

System Design Workshop

Kim jesteśmy?

Konrad Najder Senior Software Engineer

Aneta Porębska Software Engineer

AVSystem

IoT

Telco

Guest Wi-Fi

GoodLood

Program stażowy

Scala

Java

Angular

M

Kafka

Kubernetes

https://shorturl.at/9jac3

Agenda spotkania

1 Wstęp

2 Wstęp teoretyczny

3 Zadanie 1 - wspólne rozwiązywanie

4 Przerwa (20 min, około 16:40)

Zadanie 2 - praca w grupach

6 Zadanie 2 - dyskusja

7 Feedback

Po co się tutaj zebraliśmy?

System Design 101

What is System Design?

Distributed Systems

Distributed Systems

- reliability
- scalability
- availability
- maintainability

Reliability

- preventing cascading failures
- no single point of failure
- fault tolerant

Ways to achieve reliability

Rate limiter

image source: https://github.com/karanpratapsingh/system-design?tab=readme-ov-file#rate-limiting

Persistent messages

image source: https://github.com/karanpratapsingh/system-design?tab=readme-ov-file#publish-subscribe

Scalability

- scaling up and out
- sharding

Ways to achieve scalability

Message queue

image source: https://github.com/karanpratapsingh/system-design?tab=readme-ov-file#message-queues

Load balancing

image source: https://github.com/karanpratapsingh/system-design?tab=readme-ov-file#load-balancing

Database sharding

image source: https://github.com/karanpratapsingh/system-design?tab=readme-ov-file#what-is-sharding

(High) Availability

- operational and accessible

Availability in numbers

Availability SLA	Daily	Weekly	Monthly	Yearly
95%	1h	8h	1d	18d
99%	15m	2h	7h	3d
99.9%	1m	10m	40m	9h
99.99%	10s	1m 0.48s	4m	50m
99.999%	1s	6s	40s	5m
99.9999%	0.1s	0.6s	4s	30s

Ways to achieve availability

Fail-over

image source: https://github.com/karanpratapsingh/system-design?tab=readme-ov-file#active-passive

Replication

image source: https://github.com/karanpratapsingh/system-design?tab=readme-ov-file#active-passive

Maintainability

- simple to understand
- simple to change
- simple to debug

Ways to achieve maintainability

Logging

```
Logs

| * ("_entry":"log text [66027310]", "counter":"30057", "float":"50.815", "wave":-0.8090169943755303, "label":"val1", "level":"warning"}
| * ("_entry":"log text with ANSI \u001b[31mpart of the text\u001b[0m [477948175]", "counter":"30056", "float":"NaN", "wave":-0.9510565162949643, "label":"val1", "level":"error"}
| * ("_entry":"log text with ANSI \u001b[31mpart of the text\u001b[0m [675786544]", "counter":"30055", "float":"22.731", "wave":-1, "label":"val3", "level":"info"}
| * ("_entry":"log text [200456453]", "counter":"30054", "float":"32.5", "wave":-0.95105651629521, "label":"val3", "level":"info"}
| * ("_entry":"log text with ANSI \u001b[31mpart of the text\u001b[0m [664629041]", "counter":"30052", "float":"5.684", "wave":-0.8090169943749285, "label":"val2", "level":"info"}
| * ("_entry":"log text with ANSI \u001b[31mpart of the text\u001b[0m [864629041]", "counter":"30052", "float":"5.684", "wave":-0.5877852522922731, "label":"val3", "level":"info"}
| * ("_entry":"log text with ANSI \u001b[31mpart of the text\u001b[0m [841084448]", "counter":"30050", "float":"NaN", "wave":6.770924531994232e-13, "label":"val2", "level":"info"}
| * ("_entry":"log text with ANSI \u001b[31mpart of the text\u001b[0m [965740311]", "counter":"30050", "float":"98.017", "wave":0.3090169943757958, "label":"val2", "level":"info"}
| * ("_entry":"log text with ANSI \u001b[31mpart of the text\u001b[0m [965740311]", "counter":"30049", "float":"98.017", "wave":0.3090169943757958, "label":"val2", "level":"info"}
| * ("_entry":"log text with ANSI \u001b[31mpart of the text\u001b[0m [608925769]", "counter":"30047", "float":"45.697", "wave":0.8090169943757244, "label":"val3", "level":"info"}
| * ("_entry":"log text with ANSI \u001b[31mpart of the text\u001b[0m [608925769]", "counter":"30047", "float":"45.697", "wave":0.909169943757244, "label":"val3", "level":"info"}
| * ("_entry":"log text with ANSI \u001b[31mpart of the text\u001b[0m [608925769]", "counter":"30046", "float":"45.697", "wave":0.909169943757244, "label":"val3", "level"
```


Monitoring

Agenda rozmowy system design

1. Zbieranie wymagań

Funkcjonalnych:

- co system ma robić?
- czego nie musi robić?

Niefunkcjonalnych:

- jak system ma się zachowywać?
- jak dużo danych / użytkowników?

2. Wstępne planowanie

Estymacja zasobów:

- ile danych przechowujemy?
- ile odczytów musimy przetworzyć?
- ile zapisów musimy przetworzyć?

Jakie są główne encje w naszym systemie?

3. Wysokopoziomowy szkic

- główne komponenty
- przepływ danych
- realizacja wymagań funkcjonalnych

4. Zagłębienie w szczegóły

- wybór bazy danych
- zaprojektowanie API
- zaprojektowanie modeli bazodanowych

5. Rozszerzenie systemu

- jak możemy spełnić dodatkowe wymaganie X?
- co trzeba zmienić w systemie żeby obsłużyć 10x większy ruch? gdzie są wąskie gardła?
- jak monitorować system, jak znaleźć potencjalne awarie?

Materialy pomocnicze

https://github.com/AVSystem/system-design-workshop

Pytania?

Zadanie 1 - wymagania

Zadanie 1 - dyskusja

Przerwa (~20min)

Zadanie 2 - zbieranie wymagań

Zadanie 2 - praca w grupach (~30min)

Zadanie 2 - dyskusja

Feedback

https://shorturl.at/Nfopp

Losowanie

Dziękujemy za uwagę