REGULARIDADES NO LINEALES EN ÍNDICES ACCIONARIOS

Una aproximación con redes neuronales*

Christian A. Johnson y Miguel A. Padilla**

RESUMEN

Las redes neuronales artificiales (RNA) se han convertido en un importante instrumento para modelar y predecir los rendimientos accionarios. Debido a que son modelos que incorporan variables no lineales (característica de la mayoría de las series económicas y financieras) funcionan mejor que los modelos estadísticos tradicionales, como las regresiones lineales o modelos Box-Jenkins. Este estudio intenta encontrar regularidades en los índices accionarios de 27 países mediante un acercamiento de redes neuronales artificiales y su contraste con modelos lineales rezagados, y aporta evidencia a la discusión actual respecto a la teoría de los mercados eficientes. Asimismo se realizan predicciones extramuestrales dinámicas sustentadas también con una prueba no paramétrica, que confirma excelentes resultados de las redes neuronales en contraste con los modelos autorregresivos tradicionales.

ABSTRACT

The artificial neural networks (ANN) have turned into an important tool to shape and to predict the stock returns. Due to the fact that those models incorporate nonlinear variables (characteristic of the majority of the economic and financial series) they work better than the statistical traditional models such as linear regressions or Box-Jenkins' model. This study brings the attempt of finding regularities in the stock indexes of 27 countries by means an approximation of artificial neural networks and their contrast with linear regressive models finding evidence that reaches to the current discussion on the "Efficient Market Theory". Likewise dynamics out of sample predictions are realized sustained also by a nonparametric test confirming excellent results of the neural networks in contrast with the traditional autoregressive models.

^{*}Palabras clave: redes neuronales artificiales, metodología y aplicaciones, mercados accionarios. Clasificación JEL: C45, C53, G14. Artículo recibido el 14 de septiembre de 2004 y aceptado el 8 de marzo de 2005.

^{**} Christian A. Johnson, Escuela de Negocios, Universidad Adolfo Ibáñez, Santiago, Chile (correo electrónico: chjohnson@ uai.cl). Miguel A. Padilla, Instituto de Ciencias Humanísticas y Económicas de la Escuela Superior Politécnica del Litoral (Espol), Guayaquil, Ecuador (correo electrónico: mpadilla@espol.edu.ec).

Introducción

La no linealidad inherente en los datos financieros y económicos ha sido observada por mucho tiempo; algunos investigadores han reconocido las limitaciones de técnicas econométricas que suponen una relación lineal como una aproximación. El supuesto de linealidad se ha usado convenientemente en parte porque el coeficiente estimado de estos modelos es de fácil interpretación y porque la aplicación numérica era complicada en su momento.

Avances recientes en materia tecnológica computacional han relajado las restricciones o complejidades en calcular modelos y han llevado al desarrollo de técnicas econométricas no lineales como la regresión de *regime-switching* de Markov. Además, investigadores en la comunidad financiera recientemente han adoptado otras aproximaciones y técnicas de estimación no lineales usadas en las ciencias físicas y biológicas como son las redes neuronales artificiales (RNA). Aunque son sólo un tipo de los múltiples instrumentos estadísticos para modelar relaciones no lineales, parecen estar rodeadas de mucho misterio y algunas veces de una mala interpretación.

Debido a que tienen sus raíces en la neurofisiología y las ciencias cognoscitivas, las redes neuronales artificiales suponen cualidades similares al cerebro, como son la capacidad de autoaprendizaje, capacidad de encontrar solución a problemas, y finalmente cognición y autoconocimiento. Por otra parte, las redes son a menudo consideradas como una "caja negra" que produce predicciones con mucha exactitud con sólo un pequeño modelamiento.

Las redes neuronales son modelos elaborados para simular el funcionamiento del cerebro y, en particular, la manera como éste procesa información. Dentro del contexto del análisis de series de tiempo se clasifican como modelos no lineales capaces de realizar conexiones entre los valores pasados y presentes de una serie de tiempo y extraer estructuras y relaciones escondidas que rigen el sistema de información.² El atractivo de este enfoque, inspirado en la neurología, es su capacidad para aprender, es decir, para identificar dependencias con base en una muestra finita, de manera que el

^{1 &}quot;Artificiales" se usa a menudo para distinguir modelos matemáticos de redes neuronales con su contraparte biológica. En adelante se omitirá este adjetivo.
2 Según Shahmurove y Witkowska (2000).

conocimiento adquirido pueda ser generalizado a muestras no observadas (Herbrich et al, 1999). Aunque, como señalan Kuan y White (1994), las redes neuronales y sus algoritmos de aprendizaje asociados están todavía lejos de ofrecer una descripción acertada de cómo funciona el cerebro, éstas se han constituido en un marco de modelación muy poderoso e interesante, cuyo potencial ha sido comprobado en diversas aplicaciones en todas las ciencias.

Muchos investigadores son atraídos por ese enfoque porque las redes neuronales no están sujetas a supuestos restrictivos como la linealidad, que suele ser necesaria para la aplicación de los modelos matemáticos tradicionales; con este criterio han funcionado muy bien para la valoración de activos derivados y la determinación de cobertura,³ ya que la fórmula de Black y Scholes está restringida a la normalidad de sus variables.

La popularidad de las redes para manejar datos e información compleja puede haber contribuido considerablemente a la difusión e implantación de modelos de redes neuronales en la economía y la econometría. Herbrich et al (1999) señalan tres campos principales en los cuales se ha centrado la aplicación de estos modelos en la economía: i) clasificación de agentes económicos, ii) pronóstico de series de tiempo y iii) modelaje de agentes con racionalidad limitada. El segundo campo ha sido de particular importancia. Franses y Van Dijk (2000) señalan que anualmente se publican alrededor de 20 o 30 artículos relacionados con el pronóstico y modelación, con el uso de las redes neuronales, de precios de acciones, tipos de cambio, tasas de interés, producto interno bruto y la inflación, entre otros temas. Tanto estos autores como Tkacz y Hu (1999) atribuyen la creciente boga de estos modelos, y su aplicación a series de tiempo, a la capacidad que poseen para permitir relaciones no lineales muy generales entre las variables. En efecto, esto quiere decir que con suficientes nodos o capas ocultas (que se definirán líneas abajo), y en ciertas condiciones, una red neuronal puede aproximar cualquier relación, aun no lineal, no importando cuán extraño ni qué tipo de no linealidad. Asimismo, las RNA son un instrumento importante en la modelación de variables en las cuales la existencia de un modelo estructural

³ Véase Hutchinson, Lo y Poggio (1994).

⁴ Hornik, Stinchcombe y White (1990).

no es clara, pues no parten de supuestos *a priori* de los datos para el pronóstico y todo lo que de ellas puede decirse es inherente a las observaciones (Evans, 1997). El objetivo de este trabajo es modelar el comportamiento de los índices accionarios de 25 países, incluido el Dow Jones y el Standard & Poor en los Estados Unidos, para encontrar regularidades entre ellos, contrastándolos con los modelos tradicionales autorregresivos según la metodología Box-Jenkins. Este estudio es una opción al realizado por Johnson y Soriano (2004), que a diferencia de encontrar asimetrías en los rendimientos de los índices bursátiles busca la no linealidad en esta variable.

El estudio se divide en tres secciones: la sección I muestra una revisión de la bibliografía acerca de las redes neuronales; la sección II presenta la metodología y datos que se utilizará en el trabajo; el análisis de los resultados se aborda en la sección III. Finalmente se presenta las conclusiones del estudio.

I. Motivación

Desde el hoy famoso enunciado de Keynes (1936) acerca de que la mayoría de las decisiones de los inversionistas "pueden sólo ser tomadas como resultado de espíritus animales, es decir, de un impulso espontáneo de actuar más que de permanecer quieto, y no como resultado de un promedio ponderado de beneficios multiplicados por probabilidades cuantificadas", muchas investigaciones han sido dedicadas a examinar la eficiencia en la estructura de precio de mercado de las acciones. Fama (1970) en su trabajo seminal establece que los rendimientos de los activos financieros, con particular hincapié en las acciones, no pueden ser predecibles. Aquí nace la noción de la hipótesis de mercados eficientes (HME).

El concepto que encierra la HME es que los precios de los activos incorporan toda la información pasada y presente disponible hasta el momento de la valoración que se haga del mismo,⁵ por lo cual en un contexto de racionalidad implica que no es posible que un agente obtenga rendimientos anormales. Situándonos en el horizonte a lo largo del tiempo, ningún inversionista privado o institucional po-

 $^{^5}$ Dependiendo de la medida de información la eficiencia de un mercado se puede clasificar en débil, semifuerte y fuerte.

dría ganarle al mercado. Dado esto, la mejor representación de la capacidad predictiva se consigue con un camino aleatorio o $random\ walk\ ({\tt RW})$ representado de la siguiente manera:

$$P_t \quad P_{t-1} \quad t \\ P_t \quad t$$

en la que P_t es el precio de la acción en el periodo t y $_t$ es un choque aleatorio que se distribuye (, 2). En otras palabras, el cambio en el precio de una acción es aleatorio, y por ende, impredecible.

Sólo la llegada de nueva información o noticias produciría un cambio en el precio, y por ende en el rendimiento del activo. Esta información no puede ser inferida de la información del pasado, por lo cual es independiente del tiempo e impredecible. Sin embargo, muchos han sido los esfuerzos de encontrar discrepancia entre los conceptos de eficiencia y predictibilidad. La causa radica en la existencia de un componente estructural o de largo plazo del mercado que es posible captar y proyectar en el tiempo. Keim y Stambaugh (1986) encuentran significación estadística de predictibilidad en los precios de acciones basado en ciertas variables. Lo y MacKinlay (1987) prueban la hipótesis de *random walk* y encuentran sólida prueba que la rechaza.

De acuerdo con lo anterior hay un creciente interés en construir modelos que permitan caracterizar el precio de la acción o su rendimiento. Debido a que en años anteriores el avance econométrico y computacional era limitado, éstos se enmarcaban en la determinación de modelos lineales, como las series de tiempo univariado (Box y Jenkins, 1970).

Dado los mayores avances que muestra la econometría y en particular la financiera en el estudio de series de tiempo, el uso y estimación de relaciones económicas no lineales hacen atractiva la implantación de las redes neuronales artificiales. Este estudio profundiza el presentado por Shahmurove y Witkowska (2000) en el sentido que intenta adicionar a las predicciones, las regularidades no lineales. Además cubre una amplia gama de países, incluyendo los menos des-

⁶ Véase mayor detalle de cómo se realiza este proceso en Gregoire y Zurita (1993), que revisa y analiza esta bibliografía.

arrollados, y tiene un amplio periodo muestral. Asimismo se incluyen pruebas para determinar el rendimiento de las predicciones.

1. Revisión

Ahora, antes de ir a un análisis formal de las redes neuronales, se dará un ejemplo financiero sencillo que motiva el interés en modelos no lineales. Este ejemplo, sugerido primero por Merton, incluye la asignación de activos o riqueza cada mes entre los pagarés y el índice S&P 500, que empieza en enero de 1926 y termina en diciembre de 1993. Si tenemos un dólar de inversión en pagarés reinvertido mes a mes, crece hasta 12 dólares al final de los 67 años, mientras que la misma inversión colocada en el S&P 500 rendiría unos 800 dólares. Qué sucede si se tiene las habilidades de un perfecto market-timing de manera que al inicio de cada mes se sabe con seguridad qué clase de activo tendría un mejor desempeño. Si se empieza con la misma inversión de un dólar en enero de 1926 y se cambia cada mes entre pagarés o S&P 500 según la mejor opción se tendría la cantidad de 1 038 317 644 dólares. Lo anterior no es un error tipográfico, con habilidades perfectas en la asignación de activos, un dólar habría crecido a más de mil millones de dólares.

Por supuesto, nadie tiene las capacidades perfectas para asignar activos; por tanto, el rendimiento en la práctica será una pequeña fracción de 1 038 317 644 dólares. Sin embargo, no se toma una fracción del monto anterior para poder superar los 800 dólares que redituó el S&P 500. Este es quizá el mayor aspecto en la administración que agobia a los inversionistas: aun una pequeñísima ventaja en un mercado muy competitivo se puede traducir en atractivos rendimientos con el tiempo. Descubriendo y modelando no linealidades se debe proporcionar estas pequeñas ventajas.

Las redes neuronales intentan resolver de manera eficiente problemas que pueden encuadrarse dentro de tres extensos grupos: optimación, reconocimiento y generalización.⁸ Éstos abarcan un gran número de situaciones, lo que hace que el campo de aplicación de las redes neuronales en la gestión empresarial sea muy amplio.

Dentro de los problemas de optimación se intenta determinar una

⁷ Lo (1994).

⁸ Serrano Ćinca y Gallizo Larraz (1996).

solución que sea óptima, aplicando generalmente redes neuronales realimentadas, como el modelo de Hopfield (1982), redes de adaptación probabilística, de memorias autoasociativas, que aprenden a reconstruir las pautas de entrada que memorizaron durante el entrenamiento. En la gestión de empresa, son decisiones de optimación hallar los niveles de tesorería, de producción, política de inventario, construcción de carteras óptimas, etc. Asimismo, en los problemas de reconocimiento se entrena una red neuronal con insumos como sonidos, números, letras y se procede a la fase de prueba presentando esas mismas pautas con ruido. Este es uno de los campos más fructíferos en el desarrollo de redes neuronales y casi todos los modelos: perceptrón, también redes de Hopfield, mapas autoorganizados de Kohonen,9 etc., han sido aplicados con mayor o menor éxito. Finalmente en los problemas de generalización la red neuronal se adiestra con unas variables de entradas y la prueba se realiza con otros casos diferentes. Los problemas propios de la generalización son los de clasificación y predicción.

White (1992) y Kuan y White (1994) popularizaron el enfoque de redes neuronales en economía. Desde entonces ha sido utilizado para analizar decisiones para otorgar créditos bancarios (Witkowska, 1999; Olmedo y Fernández, 1997; Zurada, 1998), clasificación de obligaciones tanto internacionales como locales (Singleton y Surkan, 1995), adquisiciones y fusiones corporativas (Fairclough y Hunter, 1998), detección de quiebras (bankruptcy) (Shah y Murtaza, 2000; Tan y Dihardjo, 2001), 10 resultados corporativos (Wilson, Chong y Peel, 1995) y proyecciones macroeconómicas y financieras (Moshiri et al, 1999; Martin et al, 1997; Qi, 1999; Yao et al, 1999; El-Shazly y El-Shazly, 1999, y Fu, 1998). 11 Wu y Wang (2000) usan una red neuronal para clasificar postulaciones de crédito en grupos factibles de ser aceptados o rechazados, y compara los resultados del modelo con las decisiones reales tomadas por los analistas de crédito. Ellos encuentran que las redes neuronales poseen una capacidad predictiva superior y que son muy útiles para mejorar las decisiones de otorgamiento de créditos.

⁹ Véase mayor detalle en Kohonen (2001).

¹⁰ Shah y Murtaza (2000) utilizan redes neuronales basadas en procedimientos de Cluster.
¹¹ Véase también Granger y Terasvirta (1993), Gately (1996), Campbell et al (1997) y Franses y Van Dijk (2000).

Son todavía muy pocos los artículos que se encuentran publicados en revistas internacionales, aunque el Financial Analysts Journal o The Journal of Banking and Finance están empezando a recoger artículos relacionados con las aplicaciones de redes neuronales, alguno de ellos firmado por investigadores tan renombrados como Altman, Marco y Varetto (1994). Sin embargo, el primer artículo de redes neuronales que maneja información financiera fue realizado por White (1988), quien estudió la predicción de los precios de las acciones con un modelo de red neuronal. El modelo predecía mejor que el modelo de series temporales que utilizaba, un modelo lineal autorregresivo. El perceptrón multicapa es utilizado como análisis técnico, sin incluir variables fundamentales.

El enfoque de redes neuronales también ha sido muy útil en el campo del análisis de los precios de activos. Dada la alta frecuencia de la información diaria o intradiaria disponible su uso radica en la proyección de precios o rendimientos. En Chile hay un estudio (Bach y Hansen, 2002) que presenta predicciones de los rendimientos accionarios de ENDESA con información intradiaria, y demuestra la superioridad de estos modelos respecto a las opciones lineales. Otra aplicación en las finanzas es el estudio de efectos contagio entre diferentes índices. Lim y McNelis (1998) analizan la influencia que el Nikkei (Japón) y el Standard & Poor (Estados Unidos) tienen en el índice accionario australiano (Australian All-Ordinaries Index). Basándose en estadísticos que evalúan proyecciones, encontraron que los modelos de redes tienen un mejor desempeño que modelos estructurales tradicionales, como son los mínimos cuadrados y los de volatilidad lineal tipo GARCH-M.

Sin ir muy lejos, McNelis investiga la reacción en los precios de las acciones de Brasil a choques en los mercados de los Estados Unidos y de la América Latina, utilizando tanto modelos lineales como las RNA. Concluye que el mercado chileno, en contraste con el mexicano o el estadunidense, es el más determinante en los movimientos del índice accionario de Brasil. Al igual que los estudios anteriores demuestra una mejor confiabilidad en los modelos no lineales que los modelos de aproximación lineal o GARCH.

En la evaluación del comportamiento de las acciones en el mercado de valores, Aaltonen y Östermark (1993) comparan los tres modelos estadísticos más utilizados en la predicción del fracaso empresarial: análisis discriminante, *logit* y particiones recursivas con el perceptrón multicapa. En este estudio la variable dependiente, en otras palabras, calificar a la empresa positiva o negativamente, proviene de los mercados financieros, según el valor estimado de la La

de un valor es una medida del riesgo sistemático, es decir atribuible al movimiento del mercado en su conjunto y se calcula mediante regresiones que relacionan los movimientos del título con los del índice general de precios del mercado. Las empresas son agrupadas *a priori* como de alto o bajo riesgo, dependiendo de si el valor de su está por encima o por debajo de la media de la calculada para todas las empresas y todos los años. En los resultados se produce un empate, ya que todos los modelos fallan en la prueba de las mismas tres observaciones.

Yoon y Swales (1991) intentan dividir las empresas en dos grupos, según si sus acciones hayan tenido o no un buen comportamiento en los mercados financieros. Los datos incluyen información contable cuantitativa y cualitativa, pues examinan la carta que el presidente de la compañía envía a los accionistas. Comparan los resultados del análisis discriminante con los del perceptrón multicapa. El perceptrón sin capa oculta obtenía 65% de acierto, resultado similar al del análisis discriminante. Al añadir una capa oculta mejoran los resultados situándose en 77%. Añadir otra capa oculta no mejora significativamente la eficacia del modelo.

En la macroeconomía también se ha hecho presente la modelización con redes neuronales y se han enfocado sobre todo en las variables de tipos de cambio, demanda de dinero, inflación y crecimiento. ¹² Evidencia de no linealidades en información macroeconómica chilena puede encontrarse en McNelis (1996) y Soto (1995). Ambos examinan la demanda por dinero en Chile y encuentran una alta no linealidad en la demanda de dinero de largo plazo. Johnson y Vergara (2004) explican la política monetaria en Chile con una aproximación neuronal; concluyen que la balanza de cuenta corriente (o la diferencia entre el ingreso y el gasto) y la inflación no esperada son las variables con el mayor peso en la implantación de esta política.

 $^{^{12}}$ Evidencia internacional respecto al crecimiento se encuentra en Fu (1998) y Tkacz y Hu (1999).

Tkacz y Hu (1999), del banco central de Canadá, emplean información financiera y monetaria entre 1985-1998 para estimar una red neuronal artificial y proyectar el PIB; concluyen que esos modelos tienen una mayor capacidad predictiva (de 15 a 19% más precisos) que sus modelos contrapartes de regresión lineal y de series de tiempo y que la predicción en un horizonte de más de un año es mejor que las de corto plazo (por ejemplo, un trimestre).

2. Redes neuronales artificiales

Las redes neuronales son modelos estadísticos no lineales y no paramétricos utilizados principalmente para la clasificación y predicción de datos y variables. "No paramétrico" significa que no necesitan de supuestos paramétricos, como la normalidad en la distribución de los errores, que se presentan en los característicos modelos de regresión lineal. Es su intento de imitar algunos mecanismos de procesamiento de información que ocurren en el sistema nervioso de los organismos biológicos; como producto de la selección natural dichos mecanismos deben ser efectivos y eficientes.

Todos los modelos, ya sean lineales o no lineales, tienen como objetivo servir de aproximaciones útiles de la realidad, y nunca tienen la pretensión de sustituirla, por tanto las redes neuronales artificiales son simplificaciones útiles de las naturales. Biológicamente la unidad básica de procesamiento de las redes biológicas es la neurona. En términos generales, una neurona es una célula con tres partes principales: el cuerpo central que contiene el núcleo; unas extensiones o filamentos llamados dendritas las cuales reciben las señales o estímulos que llegan a la célula desde los censores o transductores, y una extensión de salida llamada axón que transporta el resultado del procesamiento de los datos hacia las dendritas de otras células. Si la suma ponderada de los estímulos de entrada sobrepasa cierto umbral, la neurona emite una señal de salida por el axón de magnitud fija. Las señales enviadas hacia la siguiente neurona hacen contacto en los puntos llamados sinapsis, entre el axón de una neurona y las dendritas de la siguiente; en estos puntos el estímulo se pondera; esto es, se puede dejar pasar, atenuar o inhibirse.

Actualmente, con el propósito de simplificar la función neuronal

FIGURA 1. Neurona biológica

aproximamos la salida binaria, modelo introducido por McCulloch y Pitts en 1943, por una salida limitada, por ejemplo al intervalo para el cual podemos usar un modelo *logit* o al intervalo [1,1], para lo cual utilizamos una función de tangente hiperbólica o una sigmoidal; estas funciones de trasmisión serán explicadas en la siguiente sección.

A diferencia de las redes biológicas, en las que cada neurona puede tener miles de conexiones con otras células, con las redes artificiales estas conexiones entre neuronas son pocas por las limitaciones en las técnicas de estimación y datos disponibles. Una red neuronal artificial común consiste en capas de neuronas que procesan y transportan la información de la entrada a la salida. En la primera capa todas las neuronas reciben los datos de entrada, los ponderan por sus coeficientes de entrada, restan el umbral, por ejemplo, la constante en el logit, y pasan el resultado a cada una de las neuronas de la capa siguiente. La salida final puede hacerse por medio de una sola neurona, o de manera lineal ponderando y sumando las salidas de las neuronas de la última capa, más una constante si se considera necesario. Las capas que se encuentran entre la entrada y la salida se conocen como capas ocultas.

FIGURA 2. Estructura de la red neuronal

Aunque existe una gran variedad de opciones de elaboración de redes, algunas con múltiples salidas (por ejemplo para análisis multivariado) y otras con realimentación de salida a entrada, la red característica suele tener una salida y una o dos capas escondidas con un número de neuronas cercano al número de variables de entrada.

El tema de la realimentación, tan importante en las redes biológicas, puede incorporarse en las redes artificiales al reestimar el modelo con la llegada de nuevos insumos. Esta reestimación, que obviamente se hace comparando la salida con la realidad observada, modifica los parámetros del modelo para ajustarse a las nuevas observaciones. De otra manera, la incorporación de ecuaciones de realimentación explícitas en el modelo introduciría complejidades adicionales en la estimación.

3. Especificación

Una red sencilla con dos variables de entrada x_1 y x_2 , una capa escondida con dos neuronas y una neurona de salida, tendría la siguiente ecuación:

$$y = {1 \over 1} \frac{1}{e^{-(-0...1x_1....2x_2)}} = {1 \over 1} \frac{1}{e^{-(-0...1x_1....2x_2)}}$$
(1)

en la que 0 y 0 son los niveles de umbral (la constante) de cada neurona. Como puede observarse, la salida es un *logit*, lo cual muestra una expresión no lineal, o también se podría especificar un *logit* de *logits*, sobre todo si el número de capas y neuronas aumenta.

Analíticamente, una red neuronal puede ser representada por la expresión (1), en la que y es la variable dependiente (que podría ser un vector de variables), y_j para j=1,2..., son variables independientes o exógenas, y f representa a una función no lineal.

$$y_t = f(y_{1t}, y_{2t}, ...)$$
 (2)

En el modelo de regresión lineal, f representa una función lineal, pero en esta estructura de redes f puede ser cualquier forma no lineal.

Consideremos la estructura tradicional de una red neuronal, que se alimenta hacia delante (feed-forward) y que se presenta en la figura 2. Una red neuronal tradicional consiste en una colección de insumos (inputs) y neuronas procesadoras de información, arregladas e interconectadas por capas conocidas como capa de entrada (input layer), capa escondida (hidden layer) y capa de salida (output layer). La capa de entrada sólo recibe información sin procesarla. Una vez que esta información haya pasado a la capa escondida, ésta es procesada y analizada, y posteriormente trasmitida a la capa de salida mediante funciones matemáticas de transferencia, que son funciones de las neuronas procesadoras que definen las variables de salida. Para facilitar su comprensión, y según la figura, suponga que tenemos cuatro series de tiempo (x_1, x_2, x_3, x_4) para explicar nuestra variable dependiente y. Cada nodo neuronal se une por medio de una función matemática:

$$y_{j} \quad f(red\ neuronal) \quad \ _{j}$$

$$y_{j} \quad f \quad \ _{i} \quad _{ij}x_{i} \quad \ _{j}$$

$$(3)$$

en la que $_{ij}$ representa el parámetro entre insumo i y neurona j. La función f corresponde a la función de transferencia, modelada como

se dijo líneas arriba, una función sigmoidea o tangente hiperbólica, representada respectivamente por:

$$f = \frac{\frac{1}{1 - e^{-w_{ij}x_i}}}{\frac{e^{-w_{ij}x_i} - e^{-w_{ij}x_i}}{e^{-w_{ij}x_i} - e^{-w_{ij}x_i}}}$$

$$(4)$$

Al decidir resolver un problema mediante las redes neuronales tenemos que optar por la estructura que mejor se adapte a dicho problema. Relacionado con cada estructura está el tipo de aprendizaje por utilizar, el cual puede ser supervisado, no supervisado o tal vez una combinación de ambas (aprendizaje híbrido). Además de la decisión de tipo de aprendizaje es necesario decidir la manera sistemática en que se van a analizar los pesos o ponderadores.

Con el aprendizaje no supervisado la variable final no se define y la red clasifica los insumos de acuerdo con las características del problema por resolver. Los modelos planteados aquí suelen ser simples monocapas y con algoritmos sencillos y rápidos, más próximos a la biología. Con el aprendizaje supervisado, la segunda metodología, por mucho la más utilizada, la red se prueba con los insumos y el resultado, lo que permite un procedimiento de aprendizaje que minimiza el error entre los valores proyectados y efectivos de la variable endógena.

La metodología utilizada en la estimación se denomina back-propagation (BP), y calcula la diferencia entre valores observados y proyectados desde la última capa, propagando hacia atrás los errores de predicción ponderados. La ponderación estándar usa el método de gradiente descendiente.

4. Aprendizaje por propagación hacia atrás con métodos de gradiente

Definamos el error cuadrático de una neurona por:¹³

$$p = \frac{1}{2} (y_p - \hat{y}_p)^2 \tag{5}$$

¹³ Véase en Freeman (1994), Sargent (1993) y Kasabov (1996) un análisis más detallado.

en el que el subíndice p se refiere a la pauta u observación pth, y representa el valor actual o deseado de la variable dependiente y \hat{y} indica la predicción de la neurona. La ecuación (5) determina finalmente al término de error general denotado por p.

El cambio en los ponderadores para cualquier neurona será proporcional al efecto del peso desde esta neurona en la diferencia previa _p. Este cambio se expresa por la siguiente ecuación:

$$k = \frac{p}{net_k} \frac{net_k}{ki}$$
 (6)

Similarmente, la contribución de la suma ponderada de los insumos respecto a la proyección de la red desde cualquier neurona está dada por:

$$_{ko} = \frac{p}{y_p} \frac{y_p}{net_k} (y_p - \hat{y}_p) f_k(net_k)$$
 (7)

Para la unidad h de la capa escondida conectada a la neurona n, esta contribución estará dada por:

$$hn = no np$$
 (8)

Una vez especificado el modelo, la estimación consiste en escoger los valores de las ponderaciones (coeficientes) y el umbral (constante) para cada neurona (*logit*). Por la naturaleza no lineal de la ecuación, la estimación de las redes neuronales debe hacerse por algún método de optimación numérico. Muchos de ellos son, en esencia, métodos de mínimos cuadrados no lineales.

Uno de los métodos más populares es el llamado de propagación hacia atrás (back propagation o delta method), que consiste en partir de coeficientes y umbrales iniciales (que pueden ser arbitrarios) y calcular el error entre la salida estimada y el valor verdadero, y usar este error para devolverlo por la red, ajustando los coeficientes y umbrales de las neuronas de las capas por medio de un algoritmo un poco ad hoc. Lo mismo se hace para la segunda observación de la muestra, luego para la tercera y así sucesivamente, hasta completar la muestra. Después se repite el proceso hasta lograr un juego de coeficientes que minimicen la suma de errores al cuadrado. Existe

software especializado en el mercado para aplicar este algoritmo de propagación hacia atrás.

Sin embargo, si el tamaño de la red y la muestra lo permiten la estimación puede realizarse por medio del *software* de mínimos cuadrados no lineales, disponible en la mayoría de los programas estadísticos. Casi todos los programas econométricos incorporan algunos algoritmos de estimación numérica adecuados para este propósito. La estimación requiere paciencia, ya que no siempre converge fácilmente, pues depende de manera decisiva de los valores iniciales escogidos.

La estimación puede requerir un buen número de iteraciones, 100, 1 000 o 5 000 son comunes, de manera que los criterios de parada del algoritmo deben ajustarse apropiadamente o, en su defecto, debe reiniciarse la iteración.

5. Evaluación

El objetivo principal de las redes neuronales no es el modelaje estructural, ni siquiera la forma reducida, sino la predicción, por lo cual se puede tolerar algún grado de redundancia o específicamente multicolinealidad. La capacidad predictiva es más importante en la evaluación que las pruebas t, los sobrecoeficientes individuales, que con frecuencia no resultan todos significativos. El r^2 , el error estándar, la verosimilitud estimada y criterios como los de Akaike, Schwartz o el de Hannan-Quinn sirven de guía, de manera simultánea a las pruebas de significación individual.

Es recomendable utilizar parte de la muestra para la validación cruzada; esto es, usar por ejemplo 75% de la muestra para estimación y el resto para probar y evaluar la capacidad predictiva. Deben calcularse medidas de predicción, como la raíz del error cuadrado medio o el error cuadrado medio absoluto. En lo referente a la estabilidad del modelo puede estimarse omitiendo sucesivamente algunos periodos finales de la muestra o agregando observaciones que no hayan sido utilizadas antes en la estimación.

El hecho de que la estimación no converja no implica que sea imposible mejorarla. Comenzar con otros valores iniciales, al menos en algunos coeficientes, puede mejorar la estimación o bien validarla. Asimismo el hecho de que la estimación dé un buen ajuste en la muestra no forzosamente garantiza un buen desempeño predictivo.

II. METODOLOGÍA Y DATOS

En diferentes mercados de valores de los países estudiados, Reuter y Bloomberg han sido la fuente del siguiente estudio. Los datos utilizados son los diversos índices de 27 países del mundo incluyendo el Standard & Poor 500 y el Dow Jones en los Estados Unidos. La frecuencia es diaria desde enero de 1990 hasta finales del primer mes de 2004. Los datos no encontrados (debido a días feriados nacionales y religiosos) son remplazados por la observación que la precede. La elección de una periodicidad semanal se justifica para minimizar los sesgos originados por el efecto día de la semana (Lo y Mackinlay, 1987; LeBaron, 1993) y el efecto fin de semana (véase Zhang y Hu, 1998).

Dado que se necesita las rentabilidades semanales, éstas se calcularon como la diferencia en logaritmo natural del valor de cada índice para cada semana consecutiva:

$$r_t = \ln I_t = \ln I_{t=5}$$

en la que r_t es la rentabilidad semanal e I_t es el índice al final del día. Esta transformación ha llegado a ser común en el análisis financiero ya que permite obtener una serie estacionaria; puede ser interpretada como una rentabilidad y, además, se presenta como una variable de mayor interés para los operadores financieros (Brooks, 1996). No obstante, también se reconoce la posible ampliación del ruido en la serie (Soofi y Cao, 1999).

El cuadro 1 muestra los siguientes resultados estadísticos: desviación estándar, *Skewness*, curtosis y el Jarque-Bera con la probabilidad respectiva de que este último exceda el valor observado con la hipótesis nula. Un valor cercano a 0 permitiría rechazar la hipótesis nula de que la serie analizada proviene de una distribución de densidad normal.

La primera conclusión es que los rendimientos muestran un alto valor en la curtosis, excediendo en muchos casos valor de 3, lo que sugiere que los rendimientos presentan leptocurtosis, una caracte-

CUADRO 1. Estadística descriptiva de los rendimientos

(Periodo: enero de 1990-enero de 2004; observaciones: 3 668)

País	Media	Mediana	Maximo	Minimo	Desviación estándar	Skewness	Curtosis	Jarque-Bera	Proba- bilidad
Alemania	0.0016290	0.0032320	0.1871390	0.1794450	0.0322500	0.2480850	5.6517120	1112.2840	(0.000)
Argentina	0.0081560	0.0043940	0.8546440	0.2306150	0.0768230	2.4734050	20.8039900	52128.4700	(0.000)
Australia	0.0010820	0.0012750	0.1097770	0.1326060	0.0180480	0.1978280	5.0690680	678.210700	(0.000)
Austria	0.0008140	0.0016430	0.1994400	0.1768390	0.0288690	0.3092700	6.6014060	2040.74000	(0.000)
Canadá	0.0012542	0.0018975	0.0975877	0.1164805	0.0211660	0.5556828	6.2116670	1714.20339	(0.000)
Chile	0.0032174	0.0019630	0.1405687	0.1148205	0.0238945	0.3531013	5.1790968	778.769702	(0.000)
Corea del Sur	0.0008829	0.0012136	0.2666756	0.1969672	0.0455289	0.3105930	5.3568194	881.664744	(0.000)
Estados Unidos									
(Dow Jones)	0.0020640	0.0028740	0.1269340	0.1425950	0.0223270	0.2098500	5.7927960	1218.97700	(0.000)
Estados Unidos									
(S&P~500)	0.0018505	0.0026228	0.1317287	0.1202603	0.0225372	0.1444103	5.3520718	833.457412	(0.000)
España	0.0005400	0.0025150	0.1478620	0.8925690	0.0449130	10.7032300	213.27570	6827691.00	(0.000)
Francia	0.0012952	0.0016017	0.1808709	0.1385592	0.0306079	0.0257787	4.9368306	557.151840	(0.000)
Hong Kong	0.0027122	0.0036436	0.1909290	0.2695455	0.0379409	0.2809229	6.0726682	1448.09562	(0.000)
India	0.0036739	0.0021347	0.3939798	0.2061234	0.0439099	0.6837698	8.6670427	5044.02018	(0.000)
Finlandia	0.0012616	0.0008388	0.2397014	0.1973647	0.0415043	0.3186244	5.3340315	868.799861	(0.000)
Japón	-0.00111137	0.0015517	0.1685293	0.1495500	0.0320017	0.1817484	4.4415978	328.050436	(0.000)
Malasia	0.0011725	0.0005902	0.4692813	0.2080345	0.0392853	1.1030615	16.615426	28235.7980	(0.000)
México	0.0047690	0.0044968	0.1918174	0.1973960	0.0403466	0.0356133	4.5724570	367.731109	(0.000)
Nueva Zelanda	0.0005148	0.0004707	0.1424647	0.1684385	0.0220388	0.0207445	6.0784198	1406.75099	(0.000)
Pakistán	0.0034292	0.0021991	0.1931778	0.2125021	0.0401132	0.1696110	5.7291841	1122.55202	(0.000)
Perú	0.0138297	0.0039739	0.5648539	0.1659794	0.0602740	3.3090967	23.870337	71146.7134	(0.000)
Reino Unido	0.0011777	0.0017633	0.1455430	0.1318758	0.0230745	0.0334599	5.5580130	971.818789	(0.000)
Singapur	0.0006945	0.0008007	0.2363298	0.2824198	0.0330935	0.0624536	9.6190044	6504.63066	(0.000)
Sri Lanka	0.0031366	0.0000225	0.2772651	0.1473613	0.0325442	1.3448724	11.032312	10649.3063	(0.000)
Suecia	0.0019580	0.0027912	0.2048512	0.1433463	0.0315453	0.0542255	5.7623590	1134.25784	(0.000)
Suiza	0.0019447	0.0030582	0.1769011	0.1663821	0.0270923	0.2483216	6.8962189	2289.65003	(0.000)
Tailandia	0.0006815	0.0003065	0.3210116	0.2443008	0.0458701	0.3704733	6.6559545	2065.21862	(0.000)
Taiwán	0.0002208	0.0013242	0.2809726	0.2253676	0.0468284	0.0222160	6.2216915	1540.75358	(0.000)
Venezuela	0.0012954	0.0016041	0.1808709	0.1385592	0.0306072	0.0224876	4.9331807	554.961137	(0.000)

rística propia de los rendimientos de precios de activos financieros. El 50% de los datos presenta un valor negativo en el indicador del sesgo, lo que revela que la distribución tiene una larga cola hacia la izquierda. Finalmente la prueba de normalidad Jarque-Bera indica que no hay evidencia estadística para aceptar el supuesto de normalidad en los rendimientos.

El modelo de red neuronal adoptado en este artículo es del tipo feedforward (de alimentación hacia adelante) que considera una capa oculta, la cual tiene la siguiente forma:

$$y = {}_{0} {}_{h=1}^{H} {}_{h} g {}_{j=1}^{J} {}_{hj} x_{j}$$
 (9)

en la que y es el resultado del modelo. Existen J insumos o inputs que alimentan la red, representados por x_t . La función $g(\cdot)$ es conocida como la función de activación o transferencia en la capa oculta; aunque esta ecuación de transferencia puede ser especificada de otras maneras como lo mencionamos en la sección anterior, este estudio escoge la forma funcional logística representada por g(z) $1/(1-e^{-z})$. La red tiene H neuronas en la capa escondida con pesos o intensidad de conexión definidos por el parámetro f(z). Todas las variables de entradas ingresan como argumentos en estas neuronas f(z)0 sus influencias son medidas por los pesos de entrada, f(z)1 Se han especificado modelos univariados en los que las variables de entrada son los valores rezagados de la variable dependiente. El resultado es el rendimiento semanal que se indicó líneas arriba.

Como el motivo principal de este estudio es encontrar regularidades en los diferentes índices accionarios, se ha empleado hasta cinco rezagos con el propósito de observar si el comportamiento al incluir variables rezagadas es el mismo en cada país. Asimismo se ha asumido que los rendimientos son procesos puramente lineales, los cuales difieren de los modelos de Stock y Watson (1999), y los de Franses y Van Dijk (2000), quienes incluyen componentes lineales.

El tratamiento de los datos merece una breve explicación, ya que al utilizar funciones *logits* el resultado de las rentabilidades esperadas debería encontrarse en el rango (,); sin embargo, para evitar estos inconvenientes se han transformado las variables para convertirlas en valores logísticos y de esta manera acotarlas.

Con el fin de mostrar la superioridad de las RNA también se estimaron modelos lineales regresivos, tanto en sus variables como en sus términos de errores, con la metodología propuesta por Box-Jenkins. La evaluación empírica de las predicciones obtenidas por las RNA se hizo sobre una base extramuestral que partía del 30 de enero hasta el 16 de julio de 2004. El desempeño relativo de los modelos fue medido por el número de predicciones correctas del signo de variación de los diferentes índices, para lo cual se aplicó la prueba de certeza direccional propuesto por Pesaran y Timmermann (1992) y que se detallará a continuación.

A lo largo del trabajo se hace predicciones puntuales de la variación semanal con frecuencia diaria que tendrán los índices. Sin embargo, para poder evaluar el rendimiento de las redes neuronales en adelante se ha simplificado en sólo medir la variación que tendrá la rentabilidad, es decir, si va al alza o a la baja. La prueba establecida por Pesaran y Timmermann confirma la exactitud de una predicción cuando el objetivo de análisis es la predicción correcta del signo.

Sea x_t $\hat{E}(y_t/_{t-1})$ el predictor de y_t formado con respecto a la información disponible en t-1, $_{t-1}$ y supóngase que hay n observaciones en $(y_t \ y \ x_t)$. Esta prueba está basada en la proporción de veces que la dirección del cambio de signo en y_t es correctamente predicha en la muestra y_t , además, no requiere información cuantitativa de las variables si se usa sólo información de los signos de y_t y x_t . Si los signos entre estas dos variables coinciden aumenta el poder de la red, en caso contrario, aumenta el error de la predicción. Se introduce las variables indicadores y_t-1 si y_t-0 y 0 de otra manera. Lo mismo aplica a la variable x_t . Además, se define Z_t-1 si $y_t x_t-0$ o 0 en caso contrario.

Sea P_y $Pr(y_{t=0})$ y P_x $Pr(x_{t=0})$ y expresemos \hat{P} como la proporción de veces que el signo de y_t es predicho correctamente; luego

$$\hat{P} = n^{-1} \sum_{t=1}^{n} Z_t = \overline{Z}$$

En el supuesto de que y_t y x_t sean independientemente distribuidas (por ejemplo x_t no tiene poder de predicción en y_t), $n \hat{P}$ tiene una distribución binomial con media nP*, en la que

$$P* \quad Pr(Z_t \quad 1) \quad P_{_{\boldsymbol{Y}}}P_{_{\boldsymbol{X}}} \quad (1 \quad P_{_{\boldsymbol{Y}}})(1 \quad P_{_{\boldsymbol{X}}}) \tag{10}$$

En el caso general, esta prueba no paramétrica puede basarse en un estadístico estandarizado

$$S_{n} = \frac{\hat{P} - \hat{P}*}{\{Var(\hat{P}) - \hat{Var(\hat{P}*)}\}^{1/2}} \sim N(0, 1)$$
 (11)

en el que

$$\widehat{Var}(\hat{P}) \quad n^{-1}\hat{P}*(1 \quad \hat{P}*)$$

y

El último término en la expresión $Var(\hat{P}^*)$ es insignificante asintóticamente. Cabe señalar que no se debe confundir esta prueba con la conocida de signo, que a menudo se usa para comprobar si y_t y x_t tienen la misma función de distribución.

III. RESULTADOS

Los cuadros 2-6 presentan los resultados de las redes univariadas con los diferentes rezagos de los 27 países estudiados. Los modelos determinados (especificación 1) han usado en la capa oculta dos neuronas, como aconseja la mayoría de la bibliografía del tema (Zekic, 1998; Trippi y De Sieno, 1992). Los valores rezagados parten de un periodo hacia atrás hasta el quinto y se utilizan los mismos modelos con el fin de encontrar regularidades entre ellos.

Los valores muestran el modelo escogido por el criterio Akaike y el r^2 . Analizando este último se observa que el mayor rendimiento lo tiene Perú con 89.60%, seguido de Chile y Sri Lanka con 84.39 y 83.22% respectivamente. En el caso contrario los peores resultados los obtuvieron Japón con 64%, Reino Unido, 65.06%. En los Estados Unidos su índice Dow Jones alcanzó 65.40%, superado un poco por el Standard & Poor 500 con 66.27%. Sin embargo, todos entran en un rango entre 64 y casi 90%, lo cual demuestra una buena relación utilizando las redes neuronales artificiales.

Asimismo, como se espera, el criterio Akaike nos muestra que los

	H	J	_	
Cuadro 2. Especificación 1: y	0 h 1	$_{h}g$	$_{hj}x_{j}$, J	1

				•	
Alemania			Argentina		
0	0.431493	(0.18544)	0	0.435446	(0.027060)
1	0.023919	(0.181084)	1	0.084779	(0.089212)
10	3.095461	(4.162706)	10	5.71469	(7.071438)
11	27.96824	(74.71745)	11	10.86012	(13.23832)
2	0.159527	(0.615125)	2	0.141552	(0.096842)
20	0.912594	(4.845972)	20	0.182756	(0.501841)
21	7.27013	(7.805824)	21	6.012766	(3.482194)
R^2	0.615376		R^2	0.701251	
AIC	7.756034		AIC	6.299556	
SIC	7.744185		SIC	6.287696	
Australia			Austria		
0	0.136047	49.32644	0	0.233223	(15.78977)
1	0.315685	49.14299	1	0.016385	(0.263329)
10	7.265102	120.8068	10	3.505654	(7.518606)
11	40.2398	348.3335	11	24.76127	(120.1725)
2	0.238168	7.607414	2	6.249	(10996.7)
20	1.363991	34.42656	20	3.174009	(1768.888)
	5.570302	58.05807		0.933917	(123.3108)
$R^{\frac{21}{2}}$	0.651511		$R^{\frac{21}{2}}$	0.704425	
AIC	9.015142		AIC	8.243346	
SIC	9.003293		SIC	8.231497	
Canadá			Chile		
0	0.164261	(1156.893)	0	0.455	(0.010168)
1	0.322713	(1140.043)	1	320.8541	(5.00E + 08)
10	0.068417	(386.8345)	10	43.65957	(1558586)
11	6.511317	(6440.116)	11	289.5041	(5258.202)
2	0.328862	(1189.245)	2	0.093539	(0.019166)
20	0.055175	(151.9027)	20	0.073387	(0.0834)
21	8.982382	(3557.108)		9.86399	(2.102166)
R^2	0.684081		$R^{\frac{21}{2}}$	0.811328	
AIC	8.807926		AIC	9.061579	
SIC	8.796077		SIC	9.04973	
Corea del Su	ır		España		
0	0.425277	(0.039620)	0	0.143977	(9.082158)
1	0.159387	(0.072238)	1	2.371004	(96.44804)
10	0.125853	(0.197340)	10	0.991058	(36.38463)
11	5.214775	(2.444943)	11	0.442023	(10.58518)
2	0.007208	(0.008811)	2	0.002279	(0.003572)
20	11.64265	(17.73654)	20	5.448346	(7.374494)
21	73.46735	(123.5935)		101.4759	(162.6893)
$R^{\frac{1}{2}}$	0.647423		$R^{\frac{21}{2}}$	0.636474	
AIC	7.173851		AIC	7.215315	
SIC	7.162000		SIC	7.203466	

Cuadro 2 (continuación)

Estados Uni	dos (Dow Jones)		Estados U	nidos (Standard &	& Poor 500)
0	1.502364	NA	0	0.202228	(2.832347)
1	2.157774	NA	1	0.00834	(0.004043)
10	2.557118	NA	10	153.9419	(3221.866)
11	1.380428	NA	11	1363.694	(28136.80)
2	0.444391	NA	2	0.419454	(3.297515)
20	186.5622	NA	20	0.89652	(5.695015)
21	1287.553	NA	21	2.285669	(12.54605)
R^2	0.627172		$R^{\frac{1}{2}}$	0.614339	
AIC	8.52212		AIC	8.482595	
SIC	8.510271		SIC	8.470746	
Filipinas			Francia		
0	0.109006	(4.252721)	0	0.194996	(1.676329)
1	9.274933	(2315.379)	1	0.399903	(1.825122)
10	3.151051	(248.6912)	10	1.169824	(3.931641)
11	0.589387	(12.60061)	11	2.776432	(6.985131)
2	0.01024	(0.002185)	2	0.004977	(0.001825)
20	613.6979	(3334.791)	20	119.0734	(273.5502)
21	4020.357	(21841.86)	21	1276.082	(2928.353)
R^2	0.725266		R^2	0.620748	
AIC	7.605929		AIC	7.893549	
SIC	7.594080		SIC	7.881700	
Hong Kong			India		
0	0.419887	(0.026307)	0	0.841032	(113.0329)
1	0.046596	(0.706429)	1	3.33392	(347.8714)
10	26.77002	(225.6916)	10	0.396067	(33.63595)
11	102.9299	(1040.668)	11	0.261533	(25.56793)
2	0.132723	(0.037204)	2	2420.917	(2.65E+08)
20	0.430053	(0.155518)	20	18.7585	(109497.4)
21	6.565527	(1.762174)	21	36.72773	(35.81923)
$R^{\frac{21}{2}}$	0.65638		$R^{\frac{21}{2}}$	0.680331	
AIC	7.561731		AIC	7.334977	
SIC	7.549882		SIC	7.323128	
Japón			Malasia		
0	0.169752	(155.8349)	0	0.19994	(0.366471)
1	0.3887	(50.41744)	1	0.453823	(0.431931)
10	0.033377	(169.0611)	10	0.669425	(0.806087)
11	3.225923	(3137.323)	11	2.149064	(1.506902)
2	0.293433	(238.0747)	2	0.007475	(0.001554)
20	0.105524	(28.30506)	20	67.13937	(112.4797)
21	7.044616	(998.3393)	21	602.6608	(1016.362)
R^2	0.605791		R^2	0.696633	
AIC	7.751256		AIC	7.619251	
SIC	7.739407		SIC	7.607392	

Cuadro 2 (continuación)

1 15.77772 (257912.9) 1 0.66745 (339.9073) 10 3.150449 (18551.03) 10 0.723015 (1847.913) 11 1.910623 (2901.916) 11 1.049469 (4664.678) 2 1.835975 (4429.555) 2 0.702164 (1581.882) 20 0.925933 (458.8038) 20 0.617163 (47.82732) 21 3.781518 (1374.784) 21 2.34943 (912.3075) R ² 0.719852 R ² 0.866381 AIC 7.65739 AIC 7.589893 SIC 7.645541 SIC 7.578044 Reino Unido Singapur 0 0.248317 (4.288280) 0 0.364937 (0.047772) 1 1.530680 (1.337472) 1 0.021039 (0.005511) 10 1.700109 (8.192140) 10 142.1045 (762898.9) 11 0.992038 (3.053717) 11 699.377 (3515321) 2 0.015302 (0.004102) 2 0.227264 (0.096591) 20 2.854056 (3.501921) 20 0.007592 (0.157125) 21 2.674282 (3.329054) 21 3.754665 (1.626016) R ² 0.613199 R ² 0.700848 AIC 8.436031 AIC 7.969314 SIC 8.424182 SIC 7.957465 Sri Lanka 0 0.762892 (30.52464) 0 1.871043 (317.8410) 1 1.655561 (33.19355) 1 2.561833 (319.6375) 10 1.168437 (17.37547) 10 2.520519 (124.6247) 11 0.766957 (8.374658) 11 1.19518 (22.33347) 2 0.010829 (0.0003175) 2 0.013444 (0.021230) 20 12.50178 (5.634389) 20 7.221488 (6.015945)	México			Nueva Zel	anda	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0.446153	(0.032339)	0	0.166926	NA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		19.11477	(264508.4)		0.332616	NA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		15.00732	(13654.97)		0.002884	NA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		37.49521	(173.7918)		1.217811	NA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.10529	(0.045323)		0.332616	NA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.053383	(0.360819)		0.002884	NA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8.269585	(3.335851)		1.217811	NA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R^{\frac{1}{2}}$	0.692876		$R^{\overline{2}}$	0.656532	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.552722		AIC	8.640228	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SIC	7.540873		SIC	8.628376	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pakistán			Perú		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1.462815	,	0	0.195326	(69.86726)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	15.77772	(257912.9)	1	0.66745	
$\begin{array}{c} 1\\ 2\\ 2\\ 0\\ 0.925933\\ 0.925933\\ 0.458.8038)\\ 20\\ 0.617163\\ 0.67378\\ 0.719852\\ 0.719852\\ 0.719852\\ 0.765739\\ 0.7645541\\ 0.764539\\ 0.7645393\\ 0.7645393\\ 0.7645393\\ 0.76453933\\ 0.7645393\\ 0.7645393\\ 0.7645393\\ 0.7628993\\ 0.76289938\\ 0.76289938\\ 0.76289938\\ 0.76289938\\ 0.76289938\\ 0.76289938\\ 0.762899314\\ 0.7646957\\ 0.764582\\ 0.7618399\\ 0.762892$	10	3.150449	(18551.03)	10	0.723015	(1847.913)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	1.910623	(2901.916)	11	1.049469	(4664.678)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1.835975	(4429.555)	2	0.702164	(1581.882)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	0.925933	(458.8038)	20	0.617163	(47.82732)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	3.781518	(1374.784)	21	2.34943	(912.3075)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R^2	0.719852		R^2	0.866381	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AIC	7.65739		AIC	7.589893	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SIC	7.645541		SIC	7.578044	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Reino Unido			Singapur		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0.248317	(4.288280)	0	0.364937	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1.530680	(1.337472)	1	0.021039	(0.005511)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10		,	10		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	0.992038	(3.053717)	11	699.377	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0.015302		2	0.227264	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20		,	20		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	2.674282	(3.329054)	21	3.754665	(1.626016)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.613199			0.700848	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					7.969314	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SIC	8.424182		SIC	7.957465	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sri Lanka			Suecia		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0		,	0		,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1		,	1		,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10			10		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11			11		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2		,	2		,
R^{2} 0.798376 R^{2} 0.674248 AIC 8.338433 AIC 7.980406	20		()	20		(
AIC 8.338433 AIC 7.980406	21		(58.96397)	21		(64.42331)
SIC 8.326584 SIC 7.968557						
	SIC	8.326584		SIC	7.968557	

Cuadro 2	(conclusión)
----------	--------------

Suiza			Tailandia		
0	0.187947	(24.22198)	0	0.21669	(479.8987)
1	91.97752	(2607756)	1	0.744385	(516.9758)
10	11.58332	(28284.44)	10	0.419581	(145.9118)
11	19.58426	(328.7698)	11	3.046788	(376.8786)
2	0.373589	(24.51447)	2	3.500565	(18249.07)
20	1.610349	(71.89915)	20	2.491889	(6217.280)
21	4.291252	(57.81252)	21	1.324409	(1115.609)
R^2	0.642688		R^2	0.709784	
AIC	8.194332		AIC	7.340632	
SIC	8.182481		SIC	7.328783	
Taiwán			Venezuela	ı	
0	0.12726	(116.3743)	0	0.195497	(1.747877)
1	0.274838	(115.8576)	1	0.403221	(1.916365)
10	2.595045	(396.5610)	10	1.128562	(4.037578)
11	5.112943	(963.4066)	11	2.692275	(7.296474)
2	0.332287	(72.26049)	2	0.004861	(0.001840)
20	0.608851	(130.0800)	20	118.4528	(271.4539)
21	3.991002	(28.49665)	21	1270.479	(2911.952)
R^2	0.672677		R^2	0.619604	
AIC	7.185031		AIC	7.871739	
SIC	7.173182		SIC	7.859595	

Alemania			Argentina		-
0	0.465266	(0.003706)	0	0.325377	(3.652735)
1	0.065168	(0.006386)	1	0.708017	(3.648302)
10	0.140397	(0.075316)	10	0.357725	(0.101037)
11	14.89706	(1.647068)	11	2.35611	(4.251446)
12	2.559877	(0.405569)	12	4.906322	(4.193978)
2	0.010429	(0.002025)	2	0.996155	(3.653914)
20	25.39976	(48.21273)	20	0.361383	(0.103670)
21	217.2792	(406.8976)	21	0.62961	(3.350535)
22	299.906	(554.3125)	22	3.268929	(3.057329)
R^2	0.625734		R^2	0.71262	
AIC	7.782051		AIC	6.33847	
SIC	7.766813		SIC	6.32322	

Cuadro 3 (continuación)

Australia			Austria		
0	0.477115	(0.002895)	0	4.517222	(150.4222)
1	0.045023	(0.005705)	1	18.51794	(1910.241)
10	0.025976	(0.092100)	10	1.915592	(132.5355)
11	22.15601	(3.062124)	11	1.067753	(39.84396)
12	4.958417	(0.794049)	12	2.177848	(84.95245)
2	0.000286	(0.000167)	2	4.025601	(174.1604)
20	1.044286	(5.154354)	20	0.645103	(5.195521)
21	542.0728	(1803.558)	21	2.158156	(9.798735)
22	1507.887	(5004.945)	22	4.919465	(32.37374)
R^2	0.664335		R^2	0.730017	
AIC	9.051269		AIC	8.332912	
SIC	9.036031		SIC	8.317674	
Canadá			Chile		
0	0.16734	(5.339744)	0	1.81087	(379.2239)
1	0.993587	(10.36022)	1	11.17793	(7827.879)
10	2.704165	(7.181861)	10	2.368877	(873.7699)
11	13.62874	(43.46293)	11	3.832132	(570.0571)
12	-3.93937	(14.14039)	12	2.090899	(304.4530)
2	0.294218	(5.366778)	2	2.048354	(406.4183)
20	2.432911	(2.527024)	20	0.668582	(34.33020)
21	24.28856	(72.00669)	21	8.017755	(239.3908)
22	7.761738	(29.17771)	22	4.211487	(112.6829)
R^2	0.700682		R^2	0.842473	
AIC	8.860743		AIC	9.223008	
SIC	8.845505		SIC	9.20777	
Corea del Si	ur		España		
0	0.441297	(0.011948)	0	0.129982	(0.200697)
1	0.059756	(0.029175)	1	0.377298	(0.213211)
10	0.40293	(0.139064)	10	0.936241	(0.401703)
11	4.759735	(2.223208)	11	3.284022	(1.476963)
12	6.005275	(2.776140)	12	2.345476	(0.963593)
2	0.067366	(0.030176)	2	0.16547	(0.137193)
20	0.054418	(0.184896)	20	0.401697	(0.532307)
21	10.62686	(3.716899)	21	0.451301	(2.844435)
22	7.754644	(4.382884)	22	3.451672	(2.305130)
R^2	0.659689		R^2	0.646303	
AIC	7.208006		AIC	7.241405	
SIC	7.192765		SIC	7.226168	

CUADRO 3 (continuación)

Estados Unid	los (Dow Jones	·)	Estados	Unidos (Standard &	Poor 500)
0	0.209706	(50.81379)	0	0.170584	(30.46088)
1	0.682394	(50.81475)	1	0.385252	(30.45772)
10	0.082946	(0.597650)	10	1.052615	(5.181675)
11	8.164243	(70.68360)	11	21.06861	(133.7057)
12	18.79429	(64.44015)	12	5.753637	(53.72489)
2	0.740666	(50.81341)	2	0.301079	(30.47255)
20	0.066928	(0.558118)	20	1.172913	(5.712837)
21	6.235509	(67.27336)	21	24.38914	(166.3955)
22	17.0579	(59.88513)	22	7.130444	(71.04600)
R^2	0.633252		R^2	0.621313	
AIC	8.537489		AIC	8.500101	
SIC	8.522251		SIC	8.484863	
Filipinas			Francia		
0	0.434351	(0.009125)	0	0.211592	(69.52242)
1	0.110938	(0.014066)	1	0.681938	(69.52328)
10	0.013981	(0.072930)	10	0.209384	(1.341297)
11	5.478723	(1.392859)	11	16.4029	(8.498716)
12	2.801841	(1.257790)	12	13.95335	(50.75937)
2	0.022093	(0.008334)	2	0.744407	(69.52208)
20	0.230537	(0.134008)	20	0.183274	(1.216351)
21	27.38171	(6.425781)	21	16.25187	(7.137460)
22	31.12922	(6.963955)	22	12.95369	(46.98376)
R^2	0.746879		R^2	0.630085	
AIC	7.686509		AIC	7.917123	
SIC	7.671271		SIC	7.901886	
Hong Kong			India		
0	3.984912	(780.7745)	0	1.361411	(278.1491)
1	4.4174	(782.2838)	1	1.209383	(46.86390)
10	1.601262	(46.16418)	10	10.47462	(34.67153)
11	5.158934	(83.66606)	11	33.98342	(26.28760)
12	2.406633	(30.99823)	12	0.094499	(2.487501)
2	122.6213	(3426410)	2	4.47594	(801.5054)
20	-5.0143	(2938.691)	20	0.339704	(50.84550)
21	3.645455	(130.1234)	21	0.22826	(38.92061)
22	1.784581	(58.01497)	22	0.041411	(7.061831)
$R^{\frac{-1}{2}}$	0.666087		R^2	0.69091	
AIC	7.589022		AIC	7.367331	
SIC	7.573785		SIC	7.352093	

Cuadro 3 (continuación)

			35.3.		
Japón	0.250524	(1, (00070)	Malasia	0.000007	(2.601.654)
0	0.258526	(1.688358)	0	0.082227	(2.681654)
1	0.024175	(0.024666)	1	0.499507	(2.658035)
10	105.3864	(81587.38)	10	0.45626	(1.871931)
11	393.8228	(317171.8)	11	5.962999	(4.689496)
12	473.0502	(365449.8)	12	2.569521	(0.964533)
2	0.492301	(3.449324)	2	2.345925	(68.84708)
20	0.038682	(0.575424)	20	2.993275	(37.75288)
21	1.764973	(12.38832)	21	3.988576	(7.360753)
22	0.224709	(1.579450)	22	2.156774	(3.315172)
R^2	0.611996		R^2	0.718038	
AIC	7.76600		AIC	7.691202	
SIC	7.75076		SIC	7.675950	
México			Nueva Ze	landa	
0	3.241987	(1461.746)	0	1.305587	(248.2503)
1	102.7031	(685858.3)	1	2.247338	(265.1118)
10	4.874672	(7016.045)	10	1.345194	(102.9396)
11	2.730787	(258.5433)	11	0.064284	(3.708646)
12	0.359951	(38.32134)	12	0.652068	(37.61078)
2	3.688807	(1465.495)	2	0.043579	(0.021856)
20	1.40805	(106.4894)	20	0.088456	(0.099376)
21	4.081447	(174.5631)	21	25.94052	(7.435641)
22	0.5769	(30.34553)	22	27.88326	(7.460858)
$R^{\frac{1}{2}}$	0.707923		R^2	0.673662	
AIC	7.601839		AIC	8.690313	
SIC	7.586601		SIC	8.675071	
Pakistán			Perú		
0	4.391369	(905.1901)	0	0.392035	(0.014405)
1	4.788839	(907.9159)	1	0.007841	(0.001511)
10	1.4968	(48.34557)	10	125.6081	(278.6997)
11	2.61763	(61.42676)	11	1603.564	(3545.172)
12	0.989905	(8.731886)	12	1482.464	(3288.710)
2	137.023	(440036.4)	2	0.340265	(0.038764)
20	4.934512	(3366.768)	20	0.763969	(0.048925)
21	1.663897	(82.41112)	20	4.359806	(0.524417)
22	0.766758	(27.16828)	22	1.514923	(0.189249)
R^{22}	0.728575	()	$R^{\frac{22}{2}}$	0.892627	()
AIC	7.687707		AIC	7.807211	
SIC	7.67247		SIC	7.791973	
DIG	1.01241		DIG	1.171710	

Cuadro 3 (continuación)

Reino Unido			Singap	our
0	0.129339	(1.8408150)	0	0.126465 (32.36534)
1	0.014277	(0.0052710)	1	0.291022 (32.26004)
10	1.80169	(1.1144790)	10	2.620479 (110.9646)
11	1.953217	(1.2759140)	11	7.767781 (383.6308)
12	3.486922	(3.1584830)	12	1.780283 (88.00608)
2	1.652951	(3.8299960)	2	0.303911 (20.88125)
20	3.814938	(2.3153740)	20	0.677678 (39.83073)
21	0.653481	(6.6371900)	21	6.081153 (9.379181)
22	0.106158	(1.0782380)	22	1.394533 (2.205447)
R^2	0.621512		R^2	0.715961
AIC	8.456639		AIC	8.020022
SIC	8.441401		SIC	8.004784
Sri Lanka			Suecia	
0	0.680511	(23.58531)	0	$0.418765 \qquad (0.036540)$
1	0.025646	(0.007428)	1	$0.065228 \qquad (0.038709)$
10	7.96544	(2.307238)	10	$0.270605 \qquad (0.161554)$
11	80.52148	(27.63033)	11	13.62409 (5.000829)
12	30.75415	(12.37850)	12	$17.56822 \qquad (4.045519)$
2	1.519076	(25.26904)	2	$0.114442 \qquad (0.037771)$
20	1.249313	(15.00658)	20	$0.150252 \qquad (0.105489)$
21	1.209128	(10.05167)	21	$1.443435 \qquad (3.000158)$
22	0.368859	(3.065996)	22	7.833114 (2.386118)
R^2	0.825529		R^2	0.690477
AIC	8.481716		AIC	8.030786
SIC	8.466478		SIC	8.015548
Suiza			Tailan	dia
0	0.767813	(563.9725)	0	$2.003277 \qquad (4.1736440)$
1	1.298911	(563.9727)	1	$2.469597 \qquad (4.1736460)$
10	0.589608	(6.013627)	10	$0.080855 \qquad (0.4918450)$
11	21.04417	(90.21719)	11	$4.213160 \qquad (4.6116960)$
12	13.50949	(147.5162)	12	9.447749 (3.0973570)
2	1.23396	(563.9746)	2	$2.541467 \qquad (4.1736440)$
20	0.617514	(6.425466)	20	$0.075011 \qquad (0.4907340)$
21	21.46591	(97.93760)	21	$3.668532 \qquad (4.4650620)$
22	14.19008	(155.8614)	22	9.082486 (2.9922720)
R^2	0.654431		R^2	0.727174
AIC	8.226405		AIC	7.401092
SIC	8.211164		SIC	7.385855

Cuadro 3 (conclusión)

Taiwán			Venezuela		
0	9.586816	(9,436,312)	0	0.183628	(60.96562)
1	1.916273	(6,435,223)	1	0.715552	(60.96528)
10	0.710213	(3,883,167)	10	0.171094	(1.165799)
11	1.004701	(5,076,850)	11	16.24912	(4.335365)
12	0.580436	(2,901,019)	12	12.98944	(42.45231)
2	6.696642	(2,346,651)	2	0.655537	(60.96643)
20	0.254310	(1,536,775)	20	0.198511	(1.285054)
21	2.734379	(1,662,780)	21	16.34119	(5.327890)
22	1.520198	(8,383,053)	22	13.97942	(45.87823)
$R^{\frac{1}{2}}$	0.681304		$R^{\frac{-1}{2}}$	0.628952	
AIC	7.210455		AIC	7.895512	
SIC	7.195217		SIC	7.879895	

Cuadro 4. Especificación 1: y	$\left[\begin{smallmatrix}H&&&J\\0&&h&1&hg\end{smallmatrix}\right]_{j=1}^{H}$
Alemania	Argentina

Aiemama			Argentina		
0	0.451998	(49.70405)	0	0.294940	(1.598558)
1	0.068938	(8.622751)	1	0.135534	(0.298240)
10	0.055408	(0.708639)	10	1.140.907	(0.79186)
11	14.69758	(8.969475)	11	4.728.623	(0.557553)
12	4.879963	(2.491995)	12	7.305.773	(0.524203)
13	2.689917	(1.355039)	13	2.501.076	(0.466393)
2	0.017194	(1.740382)	2	0.421119	(1.831909)
20	1.090186	(2.556117)	20	0.368566	(1.265149)
21	6.355339	(1.294758)	21	1.206.010	(0.430151)
22	24.48462	(2.516087)	22	1.465.952	(0.385615)
23	24.91376	(2.768929)	23	0.751013	(0.558708)
R^2	0.630663		R^2	0.712626	
AIC	7.793964		AIC	6.339685	
SIC	7.775336		SIC	6.321040	
Australia			Austria		
0	0.478357	(136.3125)	0	4.16463	(0.020543)
1	0.046255	(7.075142)	1	3.819814	(0.016840)
10	0.060623	(0.667342)	10	0.698014	(0.091040)
11	21.35132	(6.613901)	11	1.708811	(0.179205)
12	1.941805	(3.283165)	12	4.255533	(0.108607)
13	2.517726	(4.577063)	13	0.576137	(0.127315)
2	0.00212	(3.207731)	2	18.12778	(0.006967)
20	120.5224	(0.355143)	20	2.024853	(0.010965)
21	949.4681	(0.352934)	21	0.907661	(0.021893)
22	1813.423	(0.350374)	22	1.941921	(0.020519)
23	3240.673	(0.354346)	23	0.273339	(0.020701)
$R^{\frac{2}{2}}$	0.670476		$R^{\frac{2}{2}}$	0.733161	
AIC	9.068417		AIC	8.344104	
SIC	9.049789		SIC	8.325476	

Cuadro 4 (continuación)

Canadá			Chile		
0	0.755156	(0.003940)	0	0.494347	(0.002082)
1	1.25055	(0.006524)	0 1	0.964569	(0.004063)
10	0.144203	(0.252025)	10	0.011332	(0.004825)
11	14.67132	(0.190787)	11	15.92026	(0.890946)
12	12.12971	(0.657987)	12	8.154046	(0.077608)
13	11.4952	(0.610874)	13	17.58853	(0.126869)
2	1.265672	(0.006603)	2	1.033653	(0.004354)
20	0.151768	(0.258255)	20	0.00782	(0.00354)
21	13.66668	(0.179312)	21	16.06524	(0.924837)
22	11.89125	(0.644747)	22	7.302934	(0.074732)
23	11.25042	(0.597834)	23	16.46363	(0.12753)
$R^{\frac{2}{2}}$	0.707713	,	$R^{\frac{2}{2}}$	0.841406	,
AIC	8.883345		AIC	9.232559	
SIC	8.864717		SIC	9.213931	
Corea del	Sur		España	1	
0	5.776341	(-0.00268)	0	0.140308	(0.634433)
1	0.117858	(2.493641)	1	0.363779	(1.554462)
10	0.304918	(4.353513)	10	0.920663	(2.752789)
11	3.933423	(1.936372)	11	3.054225	(2.336013)
12	7.658117	(3.847311)	12	0.678093	(1.064329)
13	3.953534	(2.777807)	13	1.655019	(2.334777)
2	6.321709	(0.002933)	2	0.17226	(1.111195)
20	4.177651	(0.012251)	20	0.31743	(0.548338)
21	1.292975	(0.095894)	21	0.040801	(0.017456)
22	2.345446	(0.09527)	22	0.84381	(0.699610)
23	0.784103	(0.094833)	23	2.224807	(1.804846)
R^2	0.666403		R^2	0.657172	
AIC	7.226593		AIC	7.271293	
SIC	7.207961		SIC	7.252665	
Estados U	Inidos (Dow Jones	/	Estados Unidos (Standard & Poor 500)		
0	0.929861	(0.003253)	0	4.323149	(0.002668)
1	0.00075	(2.521090)	1	0.003555	(4.673776)
10	63.99173	(0.303263)	10	163.4843	(0.334940)
11	1143.491	(0.300644)	11	159.6461	(0.199502)
12	1020.267	(0.30759)	12	1142.039	(0.330860)
13	411.7354	(0.28051)	13	1677.241	(0.341606)
2	2.573062	(0.005491)	2	5.850176	(0.003456)
20	0.223849	(0.005583)	20	1.551095	(0.005863)
21	0.349681	(0.005628)	21	0.256094	(0.008518)
22	2.04E-05	(0.002151)	22	0.005359	(0.008518)
23	0.053675	(0.005628)	23	0.045984	(0.008518)
R^2	0.638336		$R^{\frac{1}{2}}$	0.632829	
AIC	8.550202		AIC	8.529879	
SIC	8.531573		SIC	8.51125	

Cuadro 4 (continuación)

Filipinas			Francia		
0	0.429171	(35.97611)	0	0.433546	(23.79022)
1	0.042778	(3.238795)	1	0.023268	(1.429846)
10	0.163892	(1.764813)	10	39.69669	(0.547206)
11	16.35381	(5.030828)	11	184.5974	(0.514415)
12	9.285848	(3.058522)	12	418.2737	(0.515361)
13	11.74596	(4.542408)	13	383.6225	(-0.530209)
2	0.103259	(7.513766)	2	0.084649	(5.801165)
20	0.018112	(0.279017)	20	0.046535	(0.477845)
21	4.494385	(2.813374)	21	10.84838	(5.445425)
22	1.804001	(1.515451)	22	0.209438	(0.765042)
23	3.586187	(3.141385)	23	1.832608	(4.678203)
$R^{\frac{1}{2}}$	0.750159		$R^{\frac{1}{2}^{\circ}}$	0.64303	
AIC	7.698218		AIC	7.951399	
SIC	7.67959		SIC	7.932771	
Hong Kong			India		
0	0.139054	(0.164179)	0	0.401638	(13.26950)
1	0.22126	(0.507631)	1	0.031881	(4.999166)
10	0.082621	(0.773100)	10	86.85904	(0.462752)
11	8.727634	(1.417422)	11	459.5846	(0.458085)
12	1.879878	(1.078022)	12	28.60707	(0.130236)
13	6.143944	(1.528293)	13	23.65418	(0.287349)
2	0.492638	(0.302182)	2	0.250301	(3.448122)
20	0.002513	(0.005074)	20	0.433992	(3.657673)
21	1.872909	(0.228612)	21	4.007756	(3.351452)
22	0.975798	(0.244716)	22	0.274483	(2.191514)
23	2.455778	(0.245332)	23	0.479882	(2.977176)
R^2	0.670972		$R^{\frac{1}{2}}$	0.695743	
AIC	7.602406		AIC	7.381796	
SIC	7.583777		SIC	7.363168	
Japón			Malasia		
0	0.460221	(49.87548)	0	0.415243	(74.84178)
1	331.029	(5.36E-08)	1	0.023124	(10.26795)
10	57.109	(3.06E-06)	10	96.62645	(2.38E-05)
11	135.172	(0.003915)	11	572.7517	(2.82E-05)
12	200.6632	(0.001737)	12	387.5607	(2.87E-05)
13	46.57752	(0.001247)	13	370.3519	(2.13E-05)
2	0.084001	(4.556235)	2	0.201702	(12.92934)
20	0.112103	(1.059993)	20	0.824885	(10.78944)
21	10.60766	(4.267574)	21	6.393924	(12.16016)
22	0.491175	(1.668591)	22	1.000206	(6.138163)
23	1.057884	(3.301115)	23	0.674494	(5.812829)
$R^{\frac{2}{2}}$	0.615355		$R^{\frac{5}{2}}$	0.733066	
AIC	7.773373		AIC	7.744713	
SIC	7.754744		SIC	7.726068	

Cuadro 4 (continuación)

México	Nueva Zelanda						
0	0.43917	(46.04727)	0	0.650024	(-0.00268)		
1	0.033503	(3.535965)	1	1.153902	(0.004758)		
10	0.025818	(0.308855)	10	0.005957	(0.017395)		
11	23.69048	(5.374952)	11	14.11726	(0.180322)		
12	23.27862	(5.119203)	12	6.45723	(1.278694)		
13	7.964327	(2.699593)	13	13.47127	(2.096029)		
2	0.088774	(8.134782)	2	1.144386	(0.004719)		
20	0.008384	(0.133996)	20	0.002755	(0.007942)		
21	3.846881	(2.231097)	21	13.37574	(0.170936)		
22	6.468407	(3.938306)	22	6.49477	(1.280906)		
23	1.599168	(1.532519)	23	13.4174	(2.293508)		
$R^{\frac{1}{2}}$	0.716361		$R^{\frac{1}{2}^{\circ}}$	0.685767			
AIC	7.629898		AIC	8.726854			
SIC	7.61127		SIC	8.708222			
Pakistán			Perú				
0	6.741315	(0.004782)	0	0.390188	(23.59982)		
1	5.598597	(0.003104)	1	0.278472	(3.046584)		
10	0.556538	(0.018093)	10	0.783576	(10.45411)		
11	1.926232	(0.016223)	11	3.17321	(3.208085)		
12	1.986535	(0.020952)	12	1.66665	(2.476876)		
13	1.424442	(0.019884)	13	1.621815	(1.130867)		
2	21.93388	(0.001578)	2	0.07401	(0.858773)		
20	1.600532	(0.001921)	20	0.823977	(4.418196)		
21	0.732372	(0.002774)	21	8.17322	(2.203031)		
22	0.84146	(0.002894)	22	0.051072	(0.019115)		
23	0.591728	(0.002873)	23	6.832927	(1.358499)		
R^2	0.732084		R^2	0.892855			
AIC	7.699407		AIC	7.808008			
SIC	7.680778		SIC	7.78938			
Reino Unid	o		Singap				
0	0.357207	(0.442280)	0	1.011634	(0.023612)		
1	0.09329	(0.197907)	1	1.164176	(0.014649)		
10	3.331217	(2.697323)	10	0.22705	(0.489272)		
11	2.679003	(0.891081)	11	3.492131	(0.072931)		
12	7.687084	(0.354319)	12	1.317241	(0.314810)		
13	1.320614	(0.103901)	13	1.520295	(0.135935)		
2	2.037399	(0.001402)	2	2.011841	(0.087342)		
20	5.952710	(0.008333)	20	0.307481	(0.023227)		
21	5.957029	(0.446163)	21	1.513889	(0.015517)		
22	0.553192	(0.37082)	22	0.817477	(0.018589)		
23	0.661719	(0.457318)	23	0.818183	(0.017382)		
R^2	0.631628		R^2	0.720231			
AIC	8.482478		AIC	8.033907			
SIC	8.463850		SIC	8.015278			

Cuadro 4 (conclusión)

Sri Lanka			Suecia		
0	0.405978	(0.036224)	0	0.420467	(12.77323)
1	0.025071	(3.531384)	1	0.109413	(3.245557)
10	8.176184	(3.258008)	10	0.147473	(1.518668)
11	82.8046	(2.810353)	11	1.395209	(0.487470)
12	18.99173	(2.318190)	12	5.557707	(2.505520)
13	9.585385	(1.839838)	13	3.452803	(1.879113)
2	1.174645	(0.097662)	2	0.065496	(1.891865)
20	1.21603	(0.130488)	20	0.244134	(1.893224)
21	1.508672	(0.193039)	21	13.48901	(3.112367)
22	0.350127	(0.193071)	22	11.15941	(2.91789)
23	0.099615	(0.192709)	23	7.85223	(2.708744)
$R^{\frac{1}{2}}$	0.826717		$R^{\frac{1}{2}}$	0.695784	
AIC	8.48719		AIC	8.047026	
SIC	8.468561		SIC	8.028398	
Suiza			Tailand	lia	
0	0.306044	(0.237751)	0	1.401915	(0.00906)
1	0.221795	(0.172305)	1	1.870960	(0.012092)
10	0.058049	(0.231754)	10	0.076090	(0.298294)
11	15.9064	(6.365389)	11	4.138126	(0.145920)
12	12.49466	(0.834917)	12	7.932876	(0.606798)
13	7.488049	(0.618991)	13	2.152714	(0.321318)
2	0.158687	(0.123282)	2	1.936285	(0.012514)
20	0.017671	(0.054656)	20	0.070012	(0.275755)
21	16.26727	(4.808415)	21	3.454408	(0.126639)
22	17.44742	(0.873705)	22	7.618480	(0.598429)
23	11.60351	(0.683293)	23	1.998481	(0.325285)
$R^{\frac{23}{2}}$	0.662165	,	$R^{\frac{2}{2}}$	0.733677	,
AIC	8.247675		AIC	7.423882	
SIC	8.229042		SIC	7.405254	
Taiwán			Venezu	ela	
0	6.770154	(0.019086)	0	15.08293	(0.002539)
1	4.917455	(0.006594)	1	0.133968	(1.653157)
10	0.266238	(0.039637)	10	0.117802	(0.624058)
11	3.060514	(0.037553)	11	9.883723	(3.714080)
12	1.526454	(0.044664)	12	4.342639	(1.347129)
13	0.429923	(0.034885)	13	2.877385	(0.798399)
2	1.365241	(0.007347)	2	15.54966	(0.002617)
20	0.714531	(0.004418)	20	6.263166	(0.016365)
21	1.146319	(0.00475)	21	3.386317	(0.593508)
22	0.611417	(0.004849)	22	4.697769	(0.593032)
23	0.156245	(0.004700)	23	4.525939	(0.591405)
$R^{\frac{23}{2}}$	0.692658	. ,	$R^{\frac{2}{2}}$	0.640497	,
AIC	7.245467		AIC	7.925825	
SIC	7.226838		SIC	7.906732	

Alemania			Argentina		
0	0.451638	(31.01263)	0	5.390051	(0.013615)
1	0.018686	(1.111722)	1	0.033321	(7.397573)
10	0.808556	(1.718865)	10	2.377253	(0.111582)
11	5.990932	(0.752609)	11	2.117889	(0.000458)
12	26.59972	(1.895889)	12	4.855808	(0.000073)
13	18.21147	(1.602088)	13	2.471222	(0.000629)
14	8.392086	(1.079541)	14	5.747632	(0.008184)
2	0.067515	(4.678450)	2	7.382146	(0.017594)
20	0.120798	(0.972111)	20	1.373485	(0.026758)
21	14.82467	(5.072505)	21	0.197029	(0.038085)
22	6.270477	(1.569669)	22	0.025392	(0.038087)
23	3.948397	(1.269146)	23	0.020924	(0.038089)
24	0.244098	(0.108803)	24	0.037669	(0.038079)
$R^{\frac{2}{2}}$	0.637966		$R^{\frac{2}{2}}$	0.719628	
AIC	7.812654		AIC	6.365744	
SIC	7.790633		SIC	6.343704	
Australia			Austria		
0	0.450926	(30.73277)	0	4.308697	(0.030982)
1	0.068531	(3.637829)	1	20.80711	(0.009472)
10	0.184457	(1.084128)	10	2.203637	(0.016599)
11	14.30947	(3.685242)	11	0.816448	(0.03688)
12	1.820604	(2.564836)	12	1.956054	(0.034137)
13	0.647952	(1.538725)	13	0.151868	(0.032527)
14	2.519006	(3.422007)	14	0.175266	(0.036094)
2	0.01804	(1.567745)	2	4.011862	(0.026259)
20	7.071638	(2.504757)	20	0.767552	(0.150596)
21	115.08	(1.585958)	21	1.471991	(0.340247)
22	137.0069	(1.623898)	22	4.167228	(0.177889)
23	56.17846	(2.201287)	23	0.346242	(0.143816)
24	7.757865	(0.189048)	24	0.330411	(0.256065)
$R^{\frac{1}{2}}$	0.681534		$R^{\frac{1}{2}}$	0.740399	
AIC	9.101184		AIC	8.372168	
SIC	9.079164		SIC	8.350148	
Canadá			Chile		
0	0.915855	(0.003414)	0	1.006651	(0.001253)
1	1.41345	(0.005268)	1	1.545843	(0.001924)
10	0.079127	(0.126178)	10	0.00442	(0.001336)
11	12.73643	(0.165171)	11	16.41322	(0.841556)
12	10.43841	(0.632138)	12	7.507009	(0.049585)
13	6.734821	(2.128974)	13	17.63811	(0.078694)
14	7.916357	(0.416491)	14	0.686379	(0.028748)

CUADRO 5 (continuación)

2	1.423432	(0.005305)	2	1.476712	(0.001838)
20	0.085767	(0.135223)	20	0.017107	(0.004972)
21	11.92363	(0.155499)	21	16.34074	(0.828444)
22	10.26828	(0.632231)	22	8.089488	(0.05101)
23	6.731641	(2.131958)	23	18.49872	(0.079169)
24	7.716777	(0.405368)	24	0.775222	(0.032684)
R^2	0.719517		R^2	0.842473	
AIC	8.923699		AIC	9.238089	
SIC	8.901679		SIC	9.216069	
Corea del	Sur		España		
0	0.44068	(40.40162)	0	0.231626	(4.625214)
1	0.058664	(3.405664)	1	0.260974	(3.287286)
10	0.341828	(3.723557)	10	1.369836	(1.303171)
11	2.476173	(1.243920)	11	3.13873	(2.309009)
12	7.251624	(3.013486)	12	0.116507	(0.306168)
13	8.338198	(3.300427)	13	0.016148	(0.045071)
14	10.75574	(4.897621)	14	2.075308	(3.340356)
2	0.069823	(4.295278)	2	0.109767	(2.111191)
20	0.008815	(0.069626)	20	0.20471	(0.389104)
21	11.55613	(4.644502)	21	3.310804	(0.985567)
22	6.485684	(2.550166)	22	0.277504	(0.476726)
23	6.406302	(2.519528)	23	0.16655	(0.259151)
24	6.066965	(2.468622)	24	2.187124	(0.634564)
R^2	0.675587		R^2	0.675901	
AIC	7.253363		AIC	7.326149	
SIC	7.231338		SIC	7.304129	
Estados U	Inidos (Dow Jones	·	Estados	S Unidos (Standard &	
0	0.424819	(9.319958)	0	0.446403	(0.000837)
1	0.056564	(1.207680)	1	0.910622	(0.001707)
10	0.470876	(2.052275)	10	0.484196	(0.069369)
11	17.11568	(2.586177)	11	13.55462	(0.690527)
12	21.94985	(3.445032)	12	3.104296	(0.043104)
13	1.211368	(0.247011)	13	10.73872	(0.042383)
14	9.718173	(2.374065)	14	13.06848	(0.053930)
2	0.086566	(1.965527)	2	0.977533	(0.001833)
20	0.124586	(1.065055)	20	0.460373	(0.070842)
21	0.418918	(0.073308)	21	13.49662	(0.928708)
22	13.53494	(2.969701)	22	2.859187	(0.042776)
23	0.585895	(0.190442)	23	9.875153	(0.041979)
24	7.815969	(2.996271)	24	12.24359	(0.054557)
R^2	0.64797		R^2	0.639916	
AIC	8.576409		AIC	8.548738	
SIC	8.554389		SIC	8.526718	

Cuadro 5 (continuación)

Filipinas			Francia		
0	0.431367	(42.68565)	0	1.349187	(0.010794)
1	0.03225	(3.111429)	1	1.814346	(0.014513)
10	0.157912	(1.593984)	10	4.106122	(0.058818)
11	19.00171	(4.710744)	11	3.631015	(0.443725)
12	10.33893	(2.743521)	12	4.77108	(0.444051)
13	18.57501	(4.155477)	13	4.136359	(0.438227)
14	4.918194	(1.682089)	14	0.393224	(0.298387)
2	0.107666	(8.522492)	2	0.1335	(1.756922)
20	0.002125	(0.03240)	20	0.068142	(0.357798)
21	5.106866	(3.620311)	21	9.901569	(3.918342)
22	0.893354	(0.928205)	22	4.3264	(1.170816)
23	5.306391	(3.597538)	23	3.269964	(0.945790)
24	2.465792	(2.85067)	24	0.581124	(0.507472)
R^2	0.753649		$R^{\frac{1}{2}}$	0.646734	
AIC	7.710999		AIC	7.960522	
SIC	7.688979		SIC	7.938502	
Hong Kong			India		
0	0.10266	(0.088962)	0	0.018769	(0.004196)
1	0.525425	(0.381828)	1	1.490261	(0.081480)
10	0.643057	(1.489859)	10	0.627117	(0.110548)
11	4.422691	(1.230354)	11	0.704843	(0.094638)
12	1.918804	(2.246736)	12	0.062195	(0.094805)
13	4.836816	(3.176318)	13	0.023465	(0.094030)
14	4.122959	(2.935763)	14	0.110408	(0.094306)
2	23.53972	(0.004912)	2	0.779331	(0.042539)
20	4.500287	(0.021834)	20	10.24265	(0.491894)
21	1.1219	(0.204431)	21	35.78287	(1.703102)
22	0.969139	(0.244498)	22	5.174696	(1.082638)
23	2.290987	(0.237149)	23	8.815641	(1.165438)
24	2.076879	(0.238134)	24	16.87169	(1.374121)
$R^{\frac{1}{2}}$	0.688413		$R^{\frac{7}{2}}$	0.704199	
AIC	7.655506		AIC	7.408619	
SIC	7.633486		SIC	7.386599	
Japón			Malasia		
0	1.103617	(0.007371)	0	0.437986	(58.76173)
1	48.17385	(0.000570)	1	0.050719	(6.654919)
10	4.951403	(0.002683)	10	0.196809	(2.793070)
11	2.904614	(0.050718)	11	14.6864	(7.834180)
12	0.089568	(0.037818)	12	5.750388	(3.806508)
13	0.417018	(0.062065)	13	3.553639	(2.698458)
14	0.617306	(0.142357)	14	11.20976	(8.481890)
2	1.621661	(0.010826)	2	0.136839	(8.870502)

Cuadro 5 (continuación)

		`			
20	1.266145	(0.045321)	20	1.102155	(8.143035)
21	4.294677	(0.092110)	21	3.731066	(4.820156)
22	0.152475	(0.061502)	22	1.038629	(1.655901)
23	0.558594	(0.133253)	23	1.45798	(2.787230)
24	0.600213	(0.131023)	24	6.256261	(8.257624)
$R^{\frac{1}{2}}$	0.625823		$R^{\frac{1}{2}}$	0.746455	
AIC	7.799693		AIC	7.795	
SIC	7.777672		SIC	7.772959	
México			Nueva Z	Zelanda	
0	0.437932	(44.60059)	0	0.804097	(0.002289)
1	0.088819	(7.967434)	1	1.290905	(0.003674)
10	0.036394	(0.587883)	10	0.034092	(0.252305)
11	3.603801	(2.122813)	11	10.13368	(0.140362)
12	6.430672	(3.937239)	12	2.414185	(0.259315)
13	1.437228	(1.051473)	13	13.14072	(0.450914)
14	0.653629	(0.604659)	14	10.12721	(0.653373)
2	0.035531	(3.640262)	2	1.316311	(0.003747)
20	0.067106	(0.857862)	20	0.03505	(0.238603)
21	22.56425	(5.554108)	21	10.66684	(0.149095)
22	22.35979	(5.327875)	22	2.350396	(0.266105)
23	2.523328	(0.69506)	23	12.92891	(0.459842)
24	6.321767	(2.310102)	24	10.01464	(0.663059)
R^2	0.722437		R^2	0.691492	
AIC	7.650185		AIC	8.744196	
SIC	7.628165		SIC	8.722171	
Pakistán			Perú		
0	15.37037	(0.010002)	0	0.393718	(25.62536)
1	25.90235	(0.003114)	1	0.050048	(0.960395)
10	0.363237	(0.00133)	10	0.764335	(4.631448)
11	0.704856	(0.001266)	11	8.176029	(2.348402)
12	0.532063	(0.001289)	12	2.823929	(0.659115)
13	0.843492	(0.001287)	13	9.629148	(1.334244)
14	0.306726	(0.001293)	14	0.507064	(0.261225)
2	9.717088	(0.001655)	2	0.3005	(4.275790)
20	0.159896	(0.014767)	20	0.841938	(13.03154)
21	1.934917	(0.008785)	21	3.612886	(5.480598)
22	1.37789	(0.010039)	22	2.231016	(3.043158)
23	2.191526	(0.009947)	23	2.07582	(1.722869)
24	0.783046	(0.010399)	24	0.401087	(1.290321)
R^2	0.738919		R^2	0.894584	
AIC	7.723932		AIC	7.823016	
SIC	7.701912		SIC	7.800996	

CUADRO 5 (continuación)

Reino Unido			Singapui	r	
0	0.362984	(1.112500)	0	0.410627	(30.93418)
1	0.080302	(0.276190)	1	0.021686	(9.689505)
10	3.502131	(3.052643)	10	44.05003	(1.155758)
11	2.754032	(1.058568)	11	31.76454	(0.135662)
12	9.21148	(0.440649)	12	90.53374	(0.387569)
13	4.802656	(0.34007)	13	269.4881	(1.211215)
14	2.745217	(0.971600)	14	434.6033	(1.181494)
2	1.591611	(0.001631)	2	0.149046	(7.592926)
20	5.591031	(0.009105)	20	0.408207	(4.887511)
21	4.900282	(0.311831)	21	7.070283	(7.500398)
22	0.452737	(0.290988)	22	0.852759	(4.234863)
23	0.082018	(0.18549)	23	0.16694	(1.017242)
24	0.54719	(0.310259)	24	0.948949	(5.553201)
$R^{\frac{1}{2}}$	0.635293		$R^{\frac{1}{2}}$	0.735574	
AIC	8.491504		AIC	8.089017	
SIC	8.469484		SIC	8.066997	
Sri Lanka			Suecia		
0	0.371309	(8.607630)	0	0.389924	(4.758789)
1	0.143858	(3.354889)	1	0.097757	(1.179002)
10	0.16882	(2.038634)	10	0.17014	(1.142824)
11	3.477683	(1.970684)	11	10.82153	(2.210575)
12	1.272673	(0.939826)	12	10.38216	(2.887491)
13	5.891788	(3.990304)	13	6.179716	(2.000793)
14	10.53884	(9.067718)	14	0.166713	(0.072608)
2	0.127296	(2.870926)	2	0.139909	(1.696974)
20	0.413692	(6.193255)	20	0.133489	(1.145359)
21	5.960777	(3.483877)	21	0.379121	(0.108293)
22	0.991738	(0.618726)	22	6.337098	(2.613505)
23	6.689062	(4.209751)	23	4.369007	(1.995351)
24	11.61037	(12.09924)	24	0.893354	(0.558791)
R^2	0.830322		R^2	0.701402	
AIC	8.506872		AIC	8.064439	
SIC	8.484852		SIC	8.042419	
Suiza			Tailandi	a	
0	0.294277	(0.215496)	0	0.200736	(1.035671)
1	0.173549	(0.127041)	1	0.254131	(1.338439)
10	0.670962	(1.59342)	10	0.113956	(0.996332)
11	6.747508	(0.684628)	11	2.286295	(1.366528)
12	4.251814	(0.776801)	12	3.259745	(2.486395)
13	11.52799	(0.988699)	13	4.492137	(3.218661)
14	15.19663	(0.793922)	14	6.540878	(4.886664)
2	0.230286	(0.168641)	2	0.513542	(1.502025)
20	0.57128	(1.972388)	20	0.749197	(1.140663)
21	9.253718	(1.194839)	21	0.940295	(1.042825)

CUADRO 5 (conclusión)

22	3.079024	(0.769035)	22	1.971629	(1.411814)
23	8.678064	(0.998348)	23	2.452568	(1.455863)
24	10.45787	(0.750934)	24	3.909838	(1.606541)
$R^{\frac{1}{2}}$	0.670582		$R^{\frac{1}{2}}$	0.740025	
AIC	8.271598		AIC	7.446714	
SIC	8.249573		SIC	7.424694	
Taiwán			Venezuela		
0	0.345126	(3.398948)	0	1.189861	(0.011919)
1	0.172207	(1.686104)	1	1.661867	(0.016642)
10	0.012512	(0.162840)	10	3.745639	(0.061310)
11	1.078681	(5.826862)	11	3.122868	(0.378399)
12	7.194776	(4.125501)	12	4.295335	(0.376270)
13	6.791707	(4.217849)	13	3.883512	(0.372175)
14	6.416522	(4.888036)	14	0.227063	(0.212373)
2	0.145226	(1.415745)	2	0.137704	(1.662723)
20	0.121815	(1.500458)	20	0.066101	(0.344452)
21	6.386363	(3.325927)	21	9.950929	(3.768778)
22	8.792440	(4.620536)	22	4.872758	(1.345546)
23	7.511081	(3.642467)	23	3.93536	(1.119701)
24	8.502722	(5.318571)	24	0.6515	(0.566668)
$R^{\frac{7}{2}}$	0.698496		$R^{\frac{5}{2}}$	0.645815	
AIC	7.263953		AIC	7.939532	
SIC	7.241933		SIC	7.916963	

Cuadro 6. Especificación 1: y $\begin{pmatrix} & & & H & & J & \\ 0 & & & h & 1 & h & g & \\ & & & h & 1 & h & g & \\ & & & & & j & 1 & h j & x_j \end{pmatrix}$, J 5

Alemania			Argentina		
0	0.956886	(0.001558)	0	32.17972	(0.279465)
1	1.477675	(0.002407)	1	34.64318	(0.279070)
10	0.270293	(1.955392)	10	1.598314	(0.057424)
11	13.57887	(0.380007)	11	0.748144	(0.077884)
12	6.229323	(0.156663)	12	1.372754	(0.072581)
13	5.538248	(0.130956)	13	1.315729	(0.072412)
14	14.3988	(0.133751)	14	1.163261	(0.07228)
15	9.570227	(0.095881)	15	0.466086	(0.071066)
2	1.43019	(0.002326)	2	13.89712	(0.026849)
20	0.270269	(1.878084)	20	0.954149	(0.275662)
21	13.41098	(0.378047)	21	1.218484	(0.216142)
22	6.426999	(0.144654)	22	2.376722	(0.181616)
23	5.74183	(0.129725)	23	2.283756	(0.180216)
24	14.92021	(0.132041)	24	2.022227	(0.179616)
25	10.05138	(0.096944)	25	0.821833	(0.173726)
R^2	0.654525		R^2	0.729314	
AIC	7.858108		AIC	6.399603	
SIC	7.832694		SIC	6.374166	

CUADRO 6 (continuación)

		`			
Australia			Austria		
0	3.243008	(0.075416)	0	4.244967	(0.031649)
1	1.547805	(0.007319)	1	20.37249	(0.009849)
10	1.115138	(0.038392)	10	2.194769	(0.017141)
11	9.025512	(0.078328)	11	0.824192	(0.037857)
12	6.194654	(0.123951)	12	1.912902	(0.035052)
13	3.707828	(0.133020)	13	0.23758	(0.034085)
14	1.019841	(0.110447)	14	0.264937	(0.035269)
15	0.8033	(0.057695)	15	0.17781	(0.033436)
2	3.753509	(0.086702)	2	3.958316	(0.026874)
20	2.147289	(0.016045)	20	0.767359	(0.154225)
21	6.723282	(0.043572)	21	1.487485	(0.342386)
22	4.995445	(0.053787)	22	4.07263	(0.181646)
23	3.012507	(0.054654)	23	0.525421	(0.161085)
24	0.80991	(0.050852)	24	0.552058	(0.190791)
25	0.547159	(0.034926)	25	0.411343	(0.149238)
R^{23}	0.688502	,	$R^{\frac{23}{2}}$	0.743141	,
AIC	9.122055		AIC	8.381634	
SIC	9.096641		SIC	8.356220	
Canadá			Chile		
	0.462208	(84.73631)		1.48363	(0.011723)
0	0.012299	(3.243967)	0	48.72449	(0.0011123) (0.001117)
1	0.251591	(2.660478)	1	4.788909	(0.00503)
10	22.83803	(3.314465)	10	6.206273	(0.087649)
11	6.567895	(0.961325)	11	1.779004	(0.089820)
12	8.673728	(1.262442)	12	0.026966	(0.039320) (0.039301)
13	11.81865	(1.631653)	13	3.689037	(0.039301) (0.108484)
14	42.01397	(5.135016)	14	2.732175	(0.1103404)
15	0.055319	(7.464831)	15	1.988616	(0.015702)
2	0.351061	(3.878024)	2	1.357204	(0.071523)
20	14.10905	(5.799921)	20	8.630286	(0.071323) (0.166087)
21	1.254908	(0.960345)	21	2.441036	(0.176623)
22		` '	22		
23	0.358942	(0.278190)	23	0.011949	(0.013350)
24	0.187212	(0.135953)	24	4.66277	(0.280745)
25	9.701751	(4.706263)	25	3.409768	(0.307427)
R^2	0.725234		R^2	0.843905	
AIC	8.943191		AIC	9.246390	
SIC	8.917778		SIC	9.220976	
Corea del Su			España		
0	0.446118	(53.69450)	0	0.241794	(0.236709)
1	0.071374	(4.966266)	1	0.744175	(0.728729)

Cuadro 6 (continuación)

10	0.007362	(0.072195)	10	0.792662	(4.117928)
11	11.7518	(5.718204)	11	0.986067	(0.796015)
12	5.709418	(2.588158)	12	0.507296	(0.372247)
13	5.190859	(2.437747)	13	0.176763	(0.082349)
14	7.947661	(2.797653)	14	0.126576	(0.075423)
15	4.816136	(2.949748)	15	4.449556	(4.981192)
2	0.047099	(3.016287)	2	0.781178	(0.782354)
20	0.470368	(3.925729)	20	0.876482	(2.370408)
21	2.169717	(0.995005)	21	0.398728	(0.518636)
22	8.075667	(2.838621)	22	0.601646	(0.466895)
23	8.468489	(2.837449)	23	0.147279	(0.070010)
24	13.80147	(3.901076)	24	0.15114	(0.091494)
25	4.53658	(2.069792)	25	4.146577	(4.453386)
$R^{\frac{1}{2}}$	0.681947		$R^{\frac{1}{2}}$	0.729559	
AIC	7.27202		AIC	7.505849	
SIC	7.246601		SIC	7.480435	
Estados U	nidos (Dow Jones	s)	Estado	s Unidos (Standard &	R Poor 500)
0	3.463112	(0.013640)	0	0.00297	(0.000141)
1	3.743917	(0.014617)	1	0.526026	(0.024979)
10	1.270101	(0.084700)	10	0.018624	(0.11124)
11	2.910338	(0.095186)	11	8.184255	(0.156973)
12	0.71647	(0.138826)	12	17.15013	(0.522914)
13	0.764495	(0.129718)	13	10.9729	(0.471186)
14	0.615744	(0.137089)	14	12.13184	(0.501926)
15	3.938767	(0.14376)	15	2.988907	(0.207998)
2	43.51382	(0.002363)	2	0.48243	(0.022909)
20	3.709482	(0.00778)	20	0.011258	(0.067784)
21	1.626477	(0.040289)	21	10.76283	(0.192834)
22	0.453752	(0.045999)	22	18.7847	(0.522488)
23	0.476961	(0.045413)	23	12.11609	(0.482221)
24	0.387897	(0.045751)	24	13.32066	(0.512453)
25	2.520409	(0.046951)	25	3.679571	(0.247112)
R^2	0.662727		R^2	0.654099	
AIC	8.619068		AIC	8.588882	
SIC	8.593654		SIC	8.563468	
Filipinas			Franci	a	
0	0.368958	(5.528854)	0	1.581305	(0.003045)
1	0.161236	(2.386803)	1	2.056005	(0.003960)
10	0.12093	(1.518264)	10	0.088427	(0.025412)
11	7.090793	(3.750381)	11	9.875217	(0.261290)
12	6.015281	(3.716607)	12	7.850715	(0.688933)
12					. ,

CUADRO 6 (continuación)

13	1.716672	(1.088848)	13	5.200044	(0.433358)
14	0.628436	(0.433227)	14	0.492528	(0.122138)
15	8.134799	(6.957458)	15	2.427035	(0.152659)
2	0.116552	(1.753257)	2	2.079939	(0.004006)
20	0.10792	(1.528415)	20	0.061176	(0.01815)
21	0.507147	(0.228523)	21	10.17775	(0.265819)
22	6.908145	(3.126065)	22	7.770738	(0.808502)
23	2.526722	(1.125215)	23	5.113057	(0.485672)
24	1.041122	(0.500150)	24	0.4658	(0.117661)
25	10.80387	(6.317496)	25	2.304215	(0.151484)
$R^{\frac{1}{2}}$	0.757435		R^{2}	0.659917	
AIC	7.725401		AIC	7.997195	
SIC	7.699988		SIC	7.971781	
Hong Kong			India		
0	3.312149	(0.036957)	0	2.597049	(0.005254)
1	3.658215	(0.040555)	1	3.072894	(0.006217)
10	1.360382	(0.237406)	10	0.447476	(1.867841)
11	3.795497	(0.304294)	11	4.008367	(0.135649)
12	0.656565	(0.344543)	12	1.457607	(0.416129)
13	1.331515	(0.471292)	13	3.829795	(0.944805)
14	0.297105	(0.284856)	14	1.043765	(0.599095)
15	3.271745	(0.472719)	15	7.319269	(1.557781)
2	64.54511	(0.003865)	2	3.11565	(0.006303)
20	4.257423	(0.015292)	20	0.444989	(2.523417)
21	2.275605	(0.124534)	21	3.636444	(0.121723)
22	0.416551	(0.134868)	22	1.412885	(0.359673)
23	0.90241	(0.142718)	23	3.779831	(0.875824)
24	0.174148	(0.117598)	24	1.029996	(0.558837)
25	2.209374	(0.143115)	25	7.26458	(1.657746)
$R^{\frac{1}{2}}$	0.697387		R^{2}	0.713919	
AIC	7.683394		AIC	7.440737	
SIC	7.657981		SIC	7.415323	
Japón			Malasia		
0	0.345069	(1.551965)	0	0.414218	(38.28793)
1	40.38526	(0.001483)	1	0.070073	(5.916273)
10	5.863143	(0.00869)	10	0.098339	(1.803676)
11	0.145927	(0.173538)	11	10.30954	(7.096722)
12	0.360112	(0.249197)	12	2.933842	(1.916092)
13	1.268676	(0.260684)	13	1.112377	(0.781513)
14	0.30424	(0.25675)	14	2.5735	(1.776465)
15	2.08687	(0.261262)	15	9.027683	(7.135363)
-					

CUADRO 6 (continuación)

2	0.086512	(2.316104)	2	0.1261	(12.50957)
20	0.147907	(1.161977)	20	0.454079	(4.486574)
21	9.027064	(3.407290)	21	3.303531	(3.848970)
22	1.63038	(0.732783)	22	0.358449	(0.447498)
23	6.560529	(2.685888)	23	0.527395	(0.738481)
24	1.528164	(0.758108)	24	2.335991	(3.01802)
25	9.472217	(3.585672)	25	5.246047	(6.405909)
$R^{\frac{1}{2}}$	0.640004		$R^{\frac{1}{2}}$	0.748672	
AIC	7.83706		AIC	7.802518	
SIC	7.811647		SIC	7.777081	
México			Nueva	Zelanda	
0	0.394817	(7.181533)	0	0.405436	(10.26875)
1	0.085762	(1.541011)	1	0.107005	(2.599496)
10	0.363235	(2.844000)	10	0.255384	(1.983495)
11	1.819216	(0.649578)	11	5.392471	(1.768620)
12	1.528363	(0.741235)	12	4.935375	(2.265004)
13	1.310673	(0.641671)	13	11.60207	(3.518611)
14	3.392901	(1.611632)	14	0.169558	(0.073634)
15	16.36113	(6.003138)	15	5.90409	(2.593502)
2	0.138547	(2.506658)	2	0.067959	(1.798823)
20	0.021016	(0.240729)	20	0.024585	(0.272854)
21	6.30434	(3.104560)	21	22.59858	(4.045116)
22	0.205339	(0.175874)	22	8.191972	(2.139561)
23	0.940511	(0.794873)	23	19.52672	(4.852213)
24	1.997638	(1.647409)	23 24	0.30921	(0.085112)
25	10.66575	(6.480833)	25	7.232455	(2.194847)
$R^{\frac{23}{2}}$	0.727783	,	$R^{\frac{23}{2}}$	0.696828	,
AIC	7.668276		AIC	8.760384	
SIC	7.642862		SIC	8.734965	
Pakistán			Perú		
0	0.132203	(0.180951)	0	0.394943	(30.60965)
1	0.439425	(0.414514)	1	0.329964	(9.587497)
10	0.265624	(0.246377)	10	0.788237	(15.34923)
11	1.038134	(0.251889)	11	4.871082	(9.005820)
12	2.813283	(0.363586)	12	2.786979	(7.367532)
13	4.685093	(0.365093)	13	1.507949	(5.681219)
14	3.272421	(0.366149)	14	1.180622	(5.595358)
15	1.286099	(0.355798)	15	0.606307	(4.820348)
2	0.230949	(0.536508)	2	0.004977	(3.502150)
20	0.068222	(0.408291)	20	0.407698	(1.703881)
21	6.270848	(1.453427)	21	51.71052	(2.981419)

CUADRO 6 (continuación)

22	5.149916	(1.704707)	22	140.2818	(3.343127)
23	8.899175	(1.828032)	23	102.7034	(3.205425)
24	6.099764	(1.773496)	24	41.69886	(2.322073)
25	2.958902	(1.550303)	25	39.19727	(2.799855)
$R^{\frac{1}{2}}$	0.741660		$R^{\frac{1}{2}}$	0.896054	
AIC	7.733125		AIC	7.835826	
SIC	7.707711		SIC	7.810413	
Reino Unido			Singapu	ır	
0	2.065335	(0.006319)	0	7.245653	(0.020354)
1	2.789908	(0.008522)	1	7.627273	(0.021403)
10	2.747902	(0.196426)	10	1.776419	(0.140748)
11	10.86569	(0.123714)	11	2.75777	(0.211168)
12	1.850932	(0.068583)	12	0.082996	(0.176353)
13	0.384228	(0.029174)	13	0.880781	(0.331972)
14	0.216877	(0.020217)	14	0.088654	(0.237567)
15	0.902349	(0.142712)	15	2.442076	(0.358959)
2	2.52366	(0.007721)	2	343.3475	(0.000918)
20	2.944609	(0.257926)	20	5.634299	(0.005009)
21	12.46047	(0.116373)	21	1.933454	(0.118807)
22	2.358083	(0.066952)	22	0.085324	(0.223803)
23	0.636696	(0.035533)	23	0.682785	(0.148528)
24	0.422682	(0.028871)	24	0.074529	(0.159503)
25	0.771295	(0.075238)	25	1.911688	(0.152310)
R^{2}	0.650649		$R^{\frac{2}{3}}$	0.742744	
AIC	8.533559		AIC	8.115194	
SIC	8.508146		SIC	8.089780	
Sri Lanka			Suecia		
0	0.257524	(1.240746)	0	2.64489	(0.002624)
1	0.277085	(1.337233)	1	3.129613	(0.003105)
10	0.271458	(3.434697)	10	0.087391	(0.031297)
11	0.672717	(0.282051)	11	1.248176	(0.024037)
12	2.055648	(1.455224)	12	2.498968	(0.696999)
13	1.255071	(1.133488)	13	2.485943	(0.310242)
14	0.973274	(0.945338)	14	5.815507	(0.29105)
15	7.031438	(6.097889)	15	9.672954	(0.38745)
2	0.215611	(1.035032)	2	3.190864	(0.003165)
20	0.42612	(4.740733)	20	0.10505	(0.036959)
21	5.055128	(1.863122)	21	0.922579	(0.017753)
22	4.195259	(2.637739)	22	2.481476	(0.822524)
23	1.688835	(1.079444)	23	2.437903	(0.312827)
24	1.157167	(0.840385)	24	5.693698	(0.297989)
		. ,			. ,

CUADRO 6 (conclusión)

25	9.12406	(5.821947)	25	9.521203	(0.403300)
R^2	0.832238		R^2	0.707228	
AIC	8.516889		AIC	8.082777	
SIC	8.491475		SIC	8.057363	
Suiza			Tailandia		
0	1.45159	(0.000964)	0	0.146278	(0.148828)
1	1.98071	(0.001316)	1	0.399700	(0.406562)
10	0.306321	(0.582206)	10	0.005190	(0.030457)
11	14.65481	(0.690912)	11	2.136496	(0.634128)
12	5.832	(0.066257)	12	2.080445	(1.384291)
13	4.921917	(0.08624)	13	1.246022	(1.038538)
14	13.40046	(0.064644)	14	3.548501	(2.226108)
15	11.93812	(0.054773)	15	5.921904	(3.850865)
2	1.911256	(0.001270)	2	0.327708	(0.333454)
20	0.305027	(0.625226)	20	0.131509	(0.691992)
21	14.71071	(0.658112)	21	0.485210	(0.119268)
22	6.064077	(0.066163)	22	2.850776	(1.494174)
23	5.07225	(0.085381)	23	1.622357	(1.061837)
24	13.94536	(0.065057)	24	4.286516	(2.290447)
25	12.51147	(0.055436)	25	7.009719	(3.167580)
$R^{\frac{23}{2}}$	0.682847	,	R^{23}	0.744570	,
AIC	8.308585		AIC	7.463010	
SIC	8.283166		SIC	7.437597	
Taiwán			Venezuela	ı	
0	5.47780	(0.000325)	0	1.490667	(0.003440)
1	6.04408	(0.000359)	1	1.966272	(0.004537)
10	0.04669	(0.007208)	10	0.099007	(0.031438)
11	4.89265	(0.117177)	11	9.866564	(0.280419)
12	6.56618	(0.027489)	12	8.580098	(0.789714)
13	7.82432	(0.02912)	13	6.065497	(0.515069)
14	4.29450	(0.026904)	14	0.48851	(0.130149)
15	4.35749	(0.022380)	15	2.017705	(0.146195)
2	5.89485	(0.000350)	2	1.988766	(0.004589)
20	0.04207	(0.006398)	20	0.070822	(0.023324)
21	4.86314	(0.116904)	21	10.18896	(0.286235)
22	6.73748	(0.027514)	22	8.492581	(0.909996)
23	8.01712	(0.029070)	23	5.967551	(0.571435)
23	4.40865	(0.027090)	23 24	0.461252	(0.125827)
24	4.49674	(0.02265)	24 25	1.895336	(0.142362)
$R^{\frac{25}{2}}$	0.704836	(0.02200)	$R^{\frac{25}{2}}$	0.658978	(0.112002)
AIC	7.284864		AIC	7.976340	
SIC	7.259450		SIC	7.950293	

mejores modelos son los que utilizan cinco rezagos en la implantación de las redes. Este criterio predomina en todos los países, por lo cual se podría concluir en este estudio que el uso de más rezagos aporta una mejor modelización de las RNA de índices accionarios.

Como el valor de convergencia utilizado en los modelos propuestos ha sido muy pequeño (entre $1 - 10^{-5}$ y $1 - 10^{-8}$) se han necesitado aproximadamente entre mil a 6 mil iteraciones, dependiendo de la complejidad de las redes, y se espera que los mínimos obtenidos sean globales ya que para cada uno de ellos se han tomado distintos valores iniciales, que no tienen diferencias.

Con la finalidad de realizar una diferencia con los modelos presentados se ha realizado series de tiempo autorrezagado (especificación 2), según la metodología presentada por Box-Jenkins en 1970, utilizando los propios valores pasados que toman los mismos periodos que los utilizados en las RNA. También se encuentran que utilizando cinco rezagos los modelos obtienen una mejor valoración; sin embargo, los criterios Akaike y Schwarz son menores que los encontrados con las redes y los coeficientes de determinación también son inferiores. Los resultados se muestran en el cuadro 7.

Para demostrar la superioridad de la redes neuronales se comparó las predicciones extramuestrales entre el mejor modelo, es decir la red neuronal de cinco rezagos, con un modelo simple ARIMA (1,1,1). La muestra con que se estimaron los modelos finalizaba el 29 de enero de 2004 y las predicciones dinámicas de los rendimientos comprendían un periodo desde el 30 de enero hasta el 16 de julio de 2004, con 121 observaciones. Las predicciones fueron de carácter dinámico, es decir, no se incluyeron los valores reales para reformular los modelos.

Con el fin de evaluar los resultados se contrastaron los valores estimados por los dos modelos para cada país con las rentabilidades reales. Se excluyeron Nueva Zelanda y Venezuela por disponibilidad de datos. La primera cambió la manera de composición de su índice original NZSE 40 a otro formado por 50 acciones. Si los datos reales concordaban con los estimados en su signo, se le asignaban valores de 1 y 0 en el caso contrario. Al final se promediaba la frecuencia de los aciertos con el total de las observaciones.

Los resultados obtenidos se muestran en el cuadro 8; confirman

Cuadro 7. Especificación 2: y $\begin{pmatrix} L \\ 0 \end{pmatrix}$ $\begin{pmatrix} L \\ I \end{pmatrix}$ $\begin{pmatrix} 1 \\ I \end{pmatrix}$

	L 1	L 2	L 3	L 4	L 5
Alemania			-		
r^2	0.612663	0.617621	0.624156	0.630737	0.646789
AIC	4.97817	4.9900870	5.00651	5.0234	5.06700
SIC	4.97479	4.9850080	4.99974	5.014893	5.05684
Argentina					
r^2	0.699829	0.70804	0.708714	0.714272	0.718969
AIC	3.497112	3.524112	3.525735	3.544283	3.560131
SIC	3.493723	3.519028	3.518954	3.535806	3.549956
Australia					
r^2	0.648842	0.660388	0.665724	0.674495	0.681567
AIC	6.23735	6.270041	6.28506	6.310898	6.332196
SIC	6.233964	6.264962	6.278286	6.302429	6.32203
Austria					
r^2	0.703735	0.723595	0.726068	0.732534	0.734501
AIC	5.467522	5.53635	5.544819	5.567893	5.574488
SIC	5.464136	5.53127	5.538045	5.559424	5.564323
Canadá					
r^2	0.682956	0.697897	0.702291	0.712899	0.715364
AIC	6.034123	6.081655	6.095504	6.130968	6.138815
SIC	6.030737	6.076576	6.08873	6.122498	6.128649
Chile					
r^2	0.809738	0.836756	0.837758	0.83863	0.838791
AIC	6.282452	6.434824	6.440194	6.444848	6.445079
SIC	6.279067	6.429745	6.43342	6.436379	6.434913
Corea del Sur					
r^2	0.645576	0.65676	0.662567	0.669687	0.676006
AIC	4.396943	4.428189	4.444432	4.464962	4.483489
SIC	4.393557	4.423108	4.437657	4.456491	4.473322
España					
r^2	0.635751	0.642635	0.648178	0.653955	0.662757
AIC	4.377026	4.395294	4.410115	4.425852	4.450827
SIC	4.373641	4.390214	4.403342	4.417382	4.440662
Estados Unidos (D	ow Jones)				
r^2	0.623445	0.630225	0.637718	0.645622	0.656913
AIC	5.741748	5.759252	5.778921	5.800193	5.831767
SIC	5.738363	5.754173	5.772147	5.791724	5.821602
Estados Unidos (S		r 500)			
r^2	0.612951	0.620271	0.63081	0.637921	0.650505
AIC	5.708271	5.72673	5.754061	5.772766	5.807321
SIC	5.704885	5.721651	5.747287	5.764297	5.797155

Cuadro 7 (continuación)

	L 1	L 2	L 3	L 4	L 5
	<i>L</i> 1	L 2	L 3	L 4	ь э
Finlandia r ²	0.700/00	0.749904	0.744671	0.740101	0.750017
	0.722628	0.742204	0.744671	0.748121	0.750017
AIC SIC	4.825137	4.897524	4.906337	4.919166	4.926015
	4.821752	4.892445	4.899563	4.910696	4.91585
Francia					
r^2	0.618896	0.62772	0.638397	0.643388	0.655921
AIC	5.118052	5.140673	5.168976	5.182063	5.217027
SIC	5.114666	5.135594	5.162202	5.173593	5.206861
Hong Kong					
r^2	0.650217	0.658942	0.661656	0.678086	0.683045
AIC	4.772862	4.797437	4.80463	4.853797	4.868834
SIC	4.769476	4.792357	4.797857	4.845328	4.858669
India					
r^2	0.675961	0.685167	0.688782	0.697587	0.706336
AIC	4.548905	4.57695	4.58769	4.615854	4.644484
SIC	4.54552	4.571871	4.580916	4.607385	4.634319
Japón					
Japón r ²	0.604444	0.609326	0.611939	0.622933	0.634998
AIC	4.977221	4.988862	4.99481	5.022738	5.054553
SIC	4.973835	4.983782	4.988036	5.014268	5.044388
Malasia					
r^2	0.692233	0.711306	0.718465	0.72594	0.726273
AIC	4.830696	4.893861	4.918155	4.944261	4.944666
SIC	4.827307	4.888777	4.911374	4.935784	4.934491
México					
r^2	0.69082	0.704965	0.707417	0.713011	0.718804
AIC	4.774663	4.820683	4.828326	4.846962	4.86665
SIC	4.771278	4.815604	4.821552	4.838493	4.856485
Nueva Zelanda	1.1.12.0	1.010001	1.021002	1.000170	1.000100
r ²	0.656426	0.66367	0.676238	0.680165	0.686117
AIC	5.868847	5.889358	5.926637	5.938023	5.956013
SIC	5.865461	5.884278	5.919861	5.929552	5.945845
	3.003401	5.004270	5.717001	3.727332	3.743043
Pakistán r ²	0.51/555	0.7007	0.705.404	0.790191	0.794909
	0.716755	0.7236	0.725494	0.732131	0.734302
AIC SIC	4.874855	4.898508	4.904578	4.928241	4.935589
	4.871469	4.893428	4.897804	4.919772	4.925424
Perú					
r^2	0.86583	0.889484	0.889539	0.890699	0.890579
AIC	4.800484	4.993639	4.993409	5.003208	4.994738
SIC	4.797099	4.98856	4.986635	4.994738	7454.313
Reino Unido					
r^2	0.60892	0.61651	0.627265	0.630288	0.644608
AIC	5.654804	5.673645	5.701356	5.700362	5.747541
SIC	5.651418	5.668566	2053.667	5.700362	5.737376

CUADRO 7 (conclusión)

	L 1	L 2	L 3	L 4	L 5
Singapur					_
r^2	0.696286	0.711521	0.715848	0.724306	0.728665
AIC	5.182411	5.233117	5.247511	5.277087	5.292402
SIC	5.179026	5.228037	5.240737	5.268618	5.282237
Sri Lanka					
r^2	0.795159	0.818128	0.818772	0.820819	0.823004
AIC	5.551693	5.671991	5.678547	5.69095	5.702544
SIC	5.548307	5.666911	5.671774	5.68248	5.692378
Suecia					
r^2	0.672604	0.687538	0.691772	0.697859	0.702388
AIC	5.203858	5.249739	5.262571	5.2817	5.295984
SIC	5.200472	5.24466	5.255797	5.273231	5.285818
Suiza					
r^2	0.64076	0.648947	0.657934	0.662646	0.675058
AIC	5.418214	5.440581	5.46585	5.478919	5.515623
SIC	5.414828	5.435501	5.459075	5.470448	5.505456
Tailandia					
r^2	0.709053	0.723344	0.728798	0.734263	0.736585
AIC	4.566441	4.616443	4.635773	4.655848	4.663937
SIC	4.563055	4.611364	4.628999	4.647378	4.653771
Taiwán					
r^2	0.671019	0.678773	0.689883	0.694103	0.700425
AIC	4.407834	4.430909	4.465328	4.478211	4.498275
SIC	4.404448	4.42583	4.458554	4.469742	4.48811
Venezuela					
r^2	0.617811	0.626489	0.637255	0.64228	0.65485
AIC	5.096173	5.118695	5.147199	5.16031	5.195325
SIC	5.092703	5.11349	5.140256	5.151629	5.184906

que los aciertos de predicción de signo son mayores en las redes que en el modelo ARIMA en la mayoría de los casos. Chile muestra el menor porcentaje de error (94% de acierto) mientras que el menor valor lo tiene el Reino Unido con "apenas" 72%. Con los modelos ARIMA el mayor y menor porcentaje lo tienen Pakistán y Filipinas con 85 y 15%, respectivamente. Los únicos casos en los que el modelo simple lineal es mejor que las redes fueron Austria y Singapur, aunque la diferencia fue mínima. Así también, con mínimas diferencias en favor de las redes, tenemos los índices de Corea del Sur, México, Perú

y Sri Lanka. Lo anterior es consecuencia de que los componentes residuales de estos países tienen gran ponderación en la explicación de sus valores. En el resto de los índices se observa que las redes neuronales artificiales tienen un mejor desempeño en la predicción del signo, es decir, movimientos al alza o a la baja.

En el cuadro 8 se observa también los resultados de la prueba de Pesaran y Timmermann, en la que se rechaza la hipótesis de que las variables reales y sus respectivas predicciones son independientemente distribuidas, que obtenidas en los estadísticos y sus valores p de probabilidad (pvalues) son superiores en las redes que los modelos arima, con excepción de los casos de Austria, Filipinas, Pakistán, Perú, Reino Unido y Sri Lanka.

Debido al buen resultado obtenido con el modelo neuronal en la predicción de la bolsa chilena se podría pensar que se debe a un alto grado de inercia y larga regularidad; sin embargo, al observar la gráfica de la variación de su rentabilidad vemos que en el periodo de predicción hay múltiples cambios en la dirección de signo que es captado por las redes neuronales artificiales de excelente manera (gráfica 1).

GRÁFICA 1. Rentabilidad semanal con frecuencia diaria del IGPA (2004)

CUADRO 8. Cuadro comparativo entre la exactitud de las predicciones extramuestrales (porcentaje) obtenidas con las redes neuronales y el modelo ARIMA y las pruebas Pesaran y Timmermann

(Periodo: 30 de enero de 2004-16 de julio de 2004)

	Redes	Redes neuronales artificiales	ciales		ARIMA	
País	Aciertos (porcentaje)	Estadístico PT	Valor p	$Aciertos \\ (porcentaje)$	Estadístico PT	Valor p
Alemania	84	7.587340389	3.29E-14	64	3.406552194	0.0006579
Argentina	85	7.746306735	9.5479E-15	20	6.680655289	2.3918E-11
Australia	84	7.29253104	3.0642E-13	09	4.663712279	3.109E-06
Austria	62	6.261720868	3.8237E-10	80	6.524840839	6.8414E-11
Canadá	92	5.752234178	8.8336E-09	74	5.28341944	1.2706E-07
Chile	94	9.758208372	0	55	3.546692301	0.0003901
Corea del Sur	84	7.562879671	3.9746E-14	83	7.39306195	1.4455E-13
España	77	5.872854755	4.2976E-09	69	4.363493811	1.281E-05
Estados Unidos (Dow Jones)	82	5.463699909	4.6743E-08	75	1.803081222	0.0713753
Estados Unidos (Standard & Poor 500)	74	7.177559498	7.1476E-13	47	5.276423409	1.32E-07
Filipinas	82	7.073389408	1.5221E-12	15	7.792829769	6.6613E-15
Francia	81	6.86690118	6.6009E-12	39	3.635600419	0.0002774
Hong Kong	87	8.072582262	0	83	7.480846051	7.4385E-14
India	83	7.208735063	5.6888E-13	80	6.720272074	1.824E-11
Japón	83	7.349257733	2.0095E-13	39	1.528129477	0.1264804
Malasia	84	7.587340389	3.2863E-14	25	6.298473237	3.019E-10
México	85	7.724631386	1.1324E-14	83	7.53376547	4.9738E-14
Pakistán	84	7.103188796	1.2275E-12	85	7.258084493	3.9546E-13
Perú	2.2	5.933311854	2.979E-09	75	6.183248011	6.305E- 10
Reino Unido	72	4.808052456	1.5261E-06	25	5.643106066	1.6747E-08
Singapur	82	6.968621104	3.221E-12	83	7.27678318	3.4439E-13
Sri Lanka	80	6.317275045	2.6739E-10	62	6.070484219	1.28E-09
Suecia	84	7.574307965	3.6415E-14	52	1.992333205	0.0463343
Suiza	78	6.05860968	1.3782E-09	42	4.124818904	3.7124E-05
Tailandia	84	7.554258941	4.2411E-14	17	7.238768504	4.5608E-13
Taiwán	81	6.85639438	7.1045E-12	22	6.175227837	6.6334E-10

Conclusiones

La incapacidad de los modelos tradicionales para ajustar y predecir el precio y por ende la rentabilidad de la acción ha llevado a la búsqueda de nuevos modelos que sean capaces de percibir la dinámica de la serie. Ante esto surgen las redes neuronales artificiales, que tienen ventajas en varias dimensiones en relación con los métodos de análisis tradicionales. Primero, poseen la capacidad de analizar y aprender rápidamente pautas complejas y con un alto grado de precisión. Segundo, no están restringidas a la linealidad de las series, por lo cual se convierte en un instrumento econométrico muy poderoso. Finalmente, las RNA tienen un buen rendimiento con datos incompletos, característica que se encuentra en la mayoría de los mercados no desarrollados, lo que amplía las ventajas de los estudios e investigaciones.

Al utilizar 28 índices accionarios de países de diversas regiones se observó que las redes neuronales univariadas con cinco rezagos presentan un buen rendimiento predictivo en todos los países, e incluso en algunos de ellos su coeficiente de determinación llega a 90%, lo que puede ser un pobre avance en encontrar más evidencia que analice la hipótesis de los mercados eficientes.

Comparando con modelos lineales tradicionales se advierte que también en estos modelos la inclusión de más rezagos mejoraba la estimación; sin embargo, los valores de las pruebas de determinación con que uno puede comparar estos modelos *versus* los no lineales eran menores, demostrándose así que los otros modelos (no lineales) tienen un mejor rendimiento predictivo que los modelos tradicionales.

En la predicción dinámica extramuestral se observó que las redes neuronales artificiales fueron muy superiores a los modelos ARIMA tradicionales. Se encontró que en la mayoría de los casos el grado de exactitud fue mayor que sus símiles lineales. Chile es el país que mejor porcentaje obtuvo en aciertos de dirección de signo, es decir las redes neuronales tuvieron un mejor desempeño en pronosticar si el mercado iba a la alza o a la baja (94 por ciento).

Finalmente este estudio se puede extender en múltiples direcciones. Una de ellas es la ampliación a modelos neuronales multivariados, incorporando otras de variables tanto económicas como financieras, por ejemplo, índices accionarios de países vecinos en la misma red, y observar cómo aprenden ellos de la experiencia de la región. Con éstos se podría obtener un acercamiento mediante redes neuronales de los efectos causados por las crisis económicas con efecto mundial (crisis asiática, moratoria rusa, efecto tequila, entre otros).

REFERENCIAS BIBLIOGRÁFICAS

- Aaltonen, J., y R. Östermark (1993), "Financial Risk Classification of Finnish Listed Companies by Accounting Data", 16th Congress of the European Accounting Association, abril, Turku, Finlandia.
- Altman, E. I., G. Marco y F. Varetto (1994), "Corporate Distress Diagnosis: Comparisons using Linear Discriminant Analysis and Neural Networks (the Italian Experience)", Journal of Banking and Finance, vol. 18, páginas 505-529.
- Bach, M., y E. Hansen (2002), "Estimación de redes neuronales con datos ultra frecuentes: Aplicación al mercado accionario chileno", Universidad de Chile.
- Box, G. E. P., y G. M. Jenkins (1970), Time Series Analysis, Forecasting and Control, San Francisco, Holden-Day.
- Brooks, C. (1996), "Testing for Non-linearity in Daily Sterling Exchange Rates", *Applied Financial Economics*, 6, pp. 307-317.
- Campbell, J. Y., A. W. Lo y A. C. MacKinlay (1997), The Econometrics of Financial Markets, Princeton, Princeton University Press.
- Casdagli, M. (1989), "Nonlinear Prediction of Chaotic Time Series", *Physica D*, 35, pp. 335-356.
- El-Shazly, S., y H. El-Shazly (1999), "Forecasting Currency Prices Using a Genetically Evolved Neural Network Architecture", *International Review of Financial Analysis* 8 (1), pp. 67-82.
- Evans, O. V. D. (1997), "Short-Term Currency Forecasting Using Neural Networks", *ICL Systems Journal* 11(2).
- Fairclough, D., y J. Hunter (1998), Ex-ante Classification of Takeover Targets Using Neural Networks. Decision Technologies for Computational Finance, Kluwer Academic Press.
- Fama, E. (1970), "Efficient Capital Markets: A Review of Theory and Empirical Work", *Journal of Finance*.
- Franses P. H., y D. van Dijk (2000), Non-linear Time Series Models in Empirical Finance, Cambridge University Press.
- —, y K. van Griensven (1997), "Forecasting Exchange Rates Using Neural Networks for Technical Trading Rules", *Studies in Nonlinear Dynamics & Econometrics*, vol. 2, cuarta edición 4, Berkeley Electronic Press.
- Freeman, J. A. (1994), Simulating Neural Networks with Mathematics, Addison-Wesley Publishing Company.

- Fu, J. (1998), "A Neural Network Forecast of Economic Growth and Recession", *Journal of Economics* 24(1), pp. 51-66.
- Gately, E. (1996), Neural Network for Financial Forecasting, Nueva York, John Wiley and Sons.
- Granger, C. W. J., y T. Terasvirta (1993), Modelling Nonlinear Economic Relationships, Advanced Texts in Econometrics, Oxford University Press.
- Greigoire, J., y S. Zurita (1993), "Información y mercados de capitales", *Estudios de Economía*, vol. 20, núm. 2, diciembre.
- Herbrich, R., M. Keilbach, T. Graepel, P. BollmRNA y K. Obermayer (1999), "Neural Networks in Economics: Background, Applications and New Developments", Technische Universitat Berlin.
- Hopfield, J. (1982), "Neural Networks & Physical Systems with Emergent Collective Computational Abilities", Proceedings of the National Academy of Sciences 79, pp. 2554-2558.
- Hornik, K., M. Stinchcombe y H. White (1990), "Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks", Neural Networks, vol. 3, pp. 551-560.
- Hutchinson, J., A. Lo y T. Poggio (1994), "A Nonparametric Approach to Pricing and Hedging Derivate Securities Via Learning Networks", The Journal of Finance, vol. 49, núm. 3, julio.
- Johnson, C., y F. Soriano (2004), "Volatilidad del mercado accionario y la crisis asiática", EL TRIMESTRE ECONÓMICO, vol. LXXI, núm. 282, pp. 355-388.
- —, y R. Vergara (2004), "Monetary Policy in Chile: A Neural Network Approach", Escuela de Negocios Universidad Adolfo Ibáñez y Departamento de Economía, Universidad Católica de Chile, inédito.
- Kasabov, N. (1996), Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, Cambridge, MIT Press.
- Keim, D., y R. Stambaugh (1986), "Predicting Returns in the Stock and Bond Markets", Journal of Financial Economics 17, pp. 357-390.
- Kohonen, T. (2001), "Self-Organizing Maps", Springer Series in Information Sciences, vol. 30, Berlín-Nueva York, Springer y Heidelberg.
- Kuan, C., y H. White (1994), "Artificial Neural Networks: An Econometric Perspective", *Econometric Reviews* 13, pp. 1-91.
- LeBaron, B. (1993), "Forecast Improvements Using a Volatility Index", M. H. Pesaran y S. M. Potter (comps.), Nonlinear Dynamics, Chaos and Econometrics, John Wiley & Sons, pp.129-142.
- Lim, G., y P. McNelis (1998), "The Effect of the Nikkei and the S&P on the All-Ordinaries: A Comparison of Three Models", *International Journal of Finance and Economics* 3 (3), pp. 217-228.
- Lo, A. W. (1994), "Neural Networks and other Nonparametric Techniques in Economics and Finance", *Blending Quantitative and traditional Equity Analysis*, Association for Investment Management and Research.
- ----, y A. C. MacKinlay (1987), "Stock Market Prices Do Not Follow Random

- Walks: Evidence from a Simple Specification Test", Working Paper 5-87, Rodney L. White Center, Wharton School, University of Pennsylvania.
- Martin, V., E. Choo, L. Teo (1997), "Exchange Rate Forecasting Models", J. Creedy y V. Martin (comps.), Nonlinear Economic Models: Cross-Sectional, Time Series and Neural Network Applications, Cheltenham y Lyme, N. H., Elgar.
- McNelis, P. D. (1996) "A Neural Networks Analysis of Brazilian Stock Prices: tequila effect vs. Pisco Sour Effects", *Journal of Emerging Markets*, vol. 1, núm. 2.
- Moshiri, S., N. Cameron, D. Scuse (1999), "Static, Dynamic, and Hybrid Neural Networks in Forecasting Inflation", *Computational Economics* 14 (3), pp. 219-235.
- Olmedo, I., y E. Fernández (1997), "Hybrid Classifiers for Financial Multicriteria Decision-Making: The Case of Bankruptcy Prediction", Computational Economics 10 (4), pp. 317-335.
- Parisi, A., F. Parisi y J. L. Guerrero (2003), "Modelos predictivos de redes neuronales en índices bursátiles", EL TRIMESTRE ECONÓMICO, vol. LXX, núm. 280, pp. 721-744.
- Pesaran, M. Hashem, y Allan Timmermann (1992), "A Simple Nonparametric Test of Predictive Performance", *Journal of Business and Economic Statistics*, vol. 10(4), pp. 561-565.
- Qi, M. (1999), "Nonlinear Predictability of Stock Returns Using Financial and Economic Variables", *Journal of Business and Economic Statistics* 17 (4), pp. 419-429.
- Sargent, T. (1993), Bounded Rationality in Macroeconomics, Oxford University Press.
- Shah, J., y M. Murtaza (2000), "A Neural Network Based Clustering Procedure for Bankruptcy Prediction", *American Business Review*, 18(2), pp. 80-86.
- Shahmurove, Y., y D. Witkowska (2000), "Utilizing Artificial Neural Network Model to Predict Stock Markets", Pennsylvania-Institute for Economic Research 00-11, Pennsylvania-Department of Economics.
- Serrano Cinca, C., y J. L. Gallizo Larraz (1996), "Aplicaciones de las Redes Neuronales en Contabilidad y Finanzas", Biblioteca Electrónica de Contabilidad, vol. 1, núm. 4.
- Singleton, J. C., y A. J. Surkan (1995), "Bond Rating with Neural Networks", A. P. Refenes (comp.), *Neural Networks in the Capital Markets*, Nueva York, Wiley.
- Soofi A. S., y L. Cao (1999), "Nonlinear Deterministic Forecasting of Daily Peseta-Dollar Exchange Rate", *Economic Letters* 62, pp. 175-178.
- Soto, R. (1995), "Non-Linearities in the Demand for Money: A Neural Network Approach", Georgetown University, inédito.
- Stock, J., y M. Watson (1999), "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series", R. Engle y H. White (comps.), Cointegration, Causality and Forecasting: A Festschrift in Honor of Clive.

- Swales, G. S., y Y. Young (1992), "Applying Artificial Neural Networks to Investment Analysis", *Financial Analysts Journal*, septiembre-octubre.
- Tan, N. W., y H. Dihardjo (2001), "A Study on Using Artificial Neural Networks to Develop an Early Warning Predictor for Credit Union Financial Distress with Comparison to the Probit Model", Managerial Finance, 27, núm. 4, pp. 56-77.
- Tkacz, G., y S. Hu (1999), "Forecasting GDP Growth Using Artificial Neural Networks", Working Paper 99-3, Bank of Canada.
- Trippi, R. R., y E. Turban (comps.) (1992), Neural Networks in Finance and Investing, Probus Publishing Company, Chicago.
- White, H. (1988), "Economic Prediction Using Neural Networks: The Case of IBM Daily Stock Returns", Proceedings of the IEEE International Conference on Neural Networks, San Diego, 2, pp. 451-458.
- —— (1992), Artificial Neural Networks: Approximation and Learning Theory, With A. R. Gallant, Blackwell, Cambridge and Oxford.
- Wilson, N., K. Chong y J. Peel (1995), "Neural Network Simulation and the Prediction of Corporate Outcomes: Some Empirical Findings", *International Journal of the Economics of Business*, vol. 2, núm. 1, pp. 31-50.
- Witkowska, D. (1999), "Applying Artificial Neural Networks to Bank Decision Simulations", *International Advances in Economic Research* 5 (3), páginas 350-368.
- Wu, C., y X. Wang (2000), "A Neural Network Approach for Analyzing Small Business Lending Decisions", *Review of Quantitative Finance and Accounting* 15 (3), pp. 259-276.
- Yao, J., C. Tan, H. Poh (1999), "Neural Networks for Technical Analysis: A Study on KLCI", *International Journal of Theoretical and Applied Finance* 2 (2), pp. 221-241.
- Yoda, M. (1994), "Predicting the Tokyo Stock Market", G. J. Deboeck (comp.), Trading on the Edge: Neural, Genetic, and the Fuzzy Systems for Chaotic Financial Markets, Nueva York, Wiley.
- Yoon, Y., y G. Swales (1991), "Predicting Stock Price Performance," Proceeding of the 24th Hawaii International Conference on System Sciences, 4, páginas 156-162.
- Zekic, M. (1998): "Neural Networks Application in Stock Market Predictions A Methodology Analysis", Proceedings of the Ninth International Conference on Information and Intelligent Systems '98, B. Aurer y R. Logožar, Varaždin, 1998, pp. 255-263.
- Zhang, G., y M. Y. Hu (1998), "Neural Network Forecasting of the British Pound/US Dollar Exchange Rate. Omega", *International Journal of Management Science* 26, 4, pp. 495-506.
- Zurada, J. (1998), "Neural Networks versus Logit Regression Models for Predicting Financial Distress Response Variables", *Journal of Applied Business Research* 15 (1), pp. 21-29.