Logrank test

An example

An example

Suppose we have data:

Group 0: 3.1, 6.8+, 9, 9, 11.3+, 16.2

Group 1: 8.7, 9, 10.1+, 12.1+, 18.7, 23.1+

Calculate the Logrank test statistics.

An example

Group 0: 3.1, 6.8+, 9, 9, 11.3+, 16.2

Group 1: 8.7, 9, 10.1+, 12.1+, 18.7, 23.1+

$$t_1 = 3.1$$

$$t_2 = 8.7$$

$$t_3 = 9$$

$$t_4 = 16.2$$

$$t_1 = 3.1$$
 $t_2 = 8.7$ $t_3 = 9$ $t_4 = 16.2$ $t_5 = 18.7$

	d_i	a_i	
Group 0	1	5	6
Group 1	0	6	6
Total	1	11	12

d_i	a_i	
0	4	4
1	5	6
1	9	10

$\overline{d_i}$	a_i	
2	2	4
1	4	5
3	6	9

d_i	a_i	
1	0	1
0	2	2
1	2	3

d_i	a_i	
0	0	0
1	1	2
1	1	2

$$d_{i1} = 0$$

$$e_{i1} = 1/2$$

$$v_{i1} = 1/4$$

An example

$$d_{i1}$$
 0
 1
 $d = \sum_{i=1}^{D} d_{i1} = 3$
 e_{i1}
 ½
 6/10
 15/9
 2/3
 1
 $e = \sum_{i=1}^{D} e_{i1} = 4.43$
 v_{i1}
 ¼
 6/25
 5/9
 2/9
 0
 $v = \sum_{i=1}^{D} v_{i1} = 1.26$

• Logrank=
$$\frac{\left[\sum_{i=1}^{D} (d_{i1} - e_{i1})\right]^2}{\sum_{i=1}^{D} v_{i1}} = \frac{(d-e)^2}{v} = \frac{(3-4.43)^2}{1.26} = 0.162$$

- P-value= $P(\chi_1^2 \ge 0.162) = 0.203$
- There is no significant evidence that the survival of the two groups are different.

Logrank test statistics

- Note that both $\{y_{i1}\}_{i=1}^D$ and $\{y_{i2}\}_{i=1}^D$ are non-increasing sequences. If either y_{i1} or $y_{i2}=0$, then we must have $d_{i1}=e_{i1}$.
- Therefore, the 2 × 2 tables at those times and after, does not contribution into the calculation of the test statistics.

Logrank=
$$\frac{\left[\sum_{i=1}^{D} (d_{i1} - e_{i1})\right]^{2}}{\sum_{i=1}^{D} v_{i1}}.$$