Non-interference analysis is a **flow analysis** that ensure the *absence* of **dangerous flow** between high and low level entities

Dangerous flow means flow from **High** security to **Low** security level

Some examples: Let "H: High" and "L: Low" variables

Implicit Flow

"if H = 1 then L := 1 else L := 0"
Suppose H is either 1 or 0,
H is implicitly copied into L

Approach using a **Type systems** and a notion of **soundness** for the system that can be viewed as a form of non-interference

Soundness is established by proving that all well-typed programs have this **non-interference** property

Formally, soundness states that:

- 1. $\lambda \vdash c : \rho$,
- 2. $\mu \vdash c \Rightarrow \mu'$
- 3. $V \vdash c \Longrightarrow V'$,
- 4. $dom(\mu) = dom(v) = dom(\lambda)$, and
- 5. \forall I such that $\lambda(I) \leq \tau$, $\nu(I) = \mu(I)$

Implies that \forall I such that $\lambda(I) \leq \tau$, $\nu'(I) = \mu'(I)$

"A program, has the **non-interference** property if and only if any sequence of <u>low</u> inputs will produce the same <u>low</u> outputs, regardless of what the <u>high</u> level inputs are."

Wikipedia

