《概率论与数理统计》配套笔记

第一课 事件的运算及其概率

序号	考题类型	页码	掌握与否
题型 1	古典概型(模球)	P2	
题型 2	几何概型(画图)	P2	
题型3	事件的公式及运算	Р3	

考试题型 1· 摸球问题(古典概型)

题1.在一个盒子中有4个黄球,5个白球。现从盒中随机取球,每次取1个,共取3次。

- (1)若取后不放回, 求这3个球中2个黄球,1个白球的概率;
- (2)若每次取后放回,求这3个球中2个黄球,1个白球的概率。

解:(1)9个球取3个: C_0^3 4个黄球取2个: C_4^2 5个白球取1个: C_5^1

$$P(2黃1白) = \frac{C_4^2 \cdot C_5^1}{C_9^3} = \frac{\frac{4!}{2! \cdot (4-2)!} \times 5}{\frac{9!}{3! \cdot (9-3)!}} = \frac{5}{14}$$

$$C_n^m = \frac{n!}{m! (n-m)!}$$
$$n! = n \times (n-1) \times (n-2) \cdots \times 1$$

(2)
$$P(2黄1白) = C_3^2 \cdot \left(\frac{4}{9}\right)^2 \cdot \frac{5}{9} = 3 \cdot \left(\frac{4}{9}\right)^2 \cdot \frac{5}{9} = \frac{80}{243}$$

题2.在一个盆中有5个乒乓球,其中3个新球,2个旧球。现从盆中随机取球,每次任取1个,共取2次。

- (1)若取后不放回, 求这2个球都是新球的概率;
- (2)若每次取后放回,求这2个球都是新球的概率。

解:(1)5个球取2个: C_5^2 3个新球取2个: C_3^2 2个旧球取0个: C_2^0

$$P(2 \uparrow \text{ fix}) = \frac{C_3^2 \cdot C_2^0}{C_5^2} = \frac{3 \times 1}{10} = \frac{3}{10}$$

(2)
$$P(2 \uparrow \text{ fix}) = C_2^2 \cdot \left(\frac{3}{5}\right)^2 \cdot \left(\frac{2}{5}\right)^0 = \left(\frac{3}{5}\right)^2 = \frac{9}{25}$$

考试题型 2·需要画图的题目(几何概型)

题1.已知x的取值是区间[0,4]中的实数,任取一个x的值,求"x>2"的概率.

$$\mathbf{P}(x > 2) = \frac{2}{4} = \frac{1}{2}$$

题2.已知 0 < x < 1, 0 < y < 1, 求 "y > x" 的概率.

$$\Re: P(y > x) = \frac{\frac{1}{2} \times 1 \times 1}{1 \times 1} = \frac{1}{2}$$

题3.甲乙两人约定在7点到7:30间见面,先到者等待10分钟未见即走,求两人见面成功的概率.

解:设两人到达的时间分别为x、y,则见面成功: $|x-y| \le 10$

$$P(见面成功) = \frac{30 \times 30 - 2 \times \frac{1}{2} \times 20 \times 20}{30 \times 30} = \frac{5}{9}$$

考试题型 3 · 事件的公式与运算

 $A \cup B$

A - B

 $A \cap B$

题1. 若 $P(A) = 0.4, P(A \cup B) = 0.6, A, B$ 互不相容, 求P(B)

解: 由于 $P(A \cup B) = P(A) + P(B) - P(AB)$ $\therefore 0.6 = 0.4 + P(B) - 0 \quad \therefore P(B) = 0.2$

题2. 已知事件A与B独立, 且P(A) = 0.4, P(B) = 0.3,

解: $P(\overline{A} \cup B) = P(\overline{A}) + P(B) - P(\overline{A}B)$ $=1-P(A)+P(B)-\lceil P(B)-P(AB)\rceil$ =1-P(A)+P(AB)=1-0.4+0.12=0.72

题3. 若P(A) = 0.3, P(B) = 0.5, 且 A 与 B 相 互 独 立,求A、B至少有一个发生的概率.

 $\mathfrak{M}: P(A \cup B) = P(A) + P(B) - P(AB)$ = 0.3 + 0.5 - 0.15 = 0.65

①对立事件:

$$P(\overline{A}) = 1 - P(A)$$
 $P(\overline{B}) = 1 - P(B)$

②德摩根定律:(长线变短线, 开口换方向)

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
 $\overline{A \cap B} = \overline{A} \cup \overline{B}$

③加法公式:

 $P(A \cup B) = P(A) + P(B) - P(AB)$

 $P(A \cup B \cup C) = P(A) + P(B) + P(C)$

$$-P(AB)-P(AC)-P(BC)$$
$$+P(ABC)$$

④减法公式:

$$P(A-B) = P(A\overline{B}) = P(A) - P(AB)$$

$$P(B-A) = P(B\overline{A}) = P(B) - P(AB)$$

⑤相互独立事件:

$$P(AB) = P(A) \cdot P(B)$$

解: 由于 $P(A \cup B) = P(A) + P(B) - P(AB)$ $\Rightarrow 0.8 = 0.5 + 0.7 - P(AB)$ P(AB) = 0.4 P(B-A) = P(B) - P(AB) = 0.7 - 0.4 = 0.3

题5. 设 $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{2}$, 已知A、B互不相容, 求 $P(\overline{A} \cdot \overline{B})$.

$$= P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - [P(A) + P(B) - P(AB)] = 1 - [\frac{1}{3} + \frac{1}{2} - 0] = \frac{1}{6}$$

题6. 从次品率为0.2的一批产品中有放回地抽取3次,每次抽取一件,则至少有一件次品 的概率是

解:设事件A="至少有一件次品",则A="一件次品都没有"

$$P(\overline{A}) = (1 - 0.2)^3 = 0.512$$
 $\therefore P(A) = 1 - P(\overline{A}) = 1 - 0.512 = 0.488$

题7. 设A、B为两个事件, 且P(AB)=0,则.

A、A与B互斥 B、 $AB = \emptyset$ C、AB未必是不可能事件 D、P(A) = 0或P(B) = 0

解: 假设事件A: $1 \le x \le 3$ 事件B: x = 2

则事件AB: x=2 而P(AB)=P(x=2)=0, 故排除A、B选项

针对D选项,只要事件A与事件B是对立事件即满足条件,故排除D选项,选C.

期末考題・第一节

题1. 已知 $P(A \cup B) = 0.6$, P(B) = 0.3, 则 $P(A\overline{B}) =$ ______.

题 2. 若P(A) = 0.5,且A、B互不相容,则 $P(\overline{A} \cup B) = _____.$

题3. 设A与B相互独立, 且P(A) = 0.4, $P(A \cup B) = 0.8$, 求P(B).

题 4. 设 A、 B、 C 三 个 事 件 , $P(A) = P(B) = P(C) = \frac{1}{4}$, P(AB) = P(BC) = 0 , $P(AC) = \frac{1}{8}$ 则A、B、C至少有一个发生的概率是

题5.在一个盒子中有3个黄球,4个白球。现从盒中随机取球,每次取1个,共取3次。

- (1)若取后不放回, 求这3个球中2个黄球,1个白球的概率;
- (2)若每次取后放回,求这3个球中2个黄球,1个白球的概率.

题6. 三人独立地去破译一份密码,已知各人能破译出的概率分别是 $\frac{1}{5},\frac{1}{2},\frac{1}{1}$,则

三人中至少有一人能将此密码破译出的概率是多少?

题7. 设A表示"甲产品畅销, 乙产品滞销",则其对立事件A表示为 .

A、"甲产品滞销, 乙产品畅销"

B、"甲、乙两种产品都畅销"

C、"甲产品滞销"

D、"甲产品滞销"或乙产品畅销"

第二课 条件概率与两个重要公式

序号	考题类型	页码	掌握与否
题型 1	条件概率与乘法公式	P5	
题型 2	全概率公式	P6	
题型 3	贝叶斯公式	P7	

考试题型 1·条件概率与乘法公式

题1.已知P(A) = 0.5, P(B) = 0.7, $P(A \cup B) = 0.8$, 则P(A|B) =_____.

解: 由于
$$P(A \cup B) = P(A) + P(B) - P(AB)$$

$$\therefore 0.8 = 0.5 + 0.7 - P(AB) \implies P(AB) = 0.4$$

$$\therefore P(A|B) = \frac{P(AB)}{P(B)} = \frac{0.4}{0.7} = \frac{4}{7}$$

题 2.已 知
$$P(A) = 0.5$$
, $P(B) = 0.6$, $P(B|A) = 0.2$, 则 $P(B\overline{A}) =$ _____.

解: 由于
$$P(AB) = P(A) \cdot P(B|A) = 0.5 \times 0.2 = 0.1$$

$$P(B\overline{A}) = P(B) - P(AB) = 0.6 - 0.1 = 0.5$$

条件概率公式:

$$P(B|A) = \frac{P(AB)}{P(A)}$$

$$P(A|B) = \frac{P(AB)}{P(B)}$$

乘法公式:

$$P(AB) = P(A) \cdot P(B|A)$$

$$P(AB) = P(B) \cdot P(A|B)$$

题3.掷一次骰子,事件A是"点数大于3",事件B是"点数是4",则 $P\big(B\big|A\big)=$ ____.

解: 由题知:
$$P(A) = \frac{3}{6} = \frac{1}{2}$$
 $P(B) = \frac{1}{6}$

事件AB: 掷一次骰子,点数是4 ⇒
$$P(AB) = \frac{1}{6}$$
 : $P(B|A) = \frac{P(AB)}{P(A)} = \frac{1/6}{1/2} = \frac{1}{3}$

$$\therefore P(B) = \frac{P(AB)}{P(A|B)} = \frac{\frac{1}{12}}{\frac{1}{2}} = \frac{1}{6} \qquad \therefore P(A \cup B) = P(A) + P(B) - P(AB) = \frac{1}{4} + \frac{1}{6} - \frac{1}{12} = \frac{1}{3}$$

思考: 己知
$$P(A) = P(B) = \frac{1}{3}$$
, $P(AB) = \frac{1}{6}$, 则 $P(A|\overline{B}) = \underline{\hspace{1cm}}$.

解:
$$P(\overline{B}) = 1 - P(B) = \frac{2}{3} \qquad P(A\overline{B}) = P(A) - P(AB) = \frac{1}{3} - \frac{1}{6} = \frac{1}{6}$$
$$\therefore P(A|\overline{B}) = \frac{P(A\overline{B})}{P(\overline{B})} = \frac{1/6}{2/3} = \frac{1}{4}$$

考试题型 2·全概率公式

题1.某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂总产量的25%、35%、40%,各车间产品的次品率分别为6%、4%、2%,求:

(1)全厂产品的次品率 (2)若任取一件产品发现是次品,此次品是甲车间生产的概率.

解:(1) 设A:生产的产品为次品

 B_1 : 甲车间生产 B_2 : 乙车间生产 B_3 : 丙车间生产

则:
$$P(B_1) = 25\%$$
 $P(A|B_1) = 6\%$

$$P(B_2) = 35\%$$
 $P(A|B_2) = 4\%$

$$P(B_3) = 40\% P(A|B_3) = 2\%$$

$$\therefore P(A) = P(B_1) \cdot P(A|B_1) + P(B_2) \cdot P(A|B_2) + P(B_3) \cdot P(A|B_3)$$

$$= 25\% \times 6\% + 35\% \times 4\% + 40\% \times 2\% = 0.037 \qquad (2)$$
 多见下一知识点

②写出完备事件组 B_1 、 B_2 、 B_3 ③写出 $P(B_1)$ 、 $P(B_2)$ 、 $P(B_3)$ 与 $P(A|B_1)$ 、 $P(A|B_2)$ 、 $P(A|B_3)$

④带入全概率公式计算:

①设事件A为求的事件

$$P(A) = \sum_{i=1}^{3} P(B_i) \cdot P(A|B_i)$$

题2.某保险公司把被保险人分为3类: "谨慎型"、"一般型"、"冒失型"。根据统计资料显示,上述3类人在一年内发生事故的概率依次为0.05, 0.15和0.3; 如果"谨慎型"被保人占20%, "一般型"占50%, "冒失型"占30%,求:

- (1)被保险的人一年内出事故的概率;
- (2)现知某被保人在一年内出了事故,则他是"谨慎型"的概率是多少?

解:(1)设A:被保险的人一年内出事故 B_1 : 是"谨慎型" B_2 : 是"一般型" B_3 : 是"冒失型" $P(B_1) = 20\%$ $P(A|B_1) = 0.05$ $P(B_2) = 50\%$ $P(A|B_2) = 0.15$ $P(B_3) = 30\%$ $P(A|B_3) = 0.3$ $\therefore P(A) = P(B_1) \cdot P(A|B_1) + P(B_2) \cdot P(A|B_2) + P(B_3) \cdot P(A|B_3)$ $= 20\% \times 0.05 + 50\% \times 0.15 + 30\% \times 0.3 = 0.175$ (2)参见下一知识点

考试题型 3. 贝叶斯公式

题1.某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂总产量的25%、35%、40%,各车间产品的次品率分别为6%、4%、2%,求:

(1)全厂产品的次品率 (2)若任取一件产品发现是次品, 此次品是甲车间生产的概率.

解:(1) 设A:生产的产品为次品

 B_1 : 甲车间生产 B_2 : 乙车间生产 B_3 : 丙车间生产

则: $P(B_1) = 25\%$ $P(A|B_1) = 6\%$

$$P(B_2) = 35\%$$
 $P(A|B_2) = 4\%$

$$P(B_3) = 40\% P(A|B_3) = 2\%$$

$$P(A) = P(B_1) \cdot P(A|B_1) + P(B_2) \cdot P(A|B_2) + P(B_3) \cdot P(A|B_3)$$

$$= 25\% \times 6\% + 35\% \times 4\% + 40\% \times 2\% = 0.037$$

(2)
$$P(B_1|A) = \frac{P(B_1)}{P(A)} \cdot P(A|B_1) = \frac{0.25}{0.037} \times 0.06 = \frac{15}{37}$$

①设事件A为求的事件

②写出完备事件组B₁、B₂、B₂

③写出 $P(B_1)$ 、 $P(B_2)$ 、 $P(B_3)$

与 $P(A|B_1)$ 、 $P(A|B_2)$ 、 $P(A|B_3)$

4带入全概率公式计算:

$$P(A) = \sum_{i=1}^{3} P(B_i) \cdot P(A|B_i)$$

⑤带入贝叶斯公式并计算

$$P(B_i|A) = \frac{P(B_i)}{P(A)} \cdot P(A|B_i)$$

题2.某保险公司把被保险人分为3类: "谨慎型"、"一般型"、"冒失型"。根据统计资料显示,上述3类人在一年内发生事故的概率依次为0.05, 0.15和0.3; 如果"谨慎型"被保人占20%, "一般型"占50%, "冒失型"占30%,求:

(1)被保险的人一年内出事故的概率;

(2)现知某被保人在一年内出了事故,则他是"谨慎型"的概率是多少?

解:(1)设A:被保险的人一年内出事故 B_1 : 是"谨慎型" B_2 : 是"一般型" B_3 : 是"冒失型" $P(B_1) = 20\%$ $P(A|B_1) = 0.05$ $P(B_2) = 50\%$ $P(A|B_2) = 0.15$ $P(B_3) = 30\%$ $P(A|B_3) = 0.3$ $\therefore P(A) = P(B_1) \cdot P(A|B_1) + P(B_2) \cdot P(A|B_2) + P(B_3) \cdot P(A|B_3)$ $= 20\% \times 0.05 + 50\% \times 0.15 + 30\% \times 0.3 = 0.175$

(2)
$$P(B_1|A) = \frac{P(B_1)}{P(A)} \cdot P(A|B_1) = \frac{0.2}{0.175} \times 0.05 = \frac{2}{35}$$

题3.某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂总产量的25%、35%、40%,各车间产品的次品率分别为6%、4%、2%,求:若任取一件产品发现是次品,此次品是甲车间生产的概率.

解:答案参考题1

- 题4.某地区成年男性居民中肥胖者占25%,中等者占60%,瘦者占15%,又知肥胖者患高血压病的概率为20%,中等者患高血压病的概率为8%,瘦者患高血压病的概率2%,试求:(1)该地区成年男性居民患高血压病的概率;
 - (2)若知某成年男性居民患高血压病,则他属于肥胖者的概率是多少?

解:(1)设A:成年男性居民患高血压病 B_1 :他是肥胖者 B_2 :他是中等者 B_3 :他是瘦者

則:
$$P(B_1) = 25\%$$
 $P(A|B_1) = 20\%$ $P(B_2) = 60\%$ $P(A|B_2) = 8\%$

$$P(B_3) = 15\%$$
 $P(A|B_3) = 2\%$

$$P(A) = P(B_1) \cdot P(A|B_1) + P(B_2) \cdot P(A|B_2) + P(B_3) \cdot P(A|B_3)$$

$$= 25\% \times 20\% + 60\% \times 8\% + 15\% \times 2\% = 0.101$$

(2)
$$P(B_1|A) = \frac{P(B_1)}{P(A)} \cdot P(A|B_1) = \frac{0.25}{0.101} \times 0.2 = \frac{50}{101}$$

期末考题・第二节

题1.设P(A) = 0.6, P(B) = 0.4, P(A|B) = 0.3, 求 $P(A|\overline{B})$.

题 2.已 知 $P(\overline{A}|B) = 0.5$, P(A) = 0.5, P(B) = 0.8, 求P(B|A).

题3.设A、B为随机事件,0 < P(A) < 1, 0 < P(B) < 1, 若 P(A|B) = 1,则下面正确的是____.

$$A, P(A|\overline{B}) = 0$$
 $B, P(A+B) = 1$ $C, P(B|A) = 1$ $D, P(A-B) \ge 0$

题4.两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02. 加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍。

- (1)求任意取出来的零件是合格品的概率.
- (2)如果任意取出的零件是废品,求它是第二台车床加工的概率.

题5.有朋友自远方来访,他乘火车、轮船、汽车、飞机来的概率分别是0.3,0.2,0.1,0.4.

如果他乘坐火车、轮船、汽车来的话,迟到的概率分别为 $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{12}$,而乘飞机不会迟到。

(1)求他迟到的概率 (2)如果他迟到了, 试问他乘火车来的概率是多少?

第三课 一维随机变量基础

序号	考题类型	页码	掌握与否
题型 1	分布列与分布函数(离散型)	P9	
题型 2	已知 X 分布列, 求 Y 的分布列	P10	
题型3	概率密度与分布函数(连续型)	P10	
题型 4	已知X的概率密度,求Y的概率密度	P12	

考试题型1.求分布列(律)与分布函数-离散型

题1.某种产品共5件,其中有2件次品,3件正品,从中任取3件,设X表示取出的3件产品中次品的个数。求:(1)X的分布列(律) (2)X的分布函数F(x)

解:(1) X可能取值: 0, 1, 2

$$P(X=0) = \frac{C_3^3}{C_5^3} = \frac{1}{10}$$

$$P(X=1) = \frac{C_2^1 \cdot C_3^2}{C_5^2} = \frac{6}{10} = \frac{3}{5}$$

$$P(X=2) = \frac{C_2^2 \cdot C_3^1}{C_2^3} = \frac{3}{10}$$
, 分布律如右图:

$$(2)$$
当 $x < 0$ 时, $F(x) = 0$

当
$$0 \le x < 1$$
时, $F(x) = \frac{1}{10}$

当
$$1 \le x < 2$$
时, $F(x) = \frac{1}{10} + \frac{3}{5} = \frac{7}{10}$

当
$$x \ge 2$$
时, $F(x) = \frac{1}{10} + \frac{3}{5} + \frac{3}{10} = 1$

求X的分布列的步骤:

- ①写出事件X的所有可能取值
- ②依次算出每一种可能事件的概率
- ③把事件和概率画在同一个表格里

X	0	1	2
P	1/10	3/5	3/10

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{10} & 0 \le x < 1 \\ \frac{7}{10} & 1 \le x < 2 \\ 1 & x \ge 2 \end{cases}$$

题 2.设随机变量 X的分布函数 为 $F(x) = \begin{cases} 0 & x < 1 \\ 0.3 & 1 \le x < 2 \\ 0.8 & 2 \le x < 3 \\ 1 & x \ge 3 \end{cases}$, 求 X 的 分 布 律 和 P(1.5 < X < 2.5).

解: 由题知, 分布律如右图:

$$\therefore P(1.5 < X < 2.5) = P(X = 2) = 0.5$$

思考:已知随机变量X的分布律如右表,求c的值.

X	1	2	3
P	0.3	0.5	0.2

X	-1	0	2
P	0.4	0.2	c
9			

 $\text{M}: \quad 0.4 + 0.2 + c = 1 \qquad \therefore c = 0.4$

考试题型2·已知X分布列,求Y的分布列

题1.设随机变量X的分布列如右表,

求: $Y = X^2 + 1$ 的分布列.

X	-1	0	1
P	0.4	0.3	0.3

解:Y可能取值: 1, 2,分布列如下:

Y	1	2
P	0.3	0.7

①根据X的所有取值,写出Y的所有取值

②将表格中X那一行对应换成Y

③合并相同的Y, 若没有则不需合并

题 $2.$ 设随机变量 X 的分布列如右表,
\vec{x} : $V = X - 1$ 的分布列

X	-1	0	1
P	0.4	0.3	0.3

分布列如下: 解: V的可能取值: -2,-1,0

V	-2	-1	0
P	0.4	0.3	0.3

考试题型 3·求概率密度与分布函数-连续型

求:(1)常数k (2)
$$P\{0 \le x < 1\}$$
 (3)分布函数 $F(x)$

解:(1) 由
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

$$\text{Fig:} \int_{-\infty}^{0} f(x) dx + \int_{0}^{2} f(x) dx + \int_{2}^{+\infty} f(x) dx = 1$$

$$\therefore \left. \left(\frac{kx^2}{2} \right) \right|_0^2 = 1 \quad \Rightarrow \quad \therefore \quad k = \frac{1}{2}$$

(2)
$$P\{0 \le x < 1\} = \int_0^1 f(x) dx = \int_0^1 \frac{x}{2} dx = \left(\frac{x^2}{4}\right)\Big|_0^1 = \frac{1}{4}$$

(3)当
$$x < 0$$
时, $F(x) = \int_{-\infty}^{x} f(x) dx = \int_{-\infty}^{x} 0 dx = 0$

当
$$0 \le x < 2$$
时, $F(x) = \int_{-\infty}^{x} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{x} f(x) dx = \int_{-\infty}^{0} 0 dx + \int_{0}^{x} \frac{x}{2} dx = \frac{x^{2}}{4}$

故:
$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x^2}{4} & 0 \le x < 2 \\ 1 & x \ge 2 \end{cases}$$

题2.设随机变量X的概率密度函数为 $f(x) = \begin{cases} Ax+1 & 0 \le x \le 2 \\ 0 & \text{其它} \end{cases}$, 求:

(1)
$$A$$
的值 (2) $P\{1 \le x < 3\}$ (3) X 的分布函数 $F(x)$

解:(1)由
$$\int_{-\infty}^{+\infty} f(x)dx = 1$$
 知: $\int_{-\infty}^{0} f(x)dx + \int_{0}^{2} f(x)dx + \int_{2}^{+\infty} f(x)dx = 1$:... $\left(\frac{Ax^{2}}{2} + x\right)\Big|_{0}^{2} = 1$:. $A = -\frac{1}{2}$

(2)
$$P\{1 \le x < 3\} = \int_{1}^{3} f(x) dx = \int_{1}^{2} \left(-\frac{1}{2}x + 1\right) dx + \int_{2}^{3} 0 dx = \left(-\frac{x^{2}}{4} + x\right)\Big|_{1}^{2} = \frac{1}{4}$$

(3)当
$$x < 0$$
时, $F(x) = \int_{0}^{x} f(x)dx = \int_{0}^{x} 0dx = 0$

当
$$0 \le x < 2$$
时, $F(x) = \int_{-\infty}^{0} f(x) dx + \int_{0}^{x} f(x) dx = \int_{-\infty}^{0} 0 dx + \int_{0}^{x} \left(-\frac{x}{2} + 1\right) dx = -\frac{x^{2}}{4} + x$

$$\begin{array}{c|cccc}
0 & Ax+1 & 0 \\
\hline
0 & 2 & x
\end{array}$$

题3.设连续型随机变量X的分布函数为 $F(x) = \begin{cases} 0 & x < 0 \\ kx^2 & 0 \le x < 1, \ x : 1 \end{cases}$

(1)系数k (2) X落在区间(0.3,0.7)的概率 (3) X的概率密度f(x)

解:(1) 由
$$k \cdot 1^2 = F(1) = 1 \implies \therefore k = 1$$

(2)
$$P\{0.3 < x < 0.7\} = F(0.7) - F(0.3) = 0.7^2 - 0.3^2 = 0.4$$

(3)
$$F'(x) = f(x) = \begin{cases} 0 & x < 0 \\ 2x & 0 \le x < 1 = \\ 0 & x \ge 1 \end{cases}$$
 (3)

连续型分布函数F(x)性质:

①
$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0$$

 $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$
而且 $F(x)$ 是连续的

(2)
$$P\{a < x < b\} = F(b) - F(a)$$

思考:设 $F_1(x)$ 和 $F_2(x)$ 分别为随机变量 X_1 和 X_2 的分布函数,为使 $F(x)=aF_1(x)-bF_2(x)$ 是某一随机变量X的分布函数,在下列给定的各组数值中应取()

A,
$$a = \frac{3}{5}, b = -\frac{2}{5}$$
 B, $a = \frac{2}{3}, b = \frac{2}{3}$ C, $a = -\frac{1}{2}, b = \frac{3}{2}$ D, $a = \frac{1}{2}, b = -\frac{3}{2}$

解:答案选A, 只有A项系数符合条件.

考试题型4.已知X概率密度,求Y概率密度

题1.设随机变量X的密度函数为 $f(x) = \begin{cases} \frac{1}{2} & 1 \le x \le 3 \\ 0 & \text{其它} \end{cases}$,求: $Y = X^2$ 的概率密度.

解: 当 $1 \le x \le 3$ 时,则: $1 \le y \le 9$

$$F_{Y}(y) = P(Y \le y)$$

$$= P(X^{2} \le y)$$

$$= P(-\sqrt{y} \le X \le \sqrt{y})$$

$$= \int_{-\sqrt{y}}^{\sqrt{y}} f(x) dx = \int_{-\sqrt{y}}^{1} 0 dx + \int_{1}^{\sqrt{y}} \frac{1}{2} dx = \frac{\sqrt{y} - 1}{2}$$

解题步骤:

- ①根据关系式Y=…X, 求出y的有效范围
- ②写出Y的分布函数 $F_{y}(y) = P(Y \le y)$
- ③带入 $Y=\cdots X$, 并计算出 $F_{y}(y)$
- ④分布函数求导, $F_Y(y) = f_Y(y)$

题2.设随机变量X的密度函数为 $f_X(x) = \begin{cases} 3x^2 & 0 < x < 1 \\ 0 & \pm c \end{cases}$,求: $Y = 1 - \sqrt[3]{X}$ 的密度函数 $f_Y(y)$.

解: 90 < x < 1时, 则: 0 < y < 1

$$F_{Y}(y) = P(Y \le y)$$

$$= P(1 - \sqrt[3]{X} \le y)$$

$$= P[X \ge (1 - y)^{3}] = \int_{(1 - y)^{3}}^{+\infty} f_{X}(x) dx = \int_{(1 - y)^{3}}^{1} 3x^{2} dx + \int_{1}^{+\infty} 0 dx = 1 - (1 - y)^{9}$$

$$\Leftrightarrow \bot : f_{Y}(y) = F'_{Y}(y) = \begin{cases} 9(1 - y)^{8} & 0 < y < 1 \\ 0 & \bigstar \ \end{cases}$$

题3.设随机变量
$$X$$
的密度函数为 $f(x) = \begin{cases} 1/3 & -1 < x < 2 \\ 0 &$ 其它 \end{cases} ,求: $Y = |X|$ 的概率密度.

解: 当
$$-1 < x < 1$$
时,则: $0 < y < 1$

$$F_{Y}(y) = P(Y \le y) = P(|X| \le y)$$

$$= P\left(-y \le X \le y\right) = \int_{-y}^{y} f(x)dx = \int_{-y}^{0} f(x)dx + \int_{0}^{y} f(x)dx = \int_{-y}^{0} \frac{1}{3}dx + \int_{0}^{y} \frac{1}{3}dx = \frac{2}{3}y$$

当1≤x<2时,则: 1≤y<2

$$F_{Y}(y) = P(Y \le y) = P(|X| \le y)$$

$$= P\left(-y \le X \le y\right) = \int_{-y}^{y} f(x)dx = \int_{-y}^{0} f(x)dx + \int_{0}^{y} f(x)dx = \int_{-1}^{0} \frac{1}{3}dx + \int_{0}^{y} \frac{1}{3}dx = \frac{1}{3} + \frac{1}{3}y$$

期末考題・第三节

题1.从编号为1、2、3、4、5、6的6只球中任取3只,用X表示从中取出的最小号码。

$$\vec{x}$$
:(1) X 的分布律 (2) X 的分布函数 $F(x)$ (3) \vec{x} P { $X \le 3$

题2.设随机变量X的密度函数为 $f_X(x) = \begin{cases} A(1+x) & -1 \le x \le 1 \\ 0 &$ 其它

$$(1)$$
系数 A (2) $P\{|x|<0.5\}$ (3) $Y=2X-1$ 的密度函数 $f_{Y}(y)$

题3.设连续型随机变量X的密度函数为: $f(x) = Ae^{-|x|}$, $-\infty < x < +\infty$ 求:

(1)系数A (2)
$$P{0 < x < 1}$$
 (3) X 的分布函数 $F(x)$

题4.设连续型随机变量X的分布函数为
$$F(x) = \begin{cases} A + Be^{-2x} & x > 0 \\ 0 & x \le 0 \end{cases}$$
, 求:

$$(1)$$
系数 A 、 B (2) $P{-1 < X < 1}$ (3) X 的概率密度 $f_X(x)$

题 5.设 随 机 变 量
$$X$$
 的 分 布 函 数 为 $F(x) = \begin{cases} 0 & x < 0 \\ \frac{ax^2}{4} + b & 0 \le x < 2, \quad y|a = \underline{\qquad}, \quad b = \underline{\qquad}, \quad c = \underline{\qquad}. \end{cases}$

题6.设随机变量
$$X$$
的密度函数为 $f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{其它} \end{cases}$,求:

$$(1)Y = e^X$$
的概率密度;

第四课 常考的五种分布

序号	考题类型	页码	掌握与否
题型 1	二项分布	P14	
题型 2	泊松分布	P14	
题型3	均匀分布	P15	
题型 4	指数分布	P15	
题型 5	正态分布	P16	

考试题型1·二项分布-离散型

表示方法	分布律
$X \sim B(n,p)$	$P(X=k) = C_n^k p^k (1-p)^{n-k}$

题1.重复投5次硬币,求反面朝上次数为3的概率为多少?

解:
$$P(反面朝上) = \frac{1}{2}$$
 : $P(X=3) = C_5^3 \left(\frac{1}{2}\right)^3 \left(1 - \frac{1}{2}\right)^{5-3} = \frac{5}{16}$

题2.向一个目标进行3次独立射击。每次击中目标的概率为p,令X表示击中目标的次数,已知 $P(X \ge 1) = \frac{26}{27}$,则 $P(X = 1) = \underline{\hspace{1cm}}$.

解:
$$: P(X \ge 1) = \frac{26}{27} \implies : P(X < 1) = 1 - \frac{26}{27} = \frac{1}{27} \implies P(X = 0) = \frac{1}{27}$$

 $:: (1-p)^3 = \frac{1}{27} \implies p = \frac{2}{3} \implies : P(X = 1) = C_3^1 \left(\frac{2}{3}\right)^1 \left(1 - \frac{2}{3}\right)^{3-1} = \frac{2}{9}$

考试题型2.泊松分布-离散型

表示方法	分布律
$X \sim P(\lambda)$	$P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda} (k=0,1,2\cdots)$

题1.设随机变量X服从参数为 λ 的Poisson分布,且P(X=1)=P(X=2),求参数 λ .

解: 由题意知:
$$\frac{\lambda^1}{1!}e^{-\lambda} = \frac{\lambda^2}{2!}e^{-\lambda} \implies \lambda^2 - 2\lambda = 0 \implies \therefore \lambda = 2$$

题 2.设随机变量 $X \sim P(2)$,则 $P(X \ge 1) = ____.$

解:
$$P(X \ge 1) = 1 - P(X < 1) = 1 - P(X = 0) = 1 - e^{-2}$$

题3.设X与Y相互独立, $X \sim \pi(a)$, $Y \sim \pi(b)$,则 $X+Y \sim$ _____.

解:根据泊松分布的规律: $X \sim \pi(a)$, $Y \sim \pi(b)$ 则: $X + Y \sim \pi(a + b)$

考试题型 3.均匀分布-连续型

题1.设随机变量X服从(0,6)上的均匀分布,则方程 $t^2 + Xt + 1 = 0$ 无实根的概率为多少?

表示方法	概率密度函数		
$X \sim U(a,b)$	$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & 其它 \end{cases}$		

解: 由 $\Delta = X^2 - 4 < 0$ 知: -2 < X < 2 故: $P(-2 < X < 2) = \frac{2}{6} = \frac{1}{3}$ [可自行函数轴计算]

题2.设随机变量X服从(0,5)上的均匀分布,则方程 $4t^2+4Xt+X+2=0$ 有实根的概率为多少?

解:
$$b\Delta = b^2 - 4ac \ge 0$$
 \Rightarrow $b: (4X)^2 - 16(X+2) \ge 0$ \Rightarrow $(X-2)(X+1) \ge 0$ $\therefore X \le -1$ $X \ge 2$ $\therefore P(X \le -1 X \ge 2) = \frac{3}{5}$

题3.设随机变量X在区间[1,3]服从均匀分布,求: $Y = X^2$ 的概率密度.

解:答案参考第03课的题型4的题1.

考试题型 4·指数分布-连续型

表示方法	概率密度函数		
$X \sim E(\lambda)$	$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$		

题1.某种电子元件的使用寿命X(单位:小时)服从 $\lambda = \frac{1}{600}$ 的指数分布,求:(1)一个元件能正常使用200小时以上的概率 (2)一个元件能正常使用200小时到300小时之间的概率.

解: 由题知:
$$f(x) = \begin{cases} \frac{1}{600} e^{-\frac{x}{600}} & x > 0\\ 0 & x \le 0 \end{cases}$$

$$(1) P(X > 200) = \int_{200}^{+\infty} f(x) dx = \int_{200}^{+\infty} \frac{1}{600} e^{-\frac{x}{600}} dx = \left(-e^{-\frac{x}{600}}\right)\Big|_{200}^{+\infty} = e^{-\frac{1}{3}}$$

$$(2)P(200 < X < 300) = \int_{200}^{300} f(x)dx = \int_{200}^{300} \frac{1}{600} e^{-\frac{x}{600}} dx = e^{-\frac{1}{3}} - e^{-\frac{1}{2}}$$

考试题型 5·正态分布-连续型

题1.设
$$X \sim N(1,4)$$
, $P\{X < a\} = P\{X \ge a\}$, 则 $a =$ _____.

表示方法	概率密度函数		
$X \sim N\left(\mu, \sigma^2\right)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$		

解:通过正态分布的曲线, 容易知道a=1.

正态分布概率密度性质:

- ①图像关于 $x = \mu$ 对称
- ②面积表示概率,总面积是1

题 2. 设 $X \sim N(1, \sigma^2)$, 已知 $P\{X < 0\} = a$,则 $P\{X > 2\} = 1$

解:如右图,通过正态分布的曲线, 易知: $P\{X > 2\} = P\{X < 0\} = a$

思考: 设 $X \sim N(1,\sigma^2)$, 已知 $P\{X \ge 0\} = a$,则 $P\{X > 2\} = _$

解:如右图,通过正态分布的曲线,

易知:
$$P\{X > 2\} = P\{X < 0\} = 1 - P\{X \ge 0\} = 1 - a$$

题3.设
$$X \sim N(-1,16)$$
,则 $P\{-4 < X < 4\} =$ ______.
(其中 $\Phi(1.25) = 0.8944$, $\Phi(-0.75) = 0.2266$)

解: 由于
$$\frac{X+1}{4} \sim N(0,1)$$

$$\therefore P\left\{-4 < X < 4\right\} = \Phi\left(\frac{4 - (-1)}{4}\right) - \Phi\left(\frac{-4 - (-1)}{4}\right)$$

$$=\Phi\left(1.25\right)-\Phi\left(-0.75\right)=0.8944-0.2266=0.6678$$

思考: 设
$$X \sim N(-1,16)$$
, 则 $P(|X| < 4) = ____$.
(其中 $\Phi(1.25) = 0.8944$, $\Phi(-0.75) = 0.2266$)

解:答案同题3.

正态分布的分布函数性质:

① 标准正态分布F(x)用 $\Phi(x)$ 表示

②
$$\Phi(-x) = 1 - \Phi(x), \quad \Phi(0) = 0.5$$

③ 若
$$X \sim N(\mu, \sigma^2)$$
,则 $\frac{X - \mu}{\sigma} \sim N(0, 1)$

$$(1) P(a < X < b) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

$$(2) P(X < a) = \Phi\left(\frac{a - \mu}{\sigma}\right)$$

$$(3) P(X > b) = 1 - \Phi\left(\frac{b - \mu}{\sigma}\right)$$

题4.设 $X \sim N(3,2^2)$,则 $P\{1 < X \le 5\} = ___.(其中\Phi(1) = 0.8413)$

解: 由于
$$\frac{X-3}{2}$$
~ $N(0,1)$

$$\therefore P\left\{1 < X \le 5\right\} = \Phi\left(\frac{5-3}{2}\right) - \Phi\left(\frac{1-3}{2}\right) = \Phi\left(1\right) - \Phi\left(-1\right) = \Phi\left(1\right) - \left[1-\Phi\left(1\right)\right] = 2\Phi\left(1\right) - 1 = 0.6826$$

附: 五种常考分布

类型	表示方法	分布律/概率密度
离散	二项分布: $X \sim B(n,p)$	$P(X=k) = C_n^k p^k (1-p)^{n-k}$
型型	泊松分布: $X \sim P(\lambda)$	$P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda} (k=0,1,2\cdots)$
连	均匀分布: X~U(a,b)	$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \sharp \stackrel{\sim}{\mathcal{E}} \end{cases}$
连续型	指数分布: $X \sim E(\lambda)$	$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$
	正态分布: $X \sim N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

期末考題・第四节

题1.设 $X \sim U(0,1)$, 求Y = -2X + 1的概率密度.

题 2.设随机变量 $X \sim B\left(3, \frac{1}{3}\right)$,则 $P(X \ge 1) = ____.$

题3.设随机变量 $X \sim N(2,4)$, 设 $P(X \le c) = P(X > c)$, 则 $c = ____$.

题4.设X与Y相互独立, $X \sim \pi(3)$, $Y \sim \pi(4)$,则 $X+Y \sim$ _____.

题5.设随机变量 $X \sim N(\mu, \sigma^2)$, 则随 σ 增大, $P\{|X - \mu| < \sigma\}$ (

A.单调增大

B.单调减小 C.保持不变 D.增减不定

题6.设随机变量 $X \sim N(2,\sigma^2)$, 已知P(0 < X < 4) = 0.3, 则 $P(X < 0) = ____.$

题7.某仪器装有三只独立工作的同型号电子元件, 其寿命X(单位: 小时)都服从同一指数分布,

密度函数 $f(x) = \begin{cases} \frac{1}{600} e^{-\frac{x}{600}} & x > 0\\ 0 & x < 0 \end{cases}$,求在仪器使用的最初200小时内,至少有一只电子元件

损坏的概率.

题8.将一温度调节器放置在贮存着某种液体的容器内,调节器定在 $d^{\circ}C$,液体的温度X (单位 $^{\circ}C$) 是一个随机变量,且 $X \sim N(d,0.5^2)$ 。注: $\Phi(2) = 0.9772$, $\Phi(2.33) = 0.99$

- ①若d=90, 求X小于89°C的概率.
- ②若要求保持液体的温度至少为80°C的概率不低于0.99、问d至少是多少?

第五课 二维随机变量(离散型)

序号	考题类型	页码	掌握与否
题型 1	已知二维离散型分布律,求各种问题	P18	
题型 2	未知二维离散型分布律,求相关参数	P19	
题型 3	给出题干, 求二维离散型分布律	P19	

常考题型 1·已知二维离散型分布律, 求各种问题

题1.已知二维离散型随机变量(X,Y)的分布律如右图,求:

(1)
$$P(X = 0, Y = 2) \not \Rightarrow P(X + Y = 2)$$

- (2) P(X=1|Y=0) (3) $X \to Y$ 的边缘分布律
- (4) 判断X与Y是否相互独立(5) $Z = \min\{X,Y\}$ 的分布律

X	0	1	2
0	0.2	0	0.2
1	0.3	0.2	0.1

$$\text{$\text{\textbf{M}}$}:(1)P(X=0, Y=2)=0.2 \quad P(X+Y=2)=P(X=0,Y=2)+P(X=1,Y=1)=0.2+0.2=0.4$$

$$(2)P(X=1|Y=0) = \frac{P(X=1,Y=0)}{P(Y=0)} = \frac{0.3}{0.2+0.3} = \frac{3}{5}$$

(3)	X	0	1
	p	0.4	0.6

Y	0	1	2
p	0.5	0.2	0.3

(4)
$$P(X = 0, Y = 1) = 0$$

而 $P(X = 0) \cdot P(Y = 1) = 0.4 \times 0.2 = 0.08$
∴ $P(X = 0, Y = 1) \neq P(X = 0) \cdot P(Y = 1)$
故: X, Y 不相互独立

判断相互独立公式: $P(X = x_i, Y = y_i) = P(X = x_i) \cdot P(Y = y_i)$ 若成立,则X、Y相互独立 反之,则X、Y不相互独立

 $(5)Z = \min\{X,Y\}$ 的所有可能取值0,1

$$P(Z=0) = P(X=0,Y=0) + P(X=0,Y=1) + P(X=0,Y=2) + P(X=1,Y=0)$$

$$= 0.2 + 0 + 0.2 + 0.3 = 0.7$$

$$P(Z=1) = P(X=1,Y=1) + P(X=1,Y=2) = 0.1 + 0.2 = 0.3$$

$$\boxed{Z 0 1}$$

$$\boxed{P(Z=1) = P(X=1,Y=1) + P(X=1,Y=2) = 0.1 + 0.2 = 0.3}$$

思考: $求Z = \max\{X,Y\}$ 的分布律

答: $Z = \max\{X,Y\}$ 的所有可能取值0,1,2

$$P(Z=0) = P(X=0, Y=0) = 0.2$$

$$P(Z=1) = P(X=0,Y=1) + P(X=1,Y=0) + P(X=1,Y=1) = 0.5$$

 $P(Z=2) = P(X=1,Y=2) + P(X=0,Y=2) = 0.3$

题2.已知二维离散型随机变量(X,Y)的分布律如右图, 求:

- (1) P(X = Y) (2) X和Y的边缘分布律
- (3) 判断X与Y是否相互独立

Y	-1	0	1
0	0.08	0.15	0.18
1	0.07	0.2	0.32

 $\Re:(1)P(X=Y)=P(X=Y=0)+P(X=Y=1)=0.15+0.32=0.47$

(2)	X	-1	0	1
	p	0.15	0.35	0.5

Y	0	1
p	0.41	0.59

常考题型 2·未知二维离散型分布律,求相关参数

题1.已知二维离散型随机变量(X,Y)的联合分布律及边缘分布律满足右表: 若X和Y相互独立, 填写表格中空白部分.

(无过程, 自己根据自己的方法再写一次过程)

X	1	2	3	p_{i} .
1	A	1/8	В	C
2	1/8	D	E	F
$p_{\boldsymbol{\cdot}_j}$	1/6	G	H	1

常考题型 3·给出题干,求二维离散型分布律

题1.在有1件次品和5件正品中的产品中,不放回的任取两次,定义随机变量X,Y如下:

$$X = \begin{cases} 1, & 第一次抽取为正品, \\ 0, & 第一次抽取为次品, \end{cases}$$
 $Y = \begin{cases} 1, & 第二次抽取为正品, \\ 0, & 第二次抽取为次品, \end{cases}$ 求: (X,Y) 的联合概率分布。

$$\mathfrak{M}: \ P(X=0, Y=0) = \frac{1}{6} \times \frac{0}{5} = 0 \quad P(X=0, Y=1) = \frac{1}{6} \times \frac{5}{5} = \frac{1}{6}$$

$$P(X=1, Y=1) = \frac{5}{6} \times \frac{4}{5} = \frac{4}{6} = \frac{2}{3} \quad P(X=1, Y=0) = \frac{5}{6} \times \frac{1}{5} = \frac{1}{6}$$

Y	0	1	p _i .
0	0	$\frac{1}{6}$	$\frac{1}{6}$
1	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{5}{6}$
$p_{\boldsymbol{\cdot}_j}$	$\frac{1}{6}$	$\frac{5}{6}$	1

期末考題・第五节

题1.已知随机变量X, Y的分布律:

X	-1	0	1
P	0.25	0.5	0.25

Y	0	1
P	0.5	0.5

且P(XY = 0) = 1.则:

①求X、Y的联合分布律 ②问X、Y是否独立?为什么? ③求Z = X + Y的分布律

题2.已知二维随机变量X, Y的联合分布律如右图:

①试确定常数c

②写出X与Y的边缘分布律

 $\Im RP(X=Y)$

④判断X、Y是否独立?并说明理由.

题3.已知二维离散型随机变量X, Y的分布律满足右表, 求出表中未知字母的具体值.

XY	0	1	2
0	0.2	0	c
1	0.2	0.2	0.2

XY	0	1	2	p_{i} .
-1	0.1	а	0	0.3
0	0.2	0	b	с
1	d	0.1	0.1	e
p. _j	0.4	f	g	h

题4.设随机变量(X,Y)的分布列如右图,且X与Y相互独立,求:a和b的值.

XY	0	1	2
0	b	0.15	0.09
1	0.14	0.35	а

题5.在有1件次品和5件正品中的产品中,有放回的任取两次,定义随机变量X,Y如下:

$$X = \begin{cases} 1, &$$
第一次抽取为正品, $\\ 0, &$ 第一次抽取为次品, \end{cases} $Y = \begin{cases} 1, &$ 第二次抽取为正品, $\\ 0, &$ 第二次抽取为次品,

求:(X,Y)的联合概率分布.

第六课(上) 积分的计算

序号	考题类型	页码	掌握与否
知识点1	画区域	P21	
知识点2	求一重积分	P22	
知识点3	求二重积分	P22	

常考知识1·画区域 [以下题目自行练习画]

题1.已知二维连续型随机变量
$$(X,Y)$$
的联合概率密度为: $f(x,y)=\begin{cases} 6x^2y & 0 \le x \le 1, 0 \le y \le 1\\ 0 &$ 其它

题2.已知二维连续型随机变量
$$(X,Y)$$
的联合概率密度为: $f(x,y)=\begin{cases} 8xy & 0 \le x \le 1, 0 \le y \le x \\ 0 &$ 其它

题3.已知二维连续型随机变量
$$(X,Y)$$
的联合概率密度为: $f(x,y)=\begin{cases} 6xy & 0 \le x \le 1, x^2 \le y \le 1 \\ 0 &$ 其它

题4.已知二维连续型随机变量
$$(X,Y)$$
的联合概率密度为: $f(x,y)=\begin{cases} 8xy & 0 < x < 1, x < y < 1 \\ 0 &$ 其它

题5.已知二维连续型随机变量
$$(X,Y)$$
的联合概率密度为: $f(x,y)=\begin{cases} 1.5x & 0 \le x \le 1, |y| \le x \\ 0 &$ 其它

题6.已知二维连续型随机变量
$$(X,Y)$$
的联合概率密度为: $f(x,y)=\begin{cases} 6e^{-(2x+3y)} & x>0,y>0 \\ 0 &$ 其它

题7.已知二维连续型随机变量
$$(X,Y)$$
的联合概率密度为: $f(x,y)=\begin{cases}12y^2 & 0 \le y \le x \le 1\\ 0 &$ 其它

常考知识2.求一重积分

题1-1.求:
$$f_X(x) = \int_0^1 6x^2 y dy$$
 解: $f_X(x) = 6x^2 \cdot \int_0^1 y dx$

题1-1.求:
$$f_X(x) = \int_0^1 6x^2 y dy$$
 解: $f_X(x) = 6x^2 \cdot \int_0^1 y dy = 6x^2 \cdot \left(\frac{y^2}{2}\right)\Big|_{y=0}^{y=1} = 6x^2 \cdot \left(\frac{1}{2} - 0\right) = 3x^2$

题1-2.求:
$$f_Y(y) = \int_0^1 6x^2 y dx$$

题1-2.求:
$$f_Y(y) = \int_0^1 6x^2 y dx$$
 解: $f_Y(y) = 6y \cdot \int_0^1 x^2 dx = 6y \cdot \left(\frac{x^3}{3}\right)\Big|_0^{x=1} = 6y \cdot \left(\frac{1}{3} - 0\right) = 2y$

题1-3.求:
$$f_X(x) = \int_0^1 \frac{2}{3}(x+2y) dy$$

题1-3.求:
$$f_X(x) = \int_0^1 \frac{2}{3}(x+2y) dy$$
 解: $f_X(x) = \frac{2}{3}\int_0^1 (x+2y) dy = \frac{2}{3}(xy+y^2)\Big|_{y=0}^{y=1} = \frac{2}{3}(x+1)$

题1-4.求:
$$f_Y(y) = \int_0^1 \frac{2}{3}(x+2y) dx$$

题1-4.求:
$$f_Y(y) = \int_0^1 \frac{2}{3}(x+2y)dx$$
 解: $f_Y(y) = \frac{2}{3}\int_0^1 (x+2y)dx = \frac{2}{3}\left(\frac{x^2}{2} + 2xy\right)\Big|_{x=0}^{x-1} = \frac{1}{3} + \frac{4y}{3}$

题 2-1.求:
$$f(x) = \int_0^x 12xy^2 dy$$

題 2-1.求:
$$f(x) = \int_0^x 12xy^2 dy$$
 解: $f(x) = 12x \cdot \int_0^x y^2 dy = 12x \cdot \left(\frac{y^3}{3}\right)\Big|_{y=0}^{y=x} = 12x \cdot \left(\frac{x^3}{3} - 0\right) = 4x^4$

题 2-2.求:
$$f(y) = \int_0^{\sqrt{y}} 6xy dx$$

题 2-2.求:
$$f(y) = \int_0^{\sqrt{y}} 6xy dx$$
 解: $f(y) = 6y \cdot \int_0^{\sqrt{y}} x dx = 6y \cdot \left(\frac{x^2}{2}\right) \Big|_0^{x = \sqrt{y}} = 6y \cdot \left(\frac{y}{2} - 0\right) = 3y^2$

题 2-3.求:
$$f(x) = \int_0^x 12x^2y^2dy$$

題 2-3.求:
$$f(x) = \int_0^x 12x^2y^2dy$$
 解: $f(x) = 12x^2 \cdot \int_0^x y^2dy = 12x^2 \cdot \left(\frac{y^3}{3}\right)\Big|_{y=0}^{y=x} = 12x^2 \cdot \left(\frac{x^3}{3} - 0\right) = 4x^5$

题 2-4.求:
$$f(y) = \int_{y}^{1} 8xy dx$$

题 2-4.求:
$$f(y) = \int_{y}^{1} 8xy dx$$
 解: $f(y) = 8y \int_{y}^{1} x dx = 8y \cdot \left(\frac{x^{2}}{2}\right) \Big|_{y=1}^{x=1} = 8y \cdot \left(\frac{1}{2} - \frac{y^{2}}{2}\right) = 4y - 4y^{3}$

题 3-1.求:
$$f(x) = \int_0^{+\infty} e^{-4x} dx$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} \qquad e^{-\infty} = 0 \qquad e^0 = 1$$

解:
$$f(x) = \left(-\frac{1}{4}e^{-4x}\right)\Big|_{0}^{+\infty} = -\frac{1}{4}e^{-4\times\infty} - \left(-\frac{1}{4}e^{-4\times0}\right) = \frac{1}{4}$$

题 3-2.求:
$$f(x) = \int_0^{+\infty} e^{-3x} dx$$

题 3-2.求:
$$f(x) = \int_0^{+\infty} e^{-3x} dx$$
 解: $f(x) = \left(-\frac{1}{3}e^{-3x}\right)\Big|_0^{+\infty} = -\frac{1}{3}e^{-3x\infty} - \left(-\frac{1}{3}e^{-3x0}\right) = \frac{1}{3}$

常考知识 3· 求二重积分

题1-1.计算
$$P = \int_0^1 dx \int_0^1 6x^2 y dy$$

解: 先算:
$$\int_0^1 6x^2 y dy = 6x^2 \cdot \int_0^1 y dy = 6x^2 \cdot \left(\frac{y^2}{2}\right)\Big|_{y=0}^{y=1} = 3x^2 \qquad \therefore P = \int_0^1 dx \int_0^1 6x^2 y dy = \int_0^1 3x^2 dx = x^3\Big|_0^1 = 1$$

题1-2.计算
$$P = \int_0^1 dx \int_0^1 \frac{2}{3} (x+2y) dy$$

解: 先算:
$$\int_0^1 \frac{2}{3} (x+2y) dy = \frac{2}{3} (xy+y^2) \Big|_{y=0}^{y=1} = \frac{2}{3} (x+1)$$

$$\therefore P = \int_0^1 dx \int_0^1 \frac{2}{3} (x+2y) dy = \int_0^1 \frac{2}{3} (x+1) dx = \frac{2}{3} \left(\frac{x^2}{2} + x \right) \Big|_0^1 = 1$$

题 2-1.求:
$$P = \int_0^1 dx \int_0^x 12xy^2 dy$$

解: 先算:
$$\int_0^x 12xy^2 dy = 12x \cdot \left(\frac{y^3}{3}\right)\Big|_{y=0}^{y=x} = 12x \cdot \left(\frac{x^3}{3} - 0\right) = 4x^4$$
 $\therefore P = \int_0^1 4x^4 dx = \left(\frac{4x^4}{5}\right)\Big|_0^1 = \frac{4}{5}$

题 2-2.求:
$$P = \int_0^1 dx \int_0^x 12x^2y^2dy$$

解: 先算:
$$\int_0^x 12x^2y^2dy = 12x^2 \cdot \left(\frac{y^3}{3}\right)\Big|_{y=0}^{y=x} = 12x^2 \cdot \left(\frac{x^3}{3} - 0\right) = 4x^5 \quad \therefore P = \int_0^1 4x^5dx = \left(\frac{4x^6}{6}\right)\Big|_0^1 = \frac{2}{3}$$

题3-1.计算 $P = \iint 6x^2ydxdy$, 其中D: $0 \le x \le 1, 0 \le y \le 1$ 围成的闭区域

解:
$$X_{\vec{x}, \cdot, \cdot} = 0$$
 $X_{\vec{x}, \cdot, \cdot} = 1$ $Y_{\perp} = 1$ $Y_{\top} = 0$
$$\therefore \iint_{D} 6x^{2}y dx dy$$

$$= \int_{0}^{1} dx \int_{0}^{1} 6x^{2}y dy = \int_{0}^{1} 3x^{2} dx = 1$$

②找出
$$x$$
的最小值 $X_{\overline{A}^{+}}$ 、最大值 $X_{\overline{A}^{+}}$ 。
③写出区域上边界方程 Y_{\perp} 、下边界方程 Y_{Γ} ④ $\iint_{D} f(x,y)d\sigma = \int_{X_{\overline{A}^{+}}}^{X_{\overline{A}^{+}}} dx \int_{Y_{\Gamma}}^{Y_{\perp}} f(x,y)dy$

题3-2.计算 $P = \iint 12xy^2 dxdy$, 其中D: $0 \le x \le 1, 0 \le y \le x$ 围成的闭区域

解:
$$X_{\text{最小}} = 0$$
 $X_{\text{最大}} = 1$
$$Y_{\perp} = x \qquad Y_{\tau} = 0$$

$$\therefore \iint_{D} 12xy^{2} dx dy = \int_{0}^{1} dx \int_{0}^{x} 12xy^{2} dy = \int_{0}^{1} 4x^{4} dx = \frac{4}{5}$$

题3-3.计算 $P = \iint e^{-3x-4y} dxdy$, 其中D: x > 0, y > 0 围成的区域

解:
$$X_{\text{最小}}=0$$
 $X_{\text{最大}}=+\infty$ (此题图自己画)
$$Y_{\text{L}}=+\infty \qquad Y_{\text{T}}=0$$

$$\therefore \iint_{D} e^{-3x-4y} dx dy = \int_{0}^{+\infty} dx \int_{0}^{+\infty} e^{-3x-4y} dy = \int_{0}^{+\infty} \frac{1}{4} e^{-3x} dx = \frac{1}{12}$$

题4.计算 $P = \iint_{\Omega} 8xydxdy$, 其中D为如图所围成的闭区域

解: 画一条直线
$$x = \frac{1}{2}$$
, 把图形分成两部分:

左侧二重积分 =
$$\int_0^{\frac{1}{2}} dx \int_0^x 8xy dy = \int_0^{\frac{1}{2}} 4x^3 dx = \frac{1}{16}$$

右侧二重积分 =
$$\int_{\frac{1}{2}}^{1} dx \int_{0}^{1-x} 8xy dy = \int_{\frac{1}{2}}^{1} 4x (1-x)^{2} dx = \frac{5}{48}$$

$$\therefore P = \iint_{D} 8xy dx dy = \frac{1}{16} + \frac{5}{48} = \frac{1}{6}$$

期末考題・第六节上

题1.计算
$$P = \iint_D 2xydxdy$$
, 其中 D : $0 \le x \le 1, 0 \le y \le 1$ 围成的闭区域.

题2.计算
$$P = \iint 2xydxdy$$
, 其中 D : $0 < x < y < 1$ 围成的闭区域.

题3.计算
$$P = \iint_{D} (x+y) dxdy$$
, 其中 D : $0 \le y \le x \le 1$ 围成的闭区域.

题 4. 计 算
$$P = \iint_D e^{-(2x+3y)} dxdy$$
, 其 中 D : $x > 0$, $y > 0$ 围成的区域.

题5.计算
$$P = \iint_D x dx dy$$
, 其中 D 为如图所围成的闭区域.

第六课(下) 二维随机变量(连续型)

序号	考题类型	页码	掌握与否
题型 1	已知二维连续型概率密度,求各种问题	P25	
题型2	二维连续变量服从均匀分布,求各种问题	P27	
题型3	已知二维连续型概率密度, 求 Z = X + Y	P27	

常考题型 1·已知二维连续型概率密度、求各种问题

题1.已知二维连续型随机变量(X,Y)的联合概率密度为: $f(x,y) = \begin{cases} Ax^2y & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{其它} \end{cases}$

- (1)求常数A和概率 $P(X+Y\leq 1)$ (2)求(X,Y)的边缘概率密度 $f_x(x), f_v(y)$
- (3)判断X与Y是否相互独立 (4)求条件概率密度 $f_{x|y}(x|y)$ 和 $f_{y|x}(y|x)$

解:(1)由于
$$\int_{-\infty}^{+\infty} f(x,y) dx dy = 1$$

$$\therefore \int_0^1 dx \int_0^1 Ax^2 y dy = 1 \implies \int_0^1 \left[Ax^2 \cdot \frac{y}{2} \right]_{y=0}^{y=1} dx = 1$$

$$\therefore \int_0^1 \frac{Ax^2}{2} dx = 1 \implies \frac{A}{6} = 1 \implies \therefore A = 6$$

$$P(X+Y \le 1) = \iint_{D} f(x,y) dxdy = \int_{0}^{1} dx \int_{0}^{1-x} 6x^{2}y dy$$

$$= \int_{0}^{1} 3x^{2} (1-x)^{2} dx = \left(x^{3} + \frac{3}{5}x^{4} - \frac{6}{4}x^{4}\right)\Big|_{0}^{1} = \frac{1}{10}$$

$$\textcircled{2} f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)}$$

$$(2) f_X(x) = \int_0^1 6x^2 y dy = (3x^2 y^2) \Big|_{y=0}^{y=1} = 3x^2 \qquad 0 \le x \le 1$$

$$\therefore f_X(x) = \begin{cases} 3x^2 & 0 \le x \le 1 \\ 0 & \sharp \ \stackrel{\sim}{\mathcal{E}} \end{cases}$$

$$f_{y}(y) = \int_{0}^{1} 6x^{2}y dx = (2x^{3}y)\Big|_{x=0}^{x=1} = 2y \quad 0 \le y \le 1$$

$$\therefore f_{Y}(y) = \begin{cases} 2y & 0 \le y \le 1\\ 0 & \sharp \dot{\mathfrak{C}} \end{cases}$$

(3)由(2)知:
$$f_X(x) = \begin{cases} 3x^2 & 0 \le x \le 1 \\ 0 &$$
其它 \end{cases} $f_Y(y) = \begin{cases} 2y & 0 \le y \le 1 \\ 0 &$ 其它

联合概率密度:

$$\oint_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$

$$P\{(x,y) \in D\} = \iint_D f(x,y) dxdy$$

条件概率密度:

相互独立性:

判断 $f(x,y) = f_x(x) \cdot f_y(y)$ 是否成立

边缘概率密度:

- ①求谁不积谁
- ②不积先定限
- ③限内画直线
- 4 先交写下限
- ⑤后交写上限

$$(4) f_{X|Y} \left(x \middle| y \right) = \frac{f \left(x, y \right)}{f_Y \left(y \right)} = \frac{6x^2y}{2y} = 3x^2 \qquad \therefore f_{X|Y} \left(x \middle| y \right) = \begin{cases} 3x^2 & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \not \exists \xi \end{cases}$$

题2.已知二维连续型随机变量
$$(X,Y)$$
的联合概率密度为: $f(x,y) = \begin{cases} c(x+y) & 0 \le y \le x \le 1 \\ 0 & \text{其它} \end{cases}$

(1) 求系数c

$$(2)$$
求 X 与 Y 的边缘密度函数 $f_X(x), f_Y(y)$

(3)判断
$$X$$
与 Y 是否相互独立 (4)求条件密度函数 $f_{X|Y}(x|y)$,并计算条件概率 $P\left(X \leq \frac{3}{4} \middle| Y = \frac{1}{2}\right)$

解:(1)由于
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1 \implies \int_{0}^{1} dx \int_{0}^{x} \left[c(x+y) \right] dy = 1$$

$$\therefore \int_0^1 c \cdot \frac{3x^2}{2} dx = 1 \implies \frac{1}{2}c = 1 \implies \therefore c = 2$$

$$(2) f_X(x) = \int_0^x 2(x+y) dy = 2\left(xy + \frac{y^2}{2}\right)\Big|_{y=0}^{y=x} = 3x^2 \quad 0 \le x \le 1 \qquad \therefore f_X(x) = \begin{cases} 3x^2 & 0 \le x \le 1 \\ 0 & \text{#} \\ \vdots \end{cases}$$

$$f_{Y}(y) = \int_{y}^{1} 2(x+y) dx = 2\left(\frac{x^{2}}{2} + xy\right)\Big|_{y=y}^{x=1} = 1 + 2y - 3y^{2} \quad 0 \le y \le 1 \quad \therefore f_{Y}(y) = \begin{cases} 1 + 2y - 3y^{2} & 0 \le y \le 1 \\ 0 & \text{#$\dot{\Xi}$} \end{cases}$$

(3)由(2)知:
$$f_X(x) = \begin{cases} 3x^2 & 0 \le x \le 1 \\ 0 &$$
其它 \end{cases} $f_Y(y) = \begin{cases} 1 + 2y - 3y^2 & 0 \le y \le 1 \\ 0 &$ 其它

$$(4) f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{2(x+y)}{1+2y-3y^2} & 0 \le y \le x \le 1 \\ 0 & \sharp \ \stackrel{\sim}{\Sigma} \end{cases} \therefore f_{X|Y}(x|y = \frac{1}{2}) = \begin{cases} \frac{4(2x+1)}{5} & \frac{1}{2} \le x \le 1 \\ 0 & \sharp \ \stackrel{\sim}{\Sigma} \end{cases}$$

$$\therefore P\left(X \le \frac{3}{4} \middle| Y = \frac{1}{2}\right) = \int_{-\infty}^{\frac{3}{4}} f_{X|Y}\left(x \middle| y = \frac{1}{2}\right) dx = \int_{\frac{1}{2}}^{\frac{3}{4}} \frac{4(2x+1)}{5} dx = \frac{9}{20}$$

常考题型 2·二维连续变量服从均匀分布, 求各种问题

题1.已知(X,Y)在以点(0,0),(1,-1),(1,1)为顶点的三角形区域上服从均匀分布 (1)求(X,Y)的联合概率密度f(x,y) (2)求X的边缘密度函数 $f_x(x)$ (3)求概率P(Y>0)

$$f(x,y) = \begin{cases} \frac{1}{S} & (x,y) \in D \\ 0 & \text{其它} \end{cases}$$
(注: S为区域D的面积)

$$(3) P(Y > 0) = \iint_D f(x, y) dx dy = \int_0^1 dx \int_0^x 1 dy = \frac{1}{2}$$

题2.已知二维随机变量(X,Y)在区域D上服从均匀分布,其中 $D = \{(x,y) | x^2 + y^2 \le 1\}$, 求: 联合概率密度f(x,y)

解:
$$S = \pi \times 1^2 = \pi$$
 ∴ $f(x,y) = \begin{cases} \frac{1}{\pi} & (x,y) \in D \\ 0 &$ 其它

题3.已知二维随机变量(X,Y)在区域D上服从均匀分布,其中 $D = \{(x,y) | |x+y| \le 1, |x-y| \le 1\}$, 求:联合概率密度f(x,y)

常考题型 $3 \cdot 已知 f(x,y)$, 求Z = X + Y的概率密度

题1.已知二维连续型随机变量(X,Y)的联合概率密度为: $f(x,y) = \begin{cases} 2-x-y & 0 < x < 1,0 < y < 1 \\ 0 &$ 其它 求Z = X + Y的密度函数 $f_z(z)$

解:
$$f(x,z-x) = \begin{cases} 2-x-(z-x) & 0 < x < 1, 0 < z-x < 1 \\ 0 &$$
其它

②画数轴, 讨论z范围来确定x的积分范围

解: $f(x,z-x) = \begin{cases} 2-x-(z-x) & 0 < x < 1, 0 < z-x < 1 \\ 0 &$ 其它 ① 用z-x=y替换f(x,y)中的y ② 画数轴,讨论z范围来确定x的积分范围 数: $\begin{cases} 0 < x < 1 \\ z-1 < x < z \end{cases}$ (通过讨论z的范围来确定x的积分范围

(数轴自己画,加深印象)

则:(1)当
$$z \le 0$$
时, $f_z(z) = \int_{-\infty}^{+\infty} 0 dx = 0$

(2)当0 < z ≤ 1时,
$$f(x,z-x) = \begin{cases} 2-z & 0 < x < z \\ 0 & 其它 \end{cases}$$
 ∴ $f_z(z) = \int_0^z (2-z) dx = z(2-z)$

(3)当1 <
$$z \le 2$$
时, $f(x,z-x) = \begin{cases} 2-z & z-1 < x < 1 \\ 0 & 其它 \end{cases}$ ∴ $f_z(z) = \int_{z-1}^1 (2-z) dx = (2-z)^2$

$$(4) \exists z > 2 \text{时}, \ f_z(z) = \int_{-\infty}^{+\infty} 0 dx = 0 \quad \therefore 综上所述: \ f_z(z) = \begin{cases} z(2-z) & 0 < z \le 1 \\ (2-z)^2 & 1 < z \le 2 \\ 0 & 其它 \end{cases}$$

题 2.已 知 二 维 连 续 型 随 机 变 量
$$(X,Y)$$
 的 联 合 概 率 密 度 为 : $f(x,y) = \begin{cases} e^{-y} & 0 < x < y \\ 0 & \text{其 它} \end{cases}$ 求 $Z = X + Y$ 的 概 率 密 度 $f_z(z)$

解:
$$f(x,z-x) = \begin{cases} e^{x-z} & 0 < x < z-x \\ 0 &$$
其它

①用
$$z-x=y$$
替换 $f(x,y)$ 中的 y

②画数轴, 讨论z范围来确定x的积分范围

③分情况代入:
$$f_z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$

故:
$$\begin{cases} x > 0 \\ x < \frac{z}{2} \end{cases}$$
 (通过讨论z的范围来确定x的积分范围)

(数轴自己画,加深印象)

$$(1)$$
当 $z \le 0$ 时, $f_z(z) = \int_{-\infty}^{+\infty} 0 dx = 0$

(2)
$$\exists z > 0$$
 $\exists f(x, z - x) = \begin{cases} e^{x-z} & 0 < x < \frac{z}{2} \\ 0 & \sharp \dot{z} \end{cases}$ $\therefore f_z(z) = \int_0^{\frac{z}{2}} e^{x-z} dx = e^{x-z} \Big|_{x=0}^{x=\frac{z}{2}} = e^{-\frac{z}{2}} - e^{-z}$

:. 综上所述:
$$f_z(z) = \begin{cases} e^{-\frac{z}{2}} - e^{-z} & z > 0 \\ 0 & z \le 0 \end{cases}$$

期末考題・第六节下

题1.已知二维连续型随机变量(X,Y)的联合概率密度为: $f(x,y) = \begin{cases} Axy & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{其它} \end{cases}$,求:

- (1)求常数A和概率 $P(X+Y\leq 1)$ (2)求边缘概率密度 $f_X(x), f_Y(y)$
- (3)判断X与Y是否相互独立 (4)求条件概率密度 $f_{X|Y}(x|y)$

题2.已知二维连续型随机变量(X,Y)的联合概率密度为: $f(x,y) = \begin{cases} ke^{-3x-4y} & x>0, y>0 \\ 0 &$ 其它

(1) 求常数k

- (2)求(X,Y)的边缘概率密度 $f_x(x), f_v(y)$
- (3)判断X与Y是否相互独立 (4)求概率P(0 < X < 1, 0 < Y < 2)

题3. 设二维随机变量(X,Y)服从区域D上的均匀分布, 其中D为x轴, y轴及直线 $x+\frac{y}{2}=1$ 所围成的三角形区域。

- $\vec{x}:(1)(X,Y)$ 的联合概率密度 (2)X和Y的边缘概率密度 (3)判断X和Y是否相互独立

題4.已知(X,Y)服从均匀分布, 且: $f(x,y) = \begin{cases} a & -1 < x < 0, 0 < y < 1 \\ 0 &$ 其它

- (1) 求常数a (2) 计算条件概率P(Y < 0.2 | X < -0.5)
- 题5.已知二维连续型随机变量(X,Y)的联合概率密度为: $f(x,y) = \begin{cases} e^{-x} & x > 0, 0 \le y \le 1 \\ 0 & \text{其它} \end{cases}$

求Z = X + Y的密度函数 $f_z(z)$

题6.已知二维随机变量(X,Y)的分布为单位圆上的均匀分布,求解下列问题:[985题目,选做]

- (1)边缘概率密度 $f_X(x), f_Y(y)$ (2)判断X与Y是否相互独立,并给出理由
- (3)条件概率密度 $f_{y|x}(y|x)$

题7.设X,Y相互独立,且分别服从参数为 λ_1 和 λ_2 的泊松分布,证明:Z=X+Y服从参数 为 $\lambda_1 + \lambda_2$ 的泊松分布。[211题目,选做]

第七课 数学期望与方差

序号	考题类型	页码	掌握与否
题型 1	求一维变量的期望与方差	P30	
题型 2	利用期望与方差的性质解题	P31	
题型 3	求二维变量的期望与方差	P32	
题型 4	切比雪夫不等式	P33	

常考题型1·求一维变量的期望与方差

题1. 已知随机变量X的分布律如图: 求:(1)E(X) (2)假设 $Y = X^2$,求E(Y) (3)D(X)

X	-1	0	1
P	0.4	0.3	0.3

$$\mathfrak{M}: (1) \quad E(X) = -1 \times 0.4 + 0 \times 0.3 + 1 \times 0.3 = -0.1$$

$$E(Y) = 0 \times 0.3 + 1 \times 0.7 = 0.7$$

(3)
$$D(X) = E(X^2) - E^2(X) = 0.7 - (-0.1)^2 = 0.69$$

离散型期望
$$E(X)$$
:

$$E(X) = x_1 p_1 + x_2 p_2 + \dots + x_n p_n$$

连续型期望 $E(X)$:

$$E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx$$

$$E[g(x)] = \int_{-\infty}^{+\infty} g(x) \cdot f(x) dx$$

方差D(X):

$$D(X) = E(X^2) - E^2(X)$$

题 2. 已知随机变量
$$X$$
 的概率密度 为: $f(x) = \begin{cases} \frac{x}{2} & 0 < x < 2 \\ 2 & x : \end{cases}$ (1) $E(X)$ (2) 假设 $Y = X^2$, 求 $E(Y)$ (3) $D(X)$

解:(1)
$$E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx = \int_{0}^{2} x \cdot \frac{x}{2} dx = \left(\frac{x^{3}}{6}\right)\Big|_{0}^{2} = \frac{4}{3}$$

(2)
$$E(Y) = E(X^2) = \int_{-\infty}^{+\infty} x^2 \cdot f(x) dx = \int_{0}^{2} x^2 \cdot \frac{x}{2} dx = \left(\frac{x^4}{8}\right)\Big|_{0}^{2} = 2$$

(3)
$$D(X) = E(X^2) - E^2(X) = 2 - \left(\frac{4}{3}\right)^2 = \frac{2}{9}$$

题3. 随机变量
$$X$$
的概率密度为: $f(x) = \begin{cases} kx^a & 0 < x < 1 \\ 0 & \pm \dot{v} \end{cases}$ ($k,a > 0$) 又知 $E(X) = 0.75$ 试求:(1)待定常数 k 、 a (2) $D(X)$

常考题型 2·利用期望与方差的性质解题

分布	分布律或概率密度	数学期望	方差
二项分布 B(n,p)	$P\{x=k\}=C_n^k p^k (1-p)^{n-k}$	пр	np(1-p)
泊松分布 $P(\lambda)$ 或 $\pi(\lambda)$	$P\{x=k\}=\frac{\lambda^k}{k!}e^{-\lambda}$	λ	λ
正态分布 $N(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
均匀分布 U(a,b)	$f(x) = \frac{1}{b-a}, (a < x < b)$	$\frac{a+b}{2}$	$\frac{\left(b-a\right)^2}{12}$
指数分布 E(λ)或e(λ)	$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

题1. 设随机变量X的数学期望为5,则Eigl[Eig(Xig)igr]=____。

解:
$$E(X) = 5$$
 $E[E(X)] = E(5) = 5$

题 2. 设 X 与 Y 相 互 独 立 , 且 $X \sim U$ [-1,5], $Y \sim B$ (10,0.3), 则 E (XY) = _____。

解:
$$E(X) = \frac{a+b}{2} = \frac{-1+5}{2} = 2$$
 $E(Y) = np = 10 \times 0.3 = 3$ \Rightarrow $E(XY) = E(X) \cdot E(Y) = 2 \times 3 = 6$

思考: 设 ξ 与 η 相互独立, 且 $\xi \sim U[-1,5]$, $\eta \sim B(10,0.3)$, 则 $E(\xi \eta) =$ ____。

解: 参考题2, $E(\xi\eta) = E(\xi) \cdot E(\eta) = 6$

题3. 设随机变量 $X \sim P(3)$,则 $E(3X+5) = _____$ 。

解: $E(X) = \lambda = 3$

$$\therefore E(3X+5) = E(3X) + E(5) = 3E(X) + 5 = 3 \times 3 + 5 = 14$$

题4. 已知随机变量X服从[-3,3]上的均匀分布,则 $E(X^2)=$ ____。

解:
$$E(X) = \frac{a+b}{2} = \frac{-3+3}{2} = 0$$
 $D(X) = \frac{(b-a)^2}{12} = \frac{[3-(-3)]^2}{12} = 3$
 $\therefore E(X^2) = E^2(X) + D(X) = 0^2 + 3 = 3$

题5. 设随机变量X,且
$$EX = -1$$
, $DX = 3$,则 $E[3(X^2 - 2)] = _____$ 。

 $E(X \pm Y) = E(X) \pm E(Y)$ X、 Y相互独立: $E(XY) = E(X) \cdot E(Y)$ 方差D(X): D(c) = 0 $D(cX) = c^2 D(X)$ X、 Y相互独立: $D(X \pm Y) = D(X) + D(Y)$

E(c) = c E(cX) = cE(X)

期望E(X):

解:
$$E[3(X^2-2)] = E(3X^2-6) = 3E(X^2)-6 = 3E^2(X)+3D(X)-6=6$$

题6. 设随机变量 $X \sim N(10,0.6)$, $Y \sim N(1,2)$, 且 $X \hookrightarrow Y$ 相互独立, 则 $D(3X - Y) = _____$ 。

$$\mathbb{M}$$
: $D(3X - Y) = D(3X) + D(Y) = 3^2 D(X) + D(Y) = 9 \times 0.6 + 2 = 7.4$

题7. 已知随机变量 $X \sim B(n,p)$, 且E(X) = 2.4, D(X) = 1.44, 则二项分布的参数为 $n = ____$, $p = ____$

解: 由于
$$\begin{cases} E(X) = np = 2.4 \\ D(X) = np(1-p) = 1.44 \end{cases} \Rightarrow \begin{cases} np = 2.4 \\ np(1-p) = 1.44 \end{cases} \Rightarrow \begin{cases} n = 6 \\ p = 0.4 \end{cases}$$

常考题型 3· 求二维变量的期望与方差

题1.设二维随机变量(X,Y)的分布律如右图, 求: E(X), E(Y), E(XY)

XY	0	1
0	0.4	0.3
1	0.2	0.1

解: X的边缘分布律:

X	0	1
p	0.7	0.3

$$E(X) = 0 \times 0.7 + 1 \times 0.3 = 0.3$$

Y的边缘分布律:

1的过去分介什.			
Y	0	1	
p	0.6	0.4	

$$E(Y) = 0 \times 0.6 + 1 \times 0.4 = 0.4$$

Z = XY的分布律:

Z = XY	0	1
p	0.9	0.1

$$E(XY) = E(Z) = 0 \times 0.9 + 1 \times 0.1 = 0.1$$

题2. 随机变量
$$(X,Y)$$
的密度函数为 $f(x,y)=\begin{cases} 12y^2, & 0 \le y \le x \le 1\\ 0, &$ 其它
$$(1)E(X) = (2)D(X) = D(Y)$$

解:
$$(1) E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \cdot f(x, y) dx dy$$

$$= \int_{0}^{1} dx \int_{0}^{x} x \cdot 12 y^{2} dy = \int_{0}^{1} \left[x \cdot (4y^{3}) \right]_{y=0}^{y=x} dx = \int_{0}^{1} 4x^{4} dx = \frac{4}{5}$$

$$E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y \cdot f(x, y) dx dy$$

$$= \int_{0}^{1} dx \int_{0}^{x} y \cdot 12 y^{2} dy = \int_{0}^{1} (3y^{4}) \Big|_{y=0}^{y=x} dx = \int_{0}^{1} 3x^{4} dx = \frac{3}{5}$$

$$(2) E(X^{2}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^{2} \cdot f(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{x} x^{2} \cdot 12 y^{2} dy = \frac{2}{3}$$

$$E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y \cdot f(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{x} x^{2} \cdot 12 y^{2} dy = \frac{2}{3}$$

$$E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y \cdot f(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{x} x^{2} \cdot 12 y^{2} dy = \frac{2}{3}$$

$$E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y \cdot f(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{x} x^{2} \cdot 12 y^{2} dy = \frac{2}{3}$$

$$\therefore D(X) = E(X^2) - E^2(X) = \frac{2}{3} - \left(\frac{4}{5}\right)^2 = \frac{2}{75} \qquad D(Y) = E(Y^2) - E^2(Y) = \frac{2}{5} - \left(\frac{3}{5}\right)^2 = \frac{1}{25}$$

常考题型 4·切比雪夫不等式

题1. 若 $X \sim N(\mu, \sigma^2)$, 则由切比雪夫不等式有: $P(|X - \mu| < 4\sigma) \ge ____$ 。

解: $E(X) = \mu$ $D(X) = \sigma^2$

$$\therefore P(|X - \mu| < 4\sigma) \ge 1 - \frac{D(X)}{\varepsilon^2} = 1 - \frac{\sigma^2}{(4\sigma)^2} = 1 - \frac{1}{16} = \frac{15}{16}$$

$$\left| P\left\{ \left| X - E\left(X\right) \right| \ge \varepsilon \right\} \le \frac{D\left(X\right)}{\varepsilon^{2}} \\
P\left\{ \left| X - E\left(X\right) \right| < \varepsilon \right\} \ge 1 - \frac{D\left(X\right)}{\varepsilon^{2}}
\right|$$

题2. 设E(X) = -1, D(X) = 4, 则由切比雪夫不等式估计: $P(-4 < X < 2) \ge _____$ 。

解:
$$P(-4 < X < 2) = P(-4 + 1 < X + 1 < 2 + 1) = P(-3 < X + 1 < 3) = P(|X + 1| < 3)$$

= $P(|X - (-1)| < 3) \ge 1 - \frac{4}{3^2} = \frac{5}{9}$

题3. 若随机变量X与Y相互独立,且EX = -2,EY = 2,DX = 1,DY = 4,根据切比雪夫不等式有: $P(|X+Y|\geq 5)\leq$ _______

解: 设
$$Z = X + Y$$
 $E(Z) = E(X + Y) = E(X) + E(Y) = -2 + 2 = 0$

$$D(Z) = D(X + Y) = D(X) + D(Y) = 1 + 4 = 5 \qquad \therefore P(|Z| \ge 5) = P(|Z - 0| \ge 5) \le \frac{D(Z)}{\varepsilon^2} = \frac{5}{5^2} = \frac{1}{5}$$

期末考題・第七节

题1. 某种产品共5件,其中有2件次品,3件正品,从中任取3件,设X表示取出的3件产品中次品的个数,求:(1)X的分布律; (2)期望E(X); (3)方差D(X) [可以参考第3讲题型1的题1]

题 2. 设随机变量 X 的概率密度: $f(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & \text{其它} \end{cases}$, 求: (1)E(X) (2)D(X)

题3. 已知X, Y是两个相互独立的随机变量, $X \sim U[2,6]$, $Y \sim E(5)$, 则 $E(XY) = _____$ 。

题4. 设X表示15次独立重复射击命中目标的次数,每次射中目标的概率是0.3,则 $E\left(X^2\right)=$ _____。

题5. 设随机变量 δ 服从 $B\left(8,\frac{1}{2}\right)$, η 服从区间 $\left[1,7\right]$ 上的均匀分布,且 δ 与 η 相互独立,

则
$$E(2\delta-3\eta-4)=$$
____。

题 6. 设随机变量 X 服从 $\lambda=1$ 的 泊松分布,则 $P\left[X=E\left(X^2\right)\right]=$ ______。

题7. 设随机变量 $X \sim P(\lambda)$, 且已知 $E\lceil (X-1)(X-2) \rceil = 1$, 则 $\lambda = \underline{\hspace{1cm}}$ 。

题8. 设随机变量 $X \sim N(1,2), Y \sim P(3), 且X 与 Y 相互独立, 则 D(3X - 2Y) =$ 。

题9. 设随机变量 $X \sim N(0,4)$, $Y \sim U(0,4)$, 且X与Y相互独立, 则 $D(4X-3Y+1) = _____$ 。

题10. 设随机变量X的方差为2,则根据切比雪夫不等式估计 $P(|X-E(X)| \geq 2)$ 的上限是_____。

题11. 设随机变量X和Y的期望都是2,方差分别为1和4,而相关系数为0.5,根据切比雪夫不等式

估计:
$$P(|X-Y| \ge 6) \le$$
_____。 [第8讲学完再做这道题]

题12.设随机变量(X,Y)的分布列如右图:

求:(1)X与Y的边缘分布 (2)E(Y)和D(Y)

X	0	1	2
0	0.06	0.15	0.09
1	0.14	0.35	0.21

题13. 设二维随机变量(X,Y)的概率密度: $f(x,y) = \begin{cases} 2 & 0 < x < 1, x < y < 1 \\ 0 & 其它 \end{cases}$

求:
$$(1)E(X)$$
与 $E(Y)$ $(2)D(X)$ 与 $D(Y)$

题14. 设二维随机变量(X,Y)服从区域D上的均匀分布,其中D为x轴,y轴及直线 $x+\frac{y}{2}=1$ 所围成的三角形区域。求: E(X),D(X),E(Y)和D(Y)。

题15. 已知随机变量X的概率密度为: $f(x) = \frac{1}{2}e^{-|x|}$, $-\infty < x < +\infty$. [211难度,选做]

求:
$$(1)E(X)$$
 (2)假设 $Y = X^2$,求 $E(Y)$ (3) $D(X)$

第八课 协方差与相关系数

序号	考题类型	页码	掌握与否
题型 1	协方差与相关系数	P35	
题型 2	X 与 Y 的相关系数为 1 或-1	P36	
题型 3	相不相关与独不独立	P37	

常考题型1·协方差与相关系数

题1. 设随机变量X、Y的方差分别为4和9,相关系数 $\rho_{XY}=-0.5$,则D(2X-Y)=____。

解:
$$D(2X - Y) = D(2X) + D(Y) - 2Cov(2X, Y)$$

= $2^2 D(X) + D(Y) - 2 \times 2Cov(X, Y)$
= $4 \times 4 + 9 - 4 \times (-3) = 37$

其中:
$$Cov(X,Y) = \rho_{XY} \cdot \sqrt{D(X)} \cdot \sqrt{D(Y)}$$

= $-0.5 \times \sqrt{4} \times \sqrt{9} = -3$

思考: 已知条件如题1, 则D(2X-Y+1)等于多少?

答:
$$D(2X-Y+1) = D(2X-Y) = 37$$

題2. 设
$$X \sim b\left(8, \frac{1}{4}\right)$$
, $Y \sim \pi(2)$, 且 $Cov(X, Y) = \frac{1}{4}$, 则 $D(X - 2Y) = \underline{\hspace{1cm}}$ 。

$$M: D(X-2Y) = D(X) + D(2Y) - 2Cov(X,2Y)$$

$$= D(X) + 2^{2}D(Y) - 2 \times 2Cov(X,Y) = \frac{3}{2} + 4 \times 2 - 4 \times \frac{1}{4} = \frac{17}{2}$$

其中:
$$D(X) = np(1-p) = 8 \times \frac{1}{4} \times \left(1 - \frac{1}{4}\right) = \frac{3}{2}$$
 $D(Y) = \lambda = 2$

题3.设随机变量(X,Y)的分布列为: 求:(1)Z = XY的分布列 (2)协方差Cov(X,Y)

$$Z = XY$$
 -1
 0
 1

 P
 0.08
 0.44
 0.48

 $D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y)$

Cov(X,Y) = E(XY) - E(X)E(Y)

 $Cov(X,Y) = \rho_{XY} \cdot \sqrt{D(X)} \cdot \sqrt{D(Y)}$

Cov(X,Y) = Cov(Y,X) Cov(X,X) = D(X)

Cov(aX,bY) = abCov(X,Y) Cov(X,a) = 0

 $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$

相关系数 ρ_{XY} : $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}$

协方差 Cov(X, Y):

常考公式:

$$(2)E(XY) = -1 \times 0.08 + 0 \times 0.44 + 1 \times 0.48 = 0.4$$

,	X	0	1
	p	0.2	0.8

$$E(X) = 0 \times 0.2 + 1 \times 0.8 = 0.8$$
 $E(Y) = -1 \times 0.1 + 0 \times 0.3 + 1 \times 0.6 = 0.5$

$$\therefore Cov(X,Y) = E(XY) - E(X)E(Y) = 0.4 - 0.8 \times 0.5 = 0$$

题 4. 随机变量
$$(X,Y)$$
的密度函数为 $f(x,y)=\begin{cases}12y^2,&0\leq y\leq x\leq 1\\0,&\pm c\end{cases}$.求:协方差 $Cov(X,Y)$

解:
$$E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \cdot f(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{x} x \cdot 12 y^{2} dy = \frac{4}{5}$$

$$E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y \cdot f(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{x} y \cdot 12 y^{2} dy = \frac{3}{5}$$

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy \cdot f(x, y) dxdy = \int_{0}^{1} dx \int_{0}^{x} xy \cdot 12y^{2} dy = \frac{1}{2}$$

:.
$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{1}{2} - \frac{4}{5} \times \frac{3}{5} = \frac{1}{50}$$

思考:相关系数
$$\rho_{XY}$$
是多少?答: $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}} = \frac{\frac{1}{50}}{\sqrt{\frac{2}{75}} \cdot \sqrt{\frac{1}{25}}} = \frac{\sqrt{6}}{4}$

常考题型 2·X 与 Y 的相关系数为 1 或-1

题1. 设D(X)=3, Y=3X+1, 则相关系数 $\rho_{XY}=$ _____。

当 Y = aX + b时: 若 a > 0,则 $\rho_{xy} = 1$ 若 a < 0,则 $\rho_{yy} = -1$

解: 易知: $\rho_{xy} = 1$

题2. 将一枚硬币重复掷n次,X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数为()

$$(A)-1$$
 $(B)0$ $(C)\frac{1}{2}$ $(D)1$

解:
$$X + Y = n$$
 $Y = -X + n$ 故: $\rho_{XY} = -1$ 故: 选A

题3. 将长度为1m的木棒随机地截成两段,则两段长度X和Y的相关系数 ρ 为().

$$(A)$$
1 (B) -1 $(C)\frac{1}{2}$ $(D)-\frac{1}{2}$

解: 易知
$$X+Y=1$$
 $\therefore Y=-X+1$ 故: $\rho=-1$ 故: 选B

常考题型 3·相不相关与独不独立

题1. 对于任意两个随机变量X和Y,若E(XY) = E(X)E(Y),则()

$$(A)$$
 $D(XY) = D(X)D(Y)$ $(B)X和Y独立$ $(C)X和Y不独立$ $(D)D(X+Y) = D(X)+D(Y)$

而D(X+Y)=D(X)+D(Y)+2Cov(X,Y) ∴ D(X+Y)=D(X)+D(Y) 故: 选D

题2. 如果随机变量X、Y满足D(X+Y)=D(X-Y),则必有()

$$(A)$$
 X和Y独立 (B) X与Y不相关 (C) DY = 0 (D) DX = 0

解:由于
$$D(X+Y)=D(X)+D(Y)+2Cov(X,Y)$$
 且 $D(X-Y)=D(X)+D(Y)-2Cov(X,Y)$ 故: $Cov(X,Y)=0$ $\therefore \rho_{XY}=0 \Rightarrow X$ 和Y不相关 故:选B

题3. 下列结论中,()不是随机变量X与Y不相关的充要条件。

(A)
$$D(X+Y) = D(X) + D(Y)$$
 (B) $Cov(X,Y) = 0$

(B)
$$Cov(X,Y)=0$$

$$(D)$$
 $E(XY) = E(X)E(Y)$

解: $A \setminus B \setminus D$ 都可以推出: $Cov(X,Y) = 0 \implies \rho_{xy} = 0$.. 选C

期末考題・第八节

题1. 设随机变量X、Y的方差分别为4和9,相关系数 $ho_{xy}=0.5$,则D(3X-2Y)=_____。

题2. 对于随机变量X与Y的方差存在且都大于0,且D(X+Y)=D(X)+D(Y),

则X与Y的相关系数为。

题3. 设X、Y为随机变量,已知D(X)=4,D(Y)=9, $\rho_{yy}=0.5$,,则D(X-2Y+1)=_____。

题4. 抛一枚硬币20次,X表示正面出现的次数,Y表示反面出现的次数,

则X和Y的相关系数 $|\rho_{XY}|=$ ____。

题5. 设随机变量X、Y满足: X+2Y=1,则相关系数 $\rho_{xy}=$ _____。

题6.设随机变量(X,Y)的分布列如右图,

求: E(X)、E(Y), Cov(X,Y)

XY	0	1	2
0	0.1	0	0.2
1	0	0.1	0.2
2	0.2	0	0.2

题7. 设随机变量X和Y独立,都服从参数为 λ 的泊松分布,令U=2X+Y,V=2X-Y,求 ρ_{uv} 。 「211难度,选做】

题8. 设二维随机变量(X,Y)的概率密度: $f(x,y) = \begin{cases} 2 & 0 < x < 1, x < y < 1 \\ 0 &$ 其它

求:(1)Cov(X,Y) $(2)\rho_{XY}$ (可以参考第7讲课后习题13)

题9. 设二维随机变量(X,Y)服从区域D上的均匀分布,其中D为x轴,y轴及直线 $x+\frac{y}{2}=1$

所围成的三角形区域。求:协方差 $\operatorname{cov}(X,Y)$ 和相关系数 $ho_{\scriptscriptstyle XY}$ (可以参考第7讲课后习题14) 题10. 设随机变量X与Y的方差存在且不为0,则D(X+Y)=D(X)+D(Y)是X和Y(

- (A) 不相关的充分条件,但不是必要条件 (B) 独立的充分条件,但不是必要条件
- (C) 不相关的充分必要条件

(D) 独立的充分必要条件

题11. 设随机变量 $X \sim N(1,9)$, $Y \sim N(0,16)$, 相关系数 $\rho_{XY} = -\frac{1}{2}$, 设 $Z = \frac{X}{3} + \frac{Y}{2}$, 求:

(1)随机变量Z的期望E(Z)与方差D(Z); (2)随机变量X和Z的相关系数 ρ_{xz}

第九课 中心极限定理

序号	考题类型		掌握与否
题型 1	X 为二项分布的中心极限定理	P39	
题型 2	X 为其它分布的中心极限定理	P40	

常考题型 1· X 为二项分布的中心极限定理

题1. 已知100台机床彼此独立地工作着,每台机床的实际工作时间占全部工作时间的80%。利用中心极限定理求:任意时刻有70至86台机床工作的概率.(结果用Φ(x)表示)

解:设任意时刻总共有X台机床在工作

$$\therefore X \sim B(100, 0.8)$$

$$np = 100 \times 0.8 = 80$$

$$np(1-p) = 100 \times 0.8 \times (1-0.8) = 16$$
故: $X \stackrel{\text{if}(N)}{\sim} N(80, 16)$

$$P(70 \le X \le 86) = \Phi\left(\frac{86 - 80}{\sqrt{16}}\right) - \Phi\left(\frac{70 - 80}{\sqrt{16}}\right)$$
$$= \Phi(1.5) - \Phi(-2.5)$$

①判断出随机变量 $X \sim B(n, p)$ 则X近似服从: $X \stackrel{\text{id}}{\sim} N(np, np(1-p))$

②根据公式,计算概率:

$$(1) P(a < X < b) = \Phi\left(\frac{b - np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{a - np}{\sqrt{np(1-p)}}\right)$$

$$(2) P(X < a) = \Phi\left(\frac{a - np}{\sqrt{np(1-p)}}\right)$$

$$(3) P(X > b) = 1 - \Phi\left(\frac{b - np}{\sqrt{np(1-p)}}\right)$$

题2. 某保险公司多年的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数。利用中心极限定理,求:

被盗索赔户不少于14户不多于30户的概率的近似值. $(其中<math>\Phi(1.5)=0.9332; \Phi(2.5)=0.9938)$

解:由题知,被盗索赔户总共有X户 $\therefore X \sim B(100,0.2)$

$$np = 100 \times 0.2 = 20$$
 $np(1-p) = 100 \times 0.2 \times (1-0.2) = 16$
故: $X \stackrel{$ 近似 $}{\sim} N(20,16)$

$$P(14 \le X \le 30) = \Phi\left(\frac{30 - 20}{\sqrt{16}}\right) - \Phi\left(\frac{14 - 20}{\sqrt{16}}\right)$$

$$=\Phi(2.5)-\Phi(-1.5)$$

$$=\Phi(2.5)-\left[1-\Phi(1.5)\right]$$

$$=0.9938-(1-0.9332)$$

= 0.927

题3. 某单位设置一电话总机, 共有200架电话分机。设每个电话分机是否使用外线相互独立的, 设每时刻每个分机有5%的概率要使用外线通话, 问总机需要多少根外线才能以不低于90%的概率保证每个分机要使用外线时可供使用?(已知 Φ (1.282)=0.90)

解:设使用外线的分机数一共有
$$X$$
台 $\therefore X \sim B(200,0.05)$

$$np = 200 \times 0.05 = 10$$

$$np(1-p) = 200 \times 0.05 \times (1-0.05) = 9.5$$
故: $X \stackrel{\text{if}(M)}{\sim} N(10,9.5)$
设需要外线数 M 根

$$\therefore P(X \le M) \ge 90\% \implies \Phi\left(\frac{M-10}{\sqrt{9.5}}\right) \ge \Phi(1.282)$$
$$\therefore \frac{M-10}{\sqrt{9.5}} \ge 1.282 \quad \text{解得: } M \ge 13.951$$

::需要外线数14根

①判断出随机变量 $X \sim B(n,p)$ 则X近似服从: $X \stackrel{\iota_{0}}{\sim} N(np,np(1-p))$ ②设所需数量为M,根据问题写出不等式 ③先把不等式两侧转换成 Φ 函数,

然后再进行比较, 推算出M

常考题型 2· X 为其它分布的中心极限定理

题1. 计算机在进行加法运算时,有时要对每个加数取整 (取最接近它的整数)。设所有取整误差都是相互独立的,且都在(-0.5,0.5)上服从均匀分布。求: 若进行1500个数的加法运算,误差总和绝对值超过15的概率多大?(已知Φ(1.342)=0.91)

解:设 X_i 为第i个加数的取整误差 $(i=1,2,\cdots,1500)$

$$EX_i = \frac{-0.5 + 0.5}{2} = 0$$
 $DX_i = \frac{(0.5 + 0.5)^2}{12} = \frac{1}{12}$

设1500个数的加法运算,误差总和为X

$$\therefore P(|X| > 15) = P(X > 15) + P(X < -15)$$

$$= 1 - \Phi\left(\frac{15 - 0}{\sqrt{125}}\right) + \Phi\left(\frac{-15 - 0}{\sqrt{125}}\right)$$

$$= 1 - \Phi(1.342) + \left[1 - \Phi(1.342)\right]$$

$$= 0.18$$

①判断出随机变量
$$X_i$$
不是二项分布,
而且可求出: $EX_i = \mu$, $DX_i = \sigma^2$

$$X = \sum_{i=1}^{n} X_i$$
近似服从: $X \sim N(n\mu, n\sigma^2)$
②根据公式, 计算概率:

$$(1) P(a < X < b) = \Phi\left(\frac{b - n\mu}{\sqrt{n\sigma^2}}\right) - \Phi\left(\frac{a - n\mu}{\sqrt{n\sigma^2}}\right)$$

$$(2) P(X < a) = \Phi\left(\frac{a - n\mu}{\sqrt{n\sigma^2}}\right)$$

$$(3) P(X > b) = 1 - \Phi\left(\frac{b - n\mu}{\sqrt{n\sigma^2}}\right)$$

题2. 据以往的经验,某种电器元件的寿命服从均值为100小时的指数分布. 现随机地取16只, 设它们的寿命是相互独立的. 求这16只元件的寿命的总和大于1920小时的概率? (已知 $\Phi(0.8) = 0.7881$)

解:设X,为第i个元件的寿命($i=1,2,\cdots,16$)

$$EX_i = 100$$
 $DX_i = 100^2 = 10^4$

设16只元件的寿命的总和为X

故: $X \stackrel{\text{近似}}{\sim} N(1600,16 \times 10^4)$

$$P(X > 1920) = 1 - \Phi\left(\frac{1920 - 1600}{\sqrt{16 \times 10^4}}\right)$$
$$= 1 - \Phi(0.8) = 1 - 0.7881 = 0.2119$$

题3. 一生产线生产的产品成箱包装, 每箱的重量是随机的。假设每箱平均重50千克, 标准差 为5千克, 若用最大载重量为5吨的汽车承运, 试利用中心极限定理说明: 每辆车最多可以 装多少箱,才能保证不超载的概率大于0.977?(已知 $\Phi(2)=0.977$)

解:设X,为第i个箱子的重量($i=1,2,\dots,n$)

$$EX_i = 50$$
 $DX_i = 5^2 = 25$

$$X = X_1 + X_2 + \dots + X_n = \sum_{i=1}^{n} X_i$$

故: $X \stackrel{$ 近似 N(50n,25n)

$$\therefore P(X \le 5000) > 0.977 \Rightarrow \Phi\left(\frac{5000 - 50n}{\sqrt{25n}}\right) > \Phi(2)$$
 3先把不等式两侧转换成币函数,然后再进行比较,推算出 n

①判断出随机变量X.不是二项分布,

而且可求出: $EX_i = \mu$, $DX_i = \sigma^2$

$$X = \sum_{i}^{n} X_{i}$$
近似服从: $X \stackrel{$ 近似 $}{\sim} N(n\mu, n\sigma^{2})$

- ②根据问题写出不等式

∴
$$\frac{5000-50n}{\sqrt{25n}} > 2$$
 ∴ 解得: $n < 98.0199$

:. 每辆车最多可以装98箱

期末考題・第九节

题1.某电子计算机主机有100个终端,每个终端有80%的时间被使用.若各个终端是否被使用是 相互独立的, 求至少有15个终端空闲的概率。(已知 $\Phi(1.25) = 0.8944$)

题2. 一复杂的系统由100个互相独立起作用的部件所组成,在整个运行期间每个部件损坏的概率为0.10,

为了整个系统起作用,至少有85个部件正常工作,求整个系统工作的概率。
$$\left(\text{已知}\Phi\left(\frac{5}{3}\right)=0.9525\right)$$

题3. 某车间有同型号机床200部,每部开动的概率为0.7,假定各机床开关是独立的,开动时每部要 消耗电能15个单位。问电厂最少要供应这个车间多少电能,才能以95%的概率保证不会因供电 不足而影响生产? (已知 $\Phi(1.65) = 0.950$)

- 题4. 某市保险公司开办一年人身保险业务,被保险人每年需要交付保费160元,若一年内发生重大人身事故,其家属可领取赔偿金2万元。已知该市人员一年内发生重大人身事故的概率为0.005,现有5000人参加此项保险,问保险公司一年内从此项业务中所得到的总收益在20万元到40万元之间的概率是多少? $(已知\sqrt{24.875} \approx 5, \Phi(1) = 0.8413)$
- 题5. 一个螺丝钉重量是一个随机变量,期望值是100克,标准差是10克. 求一盒(100个)同型号螺丝钉的重量超过10.2千克的概率. $(已知\Phi(2)=0.9772)$
- 题 6. 一加法器同时收到 20 个噪声电压 V_k $(k=1,2,\cdots,20)$,设它们是相互独立的随机变量,且都在区间 (0,10) 上服从均匀分布,记 $V=\sum_{k=1}^{20}V_k$,求 $P\{V>105\}$ 的近似值? $\left(\Box \mathcal{D}\left(\frac{\sqrt{15}}{10}\right)=0.652\right)$
- 题7. 计算机在进行加法运算时,有时要对每个加数取整(取最接近它的整数)。设所有取整误差都是相互独立的,且都在(-0.5,0.5)上服从均匀分布。求:进行多少个数的加法运算,才能使得误差总和绝对值小于10的概率不小于0.9?(已知 $\Phi(1.29)=0.90$, $\Phi(1.645)=0.95$)
- 题8. 设男孩出生率为0.515, 求在10000个新生婴儿中女孩不少于男孩的概率? $(已知\sqrt{2497.75}\approx50,\ \Phi(3)=0.99865)[211难度,选做]$

第十课 统计量与三种特殊分布

序号	考题类型		掌握与否
题型 1	统计量与常考公式	P43	
题型 2	三种特殊分布	P44	
题型3	无偏估计与有效性	P45	

常考题型 1·统计量与常考公式

统计量:不含任何未知参数的式子

题1. 设样本 X_1, X_2, \dots, X_n 来自总体 $X \sim N(\mu, \sigma^2)$, 其中 μ 已知, σ 未知, $n \geq 2$,则下列选项中 是统计量的是()

A.
$$\frac{\sigma^2}{n} \sum_{i=1}^n (X_i - \mu)^2$$

$$B. \quad \frac{\sigma^2}{n} \sum_{i=1}^n X_i$$

A.
$$\frac{\sigma^2}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$
 B. $\frac{\sigma^2}{n} \sum_{i=1}^{n} X_i$ C. $\frac{\sigma^2}{n-1} \sum_{i=1}^{n} (X_i - \mu)^2$ D. $\frac{\mu}{n} \sum_{i=1}^{n} X_i^2$

$$D. \quad \frac{\mu}{n} \sum_{i=1}^{n} X_i^2$$

解:由于 σ 未知,含有 σ 都不能选,故选D

题2. 设 X_1, X_2, X_3 是取自总体X的一个样本, α 是未知参数,则下列选项中是统计量的是()

A.
$$\alpha(X_1 + X_2 + X_3)$$
 B. $X_1 + X_2 + X_3$ C. $\frac{1}{\alpha}X_1X_2X_3$ D. $\frac{1}{3}\sum_{i=1}^{3}(X_i - \alpha)^2$

$$B. X_1 + X_2 + X_3$$

$$C. \ \frac{1}{\alpha} X_1 X_2 X_3$$

D.
$$\frac{1}{3}\sum_{i=1}^{3} (X_i - \alpha)^2$$

解:由于 α 是未知参数,含有 α 都不能选,故选B

题3. 样本 $X_1, X_2 \cdots X_n$ 取自正态总体 $N(\mu, \sigma^2), \overline{X}$ 为样本平均值,S为样本标准差,则()

$$A. \ \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$B. \ E\left(S^{2}\right) = \frac{\sigma^{2}}{n}$$

$$C. \ \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n)$$

A.
$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 B. $E\left(S^2\right) = \frac{\sigma^2}{n}$ C. $\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n)$ D. $\frac{\overline{X} - \mu}{\sigma} \sim N(0, 1)$

解: 套用常考公式, 易知选A

题 4. 样本 $(X_1, X_2 \cdots X_n)$ 取 自 总 体 $X \sim B(n, p)$, \overline{X} 为 样 本 平 均 值 , S^2 为 样 本 方 差 , 则 $E(\overline{X}) = \underline{\qquad} .D(\overline{X}) = \underline{\qquad} .E(S^2) = \underline{\qquad} .$ $D(\overline{X}) = \underline{\qquad} .D(\overline{X}) = \underline{\qquad} .$

解:
$$E(\overline{X}) = E(X) = np$$

$$D(\overline{X}) = \frac{1}{n}D(X) = \frac{1}{n} \times np(1-p) = p(1-p)$$

$$E(S^{2}) = D(X) = np(1-p)$$

常考分布: $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \qquad \frac{\overline{X} - \mu}{\sigma^2 \sqrt{n}} \sim N(0, 1)$ $\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t (n-1)$

常考题型 2. 三种特殊分布

①
$$\chi^2$$
分布: 若 X_1, X_2, \dots, X_n 独立,且都服从 $N(0,1)$,则: $X_1^2 + X_2^2 + \dots + X_n^2 \sim \chi^2(n)$
性质: 若 $X \sim \chi^2(n_1)$, $Y \sim \chi^2(n_2)$,则: $X + Y \sim \chi^2(n_1 + n_2)$

②
$$t$$
分布: 若 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, 且 X , Y 相互独立, 则: $\frac{X}{\sqrt{Y/n}} \sim t(n)$

性质: 若
$$T \sim t(n)$$
, 则 $T^2 \sim F(1,n)$, $\frac{1}{T^2} \sim F(n,1)$

③
$$F$$
分布: $若X \sim \chi^2(n_1)$, $Y \sim \chi^2(n_2)$, 且 X , Y 相 互独立, 则: $\frac{X/n_1}{Y/n_2} \sim F(n_1,n_2)$ 性质: 不用记

题1. 设 X_1, X_2, X_3, X_4 是来自总体N(0,3)的样本,设 $Y = (X_1 + X_2)^2 + (X_3 + X_4)^2$,当C =______时,统计量CY服从 χ^2 分布,其自由度为_____。

解: 设
$$Y_1 = (X_1 + X_2)$$
 $Y_2 = (X_3 + X_4)$ 则 $E(Y_1) = E(X_1 + X_2) = 0$ $D(Y_1) = D(X_1) + D(X_2) = 6$
$$\therefore Y_1 \sim N(0,6) \Rightarrow \frac{Y_1 - 0}{\sqrt{6}} \sim N(0,1)$$
 同理: $Y_2 \sim N(0,6) \Rightarrow \frac{Y_2 - 0}{\sqrt{6}} \sim N(0,1)$

题 2. 设
$$X \sim N(3,1)$$
, $Y \sim \chi^2(9)$, 且 X 与 Y 相 互 独 立 ,则 $\frac{3(X-3)}{\sqrt{Y}} \sim$ ______。

解: 由于
$$\frac{X-3}{\sqrt{1}} \sim N(0,1)$$
 且 $Y \sim \chi^2(9)$ 故: $\frac{X-3}{\sqrt{Y/9}} \sim t(9)$ $\Rightarrow \frac{3(X-3)}{\sqrt{Y}} \sim t(9)$

题3. 设
$$X_1, X_2, \cdots, X_6$$
是来自正态总体 $N(0,1)$ 的样本,若统计量
$$T = C \Big[\big(X_1 + X_2 \big)^2 + \big(X_3 + X_4 \big)^2 + \big(X_5 + X_6 \big)^2 \Big]$$
服从 χ^2 分布,则常数 $C =$ _______。

解: 设
$$Y_1 = (X_1 + X_2)$$
 $Y_2 = (X_3 + X_4)$ $Y_3 = (X_5 + X_6)$

∴
$$E(Y_1) = E(X_1 + X_2) = 0$$
 $D(Y_1) = D(X_1) + D(X_2) = 2$ ∴ $Y_1 \sim N(0,2)$ $\Leftrightarrow : \frac{Y_1 - 0}{\sqrt{2}} \sim N(0,1)$

同理:
$$Y_2 \sim N(0,2)$$
 故: $\frac{Y_2-0}{\sqrt{2}} \sim N(0,1)$ 同理: $Y_3 \sim N(0,2)$ 故: $\frac{Y_3-0}{\sqrt{2}} \sim N(0,1)$

故:
$$\frac{1}{2} \Big[(X_1 + X_2)^2 + (X_3 + X_4)^2 + (X_5 + X_6)^2 \Big] \sim \chi^2 (3) \Rightarrow C = \frac{1}{2}$$

常考题型 3.无偏估计与有效性

题1. 设样本 (X_1, X_2, X_3, X_4) 取自正态总体 $N(\mu, \sigma^2)$, $\mu = 0.2X_1 + 0.2X_2 + cX_3 + 0.2X_4$ 为 未知参数 μ 的一个无偏估计,则c=.

解: 由题知: $E(\mu) = E(0.2X_1 + 0.2X_2 + cX_3 + 0.2X_4) = \mu$ $\therefore 0.2EX_1 + 0.2EX_2 + cEX_3 + 0.2EX_4 = \mu$ $0.2 \mu + 0.2 \mu + c \mu + 0.2 \mu = \mu$ $(0.6+c)\mu = \mu$ c = 0.4 无偏估计: 则 □ 是 △ 的无偏估计

题2. 设总体 $X \sim N(\mu,1)$, x_1, x_2, x_3 为其样本, 若估计量 $\mu = \frac{1}{2}x_1 + \frac{1}{2}x_2 + kx_3$ 是参数 μ 的 无偏估计量,则k=

解: 由题知: $E(\mu) = E\left(\frac{1}{2}x_1 + \frac{1}{3}x_2 + kx_3\right) = \mu$ $\therefore \frac{1}{2}Ex_1 + \frac{1}{3}Ex_2 + kEx_3 = \mu \implies \left(\frac{1}{2} + \frac{1}{3} + k\right)\mu = \mu \implies \therefore k = \frac{1}{6}$

题3. 设 X_1, X_2, X_3 为来自总体X的样本,下列关于EX的无偏估计中,最有效的是(

 $A.\frac{1}{2}X_1 + \frac{1}{2}X_2$ $B.\frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$ $C.\frac{1}{4}X_1 + \frac{1}{4}X_2 + \frac{1}{2}X_3$ $D.\frac{2}{3}X_1 + \frac{2}{3}X_2 - \frac{1}{3}X_3$

 $C.\left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{3}{8}$ $D.\left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(-\frac{1}{3}\right)^2 = 1$ ∴ B项最有效, 选B

题4. 设 X_1, X_2, X_3, X_4 是自总体 $N(\mu, \sigma^2)$ 的样本,则 μ 的最有效估计量是()

 $A.\frac{1}{2}(X_1 + X_2 + X_3)$ $B.\frac{1}{4}(X_1 + X_2 + X_3 + X_4)$ $C.\frac{1}{2}(X_3 + X_4)$ $D.\frac{1}{5}(X_1 + X_2 + X_3 + X_4)$

 $\widetilde{\mathbf{H}}: A \cdot \left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^2 = \frac{1}{3} \qquad B \cdot \left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^2 = \frac{1}{4}$ $C.\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{1}{2}$ D.不是 μ 的无偏估计,故不计算 : B项最有效,选B

期末考題・第十节

题1. 设样本 X_1, X_2, \cdots, X_n 来自总体 $X \sim N\left(\mu, \sigma^2\right)$, 其中 μ 已知, σ^2 未知, $n \geq 2$,则下列选项中不是统计量的是()

$$A.\frac{1}{n}\sum_{i=1}^{n}X_{i} \qquad B.\max\{X_{1},X_{2},\dots,X_{n}\} \qquad C.\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2} \qquad D.\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}$$

题2. 设总体分布 $N(\mu,\sigma^2)$, 其中 μ 为已知, σ^2 为未知, X_1,X_2,\cdots,X_n 为从这一总体中抽取的容量为n的简单随机样本,则下列不是统计量的是()

$$A.\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \qquad B.\frac{1}{\sigma^{2}}\sum_{i=1}^{n}X_{i}^{2} \qquad C.\sum_{i=1}^{n}(X_{i}-\mu)^{2} \qquad D.\min_{1\leq i\leq n}X_{i}$$

题3. 设总体 $X\sim N\left(2,16\right)$, 其中 X_1,X_2,\cdots,X_n 为来自X的样本, \overline{X} 为样本均值,则下面结果正确的是()

$$A.\frac{\overline{X}-2}{4/\sqrt{n}} \sim N(0,1) \qquad B.\frac{\overline{X}-2}{16} \sim N(0,1) \qquad C.\frac{\overline{X}-2}{2} \sim N(0,1) \qquad D.\frac{\overline{X}-2}{4} \sim N(0,1)$$

题4. 设 X_1, X_2, \cdots, X_{10} 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, \overline{X} 和 S^2 分别为样本均值和样本方差,

$$\operatorname{Im} \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim \underline{\hspace{1cm}}^{\circ}$$

题5. 设随机变量X和Y相互独立,且都服从正态分布 $N\left(0,3^2\right)$,而 X_1,X_2,\cdots,X_9 和 Y_1,Y_2,\cdots,Y_9 是分别来自总体X和Y的简单随机样本,则统计量 $U=\frac{X_1+X_2+\cdots+X_9}{\sqrt{Y_1^2+Y_2^2+\cdots+Y_9^2}}$ 服从____分布,参数自由度为____。

题6. 设随机变量 X_i , i=1,2,3,4相互独立,且都服从N(0,1)分布,若随机变量

$$\left[a(X_1 + X_2)^2 + b(2X_3 + X_4)^2\right] \sim \chi^2(2), \quad \emptyset \ a = \underline{\qquad}, \quad b = \underline{\qquad}$$

题7. 设 $X \sim t(n)$,则 X^2 服从()分布。

$$(A) \chi^{2}(n) \qquad (B) F(1,n) \qquad (C) F(n,1) \qquad (D) F(1,n-1)$$

题8. 设样本 (X_1,X_2,\cdots,X_n) 取自正态总体 $N(\mu,\sigma^2)$,则当且仅当常数 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 满足条件______时, $\widehat{\mu=\alpha_1}X_1+\alpha_2X_2+\cdots+\alpha_nX_n$ 是参数 μ 的一个无偏估计.

题9. 设 X_1, X_2, X_3 为取自总体 $X \sim N(\mu, \sigma^2)$ 的样本,

(1) 判断以下哪个是
$$\mu$$
的无偏估计: $Y_1 = X_1$, $Y_2 = \frac{X_1 + X_2}{2}$, $Y_3 = \frac{X_1 + X_2 + X_3}{3}$

(2)哪个估计更有效(从小到大排列)

第十一课 参数估计

序号	考题类型		掌握与否
题型 1	求矩估计	P47	
题型 2	求最大(极大)似然估计	P48	

常考题型 1· 求矩估计

题1. 设总体X的概率密度函数为 $f(x,\theta) = \begin{cases} (\theta+1)x^{\theta} & 0 < x < 1 \\ 0 & \text{其中} \theta > -1 为未知参数,<math>x_1, x_2, \cdots, x_n$ 是 来自总体X的n个样本, 求 θ 的矩估计量。

解:
$$EX = \int_{-\infty}^{+\infty} x \cdot f(x,\theta) dx$$

$$= \int_{0}^{1} x \cdot (\theta+1) x^{\theta} dx = \int_{0}^{1} (\theta+1) x^{\theta+1} dx = \frac{\theta+1}{\theta+2} x^{\theta+2} \Big|_{0}^{1} = \frac{\theta+1}{\theta+2}$$
① 求分布的数学期望 EX
② 令 $EX = \overline{X}$ 即: $\frac{\theta+1}{\theta+2} = \overline{X}$ ⇒ $\therefore \hat{\theta} = \frac{2\overline{X}-1}{1-\overline{X}}$
③ 给 θ "戴帽子", $\hat{\theta} = \theta$

矩估计解题步骤:

- ③ 给 θ "戴帽子", $\hat{\theta} = \theta$

题2. 设总体X的分布律如右表,其中 $0 < \theta < 1$,为未知参数,现抽取了一组样本观测值 $(x_1, x_2, x_3, x_4, x_5) = (1,1,2,2,3)$, 试求 θ 的矩估计值。

解:
$$EX = 1 \times \theta + 2 \times 2\theta + 3(1 - 3\theta) = 3 - 4\theta$$
 令 $EX = \overline{X}$ 即: $3 - 4\theta = \overline{X}$ ⇒ $\therefore \hat{\theta} = \frac{3 - \overline{X}}{4}$ 其中: $\overline{X} = \frac{1 + 1 + 2 + 2 + 3}{5} = 1.8$ \therefore 矩估计值: $\hat{\theta} = \frac{3 - 1.8}{4} = 0.3$

题3. 设总体X的概率密度函数为 $f(x,\lambda)=\begin{cases} \lambda x^{\lambda-1} & 0 < x < 1 \\ 0 & \pm \ell \end{cases}$,其中 $\lambda > 0$ 为未知参数,求 λ 的矩估计量。

解:
$$EX = \int_{-\infty}^{+\infty} x \cdot f(x, \lambda) dx = \int_{0}^{1} x \cdot \lambda x^{\lambda - 1} dx = \int_{0}^{1} \lambda x^{\lambda} dx = \frac{\lambda}{\lambda + 1} x^{\lambda + 1} \Big|_{0}^{1} = \frac{\lambda}{\lambda + 1}$$

$$\Leftrightarrow EX = \overline{X} \qquad \text{Pp}: \qquad \frac{\lambda}{\lambda + 1} = \overline{X} \qquad \Rightarrow \quad \therefore \hat{\lambda} = \frac{\overline{X}}{1 - \overline{X}}$$

常考题型 2. 求最大(极大)似然估计

题1. 设总体X的概率密度函数为 $f(x,\theta)=\begin{cases} (\theta+1)x^{\theta} & 0 < x < 1 \\ 0 & \pm \theta > -1 \end{pmatrix}$ 未知参数, x_1,x_2,\cdots,x_n 是来自总体X的n个样本,求 θ 的最大似然估计量.

解:
$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta)$$

$$= (\theta + 1) x_1^{\theta} \cdot (\theta + 1) x_2^{\theta} \cdots (\theta + 1) x_n^{\theta} = (\theta + 1)^n x_1^{\theta} \cdot x_2^{\theta} \cdots x_n^{\theta}$$
取对数: $\ln L(\theta) = \ln \left[(\theta + 1)^n x_1^{\theta} \cdot x_2^{\theta} \cdots x_n^{\theta} \right]$

$$= \ln (\theta + 1)^n + \ln x_1^{\theta} + \ln x_2^{\theta} + \cdots + \ln x_n^{\theta}$$

$$= n \ln (\theta + 1) + \theta \ln x_1 + \theta \ln x_2 + \cdots + \theta \ln x_n$$

$$= n \ln (\theta + 1) + \theta \sum_{i=1}^{n} \ln x_i$$

$$\Leftrightarrow \frac{d \ln L(\theta)}{d \theta} = \frac{n}{\theta + 1} + \sum_{i=1}^{n} \ln x_i = 0 \quad \Rightarrow \quad \therefore \hat{\theta} = -1 - \frac{n}{\sum_{i=1}^{n} \ln x_i}$$

极大似然估计解题步骤:

- ①构造似然函数 $L(\theta) = \prod_{i=1}^{n} f(x_i, \theta)$
- ②取对数 $\ln L(\theta)$ 并展开
- ③ $\ln L(\theta)$ 求导令为0: $\frac{d \ln L(\theta)}{d\theta} = 0$ 并求出未知参数 $\theta = ?$
- ④ 给 θ "戴帽子", $\hat{\theta} = \theta$ 并把 x 改写成 X

题2. 设总体X的分布律如右表,其中 $0 < \theta < 1$,为未知参数,现抽取了一组样本观测值 $(x_1, x_2, x_3, x_4, x_5) = (1,1,2,2,3)$,试求 θ 的最大似然估计值.

题3. 设总体X的概率密度函数为 $f(x,\lambda)=\begin{cases} \lambda x^{\lambda-1} & 0 < x < 1 \\ 0 & \pm t \end{cases}$,其中 $\lambda > 0$ 为未知参数,求:

解:
$$L(\lambda) = \prod_{i=1}^{n} f(x_i, \lambda) = \lambda x_1^{\lambda-1} \cdot \lambda x_2^{\lambda-1} \cdots \lambda x_n^{\lambda-1} = \lambda^n x_1^{\lambda-1} \cdot x_2^{\lambda-1} \cdots x_n^{\lambda-1}$$
取对数: $\ln L(\lambda) = \ln \left(\lambda^n x_1^{\lambda-1} \cdot x_2^{\lambda-1} \cdots x_n^{\lambda-1}\right) = \ln \lambda^n + \ln x_1^{\lambda-1} + \ln x_2^{\lambda-1} + \cdots + \ln x_n^{\lambda-1}$

$$= n \ln \lambda + (\lambda - 1) \ln x_1 + (\lambda - 1) \ln x_2 + \cdots + (\lambda - 1) \ln x_n = n \ln \lambda + (\lambda - 1) \sum_{i=1}^{n} \ln x_i$$

$$\Leftrightarrow \frac{d \ln L(\lambda)}{d \lambda} = \frac{n}{\lambda} + \sum_{i=1}^{n} \ln x_i = 0 \qquad \Rightarrow \qquad \therefore \quad \hat{\lambda} = -\frac{n}{\sum_{i=1}^{n} \ln x_i}$$

期末考題・第十一节

题1. 设总体X的分布律如右表,其中 $0 < \theta < 1$,未知,现抽取了样本 $x_1 = 1, x_2 = 2, x_3 = 1$,试求 θ 的矩估计值和最大似然估计值。

X	1	2	3
$p_{_k}$	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

题 2. 设总体 X 的 概率 密度函数 为 $f(x) = \begin{cases} (\sqrt{\alpha} + 1)x^{\sqrt{\alpha}} & 0 < x < 1 \\ 0 & \pm c \end{cases}$, 其中 $\alpha > 0$ 为 未知 参数 ,

 X_1, X_2, \cdots, X_n 为总体X的n个样本,分别求 α 的矩估计量和最大似然估计量。

题3. 设总体X的密度函数为
$$f(x,\theta) = \begin{cases} \frac{2}{\theta^2}(\theta - x) & 0 < x < \theta \\ 0 & else \end{cases}$$
, 其中 $\theta > 0$ 为未知参数,

題4. 设总体
$$X$$
的概率密度函数为 $f(x,\theta)=\begin{cases} \frac{1}{\theta}e^{-\frac{x}{\theta}} & x>0\\ 0 & \text{其他} \end{cases}$

 x_1,x_2,\cdots,x_n 是来自总体X的简单随机样本,求参数 θ 的极大似然估计量。

第十二课 置信区间与检验假设

序号	考题类型		掌握与否
题型 1	求置信区间	P50	
题型 2	检验某个假设是否成立	P51	
题型3	两类错误	P52	

常考题型 1· 求置信区间

正态总体 $N(\mu,\sigma^2)$ 的置信区间

要求的参数	条件	置信区间
μ	σ²已知	$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2}\right)$
μ	σ²未知	$\left(\overline{X} - \frac{S}{\sqrt{n}} t_{\alpha/2} (n-1), \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha/2} (n-1)\right)$
σ^2	μ未知	$\left(\frac{\left(n-1\right)S^2}{\chi^2_{\alpha/2}(n-1)},\frac{\left(n-1\right)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right)$

 μ :总体均值 \overline{X} :样本均值 n:样本的数量

 σ^2 :总体方差 S^2 :样本方差 $1-\alpha$: 置信水平/置信度

题1. 设某型号的保险丝的寿命X服从正态分布 $N\left(\mu,20^2\right)$, 现测得5个保险丝的寿命如下: 1510,1520,1517,1516,1517,求 μ 的置信水平为0.95的置信区间.(已知 $u_{0.05}=1.65$, $u_{0.025}=1.96$)

解:
$$\sigma^2$$
已知,故: μ 的置信区间为 $\left(\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2}\right)$
其中: $\overline{X} = \frac{1510 + 1520 + 1517 + 1516 + 1517}{5} = 1516$
$$\sigma = \sqrt{20^2} = 20 \quad n = 5 \quad \alpha = 0.05 \quad \left(1 - \alpha = 0.95\right)$$
 代入: $\left(1516 - \frac{20}{\sqrt{5}} u_{0.025}, 1516 + \frac{20}{\sqrt{5}} u_{0.025}\right)$ 计算得置信区间: $\left(1498.47, 1533.53\right)$

求置信区间步骤:

- ① 根据题目条件,选择公式
- ② 写出公式中参数的具体数值
- ③ 代入数据, 求出区间

题2. 用金球测定引力常数 $(10^{-11} m^3/kg \cdot s^2)$,它服从正态分布 $X \sim N(\mu, \sigma^2)$,从总体X中取出 9个样本,测得样本均值和样本方差分别为 $\overline{X} = 6.678, S^2 = 0.36, 分别求置信度为0.95的:$ $(1)\mu$ 的双侧置信区间 $(2)\sigma^2$ 的双侧置信区间 (其中: $\chi_{0.975}^2(8) = 2.180$, $\chi_{0.025}^2(8) = 17.535$, $t_{0.025}(8) = 2.3060$)

解:(1)
$$\sigma^2$$
未知,故: μ 的置信区间为 $\left(\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right)$
其中: $\overline{X} = 6.678$ $S = \sqrt{0.36} = 0.6$ $n = 9$ $\alpha = 0.05$
代入: $\left(6.678 - \frac{0.6}{\sqrt{9}}t_{0.025}(8), 6.678 + \frac{0.6}{\sqrt{9}}t_{0.025}(8)\right)$ 计算得置信区间:(6.2168,7.1392)
(2) μ 未知,故: σ^2 的置信区间为 $\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right)$
其中: $S^2 = 0.36$ $n = 96$ $\alpha = 0.05$ 代入: $\left(\frac{8 \times 0.36}{\chi^2_{0.025}(8)}, \frac{8 \times 0.36}{\chi^2_{0.975}(8)}\right)$ 计算得置信区间:(0.1642,1.3211)

常考题型 2·检验某个假设是否成立

检验假设的三种检验方法

要检验的参数	条件	原假设与备择假设	选择的统计量	对应的拒绝域
,,	σ²已知	$H_0: \mu = \mu_0, \ H_1: \mu \neq \mu_0$	$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$ u \ge u_{\alpha/2}$
μ	σ²未知	$H_0: \mu = \mu_0, \ H_1: \mu \neq \mu_0$	$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$	$ t \geq t_{\alpha/2} (n-1)$
σ^2	μ未知	$H_0: \sigma^2 = \sigma_0^2, \ H_1: \sigma^2 \neq \sigma_0^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi^{2} \geq \chi^{2}_{\alpha/2}(n-1)$ $\dot{\mathfrak{Z}}\chi^{2} \leq \chi^{2}_{1-\alpha/2}(n-1)$

 μ : 总体均值 \overline{X} : 样本均值 n: 样本的数量

 σ^2 :总体方差 S^2 :样本方差 α :显著性水平

题1. 设某次考试的学生成绩服从正态分布, 从中随机地抽取36位考生的成绩, 算得平均成绩 为66.5分,标准差为15分. 问在显著性水平 $\alpha = 0.05$ 下,是否可以认为这次考试全体考生的 平均成绩为70分? (其中: $t_{0.025}(35) = 2.03$)

解: 假设
$$H_0$$
: $\mu = \mu_0 = 70$ 则 H_1 : $\mu \neq \mu_0$

选取统计量:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
 拒绝域: $|t| \ge t_{\alpha/2} (n-1) = t_{0.025} (35)$

$$\therefore$$
 拒绝域: $|t| \ge 2.03$ 由于 $\overline{X} = 66.5$ $S = 15$ $\mu_0 = 70$ $n = 36$ ③ 根据 αnn 确定拒绝域

$$|t| = \left| \frac{66.5 - 70}{15/\sqrt{36}} \right| = 1.4 < 2.03$$

故:不在拒绝域内 ⇒ 接受原假设H。

即:可以认为这次考试全体考生的平均成绩为70分

检验假设步骤:

- ① 写出原假设 H_0 和备择假设 H_1
- ② 选择统计量,并写出拒绝域
- ④ 计算统计量,看是否在拒绝域内 并由此作出判断

题2. 设切割机在正常工作时,切割得每段金属棒长服从正态分布,且其平均长度为10.5cm, 标准差为0.15cm。今从一批产品中随机抽取16段进行测量, 计算平均长度为X=10.48cm。 假设方差不变,问在 $\alpha = 0.05$ 显著性水平下,该切割机工作是否正常?

(已知:
$$t_{0.05}(16) = 2.12$$
, $t_{0.05}(15) = 2.13$, $z_{0.025} = 1.96$)

解: 假设
$$H_0$$
: $\mu = \mu_0 = 10.5$ 则 H_1 : $\mu \neq \mu_0$

选取统计量:
$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$
 拒绝域: $|z| \ge z_{\alpha/2} = z_{0.025} = 1.96$

由于:
$$\overline{X} = 10.48$$
 $\sigma = 0.15$ $\mu_0 = 10.5$ $n = 16$

故:接受原假设H。即:该切割机工作正常

常考题型 3·两类错误

第一类错误: Ho为真, 拒绝了Ho"弃真" 第二类错误: Ho为假, 接受了Ho"取伪"

题1. 在假设检验中, H_0 表示原假设, H_1 表示备择假设,则犯第一类错误的是()

 $A.H_0$ 为真,拒绝 H_0 $B.H_0$ 为真,接受 H_0 $C.H_0$ 不真,接受 H_0 $D.H_0$ 不真,拒绝 H_0

解:根据定义,易知选A

题2. 在假设检验中, H_0 表示原假设, H_1 表示备择假设,则()称为犯第二类错误 $A.H_0$ 为真,接受 H_0 $B.H_0$ 不真,接受 H_0 $C.H_0$ 为真,拒绝 H_0 $D.H_0$ 不真,拒绝 H_0

解:根据定义,易知选B

期末考题・第十二节

- 题1. 某种保险丝熔化的时间 (单位: 秒) $X \sim N(\mu, \sigma^2)$,现随机抽取一个容量为16的简单样本,测得样本均值 x=15,样本的方差 $s^2=0.64$,则 μ 的置信度为 0.95的置信区间为_____。 (其中: $t_{0.025}(16)=2.1199$, $t_{0.025}(15)=2.1315$, $t_{0.05}(15)=1.7531$)
- 题2. 已知总体 $X \sim N(\mu, \sigma^2)$ 。试分别在下列条件下求指定参数的置信区间:
 - $(1)\sigma^2$ 未知, n=21, x=13.2, $s^2=5$, $\alpha=0.05$ 。求 μ 的置信区间;
 - $(2)\mu$ 未知, n=12, $s^2=1.356$, $\alpha=0.02$ 。求 σ^2 的置信区间。
 - ($\angle \pi$: $t_{0.025}(20) = 2.086$, $\chi_{0.01}^2(11) = 24.725$, $\chi_{0.99}^2(11) = 3.053$)
- 题3. 已知某种油漆的干燥时间 X (单位:小时) 服从正态分布 $X \sim N(\mu,1)$,其中 μ 未知,现随机抽取25个样品做试验,计算得:x=6,取 $\alpha=0.05$,则 μ 的置信区间为_____。 (其中: $u_{0.025}=1.96$)
- 题4. 设来自 $X \sim N(\mu, 0.9^2)$ 容量为9的样本的样本均值为6,已知 $Z_{0.05} = 1.645$, $Z_{0.025} = 1.96$,则参数 μ 的置信系数为0.95的置信区间为
- 题5. 机器包装食盐,假设每袋食盐的净重X服从正态分布,规定每袋标准重量为500g,某天开工后,为检查机器工作是否正常,从装好的食盐中随机抽取9袋,测其净重(单位:g)为: 497,507,510, 475,484,488,524,491,515。计算得出 \overline{X} = 499, S = 16.03,问这天包装机工作是否正常? (其中: α = 0.05, $t_{0.025}(8)$ = 2.306)
- 题6. 根据以往的材料知:某批矿砂的铁含量服从正态分布 $N(40,2^2)$. 现在测定了25个样品,算得平均铁含量为41.25,问在 $\alpha=0.05$ 下,可否认为该批矿砂的铁含量正常?(其中: $u_{0.025}=1.96$)
- 题7. 某产品的一项质量指标 $X \sim N\left(\mu, 0.05^2\right)$,现从一批产品中随机地抽取6件,测得样本的方差 $S^2 = 0.008$,问根据这一数据能否推断该产品的方差较以往有显著的变化?

(\varnothing): $\alpha = 0.05$, $\chi^2_{0.025}(5) = 12.832$, $\chi^2_{0.975}(5) = 0.831$)