

Лекция 4

Изоморфизм линейных пространств.

Содержание лекции:

В настоящей лекции мы обсудим важную концепцию изоморфизма линейных пространств. Изоморфные пространства как алгебраические структуры неотличимы. Мы покажем, что исследование структуры этих пространств можно без потери общности ограничить только некоторыми представителями, а именно координатными пространствами.

Ключевые слова:

Биекция, линейность, изоморфизм, изоморфные пространства, изоморфизм и линейная зависимость, классы изоморфных пространств.

ABTO	ры	KVI	oca

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

ИЗОМОРФИЗМ ЛИНЕЙНЫХ ПРОСТРАНСТВ.

4.1 Определение изоморфизма

Пусть $X(\mathbb{k})$ и $Y(\mathbb{k})$ - линейные пространства над одним и тем же полем \mathbb{k} .

Nota bene Напомним что отображение $\sigma: X \to Y$ между *множеествами* X и Y называется **биекцией**, если существует отображение $\psi: Y \to X$, такое что

$$\forall x \in X \quad \psi(\sigma(x)) = x, \quad \forall y \in Y \quad \sigma(\psi(y)) = y,$$

то есть

$$\psi \circ \sigma = \mathrm{id}_X, \quad \sigma \circ \psi = \mathrm{id}_Y.$$

Лемма 4.1. Биекция является взаимно-однозначным отображением.

Отображение $\sigma:X\to Y$ линейного пространства $X(\Bbbk)$ в линейное пространство $Y(\Bbbk)$ называется **линейным**, если

$$\forall x_1, x_2 \in X \quad \sigma(x_1 + x_2) = \sigma(x_1) + \sigma(x_2),$$

 $\forall x \in X, \quad \forall \alpha \in \mathbb{k} \quad \sigma(\alpha x) = \alpha \sigma(x).$

 $Nota\ bene$ Если $\sigma: X(\mathbb{k}) \to Y(\mathbb{k})$ - линейно, тогда

$$\sigma(0_X) = 0_Y$$

Отображение $\sigma: X(\Bbbk) \to Y(\Bbbk)$ называется **изоморфизмом** линейных пространств $X(\Bbbk)$ и $Y(\Bbbk)$, если σ биективно и линейно.

Пример 4.1. Пусть $\{e_j\}_{j=1}^n$ - базис $X(\Bbbk)$, тогда отображение

$$\sigma: X(\mathbb{k}) \to \mathbb{k}^n,$$

сопоставляющее каждому вектору $x \in X(\Bbbk)$ набор его координат в базисе $\{e_j\}_{j=1}^n,$ является изоморфизмом.

Лемма 4.2. Отображение σ^{-1} , обратное изоморфизму σ является изоморфизмом.

По определению, σ^{-1} является биекцией. Таким образом, необходимо доказать только линейность. Пусть $y_1, y_2 \in Y(\mathbb{k})$, тогда

$$\sigma^{-1}(y_1), \sigma^{-1}(y_2) \in X(\mathbb{k}).$$

Из линейности σ следует

$$\sigma(\sigma^{-1}(y_1) + \sigma^{-1}(y_2)) = \sigma(\sigma^{-1}(y_1)) + \sigma(\sigma^{-1}(y_2)) = y_1 + y_2.$$

Применим к обеим частям σ^{-1} и получим

$$\sigma^{-1}(y_1 + y_2) = \sigma^{-1}(y_1) + \sigma^{-1}(y_2).$$

Пусть теперь $y \in Y$, тогда

$$\sigma\left(\alpha\sigma^{-1}(y)\right) = \alpha\sigma\left(\sigma^{-1}(y)\right) = \alpha y \quad \Rightarrow \quad \sigma^{-1}(\alpha y) = \alpha\sigma^{-1}(y).$$

4

ИЗОМОРФИЗМ ЛИНЕЙНЫХ ПРОСТРАНСТВ.

4.2 Изоморфизм и линейная зависимость

Лемма 4.3. Пусть $\sigma: X(\Bbbk) \to Y(\Bbbk)$ - линейное отображение и $\{x_i\}_{i=1}^m$ - ЛЗ набор в $X(\Bbbk)$, тогда $\{\sigma(x_i)\}_{i=1}^m$ - ЛЗ набор в $Y(\Bbbk)$.

Пусть $\{x_i\}_{i=1}^m$ - ЛЗ набор в $X(\mathbb{k})$, тогда

$$\exists \left\{ \alpha^i \right\}_{i=1}^m \in \mathbb{k} : \quad \sum_{i=1}^n x_i \alpha^i = 0_X.$$

После отображения σ будем иметь:

$$\sigma\left(\sum_{i=1}^{n} x_i \alpha^i\right) = \sum_{i=1}^{n} \sigma(x_i) \alpha^i = 0_Y.$$

Так как набор $\{\alpha^i\}_{i=1}^m$ нетривиален, то набор $\{\sigma(x_i)\}_{i=1}^m$ - линейно зависимый.

Nota bene Образ ЛНЗ набора $\{x_i\}_{i=1}^m$ в этом случае не обязан быть ЛНЗ.

Лемма 4.4. При изоморфизме ЛНЗ набор векторов отображается в ЛНЗ набор.

Пусть $\{x_i\}_{i=1}^m$ - ЛНЗ набор, а $\{\sigma(x_i)\}_{i=1}^m$ - ЛЗ, но тогда $\{\sigma^{-1}(\sigma(x_i))\}_{i=1}^m$ - ЛЗ набор.

Лемма 4.5. При изоморфизме полный набор отображается в полный набор.

Покажем, что из полноты набора $\{x_i\}_{i=1}^m$ следует полнота набора $\{\sigma(x_i)\}_{i=1}^m$. Действительно для любого $y \in Y(\mathbb{k})$ имеет место

$$\exists \left\{ \alpha^i \right\}_{i=1}^n : \quad \sigma^{-1}(y) = \sum_{i=1}^n e_i \alpha^i \quad \Rightarrow \quad y = \sum_{i=1}^n \sigma(e_i) \alpha^i,$$

Nota bene Таким образом, при изоморфизме базис пространства $X(\Bbbk)$ отображается в базис пространства $Y(\Bbbk)$. Ниже мы покажем, что данное условие является также достаточным для существования изоморфизма между данными пространствами.

4.3 Изоморфные пространства

Линейные пространства $X(\Bbbk)$ и $Y(\Bbbk)$ называются **изоморфными**, если между ними существует изоморфизм $\sigma: X(\Bbbk) \to Y(\Bbbk)$.

ИЗОМОРФИЗМ ЛИНЕЙНЫХ ПРОСТРАНСТВ.

Nota bene Тот факт, что пространство $X(\Bbbk)$ изоморфно пространству $Y(\Bbbk)$ будем обозначать $X(\Bbbk) \simeq Y(\Bbbk)$.

Лемма 4.6. Изоморфность линейных пространств - отношение эквивалентности.

Докажем необходимые свойства:

- 1. рефлексивность $(X(\Bbbk) \simeq X(\Bbbk))$: тождественное отображение $\mathrm{id}_X : X \to X$ является изоморфизмом;
- 2. симметричность $(X(\Bbbk) \simeq Y(\Bbbk) \Rightarrow Y(\Bbbk) \simeq X(\Bbbk))$ было доказано, что обратное отображение также изоморфизм;
- 3. транзитивность $(X(\Bbbk) \simeq Y(\Bbbk), \quad Y(\Bbbk) \simeq Z(\Bbbk) \Rightarrow X(\Bbbk) \simeq Z(\Bbbk))$ пусть $\sigma: X(\Bbbk) \to Y(\Bbbk)$ и $\psi: Y(\Bbbk) \to Z(\Bbbk)$ соответствующие изоморфизмы, тогда $\psi \circ \sigma$ изморфизм и $X(\Bbbk) \simeq Z(\Bbbk)$.

Nota bene Полученное отношение эквивалентности порождает классы эквивалентности изоморфных пространств.

Лемма 4.7. Чтобы пространства $X(\mathbb{k})$ и $Y(\mathbb{k})$ были изоморфны необходимо и достаточно чтобы их размерности совпадали:

$$X(\mathbb{k}) \simeq Y(\mathbb{k}) \quad \Leftrightarrow \quad \dim_{\mathbb{k}} X = \dim_{\mathbb{k}} Y.$$

 \Rightarrow Пусть $X(\mathbb{k}) \simeq Y(\mathbb{k})$, тогда образом базиса пространства $X(\mathbb{k})$ будет некоторый базис пространства $Y(\mathbb{k})$. В силу биективности изоморфизма, количества векторов в соответствующих наборах будут совпадать.

 \Leftarrow Если $\dim_{\mathbb{k}} X = \dim_{\mathbb{k}} Y$, тогда $X \simeq \mathbb{k}^n$ и $Y(\mathbb{k}) \simeq \mathbb{k}^n$. В силу симметричности и транзитивности мы получим $X(\mathbb{k}) \simeq Y(\mathbb{k})$.

Nota bene Таким образом, каждый класс эквивалентности изоморфных пространств содержит линейные пространства одинаковой размерности. Типичными представителями данных классов являются "арифметические" пространства столбцов:

$$[n=1] \leftrightarrow \mathbb{k}^1, \quad [n=2] \leftrightarrow \mathbb{k}^2, \quad \dots, \quad [n=m] \leftrightarrow \mathbb{k}^m$$

 ${\it Nota \ bene}$ Выберем базис в каждом из пространств $X(\Bbbk)$ и $Y(\Bbbk)$:

$$\{e_j\}_{j=1}^n \in X(\mathbb{k}), \quad \{f_j\}_{j=1}^n \in Y(\mathbb{k}), \quad e_j \leftrightarrow f_j \quad \forall j.$$

Изоморфизм между $X(\mathbb{k})$ и $Y(\mathbb{k})$ устанавливается следующим соответствием:

$$x = \sum_{i=1}^{n} e_i \alpha^i \quad \leftrightarrow \quad y = \sum_{i=1}^{n} f_i \alpha^i.$$