Set	Items	Description
S1	81	SCLERA AND NUCLEIC(W)ACID
S2	60	RD (unique items)
S3	2	S2 AND DELIVER?
S'4	20	SCLERA AND GENE(W)TRANSFER
\$5	11	RD (unique items)
S6	4	TRANSSCLER? AND GENE(W) (TRANSFER OR DELIVERY)
s7	4	RD (unique items)
Š8	1266	GENE(W) (TRANSFER OR DELIVERY) AND EYE
S9	780	\$8 NOT PY>2000
S10	8	\$9 AND INTERIOR
S11	7	RD (unique items)
S12	55	\$9 AND EYE/TI
S13	. 22	RD (unique items)

Am 20 103
A 129 103
Pialog
file: medicine

5/3,AB/10 (Item 1 from file: 155)

DIALOG(R) File 155:MEDLINE(R)

(c) format only 2003 The Dialog Corp.; All rts. reserv.

14698646 22578072 PMID: 12692592

Periocular injection of an adenoviral vector encoding pigment epithelium-derived factor inhibits choroidal neovascularization.

Gehlbach P; Demetriades A M; Yamamoto S; Deering T; Duh E J; Yang H S; Cingolani C; Lai H; Wei L; Campochiaro P A

Gene therapy (England) Apr 2003, 10 (8) p637-46, ISSN 0969-7128

Journal Code: 9421525

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: In Process

transfer provides an exciting new approach for the treatment of retinal and choroidal diseases. Two areas of concern are the potential for toxicity and uncertainties associated with prolonged vector-related transgene expression. One way to address these concerns for transfer of genes encoding secreted proteins is to transduce cells on the outside of the eye, provided the gene product can gain access to the eye and have the desired effect. In this study, we investigated the feasibility of this approach. Periocular injection of an adenoviral vector encoding beta-galactosidase (AdLacZ.10) resulted in LacZ-stained cells throughout the orbit and around the eye. Compared to periocular injection of $5 \times 10(9)$ particles of control vector, periocular injection of 5 \times 10(9) or 1 \times 10(9) particles of an adenoviral vector expressing pigment epithelium-derived factor (PEDF) regulated by a CMV promoter (AdPEDF.11) resulted in significantly elevated intraocular levels of PEDF and suppression of choroidal neovascularization. Periocularly injected recombinant PEDF was also found to diffuse through the sclera into the eye. Although similar experiments are needed in an animal with a human-sized eye, these data suggest that periocular gene transfer deserves consideration for the diseases.Gene Therapy (2003) 10, 637-646. treatment of choroidal doi:10.1038/sj.qt.3301931

(Item 5 from file: 5) 13/3, AB/55:Biosis Previews(R) DIALOG(R)File (c) 2003 BIOSIS. All rts. reserv.

10320595 BIOSIS NO.: 199698775513

Gene transfer to the retina of rat by liposome eye drops.

AUTHOR: Matsuo Toshihiko(a); Masuda Ikuya; Yasuda Tatsuji; Matsuo Nobuhiko

AUTHOR ADDRESS: (a) Dep. Ophthalmol., Okayama Univ. Med. Sch., 2-5-1

Shikata-cho, Okayama City, Okayama 700**Japan

JOURNAL: Biochemical and Biophysical Research Communications 219 (3):p

947-950 1996 ISSN: 0006-291X

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

delivery to the intraocular tissues of the retina is ABSTRACT: Gene hampered by complicated surgical interventions to administer the gene. Here we showed that instillation as eye drops of an expression plasmid vector for beta-galactosidase gene carried by the specific kinds of liposomes could transfer the gene to the retinal ganglion cells of rat, without causing any inflammation. This non-surgical, convenient way for delivery to the retina would facilitate the development of treatment for various intraocular diseases.

1996

13/3,AB/16 (Item 1 from file: 155)

DIALOG(R) File 155:MEDLINE(R)

(c) format only 2003 The Dialog Corp. All rts. reserv.

11791783 99230666 PMID: 10214051

Induction of genes into the rabbit eye by iontophoresis]

Asahara T; Shinomiya K; Naito T; Shiota H

Department of Ophthalomogy, University of Tokushima School of Medicine, Japan.

Nippon Ganka Gakkai zasshi (JAPAN) Mar 1999, 103 (3) p178-85, ISSN 0029-0203 Journal Code: 7505716

Document type: Journal Article ; English Abstract

Languages: JAPANESE Main Citation Owner: NLM Record type: Completed

6-carboxyfluorescein (6-FAM)-labeled PURPOSE: After inducing phosphorothicate oligonucleotides (S-ODNs) noninvasively into albino rabbit eyes by iontophoresis, we assessed the transfer of S-ODNs into the ocular tissues, their stability, and the possible presence of injury to the ocular tissues. METHODS: The iontophoresis group consisted of 12 eyes of 6 rabbits and the control group consisted of 4 eyes of 2 rabbits given eye drops containing S-ODNs. Aqueous humor and vitreous humor were collected after subjected to electrophoresis with a fluorescent DNA iontophoresis, sequencer and analyzed by the Gene Scan program. Frozen sections at 10 microns were prepared for observations under a fluorescent microscope. A plasmid 4.7 kbp in size that expresses green fluorescent protein (GFP) was induced into 18 eyes of 9 rabbits by the same procedure. RESULTS: In the iontophoresis group, S-ODNs were detected in the anterior chamber 5 minutes after electrophoresis and in the vitreous 10 minutes after. These S-ODNs maintained the same length as at the initial synthesis. S-ODNs could also be detected in the posterior retina 20 minutes after electrophoresis. No evidence of degeneration or inflammation due to the above procedure was found in the ocular tissues. Fluorescence showing GFP gene expressions were in the cornea, the anterior chamber angle, and the ciliary found subepithelial tissues. CONCLUSIONS: These findings show that iontophoresis is an effective method to induce gene into rabbit eyes.