Objektumorientált tervezés: végrehajtás

1. Végrehajtás modellezése

Az objektumorientált programokat egymással kapcsolatban álló objektumok alkotják

- a lehetséges kommunikációs pontokat az osztálydiagramban feltérképeztük
- azonban a végrehajtás sorrendjére, időbeli lefolyására az osztálydiagram nem ad támpontot
- az állapotdiagram csak egy osztály szemszögéből jellemzi a működést, és elsősorban nem a végrehajtást modellezi

A program működése során történő, objektumok és osztályok közötti interakciós folyamatokat kommunikációs, szekvencia, illetve tevékenység diagrammal modellezhetjük

2. Kommunikációs diagram

Az UML kommunikációs diagram (communications diagram) célja az objektumok közötti kommunikáció sorrendjének megállapítása

- ábrázolja az objektumokat és a köztük lévő kommunikációt, üzenetátadást (metódushívás, eseménykiváltás)
- az objektumok mellett szerepeltetheti a rendszer aktorait is, amelyek kezdeményezhetik az üzenetátadást
- az üzenetekhez rendel irányt és sorrendiséget

A kommunikációban ábrázolhatjuk

- a csoportokat, amelyek az egy híváslánchoz tartozó üzenetek (.<sorszám> formátumban)
- az elágazásokat (<sorszám><ág> formátumban)
- a feltételeket ([<feltétel>] formátumban)

A kommunikációt az objektumok szemszögéből ábrázoljuk

- általában nem a teljes rendszer kommunikációját, csak egy leszűkített részét ábrázoljuk, amelyben egy megadott forgatókönyvet követünk
- pl. egy adott használati eset (funkció) teljesítésének megvalósítását adott feltételek mellett
- nem tartalmaz feltételt, ciklust, és nem látható az objektumok élettartama

Segíthet az objektumok viselkedési mintájának meghatározásában (ugyanakkor a pontos ábrázoláshoz szükséges a statikus szerkezet)

3. Szekvencia diagram

Az UML szekvencia diagram (sequence diagram) célja az objektumok közötti interakció időrendi ábrázolása

• tartalmazza a kommunikációs diagram elemeit, ugyanakkor nem sorrendiséget ad a kommunikációra, hanem időbeli lefolyást ábrázol

A szekvenciában az objektumok (és az aktorok)

- életvonallal (lifeline) rendelkeznek, amely meghatározza létezésük időtartamát
- lehetnek aktívak, ekkor képesek kommunikáció kezdeményére

A szekvenciában az üzeneteknek különböző típusait tudjuk ábrázolni

- szinkron üzenet: feldolgozását (végrehajtása) a hívó megvárja, addig nem végez további műveleteket
- aszinkron üzenet: feldolgozását a hívó nem várja meg, hanem tovább tevékenykedik

• visszatérési üzenet: egy korábbi üzenet feldolgozásának eredménye

Példa: prezentáció

A szekvencia során üzenet segítségével

- létrehozhatunk új objektumokat (a konstruktorral), ekkor elindul az életvonaluk
- megsemmisíthetünk objektumokat (a destruktorral), ekkor vége az életvonaluknak
- kommunikálhatunk az objektumokkal a két üzenet között

A szekvencia során ábrázolhatunk

- feltételes szakaszt (opt), amely csak a feltétel teljesülésekor hajtódik végre
- elágazást (alt), ahol a feltétel függvényében különböző ágakat hajthatunk végre
- ciklust (loop), ahol a tevékenységet a feltétel függvényében többször is végrehajtjuk
- párhuzamos szakaszt (par), ahol egyszerre párhuzamosan végezzük a tevékenységeket
- kritikus szakaszt (critical), amely nem végezhető párhuzamosan

