Superturingmaschinen

Felix Karg

26. August 2019

University of Freiburg

Inhalt

Wohlordnungen Turingmaschinen Stempelbarkeit Aussagentypen Ausblick **Unendlichkeit** Quellen Superturingmaschinen

1/45

Disclaimer

Inhalt

Turingmaschinen

Aussagentypen

Unendlichkeit

Superturingmaschinen

Grenzverhalten

Fähigkeiten

Wohlordnungen

Stempelbarkeit

Einführung

Lücken-Theoreme

Ausblick

Quellen

Turingmaschine: Einführung

Turingmaschine: Beispiel

Schreibt 6 1er auf ein leeres Band.

Relevant:

• Äquivalent zu TM mit mehreren Spuren

- Äquivalent zu TM mit mehreren Spuren
- Äquivalent zu TM mit mehreren Bändern

- Äquivalent zu TM mit mehreren Spuren
- Äquivalent zu TM mit mehreren Bändern
- Beliebiges Alphabet (häufig nur Binär)

- Äquivalent zu TM mit mehreren Spuren
- Äquivalent zu TM mit mehreren Bändern
- Beliebiges Alphabet (häufig nur Binär)
- Andere Berechenbarkeitsmodelle gleichmächtig

- Äquivalent zu TM mit mehreren Spuren
- Äquivalent zu TM mit mehreren Bändern
- Beliebiges Alphabet (häufig nur Binär)
- Andere Berechenbarkeitsmodelle gleichmächtig
- Turingmaschine ist Codierbar

- Äquivalent zu TM mit mehreren Spuren
- Äquivalent zu TM mit mehreren Bändern
- Beliebiges Alphabet (häufig nur Binär)
- Andere Berechenbarkeitsmodelle gleichmächtig
- Turingmaschine ist Codierbar
- Kann andere Turingmaschinen Simulieren

- Äquivalent zu TM mit mehreren Spuren
- Äquivalent zu TM mit mehreren Bändern
- Beliebiges Alphabet (häufig nur Binär)
- Andere Berechenbarkeitsmodelle gleichmächtig
- Turingmaschine ist Codierbar
- Kann andere Turingmaschinen Simulieren
- Gibt abzählbar unendlich viele

Inhalt

Turingmaschinen

Aussagentypen

Unendlichkeit

Superturingmaschinen

Grenzverhalten

Fähigkeiten

Wohlordnungen

Stempelbarkeit

Einführung

Lücken-Theoreme

Ausblick

Quellen

Aussagentypen - Einführung

Eine Σ_1 -Aussage ist eine Aussage der Form:

"Es existieren $n \in \mathbb{N}$ mit \heartsuit .",

Aussagentypen - Einführung

Eine Σ_1 -Aussage ist eine Aussage der Form:

"Es existieren $n \in \mathbb{N}$ mit \emptyset .",

wobei in der Teilaussage ♡ nur noch *beschränkte Quantoren* vorkommen dürfen, also Formeln wie:

Aussagentypen - Einführung

Eine Σ_1 -Aussage ist eine Aussage der Form:

```
"Es existieren n \in \mathbb{N} mit \emptyset.",
```

wobei in der Teilaussage ♡ nur noch *beschränkte Quantoren* vorkommen dürfen, also Formeln wie:

```
"Für alle Zahlen m kleiner .. gilt ..."
```

oder

```
"Es gibt eine Zahl m kleiner .. mit ..."
```

$$n_1,...,n_k,m_1,...,m_k\in\mathbb{N};$$
 $M=\{n\in\mathbb{N}\mid\phi(n)\}$
Aussagen der Form:

$$n_1,...,n_k,m_1,...,m_k\in\mathbb{N};$$
 $M=\{n\in\mathbb{N}\mid\phi(n)\}$
Aussagen der Form:

•
$$\phi = \exists n_1 .. \exists n_k : \heartsuit (\Sigma_1)$$

$$n_1,...,n_k,m_1,...,m_k\in\mathbb{N};$$
 $M=\{n\in\mathbb{N}\mid\phi(n)\}$
Aussagen der Form:

- $\phi = \exists n_1 .. \exists n_k : \heartsuit (\Sigma_1)$
- $\phi = \exists n_1 .. \exists n_k : \forall m_1 .. \forall m_k : \heartsuit (\Sigma_2)$

$$n_1,...,n_k,m_1,...,m_k\in\mathbb{N};$$
 $M=\{n\in\mathbb{N}\mid\phi(n)\}$
Aussagen der Form:

- $\phi = \exists n_1 .. \exists n_k : \heartsuit (\Sigma_1)$
- $\phi = \exists n_1 .. \exists n_k : \forall m_1 .. \forall m_k : \heartsuit (\Sigma_2)$
- $\phi = \forall n_1 .. \forall n_k : \heartsuit (\Pi_1)$

$$n_1,...,n_k,m_1,...,m_k\in\mathbb{N};\ f_1,...,f_k:\mathbb{N}\to\mathbb{N}$$
 $M=\{n\in\mathbb{N}\mid\phi(n)\}$ Aussagen der Form:

- $\phi = \exists n_1 .. \exists n_k : \heartsuit (\Sigma_1)$
- $\phi = \exists n_1 .. \exists n_k : \forall m_1 .. \forall m_k : \heartsuit (\Sigma_2)$
- $\phi = \forall n_1 .. \forall n_k : \heartsuit (\Pi_1)$
- $\phi = \exists f_1 .. \exists f_k : \heartsuit \left(\Sigma_1^1 \right)$

$$n_1,...,n_k,m_1,...,m_k \in \mathbb{N}; f_1,...,f_k : \mathbb{N} \to \mathbb{N}$$

$$M = \{n \in \mathbb{N} \mid \phi(n)\}$$

Aussagen der Form:

- $\phi = \exists n_1 .. \exists n_k : \heartsuit (\Sigma_1)$
- $\bullet \ \phi = \exists n_1 .. \exists n_k : \forall m_1 .. \forall m_k : \heartsuit \ (\Sigma_2)$
- $\phi = \forall n_1 .. \forall n_k : \heartsuit (\Pi_1)$
- $\bullet \ \phi = \exists f_1 .. \exists f_k : \heartsuit \left(\ \Sigma_1^1 \ \right)$
- $\bullet \ \phi = \forall f_1 .. \forall f_k : \heartsuit \left(\Pi_1^1 \right)$

$$n_1,...,n_k,m_1,...,m_k \in \mathbb{N}; f_1,...,f_k : \mathbb{N} \to \mathbb{N}$$

$$M = \{n \in \mathbb{N} \mid \phi(n)\}$$

Aussagen der Form:

- $\phi = \exists n_1 .. \exists n_k : \heartsuit (\Sigma_1 = \mathsf{NP})$
- $\phi = \exists n_1 .. \exists n_k : \forall m_1 .. \forall m_k : \heartsuit (\Sigma_2)$
- $\phi = \forall n_1 .. \forall n_k : \heartsuit (\Pi_1 = \text{co-NP})$
- $\bullet \ \phi = \exists f_1 .. \exists f_k : \heartsuit \left(\ \Sigma_1^1 \ \right)$
- $\phi = \forall f_1 .. \forall f_k : \heartsuit (\Pi_1^1)$

Inhalt

Turingmaschinen

Aussagentypen

Unendlichkeit

Superturingmaschinen

Grenzverhalten

Fähigkeiten

Wohlordnungen

Stempelbarkeit

Einführung

Lücken-Theoreme

Ausblick

Quellen

Unterschied:

Unterschied:

Abzählbar Unendlich

Unterschied:

- Abzählbar Unendlich
- Überabzählbar Unendlich

Unterschied:

- Abzählbar Unendlich $(\mathbb{N}, \mathbb{Z}, \mathbb{Q})$
- ullet Überabzählbar Unendlich (\mathbb{R})

Normaler Zahlenstrahl:

Normaler Zahlenstrahl mit ersten Ordinalen Zahlen:

Inhalt

Turingmaschinen

Aussagentypen

Unendlichkeit

Superturingmaschinen

Grenzverhalten

Fähigkeiten

Wohlordnungen

Stempelbarkeit

Einführung

Lücken-Theoreme

Ausblick

Quellen

Superturingmaschinen: Intro

Eigentlich eine Normale Turingmaschine.

Superturingmaschinen: Intro

Eigentlich eine Normale Turingmaschine. Wir haben als Zeitschritte Ordinalzahlen.

Inhalt

Turingmaschinen

Aussagentypen

Unendlichkeit

Superturingmaschinen

Grenzverhalten

Fähigkeiten

Wohlordnungen

Stempelbarkeit

Einführung

Lücken-Theoreme

Ausblick

Quellen

Offene Fragen sind:

Offene Fragen sind:

• In welchem Zustand sind wir?

Offene Fragen sind:

- In welchem Zustand sind wir?
- Wie sieht das Band aus?

Offene Fragen sind:

- In welchem Zustand sind wir?
- Wie sieht das Band aus?
- Was bedeutet das?

Zwei Möglichkeiten:

Zwei Möglichkeiten:

• Wir halten.

Zwei Möglichkeiten:

• Wir halten. Das ist einfach :)

Zwei Möglichkeiten:

- Wir halten. Das ist einfach :)
- Wir halten nicht.

Grenzverhalten - Erklärung

Grenzverhalten - Erklärung

Es ist echt verdammt schwer GIFs in PDFs zu bekommen ...

Grenzverhalten - Erklärung

Es ist echt verdammt schwer GIFs in PDFs zu bekommen ...

Demotime.

Grenzverhalten - Beispiel

Prüfe im Start- und Limeszustand, ob die aktuelle Zelle eine Eins enthält.

- Wenn Ja, dann halte.
- Wenn nein, dann lass die Zelle aufleuchten und laufe ohne zu halten nach rechts.

Grenzverhalten - Beispiel

Prüfe im Start- und Limeszustand, ob die aktuelle Zelle eine Eins enthält.

- Wenn Ja, dann halte.
- Wenn nein, dann lass die Zelle aufleuchten und laufe ohne zu halten nach rechts.

Scheint sich zu wiederholen, hält aber nach Schritt ω^2 .

Grenzverhalten - Beispiel

Prüfe im Start- und Limeszustand, ob die aktuelle Zelle eine Eins enthält.

- Wenn Ja, dann halte.
- Wenn nein, dann lass die Zelle aufleuchten und laufe ohne zu halten nach rechts.

Scheint sich zu wiederholen, hält aber nach Schritt ω^2 .

Eine Superturingmaschine wiederholt sich genau dann, wenn

- die Aufnahmen zu zwei Limesordinalzahlen gleich sind und
- zwischen diesen Zeiten keine Zellen, die Null waren zu eins werden.

Inhalt

Turingmaschinen

Aussagentypen

Unendlichkeit

Superturingmaschinen

Grenzverhalter

Fähigkeiten

Wohlordnungen

Stempelbarkeit

Einführung

Lücken-Theoreme

Ausblick

Quellen

• Alles was Normale Turingmaschinen können

- Alles was Normale Turingmaschinen können
- Das Klassische Halteproblem lösen

- Alles was Normale Turingmaschinen können
- Das Klassische Halteproblem lösen
- Gewisse Zahlentheorethische Aussagen entscheiden

- Alles was Normale Turingmaschinen können
- Das Klassische Halteproblem lösen
- Gewisse Zahlentheorethische Aussagen entscheiden
- Turingmaschinen mit gewissen Fähigkeiten finden

- Alles was Normale Turingmaschinen können
- Das Klassische Halteproblem lösen
- Gewisse Zahlentheorethische Aussagen entscheiden
- Turingmaschinen mit gewissen Fähigkeiten finden
- Funktionen mit gewissen Eigenschaften finden

- Alles was Normale Turingmaschinen können
- Das Klassische Halteproblem lösen
- Gewisse Zahlentheorethische Aussagen entscheiden
- Turingmaschinen mit gewissen Fähigkeiten finden
- Funktionen mit gewissen Eigenschaften finden
- Die Klasse der Wohlordnungen entscheiden

Was Superturingmaschinen dennoch nicht können:

 Beliebige 0/1-Folgen auf das Band schreiben

- Beliebige 0/1-Folgen auf das Band schreiben
- Ihr eigenes Halteproblem lösen

- Beliebige 0/1-Folgen auf das Band schreiben
- Ihr eigenes Halteproblem lösen
- Beliebig komplexe Aussagen entscheiden

- Beliebige 0/1-Folgen auf das Band schreiben
- Ihr eigenes Halteproblem lösen
- Beliebig komplexe Aussagen entscheiden
- Kaffe kochen

- Beliebige 0/1-Folgen auf das Band schreiben
- Ihr eigenes Halteproblem lösen
- Beliebig komplexe Aussagen entscheiden
- Kaffe kochen
- ...

Inhalt

Turingmaschinen

Aussagentypen

Unendlichkeit

Superturingmaschinen

Grenzverhalten

Fähigkeiten

Wohlordnungen

Stempelbarkeit

Einführung

Lücken-Theoreme

Ausblick

Quellen

Wohlordnungen

Eine Wohlordnung ist eine fundiert totale Ordnungsrelation.

Wohlordnungen

Eine Wohlordnung ist eine fundiert totale Ordnungsrelation.

Was heißt das?

 $\mathbb{N}:\{0,1,2,..\}$

$$\label{eq:normalization} \begin{split} \mathbb{N} &: \{0,1,2,..\} \\ \mathbb{Z} &: \{0,-1,1,-2,2,..\} \end{split}$$

```
\mathbb{N}: \{0, 1, 2, ..\}
\mathbb{Z}: \{0, -1, 1, -2, 2, ..\}
\mathbb{Z}: \{0, 1, 2, 3, .., -1, -2, -3, ..\}
```

```
\mathbb{N}: \{0, 1, 2, ..\}
\mathbb{Z}: \{0, -1, 1, -2, 2, ..\}
\mathbb{Z}: \{0, 1, 2, 3, .., -1, -2, -3, ..\}
```

```
\mathbb{N}: \{0, 1, 2, ...\} (Order-Type: \omega) \mathbb{Z}: \{0, -1, 1, -2, 2, ...\} \mathbb{Z}: \{0, 1, 2, 3, ..., -1, -2, -3, ...\}
```

Wohlordnung: Beispiel

```
\mathbb{N}: \{0, 1, 2, ...\} (Order-Type: \omega) \mathbb{Z}: \{0, -1, 1, -2, 2, ...\} (Order-Type: \omega) \mathbb{Z}: \{0, 1, 2, 3, ..., -1, -2, -3, ...\}
```

```
\[ \begin{pmatrix} 0 & 1 & 3 & 6 & 10 & \dots \\ 2 & 4 & 7 & 11 & 16 & \dots \\ 5 & 8 & 12 & 17 & 23 & \dots \\ 9 & 13 & 18 & 24 & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots \\ \dots & \d
```

Wohlordnung: Beispiel

```
\mathbb{N}: \{0,1,2,..\} (Order-Type: \omega) \mathbb{Z}: \{0,-1,1,-2,2,..\} (Order-Type: \omega) \mathbb{Z}: \{0,1,2,3,..,-1,-2,-3,..\} (Order-Type: 2*\omega)
```

```
\[ \begin{pmatrix} 0 & 1 & 3 & 6 & 10 & \dots \\ 2 & 4 & 7 & 11 & 16 & \dots \\ 5 & 8 & 12 & 17 & 23 & \dots \\ 9 & 13 & 18 & 24 & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots \\ \dots & \dots \\ \dots & \dot
```

Wohlordnung: Beispiel

```
\mathbb{N}: \{0, 1, 2, ...\} (Order-Type: \omega) \mathbb{Z}: \{0, -1, 1, -2, 2, ...\} (Order-Type: \omega) \mathbb{Z}: \{0, 1, 2, 3, ..., -1, -2, -3, ...\} (Order-Type: 2*\omega)
```

Inhalt

Turingmaschinen
Aussagentypen
Unendlichkeit
Superturingmaschinen

F... . . .

Fähigkeiten

Wohlordnungen

Stempelbarkeit

Einführung

Lücken-Theoreme

Ausblick

Quellen

Können wir zu jeder Natürlichen Zahl halten?

Können wir zu jeder Ordinalen Zahl halten?

Inhalt

Turingmaschinen
Aussagentypen
Unendlichkeit

Grenzverhalten

Fähigkeiten

Wohlordnungen

Stempelbarkeit

Einführung

Lücken-Theoreme

Ausblick

Quellen

Lese das Band.

- Bei einer 1, halte.
- Bei einer 0, schreibe eine 1 und gehe ohne anzuhalten nach rechts.

Lese das Band.

- Bei einer 1, halte.
- Bei einer 0, schreibe eine 1 und gehe ohne anzuhalten nach rechts.

 \rightarrow Wir halten im Schritt ω .

Lese das Band.

- Bei einer 1, halte.
- Bei einer 0, schreibe eine 1 und gehe ohne anzuhalten nach rechts.

ightarrow Wir halten im Schritt ω . (wir haben bereits gesehen dass wir im Schritt ω^2 halten können.)

• Alle Ordinalzahlen bis ω^2 sind Stempelbar.

- Alle Ordinalzahlen bis ω^2 sind Stempelbar.
- Ist α Stempelbar, so auch $\alpha + \beta$; $\beta \leq \omega^2$.

- Alle Ordinalzahlen bis ω^2 sind Stempelbar.
- Ist α Stempelbar, so auch $\alpha + \beta$; $\beta \leq \omega^2$.
- Sind α und β Stempelbar, so auch $\alpha + \beta$

- Alle Ordinalzahlen bis ω^2 sind Stempelbar.
- Ist α Stempelbar, so auch $\alpha + \beta$; $\beta \leq \omega^2$.
- Sind α und β Stempelbar, so auch $\alpha + \beta$ und $\alpha * \beta$.

- Alle Ordinalzahlen bis ω^2 sind Stempelbar.
- Ist α Stempelbar, so auch $\alpha + \beta$; $\beta \leq \omega^2$.
- Sind α und β Stempelbar, so auch $\alpha + \beta$ und $\alpha * \beta$.

Sind das nicht bereits alle?

Speed-Up Lemma

Wenn $\alpha + n$ Stempelbar ist, so auch α .

Inhalt

Turingmaschinen

Aussagentypen

Unendlichkeit

Superturingmaschinen

Grenzverhalten

Fähigkeiten

Wohlordnungen

Stempelbarkeit

Einführung

Lücken-Theoreme

Ausblick

Quellen

Lücken-Existenz-Theorem

Es gibt nicht-Stempelbare Lücken in den Ordinalzahlen. Um genau zu sein ist die erste Lücke genau ω groß.

Lücken-Existenz-Theorem

Reweis:

Es gibt nicht-Stempelbare Lücken in den Ordinalzahlen. Um genau zu sein ist die erste Lücke genau ω groß.

Lücken-Existenz-Theorem

Es gibt nicht-Stempelbare Lücken in den Ordinalzahlen. Um genau zu sein ist die erste Lücke genau ω groß.

Beweis:

Alle Turingmaschinen Simulieren und halten, sobald kein anderes gehalten hat.

Alle Turingmaschinen

Alle Turingmaschinen Simulieren und halten, sobald kein anderes gehalten hat.

Hat es Bedeutung, davon zu sprechen?

Alle Turingmaschinen

Alle Turingmaschinen Simulieren und halten, sobald kein anderes gehalten hat.

Hat es Bedeutung, davon zu sprechen?

Alle Turingmaschinen

Alle Turingmaschinen Simulieren und halten, sobald kein anderes **gehalten** hat.

Hat es Bedeutung, davon zu sprechen?

Große-Lücken-Theorem

Die Lücken werden Groß. Für jede Stempelbare Ordinalzahl gibt es mindestens eine genausogroße Lücke.

Große-Lücken-Theorem

Die Lücken werden Groß. Für jede Stempelbare Ordinalzahl gibt es mindestens eine genausogroße Lücke.

Beweis.

Viele-Lücken-Theorem

Es gibt für jede schreibbare Zahl α mindestens α viele mindestens α große Lücken in den stempelbaren Ordinalzahlen.

Viele-Lücken-Theorem

Um genau zu sein: ist α Stempelbar oder Schreibbar, ist die Anzahl der Lücken mit der Größe mindestens α weder Stempelbar noch Schreibbar.

Inhalt

Turingmaschinen
Aussagentypen
Unendlichkeit
Superturingmaschinen

Grenzverhalten

Fähigkeiten

Wohlordnungen

Stempelbarkeit

Einführung

Lücken-Theoreme

Ausblick

Quellen

- Keine Lücken in den Schreibbaren Ordinalzahlen
- Große Blöcke an stempelbaren Ordinalzahlen

- Keine Lücken in den Schreibbaren Ordinalzahlen
- Große Blöcke an stempelbaren Ordinalzahlen
- Es gibt Bandinhalte die gelesen und akzeptiert aber nicht geschrieben werden können
- Viel Größere Zusammenhänge mit Wohlordnungen

- Aussagentypen
- Orakel

- Aussagentypen
- Orakel
- 'Infinite time halting problems'
- 'Infinite time degrees'
- 'Infinite time lambda calculus'

Inhalt

Turingmaschinen
Aussagentypen
Unendlichkeit
Superturingmaschinen

- · ·

Fähigkeiten

Wohlordnungen

Stempelbarkeit

Einführung

Lücken-Theoreme

Ausblick

Quellen

Quellen i

Die Folien sind zu finden unter:
https://github.com/blueburningcoder/
things-to-talk-about/tree/master/
proseminar

Das Paper, aus dem ich den Vortrag gebastelt hab:

Joel David Hamkins and Andy Lewis Infinite Time Turing Machines https://arxiv.org/pdf/math/9808093.pdf

Quellen ii

Bilder

Nach erscheinen:

```
1 https://github.com/iblech/mathezirkel-kurs/
tree/master/superturingmaschinen/images/
turing-machine.png
2 https://en.wikipedia.org/wiki/File:
State_diagram_3_state_busy_beaver_2B.svg
3 https://en.wikipedia.org/wiki/Ordinal_number#
/media/File:Omega-exp-omega-labeled.svg
```

Quellen iii

- Wikipedia
 - Arithmetische hierarchie

https:

//en.wikipedia.org/wiki/Arithmetical_hierarchy

Wikipedia

Ordinalzahlen

https://en.wikipedia.org/wiki/Ordinal_number https://de.wikipedia.org/wiki/Ordinalzahl

Quellen iv

Wikipedia

Wohlordnung

https://en.wikipedia.org/wiki/Well-order https://de.wikipedia.org/wiki/Wohlordnung (Leere Folie um exakt 42 zu haben :))