CS 346 Class Notes

Mark Lindberg

Mar 2, 2016

Last Time:

A strongly universal function:

Let p be prime.

$$\mathcal{K} = \mathbb{Z}_p \times \mathbb{Z}_p$$

$$\mathcal{M} = \mathcal{T} = \mathbb{Z}_p$$
.

Then $h_{a,b}(m) = (a \times m + b) \mod p$, where $(a,b) = k \in \mathcal{K}$.

To show the strong universality we need:

 $\forall m, m', t, t' \in \mathbb{Z}_p$ such that $m \neq m'$,

$$\Pr[h_{a,b}(m) = t \land h_{a,b}(m') = t'] = \frac{1}{n^2},$$

where the probability is taken over the uniform choice of key a, b.

This Time:

We'll prove it!

 $(am + b) \mod p = t$, $(am' + b) \mod p = t'$.

We'll argue there is a unique key a, b satisfying these equations.

Then, assume without loss of generality that m' > m. (Swap if necessary.) $t - t' \mod p = (a(m' - m)) \mod p$.

Let $x \in \{1, \dots, p-1\}$.

Then $ix \mod p$, $jx \mod p$ differ for $i, j \in \mathbb{Z}_p$, $i \neq j$.

PBC: Assume j > i, without loss of generality, such that $jx \mod p = ix \mod p$. Then $x(j-i) \mod p = 0$, then $p \mid x(j-i)$, since p is prime, $p \mid x$ or $p \mid j-i$. But $x, j-i \in \{1, \ldots, p-1\}$, so contradiction.

The above shows that since $m'-m \leq p$, then there $\exists ! a$ satisfying the equation. Then we can solve for b, and show that there is a unique key. Since there is a unique key, we see that probability is indeed $\frac{1}{n^2}$.

Chapter 5. Hash functions and applications.

Definition of a hash function: (Gen, H)

 $\mathsf{Gen}(1^n)$ runs in polynomial time, and returns a key s. (We assume n is implicit in s.)

For any binary string x, $H^s(kx)$ is an $\ell(n)$ -bit binary string.

Fixed-length version: If H^s is only defined for strings of length $\ell'(n)$, where $\ell'(n) > \ell(n)$, it is called a fixed-length hash function for inputs of length $\ell'(n)$. "compression function"

Collision resistance: It is hard to find input string hashing to the same output strings.

 $\mathsf{Hash\text{-}coll}_{\mathcal{A},\Pi}(n)$. Run $\mathsf{Gen}(1^n) \to s$. \mathcal{A} is given s, and also n, and outputs x, x'. The experiment outputs 1 iff $x \neq x'$ and $H^s(x) = H^s(x')$.

In the fixed-length case, we also require that $|x| = |x'| = \ell'(n)$.

(Gen, H) is collision resistant if \forall PPT adversary \mathcal{A} , $\Pr[\mathsf{Hash\text{-}coll}_{\mathcal{A},\Pi}(n) = 1] \leq \mathsf{negl}(n)$. Merkle-Damgård Transform:

Shows how to use a collision resistant fixed-length hash function (Gen, h) to obtain a collision resistant hash function (Gen, H) for arbitrary-length strings.

We'll assume that $\ell(n) = n$, and $\ell'(n) = 2n$ for h.

Construction: Let $IV = 0^n$. $x = x_1, x_2, \ldots, x_d$, where $|x_1| = |x_2| = \cdots = |x_d| = \ell(n)$, where last block is padded if necessary. Note that $d = \left\lceil \frac{|x|}{m} \right\rceil$. THIS IS WRONG: FIX WHEN UNDERSTAND s: Then $z_1 = h^{0^n}(x_1)$, $z_2 = h^{h_1}(x_2)$, We introduce another block m_{d+1} which is the n-bit binary encoding of |x|. (Requires $|x| < 2^n$, ridiculously easy if n = 128 or something.)

Claim: $\Pi = (\mathsf{Gen}, h)$ is collision resistant $\Rightarrow \Pi' = (\mathsf{Gen}, H)$ is collision resistant.

Let \mathcal{A}' be an arbitrary adversary in the experiment $\mathsf{Hash\text{-}coll}_{\mathcal{A}',\Pi'}(n)$. We'll construct an \mathcal{A} for Π from \mathcal{A}' . How do we do this?

Run $Gen(1^n)$, as in \mathcal{A}' , to get s. Simulate \mathcal{A}' to get x, x'. Problem: \mathcal{A} needs to output 2n-bit strings. We have 2 cases:

- 1. $|x| \neq |x'|$. Then we can feed in the last blocks and have a collision in the original.
- 2. |x| = |x'|. Walk from the back until we find the first non-equal block, and that one gives a collision in the original.

(Yeah, I don't understand this fully. I'll revise these notes after I've read the textbook on this...)

Example: Given $\Pi_1 = (\mathsf{Gen}_1, H_1)$, and $\Pi_2 = (\mathsf{Gen}_2, H_2)$, and we know that (at least) one of these is collision resistant. We'll define a $\Pi(\mathsf{Gen}, H)$ where Gen runs $\mathsf{Gen}_1 \to s_1$, $\mathsf{Gen}_2 \to s_2$, and output s_1, s_2 . Then $Hs_1, s_2(x) = H_1^{s_1}(x)||H_2^{s_2}(x)$. Π is collision resistant:

Proof-ish: If we had an \mathcal{A} for Π , we could define \mathcal{A}_1 and \mathcal{A}_2 for Π_1 and Π_2 respectively, and where we have a collision for x, x' with Π , we have collisions for x, x' with Π_1 AND Π_2 with s_1 and s_2 respectively. Then neither are secure. :)