Customer No.: 52671

Claim Amendments

(currently amended) A cutting insert, such as for turning aluminum, comprising:

a base body comprising cemented carbide;

at least one cutting body comprising ceramic material;

said base body comprising at least one recess;

said at least one recess being configured to receive said at least one cutting body;

said at least one cutting body being joined to said base body;

said at least one cutting body having a geometric shape;

said at least one recess having a geometric shape; and

at least a portion of the geometric shape of said at least one

cutting body being congruent with the geometric shape of said at

least one recess.

2. (original) The cutting insert according to claim 1, wherein the

geometric shape of said at least one ceramic cutting body is the

shape of a circular truncated cone.

3. (original) The cutting insert according to claim 2, wherein:

Serial No.: 10/789,92 Customer No.: 52671

said at least one ceramic cutting body has a first end surface and a second surface disposed at opposite ends of said truncated cone:

said first end surface is smaller in diameter than said second end surface;

said at least one recess comprises a bottom surface and a side surface disposed substantially transverse to said bottom surface;

said first end surface is attached to said bottom surface of said at least one recess; and

said second end surface comprises a cutting edge formed at the exposed circular perimeter edge of said second end surface of the circular truncated cone and extends in the shape of a partial circle.

- (original) The cutting insert according to claim 3, wherein the circular truncated cone is a perpendicular circular truncated cone.
- (original) The cutting insert according to claim 4, wherein said cutting edge comprises a partial circle of at least 200°.

Customer No : 52671

6. (original) The cutting insert according to claim 5, wherein

said cutting edge comprises a partial circle of not more than 230°.

7. (original) The cutting insert according to claim 6, wherein

said cutting insert defines a clearance angle of < 10°.

8. (original) The cutting insert according to claim 7, wherein

said clearance angle is 7 ± 2°.

9. (original) The cutting insert according to claim 8, wherein

said at least one cutting body is bonded or brazed into said at least

one recess.

10. (original) The cutting insert according to claim 9, wherein

said base body comprises at least one groove extending transversely

to the longitudinal axis of said cutting insert for fastening said

cutting insert to a toolholder.

11. (original) The cutting insert according to claim 10, wherein

said at least one groove is defined on either side by raised portions

Customer No.: 52671

extending substantially parallel to said at least one groove.

12. (original) The cutting insert according to claim 11, wherein

said cutting insert is configured as an indexable insert.

13. (original) The cutting insert according to claim 12, wherein

said indexable cutting insert is fitted with two, three, or four cutting

bodies.

14. (original) The cutting insert according to claim 13, wherein

the maximum diameter of said at least one cutting body is in the

range of 4 \pm 0.05 mm to 10 \pm 0.05 mm.

15-16. (canceled)

17. (original) A cutting insert comprising:

a base body comprising cemented carbide;

at least one cutting body comprising ceramic material;

said at least one cutting body comprising a cutting edge to cut

into metal; and

Customer No.: 52671

said at least one cutting body being joined to said base body.

18. (previously presented) The cutting insert according to claim17. wherein:

said base body comprises at least one recess:

said at least one recess being configured to receive said at least one cutting body;

said at least one recess is substantially, congruently shaped with respect to at least a portion of said at least one ceramic cutting body;

said at least one ceramic cutting body is in the shape of a circular truncated cone;

said at least one ceramic cutting body has a first end surface and a second surface disposed at opposite ends of said truncated cone:

said first end surface is smaller in diameter than said second end surface;

said at least one recess comprises a bottom surface and a side surface disposed substantially transverse to said bottom surface;

said first end surface is attached to said bottom surface of said

Customer No : 52671

at least one recess;

said second end surface comprises a cutting edge formed at the exposed circular perimeter edge of said second end surface of the circular truncated cone and extends in the shape of a partial circle:

said cutting edge comprises a partial circle of at least 200° and not more than 230°:

said cutting insert defines a clearance angle of one of (A) and (B):

 $(A) < 10^{\circ}$; and

(B) $7 \pm 2^{\circ}$;

said at least one cutting body is bonded or brazed into said at least one recess:

said base body comprises at least one groove extending transversely to the longitudinal axis of said cutting insert for fastening said cutting insert to a toolholder;

said at least one groove is defined on either side by raised portions extending substantially parallel to said at least one groove;

said cutting insert is configured as an indexable insert;

said indexable cutting insert is fitted with two, three, or four

Customer No.: 52671

cutting bodies; and

the maximum diameter of said at least one cutting body is in

the range of 4 \pm 0.05 mm to 10 \pm 0.05 mm.

19. (original) A method of using a cutting insert comprising: a

base body comprising cemented carbide; at least one cutting body

comprising ceramic material; said base body comprising at least one

recess; said at least one recess being configured to receive said at

least one cutting body; and said at least one cutting body being

joined to said base body.; said method comprising the step of:

recessing or copy-turning a workpiece, in particular at a high

rotating speed.

20. (currently amended) The method according to claim 19,

wherein said step of recessing or copy-turning comprises recessing or

copy-turning light alloy metal workpieces, in particular workpieces

made of aluminum or aluminum alloys.

21. (previously presented) The cutting insert according to claim

17, wherein the geometric shape of said at least one ceramic cutting

Customer No.: 52671

body is the shape of a circular truncated cone.

22. (previously presented) The cutting insert according to claim

21, wherein:

said base body comprises at least one recess;

said at least one recess is configured to receive said at least

one cutting body;

said at least one recess is substantially, congruently shaped

with respect to at least a portion of said at least one ceramic cutting

body;

said at least one ceramic cutting body has a first end surface

and a second surface disposed at opposite ends of said truncated

cone;

said first end surface is smaller in diameter than said second

end surface;

said at least one recess comprises a bottom surface and a side

surface disposed substantially transverse to said bottom surface;

said first end surface is attached to said bottom surface of said

at least one recess; and

said second end surface comprises a cutting edge formed at

Customer No.: 52671

the exposed circular perimeter edge of said second end surface of the circular truncated cone and extends in the shape of a partial circle.