Introduction

to phase 2 of our CSE231 project we have to include a sequential circuit to the previously created combinational circuit. The main purpose is to create a circuit that The main purpose is to create a circuit that will sequentially print out the entire code will sequentially brill "Simplified Sum of Products" my previously brill "Simplified Sum of Products" combinational circuit. I will be explaining my combinational circuit. I will be explaining my reasoning in the next segment

Cost - Analy 573

The reason I chose JK-Flip Flop and simplified SOP is because the total circuit becomes the cheapost.

All permutations have a couple of fixed costs:

Such as as a clock input, 7-segment display and an IC 7409 Hex Inverter (NOT gate)

Cala Calculation: IC 7404 > 1 x Th. 25.59

7-segment -> 1 x Th. 9.85

diaplay - Th. 35.44

The vest of the circuit consists of 3 Jn. Flip-Flops which we can get from 2× EC 4027. We I - heeded 12, 2-input AND gastes which E got from 3× EC 7408 (Quad 2-input AND gastes).

Lalso needed 8, 2-input OR gastes which E got from 2× EC 7432 (Quad 2-input OR gastes)

Calculation

2 × [C 4027 3 2× Th, 20.90 3× [C 7408 3 3 × Th, 23, 59 2×[C 7432 3 2 × Th, 27, 59

Total = Th. 167.75

Therefore, the total cost of this circuit is (167.75+35.44)

= Th. 263.19. This is an estimated prize based on component prizes taken on from robo dabd.com

This is the checopest one possible. The second chaeapest one would be with a NOR gate circuit for the combinational pert at around Th. 241.35.

These is the cost analysis, next part is how I built it.

State Table

I constructed a State Table where my states where A, B, C. The output Q of my

Cur	rent a	State	f No	ext St	are	JK	Elrp E	lop ?	input	fine	tron
	- B	C	A	B	C	JA	KA	JB	Ks	J_c	Kc
×	×	×	×	×	×	*	*	X	×	X	X
0	0	1	0	1	O	0	×	1	X	*	\
0	l	0	0	l	l	0	×	×	O	١	X
0	1	1	l	0	0	1	×	×	١	×	-
1	0	0	1	O	١	×	0	O	X	1	X
1	0	1	l	1	O	*	0	l	×	X	1
	l	0	0	0	l	*	1	×	1	1	X
X	×	×	×	*	*	Х	×	×	1 1	X	X

State Dragram

A visual et the state table

(As there is no mput /output the arrows are not labeled)

JA	7	BC
~ 13		

, ,	C'	C
ÁB	X	0
ÁB	0	
AB	*	(X)
AG	*	X

J_{B}	= C	
		<u>C</u>
AB	*	
ÁB	X	\times
AB	*	7
AB	0	

1	_	B
KA	-	1

	Ć	C
ÁĠ	*	*
ÁB	X	X
Aβ	()	*
A B	0	O

K3:	EAT	C
Áß	<u></u>	C
_		H× H
AB	0	\
AB	TI	
AB	1	(x)

Kc=		
C /*	C	С
Ág	(X	1
AB	X	I
AB	+	X
AB	+	1)