What is claimed is:

## 1. A compound of Formula (I)

5

15

or a stereoisomer; or a pharmaceutically acceptable salt thereof, wherein

 $R^1$  is selected from the group consisting of  $-C(=0)R^{1a}, -S(=0)R^{1a}, -S(=0)_2R^{1a}, -C(=0)OR^{1a},$   $-C(=0)NHR^{1a}, \text{ and } C_1-C_6 \text{ alkyl optionally}$  substituted with  $R^{1b}$ ;

 $R^{1a}$  is  $C_1$ - $C_6$  alkyl optionally substituted with  $R^{1b}$ ;

R<sup>1b</sup> is independently selected from the group consisting of halogen,  $-CF_3$ ,  $-OCF_3$ ,  $-CO_2R^6$ ,  $-C(=0)NR^6R^6$ ,  $-NR^6C(=0)R^6$ ,  $-NR^6R^6$ ,  $-NR^6SO_2R^6$ ,  $-C(=0)R^6$ ,  $-S(=0)R^6$ ,  $-SO_2R^6$ ,  $-SO_2NR^6R^6$ ,  $-SR^6$ ,  $-S(C_1-C_4 \text{ haloalkyl})$ ,  $-OR^6$ ,  $-O(C_1-C_4 \text{ haloalkyl})$ ,  $-(C_3-C_7)\text{ cycloalkyl}$ , -imidazole, -thiazole, -oxazole,  $-(C_2-C_6)\text{ alkenyl}$ , and  $-(C_2-C_6)\text{ alkynyl}$ ;

 $R^2$  is selected from the group consisting of  $C_1-C_4$  alkyl,  $C_2-C_4$  alkenyl,  $C_2-C_4$  alkynyl, and

5

25

 $C_3-C_6$  cycloalkyl in which each group is optionally substituted with halogen,  $-CF_3$ ,  $-OCF_3$ ,  $-CH_3$ ,  $-CH_2CH_3$ ,  $-OCH_3$ ,  $-OCH_2CH_3$ , or  $-(C_3-C_7)$  cycloalkyl;

- $R^3$  is selected from the group consisting of  $C_1$ - $C_4$  alkyl,  $C_2$ - $C_4$  alkenyl, and  $C_2$ - $C_4$  alkynyl optionally substituted with  $R^{3a}$ , or phenyl optionally substituted with  $R^{3b}$ ;
- R<sup>3a</sup> is selected from the group consisting of R<sup>3b</sup>, C<sub>3</sub>-C<sub>6</sub>

  cycloalkyl optionally substituted with R<sup>3b</sup>, phenyl optionally substituted with R<sup>3b</sup>, and

  3,4-methylenedioxyphenyl;
- 15 is independently selected at each occurrence from the group consisting of halogen,  $-NO_2$ , -CN,  $-C_1-C_4$ alkyl, -OH,  $-OCH_3$ ,  $-OCH_2CH_3$ ,  $-CF_3$ ,  $-OCF_3$ ,  $-SCF_3$ ,  $-C(=O)R^6$ ,  $-NR^6C(=O)R^6$ ,  $-NR^6SO_2R^6$ ,  $-NR^6R^6$ ,  $-OC(=O)NR^6R^6$ ,  $-NR^6C(=O)NR^6R^6$ ,  $-C(=O)NR^6R^6$ ,  $-C(=O)OR^6$ ,  $-SR^6$ ,  $-S(=O)_2R^6$ , and  $-S(=O)_2NR^6R^6$ ;
  - $R^4$  is selected from the group consisting of  $C_1$ - $C_4$  alkyl,  $C_2$ - $C_4$  alkenyl, and  $C_2$ - $C_4$  alkynyl optionally substituted with  $R^{4a}$ ;
- $R^{4a}$  is selected from  $R^{4b}$ , or phenyl optionally substituted with  $R^{4b}$ ;
- $R^{4b}$  is selected from the group consisting of halogen, 30 -NO<sub>2</sub>, -CN, -NCS, -CH<sub>3</sub>, -CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -CH(CH<sub>3</sub>)<sub>2</sub>, -CF<sub>3</sub>, -OCF<sub>3</sub>, -SCF<sub>3</sub>, -OH, -OCH<sub>3</sub>,

 $-OCH_2CH_3$ , -SH,  $-SCH_3$ ,  $-SCH_2CH_3$ ,  $-CO_2H$ ,  $-CO_2CH_3$ ,  $-CO_2CH_2CH_3$ ,  $-NH_2$ ,  $-NH(CH_3)$ ,  $-N(CH_3)_2$ ,  $-C(=O)NH_2$ ,

 $-C(=O)NH(CH_3)$ ,  $-C(=O)N(CH_3)_2$ , -C(=O)H,  $-C(=O)CH_3$ ,

-NHC(=0)CH<sub>3</sub>, and -NHSO<sub>2</sub>CH<sub>3</sub>;

5

10

 $R^5$  is  $C_1-C_{10}$  alkyl optionally substituted with  $R^{5a}$ ;

 $R^{5a}$  is selected from the group consisting of  $R^{5b}$ ,  $C_3$ - $C_8$  cycloalkyl, $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl, and phenyl optionally substituted with  $R^{5b}$ ;

 $R^{5b}$  is selected from the group consisting of  $R^6$ , halogen, -CN,  $-CF_3$ ,  $-NO_2$ , -NCS,  $-OCF_3$ ,  $-CO_2H$ , -C(=O)H,  $-OR^6$ ,  $-NR^6R^6$ ,  $-OC(=O)NR^6R^6$ ,  $-C(=O)NR^6R^6$ ,  $-C(=O)NR^6R^6$ ,  $-C(=O)OR^6$ ,  $-SR^6$ ,  $-S(=O)R^6$ ,  $-S(=O)R^6$ , and  $-S(=O)R^6R^6$ ; and

 $R^6$  is independently selected at each occurrence from the group consisting of hydrogen,  $C_1$ - $C_6$  alkyl and phenyl.

2. The compound of Claim 1 having the Formula (I)

$$R^{1} \xrightarrow{N} \stackrel{Q}{\longrightarrow} N \xrightarrow{R^{3}} \stackrel{H}{\longrightarrow} OH \xrightarrow{H} \stackrel{H}{\longrightarrow} N \xrightarrow{R^{5}}$$

25

or a stereoisomer; or a pharmaceutically acceptable salt thereof, wherein

 $R^1$  is selected from the group consisting of  $-C(=0)R^{1a}$ ,  $-S(=0)R^{1a}$ ,  $-S(=0)R^{1a}$ ,  $-C(=0)OR^{1a}$ , and  $-C(=0)NHR^{1a}$ ;

 ${\bf R^{1a}}$  is  ${\bf C_{1}\text{-}C_{6}}$  alkyl optionally substituted with  ${\bf R^{1b}};$ 

5

10

- $R^{1b}$  is independently selected from the group consisting of halogen,  $-CF_3$ ,  $-OCF_3$ ,  $-CO_2R^6$ , -C(=0) $NR^6R^6$ ,  $-NR^6C$ (=0) $R^6$ ,  $-NR^6R^6$ ,  $-OR^6$ , -(C3-C7)cycloalkyl, -imidazole, -thiazole, -oxazole,  $-(C_2-C_6)$ alkenyl, and  $-(C_2-C_6)$ alkynyl;
- $R^2$  is selected from the group consisting of  $C_1-C_4$  alkyl,  $C_2-C_4$  alkenyl,  $C_2-C_4$  alkynyl, and  $C_3-C_6$  cycloalkyl in which each group is optionally substituted with halogen,  $-CF_3$ ,  $-OCF_3$ ,  $-CH_3$ ,  $-CH_2CH_3$ ,  $-OCH_3$ ,  $-OCH_2CH_3$ , or  $C_3-C_7$  cycloalkyl;

 $R^3$  is  $C_1$ - $C_4$  alkyl optionally substituted with  $R^{3a}$ ;

- 20  $R^{3a}$  is selected from the group consisting of  $R^{3b}$ ,  $C_3-C_6$  cycloalkyl optionally substituted with  $R^{3b}$ , phenyl optionally substituted with  $R^{3b}$ , and 3,4-methylenedioxyphenyl;
- 25 R<sup>3b</sup> is independently selected at each occurrence from the group consisting of halogen, -NO<sub>2</sub>, -CN, -C<sub>1</sub>-C<sub>4</sub>alkyl, -OH, -OCH<sub>3</sub>, -OCH<sub>2</sub>CH<sub>3</sub>, -CF<sub>3</sub>, -OCF<sub>3</sub>, -SCF<sub>3</sub>, -C(=0)R<sup>6</sup>, -NR<sup>6</sup>C(=0)R<sup>6</sup>, -NR<sup>6</sup>SO<sub>2</sub>R<sup>6</sup>, -NR<sup>6</sup>R<sup>6</sup>, -OC(=0)NR<sup>6</sup>R<sup>6</sup>, -NR<sup>6</sup>C(=0)NR<sup>6</sup>R<sup>6</sup>, -C(=0)NR<sup>6</sup>R<sup>6</sup>, -C(=0)OR<sup>6</sup>, -SR<sup>6</sup>, -S(=0)R<sup>6</sup>, -S(=0)<sub>2</sub>R<sup>6</sup>, and -S(=0)<sub>2</sub>NR<sup>6</sup>R<sup>6</sup>;

25

 $R^4$  is  $C_1-C_4$  alkyl optionally substituted with  $R^{4a}$ ;

 $R^{4a}$  is  $R^{4b}$  or phenyl optionally substituted with  $R^{4b}$ ;

- 5  $R^{4b}$  is selected from the group consisting of halogen,  $-NO_2$ , -CN, -NCS,  $-CH_3$ ,  $-CH_2CH_3$ ,  $-CH_2CH_2CH_3$ ,  $-CH(CH_3)_2$ ,  $-CF_3$ ,  $-OCF_3$ ,  $-SCF_3$ , -OH,  $-OCH_3$ ,  $-OCH_2CH_3$ , -SH,  $-SCH_3$ ,  $-SCH_2CH_3$ ,  $-CO_2H$ ,  $-CO_2CH_3$ ,  $-CO_2CH_3$ ,  $-NH_2$ ,  $-NH(CH_3)$ ,  $-N(CH_3)_2$ ,  $-C(=O)NH_2$ ,
- 10  $-C(=O)NH(CH_3)$ ,  $-C(=O)N(CH_3)_2$ , -C(=O)H,  $-C(=O)CH_3$ ,  $-NHC(=O)CH_3$ , and  $-NHSO_2CH_3$ ;

 $R^5$  is  $C_1-C_{10}$  alkyl optionally substituted with  $R^{5a}$ ;

- 15  $R^{5a}$  is selected from the group consisting of  $R^{5b}$ ,  $C_3$ - $C_8$  cycloalkyl, $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl optionally substituted with  $R^{5b}$ , and phenyl optionally substituted with  $R^{5b}$ ;
- 20  $R^{5b}$  is selected from the group consisting of  $R^{6}$ , halogen, -CN,  $-CF_3$ ,  $-NO_2$ , -NCS,  $-OCF_3$ ,  $-CO_2H$ , -C (=0)H,  $-OR^6$ ,  $-NR^6R^6$ , -OC (=0) $NR^6R^6$ , -C (=0) $NR^6R^6$ , -C (=0) $NR^6R^6$ , -C (=0) $NR^6R^6$ , and -S (=0) $NR^6R^6$ ; and
  - $R^6$  is independently selected at each occurrence from the group consisting of hydrogen,  $C_1\text{-}C_6$  alkyl and phenyl.
- 30 3. The compound of Claim 2 having the Formula (I)

20

25

or a stereoisomer; or a pharmaceutically acceptable salt thereof, wherein

 $R^1$  is selected from the group consisting of  $-C(=0)R^{1a}$ ,  $-S(=0)R^{1a}$ ,  $-S(=0)R^{1a}$ ,  $-C(=0)OR^{1a}$ , and  $-C(=0)NHR^{1a}$ ;

10  $R^{1a}$  is  $C_1-C_6$  alkyl optionally substituted with  $R^{1b}$ ;

 $R^{1b}$  is independently selected from the group consisting of halogen,  $-CF_3$ ,  $-OCF_3$ ,  $-CO_2R^6$ ,  $-C(=0)NR^6R^6$ ,  $-NR^6C(=0)R^6$ ,  $-NR^6R^6$ ,  $-OR^6$ , -(C3-C7) cycloalkyl, -imidazole, -thiazole, -oxazole,  $-(C_2-C_6)$  alkenyl, and  $-C_2-C_6$ ) alkynyl;

R<sup>2</sup> is selected from the group consisting of C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>2</sub>-C<sub>4</sub> alkenyl, C<sub>2</sub>-C<sub>4</sub> alkynyl, and C<sub>3</sub>-C<sub>6</sub> cycloalkyl in which each group is optionally substituted with halogen, -CF<sub>3</sub>, -OCF<sub>3</sub>, -CH<sub>3</sub>, -CH<sub>2</sub>CH<sub>3</sub>, -OCH<sub>3</sub>, and C<sub>3</sub>-C<sub>7</sub> cycloalkyl;

 ${\ensuremath{\mathsf{R}}}^3$  is  ${\ensuremath{\mathsf{C}}}_1{\ensuremath{\mathsf{C}}}_4$  alkyl optionally substituted with  ${\ensuremath{\mathsf{R}}}^{3a};$ 

 $R^{3a}$  is selected from the group consisting of  $R^{3b}$ ,  $C_3$ - $C_6$  cycloalkyl optionally substituted with  $R^{3b}$ , phenyl optionally substituted with  $R^{3b}$ , and 3,4-methylenedioxyphenyl;

R3b is independently selected at each occurrence from the group consisting of halogen,  $-NO_2$ , -CN,  $-(C_1-C_4) \, \text{alkyl}, \, -CF_3, \, -OH, \, -OCH_3, \, -OCH_2CH_3, \, OCF_3, \\ -SCF_3, \, -C(=O)\,R^6, \, -NR^6C(=O)\,R^6, \, -NR^6SO_2R^6, \, -NR^6R^6, \\ -OC(=O)\,NR^6R^6, \, -NR^6C(=O)\,NR^6R^6, \, -C(=O)\,NR^6R^6, \\ -C(=O)\,OR^6, \, -SR^6, \, -S(=O)\,R^6, \, -S(=O)\,_2R^6, \, \text{and} \\ -S(=O)\,_2NR^6R^6;$ 

 $R^4$  is  $C_1$ - $C_4$  alkyl substituted with  $R^{4a}$ ;

10

5

 ${\bf R}^{4a}$  is selected from the group consisting of

$$\mathbb{R}^{4b}$$
  $\mathbb{R}^{4b}$  and

- 15  $R^{4b}$  is selected from the group consisting of F, C1, Br,  $-CH_3$ ,  $-CH_2CH_3$ ,  $-CF_3$ ,  $-OCF_3$ ,  $-SCF_3$ , -OH,  $-OCH_3$ , -SH,  $-SCH_3$ ,  $-CO_2H$ ,  $-CO_2CH_3$ ,  $-NH_2$ , -NH(CH<sub>3</sub>),  $-N(CH_3)_2$ , -C(=0)NH<sub>2</sub>, -C(=0)CH<sub>3</sub>, and -NHC(=0)CH<sub>3</sub>;
- 20  $R^5$  is  $C_1$ - $C_{10}$  alkyl optionally substituted with  $R^{5a}$ ;
- $R^{5a}$  is selected from the group consisting of  $R^{5b}$ ,  $C_3$ - $C_8$  cycloalkyl optionally substituted with  $R^{5b}$ ,  $C_2$ - $C_6$  alkynyl optionally substituted with  $R^{5b}$ , and phenyl optionally substituted with  $R^{5b}$ ;
  - $R^{5b}$  is selected from the group consisting of  $R^6$ , halogen, -CN, -CF3, -NO2, -OCF3, -CO2H, -C(=0)H,

$$\begin{split} &-\text{OR}^6\,,\ -\text{NR}^6\text{R}^6\,,\ -\text{OC}\,(=\text{O})\,\text{NR}^6\text{R}^6\,,\ -\text{NR}^6\text{C}\,(=\text{O})\,\text{NR}^6\text{R}^6\,,\\ &-\text{C}\,(=\text{O})\,\text{NR}^6\text{R}^6\,,\ -\text{C}\,(=\text{O})\,\text{OR}^6\,,\ -\text{SR}^6\,,\ -\text{S}\,(=\text{O})\,\text{R}^6\,,\ -\text{S}\,(=\text{O})\,\text{2}\text{R}^6\,,\\ &\text{and}\ -\text{S}\,(=\text{O})\,\text{2}\text{NR}^6\text{R}^6\,;\ \text{and} \end{split}$$

- 5  $R^6$  is independently selected at each occurrence from the group consisting of hydrogen,  $C_1$ - $C_6$  alkyl and phenyl.
- 4. The compound of Claim 3 having the Formula (I)

or a stereoisomer; or a pharmaceutically acceptable salt thereof, wherein

 $R^1$  is selected from the group consisting of  $-C(=0)R^{1a}$ ,  $-S(=0)R^{1a}$ ,  $-S(=0)_2R^{1a}$ ,  $-C(=0)_0R^{1a}$ , and  $-C(=0)_0R^{1a}$ ;

20

30

 $R^{1a}$  is  $C_1$ - $C_6$  alkyl optionally substituted with  $R^{1b}$ ;

- $\rm R^{1b}$  is independently selected from the group consisting of halogen, -CF3, -OCF3, -NR^6R^6, -OR^6,
- 25  $-(C_3-C_7)$  cycloalkyl, -imidazole, thiazole, and oxazole;
  - $R^2$  is selected from the group consisting of  $C_1$ - $C_4$  alkyl optionally substituted with halogen, -CF<sub>3</sub>, -OCH<sub>3</sub>, -OCH<sub>2</sub>CH<sub>3</sub>, or  $C_3$ - $C_7$  cycloalkyl;

 $R^3$  is  $C_1-C_4$  alkyl optionally substituted with  $R^{3a}$ ;

 $R^{3a}$  is selected from the group consisting of phenyl optionally substituted with  $R^{3b}$ , and 3,4-methylenedioxyphenyl;

 $R^{3b}$  is independently selected at each occurrence from the group consisting of F, Cl,  $R^6$ , -CF<sub>3</sub>, OH, -OCH<sub>3</sub>, -OCH<sub>2</sub>CH<sub>3</sub>, and -NR<sup>6</sup>R<sup>6</sup>;

 $R^4$  is  $C_1-C_4$  alkyl substituted with  $R^{4a}$ ;

 ${\bf R^{4a}}$  is selected from the group consisting of

10

15

20

and



 $R^{4b}$  is selected from the group consisting of F, Cl, Br,  $-CH_3$ ,  $-CF_3$ , -OH,  $-OCH_3$ ,  $-NH_2$ ,  $-NH(CH_3)$ , and  $-N(CH_3)_2$ ;

 ${\tt R}^5$  is  ${\tt C}_1{\tt \sim}{\tt C}_2$  alkyl optionally substituted with  ${\tt R}^{5a};$ 

 $R^{5a}$  is selected from the group consisting of  $R^{5b}$ ,  $C_3-C_4 \text{ cycloalkyl optionally substituted with } R^{5b},$ alkynyl, and phenyl optionally substituted with  $R^{5b}$ :

 $R^{5b}$  is selected from the group consisting of  $R^{6}$ , F, Cl, -CN, -OR<sup>6</sup>, and -NR<sup>6</sup>R<sup>6</sup>; and

- $R^6$  is independently selected at each occurrence from the group consisting of hydrogen,  $C_1$ - $C_6$  alkyl and phenyl.
  - 5. The stereoisomer compound of Claim 4 having the Formula (Ia)

10

5

or a pharmaceutically acceptable salt thereof.

15

6. The compound of Claim 1 of selected from the group consisting of

(2S)-2-(3(S)-Acetylamino-3-((S)-sec-butyl)-2-oxopyrrolidin-1-yl)-N-[(1S, 2R)-1-(3,5-difluoro-benzyl)-

20 2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenylbutyramide;

(2S)-2-(3(S)-Acetylamino-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-pyrrolidin-1-yl)-N-[(1S, 2R)-1-ben

25 (2S)-2-(3(S)-Acetylamino-3(-cyclopropylmethy1)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;

methoxy-benzylamino)-propyl]-4-phenyl-butyramide;

- (2S)-2-(3(S)-(2(S)-amino-5-carboxypentanoylamino)-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S,2R)-1-
- 30 benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4phenyl-butyramide;

```
(2S)-2-(3(S)-(2-methoxy-acetylamino)-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide; \\ (2S)-2-(3(S)-propionylamino-3-((S)-sec-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl)-2-oxo-butyl
```

- 5 (2S)-2-(3(S)-propionylamino-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
  (2S)-2-(3(S)-ethoxycarbonylamino-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-
- (3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
  (2S)-2-(3(S)-methoxycarbonylamino-3-((S)-sec-butyl)-2oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
  (2S)-2-(3(S)-ethylureido-3-((S)-sec-butyl)-2-oxo-
- pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
  (2S)-2-(3(S)-(3-hydroxypropionylamino)-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-
- butyramide;
  (2S)-2-(3(S)-(4-hydroxybutyrylamino)-3-((S)-secbutyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenylbutyramide;
- 25 (2S)-2-(3(S)-acetylamino-3-(isobutyl)-2-oxopyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
  (2S)-2-(3(S)-acetylamino-3-((S)-sec-butyl)-2-oxopyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(330 chloro-benzylamino)-propyl]-4-phenyl-butyramide;
  (2S)-2-(3(S)-acetylamino-3-((S)-sec-butyl)-2-oxopyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-

(propargylamino)-propyl]-4-phenyl-butyramide;

```
(2S) -2 - (3(S) - acetylamino - 3 - ((S) - sec - butyl) - 2 - oxo-
             pyrrolidin-1-y1)-N-[(1S, 2R)-1-benzy1-2-hydroxy-3-
             (3,5-difluorobenzylamino)-propyl]-4-phenyl-butyramide;
             (2S) - 2 - (3(S) - acetylamino - 3 - ((S) - sec - butyl) - 2 - oxo-
            pyrrolidin-1-y1)-N-[(1S, 2R)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)-1-benzy1-2-hydroxy-3-((3-y)
             trifluoromethylbenzyl)amino)-propyl]-4-phenyl-
             butyramide;
             2-(3(S)-Acetylamino-3(S)-isobutyl-2-oxo-pyrrolidin-1-
             yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-benzylamino-
10
            propyl]-4-phenyl-butyramide;
             (2S)-2-(3(S)-acetylamino-3-((S)-sec-butyl)-2-oxo-
             pyrrolidin-1-y1)-N-[(1S, 2R)-1-benzy1-2-hydroxy-3-(3-y)]
             fluoro, 5-(trifluoromethyl)benzylamino)-propyl]-4-
             phenyl-butyramide;
15
             2-(3(S)-Acetylamino-3(S)-isobutyl-2-oxo-pyrrolidin-1-
             y1)-N-[(1S, 2R)-1-benzyl-3-(2-cyano-ethylamino)-2-
             hydroxy-propyl]-4-phenyl-butyramide;
             (2S) -2-(3(S) -acetylamino-3-(cyclopropylmethyl) -2-oxo-
             pyrrolidin-1-yl)-N-[(1S, 2R)-1-(3,5-difluorobenzyl)-2-
20
            hydroxy-3-(3-methoxybenzylamino)-propy1]-4-(2-
             methoxyphenyl)-butyramide;
             (2S) -2-(3(S) -acetylamino-3-(cyclopropylmethyl) -2-oxo-
```

hydroxy-3-(3-methoxybenzylamino)-propyl]-4-(3,4
25 methylenedioxyphenyl)-butyramide;
(2S)-2-(3(S)-acetylamino-3-(cyclopropylmethyl)-2-oxopyrrolidin-1-yl)-N-[(1S, 2R)-1-(3,5-difluorobenzyl)-2hydroxy-3-(3-methoxybenzylamino)-propyl]-4-(3fluorophenyl)-butyramide;

pyrrolidin-1-y1)-N-[(1S, 2R)-1-(3,5-difluorobenzy1)-2-

30 (2S)-2-(3(S)-acetylamino-3-(cyclopropylmethyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-(3-methoxybenzylamino)-propyl]-4-(4-fluorophenyl)-butyramide; and

(2S)-2-(3(S)-acetylamino-3-(cyclopropylmethyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-(3-methoxybenzylamino)-propyl]-4-(3-methoxybenyl)-butyramide;

- 5 or a pharmaceutically acceptable salt thereof.
- 7. A pharmaceutical composition for the treatment of disorders responsive to the inhibition of  $\beta$ -amyloid peptide production comprising a therapeutically effective amount of a compound of claim 1 in association with a pharmaceutically acceptable carrier or diluent.
- 8. A method for the treatment of disorders responsive to the inhibition of  $\beta$ -amyloid peptide production in a mammal in need thereof, which comprises administering to said mammal a therapeutically effective amount of a compound of claim 1.
- 9. A method of of claim 8 wherein said disorder is Alzheimer's Disease, cerebral amyloid angiopathy and Down's Syndrome.