17thOctober 2014

Total Marks = 20

Time 2 hours

All parts of a question MUST be answered together. Fragmented answers will not be corrected

- 1. Justify or contradict the following:
 - (a) Orbital approximation is given by $\Psi(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)$ where $\Psi(r, \theta, \phi)$ is a one electron wavefunction.
 - (b) The states given by $n_x = 2$, $n_y = 3$ and $n_x = 3$, $n_y = 2$ are always degenerate for a particle in a two dimensional box.
 - (c) For any two wavefunctions Ψ_1 and Ψ_2 , which are eigenfunctions of an operator $\hat{\bf A}$, the linear combination $c_1 \Psi_1 + c_2 \Psi_2$ is always an eigenfunction of $\hat{\bf A}$.
- 2. (a) How many radial nodes and how many angular nodes does the following wavefunction possess? Where are these nodes situated?

$$\psi$$
 = (6 -r).r.e^{-r/3}.sin ϕ sin θ

(b) Find the most probable distance of an electron from the nucleus, when it resides in

i) 2s and ii) 2p orbital.

 $\psi_{2s} = N_1(2-\sigma) e^{-\sigma/2}$ and $\psi_{2p} = N_2 \sigma e^{-\sigma/2} \cos \theta$ where $\sigma = r/a_0$ and N_1 , N_2 are constants.

Hence, sketch the radial distribution functions for the two orbitals.

2+3

3. Suppose that the wavefunction for a system can be written as

$$\psi(x) = \frac{1}{2}\varphi_1(x) + \frac{1}{4}\varphi_2(x) + \frac{3 + \sqrt{2}i}{2}\varphi_3(x)$$

where, $\varphi_1(x)$, $\varphi_2(x)$, $\varphi_3(x)$ are orthogonal to each other and are normalized eigenfunctions of the kinetic energy operator, with eigenvalues E_1 , $3E_1$ and $7E_1$ respectively.

- (a) Is $\psi(x)$ normalized?
- (b) What are the possible values that you could obtain in measuring the kinetic energy on the system described by $\psi(x)$?
- (c) What is the average value of kinetic energythat will be obtained for a large number of measurements?
- 4. (a) Writethe total Hamiltonian for a carbon atom.
 - (b) What is a spin orbital?
 - (c) Write the Slater determinant for the first singlet excited state of Li⁺.