COMPUTER SCIENCE 349A

Handout Number 14

ZEROS OF POLYNOMIALS USING NEWTON'S METHOD WITH HORNER'S ALGORITHM, AND POLYNOMIAL DEFLATION

Outline of a procedure to compute a zero of a polynomial f(x) using Newton's method and Horner's algorithm:

Let x_0 be an initial approximation to a zero of f(x)

for i = 1 to imax

use Horner's algorithm to evaluate $f(x_{i-1})$ and $f'(x_{i-1})$

set
$$x_i \leftarrow x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

if
$$\left| 1 - x_{i-1} / x_i \right| < \varepsilon$$
 exit

end

output failed to converge in imax iterations

Polynomial Deflation. Suppose that the values $x_0, x_1, x_2, ...$ computed above converge in N iterations. Then x_N is the final computed approximation to some zero, say r_1 , of f(x). Now the final computation in the above procedure with Newton's method (after N iterations) is

$$x_N \leftarrow x_{N-1} - \frac{f(x_{N-1})}{f'(x_{N-1})}$$
.

If b_n, b_{n-1}, \dots, b_0 are the values computed by Horner's algorithm to evaluate $f(x_{N-1})$ -that is, in the <u>last step</u> of the above procedure (when i = N), then from page 2 of
Handout Number 13 it follows that

(1)
$$f(x) = (x - x_{N-1})Q(x) + b_0$$
,

where

(2)
$$Q(x) = b_1 + b_2 x + b_3 x^2 + \dots + b_n x^{n-1}$$
.

On letting $x = x_{N-1}$ in (1), we obtain

$$b_0 = f(x_{N-1}) \approx 0$$
 since $x_{N-1} \approx x_N \approx \text{the zero } r_1 \text{ of } f(x)$.

Therefore, from (1),

$$f(x) \approx (x - x_{N-1})Q(x)$$

and consequently

$$Q(x) \approx \frac{f(x)}{x - x_{N-1}}.$$

That is, the polynomial Q(x) defined in (2) above is the **deflated polynomial**; it is a polynomial of degree n-1 whose zeros are equal to those of f(x), except for the zero at $x_{N-1} \approx r_1$. Note that the coefficients b_1, b_2, \ldots, b_n of Q(x) are determined from the <u>last application</u> (when i = N) of Horner's algorithm in the procedure at the beginning of this handout.

SUMMARY of the above procedure to compute an approximation x_N to some zero r_1 of a given polynomial f(x):

Choose an initial approximation x_0 .

i=1: use Horner's algorithm to evaluate $\{b_n,b_{n-1},\ldots,b_0\}$ and $\{c_n,c_{n-1},\ldots,c_1\}$, so that $b_0=f(x_0)$ and $c_1=f'(x_0)$; compute $x_1\leftarrow x_0-b_0/c_1$. (Newton's method)

i=2: use Horner's algorithm to evaluate $\{b_n,b_{n-1},\ldots,b_0\}$ and $\{c_n,c_{n-1},\ldots c_1\}$, so that $b_0=f(x_1)$ and $c_1=f'(x_1)$; compute $x_2\leftarrow x_1-b_0/c_1$. (Newton's method)

i=N: use Horner's algorithm to evaluate $\{b_n,b_{n-1},\ldots,b_0\}$ and $\{c_n,c_{n-1},\ldots,c_1\}$, so that $b_0=f(x_{N-1})$ and $c_1=f'(x_{N-1})$; compute $x_N \leftarrow x_{N-1}-b_0/c_1$. (Newton's method)

Assuming that the procedure has converged, that is, $\left|1-\frac{x_{N-1}}{x_N}\right| < \varepsilon$, then x_N is taken as the computed approximation to a zero of f(x), and the associated deflated polynomial is $Q(x) = b_1 + b_2 x + b_3 x^2 + \dots + b_n x^{n-1}$, where the coefficients $\{b_i\}$ are those from the step i = N above.

Example. An illustration of the application of Newton's method and Horner's algorithm to compute a zero of a polynomial $f(x) = x^4 - 0.2x^3 + 1.8x^2 - 0.6x - 3.6$.

With $x_0 = 2$, Horner's algorithm gives

$$b_4 = 1$$
 $c_4 = 1$
 $b_3 = 1.8$ $c_3 = 3.8$
 $b_2 = 5.4$ $c_2 = 13$
 $b_1 = 10.2$ $c_1 = 36.2$
 $b_0 = 16.8$

and Newton's method gives $x_1 = x_0 - \frac{f(x_0)}{f'(p_0)} = x_0 - \frac{b_0}{c_1} = 1.535912$

With $x_1 = 1.535912$, Horner's algorithm gives

$$b_4 = 1$$
 $c_4 = 1$ $c_3 = 2.871823$ $c_2 = 3.851842$ $c_2 = 8.262709$ $c_1 = 18.006879$ $c_0 = 4.565043$

and Newton's method gives $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = x_1 - \frac{b_0}{c_1} = 1.282395$

With $x_2 = 1.282395$, Horner's algorithm gives

$$b_4 = 1$$
 $c_4 = 1$ $c_3 = 2.364790$ $c_2 = 3.188058$ $c_2 = 6.220653$ $c_1 = 11.465684$ $c_0 = 0.873442$

and Newton's method gives $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = x_2 - \frac{b_0}{c_1} = 1.206216$

With $x_3 = 1.206216$, Horner's algorithm gives

$$b_4 = 1$$
 $c_4 = 1$ $c_3 = 2.212432$ $c_4 = 1$ $c_5 = 2.212432$ $c_6 = 3.013714$ $c_7 = 2.212432$ $c_8 = 3.035191$ $c_8 = 0.0610965$ $c_8 = 0.0610965$

and Newton's method gives
$$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} = x_3 - \frac{b_0}{c_1} = 1.200038$$

With $x_4 = 1.200038$, Horner's algorithm gives

$$b_4 = 1$$
 $c_4 = 1$ $c_3 = 2.200076$ $c_4 = 3.000038$ $c_5 = 3.000084$ $c_6 = 3.000215$ $c_6 = 0.000373183$ $c_6 = 1$

and Newton's method gives
$$x_5 = x_4 - \frac{f(x_4)}{f'(x_4)} = x_4 - \frac{b_0}{c_1} = 1.2000000015$$

If the computations were terminated at this point, x_5 would be the computed approximation to the root $r_1 = 1.2$, and the corresponding **approximate deflated polynomial** would be

$$Q(x) = b_1 + b_2 x + b_3 x^2 + b_4 x^3$$

= 3.000215 + 3.000084x + 1.000038x² + x³

Note that the exact deflated polynomial is $3+3x+x^2+x^3$. Note also that the sequence of values $\{b_0\}$ converges to 0 as $\{x_i\}$ converges to a root r_1 .

Note: if several zeros of f(x) are approximated as above, and several deflations are carried out giving a sequence of deflated polynomials of degrees n-1, n-2, n-3, ..., then the successive computed zeros tend to become less and less accurate.

For example, consider from the above example, the computed approximation

$$Q(x) = b_1 + b_2 x + b_3 x^2 + b_4 x^3$$

= 3.000215 + 3.000084x + 1.000038x^2 + x^3

to the deflated polynomial. The exact roots (to 8 significant digits) of Q(x) are

$$-1.0000422$$
 and $0.21245115 \times 10^{-5} \pm 1.7320763i$,

whereas the corresponding exact roots of f(x) are

$$-1$$
 and $\pm \sqrt{3} i \approx \pm 1.7320508 i$.

If a zero of Q(x) is computed using Newton's method and Horner's algorithm, it will not give a very accurate approximation to a zero of f(x) (because Q(x) is not the exact deflated polynomial and because of truncation/roundoff errors in computing this zero). In order to improve its accuracy, use the technique of "**root polishing**"; this is mentioned on page 182 of the 7th ed. of the textbook (page 180 of the 6th ed.).

Root Polishing

Apply Newton's method to the approximate deflated polynomial Q(x), giving a value \hat{r} .

The value \hat{r} approximates some root r_2 of f(x), but will not be fully accurate. Use \hat{r} as the initial approximation for Newton's method applied to f(x). This will converge very quickly (1 or 2 iterations) to the fully accurate root r_2 (as \hat{r} is very close to r_2).