Novel metrics and application of nearest-neighbor feature selection for creating resting-state fMRI brain atlases

Bryan A. Dawkins¹, Trang T. Le² and Brett A. McKinney^{1,3,*}

Abstract

Resting-state functional connectivity MRI (rs-fMRI) data consists of correlation matrices, where correlations are computed between the time series from brain Regions of Interest (ROIs). There are many different parcellations of the human brain into collections of ROIs. These parcellations, or atlases, can be used in case-control studies in order to understand and accurately classify subject phenotypes. We present new metrics for nearest-neighbor distance-based feature selection at the ROI level. Using our new metrics, we apply a novel nearest-neighbor feature selection algorithm to calculate relative importance of ROIs in two existing brain atlases. We use integer programming to derive a mapping between brain atlases to determine spatially similar ROIs. With ROI importance scores and spatial similarity between atlases, we create a new brain parcellation that combines aspects of both brain atlases.

Introduction

11

13

1 Discussion

References 14

November 4, 2019 1/1

¹Department of Mathematics, University of Tulsa, Tulsa, OK 74104, USA

²Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104

³Tandy School of Computer Science, University of Tulsa, Tulsa, OK 74104, USA.