CENTRO UNIVERSITÁRIO UNINORTE CURSO DE PÓS-GRADUAÇÃO EM: Pós

Graduação em Gerência de Banco de Dados.

DISCIPLINA: Mineração de Dados

Agrupamento

Prof.º: Manoel Limeira juniorlimeiras@gmail.com

Supervisionado e Não Supervisionado

- Classificação é um processo de aprendizado supervisionado, pois as instâncias que fazem parte da base de treinamento já têm seu atributo classe rotulado
- Clusterização é dito um processo de aprendizado não supervisionado, pois as instâncias que fazem parte da base de entrada não têm o seu grupo rotulado
- Muitas vezes nem mesmo o número de grupos é previamente definido

<u>Clusterização</u>

- Clusterização é a tarefa de identificar um conjunto finito de categorias (ou grupos - clusters) que contêm instâncias similares
- Os clusters não são previamente definidos
- Coletar e rotular bases de dados pode ser muito caro
- Gravar voz é barato, mas rotular todo o material gravado é caro
- Muitas vezes não se tem conhecimento das classes envolvidas
- Segmentação de mercado, agrupamento de documentos e notícias, perfis de clientes (Netflix), análise de redes sociais

<u>Clusterização - Exemplo</u>

- Deseja-se separar os clientes em grupos de forma que aqueles que apresentam o mesmo comportamento de consumo fiquem no mesmo grupo
- Cada tupla (instância) deste exemplo indica a quantidade média total de produtos consumidos e o preço médio destes produtos relativos a cada consumidor

Consumidor	Qtd.Méd.Tot.Prods.	Preç.Méd.Prods.
1	2	1.700
2	10	1.800
3	2	100
4	3	2.000
5	12	2.100
6	3	200
7	4	2.300
8	11	2.040
9	3	150

Clusterização - Exemplo

Consumidor	Qtd.Méd.	Preç.Méd.
1	2	1.700
2	10	1.800
3	2	100
4	3	2.000
5	12	2.100
6	3	200
7	4	2.300
8	11	2.040
9	3	150

Grupo	Consumidor	Qtd.Méd.	Preç.Méd.
1	1	2	1.700
	4	3	2.000
	7	4	2.300
2	2	10	1.800
	5	12	2.100
	8	11	2.040
3	3	2	100
	6	3	200
	9	3	150

 Cada grupo identificado é caracterizado por consumidores semelhantes em relação à quantidade média total e ao preço médio dos produtos consumidos

Algoritmos de Clusterização

- Algoritmos de clusterização organizam um conjunto de n instâncias em (k) clusters (grupos) de instâncias semelhantes
- Em um cluster, instâncias devem ser similares entre si e dissimilares (diferentes, distantes) em relação a instâncias de outros clusters
- O número k de clusters a serem obtidos pode não ser um dados de entrada
- Exemplos de algoritmos: k-means, hierárquico

Clusterização - Entrada de Dados

 Matriz de Dados: contém os valores dos p atributos que caracterizam cada um das n instâncias

Clusterização - Entrada de Dados

- Matriz de Dissimilaridade (distâncias): contém as distâncias entre cada par de instâncias
- d_(i,i) representa a dissimilaridade (diferença) entre as instâncias i e j

•
$$d_{(i,j)} \ge 0$$

•
$$d_{(i,j)} \ge 0$$

• $d_{(i,j)} = d_{(j,i)}$
• $d_{(i,i)} = 0$

•
$$d_{(i,i)} = 0$$

Clusterização - Cálculo da Distância

Distância Euclidiana

$$-\mathbf{d}_{(i,j)} = ((\mathbf{x}_{i1} - \mathbf{x}_{j1})^2 + (\mathbf{x}_{i2} - \mathbf{x}_{j2})^2 + \dots + (\mathbf{x}_{ip} - \mathbf{x}_{jp})^2)^{1/2}$$

$$d_{(i,j)} = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

- Entrada: n instâncias e o número k de clusters
- Saída: n instâncias organizadas em k clusters
- Passos:
 - Passo 1: Defina k centroides iniciais, escolhendo k instâncias aleatórias da base
 - Passo 2: Associe cada instância para o cluster correspondente ao centroide mais similar
 - Passo 3: Recalcule os centroides dos clusters
 - Passo 4: Repita passo 2 e 3 até atingir um critério de parada (e.g. até um número máximo de iterações ou até não ocorrer alterações nos centroides)

Exemplo: Conjunto de 8.000 instâncias em 2 dimensões.

$$k = 5$$

Exemplo: Escolher aleatoriamente os k centroides

Exemplo: 1ª iteração

Exemplo: 2ª iteração

Exemplo: 3ª iteração

Exemplo: 4ª iteração

Exemplo: 5ª iteração

Exemplo: 6ª iteração

Exemplo: 7ª iteração

Exemplo: 8ª iteração

Exemplo: 9ª iteração

Exemplo: 10ª iteração

Exemplo – K-Means (k = 2)

1º Iteração - Centroides (k = 2)

1º Iteração - Grupos (k = 2)

2º Iteração - Centroides (k = 2)

2º Iteração - Grupos (k = 2)

$3^{\underline{a}}$ Iteração – Centroides (k = 2)

3º Iteração - Grupos (k = 2)

K-Means++

- Reduz a probabilidade de inicializações ruins
- Seleciona os centroides iniciais que estão longes uns dos outros
- O primeiro centroide é selecionado randomicamente. Porém, os outros são selecionados baseado na distância para o

primeiro ponto

Algoritmo Hierárquico

- Não é necessário especificar o número de clusters
- Os clusters são formados pela aglomeração ou divisão das instâncias
- É criada uma estrutura hierárquica em formato de árvore binária que indica o número de clusters
- Os resultados podem ser apresentados em um dendrograma

Algoritmo Hierárquico

- Aglomerativo: é uma abordagem "de baixo para cima".
 - Cada instância é considerada como um grupo individual, e grupos são recursivamente fundidos até produzir um agrupamento final
- Por divisão: é uma abordagem "de cima para baixo".
 - Inicialmente, o conjunto de todas as instâncias é considerado como sendo um único grupo e, em seguida, ele é recursivamente dividido para produzir um agrupamento final

CENTRO UNIVERSITÁRIO UNINORTE CURSO DE PÓS-GRADUAÇÃO EM: Pós

Graduação em Gerência de Banco de Dados.

DISCIPLINA: Mineração de Dados

Agrupamento

Prof.º: Manoel Limeira juniorlimeiras@gmail.com