Оглавление

Введение	3
Основные определения	5
Постановка задачи	9
Результаты	10
Теоремы	. 10
Пример	. 11
Заключение	16
Приложение	17
Список литературы	19

Введение

Одним из стандартных способов задания функций k-значной логики являются поляризованные полиномиальные формы (ППФ), которые также называются обобщенными формами Рида-Мюллера, или каноническими поляризованными полиномами. В ППФ каждая переменная имеет определенную поляризацию. Длиной полиномиальной формы называется число попарно различных слагаемых в ней. Длиной функции f в классе ППФ называется наименьшая длина среди длин всех поляризованных полиномиальных форм, реализующих f. Функция Шеннона $L_k^K(n)$ длины определяется как наибольшая длина среди всех функций k-значной логики в классе K от n переменных, если K опущено, то подразумевается класс ППФ. Практическое применение ППФ нашли при построении программируемых логических матриц (ПЛМ) [1,2], сложность ПЛМ напрямую зависит от длины ППФ, по которой она построена. Поэтому в ряде работ исследуется сложность ППФ различных функций [3–9].

В 1993 В.П. Супрун [3] получил первые оценки функции Шеннона для функций алгебры логики :

$$L_2(n) \geqslant C_n^{\left[\frac{n}{2}\right]},$$

$$L_2(n) < 3 \cdot 2^{n-1},$$

где [a] обозначает целую часть a.

Точное значение функции Шеннона для функций алгебры логики в 1995 г. было найдено Н. А. Перязевым [4]:

$$L_2(n) = \left[\frac{2^{n+1}}{3}\right].$$

Функции k-значных логик являются естественным обобщением функций алгебры логики. Для функций k-значной логики верхняя оценка функции Шеннона была получена в 2002 г. С. Н. Селезневой [5] :

$$L_k(n) < \frac{k(k-1)}{k(k-1)+1}k^n,$$

в 2015 году она была улучшена [12]

$$L_k(n) < \frac{k(k-1)-1}{k(k-1)}k^n.$$

При построении ПЛМ рассматривают и другие полиномиальные формы. Например класс обобщенных полиномиальных форм. В классе обобщенных полиномиальных форм, в отличие от класса поляризованных полиномиальных форм, переменные могут иметь различную поляризацию в разных слагаемых. В статье К. Д. Кириченко [6], опубликованной в 2005 г., был предложен метод построения обобщенных полиномиальных форм из которогоследует $L_2^{\text{O.П.}}(n) = O(\frac{2^n}{n})$.

В работах [7,10] получено, что $L_k^{\text{O.П.}}(n) = O(\frac{k^n}{n}).$

В 2012 г. Н. К. Маркеловым была получена нижняя оценка функции Шеннона для функции трехзначной логики в классе поляризованных полиномов [8]:

$$L_3(n) \geqslant \left[\frac{3}{4}3^n\right],$$

в [11] эта оценка была достигнута на симметрических функциях.

Основные определения

Пусть $k\geqslant 2$ — натуральное число, $E_k=\{0,1,\ldots,k-1\}$. Весом набора $\alpha=(a_1,\ldots,a_n)\in E_k^n$ назовем число $|\alpha|=\sum\limits_{i=1}^n a_i$. Моном $\prod\limits_{a_i\neq 0} x_i^{a_i}$ назовем соответствующим набору $\alpha=(a_1,\ldots,a_n)\in E_k^n$ и обозначим через K_α . По определению положим, что константа 1 соответствует набору из всех нулей. Функцией k-значной логики называется отображение $f^{(n)}:E_k^n\to E_k$, $n=0,1,\ldots$ Множество всех функций k-значной логики обозначим через P_k , множество всех функций k-значной логики, зависящих от переменных x_1,\ldots,x_n , обозначим через P_k^n . Функция $j_i(x)=\begin{cases} 1,\ \text{если }x=i;\\ 0,\ \text{если }x\neq i. \end{cases}$

Если k — простое число, то каждая функция k-значной логики $f(x_1,\ldots,x_n)$ может быть однозначно задана формулой вида

$$f(x_1, \dots, x_n) = \sum_{\alpha \in E_k^n : c_f(\alpha) \neq 0} c_f(\alpha) K_\alpha ,$$

где $c_f(\alpha) \in E_k$ – коэффициенты, $\alpha \in E_k$, и операции сложения и умножения рассматриваются по модулю k. Это представление функций k-значной логики называется ее полиномом по модулю k. При простых k однозначно определенный полином по модулю k для функции k-значной логики f будем обозначать через P(f).

Определим поляризованные полиномиальные формы по модулю k. Поляризованной переменной x_i с поляризацией $d, d \in E_k$, назовем выражение вида (x_i+d) . Поляризованным мономом по вектору поляризации δ , $\delta=(d_1,\ldots,d_n)\in E_k^n$, назовем произведение вида $(x_{i_1}+d_{i_1})^{m_1}\cdots(x_{i_r}+d_{i_r})^{m_r}$, где $1\leqslant i_1<\ldots< i_r\leqslant n$, и $1\leqslant m_1,\ldots,m_r\leqslant k-1$. Обычный моном является мономом, поляризованным по вектору $\tilde{0}=(0,\ldots,0)\in E_k^n$.

Выражение вида $\sum_{i=1}^{l} c_i \cdot K_i$, где $c_i \in E_k \setminus \{0\}$ — коэффициенты, K_i — попарно различные мономы, поляризованные по вектору $\delta = (d_1, \ldots, d_n) \in E_k^n$, $i = 1, \ldots, l$, назовем поляризованной полиномиальной нормальной формой (ППФ) по вектору поляризации δ . Мы будем считать, что константа 0 является ППФ по произвольному вектору поляризации. Заметим, что при простых k для каждого вектора поляризации каждую функцию k-значной логики можно однозначно представить ППФ по этому вектору поляризации [5]. При простых k однозначно определенную ППФ по вектору поляризации $\delta \in E_k^n$ для функции $f \in P_k^n$ будем обозначать через $P^{\delta}(f)$.

Длиной l(p) ППФ p назовем число попарно различных слагаемых в этой ППФ. Положим, что l(0)=0. При простых k длиной функции k-значной логики в классе ППФ называется величина $l^{\Pi\Pi\Phi}(f)=\min_{\delta\in E_n^n}l(P^\delta(f))$.

Функция k-значной логики $f(x_1, \dots, x_n)$ называется симметрической, если

$$f(\pi(x_1),\ldots,\pi(x_n))=f(x_1,\ldots,x_n)$$

для произвольной перестановки π на множестве переменных $\{x_1,\ldots,x_n\}$. Множество всех симметрических функций k-значной логики обозначим через S_k . Симметрическая функция $f(x_1,\ldots,x_n)$ называется периодической с периодом $\tau=(\tau_0\tau_1\ldots\tau_{T-1})\in E_k^T$, если $f(\alpha)=\tau_j$ при $|\alpha|=j\pmod T$ для каждого набора $\alpha\in E_k^n$. При этом число T называется длиной периода. Периодическую функцию k-значной логики $f(x_1,\ldots,x_n)$ с периодом $\tau=(\tau_0\tau_1\ldots\tau_{T-1})\in E_k^T$ будем обозначать через $f_{(\tau_0\tau_1\ldots\tau_{T-1})}^{(n)}$. Понятно, что такое обозначение полностью определяет эту функцию.

Введем функцию $\mathrm{rol}_i(\alpha) \in E_k^n \times E_k \to E_k^n$, производящую циклический сдвиг вектора α влево. Пусть $\alpha = (a_1, \ldots, a_n)$, тогда $\mathrm{rol}_i(\alpha) = (a_{(1+i) \mod T}, \ldots, a_{(n+i) \mod T})$, где T – длина вектора α .

Функция $\operatorname{ror}_i(\alpha) \in E_k^n \times E_k \to E_k^n$ производит циклический сдвиг вектора α вправо. Пусть T – длина вектора α , тогда $\operatorname{ror}_i(\alpha) = \operatorname{rol}_{(-i) \mod T}(\alpha)$.

В [9] дается описание быстрого алгоритма построения поляризованного полинома по заданному вектору функции и поляризации d. Данный алгоритм можно использовать для получения периодов, участвующих в разложении периодической симметрической функции $f^{(n+1)}$ с периодом τ .

$$A_d \cdot F(au) = egin{pmatrix} au_0 \ au_1 \ dots \ au_{k-1} \end{pmatrix}$$
 , где

$$f_{\tau}^{(n+1)} = f_{\tau_{k-1}}^{(n)}(x_{n+1} + d)^{k-1} + f_{\tau_{k-2}}^{(n)}(x_{n+1} + d)^{k-2} + \dots + f_{\tau_0}^{(n)}$$

$$A = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & k-1 & -(2^{k-2}) \bmod k & \dots & -((k-1)^{k-2}) \bmod k \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ k-1 & k-1 & k-1 & \dots & k-1 \end{pmatrix}$$

$$(1)$$

 A_d получается из матрицы A циклическим сдвигом столбцов A влево на d столбцов или построчным применением функции rol_d к матрице A.

$$F(\tau) = \begin{pmatrix} rol_0(\tau) \\ rol_1(\tau) \\ \vdots \\ rol_{k-1}(\tau) \end{pmatrix}$$

F(au) – матрица, в которой в i-той строке стоит сдвиго влево периода au на i элементов.

Например в трехзначной логике для функции с периодом [1,1,2,2] получим

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 2 & 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 1 \\ 2 & 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 0 & 2 & 0 \\ 2 & 1 & 1 & 2 \end{pmatrix}$$

Пусть матрица A состоит из строк a_i , a_i' – строка, полученна из a_i , добавлением нулей справа так, что длина строки a_i' равна T. Тогда матрица $A^{(i)}$ состоит из T цикличиских сдвигов вправо строки a_i' :

$$A^{(i)} = \begin{pmatrix} ror_0(a_i') \\ ror_1(a_i') \\ \vdots \\ ror_{T-1}(a_i') \end{pmatrix}$$

Матрица $A^{(0)}$ – единичная матрица размера $T \times T$. Для всех τ_i из формулы (1) верно $\tau_i = A^{(i)} \cdot \tau$. Период τ называется вырожденным, если $l(f_{\tau}^{(n)}) = \bar{o}(k^n)$ при $n \to \infty$. Период τ называется сложным, если $\exists n_0, c > 0 : \forall n \geqslant n_0 \Rightarrow l(f_{\tau}^{(n)}) \geqslant c \cdot k^n$. Обозначим через $\tilde{0}$ – нулевой период.

Введем индуктивно множество периодов, порожденных периодом τ за i шагов – $\Pi_i(\tau)$. В данном случае матрицы рассматриваются, как множества строк.

$$\Pi_0(\tau) = \{\tau\}$$

$$\Pi_1(\tau) = \bigcup_{d \in E_k} A_d \cdot F(\tau)$$

$$\Pi_{i+1}(\tau) = \bigcup_{\theta \in \Pi_i(\tau)} \Pi_1(\theta)$$

Обозначим через $\Pi(\tau)$ такое $\Pi_i(\tau)$, что $\Pi_i(\tau) = \Pi_{i+1}(\tau)$.

Постановка задачи

- 1. Нахождение периодов, являющихся сложными, в k-значных логиках.
- 2. Отыскание критериев сложности периодов.
- 3. Получение нижних оценок длин некоторых симметрических функций k-значных логик в классе $\Pi\Pi\Phi$.

Результаты

Теоремы

Теорема 1. Если $\tilde{0} \notin \Pi(\tau)$, то τ сложеный период.

Доказательство. Теорема 1 является следствием теоремы 2.

П

Теорема 2. Если $\tilde{0} \notin \Pi(\tau)$, то $\forall \sigma \in \Pi(\tau) \forall n \geqslant n_0 \Rightarrow l(f_{\sigma}^{(n)}) \geqslant c \cdot k^n$, где

$$T$$
 – длина периода au $k^{n_0}>T>k^{n_0-1}$, нетрудно заметить, что $n_0=\lceil\log_k T\rceil$ $c=\frac{1}{k^{n_0}}$

Доказательство. Доказательство проведем индукцией по n.

Базис индукции:

$$l(f_{\sigma}^{(n_0)}) \geqslant 1 = \frac{1}{k^{n_0}} \cdot k^{n_0}$$

Индуктивный переход:

Предположим, что теорема верна для $n \geqslant n_0$, докажем ее для n+1. Для любой поляризации $d \in E_k$ функция $f_{\sigma}^{(n+1)}$ выражается следующим полиномом:

$$f_{\sigma}^{(n+1)} = f_{\sigma_{k-1}}^{(n)} \cdot (x_{n+1} + d)^{k-1} + \ldots + f_{\sigma_1}^{(n)} \cdot (x_{n+1} + d) + f_{\sigma_0}^{(n)},$$
 где

функции $f_{\sigma_i}^{(n)}$ могут быть различными при разных поляризациях d.

По предположению индукции $\forall i \in E_k \Rightarrow l(f_{\sigma_i}^{(n)}) \geqslant \frac{1}{k^{n_0}} \cdot k^n$, следовательно $l(f_{\sigma_i}^{(n+1)}) \geqslant k \cdot \frac{1}{k^{n_0}} \cdot k^n = \frac{1}{k^{n_0}} \cdot k^{n+1}$

Заключение

В работе получены следующие результаты:

- 1. Доказана теорема о нижней оценки длины функций, задаваемых сложными периодами.
- 2. Получено достаточное условие сложности периодов.
- 3. Написана программа для работы с периодами в которой реализованы функции:
 - Проверка периода на сложность
 - Построение периодов, порожденных данным
 - Построение специальных матриц, описанных в основных определених, и функций для работы с ними.
 - Вывод полиномов функций по векторам периодов.

Приложение

Сдесь приведен код основных функций, используемых в программе.

```
k :: Int
k = 5
rol :: [a] -> Int -> [a]
rol xs i = let (l,r) = splitAt i xs in r ++ l
ror :: [a] -> Int -> [a]
ror xs i = let (1,r) = splitAt (length xs - i) xs in r ++ 1
step n v = iterate iter [v] !! n where
  iter vs = nub $
    concatMap (\v->concatMap (\d->toLists $ modkM $ aPolar d * fromPeriod v) [0..k-1]) vs
invert' k 1 = 1
invert' k p = (n * k + 1) 'div' p
  where n = p - invert', p (k 'mod', p)
invert = invert' k
allVectors n = sequence $ take (fromIntegral n) $ repeat [0..k-1]
allNormalVectors n = map(1:) $ allVectors (n-1)
normalize :: [Int] -> [Int]
normalize [] = error "Empty list"
normalize xs = normalize' xs xs where
  normalize' [] ys
                       = error "Zero list"
  normalize' (x:xs) ys | x == 0 = normalize' xs ys
                       | otherwise = map (\n -> n * invert x 'mod' k) ys
reverseMatrix = fromLists . reverse . toLists
modkM = fmap ('mod' k)
a_ij = uncurry a_ij' where
```

```
a_{ij}, i j | i == 1 && j == 1 = 1
              | i == k
                             = (-1) 'mod' k
              | i == 1 | | j == 1 = 0
              | otherwise = (-(j-1)^{(k-1-(i-1))} \pmod{k}) 'mod' k
a = matrix k k a_ij
aPolar d = fromLists $ Data.List.transpose $
  rol (Data.List.transpose $ toLists a) d
fromPeriod xs = fromLists $ map (rol xs) [0..k-1]
polarCoeffs d xs = reverse $ toLists $ modkM $ aPolar d * fromPeriod xs
allCoeffs xs = concatMap (\d -> polarCoeffs d xs) [0..k-1]
setSort = compress . sort where
  compress []
                 = []
  compress (x:xs) = x : (compress $ dropWhile (== x) xs)
makeAllFamily ps = makeAllFamily' [normalize ps] $ setSort $
  map normalize $ allCoeffs ps where
  makeAllFamily' xss yss | xss == yss = yss
                          | otherwise = makeAllFamily' (insert zs xss) zss where
                            zs = normalize $ firstNotIn yss xss
                            zss = setSort $ yss ++ (map normalize $ allCoeffs zs)
  firstNotIn (y:ys) (x:xs) | y < x = y
                           | y > x = firstNotIn (y:ys) xs
                           | y == x = firstNotIn ys xs
  firstNotIn (y:ys) [] = y
singular [] = putStr ""
singular (x:xs) = do
  result <- try (evaluate (makeAllFamily x)) :: IO (Either SomeException [[Int]])
  case result of
             -> putStrLn $ "Singular " ++ show x
    Left ex
    Right val -> putStrLn $ "Nonsingular " ++ show x ++ " " ++ (show $ length val)
  singular xs
```

Список литературы

- 1. Угрюмов Е. П. Цифровая схемотехника. СПб.: БХВ-Петербург, 2004.
- 2. Sasao T., Besslich P. On the complexity of mod-2 sum PLA's // IEEE Trans.on Comput. 39. N 2. 1990. P. 262–266.
- 3. Супрун В. П. Сложность булевых функций в классе канонических поляризованных полиномов // Дискретная математика. 5. №2. 1993. С. 111–115.
- 4. Перязев Н. А. Сложность булевых функций в классе полиномиальных поляризованных форм // Алгебра и логика. 34. №3. 1995. С. 323–326.
- 5. Селезнева С. Н. О сложности представления функций многозначных логик поляризованными полиномами. Дискретная математика. 14. №2. 2002. С. 48–53.
- 6. Кириченко К. Д. Верхняя оценка сложности полиномиальных нормальных форм булевых функций // Дискретная математика. 17. №3. 2005. С. 80–88.
- 7. Селезнева С. Н. Дайняк А. Б. О сложности обобщенных полиномов k-значных функций // Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика. №3. 2008. С. 34–39.
- 8. Маркелов Н. К. Нижняя оценка сложности функций трехзначной логики в классе поляризованных полиномов // Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика. №3. 2012. С. 40–45.
- 9. Селезнева С. Н. Маркелов Н. К. Быстрый алгоритм построения векторов коэффициэнтов поляризованных полиномов k-значных функций // Ученые записки Казанского университета. Серия Физико-математические науки. 2009. 151. №2 С. 147-151.
- 10. Башов М. А., Селезнев С. Н. О длине функций k-значной логики в классе полиномиальных нормальных форм по модулю k // Дискретная математика. 2014. Т. 26, вып. 3. С. 3-9.

- 11. Селезнева С. Н. Сложность систем функций алгебры логики и систем функций трехзначной логики в классах поляризованных полиномиальных форм // Дискретная математика. 2015. Т. 27, вып. 1. С. 111 122.
- 12. Балюк А. С., Янушковский Г. В. Верхние оценки функций над конечными полями в некоторых классах кронекеровых форм // Известия Иркутского государственного университета. Серия: Математика. 2015. Т.14. С. 3-17.