2B Exercise 18

 $\forall x \in \mathbb{R}$ derivative of f exists as

$$f'(x) = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$

There exist $k \in \mathbb{N}$ such that $\frac{1}{k} < \delta$ for each $\delta > 0$, thus if $\delta \to 0$ then $k \to \infty$. Let sequence of g_1, g_2, \ldots defined as:

$$g_k(x) = \frac{f(x + \frac{1}{k}) - f(x)}{\frac{1}{k}}$$

Since differentiability implies continuity, f(x) is a continuous function therefore $\frac{f(x+\frac{1}{k})}{\frac{1}{k}}$ and $\frac{f(x)}{\frac{1}{k}}$ are continuous functions and also measurable $\forall k \in \mathbb{N}$ by 2.41 of Measure, Integration & Real Analysis

Then g_k is also measurable by 2.46 of Measure, Integration & Real Analysis

As a result, since f'(x) is a point-wise limit of g_k , we have $\forall x \in \mathbb{R}$

$$f'(x) = \lim_{k \to \infty} g_k(x)$$

then by 2.48 of Measure, Integration & Real Analysis f'(x) is also Borel measurable.

2B Exercise 25

Let $f_k \quad \forall k \in \mathbb{N}$ be defined as

$$f_k(x) := f(x) + \frac{x}{k}$$

 $f_k(x)$ is trivially an strictly increasing function where its point-wise limit equals f(x), i.e. $f(x) = \lim_{k \to \infty} f_k(x)$, and satisfies the conditions mentioned in the problem.

2C Exercise 2

Let $w_k \quad \forall k \in E$ be defined as

$$w_k := \mu(\{k\})$$

which satisfies the conditions mentioned in the problem, when $E_k := \{k\}$

$$\mu(E) = \mu(\bigcup_{k \in E} E_k) = \sum_{k \in E} \mu(E_k) = \sum_{k \in E} \mu(\{k\}) = \sum_{k \in E} w_k$$

2C Exercise 9

- $\mu + \nu : \mathcal{S} \to [0, \infty]$
- $(\mu + \nu)(\varnothing) = \mu(\varnothing) + \nu(\varnothing) = 0$
- For every disjoint sequence of sets $E_1, E_2, \dots \in \mathcal{S}$:

$$(\mu + \nu)(\bigcup_{k} E_{k}) = \mu(\bigcup_{k} E_{k}) + \nu(\bigcup_{k} E_{k})$$

$$= \sum_{k} \mu(E_{k}) + \sum_{k} \nu(E_{k})$$

$$= \sum_{k} \mu(E_{k}) + \sum_{k} \nu(E_{k})$$

$$= \sum_{k} (\mu + \nu)(E_{k})$$