MATH-UA 148: Homework 3

James Pagan, October 2023

Professor Weare

Contents

1	Sec	etion 3A		2
	1.1	Problem 4		2
	1.2	Problem 10		2
	1.3	Problem 14		2
2	2 Section 3B			3
	2.1	Problem 18		3
	2.2	Problem 22		3
	2.3	Problem 28		4
3	Sec	Section 3C		
	3.1	Problem 6		4
	3.2	Problem 14		4

1 Section 3A

1.1 Problem 4

We prove the contrapositive — suppose that $\mathbf{v}_1, \dots, \mathbf{v}_n$ is linearly dependent. Then there exist scalars $\lambda_1, \dots, \lambda_n \in \mathbb{F}$ such that

$$\lambda_1 \mathbf{v}_1 + \cdots + \lambda_n vecv_n = \mathbf{0}.$$

Therefore,

$$\lambda_1(T\mathbf{v}_1) + \dots + \lambda_n(T\mathbf{v}_n) = T(\lambda_1\mathbf{v}_1) + \dots + T(\lambda_n\mathbf{v}_n) = T(\lambda_1\mathbf{v}_1 + \dots + \lambda_n\mathbf{v}_n) = T(\mathbf{0}) = \mathbf{0},$$

so $T\mathbf{v}_1, \dots, T\mathbf{v}_n$ is linearly dependent. Taking the contrapositive yields the desired result.

1.2 Problem 10

We define two vectors: \mathbf{v} , such that $\mathbf{v} \in V$ and $\mathbf{v} \notin U$ and \mathbf{u} , such that $\mathbf{u} \in U$ and $S\mathbf{u} \neq \mathbf{0}$. Clearly $T\mathbf{v} = \mathbf{0}$ — and as $\mathbf{v} + \mathbf{u} \notin U$, we have that $T(\mathbf{v} + \mathbf{u}) = \mathbf{0}$, so

$$T(\mathbf{v} + \mathbf{u}) = 0 \neq T\mathbf{u} = T\mathbf{u} + T\mathbf{v}.$$

We conclude that T is not a linear map on V.

1.3 Problem 14

Let the basis of V be \mathbf{v}_1 and \mathbf{v}_2 . We thus define two linear maps:

- T, such that $T\mathbf{v}_1 = \mathbf{v}_2$ and $T\mathbf{v}_2 = \mathbf{v}_1$.
- S, such that $T\mathbf{v}_1 = \mathbf{v}_1$ and $T\mathbf{v}_2 = -\mathbf{v}_2$.

Clearly $\mathbf{v}_1, \mathbf{v}_2$ are nonzero, and T and S are linear maps; thus,

$$TS\mathbf{v}_2 = T(-\mathbf{v}_2) = -T(\mathbf{v}_2) = -\mathbf{v}_1 \neq \mathbf{v}_1 = S\mathbf{v}_1 = ST\mathbf{v}_2.$$

Thus, $TS \neq ST$.

2 Section 3B

2.1 Problem 18

Surjectivity implies Dimension: Suppose that there exists a surjective linear map $T: V \to W$. Then null $T = \{0\}$, so dim null T = 0; therefore,

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T = \dim \operatorname{range} T.$$

As range T is a subspace of W, we have that $\dim V = \dim \operatorname{range} T \leq \dim W$.

Dimension implies Surjectivity: Suppose that $\dim V \leq \dim W$; let $\mathbf{v}_1, \dots, \mathbf{v}_n$ and $\mathbf{w}_1, \dots, \mathbf{w}_n$ be bases of V and W, where $n \leq m$.

Define $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ as the unique linear map such that $T\mathbf{v}_j = \mathbf{w}_j$ for each $j \in \{1, \dots, n\}$. Suppose \mathbf{v} and \mathbf{u} are vectors in V such that $T\mathbf{v} = T\mathbf{u}$; let

$$\mathbf{v} = \lambda_1 \mathbf{v}_1 + \dots + \lambda_n \mathbf{v}_n$$
$$\mathbf{w} = \mu_1 \mathbf{v}_1 + \dots + \mu_n \mathbf{v}_n.$$

We thus dedice that

$$(\lambda_{1} - \nu_{1})\mathbf{w}_{1} + \dots + (\lambda_{n} - \nu_{n})\mathbf{w}_{n} = (\lambda_{1}\mathbf{w}_{1} + \dots + \lambda_{n}\mathbf{w}_{n}) - (\mu_{1}\mathbf{w}_{1} + \mu_{n}\mathbf{w}_{n})$$

$$= (T\lambda_{1}\mathbf{v}_{1} + \dots + T\lambda_{n}\mathbf{v}_{n}) - (T\mu_{1}\mathbf{v}_{1} + \dots + T\mu_{n}\mathbf{v}_{n})$$

$$= T(\lambda_{1}\mathbf{v}_{1} + \dots + \lambda_{n}\mathbf{v}_{n}) - T(\mu_{1}\mathbf{v}_{1} + \dots + \mu_{n}\mathbf{v}_{n})$$

$$= T\mathbf{v} - T\mathbf{u}$$

$$= T(\mathbf{v} - \mathbf{u})$$

$$= T\mathbf{0}$$

$$= \mathbf{0}$$

As $\mathbf{w}_1, \dots, \mathbf{w}_n$ are linearly independent, $\lambda_j = \mu_j$ for all $j \in \{1, \dots, n\}$. This implies that $\mathbf{v} = \mathbf{u}$, so T is surjective.

2.2 Problem 22

By the Fundamental Theorem of Linear Maps,

$$\begin{split} \dim \operatorname{null} ST &= \dim U - \dim \operatorname{range} ST \\ &= \dim \operatorname{null} T + \dim \operatorname{range} T - \dim \operatorname{range} ST \\ &\leq \dim \operatorname{null} T + \dim V - \dim \operatorname{range} ST \\ &= \dim \operatorname{null} T + \dim \operatorname{null} S + \dim \operatorname{range} S - \dim \operatorname{range} ST \\ &< \dim \operatorname{null} S + \dim \operatorname{null} T \end{split}$$

- 2.3 Problem 28
- 3 Section 3C
- 3.1 Problem 6
- 3.2 Problem 14