grafo $G[M_1 \cup M_2]$ é bipartido? Justifique.

Algoritmos e Teoria dos Grafos

Primeira Prova

2 de agosto de 2022

1. (20 pontos) Preencha a seguinte tabela

	$\Delta(G)$	$\alpha(G)$	$\gamma(G)$	$\operatorname{diam}(G)$	$ \chi(G) $	$\lambda(G)$
P_n	-3	FET	S	m-1	a.	1
C_n	12	[33	的	131	2 towns	20
K_n	m-1	1	3	3	-	m-1
$K_{n,m}$	MANER	MARISO	24	2	2	PARA TO

- 2. (15 pontos) Um grafo e seu complemento podem ser ambos desconexos? Justifique.
- 3. (15 pontos) Seja T uma árvore não trivial com n vértices. Prove que se $\alpha(T)=n-1$ então $\Delta(T)=n-1$.
- 4. (25 pontos) Um estudante afirma que não é possível que um grafo k-aresta conexo de n vértices tenha menos de nk/2 arestas. Ele está correto? Justifique.
- 5. (25 pontos) Prove que o algoritmo abaixo nem sempre devolve uma coloração mínima do grafo G.

Colore(G

C+- 0

Enquanto existe vértice de G que não pertence a nenhum conjunto em C $v \leftarrow$ vértice de gran mínimo em G que não pertence a nenhum conjunto em C Se v não tem vizinho em algum conjunto $K \in C$

acrescente v ao conjunto K

Senão

acrescente o conjunto (v) a C

Devolva C

 P_{a_i} C_{a_i} K_a e K_{a_m} denstam, respectivamente, o caminho, o ciclo, o grafo completo de n vértices e o grafo bipartido completo com partes de n e m vértices, $\Delta(G)$, $\alpha(G)$, $\gamma(G)$, diam(G), $\chi(G)$ e $\lambda(G)$ denotam, respectivamente, gran máximo, tamanho do maior conjunto independente, cinturo, diametro, numero cromático e conexidade de G

Agosto 2022

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,							1)	
Pm 2 [m] 00 m-1 2 - Cm 2 [m] m [m] 32 1 mpm (m) 3 km m-1 1 30 1 m m	(6)	TXG		XCC	diam (6)	Y(6)	(d(6)	A(6) 1		VI-NEUT
Cm 2 [] m [] 3+1mpon (m) 2 Km M-1 1 30 1 m m		11		A STATE OF THE PARTY OF THE PAR	m-I	00	[m]	2	Pn	
Km M-1 1 30 1 m m		12	on (m)	3 + Jampo	TE	m	12	2	-	
	-1	m-1			1	30	Line	M-T	Km	
Km, m max (m, m) max (m, m) 40 12 2 min	(m,m)	mim (2	2	40	max(nm)	max (m, mi)		

Obe m < 3 $Y(G) = \infty$ Obe m = 1 on m = 1 entropy $Y(G) = \infty$ Impos $(m) = \{0 \text{ se } m \text{ if pan}\}$ I se m impan

2) Sendo T uma anvore mi trivial de m vertices e $\alpha(T) = m-1$

Sabemos que Te conexo, portanto pora todo vi, v, EX (sendo Xo conjunto independent, de tamanho X(T)) existe um caminho P(vi, v)

Como a arvoretem m vertices e a(T)=m-! existe um unico vertice v E V(T) que v E X

entre v; e v, como P= (v, v, v;)

Portante $v \in virinho de todos os vortices de X assim <math>\delta(v) = \alpha(T) = m-1$ e $\Delta(T) = m-1$ (tilibra)

con plemento é conexo então o seu Se G é disconero entos existe X C V(6) onde X + V(6), X +0 2 2 (x)= Ø Porem em 6 temos que: ∂E(X) = { {x, v} | 2 ∈ X, v ∈ V(6)-x} Assum Yv, v2 & V(G)-X e x &X
temos o comunho P=(v, x, v2) E $\forall z_1, z_2 \in X$ e $v \in V(\overline{6}) - X$ ternos o comunho $P = (z_1, v_1 z_2)$ Logo exerte um camenho para quelques dois pares de ventices en E, tomando E conero 4) Ele esta correto Emwagnoso konertas comero sabemos que S(G) > Ko ∑ K ≤ 2 | E(G) | mk < 2/E(G) mK & IE(G) 1 O Sobernos uso poio Le existine ve EV(G), 8(v) <k

De(v) seria um conte menos que k

o que e uma controdição, que no permado
(Nehe que no mas permado
obio, mas permado
este

com Evitem ((C= Exvi)) C= { {v, v6} } Ev.3 (Va essa = { {v, v, } {v, }} vy en Evi, v, 3 C= 5 fv. v. v. 2. 83 Adiciona {vy} en {vy} (C-{{vivery}, {vy}, {vy}}) (C={ (v2, v6, v6), (v3, v2, 3, 5x5) }