Folha 4 - Aplicações Lineares

1. Seja $f: \mathbb{R}^3 \to \mathbb{R}^3$ uma aplicação definida por:

$$f(x, y, z) = (x - 2z, 0, -2x + 4z)$$

Mostre que f é uma aplicação linear.

- 2. Diga quais das aplicações seguintes, entre espaços vectoriais reais, são aplicações lineares:
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por f(x, y) = (y, x).
 - (b) $g: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $g(x,y) = (x^2,y^2)$.
 - (c) $h: \mathbb{R}^2 \to \mathbb{R}^2$ definida por h(x,y) = (x+1,y+1).
 - (d) $t: \mathbb{R}^2 \to \mathbb{R}^3$ definida por t(x,y) = (x+2y, x-y, y).
 - (e) $r: \mathbb{R}^3 \to \mathbb{R}^3$ tal que r(x, y, z) = (x, y, 0).
 - (f) $s: \mathbb{R}^3 \to \mathbb{R}^2$ definida por s(x, y, z) = (yz, 2x).
 - (g) $m: \mathbb{R}_2[x] \to \mathbb{R}^2$ definida por $m(ax^2 + bx + c) = (1, a + b c)$.
 - (h) $n: \mathbb{R}^2 \to \mathbb{R}$ definida por n(a,b) = 5a 2b.
- 3. Considere os espaços vectoriais reais \mathbb{R}^3 e \mathbb{R}^4 .

Para cada $k \in \mathbb{R}$, seja $g_k : \mathbb{R}^4 \to \mathbb{R}^3$ a aplicação definida por:

$$q_k(a_1, a_2, a_3, a_4) = (a_4 - k, k + 1, 2a_1 + a_3),$$

para qualquer $(a_1, a_2, a_3, a_4) \in \mathbb{R}^4$.

Determine o conjunto dos valores de k para os quais g_k é aplicação linear.

- 4. Sendo $f: V \to \mathbb{R}$ uma aplicação linear tal que $f(v_1) = 1$ e $f(v_2) = -1$, determine $f(3v_1 5v_2)$.
- 5. Seja $f: \mathbb{R}^2 \to \mathbb{R}^2$ uma aplicação linear tal que f(x,y) = (2x-y, -8x+4y).
 - (a) Quais dos seguintes vectores pertencem ao núcleo de f: u = (5, 10), v = (3, 2), w = (1, 1).
 - (b) Quais dos seguintes vectores pertencem ao espaço imagem de f: u=(1,-4), v=(5,0), w=(-3,12).
- 6. Considere a aplicação linear $f: \mathbb{R}^3 \to \mathbb{R}^4$ definida por f(x,y,z) = (z,x-z,0,y-z).
 - (a) Determine Nuc_f e uma sua base.
 - (b) Determine Im(f) e uma sua base.
- 7. Considere a aplicação linear $f: \mathbb{R}^2 \to \mathbb{R}^3$ definida por f(x,y) = (x+2y,2x-y,-x).
 - (a) Determine f(1,1).
 - (b) Escreva a matriz da aplicação linear f (relativamente às bases canónicas de \mathbb{R}^2 e \mathbb{R}^3).
 - (c) Usando a alínea anterior, determine a imagem, por meio de f, de (1,1).

8. Sendo $g: \mathbb{R}^3 \to \mathbb{R}^2$ a aplicação linear definida por:

$$g(1,0,0) = (2,-1), g(0,1,0) = (0,1), g(0,0,1) = (3,1)$$

Determine a matriz da aplicação linear g (relativamente às bases canónicas de \mathbb{R}^3 e \mathbb{R}^2).

9. Represente-se por $\{e_1, e_2, e_3\}$ a base canónica de \mathbb{R}^3 .

Seja $h: \mathbb{R}^3 \to \mathbb{R}^3$ a aplicação linear tal que

$$h(e_3) = 2e_1 + 3e_2 + 3e_3$$

 $h(e_2 + e_3) = e_1$
 $h(e_1 + e_2 + e_3) = e_2 - e_3$.

.

- (a) Calcule $h(e_1 + 2e_2 + 3e_3)$.
- (b) Escreva a matriz da aplicação linear h (relativamente à base canónicas de \mathbb{R}^3).

10. Seja $f: \mathbb{R}^3 \to \mathbb{R}^4$ a aplicação linear definida pela seguinte matriz, em relação as bases canónicas

$$A = \left(\begin{array}{ccc} 0 & 2 & -2 \\ 3 & 1 & 5 \\ 1 & 1 & 1 \\ 0 & 2 & -2 \end{array}\right)$$

Determine a imagem, por meio da aplicação linear f, do elemento genérico de \mathbb{R}^3 .

11. Considere a aplicação linear $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que:

$$f(1,0,0) = (2,3,-2)$$

$$f(1,1,0) = (4,1,4)$$

$$f(1,1,1) = (5,1,-7)$$

- (a) Escreva a matriz da aplicação linear f (relativamente às bases canónicas de \mathbb{R}^2 e \mathbb{R}^3).
- (b) Determine a imagem, por meio de f, de (x,y,z).
- 12. Para cada uma das aplicações lineares seguintes, determine o núcleo e a sua dimensão.

Deduza qual o valor da característica da aplicação e classifique a aplicação quanto à sua injectividade e/ou sobrejectividade.

(a) $f: \mathbb{R}^4 \to \mathbb{R}^3$, definida por

$$f(e_1) = (1, -1, 2)$$

$$f(e_2) = (-2, 5, 3)$$

$$f(e_3) = (-7, 16, 7)$$

$$f(e_4) = (-3, 6, 1).$$

- (b) $g:P_3 o P_3$ que a cada polinómio $P \in P_3$ associa o polinómio $x^2P'' + P'.$
- (c) h é a aplicação linear cuja representação matricial

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 2 \\
0 & 0 & 1 \\
1 & 3 & 2
\end{array}\right)$$

2

13. Seja $f: \mathbb{R}^3 \to \mathbb{R}^3$ uma aplicação linear definida por:

$$f(1,1,1) = (3,3,0), f(-1,1,0) = (0,-6,12), f(1,0,0) = (0,2,4)$$

- (a) Determine para $f(x,y,z), \ \forall (x,y,z) \in \mathbb{R}^3$.
- (b) Determine o subespaço Nuc_f e uma sua base.
- (c) Diga qual a dimensão de Im_f .
- (d) Indique uma base para Im_f .
- (e) Classifique f.
- 14. Determine a expressão geral da imagem um elemento de \mathbb{R}^4 , por meio da uma aplicação linear $f: \mathbb{R}^4 \to \mathbb{R}^4$, que verifique as seguintes condições:

$$dim\ Nuc_f = 1, \quad f(1,0,0,0) = (-2,0,1,3), \quad f(0,1,0,0) = (0,1,2,3)$$

15. Seja θ_k a aplicação linear cuja representação matricial é

$$A_k = \begin{pmatrix} -1 & k-2 & 1 \\ 2 & 8 & k \\ k+1 & 2k & -k-1 \end{pmatrix}, \ k \in \mathbb{R}.$$

Diga para que valores de k a aplicação linear θ_k injectiva.