CIS560

Obtaining a Good Database Design – Part 2

1

What's next?

- •We briefly discussed the 3NF and BCNF.
- •They are defined using:
 - Functional Dependencies
 - Keys
- •We defined functional dependencies.
- •We defined closures and how they help us find all functional dependencies.
- •Now let's review keys.

Superkeys and Keys

- •A **superkey** is a set of attributes $A_1, ..., A_n$ s.t. for any other attribute B, we have $A_1, ..., A_n \rightarrow B$
- •A **key** is a minimal superkey
 - •A set of attributes which is a superkey
 - And for which no subset is a superkey

KANSAS STATE | Computer Science

2

Computing Keys

- Compute X⁺ for all sets X
- •If X⁺ = all attributes, then X is a superkey
- •We only want the keys (minimal superkeys)

Example - What are the key(s)?

Enrollment(student, address, course, room, time)

student → address
room, time → course
student, course → room, time

HINT: You can have more than one key.

Keys: {student, room, time}, {student, course}

KANSAS STATE | Computer Science

5

How do we use keys to eliminate anomalies?

Each attribute must provide a fact about the key, the whole key, and nothing but the key.

Chris Date's adaptation to William Kent's summary

KANSAS STATE | Computer Science

Boyce-Codd Normal Form

- A relation R is in BCNF if and only if for every functional dependency X → A:
 - •X → A is a trivial functional dependency or
 - •X is a superkey for R
- •Equivalently: \forall X, where X is a set of attributes, either (X⁺ = X) or (X⁺ = all attributes)

KANSAS STATE

Computer Science

7

Example

Name	ID	Phone	Department
Fred	123	206-555-1234	CIS
Fred	123	206-555-6543	CIS
Joe	987	908-555-2121	Math
Joe	987	206-151-7839	Math

ID → Name, Department

What is the key? {ID, Phone}

Hence ID → Name, Department is a "bad" dependency

KANSAS STATE

Computer Science

BCNF Decomposition – Using FDs

<u>repeat</u>

choose $A_1, ..., A_m \rightarrow B_1, ..., B_n$ that violates BNCF (bad FD) split R into $R_1(A_1, ..., A_m, B_1, ..., B_n)$ and $R_2(A_1, ..., A_m, [others])$ continue with both R_1 and R_2

until no more violations

A two-attribute relation is always in BCNF.

KANSAS STATE

Computer Science

9

Example

Name	ID	Phone	Department
Fred	123	206-555-1234	CIS
Fred	123	206-555-6543	CIS
Joe	987	908-555-2121	Math
Joe	987	206-151-7839	Math

ID → Name, Department is a bad functional dependency

KANSAS STATE

Computer Science

Relation Decomposition

Name	<u>ID</u>	Department		<u>one</u>		
Fred	123	206-	55 312	3 4 0	6-55	5C-I <u>1</u> 5234
₿øed	983	21016h!	555 365	4 3 0	6-55	5C- 16 \$543
Joe	987	908-	98 721	2 9 0	8-55	54a2t1/21
Joe	987	206-:	. 98 778	3 2 0	6-15	1 M a78 189

11

Relation Decomposition

Name	<u>ID</u>	Department	
Fred	123	CIS	
Joe	987	Math	

<u>ID</u>	<u>Phone</u>
123	206-555-1234
123	206-555-6543
987	908-555-2121
987	206-151-7839

KANSAS STATE | Computer Science

BCNF Decomposition – Using Closures

<u>repeat</u>

find X s.t.: $X \neq X^+ \neq [all \ attributes]$

if (not found) then "R is in BCNF"

<u>let</u> $Y = [all \ attributes] - X^+$ decompose R into $R1(X^+)$ and $R2(X \cup Y)$ continue with both R1 and R2**until** no X is found

KANSAS STATE | Computer Science

13

Example BCNF Decomposition – Using Closures

Student(name, ID, age, hairColor, phoneNumber)

ID \rightarrow name, age age \rightarrow hairColor

Iteration 1: Student X = ID

ID⁺ = {ID, name, age, hairColor}

Decompose into: Student1(<u>ID</u>, name, age, hairColor) Phone(ID, phoneNumber)

Iteration 2: Student1 X = age

 $age^+ = \{age, hairColor\}$

Decompose: Hair(<u>age</u>, hairColor) Student2(<u>ID</u>, name, age)

KANSAS STATE | Computer Science

Is the resulting BCNF schema unique?

 $\left. \frac{Kansas\ State}{\text{u\ n\ i\ v\ e\ r\ s\ i\ t\ y}} \right| \ \mathsf{Computer}\ \mathsf{Science}$

17

Which solution is better?

$$R_{111}(A,\underline{D}), R_{112}(D,\underline{C}), R_{12}(\underline{C},\underline{B}), R_{21}(\underline{F},B), R_{22}(\underline{F},\underline{A},\underline{E})$$

OR

 $R_{11}(A,\underline{D}), R_{12}(D,\underline{C}), R_{21}(\underline{E},B), R_{22}(\underline{F},\underline{C},\underline{E})$

KANSAS STATE | Computer Science

19

Which solution is better?

- •From the theoretical point of view... Both solutions are good.
- •From a practical point of view... It depends.
- Look at the common ways they are queried, for example.

KANSAS STATE | Computer Science