Домашнее Задание №4

ФИО: Мотузенко Кристина Сергеевна

### 1. Посчитать IQ бактерии

## 1.1. Выберите бактерию

Для анализа была выбрана бактерия Mycobacterium avium.

## 1.2. Скачайте последовательности всех белков своей бактерии

Последовательность всех белков скачали с помощью текстового браузера elinks.



# 1.3. Скачайте выравнивания-затравки для всех нужных доменов

| ☑ PF00015_seed | 07.04.2022 15:16 | Файл "FASTA" | 2 KБ   |
|----------------|------------------|--------------|--------|
| ☑ PF00069_seed | 07.04.2022 15:17 | Файл "FASTA" | 17 КБ  |
| ☑ PF00211_seed | 07.04.2022 15:17 | Файл "FASTA" | 6 KE   |
| ☑ PF00512_seed | 08.04.2022 18:52 | Файл "FASTA" | 35 KG  |
| ☑ PF00563_seed | 08.04.2022 18:53 | Файл "FASTA" | 21 КБ  |
| ☑ PF00990_seed | 08.04.2022 18:55 | Файл "FASTA" | 9 КБ   |
| ☑ PF01295_seed | 08.04.2022 18:57 | Файл "FASTA" | 15 KG  |
| ☑ PF01928_seed | 08.04.2022 18:57 | Файл "FASTA" | 16 KE  |
| ☑ PF01966_seed | 08.04.2022 18:58 | Файл "FASTA" | 37 КБ  |
| ☑ PF02518_seed | 08.04.2022 18:58 | Файл "FASTA" | 267 КБ |
| ☑ PF07536_seed | 08.04.2022 18:59 | Файл "FASTA" | 4 КБ   |
| ☑ PF07568_seed | 08.04.2022 18:59 | Файл "FASTA" | 7 КБ   |
| ☑ PF07730_seed | 08.04.2022 19:00 | Файл "FASTA" | 18 КБ  |

#### 1.4. Установите HMMER

Установили на ubuntu.

## 1.5. Напишите скрипт, который запустит hmmer на всех выравниваниях

Был написан bash-скрипт:

```
for I in *.fasta; do ~/hmmer-3.3.2/src/hmmbuild ~/profiles/$i.hmm $i;
done
```

```
| A page association | Page |
```

# Получили файлы:

| PF00015_seed.fasta.hmm | 08.04.2022 19:04 | Файл "НММ" | 80 KE  |
|------------------------|------------------|------------|--------|
| PF00069_seed.fasta.hmm | 08.04.2022 19:04 | Файл "НММ" | 121 KB |
| PF00211_seed.fasta.hmm | 08.04.2022 19:04 | Файл "НММ" | 85 KE  |
| PF00512_seed.fasta.hmm | 08.04.2022 19:04 | Файл "НММ" | 31 KE  |
| PF00563_seed.fasta.hmm | 08.04.2022 19:04 | Файл "НММ" | 108 KE |
| PF00990_seed.fasta.hmm | 08.04.2022 19:04 | Файл "НММ" | 75 KG  |
| PF01295_seed.fasta.hmm | 08.04.2022 19:04 | Файл "НММ" | 274 КБ |
| PF01928_seed.fasta.hmm | 08.04.2022 19:04 | Файл "НММ" | 83 KE  |
| PF01966_seed.fasta.hmm | 08.04.2022 19:04 | Файл "НММ" | 54 KB  |
| PF02518_seed.fasta.hmm | 08.04.2022 19:04 | Файл "НММ" | 52 KG  |
| PF07536_seed.fasta.hmm | 08.04.2022 19:04 | Файл "НММ" | 39 KE  |
| PF07568_seed.fasta.hmm | 08.04.2022 19:04 | Файл "НММ" | 36 KE  |
| PF07730_seed.fasta.hmm | 08.04.2022 19:04 | Файл "НММ" | 32 КБ  |

Далее запускаем скрипт уже с нашим .faa файлом с белками нашей бактерии:

for I in \*.hmm; do ~/hmmer-3.3.2/src/hmmsearch \$i ~/hw5/\$ma\_protein.faa
> res \$i.txt; done

Получили файлы (названия файлов выглядят не очень, но разобраться можно):

| res_PF00015_seed.fasta.hmm | 09.04.2022 12:56 | Файл "ТХТ" | 4 KE  |
|----------------------------|------------------|------------|-------|
| res_PF00069_seed.fasta.hmm | 09.04.2022 12:56 | Файл "ТХТ" | 22 KB |
| res_PF00211_seed.fasta.hmm | 09.04.2022 12:56 | Файл "ТХТ" | 20 KB |
| res_PF00512_seed.fasta.hmm | 09.04.2022 12:56 | Файл "ТХТ" | 17 КБ |
| res_PF00563_seed.fasta.hmm | 09.04.2022 12:56 | Файл "ТХТ" | 8 KB  |
| res_PF00990_seed.fasta.hmm | 09.04.2022 12:56 | Файл "ТХТ" | 13 КБ |
| res_PF01295_seed.fasta.hmm | 09.04.2022 12:56 | Файл "ТХТ" | 2 KB  |
| res_PF01928_seed.fasta.hmm | 09.04.2022 12:56 | Файл "ТХТ" | 3 KB  |
| res_PF01966_seed.fasta.hmm | 09.04.2022 12:56 | Файл "ТХТ" | 14 KB |
| res_PF02518_seed.fasta.hmm | 09.04.2022 12:56 | Файл "ТХТ" | 35 KB |
| res_PF07536_seed.fasta.hmm | 09.04.2022 12:56 | Файл "ТХТ" | 3 KB  |
| res_PF07568_seed.fasta.hmm | 09.04.2022 12:56 | Файл "ТХТ" | 3 KB  |
| res_PF07730_seed.fasta.hmm | 09.04.2022 12:56 | Файл "ТХТ" | 8 KE  |

# 1.6. Проанализируйте результаты, посчитайте число сигнальных белков

Весь анализ проводили вручную.

| Тип ферментов     | Домен 1                 | Домен 2        |
|-------------------|-------------------------|----------------|
| Histidine kinases | phosphoacceptor domain: | ATPase domain: |
|                   | HisKA [Pfam:PF00512]    | HATPase_c      |
|                   | WP_230587751.1          | [Pfam:PF02518] |
|                   | WP_023866367.1          | WP_230587751.1 |
|                   | WP_196244515.1          | WP_023866367.1 |
|                   | WP_003878943.1          | WP_196244515.1 |
|                   | WP_095764104.1          | WP_003878943.1 |
|                   | WP_033729966.1          | WP_095764104.1 |
|                   | WP_009975281.1          | WP_033729966.1 |
|                   | WP 023866309.1          | WP 009975281.1 |
|                   | WP 009978773.1          | WP 023866309.1 |
|                   | WP 023866422.1          | WP 009978773.1 |
|                   | WP_023866818.1          | WP 023866422.1 |
|                   | WP 011723897.1          | WP_023866818.1 |
|                   |                         | WP 011723897.1 |
|                   | HisKA 2 [Pfam:PF07568]  |                |
|                   |                         | WP 011725921.1 |
|                   | WP 011725921.1          |                |
|                   |                         | WP 011726582.1 |
|                   | HisKA 3 [Pfam:PF07730]  | WP 023864974.1 |
|                   | _ ' '                   | WP 031344159.1 |
|                   | WP 011726582.1          | WP 023864970.1 |
|                   | WP 023864974.1          |                |
|                   | WP 031344159.1          | WP 011725921.1 |
|                   | WP 023864970.1          |                |
|                   |                         |                |
|                   | HWE_HK [Pfam:PF07536]   |                |
|                   | WP_011725921.1          |                |
|                   | $\sum = 18$             |                |

| Methyl-accepting chemotaxis proteins | Methyl-accepting protein (MCP) domain: [Pfam:PF00015]                                                                                                       |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ser/Thr/Tyr kinases                  | Ser/Thr/Tyr kinase (STYK) domain: [Pfam:PF00069]                                                                                                            |  |
| Diguanylate cyclases                 | GGDEF domains:<br>[Pfam:PF00990]<br>WP_230587770.1<br>WP_023866398.1<br>WP_023864771.1<br>WP_031348914.1<br>WP_033730287.1<br>WP_031348840.1<br>$\sum = 7$  |  |
| Adenylate cyclases                   | AC1 domains: [Pfam:PF01295],  0  AC2 domains: [Pfam:PF01928],  WP_033729611.1  or AC3 domains: [Pfam:PF00211]  WP_023866177.1 WP_023865579.1 WP_023866202.1 |  |

|                                       | WP_023865352.1 WP_003873209.1 WP_033729391.1 WP_010948854.1 WP_009975646.1 WP_033730454.1 WP_023864866.1 WP_033729880.1 WP_033729583.1 |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                                       | $\sum = 13$                                                                                                                            |
| Predicted c-di-GMP phosphodiesterases | EAL domains:<br>[Pfam:PF00563],                                                                                                        |
|                                       | WP_023866398.1<br>WP_230587770.1<br>WP_031348914.1                                                                                     |
|                                       | HD-GYP domain:<br>[Pfam:PF01966]                                                                                                       |
|                                       | WP_023867189.1 WP_003872507.1 WP_009977758.1 WP_196244571.1 WP_023865145.1 WP_005116484.1 WP_003876695.1                               |
|                                       | $\sum = 9$                                                                                                                             |

В сумме 58 сигнальных белков.

Всего 4457.

# 1.7. Посчитайте IQ

Разделите число сигнальных белков на общее число белков и запишите результат в таблицу.

$$IQ = \frac{58}{4457} = 0.013$$

Посчитаем по формуле из статьи:

```
In [9]: n = 58
In [10]: L = 4457
In [11]: IQ = 5*(10**4)*((n-5)**(1/2))*(L**(-1))
In [12]: IQ
Out[12]: 81.67051704375721
```