Name:_____ GWID: _____

1. In general, when you design a scientific study to study certain factors (treatments) on a response or outcome, you need to first set the sample size or the number of experiment units for your study.

- (1) (10 points) The required component for the sample size calculation is: (circle only one answer)
 - A. Expected effect size (the difference that you expect to find between the treatments)
 - B. The variability (standard deviation) of the observations.
 - C. The desirable power and type I error.
 - D. All the above.
- (2) (10 points) You have a limited time or cost to finish the study, therefore the power that you choose to plan you study should be: (circle only one answer)
 - A. 50-60%
- B. 60-70%
- C. 80-90%
- D.> 95%

Class: 9/12/2019

- 2. In a single factor study, assume we the number of levels for the factor is r and the values of the response (observations) are denoted by Y_{ij} , i = 1, ... r; $j = 1, ... n_i$.
 - (1) Please write down the two formulations for the ANOVA model:

(10 points) Cell means model
$$Y_{ij}=\mu_i+\epsilon_{ij}$$
 (10 points) Factor effects model $Y_{ij}=\mu_i+\tau_i+\epsilon_{ij}$ ______

(2) Based on your data (Y_{ij}) , write down the formula for

(10 points) the best estimator for the factor level means $\,\mu_i\,$ is $_{-}$ $\overline{Y_{i.}}$ (sample mean in factor level i)___

3. A hospital researcher used a completed randomized design to study 3 dose levels of a drug therapy to treatment patient's high blood pressures. 36 patients with hypertension were recruited and randomized into the 3 drug dose levels (12 patients in each dose group). After the study, the researcher ran the ANOVA analysis and generated the following ANOVA table:

Source of	SS		MS	Test
variation	(sum of squares)	df	(mean squares)	statistic (F*)
Between doses	300	2	150	50
Error	99	33	3	
Total	399	35		

- (1) (10 points) State the null and alternative hypothesis in the ANOVA analysis.
 - H_0 : $\mu 1 = \mu 2 = \mu 3$;

 H_a : Not all μ_i are equal.

- (2) (20 points) Please fill in the missing components for SS, df, MS, test statistic in the ANOVA table.
- (3) (10 points) Under null H_0 , what distribution the test-statistic F^* is distributed as ? F(2, 33).
- (4) (10 points) The p-value of the test < 0.0001, what will be conclusion that researcher can state based on these results? The mean blood pressures were different for the three dose groups. Because this is a completely *randomized* study, it also suggests different drug doses result in different treatment effects.