Лекции

по математическому анализу: многообразия, криволинейные и поверхностные интегралы, введение в векторный анализ.

2 мая 2019 г.

Аннотация

Записки создавались студентами Механико-математического факультета НГУ с лекций, прочитанных С. Г. Басалаевым.

Внимание! Записки не подвергались редактуре, поэтому, возможно, содержат множество неточностей, опечаток и смысловых ошибок.

Содержание

1 Многообразия 3	
1.1	Многообразия без края
1.2	Многообразия с краем
1.3	Касательное и нормальное пространства
1.4	Задача на условный экстремум
1.5	Площадь поверхности
1.6	Площадь графика функции
Kpi	иволинейные интегралы 21
2.1	Криволинейные интегралы І-рода
2.2	Объем шара и площадь сферы
2.3	Формула коплощади
Вве	дение в векторный анализ
3.1	Дифференциальные формы
3.2	Ориентация
3.3	Интеграл 1-формы по кривой
3.4	Внешние формы второго порядка 41
3.5	Внешний дифференциал 1-формы 42
3.6	Ротация векторного поля
3.7	25.04.19
3.8	Дивергенция векторного поля
	1.1 1.2 1.3 1.4 1.5 1.6 Kpr 2.1 2.2 2.3 BBe 3.1 3.2 3.3 3.4 3.5 3.6 3.7

1 Многообразия

1.1 Многообразия без края

Определение 1.1. Множество $M \subseteq \mathbb{R}^n$ называется C^r -гладким k-мерным многообразием без края, если для каждого $x_0 \in M$ существует U — окрестность x_0 и существует C^r -диффеоморфизм $\Phi: U \to \Phi(U)$, такой что $\Phi(x_0) = 0$ и $\Phi(U \cap M) = V \times \{0\}^{n-k}$, где V — окрестность нуля в \mathbb{R}^k .

При r=0 многообразие называется топологическим, при r>0 многообразие называется дифференцируемым.

Примеры многообразий:

1. Набор изолированных точек (k = 0).

2. Набор кривых, в том числе с выколотыми концами, а также замкнутые (k=1).

3. Поверхности (k = 2).

Пример 1.2.

- Пара параллельных прямых многообразие,
- Пара непересекающихся плоскостей многообразие,

- Плоскость и прямая не многообразие, так как их размерности не совпадают,
- Пара пересекающихся прямых с выколотой точкой пересечения многообразие.

Теперь рассмотрим способы задания *k*-мерных многообразий.

Теорема 1.3. Пусть $U \subseteq \mathbb{R}^n$ — открытое множество, тогда U является n-мерным многообразием.

Доказательство. Напомним, что множество называется от крытым, если для любая его точка x_0 лежит в некоторой окрестности.

Отображение Φ можно определить следующим образом: $\Phi(x) = x - x_0 -$ сдвиг в ноль, переводит окрестность x_0 в окрестность нуля.

Теорема 1.4 (О графике). Пусть $U \subset \mathbb{R}^n$ — открытое множество, $f: U \to \mathbb{R}, \ f \in C^r$, тогда график этой функции $\Gamma_f = \{(x, f(x)) \mid x \in U\}$ — C^r -гладкое n-мерное многообразие в \mathbb{R}^{n+1} .

Доказательство. Определим отображение $\Phi: U \times \mathbb{R} \to U \times \mathbb{R}$ следующим образом: $\Phi(x,y) = (x,y-f(x))$, тогда:

$$\Phi(x_1, \dots, x_n, y) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ y - f(x_1, \dots, x_n) \end{pmatrix}, \quad |D\Phi| = \begin{vmatrix} E & 0 \\ -\frac{\partial f}{\partial x_i} & 1 \end{vmatrix} = 1.$$

Отображение Φ является C^r -диффеоморфизмом и $\Phi(x,f(x))=(x,0)$, т. е. $\Phi(\Gamma_f)=U\times\{0\}.$

Теорема 1.5 (О локальном вложении). Пусть $U \subset \mathbb{R}^n$ — открытое множество, $f: U \to \mathbb{R}^n$, $f \in C^r$ и $k \leq n$. Тогда, если $t^0 \in U$ и $\mathrm{rank}\, Df(t^0) = k$, то существует V-окрестность t^0 , такая что f(V) является C^r -гладким k-мерным многообразием.

$$\begin{cases} x_1 = f_1(t_1, \dots, t_k), \\ \dots \\ x_n = f_n(t_1, \dots, t_k). \end{cases}$$

Доказательство. Так как $\operatorname{rank} Df(t^0) = k$, следовательно набор векторов $\{\frac{\partial f}{\partial x_1},\ldots,\frac{\partial f}{\partial x_k}\}$ является линейно независимым, т.е. его можно дополнить до базиса \mathbb{R}^n .

Пусть $\{\frac{\partial f}{\partial x_1},\ldots,\frac{\partial f}{\partial x_k},v_{k+1},\ldots,v_n\}$ — базис в \mathbb{R}^n . Определим $\Phi:U\times\mathbb{R}^{n-k}\to\mathbb{R}^n$ так, что $\Phi(t_1,\ldots,t_k,s_{k+1},\ldots,s_n)=$ $f(t_1,\ldots,t_k)+s_{k+1}v_{k+1}+\ldots+s_nv_n.$ $D\Phi=[rac{\partial f}{\partial t_1},\ldots,rac{\partial f}{\partial t_k},v_{k+1},\ldots,v_n]$, следовательно $\det D\Phi
eq 0.$

По теореме об обратной функции существует W — окрестность $(t_0, 0)$, такая что $\Phi:W\to\Phi(W)-C^r$ -диффеоморфизм. Выберем $V\times(-h,h)\in$ W, так что V — окрестность x_0 в \mathbb{R}^k , тогда $\Phi^{-1}(f(V)) = V \times \{0\}^{n-k}$. \square

Определение 1.6. Пусть x^0 — решение системы уравнений:

$$\begin{cases} f_1(x_1, \dots, x_n) = a_1, \\ \dots \\ f_k(x_1, \dots, x_n) = a_k, \end{cases}$$

тогда x^0 называется регулярным, если rank $\frac{\partial f_i}{\partial x_i}(x^0) = k$.

Теорема 1.7 (О решении системы уравнений). *Пусть* $U \subset \mathbb{R}^k - om\kappa p_{bl}$ тое множество, $f_1,\ldots,f_k:U\to\mathbb{R}\ u\ f_i\in C^r\ \forall\,i\leq k,$ тогда множество регулярных решений системы уравнений

$$\begin{cases} f_1(x_1, \dots, x_n) = a_1, \\ \dots \\ f_k(x_1, \dots, x_n) = a_k, \end{cases}$$

представляет собой C^r -гладкое (n-k)-мерное многообразие.

$$Df(x^{0}) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & & \vdots \\ \frac{\partial f_{k}}{\partial x_{1}} & \cdots & \frac{\partial f_{k}}{\partial x_{n}} \end{pmatrix} (x^{0}).$$

Матрица состоит из n столбцов, где k из них линейно независимы. $f(x_1,\ldots,x_{n-k},x_{n-k+1},\ldots x_n)=f(x,y)=0$. Существует окрестность V такая, что $\det \frac{\partial f}{\partial y} \neq 0$ тогда по теореме о неявной функции y=g(x). В некоторой окрестности x^0 :

$$x_{n-k+1} = g_{n-k+1}(x_1, \dots, x_{n-k}),$$

 \dots
 $x_n = g_n(x_1, \dots, x_{n-k}).$

Множество решений по теореме о локальном вложении является многообразием:

$$x_1 = x_1,$$
...
 $x_{n-k} = x_{n-k},$
 $x_{n-k+1} = g_{n-k+1}(x_1, \dots, x_{n-k}),$
...
 $x_n = g_n(x_1, \dots, x_{n-k}).$

1.2 Многообразия с краем

Определение 1.8. $\mathbb{R}^k_+ = \{(x_1, \dots, x_k) : x_k \ge 0\}$ — верхнее полупространство ($\mathbb{R}^k_- = \{(x_1, \dots, x_k) : x_k \le 0\}$ — нижнее полупространство).

Определение 1.9. Пусть $V \subseteq R^k$ — окрестность нуля, тогда $V \cap \mathbb{R}^k_+$ называется полуокрестностью нуля. В ее основании лежит (k-1)-мерная окрестность нуля.

Определение 1.10. Множество $M \in \mathbb{R}^n$ называется C^r -гладким k-мерным многообразием с краем, если для каждого $x_0 \in M$ существует U — окрестность x_0 и существует C^r -диффеоморфизм $\Phi: U \to \Phi(U)$, такой что $\Phi(x_0) = 0$ и, либо $\Phi(U \cap M) = V \times \{0\}^{n-k}$ (тогда x_0 — внутренняя точка), либо $\Phi(U \cap M) = (V \cap \mathbb{R}^k_+) \times \{0\}^{n-k}$ (тогда x_0 — крайняя точка).

Примеры многообразий с краем:

- 1. Края нет при k = 0.
- 2. Край незамкнутой кривой (k=1) это ее концевые точки. У замкнутых и неограниченных кривых края нет.

3. При k=2, внутренними точками поверхности являются те, которые лежат внутри нее вместе со своей некоторой окрестности, остальные являются краевыми.

Определение 1.11. Пусть M — многообразие, тогда $\partial M = \{x \mid x$ — краевая точка $M\}$ — множество краевых точек многообразия M.

Теорема 1.12 (О крае). Пусть $M - C^{T}$ -гладкое k-мерное многообразие c краем, тогда множество его краевых точек ∂M является C^{T} -гладким (k-1)-мерным многообразием без края $(\partial \partial M = \emptyset)$.

$$(k-1)$$
-мерным многоооразием оез края (ООМ = \emptyset).
Доказательство. Пусть $x \in \Phi(U \cap M)$, тогда $x = (x_1, \dots, x_{k-1}, x_k, \underbrace{0, \dots, 0}_{n-k})$.

Если $x_k=0$, то $x\in\partial M$ — краевая точка. Отображение Φ переводит все краевые точки $U\cap M$ в (k-1)-мерную плоскость (основание полупространства). Основание — (k-1)-мерная окрестность нуля, следовательно $\Phi(U\cap\partial M)=W\times\{0\}\times\{0\}^{n-k}$ — выполнено определение многообразия.

Теорема 1.13 (О решении системы уравнений и неравенства). Пусть $U \subset \mathbb{R}^k$ - открытое множество, $f_1, \ldots, f_{k+1} : U \to \mathbb{R}$, $f_i \in C^r \ \forall \ i \le k+1$ и $\operatorname{rank} \frac{\partial f_i}{\partial x_j}(x^0) = k+1$, тогда множество регулярных решений системы уравнений

$$\begin{cases} f_1(x_1, \dots, x_n) = a_1, \\ \dots \\ f_k(x_1, \dots, x_n) = a_k, \\ f_{k+1}(x_1, \dots, x_n) \ge a_{k+1}, \end{cases}$$

представляет собой C^r -гладкое (n-k)-мерное многообразием с краем (внутренние точки — решение строгого неравенства, край — решение (k+1) уравнений).

Доказательство. Решение неравенства $f_{k+1}(x_1,...,x_n) > a_{k+1}$ является открытым множеством, и по теореме 1.3 задает многообразие.

Решение системы уравнений

$$\begin{cases} f_1(x_1, \dots, x_n) = a_1, \\ \dots \\ f_k(x_1, \dots, x_n) = a_k, \\ f_{k+1}(x_1, \dots, x_n) = a_{k+1}, \end{cases}$$

задает (k-1) мерную поверхность — край многообразия.

Определение 1.14. Множество $M \subset \mathbb{R}^k$ называется k-мерным кусочногладким многообразием, если:

- 1. M k-мерное топологическое многообразие.
- 2. Существует разбиение $M=\tilde{M}\cup(\bigcup_{i=0}^n Z_i)$, такое что \tilde{M} гладкое k-мерное многообразие, а Z_i кусочно гладкие многообразия размерности $l\le k-1$.

Пример 1.15. Куб.

Теорема 1.16. Пусть $U \subset \mathbb{R}^k$ – открытое множество, $f_1, \ldots, f_k, \ldots, f_{k+l}: U \to \mathbb{R}, \ f_i \in C^r \ \forall \ i \leq k+l \ u \ \mathrm{rank} \ \frac{\partial f_i}{\partial x_j}(x^0) = k+l, \ mor \partial a \ множество \ pe-гулярных решений системы уравнений$

$$\begin{cases} f_1(x_1, \dots, x_n) = a_1, \\ \dots \\ f_k(x_1, \dots, x_n) = a_k, \\ f_{k+1}(x_1, \dots, x_n) \ge a_{k+1}, \\ \dots \\ f_{k+l}(x_1, \dots, x_n) \ge a_{k+l}, \end{cases}$$

представляет собой C^r -кусочно-гладкое (n-k)-мерное многообразием с краем.

Пример 1.17. Является ли многообразием множество решений системы:

$$\begin{cases} x^2 - y^2 + z^2 \le 16 \\ x^2 y^2 \ge 1 \\ z \ge 1 \end{cases}$$

Решение. Проверим условия теоремы выше.

$$\frac{\partial f_i}{\partial x_j} = \begin{pmatrix} 2x & -2y & 2z \\ 2xy^2 & 2x^2y & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Для того чтобы ранг этой матрицы был максимальным, достаточно, чтобы $\det \frac{\partial f_i}{\partial x_i} \neq 0$.

$$\det \frac{\partial f_i}{\partial x_j}(x_0) = 4xy(x^2 + y^2)$$

Это выражение равно нулю, если x=0 или y=0. Подставив их в исходную систему, убедимся, что они не являются ее решением. Следовательно rank $\det \frac{\partial f_i}{\partial x_j}(x)=3$ и множество решений системы является кусочно-гладким многообразием с краем размерности 3.

Внутренностью этого многообразия является решение системы

$$\begin{cases} x^2 - y^2 + z^2 < 16\\ x^2 y^2 > 1\\ z > 1 \end{cases}$$

Рассмотрим теперь что является краем этого многообразия. Набор систем, перечисленный ниже задает компоненты края.

$$\begin{cases} x^2 - y^2 + z^2 = 16 \\ x^2 y^2 = 1 \\ z = 1 \end{cases} \qquad \begin{cases} x^2 - y^2 + z^2 < 16 \\ x^2 y^2 = 1 \\ z = 1 \end{cases} \qquad \begin{cases} x^2 - y^2 + z^2 = 16 \\ x^2 y^2 > 1 \\ z = 1 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 = 16 \\ x^2 y^2 > 1 \end{cases} \qquad \begin{cases} x^2 - y^2 + z^2 < 16 \\ x^2 y^2 > 1 \end{cases} \qquad \begin{cases} x^2 - y^2 + z^2 < 16 \\ x^2 y^2 > 1 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \\ x^2 y^2 > 1 \end{cases} \qquad \begin{cases} x^2 - y^2 + z^2 < 16 \\ x^2 y^2 > 1 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \\ x^2 y^2 > 1 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \\ x^2 y^2 > 1 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2 < 16 \end{cases}$$

$$\begin{cases} x^2 - y^2 + z^2$$

Край кусочно-гладкий, размерности компонент края в порядке по строкам: 0,1,1,1,2,2,2 (каждая компонента - многообразие, размерность которых можно вычислить используя формулировки соответствующих теорем о задании многообразий).

Пример 1.18. в \mathbb{R}^3 . $x^2 + y^2 \le 1, x \ge 0, z \ge 0, z \le 1$

– грань тела, 2-мерное многообразие.

1.3 Касательное и нормальное пространства

Определение 1.19. Пусть $\gamma:[a,b]\to\mathbb{R}^n\in C^1$, тогда вектор $\gamma'(t)\in\mathbb{R}^n$ называется вектором скорости кривой γ .

Определение 1.20. Вектор $\vec{v} \in \mathbb{R}^n$ называется касательным к множеству $M \subseteq \mathbb{R}^n$ в точке $x_0 \in M$, если это вектор скорости некоторой кривой, лежащей в M, т.е. существует кривая $\gamma: [0,\varepsilon] \to M$, такая что $\gamma(0) = x_0$ и $\gamma_t'(0) = \vec{v}$.

Множество касательных векторов к M в точке x_0 обозначается $T_{x_0}M$.

Задача 1.21. Пусть $\gamma:(a,b)\to\mathbb{R}^n$ — параметризованная кривая, $\Psi:\mathbb{R}^n\to\mathbb{R}^n$ — C^1 -диффеоморфизм. Показать, что если v — вектор скорости кривой γ в точке $t_0\in(a,b)$, то $d\Psi_{\gamma(t_0)}\langle v\rangle$ — вектор скорости кривой $\Gamma=\Psi\circ\gamma$ в точке t_0 .

Решение. Воспользуемся правилом дифференцирования композиции:

$$d(\Psi \circ \gamma)\langle t_0 \rangle = d(\Psi_{\gamma(t_0)})\langle \gamma(t_0) \rangle = d(\Psi_{\gamma(t_0)})\langle v \rangle. \qquad \Box$$

Пемма 1.22. Коллинеарный касательному вектору так же является касательным вектором, т.е. если $\vec{v} \in T_{x_0}M$, то $\forall \lambda > 0 \ \lambda \vec{v} \in T_{x_0}M$.

Доказательство. По условию, существует кривая $\gamma \subset M$, для которой \vec{v} является вектором скорости. Зададим кривую $\tilde{\gamma}(t) = \gamma(\lambda t)$ и проверим, что вектор $\lambda \vec{v}$ является ее вектором скорости. Действительно

$$\tilde{\gamma}'(0) = \lambda \gamma'(0) = \lambda \vec{v}$$

П

Теорема 1.23 (О множестве касательных векторов). Если $M \subseteq \mathbb{R}^n - C^1$ -гладкое k-мерное многообразие, $x_0 \in M$, тогда:

- 1. Ecsu $x_0 \in M \setminus \partial M$, mo $T_{x_0}M \simeq \mathbb{R}^k$.
- 2. Ecau $x_0 \in \partial M$, mo $T_{x_0}M \simeq \mathbb{R}^k_+$.

Доказательство. По определению k-мерного многообразия, для каждого $x_0 \in M$ существует U — окрестность x_0 и существует C^r -диффеоморфизм $\Phi: U \to \Phi(U)$, такой что $\Phi(x_0) = 0$ и $\Phi(U \cap M) = V \times \{0\}^{n-k}$, где V — окрестность нуля в \mathbb{R}^k .

Под действием Φ кривая перейдет в кривую.

 $\gamma: [0,\varepsilon] \to M \Longrightarrow \Gamma(t) = \Phi(\gamma(t)) = (x_1(t),\ldots,x_k(t),0,\ldots,0) \Longrightarrow \Gamma'(t) = (x_1'(t),\ldots,x_k'(t),0,\ldots,0).$

 $\Gamma'(t)=(\Phi(\gamma(t)))'=D\Phi_{\gamma(t)}\langle\gamma'(t)\rangle$ — линейное отображение, такое, что $\det D\Phi\neq 0$.

 $T_{x_0}M = D\Phi^{-1}(\mathbb{R}^k \times \{0\}^{n-k}) \implies T_{x_0}M$ - k-мерная плоскость (т.к. дифференциал переводит плоскость в плоскость).

Определение 1.24. Нормальное пространство $N_{x_0}M$ к дифференцируемому многообразию в точке x_0 — это ортогональное дополнение к касательному пространству $T_{x_0}M$.

Лемма 1.25. Пусть $M \subset \mathbb{R}^n$ и $x_0 \in M$, тогда если $\dim M = k$ то, $\dim T_{x_0}M = k$ и $\dim N_{x_0}M = n - k$.

Теорема 1.26 (О базисе касательного пространства). *Пусть многообра-* $sue\ M\ sadano\ napamempuчески:$

$$\begin{cases} x_1 = f_1(t_1, \dots, t_k), \\ \dots \\ x_n = f_n(t_1, \dots, t_k). \end{cases}$$

, $r\partial e (t_1,\ldots,t_k) \in U$.

Пусть $U \subseteq \mathbb{R}^k$ — открытое множество, $f: U \to \mathbb{R}^n$, $f \in C^r$ и $t^0 \in U$. Тогда, если M = f(U) — многообразие и $\operatorname{rank} Df = k$, то $\{\frac{\partial f}{\partial t_1}(t^0), \ldots, \frac{\partial f}{\partial t_k}(t^0)\}$ — базис в $T_{f(t^0)}M$.

Доказательство. Пусть $t^0 \in U$, определим $\Gamma_j = t^0 + t \cdot \vec{e_j}$, тогда $\gamma_j(t) = f(\Gamma_j(t))$ — кривая на многообразии.

Найдем её касательный вектор в точке t^0 : $\gamma_j'(t^0)=\frac{d}{dt}f(t^0+t\cdot\vec{e_j})=\frac{\partial f}{\partial t_j}(t^0)\in T_{f(t^0)}M.$

Набор векторов $\left\{\frac{\partial f}{\partial t_i}\right\}_{i=1}^k$ является линейно независимым и их количество равно размерности касательного пространства.

Теорема 1.27. Пусть многообразие М задано системой уравнений:

$$\begin{cases} f_1(x_1, \dots, x_n) = a_1, \\ \dots \\ f_k(x_1, \dots, x_n) = a_k. \end{cases}$$

 $u\ f_1,\ldots,f_k:U o\mathbb{R},\ f_i\in C^r\ \forall\,i\leq k$, $U\subseteq\mathbb{R}^n$ – открытое множество, а так же $\mathrm{rank}(\frac{\partial f_i}{\partial x_i})=k,$ тогда система уравнений

$$\begin{cases} df_1(x_0)\langle \vec{v}\rangle = 0, \\ \dots \\ df_k(x_0)\langle \vec{v}\rangle = 0. \end{cases}$$

задает $T_{x_0}M$, а $\{\nabla f_1(x_0),\ldots,\nabla f_k(x_0)\}$ базис в $N_{x_0}M$.

Доказательство. Пусть $x_0 \in M$. Возьмем вектор $\vec{v} \in T_{f(t_0)}M$, тогда по определению существует кривая $\gamma:[0,\varepsilon]\to M$, такая что $\gamma(0)=x_0$ и $\gamma'_t(0)=\vec{v}$.

$$f(\gamma(t)) = 0 \implies 0 = f(\gamma(t))' = df_{f(t)}\langle \gamma'(t) \rangle.$$

Подставим $t=0 \implies 0=df_{x_0}\langle \vec{v} \rangle$. Из этого равенства следует, что:

$$\begin{cases} df_1(x_0)\langle \vec{v}\rangle = 0\\ \dots\\ df_k(x_0)\langle \vec{v}\rangle = 0 \end{cases}$$

Заметим, что $0=df_{x_0}\langle \vec{v}\rangle=\nabla f_j(x_0)\cdot \vec{v}$, из чего получаем, что $\{\nabla f_1(x_0),\dots,\nabla f_k(x_0)\}$ – базис в $N_{x_0}M$, т.к. $T_{f(t_0)}M\perp N_{x_0}M$.

1.4 Задача на условный экстремум

Определение 1.28. Пусть M, N — дифференцируемые многообразия, тогда $f: M \to N$ дифференцируема в точке x_0 , если существует линейное отображение $L: T_{x_0}M \to T_{f(x_0)}N$, такое что для каждой кривой $\gamma: [0,\varepsilon] \to M$, такой что $\gamma \in C^1$, $\gamma(0) = x_0$, $\gamma'(0) = \vec{v} \in T_{x_0}M$, выполняется $f(\gamma(t)) = f(x_0) + tL(\vec{v}) + o(t)$.

Теорема 1.29 (Необходимое условие экстремума). Пусть $f: M \to \mathbb{R} - \partial u \phi \phi$ еренцируема и $x_0 - e\ddot{e}$ экстремум, тогда $df(x_0) = 0$.

Доказательство. Пусть $\vec{v} \in T_{x_0}M \iff \exists$ кривая $\gamma:[0,\varepsilon] \to M$, такая что $\gamma(0)=x_0$ и $\gamma_t'(0)=\vec{v}$.

Для
$$f|_{\gamma} x_0$$
 - экстремум, следовательно $f(\gamma(t))'(0) = 0 = df_{x_0} \langle \vec{v} \rangle$.

Пусть $f:U\to\mathbb{R},\,U\subseteq\mathbb{R}^n$ – открытое множество, $M\subseteq U-k$ -мерное многообразие. Ставится задача: найти экстремум на многообразии $f\mid_M$.

Теорема 1.30 (Необходимое условие условного экстремума). *Если* $x_0 \in M$ – точка экстремума f, то $df|_{T_{x_0}M} = 0 \Leftrightarrow \nabla f(x_0) \in N_{x_0}M$.

Доказательство. Пусть $\vec{v} \in T_{x_0}M \iff \exists$ кривая $\gamma:[0,\varepsilon] \to M$, такая что $\gamma(0)=x_0$ и $\gamma_t'(0)=\vec{v}$.

Тогда x_0 - экстремум $f(\gamma(t))$ и $f(\gamma(0)) = 0$. Заметим, что $f(\gamma(t)) = df_{\gamma(0)}\langle \gamma'(0) \rangle = df_{x_0}\langle \vec{v} \rangle$.

Теорема 1.31 (Метод множителей Лагранжа). Пусть $f, \varphi_1, \ldots, \varphi_k : U \to \mathbb{R}$, $U \subseteq \mathbb{R}^n$. Тогда, если x_0 — условный экстремум при условиях $\varphi_1(\bar{x}) = 0, \ldots, \varphi_k(\bar{x}) = 0$, то $dL(x_0) = 0$, где $L(\bar{x}, \lambda_1, \ldots, \lambda_k) = f(\bar{x}) - \lambda_1 \varphi_1(\bar{x}) - \ldots - \lambda_k \varphi_k(\bar{x})$ — функция Лагранжа.

Доказательство. Рассмотрим $L(\bar{x}, \lambda_1, \dots, \lambda_k)$. $\frac{\partial L}{\partial \lambda_j}(x) = -\varphi_j(x) = 0 \Rightarrow x$ – решение системы уравнений.

Возьмем частную производную L по x_j :

$$\frac{\partial L}{\partial x_j}(x,\lambda) = \frac{\partial f}{\partial x_j}(x) - \lambda_1 \frac{\partial \varphi_1}{\partial x_j}(x) - \dots - \lambda_k \frac{\partial \varphi_n}{\partial x_j}(x) = 0,$$

отсюда $\nabla f(x) = \lambda_1 \nabla \varphi_1(x) + \ldots + \lambda_k \nabla \varphi_k(x)$ – градиенты $\nabla \varphi_i$ – это нормали, следовательно, их линейная комбинация тоже нормаль. Таким образом, ∇f – нормаль к поверхности и выполнено необходимое условие условного экстремума.

Лемма 1.32 (Правило дифференцирования вдоль кривой).

Пусть $f:U\to\mathbb{E}\in C^2, U\subseteq\mathbb{R}^n$ – открытое множество и $\gamma:[a,b]\to U\in C^2$ – кривая. Тогда

1.
$$(f \circ \gamma)'(t) = df_{\gamma(t)} \langle \gamma'(t) \rangle$$
,

2.
$$(f \circ \gamma)''(t) = d^2 f_{\gamma(t)} \langle \gamma'(t), \gamma'(t) \rangle + d f_{\gamma(t)} \langle \gamma''(t) \rangle$$
.

Есть два способа доказательства, здесь будет приведен самый оптимальный. Другой способ вы сможете найти в своих лекциях;-)

Доказательство. $(f\circ\gamma)''(t)=\left(df_{\gamma(t)}\langle\gamma'(t)\rangle\right)_t'$ – дифференцирование сложной функции.

Напомним, что
$$d_x\left(df_x\langle \vec{v}\rangle\right)=d^2f(x)\langle \vec{v}\rangle$$
 и $d_{\vec{v}}\left(df_x\langle \vec{v}\rangle\right)=df_x$. Отсюда имеем $\left(df_{\gamma(t)}\langle \gamma'(t)\rangle\right)_t'=d^2f_{\gamma(t)}\langle \gamma'(t),\gamma'(t)\rangle+df_{\gamma(t)}\langle \gamma''(t)\rangle$.

Теперь мы готовы сформулировать достаточное условие экстремума. Перед доказательством заметим, что если $\varphi_1,\ldots,\varphi_n$ – уравнения связи, то $x\in M$ (лежит в многообразии) тогда и только тогда, когда

$$\begin{cases} \varphi_1(x) = 0, \\ \dots \\ \varphi_n(x) = 0. \end{cases}$$

Теорема 1.33 (Достаточное условие экстремума в методе множителей Лагранжа). Пусть $U \subset \mathbb{R}^n$, $f, \varphi_1, \ldots, \varphi_k : U \to \mathbb{R} \in C^2$, $\operatorname{rank}\left(\frac{\partial \varphi_i}{\partial x_j}\right) = k$ всюду, то. Определим функию Лагранжа как $L(x, \lambda_1, \ldots, \lambda_k) = f(x) - \lambda_1 \varphi_1(x) - \ldots - \lambda_k \varphi_k(x)$, тогда, если $dL(x_0, \lambda_0) = 0$, то при $d_x^2 L(x_0, \lambda_0) > 0 - x_0$ — точка минимума, а при $d_x^2 L(x_0, \lambda_0) < 0$ — точка максимума.

Доказательство. Пусть $dL(x_0,\lambda_0)=0, d_x^2L(x_0,\lambda_0)\mid_{T_xM\times T_xM}>0.$ $dL(x_0,\lambda_0)=0\iff \frac{\partial L}{\partial x}=\frac{\partial f}{\partial x}-\sum_{j=1}^k\lambda_j\frac{\partial \varphi}{\partial x_j}=0\iff \nabla f(x_0)=\sum_{j=1}^k\lambda_j\nabla\varphi_j.$ Кроме того, $\frac{\partial L}{\partial x}=0=-\varphi_j\iff x_0\in M.$ Следовательно, $\nabla f(x)\in N_{x_0}M\iff df_{x_0}\mid_{T_{x_0}M}=0.$

Возьмем произвольную $\gamma: (-\varepsilon, \varepsilon) \to M \in C^2, \gamma(0) = x_0$. Посмотрим, как ведет себя функция f на кривой γ , т.е. ограничение функции на эту кривую.

Рассмотрим $f \circ \gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}$. По лемме 1.32 $(f \circ \gamma)'(t) = df_{\gamma(t)} \langle \gamma'(t) \rangle$. $(f \circ \gamma)'(0) = df_{x_0} \langle \gamma'(0) \rangle = 0$.

Поскольку образ кривой лежит в многообразии

$$\gamma(t) = x \in M \iff \begin{cases} \varphi_1(\gamma(t)) \equiv 0, \\ \dots \\ \varphi_k(\gamma(t)) \equiv 0. \end{cases}$$

Подставим $\gamma(t) = x$ в $L(x, \lambda)$, получим

$$L(\gamma(t),\lambda) = f(\gamma(t)) - \lambda_1 \varphi_1(\gamma(t)) - \dots - \lambda_k \varphi_k(\gamma(t)) = f(\gamma(t))$$

далее,

$$(f \circ \gamma)''(t) = (L(\gamma(t), \lambda))'_{tt} = d_x^2 L(\gamma'(t), \gamma'(t)) + d_x L(\gamma''(t)).$$

подставим ноль

$$(f \circ \gamma)''(0) = d_x^2 L(\gamma'(0), \gamma'(0)) + 0 > 0.$$

Имеем, что $f \circ \gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}, (f \circ \gamma)'(0) = 0, (f \circ \gamma)''(0) > 0$. Следовательно, t = 0 является точкой минимума для $f \circ \gamma$.

Таким образом, x_0 — точка минимума для любой кривой $\gamma \subseteq M$, проходящей через x_0 . Следовательно, x_0 — точка минимума для $f|_M$.

Пример 1.34. Найти экстремумы функции $f(x,y,z) = x^2 - 2x + y^2 - z^2$ на $x^2 + y^2 \le 4, 0 \le z \le 1$.

1.5 Площадь поверхности

Пусть $v_1,\ldots,v_n\in\mathbb{R}^n$. Из прошлого семестра, мы знаем, что n-мерный объем параллеленинеда $\Pi(v_1,\ldots,v_n)=\{t_1v_1+\ldots,t_nv_n:t_i\in[0,1]\}$, натянутого на набор векторов $v_1,\ldots,v_n\in\mathbb{R}^n$ может быть вычислен по формуле $|\Pi|=|\det[v_1,\ldots,v_n]|$. Так же он может быть вычислен с помощью определителя матрицы Грамма, полагая $A=[v_1,\ldots,v_n]$, из $(\langle v_i,v_j\rangle)_{ij}=A^TA$ получаем: $\det A^TA=\det A^T\det A=(\det A)^2=(|\Pi|)^2$.

Вспомним так же, как изменяется мера при отображениях.

Пусть $L: \mathbb{R}^k \to \mathbb{R}^n$ - линейное отображение. Мы знаем, что для любого измеримого множества $E \subseteq \mathbb{R}^k$, мера его образа вычисляется по формуле $|L(E)| = J_L|E| = |\det L||E|$.

Если же отображение $\varphi \in C^1$ не является линейным, мы можем приблизить его линейным и получить формулу локального искажения меры:

$$J_{\varphi(x)} = \lim_{r \to 0} \frac{|\varphi(Q(x,r))|}{|Q(x,r)|} = |\det D\varphi(x)|$$

Из чего мы получаем, что для каждого измеримого множества E, мера его образа вычисляется по формуле $|\varphi(E)|=\int\limits_{\Gamma}J_{\varphi(x)}.$

Поскольку мы работаем не со всем пространством, мы можем расширить эти определения.

Теорема 1.35 (Объем k-мерного параллепипеда). Пусть $v_1, \ldots, v_k \in \mathbb{R}^n, k \leq n$. Тогда $|\Pi(v_1, \ldots, v_n)|_k = \sqrt{\det(\langle v_i, v_j \rangle)}$. Обозначив за $A = [v_1, \ldots, v_n]$, это выражение можно записать ввиде $|\Pi| = \sqrt{\det A^*A}$.

Доказательство. Пусть k-мерная гиперплоскость L содержит в себе параллеленинед $\Pi.$

Существует ортогональное преобразование $Q: \mathbb{R}^n \to \mathbb{R}^n$, такое что $Q(L) = \mathbb{R}^k \times \{0\}^{n-k}$. Применим это преобразование к набору векторов, на которые натянут параллелепипед: $Q(v_i) = (a_{1i}, \dots, a_{kj}, 0, \dots, 0)^T$.

Заметим, что ортогональное преобразование не меняет объем.

$$A = [v_1; \ldots; v_k] \quad QA = egin{pmatrix} heta \\ 0 \end{pmatrix}$$
где $heta - k imes k$ матрица

Используя равенство $(QA)^*QA=\theta^*\theta,$ получаем требуемое утверждение:

$$|Q(\Pi)|_k = |\Pi|_k = |\det \theta| = \sqrt{\det \theta^* \theta} = \sqrt{\det(QA)^* QA} = \sqrt{\det A^* A}$$

Определение 1.36. Пусть A - матрица, имеющая из n строк и k столбцов и $M(n,k)=\{I=(i_1,\ldots,i_k)\in\mathbb{N}^k:1\leq i_1< i_2<\ldots< i_k\leq n\}$ - множество мультииндексов. Тогда A_I - минор, составленный из i_1,i_2,\ldots,i_k строк матрицы A.

Теорема 1.37 (Формула Бине-Коши). Пусть A – матрица, имеющая из n строк u k столбцов, тогда $\det A^*A = \sum_{I \in M(n,k)} \det^2 A_I$.

Доказательство. Докажем более общее утверждение: пусть A, B = (n, k)-матрицы, тогда $\det A^*B = \sum_{I \in M(n,k)} \det A_I \det B_I$.

Пусть $A = [u_1; \dots; u_n]$ и $B = [v_1, \dots, v_n]$, определим отображения L_1 и L_2 следующим образом:

$$L_1\langle u_1,\ldots,u_k,v_1,\ldots,v_k\rangle=\det A^*B$$

$$L_2\langle u_1,\ldots,u_k,v_1,\ldots,v_k\rangle = \sum_{I\in M(n,k)} \det A_I \det B_I$$

Заметим, что L_1 и L_2 линейны по каждому аргументу, следовательно, чтобы доказать, что $L_1 = L_2$ достаточно доказать что они одинаково действуют на базис (TODO: ????).

$$L_1\langle e_{i1},\ldots,e_{ik},e_{j1},\ldots,e_{jk}\rangle=\delta_{IJ}=L_2\langle e_{i1},\ldots,e_{ik},e_{j1},\ldots,e_{jk}\rangle$$

Следствие 1.38. Пусть $L:U\subseteq\mathbb{R}^k\to\mathbb{R}^n$ - линейное отображение, такое, что $\mathrm{rank}\, L=k\leq n$. Тогда для каждого измеримого множества $A,\, L(A)$ - измеримо и $|L(A)|_k=J_L|A|_k$, где $J_L=\sqrt{\det L^*L}$.

Следствие 1.39. Пусть $\Pi - k$ -мерная плоскость в \mathbb{R}^n и $\varphi : \mathbb{R}^k \to \Pi$ - C^1 -диффеоморфизм. Тогда для каждого измеримого $E \subset \mathbb{R}^k$, $\Pi(E)$ - измеримо и $|\varphi(E)|_k = \int_E J_{\varphi}(x) dx$, где $J_{\varphi} = \sqrt{\det D\varphi^*(x)D\varphi(x)}$.

Из формулы Коши-Бине так же можно получить выражения для скалярного и векторного произведения.

К примеру, взяв за A некоторый вектор $v \in \mathbb{R}^n$, можно получить:

$$v^T v = \langle v, v \rangle = |v|^2 = \sum_{i=1}^n v_i^2$$

Аналогично, если разместить векторы $u,v\in\mathbb{R}^3$ в столбцы матрицы A, получим (TODO: расписать это подробнее):

$$A^{2} = \begin{vmatrix} u_{1} & v_{1} \\ u_{2} & v_{2} \end{vmatrix} + \begin{vmatrix} u_{1} & v_{1} \\ u_{2} & v_{3} \end{vmatrix} + \begin{vmatrix} u_{2} & v_{2} \\ u_{3} & v_{3} \end{vmatrix} = |u \times v|^{2}$$

Теперь мы готовы определить меру на многообразиях.

Пусть $M \subseteq \mathbb{R}^n$ - k-мерное C^1 -гладкое многообразие, заданное параметрически, т.е. существует $\varphi: U \subseteq \mathbb{R}^k \to \mathbb{R}^n$, такое что $\varphi \in C^1$ и $M = \varphi(U)$.

$$\varphi = \begin{cases} x_1 = \varphi_1(t_1, \dots, t_k) \\ \vdots \\ x_n = \varphi_n(t_1, \dots, t_k) \end{cases}$$
 $(t_1, \dots, t_k) \in U$

Определим меру k-мерной площади S^k на параметрически заданном многообразии M.

Определение 1.40. Пусть $E\subseteq U\to\mathbb{R}^k$ - измеримо по $|.|_k$, тогда $\varphi(E)$ назовем измеримым по S^k и будем вычислять его меру как $S^k(\varphi(E)):=\int\limits_E J_\varphi(t)dt$, где $J_\varphi(t)=\sqrt{\det D\varphi^*(t)D\varphi(t)}$.

Внимательный читатель задастся вопросом: а не зависит ли наша мера от параметризации многообразия?

Пемма 1.41. Пусть $\varphi:U\subseteq\mathbb{R}^k\to\mathbb{R}^n$ и $\psi:V\subseteq\mathbb{R}^k\to\mathbb{R}^n$ - различные параметризации многообразия, такие что $\mathrm{rank}\,D\varphi=\mathrm{rank}\,D\psi=k$. Тогда $\int\limits_U J_{\varphi}(t)dt=\int\limits_V J_{\psi}(t)dt$.

Доказательство. Рассмотрим $\psi^{-1} \circ \varphi$ — отображение между U и V.

Очевидно, что $\psi^{-1}\circ\varphi$ является биекцией и $\det D\psi^{-1}\circ\varphi\neq 0$. Следовательно, $\psi^{-1}\circ\varphi-C^1$ -диффеоморфизм.

Сделаем замену переменных $y = \psi^{-1}(\varphi(x))$ в интеграле:

$$\int\limits_{V} \sqrt{\det D\psi^{*}(y)D\psi(y)}dy = \int\limits_{U} \sqrt{\det D\psi^{*}(\psi^{-1}\circ\varphi(x))D\psi(\psi^{-1}\circ\varphi(x))}$$
$$|\det D\psi^{-1}\circ\varphi(x)|dx = \int\limits_{U} \sqrt{\det D\psi^{*}(\psi^{-1}\circ\varphi(x))D\psi(\psi^{-1}\circ\varphi(x))}$$
$$\sqrt{\det D(\psi^{-1}\circ\varphi)^{*}(x)\det D\psi^{-1}\circ\varphi(x)}dx$$

Заметим, что:

$$D\psi(\psi^{-1}\circ\varphi)=D\psi(\psi^{-1}\circ\varphi)\cdot D(\psi^{-1}\circ\varphi)=D\varphi$$

Осталось применить то, что произведение определителей равно определителю произведения и подставить это равенство в интеграл. \Box

Рассмотрим некоторые свойства меры S^k :

- 1. Счетная аддитивность.
 - Пусть $\{M_i\}_{i\in N}$ не более чем счетный дизъюнктный набор множеств, тогда $S^k(\bigcup M_i)=\sum_i S^k(M_i).$
- 2. Меру можно доопределить для кусочно-гладкого многообразия, так как мера множества размерности меньше k равна нулю в мере S^k .

Пример 1.42. Вывести формулу длины кривой $\gamma:[a,b]\to\mathbb{R}^n$ с помощью меры $S^k.$

Решение.

$$\gamma(t) = egin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix} \quad D\gamma(t) = egin{pmatrix} x'_1(t) \\ \vdots \\ x'_n(t) \end{pmatrix}$$
 - вектор скорости
$$\sqrt{\det D\gamma^*(t)D\gamma(t)} = \sqrt{x'_1^2 + \ldots + x'_n^2} = |\gamma'(t)|$$

$$l(\gamma) = \int\limits_a^b |\gamma'(t)| dt$$

Определение 1.43. Мера угла — длина дуги единичной окружности с центром в начале угла.

1.6 Площадь графика функции

Пусть $f: U \to \mathbb{R}^n \in C^1$, где $U \subseteq \mathbb{R}^n$ её график — n-мерное многообразие $\Gamma_f = \{(\bar{x}, f(x)) \in \mathbb{R}^{n+1}\}.$

Чтобы найти S^k надо параметризовать график функции. Пусть

$$\varphi: \begin{cases} x_1 = x_1, \\ \dots \\ x_n = x_n, \\ y = f(x_1, \dots, x_n). \end{cases}$$

— параметризация графика. Тогда $S^k(\Gamma_f) = \int_U J_{\varphi}(x) dx$. Посчитаем $D\varphi$.

$$D\varphi = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 \\ \frac{\partial f}{\partial x_1} & \dots & \frac{\partial f}{\partial x_n} \end{pmatrix}_{n \times (n+1)}$$

Нам нужно посчитать определитель матрицы $\det D\varphi^*D\varphi$. Если мы будем считать «в лоб»:

$$D\varphi^*D\varphi = E + \left(\frac{\partial f}{\partial x_i} \cdot \frac{\partial f}{\partial x_j}\right)_{i,j}$$

Получилась довольно сложная конструкция. Определитель проще вычислить по формуле Бине-Коши.

$$\det D\varphi^*D\varphi = 1 + f_{x_1}^2 + f_{x_2}^2 + \ldots + f_{x_n}^2 = 1 + |\nabla f|^2$$

Отсюда получаем, что

$$S^k(\Gamma_f) = \int_U \sqrt{1 + |\nabla f(x)|^2} dx$$

Свойство формулы 1.6:

• $S^k(\lambda M) = \lambda^k S^k(M)$

Доказательство. ТООО

Пример 1.44 (Вывод частной формулы из общей). Пусть $f:[a,b] \to \mathbb{R}_+$

— поверхность, полученная вращением кривой относительно оси Ox. Для того, чтобы вывести формулу, нам нужно параметризовать поверхность. Должно быть два параметра (x,φ) . Воспользуемся цилиндрической системой координат:

$$\begin{cases} x = x, \\ y = f(x)\cos\varphi, \\ z = f(x)\sin\varphi. \end{cases}$$

Вывод формулы: TODO.

2 Криволинейные интегралы

2.1 Криволинейные интегралы І-рода

Определение 2.1. Пусть M-n-мерное дифференцируемое многообразие, задана функция $f:M\to \mathbb{E}$ – измеримая по S^k . Тогда интегралом по поверхности назовем

$$\int_{M} f \ dS^{k}$$

Чтобы взять интеграл по поверхности нам нужно:

- 1. надо выбрать параметризацию
- 2. подставить параметризацию в интеграл

Если мы выберем некоторую параметризацию $M=\varphi(U)$, то $S^k(M)=\int_U J_\varphi(x)dx$, получаем,

$$\int_{M} f(y)dS^{k} = \int_{U} f(\varphi(x)) \cdot J_{\varphi}(x)dx$$

Свойства интеграла по поверхности

1. линейность: если $f,g:M \to \mathbb{E}$ и $\alpha,\beta \in \mathbb{R}$, то

$$\int_{M} (\alpha f + \beta g) dS^{k} = \alpha \int_{M} f dS^{k} + \beta \int_{M} g dS^{k}.$$

2. монотонность: если $f,g:M\to\mathbb{E}$ и $f\leq g$, то

$$\int_{M} f dS^{k} \le \int_{M} g dS^{k}.$$

3. аддитивность по области определения: если $f:M\to \mathbb{E}$ и $M_1\cap M_2=\emptyset$, то

$$\int_{M_1 \cup M_2} f dS^k = \int_{M_1} f dS^k + \int_{M_2} f dS^k.$$

4. ограниченность: если $f:M \to \mathbb{E}$, то

$$\left| \int_{M} f dS^{k} \right| \leq \int_{M} |f| dS^{k}.$$

2.2 Объем шара и площадь сферы

Введем сферическую систему координат в \mathbb{R}^n :

$$u = \begin{cases} x_1 = r \cos \varphi \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{n-2} \\ x_2 = r \sin \varphi \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{n-2} \\ x_3 = r \sin \varphi \cos \theta_2 \cdots \cos \theta_{n-2} \\ \vdots \\ x_n = r \sin \theta_2 \cdots \cos \theta_{n-2} \\ r \ge 0 \quad \varphi \in [0, 2\pi] \quad \theta_i \in [-\frac{\pi}{2}, \frac{\pi}{2}] \end{cases}$$

Заметим, что $u(r, \varphi, \theta_1, \dots, \theta_{n-2})$ - параметризация шара, а $\tilde{u}(\varphi, \theta_1, \dots, \theta_{n-2}) = u|_{r=const}$ - параметризация сферы.

Обозначим n-мерный шар радиуса r как B_r . Соответственно S_r - (n-1)-мерная сфера радиуса r.

Вычислим якобианы J_u и $J_{\tilde{u}}$ этих параметризаций. Нам известно, что $J_u = |\det Du|$ и $J_{\tilde{u}} = |\det D\tilde{u}|$.

Рассмотрим набор векторов $\{u_r, u_\varphi, u_\theta, \dots, u_{\theta_{n-2}}\}$, где $u_s = \{\frac{\partial x_1}{\partial s}, \dots, \frac{\partial x_n}{\partial s}\}$. Нетрудно проверить, что этот набор является ортогональным. Следовательно, объем параллелепипеда, который натянут на этот набор можно вычислить как произведение длин векторов набора.

$$J_u = |u_r||u_{\varphi}||u_{\theta}|\cdots|u_{\theta_{n-2}}| \quad J_{\tilde{u}} = |u_{\varphi}||u_{\theta}|\cdots|u_{\theta_{n-2}}|$$

Вычислим длины этих векторов.

$$|u_r| = 1$$

$$|u_{\varphi}| = r \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{n-2}$$

$$|u_{\theta_1}| = r \cos \theta_2 \cdots \cos \theta_{n-2}$$

$$\cdots$$

$$|u_{\theta_{n-3}}| = r \cos \theta_{n-2}$$

$$|u_{\theta_{n-2}}| = r$$

Из того, что $|u_r|=1$ следует, что $J_u=J_{\tilde u}$. Теперь мы можем записать конкретное выражение для J_u :

$$J_u = r^{n-1}\cos\theta_1\cos^2\theta_2\cdots\cos^{n-2}\theta_{n-2}$$

Из этого следуют формулы объема шара и площади сферы:

$$|B_R| = \int_0^R dr \int_0^{2\pi} d\varphi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta_1 \cdots \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} J_u d\theta_{n-2} = w_n R^n$$

$$S^{n-1}(S_r) = \int_0^{2\pi} d\varphi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta_1 \cdots \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} J_{\tilde{u}} d\theta_{n-2}$$

Так как $J_u = J_{\tilde{u}}$, можно получить другое выражение для объема шара:

$$|B_r| = \int\limits_0^R S^{n-1}(S_r) dr$$

То есть, чтобы найти объем шара нужно вычислить площади сфер, которые в нем содержаться. Так же площадь сферы можно представить ввиде объемов шаров:

$$S^{n-1}(S_r) = (w_n r^n)'_r = r w_n r^{n-1}$$

2.3 Формула коплощади

Пусть $\varphi:U\subseteq\mathbb{R}^n\to\mathbb{R}$. Потребуем, чтобы $\nabla \varphi\neq 0$ (т. е. rank $D\varphi=k$ максимальный).

Уравнение $\varphi(x)=0$ задает поверхность в U. Эту поверхность можно так же задать как $\varphi^{-1}(0)$. Из этого получаем:

$$\int_{a}^{b} S^{n-1}(\varphi^{-1}(t))dt = \int_{U} J_{\varphi}(x)dx = \int_{U} |\nabla \varphi|(x)dx$$

Теорема 2.2 (Формула коплощади). Пусть $\varphi: U \subset \mathbb{R}^n \to \mathbb{R}^k \in C^1$, такая, что $\mathrm{rank}(D\varphi) = k$, тогда верна формула коплощади

$$\int\limits_{U} f(x)J_{\varphi}(x)dx = \int\limits_{\mathbb{R}^{k}} dt \int\limits_{\varphi^{-1}(t)} f(\varphi(t))dS^{k-1}$$

 $, r \partial e$

$$J_{\varphi(x)} = \sqrt{\det D\varphi(x) \det D\varphi^*(x)} = \sqrt{\det(\langle \nabla \varphi_i, \nabla \varphi_j \rangle)}$$

Доказательство. Пусть $x_0 \in U$. Мы знаем, что $\mathrm{rank}(\frac{\partial \varphi_i}{\partial x_j}) = k$ - максимальный. Следовательно, в матрице $D\varphi$ есть k линейно-независимых столбцов. Для простоты будем считать, что это k последних столбцов.

По теореме о выпрямлении, существует C^1 -диффеоморфизм $\Phi: V \to W$, где V - окрестность x_0, W - окрестность нуля, такая что:

$$\Phi\begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} x \\ h(x,z) \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Выполним замену переменных в интеграле и воспользуемся формулой Φ убини:

$$\int_{U} f(x,y)J_{\varphi}(x,y)dxdy = \int_{\Phi^{-1}(U)} f(\Phi(x,z))J_{\varphi}(\Phi(x,z))J_{\Phi(x,z)}dxdy = \int_{\mathbb{R}^{k}} dz \int_{\varphi^{-1}(U)\cap\mathbb{R}^{n-k}} f(\Phi(x,z))J_{\varphi}(\Phi(x,z))J_{\Phi(x,z)}dx$$

Заметим, что $\varPhi_{z(x)}^{-1}=\varPhi^{-1}(x,z)$ при фиксированном z является поверхностью. Возьмем $s=\varPhi_z^{-1}(x),$ тогда

$$\int_{U \cap \varphi^{-1}(z)} g(s) dS^{n-k} = \int_{\varphi(U) \cap \mathbb{R}_z^{n-k}} g(\Phi_z^{-1}(x)) J_{\Phi_z^{-1}}(x) dx$$

Теперь нужно подставить это в прошлое уравнение.

$$\int\limits_{\mathbb{R}^k} dz \int\limits_{\varphi^{-1}(U)\cap\mathbb{R}^{n-k}} f(\varPhi(x,z)) J_{\varphi}(\varPhi(x,z)) J_{\varPhi(x,z)} dx = \int\limits_{\mathbb{R}^k} dz \int\limits_{U\cap\varphi^{-1}(z)} f(s) \frac{J_{\varphi}J_{\Phi}}{J_{\varPhi_z^{-1}}}$$

Для того, чтобы закончить доказательство, нужно лишь доказать, что:

$$\frac{J_{\varphi}J_{\Phi}}{J_{\Phi_z^{-1}}} = 1$$

(TODO: продолжение следует)

Для проекции $P_r: \mathbb{R}^n \to \mathbb{R}^k$ формула коплощади превращается в формулу Фубини:

$$\int_{U} f(x)dx = \int_{\mathbb{R}^{k}} dt \int_{\mathbb{R}^{n-k}} f(y)dy$$

где $\mathbb{R}^{n-k}_t = \{(y,s) : s = t\}$ - (n-k)-мерная плоскость.

3 Введение в векторный анализ

3.1 Дифференциальные формы

Определение 3.1. Векторным полем на многообразии M называется функция $F: M \to F(x)$, такая что $F(x) \in T_x M$.

Для того, чтобы выяснить, как замена переменных влияет на векторное поле, введем оператор переноса.

Определение 3.2. Пусть $\varphi: U \to V$ - C^1 -диффеоморфизм. Тогда оператором переноса назовем φ^* и определим результат его действия на функцию $f: V \to \mathbb{E}$ как функцию $\varphi^* f: U \to \mathbb{E}$, такую, что $\varphi^* f(x) = f(\varphi(x)) = (f \circ \varphi)(x)$.

Выясним как оператор переноса действует на векторное поле. Пусть $v:V\to TV$ - векторное поле, тогда $\varphi^*v:U\to TU$ и $\varphi^*v(x)=D\varphi_{\varphi(x)}\langle v(\varphi(x))\rangle$. Свойства оператора переноса:

1. линейность: $\forall \alpha, \beta \in \mathbb{R} \ \forall f,g$ - функции $\forall u,v$ - векторные поля.

$$\varphi^*(\alpha f + \beta g) = \alpha \varphi^* f + \beta \varphi^* g \quad \varphi^*(\alpha u + \beta v) = \alpha \varphi^* u + \beta \varphi^* v$$

- 2. мультипликативность: пусть $f:V\to\mathbb{R},\ v:V\to TV,\ (f\circ v)(g)=f(g)\vec{v}(g)$. Тогда, если $\varphi:U\to V$ C^1 -диффеоморфизм, то $\varphi^*(f\vec{v})=\varphi^*f\cdot\varphi^*v$.
- 3. перенос композиции является произведением переносов: пусть $\varphi:U\to V,\,\psi:U\to V$ C^1 -диффеоморфизмы, тогда $(\varphi\circ\psi)^*=\varphi^*\psi^*.$
- 4. перестановочность с дифференциалом: $\varphi^* d = d \varphi^*$.

Для доказательства последнего свойства, нам нужно ввести определение дифференциальной формы, а для этого нужно вспомнить некоторые свойства линейных отображений.

Пусть $L:\mathbb{R}^n \to \mathbb{R}$ - линейное отображение. Рассмотрим действие L на вектор v:

$$L\langle v \rangle = L\langle v_1e_1 + \ldots + v_ne_n \rangle = v_1L\langle e_1 \rangle + \ldots + v_nL\langle e_n \rangle = v_1a_1 + \ldots + v_na_n$$

Из этого уравнения следует то, что всякая линейная функция это скалярное произведение аргумента с некоторым постоянным вектором: $L\langle v \rangle = a \cdot v.$

Введем базис на пространстве линейных отображений $Lin(\mathbb{R}^n,\mathbb{R})\simeq \mathbb{R}^n$.

Набор функций $dx_1, \ldots, dx_n : \mathbb{R}^n \to \mathbb{R}$, таких что $dx_j(v_1, \ldots, v_n) = v_j$, является базисом в $Lin(\mathbb{R}^n, \mathbb{R})$. Следовательно, $L\langle v \rangle = a_1v_1 + \ldots + a_nv_n = a_1dx_1 + \ldots + a_ndx_n$.

Обозначим за $\Lambda^k(\mathbb{R}^n)$ пространство алгебраических форм степени k над \mathbb{R}^n . В частности $\Lambda^0(\mathbb{R}^n) = \mathbb{R}$ и $\Lambda^1(\mathbb{R}^n) = Lin(\mathbb{R}^n, \mathbb{R})$.

Определение 3.3. Дифференциальной формой степени k (сокращенно k-формой) на $U \subseteq \mathbb{R}^n$ будем называть $w: U \to \Lambda^k(\mathbb{R}^k)$.

Пемма 3.4. Существует так называемый дуализм между 1-формами и векторными полями, так как каждая 1-форма изоморфна некоторому векторному полю.

Доказательство. Рассмотрим некоторую 1-форму
$$w(x)$$
, тогда $w(x) = a_1(x)dx_1 + \dots a_n(x)dx_n$. Пусть $v(x) = (a_1(x), \dots, a_n(x))$, тогда $w(x)\langle u \rangle = v(x) \cdot u$.

Дифференциал функции так же является 1-формой. Так что стоит задасться вопросом: а не все ли 1-формы являются дифференциалом некоторой функции? Пример ниже говорит, что ответ на этот вопрос - нет.

Пример 3.5. w = xdy - 1-форма, но не дифференциал.

Доказательство. Допустим, что $w=df=f_xdx+f_ydy$. Тогда $f_x=0$ и $f_y=x$. Из курса мы знаем, что для любой функции $f_{xy}=f_{yx}$. Проверим, так ли это в нашем случае. Получаем $f_{xy}=0\neq 1=f_{yx}$. Получили противоречие.

Рассмотрим как перейти к полярным координатам в форме w=xdy. Пусть $x=r\cos\varphi$ и $y=r\sin\varphi$, тогда $\varphi^*w=r\cos\varphi d(r\sin\varphi)=r\cos\varphi(\sin\varphi dr+r\cos\varphi d\varphi)=r\sin\varphi\cos\varphi dr+r^2\cos^2\varphi d\varphi$.

Определим теперь оператор переноса для 1-форм.

Определение 3.6. Пусть w - 1-форма на V. Пусть $\varphi:U\to V\subseteq\mathbb{R}^n$ - C^1 -диффеоморфизм. Тогда φ^*w - 1-форма на U и $\varphi^*w(x)\langle v\rangle=w(\varphi(x))\langle d\varphi(x)\langle v\rangle\rangle$.

Теперь мы можем доказать 4 свойство оператора переноса.

Лемма 3.7 (Четвертое свойство оператора переноса). Пусть $\varphi: U \to V$ - C^1 -диффеоморфизм, $f: V \to \mathbb{E} \in C^1$, тогда $\varphi^*(d\varphi) = d(\varphi^*f)$. Заметим так же, что слева от равенства стоит 1-форма, а справа 0-форма.

Доказательство. Утверждение следует из следующей цепочки равенств:

$$\varphi^*(df)(x)\langle v\rangle = df(\varphi(x))\langle d\varphi(x)\langle v\rangle\rangle = df(\varphi(x))\circ d\varphi(x)\langle v\rangle =$$
$$= d(f\circ\varphi)(x)\langle v\rangle = d(\varphi^*f)(x)\langle v\rangle$$

Пример 3.8 (Работа векторного поля вдоль кривой). Рассмотри одно из физических приложений дифференциальных форм. Мы знаем, что работа силы вычисляется по формуле $A = \vec(F) \cdot \vec l$. То есть силу можно рассматривать как дифференциальную форму $A = w_g \langle l \rangle$. А теперь представим, что нам нужно посчитать работу вдоль кривой, где сила не постоянна на всех точках кривой. Получаем $A = \int\limits_{-r}^{r} \vec g(x) \cdot \vec r(x) dl(x)$.

3.2 Ориентация

Определение 3.9. Пусть V — конечномерное векторное пространство, в нем определены два базиса u_1, \ldots, u_n и v_1, \ldots, v_n связанные между собой матрицей перехода A такой, что $v_j = Au_j$ и $\det A \neq 0$. Базисы назовем сориентированными если $\det A > 0$, и противоположено ориентированными если $\det A < 0$.

Ориентация — класс сориентированных базисов.

Определение 3.10. Пусть \mathfrak{B}^n — множество базисов в \mathbb{R}^n ориентацией на \mathfrak{B}^n назовем функцию

$$\Theta:\mathfrak{B}^n\to\{-1,1\}$$

такую что:

1. Θ – непрерывная,

2. Θ — кососимметричная.

то есть, если
$$\sigma:\{1,\ldots,n\}\to\{1,\ldots,n\}$$
 – перестановка, то $\Theta(v_{\sigma_1},\ldots,v_{\sigma_n})\to \operatorname{sgn}\sigma\cdot\Theta(v_1,\ldots,v_n)$

Теперь приведем примеры стандартных ориентаций. Они существуют для пространств $\mathbb{R}^1, \mathbb{R}^2$ и $\mathbb{R}^3.$

ullet ориентация в \mathbb{R}^1

т.е. стандартная ориентация направлена по возрастанию.

ullet ориентация в \mathbb{R}^2

т.е. стандартная ориентация получается вращением от вектора e_1 к вектору e_2 против часовой стрелки.

ullet ориентация в \mathbb{R}^3

т.е. если вектор e_2 получен вращением вектора e_1 против часовой стрелки, то вектор e_3 должен смотреть «на нас».

Теперь определим ориентацию на многообразии.

Определение 3.11. Пусть M-k-мерное многообразие и $\mathfrak{B}M:=\{(x,v_1,\ldots,v_k):x\in M,v_1,\ldots,v_k$ – базис $T_xM\}$

ориентацией на многообразии M назовем функцию

$$\Theta:\mathfrak{B}M\to\{-1,1\}$$

такую что:

- 1. Θ непрерывная,
- 2. Θ кососимметричная.

Оказывается, что не на всяком многообразии можно задать ориентацию. Таким многообразием, к примеру, является лента Мёбиуса: если мы возьмем стандартный базис \mathbb{R}^2 и «протащим» его по ленте на один оборот, то он «зеркально отразится». Таким образом, на ленте Мёбиуса не существует функции, удовлетворяющей определению 3.11.

Определение 3.12. Многообразие называется *ориентируемым*, если на нем можно задать ориентацию. В противном случае оно называется *неориентируемым*.

Определение 3.13. Ориентированное многообразие называется *ориентированным*, если на нем задана ориентация.

Пемма 3.14. Если многообразие задано параметрически, то оно ориентируемое.

Доказательство. Пусть $U \subset \mathbb{R}^k, f: U \to \mathbb{R}^n$ при $k \leq n$.

$$M = f(U) \iff \begin{cases} x_1 = f_1(t_1, \dots, t_k), \\ \dots \\ x_r = f_r(t_1, \dots, t_k). \end{cases}$$

Поскольку в U есть ориентация k-мерного пространства $\Theta(u_1, \ldots, u_k)$, определим на M ориентацию $\tilde{\Theta}(x, v_1, \ldots, v_k)$ следующим образом: $x = f(t), v_1 = df_x \langle u_1 \rangle, \ldots df_x \langle u_k \rangle$.

Пемма 3.15. Многообразие заданное системой уравнений всегда ориентируемое.

Доказательство. Пусть $U \subseteq \mathbb{R}^n, \varphi: U \to \mathbb{R}^k \in C^1$ и rank $D\varphi = k$ всюду для всякого $k \le n$.

x — точка на многообразии M тогда и только тогда, когда $\varphi(x)=0.$ В свою очередь

$$\varphi(x) = 0 \iff \begin{cases} \varphi_1(x_1, \dots, x_n) = 0, \\ \dots \\ \varphi_k(x_1, \dots, x_n) = 0. \end{cases}$$

тогда $\nabla \varphi_1(x), \dots, \nabla \varphi_k(x)$ — нормали к многообразию M в точке x. Определим ориентацию следующим образом:

$$x \in M, \tau_1, \dots, \tau_{n-k} \in T_x M \Longrightarrow \tilde{\Theta}(x, \tau_1, \dots, \tau_{n-k}) = \Theta(\nabla \varphi_1(x), \dots \nabla \varphi_k(x), \tau_1, \dots, \tau_{n-k}).$$

Рассмотрим примеры ориентируемых многообразий и ориентаций на них.

• k = 0. 0-мерное многообразие — набор точек.

- просто приписываем $\{-1,+1\}$ к точкам.

• k = 2, n = 3. Поверхность в \mathbb{R}^3 . Ориентация задается нормалью.

3.3 Интеграл 1-формы по кривой

Пусть $\gamma-C^1$ -гладкая ориентированная кривая. Рассмотрим две регулярные параметризации. Тогда $\psi^{-1}\circ\varphi:[a,b]\to[c,d]\in C^1$ и $\psi^{-1}\circ\varphi\ne0$.

Определение 3.16. Две параметризации φ, ψ называются сориентированными (противоположно ориентированными), если $(\psi^{-1} \circ \varphi)' > 0$ ($(\psi^{-1} \circ \varphi)' < 0$).

Определение 3.17. Параметризация φ кривой γ называется согласованной с ориентацией θ , если $\theta(\varphi(t), \varphi'(t)) > 0$.

Определение 3.18. Пусть $w:U\subseteq\mathbb{R}^n\to\Lambda^1(\mathbb{R}^n)$ - непрерывная 1-форма и $\gamma\subset U$ - C^1 -гладкая кривая с заданной ориентацией. Тогда интегралом 1-формы по ориентированной кривой называется $\int\limits_{\gamma}w=\int\limits_{a}^{b}w(\varphi(t))\langle\varphi'(t)\rangle dt,$ где $\varphi:[a,b]\to\gamma$ - параметризация, согласованная с ориентацией.

Рассмотрим как использовать эту формулу на примере.

Пример 3.19. Пусть w = xdy + ydx, найти интеграл w по параболе $y = 4 - x^2$ в направлении возрастания y.

Решение. Введем параметризацию, согласованную с ориентацией:

$$\begin{cases} x = 1 - t \\ y = 4 - (1 - t)^2 \\ t \in [0, 1] \end{cases}$$

Тогда dx = -dt, dy = 2(1-t)dt. Подставим эти выражения в формулу:

$$\int_{\gamma} x dy + y dx = \int_{0}^{1} x(t) dy(t) + y(t) dx(t) = \int_{0}^{1} [x(t)y'(t) + y(t)x'(t)] dt =$$

$$= \int_{0}^{1} 2(1-t)^{2} dt - (4-(1-t)^{2}) dt = \int_{0}^{1} [3(1-t)^{2} - 4] dt =$$

$$= \int_{0}^{1} (-1-6t+3t^{2}) dt = -t-3t^{2}+t^{3} \Big|_{0}^{1} = -3$$

Свойства интеграла 1-формы

1. Определение не зависит от параметризации, согласованной с ориентацией

Доказательство. Пусть $\varphi:[a,b] \to \gamma, \psi:[c,d] \to \gamma \in C^1$ - параметризации, согласованные с ориентацией, следовательно они сориентированы. То есть $(\psi^{-1}\circ\varphi)'>0$ и $(\psi^{-1}\circ\varphi)$ - монотонно возрастает, следовательно $(\psi^{-1}\circ\varphi)(a)=c$ и $(\psi^{-1}\circ\varphi)(b)=d$.

По определению интеграла 1-формы имеем:

$$\int\limits_{\gamma} w = \int\limits_{c}^{d} w(\psi(t)) \langle \psi'(t) \rangle$$

Проведем замену переменных $t = (\psi^{-1} \circ \varphi)(s)$.

$$\int_{c}^{d} w(\psi(t))\langle \psi'(t)\rangle = \int_{a}^{b} w(\psi(\psi^{-1}(\varphi(s))))\langle \psi'(\psi^{-1}(\varphi(s)))\rangle(\psi^{-1}\circ\varphi)'(s)ds$$

Так как $w(\psi(s))$ - линейный оператор, можем внести $(\psi^{-1} \circ \varphi)'(s)$ как множитель аргумента. Имеем $\psi'(\psi^{-1}(\varphi(s)))(\psi^{-1} \circ \varphi)'(s) = (\psi \circ \psi^{-1} \circ \varphi)(s) = \varphi(s)$ как производную композиции.

$$\int\limits_a^b w(\psi(\psi^{-1}(\varphi(s))))\langle \psi'(\psi^{-1}(\varphi(s)))\rangle(\psi^{-1}\circ\varphi)'(s)ds=\int\limits_a^b w(\varphi(s))\langle \varphi^{-1}(s)\rangle ds$$

2. антисимметричность

Пусть γ - ориентированная кривая, тогда $-\gamma$ та же кривая, только с противоположной ориентацией.

$$\int_{-\gamma} w = -\int_{\gamma} w$$

Доказательство. Пусть $\varphi:[0,T]\to\gamma$ - параметризация кривой γ , согласованная с ориентацией, тогда $\psi(t)=\varphi(T-t)$ - параметризация кривой $-\gamma$, согласованная с ориентацией.

По определению интеграла 1-формы имеем:

$$\int_{\gamma} w = \int_{0}^{T} w(\varphi(t)) \langle \varphi'(t) \rangle$$

Проведем замену переменных $t=(\varphi^{-1}\circ\psi)(s)$. Тогда $\psi(0)=T$ и $\psi(T)=0$.

$$\begin{split} \int\limits_0^T w(\varphi(t)) \langle \varphi'(t) \rangle &= \int\limits_T^0 w(\varphi(\varphi^{-1}(\psi(s)))) \langle \varphi'(\varphi^{-1}(\psi(s))) \rangle (\varphi^{-1} \circ \psi)'(s) ds = \\ &= \int\limits_T^0 w(\psi(s)) \langle \psi^{-1}(s) \rangle ds = - \int\limits_0^T w(\psi(t)) \langle \psi'(t) \rangle = - \int\limits_{-\gamma} w ds \end{split}$$

3. Линейность

 $\forall w_1, w_2$ - формы, $\forall \alpha, \beta \in \mathbb{R}$.

$$\int_{\gamma} (\alpha w_1 + \beta w_2) = \alpha \int_{\gamma} w_1 + \beta \int_{\gamma} w_2$$

4. Аддитивность

Пусть $\varphi:[p,q]\to\gamma$ - параметризация кривой γ , возьмем $r\in[p,q]$ и определим $\varphi_{pr}:[p,r]\to\gamma_{pr}$ и $\varphi_{pr}:[r,q]\to\gamma_{rq}$, тогда

$$\int\limits_{\gamma} w = \int\limits_{\gamma_{pr}} + \int\limits_{\gamma_{rq}}$$

Замечание 3.20. Если кривая замкнута, тогда вместо $\int\limits_{\gamma} w$ используют обозначение $\int\limits_{\gamma} w$, чтобы подчеркнуть, что интеграл берется по замкнутому контуру.

Пример 3.21 (Работа векторного поля вдоль ориентированной кривой). Пусть \vec{v} - векторное поле, γ - ориентированая кривая, тогда работа векторного поля вдоль кривой γ вычисляется как ($\vec{\tau}$ - касательный вектор к кривой)

$$\int\limits_{\gamma} v_1 dx_1 + \ldots + v_n dx_n = \int\limits_{\gamma} \vec{v} \cdot \vec{\tau} dl$$

Теорема 3.22 (Формула Ньютона-Лейбница). Пусть w = df - полный дифференциал, γ - ориентированная кривая с начальной точной p и конечной точкой q, тогда справедлива формула

$$\int_{\gamma} df = f(q) - f(p)$$

Доказательство. Пусть $\varphi:[a,b]\to\gamma$ - параметризация кривой, согласованная с ориентацией. Тогда $\varphi(a)=p$ - начальная точка кривой и $\varphi(b)=q$ - конечная точка кривой.

$$\int\limits_{\gamma} df = \int\limits_{a}^{b} df(\varphi(t)) \langle \varphi^{-1}(t) \rangle dt = \int\limits_{a}^{b} [f(\varphi(t))]_{t}' dt = f(\varphi(t)) \bigg|_{a}^{b} = f(q) - f(p)$$

Следствие 3.23. Если w = df, то $\int\limits_{\gamma} w$ не зависит от пути γ , а только от начальной и конечной точки.

П

Следствие 3.24.

$$\oint_{\gamma} df = 0$$

Пример 3.25. Пусть w = xdy + ydx, найти интеграл w по параболе $y = 4 - x^2$ в направлении возрастания y.

Решение. Заметим, что w - полный дифференциал функции f = xy, а так же, что начальная точка параболы это (1,3), а конечная (0,4).

$$\int_{\gamma} x dy + y dx = \int_{\gamma} d(xy) = xy \Big|_{(1,3)}^{(0,4)} = 0 - 3 = -3$$

Теорема 3.26 (Критерий полного дифференциала). Пусть w - непрерывная 1-форма на множестве U. Тогда w является полным дифференциалом некоторой функции $f \in C^1$ тогда u только тогда, когда $\oint w = 0$ для всех ориентированных замкнутых контуров $\gamma \subset U$.

Доказательство. Необходимость следует из 3.24.

Для доказательства достаточности построим функцию f.

Пусть U - открытое связное множество. Возьмем точку $x_0 \in U$ и положим, что $f(x_0) = C$. Возьмем так же $x \in U$ - другую точку и положим $f(x) = f(x_0) + \int\limits_{\gamma} w$, где γ - кривая, соеденяющая точки x и x_0 (начало в x_0 , конец в x).

Если γ_1 и γ_2 - две кривые из x_0 в x, то $\gamma_1-\gamma_2$ - замкнутый контур и

$$0 = \int_{\gamma_1 - \gamma_2} w = \int_{\gamma_1} w - \int_{\gamma_2} w$$

Следовательно интегралы по разным кривым совпадают независимо от пути.

Определение 3.27. Непрерывная дифференциальная форма w называется $mouno\check{u}$, если существует $f\in C^1$ такая, что w=df.

Определение 3.28. Векторное поле \vec{v} называется *потенциальным*, если существует функция $f \in C^1$ такая, что $\vec{v} = \nabla f$. В таком случае говорят, что f является *потенциалом* \vec{v} .

Теорема 3.29 (Формула Грина). Пусть $U \subseteq \mathbb{R}^n$ — компактная область с кусочной-гладкой границей, пусть $w: U \to \Lambda^1(\mathbb{R}^2)$ — C^1 -гладкая 1-форма w = P(x,y)dx + Q(x,y)dy. Тогда

$$\oint\limits_{\partial U} P(x,y) dx + Q(x,y) dy = \int\limits_{U} \left| \begin{matrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P(x,y) & Q(x,y) \end{matrix} \right| = \int\limits_{U} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Доказательство проведем для криволинейной трапеции.

Пусть
$$f,g:[a,b] \to \mathbb{R}$$
 и $f \leq g$

Пример 3.30. Вычислить

$$\oint_U x^2 \arctan(x^2 + \sin(x)) dx + x dy$$

где U задано равенством $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Pewenue. Лайфхак от Сергея Геннадьевича: если вы видите задачу с «безумной функцией», то эта задача на формулу Грина.

 Φ ункция в задаче выглядит не очень, так что воспользуемся формулой Грина:

$$\oint_U x^2 \arctan(x^2 + \sin x) dx + x dy = -\iint_U (1 - 0) dx dy = -\pi ab$$

Определение 3.31. 1-формами площади называются специальные 1-формы, интегралы от которых дают площадь.

$$xdy, \qquad -ydx, \qquad \frac{xdy - ydx}{2}$$

Проинтегрировав любую из этих форм по области, вы получите плошадь области:

$$\oint\limits_{\partial U} x dy = \iint\limits_{U} (1 - 0) dx dy = |U|$$

Пример 3.32. Вычислите площадь ветки циклоиды, полученной движением круга радиуса a.

$$\begin{cases} x = at - a\sin t \\ y = a - a\cos t \end{cases}$$

Решение. Из прошлого семестра, мы знаем, что площадь можно посчитать с помощью двойного интеграла. Для этого нам нужно найти пределы интегрирования. Переменная x меняется от 0 до $2\pi a$, однако, когда мы попытаемся найти пределы интегрирования по y, мы столкнемся с проблемой: t нельзя выразить через x в явном виде. Следовательно, старый способ вычисления площади тут не сработает.

Воспользуемся 1-формами площади. Заметим, что область ветки ограничена кривой циклоиды и осью Ox. Обозначим за C и I циклоиду и ось Ox соотвественно, по формуле Γ рина получим:

$$S = \oint_{C+I} y dx = \int_{C} y dx + \int_{I} y dx$$

Так как y = 0 во втором интеграле, получаем:

$$\int_{C} y dx = \int_{0}^{2\pi} a(1+\cos t)d(at-a\sin t) = a^{2} \int_{0}^{2\pi} (1-\cos t)^{2} dt =$$

$$= a^{2} \frac{6x - 8\sin x + \sin 2x}{4} \Big|_{0}^{2\pi} = 3\pi a^{2}$$

У нас уже был критерий полного дифференциала, но он не годится для непосредственной проверки того, является ли 1-форма дифференциалом некоторой функции. Поставим перед собой задачу: по 1-форме определить полный дифференциал ли это и, если да, то какой функции?

П

Теорема 3.33 (Необходимое условие полного дифференциала). Пусть $w = a_1 dx_1 + \ldots + a_n dx_n \ u \ w \in C^1$. Тогда, если w = df, то

$$\frac{\partial a_i}{\partial x_i} = \frac{\partial a_j}{\partial x_i}$$

Доказательство. Заметим, что, если w = df и $w \in C^1$, то $f \in C^2$, т.е. существуют вторые частные производные функции f и дифференциал f можно записать в координатном представлении.

$$w = df = \frac{\partial f}{\partial x_1} dx_1 + \ldots + \frac{\partial f}{\partial x_n} dx_n$$

Так как $a_i = \frac{\partial f}{\partial x_i}$, получаем, что

$$\frac{\partial a_i}{\partial x_j} = \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial a_j}{\partial x_i}$$

Сейчас мы убедимся, что данное условие не является достаточным.

Определение 3.34. Формой Гаусса Θ (в декартовых координатах) называется форма

$$\Theta = \frac{xdy - ydx}{x^2 + y^2} \quad dom \ \Theta = \mathbb{R}^2 \setminus \{0\}$$

Не сложно убедится в том, что для формы Гаусса выполняются необходимые условия полного дифференциала.

$$\frac{\partial}{\partial x} \frac{x}{x^2 + y^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \frac{\partial}{\partial y} \frac{-y}{x^2 + y^2}$$

Однако, если мы возьмем за замкнутый контур единичную окружность и вычислим интеграл по замкнутому контуру, мы получим

$$\int_{0}^{2\pi} \cos^2 t + \sin^2 t dt = \int_{0}^{2\pi} dt = 2\pi$$

То есть, критерий полного дифференциала не выполняется и форма Гаусса не является полным дифференциалом.

Заметим так же, что если бы мы воспользовались формулой Грина для проверки критерия, мы бы получили другой ответ:

$$\oint \Theta = \int 0 dx dy = 0$$

Но тут нет противоречия, ведь форма Гаусса не гладкая в нуле, следовательно, нельзя применять формулу Грина.

Рассмотрим представление формы Гаусса в полярных координатах

$$\Theta = d\varphi$$

Пемма 3.35. Пусть γ — кривая, не проходящая через θ , с началом в p и концом в q. Тогда

$$\int_{\gamma} = \varphi(q) - \varphi(p)$$

— разность углов с осью Ox радиус векторов в из начала координат в начальную и конечную точку.

Пемма 3.36. $\Theta = d\varphi$ будет полным дифференциалом, если выколоть некоторый луч исходящий из нуля (т.к. никакая кривая не сможет полностью обойти 0).

Определение 3.37. Две кривые $\gamma_0, \gamma_1 : [a,b] \to \mathbb{R}^n$ называются гомотопными, если существует функция $f:[a,b] \times [0,1] \to \mathbb{R}^n$, такая, что f — непрерывная и $f(x,0) = \gamma_0(x)$ и $f(x,1) = \gamma_1(x)$

Определение 3.38. Множество $M\subseteq\mathbb{R}^n$ называется односвязным, если всякий замкнутый контур $\gamma\subseteq M$ гомотопен точке.

Примеры односвязных множеств

- 1. \mathbb{R} , $\mathbb{R}^3 \setminus \{0\}$, сфера односвязные множества.
- 2. $\mathbb{R}^2 \setminus \{0\}$, $\mathbb{R}^3 \setminus \{\text{прямая}\}$, тор не являются односвязным множеством.

Теорема 3.39 (Гипотеза Пуанкаре). Всякое *п*-мерное компактное односвязное многообразие без края гомеоморфно *п*-мерной сфере.

Доказательство. Очевидно.

Теорема 3.40 (Достаточное условие полного дифференциала). Пусть $U \subseteq \mathbb{R}^n$ — открытое и односвязное множество, $w: U \to \Lambda^1(\mathbb{R}^2) \in C^1$, $w = a_1 dx_1 + \ldots + a_n dx_n$ и $\frac{\partial a_i}{\partial x_j} = \frac{\partial a_j}{\partial x_i}$ для всех $i, j = 1, \ldots n$, тогда существует функция $f: U \to \mathbb{R} \in C^2$ такая, что w = df.

 \mathcal{A} оказательство. Проведем для \mathbb{R}^2 .

Пусть $w=adx+bdy, \frac{\partial b}{\partial x}=\frac{\partial a}{\partial y}$ и пусть $\gamma\subseteq U$ — кусочно гладкий контур, $\gamma\subseteq\partial D$ где $D\subseteq U.$ Тогда по формуле Грина:

$$\oint_{\gamma} w = \pm \int_{D} \left(\frac{\partial b}{\partial x} - \frac{\partial a}{\partial y} \right) dx dy$$

следовательно, выполнен критерий полного дифференциала, тогда существует функция $f \in C^1$ такая, что $w = df \in C^1 \Rightarrow f \in C^2$.

Допустим, нам дана 1-форма w и известно, что w=df. Возникает естественный вопрос: как найти такую функцию f?

- выберем $x_0 \in U$ и определим, что $f(x_0) := C$.
- \bullet возьмем $x\in U$ такую, что $x\neq x_0$ и выберем путь $\gamma\subseteq U$ из x_0 в xтогда

$$f(x) := f(x_0) + \int_{\gamma} w.$$

Сейчас рассмотрим восстановление функции по 1-форме в случае, если она является полным дифференциалом некоторой функции.

Пример 3.41. Рассмотрим дифференциальную форму $w = \frac{xdy - ydx}{x^2 + y^2}$.

— плоскость без луча. Если область не односвязная, ее надо сделать односвязной добавлением «связей», линий, соединяющих элементы области.

Восстановим функцию в $\mathbb{R}^2 \setminus \{x \leq 0, y = 0\}$.

Выберем точку в области определения. Пусть f(1,0) = C.

$$\int_{(1,0)}^{(2,y_0)} \frac{xdy - ydx}{x^2 + y^2} = \int_{0}^{y_0} \frac{dy}{1 + y^2} = \arctan y_0,$$

$$\int_{(1,y_0)}^{(x_0,y_0)} \frac{xdy - ydx}{x^2 + y^2} = \int_{1}^{x_0} -\frac{y_0 dy}{x^2 + y_0^2} = \begin{cases} y_0 = 0:0, \\ y_0 \neq 0: -\frac{1}{y} \int_{1}^{x_0} \frac{dx}{\left(\frac{x}{y_0}\right)^2 + 1} \end{cases}$$

$$\int_{1}^{x_0} \frac{dx}{\left(\frac{x}{y_0}\right)^2 + 1} = \left[t = \frac{x}{y_0}, dt = \frac{1}{y_0} dx\right] \Rightarrow \int_{\frac{1}{y_0}}^{\frac{x_0}{y_0}} \frac{dt}{1 + t^2} = \arctan \frac{1}{y_0} - \arctan \frac{x_0}{y_0}$$

Таким образом:

$$f(x,y) = f(1,0) + \begin{cases} \frac{\pi}{2} - \arctan \frac{x}{y}, & y > 0, \\ -\frac{\pi}{2} - \arctan \frac{x}{y}, & y < 0, \\ 0, & y = 0. \end{cases}$$

— где f(1,0) — задается.

3.4 Внешние формы второго порядка

Рассмотрим для примера как происходит замена переменной в плоском случае. Пусть $w:U\to \Lambda^2(\mathbb{R}^n)$ — 2-форма, такая что $w=f(x,y)dx\wedge dy$. Проведем замену переменных φ :

$$\begin{cases} x = x(t,s) \\ y = y(t,s) \end{cases}$$

Вычислим оператор переноса:

$$\varphi^* w(t,s) = (f \circ \varphi)(t,s)(x_t dt + x_s ds) \wedge (y_t dt + y_s ds) =$$

$$= (f \circ \varphi)(t,s) \cdot \det \begin{pmatrix} x_t & x_s \\ y_y & y_s \end{pmatrix} dt \wedge ds$$

В операторе переноса возник коэффициент искажения. Заметим, что в отличие от коэффициента искажения при замене переменных в интеграле, в операторе переноса коэффициент искажение возникает без модуля. Его знак зависит от того, меняет ли замена переменных ориентацию (он отрицательный, если замена переменных меняет ориентацию).

Определение 3.42. Пусть $U\subseteq\mathbb{R}^2$ — открытое множество и $w:U\to\Lambda^2(\mathbb{R}^2)$ — непрерывная 2-форма. Тогда выражение

$$\int\limits_{U} w = \iint\limits_{U} f(x,y) dx \wedge dy := \theta(e_x,e_y) \int\limits_{U} f(x,y) dx dy$$

называется интегралом 2-формы в \mathbb{R}^2 , где $\theta(e_x, e_y) = \pm 1$ — ориентация плоскости (e_x, e_y) — орты, соответствующие направлению).

Определение 3.43. Пусть $M \subseteq \mathbb{R}^n$ - двумерное C^1 -гладкое ориентированное многообразие и $w: M \to \Lambda^2(\mathbb{R}^2)$ — непрерываня 2-форма. Тогда, если $\varphi: U \subseteq \mathbb{R}^2 \to M$ — параметризация, то

$$\int_{M} := \int_{U} \varphi^* w = \int_{U} w(\varphi(t,s)) \langle \varphi_t(t,s), \varphi_s(t,s) \rangle dt \wedge ds$$

будем называть интегралом 2-формы по поверхности.

Если $M\subseteq\mathbb{R}^3$ — поверхность, то соответствующие касательные векторы в каждой точке образуют касательную плоскость, а векторы нормали, в свою очередь, образуют прямую. Следовательно, ориентацию можно задать нормалью.

В \mathbb{R}^3 задано правило Буравчика (если поворачиваем от 1 к 2, то 3 смотрит на нас) — ориентация $\theta\langle u,v,w\rangle$. То есть, если на поверхности есть $\vec{n}, \vec{\tau_1}, \vec{\tau_2}$, то $\theta_M(\vec{\tau_1}, \vec{\tau_2}) = \theta\langle \vec{n}, \vec{\tau_1}, \vec{\tau_2}\rangle$.

Очевидно, что $\Lambda^2(\mathbb{R}^3)\simeq\mathbb{R}^3$. Следовательно, $(a,b,c)\simeq ady\wedge dz+bdz\wedge dx+cdx\wedge dy=w$. Отсюда $w\langle u,v\rangle=(a,b,c)(u\times v)$.

Получим формулу потока векторного поля через поверхность, где (a, b, c) $\langle \vec{\tau_1}, \vec{\tau_2} \rangle$ — поток вектора (a, b, c) через параллелограмм $\Pi(\vec{\tau_1}, \vec{\tau_2})$.

$$\begin{split} \int\limits_{M} a dy \wedge dz + b dz \wedge dx + c dx \wedge dy &= \int\limits_{M} w \langle \vec{\tau_{1}}, \vec{\tau_{2}} \rangle dS = \\ &= \int\limits_{M} (a, b, c) \cdot \langle \tau_{1} \times \tau_{2} \rangle dS = \int\limits_{M} (a, b, c) \cdot \vec{n} dS \end{split}$$

Определение 3.44. Форма Гаусса в \mathbb{R}^3 :

$$\Theta = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$$

Лемма 3.45. В сфеерических координатах форма Гаусса имеет вид

$$\Theta = d\theta \wedge d\varphi.$$

Геометрическая интерпретация формы Гаусса $\int\limits_{M}\Theta$ — телесный угол под которым видна поверхность из начала координат.

3.5 Внешний дифференциал 1-формы

Пусть $f:U\subseteq\mathbb{R}^n\to\mathbb{R}$ — некоторая функция. Тогда $df(x)\in\Lambda^1(\mathbb{R}^n)$ — линейная функция, а $df:x\mapsto df(x)$ — 1-форм. напомним, что $d^2f(x)\langle u,v\rangle=d(df(x))$ - билинейная симметричная форма, такая что $d^2f(x)=\frac{\partial^2 f}{\partial u\partial v}$.

В свою очередь, при $w: U \to \Lambda^1 \mathbb{R}^n$, dw так же является билинейной формой, но не обязательно симметричной.

$$dw\langle \vec{u}, \vec{v}\rangle = d(w\langle \vec{u}\rangle)\langle \vec{v}\rangle = \frac{\partial}{\partial \vec{v}} w\langle \vec{u}\rangle$$

Форма w в координатном представлении имеет вид $w = a_1 dx_1 + a_2 dx_2 + \dots + a_n dx_n$, следовательно

$$dw(x)\langle u\rangle = \sum_{i=1}^{n} da_i(x)u_i = \sum_{i,j=1}^{n} \frac{\partial a_i}{\partial x_j} u_i dx_j$$

Из этого следует, что

$$dw(x)\langle u, v \rangle = \sum_{i,j=1}^{n} \frac{\partial a_i}{\partial x_j} u_i v_j = (\frac{\partial a_i}{\partial x_j}) \vec{u} \cdot \vec{v} = \vec{v}^T (\frac{\partial a_i}{\partial x_j}) \vec{u}$$

То есть, всяка билинейная форма есть сумма симметричной и кососимметричной (первое и второе слагаемые соотвественно), где $l^T\langle u,v\rangle=l\langle v,u\rangle$:

$$l = \frac{l + l^T}{2} + \frac{l - l^T}{2}$$

Определение 3.46. Внешним дифференциалом 1-формы называется кососимметричная часть полного дифференциала, то есть du сопоставляет 1-форме — 2-форму.

$$d: C^{r+1}(U \to \Lambda^1(\mathbb{R}^n)) \to C^r(U \to \Lambda^2(\mathbb{R}^n))$$

Лемма 3.47. Если $w = \sum_{i=1}^{n} a_i dx_i$, то

$$dw = \sum_{i=1}^{n} da_i \wedge dx_i = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \frac{\partial a_i}{\partial x_j} dx_j\right) \wedge dx_i$$

Теорема 3.48 (Формула Грина в терминах внешнего дифференциала). Пусть $U \subseteq \mathbb{R}^2$ — область с кусочно-гладкой границей $u \ w \in C^1(U \to \Lambda^1(\mathbb{R}^2))$. Тогда верна формула Грина

$$\oint_{\partial U} w = \int_{U} d_{eneumu\dot{u}} w$$

3.6 Ротация векторного поля

Определение 3.49. Пусть \bar{v} — векторное поле в плоскости. Ротация (вихрь) векторного поля \bar{v} в точке (x_0,y_0)

$$\operatorname{rot}_{x,y} \bar{v}(x_0, y_0) = \lim_{r \to 0} \oint_C \bar{v} d\bar{r}$$
, где $C : (x - x_0)^2 + (y - y_0)^2 = r^2$

Лемма 3.50. Для C^1 -гладкого векторного поля $\bar{v}(x,y)=\begin{pmatrix} a(x,y)\\b(x,y)\end{pmatrix}$ верио, что

$$\operatorname{rot}_{x,y} \bar{v}(x_0, y_0) = \frac{\partial b}{\partial x}(x_0, y_0) - \frac{\partial a}{\partial y}(x_0, y_0)$$

Доказательство. Пусть $C:=(x-x_0)^2+(y-y_0)^2=r^2, S:=(x-x_0)^2+(y-y_0)^2\leq r^2.$

$$\oint\limits_C \bar{v}d\bar{r} = \oint\limits_C (a,b)(dx,dy) = \oint\limits_C adx + bdy =$$

воспользуемся формулой Грина

$$\begin{split} &= \iint\limits_{S} \left(\frac{\partial b}{\partial x}(x,y) - \frac{\partial a}{\partial y}(x,y) \right) dx dy = \\ &= \iint\limits_{S} \left[\left(\frac{\partial b}{\partial x}(x_0,y_0) - \frac{\partial a}{\partial y}(x_0,y_0) \right) + o(1) \right] dx dy = \\ &= \left(\frac{\partial b}{\partial x} - \frac{\partial a}{\partial y} \right) (x_0,y_0) \pi r^2 + \iint\limits_{B} o(1) dx dy \end{split}$$

Определение 3.51 (формула Грина).

$$\oint\limits_{\partial U} \bar{v}d\bar{r} = \iint\limits_{U} \operatorname{rot}_{x,y} \bar{v}dxdy.$$

Свойства ротации:

1. линейность: пусть $\alpha, \beta \in \mathbb{R}$, \bar{u}, \bar{v} — векторные поля в плоскости, тогда $\mathrm{rot}_{x,y}(\alpha \bar{u} + \beta \bar{v}) = \alpha \, \mathrm{rot}_{x,y} \, \bar{u} + \beta \, \mathrm{rot}_{x,y} \, \bar{v}$.

2. антисимметричность: пусть \bar{v} — векторное поле в плоскости, тогда $\mathrm{rot}_{x,y}\,\bar{v}=-\mathrm{rot}_{y,x}\,\bar{v}.$

Свойства внешнего дифференциала.

Свойство 1°. Линейность Для любых w_1, w_2, α, β выполнено

$$d(\alpha w_1 + \beta w_2) = \alpha dw_1 + \beta dw_2$$

Свойство 2°.

$$d(w^k \wedge w^l) = dw^k \wedge w^l + (-1)^k w^k \wedge dw^l$$

 \mathcal{A} оказательство. Пусть w^k и w^l , такие, что

$$w^k = \sum_{I \in M(n,k)} a_I dx_I \quad w^l = \sum_{I \in M(n,l)} a_I dx_I$$
$$w^k \wedge w^l = \sum_{I \in J} a_I b_J dx_I \wedge dx_J$$

$$d(w^k \wedge w^l) = \sum_{I,J} d(a_I b_J) \wedge dx_I \wedge dx_J = \sum_{I,J} (a_I db_J + b_J da_I) \wedge dx_I \wedge dx_J =$$

$$= \sum_{I,J} a_I db_J \wedge dx_I \wedge dx_J + \sum_{I,J} b_J da_I \wedge dx_I \wedge dx_J$$

Осталось заметить, что первое слагаемое это в точности

$$(-1)^k \sum_{I,J} a_I dx_I \wedge db_J \wedge dx_J = (-1)^k \wedge dw^l$$

А второе, в свою очередь, в точности

$$\sum_{I,J} da_I \wedge dx_I \wedge (b_J dx_J) = dw^k \wedge w^l$$

Свойство 3°. Перестановочность с заменой переменных

$$\varphi^* d = d\varphi^*$$

Доказательство. Для 0,1-форм уже доказано. Докажем для форм высшего порядка по индукции. Пусть для k-форм утверждение выполнено, докажем для (k+1)-форм.

C одной стороны для $w^{k+1}(y) = a(y)dy_i \wedge dy_J$ имеем

$$\varphi^* dw^{k+1} = \varphi^* (a(y) dy_i \wedge dy_J) = \varphi^* (da(y) \wedge dy_i \wedge dy_J - a(y) dy_i \wedge d(dy_J)) =$$
$$= \varphi^* (da(y) \wedge dy_i \wedge dy_J) = \varphi^* (da(y) \wedge dy_i \wedge dy_J)$$

С другой стороны

$$d(\varphi^* w^{k+1}) = d(\varphi^* (a(y) dy_i \wedge dy_J)) = d(\varphi^* (a(y) dy_i) \wedge \varphi^* dy_J) =$$
$$= d\varphi^* (a(y) dy_i) \wedge \varphi^* dy_J - \varphi^* (a(y) dy_J) \wedge d(\varphi^* dy_J)$$

Применив предположение индукции, получим

$$\varphi^*(d(a(y)dy_i)) \wedge \varphi^*dy_J - \varphi^*(a(y)dy_i) \wedge \varphi^*(d(d(y_J))) = \varphi^*(d(a(y)) \wedge dy_i \wedge dy_J)$$

Определение 3.52. k-мерное многообразие называется $\mathit{замкнутым}$, если это компакт без края.

Если M-k-мерное замкнутое многообразие и w^k-k -форма на M, то

$$\oint_{\partial M} w^k := \int_{M} w^k$$

Теорема 3.53 (Формула Стокса-Пуанкаре). Пусть M-кусочно-гладкое k-мерное компактное ориентированное многообразие, $w-C^1$ -гладкая (k-1)-форма на M, тогда

$$\oint_{\partial M} w = \int_{M} dw$$

 \mathcal{A} оказательство. Проведем доказательство для куба в \mathbb{R}^n . Зададим куб как $[-a,a]^n$ и заметим, что он является n-мерным многообразием в \mathbb{R}^n и у него есть 2n (n-1)-мерных граней

$$\begin{cases}
-a \le x_1 \le a \\
-a \le x_2 \le a \\
\dots \\
-a \le x_n \le a
\end{cases}$$

Пусть w-(n-1)-форма, заданная на кубе, тогда

$$w(x) = \sum_{j=1}^{n} a_j(x)(-1)^{j+1} dx_1 \wedge \ldots \wedge \widehat{dx_j} \wedge \ldots \wedge dx_n$$

Дифференциал этой формы равен

$$dw(x) = \sum_{j=1}^{n} da_{j}(x)(-1)^{j+1} dx_{1} \wedge \dots \wedge \widehat{dx_{j}} \wedge \dots \wedge dx_{n} =$$

$$= \sum_{j=1}^{n} (\frac{\partial a_{j}}{\partial x_{1}} dx_{1} + \dots + \frac{\partial a_{j}}{\partial x_{n}} dx_{n}) \wedge (-1)^{j+1} dx_{1} \wedge \dots \wedge \widehat{dx_{j}} \wedge \dots \wedge dx_{n} =$$

$$= \sum_{j=1}^{n} \frac{\partial a_{j}}{\partial x_{j}} (-1)^{j+1} dx_{j} \wedge dx_{1} \wedge \dots \wedge \widehat{dx_{j}} \wedge \dots \wedge dx_{n} = (\sum_{j=1}^{n} \frac{\partial a_{j}}{\partial x_{j}}) dx_{1} \wedge \dots \wedge dx_{n}$$

Вычислим интеграл от dw по кубу

$$\int_{[-a,a]^k} dw = \int_{[-a,a]^k} \left(\sum_{j=1}^n \frac{\partial a_j}{\partial x_j}\right) dx_1 \wedge \ldots \wedge dx_n = \int_{-a}^a \ldots \int_{-a}^a \left(\sum_{j=1}^n \frac{\partial a_j}{\partial x_j}\right) dx_1 \wedge \ldots \wedge dx_n$$

С другой стороны

$$\int_{x_j=a} w = \int_{x_j=a} \sum_{j=1}^n a_j(x) (-1)^{j+1} dx_1 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_n$$

Что равно

$$\int_{x_j=a} a_j(x)(-1)^{j+1} dx_1 \wedge \ldots \wedge \widehat{dx_j} \wedge \ldots \wedge dx_n =$$

$$= \int_{-a}^{a} \ldots \int_{-a}^{a} a_j(x_1, \ldots, x_{j-1}, a, x_{j+1}, \ldots, x_n) dx_1 \ldots \widehat{dx_j} \ldots dx_n =$$

$$= -\int_{-a}^{a} \ldots \int_{-a}^{a} a_j(x_1, \ldots, x_{j-1}, -a, x_{j+1}, \ldots, x_n) dx_1 \ldots \widehat{dx_j} \ldots dx_n$$

Отсюда

$$\int_{x_{j}=a} w + \int_{x_{j}=-a} w = \int_{-a}^{a} \dots \int_{-a}^{a} (a_{j} \Big|_{x_{j}=a} - a_{j} \Big|_{x_{j}=-a}) \dots \widehat{dx_{j}} \dots dx_{n}$$

Следовательно

$$a_j \Big|_{x_j=a} - a_j \Big|_{x_j=-a} = \int_{-a}^{a} \frac{\partial a_j}{\partial x_j}(x) dx_j$$

Частные случаи формулы Стокса-Пуанкаре:

1. Если k=1, то M — кривая, а w — функция и формула Стокса-Пуанкаре принимает вид формулы Ньютона-Лейбница.

- 2. Если n=2 и k=2, то формула Стокса-Пуанкаре принимает вид формулы Грина.
- 3. Если n=3 и k=3, то формула Стокса-Пуанкаре принимает вид формулы Гаусса-Остроградского.
- 4. Если n=3 и k=2, то формула Стокса-Пуанкаре принимает вид формулы Кельвина-Стокса.

$3.7 \quad 25.04.19$

Пусть поверхность S окружает тело V в \mathbb{R}^2 . Тогда объем тела V можно вычислить проинтегрировав по внешней стороне поверхности одну из форм:

$$xdy \wedge dz \quad ydz \wedge dx \quad zdx \wedge dy$$

По формуле Стокса

$$\oint\limits_{S} x dy \wedge dz = \int\limits_{V} dx \wedge dy \wedge dz = \pm |V|$$

Чтобы значение было положительно, нужно согласовать ориентацию так, чтобы она определялась с помощью нормали по внешней стороне.

В общем случае, формами объема в \mathbb{R}^n являются формы вида

$$(-1)^{j+1}x_jdx_1\wedge\ldots\wedge\widehat{dx_j}\wedge\ldots\wedge dx_n\quad j=1\ldots n$$

А так же форма

$$\frac{1}{n}\sum_{j=1}^{n}n(-1)^{j+1}x_jdx_1\wedge\ldots\wedge\widehat{dx_j}\wedge\ldots\wedge dx_n$$

Определение 3.54. Непрерывная k-форма называется moчnoй, если она является внешним дифференциалом некоторой C^1 -гладкой (k-1)-формы θ , т.е. $w=d\theta$.

Определение 3.55. C^1 -гладкая форма w называется $\mathit{замкнутой},$ если $\mathit{dw}=0.$

Как мы знаем, первообразную можно восстановить с точностью до константы. В случае с формами роль констант выполняют замкнутые формы, т.е. форму можно восстановить по дифференциалу с точностью до замкнутой формы.

Теорема 3.56 (Первая теорема Пуанкаре). Все (гладкие) точные формы являются замкнутыми, т.е. если $w-C^1$ -гладкая точная форма, то dw=0. Так же это утверждение можно переформулировать как $d\circ dw=0$, т.е. внешний дифференциал от внешнего дифференциала равен нулю.

Доказательство. Так как дифференциал линеен, достаточно доказать только для одного из слагаемых.

Пусть $\theta = adx_{i_1} \wedge \ldots \wedge d_{i_k} = adx_I$. Тогда

$$d\theta = d(adx_I) = da \wedge dx_I = \sum_{i=1}^n \frac{\partial a}{\partial x_i} dx_i \wedge dx_I$$

Отсюда

$$d(d\theta) = \sum_{i=1}^{n} d(\frac{\partial a}{\partial x_i} dx_i \wedge dx_I) = \sum_{i=1}^{n} d(\frac{\partial a}{\partial x_i}) \wedge dx_i \wedge dx_I = \sum_{i,j=1}^{n} \frac{\partial^2 a}{\partial x_i \partial x_j} dx_j \wedge dx_i \wedge dx_I$$

Если i=j, то слагаемые вида $dx_i\wedge dx_i$ равны нулю, с другой стороны, если $i\neq j$, то $dx_i\wedge dx_j=-dx_j\wedge dx_i$ и это слагаемое равно симметричному слагаемому с противоположным знаком, так как

$$\frac{\partial^2 a}{\partial x_i \partial x_j} = \frac{\partial^2 a}{\partial x_j \partial x_i}$$

Следовательно, $d(d\theta) = 0$.

Определение 3.57. Множество $U \subset \mathbb{R}^n$ называется k-связным, если каждое замкнутое многообразие, порядок которого меньше или равен k, можно стянуть в точку.

В частности, 0-связное множество представляет собой набор точек, каждую пару которых можно соединить кривой. Так же вводят понятие (-1)-связного множества, что обозначает, что она не является k-связным ни для какого k.

Определение 3.58. Множество $U\subseteq\mathbb{R}^n$ называется *звездным* относительно некоторой точки x_0 , если любую точку $x\in U$ можно соединить с x_0 отрезком.

Очевидно, что, если множество $U\subseteq\mathbb{R}^n$ звездное, то оно k-связное для любого $k=1\dots n$.

Определение 3.59. Пусть U — звездное множество. Определим оператор $I: C^r(U \to \Lambda^k) \to C^{r+1}(U \to \Lambda^{k-1})$, так, что каждой форме $w = adx_{i_1} \wedge \ldots \wedge dx_{i_k}$ сопоставляется

$$I(w) = \sum_{\alpha=1}^{k} (-1)^{\alpha-1} \left[\int_{0}^{1} t^{k-1} a(tx) dt \right] x_{i_{\alpha}} dx_{i_{1}} \wedge \ldots \wedge \widehat{dx_{i_{\alpha}}} \wedge \ldots \wedge dx_{i_{k}}$$

Определение 3.60. Форма w называется коточной, если сущесвует форма θ , такая что $w = I\theta$.

Теорема 3.61. Для всякой C^1 -гладкой k-формы w на звездной области выполнено

$$w = dIw + Idw$$

Доказательство. Пусть $w = a(x_1, \ldots, x_n) dx_{i_1} \wedge \ldots \wedge dx_{i_k}$, вычислим все выражения, которые есть в теореме.

$$Iw = \sum_{\alpha=1}^{k} (-1)^{\alpha-1} \left[\int_{0}^{1} t^{k-1} a(tx) dt \right] x_{i_{\alpha}} dx_{i_{1}} \wedge \ldots \wedge \widehat{dx_{i_{\alpha}}} \wedge \ldots \wedge dx_{i_{k}}$$

$$dIw = \sum_{\alpha=1}^{k} (-1)^{\alpha-1} d \left[\int_{0}^{1} t^{k-1} a(tx) dt \ x_{i_{\alpha}} \right] dx_{i_{1}} \wedge \ldots \wedge \widehat{dx_{i_{\alpha}}} \wedge \ldots \wedge dx_{i_{k}} =$$

$$= \sum_{\alpha=1}^{k} (-1)^{\alpha-1} d \left[\int_{0}^{1} t^{k-1} a(tx) dt \ dx_{i_{\alpha}} + x_{i_{\alpha}} \sum_{j=1}^{n} \left(\int_{0}^{1} t^{k} \frac{\partial a}{\partial x_{j}} dt \right) \right] \wedge \ldots \wedge \widehat{dx_{i_{\alpha}}} \wedge \ldots \wedge dx_{i_{k}} =$$

$$= \sum_{\alpha=1}^{k} \left(\int_{0}^{1} t^{k-1} a(tx) dt \right) dx_{i_{1}} \wedge \ldots \wedge dx_{i_{k}} +$$

$$+ \sum_{\alpha=1}^{k} \sum_{j=1}^{n} x_{i_{\alpha}} (-1)^{\alpha-1} \left(\int_{0}^{1} t^{k} \frac{\partial a}{\partial x_{j}} dt \right) dx_{j} \wedge dx_{i_{1}} \wedge \ldots \wedge dx_{i_{\alpha}} \wedge \ldots \wedge dx_{i_{k}}$$

$$Idw = \sum_{j=1}^{n} \sum_{\alpha=1}^{k} (-1)^{\alpha} \left[\int_{0}^{1} t^{k} \frac{\partial a}{\partial x_{j}} dt \right] x_{i_{\alpha}} dx_{j} \wedge dx_{i_{1}} \wedge \ldots \wedge \widehat{dx_{i_{\alpha}}} \wedge \ldots \wedge dx_{i_{k}} + \sum_{i=1}^{n} \left[\int_{0}^{1} t^{k} \frac{\partial a}{\partial x_{j}} dt \right] x_{j} dx_{i_{1}} \wedge \ldots \wedge dx_{i_{k}}$$

 $dw = da \wedge dx_{i_1} \wedge \ldots \wedge dx_{i_k} = \sum_{i=1}^n \frac{\partial a}{\partial x_j} dx_j \wedge dx_{i_1} \wedge \ldots \wedge dx_{i_k}$

Если мы сложим Idw и dIw, двойные суммы сократятся, и проинтегрировав по частям и применив формулу Ньютона-Лейбница, мы получим

$$dIw + Idw = k \left(\int_{0}^{1} t^{k-1} a(tx) dt \right) dx_{i_1} \wedge \dots \wedge dx_{i_k} + \sum_{i=1}^{n} \left[\int_{0}^{1} t^k \frac{\partial a}{\partial x_j} x_j dt \right] dx_{i_1} \wedge \dots \wedge dx_{i_k} = \left(\int_{0}^{1} \left[kt^{k-1} a(tx) + \sum_{i=1}^{n} t^k \frac{\partial a}{\partial x_j} x_j \right] dt \right) dx_{i_1} \wedge \dots \wedge dx_{i_k} = \left(\int_{0}^{1} \frac{d}{dt} \left[t^k a(tx) \right] dt \right) = w$$

Следствие 3.62 (Вторая теорема Пуанкаре). В звездной области всякая замкнутая форма точна.

3.8 Дивергенция векторного поля

Пусть в \mathbb{R}^n задана (n-1)-мерная ориентированная поверхность M. Тогда поток векторного поля \vec{v} через поверхность M вычисляется как

$$\Phi = \int_{M} \vec{v}(x) \cdot \vec{n}(x) dS^{n-1}$$

где \vec{n} — единичный вектор нормали к M в точке x, согласованный с ориентацией.

Эту задачу можно решить используя дифференциальные формы. Для начала, рассмотрим для примера случай в \mathbb{R}^3 . Как известно, $\mathbb{R}^3 \simeq \Lambda^2(\mathbb{R}^3)$.

$$e_1 \simeq dy \wedge dz$$

 $e_2 \simeq dz \wedge dx$
 $e_3 \simeq dx \wedge dy$

Пусть $\vec{v}(x,y,z)$ — векторное поле, такое, что

$$\vec{v}(x,y,z) = \begin{pmatrix} a(x,y,z) \\ b(x,y,z) \\ c(x,y,z) \end{pmatrix}$$

Тогда

$$\Phi = \int_{M} a dy \wedge dz + b dz \wedge dx + c dx \wedge dy$$

Убедимся, что это выражение совпадает с исходным. Пусть $\varphi: U \to M$ — параметризация поверхности M, такая что

$$\begin{cases} x = x(t, s) \\ y = y(t, s) \\ z = z(t, s) \end{cases}$$

Пусть φ_1, φ_2 — касательные векторы, тогда

$$\begin{split} \int\limits_{M} a dy \wedge dz + b dz \wedge dx + c dx \wedge dy &= \int\limits_{U} (a dy \wedge dz + b dz \wedge dx + c dx \wedge dy) \langle \varphi_{1}, \varphi_{2} \rangle = \\ &= \int\limits_{U} \det \begin{pmatrix} a & x_{1} & x_{2} \\ b & y_{1} & y_{2} \\ c & z_{1} & z_{2} \end{pmatrix} dt ds = \int\limits_{U} (a, b, c) \cdot \vec{n} \cdot J_{\varphi}(t, s) dt \wedge ds \end{split}$$

Проведя обратную замену, получим, что

$$\int_{M} a dy \wedge dz + b dz \wedge dx + c dx \wedge dy = \int_{U} (a, b, c) \cdot \vec{n} dS^{2}$$

В пространстве $\mathbb{R}^n,\ e_j\simeq (-1)^{j-1}dx_1\wedge\ldots\wedge\widehat{dx_j}\wedge\ldots\wedge dx_n.$ Из этого получаем выражение в общем случае при $\vec{v}=(a_1,\ldots,a_n)$

$$\int_{M} \vec{v}(x) \cdot \vec{n}(x) dS^{n-1} = \int_{M} \sum_{j=1}^{n} (-1)^{j-1} a_j dx_1 \wedge \ldots \wedge \widehat{dx_j} \wedge \ldots \wedge dx_n.$$

Напомним, что через S_r и B_r мы обозначаем сферу и шар радиуса r соотвественно.

Определение 3.63. Дивергения векторного поля \vec{v} в точке x определяется как

$$div \ \vec{v}(x) = \lim_{r \to 0} \frac{1}{|B_r|} \int_{S_r} \vec{v} \cdot \vec{n} \ dS^{n-1}$$

где, при вычислении потока \vec{v} через сферу S_r , интеграл берется по внешней стороне сферы.

Лемма 3.64 (Оператор дивергенции в декартовых координатах). Для C^1 -гладкого векторного поля v имеет место формула

$$div \ \vec{v}(x) = \sum_{j=1}^{n} \frac{\partial a_j}{\partial x_j}(x)$$

Доказательство. По формуле Стокса имеем

$$\int_{S_r} \vec{v} \cdot \vec{n} \, dS^{n-1} = \int_{S_r} \sum_{j=1}^n (-1)^{j-1} a_j dx_1 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_n =$$

$$= \int_{B_r} \sum_{j=1}^n (-1)^{j-1} da_j \wedge dx_1 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_n =$$

$$= \int_{B_r} \sum_{j=1}^n \frac{\partial a_j}{\partial x_j} dx_1 \wedge \dots \wedge dx_n = \int_{B_r} \sum_{j=1}^n \frac{\partial a_j}{\partial x_j} dx_1 \dots dx_n$$

Отсюда

$$\lim_{r \to 0} \frac{1}{|B_r|} \int_{S_r} \vec{v} \cdot \vec{n} \, dS^{n-1} = \lim_{r \to 0} \frac{1}{|B_r|} \int_{B_r} \sum_{j=1}^n \frac{\partial a_j}{\partial x_j} dx_1 \dots dx_n = \sum_{j=1}^n \frac{\partial a_j}{\partial x_j}$$

Теорема 3.65 (Формула Гаусса-Остроградского). Пусть V- тело (п-мерное компактное многообразие в \mathbb{R}^n), тогда

$$\int_{\partial v} \vec{v}(x) \cdot \vec{n}(x) dS^{n-1} = \int_{V} div \ \vec{x}(x) dx$$

Определение 3.66. Векторное поле \vec{v} называется бездивергентным, если $\textit{div } \vec{v} = 0$.

Имееют место следующие соответствия, где соответствующие члены двух цепей изоморфны между собой:

$$Scal(\mathbb{R}^3) \xrightarrow{grad} Vec(\mathbb{R}^3) \xrightarrow{rot} Vec(\mathbb{R}^3) \xrightarrow{grad} Scal(\mathbb{R}^3)$$
$$\{U \to \Lambda^0\} \xrightarrow{d} \{U \to \Lambda^1\} \xrightarrow{d} \{U \to \Lambda^2\} \xrightarrow{d} \{U \to \Lambda^3\}$$

То есть, на языке дифференциальных форма, каждой операции векторного анализа соотвествует дифференциал.

В плоском случае можно получить следующие выражения:

$$rot(a,b) \simeq d(adx + bdy) = \left(\frac{\partial a}{\partial x} - \frac{\partial a}{\partial y}\right) dx \wedge dy = \nabla \wedge (a,b) = \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ a & b \end{vmatrix}$$
$$div(a,b) \simeq d(adx + bdy) = \left(\frac{\partial a}{\partial x} + \frac{\partial a}{\partial y}\right) dx \wedge dy = \nabla \cdot (a,b)$$

Определение 3.67. Пусть \vec{v} — векторное поле в \mathbb{R}^3 . Тогда \vec{v} называют вихревым, если существует \vec{u} — векторное поле такое, что $\vec{v} = rot \ \vec{u}$. В этом случае, \vec{u} называют векторным потенциалом векторного поля \vec{v} .

Леммы ниже являются следствиями первой и второй теоремы Пуанкаре соотвественно.

Пемма 3.68. Вихревое векторное поле всегда бездивергентно, т.е. $div\ rot \vec{v} = 0$.

Пемма 3.69. Если векторное поле \vec{v} в звездной области в \mathbb{R}^3 бездиверегентно, то она вихревое.

Теорема 3.70. В звездной области всякое трехмерное векторное поле \vec{v} раскладывается в сумму вихревого и потенциального.

Доказательство. Следует из теоремы 3.61.

Определение 3.71. Оператором Лапласа называется оператор $\triangle: Scal \to Scal$, такой, что

$$\triangle = \bigtriangledown^2 = div \ grad$$

В декартовых координатах оператор Лапласа имеет вид

$$\Delta f = div(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}) = \frac{\partial^2 f}{\partial x_1^2} + \dots + \frac{\partial^2 f}{\partial x_n^2}$$

Если $\triangle f>0,$ то f(x) больше своего среднего значения на маленькой сфере с центром в точке x.

Если $\triangle f < 0$, то f(x) меньше своего среднего значения на маленькой сфере с центром в точке x.

Если $\triangle f=0$, то f(x) приблизительно равна своему среднему значению на маленькой сфере с центром в точке x.