Mathematique Q2

Benoit Legat Nicolas Cognaux

February 11, 2012

1 Espaces euclidiens

Definition 1.1 (Espace euclidien) Un espace euclidien E est un espace vectoriel réel muni d'une fonction $(-|-): E \times E \to \mathbb{R}$ qui est

Bilineaire $\forall x, y, z \in E, \alpha, \beta \in \mathbb{R}$

$$(\alpha x + \beta y|z) = \alpha(x|z) + \beta(y|z)$$

$$(x|\alpha y + \beta z) = \alpha(x|y) + \beta(x|z)$$

Symetrique $\forall x, y \in E$

$$(x|y) = (y|x)$$

Defini positif $\forall x \in E \setminus \{0\}$

C'est le produit scalaire.

Notation 1.2 Soient E un espace euclidien, $V \subseteq E$ et $x, y \in E$.

$$\begin{aligned} ||x|| & \stackrel{\Delta}{=} & \sqrt{(x|x)} \\ \operatorname{dist}(x,y) & \stackrel{\Delta}{=} & ||x-y|| \\ x \perp y & \stackrel{\Delta}{\Leftrightarrow} & (x|y) = 0 \\ V^{\perp} & \stackrel{\Delta}{=} & \{z \in E | z \perp v, \forall v \in V\} \end{aligned}$$

Propriete 1.3 Soient E un espace euclidien, $V \subseteq E$ et $x, y \in E$.

- $||x|| \ge 0 \land dist(x,y) \ge 0$
- $(x \neq 0 \Rightarrow ||x|| > 0) \land (x \neq y \Rightarrow \operatorname{dist}(x, y) > 0)$
- $||\alpha x|| = \alpha ||x||$
- $|(x|y)| \le ||x|| \times ||y||$ (Inegalite de Cauchy)

- $||x+y|| \le ||x|| + ||y||$ (Inegalite triangulaire)
- $V \cap V^{\perp} \subseteq \{0\}$ avec egalite $\iff 0 \in V$
- $E^{\perp} = \{0\} \wedge \{0\}^{\perp} = E$
- V^{\perp} est un sev de E

Definition 1.4 Soient E un espace euclidien, V un sev de E et $x \in E$. La projection orthogonale de x sur V est un vecteur $P_V(x)$ tel que

- 1. $P_V(x) \in V$
- 2. $x P_V(x) \in V^{\perp}$

Propriete 1.5 Soient E un espace euclidien, V un sev de E et $x \in E$.

- $P_V(x)$ existe et est unique.
- $y \neq P_V(x) \Rightarrow \operatorname{dist}(x, P_V(x)) < \operatorname{dist}(x, y)$.
- $P_V: E \to E$ est une application lineaire.
- $\operatorname{Ker} P_V = V^{\perp} \wedge \operatorname{Im} P_V = V$.

1.1 Existence de la projection hortogonale

Definition 1.6 Soient E un espace euclidien et $x_1, x_2, ..., x_n \in E$,

- 1. La famille $x_1, x_2, ..., x_n$ est ume famille orthogonale si
 - $x_i \neq 0, \forall i = 1, 2, ..., n$
 - $(x_i|x_j) = 0, \forall i \neq j$
- 2. La famille $x_1, x_2, ..., x_n$ est une famille orthonormée si
 - $||x_i|| = 1, \forall i = 1, 2, \dots, n$
 - $(x_i|x_i) = 0, \forall i \neq j$

Propriete 1.7 Soient E un espace euclidien, et u_1, \ldots, u_n une base orthonormee de V. $\forall \alpha_i, \beta_i \in \mathbb{R}$,

$$(\alpha_1 x_1 + \ldots + \alpha_n x_n | \beta_1 x_1 + \ldots + \beta_n x_n) = \alpha_1 \beta_1 + \ldots + \alpha_n \beta_n$$

Propriete 1.8 Soient E un espace euclidien, V un sous-espace vectoriel de E, $u_1, u_2, ..., u_n$ une base orthonormée de V. $\forall x \in E, P_V(x)$ existe et: $P_V(x) = (x|u_1)u_1 + (x|u_2)u_2 + ... + (x|u_n)u_n$ Commentaires:

• Si on a une base orthonormée, alors $P_v(x)$ existe, maintenant, a-t-on une base orthonormée ? (A prouver)

• L'hypothèse (base: $u_1, u_2, ..., u_n$) doit être une base de V, E est de dimension trop importante.

Propriete 1.9 • Une famille orthonormée est une famille orthogonale.

• Une famille orthogonale est une famille libre.

Propriete 1.10 Soient E un espace euclidien, V un sev de E de dimension finie tel que $V \neq 0$. V admet une base orthonormee.

Propriete 1.11 Soient E un espace euclidien, V un sev de E et u_1, \ldots, u_n une base orthonormee de V

- $\forall x \in E, \exists ! P_V(x) \ et \ P_V(x) = (x|u_1)u_1 + \ldots + (x|u_n)u_n.$
- $E = V + V^{\perp}$ et cette somme est une somme directe.
- $\dim E = \dim V + \dim V^{\perp}$.