

Human-Robot Interaction

T-Tests

Professor Dan Szafir

Computer Science & ATLAS Institute
University of Colorado Boulder

Comparing Distributions

IV: Categorical | DV: Categorical or Ordinal

Example: did people rate a robot with mutual gaze more highly than one without?

Example 2: of three teleoperation interfaces used, which one did participants rank most highly in terms of preference?

Use nonparametric tests

Compare distributions

1 Factor with 2 Levels (i.e., 2 conditions)
Independent measures (between-subjects design): Mann-Whitney U
Repeated Measures (within-subjects design): Wilcoxon Signed-Rank

1 Factor with >2 Levels (i.e., >2 conditions)

Independent measures: Kruskal-Wallace

Repeated measures: Friedman Test

IV: Categorical | DV: Continuous

Example: Did a human-robot team where the robot's behavior was governed by algorithm 1 have faster task completion times than a human-robot team where the robot's behavior was governed by algorithm 2?

Use parametric tests

Compare distributions

1 Factor with 2 Levels (i.e., 2 conditions)

Independent measures (between-subjects design): Independent t-test

Repeated Measures (within-subjects design): Paired t-test

1 Factor with >2 Levels (i.e., >2 conditions)

Independent measures: One factor independent measures ANOVA Repeated measures: One factor repeated measures ANOVA

2 Factors

Independent measures: Two-way independent measures ANOVA Repeated measures: Two-way repeated measures ANOVA Mixed design: Two-way mixed model ANOVA

> 2 Factors: multi-way ANOVA

1 Factor, multiple DVs: MANOVA

Student's t-test

Output Variable

	Nominal	Categorical (>2 categories)	Ordinal	Quantitative Discrete	Quantitative Non-Normal	Quantitative Normal
Nominal	X ² or Fisher's	X ²	X ² trend or Mann- Whitney	Mann-Whitney	Mann-Whitney or log-rank (a)	Student's t-test
Categorical (>2 categories)	X ²	X ²	Kruskal- Wallis (b)	Kruskal-Wallis (b)	Kruskal-Wallis (b)	Analysis of variance (c)
Ordinal	X ² trend or Mann- Whitney	(e)	Spearman rank	Spearman rank	Spearman rank	Spearman rank or linear regression (d)
Quantitative Discrete	Logistic regression	(e)	(e)	Spearman rank	Spearman rank	Spearman rank or linear regression (d)
Quantitative Non-Normal	Logistic regression	(e)	(e)	(e)	Plot data and Pearson or Spearman rank	Plot data and Pearson or Spearman rank and linear regression
Quantitative Normal	Logistic regression	(e)	(e)	(e)	Linear regression (d)	Pearson and linear regression

T-statistic Calculation

$$\frac{signal}{noise} = \frac{difference\ between\ group\ means}{variability\ in\ groups} + \frac{X_T - X_C}{SE(X_T - X_C)}$$

$$t = \frac{X_T - X_C}{\sqrt{\frac{var_T}{n_T} + \frac{var_C}{n_C}}}$$

Example

Do men and women have different body temperatures? $\mu_{M} = \text{mean body temperature of adult males}$ $\mu_{F} = \text{mean body temperature of adult females}$ Test difference between:

Null hypothesis – H_0 : $\mu_M = \mu_F$ Alternative hypothesis – H_1 : $\mu_M \neq \mu_F$

Is this one-tailed or two-tailed?

Calculate T-statistic

```
> temp = read.delim("Temps.txt")
> aggregate(temp$bodytemp~temp$gender,
temp, mean)
  temp$gender temp$bodytemp
                   98.39385 F
       female
         male 98.10462 \overline{M}
> aggregate(temp$bodytemp~temp$gender,
temp, var)
  temp$gender temp$bodytemp
                  0.5527740
       female
                  0.4882596 S_M^2
         male
> summary(temp$gender)
female
         male
    65
           65
    n_F
           n_{M}
```

$$t = \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sqrt{s_X^2/n_X + s_Y^2/n_Y}}$$

$$t = \frac{(98.10462 - 98.39385) - (0 - 0)}{\sqrt{\frac{.4882596}{65} + \frac{.5527740}{65}}}$$

$$t = -2.285$$

Degrees of Freedom

$$v = \frac{\left(\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}\right)^2}{\frac{(s_X^2/n_X)^2}{n_X - 1} + \frac{(s_Y^2/n_Y)^2}{n_Y - 1}}$$
 rounded down to the nearest integer.

$$v = \frac{\left(\frac{.4882596}{65} + \frac{.5527740}{65}\right)^2}{\frac{\left(.4882596/_{65}\right)^2}{65 - 1} + \frac{\left(.5527740/_{65}\right)^2}{65 - 1}} = 128$$

Calculate P-Value

Unpaired T-test in R

```
> temps <- read.table("Temps.txt", header=TRUE)</pre>
> attach(temps)
> t.test(bodytemp~gender, alternative="two.sided", var.equal=TRUE,
conf.level=.95)
      Two Sample t-test
data: bodytemp by gender
t = 2.2854, df = 128, p-value = 0.02393
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.03882216 0.53963938
sample estimates:
mean in group female mean in group male
             98.39385
                                   98.10462
```

Unpaired T-test in JMP

Unpaired T-test in JMP

Unpaired T-test in JMP

Questions?

Another Example

Hypothesis

A robot will be perceived as less warm when it produces a gaze cue

Null Hypothesis – H_0 : $\mu_{Cue} = \mu_{NoCue}$

Alternative Hypothesis – H_1 : $\mu_{Cue} < \mu_{NoCue}$

A robot will be perceived as less attentive when it produces a gaze cue

Null Hypothesis – H_0 : H_0 : $\mu_{Cue} = \mu_{NoCue}$

Alternative Hypothesis – H_1 : $\mu_{Cue} < \mu_{NoCue}$

What kind of t-test?

Unpaired or paired?

One-tailed or two-tailed?

Go do it!

Use the FactorAnalysis_Data.csv data

1. Visualize the data

> boxplot(qdata\$Warm ~ qdata\$Condition,
main="Warmth vs. gaze cue", xlab="Condition",
ylab="Warmth")

1. Visualize the data

> boxplot(qdata\$Attentive ~ qdata\$Condition, main="Attantiveness vs. gaze cue", xlab="Condition", ylab="Attentiveness")

2. T-Tests

```
> t.test(qdata$Warm~qdata$Condition, paired=FALSE,
alternative="less", conf.level=0.95)
     Welch Two Sample t-test
data: qdata$Warm by qdata$Condition Huh?
t = 2.2734, df = 26.827, p-value = 0.9844
alternative hypothesis: true difference in means is less
than 0
95 percent confidence interval:
    -Inf 1.63277
sample estimates:
mean in group Control
                          mean in group Cue
             4.000000
                                    3.066667
```

2. T-Tests

If you expect control to be greater than treatment, use "greater"!

```
i.e. H_1: \mu_{Treatment} < \mu_{Control}
```

2. T-Tests

```
> t.test(qdata$Attentive~qdata$Condition, paired=FALSE,
alternative="greater", conf.level=0.95)
     Welch Two Sample t-test
data: qdata$Attentive by qdata$Condition
t = 1.7504, df = 26.066, p-value = 0.04591
alternative hypothesis: true difference in means is
greater than \bar{0}
95 percent confidence interval:
 0.02678412 Inf
sample estimates:
mean in group Control
                          mean in group Cue
                                   3.600000
             4.642857
```

3. Graph Results

```
> library(sciplot)
> bargraph.CI(qdata$Condition, qdata$Warm,
ylim=c(1,7), col="Red")
```


3. Graph Results

```
> bargraph.CI(qdata$Condition, qdata$Attentive,
ylim=c(1,7), col="lightblue")
```


Unpaired T-Test in JMP

Unpaired T-Test in JMP

Unpaired T-Test in JMP

Questions?

Paired T-Test

Paired T-Test

Within-participants

Quasi-experimental designs

Repeated measures

Example: emotions before and after people interact with a robot

Paired T-Test R Example

- > emotions <- read.table("RepeatedMeasures.csv", sep=",", header=TRUE)
- > attach(emotions)
- > boxplot(emotions)


```
> t.test(emotions$Interested before, emotions$Interested after,
paired=TRUE, conf.level=0.95)
      Paired t-test
data: emotions$Interested before and emotions$Interested after
t = -1.4314, df = 42, p-value = 0.1597
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.22417757 0.03813105
sample estimates:
mean of the differences
            -0.09302326
```

```
> t.test(emotions$Worried before, emotions$Worried after,
paired=TRUE, conf.level=0.95)
     Paired t-test
data: emotions$Worried before and emotions$Worried after
t = 3.4931, df = 42, p-value = 0.001138
alternative hypothesis: true difference in means is not equal
to 0
95 percent confidence interval:
 0.2160424 0.8072134
sample estimates:
mean of the differences
              0.5116279
```

```
>bargraph.CI(c(rep("Interested_before", times=43)
,rep("Interested_after", times=43)),
c(emotions$Interested_before, emotions$Interested
  after), ylim=c(1,5), col="Red")
```



```
>bargraph.CI(c(rep("Worried_before", times=43), re
p("Worried_after", times=43)),
c(emotions$Worried_before, emotions$Worried_after
), ylim=c(1,5),col="Orange")
```


Paired T-Test in JMP

Paired T-Test in JMP

Paired T-Test in JMP

Questions?

Reporting Tests

Statistic	Example
Mean and standard deviation	M = 3.45, $SD = 1.21$
Mann-Whitney	U = 67.5, $p = .034$, $r = .38$
Wilcoxon signed-rank	Z = 4.21, $p < .001$
Sign test	Z = 3.47, $p = .001$
T-test	t(19) = 2.45, p = .031, d = 0.54
ANOVA	$F(2, 1279) = 6.15, p = .002, \eta_p^2 = 0.010$
Pearson's correlation	r(1282) = .13, p < .001

Reporting T-tests

"We conducted a **paired two-tailed t-test** to test whether participating in the experiment affected participant's level of worry and found that participants were significantly more worried after the experiment that they were before the experiment, t(42) = 3.49, p = .001."

Summary

Choosing the right test

What question do you want to answer?

What are the **type** and **number** of variables you are comparing?

Is your experimental design within (likely paired observations) or between (likely independent observations)

Questions?

THANKS!

Professor Dan Szafir

Computer Science & ATLAS Institute University of Colorado Boulder