Descripcion del problema

Sean los conjuntos X Y Z: - $X \cap Y \cap W = \emptyset$

•
$$|X| = |Y| = |W| = q$$
 Sea $M \subseteq W \ge X \ge Y$

Existe un matching en M Osea \$\exists M^`\subseteq M\$ tal que: - \$\left|M^{`}\right|=q\$ - $\forall a \in W \cup X \cup Y \ a$ esta en alguna terceta de \$M^`\$ sin repetir ninguno.

INsertar ejemplo

Pasos a realizar:

- Demostrar que 3-DM es NP
- Seleccionar un problema NP-Completo para reducirlo (En este caso 3-Sat)
 - Demostrar que dicha transformacion es en tiempo polinomial

3-DM es NP:

Dada una instancia (M,X,Y,W) del 3-DM se construye un algoritmo no determinista que genere una solución de |W| tercetas de M y compruebe en tiempo polinomial que no hay dos tercetas con elementos comunes.

Reducir:

- 3 SATISFABILITY (3SAT)
 - ► Instancia:
 - Conjunto de m cláusulas C = {c1, ..., cm}
 - $|c_i| = 3, 1 \le i \le m$
 - Sobre un conjunto finito de n variables booleanas
 - $U = u_1, ..., u_n$
- Pregunta: Existe aluna asignación válida de U que satisfaga todas las cláusulas de C. #### Notación

3-Sat	3-DM	
Variables: u_1u_n	Variables: $u_i(j), b_i(j), S_x(j), G_y(j)$	
Literales: $u_1 \neg u_1$	Variables: u_i , $\neg u_i(j)$	
Cláusulas: $C_j = (u_1, \neg u_2, u_3)$	Tercetas	
	$C_j\big\{\big(u_1(j),S_x(j),S_y(j)\big),\big(\neg u_2(j),S_x(j),S_y(j)\big),\big(u_3,S_x(j),S_y(j)\big)\big\}$	

Construcción de los componentes:

La demostración se basa en la construcción de tres tipos de componentes: - Componentes de asignación - Componentes de satisfacción - Componentes de recolección

Componentes de asignación:

- Para cada variable $u_i \in U$ se introduce una componente T_i .
 - $ightharpoonup T_i$ depende del número de cláusulas m de C
- Estructura de T_i :
 - ► Elementos internos:
 - ai [j] $\in X$, $1 \le j \le m$; bi [j] $\in Y$, $1 \le j \le m$
 - No van a pertenecer a otras tercetas de otro Ti
 - ► Elementos externos:
 - ui [j], \neg ui [j] \in W, $1 \le j \le m$

• Pueden pertenecer a otras tercetas Nota: El literal u_i en 3SAT puede ser usado en varias cláusulas, en el 3-DM debemos tener muchas m
 copias de u_i .

Insertar diagrama

Insertar diagramas explicativos

Componentes de satisfacción:

- Para cada cláusula cj € C introducimos una componente Cj.
- Estructura:
 - ► Elementos Internos: $sx[j] \in X$, $sy[j] \in Y : 1 \le j \le m$
 - ► Elementos externos: ui [j], \neg ui [j] \in W : $1 \le i \le n$; $1 \le j \le m$
- $Cj = \{(ui\ [j], sx\ [j], sy\ [j]): si\ el\ literal\ ui\ C \ cj\}\ U\ \{(\neg ui\ [j], sx\ [j], sy\ [j]): si\ el\ literal\ \neg ui\ C \ cj\}$

INsertar diagrama

Cualquier matching \$M^{`}\subseteq M\$ debe contener una terceta de C_j para emparejar los elementos internos $S_x[j]$ y $S_y[j]$: - Sx [j] y Sy [j] pueden ser emparejados, sí sólo sí, al menos uno de los literales (ui) de cj no ha sido emparejado en alguna componente "Truth seeting" Ti $(\text{Ti} \cap \text{M'})$ - Si tenemos una 3SAT-Instancia satisfacible, entonces las variables Sx[j] y Sy[j] pueden ser emparejadas - Si tenemos una 3SAT-Instancia no satisfacible, entonces las variables Sx[j] y Sy[j] no pueden ser emparejadas.

Componente de recolección:

Hay muchos $u_i[j]$ que no se emparejan con componentes de $\mathit{asignaci\'on}$ ni con componentes de $\mathit{satisfacci\'on}$

- Hay $m \times n$ variables u sin emparejar después de calcular las tercetas de asignación.
- Si todas las m cláusulas se satisfacen se han emparejado m variables.
- Finalmente quedan sin emparejar $(m \times n) m = m(n-1)$

Se introduce m(n-1) variables nuevas: - $g_x[k] \in X,$ $g_y[k] \in Y: 1 \leq k \leq m(n-1)$

Cada pareja $(g_x[k], g_y[k])$ se enlazará con una única variable $u_i[j]$ o $\neg u_i[j]$ que no estén en las tercetas que se han formado con las componentes anteriores:

Insertar imagen

Resumiendo:

```
 \begin{split} \bullet \ W &= \left\{ u_i[j], \neg u_i[j] : 1 \leq i \leq n, 1 \leq j \leq m \right\} \\ \bullet \ X &= A \cup S_x \cup G_x \ (2mn) \\ \bullet \ A &= \left\{ a_i[j] : 1 \leq i \leq n, 1 \leq j \leq m \right\} \\ \bullet \ S_x &= \left\{ s_x[j] : 1 \leq j \leq m \right\} \\ \bullet \ G_x &= \left\{ g_x[j] : 1 \leq j \leq m(n-1) \right\} \\ \bullet \ Y &= B \cap S_y \cup G_y \ (2mn) \\ \bullet \ B &= \left\{ b_i[j] : 1 \leq i \leq n, 1 \leq j \leq m \right\} \\ \bullet \ S_y &= \left\{ s_y[j] : 1 \leq j \leq m \right\} \\ \bullet \ G_y &= \left\{ g_y[j] : 1 \leq j \leq m(n-1) \right\} M = (\cup) \\ \end{split}
```

Insertar formualq que dice a que es igual M

Significado	Enumeración
Cantidad de variables en $< U, C >$	n
Cantidad de clausulas en $< U, C >$	m
Cantidad de componentes de $\it asignaci\'on$ triple en $\it M$	2mn
Cantidad de componentes de <i>asignación</i> triple en \$M^`\$	mn
Cantidad de componentes de satisfacción triple en ${\cal M}$	3m
Cantidad de componentes de <i>satisfacción</i> triple en \$M^`\$	m
Cantidad de componentes $\it recolecci\'on$ en $\it M$	$2m^2n(n-1)$
Cantidad de componentes <i>recolección</i> en \$M^`\$	m(n-1)
Cardinalidad del emparejamiento perfecto	2mn
Cardinalidad de ${\cal M}$	$2mn = 3m = 2m^2n(n-1)$

Insertar tabla ejemplo

- Se ha observado que las tercetas resultantes M son el producto cartesiano de $W \times X \times Y$
- Esta forma de definir las tercetas:
 - ▶ Desde su definición en términos de una instancia (U,C) del 3SAT
 - ► *M* se construye en tiempo polinomial.

Demostrar que si M contiene un matching $M^{\ }$ ssi (U,C) es satisfacible

Si (U,C) es satisfacible entonces \$M^{`}\subset M\$ es un matching

- Sea $t: U \longrightarrow \{T, F\}$ EL dominio de valores para U que satisface las cláusulas C.
- Se construye un matching \$M^{`}\subseteq M\$ del modo siguiente:
 - $Z_i \in \{u_i, \neg u_i; 1 \le i \le n\} \cap c_i$
 - Literales con asignación verdadera.
 - Debe de existir al menos uno, ya que t satisface a c_i .
- Se construye la \$M^`\$: Insertar la formula \$G^`:\$ conjunto de m(n-1) tercetas de g que incluyen: todos los $g_x[k] \in X$, $g_y[k] \in Y$ Y los $u_i[j] \in \neg u_i[j] \in W$ que no se han emparejado.
 - Es fácil de verificar que siempre se puede construir un $G^{\ }$ para que el resultado del conjunto $M^{\ }$ sea un matching. ## Si $M^{\ }$ subseteq M\$ es un matching entonces (U,C) es satisfacible.
- Se ha visto que para cada $u_i \in U$, \$M^`\$ incluía exactamente m tercetas de $T_i: T_i^t \vee T_i^f$
- Sea $t: U \to T$, F donde $t(u_i) =$ \$T ssi M^`\cap T_{i}=T_{i}^{t}\$
 - t será una asignación correcta que satisface C.
- Consideremos una cláusula arbitraria $c_i \in C$
 - ightharpoonup Para cubrir los elementos internos de la componente C_i :
 - Se necesita al menos una terceta de C_i contenida en \$M ^`\$
 - Esta terceta contiene un literal de $c_j \in C$, que no estará en \$M^{`}\cap T_{i}\$
- Como $t(u_i) = T ssi \M^{\circ} \subset T_{i}=T_{i}^{t}$
 - Entonces t satisface la cláusula c_i
- Si todas las cláusulas $c_i \in C$ se satisfacen:
 - (U,C) es satisfacible.