Aplicações Lineares

Álgebra Linear e Geometria Analítica - A

Folha Prática 7

Aplicações lineares

- 1. Averigue se são aplicações lineares as funções definidas por
 - (a) L(x,y) = (x+1, y, x+y);
- (b) L(x, y, z) = (x + y, y, x z);
- (c) $L(x, y, z) = (x y, x^2, 2z);$
- (d) L(x, y, z) = (x + y, 0, 2x z):
- (e) $L(at^2 + bt + c) = at + b + 1$.
- 2. Seja $L: M_{n \times n} \to M_{n \times n}$ definida por

$$L(A) = \begin{cases} A^{-1} & \text{se } A \text{ \'e n\~ao-singular} \\ 0 & \text{se } A \text{ \'e singular} \end{cases}$$

para $A \in M_{n \times n}$. Averigue se L é uma aplicação linear.

- 3. Dada A uma matriz $n \times n$, defina-se $L: M_{n \times n} \to M_{n \times n}$ por L(B) = AB BA para $B \in M_{n \times n}$. Averigue se L é uma aplicação linear.
- 4. Seja $L: \mathbb{R}^2 \to \mathbb{R}^2$ uma aplicação linear, satisfazendo L(1,1)=(2,-3) e L(0,1)=(1,2). Determine
 - (a) L(3,-2);

- (b) L(a, b).
- 5. Seja $L: P_2 \to P_3$ uma aplicação linear tal que $L(1)=1, L(t)=t^2$ e $L(t^2)=t^3+t$. Determine
 - (a) $L(2t^2 5t + 3)$:
- (b) $L(at^2 + bt + c)$

Matriz de uma aplicação linear

6. Seja $L: \mathbb{R}^3 \to \mathbb{R}^3$ uma aplicação linear definida por

$$L(x, y, z) = (x + 2y + z, 2x - y, 2y + z).$$

Seja \mathcal{B}_c a base canónica de \mathbb{R}^3 e $\mathcal{T}=((1,0,1),(0,1,1),(0,0,1))$ uma base de \mathbb{R}^3 . Determine a matriz representativa de L relativamente

- i. à base \mathcal{B}_c ;
- ii. às bases \mathcal{B}_c e \mathcal{T} ; iii. às bases \mathcal{T} e \mathcal{B}_c ;
- iv. à base \mathcal{T} :
- e determine L(1,1,-2) usando cada uma das matrizes obtidas em i.-iv.
- 7. Seja $L: \mathbb{R}^2 \to \mathbb{R}^3$ uma aplicação linear definida por

$$L\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = \left[\begin{array}{cc}1&1\\1&-1\\1&2\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right].$$

Sejam $S = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ e $\mathcal{T} = \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ bases de \mathbb{R}^2 e \mathbb{R}^3 , respetivamente.

- (a) Determine a matriz representativa de L relativamente às bases canónicas de \mathbb{R}^2 e \mathbb{R}^3 .
- (b) Determine a matriz representativa de L relativamente às bases $S \in \mathcal{T}$.
- (c) Determine $L\left(\left| \begin{array}{c} 2 \\ -3 \end{array} \right| \right)$, usando cada uma das matrizes obtidas anteriormente.
- 8. Seja $L: \mathcal{P}_2 \to \mathcal{P}_2$ uma aplicação linear definida por

$$L(at^{2} + bt + c) = (a + 2c)t^{2} + (b - c)t + (a - c).$$

Sejam $S = (t^2, t, 1)$ e $T = (t^2 - 1, t, t - 1)$ bases de P_2 .

- (a) Encontre a matriz representativa de L relativamente às bases $S \in \mathcal{T}$.
- (b) Determine $L(2t^2 3t + 1)$, usando a alínea anterior.
- 9. Dada C uma matriz $n \times n$, considere-se $L: M_{n \times n} \to M_{n \times n}$ definida por L(A) = CA para $A \in M_{n \times n}$.
 - (a) Mostre que L é uma aplicação linear.
 - (b) Considerando $n=2, \mathcal{B}_c$ a base canónica de $M_{2\times 2}$,

$$C = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \qquad e \qquad \mathcal{S} = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$

uma base de $M_{2\times 2}$, determine a matriz representativa de L relativamente

- i. à base \mathcal{B}_c ; ii. às bases \mathcal{B}_c e \mathcal{S} ; iii. às bases \mathcal{S} e \mathcal{B}_c ; iv. à base \mathcal{S}
- 10. Sejam $X_1=t+1, X_2=t-1, Y_1=t^2+1, Y_2=t, Y_3=t-1$ e $L:\mathcal{P}_1\to\mathcal{P}_2$ a aplicação linear tal que

$$A = \left[\begin{array}{rr} 1 & 0 \\ 2 & 1 \\ -1 & -2 \end{array} \right]$$

é a matriz que representa L relativamente às bases $\mathcal{S} = (X_1, X_2)$ e $\mathcal{T} = (Y_1, Y_2, Y_3)$. Determine

- (a) os vetores das coordenadas de $L(X_1)$ e $L(X_2)$ na base \mathcal{T} ;
- (b) $L(X_1) \in L(X_2)$;
- (c) L(2t+1);
- (d) L(at + b).
- 11. Determine a matriz representativa da aplicação linear $L: \mathcal{P}_3 \to \mathcal{P}_3$ definida por L(p(t)) = p''(t) + p(0) relativamente à
 - (a) base canónica de \mathcal{P}_3 ;
 - (b) base $\mathcal{T} = (t^3, t^2 1, t, 1)$ de \mathcal{P}_3 , diretamente.
- 12. Se $\mathrm{id}_{\mathcal{V}}: \mathcal{V} \to \mathcal{V}$ é a aplicação identidade definida por $\mathrm{id}_{\mathcal{V}}(X) = X$ para qualquer $X \in \mathcal{V}$, mostre que a matriz de $\mathrm{id}_{\mathcal{V}}$ relativamente a qualquer base de \mathcal{V} é a matriz identidade I_n com $n = \dim \mathcal{V}$.

Núcleo e imagem de uma aplicação linear

- 13. Seja $L: \mathbb{R}^4 \to \mathbb{R}^3$ uma aplicação linear definida por L(x,y,z,w) = (x+y,z+w,x+z).
 - (a) Determine o núcleo e a imagem de L.
 - (b) Encontre uma base para o núcleo e uma base para a imagem de L.
 - (c) Averigue se L é injetiva e/ou sobrejetiva.
 - (d) Verifique o Teorema das Dimensões.
- 14. Seja $L: \mathcal{P}_2 \to \mathcal{P}_2$ uma aplicação linear definida por $L(at^2 + bt + c) = (a+c)t^2 + (b+c)t$.
 - (a) Verifique se os elementos $t^2 t 1$ e $t^2 + t 1$ pertencem a ker L.
 - (b) Verifique se os elementos $2t^2 t$ e $t^2 t + 2$ pertencem a im L.
 - (c) Determine uma base para ker L e uma base para im L.
 - (d) Diga, justificando, se L é injetiva e/ou sobrejetiva.
- 15. Encontre uma base para o núcleo e uma base para a imagem da aplicação linear $L: M_{2\times 2} \to M_{2\times 2}$ definida por

(a)
$$L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a+b & b+c \\ a+d & b+d \end{bmatrix}$$
;

(b)
$$L(A) = A^T$$
.

16. Considere a aplicação linear $L: \mathbb{R}^4 \to \mathbb{R}^2$ definida por L(X) = AX, sendo

$$A = \left[\begin{array}{cccc} 1 & 0 & 2 & 1 \\ 3 & 1 & 0 & -1 \end{array} \right].$$

- (a) Verifique que a matriz de L relativamente às bases canónicas de \mathbb{R}^4 e \mathbb{R}^2 é a matriz A.
- (b) Sem determinar o núcleo de L, verifique que dim(ker L) ≥ 2 .

- (c) Sejam S = ((1,1,1,0),(1,1,1,1),(1,0,1,1),(0,1,1,1)) e T = ((1,1),(1,-1)) bases de \mathbb{R}^4 e \mathbb{R}^2 , respetivamente. Determine a matriz de L relativamente
 - i. à base S e à base canónica B_c de \mathbb{R}^2 , $[L]_{S,B_c}$;
- ii. às bases $S \in T$, $[L]_{S,T}$.
- 17. Seja $L: \mathbb{R}^3 \to \mathbb{R}^3$ uma aplicação linear representada relativamente à base canónica de \mathbb{R}^3 pela matriz

$$A = \left[\begin{array}{ccc} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 3 & 2 & 3 \end{array} \right].$$

- (a) Determine L(1,2,3) e L(x,y,z) para $(x,y,z) \in \mathbb{R}^3$.
- (b) Averigue se L é um isomorfismo.
- (c) Determine a imagem de L e uma sua base, o núcleo de L e uma sua base.
- (e) Determine a matriz de L relativamente à base S = ((1,1,0),(1,1,1),(1,0,0)): i. por definição.
- 18. Seja S=((1,1,1),(1,1,0),(1,0,0)) e considere a transformação linear $L:\mathbb{R}^3\to\mathbb{R}^2$ definida por

$$L(1,1,1) = (-1,1),$$
 $L(1,1,0) = (1,1),$ $L(1,0,0) = (0,2).$

- (a) Determine a matriz de L relativamente à base S de \mathbb{R}^3 e à base canónica B_c de \mathbb{R}^2 , $[L]_{S,B_c}$.
- (b) Calcule $[L(X)]_{B_c}$ e L(X), sabendo que

$$[X]_S = \left[\begin{array}{c} 1\\2\\3 \end{array} \right].$$

- (c) Determine a matriz de L relativamente às bases canónicas de \mathbb{R}^3 e de \mathbb{R}^2 , respetivamente.
- (d) Determine L(x, y, z) para um elemento genérico (x, y, z) de \mathbb{R}^3 .
- (e) Determine o núcleo de L e indique uma base para este subespaço de \mathbb{R}^3 .
- (f) Diga, justificando, se L é injetiva.
- (g) Sem determinar a imagem de L, diga qual a dimensão deste subespaço, usando
 - i. a característica de uma das matrizes representativas de L;
 - ii. o Teorema das Dimensões.
- (h) Usando a dimensão da imagem de L como justificação, diga se L é sobrejetiva.
- (i) Determine a imagem de L, assim como uma base para este subespaço de \mathbb{R}^2 a partir da i. matriz calculada em (c).
 - ii. imagem do elemento genérico L(x, y, z) calculada em (d).
- 19. Considere a aplicação linear $L: \mathbb{R}^2 \to \mathbb{R}^3$ definida por L(1,1) = (3,0,2) e L(1,-1) = (1,0,2).
 - (a) Determine L(x,y) para um elemento genérico (x,y) de \mathbb{R}^2 .
 - (b) Determine uma base para a imagem de L. Diga, justificando, se L é sobrejetiva.
 - (c) Sem determinar o núcleo de L, indique a sua dimensão. Diga, justificando, se L é injetiva.
 - (d) Determine a matriz que representa L relativamente às bases

$$S = ((1,1),(1,-1))$$
 e $T = ((0,1,0),(1,0,1),(0,0,1))$.

(e) Calcule $[X]_{\mathcal{S}}$, sabendo que

$$[L(X)]_{\mathcal{T}} = \left[\begin{array}{c} 0 \\ 1 \\ -1 \end{array} \right].$$

20. Considere a transformação linear $L: \mathbb{R}^3 \to \mathbb{R}^3$ representada pela matriz

$$\left[
\begin{array}{ccc}
1 & 2 & 1 \\
0 & 3 & 1 \\
1 & -1 & 0
\end{array}
\right]$$

relativamente à base canónica de \mathbb{R}^3 .

- (a) Indique qual é o transformado L(x, y, z) de um elemento genérico (x, y, z) de \mathbb{R}^3 .
- (b) Determine a imagem de L, im L, uma base para este subespaço e indique a sua dimensão.
- (c) Diga, justificando, se L é sobrejetiva.
- (d) Sem calcular o núcleo de L, indique, justificando, a sua dimensão e averigue se L é injetiva.
- (e) Calcule a matriz de L relativamente à base S = ((1, 2, 1), (0, 1, 1), (0, 0, 1)).
- (f) Sabendo que

$$[Y]_S = \left[\begin{array}{c} 1\\ -1\\ 0 \end{array} \right],$$

- i. verifique que $Y \in \operatorname{im} L$;
- ii. determine um vetor de coordenadas na base S, $[X]_S$, tal que L(X) = Y.
- 21. Seja $L: \mathbb{R}^4 \to \mathbb{R}^6$ uma aplicação linear.
 - (a) Se $\dim(\ker L) = 2$, qual é a dimensão da im L?
 - (b) Se dim(im L) = 3, qual é a dimensão de ker L?
- 22. Seja $L: \mathcal{V} \to \mathbb{R}^5$ uma aplicação linear.
 - (a) Se L é sobrejetiva e dim(ker L) = 2, qual é a dimensão de \mathcal{V} ?
 - (b) Se L é bijetiva, qual é a dimensão de \mathcal{V} ?