MODELING CALCULATION KERNELS

Hoël Jalmin Tutored by Arnaud Legrand and Tom Cornebize The 21th of June, 2019

CONTEXT

With the current need for high performance computing, and the hardware complexity:

- How to predict the duration of calculations?
- · How to check if the performance is normal?

For this talk:

- 1. Brief presentation of the context
- 2. Introduction to Bayesian sampling
- 3. Examples of application

BACKGROUND ON HPC AND POLARIS RESEARCH

Modern context

- HPC systems use thousands of nodes, multiple levels of cache, hyperthreading, etc -> makes it difficult to predict performance
- Some functions are used everywhere, and called thousands of times

Polaris research

- Simulating HPL on smaller supercomputers to optimize it at a lesser cost
- Elaborated complex models but needed to evaluate and confirm the models

HPL SIMULATION

Examples

- The blas library is used by thousands of programs and constitutes most of HPL calculations.
- Performance variability is also caused by network communications
- · Needs to check the models with bayesian sampling.

BAYESIAN STATISTICS

BAYES MODEL

Model Let's say $y \sim \mathcal{N}(\mu, \sigma)$

- μ: Model parameters
- · y: Dependent data (posterior)
- σ : Independent data (prior)

We observe some data and need to find model parameters

The vocabulary

- Posterior: The distribution of the parameters
- · Likelihood: A function of the parameters, the model
- Prior: Existing knowledge of the system, guesses on the parameters values

$$\underbrace{p(\mu|y,\sigma)}_{\text{Posterior}} \propto \underbrace{p(y|\mu,\sigma)}_{\text{Likelihood}} \underbrace{p(\mu,\sigma)}_{\text{Prior}} \text{ assuming } y \sim \mathcal{M}(\mu,\sigma)$$

BAYESIAN SAMPLING

A BAYESIAN SAMPLER, STAN

WITH A SIMPLE EXAMPLE

Using this data, we'll try to find the parameters that were used to generate it.

THE STAN MODEL

```
library(rstan)
modelString = "data { // the observations
   int<lower=1> N; // number of points
   vector[N] x;
   vector[N] y;
parameters { // what we want to find
   real intercept;
   real coefficient;
   real<lower=0> sigma; // indication: sigma cannot be negative
model {
   // We define our priors
   intercept ~ normal(0, 10); // We know that all the parameters follow a nor
   coefficient ~ normal(0, 10):
    sigma ~ normal(0, 10);
   // Then, our likelihood function
   y ~ normal(coefficient*x + intercept, sigma);
sm = stan_model(model_code = modelString)
```

MAKING THE FIT AND CHECKING THE RESULTS

```
data = list(N=nrow(df),x=df$x,y=df$y)
fit = sampling(sm,data=data, iter=500, chains=8)
print(fit)
```

Inference for Stan model: ea4b5a288cf5f1d87215860103a9026e. 8 chains, each with iter=500; warmup=250; thin=1; post-warmup draws per chain=250, total post-warmup draws=2000.

	mean se	_mean	sd	2.5%	25%	50%	75%	97.5%
intercept	49.86	0.04	1.36	47.14	48.94	49.87	50.82	52.40
coefficient	-2.00	0.00	0.02	-2.04	-2.01	-2.00	-1.98	-
1.95								
sigma	15.03	0.01	0.47	14.18	14.70	15.02	15.35	15.99
lp	-1615.90	0.04	1.12	-1618.80	-1616.45	-1615.62	-1615.05	-1614.58
	n_eff Rhat							
intercept	1070 1.00							
coefficient	1042 1.00							
sigma	1042 1.01							
lp	871 1.00							

Samples were drawn using NUTS(diag_e) at Wed Jun 19 17:07:18 2019. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

CHECKING CONVERGENCE

GENERATING NEW DATA

A POLYNOMIAL MODEL WITH SPECIFIC NOISE

A MODEL DEPENDING ON THE HOST

A HIERARCHICAL MODEL

THE IMPORTANCE OF THE PRIORS

POSTERIOR VISUALISATION

THE FOLLOW UP

- **Possibilities** Modeling other calculation kernels
 - Modeling the network communications
 - · Parsing and converting Stan code to C, to generate new data more efficiently
 - Anomaly detection