Two players are playing a game of Tower Breakers! Player **1** always moves first, and both players always play optimally. The rules of the game are as follows:

- Initially there are $m{n}$ towers.
- Each tower is of height m.
- The players move in alternating turns.
- In each turn, a player can choose a tower of height x and reduce its height to y, where $1 \le y < x$ and y evenly divides x.
- If the current player is unable to make a move, they lose the game.

Given the values of n and m, determine which player will win. If the first player wins, return 1. Otherwise, return 2.

Example. n=2

m=6

There are **2** towers, each **6** units tall. Player **1** has a choice of two moves:

- remove $\bf 3$ pieces from a tower to leave $\bf 3$ as $\bf 6$ modulo $\bf 3=0$
- remove **5** pieces to leave **1**

Let Player **1** remove **3**. Now the towers are **3** and **6** units tall.

Player ${f 2}$ matches the move. Now the towers are both ${f 3}$ units tall.

Now Player $\mathbf{1}$ has only one move.

Player ${f 1}$ removes ${f 2}$ pieces leaving ${f 1}$. Towers are ${f 1}$ and ${f 2}$ units tall.

Player ${f 2}$ matches again. Towers are both ${f 1}$ unit tall.

Player ${f 1}$ has no move and loses. Return ${f 2}$.

Function Description

Complete the towerBreakers function in the editor below.

towerBreakers has the following paramter(s):

- int n: the number of towers
- int m: the height of each tower

Returns

• int: the winner of the game

Input Format

The first line contains a single integer $m{t}$, the number of test cases.

Each of the next $m{t}$ lines describes a test case in the form of $m{2}$ space-separated integers, $m{n}$ and $m{m}$.

Constraints

- $1 \le t \le 100$
- $1 \le n, m \le 10^6$

Sample Input

```
STDIN Function
-----
2     t = 2
2     2     n = 2, m = 2
1     4     n = 1, m = 4
```

Sample Output

1

Explanation

We'll refer to player ${f 1}$ as ${m P1}$ and player ${f 2}$ as ${m P2}$

In the first test case, P1 chooses one of the two towers and reduces it to 1. Then P2 reduces the remaining tower to a height of 1. As both towers now have height 1, P1 cannot make a move so P2 is the winner.

In the second test case, there is only one tower of height 4. P1 can reduce it to a height of either 1 or 2. P1 chooses 1 as both players always choose optimally. Because P2 has no possible move, P1 wins.

