

December 2018 Machine Learning, EPFL Slides: Jangwon Park

Introduction

• Deep learning has become increasingly popular in computer vision.

Dataset

- Satellite images from Google Maps (400 x 400 pixels)
- 100 training images, 50 test images (600 x 600 pixels)

Sample image

Groundtruth

Problem Statement

- Quick literature review reveals that CNNs are at the heart of this task.
- Classify each 16x16 pixel patches as either {road = 1, background = 0}.
- Two goals of the project:
 - Understand the effects of numerous hyperparameters in CNNs
 - \circ Construct a model that performs reasonably well (>= 0.7 minimum score)

$$F_1 = \left(rac{ ext{recall}^{-1} + ext{precision}^{-1}}{2}
ight)^{-1} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

CNN Evaluation Criterion

Exploratory Data Analysis

- Major challenges include:
 - Closeness in color between roads and other non-road objects e.g. parking lot
 - Obstacles over pixels that should be classified as roads *e.g.* trees

Data Processing

- Image padding: extension of each 16x16 patch images by "mirror reflection"
 - Reveals previously subtle patterns so that each patch image is easier to recognize as road

Fig. 3: Example 16x16 patch image. Hard to tell if it belongs to a road.

Fig. 4: Padded version of Figure 3. Easier to tell if it belongs to a road.

Optimizing Hyperparameters

- There are countless number of hyperparameters in neural networks in general
- In this section, we present only the following for brevity:
 - Choice of activation functions
 - Type of optimizer
- Please refer to the report in the Github repository for full details
 - https://github.com/parkjan4/RoadSegmentation

Activation Functions: ReLU vs. Leaky ReLU

 ReLU is a standard practice in most neural networks, but may suffer from the "vanishing gradient" problem.

Leaky ReLU prevents this with a small negative slope in the negative domain.

Left: ReLU

Right: Leaky ReLU (alpha = 0.1)

Activation Functions: ReLU vs. Leaky ReLU

- When tested on a sample, light CNN architecture, leaky ReLU achieves both:
 - Faster convergence
 - Higher average validation F score
- Leaky ReLU also achieves lower variance in cross validation results, from which one can conjecture that it may also assist in avoiding overfitting.

Activation	Cross Validation F-scores
ReLU	0.664 ± 0.023
LReLU	0.677 ± 0.018

Comparison of 10-Fold Cross Validation Results

Type of Optimizers

 For different applications, optimizers may have different computational and statistical properties.

• On the same light CNN architecture as before:

Type of Optimizers

- Previous graph shows RMSprop and Adadelta show good computational properties (faster convergence).
- However, on a slightly more complex architecture, they lack robustness (computational-statistical property trade off)

Left: RMSprop

Right: Adadelta

Type of Optimizers

- Previous graphs show that certain optimizers can lead to overfitting on a relatively light CNN.
- Overfitting can be avoided with regularization and/or with more data, but is expected to be computationally costly.
- SGD is a good option but typically the slowest to train.
- Adam is the optimal choice for this particular application.

Model Selection

- Three architectures are proposed (refer to the report in Github for full details on hyperparameter selection)
- All three networks are comparable in terms of complexity.
- An Ensemble Model is also pursued by combining all three models via majority voting rule.

Type	Network 1	Network 2	Network 3
- 1			
Input	48x48x3	64x64x3	48x48x3
Convolution filters	64 (5x5)	16 (4x4)	128 (3x3)
Max Pooling	$2x2 \ same$	2x2 valid	-
Dropout	p = 0.25	p = 0.25	-
Convolution filters	128 (3x3)	32 (4x4)	128 (3x3)
Max Pooling	$2x2 \ same$	2x2 valid	2x2 same
Dropout	p = 0.25	p = 0.25	12
Convolution filters	256 (3x3)	64 (4x4)	128 (3x3)
Max Pooling	$2x2 \ same$	2x2 valid	2x2 same
Dropout	p = 0.25	p = 0.25	-
Convolution filters	256 (3x3)	128 (4x4)	-
Max Pooling	$2x2 \ same$	2x2 valid	-
Dropout	p = 0.25	p = 0.25	-
Fully Connected	128 neurons	+0	64 neurons
Dropout	p = 0.5	-	p = 0.5
Output	2 neurons	1 neuron	1 neuron
Activation	Softmax	Sigmoid	Sigmoid

Results & Discussion

- "Random" model predicts 1
 with the probability equal
 to the proportion of "road"
 pixels in each image.
- "Ensemble (no pad)" is shown to verify the usefulness of the image padding technique.

Results & Discussion

- In general, CNNs are much more powerful than a "random guess" which verifies their ability to detect and learn local features in each image.
- Ensemble model outperforms individual CNNs and also achieves lower variance
- Without image padding, CNNs perform worse.

Model	Cross Validation F-score $\pm \sigma$
Random	0.255 ± 0.022
CNN1	0.711 ± 0.012
CNN2	0.707 ± 0.019
CNN3	0.673 ± 0.018
Ensemble	0.730 ± 0.011
Ensemble (no padding)	0.640 ± 0.014

Results & Discussion

Proposed ensemble CNN shows reasonable performance (>= 0.7 F score)

Sample Prediction 1

Sample Prediction 2

References

- [1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
- [2] H. Wu and X. Gu, Towards Dropout Training for Convolutional NeuralNetworks, Neural Networks, vol. 71, pp. 110, Nov. 2015.
- [3] Karpathy, A. (2018). CS231n Convolutional Neural Networksfor Visual Recognition. [online] Cs231n.github.io. Available at:http://cs231n.github.io/neural-networks-1/ [Accessed 14 Dec. 2018]
- [4] Hansen, L. and Salamon, P., "Neural network ensembles," IEEE Trans-actions on Pattern Analysis and Machine Intelligence, vol. 12, issue 10,pp. 2, Oct. 1990.