1.1 What is a gate in LSTU	tanhis和佳花园 7-4.1C
Sigmoid multiplication to real value	
O Signoid multiplication to positive real value O RelU multiplication to real value	
O Relu multiplication to positive real value	
, , , , , , , , , , , , , , , , , , , ,	kemelsire
1.2 Howmany weights does an nn. ConveD(3, 060	20,5) laye have?
3 ×20 ×4 ×5	25
~300	100
×1500	
1.3 Using nn. aveagepool (2, stride=4) on a ?	200×200 input results in
0 0% inputs notused	
0.25% inputs notused $\frac{200-2}{4}$	4 V = 20'2 X A
0 50% inputs notused 4738	Regression Losses
75% inputs notused	
100	Systematic comparison
1.6 The Old Loss leveros is	optimizable outlier-robust c-tolerant
? Not hard to optimite	
O Not outlie volust	0/1 loss \times \checkmark \checkmark squared loss $(y-t)^2$ \checkmark \times \checkmark
c to small variations	absolute loss $ y-t $
	Note:
13 The personny loss on law the	Many further loss functions have been proposed in the literature (e.g. Huber's loss, ϵ -sensitive loss, etc.). They often implement similar
1.7 The peception loss can be written as	desirable properties as the log-cosh loss. Systematic comparison
 max(0,-yt) max(0,-yt)² 1_{yt>0} 1_{{yt>2} 1_{{yt>2} 	
0 /s	optimizable mislabeling-robust builds margin
0 18.452 C	optimizable mislabeling- builds marg
- , chess? for some sso	0/1 loss
	perceptron loss $\max(0, -yt)$ \checkmark \checkmark \checkmark log loss $\log(1 + \exp(-yt))$ \checkmark \checkmark \checkmark
1.8 Small local invariances can be addressed by	Using
o Adivation layes	σ
Pooling layes	
· Condition layes	
Pooling layesConduction layesLinear layes	
• • • • • • • • • • • • • • • • • • •	

2. Task: Decision boundary

$$a_3 = \max(x_1 + x_2)$$

 $a_4 = \max(x_1 - x_2)$

a) Draw the four pieces on which y is linear

Piece 1 (given)

Piece 2

Piece3

Piece 4

b) Draw the decision boundary on each piece for y=fcx = 1

Piece 1 (given)

Piece 2

Piece3

Piece 4
y=xx-xx=1

3. Task: Gradient, bound and regularization

a) Calculate 24

$$\frac{3K!}{3A} = \frac{7!}{p} \frac{9w!}{3A} \frac{95!!}{9w!} \frac{3K!}{95!!}$$

$$= \sum_{j=1}^{n} W_{j} \cdot \otimes_{n} P\left(-\frac{1}{2} \cdot \hat{z}; j\right) \cdot (-\Lambda) \cdot \text{Sign}(x_{i} - C; j)$$

$$= 9 ||M||$$

$$= \frac{1}{2} ||M||$$

C) Explain in 1-2 sentences how this bound helps with choosing the regularization

If we replace (penalize) || w|| to be keep it smell, then the Grandlent of is also small which helps avoid overfitting

4. Task: RNN

Given:
$$h_a = \tanh(x_a T_v + h_0)$$

 $h_2 = \tanh(x_2 T_w + h_a)$
 $y = h_2$
 $\mathcal{E} = (y - t)^2$

$$\begin{array}{ccc}
 & & & & & & & & & & & \\
 & \downarrow & & & & & & & & & \\
 & \downarrow & & & & & & & & & \\
 & \downarrow & & & & & & & & & \\
 & \downarrow & & & & & & & & & \\
 & \downarrow & & & & & & & & & \\
 & \downarrow & & & & & & & & & \\
 & \downarrow & & & & & & & & & \\
 & \downarrow & & & & & & & & \\
 & \downarrow & & & & & & & & \\
 & \downarrow & & & & & & & & \\
 & \downarrow & & & & & & & & \\
 & \downarrow & & & & & & & & \\
 & \downarrow & & & & & & & & \\
 & \downarrow & & & & & & & & \\
 & \downarrow & & & & & & & & \\
 & \downarrow & & & & & & & & \\
 & \downarrow & & & & & & & & \\
 & \downarrow & & & & & & & & \\
 & \downarrow & & & & & & & & \\
 & \downarrow & & & & & & & \\
 & \downarrow & & & & & & & \\
 & \downarrow & & & & & & & \\
 & \downarrow & & & & & & & \\
 & \downarrow & & & & & & & \\
 & \downarrow & & & & & & & \\
 & \downarrow & & & & & & & \\
 & \downarrow & & & & & & & \\
 & \downarrow & & & & & & & \\
 & \downarrow & & & & & & & \\
 & \downarrow & & & & & & \\
 & \downarrow & & & & & & \\
 & \downarrow & & & & & & \\
 & \downarrow & & & & & & \\
 & \downarrow & & & & & & \\
 & \downarrow & & & & & & \\
 & \downarrow & & & & & & \\
 & \downarrow & & & & & \\
 & \downarrow & & & & & & \\
 & \downarrow & & & & & & \\
 & \downarrow & & \downarrow & & \\
 & \downarrow & \downarrow & & & \\
 & \downarrow & \downarrow & & & \\
 & \downarrow & \downarrow & & \downarrow & \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow$$

a) Draw the associated NN graph

b) Calculate 32

c) State the de inative of
$$\frac{2E}{2V}$$
 using the chain rule

d) Calculate 3

= z(y-t)·1· (-lanh'(xx w +ha)·xz + tanh'(xx w +ha)
· tanh'(xx w +ha) x1)

= z(y-t)tanh'(xx"wtha) (xx+tumh'(kx"wtho)xa)

5. Jask: Programming

a) Program an adve-sarial attack on a trained model using minflx-ell + max(c, t.f.c)

```
1 import torch, import...

2 def advesarial(x,T, model)

3 #Cratelmodify & model(x):1x1

4 = x. clone(). detach(). requires = grad = CTrne)

5 Use 1000 iterations, stapping not needed

6 optim=torchan. SGO((2,1,0))

7 #creade optimization

9 for i in roigh (need):

9 coptim. sero-grad()

10 loss = torch. norm (x-z, p=2) xx 2 + torch. max (torch. zero-(ike(T), T x model(z)). Sum()
```

Noss, purphrough) (x-51, bon(s), srm()

optim.step()

return z

11

12 13 14

