1. Gamma Function

We will prove that the improper integral

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$

exists for every x > 0. The function $\Gamma(x)$ is called the Gamma function. Let us recall the comparison test for improper integrals.

Theorem 1.1. (Comparison Test for Improper Integral of Type I) Let f(x), g(x) be two continuous functions on $[a, \infty)$ such that $0 \le f(x) \le g(x)$ for all $x \ge a$. Then

(1) If
$$\int_{a}^{\infty} g(x)dx$$
 is convergent, so is $\int_{a}^{\infty} f(x)dx$.

(2) If
$$\int_{a}^{\infty} f(x)dx$$
 is divergent to infinity, so is $\int_{a}^{\infty} g(x)dx$.

Theorem 1.2. (Limit Comparison Test) Let f(x), g(x) be two nonnegative continuous functions on $[a, \infty)$. Suppose that

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L \text{ with } L > 0.$$

Then both $\int_a^\infty g(x)dx$ and $\int_a^\infty f(x)dx$ are convergent or divergent.

Lemma 1.1. For every s > 0, the improper integral $\int_0^\infty e^{-st} dt$ converges.

Proof. Let us compute

$$\int_0^N e^{-st} dt = \frac{e^{-sM} - 1}{-s}.$$

By definition,

$$\int_0^\infty e^{-st}dt = \lim_{N \to \infty} \int_0^N e^{-st}dt = \lim_{N \to \infty} \frac{e^{-sM} - 1}{-s} = \frac{1}{s}.$$

The limit exists and hence the improper integral converges.

Now let us study the case when $x \geq 1$.

Lemma 1.2. Let n be a natural number. Then

$$\lim_{t \to \infty} \frac{t^{n-1}}{e^{\frac{1}{2}t}} = 0.$$

Proof. By L' Hospital rule,

$$\lim_{t \to \infty} \frac{t^{n-1}}{e^{\frac{1}{2}t}} = \lim_{t \to \infty} \frac{(n-1)t^{n-2}}{\frac{1}{2}e^{\frac{1}{2}t}}.$$

Since t^{n-1} is a polynomial of degree n-1, we know

$$\frac{d^n}{dt^n}t^{n-1} = 0.$$

Inducitvely, we find

$$\lim_{t \to \infty} \frac{t^{n-1}}{e^{\frac{1}{2}t}} = \lim_{t \to \infty} \frac{0}{\left(\frac{1}{2}\right)^n e^{\frac{1}{2}t}} = 0.$$

By the definition of limit, we choose $\epsilon = 1$, there exists M > 0 such that for all $t \ge M$

$$\left| \frac{t^{n-1}}{e^{\frac{1}{2}t}} \right| < \epsilon = 1.$$

Hence for $t \ge M$, $0 \le t^{n-1} < e^{\frac{1}{2}t}$. This implies that for $t \ge M$,

$$(1.1) 0 \le e^{-t}t^{n-1} \le e^{-t} \cdot e^{\frac{1}{2}t} = e^{-\frac{1}{2}t}.$$

Lemma 1.1 implies that $\int_0^\infty e^{-\frac{1}{2}t}dt$ is convergent. (1.1) and Comparison test implies that $\int_0^\infty e^{-t}t^{n-1}dt \text{ is convergent for every } n \in \mathbb{N}.$ Let $x \ge 1$ be any real number. Let [x] be the largest integer so that $[x] \le x < [x] + 1$.

Then for $t \geq 0$,

$$(1.2) 0 \le e^{-t}t^{x-1} \le e^{-t}t^{[x]}.$$

Since $\int_0^\infty e^{-t}t^{[x]}dx$ is convergent, by comparison test and (1.2), we find $\int_0^\infty e^{-t}t^{x-1}dt$ is

Now let us study the case when 0 < x < 1. Then we know

$$\frac{1}{e^{\frac{1}{2}t}} \le \frac{t^{x-1}}{e^{\frac{1}{2}t}} \le \frac{t}{e^{\frac{1}{2}t}}.$$

We know that

$$\lim_{t \to \infty} \frac{t}{e^{\frac{1}{2}t}} = \lim_{t \to \infty} \frac{1}{e^{\frac{1}{2}t}} = 0.$$

By the Sandwich principle,

$$\lim_{t \to \infty} \frac{t^{x-1}}{e^{\frac{1}{2}t}} = 0$$

for 0 < x < 1. (Of course, this statement is true for all x > 0.) This implies that

$$0 \le e^{-t} t^{x-1} \le e^{-\frac{1}{2}t}, \quad t \ge 1.$$

By comparison test, $\int_{1}^{\infty} e^{-t}t^{x-1}dt$ is convergent for 0 < x < 1. Now, we need to verify that

$$\int_0^1 e^{-t} t^{x-1} dt = \int_0^1 \frac{e^t}{t^{1-x}} dt$$

is convergent. Notice that $\lim_{t\to 0}\frac{e^{-t}}{t^{1-x}}=\infty$. Hence the integral $\int_0^1e^{-t}t^{x-1}dt$ is a type II improper integral.

Theorem 1.3. Let $f, g \in C(a, b]$ and $0 \le f(x) \le g(x)$ for all $a < x \le b$.

- (1) If $\int_a^b g(x)dx$ is convergent, so is $\int_a^b f(x)dx$.
- (2) If $\int_a^b f(x)dx$ is divergent to infinity, so is $\int_a^b g(x)dx$.

Note that

$$0 < e^{-t}t^{x-1} < et^{x-1}$$

We know that

$$\begin{split} \int_0^1 t^{x-1} dt &= \lim_{b \to 0} \int_b^1 t^{x-1} dt \\ &= \lim_{b \to 0} \left. \frac{t^x}{x} \right|_b^1 \\ &= \lim_{b \to 0} \left(\frac{1}{x} - \frac{b^x}{x} \right) \\ &= \frac{1}{x}. \end{split}$$

By the comparison test, $\int_0^1 e^{-t} t^{x-1} dt$ is convergent.

Theorem 1.4. For every x > 0, the improper integral

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$

is convergent.

Proposition 1.1. For x > 0,

$$\Gamma(x+1) = x\Gamma(x).$$

Proof. For every N > 0, using integration by parts,

$$\int_0^N e^{-t} t^x dt = -t^x e^{-t} \Big|_0^N + x \int_0^N e^{-t} t^{x-1} dt$$
$$= -N^x e^{-N} + x \int_0^N e^{-t} t^{x-1} dt.$$

We have seen that $\lim_{N\to\infty} N^x e^{-N} = \lim_{N\to\infty} \frac{N^x}{e^N} = 0$ for all x>0. Then

$$\begin{split} \Gamma(x+1) &= \lim_{N \to \infty} \int_0^N e^{-t} t^x dt \\ &= \lim_{N \to \infty} (-N^x e^{-N} + x \int_0^N e^{-t} t^{x-1} dt) \\ &= x \lim_{N \to \infty} \int_0^N e^{-t} t^{x-1} dt \\ &= x \Gamma(x). \end{split}$$

Corollary 1.1. For every $n \ge 0$, $\Gamma(n+1) = n!$.

Proof. We know $\int_0^\infty e^{-t}dt=1$. Hence $\Gamma(1)=1$. We can prove the formula by induction. Assume that the statement is true for some nonnegative integer k, i.e. $\Gamma(k+1)=k!$. By the previous proposition,

$$\Gamma(k+2) = \Gamma((k+1)+1) = (k+1)\Gamma(k+1) = (k+1) \cdot k! = (k+1)!.$$

4

Proposition 1.2. For any s > 0, x > 0, we have

$$\int_0^\infty e^{-st} t^{x-1} dt = \frac{\Gamma(x)}{s^x}.$$

Proof. This formula can be proved by using substitution u = st.

Example 1.1.

$$\int_0^\infty e^{-st}(2-3t+5t^2)dt = \frac{2}{s} - \frac{3}{s^2} + \frac{10}{s^3}.$$

This can be proved by the previous proposition.

Here comes a question, if f(t) is a continuous function on $[0, \infty)$ such that

$$\int_0^\infty e^{-st} f(t)dt = \frac{2}{s} - \frac{3}{s^2} + \frac{10}{s^3},$$

what can you say about f(t)? Let us introduction the notion of Laplace transformation.

2. Laplace Transformation, its inverse transformation, and linear homogeneous o.d.e of constant coefficients

Definition 2.1. Let f(t) be a continuous function on $[0, \infty)$. Suppose $\int_0^\infty e^{-st} f(t) dt$ converges for $s \ge a$ for some $a \in \mathbb{R}$. Denote

$$\mathfrak{L}(f)(s) = \int_0^\infty e^{-st} f(t) dt$$

called the Laplace transform of f.

Now, let us assume that the Laplace transform of f_1, f_2 exist on some domain $D \subset \mathbb{R}$ where f_1, f_2 are continuous functions on $[0, \infty)$. For any real numbers a_1, a_2 , we know that for any $s \in D$,

$$\begin{split} \mathfrak{L}(a_1 f_1 + a_2 f_2)(s) &= \int_0^\infty (a_1 f_1(t) + a_2 f_2(t)) e^{-st} dt \\ &= \lim_{M \to \infty} \int_0^M (a_1 f_1(t) + a_2 f_2(t)) e^{-st} dt \\ &= \lim_{M \to \infty} \left(a_1 \int_0^M f_1(t) e^{-st} dt + a_2 \int_0^M f_2(t) e^{-st} dt \right) \\ &= a_1 \lim_{M \to \infty} \int_0^M f_1(t) e^{-st} dt + a_2 \lim_{M \to \infty} \int_0^M f_2(t) e^{-st} dt \\ &= a_1 \mathfrak{L}(f_1)(s) + a_2 \mathfrak{L}(f_2)(s). \end{split}$$

Proposition 2.1. Suppose that f_1, f_2 are two continuous functions on $[0, \infty)$ such that their Laplace transform exist on some domain $D \subset \mathbb{R}$ for s. Then

$$\mathfrak{L}(a_1f_1 + a_2f_2)(s) = a_1\mathfrak{L}(f_1)(s) + a_2\mathfrak{L}(f_2)(s), \quad s \in D,$$

for any $a_1, a_2 \in \mathbb{R}$. (We say that the Laplace transform is a linear transformation.)

Theorem 2.1. Suppose f_1, f_2 are two continuous functions on $[0, \infty)$ such that their Laplace transform exist. If $\mathcal{L}(f_1) = \mathcal{L}(f_2)$, then $f_1 = f_2$.

Hence if $g(s) = \mathfrak{L}(f)(s)$, we denote

$$f(t) = \mathfrak{L}^{-1}(g)(t)$$

called then Laplace inverse transform

Proposition 2.2. Suppose f(t) is a smooth function on $[0, \infty)$ ($f^{(k)}(t)$ exists for all $k \ge 1$. Set $f^{(0)}(t) = f(t)$.) Assume that $\lim_{t\to\infty} f^{(k)}(t)e^{-st} = 0$ for all $k \ge 0$. Then

$$\mathfrak{L}(f')(s) = -f(0) + s\mathfrak{L}(f)(s).$$

Proof. Using integration by parts,

$$\int_0^N e^{-st} f'(t)dt = f(t)e^{-st} \Big|_0^N + s \int_0^N e^{-st} f(t)dt$$
$$= f(N)e^{-sN} - f(0) + s \int_0^N e^{-st} f(t)dt.$$

By assumption, $\lim_{N\to\infty} f(N)e^{-sN} = 0$ (consider k=0.) Hence

$$\int_{0}^{\infty} e^{-st} f'(t)dt = \lim_{N \to \infty} \int_{0}^{N} e^{-st} f'(t)dt$$

$$= \lim_{N \to \infty} \left(f(N)e^{-sN} - f(0) + s \int_{0}^{N} e^{-st} f(t)dt \right)$$

$$= -f(0) + s \lim_{N \to \infty} \int_{0}^{N} e^{-st} f(t)dt$$

$$= -f(0) + s \int_{0}^{\infty} e^{-st} f(t)dt.$$

Corollary 2.1. Under the same assumption as above, we have

$$\mathfrak{L}(f^{(n)})(s) = s^n F(s) - \sum_{k=0} s^{n-k-1} f^{(k)}.$$

When n = 2, we have $\mathfrak{L}(f'')(s) = s^2 F(s) - sf'(0) - f(0)$.

Now let us use Laplace transform to solve ordinary differential equation with constant coefficients.

Example 2.1. Solve for y' + 2y = 0 with initial condition y(0) = 1.

Take Laplace transform, we obtain

$$\mathfrak{L}(y'+2y)(s) = \mathfrak{L}(y')(s) + 2\mathfrak{L}(y)(s) = 0.$$

Let $g(s) = \mathcal{L}(y)(s)$. Using the previous proposition,

$$\mathfrak{L}(y')(s) = -y(0) + s\mathfrak{L}(y)(s) = -1 + sg(s).$$

Hence (-1 + sg(s)) + 2g(s) = 0. This implies that $g(s) = \frac{1}{s+2}$. Then

$$y = \mathfrak{L}^{-1}(g)(t) = e^{-2t}.$$

Example 2.2. Solve for y'' + y = 0 with initial condition y(0) = a and y'(0) = b.

Let g(s) be the Laplace transform of y. Then

$$\mathfrak{L}(y'')(s) + g(s) = 0.$$

On the other hand, $\mathfrak{L}(y'')(s) = s^2g(s) - sy(0) - y'(0) = s^2g(s) - as - b$. This implies that

$$(s^2+1)g(s) = as + b \Longrightarrow g(s) = a\frac{s}{s^2+1} + b\frac{1}{s^2}.$$

We know $\frac{s}{s^2+1} = \mathfrak{L}(\cos t)(s)$, and $\frac{1}{s^2+1} = \mathfrak{L}(\sin t)(s)$. Hence $y(t) = a\cos t + b\sin t$.

In general, we can solve for the linear (homogeneous) differential equation of constant coefficients through Laplace transformation. A linear homogeneous differential equation of constant coefficients is a differential equation

$$(2.1) a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0,$$

where $a_0, \dots, a_n \in \mathbb{R}$. If $a_n \neq 0$, we say that the equation is of order n.

Let us study the case when n=2:

$$(2.2) ay'' + by' + cy = 0.$$

Here $a \neq 0$. Taking the Laplace transformation of the equation, we have

$$a(s^{2}F(s) - sy'(0) - y(0)) + b(sF(s) - y(0)) + cF(s),$$

where $F(s) = \mathfrak{L}(y)(s)$. Therefore F(s) is a rational function in s and given by

$$F(s) = \frac{As + B}{as^2 + bs + c}.$$

where A = ay'(0) and B = ay'(0) + by(0). We can use partial fraction expansion to decompose F(s).

Definition 2.2. The polynomial $\chi(s) = as^2 + bs + c$ is called the characteristic polynomial of (2.2).

We assume that a=1 and let $D=b^2-4c$ be the discriminant of the characteristic polynomial.

case 1: If D > 0, $\chi(s)$ has two distinct real roots. We denote the root of $\chi(s)$ by λ_1 and λ_2 . Thus we may write

$$F(s) = C_1 \frac{1}{s - \lambda_1} + C_2 \frac{1}{s - \lambda_2}$$

for some $C_1, C_2 \in \mathbb{R}$. We know that

$$\mathfrak{L}(e^{at})(s) = \frac{1}{s-a}.$$

Using the inverse transform and the linearity of \mathfrak{L}^{-1} , we see that

$$y(t) = \mathfrak{L}^{-1}(F)(t)$$

$$= C_1 \mathfrak{L}^{-1} \left(\frac{1}{s - \lambda_1} \right) + C_2 \mathfrak{L}^{-1} \left(\frac{1}{s - \lambda_2} \right)$$

$$= C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}.$$

Hence y is a linear combination of $e^{\lambda_1 t}$ and $e^{\lambda_2 t}$.

case 2: If D = 0, $\chi(s)$ has one repeated root, called λ . Then we write

$$F(s) = C_1 \frac{1}{s - \lambda} + C_2 \frac{1}{(s - \lambda)^2}.$$

Recall that

$$\mathfrak{L}(t^n e^{\lambda t})(s) = \int_0^\infty e^{-st} t^n e^{t\lambda} dt = \frac{\Gamma(n+1)}{(s-\lambda)^{n+1}} = \frac{n!}{(s-\lambda)^{n+1}}.$$

Thus we obtain

$$y(t) = \mathfrak{L}^{-1}(F)(t)$$

$$= C_1 \mathfrak{L}^{-1} \left(\frac{1}{s - \lambda} \right) + C_2 \mathfrak{L}^{-1} \left(\frac{1}{(s - \lambda)^2} \right)$$

$$= C_1 e^{\lambda t} + C_2 t e^{\lambda t}$$

$$= (C_1 + C_2 t) e^{\lambda t}.$$

case 3: If D < 0, by completing the square, we write

$$\chi(s) = (s - \alpha)^2 + \beta^2.$$

We write

$$F(s) = \frac{As}{(s-\alpha)^2 + \beta^2} + \frac{B}{(s-\alpha)^2 + \beta^2} = C_1 \frac{s-\alpha}{(s-\alpha)^2 + \beta^2} + C_2 \frac{\beta}{(s-\alpha)^2 + \beta^2}.$$

Notice that

$$\mathfrak{L}(e^{\alpha t}\cos\beta t)(s) = \frac{s-\alpha}{(s-\alpha)^2 + \beta^2}, \quad \mathfrak{L}(e^{\alpha t}\sin\beta t) = \frac{\beta}{(s-\alpha)^2 + \beta^2}.$$

Thus

$$y(t) = \mathfrak{L}^{-1}(F)(t)$$

$$= C_1 \mathfrak{L}^{-1} \left(\frac{s - \alpha}{(s - \alpha)^2 + \beta^2} \right) + C_2 \mathfrak{L}^{-1} \left(\frac{\beta}{(s - \alpha)^2 + \beta^2} \right)$$

$$= C_1 e^{\alpha t} \cos \beta t + C_2 e^{\alpha t} \sin \beta t$$

$$= e^{\alpha t} (C_1 \cos \beta t + C_2 \sin \beta t).$$

Remark. Let V be the subset of $C^2[0,\infty)$ consisting of y such that (2.2) holds. The above observation implies that V is in fact a two dimensional real vector (sub)space (of $C^2[0,\infty)$).

This method can be applied to (2.1) for any $n \in \mathbb{N}$.

Definition 2.3. The characteristic polynomial of (2.1) is defined to be

$$\chi(s) = a_n s^n + \dots + a_1 s + a_0.$$

Taking the Laplace transformation of (2.1) and using Corollary 2.1, we find that

$$F(s) = \frac{P(s)}{\chi(s)}$$

for some polynomial $P(s) \in \mathbb{R}[s]$. Thus F(s) is a rational function and we can solve for y using the partial fraction for F(s). Thus we reduce our problems to the cases when $\chi(s) = (s-a)^n$ or $\chi(s) = ((s-\alpha)^2 + \beta^2)^m$. When $\chi(s) = (s-a)^n$, we write

$$F(s) = \frac{A_1}{s-a} + \frac{A_2}{(s-a)^2} + \dots + \frac{A_n}{(s-a)^n}$$
$$= C_0 \frac{1}{s-a} + C_1 \frac{1!}{(s-a)^2} + \dots + C_{n-1} \frac{(n-1)!}{(s-a)^n},$$

where $C_{i-1} = A_i/(i-1)!$ for $i = 1, \dots, n$. By taking the inverse transform, we obtain

$$y(t) = (C_0 + C_1 t + \dots + C_{n-1} t^{n-1})e^{at}.$$

When $\chi(s) = ((x - \alpha)^2 + \beta^2)^m$, we write

$$F(s) = \frac{A_1 s + B_1}{(x - \alpha)^2 + \beta^2} + \dots + \frac{A_m s + B_m}{((s - \alpha)^2 + \beta^2)^m}$$
$$= \frac{C_1 (s - a) + D_1 \beta}{(x - \alpha)^2 + \beta^2} + \dots + \frac{C_m (s - a) + D_m \beta}{((s - \alpha)^2 + \beta^2)^m}.$$

Here C_i, D_j are constants. By finding the inverse transform of $(C_i(s-a) + D_i\beta)/(((s-\alpha)^2 + \beta^2)^i)$, we obtain y.

3. Beta Function

In this section, x, y are positive real numbers. Let us define

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

The function B(x,y) is called the Gamma function. It follows immediately from the definition that

$$B(x,y) = B(y,x), \quad \forall x,y > 0.$$

Using the property of Gamma function: $\Gamma(x+1) = x\Gamma(x)$ for x > 0, we obtain:

Proposition 3.1. Suppose p, q > 0. Then

(1)
$$B(p,q) = B(p+1,q) + B(p,q+1)$$
.

(2)
$$B(p,q+1) = \frac{q}{p}B(p+1,q) = \frac{q}{p+q}B(p,q).$$

Theorem 3.1. For x, y > 0,

$$B(x,y) = \int_0^\infty \frac{t^{x-1}}{(1+t)^{x+y}} dt.$$

Let us postpone the proof of this equation.

Let us consider the substitution $t = \tan^2 \theta$ with $0 \le \theta \le \pi/2$. Then $dt = 2 \tan \theta \sec^2 \theta d\theta$. Using $\sec^2 \theta = \tan^2 \theta + 1$, Beta function B(x, y) can be rewritten as

$$B(x,y) = \int_0^{\frac{\pi}{2}} \frac{(\tan^2 \theta)^{x-1}}{(1 + \tan^2 \theta)^{x+y}} \cdot 2 \tan \theta \sec^2 \theta d\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} \frac{\tan^{2x-2} \theta}{\sec^{2x+2y} \theta} \cdot \tan \theta \sec^2 \theta d\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} \tan^{2x-1} \theta \cdot \frac{1}{\sec^{2x+2y-2} \theta} d\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} \left(\frac{\sin \theta}{\cos \theta}\right)^{2x-1} \cdot \cos^{2x+2y-2} \theta d\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} \sin^{2x-1} \theta \cos^{2y-1} \theta d\theta.$$

Using B(y,x) = B(x,y), we also obtain

$$B(x,y) = 2 \int_0^{\frac{\pi}{2}} \cos^{2x-1} \theta \sin^{2y-1} \theta d\theta.$$

This is the second form of Beta function. Consider substitution $t = \sin^2 \theta$ for $0 \le \theta \le \pi/2$. Then $dt = 2\sin\theta\cos\theta d\theta$, we obtain the third form of the Beta function:

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$

We conclude that

Theorem 3.2. The Beta function has the following forms:

(1)
$$B(x,y) = \int_0^\infty \frac{t^{x-1}}{(1+t)^{x+y}} dt$$
,

(2)
$$B(x,y) = 2 \int_0^{\frac{\pi}{2}} \cos^{2x-1} \theta \sin^{2y-1} \theta d\theta$$
,

(3)
$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$
.

Example 3.1. Compute $\int_0^\infty e^{-x^2} dx$.

Let us make a change of variable $t = x^2$. Then dt = 2xdx and thus $dx = \frac{t^{-\frac{1}{2}}dt}{2}$. The integral can be rewritten as

$$\int_0^\infty e^{-x^2} dx = \frac{1}{2} \int_0^\infty e^{-t} t^{-\frac{1}{2}} dt = \frac{\Gamma\left(\frac{1}{2}\right)}{2}.$$

Now, we only need to compute $\Gamma(1/2)$. Using Beta function,

$$B\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{\Gamma\left(\frac{1}{2}\right)^2}{\Gamma\left(\frac{1}{2} + \frac{1}{2}\right)} = \Gamma\left(\frac{1}{2}\right)^2$$

On the other hand,

$$B\left(\frac{1}{2}, \frac{1}{2}\right) = 2\int_0^{\frac{\pi}{2}} \cos^{2\cdot\frac{1}{2}-1}\theta \sin^{2\cdot\frac{1}{2}-1}\theta d\theta = 2\int_0^{\frac{\pi}{2}} d\theta = \pi.$$

Hence $\Gamma(1/2) = \sqrt{\pi}$. We obtain that

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

Example 3.2. Compute $\int_0^{2\pi} \sin^4 \theta d\theta$.

We know

$$\int_0^{2\pi} \sin^4\theta d\theta = 4 \int_0^{\frac{\pi}{2}} \sin^4\theta d\theta = 2 \cdot 2 \int_0^{\frac{\pi}{2}} \sin^{2 \cdot \frac{5}{2} - 1} \theta \cos^{2 \cdot \frac{1}{2}} \theta d\theta = 2B \left(\frac{5}{2}, \frac{1}{2} \right).$$

We compute

$$B\left(\frac{5}{2}, \frac{1}{2}\right) = \frac{\Gamma\left(\frac{5}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(3)}.$$

Using $\Gamma(x+1) = x\Gamma(x)$, we obtain

$$\Gamma\left(\frac{5}{2}\right) = \frac{3}{2} \cdot \frac{1}{2} \cdot \Gamma\left(\frac{1}{2}\right) = \frac{3}{4}\sqrt{\pi}.$$

Hence
$$B\left(\frac{5}{2}, \frac{1}{2}\right) = \frac{\frac{3}{4}\sqrt{\pi} \cdot \sqrt{\pi}}{2!} = \frac{3}{8}\pi$$
. Thus $\int_{0}^{2\pi} \sin^{4}\theta d\theta = \frac{3}{4}\pi$.

Now, let us go back to the proof of Theorem 3.1.

$$\begin{split} \Gamma(x)\Gamma(y) &= \left(\int_0^\infty e^{-t}t^{x-1}dt\right)\left(\int_0^\infty e^{-s}s^{x-1}ds\right) \\ &= \int_0^\infty \int_0^\infty e^{-(t+s)}t^{x-1}s^{y-1}dtds. \end{split}$$

Let us compute
$$\int_0^\infty e^{-(t+s)}t^{x-1}dt$$
. Consider $t=su$, we rewrite
$$\int_0^\infty e^{-(t+s)}t^{x-1}dt = s^x \int_0^\infty e^{-(u+1)s}u^{x-1}du.$$

Hence the integral becomes

$$\Gamma(x)\Gamma(y) = \int_0^\infty \left(\int_0^\infty e^{-(u+1)s} s^{x+y-1} ds \right) u^{x-1} du$$

$$= \int_0^\infty \frac{\Gamma(x+y)}{(u+1)^{x+y}} \cdot u^{x-1} du$$

$$= \Gamma(x+y) \int_0^\infty \frac{u^{x-1}}{(1+u)^{x+y}} du.$$

Here we use Proposition 1.2. This shows that

$$\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = \int_0^\infty \frac{u^{x-1}}{(1+u)^{x+y}} du.$$

Example 3.3. Compute $\int_{1}^{3} (x-1)^{10} (x-3)^{3} dx$.

Let t = (x - 1)/2. Then the integral becomes

$$\int_{1}^{3} (x-1)^{10} (x-3)^{3} dx = \int_{0}^{1} (2t)^{10} (2t-2)^{3} 2dt = -2^{14} \int_{0}^{1} t^{10} (1-t)^{3} dt.$$

We obtain

$$\int_{1}^{3} (x-1)^{10} (x-3)^{3} dx = -2^{14} B(11,4) = -2^{14} \cdot \frac{10!3!}{14!}.$$