Understanding Height Dynamics Through Regression

JACKIE HARMON

Introduction

Background:

- It is a well-known phenomenon that our height decreases throughout the day due to gravitational compression. Height measured in the evening is often less than in the morning.
- This project investigates this effect using AM and PM height measurements from students at a boarding school in India.

Objective:

• To explore the relationship between morning (AM) and evening (PM) heights using regression analysis to quantify the impact of gravity on daily height variation.

Dataset Overview

Source:

Data collected from students at a boarding school in India.

Variables:

- AM height measurements (in mm).
- PM height measurements (in mm).

Sample Size:

Number of observations: 150 students (as per the data available)

Methodology

Tools Used:

In R

- ggplot2 for visualization
- Im() for linear regression
- gvlma for global validation of linear model assumptions
- predictmeans for calculating predicted means and diagnosing residuals
- car for diagnostic tests (e.g., detecting outliers, testing homoscedasticity)
- caret for model training, tuning, and crossvalidation

In Python

- Pandas for data manipulation
- NumPy for numerical operations
- SciPy for statistical testing
- Matplotlib and Seaborn for visual analysis
- statsmodels for regression modeling and diagnostics
- pylab for plotting and visualization utilities

Methodology

Analysis Steps

- Data Cleaning and Preparation: Ensured dataset quality and readiness for analysis.
- Linear Regression: Modeled the relationship between AM and PM heights.
- Assumptions Testing:
 - Linearity
 - Normality
 - Homoscedasticity
 - Outlier Detection
 - Leverage and Influence

Assumptions Testing - Linearity

In R

- A scatter plot was used to visually assess the linearity between AM and PM heights.
- Visual inspection indicated a linear relationship, which justified using a linear regression model.

Assumptions Testing - Linearity

In Python

- A scatter plot was also utilized to check for linearity.
- The linear relationship was confirmed by observing the plot, validating the use of linear regression.
- A Harvey Collier test was conducted with a p-value larger than 0.05, suggesting the linear model is appropriate

Assumptions Testing - Normality

In R

 QQ plot was employed to visually evaluate the normality of residuals.

Assumptions Testing - Normality

In Python

 Box-Cox Transformation: The histogram of the transformed data shows a more normal distribution compared to the original data, indicating successful variance stabilization.

Assumptions Testing - Homoscedasticity

In R

- Residual vs. Fitted Plot: The residuals exhibited constant variance across fitted values, indicating homoscedasticity.
- Breusch-Pagan Test: Confirmed homoscedasticity with no significant heteroscedasticity detected.
- Non-Constant Variance Test: Confirmed homoscedasticity with no significant heteroscedasticity detected.

Assumptions Testing - Homoscedasticity

In R

 Scale-Location Plot: The residuals exhibited no clear pattern, with red line roughly horizontal, indicating homoscedasticity.

Assumptions Testing - Homoscedasticity

In Python

- Homoscedasticity:
 - Residual plot: residuals showed no clear pattern, confirming homoscedasticity.
 - Breusch-Pagan test with significant p-value

Outlier Detection

In R

- GVLMA Test: Overall model diagnostics confirmed assumptions and model integrity.
- Screening for Outliers in X Space:
 - Cook's Distance: Identified and addressed influential outliers, ensuring they did not unduly affect the model.
 - Leverage Values: Detected highleverage points, with appropriate adjustments made.
- Screening for Outliers in Y Space: Identified outliers in the response variable.

Outlier Detection

In Python

 Influence Plot: Observations with high leverage and large studentized residuals, particularly those with a large Cook's distance, flagged as influential

Regression Analysis in R

Model Summary:

- R-squared value: 0.9989, indicating 99.89% of the variance in PM heights is explained by AM heights.
- The residuals appear to be symmetrically distributed around zero, indicating a good fit.
- The residual standard error of 2.627 is relatively small, suggesting that the model predictions are close to the actual values.
- Significant slope coefficient (p-value < 0.05) confirms the effect of gravitational compression.

Assumptions Validation:

- Tests confirmed assumptions were met or adjusted for.
- Transformation applied to improve model fit.

Regression Analysis in Python

Model Summary:

- Similar R-squared value and statistical significance observed as in R analysis.
- Model confirmed findings from R analysis, reinforcing the conclusions.

Assumptions Validation:

Consistent validation of assumptions across both platforms.

Key Findings

Daily Height Reduction:

 Height measurements confirm a decrease from morning to evening, attributed to gravitational effects.

Statistical Significance:

Both R and Python analyses indicate a significant correlation between AM and PM heights.

Implications:

 Highlights the importance of considering time of day in height-related measurements for research and health assessments.

Conclusions

Summary:

- The project successfully demonstrated the measurable impact of gravity on daily height variations.
- Showcased proficiency in using R and Python for data analysis, modeling, and assumption testing.

Future Work:

 Investigating other factors influencing height variation, such as age or posture, and expanding the study to different populations.