Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

1/21

. . .

Determinant

What is volume?

- Every n-dimensional parallelepiped with $\{a_1, \ldots, a_n\}$ as legs is associated with a real number, called its volume which has the following properties:
 - If we stretch a parallelepiped by multiplying one of its legs by a scalar λ , its volume gets multiplied by λ .
 - ② If we add a vector w to i-th legs of a n-dimensional parallelepiped with $\{a_1, \ldots, a_i, a_{i+1}, \ldots, a_n\}$, then its volume is the sum of the volume from $\{a_1, \ldots, a_{i-1}, a_i, a_{i+1}, \ldots, a_n\}$ and the volume of $\{a_1, \ldots, a_{i-1}, w, a_{i+1}, \ldots, a_n\}$.
 - **3** The volume changes sign when two legs are exchanged.
 - **4** The volume of the parallelepiped with $\{e_1, \ldots, e_n\}$ is one.

Volume map as an *n*-alternating multilinear map

- More formally, the volume is a *n*-alternating multilinear map on all *n*-parallelepipeds such that the volume of the standard unit parallelepiped is one.
- \bullet Thus, the volume is n-alternating multilinear map

$$\phi: \underbrace{V \times \cdots \times V}_{n} \to \mathbb{R}$$

such that V is a linear space with dimension n and $\phi(e_1, \ldots, e_n) = 1$.

- Let $\phi: \underbrace{V \times \cdots \times V}_{n} \to \mathbb{R}$ be an *n*-alternating multilinear map.
- $\phi(a_1, \dots, a_{i-1}, v, a_{i+1}, \dots, a_{j-1}, v, a_{j+1}, \dots, a_n) = 0$ (why?)
- Since the map is n- multilinear map, we have

$$\phi(a_1, \dots, a_n) = \phi\left(\sum_{j_1=1}^n a_{1j_1}e_{j_1}, \dots, \sum_{j_n=1}^n a_{nj_n}e_{j_n}\right)$$
$$= \sum_{j_1=1}^n \dots \sum_{j_n=1}^n a_{1j_1} \cdots a_{nj_n}\phi(e_{j_1}, \dots, e_{j_n})$$

• Now, we note that if any two of the e_{j_k} 's are equal, then

$$\phi\left(e_{j_1},\ldots,e_{j_n}\right)=0.$$

• So, we may remove the corresponding term from the sum.

$$\phi(a_1, \dots, a_n) = \phi\left(\sum_{j_1=1}^n a_{1j_1}e_{j_1}, \dots, \sum_{j_n=1}^n a_{nj_n}e_{j_n}\right)$$
$$= \sum_{j_1=1}^n \dots \sum_{j_n=1}^n a_{1j_1} \dots a_{nj_n}\phi(e_{j_1}, \dots, e_{j_n})$$

- We want all tuples of j_k 's such that each pair of j_k 's are mutually distinct.
- That is, (j_1, \ldots, j_n) must be a permutation of $(1, \ldots, n)$.
- We denote the set of all permutations of (1, ..., n) by S_n .
- (j_1, \ldots, j_n) is a permutation of $(1, \ldots, n)$ means that there is $\sigma \in S_n$ such that $j_k = \sigma(k)$.

• For an *n*-alternating multilinear map

$$\phi: \underbrace{V \times \cdots \times V}_{n} \to \mathbb{R}$$

we have

$$\phi(a_1, \dots, a_n) = \sum_{j_1=1}^n \dots \sum_{j_n=1}^n a_{1j_1} \cdots a_{nj_n} \phi(e_{j_1}, \dots, e_{j_n})$$
$$= \sum_{\sigma \in S_n} \left(\prod_{i=1}^n a_{i\sigma(i)} \phi(e_{\sigma(1)}, \dots, e_{\sigma(n)}) \right)$$

n-alternating multilinear maps

- Let $\phi: \underbrace{V \times \cdots \times V}_{5} \to \mathbb{R}$ be an 5-alternating multilinear map.
- So, $\phi(e_2, e_1, \dots, e_5) = -\phi(e_1, e_2, \dots, e_5)$.
- Consider the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix}$$

• That means that σ satisfies

$$\sigma(1) = 3$$
 $\sigma(2) = 4$ $\sigma(3) = 1$ $\sigma(4) = 5$ $\sigma(5) = 2$.

• $\phi(e_{\sigma(1)}, e_{\sigma(2)}, e_{\sigma(3)}, e_{\sigma(4)}, e_{\sigma(5)}) = ?\phi(e_1, e_2, e_3, e_4, e_5).$

n-alternating multilinear maps

• Look at the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix}.$$

- 1 is sent to 3. But 3 is sent back to 1. This is given by the transposition (1,3).
- Now look at what is left $\{2, 4, 5\}$.
 - Look at 2. Then 2 is sent to 4.
 - 2 Now, 4 is sent to 5.
 - 3 Finally 5 is sent to 2.
 - \bullet So another part of the cycle type is given by the 3-cycle (2,4,5).
 - (2,4,5) = (2,4)(4,5).
- $\sigma = (2,4)(4,5)(1,3)$.
- $\phi(e_{\sigma(1)}, e_{\sigma(2)}, \dots, e_{\sigma(5)}) = -\phi(e_1, e_2, \dots, e_5).$

Permutations

Definition

A permutation of a finite set X is **even** if it can be written as the product of an even number of transpositions, and it is **odd** if it can be written as a product of an odd number of transpositions.

Example

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix} = (2,4)(4,5)(1,3) \text{ is an odd permutation}$$

The sign of a permutation

Definition

The sign of a permutation σ , denoted by $sgn(\sigma)$ and

$$\operatorname{sgn}(\sigma) = \begin{cases} +1 & \text{if } \sigma \text{ is even,} \\ -1 & \text{if } \sigma \text{ is odd.} \end{cases}$$

Example

Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix} = (2,4)(4,5)(1,3)$$
. Then $sgn(\sigma) = -1$ and

$$\phi\left(e_{\sigma(1)}, e_{\sigma(2)}, \dots, e_{\sigma(5)}\right) = \operatorname{sgn}(\sigma)\phi(e_1, e_2, \dots, e_5)$$

• For an *n*-alternating multilinear map

$$\phi: \underbrace{V \times \cdots \times V}_{n} \to \mathbb{R}$$

we have

$$\phi(a_1, \dots, a_n) = \sum_{j_1=1}^n \dots \sum_{j_n=1}^n a_{1j_1} \cdots a_{nj_n} \phi(e_{j_1}, \dots, e_{j_n})$$

$$= \sum_{\sigma \in S_n} \left(\prod_{i=1}^n a_{i\sigma(i)} \phi(e_{\sigma(1)}, \dots, e_{\sigma(n)}) \right)$$

$$= \left(\sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)} \right) \operatorname{sgn}(\sigma) \phi(e_1, \dots, e_n)$$

$$= \left(\sum_{\sigma \in S} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i\sigma(i)} \right) \phi(e_1, \dots, e_n)$$

The result of classification of n-alternating multilinear map

• An *n*-alternating multilinear map

$$\phi: \underbrace{V \times \cdots \times V}_{n} \to \mathbb{R}$$

is given with

$$\phi(a_1, \dots, a_n) = \left(\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i\sigma(i)}\right) \phi(e_1, \dots, e_n)$$

Determinant

- Let a_i be the *i*-th row of $A = [a_{ij}]$.
- \bullet The determinant of A is defined by

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i\sigma(i)}.$$

Thank You!