Advanced Machine Learning: Complete Mathematical & Practical Guide

A Comprehensive Deep-Dive into Modern ML Algorithms with Implementation

By Siddharth Vidyarthi

Table of Contents

Part I: Mathematical Foundations

- Chapter 1: Linear Algebra for Machine Learning
- Chapter 2: Calculus & Optimization Theory
- Chapter 3: Probability & Statistical Learning
- Chapter 4: Information Theory & Complexity

Part II: Classical Machine Learning Algorithms

- Chapter 5: Linear & Logistic Regression (Complete Guide)
- Chapter 6: Decision Trees & Tree-Based Methods
- Chapter 7: Support Vector Machines (Mathematical Deep-Dive)
- Chapter 8: Naive Bayes & Bayesian Methods
- Chapter 9: K-Means & Clustering Algorithms
- Chapter 10: Principal Component Analysis & Dimensionality Reduction

Part III: Ensemble Learning Methods

- Chapter 11: Random Forest (Theory & Implementation)
- Chapter 12: Gradient Boosting Machines
- Chapter 13: AdaBoost & Boosting Theory
- Chapter 14: XGBoost, LightGBM & CatBoost

Part IV: Deep Learning Fundamentals

- Chapter 15: Neural Networks (Mathematical Foundation)
- Chapter 16: Backpropagation (Step-by-Step Derivation)
- Chapter 17: Convolutional Neural Networks
- Chapter 18: Recurrent Neural Networks & LSTMs
- Chapter 19: Transformer Architecture & Attention

Part V: Advanced Deep Learning

- Chapter 20: Generative Adversarial Networks
- Chapter 21: Variational Autoencoders
- Chapter 22: Reinforcement Learning
- Chapter 23: Graph Neural Networks

Part VI: Optimization & Training

- Chapter 24: Advanced Optimization Algorithms
- Chapter 25: Regularization Techniques
- Chapter 26: Hyperparameter Tuning
- Chapter 27: Model Selection & Validation

Part VII: Specialized Topics

- Chapter 28: Time Series Analysis & Forecasting
- Chapter 29: Natural Language Processing
- Chapter 30: Computer Vision Applications

Part VIII: Implementation & Deployment

- Chapter 31: MLOps & Production Systems
- Chapter 32: Model Interpretability & Explainability
- Chapter 33: Ethics & Fairness in ML

Part IX: Case Studies & Applications

- Chapter 34: Healthcare Al Applications
- Chapter 35: Financial ML Applications
- Chapter 36: Autonomous Systems
- Chapter 37: Recommendation Systems
- Chapter 38: Industrial IoT & Predictive Maintenance

Chapter 1: Linear Algebra for Machine Learning

1.1 Vector Spaces and Linear Transformations

Linear algebra forms the backbone of machine learning. Every ML algorithm manipulates vectors and matrices to extract patterns from data.

Vector Operations in Detail

A vector $\mathbf{x} \in \mathbb{R}^n$ represents a point in n-dimensional space:

$$\mathbf{X} = [X_1, X_2, ..., X_n]^T$$

Dot Product Mathematical Properties:

```
\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos(\theta) = \sum_{i=1}^{n} u_i v_i
```

Geometric Interpretation: The dot product measures how much two vectors point in the same direction. In ML:

- · Similarity between data points
- Feature correlation analysis
- · Distance metrics for clustering

Practical Example - Document Similarity:

```
import numpy as np

def cosine_similarity(doc1_vector, doc2_vector):
    """
    Calculate cosine similarity between two document vectors
    Used in text mining and information retrieval
    """
    dot_product = np.dot(doc1_vector, doc2_vector)
    norm_doc1 = np.linalg.norm(doc1_vector)
    norm_doc2 = np.linalg.norm(doc2_vector)
    return dot_product / (norm_doc1 * norm_doc2)

# Example: TF-IDF vectors for two documents
doc1 = np.array([0.5, 0.3, 0.8, 0.1, 0.0]) # TF-IDF weights
doc2 = np.array([0.4, 0.2, 0.7, 0.0, 0.1])
similarity = cosine_similarity(doc1, doc2)
print(f"Document similarity: {similarity:.3f}")
```

Matrix Operations Deep Dive

Matrix Multiplication Computational Complexity:

For matrices $A \in \mathbb{R}^{m \times k}$ and $B \in \mathbb{R}^{k \times n}$:

• Standard algorithm: O(mkn)

• Strassen's algorithm: O(n^2.807)

Current best: O(n^2.373)

Matrix Multiplication in Neural Networks:

```
import numpy as np

class LinearLayer:
    """

Fully connected neural network layer implementation
    Demonstrates matrix operations in deep learning
    """

def __init__(self, input_dim, output_dim):
    self.W = np.random.randn(output_dim, input_dim) * 0.01
    self.b = np.zeros((output_dim, 1))
```

```
def forward(self, X):
        Forward pass: Y = WX + b
        X: (input_dim, batch_size)
        Y: (output_dim, batch_size)
        self.X = X # Store for backpropagation
        Z = np.dot(self.W, X) + self.b
        return Z
    def backward(self, dZ):
        Backward pass: compute gradients
        dZ: gradient from next layer
        m = self.X.shape[1] # batch size
        # Gradients
        self.dW = (1/m) * np.dot(dZ, self.X.T)
        self.db = (1/m) * np.sum(dZ, axis=1, keepdims=True)
        dX = np.dot(self.W.T, dZ)
        return dX
# Usage example
layer = LinearLayer(784, 128) # 784 input features, 128 output neurons
X = np.random.randn(784, 32)  # Batch of 32 samples
output = layer.forward(X)
print(f"Output shape: {output.shape}") # (128, 32)
```

Eigenvalue Decomposition - Mathematical Foundation

For square matrix $A \in \mathbb{R}^{n^{\mathbf{x}_n}}$, eigenvalues λ and eigenvectors \mathbf{v} satisfy: $A\mathbf{v} = \lambda \mathbf{v}$

Characteristic Polynomial:

 $det(A - \lambda I) = 0$

Eigendecomposition:

 $A = Q\Lambda Q^{-1}$

where:

- Q = $[\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n]$ (eigenvector matrix)
- $\Lambda = diag(\lambda_1, \lambda_2, ..., \lambda_n)$ (eigenvalue matrix)

Principal Component Analysis Implementation:

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
```

```
class PCAFromScratch:
    Principal Component Analysis implementation from scratch
    Demonstrates eigenvalue decomposition in dimensionality reduction
    def __init__(self, n_components):
        self.n\_components = n\_components
        self.components = None
        self.mean = None
    def fit(self, X):
        0.00
        Fit PCA on training data
        X: (n_samples, n_features)
        # Center the data
        self.mean = np.mean(X, axis=0)
        X_{centered} = X - self.mean
        # Compute covariance matrix
        cov_matrix = np.cov(X_centered.T)
        # Eigenvalue decomposition
        eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)
        # Sort eigenvalues and eigenvectors in descending order
        idx = np.argsort(eigenvalues)[::-1]
        eigenvalues = eigenvalues[idx]
        eigenvectors = eigenvectors[:, idx]
        # Store first n components
        self.components = eigenvectors[:, :self.n_components]
        self.explained_variance_ratio = eigenvalues[:self.n_components] / np.sum(eigenval
    def transform(self, X):
        Transform data to lower dimensional space
        X centered = X - self.mean
        return np.dot(X_centered, self.components)
    def fit_transform(self, X):
        self.fit(X)
        return self.transform(X)
# Practical example with Iris dataset
iris = load_iris()
X = iris.data
y = iris.target
pca = PCAFromScratch(n_components=2)
X_pca = pca.fit_transform(X)
print(f"Original shape: {X.shape}")
print(f"Reduced shape: {X_pca.shape}")
print(f"Explained variance ratio: {pca.explained variance ratio}")
```

Singular Value Decomposition (SVD) - Complete Analysis

SVD Mathematical Framework:

```
For any matrix A \in \mathbb{R}^{m \times_n}:

A = U \Sigma V^T
```

where:

- $U \in \mathbb{R}^{m \times m}$: left singular vectors (orthogonal)
- $\Sigma \in \mathbb{R}^{m \times_n}$: singular values (diagonal)
- $V \in \mathbb{R}^{n \times n}$: right singular vectors (orthogonal)

Properties:

- U^TU = I, V^TV = I (orthogonality)
- $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r \ge 0$ (singular values in descending order)
- rank(A) = number of non-zero singular values

SVD Applications in ML:

1. Matrix Completion (Recommendation Systems):

```
import numpy as np
from scipy.sparse import random
from scipy.linalg import svd
class MatrixFactorization:
   Matrix factorization using SVD for recommendation systems
    Handles missing values through iterative approach
    def __init__(self, n_factors=50, n_iterations=100, learning_rate=0.01, regularization
        self.n factors = n factors
        self.n_iterations = n_iterations
        self.learning_rate = learning_rate
        self.regularization = regularization
    def fit(self, R):
        R: user-item rating matrix with NaN for missing values
        self.n_users, self.n_items = R.shape
        # Initialize factor matrices
        self.P = np.random.normal(scale=1./self.n_factors, size=(self.n_users, self.n_fac
        self.Q = np.random.normal(scale=1./self.n_factors, size=(self.n_items, self.n_fac
        # Get indices of non-missing values
        self.valid_indices = ~np.isnan(R)
        for iteration in range(self.n_iterations):
            for i in range(self.n_users):
                for j in range(self.n_items):
                    if self.valid indices[i, j]:
```

```
error = R[i, j] - np.dot(self.P[i, :], self.Q[j, :].T)
                        # Update factors using gradient descent
                        P_temp = self.P[i, :].copy()
                        self.P[i, :] += self.learning_rate * (error * self.Q[j, :] - self
                        self.Q[j, :] += self.learning_rate * (error * P_temp - self.regu]
        return self
    def predict(self):
        Predict the complete rating matrix
        return np.dot(self.P, self.Q.T)
# Example usage
# Create sample rating matrix (users × items)
n_users, n_items = 100, 50
rating_matrix = np.random.choice([1, 2, 3, 4, 5], size=(n_users, n_items))
# Introduce missing values (80% sparsity typical in recommender systems)
mask = np.random.random((n_users, n_items)) > 0.2
rating_matrix = rating_matrix.astype(float)
rating_matrix[mask] = np.nan
# Fit matrix factorization
mf = MatrixFactorization(n factors=10)
mf.fit(rating_matrix)
predicted_ratings = mf.predict()
print(f"Original matrix shape: {rating_matrix.shape}")
print(f"Sparsity: {np.isnan(rating_matrix).sum() / rating_matrix.size * 100:.1f}%")
```

2. Image Compression using SVD:

```
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt

def compress_image_svd(image_path, n_components):
    """
    Compress image using SVD by keeping only top n_components
    """

    # Load and convert image to grayscale
    img = Image.open(image_path).convert('L')
    img_array = np.array(img)

# Perform SVD
U, s, Vt = svd(img_array, full_matrices=False)

# Reconstruct with only n_components
U_reduced = U[:, :n_components]
s_reduced = s[:n_components]
Vt_reduced = Vt[:n_components, :]
```

```
# Reconstruct image
    compressed_img = np.dot(U_reduced, np.dot(np.diag(s_reduced), Vt_reduced))

# Calculate compression ratio
    original_size = img_array.shape[0] * img_array.shape[1]
    compressed_size = n_components * (img_array.shape[0] + img_array.shape[1] + 1)
    compression_ratio = original_size / compressed_size

    return compressed_img, compression_ratio

# Example usage (replace with actual image path)
# compressed, ratio = compress_image_svd('sample_image.jpg', 50)
# print(f"Compression ratio: {ratio:.2f}")
```

1.2 Norms and Distance Metrics

Vector Norms - Mathematical Framework

L^p Norm Family:

```
||\mathbf{x}||_p = (\Sigma_i |x_i|^p)^{(1/p)}
```

Special Cases:

- L₁ norm (Manhattan): $||\mathbf{x}||_1 = \Sigma_i |x_i|$
- L₂ norm (Euclidean): $||\mathbf{x}||_2 = \sqrt{(\Sigma_i x_i^2)}$
- L ∞ norm (Max): $||\mathbf{x}|| \infty = \max_i |x_i|$

Applications in Machine Learning:

1. Regularization:

```
import numpy as np

class RegularizedLinearRegression:
    """
    Linear regression with L1 (Lasso) and L2 (Ridge) regularization
    Demonstrates the effect of different norms in regularization
    """

def __init__(self, regularization='ridge', alpha=1.0):
    self.regularization = regularization
    self.alpha = alpha
    self.weights = None

def fit(self, X, y):
    """
    Fit regularized linear regression
    """
    # Add bias term
    X_with_bias = np.c_[np.ones(X.shape[0]), X]

if self.regularization == 'ridge':
    # Ridge regression: (X^T X + αI)^(-1) X^T y
    A = X_with_bias.T @ X_with_bias + self.alpha * np.eye(X_with_bias.shape[1])
```

```
b = X with bias.T @ y
            self.weights = np.linalg.solve(A, b)
        elif self.regularization == 'lasso':
            # Lasso regression using coordinate descent
            self.weights = self._coordinate_descent(X_with_bias, y)
    def _coordinate_descent(self, X, y, max_iter=1000, tol=1e-6):
        Coordinate descent for Lasso regression
        n_features = X.shape[1]
        weights = np.zeros(n_features)
        for iteration in range(max_iter):
            weights_old = weights.copy()
            for j in range(n_features):
                # Compute partial residual
                residual = y - X @ weights + weights[j] * X[:, j]
                rho = X[:, j] @ residual
                # Soft thresholding
                if rho > self.alpha:
                    weights[j] = (rho - self.alpha) / (X[:, j] @ X[:, j])
                elif rho < -self.alpha:
                    weights[j] = (rho + self.alpha) / (X[:, j] @ X[:, j])
                else:
                    weights[j] = 0
            # Check convergence
            if np.linalg.norm(weights - weights_old) < tol:
                break
        return weights
    def predict(self, X):
        0.00
        Make predictions
        X with bias = np.c [np.ones(X.shape[0]), X]
        return X_with_bias @ self.weights
# Comparison example
np.random.seed(42)
X = np.random.randn(100, 20) # 100 samples, 20 features
true_weights = np.zeros(20)
true_weights[:5] = [2, -1.5, 3, -2, 1] # Only 5 features are relevant
y = X @ true_weights + 0.1 * np.random.randn(100)
# Ridge regression
ridge = RegularizedLinearRegression('ridge', alpha=1.0)
ridge.fit(X, y)
# Lasso regression
lasso = RegularizedLinearRegression('lasso', alpha=0.1)
```

```
print("True weights (first 10):", true_weights[:10])
print("Ridge weights (first 10):", ridge.weights[1:11]) # Skip bias term
print("Lasso weights (first 10):", lasso.weights[1:11]) # Skip bias term
print("Lasso sparsity:", np.sum(np.abs(lasso.weights[1:]) < 1e-6))
```

Distance Metrics in ML

Minkowski Distance Family:

```
d(\mathbf{x}, \mathbf{y}) = (\Sigma_i | x_i - y_i | p)^{(1/p)}
```

Special Cases and Applications:

1. K-Means Clustering with Different Distance Metrics:

```
import numpy as np
from sklearn.datasets import make_blobs
class KMeansCustomDistance:
    K-Means clustering with custom distance metrics
    Demonstrates impact of distance choice on clustering
    def __init__(self, k=3, max_iters=100, distance_metric='euclidean'):
        self.k = k
        self.max_iters = max_iters
        self.distance_metric = distance_metric
    def _distance(self, x1, x2):
        Compute distance based on chosen metric
        if self.distance_metric == 'euclidean':
            return np.sqrt(np.sum((x1 - x2) ** 2))
        elif self.distance_metric == 'manhattan':
            return np.sum(np.abs(x1 - x2))
        elif self.distance metric == 'cosine':
            return 1 - np.dot(x1, x2) / (np.linalg.norm(x1) * np.linalg.norm(x2))
    def fit(self, X):
        Fit K-means clustering
        n_samples, n_features = X.shape
        # Initialize centroids randomly
        self.centroids = X[np.random.choice(n_samples, self.k, replace=False)]
        for _ in range(self.max_iters):
            # Assign points to closest centroid
            clusters = []
            for _ in range(self.k):
                clusters.append([])
```

```
for point in X:
                distances = [self._distance(point, centroid) for centroid in self.centroi
                cluster idx = np.argmin(distances)
                clusters[cluster_idx].append(point)
            # Update centroids
            prev_centroids = self.centroids.copy()
            for i in range(self.k):
                if clusters[i]: # Avoid empty clusters
                    self.centroids[i] = np.mean(clusters[i], axis=0)
            # Check for convergence
            if np.allclose(prev_centroids, self.centroids):
                break
        self.clusters = clusters
        return self
    def predict(self, X):
        Predict cluster assignments for new data
        predictions = []
        for point in X:
            distances = [self._distance(point, centroid) for centroid in self.centroids]
            predictions.append(np.argmin(distances))
        return np.array(predictions)
# Generate sample data
X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)
# Compare different distance metrics
metrics = ['euclidean', 'manhattan', 'cosine']
results = {}
for metric in metrics:
    kmeans = KMeansCustomDistance(k=4, distance_metric=metric)
    kmeans.fit(X)
    predictions = kmeans.predict(X)
    results[metric] = {
        'centroids': kmeans.centroids,
        'predictions': predictions
    print(f"{metric.capitalize()} clustering completed")
```

Chapter 2: Calculus & Optimization Theory

2.1 Derivatives and Gradients in Machine Learning

Partial Derivatives - Foundation of ML Optimization

For multivariate function $f(x_1, x_2, ..., x_n)$, the partial derivative with respect to x_i :

$$\partial f/\partial x_i = \lim_{h\to 0} [f(x_1,...,x_{i+h},...,x_n) - f(x_1,...,x_i,...,x_n)] / h$$

Gradient Vector:

```
\nabla f = [\partial f/\partial x_1,\,\partial f/\partial x_2,\,...,\,\partial f/\partial x_n]^{\top}
```

Geometric Interpretation: The gradient points in the direction of steepest increase of the function.

Chain Rule - Backbone of Backpropagation

```
For composite function f(g(x)):

df/dx = (df/dg)(dg/dx)
```

Multivariate Chain Rule:

```
For f(u_1(x_1,...,x_n), u_2(x_1,...,x_n), ..., u_m(x_1,...,x_n)):

\partial f/\partial x_i = \sum_j (\partial f/\partial u_j)(\partial u_j/\partial x_i)
```

Neural Network Application:

```
import numpy as np
class NeuralNetworkGradients:
   Neural network implementation with detailed gradient computation
    Demonstrates chain rule application in backpropagation
   0.00
   def __init__(self, layers):
        Initialize network with specified layer sizes
        layers: list of integers representing neurons in each layer
        0.00
        self.layers = layers
        self.weights = []
        self.biases = []
        # Initialize weights and biases
        for i in range(len(layers) - 1):
            W = np.random.randn(layers[i+1], layers[i]) * np.sqrt(2.0 / layers[i])
           b = np.zeros((layers[i+1], 1))
            self.weights.append(W)
            self.biases.append(b)
   def sigmoid(self, z):
        """Sigmoid activation function"""
        return 1 / (1 + np.exp(-np.clip(z, -250, 250)))
```

```
def sigmoid derivative(self, z):
    """Derivative of sigmoid function"""
    s = self.sigmoid(z)
    return s * (1 - s)
def relu(self, z):
    """ReLU activation function"""
    return np.maximum(0, z)
def relu_derivative(self, z):
    """Derivative of ReLU function"""
    return (z > 0).astype(float)
def forward_pass(self, X):
    Forward pass with detailed intermediate storage
    X: input data (features × samples)
    self.activations = [X] # Store all activations
    self.z_values = [] # Store all pre-activation values
    A = X
    for i in range(len(self.weights)):
        Z = np.dot(self.weights[i], A) + self.biases[i]
        self.z_values.append(Z)
        # Apply activation function (ReLU for hidden, sigmoid for output)
        if i == len(self.weights) - 1: # Output layer
           A = self.sigmoid(Z)
        else: # Hidden layers
           A = self.relu(Z)
        self.activations.append(A)
    return A
def backward_pass(self, X, y, learning_rate=0.01):
    Backward pass with detailed gradient computation
    m = X.shape[1] # Number of samples
    # Initialize gradient storage
    dW = [np.zeros_like(w) for w in self.weights]
    db = [np.zeros_like(b) for b in self.biases]
    # Output layer error (derivative of cost w.r.t. output)
    dA = -(y / self.activations[-1] - (1 - y) / (1 - self.activations[-1]))
    # Backpropagate through all layers
    for 1 in reversed(range(len(self.weights))):
        # Current layer pre-activation
        Z = self.z_values[1]
       # Gradient of cost w.r.t. pre-activation
        if l == len(self.weights) - 1: # Output layer
```

```
dZ = dA * self.sigmoid derivative(Z)
            else: # Hidden layers
                dZ = dA * self.relu_derivative(Z)
            # Gradients w.r.t. weights and biases
            dW[1] = (1/m) * np.dot(dZ, self.activations[1].T)
            db[1] = (1/m) * np.sum(dZ, axis=1, keepdims=True)
            # Gradient w.r.t. previous layer activation
            if 1 > 0:
                dA = np.dot(self.weights[1].T, dZ)
        # Update parameters
        for i in range(len(self.weights)):
            self.weights[i] -= learning_rate * dW[i]
            self.biases[i] -= learning_rate * db[i]
        return dW, db
    def compute_cost(self, predictions, y):
        Binary cross-entropy cost function
        m = y.shape[1]
        cost = -(1/m) * np.sum(y * np.log(predictions + 1e-8) +
                              (1 - y) * np.log(1 - predictions + 1e-8))
        return cost
# Example usage and gradient verification
def numerical_gradient(f, x, h=1e-5):
    Compute numerical gradient for gradient checking
    grad = np.zeros_like(x)
    it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
    while not it.finished:
        idx = it.multi index
        old_value = x[idx]
        x[idx] = old value + h
        fxh_pos = f(x)
        x[idx] = old_value - h
        fxh_neg = f(x)
        grad[idx] = (fxh_pos - fxh_neg) / (2 * h)
        x[idx] = old value
        it.iternext()
    return grad
# Create sample dataset
np.random.seed(42)
X = np.random.randn(2, 100) # 2 features, 100 samples
y = ((X[0] + X[1]) \> 0).astype(int).reshape(1, -1) # XOR-like problem
```

```
# Initialize and train network
nn = NeuralNetworkGradients([2, 4, 1])

print("Training neural network with gradient computation...")
for epoch in range(1000):
    predictions = nn.forward_pass(X)
    dW, db = nn.backward_pass(X, y, learning_rate=0.1)

if epoch % 200 == 0:
    cost = nn.compute_cost(predictions, y)
    accuracy = np.mean((predictions > 0.5) == y) * 100
    print(f"Epoch {epoch}: Cost = {cost:.4f}, Accuracy = {accuracy:.1f}%")
```

2.2 Optimization Theory Deep Dive

Convex Optimization Fundamentals

Convex Function Definition:

```
A function f is convex if for all x, y in domain and \lambda \in [0,1]: f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)
```

First-Order Condition:

```
f is convex \iff f(y) \geq f(x) + \nablaf(x)^{T}(y - x) for all x, y
```

Second-Order Condition:

f is convex $\iff \nabla^2 f(x) \ge 0$ (Hessian is positive semidefinite)

Gradient Descent Variants - Mathematical Analysis

1. Batch Gradient Descent:

```
\theta_{t+1} = \theta_t - \alpha \nabla J(\theta_t)
```

Convergence Analysis:

For convex function with Lipschitz gradient (L-smooth): $J(\theta_t) - J(\theta^*) \le (||\theta_0 - \theta^*||^2)/(2\alpha t)$ for $\alpha \le 1/L$

```
import numpy as np
import matplotlib.pyplot as plt

class OptimizationComparison:
    """
    Comprehensive comparison of optimization algorithms
    with convergence analysis and visualization
    """

def __init__(self, objective_func, gradient_func, hessian_func=None):
    self.objective_func = objective_func
    self.gradient_func = gradient_func
    self.hessian_func = hessian_func

def batch_gradient_descent(self, x0, learning_rate=0.01, max_iter=1000, tol=1e-6):
```

```
"""Standard batch gradient descent"""
    x = x0.copy()
    history = [x.copy()]
    costs = [self.objective_func(x)]
    for i in range(max_iter):
        grad = self.gradient_func(x)
        x = x - learning_rate * grad
        history.append(x.copy())
       costs.append(self.objective_func(x))
        if np.linalg.norm(grad) < tol:
            break
    return np.array(history), np.array(costs)
def momentum_gradient_descent(self, x0, learning_rate=0.01, momentum=0.9,
                             max_iter=1000, tol=1e-6):
    """Gradient descent with momentum"""
    x = x0.copy()
    v = np.zeros_like(x) # velocity
    history = [x.copy()]
    costs = [self.objective_func(x)]
    for i in range(max_iter):
        grad = self.gradient_func(x)
       v = momentum * v + learning_rate * grad
        x = x - v
        history.append(x.copy())
        costs.append(self.objective\_func(x))
        if np.linalg.norm(grad) < tol:
            break
    return np.array(history), np.array(costs)
def adagrad(self, x0, learning_rate=0.1, eps=1e-8, max_iter=1000, tol=1e-6):
    """AdaGrad optimizer"""
    x = x0.copy()
    G = np.zeros_like(x) # Accumulated squared gradients
    history = [x.copy()]
    costs = [self.objective_func(x)]
    for i in range(max_iter):
        grad = self.gradient_func(x)
        G += grad ** 2
       x = x - learning_rate * grad / (np.sqrt(G) + eps)
        history.append(x.copy())
        costs.append(self.objective_func(x))
        if np.linalg.norm(grad) < tol:
            break
```

```
return np.array(history), np.array(costs)
def adam(self, x0, learning_rate=0.001, beta1=0.9, beta2=0.999,
         eps=1e-8, max_iter=1000, tol=1e-6):
    """Adam optimizer"""
    x = x0.copy()
    m = np.zeros_like(x) # First moment
    v = np.zeros_like(x) # Second moment
    history = [x.copy()]
    costs = [self.objective_func(x)]
    for t in range(1, max_iter + 1):
        grad = self.gradient_func(x)
        # Update biased first moment estimate
        m = beta1 * m + (1 - beta1) * grad
        # Update biased second raw moment estimate
        v = beta2 * v + (1 - beta2) * grad ** 2
        # Compute bias-corrected first moment estimate
       m_hat = m / (1 - beta1 ** t)
       # Compute bias-corrected second raw moment estimate
       v_{hat} = v / (1 - beta2 ** t)
        # Update parameters
        x = x - learning_rate * m_hat / (np.sqrt(v_hat) + eps)
       history.append(x.copy())
       costs.append(self.objective_func(x))
        if np.linalg.norm(grad) < tol:
            break
    return np.array(history), np.array(costs)
def newton_method(self, x0, max_iter=1000, tol=1e-6):
    """Newton's method (requires Hessian)"""
    if self.hessian_func is None:
        raise ValueError("Hessian function required for Newton's method")
    x = x0.copy()
    history = [x.copy()]
    costs = [self.objective_func(x)]
    for i in range(max_iter):
        grad = self.gradient_func(x)
        hess = self.hessian_func(x)
       \# Solve Hx = -g
       try:
            direction = np.linalg.solve(hess, -grad)
            x = x + direction
        except np.linalg.LinAlgError:
            print("Singular Hessian matrix")
            break
```

```
history.append(x.copy())
            costs.append(self.objective_func(x))
            if np.linalg.norm(grad) < tol:
                break
        return np.array(history), np.array(costs)
# Example: Optimize Rosenbrock function
def rosenbrock(x):
    """Rosenbrock function: f(x,y) = (a-x)^2 + b(y-x^2)^2"""
    a, b = 1, 100
    return (a - x[0])**2 + b * (x[1] - x[0]**2)**2
def rosenbrock_gradient(x):
    """Gradient of Rosenbrock function"""
    a, b = 1, 100
    dx = -2*(a - x[0]) - 4*b*x[0]*(x[1] - x[0]**2)
    dy = 2*b*(x[1] - x[0]**2)
    return np.array([dx, dy])
def rosenbrock_hessian(x):
    """Hessian of Rosenbrock function"""
    a, b = 1, 100
    h11 = 2 - 4*b*(x[1] - x[0]**2) + 8*b*x[0]**2
    h12 = -4*b*x[0]
    h21 = -4*b*x[0]
    h22 = 2*b
    return np.array([[h11, h12], [h21, h22]])
# Initialize optimization comparison
optimizer = OptimizationComparison(rosenbrock, rosenbrock_gradient, rosenbrock_hessian)
# Starting point
x0 = np.array([-1.0, 1.0])
# Run different optimizers
methods = {
    'Gradient Descent': lambda: optimizer.batch gradient descent(x0, 0.001, 5000),
    'Momentum': lambda: optimizer.momentum_gradient_descent(x0, 0.001, 0.9, 5000),
    'AdaGrad': lambda: optimizer.adagrad(x0, 0.1, max iter=5000),
    'Adam': lambda: optimizer.adam(x0, 0.01, max_iter=5000),
    'Newton': lambda: optimizer.newton_method(x0, 100)
}
results = {}
for name, method in methods.items():
    try:
        history, costs = method()
        results[name] = {'history': history, 'costs': costs}
        final_point = history[-1]
        final_cost = costs[-1]
        iterations = len(costs) - 1
        print(f"{name}: Final point = [{final_point[0]:.4f}, {final_point[1]:.4f}], "
              f"Final cost = {final_cost:.6f}, Iterations = {iterations}")
```

```
except Exception as e:
    print(f"{name} failed: {e}")
```

Line Search Methods

Wolfe Conditions:

```
For step size \alpha, require:
```

- 1. Sufficient decrease: $f(x + \alpha p) \le f(x) + c_1 \alpha \nabla f(x)^T p$
- 2. Curvature condition: $\nabla f(x + \alpha p)^T p \ge c_2 \nabla f(x)^T p$

where $0 < c_1 < c_2 < 1$

```
def backtracking_line_search(objective_func, gradient_func, x, direction,
                           alpha_init=1.0, rho=0.8, c=1e-4):
    0.00
    Backtracking line search satisfying Armijo condition
    alpha = alpha_init
    fx = objective\_func(x)
    grad_x = gradient_func(x)
    descent_condition = c * np.dot(grad_x, direction)
   while objective_func(x + alpha * direction) > fx + alpha * descent_condition:
        alpha *= rho
        if alpha < 1e-10: # Prevent infinite loop
            break
    return alpha
# Integration with gradient descent
class GradientDescentWithLineSearch:
    Gradient descent with adaptive step size using line search
    def __init__(self, objective_func, gradient_func):
        self.objective_func = objective_func
        self.gradient_func = gradient_func
    def optimize(self, x0, max_iter=1000, tol=1e-6):
        x = x0.copy()
        history = [x.copy()]
        costs = [self.objective_func(x)]
        for i in range(max_iter):
            grad = self.gradient_func(x)
            if np.linalg.norm(grad) < tol:
               break
            # Search direction (negative gradient)
            direction = -grad
```

Chapter 5: Linear & Logistic Regression (Complete Guide)

5.1 Linear Regression - Mathematical Foundation

Linear regression models the relationship between dependent variable y and independent variables X:

Simple Linear Regression:

$$y = \beta_0 + \beta_1 x + \epsilon$$

Multiple Linear Regression:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p + \varepsilon$$

Matrix Form:

$$y = X\beta + \varepsilon$$

where:

- $\mathbf{y} \in \mathbb{R}^n$: response vector
- $X \in \mathbb{R}^{n \times p}$: design matrix
- $\beta \in \mathbb{R}^p$: parameter vector
- $\mathbf{\epsilon} \in \mathbb{R}^n$: error vector

Ordinary Least Squares (OLS) Derivation

Objective Function:

Minimize: $RSS(\beta) = ||y - X\beta||^2$

Normal Equations:

 $\nabla RSS(\boldsymbol{\beta}) = -2X^{T}(\boldsymbol{y} - X\boldsymbol{\beta}) = 0$

Closed-Form Solution:

```
\hat{\boldsymbol{\beta}} = (X^TX)^{-1}X^Ty
```

Geometric Interpretation:

The OLS solution projects **y** onto the column space of X.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
import seaborn as sns
class LinearRegressionFromScratch:
    Complete implementation of linear regression with statistical analysis
    def __init__(self, fit_intercept=True):
        self.fit_intercept = fit_intercept
        self.coefficients = None
        self.intercept = None
        self.X train = None
        self.y_train = None
    def _add_intercept(self, X):
        """Add intercept column to design matrix"""
        return np.column_stack([np.ones(X.shape[0]), X])
    def fit(self, X, y):
        Fit linear regression using normal equations
        self.X_train = X.copy()
        self.y_train = y.copy()
        if self.fit intercept:
            X_with_intercept = self._add_intercept(X)
        else:
            X_{with_intercept} = X
        # Normal equations: \beta = (X^T X)^(-1) X^T y
        try:
            XtX = X_with_intercept.T @ X_with_intercept
            Xty = X_with_intercept.T @ y
            params = np.linalg.solve(XtX, Xty)
            if self.fit_intercept:
                self.intercept = params[0]
                self.coefficients = params[1:]
            else:
                self.intercept = 0
                self.coefficients = params
        except np.linalg.LinAlgError:
            # Use pseudoinverse if X^T X is singular
            params = np.linalg.pinv(X_with_intercept) @ y
```

```
if self.fit intercept:
            self.intercept = params[0]
            self.coefficients = params[1:]
        else:
            self.intercept = 0
            self.coefficients = params
    # Compute residuals and statistics
    self._compute_statistics(X, y)
def predict(self, X):
    """Make predictions"""
    return X @ self.coefficients + self.intercept
def _compute_statistics(self, X, y):
    """Compute regression statistics"""
    n, p = X.shape
    y_pred = self.predict(X)
    residuals = y - y_pred
    # Sum of squares
    self.tss = np.sum((y - np.mean(y))**2) # Total sum of squares
    self.rss = np.sum(residuals**2)  # Residual sum of squares
self.ess = self.tss - self.rss  # Explained sum of squares
    # R-squared
    self.r_squared = 1 - self.rss / self.tss
    self.adj_r_squared = 1 - (self.rss / (n - p - 1)) / (self.tss / (n - 1))
    # Standard errors
    self.mse = self.rss / (n - p - 1) # Mean squared error
    if self.fit intercept:
        X_with_intercept = self._add_intercept(X)
    else:
        X_{with_intercept} = X
    try:
        # Covariance matrix of coefficients
        XtX_inv = np.linalg.inv(X_with_intercept.T @ X_with_intercept)
        self.covariance matrix = self.mse * XtX inv
        self.standard_errors = np.sqrt(np.diag(self.covariance_matrix))
    except np.linalg.LinAlgError:
        self.covariance_matrix = None
        self.standard_errors = None
    # t-statistics and p-values
    if self.standard errors is not None:
        if self.fit_intercept:
            all_params = np.concatenate([[self.intercept], self.coefficients])
        else:
            all_params = self.coefficients
        self.t_statistics = all_params / self.standard_errors
        # p-values (two-tailed t-test)
        from scipy.stats import t
```

```
self.p values = 2 * (1 - t.cdf(np.abs(self.t statistics), df=n-p-1))
    self.residuals = residuals
def summary(self):
    """Print regression summary"""
    print("Linear Regression Summary")
    print("=" * 50)
    print(f"R-squared: {self.r squared:.4f}")
    print(f"Adjusted R-squared: {self.adj_r_squared:.4f}")
    print(f"Mean Squared Error: {self.mse:.4f}")
    print(f"Residual Standard Error: {np.sqrt(self.mse):.4f}")
    print("\nCoefficients:")
    if self.standard errors is not None:
        print(f"{'Variable':<12} {'Coefficient':&lt;12} {'Std Error':&lt;12} {'t-«
        print("-" * 65)
        if self.fit_intercept:
            print(f"{'Intercept':<12} {self.intercept:&lt;12.4f} {self.standard_e1
                  f"{self.t_statistics[0]:<10.4f} {self.p_values[0]:&lt;10.4f}")
        for i, coef in enumerate(self.coefficients):
            idx = i + 1 if self.fit intercept else i
            print(f"{'X' + str(i+1):<12} {coef:&lt;12.4f} {self.standard_errors[ic
                  f"{self.t statistics[idx]:<10.4f} {self.p values[idx]:&lt;10.4f}
    else:
        print(f"{'Intercept':<12} {self.intercept:.4f}")
        for i, coef in enumerate(self.coefficients):
            print(f"{'X' + str(i+1):<12} {coef:.4f}")
def plot_diagnostics(self):
    """Plot regression diagnostics"""
    fig, axes = plt.subplots(2, 2, figsize=(12, 10))
    y_pred = self.predict(self.X_train)
    # 1. Residuals vs Fitted
    axes[0, 0].scatter(y pred, self.residuals, alpha=0.6)
    axes[0, 0].axhline(y=0, color='r', linestyle='--')
    axes[0, 0].set xlabel('Fitted Values')
    axes[0, 0].set_ylabel('Residuals')
    axes[0, 0].set_title('Residuals vs Fitted')
    # 2. QQ plot of residuals
    from scipy.stats import probplot
    probplot(self.residuals, dist="norm", plot=axes[0, 1])
    axes[0, 1].set_title('Normal Q-Q Plot')
    # 3. Scale-Location plot
    standardized_residuals = self.residuals / np.sqrt(self.mse)
    axes[1, 0].scatter(y_pred, np.sqrt(np.abs(standardized_residuals)), alpha=0.6)
    axes[1, 0].set_xlabel('Fitted Values')
    axes[1, 0].set_ylabel('√|Standardized Residuals|')
    axes[1, 0].set_title('Scale-Location Plot')
```

```
# 4. Residuals vs Leverage
        if self.X_train.shape[1] == 1: # Only for simple regression
            axes[1, 1].hist(self.residuals, bins=20, alpha=0.7)
            axes[1, 1].set_xlabel('Residuals')
            axes[1, 1].set_ylabel('Frequency')
            axes[1, 1].set_title('Histogram of Residuals')
        else:
            axes[1, 1].text(0.5, 0.5, 'Leverage plot\nrequires additional\ncomputation',
                          transform=axes[1, 1].transAxes, ha='center', va='center')
            axes[1, 1].set_title('Residuals Distribution')
        plt.tight_layout()
        plt.show()
# Example with synthetic data
np.random.seed(42)
X, y = make_regression(n_samples=100, n_features=3, noise=10, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Fit custom linear regression
lr = LinearRegressionFromScratch()
lr.fit(X_train, y_train)
# Display results
lr.summary()
# Make predictions
y_pred_train = lr.predict(X_train)
y_pred_test = lr.predict(X_test)
# Evaluate performance
train_mse = np.mean((y_train - y_pred_train)**2)
test_mse = np.mean((y_test - y_pred_test)**2)
train_r2 = 1 - np.sum((y_train - y_pred_train)**2) / np.sum((y_train - np.mean(y_train))*
test_r2 = 1 - np.sum((y_test - y_pred_test)**2) / np.sum((y_test - np.mean(y_test))**2)
print(f"\nPerformance Metrics:")
print(f"Train MSE: {train_mse:.4f}, Train R2: {train_r2:.4f}")
print(f"Test MSE: {test_mse:.4f}, Test R2: {test_r2:.4f}")
# Plot diagnostics
lr.plot_diagnostics()
```

Regularized Linear Regression

Ridge Regression (L2 Regularization):

```
Minimize: ||\mathbf{y} - X\mathbf{\beta}||^2 + \lambda ||\mathbf{\beta}||^2
```

Closed-form solution:

$$\hat{\boldsymbol{\beta}}_{-}$$
ridge = $(X^{T}X + \lambda I)^{-1}X^{T}\boldsymbol{v}$

Lasso Regression (L1 Regularization):

```
Minimize: ||\mathbf{y} - X\mathbf{\beta}||^2 + \lambda ||\mathbf{\beta}||_1
```

Minimize: $||y - X\beta||^2 + \lambda_1 ||\beta||_1 + \lambda_2 ||\beta||^2$

```
class RegularizedRegression:
   Implementation of Ridge, Lasso, and Elastic Net regression
   with cross-validation for hyperparameter selection
   def __init__(self, reg_type='ridge', alpha=1.0, l1_ratio=0.5):
       self.reg type = reg type
       self.alpha = alpha
       self.l1_ratio = l1_ratio # For Elastic Net
       self.coefficients = None
       self.intercept = None
   def _soft_threshold(self, x, threshold):
        """Soft thresholding operator for Lasso"""
       return np.sign(x) * np.maximum(0, np.abs(x) - threshold)
    def fit_ridge(self, X, y):
       """Ridge regression using closed-form solution"""
       X = X - np.mean(X, axis=0)
       y_centered = y - np.mean(y)
       # Ridge solution: (X^T X + \alpha I)^{-1} X^T y
       XtX reg = X centered.T @ X centered + self.alpha * np.eye(X.shape[1])
       self.coefficients = np.linalg.solve(XtX_reg, X_centered.T @ y_centered)
       self.intercept = np.mean(y) - np.sum(self.coefficients * np.mean(X, axis=0))
   def fit_lasso(self, X, y, max_iter=1000, tol=1e-6):
        """Lasso regression using coordinate descent"""
       X_{centered} = X - np.mean(X, axis=0)
       y_{entered} = y - np.mean(y)
       n, p = X_centered.shape
       self.coefficients = np.zeros(p)
       # Precompute X^T X diagonal
       XtX_diag = np.sum(X_centered**2, axis=0)
       for iteration in range(max iter):
            coeffs_old = self.coefficients.copy()
            for j in range(p):
               # Partial residual
                residual = y_centered - X_centered @ self.coefficients + self.coefficient
               # Coordinate update
                rho = X centered[:, j] @ residual
                self.coefficients[j] = self._soft_threshold(rho, self.alpha) / XtX_diag[-
            # Check convergence
            if np.linalg.norm(self.coefficients - coeffs_old) < tol:
                break
```

```
self.intercept = np.mean(y) - np.sum(self.coefficients * np.mean(X, axis=0))
    def fit_elastic_net(self, X, y, max_iter=1000, tol=1e-6):
        """Elastic Net using coordinate descent"""
        X_{centered} = X - np.mean(X, axis=0)
        y_centered = y - np.mean(y)
        n, p = X_centered.shape
        self.coefficients = np.zeros(p)
        alpha_l1 = self.alpha * self.l1_ratio
        alpha_12 = self.alpha * (1 - self.l1_ratio)
        XtX_diag = np.sum(X_centered**2, axis=0) + alpha_12
        for iteration in range(max iter):
            coeffs_old = self.coefficients.copy()
            for j in range(p):
                residual = y_centered - X_centered @ self.coefficients + self.coefficient
                rho = X_centered[:, j] @ residual
                self.coefficients[j] = self._soft_threshold(rho, alpha_l1) / XtX_diag[j]
            if np.linalg.norm(self.coefficients - coeffs_old) < tol:
                break
        self.intercept = np.mean(y)
    def fit(self, X, y):
        """Fit the specified regression type"""
        if self.reg_type == 'ridge':
            self.fit_ridge(X, y)
        elif self.reg type == 'lasso':
            self.fit_lasso(X, y)
        elif self.reg_type == 'elastic_net':
            self.fit_elastic_net(X, y)
        else:
            raise ValueError("reg_type must be 'ridge', 'lasso', or 'elastic_net'")
    def predict(self, X):
        """Make predictions"""
        return X @ self.coefficients + self.intercept
# Cross-validation for hyperparameter selection
def cross_validate_regression(X, y, reg_type='ridge', alphas=None, cv_folds=5):
    Cross-validation for regularized regression hyperparameter selection
    if alphas is None:
        alphas = np.logspace(-3, 3, 50)
    n_{samples} = X.shape[0]
    fold_size = n_samples // cv_folds
    cv_scores = []
    for alpha in alphas:
```

```
fold scores = []
        for fold in range(cv folds):
            # Split data
            start_idx = fold * fold_size
            end_idx = start_idx + fold_size if fold < cv_folds - 1 else n_samples
            test_indices = list(range(start_idx, end_idx))
            train_indices = [i for i in range(n_samples) if i not in test_indices]
            X_train_fold = X[train_indices]
            y_train_fold = y[train_indices]
            X_test_fold = X[test_indices]
            y_test_fold = y[test_indices]
            # Fit model
            model = RegularizedRegression(reg_type=reg_type, alpha=alpha)
            model.fit(X_train_fold, y_train_fold)
            # Evaluate
            y_pred = model.predict(X_test_fold)
            mse = np.mean((y_test_fold - y_pred)**2)
            fold_scores.append(mse)
        cv_scores.append(np.mean(fold_scores))
    # Find best alpha
    best_idx = np.argmin(cv_scores)
    best_alpha = alphas[best_idx]
    best_score = cv_scores[best_idx]
    return best_alpha, best_score, cv_scores
# Example: Compare regularization methods
X, y = make_regression(n_samples=100, n_features=20, noise=0.1, random_state=42)
# Add some irrelevant features to demonstrate feature selection
X_irrelevant = np.random.randn(100, 30)
X_combined = np.column_stack([X, X_irrelevant])
# Cross-validation for each method
methods = ['ridge', 'lasso', 'elastic_net']
results = {}
for method in methods:
    best_alpha, best_score, cv_scores = cross_validate_regression(X_combined, y, method)
    results[method] = {
        'best_alpha': best_alpha,
        'best_score': best_score,
        'cv_scores': cv_scores
    }
    # Fit final model with best alpha
    model = RegularizedRegression(reg_type=method, alpha=best_alpha)
    model.fit(X_combined, y)
```

```
print(f"\n{method.upper()} Regression:")
print(f"Best alpha: {best_alpha:.4f}")
print(f"Best CV score (MSE): {best_score:.4f}")
print(f"Number of non-zero coefficients: {np.sum(np.abs(model.coefficients) > 1e-6
print(f"Coefficient norm: L1={np.sum(np.abs(model.coefficients)):.4f}, L2={np.linalg.
```

5.2 Logistic Regression - Complete Mathematical Treatment

Binary Logistic Regression

```
Logistic Function (Sigmoid): p(y=1|\mathbf{x}) = \sigma(\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta}) = 1/(1+e^{\wedge}(-\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta}))
Odds and Log-Odds: Odds = p/(1-p)
Log-Odds (Logit) = log(p/(1-p)) = \mathbf{x}^{\mathsf{T}}\boldsymbol{\beta}
Likelihood Function: L(\boldsymbol{\beta}) = \prod_{i=1}^{n} \left[p_i^{\wedge}(y_i) \times (1-p_i)^{\wedge}(1-y_i)\right]
Log-Likelihood: \ell(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left[y_i log(p_i) + (1-y_i) log(1-p_i)\right]
Gradient: \nabla \ell(\boldsymbol{\beta}) = X^{\mathsf{T}}(\mathbf{y} - \mathbf{p})
Hessian: \nabla^2 \ell(\boldsymbol{\beta}) = -X^{\mathsf{T}}WX
```

where W = diag($p_1(1-p_1)$, ..., $p_n(1-p_n)$)

```
import numpy as np
from scipy.optimize import minimize
from sklearn.datasets import make classification
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
class LogisticRegressionFromScratch:
    Complete implementation of logistic regression with detailed mathematics
    def __init__(self, fit_intercept=True, regularization=None, C=1.0, max_iter=1000, tol
        self.fit intercept = fit intercept
        self.regularization = regularization # None, '11', '12', 'elastic_net'
        self.C = C # Inverse of regularization strength
        self.max_iter = max_iter
        self.tol = tol
        self.coefficients = None
        self.intercept = None
        self.n_iter_ = None
    def _add_intercept(self, X):
```

```
"""Add intercept column"""
    return np.column_stack([np.ones(X.shape[0]), X])
def _sigmoid(self, z):
    """Sigmoid function with numerical stability"""
    z = np.clip(z, -250, 250) # Prevent overflow
    return 1 / (1 + np.exp(-z))
def _log_likelihood(self, beta, X, y):
    """Compute log-likelihood"""
    z = X @ beta
    p = self.\_sigmoid(z)
    # Add small epsilon to prevent log(0)
    eps = 1e-15
    p = np.clip(p, eps, 1 - eps)
    log_likelihood = np.sum(y * np.log(p) + (1 - y) * np.log(1 - p))
    # Add regularization
    if self.regularization == '12':
        penalty = 0.5 / self.C * np.sum(beta[1 if self.fit_intercept else 0:]**2)
        log_likelihood -= penalty
    elif self.regularization == '11':
        penalty = 1 / self.C * np.sum(np.abs(beta[1 if self.fit_intercept else 0:]))
        log_likelihood -= penalty
    return -log_likelihood # Return negative for minimization
def _gradient(self, beta, X, y):
    """Compute gradient of log-likelihood"""
    z = X @ beta
    p = self.\_sigmoid(z)
    gradient = X.T @ (p - y)
    # Add regularization
    if self.regularization == '12':
        reg_gradient = beta / self.C
        if self.fit_intercept:
            reg_gradient[0] = 0 # Don't regularize intercept
        gradient += reg gradient
    elif self.regularization == '11':
        reg_gradient = np.sign(beta) / self.C
        if self.fit_intercept:
            reg_gradient[0] = 0
        gradient += reg_gradient
    return gradient
def _hessian(self, beta, X, y):
    """Compute Hessian matrix"""
    z = X @ beta
    p = self.\_sigmoid(z)
    W = np.diag(p * (1 - p))
    hessian = X.T @ W @ X
```

```
# Add regularization
    if self.regularization == 'l2':
        reg_hessian = np.eye(len(beta)) / self.C
        if self.fit_intercept:
            reg_hessian[0, 0] = 0
       hessian += reg_hessian
    return hessian
def _newton_raphson(self, X, y):
    """Newton-Raphson optimization"""
    # Initialize parameters
    n_features = X.shape[1]
    beta = np.zeros(n_features)
    for i in range(self.max_iter):
        gradient = self._gradient(beta, X, y)
        hessian = self._hessian(beta, X, y)
       # Newton-Raphson update
       try:
            delta = np.linalg.solve(hessian, gradient)
            beta_new = beta - delta
            # Check convergence
            if np.linalg.norm(delta) < self.tol:
                self.n_iter_ = i + 1
                break
            beta = beta_new
        except np.linalg.LinAlgError:
            # Fall back to gradient descent if Hessian is singular
            learning_rate = 0.01
            beta = beta - learning_rate * gradient
    return beta
def _irls(self, X, y):
    """Iteratively Reweighted Least Squares"""
    n samples, n features = X.shape
    beta = np.zeros(n_features)
    for i in range(self.max_iter):
        z = X @ beta
        p = self.\_sigmoid(z)
        # Weights matrix
       W = np.diag(p * (1 - p) + 1e-8) # Add small epsilon for stability
       # Working response
        eta = z + np.linalg.solve(W, y - p)
        # Weighted least squares update
        try:
            XtWX = X.T @ W @ X
```

```
if self.regularization == '12':
                XtWX += np.eye(n_features) / self.C
                if self.fit intercept:
                    XtWX[0, 0] -= 1 / self.C
           XtWeta = X.T @ W @ eta
            beta_new = np.linalg.solve(XtWX, XtWeta)
           # Check convergence
            if np.linalg.norm(beta_new - beta) < self.tol:
                self.n_iter_ = i + 1
                break
            beta = beta_new
        except np.linalg.LinAlgError:
            print("IRLS failed, using gradient descent")
            gradient = self._gradient(beta, X, y)
            beta = beta - 0.01 * gradient
   return beta
def fit(self, X, y, method='newton_raphson'):
   Fit logistic regression
   Methods:
   - 'newton_raphson': Newton-Raphson method
    - 'irls': Iteratively Reweighted Least Squares
    - 'scipy': Use scipy optimization
   # Prepare data
   if self.fit intercept:
        X_with_intercept = self._add_intercept(X)
   else:
       X_with_intercept = X.copy()
   # Fit model using specified method
   if method == 'newton raphson':
        beta = self._newton_raphson(X_with_intercept, y)
   elif method == 'irls':
        beta = self._irls(X_with_intercept, y)
   elif method == 'scipy':
        # Use scipy's optimization
        beta_init = np.zeros(X_with_intercept.shape[1])
        result = minimize(
            fun=self._log_likelihood,
            x0=beta init,
            args=(X_with_intercept, y),
            jac=self._gradient,
           method='BFGS',
           options={'maxiter': self.max_iter}
        beta = result.x
        self.n_iter_ = result.nit
```

```
# Store parameters
    if self.fit_intercept:
        self.intercept = beta[0]
        self.coefficients = beta[1:]
    else:
        self.intercept = 0
        self.coefficients = beta
def predict proba(self, X):
    """Predict class probabilities"""
    z = X @ self.coefficients + self.intercept
    p = self. sigmoid(z)
    return np.column_stack([1 - p, p])
def predict(self, X):
    """Predict binary classes"""
    return (self.predict_proba(X)[:, 1] >= 0.5).astype(int)
def score(self, X, y):
    """Compute accuracy score"""
    y_pred = self.predict(X)
    return np.mean(y_pred == y)
def summary(self, X, y, feature_names=None):
    """Print model summary with statistical tests"""
    print("Logistic Regression Summary")
    print("=" * 50)
    # Compute statistics
    if self.fit intercept:
        X_with_intercept = self._add_intercept(X)
        all_params = np.concatenate([[self.intercept], self.coefficients])
        param_names = ['Intercept'] + (feature_names if feature_names else [f'X{i}' j
    else:
       X_{with_intercept} = X
        all_params = self.coefficients
        param_names = feature_names if feature_names else [f'X{i}' for i in range(ler
    # Standard errors from Hessian
    try:
        hessian = self. hessian(all params, X with intercept, y)
        covariance_matrix = np.linalg.inv(hessian)
        standard_errors = np.sqrt(np.diag(covariance_matrix))
        # Wald statistics
        z_scores = all_params / standard_errors
       # p-values (two-tailed)
        from scipy.stats import norm
        p_values = 2 * (1 - norm.cdf(np.abs(z_scores)))
        print(f"{'Variable':<12} {'Coefficient':&lt;12} {'Std Error':&lt;12} {'z-s
        print("-" * 85)
        for i, (name, coef, se, z, p) in enumerate(zip(param_names, all_params, stance)
            ci lower = coef - 1.96 * se
```

```
ci upper = coef + 1.96 * se
                                 ci_str = f"[{ci_lower:.3f}, {ci_upper:.3f}]"
                                 print(f"{name:<12} {coef:&lt;12.4f} {se:&lt;12.4f} {z:&lt;10.4f} {p:&l
                except np.linalg.LinAlgError:
                         print("Could not compute standard errors (singular Hessian)")
                         for name, coef in zip(param_names, all_params):
                                 print(f"{name:<12} {coef:.4f}")
                # Model fit statistics
                y_pred_proba = self.predict_proba(X)[:, 1]
                log_likelihood = -self._log_likelihood(all_params, X_with_intercept, y)
                # Null model (intercept only)
                p_null = np.mean(y)
                null_log_likelihood = np.sum(y * np.log(p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - p_null + 1e-15) + (1 - y) * np.log(1 - y) * np.log(
                # Pseudo R-squared measures
                mcfadden_r2 = 1 - log_likelihood / null_log_likelihood
                print(f"\nModel Fit Statistics:")
                print(f"Log-Likelihood: {log_likelihood:.4f}")
                print(f"Null Log-Likelihood: {null_log_likelihood:.4f}")
                print(f"McFadden's R2: {mcfadden r2:.4f}")
                print(f"Number of iterations: {self.n_iter_}")
# Example usage with detailed analysis
print("Generating classification dataset...")
X, y = make_classification(n_samples=1000, n_features=5, n_informative=3,
                                                      n_redundant=1, n_clusters_per_class=1, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Compare different optimization methods
methods = ['newton_raphson', 'irls', 'scipy']
feature_names = [f'Feature_{i+1}' for i in range(X.shape[1])]
for method in methods:
        print(f"\n{'='*60}")
        print(f"METHOD: {method.upper()}")
        print('='*60)
        # Fit model
        lr = LogisticRegressionFromScratch(regularization='12', C=1.0)
        lr.fit(X_train, y_train, method=method)
        # Display summary
        lr.summary(X_train, y_train, feature_names)
        # Evaluate performance
        train_accuracy = lr.score(X_train, y_train)
        test_accuracy = lr.score(X_test, y_test)
        print(f"\nPerformance:")
        print(f"Training Accuracy: {train_accuracy:.4f}")
        print(f"Test Accuracy: {test accuracy:.4f}")
```

Multinomial Logistic Regression

For K classes, multinomial logistic regression uses:

Softmax Function:

```
P(y=k|\mathbf{x}) = \exp(\mathbf{x}^T \boldsymbol{\beta}_k) / \Sigma_{i=1}^K \exp(\mathbf{x}^T \boldsymbol{\beta}_j)
```

Log-Likelihood:

$$\ell(\boldsymbol{\beta}) = \sum_{i} \sum_{k} I(y_i = k) \log P(y_i = k | \mathbf{x}_i)$$

```
class MultinomialLogisticRegression:
   Multinomial (multi-class) logistic regression implementation
   def __init__(self, max_iter=1000, learning_rate=0.01, regularization=None, C=1.0):
        self.max_iter = max_iter
        self.learning_rate = learning_rate
        self.regularization = regularization
        self.C = C
        self.weights = None
        self.classes_ = None
   def _softmax(self, z):
        """Softmax function with numerical stability"""
        exp_z = np.exp(z - np.max(z, axis=1, keepdims=True))
        return exp_z / np.sum(exp_z, axis=1, keepdims=True)
   def _one_hot_encode(self, y):
        """Convert labels to one-hot encoding"""
        n_{samples} = len(y)
        n_classes = len(self.classes_)
        y_encoded = np.zeros((n_samples, n_classes))
        for i, class_label in enumerate(y):
            class_idx = np.where(self.classes_ == class_label)[0][0]
            y_{encoded[i, class_idx] = 1
        return y encoded
   def fit(self, X, y):
        """Fit multinomial logistic regression"""
        n_samples, n_features = X.shape
        self.classes_ = np.unique(y)
        n_classes = len(self.classes_)
        # Add intercept term
        X_with_intercept = np.column_stack([np.ones(n_samples), X])
        # Initialize weights
        self.weights = np.random.normal(0, 0.01, (X_with_intercept.shape[1], n_classes))
        # One-hot encode labels
        y_encoded = self._one_hot_encode(y)
        # Gradient descent
```

```
for iteration in range(self.max_iter):
            # Forward pass
            z = X with intercept @ self.weights
            predictions = self._softmax(z)
            # Compute gradients
            gradient = X_with_intercept.T @ (predictions - y_encoded) / n_samples
            # Add regularization
            if self.regularization == '12':
                reg_gradient = self.weights / self.C
                reg_gradient[0, :] = 0 # Don't regularize intercept
                gradient += reg_gradient
            # Update weights
            self.weights -= self.learning_rate * gradient
    def predict proba(self, X):
        """Predict class probabilities"""
        n_{samples} = X.shape[0]
        X_with_intercept = np.column_stack([np.ones(n_samples), X])
        z = X_with_intercept @ self.weights
        return self._softmax(z)
    def predict(self, X):
        """Predict classes"""
        probabilities = self.predict proba(X)
        class_indices = np.argmax(probabilities, axis=1)
        return self.classes_[class_indices]
    def score(self, X, y):
        """Compute accuracy"""
        y_pred = self.predict(X)
        return np.mean(y_pred == y)
# Example with multi-class dataset
from sklearn.datasets import make_classification
X_multi, y_multi = make_classification(n_samples=1000, n_features=4, n_informative=3,
                                      n_classes=3, n_clusters_per_class=1, random_state=4
X_train_multi, X_test_multi, y_train_multi, y_test_multi = train_test_split(
    X_multi, y_multi, test_size=0.2, random_state=42
# Fit multinomial logistic regression
mlr = MultinomialLogisticRegression(max_iter=2000, learning_rate=0.1, regularization='12'
mlr.fit(X_train_multi, y_train_multi)
# Evaluate
train_acc_multi = mlr.score(X_train_multi, y_train_multi)
test_acc_multi = mlr.score(X_test_multi, y_test_multi)
print(f"\nMultinomial Logistic Regression Results:")
print(f"Number of classes: {len(mlr.classes_)}")
print(f"Classes: {mlr.classes }")
```

```
print(f"Training Accuracy: {train_acc_multi:.4f}")
print(f"Test Accuracy: {test_acc_multi:.4f}")

# Show class probabilities for first 5 test samples
probabilities = mlr.predict_proba(X_test_multi[:5])
print(f"\nSample Predictions (First 5 test samples):")
print(f"{'Sample':<8} {'True':&lt;6} {'Pred':&lt;6} {'Prob Class 0':&lt;12} {'Prob Claprint("-" * 70)
predictions = mlr.predict(X_test_multi[:5])
for i in range(5):
    true_label = y_test_multi[i]
    pred_label = predictions[i]
    probs = probabilities[i]
    print(f"{i+1:&lt;8} {true_label:&lt;6} {pred_label:&lt;6} {probs[0]:&lt;12.4f} {probs[0]:&
```

5.3 Case Study: Predicting Customer Churn

```
# Generate realistic customer churn dataset
np.random.seed(42)
def generate_churn_dataset(n_customers=5000):
    Generate realistic customer churn dataset
    # Customer features
    tenure = np.random.exponential(24, n customers) # months
    monthly_charges = np.random.normal(65, 20, n_customers)
    total_charges = tenure * monthly_charges + np.random.normal(0, 100, n_customers)
    # Contract type (0: month-to-month, 1: one year, 2: two year)
    contract = np.random.choice([0, 1, 2], n_customers, p=[0.5, 0.3, 0.2])
    # Services
    internet service = np.random.choice([0, 1], n customers, p=[0.2, 0.8])
    streaming_tv = np.random.choice([0, 1], n_customers, p=[0.4, 0.6])
    tech_support = np.random.choice([0, 1], n_customers, p=[0.6, 0.4])
    # Customer satisfaction (1-5 scale)
    satisfaction = np.random.choice([1, 2, 3, 4, 5], n_customers, p=[0.1, 0.15, 0.3, 0.3,
    # Create churn probability based on features
    churn_prob = (
        0.1 + # Base probability
        0.3 * (tenure < 6) / 100 + # New customers more likely to churn
        0.2 * (monthly_charges > 80) / 100 + # High charges increase churn
        0.15 * (contract == 0) + # Month-to-month contracts
        0.1 * (satisfaction <= 2) + # Low satisfaction
        -0.05 * tech_support # Tech support reduces churn
    )
    # Generate churn labels
    churn = np.random.binomial(1, np.clip(churn_prob, 0, 1), n_customers)
    # Combine features
    features = np.column stack([
```

```
tenure, monthly_charges, total_charges, contract,
        internet_service, streaming_tv, tech_support, satisfaction
    ])
    feature_names = [
        'tenure', 'monthly_charges', 'total_charges', 'contract_type',
        'internet_service', 'streaming_tv', 'tech_support', 'satisfaction'
    ]
    return features, churn, feature_names
# Generate dataset
X_churn, y_churn, feature_names_churn = generate_churn_dataset(5000)
# Split data
X_train_churn, X_test_churn, y_train_churn, y_test_churn = train_test_split(
    X_churn, y_churn, test_size=0.2, stratify=y_churn, random_state=42
)
print("Customer Churn Prediction Case Study")
print("=" * 50)
print(f"Dataset shape: {X_churn.shape}")
print(f"Churn rate: {np.mean(y_churn):.2%}")
print(f"Features: {feature_names_churn}")
# Standardize features
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train_churn)
X_test_scaled = scaler.transform(X_test_churn)
# Fit logistic regression
lr_churn = LogisticRegressionFromScratch(regularization='12', C=1.0)
lr_churn.fit(X_train_scaled, y_train_churn, method='scipy')
# Detailed analysis
print(f"\nModel Summary:")
lr_churn.summary(X_train_scaled, y_train_churn, feature_names_churn)
# Performance evaluation
from sklearn.metrics import confusion_matrix, classification_report, roc_auc_score, roc_a
y_pred_churn = lr_churn.predict(X_test_scaled)
y_pred_proba_churn = lr_churn.predict_proba(X_test_scaled)[:, 1]
print(f"\nPerformance Metrics:")
print(f"Accuracy: {lr_churn.score(X_test_scaled, y_test_churn):.4f}")
print(f"AUC-ROC: {roc_auc_score(y_test_churn, y_pred_proba_churn):.4f}")
print(f"\nConfusion Matrix:")
cm = confusion_matrix(y_test_churn, y_pred_churn)
print(cm)
print(f"\nClassification Report:")
print(classification_report(y_test_churn, y_pred_churn, target_names=['No Churn', 'Churn'
```

```
# Feature importance (coefficient magnitudes)
print(f"\nFeature Importance (Coefficient Magnitudes):")
feature_importance = np.abs(lr_churn.coefficients)
sorted_idx = np.argsort(feature_importance)[::-1]

for i in sorted_idx:
    direction = "increases" if lr_churn.coefficients[i] > 0 else "decreases"
    print(f"{feature_names_churn[i]:<20}: {feature_importance[i]:.4f} ({direction} chu

# Business insights
print(f"\nBusiness Insights:")
print(f"1. Contract type has major impact - month-to-month customers much more likely to
print(f"2. Customer satisfaction is crucial - low scores strongly predict churn")
print(f"3. Tech support reduces churn probability")
print(f"4. New customers (low tenure) are at higher risk")
print(f"5. High monthly charges increase churn risk")
```

This comprehensive implementation demonstrates:

- 1. Mathematical rigor Complete derivations and formulations
- 2. **Multiple algorithms** Various optimization approaches
- 3. Statistical analysis Standard errors, confidence intervals, hypothesis tests
- 4. Practical implementation Real-world case study with business insights
- 5. **Performance evaluation** Multiple metrics and diagnostic tools
- 6. **Code explanations** Detailed comments and mathematical foundations

The implementations show both the theoretical foundations and practical applications of linear and logistic regression with extensive statistical analysis and real-world case studies.