Python y DataFrames: un match para los modelados

Arossa N., Bonifacino N., Chiattellino M., Herrera C., González A., Hernandez K., Nieves J., Vega K; García J.

Universidad Nacional de Hurlingham

Actividad dirigida a estudiantes del cuarto año del Profesorado Universitario de Matemática.

Objetivos

- Posibilitar el abordaje a actividades de modelado en base a datos reales de libre disponibilidad, evitando reproducir ejemplos de juguete.
- Utilizar la programación, vía Python, para explorar el modelado poblacional, aprovechando la eficiencia, potencia y simplicidad que esta provee para la manipulación de datos.
- Experimentar con diferentes modelos de crecimiento en relación con las ecuaciones diferenciales que los caracterizan.

Contexto

Los datos de la población mundial son bien conocidos (e. g. Wikipedia). Utilizamos diferentes modelos para ver cómo se adaptan a la dinámica de la misma. En última instancia exploramos predicciones sobre la evolución de la población mundial a futuro.

Convertir datos a DataFrames es muy sencillo

Se pueden extraer directamente de un sitio web (o archivo .html) o de un .csv o de un .xls, o de muchos otros formatos. En este caso extrajimos una tabla de Wikipedia.

Tipos de crecimiento

Constante Lineal Cuadrático

$$\frac{dP}{dt} = r \qquad \frac{dP}{dt} = rP \qquad \frac{dP}{dt} = \alpha P - \beta P^2 = rP \left(1 - \frac{P}{K}\right)$$

La ecuación logística modela crecimientos demográficos denso-dependientes.

Diferenciales y Euler

Con un dato inicial $P(t_0) = P_0$ y permitiéndonos operar con diferenciales (si Leibniz lo hacía...)

$$\frac{dP}{dt} = f(P,t)$$

$$\frac{\Delta P}{\Delta t} \approx f(P_0, t_0) \Longrightarrow P_1 - P_0 \approx f(P_0, t_0)(t_1 - t_0)$$

$$P_1 \approx P_0 + f(P_0, t_0)(t_1 - t_0)$$

$$\begin{cases} t_n = t_0 + nh \\ P_n = P_{n-1} + hf(t_{n-1}, P_{n-1}) \end{cases}$$
 = Euler

Evolución de la población mundial

Un poco de código

Reflexión final

Python es una herramienta poderosa y versátil para poder analizar datos y modelarlos que, combinada con el acceso a un vasto conjunto de DataFrames, archivos .csv y todo otro tipo de datos de libre disponibilidad, posibilita explorar las actividades de modelado con una profundidad contundente. Finalmente, recuperamos un conocimiento estándar en la formación matemática (recta tangente) y le damos un sentido de herramienta que resulta central en la posibilidad de simular el modelo.