Solving the Steiner tree problem by an approximation algorithm

E.Bahrami Rad e-mail: s6embahr@uni-bonn.de

Contents

1	Introduction	2
2	Steiner tree problem	2
3	The approximation algorithm	2
4	Implementation	3
5	Results	4
6	Conclusions	5

1 Introduction

An approximation algorithm for finding a Steiner tree of a connected, undirected distance graph was implemented. This algoritm has approximation ratio of $2-\frac{2}{l}$, which means it gives us a Steiner tree with total distance of all edges at most $2-\frac{2}{l}$ times that of the optimal tree, where l is the number of leaves in the optimal tree. The worst case time complexity of this algorithm is $\mathcal{O}(|V|\log|V|+|E|)$, where E is the set of edges and V is the set of vertices.

2 Steiner tree problem

Given an undirected distance graph G=(V,E,d) and a set S, where E is the set of edges in G, V is the set of vertices in G, d is a distance function which maps E into the set of nonnegative numbers and $S \in V$ is a subset of V. Let Q be any subset of vertices in a connected subgraph G' of G. We shall say that G' spans Q. A spanning tree of G is tree subgraph of G that spans V. The minimal spanning tree of G is a spanning tree of G such that the total distance of on its edges is minimal among all spanning trees. The Steiner tree for a given G and S is the tree that spans S, and the minimal Steiner tree is the one among all Steiner trees for G and S that has minimal total distance. The problem for finding a minimal Steiner tree for any given G and S has been proved to be NP-Complete[2].

Figure 1: Example of Steiner tree problem with terminal set $S = \{V_1, V_2, V_3, V_4\}$

3 The approximation algorithm

The algorithm is a modified version of Kou, Markowsky and Berman[3], which gives a better running time and also because of reducing the problem to shortest path and minimum spanning tree it is simpler. Given G = (V, E, d) a connected, undirected distance graph, and the set of terminals $S \subseteq V$. Then the graph $G'_1 = (S, E'_1, d'_1)$ can be constructed as follows.

For every vertex $s \in S$ let N(s) be the set of vertices in V which are closer to s than to any other vertex in S(in computational geometry N(s) is called the Voronoi region of vertex s). We can partition V according to N(s) by considering $\{N(s); s \in S\}$, in other words every vertex $v \in V$ belongs uniquely to one of the

partitions N(s) with s as its center, where v is closer to s than any other vertex $q \in S$, $q \neq s$. Now, the graph $G'_1 = (S, E'_1, d'_1)$ is defined by

$$E_1' = \{(s,t); s, t \in S \text{ and there is an edge}$$

$$(u,v) \in E \text{ with } u \in N(s), v \in N(t)\}$$

$$(1)$$

and

$$d'_1(s,t) = \min\{d_1(s,u) + d(u,v) + d_1(v,t); (u,v) \in E, u \in N(s), v \in N(t)\}.$$
(2)

In equation 2 $d_1(v_i, v_j)$ is equal to the distance of shortest path from v_i to v_j for $v_i, v_j \in V$ in graph G.

 $d_1'(s,t)$ in equation 2 is the length of shortest path in G restricted to $N(s) \bigcup N(t)$. And the edge $(u',v') \in E_1'$ corresponds to the bridge edge $(u,v) \in E$ which acts like a bridge that goes from region N(s) to region N(t). Now the algorithm is as follow:

- 1. Construct the graph $G'_1 = (S, E'_1, d'_1)$
- 2. Find a minimum spanning tree G_2 of G'_1 .
- 3. Construct a subgraph G_3 of G by replacing each edge in G_2 by its corresponding shortest path in G.
- 4. Find a minimum spanning tree G_4 of G_3 .
- 5. Construct a Steiner tree G_5 from G_4 by deleting edges in G_4 , if necessary, so that no leaves in G_5 from the set V-S

Step 1 of Algorithm 1 dominates the computational time. This step requires the solution of a single shortest path problem which takes $\mathcal{O}(|V| \log |V| + |E|)$ by using Dijkstra algorithm and Fibonacci heaps[4].

4 Implementation

Step 1 of Algorithm 1 requires the voronoi region $\{N(s); s \in S\}$ of each vertex $v \in V$. The partition $\{N(s); s \in S\}$ can be computed by adjoining an auxiliary vertex S_0 and edges $(s_0, s), s \in S$, with length 0 to G and then performing a single source shortest path with source s_0 . This step was implemented in the program by using a min priority queue based on a priority heap. The priority queue provides $\mathcal{O}(\log(n))$ time for enqueing and dequeing. For the Dijkstra algorithm the priority queue stores at most |V| number of item, thus each of enqueing and dequeing need $\mathcal{O}(\log(|V|))$ and totally there are |E| number of such operations, which gives the running time of $\mathcal{O}(|E|\log|V|)$ for step 1. This step

also needs $\mathcal{O}(|E|)$ for finding G_1' edges. For finding G_1' 's edges the program goes through all edges $(u,v) \in E$ and generates the triples $(s(u),s(v),d_1(s(u),u)+d(u,v)+d_1(v,s(v)))$ in which $s(v) \in S$ is the center of region that v belongs to. Then the program finds the minimum distance for edge (s(u),s(v)) over all distances $d_1(s(u),u)+d(u,v)+d_1(v,s(v))$.

Step 2 computes the minimum spanning tree G_2 of G'_1 . The graph G'_1 has $\mathcal{O}(|E|)$ edges and hence this step can be carried out in $\mathcal{O}(|E|log(|S|))$ by using Kruskal algorithm and Union Find data structure[4].

In step 3 the edges of G_2 have to be replaced by its corresponding edges from the shortest path computed in step 1. Consider the edge (u, v) of G_2 , this edge corresponds to the shortest path between u and v in the graph G, here all the edges of G from this shortest path are plugged back to G_2 . In step 1 the predecessor of each vertex has been computed and stored in an array, hence by means of this array the shortest path can be constructed.

Step 4 is the same is step 2 in which the minimum spanning tree of the graph from step 3 was computed. A

5 Results

Several tests has been performed to evaluate the performance of this aproximation algorithm. The code is implemented in Java 1.8 and the dataset from 11th DIMACS Implementation Challenge[5] is used. All runs are performed on a machine with score 181.433863(the score is calculated according to DIMACS Implementation Challenge benchmark code to compare the results from different machines).

Figure 2: Comparing approximation ratio over instances of Steiner tree problem

The ratio in Figure 2 is the average(arithmetic mean) of several instances for each kind. R100KEFST, is the instance with fractional weight, Euclidean distance. TSPFST, PUC, P6Z and LIN are the instances of *SteinLib*[6] testsets.

6 Conclusions

We have presented an implementation of an approximation algorithm for Steiner tree problem. The algorithm has approximation ratio of $2 - \frac{2}{l}$, where l is the minimum number of leaves in any Steiner tree for the given graph. The algorithm running time is dominated by a single shortest path problem which is computed in our code using Dijkstra algorithm and priority queue which yields the running time of $\mathcal{O}(|E|log|V|)$.

References

- [1] Mehlhorn, K. 1987, A faster approximation algorithm for the Steiner problem in graphs, Information Processing Letters 27, 125-128
- [2] Karp, R.M. 1972, Reducibility among combinatorial problems, In R. E. Miller and J. W. Thatcher (editors). Complexity of Computer Computations. New York: Plenum. pp. 85-103.
- [3] L. Kou, G. Markowsky, and L. Berman A Fast Algorithm for Steiner Trees Acta Informatica, 15,141-145(1981)
- [4] M.L. Fredman and R.E. Tarjan, Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms(IEEE, 1984) 338-246
- [5] Sariel Har-Peled, Greedy Algorithms for Minimum Spanning Trees, CS 473: Fundamental Algorithms, Fall 2011, https://courses.engr.illinois.edu/cs473/fa2011/lec/12_notes.pdf
- [6] 11th DIMACS Implementation Challenge in Collaboration with ICERM: Steiner Tree Problems, http://dimacs11.zib.de/downloads.html
- [7] SteinLib Testdata Library, SteinLib is a collection of Steiner tree problems in graphs and variants. http://steinlib.zib.de/steinlib.php