Quantifier Elimination for Cylindrical Algebraic Decomposition Final presentation

Oriol Brufau, Aina Cuxart, Enric Cosp, Raquel Pérez, Ferran Pujol. Teacher: Jordi Saludes

14.12.2016

- Reminder
- What have we accomplished?
- 3 Example 1: the sphere
- 4 Example 2: a paraboloid and a cylinder
- 5 Falls and comebacks
- 6 Left to do
- Behind the scenes
- QA

Reminder

- Goal
- What is Quantifier Elimination?
- What is Cylindrical Algebraic Decomposition?
- Weaponry: Python, Sympy, Github

(FME - UPC) QEPCAD 14.12.2016 3 / 24

Quantifier elimination

A quantifier-free formula is an expression consisting of

- Polynomial equations: f(x) = 0
- Inequalities: $f(x) \le 0$
- "And" operator: ∧
- "Or" operator: ∨
- "Implies" operator: \Longrightarrow .

No variable is quantified by \forall nor \exists .

Theorem (Tarski-Seidenberg)

For every first-order formula over the real field there exists an equivalent quantifier-free formula and an explicit algorithm to compute this quantifier-free formula.

Cylindrical Algebraic Decomposition

- A CAD is a partition of \mathbb{R}^n into cylindrical cells, over which polynomials have constant signs.
- A cell is cylindrical if it has the form $S \times \mathbb{R}^k$
- A sample point per cell can be used to determine the sign of the polynomials in the cell.
- The CAD associated to a formula depends only on its quantifier-free part. We can use the CAD to evaluate its truth value, and to perform quantifier elimination.

(FME - UPC) QEPCAD 14.12.2016 5 / 24

Cylindrical Algebraic Decomposition

Projection phase

We compute successive sets of polynomials in n-1, n-2, ..., 1 variables. The main idea is, given an input set of polynomials, to compute at each step a new set of polynomials obtained by eliminating one variable at a time.

2 Lifting phase

We construct a decomposition of \mathbb{R} , at the lowest level of projection, after all but one variable have been eliminated. This decomposition of \mathbb{R} is extended to a decomposition of \mathbb{R}^n .

Optionally, formula construction

(FME - UPC) QEPCAD 14.12.2016 6 / 24

- Reminder
- 2 What have we accomplished?
- 3 Example 1: the sphere
- 4 Example 2: a paraboloid and a cylinder
- 5 Falls and comebacks
- 6 Left to do
- Behind the scenes
- 8 QA

What have we accomplished?

- We learned python and how to use github.
- We made a full implementation of cylindrical algebraic decomposition such that:
 - The input is a set of polynomials that represent a region of the space. This polynomials are operated by the *Projection* part.
 - *Projection* does the cylindrical projection of the polynomials and makes a projection factor set.
 - Now the *Lifting* part of the code operates the projection factor set and makes the final decomposition.
 - That's our output, a cad that contains all the cells of the region.

(FME - UPC) QEPCAD 14.12.2016 8 / 24

- Reminder
- 2 What have we accomplished?
- 3 Example 1: the sphere
- 4 Example 2: a paraboloid and a cylinder
- 5 Falls and comebacks
- 6 Left to do
- Behind the scenes
- QA

Example 1: the sphere

(FME - UPC) QEPCAD 14.12.2016 10 / 24

• Input:
$$A = \{ Poly(x^2 + y^2 + z^2 - 4) \}$$

- Output:
 - $A = \{ Poly(x^2 + y^2 + z^2 4) \}$
 - $PROJ(A) = \{ Poly(x^2 + y^2 4) \}$
 - $PROJ^{2}(A) = \{ Poly(x+2), Poly(x-2) \}$

(FME - UPC) QEPCAD 14.12.2016 11 / 24

Example 1: the sphere

Extension

(FME - UPC) QEPCAD 14.12.2016 12 / 24

- Reminder
- 2 What have we accomplished?
- 3 Example 1: the sphere
- 4 Example 2: a paraboloid and a cylinder
- 5 Falls and comebacks
- 6 Left to do
- Behind the scenes
- QA

Example 2: a paraboloid and a cylinder

(FME - UPC) QEPCAD 14.12.2016 14 / 24

- What have we accomplished?
- Example 1: the sphere
- Example 2: a paraboloid and a cylinder
- Falls and comebacks
- 6 Left to do

Falls and comebacks

Projection

- Different definitions of the same function
- Special cases
- Iterating the projection function
- Different process described in different references

(FME - UPC) QEPCAD 14.12.2016 16 / 24

Falls and comebacks

- The issue with eval function.
- Compute with algebraic numbers
- Learn algebra.
- Making tests.

(FME - UPC) QEPCAD 14.12.2016 17 / 24

Computing with algebraic numbers Lifting

- The issue with eval function.
 - Symbolic method to find roots of polynomials: only for rational coefficients
- Computing with algebraic numbers
 - We represent an algebraic number with a polynomial and and interval
 - Operations on algebraic numbers become operations with polynomials

Algorithm

IN: Polynomial with *algebraic* coefficients with roots $\{\alpha_i\}$

OUT: A polynomial with *rational* coefficients with $\{\alpha_i\}$ among its roots

(FME - UPC) QEPCAD 14.12.2016 18 / 24

- Reminder
- 2 What have we accomplished?
- 3 Example 1: the sphere
- 4 Example 2: a paraboloid and a cylinder
- 5 Falls and comebacks
- 6 Left to do
- Behind the scenes
- 8 QA

Left to do

- Optimization of the algorithm
- Refine the code to handle every case correctly
- Adapt code format to Python and Sympy standards
- Implement the quantifier elimination using the cad.

(FME - UPC) QEPCAD 14.12.2016 20 / 24

- Reminder
- 2 What have we accomplished?
- 3 Example 1: the sphere
- 4 Example 2: a paraboloid and a cylinder
- 5 Falls and comebacks
- 6 Left to do
- Behind the scenes
- 8 QA

Behind the scenes

Theorem

Let $\mathcal D$ be a domain and $0 \le j \le min(p, q)$ if $p \ne q$ (resp. $0 \le j \le p-1$ if p=q). Then $deg(gcd(P, Q)) \ge j$ if and only if

$$sRes_0(P,Q) = \cdots = sRes_{j-1}(P,Q) = 0$$

(FME - UPC) QEPCAD 14.12.2016 22 / 24

- Reminder
- 2 What have we accomplished?
- 3 Example 1: the sphere
- 4 Example 2: a paraboloid and a cylinder
- 5 Falls and comebacks
- 6 Left to do
- Behind the scenes
- 8 QA

Questions?

