

PY32T020-B Datasheet

32-bit ARM® Cortex®-M0+ Microcontroller

Puya Semiconductor (Shanghai) Co., Ltd.

PY32T020-B Series

32-bit ARM® Cortex®-M0+ Microcontroller

Features

- Core
 - 32-bit ARM® Cortex®-M0+
 - Frequency up to 48 MHz
- Memories
 - Maximum 32 KB Flash memory
 - Maximum 4 KB SRAM
- Clock management
 - 24/48 MHz High-speed internal RC oscillator (HSI)
 - 32.768 kHz Low-speed internal RC oscillator (LSI)
 - 4 8 MHz High-speed external crystal oscillator (HSE)
 - 32.768 kHz Low-speed external crystal oscillator (LSE)
 - External clock input
- Power management and reset
 - Operating voltage: 1.8 5.5 V
 - Low-power mode: Sleep/Stop
 - Power-on/power-down reset (POR/PDR)
 - Brown-out reset (BOR)
- General-purpose input and output (I/O)
 - Up to 26 I/Os, all available as external interrupts
 - 5 GPIOs supporting high sink current (configurable as 80mA/60mA/40mA/20mA) for driving common-cathode LED digital tubes
 - 8 GPIOs as LED SEG with constant-current drive
 - All GPIOs can serve as LCD COM with 1/2
 Bias

Touch key

- High-sensitivity for non-contact touch
- 10 V dynamic CS test-passed anti-interference mode
- 26 touch channels with derived functions
- Low-power touch mode with multi-touch wake-up capability (<8 µA system current consumption)
- 1 x 12-bit ADC
 - Up to 10 external channels and 3 internal channels
 - Voltage reference options: embedded0.6 V/1.5 V/2.048 V/2.5 V and Vcc
- Timers
 - 1 x 16-bit advanced-control timer (TIM1)
 - 1 x 16-bit general-purpose timer (TIM14)
 - 1 x independent watchdog timer (IWDG)
 - 1 x SysTick timer
- RTC
- Communication interfaces
 - 1 x SPI
 - 3 x Universal asynchronous receiver/transmitters (UARTs)
 - 1 x I²C interface, supporting Standard mode (100 kHz), Fast mode (400 kHz) and Fast mode plus (1 MHz)
- Hardware CRC-32 module
- 2 x comparators
- Unique UID
- Serial wire debug (SWD)
- Operating temperature: -40 105 °C
- Packages: TSSOP28, SOP28, TSSOP20, SOP20, QFN20, SOP16 and SOP8

Content

F	eatures	s	2
1.	Intr	oduction	5
2.	Fun	nctional overview	9
	2.1.	Arm®-Cortex®-M0+ core	9
	2.2.	Memories	9
	2.3.	Boot modes	9
	2.4.	Clock management	10
	2.5.	Power management	. 11
	2.5.	Power block diagram	11
	2.5.		
	2.5.	3. Voltage regulator	12
	2.5.	4. Low-power mode	12
	2.6.	Reset	12
	2.6.	1. Power reset	12
	2.6.	2. System reset	12
	2.7.	General-purpose inputs and outputs (GPIOs)	
	2.8.	Interrupts and events	13
	2.8.		
	2.9.	Analog-to-digital converter (ADC)	14
	2.10.	Touch key	14
	2.11.	Comparators (COMP)	14
	2.11	1.1. COMP features	14
	2.12.	Timers	15
	2.12	2.1. Advanced-control timer (TIM1)	15
	2.12	2.2. General-purpose timers	15
	2.12	2.3. Independent watchdog (IWDG)	15
	2.12	2.4. SysTick timer	15
	2.13.	Real-time clock (RTC)	16
	2.14.	Inter-integrated circuit interface (I ² C)	16
	2.15.	Universal Asynchronous Receivers/Transmitter (UART)	17
	2.16.	Serial peripheral interface (SPI)	17
	2.17.	Serial wire debug (SWD)	17
3.	Pine	outs and pin descriptions	18
	3.1.	Alternate functions selected through GPIOA_AFR registers for port A	29
	3.2.	Alternate functions selected through GPIOB_AFR registers for port B	29
	3.3.	Alternate functions selected through GPIOF_AFR registers for port F	29
4.	Mer	mory mapping	30
5.	Elec	ctrical characteristics	33
	5.1.	Parameter conditions	33

	5.1.1.	Minimum and maximum values	33
	5.1.2.	Typical values	33
	5.1.3.	Power supply scheme	33
	5.2. Abs	solute maximum ratings	34
	5.3. Ope	erating conditions	34
	5.3.1.	General operating conditions	34
	5.3.2.	Operating conditions at power-on / power-down	34
	5.3.3.	Embedded reset	35
	5.3.4.	Supply current characteristics	
	5.3.5.	Wakeup time from low-power mode	
	5.3.6.	External clock source characteristics	
	5.3.7.	High-speed internal (HSI) RC oscillator	
	5.3.8.	Low-speed internal (LSI) RC oscillator	39
	5.3.9.	Memory characteristics	
	5.3.10.	EFT characteristics	
	5.3.11.	ESD & LU characteristics	
	5.3.12.	Port characteristics	
	5.3.13.	Constent current LED SEG driver characteristics	
	5.3.14.	ADC characteristics	
	5.3.15.	Comparator characteristics	
	5.3.16.	Temperature sensor characteristics	
	5.3.17.	Embedded voltage reference characteristics	
	5.3.18.	Embedded voltage reference characteristics	
	5.3.19.	COMP internal reference voltage characteristics	
	5.3.20.	Timer characteristics	44
	5.3.21.	Communication port characteristics	45
6.	_	e information	
(SOP28 package size	
		P28 package size	
		SOP20 package size	
•		P20 package size	
(N20(3*3*0.5)package size	
(P16 package size	
(6.7. SOI	P8 package size	54
7.		g information	
8.	Version	historyhistory	56

1. Introduction

The PY32T020-B series are based on a 32-bit ARM® Cortex®-M0+ core and operates at up to 48 MHz with a wide voltage range. It integrates up to 32 KB Flash and 4 KB SRAM, available in multiple package options.

The PY32T020-B series integrate I²C, SPI, UART and other communication peripherals. It has one 12-bit ADC, two 16-bit timers, two comparators and 26-channel low-power dual-mode capacitive touch circuit (in Stop mode).

The PY32T020-B microcontrollers operate across a temperature range of -40 - 105 °C and a standard voltage range of 1.8 - 5.5 V. provides Sleep and Stop low power operating modes, which can meet different low-power applications.

The PY32T020-B series feature excellent touch key controller. Coupled with its outstanding anti-interference performance, it can be adapted in various solutions. Its applications span smart appliances, controllers, handheld equipment,PC peripherals,gaming,GPS platforms, and industrial systems.

Table 1-1 PY32T020-B TSSOP28 / SOP28 series product features and peripheral counts

		PY32T020G16P	PY32T020G46P	PY32T020G16S	PY32T020G26S	PY32T020G25S	PY32T020G36S	PY32T020G35S	PY32T020G46S				
P	eripherals	7-B											
F	lash (KB)	32	32	32	32	20	32	20	32				
S	RAM (KB)	4	4	4	4	2	4	2	4				
	Advanced-control		1										
Timers	General-purpose					1	*						
Ë	SysTick					1							
	Watchdog					1							
-C Ses	SPI					1							
Comm. interfaces	I ² C					1							
O	UARTs		3										
	RTC		Yes										
	GPIOs	26	25	26	26	26	26	26	25				
T	ouch CHs	26	25	26	26	26	26	26	25				
	C channels rnal + internal)	10+3	9+3	10+3	10+3	10+3	10+3	10+3	9+3				
L	ED COM				5								
L	LED SEG				8	8							
L	.CD COM	26	25	26	26	26	26	26	25				
Co	omparators				2	2							
Max. C	PU frequency ⁽¹⁾	48 MHz	48 MHz	48 MHz	48 MHz	24 MHz	48 MHz	24 MHz	48 MHz				
Oper	rating voltage				1.8 -	5.5 V							
Operati	ing temperature	-40 - 105 °C											
F	Packages	TSSC	OP28			SO	P28						

Table 1-2 PY32T020-B TSSOP20 / SOP20 / QFN20 /SOP16 / SOP8 series product features and peripheral counts

	Peripherals	PY32T020F15P7-B	PY32T020F16S7-B	PY32T020F25S7-B	PY32T020F45U7-B	PY32T020W25S7-B	PY32T020L15S7-B					
	Flash (KB)	20	32	20	20	20	20					
	SRAM (KB)	2	4	2	2	2	2					
	Advanced-control	1										
ers	General-purpose				1							
Timers	SysTick			,	1							
	Watchdog				1							
iter-	SPI				1							
Comm. inter- faces	I ² C				1							
Com	UARTs				3							
	RTC		Yes									
	GPIOs	18	18	18	19	14	6					
	Touch CHs	18	18	18	19	14	6					
	ADC channels (external + internal)	6+3	6+3	10+3	8+3	6+3	3+3					
	LED COM			5			-					
	LED SEG			5			1					
	LCD COM	18	18	18	19	14	6					
	Comparators	2	2	2	2	2	1					
N	Max. CPU frequency(1)	24 MHz	48 MHz		24 MHz							
	Operating voltage		1.8 - 5.5 V									
О	Operating temperature	-40 - 105 °C										
	Packages	TSSOP20	SOP20	SOP20	QFN20	SOP16	SOP8					

^{1.} Products with 20 KB Flash support up to 24 MHz CPU frequency.

Figure 1-1 System block diagram

2. Functional overview

2.1. Arm®-Cortex®-M0+ core

The Arm® Cortex® -M0+ is an Arm 32-bit Cortex processor designed for embedded applications. It provides developers with significant benefits, including:

- Simple architecture for easy learning and programming
- Ultra-low power consumption for energy-efficient operation
- Reduced code density

The Arm® Cortex-M0+ processor is a 32-bit core optimized for area and power consumption and is a 2-stage pipeline Von Neumann architecture. It delivers high performance through a streamlined instruction set and hardware enhancements like a single-cycle multiplier. Outperforms 8/16-bit MCUs in code efficiency.

The Cortex-M0+ is tightly coupled with a nested vectored interrupt controller (NVIC).

2.2. Memories

Embedded SRAM is accessed by Bytes (8 bits), Half-word (16 bits) or Word (32 bits).

The Flash memory is composed of two distinct physical areas:

- The Main flash area consists of application and user data, with up to 4 KB configurable as a User Bootloader through customer settings.
- 768 Bytes of Information area:
 - Option bytes
 - UID bytes
 - Factory configuration bytes
 - USER OTP memory

The protection of Main flash area includes the following mechanisms:

- Read protection (RDP) blocks external access
- Write protection (WRP) prevents unintended writes (caused by confusion of program). The minimum protection unit for write protection is 4 KB.
- Option byte write protection is a special design for unlock.
- SDK protection

2.3. Boot modes

At startup, the nBOOT0 pin and nBOOT1 (stored in option bytes) are used to select one of the three-boot options in the following table:

Boot mode	configuration	Mode						
nBOOT1 bit	nBOOT0 bit	Boot memory size ==0	Boot memory size !=0					
X	0	Boot from Main flash	Boot from Main flash					
0	1	Boot from SRAM	Boot from SRAM					
1	1	N/A	Boot from Load flash ⁽¹⁾					

Table 2-1 Boot mode configuration

^{1.} Products with 20 KB Flash cannot be boot from Load flash.

2.4. Clock management

System clock selection is performed on startup, however the internal RC 24 MHz oscillator is selected as default CPU clock on reset. After the program is operating the system clock frequency and system clock source can be reconfigured. The frequency clocks that can be selected are:

- A 24/48 MHz internal high precision HSI clock
- A 32.768 kHz configurable internal LSI clock
- A 4 to 8 MHz HSE clock, and used to enable the CSS function to detect HSE. If CSS fails, the hardware will automatically convert the system clock to HSI, and software configures the HSI frequency. Simultaneously, CPU NMI interrupt is generated.
- A 32.768 kHz LSE clock.

The AHB clock can be divided based on the system clock, and the APB clock can be divided based on the AHB clock. The maximum frequency of the AHB and the APB domains is 48 MHz.

Figure 2-1 System clock structure diagram

2.5. Power management

2.5.1. Power block diagram

Figure 2-2 Power block diagram

Table 2-2 Power block diagram

No.	Power supply	Power value	Descriptions
1	Vcc	1.8 - 5.5 V	The power is supplied to the chip through the power pins, with the power supply module comprising: partial analog circuits
2	Vcca	1.8 - 5.5 V	Powers for most analog modules, sourced from the V_{CC} PAD (a dedicated power PAD can also be designed separately).
3	V _{CCIO}	1.8 - 5.5 V	Power to IO from Vcc PAD

2.5.2. Power monitoring

2.5.2.1. Power-on/power- down reset (POR/PDR)

The Power-on reset (POR) and Power-down reset (PDR) module is designed in the chip to provide The module keeps working in all modes.

2.5.2.2. Brown-out reset (BOR)

In addition to POR/ PDR, BOR (Brown-out reset) is also implemented. BOR can only be enabled and disabled through the option byte.

When the BOR is turned on, the BOR threshold can be selected by the option byte and both the rising and falling detection points can be individually configured.

Figure 2-3 POR/PDR/BOR threshold

2.5.3. Voltage regulator

The regulator has two operating modes:

- MR (Main regulator) is used in normal operating mode (Run).
- LPR (Low power regulator) provides an option for even lower power consumption in low power mode.

2.5.4. Low-power mode

In addition to the normal operating mode, the chip has two Low-power modes:

- Sleep mode: Peripherals can be configured to keep working when the CPU clock is off (NVIC, SysTick, etc.). It is recommended only to enable the modules that must work, and close the module after the module works.
- **Stop mode:** LDO enters low-power mode SRAM and register contents are retained. HSI and HSE are turned off and most module clocks in the V_{DD} domain are disabled.

2.6. Reset

Two resets are designed in the chip: power reset and system reset.

2.6.1. Power reset

A power reset occurs in the following situations:

- Power on reset (POR/PDR)
- Brown-out reset (BOR)

2.6.2. System reset

A system reset occurs when the following events occur:

- Reset of NRST pin
- Independent watchdog reset (IWDG)
- SYSRESETREQ software reset
- Option byte load (OBL) reset

2.7. General-purpose inputs and outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (floating, pull-up or pull-down and analog) or as peripheral alternate function. The I/O configuration can be locked and LCD 1/2 Bias output is also supported.

2.8. Interrupts and events

The PY32T020-B handles exceptions through the Cortex-M0+ processor's embedded a nested vectored interrupt controller (NVIC) and an extended interrupt/event controller (EXTI). Nested vectored interrupt controller (NVIC)

NVIC is a tightly coupled IP inside the Cortex-M0+ processor. The NVIC can handle NMI (Non-Maskable Interrupts) and maskable external interrupts from outside the processor and Cortex-M0+ internal exceptions. NVIC provides flexible priority management.

The tight coupling of the processor core to the NVIC greatly reduces the delay between an interrupt event and the initiation of the corresponding interrupt service routine (ISR). The ISR vectors are listed in a vector table, stored at a base address of the NVIC. The vector table base address determines the vector address of the ISR to execute, and the ISR is used as the offset composed of serial numbers.

If a higher-priority interrupt event occurs and a lower-priority interrupt event is just waiting to be serviced, the later-arriving higher-priority interrupt event will be serviced first. Another optimization is called tail-chaining. When returning from a higher-priority ISR and then starting a pending lower-priority ISR, unnecessary pushes and pops of processor contexts will be skipped. This reduces latency and improves power efficiency.

NVIC features:

- Low latency interrupt handling
- Level 4 interrupt priority
- Supports one NMI interrupt
- Support up to 16 maskable external interrupts
- Support 6 Cortex-M0+ exceptions
- High-priority interrupts can interrupt low-priority interrupt responses
- Support tail-chaining optimization
- Hardware interrupt vector retrieval

2.8.1. Extended interrupt/event controller (EXTI)

EXTI adds flexibility to handle physical wire events and generates wake-up events when the processor wakes up from Stop mode.

The EXTI controller has multiple channels, including up to 26 GPIOs multiplexed using 16 EXTI lines, two COMP outputs and LPTIM wake-up signals. GPIO, and COMP can be configured to be triggered by a rising edge, falling edge or double edge.

- Each EXTI line can be independently masked through registers.
- The EXTI controller can capture pulses shorter than the internal clock period.
- Registers in the EXTI controller latch each event. Even in Stop mode, after the processor wakes up from Stop mode, it can identify the wake-up source or identify the GPIO and event that caused the interrupt.

2.9. Analog-to-digital converter (ADC)

The PY32T020-B has a 12-bit SAR-ADC. The module has a total of up to 13 channels to be measured, including 10 external and 3 internal channels. The ADC internal voltage reference: V_{REFBUF} (0.6V, 1.5 V, 2.048 V, 2.5 V) or the power supply voltage V_{CC} .

The internal channels are: T_{S_VIN}, V_{REFINT}, V_{CC}/3.

A/D conversion of the various channels can be performed in single, continuous, scan or discontinuous mode. The result of the ADC is stored in a left-aligned or right-aligned 16-bit data register.

The analog watchdog feature allows the application to detect if the input voltage goes outside the user-defined higher or lower thresholds.

An efficient low-power mode is implemented to allow very low consumption at low frequency.

Interrupt requests are triggered by the following events: end of sampling, conversion, continuous conversion and Analog watchdog threshold violation (converted voltage exceeds preset limits)

2.10. Touch key

The PY32T020-B integrates a 26 channel capacitive touch circuit:

- Optional internal/external CMOD capacitor, no external capacitor needed for internal use
- High-sensitivity design enables non-contact touch sensing
- 10 V dynamic CS test-passed anti-interference mode
- Support the frequency hopping function
- Support the waterproof compensation function
- Support multi-channel parallel connection
- Support Low-power Modes: Touch operation in low-power mode maintains total chip power consumption <8 μA

2.11. Comparators (COMP)

The PY32T020-B integrates two general-purpose comparators (COMP), Comparators can be used as:

- Triggered by analog signal to wake-up function from low-power mode
- Analog signal conditioning
- Cycle by cycle current control loop when comparators are connected with PWM output from timer.

2.11.1. COMP features

- Each comparator has configurable positive or negative input for flexible voltage selection:
 - Multiple I/O pins
 - Power supply V_{CC} and 64 sub-multiple values (1/64, 2/64 ... 64/64) provided by voltage divider 64/64)
 - Internal reference voltage is 0.6 V, 1.5 V, 2.048 V or 2.5 V, and 64 sub-multiple values (1/64,2/64 ... 64/64) provided by voltage divider
- The output can be triggered by a connection to the I/O or timer input
 - OCREF_CLR event (cycle-by-cycle current control)
 - Brakes for fast PWM shutdown
- Each COMP has interrupt generation capability and is used to wake up the chip from low power mode (Sleep/Stop) (via EXTI)

2.12. Timers

The different timers feature as blow:

Table 2-3 Timer characteristics

Timer type	Timers	Counter res- olution	Counter type	Prescaler	Capture/com- pare channels	Complementary outputs
Advanced-control	TIM1	16-bit	Up,down, up/down	1 - 65536	4	3
General-purpose	TIM14	16-bit	Up	1 - 65536	1	-

2.12.1. Advanced-control timer (TIM1)

The advanced-control timer (TIM1) is consist of a 16-bit auto-reload counter driven by a programmable prescaler. It can be used in various scenarios, including It can be used in various scenarios, including pulse length measurement of input signals (input capture) or generating output waveforms (output compare, output PWM, complementary PWM with dead-time insertion).

The four independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned mode)
- Single pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0 - 100 %).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers by the Timer Link feature for synchronization or event chaining.

2.12.2. General-purpose timers

The general-purpose timer TIM14 is consist of a 16-bit auto-reload counter driven by a programmable prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

The counter can be frozen in debug mode.

2.12.3. Independent watchdog (IWDG)

Independent watchdog (IWDG) is integrated in the chip, and this module has the characteristics of high-security level, accurate timing and flexible use. IWDG finds and resolves functional confusion due to software failure and triggers a system reset when the counter reaches the specified timeout value.

The IWDG is clocked by LSI, so even if the main clock fails, it can keep working.

IWDG is the best suited for applications that require the watchdog as a standalone process outside of the main application and do not have high timing accuracy constraints.

Controlling of option byte can enable IWDG hardware mode.

IWDG is the wake-up source of Stop mode, which wakes up Stop mode by reset.

The counter can be frozen in debug mode.

2.12.4. SysTick timer

SysTick timer is dedicated to real-time operating systems (RTOS), but could also be used as a standard down counter.

SysTick features:

- A 24-bit down counter
- Auto-reload capability
- Maskable system interrupt generation when the counter reaches 0

2.13. Real-time clock (RTC)

The RTC is an independent counter. It has a set of continuous counting counters, which can provide a clock calendar function under the corresponding software configuration. Modifying the value of the counter can reset the current time and date of the system.

- RTC is a 32-bit programmable counter with a prescaler factor of up to 220 bits.
- The RTC counter clock source can be LSE, LSI, HSE/128 and the Stop wake-up source.
- RTC can generate alarm interrupt, second interrupt and overflow interrupt (maskable).
- RTC supports clock calibration.
- RTC can be frozen in debug mode.

2.14. Inter-integrated circuit interface (I²C)

The I²C (Inter-integrated circuit) bus interface handles communications between the microcontroller and the serial I²C bus. It provides multimaster capability, and controls all I²C bus-specific sequencing, protocol, arbitration and timing. Standard mode (Sm), Fast mode (Fm) and Fast mode plus (Fm+) are supported.

I2C features:

- Multimaster capability: can be Master or Slave
- Support different communication speeds
 - Standard Mode (Sm): up to 100 kHz
 - Fast Mode (Fm): up to 400 kHz
 - Fast Mode Plus (Fm+): up to 1 MHz
- As Master
 - Generate Clock
 - Generation of Start and Stop
- As Slave
 - Programmable I²C address detection
 - Discovery of the Stop bit
- 7-bit addressing mode
- General call
- Status flag
 - Transmit/receive mode flags
 - Byte transfer complete flag
 - I²C busy flag bit
- Error flag
 - Master arbitration loss
 - ACK failure after address/data transfer
 - Start/stop error
 - Overrun/Underrun (clock stretching function disable)
- Optional clock stretching

- Software reset
- Analog noise filter function
- Low-power address matching wake-up

2.15. Universal Asynchronous Receivers/Transmitter (UART)

The UARTs provide a flexible method for full-duplex data exchange with external devices using the industry-standard NRZ asynchronous serial data format. The UART utilizes a fractional baud rate generator to provide a wide range of baud rate options.

Automatic baud rate detection is supported.

UART features:

- Support 5/6/7/8/9 bits serial data
- Support 1/2 bits STOP bit (when 5 bits data: 1/1.5 bits STOP)
- Support sending address/data
- Support fixed parity check
- Support break frames
- Detect start bit errors
- Support programmable fractional baud rates.
 - Calculation method is as follows: Baud rate = (Serial clock frequency) / (16 * Divisor)
- Support SWAP function
- Support MSBFIRST endianness switching

2.16. Serial peripheral interface (SPI)

SPIs allow the chip to communicate with external devices in half-duplex, full-duplex, and simplex synchronous serial communication. This interface can be configured in Master mode and provides the serial clock (SCK) for external slave devices. The interface can also work in a multi-master configuration.

The SPI features are as follows:

- Master or Slave mode
- 3-wire full-duplex simultaneous transmission
- 2-wire half-duplex synchronous transmission (with bidirectional data line)
- 2-wire half-duplex synchronous transmission (with bidirectional data line)
- 8-bit or 16-bit transmission frame selection
- Support multi-master mode
- 8 Master mode baud rate prescalers (Max 24 M)
- Slave mode frequency (Max 24 M)
- Both Master and Slave modes can be managed by software or hardware NSS: dynamic change of Master/Slave operating mode
- Programmable clock polarity and phase
- Programmable data order, MSB first or LSB first
- Dedicated transmit and receive flags that can trigger interrupts
- SPI bus busy status flag
- Motorola mode
- Interrupt-causing Master mode faults or overloads
- Two 32-bit Rx and Tx FIFOs

2.17. Serial wire debug (SWD)

An ARM SWD interface allows serial debugging tools to be connected to the PY32T020-B.

3. Pinouts and pin descriptions

Figure 3-1 TSSOP28 Pinout1 PY32T020G1xP7 (Top view)

Figure 3-2 TSSOP28 Pinout4 PY32T020G4xP7-B (Top view)

Figure 3-3 TSSOP28 Pinout1 PY32T020G1xP7 (Top view)

Figure 3-4 SOP28 Pinout2 PY32T020G2xS7 (Top view)

Figure 3-5 SOP28 Pinout3 PY32T020G3xS7 (Top view)

Figure 3-6 SOP28 Pinout4 PY32T020G4xS7-B (Top view)

Figure 3-7 TSSOP28 Pinout1 PY32T020G1xP7 (Top view)

Figure 3-8 TSSOP28 Pinout1 PY32T020G1xP7 (Top view)

Figure 3-9 SOP28 Pinout2 PY32T020G2xS7 (Top view)

Figure 3-10 QFN20 Pinout4 PY32T020F4xU7-B(Top view)

Figure 3-11 SOP28 Pinout2 PY32T020G2xS7 (Top view)

Figure 3-12 TSSOP28 Pinout1 PY32T020G1xP7 (Top view)

Table 3-1 Legend/abbreviations used in the pinout table

Time	r type	Symbol	Definition				
		S	Supply pin				
Din	4	G	Ground				
Pin	type	I/O	Input / output pin				
		NC	No internal connection				
		СОМ	Standard 5 V I/O, with analog switch function				
		RST	Bidirectional reset pin with embedded weak pull-up resistor, no analog switch function				
			LED COM port supports 80 mA sink current and analog input/output functions				
I/O st	ructure	_C	LED SEG port supports constant - current drive and analog input/output functions				
		_F	I/O, I ² C SCL SDA capable with analog input and output function				
		_P	Support 2.7 V/20 mA, 5 V/30 mA source current, analog input and output functions				
No	otes	-	Unless otherwise specified, all ports are used as analog inputs be- tween and after reset All I/Os support Touch Key Cap sense ports and analog input/output functions. All I/Os support LCD 1/2 Bias output function.				
Pin func-	Alternate functions	-	Function selected through GPIOx_AFR register				
tions	Additional functions	-	Functions directly selected/enabled through peripheral registers				

Table 3-2 Pin definitions⁽⁵⁾

				Packages	S						40	Port fu	nction ⁽⁸⁾
TSSOP28 G1 SOP28 G1	TSSOP28 G4 SOP28 G4	SOP28 G2	SOP28 G3	TSSOP20 F1 SOP20 F1	SOP20 F2	QFN20 F4	SOP16 W2	SOP8 L1	Reset	Pin type	I/O structure	Multiplexed function ⁽⁶⁾	Additional functions
1	1	8	14	1	8	16	13	8	Vcc	S	-	Power	Supply
2	2	6	12	2	-	-	-	-	PF5-CMOD	I/O	СОМ	-	TK_CMOD TK_IN25
3	3	7	13	3	7	-	12	1	Vss	G	-	Gro	ound
4	4	5	11	-	-	-	-	-	PF0-OSCI	I/O	СОМ	TM14_CH1	OSCIN ⁽⁹⁾ TK_IN24
5	5	4	10	-	-	-	-	-	PF1-OSCO	I/O	СОМ	TM14_CH1	OSCOUT ⁽⁹⁾ TK_IN23
											D.O.T.	I2C_SCL	NDOT
6	6	3	15	4	6	17	-	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I/O	I/O RST COM_F	TM14_CH1	NRST TK_IN22
											_	MCO	_
												UART1_TX	
										I/O	COM F	I2C_SDA	
7	7	9	16	5	9	18	14	3	PF3-SWCLK ⁽¹⁾⁽²⁾⁽³⁾⁽⁷⁾			I2C_SCL	TK_IN21
												TM1_ETR	
												TM14_CH1	
												SWCLK	
												UART1_RX I2C_SCL	
												I2C_SDA	
8	8	10	17	6	10	19	15	4	PF4-SWDIO(1)(2)(3)(7)	I/O	COM_F	TM1_ETR	TK_IN20
												TM14_CH1	
												SWDIO	

				Packages	S						a	Port fu	nction ⁽⁸⁾
TSSOP28 G1 SOP28 G1	TSSOP28 G4 SOP28 G4	SOP28 G2	SOP28 G3	TSSOP20 F1 SOP20 F1	SOP20 F2	QFN20 F4	SOP16 W2	SOP8 L1	Reset	Pin type	I/O structure	Multiplexed function ⁽⁶⁾	Additional functions
												SPI_NSS	
												UART2_TX	CMP1_INM
9	9	11	18	7	11	20	16	-	PA0	I/O	COM_C	TM1_CH1N	ADC_IN0
												TM1_CH3	TK_IN19
												CMP1_OUT	
												SPI_SCK	
												UART2_RX	
10	10	12	19	8	12	1	1	_	PA1	I/O	COM_C	TM1_CH2N	CMP1_INP ADC_IN1
	10	12	13	0	'2	'	'		TAI	1/0	OOW_O	TM1_CH4	TK_IN18
												EVENTOUT	
												MCO	
												SPI_MOSI	CMP2_INM
11	11	13	20	9	13	2	2	5	PA2	I/O	COM_P	UART3_TX	ADC_IN2
												TM14_CH1	TK_IN17
												SPI_MISO	
12	12	14	21	10	14	3	3		PA3	I/O	СОМ	UART3_RX	CMP2_INP ADC_IN3
'-	12			10					1710	",0	COM	TM1_CH1	TK_IN16
												EVENTOUT	
												SPI_NSS	
13	13	15	22	11	15	4		7	PA4	I/O	СОМ	UART2_TX	CMP2_INP ADC_IN4
	10	10							17(1	",	COM	TM1_CH3	TK_IN15
												RTC_OUT	
												SPI_SCK	CMP2_INP
14	14	16	23	12	16	5	-	6	PA5	I/O	COM_C	UART2_RX	ADC_IN5
												TM1_CH2	TK_IN14

				Packages	5						(I)	Port fu	nction ⁽⁸⁾
TSSOP28 G1 SOP28 G1	TSSOP28 G4 SOP28 G4	SOP28 G2	SOP28 G3	TSSOP20 F1 SOP20 F1	SOP20 F2	QFN20 F4	SOP16 W2	SOP8 L1	Reset	Pin type	VO structure	Multiplexed function ⁽⁶⁾	Additional functions
												MCO	
												SPI_MISO	
												UART1_TX	450 1110
15	15	17	24	-	17	6	4	-	PA6	I/O	COM_C	TM1_BKIN	ADC_IN6 TK_IN13
												TM1_CH1	_
												CMP1_OUT	
												SPI_MOSI	
									X			UART1_RX	
16	16	18	25	_	18	7	5	_	PA7	I/O	COM_C	TIM1_CH1N	ADC_IN7
	.0	.0			.0	•				., 0	COM_P	RTC_OUT	TK_IN12
												CMP2_OUT	
												EVENTOUT	
												SPI_NSS	
17	17	19	26	_	19	_	_	_	PB0	I/O	СОМ	UART2_TX	ADC_IN8
''		. •								., •		TIM1_CH2N	TK_IN11
												CMP1_OUT	
												UART2_RX	CMP1_INM
18	NC	20	27	-	20	-	-		PB1	I/O	COM	TIM1_CH3N	ADC_IN9 TK_IN10
						4			<i>y</i>			EVENTOUT	11/_11/10
												SPI_MISO	CMP1_INP
19	19	21	28	13	- (-	-	-	PB2	I/O	COM_C	UART3_RX	TK_IN9
												TM14_CH1	
											COM_C	SPI_MOSI	
20	20	22	1	14	-	8	11	-	PA8	I/O	COM_F	UART3_TX	TK_IN8
												I2C_SDA	

				Packages	S						(I)	Port fu	nction ⁽⁸⁾
TSSOP28 G1 SOP28 G1	TSSOP28 G4 SOP28 G4	SOP28 G2	SOP28 G3	TSSOP20 F1 SOP20 F1	SOP20 F2	QFN20 F4	SOP16 W2	SOP8 L1	Reset	Pin type	I/O structure	Multiplexed function ⁽⁶⁾	Additional functions
												TIM1_CH1	
												MCO	
												UART2_TX	
												TM1_ETR	
21	21	23	2	15	-	9	-	-	PA9	I/O	COM	TM1_BKIN	TK_IN7
												TM14_CH1	
												EVENTOUT	
									X			UART2_RX	
22	22	24	3	-	-	10	-	-	PA10	I/O	COM	TM1_CH3	TK_IN6
												TM14_CH1	
												SPI_SCK	
23	23	25	4	16	1	15	6	-	PA11	I/O	COM_F	UART1_TX	TK_IN5
											COM_L	I2C_SCL	
												TIM1_CH4	
												SPI_MOSI	
		0.0	_	4=			_		D. 10		00111	UART1_RX	TIC 1314
24	24	26	5	17	2	11	7		PA12	I/O	COM_L	TM1_ETR	TK_IN4
												TM14_CH1	
						4						EVENTOUT SWDIO	
												UART2_TX	
25	25	27	6	18	3	14	8) -	PA13(SWDIO) (1)(2)(3)	I/O	COM_L	TM1_CH3N	TK_IN3
												MCO	
												SWCLK	
26	26	28	7	19	4	12	9	-	PA14(SWCLK) (1)(2)(3)	I/O	COM_L	UART3_TX	TK_IN2

				Packages	s						(1)	Port fu	nction ⁽⁸⁾
TSSOP28 G1 SOP28 G1	TSSOP28 G4 SOP28 G4	SOP28 G2	SOP28 G3	TSSOP20 F1 SOP20 F1	SOP20 F2	QFN20 F4	SOP16 W2	SOP8 L1	Reset	Pin type	I/O structure	Multiplexed function ⁽⁶⁾	Additional functions
												TM1_CH2N	
												EVENTOUT	
												SPI_NSS	
27	27	4	8	20	5	13	10		- PA15 I/O COM_	1/0	COMI	UART3_RX	TK_IN1
21	21	1	0	20	5	13	10	-		COIVI_L	TM1_CH1N	I K_IIN I	
												TM1_CH4	
												SPI_SCK	
28	28	2	9	-	-	-	-	-	PB3	I/O	COM_C	UART2_RX	CMP2_INM TK_IN0
												TM1_CH2	

1. PA3, PA4, PA13, and PA14 can be configured via options to select GPIO functionality or SWC/SWD functionality.

option[1:0]	PF3	PF4	PA13	PA14
0/0 (default)	SWCLK	SWDIO	GPIO	GPIO
0/1	GPIO	GPIO	SWDIO	SWCLK
1/0	GPIO	SWDIO	GPIO	SWCLK
1/1	SWCLK	GPIO	SWDIO	GPIO

- 2. After reset, when the option byte is configured to 0/0 (default state), PA5 and PA4 are configured as SWCLK and SWDIO.
- 3. The internal pull-up resistor is activated when configured as SWDIO and the internal pull-down resistor is activated when configured as SWCLK.
- 4. Configured by option bytes to chooseGPIO or NRST.
- 5. All IOs support pull-up, pull-down valid at the same time, output $1/2\ V_{CC}$ level.
- 6. The RX/TX of UART1, UART2, and UART3 can be set to be interchangeable within the IP.
- 7. When used as a closed I 2 C EEPROM, an internal pull-up resistor of 4.7 k Ω can be configured.
- 8. TK function and GPIO digital function cannot be turned on at the same time.
- 9. When HSE_ON is enabled, the crystal oscillator is used for HSE. When LSE_ON is enabled, the crystal oscillator is used for LSE. HSE_ON and LSE_ON cannot be enabled simultaneously.

3.1. Alternate functions selected through GPIOA_AFR registers for port A

Table 3-3 Port A alternate functions mapping

Port A	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0	SPI_NSS	1	TM1_CH3	UART2_TX	ı	TM1_CH1N	CMP1_OUT	-
PA1	SPI_SCK	-	TM1_CH4	UART2_RX	-	TM1_CH2N	MCO	EVENTOUT
PA2	SPI_MOSI	UART3_TX		-	-	TM14_CH1	-	-
PA3	SPI_MISO	UART3_RX	TM1_CH1	-	-	-	-	EVENTOUT
PA4	SPI_NSS	-	TM1_CH3	UART2_TX	RTC_OUT	-	-	-
PA5	SPI_SCK	1	TM1_CH2	UART2_RX	1		MCO	
PA6	SPI_MISO	UART1_TX	TM1_CH1	-	-	TM1_BKIN	CMP1_OUT	-
PA7	SPI_MOSI	UART1_RX	TM1_CH1N	-	RTC_OUT	TM1_CH1	CMP2_OUT	EVENTOUT
PA8	SPI_MOSI	UART3_TX	TM1_CH1	-	I2C_SDA	-	MCO	-
PA9	-	-	TM1_ETR	UART2_TX	-	TM1_BKIN	TM14_CH1	EVENTOUT
PA10	1	ı	TM1_CH3	UART2_RX	1	TM14_CH1	-	-
PA11	SPI_SCK	UART1_TX	TM1_CH4	-	I2C_SCL		-	-
PA12	SPI_MOSI	UART1_RX	TM1_ETR	-	-	TM14_CH1	-	EVENTOUT
PA13	SWDIO	-	TM1_CH3N	UART2_TX	-	-	MCO	-
PA14	SWCLK	UART3_TX	TM1_CH2N	-			-	EVENTOUT
PA15	SPI_NSS	UART3_RX	TM1_CH1N	-	-	TM1_CH4	-	-

3.2. Alternate functions selected through GPIOB_AFR registers for port B

Table 3-4 Port B alternate functions mapping

Port B	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB0	SPI_NSS	-	TM1_CH2N	UART2_TX	-	TM1_CH2	CMP1_OUT	-
PB1	-	-	TM1_CH3N	UART2_RX	-	-	-	EVENTOUT
PB2	SPI_MISO	UART3_RX	-	-	-	TM14_CH1	-	-
PB3	SPI_SCK	-	TM1_CH2	UART2_RX	-	-	-	-

3.3. Alternate functions selected through GPIOF_AFR registers for port F

Table 3-5 Port F alternate functions mapping

Port F	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PF0	-	-	ı	1	1	TM14_CH1	ı	-
PF1	-	-	-	-	-	TM14_CH1	-	-
PF2	1	-	1	1	I2C_SCL	TM14_CH1	MCO	-
PF3	SWCLK	UART1_TX	TM1_ETR	I2C_SCL	I2C_SDA	TM14_CH1	1	-
PF4	SWDIO	UART1_RX	TM1_ETR	I2C_SCL	I2C_SDA	TM14_CH1	-	-
PF5	-	-	-	-	-	-	-	-

4. Memory mapping

Figure 4-1 Memory map

Table 4-1 Memory boundary address

Туре	Boundary Address	Size	Memory Area	
CDAM	0x2000 1000-0x3FFF FFFF	-	Reserved ⁽¹⁾	
SRAM	0x2000 0000-0x2000 0FFF	4 KB	SRAM	
	0x1FFF 0300-0x1FFF FFFF	-	Reserved	
	0x1FFF 0280-0x1FFF 02FF	128 Bytes	USER OTP memory	
	0x1FFF 0180-0x1FFF 01FF	128 Bytes	Factory config. bytes	
	0x1FFF 0100-0x1FFF 017F	128 Bytes	Factory config. bytes	
	0x1FFF 0080-0x1FFF 00FF	128 Bytes	Option bytes	
Code	0x1FFF 0000-0x1FFF 007F	128 Bytes	UID	
	0x0800 8000-0x1FFE FFFF	-	Reserved	
	0x0800 0000-0x0800 7FFF	32 KB	Main flash memory	
	0x0000 8000-0x07FF FFFF	-	Reserved	
	0x0000 0000-0x0000 7FFF	32 KB	Selection based on Boot configuration: 1. Main flash memory 2. Load flash 3. SRAM	

^{1.} The address is marked as Reserved , which cannot be written , read as 0 , and a response error is generated .

Table 4-2 Peripheral register address

Bus	Boundary Address	Size	Peripheral	
	0xE000 0000-0xE00F FFFF	1 MB	M0+	
	0x5000 1800-0x5FFF FFFF	-	Reserved ⁽¹⁾	
	0x5000 1400-0x5000 17FF	1 KB	GPIOF	
IOPORT	0x5000 0800-0x5000 13FF	-	Reserved ⁽¹⁾	
	0x5000 0400-0x5000 07FF	1 KB	GPIOB	
	0x5000 0000-0x5000 03FF	1 KB	GPIOA	
	0x4002 3400-0x4FFF FFFF	-	Reserved	
	0x4002 3010-0x4002 33FF	1 KB	Reserved	
	0x4002 3000-0x4002 300F	IND	CRC	
	0x4002 2400-0x4002 2FFF	-	Reserved	
	0x4002 2000-0x4002 23FF	1 KB	Flash FMC	
АНВ	0x4002 1C00-0x4002 1FFF	-	Reserved	
АПБ	0x4002 1900-0x4002 1BFF	1 KB	Reserved	
	0x4002 1800-0x4002 18FF	IND	EXTI (2)	
	0x4002 1400-0x4002 17FF	-	Reserved	
	0x4002 1080-0x4002 13FF	1 KB	Reserved	
	0x4002 1000-0x4002 107F	IND	RCC ⁽²⁾	
	0x4002 0000-0x4002 0FFF	-	Reserved	
	0x4001 5C00-0x4001 FFFF	-	Reserved	
APB	0x4001 5880-0x4001 5BFF	1 KB	Reserved	
APD	0x4001 5800-0x4001 587F	IND	DBG	
	0x4001 4800-0x4001 57FF	-	Reserved	

Bus	Boundary Address	Size	Peripheral
	0x4001 4480-0x4001 47FF	4 1/0	Reserved
	0x4001 4400-0x4001 447F	1 KB	UART2
	0x4001 3C00-0x4001 43FF	-	Reserved
	0x4001 3880-0x4001 3BFF	4 1/0	Reserved
	0x4001 3800-0x4001 387F	1 KB	UART3
	0x4001 3400-0x4001 37FF	-	Reserved
	0x4001 3080-0x4001 33FF	4.170	Reserved
	0x4001 3000-0x4001 307F	1 KB	SPI
	0x4001 2C80-0x4001 2FFF	4145	Reserved
	0x4001 2C00-0x4001 2C7F	1 KB	TIM1
	0x4001 2800-0x4001 2BFF	-	Reserved
	0x4001 2400-0x4001 27FF	1 KB	ADC
	0x4001 0400-0x4001 23FF	-	Reserved
	0x4001 0220-0x4001 03FF		Reserved
	0x4001 0200-0x4001 021F	1 KB	CMP1/2
	0x4001 0000-0x4001 01FF		SYSCFG
	0x4000 7400-0x4000 FFFF	-	Reserved
	0x4000 7080-0x4000 73FF		Reserved
	0x4000 7000-0x4000 707F	1 KB	PWR (3)
	0x4000 5800-0x4000 6FFF	-	Reserved
	0x4000 5480-0x4000 57FF		Reserved
	0x4000 5400-0x4000 547F	1 KB	I ² C
	0x4000 4800-0x4000 53FF	-	Reserved
	0x4000 4480-0x4000 47FF		Reserved
	0x4000 4400-0x4000 447F	1 KB	UART1
	0x4000 3C00-0x4000 43FF	-	Reserved
	0x4000 3880-0x4000 3BFF		Reserved
	0x4000 3800-0x4000 387F	1 KB	тк
	0x4000 3400-0x4000 37FF	-	Reserved
	0x4000 3080-0x4000 33FF		Reserved
	0x4000 3000-0x4000 307F	1 KB	IWDG
	0x4000 2C00-0x4000 2FFF	-	Reserved
	0x4000 2880-0x4000 2BFF		Reserved
	0x4000 2800-0x4000 287F	1 KB	RTC
	0x4000 2400-0x4000 27FF	-	Reserved
	0x4000 2080-0x4000 23FF		Reserved
	0x4000 2000-0x4000 207F	1 KB	TIM14
	0x4000 0000-0x4000 1FFF		Reserved

- In the above table, the reserved address cannot be written, read back is 0, and a hardfault is generated. Not only supports 32-bit word access, but also supports half-word and byte access. Not only supports 32-bit word access, but also supports half-word access. 1.
- 2.
- 3.

5. Electrical characteristics

5.1. Parameter conditions

Unless otherwise specified, all voltages are referenced to Vss.

5.1.1. Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100 % of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_{A(max)}$ (given by the selected temperature range).

Data based on electrical characterization results, design simulations and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation.

5.1.2. Typical values

Unless otherwise specified, typical data is based on T_A =25 °C and V_{CC} = 3.3 V. These data are for design guidance only and have not been tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95 % of the devices have an error less than or equal to the value indicated.

5.1.3. Power supply scheme

Figure 5-1 Power supply scheme

5.2. Absolute maximum ratings

Stresses above the absolute maximum ratings listed in following tables may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 5-1 Voltage characteristics(1)

Symbol	Ratings	Min	Max	Unit
V _{CC} - V _{SS}	External main power supply ⁽¹⁾	-0.3	6.25	.,
V _{IN} ⁽²⁾	Input voltage on any other pins	Vss - 0.3	V _{cc} + 0.3	V

^{1.} Main power V_{CC} and ground V_{SS} pins must always be connected to the external power supply, in the permitted range.

Table 5-2 Current characteristics

Symbol	Ratings	Max	Unit
ΣI _{VCC}	Total current into sum of all Vcc power lines (source)(1)	170	mA
ΣI _{VSS}	Total current out of sum of all Vss ground lines (sink) ⁽¹⁾	-170	mA
	Output current sunk by any I/O and control pin except COM_L I/O	80	
(2)	Output current sunk by any COM_L I/O	100	m ^
I _{IO(PIN)} ⁽²⁾	Output current source by any I/O and control pin except COM_P I/O	-25	mA
	Output current source by any COM_P I/O	-40	
51 (2)	Output current sunk by all COM I/Os and control pin	160	mA
$\Sigma I_{IO(PIN)}(2)$	Output current source by all COM I/Os and control pin	-150	IIIA

^{1.} Main power V_{CC} and ground V_{SS} pins must always be connected to the external power supply, in the permitted range.

Table 5-3 Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 - +150	ů
To	Operating temperature range	-40 - +105	°C

5.3. Operating conditions

5.3.1. General operating conditions

Table 5-4 General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
fHCLK	Internal AHB clock frequency	-	0	48	MHz
f _{PCLK}	Internal APB clock frequency	-	0	48	MHz
Vcc	Standard operating voltage	-	1.8	5.5	V
Vin	I/O input voltage	-	-0.3	Vcc +0.3	V
TA	Ambient temperature	-	-40	105	°C
TJ	Junction temperature	-	-40	110	°C

5.3.2. Operating conditions at power-on / power-down

Table 5-5 Operating conditions at power-on / power-down

Symbol	Parameter	Conditions	Min	Max	Unit
	V _{CC} rise time rate	-	0	8	
tvcc	Vcc fall time rate	-	20	∞	μs/V

^{2.} Maximum V_{IN} must always follow allowable maximum injection current limits as per the table.

^{2.} These I/O types refer to the terms and symbols defined by pins.

5.3.3. Embedded reset

Table 5-6 Embedded reset characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
trsttempo ⁽¹⁾	Reset temporization	-	-	4.00	7.50	ms
.,	POR/PDR reset threshold	Rising edge	1.60 ⁽²⁾	1.70	1.80	V
V _{POR/PDR}	POR/PDR reset threshold	Falling edge	1.57	1.67	1.77(2)	V
.,	BOR2 threshold	Rising edge	1.89 ⁽²⁾	9 ⁽²⁾ 1.99 2.09		.,
V_{BOR2}	BOR2 threshold		1.78	1.88	1.98(2)	V
.,	DODO threehold	Rising edge	2.09(2)	2.19	2.29	V
V _{BOR3}	BOR3 threshold	Falling edge	2.00	2.10	2.20(2)	V
.,	DOD 4 three should	Rising edge	2.29(2)	2.39	2.49	.,
V _{BOR4}	BOR4 threshold	Falling edge	2.20	2.30	2.40(2)	V
.,	BOR5 threshold	Rising edge	2.66(2)	2.78	2.89	V
V _{BOR5}		Falling edge	2.58	2.69	2.79(2)	
	DODG there also also	Rising edge	2.94(2)	3.08	3.18	
V _{BOR6}	BOR6 threshold	Falling edge	2.88	2.99	3.11(2)	V
.,	DODZ there all all	Rising edge	3.53(2)	3.68	3.83	.,
V_{BOR7}	BOR7 threshold	Falling edge	3.44	3.58	3.72(2)	V
	BOR8 threshold	Rising edge	4.03(2)	4.20	4.36	V
V BOR8		Falling edge	3.91	4.08	4.24(2)	
VPOR_PDR_hyst ⁽¹⁾	POR/PDR hysteresis	-	-	30	-	mV
V _{BOR_hyst} (1)	BOR threshold	-	-	100	-	mV
I _{CC(BOR)}	BOR consumption	-	-	0.6	-	μΑ

^{1.} Guaranteed by design, not tested in production.

5.3.4. Supply current characteristics

Table 5-7 Current consumption in Run mode

Symbol		Conditions					- 40		
	System clock	Frequency	Code	Run	Peripheral clock	Flash sleep	Typ ⁽¹⁾	Max	Unit
		48 MHz			ON	DISABLE	2.6	-	
	HSI	40 IVITIZ			OFF	DISABLE	1.9	-	A
	ПОІ				ON	DISABLE	1.7	-	mA
Icc		24 MHz	\\/\bilo(4)	Flash	OFF	DISABLE	1.4	-	
(Run)	32.768 kHz LSI 32.768 kHz	22 760 kHz	While(1)	гіазіі	ON	DISABLE	165	-	
		32.700 KHZ			OFF	DISABLE	164	-	μA
					ON	ENABLE	92	-	
				OFF	ENABLE	91.5	-		

^{1.} Data based on characterization results, not tested in production.

^{2.} Data based on characterization results, not tested in production.

Table 5-8 Current consumption in Sleep mode

Symbol		Cor	nditions		- w		
	System clock	Frequency	Peripheral clock	Flash sleep	Typ ⁽¹⁾	Max	Unit
		48 MHz	ON	DISABLE	1.7	-	- mA
	HSI	40 IVID2	OFF	DISABLE	0.9	-	
	1101	24 MHz	ON	DISABLE	1.0	-	
In a (Cloop)		24 IVID2	OFF	DISABLE	0.6	-	
Icc(Sleep)		32.768 kHz	ON	DISABLE	161	-	
	LSI	32.700 KHZ	OFF	DISABLE	160 -	-	
	LSI	22.760 kHz	ON	ENABLE 81.3	81.3		μA
		32.768 kHz	OFF	ENABLE	81.0	- (-)	

^{1.} Data based on characterization results, not tested in production.

Table 5-9 Current consumption in Stop mode

Symbol		Conditi	ons		Typ ⁽¹⁾	Unit	
	Vcc	LDO	LSI	Peripheral clock	ı yp	Max	Onit
I _{CC} (Stop)		MR	-		75.2	-	
				IWDG+RTC 3.9	-		
	1.8 - 5.5 V	LDD	ON	IWDG	3.9	-	μΑ
		LPR		RTC	3.9 -	-	
			OFF	No	3.5	-	

^{1.} Data based on characterization results, not tested in production.

5.3.5. Wakeup time from low-power mode

Table 5-10 Wakeup time from low-power mode

Symbol	Parameter ⁽¹⁾		Conditions	Typ ⁽²⁾	Max	Unit
twusleep	Wake-up from Sleep mode		-	10	1	CPU Cycles
twustop	1,0	МБ	Run program in Flash, HSI (24 MHz) as system clock FLS_SLPTIME [1:0] = 00		-	μs
		MR	Run program in Flash, HSI (48 MHz) as system clock FLS_SLPTIME [1:0] = 00			
	Wake-up from Stop mode	1.00	Run program in Flash, HSI (24 MHz) as system clock FLS_SLPTIME [1:0] = 00	9.8		μs
		LPR	Run program in Flash, HSI (48 MHz) as system clock FLS_SLPTIME [1:0] = 00		-	

^{1.} The wake-up time is measured from the wake-up time until the first instruction is read by the user program.

^{2.} Data based on characterization results, not tested in production.

5.3.6. External clock source characteristics

5.3.6.1. High-speed external clock generated from an external source

In HSE bypass mode (HSEON of RCC_CR is set), the corresponding IO acts as an external clock input port.

Figure 5-2 Low-speed external clock timing diagram

Parameter Symbol Min Max Unit Тур External clock source frequency 1 8 32 MHz f_{HSE_ext} Input pin high level voltage ٧ V_{HSEH} 0.7*Vcc Vcc ٧ Input pin low level voltage V_{HSEL} Vss 0.3*Vcc tw(HSEH) 15⁽¹⁾ High or low time ns tw(HSEL) $t_{r(HSE)}$ 20(1) Rise or fall time ns $t_{\text{f(HSE)}}$

Table 5-11 High-speed external clock characteristics

5.3.6.2. Low-speed external clock generated from an external source

In the bypass mode of LSE (the LSEBYP of RCC_BDCR is set), the low-speed start-up circuit in the chip stops working, and the corresponding I/O is used as a standard GPIO.

Figure 5-3 Low-speed external clock timing diagram

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSE_ext}	External clock source frequency	-	32.768	1000	kHz
V_{LSEH}	Input pin high level voltage	0.7*V _{CC}	-	-	V
VLSEL	Input pin low level voltage	-	-	0.3*Vcc	V
tw(LSEH)	High or low time	450 ⁽¹⁾	-	-	ns
$t_{r(LSE)}$ $t_{f(LSE)}$	Rise or fall time	-	-	50 ⁽¹⁾	ns

Table 5-12 Low-speed external clock characteristics

^{1.} Guaranteed by design, not tested in production.

^{1.} Guaranteed by design, not tested in production.

5.3.6.3. High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with 4 - 8 MHz crystal/ceramic resonator oscillator. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time.

Table 5-13 HSE oscillator characteristics(1)

Symbol	Parameter	Conditions	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	-	8	MHz
		Startup time	-	-	5.5	
Icc ⁽⁴⁾	HSE current consumption	V_{CC} =3 V,Rm=35 Ω , C $_{L}$ =15 pF@8 MHz HSE_DRV = 1	-	0.7	-	mA
		V_{CC} =3 V,Rm=35 Ω , C_{\perp} =15 pF@4 MHz HSE_DRV = 0	-	0.6		
	Startup time	$f_{OSC_IN} = 8 \text{ MHz}$ $Rm=35 \ \Omega$, $C_L = 15 \text{ pF} @ 8 \text{ MHz}$ $HSE_STARTUP \ [1:0] = 00$ $HSE_DRV = 1$	-	2.5		
tsu(HSE) ⁽³⁾⁽⁴⁾		$f_{OSC_IN} = 4 \text{ MHz}$ $Rm=35 \ \Omega$, $C_L = 15 \text{ pF}@4 \text{ MHz}$ $HSE_STARTUP \ [1:0] = 00$ $HSE_DRV = 1$		4.0	-	ms
		$f_{OSC_IN} = 4 \text{ MHz}$ $Rm=35 \ \Omega$, $C \ L = 15 \ pF@4 \ MHz$ $HSE_STARTUP \ [1:0] = 00$ $HSE_DRV = 0$		5.0	-	

- 1. Crystal/ceramic resonator characteristics are based on the manufacturer's datasheet.
- 2. Guaranteed by design, not tested in production.
- 3. $t_{SU(HSE)}$ is the startup time from enable (by software) to when the clock oscillation reaches a stable state, measured for a standard crystal/resonator, which can vary considerably from one crystal/resonator to another.
- 4. Data based on characterization results, not tested in production.

5.3.6.4. Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time.

Table 5-14 LSE oscillator characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		LSE_DRIVER [1:0] = 00	-	0.4	-	
. (2)	LSE current con-	LSE_DRIVER [1:0] = 01	-	0.5	-	
Icc ⁽³⁾	sumption	LSE_DRIVER [1:0] = 10	-	0.7	-	μA
		LSE_DRIVER [1:0] = 11	-	1.2	-	
	Startup time	fosc_in = 32.768 kHz,CL =6 pF LSE_STARTUP [1:0] = 00 LSE_DRIVER [1:0] = 00	-	2.60	-	
t _{SU(LSE)} (2)(3)		f _{OSC_IN} = 32.768 kHz,C _L =6 pF LSE_STARTUP [1:0] = 00 LSE_DRIVER [1:0] = 01	-	1.20	-	S
		f _{OSC_IN} = 32.768 kHz,C _L =12 pF LSE_STARTUP [1:0] = 00	-	0.85	-	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		LSE_DRIVER [1:0] = 10				
		fosc_in = 32.768 kHz,CL =12 pF LSE_STARTUP [1:0] = 00 LSE_DRIVER [1:0] = 11	-	0.50	-	

- 1. Crystal/ceramic resonator characteristics are based on the manufacturer's datasheet.
- tsu(HSE) is the startup time from enable (by software) to when the clock oscillation reaches a stable state, measured for a standard crystal/resonator, which can vary considerably from one crystal/resonator to another.
- 3. Data based on characterization results, not tested in production.

5.3.7. High-speed internal (HSI) RC oscillator

Table 5-15 HSI oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	1101 (T 05.00 V 0.0 V	23.83(2)	24	24.17 ⁽²⁾	MHz
f _{HSI}	f _{HSI} HSI frequency	$T_A = 25 \text{ °C,V}_{CC} = 3.3 \text{ V}$	47.66 ⁽²⁾	48	48.34(2)	IVITIZ
	ACC (HSI) HSI accuracy	V _{CC} = 2.0 - 5.5 V T _A = -40 - 105 °C	-2(2)		2 ⁽²⁾	
ACC (HSI)		V cc = 1.8 - 2.0 V T A = -40 - 105 °C	-2(2)	-	2 ⁽²⁾	%
		V _{CC} = 1.8 - 2.0 V T _A = -40 - 105 °C	-3(2)	-	3 ⁽²⁾	
f _{TRIM} (1)	HSI trimming accuracy	-	-	0.1	-	%
D _{HSI} ⁽¹⁾	Duty cycle	-	45	•	55	%
t _{Stab(HSI)}	HSI stabilization time	-	-	2	4 ⁽¹⁾	μs
(3)	LIO	48 MHz	-	300	-	
ICC(HSI) (2)	HSI power consumption	24 MHz	-	220	-	μA

- 1. Guaranteed by design, not tested in production.
- 2. Data based on characterization results, not tested in production.

5.3.8. Low-speed internal (LSI) RC oscillator

Table 5-16 LSI oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	LSI frequency	$T_A = 25 ^{\circ}\text{C,V}_{CC} = 3.3 \text{V}$	31.6	32.768	33.6	kHz
		V cc = 1.8 - 5.5 V T A = 0 - 105 °C	-8(2)	-	8(2)	%
ACC (LSI)	LSI accuracy	V _{CC} = 1.8 - 5.5 V T _A = -40 - 105 °C	-10 ⁽²⁾	-	10 ⁽²⁾	70
f _{TRIM} (1)	LSI trimming accuracy	-	-	0.2	-	%
t _{Stab(LSI)} (1)	LSI stabilization time	-	-	150	-	μs
Icc(LSI) (1)	LSI power consumption	-	-	210	-	nA

- 1. Guaranteed by design, not tested in production.
- 2. Data based on characterization results, not tested in production.

5.3.9. Memory characteristics

Table 5-17 Memory characteristics

Symbol	Parameter	Conditions	Тур	Max ⁽²⁾	Unit
t _{prog}	Page programming time	-	1.5	2.0	ms
terase	Page/sector/mass erase time	-	3.5	4.5	ms
laa	Page programming supply current	-	2.1	2.9	mΛ
Icc	Page/sector/mass erase time	-	2.1	2.9	mA

^{1.} Guaranteed by design, not tested in production.

Table 5-18 Memory endurance and data retention

Symbol	Parameter	Conditions	Min ⁽²⁾	Unit
N.	F. d	T _A = -40 - 85 °C	100	kovolo
N _{END}	Endurance	T _A = 85 - 105 °C	10	kcycle
t _{RET}	Data retention	10 kcycle T _A = 55 °C	20	Year

^{1.} Data based on characterization results, not tested in production.

5.3.10. EFT characteristics

Table 5-19 EFT characteristics

Symbol	Parameter	Conditions	Grade
EFT to Power	-	IEC61000-4-4	4A

5.3.11. ESD & LU characteristics

Table 5-20 ESD & LU characteristics

Symbol	Parameter	Conditions	Тур	Unit
V _{ESD(HBM)}	Static discharge voltage (human body model)	ESDA/JEDEC JS-001-2017	8	kV
V _{ESD(CDM)}	Static discharge voltage (charged device model)	ESDA/JEDEC JS-002-2018	2	kV
LU	Static latch-up	JESD78E	200	mA

5.3.12. Port characteristics

Table 5-21 Port static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ViH	Input high level voltage	Vcc = 1.8 - 5.5 V	0.7*Vcc	-	-	V
V_{IL}	Input low level voltage	V _{CC} = 1.8 - 5.5 V	-	-	0.3*V cc	V
V _{hys} ⁽¹⁾	Schmitt trigger hysteresis	-	-	150	-	mV
l _{lkg}	Input leakage current	-	-	-	1	μA
		V _{IN} = V _{SS} , IORP[1:0]=11	24	40	56	
	Weak pull-up equivalent	V _{IN} = V _{SS} , IORP[1:0]=10	12	20	28	kΩ
R _{PU}	resistor	V _{IN} = V _{SS} , IORP[1:0]=01	6.6	11	15.4	K12
		V _{IN} = V _{SS} , IORP[1:0]=00	-	OFF	-	
		V _{IN} = V _{CC} , IORP[1:0]=11	24	40	56	
_	Weak pull-down equiva-	V _{IN} = V _{CC} , IORP[1:0]=10	12	20	28	1.0
R_{PD}	lent resistor	V _{IN} = V _{CC} , IORP[1:0]=01	6.6	11	15.4	kΩ
		V _{IN} = V _{CC} , IORP[1:0]=00	-	OFF	-	
R _{PUIIC}	I ² C pull-up resistor	PUPDy[1:0]=01, PF_PU_IIC =1	3.4	4.7	6.0	kΩ

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{IO} ⁽¹⁾	Pin capacitance	-		5	-	pF
tns(EXTI) ⁽¹⁾	Input filter width	ENI=1, ENS=1	3	5	10	ns

^{1.} Guaranteed by design, not tested in production.

Table 5-22 Output voltage characteristics(1)(4)

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit
		I _{OL} = 70 mA, V _{CC} ≥ 5.0 V	-	0.5	
	Output low level voltage for an I/O pin(all I/Os except COM_L)	I _{OL} = 50 mA, V _{CC} ≥ 3 V	-	0.5	V
V _{OL} ⁽²⁾	pin(aii i/ob oxoopt com_z)	$I_{OL} = 4 \text{ mA}, V_{CC} = 1.8 \text{ V}$	-	0.5	
VOL(=)		I _{OL} = 80 mA, V _{CC} ≥ 3.3 V	-	0.6	
	Output low level voltage for an I/O pin(COM_L)	I _{OL} = 60 mA, V _{CC} ≥ 2.7 V	-	0.6	V
		I _{OL} = 40 mA, V _{CC} ≥ 1.8 V	-	0.6	
		I _{OH} =16 mA, V _{CC} ≥ 5.0 V	Vcc -0.5		
	Output low level voltage for an I/O pin(all I/Os except COM_P)	I _{OH} = 8 mA, V _{CC} ≥ 2.7 V	Vcc -0.5	-	
	_ /	I _{OH} = 4 mA, V _{CC} = 1.8 V	V _{CC} -0.5	_	
V _{OH} ⁽²⁾		I _{OH} = 30 mA, V _{CC} ≥ 5.0 V	Vcc -0.5	-	V
	Output low level voltage for an I/O	I _{OH} = 20 mA, V _{CC} ≥ 3.3 V	Vcc -0.5	-	
	pin(COM_P)	I _{OH} = 16 mA, V _{CC} ≥ 2.7 V	V _{CC} -0.5	-	
		Iон = 4 mA, Vcc = 1.8 V	Vcc -0.5	-	

^{1.} The combined maximum current across all output pins (including contributions from both V_{OL} and V_{OH} states) must not exceed the ΣI_{IO(PIN)} maximum rating specified in Table 5-2 Current Characteristics.

- 2. These I/O types refer to the terms and symbols defined by pins.
- 3. The test conditions for driving all IOs is that GPIOx_OSPEEDR = 11.
- 4. Data based on characterization results, not tested in production.

5.3.13. Constent current LED SEG driver characteristics

Table 5-23 Constent current LED SEG driver characteristics(1)(2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vcc	Supply voltage	-	3.3	-	5.5	V
Іон	Constent current mode 1 current	$V_{CC} = 3.3 \text{ V}$ $V_{OH} = V_{CC}/3$	-	9.7	-	mA
Іон	Constent current mode 2 current	$V_{CC} = 3.3 \text{ V}$ $V_{OH} = V_{CC}/3$	-	7.4	-	mA
Іон	Constent current mode 3 current	$V_{CC} = 3.3 \text{ V}$ $V_{OH} = V_{CC}/3$	-	5	-	mA
Іон	Constent current mode 4 current	$V_{CC} = 3.3 \text{ V}$ $V_{OH} = V_{CC}/3$	-	2.5	-	mA
∆I /I	Current accuracy (unified calibration)	Constant current source outputs 10 mA current: (I-10) /10 $(Vcc = 3.3 \text{ V}, T_A = +25 \text{ °C})$	-	-	±15	%

^{1.} Data based on characterization results, not tested in production.

^{2.} When PB2 is used as the LED SEG constant current driver, PA0 must first be enabled as the LED SEG. when PB3 is used as the LED SEG constant current driver, PA1 must first be enabled as the LED SEG.

5.3.14. ADC characteristics

Table 5-24 ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
Vcc	ADC supply voltage	-	1.8	-	5.5	V	
Icc ⁽¹⁾	Consumption	fs =0.75 Msps	-	1	-	mA	
C _{IN} ⁽¹⁾	Internal sampling and holding capacitor	-	-	5	-	pF	
		V _{REF+} = V _{CC} =1.8 - 2.3 V	0.8	4	8(2)		
	Conversion clock frequency	V _{REF+} = V _{CC} =2.3 - 5.5 V	0.8	8	12 ⁽²⁾	MHz	
fadc		VREF+ = VREFBUF ,VCC =1.8 - 2.3 V	0.16	0.8	1.6(2)	IVITZ	
		VREF+ = VREFBUF ,VCC =2.3 - 5.5 V	0.16	1.6	2.4 ⁽²⁾		
t _{samp} (1)	Sampling time	V _{CC} =1.8 - 5.5 V	3.5	-	239.5	1/f ADC	
t _{samp_setup} (1)	Sampling time for internal channels (VREFINT, VCC/3)	-	20	-	-	μs	
t _{conv} (1)	Total conversion time	-	1	12	-	1/f ADC	
t _{eoc} (1)	Conversion end time	-	-	0.5	-	1/f ADC	

- 1. Guaranteed by design, not tested in production.
- 2. Data based on characterization results, not tested in production.

Table 5-25 ADC accuracy (V_{REF+} = V_{CC})

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ET	Total unadjusted error		-	±4	±7	
EO	Offset error		-	-2.5	-	
EG	Gain error	Vcc = 3.3 V, T _A = 25 °C	-	8.5	11.5	LSB
ED	Differential linearity error	f _{ADC} = 12 MHz , f _s = 0.75 Msps	-	+3 -0.9	+4 -1	
EL	Integral Linearity		-	±3.5	±4.5	
ENOB	Effective number of bits		8.9	9.5	-	bit
ET	Total unadjusted error		-	±4	±10.5	
EO	Offset error		-	-2.5	-	
EG	Gain error	1.8 V ≤ V _{CC} ≤ 5.5 V	-	8.5	13	LSB
ED	Differential linearity error	$f_{ADC} \le 12 \text{ MHz}$, $f_s \le 0.75 \text{ Msps}$	-	+3 -0.9	+5 -1	
EL	Integral Linearity		-	±3.5	±6	
ENOB	Effective number of bits		8.8	9.5	-	bit

Table 5-26 ADC accuracy (VREF+ = VREFBUF)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ET	Total unadjusted error		-	±6	±9	
EO	Offset error		-7	-4	-	
EG	Gain error	VREFBUF = 1.5 V/2.048 V/2.5 V VCC = 3.3 V, TA = 25 °C fADC = 12 MHz, fs = 0.15 Msps	-	8	11.5	LSB
ED	Differential linearity error		-	+3.5 -0.9	+4.5 -0.95	
EL	Integral Linearity		-	±4.5	±5	
ENOB	Effective number of bits		8.5	8.8	-	bit
ET	Total unadjusted error	V _{REFBUF} =1.5 V/2.048 V/2.5 V	-	±16.5	±24.5	LSB

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
EO	Offset error	Vcc = 3.3 V, T _A = 25 °C	-16	-11	-	
EG	Gain error	$f_{ADC} = 12 \text{ MHz}$, $f_s = 0.15 \text{ Msps}$	-	13	18	
ED	Differential linearity error		-	+5.5 -0.9	+9 -0.95	
EL	Integral Linearity		-	±14	±16	
ENOB	Effective number of bits		7.2	7.3	-	bit
ET	Total unadjusted error		-	±6	±13	
EO	Offset error	V_{REFBUF} =1.5 V, 1.8 V \leq V _{CC} \leq 5.5 V V_{REFBUF} = 2.048 V, 2.4 V \leq V _{CC} \leq 5.5 V V_{REFBUF}	-11	-4	-	
EG	Gain error		-	8	-	LSB
ED	Differential linearity error	$V_{REFBUF} = 2.5 \text{ V}, 2.8 \text{ V} \le V_{CC} \le 5.5 \text{ V}$ $f_{ADC} \le 2.4 \text{ MHz}, f_s \le 0.15 \text{ Msps}$	-	+3.5 -0.9	+6.5 -1	
EL	Integral linearity	7,56 =	-	±4.5	±7.5	
ENOB	Effective number of bits		8.5	8.8	-	bit
ET	Total unadjusted error		-	±16.5	±30	
EO	Offset error		-20.5	-11	-]
EG	Gain error	VREFBUF = 0.6 V, 1.8 V ≤ V cc ≤ 5.5 V	-	13	-	LSB
ED	Differential linearity error	$f_{ADC} = 12 \text{ MHz}, f_{s} \le 0.15 \text{ Msps}$	-	+5.5 -0.9	+11.5 -1	
EL	Integral Linearity		-	±14	±17	
ENOB	Effective number of bits		7.2	7.3	-	bit

5.3.15. Comparator characteristics

Table 5-27 Comparator characteristics

Symbol	Parameter	Condi	tions	Min	Тур	Max	Unit
Vin	Input voltage range			0	-	V cc -1.5	V
tstart ⁽¹⁾	Startun tima	High-spe	High-speed mode		-	5	
LSTART\''	Startup time	Medium-sp	eed mode	-	-	15	μs
		High-speed mode	200 mV step	-	0.2	-	
t _D ⁽¹⁾	Propagation delay	Medium-speed mode	100 mV over-drive	-	-	1.2	μs
ID(**/	Propagation delay	High-speed mode	>200 mV step	-	0.2	-	
		Medium-speed mode	100 mV over-drive	-	-	1.2	
V _{offset} ⁽¹⁾	Offset voltage	-		-	±5	-	mV
			Static	-	70	-	
I _{CC} ⁽¹⁾	V _{CC} consumption	High-speed mode	With 50 kHz and ±100 mv overdrive square signal	-	70	-	μA
ICC.	VCC Consumption		Static	-	6	7.5	
	Medium-speed mode	With 50 kHz and ±100 mv overdrive square signal	-	5	-		
I _{sleep} (1)	Sleep power con- sumption	-	-	-	1	-	nA

^{1.} Guaranteed by design, not tested in production.

5.3.16. Temperature sensor characteristics

Table 5-28 Temperature sensor characteristics

Symbol	Parameter		Тур	Max	Unit
T _L ⁽¹⁾	V _{TS} linearity with temperature		±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	2	2.6	3.2	mV/°C
V ₃₀	Voltage at 30 °C (±5 °C)	742	760	785	mV
t _{samp_setup} (1)	ADC sampling time when reading the temperature	20	-	-	μs

^{1.} Guaranteed by design, not tested in production.

5.3.17. Embedded voltage reference characteristics

Table 5-29 Embedded internal voltage reference (VREFINT) characteristics

Symbol	Parameter	Min	Тур	Max	Unit
VREFINT	Internal reference voltage	1.17	1.20	1.23	V
t _{start_} VREFINT	Start time of V _{REFINT}	-	10	15	μs
$T_{\text{coeff_VREFINT}^{(1)}}$	Temperature coefficient of VREFINT	-	-	100 ⁽¹⁾	ppm/°C
I _{vcc} ⁽¹⁾	Current consumption from Vcc	-	12	20	μΑ

^{1.} Guaranteed by design, not tested in production.

5.3.18. Embedded voltage reference characteristics

Table 5-30 Embedded internal voltage reference (VREFINT) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REF25}	2.5 V Internal reference voltage	$T_A = 25 ^{\circ}\text{C}, \ V_{CC} = 3.3 \text{V}$	2.475	2.5	2.525	V
V _{REF20}	2.048 V Internal reference voltage	$T_A = 25 ^{\circ}\text{C}, \ V_{CC} = 3.3 \text{V}$	2.028	2.048	2.068	V
V _{REF15}	1.5 V Internal reference voltage	$T_A = 25 ^{\circ}\text{C}, \ V_{CC} = 3.3 ^{\circ}\text{V}$	1.485	1.5	1.515	V
V _{REF06}	0.6 V Internal reference voltage	$T_A = 25 ^{\circ}\text{C}, \ V_{CC} = 3.3 \text{V}$	0.594	0.6	0.606	V
T (1)	Temperature coefficient of V _{REFBUF}	T _A = -40 - 105 °C	-	-	120	/°C
T _{coeff} _VREFBUF ⁽¹⁾			-	-	300(2)	ppm/°C
tstart_VREFBUF	Start time of VREFBUF	-	-	10	15	μs

^{1.} Guaranteed by design, not tested in production.

5.3.19. COMP internal reference voltage characteristics

Table 5-31 Embedded internal voltage reference (VREFINT) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$\Delta V_{abs}^{(1)}$	Absolute deviation	-	-	-	±0.5	LSB
t _{start_} VREFCMP	Start time of VREFBUF	-	-	10	15	μs

^{1.} Guaranteed by design, not tested in production.

5.3.20. Timer characteristics

Table 5-32 Timer characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
t	Time and a station time.	-	1	-	t _{TIMx} CLK
tres(TIM)	Timer resolution time	f _{TIMxCLK} = 48 MHz	20.833	-	ns
f _{EXT}		-	-	f _{TIMxCLK} /2	MHz

^{2.} $V_{REFBUF} = 0.6 V$.

Symbol	Parameter	Conditions	Min	Max	Unit
	Timer external clock frequency on CH1 to CH4	f _{TIMxCLK} = 48 MHz	-	24	
Resтім	Timer resolution time	TIM1/14	-	16	bit
tcounter	16-bit counter clock period	-	1	65536	t timxclk
		f _{TIMxCLK} = 48 MHz	0.020833	1365	μs

Table 5-33 IWDG characteristics (timeout period at 32.768 kHz LSI)

Prescaler	PR[2:0]	Min	Max	Unit
/4	0	0.122	499.712	
/8	1	0.244	999.424	
/16	2	0.488	1998.848	
/32	3	0.976	3997.696	ms
/64	4	1.952	7995.392	
/128	5	3.904	15990.784	
/256	6 or 7	7.808	31981.568	

5.3.21. Communication port characteristics

5.3.21.1. I²C interface characteristics

I²C interface meets the requirements of the I²C bus specification and user manual:

- Standard-mode (Sm): 100 kHz
- Fast-mode (400 kHz)
- Fast-mode plus (Fm+): 1 MHz

I²C SDA and SCL pins have analog filtering, see table below.

Table 5-34 I²C filter characteristics

Symbol	Parameter	Min	Max	Unit
t _{AF}	Limiting duration of spikes suppressed by the filter (Spikers shorter than the limiting durtion are sauppressed)	50	260	ns

5.3.21.2. SPI characteristics

Table 5-35 SPI characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
fsck	SPI clock frequency	Master mode	-	24 ⁽¹⁾	MILIT
1/tc(SCK)		Slave mode	-	24(2)	MHz
t _{r(SCK)}	SPI clock rise and fall time	Capacitive load: C = 15 pF	-	6	ns
t _{su(NSS)}	NSS setup time	Slave mode	2 T _{pclk}	-	ns
t _{h(NSS)}	NSS hold time	Slave mode	2 T _{pclk}	-	ns
tw(SCKH) tw(SCKL)	SCK high and low time	Master mode, presc = 2	T _{pclk} - 2	T _{pclk} + 1	ns
t _{su(MI)}	Data input setup time	Master mode	1	-	
t _{su(SI)}		Slave mode	3	-	ns
t _{h(MI)}	Data input hold time	Master mode	5	-	ns

Symbol	Parameter	Conditions	Min	Max	Unit
t _{h(SI)}		Slave mode	2	-	
t _{a(SO)}	Data output access time	Slave mode	0	3 T _{pclk}	ns
t _{dis(SO)}	Data output disable time	Slave mode	2 T _{pclk}	-	ns
t _{v(SO)}	Data output valid time	Slave mode (after enable edge)	0	20	ns
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	5	ns
t _{h(SO)}	Data output hold time	Slave mode (after enable edge)	2	-	
		Master mode (after enable edge)	1	_	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	45	55	%

- 1. The test condition for this parameter is full-duplex mode.
- 2. Under full-duplex mode, the maximum is 6 MHz, while under single-wire (transmit-only) mode, the maximum is 12 MHz.

Figure 5-4 SPI timing diagram – Slave mode and CPHA=0

Figure 5-5 SPI timing diagram – Slave mode and CPHA=1

Figure 5-6 SPI timing diagram - Master mode

6. Package information

6.1. TSSOP28 package size

6.2. SOP28 package size

6.3. TSSOP20 package size

6.4. SOP20 package size

6.5. QFN20 (3*3*0.5) package size

6.6. SOP16 package size

6.7. SOP8 package size

7. Ordering information

8. Version history

Version	Date	Changes	
V1.0	2024.04.01	Initial version	
V1.5	2025.04.08	 Consistent with the Chinese version No. Add product PY32T020F45U7-B 	
V1.6	2025.04.27	1. Add Table 5-23 Constent current LED SEG driver characteristics	
V1.7	2025.05.06	1. Add product PY32T020G36S7-B	

Puya Semiconductor Co., Ltd.

IMPORTANT NOTICE

Puya reserve the right to make changes, corrections, enhancements, modifications to Puya products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information of Puya products before placing orders.

Puya products are sold pursuant to terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice and use of Puya products. Puya does not provide service support and assumes no responsibility when products that are used on its own or designated third party products.

Puya hereby disclaims any license to any intellectual property rights, express or implied.

Resale of Puya products with provisions inconsistent with the information set forth herein shall void any warranty granted by Puya.

Any with Puya or Puya logo are trademarks of Puya. All other product or service names are the property of their respective owners.

The information in this document supersedes and replaces the information in the previous version.

Puya Semiconductor Co., Ltd. – All rights reserved