

Donortor

Multi-Dimensional Analysis of Software Power Consumptions in Multi-Core Architectures

Maxime Colmant — PhD Defense — 24th November, 2016

Jury:

Olivior

Mr.	Rüdiger	KAPITZA	University Braunschweig	Reporter
Mr.	Giuseppe	Lipari	UNIVERSITY LILLE 1	Examiner
Mrs.	Anne-Cécile	Orgerie	CNRS	Examiner
Mr.	Romain	ROUVOY	University Lille 1 University Lille 1	Supervisor
Mr.	Lionel	SEINTURIER		Supervisor
Mr.	Alain	ANGLADE	ADEME	Guest

HMIVEDCITY DENNIC 1

TABLE OF CONTENTS

- 1. Introduction
- 2. Contributions
- 3. Conclusion & Perspectives

Introduction

THE GLOBAL ICT¹ FOOTPRINT²

Introduction 2/47

¹Information and Communications Technology

²The Climate Group. SMART 2020: Enabling the low carbon economy in the information age. 2008.

MULTI-CORE CPU ARCHITECTURES ARE EVERYWHERE!

Introduction 3/47

MULTI-CORE CPU ARCHITECTURES ARE EVERYWHERE!

Introduction 3/47

CASE STUDY

Introduction 4/47

Introduction 5/47

Introduction 6/47

Introduction 7/47

Introduction 8/47

Introduction 9/47

RESEARCH QUESTIONS

RQ1: Can we model the software power consumption regardless of the underlying architecture?

Introduction 10/47

RESEARCH QUESTIONS

RQ2: Can we propose a uniform view of the service power consumption?

Introduction 11/47

RESEARCH QUESTIONS

RQ3: Can we analyze the power consumption of the artifacts which compose a software?

Introduction 12/47

CONTRIBUTIONS

RQ1: Can we model the software power consumption regardless of the underlying architecture?

Contributions 13/47

RQ1: Can we model the software power consumption regardless of the underlying architecture?

Learning CPU Power Models

Contributions 13/47

• Math. function (metrics) \Rightarrow Power

- Math. function (metrics) ⇒ Power
- Mostly linear

Univariate: $P = a_x + b$

Multivariate: $P = a_x + b_y + c$

- Math. function (metrics) ⇒ Power
- · Mostly linear

Univariate:
$$P = a_x + b$$

Multivariate: $P = a_x + b_y + c$

Or polynomial

$$P = a_{x^2} + b_x + c$$

- Math. function (metrics) ⇒ Power
- · Mostly linear

Univariate:
$$P = a_x + b$$

Multivariate: $P = a_x + b_y + c$

· Or polynomial

$$P = a_{x^2} + b_x + c$$

· CPU metrics

From HW sensors (motherboard, power meters)
From Hardware Performance Counters (HPCs)

- Math. function (metrics) ⇒ Power
- · Mostly linear

Univariate:
$$P = a_x + b$$

Multivariate: $P = a_x + b_y + c$

Or polynomial

$$P = a_{x^2} + b_x + c$$

CPU metrics

From HW sensors (motherboard, power meters)
From Hardware Performance Counters (HPCs)

• $[Nou14]^3$: $P_{cpu}^{app} = 0.7 * TDP * CPU_{stats}$

³A. Noureddine. "Towards a Better Understanding of the Energy Consumption of Software Systems". PhD thesis. Université des Sciences et Technologie de Lille - Lille I, 2014.

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 PCs regrouped by component		sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	polynomial	sampl.: stress eval.: PARSEC, SPECjbb
[CM05]	XScale PXA255	5 PCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 PCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 PCs	multiple linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors PCs	multinla linaar	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected	support vector	sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06
???	ARM	???	???	???

Only for Intel or AMD architectures

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 HPCs regrouped by component	multiple linear by component	sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	polynomial	sampl.: stress eval.: PARSEC, SPECjbb
[CM05]	XScale PXA255	5 HPCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 HPCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 HPCs	multiple linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors HPCs	multiple linear	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected	support vector	sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06

HW sensors: coarse-grained CPU metrics

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 HPCs regrouped by component	multiple linear by component	sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	polynomial	sampl.: stress eval.: PARSEC, SPECjbb
[CM05]	XScale PXA255	5 HPCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 HPCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 HPCs	militinie linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors HPCs	multiple linear	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected	support vector	sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06

HPCs: fine-grained CPU metrics

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 HPCs regrouped by component	multiple linear by component	sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	polynomial	sampl.: stress eval.: PARSEC, SPECjbb
[CM05]	XScale PXA255	5 HPCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 HPCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 HPCs	imilitinie linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors HPCs	multiple linear	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected	support vector	sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06

Power models are mostly linear

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 HPCs regrouped by component		sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	polynomial	sampl.: stress eval.: PARSEC, <mark>SPECjbb</mark>
[CM05]	XScale PXA255	5 HPCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 HPCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 HPCs	l milltinle linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors HPCs	militinia linaar	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected		sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06

Non free or private workloads

1. Portability

- 1. Portability
- 2. Accuracy

- 1. Portability
- 2. Accuracy
- 3. Reproducibility

- 1. Portability
- 2. Accuracy
- 3. Reproducibility

Towards an automatic approach for learning CPU power models

OUR APPROACH:

OPEN-TESTBED TO AUTOMATICALLY LEARN POWER MODELS

- Input workload injection
 - Configurable
 - PARSEC (open-source, multi-threaded)⁴
 - · Run several applications (x264, vips, etc.)

⁴C. Bienia et al. "PARSEC 2.0: A New Benchmark Suite for Chip-Multiprocessors". In: Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation. 2009.

Our approach: Open-Testbed To Automatically Learn Power Models

- Acquisition of raw input metrics
 - Automatically explore the high number of the available HPCs (Xeon W3520: 514 HPCs)
 - Take care of HPC multiplexing⁵

⁵Intel. Intel 64 and IA-32 Architectures Software Developer's Manual. 2015.

Our approach: Open-Testbed To Automatically Learn Power Models

- 3 Selection of relevant HPCs
 - Pearson coefficient (HPC ⇔ Power)
 - 1st phase: quickly filtering out uncorrelated HPCs (< 0.5) (Xeon W3250: 253 left out)
 - \cdot 2nd phase: full sampling for the remaining HPCs

OUR APPROACH: OPEN-TESTBED TO AUTOMATICALLY LEARN POWER MODELS

Pearson coefficients of the Top-30 correlated events for the PARSEC benchmarks on a Xeon W3520.

OUR APPROACH: OPEN-TESTBED TO AUTOMATICALLY LEARN POWER MODELS

Pearson coefficients of the Top-30 correlated events for the PARSEC benchmarks on a Xeon W3520.

OUR APPROACH: OPEN-TESTBED TO AUTOMATICALLY LEARN POWER MODELS

Pearson coefficients of the Top-30 correlated events for the PARSEC benchmarks on a Xeon W3520.

OUR APPROACH: OPEN-TESTBED TO AUTOMATICALLY LEARN POWER MODELS

Pearson coefficients of the Top-30 correlated events for the PARSEC benchmarks on a Xeon W3520.

- Power model inference
 - · Minimize the number of HPCs
 - Robust ridge regression (SotA?)

Average error per combination of HPCs for freqmine, fluidanimate, facesim on a Xeon W3520.

$$P_{idle} = 92 \text{ W}; \ P_{CPU} = \frac{1.40 \cdot \text{HPC (l1i:reads)}}{10^8} + \frac{7.29 \cdot \text{HPC (lsd:inactive)}}{10^9}$$

Average error per combination of HPCs for freqmine, fluidanimate, facesim on a Xeon W3520.

$$P_{idle} = 92 \text{ W}$$
; $P_{CPU} = \frac{1.40 \cdot \text{HPC (l1i:reads)}}{10^8} + \frac{7.29 \cdot \text{HPC (lsd:inactive)}}{10^9}$

Relative errors for the PARSEC suite on the Cortex A15.

Portability

Beyond SotA: 4 CPUs (2×Intel, 1 AMD, 1 ARM)

Portability

Beyond SotA: 4 CPUs (2×Intel, 1 AMD, 1 ARM)

· Accuracy

Avg. error on the 4 CPUs: 1.5%

Portability

Beyond SotA: 4 CPUs (2×Intel, 1 AMD, 1 ARM)

Accuracy

Avg. error on the 4 CPUs: 1.5%

· Reproducibility

Built on open-source workloads

· Portability

Beyond SotA: 4 CPUs (2×Intel, 1 AMD, 1 ARM)

Accuracy

Avg. error on the 4 CPUs: 1.5%

Reproducibility

Built on open-source workloads

· Extensibility

Can we extend our learning approach to SSD power models?

MOTIVATION

Comparison of power consumptions between CPU and SSD by varying the throughput with the **fio** tool.

(a) SSD read operations.

(b) SSD write operations.

Power consumption of the host for 5 workloads on a Xeon E5-2630.

RQ2: Can we propose a uniform view of the service power consumption?

Contributions 28/47

RQ2: Can we propose a uniform view of the service power consumption?

Challenges

- 1. Native
- 2. Virtualized
- 3. Distributed

Contributions 29/47

RQ2: Can we propose a uniform view of the service power consumption?

Challenges

- 1. Native
- 2. Virtualized
- 3. Distributed

Contributions 29/47

- · Code freely available on GITHUB: http://powerapi.org
 - · Scala / Akka
 - LoC: 8.7k
 - Docker
 - · AGPLv3

- · Code freely available on GITHUB: http://powerapi.org
 - · Scala / Akka
 - LoC: 8.7k
 - Docker
 - · AGPLv3
- 2nd major iteration⁶
 - Full support of multi-core CPU architectures (HT, DVFS, TB)
 - · Learning techniques
 - Better support of Akka

⁶A. Noureddine. "Towards a Better Understanding of the Energy Consumption of Software Systems". PhD thesis. Université des Sciences et Technologie de Lille - Lille I, 2014.

SD Power Meter For Monitoring Concurrent Apps

· On the Intel Xeon W3520

Monitoring freq.: 4Hz

· Avg. error: 2%

· Low overhead: 2 W

RQ2: Can we propose a uniform view of the service power consumption?

Challenges

- 1. Native
- 2. Virtualized
- 3. Distributed

Contributions 33/47

BITWATTS ARCHITECTURE

EVALUATION

Scaling PARSEC on multiple VMs on a Xeon W3520.

- Errors: from 1% (fluidanimate) up to 10% (swaptions)
- Beyond SotA [Ber+12]: VM as a White-Box (+ multi-tenant)

⁷R. Bertran et al. "Energy Accounting for Shared Virtualized Environments Under DVFS Using PMC-based Power Models". In: Future Generation Computer Systems (2012).

RQ2: Can we propose a uniform view of the service power consumption?

Challenges

- 1. Native
- 2. Virtualized
- 3. Distributed

Contributions 36/47

A SERVICE-LEVEL POWER MONITORING

A SERVICE-LEVEL POWER MONITORING

A Service-Level Power Monitoring

A Service-Level Power Monitoring

RQ3: Can we analyze the power consumption of the artifacts which compose a software?

Contributions 40/47

OVERVIEW OF THE CODENERGY APPROACH

CODVIZU: SUNBURST (1)

CODVIZU: STREAMGRAPH (2)

a => readQueryFromClient (CPU): 12.40 W ; readQueryFromClient (DISK): 4.66 W b => je_huge_ralloc (CPU): 12.34 W ; je_huge_ralloc (DISK): 4.56 W

 16:12:18
 16:12:20
 16:12:22
 16:12:24
 16:12:26
 16:12:28

redis 2 (1) vs redis 3 (2).

redis 2 (1) vs redis 3 (2).

redis 2 (1) vs redis 3 (2).

CONCLUSION & PERSPECTIVES

Multi-dimensional analysis of software power consumptions on multi-core architectures

Multi-dimensional analysis of software power consumptions on multi-core architectures

- RQ1: Can we model the software power consumption regardless of the underlying architecture?
 - Open-testbed approach for learning multi-core power models

Multi-dimensional analysis of software power consumptions on multi-core architectures

• RQ1: Can we model the software power consumption regardless of the underlying architecture?

Open-testbed approach for learning multi-core power models

 RQ2: Can we propose a uniform view of the service power consumption?

In width energy monitoring with POWERAPI, BITWATTS & WATTSKIT

Multi-dimensional analysis of software power consumptions on multi-core architectures

• RQ1: Can we model the software power consumption regardless of the underlying architecture?

Open-testbed approach for learning multi-core power models

• RQ2: Can we propose a uniform view of the service power consumption?

In width energy monitoring with PowerAPI, BITWATTS & WATTSKIT

• RQ3: Can we analyze the power consumption of the artifacts which compose a software?

In depth energy monitoring with CODENERGY

SHORT-TERM PERSPECTIVES

- Define a new scheduler for saving energy in cloud data centers
- · Continuous optimization of the power models in a cluster
- Turning-off nodes of a cluster during inactivity periods
- · Leveraging source-code energy monitoring
- Extend CODENERGY to other programming languages

SHORT-TERM PERSPECTIVES

- Define a new scheduler for saving energy in cloud data centers
- · Continuous optimization of the power models in a cluster
- Turning-off nodes of a cluster during inactivity periods
- · Leveraging source-code energy monitoring
- Extend CODENERGY to other programming languages

SHORT-TERM PERSPECTIVES

- Define a new scheduler for saving energy in cloud data centers
- · Continuous optimization of the power models in a cluster
- · Turning-off nodes of a cluster during inactivity periods
- · Leveraging source-code energy monitoring
- Extend CODENERGY to other programming languages

LONG-TERM PERSPECTIVES

- · The power rising of GPU cards
- · Proposing a wider energy cartography of a system
- Using genetic programming to improve the energy-efficiency at source-code level
- Defining solutions to automatically optimize the software energy-efficiency

LONG-TERM PERSPECTIVES

- · The power rising of GPU cards
- Proposing a wider energy cartography of a system
- Using genetic programming to improve the energy-efficiency at source-code level
- Defining solutions to automatically optimize the software energy-efficiency

LONG-TERM PERSPECTIVES

- The power rising of GPU cards
- Proposing a wider energy cartography of a system
- Using genetic programming to improve the energy-efficiency at source-code level
- Defining solutions to automatically optimize the software energy-efficiency

PUBLICATIONS

Thanks for your attention.

Conferences

[Col+15]	M. Colmant et al. "Process-level Power Estimation in VM-based Systems". In: Proceedings of the 10th European Conference on
	Computer Systems (EuroSys). 2015.

- [CRS14] M. Colmant, R. Rouvoy, and L. Seinturier. "Improving the Energy Efficiency of Software Systems for Multi-Core Architectures". In: Middleware 2014 Doctoral Symposium. 2014.
- [CRS15] M. Colmant, R. Rouvoy, and L. Seinturier. "Estimation de la consommation des systèmes logiciels sur des architectures multi-coeurs". In: Conférence d'informatique en Parallélisme, Architecture et Système (Compas). 2015.
- [Hav+ar] A. Havet et al. "GENPACK: A Generational Scheduler for Cloud Data Centers". In: IEEE International Conference on Cloud Engineering (IC2E), 2017. (To appear).

Under Evaluation

[Col+16] M. Colmant et al. "The Next 700 CPU Power Models". In: ACM Trans. Model. Perform. Eval. Comput. Syst. (ACM TOMPECS) (2016).

REFERENCES I

[Ber+10]	R. Bertran et al. "Decomposable and Responsive Power Models for Multicore Processors Using Performance Counters". In: Proceedings of the 24th ACM International Conference on Supercomputing. 2010.
[Ber+12]	R. Bertran et al. "Energy Accounting for Shared Virtualized Environments Under DVFS Using PMC-based Power Models". In: Future Generation Computer Systems (2012).
[BL09]	C. Bienia and K. Li. "PARSEC 2.0: A New Benchmark Suite for Chip-Multiprocessors". In: Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation. 2009.
[CM05]	G. Contreras and M. Martonosi. "Power Prediction for Intel XScale® Processors Using Performance Monitoring Unit Events". In: Proceedings of the International Symposium on Low Power Electronics and Design. 2005.
[Col+15]	M. Colmant et al. "Process-level Power Estimation in VM-based Systems". In: Proceedings of the 10th European Conference on Computer Systems (EuroSys). 2015.
[Col+16]	M. Colmant et al. "The Next 700 CPU Power Models". In: ACM Trans. Model. Perform. Eval. Comput. Syst. (ACM TOMPECS) (2016).
[Col+17]	M. Colmant et al. "WattsKit: Software-Defined Power Monitoring of Distributed Systems". In: To be chosen. 2017.
[CRS14]	M. Colmant, R. Rouvoy, and L. Seinturier. "Improving the Energy Efficiency of Software Systems for Multi-Core Architectures". In: Middleware 2014 Doctoral Symposium. 2014.
[CRS15]	M. Colmant, R. Rouvoy, and L. Seinturier. "Estimation de la consommation des systèmes logiciels sur des architectures multi-coeurs". In: Conférence d'informatique en Parallélisme, Architecture et Système (Compas). 2015.
[CRS17]	M. Colmant, R. Rouvoy, and L. Seinturier. "codEnergy: an Approach For Leveraging Source-Code Level Energy Analysis". In: To be chosen. 2017.
[Dol+15]	M. F. Dolz et al. "An analytical methodology to derive power models based on hardware and software metrics". In: Computer Science - Research and Development (2015).

REFERENCES II

[ERKU6]	D. Economou, S. Rivoire, and C. Kozyrakis. Full-system Power Analysis and Modeling for Server Environments . In: In Workshop on Modeling Benchmarking and Simulation. 2006.
[Hav+ar]	A. Havet et al. "GENPACK: A Generational Scheduler for Cloud Data Centers". In: IEEE International Conference on Cloud Engineering (IC2E). 2017. (To appear).
[IM03]	C. Isci and M. Martonosi. "Runtime Power Monitoring in High-End Processors: Methodology and Empirical Data". In: Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture. 2003.
[Int15]	Intel Intel 64 and IA-32 Architectures Software Developer's Manual. 2015. URL: http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf (visited on 08/01/2016).

[EDV06] D. Economou, C. Divoire, and C. Konyrakis, "Full System Bower Analysis and Modeling for Sonyer Environments", Inc. In

- [Kur+14] M. Kurpicz et al. How energy-efficient is your cloud app? Conférence d'informatique en Parallélisme, Architecture et Système (Compas) Poster session. 2014.
- [Nou14] A. Noureddine. "Towards a Better Understanding of the Energy Consumption of Software Systems". PhD thesis. Université des Sciences et Technologie de Lille Lille I, 2014.
- [RRK08] S. Rivoire, P. Ranganathan, and C. Kozyrakis. "A Comparison of High-level Full-system Power Models". In: Proceedings of the Conference on Power Aware Computing and Systems. 2008.
- [The08] The Climate Group. SMART 2020: Enabling the low carbon economy in the information age. 2008. URL: http://gesi.org/article/43 (visited on 09/23/2016).
- [Yan+14] H. Yang et al. "iMeter: An integrated VM power model based on performance profiling". In: Future Generation Computer Systems (2014).
- [Zha+14] Y. Zhai et al. "HaPPy: Hyperthread-aware Power Profiling Dynamically". In: Proceedings of the USENIX Annual Technical Conference. 2014.