STATS 310A: Theory of Probability I

Autumn 2016/17

Scribes: Kenneth Tay

Lecture 5: October 10

Lecturer: Persi Diaconis

5.1 Law of the Iterated Logarithm

Recall the coin tossing set-up:

• $(\Omega, \mathcal{F}, P) = ([0, 1], \text{Borel sets, Length}).$

• $r_i(\omega) := 2d_i(\omega) - 1$ (i.e. +1 or -1 "coin tosses").

$$\bullet \ S_n := \sum_{i=1}^n r_i.$$

The Strong Law of Large Numbers (proved earlier in the course) says that, with probability 1,

$$\lim_{n \to \infty} \frac{S_n}{n} = 0.$$

This means that S_n grows more slowly than n. What happens if we shrink the denominator? Can we approximate the growth of S_n more exactly? The Law of the Iterated Logarithm gives us an answer to that question:

Theorem 5.1 (Law of the Iterated Logarithm) Let $g(n) = \sqrt{2n \log \log n}$. Then, with probability 1,

$$\overline{\lim} \frac{S_n}{g(n)} := \limsup \frac{S_n}{g(n)} = 1.$$

In other words: for any c > 1, $\frac{S_n}{q(n)} < c$ for all large n, and for any c < 1, $\frac{S_n}{q(n)} > c$ infinitely often.

Note: $\log \log 10^{100} \approx 5.2$, so $\log \log$ is essentially constant for anything practical.

In order to prove Theorem 5.1, we will need a few lemmas to help us. The first, known as the maximal inequality, will be proven below. The two lemmas following that were proven in Homework 2.

Lemma 5.2 (Maximal Inequality) Let $M_n = \max(S_1, \ldots, S_n)$. Then for every integer $c \geq 1$,

$$P\{M_n \ge c\} \le P\{S_n \ge c\} + P\{S_n > c\} \le 2P\{S_n \ge c\}.$$

Note: You can bound the maximum by the last sum!

Proof:

$$P\{M_n \ge c\} = P\{M_n \ge c \text{ and } S_n \ge c\} + P\{M_n \ge c \text{ and } S_n < c\}$$

=: $I + II$.

5-2 Lecture 5: October 10

Note that

$$I = P\{S_n \ge c\}.$$

For II: for each $1 \leq j \leq n$, let F_j be the first time that $S_j = c$, i.e.

$$F_j = \{S_1 < c, S_2 < c, \dots S_{j-1} < c, S_j = c\}.$$

Note that the F_j 's are disjoint. Then

$$\begin{split} &II = P\{M_n \geq c \text{ and } S_n < c\} \\ &= \sum_j P\{F_j \text{ and } S_n - S_j < 0\} \\ &= \sum_j P\{F_j\} P\{S_n - S_j < 0\} \\ &= \sum_j P\{F_j\} P\{S_n - S_j > 0\} \\ &= \sum_j P\{F_j\} P\{S_n - S_j > 0\} \\ &= \sum_j P\{F_j \text{ and } S_n - S_j > 0\} \\ &= P\{S_n > c\}. \end{split}$$
 (by symmetry of coin flips)

Lemma 5.3 For any $\varepsilon > 0$,

$$P\left\{\frac{S_n}{n} \ge \varepsilon\right\} \le 2\exp\left[-\frac{n\varepsilon^2}{2}\right].$$

Lemma 5.4 If ξ_n is a sequence of real numbers such that $\xi_n \to \infty$ and $\xi_n/\sqrt{n} \to 0$ as $n \to \infty$, then

$$P\{S_n \ge \sqrt{n}\xi_n\} \ge \exp\left[-\frac{(1+o(1))\xi^2}{2}\right].$$

We are now ready to prove the Law of Iterated Algorithm!

Proof: of Theorem 5.1 For each positive real number c, define the set

$$L_c = \{\omega : S_n(\omega) > cg(n) \text{ i.o.}\}.$$

Then the set of ω where the Law of the Iterated Algorithm holds can be explicitly written out as

$$L = \left(\bigcap_{c < 1, c \in \mathbb{Q}} L_c\right) \cap \left(\bigcap_{c \ge 1, c \in \mathbb{Q}} L_c^c\right).$$

(Note that the c are chosen such that L is measurable.)

Lecture 5: October 10 5-3

Step 1: For c > 1, show that $P(L_c) = 0$.

(Intuition: To use the 1st Borel-Cantelli Lemma, find some subsequence of events that have finite sum of probabilities.)

Let's say we have a subsequence $n_1 < n_2 < \dots$ (We will specify the n_k 's explicitly later.) Consider the event $\{\omega : S_n(\omega) > cg(n) \text{ for some } n \text{ s.t. } n_{k-1} < n \leq n_k\}$. Note that

$$\{\omega: S_n(\omega) > cg(n) \text{ for some } n \text{ s.t. } n_{k-1} < n \le n_k\} \subseteq \{M_{n_k} \ge cg(n_{k-1})\}$$

=: A_k .

However, by the Maximal Inequality, we have

$$\begin{split} P\{M_{n_k} \geq cg(n_{k-1})\} &\leq 2P\{S_{n_k} \geq cg(n_{k-1})\} \\ &= 2P\left\{\frac{S_{n_k}}{n_k} \geq \frac{cg(n_{k-1})}{n_k}\right\} \\ &\leq 4 \exp\left[-\frac{n_k}{2} \left(\frac{cg(n_{k-1})}{n_k}\right)^2\right] \\ &= 4 \exp\left[-\frac{c^2g^2(n_{k-1})}{2n_k}\right] \\ &= 4 \exp[-c^2n_{k-1}\log\log n_{k-1}/n_k] \\ &= 4 \left(\frac{1}{\log n_{k-1}}\right)^{c^2n_{k-1}/n_k} \end{split}. \end{split}$$

Now we select $\{n_k\}$ carefully. Choose $\theta \in (1, c^2)$, and let $n_k = \lfloor \theta^k \rfloor$. Note that $n_k \nearrow \infty$. With this choice of $\{n_k\}$, we have

$$P\{M_{n_k} \ge cg(n_{k-1})\} \le 4\left(\frac{1}{(k-1)\log\theta}\right)^{c^2/\theta(1+o(1))}$$

Since $c^2/\theta > 1$, we have $\sum P(A_k) < \infty$. Hence, we can use the 1st Borel-Cantelli Lemma to obtain $P(A_k \text{ i.o.}) = 0$.

Since $L_c = \{\omega : S_n(\omega) > cg(n) \text{ for some } n \text{ s.t. } n_{k-1} < n \leq n_k \text{ for infinitely many } k\} \subseteq A_k \text{ i.o., we have } P(L_c) = 0$, as required.

Step 2: For c < 1, show that $P(L_c) = 1$.

(Intuition: To use the 2nd Borel-Cantelli Lemma, find some subsequence of events which are independent and whose probabilities sum to infinity. We can't use the $\{S_n > cg(n)\}$ events directly as they are not independent.)

Choose a subsequence $1 < n_1 < \dots$ going to ∞ . Let $\gamma = \frac{c+1}{2}$, $\varepsilon = \gamma - c$.

5-4 Lecture 5: October 10

For any $k = 1, 2, \ldots$, define the sets

$$A_k = \left\{ \omega : |S_{n_{k-1}}(\omega)| \le \varepsilon g(n_k) \right\}, \qquad B_k = \left\{ S_{n_k} - S_{n_{k-1}} \ge \gamma g(n_k) \right\}.$$

If $\omega \in A_k \cap B_k$, then $S_{n_k} = (S_{n_k} - S_{n_{k-1}}) + S_{n_{k-1}} \ge ((c + \varepsilon) - \varepsilon)g(n_k) = cg(n_k)$. Hence, $A_k \cap B_k$ i.o. $\subseteq \{S_{n_k} \ge cg(n_k) \text{ i.o.}\} \subseteq L_c$.

We can go one step further to obtain

$$A_k \cap B_k$$
 i.o. $\supseteq \{A_k \text{ for all large } k\} \cap \{B_k \text{ i.o.}\}.$

We claim that we can choose $\{n_k\}$ such that $P(\{A_k \text{ for all large } k\} \cap \{B_k \text{ i.o.}\}) = 1$, which implies that $P(L_c) = 1$. We prove this by showing $P\{A_k \text{ for all large } k\} = 1$ and $P\{B_k \text{ i.o.}\} = 1$.

From the bounds in Step 1, $|S_{n_{k-1}}| < 2g(n_{k-1})$ for all large k with probability 1. For such an ω ,

$$\frac{S_{n_k}(\omega)}{g(n_k)} = \left[\frac{S_{n_k}(\omega)}{g(n_{k-1})}\right] \frac{g(n_{k-1})}{g(n_k)} \to 0$$

if we choose $\{n_k\}$ such that n_k/n_{k-1} goes to infinity. With this, we have $P\{A_k \text{ for all large } k\} = 1$.

$$\begin{split} P(B_k) &= P\{S_{n_k - n_{k-1}} \geq \gamma g(n_k)\} \\ &\geq \exp\left[-\frac{(1 + o(1))\gamma^2 g^2(n_k)}{2(n_k - n_{k-1})}\right] &\qquad \left(\text{Lemma 5.4 with } n = n_k - n_{k-1}, \xi_n = \frac{\gamma g(n_k)}{\sqrt{n_k - n_{k-1}}}\right) \\ &= \exp\left[-\frac{(1 + o(1))\gamma^2 n_k \log\log n_k}{n_k - n_{k-1}}\right] \\ &= \left(\frac{1}{\log n_k}\right)^{(1 + o(1))\gamma^2}, \end{split}$$

assuming $n_k/n_{k-1} \to \infty$.

Choose $\theta \in (1, 1/\gamma^2)$, let $n_k = \exp(k^{\theta})$. n_k goes to infinity, and n_k/n_{k-1} goes to infinity. Thus,

$$\sum P(B_k) \ge \sum_k \frac{1}{k^{(1+o(1))\gamma^2\theta}} = \infty.$$

Since the B_k 's are independent, we can apply the 2nd Borel-Cantelli Lemma to obtain $P\{B_k \text{ i.o.}\} = 1$.

Step 3: Putting it all together.

Recall that the set of ω where the Law of the Iterated Algorithm holds can be explicitly written out as

$$L = \left(\bigcap_{c < 1, c \in \mathbb{Q}} L_c\right) \cap \left(\bigcap_{c \ge 1, c \in \mathbb{Q}} L_c^c\right).$$

From Step 1, every event in the second intersection has probability 1, and from Step 2, every event in the first intersection has probability 1. Since L is a countable intersection of these sets, it must have probability 1 as well.

Main ideas used in the proof:

Lecture 5: October 10 5-5

- Bound $P\{M_n \ge c\} \le 2P\{S_n \ge c\}.$
- Choose subsequences to make things independent.
- Large deviations bound: $P\{S_n > \xi \sqrt{n}\} \approx e^{-\xi_n^2/2}$.

Note: This theorem is due to Khintchine for coin tossing. Kolmogorov showed more generally that if $\{X_i\}_{i=1}^{\infty}$ iid with mean 0, finite variance σ^2 , then

$$\limsup \frac{S_n}{\sqrt{2\sigma^2 n \log \log n}} = 1$$

with probability 1.