Session #08

CMSC 409: Artificial Intelligence

Virginia Commonwealth University, Fall 2023, Dr. Milos Manic

(mmanic@vcu. edu)

1

CMSC 409: Artificial Intelligence

Session # 08

Topics for today

- Announcements
- Previous session review
- Perceptron learning rule
 - Perceptron training
 - Graphical illustration

© M. Manic, CMSC 409: Artificial Intelligence, F23

Page 2

Session 08, Updated on 9/14/23 9:15:33 AM

CMSC 409: Artificial Intelligence Announcements Session # 08

- Canvas
 - New slides posted
- Office hours zoom
 - Zoom disconnects me after 45 mins of inactivity. Feel free to chat me via zoom if that happens and I will reconnect (zoom chat welcome outside of office hours as well)!
- Project #2
 - Deadline Oct. 3 (noon)
- Paper (optional)
 - The 2nd draft due Oct. 10 (noon)
 - Literature review and updated problem description (check out the class paper instructions for the 2nd draft)
- Subject line and signature
 - Please use [CMSC 409] Last_Name Question

© M. Manic, CMSC 409: Artificial Intelligence, F23

Page 3

Session 08, Updated on 9/14/23 9:15:33 AM

3

4

- → Perceptron training
- □ *Learning example*
- □ Graphical illustration
 - Learning constant & hard activation function
- \square Learning example in Perl
- ☐ *Hard vs. soft activation function*
 - Soft activation function

© M. Manic, CMSC 409: Artificial Intelligence, F23

Page 5

Session 08, Updated on 9/14/23 9:15:33 AM

5

Perceptron training (supervised training)

$$\Delta \mathbf{w}_i = \alpha \, \delta \, \mathbf{x}$$

Perceptron learning rule:

$$\delta = d - o$$

$$\Delta \mathbf{w}_i = \alpha \ \mathbf{x} \big(d - \mathrm{sign}(net) \big)$$

Assuming bipolar neurons:

output =
$$\pm 1$$
, and

$$\Delta \mathbf{w}_i = \pm \alpha \mathbf{x} 2$$

© M. Manic, CMSC 409: Artificial Intelligence, F2

Page 6

ession 08, Updated on 9/14/23 9:15:33 AM

- □ *Perceptron training*
- **♦** Learning example
- □ Graphical illustration
 - Learning constant & hard activation function
- □ *Learning example in Perl*
- ☐ *Hard vs. soft activation function*
 - Soft activation function

© M. Manic, CMSC 409: Artificial Intelligence, F23

Page 7

Session 08, Updated on 9/14/23 9:15:33 AM

7

8

Simple example of training one neuron (cont.) (perceptron learning rule)

Weights: 1 3 -3 Desired output

Pattern 1: 1 2 +1 -1

Pattern 2: 2 1 +1 +1

$$net = \sum_{i=1}^{n} w_i x_i$$
 Actual output

for pattern 1: $net = 1*1+3*2-3*1=4 \implies +1$

for pattern 2: $net = 1*2+3*1-3*1=2 \implies +1$

© M. Manic, CMSC 409: Artificial Intelligence, F23

Page 9

Session 08, Updated on 9/14/23 9:15:34 AM

9

Simple example of training one neuron (cont.)

Assuming learning constant: $\alpha = 0.3$

weights: $\mathbf{w} = \begin{bmatrix} 1 & 3 & -3 \end{bmatrix}$

pattern 1: $x = [1 \ 2 \ 1]$

$$net = \sum_{i=1}^{n} w_i x_i \qquad \Delta \mathbf{w} = \alpha \mathbf{x} (d-o)$$

$$net = 1 \cdot 1^{i=1} \cdot 2 \cdot 3 + 1 \cdot (-3) = 4 \implies +1$$

$$\Delta \mathbf{w} = 0.3 \ \mathbf{x} (-1 - 1) = -0.6 \mathbf{x}$$
 net = 4 => out =+1

$$\Delta \mathbf{w} = [-0.6 \ -1.2 \ -0.6]$$

$$\mathbf{w} = [0.4 \quad 1.8 \quad -3.6] \text{ modified weights}$$

© M. Manic, CMSC 409: Artificial Intelligence, F23

Page 10

Session 08, Updated on 9/14/23 9:15:34 AM

Simple example of training one neuron

Applying the 2^{nd} pattern for the 1^{st} time: $\mathbf{w} = \begin{bmatrix} 0.4 & 1.8 & -3.6 \end{bmatrix}$

weights: $\mathbf{w} = [0.4 \ 1.8 \ -3.6]$

pattern 2: $x = [2 \ 1 \ 1]$

$$net = \sum_{i=1}^{n} w_i x_i \quad \Delta \mathbf{w} = \alpha \mathbf{x} (d - o)$$

$$net = 2 \cdot 0.4 + 1 \cdot 1.8 - 1 \cdot 3.6 = -1 \implies -1$$

 $\Delta \mathbf{w} = 0.3 \mathbf{x} (+1 - (-1)) = 0.6 \mathbf{x}$ $\Delta \mathbf{w} = [1.2 \ 0.6 \ 0.6]$

 $\mathbf{w} = [1.6 \quad 2.4 \quad -3.0] \quad \text{modified weights}$

Page 12

Session 08, Updated on 9/14/23 9:15:34 AM

0 M. Manic, CMSC 409: Artificial Intelligence, F23

Page 13

Session 08. Updated on 9/14/23 9:15:34 AM

13

Simple example of training one neuron

Applying the 1^{st} pattern for the 2^{nd} time: $\mathbf{w} = \begin{bmatrix} 1.6 & 2.4 & -3 \end{bmatrix}$

weights: $\mathbf{w} = [1.6 \ 2.4 \ -3]$

pattern 1: $x = [1 \ 2 \ 1]$

$$net = \sum_{i=1}^{n} w_i x_i \qquad \Delta \mathbf{w} = \alpha \mathbf{x} (d - o)$$

$$net = 1 \cdot 1.6 + 2 \cdot 2.4 - 1 \cdot 3 = 3.4 \implies +1$$

$$net = 3.4 => out =+1$$

$$\Delta \mathbf{w} = 0.3 \mathbf{x} (-1 - (+1)) = -0.6 \mathbf{x}$$

 $\Delta \mathbf{w} = \begin{bmatrix} -0.6 & -1.2 & -0.6 \end{bmatrix}$

$$\mathbf{w} = \begin{bmatrix} 1 & 1.2 & -3.6 \end{bmatrix}$$
 modified weights

© M. Manic, CMSC 409: Artificial Intelligence, F23

Page 14

Session 08. Updated on 9/14/23 9:15:34 AM

Simple example of training one neuron

Applying the 2^{nd} pattern for the 2^{nd} time: $\mathbf{w} = \begin{bmatrix} 1 & 1.2 & -3.6 \end{bmatrix}$

weights: $\mathbf{w} = \begin{bmatrix} 1 & 1.2 & -3.6 \end{bmatrix}$ pattern 2: $\mathbf{x} = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$

$$net = \sum_{i=1}^{n} w_i x_i \quad \Delta \mathbf{w} = \alpha \mathbf{x} (d - o)$$

$$net = 2 \cdot 1 + 1 \cdot 1.2 - 1 \cdot 3.6 = -0.4 \implies -1$$

$$net = -0.4 => out =-1$$

$$\Delta \mathbf{w} = 0.3 \ \mathbf{x} (+1 - (-1)) = 0.6 \mathbf{x}$$

 $\Delta \mathbf{w} = [1.2 \ 0.6 \ 0.6]$

$$\mathbf{w} = [2.2 \quad 1.8 \quad -3.0]$$
 modified weights

© M. Manic, CMSC 409: Artificial Intelligence, F23

Page 16

Session 08. Updated on 9/14/23 9:15:34 AM

Simple example of training one neuron

Applying the 1st pattern for the 3rd time: $\mathbf{w} = \begin{bmatrix} 2.2 & 1.8 & -3.0 \end{bmatrix}$

weights:
$$\mathbf{w} = \begin{bmatrix} 2.2 & 1.8 & -3.0 \end{bmatrix}$$
 pattern 1: $\mathbf{x} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$

$$net = \sum_{i=1}^{n} w_i x_i \quad \Delta \mathbf{w} = \alpha \mathbf{x} (d - o)$$

$$net = 1 \cdot 2.2 + 2 \cdot 1.8 - 1 \cdot 3 = 2.8 \implies +1$$

$$net = 2.8 => out =+1$$

$$\Delta \mathbf{w} = 0.3 \ \mathbf{x} (-1 - (+1)) = -0.6 \mathbf{x}$$

 $\Delta \mathbf{w} = [-0.6 \ -1.2 \ -0.6]$

$$\mathbf{w} = [1.6 \quad 0.6 \quad -3.6]$$
 modified weights

© M. Manic, CMSC 409: Artificial Intelligence, F23

Page 18

Session 08. Updated on 9/14/23 9:15:34 AM

Simple example of training one neuron After applying the 1st pattern for the 3rd time: $\mathbf{w} = \begin{bmatrix} 1.6 & 0.6 & -3.6 \end{bmatrix}$

19

Simple example of training one neuron

Applying the 2^{nd} pattern for the 3^{rd} time: $\mathbf{w} = \begin{bmatrix} 1.6 & 0.6 & -3.6 \end{bmatrix}$

weights:
$$\mathbf{w} = \begin{bmatrix} 1.6 & 0.6 & -3.6 \end{bmatrix}$$
 pattern 2: $\mathbf{x} = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$

$$net = \sum_{i=1}^{n} w_i x_i \quad \Delta \mathbf{w} = \alpha \ \mathbf{x} (d - o)$$

$$net = 2 \cdot 1.6 + 1 \cdot 0.6 - 1 \cdot 3.6 = 0.2 \implies +1$$

$$\cdot 3.0 = 0.2 \implies +1$$

$$\Delta \mathbf{w} = 0.3 \mathbf{x} (+1 - (+1)) = 0 \cdot \mathbf{x} = 0$$

$$\Delta \mathbf{w} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$
(weights haven't changed, d=o!)

$$\mathbf{w} = [1.6 \quad 0.6 \quad -3.6]$$
 modified weights

Simple example of training one neuron

Applying the 1st pattern for the 4th time: $\mathbf{w} = \begin{bmatrix} 1.6 & 0.6 & -3.6 \end{bmatrix}$

weights: $\mathbf{w} = [1.6 \quad 0.6 \quad -3.6]$ pattern 1: $\mathbf{x} = [1 \quad 2 \quad 1]$

$$net = \sum_{i=1}^{n} w_i x_i \quad \Delta \mathbf{w} = \alpha \ \mathbf{x} (d - o)$$

$$net = 1 \cdot 1.6 + 2 \cdot 0.6 - 1 \cdot 3.6 = -0.8 \implies -1$$

$$net = -0.8 => out = -1$$

$$net = 1.0 + 2.0.0 + 3.0 = 0.0 = 1.0$$

$$net = -0.8 \Rightarrow out = -1.0$$

$$\Delta \mathbf{w} = \begin{bmatrix} 0.3 & \mathbf{x}(-1 - (-1)) = 0 \cdot \mathbf{x} = 0 \\ \Delta \mathbf{w} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$
(weights haven't changed, d=o!)

$$\mathbf{w} = [1.6 \quad 0.6 \quad -3.6]$$
 modified weights

Unsupervised vs. supervised learning

$$\Delta \mathbf{w}_i = \alpha \, \delta \, \mathbf{x}$$

$$\Delta \mathbf{w}_i = \alpha \, \delta \, \mathbf{x}$$
$$\mathbf{w}_{k+1} = \mathbf{w}_k + \Delta \mathbf{w}$$

 $\delta = 0$ **Hebb Rule** (unsupervised):

Correlation Rule (supervised): $\delta = d$

 $\delta = d - o$ **Perceptron Fixed Rule**:

© M. Manic, CMSC 409: Artificial Intelligence, F23

Page 24

Session 08, Updated on 9/14/23 9:15:34 AM

Things to remember...

• Neuron "representation"

• We have represented the same neuron in 3 ways: inequality, drawn decision line, or drawn neuron

• Learning = adjusting weights!

- Through learning, we train i.e adjust neuron parameters (weights, including bias/threshold)
- Learning (training) is "driven" by a learning signal δ

Activation function matters!

- Hard activation function
 - for non-overlapping data sets may be sufficient, but may not be optimal
 - once the error is zero (δ in case of perceptron), Δw becomes zero, nothing gets learned any more solution may not be optimal!
 - i.e, if error $\rightarrow 0$, then $\delta \rightarrow 0$, consequently $\Delta w \rightarrow 0$
- Linear or soft activation function
 - error likely never becomes zero, i.e. you can continue optimizing solution until stopping criterion is met

Training...

• this was "incremental" training, we added new knowledge based on every pattern in every iteration…one should be aware of pros and cons…

© M. Manic, CMSC 409: Artificial Intelligence, F23

Session 08, Updated on 9/14/23 9:15:34 AM

25