I. พื้นฐานเรื่องเซต

การเขียนเซต

- 1. แบบแจกแจงสมาชิก เช่น $A = \{2, 4, 6, ...\}$! สมาชิกที่ซ้ำกันนับเป็นตัวเดียว
- 2. แบบบอกเงื่อนไข $B = \left\{x \in I^+ \middle| x \text{ เป็นจำนวนคู่} \right\}$! ถ้าไม่กำหนด Uให้คิดว่า U = R

 $\underline{\mathrm{Ex}} \ \{A\,,L\,,E\,,V\,,E\,,L\}$ มีสมาชิก $\underline{\mathbf{4}}$ ตัว

สมาชิก

สัญลักษณ์ ∈

Ex $C = \{1, 2, 3\}, D = \{y \in I^+ | y \ge 3\}$ $1 \in C, 1 \notin D$

ชนิดของเซต

- 1. เซตจำกัด
- • สามารถหา จำนวนสมาชิก
 ! เซตว่าง { }, Ø มีจำนวนสมาชิก
 เท่ากับ 0
- !! {∅}ไม่ใช่เซตว่าง

- 2. เซตอนันต์
- ไม่สามารถหา จำนวนสมาชิก ได้

Ex {1,2,3,...}มีจำนวนสมาชิกเป็น อนันต์

ความสัมพันธ์ระหว่างเซต

- 1. เซตเทียบเท่า (~) <mark>จำนวนสมาชิก</mark> เท่ากัน
- 2. เซตเท่ากัน (=) สมาชิก เหมือนกันทุกตัว
- เซตไม่เท่ากัน (≠) สมาชิก บางตัวไม่เหมือนกัน

 \underline{Ex} ถ้า $E = \{1, 2, 3\}, F = \{3, 2, 1\}, G = \{1, 2, 4\}$ แล้ว E = F $E \sim G, F$ $E \neq G$

II. สับเขต

ความหมายของสับเซต

🕶 เซตย่อย

เลือกสมาชิก แล้วครอบด้วย { }

! ไม่เลือกเลย -> Ø

สัญลักษณ์ : 🗲

 $\underline{Ex} \quad A = \{1, 2, 3, 4, 5\}, B = \{3, 4, 5\}$ $C = \{0, 1, 2\}, D = \{ \}$ จะได้ว่า $B, D \subset A, C \not\subset A$

 $Ex A = \{1, 2\}$

สับเชตของ A ที่มีสมาชิก 0 ตัว

สมาชิก 1 ตัว {1}, {2}

สมาชิก 2 ตัว {1,2}

Ex $B = \emptyset$

สับเซตทั้งหมดของ B คือ \varnothing

ประเภทของสับเชต

1. สับเชตแท้

สับเซตที่จำนวนสมาชิก ไม่เท่ากัน

2. สับเซตไม่แท้

สับเซตที่จำนวนสมาชิก เท่ากัน

แท้ - ไม่เท่า ไม่แท้ - เท่า

สมบัติของสับเซต

- 1. $\emptyset \subset A$
- $2. A \subset A$
- 3. ถ้า $A \subset B$ และ $B \subset A$ แล้ว A = B
- 4. ถ้า $A \subset B$ และ $B \subset C$ แล้ว $A \subset C$
- 5. จำนวนสับเซตทั้งหมดของเซตที่มีสมาชิก n ตัว เท่ากับ $\frac{2^{n}}{n}$
- 6. จำนวนสับเซตที่มีสมาชิก r ตัว ของเซตที่มีสมาชิก n ตัว เท่ากับ $C_{n,r} = \frac{n!}{r! \, (n-r)!}$

7. ถ้า $A \subset X \subset B$

จำนวนเซต X ที่สร้างได้เท่ากับ

 $2^{n(B)-n(A)}$

8. ถ้า $A \subset B$ และ $A \not\subset X \subset B$ จำนวนเซต X ที่สร้างได้เท่ากับ

 $2^{n(B)} - 2^{n(B)-n(A)}$

ทั้งหมด - ตรงข้าม

III. เพาเวอร์เซต

(ความหมายของเพาเวอร์เซต

🕶 เซตของ สับเซตทั้งหมด

แจกแจง<mark>สับเซตทั้งหมด</mark> แล้วครอบด้วย { }

สัญลักษณ์ : P(A)

<u>Ex</u> $A = \{1, 2\}$ สับเซตทั้งหมดของ A คือ \emptyset , $\{1\}$, $\{2\}$, $\{1,2\}$ $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

(สมบัติของเพาเวอร์เซต

- $\emptyset \in P(A)$
- $A \in P(A)$
- $A \subset B \leftrightarrow P(A) \subset P(B)$
- $n(P(A)) = 2^{n(A)}$ $n(P(P(A))) = 2^{2^{n(A)}}$ $n(P(P(P(A)))) = 2^{2^{n(A)}}$

 $\underline{\mathrm{Ex}}$ ถ้า $A = \{-1,0,\varnothing,\{1,2\},\{0\}\}$ ข้อใดต่อไปนี้ถูกต้อง

1.
$$\{\{0,\{1,2\}\}\}\in P(A)$$

ตัดปีกกา ตัด
$$P$$
 $0,\{1,2\}\}$ ∈ A

2.
$$\{\{-1,0,\emptyset\}\}\in P(A)$$

ตัดปีกกา ตัด
$$P$$
 $\{-1,0,\varnothing\}$ ∈ A

3.
$$\{-1, \{0\}\} \subset P(A)$$

ตัดปีกกา ตัด
$$P$$
 → -1, $\{0\} \subset A$

4.
$$\{\emptyset, \{0\}, \{1, 2\}\} \in P(A)$$

ตัดปึกกา ตัด
$$P$$
 \varnothing , $\{0\}$, $\{1,2\} \in A$

IV. แผนภาพเวนน์ - ออยเลอร์

การดำเนินการของเซต

🕶 สลับที่

🕶 เปลี่ยนกลุ่ม

💜 กระจาย/แจกแจง

De Morgan

กฎพีชคณิต

- 1. $A \cup B = B \cup A$
 - $A \cap B = B \cap A$
- $2. \quad (A \cup B) \cup C = A \cup (B \cup C)$
 - $(A \cap B) \cap C = A \cap (B \cap C)$
- 3. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 4. $(A \cup B)' = A' \cap B'$ $(A \cap B)' = A' \cup B'$
- 5. (A')' = A
- 6. A' = U A
- 7. $A B = A \cap B' = B' A'$
- 8. $P(A \cap P(B)) = P(A \cap B)$
- 9. $P(A) \cup P(B) \subset P(A \cup B)$

IV. แผนภาพเวนน์ - ออยเลอร์ (ฅ่อ)

การหาจำนวนสมาชิก

- 1. n(A') = n(U) n(A)
- 2. $n(A B) = n(A) n(A \cap B)$
- 3. $n(A \cup B) = n(A) + n(B) n(A \cap B)$
- 4. $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(A \cap C)$ - $n(B \cap C) + n(A \cap B \cap C)$

5. ใช้แผนภาพเวนน์ ightarrow ตั้งตัวแปร ightarrow แก้สมการ ightarrow หาคำตอบ