SENG 460

Practice of Information Security and Privacy

Cryptography

Cryptography Overview

- Cryptographic Concepts/Definition
- Security Cipher Properties & Principles
- Classical Ciphers & Modern Ciphers
- Cryptographic Applications/Systems
- Cryptographic Attacks

Cryptography Concepts/Definitions

- Cipher/Algorithm: Set of mathematical and logic rules used in cryptographic functions.
- Encryption/Encipher: Act of transforming data into an unreadable format.
- Decryption/Decipher: Act of transforming data into a readable format.
- Key: A secret that are used as the governing parameter in the acts of a cryptographic algorithm.
- Keyspace: All of the possible values under a specific key format.

Cryptography Concepts/Definitions

- Plaintext/Cleartext: A message/data in its original format.
- Ciphertext /Crytogram: A message/data in its encrypted format.
- Transposition/Permutation: The operations of shuffling or reordering the data in plaintext to hide original message.
- Substitution: The operations of replacing the data in plaintext to hide original message.
- Avalanche effect: The condition where small changes in the key or plaintext will significantly change the ciphertext.
- Cryptanalysis: Practice of uncovering flaws within cryptosystems.
- Key clustering: Instance when two different keys generate the same ciphertext from the same plaintext.

Cryptography Concepts/Definitions

- Encoding: The process of changing data into another format.
- Decoding: The process of changing an encoded data back into its original format.
- One-way function: A mathematical function that can be easily performed in one direction than in the other.
- Collision: An instance that a one-way function produces the same result on different inputs.

Security Cipher Properties

- Diffusion: Dissipate the statistical structure of the plaintext in the ciphertext
 - Good diffusion: small changes in the plaintext leads to significant change in the ciphertext
 - Can be accomplished by Transposition/Permutation operation
- Confusion: Complicate the relationship between the key and ciphertext
 - Good confusion: small changes in the key leads to significant change in the ciphertext
 - Can be accomplished by Substitution operation

Security Cipher Principles

- Auguste Kerckhoffs developed in 1883 six design principles for the military use of ciphers:
 - Cipher must be practically indecipherable
 - Cipher itself must not be secret (arguable)
 - Key must be secret
 - Applicable to telegraphic correspondence
 - Must be portable
 - Must be easy to use

- Running Key Ciphers
- Concealment Ciphers
- Substitution Ciphers
- Transposition Ciphers
- One-time Pad (Vernam cipher)
- Product Ciphers

- Running Key Ciphers

 Uses some physical components as the secret in the world around two communication parties.

149l6c7.299l3c7.911l5c8

- Concealment Ciphers

a message within a message.

"The saying, 'The time is right' is not cow language, so is now a dead subject."

key: every third word

"The right cow is dead."

hiding data in another media type. (Steganography)

Be aware of **digital watermark** when using some other's logos!

- Substitution Ciphers

Letters of plaintext are replaced by other letters or by numbers or symbols

Caesar Cipher: Replaces each letter by **nth** letter on. (such as 3rd)

"meet me after the toga party"

"PHHW PH DIWHU WKH WRJD SDUWB"

Monoalphabetic Cipher: Each letter maps to a different random letter

Key: abcdefghljklmnopqrstuvwxyz

L L D K V QFIBJWPESCXHTMYAUOLRGZN

Polyalphabetic Cipher: Each letter maps to a different random letter.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

Key: SENG

Enigma Machine

- Transposition Ciphers

hide the message by rearranging the letter order without altering the actual letters used.

Scytale cipher: used a sheet of papyrus wrapped around a wooden rod.

Row Transposition Ciphers: write letters of message out in rows over a specified number of columns, then reorder the columns according to some key before reading off the rows

Examples

Key: 3421567

Plaintext: "attack postponed until two am"

Cipher: attackp

ostpone duntilt woamxyz

Ciphertext:

TTNAAPTMTSUOAODWCOIXKNLYPETZ

Rail Fence Cipher: write message letters out diagonally over a number of rows then read off cipher row by row.

Example:

-Plaintext: "meet me after the toga party"

–Key: write message out with a rail fence of depth 2:

> mematrhtgpry etefeteoaat

-Ciphertext: MEMATRHTGPRYETEFETEOAAT

- One-time Pad

- Uses a pad which is made up of random values for encryption/decryption.
- Is considered to be unbreakable only if the following things are true about the implementation process:
 - The pad must be used only one time.
 - The pad must be as long as the message
 - The pad must be securely distributed and protected at its destination
 - The pad must be made up of truly random values.

- Product Ciphers

- Ciphers using substitutions or transpositions are not secure because of language characteristics, using several ciphers in succession to make harder:
 - two substitutions make a more complex substitution
 - two transpositions make more complex transposition
 - a substitution followed by a transposition makes a new much harder cipher

Product Cipher forms the bridge from classical to modern ciphers.

- Symmetric Ciphers
 - Block Ciphers
 - Stream Ciphers
- Asymmetric Ciphers
 - Diffie-Hellman Key Exchange
 - RSA

- Symmetric Ciphers

The sender and receiver use two instances of the same key for encryption and decryption:

Strengths

Much faster (less computationally intensive) than asymmetric ciphers.

Weaknesses

- Requires a secure mechanism to deliver keys properly.
- Each pair of users needs a unique key, possibly making key management overwhelming.
- Provides confidentiality but no nonrepudiation

- Stream Ciphers

- Treats the message as a stream of bits and performs mathematical functions (usually XOR operation) on each bit individually.
- A strong and effective stream cipher contains the following characteristics:
 - Long periods of no repeating patterns within keystream values
 - Statistically unpredictable keystream
 - A keystream not linearly related to the key
 - Statistically unbiased keystream (as many zeroes as ones)

- A Stream Cipher Example: RC4

- A proprietary cipher owned by RSA DSI, simple but effective, widely used (web SSL/TLS, wireless WEP).
- Variable key size (from 40 to 2048 bits), byte-oriented stream cipher which forms random permutation of all 8-bit values.

Since RC4 is a stream cipher, must never reuse a key!

RC4 Implementation

```
/* Initialization */
                                     /* Stream Encryption */
For i = 0 to 255 do
S[i] = i
                                     i = j = 0
T[i] = K[i mod keylen];
                                     for each message byte Mi
                                     i = (i + 1) \pmod{256}
/* Initial Pemutation of S */
                                     j = (j + S[i]) \pmod{256}
\dot{1} = 0;
                                     swap(S[i], S[j])
For i = 0 to 255 do
                                     t = (S[i] + S[j]) \pmod{256}
j = (j + S[i] + T[i]) \mod 256;
                                     Ci = Mi XOR S[t]
Swap(S[i] , S[j]);
```

- Block Ciphers

 The original message is divided into blocks of bits. These blocks are then put through mathematical functions one block at a time.

- Block Ciphers

 Block ciphers have several modes of operation. Each mode specifies how a block cipher will operate.

Electronic Code Book (ECB)

Cipher Block Chaining (CBC)

Cipher FeedBack (CFB)

Counter (CTR)

To avoid two identical plaintexts that are encrypted with the same key create the same ciphertext, **Initialization vectors (IVs)** (which are random bits values) are usually used with keys. **IVS** do not need to be encrypted when being sent to the destination as it is usually dynamically generated for each encryption/decryption.

- A Block Cipher Example: DES

- Digital Encryption
 Standard (DES) is the
 most widely used block
 cipher in the world
- Most studied algorithm in existence
- Encrypts 64-bit data block using 56-bit key
- No discovery of fatal weakness in the algorithm itself
- 56 bits Key length is not considered secure any more today.

- Advanced Encryption Standard (AES)

- US NIST issued call for new ciphers standard in 1997 to replace DES, 15 candidates accepted in Jun 1998, 5 were shortlisted in Aug 1999. Rijndael was eventually selected as the AES in Oct-2000.
- The block sizes that Rijndael supports are 128, 192, and 256 bits. The number of rounds depends upon the size of the block and the key length:
 - If both the key and block size are 128 bits, there are 10 rounds.
 - If both the key and block size are 192 bits, there are 12 rounds.
 - If both the key and block size are 256 bits, there are 14 rounds.
- Rijndael is now the algorithm required to protect sensitive but unclassified U.S. government information.

- Asymmetric Ciphers

Two different asymmetric keys are mathematically related. If a message is encrypted by one key, the other key is required in order to decrypt the message. One key is usually made public called the *public key*, and the other must be known and used only by the owner, called the *private key*.

Strengths

- Better key distribution than symmetric systems.
- Better scalability than symmetric systems
- Can provide authentication and nonrepudiation

Weaknesses

Works much more slowly than symmetric systems

- Diffie-Hellman Key Exchange

The **first** published asymmetric key algorithm, published by Diffie & Hellman in 1976. Diffie-Hellman is mainly used to establish a common key known only to the two communicating participants.

Diffie-Hellman Example

- Alice & Bob who wish to swap keys agree on prime q=353 and g=3
- 2. select random secret keys:
 - A chooses $x_a=97$, B chooses $x_B=233$
- 3. compute respective public keys:
 - $y_A = 3^{97} \mod 353 = 40$ (Alice) - $y_B = 3^{233} \mod 353 = 248$ (Bob)
- 4. compute shared session key as:

-
$$K_{AB} = y_{B}^{x_{A}} \mod 353 = 248^{97} = 160$$
 (Alice)
- $K_{AB} = y_{A}^{x_{B}} \mod 353 = 40^{233} = 160$ (Bob)

Diffie-Hellman is vulnerable to Man in the Middle Attack!

- RSA

RSA, named after its inventors Ron Rivest, Adi Shamir, and Leonard Adleman, is a public key algorithm that is the most popular and worldwide de facto standard for **encryption** and **authentication**.

RSA Key Setup

- Each user generates a public/private key pair by:
 - 1. select two large primes p, q at random
 - 2. compute their system modulus $n=p \cdot q$
 - 3. compute \emptyset (n) = (p-1) (q-1)
 - 4. select at random an integer e
 - where 1<e<ø(n), gcd(e,ø(n))=1 (e and ø(n) are coprime)
 - 5. solve following equation to find another integer d
 - 1. Where (e·d) mod \emptyset (n) = 1 and $0 \le d \le \emptyset$ (n)
- Publish the public key: PU={e,n}
- Keep secret the private key: PR={d,n}
- The key size refers to the length of the modulus n in bits

RSA Encryption/Decryption

- Encrypt a message M:
 - obtains public key of recipient PU={e,n}
 - computes: C = M^e mod n, where 0≤M<n</pre>
- Decrypt the ciphertext C:
 - uses their private key PR={d, n}
 - computes: $M = C^d \mod n$

In RSA, public key $\{e,n\}$ and private key $\{d,n\}$ has a known relation as shown below. To know $\emptyset(n)$, has to factor n, If n is large enough, private key can be considered secure, currently assume 1024-2048 bit for n is secure.

```
(e \cdot d) \mod \emptyset(n) = 1 \text{ and } 0 \le d \le \emptyset(n)
```

Cryptographic Applications/Systems

- Cryptosystems provide confidentiality to ensure that the data cannot be read except by the valid recipient.
- Cryptosystems provide integrity by allowing valid recipients to verify that data has not been altered.
- Cryptosystems provide authenticity by providing the key to a valid user after that user is authenticated.
- Cryptosystems provide accountability by proving the origin of data, thereby preventing the sender from denying that he sent the message (Nonrepudiation).

Cryptographic Applications/Systems

- Message Integrity

Message integrity ensures that a message has not been altered

- Hash Functions
 - MD5 produces 128 bits hash values, not considered secure anymore
 - Secure Hash Algorithm (SHA1) produces 160 bits hash values
 - SHA-2 produces 224/256/384/512 bits hash values
- Message Authentication Code (MAC)
 - Hash MAC (HMAC): a keyed-hash value
 - Cipher block chaining MAC (CBC-MAC): the last block of encrypted message
 - Cipher-based MAC(CMAC): Similar with CBC-MAC, but with much better security ensurance.