Metals and Water

Water + Metal -> Metal Hydroxide + Hydrogen

More reactive Less More reactive Less reactive Metal + Reactive -> metal + metal

Compound compound

Less reactive More reactive

metal + metal compound -> No reaction

Testing for Hydrogen —> Pop when ignited

Testing for Hydroxide —> Universal Indicator test (Blue/Purple when Alkali or Basic)

Reactivity Series:

Metal	Extraction method	Reactions	
Potassium (K)	More reactive than Carbon:	More reactive than	
Sodium (Na)	- Use Electrolysis	Hydrogen:	
Lithium (Li)		React with acidReact with water (or	
Calcium (Ca)		steam	
Magnesium (Mg)			
Aluminium (Al)			
Carbon (C)			
Zinc (Zn)	Less reactive than Carbon:		
Iron (Fe)	- Can be extracted by		
Hydrogen (H)	heating with Carbon (Coal or charcoal)		
Copper (Cu)	- Done in a Blast Furnance	Native Metals	
Silver (Ag)		- Can be found	
Gold (Au)		unreacted or pure	

<u>Magnesium</u> —> A small reaction coats it with a surface of thin layer of insoluble Magnesium hydroxide. Therefore it does not react much.

<u>Aluminium</u> —> Has a very thin but strong layer of aluminium oxide on the surface and slows the reaction. Even with aluminium powder, only a small production of hydrogen.

Steam reaction Setup:

Corrosion:

- Metal corrode when in contact with air rusting.
- Most metals found in Earth's crust is combined with other elements.
- For Iron to rust:
 - Needs contact with oxygen
 - Needs water (salty water makes process faster)

Methods/Ways to prevent rusting	
Painting (Barrier Method)	 Greasing or electroplating with less reactive metal —> Aluminium has an oxide coating Also include: Plastic Coating Oiling
Galvanizing	 Coated in Zinc (often iron or steel) Zinc has an insoluble layer of zinc oxide ex. Zn + Fe (2+) —> Zn (2+) + Fe
Sacrificial Method	 Attach blocks of magnesium or zinc to iron (often ships or water pipes) Magnesium is more reactive, and therefor corrodes (oxidizes) first before the iron can corrode

Oxidation and Reduction

- Redox: When a reaction both oxidize and reduce.

Oxidation	Reduction	
When a substance gains oxygen. Or When a substance loses electrons.	When a substance loses oxygen. Or When a substance gains electrons.	
Reducing agent - causes reduction by losing electrons. This element gains oxidation state.	Oxidizing agent - causes oxidation by accepting electrons. This electron loses oxidation state.	

Half Equations: Show gains/loss of electrons of individual element in a redox reaction.

- look at result side of reaction equation (to see if an element is oxidized or reduced)

ex.
$$Cu(2+) + 2e(-)$$
 —> Cu

- In this case, Copper gains electrons, and is reduced

Electrolysis:

Ex. Aluminium

Positive Electrode	Negative Electrode	
Attracts Negative Ions - Anions	- Attract Positive Ions - Cations (usually metal	
Called Anodes	being extracted)	
The anions lose electrons	- Called Cathodes	
Anions oxidized	- The cations gain electrons	
	- Cations reduced	

Alloys

- Metallic Bonding: Electrostatic force of attraction between metal ions and delocalized electrons
- Alloys a mixture of metal with at least one other element.
 - Final alloy may have very different properties compared to the original metal.
 - Examples include:
 - Bronze (Copper + Tin)
 - Brass (Copper + Zinc)
 - Solder (Zinc + Lead)
 - Amalgam (Mercury + Silver or Tin)
- Gold is often mixed with other elements
 - Yellow Gold —> Copper and Silver
 - White Gold —> Nickel and Zinc

Steel - Alloy of Iron with Carbon, Nickel, Chromium (can have up to 2%)

- Stronger than pure iron

Why Alloys are Stronger:

- In pure metals:
 - Ions are the same size.
 - Layers can easily slide over each other.

- In Alloys:
 - Different size ions (atoms) distort the layers.
 - They cannot slide over each other easily.

Properties of Metals and Alloys:

Metal/Alloy	Made from:	Properties:	Uses:
Copper	Copper (pure)	 Ductile Good Corrosion resistance Good electrical and thermal conductor Malleable, easy to work with and shape 	JewelryDoor Knobs/handlesTools, wireCoins
Iron	Iron (pure)	 Easily corrodes Malleable, easy to work with and shape Ductile Good electrical and thermal conductor Heavy and Dense 	Used to make SteelMagnetsHeavy pans
Aluminium	Aluminium (Pure)	 Lightweight (low density) Electrical and thermal conductor Ductile Non-Corrosive Malleable, Easy to work with and shape 	Cans, foilUtensilsWindow framesAeroplane parts
High Carbon Steel	Iron + More than 0.5% of Carbon	Very StrongBrittleHard to Shape	ToolsKnife/KnivesSwords
Low Carbon Steel	Iron + Less than 0.25% of Carbon	StrongMalleable, Easy to work with and shape	Car BodiesBuildingsBridges
Stainless Steel	Iron, Chromium, Nickel, Carbon	Shiny AppearanceDoes <u>not</u> corrode	Cutlery and pansMedical Instruments