Линейные преобразования векторных пространств и их свойства.

Верещагин Антон Сергеевич канд. физ.-мат. наук, доцент

Кафедра аэрогидродинамики ФЛА НГТУ

QR-код презентации

21 февраля 2020 г.

Аннотация

Векторное пространство. Отображение n-мерного вектора в m-мерный. Линейные операторы. Матрица, соответствующая линейному оператору. Сложение и умножение линейных операторов. Преобразования координат. Эквивалентные матрицы.

Определение группы

Определение

Группой называется упорядоченная двойка $\{X, \cdot\}$, где X – множество элементов, а $\cdot : X^2 \to X$ – операция между элементами множества X, обладающая следующими свойствами:

- 1. $(a \cdot b) \cdot c = a \cdot (b \cdot c) \ (\forall a, b, c \in X)$
- 2. $\exists 0 \in X$: $0 + x = x + 0 = x \ (\forall x \in X)$
- 3. $\forall x \in X \exists (-x) \in X : x \cdot (-x) = (-x) \cdot x = 0$

Если выполнено дополнительно следующее свойство, то группа называется абелевой:

4.
$$x \cdot y = y \cdot x \ (\forall x, y \in X)$$

Определение

Определение

1.
$$1 \cdot \vec{x} = \vec{x} \quad \forall x \in V$$

Определение

- 1. $1 \cdot \vec{x} = \vec{x} \quad \forall x \in V$
- 2. $\alpha \cdot (\beta \cdot \vec{x}) = (\alpha \beta) \cdot \vec{x}$

Определение

- 1. $1 \cdot \vec{x} = \vec{x} \quad \forall x \in V$
- 2. $\alpha \cdot (\beta \cdot \vec{x}) = (\alpha \beta) \cdot \vec{x}$
- 3. $(\alpha + \beta) \cdot \vec{x} = \alpha \cdot \vec{x} + \beta \cdot \vec{x}$

Определение

1.
$$1 \cdot \vec{x} = \vec{x} \quad \forall x \in V$$

2.
$$\alpha \cdot (\beta \cdot \vec{x}) = (\alpha \beta) \cdot \vec{x}$$

3.
$$(\alpha + \beta) \cdot \vec{x} = \alpha \cdot \vec{x} + \beta \cdot \vec{x}$$

4.
$$\alpha \cdot (\vec{x} + \vec{y}) = \alpha \cdot \vec{x} + \alpha \cdot \vec{y}$$

Линейная зависимость и линейная независимость векторов

Определение

Линейной комбинацией векторов $\vec{x}_1,...,\vec{x}_n$ с коэффициетами $\alpha_1,...,\alpha_n$ называется следующая сумма

$$\alpha_1\vec{x}_1 + \alpha_2\vec{x}_2 + \ldots + \alpha_n\vec{x}_n$$

Линейная зависимость и линейная независимость векторов

Определение

Векторы $\vec{x}, \vec{y}, \vec{z}, \dots$ называются линейно зависимыми, если существуют такие скаляры $\alpha, \beta, \gamma, \dots$, причем один из них отличен от 0, такие что

$$\alpha \vec{x} + \beta \vec{y} + \gamma \vec{z} + \ldots = \vec{0}.$$

Линейная зависимость и линейная независимость векторов

Определение

Векторы $\vec{x}, \vec{y}, \vec{z}, \dots$ называются **линейно зависимыми**, если существуют такие скаляры $\alpha, \beta, \gamma, \dots$, причем один из них отличен от 0, такие что

$$\alpha \vec{x} + \beta \vec{y} + \gamma \vec{z} + \dots = \vec{0}.$$

Определение

Векторы $\vec{x}, \vec{y}, \vec{z}, \dots$ называются **линейно независимыми**, если из равенства

$$\alpha \vec{x} + \beta \vec{y} + \gamma \vec{z} + \dots = \vec{0}$$

следует, что все $\alpha=\beta=\gamma=\ldots=0$.

Размерность и базис векторного пространства

Определение

Векторное пространство V называется **п-мерным**, если в нем существуют n линейно независимых векторов, а любые n+1 будут линейно зависимы. n-мерное векторное пространство обозначается V^n .

Размерность и базис векторного пространства

Определение

Векторное пространство V называется **п-мерным**, если в нем существуют n линейно независимых векторов, а любые n+1 будут линейно зависимы. n-мерное векторное пространство обозначается V^n .

Определение

Базисом *n*-мерного пространства V^n называется система любых *n* линейно независимых векторов $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$.

Пример конечномерного пространства

Пространство \mathbb{R}^3

Рассмотрим четыре вектора в пространстве \mathbb{R}^3

$$\vec{x_i} = \{x_i^1, x_i^2, x_i^3\} \ (i = 1, \dots, 4)$$

Ранг матрицы, составленный из координат этих векторов не может превышать 3, значит любые 4 вектора в \mathbb{R}^3 будут всегда линейно зависимы.

Базис в \mathbb{R}^3

Базисом в \mathbb{R}^3 будут три любые линейно независимых вектора, например,

$$\vec{e_1} = \{1,0,0\},\ \vec{e_2} = \{0,1,0\},\ \vec{e_3} = \{0,0,1\}.$$

Теорема

В вектороном n-мерном пространстве V^n каждый вектор может быть единственным способом представлен в виде линейной комбинации векторов базиса.

Доказательство.

• Рассмотрим базис векторного пространства $V^n \vec{e}_1, ..., \vec{e}_n$ и произвольный вектор $\vec{x} \in V^n$.

Доказательство.

- Рассмотрим базис векторного пространства $V^n \vec{e}_1, ..., \vec{e}_n$ и произвольный вектор $\vec{x} \in V^n$.
- Система векторов \vec{x} , \vec{e}_1 , ..., \vec{e}_n состоит из n+1 вектора, поэтому является линейно зависимой.

Доказательство.

- Рассмотрим базис векторного пространства $V^n \vec{e}_1, ..., \vec{e}_n$ и произвольный вектор $\vec{x} \in V^n$.
- Система векторов \vec{x} , \vec{e}_1 , ..., \vec{e}_n состоит из n+1 вектора, поэтому является линейно зависимой.
- Следовательно существуют коэффициенты $\alpha_1,...,\alpha_n,\beta$, причем один из $\alpha_i \neq 0$ (пусть i=1) и $\beta \neq 0$, такие что

$$\alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \ldots + \alpha_n \vec{e}_n + \beta \vec{x} = 0.$$

Доказательство.

- Рассмотрим базис векторного пространства $V^n \vec{e}_1, ..., \vec{e}_n$ и произвольный вектор $\vec{x} \in V^n$.
- Система векторов \vec{x} , \vec{e}_1 , ..., \vec{e}_n состоит из n+1 вектора, поэтому является линейно зависимой.
- Следовательно существуют коэффициенты $\alpha_1,...,\alpha_n,\beta$, причем один из $\alpha_i \neq 0$ (пусть i=1) и $\beta \neq 0$, такие что

$$\alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \ldots + \alpha_n \vec{e}_n + \beta \vec{x} = 0.$$

• Следовательно

$$\vec{x} = -\frac{\alpha_1}{\beta}\vec{e_1} - \frac{\alpha_2}{\beta}\vec{e_2} - \ldots - \frac{\alpha_n}{\beta}\vec{e_n}.$$

Доказательство.

• Пусть вектор

$$\vec{x} = \alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \ldots + \alpha_n \vec{e}_n = \beta_1 \vec{e}_1 + \beta_2 \vec{e}_2 + \ldots + \beta_n \vec{e}_n,$$

где $\alpha_i \neq \beta_i$ для некоторого i.

Доказательство.

• Пусть вектор

$$\vec{x} = \alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \ldots + \alpha_n \vec{e}_n = \beta_1 \vec{e}_1 + \beta_2 \vec{e}_2 + \ldots + \beta_n \vec{e}_n,$$

где $\alpha_i \neq \beta_i$ для некоторого i.

•
$$(\alpha_1 - \beta_1)\vec{e}_1 + (\alpha_2 - \beta_2)\vec{e}_2 + \ldots + (\alpha_n - \beta_n)\vec{e}_n = 0$$
, где $\alpha_i - \beta_i \neq 0$.

Доказательство.

• Пусть вектор

$$\vec{x} = \alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \ldots + \alpha_n \vec{e}_n = \beta_1 \vec{e}_1 + \beta_2 \vec{e}_2 + \ldots + \beta_n \vec{e}_n,$$

где $\alpha_i \neq \beta_i$ для некоторого i.

- $(\alpha_1 \beta_1)\vec{e}_1 + (\alpha_2 \beta_2)\vec{e}_2 + \ldots + (\alpha_n \beta_n)\vec{e}_n = 0$, где $\alpha_i \beta_i \neq 0$.
- Это невозможно в силу линейной независимости базиса \vec{e}_i $(i=1,\ldots,n)$.

Доказательство.

• Пусть вектор

$$\vec{x} = \alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \ldots + \alpha_n \vec{e}_n = \beta_1 \vec{e}_1 + \beta_2 \vec{e}_2 + \ldots + \beta_n \vec{e}_n,$$

где $\alpha_i \neq \beta_i$ для некоторого i.

- $(\alpha_1 \beta_1)\vec{e}_1 + (\alpha_2 \beta_2)\vec{e}_2 + \ldots + (\alpha_n \beta_n)\vec{e}_n = 0$, где $\alpha_i \beta_i \neq 0$.
- Это невозможно в силу линейной независимости базиса \vec{e}_i $(i=1,\ldots,n)$.

Определение

Коэффициенты в разложении вектора \vec{x} по базису \vec{e}_i называются координатами вектора \vec{x} в базисе \vec{e}_i $(i=1,\ldots,n)$.

Теорема о линейной независимости векторов

Теорема (о линейной независимости векторов)

Для того, чтобы векторы $\vec{x}_1, \vec{x}_2, ..., \vec{x}_m$ в пространстве R^n были линейно независимы, необходимо и достаточно, чтобы ранг матрицы, составленной из координат этих векторов в произвольном базисе, был равен числу этих векторов. В противном случае они линейно зависимы.

Линейный оператор

Определение

Отображение одного конечномерного пространства в другое $\mathcal{A}: \mathbb{R}^n \to \mathbb{S}^m$ называется линейным, если

$$\mathcal{A}(\vec{x} + \vec{y}) = \mathcal{A}\vec{x} + \mathcal{A}\vec{y}, \quad \mathcal{A}(\alpha \vec{x}) = \alpha \mathcal{A}\vec{x}.$$

Теорема

Пусть \mathcal{A} — линейное преобразования n-мерного векторного пространства \mathbb{R}^n в m-мерное векторное пространство \mathbb{S}^m

$$A: \mathbb{R}^n \to \mathbb{S}^m$$
.

Теорема

Пусть \mathcal{A} — линейное преобразования n-мерного векторного пространства \mathbb{R}^n в m-мерное векторное пространство \mathbb{S}^m

$$A: \mathbb{R}^n \to \mathbb{S}^m$$
.

Пусть
$$\vec{e}_i$$
 $(i=1,\ldots,n)$ – базис \mathbf{R}^n , а \vec{g}_k $(k=1,\ldots,m)$ – базис \mathbf{S}^m .

Теорема

Пусть \mathcal{A} — линейное преобразования n-мерного векторного пространства \mathbb{R}^n в m-мерное векторное пространство \mathbb{S}^m

$$A: \mathbb{R}^n \to \mathbb{S}^m$$
.

Пусть \vec{e}_i $(i=1,\ldots,n)$ – базис \mathbf{R}^n , а \vec{g}_k $(k=1,\ldots,m)$ – базис \mathbf{S}^m . Пусть для произвольного вектора $\vec{x} \in \mathbf{R}^n$ $\vec{y} = \mathcal{A}\vec{x} \in \mathbf{S}^m$.

Теорема

Пусть \mathcal{A} — линейное преобразования n-мерного векторного пространства \mathbb{R}^n в m-мерное векторное пространство \mathbb{S}^m

$$A: \mathbb{R}^n \to \mathbb{S}^m$$
.

Пусть \vec{e}_i $(i=1,\ldots,n)$ – базис \mathbf{R}^n , а \vec{g}_k $(k=1,\ldots,m)$ – базис \mathbf{S}^m . Пусть для произвольного вектора $\vec{x} \in \mathbf{R}^n$ $\vec{y} = \mathcal{A}\vec{x} \in \mathbf{S}^m$. Тогда существует матрица A размера $m \times n$ такая, что

$$y = Ax$$

где y – вектор столбец, составленный из координат вектора \vec{y} в базисе \vec{g}_k , x – вектор столбец, составленный из координат вектора \vec{x} в базисе \vec{e}_i .

Доказательство.

Пусть $\vec{y} = \mathcal{A}\vec{x} \in \mathbf{S}^m$ для некоторого $\vec{x} \in \mathbf{R}^n$.

Доказательство.

Пусть
$$\vec{y} = \mathcal{A}\vec{x} \in \mathbf{S}^m$$
 для некоторого $\vec{x} \in \mathbf{R}^n$.

Тогда
$$\vec{y} = \sum_{k=1}^{m} y_k \vec{g}_k, \vec{x} = \sum_{i=1}^{n} x_i \vec{e}_i.$$

Доказательство.

Пусть $\vec{y} = \mathcal{A}\vec{x} \in \mathbf{S}^m$ для некоторого $\vec{x} \in \mathbf{R}^n$.

Тогда
$$\vec{y} = \sum\limits_{k=1}^m y_k \vec{g}_k, \vec{x} = \sum\limits_{i=1}^n x_i \vec{e}_i.$$

В силу линейности оператора \mathcal{A} :

$$\vec{y} = A\vec{x} = A\left(\sum_{i=1}^{n} x_i \vec{e}_i\right) = \sum_{i=1}^{n} x_i (A\vec{e}_i).$$

Доказательство.

Пусть $\vec{y} = \mathcal{A}\vec{x} \in \mathbf{S}^m$ для некоторого $\vec{x} \in \mathbf{R}^n$.

Тогда
$$\vec{y} = \sum_{k=1}^{m} y_k \vec{g}_k, \vec{x} = \sum_{i=1}^{n} x_i \vec{e}_i.$$

В силу линейности оператора \mathcal{A} :

$$\vec{y} = \mathcal{A}\vec{x} = \mathcal{A}\left(\sum_{i=1}^{n} x_i \vec{e}_i\right) = \sum_{i=1}^{n} x_i (\mathcal{A}\vec{e}_i).$$

Т.к. $\mathcal{A}\vec{e}_i \in \mathbf{S}^m$, тогда существуют такие числа α_{ij} , что

$$\mathcal{A}\vec{e}_i = \sum_{j=1}^m \alpha_{ij}\vec{g}_j \quad (i=1,\ldots,n).$$

Доказательство.

Тогда

$$\vec{y} = \sum_{i=1}^{n} x_i (\mathcal{A}\vec{e}_i) = \sum_{i=1}^{n} x_i \left(\sum_{j=1}^{m} \alpha_{ij} \vec{g}_j \right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} x_i \alpha_{ij} \right) \vec{g}_j.$$

Доказательство.

Тогда

$$\vec{y} = \sum_{i=1}^{n} x_i (\mathcal{A}\vec{e}_i) = \sum_{i=1}^{n} x_i \left(\sum_{j=1}^{m} \alpha_{ij} \vec{g}_j \right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} x_i \alpha_{ij} \right) \vec{g}_j.$$

Из единственности представления вектора \vec{y} по базису \vec{g}_k ($k=1,\ldots,m$) следует, что

$$y_j = \sum_{i=1}^n x_i \alpha_{ij}.$$

Иллюстрация теоремы о представлении линейного оператора

Пусть x — вектор столбец, составленный из координат, вектора \vec{x} в базисе \vec{e}_i x_i .

Иллюстрация теоремы о представлении линейного оператора

Пусть x — вектор столбец, составленный из координат, вектора \vec{x} в базисе \vec{e}_i x_i .

Пусть y — вектор столбец, составленный из координат, вектора \vec{y} в базисе $\vec{g}_k y_k$.

Иллюстрация теоремы о представлении линейного оператора

Пусть x — вектор столбец, составленный из координат, вектора \vec{x} в базисе \vec{e}_i x_i .

Пусть y — вектор столбец, составленный из координат, вектора \vec{y} в базисе $\vec{g}_k y_k$.

Пусть $A=(a_{ij})-m\times n$ матрица, составленная из координат образов векторов $\mathcal{A}\vec{e_i}$ по столбцам $(a_{ij}=\alpha_{ji})$

$$A = (\mathcal{A}\vec{e}_1 \mid \mathcal{A}\vec{e}_2 \mid \dots \mid \mathcal{A}\vec{e}_n) = \begin{pmatrix} \alpha_{11} & \alpha_{21} & \dots & \alpha_{n1} \\ \alpha_{12} & \alpha_{22} & \dots & \alpha_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{1m} & \alpha_{2m} & \dots & \alpha_{nm} \end{pmatrix}$$

Иллюстрация теоремы о представлении линейного оператора

Тогда

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Сложение операторов

Определение

Пусть \mathcal{A} , \mathcal{B} – линейные операторы, действующие из пространства \mathbb{R}^n в \mathbb{S}^m .

Сложение операторов

Определение

Пусть \mathcal{A} , \mathcal{B} – линейные операторы, действующие из пространства \mathbb{R}^n в \mathbb{S}^m .

Оператор $\mathcal{C}: \mathbf{R}^n \to \mathbf{S}^m$ называется суммой \mathcal{A} и \mathcal{B} и обозначается

$$C = A + B$$
,

Сложение операторов

Определение

Пусть \mathcal{A} , \mathcal{B} – линейные операторы, действующие из пространства \mathbb{R}^n в \mathbb{S}^m .

Оператор $\mathcal{C}: \mathbf{R}^n \to \mathbf{S}^m$ называется суммой \mathcal{A} и \mathcal{B} и обозначается

$$C = A + B$$
,

тогда и только тогда, когда

$$\forall \vec{x} \in R^n \quad \mathcal{C}\vec{x} = \mathcal{A}\vec{x} + \mathcal{B}\vec{x}.$$

Произведение операторов

Определение

Пусть $\mathcal{A}: \mathbb{R}^n \to \mathbb{S}^m$, $\mathcal{B}: \mathbb{Q}^l \to \mathbb{R}^n$ – линейные операторы.

Произведение операторов

Определение

Пусть $\mathcal{A}: \mathbb{R}^n \to \mathbb{S}^m$, $\mathcal{B}: \mathbb{Q}^l \to \mathbb{R}^n$ – линейные операторы. Оператор $\mathcal{C}: \mathbb{Q}^l \to \mathbb{S}^m$ называется произведением \mathcal{A} и \mathcal{B} и обозначается $\mathcal{C} = \mathcal{A}\mathcal{B},$

Произведение операторов

Определение

Пусть $\mathcal{A}: \mathbb{R}^n \to \mathbb{S}^m$, $\mathcal{B}: \mathbb{Q}^l \to \mathbb{R}^n$ – линейные операторы. Оператор $\mathcal{C}: \mathbb{Q}^l \to \mathbb{S}^m$ называется произведением \mathcal{A} и \mathcal{B} и обозначается $\mathcal{C} = \mathcal{A}\mathcal{B}.$

тогда и только тогда, когда

$$\forall \vec{x} \in Q^l \quad \mathcal{C}\vec{x} = \mathcal{A}(\mathcal{B}\vec{x}).$$

Пусть \vec{e}_i, \vec{g}_j $(i, j = 1, \dots, n)$ два различных базиса векторного пространства \mathbb{R}^n .

Пусть \vec{e}_i, \vec{g}_j $(i, j = 1, \dots, n)$ два различных базиса векторного пространства \mathbb{R}^n .

Существуют числа t_{ij} и матрица $T=(t_{ij})$ $(i,j=1,\ldots,n)$ $(|T|\neq 0)$, такая что

Пусть \vec{e}_i, \vec{g}_j (i, j = 1, ..., n) два различных базиса векторного пространства \mathbb{R}^n .

Существуют числа t_{ij} и матрица $T=(t_{ij})$ $(i,j=1,\ldots,n)$ $(|T|\neq 0)$, такая что

$$\vec{e}_i = \sum_{j=1}^n t_{ij}\vec{g}_j \quad (i=1,\ldots,n).$$

Пусть \vec{e}_i, \vec{g}_j $(i, j = 1, \dots, n)$ два различных базиса векторного пространства \mathbb{R}^n .

Существуют числа t_{ij} и матрица $T=(t_{ij})$ $(i,j=1,\ldots,n)$ $(|T|\neq 0)$, такая что

$$\vec{e}_i = \sum_{j=1}^n t_{ij}\vec{g}_j \quad (i=1,\ldots,n).$$

Пусть $\vec{x} = \sum_{i=1}^n x_i \vec{e}_i = \sum_{i=1}^n x_i' \vec{g}_i$ – два различных представления одного вектора в различных базисах.

Рассмотрим

$$\vec{x} = \sum_{i=1}^{n} x_i \vec{e}_i = \sum_{i=1}^{n} x_i \left(\sum_{j=1}^{n} t_{ij} \vec{g}_j \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} x_i t_{ij} \right) \vec{g}_j.$$

Рассмотрим

$$\vec{x} = \sum_{i=1}^{n} x_i \vec{e}_i = \sum_{i=1}^{n} x_i \left(\sum_{j=1}^{n} t_{ij} \vec{g}_j \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} x_i t_{ij} \right) \vec{g}_j.$$

Из единственности разложения \vec{x} по базису \vec{g}_j следует, что

$$x_j' = \sum_{i=1}^n x_i t_{ij},$$

Рассмотрим

$$\vec{x} = \sum_{i=1}^{n} x_i \vec{e}_i = \sum_{i=1}^{n} x_i \left(\sum_{j=1}^{n} t_{ij} \vec{g}_j \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} x_i t_{ij} \right) \vec{g}_j.$$

Из единственности разложения \vec{x} по базису \vec{g}_j следует, что

$$x_j' = \sum_{i=1}^n x_i t_{ij},$$

что в матричном виде запишется

$$x' = T^{t}x$$

где x', x — вектор столбцы координат вектора \vec{x} в соответствующих базисах.

Эквивалентные матрицы

Определение

Матрицы A, B размера $m \times n$ называются эквивалентными, если существуют матрица P размера $m \times m$ ($|P| \neq 0$) и матрица Q ($|Q| \neq 0$) размера $n \times n$ такие, что

$$A = PBQ$$
.

Связь между матричным представлением линейного оператора в различных базисах

Теорема

Матрицы, соответвующие линейному оператору $\mathcal{A}: \mathbb{R}^n \to \mathbb{S}^m$, в различных базисах пространств \mathbb{R}^n и \mathbb{S}^m эквивалентны.

Пусть $\vec{e}_1, \dots, \vec{e}_n$ и $\vec{e}'_1, \dots, \vec{e}'_n$ базис пространства \mathbb{R}^n , а векторы $\vec{g}_1, \dots, \vec{g}_m$ и $\vec{g}'_1, \dots, \vec{g}'_m$ базисы пространства \mathbb{S}^m .

Пусть $\vec{e}_1, \dots, \vec{e}_n$ и $\vec{e}'_1, \dots, \vec{e}'_n$ базис пространства \mathbf{R}^n , а векторы $\vec{g}_1, \dots, \vec{g}_m$ и $\vec{g}'_1, \dots, \vec{g}'_m$ базисы пространства \mathbf{S}^m . Пусть \mathcal{A} – линейной преобразование \mathbf{R}^n в \mathbf{S}^m .

Пусть $\vec{e}_1,\ldots,\vec{e}_n$ и $\vec{e}'_1,\ldots,\vec{e}'_n$ базис пространства \mathbf{R}^n , а векторы $\vec{g}_1,\ldots,\vec{g}_m$ и $\vec{g}'_1,\ldots,\vec{g}'_m$ базисы пространства \mathbf{S}^m .

Пусть A – линейной преобразование \mathbb{R}^n в \mathbb{S}^m .

Пусть A – матрица преобразования, соответствующая оператору A в базисах e и g, а A' – в базисах e' и g'.

Пусть $\vec{e}_1,\ldots,\vec{e}_n$ и $\vec{e}'_1,\ldots,\vec{e}'_n$ базис пространства \mathbf{R}^n , а векторы $\vec{g}_1,\ldots,\vec{g}_m$ и $\vec{g}'_1,\ldots,\vec{g}'_m$ базисы пространства \mathbf{S}^m .

Пусть \mathcal{A} – линейной преобразование \mathbb{R}^n в \mathbb{S}^m .

Пусть A – матрица преобразования, соответствующая оператору \mathcal{A} в базисах e и g, а A' – в базисах e' и g'.

Пусть для некоторых \vec{x} из \mathbf{R}^n и \vec{y} из \mathbf{S}^m

$$\vec{y} = A\vec{x}$$
.

Пусть $\vec{e}_1,\ldots,\vec{e}_n$ и $\vec{e}'_1,\ldots,\vec{e}'_n$ базис пространства \mathbf{R}^n , а векторы $\vec{g}_1,\ldots,\vec{g}_m$ и $\vec{g}'_1,\ldots,\vec{g}'_m$ базисы пространства \mathbf{S}^m .

Пусть \mathcal{A} – линейной преобразование \mathbb{R}^n в \mathbb{S}^m .

Пусть A – матрица преобразования, соответствующая оператору \mathcal{A} в базисах e и g, а A' – в базисах e' и g'.

Пусть для некоторых \vec{x} из \mathbf{R}^n и \vec{y} из \mathbf{S}^m

$$\vec{y} = A\vec{x}$$
.

Тогда в матричной записи в соответствующих базисах y = Ax и y' = A'x'

Пусть $\vec{e}_1,\ldots,\vec{e}_n$ и $\vec{e}'_1,\ldots,\vec{e}'_n$ базис пространства \mathbf{R}^n , а векторы $\vec{g}_1,\ldots,\vec{g}_m$ и $\vec{g}'_1,\ldots,\vec{g}'_m$ базисы пространства \mathbf{S}^m .

Пусть A – линейной преобразование \mathbb{R}^n в \mathbb{S}^m .

Пусть A — матрица преобразования, соответствующая оператору $\mathcal A$ в базисах e и g, а A' — в базисах e' и g'.

Пусть для некоторых \vec{x} из \mathbf{R}^n и \vec{y} из \mathbf{S}^m

$$\vec{y} = A\vec{x}$$
.

Тогда в матричной записи в соответствующих базисах y = Ax и y' = A'x'

Пусть $Q - n \times n$ -матрица перехода между координатами векторов в установленных базисах x = Qx' в \mathbb{R}^n ,

Пусть $\vec{e}_1,\ldots,\vec{e}_n$ и $\vec{e}'_1,\ldots,\vec{e}'_n$ базис пространства \mathbf{R}^n , а векторы $\vec{g}_1,\ldots,\vec{g}_m$ и $\vec{g}'_1,\ldots,\vec{g}'_m$ базисы пространства \mathbf{S}^m .

Пусть \mathcal{A} – линейной преобразование \mathbb{R}^n в \mathbb{S}^m .

Пусть A — матрица преобразования, соответствующая оператору \mathcal{A} в базисах e и g, а A' — в базисах e' и g'.

Пусть для некоторых \vec{x} из \mathbf{R}^n и \vec{y} из \mathbf{S}^m

$$\vec{y} = A\vec{x}$$
.

Тогда в матричной записи в соответствующих базисах y = Ax и y' = A'x'

Пусть $Q - n \times n$ -матрица перехода между координатами векторов в установленных базисах x = Qx' в \mathbb{R}^n ,

а $N-m \times m$ -матрица перехода между координатами вектора в $S^m \ y = N y'.$

С одной стороны

$$y = Ax = AQx'$$

С одной стороны

$$y = Ax = AQx'$$

С другой стороны

$$y = Ny' = NA'x'.$$

С одной стороны

$$y = Ax = AQx'$$

С другой стороны

$$y = Ny' = NA'x'$$
.

Таким образом,

$$\forall x' \quad NA'x' = AQx'.$$

С одной стороны

$$y = Ax = AQx'$$

С другой стороны

$$y = Ny' = NA'x'$$
.

Таким образом,

$$\forall x' \quad NA'x' = AQx'.$$

Следовательно

$$A' = N^{-1}AQ.$$

Теорема об эквивалентности матриц

Теорема (об эквивалентности матриц)

Для того чтобы две прямоугольные матрицы A и B одинаковых размеров $m \times n$ были эквивалентны, необходимо и достаточно, чтобы их ранги совпадали $r_A = r_B$.