

#### 3.1.4 Low-k dielectrics

- Overview and application requirements
  - Challenge: Shrinking sizes RC delay
  - Solution: Change dielectric material and metal
  - Dense, porous or air gaps: low k materials concepts
  - Application requirements
- Depositon of porous low-k dielectrics
  - PECVD vs. Spin coating
  - Porous SiCOH by PECVD and UV assisted curing
- Future of low-k dielectrics
  - ITRS predictions on ILD k-values
  - New developments and emerging materials

Authors: S.E. Schulz, N. Ahner



#### <u>Interconnect Challenges – Shrinking feature sizes</u>



 $X_{talk} \propto \frac{C_{IMD}}{C_{inttot}} = \frac{1}{1 + \frac{\varepsilon_{ILD}/\varepsilon_{IMD}}{4R^2}}$  decrease Goal: lower parasitic capacitances in the interconnection system by integration of dielectric materials with lower permittivity (k-value) compared to standard SiO<sub>2</sub> (k=3.9...4.3)



#### <u>Interconnect Challenges – RC delay dominance</u>





Source: EET Asia

Source: Data Derived from ITRS Interconnect Tables

With further downscaling the next IC generations become "interconnect heavy", more than 50 per cent of their cost is due to the back-end-of-line (BEOL) wiring levels, and designs are dominated by interconnect delay.

Source: http://www.eetasia.com/ART\_8800696620\_590626\_NT\_d54bc924.HTM, March 28th 2014



#### <u>Interconnect Challenges – RC delay evolution</u>

#### Interconnect Delay Trends





#### How to fight RC delay - Design, Architecture, Technology



Source: Intel



FIB cross-section of a 9 metal layer test structure with Cu/low-k (OSG) interconnect stack (Source: Fraunhofer IZFP)

#### Hierarchical wiring (reverse scaling)

Metal layer stack variation across process nodes





#### **Multilevel Metallization: Hierarchical Architecture**





#### Fighting RC delay increase - materials approach



Reduction of permittivity:

Substitution of low-k materials for SiO<sub>2</sub>

- ⇒ reduction of permittivity up to about 60 % but:
- huge variety of proposed low-k materials
- many challenges to process compatibility

| Dielectric       | <b>Permittivity</b> |  |  |
|------------------|---------------------|--|--|
| SiO <sub>2</sub> | 3.9 4.1             |  |  |
| Low k            | 1.5 3.5             |  |  |

| Reduction | of meta | I resistivity |
|-----------|---------|---------------|
|           |         |               |

Substitution of Cu for Al

⇒ reduction of resistivity about 35 %

| Metal    | Resistivity [µOhm cm] |  |  |
|----------|-----------------------|--|--|
| Al alloy | ~ 3.0 3.3             |  |  |
| Cu       | ~ 1.9                 |  |  |



#### How to achieve a low dielectric constant k?

k: physical measure of the electronic polarizability of a material

 Electronic polarizability: tendency of a material to allow an externally applied electric field to induce electric dipoles (separated positive and negative charges)

$$\frac{\varepsilon - 1}{\varepsilon + 2} = \frac{1}{3\varepsilon_o} \sum_{i=1}^{N_i} N_j \alpha_j$$
 High  $K$ 

N<sub>i</sub> = total number of the atoms or molecules

 $\alpha_i$  = polarizability of that particular atoms or molecules

A low-k dielectric is an insulating material that exhibits weak polarization when subjected to an externally applied electric field.

- $\rightarrow$  low-k: k is lower than that of SiO<sub>2</sub> (3.9 to ~4.3)
- $\rightarrow$  ultra low-k: k < 2.5



#### How to build a low dielectric constant material?

#### 1. Minimize polarizability

- Choose a nonpolar dielectric system: polarity is weak in materials with few polar chemical groups and with symmetry to cancel the dipoles of chemical bonds between dissimilar atoms
- Introduce elements with smaller electronic polarizability, e.g. C, F

| Bond                   | C-C  | C-F  | C-O  | C-H  | O_H  | C=O  | C=C  | C≣C  | C≣N  |
|------------------------|------|------|------|------|------|------|------|------|------|
| Polarizability<br>(Å ) | 0.53 | 0.56 | 0.58 | 0.65 | 0.71 | 1.02 | 1.64 | 2.04 | 2.24 |

(Source: K.J. Miller et al., Macromolecules, 23, 3855 (1990))

- Minimize the moisture content of the dielectric / design a dielectric with minimum hydrophilicity ( $k_{water} \approx 80 \rightarrow$  only small traces of water need to be absorbed before the low-k dielectric loses its permittivity advantage)



#### How to build a low dielectric constant k material?

- Increase the free volume  $\rightarrow$  reduce  $N_i$ 2. Microscopic level:
  - → increase bonding length, bonding orientation, e.g. partially substitute Si-O (1.5097 Å) by Si-CH<sub>3</sub> (1.857 Å)
  - → discontinue the network by inserting single bond atoms or groups in the backbone structure: adding F or CH<sub>3</sub> into SiO<sub>2</sub> network

#### Macroscopic level:

 $\rightarrow$  Add porosity ( $k_{air} = 1$ ): incorporation of a thermally degradable material

(porogen) within a host matrix



SiO<sub>2</sub>  $k \approx 4.0$ 

C-doped oxide k ≈ 3.0



Dense SiCOH (Precursor TMCTS) k min. 2.6



Porous SiCOH (Precursor TMCTS + Porogen)  $k \approx 2.1 - 2.5$ 



#### Low-k dielectric materials: Ultra low-k materials concepts



#### Air gaps

- Potential of k<sub>eff</sub> < 2.0</li>
- Design adaptions needed



Source: IBM

Timeline for IBM volume manufacturing of CMOS microprocessors from 1997 to 2008

CTE: coefficient of thermal expansion



#### Porous ultra low-k materials

Inherent porosity or porosity introduced by porogens

- Shape of pores, interconnectivity
- Pore size distribution (micro < 2nm, meso < 50 nm, nano > 50 nm)



- a) Random overlapping spherical solids
- b) Random overlapping spherical pores

# Pores are created by removal of a sacrificial material (porogen)



Source: Fraunhofer IZFP



#### **Deposition of porous low-k dielectrics**





- + Established equipment / process
- + New chemistries have been implemented
- + easier integration of the cure system into a cluster tool
- Limitations expected for materials with k < 2.2
- → Most applied process in front-end IC production

- + More simple process
- + Less expensive and easy to implement
- + Realistic solution for materials with k < 2.2
- Special equipment has to be purchased



#### Deposition of porous low-k dielectrics by spin coating

#### Sol-Gel Process



Aerogels, Xerogels

### **Templating Process**



HSQ / MSQ with porogenes, surfactant templated materials



#### **Deposition of porous low-k dielectrics by PECVD**



**PECVD porogen approach:** subtractive process, currently performed in high-volume manufacturing for 32 / 28 nm technology nodes and below

- Deposition from the decomposition of (at least) two precursors in the plasma
  - Pure organic molecule (porogen)
  - Molecule consisting of silicon atoms and organic radicals (matrix percursor)
- Formation of a "hybrid" film composed of organosilicate-based matrix enclosing organic inclusions
- Post-deposition treatment (curing), e.g. thermal annealing, removal of the organic phase, mostly consisting of porogen molecule fragments
  - → Film becomes porous and has ultra low-k properties





#### **Matrix precursors and porogenes**



Source: Advanced Interconnects for ULSI Technology, 2012 John Wiley & Sons, Ltd



#### **Precursor choice and process conditions**

- Matrix and porogen precursors should be chemically compatible
- Optimized plasma conditions:
  - Prevent excessive dissociation of the skeleton precursor
  - Ability to produce a SiCOH film with k close to 3
  - Ensure the dissociation of the porogen precursor
- Precursor choice:
  - highly reactive porogen, e.g. by epoxy ring
  - close dissociation energy threshold between
  - matrix and porogen precursor
- Ensure mechanical properties of the film
  - Matrix must be strong enough to avoid collapse after porogen removal
  - Minimized bonding to the porogen species to avoid the formation of dangling bonds or other defect sites
- Ensure efficient porogen incorporation by optimizing the porogen/matrix precursor flow rates

Source: Advanced Interconnects for ULSI Technology, 2012 John Wiley & Sons, Ltd

## Different -Si-O- configurations and the difference between shrinkage and collapse





#### Porogen removal by UV assisted curing

Curing methods: thermal annealing, curing assisted by electron beam, UV radiation, H<sub>2</sub> plasma and supercritical CO<sub>2</sub>

- → Thermal annealing alone:
  - no sufficient enhancement volumic concentration of Si-O-Si bonds → poor mechanical properties
    - long duration (up to 12h) and high temperature load (up to 450°C)
- → Thermal annealing assisted by UV radiation:
  - processing at 400°C for short durations (a few minutes)
  - enhanced mechanical properties of the film due to increased Si-O-Si crosslinking



Source: Advanced Interconnects for ULSI Technology, 2012 John Wiley & Sons, Ltd



#### **UV curing mechanisms**



Indicators of porogen removal and mechanical properties enhancement:

- (1) Decrease of carbon content (2900-3100 cm<sup>-1</sup> porogen; 1275 cm<sup>-1</sup> carbon linked to matrix)
- (2) Occurrence of H-Si-O peak at 895 cm<sup>-1</sup> and rearrangement of the Si-O-Si structure



#### **UV curing mechanisms**

Supposed UV curing mechanisms:

$$Si - OH + HO - Si \rightarrow Si - O - Si + H2O$$

- Condensation of Si-OH
- Selective photodissociation of bonds within the low-k material





Mechanisms which lead to Si-O-Si crosslinking, shrinkage and enhanced mechanical properties are not completly understood till now; FTIR and NMR analysis suppose alternative reaction paths:

$$-\mathrm{Si}-\mathrm{CH_3}+\mathrm{H_3C}-\mathrm{Si}-\!\rightarrow\!-\mathrm{Si}-(\mathrm{CH_2})_2-\!\mathrm{Si}-\!+\mathrm{H_2}\nearrow$$

$$-Si - CH_3 + H_3C - Si - \rightarrow -Si - CH_2 - Si - + CH_4$$

$$-\mathrm{Si}-\mathrm{O}-\mathrm{CH}_2-\mathrm{CH}_3+\mathrm{Si}\mathrm{CH}_3 \Rightarrow \mathrm{Si}-\mathrm{O} \bullet + -\mathrm{Si} \bullet + \mathrm{CH}_3-\mathrm{CH}_2-\mathrm{CH}_3 \Rightarrow \mathrm{Si}-\mathrm{O}-\mathrm{Si} + \mathrm{C}_x\mathrm{H}_y$$

Source: Advanced Interconnects for ULSI Technology, 2012 John Wiley & Sons, Ltd





#### Future of low-k materials - ITRS Predictions for 2013/14

Adaption of the predicted ILD dielectric constant in 2013/14 over the years due to emerging integration challenges

| Year of prediction | k <sub>eff.</sub> | <b>k</b> <sub>bulk</sub> |
|--------------------|-------------------|--------------------------|
| 2000               | < 1.5             | 1.1                      |
| 2001 / 2002        | 1.9               | < 1.7                    |
| 2003 / 2004        | 2.0 - 2.4         | < 1.9                    |
| 2005               | 2.4               | ≤ <b>2.0</b>             |
| 2006               | 2.1 - 2.4         | 1.8 - 2.1                |
| 2007               | 2.4 - 2.8         | 2.1 - 2.5                |
| 2008 – 2011        | 2.4 - 2.8         | 2.1 - 2.4                |
| 2013               | 2.55 - 3.00       | 2.30 - 2.61              |

Long term prediction in 2013 for 2024:  $\mathbf{k}_{\text{eff.}}$ : 1.88 – 2.28

**k**<sub>bulk</sub>: F.80 – 2.20



#### **Low-k Roadmap Progression (IRTS 2011)**





#### Porous ultra low-k materials - Porosity vs. Elastic Modulus

How much porosity is needed? How much porosity can be controlled?





Reduced mechanical properties of porous low-k dielectrics can lead to critical reliability issues, e.g. crack formation during processes which induce high forces to the stack, e.g. CMP, packaging



Source: J. Gambino, IRPS Short Course 2006; R. Huang, Impact of Chip-Package Interaction on Reliability of Copper/Low k Interconnects and Beyond, iMechanica



#### Porous ultra low-k materials - Process induced damage



- a) Adhesion failure;
- b) ILD plasma damage
- c) Sidewall ILD damage from via-etch and PR strip
- d) OPL (organic planarization layer) penetration during via-fill
- e) LBR (line bottom roughness) and pitting from uneven etch front
- f) Sidewall ILD damage from line etch and PR strip
- g) Exacerbated LBR and pitting due to cap-open
- h) Discontinuous barrier layer due to large, interconnected pores
- i) ILD damage from CMP
- j) Cu pre-clean/cap deposition plasma damage





#### **Low-k and ultra low-k Dielectrics - Material Groups**

| Material (group)                                    | Deposition    | k-value |
|-----------------------------------------------------|---------------|---------|
|                                                     | process       |         |
| SiOF / FSG                                          | CVD           | 3.4 3.6 |
| Si based (C-doped)                                  |               |         |
| HSQ, MSQ                                            | spin on       | 2.8 3.3 |
| C / CH <sub>3</sub> -doped SiO <sub>2</sub> (SiCOH) | CVD           | 2.6 3.0 |
| C based polymers                                    |               |         |
| nonfluorinated                                      | spin on       | 2.5 3.5 |
| fluorinated                                         | spin on       | 1.9 3.0 |
| a:CF                                                | CVD           | 2.1 2.6 |
| porous                                              |               |         |
| SiO <sub>2</sub> (aerogel, xerogel)                 | spin on       | 1.3 2.5 |
| HSQ, MSQ                                            | spin on       | 1.72.6  |
| surfactant templated silica                         | spin on       | 1.82.5  |
| C / CH <sub>3</sub> -doped SiO <sub>2</sub> (SiCOH) | CVD           | 2.02.6  |
| carbon based polymers                               | spin on       | 1.82.5  |
| air gaps                                            | [CVD/spin on] | 1.1 2.8 |
|                                                     |               |         |

In production in front-end CMOS



#### **Metrix of low-k materials properties**

| Electrical                           | Chemical                                                 | Mechanical                                       | Thermal                              |
|--------------------------------------|----------------------------------------------------------|--------------------------------------------------|--------------------------------------|
| Isotropic k-value                    | No material change<br>when exposed to acids<br>and bases | Thickness uniformity on wafer and wafer to wafer | T <sub>g</sub> > 400 °C              |
| Low dissipation                      | Etch rate and selectivity better than oxide              | Good adhesion to metal and other dielectrics     | Low coefficient of thermal expansion |
| Low leakage current                  | Low moisture absorption                                  | Low residual stress                              | Low thermal shrinkage                |
| Low charge trapping                  | Low solubility in H <sub>2</sub> O                       | High hardness                                    | Low weight loss                      |
| High electric field strength         | Low gas permeability                                     | Low shrinkage                                    | High thermal conductivity            |
| High reliability                     | High purity                                              | Crack resistance                                 |                                      |
| High dielectric<br>breakdown voltage | No metal corrosion                                       | High tensile modulus                             |                                      |
|                                      | Long shelf life                                          | High elongation at break                         |                                      |
|                                      | Low cost of ownership                                    | Compatible with CMP                              |                                      |
|                                      | Commercially available                                   |                                                  |                                      |
|                                      | Environmentally safe                                     |                                                  |                                      |

#### Specific Processes for Advanced Micro- and Nanoelectronics Specific CVD Processes Low-k dielectrics

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.