0.1 H17 数学選択

- L (1) 二次方程式は x^2 , x^2+1 , x^2+x , x^2+x+1 の 4 つである.このうち既約なものは根を \mathbb{F}_2 に持たないもの,すなわち x^2+x+1 である.
- (2) 二次のモニック多項式は p^2 個ある. 可約なモニック多項式は $(x-\alpha)(x-\beta)$ の形である. $\alpha \neq \beta$ に対して $(x-\alpha)(x-\beta)=(x-\beta)(x-\alpha)$ であることを踏まえると可約なモニック多項式の個数は $(p^2-p)/2+p=(p^2+p)/2$ である.

よって既約なモニック多項式の個数は $p^2 - (p^2 + p)/2 = (p^2 - p)/2$ である.

 $(3)x^2+1\in\mathbb{F}_p[x]$ が既約 $\Leftrightarrow -1$ が平方剰余

-1 が平方剰余なら $\exists x \in \mathbb{F}_p^{\times}$ が $x^4 = 1$ である. すなわち \mathbb{F}_p は位数 4 の部分群を持つから 4|(p-1) である. 逆に 4|(p-1) なら sylow の定理から位数が 4 以上の 2-sylow 部分群 H が存在する. $x^2 = 1$ となる x は ± 1 のみであるから,位数が 4 以上であることより $\exists x \in H$ が $x^2 = -1$ である.よって -1 は平方剰余である. すなわち $x^2 + 1$ が既約 $\Leftrightarrow p \equiv 1 \mod 4$ である.

 $\boxed{\mathbf{M}}$ $(1)f^2=\mathrm{id}$ より f は対角化可能であり F 上ベクトル空間として $V=W_1\oplus W_{-1}$ と分解できる.ここで W_i は固有値 i の固有空間である.

 $arphi\colon V o V_f; v\mapsto v+f(v)$ とすれば $\ker arphi=W_{-1}$ である.全射でもあるから $\dim_F V_f=\dim_F V-\dim_F W_{-1}$ である. $W=W_1$ であるから $\dim_F W=\dim_F V-\dim_F W_{-1}$ である.よって $\dim_F V_f=\dim_F W$ である. $f(v+f(v))=f(v)+f^2(v)=f(v)+v$ より $V_f\subset W$ である.よって $V_f=W$ である.

K/F は二次拡大であるから $\sigma(\alpha) = -\alpha$ なる $\alpha \in K$ が存在する.W の F 上の基底 $\{v_1, v_2, \ldots, v_m\}$ をとる. $\{\alpha v_1, \alpha v_2, \ldots, \alpha v_m\}$ は W_{-1} の基底となる. $v \in W_{-1}$ に対して $\alpha v \in W$ より $\alpha v = \sum_{i=1}^m a_i v_i$ より $\alpha^2 v = \sum_{i=1}^m a_i \alpha v_i, \alpha^2 \in F$ より W_{-1} を生成する.また $\sum c_i \alpha v_i = 0$ ($c_i \in F$)なら $\sum c_i v_i = 0$ であるから $c_i = 0$ である.よって $\{\alpha v_1, \alpha v_2, \ldots, \alpha v_m\}$ は W_{-1} の基底となる.

 $u \in V$ に対して $u = u_1 + u_{-1}$ $(u_1 \in W_1, u_{-1} \in W_{-1})$ と一意にあらわせる. $u_1 \in W$ より $u_1 = \sum_{i=1}^m a_i v_i$ と表せる. また $u_{-1} = \sum_{i=1}^m b_i \alpha v_i$ と表せる. よって $u = \sum_{i=1}^m (a_i + b_i \alpha) v_i$ と表せる. すなわち $\{v_1, v_2, \dots, v_m\}$ は K 上で V を生成する.

 $\sum (a_i+b_i\alpha)v_i=0$ $(a_i,b_i\in F)$ とする. $\sum a_iv_i=0\in W, \sum b_i\alpha v_i=0\in W_{-1}$ である. よって $a_i=b_i=0$ である. すなわち $\{v_1,v_2,\ldots,v_m\}$ は K 上で V の基底となる.

よってm=nである. すなわち $\dim_F W=n$ である.