PLIC Minas

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Engenharia de Software Fundamentos de Projeto e Análise de Algoritmos Prof(a): João Caram Santos de Oliveira

Bernardo Oliveira Pires Nathan Gonçalves de Oliveira Vitor de Souza Xavier

Problema

Na segunda parte da disciplina, estamos focados no estudo de problemas intratáveis, tipicamente pertencentes às classes NP, e nas técnicas de projeto de algoritmos que podem nos ajudar a encontrar soluções de compromisso adequadas.

"Uma empresa produtora de energia possui uma quantidade X de energia, medida em megawatts, para vender. Seu objetivo é vender sua energia produzida, obtendo o maior valor possível no conjunto de suas vendas. As vendas serão realizadas por leilão: cada empresa interessada dará um lance por um lote de K megawatts, oferecendo um valor V por este lote. As interessadas só comprarão um lote do tamanho exato da oferta.

Solução

O grupo decidiu que cada membro implementaria uma solução:

Nathan Oliveira	Programação Dinâmica
Vitor Xavier	Backtracking
Bernardo Oliveira	Algoritmo Guloso

Na geração de lances fornecida pelo professor, os valores representados abaixo foram pré-definidos para início da solução do problema. Para resolução do problema é considerada a existência de 2 conjuntos de testes apresentados abaixo.

```
* Conjunto de empresas interessadas 1
                                              E1;313;1496
(nome, quantidade, valor):
                                              E2;398;1768
E1;430;1043
                                              E3;240;1210
E2;428;1188
                                              E4;433;2327
E3;410;1565
                                              E5;301;1263
E4;385;1333
                                              E6;297;1499
E5;399;1214
                                              E7;232;1209
E6;382;1498
E7;416;1540
                                              E8;614;2342
E8;436;1172
                                              E9;558;2983
E9;416;1386
                                              E10;495;2259
E10;423;1097
                                              E11:310:1381
E11;400;1463
                                              E12;213;961
E12;406;1353
                                              E13;213;1115
E13;403;1568
                                              E14;346;1552
E14;390;1228
                                              E15;385;2023
E15;387;1542
                                              E16;240;1234
E16;390;1206
                                              E17;483;2828
E17;430;1175
                                              E18;487;2617
E18;397;1492
                                              E19;709;2328
E19;392;1293
                                              E20;358;1847
E20;393;1533
                                              E21;467;2038
E21;439;1149
                                              E22;363;2007
E22;403;1277
E23;415;1624
                                              E23;279;1311
E24;387;1280
                                              E24;589;3164
E25;417;1330
                                              E25;476;2480
```

Backtracking

A função de backtracking foi implementada para maximizar o lucro na venda de energia para empresas interessadas, garantindo que a quantidade de energia disponível não seja excedida.

O backtracking busca realizar uma exploração sistemática de todas as opções possíveis. A função de backtracking gera soluções parciais incrementais, tentando incluir ou excluir cada lance de uma empresa. Claro que, são realizados testes para verificar se a solução parcial é viável ou se pode ser descartada. Se caso a solução parcial não atender aos critérios é realizada a poda, ou seja, o algoritmo abandona esse ramo da busca. A cada vez que uma solução completa é alcançada, o algoritmo verifica se essa solução é a melhor que a melhor solução encontrada até agora.

O critério de poda funciona da seguinte maneira:

- A poda recebe a lista de lances, a seleção atual de lances, o índice atual, a quantidade disponível de energia e o lucro atual;
- Calcula o lucro total da seleção atual de lances;
- Verifica se a seleção parcial já é pior que a melhor solução encontrada, realizando a poda:
- Se a quantidade de energia necessária para o lance atual for maior do que a quantidade disponível, a seleção é descartada.
- Retorna true se a poda for válida, indicando que o ramo da árvore de busca pode ser podado.

```
Melhor lucro: 26725
Energia sobrando: 412 MW
Lances selecionados:
ID: E3, Quantidade: 410, Valor: 1565
ID: E4, Quantidade: 385, Valor: 1333
ID: E5, Quantidade: 399, Valor: 1214
ID: E6, Quantidade: 382, Valor: 1498
ID: E7, Quantidade: 416, Valor: 1540
ID: E9, Quantidade: 416, Valor: 1386
ID: E11, Quantidade: 400, Valor: 1463
ID: E12, Quantidade: 406, Valor: 1353
ID: E13, Quantidade: 403, Valor: 1568
ID: E14, Quantidade: 390, Valor: 1228
ID: E15, Quantidade: 387, Valor: 1542
ID: E16, Quantidade: 390, Valor: 1206
ID: E18, Quantidade: 397, Valor: 1492
ID: E19, Quantidade: 392, Valor: 1293
ID: E20, Quantidade: 393, Valor: 1533
ID: E22, Quantidade: 403, Valor: 1277
ID: E23, Quantidade: 415, Valor: 1624
ID: E24, Quantidade: 387, Valor: 1280 ID: E25, Quantidade: 417, Valor: 1330
Tempo de execução: 0.3885056 segundos
```

Solução caso de teste 1

```
Melhor lucro: 40348
Energia sobrando: 38 MW
Lances selecionados:
ID: E1, Quantidade: 313, Valor: 1496
ID: E2, Quantidade: 398, Valor: 1768
ID: E3, Quantidade: 240, Valor: 1210
ID: E4, Quantidade: 433, Valor: 2327
ID: E6, Quantidade: 297, Valor: 1499
ID: E7, Quantidade: 232, Valor: 1209
ID: E9, Quantidade: 558, Valor: 2983
ID: E10, Quantidade: 495, Valor: 2259
ID: E11, Quantidade: 310, Valor: 1381
ID: E13, Quantidade: 213, Valor: 1115
ID: E14, Quantidade: 346, Valor: 1552
ID: E15, Quantidade: 385, Valor: 2023
ID: E16, Quantidade: 240, Valor: 1234
ID: E17, Quantidade: 483, Valor: 2828
ID: E18, Quantidade: 487, Valor: 2617
ID: E20, Quantidade: 358, Valor: 1847
ID: E21, Quantidade: 467, Valor: 2038
ID: E22, Quantidade: 363, Valor: 2007
ID: E23, Quantidade: 279, Valor: 1311
ID: E24, Quantidade: 589, Valor: 3164
ID: E25, Quantidade: 476, Valor: 2480
Tempo de execução: 0.4799949 segundos
```

Solução caso de teste 2

No primeiro caso, o algoritmo conseguiu um lucro de 26725, com 412 MW de energia sobrando. O tempo de execução foi de aproximadamente 0.39 segundos. A quantidade significativa de energia sobrando sugere que a seleção de lances não foi totalmente eficiente em maximizar a utilização da energia disponível.

No segundo caso, o algoritmo obteve um lucro maior de 40348, utilizando quase toda a energia disponível, com apenas 38 MW sobrando. O tempo de execução foi

de cerca de 0.48 segundos. Este resultado indica uma combinação de lances mais eficiente, maximizando o lucro e utilizando quase toda a energia disponível.

O algoritmo de backtracking está funcionando corretamente e é eficiente para maximizar o lucro na venda de energia, mesmo com múltiplos lances. Ele é capaz de encontrar a melhor combinação de lances rapidamente, garantindo bons resultados e desempenho consistente. Note que ambos os casos mostraram tempos de execução rápidos, abaixo de 0.5 segundos, demonstrando a eficiência do algoritmo em encontrar a melhor combinação de lances.

Algoritmo Guloso

O método guloso foi implementado com o objetivo de obter uma solução eficiente para a venda de energia para empresas, dentro da capacidade total de energia disponível. Este método é conhecido por sua capacidade de fornecer soluções rápidas e razoavelmente boas, embora não garanta o resultado ótimo global.

O método guloso opera com uma abordagem "miopia", onde faz escolhas baseadas em critérios de seleção que parecem melhores no momento, sem considerar o efeito completo dessas escolhas no resultado final.

Estratégias/Critério de Implementação:

- Guloso por Maior Valor: Prioriza as ofertas com os maiores valores monetários, ordenando todas as ofertas disponíveis pelo valor e as selecionando até que o limite de energia seja alcançado ou esteja próximo.
- Guloso por Melhor Custo/Benefício: Foca em ofertas com a melhor relação valor por megawatt, ordenando as ofertas para maximizar o retorno por unidade de energia consumida.

Resultados:

Guloso por maior valor lista de testes 1:

```
Guloso por maior valor
Selecionando oferta: E23: 415 MW, 1624 dinheiros
Selecionando oferta: E13: 403 MW, 1568 dinheiros
Selecionando oferta: E3: 410 MW, 1565 dinheiros
Selecionando oferta: E15: 387 MW, 1542 dinheiros
Selecionando oferta: E7: 416 MW, 1540 dinheiros
Selecionando oferta: E20: 393 MW, 1533 dinheiros
Selecionando oferta: E6: 382 MW, 1498 dinheiros
Selecionando oferta: E18: 397 MW, 1492 dinheiros
Selecionando oferta: E11: 400 MW, 1463 dinheiros
Selecionando oferta: E9: 416 MW, 1386 dinheiros
Selecionando oferta: E12: 406 MW, 1353 dinheiros
Selecionando oferta: E4: 385 MW, 1333 dinheiros
Selecionando oferta: E25: 417 MW, 1330 dinheiros
Selecionando oferta: E19: 392 MW, 1293 dinheiros
Selecionando oferta: E24: 387 MW, 1280 dinheiros
Selecionando oferta: E22: 403 MW, 1277 dinheiros
Selecionando oferta: E14: 390 MW, 1228 dinheiros
Selecionando oferta: E5: 399 MW, 1214 dinheiros
Selecionando oferta: E16: 390 MW, 1206 dinheiros
Valor máximo obtido: 26725
```

Guloso por Melhor Custo/Benefício lista de teste 1:

```
Guloso por Valor/Megawatt
Selecionando oferta (VM): E15: 387 MW, 1542 dinheiros
Selecionando oferta (VM): E6: 382 MW, 1498 dinheiros
Selecionando oferta (VM): E23: 415 MW, 1624 dinheiros
Selecionando oferta (VM): E20: 393 MW, 1533 dinheiros
Selecionando oferta (VM): E13: 403 MW, 1568 dinheiros
Selecionando oferta (VM): E3: 410 MW, 1565 dinheiros
Selecionando oferta (VM): E18: 397 MW, 1492 dinheiros
Selecionando oferta (VM): E7: 416 MW, 1540 dinheiros
Selecionando oferta (VM): E11: 400 MW, 1463 dinheiros
Selecionando oferta (VM): E4: 385 MW, 1333 dinheiros
Selecionando oferta (VM): E12: 406 MW, 1353 dinheiros
Selecionando oferta (VM): E9: 416 MW, 1386 dinheiros
Selecionando oferta (VM): E24: 387 MW, 1280 dinheiros
Selecionando oferta (VM): E19: 392 MW, 1293 dinheiros
Selecionando oferta (VM): E25: 417 MW, 1330 dinheiros
Selecionando oferta (VM): E22: 403 MW, 1277 dinheiros
Selecionando oferta (VM): E14: 390 MW, 1228 dinheiros
Selecionando oferta (VM): E16: 390 MW, 1206 dinheiros
Selecionando oferta (VM): E5: 399 MW, 1214 dinheiros
Valor máximo obtido por Valor/Megawatt: 26725
```

```
Guloso por maior valor
Selecionando oferta: E24: 589 MW, 3164 dinheiros
Selecionando oferta: E9: 558 MW, 2983 dinheiros
Selecionando oferta: E17: 483 MW, 2828 dinheiros
Selecionando oferta: E18: 487 MW, 2617 dinheiros
Selecionando oferta: E25: 476 MW, 2480 dinheiros
Selecionando oferta: E8: 614 MW, 2342 dinheiros
Selecionando oferta: E19: 709 MW, 2328 dinheiros
Selecionando oferta: E4: 433 MW, 2327 dinheiros
Selecionando oferta: E10: 495 MW, 2259 dinheiros
Selecionando oferta: E21: 467 MW, 2038 dinheiros
Selecionando oferta: E15: 385 MW, 2023 dinheiros
Selecionando oferta: E22: 363 MW, 2007 dinheiros
Selecionando oferta: E20: 358 MW, 1847 dinheiros
Selecionando oferta: E2: 398 MW, 1768 dinheiros
Selecionando oferta: E14: 346 MW, 1552 dinheiros
Selecionando oferta: E6: 297 MW, 1499 dinheiros
Selecionando oferta: E1: 313 MW, 1496 dinheiros
Selecionando oferta: E13: 213 MW, 1115 dinheiros
Valor máximo obtido: 38673
```

Guloso por Melhor Custo/Benefício lista de teste 2:

```
Guloso por Valor/Megawatt
Selecionando oferta (VM): E17: 483 MW, 2828 dinheiros
Selecionando oferta (VM): E22: 363 MW, 2007 dinheiros
Selecionando oferta (VM): E4: 433 MW, 2327 dinheiros
Selecionando oferta (VM): E18: 487 MW, 2617 dinheiros
Selecionando oferta (VM): E24: 589 MW, 3164 dinheiros
Selecionando oferta (VM): E9: 558 MW, 2983 dinheiros
Selecionando oferta (VM): E15: 385 MW, 2023 dinheiros
Selecionando oferta (VM): E13: 213 MW, 1115 dinheiros
Selecionando oferta (VM): E7: 232 MW, 1209 dinheiros
Selecionando oferta (VM): E25: 476 MW, 2480 dinheiros
Selecionando oferta (VM): E20: 358 MW, 1847 dinheiros
Selecionando oferta (VM): E16: 240 MW, 1234 dinheiros
Selecionando oferta (VM): E6: 297 MW, 1499 dinheiros
Selecionando oferta (VM): E3: 240 MW, 1210 dinheiros
Selecionando oferta (VM): E1: 313 MW, 1496 dinheiros
Selecionando oferta (VM): E23: 279 MW, 1311 dinheiros
Selecionando oferta (VM): E10: 495 MW, 2259 dinheiros
Selecionando oferta (VM): E12: 213 MW, 961 dinheiros
Selecionando oferta (VM): E14: 346 MW, 1552 dinheiros
Selecionando oferta (VM): E11: 310 MW, 1381 dinheiros
Selecionando oferta (VM): E2: 398 MW, 1768 dinheiros
Valor máximo obtido por Valor/Megawatt: 39271
```

Programação Dinâmica

A Programação Dinâmica divide os problemas em subproblemas menores, realizando os cálculos apenas uma vez, para evitar redundância e diminuir o tempo de execução do algoritmo, encontrando assim, a melhor solução final.

O algoritmo de Programação Dinâmica para solucionar o problema do leilão de energia, foi pensado para retornar o melhor lucro na venda de energia. O algoritmo recebe do usuário a quantidade de energia disponível, em MW e quantidade de lances. A partir daí, o usuário deve preencher o ID da empresa, a quantidade de energia e o valor de cada lance.

Após digitar todas as informações, o código retorna o melhor lucro, com a quantidade de energia que sobrou, a lista com os lances selecionados e o tempo de execução. Semelhantemente ao problema da mochila, o algoritmo utiliza uma tabela para armazenar os valores máximos para as capacidades de energia. As linhas representam os lances e as colunas as quantidades de energia.

O código abaixo mostra o preenchimento da tabela dinâmica, sendo "i" a as linhas, e "j" as colunas:

```
for (int i = 1; i <= n; i++) {
    for (int w = 0; w <= quantidadeDisponivel; w++) {
        EmpresaInteressada lance = lances.get(i - 1);
        if (lance.getQuantidade() <= w) {
            if (lance.getValor() + dp[i - 1][w - lance.getQuantidade()] > dp[i - 1][w]) {
                 dp[i][w] = lance.getValor() + dp[i - 1][w - lance.getQuantidade()];
                 solucao[i][w] = true;
            } else {
                 dp[i][w] = dp[i - 1][w];
            }
        } else {
                 dp[i][w] = dp[i - 1][w];
        }
}
```

```
Melhor lucro: 26725
Energia sobrando: 412 MW
Lances selecionados:
ID: E25, Quantidade: 417, Valor: 1330
ID: E24, Quantidade: 387, Valor: 1280
ID: E23, Quantidade: 415, Valor: 1624
ID: E22, Quantidade: 403, Valor: 1277
ID: E20, Quantidade: 393, Valor: 1533
ID: E19, Quantidade: 392, Valor: 1293
ID: E18, Quantidade: 397, Valor: 1492
ID: E16, Quantidade: 390, Valor: 1206
ID: E15, Quantidade: 387, Valor: 1542
ID: E14, Quantidade: 390, Valor: 1228
ID: E13, Quantidade: 403, Valor: 1568
ID: E12, Quantidade: 406, Valor: 1353
ID: E11, Quantidade: 400, Valor: 1463
ID: E9, Quantidade: 416, Valor: 1386
ID: E7, Quantidade: 416, Valor: 1540
ID: E6, Quantidade: 382, Valor: 1498
ID: E5, Quantidade: 399, Valor: 1214
ID: E4, Quantidade: 385, Valor: 1333
ID: E3, Quantidade: 410, Valor: 1565
Tempo total de execução: 0.0267018 s
```

```
Melhor lucro: 40348
Energia sobrando: 38 MW
Lances selecionados:
ID: E25, Quantidade: 476, Valor: 2480
ID: E24, Quantidade: 589, Valor: 3164
ID: E23, Quantidade: 279, Valor: 1311
ID: E22, Quantidade: 363, Valor: 2007
ID: E21, Quantidade: 467, Valor: 2038
ID: E20, Quantidade: 358, Valor: 1847
ID: E18, Quantidade: 487, Valor: 2617
ID: E17, Quantidade: 483, Valor: 2828
ID: E16, Quantidade: 240, Valor: 1234
ID: E15, Quantidade: 385, Valor: 2023
ID: E14, Quantidade: 346, Valor: 1552
ID: E13, Quantidade: 213, Valor: 1115
ID: E11, Quantidade: 310, Valor: 1381
ID: E10, Quantidade: 495, Valor: 2259
ID: E9, Quantidade: 558, Valor: 2983
ID: E7, Quantidade: 232, Valor: 1209
ID: E6, Quantidade: 297, Valor: 1499
ID: E4, Quantidade: 433, Valor: 2327
ID: E3, Quantidade: 240, Valor: 1210
ID: E2, Quantidade: 398, Valor: 1768
ID: E1, Quantidade: 313, Valor: 1496
Tempo total de execução: 0.026057301
```

Resultado da execução para o primeiro e segundo grupo de empresas, respectivamente.

Análise geral

Analisando os resultados, os algoritmos de Backtracking e de Programação Dinâmica obtiveram os mesmos resultados (26725 dinheiros/MW e 40348 dinheiros,/MW respectivamente). O tempo de execução dos algoritmos foi a única diferença entre os dois métodos. No backtracking, o primeiro grupo de empresas, foi executado em 0,38 segundos, e o segundo em 0,47 segundos. Por outro lado, o de programação dinâmica, foi executado relativamente mais rápido, com 0,0267 segundos para o primeiro grupo de empresas e o segundo, novamente, em 0,0260 segundos. Resultado curioso, já que o segundo grupo de empresas possuíam valores de lances maiores.

Já nos algoritmos gulosos, para o primeiro conjunto de empresas, obtivemos os mesmos valores de lucro que obtivemos nos métodos de backtracking e de programação dinâmica, 26725 dinheiros. Para o segundo grupo das empresas, obtivemos valores diferentes para a execução dos dois métodos do algoritmo guloso. Caso vendêssemos a energia visando o melhor custo benefício, venderíamos uma maior quantidade de energia (39271 dinheiros/MW) do que se fôssemos vender pelo maior valor (38673 dinheiros/MW). Talvez por causa do método de poda escolhido.

Tais resultados são condizentes com a proposta de cada algoritmo, em que o de Programação Dinâmica performou melhor que os outros, de maneira relativamente rápida, e encontrou a solução ótima, enquanto que, o de backtracking, curiosamente, encontrou a solução ótima, mas demorando muito mais tempo do que o de Programação Dinâmica. Já o algoritmo guloso, seria o "pior" método para encontrar uma solução, pelo menos, para valores grandes, apesar de ser relativamente rápido de ser executado.

Especificações das máquinas utilizadas

Dono: Bernardo Oliveira Pires

Processador: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz 1.99 GHz

RAM instalada: 16 GB (utilizável: 15,9 GB)

Tipo de sistema: Windows 11 Home Single Language

Dono: Nathan Gonçalves de Oliveira

Processador: AMD Ryzen 5 5500U 6-Core Processor 2.10 GHz

RAM instalada: 8 GB (utilizável: 6,82 GB)

Tipo de sistema: Windows 11

Dono: Vitor de Souza Xavier

Processador: Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz 2.40 GHz

RAM instalada: 8 GB RAM

Tipo de sistema: Windows 10