Intelligent Data Analysis Problem Set 3

Due 4/7/2016

Naïve Bayesian model assumes that all inputs are *independent* for each class.
Using the estimates, the discriminant function becomes

$$g_i(\mathbf{x}) = -\frac{1}{2} \sum_{j=1}^d \left(\frac{x_j - m_{ij}}{s_j} \right)^2 + \log \hat{P}(C_i), \quad i = 1, 2, ..., K.$$

Simplify the above discriminant function and show that the decision boundary between any two classes C_i and C_j is a hyperplane. In the case of d=2, a hyperplane is a line on the plane. In the case of d=3, a hyperplane is a plane.

- 2. Prove the identity $\frac{\partial (\mathbf{x}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = (\mathbf{A}^T + \mathbf{A}) \mathbf{x}$.
- 3. Let **A** be an *m* by *n* real matrix. Show that $N(\mathbf{A}) = N(\mathbf{A}^T \mathbf{A})$, where $N(\mathbf{A})$ denotes the nullspace (also called kernel) of **A**.
- 4. This problem is to prove that R^2 of a multiple regressor is the square of the correlation coefficient between \mathbf{r} and \mathbf{y} , where $\mathbf{y} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{r}$. A simple way to prove this statement is by geometric interpretation.
 - (a) First prove that the correlation coefficient between \mathbf{r} and \mathbf{y} is equivalent to $\cos\theta$, where θ is the angle between vectors $\mathbf{r} \overline{r}\mathbf{1}$ and $\mathbf{y} \overline{r}\mathbf{1}$, where $\mathbf{1}$ denotes the vector with all entries 1. The definition of sample correlation coefficient is given in Chapter 5.
 - (b) Use the identity $\sum_{t=1}^{N} (r^t \overline{r})^2 = \sum_{t=1}^{N} (y^t \overline{r})^2 + \sum_{t=1}^{N} (r^t y^t)^2$ to prove that

$$\cos^{2} \theta = \frac{\sum_{t=1}^{N} (y^{t} - \overline{r})^{2}}{\sum_{t=1}^{N} (r^{t} - \overline{r})^{2}} = R^{2}.$$

5. This problem is to prove

$$\frac{\mathbf{e}^T \mathbf{e}}{\sigma^2} = \frac{1}{\sigma^2} \sum_{t=1}^{N} (e^t)^2 \sim \chi^2 (N - d - 1),$$

where σ^2 is the variance of random noise.

(a) A matrix is called *idempotent* if $\mathbf{M}^2 = \mathbf{M}$. What are the eigenvalues of \mathbf{M} ? Is

- M diagonalizable? Show that the rank of an idempotent matrix M is equal to its trace, i.e., rank(M)=tr(M).
- (b) Let **M** be an *N* by *N* symmetric, idempotent matrix of rank(**M**)= r. Consider the quadratic form $\mathbf{z}^T \mathbf{M} \mathbf{z}$, where $\mathbf{z} \sim N(\mathbf{0}, \mathbf{I})$. Let **Q** be the real orthogonal matrix ($\mathbf{Q}^T = \mathbf{Q}^{-1}$) formed by the eigenvectors of **M** and define $\mathbf{y} = \mathbf{Q}^T \mathbf{z}$. Show that $\mathbf{E}[\mathbf{y}] = \mathbf{0}$ and $\mathbf{Var}(\mathbf{y}) = \mathbf{I}$. Then, prove that

$$\mathbf{z}^{T}\mathbf{M}\mathbf{z} \sim \chi^{2}(r).$$

- (c) If **X** is an *N* by (d+1) matrix with independent columns, prove that rank(**M**)=N-d-1, where **M**= $I-X(X^TX)^{-1}X^T$.
- (d) Now you can prove the statement on the top of this problem by using the relationship

$$\mathbf{e}^T\mathbf{e} = \mathbf{\varepsilon}^T\mathbf{M}\mathbf{\varepsilon}$$

where $\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$.

6. Program Assignment

- The goal of this assignment is to study multivariate parametric classification using Fisher's Iris data. With four input variables, namely, sepal length (x_1) , sepal width (x_2) , petal length (x_3) , petal width (x_4) , use the first 150 data points to build classifiers.
- (a) Use x_1 and x_2 to build classifiers. Use 5-fold cross-validation (CV) to select models. That is, partition the data set into 5 equal-sized subsets. Use 4 subsets to estimate the unknown parameters of the four classifiers: QDA, LDA, Naïve Bayesian, and NMC, as described in Chapter 5. Apply the remaining subset to each classifier, report the classification matrix and compute the accuracy. Plot the average CV-accuracy verse model complexity (the four models). See Chapter 4, pp 23.
- (b) Use all the inputs x_1 , x_2 , x_3 , x_4 to build classifiers. Do the same thing as (a).