ĐỀ THỬ GIỮA KỲ MÔN MÔN GIẢI TÍCH 2 - NN1 - HỌC KỲ 2021.2

Mã đề 1

Đề thi gồm 2 trang

Câu 1. Xác định phương trình tiếp tuyến và pháp tuyến của đường cong tại điểm A(0,4)

$$\begin{cases} x(t) = e^t - 2t - 1 \\ y(t) = t^2 + 2t + 4 \end{cases}$$

Câu 2. Tính độ cong của $\begin{cases} x = \ln(\sqrt{t^2 + 1} - t) \\ y = t + 1 + \sqrt{t^2 + 1} \end{cases}$ tại điểm (0, ; 2)

Câu 3. Tìm hình bao của họ đường cong (L):

$$(L): \frac{x^2}{c} + \frac{y^2}{4-c} = 1$$

Câu 4. Tính tích phân $\iint\limits_D \sqrt{|y-x^2|}\,dx\,dy$ với miền D: $-1 \le x \le 1, 0 \le y \le 2$

Câu 5. Tính tích phân: $\int_0^3 dy \int_{\frac{\sqrt{3y}}{3}}^1 \sqrt{x^3 + 1} \ dx$

Câu 6. Tính thể tích vật thể giới hạn bởi z = 0, y = 0, z = 4 và mặt cong $2x = \sqrt{5-2y}$

Câu 7. Tính $\iiint_E z dV$, trong đó E là tứ diện được giới hạn bởi bốn mặt phẳng x=0,y=0,z=0 và x+y+z=1.

Câu 8. Tính tích phân bội ba $I = \iiint\limits_V \frac{(z-1)^3+1}{x^2+y^2} dx dy dz$, với V là miền xác định

bởi
$$-1 \le z \le 1$$
 và $1 \le x^2 + y^2 \le 4$.

Câu 9. Tính
$$\iint_D (|x|(1+siny)-|y|)dxdy$$
, với miền $D = \{(x,y)|x^2+y^2 \le 1\}$

Câu 10. Tính
$$I(y) = \int_{0}^{\pi} \ln(1 - 2y\cos x + y^{2}) dx$$
 với $y \in (-1; 1)$.

CLB HỐ TRỢ HỌC TẬP

HƯỚNG DẪN GIẢI ĐỀ THỬ GIỮA KỲ MÔN MÔN GIẢI TÍCH 2 - NN1 - HỌC KỲ 2021.2

Giải câu 1. • A(0,4) ứng với $t = t_0$

$$\begin{cases} e^{t_0} - 2t_0 - 1 = 0 \\ t_0^2 + 2t_0 + 4 = 4 \end{cases} \iff t_0 = 0$$

$$\iff \begin{cases} x'_t(t_0) = x'_t(0) = -1 \\ y'_t(t_0) = y'_t(0) = 2 \end{cases}$$

• \rightarrow Tiếp tuyến: $\frac{x}{-1} = \frac{y-4}{2}$, Pháp tuyến: -x + 2(y-4) = 0

Giải câu 2.

$$x = \ln(\sqrt{t^2 + 1} - t) = -\ln(\sqrt{t^2 + 1} + t)$$

$$\to \sqrt{t^2 + 1} + t = e^{-x} = y - 1$$

 \rightarrow Đường cong: $y = f(x) = e^{-x} + 1$.

Tại điểm (0;2):

$$C_M = \frac{|y''|}{(1+y'^2)^{\frac{3}{2}}} = \frac{|e^{-x}|}{(1+e^{-2x})^{\frac{3}{2}}} = \frac{1}{2\sqrt{2}}$$

Giải câu 3. +) Với hàm $f(x,y,c) = \frac{x^2}{c} + \frac{y^2}{4-c} - 1$ (ĐKXĐ: $c \neq 0, c \neq 4$), xét hệ phương trình:

$$\begin{cases} f_x^{'} = 0 \\ f_y^{'} = 0 \end{cases} \Leftrightarrow \begin{cases} \frac{2x}{c} = 0 \\ \frac{2y}{4 - c} = 0 \end{cases} \Rightarrow (x, y) = (0, 0)$$

Tuy nhiên (0,0) không thuộc bất kì đường nào thuộc họ đường cong (L).

- ⇒ Họ đường cong (L) không có điểm kì dị.
- +) Xét hệ phương trình:

$$\begin{cases} f = 0 \\ f'_c = 0 \end{cases} \Leftrightarrow \begin{cases} \frac{x^2}{c} + \frac{y^2}{4 - c} - 1 = 0(1) \\ -\frac{x^2}{c^2} + \frac{y^2}{(4 - c)^2} = 0(2) \end{cases}$$

Từ phương trình (2) ta có:

$$(2) \Rightarrow x^2 = \frac{c^2}{(4-c)^2} y^2$$

Từ đó,(1)
$$\Rightarrow (\frac{c}{(4-c)^2} + \frac{1}{4-c})y^2 = 1 \Rightarrow y^2 = \frac{(4-c)^2}{4} \Rightarrow x^2 = \frac{c^2}{4}$$

Do $x^2 = \frac{c^2}{4}$ và $y^2 = \frac{(4-c)^2}{4} \Rightarrow 4$ trường hợp y(x) lần lượt là:

$$+) y=2-x$$

$$+) y=x-2$$

$$+) v = 2 + x$$

$$+) v = -x - 2$$

Do
$$c \neq 0, c \neq 4 \Rightarrow (x, y) \neq (0; \pm 2), (x, y) \neq (\pm 2; 0)$$

Vậy hình bao (E) của họ đường cong (L) là hình gồm 4 đườngy=2-x,y=x-2,y=2+x,y=x-2 trừ 4 điểm (0;2), (0;-2), (2;0), (-2;0).

Giải câu 4. Chia miền D thành hai miền:
$$\begin{cases} D_1: -1 \le x \le 1, 0 \le y \le x^2: y - x^2 \le 0 \\ D_2: -1 \le x \le 1, x^2 \le y \le 2: y - x^2 \le 0 \end{cases}$$

Do đó:

$$I = \iint_{D_1} \sqrt{x^2 - y} dx dy + \iint_{D_2} \sqrt{x^2 - y} dx dy$$

$$= \int_{-1}^{1} dx \int_{0}^{x^2} \sqrt{x^2 - y} dy + \int_{-1}^{1} dx \int_{x^2}^{2} \sqrt{y - x^2} dy$$

$$= \frac{2}{3} \int_{-1}^{1} (|x|^3 + (2 - x^2)^{\frac{3}{2}}) dx = \frac{1}{3} + \frac{2}{3} \int_{-1}^{1} (2 - x^2)^{\frac{3}{2}} dx$$

Đặt: $x = \sqrt{2} \sin t$ trong tích phân sau ta được

$$I = \frac{1}{3} + \frac{8}{3} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^4 t dt = \frac{1}{3} + \frac{8}{3} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left(\frac{3}{8} + \frac{\cos 2t}{2} + \frac{\cos 4t}{8}\right) dt$$
$$= \frac{\pi}{2} + \frac{5}{3}$$

Giải câu 5. Miền
$$D:$$

$$\begin{cases} 0 \le y \le 3 \\ \frac{\sqrt{3y}}{3} \le x \le 1 \end{cases} \Leftrightarrow D:$$

$$\begin{cases} 0 \le x \le 1 \\ 0 \le y \le 3x^2 \end{cases}$$

Ta có:

$$I = \int_0^3 dy \int_{\frac{\sqrt{3y}}{3}}^1 \sqrt{x^3 + 1} \, dx = \int_0^1 dx \int_0^{3x^2} \sqrt{x^3 + 1} \, dy$$

$$= \int_0^1 \left(y \sqrt{x^3 + 1} \right) \Big|_{y=0}^{y=3x^2} \, dx = \int_0^1 3x^2 \sqrt{x^3 + 1} \, dx$$

$$= \int_0^1 \sqrt{x^3 + 1} \, dx^3 = \frac{2}{3} (x^2 + 1)^{\frac{3}{2}} \Big|_0^1$$

$$= \frac{2}{3} (2\sqrt{2} - 1)$$

Giải câu 6. Ta có:
$$2x = \sqrt{5 - 2y}$$
, suy ra
$$\begin{cases} 0 \le x \\ y = \frac{5 - 4x^2}{2} \end{cases}$$

Ta có:

$$V = \iiint_{V} dxdydz$$

$$= \iint_{D} dxdy \int_{0}^{4} dz \quad \text{v\'oi } D = \begin{cases} 0 \le x \le \frac{\sqrt{5}}{2} \\ 0 \le y \le \frac{5 - 4x^{2}}{2} \end{cases}$$

$$= 4 \iint_{D} dxdy$$

$$= 4 \int_{0}^{\frac{\sqrt{5}}{2}} dx \int_{0}^{\frac{5 - 4x^{2}}{2}} dy$$

$$= 4 \int_{0}^{\frac{\sqrt{5}}{2}} \frac{5 - 4x^{2}}{2} dx$$

$$= \frac{10\sqrt{5}}{3}$$
HOCTAP

Giải câu 7. Từ đề bài ta xác định được miền
$$E:$$

$$\begin{cases} 0 \le x \le 1 \\ 0 \le y \le 1-x \\ 0 \le z \le 1-x-y \end{cases}$$

Từ đó, ta tính được:

$$\iiint_{E} z dV = \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} z dz dy dx = \int_{0}^{1} \int_{0}^{1-x} \frac{1}{2} z^{2} \Big|_{0}^{1-x-y} dy dx$$

$$= \frac{1}{2} \int_{0}^{1} \int_{0}^{1-x} (1-x-y)^{2} dy dx = \frac{1}{2} \int_{0}^{1} \left[-\frac{1}{3} (1-x-y)^{3} \right] \Big|_{0}^{1-x} dx$$
$$= \frac{1}{6} \int_{0}^{1} (1-x)^{3} dx = \frac{1}{6} \left[-\frac{1}{4} (1-x)^{4} \right] \Big|_{0}^{1} = \frac{1}{24}$$

Giải câu 8. Ta có:

$$I = \iiint_{V} \frac{z^{3} + 3z}{x^{2} + y^{2}} dx dy dz - \iiint_{V} \frac{3z^{2}}{x^{2} + y^{2}} dx dy dz$$

Vì V đối xứng qua Oxy và $\frac{z^3 + 3z}{x^2 + y^2}$ là hàm lẻ với $z \Rightarrow \iiint_V \frac{z^3 + 3z}{x^2 + y^2} dx dy dz = 0$

Do đó:

$$I = -\iiint\limits_{V} \frac{3z^2}{x^2 + y^2} dx dy dz$$

Giải câu 9. Đặt
$$I = \iint\limits_{D} (|x|(1+siny)-|y|)dxdy$$

Ta chia I thành hai tích phân I_1 và I_2 :

$$I_{1} = \iint_{D} |x| siny dx dy; I_{2} = \iint_{D} (|x| - |y|) dx dy$$

Xét
$$I_1 = \iint\limits_D |x| siny dxdy$$

Đặt $f(x,y) = |x| siny$
Vì $f(x,y) = -f(x-y) \forall (x,y), (x,-y) \in D$ và D đối xứng qua trục Ox $\Rightarrow I_1 = 0$
Xét $I_2 = \iint\limits_D (|x| - |y|) dxdy$
Đặt $\begin{cases} x = r cos \varphi \\ y = r sin \varphi \end{cases} \Rightarrow |J| = r$
Khi đó miền D trở thành $D' \begin{cases} 0 \le r \le 1 \\ 0 \le \varphi \le 2\pi \end{cases}$

$$I_{2} = \int_{0}^{2\pi} d\varphi \int_{0}^{1} r^{2} (|\cos\varphi| - |\sin\varphi|) dr = \frac{1}{3} \int_{0}^{2\pi} (|\cos\varphi| - |\sin\varphi|) d\varphi = 0$$

$$\Rightarrow I = I_{1} + I_{2} = 0 + 0 = 0$$

Giải câu 10. - Với mọi $y_0 \in (-1;1)$ luôn tồn tại đoạn $[c,d] \subset (-1;1)$ sao cho $y_0 \in (c,d)$

$$y_0 \in (c,d)$$
 Xét $f(x,y) = \ln(1-2y\cos x + y^2)$ trên $[0;\pi] \times [c;d]$ Dễ thấy $f(x,y) = \ln(1-2y\cos x + y^2) = \ln\left((y-\cos x)^2 + \sin^2 x\right)$ liên tục trên $[0;\pi] \times$

Definity
$$f(x,y) = \inf(1 - 2y\cos x + y) = \inf((y - \cos x)^{2} + \sin^{2}x)^{2}$$
 from the tree $[0, h]$

Tồn tại
$$f_y'(x,y) = \frac{2y - 2\cos x}{1 - 2y\cos x + y^2} \forall y \in [c,d]$$
 và $f_y'(x,y)$ liên tục trên $[0;\pi] \times [c;d]$

Do đó:
$$I(y) = \int_{0}^{\pi} \ln(1 - 2y\cos x + y^2) dx$$
 khả vi trên (c, d)

Mà
$$y_0 \in (c,d)$$
 nên $I(y)$ khả vi tại y_0

Do đó
$$\forall y_0 \in (-1, 1), I(y)$$
 khả vi tại y_0 nên $I(y)$ khả vi trên $(-1, 1)$

- Từ đó ta có:
$$I'(y) = \int_{0}^{\pi} \frac{2y - 2\cos x}{1 - 2y\cos x + y^2} dx$$

+ Với $y = 0, I(0) = \int_{0}^{\pi} \ln(1) dx = 0$
+ Với $y \neq 0, I'(y) = \frac{1}{y} \int_{0}^{\pi} \frac{2y^2 - 2y\cos x}{1 - 2y\cos x + y^2} dx$

$$= \frac{1}{y} \int_{0}^{\pi} \frac{1 - 2y\cos x + y^2}{1 - 2y\cos x + y^2} dx + \frac{1}{y} \int_{0}^{\pi} \frac{y^2 - 1}{1 - 2y\cos x + y^2} dx$$

$$= \frac{1}{y} \int_{0}^{\pi} dx + \frac{y^2 - 1}{y} \int_{0}^{\pi} \frac{1}{1 - 2y\cos x + y^2} dx$$

$$= \frac{\pi}{y} + \frac{y^2 - 1}{y} \int_{0}^{\pi} \frac{1}{1 - 2y\cos x + y^2} dx$$
Đặt $I_1 = \frac{y^2 - 1}{y} \int_{0}^{\pi} \frac{1}{1 - 2y\cos x + y^2} dx$
Đặt $I_2 = \frac{y^2 - 1}{y} \int_{0}^{\pi} \frac{1}{1 - 2y\cos x + y^2} dx$

$$= \frac{2y^2 - 2}{y} \int_{0}^{\pi} \frac{1}{(y^2 + 1)(t^2 + 1) - 2y(1 - t^2)} dt$$

$$= \frac{2y^2 - 2}{y} \int_{0}^{+\infty} \frac{1}{(yt + t)^2 + (1 - y)^2} dt$$

$$= \frac{2y^2 - 2}{y(y+1)^2} \int_0^{+\infty} \frac{1}{t^2 + \left(\frac{1-y}{1+y}\right)^2} dt$$

$$= \frac{2y^2 - 2}{y(y+1)^2} \cdot \frac{1+y}{1-y} \cdot \arctan\left(t \cdot \frac{1+y}{1-y}\right)\Big|_0^{+\infty}$$

$$= \frac{-2}{y} \cdot \left(\frac{\pi}{2} - 0\right) = \frac{-\pi}{y}$$

$$\text{Vây } I'(y) = \frac{\pi}{y} + I_1 = \frac{\pi}{y} + \frac{-\pi}{y} = 0$$

$$\Rightarrow I(y) = \int I'(y) dy = C, \text{ do } I(0) = 0 \Rightarrow C = 0 \Rightarrow I(y) = 0$$

