Trucchi di Analisi 3

Questo file cerca di raccogliere alcuni teoremi, con dimostrazione, molto utili (non solo in Analisi 3). In particolare sono state esplicitate tecniche che si è viste utilizzare più volte negli esami.

Teoremi di Convergenza Integrale

CONVERGENZA MONOTONA

Sia (X, Σ, μ) uno spazio di misura. Siano inoltre f_0, f_1, f_2, \ldots una sequenza non decrescente di funzioni Σ -misurabili e positive, ovvero $\forall k \in \mathbb{N}$ si ha $0 \le f_k \le f_{k+1}$ quasi ovunque.

Allora possiamo definire quasi ovunque il limite $f = \operatorname{supess}_{k \in \mathbb{N}} f_k$ e si ha che f è Σ -misurabile e vale inoltre che

$$\lim_{k \to \infty} \int_X f_k \, \mathrm{d}\mu = \int_X f$$

dove l'integrazione è alla Lebesgue.

Dimostrazione

Per induzione si può mostrare che per $n \le m$ si ha che $f_n \le f_m$ quasi ovunque. Allora sull'intersezione degli insiemi dove vale $f_k \le f_{k+1}$ si può definire f prendendo il sup delle f_k . Il complementare è ovviamente di misura nulla.

Mostriamo ora che f è misurabile: l'insieme $F_a=\{f\geq a\}$ (in notazione da probabilisti) è l'unione degli insiemi $E_{k,a}=\{f_k\geq a\}\cap\{f_{k+1}-f_k\geq 0\}$ che sono quindi misurabili. Chiamiamo $E=\cap_{k\in\mathbb{N}}\{f_{k+1}-f_k\geq 0\}$ Ovviamente $\int_X f\geq \int_X f_k \quad \forall k\in\mathbb{N}$, per la monotonia dell'integrale (eventualmente spezzando sull'insieme dove non vale $f\geq f_k$, che però ha misura nulla). Allora, passando al limite (che esiste per monotonia) si ha $\int_X f\geq \lim_{k\to\infty}\int_X f_k$.

Per la disuguaglianza opposta consideriamo una sequenza non decrescente di funzioni semplici positive g_k tali che $g_k \leq f$ e che $\lim_k \int_X g_k \ \mathrm{d}\mu = \int_X f \ \mathrm{d}\mu$ che esiste per definizione di integrale. Basta ora dimostrare che $\forall k \in \mathbb{N}$ si ha $\int_X g_k \ \mathrm{d}\mu \leq \lim_j \int_X f_j \ \mathrm{d}\mu$.

Sia $c \in (0,1)$, si fissi $k \in \mathbb{N}$ e siano $E_r = \{f_r \le cg_k\} \cap E$. Allora si ha $L = \cap_{r \in \mathbb{N}} E_r$ ha misura nulla (altrimenti si avrebbe che $f_s \mid_{L} \le cg_k \quad \forall s$ e quindi anche $\sup_s f_s \mid_{L} \le cg_k < f$ assurdo). Inoltre $E_{r+1} \subseteq E_r$, ovvero $\mu(E_{r+1}) \le \mu(E_r)$. Quindi si ha che

$$\int_X cg_k \, \mathrm{d}\mu \le \int_X f_s \, \mathrm{d}\mu + \int_X cg_k \chi_{E_s} \, \mathrm{d}\mu$$

Ora, prima di tutto si ha che, a k fissato, facendo il limite in s, $|\int_X cg_k\chi_{E_s}\,\mathrm{d}\mu| \leq \mu(E_s)\max(g_k)$ ed il massimo di g_k esiste perché g_k è semplice. Allora si ha che il limite in s di $\mu(E_s)$ tende a zero (per monotonia degli insiemi). A questo punto abbiamo la disuguaglianza

$$\int_X cg_k \, \mathrm{d}\mu \le \lim_{s \to \infty} \int_X f_s \, \mathrm{d}\mu$$

Ora facendo prima il limite per $c \to 1$ (visto che la disuguaglianza vale per $c \in (0,1)$) e successivamente prendendo il limite in k si ha che

$$\int_X f \, \mathrm{d}\mu = \lim_{k \to \infty} \int_X g_k \, \mathrm{d}\mu \le \lim_{s \to \infty} \int_X f_s \, \mathrm{d}\mu$$

che era la nostra tesi originaria.

LEMMA DI FATOU

Sia (X, Σ, μ) uno spazio di misura. Siano inoltre f_0, f_1, f_2, \ldots una sequenza di funzioni Σ -misurabili e positive q.o. Definiamo $f(x) = \liminf_{n \to \infty} f_n(x)$ quasi ovunque. Allora f è misurabile e si ha $\int_X f \, \mathrm{d}\mu \leq \liminf_{n \to \infty} \int_X f_n \, \mathrm{d}\mu$

Dimostrazione

Lo dimostriamo usando convergenza monotona: Definiamo le funzioni $g_k = \inf_{n > k} f_n$ q.o. Allora la sequenza g_0, g_1, \dots è non decrescente e positiva di funzioni misurabili e converge puntualmente q.o. a

Per ogni $k \leq n$ si ha $g_k \leq f_n$ e per monotonia dell'integrale che $\int_X g_k \ \mathrm{d}\mu \leq \int_X f_n \ \mathrm{d}\mu$ e quindi segue che $\int_X g_k \, \mathrm{d}\mu \leq \inf_{n\geq k} \int_X f_n \, \mathrm{d}\mu.$ Usando il teorema di convergenza monotona segue che

$$\int_X f \, \mathrm{d}\mu = \lim_{k \to \infty} \int_X g_k \, \mathrm{d}\mu \leq \lim_{k \to \infty} \inf_{n \geq k} \int_X f_n \, \mathrm{d}\mu = \liminf_{n \to \infty} \int_X f_n \, \mathrm{d}\mu$$

CONVERGENZA DOMINATA

Sia (X, Σ, μ) uno spazio di misura. Siano inoltre f_0, f_1, f_2, \ldots una sequenza di funzioni Σ -misurabili, tutte dominate da una funzione integrabile g, ovvero $\mid f_n \mid \leq g$ quasi ovunque. Se la sequenza di funzioni converge puntualmente quasi ovunque (ovvero per quasi ogni x si ha $\exists \lim_{n\to\infty} f_n(x)$) allora le f_n sono integrabili, e si può definire quasi ovunque la funzione $f=\lim_{n\to\infty}f_n$ e si ha che $\lim_{n\to\infty}\int_X f_n\,\mathrm{d}\mu=$ $\int_X f \, \mathrm{d}\mu$. (Per g integrabile si intende $\int_X \mid g \mid \, \mathrm{d}\mu < \infty$

Dimostrazione

Notiamo che $|f - f_n| \le |f| + |f_n| \le 2g$ q.o. Inoltre sappiamo che, per ipotesi $\limsup_{n \to \infty} |f - f_n| = 0$ q.o. Usando ora la linearità e la monotonia dell'integrale si ha che:

$$|\int_X f \,\mathrm{d}\mu - \int_X f_n \,\mathrm{d}\mu| = |\int_X (f-f_n) \,\mathrm{d}\mu| \le \int_X |f-f_n| \,\mathrm{d}\mu$$

Usando il lemma di Fatou "inverso" (ovvero quello con i limsup, che discende banalmente da quello con i liminf) si ha che

$$\limsup_{n \to \infty} \int_X \mid f - f_n \mid \ \mathrm{d}\mu \le \int_X \limsup n \to \infty \mid f - f_n \mid \ \mathrm{d}\mu = 0$$

(dove abbiamo usato che $|f - f_n|$ sia limitata da una funzione integrabile). Ciò implica che il limite esiste ed è

$$\lim_{n\to\infty} \int_{V} |f - f_n| \ \mathrm{d}\mu = 0$$

Ora togliendo il valore assoluto e per linearità si ottiene la tesi.

STIME SUGLI \mathcal{L}^p

Inclusione degli \mathcal{L}^p sui limitati

Se $\mu(\Omega) < \infty$ allora si ha che per $1 \le p \le q \le \infty$, $\mathcal{L}^q \subseteq \mathcal{L}^p$.

Infatti, $\forall x \in \mathbb{R}$ (o anche in \mathbb{C}) si ha $|x|^p \le 1 + |x|^q$ (basta dividere in casi a seconda se x < 1 oppure $x \ge 1$). E quindi $\|f\|_{\mathcal{L}^p} = \int_{\Omega} |f(x)|^p dx \le \int_{\Omega} 1 dx + \int_{\Omega} |f(x)|^q dx = \mu(\Omega) + \|f\|_{\mathcal{L}^q} < \infty$ se $f \in \mathcal{L}^q$, da cui $f \in \mathcal{L}^p$.

CONTINUITÀ INTEGRALE

Supponiamo che $f \in \mathcal{L}^1(a,b)$ (prolungata per periodicità fuori). Allora si ha che $\lim_{h\to 0} \int_a^b |f(t+h)-f(t)|$ dt = 0.

Dimostrazione

Per densità delle \mathcal{C}^{∞} in \mathcal{L}^1 posso prendere una sequenza di funzioni $f_n \in \mathcal{C}^{\infty}$ che tendono ad f. Allora si ha che

$$\int_{a}^{b} |f(t+h) - f(t)| dt \leq \int_{a}^{b} |f(t+h) - f_n(t+h)| dt + \int_{a}^{b} |f_n(t+h) - f_n(t)| dt + \int_{a}^{b} |f_n(t+h) - f_n(t+h)| dt + \int_{a}^{b} |f_n(t+h) - f_n(t+h$$

Ora il primo e l'ultimo termine si stimano dicendo che $\lim_n |f(t) - f_n(t)| = 0$ ed inoltre si ha che, considerando gli opportuni mollificatori, si ha $|f - f_n| \le 3 |f|$ ovvero sono limitate. Applicando quindi convergenza dominata essi tendono a zero in n.

Rimane da stimare $\lim_{h\to 0}\lim_{n\to infty}\int_a^b |f_n(t+h)-f_n(t)| dt$

EQUAZIONI DIFFERENZIALI CLASSICHE

EQUAZIONE DELLA CORDA VIBRANTE

EQUAZIONE DEL CALORE

EQUAZIONE DI POISSON / LAPLACE

PROIEZIONE SU UN CONVESSO

Sia H uno spazio di Hilbert e $K \subset H$ un convesso chiuso. Allora si ha che:

- $\exists ! P_K : H \to K$, chiamata mappa di proiezione, tale che $\forall x \in H$ si ha $\|x P_K(x)\| = \min_{y \in K} \|x y\|$.
- Il proiettato è "sul bordo" del convesso, ovvero $\forall w \in K$ si ha $\langle x P_K x \mid w P_K x \rangle \leq 0$
- La mappa di proiezione è lipschitziana, ovvero $\forall f,g \in X$ si ha $\|P_K f P_K g\| \le \|f g\|$

Inoltre, supponendo che *K* sia un sottospazio vettoriale chiuso si ha che:

- "La congiungente x e $P_K(x)$ è ortogonale a K", ovvero $\forall w \in K \quad \langle x P_K(x) \mid w \rangle = 0$
- $H = K \oplus K^{\perp}$
- La proiezione P_K è lineare ed inoltre vale ||P|| = 1 (dove la norma è quella operatoriale)
- Definendo Q = I P si ha, $\forall x \in H$ la decomposizione seguente:
 - -x = P(x) + Q(x)
 - $-\langle P(x), Q(x) \rangle = 0$
 - $||x||^2 = ||P(x)||^2 + ||Q(x)||^2$

ESISTENZA

Ad x fissato si prenda una successione di $y_n \in K$ che tendono all' $\inf_{y \in K} \|y - x\|$. Vogliamo mostrare che è una successione di Cauchy: in questo modo, per completezza dell'Hilbert, avremmo che $y_n \to y_\infty \in H$ e per chiusura di K si ha $y_\infty \in K$, da cui potremmo definire $P(x) = y_\infty$.

per chiusura di K si ha $y_{\infty} \in K$, da cui potremmo definire $P(x) = y_{\infty}$. Chiamiamo ora $d_n = \|x - y_n\|$ ed abbiamo che $d_n \to d = \inf_n \|x - y_n\|$. Utilizzando l'identità del parallelogramma si ha, se n, m > N che vale:

$$\left\| \frac{(x - y_n) + (x - y_m)}{2} \right\|^2 + \left\| \frac{(x - y_n) - (x - y_m)}{2} \right\|^2 = \frac{1}{2} (\|x - y_n\|^2 + \|x - y_m\|^2)$$

ovvero, riscrivendo che:

$$||x - \frac{y_n + y_m}{2}||^2 + ||\frac{y_n - y_m}{2}||^2 = \frac{1}{2}(d_n^2 + d_m^2)$$

Ma sappiamo che per convessità si ha $\frac{y_n+y_m}{2}\in K$ e quindi, per definizione di estremo inferiore si ha $\|x-\frac{y_n+y_m}{2}\|^2\geq d^2$ e quindi $\|\frac{y_n-y_m}{2}\|\leq \frac{1}{2}(d_n^2+d_m^2)-d^2=\frac{1}{2}(d_n^2-d^2)+\frac{1}{2}(d_m^2-d^2)\leq \varepsilon$ Ciò significa che la successione y_n è di cauchy in H da cui segue la tesi.

UNICITÀ

Supponiamo per assurdo che esistano due punti che realizzano il minimo, e li denotiamo con p e q. (ovviamente dipendono da x, ma qui li stiamo pensando ad x fissato). Allora dall'identità del parallelogramma si ha

$$\|x - \frac{p+q}{2}\|^2 + \|\frac{p-q}{2}\|^2 = \frac{1}{2}(\|x-p\|^2 + \|x-q\|^2) = d^2$$

Allora siccome, come prima, $\frac{p+q}{2} \in K$ per convessità, si ha che $\|\frac{p-q}{2}\|^2 \le d^2 - d^2 = 0$, da cui segue p = q.

PROIETTATO SUL BORDO

Diciamo che il proiettato sta "sul bordo" (non in maniera propria) del convesso (come è abbastanza intuitivo che sia facendo un disegno in \mathbb{R}^2) e lo esprimiamo dicendo che il segmento che congiunge x a $P_K x$ è "dalla parte opposta" (ovvero ha prodotto scalare negativo) rispetto ad ogni segmento che congiunge un qualunque punto w del compatto a $P_K x$.

Lemma preliminare: Sia $f:[a,b]\to\mathbb{R}$ derivabile e supponiamo che in a vi sia un minimo. Allora $f'(a)\geq 0$ (Dove il limite è inteso sulla parte che sta dentro al dominio di definizione). Dunque, se $f:K\subseteq\mathbb{R}^d\to\mathbb{R}$ è \mathcal{C}^1 e definiamo $\phi(t)=f(x_0+t(x-x_0))$ per $t\in[0,1]$, allora si ha che $\phi'(0)=\langle\nabla f(x_0)\mid x-x_0\rangle\geq 0$.

Definiamo ora $\Psi(t) = \|x - ((1-t)P_K(x) + tw)\|^2$. Per il lemma precedente si ha $\Psi'(0) \ge 0 \quad \forall w \in K$. Ma sappiamo che $\Psi(t) = \|x - P_K(x) + t(P_K(x) - w)\|^2 = \|x - P_K(x)\|^2 + 2t\langle x - P_K(x) \mid P_K(x) - w\rangle + t^2\|P_K(x) - w\|^2$ e quindi $\Psi'(0) = 2\langle x - P_K(x) \mid P_K(x) - w\rangle \le 0 \quad \forall w \in K$

(In realtà, ma non lo dimostriamo, vale anche il viceversa: se il punto $P_K(x)$ gode della proprietà precedente, allora è il punto di proiezione)

LIPSCHITZIANITÀ

Sappiamo che $\langle x - P_K(x) \mid w - P_K(x) \rangle \le 0$ e ci giochiamo la disuguaglianza con $(x, w) = (f, P_K(g)) = (g, P_K(f))$, ovvero si ottiene:

$$0 \ge \langle f - P_K(f) \mid P_K(g) - P_K(f) \rangle + \langle g - P_K(g) \mid P_K(f) - P_K(g) \rangle = \langle f - P_K(f) \mid P_K(g) - P_K(f) \rangle - \langle g - P_K(g) \mid P_K(g) - P_K(f) \rangle = \langle f - P_K(f) \mid P_K(g) - P_K(f) \rangle - \langle g - P_K(g) \mid P_K(g) - P_K(f) \rangle = \langle f - P_K(f) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(f) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P_K(g) - P_K(g) \rangle = \langle f - P_K(g) \mid P$$

Allora si ha

$$\|P_K(g) - P_K(f)\|^2 = \langle P_K(g) - P_K(f) \mid P_K(g) - P_K(f) \rangle \leq \langle g - f \mid P_K(g) - P_K(f) \rangle \leq \|g - f\| \|P_K(g) - P_K(f)\|$$

E si ottiene la disuguaglianza cercata dividendo per $||P_K(g) - P_K(f)||$

ORTOGONALITÀ DELLA CONGIUNGENTE

Supponendo ora che K sia un sottospazio vettoriale chiuso possiamo sostituire nella disuguaglianza precedente w=0 e $w=2P_K(x)$ ottenendo che $\langle x-P_K(x)\mid P_K(x)\rangle\geq 0$ e $\langle x-P_K(x)\mid P_K(x)\rangle\leq 0$, ovvero $\langle x-P_K(x)\mid P_K(x)\rangle=0$, ma allora otteniamo $\langle x-P_K(x)\mid w\rangle=\langle x-P_K(x)\mid w-P_K(x)\rangle\leq 0$. Inoltre, valendo la disuguaglianza sia per w che per -w, si ottiene facilmente che $\langle x-P_K(x)\mid w\rangle=0$, che è la tesi.

DECOMPOSIZIONE IN SOMMA DIRETTA

Dato $x \in H$, si ha $x = x - P_K(x) + P_K(x)$. Notiamo ora che $P_K(x) \in K$ e che, per quanto detto prima, $x - P_K(x) \in K^{\perp}$

La proiezione è lineare e di norma unitaria

Per vedere che è lineare, basta osservare che:

$$\begin{cases} \langle \alpha x + \beta y - P_K(\alpha x + \beta y), w \mid = \rangle 0 & \forall w \in K \\ \langle \alpha x + \beta y - \alpha P_K(x) - \beta P_K(y) \mid w \rangle = 0 & \forall w \in K \end{cases}$$

Allora $\langle P_K(\alpha x + \beta y) - \alpha P_K(x) - \beta P_K(y) \mid w \rangle = 0 \quad \forall w \in K \text{ ma poiché } P_K(\alpha x + \beta y) - \alpha P_K(x) - \beta P_K(y) \in K \text{ si ha } \|P_K(\alpha x + \beta y) - \alpha P_K(x) - \beta P_K(y)\| = 0 \text{ e quindi } P_K(\alpha x + \beta y) = \alpha P_K(x) + \beta P_K(y).$ Si ha inoltre che $\|x\| \|P_K(x)\| \geq \langle x \mid P_K(x) \rangle = \langle P_K(x) \mid P_K(x) \rangle = \|P_K(x)\|^2 \text{ e quindi } \|P\| \leq 1, \text{ ma preso } k \in K \text{ si ha che } P_K(k) = k \text{ e quindi } \|P\| \geq 1, \text{ ovvero } \|P\| = 1.$

RIESZ-FISHER

LEMMA DELLA CODIMENSIONE

Dato H spazio di Hilbert e $f\in \operatorname{Lincont}(H,\mathbb{R})$ continuo e limitato e lineare non nullo si ha che codim $\operatorname{Ker} f=1$

Sia $y \in H$ tale che $f(y) \neq 0$. Allora definiamo $\lambda = \frac{1}{f(y)}$ in modo che $f(\lambda y) = 1$. Sia ora $y_0 = \lambda y$. Dato un qualunque $x \in H$ si ha $x = x - f(x)y_0 + f(x)y_0$, con $x - f(x)y_0 \in \operatorname{Ker} f$. Inoltre tale decomposizione è unica, in quanto se $x = x' + \alpha y_0 = x'' + \beta y_0$ con $x', x'' \in \operatorname{Ker} f$ allora si ha $f(x) = \alpha = \beta$ e dunque x' = x''. Concludiamo quindi che $H = \operatorname{Ker} f \oplus \operatorname{Span}(y_0)$, che è la tesi.

ESISTENZA

Supponiamo $f \neq 0$ e chiamiamo $K = \operatorname{Ker} f$. Allora K è un sottospazio lineare chiuso di codimensione 1. Chiamiamo quindi P la proiezione su K. Visto che $H = K \oplus K^{\perp}$ e $K^{\perp} = Span(y_0)$ con $f(y_0) = 1$, allora dato $h \in H$ si può scomporre come $x = \lambda y_0 + z$ con $z \in \operatorname{Ker} f = K$.

Allora $f(x) = \lambda f(y_0) = \lambda$ e si ha $\langle x \mid y_0 \rangle = \lambda \langle y_0 \mid y_0 \rangle = \lambda ||y_0||^2$ dunque ponendo $y = \frac{y_0}{||y_0||^2}$ si ha l'esistenza.

UNICITÀ

Supponiamo ora che esistano due elementi y,w che rappresentano f. Allora $\langle x,y-w\mid =\rangle 0 \quad \forall x\in H$ e quindi in particolare $\|y-w\|^2=0 \implies y=w$

FUNZIONI ARMONICHE

Serie e Trasformata di Fourier

DEFINIZIONI E PROPRIETÀ

APPROSSIMANTI

RIEMANN-LEBESGUE