- 1. Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false.
 - (1) Every non-constant complex polynomial has a complex root.
 - (2) Conjugation of complex numbers is a field automorphism of the complex numbers.
 - (3) Let $x, y \in R$, a finite ring. If x * y = 1, then y * x = 1 also.
 - (4) There are exactly four quadratics in $\mathbb{Z}_2[x]$.
 - (5) If p(x) is a real polynomial, then it either has a real root or there is a quadratic polynomial with real coefficients that divides it.

Solution.

(1) True.

This follows from the Fundamental Theorem of Algebra.

Proof. Let \overline{a} denote the conjugate of the complex number a. We now want to show that

$$f: \mathbb{C} \to \mathbb{C}, \ c \mapsto \overline{c}$$

is a ring isomorphism. Let a_1 and a_2 be complex numbers. Since $\overline{a_1a_2} = \overline{a_1} \cdot \overline{a_2}$, and $\overline{a_1 + a_2} = \overline{a_1} + \overline{a_2}$, it follows that

$$f(a_1a_2) = f(a_1)f(a_2)$$
 and $f(a_1 + a_2) = f(a_1) + f(a_2)$,

so that f is an homomorphim. It now remains to show that f is a bijection. The map f must be surjective because $f(\overline{a_1}) = a_1$. Also if $f(a_1) = f(a_2)$, then the real parts of a_1 and a_2 must be equal. Similarly, their imaginary parts must be equal, so that $a_1 = a_2$. That is f is injective and we can conclude that it is a bijection. Thus f is a field automorphism.

(3) True.

Proof. Let R be a finite ring, and consider $x, y \in R$ such that x * y = 1. The map $f: R \to R, r \mapsto r * x$ is bijective because for $r_1, r_2 \in R$ with $f(r_1) = f(r_2)$, we have that $r_1 * x = r_2 * x$. We then cancel x on both sides by multiplying each side on the right by y to get $r_1 = r_2$; thus f is injective, and since R is finite, we can conclude that f is also bijective. Thus there exists $r_3 \in R$ such that $r_3 * x = 1$. Mutltiply the preceding equality on the right by y to get $r_3 = y$.

False.

There are exactly 8 quadratics in $\mathbb{Z}_2[x]$, and they are

$$0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1.$$

(5) If p(x) is 0, then it is trivially true. However, if p(x) is a constant non-zero polynomial then it is not true. We shall now show that the statement is true if p(x) is a non-constant real polynomial.

Proof. Consider the polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0,$$

where each $a_i \in \mathbb{R}$, $a_n \neq 0$, and $n \geq 1$. By the Fundamental Theorem of Algebra, p(x) has a root λ . If λ is real, then we are done. So assume that λ is a non-real complex number. Observe that the conjugate of λ , $\overline{\lambda}$, is also a root of p(x) since

$$p(\overline{\lambda}) = a_n \overline{\lambda}^n + a_{n-1} \overline{\lambda}^{n-1} + \dots + a_0$$

$$= a_n \overline{\lambda}^n + a_{n-1} \overline{\lambda}^{n-1} + \dots + a_0$$

$$= \overline{a_n} \overline{\lambda}^n + \overline{a_{n-1}} \overline{\lambda}^{n-1} + \dots + \overline{a_0}$$

$$= \overline{a_n} \overline{\lambda}^n + \overline{a_{n-1}} \overline{\lambda}^{n-1} + \dots + \overline{a_0}$$

$$= \overline{a_n} \overline{\lambda}^n + \overline{a_{n-1}} \overline{\lambda}^{n-1} + \dots + \overline{a_0}$$

$$= \overline{a_n} \overline{\lambda}^n + a_{n-1} \overline{\lambda}^{n-1} + \dots + a_0$$

$$= \overline{0} = 0.$$

$$[p(\lambda) = 0]$$

Since λ is not real, we must have that $\lambda \neq \overline{\lambda}$. Thus the quadratic polynomial $(x-\lambda)(x-\overline{\lambda})$ divides p(x). To complete the proof, we must show that this quadratic polynomial has real coefficients. Now we have that

$$(x - \lambda)(x - \overline{\lambda}) = x^2 - (\lambda + \overline{\lambda})x + \lambda \overline{\lambda} = x^2 - 2 \cdot \text{Re}(\lambda)x + |\lambda|^2,$$

where $\operatorname{Re}(c)$ and |c| denote the real part and magnitude of a complex number c. Thus the quadratic polynomial $(x - \lambda)(x - \overline{\lambda})$ has real coefficients.

2. On Complex & Real.

- 1 Find a ring isomorphism (it has to be both additive and multiplicative) between \mathbb{C} and the subring $\mathcal{C} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\} \subseteq \mathcal{M}_2(\mathbb{R}).$
- (2) In the notes we gave two descriptions of the quaternions:

$$Q = \left\{ \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix} : a, b, c, d \in \mathbb{R} \right\} \text{ and } \mathcal{H} = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbb{C} \right\}.$$

Find an isomorphism between these two rings (it has to be both additive and multiplicative).

Solution.

(1) We claim that the map

$$f: \mathcal{C} \to \mathbb{C}, \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mapsto a + bi$$

is a ring isomorphism.

Proof. Let
$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
, $\begin{pmatrix} c & d \\ -d & c \end{pmatrix} \in \mathcal{C}$, so that

$$f\left(\begin{pmatrix} a & b \\ -b & a \end{pmatrix}\begin{pmatrix} c & d \\ -d & c \end{pmatrix}\right) = f\left(\begin{pmatrix} ac - bd & ad + bc \\ -(ac + bd) & ac - bd \end{pmatrix}\right)$$
$$= (ac - bd) + (ad + bc)i$$
$$= (a + bi)(c + di)$$
$$= f\left(\begin{pmatrix} a & b \\ -b & a \end{pmatrix}\right) f\left(\begin{pmatrix} c & d \\ -d & c \end{pmatrix}\right)$$

and

$$\begin{split} f\left(\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix}\right) &= f\left(\begin{pmatrix} a+c & b+d \\ -(b+d) & a+c \end{pmatrix}\right) \\ &= (a+c) + (b+d)i \\ &= (a+bi) + (c+di) \\ &= f\left(\begin{pmatrix} a & b \\ -b & a \end{pmatrix}\right) + f\left(\begin{pmatrix} c & d \\ -d & c \end{pmatrix}\right). \end{split}$$

Hence f is a ring homomorphism. It is clear that f is surjective since if $a_1 + b_1 i \in \mathbb{C}$, then we must have that $f\left(\begin{pmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{pmatrix}\right) = a_1 + b_1 i$. Now suppose that

$$f\left(\begin{pmatrix} a & b \\ -b & a \end{pmatrix}\right) = f\left(\begin{pmatrix} c & d \\ -d & c \end{pmatrix}\right).$$

Then we must have that a + bi = c + di so that a = b and c = d. That is, f is injective. We can now conclude that f is a ring isomorphism.

- 3. Let F be a field and consider the set R of all matrices of the form $\begin{pmatrix} a & b \\ -b & a-b \end{pmatrix}$ where $a,b\in F$. Do the following:
 - 1 Show R is closed under addition, subtraction and multiplication so it is a subring of $\mathcal{M}_2(F)$, the 2 × 2 matrices with entries in F.
 - (2) Find a positive integer n so that if we let the field $F = \mathbb{Z}_n$, then R will be an integral domain.
 - (3) Find a positive integer n so that if we let the field $F = \mathbb{Z}_n$, then R will **NOT** be an integral domain.

- (4) Find a positive integer n so that if we let the field $F = \mathbb{Z}_n$, then R will be a field.
- (5) In any one of the situations (2), (3), or (4), find a unit of order bigger than 2. Just do one.
- 6 Suppose now that instead of F, we take $a, b \in \mathbb{Z}$, the integers. Prove it is an integral domain.

Bonus. Find G(R), the group of units, in the case when the entries are integers (last situation), and find all elements of finite order in that group.

Solution.

① **Proof.** Let $A = \begin{pmatrix} a & b \\ -b & a-b \end{pmatrix}$, $B = \begin{pmatrix} c & d \\ -d & c-d \end{pmatrix} \in R$. Then we have that $A + B = \begin{pmatrix} a+c & b+d \\ -(b+d) & (a+c)-(b+d) \end{pmatrix}$ $AB = \begin{pmatrix} ac-bd & ad+bc-bd \\ -(ad+bc-bd) & ac-ad-bc \end{pmatrix}, \text{ and }$ $-A = \begin{pmatrix} -a & -b \\ b & b-a \end{pmatrix},$

so that R is closed under addition, multiplication, and negation. The set R clearly contains the identity (by letting a = 1 and b = 0). Thus R is a subring of $\mathcal{M}_2(F)$. Note that R is also closed under subtraction since it is closed under addition and negation.

(2) Claim that R is an integral domain if $F = \mathbb{Z}_2$.

Proof. Suppose that AB = 0 where

$$A = \begin{pmatrix} a & b \\ -b & a-b \end{pmatrix}$$
 and $B = \begin{pmatrix} c & d \\ -d & c-d \end{pmatrix} \in R$.

Then we must have that $\det(A) \det(B) = 0$. Since F is an integral domain, we can assume without loss that $\det(A) = 0$. That is, $a^2 + b^2 - ab = 0$. Since $F = \mathbb{Z}_2$, we observe that of the four choices for a and b, $\det(A) = 0$ if and only if a = b = 0 if and only if A = 0. Thus R is an integral domain if $F = \mathbb{Z}_2$.

 $\widehat{(3)}$ Now let $F = \mathbb{Z}_3$. Notice that although

$$\begin{pmatrix} 1 & 2 \\ -2 & -1 \end{pmatrix} \neq 0, \text{ we have that } \begin{pmatrix} 1 & 2 \\ -2 & -1 \end{pmatrix}^2 = 0,$$

so that R is not an integral domain if $F = \mathbb{Z}_3$.

(4) Let $F = \mathbb{Z}_2$. Then the elements of R are

$$A=0, B=1, C=\begin{pmatrix}1&1\\1&0\end{pmatrix}, \text{ and } D=\begin{pmatrix}0&1\\1&1\end{pmatrix}.$$

By inspection we can see that R is commutative under multiplication. Also we have that $B^{-1} = B$, $C^{-1} = D$, so that R is a field if $F = \mathbb{Z}_2$.

- (5) From (4), we have that |C| = 3.
- \bigcirc We shall follow the same line of thought as we did in \bigcirc . So to show that R is an integral domain, it suffices to show that the equation $a^2 + b^2 ab = 0$ has only the trivial solution in \mathbb{Z} . Since

$$a^{2} + b^{2} - ab = \left(a - \frac{b}{2}\right)^{2} + \frac{3b^{2}}{4},$$

it is clear that $a^2 + b^2 - ab$ is positive if a or b is nonzero; hence we must have that a = b = 0, so that R is an integral domain.

- 4. Consider the set R of matrices of the form $\frac{1}{2} \begin{pmatrix} a & b \\ 5b & a \end{pmatrix}, a, b \in \mathbb{Z}, a \equiv b \mod 2$.
 - (1) Show $I_2 \in R$.
 - ② Show R is closed under addition, negation and multiplication so it is a subring of $\mathcal{M}_2(\mathbb{Q})$.
 - (3) Compute the characteristic polynomial of any such matrix, and observe it is monic with integer coefficients.
 - (4) Show there are infinitely many units in R.

Bonus. Find $\mathbb{I}(R)$, the group of units of R.

Solution.

 \bigcirc Setting a=2 and b=0 will show us that R has the identity.

(2) Let
$$A = \frac{1}{2} \begin{pmatrix} a & b \\ 5b & a \end{pmatrix}$$
 and $B = \frac{1}{2} \begin{pmatrix} c & d \\ 5d & c \end{pmatrix} \in R$. Then it follows that

$$A + B = \frac{1}{2} \begin{pmatrix} a + c & b + d \\ 5(b + d) & a + c \end{pmatrix}$$

$$AB = \frac{1}{2} \begin{pmatrix} \frac{ac + 5bd}{2} & \frac{ad + bc}{2} \\ \frac{ad + bc}{2} & \frac{ac + 5bd}{2} \end{pmatrix}, \text{ and}$$

$$-A = \frac{1}{2} \begin{pmatrix} -a & -b \\ -5b & -a \end{pmatrix}.$$

By membership in R, we must have that $a \equiv b \mod 2$ and $c \equiv d \mod 2$. Thus $a+c \equiv b+d \mod 2$. Also ac and bd must have the same parity, and so must ad and bc. This says that ac+5bd and ad+bc are both even. Thus we must have that

$$\frac{ac + 5bd}{2} \equiv \frac{ad + bc}{2} \mod 2.$$