Machine learning 2 Evaluation of performances & Unsupervised classification

Pierre Chainais

- 1 Evaluation of performances in pattern recognition (PR)
 - Test set
 - Cross-Validation (CV)
 - Confusion matrix
 - ROC curve
- Unsupervised classification
 - Clustering K-means
 - Examples of applications of K-means
 - Geyser Old Faithful
 - Génétique et tumeurs cancéreuses
 - Vectorial quantization of images
 - Clustering K-medoids
 - Examples of applications of K-medoids
 - Differences of perception between countries
 - Other approaches

- Evaluation of performances in pattern recognition (PR)
 - Test set
 - Cross-Validation (CV)
 - Confusion matrix
 - ROC curve
- 2 Unsupervised classification
 - Clustering K-means
 - Examples of applications of K-means
 - Geyser Old Faithful
 - Génétique et tumeurs cancéreuses
 - Vectorial quantization of images
 - Clustering K-medoids
 - Examples of applications of K-medoids
 - Differences of perception between countries
 - Other approaches

Introduction : PR = Pattern Recognition

Using some training samples, an estimate of the classification error estimated from this same training sample (a.k.a. *substitution method*) may suffer from some optimistic bias (underestimate).

The classifier has been defined to minimize the error rate on the training set: it may be more performant on this data set than on others: how to accurately estimate the generalization error?

Different methods of evaluation have been defined: **test set & cross-validation**.

Trivial solution

Use another data set (not used for training): **the test set** If the test set is of size m and that r classification errors occur, the test error estimate will be:

$$\hat{E} = r/m$$

This approach has 3 main drawbacks.

Necessitates a large test set

The number of classification errors can be modelled by a binomial random variable of parameter m and p = P (erreur).

Example: to get 95% of chances to know an error rate of p = 10% with 1% accuracy calls for m=3460 observations.

The size of the test set should remain limited

A pity to use too many data for the test rather than for training.

Pessimistic bias

Generally over-estimates the error rate.

Principe

- ▶ Division of the data set in *v* subsets
- ▶ Training using the union of v 1 subsets
- ► Test with the remaining part (1/v fraction of the data set)
- ► Repeat *v* times this procedure

Final error rate estimate finale = average the v estimates

Leave one out

Extreme case: leave-one-out $\Rightarrow v = \text{size}$ of the data set. (test 1 sample only) \implies yields good results.

TP	FP	
FN	TN	
1	1	

Principle

Evaluation by estimating conditional probabilities such as:

P (classify **x** in class $k \mid \mathbf{x}$ is in class ℓ)

Computation

These probabilities are gathered in the **confusion matrix** by considering couples of of estimated and true classes.

m observations in class ℓ (of size s) have been affected to class k by the decision function: \Rightarrow the estimated probability is m/s

When the decision function depends on some parameter (typically a threshold). A ROC curve represents the compromise between benefits (True Positives) and losses (False Positives).

Positives) and losses (False Positi Several important points:

- \blacktriangleright (0, 0) always predicts 'negative': no FP, no TP;
- ▶ (1, 1) always predicts 'positive' : all samples are positive, either FP or TP;
- ▶ (0, 1) : perfect classification;
- ▶ the diagonal : (p, p) randomly predicts 'positive' with proba. p.
- ▶ below the diagonal is worse than random decision: it should remain empty in the ROC curve.

- Evaluation of performances in pattern recognition (PR
 - Test set
 - Cross-Validation (CV)
 - Confusion matrix
 - ROC curve
- Unsupervised classification
 - Clustering K-means
 - Examples of applications of K-means
 - Geyser Old Faithful
 - Génétique et tumeurs cancéreuses
 - Vectorial quantization of images
 - Clustering K-medoids
 - Examples of applications of K-medoids
 - Differences of perception between countries
 - Other approaches

K-means Clustering Objective and principle

Objective: identify the existence of structure in the data (groups/aggregates/clusters) **ignoring labels.** (classes are unknown)

Principle:

- ► Choose the number *K* of expected clusters,
- Start from K initial centers μ_k :
 - for each k, $1 \le k \le K$, identify the set of points \mathcal{V}_k closer from μ_k than any other center,
 - ullet replace μ_k by the barycentre of \mathcal{V}_k
- ▶ Iterate until convergence (mathematically proven).

K-means Clustering

Illustration

- ▶ **Initial centers** : *K* random entries...
 - \Rightarrow run the algorithm several times and keep the best result,
- ▶ Best result : minimizes $\sum_{k=1}^{K} \sum_{C(n)=k} \|\mathbf{x}_n \mu_k\|^2$
- ► Limitations :
 - choice of K? non hierarchy when decreasing K...
 - no control of the relative importance of clusters...
- ► soft generative version: GMM & EM algorithm EM (Expectation-Minimization ⇒ see Statistics 2 or Hastie p. 272, Bishop p. 430)

Données:

- ► 272 measures, eruptions of the Old Faithful geyser in Yellowstone
 - x_1 : durations of eruptions in minutes,
 - x_2 : waiting time before the next eruption
- ▶ identification of 2 types of eruptions

Examples of applications of K-means Old Faithful geyser

Données:

- ► Matrix 6830x64 real numbers measuring:
 - the expression of some particular gene = lines
 - for some patient = columns
- ▶ 64 input vectors \mathbf{x}_n with D = 6830 values.
- ▶ labels/targets : t_n = breast (cancer), melanoma (skin)... :

⇒ used a posteriori to check the relevance of the proposed clustering.

Evidencing the genetical factor

Results for K=3:

Cluster	Breast	CNS	Colon	K562	Leukemia	MCF7
1	3	5	0	0	0	0
2	2	0	0	2	6	2
3	2	0	7	0	0	0
Cluster	Melanoma	NSCLC	Ovarian	Prostate	Renal	Unknown
1	1	7	6	2	9	1
2	7	2	0	0	0	0
3	0	0	0	0	0	0

Compression / dimension reduction

1 pixel = $\mathbf{x}_n = (x_R, x_V, x_B) \Longrightarrow$ clustering 3d using K colours only

Images of reference $\implies x_n = 8x8$ blocks \implies clustering in dim. 64 using K patterns (atoms) to represent/denoise... images

Think of block cosines in JPEG...

Objective: identify the existence of clusters within unlabelled data, *from distances or similarities between points only*

Principle:

- ► Choose the number *K* of clusters,
- ▶ Given an affectation of points \mathbf{x}_n to clusters $\mathcal{C}_k \Leftrightarrow \mu_k$:
 - find the observation that minimizes the distance to all other points inside its cluster :

$$1 \le k \le K$$
, $n_k^* = \operatorname{argmin}_{n \in \mathcal{C}_k} \sum_{q \in \mathcal{C}_k} d(\mathbf{x}_n, \mathbf{x}_q)$

- the centres become $\mu_k = \mathbf{x}_{n_k^*}$
- associate each input sample x_n to the class of the closest center
- ▶ Iterate until convergence (guaranteed).

Differences of perception between countries

Data set: in 1990, students from political sciences have rated (over 10) "similarities" between pairs of countries among 12 countries (Belgium, Brazil, Chile...)

	BEL	BRA	CHI	CUB	EGY	FRA	IND	ISR	USA	USS	YUG
BRA	5.58										
CHI	7.00	6.50									
CUB	7.08	7.00	3.83								
EGY	4.83	5.08	8.17	5.83							
FRA	2.17	5.75	6.67	6.92	4.92						
IND	6.42	5.00	5.58	6.00	4.67	6.42					
ISR	3.42	5.50	6.42	6.42	5.00	3.92	6.17				
USA	2.50	4.92	6.25	7.33	4.50	2.25	6.33	2.75			
USS	6.08	6.67	4.25	2.67	6.00	6.17	6.17	6.92	6.17		
YUG	5.25	6.83	4.50	3.75	5.75	5.42	6.08	5.83	6.67	3.67	
ZAI	4.75	3.00	6.08	6.67	5.00	5.58	4.83	6.17	5.67	6.50	6.92

Examples of applications of K-medoids

Differences of perception between countries

Reordered Dissimilarity Matrix

Data set: in 1990, students from political sciences have rated (over 10) "similarities" between pairs of countries among 12 countries (Belgium, Brazil, Chile...)

Clustering en K=3 groupes + représentation simplifiée :

First MDS Coordinate

- ▶ **Spectral clustering** : similarities w_{ij} only notion de Laplacien d'un graphe... voir Hastie p. 544 find **f** that minimizes $\sum_i \sum_j w_{ij} (f_j f_i)^2$
- ▶ Multi-Dimensional Scaling (MDS) : visualization find $(z_1,...,z_N) \in \mathbb{R}^K$, K < D, minimizing the strain function

$$S_{MDS}(\mathbf{z}_1,...,\mathbf{z}_N) = \sum_{i \neq j} (d_{ij} - \|\mathbf{z}_j - \mathbf{z}_i\|)^2$$

- ► Self-Organized Maps de Kohonen (SOM) (1982) grid of neuron with responses || neighborhoods in features space
- ► Local Linear Embedding: interpolation between neighbours... (Hastie p. 573)

990

Other approaches

Spectral clustering, MDS, SOM...

Other approaches

Spectral clustering, MDS, SOM...

Other approaches

Spectral clustering, MDS, SOM...

Result of MDS for the half-sphere dataset :

Other approaches Spectral clustering, MDS, SOM...

Voting patterns :

Other approaches Spectral clustering, MDS, SOM...

SOM algorithm:

990

Other approaches

Spectral clustering, MDS, SOM...

SOM algorithm for news groups :

Other approaches

Spectral clustering, MDS, SOM...

Local Linear Embedding for video-sequences :

