9th WEEK'S SUBMISSION

1. USE A WEATHER FORECAST WEBSITE, AND UTILIZE THE PSYCHROMETRIC CHART AND THE FORMULA WE WENT THROUGH IN THE CLASS TO DETERMINE THE ABSOLOUTE HUMIDITY, THE WET-BULB TEMPERATURE AND THE MASS OF WATER VAPOUR IN THE AIR IN CLASSROOM A (AULA A) OF PIACENZA CAMPUS IN THE MOMENT THAT YOU ARE SOLVING THIS EXERCISE (PROVIDE THE INPUTS THAT YOU UTILIZED)

DATA FROM WEBSITE:

Humidity: 90%

Relative humidity (♠): 90% Total air pressure: 101,9 KPa Atmospheric Pressure: 1019 hPa Temperature: 7°C -→ 230 K

Starting from a pychrometric chart we can see 4 different values:

- Humidity ratio
- -I.E.
- Absolute humidity ω = 0.0055
- Wet bulb temperature Twb= 6°C

We know that

$$\omega = \frac{0.622 \, Pv}{Pa} = \frac{0.622 \, Pv}{P - Pv} =$$

we can now calculate Pv

$$Pv = 0.893 \text{ kPa}$$

As we have learn in class we already know that Rsp= 0.4615 so we can use this data (and the previous ones) in the following formula:

$$M = \frac{PV}{Rsp\ T}$$

$$M = \frac{0.893 V}{0.4615 \times 230} = 8,41 \times 10^{-3} V$$

Remember that

$$\Phi = \frac{Mv}{Mg} = 90\%$$

So we can find the inverse formula

$$Mg = \frac{Mv}{90\%} = 9.34 \times 10^{-3} \text{ v}$$

2 . UTILIZE THE SAME METHODOLOGY WE WENT THROUGH IN THE CLASS AND DETERMINE THE SENSIBLE AND LATENT LOAD CORRESPONDING TO INTERNAL GAINS, THE VENTILATION, AND THE INFILTRATION IN A HOUSE WITH A *GOOD* CONSTRUCTION QUALITY AND WITH THE SAME GEOMETRY AS THAT OF THE EXAMPLE WHICH IS LOCATED IN BRINDISI, ITALY

									SI, Italy						311/00/25/00	11110707070707070	
	13000	40.65N	Long:	17.95E	Elev: 10		StdP: 101.2			Time Zone: 1.00 (EUW)			Period: 86-10		WBAN:	99999	
-	Annual He	ating and Humidificat		tion Design Conditions Humidification DP/MCDB and HR						Coldest month WS/MCD8 MCWS/PCV					IDCIAID.	1	
ı	Coldest	Heating DB		99.6%			99%			0.4% 1%							
ı	Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS U.	MCDB	WS	MCDB	MCWS	PCWD	1	
-	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	,	
	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		
į	Annual Co	ooling, Dehi	umidificatio	n, and Entha	alpy Desi	gn Conditions	N.										ı
	Hottest	Hottest		Cooling DB/MCWB							Evaporation WB/MCDB			MCWS/			1
	Month	Month	0.4%		1%		2%		0.4%		1%		2%		10 0.4	% DB	
l	MOCIUI	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(0)	(b)	(c)	(d)	(0)	(1)	(9)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	
Γ	Dehumidification DP/MCDB and HF									Enthalpy/			MCDB			Hours	1
ľ	0.4%			1%			2%			0.4%			1%		%	8 to 4 &	L
E	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(0)	(0)	(c)	(d)	(0)	(1)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(0)	(0)	(P)	
	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	
I	Extreme Annual Design Conditions															ı	
Γ	Eve	eme Annual WS		Extreme		Extreme	Annual DB			n-Year Return Period \							1
L	11/67			Max	Mean		Standard deviation			n≈5 years		n=10 years		years	n=50		1
L	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1
	(0)	(0)	(c)	(d)	(0)	(1)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(p)	
	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	

Internal gains

$$q_{ig,s}$$
 = 136 + 2,2 A_{cf} + 22 N_{oc} = 136 + 2,2 x 200 + 12 x 2 = 620 W $q_{ig,l}$ = 20 + 0,22 A_{cf} + 12 N_{oc} = 20 + 0,22 x 200 + 12 x 2 = 88 W

House with high construction quality unit leakage area

$$A_{ul} = 1.4 \text{ cm}^2 / \text{m}^2$$

$$A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 \text{ m}^2$$

$$A_L = A_{es} \times A_{ul} = 344 \times 1,4 = 481,6 \text{ cm}^2$$

BRINDISI DATAS:

 $T_{cooling} = 24 \, ^{\circ}C$

Theating = 20 °C

$$\Delta T_{cooling}$$
 = 31,1 °C - 24 °C = 7,1 °C = 7,1 K
 $\Delta T_{heating}$ = 20 °C + 4,1 °C = 24,1 °C = 24,1 K

$$IDF_{heating} = 0.073 L / s x cm^2$$

 $IDF_{cooling} = 0.033 L / s x cm^2$

$$Q_{i,heating} = A_L \times IDF_{heating} = 481,6 \times 0,073 = 35,1568 \text{ L/s}$$

 $Q_{i,cooling} = A_L \times IDF_{cooling} = 481,6 \times 0,033 = 15,8928 \text{ L/s}$

$$Q_v = 0.05 A_{cf} + 3.5 (N_{br} + 1) = 0.05 \times 200 + 3.5 \times (1 + 1) = 17 L/s$$

$$Q_{i\text{-v,heating}} = Q_{i,heating} + Q_v = 35,1568 + 17 = 52,1568 \text{ L/s}$$

 $Q_{i\text{-v,cooling}} = Q_{i,cooling} + Q_v = 15,8928 + 17 = 32,8928 \text{ L/s}$

Csensible = 0,0039

$$\begin{aligned} &Q_{inf-ventilation_coolingsensible} = C_{sensible}Q_{i\text{-v,cooling}} \, \Delta T_{cooling} = 1,23 \text{ x } 32,8928 \text{ x } 7,1 \\ &Q_{inf-ventilation_coolinglatent} = C_{sensible}Q_{i\text{-v,cooling}} \, \Delta \omega_{cooling} = 3010 \text{ x } 32,8928 \text{ x } 0,0039 \end{aligned}$$

$$Q_{inf-ventilation_heatingsensible} = C_{sensible}Q_{i-v,heating} \Delta T_{heating} = 1,23 \text{ x } 52,1568 \text{ x } 24,1$$