CSC411 Fall 2017 Assignment 2 Report

Tianbao Li

2017/11/04

1 Q1: Class-conditional gaussians

Given:

$$p(y=k) = a_k \tag{1}$$

$$p(\mathbf{x}|y=k,\mu,\sigma) = \left(\prod_{i=1}^{d} 2\pi\sigma_i^2\right)^{-1/2} \exp\left\{-\sum_{i=1}^{d} \frac{1}{2\sigma_i^2} (x_i - \mu_{ki})^2\right\}$$
(2)

1.1 Bayes' rule derivation

$$\begin{split} p(y=k|\mathbf{x},\mu,\sigma) &= \frac{p(\mathbf{x}|y=k,\mu,\sigma)p(y=k)}{p(\mathbf{x}|\mu,\sigma)} \\ &= \frac{p(\mathbf{x}|y=k,\mu,\sigma)p(y=k)}{\sum_{j=1}^{K} p(\mathbf{x}|y=j,\mu,\sigma)} \\ &= \frac{(\prod_{i=1}^{d} 2\pi\sigma_{i}^{2})^{-1/2} \exp\{-\sum_{i=1}^{d} \frac{1}{2\sigma_{i}^{2}} (x_{i}-\mu_{ki})^{2}\} a_{k}}{\sum_{j=1}^{K} (\prod_{i=1}^{d} 2\pi\sigma_{i}^{2})^{-1/2} \exp\{-\sum_{i=1}^{d} \frac{1}{2\sigma_{i}^{2}} (x_{i}-\mu_{ji})^{2}\}} \end{split}$$

1.2 Negative likelihood function (NLL)

$$\ell(\theta; D) = -\log p(y^{(1)}, \mathbf{x}^{(1)}, y^{(2)}, \mathbf{x}^{(2)}, \dots, y^{(N)}, \mathbf{x}^{(N)} | \theta)$$

$$= -\log \prod_{n=1}^{N} p(y^{(n)}, x^{(n)} | \theta)$$

$$= -\sum_{n=1}^{N} (\log p(x^{(n)} | y^{(n)}, \theta) + \log p(y^{(n)} | \theta))$$

$$= -\sum_{n=1}^{N} (\log((\prod_{i=1}^{d} 2\pi\sigma_i^2)^{-1/2} \exp\{-\sum_{i=1}^{d} \frac{1}{2\sigma_i^2} (x_i^{(n)} - \mu_{ki})^2\}) + \log \alpha_k)$$

$$= -\sum_{n=1}^{N} (-\frac{1}{2} \sum_{i=1}^{d} 2\pi\sigma_i^2 - \sum_{i=1}^{d} \frac{1}{2\sigma_i^2} (x_i^{(n)} - \mu_{ki})^2 + \log \alpha_k)$$

$$= \sum_{n=1}^{N} (\sum_{i=1}^{d} \pi\sigma_i^2 + \sum_{i=1}^{d} \frac{1}{2\sigma_i^2} (x_i^{(n)} - \mu_{ki})^2 - \log \alpha_k)$$

1.3 Partial derivatives

$$\frac{\partial \ell}{\partial \mu_{ki}} = \frac{\partial \left(\sum_{n=1}^{N} \sum_{i=1}^{d} \frac{1}{2\sigma_{i}^{2}} (x_{i}^{(n)} - \mu_{ki})^{2}\right)}{\partial \mu_{ki}}$$

$$= -\sum_{n=1}^{N} \sum_{i=1}^{d} \frac{1}{\sigma_{i}^{2}} \mathbb{1}(y^{(n)} = k)(x_{i}^{(n)} - \mu_{ki})$$

$$\frac{\partial \ell}{\partial \sigma_{i}^{2}} = \frac{\partial \left(\sum_{n=1}^{N} \left(\sum_{i=1}^{d} \pi \sigma_{i}^{2} + \sum_{i=1}^{d} \frac{1}{2\sigma_{i}^{2}} (x_{i}^{(n)} - \mu_{ki})^{2}\right)\right)}{\partial \sigma_{i}^{2}}$$

$$= \sum_{n=1}^{N} \sum_{i=1}^{d} \mathbb{1}(y^{(n)} = k)(2\pi - \frac{1}{2\sigma_{i}^{4}} (x_{i}^{(n)} - \mu_{ki})^{2})$$

1.4 Estimation

$$\frac{\partial \ell}{\partial \mu_{ki}} = 0$$

$$\Rightarrow \mu_{ki} = \frac{\sum_{n=1}^{N} \sum_{i=1}^{d} \mathbb{1}(y^{(n)} = k) x_i^{(n)}}{\sum_{n=1}^{N} \sum_{i=1}^{d} \mathbb{1}(y^{(n)} = k)}$$

$$\frac{\partial \ell}{\partial \sigma_i^2} = 0$$

$$\Rightarrow \sigma_i = \sqrt[4]{\frac{\sum_{n=1}^{N} \sum_{i=1}^{d} \mathbb{1}(y^{(n)} = k) * (x_i^{(n)} - \mu_{ki})^2}{\sum_{n=1}^{N} \sum_{i=1}^{d} \mathbb{1}(y^{(n)} = k) * 4\pi}}$$