

Arbore binar de căutare – înălțime

Dorim ca arborii să fie echilibrați.

Arborii AVL (Adelson-Velsky şi Landis)

Arborii AVL (Adelson-Velsky şi Landis)

Un arbore binar de căutare este echilibrat dacă și numai dacă: Înălțimea a celor 2 subarbori ai oricărui nod diferă cu cel mult 1.

Rotații în arbore binar căutare

Rotații în arbore binar căutare

Proprietate Arbore Binar Căutare: T1 < X < T2 < Y < T3

Rotații în arbore binar căutare

Proprietate Arbore Binar Căutare: T1 < X < T2 < Y < T3

Cazuri dezechilibrare cu 2

Left Left

Left Right

Right Left

Right Right

$$h(T1) \approx h(T2) \approx h(T3) \approx h(T4)$$

Cazuri dezechilibrare cu 2

Left Left

Right Right

Left Left

Right Right

Cazuri dezechilibrare cu 2

Left Right

Right Left

Left Right

Right Left

De ce nu aplicăm prima oară Right?

