Estudio local en torno a un punto fijo.

Definiciones generales.

• Sea $x_{n+1} = f(x_n)$ donde

$$f: \mathbb{K} \to \mathbb{K}$$
,

es continua y $\ensuremath{\mathbb{K}}$ espacio métrico.

Definiciones generales.

• Sea $x_{n+1} = f(x_n)$ donde

$$f: \mathbb{K} \to \mathbb{K}$$
,

es continua y \mathbb{K} espacio métrico.

Sea x* punto fijo.

Nota

Si $\mathbb{K} \subset \mathbb{R}$ entonces x^* se obtiene al intersecar la gráfica de f con la diagonal $\Delta = \{(x,x) : x \in \mathbb{K}\}.$

Estabilidad

• Un punto x^* se dice estable si para cada $\varepsilon>0$ existe $\delta>0$ talque si

$$d(x_0, x^*) < \delta \Longrightarrow d(x_n, x^*) < \varepsilon.$$

- Si además $x_n \to x^*$ cuando $n \to \infty$ entonces se dice asintóticamente estable.
- Si el punto no es estable se dice inestable.

Ejemplo 1.

El punto fijo $\alpha_0=0$ de las ecuaciones en diferencias lineales

$$x_{n+1} = \lambda x_n$$

es ...

Ejemplo 1.

El punto fijo $\alpha_0=0$ de las ecuaciones en diferencias lineales

$$x_{n+1} = \lambda x_n$$

es ...

ullet asintóticamente estable si $|\lambda| < 1$

Ejemplo 1.

El punto fijo $lpha_0=0$ de las ecuaciones en diferencias lineales

$$x_{n+1} = \lambda x_n$$

es ...

- ullet asintóticamente estable si $|\lambda| < 1$
- inestable si $|\lambda| > 1$.
- estable pero no asintóticamente estable si $\lambda=\pm 1$.

Ejemplos gráficos.

Asintóticamente estables

Ejemplos gráficos.

Ejercicio

Estudia geométricamente la estabilidad de los puntos fijos de $x_{n+1} = f(x_n)$ donde $f : \mathbb{R} \to \mathbb{R}$ es la función de la gráfica:

Caracter local de la estabilidad

Sean \mathbb{K}_1 , \mathbb{K}_2 , subconjuntos de un espacio métrico común. $f_1: \mathbb{K}_1 \to \mathbb{K}_1$, $f_2: \mathbb{K}_2 \to \mathbb{K}_2$ y x^* un punto comun a ambas. Supongamos adicionalmente que existe una bola $B \subset \mathbb{K}$ talque $B \cap \mathbb{K}_1 = B \cap \mathbb{K}_2$ y $f_1(x) = f_2(x)$ en el conjunto anterior. Entonces si x^* es estable/asintóticamente estable/ inestable para f_1 también lo será para f_2 y recíprocamente.

Ejercicio

Estudia la estabilidad de los puntos fijos de $x_{n+1} = 1 - |x_n + 1|$.

Atractores y fuentes

Un punto fijo x^* se dice atractor si existe $\varepsilon > 0$ tal que si $d(x_0, x^*) < \varepsilon$ entonces $x_n \to x^*$.

- Todo punto fijo asintóticamente estable es atractor.
- Si $\mathbb K$ es un intervalo de $\mathbb R$ todo punto fijo atractor es asintócamente estable (sin demostración).

Fuentes y soluciones hacia atrás

- Sea $\mathbb{Z}^- = \{0, -1, -2, -3, ...\}$, una solución hacia atrás es una aplicación de $x : \mathbb{Z}^- \to \mathbb{K}$ verificando $x_{n+1} = f(x_n)$. En una solucion hacia atrás, si conocemos el valor x_0 no siempre se puede encontrar x_n , y es posible que varias secuencias hacia atras "acaben" en el mismo valor x_0 .
- Si $f: \mathbb{K} \to \mathbb{K}$ es un homeomorfismo entonces dado cualquier valor x_0 existe una única solución hacia atrás que acaba en x_0 .

Un punto fijo x^* se dice fuente si existe $\varepsilon>0$ tal que si $d(x_0,x^*)<\varepsilon$ entonces existe una secuencia inversa que acaba en x_0 y

$$\lim_{n\to-\infty}x_n=x^*.$$

Estabilidad y puntos fuente

Un punto fijo fuente es siempre inestable.

Reducción al absurdo.

Sea y_{-n} una secuencia inversa con $y_0 \neq x^*$ tal que,

$$\lim_{n\to-\infty}x_n=x^*.$$

Sea $\varepsilon>0$ tal que $d(y_0,x^*)>\varepsilon$. Tomo $\delta>0$ dado por la condición de estabilidad y tomo n_0 tal que $d(y_{-n_0},x^*)<\delta$ y tomo $x_0=y_{-n_0}$, se tiene que para cada $n\in 0,1,...,n_0$

$$x_n=y_{n-n_0},$$

en particular $x_{n_0} = y_0$ lo que es contradictorio pues por la condicion de estabilidad: $d(x_{n_0}, x^*) < \varepsilon$, y por construccion de ε , $d(y_0, x^*) > \varepsilon$.

Criterio de la primera aproximación

Sea $\mathbb{R}=I$ intervalo abierto de \mathbb{R} , y $f:I\to I$ derivable en un punto fijo x^* , entonces...

• si $|f'(x^*)| < 1$ el punto fijo es asintóticamente estable.

Criterio de la primera aproximación

Sea $\mathbb{R} = I$ intervalo abierto de \mathbb{R} , y $f: I \to I$ derivable en un punto fijo x^* , entonces...

- si $|f'(x^*)| < 1$ el punto fijo es asintóticamente estable.
- si $|f'(x^*)| > 1$ el punto fijo es inestable.

Notas

• Si $0 < f'(x^*) < 1$ las soluciones con dato inicial próximo a x^* son en escalera.

Criterio de la primera aproximación

Sea $\mathbb{R}=I$ intervalo abierto de \mathbb{R} , y $f:I\to I$ derivable en un punto fijo x^* , entonces...

- si $|f'(x^*)| < 1$ el punto fijo es asintóticamente estable.
- si $|f'(x^*)| > 1$ el punto fijo es inestable.

Notas

- Si $0 < f'(x^*) < 1$ las soluciones con dato inicial próximo a x^* son en escalera.
- Si $-1 < f'(x^*) < 0$ las soluciones con dato inicial próximo a x^* son enen telaraña.

Ejemplo

Sea la ecuación

$$x_{n+1} = \frac{x_n^2}{4} - \frac{3x_n}{2} + 4.$$

Ejemplo

Sea la ecuación

$$x_{n+1} = \frac{x_n^2}{4} - \frac{3x_n}{2} + 4.$$

La ecuación tiene dos puntos fijos $x^* = 2$ y $x^* = 8$, que son las soluciones de

$$x = f(x)$$

donde

$$f(x) = \frac{x^2}{4} - \frac{3x}{2} + 4$$

Ejemplo'

Sea la ecuación

$$x_{n+1} = \frac{x_n^2}{4} - \frac{3x_n}{2} + 4.$$

La ecuación tiene dos puntos fijos $x^* = 2$ y $x^* = 8$, que son las soluciones de

$$x = f(x)$$

donde

$$f(x) = \frac{x^2}{4} - \frac{3x}{2} + 4$$

además por el criterio anterior

• $f'(2) = -\frac{1}{2}$, punto fijo asintóticamente estable (con soluciones cerca del punto en telaraña).

Ejemplo

Sea la ecuación

$$x_{n+1} = \frac{x_n^2}{4} - \frac{3x_n}{2} + 4.$$

La ecuación tiene dos puntos fijos $x^* = 2$ y $x^* = 8$, que son las soluciones de

$$x = f(x)$$

donde

$$f(x) = \frac{x^2}{4} - \frac{3x}{2} + 4$$

además por el criterio anterior

- $f'(2) = -\frac{1}{2}$, punto fijo asintóticamente estable (con soluciones cerca del punto en telaraña).
- $f'(8) = \frac{5}{2}$, punto fijo inestable

Ejercicios

Estudia la estabilidad de los puntos fijos de ...

•
$$x_{n+1} = 2x_n^2 - 3$$
,

Ejercicios

Estudia la estabilidad de los puntos fijos de ...

•
$$x_{n+1} = 2x_n^2 - 3$$
,

•
$$x_{n+1} = 1 + \frac{2x_n}{3} - x_n^2 + \frac{x_n^3}{3}$$
.

Criterio basados en análisis detallado de la gráfica.

Lema

Sea $f: I \to I$ y x^* punto fijo interior aislado de la ecuación en diferencias

$$x_{n+1}=f(x_n).$$

Supongamos que $f'(x^*)=1$. Entonces el punto es asintóticamente estable si y solo si existe un entorno $J=(x^*-\varepsilon,x^*+\varepsilon)\subset I$ tal que

$$\begin{cases} f(x) > x & \text{si} \quad x \in (x^* - \varepsilon, x^*), \\ f(x) < x & \text{si} \quad x \in (x^*, x^* + \varepsilon). \end{cases}$$

En otro caso el punto fijo es inestable.

Ejercicio

Estudia la estabilidad del punto fijo $x^* = 0$ en la ley $x_{n+1} = \operatorname{sen}(x_n)$.

Un criterios de estabilidad usando derivadas superiores.

Sea $f: I \rightarrow I$ y x^* , punto fijo interior a I de la ecuación en diferencias

$$x_{n+1}=f(x_n),$$

tal que $f'(x^*) = 1$.

- Supongamos que f es de clase 2 y $f''(x^*) \neq 0$. Entonces x^* es inestable.
- ② Supongamos que f es clase 3 y $f''(x^*) = 0$. Entonces si $f'''(x^*) < 0$, x^* es asintóticamente estable, y si $f'''(x^*) > 0$, x^* es inestable.

Ejercicio

Sea $\alpha \in \mathbb{R}$, estudia la estabilidad de $x^* = 2$ en

$$x_{n+1} = x_n + \alpha (x_n - 2)^3$$

Un resultado de puntos críticos.

Sea $g: I \to I$ y x^* punto interior a I.

- Supongamos que g es de clase 2 y $0 = g(x^*) = g'(x^*)$ entonces:
 - ① si $g''(x^*) > 0$ existe un entorno $\mathcal{U} = (x^* \varepsilon, x^* + \varepsilon) \subset I$ tal que

$$g(x) > 0, x \in \mathcal{U} \setminus \{x^*\}.$$

② si $g''(x^*) < 0$ existe un entorno $\mathcal{U} = (x^* - \varepsilon, x^* + \varepsilon) \subset I$ tal que

$$g(x) < 0, x \in \mathcal{U} \setminus \{x^*\}.$$

- Supongamos que g es de clase 3 y $0 \sigma(x^*) \sigma'(x^*) \sigma''(x^*)$ entenço
 - $0 = g(x^*) = g'(x^*) = g''(x^*)$ entonces:
 - **1** si $g'''(x^*) > 0$ existe un entorno $\mathcal{U} = (x^* \varepsilon, x^* + \varepsilon) \subset I$ tal que

$$(x-x^*)g(x) > 0, x \in \mathcal{U} \setminus \{x^*\}.$$

② si $g'''(x^*) < 0$ existe un entorno $\mathcal{U} = (x^* - \varepsilon, x^* + \varepsilon) \subset I$ tal que

$$(x-x^*)g(x)<0,\ x\in\mathcal{U}\backslash\{x^*\}.$$