By the end of this section

Understand the link between Factor analysis and Linear Regression

Understand when to use Factor analysis and PCA

Overview of statistics and linear algebra needed for PCA

Given a dataset

Connect the dots, recognize patterns, draw insights

Objective:

Build a fact-based, thoughtful point of view

Understand the relationships between variables

Factor Analysis

Understand the underlying drivers that influence the relationships

Connect the dots

Factor Analysis

Cut through the noise

Pageviews

Clicks

Add to Carts

Sales

Minutes browsed

Sessions

Cause

Independent/

Explanatory Variable

Effect

Dependent

Factor Analysis

Pageviews

Clicks

Add to Carts

Minutes browsed

Sessions

Many observed causes

Selection

Marketing spend

Sales

Pricing

Few underlying causes

Effect

All observed causes used to explain the effect Simplistic

Factor Analysis

Few underlying drivers used to explain the effect Simple

Find the best line through these data points

2 Dimensional data: One cause Regression explains one effect Add to carts

N-Dimensional data : multiple causes explain 1 effect

Regression Plane: y = A + Bx + cZ

Regression Line:

$$y = A + Bx$$

$$y_1 = A + Bx_1 + e_1$$

$$y_2 = A + Bx_2 + e_2$$

$$y_3 = A + Bx_3 + e_3$$

$$y_n = A + Bx_n + e_n$$

Regression Line:

$$y = A + Bx$$

$$y_1 = A + Bx_1 + e_1$$

 $y_2 = A + Bx_2 + e_2$
 $y_3 = A + Bx_3 + e_3$
...
 $y_n = A + Bx_n + e_n$

Regression Line:

$$y = A + Bx$$

Sales

Add to carts

$$y = A + Bx + Cz$$

$$y = A + Bx + Cz$$

$$y = A + Bx + Cz$$

$$y = C_1 + C_2 x_1 + \cdots + C_{k+1} x_k$$

$$y = C_1 + C_2 x_1 + \cdots + C_{k+1} x_k$$

Regression Plane:

$$y = C_1 + C_2 x_1 + \cdots + C_{k+1} x_k$$

Find k+1 coefficients, k for the explanatory variables, and 1 for the intercept

Kitchen sink Regression

Use all possible explanatory variables

```
Sales = B*Add to Cart +

C*Minutes Browsed +

D*Pageviews +

E*# Sessions...
```

Problem -> Multicollinearity

Problem -> Multicollinearity

Many of the X variables contain the same information

Problem -> Multicollinearity

There are underlying factors leading to this behavior

Underlying cause is selection (# product options)

Drop these 3 variables and use selection

Factor Analysis

Pageviews

Clicks

Add to Carts

Minutes browsed

Sessions

Many observed causes

Selection

Marketing spend

Sales

Pricing

Few underlying causes

Effect

Principal Components Analysis

PCA

The problem to be solved

Fitting a curve through a set of data points

How it's solved

Linear Regression The problem to be solved

Extract
factors that
explain the
data

How it's solved

Principal components analysis (PCA)

Factor Extraction

Rule based

Use human experts to identify the factors

ML based

Extract the factors using an algorithm

Rule based

What factors influence success as a sales person?

Rule based

Personality Profile

Rule based

Each

Sales ___

person

Personality Profile

Gregariousness	Warmth	Assertiveness	Excitement- seeking	Modesty	Order	•••
High	Medium	High	High	Low	High	•••

100 variables

Rule based

Gregariousness	Warmth	Assertiveness	Excitement-	Modesty	Order	•••
High	Medium	High	High	Low	High	•••

100 variables X 10000 rows

Rule based

Openness

Conscientiousness

Extraversion

Agreeableness

Neuroticism

Map to 5 major underlying traits

Factor Extraction

Rule based

Use human experts to identify the factors

ML based

Extract the factors using an algorithm

ML based

Extract the factors using an algorithm

Gregarious	Warmth	Asserti	Exciteme	Modes	Order	
High	Medium	High	High	Low	High	• • •

F1	F2	F3	F4

Factors may or may not map to intuition

Identify latent factors

PCA Identify latent factors

Gregarious	Warmth	Asserti	Exciteme	Modes	Order	
High	Medium	High	High	Low	High	• • •

F1	F2	F3	F4

PCA Identify latent factors

F1	F2	F3	F4

Human experts examine these factors

Openness

Conscientiousness

Extraversion

Agreeableness

Neuroticism

Identify latent factors

Data in one dimension

Mean
$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

One number that best represents all the points

Range

Xmax - Xmin

Ignores the mean, affected by outliers

Measure the deviations from the mean

Order

Variance

Order

Variance

Bessel's correction Order

Variance and Standard Deviation

$$Variance = \sum \frac{(x_i - x_i)^2}{n-1}$$
 Standard deviation =
$$\sqrt{\frac{\sum (x_i - x_i)^2}{n-1}}$$

Mean vs Variance

Variance measures risk

Mean vs Variance

Variance measures risk

Variance grows faster than the mean