

TEMA: PARIDADE DE UMA FUNÇÃO

TIPO: FICHA DE TRABALHO Nº6

LR MAT EXPLICAÇÕES

como estudar a paridade de uma função?

qraficamente

PAR

O gráfico é simétrico em relação ao eixo 0y

ÍMPAR

O gráfico é simétrico em relação à origem do referencial

analiticamente

Determinar
$$f(-x)$$
 = $f(x) \rightarrow \text{Então}$, $f \notin \text{par}$

$$= -f(x) \rightarrow \text{Então}$$
, $f \notin \text{impar}$

NOTA: Caso $f(-x) \neq f(x)$ e $f(-x) \neq -f(x)$ então diz-se que a função não é par nem ímpar.

1. Para cada uma das funções reais de variável real a seguir definidas, averigua a sua paridade.

$$1.1 f(x) = 2x + 1$$

$$1.2 g(x) = x^2 + 1$$

1.3
$$h(x) = x^3 + x^2$$

1.4
$$i(x) = 3x^2$$

2. Observa os gráficos cartesianos seguintes e indica, justificando, a paridade das funções reais de variável real associadas.

2.1

2.2

2.3

2.5

2.6

3. Mostra que as funções seguintes são pares.

(a)
$$f(x) = 2x^2 + 5$$

(b)
$$h(x) = \frac{2}{x^2}$$

(c)
$$g(x) = x^2 - x^2$$

(d)
$$i(x) = |x|$$

4. Sejam a, $b \in \mathbb{R}$. Determina a e b de forma que g, definida por:

$$g(x) = x^4 + (a-2)x^2 + (b+1)x + 3$$

seja uma função par.

5. Mostra que as funções seguintes são ímpares:

(a)
$$f(x) = -2x$$

(b)g(x) =
$$\frac{1}{2}$$
x³ + 4x

(c)
$$h(x) = \frac{1}{x^3 - x}$$

6. As figuras seguintes representam partes dos gráficos de funções pares. Copia e completa-os.

7. Averigua se as seguintes funções reais de variável real são pares ou ímpares:

(a)
$$f(x) = 2x^2 + |x| + 5$$

(b)g(x) =
$$\frac{2x}{x^2+1}$$

(c)
$$h(x) = 0$$

- 8. Justifica, recorrendo a processos analíticos, que a função g definida por g(x) = 3 + x não é par nem ímpar.
- A figura seguinte representa parte do gráfico de uma função ímpar.
 Copia e completa-o.

10. Relativamente à função **g**, cujo gráfico se apresenta na figura ao lado apresenta o gráfico de uma extensão que seja uma função par.

- 11. Sejam f e g duas funções de domínio $\mathbb R$ tais que:
 - **f** é uma função par.
 - **g** é uma função ímpar.
 - O ponto $\bf A$ de coordenadas (-2,-3) pertence aos gráficos das duas funções.

Pode-se concluir que f(2) + g(2) é igual a:

(A) 6

(B) 0

(C) 3

(D) -3

12. Considera as funções reais de variável real ${\bf f}$ e ${\bf g}$ tais que:

- **f** é ímpar;
- **g** é par;
- f(1) = k, sendo k a solução negativa da equação $3x^2 27 = 0$;
- g(-1) = 5.

Determina o valor de $-\frac{1}{5} \times g(1) + 4 \times f(-1)$.