

Multi-Vehicle Cooperative Control Research at the NASA Armstrong Flight Research Center 2000 - 2014

Curt Hanson
Controls and Dynamics Branch
NASA Armstrong Flight Research Center

Autonomous Formation Flight / Automated Cooperative Trajectories

NASA / Boeing / UCLA (2000)	NASA (2001)	NASA / UCLA (2003)	NASA (2007-2011)	NASA (2011-2012)	NASA / USAF / Boeing (2010)	NASA (2012-Present)
 Autonomous Station Keeping	 Vortex Mapping Experiment	 Vortex-Based Navigation	 Peak-Seeking Optimization	 Optimized Lift Distribution	 CAPFIRE	 Automated Cooperative Trajectories

F/A-18 Autonomous Formation Flight (AFF)

- ❑ Autonomous Station Keeping
 - INS/GPS relative navigation using experimental data link
 - Measured 4 ft. relative position error with common satellite sets
 - Formation autopilot (no inner-loop changes) tracking error < 2ft.
- ❑ Vortex Mapping Experiment
 - Pilot-flown using cockpit relative navigation cues
 - Measured wake-induced forces and moments at 2-6 wing spans of nose-to-tail separation
 - Drag reductions of more than 20% were measured at some points
 - Demonstrated a 14% fuel savings over a 1.5 hour cruise mission

Formation Flight Paper Studies

- ❑ Vortex-Induced Navigation Experiment (VINE)
 - Investigation of formation flight without inter-ship communication
 - Fuzzy estimator of wake location based on measured disturbances
- ❑ Peak-Seeking Relative Position Optimization
 - Real-time estimates of gradient and curvature of fuel savings vs. position
- ❑ Peak-Seeking Optimization of Spanwise Lift Distribution
 - Real-time optimization of the roll trim solution using wing effectors
 - Predicted an additional 2% drag savings during formation flight

Extended Formations / Cooperative Trajectories

- ❑ Cargo Aircraft Precision Formations for Increased Range and Efficiency (CAPFIRE)
 - Demonstration of extended (>0.5 nm) formation drag reduction w/ C-17
 - Measured 9% fuel savings
- ❑ Automated Cooperative Trajectories
 - COTS data link (ADS-B) coupled with commercial avionics (ILS autopilot)
 - Real-time estimation of wake location and vortex circulation
 - Robust automated wake avoidance
 - Automated join-up and self-separation
 - Targeted for flights on the NASA G-III SCRAT aircraft in 2015-2016

Multi-Vehicle Cooperative Control

NASA

(2004-2005)

Networked UAV Teams

NASA

(2005)

UAV Flocking for Energy Efficiency

NASA / Cal. State Fresno

(2008)

Cooperative Autonomous Thermal Soaring

NASA / DARPA / Sierra Nevada

(2005-2007)

Automated Aerial Refueling Demonstration

NASA / DARPA / Northrup Grumman

(2011-2012)

KQ-X

Cooperative Control of Small UAVs

- Networked UAV Teams
 - Demonstrated the use of small UAV swarms to find, track and suppress forest fires
 - Bird Android (BOID) algorithms for cooperative behavior, dynamic cooperative mission re-planning and 4D relative navigation
- UAV Flocking for Energy Efficiency
 - Simulation study of small UAV swarms for Coastal Patrol missions (oil platform/pipeline monitoring, wildfire detection, earth science and marine wildlife monitoring)
 - Dynamic cooperative mission planning included formation drag reduction and thermal soaring for extended mission duration
 - Studied formation drag reduction for unpowered (glider) applications
- Cooperative Autonomous Thermal Soaring
 - BOID-like encoding of migratory hawk cooperative soaring behaviors
 - Self-separation for improved random thermal encounter, thermal congregation, and cooperative climb-rate feedback for enhanced thermal centering

Autonomous Aerial Refueling

- Automated Aerial Refueling Demonstration (AARD)
 - Characterization and modeling of hose-and-drogue dynamics
 - Integrated GPS-INS and video tracking for relative navigation
 - First ever autonomous probe-and-drogue aerial refueling operation
 - Successful repeated autonomous drogue captures
- KQ-X
 - Planned high-altitude, automated aerial refueling between two Global Hawk UAVs
 - First ever HALE close, precision formation flight
 - Lead receiver aircraft demonstrated successful hose-drogue extension
 - The aircraft flew as close as 30 ft.

