目录

第一章 数字逻辑基础

- 1.1 数字技术的相关概念
- 1.2 数制与编码
- 1.2.1 进位计数制
 - 1.2.2 各种进位计数制的相互转换
 - 1.2.3 带符号数的代码表示
 - 1.2.4 带符号数的加减法
 - 1.2.5 十进制数的常用代码
 - 1.2.6 可靠性编码

第一章 数制与编码

Number Systems and Codes

1.2.1 进位计数制

进位计数制简称"数制"。

(Positional number system) .

如: 1. 在日常计算中通常采用的是十进制计数制,计数规则"逢十进一",

例: 0,1,2,3,4,5,6,7,8,9,10,11,12,...,99,100,...,;

2. 在计算机中多用的是二进制计数制,因为物理器件的输入、输出信号是用逻辑电平的两个状态0、1表示,

例: 0,1,10,11,100,101,110,...; 它是"逢二进一";

- 3. 表示重量可以采用十进制或十六进制,例: "半斤 八两";
- 4. 表示时间的"分秒", 其计数规则采用的是六十进制, 例: 1分=60秒, 1小时=60分, ...;

又例:"时"用的是二十四进制,"月"用的是十二进制,等;

5. 计件单位"打"或长度单位"英寸"用的是十二进制; 等等。 例: 十进制数 1246385345.678091

1. 特点: (1) 10个、有序的数字符号: 0,1,2,3,4,5,6,7,8,9

(2) 小数点符号: "."

(3)"逢十进一"的计数规则

其中: "十"为进位基数(Base/Radix),简称基数(R)。

2. 表示法:并列表示法 Positional Notation 多项式表示法 Polynomial Notation

① 并列表示法

例: 十进制数 1 2 3 4 5 6 7 8 0 9 1

小数点

如上所示,处在不同位置的数字具有不同的"权(Weight)" 所以并列表示法也称位置表示法。

② 多项式表示法

将并列式按"权"展开为按权展开式,称为多项式表示法。 如下例:

12345.67809

$$= 1 \times 10^{4} + 2 \times 10^{3} + 3 \times 10^{2} + 4 \times 10^{1} + 5 \times 10^{0} + 6 \times 10^{-1}$$

$$+7\times10^{-2}+8\times10^{-3}+0\times10^{-4}+9\times10^{-5}$$

由此推出,任意一个十进制数 N 可以表示成:

① 并列表示法:

$$(N)_{10} = (K_{n-1}K_{n-2}...K_{1}K_{0}.K_{-1}K_{-2}...K_{-m})_{10}$$

$$(0 \le K_{i} \le 9)$$

② 多项式表示法

$$(N)_{10} = (K_{n-1} \times 10^{n-1} + K_{n-2} \times 10^{n-2} + ... + K_{1} \times 10^{-1} + K_{0} \times 10^{-0} + K_{-1} \times 10^{-1} + K_{-2} \times 10^{-2} + ... + K_{-m} \times 10^{-m})_{10}$$

$$= \sum_{i=-m}^{n-1} K_{i} \times 10^{i} \qquad (0 \le K_{i} \le 9)$$

对于一个任意进制 R 的数 N,有:

- 特点: 1. R个有序的数字符号: 0、1、...、R-1;
 - 2. 小数点符号: "."
 - 3. "逢R进一"的计数规则

其中: "R"为进位基数(Base / Radix)或基数。

例: R=2, 二进制, 数字符号有0、1, 逢二进一;

R=16,十六进制,数字符号有0,1,2,3,4,5,6,7,8,9,A,B,C,D,

E, F(必须用单字符表示), 逢十六进一;

• • • • • •

• 表示法

① 并列表示法

$$(N)_{R}=(A_{n-1}...A_{i}...A_{1}A_{0}.A_{-1}A_{-2}...A_{-m})_{R}$$
 $(0 \le A_{i} \le R-1)$
(其中: n整数位数,m 小数位数, $0 \le A_{i} \le R-1$)
当 $R=10$ 时,则括号及括号外的基数R可以省略。

② 多项式表示法

$$(N)_{R} = (A_{n-1} \times 10^{n-1} + A_{n-2} \times 10^{n-2} + ... + A_{1} \times 10^{-1}$$

$$+ A_{0} \times 10^{0} + A_{-1} \times 10^{-1} + ... + A_{-m} \times 10^{-m})_{R}$$

$$= (\sum_{i=-m}^{n-1} A_{i} \times 10^{i})_{R}$$

例:
$$(1010)_2 = (1 \times 10^{-11} + 0 \times 10^{-10} + 1 \times 10^{-1} + 0 \times 10^{-0})_2$$

 $(1212)_3 = (1 \times 10^{-10} + 2 \times 10^{-2} + 1 \times 10^{-1} + 2 \times 10^{-0})_3$

不同进位计数制的数值具有等值关系。参见下表:

R=10	R=2	R=3	R=4	R=8	R=16
0	0	0	0	0	0
1	1	1	1	1	1
2	10	2	2	2	2
3	11	10	2 3	2 3	2 3
4	100	11	10	4	4
2 3 4 5	101	12	11	4 5	4 5
6	110	20	12	6	6
7	111	21	13	7	7
8 9	1000	22	20	10	8
9	<u> </u>	100	21	11	9
10	1010	101	22	12	\mathbf{A}
11	1011	102	23	13	В
12	1100	110	30	14	C
13	1101	111	31	15	D
14	1110	112	32	16	${f E}$
15	1111	120	33	17	${f F}$
16	10000	121	100	20	10
17	10001	122	101	21	11
•••	•••	•••	•••	•••	•••

例: $(1010)_2 = (1 \times 10^{11} + 0 \times 10^{10} + 1 \times 10^1 + 0 \times 10^0)_2 = 8 + 0 + 2 + 0 = 10$ $(1212)_3 = (1 \times 10^{10} + 2 \times 10^2 + 1 \times 10^1 + 2 \times 10^0)_3 = 27 + 18 + 3 + 2 = 50$

基数R大的好处

不考虑进位,一个数字符号,描述一种物理状态。

将0~3.3V的输入模拟电平信号转换为数字信号,假设将0~3.3V分成8段,则任意一个0~3.3V的电平替换为0~7之间的符号,相当于一个8进制数。(详见《AD转换与DA转换》章节)

假设将0~3.3V分成256段,则任意一个0~3.3V的电平数字化为0~255之间的符号,相当于一个256进制数。

基数R更大的数呢?

基数R小的好处

熟悉十进制数源自从小的习惯。 例如数青蛙,人有10个手指,所以10进制方便教小朋友:

1只青蛙 1张嘴, 2只眼睛 4条腿;

2只青蛙 2张嘴, 4只眼睛 8条腿;

3只青蛙 3张嘴, 6只眼睛 12条腿;

.

转换思路:

0只青蛙 0张嘴, 0只眼睛 0条腿;

1只青蛙 1张嘴, 10只眼睛 100条腿;

10只青蛙10张嘴, 100只眼睛1000条腿;

11只青蛙11张嘴,110只眼睛1100条腿;

0 0 0

计算机使用的二进制中,称一个符号为一个Bit,只有0和1。

二进制数的运算

二进制数为计算机内部运算的基础。

(1) 运算规则: + 、 - 、 × 、÷

(X、÷运算可以由+、一运算来实现)

加法规则: 0+0=0 0+1=1+0=1 1+1=10

减法规则: 0-0=0 1-0=1 1-1=0 10-1=1(借位)

乘法规则: $0 \times 0 = 0$ $0 \times 1 = 1 \times 0 = 0$ $1 \times 1 = 1$

除法规则 $0\div 1=0$ $1\div 1=1$ (0不能作除数)

举例: ① 1010 + 0110 = 10000 ② 1010 - 0110 = 0100

③ 1010×11 = 1010 + 10100 = 11110 乘法用加法实现

④ 1010÷10 = 101 除法用减法实现

1010 ...够减,商1 ...不够减,商 0 _...够减,商1

(2) 常用的二进制常数。(R=2)。

i	Ri	i	Ri	i	Ri
-4	0.0625	2	4	8	256
-3	0.125	3	8	9	512
-2	0.25	4	16	10	1024
-1	0.5	5	32	11	2048
0	1	6	64	12	4096
1	2	7	128	13	8192

(3)二进制数的单位:

1位二进制数 = 1b(比特) 1B(字节) = 8b 1K(千) = 2¹⁰ 1M(兆) = 2²⁰ 1G(京) = 2³⁰

- 数制
 - ✓特点
 - ✓表示方法
 - -不同数制之间的转换
 - •十进制 + 其它进制
 - 二进制 + 其它进制
 - 任意进制 ← 任意进制
 - 如果不能精确转换, 怎么办?

1.2.2 进位计数制的相互转换

General Positional-number-system Conversions

数值转换:

$$(N)_{\alpha} \rightarrow (N')_{\beta}$$

转换是按等值进行转换

1.2.2.1 多项式替代法 Series Substitution

例1:将(1CE8)16转换为十进制。

$$(1CE8)_{16} = (1 \times 10^{3} + C \times 10^{2} + E \times 10^{1} + 8 \times 10^{0})_{16}$$

$$= (1 \times 16^{3} + 12 \times 16^{2} + 14 \times 16^{1} + 8 \times 16^{0})_{10}$$

$$= (4096 + 3072 + 224 + 8)_{10}$$

- $=(7400)_{10}$
- =7400 十进制的R可以省略

由上例可以了解多项式替代法的转换步骤,归纳如下,

(N) =
$$(A_{n-1}A_{n-2}...A_1A_0.A_{-1}A_{-2}...A_{-m})$$

= $(A_{n-1}\times 10^{n-1} + A_{n-2}\times 10^{n-2} + ... + A_1\times 10^{-1} + A_0$
 $\times 10^{-0} + A_{-1}\times 10^{-1} + A_{-2}\times 10^{-2} + ... + A_{-m}\times 10^{-m})$
= $(A_{n-1}\times \alpha^{n-1} + A_{n-2}\times \alpha^{n-2} + ... + A_1\times \alpha^1$
 $+ A_0\times \alpha^{0} + A_{-1}\times \alpha^{-1} + A_{-2}\times \alpha^{-2} + ...$
 $+ A_{-m}\times \alpha^{-m})$ $= (N')$

注意:多项式替代法是在β进制下完成 (N) α 到 (N') 的转换的,因此,要求熟悉β进制的算术运算规则。

例2: 将(121.2)3转换为二进制。

$$(121.2)_3 = (1 \times 10^2 + 2 \times 10^1 + 1 \times 10^0 + 2 \times 10^{-1})_3$$

= $(1 \times 11^{10} + 10 \times 11^1 + 1 \times 11^0 + 10 \times 11^{-1})_2$
= $(1001 + 110 + 1 + 0.101010...)_2$
= $(10000.101010...)_2$

例3:将(1234)10转换为十六进制。

$$(1234)_{10} = (1 \times 10^{3} + 2 \times 10^{2} + 3 \times 10^{1} + 4 \times 10^{0})_{10}$$

$$= (1 \times A^{3} + 2 \times A^{2} + 3 \times A^{1} + 4 \times A^{0})_{16}$$

$$= (?)_{16}$$

当α为任意进制而β为十进制时,用此方法进行转换。而 当β不为十进制时,则不用此方法进行转换。

1.2.2.2 基数乘除法 Radix Multiply Divide Methed

- 要点: (1) 在 α 进制下完成(N) $\alpha \rightarrow$ (N') 的转换
 - (2) 整数部分转换用基数除法
 - (3) 小数部分转换用基数乘法
 - 1. 整数转换(基数除法) Radix Divide Methed

设: (N)_{\alpha} = (N') = (b_{n-1}b_{n-2}...b₁b₀)
$$\beta$$
 (0\leq b_i\leq \beta-1)
$$= (b_{n-1} \times 10^{n-1} + b_{n-2} \times 10^{n-2} + ... + b_1 \times 10^1 + b_0 \times 10^0) \beta$$

将bi、10转换成α进制下的数,则

以下讨论在a进制下进行:

等式两边同除以B,则

$$N/\beta = b_{n-1} \times \beta^{n-2} + b_{n-2} \times \beta^{n-3} + ... + b_1 \times \beta^0 + b_0/\beta$$

则得到

第一个商

 $\overline{\chi}$: $0 \le b \le \beta - 1$

第一个余数 \mathbf{b}_0

: 得到第一个余数b₀

又令:

$$N_1 = b_{n-1} \times \beta^{n-2} + b_{n-2} \times \beta^{n-2} + ... + b_2 \times \beta^1 + b_1$$

等式两边同除以B,则

$$N_1/\beta = b_{n-1} \times \beta^{n-3} + b_{n-2} \times \beta^{n-4} + ... + b_2 \times \beta^0 + b_1/\beta$$

同理得到

第二个商

又: $0 \le b_1 \le \beta - 1$

: 得到第二个余数b₁

第二个余数 \mathbf{b}_1

依次类推,令:

$$N_{i-1} = b_{n-1} \times \beta^{n-i-1} + b_{n-2} \times \beta^{n-i-2} + ... + b_i \times \beta^1 + b_{i-1}$$

等式两边同除以B,则

$$\mathbf{b}_{i-1}/\beta = \mathbf{b}_{n-1} \times \beta^{n-i-2} + \mathbf{b}_{n-2} \times \beta^{n-i-3} + \dots + \mathbf{b}_{i} \times \beta^{0} + \mathbf{b}_{i-1}/\beta^{0}$$

: 得到

- 第i个商
- : 和第i个余数bi

第i -1个 余数 b_{i-1} 直至,令: $N_{n-2} = b_{n-1} \times \beta^{n-2} + b_{n-2}$ 等式两边再同除以 β ,则

$$N_{n-2}/\beta = b_{n-1} \times \beta^{0} + b_{n-2}/\beta$$

∴ 得到 第 n-1个商

最后 令: N_{n-1}= b_{n-1}

第n-1个 余数 b_{n-2}

则
$$N_{n-1}/\beta = b_{n-1}/\beta$$

此时商为零,得到第n个余数 b_{n-1},则转换结束。

这种方法也称为"除基取余"。

例1 将十进制的179 转换成二进制数。

$$179 \div 2 = 89 \dots$$
 (b_0)
 $89 \div 2 = 44 \dots$ (b_1)
 $44 \div 2 = 22 \dots$ (b_2)
 $22 \div 2 = 11 \dots$ (b_3)
 $11 \div 2 = 5 \dots$ (b_4)
 $5 \div 2 = 2 \dots$ (b_5)
 $2 \div 2 = 1 \dots$ (b_6)
 $1 \div 2 = 0 \dots$ (b_7)

例2 将十进制的3417转换成十六进制数。

即
$$(3417)_{10} = (D59)_{16}$$

2. 小数转换(基数乘法) Radix Multiply Methed 设:

$$\begin{array}{ll}
(N)_{\alpha} &= (N')_{\beta} \\
&= (0 \cdot C_{-1} C_{-2} \dots C_{-m})_{\beta} \\
&= (C_{-1} \times 10^{-1} + C_{-2} \times 10^{-2} + \dots + C_{-m} \times 10^{-m})_{\beta} \\
&= (0 \le C_{i} \le \beta - 1)
\end{array}$$

将 b_i、10转换成α进制下的数,则

$$(N)_{\alpha} = (C_{-1} \times \beta^{-1} + C_{-2} \times \beta^{-2} + ... + C_{-m} \times \beta^{-m})$$

$$(0 \le C_{i} \le \beta - 1)$$

以下讨论在α进制下进行:

$$\Leftrightarrow$$
: N=C₋₁×β⁻¹+C₋₂×β⁻²+...+C_{-m}×β^{-m}

等式两边同乘以B,则

$$N \times \beta = C_{-1} + C_{-2} \times \beta^{-1} + ... + C_{-m} \times \beta^{-m+1}$$

: 得到

整数部分的 第一位 C_{-1} 小数部分

 \therefore $0 \le C \le \beta - 1$

又令: $N_1 = C_{-2} \times \beta^{-1} + C_{-3} \times \beta^{-2} + ... + C_{-m} \times \beta^{-m+1}$ 等式两边同乘以 β ,则

$$N_1 \times \beta = C_{-2} + C_{-3} \times \beta^{-1} + ... + C_{-m} \times \beta^{-m+2}$$

: 得到

整数部分的 第二位 C₋₂ 小数部分

依次类推, 又令:

$$N_{i-1} = C_{-i} \times \beta^{-1} + C_{-i-1} \times \beta^{-2} + ... + C_{-m} \times \beta^{-m+i-1}$$

等式两边同乘以B,则

$$N_{i-1} \times \beta = C_{-i} + C_{-i-1} \times \beta^{-1} + ... + C_{-m} \times \beta^{-m+i}$$

: 得到

整数部分的 第i位 C_{-i} 小数部分

直至, 令: $N_{m-2} = C_{-m+1} \times \beta^{-1} + C_{-m} \times \beta^{-2}$

等式两边再同乘以B,则

$$N_{m-2} \times \beta = C_{-m+1} + C_{-m} \times \beta^{-1}$$

: 得到

整数部分的第 m-1位 C_{-m+1}

小数部分

最后,令: $N_{m-1} = C_{-m} \times \beta^{-1}$

则 $N_{m-1} \times \beta = C_{-m}$

得到第m位 C_{-m},则转换结束。

这种方法也称为"乘基取整"。

除基取余,乘基取整,近点先得。

例3 将 (0.375)10 转换成二进制数。

$$0 . 375$$
 $\times 2$
 $[0] . 750$ $C_{-1} = 0$
 $\times 2$
 $[1] . 500$ $C_{-2} = 1$
 $\times 2$
 $[1] . 000$ $C_{-3} = 1$

即
$$(0.375)_{10} = (0.011)_2$$

例4 将(0.4321)10转换成十六进制数。

$$N_0 = 0.4321$$

$$N_0 \times \beta = 0.4321 \times 16 = 6.9136$$
 $N_1 = 0.9136$ $C_{-1} = 6$

$$N_1 \times \beta = 0.9136 \times 16 = 14.6176$$
 $N_2 = 0.6176$ $C_{-2} = 14(E)$

$$N_2 \times \beta = 0.6176 \times 16 = 9.8816$$
 $N_3 = 0.8816$ $C_{-3} = 9$

$$N_3 \times \beta = 0.8816 \times 16 = 14.1056$$
 $N_4 = 0.1056$ $C_{-4} = 14(E)$

即 $(0.4321)_{10} \approx (0.6E9E)_{16}$

注意:

在转换中,若小数部分最终为零,则表明此数是准确转换;但若小数部分为循环小数或无限不循环小数,则表明此数不是准确转换,即转换有误差。

N的表示

• (N) = ((((
$$b_{n-1} \times \beta + b_{n-2}) \times \beta + ... + b_1$$
) $\times \beta + b_0$).

$$(\beta^{-1} \times (b_{-1} + ... + \beta^{-1} \times (b_{-m+1} + b_{-m} \times \beta^{-1}))))$$

• 无论整数小数,基数乘除法最先转换出的是最靠近小数点的系数。

• (数值转换是考查点)

 $(0 \le b_i \le \beta - 1)$

1.2.2.3 任意两种进制之间的转换 General positional-number-system Conversions

$$(N)_{\alpha} \rightarrow (N')_{\beta}$$

- 1. 若熟悉α进制(十进制)的运算规则,则采用基数乘除 法完成转换;
- 2. 若熟悉β进制十进制的运算规则,则采用多项式替代法 完成转换;
- 3. 若不熟悉α、β进制的运算规则,则可利用十进制作为转 换桥梁,如下图所示:

例3 将(1023.231)4转换成五进制数。

 $(1023.231)_4$

=
$$(1 \times 10^{3} + 0 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0} + 2 \times 10^{-1} + 3 \times 10^{-2} + 1 \times 10^{-3})_{4}$$

$$= (1 \times 4^{3} + 0 \times 4^{2} + 2 \times 4^{1} + 3 \times 4^{0} + 2 \times 4^{-1} + 3 \times 4^{-2} + 1 \times 4^{-3})_{10}$$

$$= 64 + 0 + 8 + 3 + 0.5 + 0.1875 + 0.015625$$

= 75.703125

整数部分与小数部分分别转换。

整数部分

小数部分

即
$$(75.703125)_{10} \approx (300.3224)_5$$

 \therefore $(1023.231)_4 \approx (300.3224)_5$

1.2.2.4 直接转换法

Conversion Between

Base α and Base β when $\beta = \alpha^k$

二进制数是计算机内部真正使用的数,但由于它的表示既<mark>易出错也不易交流</mark>,故常常用八进制或十六进制的形式表示。

二进制*Binary*,简称B,如 (10)₂ = (10)_B;

八进制*Octal*,简称O ,如 (10)₈ = (10)₀;

十六进制*Hexadecimal*, 简称H,如(10)₁₆=(10)_H。

转换: $(N)_{\alpha} \rightarrow (N')_{\beta}$

当基数α、β是2的幂次方时,可以进行直接转换。

直接转换图示:

基数为 2^k 的进位制是将一个k位二进制字符串用一位数字字符表示,如下表中 $(5)_8$ = $(101)_2$ 、 $(5)_{16}$ = $(0101)_2$

因此,可用划分相应字符串的方法实现基数为 2k的进位制与二进制之间的直接转换。

基数为2与基数为2k的关系:

	R=2	R=4	R=8	R=16	R=2	R=4	R=8	R=16
	0	0	0	0	1100	30	14	C
	1	1	1	1	1101	31	15	D
	10	2	2	2	1110	32	16	${f E}$
i	11	3	3	3	1111	33	17	F
	100	10	4	4	10000	100	20	10
	101	11	5	5	10001	101	21	11
	110	12	6	6	10010	102	22	12
	111	13	7	7	10011	103	23	13
	1000	20	10	8	10100	110	24	14
ļ	1001	21	11	9	10101	111	25	15
	1010	22	12	\mathbf{A}	10110	112	26	16
I	1011	23	13	В	•••	•••	•••	•••

(N)₂=(N')_{2k}直接转换的步骤:

- (1) 将二进制数用并列表示法表示;
- (2) 以小数点为中心,分别向左、向右分组,每k位一组;
- (3) 注意小数部分的右补零;
- (4) 每组用一位基数为2k的进位制数表示,则转换完成。

$$(N)_2 = (K_{n-1}K_{n-2}...K_1K_0.K_{-1}K_{-2}...K_{-m})_2$$

向左分组

向右分组

例1 将(11111010.0111) 2转换为八进制数。

二进制数 011 111 010.011 100

八进制数 3 7 2.3 4

即 $(111111010.0111)_2 = (372.34)_8$

$(N)_{2^k} = (N')_2$ 直接转换的步骤:

- (1) 将基数为 2k 进制的数用并列表示法表示;
- (2) 以小数点为中心,分别向左、向右分组;
- 即:基数为2k的进位制数的每一位用一个k位二进制 字符 串表示,则转换完成。

例2 将(213.01) 4转换为二进制数。

四进制数 2 1 3.0 1

二进制数 10 01 11 . 00 01

即 $(213.01)_4 = (100111.0001)_2$

$(N)_{2k} = (N')_2$ 直接转换的步骤:

即:转换以二进制为"桥梁"完成。

例3 将(AF.16C)₁₆转换为八进制数。

十六进制数 A F . 1 6 C 二进制数 10101111.000101101100 八进制数 2 5 7 . 0 5 5 4 即 (AF.16C)₁₆=(257.0554)₈

1.2.2.5 数制转换时小数位数的确定

问题的提出:在进行(N) _α→ (N') _β的数制转换时,会出现小数部分不能精确转换的情况,那么,转换后的小数部分应是怎样的呢?

- ① 小数位数受机器字长的限制而确定;
- ② 由题目给定小数的位数;
- ③ 保证转换成β进制后维持与α进制相同的精度。

举例说明:如果一个十进制数的精度是0.001,转换到四进制数时这个数的小数部分应该取几位?

用0.326与0.327作比较:

0.32	26
×	4
[1].30 ×	04b ₋₁
[1].21 ×	16b ₋₂
	64b ₋₃
[3].4: ×	56b ₋₄
[1].82	24 b ₋₅

$$0.327$$
 \times 4
 $\overline{[1].308...b_{-1}}$
 \times 4
 $\overline{[1].232...b_{-2}}$
 \times 4
 $\overline{[0].928...b_{-3}}$
 \times 4
 $\overline{[3].712...b_{-4}}$
 \times 4
 $\overline{[2].848...b_{-5}}$

即:转换后精度应该是0.00001。

设:α进制的小数有k位,转换成β进制后具有相同 精度的小数是」位,则

$$(0.1)_{\alpha}^{k} = (0.1)_{\beta}^{j}$$

即:
$$\left(\frac{1}{10}\right)^{k} = \left(\frac{1}{10}\right)^{j}$$

在十进制中可表示为:

$$\left(\frac{1}{\alpha}\right)^{k} = \left(\frac{1}{\beta}\right)^{j}$$

即

$$\alpha^{k} = \beta^{j}$$

两边取对数
$$\log \alpha^k = \log \beta^j$$

即

$$k \log \alpha = j \log \beta$$

$$\mathbf{j} = \mathbf{k} \frac{\log \alpha}{\log \beta}$$

则 j 应满足不等式:
$$k \frac{\log \alpha}{\log \beta} \le j < k \frac{\log \alpha}{\log \beta} + 1$$

例:将(0.4321)₁₀转换成十六进制时,小数位数应取几位?

j 应满足下列不等式:

$$4 \frac{\log 10}{\log 16} \le j < 4 \frac{\log 10}{\log 16} + 1$$

即 $3.320 \le j < 4.320$

所以,小数位数应取4位。

- 总结数制转换
 - 任意进制→十进制
 - -十进制→任意进制
 - 任意进制→任意进制
 - 多项式替代法+ 基数乘除法
 - -2的整数次幂进制之间
- 分组直接转换

多项式替代法

基数乘除法

- -注意哪些转换会有转换误差
- -当出现转换不尽时,小数位数该如何确定

习题

1.2.3 带符号数的代码表示 Signed Number Representation

带符号数	真值	符号位	数值位
X	+5	+	5
${f y}$	- 7		7

所谓"带符号数的代码表示"是指

带符号数的数值位和符号位都用统一的代码形式表示,即仅取 0 和 1 两种数字符号表示。

有三种代码表示:原码、反码和补码。

• 有关带符号数

- -代码表示系统(符号位+数值位)原码、反码、补码 (生成规则,表示范围)
- -加减运算规则(符号位+数值位)

1.2.3.1 原码 Ture form (符号-数值表示法 Signed-magnitude Representation)

1. 原码的形成规则:

真值	符号位	数值位
X	S	(二进制数)
原码	+→0	不变
[x] _原	- →1	不变

例1. 用8位二进制代码表示的原码

$$x = +5$$
 $[x]_{\text{ff}} = 00000101$
 $y = -7$ $[y]_{\text{ff}} = 10000111$

例2. 由原码写出所对应的十进制数值:

$$[x]_{\bar{\mathbb{R}}} = 01010101 \ x = +85;$$
 $[x]_{\bar{\mathbb{R}}} = 11010101 \ x = -85;$ $[x]_{\bar{\mathbb{R}}} = 01111111 \ x = +127;$ $[x]_{\bar{\mathbb{R}}} = 11111111 \ x = -127;$ $[x]_{\bar{\mathbb{R}}} = 100000000 \ x = +0;$ $[x]_{\bar{\mathbb{R}}} = 100000000 \ x = -0;$

2. 将真值 x 变换成原码 $[x]_{g}$ 的变换公式: 在一个 n 位原码系统中(包括一位符号位),则

$$[x]_{\widehat{\mathbb{R}}} = \begin{cases} x & 0 \le x < 2^{n-1} \\ 2^{n-1} - x & -2^{n-1} < x \le 0 \end{cases}$$

- 3. 原码的加法运算: $[z]_{\bar{R}} = [x]_{\bar{R}} + [y]_{\bar{R}}$
- ② 当[x]_原、[y]_原的符号 S 相异时,先判断两数的绝对值的大小,[z]_原的符号同大数的原码符号,[z]_原的数值为用大数的绝对值减去小数的绝对值的差。

1.2.3.2 反码 Ngative Number (对 "1"补 One's-complement Representation)

1. 反码的形成规则:

真值 X	符号位 S	数值位 (二进制数)
反码	+→0	不变
[x] _反	- →1	按位变反

例1. 用8位二进制代码表示的原码、反码

$$x = +5$$
 $[x]_{\mathbb{R}} = 00000101$ $[x]_{\mathbb{R}} = 00000101$

$$y = -7$$
 $[y]_{\mathbb{R}} = 10000111$ $[y]_{\mathbb{R}} = 11111000$

例2. 由反码写出所对应的十进制数值: 至少在加减上. if/else 省3.

$$[x]_{\cancel{\boxtimes}} = 01010101 \quad x = +85; \quad [x]_{\cancel{\boxtimes}} = 11010101 \quad x = -$$

$$[x]_{\overline{\mathbb{N}}} = 011111111 \quad x = +127; \quad [x]_{\overline{\mathbb{N}}} = 111111111 \quad x = -0;$$

$$[x]_{\cancel{\boxtimes}} = 00000000 \quad x = +0; \qquad [x]_{\cancel{\boxtimes}} = 10000000 \quad x = -127;$$

2. 将真值 x 变换成反码 [x] 反 的变换公式:

在一个n位反码系统中,则

$$[x]_{\mathbb{R}} = \begin{cases} x & 0 \le x < 2^{n-1} \\ (2^n-1) + x & -2^{n-1} < x \le 0 \end{cases}$$

反码运算时可以将符号位与数值位一起参与运算, 但有点Bug

1.2.3.3 补码 tow's-complement Representation

1. 补码的形成规则:

8位 负多一个-128~+127

真值	符号位	数值位
X	S	(二进制数)
补码	+→0	不变
[x] _补	- →1	按价变
【本】补		1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1

例1. 用8位二进制代码表示的原码、补码

$$x = +5$$
 $[x]_{\mathbb{R}} = 00000101$ $[x]_{\ref{A}} = 00000101$

$$y = -7$$
 $[y]_{\bar{R}} = 10000111$ $[y]_{\dot{A}} = 11111001$

例2. 由补码写出所对应的十进制数值: 0 010101

$$[x]_{\nmid k} = 01010101 \ x = +85; \ [x]_{\nmid k} = 11010101) \ x = -43;$$

$$[x]_{\lambda} = 011111111 \quad x = +127; \quad [x]_{\lambda} = 111111111 \quad x = -1;$$

$$[x]_{\frac{1}{2}} = 00000000 \quad x = +0; \quad [x]_{\frac{1}{2}} = 10000000 \quad x = -128;$$

2. 将真值 x 变换成补码 [x]* 的变换公式:

在一个n位补码系统中,则

$$[x]_{\nmid h} =$$

$$\begin{cases} x & 0 \le x < 2^{n-1} \\ 2^n + x & -2^{n-1} \le x < 0 \end{cases}$$

运算时将符号位与数值位一起参与运算

原码、反码和补码之间的关系如下图

1.2.4 带符号数的加、减运算 Signed Number Addition and Subtraction

- 原码 加减法有不同的规则 关键是要判大小;
- 反码 $[x+y]_{\mathbb{Q}} = [x]_{\mathbb{Q}} + [y]_{\mathbb{Q}};$ $[x-y]_{\mathbb{Q}} = [x]_{\mathbb{Q}} + [-y]_{\mathbb{Q}};$ \mathcal{R} 处理加法
- 补码 $[x+y]_{\dot{A}} = [x]_{\dot{A}} + [y]_{\dot{A}};$ $[x-y]_{\dot{A}} = [x]_{\dot{A}} + [-y]_{\dot{A}};$

反码与补码的运算规则:

- 反码 $[x+y]_{\mathbb{Q}} = [x]_{\mathbb{Q}} + [y]_{\mathbb{Q}};$ $[x-y]_{\mathbb{Q}} = [x]_{\mathbb{Q}} + [-y]_{\mathbb{Q}};$
- 补码 $[x+y]_{\dot{A}} = [x]_{\dot{A}} + [y]_{\dot{A}};$ $[x-y]_{\dot{A}} = [x]_{\dot{A}} + [-y]_{\dot{A}};$
- ① 减法运算:按加法运算完成;
- ② 符号位S的处理: S 被看成一位数码,并与数值位一样,按同样的加法规则进行处理,所得结果的符号位即是正确结果的符号位。
- ③ 进位的处理:反码运算时符号位产生的进位要加到和数的最低位上去, 补码运算时符号位产生的进位要丢掉。

例1 求 z = x - y, 其中 x = +1010, y = +0011 (クーろ・

- ∵ x 绝对值 > y 绝对值
- $|z|_{\mathbb{F}} = [01010 00011]_{\mathbb{F}} = 00111$ z = +0111
- (2) 补码运算: $[x]_{\stackrel{}{\mathbb{A}}} = 01010$ $[-y]_{\stackrel{}{\mathbb{A}}} = [-0011]_{\stackrel{}{\mathbb{A}}} = 11101$

例1 求 z = x - y, 其中 x = +1010, y = +0011

(3)反码运算:
$$[x]_{\mathbb{Z}} = 01010$$

$$[-y]_{\mathbb{Z}} = [-0011]_{\mathbb{Z}} = 11100$$

例2 求
$$z = x - y$$
, 其中 $x = +0011$, $y = +1010$

(1) 原码运算:
$$[x]_{\mathbb{R}} = 00011$$
 $[y]_{\mathbb{R}} = 01010$

∵ x 绝对值 < y 绝对值

:
$$[z]_{\mathbb{R}} = [-(01010 - 00011)]_{\mathbb{R}} = -00111 z = -0111$$

(2) 补码运算:
$$[x]_{\stackrel{}{\mathbb{A}}} = 00011$$
 $[-y]_{\stackrel{}{\mathbb{A}}} = [-1010]_{\stackrel{}{\mathbb{A}}} = 10110$

11001

例2 求 z = x - y, 其中 x = +0011, y = +1010

(3)反码运算: $[x]_{\mathbb{A}} = 00011$ $[-y]_{\mathbb{A}} = [-1010]_{\mathbb{A}} = 10101$

要料: 给真鱼, 写出原反社,

本礼器。[X]本 新器 [-2]和

反码 [x+y]反= [x]反+ [y]反;

[x-y]反= [x]反+ [-y]反;

补码 [x+y]补= [x]补+ [y]补;

 $[x-y] \stackrel{\wedge}{\Rightarrow} = [x] \stackrel{\wedge}{\Rightarrow} + [-y] \stackrel{\wedge}{\Rightarrow} ;$

985 | 985 - 211 + 789 774 1974

有树砂、安冰成为加,进位各弃

怎么求反,怎么求补?

- 总结带符号数
 - 代码表示系统(符号位+数值位)
 - 原码、反码、补码 → 真值
 - -加减运算规则
 - 只做加法
 - 符号位、数值位变反、变补时一起处理
 - 符号位、数值位做二进制加法时, 一起处理
 - 补码的优点在哪里

1.2.5 十进制数的常用代码 Binary code for decimal numbers

1. 十进制数的代码表示

- 既具有二进制数的形式,又具有十进制数的特点,即用四位二进制数的代码表示一位十进制数;
- 可按位直接相互转换;
- 可按位直接运算。

2. 常用的代码

"8421"码(BCD码 Binary coded decimal)

"2421"码

余3码 (Excess-3)

表1—3 三种十进制数的代码表示法

十进制整数	8421码	2421码	余3码最简
0	0000	ب پر 0000	0011
1	0001川清	0001月15	0100 中间
2	0010	0010	סוסו 1010
3	0011	0011有权	0110
4	0100	0100 (5)	0111
5	0101	1011 ()	o. 1000
6	0110	1100	1001
7	0111	1101	1010
8	1000	1110	1011
9 波些	(疝 1001	1111	1100
无效码区 🖔	7010、1011、	0101, 0110,	0000、0001、
Unused code	1100, 1101,	0111、1000、	0010、1101、
wrds	1110、1111	1001, 1010	1110、1111

3. 代码的特点

设: 代码表示为 A₃A₂A₁A₀

伝考與定.

代码	对应的十进制数值	代码直接按位转换 8421.
8421码	有权码 (Weighted code)	$(13)_{10} = (00010011)_{BCD}$ $(1011101010000)_{BCD} = (1750)_{10}$
	$8A_3+4A_2+2A_1+1A_0$	
2421码	有权码、对9自补码 1101+0010=9分单7 2A ₃ +4A ₂ +2A ₁ +1A ₀	$ \begin{array}{c} (13)_{60} = (00010011)_{2421} \\ (1110110110110000)_{2421} = (1750)_{10} \end{array} $
	无权码、对9自补码	尼5.
余3码	$ \begin{vmatrix} 8 A_3 + 4 A_2 + 2 A_1 + 1 A_0 \\ -0011 \end{vmatrix} $	(1001010100000110) $_{ 余3} = (1750)_{10}$ 4条3、10条3・8 条3 3条3
	0011	4条3、10条5・8条5 3条5

מאיי היי מציי אייי ווי וי

三种十进制数代码的分布图

四位二进制代码	8421码	2421码	余3码
0000	0000 0	0000 0	好 0000) 非
0001	0001 <mark>1</mark>	00011	好 0000 5 0001 0010 非 码 区
0010	0010 2	0010 2	
0011	0011 3	0011 3	0011 0 英
0100	01004	0100 4	01001
0101	01015	0101 ๅ 🖊	0101 2
0110	01106	0110	0110 3
0111	01117	0111 【	0111 4
1000	1000 8	1000	1000 5
1001	1001 <mark>9</mark>	1001	1001 6
1010	1010 չ	1010	1010 7//
1011 //	1011	1011 5 //	1011 8 /
1100	1100 【非	1100 6'	1100 9
1101 (3	1100 1101 円 区	1101 7 //	1101)非
1110	1110	1110 8	1101) 1110 码 1111 区
1111	1111 ⁾	1111 9 🗸	1111 丿区

4. 代码运算

C = A + B

若按二进制数直接运算,则运算结果要修正。

例:一位代码的加法运算,如下:

942118正常(不用位)

Q171万旦

OTZIPT O	l
$C_8C_4C_2C_1$	
$= A_8 A_4 A_2 A_1 + B_8 B_4 B_2 B_1$	

$$C_2C_4C_2C_1$$

= $A_2A_4A_2A_1 + B_2B_4B_2B_1$

余3码

$$C_4C_3C_2C_1$$

= $A_4A_3A_2A_1+B_4B_3B_2B_1$

$$C + 0110$$

例: 1001+1001

修正的算法较复杂 (略)

$$1. \stackrel{\text{def}}{=} C \leq 1111 ,$$

C = 0011

$$C + 0011$$

1.2.6 可靠性编码 Error Detection Codes and Correction Codes

目的:解决代码在形成或传输过程中可能会发生的错误,提高系统的安全性。

方法: 1. 使代码自身具有一种特征或能力;

- 2. 增加信息位之间的运算,如异或运算⊕;
- 3. 增加校验位。

作用: 1. 不易出错;

- 2. 若出错时易发现错误; (低级)
- 3. 出错时易查错且易纠错。(高级)

• 关于可靠性编码

- 格雷码
- 奇偶校验码
- -海明校验码

作用,产生

1.2.6.1 格雷码 (Gray) 二一格写标准. 发

特点: 任意两个相邻数的代码只有一位二进制数不同。

目的: 解决代码生成时发生的错误。

但是,当选用典型Gray码设计加1计数器时,就不会出现上述情况。如下: 比较精繁

Gray码还包括步进码、十进制Gray 码等。参见书p15.表1-4。

表1-4 几种Gray码、步进码和二进制码对照表 点:2曲划 Vs 原型的 Grow. 系统 循环

十进制数	二进制数	典型Gray	十进制 Gray码(1)	十进制 Gray码(2)	生/0/32 步进码 开份供被5
0	0000	0000	0000 👭	0000	00000
1	0001	0001	0001	0001	00001
2	0010	0011	0011	0011	00011
3	0011	0010	وَيِّ 0010	差! 0010	00111
4	0100	0110	0110	0110	01111
5	0101	0111	1110	0111	/ 1111 1/
6	0110	0101	1010	0101	11110
7	0111	0100	1011	0100	111/00
8	1000	1100	1001	1100	11/000
9	1001	1101	1000	1000	10000
10	1010	1111	松照信	5W和	以应相
11	1011	1110	10 12 1	4/2	1(- Z
12	1100	1010	果些八小	7-117	2
13	1101	1011	1 = 1=	曲松面り	在是Groy
14	1110	1001	逐一个	八八四	石头
15	1111	1 000	選 当 出 =	进列	但加续观

		•			
A 0	⊕ A	1⊕A	A 🕀 A	$A \oplus \overline{A}$	
0 1	0 1	1 0	0	1 1	

设:二进制码 B

例:二进制码 B

典型Gray码G

: 由二进制码生成典型Gray码 可从看

$$G_0 = B_1 \oplus B_0$$

$$G_1 = B_2 \oplus B_1$$

$$G_i = B_{i+1} \oplus B_i$$

$$G_{n-2} = B_{n-1} \oplus B_{n-2}$$

$$G_{n-1} = 0 \oplus B_{n-1} = B_{n-1}$$

反之,由典型Gray码也可以得到二进制码,如下:

设: 典型Gray码 G_{n-1} G_{n-2} ... G_1 G_0

$$G_i = B_{i+1} \oplus B_i$$

则等式两边同时 Bit1:

$$G_i \oplus B_{i+1} = B_{i+1} \oplus B_i \oplus B_{i+1}$$

$$\therefore B_i = G_i \oplus B_{i+1}$$

故
$$B_{n-1} = G_{n-1} \oplus B_n = G_{n-1} \oplus 0 = G_{n-1}$$

 $B_{n-2} = G_{n-2} \oplus B_{n-1}$

$$\mathbf{B}_0 = \mathbf{G}_0 \oplus \mathbf{B}_1$$

设: 典型Gray码 G

 $G_{n-1}G_{n-2}$... G_1

二进制码 B

例: 典型Gray码G

1 1 1 0

二进制码 B

低位算完在上佬, 效率比较低下

另一种解决方案 另一直接取成的 所有。异或

 $B_{n-3} = G_{n-3} \oplus B_{n-2} = G_{n-3} \oplus G_{n-2} \oplus G_{n-1}$

74LS 民用形式 54LS 军用产品 城本的。

$$\mathbf{B}_0 = \mathbf{G}_0 \oplus \mathbf{B}_1 = \mathbf{G}_0 \oplus \mathbf{G}_1 \oplus \ldots \oplus \mathbf{G}_{n-2} \oplus \mathbf{G}_{n-1}$$
 特征

典型Gray码G

+进制 典型 Gray 新筑角的/设计界系Gray 典型 Gray码的一个特点: 要 模10 步进码/(2)种Gray.

所有对应于十进制数2m-1(m为正整数)的Grav: (2??)
仅在m位上有1,其他位都为0。 2个1 不可以回 0· 习以回 0 模 2/4/2·

m	十进制数 2m-1	典型Gray码	
1	1 (0001)	0001	
2	3 (0011)	001 0	
3	7 (0111)	0100	
4	15 (1111)	1000	

考过 模 6 格雷码计数器设计

表1-4 几种Gray码、步进码和二进制码对照表

十进制数	二进制数	典型Gray	十进制 Gray码(1)	十进制 Gray码(2)	步进码
0	0000	0000	0000	0000	00000
1	0001	0001	0001	0001	00001
2	0010	0011	0011	0011	00011
3	0011	001 0	0010	0010	00111
4	0100	0110	0110	0110	01111
5	0101	0111	1110	0111	11111
6	0110	0101	1010	0101	11110
7	0111	0100	1011	0100	11100
8	1000	1100	1001	1100	11000
9	1001	1101	1000	1000	10000
10	1010	1111			
11	1011	1110			
12	1100	1010			
13	1101	1011			
14	1110	1001			
15	1111	1000			

校验码和纠错码 Codes for detecting and Correcting Errors

误码率曲线大

传输系统电路示意图:

信息位B_{n-1~0}

(有干扰)

发送 电路

最大似处解 接收 信息位B_{n-1~0}

电路

问题: 信息在传输过程中受外界干扰而出错,

且绝大多数为单错。一个错误(多错不是误破 是系统该重造3)

解决方法:①增加校验位(P);

② 通过异或运算⊕;

信息论(矩阵分析) 根据字论

1.2.6.2 奇偶校验码 Parity Code

校验码: (单错情况下)

信息位 $B_{n-1\sim 0}$ 校验位 P

南 Bn-1 切 Bi 田的由 Pith

= ///

偶校验:

校验码P的取值使校验码中"1"的个数是偶数;

= B_{n-1} ⊕ B_{n-2} ⊕ ... ⊕ B₁ ⊕ B₀ P偶由 ∑□B_k 元/和上 补上-位. P偶= 0/1. 决定 使1个数最终有 24个

奇校验:

校验码P的取值使校验码中"1"的个数是奇数

(用的人少)

 $P_{rac{a}} = B_{n-1} \oplus B_{n-2} \oplus ... \oplus B_1 \oplus B_0 \oplus 1$ 信息条十路,据作和

奇偶校验码:具有发现一位错的能力。

例: 偶校验结果

1.2.6.3 海明校验码 Hamming codes 含试不考

- 目的:不仅能检测出单错,还能变正单错 3角级想
- 方法:增加校验位及相应的异或运算

以四位信息位 $B_4B_3B_2B_1$ 为例,在传输前生成它的海明校验码: 3

(2) 校验位的生成公式: P₃ = B₄ ⊕ B₃ ⊕ B₂ ⊖ te 叫放 P_n.

$$P_1 = B_4 \oplus B_2 \oplus B_{1/1} + 正确$$

$$B_{44} = 34 \oplus B_{24} \oplus B_{1/4} + E_{44} \oplus B_{44} \oplus B_{44}$$

纠错目标001→ 马锅 7种河能

表1-6 "8421"海明码 4位核验 { 14正确 } 16										
位序	7	6	5	4	3	2	1			
N.	\mathbf{B}_4	\mathbf{B}_3	\mathbf{B}_2	P_3	\mathbf{B}_1	\mathbf{P}_{2}	\mathbf{P}_1			
0	0	0	0	0	0	0	0			
1	0	0	0	0	1	1	1			
2	0	0	1	1	0	0	1			
3	0	0	1	1	1	1	0			
4	0	1	0	1	0	1	0			
5	0	1	0	1	1	0	1			
6	0	1	1	0	0	1	1			
7	0	1	1	0	1	0	0			
8	1	0	0	1	0	1	1			
9	1	0	0	1	1	0	0			

对传输后的海明码进行检错和校错:

(3) 校验和:
$$S_3 = B_4 \oplus B_3 \oplus B_2 \oplus P_3$$
 二 $\bigcirc = > \bigcirc$
 $S_2 = B_4 \oplus B_3 \oplus B_2 \oplus P_2 = \bigcirc = >$
 $S_1 = B_4 \oplus B_2 \oplus B_2 \oplus P_{10} = \bigcirc = >$

- ① 当 $S_3 S_2 S_1 = 0$ 时,接收到的信息是正确的;
- ② 当1≤S₃ S₂ S₁≤7时,则S₃ S₂ S₁所表示的二进制值 就是出错的那一位的位序值。

例: 若接收到的海明码为: 7 6 5 4 3 2 1

表1-7 出错表的确定

$\sqrt{S_3} =$	B ₄ ⊕	B ₃ (\mathbf{B}_2	\mathfrak{P}_3				
$S_2 =$	$\mathbf{B}_{4} \oplus$	\mathbf{B}_3		•	\mathbf{B}_1 $\boldsymbol{\oplus}$	P_2		
$\sqrt{S_1} =$	$\mathbf{B_4}$	(\mathbf{B}_2	⊕	\mathbf{B}_1	(\mathbf{P}_1	
$S_3 S_2 S_1$	111	110	101	100	011	010	001	000
出错位序列	7	6	5	4 *********	3	2 2 # 1 # K	红人名	ÁBZ.
出错位	\mathbf{B}_4	\mathbf{B}_3	\mathbf{B}_2	P_3	\mathbf{B}_{1}	P ₂	P ₁	

- 2. 信息位B分布在非2k位上,使其在一个以上的校验和S中出现;
- 3. 若传送后海明码中的某一位出错,则将影响它所在的校验和 Si 故能得到它的位序值,即可实现其单错的定位和校错。

设:信息位n位,校验位k位

则 $(2^k-1)-k\geq n$

或 $(2^k-1) \ge n+k$

如下表所列:

4位校验

 校验位数k	1	2	3	4	5	6	7	8
 最大信息位数n	0	1	4	11	26	57	120	247
 海明码位数 (2 ^k -1)	1	3	7	15	32	63	127	255

74海明码 增加奇偶校验扩展位 84增余海明码更为常用

可靠性编码

格雷码 奇偶校验码 海明码

格雷码

000, 001, 011, 010, 110, 111, 101, 100

Simulation Taveforms

Simulation mode: Timing

000, 001, 010, 100, 011, 101, 110, 111

One hot编码: 001,010,100

奇偶校验码

000 - 001 - 011海明距离为2站远-点 ・一個で码间距d·可直错d-1不具备纠正 000 - 001 - 011 - 111海明距离为3 海明d=5. 粒4纠2

- 总结可靠性编码
 - 格雷码——作用,特点

产生中的特 典型格雷码—二进制码 (考)

十进制数的格雷码

步进码 《设计模n格图计数

- 奇偶校验码——作用
- **孙-位新筑算出** 偶校验
- 海明校验码——作用 纠单错

海明距离信通解

海明码的位序

校验位的生成 4->1)

利用校验和进行校验, 确定是

否出错及出错位置。

习题

第一章 数制和编码

- 1.1 进位计数制(多项式替代法)
- 1.2 各种进位计数制的相互转换(重点,多项 式替代法,基数乘除法,直接转换法)
- 1.3 带符号数的代码表示 正负数
- 1.4 带符号数的加减法(补码系统运算最简单)
- 1.5 十进制数的常用代码(8421码, 2421码,
- 余3码)
- 1.6 可靠性编码(格雷码,典型格雷码,奇偶校验码,海明校验码)

第一章 数制和编码

- 1.1 进位计数制(多项式替代法)
- 1.2 各种进位计数制的相互转换(重点,多项 式替代法,基数乘除法,直接转换法)
- 1.3 带符号数的代码表示
- 1.4 带符号数的加减法(补码系统运算最简单)
- 1.5 十进制数的常用代码(8421码, 2421码,
- 余3码)
- 1.6 可靠性编码(格雷码,典型格雷码,奇偶校验码,海明校验码)