

Solution

$$\frac{d}{dx}\left(\left(\left(-\frac{1}{3}\right)(x-8)\right)^n\right) = -\frac{n\left(-\frac{x-8}{3}\right)^{n-1}}{3}$$

Steps

$$\frac{d}{dx}\left(\left(\left(-\frac{1}{3}\right)(x-8)\right)^n\right)$$

Apply the chain rule: $n\left(\left(-\frac{1}{3}\right)(x-8)\right)^{n-1}\frac{d}{dx}\left(\left(-\frac{1}{3}\right)(x-8)\right)$

Hide Steps 🖨

$$\frac{d}{dx}\left(\left(\left(-\frac{1}{3}\right)(x-8)\right)^n\right)$$

Apply the chain rule: $\frac{df(u)}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$

$$f = u^n$$
, $u = \left(-\frac{1}{3}\right)(x-8)$

$$= \frac{d}{du} \left(u^n \right) \frac{d}{dx} \left(\left(-\frac{1}{3} \right) (x - 8) \right)$$

 $\frac{d}{du}(u^n) = nu^{n-1}$

Hide Steps 🖨

 $\frac{d}{du}(u^n)$

Apply the Power Rule: $\frac{d}{dx}(x^a) = a \cdot x^{a-1}$

 $= nu^{n-1}$

 $= nu^{n-1} \frac{d}{dx} \left(\left(-\frac{1}{3} \right) (x-8) \right)$

Substitute back $u = \left(-\frac{1}{3}\right)(x-8)$

 $= n\left(\left(-\frac{1}{3}\right)(x-8)\right)^{n-1}\frac{d}{dx}\left(\left(-\frac{1}{3}\right)(x-8)\right)$

 $= n\left(\left(-\frac{1}{3}\right)(x-8)\right)^{n-1}\frac{d}{dx}\left(\left(-\frac{1}{3}\right)(x-8)\right)$

 $\frac{d}{dx}\left(\left(-\frac{1}{3}\right)(x-8)\right) = -\frac{1}{3}$

 $\frac{d}{dx}\left(\left(-\frac{1}{3}\right)(x-8)\right)$

 $-\frac{1}{3}(x-6) = -\frac{1}{3}$

Hide Steps 🖨

Take the constant out: $(a \cdot f)' = a \cdot f'$

 $= -\frac{1}{3} \frac{d}{dx} (x - 8)$

Apply the Sum/Difference Rule: $(f \pm g)' = f' \pm g'$

 $= -\frac{1}{3} \left(\frac{d}{dx}(x) - \frac{d}{dx}(8) \right)$

 $\frac{d}{dx}(x) = 1$

Hide Steps 🖨

 $\frac{d}{dx}(x)$

Apply the common derivative: $\frac{d}{dx}(x) = 1$

= 1

 $\frac{d}{dr}(8) = 0$

Hide Steps 🖨

 $\frac{d}{dx}(8)$

Derivative of a constant: $\frac{d}{dx}(a) = 0$

=0

 $=-\frac{1}{3}(1-0)$

Simplify

 $=-\frac{1}{3}$

$$= n\left(\left(-\frac{1}{3}\right)(x-8)\right)^{n-1}\left(-\frac{1}{3}\right)$$

Simplify $n\Big(\Big(-\frac{1}{3}\Big)(x-8)\Big)^{n-1}\Big(-\frac{1}{3}\Big)$: $-\frac{n\Big(-\frac{x-8}{3}\Big)^{n-1}}{3}$

Hide Steps 🖨

 $n\left(\left(-\frac{1}{3}\right)(x-8)\right)^{n-1}\left(-\frac{1}{3}\right)$

Remove parentheses: (-a) = -a

 $= -n\left(-\frac{1}{3}(x-8)\right)^{n-1}\frac{1}{3}$

Multiply fractions: $a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$

 $=-\frac{1\cdot n}{3}\left(-\frac{1}{3}(x-8)\right)^{n-1}$

Multiply: $1 \cdot n = n$

 $=-\frac{n}{3}\left(-\frac{1}{3}(x-8)\right)^{n-1}$

Multiply fractions:
$$a \cdot \frac{b}{c} = \frac{a - b}{c}$$

$$= -\frac{n(-\frac{1}{3}(x-8))^{n-1}}{3}$$

$$\left(-\frac{1}{3}(x-8)\right)^{n-1} = \left(-\frac{x-8}{3}\right)^{n-1}$$

$$\left(-\frac{1}{3}(x-8)\right)^{n-1}$$

$$\left(-\frac{1}{3}(x-8)\right)^{n-1}$$
Multiply $-\frac{1}{3}(x-8)$: $-\frac{x-8}{3}$

$$-\frac{1}{3}(x-8)$$
Multiply fractions: $a \cdot \frac{b}{c} = \frac{a - b}{c}$

$$= -\frac{1 \cdot (x-8)}{3}$$

$$1 \cdot (x-8) = x-8$$

$$1 \cdot (x-8)$$
Multiply: $1 \cdot (x-8) = (x-8)$

$$= (x-8)$$
Multiply: $1 \cdot (x-8) = (x-8)$

$$= -x-8$$

$$= -\frac{x-8}{3}$$

$$= \left(-\frac{x-8}{3}\right)^{n-1}$$

$$= -\frac{n(-\frac{x-8}{3})^{n-1}}{3}$$

$$= -\frac{n(-\frac{x-8}{3})^{n-1}}{3}$$

