Javier Duarte, Department of Physics University of California San Diego Physics 2C, Winter 2020

Reading Assignment due Tuesday 1/21: Submit via Gradescope by 11:30am

- 1. Uranium hexaflouride (UF₆) has a triple point at (T, p) = (337 K, 152 kPa). Suppose you have a (gaseous) sample of UF₆ at atmospheric pressure and room temperature. If you keep cooling your sample, will it undergo a phase transition from gas \rightarrow liquid or from gas \rightarrow solid?
- 2. Refer to Figure 18.9(a) in the textbook. Suppose you have an ideal gas initially at pressure p_0 in a container with volume V_0 . A piston moves very slowly to expand the size of the container to a volume $2V_0$ and you find the pressure decreases to $2p_0/5$.
 - (a) Draw the initial and final points on a pV diagram.
 - (b) Assuming the gas is initially at a temperature of 340 K, what is the final temperature?
 - (c) Now suppose instead of moving the piston slowly, a membrane suddnly bursts to make the container double in size. Can you represent that transition on a pV diagram?
- 3. The pV diagram below shows an ideal gas undergoing three processes $A \to B \to C \to A$. For each of the following, what type of process is it? What state variable is held constant? How do you know?

- (a) $A \rightarrow B$
- (b) $B \rightarrow C$
- (c) $C \rightarrow A$

For extra practice (not due): From Chapter 18 of Knight, 4th edition: Conceptual Questions: 3, 7-12. Exercises: 15-18, 21, 24, 26, 31-32, 34, 36, 39-40.