Tema 5: Valores y vectores propios

MATEMÁTICAS 1 GRADO EN INGENIERÍA INFORMÁTICA CURSO 2016-2017

INTRODUCCIÓN

En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores $\mathbf{x} \neq \mathbf{0}$ que cumplen la ecuación:

A matriz nxn $Ax = \lambda x \tag{1}$

x: vector propio, autovector

 λ : valor propio, autovalor

VALORES / VECTORES PROPIOS

Sea A matriz nxn.

Diremos que un escalar $\lambda \in R$ es un autovalor, valor propio de A si existe un vector $\mathbf{v} \in \mathbf{R}$, $\mathbf{v} \neq \mathbf{0}$, tal que $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$, en cuyo caso se dice que \mathbf{v} es un vector propio o autovector asociado al autovalor λ

El conjunto de todos

los **autovectores asociados** a un **mismo autovalor** λ se llama **autoespacio o subespacio propio**,

 $E_A(\lambda)$

EJEMPLO-1

El escalar $\lambda = 3$ es un autovalor de A con autovector asociado v

$$A = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \quad v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

En efecto Av =
$$\lambda v$$
 \Rightarrow Av = $\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda v = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$

v no es el único autovector asociado a $\lambda = 3$, hay infinitos vectores

Todos los que sean de la forma :

$$v = \begin{bmatrix} a \\ a \end{bmatrix} \quad a \in R$$

El Subespacio generado por
$$\lambda = 3$$
 será :
$$E_{A}(3) = \left\{ a \begin{bmatrix} 1 \\ 1 \end{bmatrix} & a \in R \right\}$$

CÁLCULO DE AUTOVALORES de una matriz A nxn

El sistema : $Ax = \lambda x$ Se puede escribir: $(A - \lambda I)x = 0$

Por otra parte, sabemos que para que un sistema Ax=0 tenga solución no trivial, la matriz A debe ser **no es invertible**, o lo que es lo mismo que su **determinante sea igual a 0.**

Por tanto, para que el sistema $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ tenga solución no trivial, se debe cumplir que $\det(\mathbf{A} - \lambda \mathbf{I}) = \mathbf{0}$

Al calcular el determinante de $\mathbf{A} - \lambda \mathbf{I}$, obtendremos un polinomio de grado \mathbf{n} en función de λ , que llamaremos **polinomio característico**, $\mathbf{q}_{\mathbf{A}}(\lambda)$.

Las **raíces de este polinomio** (obtenidas factorizando por **Ruffin**i), nos darán los autovalores o valores propios de A.

Como A **nxn** es de **grado** $n \rightarrow hay n$ autovalores λ

Recordatorio: Factorización de un polinomio por Ruffini

Factoriza el polinomio
$$p(x) = x^4 + x^3 - 6x^2 - 4x + 8$$
.

Los divisores enteros de 8 son 1,-1,2,-2,4,-4,8,-8

	1	1	-6	-4	8
1		1	2	-4	-8
	1	2	-4	- 8	0

Por tanto,

$$p(x) = x^4 + x^3 - 6x^2 - 4x + 8 = (x - 1) \cdot (x^3 + 2x^2 - 4x - 8)$$

Repetiremos el procedimiento con el polinomio cociente $x^3 + 2x^2 - 4x - 8$

	1	2	-4	-8
2		2	8	<u>8</u>
	1	4	4	0
-2		-2	-4	
	1	2	0	Por tanto,
-2		-2		$p(x) = x^4 + x^3 - 6x^2 - 4x + 8 = (x - 1) \cdot (x - 2) \cdot (x + 2)^2$
	1	0		Los ceros o raíces del polinomio $p(x)$ son $x = 1,2,-2,-2$

VALORES / VECTORES PROPIOS

EJEMPLO-2

Calcular los valores propios de las matrices A y B

$$A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 4 & 2 & 0 \end{bmatrix}$$

 $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$ $B = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 4 & 2 & 0 \end{bmatrix}$ Como A es de orden 2, habrá 2 autovalores

Como B es de orden 3, habrá 3 autovalores

$$det(A - \lambda I) = 0$$

$$\frac{\det(A - \lambda I) = 0}{\det(A - \lambda I) = \det\begin{bmatrix} 2 - \lambda & 3 \\ 3 & -6 - \lambda \end{bmatrix}}$$

$$(2 - \lambda) (-6 - \lambda) - 9 = 0$$

$$(2 - \lambda) (-6 - \lambda) - 9 = 0$$
 $\lambda^2 + 4 \lambda - 21 = 0$; Factorizando por Ruffini \rightarrow

$$\det(B - \lambda I) = 0$$

$$\det(\mathsf{B} - \lambda \mathsf{I}) = 0$$

$$\det(\mathsf{B} - \lambda \mathsf{I}) = \det \begin{bmatrix} 3 - \lambda & 1 & -1 \\ 1 & 1 - \lambda & 1 \\ 4 & 2 & -\lambda \end{bmatrix} \xrightarrow{-\lambda^3 + 4\lambda^2 - 4\lambda} = 0;$$
Factorizando Por Ruffini \Rightarrow

$$\lambda(\lambda - 2)(\lambda - 2) = 0 \Rightarrow \lambda = \lambda = 2 \pmod{2}$$

$$-\lambda^3 + 4\lambda^2 - 4\lambda = 0$$
;

$$\lambda(\lambda - 2)(\lambda - 2) = 0 \rightarrow \begin{vmatrix} \lambda 1 = 0 \\ \lambda 2 = 2 \text{ (doble)} \end{vmatrix}$$

VALORES / VECTORES PROPIOS

Se llama **multiplicidad algebraica** de un autovalor λ_i **ma** (λ_i)

a la multiplicidad que tiene λ_i como raíz de $\mathbf{q}_{\mathbf{A}}(\lambda)$

Ej: Si en la factorización del polinomio $q_A(\lambda)$ aparece $(\lambda - \lambda i)^k \rightarrow$

la raíz λ_i tiene multiplicidad algebraica k

EJEMPLO-4

La multiplicidad algebraica de los valores propios de A :

$$\lambda 1 = -7$$
 $ma(-7) = 1$ $\lambda 2 = 3$ $ma(3) = 1$

La multiplicidad algebraica de los valores propios de B

$$\lambda 1 = 0$$
 $\lambda 2 = 2$ $ma(0) = 1$ $ma(2) = 2$

1.- La suma de los **n** valores propios de la matriz A es igual a su **traza**:

$$\lambda_1 + \lambda_2 + ... \lambda_n = traza(A)$$
 (suma de la diagonal)

EJEMPLO-5

$$A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} \begin{cases} \lambda 1 = -7 \\ \lambda 2 = 3 \end{cases} \quad \begin{array}{c} \lambda 1 + \lambda 2 = -7 + 3 = -4 \\ \text{traza}(A) = 2 - 6 = -4 \end{cases}$$

2.- El producto de los **n** valores propios de A es igual a su **determinante**:

$$\lambda_{1} \cdot \lambda_{2} \dots \lambda_{n} = \det(A)$$
EJEMPLO-6
$$A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} \quad \lambda_{1} = -7 \quad \lambda_{1} \cdot \lambda_{2} = -7 \cdot 3 = -21$$

$$\det(A) = -21$$

En base a estas 2 propiedades, calcular los valores propios de una matriz de 2x2 se puede hacer resolviendo el sistema:

$$\begin{cases} \lambda 1 + \lambda 2 &= \text{Suma de la diagonal} \\ \lambda 1 * \lambda 2 &= \text{Determinante de la matriz} \end{cases}$$

EJEMPLO-7

Comprobar las propiedades 1) y 2) de los valores propios en B

$$B = \begin{bmatrix} 3 & 1 & -1 \\ 4 & 4 & 4 \end{bmatrix}$$

1)
$$\lambda_1 + \lambda_2 + \dots \lambda_n = \text{traza}(B)$$

$$\lambda 2 = 2; \, \mathsf{ma}(\lambda 2) = 2$$

$$B = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\lambda 1 = 0; \text{ ma}(\lambda 1) = 1$$

$$\lambda 2 = 2; \text{ ma}(\lambda 2) = 2$$

$$\text{traza}(B) = 3 + 1 = 4$$

2)
$$\lambda_1 \cdot \lambda_2 \dots \lambda_n = \det(B)$$

$$\lambda 1 . \lambda 2 = 0.2.2 = 0$$

 $det(B) = 0 - 2 + 4 + 4 - 6 - 0 = 0$

3.- Los valores propios de una **matriz triangular** (superior o inferior) son los **elementos de su diagona**l. Su multiplicidad es el nº de veces que el valor propio aparece en la diagonal.

EJEMPLO-8

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} \lambda 1 = 1 \\ \lambda 2 = 2 \\ \lambda 3 = 3 \end{bmatrix}$$
 ma(1) = 1 ma(2) = 1 ma(3) = 1

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} \lambda 1 = 1 \\ \lambda 2 = 2 \end{bmatrix} \quad ma(1) = 1 \\ ma(2) = 2$$

4.- λ es valor propio de A sii (A- λ I)x=0 tiene solución no trivial

EJEMPLO-9

Comprobar la propiedad 3) en las matrices C y D

3) Los valores propios de una **matriz triangular** son los elementos de su diagonal. Multiplicidad del valor propio es el nº de veces que aparecen en la diagonal.

$$C = \begin{pmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{pmatrix}$$
 Diagonal de C: 3, 0, 2,
$$ma(3)=ma(0)=ma(2)=1$$

$$det(C - \lambda I) = (3 - \lambda) (-\lambda) (2 - \lambda) \Rightarrow \lambda 1=3$$

$$\lambda 2=0$$

$$\lambda 3=2$$

$$D = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 3 & 4 \end{bmatrix}$$
 det(D - λ I)= $(4 - \lambda)^2(1 - \lambda) \Rightarrow \lambda 1 = 4 \\ \lambda 2 = 1$
Diagonal de D : **4, 2**;
ma(4)=2,
ma(1)=1

Ejercicio examen

4 Se considera la matriz
$$A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$$
.

- (a) (0'5 puntos) Hallad el polinomio característico
- (b) (0'5 puntos) Hallad los valores propios

Solución:

(a)
$$q_A(\lambda) = \det(A - \lambda I) = -\lambda^3 + 12\lambda + 16$$

(b) Las raices (probando por Ruffini) son -2 (doble) y 4 (simple)

CALCULO DE LA INVERSA DE UNA MATRIZ A PARTIR DE SU POLINOMIO CARACTERÍSTICO

Teorema 8.2 (Cayley-Hamilton): Si A es una matriz cuadrada, entonces q(A) = O.

EJEMPLO-10

Se demuestra el resultado del Cayley-H con la matriz A

Se calcula
$$\mathbf{q}_{A}(\lambda) = \lambda^{2} - 2\lambda - 3$$

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
Se calcula $\mathbf{q}_{A}(\mathbf{A}) = \mathbf{A}^{2} - 2\mathbf{A} - 3\mathbf{I} - 3\mathbf{$

$$\mathbf{r} = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix} - 2 \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} - 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Este resultado se usa para calcular la inversa:

$$A^2 - 2A - 3I = 0 = >$$
 $A(A - 2I) = 3I = >$
 $A(1/3(A - 2I)) = I = >$
 $A^{-1} = \frac{1}{3}(A - 2I).$

VECTORES PROPIOS: SUBESPACIO PROPIO ASOCIADO A UN AUTOVALOR

El conjunto de vectores propios asociados a un autovalor λ , o lo que es lo mismo, el **subespacio propio** asociado a un autovalor λ está formado por el conjunto de todas las soluciones del SL: $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$,

o lo que es lo mismo, el conjunto de las soluciones del SH: $(A-\lambda I)x = 0$

es decir, es el **espacio nulo** de la matriz $(A-\lambda I)$, o sea, Nul $(A-\lambda I)$

SubEspacio propio de A respecto de λ : $E_A(\lambda) = Nul(A-\lambda I)$

A la dimensión de $E_{\Delta}(\lambda)$ se le llama multiplicidad geométrica de λ , $mg(\lambda)$

- > Un autovector está **asociado** a un **sólo** autovalor
- > Un autovalor puede tener asociados **infinitos** autovectores

CÁLCULO de los VECTORES PROPIOS de una matriz A

Para cada valor propio o autovalor λ de la matriz A:

Resolver el SL: $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ Cada SL se convierte en un SH, así: $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$

- Si es compatible determinado con solución no trivial, el vector solución será el vector propio asociado al valor propio.
- Si es **compatible indeterminado**, habrá infinitos vectores propios para ese λ . Para expresarlos usaremos la solución en forma vectorial del SH. Por ejemplo, si la solución fuese: $x = [x1, x2, x3] = [\alpha \beta, \alpha, \beta]$, podemos expresarla como $x = \alpha [1, 1, 0] + \beta [-1, 0, 1]$.

Como todos estos vectores x forman el subespacio propio asociado a ese valor propio, podemos decir que, $E_A(\lambda) = \{Env\{(1,1,0), (-1,0,1)\}\}$, por lo que la base de este subespacio será $\{(1,1,0), (-1,0,1)\}$.

OjO: No calcular los valores propios de una matriz en su reducida ya que no siempre los autovalores son iguales.

EJEMPLO-11

Calcular vectores propios de la matriz

1º.- Se calculan los valores propios.

$$det(A - \lambda I) = det \begin{bmatrix} 4 - \lambda & -5 \\ 2 & -3 - \lambda \end{bmatrix} = 0$$
 Valores propios
$$\lambda_1 = -1; \quad \lambda_2 = 2;$$

$$\lambda_1 = -1; \quad \lambda_2 = 2;$$

2º.- Se calculan los vectores propios para cada valor propio

Para $\lambda_1 = -1$, se resuelve: $Ax = \lambda_1 x \rightarrow (A - \lambda_1 I)x = 0$

$$(\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{x} = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} - (-1) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 & -5 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

El sistema es Compatible Indeterminado (ya que su rref tiene un solo 1 ppal y 2 incógnitas), con solución $X_1=X_2$, e.d, $x=(x_1,x_1)$

Si p.ej. damos a x_1 el valor $1 \rightarrow x = (1 \ 1)$ es vector propio asociado a $\lambda_1 = -1$

VALORES / VECTORES PROPIOS

EJEMPLO-12

Para el vector propio: $\lambda_2 = 2$, se resuelve: $Ax = \lambda_2 x \rightarrow (A - \lambda_2 I)x = 0$

$$(A - \lambda_2 I)x = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 & -5 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Igual que antes, es SCI, con solución
$$X_2=0,4 * X_1$$
,

$$x = \begin{bmatrix} x1 \\ 0,4*x1 \end{bmatrix}$$

Si $x_1=5$, p. ej. \rightarrow x=[5;2] es un vector propio asociado a $\lambda_2=2$

SUBESPACIO PROPIO asociado a un AUTOVALOR

EJEMPLO-13

Si los valores propios de A son: $\lambda_1 = 1$, $\lambda_2 = 2$; $\lambda_3 = 3$ encontrar el **subespacio** propio correspondiente a cada uno

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$
 Para calcular el Subespacio propio para λ
Se resuelve el sistema (A - λ_1 I)x = 0

Para calcular el Subespacio propio para $\lambda_1 = 1$

$$(A - \lambda_1 I) = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{pmatrix}$$

SCI
$$\rightarrow$$
 Vector solución $x = (x_1, x_2, x_3)$ donde: $x_1 = -\alpha/2$; $x_2 = \alpha/2$; $x_3 = \alpha$

$$x = \alpha(-1/2, 1/2, 1)$$

$$E_A(\lambda_1) = Env\{(-1/2, 1/2, 1)\} = Env\{(-1,1,2)\}$$

Multiplicidad geométrica: $mg(\lambda_1) = 1$

SUBESPACIO PROPIO asociado a un AUTOVALOR

EJEMPLO-14

Subespacio propio para $\lambda_2 = 2$

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$
 Se resuelve el sistema $(A - \lambda_2 I)x = 0$

SCI
$$\rightarrow$$
 Vector solución $x = (x_1, x_2, x_3)$ donde: $x_1 = -\alpha/2$; $x_2 = \alpha/4$; $x_3 = \alpha$

$$x = \alpha(-1/2, 1/4, 1)$$

$$E_A(\lambda_2) = Env\{(-1/2, 1/4, 1)\} = Env\{(-2,1,4)\}$$

Multiplicidad geométrica: $mg(\lambda_2) = 1$

SUBESPACIO PROPIO asociado a un AUTOVALOR

EJEMPLO-15

Subespacio propio para $\lambda_3 = 3$

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$
 Se resuelve el sistema $(A - \lambda_3 I)x = 0$

SCI
$$\rightarrow$$
 Vector solución $x = (x_1, x_2, x_3)$ donde: $x_1 = -\alpha/4$; $x_2 = \alpha/4$; $x_3 = \alpha$

$$x = \alpha(-1/4, 1/4, 1)$$

$$E_A(\lambda 3) = Env\{(-1/4, 1/4, 1)\} = Env\{(-1,1,4)\}$$

Multiplicidad geométrica: $mg(\lambda_3) = 1$

EJERCICIO

Calcular los valores y vectores propios de A (3x3).

Encontrar una **base** para el subespacio propio asociado a cada autovalor. Indicar la multiplicidad de cada autovalor y de cada subespacio

$$\mathsf{A} = \left[\begin{array}{ccc} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 4 & 2 & 0 \end{array} \right] \qquad \text{Valores propios} \quad \begin{bmatrix} \lambda_1 = 0 \\ \lambda_2 = 2 \text{ (doble)} \end{bmatrix}$$

a) Subespacio $\mathbf{E}_{\mathbf{A}}(\mathbf{0}) \rightarrow \text{resolver SH} \quad (\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{x} = \mathbf{0}$

$$\begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 4 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
 Una base la forma el vector $(1, -2, 1)$

$$\mathsf{EA}(\lambda_1) = \mathsf{Env}\{(\mathsf{a}, \, \mathsf{-2a}, \, \mathsf{a})\}.$$

$$mg(\lambda_1) = 1$$

b) Subespacio $\mathbf{E}_{\mathbf{A}}(\mathbf{2})$: resolver SH: $(\mathbf{A} - \lambda_2 \mathbf{I}) \mathbf{x} = \mathbf{0}$

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ 4 & 2 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ 4 & 2 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
 EA(λ_2) = Env{(0, a, a)} = a(0, 1, 1). Una base la forma el vector (0, 1, 1) mg(λ_2) = 1

Ejercicio examen (continuación del de la pag 14)

4 Se considera la matriz
$$A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$$

- (c) (1'5 puntos) Hallad una base de cada subespacio propio
- Para $\lambda = -2$ hay que resolver el sistema homogéneo (A+2I)x = 0

$$\begin{bmatrix} 3 & -3 & 3 & | & 0 \\ 3 & -3 & 3 & | & 0 \\ 6 & -6 & 6 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Se obtiene la solución en forma paramétrica

$$E_A(-2) = \begin{bmatrix} \alpha - \beta \\ \alpha \\ \beta \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \text{Env} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Ejercicio examen (continuación)

Para $\lambda = 4$ hay que resolver el sistema homogéneo (A-4I)x = 0

$$\begin{bmatrix} -3 & -3 & 3 & | & 0 \\ 3 & -9 & 3 & | & 0 \\ 6 & -6 & 0 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1/2 & | & 0 \\ 0 & 1 & -1/2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Se obtiene la solución en forma paramétrica

$$E_A(4) = \begin{bmatrix} 1/2\alpha \\ 1/2\alpha \\ \alpha \end{bmatrix} = \alpha \begin{bmatrix} 1/2 \\ 1/2 \\ 1 \end{bmatrix} = \text{Env} \left\{ \begin{bmatrix} 1/2 \\ 1/2 \\ 1 \end{bmatrix} \right\} = \text{Env} \left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \right\}$$