2018级《高等数学下》试卷

一、填空题

1、设
$$z = \sin(x + 2^y)$$
,则 $\frac{\partial^2 z}{\partial x \partial y} =$ ______

2、曲面
$$z = \ln(x^2 + y^2)$$
在点 $(1,0,0)$ 处的切平面方程是 _____

3、
$$I = \iint_D \sqrt{1-x^2-y^2}d\sigma$$
,其中 D 是: $x^2+y^2 \leq 1$.由二重积分的几何意义 $I =$ _____

4、设积分区域
$$\Omega$$
: $0 \le z \le 1$, $x^2 + y^2 \le 1$, 则 $\iint_{\Omega} (e^z xy + 3) dv = \underline{\hspace{1cm}}$

5、若
$$L$$
的方程是 $y = 1 (0 \le x \le 2)$,则 $\int_{L} y ds =$ ______

6、若方程
$$(3x^2y + 8xy^2)dx + (x^3 + 8x^{\lambda}y + 12ye^y)dy = 0$$
是全微分方程,则 $\lambda =$ ______

7、
$$\Sigma$$
 为平面 $x+y+z=2$ 在第一卦限中的部分,则曲面积分 $\iint_{\Sigma} (x+y+z)dS =$ _____

8、若级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$$
 绝对收敛,则 p 的取值范围是______

二、计算题

9、设函数z = z(x, y)由方程 $xe^x - ye^y = ze^z$ 所确定,求dz.

10、求函数 $f(x,y) = x^3 - 4x^2 + 2xy - y^2$ 的极值.

11、计算 $\iint_D \sqrt{R^2 - x^2 - y^2} d\sigma$,其中 D 是由 $x^2 + y^2 = Ry$ 所围成的闭区域.

12、计算三重积分 $\iint_{\Omega} z dv$, 其中 Ω 由不等式 $x^2 + y^2 + (z-a)^2 \le a^2$, $x^2 + y^2 \le z^2$ 所确定.

13、在一切面积等于 A 的直角三角形中,求斜边最短的直角三角形.

14、计算曲线积分 $\oint_L \frac{ydx - xdy}{x^2 + y^2}$, 其中 L 为圆周 $x^2 + y^2 = 4$, L 的方向为逆时针方向.

15、计算曲面积分 $\bigoplus_{\Sigma} \frac{1}{y} f\left(\frac{x}{y}\right) dydz + \frac{1}{x} f\left(\frac{x}{y}\right) dzdx + z^2 dxdy$,其中 f(u) 具有一阶连续导数, Σ 为柱面 $(x-a)^2 + (y-a)^2 = \left(\frac{a}{2}\right)^2$ 及平面 z=0, z=1 (a>0) 所围成立体的表面外侧.

16、求幂级数 $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{n!}$ 的和函数,并求级数 $\sum_{n=0}^{\infty} \frac{2n+1}{n!}$ 的和.