

Language: Vietnamese

Day: 1

Thứ 4, 7/7/2010

Bài 1.Tìm tất cả các hàm $f: \mathbb{R} \to \mathbb{R}$ sao cho đẳng thức

$$f(\lfloor x \rfloor y) = f(x) \lfloor f(y) \rfloor$$

thỏa mãn với mọi $x, y \in \mathbb{R}$. (Trong đó $\lfloor z \rfloor$ ký hiệu số nguyên lớn nhất nhỏ hơn hoặc bằng z.)

Bài 2. Giả sử I là tâm đường tròn nội tiếp của tam giác ABC và giả sử Γ là đường tròn ngoại tiếp của nó. Giả sử đường thẳng AI lại cắt Γ tại D. Giả sử E là một điểm trên cung BDC và F là một điểm trên cạnh BC sao cho

 $\widehat{BAF} = \widehat{CAE} < \frac{1}{2}\widehat{BAC}.$

Giả sử G là trung điểm của đoạn IF. Chứng minh rằng các đường thẳng DG và EI cắt nhau tại một điểm trên Γ .

Bài 3. Giả sử $\mathbb N$ là tập hợp các số nguyên dương. Tìm tất cả các hàm $g:\mathbb N\to\mathbb N$ sao cho

$$(g(m) + n)(m + g(n))$$

là số chính phương với mọi $m, n \in \mathbb{N}$.

Language: Vietnamse

Thời gian: 4 giờ 30 phút Mỗi bài 7 điểm

Language: Vietnamese

Day: 2

Thứ 5, 8/7/2010

Bài 4. Giả sử P là một điểm bên trong tam giác ABC. Các đường thẳng AP, BP và CP lại cắt đường tròn ngoại tiếp Γ của tam giác ABC tại các điểm K, L và M, tương ứng. Tiếp tuyến của Γ tại C cắt đường thẳng AB tại S. Giả sử SC = SP. Chứng minh rằng MK = ML.

Bài 5. Mỗi một hộp trong sáu hộp $B_1, B_2, B_3, B_4, B_5, B_6$ ban đầu chứa một đồng xu. Cho phép tiến hành hai loại phép toán sau đây:

Loại 1: Chọn một hộp không rỗng B_j với $1 \le j \le 5$. Lấy một đồng xu ra khỏi B_j và bỏ thêm hai đồng xu vào B_{j+1} .

Loại 2: Chọn một hộp không rỗng B_k với $1 \le k \le 4$. Lấy một đồng xu ra khỏi B_k và tráo đổi số đồng xu đựng trong các hộp (có thể rỗng) B_{k+1} và B_{k+2} cho nhau.

Tồn tại hay không một dãy hữu hạn phép toán như trên sao cho đi đến kết quả cuối cùng là các hộp B_1, B_2, B_3, B_4, B_5 đều rỗng, còn hộp B_6 đựng đúng $2010^{2010^{2010}}$ đồng xu. (Chú ý rằng $a^{b^c}=a^{(b^c)}$.)

Bài 6. Giả sử a_1, a_2, a_3, \ldots là một dãy các số thực dương. Giả sử rằng với số nguyên dương cố định nào đó s, ta có

$$a_n = \max\{a_k + a_{n-k} \mid 1 \le k \le n - 1\}$$

với mọi n > s. Chứng minh rằng tồn tại các số nguyên dương ℓ và N, với $\ell \leq s$ sao cho $a_n = a_\ell + a_{n-\ell}$ với mọi $n \geq N$.

Language: Vietnamese

Thời gian: 4 giờ 30 phút Mỗi bài 7 điểm