

ANÁLISE DE SENTIMENTOS UTILIZANDO TÉCNICAS DE CLASSIFICAÇÃO MULTICLASSE

Utilizando Técnicas de Extração de Características e Algoritmos de Aprendizado de Máquina para a Classificação Binária e Multiclasse

Alexandre Lunardi Jósé Viterbo Flávia Bernardini

-ab Tempa

SUMÁRIO

- Introdução a Análise de Sentimentos
- Introdução ao Python
- Análise de Sentimentos Multiclasse
- Extração de Características
- Algoritmos de Aprendizado
- Conclusões e Trabalhos Relacionados

LabSempa

INTRODUÇÃO

Web 2.0 e Web Social;

Redes sociais e blogs;

Sistemas e-commerce;

Recuperação e mineração de dados.

MOTIVAÇÃO

Alugar filmes - IMDb;

Comprar algum produto;

Reservar hotéis - TripAdvisor;

Política - Twitter.

68 of 123 people found the following review helpful

Disappointing, August 13, 2012

By AvidReader

Amazon Verified Purchase (What's this?)

This review is from: Where We Belong (Kindle Edition)

This book was so disappointing. I have read all of Emily Giffin's books, and have found that her last few books are getting worse and worse. Where We Belong had the ability to be a great story. However, telling the story from two points of view, Marianne and Kirby, led there to be little depth to either character. Also I found both characters to be very unlikable. The story was trite and unbelievable. I also found that Giffin put a very negative spin on adoption. Giffin's last books have been a disappointment and this one was no different.

Help other customers find the most helpful reviews Was this review helpful to you? Yes No

Report abuse Permalink

Add a comment

Home NLTK Demos NLP APIs NLTK Models

☐Contact ☐StreamHacker Blog ☐Follow Jacob on twitter

Sentiment Analysis with Python NLTK Text Classification

This is a demonstration of **sentiment analysis** using a NLTK 2.0.4 powered **text classification** process. It can tell you whether it thinks the text you enter below expresses **positive sentiment**, **negative sentiment**, or if it's neutral. Using **hierarchical classification**, *neutrality* is determined first, and *sentiment polarity* is determined second, but only if the text is not neutral.

Analyze Sentiment	Sentiment Analysis Results		
Enter text The lord of the rings is the best movie	The text is pos .		
	The final sentiment is determined by looking at the classification probabilities below.		
	Subjectivity • neutral: 0.3 • polar: 0.7		
Enter up to 50000 characters Analyze	Polarity • pos: 0.9 • neg: 0.1		

LabSempa

SENTIMENT140

Sentiment140 Tweet

patriots English ▼ Search

Sentiment analysis for patriots

Tweets about: patriots

parmiegvel: NFL Power Rankings - Week 4: **Patriots** maintain No. 1 spot, Falcons surge into top 10 http://t.co/KljCJVyUfG)
Posted: 21 seconds ago

Anthonys_Era: RT @NEPD_Loyko: I'm sure #Patriots pass rush could be that much better if BB allowed them free reign to rush and get after the QB.. but lik?

Posted: 46 seconds ago

OBJETIVOS

Apresentar o conceito de análise de sentimentos;

Apresentar as Técnicas de Extração de Características;

Apresentar os algoritmos de Aprendizado;

Realizar um estudo de caso.

A ANÁLISE DE SENTIMENTOS

"Capturar e processar opiniões a fim de auxiliar um usuário ou uma empresa" [Cambria et al., 2013]

ab Jempa

DEFINIÇÕES

Segundo [Liu, 2012], uma opinião regular, dada por um usuário, érepresentada como uma quíntupla O = (e, a, s, h, t)

68 of 123 people found the following review helpful

**** Disappointing, August 13, 2012

By AvidReader

Amazon Verified Purchase (What's this?)

This review is from: Where We Belong (Kindle Edition)

This book was so disappointing. I have read all of Emily Giffin's books, and have found that her last few books are getting worse and worse. Where We Belong had the ability to be a great story. However, telling the story from two points of view, Marianne and Kirby, led there to be little depth to either character. Also I found both characters to be very unlikable. The story was trite and unbelievable. I also found that Giffin put a very negative spin on adoption. Giffin's last books have been a disappointment and this one was no different.

Help other customers find the most helpful reviews
Was this review helpful to you? Yes No

Report abuse | Permalink

Add a comment

CLASSIFICAÇÃO BINÁRIA E MULTICLASSE

ONTOLOGIA – ANÁLISE DE SENTIMENTOS

FORMAS DE REALIZAR A ANÁLISE DE SENTIMENTOS

Aprendizado de máquina;

Análise léxica;

Orientação semântica;

Análise conceitual.

APRENDIZADO DE MÁQUINA: TREINAMENTO

APRENDIZADO DE MÁQUINA: CLASSIFICAÇÃO

REVISÃO DA LITERATURA

Pré- processamento textual	Bag-of- words	Seleção de características	Vetorização	Algoritmos
Retirada de caracteres especiais	Unigrama	Chi quadrado	Frequência	Naive Bayes
Retirada de stopwords		Ganho de Informação		SVM - OvO
				SVM – OvA
Tratamento da	Unigramas+ Bigramas	Ganho Médio		kNN
				Árvores de Decisão

LabSempa

INTRODUÇÃO AO PYTHON

- Linguagem interpretada;
- Código-fonte aberto;
- Disponível para vários S.O.;
- Orientada a objetos;
- Códigos com o símbolo >>> ou [n].
- Endereço:

http://www.dcc.ufrj.br/~fabiom/mab225/pythonbasico.pdf

POR QUE PYTHON?

IDLE PYTHON

```
- 0 X
76 Python 3.3.2 Shell
File Edit Shell Debug Options Windows Help
Python 3.3.2 (v3.3.2:d047928ae3f6, May 16 2013, 00:03:43) [MSC v.1600 32 bit (Intel)]
on win32
Type "copyright", "credits" or "license()" for more information.
>>> d = {"a": "apple", "b": "boy", "c": "cat"}
>>> d
{'a': 'apple', 'b': 'boy', 'c': 'cat'}
>>> t = ((k,v) for k,v in d.items())
>>> t
<generator object <genexpr> at 0x0237C558>
>>> for i in t: print(i)
('a', 'apple')
('b', 'bov')
('c', 'cat')
>>> for i in t: print(type(i))
>>>
                                                                                   Ln: 16 Col:
```

```
IPython
File Edit View Kernel Magic Window Help
Python 2.7.8 | Anaconda 2.1.0 (64-bit) | (default, Jul 2 2014, 15:12:11) [MSC
v.1500 64 bit (AMD64)]
Type "copyright", "credits" or "license" for more information.
IPython 2.2.0 -- An enhanced Interactive Python.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://binstar.org
          -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
         -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
%guiref -> A brief reference about the graphical user interface.
In [1]:
```

Link para download: https://dl.dropboxusercontent.com/u/70544691/minicurso.rar
https://dl.dropboxusercontent.com/u/70544691/Final.rar
https://dl.dropboxusercontent.com/u/70544691/exemplos.rar

ANACONDA

- Distribuição livre com mais de 400 pacotes Python;
- Numpy, SciPy, SciKit...
- Disponível para Linux, OS e Windows
- Exemplo: Versão 2.7 possui 454 pacotes:

https://docs.continuum.io/anaco nda/pkg-docs

VARIÁVEIS

- Três tipos básicos:
- Int
 - 1. >>> a = 123
 - 2. >>> print a
- Float
 - 1. >>> b = 12.3
 - 2. >>> print b
- String
 - 1. >>> texto = 'Olá Mundo'
 - 2. >>> texto
 - 3. >>> print texto
- Verificar tipo: >>> type(variável)

ab Jempa

OBJETOS - STRINGS

- Uma String é uma sequência de letras:
 - >>> texto[2]
- Intervalo de sequência
 - >>> texto [2:5]
- Intervalo de sequência (último da sequência)
 - >>> texto [2:]
- Inverter uma sequência
 - >>> texto[::-1]

LabSempa

OBJETOS - STRINGS

- Concatenação
 - >>> texto = texto + 'para todos'
 - >>> print texto
 - >>> print texto[7:]
 - >>> len(texto)
- Formatação de Strings:
 - >>> pi = 3.14
 - >>> print 'O valor de pi é %f' % pi
 - >>> fruta = 'abacaxi'
 - >>> print '%s é uma fruta' %fruta

ab Tempa

OBJETOS - LISTAS

- Uma lista também é uma sequência:
 - >>> lista = [1,2,3]
- Concatenação de listas:
 - >>> lista = lista + [4]
- Último endereço:
 - >>> lista[-1]
- Listas são sequências mutáveis:
 - >>> lista[0] = 'zero'

ab Tempa

OBJETOS - LISTAS

- Aplicação de listas: matrizes
 - >>> linha1 = [1,2,3]
 - >>> linha2 = [1,0,4]
 - >>> linha3 = [5,1,2]
 - >>> matriz = [linha1, linha2,linha3]
 - >>> matriz[1][2]
- Manipulação de listas:
 - >>> linha1.append('valor')
 - >>> linha1.extend([0,0,9])
 - >>> linha1.insert(0, 'Oi')
 - >>> linha1.remove(0)
 - >>> linha1.remove('Oi')
 - >>> linha1.pop(0)

ab Jempa

OBJETOS - DICIONÁRIOS

- São contêineres com sistema de endereçamento por chaves. Cada chave tem um valor atribuído:
 - >>> curso = {'nome': 'análise de sentimentos', 'duração': '2', 'cidade': 'Florianópolis'}
 - >>> curso['nome'] ou >>> print curso['nome']
- Dicionários são mutáveis:
 - >>> curso['duração'] = curso['duração'] + 2
- Verificar chaves do dicionário ou perguntar se existe:
 - >>> curso.keys()
 - >>> curso.has_key('estado')

ab Tempa

OBJETOS - DICIONÁRIOS

- Adicionando uma chave:
 - >>> curso['estado'] = 'SC'
- Lista contendo o par (chave, valor da chave):
 - >>> curso.items()

ESTRUTURAS DE CONTROLE DE FLUXO

WHILE

```
[35]: while b < 5:
...: print b
...: b = b+1
```

IF-ELIF-ELSE

FOR

LabSempa

FUNÇÕES

- Úteis para executar um bloco de código;
- def nome_da_funcao(parametro1,parametro2,...):
 operações sobre os n parâmetros
- Exemplo:
 - >>>def f(x):
 return x**2
 - >>> f(3)

ab Jempa

MANIPULAÇÃO DE ARQUIVOS

- Função open();
- Sintaxe: open('endereço/nome_do_arquivo.extensão', 'modo_de_abertura');
- Modos de abertura:
 - r: somente para leitura;
 - a: somente para escrita, concatenando ao final do arquivo;
 - w: somente para escrita, reescrevendo o conteúdo anterior.

ab Tempa

MANIPULAÇÃO DE ARQUIVOS

- Escrevendo em um arquivo write():
 - >>> arquivo.write('Testando o arquivo')
- Fechar um arquivo close()
- Exemplo:
 - >>> arquivo = open('teste.txt', 'r')
 - >>> arquivo.write('Testando o arquivo')
 - >>> arquivo.close()

LabSempa

ENTRADA DE DADOS COM IDLE

Teste com o programa primeiro_programa.py;

```
In [1]: cd Anaconda/
C:\Users\Alexandre\Anaconda
In [2]: cd Examples/
C:\Users\Alexandre\Anaconda\Examples
In [3]: cd MLiA SourceCode/
C:\Users\Alexandre\Anaconda\Examples\MLiA SourceCode
In [4]: cd minicurso/
C:\Users\Alexandre\Anaconda\Examples\MLiA SourceCode\minicurso
In [5]: import primeiro programa
In [6]: primeiro programa.testa primo(11)
Número primo
In [7]: primeiro programa.testa primo(12)
Número não primo
```

RECAPITULANDO...

LabSempa

RECAPITULANDO...

ANÁLISE DE SENTIMENTOS MULTICLASSE

- Base de dados do TripAdvisor;
- Disponíveis em:

http://times.cs.uiuc.edu/~wang296/Data/

ab Tempa

ESTRUTURA DE UMA OPINIÃO

```
<Author>everywhereman2
<Content>Old seattle getaway ...
<Date>Jan 6, 2009
<img src="http://cdn.tripadvisor.com/img2/new.gif" alt="New"/>
<No. Reader>-1
<No. Helpful>-1
<Overall>5
<Value>5
<Rooms>5
<Location>5
<Cleanliness>5
<Check in / front desk>5
<Service>5
<Business service>5
```

PRÉ-PROCESSAMENTO TEXTUAL

Pontuação – retirada de caracteres especiais e HTML;

```
In [2]: cd Anaconda/
C:\Users\Alexandre\Anaconda
In [3]: cd Examples/
C:\Users\Alexandre\Anaconda\Examples
In [4]: cd MLiA_SourceCode/
C:\Users\Alexandre\Anaconda\Examples\MLiA_SourceCode
In [5]: cd minicurso/
C:\Users\Alexandre\Anaconda\Examples\MLiA_SourceCode\minicurso
In [6]: import recupera_texto
In [7]: recupera_texto.recuperaOpiniao()
```

STOPWORDS

- Stopwords a, the, an, at, in, on...;
- Lista de stopwords no link:

http://www.ranks.nl/stopwords

```
[8]: import remove_stopwords
```

[9]: remove_stopwords.retiraStopwords()

NEGAÇÃO

- Negação mudança no sentido de palavras precedidas de no, not ou nothing;
- Exemplo: not clean -> not_clean;

```
[9]: import trata_negacao
```

[10]: trata_negacao.trataNegacao()

OPINIÃO COM TRATAMENTO TEXTUAL

• "My Wife and I, and some friends, stayed here after this years grand national. We managed to book a double executive room for £80 and thought we were on to a winner - how wrong we were. After attending the national we arrived at the hotel to find out that there was no booking for us"

 "wife some friend stayed here after year grand national managed book double executive room thought were win how wrong were attend national we arrived hotel find out that there was no_book us"

ab Tempa

BAG-OF-WORDS

- Unigramas e Bigramas;
- **-Exemplo**: "Great Hotel lovely staff great location great_hotel hotel_lovely lovely_staff staff_great great_location"
- Testes com unigramas e unigramas+bigramas (n-gramas).

N-gramas	Exemplos
Unigramas	great, lovely, hotel,
Bigramas	great_hotel, hotel_lovely, lovely_staff
Trigramas	great_hotel_lovely, hotel_lovely_staff

BAG-OF-WORDS

- Características mais comuns utilizadas em análise de texto e tem sido muito efetiva em análise de sentimento [Liu, 2012];
- São relacionados com a frequência de cada token.
- Ver o q tem q ser comentado

Unigramas

[11]: import criar_unigramas
[12]: criar_unigramas.criaUnigramas()

Unigramas e bigramas

[10]: import criar_ngramas
[11]: criar_ngramas.criaNGramas()

SELEÇÃO DE CARACTERÍSTICAS

 Fundamental para a escolha dos n-gramas para o treinamento de algoritmos de aprendizado;

 A seleção de características pode melhorar significativamente o desempenho da classificação;

 Esta etapa consiste na escolha de n-gramas que serão utilizadas como atributos de treinamento.

GANHO DE INFORMAÇÃO

- Ganho de informação: mede o goodness de um termo de acordo com a presença ou falta;
- 📝 Presença ou falta de um termo t, onde o IG de um termo é dado por:

$$IG(t) = -\sum_{i=1}^{z} P(c_i) \log P(c_i) + P(t) \sum_{i=1}^{z} P(c_i|t) \log P(c_i|t) + P(\bar{t}) \sum_{i=1}^{z} P(c_i|\bar{t}) \log P(c_i|\bar{t})$$

EXEMPLO

Classe	Termo						
Classe	good	\overline{good}					
Sim	10	2					
Não	1	5					

- Ent(classe) = -((2/3*log(2/3) + (1/3*log(1/3)) = 0.919
- Ent(classe | good) = -((5/9*log(5/9) + (1/18*log(1/18)) = 0.224
- Ent(classe $|\overline{good}|$ = -((1/9*log(1/9) + (5/18*log(5/18)) = 0,020
- Info(good) = Ent(classe) + Ent(classe $|\overline{good}|$ + Ent(classe |good| = (0.919 0.224 0.02) = 0.675

GANHO DE INFORMAÇÃO - PYTHON

Unigrama

```
[15]: import calcula_ig_unigrama
```

[16]: calcula_ig_unigrama.calculaIg(250)

Unigramas e Bigramas

```
[14]: import calcula_ig_ngrama
```

```
[15]: calcula_ig_ngrama.calculaIg(250)
```

GANHO MÉDIO DE INFORMAÇÃO

- Ganho médio de informação: normaliza a contribuição de uma característica;
- Split Information: são calculados por meio da informação obtida pela divisão de um documento de treinamento P em v partes, na qual v corresponde ao número de atributos

$$SplitInfo(t) = -\sum_{j=1}^{V} \frac{|P_j|}{|P|} \log \frac{|P_j|}{|P|}$$

Por fim, o ganho médio é dado por:

Gain Ratio(t) = Information Gain(t)/SplitInfo(t).

EXEMPLO

Classe	Termo					
Classe	good	\overline{good}				
Sim	10	2				
Não	1	5				

- Ent(classe) = -((2/3*log(2/3) + (1/3*log(1/3)) = 0.919
- Ent(classe | good) = -((5/9*log(5/9) + (1/18*log(1/18)) = 0.224
- Ent(classe $|\overline{good}|$) = -((1/9*log(1/9) + (5/18*log(5/18)) = 0.020
- Info(good) = Ent(classe) + Ent(classe $|\overline{good}|$ + Ent(classe |good| = (0.919 0.224 -0.02) = **0.675**
- SplitInfo = -((5/9*log(5/9) + (1/18*log(1/18)) = 0.224
- Gain(good) = 0.675/0.224 = **3,013**

GANHO MÉDIO DE INFORMAÇÃO - PYTHON

Unigrama

Unigramas e Bigramas

```
[17]: import calcula_gr_unigrama
```

```
[18]: calcula_gr_unigrama.calculaGr(250)
```

[16]: import calcula_gr_ngrama

[17]: calcula_gr_ngrama.calculaGr(250)

CHI QUADRADO

- Chi-quadrado: representa a associação entre uma característica e a classe correspondente;
- Vetores criados a partir de tokens mais comuns por meio de unigramas ou n-gramas;
- Fórmula:

CHI(t,
$$c_i$$
) = $\frac{N*(AD-BE)^2}{(A+E)*(B+D)*(A+B)*(E+D)}$ and CHI_{max} = $\max_i(CHI(t, c_i))$

- \mathbf{A} é o número de vezes que t e c_i ocorrem simultaneamente;
- \mathbf{B} é o número de vezes que t ocorre sem c_i ;
- \boldsymbol{E} é o número de vezes que c_i ocorre sem t;
- D é o número de vezes que nem c_i nem t ocorrem, e;
- N é o total de documentos

Sempa

CHI QUADRADO

Classe	Termo						
Classe	good	\overline{good}					
Sim	10	2					
Não	1	5					
Neutro	3	3					

$$CHI(good, sim) =$$

$$\frac{24*(10.8-4.2)^2}{(10+2)*(4+8)*(10+4)*(2+8)} = 6,17$$

$$\frac{24*(1.5-13.5)^2}{(1+5)*(13+5)*(1+13)*(5+5)} = 5,71$$

$$\frac{24*(3.7-11.3)^2}{(3+3)*(11+7)*(3+11)*(3+7)} = 0,23$$

CHI QUADRADO - PYTHON

Unigrama

Unigramas e Bigramas

```
[13]: import calcula_chi_unigrama
```

```
[14]: calcula_chi_unigrama.calculaChi(250)
```

```
[12]: import calcula_chi_ngrama
```

```
[13]: calcula_chi_ngrama.calculaChi(250)
```

VETORIZAÇÃO

 Etapa que tem como objetivo transformar uma frase em um vetor de características, onde os atributos correspondem aos n-gramas selecionados.

 Estes atributos são configurados de acordo com frequência dos mesmos em relação a uma opinião;

Frequência ou tfidf.

ab Sempa

FREQUÊNCIA

Definição:

Opinião: **Great** Hotel lovely staff **great** location stayed 2 nights hen party hotel close all bars night clubs shopping would definitely stay again **great_hotel** hotel_lovely lovely_staff staff_great great_location location_stayed 2_nights stay_again. Rating: 5.

Words (15): **great**, lovely, worst, location, stayed, close, **great_hotel**, terrible, clean, hotel_lovely, nice, comfortable, handy, stay_again, good.

Word	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Rating
Freq.	2	1	0	1	1	1	1	1	0	1	0	0	0	1	0	5

FREQUÊNCIA

Binário

5 classes (ratings)

```
[20]: import prepara_vetor_frequencia_bin
```

[21]: prepara_vetor_frequencia_bin.Vectorizer(250)

```
[18]: import prepara_vetor_frequencia
```

[19]: prepara_vetor_frequencia.Vectorizer(250)

TFIDF

Definição

Opinião: **Great** Hotel lovely staff **great** location stayed 2 nights hen party hotel close all bars night clubs shopping would definitely stay again great_hotel hotel_lovely lovely_staff staff_great great_location location_stayed 2_nights stay_again. Rating: 5.

Words (15): **great**, lovely, worst, location, stayed, close, great_hotel, terrible, clean, hotel_lovely, nice, comfortable, handy, stay_again, good.

$$w_i = tf_i \cdot \log \frac{N}{df_i}$$

Word	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Rating
w_i	0.8	0.5	0	0.5	0.5	0.5	0.5	0.5	0	0.5	0	0	0	0.5	0	5

TFIDF

Binário

5 classes (ratings)

[22]: prepara_vetor_tfidf_bin.Vectorizer(250) [20]: prepara_vetor_tfidf.Vectorizer(250)

ab Tempa

A FERRAMENTA WEKA

Weka é um pacote desenvolvido pela Universidade de Waikato, em 1993;

Agrega algoritmos para mineração de dados na área de Inteligência Artificial;

■ Possui uma série de heurísticas para mineração de dados relacionadas à classificação, regressão, clusterização, regras de associação.

MODELOS DE CLASSIFICAÇÃO

- Naive Bayes
 - Naive Bayes;
 - NaiveBayes Multinomial.
- SVM
 - SMO;
 - LibSVM.

- Árvores de Decisão
 - **J**48.
- kNN
 - lbk.
- Modelos adaptados
 - One-vs-all;
 - One-vs-one.

ab Tempa

10-FOLD CROSS VALIDATION

- A validação cruzada estima como o modelo construído irá se comportará em novos dados.
- O k-fold cross validation consiste em dividir a base em k pedaços. Para cada pedaço, estimamos o método sem a presença desta parte e verificamos o erro médio no pedaço não utilizado durante o treino.

MEDIDAS AVALIATIVAS

A acurácia é calculada como:

$$\mathsf{A} = \frac{n \texttt{\'u}mero\ de\ exemplos\ classificados\ corretamente}{total\ de\ exemplos}$$

A precisão é dada por:

$$\mathsf{P} = \frac{n \acute{\mathsf{u}} mero\ de\ corretas\ predições\ positivas}{n \acute{\mathsf{u}} mero\ de\ predições\ positivas}$$

• O recall é dado pela seguinte fórmula:

$$R = \frac{n\'umero\ de\ corretas\ prediç\~oes\ positivas}{n\'umero\ de\ exemplos\ positivos}$$

EXEMPLO

а	b	С	d	е	Total	← classificado como
1140	276	61	10	13	1500	a=1
497	502	380	96	25	1500	b=2
132	260	773	281	54	1500	c=3
47	97	228	648	480	1500	d=4
19	36	45	267	1133	1500	e=5
1835	1171	1487	1302	1705	7500	

$$A = \frac{n \acute{u}mero\ de\ exemplos\ classificados\ corretamente}{total\ de\ exemplos} = (1140 + 502 + 773 + 648 + 1133)/7500 = 0,5594$$

$$P = \frac{n\'{u}mero\ de\ corretas\ prediç\~{o}es\ positivas}{n\'{u}mero\ de\ prediç\~{o}es\ positivas} = 1140/1835 = 0,6212$$

$$R = \frac{n\'{u}mero\ de\ corretas\ prediç\~{o}es\ positivas}{n\'{u}mero\ de\ exemplos\ positivos} = 1140/1500 = 0,76$$

IMPORTANDO ARQUIVOS NO WEKA

NAIVE BAYES

Uma variação da teoria de decisão BayesianaFórmula

$$P(c \mid d) = \frac{P(c)P(d \mid c)}{P(d)}$$

■ O modelo multinomial captura a frequência de uma palavra no conjunto de opiniões. Para associar a um novo exemplo t uma classe c_i , a classe com maior probabilidade $c^* = \operatorname{argmax} P(c_i|t)$ é considerada. Na equação abaixo é mostrado como o cálculo das probabilidades para cada classe $c_i \in c$ é realizado.

$$P_{NB}(c_i | t) = P(c_i) \left(\prod_{j=1}^{D} P(t_j | c_i) \right),$$

no qual t é um termo, i é o número da classe e D é o conjunto de opiniões.

NAIVE BAYES

	Num	Palavras	Classe
Treinamento	1	Chinese Beijing Chinese	1
	2	Chinese Chinese Shangai	1
	3	Chinese Macao	1
	4	Tokyo Japan Chinese	2
Teste	5	Chinese Chinese Tokyo Japan	?

Probabilidades:

$$P(1) = \frac{3}{4}$$

$$P(2) = \frac{1}{4}$$

P(Chinese | 1) = (5+1)/(8+6) = $\frac{3}{7}$ P(Tokyo | 1) = (0+1)/(8+6) = $\frac{1}{14}$ P(Japan | 1) = (0+1)/(8+6) = $\frac{1}{14}$ P(Chinese | 2) = (1+1)/(3+6) = $\frac{2}{9}$ P(Tokyo | 2) = (1+1)/(3+6) = $\frac{2}{9}$ P(Japan | 2) = (1+1)/(3+6) = $\frac{2}{9}$

Classe Final:

$$P(1|d5) = 3/4 * (3/7)^3 * 1/14 * 1/14 \approx 0,0003$$

$$P(2|d5) = 1/4 * (2/9)^3 * 2/9 * 2/9 \approx 0.0001$$

NAIVE BAYES

SVM

- Em um conjunto de treinamento, existem infinitas linhas separando duas classes;
- A ideia principal do modelo de máquina de vetores de suporte é encontrar as margens ótimas em relação a um hiperplano separador h.

ab Tempa

SVM

- Os pontos mais próximos são chamados de vetores de suporte;
- Considerado por [Joachims, 98], como o melhor classificador de textos;
- Não-linear.

SVM

KNN DE DECISÃO

- Os k-vizinhos mais Próximos ou k-Nearest Neighbors (kNN) é um método baseado em instâncias que aprende com o simples armazenamento dos dados de treinamento.
- A partir dos k vizinhos mais parecidos, ele escolhe o dado com os k mais similares com o que será classificado e atribui uma nova classe a ele.
- Exemplo: distância Euclidiana

$$u = \sqrt{(xA_0 - xB_0)^2 + (xA_1 - xB_1)^2}$$

KNN

ÁRVORES DE DECISÃO

- As árvores de decisão consistem em um método de aproximação discreta do alvo, na qual a função de aprendizado é representada por uma árvore de decisão.
- Para escolher um atributo que divida a árvore, o objetivo é escolher o atributo que possui o maior ganho (gain). Esse ganho é definido por meio da redução da Entropia:

Entropia(P) =
$$(-(P_+ \log_2 P_+) - (P_- \log_2 P_-))$$

Com a entropia definida, o ganho é dado por:

Ganho(P,t) = Entropia (P) -
$$\sum_{j}^{valores(n)} \frac{P_j}{P} Entropia(P_j)$$

ÁRVORES DE DECISÃO

ÁRVORES DE DECISÃO

ab Jempa

MODELOS ADAPTADOS – ONE-VS-ONE

- No modelo OvO, cada classe c_i é comparada com outra classe c_k, onde k, i = 1..n e
 i ≠ k, dado que n é o número de classes.
- O número de etapas para a classificação é dado por $\frac{n(n-1)}{2}$.
- Na fase de classificação, a classe escolhida é baseada em uma votação direta dada pelo maior valor de acordo com

(x) =
$$\underset{i}{\operatorname{arg\,max}} \left(\sum_{j} f_{ij}(\mathbf{x}) \right)$$
.

Sempa

EXEMPLO

- Para um problema com 4 classes {1, 2, 3, 4}, o OvO cria 6 classificadores (1-2, 1-3, 1-4, 2-3, 2-4, 3-4);
- 📝 Exemplo de predição para uma nova instância a.

Classificador	f(a)=		
1-2	2		
1-3	1		
1-4	1		
2-3	2		
2-4	2		
3-4	3		

	Votos para cada classe			
Classe	1	2	3	4
Número de votos	2	3	1	0

MODELOS ADAPTADOS — ONE-VS-ONE

ab Jempa

MODELOS ADAPTADOS — ONE-VS-ALL

 Em um modelo OvA n classificadores são construídos, isto é, para cada comparação entre uma classe e as demais, um classificador é construído.

■ No processo de classificação, dada uma nova instância a, a predição é dada por:

$$f(x) = \arg\max_{i} f_i(x)$$

EXEMPLO

- Avaliando o modelo OvA para o mesmo número de classes, 4 classificadores são criados (1 vs {234}, 2 vs {134}, 3 vs {124}, 4 vs {123});
- Para uma nova instância a:

f(a)		Votos			
Classificador		1	2	3	4
1 vs {234}	Outra	0	0,333	0,333	0,333
2 vs {134}	2	0	1	0	0
3 vs {124}	Outra	0,333	0,333	0	0,333
4 vs {123}	Outra	0,333	0,333	0,333	0
Tota	0,666	1,999	0,666	0,666	

MODELOS ADAPTADOS — ONE-VS-ALL

Choose

ANÁLISE DOS RESULTADOS

Dependência do domínio.

Melhores técnicas?

Melhores algoritmos?

ANÁLISE DE SENTIMENTOS - BINÁRIO

Autores	Domínio	Features	Algoritmos	Acurácia (best) %
Pang et al. 2002	Revisões de filmes	POS, unigramas, bigramas, position, adjectives	NB, MaxEnt and SVM	82.9 (SVM + unigramas)
Mullen and Collier 2004	Revisões de filmes e discos	Unigramas, Lemmas, Osgood and Turney	SVM	Filmes – 86 (SVM + Turney and Lemmas) Discos – 89 (SVM + PMI/Osgood + Lemmas)
Matsumoto et al. 2005	Revisão de filmes	unigramas, bigramas, frequentes subsequências de palavras e sub-árvores dependentes	SVM	93.7 (SVM + unigramas + bigramas, frequentes subsequências de palavras
Tan and Zhang 2008	Opiniões sobre educação, filmes e casa	MI, IG, DF and Chi	Classificador centroide, kNN, NB, Winnow e o SVM	90.6 (SVM + IG)
Go et al. 2009	tweets	Sentiment words, bigramas and unigramas	NB, MaxEnt and SVM	83.0 (MaxEnt with unigram + bigram)
Paltoglou and Thelwall 2010	Revisão de filmes	Unigramas, document frequency and term frequency	SVM	96.9 (SVM + BM25 tf + BM25 delta idf variant) ^b
Xia et al., 2011	Opiniões sobre livros, eletrônicos, DVD's e artigos de cozinha	POS and word-relation (WR)	NB, SVM and MaxEnt	86.85 - Movie (MaxEnt + POS) 88.65 - Kitchen (NB + WR)
Sharma and Dey 2012	Revisão de filmes	IG, Mi, GR, Chi and Belief-F	NB, SVM, MaxEnt, DT, kNN, Adaboost and Winnow	90.9 (NB + GR)

ab Sempa

APLICAÇÕES DA ANÁLISE MULTICLASSE

Autores	Termos	TEC/AAM*	Classes	Domínio	Acurácia (%)
Pang e Lee, 2005	$N \ge 20, 50\%$ ou mais em uma classe	Ova+PSP	4	Filmes	54,6
Goldberg e Zhu, 2006	1000 e 5000	SVM Regressão + vetor de palavras	4	Filmes	54,9
Long et al., 2010**	-	Complexidade Kolmogorov e Naive Bayes	5	Hotéis	73,1 – 57,3
Albornoz et al., 2011	114, 330, 353	Vetor de intensidade das características + Logistic	5	Hotéis	46,9
Paltouglou e Thelwall, 2013	-	Arousal + SVM OVA	5	Notícias	51,8

CONCLUSÃO

Técnicas selecionadas de acordo com a importância e a relevância dos trabalhos;

 Modelos podem ser utilizados em sistemas e-commerce para capturar e compreender o sentimento dos usuários;

Sistemas semelhantes ao sistema sentiment140;

Resultados dos experimentos:

http://www2.ic.uff.br/PosGraduacao/Dissertacoes/722.pdf

REFERÊNCIAS

- CAMBRIA, E. et al. New Avenues in Opinion Mining and Sentiment Analysis. IEEE Intelligent Systems, n. April, p. 15–21, 2013.
- FRANK, E.; KRAMER, S. **Ensembles of balanced nested dichotomies for multi-class problems**. Lecture Notes in Computer Science, v. 3721 LNAI, p. 84–95, 2004.
- LIU, B. Sentiment Analysis and Opinion Mining. Morgan and Claypool Publishers, n. May, 2012
- DE ALBORNOZ, J. C.; PLAZA, L.; GERVÁS, P.; DÍAZ, A. A joint model of feature mining and sentiment analysis for product review rating. Advances in information retrieval, p. 55–66, 2011
- PANG, B.; LEE, L. Seeing stars: **Exploiting class relationships for sentiment categorization with respect to rating scales**. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (pp. 115-124). Association for Computational Linguistics. v. 3, n. 1, 2005
- PANG, B.; LEE, L.; VAITHYANATHAN, S. **Thumbs up? Sentiment Classification using Machine Learning Techniques.** Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10, n. July, p. 79–86, 2002

OBRIGADO

LabSempa

CONTATOS

E-mail: alexandre.lunardi2@gmail.com