

Dept. of Computer Science and Engineering University of Rajshahi www.ru.ac.bd

Dr. Shamim Ahmad

Chapter 2: Entity-Relationship Model

- **■**Basic Concepts
- Constraints
- ■Keys
- ■Design Issues
- **■**E-R Diagram

Basic Concepts

- Entity Sets
 - A database can be modeled as:

 - **grelationship** among entities.
 - An entity is an object that exists and is distinguishable from other objects.
 - **Example:** specific person, company, event, plant
 - P Entities have attributes
 - **Example:** people have names and addresses
 - An entity set is a set of entities of the same type that share the same properties.
 - Example: set of all persons, companies, trees, holidays

Entity Sets customer and loan customer-id customer- customerloanamount number name street city 321-12-3123 Jones Main Harrison L-17 1000 019-28-3746 Smith L-23 2000 North Rye 677-89-9011 Hayes Main Harrison L-15 1500 555-55-5555 Jackson Dupont Woodside L-14 1500 L-19 500 244-66-8800 Curry North 963-96-3963 Williams Nassau Princeton L-11 900 335-57-7991 Adams L-16 1300 Spring Pittsfield loan customer

Basic Concepts (Cont.) ■ Attributes P An entity is represented by a set of attributes, that is descriptive properties possessed by all members of an entity set. P Domain – the set of permitted values for each attribute P Attribute types: Simple and composite attributes. Single-valued and multi-valued attributes E.g. multivalued attribute: phone-numbers Derived attributes Can be computed from other attributes E.g. age, given date of birth

Basic Concepts (Cont.) ■ Relationship Sets P A relationship is an association among several entities Example: Hayes depositor A-102 customer entity relationship set account entity A relationship set is a mathematical relation among n ≥ 2 entities, each taken from entity sets {(e₁, e₂, ..., e_n) | e₁ ∈ E₁, e₂ ∈ E₂, ..., e_n ∈ E_n} where (e₁, e₂, ..., e_n) is a relationship Example: (Hayes, A-102) ∈ depositor

Basic Concepts(Cont.)

- An attribute can also be property of a relationship set.
- For instance, the depositor relationship set between entity sets customer and account may have the attribute access-date

Recursive Relationship Manager Employee Worker

Basic Concepts(Cont.)

- Degree of a Relationship Set
 - Refers to number of entity sets that participate in a relationship set.
 - Relationship sets that involve two entity sets are binary (or degree two). Generally, most relationship sets in a database system are binary.
 - Relationship sets may involve more than two entity sets.
 - PE.g. Suppose employees of a bank may have jobs (responsibilities) at multiple branches, with different jobs at different branches. Then there is a ternary relationship set between entity sets employee, job and branch
 - Relationships between more than two entity sets are rare. Most relationships are binary. (More on this later.)

Constraints

- Mapping Cardinalities
 - Express the number of entities to which another entity can be associated via a relationship set.
 - Most useful in describing binary relationship sets.
 - For a binary relationship set the mapping cardinality must be one of the following types:
 - **⑤**One to one
 - **One to many**

 - **■Many to many**

Constraints (Cont.) В В b_1 a_1 b_1 a_1 b_2 a_2 b_2 a_2 b_3 a_3 b_3 a_3 b_4 a_4 b_4 b_5 (a) (b) One to one One to many Note: Some elements in A and B may not be mapped to any elements in the other set

Constraints (Cont.)

- Participation Constraints
 - The participation of an entity set *E* in a relationship set *R* is said to be total if every entity in *E* participates in at least one relationship in *R*.
 - For example, we expect every loan entity to be related to at least one customer through the borrower relationship.
 - If only some entities in E participate in relationship in R, the participation of entity set E in relationship R is said to be partial.
 - For example, the participation of customer in the borrower relationship set is therefore set is therefore partial.

Keys

- Entity Sets
 - A super key of an entity set is a set of one or more attributes whose values uniquely determine each entity.
 - A *candidate key* of an entity set is a minimal super key
 - PCustomer-id is candidate key of customer
 - Paccount-number is candidate key of account
 - Although several candidate keys may exist, one of the candidate keys is selected to be the primary key.
- Relationship Sets
 - The combination of primary keys of the participating entity sets forms a super key of a relationship set.

Ternary relationship If there are three entity types involved it is a ternary relationship type Sales Assistant Product Customer

When ternary relationships occurs in an ER model they should always be removed before finishing the model. Sometimes the relationships can be replaced by a series of binary relationships that link pairs of the original ternary relationship.

Replacing ternary relationships

Replacing ternary relationships (Cont)

This can result in the loss of some information - It is no longer clear which sales assistant sold a customer a particular product.

Try replacing the ternary relationship with an entity type and a **set of binary** relationships.

Replacing ternary relationships (Cont)

- Relationships are usually verbs, so name the new entity type by the relationship verb rewritten as a noun.
- The relationship sells can become the entity type sale.
- So a sales assistant can be linked to a specific customer and both of them to the sale of a particular product.
- This process also works for higher order relationships.

E-R Diagram with a Ternary Relationship

E-R Diagram With Composite, Multivalued, and **Derived Attributes** (street-name) middle-initial apartment-number street-number first-name last-name street city name address state customer-id customer zip-code date-of-birth (age) phone-number

Degree of a Relationship It is also possible to have entities associated through two or more distinct relationships. The provided HTML relationship is a second to the provided HTML relationship is a secon

One-To-Many Relationship In the one-to-many relationship a loan is associated with at most one customer via borrower, a customer is associated with several (including 0) loans via borrower Customer-name customer-street toustomer-id customer-city borrower

Many-To-One Relationships

In a many-to-one relationship a loan is associated with several (including 0) customers via borrower, a customer is associated with at most one loan via borrower

Many-To-One Relationships many students study one course. They do not study more than one course, so it is a many to one (m:1) relationship m studies Course

Many-To-Many Relationship

- A customer is associated with several (possibly 0) loans via borrower
- A loan is associated with several (possibly0) customers via borrower

Many-To-Many Relationship

 One lecturer teaches many students and a student is taught by many lecturers, so it is a many to many (m:n) relationship

Deriving the relationship parameters

- To check we have the correct parameters (sometimes also known as the degree) of a relationship, ask two questions:
- One course is studied by how many students? Answer = 'zero or more'
 - P This gives us the degree at the `student' end
 - The `more' part means that the cardinality is `many
 - The `zero' part means that the relationship is `optional'. (denoted y 'O"
 - If the answer was `one or more', then the relationship would be `mandatory'.
- One student studies how many courses? Answer = 'One'
 - This gives us the degree at the `course' end of the relationship.
 - The answer `one' means that the cardinality of this relationship is 1, and is `mandatory'

Splitting n:m Relationships

- A many to many relationship in an ER model is not necessarily incorrect. They can be replaced using an intermediate entity. This should only be done where:
 - P The m:n relationship hides an entity
 - the resulting ER diagram is easier to understand.
- **Example**: Consider the case of a car hire company.
 - Customers hire cars
 - Pone customer hires many card and
 - A car is hired by many customers.

Splitting n:m Relationships

The many to many relationship can be broken down to reveal a `hire' entity, which contains an attribute `date of hire'.

Participation of an Entity Set in a Relationship Set

- Total participation (indicated by double line): every entity in the entity set participates in at least one relationship in the relationship set
 - E.g. participation of *loan* in borrower is total
 - every loan must have a customer associated to it via borrower
- Partial participation: some entities may not participate in any relationship in the relationship set
 - E.g. participation of customer in borrower is partial

Alternative Notation for Cardinality Limits

Cardinality limits can also express participation constraints

Design Issues

- Use of entity sets vs. attributes
 - A common mistake is to use the primary key of an entity set as another entity set, instead of using a relationship.
 - Another related mistake that people sometimes make is to designate the primary key attributes of the related entity sets as attributes of the relationship set.

Design Issues (Cont.)

- Use of entity sets vs. relationship sets
 - We assumed that a bank loan is modeled as an entity.
 - An alternative is to model a loan not as an entity,
 - but rather as a relationship between customers and branches,
 - with loan-number and amount as descriptive attributes.

Design Issues (Cont.)

■ Binary versus *n*-ary relationship sets

Some relationships that appear to be non-binary may be better represented using binary relationships

- F.g. A ternary relationship
 - ₱ parents, relating a child to his/her father and mother
 - is best replaced by **two binary relationships**, father and mother
 - Using two binary relationships allows partial information (e.g. only mother being know)

Design Issues (Cont.)

But there are some relationships that are naturally nonbinary

- Replace R between entity sets A, B and C by an entity set E, and three relationship sets:
- 1. R_A , relating E and A
- 2.R_B, relating E and B
- 3. R_C, relating E and C
- P Create a special identifying attribute for E
- Add any attributes of R to E
- For each relationship (a_i, b_i, c_i) in R, create e_i

Design Issues (Cont.)

■ Placement of relationship attributes

Can make access-date an attribute of account, instead of a relationship attribute, if each account can have only one customer

I.e., the relationship from account to customer is many to one, or equivalently, customer to account is one to many

Design Issues (Cont.)

■ Placement of relationship attributes

Can make access-date an attribute of account, instead of a relationship attribute, if each account can have only one customer

I.e., the relationship from account to customer is many to one, or equivalently, customer to account is one to many

