Material borrowed from slides available at http://williamstallings.com

Message Authentication

Presented by: Ruchika Mehresh

Shambhu J. Upadhyaya

Computer Science and Engineering University At Buffalo, Buffalo, New York, 14260

CSE565: Computer Security

Hash Function

- Hash function (H)
 - accepts a variable-length block of data (M) as input and produces a fixed-size hash value

$$h=H(M)$$

- Good hash functions
 - evenly distributed
 - apparently random

Cryptographic Hash Functions

- Hash functions needed for security applications
- Computationally infeasible:
 - (given h) to find x s.t. H(x)=h
 - one-way property
 - (given x) to find y s.t. H(y)=H(x)
 - weak collision resistance
 - to find any x,y s.t. H(y)=H(x)
 - strong collision resistance

Applications

- Message Authentication
- Digital Signatures
- Other applications
 - one-way password file
 - intrusion detection
 - virus detection
 - pseudorandom number generator
 - etc.

Message Authentication

- Message authentication
 - a mechanism or service used to verify the integrity of a message
 - it assures that data received is exactly as sent
 - the purported identity of the sender is valid.
 - non-repudiation (dispute resolution)
- Message digest Hash function value
- Techniques used
 - encryption
 - secure hash function.
 - message authentication code (MAC)

Message Encryption

(a) Symmetric encryption: confidentiality and authentication

(b) Public-key encryption: confidentiality

(c) Public-key encryption: authentication and signature

(d) Public-key encryption: confidentiality, authentication, and signature

Secure Hash Function

Simple Hash Functions

- XOR
- RXOR
- Technique proposed by National Bureau of Standards

Discussed in the class