

DÉRIVATION

Résumé

Pan incontournable de l'analyse, la dérivation est un domaine des mathématiques aux applications diverses. La principale application que l'on abordera ici est l'étude des variations d'une fonction dérivable.

A Attention

Dans toute la suite, I désignera un intervalle ouvert et f une fonction définie sur I.

1 Tangente et nombre dérivé

Définition

Si la courbe \mathscr{C}_f d'une fonction f est bien "lisse" au voisinage d'un point A(a;f(a)), on appelle **tangente** à \mathscr{C}_f en A la droite qui épouse localement la direction de cette courbe.

Autrement dit, en se rapprochant du point A, la courbe va finir par se confondre avec sa tangente en ce point.

Définition | **Dérivabilité de** f **en** a

Soient f une fonction définie sur I et $a \in I$.

On dit que f est dérivable en a s'il existe une tangente à \mathcal{C}_f au point d'abscisse a.

Propriété | Pente d'une tangente

Le coefficient directeur de la tangente à \mathcal{C}_f au point d'abscisse a est égal à f'(a) si f est dérivable en a.

2 Fonction dérivée

Définition

Soit I' l'ensemble sur lequel f est dérivable, c'est-à-dire tel que pour tout $a \in I$, f est dérivable en a.

On construit la **fonction dérivée** de f, notée f', comme la fonction définie sur I' telle que l'image de $x \in I'$ est le nombre dérivé f'(x).

Théorème | Fonctions constantes

Soit f définie sur \mathbf{R} par f(x) = c avec c une constante réelle. f est dérivable sur \mathbf{R} et pour tout $x \in \mathbf{R}$, f'(x) = 0.

Théorème | Fonctions affines

Soit f définie sur **R** par f(x) = ax + b avec a et b réels. f est dérivable sur **R** et pour tout $x \in \mathbf{R}$, f'(x) = a.

Théorème | Fonction carré

Soit f définie sur \mathbf{R} par $f(x) = x^2$. f est dérivable sur \mathbf{R} et pour tout $x \in \mathbf{R}$, f'(x) = 2x.

Théorème | Fonction cube

Soit f définie sur \mathbf{R} par $f(x) = x^3$. f est dérivable sur \mathbf{R} et pour tout $x \in \mathbf{R}$, $f'(x) = 3x^2$.

Propriété

Soient u et v deux fonctions définies et dérivables sur I.

On a : (u + v)' = u' + v'.

Exemples On peut calculer des dérivées de fonctions construites à partir des fonctions usuelles.

► Soit f définie sur \mathbf{R}^* par $f(x) = x^2 + x$. f est dérivable sur \mathbf{R}^* et pour tout $x \in \mathbf{R}^*$:

$$f'(x) = \frac{2x}{1} + 1.$$

► Soit f définie sur $]0; +\infty[$ par $f(x) = 7 + x^2 + x^3$. f est dérivable sur $]0; +\infty[$ et pour tout $x \in]0; +\infty[$:

$$f'(x) = 0 + 2x + 3x^2$$
.

Propriété | Produit par un réel

Soient u une fonction définie et dérivable sur I, et $k \in \mathbf{R}$ une **constante** réelle. On a (ku)' = ku'.

Exemple Soit f définie sur \mathbf{R} par $f(x) = 7x^3$. f est sous la forme ku avec k = 7 et $u(x) = x^3$ donc pour tout $x \in \mathbf{R}$:

$$f'(x) = ku'(x) = 7 \times 3x^2 = 21x^2$$
.

Exercice

Calculer les dérivées des fonctions suivantes :

1.
$$f(x) = 2x + 5$$

2.
$$f(x) = -x^2 + 4x - 3$$

3.
$$f(x) = 0.5x^3 - 2x^2 + x - 1$$

4.
$$f(x) = 3x^2 - 7$$

5.
$$f(x) = -x^3 + 6x$$

Propriétés | Lien dérivée/variations

Soit f une fonction définie et dérivable sur un **intervalle** I.

- ▶ $f' \ge 0$ sur $I \Leftrightarrow f$ est croissante sur I.
- ▶ f' = 0 sur $I \Leftrightarrow f$ est constante sur I.
- ▶ $f' \leq 0$ sur $I \Leftrightarrow f$ est décroissante sur I.