Dataset:

Use the breast cancer dataset available in the sklearn library.

```
In [13]: from sklearn.datasets import load_breast_cancer
    import pandas as pd

# Load the breast cancer dataset
    data = load_breast_cancer()

# Create a DataFrame with the feature data
    df = pd.DataFrame(data.data, columns=data.feature_names)

# Add the target variable to the DataFrame
    df['target'] = data.target

# Display the first few rows of the DataFrame
    print(df.head())

# Get a summary of the dataset
    print(df.())
```

`	mear	n radius	mean	textu	ure m	ean p	erime	ter	mean	area	mean	smoothne	SS
/		17 00		10	20		122	90	1/	201 0		A 110	40
0		17.99		10.			122			001.0		0.118	
1		20.57		17.			132			326.0		0.084	
2		19.69		21.			130			203.0		0.109	
3		11.42		20.			77			386.1		0.142	
4		20.29		14.	. 34		135	.10	1.	297.0		0.100	30
	mear	n compact	ness	mean	conca	vitv	mean	cond	cave i	points	mean	symmetr	·v \
0		-	7760			3001				.14710		0.241	-
1			7864			0869				.07017		0.181	
2			5990			1974				.12790		0.206	
3			8390			2414				.10520		0.259	
4													
4		0.1	3280		0.	1980			О	.10430		0.180	19
	mear	n fractal	dime	nsion	• • •	wors	st tex	ture	wor	st per	imeter	worst	area
/			0	07071			4.	7 77			104 (0		10 0
0				07871	• • •			7.33			184.60		19.0
1				05667	• • •			3.41			158.80		56.0
2				05999	• • •			5.53			152.50		09.0
3			0.	09744	• • •			5.50			98.87		67.7
4			0.	05883			10	5.67			152.20	15	75.0
	wors	st smooth	ness	worst	comp	actne	ess w	orst	conc	avity	worst	concave	poi
	ts \												
0		0.	1622			0.66	556		0	.7119			0.2
1	54	a	1238			0.18	266		a	.2416			0.1
	60	0.	1230			0.10	500		O	. 2410			0.1
2		9	1444			0.42	15		a	.4504			0.2
	30	0.				0.72			O	. 4004			0.2
3		a	2098			0.86	63		а	.6869			0.2
	75	0.	2000			0.00	,05		U	.0005			0.2
		0	1274			0.00	150		0	4000			0.1
4	25	0.	1374			0.20	שכנ		О	.4000			0.1
0.	25												
	wor	st symmet	rv w	orst f	fracta	l din	ensio	n ta	arget				
0		0.46	-				.1189		0				
1		0.27					.0890		0				
2		0.36					.0875		0				
3		0.66					.1730		0				
4		0.23					0.0767		0				
4		0.23	04			٤	.0707	5	Ø				
[]	5 rows	s x 31 co	lumns	1									
•		mean rad		-	extur	e me	an pe	rime	ter	mean	area	\	
c	ount	569.000			.00000							•	
		14.127								654.8			
	td	3.524	010	1).	30103		24	2000	000	351.9	1/1100		
		6 091	043	4.			42	700	201	142 5	14123		
111.	T11	6.981	000	9.	17000	0				143.5			
	5%				17000					420.3			
	2 %				84000								
	5%												
ma	ax	28.110	000	39.	. 28000	0	188	.5000	000 i	2501.0	00000		
mean smoothness mean compactness mean concavity mean concave poi							poi						
n-	ts \												
C	ount	569	.0000	00	5	69.00	0000		569.0	90000		569	.000
00	90												
	ean	0	.0963	60		0.10	4341		0.0	ð88799		0	.048
9:	19												
		_	0440	<i>-</i> 1		^ ^-	2042		^			_	000

0.052813

0.079720

std

0.014064

0.038

803							
min	0.052630	0.	019380	0.	000000		0.000
000	***************************************						
25%	0.086370	a	064920	a	029560		0.020
310	0.000370	٠.	00.320	٠.	023300		0.020
50%	0.095870	а	092630	а	061540		0.033
500	0.033070	0.	032030	0.	001540		0.055
75%	0.105300	9	130400	a	130700		0.074
000	0.105500	0.	130400	0.	130700		0.074
max	0.163400	9	345400	a	426800		0.201
200	0.103400	0.	343400	0.	420000		0.201
200							
	moon symmethy m	ean fractal	dimonsis	n	worst tex	+	\
count	mean symmetry m 569.000000	ean inactai	569.00000		569.00		\
count							
mean	0.181162		0.06279		25.67		
std	0.027414		0.00706		6.14		
min	0.106000		0.04996		12.02		
25%	0.161900		0.05770		21.08		
50%	0.179200		0.06154		25.41		
75%	0.195700		0.06612		29.72		
max	0.304000		0.09744	10	49.54	0000	
	worst perimeter	worst are	a worst	smoothn	iess worst	comp	actness
\							
count	569.000000	569.00000	10	569.000	1000	569	.000000
mean	107.261213	880.58312	.8	0.132	369	0	.254265
std	33.602542	569.35699	3	0.022	832	0	.157336
min	50.410000	185.20000	10	0.071	.170	0	.027290
25%	84.110000	515.30000	10	0.116	600	0	.147200
50%	97.660000	686.50000	10	0.131	.300	0	.211900
75%	125.400000	1084.00000	10	0.146	6000	0	.339100
max	251.200000	4254.00000		0.222			.058000
	worst concavity	worst cond	ave point	s wors	t symmetry	\	
count	569.000000		569.00000		569.000000		
mean	0.272188		0.11460		0.290076		
std	0.208624		0.06573		0.061867		
min	0.000000		0.00000		0.156500		
25%	0.114500		0.06493		0.250400		
50%	0.226700		0.09993		0.282200		
75%	0.382900		0.16140		0.202200		
			0.10146		0.663800		
max	1.252000		0.29100	90	0.003000		
	wonst fractal di	monsion	+				
co+	worst fractal di		target				
count			9.000000				
mean		.083946	0.627417				
std		.018061	0.483918				
min		.055040	0.000000				
25%		.071460	0.000000				
50%		.080040	1.000000				
75%		.092080	1.000000				
max	0	.207500	1.000000				
_							
[8 row	ıs x 31 columns]						

[8 rows x 31 columns]

In []:

#Q1: Loading and Preprocessing: a.Load the breast cancer dataset from sklearn.

- b.Preprocess the data to handle any missing values and perform necessary feature scaling.
- c.Explain the preprocessing steps you performed and justify why they are necessary for this dataset.

```
from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import StandardScaler
import pandas as pd
import numpy as np
# Load the breast cancer dataset
data = load_breast_cancer()
# Convert the data to a DataFrame
df = pd.DataFrame(data.data, columns=data.feature_names)
# Add the target variable to the DataFrame
df['target'] = data.target
# Check for missing values
missing_values = df.isnull().sum()
print("Missing values in each feature:\n", missing_values)
# Perform feature scaling
scaler = StandardScaler()
df[data.feature_names] = scaler.fit_transform(df[data.feature_names])
# Display the first few rows of the preprocessed data
print(df.head())
```

```
Missing values in each feature:
 mean radius
mean texture
mean perimeter
                            0
mean area
                            a
mean smoothness
                            0
mean compactness
                            0
mean concavity
                            a
mean concave points
                            0
mean symmetry
                            0
mean fractal dimension
                            0
radius error
                            0
texture error
                            0
perimeter error
                            0
area error
                            0
                            0
smoothness error
compactness error
                            0
                            0
concavity error
concave points error
                            0
symmetry error
                            0
fractal dimension error
                            0
worst radius
                            0
worst texture
                            0
worst perimeter
                            0
worst area
                            0
worst smoothness
                            0
worst compactness
                            a
worst concavity
worst concave points
                            0
worst symmetry
                            0
worst fractal dimension
                            0
                            0
target
dtype: int64
   mean radius mean texture
                               mean perimeter mean area mean smoothness
\
0
      1.097064
                                                 0.984375
                                                                   1.568466
                    -2.073335
                                      1.269934
1
      1.829821
                    -0.353632
                                      1.685955
                                                 1.908708
                                                                  -0.826962
2
                                     1.566503
      1.579888
                    0.456187
                                                 1.558884
                                                                   0.942210
3
                                     -0.592687
                                                                   3.283553
     -0.768909
                     0.253732
                                                -0.764464
4
      1.750297
                    -1.151816
                                      1.776573
                                                 1.826229
                                                                   0.280372
                     mean concavity mean concave points mean symmetry
   mean compactness
0
           3.283515
                            2.652874
                                                  2.532475
                                                                  2.217515
1
          -0.487072
                           -0.023846
                                                  0.548144
                                                                  0.001392
2
           1.052926
                                                  2.037231
                                                                  0.939685
                            1.363478
3
           3.402909
                            1.915897
                                                  1.451707
                                                                  2.867383
4
           0.539340
                                                  1.428493
                            1.371011
                                                                 -0.009560
   mean fractal dimension
                           ... worst texture worst perimeter worst area
\
0
                 2.255747
                                      -1.359293
                                                        2.303601
                                                                     2.001237
1
                -0.868652
                                      -0.369203
                                                        1.535126
                                                                     1.890489
                            . . .
2
                 -0.398008
                            . . .
                                      -0.023974
                                                        1.347475
                                                                     1.456285
3
                 4.910919
                                      0.133984
                                                        -0.249939
                                                                    -0.550021
                            . . .
4
                 -0.562450
                                      -1.466770
                                                         1.338539
                                                                     1.220724
   worst smoothness worst compactness worst concavity worst concave poi
nts
     \
0
           1.307686
                               2.616665
                                                 2.109526
                                                                        2.296
076
          -0.375612
                              -0.430444
                                                -0.146749
                                                                        1.087
```

084 2 000	0.527407	1.082932	0.854974	1.955
3 786	3.394275	3.893397	1.989588	2.175
4 259	0.220556	-0.313395	0.613179	0.729

```
worst symmetry worst fractal dimension target
0
       2.750622
                                1.937015
1
       -0.243890
                                0.281190
                                               0
2
                                               0
        1.152255
                               0.201391
        6.046041
                               4.935010
       -0.868353
                               -0.397100
```

[5 rows x 31 columns]

In []:

2. Classification Algorithm Implementation

Implement the following five classification algorithms:

- 1. Logistic Regression
- 2. Decision Tree Classifier
- 3. Random Forest Classifier
- 4. Support Vector Machine (SVM)
- 5. k-Nearest Neighbors (k-NN)

For each algorithm, provide a brief description of how it works and why it might be suitable for this dataset.

Logistic Regression

```
In [5]: from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score

# Split the data into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(df[data.feature_names],

# Initialize and train the Logistic Regression model
    lr_model = LogisticRegression(max_iter=10000)
    lr_model.fit(X_train, y_train)

# Make predictions and evaluate the model
    lr_predictions = lr_model.predict(X_test)
    lr_accuracy = accuracy_score(y_test, lr_predictions)
    print(f"Logistic Regression Accuracy: {lr_accuracy:.4f}")
```

Logistic Regression Accuracy: 0.9737

Decision Tree Classifier

```
In [6]: from sklearn.tree import DecisionTreeClassifier

# Initialize and train the Decision Tree model
dt_model = DecisionTreeClassifier(random_state=42)
dt_model.fit(X_train, y_train)

# Make predictions and evaluate the model
dt_predictions = dt_model.predict(X_test)
dt_accuracy = accuracy_score(y_test, dt_predictions)
print(f"Decision Tree Accuracy: {dt_accuracy:.4f}")
```

Decision Tree Accuracy: 0.9474

Random Forest Classifier

```
In [7]: from sklearn.ensemble import RandomForestClassifier

# Initialize and train the Random Forest model

rf_model = RandomForestClassifier(random_state=42)

rf_model.fit(X_train, y_train)

# Make predictions and evaluate the model

rf_predictions = rf_model.predict(X_test)

rf_accuracy = accuracy_score(y_test, rf_predictions)

print(f"Random Forest Accuracy: {rf_accuracy:.4f}")
```

Random Forest Accuracy: 0.9649

Support Vector Machine (SVM)

```
In [8]: from sklearn.svm import SVC

# Initialize and train the SVM model
svm_model = SVC(kernel='linear', random_state=42)
svm_model.fit(X_train, y_train)

# Make predictions and evaluate the model
svm_predictions = svm_model.predict(X_test)
svm_accuracy = accuracy_score(y_test, svm_predictions)
print(f"SVM Accuracy: {svm_accuracy:.4f}")
```

SVM Accuracy: 0.9561

k-Nearest Neighbors (k-NN)

```
In [10]: from sklearn.datasets import load_breast_cancer
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.metrics import accuracy score
         # Load the dataset
         data = load_breast_cancer()
         # Convert the data to a DataFrame
         df = pd.DataFrame(data.data, columns=data.feature_names)
         df['target'] = data.target
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(df[data.feature_names],
         # Perform feature scaling
         scaler = StandardScaler()
         X_train = scaler.fit_transform(X_train)
         X_test = scaler.transform(X_test)
         # Ensure X_test is a NumPy array (just in case)
         X_test = np.array(X_test)
         # Initialize and train the k-NN model
         knn_model = KNeighborsClassifier(n_neighbors=5)
         knn_model.fit(X_train, y_train)
         # Make predictions and evaluate the model
         knn_predictions = knn_model.predict(X_test)
         knn_accuracy = accuracy_score(y_test, knn_predictions)
         print(f"k-NN Accuracy: {knn_accuracy:.4f}")
```

k-NN Accuracy: 0.9474

3. Model Comparison:

Compare the performance of the five classification algorithms. Which algorithm performed the best and which one performed the worst?

```
from sklearn.linear model import LogisticRegression
In [11]:
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.svm import SVC
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler
         from sklearn.metrics import accuracy_score
         # Load the dataset
         data = load breast cancer()
         # Convert the data to a DataFrame
         df = pd.DataFrame(data.data, columns=data.feature_names)
         df['target'] = data.target
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(df[data.feature_names],
         # Perform feature scaling
         scaler = StandardScaler()
         X_train = scaler.fit_transform(X_train)
         X test = scaler.transform(X test)
         # Initialize the models
         models = {
             "Logistic Regression": LogisticRegression(max_iter=10000, random_state=
             "Decision Tree": DecisionTreeClassifier(random_state=42),
             "Random Forest": RandomForestClassifier(random state=42),
             "SVM": SVC(kernel='linear', random_state=42),
             "k-NN": KNeighborsClassifier(n_neighbors=5)
         }
         # Train, predict, and evaluate each model
         accuracies = {}
         for model name, model in models.items():
             model.fit(X_train, y_train)
             predictions = model.predict(X_test)
             accuracy = accuracy_score(y_test, predictions)
             accuracies[model name] = accuracy
             print(f"{model name} Accuracy: {accuracy:.4f}")
         # Find the best and worst performing models
         best_model = max(accuracies, key=accuracies.get)
         worst_model = min(accuracies, key=accuracies.get)
         print("\nBest Performing Model:")
         print(f"{best_model} with accuracy {accuracies[best_model]:.4f}")
         print("\nWorst Performing Model:")
         print(f"{worst_model} with accuracy {accuracies[worst_model]:.4f}")
```

Logistic Regression Accuracy: 0.9737

Decision Tree Accuracy: 0.9474 Random Forest Accuracy: 0.9649

SVM Accuracy: 0.9561 k-NN Accuracy: 0.9474

Best Performing Model:

Logistic Regression with accuracy 0.9737

Worst Performing Model:

Decision Tree with accuracy 0.9474

In []:	
In []:	
In []:	