IND-CPA (Li and Micciancio, 2020) IND-CPA with (restricted) Decryption oracle, not quite CCA

- IND-CPAP is a game against an adversary $\mathcal A$ having access to an oracle $\mathcal O$ (for random $k \in \mathcal K$, $b \in \mathbb B$)
 - 1. \mathscr{A} gets $c_i \leftarrow Enc_k(m_{i,b})$ from \mathscr{O} for messages $m_{i,0}, m_{i,1} \in \mathscr{P}$ of their choosing
 - 1. \mathcal{O} keeps track of $(m_{i,0}, m_{i,1}, c_i)$
 - 2. \mathscr{A} gets $c \leftarrow c_i \circ c_j$ from \mathscr{O} for a binary operation \circ and valid indices i,j of their choosing
 - 1. \mathcal{O} keeps track of $(m_{i,0} \circ m_{j,0}, m_{i,1} \circ m_{j,1}, c)$
 - 3. \mathscr{A} gets $m_i \leftarrow Dec_k(c_i)$ from \mathscr{O} for ciphertexts $c_i \in \mathscr{C}$ (iff $m_{i,0} = m_{i,1}$) for valid index i of their choosingp
 - 4. \mathscr{A} guesses $b' \in \mathbb{B}$ and wins if and only if b = b'
- A cryptosystem is **CPAP secure** if no adversary wins this game more than half the time

$CPA \subset CPA^D \subset CCA$

A new notion for FHE schemes