Task2: prediction using unsupervised machine learning

GRIP_june2021

by RAM VRIKSH

importing some required libraries

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   from sklearn import datasets
```

uploading the dataset

```
In [2]:
           data_set=pd.read_csv("Iris.csv")
In [3]:
           data_set.head(10)
Out[3]:
                  SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                                        Species
          0
              1
                               5.1
                                               3.5
                                                                1.4
                                                                                 0.2 Iris-setosa
               2
                               4.9
                                               3.0
                                                                1.4
                                                                                 0.2 Iris-setosa
                                                                                 0.2 Iris-setosa
               3
                               4.7
                                               3.2
                                                                1.3
          2
               4
                               4.6
                                               3.1
                                                                1.5
                                                                                 0.2 Iris-setosa
               5
                               5.0
                                               3.6
                                                                1.4
                                                                                 0.2 Iris-setosa
               6
                               5.4
                                               3.9
                                                                1.7
                                                                                 0.4 Iris-setosa
               7
                               4.6
                                               3.4
                                                                1.4
                                                                                 0.3 Iris-setosa
                               5.0
                                               3.4
                                                                1.5
                                                                                 0.2 Iris-setosa
                               4.4
                                               2.9
                                                                1.4
                                                                                 0.2 Iris-setosa
             10
                               4.9
                                               3.1
                                                                1.5
                                                                                 0.1 Iris-setosa
```

RangeIndex: 150 entries, 0 to 149 Data columns (total 6 columns): Column Non-Null Count Dtype 0 150 non-null int64 SepalLengthCm 150 non-null float64 1 SepalWidthCm 150 non-null float64 float64 3 PetalLengthCm 150 non-null PetalWidthCm 150 non-null float64

150 non-null

Species

```
dtypes: float64(4), int64(1), object(1)
memory usage: 7.2+ KB

In [6]: #so the data set have no null value

In [25]: data_set.describe()

Out[25]: Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
```

obiect

	Id	SepailengthCm	SepaiwidthCm	PetailengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

Let's create a new data frame

```
In [16]: #plot the result on linear_graph
    plt.plot(range(1,11),wcss)
    plt.xlabel('number of clusters')
    plt.ylabel('wcss')
    plt.title('elbow method')
    plt.show()
```

Out[11]


```
In [9]: data_f=data_set[['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm']]
In [11]: data_f.head(10)
```

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4
6	4.6	3.4	1.4	0.3
7	5.0	3.4	1.5	0.2
8	4.4	2.9	1.4	0.2
9	4.9	3.1	1.5	0.1

Finding optimum number of cluster using K-mean Algo

by the above plot we can see that optimum cluster point is 3

let's apply K-means Algo

Visualising clusters points using plot

```
In [23]: plt.scatter(X[kmeans_y==0,0],X[kmeans_y==0,1],s=100,c='blue',label='Iris-setosa')
    plt.scatter(X[kmeans_y==1,0],X[kmeans_y==1,1],s=100,c='green',label='Iris-versicolour')
    plt.scatter(X[kmeans_y==2,0],X[kmeans_y==2,1],s=100,c='red',label='Iris-virginica')

#plotting centriod of cluster

plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],s=100,c='yellow',plt.legend()
```

Out[23]: <matplotlib.legend.Legend at 0x1ff1713cac0>

