```
PS[n_] := PS[n] = FullSimplify[MangoldtLambda[n] / Log[n]]
DD[n_{-}, k_{-}, a_{-}] := DD[n, k, a] = Sum[PS[j] (a^{k}/k! + DD[n/j, k+1, a]), \{j, 2, n\}]
Dd[n_{,a}] := Dd[n,a] = DD[n,1,a] - DD[n-1,1,a]
D2[n_{k}] := Sum[D2[n/j, k-1], {j, 2, n}]
D2[n_{,}0] := 1
Dd2[n_{k}] := D2[n, k] - D2[n-1, k]
Ds[n_{k_{j}} := Sum[(-1)^{j}Binomial[k, k_{j}]Dd[n, k_{j}, \{j, 0, 50000\}]
Ds[8, 2]
2
DA[n_{k_{-}}, k_{-}, j_{-}] := (-1)^{j}Binomial[k, k-j]Dd[n, k-j]
DB[n_{-}, k_{-}, j_{-}] := Binomial[k, k-j] Dd[n, k-j]
DR[n_{k-j} := Sum[Binomial[k, k-j]Dd[n, k-j], {j, 0, 3000}]
DiscretePlot[DB[72, 2.02, j], {j, 0, 100, 1}]
20
 10
                                                                100
-10
-20
Plot[Binomial[2, 2-x], {x, 0, 100}]
0.00004
0.00003
0.00002
0.00001
-0.00001
-0.00002
-0.00003
Binomial[4, 4-100.1]
\textbf{2.59971} \times \textbf{10}^{-10}
```

DiscretePlot[DR[8, j], {j, 1, 4, .1}]

