Épidémiologie et Déplacements

Maxence Caucheteux

École des Ponts ParisTech

May 19, 2024

- Proposer modèle stochastique
- Construire un modèle déterministe
- Définir \mathfrak{R}_0 et les liens entre les deux modèles
- Analyser l'évolution épidémie en fonction des déplacements

Figure: Illustration de l'épidémiologie

- Proposer modèle stochastique
- Construire un modèle déterministe
- Définir \mathfrak{R}_0 et les liens entre les deux modèles
- Analyser l'évolution épidémie en fonction des déplacements

Figure: Illustration de l'épidémiologie

- Proposer modèle stochastique
- Construire un modèle déterministe
- Définir \mathfrak{R}_0 et les liens entre les deux modèles
- Analyser l'évolution épidémie en fonction des déplacements

Figure: Illustration de l'épidémiologie

- Proposer modèle stochastique
- Construire un modèle déterministe
- Définir \mathfrak{R}_0 et les liens entre les deux modèles
- Analyser l'évolution épidémie en fonction des déplacements

Figure: Illustration de l'épidémiologie

- Proposer modèle stochastique
- Construire un modèle déterministe
- Définir \mathfrak{R}_0 et les liens entre les deux modèles
- Analyser l'évolution épidémie en fonction des déplacements

Figure: Illustration de l'épidémiologie

Construction du modèle : intuitivement

Processus

Choix d'un individu dans la population parmi les N:

- Si cet individu est infecté, il guérit avec probabilité p
- ullet S'il est susceptible, il devient infecté avec probabilité q imes au

avec $\tau = \text{proportion d'infectés et } p, q \in]0, 1[.$

Construction du modèle : intuitivement

Processus

Choix d'un individu dans la population parmi les N:

- Si cet individu est infecté, il guérit avec probabilité *p*
- ullet S'il est susceptible, il devient infecté avec probabilité q imes au

avec $\tau = \text{proportion d'infectés et } p, q \in]0, 1[.$

Construction du modèle : intuitivement

Processus

Choix d'un individu dans la population parmi les N:

- Si cet individu est infecté, il guérit avec probabilité p
- ullet S'il est susceptible, il devient infecté avec probabilité q imes au

avec $\tau = \text{proportion d'infectés et } p, q \in]0,1[$.

- ullet Définition d'un système dynamique stochastique $(\mathcal{I}_t^N)_{t\in\mathbb{N}}$
- $\mathcal{I}_t^N \in \{0,1\}^N$
- $\forall k \in [1, N], \ \mathcal{I}_{t,k}^N = 1 \text{ si } k \text{ infecté, 0 sinon}$

- ullet Définition d'un système dynamique stochastique $(\mathcal{I}_t^{N})_{t\in\mathbb{N}}$
- $\mathcal{I}_t^N \in \{0,1\}^N$
- ullet $\forall k \in [1, N], \; \mathcal{I}_{t,k}^N = 1 \; \mathrm{si} \; k \; \mathrm{infect\'e,} \; 0 \; \mathrm{sinon}$

- ullet Définition d'un système dynamique stochastique $(\mathcal{I}_t^{N})_{t\in\mathbb{N}}$
- $\mathcal{I}_t^N \in \{0,1\}^N$
- $\forall k \in [1, N], \ \mathcal{I}_{t,k}^N = 1 \ \text{si} \ k \ \text{infect\'e, 0 sinon}$

- ullet Définition d'un système dynamique stochastique $(\mathcal{I}_t^{N})_{t\in\mathbb{N}}$
- $\mathcal{I}_t^N \in \{0,1\}^N$
- $\forall k \in [1, N], \ \mathcal{I}_{t,k}^N = 1 \text{ si } k \text{ infecté, 0 sinon}$

Nombre d'infectés

Définition

Nombre d'infectés :

$$I_t^N = \sum_{k=1}^N \mathcal{I}_{t,k}^N$$

C'est une chaîne de Markov.

Nombre d'infectés

Définition

Nombre d'infectés :

$$I_t^N = \sum_{k=1}^N \mathcal{I}_{t,k}^N$$

C'est une chaîne de Markov.

Matrice de transition

Propriété

Pour $k \in [0, N]$,

$$\left\{ egin{array}{l} Q(k,k-1) = prac{k}{N} \;\; ext{si} \; k \geq 1 \ Q(k,k+1) = qrac{k}{N}(1-rac{k}{N}) \;\; ext{si} \;\; k < N \ Q(k,k) = (1-rac{k}{N})(1-rac{k}{N}q) + rac{k}{N}(1-p) \end{array}
ight.$$

Les autres coefficients de la matrice Q sont nuls.

I taux d'infectés, S taux d'indivdus susceptibles

$$\begin{cases} \frac{dS}{dt} = -KSI + \gamma I \\ \frac{dI}{dt} = KSI - \gamma I \end{cases}$$

Solution

Avec $\mathfrak{R}_0 = K/\gamma$, on a :

$$I(t) = \begin{cases} \frac{\mathfrak{R}_0 - 1}{\left(\frac{1}{l_0}(\mathfrak{R}_0 - 1) - \mathfrak{R}_0\right)e^{-\gamma(\mathfrak{R}_0 - 1)t} + \mathfrak{R}_0}} & \text{si } \mathfrak{R}_0 \neq 1 \\ \frac{1}{l_0} + \gamma t & \text{si } \mathfrak{R}_0 = 1 \end{cases}$$

où
$$I(0) = I_0 \in]0,1]$$

I taux d'infectés, S taux d'indivdus susceptibles

$$\begin{cases} \frac{dS}{dt} = -KSI + \gamma I \\ \frac{dI}{dt} = KSI - \gamma I \end{cases}$$

Solution

Avec $\mathfrak{R}_0 = K/\gamma$, on a :

$$I(t) = \left\{ \begin{array}{ll} \frac{\mathfrak{R}_0 - 1}{\left(\frac{1}{l_0}(\mathfrak{R}_0 - 1) - \mathfrak{R}_0\right)e^{-\gamma(\mathfrak{R}_0 - 1)t} + \mathfrak{R}_0}} & \text{si } \mathfrak{R}_0 \neq 1 \\ \frac{1}{l_0^1 + \gamma t} & \text{si } \mathfrak{R}_0 = 1 \end{array} \right.$$

où $I(0) = I_0 \in]0,1]$

I taux d'infectés, S taux d'indivdus susceptibles

$$\left\{ \begin{array}{l} \frac{dS}{dt} = -\textit{KSI} + \gamma \textit{I} \\ \frac{dI}{dt} = \textit{KSI} - \gamma \textit{I} \end{array} \right.$$

Solution

Avec $\Re_0 = K/\gamma$, on a :

$$I(t) = \begin{cases} \frac{\mathfrak{R}_0 - 1}{\left(\frac{1}{l_0}(\mathfrak{R}_0 - 1) - \mathfrak{R}_0\right)e^{-\gamma(\mathfrak{R}_0 - 1)t} + \mathfrak{R}_0}} & \text{si } \mathfrak{R}_0 \neq 1 \\ \frac{1}{l_0^1 + \gamma t} & \text{si } \mathfrak{R}_0 = 1 \end{cases}$$

où $I(0) = I_0 \in]0,1]$

I taux d'infectés, S taux d'indivdus susceptibles

$$\begin{cases} \frac{dS}{dt} = -KSI + \gamma I \\ \frac{dI}{dt} = KSI - \gamma I \end{cases}$$

Solution

Avec $\mathfrak{R}_0 = K/\gamma$, on a :

$$I(t) = \left\{ egin{array}{l} rac{\mathfrak{R}_0 - 1}{\left(rac{l_0}{l_0}(\mathfrak{R}_0 - 1) - \mathfrak{R}_0
ight)e^{-\gamma(\mathfrak{R}_0 - 1)t} + \mathfrak{R}_0} & ext{si } \mathfrak{R}_0
eq 1 \ rac{1}{rac{l_0}{l_0} + \gamma t} & ext{si } \mathfrak{R}_0 = 1 \end{array}
ight.$$

où
$$I(0) = I_0 \in]0,1]$$

- $\mathfrak{R}_0 > 1: I(t) \longrightarrow \frac{\mathfrak{R}_0 1}{\mathfrak{R}_0}$
- $\Re_0 \le 1$: la maladie s'éteint en temps long

Maladie	\mathfrak{R}_0
Rougeole	12 - 18
Varicelle	10 - 12
Rubéole	6 - 7
COVID-19	2.5 - 3.5
Tuberculose	2-3
Rhume commun	2-3
Grippe	1.3 - 1.8

Figure: Divers \mathfrak{R}_0

- $\mathfrak{R}_0 > 1: I(t) \longrightarrow \frac{\mathfrak{R}_0 1}{\mathfrak{R}_0}$
- $\mathfrak{R}_0 \leq 1$: la maladie s'éteint en temps long

Maladie	\mathfrak{R}_0
Rougeole	12 - 18
Varicelle	10 - 12
Rubéole	6 - 7
COVID-19	2.5 - 3.5
Tuberculose	2-3
Rhume commun	2-3
Grippe	1.3 - 1.8

Figure: Divers \Re_0

Intuition:

$$\frac{1}{N} \mathbb{E}_k(I_1^N) \simeq I(\Delta_N) = I(0) + \Delta_N I'(0) + o(\Delta_N)
= \frac{k}{N} + \Delta_N \left(\left(1 - \frac{k}{N} \right) K \frac{k}{N} - \gamma \frac{k}{N} \right) + o(\Delta_N)$$

Calcul ·

$$\frac{1}{N}\mathbb{E}_k(I_1^N) = \frac{k}{N} + \frac{1}{N}\left(\left(1 - \frac{k}{N}\right)\frac{k}{N}q - p\frac{k}{N}\right)$$

$$\Delta_N = \frac{1}{N}, \ \gamma = p \ \text{et} \ K = q$$

Intuition:

$$\begin{split} \frac{1}{N} \mathbb{E}_{k}(I_{1}^{N}) &\simeq I(\Delta_{N}) = I(0) + \Delta_{N}I'(0) + o(\Delta_{N}) \\ &= \frac{k}{N} + \Delta_{N} \left(\left(1 - \frac{k}{N} \right) K \frac{k}{N} - \gamma \frac{k}{N} \right) + o(\Delta_{N}) \end{split}$$

Calcul:

$$\frac{1}{N}\mathbb{E}_k(I_1^N) = \frac{k}{N} + \frac{1}{N}\left(\left(1 - \frac{k}{N}\right)\frac{k}{N}q - p\frac{k}{N}\right)$$

$$\Delta_N = \frac{1}{N}, \ \gamma = p \ {\rm et} \ K = q$$

Intuition:

$$\begin{split} \frac{1}{N} \mathbb{E}_{k}(I_{1}^{N}) &\simeq I(\Delta_{N}) = I(0) + \Delta_{N}I'(0) + o(\Delta_{N}) \\ &= \frac{k}{N} + \Delta_{N} \left(\left(1 - \frac{k}{N} \right) K \frac{k}{N} - \gamma \frac{k}{N} \right) + o(\Delta_{N}) \end{split}$$

Calcul ·

$$\frac{1}{N}\mathbb{E}_k(I_1^N) = \frac{k}{N} + \frac{1}{N}\left(\left(1 - \frac{k}{N}\right)\frac{k}{N}q - p\frac{k}{N}\right)$$

$$\Delta_N = \frac{1}{N}, \ \gamma = p \ {\rm et} \ K = q$$

Intuition:

$$\begin{split} \frac{1}{N} \mathbb{E}_{k}(I_{1}^{N}) &\simeq I(\Delta_{N}) = I(0) + \Delta_{N}I'(0) + o(\Delta_{N}) \\ &= \frac{k}{N} + \Delta_{N} \left(\left(1 - \frac{k}{N} \right) K \frac{k}{N} - \gamma \frac{k}{N} \right) + o(\Delta_{N}) \end{split}$$

Calcul:

$$\frac{1}{N}\mathbb{E}_k(I_1^N) = \frac{k}{N} + \frac{1}{N}\left(\left(1 - \frac{k}{N}\right)\frac{k}{N}q - p\frac{k}{N}\right)$$

$$\Delta_N = \frac{1}{N}, \ \gamma = p \ {\rm et} \ K = q$$

Intuition:

$$\begin{split} \frac{1}{N} \mathbb{E}_k(I_1^N) &\simeq I(\Delta_N) = I(0) + \Delta_N I'(0) + o(\Delta_N) \\ &= \frac{k}{N} + \Delta_N \left(\left(1 - \frac{k}{N} \right) K \frac{k}{N} - \gamma \frac{k}{N} \right) + o(\Delta_N) \end{split}$$

Calcul .

$$\frac{1}{N}\mathbb{E}_k(I_1^N) = \frac{k}{N} + \frac{1}{N}\left(\left(1 - \frac{k}{N}\right)\frac{k}{N}q - p\frac{k}{N}\right)$$

$$\Delta_N = \frac{1}{N}, \ \gamma = p \ {\rm et} \ K = q$$

Intuition:

$$\begin{split} \frac{1}{N} \mathbb{E}_k(I_1^N) &\simeq I(\Delta_N) = I(0) + \Delta_N I'(0) + o(\Delta_N) \\ &= \frac{k}{N} + \Delta_N \left(\left(1 - \frac{k}{N} \right) K \frac{k}{N} - \gamma \frac{k}{N} \right) + o(\Delta_N) \end{split}$$

Calcul:

$$\frac{1}{N}\mathbb{E}_k(I_1^N) = \frac{k}{N} + \frac{1}{N}\left(\left(1 - \frac{k}{N}\right)\frac{k}{N}q - \rho\frac{k}{N}\right)$$

$$\Delta_N = \frac{1}{N}, \ \gamma = p \ {
m et} \ K = q$$

Intuition:

$$\begin{split} \frac{1}{N} \mathbb{E}_k(I_1^N) &\simeq I(\Delta_N) = I(0) + \Delta_N I'(0) + o(\Delta_N) \\ &= \frac{k}{N} + \Delta_N \left(\left(1 - \frac{k}{N} \right) K \frac{k}{N} - \gamma \frac{k}{N} \right) + o(\Delta_N) \end{split}$$

Calcul:

$$\frac{1}{N}\mathbb{E}_k(I_1^N) = \frac{k}{N} + \frac{1}{N}\left(\left(1 - \frac{k}{N}\right)\frac{k}{N}q - p\frac{k}{N}\right)$$

$$\Delta_N = \frac{1}{N}, \ \gamma = p \ {
m et} \ K = q$$

Intuition:

$$\begin{split} \frac{1}{N} \mathbb{E}_k(I_1^N) &\simeq I(\Delta_N) = I(0) + \Delta_N I'(0) + o(\Delta_N) \\ &= \frac{k}{N} + \Delta_N \left(\left(1 - \frac{k}{N} \right) K \frac{k}{N} - \gamma \frac{k}{N} \right) + o(\Delta_N) \end{split}$$

Calcul:

$$\frac{1}{N}\mathbb{E}_k(I_1^N) = \frac{k}{N} + \frac{1}{N}\left(\left(1 - \frac{k}{N}\right)\frac{k}{N}q - \rho\frac{k}{N}\right)$$

$$\Delta_N = \frac{1}{N}, \ \gamma = p \ {
m et} \ K = q$$

Intuition:

$$\begin{split} \frac{1}{N} \mathbb{E}_k(I_1^N) &\simeq I(\Delta_N) = I(0) + \Delta_N I'(0) + o(\Delta_N) \\ &= \frac{k}{N} + \Delta_N \left(\left(1 - \frac{k}{N} \right) K \frac{k}{N} - \gamma \frac{k}{N} \right) + o(\Delta_N) \end{split}$$

Calcul:

$$\frac{1}{N}\mathbb{E}_k(I_1^N) = \frac{k}{N} + \frac{1}{N}\left(\left(1 - \frac{k}{N}\right)\frac{k}{N}q - \rho\frac{k}{N}\right)$$

$$\Delta_{\mathcal{N}}=rac{1}{\mathcal{N}},\,\,\gamma=p\,\, ext{et}\,\,\mathcal{K}=q$$

Figure: Evolution des infectés avec $\mathfrak{R}_0 < 1$

Figure: Evolution des infectés avec $\Re_0 > 1$

Construction du modèle à plusieurs compartiments

Soient des réels $\alpha_{i,j} > 0$ tels que $\sum_{j \neq i} \alpha_{ij} = n-1$ pour tout i.

Construction intuitive

Choix d'un individu au hasard dans la population. En notant $i \in [0, n-1]$ sa ville :

- Action de déplacement avec probabilité x.
 - Si susceptible, déménagement vers $j \neq i$ avec probabilité $\frac{\varepsilon_S}{n-1}\alpha_{ij}$ et reste dans i avec probabilité $1-\varepsilon_S$
 - Si infecté, même chose mais on remplace ε_S par ε_I
- Action sur l'état avec probabilité 1-x.
 - Si infecté, guérison avec probabilité pi
 - Si susceptible, choix d'un autre individu dans la ville.
 - ullet Si l'autre est infecté, contamination du premier avec probabilité q_i
 - Si l'autre est susceptible, rien

Construction du modèle à plusieurs compartiments

Soient des réels $\alpha_{i,j} > 0$ tels que $\sum_{j \neq i} \alpha_{ij} = n - 1$ pour tout i.

Construction intuitive

Choix d'un individu au hasard dans la population. En notant $i \in [0, n-1]$ sa ville :

- Action de déplacement avec probabilité x.
 - Si susceptible, déménagement vers $j \neq i$ avec probabilité $\frac{\varepsilon_S}{n-1}\alpha_{ij}$ et reste dans i avec probabilité $1-\varepsilon_S$
 - Si infecté, même chose mais on remplace ε_S par ε_I
- Action sur l'état avec probabilité 1-x.
 - Si infecté, guérison avec probabilité pi
 - Si susceptible, choix d'un autre individu dans la ville.
 - Si l'autre est infecté, contamination du premier avec probabilité q_i
 - Si l'autre est susceptible, rien

Construction du modèle à plusieurs compartiments

Soient des réels $\alpha_{i,j} > 0$ tels que $\sum_{j \neq i} \alpha_{ij} = n-1$ pour tout i.

Construction intuitive

Choix d'un individu au hasard dans la population. En notant $i \in [0, n-1]$ sa ville :

- Action de déplacement avec probabilité x.
 - Si susceptible, déménagement vers $j \neq i$ avec probabilité $\frac{\varepsilon_S}{n-1} \alpha_{ij}$ et reste dans i avec probabilité $1 \varepsilon_S$
 - Ŝi infecté, même chose mais on remplace ε_S par ε_I
- Action sur l'état avec probabilité 1-x.
 - Si infecté, guérison avec probabilité pi
 - Si susceptible, choix d'un autre individu dans la ville.
 - ullet Si l'autre est infecté, contamination du premier avec probabilité q_i
 - Si l'autre est susceptible, rien

Construction du modèle à plusieurs compartiments

Soient des réels $\alpha_{i,j} > 0$ tels que $\sum_{j \neq i} \alpha_{ij} = n - 1$ pour tout i.

Construction intuitive

Choix d'un individu au hasard dans la population. En notant $i \in [0, n-1]$ sa ville :

- Action de déplacement avec probabilité x.
 - Si susceptible, déménagement vers $j \neq i$ avec probabilité $\frac{\varepsilon_S}{n-1}\alpha_{ij}$ et reste dans i avec probabilité $1-\varepsilon_S$
 - Si infecté, même chose mais on remplace ε_S par ε_I
- Action sur l'état avec probabilité 1-x.
 - Si infecté, guérison avec probabilité pi
 - Si susceptible, choix d'un autre individu dans la ville.
 - Si l'autre est infecté, contamination du premier avec probabilité q_i
 - Si l'autre est susceptible, rien

Construction du modèle à plusieurs compartiments

Soient des réels $\alpha_{i,j} > 0$ tels que $\sum_{j \neq i} \alpha_{ij} = n - 1$ pour tout i.

Construction intuitive

Choix d'un individu au hasard dans la population. En notant $i \in [0, n-1]$ sa ville :

- Action de déplacement avec probabilité x.
 - Si susceptible, déménagement vers $j \neq i$ avec probabilité $\frac{\varepsilon_S}{n-1}\alpha_{ij}$ et reste dans i avec probabilité $1-\varepsilon_S$
 - Si infecté, même chose mais on remplace ε_S par ε_I
- Action sur l'état avec probabilité 1-x.
 - Si infecté, guérison avec probabilité pi
 - Si susceptible, choix d'un autre individu dans la ville.
 - Si l'autre est infecté, contamination du premier avec probabilité q_i
 - Si l'autre est susceptible, rien

Construction du modèle

Figure: Evolution du nombre d'infectés dans les cas x = 0 et x = 1

Intuition : $\mathbb{E}(I_1^{N,i}) = I_i(\Delta_N) \simeq I_i(0) + \Delta_N I_i'(0)$

Calcul:

$$\mathbb{E}(I_1^{N,i}) = k_i + \frac{1}{Na} \left(d_I \sum_{j \in \Omega} L_{i,j} k_j + \beta_i \frac{(n_i - k_i)k_i}{n_i} - \gamma_i k_i \right)$$

Système d'EDO : $\forall i \in [0, n-1]$,

$$\begin{cases} \frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{i,j} I_j + \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i \\ \frac{dS_i}{dt} = d_S \sum_{i \in \Omega} L_{i,j} S_j - \beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i \end{cases}$$

où
$$d_I = ax\varepsilon_I$$
, $d_S = ax\varepsilon_S$, $\gamma_i = a(1-x)p_i$, $\beta_i = a(1-x)q_i$ et $L_{i,j} = \alpha_{ij}/(n-1)$ si $i \neq j$ et -1 si $i = j$.

Intuition: $\mathbb{E}(I_1^{N,i}) = I_i(\Delta_N) \simeq I_i(0) + \Delta_N I_i'(0)$

$$\mathbb{E}(I_1^{N,i}) = k_i + \frac{1}{Na} \left(d_I \sum_{j \in \Omega} L_{i,j} k_j + \beta_i \frac{(n_i - k_i)k_i}{n_i} - \gamma_i k_i \right)$$

Système d'EDO : $\forall i \in [0, n-1]$,

$$\begin{cases} \frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{i,j} I_j + \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i \\ \frac{dS_i}{dt} = d_S \sum_{j \in \Omega} L_{i,j} S_j - \beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i \end{cases}$$

Intuition : $\mathbb{E}(I_1^{N,i}) = I_i(\Delta_N) \simeq I_i(0) + \Delta_N I_i'(0)$

Calcul:

$$\mathbb{E}(I_1^{N,i}) = k_i + \frac{1}{Na} \left(d_I \sum_{j \in \Omega} L_{i,j} k_j + \beta_i \frac{(n_i - k_i)k_i}{n_i} - \gamma_i k_i \right)$$

Système d'EDO : $\forall i \in [0, n-1]$,

$$\begin{cases} \frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{i,j} I_j + \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i \\ \frac{dS_i}{dt} = d_S \sum_{i \in \Omega} L_{i,j} S_j - \beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i \end{cases}$$

où
$$d_I = ax\varepsilon_I$$
, $d_S = ax\varepsilon_S$, $\gamma_i = a(1-x)p_i$, $\beta_i = a(1-x)q_i$ et $L_{i,j} = \alpha_{ij}/(n-1)$ si $i \neq j$ et -1 si $i = j$.

Intuition : $\mathbb{E}(I_1^{N,i}) = I_i(\Delta_N) \simeq I_i(0) + \Delta_N I_i'(0)$

Calcul:

$$\mathbb{E}(I_1^{N,i}) = k_i + \frac{1}{Na} \left(d_I \sum_{j \in \Omega} L_{i,j} k_j + \beta_i \frac{(n_i - k_i)k_i}{n_i} - \gamma_i k_i \right)$$

Système d'EDO : $\forall i \in [0, n-1]$,

$$\begin{cases} \frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{i,j} I_j + \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i \\ \frac{dS_i}{dt} = d_S \sum_{i \in \Omega} L_{i,j} S_j - \beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i \end{cases}$$

Intuition : $\mathbb{E}(I_1^{N,i}) = I_i(\Delta_N) \simeq I_i(0) + \Delta_N I_i'(0)$ Calcul :

$$\mathbb{E}(I_1^{N,i}) = k_i + \frac{1}{Na} \left(d_I \sum_{j \in \Omega} L_{i,j} k_j + \beta_i \frac{(n_i - k_i)k_i}{n_i} - \gamma_i k_i \right)$$

Système d'EDO : $\forall i \in [0, n-1]$,

$$\begin{cases} \frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{i,j} I_j + \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i \\ \frac{dS_i}{dt} = d_S \sum_{j \in \Omega} L_{i,j} S_j - \beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i \end{cases}$$

Intuition: $\mathbb{E}(I_1^{N,i}) = I_i(\Delta_N) \simeq I_i(0) + \Delta_N I_i'(0)$

Calcul:

$$\mathbb{E}(I_{\mathbf{1}}^{N,i}) = k_i + \frac{1}{Na} \left(d_I \sum_{j \in \Omega} L_{i,j} k_j + \beta_i \frac{(n_i - k_i)k_i}{n_i} - \gamma_i k_i \right)$$

Système d'EDO : $\forall i \in [0, n-1]$,

$$\begin{cases} \frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{i,j} I_j + \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i \\ \frac{dS_i}{dt} = d_S \sum_{j \in \Omega} L_{i,j} S_j - \beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i \end{cases}$$

Intuition : $\mathbb{E}(I_1^{N,i}) = I_i(\Delta_N) \simeq I_i(0) + \Delta_N I_i'(0)$ Calcul :

$$\mathbb{E}(I_1^{N,i}) = k_i + \frac{1}{Na} \left(d_I \sum_{j \in \Omega} L_{i,j} k_j + \beta_i \frac{(n_i - k_i)k_i}{n_i} - \gamma_i k_i \right)$$

Système d'EDO : $\forall i \in [0, n-1]$,

$$\begin{cases} \frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{i,j} I_j + \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i \\ \frac{dS_i}{dt} = d_S \sum_{j \in \Omega} L_{i,j} S_j - \beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i \end{cases}$$

Intuition : $\mathbb{E}(I_1^{N,i}) = I_i(\Delta_N) \simeq I_i(0) + \Delta_N I_i'(0)$ Calcul :

$$\mathbb{E}(I_1^{N,i}) = k_i + \frac{1}{Na} \left(d_l \sum_{j \in \Omega} L_{i,j} k_j + \beta_i \frac{(n_i - k_i)k_i}{n_i} - \gamma_i k_i \right)$$

Système d'EDO : $\forall i \in [0, n-1]$,

$$\begin{cases} \frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{i,j} I_j + \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i \\ \frac{dS_i}{dt} = d_S \sum_{j \in \Omega} L_{i,j} S_j - \beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i \end{cases}$$

Intuition : $\mathbb{E}(I_1^{N,i}) = I_i(\Delta_N) \simeq I_i(0) + \Delta_N I_i'(0)$ Calcul :

$$\mathbb{E}(I_1^{N,i}) = k_i + \frac{1}{Na} \left(d_I \sum_{j \in \Omega} L_{i,j} k_j + \beta_i \frac{(n_i - k_i)k_i}{n_i} - \gamma_i k_i \right)$$

Système d'EDO : $\forall i \in [0, n-1]$,

$$\begin{cases} \frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{i,j} I_j + \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i \\ \frac{dS_i}{dt} = d_S \sum_{j \in \Omega} L_{i,j} S_j - \beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i \end{cases}$$

Intuition : $\mathbb{E}(I_1^{N,i}) = I_i(\Delta_N) \simeq I_i(0) + \Delta_N I_i'(0)$ Calcul :

$$\mathbb{E}(I_1^{N,i}) = k_i + \frac{1}{Na} \left(d_I \sum_{j \in \Omega} L_{i,j} k_j + \beta_i \frac{(n_i - k_i)k_i}{n_i} - \gamma_i k_i \right)$$

Système d'EDO : $\forall i \in [0, n-1]$,

$$\begin{cases} \frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{i,j} I_j + \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i \\ \frac{dS_i}{dt} = d_S \sum_{j \in \Omega} L_{i,j} S_j - \beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i \end{cases}$$

Convergence du modèle stochastique vers le modèle déterministe : simulations

Figure: Convergence du modèle stochastique vers le modèle déterministe

Nombre de reproduction de base

Définition

Avec $F = Diag(\beta_0, ..., \beta_{n-1})$, $V = Diag(\gamma_0, ..., \gamma_{n-1}) - d_I L$, on définit :

$$\Re_0 = \rho(FV^{-1})$$

Propriétés du \mathfrak{R}_0

Propriété

La fonction $d_I \mapsto \mathfrak{R}_0(d_I)$ est strictement décroissante et strictement convexe sur $]0, +\infty[$.

Comme $d_I = ax\varepsilon_I$, le nombre de reproduction de base diminue avec ε_I .

Figure: $\varepsilon_I \mapsto \mathfrak{K}_0(d_I)$

Propriétés du R₀

Propriété

La fonction $d_I \mapsto \mathfrak{R}_0(d_I)$ est strictement décroissante et strictement convexe sur $]0, +\infty[$.

Comme $d_I = ax\varepsilon_I$, le nombre de reproduction de base diminue avec ε_I .

Figure: $\varepsilon_I \mapsto \mathfrak{R}_0(d_I)$

Propriétés du \Re_0

Propriété

Si $\Re_0>1$, le modèle admet un unique équilibre endémique. Si $\Re_0<1$, il n'y a pas d'équilibre endémique.

Rappel:

$$\begin{cases} \frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{i,j} I_j + \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i \\ \frac{dS_i}{dt} = d_S \sum_{j \in \Omega} L_{i,j} S_j - \beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i \end{cases}$$

 N_i le nombre de personnes dans la ville i

$$\frac{dN_i}{dt} = (d_S + d_I) \sum_{i=1}^n L_{ij} N_j$$

Sous forme matricielle:

$$\frac{dN}{dt} = AN$$

où
$$A = (d_1 + d_5)L$$
.

Rappel:

$$\begin{cases} \frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{i,j} I_j + \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i \\ \frac{dS_i}{dt} = d_S \sum_{j \in \Omega} L_{i,j} S_j - \beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i \end{cases}$$

 N_i le nombre de personnes dans la ville i

$$\frac{dN_i}{dt} = (d_S + d_I) \sum_{j=1}^n L_{ij} N_j$$

Sous forme matricielle :

$$\frac{dN}{dt} = AN$$

où
$$A = (d_1 + d_5)L$$
.

Rappel:

$$\begin{cases} \frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{i,j} I_j + \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i \\ \frac{dS_i}{dt} = d_S \sum_{j \in \Omega} L_{i,j} S_j - \beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i \end{cases}$$

 N_i le nombre de personnes dans la ville i

$$\frac{dN_i}{dt} = (d_S + d_I) \sum_{i=1}^n L_{ij} N_j$$

Sous forme matricielle:

$$\frac{dN}{dt} = AN$$

où
$$A = (d_1 + d_5)L$$
.

Rappel:

$$\begin{cases} \frac{dI_i}{dt} = d_I \sum_{j \in \Omega} L_{i,j} I_j + \beta_i \frac{S_i I_i}{S_i + I_i} - \gamma_i I_i \\ \frac{dS_i}{dt} = d_S \sum_{j \in \Omega} L_{i,j} S_j - \beta_i \frac{S_i I_i}{S_i + I_i} + \gamma_i I_i \end{cases}$$

 N_i le nombre de personnes dans la ville i

$$\frac{dN_i}{dt} = (d_S + d_I) \sum_{j=1}^n L_{ij} N_j$$

Sous forme matricielle:

$$\frac{dN}{dt} = AN$$

où
$$A = (d_1 + d_5)L$$
.

$$N(t) = P_t N_0$$
 où $P_t = e^{tA}$ et N_0 répartition initiale des individus

Propriété

En temps long, la population s'équilibre dans les différents groupes.

$$N(t) = P_t N_0$$
 où $P_t = e^{tA}$ et N_0 répartition initiale des individus

Propriété

En temps long, la population s'équilibre dans les différents groupes.

- On part d'un modèle stochastique
- Passage à la limite pour trouver un modèle déterministe à partir de ce modèle stochastique
- Introduction du \mathfrak{R}_0
- ullet Laisser les individus se déplacer permet de diminuer le \mathfrak{R}_0

- On part d'un modèle stochastique
- Passage à la limite pour trouver un modèle déterministe à partir de ce modèle stochastique
- Introduction du \mathfrak{R}_0
- ullet Laisser les individus se déplacer permet de diminuer le \mathfrak{R}_0

- On part d'un modèle stochastique
- Passage à la limite pour trouver un modèle déterministe à partir de ce modèle stochastique
- Introduction du \mathfrak{R}_0
- ullet Laisser les individus se déplacer permet de diminuer le \mathfrak{R}_0

- On part d'un modèle stochastique
- Passage à la limite pour trouver un modèle déterministe à partir de ce modèle stochastique
- Introduction du \mathfrak{R}_0
- ullet Laisser les individus se déplacer permet de diminuer le \mathfrak{R}_0

- On part d'un modèle stochastique
- Passage à la limite pour trouver un modèle déterministe à partir de ce modèle stochastique
- Introduction du \mathfrak{R}_0
- ullet Laisser les individus se déplacer permet de diminuer le \mathfrak{R}_0

- On part d'un modèle stochastique
- Passage à la limite pour trouver un modèle déterministe à partir de ce modèle stochastique
- Introduction du \mathfrak{R}_0
- ullet Laisser les individus se déplacer permet de diminuer le \mathfrak{R}_0