Assignment: 2

1.1

1.1.1

P_1	P_2	P_1'	\hat{P}_2	P_1'	P_2'
a	С	b	c	b	a
b	b	a	a	a	b
$^{\mathrm{c}}$	a	c	b	c	\mathbf{c}

The social Choice function f is Strategy-Proof (SP) and onto on the set of outcomes $\{a,b,c\}$ and $f(P) \in \{P_1(1), P_2(1)\}$ such that $f(P_1, P_2) = a$. We need to prove that $f(P_1', P_2') = b$. We prove this by contradiction. Assume that, $f(P_1', P_2') = a$. Consider the preference profile (P_1', \hat{P}_2) . If $f(P_1', \hat{P}_2) = b$, then Player2 can manipulate from \hat{P}_2 to P_2' so that the outcome changes to a, because $a\hat{P}_2b$. Thus for the SCF to remain Strategy-Proof, $f(P_1', \hat{P}_2) = c$.

Consider the transition from $(P'_1, \hat{P}_2) \to (P_1, P_2)$. $D(c, P_1) = D(c, P'_1) = \phi$ and $D(c, \hat{P}_2) = D(c, P_2) = \{a, b\}$. Since $f(P'_1, \hat{P}_2) = c$ and every Strategy Proof SCF is also monotonic, by monotonicity of f, $f(P_1, P_2) = f(P'_1, \hat{P}_2) = c$. But, this is a contradiction to the fact that $f(P_1, P_2) = a$. Therefore, our assumption must have been incorrect and $f(P'_1, P'_2) = b$.

1.1.2

If the preferences are generated from a single-peaked preference with the intrinsic ordering of alternatives being a < b < c, then the domain of the social choice function gets restricted. The profiles P_1, P_2, P'_1, P'_2 are still admissible under this restriction however the profile \hat{P}_2 is not allowed since if b is the lowest preference then the outcomes (a, c) on its 2 sides are both peaks and the profile is no longer single-peaked. Since we cannot use any profile with minimum at b, our proof breaks down.

To construct a strategy-proof and onto SCF on single-peaked preference profile such that $f(P_1, P_2) = f(P_1', P_2') = a$, we can use the Median Voter Social Choice function. Every median voter SCF is Strategy-Proof and Onto and so is f. Now, to ensure that the outcome is a for profiles (P_1, P_2) and (P_1', P_2') , the median voter SCF selects the leftmost peak among the 2 players' preference profiles. Thus, whenever a is a peak, which is the case for P_1 and P_2' , the outcome is a.

1.2

Gibbard-Satterthwaite Theorem states that for a SCF $f: \mathcal{P}^n \to \mathcal{A}$, where \mathcal{A} is the set of outcomes and \mathcal{P} is the set of all possible weak preferences(either strict or indifferent) of each voter over the set of outcomes \mathcal{A} , then if f is Strategy-Proof and onto and $\mathcal{A} \geq 3$, then it must be a dictatorial SCF. Now, for our social choice function, we try to define the set of outcomes \mathcal{A} and the set of all weak preferences \mathcal{P} over the set \mathcal{A} .

Let S(X) be the set of all non-empty subsets of the set X. Then, the range of the SCF f is S(X), thus A = S(X). $A = 2^X - 1 \ge 3$ for $X \ge 2$.

Now, to define the domain of the SCF f, we define R_i as the preference of player i over S(X) induced by the preference of player i (P_i) on X as defined in the problem. Thus, the set of all possible weak preferences R_i is the required set \mathcal{P} .

We will now show that the admissible preference profiles for this SCF come from a restricted domain. The set $X \in S(X)$. Since the peak of each player's preference over X ($P_i(1)$) lies in X, therefore for any set $T \in S(X), T \neq X, XR_iT, \forall i \in N$. Thus, there can be no possible preference profile for any player where the outcome X is less preferred any other outcome. This is a domain restriction on the set of all possible weak preferences over A and thus the Gibbard-Satterthwaite Theorem cannot be applied to this SCF.

1.3

Let f be a median voter SCF which selects the k^{th} peak from left. (a_k) The player whose peak is k^{th} from the left will never misreport its preference as it already has its most favorable outcome. Thus, no group containing the this player will be group-manipulable.

For any group $X \subset N$, which doesn't contain the player whose peak is the current outcome, the player which will try to change the outcome is never strictly better off. Let R_X be the number of players to the left of a_k who will misreport their peak to the right of a_k and let L_X be the number of players to the right of a_k who will misreport their peak to the left of a_k . If any non-empty set of players would want to change the outcome then $R_X \neq L_X$. To prove this statement, we analyse its converse. Thus, if the number of players to the right of a_k misreporting their peaks to the left of a_k is equal to number of players to the left of a_k misreporting their peaks to the right of a_k , then the number of elements to the right of a_k and to the left of a_k doesn't change. This implies that a_k is still is the k^{th} peak from the left and so the outcome of the median voter SCF would still remain a_k .

If $R_X > L_X$, then at least 1 player to the left of a_k has manipulated to the right of a_k . Now, the k^{th} peak from left will always be to the right of a_k . For the players who manipulated from left of a_k to right of a_k , the new outcome is less preferred than a_k because their true peaks lie to the left of a_k and are now farther from the outcome than a_k as the preference profiles are single-peaked.

If $R_X < L_X$, then at least 1 player to the right of a_k has manipulated to the left of a_k . Now, the k^{th} peak from left will always be to the left of a_k . For the players who manipulated from right of a_k to left of a_k , the new outcome is less preferred than a_k because their true peaks lie to the right of a_k and are now farther away from the outcome than a_k as preference profiles are single-peaked.

Thus, manipulation can never leave every member of the group strictly better off and thus the SCF f is not group manipulable.