Differential Constraints

A.C.Jalba@tue.nl

Agenda

Differential Constraints

Project 1 – overview

Presentation schedule

Symplectic integration

• Consider the system below with $\mathbf{x} = [x \ y]^T$

$$\dot{\mathbf{x}} = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] \mathbf{x}$$

- What would happen if we solve for x explicitly and for y implicitly?
- Would this work? Why?

• Solve implicitly: $x_{i+1} = x_i - h y_i$ $y_{i+1} = y_i + h x_{i+1}$

```
x_{i+1} = x_i - h y_i

y_{i+1} = y_i + h x_{i+1}
```


- Trajectory in phase space should be a circle around origin.
- Radius is given by initial condition.

```
0.0
1.0
1.0 \ 1.0
0.0 1.0
-1.0 0.0
-1.0 -1.0
0.0 - 1.0
1.0 0.0
1.0 1.0
0.0 1.0
-1.0 0.0
-1.0 -1.0
0.0 - 1.0
1.0 0.0
```


Symplectic h = 1.0

Symplectic h = 0.01

• Decreasing time step:

Increasing time step:

Explicit h = 0.01

Implicit h = 0.01

Why it works?

Integrator can be written as:

can be written as:
$$x_{i+1} = x_i - h \, y_i$$

$$y_{i+1} = y_i + h \, x_{i+1}$$

$$\mathbf{x}_{i+1} = \begin{bmatrix} 1 & -h \\ h & 1-h^2 \end{bmatrix} \mathbf{x}_i$$

Which means:

$$\mathbf{x}_i = \begin{bmatrix} 1 & -h \\ h & 1-h^2 \end{bmatrix}^i \mathbf{x}_0 = A^i \mathbf{x}_0$$

- Stable iff. $\mu(A) < 1$, $\mu(A) = |\lambda_{max}|$, $\mu(A)$ spectral radius.
- Our case: $\mu(A) < 1$ if h < 2.

Symplectic integration

- Is not general:
 - Hamiltonian systems (total energy is potential energy + kinetic energy).
- Also called semi-implicit integration:
 - Verlet integrator.
 - Semi-implicit Euler.
- Numerical integration is subtle!
 - Small changes can have profound long-term effects.

Agenda

Differential Constraints

Project 1 – overview

Presentation schedule

Differential Constraints

Constrained dynamics

- Beyond Points and springs
 - We can make about anything out of point masses and springs, in principle...
 - Constrained dynamics (particle systems):
 - particles obey Newton's laws and (geometric) constraints.
 - Example: spring force competes with all other forces (gravity, other springs) to keep two particles at a given distance apart.
 - Gives rise to stiff systems.
 - So far we used additional energy terms to impose constraints: penalty method.
 - Accurate constraints and numerical tractibility penalty methods do not work well.

Example. A bead on a wire

- Desired behaviour:
 - The bead can slide freely along the unit circle.
 - It can never come off, however hard we pull.

Penalty Constraints

- Why not use a spring to hold the particle on the wire?
- Problem:
 - Weak springs: weak constraints.
 - Strong springs: Neptune express!

A classical stiff system.

Solution. Constraint forces

- Directly calculate forces required to maintain the constraints.
- Instead of relying on displacements and restoring forces to do the job.

- Constraint forces: cancel just those parts of the applied forces that act against the constraints.
- Convert particle accelerations into "legal" accelerations.

Now for the Algebra...

- First, a single constrained particle...
- Then, generalize to constrained particle systems.

1. Implicit:

$$C(\mathbf{x}) = \frac{1}{2}(\mathbf{x} \cdot \mathbf{x} - 1) = 0$$

2. Parametric:

$$\mathbf{x} = [\cos \theta - \sin \theta]$$

Maintaining constraints differentially

- Start with legal position and velocity.
- Use constraint forces to ensure legal velocity and acceleration.

$$C = 0 - \text{legal position}$$

$$\dot{C} = 0 - \text{legal velocity}$$

$$\ddot{C} = 0 - \text{legal acceleration}$$

Calculus...

Legal velocity:

$$\dot{C} = \mathbf{x} \cdot \dot{\mathbf{x}} = 0$$

Legal acceleration:

$$\ddot{C} = \ddot{\mathbf{x}} \cdot \mathbf{x} + \dot{\mathbf{x}} \cdot \dot{\mathbf{x}} = 0$$

Particle's acceleration:

$$\ddot{\mathbf{x}} = \frac{\mathbf{f} + \hat{\mathbf{f}}}{m}$$

- Substitution gives: $\ddot{C} = \frac{\mathbf{f} + \hat{\mathbf{f}}}{m} \cdot \mathbf{x} + \dot{\mathbf{x}} \cdot \dot{\mathbf{x}} = 0$
- Or: $\hat{\mathbf{f}} \cdot \mathbf{x} = -\mathbf{f} \cdot \mathbf{x} m\dot{\mathbf{x}} \cdot \dot{\mathbf{x}}$

$$C(\mathbf{x}) = \frac{1}{2}(\mathbf{x} \cdot \mathbf{x} - 1) = 0$$

Principle of virtual work

One equation with two unknowns:

$$\hat{\mathbf{f}} \cdot \mathbf{x} = -\mathbf{f} \cdot \mathbf{x} - m\dot{\mathbf{x}} \cdot \dot{\mathbf{x}}$$

- Additional condition is needed:
 - Require that the constraint force never adds/removes (kinetic) energy to/from the system.

 - Kinetic energy: $T=\frac{m}{2}\dot{\mathbf{x}}\cdot\dot{\mathbf{x}}$ Its time derivative: $\dot{T}=m\ddot{\mathbf{x}}\cdot\dot{\mathbf{x}}=\left(\mathbf{f}+\hat{\mathbf{f}}\right)\cdot\dot{\mathbf{x}}$
 - Require: $\hat{\mathbf{f}} \cdot \dot{\mathbf{x}} = 0$, $\forall \dot{\mathbf{x}} \mid \mathbf{x} \cdot \dot{\mathbf{x}} = 0$

legal velocity

Constraint force

- Condition $\hat{\mathbf{f}} \cdot \dot{\mathbf{x}} = 0$, $\forall \dot{\mathbf{x}} \,|\, \mathbf{x} \cdot \dot{\mathbf{x}} = 0$ states that $\hat{\mathbf{f}}$ should point in the direction of \mathbf{x} .
- Implies: $\hat{\mathbf{f}} = \lambda \mathbf{x}$
- Solve $\hat{\mathbf{f}} \cdot \mathbf{x} = -\mathbf{f} \cdot \mathbf{x} m\dot{\mathbf{x}} \cdot \dot{\mathbf{x}}$ for lambda gives

$$\lambda = \frac{-\mathbf{f} \cdot \mathbf{x} - m\dot{\mathbf{x}} \cdot \dot{\mathbf{x}}}{\mathbf{x} \cdot \mathbf{x}}$$

• Remark: At rest $\hat{\mathbf{f}} = -\frac{\mathbf{f} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{x}} \mathbf{x}$. Constraint force is

simply an orthogonal projection of f onto the circle's normal.

Interpretation. Constraint Gradient

$$C(\mathbf{x}) = \frac{1}{2}(\mathbf{x} \cdot \mathbf{x} - 1) = 0$$

 Differentiating C gives a normal vector to the circle.

 This is the direction our constraint force acts (steepest descent).

Generalization. Particle system

We know how to simulate a point on a wire.

Next: a constrained particle system.

Compact Particle System Notation

$$\ddot{\mathbf{q}} = \mathbf{W}\mathbf{Q}$$

q: 3n-long state vector.

Q: 3n-long force vector.

M: $3n \times 3n$ diagonal mass

matrix.

W: M-inverse (element- wise

reciprocal)

$$\mathbf{q} = \begin{bmatrix} \mathbf{x}_{1}, \mathbf{x}_{2}, & \mathbf{x}_{n} \end{bmatrix}$$

$$\mathbf{Q} = \begin{bmatrix} \mathbf{f}_{1}, \mathbf{f}_{2}, & \mathbf{f}_{n} \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} \mathbf{m}_{1} & & & \\ & \mathbf{m}_{1} & & \\ & & \mathbf{m}_{n} & \\ & & & \mathbf{m}_{n} \end{bmatrix}$$

$$\mathbf{W} = \mathbf{M}^{-1}$$

$$\mathbf{C} = \begin{bmatrix} C_1, C_2, & , C_m \end{bmatrix}$$
$$\lambda = \begin{bmatrix} \lambda_1, \lambda_2, & , \lambda_m \end{bmatrix}$$

- Assume that initially both configurations q and q are legal.
- Problem is to solve for constraint force (vector) $\hat{\mathbf{Q}}$ that, added to the applied force \mathbf{Q} guarantees that $\ddot{\mathbf{C}}=0$.
- By the Chain rule, $\dot{\mathbf{C}} = \frac{\partial \mathbf{C}}{\partial \mathbf{q}} \dot{\mathbf{q}}^T = \mathbf{J} \dot{\mathbf{q}}^T$
- Differentiating again w.r.t. time gives

$$\ddot{\mathbf{C}} = \dot{\mathbf{J}}\dot{\mathbf{q}}^T + \mathbf{J}\ddot{\mathbf{q}}^T$$
, with $\dot{\mathbf{J}} = \frac{\partial \dot{\mathbf{C}}}{\partial \mathbf{q}}$

• Using the motion equation, setting $\ddot{\mathbf{C}} = 0$ and rearranging gives

$$\mathbf{J}\mathbf{W}\hat{\mathbf{Q}}^T = -\dot{\mathbf{J}}\dot{\mathbf{q}}^T - \mathbf{J}\mathbf{W}\mathbf{Q}^T$$

- As in the point-on-wire example: more unknowns than equations.
- Use again the principle of virtual work according to which legal velocities satisfy

$$\hat{\mathbf{Q}} \cdot \dot{\mathbf{q}}^T = 0, \ \forall \dot{\mathbf{q}} \,|\, \mathbf{J}\dot{\mathbf{q}}^T = 0$$

• Implies: $\hat{\mathbf{Q}} = \lambda \mathbf{J}$

- $\hat{\mathbf{Q}} = \lambda \mathbf{J}$: constraint force is a linear combination of constraint gradients.
- Since we require C = 0, these gradients are normals to the hypersurfaces representing state-space directions in which the system should not move.
- Vector λ called: the vector of Lagrange multipliers.

- We have $\hat{\mathbf{Q}} = \lambda \mathbf{J}$ and $\mathbf{J} \mathbf{W} \hat{\mathbf{Q}}^T = -\dot{\mathbf{J}} \dot{\mathbf{q}}^T \mathbf{J} \mathbf{W} \mathbf{Q}^T$.
- Solve linear system to yield:

$$\lambda^T = (\mathbf{J}\mathbf{W}\mathbf{J}^T)^{-1}(-\dot{\mathbf{J}}\dot{\mathbf{q}}^T - \mathbf{J}\mathbf{W}\mathbf{Q}^T)$$

- \mathbf{JWJ}^T is a square matrix of dimension same as \mathbf{C} .
- Once λ^T is obtained, $\hat{\mathbf{Q}} = \lambda \mathbf{J}$ can be computed.

Drift and Feedback

- Numerical solutions of ODE's start drifting.
- Numerical errors can accumulate.
 - Numerical drift causes the circle to turn into a spiral.
- Constraints might not be met initially (invalid initial conditions).

• A feedback term (damped spring force) handles these problems: $\ddot{\mathbf{C}} = -k_s\mathbf{C} - k_d\dot{\mathbf{C}}$

 $\overline{k_s,k_d}$ are spring and damping constants.

Feedback added after the constraint force calculation.

How to implement all this?

- We have a global matrix equation.
- We want to build models and add constraints on the fly.

Approach:

- Each constraint adds its own piece to the equation.
- Each constraint object is responsible for evaluating the constraint function and function derivatives.

Jacobian: sparse-block structure

Global matrix: block structure

- Each constraint contributes one or more blocks to the matrix.
- Each block is the Jacobian of the constraint.
- Sparsity: many empty blocks.
- Modularity: each constraint computes its own blocks.
- Constraint and particles indices determine block locations within global "Jacobian" matrix.

Constraint Structure

Constrained Particle System

DerivEval Loop (modified)

Clear Force Accumulators

Return to solver

Modified Deriv Eval Loop

Apply forces

Added Step

Compute and apply Constraint Forces

Constraint Force Eval

$$\lambda^{T} = (\mathbf{J}\mathbf{W}\mathbf{J}^{T})^{-1}(-\dot{\mathbf{J}}\dot{\mathbf{q}}^{T} - \mathbf{J}\mathbf{W}\mathbf{Q}^{T})$$

- After computing ordinary forces:
 - Loop over constraint objects, assemble global matrices J, J and vectors to hold C, C, etc.
 - Call linear solver to get λ, multiply by J to get constraint force vector.
 - Add constraint force to particle force accumulators.
 - Add feedback force.

Impress your friends:)

- Constraints do not add/remove energy: based on the Principle of Virtual Work.
- λ 's are called Lagrange Multipliers.
- The matrix of derivatives, **J**, is called the *Jacobian matrix*.

Constrained particle systems

- Explicit/implicit/semi-implicit integration.
- Constraints: penalty method, Lagrange multipliers.
- Simple collisions.

Next time

- Lecture: PDEs basics
- Presentations: cloth simulation.

Agenda

Differential Constraints

Project 1 – overview

Presentation schedule

Organization. Presentations

Cloth 14.05

- Sander Jurgens, Edmond van Dijk, Maikel Leemans: provot95
- Bram Cappers, Wouter van Heeswijk: bridson02

Hair 17.05

- Rick Hendricksen, Freek Marcelis: mwsst09
- ...

Fluids 31.05

- Marijn Grootjans, Sander den Heijer: foster96
- ...

Fluid Coupling 04.06

- Stefan Patelski, Martin Schaefer: spray
- ...

Rigid body collisions 11.06

- Michel Cijsouw, Leroy Bakker, wilco van Maanen: bender06
- ...