Kapitel 4, Kontinuerliga fördelningar

Lantz: Grundläggande Statistisk Analys

Kapitel 4 Lärandemål (LM)

- LM 4.1: Beskriva en kontinuerlig slumpvariabel.
- LM 4.2: Beskriva en kontinuerlig likformig fördelning och beräkna sannolikheter för den.
- LM 4.3: Beräkna och tolka sannolikheter för exponentialfördelade slumpvariabler.
- LM 4.4: Förklara vad som karaktäriserar en normalfördelning.
- LM 4.5: Använda normalfördelningstabell.
- LM 4.6: Beräkna och tolka sannolikheter för normalfördelade slumpvariabler.
- LM 4.7: Normalapproximera binomialfördelning, Poissonfördelning och hypergeometrisk fördelning.

Efterfrågan på lax

- Sture Hamaguchi, föreståndare för sushirestaurangen Azikura i Focushuset, behöver skatta hur mycket lax som behövs per dag.
- Sture har kommit fram till att den dagliga laxkonsumtionen är normalfördelad med medelvärde 12 kilo och standardavvikelse 3.2 kilo.
- Att köpa 20 kilo lax varje dag har givit för mycket spill.
- Därför kommer Sture köpa lax som täcker dagsbehovet för 90% av dagarna.

Efterfrågan på lax

- Baserat på den här informationen vill Sture:
 - Beräkna proportionen dagar där behovet överstiger 20 kilo.
 - Beräkna proportionen dagar där behovet understiger 15 kilo.
 - Bestämma hur mycket lax som behövs för att klara dagsbehovet i 90% av fallen.

4.1 Kontinuerliga fördelningar, den likformiga fördelningen och exponentialfördelningen

LM 4.1 Beskriva en kontinuerlig slumpvariabel.

 Kom ihåg att slumpvariabler kan klassas som diskreta eller kontinuerliga

Diskreta

 Kan anta ett uppräkneligt antal olika värden (i separerade punkter).

Kontinuerliga

 Kan ta överuppräkneligt (det går inte att skapa en lista) många värden inom något intervall.

LM 4.1 Kontinuerliga fördelningar

- När man beräknar sannolikheter för kontinuerliga slumpvaribler gäller att P(X = x) = 0.
 - \Box Vi kan inte ge positiva sannolikheter till varje xeftersom dessa x är överuppräkneligt många och sannolikheterna i så fall inte skulle summera till ett.
 - \square Så, eftersom P(X = a) och P(X = b) båda är noll för kontinuerliga slumpvariabler gäller att:

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$$

LM 4.1 Kontinuerliga fördelningar

- **Täthetsfunktionen (density function)** f(x)för en kontinuerlig slumpvariabel X
 - Beskriver hur troligt det är att X tar värden i ett givet intervall

(e.g., $P(a \le X \le b)$), där

- $f(x) \geq 0.$
- Den totala arean under grafen för f(x) är ett.

LM 4.1 Kontinuerliga fördelningar

- **Fördelningsfunktionen** F(x) för en kontinuerlig slumpvariabel X
 - För vilket som helst x ges fördelningsfunktionen för X av

$$F(x) = P(X \le x)$$

Som en följd fås:

$$P(c \le X \le d) = F(d) - F(c)$$

4.1 Den likformiga fördelningen

LO 4.2 Beskriva en kontinuerlig likformig fördelning och beräkna sannolikheter för den.

Kontinuerlig likformig (uniform) fördelning

- Beskriver en slumpvariabel som har lika stor chans att ta värden i ett intervall av en viss bredd oavsett var intervallet finns (så långe det är inom gränserna för de värden slumpvariabeln kan ta)
- Täthetsfunktionen är:

$$f(x) = \begin{cases} \frac{1}{b-a}, a \le x \le b\\ 0, x > b, x < a \end{cases}$$

LM 4.2 4.1 Den likformiga fördelningen

- För en kontinueligt likformigt fördelad slumpvariabel, X, på intervallet [a, b] gäller att
 - Väntevärdet och standardavvikelsen är:

$$E(X) = \mu = \frac{a+b}{2}$$

$$SD(X) = \sigma = \frac{b - a}{\sqrt{12}}$$

4.1 Exponentialfördelningen

LM 4.3 Beräkna och tolka sannolikheter för exponentialfördelade slumpvariabler.

Exponentialfördelningen

 En slumpvariabel X följer exponentialfördelningen om dess täthetsfunktion är:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, x \ge 0 \\ 0, x < 0 \end{cases} \text{ och därmed } E(X) = SD(X) = \frac{1}{\lambda}$$

Fördelningsfunktionen är:

$$F(x) = P(X \le x) = \begin{cases} 1 - e^{-\lambda x}, x \ge 0 \\ 0, x < 0 \end{cases}$$

LM 4.3 4.1 Exponentialfördelningen

Exponentialfördelningen bestäms alltså av en parameter, $\lambda > 0$, enligt figuren.

LM 4.3 4.1 Exponentialfördelningen

- Let the time between e-mail messages during work hours be exponentially distributed with a mean of 25 minutes.
 - **a.** Calculate the rate parameter λ .
 - **b.** What is the probability that you do not get an e-mail for more than one hour?
 - **c.** What is the probability that you get an e-mail within 10 minutes?

SOLUTION:

- a. Since the mean E(X) equals $\frac{1}{\lambda}$, we compute $\lambda = \frac{1}{E(X)} = \frac{1}{25} = 0.04$.
- **b.** The probability that you do not get an e-mail for more than an hour is P(X > 60). Since $P(X \le x) = 1 e^{-\lambda x}$, we have $P(X > x) = 1 P(X \le x) = e^{-\lambda x}$. Therefore, $P(X > 60) = e^{-0.04(60)} = e^{-2.40} = 0.0907$. The probability of not getting an e-mail for more than one hour is 0.0907.
- c. Here, $P(X \le 10) = 1 e^{-0.04(10)} = 1 e^{-0.40} = 1 0.6703 = 0.3297$. The probability of getting an e-mail within 10 minutes is 0.3297.

4.2 Normalfördelningen

LM 4.4 Förklara vad som karaktäriserar normalfördelningen.

- Normalfördelningen är
 - Symmetrisk
 - Klockformad
 - Passar bra för att beskriva exempelvis
 - Längder och vikter för nyfödda barn
 - Poäng på högskoleprovet
 - Utexaminerade högskolestunders studieskulder
 - Grundstenen i statistisk inferens.

- Karaktäristik för Normalfördelningen
 - Symmetrisk kring sitt väntevärde

Väntevärde = Median = Typvärde

Asymptotisk—alltså, svansen närmar sig

den horisontella axeln men rör

aldrig den.

 μ

6-15

X

- Karaktäristik för Normalfördelningen
 - Normalfördelningen är fullständigt bestämd av **två parametrar**: μ och σ^2 .
 - μ är populationsmedelvärdet eller väntevärdet och beskriver tyngdpunkten för fördelningen.
 - σ^2 är populationsvariansen och beskriver hur fördelningen sprider sina värden kring populationsmedelvärdet.

- Täthetsfunktionen för normalfördelningen
 - Täthetsfunktionen för en normalfördelad slumpvariabel X med väntevärde μ och varians σ^2

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

där $e \approx 2.7182$... är basen för den naturliga logaritmen och $\pi = 3.1415$... är förhållandet mellan cirkelns omkrets och diameter

- Exempel: Antag att åldrarna för anställda inom industrierna A, B, och C är normalfördelade.
 - Parametrarna är:

Industry A	Industry B	Industry C
μ = 42 years	μ = 36 years	μ = 42 years
σ = 5 years	σ = 5 years	σ = 8 years

Jämförelser.

 σ är samma, μ är olika.

 μ är samma, σ är olika.

4.3 Standardnormalfördelningen

LM 4.5 Använda normalfördelningstabell.

- Standard Normal- eller Z-fördelning.
 - Ett specialfall av normalfördelningen:
 - Vänteväret (μ) är noll (E(Z) = 0).
 - Standardavvikelsen (σ) är ett

- (Standard) Normalfördelningstabell eller Z-tabell).
 - \square Ger sannolikheter $P(Z \le z)$ för positiva och negativa värden på z.
 - Eftersom en standard normalfördelad slumpvariabel Z är symmetrisk kring sitt väntevärde 0 har vi att,

$$P(Z < 0) = P(Z > 0) = 0.5.$$

 \square För att hitta $P(Z \le Z)$, letar vi först upp rätt rad och sedan rätt kolonn tabellen (formelsamlingen).

Standard Normaltabell (Z-tabell).

För positiva z.

Z	0.00	0.01	0.02	0.03	0.04
0.0	0.5000	0.5040	0.5080	0.5120	0.5160
0.1	0.5398	0.5438	0.5478	0.5517	0.5557
0.2	0.5793	0.5832	0.5871	0.5910	0.5948
0.3	0.6179	0.6217	0.6255	0.6293	0.6331
0.4	0.6554	0.6591	0.6628	0.6664	0.6700

För negativa z.

z	0.00	0.01	0.02	0.03	0.04
-3.9	0.0000	0.0000	0.0000	0.0000	0.0000
-3.8	0.0001	0.0001	0.0001	0.0001	0.0001
-3.7	0.0001	0.0001	0.0001	0.0001	0.0001
-3.6	0.0002	0.0002	0.0001	0.0001	0.0001
-3.5	0.0002	0.0002	0.0002	0.0002	0.0002

- Hitta sannolikheten givet ett z-värde.
 - Transformera normalfördelade slumpvariabler till standard normalfördelade och använd Z-tabellen för att hitta sannolikheter.
 - □ Tabellens andra halva (formelsamlingen) ger sannolikheter $P(Z \le z)$ för ett givet positivt z.

Exempel:

- Hitta sannolikheten givet ett z-värde.
 - \square Minns att tabellen ger $P(Z \le z)$ givet z.
 - Om z är negativt används första halvan av tabellen.

- Exempel: Hitta sannolikheter för standard normalfördelade slumpvariabler Z.

- Exempel: Hitta ett z-värde givet en sannolikhet.
 - □ För en standard normalfördelad slumpvariabel Z, hitta z sådant att $P(Z \le z) = 0.6808$.
 - Leta upp sannolikheten 0.6808 tabellen.
 - Hitta motsvarande
 z-värde från rad och kolonn.
 - z = 0.47.

Empiriska regeln.

- Exempel: Empiriska regeln
 - En investeringsstrategi har förväntad avkastning på 4% och standardavvikelse 6%. Antag att avkastningarna är normalfördelade.
 - Vad är sannolikheten få avkastning större än 10%?
 - En avkastning på 10% är en standardavvikelse ovanför väntevärdet, ty $10 = \mu + \sigma = 4 + 6$.
 - Eftersom 68% av observationerna finns inom en standardavvikelse från väntevärdet har vi att 32% av observationerna finns utanför området.

- Exempel: Empiriska regeln
 - Grafiskt:

M h a symmetri, ser vi att 16% (hälften of 32%) av observationerna är större än 10%.

4.4 Transformering

LM 4.6 Beräkna och tolka sannolikheter för normalfördelade slumpvariabler.

Transformation av normal till std normal

□ Vilken som helst normalfördelad slumpvariabel X med väntevärde μ och standardavvikelse σ kan transformeras till en standard normalfördelad slumpvariabel Z genom:

$$Z = \frac{X - \mu}{\sigma}$$
 med motsvarande värden $Z = \frac{x - \mu}{\sigma}$

- Ett z-värde säger hur många standardavvikelser motsvarande x-värde är från väntevärdet.
 - Ett positivt z ger hur många standardavvikelser motsvarande x ligger ovanför μ.
 - ullet Om z=0 så är $x=\mu$.
 - Ett negativt z ger hur många standardavvikelser motsvarande x ligger nedanför μ.

- Inverstransformation för att få sannolikheter givet x-värden.
 - □ En standard normalfördelad slumpvariabel Z kan transformeras till en normalfördelad slumpvariabel X med väntevärde μ och standardavvikelse σ genom
 - $X = \mu + \sigma Z$ med motsvarande x-värden $x = \mu + \sigma Z$

- Exempel: Resultat från ett test på hur lämplig man är som chef är normalfördelade med väntevärde $\mu = 72$ och standardavvikelse $\sigma = 8$.
 - Vad är sannolikheten att en slumpmässigt vald testdeltagare får över 60?
 - Transformera först X till Z med hjälp av transformationsformeln:

$$z = \frac{x - \mu}{\sigma} = \frac{60 - 72}{8} = -1.5$$

- Använd standard normaltabellen och hitta
- $P(Z > -1.5) = 1 P(Z \le -1.5) = 1 0.0668 = 0.9332$

 Under antaganden om normalfördelad daglig laxkonsumtion med väntevärde 12kg och strandardavvikelse 3.2 kg kan vi nu svara på de frågor som ställdes i början av föreläsningen

a) Hur stor andel dagar är konsumtionen över 20kg?

$$P(X > 20) = P\left(Z > \frac{20 - 12}{3.2}\right) = 1 - P(Z \le 2.50) = 1 - 0.9938$$
$$= 0.0062$$

b) Hur stor andel dagar är konsumtionen mindre än 15 kilo?

$$P(X < 15) = P\left(Z < \frac{15 - 12}{3.2}\right) = P(Z < 0.94) = 0.8264$$

c) Hur mycket lax ska Sture köpa hem för att klara efterfrågan 90% av dagarna?

Tabell!

$$0.90 = P(X < x) = P\left(Z < \frac{x - 12}{3.2}\right) \stackrel{\checkmark}{=} P(Z < 1.28)$$
så $x = 1.28 \cdot 3.2 + 12 \approx 16.1$

4.5 Normalfördelningsapproximationer

LM 4.7 Normalapproximera binomial, Poisson och hypergeometrisk

 Sture ska kasta tärning 3000 ggr och undrar vad sannolikheten är att han får färre än 527 sexor

Sture inser att det med $X \sim B(3000,1/6)$ skulle ta hela dagen att beräkna

$$P(X < 527) = \sum_{x=0}^{526} {3000 \choose x} \left(\frac{1}{6}\right)^x \left(\frac{5}{6}\right)^{3000-x}$$

LM 4.7 4.5 Normalfördelningsapproximationer

- Sture har tur för det är nämligen så att om n är så stort att $np \geq 5$ och $nq \geq 5$ så är X approximativt normalfördelad med väntevärde np och standardavvikelse \sqrt{npq}
- Eftersom binomialfördelningen är diskret brukar man göra en "kontinuitetskorrektion" för att få lite bättre approximation
- I praktiken betyder detta addera 0.5 till en övre gräns (med likhet) och subtrahera 0.5 från en undre gräns (med likhet)

$$P\left(a \le \frac{X - np}{\sqrt{npq}} \le b\right) \approx P(a - 0.5 \le Z \le b + 0.5)$$

LM 4.7 4.5 Normalfördelningsapproximationer

Sture har alltså att $np=\frac{3000}{6}=500\geq 5$ och $nq\geq 3000\cdot \frac{5}{6}=2500\geq 5$ så X är approximativt normalfördelad med väntevärde np=500 och standardavvikelse $\sqrt{npq}=\sqrt{1250/3}$ och kan beräkna sannolikheten enligt

$$P(X < 527) = P(X \le 526) \approx P\left(Z \le \frac{526.5 - 500}{\sqrt{\frac{1250}{3}}}\right)$$
$$\approx P(Z \le 1.30) \approx 0.90$$

4.5 Normalfördelningsapproximationer

LM 4.7 Normalapproximera binomial, Poisson och hypergeometrisk

- Sture vet att på en normal dag så lifter 1300 flygplan från Heathrow i London och vill beräkna sannolikheten att det på en dag lyfter fler än 1350 plan från Heathrow
- Sture inser att det med $X \sim P(1300)$ skulle ta hela dagen att beräkna

$$P(X > 1350) = 1 - e^{-1300} \sum_{x=0}^{1349} \frac{1300^x}{x!}$$

LM 4.7 4.5 Normalfördelningsapproximationer

- Sture har tur för det är nämligen så att om $\mu \geq 10$ så är X approximativt normalfördelad med väntevärde μ och standardavvikelse $\sqrt{\mu}$
- Eftersom Poissonfördelningen är diskret brukar man göra en "kontinuitetskorrektion" för att få lite bättre approximation
- I praktiken betyder detta addera 0.5 till en övre gräns (med likhet) och subtrahera 0.5 från en undre gräns (med likhet)

$$P\left(a \le \frac{X - \mu}{\sqrt{\mu}} \le b\right) \approx P(a - 0.5 \le Z \le b + 0.5)$$

LM 4.7 4.5 Normalfördelningsapproximationer

Sture har alltså att $\mu=1300\geq 10$ så X är approximativt normalfördelad med väntevärde $\mu=1300$ och standardavvikelse $\sqrt{\mu}=\sqrt{1300}$ och kan beräkna sannolikheten enligt

$$P(X > 1350) = P(X \ge 1351) \approx 1 - P\left(Z \le \frac{1350.5 - 1300}{\sqrt{1300}}\right)$$

 $\approx 1 - P(Z \le 1.40) \approx 0.08$

4.5 Normalfördelningsapproximationer

LM 4.7 Normalapproximera binomial, Poisson och hypergeometrisk

- I Stures fina lotteri finns 200 lotter där 100 ger vinst.
 Sture undrar vad sannolikheten är att en som köper 80 lotter får 40 lotter eller färre med vinst
- Sture inser att det med $X \sim HG(80,100,200)$ skulle bli stökigt att beräkna

$$P(X \le 40) = \sum_{x=0}^{40} \frac{\binom{100}{x} \binom{100}{80 - x}}{\binom{200}{80}}$$

LM 4.7 4.5 Normalfördelningsapproximationer

Sture har tur för det är nämligen så att om

$$V(X) = n \frac{R}{N} \left(1 - \frac{R}{N} \right) \frac{N-n}{N-1} \ge 10$$
 så är X approximativt

normalfördelad med väntevärde $n\frac{R}{N}$ och standardavvikelse

$$\sqrt{n\frac{R}{N}\left(1-\frac{R}{N}\right)\frac{N-n}{N-1}}$$

 Eftersom den hypergeometriska fördelningen är diskret brukar man på samma sätt som för binomial och Poisson göra en "kontinuitetskorrektion" för att få lite bättre approximation

LM 4.7 4.5 Normalfördelningsapproximationer

Sture har alltså att $V(X) = 80\frac{100}{200}\Big(1 - \frac{100}{200}\Big)\frac{200 - 80}{200 - 1} \approx 12 \ge 10$ så X är approximativt normalfördelad med väntevärde $\mu = 40$ och standardavvikelse $S(X) = \sqrt{80\frac{100}{200}\Big(1 - \frac{100}{200}\Big)\frac{200 - 80}{200 - 1}}$ och kan beräkna sannolikheten enligt

$$P(X \le 40) \approx P\left(Z \le \frac{40.5 - 40}{\sqrt{80\frac{100}{200}\left(1 - \frac{100}{200}\right)\frac{200 - 80}{200 - 1}}}\right)$$

$$\approx P(Z \le 0.14) \approx 0.56$$

Standardnormaltabell

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-3.8	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
-3.7	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
-3.6	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
-3.5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Source: Probabilities calculated with Excel.

Standardnormaltabell

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.1 3.2	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.3	0.9995	0.9995	0.9995	0.9994	0.9994	0.9996	0.9996	0.9995	0.9996	0.9997
	0.9997	0.9995	0.9993	0.9990	0.9990	0.9990	0.9990	0.9990	0.9990	0.9998
3.4 3.5	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.6	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
	0.9999	0.9998		0.9999	0.9999			0.9999		0.9999
3.7	0.9999	0.9999	0.9999		0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8 3.9	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
			0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.5999
Source: Probability	ies calculated with	Excel.								

