B+ trees

Example B+-Tree Index

This is a sparse index

True

False

A-217	Brighton	750	
A-101	Downtown	500	
A-110	Downtown	600	\downarrow
A-215	Mianus	700	\prec
A-102	Perryridge	400	\longrightarrow
A-201	Perryridge	900	\downarrow
A-218	Perryridge	700	\prec
A-222	Redwood	700	
A-305	Round Hill	350	

B⁺-Tree Node Structure

Typical node

- K_i are the search-key values
- P_i are pointers to children (for non-leaf nodes) or pointers to records or buckets of records (for leaf nodes).
- The search-keys in a node are ordered

$$K_1 < K_2 < K_3 < \ldots < K_{n-1}$$

Properties of B+-Trees

- It is balanced
 - Every path from the root to a leaf is same length
- Leaf nodes (at the bottom)
 - P_i contains the pointers to tuple(s) with search value K_i
 - 0
 - Last pointer, P_n, is a pointer to the next leaf node
 - Must contain at least ceil((n-1)/2) keys

P_1 K_1 P_2	P_{n-1} K_{n-1} P_n
-------------------	---------------------------

Example B+-Tree Index

Properties

Interior nodes

- All tuples in the subtree pointed to by P_i , have search key $< K_i$
- To find a tuple with key K_j < K_i, follow P_i
- 0
- Finally, search keys in the tuples contained in the subtree pointed to by P_n , are all larger than or equal to K_{n-1}
- Must contain at least ceiling(n/2) entries (pointers), unless root

Which has larger minimum size?

- A. Internal nodes (ceiling(n/2) pointers)
- Leaf nodes
 (ceil((n-1)/2) keys)
 They are the same

The discussion in class focused on why A is the wrong answer: When n is even, ceiling(n/2) = ceiling((n-1)/2)When n is odd, ceiling(n/2) is one more than ceiling((n-1/2))

BUT, each node has one more pointer than key SO, when n is odd, they have the exact same minimum size and when n is even, leaf nodes have a larger minimum size

Example B+-Tree Index

B+-Trees - Searching

- How to search?
 - Follow the pointers
- Logarithmic
 - $log_{B/2}(N)$, where B = Number of pointers per block
 - B is also called the order of the B+-Tree Index
 - Typically 100 or so
- If a relation contains 1,000,000 entries, takes only 4 random accesses (ceiling of log₅₀(1000000)), plus file access costs

When will example from previous slide take fewer than 4 random disk IOs?

(Example was table with 1,000,000 tuples,25% number of pointers per block (B) = 100)

- A. When we access a key that is in the first leaf block
- B. When we access a key that is in the last leaf block
- When the higher levels of the index are in memory
- D. When B is 50 instead of 100

25%

25%

25%

B+-Trees - Searching

- How to search?
 - Follow the pointers
- Logarithmic
 - $log_{B/2}(N)$, where B = Number of pointers per block
 - B is also called the order of the B+-Tree Index
 - Typically 100 or so
- If a relation contains 1,000,000 entries, takes only 4 random accesses (ceiling of log₅₀(1000000)), plus file access costs
- The top levels are typically in memory
 - So only requires 1 or 2 random accesses per request

Tuple Insertion

- Find the leaf node where the search key should go
- If already present
 - Insert record in the file. Update the bucket if necessary
 - This would be needed for secondary indexes
- If not present
 - Insert the record in the file
 - Adjust the index
 - Add a new (K_i, P_i) pair to the leaf node
 - Recall the keys in the nodes are sorted
 - What if there is no space?

Tuple Insertion

- Splitting a node
 - Node has too many key-pointer pairs
 - Needs to store n, only has space for n-1
 - Split the node into two nodes
 - Insert new K and P into oversized L (called T in textbook).
 - Create new L'
 - P₁ through K_{ceil(n/2)} in (original) L, rest in L'
 - Let K' be smallest key in L'
 - Insert (K', L') in L-parent
 - Recursively go up the tree
 - In parent, ceil((N+1)/2) pointers go in left node, rest of pointers go right
 - (Key between the pointer split point goes next level up)
 - We will illustrate the difference in this splitting process on the next two slides
 - May result in splitting all the way to the root
 - In fact, may end up adding a level to the tree
 - Pseudocode in the book !! Read Fig 11.15...

Leaf splitting

Add DC to:

Add DC into temporary oversized block, T

Split oversized block into two blocks

Non-leaf splitting

Add DC, pointer to DC block to:

Add DC into temporary oversized block, T

Split oversized block into two blocks

Laurel and pointer to the Silver Spring node gets inserted into next level up

B⁺-Trees: Simple Insertion

B+-Tree before and after insertion of "Clearview"

Another B+Tree Insertion Example

Next slides show the insertion of (125) into this tree

Step 1: Split L to create L'

Insert the lowest value in L' (130) upward into the parent P

Step 2: Insert (130) into P by creating a temp node T

Step 3: Create P'; distribute from T into P and P'

Step 4: Insert 200 into parent

What keys does parent of the leaf node with 350 contain after insert of 340 into:

- A. 100,200,300
- B. 300,350
- c. 300,340
- D. 300
- E. 340
 - F. 350

What keys does root contain after insert

- A. 1000,2000,3000
- B. 1000,2000
- c. 340
- D. 350
- E. 1000
- F. 2000
- G. 3000

B⁺-Trees: Deletion

- Find the record, delete it.
- Maybe remove the (search-key, pointer) pair from leaf node
 - Note that there might be another tuple with the same search-key
 - In that case, this is not needed (if primary index)
- lssue:
 - The leaf node now may contain too few entries
 - Why do we care?
 - Solution:
 - 1. Merge, if possible

When is it impossible to merge with a sibling?

- A. When the sibling to the left is full
- B. When the sibling to the right is full
- When there is no sibling to the left
- When there is no sibling to the right
- E. When both immediate siblings are full
- when both immediate siblings have fewer than (ceiling(n/2) -1) free pointers

B⁺-Trees: Deletion

- Find the record, delete it.
- Maybe remove the (search-key, pointer) pair from leaf node
 - Note that there might be another tuple with the same search-key
 - In that case, this is not needed (if primary index)
- lssue:
 - The leaf node now may contain too few entries
 - Why do we care ?
 - Solution:
 - 1. Merge, if possible
 - 2. Borrow from adjacent sibling, otherwise
 - May end up merging all the way to the root
 - In fact, may reduce the height of the tree by one

Approach to B+-tree Deletion

```
procedure delete_entry(node N, value K, pointer P)
   delete (K, P) from N
   if (N is the root and N has only one remaining child)
   then make the child of N the new root of the tree and delete N
   else if (N has too few values/pointers) then begin
       Let N' be the previous or next child of parent(N)
       Let K' be the value between pointers N and N' in parent(N)
       if (entries in N and N' can fit in a single node)
          then begin /* Coalesce nodes */
             if (N is a predecessor of N') then swap_variables(N, N')
              if (N is not a leaf)
                 then append K' and all pointers and values in N to N'
                 else append all (K_i, P_i) pairs in N to N'; set N'. P_n = N.P_n
              delete\_entry(parent(N), K', N); delete node N
          end
       else begin /* Redistribution: borrow an entry from N' */
          if (N') is a predecessor of N) then begin
             if (N is a nonleaf node) then begin
                 let m be such that N'.P_m is the last pointer in N'
                 remove (N'.K_{m-1}, N'.P_m) from N'
                 insert (N'.P_m, K') as the first pointer and value in N,
                    by shifting other pointers and values right
                 replace K' in parent(N) by N'.K_{m-1}
              end
              else begin
                 let m be such that (N'.P_m, N'.K_m) is the last pointer/value
                    pair in N'
                 remove (N'.P_m, N'.K_m) from N'
                 insert (N'.P_m, N'.K_m) as the first pointer and value in N,
                    by shifting other pointers and values right
                 replace K' in parent(N) by N'.K_m
             end
          end
          else ... symmetric to the then case ...
       end
   end
```

11.19 in book

Deleting "Downtown" causes merging of under-full leaves

Deletion of "Perryridge"

What keys does parent of the leaf node with 350 contain after delete of 300 from:

- A. 100,200,300
- B. 100,200,330
- c. 100,200
- D. 300
- E. 330
- F. 200,330

What keys does parent of the leaf node with 350 contain after delete of 300 and 330 from:

- A. 100,200,300
- B. 100,200,330
- c. 100,200,240
- D. 240
- E. 300
- F. 350
- G. 240,300

B+ Trees in Practice

- ▶ Typical order: 200. Typical fill-factor: 67%.
 - average fanout = 133
- Typical capacities:
 - Height 3: $133^3 = 2,352,637$ entries
 - Height 4: $133^4 = 312,900,700$ entries
- Can often hold top levels in buffer pool:
 - Level 1 = 1 page = 8 Kbytes
 - Level 2 = 133 pages = 1 Mbyte
 - Level 3 = 17,689 pages = 133 MBytes

B+ Trees: Summary

- Searching:
 - $\log_d(N)$ Where d is the order, and N is the number of entries
- Insertion:
 - Find the leaf to insert into
 - If full, split the node, and adjust index accordingly
 - Similar cost as searching
- Deletion
 - Find the leaf node
 - Delete
 - May not remain half-full; must adjust the index accordingly