```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('https://github.com/YBI-Foundation/Dataset/raw/main/MPG.csv')
df.head()
```

		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	or
	0	18.0	8	307.0	130.0	3504	12.0	70	
	1	15.0	8	350.0	165.0	3693	11.5	70	
4									•

df.duplicated().any()

False

df.nunique()

mpg	129
cylinders	5
displacement	82
horsepower	93
weight	351
acceleration	95
model_year	13
origin	3
name	305
dtype: int64	

df.shape

(398, 9)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):

Non-Null Count Dtype # Column -------------398 non-null float64 0 mpg 1 cylinders 398 non-null int64 2 displacement 398 non-null float64 3 float64 horsepower 392 non-null weight int64 398 non-null

5 acceleration 398 non-null float64 6 model_year 398 non-null int64 7 origin 398 non-null object 8 name 398 non-null object

dtypes: float64(4), int64(3), object(2)

memory usage: 28.1+ KB

df.describe()

	mpg	cylinders	displacement	horsepower	weight	acceleration
count	398.000000	398.000000	398.000000	392.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	104.469388	2970.424623	15.568090
std	7.815984	1.701004	104.269838	38.491160	846.841774	2.757689
min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000
25%	17.500000	4.000000	104.250000	75.000000	2223.750000	13.825000
50%	23.000000	4.000000	148.500000	93.500000	2803.500000	15.500000
75%	29.000000	8.000000	262.000000	126.000000	3608.000000	17.175000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000
4						>

df.corr()

	mpg	cylinders	displacement	horsepower	weight	acceleratio
mpg	1.000000	-0.775396	-0.804203	-0.778427	-0.831741	0.42028
cylinders	-0.775396	1.000000	0.950721	0.842983	0.896017	-0.5054
displacement	-0.804203	0.950721	1.000000	0.897257	0.932824	-0.54368
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.68919
weight	-0.831741	0.896017	0.932824	0.864538	1.000000	-0.4174
acceleration	0.420289	-0.505419	-0.543684	-0.689196	-0.417457	1.00000
model_year	0.579267	-0.348746	-0.370164	-0.416361	-0.306564	0.28810
1						>

sns.distplot(df.horsepower)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarnin warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f0be433b4d0>

distribution is right skewed

0.006 -

sns.boxplot(data = df, x='horsepower')

<matplotlib.axes._subplots.AxesSubplot at 0x7f0be4db6a50>

sns.scatterplot(data=df,x='horsepower',y=df.index)

<matplotlib.axes._subplots.AxesSubplot at 0x7f0be43a3450>

df.fillna(df['horsepower'].mode()[0],inplace=True)

sns.pairplot(df,x_vars = ['displacement','weight','acceleration','horsepower'],y_vars=['mp

sns.regplot(y='mpg',x='displacement',data=df)

<matplotlib.axes. subplots.AxesSubplot at 0x7f0be4379e10>

y=df['mpg']

```
x=df[['displacement','weight','acceleration','horsepower']]
```

```
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.2,random_state =42)
```

from sklearn.preprocessing import StandardScaler

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(xtrain,ytrain)
lr.coef , lr.intercept
```

```
(array([-0.01095356, -0.00555501, 0.04002192, -0.0258002]),
      44.26089655132871)
lr.score(xtrain,ytrain)
     0.6969811459861376
lr.score(xtest,ytest)
     0.727296531264819
ypred = lr.predict(xtest)
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error
mean_absolute_error(ytest,ypred), mean_absolute_percentage_error(ytest,ypred)
     (3.0988328630775333, 0.14220433613678615)
polynomial regression
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2,interaction_only=True,include_bias=True)
xtrain2 = poly.fit_transform(xtrain)
xtest2 = poly.fit_transform(xtest)
lr.fit(xtrain2,ytrain)
lr.score(xtrain2,ytrain),lr.score(xtest2,ytest)
     (0.7365728587808285, 0.7833181141485053)
ypred2 = lr.predict(xtest2)
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error
mean_absolute_error(ytest,ypred2), mean_absolute_percentage_error(ytest,ypred2)
     (2.630835319242593, 0.11148450349648739)
sns.scatterplot(x = ypred,y=ytest)
 C→
```

sns.scatterplot(x = ypred2,y=ytest)

<matplotlib.axes._subplots.AxesSubplot at 0x7f0be400a8d0>

✓ 0s completed at 11:06 AM

×