In Exercises 13–16, show, by direct substitution, that the given functions $y_1(t)$ and $y_2(t)$ are solutions of the given differential equation. Then verify, again by direct substitution, that any linear combination $C_y y_1(t) + C_2 y_2(t)$ of the two given solutions is also a solution.

13.
$$y'' - y' - 6y = 0$$
, $y_1(t) = e^{3t}$, $y_2(t) = e^{-2t}$

14.
$$y'' + 4y = 0$$
, $y_1(t) = \cos 2t$, $y_2(t) = \sin 2t$

15.
$$y'' - 2y' + 2y = 0$$
, $y_1(t) = e^t \cos t$, $y_2(t) = e^t \sin t$

16.
$$y'' + 4y' + 4y = 0$$
, $y_1(t) = e^{-2t}$, $y_2(t) = te^{-2t}$

In Exercises 17–20, use Definition 1.22 to explain why $y_1(t)$ and $y_2(t)$ are linearly independent solutions of the given differential equation. In addition, calculate the Wronskian and use it to explain the independence of the given solutions.

17.
$$y'' - y' - 2y = 0$$
, $y_1(t) = e^{-t}$, $y_2(t) = e^{2t}$

18.
$$y'' + 9y = 0$$
, $y_1(t) = \cos 3t$, $y_2(t) = \sin 3t$

19.
$$y'' + 4y' + 13y = 0$$
, $y_1(t) = e^{-2t} \cos 3t$, $y_2(t) = e^{-2t} \sin 3t$

20.
$$y'' + 6y' + 9y = 0$$
, $y_1(t) = e^{-3t}$, $y_2(t) = te^{-3t}$

21. Show that the functions

$$y_1(t) = t^2$$
 and $y_2(t) = t|t|$

are linearly independent on $(-\infty, +\infty)$. Next, show that the Wronskian of the two functions is identically zero on the interval $(-\infty, +\infty)$. Why doesn't this result contradict Proposition 1.27?

- 22. Show that $y_1(t) = e^t$ and $y_2(t) = e^{-3t}$ form a fundamental set of solutions for y'' + 2y' 3y = 0, then find a solution satisfying y(0) = 1 and y'(0) = -2.
- 23. Show that $y_1(t) = \cos 4t$ and $y_2(t) = \sin 4t$ form a fundamental set of solutions for y'' + 16y = 0, then find a solution satisfying y(0) = 2 and y'(0) = -1.
- **24.** Show that $y_1(t) = e^{-t} \cos 2t$ and $y_2(t) = e^{-t} \sin 2t$ form a fundamental set of solutions for y'' + 2y' + 5y = 0, then find a solution satisfying y(0) = -1 and y'(0) = 0.

The equations in Exercises 1-8 have distinct, real, characteristic roots. Find the general solution in each case.

1.
$$y'' - y' - 2y = 0$$

2.
$$2y'' - 3y' - 2y = 0$$

3.
$$y'' + 5y' + 6y = 0$$
 4. $y'' + y' - 12y = 0$

4.
$$y'' + y' - 12y = 0$$

5.
$$2y'' - y' - y = 0$$
 6. $6y'' + y' - y = 0$

6.
$$6y'' + y' - y = 0$$

7.
$$3y'' - 2y' - y = 0$$

8.
$$6y'' + 5y' - 6y = 0$$

The equations in Exercises 9-16 have complex characteristic roots. Find the general solution in each case.

9.
$$y'' + y = 0$$

10.
$$y'' + 4y = 0$$

11.
$$y'' + 4y' + 5y = 0$$
 12. $y'' + 2y' + 17y = 0$

12.
$$y'' + 2y' + 17y = 0$$

13.
$$y'' + 2y = 0$$

14.
$$y'' + 2y' + 3y = 0$$

15.
$$y'' - 2y' + 4y = 0$$

16.
$$y'' + 2y' + 2y = 0$$

The equations in Exercises 17-24 have repeated, real, characteristic roots. Find the general solution in each case.

17.
$$y'' - 4y' + 4y = 0$$

18.
$$y'' - 6y' + 9y = 0$$

19.
$$4y'' + 4y' + y = 0$$

19.
$$4y'' + 4y' + y = 0$$
 20. $4y'' + 12y' + 9y = 0$

21.
$$16y'' + 8y' + y = 0$$
 22. $y'' + 4y' + 4y = 0$

22.
$$y'' + 4y' + 4y = 0$$

23.
$$16y'' + 24y' + 9y = 0$$
 24. $y'' + 8y' + 16y = 0$

24.
$$y'' + 8y' + 16y = 0$$