CHEM 1210 Lecture Notes OpenStax Chemistry 2e

Matthew Rowley

September 30, 2025

COURSE ADMINISTRATIVE DETAILS

- o My office hours
- o Intro to my research
- o Introductory Quiz
- o Grading details
 - · Exams 40, Final 20, Online Homework 15, Book Homework 15, Quizzes 10
 - \cdot Online homework
 - · Frequent quizzes
- o Importance of reading and learning on your own
- o Learning resources
 - · My Office Hours
 - · Tutoring services https://www.suu.edu/academicsuccess/tutoring/
- Show how to access Canvas
 - · Calendar, Grades, Modules, etc.
 - · Quizzes
 - · Textbook
- Introduction to chemistry
 - · Ruby fluorescence
 - · Levomethamphetamine
 - · Submerged salt crystals grow due dynamic equilibrium
 - · Rubber band elasticity
 - · Structure of the periodic table
 - · Salt on ice and purifying hydrogen peroxide

ESSENTIAL IDEAS

1.1 Chemistry in Context

- Modern chemistry is the end result of thousands of years of humans trying to explain and control the materials around them
- Early forays into chemistry (such as alchemy) had deep mystical roots and often relied on serendipity to make good progress
- Modern chemistry is a rigorous science, relying on falsifiability and the scientific methd (Figure 1.4)
- We sometimes refer to chemistry as "The Central Science" (Figure 1.3)
- To adequately describe and understand chemical phenomena, we often talk from different perspectives
 - **Macroscopic Domain** This is what we observe with bulk substances. Two chemicals react to produce a new chemical
 - **Microscopic Domain** We now understand that all microscopic effects are governed by the behavior of *microscopic* actors (molecules, atoms, electrons, etc.)
 - **Symbolic Domain** Effectively communicating chemical ideas requires new language. Chemical formulas, equations, and mechanisms are all symbolic representations

All three domains are on display in Figure 1.5

Quiz 1.1 - Scientific Method

Homework 1.1

- o 1: Thinking in terms of Chemistry
- o 3: The scientific method
- 5: Domains of inquiry

1.2 Phases and Classification of Matter

- Three primary phases of matter are shown in Figure 1.5 (and 1.6)
- Plasmas are like a gas, but with electrically charged particles
- Mass vs Weight (for very fine measurements, the difference matters even on Earth due to buoyancy)

- Figure 1.8 illustrates the *law of conservation of matter*
- Classifying matter (Figure 1.11)
 - · Pure Substances
 - * Elements (Anything on the *periodic table of the elements*)
 - * Compounds (Combinations of elements can have very different properties from their constituent elements)
 - · Mixtures
 - * Heterogeneous mixtures (variable composition)
 - * Homogeneous mixtures (i.e. solutions, continuous composition)
- o Table 1.1 shows the abundance of many elements on Earth
- o Atoms are the smallest particle of an element that has the properties of that element
 - · Thought-experiment of dividing a sample in half ad-infinitum
 - · Ancient atomic theories and modern Dalton atomic theory (discussed in detail later)
 - · Atoms are very small; smaller than we could even detect until recently
- Molecules are collections of atoms held together with chemical bonds (more nuanced definition later)
 - · Many elements occur naturally as molecules, rather than atoms
 - · Figure 1.14 shows many molecular elements and compounds

1.3 Physical and Chemical Properties

- Physical Properties: Properties which can be observed without changing the chemical identity of the substance
- Chemical Properties: Properties which can only be observed through chemical reactions (e.g. flammability, acidity, electrochemical potential, etc.)
- Physical Changes: Any change which perserves the *chemical identity* of the substance (including phase changes)
- o Chemical Changes: Changes which alter the chemical identities of one of more substance
- Extensive Properties: Depend on the size of hte system (double the size, double the property measurement, such as mass or volume)
- Intensive Properties: Independent of system size (density, temperature, most chemical properties)
- The periodic table groups elements according to their properties (Figure 1.22)
 - · Metals conduct electricity and heat, are maleable and ductile
 - · Non-metals are very diverse, but generally poor conductors
 - · Metalloids exist at the boundary and share properties with both metals and non-metals
 - · There are many other ways to group the elements, which we will learn later

Quiz 1.2 - Matter, Properties, and Change

Homework 1.2

- o 17: Classifying matter
- o 27: Classifying changes

1.4 Measurements

- All measurements are composed of three parts:
 - The magnitude of the measurement (the number itself)
 - The unit of measurement used (g, kg, lbs, etc.)
 - The degree of uncertainty in the measurement (this is usually implicit, and covered in the next section)
- Units are an essential part of any measuement. Develop a habit of *always* including units in your work
 - $u_{rms} = \sqrt{\frac{3RT}{M}}$ example of how units can guide problem solving and "unit purgatory"
 - SI units are a collection of fundamental units from which all other units can be derived (Table 1.2)
 - · Metric prefixes make it more convenient to discuss very large or very small numbers (Table 1.3)
 - · Scientific notation is an even more general and robust way of representing numbers
 - * The quantity is represented by a number with the decimal after the first digit
 - $\boldsymbol{\ast}\;$ The magnitude is represented by a power of 10
 - $\boldsymbol{\cdot}$ Practice converting between normal numbers, metric prefixes, and scientific notation
 - . For temperature, we use both K and ${^{\circ}C}$ (But not ${^{\circ}F})$ $T(K) = T({^{\circ}C}) + 273.15$
 - · Derived units will combine the fundamental units in some way

volume: m^3 , L, ml velocity: m/s

density: kg/m^3 , g/cm^3 (Table 1.4)

energy: $1J \equiv kgm^2/s^2$

1.5 Measurement Uncertainty, Accuracy, and Precision

- o Countable quantities are considered to be exact (no uncertainty)
- o Measurements (and groups of measurements) always have some degree of undertainty

- · Accuracy is how close a measurement is to the *true value* (usually unknown, but approximated by calibration with a well-known standard)
- · Precision is how finely a measurment is made (What is the margin of error)
- · Figure 1.27 and Table 1.5 illustrate the differences between precision and accuracy
- · Accuracy is usually improved through calibration, and moving forward we will usually assume that measurements are as accurate as an instrument allows
- · Precision is represented in the way we write the number, and can be improved with a better instrument or with repeat measurements
- Significant figures are the way that we represent precision in a number
 - · The number of digits conveys the degree of precision
 - \cdot Example of me saying I'm $6ft\ 2in$ tall, vs me saying I'm $6ft\ 1.6241434in$ tall
 - · For graduated measurements, we record one digit beyond the lowest graduation (Figure 1.26)
 - · For digital measurements, we record the number as it is given by the instrument
 - For any given number, we should track both the *quantity* of significant figures, and the *position* of the least-significant digit
 - · In a written number, digits are considered significant according to the following rules:
 - * All non-zeros are significant
 - * All captive zeros (between two other significant digits) are significant
 - * Trailing zeros are always significant
 - * Leading zeros are never significant
 - * For scientific notation, only the digits of the quantity (not the magnitude) count
 - * Logarithmic quantities follow different rules which we will revisit in CHEM 1220 (chapter 14)
 - * Note that for some numbers scientific notation is *required* to convey the correct precision $(3.0 \times 10^3 m)$
- Errors propogate when multiple measurements are used in a mathematical operation
 - · For addition and subtraction, the least significant digit of the answer will be in the same position as the least significant digit of hte least precise input
 - · For multiplicationa and division, the quantity of significant digits in the answer will match the quantity of significant digits of the input with fewest significant digits
 - When rounding an exact 5 (no further digits beyond the 5), round up or down to make the last digit even
 - · Compound problems involve multiple types of operations
 - * Solve the problem in steps, applying the correct rule to each step
 - * Track the significant figures (quantity and position) for each intermediate answer, but do *not* truncate or round any of these answers
 - * Only round after the last step \circ Practice $\frac{12.3g+34g}{12.0cm^3+7.7cm^3}=2.4g/cm^3$ (wrong answer with premature rounding)

Quiz 1.3 - Significant Figures

Homework 1.3

- o 45: Scientific Notation
- o 49: Counting Significant Figures
- o 53: Significant Figures and Calculations

1.6 Mathematical Treatment of Measurement Results

- Some quantities are calculated based on two or more measurements (such as velocity and density)
- \circ These formulas can be used to relate all three quantities together (i.e. $velocity = \frac{distance}{time}$)
- The derived quantity can be interpreted as a *comversion factor* between the other two quantitites
- o Conversion factors and unit conversions
 - · Elementary school perspective of ft to in conversions
 - · Conversion factors are a ratio between two identical quantities
 - · Converting units involves multiplying by 1 in the form of a conversion factor
 - · Units guide the problem solving
- o Dimensional Analysis is a problem-solving framework based on a series of unit conversions
 - · Don't dive straight into calculations and equations
 - · Identify the units you expect for the answer
 - · Identify the starting point
 - · Create a plan to convert units from the starting point to the answer
 - · Carry out the calculations
 - Practice converting 65.0 miles/hour into m/s
 - · The "railroad ties" or "picket fence" method can help organize your work
- Dimensional analysis is not the only way to solve problems, but it is versatile and robust; usually my preferred choice
- Practice a more abstract problem: Find the $^{miles}/_{gal}$ if a car consumes 8036~g of gasoline while driving for 40.0~min at $75~^{miles}/_{hour}$

Quiz 1.4 - Dimensional Analysis

Homework 1.4

- o 65: Simple unit conversion
- $\circ~87$: Density from volume and mass
- o 89: Mass from volume
- o 91: Volume from mass

ATOMS, MOLECULES, AND IONS

2.1 Early Ideas in Atomic Theory

- o 1807 Dalton's Atomic Theory: (1, 2 and 5 are not strictly true) (Figures 2.2-2.4)
 - 1. Matter is composed of atoms
 - 2. Atoms of a given element all have identical properties to each other
 - 3. Atoms of one element differ in properties from elements of a different element
 - 4. Chemical compounds consist of atoms of different elements combined in a specific ratio
 - 5. Chemical reactions *rearrange* the atoms which are already there, but cannot create or destroy atoms
- Development of Dalton's theory:
 - Dalton relied on prior work by Proust who demonstrated the law of definite proportions (Table 2.1)
 - · This was not at all expected my analogy with bread, or metal alloys
 - · Dalton further noted that ratios of these proportions followed the law of multiple proportions (Copper (I or II) Chloride example in the book)

2.2 Evolution of Atomic Theory

- About a century later, scientists discovered that atoms are made of even smaller components
- J. J. Thomson discovered the electron, and its charge/mass ratio (Figure 2.6)
- Millikan's oil drop experiment found the fundamental charge (and thus mass) of an electron (Figure 2.7)
- Figure 2.8 shows some early ideas of how the positive and negative charges were distributed in an atom
- Ernest Rutherford discovered the atomic nucleus, consisting of very concetrated positive charge (Figures 2.9 and 2.10)
 - "It was quite the most incredible event that has ever happened to me in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you."
- Different *isotopes* of atoms were discovered with techniqes that produced isotopically pure samples
- Finally, the neutron itself was discovered in 1932, explaining what particle led to different isotopes

2.3 Atomic Structure and Symbolism

- Atoms are made up of protons, neutrons, and electrons
- Figure 2.11 shows the small scale of the atom and nucleus
- Atomic units make discussions about atoms convenient
 - The Atomic Mass Unit amu, Da, or $u = 1.6605 \times 10^{-24} g$
 - The fundamental charge $e = 1.602 \times 10^{-19} C$
 - The Angstrom Å= $10^{-10}m$
- Table 2.2 summarizes the properties of elementary particles in atoms
- We track the composition of an atom with three numbers:
 - The atomic number is the number of protons Z = p
 - The mass number is the number of protons and neutrons A = p + n
 - The number of neutrons is therefore n = A Z
 - The charge is the protons minus the electrons q = p e
 - · The number of electrons is e = p q
- o A positively charge atom is called a cation, and a negatively charged atom is called an anion
- Chemical symbols are a shorthand way of representing everything we need about an atom
 - There is a 1 or 2 letter symbol for each element (Table 2.3 shows some make sense, some don't)
 - · A is written as a left superscript
 - $\cdot \,\, Z$ is written as a left subscript, but can be left off
 - q is written as a right superscript with the magnitude first, then the sign. q is left off if q=0
 - Example: ${}_{6}^{13}C^{2+}$ (6 protons, 7 neutrons, 4 electrons)
- o Isotopes are different versions of elements with different mass numbers
 - · For the most part, different isotopes of an element behave exactly the same in chemisry
 - · Isotope abundance can be found by mass spectrometry, among other methods (Figure 2.15)
 - Table 2.4 shows the natural abundances of the isotopes of several light elements
 - · Atomic weight (atomic mass) is the weighted average of all the isotopes found on the Earth

$$M = \sum_{i} mass_{i} \times \frac{\%abundance_{i}}{100\%}$$

2.4 Chemical Formulas

- We can represent the actual structure and makeup of molecules at several levels of abstraction (Figures 2.16 and 2.17)
- o Molecular formulas
 - Each element is listed, with the number of atoms for each element written as a subscript (H₂O)
 - The order of elements follows certain patterns, with the least electronegative element often written first
- Structural Formulas show how atoms are connected with covalent bonds represented as lines
- o Ball and Stick models show the three-dimensional geometry of a molecule
- o Space-filling models show the actual volume of space taken up by each atom in a molecule
- Figure 2.18 illustrates the difference between subscripts within a formula, and stoichiometric coefficients in front of formulas
- Empirical formulas show the mathematically simplified ratios of elements
 - · Some experimental techniques (especially early ones) could *only* give the empirical formula
 - · Ionic compounds are always reported with the empirical formula
 - · To find the empirical formula, divide all subscripts by their greatest common factor
 - · Some very different compounds share an empirical formula (carbohydrates CH₂O include formaldehyde, acetic acid, and sugar)
 - The molecular formula can be calculated from the empirical formula's weight and the molecular weight (Chapter 3)
- Arranging the same group of atoms in different ways produces different isomers
 - · Isomers share the same chemical formula, but can have very different properties
 - · Structural isomers differ in how the atoms are connected to each other (Figure 2.23)
 - · Optical isomers (or spatial isomers) are non-superimposable mirror images (Figure 2.24, glove analogy)

Quiz 2.1 - Atomic Theories

Homework 2.1

- 7: Properties of protons and neutrons
- 11: Atomic symbols from composition
- 19: Composition from atomic symbols
- o 23: Atomic weight
- o 29: Molecular and empirical formulas

2.5 The Periodic Table

- As scientists discovered and studied more and more elements, they started to notice certain natural groupings according to physical and chemical properties
- Mendeleev arranged the atoms according to these groups and atomic weight, producing the first periodic table (Figure 2.25)
- Mendeleev even predicted the existence of and properties of yet-undiscovered elements based on gaps in his table
- Vocabulary around the periodic table:
 - Rows are periods or series
 - · Columns are groups or families
- Figure 2.26 is a typical periodic table, showing the metals, non-metals and metalloids (contrast with my preferred table)
- o Figure 2.27 shows many of the names we use for important groups of elements
- \circ The structure of the periodic table encodes rich information about the electrons in the elements, as we will learn in chapter 6

Quiz 2.2 - Periodic Table

Homework 2.2

- o 37: Classifying elements
- 41: Using group names

2.6 Ionic and Molecular Compounds

- An atom which gains or loses electrons (carries a charge) is called an *ion*
 - · Positively charged ions are called cations, and are smaller than their neutral atom counterparts (Figure 2.28)
 - · Negatively charged ions are called anions, and are larger than their neutral atom counterparts
 - We can predict which charge different elements will naturally tend to take based on their position in the periodic table (Figure 2.29)
 - · Many other elements can take two or more charges, especially the transition metals
- o Some ions are composed of more than one atom and are called polyatomic ions
 - Table 2.5 gives some common polyatomic ions. Memorize the formula, name, and charge of these and their acids

- · Notice some trends in the names of oxyanions (per-ate, -ate, -ite, and hypo-ite)
- · We will learn about the acid names listed here (and more) in section 2.7
- Ionic compounds are held together by ionic bonds (coulombic attractions)
 - · Show dot diagram of how NaCl and CaCl form from elements
 - · Metal + non-metal is not an adequate definition of ionic compounds (NH,NO₂)
 - · Ionic compounds form an extended lattice of ions (covered more in CHEM 1220)
 - · Ions will combine to form neutral compounds
 - · Practice producing compound formulas from ions (include paranthesis for polyatomic ions where appropriate)
 - · Practice finding ions from formulas of compounds
- Molecular compounds are held together by covalent bonds (shared electrons)
 - Show a dot diagram of H_2 , H_2O , O_2 , and N_2
 - · Bonds between non-metals are covalent bonds
 - · Molecular compounds combine non-metals into discrete units called molecules
 - · Single, double, and triple bonds involve sharing two, four, and six electrons

2.7 Chemical Nomenclature

- Naming ionic compounds
 - Cation names are the name of the element, with the charge in roman numerals in parenthesis *if* the element could take multiple charges
 - · Anion names are the element name with an "-ide" ending (some element like P remove more than others)
 - · Polyatomic ion names are the same as you learned earlier
 - · For ionic compounds the name is simply cation name + anion name
 - · There is no indication of the quantity of atoms, that is inferred from charge neutrality
 - · Practice getting formulas from names and names from formulas
- Naming hydrates
 - · Some ionic compounds will incorporate water into their ionic lattice
 - · The formulas will have a \cdot then list the number of waters
 - · The names add the degree of hydration using prefixes from table 2.10 and adding "hydrate"
 - · The waters can be driven of with high temperature, producing the *anhydrous* form

Quiz 2.3 - Naming Ionic Compounds

Homework 2.3

- o 47: Predicting bond type in compounds
- o 49: Formulas from ions
- o 51: Names from formulas
- o 57: Names from formulas with transition metals
- o 59: Formulas from names

Resuming section 2.7 Chemical Nomenclature

- o Naming molecular compounds
 - · There are many ways to name molecular compounds, we will focus on just two here
 - · Naming binary molecular compounds
 - * # + name + # + name with "-ide" ending
 - * Least electronegative element (leftmost on the periodic table) goes first
 - * #s come from table 2.10
 - * Omit "mono-" for the first element
 - * Practice going from formula to name and vice-versa (Table 2.11)
 - · Naming molecular acids
 - * Molecular acid names are based on the name of the anion formed when all H⁺ are removed
 - * -ide ions form hydro-ic acids (Table 2.12)
 - * -ate ions form -ic acids
 - * -ite ions form -ous acids
 - * preserve the hypo- and per- prefixes
 - * Table 2.13 shows some oxyacid names

Quiz 2.4 - Naming Molecular Compounds

No textbook homework to accompany this quiz due to a lack of appropriate questions!

COMPOSITION OF SUBSTANCES AND SOLUTIONS

3.1 Formula Mass and the Mole Concept

- o For chemists, the amount of a substance we care about is not grams, but the quantity of atoms
- Analogy of hammers and feathers
- \circ The mole is defined as the relationship between AMUs and g

$$6.022 \times 10^{23} AMU = 1g \longrightarrow 1 molAMU = 1g \longrightarrow 1 AMU = 1 \frac{g}{mol}$$

- Any time we would use the AMU we could replace it with g/mol, and this is called the *molar mass*
- o Practice converting between grams and moles using atomic weight
- For compounds, we can find the molar mass, or formula mass by adding up the atomic weights of all the atoms in the formula
- We can count the literal number of atoms, but it is usually best to remain in units of moles
- Practice finding formula masses for compounds, and converting between grams and moles for compounds

3.2 Determining Empirical and Molecular Formulas

- o Empirical analysis is a method to determine empirical formulas
 - · In our text, the masses of C, H, and O are given directly
 - To get the formula, turn each mass into moles, and divide by the smallest mole number (Figure 3.11)
 - · Actually, this technique involves a careful combustion reaction
 - The mass of C comes from the amount of CO₂ produced
 - The mass of H comes from the amount of H₂O produced (remember the 2!)
 - The mass of O comes from subtracting those from the original amount
 - · Turn the masses to moles
 - Practice: 2.443g of unknown produce 5.368g of CO_2 and 2.930g of H_2O (M=60.096, propanol)
 - · Practice: 3.450g of unknown produce 5.057g of CO_2 and 2.070g of H_2O (M=180.16, hexose)
- % Composition gives the % by mass of each element in a compound

- · From masses, we can calculate the % mass composition easily
- · If % mass is given, we can just assume 100.0g and turn the %s into g to do emipirical analysis
- · From the empirical or molecular formula, we can get % mass composition: $\%_X = \frac{n M_X}{M_{Formula}}$
- We can determine the molecular formula from the empirical formula if we know the molar mass
 - The molecular formula will be an integer multiple of the empirical formula (could be 1)
 - That formula is the ratio $n = \frac{M_{molar}}{M_{empirical}}$
 - · Find the molecular formulas of the two examples above using their molar masses

Quiz 3.1 - Molar Mass

Homework 3.1

- o 3: Calculating molar mass
- o 17: Mass from moles
- o 18: Moles from mass (sorry, no solution!)

Quiz 3.2 - Empirical Analysis

Homework 3.2

- o 33: % composition from formulas
- o 37: Empirical formulas from % composition
- o 39: Molecular formula from % composition and molar mass

3.3 Molarity

- Molarity is the most common way of describing the *concentration* of a solute in a solution
 - \cdot The unit for molarity is M, which is unfortunate because that is also used for molar masses
 - Molarity is the moles of solute divided by the liters of solution $M=\frac{mol_{solute}}{L_{solution}}$
 - · Technically, the solution volume could be more or less than the solvent volume before dissolving. When we make a solution, we always describe the process as "add enough water to meet the mark"
 - · The molarity can now be used as a conversion between moles and volume
 - Practice: Find molar concentration of solution made by dissolving $13.5g~{\rm NaCl}$ in 100.0ml of solution

- · Practice: How many moles of NaCl are contained in 35.62ml of the solution?
- · Practice: How many ml would be needed to provide $1.74 \times 10^{-3} mol$ of NaCl?
- o Solutions can be diluted or concentrated
 - The number of moles of solute is the same, just the volume of solution changes (by adding or removing solvent)
 - $\cdot C_1V_1 = C_2V_2$
 - Practice: Find the molar concentration when 36.43ml of 1.5M HCl are diluted to 100.0ml?
 - · Practice: How many ml of 0.125M NaNO $_3$ should be used to make 50.0ml of $2.4\times 10^{-3}M$?

3.4 Other Units for Solution Concentration

- There are other, less common units of concentration (including some not covered until chapter 11)
- o Mass %, or % by mass

$$\cdot \%m/m = \frac{m_A}{m_{total}} 100\%$$

o Volume %, or % by volume

$$\cdot \%v/v = \frac{V_A}{V_{solution}} 100\%$$

o m/V %

$$\cdot \%m/v = \frac{g_A}{V_{solution}} 100\%$$

o ppm and ppb

$$ppm = \frac{m_A}{m_{total}} 10^6 ppm$$

$$\cdot ppb = \frac{m_A}{m_{total}} 10^9 ppb$$

Quiz 3.3 - Concentration

Homework 3.3

- o 49: Mass from molarity and volume
- 53: Calculating molarity
- o 61: Dilution
- o 73: ppm
- o 77: %m/m

STOICHIOMETRY OF CHEMICAL REACTIONS

4.1 Writing and Balancing Chemical Equations

- o A chemical equation relates the amounts of reactants and products in a chemical reaction
- \circ Consider the reaction: CH₄ + 2O₂ \longrightarrow CO₂ + 2H₂O (Figure 4.2)
- Reactants on the left, and products are on the right
- o The large numbers are called *stoichiometric coefficients*
- o The subscript numbers are part of the chemical identity of the reactants and products
- The stoichiometric coefficients tell the right ratio to combine reactants, and the ratio of products produced (Figure 4.3)
- o Balancing chemical reactions:
 - To balance a chemical equation, we will add the proper coefficients to give the same numbers and types of atoms on both sides of the reaction arrow
 - · Start with any repeated atom moieties, such as polyatomic ions, and balance them as a unit rather than counting individual atoms
 - · Next balance elements that appear in only one compound on each side
 - Finally, balance any remaining elements (O is often best left to balance last)
 - · If necessary, multiply all coefficients by an integer

Practice: Balance the following chemical equation: $Fe_2O_3(s) + Al(s) \longrightarrow Al_2O_3(s) + Fe(s)$

$$Fe_2O_3(s) + 2Al(s) \longrightarrow Al_2O_3(s) + 2Fe(s)$$

Practice: Balance the following chemical equation: $C_8H_{18}(l) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$

$$2 C_8 H_{18}(1) + 25 O_2(g) \longrightarrow 16 CO_2(g) + 18 H_2O(g)$$

Practice: Balance the following chemical equation: $Ag_2SO_4(aq) + NaCl(aq) \longrightarrow AgCl(s) + Na_2SO_4(aq)$

$$Ag_2SO_4(aq) + 2 NaCl(aq) \longrightarrow 2 AgCl(s) + Na_2SO_4(aq)$$

- o Chemical reactions will sometimes include additional information
 - · Phases (s), (l), (g), (aq)
 - · Reaction conditions, such as temperature, or the presence of a catalyst (often written over the arrow)
 - Enthalpy of reaction or equilibrium constant (covered in later chapters)

- o Reactions with ionic compounds can often be written differently and simplified
 - The normal equation is called a *molecular equation* (despite involving ionic compounds) $CaCl_2(aq) + 2 AgNO_3(aq) \longrightarrow Ca(NO_3)_2(aq) + 2 AgCl(s)$
 - The *complete ionic equation* will break *soluble* ionic compounds into the separate cations and anions
 - · This is a more accurate representation of soluble ionic compounds, which are not actually *to-gether* in any chemically meaningful way

$$Ca^{2+}(aq) \, + \, 2\,Cl^{-}(aq) \, + \, 2\,Ag^{+}(aq) \, + \, 2\,NO_{3}^{\, -}(aq) \, \longrightarrow \, Ca^{2+}(aq) \, + \, 2\,NO_{3}^{\, -}(aq) \, + \, 2\,AgCl(s)$$

- The *net ionic equation* removes *spectator ions*, which didn't actually participate in any chemical change
- · My silly analogy about party-goers and the social interactions in a party environment $Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$

Quiz 4.1 - Balance Chemical Equations

Homework 4.1

- o 5: Balancing equations
- o 11: Net ionic equations

4.2 Classifying Chemical Reactions

- We can categorize chemical reactions in several ways, but for this class we will focus on the types of chemical changes caused by a reaction
- o Precipitation reactions form one or more solid ionic product from all aqueous ionic reactants
 - · First, predict the products by switching cations and anions
 - · Next, predict the phase by using solubility rules (Table 4.1)
 - · Identify and eliminate the spectator ions to get a net ionic equation
 - · Some combinations of reactants will have no reaction, and some may have two solid products
 - · More about precipitation reaction in CHEM 1220

Quiz 4.2 - Precipitation Reactions

Homework 4.2

o 28: Predicting products of reactions with ionic compounds

Resuming Section 4.2: Classifying Chemical Reactions

- Acid-Base reactions involve the transfer of a H⁺ between reactants
 - · Acids will react with water to produce hydronium ion
 - · Bases will react with water to produce hydroxide ions
 - · *Strong* acids/bases react with water to completion, while *weak* acids/bases only react partially (equilibrium)
 - · Table 4.2 lists six common strong acids
 - · Alternative definition: Acids are proton donors and bases are proton acceptors
 - · A neutralization reaction produces water and a salt (ionic compound)
 - · More about acid/base reactions in CHEM 1220
- Redox reactions involve the transfer of one or more electrons
 - · Consdier the reaction: $2 \text{ Na(s)} + \text{Cl}_2(g) \longrightarrow 2 \text{ NaCl(s)}$
 - · OIL RIG (or LEO says GER) to remember which is oxidation, and which is reduction
 - · Oxidizing agents and reducint agents. "Agent" describes the effect on the reaction partner
 - · Sometimes the electron transfer is not as obvious: CH_4 + 2 O_2 \longrightarrow CO_2 + 2 H_2O
 - · We assign oxidation numbers to keep track of electrons
 - * Elements have ox. # of 0
 - * Monoatomic ions have ox. # equal to their charge
 - * Within compounds, O has ox. # = -2, and H has ox # = +1
 - * Oxidation #s add up to the total overall charge (this rule subsumes the first 2)
 - · Balancing redox reactions needs additional steps to account for the transferred electrons
 - 1. Split the reaction into half-reactions (need to find oxidation #s to do this)
 - 2. Balance all elements except H and O
 - 3. Add the electrons, based on the changes to oxidation #s
 - 4. Balance charge by adding H⁺ in acid, or OH⁻ in base
 - 5. Balance H and O together by adding water
 - 6. Multiply half-reactions to balance their electrons, then add them together
 - 7. Make any cancellations of water, H⁺, or OH⁻
 - · You can balance redox reactions as a whole instead of as half-reactions if you prefer
 - · More about Redox reaction in ... CHEM 1220!

4.3 Reaction Stoichiometry

4.4 Reaction Yields

4.5 Quantitative Chemical Analysis

THERMOCHEMISTRY

- 5.1 Energy Basics
- 5.2 Calorimetry
- 5.3 Enthalpy

ELECTRONIC STRUCTURE AND PERIODIC PROPERTIES OF ELEMENTS

- 6.1 Electromagnetic Energy
- 6.2 The Bohr Model
- 6.3 Development of Quantum Theory
- 6.4 Electronic Structure of Atoms (Electron Configurations)
- **6.5** Periodic Variations in Element Properties

CHEMICAL BONDING AND MOLECULAR GEOMETRY

- 7.1 Ionic Bonding
- **7.2** Covalent Bonding
- 7.3 Lewis Symbols and Structures
- 7.4 Formal Charges and Resonance
- 7.5 Strengths of Ionic and Covalent Bonds
- 7.6 Molecular Structure and Polarity

ADVANCED THEORIES OF COVALENT BONDING

- 8.1 Valence Bond Theory
- 8.2 Hybrid Atomic Orbitals
- 8.3 Multiple Bonds
- 8.4 Molecular Orbital Theory

GASES

- 9.1 Gas Pressure
- 9.2 Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law
- 9.3 Stoichiometry of Gaseous Substances, Mixtures, and Reactions
- 9.4 Effusion and Diffusion of Gases
- 9.5 The Kinetic-Molecular Theory
- 9.6 Non-Ideal Gas Behavior

LIQUIDS AND SOLIDS

10.1 Intermolecular Forces

- Many physical properties of solids, liquids, and gases can be explained by the strength of attractive forces between particles (Figure 10.5)
- Phase changes happen due to the interplay between kinetic energy and intermolecular forces (Figure 10.2)
- o Pressure can also play a role in phase changes, as discussed later
- o These intermolecular forces come in different varieties
 - · Dispersion Forces Non-polar molecules, impacted by polarizability, molecular weight, and surface area
 - * Dominant in non-polar molecules
 - * Created by induced dipoles (Figure 10.6)
 - * Impacted by polarizability (Table 10.1)
 - * Impacted by molecular weight (hydrocarbons from methane to wax)
 - * Impacted by molecule shape (Figure 10.7 compares the boiling points of pentane isomers)
 - · Dipole-Dipole Forces
 - * Dominant in polar molecules
 - * Results from attraction between permanent dipoles (Figure 10.9)
 - · Hydrogen Bonding
 - * Dominant only in molecules capable of hydrogen bonding
 - * Must contain a hydrogen-donor atom (H attached to N, O, or F)
 - * Must contain a hydrogen-acceptor atom (lone pair of electrons attached to N, O, or F)
 - * Hydrogen bonds are more than just particularly strong dipole-dipole forces. They have strong directionality according to VSEPR
 - * Figures 10.10, 10.14, and other figures on the Internet show water, DNA, and proteins all organized by hydrogen bonds
 - * Figures 10.11 and 10.12 illustrate how much hydrogen bonds exceed dipole-dipole forces in strength

ERRATA