1. Intro

Relations between elements of sets occur in many contexts. In mathematics, we study relationships such as:

- a relation between a positive integer and one that it divides.
- a relation between a real number and one that is larger than it.
- a relation between a **real number** x and the **value** f(x) where f is a function, and so on.

2. Definition

A relation can be defined between elements of a set A and elements of another set B. It can also be defined between elements of the same set. We always use the letter R to refer to a relation.

For example, we say that x is related to y with respect to the relation R and we write:

$$xRy$$
 where $x \in A, y \in B$

2.1. Cartesian Product & Binary Relation

The Cartesian product $A \times B$ is defined by a set of pairs (x, y) such that $x \in A$ and $y \in B$.

$$A \times B = \{(x,y) \colon x \in A \text{ and } y \in B\}$$

For example:

$$A=\{a_1,a_2\} \ \ ext{and} \ \ B=\{b_1,b_2,b_3\}$$
 $A imes B=\{(a_1,b_1),(a_1,b_2),(a_1,b_3),(a_2,b_1),(a_2,b_2),(a_2,b_3)\}$

Note that:

$$A \times A = A^2$$

A binary relation from A to B is a subset of a Cartesian product $A \times B$:

$$R\subseteq A\times B$$

which means that R is a set of ordered pairs of the form (x,y) where $x\in A$ and $y\in B$.

$$(x, y) \in R$$
 means xRy (... is related to ...)

For example:

$$A = \{a, b, c\}$$
 and $B = \{1, 2, 3\}$
 $R = \{(a, 1), (b, 2), (c, 3)\}$
 $aR1$
 $bR2$
 $cR3$

NOTE

Relations are defined arbitrarily.

2.1.1. Relation on a Set

When A = B, a relation R on the set A is a relation from A to A:

$$R\subseteq A\times A$$

For example:

$$A = \{1,2,3,4\}$$

$$R = \{x,y \in A, xRy \mid \text{if and only if} \ \ x < y\}$$
 We have $1R2,1R3,1R4,2R3,2R4,3R4$ respectively:
$$R = \{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$$

3. Representation

3.1. Matrices

Given a **relation** R from a set A to set B. We can list the elements of sets A and B in a particular order.

Let $n_a = |A|$ and $n_b = |B|$. The **matrix of** R is $n_a \times n_b$:

$$M_r = [m_{ij}]n_a imes n_b \ m_{ij} = egin{cases} 1 & ext{if} & (a_i,bj) \in R \ 0 & ext{if} & (a_i,bj)
otin & R \end{cases}$$

Example:

$$A = \{a, b, c\}$$
 $B = \{1, 2, 3\}$
 $R = \{(a, 1), (a, 2), (b, 2), (b, 3), (c, 1), (c, 3)\}$
 $M_r = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$

3.1.1. Combining Relations

The **union** of two relations is a new set that contains all of the pairs of elements that are in at least one of the two relations. The union is written as $R \cup S$ or "R or S".

$$R \cup S = \{(a, b) : (a, b) \in R \text{ or } (a, b) \in S\}$$

The **intersection** of two relations is a new set that contains all of the pairs that are in both sets. The intersection is written as $R \cap S$ or "R and S".

$$R\cap S=\{(a,b)\!:\!(a,b)\in R\ \text{ and }\ (a,b)\in S\}$$

For example, given:

$$M_R = egin{bmatrix} 1 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{bmatrix} \quad M_S = egin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 1 \ 1 & 0 & 0 \end{bmatrix}$$

To **join** (union):

$$M_{R \cup S} = M_R \lor M_S = egin{bmatrix} 1 & 0 & 1 \ 1 & 1 & 1 \ 1 & 1 & 0 \end{bmatrix}$$

To **meet** (intersection):

$$M_{R\cap S} = M_R \wedge M_S = egin{bmatrix} 1 & 0 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$$

3.2. Graphs

When a relation is defined on a set, it can be represented by a digraph. First, the elements of A are written down, then $(a,b) \in R$ arrows are drawn from a to b.

For example:

$$A = \{1,2,3,4,5\}$$

$$R = \{x,y \in A, xRy \mid \text{if and only if} \;\; x \leq y\}$$

Then the graph is:

And if (strictly less):

$$R = \{x, y \in A, xRy \mid \text{if and only if } x < y\}$$

Then the graph is:

4. Properties

4.1. Reflexivity

A relation R in a set S is said to be **reflexive** if and only if:

$$egin{aligned} xRx,\,orall\,x\in S\ &\equiv\ &(x,x)\in R,\,orall\,x\in S \end{aligned}$$

For example, the following is reflexive:

$$R=\left\{ (a,a)\in\mathbb{Z}^2\mid a=a
ight\}$$
 $1=1$ $2=2$

While this example is **not** reflexive:

$$R = ig\{(a,a) \in \mathbb{Z}^2 \mid a < aig\}$$
 $1 < 1 \ ext{(false)}$ $2 < 2 \ ext{(false)}$

4.2. Symmetry

A relation R on a set S is said to be **symmetric** if and only if:

 $\forall (a, b) \in S$, if aRb then bRa

For example, the following is symmetric:

$$R = \left\{ (a,b) \in \mathbb{Z}^2 \mid a+b=b+a
ight\}$$
 $1+2=2+1$ $2+1=1+2$

4.3. Anti-Symmetric

A relation R on a set S is said to be **anti-symmetric** if and only if:

 $\forall (a,b) \in S$, if aRb and bRa then a = b

For example, the following is anti-symmetric:

$$R = ig\{(a,b) \in \mathbb{Z}^2 \mid a \leq big\}$$
 $a \leq b \ ext{ and } \ b \leq a$ implies $a = b$

4.4. Transitivity

A relation R on set S is called ${\bf transitive}$ if and only if:

 $\forall (a,b,c) \in S, \text{ if } (aRb \text{ and } bRc) \text{ then } aRc$

For example, the following is transitive:

$$R = \left\{(a,b) \in \mathbb{Z}^2 \mid a \leq b\right\}$$

 $2 \le 2$ and $2 \le 3$ implies $2 \le 2$

...

Last updated 2023-02-13 22:47:32 UTC