Week 7 assignment

Gabriele Manganelli

Quantum Information and Computation

2021-2022

Ising 1D Chain in magnetic field (opposite)

Dimension $2^N \times 2^N$, opposite sign than usual

$$\mathcal{H} = \lambda \sum_{i}^{N} \sigma_{z}^{i} - \sum_{i}^{N-1} \sigma_{x}^{i+1} \sigma_{x}^{i}$$

Ground states

- $\lambda \to 0 \implies |\to\to \ldots\rangle, |\leftarrow\leftarrow \ldots\rangle$ with degeneracy 2.
- $\lambda \to \infty \implies |\downarrow\downarrow \cdots \downarrow\downarrow\rangle \text{ if } \lambda > 0.$

Mean field prediction

$$e = -1 - \frac{\lambda^2}{4}$$
 $\lambda \in [-2, 2]$
 $e = -|\lambda|$ $\lambda \notin [-2, 2]$

Theoretical result: $\lambda = 1$.

Compile: gfortran ising.f90 -o ising -llapack

```
[A_mxn, B_pxq
function TPROD(A,B) result(C)
allocate( C(m*p, n*q))
[loop over A to get Aij that multiplies a whole B
do ii = 1, m
do jj = 1, n

[start, finish: C[start:finish, ...]
srow = (jj - 1) * q + 1
frow = jj * q
scol = (ii - 1) * p + 1
fcol = ii * p
C(srow:frow, scol:fcol) = A(ii,jj) * B
```

```
function PAIR_SPIN_TERM(N, J) result(H_pair)
        id = cEYE(2)
        sigma_x = reshape([0, 1, 1, 0], shape(sigma_x), order = [2,1])
       H_pair = 0
       do ii = 1, N-1
                if (ii == 1) then
                        H_tmp = TPROD(sigma_x, sigma_x)
                        do jj = 3, N
                                H tmp = TPROD(H tmp, id)
                        H pair = H pair + J * H tmp
                ELSE
                        H_{tmp} = id
                        do jj = 2, N - 1
                                if (jj == ii) then
                                        H_tmp = TPROD(TPROD(H_tmp, sigma_x), sigma_x)
                                else
                                        H_{tmp} = TPROD(H_{tmp}, id)
                        H_pair = H_pair + J * H_tmp
                                                                4 D > 4 B > 4 B > 4 B > -
```

Efficiency

Diagonalization seems to take more time but

- For my limited VM, $N_{max} = 12$
- Expect $N_{max} = 14$ since $2^{14} \cdot 2^{14} \cdot 16 = 4$ (complex*16)

N=2 has exactly the 4 plotted eigenvalues, MF is bad until $\mathbb{I}\otimes\ldots\sigma_z\cdots\otimes\mathbb{I}$ dominates (no correlations).

Degeneracy breaks with $\lambda > 0$. For $\lambda \approx 1,\ E_1$ detaches from E_0 and reaches E_2, E_3 .

