1

Assignment 16

Venkatesh E AI20MTECH14005

Download latex-tikz codes from

 $https://github.com/venkateshelangovan/IIT-Hyderabad-Assignments/tree/master/Assignment16_Matrix_Theory$

1 Problem

If **P** and **Q** are invertible matrices such that PQ = -QP, then we can conclude that

$$1.Tr(\mathbf{P}) = Tr(\mathbf{Q}) = 0 \tag{1.0.1}$$

$$2.Tr(\mathbf{P}) = Tr(\mathbf{Q}) = 1 \tag{1.0.2}$$

$$3.Tr(\mathbf{P}) = -Tr(\mathbf{Q}) \tag{1.0.3}$$

$$4.Tr(\mathbf{P}) \neq Tr(\mathbf{Q}) \tag{1.0.4}$$

2 Explanation with Proof

Given	${f P}$ and ${f Q}$ are invertible matrices. Therefore ${f P}^{-1}$ and ${f Q}^{-1}$ exists.		
	PQ = -QP	(2.0.1)	
To Prove	$Tr(\mathbf{P})=0$		
Proof 1	Post multiplying equation (2.0.1) by \mathbf{Q}^{-1} we get,		
	$\mathbf{PQQ}^{-1} = -\mathbf{QPQ}^{-1}$	(2.0.2)	
	$\implies \mathbf{PI} = -\mathbf{QPQ}^{-1}$	(2.0.3)	
	$\implies \mathbf{P} = -\mathbf{Q}\mathbf{P}\mathbf{Q}^{-1}$	(2.0.4)	
	Taking trace on both sides for the equation (2.0.4),		
	$Tr(\mathbf{P}) = Tr(-\mathbf{Q}\mathbf{P}\mathbf{Q}^{-1})$	(2.0.5)	
	$\implies Tr(\mathbf{P}) = -Tr(\mathbf{Q}\mathbf{P}\mathbf{Q}^{-1})$	(2.0.6)	
	We know that $Tr(\mathbf{AB})=Tr(\mathbf{BA})$ Let $\mathbf{A}=\mathbf{Q}$ and $\mathbf{B}=\mathbf{PQ}^{-1}$ From the above property of trace equation (2.0.6) can be modified as		
	$Tr(\mathbf{P}) = -Tr(\mathbf{P}\mathbf{Q}^{-1}\mathbf{Q})$	(2.0.7)	
	$\implies Tr(\mathbf{P}) = -Tr(\mathbf{PI})$	(2.0.8)	

	$\implies Tr(\mathbf{P}) = -Tr(\mathbf{P})$	(2.0.9)	
	$\implies 2Tr(\mathbf{P}) = 0$	(2.0.10)	
	$\implies Tr(\mathbf{P}) = 0$	(2.0.11)	
To Prove	$Tr(\mathbf{Q})=0$		
Proof 2	Post multiplying equation (2.0.1) by \mathbf{P}^{-1} we get,		
	$\mathbf{PQP}^{-1} = -\mathbf{QPP}^{-1}$	(2.0.12)	
	$\implies \mathbf{PQP}^{-1} = -\mathbf{QI}$	(2.0.13)	
	$\implies \mathbf{PQP}^{-1} = -\mathbf{Q}$	(2.0.14)	
	Taking trace on both sides for the equation (2.0.14),		
	$Tr(\mathbf{PQP}^{-1}) = Tr(-\mathbf{Q})$	(2.0.15)	
	$\implies Tr(\mathbf{PQP}^{-1}) = -Tr(\mathbf{Q})$	(2.0.16)	
	We know that $Tr(AB)=Tr(BA)$ Let $A=P$ and $B=QP^{-1}$ From the above property of trace equation ((2.0.16) can be modified as	
	$Tr(\mathbf{Q}\mathbf{P}^{-1}\mathbf{P}) = -Tr(\mathbf{Q})$	(2.0.17)	
	$\implies Tr(\mathbf{QI}) = -Tr(\mathbf{Q})$	(2.0.18)	
	$\implies Tr(\mathbf{Q}) = -Tr(\mathbf{Q})$	(2.0.19)	
	$\implies 2Tr(\mathbf{Q}) = 0$	(2.0.20)	
	$\implies Tr(\mathbf{Q}) = 0$	(2.0.21)	
Statement 1	$Tr(\mathbf{P})=Tr(\mathbf{Q})=0$		
Explanation	From equation (2.0.11) and (2.0.21) we could say that,		
	$Tr(\mathbf{P}) = Tr(\mathbf{Q}) = 0$	(2.0.22)	
	Valid Conclusion		
Statement 2	$Tr(\mathbf{P}) = Tr(\mathbf{Q}) = 1$		
Explanation	From equation (2.0.11) and (2.0.21) we could say that,		
	$Tr(\mathbf{P}) = Tr(\mathbf{Q}) \neq 1$	(2.0.23)	
	Invalid Conclusion		

Statement 3 Explanation	$Tr(\mathbf{P}) = -Tr(\mathbf{Q})$ Substituting the conclusion 1 result equation (2.0.22) in equation (2.0.9) we get,		
	$Tr(\mathbf{P}) = -Tr(\mathbf{Q}) \tag{2.0.24}$		
	Valid Conclusion		
Statement 4	$Tr(\mathbf{P}) \neq Tr(\mathbf{Q})$		
Explanation	From equation (2.0.11) and (2.0.21) we could say that,		
_	$Tr(\mathbf{P}) = Tr(\mathbf{Q}) \tag{2.0.25}$		
	Invalid Conclusion		

TABLE 1: Explanation with Proofs