1. Problem

• Matrix-Chain Multiplication

Input: A sequence of matrices $a_1, a_2, \dots a_n$ and dimensions $p[0 \dots n]$

Output: The minimum number of multiplications required

$$p = [5, 10, 8, 8]$$

¦ Revisit:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{22} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

number of multiplications: 2 * (2 * 2)

General case: $A[m_1, n_1] * B[m_2, n_2] = C[m_1, n_2], n_1 = m_2$

number of multiplications: $n_1 * (m_1 * n_2)$

$$\begin{array}{c} (a_1[5,10] * a_2[10,8]) * a3[8,8] \\ \hline [5,8] \end{array}$$

$$10*(5*8) + 8*(5*8) = 720$$

•
$$a_1[5,10] * (a_2[10,8] * a3[8,8])$$
[10,8]

$$8*(10*8) + 10*(5*8) = 1040$$

2021/7/15

• Not perform the multiplications, but to decide in which order to perform the multiplications.

	Time complexity	Space complexity
Naive Recursion:	$O(4^n / n^{3/2})$	$\mathrm{O}(n)$
DP:	$O(n^3)$	$O(n^2)$

2021/7/15

1) Naive Recursion

Pseudocode:

matrixChainMultiplication (p[0..n])

Input: : A dimension array p[0...n] of sequence of matrices

Output: : The minimum number of multiplications

1. **return** countMultiplication(p, 1, n)

countMultiplication (p[0..n], i, j)

- 1. **if** i = j **do** return 0
- 2. result = inf
- 3. **for** $k \leftarrow i$ **to** j 1 **do**
- 4. count \leftarrow (countMultiplication(p, i, k) +
- 5. countMultiplication(p, k+1, j) +
- 6. p[k] * p[i-1] * p[j]
- 7. **if** count < result **do** result \leftarrow count
- 8. **return** result

$$f(1, 4) = \min(f(1, 1) + f(2, 4) + n_1 * (m_1 * n_4),$$

$$f(1, 2) + f(3, 4) + n_2 * (m_1 * n_4),$$

$$f(1, 3) + f(4, 4) + n_3 * (m_1 * n_4))$$

$$i = 1$$
 $k = 1$ $j = 4$

(A1) (A2 A3 A4)

 $k = 2$

(A1 A2) (A3 A4)

 $k = 3$

(A1 A2 A3) (A4)

1) Naive Recursion

Recursion tree:

https://www.geeksforgeeks.org/matrix-chain-multiplication-dp-8/

2021/7/15 5/11

- 2) Dynamic Programming
- Subproblem:

M[i, j] = Minimum number of multiplications needed to compute the matrix-chain product $a_i \times a_{i+1} \times \cdots \times a_j$, where the size of matrix a_i is p[i - 1] \times p[i].

Compute M[1, n].

2) Dynamic Programming

A[m₁, n₁] * B[m₂, n₂] = C[m₁, n₂], n₁ = m₂ number of multiplications: $\mathbf{n_1} * (\mathbf{m_1} * \mathbf{n_2})$

• Recurrence:

$$M[i,j] = \begin{cases} 0 & \text{k=i} & \text{k+1} & \text{k=i} \\ M[i,i] + M[i+1,j] + p[i-1]p[i]p[j], \\ M[i,i+1] + M[i+2,j] + p[i-1]p[i+1]p[j], \\ M[i,j+1] + M[i,j+1] + M[i+1] + M$$

https://www3.cs.stonybrook.edu/~pramod.ganapathi/doc/algorithms/Algo-DynamicProgramming.pdf

- 2) Dynamic Programming

$$M[i,j] = \begin{cases} 0 & \text{if } i = j, \\ M[i,i] + M[i+1,j] + p[i-1]p[i]p[j], \\ M[i,i+1] + M[i+2,j] + p[i-1]p[i+1]p[j], \\ \dots \\ M[i,j-1] + M[j,j] + p[i-1]p[j-1]p[j], \end{cases} \text{ if } i < j. \end{cases}$$

https://www3.cs.stonybrook.edu/~pramod.ganapathi/doc/algorithms/Algo-DynamicProgramming.pdf

3. Algorithms

2) Dynamic Programming

Pseudocode:

```
matrixMultiplication (p[0..n])
Input: : A dimension array p[0.. n]
Output: : The minimum number of multiplications
    for i \leftarrow 1 to n do
      M[i, i] \leftarrow 0
    for chain len \leftarrow 2 to n-1 do
      for i \leftarrow 1 to n - chain len + 1 do
4.
5. j \leftarrow i + chain\_len - 1
   M[i,j] \leftarrow \inf
6.
         for k \leftarrow i to i - 1 do
            M[i, j] \leftarrow \min(M[i, j],
9.
                              M[i, k] + M[k + 1, j] +
10.
                              p[i-1] * p[k] * p[i]
```


Time complexity: $O(n^3)$

Space complexity: $O(n^2)$

11. **return** M[1, n]

3. Algorithms

2) Dynamic Programming

• Tables

i	0	1	2	3	4
P[i]	1	2	3	4	3

M[i, j]	j = 1	j = 2	j = 3	j = 4
i = 1	0	6	18	30
i = 2		0	24	48
i = 3			0	36
i = 4				0

$$\min(M[i, k] + M[k + 1, j] + p[i-1] * p[k] * p[j])$$

ex.
$$M[1, 3] = min(M[1, 1] + M[2, 3] + p[0] * p[1] * p[2], 0 + 24 + 6 = 30$$

 $M[1, 2] + M[3, 3] + p[0] * p[2] * p[3]) 6 + 0 + 12 = 18$

$$M[1, 3] = 18$$

	Time complexity	Space complexity
Naive Recursion:	$O(4^n / n^{3/2})$	$\mathrm{O}(n)$
DP:	$O(n^3)$	$O(n^2)$

There are more efficient algorithms. Ex. Hu & Shing. $O(n \log n)$

Hu, T. C., and M. T. Shing. 1981.