

planetmath.org

Math for the people, by the people.

Ockham algebra

Canonical name OckhamAlgebra
Date of creation 2013-03-22 17:08:34
Last modified on 2013-03-22 17:08:34

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771) Entry type Definition Classification msc 06D30 A lattice L is called an $Ockham\ algebra$ if

- 1. L is distributive
- 2. L is bounded, with 0 as the bottom and 1 as the top
- 3. there is a unary operator \neg on L with the following properties:
 - (a) ¬ satisfies the de Morgan's laws; this means that:
 - $\neg(a \lor b) = \neg a \land \neg b$ and
 - $\bullet \neg (a \land b) = \neg a \lor \neg b$
 - (b) $\neg 0 = 1 \text{ and } \neg 1 = 0$

Such a unary operator is an example of a dual endomorphism. When applied, \neg interchanges the operations of \lor and \land , and 0 and 1.

An Ockham algebra is a generalization of a Boolean algebra, in the sense that \neg replaces ', the complement operator, on a Boolean algebra.

Remarks.

- An intermediate concept is that of a De Morgan algebra, which is an Ockham algebra with the additional requirement that $\neg(\neg a) = a$.
- In the category of Ockham algebras, the morphism between any two objects is a $\{0,1\}$ -http://planetmath.org/LatticeHomomorphismlattice homomorphism f that preserves \neg : $f(\neg a) = \neg f(a)$. In fact, $f(0) = f(\neg 1) = \neg f(1) = \neg 1 = 0$, so that it is safe to drop the assumption that f preserves 0.

References

- [1] T.S. Blyth, J.C. Varlet, *Ockham Algebras*, Oxford University Press, (1994).
- [2] T.S. Blyth, *Lattices and Ordered Algebraic Structures*, Springer, New York (2005).