More on Regular Sets

Nontrivial example of Regular Set

 Accept binary strings that are divisible by 3. Suppose we are reading from the most significant bit (leftmost bit).

Nontrivial example of Regular Set

- Accept binary strings that are divisible by 3. Suppose we are reading from the most significant bit (leftmost bit).
- Expansions of numbers divisible by 3:
 - 0 = 0
 - 3 = 11
 - 6 = 110
 - 9 = 1001

Nontrivial example of Regular Set

- Accept binary strings that are divisible by 3. Suppose we are reading from the most significant bit (leftmost bit).
- Expansions of numbers divisible by 3:
 - 0 = 0
 - 3 = 11
 - 6 = 110
 - 9 = 1001
- Apriori no structural pattern can be deciphered as before.

• How does the string change when we read one more bit to the right: [#y] is decimal number represented in binary by y]

$$\#(x0) = 2\#x + 0$$

 $\#(x1) = 2\#x + 1$
So, $\#(xc) = 2\#x + c$, $c \in \{0, 1\}$

• How does the string change when we read one more bit to the right: [#y] is decimal number represented in binary by y]

$$\#(x0) = 2\#x + 0$$

 $\#(x1) = 2\#x + 1$
So, $\#(xc) = 2\#x + c$, $c \in \{0, 1\}$

• How does the mod 3 function act on the new string? $\#(xc) \sim (2\#x + c) \mod 3$

• How does the string change when we read one more bit to the right: [#y] is decimal number represented in binary by y]

$$\#(x0) = 2\#x + 0$$

 $\#(x1) = 2\#x + 1$
So, $\#(xc) = 2\#x + c$, $c \in \{0, 1\}$

- How does the mod 3 function act on the new string? $\#(xc) \sim (2\#x + c) \mod 3$
- $\#\epsilon = 0$ for convenience, same as #0.

 A state for each mod 3 value and arrows according to whether the newly read bit is 0 or 1.

- A state for each mod 3 value and arrows according to whether the newly read bit is 0 or 1.
- Assume that we are starting with the ϵ string and so we start with the 0 state.

- A state for each mod 3 value and arrows according to whether the newly read bit is 0 or 1.
- Assume that we are starting with the ϵ string and so we start with the 0 state.
- Intuitively we want to end at the 0 state because it is supposed to represent 0 mod 3 (Final state).

- A state for each mod 3 value and arrows according to whether the newly read bit is 0 or 1.
- Assume that we are starting with the ϵ string and so we start with the 0 state.
- Intuitively we want to end at the 0 state because it is supposed to represent 0 mod 3 (Final state).
- Transition function: $\delta(q,c) = (2q+c) \mod 3$

Transition Diagram

$$\delta(q,c) = (2q+c) \mod 3$$

$$\hat{\delta}(0,x) = \#x \bmod 3$$

• Proof: Induction on x.

$$\hat{\delta}(0,x) = \#x \mod 3$$

- Proof: Induction on x.
- Base: $x = \epsilon$ $\hat{\delta}(0, \epsilon) = 0$ by definition of $\hat{\delta}$. $= \#\epsilon$ $= \#\epsilon \mod 3$.

$$\hat{\delta}(0,x) = \#x \mod 3$$

• Induction step: Suppose true for all x, then we want to show for xc where $c \in \{0, 1\}$.

$$\hat{\delta}(0,x) = \#x \mod 3$$

- Induction step: Suppose true for all x, then we want to show for xc where $c \in \{0, 1\}$.
- $\hat{\delta}(0,xc) = \delta(\hat{\delta}(0,x),c)$
 - $=\delta(\#x \mod 3, c)$ [IH]
 - = $(2(\#x \mod 3) + c) \mod 3$ [Definition of δ]
 - $= (2(\#x) + c) \mod 3$ [Property of mod function]
 - = #xc mod 3 [Property of strings x and xc]

Closure properties of regular sets A and B

• Union $A \cup B$, Intersection $A \cap B$, Complement $\neg A$, Concatenation AB, A^* .

Closure properties of regular sets A and B

- Union $A \cup B$, Intersection $A \cap B$, Complement $\neg A$, Concatenation AB, A^* .
- Show that if A is a regular set then so is $\neg A$: This means A = L(M) for a DFA M. Make all previous non-final states as current final states and all previous final states as current non-final states this accepts $\neg A$.

• A and B are 2 regular sets. M_1 and M_2 are respective DFAs. Design a DFA for the set $A \cap B$.

- A and B are 2 regular sets. M_1 and M_2 are respective DFAs. Design a DFA for the set $A \cap B$.
- Intuitively, I am simultaneously following a path in each DFA M_1 and M_2 . If both paths end in final states of respective DFAs then I accept.

•
$$M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$$

 $Q_3 = Q_1 \times Q_2, s_3 = (s_1 \times s_2)$
 $F_3 = (F_1 \times F_2)$
 $\delta_3((p, q), a) = (\delta_1(p, a), \delta_2(q, a))$

•
$$M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$$

 $Q_3 = Q_1 \times Q_2, s_3 = (s_1 \times s_2)$
 $F_3 = (F_1 \times F_2)$
 $\delta_3((p, q), a) = (\delta_1(p, a), \delta_2(q, a))$

• M_3 a product automaton of M_1 and M_2 .

• Inductive definition revisited:

$$\hat{\delta}_3((p,q),\epsilon) = (p,q)$$

 $\hat{\delta}_3((p,q),xa) = \delta_3(\hat{\delta}_3((p,q),x),a)$

• Inductive definition revisited:

$$\hat{\delta}_3((p,q),\epsilon) = (p,q)$$

 $\hat{\delta}_3((p,q),xa) = \delta_3(\hat{\delta}_3((p,q),x),a)$

• **Lemma 1**: For all x, $\hat{\delta}_3((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$.

• Inductive definition revisited:

$$\hat{\delta}_3((p,q),\epsilon) = (p,q)$$

 $\hat{\delta}_3((p,q),xa) = \delta_3(\hat{\delta}_3((p,q),x),a)$

- **Lemma 1**: For all x, $\hat{\delta}_3((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$.
- Proof: Induction on length of x.

• Inductive definition revisited:

$$\hat{\delta}_3((p,q),\epsilon) = (p,q)$$

 $\hat{\delta}_3((p,q),xa) = \delta_3(\hat{\delta}_3((p,q),x),a)$

- **Lemma 1**: For all x, $\hat{\delta}_3((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$.
- Proof: Induction on length of x.
- Base: $x = \epsilon$ $\hat{\delta}_3((p,q),\epsilon) = (p,q) = (\hat{\delta}_1(p,\epsilon),\hat{\delta}_2(q,\epsilon))$

• Induction: Assume for all x. Look at $xc, c \in \Sigma$.

- Induction: Assume for all x. Look at $xc, c \in \Sigma$.
- $\hat{\delta}_{3}((p,q),xc) = \delta_{3}(\hat{\delta}_{3}((p,q),x),c)$ = $\delta_{3}((\hat{\delta}_{1}(p,x),\hat{\delta}_{2}(q,x)),c)$ [I.H] = $(\delta_{1}(\hat{\delta}_{1}(p,x),c),\delta_{2}(\hat{\delta}_{2}(q,x),c))$ [Definition of δ_{3}] = $(\hat{\delta}_{1}(p,xc),\hat{\delta}_{2}(q,xc))$

• Theorem: $L(M_3) = L(M_1) \cap L(M_2)$

- Theorem: $L(M_3) = L(M_1) \cap L(M_2)$
- Proof: $x \in L(M_3)$ means $\hat{\delta}_3(s_3, x) \in F_3$ means $\hat{\delta}_3((s_1, s_2), x) \in F_3$ means $(\hat{\delta}_1(s_1, x), \hat{\delta}_2(s_2, x)) \in F_3$ [from Lemma 1] means $(\hat{\delta}_1(s_1, x), \hat{\delta}_2(s_2, x)) \in F_1 \times F_2$ [defn. of F_3] means $\hat{\delta}_1(s_1, x) \in F_1$ and $\hat{\delta}_2(s_2, x) \in F_2$ means $x \in L(M_1) \cap L(M_2)$.

Closure under Union

```
De Morgan's Law -A \cup B = \neg(\neg A \cap \neg B).

Construct (1) DFA for \neg A and \neg B,

(2) then product DFA for \neg A and \neg B accepting C = \neg A \cap \neg B,

(3) then DFA for \neg C

to get DFA for A \cup B.
```