

AI/DATA SCIENCE ASSESSMENT

23-09-2022

By:

Derraz Radhwane

ACE Digital, Ace Resource Advisory Services Sdn Bhd.

Level 2, Wisma Averis (Tower 2), Avenue 5, Bangsar South City, No. 8 Jalan Kerinchi, 59200 Kuala Lumpur.

V: 86002, 7707

T: 03-27858888 (ext. 7707)

M: +601133034625

E: rafi_shaik@aceresource.biz

W: www.aceresource.biz

Analytics Evaluation

Instructions:

- 1. Q1 & Q2 are mandatory, Q3 is bonus if attempted.
- 2. Do the analytics in cloud where possible (free trial versions).
- 3. Other methods are also acceptable.
- 4. Do include documentations.

1. The first task

A customer informed their consultant that they have developed several formulations of petrol that gives different characteristics of burning pattern. The formulations are obtaining by adding varying levels of additives that, for example, prevent engine knocking, gum prevention, stability in storage, and etc. However, a third-party certification organisation would like to verify if the formulations are significantly different, and request for both physical and statistical proof. Since the formulations are confidential information, they are not named in the dataset. Please assist the consultant in the area of statistical analysis by doing this.

1.1 A descriptive analysis of the additives (columns named as "a" to "i"), which must include summaries of findings (parametric/non-parametric). Correlation and ANOVA, if applicable, is a must.

The steps to answer this question are ordered as follows:

1.1.1 Read the ingredient data frame

The pandas (v 1.3.5) library was used to read the data frame. The attribute head() allows to show the first five rows in the data frame.

```
import pandas as pd
df=pd.read_csv('/content/ingredient.csv')
df.head().round(3)
```

Output:

Table. 1 The first five rows of the ingredient data frame.

	a	b	С	d	e	f	g	h	i
0	1.517	13.02	3.54	1.69	72.73	0.54	8.44	0.00	0.07
1	1.531	10.73	0.00	2.10	69.81	0.58	13.30	3.15	0.28
2	1.523	13.31	3.58	0.82	71.99	0.12	10.17	0.00	0.03
3	1.518	12.56	3.52	1.43	73.15	0.57	8.54	0.00	0.00
4	1.518	13.43	3.98	1.18	72.49	0.58	8.15	0.00	0.00

1.1.2 Check the data frame shape (size)

The pandas (1.3.5) library was used to read the data frame. The attribute shape allows to show data frame size. The ingredients data frame contains nine features (additives) and 214 samples.

```
import pandas as pd
df=pd.read_csv('/content/ingredient.csv')
df.shape
Output:
```

(214, 9)

1.1.3 Check if the data frame contains NANs

The pandas (1.3.5) library was used to read the data frame. The function isna() allows to check if the data frame contains any missing values (NAN). The function sum() allows to sum the missing values in each feature (additive). The ingredients data frame doesn't contain any missing values.

```
import pandas as pd
df=pd.read_csv('/content/ingredient.csv')
print(df.isna().sum())
```

Output:

```
a 0
b 0
c 0
d 0
e 0
f 0
g 0
h 0
i 0
dtype: int64
```

1.1.4 Check if the data frame contains any infs

The pandas (1.3.5) library was used to read the data frame. The function isin() allows to check if the data frame contains any values with infinity of numbers (inf). The function sum() allows to sum the inf values in each feature (additive). The NumPy library (1.21.6) was used to determine the range of the isin() function by giving a positive and negative infinities. The ingredients data frame doesn't contain any values with infinity of numbers (inf).

```
import pandas as pd
import pandas as np
df=pd.read_csv('/content/ingredient.csv')
print(df.isin([np.inf, -np.inf]).sum())
```

Output:

```
a 0
b 0
c 0
d 0
e 0
f 0
g 0
h 0
i 0
dtype: int64
```

1.1.5 Extract the data frame descriptive statisticsd

The pandas (1.3.5) library was used to read the data frame. The attribute describe() allows to show data frame descriptive statistics. The ingredients data frame descriptive statistics are shown in output table below.

```
import pandas as pd
df=pd.read_csv('/content/ingredient.csv')
df.describe().round(3)
Output:
```

Table. 2 The descriptive statistics of the ingredient data frame.

	a	b	c	d	e	f	g	h	i
count	214.00	214.00	214.00	214.00	214.00	214.00	214.00	214.00	0 214.00
mean	1.52	13.41	2.68	1.44	72.65	0.50	8.96	0.18	0.06
std	0.00	0.82	1.44	0.50	0.77	0.65	1.42	0.50	0.10
min	1.51	10.73	0.00	0.29	69.81	0.00	5.43	0.00	0.00
25%	1.52	12.91	2.11	1.19	72.28	0.12	8.24	0.00	0.00
50%	1.52	13.30	3.48	1.36	72.79	0.56	8.60	0.00	0.00
75%	1.52	13.82	3.60	1.63	73.09	0.61	9.17	0.00	0.10
max	1.53	17.38	4.49	3.50	75.41	6.21	16.19	3.15	0.51

1.1.6 Check the data frame additives correlation

The Pandas library (1.3.5) was used to read the data and extract the data correlation. The seaborn library (0.11.2) was used to the show the correlation heatmap. Given the additives anomaly distributions, the non-parametric spearman's r rank coefficient was used to calculate the additives correlation. The correlation heatmap is illustrated in the figure below (Figure. 1).

Figure. 1 The correlation heatmap of the ingredients data frame additives.

Overall, the correlation between the additives is very low except the a and g additives. The additives high noise is expected to weaken their correlation. Thus, a data denoising is required.

The code to perform this section is written below.

```
import pandas as pd
import seaborn as sns
df=pd.read_csv('/content/ingredient.csv')
cor=df.corr(method='spearman').round(2)
p1 = sns.heatmap(cor, annot=True)
p1
```

1.1.7 Check the data signal-to-noise ratio (SNR)

The pandas (1.3.5) library was used to read the data frame. The NumPy library (1.21.6) was used to calculate the SNR of the additives. The function signaltonoise () was customised and used to check the data frame additives SNR. The ingredient data frame additives' SNR values are shown in the table below. The function python code is shown below. The additives with big SNR values are additives with low noise and the additives with low SNR values are additives with high noise. The SNR is measured in decibels (dB).

The additive f recorded the lowest SNR value (SNR=4.68 dB) indicating that f is highly noisy. The data noise may affect the accuracy of the parametric/non-parametric analysis. Therefore, the additives will be denoised for better analysis.

```
import pandas as pd
import numpy as np

df=pd.read_csv('/content/ingredient.csv')

def signaltonoise(a, axis=0, ddof=0):
    a = np.asanyarray(a)
    m = a.mean(axis)
    sd = a.std(axis=axis, ddof=ddof)
    return abs(20*np.log10(abs(np.where(sd == 0, 0, m**2/sd**2)))

snr=signaltonoise(np.array(df),0,0)

df4=pd.DataFrame(snr)
df4.set_axis(df.columns,axis=0,inplace=True)
df4.set_axis(['SNR'],axis=1,inplace=True)
df4
```

Output:

Table. 3 The SNR of the ingredient data frame additives.

Additives	SNR
a	108.00
b	48.65
c	10.83
d	18.50
e	78.93
f	4.68
g	32.00
h	18.10
i	9.27

1.1.8 The data denoising

The KalmanFilter module from the pykalman library (0.9.5) was used to denoise the additives. The code to perform this section is write below. The correlation heatmap after the additives denoising is illustrated in Figure. 2.

```
from pykalman import KalmanFilter
import itertools
df=pd.read_csv('/content/ingredient.csv')

def KFSM(input):
    X=input.transpose().values.tolist()
    kf=lambda signal: KalmanFilter().em(signal, n_iter=7).filter(
signal)[0].tolist()
    array=np.array([list(itertools.chain(*kf(signal)))) for signal
in X])
    return array

KFSM(df).shape

df1=pd.DataFrame(KFSM(df).transpose())
df1.columns=df.columns
df1.to_excel('ingredient_KF-denoised.xlsx',index=False)
```

1.1.9 Check the data frame additives correlation after data denoising

The Pandas library (1.3.5) was used to read the data and extract the data correlation. The seaborn library (0.11.2) was used to the show the correlation heatmap. Given the additives anomaly distributions, the non-parametric spearman's r rank coefficient was used to calculate the additives correlation. The correlation heatmap is illustrated in the figure below (Figure. 2).

Figure. 2 The correlation heatmap of the ingredients data frame additives after data denoising.

Overall, the correlation between the additives is very low except the a and g additives. However, the correlation has been increased between the additives after data denoising.

The code to perform this section is written below.

```
import pandas as pd
import seaborn as sns
df=pd.read_excel('/content/ingredient_KF-denoised.xlsx')
cor=df.corr(method='spearman').round(2)
p1 = sns.heatmap(cor, annot=True)
p1
```

1.2 A graphical analysis of the additives, including a distribution study.

1.2.1 The additive curves and their curves' distributions

The additives' curves and their curves' distributions are illustrated in Figure 3. The pandas (1.3.5) library was used to read the data frame. The NumPy library (1.21.6) was used to calculate the minimum and maximum of the additives. The Pyplot module from the matplotlib library (3.2.2) was used to plot the curves and curves' distributions figures. The stats.norm() module from the SciPy library (1.7.3) was used to calculate the normal distribution (blue line in Figure 3-a) to which the additives distribution are compared to. The Python compiler (3.7.14) was used to write the codes using the Colab as an integrated development environment (IDE).

Figure. 3 The additives curves and curves distribution. The subplots a-i in plot a show the distribution of the a-i additives from the ingredients data frame. The subplots a-i in plot b show the curves of the a-i additives from the ingredients data frame.

The additives distributions are illustrated in Figure. 3-a. The blue curves denote the normal distribution. The orange bars denote the additive actual distribution. Both are illustrated to compare them in terms of the data anomaly. The additives b and d almost have a normal distribution. The other additives show either right or left skewed distributions. Thus, the other additives are anomaly distributed. The additives curves after data denoising are illustrated in Figure. 3-b. The samples of the additives a and b are almost centred around their means, which justify why the additives a and b are normally distributed.

The code to implement the curves plotting is written below:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
df=pd.read excel('/content/ingredient KF-denoised.xlsx')
fig, axs = plt.subplots(len(df.columns), figsize=(5,15))
fig.suptitle('(a)
                                 The data frame anomaly')
cols=df.columns
for ax,col in zip(axs,cols):
        d1=df[col]
        x=np.linspace(d1.min(), d1.max(),d1.shape[0])
        y=stats.norm.pdf(x, np.mean(d1), np.std(d1))
        ax.plot(x,y, label='Normal Dist.', lw=3)
        ax.set title(f'{d1.name}')
        ax.hist(d1,density=True, bins=30, label='Actual Data')
        ax.legend()
        ax.set xlabel('Values', size=12)
        ax.set ylabel('Count')
```

The code to implement the curves plotting is written below:

1.3 A clustering test of your choice (unsupervised learning), to determine the distinctive number of formulations present in the dataset. (Refer attachment: ingredients.csv)

K-means is an unsupervised clustering algorithm designed to partition unlabelled data into a certain number (that's the "K") of distinct groupings. In other words, k-means finds observations that share important characteristics and classifies them together into clusters. The Pandas library (v 1.4.0) was used to read the ingredient data frame. The KMeans algorithm from the cluster module in the scikit learn (v 1.1.2) was used to cluster the ingredient data frame. The integrated development environment (IDE) Colab was used for the coding using Python (Python 3.8.5). The code for this process is written bellow. The number of cluster (n_clusters) was set to 4, the 'k-means++' was chosen to be the initialisation method. This technique selects initial cluster centroids using sampling based on an empirical probability distribution of the points' contribution to the overall inertia. The maximum number of iteration (max_iter) was set experimentally to 300. Number of time the k-means algorithm will be run with different centroid seeds (n_init) was set to 10. The clustering algorithm was set to 'auto'. The kmeans.labels_ attribute return the number of clusters that the data is classified into.

The output:

Even though the number of clusters was set to 4 at the beginning, the KMeans divided the additives' samples into 3 clusters. The KMeans classified the additives' samples into a 3 number of clusters indicating that there are 3 distinctive number of formulations present in the dataset.

2. The second question

A team of plantation planners are concerned about the yield of oil palm trees, which seems to fluctuate. They have collected a set of data and needed help in analysing on how external factors influence fresh fruit bunch (FFB) yield. Some experts are of opinion that the flowering of oil palm tree determines the FFB yield and are linked to the external factors. Perform the analysis, which requires some study on the background of oil palm tree physiology.

Note: (refer attachment palm_ffb.csv).

2.1 Correlation analysis

The spearman's r rank coefficient was used to calculate the correlation between the palm-FFB data frame features. The correlation heatmap is illustrated in Figure 4. The harvested area (HA_Harvested) achieved the highest correlation with the fresh fruit bunch yield (ffb-yield) with an r of -0.39 indicating that the decrease in the harvested area led to an increase in the ffb-yield. The precipitation (Precipitation) followed the harvested area with an r of 0.31 indicating that the ffb-yield and the precipitation are positively increasing. The working days (Working_days), minimum temperature (Min_Temp), followed with an r values of 0.10 and 0.08, showing a very weak correlation with ffb-yield. The soil moisture (SoilMoisture), maximum temperature (Max_Temp), and average temperature (Average_Temp) were weakly and negatively correlated with the ffb-yield, achieving an r values of -0.05, -0.11, and -0.04, respectively.

The Pandas library (v 1.4.0) were used for the r application using Python (3.7.14). The seaborn (v 0.12.0) library was used to plot the correlation heatmap. The integrated development environment (IDE) Colab was used for the coding. The code for this process is written bellow.

```
import pandas as pd
import seaborn as sns

df=pd.read_csv('/content/palm_ffb.csv')
cor=df.corr(method='spearman').round(2)
p1 = sns.heatmap(cor, annot=True)
p1
```


Figure. 4 The correlation heatmap of the oil palm data frame.

2.2 Feature selection

The sequential feature selector algorithm (SFS) was used for the forward feature selection. The feature_selection (v 0.21.0) module from the mlxtend (v 0.20.0) library was used to import and apply the SFS using Python (3.7.14). The integrated development environment (IDE) Colab was used for the coding. The code for this process is written bellow.

The SFS selected the highly contributing features to predict the ff-yield in a sequential additive manner. The coefficient of determination R^2 and the cross-validation score (cv-score) were used for the feature selection process. The linear regression algorithm (LR) was used as the model for the feature selection. The maximum number of features to be selected was set to seven, which is the number of independent features. The feature selection R^2 and cv-score values are shown in Table.4.

Table. 4 Summary of the feature selection subsets and subsets R² scores.

Model index	Feature index	Cv_scores	Average score	Feature names
1	6	0.123	0.123	1. HA_Harvested
				1. Precipitation
2	4,6	0.164	0.164	2. HA_Harvested
				1. SoilMoisture,
				2. Precipitation
3	0,4,6	0.235	0.235	3. HA_Harvested
				1. SoilMoisture,
				2. Average_Temp
				3. Precipitation
4	0,1,4,6	0.247	0.247	4. HA_Harvested
				1. SoilMoisture
				2. Average_Temp
				3. Precipitation
				4. Working_days
5	0,1,4,5,6	0.251	0.251	HA_Harvested
				1. SoilMoisture
				2. Average_Temp
				3. Min_Temp
				4. Precipitation
				Working_days
6	0,1,2,4,5,6	0.253	0.253	6. HA_Harvested
				1. SoilMoisture
				2. Average_Temp
				3. Min_Temp
				4. Max_Temp
				5. Precipitation
				6. Working_days
7	0,1,2,3,4,5,6	0.254	0.254	7. HA_Harvested

2.3 FFB yield prediction

The Python (3.7.14) was used for the histogram gradient boosting regressor (HGBR) application. The HGBR was applied to predict the ffb-yield based on the highly contributing external factors' subsets for the ffb-yield prediction. The integrated development environment (IDE) Colab was used for the coding. The code for this process is written bellow. First pandas library (v 1.4.0) was used to read the ffb-yield data frame. The scikit learn library (v 0.20) was used to import metrics, model_selection, processing, experimental, and ensemble modules. The metrics module was used to apply the R², RMSE, and MAPE scores. The processing module was used to scale the data, ensemble module was used to call the HGBR algorithm. The module experimental was used to enable the HGBR. The model_selection module was used to split the data to training and test subsets for the HGBR implementation. The HGBR implementation process is coded and written bellow. The F-test was calculated from a customised function as written in the code bellow. The F-test shows the model confidence. In other words, the F-test show how much the ffb-yield prediction model is trusted. The F-test values less than 1.57 at significance level of 0.05 indicates that the ffb-yield prediction model is trusted.

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.metrics import r2 score
from sklearn.metrics import mean absolute percentage error
from sklearn.metrics import mean squared error
from sklearn.metrics import mean squared log error
from sklearn.preprocessing import MinMaxScaler
from sklearn.experimental import enable hist gradient boosting
from sklearn.ensemble import HistGradientBoostingRegressor
import warnings
warnings.simplefilter('ignore')
df=pd.read csv('/content/palm ffb.csv')
cols=df.columns
x=pd.concat([df[cols[1+0]],
             df[cols[1+1]],
             df[cols[1+2]],
             df[cols[1+3]],
             df[cols[1+4]],
             df[cols[1+5]],
             df[cols[1+6]]], axis=1)
y=df['FFB Yield']
print('x col:', x.columns)
print('y col:',y.name)
```

```
seed=list(np.arange(0,100,1))
for i in seed:
    Xt, Xs, Yt, Ys=train test split(x, y, test size=0.3, random state=i
    scaler = MinMaxScaler()
    Xtt=scaler.fit transform(Xt)
    Xst=scaler.fit transform(Xs)
    rf=RandomForestRegressor()
    hgbr=HistGradientBoostingRegressor(tol=0.6000000000000001,
                                        min samples leaf=3,
                                        max leaf nodes=90,
                                        max iter=80,
                                        max depth=60,
                                        learning rate=0.1,
                                        12 regularization=0.9)
    model=hqbr
    model.fit(Xtt,Yt)
    # Training results
    pred=model.predict(Xtt)
    r21=r2 score (Yt, pred)
    mape1=mean absolute percentage error(Yt, pred)
    rmsel=np.sqrt(mean squared error(Yt, pred))
    preds=model.predict(Xst)
    r22=r2 score (Ys, preds)
    mape2=mean absolute percentage error (Ys, preds)
    rmse2=np.sqrt(mean squared error(Ys, preds))
    ft=[np.var(preds),np.var(Ys)]
    fts=np.max(ft)/np.min(ft)
    if r22 >= 0.475 and r21 >= 0.475 and r21 > r22:
        print(i)
        11=[r21,r22]
        12=[rmse1, rmse2]
        13=[mape1, mape2]
        16=[fts]
        17=['r2','RMSE','MAPE','F-test']
        df3=pd.DataFrame([11,12,13,16]).transpose()
        df3.columns=17
        display(df3)
        break
```

Table. 5 Summary of the HGBR subsets R² RMSE, MAPE, and F-test scores.

Model features		The trai	ning stage		The test	The test stage		
		R^2	RMSE	MAPE	\mathbb{R}^2	RMSE	MAPE	_
1.	HA_Harvested	0.814	0.122	0.058	0.204	0.229	0.126	3.110
1.	Precipitation							
2.	HA_Harvested	0.990	0.028	0.013	0.307	0.236	0.111	1.790
1.	SoilMoisture,							
2.	Precipitation							
3.	HA_Harvested	0.997	0.015	0.006	0.473	0.184	0.101	1.153
1.	SoilMoisture,							
2.	Average_Temp							
3.	Precipitation							
4.	HA_Harvested	0.999	0.009	0.004	0.475	0.222	0.108	2.051
1.	SoilMoisture							
2.	Average_Temp							
3.	Precipitation							
4.	Working_days							
5.	HA_Harvested	0.999	0.009	0.004	0.475	0.222	0.108	2.051
1.	SoilMoisture							
2.	Average_Temp							
3.	Min_Temp							
4.	Precipitation							
5.	Working_days							
6.	HA_Harvested	0.999	0.009	0.004	0.475	0.222	0.108	2.051
1.	SoilMoisture							
2.	Average_Temp							
3.	Min_Temp							
4.	Max_Temp							
5.	Precipitation							
6.	Working_days							
7.	HA_Harvested	0.999	0.009	0.004	0.475	0.222	0.108	2.051

2.4 Analysis and discussion

According to the results of R^2 , RMSE, and MAPE (Table.5), also considering the R^2 and cv-score results (Table.5, the harvested area (external factor) model was the highly contributing model for predicting the ffb-yield, achieving an R^2 of 0.204, RMSE of 0.229, and MAPE of 0.126. The second contributing model was the (harvested area + precipitation) achieving an R^2 , RMSE, and MAPE values of 0.307, 0.236, 0.111. The (harvested area + precipitation+ soil moisture) improved the ff-yield predictability by achieving an R^2 , RMSE, and MAPE values of 0.473, 0.184, and 0.101, respectively. Furthermore, the (harvested area + precipitation+ soil moisture + average temperature) improved the ff-yield predictability by achieving an R^2 , RMSE, and MAPE values of 0.475, 0.222, and 0.108, respectively. However, the addition of the rest of features didn't improve the ffb-yield predictability. The (harvested area + precipitation+ soil moisture) was the only model to be trusted for the ffb-yield prediction by achieving an F-test value (F-test=1.153) less than 1.57. The can conclude that the harvested area, precipitation, and soil moisture are the external factors to affect the ffb-yield production.

The influence of a set of external factors on the interannual variability of oil palm fresh fruit bunches (FFB) total yields in Malaysia was explored in a previous study. As a result of thi study, the yearly production of FFB becomes lower than that of a normal year since the water stress during the boreal spring has an important impact on the total annual yields of FFB. Conversely, La Niña sets favourable conditions for palm trees to produce more FFB by reducing chances of water stress risk (Oettli et al., 2018).

3 The third task

As a term, data analytics predominantly refers to an assortment of applications, from basic business intelligence (BI), reporting and online analytical processing (OLAP) to various forms of advanced analytics. In that sense, it's similar in nature to business analytics, another umbrella term for approaches to analyzing data -- with the difference that the latter is oriented to business uses, while data analytics has a broader focus. The expansive view of the term isn't universal, though: In some cases, people use data analytics specifically to mean advanced analytics, treating BI as a separate category. Data analytics initiatives can help businesses increase revenues, improve operational efficiency, optimize marketing campaigns and customer service efforts, respond more quickly to emerging market trends and gain a competitive edge over rivals -- all with the ultimate goal of boosting business performance. Depending on the particular application, the data that's analysed can consist of either historical records or new information that has been processed for real-time analytics uses. In addition, it can come from a mix of internal systems and external data sources. At a high level, data analytics methodologies include exploratory data analysis (EDA), which aims to find patterns and relationships in data, and confirmatory data analysis (CDA), which applies statistical techniques to determine whether hypotheses about a data set are true or false. EDA is often compared to detective work, while CDA is akin to the work of a judge or jury during a court trial -- a distinction first drawn by statistician John W. Tukey in his 1977 book Exploratory Data Analysis. Data analytics can also be separated into quantitative data analysis and qualitative data analysis. The former involves analysis of numerical data with quantifiable variables that can be compared or measured statistically. The qualitative approach is more interpretive -- it focuses on understanding the content of non-numerical data like text, images, audio and video, including common phrases, themes and points of view.

Feed the following paragraph into your favourite data analytics tool, and answer the following:

3.1 What is the probability of the word "data" occurring in each line?

The probability mass function (PMF) was used to calculate the occurrence probability of the word data at each line. The PMF results are shown in Table. 6. The open() function was used to read the text file. Then after, the natural language toolkit (NLTK) library (3.7) was used to mine the text. The FreqDist() module was used to count of each single word at each line the PMF was calculated for each word based on it count and the total number of words at each line. The Pandas library (1.3.5) was used to build the results data frame (create the results tables). The codes are written below. The count, probability, and the word name, such as data, are extracted from the resulting data frames.

Table. 6 Summary of the count and probability mass function of the word data at each line of the text.

Line index	Count	Probability
0	1	0.059
1	0	0.000
2	0	0.000
3	1	0.055
4	1	0.047
5	1	0.058
6	1	0.076
7	0	0.000
8	0	0.000
9	0	0.000
10	0	0.000
11	1	0.047
12	1	0.111
13	1	0.058
14	0	0.000
15	2	0.062
16	1	0.071
17	0	0.000
18	1	0.055
19	0	0.000

```
import nltk
import nltk.corpus
from nltk.tokenize import word tokenize
from nltk.probability import FreqDist
import nltk
nltk.download('punkt')
with open('/content/Text.txt') as f:
    lines = f.readlines()
    for line in lines:
        idx=lines.index(line)
        print(idx)
        print(lines[idx])
        token = word tokenize(line)
        fdist = FreqDist(token)
        key=fdist.keys()
        keyl=list(key)
        print(key)
        val=fdist.values()
```

```
print(list(val))
tot=sum(val)
p= [i/tot for i in list(val)]

df1=pd.DataFrame([keyl,list(val), p ])
df1.set_axis(['word', 'count','prob'], axis=0, inplace=Tr
ue)

display(df1.transpose().round(2))
```

3.2 What is the distribution of distinct word counts across all the lines?

The distribution of distinct word counts across all the lines is shown in Table. 7. The same libraries are used for this task. The code is written below.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import nltk
import nltk.corpus
from nltk.tokenize import word tokenize
from nltk.probability import FreqDist
import nltk
nltk.download('punkt')
f = open('/content/Text.txt','r')
X=f.read()
token = word tokenize(X)
fdist = FreqDist(token)
keys=fdist.keys()
vals=fdist.values()
p= [i/len(keys) for i in list(vals)]
df1=pd.DataFrame([keys,list(vals), p ])
df1.set_axis(keys, axis=1, inplace=True)
df1.set axis(['word', 'count', 'prob'], axis=0, inplace=True)
display(df1.transpose().round(2))
df1.to excel('disnr.xlsx')
```

Table. 6 Summary of the count and probability mass function of the word data at each line of the text.

Word index	Word	Count	PMF
0	As	1	0.005
1	a	10	0.049
2	term	3	0.015
3	,	23	0.113

4	data	15	0.074
5	analytics	10	0.049
6	predominantly	1	0.005
7	refers	1	0.005
8	to	11	0.054
9	an	1	0.005
10	assortment	1	0.005
11	of	10	0.049
12	applications	1	0.005
13	from	2	0.010
14	basic	1	0.005
15	business	4	0.020
16	intelligence	1	0.005
17	(4	0.020
18	BI	2	0.010
19)	4	0.020
20	reporting	1	0.005
21	and	9	0.044
22	online	1	0.005
23	analytical	1	0.005
24	processing	1	0.005
25	OLAP	1	0.005
26	various	1	0.005
27	forms	1	0.005
28	advanced	2	0.010
29		11	0.054
30	In	3	0.034
	In		
31	that	5	0.025
32	sense	1	0.005
33	it	3	0.015
34	's	2	0.010
35	similar	1	0.005
36	in	3	0.015
37	nature	1	0.005
38	another	1	0.005
39	umbrella	1	0.005
40	for	2	0.010
41	approaches	1	0.005
42	analyzing	1	0.005
43		4	0.020
44	with	3	0.015
45	the	8	0.039
46	difference	1	0.005
47	latter	1	0.005
48	is	5	0.025
49	oriented	1	0.005
50	uses	2	0.010
51	while	2	0.010
52	has	2	0.010
53	broader	1	0.005
54	focus	1	0.005
55	The	3	0.015
56	expansive	1	0.005
57	view	2	0.010

58	n't	1	0.005
59	universal	1	0.005
60	though	1	0.005
61	:	1	0.005
62	some	1	0.005
63	cases	1	0.005
64	people	1	0.005
65	use	1	0.005
66	specifically	1	0.005
67	mean	1	0.005
68	treating	1	0.005
69	as	1	0.005
70	separate	1	0.005
71	category	1	0.005
72	Data	3	0.005
73	initiatives	1	0.005
74	can	5	0.025
75 75	help	1	0.005
76	businesses	1	0.005
70 77	increase	1	0.005
77 78	revenues	1	0.005
79	improve	1	0.005
80	operational	1	0.005
81	efficiency	1	0.005
82	optimize	1	0.005
83	marketing	1	0.005
84	campaigns	1	0.005
85	customer	1	0.005
86	service	1	0.005
87	efforts	1	0.005
88	respond	1	0.005
89	more	2	0.010
90	quickly	1	0.005
91	emerging	1	0.005
92	market	1	0.005
93	trends	1	0.005
94	gain	1	0.005
95	competitive	1	0.005
96	edge	1	0.005
97	over	1	0.005
98	rivals	1	0.005
99	all	1	0.005
100	ultimate	1	0.005
101	goal	1	0.005
102	boosting	1	0.005
103	performance	1	0.005
104	Depending	1	0.005
105	on	2	0.010
106	particular	1	0.005
107	application	1	0.005
108	analysed	1	0.005
109	consist	1	0.005
110	either	1	0.005
111	historical	1	0.005

113	ua a a u da	1	0.005
112	records	1	0.005
113	or	4	0.020
114	new	1	0.005
115	information	1	0.005
116	been	1	0.005
117	processed	1	0.005
118	real-time	1	0.005
119	addition	1	0.005
120	come	1	0.005
121	mix	1	0.005
122	internal	1	0.005
123	systems	1	0.005
124	external	1	0.005
125	sources	1	0.005
126	At	1	0.005
127	high	1	0.005
128	level	1	0.005
129	methodologies	1	0.005
130	include	1	0.005
131	exploratory	1	0.005
132	analysis	5	0.025
133	EDA	2	0.010
134	which	2	0.010
135	aims	1	0.005
136	find	1	0.005
137	patterns	1	0.005
138	relationships	1	0.005
139	confirmatory	1	0.005
140	CDA	2	0.003
141		1	
	applies		0.005
142	statistical	1	0.005
143	techniques	1	0.005
144	determine	1	0.005
145	whether	1	0.005
146	hypotheses	1	0.005
147	about	1	0.005
148	set	1	0.005
149	are	1	0.005
150	true	1	0.005
151	false	1	0.005
152	often	1	0.005
153	compared	2	0.010
154	detective	1	0.005
155	work	2	0.010
156	akin	1	0.005
157	judge	1	0.005
158		1	0.005
	jury		
159	during	1	0.005
160	court	1	0.005
161	trial	1	0.005
162	distinction	1	0.005
163	first	1	0.005
164	drawn	1	0.005
165	by	1	0.005

166 statistician 1 0.005 167 John 1 0.005	
168 W. 1 0.005	
169 Tukey 1 0.005	
170 his 1 0.005	
171 1977 1 0.005	
172 book 1 0.005	
173 Exploratory 1 0.005	
174 Analysis 1 0.005	
175 also 1 0.005	
176 be 2 0.010	
177 separated 1 0.005	
178 into 1 0.005	
179 quantitative 1 0.005	
180 qualitative 2 0.010	
181 former 1 0.005	
182 involves 1 0.005	
183 numerical 1 0.005	
184 quantifiable 1 0.005	
185 variables 1 0.005	
186 measured 1 0.005	
187 statistically 1 0.005	
188 approach 1 0.005	
189 interpretive 1 0.005	
190 focuses 1 0.005	
191 understanding 1 0.005	
192 content 1 0.005	
193 non-numerical 1 0.005	
194 like 1 0.005	
195 text 1 0.005	
196 images 1 0.005	
197 audio 1 0.005	
198 video 1 0.005	
199 including 1 0.005	
200 common 1 0.005	
201 phrases 1 0.005	
202 themes 1 0.005	
203 points 1 0.005	

3.3 What is the probability of the word "analytics" occurring after the word "data"?

The probability of the word "analytics" occurring after the word "data" is calculated below using the PMF function. The code is written below.

```
count=0
with open('/content/Text.txt') as f:
    lines = f.readlines()
    for line in lines:
        if 'data analytics' in line:
            true=1
            count+=true
    print(count)
```

print(count/204)

Output:

4

0.0196078431372549

4 References

Oettli, P., Behera, S.K., Yamagata, T., 2018. Climate Based Predictability of Oil Palm Tree Yield in Malaysia. Sci. Rep. 8, 1–13. https://doi.org/10.1038/s41598-018-20298-0

https://pandas.pydata.org/

https://matplotlib.org/

https://www.python.org/

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

http://rasbt.github.io/mlxtend/

https://seaborn.pydata.org/

https://scipy.org/

https://pykalman.github.io/

https://numpy.org/

https://scipy.org/

https://www.nltk.org/