COMP20003 Workshop Week 5 Binary Search Trees + AVL

- Binary Trees & Traversal
- BST
- AVL & Rotations

Lab:

- implementing bst_insert
- review Weeks 1-4 using sample MST papers

Patricia Tries and Assignment 2

Binary Trees: some jargons

Notes:

denotes a NULL pointer, only a few of them drawn here

Declaring trees: declaration examples

Possible def	Notes	
<pre>struct bst { data_t data; struct bst *left; struct bst *right; }; struct bst *t= NULL;</pre>	 a tree node has a data a left child (aka. <i>left sub-tree</i>) a right child (aka. <i>right sub-tree</i>) this line creates the empty tree t	

Note: often data_t includes a special field key. And data is:

In practice:

- void *data, or
- data_t *data

In demonstrations:

- int key

Tree/BST traversal= visiting all nodes of a tree

Tree traversal= visit all nodes of a tree in a systematic way.

For a non-empty tree , there are 3 jobs , and they can be done in any order!

Tree/BST traversal

Depending on when to visit the root node, we have:

- pre-order (visit root before traversing children),
- post-order (visit root after traversing children), and
- *in-order* (visit root *in between* traversing children)

Note: Children are normally traversed in the letf-right order, but can also be in the right-left order.

Example

List the nodes in order visited by:

- in-order :
- pre-order :
- post-order:

Review:

- What's a BST?
- How to: search? insert? delete?

Complexity of search (for a key)=?, insert (node with a given key)=?, delete (node of a given key) =?

Exercise (supposing data is just int key)

Ex1: Write a C functions for:

- printing a BST's keys in increasing order
- printing a BST's keys in decreasing order

```
??? printIncreasing( ??? ) {
}
```

Ex2: What traversal order should be used for:

- copying a tree ?
- free a tree?

```
typedef struct bst tree_t;
struct bst {
  int key;
  tree_t *left;
  tree_t *right;
};
```


BST efficiency depends on the order of input data

Want The Good, no matter what's the data input order? Use a tree which is always "balanced"!

Good-Bad_Ugly Picture Source: https://www.pinterest.com.au/pin/170573904624610413/

Why AVL? The Good and the Bad of BST

The Good:

The Best and Average performance for search, insert and delete is $O(\log n)$

The height of the tree is around log_2n in average

The Bad:

in general:

search, insert and delete is O(n)

AVL= a BST which is always balanced \rightarrow O(log n) for search/insert/delete How: re-balance BST whenever it becomes unbalanced

How to know if a node/tree is imbalanced?

A node is *balanced* iif the heights of its left tree and its right tree differ by at most 1

- using balance factor of a node (aka. counter)
- counter = left height right height

A tree is balanced iif each of its nodes is balanced, ie.: for each node: difference= $|counter| \le 1$

Is this node balanced?

is the tree balanced?

BST: what's a rotation

A rotation reverses the parent-child relationship of a parent and a child, but still maintaining the BST property.

left rotation for parent-rightChild: rotate parent down to the left ((left) parent becomes left child)

Note: we say that
we rotate the
parent node
= using the child
node as the axe
and rotate the
parent node.

AVL: Two Basic Rotations: 1) Single Rotation

Applied when an AVL (subtree) is a "stick". Two cases:

AVL: Two Basic Rotations: 2) Double Rotation

Applied when an unbalanced 3-node AVL subtree has a non-stick (that is, zig-zag) form. Two cases:

(a)

(b)

We do 2 rotations to re-balance the non-stick unbalanced AVL. Rotation1:

- Rotate the Child (the middle node) of the unbalanced root and turn the tree to a stick

Rotation2:

Rotate the unbalanced root of the new stick.

Double Rotation Example: RL rotation

Do it Yourself: Perform LR Rotate (C, A, B) for the other case of the previous page

AVL: Using Rotations to rebalance AVL

Problem: When inserting a node, AVL might become unbalanced

Approach: Rotate to re-balance

Related questions: Rotate WHAT?, HOW?)

Rotate WHAT?

Walk up from the new node, find the lowest subtree Root which is unbalanced

HOW

- Consider the first 3 nodes R→Child→Grand-child in the path from root R to the new node
- Apply a single (Left or Right) Rotation if that path is a stick, double (LR or RL) Rotation otherwise
- Note: when doing manually, focus on rotating the red nodes alone, and add the other nodes later

Examples: do rotation to keep the BST balanced after insertion

need rebalancing? if yes, what rotation on which node?

same question for the following tree after: insert 60?

insert 70?

Do Peer Activity W5.10 and then fill in the table

W5.10: What rebalancing rotation needs to be done after inserting node *F* into this AVL tree?

Α	LR rotation on B–D–C	
В	L rotation on B–D	
С	RL rotation on B–D–C	
D	R rotation on B–D	

Operation	Case	Complexity for	
Operation		BST	AVL
Insert	Average	O(log n)	O(log n)
	General	O()	O()
Search	Average	O()	O()
	General	O()	O()
Delete	Average	O()	O()
	General	O()	O()

Lab: How to implement bstInsert?

```
Start by discussing with your neighbours:
What should be the function header?

??? bstInsert( ??? )
```

LAB Discussion: bstInsert? Is this code correct? Why?

```
typedef struct bst {
   int key;
   struct bst *left, *right;
} tree t;
tree t *bstInsert(tree t *t, int key) {
  if (t==NULL) {
    // t= malloc a new node and set its value to { key, NULL, NULL};
  } else if (key < t->key)
        bstInsert(t->left, key);
  else
        bstInsert(t->right, key);
  return t;
Example of use:
tree t *t= NULL;
for (i=1; i \le 5; i++) t= bstInsert(t, (i*10) \%7);
// that will insert 3,6,2,5,1
```

- Do & Finish A1
- Get Week 4 √
- Questions on sample MST papers
 W5.2.(a,b,c)
- Questions on A2 ?

Another Search Tree: Patricia Trie for Bit Strings

```
Insert {"A",1}, {"B",2}, {"A",3}, {"ABBA", 4}, {"AA",5}
Notes: ASCII for 'A' is 0100 0001 (valued 65)
                 'B'
                       0100 0010
```

(array of 16 bits) Bit pattern of "A" is 0100 0001 0000 0000