PARTIEL

Mercredi 14 novembre 2018 - Durée : 1h30

Exercice 1 (Question de cours):

- 1. Enoncer le Théorème des gendarmes.
- 2. Démontrer ce théorème.

Exercice 2 : Soit la suite réelle $(u_n)_{n\geq 0}$ définie par $u_0>0$ et par la relation de récurrence

$$u_{n+1} = u_n e^{-u_n}, \ n \ge 0. \tag{1}$$

- 1. Déterminer le signe de u_n pour tout $n \ge 0$. Correction: On prouve que $u_n > 0$ pour tout $n \ge 0$ par récurrence: c'est vrai pour n = 0 par hypothèse. Supposons que $u_n > 0$ pour un certain n, alors $u_{n+1} = u_n e^{-u_n} > 0$. D'où la propriété par récurrence.
- 2. Etudier la monotonie de la suite (u_n) . Correction: Pour tout $n \geq 0$, $u_{n+1} - u_n = u_n (e^{-u_n} - 1) \leq 0$, car $u_n \geq 0$. Donc la suite (u_n) est décroissante.
- 3. Montrer que la suite (u_n) converge vers 0 pour $n \to \infty$. Correction: Ainsi, (u_n) est décroissante et minorée par 0, donc elle converge, de limite $\ell \geq 0$. Par continuité de $x \mapsto xe^{-x}$, cette limite vérifie nécessairement $\ell = \ell e^{-\ell}$, i.e. $\ell(1 - e^{-\ell}) = 0$. Dans les deux cas, $\ell = 0$. Donc la suite (u_n) tend vers 0 quand $n \to \infty$.
- 4. Soit $\beta \in \mathbb{R}$ fixé. Donner un équivalent de la suite $v_n = u_{n+1}^{\beta} u_n^{\beta}$ pour $n \to \infty$. Correction: Calculons:

$$v_n = u_n^{\beta} e^{-\beta u_n} - u_n^{\beta} = u_n^{\beta} (e^{-\beta u_n} - 1).$$

Comme $u_n \to 0$, en utilisant un développement limité de $u \mapsto e^{-u}$ en u = 0, il vient, pour $n \to \infty$

$$e^{-\beta u_n} = 1 - \beta u_n + o(u_n)$$

et donc

$$v_n = u_n^{\beta} (-\beta u_n + o(u_n)) = -\beta u_n^{\beta+1} + o(u_n^{\beta+1})$$

et donc (possible car $u_n \neq 0$ pour tout n)

$$v_n \sim_{n \to \infty} -\beta u_n^{\beta+1}$$
.

5. Déterminer β de telle sorte que $(v_n)_{n\geq 0}$ admette une limite finie non nulle pour $n\to\infty$.

Correction : On prend $\beta=-1$: le calcul précédent montre que $v_n\sim_{\to\infty}1$ et donc $\lim_{n\to\infty}v_n=1$.

6. En déduire un équivalent de la suite (u_n) . On rappelle pour cette question la propriété de Cesaro : si une suite (v_n) converge vers $l \in \mathbb{R}$, alors sa moyenne de Cesaro $\frac{v_0+v_1+\ldots+v_{n-1}}{aussi}$ aussi.

Correction: La suite $v_n = \frac{1}{u_{n+1}} - \frac{1}{u_n}$ est donc convergente de limite 1. Sa moyenne de Cesaro converge donc aussi vers 1 et on a donc $\frac{v_0 + v_1 + ... + v_{n-1}}{n} \to 1$. Or cette dernière quantité est égale à $\frac{1}{nu_n} - \frac{1}{nu_0}$. Par conséquent,

$$u_n \sim_{n \to \infty} \frac{1}{n}$$
.

Exercice 3: Dans tout cet exercice, on considère une fonction $f: \mathbb{R} \to \mathbb{R}$ qui vérifie la relation suivante :

$$\exists \alpha \in \left] 0, \frac{1}{2} \right[, \ \forall x, y \in \mathbb{R}, \ |f(x) - f(y)| \le \alpha |f(x) - x| + \alpha |f(y) - y|.$$
 (2)

Le but de cet exercice est de montrer que f admet un unique point fixe, c'est-à-dire un unique réel l vérifiant

$$f(l) = l$$
.

1. Montrer que si ce point fixe existe, il est unique. Correction: Prenons deux points fixes l_1 et l_2 et montrons que $l_1 = l_2$. En appliquant la propriété à $x = l_1$ et $y = l_2$, il vient $|f(l_1) - f(l_2)| \le \alpha |f(l_1) - l_1| + \alpha |f(l_2) - l_2|$. Or $f(l_i) = l_i$ pour i = 1, 2, donc $|l_1 - l_2| = 0$ et donc $l_1 = l_2$.

Dans toute la suite de l'exercice, on considère la suite récurrente définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = f(u_n)$.

2. Montrer que pour tout $n \geq 1$,

$$|u_{n+1} - u_n| \le k |u_n - u_{n-1}|, \tag{3}$$

οù

$$k = \frac{\alpha}{1 - \alpha}.$$

Correction : Appliquons la propriété à $x=u_n$ et $y=u_{n-1}$: il vient $|f(u_n)-f(u_{n-1})| \le \alpha |f(u_n)-u_n|+\alpha |f(u_{n-1})-u_{n-1}|$ et donc $|u_{n+1}-u_n| \le \alpha |u_{n+1}-u_n|+\alpha |u_n-u_{n-1}|$. Ainsi $(1-\alpha)|u_{n+1}-u_n| \le \alpha |u_n-u_{n-1}|$ et donc $|u_{n+1}-u_n| \le k |u_n-u_{n-1}|$ puisque $1-\alpha>0$.

3. En déduire que $|u_{n+1} - u_n| \le k^n |u_1 - u_0|$ puis que, pour tout $q \ge p \ge 1$,

$$|u_q - u_p| \le \frac{k^p - k^q}{1 - k} |u_1 - u_0|.$$

Correction : La première inégalité se déduit de la question précédente par une récurrence évidente. Par ailleurs, pour tout $q \ge p \ge 1$, par inégalité triangulaire,

$$|u_q - u_p| \le \sum_{j=p}^{q-1} |u_{j+1} - u_j| \le \sum_{j=p}^{q-1} k^j |u_1 - u_0| = \frac{k^p - k^q}{1 - k} |u_1 - u_0|.$$

- 4. En déduire que (u_n) est convergente. On note l sa limite. Correction: Notons que $k = \frac{\alpha}{1-\alpha} < 1$ car $\alpha < \frac{1}{2}$. L'inégalité précédente implique $|u_q - u_p| \le \frac{k^p}{1-k} |u_1 - u_0|$. Comme $k^p \to 0$ quand $p \to \infty$, pour tout $\varepsilon > 0$, il existe un $n_0 \ge 1$ tel que pour tout $p \ge n_0$, $k^p < (1-k)\frac{\varepsilon}{|u_1-u_0|+1}$. Donc pour ce n_0 , pour tout $q \ge p \ge n_0$, $|u_p - u_q| < \varepsilon$. Ainsi (u_n) est de Cauchy dans $\mathbb R$ donc convergente, de limite l.
- 5. Montrer que pour tout $n \geq 0$

$$|f(l) - u_{n+1}| \le \alpha |f(l) - l| + \alpha |u_{n+1} - u_n|. \tag{4}$$

Correction: Appliquons la propriété à x = l et $y = u_n$: il vient $|f(l) - f(u_n)| \le \alpha |f(l) - l| + \alpha |f(u_n) - u_n|$ et donc $|f(l) - u_{n+1}| \le \alpha |f(l) - l| + \alpha |u_{n+1} - u_n|$.

6. En déduire que f(l) = l. Correction: Toutes quantités étant convergentes dans cette inégalité, il vient, pour $n \to \infty$, $|f(l) - l| \le \alpha |f(l) - l|$ et donc f(l) = l car $\alpha < 1$.

Exercice 4: 1. Soit A une partie de \mathbb{N} non vide.

(a) Montrer que A (en tant que partie de \mathbb{R}) admet une borne inférieure inf $A \in \mathbb{R}$.

Correction : A est une partie de \mathbb{R} non vide (par hypothèse) et minorée par 0. Donc par axiome de l'analyse, A admet une borne inférieure.

- (b) Rappeler la caractérisation de la borne inférieure d'un ensemble par les ε . Correction: Soit $I \in \mathbb{R}$. Alors $I = \inf(A)$ si et seulement si I est un minorant de A et si pour tout $\varepsilon > 0$, il existe $a \in A$ tel que $I \le a < I + \varepsilon$.
- (c) Soit $n = \lfloor \inf A \rfloor$ la partie entière de $\inf A$. Montrer que, dans ce cas, $\inf A = n \in A$. On pourra s'aider de la question (b) pour un ε bien choisi. Conclure que $\inf A$ est le minimum de A.

 Correction: Par définition de la partie entière, on a $n \leq \inf(A) < n+1$. Choisissons $\varepsilon > 0$ de telle sorte que $n \leq \inf(A) < \inf(A) + \varepsilon < n+1$. Il existe donc un élément a de A (et donc a est un entier) tel que $n \leq \inf(A) \leq a < n+1$. Or, le seul entier dans [n, n+1[est n. Donc $a=n=\inf(A)$. Donc $\inf(A)=a\in A$, donc $\inf(A)=\min(A)$.
- 2. On souhaite dans cette question re-prouver que √2 n'est pas un rationnel. Remarque importante : on suppose dans cette question qu'on ne connait rien sur √2, à part uniquement sa définition en tant que l'unique racine positive de x² = 2. Toute propriété élémentaire sur √2 que vous souhaiteriez utiliser dans votre démonstration doit être justifiée à partir de cette définition.Soit

$$A = \left\{ n \in \mathbb{N}^*, n\sqrt{2} \in \mathbb{Z} \right\}.$$

(a) Montrer qu'il s'agit de prouver que A est vide. Correction : A est non vide si et seulement si il existe $n \in \mathbb{N}^*$ et $m \in \mathbb{Z}$ tel que $\sqrt{2} = \frac{m}{n}$ et donc si et seulement si $\sqrt{2}$ est rationnel.

On raisonne par l'absurde et on suppose que A est non vide. D'après la question 1., on note $k = \min(A)$.

- (b) Montrer que $k(\sqrt{2}-1) \in A$. Correction: Soit $n = k(\sqrt{2}-1)$. Alors, d'une part, $n = k\sqrt{2}-k$ et est donc un entier (a priori relatif) par différence de deux entiers. Or $k \ge 1$ et $\sqrt{2}-1>0$ (car 2>1). Donc en particulier, n>0. C'est donc un entier strictement positif donc $n \in \mathbb{N}^*$. D'autre part, on a $n\sqrt{2} = 2k - k\sqrt{2}$ qui est donc un entier, par définition de $k \in A$. Donc $k(\sqrt{2}-1) \in A$.
- (c) Conclure à une contradiction. Correction: Ceci est absurde car $\sqrt{2} - 1 < 1$ et donc $k(\sqrt{2} - 1) < k$ ce qui contredit la minimalité de k. Donc A est vide et $\sqrt{2}$ est un irrationnel.
- 3. Question bonus, hors-barème : généraliser le raisonnement de la question 2. pour prouver l'assertion suivante : pour tout entier $m \ge 1$, \sqrt{m} est soit un entier, soit un irrationnel.

Correction: On pose de même $A = \{n \in \mathbb{N}^*, n\sqrt{m} \in \mathbb{Z}\}$. Deux possibilités: soit A est vide auquel cas \sqrt{m} est un irrationnel, soit A n'est pas vide. Dans ce cas, A admet un minimum k. On pose alors $k' := k(\sqrt{m} - \lfloor \sqrt{m} \rfloor) < k$. Deux possibilités: soit $\sqrt{m} = \lfloor \sqrt{m} \rfloor$, auquel cas \sqrt{m} est un entier. Soit $\sqrt{m} > \lfloor \sqrt{m} \rfloor$, auquel cas k' > 0. De plus, c'est un entier car $k' = k\sqrt{m} - k \lfloor \sqrt{m} \rfloor$ donc $k' \in \mathbb{N}^*$. De plus, $\sqrt{m}k' = km - k\sqrt{m} \lfloor \sqrt{m} \rfloor$ est un entier, par différence de deux entiers. Donc $k' \in A$. Or k' < k, ce qui contredit la minimalité de k. Absurde. Donc la seule possibilité pour que A ne soit pas vide est que \sqrt{m} soit un entier.

Fin de l'épreuve.