EMOTION STATE ANALYSIS OF AN INDIVIDUAL BASED ON HIS HANDWRITING AND DRAWING

A PROJECT REPORT FOR J COMPONENT

MACHINE LEARNING

(CSE4020)

Submitted to

PROF. SHARMILA BANU K

Submitted by

Swattik Maiti: 18BCE0995

Palak Kishore: 18BCE2312

School of Computer Science and Engineering

INTRODUCTION

Health care mainly relies on the early detection of illnesses, and clinical tests have been developed to diagnose diseases and follow their evolution. Among tests, those based on human activities such as speech, handwriting and body movements have the advantage of being non-invasive and are valuable tools for complementing clinical examination and laboratory analyses. In particular, simple pen and paper tests can detect cognitive impairments through handwriting: lack of legibility, jagging and perseveration of letters are well-known effects of Alzheimer (AD) and Parkinson (PD) diseases.

The importance of detecting early signs of illnesses can be extended to the detection of negative emotions since emotions such as depression, anxiety and stress influence health. In the present study we focus on stress. The most comprehensive definition of stress is "a negative emotional experience accompanied by predictable biochemical, physiological and behavioural changes". The causes of stress are extremely diverse, ranging from difficulties to handle everyday experiences and changes to traumatic events such as surviving to a natural disaster. Stress is one of the natural responses to changes and challenges of everyday life, however, when persisting over a long time period, they may contribute to serious health problems, such as heart disease, high blood pressure, diabetes, etc.

There exists multiple negative emotions such as depression, anxiety and stress, which are seen as distinct states but have largely overlapping clinical symptoms. In the present study we propose to detect stress through handwriting as it is a daily human activity. Our approach consists of using a dataset which was created by collecting individual's handwriting through a computerized platform and we will be predicting their emotional state through a machine-learning approach. The database used in this paper is called "EMOTHAW" (Emotion recognition from handwriting and drawing) which includes samples of participants whose emotional states are assessed by the Depression Anxiety Stress Scales (DASS) questionnaire.

Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean/average prediction (regression) of the individual trees. Random decision forests correct for decision trees' habit of overfitting to their training set.

A multilayer perceptron (MLP) is a class of feedforward artificial neural network (ANN). An MLP consists of at least three layers of nodes: an input layer, a hidden layer and an output layer. Except for the input nodes, each node is a neuron that uses a nonlinear activation function. MLP utilizes a supervised learning technique called backpropagation for training. Its multiple layers and non-linear activation distinguish MLP from a linear perceptron. It can distinguish data that is not linearly separable.

LITERATURE SURVEY

S.NO.	Author	Title	Abstract	Methodology
1.	Leimapokpam	Psychological	The objective of this project	The proposed methodology
	Dorendro Singh,	analysis based	is to develop a system that	focuses on developing a system
	Mutum	on handwriting	takes an image document	that can predict the personality
	Malemnganba,	pattern with	containing the handwriting	traits with the aid of machine
	Md Ameer	machine learning	of a person and output a	learning without human
	Humjah	(SVM)	few of his/her personality	intervention. To make this
			traits based on some	happen, they consider seven
			selected handwriting	handwriting features: (i) size of
			features. Carefully analyzing	letters, (ii) slant of the writing,
			all the significant	(iii) baseline, (iv) pen pressure,
			characteristics of a	(v) spacing between letters, (vi)
			handwriting manually is not	spacing between words and (vii)
			only time consuming but	top margin in a document to
			prone to errors as well.	predict eight personality traits of
			Automating the analysis on	a writer. After extracting all
			a few selected	these features from the image
			characteristics of	containing the handwriting,
			handwriting will speed up	eight support vector machines
			the process and reduce the	are trained which output each
			errors.	personality trait of the writer.
2.	Jesus Alberto	Handwriting	A person's handwriting is as	The algorithm applied is
	Martinez	Analysis using	unique as their personality,	Convolutional Neural Network
	Mendoza	Graphology &	which makes it tempting to	(ConvNet/CNN). In this
		Machine	connect the two.	algorithm, features are extracted
		Learning	Graphology is the analysis	in the convolutional layers,
			of the physical	where a kernel is passed over
			characteristics and patterns	the image to extract a certain feature. In the end result,
			of handwriting claiming to be able to identify the	multiple kernels learn all the
			writer, indicating the	features within a dataset, in
			psychological state at the	order to make classifications.
			time of writing, or	This solves the issue of feature
			evaluating personality	extraction in OCR methods.
			characteristics.	extraction in oct methods.
3.	Sol Simpson	OpenHandWrite-	OpenHandWrite is a suite of	Pen sample timing uses a parallel
J .	301311193011	Python tools for	programs designed to	event-handeling technology
		the recording	provide behavioural	(ioHub) that avoids quantising
		and analysis of	scientists with tools for	issues associated with windows
		handwriting	capturing and analysing pen	swap and USB polling, therefore
		captured via pen	movement. These programs	giving very accurate sample
		tablet type	provide accurately timed	timing and more or less no
		devices.	capture of pen movement	sample skipping.
			data from digitising tablets	
			and tabletPCs, and a	Integration into an existing
			markup and analysis tool	flexible and fully-featured
			that allows users to	experiment development
			manually segment the pen	environment ([PsychoPy])
			trace into meaningful units	
			(sentences, words, syllables,	
			letters, lines, strokes) and	
			then computes by-segment	
			summary statistics.	
4.	Sagarika	Handwriting	The project has been	Used SVM classifier to train a
	Ganguly	Analysis for	created with a GUI handle ,	supervised learning model.

		Personality Trait Detection	where you can do the	Analysis done with the help of HVM graphs built on Matlab.
		Detection	following: Browse the image of the handwriting you would like to detect the personality trait of. Perform Thresholding upon the browsed image (so that the image gets converted into a binary matrix where 1 is white and 0 is black) Feature Extraction button to view the features extracted, in the command window And finally, in the Classify button, you can view the results.	TVINI graphis built on Matiab.
5.	Deepak Kumar Jha, Sankalp Verma, Swattik Maiti, Shubhankar Shankar	Happy Hours - Employee Burn Rate Predictor	Happy Hours is an online web application that can manage the well-being status of the employees in a company through an interactive dashboard provided to the Human Resources department and also the Upper Management of the company. The web app can clearly demonstrate the status of the employees working there and how are they feeling with the amount of work put on them. In addition to this, the web app can identify a person's personality over 4 different axes by analyzing their publicly available social media posts. This can provide a deeper insight as to how well will they be able to cope with pressure.	This project implements 2 main models. 1) One Machine Learing model to predict the burnout rate of an employee given the basic information of the employee from a HR database. The Model implemented is a Linear Regression Model. 2) Our application also uses a Deep Learning model to perdict a person's personality. Personality is divided into 4 different axes of perosanilities. We have made 4 models with 4 different weights and biases for each of the personality traits using posts made by the user.

GAP IDENTIFIED

The topic of emotion analysis based on handwriting and drawing patterns is a fairly less explored topic. Hence any work towards this topic is unique. Previous papers have tried different datasets to create models to analyse this topic. Here we use EMOTHAW which is arguably the latest and best database drawing a relation between handwriting patterns and emotional state of individuals. In our project we try to draw out features that contribute to the mental stress of a person by utilizing EMOTHAW and come up with two different models to analyse the same. One of these is a neural network based model which shows promising results.

DATA COLLECTION

In this project, we have used EMOTHAW, the first publicly available database which relates emotional states to handwriting and drawing. We emailed the author of the paper "EMOTHAW: A Novel Database for Emotional State Recognition from Handwriting and Drawing" who granted us the permission to use the said dataset for non-commercial purposes only. The database we received contained samples of 129 participants whose emotional states, namely anxiety, depression, and stress, are assessed by the DASS questionnaire.

Seven tasks were recorded using INTUOS WACOM series 4 digitizing tablets and a special writing device named Intuos Inkpen, the tasks included drawing two pentagons and a house, words copied in handprint, drawing a clock and circles with right and left hand, and lastly, one sentence copied in cursive writing. Records consist in pen positions i.e. x-position and y-position, pen status i.e. on-paper and in-air, time stamp, pressure, pen azimuth, and altitude.

Fig: Writing and drawing samples collected from all tasks. Pen-down and pen-up data points are in black and blue, respectively.

17	796		y positi	on				altitude
	9076	34584	17606448	1	1870	560	45	artitude
49	9025	34608	17606456	1	1870	560	81	azimuth
x position 49	9009	34613	17606463	1	1870	560	157	
A position 48	3995	34614	17606478	1	1870	560	193	
48	3993	34614	17606486	1	1870	560	219	pen status: on paper
48	3993	34614	17606493	1	1860	560	246	
48	3993	34614	17606501	1	1860	550	284	
•••			••••	•••				
50	0786	33795	17606756	1	1900	550	305	
50	0727	33808	17606764	1	1900	540	130	— pen status: in air
50	0727	33808	17606771	0	1900	540	0	
50	0640	33840	17606779	0	1900	540	0	— time stamp
50	0621	33860	17606786	0	1900	540	0	
50	0619	33878	17606794	0	1900	540	0	
51	1032	33781	17607320	0	1940	510	0	
51	1032	33781	17607328	1	1940	510	84	pressure
51	1056	33773	17607336	1	1940	510	118	

Fig: Extract of an svc file corresponding to the pentagon drawing task.

Using EMOTHAW database, we created a new dataset which contained the following features

- 1. on-paper duration (pentagon)
- 2. on-paper duration (house)
- 3. total duration (clock)
- 4. total duration (cursive)
- 5. number of pen down strokes (cursive)
- 6. average pressure (cursive)

A drawing or writing task consists of a sequence of strokes which can be denoted by $\{s^{(1)}, s^{(2)}, \dots, s^{(2K+1)}\}$. In this context, an on-paper stroke corresponds to consecutive drawing points achieved without lifting the pen i.e. $\{s^{(2k+1)}\}_{k=0,\dots,K}$ is the set of on-paper strokes and K+1 is the number of on-paper strokes, an on-paper duration corresponds to the total time spent on paper while completing a task i.e. $\sum_{k=0}^K d(2k+1)$ and total duration corresponds to total time spent while completing a particular task i.e. $t^{(2K+1)}|_{s(2K+1)|} - t^{(1)}|_{s(2K+1)|}$ where t=time stamps and $d_i = t^{(i)}|_{s(i)}|_{s(i)} - t^{(i)}|_{s(i)}$.

	A	В	С	D	E	F	G	Н
1	On Paper Duration (pentagons)	On paper Duration (house)	total duration (clock)	total duration (cursive)	number of pen-down strokes (cursive)	Pressure average (cursive)	DASS Scores	Stress
2	7107	11023	21398	23531	33	297.58727	13	Normal
3	10152	14305	39205	26279	42	348.658005	21	Moderate
4	7350	10920	22215	25618	39	97.101751	17	Moderate
5	11236	9118	44864	23274	34	431.931921	17	Moderate
6	13971	19535	69047	30511	45	415.328375	27	Severe
7	9787	21296	36034	31219	41	229.998456	25	Moderate
8	15017	16775	34059	27007	44	299.951981	32	Severe
9	8485	21084	31387	27031	38	146.31625	35	Severe
10	9240	12393	24701	24720	42	283.69945	25	Moderate
11	3872	7800	58595	30735	52	230.202721	15	Normal
12								

Fig: Extracted Dataset

Our target variable is Stress which can be normal, moderate or severe depending on the DASS scores.

STRESS	DASS SCORE
Normal	0 - 16
Moderate	17 - 25
Severe	25+

TABLE: DASS score range according to emotional state level.

IMPLEMENTATION PROCESS

1. Importing the libraries

2. Loading the dataset

```
In [97]:
           data = pd.read_csv("final_ds2.csv")
Out[97]:
                              On Paper Duration (pentagons)
                                                 On paper Duration
                                                                        total duration
                                                                                          total duration
                                                                                                              number of pen-down
                                                                                                                                      Pressure average (cursive)
                                                                                                                                                              DASS
                Subject
                                                                                                                                                                        Stress
                                                                              (clock)
                                                                                                                  strokes (cursive)
                                                                                              (cursive)
                                                                                                                                             297.587270
                                          10152
                                                              14305
                                                                               39205
                                                                                                 26279
                                                                                                                               42
                                                                                                                                             348 658005
                                                                                                                                                                 21 Moderate
                                                                                                                               39
            2
                                                                               22215
                                                                                                                                             97.101751
                                          7350
                                                              10920
                                                                                                 25618
                                                                                                                                                                 17 Moderate
                                          11236
                                                                               44864
             4
                    33
                                          13971
                                                              19535
                                                                               69047
                                                                                                 30511
                                                                                                                               45
                                                                                                                                             415.328375
                                                                                                                                                                 27
                                                                                                                               41
                     34
                                           9787
                                                              21296
                                                                               36034
                                                                                                 31219
                                                                                                                                             229.998456
                                                                                                                                                                 25 Moderate
                     47
                                          15017
                                                              16775
                                                                               34059
                                                                                                 27007
                                                                                                                               44
                                                                                                                                             299.951981
                                                                                                                                                                 32
                    81
                                           8485
                                                              21084
                                                                               31387
                                                                                                 27031
                                                                                                                               38
                                                                                                                                             146 316250
                                                                                                                                                                 35
                                                                                                                                                                       Severe
             8
                    93
                                           9240
                                                              12393
                                                                               24701
                                                                                                                               42
                                                                                                                                                                 25 Moderate
                                                                                                 24720
                                                                                                                                            283.699450
                    125
                                           3872
                                                               7800
                                                                               58595
                                                                                                  30735
                                                                                                                               52
                                                                                                                                             230.202721
In [98]: data = data.drop('Subject',axis = 1)
data = data.drop('Pressure average (cursive)',axis = 1)
```

3. Feature Engineering

```
In [99]: data.info()
             <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 10 entries, 0 to 9
Data columns (total 7 columns):
# Column
                                                                       Non-Null Count Dtype
                  On Paper Duration (pentagons)
On paper Duration (house)
                                                                                             int64
int64
                                                                       10 non-null
                                                                       10 non-null
                   total duration (clock)
total duration (cursive)
                                                                       10 non-null
                                                                                             int64
                   number of pen-down strokes (cursive) 10 non-null
                                                                                             int64
                   DASS Scores
                                                                       10 non-null
                                                                                             int64
                                                                       10 non-null
                                                                                             object
            dtypes: int64(6), object(1) memory usage: 688.0+ bytes
```

4. Plotting the Heatmap

5. Label Encoding the target variable

In [102]:	<pre>#Label Encoding data['Stress'] = data['St data</pre>	ress'].replace({'Normal	':'1','Moderate':	'2', 'Severe':'3'})	
Out[102]:	On Paper Duration (pentagons	on paper Duration (house)	total duration (clock)	total duration (cursive)	number of pen-down strokes (cursive)	Stress
	0 710	7 11023	21398	23531	33	1
	1 1015	2 14305	39205	26279	42	2
	2 735	0 10920	22215	25618	39	2
	3 1123	6 9118	44864	23274	34	2
	4 1397	1 19535	69047	30511	45	3
	5 978	7 21296	36034	31219	41	2
	6 1501	7 16775	34059	27007	44	3
	7 848	5 21084	31387	27031	38	3
	8 924	0 12393	24701	24720	42	2
	9 387	2 7800	58595	30735	52	1

6. Separating the target variable and feature matrix

```
In [8]: y = data["Stress"]
Out[8]: 0
         Name: Stress, dtype: object
In [9]: X = data.drop('Stress',axis = 1)
Out[9]:
             On Paper Duration (pentagons) On paper Duration (house) total duration (clock) total duration (cursive) number of pen-down strokes (cursive)
          0
                                    7107
                                                            11023
                                                                               21398
                                                                                                     23531
                                                                                                                                          33
                                   10152
                                                            14305
                                                                               39205
                                                                                                     26279
                                                                                                                                           42
          2
                                    7350
                                                            10920
                                                                               22215
                                                                                                     25618
                                                                                                                                           39
                                   11236
                                                             9118
                                                                               44864
                                                                                                     23274
                                                                                                                                           34
                                   13971
                                                            19535
                                                                               69047
                                                                                                     30511
                                                                                                                                           45
                                    9787
                                                            21296
                                                                               36034
                                                                                                     31219
                                                                                                                                           41
          6
                                   15017
                                                            16775
                                                                               34059
                                                                                                     27007
                                                                                                                                           44
                                    8485
                                                            21084
                                                                               31387
                                                                                                     27031
                                                                                                                                           38
                                    9240
                                                            12393
                                                                               24701
                                                                                                     24720
                                                                                                                                           42\ctivate Wind
                                    3872
                                                             7800
                                                                               58595
                                                                                                     30735
                                                                                                                                           5210 to Settings to a
```

7. Scaling the features

```
In [10]: # Scaling
          scaler = preprocessing.StandardScaler().fit(X)
          X = scaler.transform(X)
In [11]: X=pd.DataFrame(X)
Out[11]:
                                       2
                                                3
           0 -0.807749 -0.719998 -1.129147 -1.242422 -1.528321
           1 0.170338 -0.025376 0.071075 -0.256094 0.191040
           2 -0.729695 -0.741797 -1.074080 -0.493344 -0.382080
           3 0.518531 -1.123183 0.452501 -1.334666 -1.337281
              1.397043 1.081531 2.082476 1.262881 0.764161
             0.053096
                      1.454239 -0.142656 1.517001
                                                   0.000000
             1.733029 0.497389 -0.275774 0.005204 0.573121
           7 -0.365120 1.409371 -0.455871 0.013819 -0.573121
           8 -0.122606 -0.430043 -0.906519 -0.815659 0.191040
           9 -1.846866 -1.402132 1.377994 1.343281 2.101442
```

8. Splitting into training and testing data

Model Training

```
In [87]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(X,y,test_size=0.3)
```

9. Training the Random Forest Classifier

```
In [91]: #Import Random Forest Model
    from sklearn.ensemble import RandomForestClassifier

#Create a Gaussian Classifier
    clf=RandomForestClassifier(n_estimators=100)

clf.fit(x_train,y_train)
y_pred_rfc=clf.predict(x_test)
```

10. Actual y-test values

11. Values predicted by RFC

12. Training the Neural Network

```
In [94]: from sklearn.neural_network import MLPClassifier

mlp = MLPClassifier(hidden_layer_sizes=(10,10,10), activation='relu', solver='adam', max_iter=500)
 mlp.fit(x_train,y_train)

y_pred_mlp=mlp.predict(x_test)
```

13. Values predicted by MLPC

ERROR HANDLING

1. Our initial dataset included total duration (pentagons), total duration (house), total duration (clock), total duration (cursive), number of pen-down strokes (cursive) and pressure average (cursive). The initial target variable was stress i.e. the DASS score.

	Subject	total duration (pentagons)	total duration (house)	total duration (clock)	total duration (cursive)	number of pen-down strokes (cursive)	Pressure average (cursive)	Stress
0	1	11986	22182	21398	23531	33	297.587270	13
1	3	22915	48424	39205	26279	42	348.658005	3
2	4	12185	19275	22215	25618	39	97.101751	19
3	6	13273	23193	44864	23274	34	431.931921	17
4	33	20490	39464	69047	30511	45	415.328375	27
5	34	22589	31152	36034	31219	41	229.998456	9
6	47	15920	25795	34059	27007	44	299.951981	32
7	81	11088	39395	31387	27031	38	146.316250	35
8	93	11140	21315	24701	24720	42	283.699450	25
9	125	22547	29631	58595	30735	52	230.202721	15

Fig: Initial Dataset

Using the initial dataset, our initial accuracy turned out to be 0.

Model Training

```
In [12]: #Import Random Forest Model
    from sklearn.ensemble import RandomForestClassifier

    #Create a Gaussian Classifier
    clf=RandomForestClassifier(n_estimators=100)

    #Train the model using the training sets y_pred=clf.predict(x_test)
    clf.fit(x_train,y_train)
    y_pred=clf.predict(x_test)

In [13]: y_pred

Out[13]: array([ 9, 19, 25], dtype=int64)

In [14]: from sklearn import metrics
    print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Accuracy: 0.0
```

Fig: Initial Accuracy

We identified the correlation between features using seaborn heatmap. We found that total duration (pentagon), total duration (house) and pressure (cursive) were having a negative correlation towards our target variable DASS score.

To solve this, we replaced total duration (pentagon) with on-paper duration (pentagon), total duration (house) with on-paper duration (house) and dropped pressure (cursive).

Fig: Initial Heatmap

2. Next, we identified that our accuracy was constantly low because our initial target variable was DASS score which is a numerical value. Since this is a classification problem, it would be very difficult for the model to predict for a range between 0 to 25+. In multiple cases our predicted value and actual value were very close but not equal, which is expected considering the size of our dataset.

To solve this problem, we reduced the range of our target variable, Stress, to three categories, namely normal, moderate or severe based on the DASS score.

INDIVIDUAL CONTRIBUTION

1. Swattik Maiti

Worked on calculating the values of individual features from the dataset and identifying relevant features. Also contributed in the feature engineering process and designing the neural network classification model. Helping out in the documentation process.

2. Palak Kishore

Worked on calculating the values of individual features and compiling the final dataset to be used for the project. Major contributor in the error handling process. Training the random forest classifier model. Also worked on the Documentation.

CONCLUSION

The topic of emotional state analysis based on an individual's handwriting and drawing is a topic which is unique and fairly less researched compared to other, more mainstream subjects. In this project, we utilised the EMOTHAW database to a great extent, producing relevant features which, as proven, directly impacts the emotional stress experienced by a person. The two machine learning models that we created gave results which exceeded our expectations considering the severe lack of data.

The major constraint that we faced throughout the project was the cost of the process by which the features are calculated from the raw database. As we have done the majority of the process manually, we could only feasibly come up with a dataset with 10 samples, thus greatly impacting our scope to make a more robust machine learning model.

However, this research could be used as a stepping stone for further research on the topic. Automating the process of calculating each feature from the database is of primary priority for future research. With more data and more relevant features, a better neural network can be trained which will in turn create a more accurate model.

REFERENCE

- [1] https://github.com/Malemm/ml-graphology
- [2] https://github.com/jesusmartinoza/Graphology-Machine-Learning
- [3] https://github.com/isolver/OpenHandWrite
- [4] https://github.com/sagarikaganguly719/handwritingAnalysis
- [5] https://github.com/PerciValXIII/SAP_Hack-Happy-Hours-Burn_Rate_Predictor

TEAM MEMBERS

Swattik Maiti 18BCE0995

Palak Kishore 18BCE2312

LINK TO GITHUB PROJECT: https://github.com/PerciValXIII/Emotion-state-analysis-of-an-individual-based-on-handwriting-and-drawing

