Azzolini Riccardo 2020-10-19

Determinare il linguaggio riconosciuto da un NFA

1 Problema di determinare il linguaggio riconosciuto

Il problema di determinare il linguaggio riconosciuto da un automa dato è poco interessante dal punto di vista applicativo: di solito, si vuole eseguire il passaggio inverso, cioè dato un linguaggio trovare un automa che lo riconosca. Questo problema è quindi di interesse prevalentemente teorico. Per affrontarlo, si usano delle tecniche induttive sulla lunghezza dei percorsi di computazione dell'automa.

In seguito, a scopo illustrativo, verrà mostrato un piccolo esempio di dimostrazione del linguaggio accettato da un NFA. In questo esempio, l'automa sarà talmente semplice da riuscire a intuire il linguaggio accettato, facendo delle congetture che guideranno l'applicazione delle suddette tecniche induttive. Per automi più complessi, ciò non è fattibile, e allora la procedura di dimostrazione si complica.

2 Esempio di dimostrazione

Si consideri l'NFA A descritto dal seguente diagramma:

Intuitivamente, quando questo automa legge una stringa, può rimanere nello stato q_0 per un numero arbitrario di simboli (grazie alla transizione da q_0 a se stesso, ovvero il cappio etichettato 0, 1), dopodiché raggiunge lo stato finale q_2 solo se legge uno 0 seguito da un 1, e infine accetta la stringa se e solo se non ci sono più simboli da leggere (altrimenti, non essendoci transizioni uscenti da q_2 , la computazione si bloccherebbe).

Secondo questo ragionamento, il linguaggio riconosciuto da A sembrerebbe essere

$$L(A) = \{w \in \{0, 1\}^* \mid w \text{ termina con } 01\} = \{x01 \mid x \in \{0, 1\}^*\}$$

e si vuole dimostrare formalmente che ciò è vero. In altre parole, bisogna dimostrare che l'automa raggiunge il suo unico stato finale q_2 se e solo se la stringa letta w termina con 01:

$$\forall w \in \{0,1\}^* \quad q_2 \in \hat{\delta}(q_0, w) \iff w \text{ termina con } 01$$

Per dimostrare questo fatto, bisogna studiare come sono fatte le stringhe che "conducono" l'automa in q_2 , ma queste dipendono dalle stringhe che portano in q_1 (dato che q_2 è raggiungibile solo mediante la transizione $q_1 \xrightarrow{1} q_2$), e queste ultime dipendono a loro volta dalle stringhe che portano in q_0 . Dunque, in generale, bisogna capire, per ogni stato q dell'NFA, come sono fatte le stringhe che conducono a q, ovvero per quali condizioni su w si ha che $q \in \hat{\delta}(q_0, w)$.

Osservando le transizioni dell'automa, si possono fare le seguenti congetture su quali siano le stringhe che conducono a ciascuno stato:

1. Qualunque stringa conduce a q_0 , cioè

$$\forall w \in \{0,1\}^* \quad q_0 \in \hat{\delta}(q_0, w)$$

Infatti, informalmente, q_0 è lo stato iniziale, e il cappio etichettato 0,1 permette di rimanervi qualunque siano i simboli letti.

2. Una stringa w che conduce a q_1 ha la forma $w = x_0$, dove $x \in \{0, 1\}^*$ è un prefisso che conduce a q_0 , e il simbolo 0 finale fa seguire all'automa la transizione $q_0 \stackrel{0}{\to} 1$:

$$\forall w \in \{0,1\}^* \quad q_1 \in \hat{\delta}(q_0, w) \iff w = x_0, \text{ con } x \in \{0,1\}^* \text{ tale che } q_0 \in \hat{\delta}(q_0, x)$$

Sapendo, dalla congettura 1, che la condizione $q_0 \in \hat{\delta}(q_0, x)$ è sempre verificata, la presente congettura si può semplificare in

$$\forall w \in \{0,1\}^* \quad q_1 \in \hat{\delta}(q_0, w) \iff w = x_0, \text{ con } x \in \{0,1\}^*$$

3. Una stringa w che conduce in q_2 ha la forma $w = y_1$, dove il prefisso $y \in \{0, 1\}^*$ conduce a q_1 e il simbolo 1 porta infine a q_2 tramite la transizione $q_1 \xrightarrow{1} q_2$:

$$\forall w \in \{0,1\}^* \quad q_2 \in \hat{\delta}(q_0, w) \iff w = y_0, \text{ con } y \in \{0,1\}^* \text{ tale che } q_1 \in \hat{\delta}(q_0, y)$$

Ancora, questo enunciato si può semplificare applicando la congettura 2, secondo la quale il prefisso y, per condurre a q_1 , deve avere a sua volta la forma $y = x_0$, quindi complessivamente $w = x_0$:

$$\forall w \in \{0,1\}^* \quad q_2 \in \hat{\delta}(q_0, w) \iff w = x01, \text{ con } x \in \{0,1\}^*$$

Tutte queste congetture vengono dimostrate per induzione sulla lunghezza di w, |w|.

2.1 Congettura 1

Si dimostra per induzione su |w| che:

$$\forall w \in \{0,1\}^* \quad q_0 \in \hat{\delta}(q_0, w)$$

- Base: |w| = 0, cioè $w = \epsilon$. La congettura vale in quanto $\hat{\delta}(q_0, \epsilon) = \{q_0\}$, per la definizione di $\hat{\delta}$.
- Passo induttivo: |w| > 0, cioè w = xa, con $x \in \{0,1\}^*$ e $a \in \{0,1\}$. L'ipotesi induttiva è $q_0 \in \hat{\delta}(q_0, x)$, e bisogna dimostrare che allora $q_0 \in \hat{\delta}(q_0, xa)$.

La definizione di $\hat{\delta}$ nel caso |w| > 0 è

$$\hat{\delta}(q_0, xa) = \bigcup_{p \in \hat{\delta}(q_0, x)} \delta(p, a)$$

e per ipotesi induttiva si sa che uno degli stati p su cui varia l'unione è $q_0 \in \hat{\delta}(q_0, x)$,

$$\hat{\delta}(q_0, xa) = \bigcup_{p \in \hat{\delta}(q_0, x)} \delta(p, a) = \bigcup_{p \in \{\dots, q_0, \dots\}} \delta(p, a) = \dots \cup \delta(q_0, a) \cup \dots$$

quindi $\delta(q_0, a) \subseteq \hat{\delta}(q_0, xa)$. Infine, qualunque sia il valore del simbolo a (0 oppure 1), nell'automa considerato esiste una transizione $q_0 \stackrel{a}{\to} q_0$, ovvero $q_0 \in \delta(q_0, a) \subseteq \hat{\delta}(q_0, xa)$ indipendentemente dal valore di a: anche il caso induttivo della congettura è dimostrato.

2.2 Congettura 2

Si dimostra per induzione su |w| che:

$$\forall w \in \{0,1\}^* \quad q_1 \in \hat{\delta}(q_0, w) \iff w = x_0, \text{ con } x \in \{0,1\}^*$$

• Base: |w| = 0, cioè $w = \epsilon$. In questo caso, la congettura si riscrive come:

$$q_1 \in \hat{\delta}(q_0, \epsilon) \iff \epsilon = x_0, \text{ con } x \in \{0, 1\}^*$$

Si considerano separatamente i due versi del \iff ("se e solo se").

- Per definizione, $\hat{\delta}(q_0, \epsilon) = \{q_0\}$, quindi $q_1 \notin \hat{\delta}(q_0, \epsilon)$. Allora, nel verso \Longrightarrow , l'antecedente $q \in \hat{\delta}(q_0, \epsilon)$ dell'implicazione è falso, per cui l'implicazione è banalmente vera.
- Nel verso \Leftarrow , l'antecedente dell'implicazione è l'uguaglianza $\epsilon = x0$, che è falsa perché ϵ è la stringa vuota, mentre x0 ha almeno un simbolo (ponendo ad esempio $x = \epsilon$, rimane $x0 = 0 \neq \epsilon$), dunque anche qui l'implicazione è banalmente vera.

• Passo induttivo: |w| > 0, cioè w = xa, con $x \in \{0,1\}^*$ e $a \in \{0,1\}$. In questo caso, la congettura diventa

$$q_1 \in \hat{\delta}(q_0, xa) \iff xa = x0$$

ovvero

$$q_1 \in \hat{\delta}(q_0, xa) \iff a = 0$$

e si considerano ancora separatamente i due versi del \iff .

– Nel verso \Longrightarrow , si ha come ipotesi (antecedente dell'implicazione) che valga $q_1 \in \hat{\delta}(q_0, xa)$. L'unica transizione entrante in $q_1 \ \text{è} \ q_0 \xrightarrow{0} q_1$, corrispondente al valore della funzione di transizione $\delta(q_0, 0) = \{q_0, q_1\}$. Segue allora dalla definizione di $\hat{\delta}$

$$\hat{\delta}(q_0, xa) = \bigcup_{p \in \hat{\delta}(q_0, x)} \delta(p, a)$$

che l'antecedente $q_1 \in \hat{\delta}(q_0, xa)$ è verificato solo se $q_0 \in \hat{\delta}(q_0, x)^1$ e a = 0. In altre parole, supponendo che valga l'antecedente dell'implicazione, si deduce che vale anche il conseguente, perciò l'implicazione $q_1 \in \hat{\delta}(q_0, xa) \implies a = 0$ è verificata.

– Nel verso \Leftarrow , si ipotizza a=0. Per la congettura 1, si ha che $q_0 \in \hat{\delta}(q_0,x)$ (indipendentemente dalla forma di x), dunque, applicando la definizione di $\hat{\delta}$:

$$\hat{\delta}(q_0, x_0) = \bigcup_{p \in \hat{\delta}(q_0, x)} \delta(p, 0) = \bigcup_{p \in \{\dots, q_0, \dots\}} \delta(p, 0) = \dots \cup \delta(q_0, 0) \cup \dots$$

Infine, la funzione di transizione dell'automa stabilisce che $q_1 \in \delta(q_0, 0)$, quindi vale $q_1 \in \hat{\delta}(q_0, x_0)$: la congettura è dimostrata.

La dimostrazione della congettura 3 è essenzialmente analoga a quella appena svolta per la 2.

¹Per la congettura 1, si sapeva già che $q_0 \in \hat{\delta}(q_0, x)$, senza bisogno dell'ipotesi $q_1 \in \hat{\delta}(q_0, xa)$, che qui ha portato "di nuovo" a tale conclusione.