Introduction

4G LTE ARCHITECTURE

Network Components

- 1. UE (User Equipment): The device used by the end-user to access the 4G network (e.g., smartphone, tablet).
- 2. eNodeB (Evolved Node B): The base station that provides radio coverage and connectivity to the UE.
- 3. MME (Mobility Management Entity): Responsible for managing UE mobility, authentication, and bearer management.
- 4. SGW (Serving Gateway): Routes user data packets and manages bearer contexts.
- 5. PGW (Packet Data Network Gateway): Provides connectivity to external networks (e.g., internet) and manages QoS
- 6. Network Interfaces
- 1. S1: Interface between eNodeB and MME.
- 2. S5: Interface between SGW and PGW.
- 3. \$11: Interface between MME and SGW.

4G Network Architecture

- 1. Access Network: eNodeB provides radio access to UE.
- 2. Core Network: MME, SGW, and PGW manage UE mobility, data routing, and QoS.

Key Features

- 1. All-IP Network: 4G network is based on an all-IP architecture.
- Scalability: 4G network supports high-speed data services and large numbers of users.
- 3. Quality of Service (QoS): 4G network provides QoS mechanisms to ensure high-quality services.

Benefits-

- High-Speed Data: 4G network supports high-speed data services (up to 1 Gbps).
- 2. Low Latency: 4G network provides low latency (less than 50 ms).
- 3. Improved QoS: 4G network ensures high-quality services through QoS mechanisms.

Phase IX.2 4G Architecture and Plan for Transmission

4G Proposed Transmission Connectivity Scenario Haryana Circle -North Zone

Bandwidth requirement As per BTS Category

CAT A- Band 28 (700 MHz)

CAT B- Band 28 (700 MHz) + Band 1 (2100 MHz)

CAT C- Band 28 (700 MHz) + Band 41 (2500 MHz)

CAT D- Band 28 (700 MHz) + Band 1 (2100 MHz) + Band 41 (2500 MHz)

Category	CAT A	CAT B	CAT C	CAT D
Spectrum Type	CAT-A 2T2R FDD 700 MHz	CAT-B 2T2R FDD 700 MHz+ 2T2R FDD 2100 MHz//1800 MHz/850 MHz	CAT-C 2T2R FDD 700MHz + 4T4R TDD 2500MHz	CAT-D 2T2R FDD 700MHz + 2T2R FDD 2100/1800 MHz/850MHz + 4T4R TDD 2500MHz
Band	700	700 + 2100/1800/850	700+2500	700+2100/1800/850+2500
Type of Band	Single Band	Dual Band	Dual Band	Tri Band
Bandwidth(in Mbps)	300	600	900	1200

Site to Core Transmission connectivity

- eNB support 4 VLANs for 4 services, i.e. S1-C, S1-U, RAC-OAM and CEF-OAM
- Four different IP subnets and VLANs to be allocated to each Tejas eNB
- All eNBs to be terminated to BSNL Existing L3 Switch over 1G or 10G port Access network
- The gateway of each VLAN will reside on the BSNL L3 Switch.
- The VRF allocation to these subnets to happen as per below Table.

VLAN	IP Subnet	Service	VRF used on BSNL Router
VLAN-1 (S1-U)	Subnet-1 (S1-U)	S1-U	Media
VLAN-2 (S1-C)	Subnet-2 (S1-C)	\$1-C, X2	Signal
VLAN-3 (RAC OAM)	Subnet-3 (RAC OAM)	RAC OAM	OAM
VLAN-4 (CEF OAM)	Subnet-4 (CEF OAM)	CEF OAM, SYNC	OAM

IP Subnet	Service	VRF used on BSNL Router
Subnet-1 (S1-U)	S1-U	Media
Subnet-2 (S1-C)	S1-C	Signal
Subnet-3 (EMS)	RAC OAM, CEF OAM	OAM

Connectivity of site from BSNL transmission equipment

Tejas BBU (Base Band Unit)

Tejas BBU (Base Band Unit)

TJ1400 —Tejas: It is the combination of CEF Card, RAC Card, FTU and Power Unit

CEF Card:

RAC Card:

FTU:

CEF (Carrier Ethernet Fabric) – 12T

Ports	Supports	
P1	1G Electrical (Base-T)	
P2,P3	1G Optical	
P4, P5	1G/10GE Optical	

Interfaces

2*10G SFP+ 2*1GE SFP 1*10/100/1000Base-T 4*E1

Packet Fabric Capacity

46 Gbps

Ethernet OAM & Management

802.1ag Y.1731 SNMPv2/v3 LLDP Dual Stack (IPv4/IPv6) Management IP Ping and Traceroute Command Line Interface

Network Protection & Security

Static LAG (LACP) Dynamic LAG (LACP) ERPSv2 ACL

Synchronization

SyncE 1588v2*

Ethernet Switching

VIan (802.1q) UNI QinQ (802.1ad) UNI Flat QoS with 8 Queue SP + DWRR Scheduling Ingress Policing 802.1p to CoS Mapping Ethernet (untagged (PVID) C-tagged and S-tagged) Jumbo Frames up to 9616 bytes (in L2)

CEF (Carrier Ethernet Fabric) – 12

- CEF12 is purely controlling card function to provide backhaul to the particular enodeB w/o Transport.
- Only one 1G port (either 1G electrical or 1G Optical) will be available for interface 4G enodeB.
- Firmware for CEF12 supports max 1G payload. Which ever port activated 1st (Elect/Opt) will be used.
- ❖ Transport Functionality like ERPS ring formation or E1/1G drop for 2G/3G/Enterprise or Cascading will not be available with CEF12.
- ❖ By default, only one 1G optical SFP will be provided. Default P1 port can be used for 1G Electrical interface.

RAC Card

Ports	Interface	
3 CPRI Fiber ports to connect each	Port 1 – Sector 0 Port 2- Sector 1	
of the 3 RRHs	Port 3- Sector 2	
1 GiGe Ethernet Ports	Port 4 - Commissioning & Backhaul Onnectivity(Optional)	
UART	 For Developer Connectivity 	
Debug Port	For Developer Connectivity	

RAC - card specifications

Specification	Value
MTBF	33.05 Years
Input Voltage	12V nominal
Power Consumption	80W (typical) 100W (maximum)

Thank you

Adapt it with your needs and it will capture all the audience attention.