FIELD AND WAVE ELECTROMAGNETICS

Solution of Electrostatic Problems

Chapter 4: Solutions of Electrostatic Problems

- 4-1 Introduction
- 4-2 Poisson's and Laplace's Equations
- 4-3 Uniqueness of Electrostatic Solutions
- **4-4 Methods of Images**
- 4-5 Boundary-Value Problems in Cartesian Coordinates
- 4-6 Boundary-Value Problems in Cylindrical Coordinates
- 4-7 Boundary-Value Problems in Spherical Coordinates

4.2 Poisson's and Laplaces's Equations

Maxwell Equation

$$\nabla \cdot \vec{D} = \rho$$
 free charges

$$\nabla \times \vec{E} = 0$$

$$\vec{E} = -\nabla V$$

In a <u>linear</u> and <u>isotropic</u> medium

$$\vec{D} = \varepsilon \vec{E}$$

$$\nabla \cdot \varepsilon \vec{E} = \rho$$

$$\nabla \cdot (\mathcal{E}\nabla V) = -\rho$$

For a <u>homegeneous</u> medium:

$$\nabla^2 V = -\frac{\rho}{\varepsilon}$$

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\frac{\rho}{\varepsilon}$$

$$\nabla^2 V = \nabla \cdot \nabla V = (\vec{a}_x \frac{\partial}{\partial x} + \vec{a}_y \frac{\partial}{\partial y} + \vec{a}_z \frac{\partial}{\partial z}) \cdot (\vec{a}_x \frac{\partial V}{\partial x} + \vec{a}_y \frac{\partial V}{\partial y} + \vec{a}_z \frac{\partial V}{\partial z})$$

$$= \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

4.2 Poisson's and Laplaces's Equations

Cylindrical coordinates:

$$\nabla^{2}V = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial V}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial^{2}V}{\partial \Phi^{2}} + \frac{\partial^{2}V}{\partial z^{2}}$$

Spherical coordinates:

$$\nabla^{2}V = \frac{1}{R^{2}} \frac{\partial}{\partial R} (R^{2} \frac{\partial V}{\partial R}) + \frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial V}{\partial \theta}) + \frac{1}{R^{2} \sin^{2} \theta} \frac{\partial^{2} V}{\partial \Phi^{2}}$$

no free charge Laplance's equation

$$\nabla^2 V = 0$$

electric field

$$\vec{E} = -\nabla V$$

charge distribution on the conductor surfaces

$$\rho_{s} = \varepsilon \vec{E}_{n}$$

Determine the field both inside and outside a spherical cloud of electrons with a uniform volume charge density $\rho = -\rho_0$ (where ρ_0 is a positive quantity) for $0 \le R \le b$ and $\rho = 0$ for R > b by solving Poisson's and Laplance's equation for V.

(1) Inside the cloud $0 \le R \le b$ $\rho = -\rho_0$

$$0 \le R \le k$$

$$\rho = -\rho_0$$

Poisson's equation $\nabla^2 V = -\frac{\rho}{\varsigma}$

$$\nabla^2 V = -\frac{\rho}{\varepsilon}$$

$$\frac{1}{R^2} \frac{d}{dR} (R^2 \frac{dV_i}{dR}) = \frac{\rho_0}{\varepsilon_0} \qquad \frac{d}{dR} (R^2 \frac{dV_i}{dR}) = \frac{\rho_0}{\varepsilon_0} R^2$$

$$\frac{dV_i}{dR} = \frac{\rho_0}{3\varepsilon_0} R + \frac{C_1}{R^2}.$$

The electric field intensity inside

$$\vec{E}_i = -\nabla V_i = -\vec{a}_R (\frac{dV_i}{dR})$$

$$\vec{E}_i = -\vec{a}_R (\frac{\rho_0}{3\varepsilon_0}) R$$

$$\vec{E}_i = -\vec{a}_R (\frac{\rho_0}{3\varepsilon_0}) R$$

$$\nabla^2 V = \frac{1}{R^2} \frac{\partial}{\partial R} (R^2 \frac{\partial V}{\partial R}) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial V}{\partial \theta}) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \Phi^2}$$

Determine the field both inside and outside a spherical cloud of electrons with a uniform volume charge density $\rho = -\rho_0$ (where ρ_0 is a positive quantity) for $0 \le R \le b$ and $\rho = 0$ for R > b by sloving Poisson's and Laplance's equation for V.

 $\rho = 0$

(2) Outside the cloud $b \le R$

$$b \le R$$

Laplace's equation

$$\nabla^2 V = 0$$

$$\frac{1}{R^2} \frac{d}{dR} (R^2 \frac{dV_o}{dR}) = 0$$

$$\frac{dV_0}{dR} = \frac{C_2}{R^2}$$

The electric field
$$\vec{E}_0 = -\nabla V_0 = -\vec{a}_R (\frac{dV_0}{dR}) = -\vec{a}_R (\frac{C_2}{R^2})$$

The electric field continuity at R=b $\frac{C_2}{b^2} = \frac{\rho_0}{3c}b$

at
$$R = b$$
 $\frac{C_2}{b^2} = \frac{\rho_0}{3\varepsilon_0} b$

$$\vec{E}_0 = -\vec{a}_R \frac{\rho_0 b^3}{3\varepsilon_0 R^2}$$

$$Q = -\rho_0 \frac{4\pi}{3} b^3 \qquad \vec{E}_0 = \vec{a}_R \frac{Q}{4\pi \varepsilon_0 R^2}$$

4.3 Uniqueness of Electrostatic Solutions

Uniqueness theorem

A solution of Possion's equation (of Lapalce's equation is a special case) that satisfies the given boundary conditions is a unique solution.

A solution of an electrostatic problem satisfying its boundary conditions is the only possible solution, irrespective of the method by with the solution is obtained.

point charge and conducting planes

Consider the case of a positive point charge, Q, located at a distance d above a large grounded (zero-potential) conducting plane Find the potential at every point above the conducting plane (y>0).

The V(x,y,z) should satisfy the following conditions:

- (1) At all points on the grounded conducting plane, V(x,0,z)=0.
- (2) At points very close to Q, V approaches that of the point charge alone;

that is as
$$R \rightarrow 0$$

$$V \to \frac{Q}{4\pi\varepsilon_0 R}$$

- (3) At points very far from $Q(x \to \pm \infty, y \to +\infty, z \to \pm \infty)$, $V \to 0$.
- (4) V is even with respect to the x and z coordinates:

$$V(x, y, z) = V(-x, y, z)$$
 and $V(x, y, z) = V(x, y, -z)$

point charge and conducting planes

Positive charge Q at y=d would induce negative charges on the surface of the conducting plane, resulting in a surface charge density ρ_s . Hence the potential at points above the conducting plane would be:

$$V(x, y, z) = \frac{Q}{4\pi\varepsilon_0 \sqrt{x^2 + (y - d)^2 + z^2}} + \frac{1}{4\pi\varepsilon_0} \int_s^{\infty} \frac{\rho_s}{R_1} ds,$$

Trouble: how to determine the surface charge density ρ_s ?

point charge and conducting planes

If we remove the conductor and replace it by an image point charge -Q at y=-d, then the potential at a point P(x,y,z) in the y>0 region is

(b) Image charge and field lines.

$$V(x, y, z) = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{R_+} - \frac{1}{R_-}\right)$$

$$R_+ = \left[x^2 + (y - d)^2 + z^2\right]^{\frac{1}{2}}$$

$$R_- = \left[x^2 + (y + d)^2 + z^2\right]^{\frac{1}{2}}$$

Note: The image charge should be located outside the region where the field is to be determined

- linear charge and parallel conducting cylinder

Consider a line charge ρ_l (C/m) located at a distance d from the axis of a parallel, conducting, circular cylinder of radius a. Both the line charge and the conducting cylinder are assumed to be infinitely long. Determine the position of the image charge.

Image: (1) the cylindrical surface at r=a an equipotential surface

- \rightarrow the image must be a parallel line charge (ρ_i) inside the cylinder.
- (2) symmetry with respect to the line OP
- \rightarrow the image must lie somewhere along OP. Say at point P_i , which is at a distance d_i from the axis.

- linear charge and parallel conducting cylinder

Determine: ρ_i and d_i

let us assume that $\rho_i = -\rho_l$

The electric potential at a distance r from a line charge of density ρ_l can be obtained by integrating the electric field intensity E:

$$V = -\int_{r_0}^r E_r dr = -\frac{\rho_t}{2\pi\varepsilon_0} \int_{r_0}^r \frac{1}{r} dr = \frac{\rho_t}{2\pi\varepsilon_0} \ln \frac{r_0}{r} \qquad \mathbf{r_0: zero potential}$$

At any point M on the cylindrical surface, the potential:

$$V_{M} = \frac{\rho_{i}}{2\pi\varepsilon_{0}} \ln \frac{r_{0}}{r} - \frac{\rho_{i}}{2\pi\varepsilon_{0}} \ln \frac{r_{0}}{r_{i}} = \frac{\rho_{i}}{2\pi\varepsilon_{0}} \ln \frac{r_{i}}{r} \qquad r_{0} \text{ for both } \rho_{i} \text{ and } \rho_{l}$$

- linear charge and parallel conducting cylinder

$$V_{M} = \frac{r_{i}}{2\rho e_{0}} \ln \frac{r_{i}}{r}$$
 Equipotential

$$\frac{r_i}{r} = cons.$$

Triangles OMP_i and OPM similar:

$$\frac{r_i}{r} = \frac{d_i}{a} = \frac{a}{d} = C$$

$$d_i = \frac{a^2}{d}$$

The image line charge ρ_i together with ρ_l , will make the dashed cylindrical surface equipotential.

point charge and conducting sphere

A point charge Q is at a distance d from the center of a grounded conducting sphere of radius a (a < d). Determined the charge distribution induced on the sphere and the total charge induced on the sphere.

Image charge Q_i can be equal to -Q?

point charge and conducting sphere

The electric potential V at an arbitrary point

$$V(R,\theta) = \frac{1}{4\pi\varepsilon_0} \left(\frac{Q}{R_Q} - \frac{\frac{a}{d}Q}{R_{Q_i}}\right) = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{R_Q} - \frac{a}{dR_{Q_i}}\right)$$

The law of cosines

$$R_0 = [R^2 + d^2 - 2Rd\cos\theta]^{1/2}$$

$$R_{Q_i} = [R^2 + (\frac{a^2}{d})^2 - 2R(\frac{a^2}{d})\cos\theta]^{1/2}$$

point charge and conducting sphere

$$V(R,\theta) = \frac{1}{4\pi\varepsilon_0} \left(\frac{Q}{R_Q} - \frac{\frac{a}{d}Q}{R_{Q_i}} \right) = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{R_Q} - \frac{a}{dR_{Q_i}} \right)$$

The R-component of the electric field intensity E_R

$$E_{R}(R,\theta) = -\frac{\partial V(R,\theta)}{\partial R}$$

$$E_{R}(R,\theta) = \frac{Q}{4\pi\varepsilon_{0}} \left\{ \frac{R - d\cos\theta}{(R^{2} + d^{2} - 2Rd\cos\theta)^{3/2}} - \frac{a[R - (a^{2}/d)\cos\theta]}{d[R^{2} + (a^{2}/d)^{2} - 2R(a^{2}/d)\cos\theta]^{3/2}} \right\}$$

(1) To find the induced surface charge on the sphere, we set R=a

$$\rho_{s} = \varepsilon_{0} E_{R}(a, \theta) = -\frac{Q(d^{2} - a^{2})}{4\pi a (a^{2} + d^{2} - 2ad \cos \theta)^{3/2}}$$

Induced surface charge is negative and that its magnitude is maxmium at θ =0 and minimum θ = π .

point charge and conducting sphere

(2) The total charge induced on the sphere is obtained by integrating ρ_s over the surface of the sphere.

Total-induced-charge =
$$\oint \rho_s ds = \int_0^{2\pi} \int_0^{\pi} \rho_s a^2 \sin\theta d\theta d\Phi = -\frac{a}{d}Q = Q_{i}$$
.

Potential equation (free source):

$$\nabla^2 V = 0$$

Method of images: free charges near conducting boundaries.

For problems consisting of a system of <u>conductors maintained at specified</u> <u>potentials</u> and <u>with no isolated free charges</u>, how to solve them?

Method of separation of variables: the solution can be expressed as a product of three one-dimensional functions, each depending separately on one coordinate variable only

Three types of boundary-value problem:

- (1) Dirichlet problems: the potential value is specified everywhere on the boundaries;
- (2) Neumann problems: the normal derivative of the potential is specified everywhere on the boundaries;
- (3) Mixed boundary-value problems: the potential value is specified over some boundaries and the normal derivative of the potential is specified over the remaining ones;

Laplace's equation for V in Cartesian coordinates:

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

Apply method of separation of variables, V(x,y,z) can be expressed as:

$$V(x, y, z) = X(x)Y(y)Z(z)$$

X(x),Y(y) and Z(z) are functions of only x, y and z, respectively.

$$Y(y)Z(z)\frac{d^{2}X(x)}{dx^{2}} + X(x)Z(z)\frac{d^{2}Y(y)}{dy^{2}} + X(x)Y(y)\frac{d^{2}Z(z)}{dz^{2}} = 0$$

$$\frac{1}{X(x)}\frac{d^2X(x)}{dx^2} + \frac{1}{Y(y)}\frac{d^2Y(y)}{dy^2} + \frac{1}{Z(z)}\frac{d^2Z(z)}{dz^2} = 0$$

In order for Eq. to be satisfied for all values of x, y, z, each of the three terms must be a constant.

$$\frac{d}{dx}\left[\frac{1}{X(x)}\frac{d^2X(x)}{dx^2}\right] = 0$$

$$\frac{1}{X(x)} \frac{d^2 X(x)}{dx^2} = -k_x^2$$

 k_x^2 is a constant to be determined from the boundary conditions k_x is imaginary, $-k_x^2$ is a positive real number k_x is real, $-k_x^2$ is a negative real number

$$\frac{d^2X(x)}{dx^2} + k_x^2X(x) = 0$$

$$\frac{d^2Y(y)}{dy^2} + k_y^2Y(y) = 0$$

$$\frac{d^2Z(z)}{dz^2} + k_z^2Z(z) = 0$$

$$k_x^2 + k_y^2 + k_z^2 = 0$$

$$\frac{d^2X(x)}{dx^2} + k_x^2X(x) = 0$$

k_x^2	k_x	X(x)
0	0	$A_0x + B_0$
+	k	$A_1 \sin kx + B_1 \cos kx$
_	jk	$C_2e^{kx}+D_2e^{-kx}$

Two grounded, semi-infinite, parallel-plane electrodes are separated by a distance b. A third electrode perpendicular to and insulated from both is maintained at a constant. Determine the potential distribution in the region enclosed by the electrodes.

With V independent of z

$$V(x, y, z) = V(x, y)$$

In the x direction

$$V(0, y) = V_0$$
 $V(\infty, y) = 0$
 $V(x, 0) = 0$ $V(x, b) = 0$

In the y direction

$$V(x,0)=0$$
 $V(x,b)=0$

$$k_z = 0 Z(z) = B_0$$

In the *x* direction

$$V(0, y) = V_0$$
 $V(\infty, y) = 0$

In the y direction

$$V(x,0)=0$$
 $V(x,b)=0$

$$k_y^2 = -k_x^2 = k^2$$
 k real number, so $k_x = jk$

$$X(x) = D_2 e^{-kx}$$

$$Y(y) = A_1 \sin ky$$

$$V_n(x,y) = (B_0 D_2 A_1) e^{-kx} sinky = C_n e^{-kx} sinky$$

$$V_n(x,b) = C_n e^{-kx} sinkb = 0$$

Should be satisfied for all values of x, only if

$$k = \frac{n\pi}{b}, n = 1, 2, 3, ...$$

$$V_{n}(x, y) = C_{n}e^{-\frac{n\pi}{b}x}\sin\frac{n\pi}{b}y$$

$$V(0, y) = \sum_{n=1}^{\infty} V_{n}(0, y) = \sum_{n=1}^{\infty} C_{n}\sin\frac{n\pi}{b}y = V_{0}$$

$$C_{n} = \begin{cases} \frac{4V_{0}}{n\pi}, n - odd \\ 0, n - even \end{cases}$$

SOLUTION OF ELECTROSTATIC PROBLEMS

Method of images: free charges near conducting boundaries.

Method of separation of variables: for problems consisting of a system of conductors maintained at specified potentials and with no isolated free charges.

Method of separation of variables: the solution can be expressed as a product of three one-dimensional functions, each depending separately on one coordinate variable only