Pipeline + Software

Sistema operacional da Jetson: Ubuntu 20 + ROS2 + sdk zed

1. Percepção (ZED2 + LiDAR)

Responsável por interpretar o ambiente. A câmera ZED2 + LiDAR

• Saídas nos tópicos:

- o /perception/occupancy → mapa de ocupação (occupancy grid)
- o /perception/navigable_mask → máscara gerada com as áreas que o robô pode percorrer
- o /perception/obstacles → obstáculos móveis detectados no caminho

Deteçoes:

• Áreas livres e obstáculos estáticos:

Usamos a imagem de profundidade da ZED (/zed_node/depth) junto com uma rede de segmentação semântica, que identifica classes treinadas como rua, muro, calçada, etc.

• Obstáculos móveis:

São detectados com a nuvem de pontos da ZED (/zed_node/point_cloud) e com os dados do LiDAR do tópico (/lidar/scan). Juntos, eles ajudam a reconstruir o ambiente em 3D.

2. Mapping (SLAM)

Gera o mapa global da arena. O carro roda pela arena e constrói esse mapa com os sensores.

Sensores usados:

- o LiDAR 2D
- ZED2 (profundidade + pose)
- o IMU e odometria da própria ZED2

Tópicos importantes:

- /zed_node/pose → posição estimada do robô
- o /lidar/scan e /zed_node/point_cloud → leitura do ambiente
- /tf → transformações entre frames (odom, map, base_link...)

Saídas:

 o my_map.pgm e my_map.yaml → usados depois para visualização no RViz e navegação

3. Planejamento (Planning)

Pode rodar apenas com o mapa salvo, ou com o mapa e a percepção em tempo real.

• Global Planner:

- Usa o mapa feito pelo SLAM para traçar o melhor caminho até o destino (goal).
- Gera um /planning/nav_msgs/Path com os pontos que o carrinho deve seguir.

Local Planner:

- Combina esse caminho global com a occupancy grid da percepção (/perception/occupancy), ajustando o trajeto caso haja algum obstáculo móvel
- Gera comandos de movimento publicados em /planning/cmd_vel (mensagem do tipo Twist).

4. Controle (Control)

Transforma os comandos de velocidade em sinais para os motores.

Entradas:

- o /planning/cmd_vel → velocidades calculadas pelo planner
- o /zed_node/odom → feedback da odometria.

Saídas:

- o /servo_pwm → controla a direção
- o /motor_pwm → controla a velocidade

Esses sinais vão para o controlador de motor (VESC ou Arduino)(a definir).