Nom et prénom, lisibles :

+240/1/16+

Identifiant (de haut en bas):

THLR Contrôle (35 questions), Septembre 2016

2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. Il d'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +240/1/xx+···+240/5/xx+.
	Q.2 Un langage est:
2/2	□ un ensemble ordonné □ un ensemble fini ☑ un ensemble □ une suite finie
	Q.3 L'ensemble des entiers positifs multiples de 2 est un ensemble :
0/2	 □ récursivement énumérable mais pas récursif □ récursif mais pas récursivement énumérable □ itératif
	Q.4 L'ensemble des programmes écrits en langage Java est un ensemble
0/2	☐ récursivement énumérable mais pas récursif ☐ ni récursivement énumérable ni récursif ☐ récursif mais pas récursivement énumérable ☑ récursif
	Q.5 Que vaut Fact(L) (l'ensemble des facteurs):
0/2	\boxtimes Suff(Pref(L)) \square Pref(Pref(L)) \square Pref($\overline{Pref(L)}$) \square Suff(Suff(L)) \square Suff($\overline{Pref(L)}$)
	Q.6 Que vaut $\overline{\{a\}^*}$, avec $\Sigma = \{a, b\}$.
2/2	
	Q.7 Pour toute expression rationnelle e , on a $e + e \equiv e$.
2/2	wrai 🔲 faux
	Q.8 Pour toutes expressions rationnelles e , f , on a $(e + f)^* \equiv e^*(e + f)^*$.
2/2	vrai 🗆 faux
	Q.9 L'expression Perl'[a-zA-Z][a-zA-Z0-9_]*' n'engendre pas:
2/2	<pre>[] 'STDC'</pre>
	Q.10 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L \subseteq \Sigma^*$, on a $\forall n > 1$, $L^n = \{u^n u \in L\}$.
2/2	faux vrai

Ces deux expressions rationnelles: 0.11

 $(a^* + b)^* + c((ab)^*(bc))^*(ab)^*$ $c(ab + bc)^* + (a + b)^*$

- 0/2
- sont identiques
- dénotent des langages différents
- ne sont pas équivalentes
- Un automate fini non-déterministe à transitions spontanées peut avoir une infinité d'états. 0.12

2/2

- □ vrai
- M faux
- Un algorithme peut décider si un automate est déterministe en regardant sa structure. O.13

2/2

- ☐ Souvent
- □ Rarement
- Vrai
- ☐ Faux
- Combien d'états a l'automate de Thompson auquel je pense? Q.14

2/2

2/2

- \Box 1
- □ 9 7

Quel est le résultat d'une élimination arrière des transitions spontanées?

Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents?

2/2

☐ Aucune de ces réponses n'est correcte.

Le langage $\{ \mathfrak{S}^n \mid \forall n \in \mathbb{N} \}$ est Q.17

2/2

- ☐ fini
- rationnel
- □ non reconnaissable par automate fini
- □ vide

- Un langage quelconque
 - peut avoir une intersection non vide avec son complémentaire

2/2

- n'est pas nécessairement dénombrable
- peut n'être inclus dans aucun langage dénoté par une expression rationnelle
- est toujours inclus (⊆) dans un langage rationnel
 - Si un automate de n états accepte a^n , alors il accepte...

2/2

- Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la *n*-ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+\hat{d})^{n-1}$):

2/2

- ☐ Il n'existe pas.
- 2^n

Q.21 Déterminiser cet automate.

Soit Rec l'ensemble des langages reconnaissables par DFA, et Rat l'ensemble des langages définissables par expressions rationnelles.

2/2

2/2

- Rec

 Rec

 Rat
 - Rec ⊇ Rat
- Rec = Rat
- \square Rec \subseteq Rat

Q.23 & Quelle(s) opération(s) préserve(nt) la rationnalité?

0/2

- Transpose
- Sous mot ☐ Aucune de ces réponses n'est correcte.
- Suff Pref
- Q.24 Duelle(s) opération(s) préserve(nt) la rationnalité?

0/2

- ☑ Union
- ☑ Différence symétrique

☐ Aucune de ces réponses n'est correcte. Intersection

On peut tester si un automate nondéterministe reconnaît un langage non vide.

- O.25
- souvent
- rarement
- oui, toujours
- jamais

On peut tester si un automate déterministe reconnaît un langage non vide. Q.26

0/2

0/2

- Non
- ☐ Seulement si le langage n'est pas rationnel
- □ Cette question n'a pas de sens
- Oui
- Si L_1, L_2 sont rationnels, alors: O.27

2/2

- $\bigcup_{n\in\mathbb{N}} L_1^n \cdot L_2^n$ aussi

Quel mot reconnait le produit de ces automates?

- $\Box (bab)^{666666}$
- (bab)³³³ \Box $(bab)^{22}$
- ☐ (bab)4444

Il est possible de déterminer si une expression rationnelle et un automate correspondent au même O.29 langage.

2/2

0/2

- vrai en temps fini
- ☐ faux en temps fini ☐ faux en temps infini
- □ vrai en temps constant
- Q.30 Si L et L' sont rationnels, quel langage ne l'est pas nécessairement?

2/2

- $\{u^nv^n \mid u \in L, v \in L', n \in \mathbb{N}\}$

- Q.31 & Quels états peuvent être fusionnés sans changer le langage reconnu.

2/2

- ☐ 1 avec 3
- ☐ 0 avec 1 et avec 2
- ☐ 2 avec 4
- 3 avec 4
- 1 avec 2
- ☐ Aucune de ces réponses n'est correcte.

Q.32

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

- a*b*c
- \Box $(a+b+c)^*$
- ☐ (abc)*
- \Box $a^* + b^* + c^*$

Q.33 Considérons \mathcal{P} l'ensemble des *palindromes* (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

0/2

- ☐ Il existe un DFA qui reconnaisse \mathcal{P} ☑ \mathcal{P} ne vérifie pas le lemme de pompage
- \square Il existe un ε -NFA qui reconnaisse $\mathcal P$
 - ☐ Il existe un NFA qui reconnaisse P

Q.34 Sur $\{a, b\}$, quel automate reconnaît le complémentaire du langage de b

2/2

 $\Box \longrightarrow \bigcirc \stackrel{b}{\longrightarrow} \bigcirc \stackrel{a,b}{\longrightarrow} \bigcirc$

Q.35 Sur $\{a,b\}$, quel est le complémentaire de \underbrace{a}_{L}

206

+240/6/11+