VERGLEICHENDE SOZIALFORSCHUNG MIT MEHREBENENMODELLEN IN R

Forschungspraktikum I und II Dr. Christian Czymara Hierarchical linear models

AGENDA

- We learned about linear and logistic regression
- These are excellent estimators when certain assumptions hold
- One assumption: independence of observations
- Today:
 - What if this assumption is violated?
 - And... What does it even mean?

RECAP: ORDINARY LEAST SQUARES ESTIMATOR

OLS REGRESSION: NULL MODEL

$$y = \beta_0 + e$$

$$y$$

$$\overline{y}$$

MULTIPLE OLS REGRESSION

$$y = \beta_0 + \beta_1 x + e$$

OLS REGRESSION WITH CLUSTERED DATA

OLS ASSUMPTIONS

- Correct model specification (no relevant x missing)
- Strict exogeneity (x not correlated with error term)
- Linear independency (x no linear functions of one another)
- Uncorrelated errors
- Homoscedasticity (errors equal across all x)
- Normality (errors normally distributed given x)

CORRELATED ERRORS IN CROSS-NATIONAL RESEARCH

- Observations within each country may have something in common
- ... which separates them from observations in other countries
- For example, income of two random Frenchmen is likely more similar than income between a random Frenchman and a random Romanian
- This means observations are not statistically independent
- This violation of uncorrelated errors assumption
- Biased standard errors leading to wrong p-values and confidence intervals

OLS REGRESSION WITH CLUSTERED DATA

OLS WITH CLUSTERED DATA: NULL MODEL

OLS WITH CLUSTERED DATA: COUNTRY FIXED EFFECTS

- A dummy variable for a country captures everything that is specific about this country
- One way to account for differences between: Statistical control (add dummy variables for each country)
- In this case, the residuals within each country are statistically independent by design (remember statistical control)
- Model estimates one effect for each country
- For example: "Attitudes are 1.4 units more positive in the UK compared to Denmark"
- These effects are fixed values
- So-called Country Fixed Effects Model

COUNTRY FIXED EFFECTS

- Red dots belong to country 1, blue dots to country 2
- $y = \beta_0 + \beta_1 country + e$
- country = dummy variable
 for country (1: red; 0: blue)

MULTIPLE OLS WITH CLUSTERED DATA

$$y = \beta_0 + \beta_1 x + e$$

... WITH COUNTRY FIXED EFFECTS

LIMITS OF COUNTRY FIXED EFFECTS

- Dummies account for all differences in y between countries
- Identification of effects variables country-level impossible
- Country dummies "control away" all variance between countries
- Not possible to test which particular differences may be important
- For example: Let us say we find a significant difference in welfare state support between Sweden and Spain
 - Is this difference due to differences in national wealth?
 - Or difference in welfare state regime?
 - ...
- Methodologically, there is no variance between countries left that independent variables on the country level could explain
- However, testing individual level associations (or cross-level interactions) still possible

HIERARCHICAL LINEAR MODELS

HIERARCHICAL LINEAR MODELS

· General application: clustered (nested, hierarchical) data

- Often used for spatial data (e.g., individuals nested in countries)
- But also applicable to, e. g., temporal clustering (observations nested in individuals)

RANDOM INTERCEPT

- Clustered data violates assumption of independence
- HLMs allow the intercept to vary between countries
- Accounts for average differences in y between countries
- Similar to idea of country fixed effects
- However, no point estimates but variance estimated $({\delta_u}^2)$
- →Additional parameter (a second error term: u)

FIXED & RANDOM EFFECTS

- δ_u^2 is called a random effect (random intercept)
- It captures the variation of y across countries
- Point estimates of the explanatory variables in a model are called fixed effects
- Fixed because values are usually the same for all observations
- Because HLMs estimate random and fixed effects simultaneously, these models are also called mixed models
- HLMs model the differences between countries not as fixed effects (by using country dummies) but as random effects (additional error term)

A CAUTIONARY NOTE ON TERMINOLOGY

- The terms fixed effects (FE) and random effects (RE) are used differently in HLM and panel data analysis
- For HLMs:
 - Fixed effects: Point estimates of explanatory variables
 - Random effects: Varying intercepts and slopes → No point estimates but(co-)variances
- For panel data:
 - FE: Models that account for all level 2 variance (like country FE models)
 - RE: Models that only account for serial correlation

TERMINOLOGY

RESIDUALS OF HLMS

- There are residuals on two (or more) levels
 - Unexplained variance between countries
 - Level 2 residuals: δ_u^2
 - The random intercept
 - Unexplained variance within countries
 - Level 1 residuals: δ_e^2
 - Equivalent to the stochastic error term in basic OLS regression

RANDOM INTERCEPT MODEL: NULL MODEL

- Null model does not include any explanatory variables
- In contrast to basic OLS, HLMs includes an estimate for the variance of the intercept to account for differences between countries
- Hence, the null model is sometimes also called a random intercept only model
- Put differently, the null model decomposes the total variance of y into a between country part $({\delta_u}^2)$ and a within country part $({\delta_e}^2)$

RANDOM INTERCEPT MODEL: NULL MODEL

RANDOM INTERCEPT MODEL: NULL MODEL

- $\cdot y_{ij} = \beta_0 + u_j + e_{ij}$
- β_0 : Mean value across all countries \rightarrow does not vary (it is the constant)
- u_j : Deviation of country mean from $\beta_0 \rightarrow$ Varies only between countries (j)
- e_{ij} : Deviations of individuals from respective country mean \rightarrow Varies within countries / between individuals (i)

INTRA-CLASS-CORRELATION COEFFICIENT

- The Intra-Class-Correlation Coefficient (ICC) indicates the correlation within the clusters (countries in our case)
- For the null model, this is the share of variance between the countries

• ICC =
$$\frac{\delta_u^2}{\delta_u^2 + \delta_e^2}$$

 The larger the ICC, the more important it is to model this data structure

EXAMPLE: NULL MODEL

- Data: ESS 2002/03
- Outcome: life satisfaction (stflife)
- Variable which uniquely identifies higher-level units: cntry
- Question: how large is share of between country variance?
- →estimate null model

Random intercept for countries

EXAMPLE: ICC

Life satisfaction	Model 0	
Intercept	7.02***	
Random effects		
Intercept	0.617	
Residual	4.559	

$$ICC = \frac{0.617}{0.617 + 4.559} = 0.119$$

ICC = $\frac{0.617}{0.617 + 4.559} = 0.119$ \rightarrow About 12 percent of the overall variance is between country variance

ADDING INDIVIDUAL-LEVEL PREDICTORS

- Equation of random intercept model:
 - $y_{ij} = \beta_0 + \beta_1 x_{1ij} + u_j + e_{ij}$
- As two equations:
 - Individual level: $y_{ij} = \beta_0 + \beta_1 x_{1ij} + e_{ij}$
 - Country level: $\beta_0 = \gamma_0 + u_j$

Grand mean (mean over whole sample)

Variance of intercept between countries

ADDING INDIVIDUAL-LEVEL PREDICTORS

COMPOSITION EFFECTS

- Differences between countries may be explained by both individual-level and country-level variables
- When differences between countries are explained by individual level characteristics this is called composition effects
- In other words: when adding individual level variables to the model reduces between country variance
- In this case the differences between countries are due to differences of the individuals living in each country and not due to idiosyncrasies of the countries themselves

EXAMPLE: ADDING INDIVIDUAL-LEVEL PREDICTORS

- Explanatory variable income (hinctnt, level 1)
- Question 1: Do income and life satisfaction correlate?
- Question 2: How large is the share of between country variance that can be explained by income (composition effect)?

```
→lmer(stflife ~ hinctnt + (1 | cntry), = ESS02)
```

EXAMPLE: BETWEEN COUNTRY VARIANCE

Life satisfaction	Model 0	Model 1
Income		0.18 ***
Intercept	7.02***	5.99 ***
Random effects		
Intercept	0.617	0.319
Residual	4.559	4.262

* p<0.05, ** p<0.01, *** p<0.001

- Explained between country variance: $1 \frac{0.319}{0.617} = 0.48$ • Almost half of the cross-national differences in life satisfaction
- → Almost half of the cross-national differences in life satisfaction explained by differences in individual income (composition effect)

EXAMPLE: WITHIN COUNTRY VARIANCE

Life satisfaction	Model 0	Model 1
Income		0.18 ***
Intercept	7.02***	5.99 ***
Random effects		
Intercept	0.617	0.319
Residual	4.559	4.262

- Explained within country variance: $1 \frac{4.262}{4.559} = 0.065$ 6.5 percent of differences in life satisfaction within countries
- is explained by income differences

ADDING COUNTRY LEVEL PREDICTORS

• Individual level: $y_{ij} = \beta_0 + \beta_1 x_{1ij} + e_{ij}$

 γ_1 : effect of variable $z_{1j} \rightarrow$ varies neither across countries nor individuals (fixed effect)

EXAMPLE: ADDING COUNTRY LEVEL PREDICTORS

- Explanatory variable GDP/c (rgdpc, level 2)
- Question: do national wealth and life satisfaction correlate?
- →lmer(stflife ~ hinctnt + rgdpc + (1 | cntry), = ESS02)

EXAMPLE: FULL MODEL

Life satisfaction	Model 0	Model 1	Model 2
Income		0.18 ***	0.18 ***
GDP/c			0.02 ***
Intercept	7.02***	5.99 ***	5.10 ***
Random effects			
Intercept	0.617	0.319	0.210
Residual	4.559	4.262	4.262

^{*} p<0.05, ** p<0.01, *** p<0.001

EXAMPLE: BETWEEN COUNTRY VARIANCE REDUCTION

- Since we have estimated three models (null, individual level, country level), we can compare between country variance between...
- The full (country level-) model and the null model: $1 \frac{0.210}{0.617} = 0.66$
- →Together, income and GDP account for almost two third of between country variance in life satisfaction (composition + country effect combined)
- The full model and the individual level model: $1 \frac{0.210}{0.319} = 0.34$
- →GDP explains about a third of between country variance that is not due to income differences (country effect)
- Of course, comparison of different models also possible for within country variance

COMPARING MODELS

- To compare models, they must be nested
- →One model must be a specific form of another more general model (one where parameters are set to zero)
- →Practically, this means both models must be based on the same sample
- Likelihood ratio test uses the values of the likelihood function to test which model fits the data better
- To be precise, it compares models' deviance values (deviance = $-2 * \ln(likelihood)$), based on a χ^2 -distribution
- When test result is statistically significant, the more complex model (the model with more parameters) performs better
- lrtest() function of lmtest package

SUMMARY

- People within countries are likely to be more similar
- ... which makes them somewhat less similar to people between countries
- From a methodological point of view, the model needs to account for this statistical dependence
- Only interested in "broader" differences across countries or not really interested in these differences at all? Use country fixed effects
- Interested in which country characteristics drive the cross-national differences? Use random effects / hierarchical linear models
- These models estimate the variation between countries

LITERATURE

- Schmidt-Catran, Fairbrother & Andreß (2019). <u>Multilevel models</u>
 for the analysis of comparative survey data: Common
 problems and some solutions. Kölner Zeitschrift für Soziologie
 und Sozialpsychologie, 71 (1), 99-128.
- Hox (2002): pages 1 to 32 in "Multilevel Analysis. Techniques and Applications." Routledge.