

LOW SWITCHING FREQUENCY PULSE WIDTH MODULATION

FOR INDUCTION MOTOR DRIVES

AVANISH TRIPATHI, PROF. G NARAYANAN

Department of Electrical Engineering Indian Institute of Science, Bangalore - 560012 INDIA avanish@ee.iisc.ernet.in, gnar@ee.iisc.ernet.in

Introduction

- Variable-amplitude variable-frequency voltage is generated to control the induction motor
- Switching frequency is generally much higher than maximum modulation frequency
- Switching frequency is low in high-power IM drives due to high switching energy
- In high-speed IM drives the maximum modulation frequency is quite high
- This work addresses the problems associated with such cases where the ratio of switching frequency to fundamental frequency (pulse number, P) is low

Problems with Low Pulse Number Applications

- Line-line voltage contains low-order voltage harmonics (i.e., 5th, 7th, 11th,
- These voltage harmonics produce
- current and fluxes of same order High harmonic distortion in line
- current

Space Vector Analysis

Table: Sequence of vectors applied in sector I for $P=5$, $N=2$							
Modulation index	Vector se	Optimal vector					
(<i>M</i>)	Optimal Type A	Optimal Type B	sequence				
$0 < M \le 0.8$	101 - 272	012 - 127	101-272				
$0.8 < M \le 0.88$	101 - 272	012 - 127	012 - 127				
$0.88 < M \le 0.94$	121 - 212	012 - 127	012 - 127				
0.94 < M < 1.0	121 – 212	012 - 127	121 - 212				

Table: Switching transitions in sector I for $P=5$, $N=2$								
Modulation index	Optimal vector	No. of transitions		Optimal				
(<i>M</i>)	sequence	N_{aa}	N_{az}	sequence code				
$0 < M \le 0.8$	101-272	1	4	(5,1)				
$0.8 < M \le 0.94$	012 - 127	3	2	(5,3)				
0.94 < M < 1.0	121 - 212	5	0	(5,5)				

- Only nearest active vectors are applied and initial state in sector I is either 0 or 1
- Zero states 7 and 0 are not applied in 1^{st} and 2^{nd} halves of sector I, respectively
- Number of active vector transitions (N_{aa}) gradually increases with M
- Optimal sequence code \Rightarrow (P, N_{aa})

Optimal Switching Sequence Map

- \bullet Optimal sequence codes and the M ranges are plotted on a P Vs M map
- The curves can be extended to any pulse number

Objectives

► Minimization of line current THD

(Two-Level Inverter)

Two types of pole voltages are

possible (type-A and type-B)

• Switching transitions at 0° are

Optimal PWM is solved for pulse

0.6 0.7 Modulation Index (M) —

numbers (P) 5, 7, 9 and 11

opposite to each other

- Determination of optimal switching sequences in space vector
- ➤ Minimization of pulsating torque in frequency domain and synchronous reference frame
- Extend the proposed scheme to neutral point clamped three-level inverter
- ➤ Predict the current and torque ripple based on PWM voltage
- ➤ Closed-loop control of IM drive operated with low switching frequency varying between 250Hz and 500Hz

Current THD Minimization

Torque Ripple Minimization

- Amplitude of n^{th} harmonic voltage component is given $V_n = \frac{2V_{dc}}{n\pi}(1 - 2\cos(n\alpha_1) + 2\cos(n\alpha_2))$
- Selective harmonic elimination (SHE) PWM eliminates (N-1) voltage harmonics for N switching angles per
 - $V_5 = (1 2\cos(5\alpha_1) + 2\cos(5\alpha_2)) = 0$
- In optimal, α_1 and α_2 are selected such that $\|\frac{V_5}{5} + \frac{V_7}{7}\|$ is minimized subject to $(\frac{V_5}{5} = \frac{V_7}{7})$ for minimization of τ_6
- The fundamental voltage component is kept at desired level in both the cases • The theory of torque harmonic minimization is extended to other pulse numbers
- First (N-1) torque harmonics are minimized for N switching angles per quarter

Comparison of Pulsating Torque For P=5

• The pk-pk $\tilde{\tau}$ and τ_6 are reduced for optimal PWM as compared to sine-triangle (ST) PWM and selective harmonic elimination (SHE) PWM

Experimental Comparison of Harmonic Torque

0.6 0.7 0.8 Modulation Index (M) \rightarrow

(Type-A Waveform)

- Two optimal PWM methods are proposed Frequency domain and synchronous
- reference frame base • Both are seen to reduce τ_6 as compared to SHE PWM, over wide range of speed.

Hybrid Optimal PWM

- obtained for various pulse numbers
- A hybrid optimal PWM with max switching freq (f_{sw}) of 250 Hz is proposed
- $f_1 < 20$ Hz asyn ST PWM; $f_1 \ge 20$ Hz - optimal PWM

Vector Control of IM

Challenges with Low switching Frequency PWM

- Decoupled control of flux and torque is required for fast dynamics
- Too high current ripple ⇒ may destabilize the controller
- The inverter delay becomes significant
- The rotor flux estimation is required for sensorless control
- Flux estimation becomes inaccurate (phase and amplitude) due to low sampling frequency
- Closed loop flux estimator design is proposed and it is compared with open loop flux estimator

Controller Performance Evaluation

- o Speed response is found to be very good at low switching frequency o Torque (i_{sq}) reference changes with every step-change in
- speed and Torque (i_{sq}) is found to be tracking o The reference and the actual quantity are found to be almost overlapping
 - o Steady state waveforms of line current, rotor-flux and modulating signal are shown at $f_1 = 49$ Hz

Experimental Setup

- 3- ϕ Induction Motor
- 3.7kW, 415V • 1460rpm Value Parameter 1.28 Ω 1.28 Ω 0.267 H 0.267 H 0.259 *H*
- 3- ϕ Inverter • IGBT based • $V_{dc} = 520 \text{V}$
- FPGA based controller board is used for open-loop V/f control

Important Publications

- A. Tripathi and G. Narayanan, "Evaluation and minimization of low-order harmonic torque in low-switching-frequency inverter fed induction motor drives," IEEE Trans. Ind. Appl., Mar 2015, Early access.
- A. Tripathi and G. Narayanan, "Evaluation and minimization of low-order harmonic torque in low-switching-frequency inverter fed induction motor drives," IEEE PEDES, Dec 2014, pp. 1-6.
- ➤ A. Tripathi and G. Narayanan, "Investigations on optimal pulse-width modulation to minimize total harmonic distortion in the line current," IEEE IICPE, Dec 2014, pp. 1-6.
- A. Tripathi and G. Narayanan, "High-Performance Off-line Pulse Width Modulation Without Quarter Wave Symmetry For Voltage-Source Inverter," IEEE ICAECC, Oct 2014, pp. 1-6.