for any $\lambda \in \mathbb{R}$ (or $\lambda \in \mathbb{C}$). Since f(x) is defined by

$$f(x) = \lim_{n \to \infty} f_0(x_n)$$

independently of the sequence (x_n) converging to x, and similarly for f(y) and f(x+y), since f_0 is linear, we have

$$f(x+y) = \lim_{n \to \infty} f_0(x_n + y_n)$$

$$= \lim_{n \to \infty} (f_0(x_n) + f_0(y_n))$$

$$= \lim_{n \to \infty} f_0(x_n) + \lim_{n \to \infty} f_0(y_n)$$

$$= f(x) + f(y).$$

Similarly,

$$f(\lambda x) = \lim_{n \to \infty} f_0(\lambda x_n)$$

$$= \lim_{n \to \infty} \lambda f_0(x_n)$$

$$= \lambda \lim_{n \to \infty} f_0(x_n)$$

$$= \lambda f(x).$$

Therefore, f is linear. Since the norm is continuous, we have

$$||f(x)|| = \left\| \lim_{n \to \infty} f_0(x_n) \right\| = \lim_{n \to \infty} ||f_0(x_n)||,$$

and since f_0 is continuous

$$||f_0(x_n)|| \le ||f_0|| \, ||x_n||$$
 for all $n \ge 1$,

so we get

$$\lim_{n \to \infty} ||f_0(x_n)|| \le \lim_{n \to \infty} ||f_0|| ||x_n|| \quad \text{for all } n \ge 1,$$

that is,

$$||f(x)|| \le ||f_0|| \, ||x||.$$

Since

$$||f|| = \sup_{\|x\|=1, x \in E} ||f(x)||,$$

we deduce that $||f|| \le ||f_0||$. But since $E_0 \subseteq E$ and f agrees with f_0 on E_0 , we also have

$$||f_0|| = \sup_{\|x\|=1, x \in E_0} ||f_0(x)|| = \sup_{\|x\|=1, x \in E_0} ||f(x)|| \le \sup_{\|x\|=1, x \in E} ||f(x)|| = ||f||,$$

and thus $||f|| = ||f_0||$.

Finally, we consider normed affine spaces.