8. 판다스 (Pandas) 기초2

판다스 (Pandas)

- 넘파이를 기반으로 처리속도가 빠르며, 행과 열을 잘 관리할 수 있는 데이터프레임을 제공
- 이종 자료형의 열을 가진 테이블 데이터에 적합
- 데이터 처리와 분석에 필요한 기능들을 제공
 - ⊙ 결측 데이터 처리 및 필터링
 - ⊙ 열 데이터 조작 및 정렬 용이
 - o matplotlib 와 결합하여 데이터 시각화 용이

설치: pip install pandas

판다스 기본 자료구조

- 시리즈 (Series): 1차원 동일 자료형 배열
- 데이터프레임 (DataFrame) : 복수의 (다른 자료형) 열로 구성된 2차원 배열

데이터프레임 예시

○ 데이터프레임 행 & 열 인덱스 레이블링

```
      Class 'pandas.core.frame.DataFrame'>

      국어 영어 수학

      춘향 100 85 90

      몽룡 95 90 85

      향단 90 95 100

      방자 85 100 95
```

데이터프레임 인덱싱 요약

행 인덱싱

열 인덱싱

	가능 여부	출력 자료형
레이블	X	
레이블 리스트	X	
(정수) 인덱스	X	
(정수) 슬라이스	0	데이터프레임
불리언 배열	0	데이터프레임

	가능 여부	출력 자료형
레이블	0	시리즈
레이블 리스트	0	데이터프레임
(정수) 인덱스	X	
(정수) 슬라이스	X	
불리언 배열	X	

행 추가 및 삭제

```
import pandas as pd
names = ['춘향', '몽룡', '향단', '방자']
korean = [100, 95, 90, 85]
english = [85, 90, 95, 100]
math = [90, 85, 100, 95]
df = pd.DataFrame( {'국어':korean, '영어':english, '수학':math }, index=names)
print( df )
print()
df.loc['학도'] = {'국어':50, '영어':50, '수학':5} # 행 추가
df.drop('학도', axis=0, inplace=True) # 행 삭제, axis=0 행 방향을 의미
# inplace=True 는 삭제를 현재 데이터프레임 내에 반영 하라는 의미
```

,					
/		국어	영어	수학	
	춘향	100	85	90	
	몽룡	95	90	85	
	향단	90	95	100	
	방자	85	100	95	
	학도	50	50	5	
		국어	영어	수학	
	춘향	100	85	90	
	몽룡	95	90	85	
	향단	90	95	100	
/	방자	85	100	95	
•					

열 추가 및 삭제

```
import pandas as pd
names = ['춘향', '몽룡', '향단', '방자']
korean = [100, 95, 90, 85]
english = [85, 90, 95, 100]
math = [90, 85, 100, 95]
df = pd.DataFrame( {'국어':korean, '영어':english, '수학':math }, index=names)
print( df )
print()
df[ '체육' ] = [ 100,100,100,100 ]
                            # 열 추가
# 열 삭제, axis=1, inplace=True ) # 열 삭제, axis=1 열 방향을 의미
# inplace=True 는 삭제를 현재 데이터프레임 내에 반영 하라는 의미
```

/	국어	영어	수학	체육	
춘향	100	85	90	100	
몽룡	95	90	85	100	
향단	90	95	100	100	
방자	85	100	95	100	
	국어	영어	수학		
춘향	100	85	90		
몽룡	95	90	85		
향단	90	95	100		
방자	85	100	95		

판다스: 데이터 개수 세기

ount() 메서드를 사용하여 데이터 개수를 확인

열 별로 데이터 누락 여부를 확인할 때 유용함

```
import pandas as pd

df=pd.read_csv( "iris.csv" )

# print( df.head() )

# print(df['Species'])

print(df['Species'])

print(df['Species'])

print(df.count()) # 한 열의 데이터 개수
```

```
caseno 150
SepalLength 150
SepalWidth 150
PetalLength 150
PetalWidth 150
Species 150
dtype: int64
```

판다스: 데이터 개수 세기

- 시리즈의 경우 value_counts 메서드로 <mark>각 값이 나온 횟수를 셀 수 있음</mark>
 - 데이터프레임 은 제공하지 않음

```
import pandas as pd

df=pd.read_csv( "iris.csv" )

print(df['Species'].value_counts())

# print(df['caseno'].value_counts())

# print(df['SepalLength'].value_counts())
```

```
virginica 50
setosa 50
versicolor 50
Name: Species, dtype: int64
```

판다스: 데이터 정렬

- o sort_index(): 인덱스 값을 기준으로 정렬
- o sort_values() : 데이터 값을 기준으로 정렬

```
import pandas as pd

df=pd.read_csv( "iris.csv" )

# print(df['SepalLength'].sort_index ())

print(df['SepalLength'].sort_values())

# 열 선택 후 정렬 → 시리즈 반환
```

```
4.3
13
42
       4.4
       4.4
38
8
       4.4
41
       4.5
122
       7.7
118
       7.7
117
       7.7
135
       7.7
       7.9
131
Name: SepalLength, Length:
150, dtype: float64
```

판다스: 데이터 정렬

import pandas as pd

df=pd.read_csv("iris.csv")

print(df.sort_values('SepalLength'))

데이터프레임에서 sort_values()

결과 타입도 데이터프레임

	caseno	SepalLength	SepalWidth	PetalLength	PetalWidth	Species	
13	14	4.3	3.0	1.1	0.1	setosa	
42	43	4.4	3.2	1.3	0.2	setosa	
38	39	4.4	3.0	1.3	0.2	setosa	
8	9	4.4	2.9	1.4	0.2	setosa	
41	42	4.5	2.3	1.3	0.3	setosa	
					• • •		
122	123	7.7	2.8	6.7	2.0	virginica	
118	119	7.7	2.6	6.9	2.3	virginica	
117	118	7.7	3.8	6.7	2.2	virginica	
135	136	7.7	3.0	6.1	2.3	virginica	
131	132	7.9	3.8	6.4	2.0	virginica	

판다스: 데이터 정렬

```
import pandas as pd

df=pd.read_csv("iris.csv")

print( df.sort_values(

['SepalLength', 'SepalWidth']

))

# 데이터프레임 sort_values([A,B])

# A 열 기준으로 정렬한 후 동일한

# 값이 나오면 B 열로 정렬
```

eies etosa etosa etosa
tosa
tosa
tosa
tosa
nica.
nica.
nica.
nica.
nica
i i i

[150 rows x 6 columns]

판다스: 데이터 합계

○ sum(axis) 메소드를 사용하며 방향축 (0=행방향, 1=열방향) 을 지정할 수 있음

```
import numpy as np
import pandas as pd

df = pd.DataFrame( np.random.randint( 10, size=(3, 6) ) )
print(df)
print()
print( df.sum() ) # 방향축 지정 안하면 axis = 0 가 기본
print()
print( df.sum(axis=1) )
```

```
11
     17
    19
     16
     6
     11
dtype: int64
     27
     29
     24
dtype: int64
```

판다스: 데이터 합계

```
import numpy as np
import pandas as pd

df = pd.DataFrame( np.random.randint( 10, size=(3, 6) ) )
print(df)
print()

df['RowSum'] = df.sum(axis=1)

df.loc['ColSum'] = df.sum(axis=0)
print(df)
```

```
RowSum
        5.0
               8.0
                     9.0
                           5.0
                               0.0
                                     0.0
                                            27.0
0
              7.0
                     6.0
                           9.0
                               2.0
                                     4.0
                                            29.0
        1.0
        5.0
              2.0
                    4.0
                          2.0
                               4.0
                                     7.0
                                            24.0
ColSum
       11.0
             17.0
                   19.0
                         16.0
                                6.0
                                             80.0
                                    11.0
```

행과 열에 각각 합계 결과를 추가하기

판다스: 데이터 평균

o mean()은 평균을 구하며 sum()과 사용법 유사함

```
import numpy as np
import pandas as pd

df=pd.read_csv( "iris.csv" )

print( df.mean() )

print()

print( df[ 'SepalLength' ].mean() )
```

 caseno
 75.500000

 SepalLength
 5.843333

 SepalWidth
 3.057333

 PetalLength
 3.758000

 PetalWidth
 1.199333

 dtype: float64

5.843333333333334

판다스: 평균, 불리언 배열 함께 사용 예시

각 열에 대해 평균보다큰 값들의 불리언 배열 적용

import pandas as pd

df=pd.read_csv("iris.csv")

평균보다 큰 값들에 대한 불리언 배열

df2 = df[df > df.mean()]

print(df2)

/							
		caseno	SepalLength	SepalWidth	PetalLength	PetalWidth	Species
	0	NaN	NaN	3.5	NaN	NaN	NaN
	1	NaN	NaN	NaN	NaN	NaN	NaN
	2	NaN	NaN	3.2	NaN	NaN	NaN
	3	NaN	NaN	3.1	NaN	NaN	NaN
	4	NaN	NaN	3.6	NaN	NaN	NaN
		• • •	• • •	•••		• • •	• • •
	145	146.0	6.7	NaN	5.2	2.3	NaN
	146	147.0	6.3	NaN	5.0	1.9	NaN
	147	148.0	6.5	NaN	5.2	2.0	NaN
	148	149.0	6.2	3.4	5.4	2.3	NaN
	149	150.0	5.9	NaN	5.1	1.8	NaN

[150 rows x 6 columns]

판다스: 평균, 불리언 배열 함께 사용 예시

○ 각 열에 대해 평균보다 큰 값들의 개수 세기

⊙ NaN (Not a Number) 값들을 제외하고 카운트함

```
import pandas as pd

df=pd.read_csv( "iris.csv" )

print( df.count() )

print()

df2 = df[ df > df.mean() ]

# 평균보다 큰 값들에 대한 불리언 인덱싱

print( df2.count() )

# 평균보다 큰 값들의 개수
```

/		
	caseno	150
	SepalLength	150
	SepalWidth	150
	PetalLength	150
	PetalWidth	150
	Species	150
	dtype: int64	
	caseno	75
	SepalLength	70
	SepalWidth	67
	PetalLength	93
	PetalWidth	90
	Species	0
\	dtype: int64	

데이터프레임 합치기

○ 두 데이터프레임을 하나로 합치는 concat() 함수

```
import pandas as pd
df1 = pd.DataFrame(
  np.zeros(6).reshape(3, 2),
  index=['a', 'b', 'c'],
  columns=['v1', 'v2'])
df2 = pd.DataFrame(
  np.ones(4).reshape(2, 2),
  index=['a', 'c'],
  columns=['v1', 'v2'])
```

```
# print(df1)
# print(df2)
# print()

pd.concat( [df1, df2], axis=0)
# 행 방향으로 합치기

print()

pd.concat( [df1, df2], axis=1)
# 열 방향을 합치기
```

```
v1
       v2
  0.0
       0.0
  0.0 0.0
  0.0 0.0
 1.0 1.0
c 1.0 1.0
       v2
           v1
  v1
                v2
       0.0
  0.0
          1.0
               1.0
  0.0 0.0
           NaN
                NaN
  0.0 0.0 1.0 1.0
```

concat 함수의 특징

- o concat 함수는 단순히 데이터프레임을 연결함 (concatenate)
- 이러한 단순 합치기는 인덱스 값이 중복될 수 있음
- 공통 행, 열 인덱스를 고려하여 합칠 수 있을까?

데이터프레임 병합

o merge() 함수는 두 데이터프레임의 공통

열 기준으로 병합함

```
df1 = pd.DataFrame({
 '고객번호': [1001, 1002, 1003, 1004, 1005, 1006, 1007],
 '이름': ['둘리', '도우너', '또치', '길동', '희동', '마이콜', '영희']
}, columns=['고객번호', '이름'])
print(df1)
df2 = pd.DataFrame({
 '고객번호': [1001, 1001, 1005, 1006, 1008, 1001],
 '금액': [10000, 20000, 15000, 5000, 100000, 30000]
}, columns=['고객번호', '금액'])
print(df2)
df3 = pd.merge(df1, df2)
print(df3)
```

	고객번호	이름		
0	1001			
1		도우너		
2	1003	또치		
3	1004	길동		
4	1005	희동		
5	1006	마이콜		
6	1007	영희		
J	1007			
	고객번호	금액		
0	1001	10000		
1	1001	20000		
2	1005	15000		
3	1006	5000		
4	1008	100000		
5	1001	30000		
	고객번호	이름 급	글액	
0	1001	둘리	10000	
1	1001	둘리	20000	
2	1001	둘리	30000	
3	1005	희동	15000	
4	1006	마이콜	5000	

데이터프레임 병합

○ "outer"병합 방식은 열 값이 한쪽만 있어도 합쳐서 보여줌

```
# 위에 이어서)

df4 = pd.merge( df1, df2, how='outer')
print(df4)
```

	고객번호	이름	금액
0	1001	둘리	10000.0
1	1001	둘리	20000.0
2	1001	둘리	30000.0
3	1002	도우너	NaN
4	1003	또치	NaN
5	1004	길동	NaN
6	1005	희동	15000.0
7	1006	마이콜	5000.0
8	1007	영희	NaN
9	1008	NaN	100000.0

Pivot Table

데이터로 사용하여 데이터를 재구성하는 것

df

	foo	bar	baz	zoo
0	one	А	1	Х
1	one	В	2	у
2	one	С	3	Z
3	two	Α	4	q
4	two	В	5	W
5	two	С	6	t

bar	A	В	С
foo			
one	1	2	3
two	4	5	6

```
data = {
 "도시": ["서울", "서울", "서울", "부산", "부산", "부산", "인천", "인천"],
 "연도": ["2015", "2010", "2005", "2015", "2010", "2005", "2015", "2010"],
 "인구": [9904312, 9631482, 9762546, 3448737, 3393191, 3512547, 2886172, 2660610],
 "지역": ["수도권", "수도권", "수도권", "경상권", "경상권", "경상권", "수도권", "수도권"]
columns = ["도시", "연도", "인구", "지역"]
df1 = pd.DataFrame(data, columns=columns)
print(df1)
df2=df1.pivot("도시", "연도", "인구")
print(df2)
```

Pivot Table 예시

```
연도
도시
         인구
                 지역
    2015
        9904312 수도권
    2010
        9631482 수도권
                수두권
    2005
        9762546
부산
                 경상권
    2015
        3448737
                경상권
    2010
        3393191
                 경상권
부산
    2005
        3512547
        2886172 수도권
    2015
이처
     2010 2660610 수도권
```

연도	2005	2010	2015
도시			
부산	3512547.0	3393191.0	3448737.0
서울	9762546.0	9631482.0	9904312.0
인천	NaN	2660610.0	2886172.0

Pivot Table 예시

```
# 앞 슬라이드에 이어서
df2=df1.pivot( "도시", "연도", "인구")
print(df2)
print()
print( df2.columns )
print( df2.index )
print()
print( df2[ "2015" ] )
print()
print( df2.loc[ "서울" ] )
```

```
연도
      2005
                 2010
                           2015
도시
    3512547.0 3393191.0 3448737.0
서울 9762546.0 9631482.0 9904312.0
인천
          NaN 2660610.0 2886172.0
Index(['2005', '2010', '2015'], dtype='object', name='연도')
Index(['부산', '서울', '인천'], dtype='object', name='도시')
도시
부산
      3448737.0
서울
      9904312.0
인천
      2886172.0
Name: 2015, dtype: float64
연도
2005
       9762546.0
2010
       9631482.0
       9904312.0
2015
Name: 서울, dtype: float64
```

Groupby

- groupby() 메소드는 특정 값에 기반하여 데이터를 그룹으로 묶을 수 있음
 - groupby 결과에 대해 count(), mean(), sum(), describe() 등을 사용할 수 있음.

```
# 앞 슬라이드에 이어서
gb = df1.groupby('도시')
print()
print(gb.mean())
print()
print(gb.sum())
print()
print(gb.count())
```

인구 도시 3.451492e+06 서울 9.766113e+06 인천 2.773391e+06 인구 도시 10354475 29298340 인천 5546782 연도 인구 지역 도시 부산 3 3 서울 인천 2 2

Groupby

```
# 앞 슬라이드에 이어서
gb = df1.groupby('도시')
print()
des = gb.describe()
print( des)
print( des.columns )
print()
print()
```

```
인구
    count
                           std
                                            50%
                                                      75%
              mean
                                                                max
도시
부산
                                    ... 3448737.0 3480642.0
     3.0 3.451492e+06
                        59725.663038
                                                             3512547.0
서울
     3.0 9.766113e+06 136449.978473 ... 9762546.0 9833429.0 9904312.0
인천
     2.0 2.773391e+06 159496.419778 ... 2773391.0 2829781.5 2886172.0
[3 rows x 8 columns]
MultiIndex([('인구', 'count'),
           ('인구', 'mean'),
           ('인구', 'std'),
           ('인구', 'min'),
           ('인구', '25%'),
           ('인구', '50%'),
           ('인구', '75%'),
           ('인구', 'max')],
두시
부산
      3.451492e+06
서울
      9.766113e+06
이처
      2.773391e+06
```

Name: (인구, mean), dtype: float64

