255-123 Aufbau Signed 是大春 Mantisse (23) Exp. (8) SignBit \times Mantisse \times 2^{Exponent} Bias -127 Feste Anzahl an signifikanten Stellen Größerer Wertebereich als Fixkomma Zahlen Konsequenz: Höhere Genauigkeit bei kleinen Zahlen

Aufbau

- ► Exponent(gespeichert) = Exponent(real) + Bias 为 3 次 数
 - Bias statt Zweierkomplement
 - Lexikografischer Vergleich statt Subtraktion und Vergleich mit 0
 - ► In der Theorie weniger Operationen

Datentypen float/double

	Größe	Dezimalziffern	Abs. Min.	Abs. Max.
float (Single Prec.)	32 Bit	≈ 7	$\approx 1.18 \cdot 10^{-38}$	$\approx 3.4 \cdot 10^{38}$
1 1000	01010 1	1011010101010	101010011	
\pm Exp	. (8)	Mantisse	(23)	
double (Double Prec.)	64 Bit	≈ 15	$pprox 10^{-308}$	$\approx 10^{308}$
1 11110001010 1101	1101101010101010101011110110101010101010			
± Exp. (11)		Mantisse	(52)	1024

100117 x 2 6 x 24

Quiz: Zahlen zuordnen 2 (ov (oooo....

1100100 (6)00

Addition und Subtraktion

- ► Kleineren Wert auf selben Exponenten bringen wie großen Wert (denormalisieren)
- Mantissen addieren bzw. subtrahieren
- ► Mantisse entsprechend der Genauigkeit runden
- Ergebnis normalisieren

Subtraktion - Beispiel

$$2^1$$
 1.0000 - # 2^0 1.5000

C Gleicher Exponent

1.0000 - # 2^1 0.7500

Mantrisse subtrahieren

Normalisieren
$$+2^{-1}$$
 1.0000

0.2500

Multiplikation und Division

- Exponenten addieren bzw. subtrahieren
- Mantissen multiplizieren bzw. dividieren (Führende 1 beachten)
- Mantisse entsprechend der Genauigkeit runden
- ► Ergebnis normalisieren

Probleme bei Genauigkeit

- Rundung: Ergebnis muss wieder FP-Darstellung gespeichert werden
 - ▶ Verschiedene Rundungsmodi, Standard: round to nearest, ties to even
- ► Absorption: Addition/Sub. von sehr großer und sehr kleiner Zahl
 - ► Keine Veränderung der großen Zahl wg. Rundung
 - Beispiel: 1000000.00f + 0.01f = 1000000.00f

- ► Auslöschung: Subtraktion großer ähnlicher Zahlen
 - Subtraktion verstärkt Rundungsfehler
 - ▶ Beispiel: $1000000.1f 1000000.0f = 0.125f \neq .1f$
 - ► Grund: 1000000.1*f* tatsächlich dargestellt als 1000000.125

Assoziativität und Distributivität

- Sowohl Addition und Multiplikation
- Nicht assoziativ
 - $(x + y) + z \neq x + (y + z)$
 - $(x \times y) \times z \neq x \times (y \times z)$
- Nicht distributiv
 - \rightarrow $x(y+z) \neq (xy) + (xz)$
- ► Achtung: -ffast-math (-Ofast) in GCC ignoriert diese zwecks Geschwindigkeit
- ➤ Weiterführend: What Every Computer Scientist Should Know About Floating-Point Arithmetic https://www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

Denormale Zahlen / Subnormale Zahlen

- ➤ Zahlen deren Exponent kleiner ist, als eine normalisierte Darstellung zulassen würde
- ▶ Beispiel, single precision, normalisiert: $1.0_2 \times 2^{-127}$
- ▶ Denormalisiert: $0.1_2 \times 2^{-126}$
- Exponent hat speziellen Wert: alle Bits 0

Null mit Vorzeichen

- ► Null: Exponent und Mantisse alle Bits 0
- ▶ Sign-Bit kann gesetzt sein $\rightarrow +/-0$ möglich
- ightharpoonup Üblicherweise: x + 0 = x
- ► Sonderfall: $x = -0 \rightarrow -0 + 0 = +0$
- ► $-0 \neq +0$

Unendlich / Infinity / ∞

- ► Alle Bits in Exponent = 1
- ► Alle Bits in Mantisse = 0
- ightharpoonup je nach Sign-Bit: +/- Unendlich
- \triangleright z.B. Ergebnis bei x/0

Not a Number / NaN

- ► Alle Bits in Exponent = 1
- ightharpoonup Mantisse $\neq 0$
- ightharpoonup ightharpoonup Not a Number
- z.B. Ergebnis bei 0/0 und Unendlich Unendlich
- $\triangleright x \circ NaN = NaN 2$
- ▶ für jeden NaN Wert: $NaN_1 == NaN_2 \rightarrow false$

Welches Ergebnis hat NaN == NaN?

true

false

Segmentation Fault

Welches Ergebnis hat NaN != Infinity?

Welches Ergebnis hat -Infinity < Infinity?

true
false
Arithmetic Exception: Invalid Operation

Welches Ergebnis hat 10 != NaN?

true
false
Infinity

Welches Ergebnis hat 5.0 / 0.0? -Infinity NaN Infinity Arithmetic exception: Division by Zero

Weitere Floating Point Formate

▶ 16 Bit half precision / half

```
0 | 01010 | 1001100101

\pm \text{ Exp.} Mantisse

(5) (10)
```

Brain Floating Point / bfloat

Extended Formate