Problem

Let $\Sigma = \{0, 1, +, =\}$ and

ADD = $\{x=y+z | x, y, z \text{ are binary integers, and } x \text{ is the sum of } y \text{ and } z\}$.

Show that ADD is not regular.

Step-by-step solution

Step 1 of 3

Consider the following language over the alphabet $\Sigma = \{0,1,+,=\}$.

 $ADD = \{x = y + z \mid x, y, z \text{ are binary integers, and } x \text{ is the sum of } y \text{ and } z\}.$

The language is said to be regular if it is satisfied by the pumping lemma, otherwise the language is not regular.

Comments (3)

Step 2 of 3

Pumping Lemma:

If A is any regular language then there is a number P (the pumping length) where S is any string that belongs to A of length at least P, then S may be divided into three pieces, S = uvw, satisfying the following conditions.

- 1. For each $i \ge 0, uv^i w \in A$
- 2. |v| > 0, and
- 3. $|uv| \le p$

Comment

Step 3 of 3

Assume that $\ _{ADD}$ is a regular language.

Let p be the pumping length given by the pumping lemma. The strings of the language ADD are of the form x = y + z. Consider a string $1^{p+1} = 10^p + 1^p \in ADD$.

Let 111 = 100 + 11 be the string that belongs to *ADD*. The pumping length of the string is 2. To satisfy the conditions of the pumping lemma, divide the considered string into three parts. Here, u is equal to 1, v is equal to 1, v is equal to 1 = 100 + 11 (the remaining part of the string).

$$S = 111 = 100 + 11$$
$$= \frac{1}{u} \frac{1}{v} \frac{1 = 100 + 11}{w}$$

Pump the middle part such that uv^iw $(i \ge 0)$. For i=2, the v becomes 11.

S = (1) (1)ⁱ (1 = 100 + 11)
=
$$\frac{1}{u} \frac{11}{v} \frac{1 = 100 + 11}{w}$$
 [when i=2]

The string after pumping is 1111 = 100 + 11.

Therefore, ADD is n	ot a regular language.			
Comments (1)				