Quiz 1. True/False: If P is the proposition 6 < 5 and Q is the proposition, "Earth is a planet," then the logical statement $P \to Q$ is false.

Solution. The statement is *false*. Recall that the truth table for $P \rightarrow Q$ is as follows:

$$\begin{array}{c|ccc} P & Q & P \rightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

Here, P is the proposition P:6<5 and Q is the proposition Q: "Earth is a planet." It is clear that P is false and Q is true. But then examining the logic table above, we can see that $P \to Q$ is true.

Quiz 2. True/False:
$$\neg(P \rightarrow \neg Q) \equiv P \land Q$$

Solution. The statement is *true*. To determine if two propositions are logically equivalent, one can either examine the truth table or apply logical rules to obtain one logical expression from the other. If we construct a truth table, we have...

P	Q	$\neg Q$	$P \to \neg Q$	$\mid \neg(P \to \neg Q) \mid$	$P \wedge Q$
\overline{T}	T	F	F	T	T
T	F	T	T	F	F
F	$\mid T \mid$	F	T	F	F
F	$\mid F \mid$	T	T	F	F

Because for each possible pair of choices for P and Q the outputs for $\neg(P \to \neg Q)$ and $P \land Q$ match, $\neg(P \to \neg Q) \equiv P \land Q$. Alternatively, we can transform one into the other by applying logical equivalences (recall $P \to Q \equiv \neg P \lor Q$ or $\neg(P \to Q) \equiv P \land \neg Q$):

$$\neg (P \to \neg Q) \equiv \neg (\neg P \lor \neg Q) \equiv \neg (\neg P) \land \neg (\neg Q) \equiv P \land Q.$$

Quiz 3. *True/False*: The logic corresponding to the circuit shown below is the proposition:

$$(\neg P \land Q) \lor \neg Q.$$

Solution. The statement is *false*. We can trace through the circuit. We see that the current from P passes through a NOT gate and we obtain $\neg P$. This then feeds into an AND gate along with Q so that we obtain $\neg P \land Q$. The resulting current is then passed through a NOT gate, obtaining $\neg (\neg P \land Q)$. This finally reaches an OR gate—along with Q—to obtain $\neg (\neg P \land Q) \lor Q$. We can see a diagrammatic explanation below.

Quiz 4. *True/False*: Let the universe \mathcal{U} be the set of real numbers and define P(x) to be the predicate $P(x): x^2 + x - 4 \ge 0$. Then $(\forall x)(\neg P(x))$ is true.

Solution. The statement is *false*. If $P(x): x^2+x-4 \ge 0$, then $\neg P(x): x^2+x-4 < 0$. But then $(\forall x) (\neg P(x))$ is the statement, "For all $x, x^2+x-4 < 0$." Now if x=1, we have $\neg P(1): 1^2+1-4 < 0$, i.e. -2 < 0, which is true. If x=0, we have $\neg P(0): 0^2+0-4 < 0$, i.e. -4 < 0, which is true. However, while $(\forall x) (\neg P(x))$ is clearly true for *some* (we found at least two), it is not true *for all x*. As a counterexample, let x=10. Then $\neg P(10): 10^2+10-4 < 0$, which is 104 < 0—clearly false. Therefore, $\neg P(x)$ is not true for all x. But then $(\forall x) (\neg P(x))$ is false.

Quiz 5. True/False: Let the domain of x, y be the integers. Then $(\exists! x)(\forall y)(x+2y=5)$.

Solution. The statement is *false*. The logical proposition $(\exists ! x)(\forall y)(x+2y=5)$ in words states, "There exists a unique x such that for all y, x+2y=5." Suppose that there were such a x, say x_0 . Then we know that $x_0+2y=5$ for all y. In particular, x_0 satisfies this equality when y=0. But then we know that $x_0=5$. But also, it must satisfy the equality when x=1. But then $x_0+2=5$ so that x_0 . Then there is not a unique x that works for all y! Therefore, the statement is false. Note that if we reverse the quantifiers, the statement is true: $(\forall y)(\exists ! x)(x+2y=5)$. In this case, this is the statement, "For all y, there exists a unique x such that x+2y=5." If you were given any y, define $x_0:=5-2y$. But then x+2y=(5-2y)+2y=5. So there exists such an x. Is it unique? Well if there were two or more x values that worked for some y, say two of them are x_0 and \tilde{x}_0 , then we have $x_0+2y=5=\tilde{x}_0+2y$. But then $x_0+2y=\tilde{x}_0+2y$. Subtracting y, we have $y=\tilde{y}_0$. Therefore, there can only be one such $y=\tilde{y}_0$. Because we have found one, we know that the statement that for all y, there exists a unique y such that x+2y=5 is true.