Si consideri il decadimento $B^0\to \bar D^0 K^0_s$ di un mesone B^0 di impulso $p_B=135~{\rm GeV}.$

- 1. Calcolare l'energia minima E_{\min} del kaone K^0_s nel laboratorio.
- 2. I kaoni K_s^0 decadono nel canale $K_s^0 \to \pi^+\pi^-$. Considerando solo i kaoni con energia $E_{\rm min}$, stimare la frazione di kaoni decaduti dopo una distanza di 10 cm.
- 3. È possibile che entrambe le particelle K^0_s e D^0 siano emesse nella stessa direzione di volo di B^0 nel laboratorio? Motivare la risposta.

Dati utili:

$$\begin{split} m_B &= 5279 \text{ MeV} & \tau_B &= 1.6 \times 10^{-12} \text{ s} \\ m_D &= 1864 \text{ MeV} & \tau_D &= 4.1 \times 10^{-13} \text{ s} \\ m_K &= 498 \text{ MeV} & \tau_K &= 8.96 \times 10^{-11} \text{ s} \\ m_\pi &= 140 \text{ MeV} & \tau_\pi &= 2.6 \times 10^{-8} \text{ s} \end{split}$$

 $p^* = \frac{5.27 (300)}{\sqrt{m_B^4 + m_K^4 + m_D^4 - 2m_B^2 m_D^2 - 2m_B^2 m_K^2}} = \frac{2.28 \text{ GeV}}{2.28 \text{ GeV}}$

LAB Solidale cous

a)

Euergie del pione rel LAB é date de

$$E_{K} = \nabla E^{*} + \beta \nabla P^{*} \cos \theta^{*}$$

$$\nabla = \underbrace{E_{B}}_{M_{B}} = 25.403 \quad \beta \delta \Big|_{B} = \frac{P_{B}}{M_{B}} = 25.384$$

min per $E_K S$: he per $\theta^* = T$ oss: e^* ever so indietro rispetto alle dire Evone del volo del B nel LAB.

$$E_{\text{min}} = \nabla E^{*} - \beta \nabla p^{*} = 1.41 \text{ GeV.}$$

$$E^{*} = \sqrt{p^{*2} + m_{K}^{2}} = 2.334 \text{ GeV}$$

b) rel LAB K° hours E=1.41 GeV e impulso P=JE2-un?

Fre Z'our di K°. sopreurissoti dopo disteu te L. $f_{sopreu.} = \frac{L(x=L)}{N(0)} = e^{-\frac{L}{A}} = e^{-\frac{L}{A}}$

$$\beta V = \frac{PK}{WK} = 2.650 = 7 AK = 7.1 CM. 1 PT$$

c) Per Capire se De E possous ordere relle stesse dire Zione nel LAB, bisogne confrontere Bo, Bx (Calcolate rel rif solidale con B) con BB del B rel LAB.

$$B = \frac{P_B}{E_B} = 0.999$$
 Rif solidate con B

Dato dre Bri, Bic C BB a Causa dell'eleveto boost d. Bo nel LAB tette le porticelle venno in avonti.

Si consideri il decadimento $B^+ \to K^0 \pi^+$ di un mesone B^+ di impulso $p_B = 10.9$ GeV.

- 1. Calcolare l'energia massima $E_{\rm max}$ del pione π^+ nel laboratorio.
- 2. I pioni π^+ decadono nel canale $\pi^+ \to \mu^+ \nu_\mu$. Considerando solo i pioni con energia $E_{\rm max}$, stimare la lunghezza di un tunnel affinché, in media, almeno il 95% dei pioni siano decaduti prima di uscirne.
- 3. È possibile che entrambe le particelle K^0 e π^+ siano emesse nella stessa direzione di volo di B^+ nel laboratorio? Motivare la risposta.

Dati utili:

$$m_B = 5279 \text{ MeV}$$
 $\tau_B = 1.6 \times 10^{-12} \text{ s}$
 $m_K = 498 \text{ MeV}$ $\tau_K = 8.96 \times 10^{-11} \text{ s}$
 $m_\pi = 140 \text{ MeV}$ $\tau_\pi = 2.6 \times 10^{-8} \text{ s}$
 $m_\mu = 106 \text{ MeV}$ $\tau_\mu = 2.2 \times 10^{-6} \text{ s}$

Frazione di pioni sopravissoti dopo distente L. $f_{soprav.} = \frac{N(x=L)}{N(0)} = e^{-\frac{L}{2}} = e^{-\frac{L}{2}}$ [1 PT

flect =
$$1 - f_{50prov} = 0.95$$
. => $f_{50prov} = 0.05$
 $A\pi = (\beta \delta)\pi CT\pi$.

 $\beta \delta_{0} = \frac{\beta \pi}{m\pi} = 81.447 => A\pi = 635 \text{ m.}$ 1 Pr
 $f_{50prov} = e^{-1/2} => L = -A\pi \log (1-0.95)$
 $\Rightarrow L = 1900 \text{ m.}$ $A \text{ Pr}$

c) Per capina se the k possour and the stesse directions nel LAB, bisome Confrontere β_{0}^{*} , β_{0}^{*} (Calcolate relative solidate tool B) and BB del Bt and LAB.

 $g_{0} = \frac{\beta \pi}{EB} = 0.9$
 $g_$

Dato dre Bri, Bic> BB => boost del Bt non sufficiente

per inventire verso dell'impulso di particelle emesse

indietro.

=> TI, K non con cordi in LAB.

2 P-