Assignment 19 (PSO)

We are using a Particle Swarm Optimization (PSO) method to solve a minimization problem. The algorithm started at time t_0 and is currently in timestep t_3 . The population consists of three particles \vec{x}_1 , \vec{x}_2 and \vec{x}_3 . In the following table you find the positions, velocities and fitness values of the particles at the timesteps t_0 , t_1 , t_2 and t_3 .

Particle	$ec{x}_1$	$ec{x}_2$	$ec{x}_3$
$\vec{v}_i(t_0)$	(0.00, 0.00)	(0.00, 0.00)	(0.00, 0.00)
$\vec{x}_i(t_0)$	(2.00, 2.00)	(-5.00, -2.00)	(3.00, -5.00)
$f(\vec{x}_i, t_0)$	8.00	29.00	34.00
$\vec{v}_i(t_1)$	(0.00, 0.00)	(2.10, 1.20)	(-0.30, 2.10)
$\vec{x}_i(t_1)$	(2.00, 2.00)	(-2.90, -0.80)	(2.70, -2.90)
$f(\vec{x}_i, t_1)$	8.00	9.05	15.70
$\vec{v}_i(t_2)$	(0.00, 0.00)	(2.31, 1.32)	(-0.33, 2.31)
$\vec{x}_i(t_2)$	(2.00, 2.00)	(-0.59, 0.52)	(2.37, -0.59)
$f(\vec{x}_i, t_2)$	8.00	0.62	5.96
$\vec{v}_i(t_3)$	(-0.78, -0.44)	(0.92, 0.53)	(-1.02, 1.26)
$\vec{x}_i(t_3)$	(1.22, 1.56)	(0.33, 1.05)	(1.35, 0.67)
$f(\vec{x}_i, t_3)$	3.92	1.21	2.27

- Explain briefly how PSO works.
- For each particle *i*, located at $x_i(t) \in \mathbb{R}^n$ in the search space the position is updated at each iteration.
- Defined by : **Momentum** $w^*v_i(t)$, **Cognitive** $p_i(t)$, **Social** $p_g(t)$

- The position is updated by, $x_i(t+1) = x_i(t) + v_i(t+1)$
- The velocity is updated by, $v_i(t+1) = w^*v_i(t) + c_1\Phi_1(P_g(t)-x_i(t)) + c_2\Phi_2(P_i(t)-x_i(t))$

w = inertia weight

 Φ_1 = Φ_2 = Learning coefficients

 $c_1 = c_2 = attraction rates$

- Works for continuous optimization problems.
- For each particle i, determine in t_3 its previous best position $\vec{P}_i(t_3)$ and the previous best position in its neighborhood $\vec{P}_g(t_3)$. The PSO uses a fully connected neighborhood topology.

We have a **minimization** problem and also the PSO uses a **fully connected** neighbourhood topology in which all members are connected to one another.

For particle \vec{x}_1 previous best position in t_3 , $\vec{P}_i(t_3) = 8.00$ at all fitness For particle \vec{x}_2 previous best position in t_3 , $\vec{P}_i(t_3) = 0.62$ at $f(\vec{x}_i, t_2)$ For particle \vec{x}_3 previous best position in t_3 , $\vec{P}_i(t_3) = 5.96$ at $f(\vec{x}_i, t_2)$

For particle \vec{x}_1 previous best neighbourhood position in t_3 , $\vec{P}_g(t_3) = 0.62$ at $f(\vec{x}_i, t_2)$ with the neighbour \vec{x}_2

For particle \vec{x}_2 previous best neighbourhood position in t_3 , $\vec{P}_g(t_3) = 5.96$ at $f(\vec{x}_i, t_2)$ with the neighbour \vec{x}_3

For particle \vec{x}_3 previous best neighbourhood position in t_3 , $\vec{P}_g(t_3) = 0.62$ at $f(\vec{x}_i, t_2)$ with the neighbour \vec{x}_2

• Calculate the updated velocities $(\vec{v}_i(t_4))$ and positions $(\vec{x}_i(t_4))$ for the next iteration of the PSO. Use w = 0.4, $\phi_1 = 0.3$, $\phi_2 = 0.3$ and $c_1 = c_2 = 1$.

For particle \vec{x}_1 , the **first velocity** component, 0.4(-0.78) + (1)(0.3)(1.21 - 1.22) + (1)(0.3)(3.92 - 1.22) = 0.495

Then the **first time** component,

$$0.495 + 1.22 = 1.715$$

For particle x_1 , the **second velocity** component, 0.4(-0.44) + (1)(0.3)(1.21 - 1.56) + (1)(0.3)(3.92 - 1.56) = 0.427

Then the **second time** component,

$$0.427 + 1.56 = 1.987$$

This gives $\vec{v}_i(t_4) =$ **(0.495, 0.427)** and $\vec{x}_i(t_4) =$ **(1.715, 1.987)** for particle \vec{x}_1

For particle \vec{x}_2 , the **first velocity** component, 0.4(0.92) + (1)(0.3)(2.27 - 0.33) + (1)(0.3)(0.62 - 0.33) = 1.037

Then the first time component,

$$1.037 + 0.33 = 1.367$$

For particle x_2 , the **second velocity** component, 0.4(0.53) + (1)(0.3)(2.27 - 1.05) + (1)(0.3)(0.62 - 1.05) = 0.449

Then the **second time** component,

$$0.449 + 1.05 = 1.499$$

This gives $\vec{v}_i(t_4) =$ (1.037, 0.449) and $\vec{x}_i(t_4) =$ (1.367, 1.499) for particle \vec{x}_2

For particle
$$x_3$$
, the **first velocity** component,
0.4(-1.02) + (1)(0.3)(1.21 - 1.35) + (1)(0.3)(2.27 - 1.35) = -0.174

Then the first time component,

$$-0.174 + 1.35 = 1.176$$

For particle x_3 , the **second velocity** component, 0.4(1.26) + (1)(0.3)(1.21 - 0.67) + (1)(0.3)(2.27 - 0.67) = 1.146

Then the **second time** component,

$$1.146 + 0.67 = 1.816$$

This gives $\vec{v}_i(t_4) = (-0.174, 1.146)$ and $\vec{x}_i(t_4) = (1.176, 1.816)$ for particle \vec{x}_3

Particle	\overrightarrow{x}_1	\overrightarrow{x}_2	\overrightarrow{x}_3
$\overrightarrow{v}_{i}(t_{4})$	(0.495, 0.427)	(1.037, 0.449)	(-0.174, 1.146)
$\overrightarrow{x}_{i}(t_{4})$	(1.715, 1.987)	(1.367, 1.499)	(1.176, 1.816)