Regularisation

Intelligent Systems and Control

2019

Sepehr Maleki

University of Lincoln School of Engineering

The Problem of Overfitting/Underfitting

Example: Linear Regression

Overfitting: If we have too many features, the learned model may fit training set too well (cost ≈ 0), but fail to generalise to new examples.

Underfitting: If we have very few features, such that the learned model does not fit the data well enough (large cost).

The Problem of Overfitting/Underfitting

Example: Logistic Regression

Addressing The Overfitting Problem

I. Reduce number of features:

- Manually select which features to keep.
- · Model selection.

II. Regularisation:

- Keep all the features but reduce magnitude/values of parameters w_j .
- Works well when we have a lot of features, each of which contributes a bit to predicting y.

Introducing a Penalty Term

Suppose we denote the cost function we used to minimise by $C(\mathbf{w})$. We add a Penalty term, $P(\mathbf{w})$, to this function to penalise the parameters. So now our objective is to minimise:

$$J(\mathbf{w}) = C(\mathbf{w}) + P(\mathbf{w}) .$$

The Idea of Regularisation

Regularisation favours small values for parameters, $w_1, w_2, ..., w_d$, which results in simpler models that are less prone to overfitting.

We define the penalty term as follows:

$$P(\mathbf{w}) = \lambda \sum_{i=1}^{d} w_j^2 ,$$

where λ is the regularisation parameter. Therefore, the overall cost function becomes:

$$J(\mathbf{w}) = C(\mathbf{w}) + \lambda \sum_{i=1}^{d} w_j^2.$$

Regularised Linear Regression

We defined the cost function for linear regression by:

$$C(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} \left(f(\mathbf{x}_i) - y_i \right)^2.$$

The cost function with the regularisation term is therefore given by:

$$J(\mathbf{w}) = \frac{1}{2} \left[\sum_{i=1}^{n} \left(f(\mathbf{x}_i) - y_i \right)^2 + \lambda \sum_{i=1}^{d} w_i^2 \right].$$

(S. Maleki 2019)

Regularised Logistic Regression

We defined the logistic regression cost function by:

$$C(\mathbf{w}) = -\frac{1}{n} \left(\sum_{i=1}^{n} c_i \log f(\mathbf{x}_i) + (1 - c_i) \log(1 - f(\mathbf{x}_i)) \right),$$

which with the regularisation term becomes:

$$J(\mathbf{w}) = -\frac{1}{n} \left(\sum_{i=1}^{n} c_i \log f(\mathbf{x}_i) + (1 - c_i) \log(1 - f(\mathbf{x}_i)) \right) + \lambda \sum_{i=1}^{d} w_j^2.$$

Gradient Descent For The New Cost Function

To obtain the best parameters via the gradient descent algorithm, we repeatedly performed:

$$w_j = w_j - \alpha \sum_{i=1}^n \left(f(\mathbf{x}_i) - y_i \right) x_i^{(j)}.$$

With regularisation, the new updating rule becomes:

$$w_j = w_j - \alpha \sum_{i=1}^n \left(f(\mathbf{x}_i) - y_i \right) x_i^{(j)} - \frac{\lambda}{n} w_j.$$