

Learning To Rank在个性化电商搜索中的应用

吴晨 (搜索BG: Natural Artificial Intelligence) 2016.10.22

Outline

- Background
- **2** Learning to Rank
- **B** Personalized E-Commerce Search
- Summary
- S Reference

Background

Predict relevance scores and re-rank products returned by an e-commerce search engine on the search engine result page (SERP)

Data Using

- Search, browsing, and transaction histories for all users and specifically the user interacting with the search engine in the current session
- Product properties and meta-data

Method Using

- Machine Learning (e.g. RankSVM, LambdaMart)
- Ranking Function (e.g. BM25, Cosine Similarity)

LEARNING TO RANK

Introduction

- Ranking Problem
 - Learning to Match?
- Methods
 - Pointwise
 - Pairwise
 - Listwise
- Theory (PAC)
 - Generalization
 - Stability
- Applications
 - Search
 - Recommender System
 - Question Answering
 - Sentiment Analysis

Formulation

- Machine Learning
 - Supervised learning with labeled data
- Ranking of objects by subject
 - Feature based ranking function
- Approach
 - Traditional
 - BM25 (Probabilistic Model)
 - New
 - Query and associated products form Group (Train Data)
 - Groups are i.i.d
 - Features (query and product) in Group are not i.i.d
 - Model is a function of features

Issues

- Data Labeling
 - Relevance metric (Point)
 - Ordered pairs
 - Ordered list
- Feature Extraction
 - Relevance (User/Query-Prod Feature)
 - Semantic (User/Query-Prod Feature)
 - Importance (Prod Feature)
- Learning Method
 - Model
 - Loss Function
 - Optimized Algorithms
- Evaluation Measure
 - NDCG@k

Methods

- Machine Learning
 - Classification
 - Regression
 - Ordinal Classification/Regression
- Ordinal Regression
 - Pointwise
 - Transfer ranking to regression
 - Ignore group info
- Learning to Rank
 - Pairwise
 - Transfer ranking to binary classification
 - Listwise
 - Straightforward represent learning

Pointwise Model

- McRank (2007)
- Ordinal Liner Regression
 - (Staged) Logistic Regression

Pairwise Model

- RankSVM (2000)
 - Pairwise classification
- IR SVM (2006)
 - Cost-sensitive Pairwise
 - Using modified hinge loss
- RankBoost (2003)
- RankNet (2005)
- LambdaMart (2008)

Listwise Model

- Plackett-Luce Model
- ListMLE (2008)
- ListNet (2007)
 - Parameterized Plackett-Luce Model
- AdaRank (2007)
- PermuRank (2008)
- SVM-Map (2007)

$$P(\pi) = \prod_{j=1}^{m} \frac{\phi(s_{\pi(j)})}{\sum_{l=j}^{m} \phi(s_{\pi(l)})}$$

Optimize

- Direct Optimization
 - AdaRank
 - SVM Map
- Approximation
 - Soft Rank
 - Lambda Rank
- Learning Framework
 - Data Representation
 - Expected Risk
 - Empirical Risk
 - Generalization Analysis
- Evaluation
 - Pairwise approach and Listwise approach perform better than Pointwise approach

Applications

- Search
 - Re-Ranking
- Recommender System
 - Collaborating Filter

PERSONALIZED E-COMMERCE SEARCH

Introduction

Pertinence

- Log Analysis
- Conversion in E-commerce
 - give a greater score to clicks that eventually got converted into a sale

Data

- User info
- List of the terms that forms the query
- Displayed items and their domains
- Items on which the user clicked
- Timing of all of these actions
- History Behaviors Day 28 to Day 30

Ensemble Model

- Boosting
- Bagging
- Stacking
- Trap
 - Position Bias

Related Work

- Clicks feedback
- When to do personalize?
 - Long Term
 - Short Term
- Past interaction timescales
- Search behaviors beyond clicks
- Learning from all repeated results

Features

- Aggregate Features
 - User-specific / Anonymous
- Query features
- User click habits
 - Number of times the user clicked on the item in the past
- Session features
- Non-Personalized Rank
 - Read linearly
 - Computed with information
- Inhibiting/Promoting features
 - Query click entropy

Methodology

- Classification will be used
 - Parameter of the classifier should be tuned to optimize the NDCG score on the cross validation set
- Query Full
 - SERPs returned in response to a query
- Query Less
 - SERPs returned in response to the user click on some product category

Ensemble Model

A very powerful technique to increase accuracy on a variety of ML tasks

- Boosting
- Bagging

Ensemble Correlation

- Voting
- Weighing
- Averaging
- Rank averaging

- Split the train set in A and B
- Fit a first-stage models on A and create predictions for B
- Fit the same model on B and create predictions for A
- Finally fit the model on the entire train set and create predictions for test set
- Train a second-stage stacker model on the probabilities from the first-stage model(s).

Stacking with logistic regression is one of the more basic and traditional ways of stacking

Scenario I: Query Full

Relevance Match + Semantic Match

Scenario I: Query Full – DNN Model

Scenario II: Query Less

Click Model + Recommender System

Work Flow

ACM CIKM 2016 Competition

Improved the challenging non-personalized baseline by 21.28%

CIKM Cup 2016 Track 2: Personalized E-Commerce Search Challenge

Organized by spirinus

In this challenge you are encouraged to build a personalized search ranking algorithm given large-scale data sets of search and ...

Aug 05, 2016-Oct 05, 2020 89 participants

_		User	Team Name	FinalNDCG (weighted average)	SearchNDCG (query-full; textual queries)	CategoryNDCG (query-less; category facets)
	1	minerva	Ali-Search	0.4262 (1)	0.5574 (1)	0.3935 (1)
	2	Dmitrii_Nikitko		0.4149 (2)	0.5301 (2)	0.3861 (2)
	3	tjy	red fruit yard	0.3916 (3)	0.4221 (5)	0.3840 (3)
	4	wistuba		0.3769 (4)	0.4495 (4)	0.3588 (4)
	5	joaopalotti		0.3712 (5)	0.4860 (3)	0.3425 (6)

Further work

- Learning from implicit data
 - Labeled Data Generate
- Model (Feature) learning
 - Model as Feature
- Scenario-dependent ranking

Summary

- Branch of Machine Learning
- Feature Extraction
- Ensemble Method
- Engineering
 - Dataflow
 - Workflow
- Production
 - New sort is greatly influenced by the initial sort.
 - Initial sort can probably be considered as not holding much pertinence information
 - Practical solution is zero all your rank feature before prediction

Reference

- C. J. C. Burges. From RankNet to LambdaRank to LambdaMART: An overview.
 Technical report, Microsoft Research, 2010.
- Hang Li. Learning to Rank. In ACML Tutorial, 2009
- Zhengdong Lu, Hang Li, A Deep Architecture for Matching Short Texts, In Proceedings of Neural Information Processing Systems 26 (NIPS), 1367-1375, 2013.
- Wei Wu, Hang Li, Jun Xu, Learning Query and Document Similarities from Click-through Bipartite Graph with Metadata, In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining (WSDM), 687-696, 2013.
- 周志华. 机器学习, 171-190, 267-287, 2016
- Hang Li & Zhengdong Lu. Deep Learning for Information Retrieval. In SIGIR Tutorial, 2016
- http://mlwave.com/kaggle-ensembling-guide/
- http://machinelearningmastery.com/machine-learning-ensembles-with-r/

E-Mail: wuchen.wc@alibaba-inc.com