

Multiple Linear Regression

강필성 고려대학교 산업경영공학부 pilsung_kang@korea.ac.kr

회귀 분석: Regression Analysis

• 도요타 코롤라 자동차의 중고차 가격 예측

종속 변수 (target)

설명 변수 (attributes, features)

	Variable	Description			
┨	Price	Offer Price in EUROs			
1	Age_08_04	Age in months as in August 2004			
	KM	Accumulated Kilometers on odometer			
	Fuel_Type	Fuel Type (Petrol, Diesel, CNG)			
	HP	Horse Power			
	Met_Color	Metallic Color? (Yes=1, No=0)			
	Automatic	Automatic ((Yes=1, No=0)			
	CC	Cylinder Volume in cubic centimeters			
	Doors	Number of doors			
	Quarterly_Tax	Quarterly road tax in EUROs			
Ĺ	Weight	Weight in Kilograms			

다중 선형 회귀 모형: Multivariate Linear Regression

• 목적

- ✓ 종속변수 Y와 설명변수 집합 $X_1, X_2, ..., X_p$ 사이의 관계를 선형으로 가정하고 이를 가장 잘 설명할 수 있는 회귀 계수(regression coefficients)를 추정
- ✔ 예: 웨이퍼의 수율(Y)은 FDC 파라미터들(X)의 선형 결합으로 표현될 수 있음을 가정

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \cdots + \beta_d x_d + \epsilon$$
 unexplained unexplained

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 \cdots + \hat{\beta_d} x_d$$
coefficients

다중 선형 회귀 모형: Multivariate Linear Regression

- 다중 선형 회귀 모형: Multivariate Linear Regression
 - ✔ 반응변수들과 설명변수 사이의 관계를 선형으로 표현

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + \dots + \hat{\beta_d} x_d$$

다중 선형 회귀 모형: Multivariate Linear Regression

• 어떤 직선이 설명변수와 종속변수를 가장 잘 표현하는가?

- 최소자승법: Ordinary Least Squares (OLS)
 - ✓ 추정된 회귀식에 의해 결정된 값과 실제 종속변수 값의 차이를 최소한으로 줄이는 것을 목적으로 함

• 회귀 계수의 추정

✓ 최소자승법: Ordinary least square (OLS)

- Actual target: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \cdots + \beta_d x_d + \epsilon$
- Predicted target: $\hat{y} = \hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d$
- 목적: 실제 종속변수 값과 예측된 종속변수 값 사이의 <u>오차 제곱항을 최소화</u>

$$\min \frac{1}{2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \frac{1}{2} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} \cdots + \hat{\beta}_d x_{id}))^2$$

• 최소 자승법: 행렬을 이용한 해 구하기

 $\mathbf{X}: n \times (d+1) \ matrix, \ \mathbf{y}: n \times 1 \ vector$

 $\hat{\boldsymbol{\beta}}: (d+1) \times 1 \ vector$

상수항을 취급하기 위한 장치

• 최소 자승법: 행렬을 이용한 해 구하기

$$\mathbf{X}: \ n imes (d+1) \ matrix, \ \mathbf{y}: \ n imes 1 \ vector$$
 $\hat{\boldsymbol{\beta}}: (d+1) imes 1 \ vector$ $\min E(\mathbf{X}) = rac{1}{2} \Big(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \Big)^T \Big(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \Big)$ $\Rightarrow rac{\partial E(\mathbf{X})}{\partial \hat{\boldsymbol{\beta}}} = -\mathbf{X}^T \Big(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \Big) = 0$ $\Rightarrow -\mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = 0$ $\hat{\boldsymbol{\beta}} = \Big(\mathbf{X}^T \mathbf{X} \Big)^{-1} \mathbf{X}^T \mathbf{y} \longrightarrow \stackrel{\text{the Goldeson of the Go$

• 최소 자승법: 행렬을 이용한 해 구하기

회귀 계수에 대한 Closed form solution이 존재

• 최소자승법

- ✓ 아래 조건을 만족할 경우 최소자승법으로 구한 회귀계수 β는 최적해임
 - 오차항 ε 이 정규분포를 따름
 - 설명변수와 종속변수 사이에 선형관계가 성립함
 - 각 관측치들은 서로 독립
 - 종속변수 Y에 대한 오차항(residual)은 설명변수 값의 범위에 관계없이 일정함 (homoskedasticity)

• 종속변수의 전체 변동성(분산) = 회귀식이 설명할 수 있는 변동성 + 회귀식이 설명할 수 없는 변동성

• 회귀 모형의 적합도 (결정계수, R²) = 전체 변동성 중 회귀식이 설명할 수 있는 변 동성의 비율

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SSR}{SST} \qquad 0 \le R^2 \le 1$$

- ✓ 반응변수 (Y)의 전체 변동 중 예측변수(X)가 차지하는 변동의 비율
- ✓ R²는 0과 I사이에 존재
- ✓ R²=I: 회귀직선으로 Y의 총변동이 완전히 설명됨 (모든 측정값들이 회귀직선 위에 있는 경우)
- ✔ R²=0: 추정된 회귀직선은 X와 Y의 관계를 전혀 설명하지 못함

• 회귀 모형의 적합도

✓ 그림으로 설명하자면...

Computationally:

R-squared =
$$1 - \frac{SS_{error}}{SS_{total}}$$

Conceptually:

Force x and y to be independent, calculate the squared error.

Allow for a relationship between x and y, does this reduce your **error?**

• 회귀 모형의 적합도

- ✔ 선형회귀분석을 해봤더니 R²가 높게 나왔다
 - 내가 분석을 잘했구나! (NO)
 - 데이터의 입력변수와 출력변수 사이에 강한 선형 관계가 있구나 (YES)
 - 왜? 동일한 데이터에 대해서는 누가 해도 같은 결과가 나오니까...

• 회귀 모형의 적합도

✓ 수정 결정계수 (Adjusted R²):

$$R_{adj}^{2} = 1 - \left\lceil \frac{n-1}{n-(p+1)} \right\rceil \frac{SSE}{SST} \le 1 - \frac{SSE}{SST} = R^{2}$$

- R²는 유의하지 않은 변수가 추가되어도 항상 증가
- 수정 R²는 이러한 단점을 앞에 계수를 곱해줌으로써 보정
- 유의하지 않은 변수가 추가될 경우 수정 결정계수는 증가하지 않음

• 모형의 검토

- ✔ 추정된 모형이 다음 가정을 만족하는지 확인
 - 예측변수와 반응변수 간 관계가 선형
 - 오차항들이 서로 독립
 - 오차항은 평균이 **0**이며 분산이 일정한 정규분포를 따름

• 잔차도: Residual Plot

✔ 특정 설명변수 및 종속변수의 크기에 잔차가 영향을 받지 않아야 함

• 잔차의 정규성

✔ 산점도와 회귀직선을 보면 그럴듯 하지만...

$$y=2x+\varepsilon$$

 $y = 2x + \varepsilon$, $\varepsilon \sim Gamma(2,1)$

Regression model

• 예시: 도요타 코롤라 중고차 가격 예측

					—)	/				_
Y										
Price	Age_08_04	KM	Fuel_Type	HP	Met_Color	Automatic	СС	Doors	Quarterly_Tax	Weight
13500	23	46986	Diesel	90	1	0	2000	3	210	1165
13750	23	72937	Diesel	90	1	0	2000	3	210	1165
13950	24	41711	Diesel	90	1	0	2000	3	210	1165
14950	26	48000	Diesel	90	0	0	2000	3	210	1165
13750	30	38500	Diesel	90	0	0	2000	3	210	1170
12950	32	61000	Diesel	90	0	0	2000	3	210	1170
16900	27	94612	Diesel	90	1	0	2000	3	210	1245
18600	30	75889	Diesel	90	1	0	2000	3	210	1245
21500	27	19700	Petrol	192	0	0	1800	3	100	1185
12950	23	71138	Diesel	69	0	0	1900	3	185	1105
20950	25	31461	Petrol	192	0	0	1800	3	100	1185
19950	22	43610	Petrol	192	0	0	1800	3	100	1185
19600	25	32189	Petrol	192	0	0	1800	3	100	1185
21500	31	23000	Petrol	192	1	0	1800	3	100	1185
22500	32	34131	Petrol	192	1	0	1800	3	100	1185
22000	28	18739	Petrol	192	0	0	1800	3	100	1185
22750	30	34000	Petrol	192	1	0	1800	3	100	1185
17950	24	21716	Petrol	110	1	0	1600	3	85	1105
16750	24	25563	Petrol	110	0	0	1600	3	19	1065

• 데이터 전처리

- ✔ 원칙: Fuel type 변수에 대한 I-of-C coding 변환
- ✓ 선형회귀분석에서는 다중공선성 문제로 I-of-(C-I) coding을 사용

	Fuel_type = Disel	Fuel_type = Petrol	Fuel_type = CNG
Diesel	I	0	0
Petrol	0	I	0
CNG	0	0	I

• 데이터 구분

- ✓ 가용한 모든 데이터를 전부 학습에 사용하면 과적합 (지금 가지고 있는 데이터는 잘 맞추지만 새로운 데이터를 잘 맞추지 못하는 문제) 위험이 있음
- ✓ 문제집을 답보고 전부 풀었다고 해서 시험에서 100점을 맞는 것은 아니니까...

• 다중회귀분석 결과물 해석

✔ 다중회귀분석을 수행하고 나면 다음과 같은 표를 결과로 얻을 수 있음

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3608.418457	1458.620728	0.0137	97276410000
Age_08_04	-123.8319168	3.367589	0	8033339000
KM	-0.017482	0.00175105	0	251574500
Fuel_Type_Diesel	210.9862518	474.9978333	0.6571036	6212673
Fuel_Type_Petrol	2522.066895	463.6594238	0.00000008	4594.9375
HP	20.71352959	4.67398977	0.00001152	330138600
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75
Automatic	178.1519013	212.0528565	0.40124047	19223190
СС	0.01385481	0.09319961	0.88188446	1272449
Doors	20.02487946	51.0899086	0.69526076	39265060
Quarterly_Tax	16.7742424	2.09381151	0	160667200
Weight	15.41666317	1.40446579	0	214696000

• 다중회귀분석 결과물 해석

- ✓ 회귀계수: Coefficient
 - 선형회귀분석에서 각 변수에 대응하는 베타값임
 - 해당 변수가 I단위 증가할 때 종속변수의 변화량을 의미
 - 양수이면 해당 설명변수와 종속변수는 양의 상관관계, 음수이면 음의 상관관계

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3608.418457	1458.620728	0.0137	97276410000
Age_08_04	-123.8319168	3.367589	0	8033339000
KM	-0.017482	0.00175105	0	251574500
Fuel_Type_Diesel	210.9862518	474.9978333	0.6571036	6212673
Fuel_Type_Petrol	2522.066895	463.6594238	0.00000008	4594.9375
HP	20.71352959	4.67398977	0.00001152	330138600
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75
Automatic	178.1519013	212.0528565	0.40124047	19223190
сс	0.01385481	0.09319961	0.88188446	1272449
Doors	20.02487946	51.0899086	0.69526076	39265060
Quarterly_Tax	16.7742424	2.09381151	0	160667200
Weight	15.41666317	1.40446579	0	214696000

• 다중회귀분석 결과물 해석

- ✔ 유의확률: p-value
 - 선형회귀분석에서 해당 변수가 통계적으로 유의미한지 알려주는 지표
 - 0에 가까울수록 모델링에 중요한 변수이며, I에 가까울수록 유의미하지 않은 변수임
 - 특정 유의수준(α)을 설정하여 해당 값 미만의 변수만을 사용하여 다시 선형회귀분석을 구축하는 것도 가능함 (주로 $\alpha=0.05$ 사용)

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3608.418457	1458.620728	0.0137	97276410000
Age_08_04	-123.8319168	3.367589	0	8033339000
KM	-0.017482	0.00175105	0	251574500
Fuel_Type_Diesel	210.9862518	474.9978333	0.6571036	6212673
Fuel_Type_Petrol	2522.066895	463.6594238	0.00000008	4594.9375
HP	20.71352959	4.67398977	0.00001152	330138600
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75
Automatic	178.1519013	212.0528565	0.40124047	19223190
СС	0.01385481	0.09319961	0.88188446	1272449
Doors	20.02487946	51.0899086	0.69526076	39265060
Quarterly_Tax	16.7742424	2.09381151	0	160667200
Weight	15.41666317	1.40446579	0	214696000

