2주차 - 디지털 영상

■ 아날로그 영상과 디지털 영상

- 아날로그 영상
 - 연속 색조 영상(Continuous-Tone Image)
 - 다양한 명암과 색이 혼합되어 원래의 영상을 정확히 재현
- 디지털 영상
 - 아날로그 영상을 디지털화하는 과정으로 생성
 - 디지털화는 표본화, 양자화, 부호화로 구성
 - 밝기의 불연속점으로 구성

■ 영상의 디지털화

- 표본화(샘플링): 연속적인 아날로그 영상을 일정 간격으로 수치화
- 양자화: 각 샘플의 값을 정해진 수치로 대응

• 아날로그 신호를 디지털 신호로 디지털화하는 과정

■ 디지털 영상의 표현

- 픽셀
 - 디지털 영상을 구성하는 최소 단위 (화소)
- 해상도
 - 영상의 가로 길이와 세로 길이의 곱

■ 디지털 영상의 종류

- 이진 영상 (Binary Image)
 - 화소 값이 두 가지(검정색, 흰색)만 있는 영상
- 그레이 레벨 영상(Gray-Level Image)
 - 각 화소의 밝기가 여러 단계로 보통 흑백 사진이 이에 해당

- 컬러 영상(Color Image)
 - 실제로 눈에 보이는 모습과 비슷하게 밝기와 색상을 표현하는 영상
 - 빛의 삼원색인 빨강색(R), 초록색(G), 파란색(B)을 이용하여 모든 색을 표현할 수 있음
 - 각 색을 그레이 레벨 영상처럼 독립적 형태로 처리
 - 각 색의 상호작용이 너무 커서 영상을 처리하는 데 어려움이 있음

■ 컬러 모델

- RGB
 - 컬러 모니터, TV, 디스플레이 장치 등에서 사용
- CMYK
 - 컬러 인쇄, 출판 분야
- HS
 - 인간의 색체 지각 능력 표현하는 응용
- YCbCr
 - 영상 압축

■ 디지털 영상의 다양한 저장 포맷

파일 포맷	특징	응용
JPG	정지 영상에 대한 압축 표준으로, 영상 정보가 헤더 정보에 포함된다.	이미지 압축
ВМР	각 픽셀을 나타내는 비트를 나열하여 이미지를 저장 및 출력하는 영상 포 맷으로, 비트맵 방식이라고도 부른다.	윈도 기반의 이미지 편집
GIF	비트맵 그래픽의 데이터 포맷으로, 웹에서 널리 쓰이는 파일 포맷이다. 다 양한 환경에서 쉽게 쓸 수 있으며 간단한 애니메이션을 제작할 때도 용이 하다.	인터넷 이미지
PDF	일반 문서, 문자, 도형, 그림 등을 저장하는 전자 문서 형식의 데이터 포맷 이다.	문서 및 이미지 변환
TIFF	무손실 압축 방법으로 단일한 표준 파일 형식을 갖지 못해 업체간 서로 다른 태그를 사용, 고정 파일 형식에 비해 복잡하고 구현이 어려운 것이 단점이다.	스캐너, 디지털 카메라
OpenEXR	HDR 이미지를 저장하는 포맷으로, 채널당 16비트 이상의 컬러를 사용할 수 있다.	HDR 영상 생성
PCX	도스 기반의 프로그램에서 영상처리를 위해 사용한다.	도스 기반의 이미지 편집
PNG	무손실 압축 방법을 이용한 영상 데이터 포맷 중 일부로, GIF의 컬러 표현 한계를 극복하기 위해 고안되었다.	인터넷 이미지

■ 디지털 영상처리의 단계

- 저수준 영상처리
 - 디지털 영상 획득, 포맷에 맞춰 저장
- 중간 수준 영상처리
 - 영상 분할, 심볼 매핑 등 특별 목적에 따라 영상을 가공하는 과정
- 고수준 영상처리
 - 영상 해석, 영상 인식

```
In [1]: ### Packages
import cv2
import numpy as np
from matplotlib import pyplot as plt
import os
```

```
In [2]: ### 출력 영상 크기 plt.rcParams["figure.figsize"] = (16,9) ### 한글 표시 plt.rcParams['font.family'] = "Gulim" # 'AppleGothic' in mac
```

■ RGB 컬러

-컬러 영상의 구성

• 컬러 영상의 인덱스(index)


```
In [3]:
         ### 영상 읽기
         img_raw = cv2.imread(r'D:\mage\mage\mage\mage\left]lena.png')
         if img_raw is None:
             print("Could not read the image.")
In [4]: ### 자료 구조
         type(img_raw), img_raw.dtype, img_raw.shape
         (numpy.ndarray, dtype('uint8'), (512, 512, 3))
Out[4]:
         ### Blue
In [5]:
         img_raw[:,:,0]
         array([[125, 125, 133, ..., 122, 110, 90],
                [125, 125, 133, ..., 122, 110, 90],
                [125, 125, 133, ..., 122, 110, 90],
                [ 60, 60, 58, ..., 84, 76, 79],
[ 57, 57, 62, ..., 79, 81, 81],
                [ 57, 57, 62, ..., 79, 81, 81]], dtype=uint8)
In [6]: ### BGR → RGB 변환
         img_rgb = cv2.cvtColor(img_raw, cv2.COLOR_BGR2RGB)
```

```
plt.imshow(img_rgb)
plt.show()
```



```
In [7]: ### 영상 분리
B, G, R = cv2.split(img_raw)
```

```
In [8]: ### RGB 영상으로 출력
titles = ["BGR", "Blue", "Green", "Red"]
images = [img_raw, B, G, R]
for i in range(len(images)):
    plt.subplot(1,4,i+1)
    img_rgb = cv2.cvtColor(images[i], cv2.COLOR_BGR2RGB)
    plt.imshow(img_rgb)
    plt.title(titles[i])
    plt.axis('off')
plt.show()
```



```
In [9]: ### 영상 분리
B = np.zeros(img_raw.shape, dtype="uint8")
G = B.copy()
```

```
G[:,:,1] = img_raw[:,:,1]
R[:,:,2] = img_raw[:,:,2]

In [10]: ### RGB 영상으로 출력
titles = ["BGR", "Blue", "Green", "Red"]
images = [img_raw, B, G, R]
for i in range(len(images)):
    plt.subplot(1,4,i+1)
    img_rgb = cv2.cvtColor(images[i], cv2.COLOR_BGR2RGB)
    plt.imshow(img_rgb)
```


plt.show()

R = B.copy()

 $B[:,:,0] = img_raw[:,:,0]$

plt.title(titles[i])
plt.axis('off')

■ YCrCb(YCC) 컬러

- 인간의 눈이 명도에 민감하고 색도 성문에 덜 민감한 시각적인 특성을 고려한 것
- 흑백(grayscale) 영상과 색차로 구성
- 디지털 표준 텔레비전에 사용: ITU-R BT.601 형식
- 비디오 및 스틸 이미지 압축과 전송(예: MPEG, JPEG)에 적합한 색 정보의 디지털 인코딩에 사용
 - Y(Luminance): 밝기
 - lacktriangleright Cr(Chroma Red): 밝기와 빨간색의 색차
 - lacktriangle Cb(Chroma Blue): 밝기와 파란색의 색차

- RGB ↔ YCrCb JPEG (or YCC)
 - $Y \leftarrow 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$

```
 \begin{array}{l} \blacksquare & Cr \leftarrow (R-Y) \cdot 0.713 + delta \\ \blacksquare & Cb \leftarrow (B-Y) \cdot 0.564 + delta \\ \blacksquare & R \leftarrow Y + 1.403 \cdot (Cr - delta) \\ \blacksquare & G \leftarrow Y - 0.714 \cdot (Cr - delta) - 0.344 \cdot (Cb - delta) \\ \blacksquare & B \leftarrow Y + 1.773 \cdot (Cb - delta) \\ \blacksquare & delta = \begin{cases} 128 & \text{for 8-bit images} \\ 32768 & \text{for 16-bit images} \\ 0.5 & \text{for for floating-point images} \end{cases}
```

```
In [11]: ### BGR → YCrCb 변환
img_ycc = cv2.cvtColor(img_raw, cv2.COLOR_BGR2YCrCb)

In [12]: ### 영상 분리
Y, Cr, Cb = cv2.split(img_ycc)
```

```
In [13]: ### 영상 출력

titles = ["RGB", "Y", "Cr", "Cb"]

images = [img_raw, Y, Cr, Cb]

for i in range(len(images)):

    plt.subplot(1,4,i+1)

    img_rgb = cv2.cvtColor(images[i], cv2.COLOR_BGR2RGB)

    plt.imshow(img_rgb)

    plt.title(titles[i])

    plt.axis('off')

plt.show()
```


■ 조각 영상

• 영상의 일부 영역을 추출한 영상

```
In [14]: ### Grayscale
img_gray = cv2.cvtColor(img_raw, cv2.COLOR_BGR2GRAY)
img_gray.shape

Out[14]: (512, 512)

In [15]: ### 영상 출력 - grayscale
plt.imshow(img_gray, 'gray')
plt.show()
```


In [16]: ### 조각 영상(1) - grayscale img_gray_sub = img_gray[240:290, 240:290] plt.imshow(img_gray_sub, "gray") plt.show()

In [17]: ### 조각 영상(2) - grayscale img_gray_sub = img_gray[240:290, 310:360] plt.imshow(img_gray_sub, "gray") plt.show()


```
In [18]: ### 조각 영상(3) - color
img_raw_sub = img_raw[240:290, 310:360, :]
plt.imshow(cv2.cvtColor(img_raw_sub, cv2.COLOR_BGR2RGB))
plt.show()
```

