

FACULTY OF ENGINEERING

Synthetic Fundus Fluorescein Angiography using Deep Neural Networks

Florian Schiffers^{1,2}, Zekuan Yu¹, Steve Arguin¹, Andreas Maier², Qiushi Ren¹

¹ Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China ² Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany

Angiographic Fundus Imaging

Figure 1: An intravenous, fluorescent dye bounds to leukocytes, which excites the molecules when exposed to blue light. This, in turn, produces a narrow yellow-green light. The enhanced image highlights different features of the fundus.

Introduction

- Physicians are increasingly reluctant to use angiographic imaging [1]
- Angiographic imaging may pose risks of harm to the patient
 - e.g. allergic reactions, nausea, thrombophlebitis, seizures
- Image synthetization to
 - Reduce the need for angiographic imaging
 - Create large, synthetic databases for machine learning application
- Medical image translation: CT to PET and MRI to CT

Materials and Methods

- Generative adversarial networks (GAN) use an additional discriminator which discerns real and synthesized images.
- CycleGAN translates images between two image domains A and B, without the need for tightly-coupled pairs [2]
- Dataset provided by [3] and People's Hospital of Jiangmen City, China
 - Training data: 365 color and 265 angiographic images
 - Test data: 14 color and 14 angiographic images
- Images down sampled to resolution of 256 x 256
- Data augmentation:
 - Rotated by 90, 180, and 270 degrees
 - Resized to 286 x 286 and cropped randomly

Results and Discussion

- Structures such as vessels are **enhanced** compared the color image
- **Fine vessel** structures are **unclear** or **not present** within the synthesized, but visible in the ground truth
- Some local structures are located at different positions in the image
- Overall image brightness and contrast between ground truth and synthesized images differ

Conclusions and Outlook

- Image translation between color fundus images and angiographic
- cycle consistency GAN allows training with unpaired image data
- Planned: Clinical study to investigate medical use case
- To do: Increasing the generated image resolution

Contact

Interest of the contract of th

the composition of the loss term used for the training process of the cycleGAN architecture. Color fundus image generator G_C and fluorescence angiographic image generator G_F . Similarly, D_C and D_F denote the respective discriminator networks. The input images are denoted as I_F and I_C .

Figure 2: The two figures visualize

Cycle consistency is enforced so that the backwards translation resembles the input image for both ways, see $L_{Cycle,Angio}$ and $L_{Cycle,Angio}$.

The adversarial loss, i.e. the capacity of the network to distinguish between real and fake images, is modeled by $L_{D_{\it c}}$ and $L_{D_{\it F}}$.

Figure 3: Each row shows from left to right the real and generated angiographic image, the authentic color image and the reconstructed color image to show cycle consistency.

References

- [1] Musa, F., et al. "Adverse effects of fluorescein angiography in hypertensive and elderly patients." *Acta Ophthalmologica 84.6 (2006): 740-742*.
- [2] Zhu, J. Y., et al. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593.
- [3] Hajeb Mohammad Alipour, S et al. "Diabetic retinopathy grading by digital curvelet transform." Computational and mathematical methods in medicine 2012 (2012).