COMP20007 Design of Algorithms

Hashing

Daniel Beck

Lecture 19

Semester 1, 2023

Dictionaries - Recap

- Abstract Data Structure: collection of (key, value) pairs.
- Required operations: Search, Insert, Delete
- Last lecture: Binary Search Trees (and extensions)
- This lecture: Hash Tables.

Hash Tables

- A hash table is a continuous data structure with m preallocated entries.
- Average case performance for Search, Insert and Delete: $\Theta(1)$
- Requires a hash function: $h(K) \rightarrow i \in [0, m-1]$.
- A hash function should:
 - Be efficient $(\Theta(1))$.
 - Distribute keys evenly (uniformly) along the table.

Collisions

- Happens when the hash function give identical results to two different keys.
- We saw two solutions:
 - Separate Chaining
 - Linear Probing
- Practical efficiency will depend on the table load factor: $\alpha = n/m$. (n is the number of keys, m is the size of the table)

Separate Chaining

Assign multiple records per cell (usually through a linked list)

- Assuming even distribution of the *n* keys.
- A sucessful search requires $1 + \alpha/2$ operations on average.
- An unsucessful search requires α operations on average.
- Almost same numbers for Insert and Delete.
- Worst case $\Theta(n)$ only with a bad hash function (load factor is more of an issue).
- Requires extra memory.

Linear Probing

Populate successive empty cells.

- Much harder analysis, simplified results show:
- A sucessful search requires $(1/2) \times (1 + 1/(1 \alpha))$ operations on average.
- An unsucessful search requires $(1/2) \times (1 + 1/(1 \alpha)^2)$ operations on average.
- Similar numbers for Insert. Delete virtually impossible.
- Does not require extra memory.
- Worst case $\Theta(n)$ with a bad hash function and/or clusters.

Double Hashing

- A generalisation of Linear Probing.
- Apply a second hash function in case of collision.
 - First try: h(K)
 - Second try: $(h(K) + s(K)) \mod m$
 - Third try: $(h(K) + 2s(K)) \mod m$
 - ...
- Both Linear Probing and Double Hashing are sometimes referred as Open Addressing methods.

Rehashing

- High load factors deteriorate the performance of a hash table (for linear probing, ideally we should have $\alpha < 0.9$).
- Rehashing allocates a new table (usually around double the size) and move every item from the previous table to the new one.
- Very expensive operation, but happens infrequently.

Hashing Integers

- For large/unbounded integers, a standard hash function is $h(K) = K \mod m$
- Small m results in lots of collisions, large m takes excessive memory. Best m will vary.
- It is a good idea to use a prime number for m (especially for double hashing).

Hashing Strings

- Assume A \mapsto 0, B \mapsto 1, etc.
- Assume 26 characters and m = 101, as an example.
- Each character can be mapped to a binary string of length 5 ($2^5 = 32$).

We can think of a string as a long binary number:

$$M \ Y \ K \ E \ Y \ \mapsto 0110011000010100010011000 \ (= 13379736)$$

$$13379736 \mod 101 = 64$$

So 64 is the position of string M Y K E Y in the hash table.

Hashing Strings

- Assume chr be the function that gives a character's number, so for example, chr(c) = 2
- We can represent this concatenation as an equation:

$$h(s) = (\sum_{i=0}^{|s|-1} chr(s_i) \times 32^{|s|-i-1}) \mod m,$$

• In other words:

$$h(M Y K E Y)$$

= $12 \times 32^4 + 24 \times 32^3 + 10 \times 32^2 + 4 \times 32^1 + 24 \times 32^0$
= 13379736

Hashing Long Strings

 Long strings can quickly become difficult to calculate computationally.

$$h(V E R Y L O N G K E Y)$$

= $(21 \times 32^{10} + 4 \times 32^{9} + \cdots) \mod 101$

 The term between parenthesis can become quite large and result in overflow.

Horner's Rule

Instead of

$$21 \times 32^{10} + 4 \times 32^9 + 17 \times 32^8 + 24 \times 32^7 \cdots$$

factor out repeatedly:

$$(\cdots ((21 \times 32 + 4) \times 32 + 17) \times 32 + \cdots) + 24$$

• Now utilize these properties of modular arithmetic:

$$(x + y) \mod m = ((x \mod m) + (y \mod m)) \mod m$$

 $(x \times y) \mod m = ((x \mod m) \times (y \mod m)) \mod m$

So for each sub-expression it suffices to take values modulo m.

Horner's Rule

$$h(E Y) = (4 \times 32^{1} + 24 \times 32^{0}) \mod m$$

= $(4 \times 32 + 24) \mod m$
= $(((4 \times 32) \mod m) + (24 \mod m)) \mod m$
= $(((4 \mod m) \times (32 \mod m) \mod m)$
+ 24 \quad \text{mod } m) \quad \text{mod } m

Summary

Hash Tables:

- Implement dictionaries.
- Allow $\Theta(1)$ Search, Insert and Delete in the average case.
- Preallocates memory (size m).
- Requires good hash functions.
- Requires good collision handling.

Pros and Cons

If Hash Tables are so good, why bother with BSTs?

- Memory requirements are much higher.
- Hash Tables ignore key ordering, unlike BSTs.
- Queries like "give me all records with keys between 100 and 200" are easy within a BST but much less efficient in a hash table.

That being said, if hashing is applicable, a well-tuned hash table will typically outperform BSTs.

In Practice

Python dictionaries (dict type)

- Open addressing using pseudo-random probing
- Rehashing happens when $\alpha = 2/3$

C++ unordered_maps

- Uses chaining.
- ullet Rehashing happens when lpha=1

Next lecture: Data Compression

COMP20007 Design of Algorithms

Data Compression

Daniel Beck

Lecture 20

Semester 1, 2023

Introduction

- So far, we talked about speed and space performance from an algorithm point of view.
- We assumed that records could fit in memory. (although we did mention secondary memory in Mergesort and B-trees)
- What to do when records are too large? (videos, for instance)

Fixed-length encoding

For text files, suppose each character has an fixed-size binary code.

BAGGED

01000010 01000001 01000111 01000111 01000101 01000100

This is exactly what ASCII does.

Key insight: this coding has *redundant* information.

Run-length encoding

0140120150101303101303101301010130120

Character-level:

 $B A G G E D \rightarrow B A 2 G E D$

AAAABBBAABBBBCCCCCCCDABCBAAABBBBCCCD

4A3BAA5B8CDABCB3A4B3CD

Run-length encoding

- While not very useful for text data, it can work for some kinds of binary data.
- For text, the best algorithms move away from using fixed-length codes (ASCII).

Variable-length Encoding

- **Key idea:** some symbols appear more *frequently* than others.
- Instead of a fixed number of bits per symbol, use a variable number:
 - More frequent symbols use less bits.
 - Less frequent symbols use more bits.
- For this scheme to work, no symbol code can be a prefix of another symbol's code.

Variable-Length Encoding

Suppose we count symbols and find these numbers of occurrences:

Symbol	Weight
В	4
D	5
G	10
F	12
С	14
Е	27
Α	28

Here are some sensible codes that we may use for symbols:

Symbol	Code
Α	11
В	0000
С	011
D	0001
Е	10
F	010
G	001

Encoding a string

- Codes can be stored in a dictionary
- Once we have the codes, encoding is straightforward.
- For example, to encode 'BAGGED', simply concatenate the codes for B, A, G, G, E and D:

000011001001100001

Α	11
В	0000
C	011
D	0001
Ε	10
F	010
G	001

Decoding a string

- To decode we can use another dictionary where keys are codes and values are symbols.
- Starting from the first digit, look in the dictionary. If not present, concatenate the next digit and repeat until code is valid.

11	Α
0000	В
011	C
0001	D
10	Ε
010	F
001	G

000011001001100001

Seems like it requires lots of misses, is there a better way?

Tries

- Another implementation of a dictionary.
- Works when keys can be decomposed

This specific trie stores values only in the leaves \rightarrow keeps prefix property.

Tries

To decode 000011001001100001, use the trie, repeatedly starting from the root, and printing each symbol found as a leaf.

How to choose the codes?

Huffman Encoding

- Goal: obtain the optimal encoding given symbol frequencies. Optimal means shortest encoding.
- Treat each symbol as a leaf and build a binary tree bottom-up.
- Two nodes are fused if they have the smallest frequency.
 - Fusing means creating a parent node with the sum of frequencies of fused nodes.
- The resulting tree is a Huffman tree.

Huffman Trees

Tries

We end up with the Trie we showed before!

Summary

- Most data we store in our computer has *redundancy*.
- Compression uses redundancy to reduce space.
- Huffman is based on variable-length encoding.
- Tries to store codes.

Data Compression - In Practice

- Huffman encoding provides the basis for many advanced compression techniques.
- Lempel-Ziv compression assigns codes to sequences of symbols: used in GIF, PNG and ZIP.
- For sequential data (audio/video), an alternative is linear prediction: predict the next frame given the previous ones. Used in FLAC.
- Lossy compression: JPEG, MP3, MPEG and others. Also employ Huffman (among other techniques).

Next lecture: Complexity Theory