Machine Learning Project

House Prices (Kaggle)

Team: Boost 5
DongHyun, Hua, James, Kevin, Zhe

Outline

- EDA
 Numerical Features
 Categorical Features
 Ordinal Features
- Pre-Processing

 Data Import/Cleaning
 and
 Imputation
- Baseline Model Performance

- Data Engineering
 Feature Engineering
 Feature Selection
- Model Selection
 5 Model Performances
- Future Work

Exploring Data Analysis And Baseline Model Performance

Numerical Data Exploration

Numerical Data

```
quantitative = [f for f in house.columns if house.dtypes[f] != 'object']
qualitative = [f for f in house.columns if house.dtypes[f] == 'object']
```

```
f = pd.melt(house, value_vars=quantitative)
g = sns.FacetGrid(f, col='variable', col_wrap=6, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")
```

Some great features for log transformation:,,,

Total Basement

YearBuilt

GrLivArea

LotFrontage

TotalBsmtSF

GarageArea

OverallQual

BsmtUniSF

Garage Year Built

LotArea

1st Floor

KitchenAbvGr

Numerical Data Correlations (Heatmap)

corr > = 0.5

1st Floor & Total Basement

Total Rooms Grd & Gr Liv

Garage Year Built & Year Built

Garage Area & Garage Cars

corr <= -0.4

Basement Full Bath

Basement Unif

Numerical Data on Sale Price

Top 6 Numerical Features by their correlation with Sale Price on scatterplot

GrLivArea

GarageArea

TotalBsmtSF

1stFlrSF

TotRmsAbvGrd

MasVnrArea

for c in qualitative:

house[c] = house[c].astype('category')

house[c] = house[c].fillna('MISSING')

house[c] = house[c].cat.add_categories(['MISSING'])

if house[c].isnull().any():

Categorical Data

36 Categorical Features

Categorical Data Correlations

'Neighborhood' feature has the leargest impact on SalesPrice having many different obs in a wide range of Sales price.

Exterior and Condition seem to have some strong impact as well

Ordinal Features

Converted categorical data with non-numerical features with rank into ordinal categories

Seems there are at least 5 house conditions from ordinal features having impact on

CaloBrico Overall Quality

Exterior Quality

Basement Quality

Kitchen Quality

Garage Finish

And the least correlated...

LotShape, Fence, OverallCond, etc

Pre-processing

Data Import and Cle

Missing Values

Imported all data without filtering NA and transfer 'fake' NA into something else

<u>Train/Test dataset Conversion</u>

- 1. Combined test.csv with train.csv and used data documentation to extract the data type and the factor levels
- 2. then converted object into <u>nominal</u> & <u>ordinal</u> categorical data.
- 3. Chose top <u>7 ordinal features</u> with high correlation with sale price, then converted them into numeric data.

Data Imputatio

KNN

used the KNN to impute the numeric data and for the categorical data.

Dummification

After imputation, we used 'get dummy' function to transfer <u>categorical variable</u> into dummy variables.

Data Engineering

Baseline Model

Baseline Model

Baseline Model - Algorith

Multi Linear Models

Lasso, Ridge and Elastic Net to train the linear model.

Tree based Models

GBM, Random Forest and XGboost to fit the tree-model. Then we put random noise in data frame in order to use Random Forest to find the feature importance of each feature.

OL

LM_Baseline score: 0.94542

Train RMSE: 0.09436

Test RMSE: 0.13085

<u>_</u>

The fitted values don' t have constant variance.

Elastic Net

EN Baseline score: 0.91527

Train Sqrt MSE: 0.11757

Test Sqrt MSE: 0.10059

Data Engineering

Data Engineering

Feature Engineering

1. Added total sqfootage feature

2. Garage

Replacing missing data with 0 on GarageYrBlt, GarageArea and GarageCars (Since No garage = no cars in such garage.)

3. Basement

Missing values are likely zero for having no basement; BsmtFinSF1, BsmtFinSF2, BsmtUnfSF, TotalBsmtSF, BsmtFullBath and BsmtHalfBath

4. LotFrontage

Since the area of each street connected to the house property most likely have a similar

5. Neighborhood

Area to other houses in its neighborhood, we can fill in missing values by the median LotFrontage of the neighborhood.

Feature Selection

Methods: Backward selection using Random Forest and Cross Validation

- R package Caret: Recursive Feature Elimination (RFE)
- R' s Random Forest package can handle categorical variables as-is **if #levels < 33**
- Backward selected w/ cross validation (CV)
- remove 5 variables at a time from full set of 72 variables, and check CV RMSE, to find the best result.

RFE backward selection result

62 (out of 72) variables yields min RMSE

10 variables removed from RMSE

Alley	ExterCond	BsmtFinSF2
Heating	Electrical	
BsmtHal	fBath	
PavedDrive	Fence	MiscFeature

MoSold

Feature Selection

Feature importance analysis (with noise variables)

- Added <u>one [0,1] uniform</u> and <u>one standard normal</u> <u>noise variable as "new features"</u>
- Ran <u>Random Forest</u> (w/ best tuned hyperparameters) and checked feature importance ranking <u>compared w/</u> <u>two noise variables</u>
- The relative ranking of the two noise variables could vary a lot, so it's better to add two differently distributed noise variables for the check
- Select the variables w/ feature importance ranking lower than the noise variables as additional feature removal candidates

9 more variables to remove:BsmtFinType2

LandContour Enclosed

SaleType Functional

LotConfig ScreenPorch

YrSold LandSlope

Porch

Feature Selection

R based feature analysis, results used in Python modeling to drop features

- Tested (1) drop 10 variables identified from backward selection (2) drop additional 9 variables that has less feature importance than noise variables.
- Both dropping will improve linear regression model performance (i.e. lower RMSE), e.g. base linear regression, Ridge, Lasso, ElasticNet.
- Overall stacked final model w/ best ElasticNet + best GBM + best RF performance is improved a little.

GBM

Better result (after re-tuning)

Random Forest Degraded (after re-tuning) Stacked

= ElasticNet

+ GBM

+ RF

Conclusion

dropping selected lowest importance features helps the overall modeling performance.

Feature importance analysis (with noise variables)

Top 30 important features from GBM and RF

Model Selectin & Stacking

Best single model selection

- Compared basic linear regression, best tunned Ridge, Lasso, ElasticNet, GBM, and RF, the best performance is achieved by ElasticNet.
- With best tunned ElasticNet model, only about 32% features are finally used (i.e. w/ non-zero model coefficents) from all the totally 280 feature variables (all categorical variables been converted into dummy variables).

Baseline Model Performance

	OLS	Lasso	ElasticNet	GBM	RF
RMSE Training	0.094358	0.110304	0.117567	0.087697	0.058343
RMSE Testing	0.130852	0.097350	0.100592	0.108546	0.117223

Model Performance

	OLS	Ridge	Lasso	ElasticNet	GBM	RF	Stacked
RMSE Training	0.1026	0.1150	0.1128	0.1128	0.0489	0.0624	0.0635
RMSE Testing	0.1273	0.0998	0.0962	0.0956	0.0976	0.1155	0.0973

Model Selection

Stacked Model Performance (ElasticNet, GBM, and

Multi Model Stacking

Best multi-model stacking

- Stacked best ElasticNet, GBM, and RF models together
- Performance is a little bit <u>lower than best ElasticNet</u> model alone.
- Still deemed more robust than ElasticNet alone, and firstly submitted to <u>Kaggle: score: 0.12906 (top 29%).</u>
- Confirmed by submitting <u>best ElasticNet model</u> alone to Kaggle: score: **0.13252** (worse) and <u>best GBM model</u> alone: score: **0.13113** (worse)

Future Work

- Try other <u>advance models</u>
 XGBoost, SVR, etc. and tune w/ Bayes
 Optimizer
- No converting categorical vars to dummy for tree-based models (H2O RF, etc.)
- <u>Different feature selection for</u>
 <u>different models</u>
 i.e. only drop features for linear models,
 but not tree-based non-linear models
- More preprocessing choices
 BoxCox transformation, PCA, etc.

- Outlier check and removal
- Clustering analysis generate new useful categorical features
- <u>Feature selection</u>
 try other advanced algorithms e.g.
 Genetic algo, and simulated
 annealing, from R Caret package.