

Laboratório de Circuitos Lógicos (CICO231) - Projeto Final -

ZEPTOPROCESSADOR-II DE 16 BITS

1. INTRODUÇÃO:

Os processadores são os circuitos digitais mais complexos que temos hoje em dia, principalmente os de alto desempenho. O conceito por trás de um processador envolve a leitura de uma instrução de uma memória, decodificar a instrução, executá-la e voltar a ler a próxima instrução. O presente projeto desafia o aluno a desenvolver um processador programável simples, o ZeptoProcessador-II, com apenas 8 instruções.

2. OBJETIVOS

Apresentar ao aluno os conceitos básicos que envolvem o projeto de processadores usando circuitos digitais. O aluno deverá implementar um ZeptoProcessador-II capaz de executar um programa com as seguintes instruções:

1) addi: Adição com Imediato

2) subi: Subtração com Imediato

3) andi: And bitwise com Imediato

4) ori: Or bitwise com Imediato

5) xori: Xor bitwise com Imediato

6) beq: Salto Condicional

7) bleu: Salto Condicional (Unsigned)

8) bles: Salto condicional (Signed)

E executar programas com até 4096 instruções.

3. METODOLOGIA

Todo o sistema digital deve ser implementado como um projeto no software de simulação Deeds, com a interação com o usuário feita através do uso de uma memória ROM para armazenar o programa, botão de reset e sinal de clock que pode ser manual.

O projeto deve ser baseado em interligação configurável de blocos funcionais de acordo com a instrução a ser executada.

O ZeptoProcessador-II gerado deverá ser testado pela execução de uma bateria de programas de testes.

4. ESPECIFICAÇÕES DO SISTEMA DIGITAL

O ZeptoProcessador-II deve possuir:

- i) Uma memória de instruções capaz de armazenar até 4096 instruções de 32 bits cada uma.
- ii) Um registrador PC de 16 bits que indica o endereço na memória da instrução executada.
- iii) Um banco de 16 registradores R0...R15 que podem armazenar números de 16 bits. O registrador R0 possui o valor fixo 0.
- iv) Uma Unidade Lógico-Aritmética de 16 bits.

As instruções possuem 32 bits de tamanho codificados com os seguintes campos:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rd Ra Rb						Орс	ode								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Imediato														

OpCode: são 4 bits que definem a instrução a ser executada

OpCode	Mnemônico	Nome	Operação		
0000	addi Rd, Ra, Rb, Imm	Soma com imediato	Rd = Ra + Rb + Imm		
0001	subi Rd, Ra, Rb, Imm	Subtração com imediato	Rd = Ra - Rb - Imm		
0010	andi Rd, Ra, Rb, Imm	And bitwise com imediato	Rd = Ra & Rb & Imm		
0011	ori Rd, Ra, Rb, Imm	Or bitwise com imediato	Rd = Ra Rb Imm		
0100	xori Rd, Ra, Rb, Imm	Xor bitwise com imediato	Rd = Ra ⊕ Rb ⊕ Imm		
0101	beq Ra, Rb, Imm	Salto se igual	Ra==Rb? PC=PC+Imm: PC=PC+1		
0110	blau Da Dh Imm	Salta sa manar ay igyal	Ra<=Rb? PC=PC+Imm: PC=PC+1		
0110	bleu Ra, Rb, Imm	Salto se menor ou igual	Ra e Rb considerados sem sinal		
0111	bles Ra, Rb, Imm	Salto se menor ou igual	Ra<=Rb? PC=PC+Imm: PC=PC+1		
0111	DIES Na, ND, IIIIIII	Saito se menor ou igual	Ra e Rb considerados com sinal		

Ra: 4 bits que definem o registrador Ra (de RO a R15)

Rb: 4 bits que definem o registrador Rb (de RO a R15)

Imediato: Número de 16 bits

Geralmente, os processadores são compostos dos seguintes elementos básicos que devem ser projetados pelo aluno:

1) Registrador PC

Trata-se de um registrador (use o modelo do Deeds) que armazena o endereço da instrução a ser executada. O número de bits deste registrador depende da quantidade de memória de instruções utilizada.

O dado de entrada E é escrito no registrador PC quando ocorrer a subida da borda de clock. Caso Reset=1, ao vir a borda de subida de clock o registrador é resetado, isto é, PC=0x0000.

2) Memória de Instruções

Consiste de uma memória do tipo ROM (use o modelo do Deeds) que deve ser programada com o código binário do programa do usuário. Dica: Use 2 módulos de ROM de 4K x 16 bits.

3) Banco de Registradores

Para a execução das instruções tem-se disponível um banco de 16 registradores de 16 bits cada um. O Banco de Registradores deve possibilitar a leitura de 2 registradores Ra e Rb simultaneamente e a escrita no registrador Rd se WE=1 e vier a borda de subida do clock. Caso Reset=1 na borda de subida do clock, todos os 16 registradores são resetados.

4) Unidade Lógico-Aritmética

Circuito digital (pode usar a ULA que tem pronta no Deeds) capaz de realizar as operações de soma e subtração de números de 16 bits em complemento de 2. A operação deve ser selecionável por um sinal Op de 3 bits (000-add, 001-sub, 010-and, 011-or, 100-xor).

5) Comparador == e <= com sinal e sem sinal

Projete um circuito combinacional que receba 2 números A e B de 16 bits e indique em dois sinais de saída se A<=B e se A==B. Porém é necessário identificar se os números devem ser considerados com sinal ou sem sinal, assim acrescente um sinal de controle SU, onde SU=0 indica comparação sem sinal e SU=1 indica comparação com sinal.

6) Bloco de Controle

Projete um circuito combinacional que recebe na entrada o OpCode da instrução a ser executada e gere todos os sinais de controle necessários (WE do BR, Op da ULA, SU do Comparador e seleção de multiplexadores).

7) Sinais de Monitoramento

Acrescente ao seu processador quatro displays de 7 segmentos hexadecimais que monitore os sinais: PC, Instrução, Ra e Rb.

5. EXEMPLOS DE PROGRAMAS

Em todos os programas exemplos aqui apresentados é pressuposto que o ZeptoProcessador-II inicia resetado (PC=0x0000 e Registradores=0x0000)

1) R1 = Contador de -16 a 16

Endereço)	Código hexadecimal	Instrução	Comentário
0x0000		0xFFF0 1001	subi R1,R0,R0,16	R1=-16
0x0001		0x0010 2000	addi R2,R0,R0,16	R2=16
0x0002		0x0001 2201	subi R2,R2,R0,1	R2=R2-1 devido ao =
0x0003	Loop:	0x0001 1100	addi R1,R1,R0,1	R1=R1+1
0x0004		0xFFFF 0127	jles R1,R2,-1	R0<=R1? Loop : Next
0x0005	Fim:	0x0000 0115	beq R1,R1,0	J Fim

- a. Filme o funcionamento
- b. Desenhe o diagrama temporal da execução
- 2) R3 = Soma dos números ímpares de 0 a 15

Endereço	Código hexadecimal	Instrução	Comentário
0x0000	0x0001 1000	addi R1,R0,R0,1	R1=1 primeiro ímpar
0x0001	0x000F 2000	addi R2,R0,R0,15	R2=15 valor final
0x0002	0x0001 2200	addi R2,R2,R0,1	R2=R2+1 (devido ao =)
0x0003 Loop:	0x0004 0216	jleu R2,R1,4	R2<=R1 ? Fim : Next
0x0004	0x0000 3310	addi R3,R3,R1,0	R3=R3+R1 somatório
0x0005	0x0002 1100	addi R1,R1,R0,2	R1=R1+2 próximo ímpar
0x0006	0xFFFD 0005	beq R0,R0,-3	J Loop
0x0007 Fim:	0x0000 0335	beq R3,R3,0	J Fim

- a. Filme o funcionamento
- b. Desenhe o diagrama temporal da execução

Responda:

Qual a maior frequência de clock que seu ZeptoProcessor consegue executar corretamente todos os programas? O que limita?

Para os seguintes itens:

Elabore os algoritmos e implemente no ZeptoProcessador, onde os programas iniciam com:

Endereço	Código hexadecimal	Instrução	Comentário	
0x0000	0x0000 1000	addi R1,R0,R0,0	R1 = 0 Resultado	
0x0001	0xXXXX 2000	addi R2,R0,R0,X	R2 = X	
0x0002	0xYYYY 3000	addi R3,R0,R0,Y	R3 = Y	
0x0003				
0x0004				
0xZZZZ	0x0000 0115	beq R1,R1,0	Mostra o resultado	

- 3) R1 = R2 \times R3: Multiplicação de dois números sem sinal (R2<256 e R3<256)
 - a. Filme o funcionamento
 - b. Desenhe o diagrama temporal da execução na maior frequência
- 4) $R1 = R2 \times R3$: Multiplicação de dois números com sinal (-181<R2< 181 e -181< R3< 181)
 - a. Filme o funcionamento
 - b. Desenhe o diagrama temporal da execução na maior frequência

- 5) R1 = R2 / R3: Divisão inteira de dois números sem sinal (R2<65536 e R3<65536)
 - a. Filme o funcionamento
 - b. Desenhe o diagrama temporal da execução na maior frequência
- 6) R1 = R2 % R3: Resto da divisão inteira de dois números sem sinal (R2<65536 e R3<65536)
 - a. Filme o funcionamento
 - b. Desenhe o diagrama temporal da execução na maior frequência
- 7) Execute o programa dado pelo professor no Aprender3 no seu processador.
 - a. Filme o funcionamento
 - b. Desenhe o diagrama temporal da execução na maior frequência

6. AVALIAÇÃO E CRONOGRAMA

Avaliação do protótipo será feita através do Relatório e por programas de testes elaborados pelo professor e monitores.

De acordo com o cronograma definido no Plano de Aulas:

- a) No dia 30/04/2021 deve ser entregue pelo Aprender3 o relatório do pré-projeto em formato .pdf com o nome 'Pre-Projeto_A14.pdf', contendo a proposta se solução do projeto (Diagrama de blocos ou esquemático), atividades já realizadas e atividades ainda por fazer para a conclusão do projeto.
- b) No dia 21/05/2021 deve ser entregue pelo Aprender3 um arquivo com o nome 'Projeto_A14.zip' contendo todos os arquivos necessários para a execução do ZeptoProcessador-II no Deeds, programas (conteúdos da memória em arquivos .drs) e o .pdf do Relatório no formato usual.

7. SUMÁRIO

Este projeto visa aplicar os conhecimentos adquiridos ao longo das disciplinas Circuitos Lógicos e Laboratório de Circuitos Lógicos para o desenvolvimento de um sistema digital programável, o ZeptoProcessador-II de 8 instruções.

8. EQUIPAMENTOS E MATERIAL

- Kit de Desenvolvimento DE2
- Programa Quartus-II v.13.0
- 1 Mini-teclado matricial 4x4 (Hu-infinito R\$ 6,90)
- Software Deeds