МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДАНИЕВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФН

КАФЕДРА

«ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Направление: Математика и компьютерные науки

Дисциплина: Численные методы

Домашняя работа №1-3

«Методы простой итерации и Зейделя. Методы касательных и секущих, метод деления отрезка пополам»

Группа: ФН11-52Б

Вариант №8

Студент: Зеликова В.И.

Преподаватель: Кутыркин В.А.

Оценка:

<u>ЗАДАНИЕ 1.1</u>

(N – номер фамилии студента в журнале, β = 1-0,02(49-n), n – номер группы)

Используя метод простой итерации с нулевым начальным вектором, найти приближённое решение СЛАУ: $A \cdot {}^{>}x = {}^{>}b$, с матрицей, имеющей диагональное преобладание. Абсолютная погрешность приближённого решения не должна превышать величины 0,01. Предполагается, что все компоненты решения заданной СЛАУ равны единице. Матрица А этой СЛАУ приведена ниже в зависимости от варианта задания (см. Таблицу 1). Кроме того, используя неравенство (3), найти в методе простой итерации число шагов, необходимое для того чтобы гарантировать абсолютную погрешность приближённого решения не более 0,01. Сравнить это расчётное количество шагов с реальным количеством шагов, обеспечившим заданную погрешность. \blacktriangleright

Таблица 1							
8	(10β)	1	2	3			
	1	10β	3	2			
	-2	3	10β	1			
	3	2	1	10β			

Решение:

Исходные данные: N=8; n=52; β =1,06. Матрица A для 8 варианта задания, вектор истинных решений x, вектор b:

$$A = \begin{bmatrix} 10.6 & 1 & 2 & 3 \\ 1 & 10.6 & 3 & 2 \\ -2 & 3 & 10.6 & 1 \\ 3 & 2 & 1 & 10.6 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad b = \begin{bmatrix} 16.6 \\ 16.6 \\ 12.6 \\ 16.6 \end{bmatrix}$$
(1)

Матрица F и векторы g и x_0 – начальный вектор итераций:

$$F = \begin{bmatrix} 0 & -0.09434 & -0.18868 & -0.28302 \\ -0.09434 & 0 & -0.28302 & -0.18868 \\ 0.18868 & -0.28302 & 0 & -0.09434 \\ -0.28302 & -0.18868 & -0.09434 & 0 \end{bmatrix}, \quad g = \begin{bmatrix} 1.56604 \\ 1.56604 \\ 1.18868 \\ 1.56604 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 (2)

Рабочая формула метода простых итераций:

$$x_{(k+1)} = F \cdot x_{(k)} + g \tag{3}$$

Получающаяся последовательность приближенных решений представлена в следующей таблице для каждой итерации:

№ итерации	1	2	3	4	5	6	7
Компоненты	1,56604	0,75080	1,12091	0,94804	1,02439	0,98926	1,00493
приближенного	1,56604	0,78640	1,10747	0,95438	1,02128	0,99053	1,00430
решения х_і	1,18868	0,89320	1,04030	0,98099	1,00861	0,99621	1,00176
	1,56604	0,71520	1,12091	0,94170	1,02511	0,98827	1,00518
Погрешность							
на каждой	0,56604	0,28480	0,12091	0,05830	0,02511	0,01173	0,00518
итерации							

Таким образом, на 6 итерации последовательность сходится к решению с точностью 0,01. Найдем оценку числа итераций для достижения точности решения более чем 0.01 с помощью формулы:

$$||x_{(k)} - x_*|| \le \frac{||F||^k}{1 - ||F||} \cdot ||g|| + ||F||^k \cdot ||x_{(0)}||$$
(4)

 $\big||F|\big|=0,\!566038,\quad \big||g|\big|=16,\!6,\; \Big|\big|x_{(0)}\big|\Big|=0,\quad$ поэтому для данного варианта $\mathbf{k}=15.$

Результаты:

Методом простых итераций было получено решение данной СЛАУ на 7 итерации с точностью 0.01.

По формуле оценки точность решения более чем $0.01\,$ достигается на $15\,$ итерации.

<u>ЗАДАНИЕ 1.2</u>

Используя метод Зейделя с нулевым начальным вектором, найти приближённое решение СЛАУ: $A \cdot {}^{>}x = {}^{>}b$, с матрицей, имеющей диагональное преобладание. Абсолютная погрешность приближённого решения не должна превышать величины 0,01. Предполагается, что все компоненты решения заданной СЛАУ равны единице. Матрица А этой СЛАУ приведена ранее. Сравнить в методах простой итерации и Зейделя количество шагов для достижения абсолютной погрешности, не превышающей величины 0,01.

Решение:

Матрица F:

$$F = \begin{bmatrix} 0 & -0.09434 & -0.18868 & -0.28302 \\ -0.09434 & 0 & -0.28302 & -0.18868 \\ 0.18868 & -0.28302 & 0 & -0.09434 \\ -0.28302 & -0.18868 & -0.09434 & 0 \end{bmatrix}$$
 (5)

Матрица В и матрица D:

Матрица Q:

$$Q = B - D = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -0.09434 & 0 & 0 & 0 \\ 0.18868 & -0.28302 & 0 & 0 \\ -0.28302 & -0.18868 & -0.09434 & 0 \end{bmatrix}$$
 (7)

Матрица Р:

$$P = F - Q = \begin{bmatrix} 0 & -0.09434 & -0.18868 & -0.28302 \\ 0 & 0 & -0.28302 & -0.18868 \\ 0 & 0 & 0 & -0.09434 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(8)

Матрица $(E-Q)^{-1}$:

$$(E - Q)^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -0.09434 & 1 & 0 & 0 \\ 0.21538 & -0.28302 & 1 & 0 \\ -0.28554 & -0.16198 & -0.09434 & 1 \end{bmatrix}$$
 (9)

Рабочая формула метода Зейделя:

$$y_{(k)} = (E - Q)^{-1} \cdot P \cdot y_{(k-1)} + (E - Q)^{-1} \cdot g$$
 (10)

Получающаяся последовательность приближенных решений представлена в следующей таблице для каждой итерации:

№ итерации	0	1	2	3
Компоненты	0	1,566038	1,01481	0,997067
приближенного	0	1,418298	1,021773	0,996557
решения х_і	0	1,082753	1,019928	1,001381
	0	0,75307	0,98982	1,001349
Погрешность на каждой итерации	-	0,56604	0,02177	0,00344

Таким образом на 3 итерации последовательность сходится к решению с точностью 0.01

Результаты

Методом Зейделя было получено решение данной СЛАУ на 3 итерации с точностью 0.01. Приближенное решение сходится к истинному быстрее, нежели методом простых итераций.

ЗАДАНИЕ 2

(N – номер фамилии студента в журнале, $\alpha = 0.003 \cdot (n-50)$, n – номер группы)

С погрешностью, не превосходящей величину $\epsilon = 0{,}0001$, найти все корни уравнения:

$$[N+5,2+(-1)^N\alpha]\cdot x^3-[2N^2+10,4N+(-1)^{N+1}\alpha]\cdot x^2-N^2(N+5,2)(x-2N)+(-1)^N\alpha=0\;.$$

Нарисовать график функции, стоящей в левой части уравнения. Используя этот график отделить корни уравнения. Для определения левого корня использовать метод касательных, правого — метод секущих. Для определения срединного корня использовать метод деления отрезка пополам.

Решение:

Вычисления производились с помощью математического пакета MathCad. Для данного варианта $N=8,\ \alpha=0.006.$ С этими значениями уравнение примет вид

$$13.206 \cdot x^3 - 211.194 \cdot x^2 - 844.8 \cdot x + 13516.806 = 0 \tag{11}$$

График функции в левой части уравнения:

Найденные методами MathCad корни уравнения: $x_1 = -7.99947096$, $x_2 = 8.00205078$, $x_3 = 15.98969642$.

Метод касательных

Вычислим левый корень методом касательных. Рабочая формула метода:

$$x_{(k)} = x_{(k-1)} - \frac{f(x_{(k-1)})}{f'(x_{(k-1)})}$$
 (12)

Начальное приближение: $x_{(0)} = -6$

Тогда на 4 итерации получается приближенное решение $x_{(4)} = -7.99947096$, которое удовлетворяет заданной точности $\varepsilon = 0.0001$

Метод секущих

Для нахождения правого корня используем метод секущих. Исходя из вида графика функции в области поиска решения, выберем следующую рабочую формулу метода:

$$x_{(k)} = x_{(k-1)} - \frac{\left(b - x_{(k-1)}\right) \cdot f\left(x_{(k-1)}\right)}{f(b) - f\left(x_{(k-1)}\right)} \tag{13}$$

Начальное приближение: $x_{(0)} = 12$, b = 20

Тогда на 14 итерации получается приближенное решение $x_{(14)} = 15.98963361$, которое удовлетворяет заданной точности $\varepsilon = 0.0001$

Метод деления отрезка пополам

Метод деления отрезка пополам позволяет находить решение уравнения вида f(x) = 0. Для этого выбирается некий отрезок [a,b], содержащий в себе это решение — соответственно, функция f(x) принимает на его концах значения разных знаков. Шаг метода заключается в нахождении середины отрезка [a,b] и вычислении значений f(a), f(b), $f(\frac{a+b}{2})$. Полученные значения функции сравниваются с 0: корень будет принадлежать той части отрезка, на концах которого знаки f(x) различны. Середина отрезка является приближенным решением, значение в середине определяет отклонение от точного решения.

В качестве начального был выбран отрезок [a,b] = [7.5,8.5]. Тогда на 9 итерации получается приближенное решение x = 8.001953125, которое удовлетворяет заданной точности $\varepsilon = 0.0001$

Результаты

Наибольшей скоростью сходимости из трех рассмотренных методов обладает метод касательных, а наименьшей – метод секущих. На время работы алгоритма оказывает влияние выбор начального приближения $x_{(0)}$ а также отрезка [a,b].