## Assignment 1: CS 215

# $\begin{array}{ccc} {\bf 190050113} \ {\rm Shivam} \ {\rm Raj} & {\bf 190050080} \ {\rm Pawan} \ {\rm Kumar} \\ {\bf 190020010} \ {\rm Aman} \ {\rm Singh} \end{array}$

### September 14, 2020

#### Contents

| 1 | Question 1 | 2  |
|---|------------|----|
| 2 | Question 2 | 3  |
| 3 | Question 3 | 6  |
| 4 | Question 4 | 8  |
| 5 | Question 5 | 11 |
| 6 | Question 6 | 18 |
| 7 | Question 7 | 22 |



| Q.2.     | X~ & Pi N(µi,6i2)}                                                                                                                   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                      |
| <b>⇒</b> | $E(X) = \int x P(X=x) dx$                                                                                                            |
|          | $-\infty$                                                                                                                            |
|          | $= \int dx \times \mathcal{L} P(X=x \mid X \sim \mathcal{N}(\mu_i, \sigma_i^2)) P(X \sim \mathcal{N}(\mu_i, \sigma_i^2))$            |
|          | 80                                                                                                                                   |
|          | = $\sum_{i=1}^{\infty} P_{i} \int_{0}^{\infty} dx \propto P(X=x \mid X \sim N(\mu_{i}, \sigma_{i}^{2}))$                             |
|          | i=1 -∞                                                                                                                               |
|          | = & Pi E(X   X~N(Mi,oi)) = & PiMi                                                                                                    |
|          |                                                                                                                                      |
|          | We know that $Var(X) = E(X^2) - (E(X))^2$                                                                                            |
|          | and following similar calculation done for the                                                                                       |
|          | above part, we get:                                                                                                                  |
|          |                                                                                                                                      |
| ⇒        | $Var(X) = \frac{1}{2} p_i \left[ E(X^2   X \sim N(\mu_i, \sigma_i^2)) - \left( E(X   X \sim N(\mu_i, \sigma_i^2)) \right)^2 \right]$ |
|          | K. (V.) V. (V.) (21)                                                                                                                 |
|          | = 2 p: Var (X   X~N(m, 012))                                                                                                         |
|          | L=I                                                                                                                                  |
|          | $= \left\{ \sum_{i=1}^{k} \rho_{i} \delta_{i}^{2} \right\}$                                                                          |
|          |                                                                                                                                      |

| <i>⇒</i>  | Similarly, for the MGF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | $MGF(X) = E(e^{tX}) = E(e^{tX$ |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | $= \underbrace{\xi}_{\text{pi}} E(e^{tX}   X \sim \mathcal{N}(\mu_i, \sigma_i^2))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | ]= (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | $= \left  \underbrace{\xi}_{i} \operatorname{e}^{\left( \operatorname{lit} + \underbrace{s_{i}^{2} t^{2}}_{2} \right)} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | ( K ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | LEZ-EPIXI }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ⇒         | $E(\mathbf{Z}) = E\left(\underbrace{\hat{Z}}_{i=1}^{p_i \times i}\right) = \underbrace{\hat{Z}}_{i=1}^{p_i \times i} E(\mathbf{X}_i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | (=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | = Epi Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | (i=1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | 1 2 0: V:3 5 0 2 V(x; )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u></u> ラ | $Var(Z) = Var(\sum_{i=1}^{2} P_i X_i) = \sum_{i=1}^{2} p_i^2 Var(X_i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | = \( \frac{\gamma}{\pi^2 \Gamma^2} \) \( \frac{\as they}{\alpha \text{en} \text{ independent}}{\pi^2 \text{ are independent}} \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| <b>⇒</b> | MGF(NZ) = E(elz) = E(elz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | (as all Xi are independent) $= \prod_{i=1}^{K} E(e^{t p_i x_i}) = \prod_{i=1}^{K} \phi(t p_i) \begin{bmatrix} w_{\text{hexe}} \\ y_{\text{Xi}} & i \\ w_{\text{GF}} & j \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | $= \prod_{i=1}^{K} e^{\left( \frac{ii\beta_{i}t}{2} + \frac{\alpha_{i}^{2}\beta_{i}^{2}t^{2}}{2} \right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | $= \underbrace{\left\{ \frac{1}{2} (\mu_{i} p_{i} t + \sigma_{i}^{2} p_{i}^{2} t^{2}) \right\}}_{= \underbrace{\left\{ \frac{1}{2} (\mu_{i} p_{i}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2}) \right\}}_{= \underbrace{\left\{ \frac{1}{2} (\mu_{i} p_{i}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2}) \right\}}_{= \underbrace{\left\{ \frac{1}{2} (\mu_{i} p_{i}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2}) \right\}}_{= \underbrace{\left\{ \frac{1}{2} (\mu_{i} p_{i}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2}) \right\}}_{= \underbrace{\left\{ \frac{1}{2} (\mu_{i} p_{i}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2}) \right\}}_{= \underbrace{\left\{ \frac{1}{2} (\mu_{i} p_{i}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2}) \right\}}_{= \underbrace{\left\{ \frac{1}{2} (\mu_{i} p_{i}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2} p_{i}^{2}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2} p_{i}^{2}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2} p_{i}^{2} p_{i}^{2}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2} p_{i}^{2} p_{i}^{2} p_{i}^{2} p_{i}^{2}) + \frac{1}{2} (\frac{1}{2} \sigma_{i}^{2} p_{i}^{2} p_{i}^{2$ |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ラ        | we observe that $MGF(Z)$ is same as that of a gaussian, i.e. $MGF(N(\xi_{ii}, \xi_{ii}^{2}, \xi_{ii}^{2}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | So, due to uniqueness of MGF, we can say that $Z \sim N\left(\frac{z}{z} \mu i \beta i, \frac{z}{z} \varsigma_i^2 \beta_i^2\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | The PDF then becomes: $P(z) = 1 \qquad - \left(z - \frac{z}{2} \mu i \rho_i\right)^2$ $P(z) = 1 \qquad \rho \qquad \frac{2(3 + 2)^2}{2(3 + 2)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | $p(z) = \sqrt{2\pi \sum_{i=1}^{n} c_i^2 p_i^2}$ $\sqrt{2\pi \sum_{i=1}^{n} c_i^2 p_i^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| • | Page No.                                                                                                                                                              |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | Date: / /                                                                                                                                                             |
| 3 | Consider Y= X- H                                                                                                                                                      |
|   | Consider $Y = X - \mu$<br>$E[Y] = 0$ $E[Var(Y) = \sigma^2$                                                                                                            |
| - |                                                                                                                                                                       |
| • | : P(Y>, T) for T>0                                                                                                                                                    |
| • | $P(Y > T) \leq P(Y+b)^2  > (T+b)^2)$ for $b > 0$                                                                                                                      |
| - | as it will be cover both types of values                                                                                                                              |
| - | Applying Markov's inequality                                                                                                                                          |
| • | P((1+b)2 > (C+0)2) < E[(1+b)2] \$ 52+62                                                                                                                               |
| - | Applying Markov's inequality $P((y+b)^2 > (t+b)^2) \leq E[(y+b)^2] = (t+b)^2$ $(t+b)^2 = (t+b)^2$                                                                     |
| - | $P(x-\mu>\tau) \leq \sigma^2+b^2$ for $b>0$                                                                                                                           |
| - | (C+b) <sup>2</sup>                                                                                                                                                    |
| - | Now differentiate 52,62 and equate to 0                                                                                                                               |
| - | (C+b)2                                                                                                                                                                |
| - | Water Court                                                                                                                                                           |
| - | 2b (T+b) = 2 (5+b) (52+b2)                                                                                                                                            |
| - | $b + b^2 = \sigma^2 + b^2 \Rightarrow b = \sigma^2 + c$ some for this b exp. is minm                                                                                  |
| - | Co we nowe to minimize u(Bt-1) - (1+S) us-                                                                                                                            |
| - | $p(x-\mu > \tau) \leq \sigma^2 + \sigma^4/\tau^2 = -\sigma^2(1+(\sigma^2/\tau^2))$                                                                                    |
| - | √ (c <sup>2</sup> +σ <sup>2</sup> ) <sup>2</sup> (+(c <sup>2</sup> ) <sup>2</sup> )                                                                                   |
| - | VS+DIL = 3 (= \                                                                                                                                                       |
|   | $-\sigma^2 + \sigma^4/\tau^2 = \sigma^2 \sigma^2 + \sigma^4 = \sigma^2$                                                                                               |
| - | $\frac{-\sigma^2 + \sigma^4/\tau^2}{(\tau^2 + \sigma^2)^2 t^2} = \frac{\sigma^2 \sigma^2 + \sigma^4}{(\tau^2 + \sigma^2)^2} = \frac{\sigma^2}{(\tau^2 + \sigma^2)^2}$ |
| - | $\frac{(C+62)/C^{2}}{(C+62)/C^{2}} \leq \frac{6^{2}}{6^{2}+C^{2}}$                                                                                                    |
| - | 5 <sup>2</sup> + T <sup>2</sup>                                                                                                                                       |
|   |                                                                                                                                                                       |

| (W3-(W3)-)=V=W)                                                                    |       |
|------------------------------------------------------------------------------------|-------|
| .s. for any random variable and 6701                                               |       |
| ρ(x-μ > τ) (≤ σ <sup>2</sup> )  σ <sup>2</sup> +bb τ <sup>2</sup>                  |       |
|                                                                                    |       |
| Now consider to and b=-t                                                           | T T T |
| lot say Y = -x with mean - wand realized                                           |       |
| (h50x) = 1 (h51x) - (h51x)                                                         |       |
| $P(Y+\mu>b) \leq \sigma^2$ $P(+x+\mu>b) \leq \sigma^2$ $P(+x+\mu>b) \leq \sigma^2$ |       |
| =                                                                                  |       |
| P (+x+426) 5 52                                                                    |       |
|                                                                                    |       |
| =: P(x < \(\mu - \pi\) \leq \(\sigma^2 + \tau^2 \)                                 | -     |
| 1 C + C2                                                                           | 6     |
| P( X ≤ 12+ 2) ≤ 52                                                                 | 6     |
| $b(x$                                                                              |       |
| $-P(X \leq \mu + \tau) \leq \gamma - \tau^2$                                       |       |
| 0 <sup>2</sup> +5 <sup>2</sup>                                                     | •     |
| 1-p(x < h+2) > 1+ 08 (1)                                                           | (6    |
| 1[(N) (1-1) = (N \(\sigma^2 + \sigma^2\)                                           |       |
| : P(X > µ+ t) > 1 - \under 2                                                       |       |
| 1 (W x1-11 - 1 = (11) 07+c2                                                        |       |
| Thus for to <0, P(X > 1+t) > 1- 52                                                 | (     |
| J2+72                                                                              | -     |
| HIE -13-1 = 0 40 70 70 70 70 70 70 70 70 70 70 70 70 70                            |       |
| 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                           | 1000  |
|                                                                                    |       |
|                                                                                    | 0     |

| Date: / /                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------|
| A PARKER                                                                                                                            |
| For t <0                                                                                                                            |
| For continuous, $\phi_{x}(t) = \int_{-\infty}^{\infty} e^{+tx} f_{x}(x) dx \ge \int_{-\infty}^{\infty} e^{+tx} f_{x}(x) dx$         |
| if t<0, e+tx1 > e+tx2 ip x1 < x2                                                                                                    |
| $\therefore \phi_{x}(t) \geqslant \int_{\infty}^{x_{0}} e^{tx} f_{x}(x) dx \geqslant \int_{\infty}^{x_{0}} e^{x_{0}t} f_{x}(x) dx$  |
| · φ <sub>x</sub> (t) > e σ ρ(x ≤ xδ)                                                                                                |
| all recording and a word of a contract the                                                                                          |
| For discrete, $n$ exit $p(x=xi)$ $ \frac{dy}{dx}(t) = \frac{1}{2} e^{xit} p(x=xi) $                                                 |
| $\phi_{X}(t) = \frac{7}{5} e^{X_{0}t} p(x=x_{j}) \text{ where } x_{j} \leq x_{0}$ because if $t < 0$ , $e^{X_{0}t} \leq e^{X_{0}t}$ |
| Annah was wolf                                                                                                                      |
| φx(th) > e Kot p(x < Ko)                                                                                                            |
| p(x ≤ xo) ≥ e-txo (x (b))                                                                                                           |
| ate in and fix-xin this e (d) x                                                                                                     |

```
Now for the second part

\phi_{x_i}(t)

\phi_{
                                         .. using the first inequality for t>0, as for t=0
                                                 p(x>(1+8) \mu) \le 1 which is obviously true,
                                                     -\frac{1}{2}(1+8)\mu -\frac{1
                                                 Now we want to minimize e (1+6) put
                                                        with respect to t
                                                               so we have to minimize \mu(e^{t}-1)-(1+8)\mu t
                                                                 Taking derivative and equation to 0
                                                                             met=mu+s)
                                                                                                                         => t=ln(1+s)
                                                                              It is minifor minima as double derivative = met >0
```

Code for this qsn is in file named 'q5.m'















Code of this question is in the file 'q6.m'



Figure 1: This plot correspond to T1.jpg and T2.jpg



Figure 2: This plot correspond to T1.jpg and T2.jpg



Figure 3: This plot correspond to T1.jpg and negative of T1.jpg



Figure 4: This plot correspond to T1.jpg and negative of T1.jpg

By observation we can see that correlation coefficient between the two images will be always postive, and it will minimum when the shift is equal to -1(that is one unit along negative x axis). By similar type of arguments we can say that QMI will attains it's maximum when the shift is equal to 1. We can say that correlation coefficient increases and QMI decreases when images are moved out of alignment as the point of minimum correlation coefficient and maximum QMI is somewhat close to no shift.

By observation we can see that correlation coefficient between the two images will be always negative, and it will minimum when the shift is equal to 0 and it will be equal to -1 as we can clearly see that the images are negative of each other. By similar type of arguments we can say that QMI will attains it's maximum when the shift is equal to 0. We can say that correlation coefficient increases and QMI decreases when images are moved out of alignment as the point of minimum correlation coefficient and maximum QMI is equal to no shift.

```
= n(n-1) pipj (3pi=1)
= hpi because &pi=1
```

```
E[X_i^2] = \frac{\partial^2}{\partial t_i^2} \Phi_X(t_i) \Big|_{t=(0,0...)}
= \frac{\partial^2}{\partial t_i^2} (\underbrace{x \text{ pieti}}_{t=(0,0...)}^{t_i} \text{ where } t=(b_i,b_2,...,t_k)^2
= \frac{\partial^2}{\partial t_i^2} (\underbrace{x \text{ pieti}}_{t=(0,0...)}^{t_i} \text{ xeti}
= \frac{\partial^2}{\partial t_i^2} (\underbrace{x \text{ pieti}}_{t=(0,0...)}^{t_i} \text{ pieti}
= \frac{\partial^2}{\partial t_i^2} (\underbrace{x \text{ pieti}}_{t=(0
```