GRAND CHALLENGES IN COMPUTER SCIENCE — PROJECT 1 FINAL PRESENTATION

Understanding COVID-19 in the US, under the context of community health, socio-economic factors and mobility trends

Presented by - Pragya Kaushik

Calls for health funding to be prioritised as poor bear brunt of Covid-19

Most deprived areas of England and Wales have 55.1 deaths per 100,000 people, compared with 25.3 in affluent areas

- Coronavirus latest updates
- See all our coronavirus coverage

Helen Pidd, Caelainn Barr and Aamna Mohdin

Sat 2 May 2020 04.12 AEST

widening inequality

CAROLINA SÁNCHEZ-PÁRAMO, RUTH HILL, DANIEL GERSZON MAHLER, AMBAR NARAYAN & NISHANT YONZAN | OCTOBER 07, 2021

World v Business v Legal v Markets v Breakingviews Technology v Investigations

9:46 PM GMT+9:30 Last Updated 5 months ago

United States

U.S. poor died at much higher rate from COVID than rich, report says

Understanding COVID-19 in the US, under the context of community health, socio-economic factors and mobility trends

PROBLEM RELEVANCE

- COVID has impacted the society unequally; some were more vulnerable than others due to health and socio-economic factors
- As we are paving our way out of the COVID-19 pandemic, governments all around the world, including the US, need to construct policies that target and help the ones in need.
- Through my project, I have investigated the relative associations between COVID-19 cases, mortality, mobility trends, as well as sociodemographic, health and economic factors
- Such analysis allows policy makers to get an insight into how the COVID pandemic has impacted lives from different socio-economic backgrounds, and thus guide them to make better targeted policies.

METHODS

Combined 8 different datasets from 5 major sources:

- Centres for Disease Control and Prevention (US Government agency)
- Google COVID-19 Community Mobility Report
- U.S. Department of Agriculture
- County Health Rankings (by the University of Wisconsin-Madison)
- USAFacts

Keeping population density in mind, I chose to analyse the 30 most populated counties in the US.

Wrote code in Python; imported libraries like Seaborn, Matplotlib, NumPy and Pandas

Since I had to filter out data of the same 30 counties from different datasets, I used one common dictionary to make things easier.

```
dictionary = { 'Los Angeles County, California': 6037,
  'Cook County, Illinois': 17031,
  'Harris County, Texas': 48201,
  'Maricopa County, Arizona': 4013,
  'San Diego County, California': 6073,
  'Orange County, California': 6059,
  'Miami-Dade County, Florida': 12086,
  'Kings County, New York': 36047,
  'Dallas County, Texas': 48113,
  'Riverside County, California': 6065,
  'Queens County, New York': 36081,
  'Clark County, Nevada': 32003,
  'King County, Washington': 53033,
  'San Bernardino County, California': 6071,
  'Tarrant County, Texas': 48439,
  'Bexar County, Texas': 48029,
  'Broward County, Florida': 12011,
  'Santa Clara County, California': 6085,
  'Wayne County, Michigan': 26163,
  'Alameda County, California': 6001,
  'Middlesex County, Massachusetts': 25017,
  'Sacramento County, California': 6067,
  'New York County, New York': 36061,
  'Philadelphia County, Pennsylvania': 42101,
  'Suffolk County, New York': 36103,
  'Palm Beach County, Florida': 12099,
  'Hillsborough County, Florida': 12057,
  'Bronx County, New York': 36005,
  'Orange County, Florida': 12095,
  'Nassau County, New York': 36059,
```


Percentage Changes in Income (from 2019 to 2020)

Bar chart: Counties with highest and lowest COVID cases and impact on Median Household Income

Higher income counties had lower number of COVID-19 cases

- In general, counties with lower income have higher number of cases and counties with higher income have lower number of cases
- Los Angeles, which is the county with the most cases, had the lowest increase in income from 2019 to 2020.
- Whereas, in Santa Clara and Alameda counties, which have the lowest number of cases, had the most increase in income.

CALCULATING AVERAGES

2020-

12-28

2020-

12-29

2020-12-30

2020-12-31 3

_																		
1						month	Los Angeles County, California	Cook County, Illinois	Harris County, Texas	Maricopa County, Arizona	San Diego County, California	Orange County, California	Miami- Dade County, Florida	Kings County, New York	Dallas County, Texas		Sacramento County, California	New Yor County New Yor
date					0	Mar	-21.064516	-20.516129	-14.548387	-12.870968	-21.193548	-21.935484	-21.129032	-24.193548	-15.322581	23.935484	-18.290323	-44.19354
2020-					1	Apr	-51.766667	-48.100000	-37.333333	-37.933333	-53.866667	-54.000000	-51.400000	-63.100000	-39.100000	55.866667	-44.833333	-85.70000
02-15					2	May	-45.741935	-38.322581	-21.548387	-26.193548	-46.903226	-47.000000	-40.387097	-49.387097	-24.612903	45.322581	-38.967742	-80.16129
2020-					3	Jun	-34.033333	-23.733333	-16.633333	-21.533333	-34.200000	-34.400000	-28.533333	-36.766667	-18.066667	32.166667	-28.033333	-73.13333
02-16					4	Jul	-32.096774	-16.322581	-20.903226	-26.935484	-31.419355	-33.258065	-30.967742	-27.193548	-20.516129	25.129032	-28.354839	-65.19354
2020-					5	Aug	-31.290323	-17.032258	-18.806452	-25.548387	-29.354839	-31.193548	-31.580645	-25.000000	-19.064516	23.387097	-29.225806	-61.74193
02-17					6	Sep	-30.500000	-18.033333	-17.700000	-22.366667	-27.066667	-28.300000	-28.433333	-22.500000	-18.000000	22.300000	-27.433333	-58.26666
2020-					7	Oct	-29.677419	-21.129032	-16.354839	-19.677419	-25.709677	-27.161290	-25.322581	-28.290323	-18.096774	25.225806	-24.77 1194	-57.80645
02-18					8	Nov	-31.300000	-29.466667	-17.766667	-19.766667	-29.133333	-29.200000	-25.666667	-30.266667	-20.633333	28.900000	-27.70)000	-60.36666
2020- 02-19					9	Dec	-34.354839	-28.645161	-16.032258	-18.387097	-32.290323	-32.903226	-21.193548	-32.838710	-19.967742	30.709677	-29.543387	-62.96774
	sub_region_1	sub_region_2	census_fips_code	date	retail_an	d_recrea	ation_percen	t_change_fro	om_baseline	year mor	nth day		Но	rizonta	al mea	n		
2020-	Arizona	Maricopa County	4013.0	2020-02-15					2.0	2020	2 15		_	uld gi			+	
12-27	Arizona	Maricopa County	4013.0	2020-02-16					5.0	2020	2 16			41.1	•		Vertica	al

oub_rogion_r	oub_rogion_L	concac_npc_codo	date	Totali_ana_rot alion_porotin_onango_nom_bacolino	, ou.		uuj
Arizona	Maricopa County	4013.0	2020-02-15	2.0	2020	2	15
Arizona	Maricopa County	4013.0	2020-02-16	5.0	2020	2	16
Arizona	Maricopa County	4013.0	2020-02-17	9.0	2020	2	17
Arizona	Maricopa County	4013.0	2020-02-18	1.0	2020	2	18
Arizona	Maricopa County	4013.0	2020-02-19	4.0	2020	2	19
···							
Washington	King County	53033.0	2020-12-27	-41.0	2020	12	27
Washington	King County	53033.0	2020-12-28	-30.0	2020	12	28
Washington	King County	53033.0	2020-12-29	-30.0	2020	12	29
Washington	King County	53033.0	2020-12-30	-31.0	2020	12	30
Washington	King County	53033.0	2020-12-31	-28.0	2020	12	31

monthly average of all 30 counties

Verticai mean would give yearly average

Scatterplot: Workplace mobility rate Vs Median Household Income, for all 30 counties

- Observe a negative correlation
- Suggests that the higher the income of a county was, the more people avoided coming to the office.
- While in counties with lesser income, the mobility at the workplace didn't decrease as much. Hence, people continued to go to their workplace and risked their lives.

Scatterplot: Median Household Income Vs Mortality, for all 30 counties

- Observe a weak negative correlation
- Suggests that the counties with higher income witnessed lesser deaths.
- While counties with lesser income witnessed more deaths.

Scatterplot: Health Score Vs Mortality Count, for all 30 counties

- Depicts a weak positive correlation
- Suggests that counties with worse health conditions experienced more COVID-19 deaths.
- While counties with better health conditions witnessed lesser deaths caused by COVID-19.

WHAT'S HEALTH SCORE?

					1			
	county	fips_code	percentage_of_adult_smokers	percentage_of_copd	percentage_of_diab	sum	index	-
0	Los Angeles County, California	6037	11	4.3	9.1	24.4	1.196078	smallest
1	Cook County, Illinois	17031	15	5.2	9.0	29.2	1.431373	sum value
2	Harris County, Texas	48201	15	5.5	10.4	30.9	1.514706	
3	Maricopa County, Arizona	4013	14	5.6	8.0	27.6	1.352941	
4	San Diego County, California	6073	11	4.6	7.8	23.4	1.147059	
5	Orange County, California	6059	10	4.1	8.0	22.1	1.083333	
6	Miami-Dade County, Florida	12086	14	5.4	7.1	26.5	1.299020	
7	Kings County, New York	36047	14	5.8	9.4	29.2	1.431373	

(This is a snippet of one of the dataframes)

Dividing

all sums

Has strong negative correlation; suggests that counties with higher income have better health, whereas counties with lower income have worse health conditions

Highest death count; low income and bad health conditions

Heatmap: Median Household Income Vs Health Score, and their impact on mortality count

Highest death count can be observed where there's low income and bad health conditions

MAKING THE HEATMAP

	fips_code	index	mortality	median_hh_income	health_score_cat	income_cat
0	6059	1.083333	863.457957	90234.0	1	4
1	36061	1.083333	2598.315806	86553.0	1	4
2	53033	1.053922	611.165054	94974.0	1	5
3	6085	1.019608	241.244731	124055.0	1	5
4	6001	1.000000	233.551398	99406.0	1	5
5	25017	1.107843	1658.239785	102603.0	1	5
6	12086	1.299020	1900.388280	51347.0	2	1
7	4013	1.352941	1985.038710	64468.0	2	3
8	6067	1.328431	288.284194	67151.0	2	3
9	6037	1.196078	4602.587419	68044.0	2	4
10	6073	1.147059	579.854516	78980.0	2	4
11	36103	1.352941	1646.290430	101031.0	2	5

ble = pd	.pivot_table(heatmap_c	df,index=['health	_score_cat'], col	lumns=['income_ca	t'], values='mor	tality', aggfunc
	income_cat	1	2	3	4	5
	health_score_cat					
	1	NaN	NaN	NaN	3461.773763	2744.200968
	2	1900.388280	NaN	2273.322903	5182.441935	3499.019892
	3	NaN	6840.978280	5728.277634	5876.514409	NaN
	4	1072.142366	2464.287312	859.739355	NaN	NaN
	5	7821.686667	1269.842151	NaN	530.420430	NaN

Data in matrix format!

Columns created based on percentile

After considering various factors, my visualisations suggest the poor were at a disadvantage and were more vulnerable to COVID-19.

People from worse socioeconomic backgrounds; lesser income and worse health conditions were affected more.

The US government should construct policies that targeted towards them and help them recover from the pandemic.

THANK YOU FOR LISTENING:

