AE333

Mechanics of Materials

Lecture 20 - Combined loading
Dr. Nicholas Smith
Wichita State University, Department of Aerospace Engineering
25 Mar, 2019

schedule

- 25 Mar Combined Loading, HW6 Due
- 27 Mar Combined Loading
- 29 Mar Stress Transformation
- 1 Apr Stress Transformation, HW7 Due

outline

- thin-walled pressure vessels
- combined loading
- group problems

thin-walled pressure vessels

thin-walled pressure vessels

- If the radius to wall thickness ratio is 10 or more, we can treet a pressure vessule as "thin-walled"
- Cylindrical pressure vessels will have two primary sources of stress, and serve as an introduction to more general states of combined loading

cylindrical vessels

cylindrical vessels

• From equilibrium of a section of a cylindrical vessel, we see that

$$egin{aligned} \sum F_x &= 0 \ &= 2(\sigma_1 t dy) - p(2r) dy \ \sigma_1 &= rac{pr}{t} \end{aligned}$$

cylindrical vessels

cylindrical vessels

• Considering another section we can find the longitudinal stress

$$egin{aligned} \sum F_y &= 0 \ &= \sigma_2(2\pi r t) - p(\pi r^2) \ \sigma_2 &= rac{p r}{2t} \end{aligned}$$

spherical vessels

- We can find the stress in spherical vessels using an identical section to the longitudinal section for a cylindrical vessel, and we find that $\sigma=\frac{pr}{2t}$
- Which is valid everywhere in a cylindrical vessel

example 8.1

- A cylindrical pressure vessel has an inner diameter of 4 ft and a thickness of 1/2 in.
- Determine the maximum internal pressure it can sustain if the maximum stress it can support is 20 ksi.
- What is the maximum internal pressure a spherical pressure vessel could sustain under identical conditions?

combined loading

combined loading

• We can use the principle of superposition to treat various loading conditions separately and then add them together to find the total stress

procedure

- Section the member at the point of interest, internal force components should be drawn acting through the centroid of the section
- Moment components should be calculated about the centroidal axis

stress components

- Normal stress: $\sigma = N/A$
- Shear: $\tau = Q/It$
- Bending: $\sigma = y/I$
- Torsion: $\tau = \rho/J$
- Pressure Vessels: $\sigma_1 = r/t$, $\sigma_2 = r/2t$

example 8.2

Neglect the weight of the member and find the stress at B and C.

example 8.4

Determine the stress at C and D.

example 8.5

The rod shown has a radius of 0.75 in. Find the stress at A.

group problems

group one

Find the stress at the corners A and B for the column shown.

group two

Find the stress at point A for the cantilever beam shown.

group three

Find the load P that will cause a maximum normal stress of σ =30 ksi along the section a-a.