BÀI TẬP PP NCKH Thiết kế đề thi bằng LAT_EX

ĐỀ THI THỬ THPT QUỐC GIA NĂM 2016 ĐÁP ÁN MÔN TOÁN

 \overrightarrow{DE} Số 51

(Đáp áp gồm 06 trang)

Câu	Đáp án (Trang 01)	
	Hàm số: $y = \frac{3-2x}{x-1} = \frac{-2x+3}{x-1}$ • Tập xác định $D = \mathbb{R} \setminus \{1\}$ • Đạo hàm: $y' = \frac{-1}{(x-1)^2} < 0$, $\forall x \in D$ • Hsnb trên các khoảng xác định $(-\infty; 1)$ và $(1; +\infty)$ và không có đạt cực trị • Giới hạn và tiêm cân: $\lim_{x \to \infty} x = -2$; $\lim_{x \to \infty} x = -2$ là tiêm cân ngang	0,25
	• Giới hạn và tiệm cận: $\lim_{x \to -\infty} = -2$; $\lim_{x \to +\infty} = -2 \Rightarrow y = -2$ là tiệm cận ngang. • $\lim_{x \to 1^-} = -\infty$; $\lim_{x \to 1^+} = +\infty \Rightarrow x = 1$ là tiệm cận đứng.	0,25
1 (1,0đ)	• Bảng biến thiên $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25

Câu	Đáp án (Trang 02)	Điểm
	$(C): y = \frac{-2x+3}{x-1}$ Gọi $M(x_0; y_0) \in (C)$ là tiếp điểm, phương trình tiếp tuyến tại M có dạng $y = f'(x_0)(x-x_0) + y_0 \tag{1}$	0,25
2 (1,0d)	Vì tiếp tuyến song song với đường thẳng $\Delta: y = -x+1$ nên có hệ số góc $f'(x_0) = -1$	
	$ (1) \Leftrightarrow \frac{-1}{(x_0 - 1)^2} = -1 \Leftrightarrow (x_0 - 1)^2 = 1 \Leftrightarrow \begin{bmatrix} x_0 - 1 = 1 \\ x_0 - 1 = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_0 = 2 \\ x_0 = 0 \end{bmatrix} $	0,25
	• Với $x_0 = 2 \Rightarrow y_0 = -1$. PTTT là: $y + 1 = -1(x - 2) \Leftrightarrow y = -x + 1$ (loại)	0,25
	• Với $x_0 = 0 \Rightarrow y_0 = -3$. PTTT là: $y + 3 = -1(x - 0) \Leftrightarrow y = -x - 3$	0,25
	Gọi số phức $z=a+bi,\ (a,b\in\mathbb{R}).$ Ta có	0,25
3 a	$3z + 9 = 2i.\bar{z} + 11i \Leftrightarrow 3(a+bi) + 9 = 2i(a-bi) + 11i \tag{2}$	
(0,5đ)	$ (2) \Leftrightarrow \begin{cases} 3a+9=2b \\ 3b=2a+11 \end{cases} \Leftrightarrow \begin{cases} 3a-2b=-9 \\ -2a+3b=11 \end{cases} \Leftrightarrow \begin{cases} a=-1 \\ b=3 \end{cases} $	0,25
	Ta có $z = -1 + 3i \Rightarrow \bar{z} = -1 - 3i$	
	• Điều kiện: $ \begin{cases} x^2 + 5 > 0 \\ x + 5 > 0 \end{cases} \Leftrightarrow x + 5 > 0 \Leftrightarrow x > -5 $	
01	• Khi đó $\log_{\frac{1}{3}}(x^2 + 5) + 2\log_2(x + 5) = 0$	0,25
3 b (0,5d)	$\Leftrightarrow -\log_2(x^2 + 5) + \log_2(x + 5)^2 = 0$	
	$\Leftrightarrow \log_2(x+5)^2 = \log_2(x^2+5)$	
	$\Leftrightarrow (x+5)^2 = x^2 + 5 \Leftrightarrow x^2 + 10x + 25 = x^2 + 5 \Leftrightarrow 10x = -20 \Leftrightarrow x = -2 \text{ (nhận)}$ Vậy, phương trình có nghiệm duy nhất: $x = -2$	0,25
	Ta có $I = \int_0^1 x \left(x + e^{z^2} \right) dx = \int_0^1 x^2 dx + \int_0^1 x e^{z^2} dx = I_1 + I_2$	0,25
	$I_1 = \int_0^1 x^2 dx = \left. \frac{x^3}{3} \right _0^1 = \frac{1}{3}$	0,25
4	Đặt: $t = x^2 \Rightarrow dt = 2xdx \Rightarrow \frac{dt}{2} = xdx$. Đổi cận	
(1,0đ)	$egin{array}{c cc} x & 0 & 1 \ \hline t & 0 & 1 \ \hline \end{array}$	0,25
	$I_2 = \int_0^1 e^t \frac{dt}{2} = \frac{1}{2} e^t \Big _0^1 = \frac{1}{2} e - \frac{1}{2}$	
	Vậy $I = I_1 + I_2 = \frac{1}{3} + \frac{1}{2}e - \frac{1}{2} = \frac{1}{2}e - \frac{1}{6}$	0,25

Câu	Đáp án (Trang 03)	Điểm
5 (1,0đ)	Gọi $I(a;b;c)$ là tâm của mặt cầu (S) . Vì (S) đi qua các điểm A,B,C và cắt hai mặt phẳng $(\alpha):x+y+z+2=0$ và $(\beta):x-y-z-4=0$ theo 2 giao tuyến là hai đường tròn có bán kính bằng nhau nên ta có hệ	0,25
	$\begin{cases} IA = IB \\ IA = IC \\ d(I, (\alpha)) = d(I, (\beta)) \end{cases} \Leftrightarrow \begin{cases} 3a - 7b + 4c = 15 \\ 3a - 2b + 2c = 9 \\ a + b + c + 2 = a - b - c - 4 \end{cases}$	
	Giải hệ ta được: $\begin{cases} a=1\\b=0\\c=3 \end{cases} \lor \begin{cases} a=\frac{19}{7}\\b=-\frac{12}{7}\\c=-\frac{9}{7} \end{cases}$	0,25
	• Với $\begin{cases} a=1\\b=0 \end{cases}$, viết được phương trình mặt cầu: $(x-1)^2+y^2+(z-3)^2=25$ $c=3$	0,25
	• Với $\begin{cases} a=\frac{19}{7}\\ b=-\frac{12}{7} \end{cases}$, viết được phương trình mặt cầu: $c=-\frac{9}{7}$	0,25
	$\left(x - \frac{19}{7}\right)^2 + \left(y + \frac{12}{7}\right)^2 + \left(z + \frac{9}{7}\right)^2 = \frac{1237}{49}$ To có (sin x + cos x) ² = 1 + cos x \infty 1 + 2 sin x cos x = 1 + cos x \infty cos x (2 sin x - 1) = 0.	0,25
	Ta có $(\sin x + \cos x)^2 = 1 + \cos x \Leftrightarrow 1 + 2\sin x \cos x = 1 + \cos x \Leftrightarrow \cos x(2\sin x - 1) = 0$	
6 a (0,5đ)	$\Leftrightarrow \begin{bmatrix} \cos x = 0 \\ \sin x = \frac{1}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{2} + k\pi \\ x = \frac{\pi}{6} + k2\pi (k \in \mathbb{Z}) \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix}$	0,25
	Vậy phương trình đã cho có 3 họ nghiệm.	
	 Phép thử: "Sắp 12 học sinh vào 3 nhóm khác nhau" ⇒ Số phần tử của không gian mẫu: n(Ω) = C₄¹².C₄⁸.C₄⁴ = 34 650 Gọi A là biến cố: "Sắp 12 học sinh vào 3 nhóm khác nhau có đúng 1 nữ" 	0,25
6 b (0,5d)	\Rightarrow Số kết quả thuận lợi cho biến cố A là $n(A)=\mathbf{C}_1^3.\mathbf{C}_3^9.\mathbf{C}_1^2.\mathbf{C}_3^6.\mathbf{C}_1^1.\mathbf{C}_3^3=10$ 080	
	Xác suất của biến cố là	
	$P(A) = \frac{n(\Omega)}{n(A)} = \frac{10\ 080}{34\ 650} = \frac{16}{55}$	0,25
	Vậy xác suất cần tìm là $\frac{16}{55}$	

Câu	Đáp	án (Trang 04)	Điểm
7 (1,0d)		• Ta có $\begin{cases} SA \perp (ABC) \\ AB \subset (ABC) \end{cases}$ $\Rightarrow SA \perp AB \Rightarrow AB \text{ là hình chiếu của } SB \text{ lên } (ABC), \text{ do đó } \widehat{SBA} = 30^{0}$ • Tam giác SAB vuông tại A nên $\cot \widehat{SBA} = \frac{AB}{SA}$ $\Rightarrow BC = AB = SA. \cot \widehat{SBA}$ $= a. \cot 30^{0} = a\sqrt{3}$	0,25
	• $S_{ABC}=\frac{1}{2}AB.BC=\frac{1}{2}a\sqrt{3}.a\sqrt{3}=\frac{3a^2}{2}$ • Vậy thể tích khối $S.ABC$ là $V=\frac{1}{3}SA.S_{ABC}=\frac{1}{3}.a.\frac{3a^2}{2}=\frac{a^3}{2}$	0,25	
		• Trong mp(ABC), kể $AI/\!\!/BC$ và kể $CI/\!\!/AB$ $\Rightarrow ABCI$ là hình vuông cạnh $a\sqrt{3}$ • Trong mp(SAI), kể AH vuông góc với SI , ta có $\begin{cases} AH \perp SI \\ AH \perp CI \left(CI \perp (SAI)\right) \end{cases} \Rightarrow AH \perp (SIC)$ Nên $d(AB,SC) = d\left(A;(SIC)\right) = AH$	0,25
		• Tam giác SAI vuông tại A nên $\frac{1}{AH^2} = \frac{1}{SA^2} + \frac{1}{AI^2}$ $\Rightarrow AH = \frac{AI.SA}{\sqrt{AI^2 + SA^2}} = \frac{a.a\sqrt{3}}{\sqrt{a^2 + 3a^2}} = \frac{a\sqrt{3}}{2}$ Vậy khoảng cách của AB và SC bằng $\frac{a\sqrt{3}}{2}$	0,25

Câu	Đáp án (Trang 05)	Điểm
8 (1,0đ)	• Do F là trung điểm AE nên đỉnh $A(-5;4)$ ⇒ phương trình đường thẳng (AC) :	0,25
	• Ta đi chứng minh: $BF \perp IF$. Thật vậy ta có $\overrightarrow{BF} = \frac{1}{2} \left(\overrightarrow{BA} + \overrightarrow{BE} \right)$ $\overrightarrow{FI} = \frac{1}{2} \left(\overrightarrow{FD} + \overrightarrow{FC} \right) = \frac{1}{2} \left(\overrightarrow{AD} + \overrightarrow{EC} \right)$ $\Rightarrow 4\overrightarrow{BF}.\overrightarrow{FI} = \left(\overrightarrow{BA} + \overrightarrow{BE} \right) \left(\overrightarrow{AD} + \overrightarrow{EC} \right)$ $\Rightarrow 4\overrightarrow{BF}.\overrightarrow{FI} = \left(\overrightarrow{BA} + \overrightarrow{BE} \right) \left(\overrightarrow{AD} + \overrightarrow{EC} \right)$ $\Rightarrow \overrightarrow{ABF}.\overrightarrow{FI} = \left(\overrightarrow{BA} + \overrightarrow{BE} \right) \left(\overrightarrow{AD} + \overrightarrow{EC} \right)$ $\Rightarrow \overrightarrow{ABF}.\overrightarrow{FI} = \left(\overrightarrow{BA} + \overrightarrow{BE} \right) \left(\overrightarrow{AD} + \overrightarrow{EC} \right)$ $\Rightarrow \overrightarrow{ABF}.\overrightarrow{FI} = \left(\overrightarrow{BA} + \overrightarrow{BE} \right) \left(\overrightarrow{AD} + \overrightarrow{EC} \right)$ $\Rightarrow \overrightarrow{ABF}.\overrightarrow{FI} = \left(\overrightarrow{BA} + \overrightarrow{BE} \right) \left(\overrightarrow{AD} + \overrightarrow{EC} \right)$ $\Rightarrow \overrightarrow{ABF}.\overrightarrow{FI} = \left(\overrightarrow{BA} + \overrightarrow{BE} \right) \left(\overrightarrow{AD} + \overrightarrow{EC} \right)$ $\Rightarrow \overrightarrow{ABF}.\overrightarrow{FI} = \left(\overrightarrow{BA} + \overrightarrow{BE} \right) \left(\overrightarrow{AD} + \overrightarrow{EC} \right)$ $\Rightarrow \overrightarrow{ABF}.\overrightarrow{AD} + \overrightarrow{BE}.\overrightarrow{AD} + \overrightarrow{BE}.\overrightarrow{AD}$ $\Rightarrow \overrightarrow{ABF}.\overrightarrow{AD} + \overrightarrow{AD}$ $\Rightarrow \overrightarrow{ABF}.\overrightarrow{AD}$ $\Rightarrow \overrightarrow{ABF}$ $\Rightarrow $	0,25
	• $BF \perp IF$ nên có phương trình: $7x+3y-6=0$ • BE đi qua E và vuông góc EF nên có phương trình: $5x-2y-25=0$ Do đó $B(7;5)$	0,25
	\bullet Từ đây tìm được phương trình (CD) : $2x-24y-39=0$	0,25
9 (1,0đ)	• ĐK: $x \ge 1$. Bất phương trình đã cho tương đương với $\Leftrightarrow \frac{(2x-3)\left(2\sqrt{x-1}-1\right)}{x} \ge \frac{9x^2-4(2x-1)}{3x+2\sqrt{2\sqrt{2x-1}}}$ $\Leftrightarrow \frac{(2x-3)\left(2\sqrt{x-1}-1\right)}{x} \ge 3x-2\sqrt{2x-1} \tag{3}$	0,25
	(3) \Leftrightarrow $(2x-3) (2\sqrt{x-1}-1) \ge 3x^2 - 2x\sqrt{2x-1} (x \ge 1)$ $\Leftrightarrow 2(x-1-\sqrt{x-1})^2 + (x-\sqrt{2x-1})^2 + 2(\sqrt{x-1}+x-1) \le 0$ (4)	0,25
	Ta có nhận xét sau: $\begin{cases} \left(x - 1 - \sqrt{x - 1}\right)^2 \ge 0\\ \left(x - \sqrt{2x - 1}\right)^2 \ge 0 \end{cases} \Rightarrow \mathrm{VT}_{(4)} \ge 0$ $\left(\sqrt{x - 1} + x - 1\right) \ge 0 \text{ (do } x \ge 1)$	0,25
	Vậy để (4) xảy ra thì \Leftrightarrow VT = 0 \Leftrightarrow $\begin{cases} x - 1 = \sqrt{x - 1} \\ x = \sqrt{2x - 1} \end{cases} \Leftrightarrow x = 1$ $x - 1 = 0$	0,25

Câu	Đáp án (Trang 06)	Điểm
10 (1,0đ)	• Ta có $ \sqrt{\frac{a}{b+c}} + \sqrt{\frac{b}{c+a}} = \frac{a^2}{a\sqrt{a(b+c)}} + \frac{b^2}{b\sqrt{b(c+a)}} \ge \frac{(a+b)^2}{a\sqrt{a(b+c)} + b\sqrt{b(c+a)}} $ $ \frac{(a+b)^2}{a\sqrt{a(b+c)} + b\sqrt{b(c+a)}} \ge \frac{(a+b)^2}{\sqrt{(a+b)[a^2(b+c) + b^2(c+a)]}} \tag{5} $ • Mặt khác, Vì $c = \min\{a, b, c\} \Rightarrow a+b-2c \ge 0$. Nên ta có $ a^2(b+c) + b^2(c+a) = ab(a+b-2c) + c(a+b)^2 \le \left(\frac{a+b}{2}\right)^2 (a+b-2c) + c(a+b)^2 $ $ \left(\frac{a+b}{2}\right)^2 (a+b-2c) + c(a+b)^2 = \frac{(a+b)^3 + 2c(a+b)^2}{4} \tag{6} $ Từ (5) và (6) suy ra	0,25
	Ta lại có $ \ln\left[\frac{6(a+b)+4c}{a+b}\right] = \ln\left[2\left(\frac{a+b+2c}{a+b}+2\right)\right] \ge \ln\left[\left(\sqrt{1+\frac{2c}{a+b}}+\sqrt{2}\right)^2\right] \tag{7} $ Mặt khác: vì $c = \min\{a,b,c\} \Rightarrow 2c \le a+b$. Nên ta có $ \sqrt[4]{\frac{8c}{a+b}} \le \sqrt[4]{2 \cdot \frac{a+b+2c}{a+b}} \le \frac{1}{2}\left(\sqrt{1+\frac{2c}{a+b}}+\sqrt{2}\right) \tag{8} $	0,25
	• Từ (6), (7), (8) ta được $P \geq \frac{2}{\sqrt{1 + \frac{2c}{a + b}}} + \frac{8 \ln \left(\sqrt{1 + \frac{2c}{a + b}} + \sqrt{2}\right)}{\sqrt{1 + \frac{2c}{a + b}} + \sqrt{2}}$ Đặt $t = \sqrt{1 + \frac{2c}{a + b}}$, do $c = \min\{a, b, c\} \Rightarrow \frac{2c}{a + b} \leq 1 \Rightarrow t \leq \sqrt{2}$ • Xét hàm $f(t) = \frac{2}{t} + \frac{8 \ln \left(t + \sqrt{2}\right)}{t + \sqrt{2}}$, trên $t \in (0; \sqrt{2}]$ • Ta có $f'(t) = \frac{-2}{t^2} + \frac{8}{\left(t + \sqrt{2}\right)^2} - \frac{8 \ln \left(t + \sqrt{2}\right)}{\left(t + \sqrt{2}\right)^2}$ $= \frac{\left(t - \sqrt{2}\right) \left(3t + \sqrt{2}\right)}{t^2 \left(t + \sqrt{2}\right)^2} - \frac{8 \ln \left(t + \sqrt{2}\right)}{\left(t + \sqrt{2}\right)^2}, \ \forall t \in \left(0; \sqrt{2}\right]$ Suy ra: $f(t) \geq f(\sqrt{2}) = 2 (1 + \ln 8)$	0,25
	Vậy $P_{\min}=2(1+\ln 8).$ Dấu "=" xảy ra khi và chỉ khi $a=b=c.$	0,25

Lưu ý: Học sinh có lời giải khác với đáp án chấm thi nếu có lập luận đúng dựa vào SGK hiện hành và có kết quả chính xác đến ý nào thì cho điểm tối đa ở ý đó.