Lines and Planes

Define the points P(5,0,4); Q(1,1,1); R(7,3,1); and S(-5,-1,1).

Question 1:

part 1a:

Compute the displacement of Q relative P: \overrightarrow{PQ}

$$\overrightarrow{PQ} = \begin{bmatrix} 1-5\\1-0\\1-4 \end{bmatrix} = \begin{bmatrix} -4\\1\\-3 \end{bmatrix}$$

part 1b:

Compute the magnitude $|\overrightarrow{PQ}|$.

$$\left|\overrightarrow{PQ}\right| = \left|\begin{bmatrix} -4\\1\\-3 \end{bmatrix}\right| = \sqrt{16+1+9} = \sqrt{26}$$

part 1c:

Compute a unit vector that shares the same direction of \overrightarrow{PQ} .

$$\frac{\overrightarrow{PQ}}{\left|\overrightarrow{PQ}\right|} = \frac{1}{\sqrt{26}} \begin{bmatrix} -4\\1\\-3 \end{bmatrix} = \begin{bmatrix} -4/\sqrt{26}\\1/\sqrt{26}\\-3/\sqrt{26} \end{bmatrix}$$

1

part 1d:

Compute parametric and implicit equations of a line L_{PQ} that contains P and Q. Parametric equation:

Starting at
$$P$$
 with direction vector \overrightarrow{PQ} , one possible parameterization of L_{PQ} is:
$$\mathbf{r}(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \\ 4 \end{bmatrix} + t \begin{bmatrix} -4 \\ 1 \\ -3 \end{bmatrix} \text{ which is equivalent to } \begin{cases} x(t) = 5 - 4t \\ y(t) = t \\ z(t) = 4 - 3t \end{cases}$$

Implicit equations:

The parameterization gives $\begin{cases} t = (x-5)/(-4) \\ t = y \\ t = (z-4)/(-3) \end{cases}$

Since all t's must be equal, the implicit equations are: $\frac{x-5}{-4} = y = \frac{z-4}{-3}$

Question 2:

part 2a:

Compute the angle $\angle RPQ$ using the dot product.

Impute the angle
$$\angle RPQ$$
 using the dot product.
$$\overrightarrow{PQ} = \begin{bmatrix} -4\\1\\-3 \end{bmatrix} \text{ and } \overrightarrow{PR} = \begin{bmatrix} 7-5\\3-0\\1-4 \end{bmatrix} = \begin{bmatrix} 2\\3\\-3 \end{bmatrix} \text{ so } \overrightarrow{PQ} \cdot \overrightarrow{PR} = -8+3+9=4$$

$$\overrightarrow{PQ} \cdot \overrightarrow{PR} = |\overrightarrow{PQ}| |\overrightarrow{PR}| \cos(\angle RPQ) \text{ gives}$$

$$\angle RPQ = \arccos\left(\frac{\overrightarrow{PQ} \cdot \overrightarrow{PR}}{\left|\overrightarrow{PQ}\right| \left|\overrightarrow{PR}\right|}\right) = \arccos\left(\frac{4}{\sqrt{16+1+9} \cdot \sqrt{4+9+9}}\right) = \arccos\left(\frac{4}{\sqrt{26} \cdot \sqrt{22}}\right)$$

part 2b:

Compute the area of triangle
$$\triangle PQR$$
 using the cross product.
$$\overrightarrow{PQ} = \begin{bmatrix} -4 \\ 1 \\ -3 \end{bmatrix} \text{ and } \overrightarrow{PR} = \begin{bmatrix} 2 \\ 3 \\ -3 \end{bmatrix} \text{ so } \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{bmatrix} (1)(-3) - (-3)(3) \\ (-3)(2) - (-4)(-3) \\ (-4)(3) - (1)(2) \end{bmatrix} = \begin{bmatrix} -3+9 \\ -6-12 \\ -12-2 \end{bmatrix} = \begin{bmatrix} 6 \\ -18 \\ -14 \end{bmatrix}$$

The area is:

$$\frac{1}{2}\left|\overrightarrow{PQ}\times\overrightarrow{PR}\right| = \frac{1}{2}\sqrt{36 + 324 + 196} = \frac{\sqrt{556}}{2}$$

part 2c:

Compute an implicit equation of a plane M_{PQR} that contains P, Q and R.

The cross product $\mathbf{n} = \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{bmatrix} 6 \\ -18 \\ -14 \end{bmatrix}$ is a normal vector to M_{PQR} .

Using P(5,0,4) as the point on the plane, the implicit equation is:

$$\mathbf{n} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{n} \cdot \begin{bmatrix} 5 \\ 0 \\ 4 \end{bmatrix} \iff 6x - 18y - 14z = 30 + 0 - 56 \iff 6x - 18y - 14z = -26$$
$$\iff 3x - 9y - 7z = -13$$

Therefore M_{PQR} has the implicit equation: 3x - 9y - 7z = -13

part 2d:

Find the shortest distance between R and the line L_{PQ} that contains P and Q.

The shortest distance is:

$$d = \left| \mathbf{perp}_{\overrightarrow{PQ}}(\overrightarrow{PR}) \right| = \frac{\left| \overrightarrow{PQ} \times \overrightarrow{PR} \right|}{\left| \overrightarrow{PQ} \right|} = \frac{\sqrt{36 + 324 + 196}}{\sqrt{16 + 1 + 9}} = \frac{\sqrt{556}}{\sqrt{26}}$$

part 2e:

Find the intersection between the line L_{PQ} that contains P and Q and the line L_{RS} that contains R and S, if this intersection exists.

From question 1d, line L_{PQ} has the parameterization $\begin{cases} x(t) = 5 - 4t \\ y(t) = t \\ z(t) = 4 - 3t \end{cases}$ Via similar steps, line L_{RS} has the parameterization $\begin{cases} x(t) = 5 - 4t \\ y(t) = 4 - 3t \\ z(t) = 5 - 4t \end{cases}$ $\begin{cases} x(t) = 5 - 4t \\ y(t) = 5 - 4t \\ z(t) = 5 - 4t \end{cases}$

Let t_1 be the parameter value for L_{PQ} , and t_2 be the parameter value for L_{RS} such that the same point is generated by both lines. This gives the 3 equations:

$$\begin{cases} 5 - 4t_1 = 7 - 12t_2 \\ t_1 = 3 - 4t_2 \\ 4 - 3t_1 = 1 \end{cases}$$

Solving the top equation gives $5-4t_1=7-12t_2 \iff 12t_2=2+4t_1 \iff t_2=1/6+(1/3)t_1$. Eliminating t_2 in the second equation gives $t_1=3+(-2/3-(4/3)t_1) \iff (7/3)t_1=7/3 \iff t_1=1$, which substituting into $t_2=1/6+(1/3)t_1$ gives $t_2=1/6+1/3=1/2$.

Lastly, substituting into the bottom equation yields 1 = 1. This means that there **is** a solution and that the lines **intersect**. If a contradiction, like 1 = 2, was attained, then there would be no solution and no intersection.

Using $t_1 = 1$ and $t_2 = 1/2$, L_{PQ} and L_{RS} intersect at (1, 1, 1).

part 2f:

Find the volume of the parallelepiped bounded by \overrightarrow{PQ} , \overrightarrow{PR} , and \overrightarrow{PS} . Explain your result. The volume is:

$$\left|\overrightarrow{PS}\cdot(\overrightarrow{PQ}\times\overrightarrow{PR})\right| = \left|\begin{bmatrix} -10\\-1\\-3\\-3 \end{bmatrix}\cdot\begin{bmatrix} 6\\-18\\-14\\ \end{bmatrix}\right| = \left|-60+18+42\right| = 0$$

The 0 volume means that the parallelepiped is flat and that P, Q, R, and S all lie in the same plane.

Question 3:

part 3a:

Given the line $L_1: \begin{cases} x(t) = 1+t \\ y(t) = 2+3t \\ z(t) = 1+t \end{cases}$ and the plane $M_1: 2x-y+7z=9$, find the intersection between L_1 and M_1 .

Finding the value of parameter t in line L_1 that will generate a point in plane M_1 requires that x(t) = 1+t; y(t) = 2+3t; and z(t) = 1+t satisfy 2x(t) - y(t) + 7z(t) = 9.

$$2(1+t)-(2+3t)+7(1+t)=9 \iff (2-3+7)t+(2-2+7)=9 \iff 6t=2 \iff t=1/3$$

t=1/3 generates the intersection point (4/3,3,4/3)

part 3b:

Given the plane $M_2: x+y+z=3$, find the intersection between M_1 and M_2 . The set of points that satisfy the equations $\begin{cases} 2x-y+7z=9\\ x+y+z=3 \end{cases}$ form the intersection. The top equation gives z=9/7-(2/7)x+(1/7)y, which when substituted into the bottom equation gives

 $x + y + (9/7 - (2/7)x + (1/7)y) = 3 \iff (5/7)x + (8/7)y = 12/7 \iff y = 3/2 - (5/8)x$. Substituting the expression for y into z = 9/7 - (2/7)x + (1/7)y gives z = 9/7 - (2/7)x + ((3/14) - (5/56)x) = 21/14 - (21/56)x = 21/14 - (21/56)x3/2 - (3/8)x.

Letting x = t yields the parameterization of the intersection $\begin{cases} x(t) = t \\ y(t) = 3/2 - (5/8)t \\ z(t) = 3/2 - (3/8)t \end{cases}$

part 3c:

Given the point T(3,3,3), find the closest distance between T and M_1 .

The normal vector to M_1 is $\mathbf{n} = \begin{bmatrix} 2 \\ -1 \\ 7 \end{bmatrix}$

The closest distance is:

$$d = \frac{\begin{vmatrix} \mathbf{n} \cdot \begin{bmatrix} 3\\3\\3 \end{bmatrix} - 9 \end{vmatrix}}{|\mathbf{n}|} = \frac{|6 - 3 + 21 - 9|}{\sqrt{4 + 1 + 49}} = \frac{15}{\sqrt{54}}$$

part 3d:

The plane $M_3: -6x + 3y - 21z = -33$ is parallel to M_1 . Find the separation between M_1 and M_3 .

The equation of M_1 is 2x - y + 7z = 9, and the equation of M_3 is equivalent to 2x - y + 7z = 11. The

left hand side of both equations are now equal with the same normal vector $\mathbf{n} = \begin{bmatrix} 2 \\ -1 \\ 7 \end{bmatrix}$.

The perpendicular separation is:

$$d = \frac{|11 - 9|}{|\mathbf{n}|} = \frac{2}{\sqrt{4 + 1 + 49}} = \frac{2}{\sqrt{54}}$$

Question 4:

part a)

Given vector $\mathbf{u} = \begin{bmatrix} 2 \\ 5 \\ -7 \end{bmatrix}$ and vector $\mathbf{v} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$, find x and y such that $\mathbf{u} || \mathbf{v}$. $\mathbf{u} || \mathbf{v}$ if and only if the ratios between corresponding components are all equal: x/2 = y/5 = 1/(-7). This

gives x = -2/7 and y = -5/7.

4

part b)

Given vector
$$\mathbf{u} = \begin{bmatrix} 2 \\ 5 \\ -3 \end{bmatrix}$$
 and vector $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \\ z \end{bmatrix}$, find z such that $\mathbf{u} \perp \mathbf{v}$. $\mathbf{u} \perp \mathbf{v}$ if and only if $\mathbf{u} \cdot \mathbf{v} = 0$ which yields $-2 + 5 - 3z = 0 \iff z = 1$