MULTIPLE OBJECT TRACKING

B.REVATHI 2210315606

G AISHWARYA 2210315612

M ANUDEEP 2210315639

K NIKITH 2210315634

Outline

- Introduction
- System Architecture
- System Overview
- Libraries Used for Software Implementation
- Applications
- Result

Introduction

Definition:

Object tracking:

To track an object(or multiple objects) over a sequence of images

- In a video sequence an object is said to be in motion, if it is changing its location with respect to its background.
- The motion tracking is actually the process of keeping tracks of that moving object in video sequence i.e. position of moving object at certain time etc.

System Overview

System Architecture

Input Image Sequence

Motion Segmentation

- Develop a model for the background
- Subtract the current frame from background model
- Threshold the difference image
- Challenges:
 - Outdoor sequences are more difficult
 - Illumination changes
 - Camera jitter and noise

Background model

Current frame

Thresholded difference

Previous 75 frames

Current frame

Next 75 frames

Noise removal

- Remove blobs that are very small
- Group all connected pixels as one object
- Perform Dilation and Erosion morphology operations
 - Small blobs get deleted
 - Envelope is established around each detected object in the color image
- Calculate statistics for each blob (color, position, size)

Object Tracking Algorithm

- Once moving objects (blobs) detected, find correspondence between tracks of previous frame and blobs of current frame
- Most common method: a Match matrix used to determine correspondences
- Euclidean distance between blobs commonly used as the measure for a match
- Non-trivial because data is noisy and objects are not predictable
- Objects
 - Appear in the scene
 - Disappear due to exit from scene or occlusion
 - Merge with other objects or the background
 - Break up into two or more objects due to occlusion

Examples of Tracking Problems

previous frame

Blobs:
$$O^k = \{o_1^k, o_2^k, o_3^k, \dots, o_{v^k}^k\}$$

Current frame

Given track set of previous frame and blob set of current frame, calculate the Match matrix of Euclidean distances between them in color space (R,G,B) and Position (Y, X) values

Match Matrix

4.	Blob O ₁	Blob O ₂	Blob O ₃
t ₁	?	?	?
t ₂	?	?	?
t ₃	?	?	?

$$MM_{j,i} = \sqrt{(\Delta Y/Ydim)^2 + (\Delta X/Xdim)^2} + \sqrt{(\Delta R/255)^2 + (\Delta G/255)^2 + (\Delta B/255)^2}$$

Libraries Used for Software Implementation

Level 1 implementation:

In this implementation, User is given a choice to select an object among all the objects in a sample dataset and track them continuously.(multiple objects can be selected). OpenCv is used.

Level 2 implementation:

In this implementation, all the objects from the sample dataset are automatically tracked. dlib library is used for this implementation.

Caffe Framework:

Caffe framework is used to train with the sample dataset.

Caffe is a deep learning framework made with expression, speed, and modularity in mind.

Applications

- Traffic Information
- Survelliance
- Mobile Robot

Result

Thank You