

Institut Supérieur d'Informatique et des Technologies de Communication de Hammam Sousse

COMPTE RENDU TD3

Réalisé par :

Yosr Abdelhamid

3DNI2

Decision Tree

- 1. Consider the training examples shown in Table 3.5 for a binary classification problem.
- a. Compute the Gini index for the overall collection of training examples.

Gini Index =
$$1 - \sum_{i=1}^{n} (Pi)^2$$

⇒ Dans notre cas nous avons 2 classes : C0 et C1 alors

$$P(C0) = 10/20 = 0.5$$

$$P(C1) = 10/20 = 0.5$$

$$\Rightarrow$$
 Donc Gini Index = 1 -((0.5)²+(0.5)²) = 0.5

b. Compute the Gini index for the Customer ID attribute.

En C0 :
$$\{\{Gini(1) = Gini(2) = Gini(3) = Gini(4) = Gini(4) = Gini(5) = Gini(6) = Gini(7) = Gini(8) = Gini(9) = Gini(10) = 0\}\}$$

En C1 :
$$\{\{Gini(11) = Gini(12) = Gini(13) = Gini(14) = Gini(15) = Gini(16) = Gini(17) = Gini(18) = Gini(19) = Gini(20) = 0\}\}$$

- **⇒** Donc Gini Index de ID attribute =0
- c. Compute the Gini index for the Gender attribute.

	M	F
C0	6	4
C1	4	6

$$P(M) = (6/10) + (4/10)$$

$$P(F) = (4/10) + (6/10)$$

- \Rightarrow Gini Index de M = 1 –((0.6)²+(0.4)²) = 0.48
- \Rightarrow Gini Index de F = 1 –((0.4)²+(0.6)²) = 0.48
- \Rightarrow Gini Index Globale = $\frac{1}{2}$ * Gini M + $\frac{1}{2}$ * Gini F = 0.48
- d. Compute the Gini index for the Car type attribute using multiway split.

	Family	Sports	Luxury
C0	1	8	1
C1	3	0	7

Gini Index (Family Car)=
$$1 - ((1/4)^2 + (3/4)^2) = 0.375$$

Gini Index (Sports Car)= 0

Gini Index (Luxury Car)=
$$1 - ((1/8)^2 + (7/8)^2) = 0.21875$$

\Rightarrow Gini Index Globale = 1/3 * Gini F +1/3 * Gini S +1/3 * Gini L = 0.1979

e. Compute the Gini index for Shirt size the attribute using multiway

	Small	Medium	Large	Extra Large
C0	3	3	2	2
C1	2	4	2	2

Gini Index (Small)=
$$1 - ((3/5)^2 + (2/5)^2) = 0.48$$

Gini Index (Medium)=
$$1 - ((3/7)^2 + (4/7)^2) = 0.4898$$

Gini Index (Large)=
$$1 - ((2/4)^2 + (2/4)^2) = 0.5$$

Gini Index (Extra Small)=
$$1 - ((2/4)^2 + (2/4)^2) = 0.5$$

- \Rightarrow Gini Index Globale = 1/4 * Gini S +1/4 * Gini M +1/4 * Gini L + $\frac{1}{4}$ * Gini E = 0.49245
- f. Which attribute is better, Gender, Car Type, or Shirt size?.
 - ⇒ Car Type is better because it has the lowest Gini index
- g. Explain why Customer ID should not be used as the attribute test condition even though it has the lowest Gini.
 - ⇒ Customer ID cannot be used for prediction since Gini Index = 0 and no customers are assigned to Customer ID
- 2. Consider the training examples shown in Table 3.6 for a binary classification problem.
- a. What is the entropy of this collection of training examples with respect to the class attribute?

Entropy =
$$\frac{-p}{p+n}\log_2(\frac{p}{p+n}) - \frac{-n}{p+n}\log_2(\frac{n}{p+n})$$

$$\Rightarrow$$
 Entropy= $-4/9 \log 2(4/9) - 5/9 \log 2(5/9) = 0.9911.$

b. What are the information gains of a1 and a2 relative to these training examples?

$$Gain = Entropy(S) - I(Attribute)$$

Entropy de a1 =
$$4/9 * [-(3/4)\log 2(3/4) - (1/4)\log 2(1/4)] + 5/9 * [-(1/5)\log 2(1/5) - (4/5)\log 2(4/5)] = 0.7616$$

 \Rightarrow **Gain de a1** = 0.9911-0.7616 = 0.2294

Entropy de a2 =
$$5/9 * [-(2/5)\log 2(2/5) - (3/5)\log 2(3/5)] + 4/9 * [-(2/4)\log 2(2/4) - (2/4)\log 2(2/4)] = 0.9839$$

- \Rightarrow **Gain de a2** = 0.9911-0.9839= 0.0072
- c. For a3, which is a continuous attribute, compute the information gain for every possible split.

a3	Class label	Entropy	Info Gain
1.0	+	0.8484	0.1427
3.0	-	0.9885	0.0026
4.0	+	0.9183	0.0728
5.0	-	0.9839	0.0072
5.0	-		
6.0	+	0.9728	0.0183
7.0	+	0.8889	0.1022
7.0	-		

- d. What is the best split (among a1,a2 and a3) according to the information gain?
- ⇒ The best split is a1
- e. What is the best split (between a1 and a2) according to the misclassification error rate?
- \Rightarrow According to the misclassification error rate , a1 is the best
- f. What is the best split (between and) according to the Gini index?

Pour l'attribut a1, the gini Index est :

$$4/9 *[1-(3/4)^2-(1/4)^2] + 5/9 *[1-(1/5)^2-(4/5)^2] = 0.3444$$

Pour l'attribut a2, the gini Index est :

$$5/9 *[1-(2/5)^2-(3/5)^2] + 4/9 *[1-(2/4)^2-(2/4)^2] = 0.4889$$

⇒ a1 is the best split according to the Gini Index