# Ejercicio 7

En la figura se muestra una señal digital codificada con señalización RZ unipolar y polar. La frecuencia de muestreo es de 20 KHz y las muestras son de seis bits.



Se pide:

- a) Calcular la energía del bit 1 y la energía del bit 0 para cada caso de codificación exhibida si A=0.5v
- Calcular la tasa de bits y el ancho de banda hasta el primer nulo en cada caso.
- c) Calcular la energía promedio de una muestra para cada caso de codificación exhibida, sabiendo que la probabilidad del bit 1 es de 2/3 y la del bit 0 de 1/3.
- d) Dibujar como sería la codificación NRZ de acuerdo con la secuencia establecida.

**a**)

Para calcular la energía de un bit en una señal digital codificada con señalización RZ, es necesario calcular la duración de un bit  $(T_b)$ :

$$6.T_b = T_s \rightarrow T_b = \frac{1}{6.f_s} = \frac{1}{6.20KHz} = 8,33\mu S$$

## Para RZ unipolar:

Un bit 1 se representa como una transición positiva seguida de un nivel bajo. La energía del bit 1 se calcula como:

$$E_{B1} = A^2 \cdot \frac{T_b}{2} = (0, 5V)^2 \cdot \frac{8,33\mu S}{2} = 1,04125\mu J$$

Un bit 0 se representa como un nivel bajo durante toda la duración del bit. La energía del bit 0 se calcula como:

$$E_{B0} = A^2 \cdot T_b = (0)^2 \cdot \frac{8,33\mu S}{2} = 0J$$

### Para RZ polar:

El bit 1 y el bit 0 como una transición de un nivel alto a un nivel bajo, pero se diferencian en la polaridad de ese nivel alto, siendo positiva para el bit 1 y negativa para el bit 0. Sin embargo, como en la expresión de la energía del bit, la amplitud está elevada al cuadrado, para el bit 1 o para el bit 0, el resultado será el mismo:

$$E_{B1} = E_{B0} = (\pm A)^2 \cdot \frac{T_b}{2} = (\pm 0, 5V)^2 \cdot \frac{8,33\mu S}{2} = 1,04125\mu J$$

b)

Tasa de bits:

- Cada muestra tiene 6 bits.
- La frecuencia de muestreo es de 20KHz, lo que indica que se toman 20000 muestras por segundo.

$$R = n.f_s = 6.20KHz = 120Kbps$$

Ancho de banda:

$$B = \frac{R}{2} = 60KHz$$

 $\mathbf{c})$ 

La energía promedio por muestra se calcula como:

$$E_m = E_{B1}.P_{B1} + E_{B0}.P_{B0}$$

Donde:

- $E_{B1}$ : Energía del bit 1
- $E_{B0}$ : Energía del bit 0
- $P_{B1}$ : Probabilidad del bit 1
- $P_{B0}$ : Probabilidad del bit 0

## Para RZ unipolar:

$$E_m = 1,04125\mu J.\frac{2}{3} + 0J.\frac{1}{3} = 694,44nJ$$

#### Para RZ polar:

$$E_m = 1,04125\mu J.\frac{2}{3} + 1,04125\mu J.\frac{1}{3} = 1,04125\mu J$$

d)

