

Meta-Learning

Logistics

Project B grade will be released tonight

Project C due Sunday 11:59 PM

I want the school to be done

Layers of Learning

Gilberto Titericz Junior (top-ranked user on <u>Kaggle.com</u>) used this setup to win the \$10,000 Otto Group Product Classification Challenge.

33 models???

3 levels???

Lasagne NN??

Introduction: Ensemble Averaging

Basic ensemble composed of a **committee** of learning algorithms.

Results from each algorithm are averaged into a final result, reducing variance.

Logit	SVM	KNN	Majority Voting
Α	Α	В	
В	A	В	
Α	A	А	
А	В	В	

Actual
Α
В
A
В

75%

75%

Logit	SVM	KNN	Majority Voting
Α	A	В	А
В	Α	В	
Α	Α	Α	
Α	В	В	

Actual	
A	
В	
A	
В	

75%

75%

Logit	SVM	KNN	Majority Voting
Α	A	В	А
В	А	В	В
Α	Α	Α	
Α	В	В	

Actual	
A	
В	
A	
В	

75%

75%

Logit	SVM	KNN	Majority Voting
Α	A	В	А
В	A	В	В
А	Α	Α	А
A	В	В	

Actual	
Α	
В	
A	
В	

75%

75%

Logit	SVM	KNN	Majority Voting
Α	A	В	А
В	А	В	В
Α	Α	Α	А
Α	В	В	В

Actual	
A	
В	
A	
В	

75%

75%

75%

Ensemble

Meta-Learning

Ensembles and Hypotheses

- Recall the definition of "hypothesis."
- Machine learning algorithms search the **hypothesis space** for hypotheses.
 - Set of mathematical functions on real numbers
 - Set of possible classification boundaries in feature space
- More searchers → more likely to find a "good" hypothesis

General Definition

One Hypothesis

One Hypothesis

One Hypothesis

One Hypothesis

One Strong Hypothesis

Paradigm

Generate Weak Learners

Weak Learner

Weak Learner

Weak Learner

Weak Learner

Combine Them

Classification

Majority Voting

Regression

Weighted Average

Why so many models?

A single model on its own is often prone to bias and/or variance.

- Bias Systematic or "consistent" error.
 Associated with underfitting.
- Variance Random or "deviating" error.
 Associated with overfitting.

A tradeoff exists. We want to minimize both as much as we can.

Three Main Types

Bagging Boosting Stacking

Three Main Types

Stacking Bagging Boosting Lower Bias Performance Lower Variance

Bagging

Short for **b**ootstrap **agg**regat**ing**.

A **parallel ensemble**. Models are applied without knowledge of each other.

- Apply each model on a random subset of data.
- Combine the output by averaging (for regression) or by majority vote (for classification)
- A more sophisticated version of ensemble averaging.

Bagging decreases variance and prevents overfitting.

Random Forests

Designed to improve accuracy over CART.

Much more difficult to overfit

- Works by building a large number of CART trees
 - Each tree in the forest "votes" on outcome
 - Outcome with the most votes becomes our prediction

Boosting

A **sequential ensemble**. Models are applied one-by-one based on how previous models have done.

- Apply a model on a subset of data.
- Check to see where the model has badly classified data.
- Apply another model on a new subset of data, giving preference to data badly classified by the model.

Boosting decreases bias and prevents underfitting.

Weak Learners

Important concept in boosting.

Weak learners do only slightly better than the baseline for a given dataset. In isolation, they are not very useful.

While boosting, we improve these learners sequentially to create hyper-powered models.

Short for <u>ada</u>ptive <u>boost</u>ing. Sequentially generates weak learners, adjusting newer learners based on mistakes of older learners

Combines output of all learners into weighted sum

XGBoost

Short for eXtreme Gradient Boosting. Sequentially generates weak learners like AdaBoost

- Updates model by computing cost function
 - Computes gradient of cost function
 - Direction of greatest decrease = negative of gradient
 - Creates new learner with parameters adjusted in this direction

Stacking

Bagging

Boosting

Stacking

Stacking

Stacking

Stacking pt. 1

Assumption: can improve performance by taking a **weighted average** of the predictions of models.

- Take a bunch of machine learning models.
- Apply these models on subsets of your data (how you choose them is up to you).
- Obtain predictions from each of the models.

Stacking pt. 2

Once we have predictions from each individual model...

- Perform Top-Layer-ML on the predictions.
 - This gives you the coefficients of the weighted average.
- Result: a massive blend of potentially hundreds of models.

CDS Core Team Example: Stacking

CDS Kaggle Team (2017 March Madness Kaggle competition)

- Each member of the Kaggle team made a logistic regression model based on different features
- Combined these using a stacked model

Coming Up

Your problem set: Project Part C due this Sunday 11:59 PM

Next week: Bias-variance trade-off

See you then!

Random Forest Parameters

- Minimum number of observations in a branch
 - o min_samples_split parameter
 - Smaller the node size, more branches, longer the computation
- Number of trees
 - n_estimators parameter
 - Fewer trees means less accurate prediction
 - More trees means longer computation time
 - Diminishing returns after a couple hundred trees

