### ML на Python

Неделя 3. День 8. Статистика

(14.09.2023)

#### Кто я?

- BSc Biology (MSU)
- MSc Structural Biology (MSU)
- Junior Bioinformatician (ImmunoMind)
- Bioinformatician (BostonGene)
- Ongoing PhD student (University of Basel)



Дани(и)л Литвинов (Даня) @Danil litvinov

#### **GWAS**



#### Метагеномика



## **Детекция анеуплоидных** пациентов



# **Дифференциальная** экспрессия генов



# Введение в статистику



#### Типы переменных



#### Генеральная совокупность. Выборка

Генеральная совокупность — совокупность всех объектов, относительно которых предполагается делать выводы при изучении конкретной задачи.

Выборка или выборочная совокупность — часть генеральной совокупности элементов, которая охватывается экспериментом (наблюдением, опросом).





#### Способы создания выборок

Вероятностные выборки

Невероятностные выборки (детерминированные) связаны с субъективными критериями

#### Вероятностные выборки

**Вероятностные выборки** – при создании таких выборок мы предполагаем, что генеральная совокупность достаточно однородна и все её элементы одинаково доступны.

**Простая случайная выборка** (simple random sample) – случайный набор объектов из генеральной совокупности. Пример: 100 мужчин, участвующих в Олимпийских играх

**Стратифицированная выборка** (stratified sample) – перед тем, как случайным образом отобрать объекты из генеральной совокупности, мы разбиваем её на несколько страт (групп).

Пример: мужчины 18-25 лет, 36-31, 32-36 и так далее.

Потом уже из этих групп случайно набираем по N человек.

**Групповая выборка** (cluster sample) – также сначала делим генеральную совокупность на кластеры, только считаем, что они между собой схожи.

Пример: рост жителей Санкт-Петербурга. Мы делим их на районы (Адмиралтейский, Василеостровский и т.д.), а потом случайно набираем людей из нескольких случайно выбранных районов для исследования.

#### Невероятностные выборки

**Невероятностные выборки** – отбор в такой выборке осуществляется не по принципам случайности, а по субъективным критериям – доступности объектов, типичности или равного представительства. Такие выборки часто встречаются в социологических исследованиях, однако данные, полученные на них обладают меньшей достоверностью и лучше их обходить стороной.

**Метод снежного кома** - у каждого респондента, начиная с первого, просятся контакты его друзей, коллег, знакомых, которые подходили бы под условия отбора и могли бы принять участие в исследовании. Основная проблема такой выборки - то, что затрагивается не случайная группа лиц, а лица, связанные общими интересами, хобби и т.д.

**Стихийная выборка** - производится опрос наиболее доступных респондентов. Размер и состав стихийных выборок заранее не известен и определяется только одним параметром - активностью респондентов.

Пример: опрос, проведенный в газете или журнале, большинство интернет-опросов

**Выборка типичных случаев** происходит отбор отдельных единиц генеральной совокупности, которые обладают типичным значением признака (часто это среднее значение). При этом возникает проблема выбора признака и определения его типичного значения.

#### Мера центральной тенденции

- Отражает типичное наблюдение в выборке
- Существует много вариантов

# **Арифметическое среднее**

$$\overline{X}=rac{X_1+X_2+...+X_n}{n}=rac{1}{n}{\displaystyle\sum_{i=1}^nX_i}$$

Время (мин), которое студенты тратят на ДЗ: [2500, 3100, 3600, 2800, 3000]

$$\overline{T} = \frac{2500 + 3100 + 3600 + 2800 + 3000}{5} = 3000$$

#### А если так...

$$\overline{X}=rac{X_1+X_2+...+X_n}{n}=rac{1}{n}{\displaystyle\sum_{i=1}^nX_i}$$

[2500, 3100, 3600, 2800, 3000, 17000]

$$\overline{T} = rac{2500 + 3100 + 3600 + 2800 + 3000 + 17000}{6} = 5333$$

#### Усеченное среднее

Мы просто убираем по n % наименьших и наибольших значений в нашей выборке. Таким образом усеченное среднее лучше подходит, когда в выборке могут быть выбросы.

$$\overline{T_{cut}} = \frac{3100 + 3600 + 2800 + 3000}{4} = 3125$$

#### Медиана

Значение, которое делит отсортированную выборку пополам.

[2500, 2800, 3000, 3100, 3400, 3600, 17000]

#### А если четное число наблюдений

Значение, которое делит отсортированную выборку пополам.

#### Мода

Значение, которое встречается в выборке наиболее часто.

| Значение | Частота |
|----------|---------|
| 3000     | 4       |
| 2750     | 10      |
| 2700     | 7       |
| 17000    | 1       |

#### А какие есть варианты?

1) mean cmed: [-1660,1,2,3,4]

2) main (med=mode:[0,1,1] [-1060,1,2,2,3,4]

#### Меры разброса

1) 
$$|x_{max} - x_{m:n} - \mu a | max$$
  
2)  $|x_{i=1}| / |x_{i}| / |x_{i}| | |x$ 

#### Меры разброса

$$SS_{total} = \sum_{i=1}^n (X_i - \overline{X})^2 - ext{ сумма квадратов отклонений}$$

$$\sigma^2 = rac{1}{n} {\displaystyle \sum_{i=1}^n} (X_i - E(X))^2 \; - \;$$
 дисперсия при известном  $E(X)$ 

$$S^2 = rac{1}{n-1} {\displaystyle \sum_{i=1}^n} (X_i - \overline{X})^2 \; - \;$$
 дисперсия при неизвестном  $E(X)$ 

$$\overline{\sigma} = \sqrt{rac{1}{n-1} {\displaystyle \sum_{i=1}^n (X_i - \overline{X})^2}} \, - \,$$
 стандартное отклонение

#### Асимметрия

$$\overline{\gamma_3} = rac{1}{n\overline{\sigma}^3} {\displaystyle \sum_{i=1}^n} (X_i - \overline{X})^3$$



Асимметрия. Контрпример



#### Квантили

Квантили — это значения, которые делят ряд наблюдений на N равных частей.

Возможные варианты квантилей:

- 2-квантиль медиана
- 4-квантиль квартиль
- 100-квантиль перцентиль

[300, 2500, 2800, 3000, 3100, 3400, 3600, 7000]



#### Боксплот (график)



#### Боксплот (недостатки)



### Распределения



#### Функция распределения

$$F(X) = P(\xi \le X)$$

Функция распределения — это такая функция, которая для значения X, равна вероятности получить значение меньшее или равное этому X.
Например, для роста F(180 см) = ?



#### Функция плотности

Пришло время наконец узнать, что же такое <u>непрерывная СВ</u>. Непрерывной СВ называется такая СВ, для которой существует функция f(x), называемая функцией плотности, такая что:

$$F(X) = \int\limits_{-\infty}^{X} f(x) \, dx$$



#### Биномиальное распределение

#### Биномиальное распределение в

теории вероятностей — распределение количества «успехов» в последовательности из п независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна р.

 $(1) \quad \mathbb{D}(\mathbf{x}, \mathbf{x}, \mathbf{y}) \quad h(\mathbf{x}, \mathbf{y}) \quad h(\mathbf{x}, \mathbf{y})$ 

$$p(k) \equiv \mathbb{P}(Y=k) = inom{n}{k} \, p^k (1-p)^{n-k}$$



#### Отрицательное биномиальное

Отрицательное биномиальное распределение, также называемое распределением Паскаля — это распределение дискретной случайной величины, равной числу произошедших неудач в последовательности испытаний Бернулли с вероятностью успеха р, проводимых до r-го успеха.

$$p(k) \equiv \mathbb{P}(Y=k) = inom{k+r-1}{k} p^r (1-p)^k$$



#### Нормальное распределение

#### Параметры:

μ — математическое ожидание

σ – стандартное отклонение

$$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$



#### Стандартное нормальное распределение

#### Параметры:

$$\mu = 0$$

$$\sigma = 1$$

$$f(x)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}x^2}$$

$$z=rac{x-\overline{x}}{\sigma}$$



#### Нормальное распределение

- 1. Унимодально
- 2. Симметрично
- 3. Отклонения подчиняются закону

#### Например:

- В диапазоне от среднего до 1σ (одного стандартного отклонения) будет находиться примерно 34.1% всех наблюдений
- В диапазоне от 1σ до 2σ примерно 13.6%
- Очень маловероятно встретить наблюдение, которое бы превосходило среднее значение больше чем на 3 стандартных отклонения (3σ)

Отклонение от среднего равновероятно как в большую, так и в меньшую стороны.



#### Правило "двух" и "трех" сигм

- $M_x \pm \sigma pprox 68\%$  наблюдений находятся в этом интервале
- ullet  $M_x \pm 2\sigma pprox 95\%$  наблюдений находятся в этом интервале
- ullet  $M_x \pm 3\sigma pprox 100\%$  наблюдений находятся в этом интервале

**Пример:** Среднее значение равняется 150, а стандартное отклонение равно 8. Какой процент наблюдений превосходит значение, равное 154?

Для этого нужно сделать Z-преобразование. Как найти интересующее нас Z-значение? Из 154 нужно вычесть среднее значение по нашей выборке и разделить на стандартное отклонение. В результате:

$$\frac{154 - 150}{8} = \frac{4}{8} = 0.5$$

#### Центральная предельная теорема

Класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых одинаково распределенных случайных величин, имеющих примерно одинаковые масштабы, имеет распределение, близкое к нормальному (wikipedia).



#### Центральная предельная теорема



Стандартное отклонение этого распределения называется стандартной ошибкой среднего. Она показывает, насколько выборочные средние отклоняются от среднего ГС.



### Проверим



#### Стандартная ошибка среднего

Стандартная ошибка среднего (SE) показывает, насколько выборочные средние "разбросаны" вокруг среднего генеральной совокупности. SE при увеличении размера выборки будет стремиться к нулю.  $se = \frac{\sigma}{\sqrt{n}} \qquad \text{ (if u g of the lates)} \qquad \text{ (if u g of the lates)}$ 

Если выборка репрезентативна и число наблюдений достаточно велико, то в качестве стандартного отклонения ГС мы можем использовать стандартное отклонение нашей выборки:

$$se=rac{sd_x}{\sqrt{n}}$$

#### Стандартная ошибка среднего



$$T=(x_1+x_2+\cdots+x_n)$$
 $\mathrm{Var}(T)=ig(\mathrm{Var}(x_1)+\mathrm{Var}(x_2)+\cdots+\mathrm{Var}(x_n)ig)=n\sigma^2.$ 
 $ar{x}=T/n.$ 
 $\mathrm{Var}(ar{z})=\mathrm{Var}\left(T\right)=1$   $\mathrm{Var}(T)=1$   $\mathrm{Var}(T)=0$ 

$$\operatorname{Var}(ar{x}) = \operatorname{Var}\left(rac{T}{n}
ight) = rac{1}{n^2}\operatorname{Var}(T) = rac{1}{n^2}n\sigma^2 = rac{\sigma^2}{n}.$$

$$\sigma_{ar{x}} = \sqrt{rac{\sigma^2}{n}} = rac{\sigma}{\sqrt{n}}.$$

# Доверительный интервал при известной дисперсии

Интервал такой ширины, что при многократном повторении эксперимента в 95% из полученных интервалов будет среднее ГС:

$$x \pm 1.96 \cdot se$$

И в 99%:

$$\overline{x} \pm 2.58 \cdot se$$



$$se = \frac{\sigma}{\sqrt{n}}$$

### Тренируемся



# Доверительный интервал при неизвестной дисперсии

Если число наблюдений в выборке невелико и σ (стандартное отклонение генеральной совокупности) неизвестно (почти всегда), используется распределение Стьюдента (T-distribution), чтобы описать, как будут себя вести все выборочные средние.

- 1. Унимодально
- 2. Симметрично
- Но: наблюдения с большей вероятностью попадают за пределы ±2σ от М



$$\overline{x} \pm t_{0.95} \cdot se$$
  
 $\overline{x} \pm t_{0.99} \cdot se$ 

$$se = \frac{sd_x}{\sqrt{n}}$$

#### t-распределение

n — число степеней свободы. На деле это означает, сколько  $\mathbf{Y}_i$  мы суммируем в знаменателе. По сути мы получаем число ( $\mathbf{Y}_0$ ) из распределения N(0, 1), после чего получаем еще n чисел ( $\mathbf{Y}_i$ ) из такого же распределения. В конце остается лишь подставить их в данную формулу, и вы получите какое-то значение из t-распределения.

$$t=rac{Y_0}{\sqrt{rac{1}{n}\sum\limits_{i=1}^n Y_i^2}}$$



### Тестирование гипотез



#### Тестирование гипотез

- Гипотезы НО и НА должны быть взаимоисключающими
- Нулевая гипотеза Н0 описание ситуации отсутствия различий
- Альтернативная гипотеза НА вопрос исследователя и формулируется до начала эксперимента
- Двусторонняя/односторонняя альтернативная гипотеза

#### Примеры гипотез

• • •

#### Итоги

- 1. Узнали, что такое функция распределения, и несколько распределений
- 2. Поняли, как работает ЦПТ
- 3. Узнали про стандартную ошибку среднего
- 4. Научились тестировать гипотезы с помощью доверительных интервалов