Denoising Diffusion Probabilistic Models

Прямой и обратный процесс

Прямой процесс

Распределение до первого шага

$$\mathbf{x}_0 \sim q(\mathbf{x}_0)$$

Совместная плотность и условное распределение

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) \coloneqq \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{x}_{t-1}), \qquad q(\mathbf{x}_t|\mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

Условное распределение через несколько шагов

$$\alpha_t \coloneqq 1 - \beta_t \quad \bar{\alpha}_t \coloneqq \prod_{s=1}^t \alpha_s$$

$$q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I})$$

Обратный процесс

Распределение до первого шага

$$p(\mathbf{x}_T) = \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$$

Совместная плотность и условное распределение

$$p_{\theta}(\mathbf{x}_{0:T}) \coloneqq p(\mathbf{x}_T) \prod_{t=0}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t), \qquad p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

Функция потерь

Интуитивно хочется минимизировать следующую величину:

$$\mathbb{E}\left[-\log p_{\theta}(\mathbf{x}_0)\right]$$

$$p_{\theta}(\mathbf{x}_0) \coloneqq \int p_{\theta}(\mathbf{x}_{0:T}) \, d\mathbf{x}_{1:T}$$

Непонятно как ее оптимизировать

Variational Lower Bound

$$\mathbb{E}\left[-\log p_{\theta}(\mathbf{x}_0)\right] \leq \mathbb{E}_q \left|-\log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\right|$$

Расписываем Variational Lower Bound

$$\mathbb{E}_{q}\left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{T}|\mathbf{x}_{0}) \parallel p(\mathbf{x}_{T}))}_{L_{T}} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))}_{L_{t-1}} \underbrace{-\log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}_{L_{0}}\right]$$

Получаем 3 части:

- 1. Потери прямого процесса
- 2. Потери обратного на промежуточных шагах
- 3. Потери обратного на последнем шаге

Потери $L_{1 \cdot T-1}$

$$_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t))$$

$$\sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t))}_{L_{t-1}}$$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t,t), \sigma_t^2 \mathbf{I})$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \mathbf{I})$$
$$\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) \coloneqq \frac{\sqrt{\bar{\alpha}_{t-1}} \beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 + \frac{\sqrt{\alpha_t} (1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t$$

$$\tilde{\beta}_t \coloneqq \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$$

Потери $L_{1:T-1}$

Подставим явное значение дивергенции

$$L_{t-1} = \mathbb{E}_q \left[\frac{1}{2\sigma_t^2} \| \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t) \|^2 \right] + C$$

Перепишем и получим

$$\mathbb{E}_{\mathbf{x}_0, \boldsymbol{\epsilon}} \left[\frac{1}{2\sigma_t^2} \left\| \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t(\mathbf{x}_0, \boldsymbol{\epsilon}) - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon} \right) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t(\mathbf{x}_0, \boldsymbol{\epsilon}), t) \right\|^2 \right]$$

$$\mathbf{x}_t(\mathbf{x}_0, \boldsymbol{\epsilon}) = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Потери $L_{1:T-1}$

Посмотрим еще раз на выражение

$$\mathbb{E}_{\mathbf{x}_0, \boldsymbol{\epsilon}} \left[\frac{1}{2\sigma_t^2} \left\| \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t(\mathbf{x}_0, \boldsymbol{\epsilon}) - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon} \right) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t(\mathbf{x}_0, \boldsymbol{\epsilon}), t) \right\|^2 \right]$$

$$m{\mu}_{ heta}$$
 должна предсказывать $\ rac{1}{\sqrt{lpha_t}} \left(\mathbf{x}_t - rac{eta_t}{\sqrt{1-ar{lpha}_t}} m{\epsilon}
ight)$

Зададим
$$\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t},t)$$
 как $\ \boldsymbol{\mu}_{\theta} = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t},t) \right)$

Потери $L_{1:T-1}$

Перепишем выражение в терминах шума

$$\mathbb{E}_{\mathbf{x}_0, \boldsymbol{\epsilon}} \left[\frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \bar{\alpha}_t)} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2 \right]$$

Потери L_0

$$p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1}) = \prod_{i=1}^{D} \int_{\delta_{-}(x_{0}^{i})}^{\delta_{+}(x_{0}^{i})} \mathcal{N}(x; \mu_{\theta}^{i}(\mathbf{x}_{1}, 1), \sigma_{1}^{2}) dx$$

$$\delta_{+}(x) = \begin{cases} \infty & \text{if } x = 1\\ x + \frac{1}{255} & \text{if } x < 1 \end{cases} \qquad \delta_{-}(x) = \begin{cases} -\infty & \text{if } x = -1\\ x - \frac{1}{255} & \text{if } x > -1 \end{cases}$$

Упрощенная функция потерь

Было:

$$\mathbb{E}_{\mathbf{x}_0, \boldsymbol{\epsilon}} \left[\frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \bar{\alpha}_t)} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2 \right]$$

Стало:

$$L_{\text{simple}}(\theta) := \mathbb{E}_{t,\mathbf{x}_0,\boldsymbol{\epsilon}} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2 \right]$$

Обучение и семплирование

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \left\ \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \right\ ^2$ 6: until converged	1: $\mathbf{x}_{T} \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

Эксперименты. Шум против среднего

Objective	IS	FID
$ ilde{\mu}$ prediction (baseline)		
L , learned diagonal $oldsymbol{\Sigma}$	7.28 ± 0.10	23.69
L, fixed isotropic Σ	8.06 ± 0.09	13.22
$\ \tilde{\boldsymbol{\mu}} - \tilde{\boldsymbol{\mu}}_{\theta}\ ^2$	-	_
ϵ prediction (ours)		
L , learned diagonal Σ	_	_
L, fixed isotropic Σ	7.67 ± 0.13	13.51
$\ \tilde{\boldsymbol{\epsilon}} - \boldsymbol{\epsilon}_{\theta}\ ^2 (L_{\mathrm{simple}})$	$9.46 \!\pm\! 0.11$	3.17

Эксперименты. Сравнение с другими моделями

Model	IS	FID
Conditional		
EBM [11]	8.30	37.9
JEM [17]	8.76	38.4
BigGAN 3	9.22	14.73
StyleGAN2 + ADA (v1) 29	10.06	2.67
Unconditional		
Diffusion (original) 53		
Gated PixelCNN 59	4.60	65.93
Sparse Transformer 7		
PixelIQN 43	5.29	49.46
EBM [11]	6.78	38.2
NCSNv2 56		31.75
NCSN 55	8.87 ± 0.12	25.32
SNGAN 39	8.22 ± 0.05	21.7
SNGAN-DDLS 4	9.09 ± 0.10	15.42
StyleGAN2 + ADA $(v1)$ 29	9.74 ± 0.05	3.26
Ours $(L, \text{ fixed isotropic } \Sigma)$	7.67 ± 0.13	13.51
Ours (L_{simple})	9.46 ± 0.11	3.17

Генерация

Figure 7: When conditioned on the same latent, CelebA-HQ 256×256 samples share high-level attributes Bottom-right quadrants are \mathbf{x}_t , and other quadrants are samples from $p_{\theta}(\mathbf{x}_0|\mathbf{x}_t)$.

Генерация

Figure 3: LSUN Church samples. FID=7.89

Figure 4: LSUN Bedroom samples. FID=4.90