Теорема.

Пусть задана выборка \mathbf{X}, \mathbf{y} мощности m.

Пусть задана модель $\mathbf{f}(\mathbf{w}, \mathbf{X})$ и распределение q, апппроксимирующее апостериорное распределение параметров \mathbf{w} этой модели.

Рассмотрим выражение $\frac{1}{m}$ ELBO_{γ}:

$$\frac{1}{m} \text{ELBO}_{\gamma}(\mathbf{X}, \mathbf{y}, q) = \frac{1}{m} \mathsf{E}_{q} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}) - \frac{\gamma}{m} \text{KL}(q | p(\mathbf{w})),$$

где $\gamma > 0$.

Пусть $\frac{1}{m} \mathrm{ELBO}_{\gamma}$ сходится п.н. при $m \to \infty$ к функции L(q) (вообще, она еще от гиперпараметров зависит, но здесь это будет лишним, прим. Олег).

Тогда функция $\frac{1}{m_0} \text{ELBO}_1$ для выборки мощности $m_0 = \frac{m}{\gamma}$ из той же генеральной совокупности сходится почти наверно к этой же функции L(q):

$$\frac{1}{m_0} \mathrm{ELBO}_1(\hat{\mathbf{X}}, \hat{\mathbf{y}}, q) \to^{\text{\tiny II.H.}} L(q),$$

где $|\hat{\mathbf{X}}| = m_0$.

Доказательство. Рассмотрим величину $\frac{1}{m}$ ELBO $_{\gamma}$:

$$\frac{1}{m} \text{ELBO}_{\gamma}(\mathbf{X}, \mathbf{y}) = \frac{1}{m} \mathsf{E}_q \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}) - \frac{\gamma}{m} \text{KL}(q | p(\mathbf{w})).$$

По УЗБЧ:

$$\frac{1}{m} \text{ELBO}_{\gamma}(\mathbf{X}, \mathbf{y}) \to_{m \to \infty}^{\text{\tiny H.H.}} \mathsf{E}_{\mathbf{X}} \mathsf{E}_{q} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}) - \frac{\gamma}{m} \text{KL}(q | p(\mathbf{w})) = L(q).$$

Аналогично рассмотрим $\frac{1}{m_0}$ ELBO $_1$ для выборки мощностью $m_0=\frac{m}{\gamma}$:

$$\frac{1}{m_0} \text{ELBO}_1(\hat{\mathbf{X}}, \hat{\mathbf{y}}) \to_{m \to \infty}^{\text{\tiny II.H.}} \mathsf{E}_{\mathbf{X}} \mathsf{E}_q \text{log} p(\mathbf{y} | \mathbf{X}, \mathbf{w}) - \frac{1}{m_0} \text{KL}(q | p(\mathbf{w})) =$$

$$= \mathsf{E}_{\mathbf{X}} \mathsf{E}_q \text{log} p(\mathbf{y} | \mathbf{X}, \mathbf{w}) - \frac{\gamma}{m} \text{KL}(q | p(\mathbf{w})) = L(q),$$

предельные функции совпадают, что и требовалось доказать.

Интерпретация: для достаточно большого m и $\gamma>0, \gamma\neq 1$ оптимизация параметров и гиперпараметров эквивалентна оптимизации ELBO для выборки другой мощности:

$$\max_{q} \mathrm{ELBO}_{\gamma}(\mathbf{X}, \mathbf{y}, q) \propto \max_{q} \frac{1}{m} \mathrm{ELBO}_{\gamma}(\mathbf{X}, \mathbf{y}, q) \sim \max_{q} \frac{1}{m_{0}} \mathrm{ELBO}_{1}(\hat{\mathbf{X}}, \hat{\mathbf{y}}, q) \sim$$

$$\sim \max_{q} \mathrm{ELBO}_{1}(\hat{\mathbf{X}}, \hat{\mathbf{y}}, q)$$

К примеру, оптимизация ${\rm ELBO}_{\gamma}$ при $\gamma>1$ эквивалентна оптимизации ${\rm ELBO}$ для выборки меньшей мощности (и бОльшего вклада априорного распределения в оптимизацию).