

Hartree-Fock Stability of the Electron Gas

Evan Curtin

October 4, 2017

University of Illinois at Urbana-Champaign

Table of contents

- 1. Background Information
- 2. Hartree-Fock Stability
- 3. Homogeneous Electron Gas
- 4. Results
- 5. Concluding Remarks

Background Information

Levels of Hartree-Fock Theory

Method	Spinorbital	DoF	Eigenfunction of	
Restricted	$\chi_{j}^{\alpha}(\vec{r},\sigma) = \sum_{i=1}^{N} c_{ij}\phi_{i}(\vec{r})\alpha(\sigma)$ $\chi_{j}^{\beta}(\vec{r},\sigma) = \sum_{i=1}^{N} c_{ij}\phi_{i}(\vec{r})\beta(\sigma)$	N/2	\hat{S}^2 , \hat{S}_z	
Unrestricted	$\chi_{j}^{\alpha}(\vec{r},\sigma) = \sum_{i=1}^{N} c_{ij}^{\alpha} \phi_{i}(\vec{r}) \alpha(\sigma)$ $\chi_{j}^{\beta}(\vec{r},\sigma) = \sum_{i=1}^{N} c_{ij}^{\beta} \phi_{i}(\vec{r}) \beta(\sigma)$	N	Ŝz	
General	$\chi_{j}(\vec{r},\sigma) = \sum_{i=1}^{N} [c_{ij}^{\alpha} \phi_{i}(\vec{r}) \alpha(\sigma) + c_{ij}^{\beta} \phi_{i}(\vec{r}) \beta(\sigma)]$	2N	Neither	

- Hartee-Fock SCF guarantees only stationary energy w.r.t. change in orbitals
- The solution may be a maximum, minimum or saddle point

- Hartee-Fock SCF guarantees only stationary energy w.r.t. change in orbitals
- The solution may be a maximum, minimum or saddle point

Within the Constrained Space

 Restricted minima may correspond to minima in another dimension

- Restricted minima may correspond to minima in another dimension
- Restricted minima may correspond to maxima in another dimension

- Restricted minima may correspond to minima in another dimension
- Restricted minima may correspond to maxima in another dimension
- Restricted minima may be nonstationary

• Solving the HF equations guarantees only that the energy is stationary. The first order variation is therefore 0.

- Solving the HF equations guarantees only that the energy is stationary. The first order variation is therefore 0.
- We need to know if this is indeed a minimum.

- Solving the HF equations guarantees only that the energy is stationary. The first order variation is therefore 0.
- We need to know if this is indeed a minimum.
- We can determine this if we inspect the second order variation in the energy.

- Solving the HF equations guarantees only that the energy is stationary. The first order variation is therefore 0.
- We need to know if this is indeed a minimum.
- We can determine this if we inspect the second order variation in the energy.
- Thouless¹ showed a physically motivated derivation using Time-Dependent Hartree-Fock theory (TDHF).

 The RPA frequencies represent electronic oscillations about the ground state

- The RPA frequencies represent electronic oscillations about the ground state
- Real frequencies are stable, imaginary frequencies are unstable

- The RPA frequencies represent electronic oscillations about the ground state
- Real frequencies are stable, imaginary frequencies are unstable
- The RPA frequencies are imaginary when the Orbital Hessian (aka stability matrix, electronic Hessian) eigenvalues are negative

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^* & \mathbf{A}^* \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} = \omega \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix}$$
 (1)

- The RPA frequencies represent electronic oscillations about the ground state
- Real frequencies are stable, imaginary frequencies are unstable
- The RPA frequencies are imaginary when the Orbital Hessian (aka stability matrix, electronic Hessian) eigenvalues are negative

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^* & \mathbf{A}^* \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} = \omega \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix}$$
 (1)

Where

$$A_{ia,jb} = \langle_i^a | H - E_0 |_j^b \rangle = (\epsilon_a - \epsilon_i) \, \delta_{ij} \delta_{ab} + \langle aj | | ib \rangle$$

$$B_{ia,jb} = \langle_i^{ab} | H - E_0 | 0 \rangle = \langle ab | | ij \rangle.$$
(2)

The Matrix Equation Factorizes

Solution Type	Space Type						
	Real RHF	Complex RHF	Real UHF	Complex UHF	Real GHF	Complex GHF	
Real RHF	$^{1}\mathbf{A}^{\prime}+{}^{1}\mathbf{B}^{\prime}$	$^{1}A^{\prime}-{}^{1}B^{\prime}$	${}^{3}\mathbf{A}' + {}^{3}\mathbf{B}'$	${}^{3}A' - {}^{3}B'$	${}^{3}A' + {}^{3}B'$	${}^{3}A' - {}^{3}B'$	
Complex RHF	-	¹ H′	-	³ H ′	-	³ H′	
Real UHF	-	-	$\mathbf{A}'+\mathbf{B}'$	$\mathbf{A}' - \mathbf{B}'$	$\mathbf{A}''+\mathbf{B}''$	$\mathbf{A}'' - \mathbf{B}''$	
Complex UHF	-	-	-	H'	-	H'	
Real GHF	-	-	-	-	A-B	A-B	
Complex GHF	-	-	-	-	-	Н	

Table reproduced from Seeger & Pople 1

Homogeneous Electron Gas

Brief Overview

- Homogeneous Electron Gas (HEG) model, also known as Uniform Electron Gas or Jellium Model.
- ullet Electrons in a box with "smeared" nuclei ullet uniform positive background charge
- The total charge is constrained to be neutral,

$$V_{bg}(\mathbf{r}) = \sum_{i} \frac{-Ze^2}{|\mathbf{r} - \mathbf{R_i}|} \to -e^2 \int \frac{d\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|},\tag{3}$$

and the background and coulomb terms cancel exactly,

$$V_{ee} = e^2 \int \frac{d\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}.$$
 (4)

Brief Overview

The discretized solutions are given by,

$$\epsilon_{\vec{k}} = \frac{\hbar^2 k^2}{2m} - \sum_{\vec{k'}}^{|\vec{k'}| < k_f} \langle \vec{k}, \vec{k'} | \vec{k'}, \vec{k} \rangle \tag{5}$$

• Where the two electron integral is given by

$$\langle \vec{k}, \vec{k}' | \vec{k}'', \vec{k}''' \rangle \overset{\text{2D}, 3D}{=} \begin{cases} \frac{\pi}{V} \frac{2^{D-1}}{|\vec{k} - \vec{k}''|^{D-1}} & \vec{k}''' = \vec{k} + \vec{k}' - \vec{k}'' \\ 0 & \text{else} \end{cases}$$

$$\langle k, k' | k'', k''' \rangle \overset{\text{1D}}{=} \begin{cases} \frac{\pi}{V} e^{|k - k''|^2 a^2} \text{Ei}(-|k - k''|^2 a^2) ; & k''' = k + k' - k'' \\ 0 ; & \text{else} \end{cases}$$

$$(6)$$

Giuliani, G.; Vignale, G. Quantum Theory of the Electron Liquid; 2005.

Exact Results

• Can we use the HF-Stability analysis to determine where the HEG is unstable?

- Can we use the HF-Stability analysis to determine where the HEG is unstable?
- Will this predict the known tendency of crystallization at low density?

- Can we use the HF-Stability analysis to determine where the HEG is unstable?
- Will this predict the known tendency of crystallization at low density?
- It is known that the GHF solution persists at all densities for the HEG¹.

- Can we use the HF-Stability analysis to determine where the HEG is unstable?
- Will this predict the known tendency of crystallization at low density?
- It is known that the GHF solution persists at all densities for the HEG¹.
- Can we show this numerically?

- Can we use the HF-Stability analysis to determine where the HEG is unstable?
- Will this predict the known tendency of crystallization at low density?
- It is known that the GHF solution persists at all densities for the HEG¹.
- Can we show this numerically?
- (Future) Can we combine this with to improve the efficacy of correlation theories (CC, MBPT)?

Results

First Brillouin Zone

- Excite Ony in one direction
- Consider only First BZ due to $\vec{k}' = \vec{k} + \vec{G}$

Orbital Energies

- 57 grid points per dimension reproduces the orbital energies reasonably well
- Worst towards Γ , better for higher $|\vec{k}|$

Convergence of Stability Curves

Dependence on r_s

Previously reported transition in 2d: $\textit{rs} \approx 0.8$

Final Stability Curves

Bernu, B.; Delyon, F.; Holzmann, M.; Baguet, L. Phys. Rev. B 2011, 84 (11), 115115.

Concluding Remarks

Conclusions

- Numerical studies likely support Overhauser's theorem in 1D
- Stability corresponds with direct phase calculations in 2D
- In 3D, predicts transition at higher density than is currently known via other methods.

Next Steps

- Directly calculate more exotic spin phases of HEG within HF theory
- Use those as starting points for CC, MBPT theories
- Apply a similar approach to finite molecular systems

Iterative Subspace Eigenvalue

Methods

Davidson's Algorithm

$$\begin{array}{lll} \mathbf{A}\mathbf{x} = \lambda\mathbf{x} & & \text{Eigenvalue Problem} \\ \mathbf{V} = [\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_M}] & & \text{Guess vectors} \\ \mathbf{\tilde{A}} = \mathbf{V}^\dagger \mathbf{A} \mathbf{V} & & \text{Transform into subspace} \\ \mathbf{\tilde{A}} \mathbf{\tilde{x}} = \tilde{\lambda} \mathbf{\tilde{x}} & & \text{Solve the subspace problem} \\ \mathbf{x_i} \approx \mathbf{x}_i^R = \mathbf{V} \mathbf{\tilde{x}}_i & & \text{Approximate eigenvectors} \\ \lambda_i \approx \lambda_i^R = \tilde{\lambda}_i & & \text{Approximate eigenvalues} \\ \mathbf{r}_i = (\mathbf{A} - \lambda_i \mathbf{I}) \, \mathbf{x}_i^R & & \text{Calculate the residue} \\ \delta_i = c_i \mathbf{r}_i & & \text{Correction vectors} \\ c_i = \frac{1}{\lambda_i \mathbf{I} - \mathbf{D}} & & \text{Diagonal Precondition} \\ \mathbf{V} = [\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_M}, \delta_1, \delta_2, ..., \delta_I] & & \text{Append to guess and restart} \\ \mathbf{V} = orthonormalized(\mathbf{V}) & & \text{Ensure orthonormal projection} \\ \end{array}$$

Guess vectors

Correction vectors

- 1. Saad, Y. Numerical Methods for Large Eigenvalue Problems; SIAM, 2011.
- 2. Davidson, E. R. J. Comput. Phys. 1975, 17 (1), 8794.

• The convergence of these subspace algorithms depends on:

- 1. Saad, Y. Numerical Methods for Large Eigenvalue Problems; SIAM, 2011.
- 2. Li, R.-C.; Zhang, L.-H. Convergence of Block Lanczos Method for Eigenvalue Clusters; 2013.

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested

- 1. Saad, Y. Numerical Methods for Large Eigenvalue Problems; SIAM, 2011.
- 2. Li, R.-C.; Zhang, L.-H. Convergence of Block Lanczos Method for Eigenvalue Clusters; 2013.

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm

- 1. Saad, Y. Numerical Methods for Large Eigenvalue Problems; SIAM, 2011.
- 2. Li, R.-C.; Zhang, L.-H. Convergence of Block Lanczos Method for Eigenvalue Clusters; 2013.

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm
 - The density of the eigenvalue spectrum

- 1. Saad, Y. Numerical Methods for Large Eigenvalue Problems; SIAM, 2011.
- 2. Li, R.-C.; Zhang, L.-H. Convergence of Block Lanczos Method for Eigenvalue Clusters; 2013.

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm
 - The density of the eigenvalue spectrum
 - The initial guess eigenvectors

- 1. Saad, Y. Numerical Methods for Large Eigenvalue Problems; SIAM, 2011.
- 2. Li, R.-C.; Zhang, L.-H. Convergence of Block Lanczos Method for Eigenvalue Clusters; 2013.

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm
 - The density of the eigenvalue spectrum
 - The initial guess eigenvectors
 - The preconditioner (Davidson only)

- 1. Saad, Y. Numerical Methods for Large Eigenvalue Problems; SIAM, 2011.
- 2. Li, R.-C.; Zhang, L.-H. Convergence of Block Lanczos Method for Eigenvalue Clusters; 2013.

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm
 - The density of the eigenvalue spectrum
 - The initial guess eigenvectors
 - The preconditioner (Davidson only)
- They can have convergence issues if:

- 1. Saad, Y. Numerical Methods for Large Eigenvalue Problems; SIAM, 2011.
- 2. Li, R.-C.; Zhang, L.-H. Convergence of Block Lanczos Method for Eigenvalue Clusters; 2013.

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm
 - The density of the eigenvalue spectrum
 - The initial guess eigenvectors
 - The preconditioner (Davidson only)
- They can have convergence issues if:
 - The block size is too small compared to degeneracy

- 1. Saad, Y. Numerical Methods for Large Eigenvalue Problems; SIAM, 2011.
- 2. Li, R.-C.; Zhang, L.-H. Convergence of Block Lanczos Method for Eigenvalue Clusters; 2013.

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm
 - The density of the eigenvalue spectrum
 - The initial guess eigenvectors
 - The preconditioner (Davidson only)
- They can have convergence issues if:
 - The block size is too small compared to degeneracy
 - The approximate eigenvectors become non-orthogonal

- 1. Saad, Y. Numerical Methods for Large Eigenvalue Problems; SIAM, 2011.
- 2. Li, R.-C.; Zhang, L.-H. Convergence of Block Lanczos Method for Eigenvalue Clusters; 2013.

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm
 - The density of the eigenvalue spectrum
 - The initial guess eigenvectors
 - The preconditioner (Davidson only)
- They can have convergence issues if:
 - The block size is too small compared to degeneracy
 - The approximate eigenvectors become non-orthogonal
- My recommendation for guess eigenvectors is

$$v_j^{(i)} = normalize\left(\frac{1}{|A_{ii} - A_{ij}| + 1}\right). \tag{7}$$

- 1. Saad, Y. Numerical Methods for Large Eigenvalue Problems; SIAM, 2011.
- 2. Li, R.-C.; Zhang, L.-H. Convergence of Block Lanczos Method for Eigenvalue Clusters; 2013.

Davidson Scaling

- Davidson is Asymptotically quadratic.
- Full diagonalization is almost cubic.
- Matrix multiplication is order¹ $log_2(7) \approx 2.807$

Efficacy of Davidson's Algorithm

- Reproduces Exact result to machine precision in all test cases.
- Odd spikes are due to approximating circle by squares

Orthogonalization

• The condition number, κ , is bound from below by

$$\kappa \ge \frac{Max(A_{ii})}{Min(A_{jj})} \tag{8}$$

• The Gram-Schmidt procedure has numerical issues,

$$||\mathbf{I} - \mathbf{Q}^{\mathsf{T}} \mathbf{Q}|| \le \frac{\alpha \kappa^2}{1 - \beta \kappa^2}.$$
 (9)

Modified Gram-Schmidt is better, but not perfect,

$$||\mathbf{I} - \mathbf{Q}^\mathsf{T} \mathbf{Q}|| \le \frac{\gamma \kappa}{1 - \eta \kappa}$$
 (10)

May need multiple orthogonalization steps