

Artificial Intelligence

Comprehensive Information

Collected by Sudha Mantri (Dean, Leesburg School of AI, VA, USA)

V 1.0 Dated 8/16/2018

Note: This will be continually updated and shared.

Table of Contents

Disclaimer	3
Version History	4
History of AI	5
Definitions, Compare/Contrast	7
Human VS Artificial Intelligence	7
AI vs ML vs DL	7
ML vs DL	9
Suggested Prerequisites	11
Popular Algorithms	12
Some Examples of System Learning	12
Datasets	16
Environment	17
Hands On Training	18
Project 1	18
Resources	19

Disclaimer

I thank Siraj, all the internet sources, experts, and School of AI team members. This information is not meant to violate any copyrights. Kindly know that I am an eternal student (always learning) and making notes (literally). However, I wish to add that this information is meant to be used by School of AI Deans/Wizards to help members and aspirants learn AI Free of charge. Please let me know of any copyright violations and I shall duly oblige.

 *School of AI Deans please use this information please feel free to use this document and/or create your own sessions/training as you deem fit

Below is the School of Al Guidelines for all the deans. Please follow them and share information if/as need be.

https://gallery.mailchimp.com/21a24cf96b7ec98b2144fca5c/files/c9a14833-10b2-42c0-a024-f5310cb395bc/Copy of School of Al Meetup Guidelines.pdf

School of Al Meetup Guidelines.pdf

Version History

V 1.0	8/16/2018	Initial Version (Draft) meant for School of AI Deans as reference – Use to teach others for FREE

History of Al

https://en.wikipedia.org/wiki/History_of_artificial_intelligence

Year	AI Significance		
1936	The Turing Machine. Massive data analysis, recognition, and decoding.		
1938	Learning is major feature of AI. Operant Conditioning (OC or Thorndike's law of effect).		
	OC brought data science (Psychometry), making psychology a quantitative field. A being		
	will learn a behavior if conditioned using OC techniques.		
1940	Theory of Adaptive Process Control. Norbert Wiener. Both Reinforcement Learning and		
	Operant Conditioning are based of Theory of Adaptive Process Control.		
1947	Transistor		
1960s	B.F Skinner took Operating Conditions to the next level.		
	OCs were later used in AI: Example, OCs used for artificial spiking neural networks (ASNN)		
	to act as robot brain controllers for learning.		
1952	Spiking Neuron. Alan Lloyd Hodgkin and Andrew Huxley		
	Computer could play Tic-Tac-Toe. OXO by Alexander Shafto "Sandy" Douglas		
1955	Term 'Al' coined in a workshop. Dartmouth Professor John McCarthy		
1956	General Problem Solver (GOFAI- Good Old Fashioned AI). Allen Newell. Herbert Simon		
	Physical Symbol System Hypothesis		
1958	Early version of artificial neural network. Frank Rosenblatt coined 'perceptrons'. Mark 1		
	perceptron. While Rosenblatt was working on his Mark 1, an MIT professor named Marvin		
	Minsky pushed for symbolic systems approach. In 1969, Minsky co-authored a book with		
	Seymour Papert, called "Perceptrons" arguing against Rosenblatt's approach to artificial		
	neural networks. Perceptrons and artificial neural networks languished for nearly a		
	decade. But Geoff Hilton developed a multi layered neural network.		
1959	Arthur Samuel. Checkers against itself		
1962	First Computer Science Department - Purdue		
1964	First Neuro Science Department - aka 'Psycho Biology' - UC Irvine		
1968	Intel founded		
1970s Reinforcement learning (RL) - has data, is quantitative and is unrelated to human			
	and is usually used in Machine Learning as an approach to training. Like OC, it is based on		
	adaptive learning/process control. Richard S Sutton pioneering force.		
1970s	Dean Pormerleau built a self-driving car		
1980	Chinese Room Argument John Sorrell		
1981	Advent of Personal Computers - IBM		
Mid	Geoff Hinton created a new version of an artificial neural network, based on Rosenblatt's		
1980s	Perceptron. Except his version include several hidden layers. This allowed his artificial		
	neural network to work on much more complicated patterns.		
1990	Yann Lecun built OCR for handwritings		
1995	Paper released 'Random fonts for the simulation of handwriting'		
	http://luc.devroye.org/mcdougallpaper.pdf		
1997	IBM DeepBlue beats Kasparov		
2000s	First 1 billion transistor processor. As of 2017, the largest transistor count in a		
	commercially available single-chip processor is 19.2 billion— AMD's Ryzen-based Epyc		
2002	MyFont released Human like Handwriting Fonts		
2011	IBM Watson beats Brad Rutter and Ken Jennings at Jeopardy		

2014	Chatbot passes Turing Test. Russian chatterbot named "Eugene Goostman" passes the test if it is mistaken for a human more than 30% of the time. Competition at the Royal Society in London
2017	AlphaGo beats humans. Oct 2017: AlphaGo Zero learnt to play the game of Go simply by
	playing games against itself, starting from completely random play.
2000s	John Searle – consciousness in artificial intelligence. Presents Weak AI (symbolic systems
	approach) vs Strong AI. Famous for Chinese Room Argument.
2000s	Planning AI also called Automated planning and scheduling: Takes possible initial states of the world, desired goals, and set of possible actions. Planning AI attempts to synthesize a plan that guarantees a desired goal (i.e end in a goal state) starting from any of the initial states. This is applied in a dynamically changing or unknown environments. For example, unmanned vehicles.
From	Heuristic reasoning continues to be central to AI. Best choice from start to goal nodes.
Mid	Heuristic choice depends on domain/problem space: Google Maps, Directions, Legal
1940s	contracts, logistics, video games and many more.

Definitions, Compare/Contrast

Humans are addictively fascinated with defining and categorizing everything. The benefit I see in that exercise is it makes communication easy (please note I said communication not understanding). There are many definitions for Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL). We can say that right now, AI field is still in its infancy and nomenclature is fluid. There is tremendous opportunity in the field.

Human VS Artificial Intelligence

The exponential increase-in/availability-of digital data provided the impetus for advancements in Al.

Human	Artificial Intelligence
Use 5 senses - visual, audio, skin feeling, smell,	Computer systems that can accomplish some
and taste – and arguably more senses.	tasks that require human intelligence
Use available information to take decisions (may	Use available information for some decisions and
be more biased and unpredictable/inconsistent –	provide more accurate and consistent results
I may like ice cream one day but not the next)	(which may be desirable in some fields but not in
	others)
Communicate	Interact with humans using their natural
	language (language processors)
Identify patterns in data (and act/decide) –	Learn from the data and automate repetitive
Amazing to observe this.	(neural network) tasks based on given
	algorithms/learning
Remember what people have said	Possibly not as advanced as humans
Adapt to new situations (infinite possibilities as	Learn from their mistakes and adapt to new
humans are in general good with multiple things)	environments (limited possibilities at the
	moment but for a specific task – Google AlphaGo
	– AI seems to be excelling)

Al vs ML vs DL

	Artificial Intelligence (AI)	Machine Learning (ML)	Deep Learning (DL)
Definition	Intelligent machines that are meant to imitate/think/act more like human beings	System learns things without being programmed to do so. Logistic Regression. System is able to make	System thinks and learns like human brain using artificial neural networks. Initial dataset is small with less testing time. Performance
Definition	meant to imitate/think/act	being programmed to do so. Logistic Regression.	human brain using artifi neural networks. Initial dataset is small with less

Progress	Era of Weak AI. Machines in their infancy. Any code or technique or algorithm that enables machines to mimic develop and demonstrate	based on the past data. Model being trained based on features. This can be done on smaller amounts of data. To move from weak AI to strong AI machines need to learn the ways of humans. Techniques and process of ML help machines in this endeavor	improves with more data and continual learning. Concept of weights, bias, variance. Problem solved in an end to end method. Best features are selected by the system Machines demonstrate ability to learn deeply by drawing meaningful inferences from large data sets. DL requires Artificial Neural Networks
	human cognition and behavior.	Machines learn to predict outcomes on the go by recognizing patterns in the input data.	(ANN) in layers which are like biological neural networks in humans. ANNs connect and communicate with each other to make sense of vast input data
Types (Just categoriza tion)	 Reactive machines (Say clothes are clumped on one side in a washing machine, then machine re-centers clothes). No past experience/memory for a new decision Limited memory (Say neural network programmed to identify car). Machine may use short-lived or limited/past information Theory of mind. Systems able to understand human emotions and adjust self-behavior according to the human needs (popularly known as user experience) Self-awareness (self-fixing. Predicting which action is best for the humans – to make human life happy). Systems are aware of themselves and understand their own internal states. Systems 	 Supervised learning: Systems are able to predict future outcomes based on the past data (system learns from bunch of input images. Then it matches a new image). Requires both input and an output to be given to the model for it to be trained Unsupervised learning: Systems are able to identify hidden patterns from the input data provided. By clustering etc., the patterns and similarities/anomalies become apparent to the system Reinforcement Learning: Systems are given no training. It may learn on the basis of reward/punishment (Yes/No answers) 	DL uses different approaches, algorithms to achieve Deeper learning. 1. Multi Layer Perceptrons (MLPs) 2. Convolutional neural net (CNNs)

	predict other people's feelings/actions.		
Examples	News generation – finds news articles based on news feeds, Google command – smart home devices. Amazon prime music, SAAVN, Philips Hue, OLA, NDTV, Zomata, TED, Goibibo, ESPN Cricinfo, Amazon Echo etc., KBS –DENDRAL, MYSIN, XCON/RI	Spam detection, Chats, Mail categories (All mail, Trash, important, spam), search engine result refining (weights - categorized) - Google search.	Sortie (translation) - neural network (different words and patterns) Chat boats – ask a question it gives answer. Specific tasks – IBM deep blue, Google DeepMind, Google AlphaGo. Convert a black and white image to, Automated library categorization of books – translation of handwritten/printed data to
Future is happening	Detect crimes before they happen, humanoid AI helpers	Increase efficiency in healthcare, better marketing techniques, Finance, sports, trading, trading.	Increase personalization – hyper intelligent systems, decision making.

Internet Era	Al Era
A company has something and sells it on internet	Traditional tech company adds neural networks
(implements ecommerce) – Surprise! This does	(ML or DL) – Surprise! This does not make it an Al
not make it an internet company	company
Data is power. Internet companies can do	Strategic data acquisition. Unified data
pervasive A/B testing and improve - Short cycle	warehouse. Spotting Pervasive automation
time (e.g. shipping packages)	opportunities (theoretically anything a person
	take a second or less to think could be automated
	and combined into an automated workflow) –
	Data Centers, Cyber security etc.
Decisions usually made from top down	Push decision making from CEO to engineers/
	product managers
Analysts/Managers may use wireframes etc., for	Product managers focus more on data and
communicating requirements	achieving 99% accuracy between initial and goal
	states. Traditional wireframes etc. not applicable

ML vs DL

Machine Learning	Deep Learning
Enables machines to take decisions on their own,	Enables machines to take decisions with the help
based on the past data	of artificial neural networks
May Need small or large training data (may be	May need small amount of initial data but Needs
spreadsheet or tolls from end of the year or many	a large amount of data to train against.
images of cats)	

Works well on low-end systems (laptop)	Needs high end system to work (cloud)
Most features need to be identified in advance	The machine learns the features from the data it
and manually coded (lot of human work)	is provided
The problem is divided into parts and solved	The problem is solved in an end to end manner
individually and then combined	may be one or two neural networks (we may
	need machine and deep learning together)
Testing takes longer	Testing takes less time
Crisp rules, explain why a certain decision was	Since the system takes decisions based on its own
taken	logic, the reasoning may be difficult to interpret
	(like a magic black box – we just know it just
	came up with right answer we don't know how it
	came there)

Suggested Prerequisites

Following knowledge will help but please do not focus too much on any one area. Mathematicians, Programmers, Visionaries, Domain experts are all needed to make a product successful. The more one knows, the better, but, there is no need to be expert of all. Please know what the goals are and pick the right technology/algorithm/team to make it happen. Start with an example and complete it

- 1. Math needed for ML and BL
 - a. Linear algebra
 - b. Calculus,
 - c. Probability Theory/ Statistics,
 - d. Matrix calculation
- 2. Domain knowledge (in addition to simply having Datasets)
- 3. Algorithms (Know what your needs are to pick the best algorithm
- 4. Technology (Start with what you are comfortable Python is popular)
 - a. Python
 - b. Advanced Python NumPy
 - c. Angular JS
 - d. JavaScript
- 5. Datasets

Popular Algorithms

We need to understand 'Bias' and 'Variance' in the context of AI and algorithms and learning/testing Models can be compromised from high bias and/or high variance. One needs to evaluate the model against the data sets (including training and cross validation). But features, relevancy, noisy then training a model get a zero (or close to zero) error will be misleading.

In other words – Simply choosing algorithms and data sets, and training for zero error may not necessarily guarantee perfect outcomes. Domain knowledge is helpful.

Algorithms may be categorized as below (Usually Economic value created goes down the list below)

- 1. Supervised Learning (A to be B mapping)
 - a. Transfer Learning (Learn from one problem to the other)
 - i. For example, system learns to recognize cats/dogs/people. There may be lot of pictures of cats and other terrestrial objects. Hence, transfer learning uses what it has learned with terrestrial objects and tries to (for example) beat x ray and radiology images. There is lot of terrestrial data but much less data in radiology images for a given condition.
- 2. Unsupervised Learning
 - a. Google Brain project (System watches you tube and tries to figure out concept of cat) i.e. figure things out by themselves without requiring a lot of label data
 - b. autoencoder
- 3. Reinforced Learning
 - a. AlphaGo and also Video games (self-learn by playing against itself)
 - b. This needs a lot more data than unsupervised learning but it can be self-learning. E.g. Robotic application that can self-learn by simulating a robot.

Some Examples of System Learning

Going from input A to output B (A -> B)

Input (A)	Output (B)
Picture	Is it you? (Y/N)
Loan Application	Will it repay (Y/N)
A video or a link	Will you click it (Y/N)
Audio	Output text transcript
English	To French (for example)
Image/Radar etc.	Position of other cars (example)

Following are some commonly used algorithms. Please refer to https://docs.microsoft.com/en-us/azure/machine-learning/studio/algorithm-choice which good suggestions as to what to use when.

- 1. Linear Regression
- 2. Logistic Regression
- 3. Decision Tree
- 4. Naive Bayes
- 5. SVM
- 6. kNN

- 7. Random Forest
- 8. K-Means
- 9. Dimensionality Reduction Algorithms
- 10. Gradient Boosting algorithms
- 11. GBM

Please refer to the following article for additional information on the neural networks.

1. http://www.asimovinstitute.org/neural-network-zoo/

A mostly complete chart of

Common neural networks: Following are 6 Types of Artificial Neural Networks Currently Being Used

- 1. Feedforward Neural Network Artificial Neuron
- 2. Radial basis function Neural Network
- 3. Kohonen Self Organizing Neural Network
- 4. Recurrent Neural Network (RNN) Long Short-Term Memory
- 5. Convolutional Neural Network
- 6. Modular Neural Network

Datasets

Free dataset (please remember – domain knowledge goes far!). Please search and you will find many more. Below are just a few examples

- https://github.com/awesomedata/awesome-public-datasets
- https://www.kaggle.com/datasets
- USA Census Data: https://www2.census.gov/acs2013_1yr/summaryfile/
- Cause of Death https://wonder.cdc.gov/
- Airbnb, Walmart etc.

Environment

- 1. Python, anaconda, IDLE
- 2. Jupiter note book Windows
- 3. Cloud
 - a. Anaconda cloud
 - b. AWS cloud
 - c. Azure

Hands On Training

TBD. Please feel free to provide suggestions. This will be progressively filled as we move forward. Deans, please feel free to do your own sessions/training as you deem fit.

Project 1

TBD. Please feel free to provide suggestions. This will be progressively filled as we move forward Deans, please feel free to do your own sessions/training as you deem fit.

Resources

- School of AI owes it to Siraj Raval.
 - o https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
- YouTube and WWW are good resources. There are many experts but below are just a few individuals:
 - Geoffrey Hinton, Andrew Ng, Demis Hassabis, Richard Sutton, Dag Kittlous, Ray Kurzweil, Yann Lecun, Stuart Russel, Jurgen Schmidhuber, Nathan Benaich, Alex Champandard, Jana Eggers, Adam Coates, John C Havens.
- Below are a few institutions/ free courses
 - o http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=DeepLearning
 - o https://ai.google/education/
 - o https://www.class-central.com/course/udacity-intro-to-deep-learning-5681
 - o https://www.coursera.org/learn/machine-learning
 - o https://www.class-central.com/course/edx-machine-learning-7231
 - https://www.class-central.com/course/fundamentals-of-deep-learning-for-computervision-10730
 - o https://selfdrivingcars.mit.edu/