Algorithms for Data Science (Part 2 - Big Data Algorithms)

Daniel Lawson — University of Bristol

Lecture 08.2.2 (v1.0.1)

Signposting

- ► This lecture 8.2 of Algorithms for Data Science
- The lecture is in two parts:
 - ► Part I Data Structures
 - Part 2 Algorithms
- ► This is Part 2 on **Big Data Algorithms**:
 - Sampling for big data (Reservoir/non-uniform)
 - ▶ Bloom filters
 - Sketching
 - ▶ MinHash

Sampling (for big data)

- ▶ If there are N (large) items, how do we correctly sample n of them?
- ▶ Naive approach: read in the data, choose *n* at random, done.
- What if the data don't fit in memory? We might choose a subset e.g. by:
 - **Random sampling:** Choose each point with probability p = n/N
 - ▶ Uniform sampling: Choose every n/Nth point
 - Efficiently?

Sampling (when we don't know N)

- Reservoir sampling:
 - ▶ Keep the first *n* items. For the remaning items *i*:
 - lacktriangle Accept the new item with probability n/i
 - ightharpoonup discard uniformly from the n.
 - ▶ Otherwise, keep the old items.
- Weighted versions etc exist.
- Generates samples uniformly from the whole set of n with fixed storage.

Non-Uniform sampling

- Sometimes, most data is "boring". We want to sample the "most useful" data.
- One solution is to divide the data into histogram bins and sample inversely with frequency using e.g. reservoir sampling within each
- ► How to choose the bins?
 - Choice in advance requires knowledge of the data, or looking at it already
 - Dynamic approaches are possible where the bins are learned in a streaming manner¹
 - ► The algorithm can be tuned for estimating particular quantities, e.g. the mean²

¹Streaming histogram implementation

²Risto Tuomainen Data Sampling for Big Data

Filtering

- ► Filters have the goal of retaining information regarding which data have previously been seen, without storing it all.
- Example: we have a datastream of (many) observed MAC addresses from users.
 - ▶ Question: have we seen value *x* before?
 - ▶ Can we do this with **constant cost** $\Theta(1)$ per item?

Bloom Filter

- ▶ A **bloom filter** can tell in constant time whether:
 - 1. a data point is not in the database
 - 2. a data point might be in the database
- It does this by storing all of the observed data solely as a hash $h(x) \to (0,r]$.
 - ▶ The data are stored as a bitvector \mathbf{b}_r .
 - ► The larger the range, the more precise the answer will be but the greater the cost.
 - For each datapoint x_i we:
 - 1. Compute k hashes in [0, r), $h_k(x_i)$
 - 2. Set all bits hashed into to one, i.e. $b_r(h_k(x_i)) = 1$
 - At lookup time: if any $b_r(h_k(x_i)) = 0$ then we have not seen this item before.
- See Bill Mill's excellent Bloom filter practical

Choosing parameters for a bloom filter

- ► There are three variables: the number of data expected to be stored, n, the number of hashes k and the length of the bitvector r.
- ▶ The error rate is expected to be $(1 \exp(-kn/r))^k$
- ▶ It turns out that this is minimised when $k = r/n \ln(2)$
- You then trade of error rate for storage size (for the bit vector) and compute cost (for the hashes)
- Bloom Filters are very useful, for example in Network analysis³ and Network Security⁴

³Broder & Mitzenmacher "Network Applications of Bloom Filters: A Survey" (2003) Internet Mathematics 1:485-509

⁴Geravand & Ahmadi "Bloom filter applications in network security: A state-of-the-art survey" (2013) Computer Networks 57:4047-4064

Sketching

- Sketching is obtaining the frequency properties of your data from a data stream.
- ► One important class is probabilistic counting, which addresses how many of each class there are.

Count-min-sketch

- Count-min-sketch works just like a bloom filter, except that we store an integer for each has rather than a single bit.
- lacktriangle We initialise ${f b}_r={f 0}$, and then:
 - 1. Compute k hashes in (0, r], $h_k(x_i)$
 - 2. Add one to all bits hashed into, i.e. $b_r(h_k(x_i)) + = 1$
- At lookup time, the number of items is estimated to be

$$\operatorname{argmin}_{h_k(x_i)} b_r(h_k(x_i))$$

i.e. the minimum count.

 See e.g. Python inplementation of Count Min Sketch by Rafael Carrascosa (part of PyPI)

Other important algorithms:

- ➤ The MinHash algorithm quickly computes similarities between sparse feature vectors such as documents.
- ► Locality Sensitive Hashing reduces the dimensionality of data by representing an object as a set of hashes, chosen so that "similar" items have "similar" hash values
- ► The Hashing Trick is a Machine-Learning tool for turning arbitrary objects into features - just take one or more locality sensitive hashes of the object as new features.
- ► There are a range of sketches with different biases, such as the Count-Mean-Sketch and others⁵.

⁵Goyal, Daume & Cormode "Sketch Algorithms for Estimating Point Queries in NLP" (2012) Proc. EMNLP.

MinHash motivation

- ▶ Consider a very large, potentially sparse, **binary** feature space for which we have observations $A = \{x_i\}$ and $B = \{x_k\}$. How similar are they?
- One natural measure is the Jaccard Similarity:

$$J(x_i, x_j) = \frac{x_i \cap x_j}{x_i \cup x_j}$$

- This is slow to compute with a large sparse features space, such as words.
- ► The solution is to approximate the similarity via MinHash.

MinHash algorithm

- ► To compute a single MinHash Signature:
 - ▶ Use a random hash function and apply it to all values in A and B.
 - Compute the minimum of each of these.
 - ▶ The probability of these being equal turns out to J(A, B).
- ightharpoonup To estimate J, we simply do this several times.
- This was used for website Duplicate detection by AltaVista and was confirmed to be still in use by Google in 2007. There are a lot of websites...
- See e.g. Chris McCormick's Minhash tutorial or the Mining of Massive Datasets book and course.

Discussion

- Exploiting convenient algorithms forms a key part of many high-throughput models.
- Many data streams, especially cyber, have a power-law distribution of activity: much of the data are seen only once, whilst some heavy hitters might make up the majority of the dataset.
- Identification of heavy hitters and singletons allows them to be treated specially which can massively reduce computational burden.
- ► For example, to process a massive cyber dataset:
 - Use a Bloom filter to store only information on IP Addresses you've seen more than once,
 - A Count-Min-Sketch to identify heavy hitters,
 - ► Store the remaining data in a suitable hash table,
 - On which you construct a model.

Reflection

- How could you use these data structures and algorithms in your assessments?
- To what extent do you need to understand them in order to gain value in data science?
- By the end of this course, you should:
 - ▶ Be able to work with and recognise the dynamic data structures (Queues, Stacks, Hash tables, Binary Trees, Linked Lists)
 - ► Be able to recognise and exploit **simple algorithms** (Samplers, Filters, Sketching, MinHash)
 - Relate their use to Big Data problems

Signposting

- ▶ This is the end of the lecture content.
- ► The workshop is very short due to the extra theoretical content.
- ► Next block in 09: Neural Networks.

References

- ► Advanced algorithms:
 - ► The Mining of Massive Datasets book and course.
 - Risto Tuomainen Data Sampling for Big Data, covering sampling, filtering, sketching, etc.
 - Streaming histogram implementationBill Mill's excellent Bloomfilter practical
 - Shirt in a executer blooming practi
 - Chris McCormick's Minhash tutorial
 - Python inplementation of Count Min Sketch by Rafael Carrascosa (part of PyPl)
 - Leo Martel notes on Streaming Data Algorithms which is notes on the paper
 - Cormode's notes on [Count-Min Sketch]http://dimacs.rutgers.edu/~graham/pubs/papers/cmencyc.pdf)
 - Chakrabarti's Lecture Notes on Data Stream Algorithms
 - ► Broder & Mitzenmacher "Network Applications of Bloom Filters: A Survey" (2003) Internet Mathematics 1:485-509
 - ► Geravand & Ahmadi "Bloom filter applications in network security: A state-of-the-art survey" (2013) Computer Networks 57:4047-4064
 - Goyal, Daume & Cormode "Sketch Algorithms for Estimating Point