cdot 1) = \varphi(a)\varphi(b)$ since $1 \times 1 = 1$. (Here \times is the multiplication operator of R.)
- (2) $\ker(\varphi) = m\mathbb{Z}$ for a unique nonnegative integer m. Since $\ker(\varphi)$ is an ideal of a PID \mathbb{Z} , there is a unique nonnegative integer m such that $\ker(\varphi) = m\mathbb{Z}$.
- (3) m is the characteristic of R. There are only two possible cases, char(R) = 0 or else char(R) > 0.
 - (a) char(R) = 0. $ker(\varphi) = 0$. Thus m = 0 = char(R).
 - (b) char(R) = n > 0. $n \in ker(\varphi)$, so m > 0 and $m \mid n$. By the minimality of n, m = n = char(R).

Problem 1.1.24. For any positive integer n, give an example of a ring of characteristic n.

Proof. The ring $\mathbb{Z}/n\mathbb{Z}$. \square

Problem 1.1.25. If R is an integral domain, show that either char(R) = 0 or char(R) is prime.

Proof.

- (1) I has infinite order. char(R) = 0. (Nothing to do.)
- (2) 1 has finite order n. Want to show n is prime. If n = ab where $a, b \in \mathbb{Z}^+$, then

$$0 = n \cdot 1 = (a \cdot 1)(b \cdot 1).$$

Since R is an integral domain, $a \cdot 1 = \text{or } b \cdot 1 = 0$. By the minimality of n, $a \ge n$ or $b \ge n$. a = n or b = n. That is, n is prime.

Section 1.2: Automorphisms

Problem 1.2.1. Show that the only automorphism of \mathbb{Q} is the identity.

Proof. Given any $\sigma \in Aut(\mathbb{Q})$.

- (1) Show that $\sigma(1) = 1$. Since $1^2 = 1$, $\sigma(1)\sigma(1) = \sigma(1)$. $\sigma(1) = 0$ or 1. There are only two possible cases.
 - (a) Assume that $\sigma(1) = 0$. So

$$\sigma(a) = \sigma(a \cdot 1) = \sigma(a) \cdot \sigma(1) = \sigma(a) \cdot 0 = 0$$

for any $a \in \mathbb{Q}$. That is, $\sigma = 0 \in \operatorname{Aut}(\mathbb{Q})$, which is absurd.

- (b) Therefore, $\sigma(1) = 1$.
- (2) Show that $\sigma(n) = n$ for all $n \in \mathbb{Z}^+$. Write $n = 1 + 1 + \cdots + 1$ (n times 1). Applying the additivity of σ , we have

$$\sigma(n) = \sigma(1) + \sigma(1) + \dots + \sigma(1) = 1 + 1 + \dots + 1 = n.$$

(Might use induction on n to eliminate \cdots symbols.)

(3) Show that $\sigma(n) = n$ for all $n \in \mathbb{Z}$. By the additivity of σ , $\sigma(-n) = -\sigma(n) = -n$ for $n \ge 0$. The result is established.

For any $a = \frac{n}{m} \in \mathbb{Q}$ $(m, n \in \mathbb{Z}, n \neq 0)$, applying the multiplication of σ on am = n, that is, $\sigma(a)\sigma(m) = \sigma(n)$. By (3), we have $\sigma(a)m = n$, or

$$\sigma(a) = \frac{m}{n} = a$$

provided $n \neq 0$, or σ is the identity. \square

Problem 1.2.2. Show that the only automorphism of \mathbb{R} is the identity. (Hint: If σ is an automorphism, show that $\sigma|_{\mathbb{Q}} = id$, and if a > 0, then $\sigma(a) > 0$. It is an interesting fact that there are infinitely many automorphisms of \mathbb{C} , even thought $[\mathbb{C} : \mathbb{R}] = 2$. Why is this fact not a contradiction to this problem?)

Proof (Hint). Given any $\sigma \in Aut(\mathbb{R})$.

- (1) Apply the same argument in Problem 1.2.1, we have $\sigma|_{\mathbb{Q}} = \mathrm{id}$. Notice that $\sigma(a) \neq 0$ for any $a \neq 0$.
- (2) Show that $\sigma(a) > 0$ if a > 0. Given any a > 0. Write $a = \sqrt{a}\sqrt{a}$ (well-defined) and then apply σ on the both sides,

$$\sigma(a) = \sigma(\sqrt{a})\sigma(\sqrt{a}) = \sigma(\sqrt{a})^2 > 0$$

(since $\sqrt{a} \neq 0$ and thus $\sigma(\sqrt{a})$ cannot be zero).

- (3) Show that $\sigma(a) > \sigma(b)$ if a > b. It is a corollary to (2) by applying σ on a b > 0. $(\sigma(a b) > 0$, or $\sigma(a) \sigma(b) > 0$, or $\sigma(a) > \sigma(b)$.)
- (4) For any real number $x \in \mathbb{R}$, choose two sequences $\{p_n\}, \{q_n\}$ of rational numbers such that $p_n < x < q_n$ and $p_n, q_n \to x$ as $n \to \infty$. Take σ on the inequality, $\sigma(p_n) < \sigma(x) < \sigma(q_n)$. So $p_n < \sigma(x) < q_n$ since $\sigma|_{\mathbb{Q}} = \mathrm{id}$. Let $n \to \infty$, we get $x \le \sigma(x) \le x$, or $\sigma(x) = x$.