

Quasi Free Scattering Analysis with Experiment S444/467 (2020)

- 12C beam
 proton like target
- 2 protons
- ¹¹B fragment (spectator)

SETUP:

Beam energy: 400 AMeV

Beamtype: 12C

Target: CH₂

Tobias Jenegger

Fragment Particle Identification

Radius reconstruction:

$$R = \frac{L_{eff}}{2\sin\left(\frac{\theta_{in} + \theta_{out}}{2}\right)}$$

Z (charge)

12C(p,2p)11B reaction

Two Proton Identification:

 \rightarrow two hits with E_{hit} > 30 MeV

Gamma Spectrum of 11B

Tobias Jenegger

Doppler Correction:

$$E_{\gamma} = \gamma E_{lab} (1 - \beta \cos(\theta))$$

¹¹B rest frame

---6741.9 0.030 eV

Polar Angular Distribution of protons for 12C(p,2p)11B

Theta1 vs Theta2 in CALIFA

Arzimuthal Distribution of protons for 12C(p,2p)11B

Gamma Spectrum with Angular Cuts

CALIFA Gamma Energy Spectrum

Event selection criteria for CALIFA:

- → 11B fragment identification
- \rightarrow two hits (protons) with E_{hit} > 30 MeV
- $\rightarrow \theta 1 + \theta 2 < 90^{\circ}$
- $\rightarrow \Delta \phi = 180^{\circ} + -40^{\circ}$

TODO: make bkg from 1 to 3 and add also plots with hit-multiplicities...

Tobias Jenegger

Reconstruction of Inner Momenta

Momentum conservation relation:

$$p_{12C} + p_{tg} = p_1 + p_2 + p_{11B}$$

assuming QE scattering in mean field potential:

$$p_{12C} = p_i + p_{11B}$$

$$p_i \approx p_{missing} = p_1 + p_2 - p_{tg} (no ISI/FSI)$$

Momentum components of p_i

Momentum conservation relation:

$$p_{12C} + p_{tg} = p_1 + p_2 + p_{11B}$$

assuming QE scattering in mean field potential:

$$p_{12C} = p_i + p_{11B}$$

$$p_i \approx p_{missing} = p_1 + p_2 - p_{tg} (no ISI/FSI)$$

momentum-components (with angular cuts applied)

Missing Energy Distribution

$$E_{miss} = m_p - e_{miss} (\approx -E_{kin})$$

(where e_miss is the energy component of $\mathbf{p}_{\text{missing}}$)

Mass reconstuction of p_i

$$p_i \approx p_{missing} = p_1 + p_2 - p_{tg} (no ISI/FSI)$$

$$M_i = \sqrt{(p_1 + p_2 - p_{tg})^2}$$

Looks ok, mean of 918 MeV is lower than expected....

Momentum p_i vs p_11B in 12C

Missing mass reconstruction

$$M_{miss} = \sqrt{(p_{12C} - p_i - p_{11B})^2}$$

should be ≈ 0

- → give better look at the 3momentum distribution
 (+- permutation at MW position??)
- → as the reconstruction of p_i
 works well it can be deduced that
 11B reconstruction faulty....

Inner angular distributions

In 12C cms frame:

Cosine of the angle in the CMS between 11B and p_i(projectile proton) in 3D with angular cut

Not satisfactory....

See:

https://www.nature.com/articles/s415

67-021-01193-4.pdf

Excitation Energy of 11B

$$E_{exc} = (P_{12C} + p_{tg} - p_1 - p_2).M - M_{11B}$$

Is this formula valid?

Correlation between knocked out proton and 11B

With given formula:

$$P_y = Q_k \times \sin\theta_k \sin(\varphi_k - \varphi_i),$$

With my formula:

$$P_{y} = Q_{k} * \sin(\theta_{k}) * \sin(\phi_{k}) - Q_{i} * \sin(\theta_{i}) * \sin(\phi_{i})$$

Correlation between knocked out proton and 11B

What we expect:

12C(p,ppn/pd)10B Reaction

Tobias Jenegger 18

First Angular and Momentum Plots ...

Without cut:

Theta1 vs Theta2 for the 10B reaction

Reconstruction of inner momentum p_i

Neutron Mass Reconstruction

