第 29 届全国青少年信息学奥林匹克竞赛 上海市选拔赛

SHTSC 2012

第二试

竞赛时间: 2012年4月29日上午7:30-12:00

题目名称	回家的路	排序	魔法树
英文名称	gohome	sorting	tree
源程序	gohome.pas 或	sorting.pas 或	tree.pas 或
	gohome.cpp	sorting.cpp	tree.cpp
输入文件名	gohome.in	sorting.in	tree.in
输出文件名	gohome.out	sorting.out	tree.out
每个测试点时限	1秒	1秒	1秒
内存限制	128M	128M	128M
测试点数目	10	10	10
每个测试点分值	10	10	10
是否有部分分	否	是	否
题目类型	传统	传统	传统

上海市科技艺术教育中心

上海市选拔赛 第二试 回家的路

回家的路

【问题描述】

2046年 OI 城的城市轨道交通建设终于全部竣工,由于前期规划周密,建成后的轨道交通网络由 2n 条地铁线路构成,组成了一个 n 纵 n 横的交通网。如下图所示,这 2n 条线路每条线路都包含 n 个车站,而每个车站都在一组纵横线路的交汇处。

出于建设成本的考虑,并非每个车站都能够进行站内换乘,能够进行站内换乘的地铁站共有m个,在下图中,标上方块标记的车站为换乘车站。已知地铁运行1站需要2分钟,而站内换乘需要步行1分钟。Serenade 想要知道,在不中途出站的前提下,他从学校回家最快需要多少时间(等车时间忽略不计)。

【输入格式】

第一行有两个整数 n, m。

接下去 m 行每行两个整数 x, y, 表示第 x 条横向线路与第 y 条纵向线路的交汇站是站内换乘站。

接下去一行是四个整数 x_1 , y_1 , x_2 , y_2 。表示 Serenade 从学校回家时,在第 x_1 条横向线路与第 y_1 条纵向线路的交汇站上车,在第 x_2 条横向线路与第 y_2 条纵向线路的交汇站下车。

【输出格式】

输出文件置有一行,即 Serenade 在合理选择线路的情况下,回家所需要的时间。如果 Serenade 无法在不出站换乘的情况下回家,请输出-1。

上海市选拔赛 第二试 回家的路

【输入样例1】

2 1

1 2

1 1 2 2

【输出样例1】

5

【输入样例2】

6 9

2 1

2 5

3 2

4 4

5 2

561

6 3

_ .

6 4

1 1 4 6

【输出样例2】

27

【输入样例3】

6 10

2 1

2 5

3 2

4 4

5 2

5 6

6 1

6 3

6 4

6 6

1 1 4 6

【输出样例3】

26

上海市选拔赛 第二试 回家的路

【数据规模】

对于 30%的数据, $n \le 50$, $m \le 1000$;

对于 60%的数据, $n \le 500, m \le 2000$;

对于 100%的数据, $n \le 20000, m \le 100000$;

上海市选拔赛 第二试 排序

排序

【问题描述】

众所周知, $1\sim n$ 的全排列包含 n!个排列。通常情况下,我们在生成全排列时都按照他们的字典序生成的。而在本题中,我们就将要考虑一种特殊的全排列生成方式。

具体的,生成的全排列的顺序是由一个生成器决定的。

- (1) 生成器本身也是一个 $1 \sim n$ 的排列: $a_1, a_2, ..., a_n$ 。
- (2) 对于两个不相同的 $1 \sim n$ 的 $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n$ 排列而言,首先找到最小的 i,使得 x_{ai} 与 y_{ai} 不相等。
- (3) 根据(2)中选择的 i,如果 x_{ai} 在排列 $a_1, a_2, ..., a_n$ 中排在 y_{ai} 之前,那么 $x_1, x_2, ..., x_n$ 就会在 $y_1, y_2, ..., y_n$ 之前生成。

例如,当 n=3,生成器为 132 时, $1\sim n$ 的全排列的生成顺序为: 123, 132, 321, 312, 231, 213。

输入一个排列 $x_1, x_2, ..., x_n$,问,哪个生成器能使得这个排列在所有的排列中 尽可能早的生成,哪个生成器能使得这个排列在所有的排列中尽可能晚的生成。 如果有多种生成器能达到要求,那么请输出字典序最小的符合要求的生成器。

【输入格式】

输入的第一行是整数 n,第二行是 $1\sim n$ 的一个排列 x_1, x_2, \dots, x_n 。

【输出格式】

输出的第一行是一个 $1\sim n$ 的排列,表示让 $x_1, x_2, ..., x_n$ 尽早输出的生成器。输出的第二行是一个 $1\sim n$ 的排列,表示让 $x_1, x_2, ..., x_n$ 尽晚输出的生成器。如果有多种生成器能达到要求,那么请输出字典序最小的符合要求的生成器。

【输入样例】

3

1 3 2

【输出样例】

1 2 3

2 1 3

【数据规模】

对于 30%的数据, 有 n < 10:

对于 50%的数据, 有 $n \le 200$;

对于 90%的数据, 有 $n \le 30000$;

上海市选拔赛 第二试 排序

对于 100%的数据, 有 $n \le 500000$ 。

【评分方法】

对于每个测试点:

- ▶ 仅第一行正确得5分;
- ▶ 仅第二行正确得7分;
- ▶ 全部正确得10分。

上海市选拔赛 第二试 魔法树

魔法树

【问题描述】

Harry Potter 新学了一种魔法:可以让改变树上的果子个数。满心欢喜的他找到了一个巨大的果树,来试验他的新法术。

这棵果树共有N个节点,其中节点0是根节点,每个节点u的父亲记为fa[u],保证有fa[u] < u。初始时,这棵果树上的果子都被 Dumbledore 用魔法清除掉了,所以这个果树的每个节点上都没有果子(即0个果子)。

不幸的是,Harry 的法术学得不到位,只能对树上一段路径的节点上的果子个数统一增加一定的数量。也就是说,Harry 的魔法可以这样描述:

Add u v d

表示将点u和v之间的路径上的所有节点的果子个数都加上d。

接下来,为了方便检验 Harry 的魔法是否成功,你需要告诉他在释放魔法的过程中的一些有关果树的信息:

Query u

表示当前果树中,以点u为根的子树中,总共有多少个果子?

【输入格式】

第一行一个正整数N ($1 \le N \le 100000$),表示果树的节点总数,节点以0,1,...,N-1标号,0一定代表根节点。

接下来N-1行,每行两个整数a,b ($0 \le a < b < n$),表示a是b的父亲。接下来是一个正整数 $Q(1 \le Q \le 100000)$,表示共有Q次操作。

后面跟着Q行,每行是以下两种中的一种:

- 1. Auvd,表示将u到v的路径上的所有节点的果子数加上d; $0 \le u,v < N$, 0 < d < 100000
- 2. Qu,表示询问以u为根的子树中的总果子数,注意是包括u本身的。 $0 \le u < N$

【输出格式】

对于所有的Query操作,依次输出询问的答案,每行一个。答案可能会超过 2^{32} ,但不会超过 10^{15} 。

【输入样例】

4

0 1

1 2

2 3

4

A 1 3 1

Q 0

上海市选拔赛 第二试 魔法树

- Q 1
- Q 2

【输出样例】

3

3

2

【数据规模】

测试数据编号	特殊条件	
1		
2	果树呈链状,退化为一条直线	
3		
4		
5		
6	所有 Add 操作中的 $u=0$	
7		
8		
9	无	
10	九	