Bringing together grammar and deep learning: models and targeted evaluation

Roger Levy
9.19: Computational Psycholinguistics
10 November 2021

Agenda for today

- Combining symbolic grammar and neural generalization
- Controlled tests for syntactic generalization:
 - Subordination
 - Garden-pathing

Grammar and deep learning

Sequence representations of trees

(S (NP the hungry cat) (VP chased (NP me)))

(S (NP the hungry cat) (VP chased (NP me))

This can be seen as an action sequence!

Action	Meaning	String gloss
NT(X)	Push a new open non-terminal on top of the stack	(X
Gen(w)	Generate word w as a terminal node and put it on top of the stack (as a closed node)	W
REDUCE	Pop closed nodes N_{1i-1} from the top of the stack until encountering open node N_i ; close N_i)
END	Finish parsing (iff the sole stack element is a closed S)	n/a

(S (NP the hungry cat) (VP chased (NP me))

```
If we put a conditional probability
distribution on actions, we have a
probabilistic grammar!
 Action
                 Stack
 NT(S)
                 (S
                 (S | (NP
 NT(NP)
                 (S | (NP | the
 Gen(the)
                (S | (NP | the | hungry
 Gen(hungry)
                 (S | (NP | the | hungry | cat
 Gen(cat)
 REDUCE
                 (S | (NP the hungry cat )
 NT(VP)
                 (S | (NP the hungry cat ) | (VP
                 (S | (NP the hungry cat ) | (VP | chased
 Gen(chased)
 NT(NP)
                 (S | (NP the hungry cat ) | (VP | chased | (NP
 Gen(me)
                 (S | (NP the hungry cat ) | (VP | chased | (NP | me
 REDUCE
                 (S | (NP the hungry cat ) | (VP | chased | (NP me )
 REDUCE
                 (S | (NP the hungry cat ) | (VP chased (NP me ) )
 REDUCE
                 (S (NP the hungry cat ) (VP chased (NP me ) ) )
 END
```


Gen(away) REDUCE NT(PP) NT(NP)

Knowledge characterization: P(action|context)

Our friend the LSTM

 Option 1: run RNN over words as normal for language modeling, but predict tree-generation actions

Option 2: run RNN over tree-generation actions

Option 2: run RNN over tree generation actions

An inferential challenge

```
(S (NP I ) (VP saw the I saw the child

(S (NP I ) (VP saw (NP (NP the I saw the child's dog

(S (NP I ) (VP saw (S (NP the I saw the child leave

(S (NP I ) (VP saw (S (NP (NP the I saw the child's dog leave

(S (NP I ) (VP saw (SBAR (NP the I saw the child left

(S (NP I ) (VP saw (SBAR (NP (NP the I saw the child's dog left
```

There is a potentially unbounded number of treegeneration operations just to get to the next word!

Inference using beam search

Context C			t <i>C</i>		Action Sequences A	$\log P(A \mid C)$	Rank on beam
(S	(NP I)	(VP	saw	(NP the	-5.1	1
(S	(NP I)	(VP	saw	(NP (NP the	-6.3	4
(S	(NP I)	(VP	saw	(S (NP the	-5.8	2
(S	(NP I)	(VP	saw	(S (NP (NP the	-7.2	×
(S	(NP I)	(VP	saw	(SBAR (NP the	-6.2	3
(S	(NP I)	(VP	saw	(SBAR (NP (NP t	-7.8	×

A "word-synchronous" beam, beam size=4

Option 3: run RNN over stack elements

Generalize from the stack!

...but how???

A challenge for generalization

Neural generalization from all three sources

Recurrent Neural Network Grammars (RNNGs)

NN Language Models Tested

Model	Architecture	Training data	Data size (tokens)	Reference
JRNN	LSTM	One Billion Word	\sim 800 million	Jozefowicz et al. (2016)
GRNN	LSTM	Wikipedia	\sim 90 million	Gulordava et al. (2018)
RNNG	RNN Grammar	Penn Treebank	~ 1 million	Dyer et al. (2016)
TinyLSTM	LSTM	Penn Treebank	~ 1 million	

- LSTMs have no explicit syntactic state representations.
- RNN Grammars do, but it is not always clear how they use them in making predictions.

Simplest syntactic hierarchy: subordination

 $-\log P(\mathsf{Completion}|\mathsf{Context})$

"No-matrix" variants (No subsequent matrix clause)

The doctor studied the textbook

X As the doctor studied the textbook (.)

"Matrix" variants (There is a subsequent matrix clause)

The doctor studied the textbook

, the nurse walked into the office .

Surprisal difference (should be negative)

As the doctor studied the textbook, the nurse walked into the office

Effects of Subordinate Clauses

Subordination: results

Subordination: summary

- All models learned something about the contingency between initial subordinator & need for a second clause
- Explicit representation of grammatical structure substantially sharpened that contingency

Garden-pathing

(a) [transitive, -comma]

When the dog scratched the vet with his new assistant removed the muzzle.

(b) [transitive, +comma]

When the dog scratched, the vet with his new assistant removed the muzzle.

difficulty here

(c) [intransitive, -comma]

When the dog arrived the vet with his new assistant removed the muzzle.

(d) [intransitive, +comma]

When the dog arrived, the vet with his new assistant removed the muzzle.

$$S(x) = -\log P(\text{removed}|\text{Context of version }x)$$

- (i) S(a) > S(b)
- (ii) S(a) S(b) > S(c) S(d)

Region-by-region surprisal profiles

NP/Z Garden Path Results

(Futrell et al. 2019, NAACL)

NP/Z Garden Paths: Degradation Over Time

- (a) [short, -comma] As the author studying Babylon in ancient times wrote the book grew.
- (b) [short, +comma] As the author studying Babylon in ancient times wrote, the book grew.
- (c) [long, -comma] As the author wrote the book studying Babylon in ancient times grew.
- (d) [long, +comma] As the author wrote, the book studying Babylon in ancient times grew.

(Warner & Glass, 1987; Ferreira & Henderson, 1991; Tabor & Hutchins, 2004; Levy et al., 2009)

Prediction:

$$S(a) - S(b) \approx S(c) - S(d) > 0$$

"Digging in" in human NP/Z garden-pathing

 Δ (a) [short, -object]

As the author wrote the book grew.

 \square (b) [short, +object]

As the author wrote the essay the book grew.

 \triangle (c) [long, -object]

As the author wrote the book describing Babylon grew.

(d) [long, +object]

As the author wrote the essay the book describing Babylon grew.

Surprisal in neural language models doesn't capture the human "digging-in" effect

(Tabor & Hutchins, 2004)

NP/Z garden pathing: summary

- All models show evidence of a syntactic garden path that can be blocked by a comma
- Only models with larger amounts of data show verb transitivity-based garden-path modulation
- Not all models robustly maintain syntactic state-like distinctions over long stretches of intervening material
 - Explicit grammatical representations seem to help with this

References

- Adams, B. C., Clifton, C., Jr., & Mitchell, D. C. (1998). Lexical guidance in sentence processing? Psychonomic Bulletin & Review, 5 (2), 265–270.
- Choe, D. K., & Charniak, E. (2016). Parsing as language modeling. In Proceedings of the 2016 conference on empirical methods in natural language processing (pp. 2331–2336).
- Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-based dependency parsing with stack long short-term memory. In Proceedings of the 2015 meeting of the Association for Computational Linguistics (pp. 334–343).
- Dyer, C., Kuncoro, A., Ballesteros, M., & Smith, N. A. (2016). Recurrent Neural Network Grammars. In Proceedings of the 15th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
- Frazier, L., & Rayner, K. (1982). Making and correcting errors during sentence comprehension: Eye movements in the analysis of structurally ambiguous sentences. Cognitive Psychology, 14, 178–210.
- Futrell, R., Wilcox, E., Morita, T., & Levy, R. (2018). RNNs as psycholinguistic subjects: Syntactic state and grammatical dependency. Version 1. arXiv: 1809.01329 [cs.CL]
- Futrell, R., Wilcox, E., Morita, T., Qian, P., Ballesteros, M., & Levy, R. (2019). Neural language models as psycholinguistic subjects: Representations of syntactic state. In Proceedings of the 18th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 32–42).
- Gulordava, K., Bojanowski, P., Grave, E., Linzen, T., & Baroni, M. (2018). Colorless green recurrent networks dream hierarchically. In Proceedings of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 1195–1205). New Orleans, Louisiana: Association for Computational Linguistics.
- Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., & Wu, Y. (2016). Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410.
- Kuncoro, A., Ballesteros, M., Kong, L., Dyer, C., Neubig, G., & Smith, N. A. (2017). What do Recurrent Neural Network Grammars learn about syntax? In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL).
- Mitchell, D. C. (1987). Lexical guidance in human parsing: Locus and processing characteristics. In M. Coltheart (Ed.), Attention and performance xii: The psychology of reading. London: Erlbaum.
- Staub, A. (2007). The parser doesn't ignore intransitivity, after all. Journal of Experimental Psychology: Learning, Memory, & Cognition, 33 (3), 550-569.
- Stern, M., Fried, D., & Klein, D. (2017). Effective inference for generative neural parsing. In Proceedings of the 2017 conference on empirical methods in natural language processing (pp. 1695–1700).
- Tabor, W., & Hutchins, S. (2004). Evidence for self-organized sentence processing: Digging in effects. Journal of Experimental Psychology: Learning, Memory, & Cognition, 30 (2), 431–450.
- van Gompel, R. P. G., Pickering, M. J., & Traxler, M. J. (2001). Reanalysis in sentence processing: Evidence against current constraint-based and two-stage models. Journal of Memory and Language, 45, 225–258.