BCNF Decomposition

R&G Chapter 19

Announcement

- Assignment 5 (last assignment) available in Canvas.
 - Due at 11:59pm on Dec 5.
 - Similar online format as the final exam.

In the Last Lecture

- Normal forms:
 - 1st NF, 2nd NF, 3rd NF, and BCNF (3.5NF)
- If a relation is not in a desired normal form, we need to decompose the relation to eliminate data redundancy.
- Decompositions should be used only when needed, as it can cause potential problems.

Summary of Normal Forms

Normal Form	Constraints
1st normal form (1NF)	Relational database
2 nd normal form (2NF)	No partial dependency
3 rd normal form (3NF)	No partial dependency No transitive dependency
Boyce-codd normal form (BCNF)	Nothing but superkeys (i.e., for all FDs X->Y, X must be a superkey)

Two short-cut rules:

- Shortcut Rule 1: If all candidate keys are singleton keys (i.e., only contain one attribute), then R must satisfy 2NF
- Shortcut Rule 2: If all attributes are part of some candidate keys, then R must be 2NF & 3NF

Warm-up Exercise

- Consider a relation R with five attributes ABCDE. You are given the following dependencies: $A \rightarrow B$, $BC \rightarrow E$, and $ED \rightarrow A$
 - List all keys for R
 - Is R in 3NF?
 - Is R in BCNF?

Problems with Decompositions

- There are two potential problems of schema decomposition
 - May be impossible to reconstruct the original relation! (Lossiness)
 - 2) Dependency checking may require joins.

Features of a Good Decomposition

- A good decomposition should satisfy two conditions:
 - Lossless
 - Dependency preserving

BCNF and **3NF** Decomposition

• Some rules to remember before we discuss the details of decomposition...

	BCNF Decomposition	3NF Decomposition
Data redundancy	NONE	May still have some
Lossless	Guaranteed	Guaranteed
dependency- preserving	Not guaranteed	Guaranteed
		8

Roadmap of Today's Lecture

- Lossy and lossless decompositions
- Solutions to lossless decompositions
- BCNF decomposition algorithm (guaranteed to be lossless)
- Quiz (15 minutes)

Example of Lossy Decomposition

Lossy decomposition: Join result of the tables after decomposition is NOT the same as the original dataset

R<>R'

A	В	С	Α	В
1	2	3	1	2
4	5	6	4	5
7	2	8	7	2
	R			R1

В	C
2	3
5	6
2	8

R2

A	В		В	С	
1	2	Join	2	3	
4	5	JOIIT	5	6	
7	2		2	8	
	R1			R2	

A	В	С		
1	2	3		
4	5	6		
7	2	8		
1	2	8		
7	2	3		
R'				

Example of Lossless Decomposition

Lossless decomposition: Join result of the tables after decomposition is the same as the original dataset

A	В	C		A	С		В		
1	2	3		1	3		2	3))
4	5	6	,	4	6		5	6)
7	2	8		7	8		2	8	
	R				R1			R	2
A	С		В	С			A	В	С
1	3		2	3			1	2	3
4	6	Join	5	6		=	4	5	6
7	8		2	8			7	2	8
F	R1		R2					R'	

Roadmap of Today's Lecture

- Lossy and lossless decompositions
- Solutions to lossless decompositions
- BCNF decomposition algorithm (guaranteed to be lossless)
- Quiz (15 minutes)

Task #1

 How to decompose the original relation so that it is lossless?

Solution to Lossless Decomposition

- Given a table R and a set of FDs F of R
- The decomposition of R into X and Y is lossless with respect to F if and only if the F+ satisfies that:

$$X \cap Y \rightarrow X$$
 or $X \cap Y \rightarrow Y$

- i.e., the common attributes of X and Y (that X and Y natural joins on) is a superkey of either X or Y.
- If W -> Z holds over R and W ∩ Z is empty, then
 - Decompose R into two tables R1=R-Z and R2=WZ
 - The decomposition (R-Z, WZ) are guaranteed to be lossless (as R-Z and WZ joins at W, and W->Z)

Revisit Lossy Decomposition Example

A	В	C
1	2	3
4	5	6
7	2	8

A	В
1	2
4	5
7	2

 $X=\{A, B\}, Y=\{B, C\}, X \cap Y=\{B\}, B \not \to \{A, B\} \text{ and } B \not \to \{B, C\}$

Lossy decomposition!

A	В	
1	2	Join
4	5	John
7	2	

В	С
2	3
5	6
2	8

A	В	С
1	2	3
4	5	6
7	2	8
1	2	8
7	2	3

Revisit Lossless Example

A	В	C
1	2	3
4	5	6
7	2	8

A	C
1	3
4	6
7	8

В	C
2	3
5	6
2	8

$$X=\{A, C\}, Y=\{B, C\}, X \cap Y=\{C\}, C->\{B, C\}$$

Lossless decomposition!

A	C
1	3
4	6
7	8

Join

В	C
2	3
5	6
2	8

 A
 B
 C

 1
 2
 3

 4
 5
 6

 7
 2
 8

Lossless Decomposition Exercise 1

- Relational table R=ABCDE
- FDs F={AB->C, C->E, B->D, E->A}
- R is decomposed into R1=BCD and R2=ACE
- Is (R1, R2) a lossless decomposition?

Lossless Decomposition Exercise

- Relational table R(ABCDE)
- FDs F={AB->C, C->E, B->D, E->A}
- R is decomposed into R1(BCD) and R2(ACE)
- Is (R1, R2) a lossless decomposition?
- Way of thinking:
 - Step 1: Find common attribute: R1 \cap R2 = (C);
 - Step 2: Check whether C is a superkey of R1 or R2 (i.e., does C+ =(BCD) or C+ = (ACE)?)
 - $C^+ = (CEA)$. So C is a superkey of R2.
 - It is a lossless decomposition.

Roadmap of Today's Lecture

- Lossy and lossless decompositions
- Solutions to lossless decompositions
- BCNF decomposition algorithm (guaranteed to be lossless)
- Quiz (15 minutes)

Algorithm of BCNF Decomposition

Consider relation R with FDs F.

Step 1:

- Ensure all FDs in F contain only single attribute at right-hand side (RHS)
 - For example, if you have AB->CD, spit it into AB->C and AB->D;

• Step 2:

- Identify all FDs $F' \subseteq F$ that hold on R
 - A FD f holds on R if R contains all attributes in f
 - This sub-step is not needed for the first round where R is the original dataset, but required for all the decomposed tables.
- Check if R satisfies BCNF according to F'.
- If not, for any X -> Y in F' that violates BCNF (i.e., X is not a superkey of R), decompose R into R1= R - Y and R2= XY.

Repeat Step 2 on R1 and R2, until all the decomposed tables satisfy BCNF.

BCNF decomposition is guaranteed to be lossless!

Consider the relation R={CSJDPQV}:

- Its primary key is C;
- It has the following FDs: JP -> C, SD -> P, J -> S.

Question:

- (1) Does R satisfy BCNF?
- (2) If not, decompose R into BCNF tables.

Consider the relation $R=\{CSJDPQV\}$:

- Its primary key is C;
- It has the following FDs: JP -> C, SD -> P, J -> S.

Question:

- (1) Does R satisfy BCNF?
 - FD JP->C: JP+={CSJDPQV}, JP is a superkey. This FD does not violate BCNF.
 - FD SD->P: SD+={SDP}. SD is not a superkey. This FD violates BCNF.
 - FD J->S: J+={JS}. J is not a superkey. This FD violates BCNF.

So R does not satisfy BCNF.

Consider the relation R={CSJDPQV}:

- Its primary key is C;
- It has the following FDs: JP -> C, SD -> P, J -> S.
- Question:
- (1) Does R satisfy BCNF?
- (2) If not, decompose R into BCNF tables.
 - Two FD rules violate BCNF: SD->P, J->S on R
 - To deal with SD -> P, decompose R into SDP, CSJDQV.
 - SDP satisfies BCNF (only SD->P holds on SDP)
 - CSJDQV does not satisfy BCNF (J->S violates BCNF)
 - To deal with J -> S, decompose CSJDQV into SJ and CJDQV
 - Both JS and CJDQV satisfy BCNF (SD->P and J->S do not hold on CJDQV)
 - Final decomposition results: SDP, SJ, and CJDQV

Consider the relation R={CSJDPQV}:

- –Its primary key is C;
- -It has the following FDs: JP -> C, SD -> P, J -> S.
- Several FDs may cause violation of BCNF. The order in which we deal with them could lead to very different sets of relations!
 - -We just tried the order of SD -> P, J -> S
 - -Now try starting from J -> S, then SD -> P