P, NP, NP-Hard & NP-complete Problems

Lecture - 71-72

Objectives

- · P, NP, NP-Hard and NP-Complete
- Solving 3-CNF Sat problem
- · Discussion of Gate Questions

Types of Problems

- Trackable
- Intrackable
- Decision
- Optimization

Trackable: Problems that can be solvable in a reasonable (polynomial) time.

Intrackable: Some problems are intractable, as they grow large, we are unable to solve them in reasonable time.

Tractability

- What constitutes reasonable time?
 - Standard working definition: polynomial time on an input of size n the worst-case running time is $O(n^k)$ for some constant k
 - $-O(n^2)$, $O(n^3)$, O(1), $O(n \log n)$, $O(2^n)$, $O(n^n)$, O(n!)
 - Polynomial time: $O(n^2)$, $O(n^3)$, O(1), $O(n \log n)$
 - Not in polynomial time: $O(2^n)$, $O(n^n)$, O(n!)
- Are all problems solvable in polynomial time?
 - No(Turing's "Halting Problem" is not solvable by any computer, no matter how much time is given.)

Optimization/Decision Problems

- Optimization Problems
 - An optimization problem is one which asks, "What is the optimal solution to problem X?"
 - Examples:
 - 0-1 Knapsack
 - Fractional Knapsack
 - · Minimum Spanning Tree
- Decision Problems
 - An decision problem is one with yes/no answer
 - Examples:
 - Does a graph G have a MST of weight \leq W?

Optimization/Decision Problems

- An optimization problem tries to find an optimal solution
- A decision problem tries to answer a yes/no question
- Many problems will have decision and optimization versions
 - Eg: Traveling salesman problem
 - optimization: find hamiltonian cycle of minimum weight
 - decision: is there a hamiltonian cycle of weight $\leq k$

Till now all the algorithm we have learned are classified and written below in two categories:

Polynomial based Algorithm

- Linear Search
- Binary Search
- Insertion Sort
- Merge Sort
- Matrix
 Multiplication
- etc...

Exponential based Algorithm

- 0/1 Knapsack
- Travelling
 Salesman
- Sum of Subset
- N-Queen
- Graph Coloring
- Hamiltonian Cycle

P, NP, NP-Hard, NP-Complete -Definitions

The Class P

- P: the class of problems that have polynomialtime deterministic algorithms.
 - That is, they are solvable in O(p(n)), where p(n) is a polynomial on n
 - A deterministic algorithm is (essentially) one that always computes the correct answer

Sample Problems in P

- Fractional Knapsack
- · MST (Minimum Spanning Tree)
- Sorting
- · Others?

The class NP

NP: the class of decision problems that are solvable in polynomial time on a nondeterministic machine (or with a nondeterministic algorithm)

- (A <u>determinstic</u> computer is what we know)
- A nondeterministic computer is one that can guess" the right answer or solution
- Think of a nondeterministic computer as a parallel machine that can freely spawn an infinite number of processes
- Thus NP can also be thought of as the class of problems "whose solutions can be verified in polynomial time"
- Note that NP stands for "Nondeterministic Polynomial-time"

Sample Problems in NP

- Fractional Knapsack
- MST
- Others?
 - Traveling Salesman
 - Graph Coloring
 - Satisfiability (SAT)
 - the problem of deciding whether a given Boolean formula is satisfiable

P And NP Summary

- P = set of problems that can be solved in polynomial time
 - Examples: Fractional Knapsack, ...
- NP = set of problems for which a solution can be verified in polynomial time
 - Examples: Fractional Knapsack,..., TSP, CNF SAT, 3-CNF SAT
- Clearly $P \subseteq NP$
- Open question: Does P = NP? Or P ≠ NP?

NP-hard

- What does NP-hard mean?
 - A lot of times you can solve a problem by reducing it to a different problem. I can reduce Problem B to Problem A if, given a solution to Problem A, I can easily construct a solution to Problem B. (In this case, "easily" means "in polynomial time.").
- A problem is NP-hard if all problems in NP are polynomial time reducible to it, ...
- Ex:- Hamiltonian Cycle (HC)
 Every problem in NP is reducible to HC in polynomial time. Ex:- TSP is reducible to HC.

Example: lcm(m, n) = (m * n) / gcd(m, n),

NP-complete problems

- A problem is NP-complete if the problem is both
 - NP-hard, and
 - NP.

Reduction

- A problem R can be reduced to another problem Q if any instance of R can be rephrased to an instance of Q, the solution to which provides a solution to the instance of R
 - This rephrasing is called a transformation
- Intuitively: If R reduces in polynomial time to Q, R is "no harder to solve" than Q
- Example: lcm(m, n) = (m * n) / gcd(m, n),
 lcm(m,n) problem is reduced to gcd(m, n)
 problem

NP-Hard and NP-Complete

- If R is polynomial-time reducible to Q, we denote this $R \leq_p Q$
- Definition of NP-Hard and NP-Complete:
 - If all problems $R \in \mathbb{NP}$ are polynomial-time reducible to Q, then Q is \mathbb{NP} -Hard
 - We say Q is NP-Complete if Q is NP-Hard and $Q \in NP$
- If $R \leq_p Q$ and R is NP-Hard, Q is also NP-Hard

Relationship between P, NP, NP-Hard and NP-Complete

Summary

- P is set of problems that can be solved by a deterministic Turing machine in Polynomial time.
- NP is set of problems that can be solved by a Non-deterministic Turing Machine in Polynomial time. P is subset of NP (any problem that can be solved by deterministic machine in polynomial time can also be solved by non-deterministic machine in polynomial time) but P≠NP.

Summary

- · Some problems can be translated into one another in such a way that a fast solution to one problem would automatically give us a fast solution to the other.
- There are some problems that every single problem in NP can be translated into, and a fast solution to such a problem would automatically give us a fast solution to every problem in NP. This group of problems are known as NP- Complete. Ex:- Clique Problem

Summary

 A problem is NP-hard if an algorithm for solving it can be translated into one for solving any NP- problem (nondeterministic polynomial time) problem. NP-hard therefore means "at least as hard as any NP Problem" although it might, in fact, be harder.

First NP-complete problem (Circuit Satisfiability)

Problem definition

- Boolean combinational circuit
 - Boolean combinational elements, wired together
 - Each element, inputs and outputs (binary)
 - Limit the number of outputs to 1.
 - Called *logic gates*: NOT gate, AND gate, OR gate.
 - true table: giving the outputs for each setting of inputs
 - true assignment: a set of boolean inputs.
 - satisfying assignment: a true assignment causing the output to be 1.

First NP-complete problem (Circuit Satisfiability)

- Circuit satisfying problem: given a boolean combinational circuit composed of AND, OR, and NOT, is it stisfiable?
- CIRCUIT-SAT={<C>: C is a satisfiable boolean circuit}
- Implication: in the area of computer-aided hardware optimization, if a subcircuit always produces 0, then the subcircuit can be replaced by a simpler subcircuit that omits all gates and just output a 0.

First NP-complete problem (Circuit Satisfiability)

Two instances of circuit satisfiability problems

Figure: Two instances of the circuit-satisfiability problem

- a) The assignment ($x_1 = 1, x_2 = 1, x_3 = 0$) to the input of this circuit causes the output of the circuit to be 1. The circuit is therefore satisfiable.
- b) No assignment to the input of the circuit can cause the output of the circuit to be 1. The circuit is therefore unsatisfiable.

Solving circuit-satisfiability problem

- Intuitive solution:
 - for each possible assignment, check whether it generates 1.
 - suppose the number of inputs is k, then the total possible assignments are 2^k . So the running time is $\Omega(2^k)$. When the size of the problem is $\Theta(k)$, then the running time is not polynomial.

Example of reduction of CIRCUIT-SAT to SAT

REDUCTION:
$$\Phi = x_{10} = x_7 \wedge x_8 \wedge x_9 = (x_1 \wedge x_2 \wedge x_4) \wedge (x_5 \vee x_6) \wedge (x_6 \vee x_7) = (x_1 \wedge x_2 \wedge x_4) \wedge ((x_1 \vee x_2) \vee \neg x_4) \wedge (\neg x_4 \vee (x_1 \wedge x_2 \wedge x_4) \dots = ((x_1 \vee x_2) \vee \neg x_4) \wedge (\neg x_4 \vee (x_1 \wedge x_2 \wedge x_4) \dots = ((x_1 \vee x_2) \vee \neg x_4) \wedge (\neg x_4 \vee (x_1 \wedge x_2 \wedge x_4) \dots = ((x_1 \vee x_2) \vee \neg x_4) \wedge (\neg x_4 \vee (x_1 \wedge x_2 \wedge x_4) \dots = ((x_1 \vee x_2) \vee \neg x_4) \wedge (\neg x_4 \vee (x_1 \wedge x_2 \wedge x_4) \dots = ((x_1 \vee x_2) \vee \neg x_4) \wedge (\neg x_4 \vee (x_1 \wedge x_2 \wedge x_4) \dots = ((x_1 \vee x_2) \vee \neg x_4) \wedge (\neg x_4 \vee (x_1 \wedge x_2 \wedge x_4) \dots = ((x_1 \vee x_2) \vee \neg x_4) \wedge (\neg x_4 \vee (x_1 \wedge x_2 \wedge x_4) \dots = ((x_1 \vee x_2) \vee \neg x_4) \wedge (\neg x_4 \vee (x_1 \wedge x_2 \wedge x_4) \dots = ((x_1 \vee x_2) \vee \neg x_4) \wedge (\neg x_4 \vee (x_1 \wedge x_2 \wedge x_4) \dots = ((x_1 \vee x_2) \vee \neg x_4) \wedge (\neg x_4 \vee (x_1 \wedge x_2 \wedge x_4) \dots = ((x_1 \vee x_2) \vee \neg x_4) \wedge (\neg x_4 \vee (x_4 \wedge x_4) \wedge (x_4 \wedge x_4) \dots = ((x_1 \vee x_4) \wedge (x_4 \vee x_4) \wedge (x_4 \wedge x_4) \wedge (x_4$$

Conversion to 3 CNF

- The result is that in Φ' , each clause has at most three literals
- Change each clause into conjunctive normal form as follows:
 - Construct a true table, (small, at most 8 by 4)
 - Write the disjunctive normal form for all truetable items evaluating to 0
 - Using DeMorgan law to change to CNF.
- The resulting Φ'' is in CNF but each clause has 3 or less literals.
- Change 1 or 2-literal clause into 3-literal clause as follows:
 - If a clause has one literal I, change it to $(l \lor p \lor q) \land (l \lor p \lor \neg q) \land (l \lor \neg p \lor q) \land (l \lor \neg p \lor \neg q)$.
 - If a clause has two literals $(l_1 \lor l_2)$ change it $(l_1 \lor l_2 \lor \neg p) \land (l_1 \lor l_2 \lor \neg p)$

Example of a polynomial-time reduction:

Now reduce the 3CNF-satisfiability problem to the CLIQUE problem (i.e. $3\Phi \leq_P Clique$)

3CNF formula:

A 3 CNF has k clauses, and each clause has three literals.

Language:

 $3CNF-SAT = \{w : w \text{ is a satisfiable } 3CNF \text{ formula} \}$

What is a Clique?

A clique V' is an undirected graph G=(V,E) i.e. $V' \subseteq V$.

Each pair of which is connected by an edge in E (i.e. $e_i \in E$)

The size of a clique is the number of vertices it contains.

Definition of Clique problem: In a clique problem each node is connected to each other nodes of that graph.

Definition of Clique Problem: In a clique problem each node is connected to each other nodes of that graph.

Language:

CLIQUE = $\{ \langle G, k \rangle : \text{graph } G \text{ contains a } k\text{-clique} \}$ A 5-clique in graph G

Definition of Clique Problem: In a clique problem each node is connected to each other nodes of that graph.

Language:

CLIQUE = $\{ \langle G, k \rangle : \text{graph } G \text{ contains a } k\text{-clique} \}$ A 5-clique in graph G

Transform formula to graph. Example:

 $(x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4})(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$

Create Nodes:

Clause 2

$$(x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4})(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$$

Add link from a literal ξ to a literal in every other clause, except the complement $\overline{\xi}$

$(x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4})(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$

Resulting Graph

$$(x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4})(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$$

$$x_1 = 1$$

$$x_2 = 0$$

$$x_3 = 0$$

$$x_4 = 1$$

The formula is satisfied if and only if the Graph has a 4-clique
The objective is to find a clique of size 4, where 4 is the number of clauses.

End of Proof

The side figure outline the structure of the NP- Completeness proof by using reduction methodology

Theorem:

- If: a. Language A is NP-complete
 - b. Language B is in NP
 - c. A is polynomial time reducible to B
- Then: B is NP-complete

Corollary: CLIQUE is NP-complete

Proof:

- a. 3CNF-SAT is NP-complete
- b. CLIQUE is in NP
- c. 3CNF-SAT is polynomial reducible to CLIQUE (shown earlier)

Apply previous theorem with A=3CNF-SAT and B=CLIQUE

Previous Gate Questions

GATE CSE 2015 Set 2

Consider two decision problems Q_1, Q_2 such that Q_1 reduces in polynomial time to 3-SAT and 3-SAT reduces in polynomial time to Q_2 . Then which one of the following is consistent with the above statement?

- $\bigcirc Q_1$ is NP,Q_2 is NP hard.
- \bigcirc Q_2 is NP, Q_1 is NP hard.
- \bigcirc Both Q_1 and Q_2 are in NP.
- $lue{\mathbb{D}}$ Both Q_1 and Q_2 are NP hard.

Which of the following statements are TRUE?

- 1. The problem of determining whether there exists a cycle in an undirected graph is in P.
- 2. The problem of determining whether there exists a cycle in an undirected graph is in NP.
- If a problem A is NP-Complete, there exists a non-deterministic polynomial time algorithm to solve A.
- A 1, 2 and 3
- B 1 and 2 only
- 2 and 3 only
- 1 and 3 only

GATE CSE 2009

Let π_A be a problem that belongs to the class NP. Then which one of the following is TRUE?

- igwedge There is no polynomial time algorithm for π_A
- B If π_A can be solved deterministically in polynomial time, then P = NP
- \bigcirc If π_A is NP-hard, then it is NP-complete.
- \bigcirc π_A may be undecidable.

GATE CSE 2006

Let S be an NP-complete problem and Q and R be two other problems not known to be in NP. Q is polynomial time reducible to S and S is polynomial-time reducible to R. Which one of the following statements is true?

- A R is NP-complete
- B R is NP-hard
- Q is NP-complete
- D Q is NP-hard

GATE CSE 2004

The problems 3-SAT and 2-SAT are

- A both in P
- B both NP-complete
- NP-complete and in P respectively
- undecidable and NP-complete respectively

GATE CSE 2003

Ram and Shyam have been asked to show that a certain problem Π is NP-complete. Ram shows a polynomial time reduction from the 3-SAT problem to Π , and Shyam shows a polynomial time reduction from Π to 3-SAT. Which of the following can be inferred from these reductions?

- Λ I is NP-hard but not NP-complete
- Β Π is in NP, but is not NP-complete
- Π is NP-complete
- Π is neither NP-hard, nor in NP

GATE CSE 2014 Set 3

Consider the decision problem 2CNFSAT defined as follows:

 $\{ \ \Phi \ | \ \Phi \ \text{is a satisfiable propositional formula in CNF with at most two literal per clause} \}$

For example, $\Phi=(x_1\vee x_2)\wedge \left(x_1\vee \overline{x_3}\right)\wedge (x_2\vee x_4)$ is a Boolean formula and it is in 2CNFSAT.

The decision problem 2CNFSAT is

- A NP-Complete.
- B Solvable in polynomial time by reduction to directed graph reachability.
- Solvable in constant time since any input instance is satisfiable.
- NP-Hard, but not NP-complete.

Q. No. 8 GATE CSE 2014 Set 1

Suppose a polynomial time algorithm is discovered that correctly computes the largest clique in a given graph. In this scenario, which one of the following represents the correct Venn diagram of the complexity classes P, NP and NP Complete (NPC)?

GATE CSE 2006

Let $SHAM_3$ be the problem of finding a Hamiltonian cycle in a graph G = (V, E) with |V| divisible by 3 and $DHAM_3$ be the problem of determining if a Hamiltonian cycle exists in such graphs. Which one of the following is true?

3	There exist: search problem
Both DHAM₃ and SHAM₃ are NP-hard	
B SHAM ₃ is NP-hard, but DHAM ₃ is not	Explanation: The problem of finding whether there exist a Hamiltonian
O DHAM3 is NP-hard, but SHAM3 is not	Cycle or not is NP Hard and NP Complete Both.
Neither DHAM ₃ nor SHAM ₃ is NP-hard	Finding a Hamiltonian cycle in a graph $G = (V,E)$ with V divisible by 3 is also NP Hard.

GATE CSE 1992

Which of the following problems is not NP-hard?

- A Hamiltonian circuit problem
- The 0/1 Knapsack problem
- Finding bi-connected components of a graph
- The graph coloring problem

Thank You