

Report No.: SZEM150500240302

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Email: ee.shenzhen@sgs.com

ee.shenzhen@sgs.com Page: 1 of 55

FCC REPORT

Application No: SZEM1505002403CR

Applicant: Nexmed Technology Co., Ltd.

Manufacturer:Joint Chinese GroupFactory:Joint Chinese Group

Product Name: MyCoach Model No.(EUT): BW-F17

Trade Mark: Bewell connect FCC ID: 2AERCBW-F17

Standards: 47 CFR Part 15, Subpart C (2014)

Date of Receipt: 2015-05-11

Date of Test: 2015-05-22 to 2015-06-05

Date of Issue: 2015-06-24

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM150500240302

Page: 2 of 55

2 Version

	Revision Record						
Version	Chapter	Date	Modifier	Remark			
00		2015-06-24		Original			

Authorized for issue by:		
Tested By	Eric Fu	2015-06-05
	(Eric Fu) /Project Engineer	Date
Prepared By	Heely Wen.	2015-06-24
	(Hedy Wen) /Clerk	Date
Checked By	Owen Zhon	2015-06-24
	(Owen Zhou) /Reviewer	Date

Report No.: SZEM150500240302

Page: 3 of 55

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2009	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2009	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2009	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2009	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2009	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2009	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2009	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS

Remark:

Model No.: BW-F17

There are two samples for the model BW-F17. And the circuitry design, PCB layout, electrical components used, internal wiring and functions were identical for all samples, only different on appearance.

Report No.: SZEM150500240302

Page: 4 of 55

4 Contents

			Page
1	CC	OVER PAGE	1
2	VF	ERSION	2
3	16	EST SUMMARY	3
4	CC	ONTENTS	4
5	GE	ENERAL INFORMATION	5
Ī	5.1	CLIENT INFORMATION	
	5.1	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	8
	5.10	EQUIPMENT LIST	9
6	TE	EST RESULTS AND MEASUREMENT DATA	12
	6.1	Antenna Requirement	12
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER.	
	6.4	6DB OCCUPY BANDWIDTH	20
	6.5	POWER SPECTRAL DENSITY	23
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	Spurious RF Conducted Emissions	
	6.8	RADIATED SPURIOUS EMISSION	
		8.1 Spurious Emissions	
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	48
7	PH	HOTOGRAPHS - EUT TEST SETUP	54
	7.1	CONDUCTED EMISSION	54
	7.2	RADIATED EMISSION	54
	7.3	RADIATED SPURIOUS EMISSION	55
Q	DL	ACTOCRADUS EUT CONSTRUCTIONAL DETAILS	55

Report No.: SZEM150500240302

Page: 5 of 55

5 General Information

5.1 Client Information

Applicant:	Nexmed Technology Co., Ltd.			
Address of Applicant:	2 Floor of No.1 Building, Jia An Technological Industrial Park, District, Bao An, 518101 Shenzhen China			
Manufacturer:	Joint Chinese Group			
Address of Manufacturer:	Building 6, huafeng Tech Park, Guangdong Road, Luotian Industrial Area, Songgang Town, Bao'an District Shenzhen, P.R China, 518125			
Factory:	Joint Chinese Group			
Address of Factory:	Building 6, huafeng Tech Park, Guangdong Road, Luotian Industrial Area, Songgang Town, Bao'an District Shenzhen, P.R China, 518125			

5.2 General Description of EUT

Product Name:	MyCoach
Model No.:	BW-F17
Trade Mark:	Bewell connect
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.0 BLE mode
Modulation Type:	GFSK
Number of Channel:	40
Sample Type:	Portable production
Test Power Grade:	0 (manufacturer declare)
Test Software of EUT:	SmartRF studio7 (manufacturer declare)
Antenna Type:	Integral
Antenna Gain:	0dBi
Power Supply:	Internal rechargeable battery: DC 3.7V 70mAh (charge by USB)

Report No.: SZEM150500240302

Page: 6 of 55

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The Lowest channel	2402MHz		
The Middle channel	2440MHz		
The Highest channel	2480MHz		

Report No.: SZEM150500240302

Page: 7 of 55

5.3 Test Environment

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	53 % RH		
Atmospheric Pressure:	1005mbar		

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM150500240302

Page: 8 of 55

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 10m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM150500240302

Page: 9 of 55

5.10 Equipment List

	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2016-05-13	
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2015-10-24	
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2016-05-13	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2015-08-30	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2015-08-30	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2015-08-30	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2016-05-13	
8	Coaxial Cable	SGS	N/A	SEL0025	2016-05-13	
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24	
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	
11	Barometer	Chang Chun	DYM3	SEL0088	2016-05-13	

Report No.: SZEM150500240302

Page: 10 of 55

	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)		
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2016-05-13		
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2015-09-16		
3	EMI Test software	AUDIX	E3	SEL0050	N/A		
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2015-10-24		
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2015-10-24		
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2015-10-24		
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2016-05-13		
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2015-10-24		
9	Coaxial cable	SGS	N/A	SEL0027	2016-05-13		
10	Coaxial cable	SGS	N/A	SEL0189	2016-05-13		
11	Coaxial cable	SGS	N/A	SEL0121	2016-05-13		
12	Coaxial cable	SGS	N/A	SEL0178	2016-05-13		
13	Band filter	Amindeon	82346	SEL0094	2016-05-13		
14	Barometer	Chang Chun	DYM3	SEL0088	2016-05-13		
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24		
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24		
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2016-05-13		
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2015-10-24		
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2016-05-13		

Report No.: SZEM150500240302

Page: 11 of 55

	RF connected test				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-24
4	Coaxial cable	SGS	N/A	SEL0178	2016-05-13
5	Coaxial cable	SGS	N/A	SEL0179	2016-05-13
6	Barometer	ChangChun	DYM3	SEL0088	2016-05-13
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2016-04-25
8	Band filter	amideon	82346	SEL0094	2016-05-13
9	POWER METER	R&S	NRVS	SEL0144	2015-10-24
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2016-04-25
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2015-10-24

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM150500240302

Page: 12 of 55

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM150500240302

Page: 13 of 55

6.2 Conducted Emissions

	Jonauctea Linis				
	Test Requirement:	47 CFR Part 15C Section 15.2	207		
	Test Method:	ANSI C63.10: 2009			
	Test Frequency Range:	150kHz to 30MHz			
	Limit:	[Limit (dBuV)		
		Frequency range (MHz)	Quasi-peak	Average	Ì
		0.15-0.5	66 to 56*	56 to 46*	Ì
		0.5-5	56	46	Ì
		5-30	60	50	Ì
		* Decreases with the logarithm	n of the frequency.		
	Test Procedure:	 The mains terminal disturbroom. The EUT was connected Impedance Stabilization N impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the rational stability. The tabletop EUT was play ground reference plane. A placed on the horizontal graph of the EUT shall be 0.4 m vertical ground reference reference plane. The LISN unit under test and bon mounted on top of the grout the closest points of the List and the closest points of the closest points. 	I to AC power source etwork) which provides cables of all other SN 2, which was bonded as the LISN 1 for the was used to connect reating of the LISN was reaced upon a non-metal and for floor-standing a round reference plane. The a vertical ground reference was bonded of 1 was placed 0.8 m ded to a ground refund reference plane. The cound reference plane was bonded of 1 was placed 0.8 m ded to a ground reference plane.	e through a LISN 1 (s a 50Ω/50μH + 5Ω li units of the EUT vertical to the ground reference unit being measure multiple power cables not exceeded. Callic table 0.8m above rrangement, the EUT ference plane. The resund reference plane to the horizontal ground from the boundary of the ference plane for Libis distance was between the second from the second from the ference plane for Libis distance was between the second from the	(Line inear were ence ed. A s to a e the was ear of The ound of the ISNs ween
		and associated equipment 5) In order to find the maximum and all of the interface C63.10: 2009 on conducted.	was at least 0.8 m from um emission, the relating cables must be cha	m the LISN 2. ve positions of equipr	ment
	Test Setup:	Shielding Room EUT AC Mains LISN1	AE LISN2 AC Ma	Test Receiver	
	Test Mode:	Charge mode			
"This		the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at			

Report No.: SZEM150500240302

Page: 14 of 55

Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM150500240302

Page: 15 of 55

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

Site : Shielding Room

Condition : 47 CFR PART 15 B AV CE LINE

Job No. : 2403CR

	Freq		LISN Factor					Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.20075	0.02	9.83	37.24	47.09	53.58	-6.49	Peak
2	0.25751	0.02	9.84	35.13	44.98	51.51	-6.53	Peak
3	0.36725	0.01	9.85	31.36	41.22	48.56	-7.34	Peak
4	1.645	0.02	9.93	25.43	35.38	46.00	-10.62	Peak
5	4.114	0.01	10.08	20.23	30.33	46.00	-15.67	Peak
6	14.138	0.01	10.16	22.65	32.82	50.00	-17.18	Peak

Report No.: SZEM150500240302

Page: 16 of 55

Neutral line:

Site : Shielding Room

Condition : 47 CFR PART 15 B AV CE NEUTRAL

Job No. : 2403CR

	Freq		LISN Factor					Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1 @	0.19447	0.02	9.84	39.91	49.78	53.84	-4.07	Peak
2	0.25078	0.02	9.86	35.68	45.56	51.73	-6.17	Peak
3	0.30671	0.01	9.86	33.64	43.52	50.06	-6.54	Peak
4	0.36146	0.01	9.87	30.09	39.97	48.69	-8.72	Peak
5	1.577	0.02	10.09	23.31	33.42	46.00	-12.58	Peak
6	11.870	0.01	10.17	24.32	34.50	50.00	-15.50	Peak

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM150500240302

Page: 17 of 55

6.3 Conducted Peak Output Power

Measurement Data

	GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-2.53	30.00	Pass			
Middle	-3.04	30.00	Pass			
Highest	-3.33	30.00	Pass			

Report No.: SZEM150500240302

Page: 18 of 55

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Report No.: SZEM150500240302

Page: 19 of 55

Report No.: SZEM150500240302

Page: 20 of 55

6.4 6dB Occupy Bandwidth

Measurement Data

GFSK mode						
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	0.692	≥500	Pass			
Middle	0.692	≥500	Pass			
Highest	0.692	≥500	Pass			

Report No.: SZEM150500240302

Page: 21 of 55

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

Report No.: SZEM150500240302

Page: 22 of 55

Report No.: SZEM150500240302

Page: 23 of 55

6.5 Power Spectral Density

Measurement Data

	GFSK mode					
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
Lowest	-14.99	≤8.00	Pass			
Middle	-15.43	≤8.00	Pass			
Highest	-16.45	≤8.00	Pass			

Report No.: SZEM150500240302

Page: 24 of 55

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Report No.: SZEM150500240302

Page: 25 of 55

Report No.: SZEM150500240302

Page: 26 of 55

6.6 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10 2009		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark:		
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test Mode:	Transmitting with GFSK modulation.		
Instruments Used:	Refer to section 5.10 for details.		
Test Results:	Pass		

Report No.: SZEM150500240302

Page: 27 of 55

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Report No.: SZEM150500240302

Page: 28 of 55

6.7 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10 2009		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test Mode:	Transmitting with GFSK modulation.		
Instruments Used:	Refer to section 5.10 for details.		
Test Results:	Pass		

Report No.: SZEM150500240302

Page: 29 of 55

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Report No.: SZEM150500240302

Page: 30 of 55

Report No.: SZEM150500240302

Page: 31 of 55

Report No.: SZEM150500240302

Page: 32 of 55

Report No.: SZEM150500240302

Page: 33 of 55

Report No.: SZEM150500240302

Page: 34 of 55

Report No.: SZEM150500240302

Page: 35 of 55

Report No.: SZEM150500240302

Page: 36 of 55

Report No.: SZEM150500240302

Page: 37 of 55

Report No.: SZEM150500240302

Page: 38 of 55

Report No.: SZEM150500240302

Page: 39 of 55

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

Report No.: SZEM150500240302

Page: 40 of 55

6.8 Radiated Spurious Emission

6.8.1 Spurious Emiss	sions									
Test Requirement:	47 CFR Part 15C Secti	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2009									
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency		Detector	RBW		VBW	Remark	Ī		
	0.009MHz-0.090MHz		Peak	10kHz	<u>z</u>	30kHz	Peak			
	0.009MHz-0.090MH	0.009MHz-0.090MHz Averag			<u>z</u>	30kHz	Average			
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	<u>z</u>	30kHz	Quasi-peak			
	0.110MHz-0.490MH	0.110MHz-0.490MHz Peak			<u>z</u>	30kHz	Peak			
	0.110MHz-0.490MH	z	Average	10kHz	<u>z</u>	30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	<u>z</u>	30kHz	Quasi-peak			
	30MHz-1GHz	30MHz-1GHz Quasi-			lz	300kHz	Quasi-peak			
	Above 1GHz	Al 4011-		1MHz	<u>'</u>	3MHz	Peak			
	Above IGH2		Peak	1MHz	<u>-</u>	10Hz	Average			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)		Remark	Measureme distance (r			
	0.009MHz-0.490MHz	2	400/F(kHz)	-		-	300			
	0.490MHz-1.705MHz	24	1000/F(kHz)	-		-	30			
	1.705MHz-30MHz		30	-		-	30			
	30MHz-88MHz		100	40.0	Qı	uasi-peak	3			
	88MHz-216MHz		150	43.5	Qı	uasi-peak	3			
	216MHz-960MHz		200	46.0	Qı	uasi-peak	3			
	960MHz-1GHz		500	54.0	Qı	uasi-peak	3			
	Above 1GHz 500 54.0 Average					3				
	frequency emissions is limit applicable to the e	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								
Test Setup:				·						

Report No.: SZEM150500240302

Page: 41 of 55

Figure 2. 30MHz to 1GHz Figure 1. Below 30MHz Figure 3. Above 1 GHz Test Procedure: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test the EUT in the lowest channel (2402MHz), the middle channel (2440MHz), the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. Repeat above procedures until all frequencies measured was complete. **Exploratory Test Mode:** Transmitting with GFSK modulation. Transmitting mode. Final Test Mode: Transmitting with GFSK modulation. For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report. Refer to section 5.10 for details. Instruments Used:

Report No.: SZEM150500240302

Page: 42 of 55

Test Results:	Pass

Report No.: SZEM150500240302

Page: 43 of 55

Radiated Emission below 1GHz						
30MHz~1GHz (QP)						
Test mode:	Transmitting mode	Vertical				

Condition: 47 CFR PART 15.209 3m VERTICAL

Job No. : 2403CR Test Mode: TX mode

001	Freq			Preamp Factor			Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	$\overline{\text{dBuV/m}}$	dB
1 2 3 4 5 6	31. 73 33. 68 38. 48 747. 48 872. 18 916. 07	0.67 0.72 0.77 4.89 5.16 5.53	20.51 19.31 16.62 22.93 23.80 24.15	25. 90 25. 89 25. 88 26. 85 26. 65 26. 56	26. 55 24. 20 24. 17	20. 18 19. 16 18. 06 25. 17 26. 48 27. 43	40.00 40.00 46.00 46.00	-21.94 -20.83

Report No.: SZEM150500240302

Page: 44 of 55

Test mode:	Transmitting mode	Horizontal
------------	-------------------	------------

Condition: 47 CFR PART 15.209 3m HORIZONTAL

Job No. : 2403CR Test Mode: TX mode

	Freq			Preamp Factor	Read Level		Limit Line	Over Limit
	MHz	d₿	dB/m	dB	dBuV	$\overline{\text{dBuV/m}}$	dBuV/m	dB
1 2 3 4 5 6	30. 42 33. 68 38. 89 94. 43 839. 18 952. 09	0.64 0.72 0.77 1.41 5.10 5.41	21. 40 19. 31 16. 40 13. 17 23. 30 23. 86	25. 90 25. 89 25. 88 25. 80 26. 72 26. 49	23. 91 24. 96 27. 06 24. 80 24. 34 25. 05	20. 05 19. 10 18. 35 13. 58 26. 02 27. 83	40.00 40.00 43.50 46.00	-19.95 -20.90 -21.65 -29.92 -19.98 -18.17

Report No.: SZEM150500240302

Page: 45 of 55

Transmitter Emission above 1GHz								
Test mode:		GFSK	Test	channel:	Lowest	Rema	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3719.627	6.84	33.09	38.84	46.95	48.04	74	-25.96	Vertical
4804.000	6.42	34.70	39.24	53.49	55.37	74	-18.63	Vertical
7206.000	8.92	35.63	39.07	45.21	50.69	74	-23.31	Vertical
9608.000	9.99	37.33	37.93	42.91	52.30	74	-21.70	Vertical
11317.000	10.35	38.14	38.38	43.58	53.69	74	-20.31	Vertical
12783.380	10.36	39.30	39.35	42.87	53.18	74	-20.82	Vertical
3974.578	6.70	33.46	38.94	45.59	46.81	74	-27.19	Horizontal
4804.000	6.42	34.70	39.24	55.88	57.76	74	-16.24	Horizontal
7206.000	8.92	35.63	39.07	45.52	51.00	74	-23.00	Horizontal
9608.000	9.99	37.33	37.93	43.95	53.34	74	-20.66	Horizontal
11418.840	10.37	38.16	38.43	43.78	53.88	74	-20.12	Horizontal
12136.100	10.82	38.87	38.82	43.10	53.97	74	-20.03	Horizontal

Test mode: GFSK		Tes	t channel:	Lowest	Re	mark:	Average	
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Polarization
4804.000	6.42	34.70	39.24	47.12	49.00	54	-5.00	Vertical
4804.000	6.42	34.70	39.24	49.11	50.99	54	-3.01	Horizontal

Report No.: SZEM150500240302

Page: 46 of 55

Test mode:		GFSK	Test	t channel:	Middle	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4003.166	6.68	33.51	38.95	47.08	48.32	74	-25.68	Vertical
4880.000	6.58	34.78	39.26	50.98	53.08	74	-20.92	Vertical
7320.000	9.07	35.51	39.06	45.51	51.03	74	-22.97	Vertical
9760.000	9.90	37.80	37.84	43.37	53.23	74	-20.77	Vertical
11096.130	10.30	38.11	38.27	42.92	53.06	74	-20.94	Vertical
12444.380	11.28	39.21	39.07	42.56	53.98	74	-20.02	Vertical
3620.989	6.90	33.02	38.79	46.59	47.72	74	-26.28	Horizontal
4880.000	6.58	34.78	39.26	51.80	53.90	74	-20.10	Horizontal
7320.000	9.07	35.51	39.06	45.20	50.72	74	-23.28	Horizontal
9760.000	9.90	37.80	37.84	42.59	52.45	74	-21.55	Horizontal
11076.270	10.30	38.11	38.26	43.58	53.73	74	-20.27	Horizontal
12533.890	11.22	39.23	39.15	41.79	53.09	74	-20.91	Horizontal

Test mode:		GFSK	Tes	st channel:	Highest	Rem	nark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3666.690	6.87	33.05	38.81	46.97	48.08	74	-25.92	Vertical
4960.000	6.76	34.86	39.29	50.61	52.94	74	-21.06	Vertical
7440.000	9.23	35.43	39.05	46.09	51.70	74	-22.30	Vertical
9920.000	9.81	38.27	37.75	43.33	53.66	74	-20.34	Vertical
11357.630	10.36	38.14	38.40	43.88	53.98	74	-20.02	Vertical
12444.380	11.28	39.21	39.07	42.29	53.71	74	-20.29	Vertical
4119.590	6.45	33.79	39.00	46.63	47.87	74	-26.13	Horizontal
4954.543	6.74	34.86	39.29	51.40	53.71	74	-20.29	Horizontal
7454.562	9.25	35.44	39.05	47.07	52.71	74	-21.29	Horizontal
9929.475	9.81	38.30	37.74	43.62	53.99	74	-20.01	Horizontal
11317.000	10.35	38.14	38.38	43.86	53.97	74	-20.03	Horizontal
12624.050	10.84	39.26	39.22	42.21	53.09	74	-20.91	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: SZEM150500240302

Page: 47 of 55

3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the above measurement datas were shown in the report.

Report No.: SZEM150500240302

Page: 48 of 55

6.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2009								
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chambe	r)						
Limit:	Frequency	Frequency Limit (dBuV/m @3m) Remark							
	30MHz-88MHz	40.0	Quasi-peak Value						
	88MHz-216MHz	43.5	Quasi-peak Value						
	216MHz-960MHz	46.0	Quasi-peak Value						
	960MHz-1GHz	54.0	Quasi-peak Value						
	Above 1GHz	54.0	Average Value						
	Above IGHZ	74.0	Peak Value						
Test Setup:									

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Lest	Procedu	e:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel

Report No.: SZEM150500240302

Page: 49 of 55

	 g. Test the EUT in the lowest channel , the Highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting with GFSK modulation.
	Transmitting mode.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

Report No.: SZEM150500240302

Page: 50 of 55

Test plot as follows:

Test mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Vertical
1000	G. C. C		_000	1 101114111	· oait	v o. t.oa.

Site : chamber

Condition: FCC PART C 247 PK 3m Vertical

Job No: : 2403CR

Mode: : 2402 bandedge

		Aux	Cable	Ant	Preamp	Read		Limit	0∨er
	Freq	Factor	Loss	Factor	Factor	Le∨el	Level	Line	Limit
_									
_	MHz	dB	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	2382.91	0.00	4.89	32.30	38.46	51.52	50.25	74.00	-23.75
2	2390.00	0.00	4.90	32.35	38.46	47.44	46.23	74.00	-27.77
3 рр	2402.38	0.00	4.92	32.41	38.46	79.49	78.36	74.00	4.36

Report No.: SZEM150500240302

Page: 51 of 55

Test mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Horizontal

Site : chamber

Condition: FCC PART C 247 PK 3m Horizontal

Job No: : 2403CR

Mode: : 2402 bandedge

Freq								0∨er Limit
MHz	dB	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
2377.92	0.00	4.88	32.27	38.46	53.99	52.68	74.00	-21.32
2390.00	0.00	4.90	32.35	38.46	49.56	48.35	74.00	-25.65
2402.38	0.00	4.92	32.41	38.46	80.79	79.66	74.00	5.66
	MHz 2377.92 2390.00	Freq Factor MHz dB 2377.92 0.00 2390.00 0.00	Freq Factor Loss MHz dB dB 2377.92 0.00 4.88 2390.00 0.00 4.90	Freq Factor Loss Factor MHz dB dB dB/m 2377.92 0.00 4.88 32.27 2390.00 0.00 4.90 32.35	Freq Factor Loss Factor Factor MHz dB dB dB/m dB 2377.92 0.00 4.88 32.27 38.46 2390.00 0.00 4.90 32.35 38.46	Freq Factor Loss Factor Factor Level MHz dB dB dB/m dB dBuV 2377.92 0.00 4.88 32.27 38.46 53.99 2390.00 0.00 4.90 32.35 38.46 49.56	Freq Factor Loss Factor Factor Level Level Level MHz dB dB dB/m dB dBuV dBuV/m 2377.92 0.00 4.88 32.27 38.46 53.99 52.68 2390.00 0.00 4.90 32.35 38.46 49.56 48.35	Aux Cable Ant Preamp Read Limit Freq Factor Loss Factor Factor Level Level Line MHz dB dB dB/m dB dBuV dBuV/m dBuV/m 2377.92 0.00 4.88 32.27 38.46 53.99 52.68 74.00 2390.00 0.00 4.90 32.35 38.46 49.56 48.35 74.00 2402.38 0.00 4.92 32.41 38.46 80.79 79.66 74.00

Report No.: SZEM150500240302

Page: 52 of 55

	Test mode:	GFSK	Test channel:	Highest	Remark:	Peak	Vertical
--	------------	------	---------------	---------	---------	------	----------

Site : chamber

Condition: FCC PART C 247 PK 3m Vertical

Job No: : 2403CR

1 2

Mode: : 2480 bandedge

		Aux	Cable	Ant	Preamp	Read		Limit	0∨er
	Freq	Factor	Loss	Factor	Factor	Le∨el	Le∨el	Line	Limit
	-								
_	MHz	dB	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
				•					
pp	2479.84	0.00	5.02	32.44	38.47	77.28	76.27	74.00	2.27
FF									
	2483.50	0.00	5.03	32.44	38.4/	44.65	43.65	/4.00	-30.35

Report No.: SZEM150500240302

Page: 53 of 55

Test mode:	GFSK	Test channel:	Highest	Remark:	Peak	Horizontal

Site : chamber

Condition: FCC PART C 247 PK 3m Horizontal

Job No: : 2403CR

Mode: : 2480 bandedge

	Freq				Preamp Factor				0∨er Limit
-	MHz	dB	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp 2	2479.86 2483.50								

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

As shown in this section, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the above Peak measurement datas were shown in the report.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM150500240302

Page: 54 of 55

7 Photographs - EUT Test Setup

Test model No.: BW-F17

7.1 Conducted Emission

7.2 Radiated Emission

Report No.: SZEM150500240302

Page: 55 of 55

7.3 Radiated Spurious Emission

8 Photographs - EUT Constructional Details

Test model No.: BW-F17

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1505002403CR.