STATISTICAL MACHINE LEARNING

Kernel methods

April 3, 2019

HISTOGRAM

- Suppose we have x_1, \ldots, x_n univariate continuous observations
- ► The simplest form of non-parametric density estimation is the histogram
- ▶ The range of x is partitioned into intervals of length h: C_1, \ldots, C_M

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} I(x_i \in C_j), \quad \text{for } x \in C_j$$

▶ Depending on the locations of the intervals C_j .

BETTER THAN HISTOGRAM

► The rectangular estimator

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} I(x_i \in [x - h/2, x + h/2])/h$$

Left: histogram; Middle: rectangular estimator; Right: three specific rectangles

▶ Perhaps we can do better with continuous function

Triangular density estimator

▶ If the indicator functions are replaced by triangular functions, we have much smooth density estimate.

 \triangleright We can generalize this idea to form a class of density estimators: Kernel density estimation. A kernel function K is a function which play similar roles as the rectangle and triangle here.

KERNEL DENSITY ESTIMATOR

▶ Given a kernel function $K(\cdot, \cdot)$, the corresponding kernel density estimator is

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K(x, x_i)$$

- ► The kernel function has the following properties
 - ▶ It has integral one: $\int K_h(x, x_i) dx = 1$ for all x_i
 - usually positive
 - usually symmetric
- ► Common choices
 - Gaussian kernel: $K_h(x, x_i) = \phi(x, \mu = x_i, \sigma = h)$
 - ▶ Epanechnikov: $K_h(x, x_i) = 3/4h[1 (t/h)^2]$ for $|t| \le h$
 - ► Rectangular: $K_h(x, x_i) = I(x_i h/2 \le x \le x_i + h/2)/h$
- \triangleright h is called a bandwidth parameter which control the smoothness

BANDWIDTH

- \triangleright The smoothing parameter h, which determines the width of the local neighborhood, has to be determined.
- ightharpoonup Large h implies lower variance but higher bias.
- ightharpoonup If h is small, we have rough density estimate which has smaller bias but large variance.

▶ In R, density(x) will do the job

SMOOTHING SCATTER PLOT

- ▶ If we have a scatter plot (x, y), we are interested in estimating the regression function E(Y|X=x)
- ▶ The simplest method may be the local neighborhood or averaging
 - ▶ k-nearest-neighbor average

$$\hat{f}(x) = \text{Avg}(y_i | x_i \in N_k(x)) = \frac{\sum_{x_i \in N_k(x)} y_i}{\#\{x_i \in N_k(x)\}}$$

local averaging

$$\hat{f}(x) = \text{Avg}(y_i||x - x_i| < h) = \frac{\sum_{|x - x_i| < h} y_i}{\#\{|x - x_i| < h\}}$$

- ▶ The averages above change in discrete way, leading to discontinuous $\hat{f}(x)$
- ➤ Similar idea again, replace the indicator functions by kernel functions (Nadaraya-Watson),

$$\hat{f}(x) = \frac{\sum_{i=1}^{n} K_h(x, x_i) y_i}{\sum_{i=1}^{n} K_h(x, x_i)}$$

EXAMPLE

In each panel 100 pairs x_i , y_i are generated at random from the blue curve with Gaussian errors: $Y = \sin(4X) + \varepsilon$, $X \sim U[0, 1]$, $\varepsilon \sim N(0, 1/3)$.

- ▶ green curve: 30-nearest-neighbor running-mean smoother.
- ▶ The red point is the fitted constant, the red circles indicate those observations contributing to the fit

► In R, ksmooth provides Nadaraya—Watson estimates with rectangular and gaussian kernels.

Drawback of raw moving average

- ▶ The smooth kernel fit still has problems.
- ▶ Locally-weighted averages can be badly biased on the boundaries of the domain because of the asymmetry of the kernel in that region.
- By fitting straight lines rather than constants locally, we can remove this bias.

LOCAL LINEAR REGRESSION

► Locally weighted regression solves a separate weighted least squares problem at each target point *x*:

$$\hat{f}(x) = \hat{a}(x) + \hat{b}(x)x$$

where

$$\hat{a}(x), \hat{b}(x) = \underset{a,b}{\operatorname{arg min}} \sum_{k=1}^{n} K_h(x, x_i) (y_i - a - bx_i)^2$$

- ▶ Notice that although we fit an entire linear model to the data in the region, we only use it to evaluate the fit at the single point x
- ► In R, loess or lowess

HIGH DIMENSIONAL PERFORMANCE

- ▶ Local regression also generalizes very naturally when we want to fit models that are local in a pair of variables X_1 and X_2 , rather than one (R package locfit)
- ▶ Theoretically the same approach can be implemented in higher dimensions, using linear regressions fit to *p*-dimensional neighborhoods.
- ▶ However, local regression can perform poorly if p is much larger than about 3 or 4 because there will generally be very few training observations close to x_0 (curse of dimensionality)
- Nearest-neighbors regression suffers from a similar problem in high dimensions.