# Controller with Bayes Filter (ctrlBF.m)

### Rowan McAllister

### January 4, 2016

## Contents

| 1            | ctrlBF.m Inputs and Outputs  1.1 ctrlBF.m Inputs     | 2<br>3<br>3<br>3 |
|--------------|------------------------------------------------------|------------------|
| 2            | Rollouts with ctrlBF.m                               | 4                |
| 3            | Propagate with ctrlBF.m  3.1 Comments:               | <b>5</b> 5       |
| $\mathbf{A}$ | Derivation of $\mathbb{C}[M_t, Z_{tt}]$ :            | 7                |
| В            | Derivation of $\mathbb{C}[Z_{tt}, U_t]$ :            | 7                |
| $\mathbf{C}$ | Derivation of $\mathbb{C}[M_t, U_t]$ :               | 7                |
| D            | Derivation of $\mathbb{C}[Z_{tt}, Z_{t+1}]$ :        | 8                |
| $\mathbf{E}$ | Derivation of $\mathbb{C}[M_t, Z_{t+1}]$ :           | 8                |
| $\mathbf{F}$ | Derivation of ctrlBF.m's Output Cctrlbf:             | 8                |
| $\mathbf{G}$ | Derivation of $\mathbb{C}[M_t, X_{t+1}]$ :           | 8                |
| Н            | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | 8<br>8<br>8<br>9 |
| Ι            | Derivation of $\mathbb{C}[X_{t+1}, Z_{t+1}]$ :       | 9                |
| J            | Derivation of Exact $\mathbb{C}[X_{t+1}; Z_{t+1}]$ : | 9                |
| K            | Joint Representation                                 | 11               |

To control a dynamical system well we need to be able to estimate the current state of a system. Let us denote the latent system-state at time t as  $x_t$ . We'll also assume a simple observation model whereby our system's sensors periodically output a noisy version of the current system-state:  $y_t = x_t + \epsilon$ , where  $\epsilon$  is a Gaussian white noise vector. A straightforward method of estimating  $x_t$  is thus to use the current sensor observation  $y_t$ , which can be inputted directly into our controller, depicted Fig. 1:



Figure 1: System using raw sensor signal for controller input.

The above solution may be adequate for low noise levels  $\epsilon$ , but fail catastrophically otherwise. If large  $\epsilon$  noise levels are directly injected into a controller configured with high gain parameters, the system will react wildly and may destabilise. To account for noisy sensors, we can *filter* the observation signal  $y_t$  before input into the controller, shown Fig. 2:



Figure 2: System with filtered controller input.

A Bayes filter (BF) maintains a belief-posterior on x, denoted  $B_{t+1}$ , conditioned on all information available thus far: the entire history of the system observations  $y_{1:t}$  and applied control signals  $u_{1:t-1}$ . Conditioning on more information than the current observation  $y_t$  yields a more informed (thus accurate) estimate of  $x_t$ . Being a function of all observations,  $B_{t+1}$  is less susceptible to the noise injected into the most recent observation  $y_t$ , and consequently the controller's input is much smoother. To maintain  $B_{t+1}$  the BF makes two recursive updates per timestep:

- 1. Update step: Compute  $B_{tt}$  using prior belief  $B_t = p(x_t)$  and observation likelihood  $\mathcal{L}(x_t|y_t) = p(y_t|x_t)$ ,
- 2. Predict step: Compute  $B_{t+1}$  by mapping updated belief  $B_{tt}$  through transition model  $p(x_{t+1}|x_t,u_t)$ .

A directed graphical model of a Bayes filter is shown Fig. 3:



Figure 3: Directed graphical model of a system using a Bayes filter. A dynamical system begins in state  $X_t$ , which sensors observe noisily as  $Y_t$ . The observation  $Y_t$  is fused with the filter's prior on plausible system-states  $B_t$ , resulting in a posterior  $B_{tt}$ . The controller uses  $B_{tt}$  to decide control signal  $U_t$ . Finally, the control signal  $U_t$  is applied to the system, resulting in new state  $X_{t+1}$ , and also used by the BF to predict the system-state in the next time step  $B_{t+1}$ .

### 1 ctrlBF.m Inputs and Outputs

#### Terminology and Notation:

- 1. The subscripts:
  - t pertains to the current BF predicted state;
  - $_{\rm tt}$  pertains to the current BF updated state w.r.t. noisy observation  $y_{\rm t}$ ;

- ullet t+1 pertains to the next BF prediction state w.r.t. dynamics model  $\mathcal{T}$ .
- 2. The circle superscript of denotes the trigonometric sin/cos angles of its operand.
- 3. Random variables and matrices are capitalised.

#### 1.1 ctrlBF.m Inputs

A state-struct  $s_t$  is inputted with fields:

- m<sub>yt</sub> observation mean,
- S<sub>yt</sub> observation variance,
- $\mathfrak{m}_{z_t}$  prior filter mean-of-mean,
- $S_{z_+}$  prior filter variance-of-mean,
- zc  $C_{x_tz_t}$ : covariance of state and prior filter mean,
- $\bullet$   $V_t$  prior filter variance.

#### 1.2 ctrlBF.m Local Variables

Block variables M, S and V are progressively expanded to (blue indicates computed with fillIn function, orange indicates only required when state representation is > 1 Markov grey indicates what was though to be required when state representation is > 1 Markov)),:

| $m_{x_t}$                                     | 1 |
|-----------------------------------------------|---|
| $\mathfrak{m}_{z_{\mathfrak{t}}}$             | 1 |
| $\mathfrak{m}_{z_{\mathfrak{t}\mathfrak{t}}}$ | 1 |
| $\mathfrak{m}_{z_{\operatorname{t}}^{\circ}}$ |   |
| $\mathfrak{m}_{\mathfrak{u}_\mathfrak{t}}$    |   |
| $\mathfrak{m}_{z_{t+1}}$                      | 1 |

| $S_{x_t}$     | $C_{x_t z_t}$    |                           |                              |                  |                                                     |
|---------------|------------------|---------------------------|------------------------------|------------------|-----------------------------------------------------|
| $C_{z_t x_t}$ | $S_{z_t}$        |                           |                              | $C_{z_t u_t}$    | $C_{z_t z_{t+1}}$                                   |
|               |                  | $S_{z_{tt}}$              | $C_{z_{t}_{t}z_{t}^{\circ}}$ | $C_{z_{tt}u_t}$  | $C_{z_{tt}z_{t+1}}$                                 |
|               |                  | $C_{z_{t}^{\circ} z_{t}}$ | $S_{z_{\mathrm{t}}^{\circ}}$ |                  |                                                     |
|               | $C_{u_t z_t}$    | $C_{u_t z_{tt}}$          |                              | $S_{u_t}$        | $C_{\mathfrak{u}_{\mathfrak{t}}z_{\mathfrak{t}+1}}$ |
|               | $C_{z_{t+1}z_t}$ | $C_{z_{t+1}z_{tt}}$       |                              | $C_{z_{t+1}u_t}$ | $S_{z_{t+1}}$                                       |



Diagonal blocks of block variance V

Block mean M

Block variance S

#### 1.3 ctrlBF.m Outputs

- M<sub>ctrl</sub> control signal mean,
- S<sub>ctrl</sub> control signal variance,
- $C_{ctrl}$   $S_{x_t}^{-1}\mathbb{C}[X_t, U_t]$ , inverse state variance times input-state output-control covariance (derived App. ??),
- $\bullet$   $\,s_{t+1}\,\,$  state-struct with predicted filter fields:
  - $-m_{u_{+}}$  observation mean (unchanged),
  - S<sub>yt</sub> observation variance (unchanged),
  - $-m_{z_{t+1}}$  predicted filter mean-of-mean (derived Table 2),
  - $-S_{z_{t+1}}$  predicted filter variance-of-mean (derived Table 2),
  - zc  $C_{x_{t+1},z_{t+1}}$ : covariance of state and predicted filter mean (derived App. J),
  - $-V_{t+1}$  predicted filter variance (derived Table 1, 2).

### 2 Rollouts with ctrlBF.m

We define a simulation of a system's possible evolution up to horizon H as a 'rollout'. As a system transitions from state  $x_t$  to  $x_{t+1}$ , the controller's Gaussian belief-distribution  $B_t$  will evolve w.r.t. simulated observations  $y_t$  and control signals  $u_t$  at each point in time t. We use lower case x and u to signify point masses, not distributions. A real-world test of system progresses as a rollout also (the only difference being observations are read from hardware, not simulated). A rollout proceeds as follows in Table 1:

| System State                                                     |                  | Controller's Belief                                                                                                     |
|------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------|
| $\downarrow x_t$                                                 |                  | ↓ B <sub>t</sub>                                                                                                        |
| Observation: sample $y_t$ from $\mathcal{N}(x_t, S_\varepsilon)$ | yt<br>→          | Updated Controller State: $B_{tt} \sim \mathcal{N}(z_{tt}, V_{tt})$                                                     |
|                                                                  |                  | $z_{\rm tt}$ $b_{\rm tt}$                                                                                               |
|                                                                  |                  | $V_{tt} = (V_t^{-1} + S_{\epsilon}^{-1})^{-1}  z_{tt} = V_{tt}(V_t^{-1}z_t + S_{\epsilon}^{-1}y_t) = w_z z_t + w_y y_t$ |
| $\downarrow x_{t}$                                               |                  | ↓ B <sub>tt</sub>                                                                                                       |
| New Latent State: $x_{t+1} = simulate(x_t, u_t)$                 | $u_t \leftarrow$ | Controller signal: $u_t = \text{policy}(z_{tt}, z_{tt}^{\circ})$ where                                                  |
| $\downarrow x_{t+1}$                                             |                  | $\downarrow$ B <sub>tt</sub> , $\mathfrak{u}_{t}$                                                                       |
|                                                                  |                  | Predicted Controller State: $B_{t+1} \sim \mathcal{N}(z_{t+1}, V_{t+1})$                                                |
| $\downarrow x_{t+1}$                                             |                  | $z_{t+1}$ $\mathfrak{b}_{t+1}$                                                                                          |
|                                                                  |                  | m-code: $\{z_{t+1}, C, V_{t+1}\} =$                                                                                     |
|                                                                  |                  | $\mathrm{gph}\Big(\mathfrak{T}, egin{bmatrix} z_{tt} \\ \mathfrak{u}_{t} \end{bmatrix}, V_{tt}\Big)$                    |
| $\downarrow x_{t+1}$                                             |                  | $\downarrow$ B <sub>t+1</sub>                                                                                           |

Table 1: Rollout Flowchart.

#### 3 Propagate with ctrlBF.m

Training our controller requires computing the value function: the expected loss over possible futures. Unfortunately a rollout will only simulate how one possible future may be reached. Instead, we consider a continuum of possible futures as a distribution on the latent states  $X_t$ . The initial latent state  $X_0$  may be a point mass, but after one timestep  $X_1$  will be a distribution owing to inherent system stochasticity (or 'process noise'). As our belief defines a belief-distribution over each plausible latent state, our belief  $B_t \sim \mathcal{N}(z_t, V_t)$  is thus redefined as a distribution over distributions. We define a different belief distributions using a distribution on belief mean parameter:  $Z_t = \mathcal{N}(m_{z_t}, S_{z_t})$ . We make the simplifying approximation that  $V_t$  is constant across each latent state  $X_t$ . Thus, our Gaussian belief distribution with an uncertain mean parameter is therefore a hierarchical Gaussian distribution function:  $B_t = \mathcal{N}(Z_t, V_t) = \mathcal{N}(\mathcal{N}(m_{z_t}, S_{z_t}), V_t)$ . We define the evolution of this richer belief function over time as a 'propagation', seen Table 2:



Table 2: Propagate Flowchart.

#### 3.1 Comments:

- 1. Although future values of Y are currently unknown, we already know our strength-of-belief in Y will be  $S_{\epsilon}$ .
- 2. Note the controller outputs real numbers, not distributions. However, a distribution over future control signals exists since we are currently uncertain about what the value of Z will be. We also (for now) assume the controller is a function of the belief-mean Z only, and not also a function of strength-of-belief V.

3. We can express the joint probability of all uncertain and hierarchically-uncertain terms involved:

$$\begin{bmatrix} Z_t \\ B_t \\ X_t \\ Y_t \end{bmatrix} \sim \mathcal{N} \left( \begin{bmatrix} m_{z_t} \\ m_{z_t} \\ m_{x_t} \\ m_{x_t} \end{bmatrix}, \begin{bmatrix} S_{z_t} & S_{z_t} & C_{x_t z_t}^\top & C_{x_t z_t}^\top \\ S_{z_t} & S_{z_t} + V_t & C_{x_t z_t}^\top & C_{x_t z_t}^\top \\ C_{x_t z_t} & C_{x_t z_t} & S_{x_t} & S_{x_t} \\ C_{x_t z_t} & C_{x_t z_t} & S_{x_t} & S_{x_t} + S_\varepsilon \end{bmatrix} \right).$$

4. ctrlBF.m instead uses rearranged expressions for  $V_{tt}$  and  $m_{z_{t+1}}$ :

(a) 
$$V_{tt} = S_{\varepsilon}(V_t + S_{\varepsilon})^{-1}V_t = V_t(V_t + S_{\varepsilon})^{-1}S_{\varepsilon}$$
,

$$(\mathrm{b}) \ m_{z_{\mathtt{t}\mathtt{t}}} = S_{\varepsilon} (V_t + S_{\varepsilon})^{-1} m_{z_{\mathtt{t}}} + V_t (V_t + S_{\varepsilon})^{-1} m_{y_{\mathtt{t}}}.$$

#### 3.2 Pseudocode

Let s represent the system state,  $s^{\circ}$  the augmented system state, b the filter state,  $b^{\circ}$  the augmented filter state, u the control signal (either point masses, distributions, or hierarchical distributions). A particular parameterisation of the controller is evaluated with:

 $total \ cost \ up \ to \ horizon, \ \overline{\frac{d \ total \ cost \ up \ to \ horizon}{dp}} \leftarrow \mathtt{value}(s, @\mathtt{ctrlBF} \ parameterised \ by} \ p, @\mathtt{dynmodel}, @\mathtt{cost})$ 

**FOR** time = now to horizon:

1. 
$$s_{\mathrm{predicted}}, \frac{\partial s_{\mathrm{predicted}}}{\partial \{s,p\}} \leftarrow \mathtt{propagate}(s,\,b)$$

(a) initialise 
$$\frac{\partial s_{\text{predicted}}}{\partial \{s, p\}}$$

(b) u, 
$$\frac{\partial s_{\text{predicted}}}{\partial \{s,p\}} \leftarrow \text{ctrlBF}(b, s, \frac{\partial s_{\text{predicted}}}{\partial \{s,p\}})$$

i. 
$$b_{updated} \leftarrow update(b, s noisily observed)$$

ii. 
$$b_{\mathrm{updated}}^{\circ} \leftarrow \mathtt{gTrig}(b_{\mathrm{updated}})$$

iii. 
$$u \leftarrow \texttt{ctrlBF.policy}(b_{updated})$$

iv. 
$$b_{\mathrm{predicted}} \leftarrow \mathtt{ctrlBF.dynmodel}(b_{\mathrm{updated}}, \, b_{\mathrm{updated}}^{\circ}, \, u)$$

v. contribute to 
$$\frac{\partial s_{\text{predicted}}}{\partial \{s,p\}}$$

(c) 
$$s^{\circ} \leftarrow \mathsf{gTrig}(s)$$

(d) 
$$s_{\text{predicted}} \leftarrow \texttt{dynmodel}(s, s^{\circ}, u)$$

(e) contribute to 
$$\frac{\partial s_{\mathrm{predicted}}}{\partial \{s,p\}}$$

2. update 
$$\frac{ds_{predicted}}{dp}$$

3. cost, 
$$\frac{\partial \text{cost}}{\partial s_{\text{predicted}}} \leftarrow \text{cost}(s_{\text{predicted}})$$

4. update total cost so far and 
$$\frac{d \text{ total cost so far}}{dp}$$

5. 
$$s \leftarrow s_{\text{predicted}}$$

**ENDFOR** 

The controller is then trained using policy search: minimising total cost by descending the  $\frac{\text{d total cost up to horizon}}{\text{dp}}$  gradient.

### A Derivation of $\mathbb{C}[M_t, Z_{tt}]$ :

Let 
$$M_t \doteq \begin{bmatrix} X_t \\ Z_t \end{bmatrix}$$
, and  $C_{xz} \doteq \mathbb{C}[X_t, Z_t]$ , then

$$\mathbb{C}[M_{t}, Z_{tt}] = \begin{bmatrix} \mathbb{C}[X_{t}, Z_{tt}] \\ \mathbb{C}[Z_{t}, Z_{tt}] \end{bmatrix} = \begin{bmatrix} \mathbb{C}[X_{t}, w_{y}Y_{t} + w_{z}Z_{t}] \\ \mathbb{C}[Z_{t}, w_{y}Y_{t} + w_{z}Z_{t}] \end{bmatrix} \\
= \begin{bmatrix} S_{X_{t}}w_{y}^{\top} + C_{xz}w_{z}^{\top} \\ C_{zx}w_{y}^{\top} + S_{Z_{t}}w_{z}^{\top} \end{bmatrix} \\
= \underbrace{\begin{bmatrix} S_{X_{t}} + C_{xz} \\ C_{zx} + S_{Z_{t}} \end{bmatrix}}_{S_{M_{t}}} \underbrace{[w_{y}, w_{z}]^{\top}}_{w^{\top}} \\
= S_{M_{t}}w^{\top} \tag{1}$$

## B Derivation of $\mathbb{C}[Z_{tt}, U_t]$ :

We begin with:

$$\mathbb{C}[\{Z_{tt}; Z_{tt}^{\circ}\}, U_{t}] = S_{\{Z_{tt}, Z_{tt}^{\circ}\}} \underbrace{C_{poli}[\{Z_{tt}, Z_{tt}^{\circ}\}, U_{t}]}_{p} \\
\begin{bmatrix}
\mathbb{C}[Z_{tt}, U_{t}] \\
\mathbb{C}[Z_{tt}^{\circ}, U_{t}]
\end{bmatrix} = \begin{bmatrix}
S_{Z_{tt}} & \mathbb{C}[Z_{tt}, Z_{tt}^{\circ}] \\
\mathbb{C}[Z_{tt}^{\circ}, Z_{tt}] & S_{Z_{tt}^{\circ}}
\end{bmatrix} p \\
\therefore \mathbb{C}[Z_{tt}, U_{t}] = [S_{Z_{tt}}, \mathbb{C}[Z_{tt}, Z_{tt}^{\circ}]] p \\
= S_{Z_{tt}} \underbrace{[I, C_{gtrig}[Z_{tt}, Z_{tt}^{\circ}]]}_{g} p \\
= S_{Z_{tt}} gp$$
(2)

### C Derivation of $\mathbb{C}[M_t, U_t]$ :

$$\mathbb{C}[M_{t}, U_{t}] = \mathbb{C}[M_{t}, Z_{tt}] S_{Z_{tt}}^{-1} \mathbb{C}[Z_{tt}, U_{t}]$$

$$= S_{M_{t}} w^{\top} gp$$
(TODO: prove)

ctrlNF.m case:

$$\begin{split} \mathbb{C}[\{Y_t,Y_t^\circ\},U_t] &= S_{\{Y_t,Y_t^\circ\}}C_{\mathtt{poli}}[\{Y_t,Y_t^\circ\},U_t] \\ \begin{bmatrix} \mathbb{C}[Y_t,U_t] \\ \mathbb{C}[Y_t^\circ,U_t] \end{bmatrix} &= \begin{bmatrix} S_{Y_t} & \mathbb{C}[Y_t,Y_t^\circ] \\ \mathbb{C}[Y_t^\circ,Y_t] & S_{Y_t^\circ} \end{bmatrix} C_{\mathtt{poli}}[\{Y_t,Y_t^\circ\},U_t] \\ &: \mathbb{C}[Y_t,U_t] &= [S_{Y_t},\mathbb{C}[Y_t,Y_t^\circ]]C_{\mathtt{poli}}[\{Y_t,Y_t^\circ\},U_t] \\ &= S_{Y_t}[I,C_{\mathtt{gtrig}}[Y_t,Y_t^\circ]]C_{\mathtt{poli}}[\{Y_t,Y_t^\circ\},U_t] \end{split}$$

And as a set of weights:

$$\mathbb{C}[X_t, U_t] \ = \ S_{X_t}[I, C_{\texttt{gtrig}}[Y_t, Y_t^{\circ}]] C_{\texttt{poli}}[\{Y_t, Y_t^{\circ}\}, U_t]$$

### D Derivation of $\mathbb{C}[Z_{tt}, Z_{t+1}]$ :

$$\mathbb{C}[\{Z_{tt}, U_t\}, Z_{t+1}] = S_{\{Z_{tt}, U_t\}} \underbrace{C_{dyn}[\{Z_{tt}, U_t\}, Z_{t+1}]}_{d_z} \\
\begin{bmatrix}
\mathbb{C}[Z_{tt}, Z_{t+1}] \\
\mathbb{C}[U_t, Z_{t+1}]
\end{bmatrix} = \begin{bmatrix}
S_{Z_{tt}} & \mathbb{C}[Z_{tt}, U_t] \\
\mathbb{C}[U_t, Z_{tt}] & S_{U_t}
\end{bmatrix} d_z \\
\therefore \mathbb{C}[Z_{tt}, Z_{t+1}] = [S_{Z_{tt}}, \mathbb{C}[Z_{tt}, U_t]] d_z \\
= S_{Z_{tt}}[I, gp] d_z \qquad \text{using Eq. 2}$$
(3)

### E Derivation of $\mathbb{C}[M_t, Z_{t+1}]$ :

$$\mathbb{C}[M_{t}, Z_{t+1}] = \mathbb{C}[M_{t}, Z_{tt}] S_{Z_{tt}}^{-1} \mathbb{C}[Z_{tt}, Z_{t+1}] \qquad \text{(TODO: prove)}$$

$$= S_{M}, w^{\mathsf{T}}[I, gp] d_{z} \tag{4}$$

### F Derivation of ctrlBF.m's Output C<sub>ctrlbf</sub>:

$$C_{\text{ctrlbf}} \stackrel{:}{=} S_{M_t}^{-1} \mathbb{C}[M_t, \{U_t; Z_{t+1}\}]$$

$$= S_{M_t}^{-1} \left[ \mathbb{C}[M_t, U_t], \quad \mathbb{C}[M_t, Z_{t+1}] \right]$$

$$= \left[ w^{\top} g p, \quad w^{\top} [I, g p] d_z \right]$$
(5)

### G Derivation of $\mathbb{C}[M_t, X_{t+1}]$ :

$$\begin{split} \mathbb{C}[\mathsf{M}_{\mathsf{t}},\mathsf{X}_{\mathsf{t}+1}] &= \mathbb{C}[\mathsf{M}_{\mathsf{t}},\{\mathsf{X}_{\mathsf{t}};\mathsf{U}_{\mathsf{t}}\}\mathbb{V}[\{\mathsf{X}_{\mathsf{t}};\mathsf{U}_{\mathsf{t}}\}]^{-1}\mathbb{C}[\{\mathsf{X}_{\mathsf{t}};\mathsf{U}_{\mathsf{t}}\},\mathsf{X}_{\mathsf{t}+1}] \\ &= \left[\mathbb{C}[\mathsf{M}_{\mathsf{t}},\mathsf{X}_{\mathsf{t}}],\ \mathbb{C}[\mathsf{M}_{\mathsf{t}},\mathsf{U}_{\mathsf{t}}]\right]\underbrace{C_{\mathrm{propdyn}}[\{\mathsf{X}_{\mathsf{t}};\mathsf{U}_{\mathsf{t}}\},\mathsf{X}_{\mathsf{t}+1}]}_{d_{\mathsf{x}}} \\ &= \mathsf{S}_{\mathsf{M}_{\mathsf{t}}}\left[\begin{bmatrix}\mathsf{I}\\\mathsf{0}\end{bmatrix},\ w^{\mathsf{T}}\mathsf{gp}\right]d_{\mathsf{x}} \end{split} \tag{6}$$

### H Derivation of propagate.m's Output $C_{prop}$ :

Let  $M_{t+1} \doteq \left[ \begin{array}{c} X_{t+1} \\ Z_{t+1} \end{array} \right]\!.$  Goal is to compute:

$$C_{prop} \doteq S_{M_t}^{-1}\mathbb{C}[M_t, M_{t+1}]$$

#### H.1 propagate.m with ctrlBF

By combining Eq 4 and Eq 6 we have:

$$\begin{split} C_{\text{prop}}^{\text{BF}} &= S_{M_t}^{-1}\mathbb{C}[M_t, \{X_{t+1}; Z_{t+1}\}] \\ &= S_{M_t}^{-1}\left[\mathbb{C}[M_t, X_{t+1}], \ \mathbb{C}[M_t, Z_{t+1}]\right] \\ &= \left[\left[\begin{bmatrix}I\\0\end{bmatrix}, \ w^\top gp\right]d_x, \ w^\top [I, gp]d_z\right] \\ &= \left[\left[\text{eye}(\texttt{F,D}), \ \texttt{C\_ctrlbf}(\texttt{1:U})\right]d\_x, \ \texttt{C\_ctrlbf}(\texttt{U+1:end})\right] \end{split}$$

#### H.2 propagate.m with ctrlNF

$$\begin{split} C_{prop}^{NF} &= S_{X_t}^{-1}\mathbb{C}[X_t, X_{t+1}] \\ &= \left[I, gp\right] d_x \\ &= \left[I, C_{ctrlnf}\right] d_x \end{split}$$

#### H.3 propagate.m with ctrlBF, and exact $\mathbb{C}[M_t, M_{t+1}]$

$$\begin{split} C^{\mathsf{BF}}_{\mathsf{propExact}} &= & S^{-1}_{\mathsf{M}_t} \mathbb{C}[\mathsf{M}_t, \mathsf{M}_{t+1}] \\ &= & S^{-1}_{\mathsf{M}_t} \mathbb{C}[\mathsf{M}_t, \{\mathsf{X}_t; \mathsf{Z}_{tt}; \mathsf{U}_t\}] \underbrace{\mathbb{V}[\mathsf{X}_t; \mathsf{Z}_{tt}; \mathsf{U}_t]^{-1} \mathbb{C}[[\mathsf{X}_t; \mathsf{Z}_{tt}; \mathsf{U}_t], \mathsf{M}_{t+1}]}_{C_{gphJoint}} \\ &= & \left[ \begin{bmatrix} \mathsf{I} \\ \mathsf{0} \end{bmatrix}, w^\top, w^\top gp \right] C_{gphJoint} \end{split}$$

### I Derivation of $\mathbb{C}[X_{t+1}, Z_{t+1}]$ :

Using the top half of Eq. 4 to express  $\mathbb{C}[X_t, Z_{t+1}]$ , and part of Eq. 3 to express  $\mathbb{C}[U_t, Z_{t+1}]$ , we have:

$$\begin{split} \mathbb{C}[X_{t+1}, Z_{t+1}] &= \underbrace{\mathbb{C}[X_{t+1}, \{X_t; U_t\}] \mathbb{V}[\{X_t; U_t\}]^{-1}}_{d_x^\top} \mathbb{C}[\{X_t; U_t\}, Z_{t+1}] \\ &= d_x^\top \begin{bmatrix} \mathbb{C}[X_t, Z_{t+1}] \\ \mathbb{C}[U_t, Z_{t+1}] \end{bmatrix} \\ &= d_x^\top \begin{bmatrix} [S_{X_t}, \mathbb{C}[X_t, Z_t]] w^\top [I, gp] d_z \\ [\mathbb{C}[U_t, Z_{tt}], S_{U_t}] d_z \end{bmatrix} \\ &= d_x^\top \begin{bmatrix} [S_{X_t}, C_{xz}] w^\top [I, gp] \\ [p^\top g^\top S_{Z_{tt}}, S_{U_t}] \end{bmatrix} d_z \end{aligned}$$

### J Derivation of Exact $\mathbb{C}[X_{t+1}; Z_{t+1}]$ :

Goal is (with help from propagate.m's computation of  $X_{t+1}$ ) to compute:

$$s_{t+1}.zc \triangleq \mathbb{C}[X_{t+1}, Z_{t+1}].$$

We simplify our graphical model (Fig. 3) such that  $X_{t+1}$  and  $B_{t+1}$  are the output of two  $\mathcal{G}Ps$  with a common input, seen Fig.5:



Figure 5: Simplified directed graphical model of Fig. 3.

The only tricky bit is  $X_{t+1}$  and  $Z_{t+1}$  use different (yet overlapping) subsets of the now common input  $\{X_t, B_{tt}, U_t\}$ . The common input's joint expression is given below, where  $X_{t+1}$ 's subset  $\Sigma_x$  is blue,  $Z_{t+1}$ 's ubset  $\Sigma_z$  and  $V_z$  is red, and where they overlap  $\Sigma_{xz}$  is purple.

$$\underbrace{\begin{bmatrix} X_{t} \\ B_{tt} \\ U_{t} \end{bmatrix}}_{ll} \sim \mathcal{N} \left( \mathcal{N} \left( \underbrace{\begin{bmatrix} \mathbf{m}_{\mathbf{x}_{t}} \\ \mathbf{m}_{\mathbf{z}_{tt}} \\ \mathbf{m}_{\mathbf{u}_{t}} \end{bmatrix}}_{m}, \underbrace{\begin{bmatrix} \mathbf{S}_{\mathbf{x}_{t}} & \mathbf{C}_{\mathbf{x}_{t}, \mathbf{z}_{tt}} & \mathbf{C}_{\mathbf{x}_{t}, \mathbf{u}_{t}} \\ \mathbf{C}_{\mathbf{z}_{tt}, \mathbf{x}_{t}} & \mathbf{S}_{\mathbf{z}_{tt}} & \mathbf{C}_{\mathbf{z}_{tt}, \mathbf{u}_{t}} \\ \mathbf{C}_{\mathbf{u}_{t}, \mathbf{x}_{t}} & \mathbf{C}_{\mathbf{u}_{t}, \mathbf{z}_{tt}} & \mathbf{S}_{\mathbf{u}_{t}} \end{bmatrix}}_{\Sigma} \right), \underbrace{\begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{V}_{tt} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{V}} \right). \tag{7}$$

To re-express  $\Lambda_x$  to match the size of  $\Sigma$  (Eq. 7) whilst encoding the fact that  $X_{t+1}$  is conditionally independent of  $B_{tt}$  given  $X_t$  and  $U_t$ , we set the new diagonal elements corresponding to  $Z_{tt}$  as  $\infty$ :

$$\begin{split} & \Lambda_x = \operatorname{diag}(\lambda_x, \lambda_u) & \to & \hat{\Lambda}_x = \operatorname{diag}(\lambda_x, \infty, \lambda_u), \\ & \Lambda_z = \operatorname{diag}(\lambda_z, \lambda_u) & \to & \hat{\Lambda}_z = \operatorname{diag}(\infty, \lambda_z, \lambda_u). \end{split}$$

Now to compute the covariance of  $\mathcal{GP}_x$ 's output and  $\mathcal{GP}_z$ 's output given the common uncertain input  $(\mathfrak{m}, \Sigma)$  of both  $\mathcal{GP}_s$ , we use the following identity from gph.pdf (noting that the inverse of a matrix A whose element  $A_{ij} = \infty$ , is s.t.  $(A^{-1})_{kl} = 0$  if k = j or l = i, otherwise populated by values of submatrix  $(M_{I\setminus\{i\},J\setminus\{j\}})^{-1}$ ):

 $\mathbb{C}[X_{t+1}, Z_{t+1}] = \mathbb{C}[f_x^*, f_z^* | \mathbf{m}, \Sigma] = s_x^2 s_z^2 \left[ \beta_x^\top (Q^{xz} - q^x q^{z\top}) \beta_z \right] + C_x^\top \Sigma \theta_z + \theta_x^\top \Sigma C_z + \theta_x^\top \Sigma \theta_z,$ 

where

$$\begin{array}{lll} q_i^x & = & q(y_i, \mathbf{m}, \hat{\Lambda}_x, \Sigma + V), \\ & = & |\hat{\Lambda}_x^{-1}(\Sigma + V) + I|^{-1/2} \exp\big(-\frac{1}{2}(y_i - \mathbf{m})[\hat{\Lambda}_x + \Sigma + V]^{-1}(y_i - \mathbf{m})\big), \\ & = & |\Lambda_x^{-1}(\Sigma_x + V_x) + I|^{-1/2} \exp\big(-\frac{1}{2}(x_i - \mathbf{m}_x)[\Lambda_x + \Sigma_x + V_x]^{-1}(x_i - \mathbf{m}_x)\big), \\ & = & q(x_i, \mathbf{m}_x, \Lambda_x, \Sigma_x + V_x), \\ q_i^z & = & q(y_i, \mathbf{m}, \hat{\Lambda}_z, \Sigma + V), \\ & = & q(z_i, \mathbf{m}_z, \Lambda_z, \Sigma_z + V_z), \\ Q_{ij}^{xz} & = & Q(y_i, y_j, \hat{\Lambda}_x, \hat{\Lambda}_z, V, \mathbf{m}, \Sigma), \\ & = & c_2 \, q(y_i, \mathbf{m}, \Lambda_x, V_x) \, q(y_j, \mathbf{m}, \Lambda_z, V_z) \exp\big(\frac{1}{2}\mathbf{r}^\top \big[(\hat{\Lambda}_x + V)^{-1} + (\hat{\Lambda}_z + V)^{-1} + \Sigma^{-1}\big]^{-1}\mathbf{r}\big), \\ \mathbf{r} & = & (\hat{\Lambda}_x + V)^{-1}(y_i - \mathbf{m}) + (\hat{\Lambda}_z + V)^{-1}(y_j - \mathbf{m}), \\ c_2 & = & \big[\big((\hat{\Lambda}_x + V)^{-1} + (\hat{\Lambda}_z + V)^{-1}\big)\Sigma + I\big]^{-1/2}. \end{array}$$

We see the extended dimensionality has had no effect on the values on  $q^x$  and  $q^z$  (size  $n \times E$ ). The value of  $Q^{xz}$  (size  $E \times E$ ), however, is dependent on each element of the  $\Sigma$  matrix, thus we must compute the full  $\Sigma$ .

#### Old Actions

Let  $(\cdot)^p$  signify the predicted state variables, and  $(\cdot)^r$  signify the rest of the state (e.g. subset of the previous state if the state representation is > 1 order Markov,  $(X_t)_{E+U:D}$ , and the previous action  $U_t$ ) E.g.  $X_{t+1} = [X_{t+1}^r; X_{t+1}^p] = [(X_t)_{E+U:D}; U_t; X_{t+1}^p]$ . The joint of  $X_{t+1}$  and  $Z_{t+1}$  is given in Fig. 6:

$$\mathbb{V}\begin{bmatrix}X_{t+1}\\Z_{t+1}\end{bmatrix} = \mathbb{V}\begin{bmatrix}X_{t+1}^r\\X_{t+1}^p\\Z_{t+1}^r\\Z_{t+1}^p\end{bmatrix} \ = \ \begin{bmatrix}\mathbb{V}[X_{t+1}^r] & \mathbb{C}[X_{t+1}^r,X_{t+1}^p] & \mathbb{C}[X_{t+1}^r,Z_{t+1}^r] & \mathbb{C}[X_{t+1}^r,Z_{t+1}^p]\\ \mathbb{C}[X_{t+1}^p,X_{t+1}^r] & \mathbb{V}[X_{t+1}^p] & \mathbb{C}[X_{t+1}^p,Z_{t+1}^r] & \mathbb{C}[X_{t+1}^p,Z_{t+1}^p]\\ \mathbb{C}[Z_{t+1}^r,X_{t+1}^r] & \mathbb{C}[Z_{t+1}^r,X_{t+1}^p] & \mathbb{V}[Z_{t+1}^r] & \mathbb{C}[Z_{t+1}^p,Z_{t+1}^p] \\ \mathbb{C}[Z_{t+1}^p,X_{t+1}^r] & \mathbb{C}[Z_{t+1}^p,X_{t+1}^p] & \mathbb{C}[Z_{t+1}^p,Z_{t+1}^r] & \mathbb{V}[Z_{t+1}^p] \end{bmatrix}$$

Figure 6: We compute  $\mathbb{C}[X_{t+1}^p, Z_{t+1}^p]$  using gph.m. The full  $\mathbb{C}[X_{t+1}, Z_{t+1}]$  is composed of the blue and red members.

#### Linear Approximations

#### $\mathbb{C}[X_{t+1}, Z_{t+1}]$ :

$$\mathbb{V}[X_{t+1}]^{-1}\mathbb{C}[X_{t+1},Z_{t+1}] \colon$$

Alternatively, we might be interested in approximating the covariance with the following implicit inverse  $\mathbb{V}[X_{t+1}]^{-1}\mathbb{C}[X_{t+1}, Z_{t+1}]$ . We can use the above linear approximations. Let us decompose PSD  $\Sigma = V^T D V = V^T D^{\frac{1}{2}} D^{\frac{1}{2}} V = L^T L$ . And define  $A = C_{dynx}^T L^T$ . We have:

$$\begin{split} \mathbb{V}[X_{t+1}]^{-1}\mathbb{C}[X_{t+1},Z_{t+1}] &\approx & \mathbb{V}[C_{dynx}^{\top}[X_t;B_{tt};U_t]]^{-1}C_{dynx}^{\top}\mathbb{V}[[X_t;B_{tt};U_t]]C_{dynz} \\ &= & (C_{dynx}^{\top}\Sigma C_{dynx})^{-1}C_{dynx}^{\top}\Sigma C_{dynz} \\ &= & (C_{dynx}^{\top}L^{\top}LC_{dynx})^{-1}C_{dynx}^{\top}L^{\top}LC_{dynz} \\ &= & (AA^{\top})^{-1}ALC_{dynz} \\ &= & A(A^{\top}A)^{-1}LC_{dynz} \\ &= & C_{dynx}^{\top}L^{\top}(LC_{dynx}C_{dynx}^{\top}L^{\top})^{-1}LC_{dynz} \\ &= & C_{dynx}^{\top}(C_{dynx}C_{dynx}^{\top}C_{dynz}^{\top})^{-1}C_{dynz} \end{split}$$



Figure 7: Simplified directed graphical model of Fig. 3 with linear weights.

#### **K** Joint Representation

Here we compute the joint expression of all uncertain terms involved in ctrlBF. We can think of the belief distribution B over state X, as a hierarchical representation:  $B \sim \mathcal{N}(Z, V)$ , where the mean parameter,  $Z \sim \mathcal{N}(m_z, S_z)$ , is itself uncertain. Equivalently, we might consider B to be the sum of two (initially) independent random variables: B = Z + Q, where  $Q \sim \mathcal{N}(0, V)$ .

Firstly, given:

$$\begin{array}{rcl} p(z_t) & \sim & \mathcal{N}(m_{z_t}, S_{z_t}) \\ p(b_t|z_t) & \sim & \mathcal{N}(z_t, V_t) \\ p(b_t) & \sim & \mathcal{N}(m_{z_t}, S_{b_t}) \\ S_{b_t} & = & S_{z_t} + V_t \\ p(y_t|b_t) & \sim & \mathcal{N}(b_t, S_\varepsilon) \end{array}$$

then

$$\begin{array}{lll} p(b_t|y_t,z_t) & \propto & p(y_t|b_t,z_t)p(b_t|z_t) \\ & = & p(y_t|b_t)p(b_t|z_t) \\ & \sim & \mathcal{N}\Big(w_zz_t+w_yy_t, \ (S_\varepsilon^{-1}+V_t^{-1})^{-1}\Big) \\ w_z & = & S_\varepsilon(S_\varepsilon+V_t)^{-1} \\ w_y & = & V_t(S_\varepsilon+V_t)^{-1} \\ p(b_t|y_t) & \propto & p(y_t|b_t)p(b_t) \\ & \sim & \mathcal{N}\Big(S_{b|y}(S_\varepsilon^{-1}y_t+S_{b_t}^{-1}m_{z_t}), \ S_{b|y}\Big) \\ S_{b|y} & = & (S_\varepsilon^{-1}+S_{b_t}^{-1})^{-1} \end{array}$$

Now consider the following joint belief expressions:

$$\begin{split} p\left(\frac{b_{t}}{z_{t}}\right) &\sim \left(\left[\frac{m_{z_{t}}}{m_{z_{t}}}\right], \left[S_{b_{t}}^{s} S_{z_{t}}\right]\right) \\ \to p(b_{tt}, z_{tt}) \triangleq p((b_{t}, z_{t})|y_{t}) &\propto p(y_{t}|b_{t}, z_{t})p(b_{t}, z_{t}) \\ &= p(y_{t}|b_{t})p(b_{t}, z_{t}) \\ &\sim \mathcal{N}\left(\Sigma\left[S_{0}^{c} \quad \infty\right]^{-1} \left[\frac{y_{t}}{0}\right] + \Sigma\left[S_{b_{t}}^{s} S_{z_{t}}\right]^{-1} \left[m_{z_{t}}\right], \quad \Sigma\right) \\ \Sigma^{-1} &= \left[S_{c}^{-1} \quad 0\right] + \left[S_{b_{t}}^{s} S_{z_{t}}\right]^{-1} \\ &= \left[S_{c}^{-1} + (S_{b_{t}} - S_{z_{t}})^{-1} \quad -S_{b_{t}}^{-1} S_{z_{t}} (S_{z_{t}} - S_{z_{t}} S_{b_{t}}^{-1} S_{z_{t}})^{-1}\right] \\ &= \left[S_{b_{t}}^{-1} + (S_{b_{t}} - S_{z_{t}})^{-1} \quad -S_{b_{t}}^{-1} S_{z_{t}} (S_{z_{t}} - S_{z_{t}} S_{b_{t}}^{-1} S_{z_{t}})^{-1}\right] \\ \Sigma &= \left[S_{b_{t}}^{-1} + (S_{b_{t}} - S_{z_{t}})^{-1} \quad -S_{b_{t}}^{-1} S_{z_{t}} (S_{z_{t}} - S_{z_{t}} S_{b_{t}}^{-1} S_{z_{t}})^{-1}\right] \\ &= \left[S_{b_{t}}^{-1} S_{b_{t}} + S_{c}\right]^{-1} S_{c} \quad S_{c}(S_{b_{t}} + S_{c})^{-1} S_{z_{t}}\right] \\ &= \left[S_{b_{t}}^{b_{t}} C_{b_{z}|y} \right] \\ C_{b_{z}|y} \quad S_{z|y} \quad S_{z|y} \\ &= S_{c}(S_{b_{t}} + S_{c})^{-1} S_{z_{t}} = S_{b|y} S_{b_{t}}^{-1} S_{z_{t}} \\ S_{z_{t}} \left(S_{b_{t}} + S_{c}\right)^{-1} S_{z_{t}} = \left(V_{t} + S_{c}\right) (S_{b_{t}} + S_{c})^{-1} S_{z_{t}} = \left(S_{a_{t}}^{-1} + (V_{t} + S_{c})^{-1}\right)^{-1} \\ \therefore p(b_{t}, z_{t}|y_{t}) \quad \mathcal{N}\left(\left[S_{b|y} \quad C_{bz|y} \right] \left[S_{c}^{-1} y_{t}\right] + \left[S_{c}(S_{b_{t}} + S_{c})^{-1} \quad 0\right] \left[m_{z_{t}} \right], \quad \Sigma\right) \\ &= \mathcal{N}\left(\left[m_{b_{t}} \right], \quad \mathcal{N}\left(m_{b_{t}} + S_{b_{t}} \right) S_{c}^{-1} (y_{t} - m_{z_{t}}) \\ p(b_{t}|z_{t}, y_{t}) \quad \mathcal{N}\left(m_{b_{t}} + C_{bz|y} S_{c}^{-1} y_{t} - m_{z_{t}}\right) \\ &= \mathcal{N}\left(\underbrace{w_{z} z_{t} + w_{y} y_{t}}, \underbrace{\left(S_{c}^{-1} + V_{t}^{-1}\right)^{-1}}_{V_{t_{t}}}\right) \\ \end{array}$$

The policy input is currently the mean-belief  $Z_{tt}$ , a function of  $Z_t$  and  $Y_t$ . If  $Z_t$  or  $Y_t$  are random, then  $Z_{tt}$  is random too,

$$\begin{aligned} Z_{tt} &= w_z Z_t + w_y Y_t \\ \mathbb{E}_{zy}[Z_{tt}] &= w_z m_{z_t} + w_y m_{x_t} \\ \mathbb{V}_{zy}[Z_{tt}] &= [w_z, w_y] \begin{bmatrix} S_{z_t} & C_{zx} \\ C_{zx}^\top & S_{x_t} + S_{\varepsilon} \end{bmatrix} [w_z, w_y]^\top \end{aligned}$$

We assume the policy has linear function (or can be approximated as such):

$$U_t = \theta^\top \begin{bmatrix} Z_{tt} \\ Z_{tt}^{\circ} \end{bmatrix}$$

and have a policy call:

$$[\mathfrak{m}_{\mathfrak{u}}, S_{\mathfrak{u}}, C_{\mathfrak{u}}] = policy(\mathbb{E}_{zy}[Z_{tt}], \mathbb{V}_{zy}[Z_{tt}]) \text{ (where } C_{\mathfrak{u}} \text{ is } C_{poli})$$

$$(9)$$

The using results from Appendix ?? we have:

$$\begin{split} \mathbb{C}\left[\begin{bmatrix} Z_{tt} \\ Z_{tt}^{\circ} \end{bmatrix}, U_{t} \right] &= \begin{bmatrix} \mathbb{C}[Z_{tt}, U_{t}] \\ \mathbb{C}[Z_{tt}^{\circ}, U_{t}] \end{bmatrix} &= \begin{bmatrix} S_{Z_{tt}} & \mathbb{C}[Z_{tt}, Z_{tt}^{\circ}] \\ \mathbb{C}[Z_{tt}^{\circ}, Z_{tt}] & S_{Z_{tt}^{\circ}} \end{bmatrix} \theta \\ & \therefore \mathbb{C}[Z_{tt}, U_{t}] &= [S_{Z_{tt}}, \mathbb{C}[Z_{tt}, Z_{tt}^{\circ}]] \theta \\ &= S_{Z_{tt}} \underbrace{[I, C_{gtrig}[Z_{tt}, Z_{tt}^{\circ}]] \theta}_{g} \\ & \mathbb{C}(X_{t}, U_{t}) &= \mathbb{C}(X_{t}, Z_{tt}) g \theta = [C_{xz}, S_{x_{t}}] w^{\top} g \theta \\ & \mathbb{C}(Y_{t}, U_{t}) &= \mathbb{C}(Y_{t}, Z_{tt}) g \theta = [C_{xz}, S_{y_{t}}] w^{\top} g \theta \\ & \mathbb{C}(Z_{t}, U_{t}) &= \mathbb{C}(Z_{t}, Z_{tt}) g \theta = [S_{zt}, C_{xz}^{\top}] w^{\top} g \theta \end{split}$$

Since  $\mathbb{C}(Z_{tt}, U_t) = \mathbb{C}(Z_{tt}, Z_{tt})\theta = S_{z_{tt}}\theta$ , and  $C_u \triangleq S_{z_{tt}}^{-1}\mathbb{C}(Z_{tt}, U_t)$ , then we have:  $\theta = C_u$ .

In summary:

We start with prior joint:

$$p\begin{pmatrix} x_{t} \\ y_{t} \\ b_{t} \\ z_{t} \end{pmatrix} \sim \begin{pmatrix} \begin{bmatrix} m_{x_{t}} \\ m_{x_{t}} \\ m_{z_{t}} \\ m_{z_{t}} \end{bmatrix}, \begin{bmatrix} S_{x_{t}} & S_{x_{t}} & C_{xz} & C_{xz} \\ S_{x_{t}} & S_{x_{t}} + S_{\epsilon} & C_{xz} & C_{xz} \\ C_{xz}^{\top} & C_{xz}^{\top} & S_{z_{t}} + V_{t} & S_{z_{t}} \\ C_{xz}^{\top} & C_{xz}^{\top} & C_{xz}^{\top} & S_{z_{t}} \end{bmatrix}$$
(10)

We then condition on observation  $y_t$ , and then decide action  $u_t$ :

$$p\begin{pmatrix} x_{t}|y_{t} \\ b_{t}|y_{t} \\ z_{t}|y_{t} \\ u_{t}|y_{t} \end{pmatrix} \sim \begin{pmatrix} \begin{bmatrix} S_{\varepsilon}S_{y_{t}}^{-1}m_{x_{t}} + S_{x_{t}}S_{y_{t}}^{-1}y_{t} \\ m_{b_{tt}} \\ m_{u} \end{bmatrix}, \begin{bmatrix} (S_{x_{t}}^{-1} + S_{\varepsilon}^{-1})^{-1} & S_{\varepsilon}S_{y_{t}}^{-1}C_{xz} & S_{\varepsilon}S_{y_{t}}^{-1}C_{xz} & [C_{xz},S_{x_{t}}]w^{\top}gC_{u} \\ C_{xz}^{\top}S_{y_{t}}^{-1}S_{\varepsilon} & S_{b|y} & C_{bz|y} & [S_{z_{t}},C_{xz}^{\top}]w^{\top}gC_{u} \\ C_{xz}^{\top}S_{y_{t}}^{-1}S_{\varepsilon} & C_{bz|y}^{\top} & S_{z|y} & [S_{z_{t}},C_{xz}^{\top}]w^{\top}gC_{u} \\ C_{xz}^{\top}S_{y_{t}}^{-1}S_{\varepsilon} & C_{bz|y}^{\top} & C_{y_{t}}^{\top}S_{y_{t}}^{\top}S_{z_{t}} & S_{y_{t}}^{\top}S_{z_{t}} & S$$

Problem: If we instead compute  $p(b_t, z_t|y_t)$  by looking only at at Eq. 10 and then conditioning, then we get a different answer:

$$p(b_{t}, z_{t}|y_{t}) \sim \mathcal{N}\left(\begin{bmatrix} m_{z_{t}} + C_{xz}^{\top} S_{y_{t}}^{-1}(y_{t} - m_{x_{t}}) \\ m_{z_{t}} + C_{xz}^{\top} S_{y_{t}}^{-1}(y_{t} - m_{x_{t}}) \end{bmatrix}, \begin{bmatrix} S_{b_{t}} - C_{xz}^{\top} S_{y_{t}}^{-1} C_{xz} & S_{z_{t}} - C_{xz}^{\top} S_{y_{t}}^{-1} C_{xz} \\ S_{z_{t}} - C_{xz}^{\top} S_{y_{t}}^{-1} C_{xz} & S_{z_{t}} - C_{xz}^{\top} S_{y_{t}}^{-1} C_{xz} \end{bmatrix}\right)$$

$$(11)$$

where:

$$\begin{array}{rcl} S_{yt} & = & S_{x_t} + S_{\varepsilon} \\ S_{b_t} & = & S_{z_t} + V_t \\ S_{b|y} & = & (S_{\varepsilon}^{-1} + S_{b_t}^{-1})^{-1} \\ C_{bz|y} & = & S_{b|y} S_{b_t}^{-1} S_{z_t} \\ S_{z|y} & = & S_{z_t} - S_{z_t} (S_{b_t} + S_{\varepsilon})^{-1} S_{z_t} \\ w & = & [w_z, w_y] = [S_{\varepsilon} (S_{\varepsilon} + V_t)^{-1}, \ V_t (S_{\varepsilon} + V_t)^{-1}] \end{array}$$

TODO - integrate over  $y_t$ ..., before or after prediction step?