KNearestNeighbors Project

June 10, 2018

1 K Nearest Neighbors Project

A very simple K Nearest Neighbors Project. ## Import Libraries

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        %matplotlib inline
```

1.1 Get the Data

```
In [2]: df = pd.read_csv('KNN_Project_Data')
```

Check the head of the dataframe.

```
In [23]: df.head()
```

111 [20].		11000()					
Out[23]:		XVPM	GWYH	TRAT	TLLZ	IGGA	\
	0	1636.670614	817.988525	2565.995189	358.347163	550.417491	
	1	1013.402760	577.587332	2644.141273	280.428203	1161.873391	
	2	1300.035501	820.518697	2025.854469	525.562292	922.206261	
	3	1059.347542	1066.866418	612.000041	480.827789	419.467495	
	4	1018.340526	1313.679056	950.622661	724.742174	843.065903	
		HYKR	EDFS	GUUB	MGJM	JHZC	\
	0	1618.870897	2147.641254	330.727893	1494.878631	845.136088	
	1	2084.107872	853.404981	447.157619	1193.032521	861.081809	
	2	2552.355407	818.676686	845.491492	1968.367513	1647.186291	
	3	685.666983	852.867810	341.664784	1154.391368	1450.935357	
	4	1370.554164	905.469453	658.118202	539.459350	1899.850792	
		TARGET CLASS					
	0	0					
	1	1					
	2	1					
	3	0					
	4	0					

2 EDA

Since this data is artificial, we'll just do a large pairplot with seaborn.

Use seaborn on the dataframe to create a pairplot with the hue indicated by the TARGET CLASS column.

In [4]: sns.pairplot(df,hue='TARGET CLASS',palette='coolwarm')

Out[4]: <seaborn.axisgrid.PairGrid at 0x1197505f8>

3 Standardize the Variables

Time to standardize the variables.

^{**} Import StandardScaler from Scikit learn.**

```
In [5]: from sklearn.preprocessing import StandardScaler
   ** Create a StandardScaler() object called scaler.**
In [6]: scaler = StandardScaler()
   ** Fit scaler to the features.**
In [7]: scaler.fit(df.drop('TARGET CLASS',axis=1))
Out[7]: StandardScaler(copy=True, with_mean=True, with_std=True)
   Use the .transform() method to transform the features to a scaled version.
In [8]: scaled_features = scaler.transform(df.drop('TARGET CLASS',axis=1))
   Convert the scaled features to a dataframe and check the head of this dataframe to make
sure the scaling worked.
In [9]: df_feat = pd.DataFrame(scaled_features,columns=df.columns[:-1])
        df_feat.head()
Out [9]:
               XVPM
                         GWYH
                                    TRAT
                                              TLLZ
                                                         IGGA
                                                                   HYKR
                                                                              EDFS
        0 1.568522 -0.443435 1.619808 -0.958255 -1.128481 0.138336 0.980493
        1 -0.112376 -1.056574 1.741918 -1.504220 0.640009 1.081552 -1.182663
        2 0.660647 -0.436981 0.775793 0.213394 -0.053171 2.030872 -1.240707
        3 0.011533 0.191324 -1.433473 -0.100053 -1.507223 -1.753632 -1.183561
        4 -0.099059 0.820815 -0.904346 1.609015 -0.282065 -0.365099 -1.095644
```

4 Train Test Split

GUUB

Use train_test_split to split your data into a training set and a testing set.

MGJM

0 -0.932794 1.008313 -1.069627 1 -0.461864 0.258321 -1.041546 2 1.149298 2.184784 0.342811 3 -0.888557 0.162310 -0.002793 4 0.391419 -1.365603 0.787762

JHZC

```
In [10]: from sklearn.model_selection import train_test_split
In [11]: X_train, X_test, y_train, y_test = train_test_split(scaled_features,df['TARGET CLASS')
test size=0.30)
```

5 Using KNN

Import KNeighborsClassifier from scikit learn.

```
In [12]: from sklearn.neighbors import KNeighborsClassifier
```

Create a KNN model instance with n_neighbors=1

```
In [13]: knn = KNeighborsClassifier(n_neighbors=1)
```

Fit this KNN model to the training data.

6 Predictions and Evaluations

Let's evaluate our KNN model!

Use the predict method to predict values using your KNN model and X_test.

```
In [24]: pred = knn.predict(X_test)
```

** Create a confusion matrix and classification report.**

```
In [16]: from sklearn.metrics import classification_report,confusion_matrix
```

In [17]: print(confusion_matrix(y_test,pred))

[[112 40] [34 114]]

In [18]: print(classification_report(y_test,pred))

support	f1-score	recall	precision			
152	0.75	0.74	0.77	0		
148	0.75	0.77	0.74	1		
300	0.75	0.75	0.75	avg / total		

7 Choosing a K Value

Let's go ahead and use the elbow method to pick a good K Value!

** Create a for loop that trains various KNN models with different k values, then keep track of the error_rate for each of these models with a list. Refer to the lecture if you are confused on this step.**

```
In [25]: error_rate = []

# Will take some time
for i in range(1,40):

knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(X_train,y_train)
pred_i = knn.predict(X_test)
error_rate.append(np.mean(pred_i != y_test))
```

Now create the following plot using the information from your for loop.

Out[20]: <matplotlib.text.Text at 0x11cbdb710>

7.1 Retrain with new K Value

avg / total

Retrain your model with the best K value (up to you to decide what you want) and re-do the classification report and the confusion matrix.

```
In [21]: # NOW WITH K=30
         knn = KNeighborsClassifier(n_neighbors=30)
         knn.fit(X_train,y_train)
         pred = knn.predict(X_test)
         print('WITH K=30')
         print('\n')
         print(confusion_matrix(y_test,pred))
         print('\n')
         print(classification_report(y_test,pred))
WITH K=30
[[127 25]
 [ 23 125]]
             precision
                          recall f1-score
                                              support
          0
                  0.85
                            0.84
                                       0.84
                                                  152
          1
                  0.83
                            0.84
                                       0.84
                                                  148
```

0.84

0.84

0.84

300