

CHIMIE 1 – IE n°2 - Durée : 2 heures

CORRIGE SUCCINCT

La rédaction attendue pour justifier certaines réponses est celle discutée en TD.

Exercice 1: Combinons C, N et O sur 12,5 points Question Réponse C 1s²2s²2p² N 1s²2s²2p³ O 1s²2s²2p⁴ C ↑ ↑ ↑ ↑ ↑ ↑ N ↑ ↑ ↑ ↑ ↑ L'électronégativité augmente de gauche à droite dans une période Id L'énergie d'ionisation augmente le long de la période mais de façon non régulière. Ici N présente une configuration de sous-couche pseudo saturée stable qui augmente son énergie d'ionisation par rapport à O pourtant de numéro atomique supérieur 2 10 électrons de valence O O O O O O O O O O O O O O O O O O	Sur 40 j	points / <mark>Cours</mark>							
C 1s²2s²2p² N 1s²2s²2p³ O 1s²2s²2p⁴ C ↑ ↑ ↑ ↑ ↑ ↑ ↑ O ↑ ↑ ↑ ↑ ↑ ↑ L'électronégativité augmente de gauche à droite dans une période L'énergie d'ionisation augmente le long de la période mais de façon non régulière. L'énergie d'ionisation augmente le long de la période mais de façon non régulière. L'énergie d'ionisation augmente le long de la période mais de façon non régulière. L'énergie d'ionisation augmente le long de la période mais de façon non régulière. L'énergie d'ionisation augmente le long de la période mais de façon non régulière. L'énergie d'ionisation augmente le long de la période mais de façon non régulière. D'électrons de valence Octet non vérifié mais minimisation de charges 10 électrons de valence Octet non vérifié mais électronégativité respectée. 11 électrons de valence 11 électrons de valence	Exercic	cice 1: Combinons C, N et O sur 12,5 points							
C	Question	Réponse							
C									
L'énergie d'ionisation augmente le long de la période mais de façon non régulière. Lici N présente une configuration de sous-couche pseudo saturée stable qui augmente son énergie d'ionisation par rapport à O pourtant de numéro atomique supérieur 10 électrons de valence 10 électrons de valence 10 électrons de valence 10 électron vérifié mais minimisation de charges 10 électrons de valence 11 électrons de valence 11 électrons de valence	Cours	C A V A A							
L'énergie d'ionisation augmente le long de la période mais de façon non régulière. Lici N présente une configuration de sous-couche pseudo saturée stable qui augmente son énergie d'ionisation par rapport à O pourtant de numéro atomique supérieur 10 électrons de valence 10 électrons de valence 10 électrons de valence 10 électron vérifié mais minimisation de charges 10 électrons de valence 11 électrons de valence 11 électrons de valence		N A A A							
L'énergie d'ionisation augmente le long de la période mais de façon non régulière. Lici N présente une configuration de sous-couche pseudo saturée stable qui augmente son énergie d'ionisation par rapport à O pourtant de numéro atomique supérieur 10 électrons de valence 10 électrons de valence 10 électron vérifié mais minimisation de charges 10 électrons de valence 11 électrons de valence 11 électrons de valence		$\bigcirc \boxed{ \uparrow \downarrow } \boxed{ \uparrow \downarrow \uparrow \downarrow \uparrow }$							
Ici N présente une configuration de sous-couche pseudo saturée stable qui augmente son énergie d'ionisation par rapport à O pourtant de numéro atomique supérieur 10 électrons de valence 11 électrons de valence 11 électrons de valence	1c	L'électronégativité augmente de gauche à droite dans une période							
augmente son énergie d'ionisation par rapport à O pourtant de numéro atomique supérieur 10 électrons de valence O	1d	L'énergie d'ionisation augmente le long de la période mais de façon non réguliè							
10 électrons de valence □ ⊕ ⊕ □ □ □ □ □ règle de l'octet vérifiée pour O ET pour C mais électronégativité et minimisation de charges non respectées □ 10 électrons de valence □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		augmente son énergie d'ionisation par rapport à O pourtant de numéro atomique							
pour O et pour N Les formes les plus probables sont à gauche		règle de l'octet vérifiée pour O ET pour C mais électronégativité et minimisation de charges non respectées 10 électrons de valence C							

	N.B Pour CO la longueur de liaison de 113 ppm est en accord avec la forme la plus probable (triple liaison) alors que le moment dipolaire de 0,15D révèle une charge positive sur O mais très faible donc plutôt en accord avec la deuxième).
3	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
	La formule la plus probable fait porter la charge négative sur l'oxygène (notion ion ambivalent non exigée)
	AX ₂ donc un angle de 180° autour de C
	L'électronégativité de O et N étant différente le moment dipolaire global est non nul donc l'ion est polaire
4b	$Ag: Z=47 \ 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^1 4d^{10}$ préféré à $5s^2 4d^9$
	La configuration électronique de l'ion Argent, par ionisation par perte d'un électron 5s, est stable donc facile à former (cela ne veut pas dire spontanément!)
4c	Même période donc n = 5
	Mêmes groupes que C, N, O donc configurations en 5s ² 5p ² , 5s ² 5p ³ , 5s ² 5p ⁴
	Soit Sn $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^2$ Z= 50
	Sb $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^3$ Z=51
	Te $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^4$ Z=52
5a	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
5b	H ₃ C – 136 pm liaison σ _{N-O}
	angle de 105°<109,5° géométrie AX ₂ E ₂ 126 pm liaison hybride simple-double N-O
	Total
	I .

Exerci	Exercice 2 Cannelle et anis étoilé (10,5 +6 points)					
1	Questions					
a)	6 doublets non liants sur les O à ajouter					
b)i)	C ₁ : AX ₃ sp ² car 3 orbitales sp2 formées à partir d'une orbitale s et 2 orbiatles p de C et une orbitale p non hybridée C ₂ AX ₃ sp ²					

	$C3 AX_3 sp^2$						
	C ₄ : AX ₄ car 4 sp ³ formée par combinaison de 1 orbitale s et 3 orbitales p						
ii)	σ sp ² (C ₃)-sp ² (O) π p(C ₃)-p(O)						
	$\begin{array}{c c} H & \overline{O} \\ \hline \\ H & C_{1} \\ \hline \\ H & C_{2} \\ \hline \\ H & C_{3} \\ \hline \\ H & C_$						
	$\sigma sp^3(C_4)-s(H)$ $\sigma sp^2(C_2)-sp^2(C_3)$						
iv)	la délocalisation des électrons n'est possible que si les 4 orbitales p des atomes sp2 sont parallèles il ne peut y avoir rotation autour de C ₂ -C ₃						
	atomes coplanaires						
c)	La double liaison à côté de la liaison a n'est pas conjuguée						
	La libre rotation est possible						
d)	Anéthol : 8 électrons π						
	$para$ -methoxy cinnamaldehyde : 10 électrons π						
	β-myrcene : 6 électrons $π$						
e)	10 C et 1 O avec chacun 5 OA et 12 H avec 1 OA soit 67 OA donc 67 OM						
	Compter juste si 56OM car 56 OA de <u>valence</u>						
f)i	Il s'agit de la plus haute orbitale occupée HO et la plus basse vacante BV						
	La différence d'énergie entre les deux est associée à la transition énergétique réalisée lors de l'absorption d'un rayonnement par la molécule et						
	$\Delta E(eV) = \frac{12400}{\lambda (A^{\circ})} = \frac{12400}{2600} = 4,77 \text{ eV}$						
ii	UV						
iii)	Anéthol : 8 électrons π conjugués						
	para-methoxy cinnamaldehyde: 10 électrons π conjugués						
	β-myrcene : 6 électrons $π$ mais seulement 4 électrons $π$ conjugués						
	Un effet bathochrome (augmentation de lmax) sera observée dans l'ordre croissant						

β-myrcene < Anéthol (260nm)< para-methoxy cinnamaldehyde Dosage de l'anéthol -6 points Question de cours														
								A	= elc=log((I/I ₀) avec				
									• ε co	efficient o	l'extinctio	on molaire	e en mol ⁻¹	.L.cm ⁻¹
		• 1 lon	gueur du	trajet opti	ique en cn	n								
				tion mola	-									
		- C 10												
			1	T	1	1	1							
		Etalon 1	Etalon 2	Etalon 3	Etalon 4	Etalon 5								
Al	sorbance	0,433	0.650	0,866	0,899	1,299								
	lume (µL)	50	75	100	125	150								
	solution S_0 mmol. L^{-1})	0,1375	0,2063	0,2750	0,3438	0,4125								
	A/c	3,15	3,15	3,15	2,61	3,15								
Absorbance	1,00E+00 8,00E-01 6,00E-01 4,00E-01 2,00E-01 0,00E+00	,	0,20 0, ntration en	30 0,40 mmol.L ⁻¹	0,50									
Si on écarte la mesure de l'étalon 2 la loi de Beer-Lambert est vérifiée $A = 3,15*c$														
Rem La méthode algébrique est facile à mener ici car la linéarité est idéale avec coeff de 3,15 (sauf pour l'étalon 4)														
$A = 3,15*c$ donc pour S1 $c = 0,800/3,15 = 0,25396$ mmol. L^{-1}														
	la boisson	c= M*50*	$C_{c1} = 1.8$	8 o L ⁻¹ nro	oche de la	valeur in	diqué							

Exercice 3-Le Nickel sur 11 points

- Ni, $Z = 28 \text{ 1s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^6 4\text{s}^2 3\text{d}^8$
 - 2 électrons célibataires

2

- Population de la maille : 8*(1/8)+6*(1/2) = 4 atomes / maille
- Soit la masse volumique du Nickel $\rho = \frac{m}{V} = \frac{n \times M}{V} = \frac{N \times M}{N_A \times V}$

Avec : N = nombre d'atomes dans la maille

M = masse molaire en g/mol

 $N_A = Nombre d'Avogadro = 6,022 10^{23} mol^{-1}$

 $V = volume de la maille = a^3$

Afin de pouvoir déterminer la masse volumique du Nickel, il faut déterminer la valeur du paramètre de maille a.

Sachant que les atomes s'organisent selon un empilement compact où les atomes sont tangents selon la diagonale d'une face : $4 \times r_{Ni} = a\sqrt{2}$ soit $a = \frac{4 \times r_{Ni}}{\sqrt{2}} = 351$ pm

$$\rho = \frac{N \times M}{N_A \times (\frac{4 \times r_{Ni}}{\sqrt{2}})^3} = \frac{4 \times 58.7}{6,022 \ 10^{23} \times (\frac{4 \times 124 \ 10^{-10}}{\sqrt{2}})^3} = 9.04 \ g. cm^{-3}$$

Compacité : pourcentage du volume réellement occupé par les atomes alors assimilés à des sphères par rapport au volume total de la maille

	Compacité = $\frac{4 \times \frac{4}{3} \pi r^3}{a^3} = \frac{4 \times \frac{4}{3} \pi \times 124^3}{351^3} = 74\%$
6	Site 0: 1 + 12*(1/4) = 4 sites 8 sites t
	a' = a/2