CBSE Sample Question Paper Term 1

Class - VIII (Session : 2021 - 22)

SUBJECT- MATHEMATICS041 - TEST - 03

Class 08 - Mathematics

Time Allowed: 1 hour and 30 minute

Maximum Marks: 50

[1]

[1]

[1]

General Instructions	General	Instru	ictions
-----------------------------	---------	--------	---------

- 1. The question paper contains 50 questions
- 2. Attempt any 40 questions.
- 3. There is no negative marking.
- 1. Find the value of $\frac{a^{-1}}{a^{-1}+b^{-1}} + \frac{a^{-1}}{a^{-1}-b^{-1}}$ [1]
- 2. Tell what property allows you to compute $\frac{1}{3} \times \left(6 \times \frac{4}{3}\right) = \left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$ [1]
 - a) Associative property of multiplication
- b) none of these
- c) Associative property of addition
- d) Commutative property of multiplication
- 3. Write the additive inverse of $\frac{13}{17}$.
 - a) $\frac{13}{17}$

b) $-\frac{13}{17}$

c) 0

- d) 1
- The multiplicative inverse of $-1\frac{1}{7}$ is

- Which of the following is an example of the distributive property of multiplication over [1] addition to rational numbers?

a)
$$-\frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \left[-\frac{1}{4} \times \frac{2}{3} \right] + \left[-\frac{1}{4} \times \frac{1}{4} \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times \frac{-4}{7} \right) \right] + \left[-\frac{1}{4} \times \left(\times$$

- One (1) is:
 - a) the identity for the subtraction of rational numbers
 - c) the identity for the addition of rational numbers
- b) the identity for division of rational numbers
- d) the identity for multiplication of rational numbers

- 15. The base of an isosceles triangle is $\frac{4}{3}$ cm. The perimeter of the triangle is $4\frac{2}{15}$ cm. What is the [1] length of either of the remaining equal sides?
 - a) $\frac{2}{5}cm$

b) 1cm

d) 25

c) None of these

d) $1\frac{2}{5}cm$

[1]

16. Solve: $a - \frac{a-1}{2} = 1 - \frac{a-2}{3}$

a) None of these

b) 5

c) 7

- d) $\frac{7}{5}$
- Find the number of sides of a regular polygon whose each exterior angle has a measure of 40°. [1]
 - a) 6

b) 7

	c) 8 d) 9			probability of getting a 2-digit number?			
18.	A rectangle is a parallelogram in which ever	y angle is a angle.	[1]		a) None of these	b) $\frac{1}{5}$	
	a) right	b) obtuse			c) $\frac{1}{10}$	d) $\frac{11}{20}$	
	c) acute d) None of these			26.	When a die is thrown, what are the six possil		[1]
19.	Find $x + y + z$.		[1]		a) 1, 2, 3, 4, 5, 6	b) T, H	
	200				c) 0, 1, 2, 3, 4, 5, 6	d) None of these	
900				27.	Upper limit of class interval 75-85 is:		[1]
	(Z) 30°				a) 10	b) 85	
	9				c) 75	d) -10	
	a) 360°	b) none of these	28.		What is the probability of getting a number t	through 6 numbers?	[1]
	c) 90°	d) 180°			a) None of these	b) $\frac{1}{2}$	
20.	Find $x + y + z + w$		[1]		c) 1	d) 0	
				29.	The following pie chart represents the distrib	bution of proteins in parts of human body.	[1]
	1200			Muscles $ \frac{1}{3} $ Hormones enzymes and			
	a) 360°	b) 90°			other proteins Bones $\frac{1}{6}$		
	c) 45°	d) 180°			6		
21. How many vertices are present in a heptagon?		[1]		What is the ratio of the distribution of proteins in the muscles to that of proteins in the bones?			
	a) None of these	b) 8			a) 1:3	b) 2:1	
	c) 7	d) 6			c) 1:2	d) 3:1	
22.	Given a parallelogram ABCD. AD = D C B a) AB c) BC	b) AC d) CD	[1]	30.	The colour of refrigerators preferred by people pictograph. How many people choose red colour Number of people \(\frac{10}{2} \) 10 people \(\frac{10}{2} \) 10 people \(\frac{10}{2} \) 10 people \(\frac{10} \) 10 people \(\frac{10}{2} \) 10 peo	ple living in a locality are shown by the following lour?	[1]
23.	The sum of angles of a concave quadrilateral is		[1]		a) 20	b) 30	
	a) equal to 360°	b) twice of 360°			c) 40	d) 10	
	c) more than 360°	d) less than 360°		31.		aiform width, their heights being proportional to	[1]
24.	Theof a rhombus are perpendicular	bisectors of one another.	[1]		the respective values.		
	a) angles	b) sides			a) histograms	b) None of these	
	c) diagonals	d) vertices			c) angles	d) bars	
25. Numbers 1 to 20 are written on twenty separate slips (one number on one slip) kept in a box and mixed well. One slip is chosen from the box without looking into it. What is the		[1]	32.	Find the perfect square number between 190	0 and 200.	-	

Solution

SUBJECT- MATHEMATICS041 - TEST - 03

Class 08 - Mathematics

1. **(a)**
$$\frac{2b^2}{b^2-a^2}$$

Explanation:
$$\frac{a^{-1}}{a^{-1}+b^{-1}} + \frac{a^{-1}}{a^{-1}-b^{-1}}$$

Explanation:
$$\frac{a^{-1}}{a^{-1}+b^{-1}} + \frac{a^{-1}}{a^{-1}-b}$$

$$= \frac{\frac{1}{a}}{\frac{1}{a}+\frac{1}{b}} + \frac{\frac{1}{a}}{\frac{1}{a}-\frac{1}{b}}$$

$$= \frac{\frac{1}{a}}{\frac{a+b}{ab}} + \frac{\frac{1}{a}}{\frac{b-a}{ab}}$$

$$= \frac{b}{b+a} + \frac{b}{b-a}$$

$$= b[\frac{1}{b+a} + \frac{1}{b-a}]$$

$$= b[\frac{b-a+b+a}{b^2 a^2}]$$

$$= b[\frac{2b}{b^2-a^2}]$$

$$= \frac{2b^2}{b^2-a^2}$$

(a) Associative property of multiplication

Explanation: The answer is <u>associative property of multiplication</u> as the product follows the associative property of multiplication rule which is $a \times (b \times c) = (a \times b) \times c$

3. **(b)** $-\frac{13}{17}$

Explanation: The additive inverse of any rational number is the same number with the opposite sign, here the rational number is $\frac{13}{17}$, ao its additive inverse will be $\frac{-13}{17}$

4. **(b)** $\frac{7}{8}$

Explanation: We know that, if the product of two rational numbers is 1, then they are multiplicative inverse of each other.

Given number is $-1\frac{1}{7}$, i.e. $\frac{8}{7}$.

Let the multiplicative inverse of $-\frac{8}{7}$ be x.

$$\Rightarrow \frac{-8}{7} imes x = 1$$

$$\Rightarrow x = 1 \times \left(-\frac{7}{8}\right)$$
 [by cross-multiplication]

$$=\frac{-7}{8} \text{ or } \frac{7}{-8}$$

Hence, $\frac{7}{-8}$ is the multiplicative inverse of $-\frac{8}{7}$

5. **(a)**
$$-\frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \left[-\frac{1}{4} \times \frac{2}{3} \right] + \left[-\frac{1}{4} \times \left(\frac{-4}{7} \right) \right]$$

Explanation: We know that, the distributive property of multiplication over addition for rational numbers can be expressed as a \times (b + c) = ab + ac, where a, b and c are rational numbers.

Here, $-\frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \left[-\frac{1}{4} \times \frac{2}{3} \right] + \left[-\frac{1}{4} \times \left(\frac{-4}{7} \right) \right]$ is the example of distributive property of multiplication over addition for rational numbers

(d) the identity for multiplication of rational numbers

Explanation: One (1) is the identity for multiplication of rational numbers. That means, If a is a rational number. Then, a.1 = 1.a = a

7. **(c)** $\frac{25}{36}$

Explanation: Given, a = 2, b = 3 so,

$$\left(\frac{1}{a} + \frac{1}{b}\right)^a = \left(\frac{1}{2} + \frac{1}{3}\right)^2$$
$$= \left(\frac{3+2}{6}\right)^2$$

$$=\frac{25}{36}$$

8. (d) rational

Explanation:
$$\frac{1}{x} = \frac{x^2}{27}$$

$$x^3 = 27$$

$$x = \sqrt[3]{27}$$

x = 3 and x is a rational number

(d) 14, 42 years

Explanation: Let sahil's age = x

sahil's mother's age = 3x

after 5 years their age will be

sahil's age =
$$x+5$$

sahil's mother's age = 3x + 5

According to question,

$$x + 5 + 3x + 5 = 66$$

or,
$$4x + 10 = 66$$

or,
$$4x = 66 - 10$$

or,
$$4x = 56$$

by transpposing

or,
$$x=56/4$$

or,
$$x = 14$$
.

Now sahil's age = 14years

sahil's mothers age = 42 years

(d) $\frac{27}{10}$ 10.

Explanation:
$$\frac{x}{2} - \frac{1}{5} = \frac{x}{3} + \frac{1}{4}$$

By L.C.M

or,
$$\frac{(5x-2)}{10} = \frac{(4x+3)}{12}$$

by cross multiplication

or,
$$60x - 24 = 40x + 30$$

by transposing

or,
$$60x - 40x = 30 + 24$$

or,
$$20x = 54$$

or,
$$x = \frac{54}{20}$$

in lowest term

or,
$$x = \frac{27}{10}$$

11. **(b)** 288, 296 and 304

Explanation: let first number be = x

second multiple of 8 = x + 8

third multiple of 8 = x + 16

According to question

$$x + x + 8 + x + 16 = 888$$

or,
$$3x + 24 = 888$$

or,
$$3x = 888 - 24$$

or,
$$3x = 864$$

or,
$$x = \frac{864}{3}$$

$$\mathbf{or}, \mathbf{x} - \mathbf{g}$$

or,
$$x = 288$$

now the first multiple of 8 = 288

second multiple of 8 = 296

third multiple of 8 = 304

Explanation:
$$\frac{2x}{3} + 1 = \frac{7x}{15} + 3$$

by transposing

or,
$$\frac{2x}{3} - \frac{7x}{15} = 3 - 1$$

or, $\frac{10x - 7x}{15} = 2$

or,
$$\frac{10x-7x}{15} = 2$$

or,
$$3x = 30$$

or,
$$x = 10$$

13. **(b)** 5

Explanation: by transposing, the signs will be change

$$2x-3=7$$

$$2x=7+3$$

$$2x=10$$

$$x=10/2$$

$$x=5$$
.

The correct option is 5

(b) 36

Explanation:
$$\frac{n}{2} - \frac{3n}{4} + \frac{5n}{6} = 21$$

or,
$$\frac{(6n-9n+10n)}{12} = 21$$

or, $\frac{7n}{12} = 21$

or,
$$\frac{7n}{12} = 2$$

or,
$$7n = 252$$

or, n =
$$\frac{252}{7}$$

or,
$$n = 36$$

15. **(d)**
$$1\frac{2}{5}cm$$

Explanation: The base of an isosceles triangle = $\frac{4}{3}$ cm

let two equal sides are = x

perimeter of the triangle = $4\frac{2}{15}$ cm

the perimeter of the triangle = sum of all sides

$$\frac{62}{15} = x + x + \frac{4}{3}$$
or, $\frac{62}{15} = 2x + \frac{4}{3}$
or, $\frac{62}{15} = \frac{(6x+4)}{3}$

or,
$$\frac{62}{15} = 2x + \frac{4}{2}$$

or,
$$\frac{62}{15} = \frac{(6x+4)^2}{15}$$

By crossmutliply,

or,
$$186 = 90x + 60$$

or,
$$186 - 60 = 90x$$

or,
$$126 = 90x$$

or,
$$\frac{}{90} =$$

or,
$$\frac{7}{5} = x$$

$$1\frac{2}{5}cm = x$$

16. **(d)**
$$\frac{7}{5}$$

Explanation:
$$a-\frac{a-1}{2}=1-\frac{a-2}{3}$$

By L.C.M on both sides

$$or, \frac{2a-a+1}{2} = \frac{3-a+1}{3}$$

$$or, \frac{a+1}{2} = \frac{5-a}{2}$$

By cross-multiply,

or,
$$3a + 3 = 10 - 2a$$

by transposing

or,
$$3a + 2a = 10 - 3$$

or,
$$5a = 7$$

or, $a = \frac{7}{5}$

17. **(d)** 9

Explanation: Number of sides =
$$\frac{360^0}{exterior-angle}$$

n = $\frac{360^0}{40^0}$ = 9

18. **(a)** right

Explanation:

Let an angle of a rectangle = x

$$x + x + x + x = 360^{\circ}$$
 (All angles a of a rectangle are equal)

$$4x = 360^{\circ}$$

$$x = \frac{360^{\circ}}{4}$$

$$x = 90^{\circ}$$

(a) 360° 19.

Explanation: Interior angle = $180 - (90 + 30) = 60^{\circ}$ (Angle sum property)

Now x + y + z

20. (a) 360°

Explanation: Given is a quadrilateral. Sum of all interior angles of quadrilateral = 360°

Single side of quadrilateral = $360 - (60 + 80 + 120)^{\circ} = 360 - 260 = 100^{\circ}$

$$x + 120 = 180^{\circ}$$

$$\Rightarrow 180-120=60^{\circ}$$
 By linear pair property

$$y + 80 = 180^{\circ} \Rightarrow y = 180 - 80 = 100^{\circ}$$

$$z + 60 = 180^{\circ} \Rightarrow z = 180 - 60 = 120^{\circ}$$

$$w + 100 = 180^{\circ} \Rightarrow w = 180 - 100^{\circ} = 80^{\circ}$$

$$x + y + z + w = 60 + 100 + 120 + 80 = 360^{\circ}$$

21. **(c)** 7

Explanation: A heptagon is a seven-sided polygon. It is also sometimes called a septagon.

Explanation: Opposite sides of a parallelogram are equal

23. **(a)** equal to 360°

Explanation: We know that, the sum of interior angles of any polygon (convex or concave) having n sides

$$= (n - 2) \times 180^{\circ}$$

Therefore, the sum of angles of a concave quadrilateral = $(4 - 2) \times 180^{\circ}$

 $= 360^{\circ}$

24. (c) diagonals

In a rhombus, two diagonals intersect each other at right angles and become the perpendicular bisectors

In Rhombus ABCD, consider ΔAOD , ΔAOB

AD = AB (sides of a rhombus are equal)

OD = OB (diagonals of a rhombus bisect each other).

AO = OA (common side)

 \therefore , using SSS congruency rule, $\Delta AOD\cong \Delta AOB$

$$\Rightarrow \angle AOD = \angle AOB$$

As $\angle AOD + \angle AOB = 180^{\circ}$

$$\therefore \angle AOD = 90^{\circ}$$

$$\therefore AO \perp BD$$

Hence, $AC \perp BD$.

Thus, In a rhombus, the diagonals bisect each other at 90°.

25. **(d)** $\frac{11}{20}$

Explanation: Total number of outcomes = 20

2 digit number= 11(10,11,12,13,14,15,16,17,18,19,20)

probability of getting a 2 digit number = $\frac{11}{20}$

26. **(a)** 1, 2, 3, 4, 5, 6

Explanation: When a dice is thrown there are only six possible outcomes 1, 2, 3, 4, 5, 6

27. **(b)** 85

Explanation: Upper limit of class interval 75-85 is 85. Note The upper value of class interval is called its upper class limit and lower value of a class interval is called lower class limit.

28. **(c)** 1

Explanation: When there are only 6 numbers, if you select one of them, you will always be successful. So probability is 1.

29. **(b)** 2:1

Explanation: Distribution of protein in muscles = $\frac{1}{3}$

Distribution of protein in bones = $\frac{1}{6}$

Ratio of distribution of proteins in the muscles to that of proteins in the bones $=\frac{1}{3}:\frac{1}{6}=\frac{1}{3}\times\frac{6}{1}:1=2:1$

30. **(d)** 10

Explanation: $10 \times 1 = 10$

10 people choose red colour.

31. **(d)** bars

Explanation: A display of information using bars of uniform width, their heights being proportional to the respective values.

32. **(a)** 196

Explanation: The answer is 196 which is squure of 14 and the next square number is 225 which does not lie between 190 and 200.

33. **(d)** 62²

Explanation: The unit place of the square of $62^2 = 2^2 = 4$ [$\therefore 2^2 = 4$]

Clearly, 62^2 has 4 at the unit's place.

34. **(d)** A

Explanation: The answer is 625 as the other numbers are 347, 658,233 and they cannot be perfect squares as a perfect square number never ends with 2, 3, 7, 8.

35. **(d)** $\frac{27}{64}$

Explanation: If
$$\sqrt[3]{\frac{x}{y}} = \frac{3}{4}$$
, then $\frac{x}{y} =$ _____.

Cubing both sides,

$$\sqrt[3]{\left(\frac{x}{y}\right)}^3 = \left[\frac{3}{4}\right]^3$$
$$\frac{x}{y} = \frac{27}{64}$$

36. **(a)** $2^3 \times 2^3 \times 3^3$

Explanation: 1728 = $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$

$$=2^3\times2^3\times3^3$$

37. **(c)** -15625

Explanation: $(-25)^3 = (-25) \times (-25) \times (-25)$ = -15625 (The cube of a negative integer is negative)

38. **(b)** 1

Explanation: $(-5)^{a+3} \times (-5)^2 = (-5)^6$

$$(-5)^{a+3} = (-5)^6 \div (-5)^2$$

$$(-5)^{a+3} = (-5)^{6-2}$$

$$(-5)^{a+3} = (-5)^4$$

Hence,
$$a + 3 = 4$$
,

So,
$$a = 1$$

39. **(c)** p⁵

Explanation: Using law of exponents, $a^m \div a^n = (a)^{m-n}$ [: a is non-zero integer] Similarly, $p^{13} \div p^8 = (p)^{13-8} = (p)^5$

40. **(b)** 2.34×10^8

Explanation: Given, $234000000 = 234 \times 10^6 = 2.34 \times 10^{6+2} = 2.34 \times 10^8$

Hence, standard form of 234000000 is 2.34×10^8

41. **(d)** -1

Explanation: for y = 1,

$$(-y)^4 \times (-y)^5$$

 $(-1)^4 \times (-1)^5$

42. **(d)** 44

Explanation: Using law of exponents, $a^{-m} = \frac{1}{a^m}$ [: a is non-zero integer]

$$\therefore (7^{-1} - 8^{-1})^{-1} - (3^{-1} - 4^{-1})^{-1}$$

$$= \left(\frac{1}{7} - \frac{1}{8}\right)^{-1} - \left(\frac{1}{3} - \frac{1}{4}\right)^{-1}$$

$$= \left(\frac{1}{56}\right)^{-1} - \left(\frac{1}{12}\right)^{-1} = 56 - 12 = 44$$

43. **(b)** $(x \div y)^4$

Explanation: Using laws of exponents, $\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m = (a \div b)^m$ [:: a and b are non-zero integers] Similarly, $x^4 \div y^4 = \left(\frac{x}{y}\right)^4 = (x \div y)^4$

44. **(d)** 3

Explanation: $(6)^{n+3} \times (6)^5 = (6)^{11}$

$$(6)^{n+3} = (6)^{11} \div (6)^5$$

$$(6)^{n+3} = (6)^{11} \times (6)^{-5}$$

$$(6)^{n+3} = (6)^{11-5}$$

$$(6)^{n+3} = (6)^6$$

Hence,
$$n + 3 = 6$$

So,
$$n = 3$$

45. **(c)** 100x + 10y + z

Explanation: In general, any three-digit number xyz can be written as,

$$xyz = 100 \times x + 10 \times y + 1 \times z$$

$$= 100x + 10y + z$$

where x is a hundredth place digit, y is a ten's place digit and z is a unit's place digit. Hence, if it's a three-digit number, the places will be ones, tens, and hundreds from right to left.

46. **(c)**

Explanation: Last two digits number must be divisible by 4. Only 1 3 5 7 9 can be possible.

- (a) -2
- **Explanation:** $6A \times B = A8B$
- $A \times B = B$ and $6 \times B = A8$ Therefore, A = 1 and B = 3
- $61 \times 3 = 183$

47.

- Hence, A B = 1 3 = -2
- (a) A = 5, C = 248.
 - **Explanation:** $5 \times A = CA$ A = 5, C = 2
 - $5 \times 5 = 25$
- 49. **(d)** A = 5 and B = 1
- **Explanation:** Here, A + A + A = BA as the sum of 3 ones digit numbers is a two-digit number so the value of
 - A will be greater than 3.
 - Putting the value of A = 4,
 - 4 + 4 + 4 = 12 which do not satisfy the equation.
 - Putting the value of A = 5,
 - 5 + 5 + 5 = 15, which satisfies the equation.
 - Therefore, A = 5 and B = 1.
- 50. (d) A = 4, B = 7
- **Explanation:** 1 + B is 8 so B = 7. B + A gives 1 in units digit. Thus A has to be 4.