CSE4203: Computer Graphics Chapter – 4 (part - C) Ray Tracing

Outline

- Ray-tracing
- Camera Frame
- Image Plane and Raster Image
- Computing Viewing Rays
- Ray-sphere Intersection
- Shading

Ray-Tracing Algorithm

Camera Frame (1/6)

Camera Frame (2/6)

Camera Frame (3/6)

- ray origin = e + u u + v v
 - ray direction = -w

Camera Frame (4/6)

Camera Frame (5/6)

Camera frame: (Camera coordinate)

Camera Frame (6/6)

Orthographic:

ray direction = ¬w

Image Plane (1/4)

Image Plane (2/4)

Image Plane (3/4)

Image Plane (4/4)

Q: determine the <u>area</u> of the image plane in terms of *l*, *r*, *t* and *b*.

Raster Image \leftrightarrow Image Plane (1/8)

Raster Image \leftrightarrow Image Plane (2/8)

Raster Image \leftrightarrow Image Plane (3/8)

Raster Image \leftrightarrow Image Plane (4/8)

Raster Image \leftrightarrow Image Plane (5/8)

Raster Image \leftrightarrow Image Plane (6/8)

Raster Image \leftrightarrow Image Plane (7/8)

Raster Image \leftrightarrow Image Plane (8/8)

Computing Viewing Rays (1/4)

Computing Viewing Rays (2/4)

Computing Viewing Rays (3/4)

Computing Viewing Rays (4/4)

•We can use **t** to

Ray - Sphere Intersection (1/8)

We have, p = e + t (s - e) = e + t d

Ray - Sphere Intersection (2/8)

Ray - Sphere Intersection (3/8)

Ray - Sphere Intersection (4/8)

Ray - Sphere Intersection (5/8)

$$t = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

- B² 4AC, is called the discriminant and if it is -
 - negative: its square root is imaginary and the line and sphere do not intersect.
 - positive: there are two solutions
 - one solution where the ray enters the sphere.
 - one where it leaves.
 - zero: the ray grazes the sphere, touching it at exactly one point.

Ray - Sphere Intersection (5/8)

$$t = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

- **B**² **4AC**, is called
 - negative: its squassphere do not in
 - positive: there a
 - one solution wh
 - one where it lea
 - zero: the ray graz point.

Ray - Sphere Intersection (6/8)

Ray - Sphere Intersection (7/8)

Orthographic:

- ray direction = -w
- ray origin = $\mathbf{e} + u \mathbf{u} + v \mathbf{v}$

Ray - Sphere Intersection (8/8)

- ray direction = $-d \mathbf{w} + u \mathbf{u} + v \mathbf{v} > \mathbf{Q} : \mathbf{w}$
- ray origin = e

Shading (1/3)

Normal vector at point p:

- Gradient, $\mathbf{n} = 2 (\mathbf{p} \mathbf{c})$.
- unit normal is (p c)/R.

[See section 2.5.4]

Shading (2/3)

Lambertian Shading: $L = k_d P max (0, n \cdot I)$

where,

- L = pixel color
- k_d = surface color
- P = intensity of the light source.

Shading (3/3)

Q: Are we considering angle in this formula? If yes — how?

Lambertian Shading: $L = k_d P max (0, n \cdot I)$

where,

- L = pixel color
- k_d = surface color
- P = intensity of the light source.

Additional Reading

• 4.6: A Ray-Tracing Program

Practice Problem (1/3)

Camera frame (orthographic):

- $\mathbf{e} = [4, 4, 6]; \mathbf{u} = [1, 0, 0]; \mathbf{v} = [0, 1, 0]; \mathbf{w} = [0, 0, 1]$
 - Plot the camera frame on the given axis.

Viewing Ray:

- ray₁.origin = e + 2u + 2v; ray₁.end = [6, 6, 0]
- ray₂.origin = $\mathbf{e} \mathbf{1u} + \mathbf{1v}$; ray₂.end = [4, 4, 0]
 - Plot the origins for ray₁ and ray₂.

Sphere:
$$f(x, y, z) = x^2 + y^2 + z^2 - (4)^2 = 0$$

- 1. What are the intersecting points for ray₁ and ray₂?
- 2. Plot the intersecting points.

Practice Problem (2/3)

Camera frame (orthographic):

• e = [4, 4, 8]; u = [1, 0, 0]; v = [0, 1, 0]; w = [0, 1, 0]

Image Plane:

• left: u = -5; right: u = 5; top: v = 4; bottom: v = -4

- 1. Plot the image plane on the given axis.
- 2. For a 10×10 image matrix M, what is the position on the image plane for the ray origin at M (4,3)?
- 3. Will it intersect $f(x, y, z) = x^2 + y^2 + z^2 5^2 = 0$?

Practice Problem (3/3)

Consider the following parameters for an orthographic raytracing:

• Camera frame:

$$E=[-2, 7, 17]^T$$
, $U=[1, 0, 0]^T$, $V=[0, 1, 0]^T$, $W=[0, 0, 1]^T$

• Image plane:

$$I = -15$$
, $r = 15$, $t = 10$, $b = -10$

- Raster image resolution: 13 × 11
- Sphere: $(x+3)^2 + (y-5)^2 + (z-3)^2 = 64$

Determine the ray-sphere intersection point(s) for a ray (with length = 25) at the center of the raster image. Drawing figures is NOT mandatory.

Practice Problem (3/3)

Solution steps:

Find u and v

$$u = I + (r - I) (i + 0.5) / nx$$

 $v = b + (t - b) (j + 0.5) / ny$

- Determine the ray origin, e = E + uU + vV
- Find ray end point, s = e + w(-W)
- Determine, d = s e
- Determine, $D = B^2 4AC$

$$A = d \cdot d$$
 $B = 2d \cdot (e - c)$
 $C = (e - c) \cdot (e - c) - R^2$

Determine the intersection parameter, t

$$t_1 = (-B + \sqrt{D})/(2A)$$

 $t_2 = (-B - \sqrt{D})/(2A)$

Determine the intersection point,

$$P_1 = e + t_1(s - e)$$

 $P_2 = e + t_2(s - e)$

Exercise

- Textbook exercise
 - no: 1