Einführung in Sage - Einheit 5

Datencontainer, Lineare Abbildungen, Eigenwert und Eigenvektoren

Jochen Schulz

Georg-August Universität Göttingen

Datencontainer

2 Lineare Abbildungen

Datencontainer

2 Lineare Abbildungen

Sage

https://sage.math.uni-goettingen.de/home/pub/19/

Datencontainer

2 Lineare Abbildungen

Lineare Abbildungen

Seien K-Vektorräume V und W gegeben. Eine Abbildung

$$F: V \rightarrow W$$

heißt linear, falls für $v, w \in V$ und $\lambda \in K$ gilt:

(L1)
$$F(v+w) = F(v) + F(w)$$

(L2)
$$F(\lambda \cdot v) = \lambda \cdot F(v)$$

- Isomorphismus: F bijektiv.
- Endomorphismus: V = W.
- Automorphismus: V = W und F bijektiv.

Bemerkungen

- Sei $(v_i)_{i \in I}$ eine Basis in V und $(w_i)_{i \in I}$ seien Vektoren in W. Dann gibt es genau eine lineare Abbildung $F: V \to W$ mit $F(v_i) = w_i$ für alle $i \in I$.
- Bild von $F: Im(F) = F(V) := \{F(v), v \in V\}.$
- Kern von F: $Ker(F) := \{ v \in V \mid F(v) = 0 \}$
- Kern und Bild sind Untervektorräume.
- Dimensionsformel:

$$\dim V = \dim F(V) + \dim Ker(F)$$

• $\mathsf{Hom}_{\mathcal{K}}(V,W)$: Die Menge der linearen Abbildungen von V nach W. Sie ist ein Vektorraum durch punktweise Addition und Skalarmultiplikation.

Lineare Abbildungen und Matrizen

• Jeder Matrix $A \in K^{m \times n}$ läßt sich durch

$$L_A: K^n \to K^m, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \longmapsto A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

eine lineare Abbildung zuordnen.

• Es gilt $\dim(L_A(K^m)) = \operatorname{Rang}(A)$.

Koordinatenvektor

Sei V ein K-Vektorraum mit Basis $V = (v_1, \ldots, v_n)$.

ullet Die lineare Abbildung $\Phi_{\mathcal{V}}: \mathcal{K}^n
ightarrow \mathcal{V}$ mit

$$\Phi_{\mathcal{V}}(x_1,\ldots,x_n)=x_1v_1+\cdots+x_nv_n$$

ist ein Isomorphismus. Man nennt $\Phi_{\mathcal{V}}$ ein Koordinatensystem in V und $x=(x_1,\ldots,x_n)=\Phi_{\mathcal{V}}^{-1}(v)$ den Koordinatenvektor zu $v\in V$.

ullet Basiswechselabbildung von ${\mathcal V}$ nach Basis ${\mathcal Z}$:

$$T := \Phi_{\mathcal{Z}}^{-1} \circ \Phi_{\mathcal{V}}$$

.

Isomorphismus

Seien K-Vektorräume V und W mit Basen $\mathcal{V}=(v_1,\ldots,v_n)$ und $\mathcal{W}=(w_1,\ldots,w_m)$ gegeben.

Für eine Matrix $A \in K^{m \times n}$ wird durch

$$F(v_1) := a_{11}w_1 + \dots + a_{m1}w_m$$

$$\vdots : \vdots$$

$$F(v_n) := a_{1n}w_1 + \dots + a_{mn}w_m$$

eine lineare Abbildung F definiert. Dies ergibt einen Isomorphismus

$$L_{\mathcal{W}}^{\mathcal{V}}: K^{m \times n} \to \operatorname{Hom}_{K}(V, W), A \mapsto F.$$

Kanonisches Beispiel

Seien K^n und K^m mit den kanonischen Basen K_n und K_m versehen.

- Die Abbildungen $\Phi_{\mathcal{K}_n}$ und $\Phi_{\mathcal{K}_m}$ sind Identitäten.
- Die Abbildung $L_{\mathcal{K}_{-m}}^{\mathcal{K}_n}$ ist gegeben durch

$$L_{\mathcal{K}_m}^{\mathcal{K}_n}(A)(x) = Ax, \ x \in K^n.$$

• Die Spaltenvektoren von A sind die Bilder der Einheitsvektoren unter der Abbildung $L_{\mathcal{K}_m}^{\mathcal{K}_n}(A)$.

Kommutierendes Diagramm

Seien K-Vektorräume V und W mit Basen $\mathcal{V}=(v_1,\ldots,v_n)$ und $\mathcal{W}=(w_1,\ldots,w_m)$ und eine lineare Abbildung F gegeben. Dann gilt das folgende kommutierende Diagramm:

Sage

https://sage.math.uni-goettingen.de/home/pub/20/

Datencontainer

2 Lineare Abbildungen

Eigenwerte und Eigenvektoren

Sei $A \in K^{n \times n}$. Ein Element $\lambda \in K$ heißt Eigenwert von A, wenn ein $x \in K^n \setminus \{0\}$ existiert,

$$Ax = \lambda x$$

gilt. Der Vektor $x \in K^n$ heißt Eigenvektor zum Eigenwert λ .

• Die Eigenwerte sind die Nullstellen des charakteristischen Polynoms

$$p(t) := \det(A - t I_n).$$

• Es gibt höchstens *n* Eigenwerte.

Bemerkungen

- Eigenvektoren zu paarweise verschiedenen Eigenwerten sind linear unabhängig.
- Gibt es eine Basis aus Eigenvektoren, so ist A diagonalisierbar, d.h. man kann die Abbildung L_A bei geeigneter Basiswahl durch eine Diagonalmatrix repräsentieren.
- Jeder Endomorphismus eines komplexen Vektorraums läßt sich durch eine Matrix in Jordanscher Normalform darstellen.

Lineare Gleichungssysteme (LGS)

Sei $A \in K^{m \times n}$ und $b \in K^m$. Gesucht ist die Menge der Lösungen (Lösungsraum):

$$\{x \in K^n \mid Ax = b\}$$

- Ist b = 0, so spricht man von einem homogenen System. Ansonsten spricht man von einem inhomogenen System.
- Der Lösungsraum W des homogenen Systems bildet einen Untervektorraum des K^n . Die Dimension ist

$$\dim(W) = n - \operatorname{rang}(A).$$

Struktur des Lösungsraums

• affiner Unterraum $X \subset K^n$: wenn ein Unterraum W von K^n und ein $v \in K^n$ existiert, so dass

$$X = v + W$$

- Die Lösungen des inhomogenen Systems ($b \neq 0$) bilden einen affinen Unterraum des K^n .
- Ist W der Lösungsraum des homogenen Systems und $v \in K^n$ eine beliebige Lösung von Ax = b, dann ist der Lösungsraum X von Ax = b gegeben durch X = v + W.
- Zwei Lösungen des inhomogenen Systems unterscheiden sich durch eine Lösung des homogenen Systems.

Lösbarkeit

- Das inhomogene System ist genau dann für alle b lösbar, wenn rang(A) = m gilt.
- Das homogene bzw. das inhomogene System besitzt höchstens eine Lösung, genau dann wenn rang(A) = n gilt.
- Der Lösungsraum des inhomogenen Systems ist genau dann nicht leer, wenn rang(A) = rang(A, b) gilt.
- Praktisch kann ein LGS mit dem Gausschen Eliminationsverfahren gelöst werden.

Sage

https://sage.math.uni-goettingen.de/home/pub/21/