ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIÓ

Circuits i Sistemes Electrònics III Examen final Quatrimestre de primavera 04/05

Solució de l'examen final disponible al campus digital: 21 de Juny Publicació de notes provisionals (mòdul C4 planta -1) : 28 de Juny a 15 h. Fi del termini d'al·legacions (secretaria B3): 29 de Juny a 16 h. Publicació de notes definitives (mòdul C4 planta -1): 30 de Juny a 12 h.

Cada problema s'ha d'entregar en fulls separats

Problema 1 (25%)

El circuit de la figura és un sensor de corrent que permet avaluar el corrent que arriba a la càrrega R_L , amb la finalitat de controlar el seu valor. La tensió V_o , que serveix de consigna per al circuit A, és proporcional al corrent mesurat, I_s . Es demana:

- a) L'expressió de la tensió V_o en funció d' I_s tenint en compte que **l'AO treballa en zona lineal** i el transistor bipolar en la zona activa directa.
- b) Calcula el valor de R_o per a que la sensibilitat del circuit sigui de 2 V/A. La sensibilitat és la relació entre V_o i I_s .

Volem estudiar com afecten les limitacions de l'AO en la resposta del circuit. Suposant que R_o és igual a 1 k Ω , es demana:

- c) L'efecte de la tensió d'offset de l'AO sobre V_o en el cas pitjor. Calcula l'error relatiu respecte al valor ideal calculat a l'apartat a).
- d) L'efecte dels corrents de polarització sobre V_o en el cas pitjor. Calcula l'error relatiu respecte al valor ideal calculat a l'apartat a). Per simplificar les expressions pots fer servir les següents aproximacions: $R_L >> R_s$ i $R_t >> R_s$.
- e) L'efecte del CMRR sobre V_o en el cas pitjor. Calcula l'error relatiu respecte al valor ideal calculat a l'apartat a).

Problema 2 (25%)

En el circuit de la figura, considerant els amplificadors operacionals i els diodes ideals, es demana:

- a) La característica sortida-entrada $V_o = f(V_i)$, indicant l'estat dels díodes en funció de la tensió d'entrada V_i .
- b) Dibuixeu la tensió de sortida V_o donant valors significatius de temps i amplituds, per a un senyal d'entrada V_i :

Dades:

$$R_1 = 1 \; k\Omega, \; R_2 = 2 \; k\Omega, \; R_3 = 1 \; k\Omega, \; R_4 = 3 \; k\Omega, \; R_5 = 9 \; k\Omega, \; V_B = 5 \; V, \; V_{cc} = 12 \; V.$$

Problema 3 (25%)

El circuit de la figura és un oscil.lador no sinusoidal que genera un senyal quadrat a la sortida. Es demana:

- a) L'expressió de la característica sortida-entrada $V_o = f(V_c)$. Dibuixeu-la.
- b) Partint de la situació inicial $V_c(t=0)=0$ V, dibuixeu l'evolució temporal de les tensions $V_c(t)$ i $V_o(t)$.
- c) Calculeu l'amplitud i la freqüència d'oscil.lació del senyal de sortida Vo.
- d) Calculeu els valors de R_B i R_C per a que el transistor treballi en la zona de tall i saturació, i que el LED estigui en conducció quan el transistor treballi en saturació.

Dades:

 $C = 1 \mu F$, $R_1 = 100 \Omega$, $R_2 = 1 k\Omega$, $V_{cc} = 15 V$.

LED: $V_{led,on} = 1 \text{ V}$, $I_{led,on} = 10 \text{ mA}$.

Transistor: $V_{be,on}\!=0.7$ V, $V_{ce,sat}=0\text{V},\,\beta_f=100.$

Problema 4 (25%)

Un circuit integrat regulador de tensió LM317 com el de la Figura 1 es connecta de la forma presentada en la Figura 2.

Les característiques d'aquest circuit integrat són:

- La tensió entre els terminals OUT i ADJUSTMENT és constant i igual a V_{OUT} V_{ADJ} = 1,25V.
- El corrent del terminal ADJUSTMENT és sortint de l'integrat i és d'un valor $I_{ADJ} = 50\mu A$.
- La tensió entre els terminals IN i OUT ha d'estar en el marge de $2V \le V_{IN}$ $V_{OUT} \le 20V$ per a que el seu funcionamient sigui correcte.

Es demana:

a) La tensió de sortida V_o del circuit de la Figura 2.

Per obtenir una tensió de sortida ajustable mitjançant una tensió V_{REF} es modifica el circuit quedant tal com es presenta en la Figura 3. (Considereu l'AO ideal)

- b) L'expresió de la tensió de sortida V_o en funció de la tensió de V_{REF}.
- c) Els valors màxim i mínim d'aquesta tensió de sortida V_o.
- d) Si el circuit de la Figura 3 ha d'alimentar una càrrega de 10 Ω , calculeu el rendiment del regulador per a una V_{REF} igual a 5 V.
- e) Si el circuit de la Figura 3 ha d'alimentar una càrrega de $10~\Omega$, calculeu la màxima potència dissipada pel regulador i la tensió de sortida per a la qual es produirà aquesta situació.