Numerical Optimization Methods in Imaging

Part II: Fixed point methods and nonexpansive operators

jean-christophe@pesquet.eu

PhD Summer School MMLIA - Bologna

A first answer

Fixed point theorem (E. Picard, 1856-1941)

Let \mathcal{H} be a Hilbert space. If $T \colon \mathcal{H} \to \mathcal{H}$ is such that

T is a strict contraction, i.e. there exists $\rho \in [0,1[$ such that

$$\left(\forall (x,x')\in \mathcal{H}^2\right) \qquad \|\mathit{T} x - \mathit{T} x'\| \leq \rho \|x - x'\|.$$

Then T has a unique fixed point \hat{x} .

The sequence $(x_n)_{n\in\mathbb{N}}$ defined as $(\forall n\in\mathbb{N})\ x_{n+1}=Tx_n$ with $x_0\in\mathcal{H}$, converges to \widehat{x} .

Objective of the remainder of this course

- Extend this theorem to more general operators
 - not necessarily strictly contractive
 - possibly dependent on the iteration number n
 - built from composition of simpler operators (splitting techniques).
- Apply this to solve minimization problems.
 - \rightsquigarrow How to relate T to the objective function f?

Fixed point algorithms

Fixed point algorithms: convergence

Let \mathcal{H} be a Hilbert space.

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathcal{H} and $\widehat{x}\in\mathcal{H}$.

 \triangleright $(x_n)_{n\in\mathbb{N}}$ converges strongly to \widehat{x} if

$$\lim_{n\to+\infty}\|x_n-\widehat{x}\|=0.$$

It is denoted by $x_n \to \hat{x}$.

 $(x_n)_{n\in\mathbb{N}}$ converges weakly to \widehat{x} if

$$(\forall y \in \mathcal{H}) \qquad \lim_{n \to +\infty} \langle y \mid x_n - \widehat{x} \rangle = 0.$$

It is denoted by $x_n \rightarrow \hat{x}$.

<u>Remark</u>: In a finite dimensional Hilbert space, strong and weak convergences are equivalent.

Fixed point algorithms: convergence

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of \mathcal{H} .

 $(x_n)_{n\in\mathbb{N}}$ converges weakly if and only if

- $(x_n)_{n\in\mathbb{N}}$ is bounded and
- $(x_n)_{n\in\mathbb{N}}$ possesses at most one sequential cluster point in the weak topology.
- \widehat{x} is a sequential cluster point of $(x_n)_{n\in\mathbb{N}}$ in the weak topology if there exists a subsequence $(x_{n_k})_{k\in\mathbb{N}}$ of $(x_n)_{n\in\mathbb{N}}$ that converges weakly to \widehat{x} .

Fixed point algorithms: convergence

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of \mathcal{H} .

 $(x_n)_{n\in\mathbb{N}}$ converges weakly if and only if

- $(x_n)_{n\in\mathbb{N}}$ is bounded and
- $(x_n)_{n\in\mathbb{N}}$ possesses at most one sequential cluster point in the weak topology.

Illustration:

<i>x</i> ₀	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	
1	-1	1	-1	1	-1	

- $\to (x_n)_{n\in\mathbb{N}}$ is bounded but it has 2 sequential cluster points: -1 and 1.
- $\to (x_n)_{n\in\mathbb{N}}$ does not converge.

Fixed point algorithms: Fejér-monotone sequence

Let D be a nonempty subset of a Hilbert space \mathcal{H} .

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathcal{H} .

 $(x_n)_{n\in\mathbb{N}}$ is Fejér-monotone with respect to D if

$$(\forall x \in D)(\forall n \in \mathbb{N})$$
 $||x_{n+1} - x|| \le ||x_n - x||.$

Let $D \subset \mathcal{H}$.

Let $(x_n)_{n\in\mathbb{N}}$ be Fejér-monotone with respect to D then

- ▶ for every $x \in D$, $(\|x_n x\|)_{n \in \mathbb{N}}$ converges,
- $(x_n)_{n\in\mathbb{N}}$ is bounded.

Fixed point algorithms: Fejér-monotone sequence

Fejér-monotone convergence

Let D be a nonempty subset of a Hilbert space \mathcal{H} .

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathcal{H} .

 $(x_n)_{n\in\mathbb{N}}$ converges weakly to a point in D if

- $(x_n)_{n\in\mathbb{N}}$ is Fejér-monotone with respect to D
- \triangleright every weak sequential cluster point of $(x_n)_{n\in\mathbb{N}}$ lies in D.

Let C be a nonempty set of a Hilbert space \mathcal{H} . Let $T: C \to \mathcal{H}$. The set of fixed points of T is

$$\operatorname{Fix} T = \{ x \in C \mid x = Tx \}.$$

Let C be a nonempty set of a Hilbert space \mathcal{H} . Let $T \colon C \to \mathcal{H}$.

The set of fixed points of T is

$$\operatorname{Fix} T = \{ x \in C \mid x = Tx \}.$$

Let
$$C \subset \mathcal{H}$$
 be a nonempty set.

Let $T: C \to \mathcal{H}$.

T is a nonexpansive operator if $\left(orall (x,y) \in C^2 \right) \quad \|\mathit{T} x - \mathit{T} y \| \leq \|x - y\|$

Demiclosedness principle

Let C be a nonempty closed convex subset of a Hilbert space \mathcal{H} .

Let $T \colon C \to \mathcal{H}$ be a nonexpansive operator.

If $(x_n)_{n\in\mathbb{N}}$ is a sequence in C that converges weakly to \widehat{x} and if $Tx_n - x_n \to 0$ then $\widehat{x} \in \operatorname{Fix} T$.

Let C be a nonempty closed convex subset of a Hilbert space \mathcal{H} . Let $T: C \to C$ be a nonexpansive operator

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = Tx_n.$$

Let C be a nonempty closed convex subset of a Hilbert space \mathcal{H} . Let $T: C \to C$ be a nonexpansive operator

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = Tx_n.$$

If $x_n - Tx_n \to 0$,

Let C be a nonempty closed convex subset of a Hilbert space \mathcal{H} .

Let $T: C \to C$ be a nonexpansive operator such that $Fix T \neq \emptyset$. Let $x_0 \in C$,

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = Tx_n.$$

If $x_n - Tx_n \to 0$, then $(x_n)_{n \in \mathbb{N}}$ converges weakly to a point in Fix T.

Exercise:

Prove this result by showing that $(x_n)_{n\in\mathbb{N}}$ is Fejér-monotone with respect to $\operatorname{Fix} T$.

Let C be a nonempty closed convex subset of a Hilbert space \mathcal{H} .

Let $T: C \to C$ be a nonexpansive operator such that $\operatorname{Fix} T \neq \emptyset$. Let $x_0 \in C$,

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = Tx_n.$$

If $x_n - Tx_n \to 0$, then $(x_n)_{n \in \mathbb{N}}$ converges weakly to a point in Fix T.

Answer : For every $n \in \mathbb{N}$ and $y \in Fix T$,

$$||x_{n+1} - y|| = ||Tx_n - Ty|| \le ||x_n - y||.$$

 $(x_n)_{n\in\mathbb{N}}$ is Fejér-monotone with respect to Fix T.

Let $(x_{n_k})_{k\in\mathbb{N}}$ be a subsequence of $(x_n)_{n\in\mathbb{N}}$ such that $x_{n_k} \rightharpoonup \widehat{x}$ where $\widehat{x} \in \mathcal{H}$.

By assumption $x_{n_k} - Tx_{n_k} \to 0$ and thus, according to the demiclosedness principle, $\hat{x} \in \text{Fix } T$.

This shows the weak convergence of $(x_n)_{n\in\mathbb{N}}$.

Fixed point algorithms: Fejér-monotone sequence

Красносе́льский-Mann algorithm

Let C be a nonempty closed convex subset of a Hilbert space \mathcal{H} .

Let $T: C \to C$ be a nonexpansive operator such that $\operatorname{Fix} T \neq \emptyset$. Let $(\lambda_n)_{n \in \mathbb{N}}$ be a sequence in [0,1] such that

$$\sum \lambda_n (1 - \lambda_n) = +\infty.$$

$$n \in \mathbb{N}$$

Let $x_0 \in C$ and $(\forall n \in \mathbb{N}) x_{n+1} = x_n + \lambda_n (Tx_n - x_n)$. Then,

- ► $(x_n)_{n\in\mathbb{N}}$ is Fejér-monotone with respect to Fix T.
- ► $(Tx_n x_n)_{n \in \mathbb{N}}$ converges strongly to 0.
- $(x_n)_{n\in\mathbb{N}}$ converges weakly to a point in Fix T.

Typical choice: $(\forall n \in \mathbb{N}) \ \lambda_n = \lambda \in]0,1[$.

Fixed point algorithms: Fejér-monotone sequence

Красносе́льский-Mann algorithm

Let C be a nonempty closed convex subset of a Hilbert space \mathcal{H} .

Let $T: C \to C$ be a nonexpansive operator such that $\operatorname{Fix} T \neq \emptyset$. Let $(\lambda_n)_{n \in \mathbb{N}}$ be a sequence in [0,1] such that

$$\sum_{n\in\mathbb{N}}\lambda_n(1-\lambda_n)=+\infty.$$

Let $x_0 \in C$ and $(\forall n \in \mathbb{N}) \ x_{n+1} = x_n + \lambda_n (Tx_n - x_n)$. Then,

- $(x_n)_{n\in\mathbb{N}}$ is Fejér-monotone with respect to Fix T.
- ► $(Tx_n x_n)_{n \in \mathbb{N}}$ converges strongly to 0.
- ▶ $(x_n)_{n\in\mathbb{N}}$ converges weakly to a point in Fix T.

Proof: similar to the previous one.

Let $\mathcal H$ be a Hilbert space and let $\mathcal C$ be a nonempty subset of $\mathcal H.$

Let $A: C \to \mathcal{H}$.

A is nonexpansive if $(\forall (x,y) \in C^2)$ $||Ax - Ay|| \le ||x - y||$.

Let $\mathcal H$ be a Hilbert space and let $\mathcal C$ be a nonempty subset of $\mathcal H.$

Let $A \colon \mathcal{C} \to \mathcal{H}$ and $\nu \in \]0,+\infty[$

 $\nu^{-1}A$ is nonexpansive if $(\forall (x,y) \in C^2)$ $||Ax - Ay|| \le \nu ||x - y||$.

Let ${\mathcal H}$ be a Hilbert space and let ${\mathcal C}$ be a nonempty subset of ${\mathcal H}.$

Let $A \colon \mathit{C} \to \mathcal{H}$ and $\nu \in \]0, +\infty[$

 $\nu^{-1}A$ is nonexpansive if $(\forall (x,y) \in C^2)$ $||Ax - Ay|| \le \nu ||x - y||$.

 $\nu^{-1}A$ is nonexpansive $\Leftrightarrow A$ is ν -Lipschitzian

Let ${\mathcal H}$ be a real Hilbert space.

Let $A: C \to \mathcal{H}$.

A is firmly nonexpansive if

$$(\forall x \in C)(\forall y \in C) \quad ||Ax - Ay||^2 \le \langle Ax - Ay \mid x - y \rangle.$$

Let \mathcal{H} be a real Hilbert space and let C be a nonempty subset of \mathcal{H} .

Let $A: C \to \mathcal{H}$.

A is firmly nonexpansive if

 $(\forall (x,y) \in C^2) \quad ||Ax - Ay||^2 + ||(\mathrm{Id} - A)x - (\mathrm{Id} - A)y||^2 \le ||x - y||^2.$

Let ${\mathcal H}$ be a real Hilbert space and let ${\mathcal C}$ be a nonempty subset of ${\mathcal H}.$

Let $A: C \to \mathcal{H}$.

A is firmly nonexpansive if

$$(\forall (x,y) \in C^2) \quad ||Ax - Ay||^2 + ||(\mathrm{Id} - A)x - (\mathrm{Id} - A)y||^2 \le ||x - y||^2.$$

<u>Proof</u>: For every $(x, y) \in C^2$,

$$||Ax - Ay||^2 + ||(\operatorname{Id} - A)x - (\operatorname{Id} - A)y||^2 \le ||x - y||^2$$

$$\Leftrightarrow ||Ax - Ay||^2 + ||x - y||^2 - 2\langle x - y \mid Ax - Ay\rangle + ||Ax - Ay||^2 \le ||x - y||^2$$

$$\Leftrightarrow ||Ax - Ay||^2 < \langle x - y \mid Ax - Ay\rangle.$$

Let $\mathcal H$ be a real Hilbert space and let $\mathcal C$ be a nonempty subset of $\mathcal H.$

Let $A: C \to \mathcal{H}$.

A is firmly nonexpansive if

$$(\forall (x,y) \in C^2) \quad ||Ax - Ay||^2 + ||(\mathrm{Id} - A)x - (\mathrm{Id} - A)y||^2 \le ||x - y||^2.$$

- ▶ A is firmly nonexpansive \Leftrightarrow Id − A is firmly nonexpansive.
- ▶ A is firmly nonexpansive \Leftrightarrow 2A − Id is nonexpansive.

Let \mathcal{H} be a real Hilbert space and let C be a nonempty subset of \mathcal{H} . Let $A\colon C\to \overline{\mathcal{H}}$.

A is firmly nonexpansive if

$$\left(\forall (x,y) \in C^2 \right) \quad \|Ax - Ay\|^2 + \|(\operatorname{Id} - A)x - (\operatorname{Id} - A)y\|^2 \leq \|x - y\|^2 \;.$$

- ightharpoonup A is firmly nonexpansive $\Leftrightarrow \operatorname{Id} A$ is firmly nonexpansive.
- ightharpoonup A is firmly nonexpansive \Leftrightarrow $2A \mathrm{Id}$ is nonexpansive.

Reflection of A

<u>Proof</u>: For every $(x, y) \in C^2$,

$$||(2A - \operatorname{Id})x - (2A - \operatorname{Id})y||^{2} \le ||x - y||^{2}$$

$$\Leftrightarrow 4||Ax - Ay||^{2} - 4\langle Ax - Ay \mid x - y \rangle + ||x - y||^{2} \le ||x - y||^{2}$$

$$\Leftrightarrow ||Ax - Ay||^2 \le \langle Ax - Ay \mid x - y \rangle.$$

Let ${\mathcal H}$ be a real Hilbert space and let ${\mathcal C}$ be a nonempty subset of ${\mathcal H}.$

Let $A: C \to \mathcal{H}$.

A is firmly nonexpansive if

$$(\forall (x,y) \in C^2) \quad ||Ax - Ay||^2 + ||(\mathrm{Id} - A)x - (\mathrm{Id} - A)y||^2 \le ||x - y||^2.$$

A is firmly nonexpansive \Rightarrow A is nonexpansive.

Let ${\mathcal H}$ be a real Hilbert space and let ${\mathcal C}$ be a nonempty subset of ${\mathcal H}.$

Let $A \colon C \to \mathcal{H}$ and $\beta \in \]0, +\infty[.$

A is β -cocoercive if βA is firmly nonexpansive, i.e.,

$$(\forall x \in C)(\forall y \in C) \quad \beta ||Ax - Ay||^2 \le \langle x - y \mid Ax - Ay \rangle.$$

Let \mathcal{H} be a real Hilbert space and let \mathcal{C} be a nonempty subset of \mathcal{H} .

Let $A: C \to \mathcal{H}$ and $\beta \in]0, +\infty[$.

A is β -cocoercive if βA is firmly nonexpansive, i.e.,

$$(\forall x \in C)(\forall y \in C) \quad \beta \|Ax - Ay\|^2 \le \langle x - y \mid Ax - Ay \rangle.$$

 \blacktriangleright Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces, $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$ nonzero, and *A*: $\mathcal{G} \to \mathcal{G}$. *A* is β -cocoercive $\Rightarrow L^*AL$ is $||L||^{-2}\beta$ -cocoercive. Proof: For every $(x, y) \in \mathcal{H}^2$,

$$\langle L^*ALx - L^*ALy \mid x - y \rangle = \langle ALx - ALy \mid Lx - Ly \rangle$$

> $\beta \|ALx - ALy\|^2$

Furthermore, $||L^*ALx - L^*ALy||^2 \le ||L||^2 ||ALx - ALy||^2$.

Then $\langle L^*ALx - L^*ALy \mid x - y \rangle \geq \beta \|L^*ALx - L^*ALy\|^2 / \|L\|^2$.

Let \mathcal{H} be a real Hilbert space and let C be a nonempty subset of \mathcal{H} .

Let $A: C \to \mathcal{H}$ and $\beta \in]0, +\infty[$.

A is β -cocoercive if βA is firmly nonexpansive, i.e.,

$$(\forall x \in C)(\forall y \in C) \quad \beta ||Ax - Ay||^2 \le \langle x - y \mid Ax - Ay \rangle.$$

- Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces, $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$ nonzero, and $A \colon \mathcal{G} \to \mathcal{G}$. A is β -cocoercive $\Rightarrow L^*AL$ is $\|L\|^{-2}\beta$ -cocoercive.
- ▶ *A* is β -cocoercive \Rightarrow *A* is β ⁻¹-Lipschitzian.

Let ${\mathcal H}$ be a real Hilbert space and let ${\mathcal C}$ be a nonempty subset of ${\mathcal H}.$

Let $A: C \to \mathcal{H}$ and $\beta \in]0, +\infty[$.

A is β -cocoercive if βA is firmly nonexpansive, i.e.,

$$(\forall x \in C)(\forall y \in C) \quad \beta \|Ax - Ay\|^2 \le \langle x - y \mid Ax - Ay \rangle$$

Let \mathcal{H} be a real Hilbert space and let C be a nonempty subset of \mathcal{H} .

Let $A: C \to \mathcal{H}$ and let $\alpha \in]0,1[$.

A is α -averaged if there exists a nonexpansive operator $R\colon C\to \mathcal{H}$ such that

$$A = (1 - \alpha) \mathrm{Id} + \alpha R .$$

Let \mathcal{H} be a real Hilbert space and let \mathcal{C} be a nonempty subset of \mathcal{H} .

Let $A: C \to \mathcal{H}$ and let $\alpha \in]0,1[$.

A is α -averaged if

$$\left(\forall (x,y)\in C^2\right)\quad \|Ax-Ay\|^2+\frac{1-\alpha}{\alpha}\|(\operatorname{Id}-A)x-(\operatorname{Id}-A)y\|^2\leq \|x-y\|^2.$$

Let \mathcal{H} be a real Hilbert space and let C be a nonempty subset of \mathcal{H} . Let $A:C\to\mathcal{H}$ and let $\alpha\in]0,1[$.

A is α -averaged if

$$(\forall (x,y) \in C^2) \quad ||Ax - Ay||^2 + \frac{1-\alpha}{\alpha} ||(\mathrm{Id} - A)x - (\mathrm{Id} - A)y||^2 \le ||x - y||^2.$$

Proof: For every $(x, y) \in C^2$,

$$||Ax - Ay||^2 + \frac{1-\alpha}{\alpha}||(\operatorname{Id} - A)x - (\operatorname{Id} - A)y||^2 \le ||x - y||^2$$

$$\Leftrightarrow \alpha \|Ax - Ay\|^2 + (1 - \alpha)(\|Ax - Ay\|^2 - 2\langle x - y \mid Ax - Ay\rangle + \|x - y\|^2)$$

$$\leq \alpha \|x - y\|^2$$

$$\Leftrightarrow ||Ax - Ay||^2 - 2(1 - \alpha)\langle x - y | Ax - Ay \rangle + (1 - 2\alpha)||x - y||^2 \le 0$$

$$\Leftrightarrow \|Ax - Ay - (1 - \alpha)(x - y)\|^2 \le \alpha^2 \|x - y\|^2$$

$$\Leftrightarrow R = \frac{A - (1 - \alpha) \text{Id}}{\alpha}$$
 nonexpansive.

Let $\mathcal H$ be a real Hilbert space and let $\mathcal C$ be a nonempty subset of $\mathcal H.$

Let $A: C \to \mathcal{H}$ and let $\alpha \in]0,1[$.

A is α -averaged if

$$(\forall (x,y) \in C^2) \|Ax - Ay\|^2 + \frac{1-\alpha}{\alpha} \|(\operatorname{Id} - A)x - (\operatorname{Id} - A)y\|^2 \le \|x - y\|^2.$$

- ightharpoonup A is α-averaged \Rightarrow A is nonexpansive.
- ► A is $\frac{1}{2}$ -averaged \Leftrightarrow A is firmly nonexpansive.
- ▶ A is α -averaged \Rightarrow A is α' -averaged for every $\alpha' \in [\alpha, 1[$.
- ▶ Let $\lambda \in]0, 1/\alpha[$. A is α -averaged $\Rightarrow (1 \lambda)\mathrm{Id} + \lambda A$ is $\lambda \alpha$ -averaged.

Let \mathcal{H} be a real Hilbert space and let C be a nonempty subset of \mathcal{H} . Let $A:C\to\mathcal{H}$ and let $\alpha\in]0,1[$.

A is α -averaged if

A is α -averaged in

$$\left(\forall (x,y)\in C^2\right)\quad \|Ax-Ay\|^2+\frac{1-\alpha}{\alpha}\|(\operatorname{Id}-A)x-(\operatorname{Id}-A)y\|^2\leq \|x-y\|^2.$$

- ▶ *A* is α -averaged \Rightarrow *A* is nonexpansive.
- ► A is $\frac{1}{2}$ -averaged \Leftrightarrow A is firmly nonexpansive.
- A is α -averaged \Rightarrow A is α' -averaged for every $\alpha' \in [\alpha, 1[$.
- Let $\lambda \in]0, 1/\alpha[$. A is α -averaged $\Rightarrow (1 \lambda)\mathrm{Id} + \lambda A$ is $\lambda \alpha$ -averaged. Proof: If A is α -averaged, there exists a nonexpansive operator R such that $A = (1 - \alpha)\mathrm{Id} + \alpha R$. We have thus

$$(1 - \lambda)\operatorname{Id} + \lambda A = (1 - \lambda)\operatorname{Id} + \lambda((1 - \alpha)\operatorname{Id} + \alpha R)$$
$$= (1 - \lambda\alpha)\operatorname{Id} + \lambda\alpha R.$$

Nonexpansive operator: definition

Let \mathcal{H} be a real Hilbert space and let \mathcal{C} be a nonempty subset of \mathcal{H} . Let $A: C \to \mathcal{H}$ and let $\alpha \in]0,1[$.

A is α -averaged if

$$(\forall (x,y) \in C^2) \quad ||Ax - Ay||^2 + \frac{1-\alpha}{\alpha} ||(\operatorname{Id} - A)x - (\operatorname{Id} - A)y||^2 \le ||x - y||^2.$$

- Let $(\omega_i)_{1 \le i \le n} \in]0,1]^n$ be such that $\sum_{i=1}^n \omega_i = 1$ and let $(\alpha_i)_{1\leq i\leq n}\in]0,1[^n.$ If, for every $i\in\{1,\ldots,n\}$, $A_i\colon \mathcal{C}\to\mathcal{H}$ is α_i -averaged, then $\sum_{i=1}^n \omega_i A_i$ is α -averaged with $\alpha = \sum_{i=1}^m \omega_i \alpha_i$.
- Let $(\alpha_i)_{1 \le i \le n} \in]0,1[^n]$. If, for every $i \in \{1,\ldots,n\}$, $A_i : C \to C$ is α_i -averaged, then $A_1 \cdots A_n$ is α -averaged with $\alpha = \frac{1}{1 + 1/(\sum_{i=1}^n \frac{\alpha_i}{\alpha_i})}$

Nonexpansive operator: recap

Nonexpansive operator: main property

Let \mathcal{H} be a real Hilbert space and let C be a nonempty subset of \mathcal{H} .

Let $A: C \to \mathcal{H}$.

Let $\beta \in]0, +\infty[$ and $\gamma \in]0, 2\beta[$.

If A is β -cocoercive, then $\mathrm{Id}-\gamma A$ is $\gamma/(2\beta)$ -averaged.

Proof:

A β -cocoercive $\Leftrightarrow \beta A$ firmly nonexpansive.

There exists a nonexpansive operator $R: C \to \mathcal{H}$ such that $\beta A = (\mathrm{Id} + R)/2$.

Thus

$$\operatorname{Id} - \gamma A = \left(1 - \frac{\gamma}{2\beta}\right) \operatorname{Id} + \frac{\gamma}{2\beta}(-R).$$

(-R) being nonexpansive, $\mathrm{Id} - \gamma A$ is $\gamma/(2\beta)$ -averaged.

Fixed point algorithms: α -averaged operator

Let $T:\mathcal{H}\to\mathcal{H}$ be an α -averaged operator with $\alpha\in]0,1[$ such that $\mathrm{Fix}\,T\neq\varnothing.$

Let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0,1/\alpha]$ such that

$$\sum_{n\in\mathbb{N}}\lambda_n(1-\alpha\lambda_n)=+\infty.$$

Let $x_0 \in \mathcal{H}$ and $(\forall n \in \mathbb{N}) x_{n+1} = x_n + \lambda_n (Tx_n - x_n)$.

The following properties are satisfied:

- $(x_n)_{n\in\mathbb{N}}$ is Fejér-monotone with respect to Fix T.
- ► $(Tx_n x_n)_{n \in \mathbb{N}}$ converges strongly to 0.
- ▶ $(x_n)_{n\in\mathbb{N}}$ converges weakly to a point in Fix T.

Fixed point algorithms: α -averaged operator

Let $T: \mathcal{H} \to \mathcal{H}$ be an α -averaged operator with $\alpha \in]0,1[$ such that $\operatorname{Fix} T \neq \varnothing$.

Let $(\lambda_n)_{n\in\mathbb{N}}$ be a sequence in $[0,1/\alpha]$ such that

$$\sum_{n\in\mathbb{N}}\lambda_n(1-\alpha\lambda_n)=+\infty.$$

Let $x_0 \in \mathcal{H}$ and $(\forall n \in \mathbb{N}) x_{n+1} = x_n + \lambda_n (Tx_n - x_n)$.

The following properties are satisfied:

- $(x_n)_{n\in\mathbb{N}}$ is Fejér-monotone with respect to Fix T.
- $(Tx_n x_n)_{n \in \mathbb{N}}$ converges strongly to 0.
- ▶ $(x_n)_{n\in\mathbb{N}}$ converges weakly to a point in Fix T.

<u>Remark</u>: since $\alpha < 1$, one can choose $(\forall n \in \mathbb{N}) \lambda_n = 1$, that is

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = Tx_n.$$

Fixed point algorithms: α -averaged operator

Proof:

Since T is α -averaged, there exists a non expansive operator R such that $T=(1-\alpha)\mathrm{Id}+\alpha R$.

Let $(\forall n \in \mathbb{N}) \ \mu_n = \alpha \lambda_n \in [0, 1].$

$$\sum_{n\in\mathbb{N}}\lambda_n(1-\alpha\lambda_n)=+\infty\quad\Leftrightarrow\quad\sum_{n\in\mathbb{N}}\mu_n(1-\mu_n)=+\infty.$$

The iterations can be written as

$$(\forall n \in \mathbb{N}) \qquad x_{n+1} = x_n + \lambda_n (Tx_n - x_n)$$
$$= x_n + \mu_n (Rx_n - x_n).$$

Moreover, for every $x \in \mathcal{H}$,

$$x \in \operatorname{Fix} T \quad \Leftrightarrow \quad x = (1 - \alpha)x + \alpha Rx \quad \Leftrightarrow \quad x \in \operatorname{Fix} R,$$

that is FixR = FixT.

+ Krasnosel'skii-Mann algorithm.

Nonexpansive operators

Nonexpansive operators

What is their use?

Descent lemma

Let \mathcal{H} be a real Hilbert space, $f: \mathcal{H} \to \mathbb{R}$ and $\nu \in]0, +\infty[$.

If f is Fréchet differentiable and its gradient is ν -Lipschitzian, then

$$(\forall (x,y) \in \mathcal{H}^2)$$
 $f(y) \le f(x) + \langle y - x \mid \nabla f(x) \rangle + \frac{\nu}{2} ||y - x||^2.$

Descent lemma

Let \mathcal{H} be a real Hilbert space, $f:\mathcal{H}\to\mathbb{R}$ and $\nu\in\]0,+\infty[$.

If f is Fréchet differentiable and its gradient is ν -Lipschitzian, then $(\forall (x,y) \in \mathcal{H}^2) \quad f(y) \leq f(x) + \langle y-x \mid \nabla f(x) \rangle + \frac{\nu}{2} \|y-x\|^2.$

$$\underline{\text{Proof}}$$
: For every $(x,y) \in \mathcal{H}^2$ and $t \in \mathbb{R}$, let $\varphi(t) = f(x+t(y-x))$. φ is differentiable and $\varphi'(t) = \langle y-x \mid \nabla f(x+t(y-x)) \rangle$. We have then

$$\varphi(1) - \varphi(0) = \int_0^1 \varphi'(t)dt$$

$$\Leftrightarrow f(y) - f(x) - \langle y - x \mid \nabla f(x) \rangle = \int_0^1 \langle y - x \mid \nabla f(x + t(y - x)) - \nabla f(x) \rangle dt.$$

In addition, according to the Cauchy-Schwarz inequality,

$$\langle y - x \mid \nabla f(x + t(y - x)) - \nabla f(x) \rangle$$

$$\leq ||y - x|| ||\nabla f(x + t(y - x)) - \nabla f(x)|| \leq t\nu ||y - x||^2.$$

This leads to

$$(\forall (x,y) \in \mathcal{H}^2)$$
 $f(y) \leq f(x) + \langle y - x \mid \nabla f(x) \rangle + \frac{\nu}{2} ||y - x||^2.$

Let \mathcal{H} be a real Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $\nu \in]0, +\infty[$. If f is Fréchet differentiable, then ∇f ν -Lipschitzian $\Leftrightarrow \nabla f$ ν^{-1} -cocoercive.

Let $\mathcal H$ be a real Hilbert space, $f\in \Gamma_0(\mathcal H)$ and $\nu\in]0,+\infty[$. If f is Fréchet differentiable, then ∇f ν -Lipschitzian $\Leftrightarrow \nabla f$ ν^{-1} -cocoercive.

<u>Proof</u>: Assume that ∇f is ν -Lipschitzian. According to Fenchel-Young inequality, for every $(x,y,z)\in\mathcal{H}^3$,

$$f^*(\nabla f(y)) \ge \langle z \mid \nabla f(y) \rangle - f(z).$$

From the descent lemma,

$$f^*(\nabla f(y)) \ge \langle z \mid \nabla f(y) - \nabla f(x) \rangle + \langle x \mid \nabla f(x) \rangle - f(x) - \frac{\nu}{2} ||z - x||^2.$$

Moreover, using again the Fenchel-Young result,

$$\langle x \mid \nabla f(x) \rangle - f(x) = f^*(\nabla f(x)).$$

Thus,

$$f^*(\nabla f(y)) \ge \langle z \mid \nabla f(y) - \nabla f(x) \rangle + f^*(\nabla f(x)) - \frac{\nu}{2} ||z - x||^2$$

Let $\mathcal H$ be a real Hilbert space, $f\in \Gamma_0(\mathcal H)$ and $\nu\in]0,+\infty[$. If f is Fréchet differentiable, then ∇f ν -Lipschitzian $\Leftrightarrow \nabla f$ ν^{-1} -cocoercive.

Proof: Thus,

$$f^*(\nabla f(y)) \ge \langle z \mid \nabla f(y) - \nabla f(x) \rangle + f^*(\nabla f(x)) - \frac{\nu}{2} ||z - x||^2$$

= $f^*(\nabla f(x)) + \langle x \mid \nabla f(y) - \nabla f(x) \rangle + \langle z - x \mid \nabla f(y) - \nabla f(x) \rangle - \frac{\nu}{2} ||z - x||^2.$

Taking the supremum with respect to z yields

$$f^{*}(\nabla f(y)) \geq f^{*}(\nabla f(x)) + \langle x \mid \nabla f(y) - \nabla f(x) \rangle$$

$$+ (\nu \| \cdot \|^{2}/2)^{*} (\nabla f(y) - \nabla f(x))$$

$$= f^{*}(\nabla f(x)) + \langle x \mid \nabla f(y) - \nabla f(x) \rangle + \frac{1}{2\nu} \|\nabla f(y) - \nabla f(x)\|^{2}.$$

Consequently,

$$f^*(\nabla f(y)) \ge f^*(\nabla f(x)) + \langle x \mid \nabla f(y) - \nabla f(x) \rangle + \frac{1}{2\nu} \|\nabla f(y) - \nabla f(x)\|^2.$$

Let \mathcal{H} be a real Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $\nu \in]0, +\infty[$. If f is Fréchet differentiable, then ∇f ν -Lipschitzian $\Leftrightarrow \nabla f$ ν^{-1} -cocoercive.

 $\underline{\mathsf{Proof}}$: For every $(x,y) \in \mathcal{H}^2$,

$$f^*(\nabla f(y)) \ge f^*(\nabla f(x)) + \langle x \mid \nabla f(y) - \nabla f(x) \rangle + \frac{1}{2\nu} \|\nabla f(y) - \nabla f(x)\|^2$$

and symmetrically

$$f^*(\nabla f(x)) \geq f^*(\nabla f(y)) + \langle y \mid \nabla f(x) - \nabla f(y) \rangle + \frac{1}{2\nu} \|\nabla f(x) - \nabla f(y)\|^2.$$

By summing, we finally obtain

$$-\langle y-x\mid \nabla f(y)-\nabla f(x)\rangle+\frac{1}{\nu}\|\nabla f(x)-\nabla f(y)\|^2\leq 0,$$

which shows that ∇f is $1/\nu$ -cocoercive.

Nonexpansive operator: example

Baillon-Haddad theorem

Let \mathcal{H} be a real Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $\nu \in]0, +\infty[$. If f is Fréchet differentiable, then ∇f ν -Lipschitzian $\Leftrightarrow \nabla f$ ν^{-1} -cocoercive.

Let $\mathcal H$ be a Hilbert space, $f\in \Gamma_0(\mathcal H),\ \nu\in\]0,+\infty[$ and $\gamma\in\]0,2/\nu[$. f Fréchet differentiable and ∇f ν -Lipschitzian $\Rightarrow \mathrm{Id}-\gamma\nabla f$ is $\gamma\nu/2$ -averaged.

Nonexpansive operator: example

Baillon-Haddad theorem

Let \mathcal{H} be a real Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $\nu \in]0, +\infty[$. If f is Fréchet differentiable, then ∇f ν -Lipschitzian $\Leftrightarrow \nabla f$ ν^{-1} -cocoercive.

Let
$$\mathcal H$$
 be a Hilbert space, $f\in \Gamma_0(\mathcal H),\ \nu\in]0,+\infty[$ and $\gamma\in]0,2/\nu[$. f Fréchet differentiable and ∇f ν -Lipschitzian \Rightarrow $\underbrace{\operatorname{Id}-\gamma\nabla f}_{\text{gradient descent operator}}$ is $\gamma\nu/2$ -averaged.

lpha-averaged operator: example

Let $f \in \Gamma_0(\mathcal{H})$. prox_f is a firmly nonexpansive (i.e., 1/2-averaged operator).

α -averaged operator: example

Proof:

Let $u_1 \in \partial f(x_1)$ and $u_2 \in \partial f(x_2)$. By monotonicity of ∂f ,

$$\langle x_1 - x_2 | u_1 - u_2 \rangle \ge 0 \Leftrightarrow \langle x_1 - x_2 | x_1 - x_2 + u_1 - u_2 \rangle \ge ||x_1 - x_2||^2.$$

If we consider $u_1' \in (\mathrm{Id} + \partial f)x_1$ et $u_2' \in (\mathrm{Id} + \partial f)x_2$, it results that

$$\langle x_1 - x_2 | u_1' - u_2' \rangle \geq ||x_1 - x_2||^2.$$

Then, from the definition of the proximity operator,

$$\langle \operatorname{prox}_{f} u'_{1} - \operatorname{prox}_{f} u'_{2} | u'_{1} - u'_{2} \rangle \geq \| \operatorname{prox}_{f} u'_{1} - \operatorname{prox}_{f} u'_{2} \|^{2}.$$

