

江西理工大学

Jiangxi University of Science and Technology

信息工程学院

School of information engineering

Spring_2020

Prof Associate, School of information engineering Jiangxi university of science and technology, China

EMAIL: ajm@jxust.edu.cn

Jiangxi University of Science and Technology

Sequential Circuits

9 Example and review: Flip-flop/Basic Flip-Flop

DR AJM

Example_1

Assume that the inverter in the network below has a propagation delay of 5 ns and the AND gate has a propagation delay of 10 ns. Draw a timing diagram for the network showing X, Y, and Z. Assume that X is initially 0, Y is initially 1, X becomes 1 for 80 ns, and then X is 0 again.

Example_1(solution)

Solution 1. You must remember to take into account delays. Steps for the solution:

- 1. Draw an empty timing diagram
- 2. Write related characteristic equation: Z = XY = XZ'
- 3. Plot initial states for X and Y
- 4. Plot remaining diagram by considering appropriate delays

FLIP-FLOP NAME	FLIP-FLOP SYMBOL	CHARACTERISTIC TABLE			CHARACTERISTIC EQUATION	EXCITATION TABLE				
SR	S Q CIK R Q'	S	R	Q(next)	Q(next) = S + R'Q SR = 0	Q	Q(next)	S	R	
		0	0	Q		0	0	0	X	
		0	1	0		0	1	1	0	
		1	0	1		1	0	0	1	
		1	1	?		1	1	X	0	
	J Q CIK	J	K	Q(next)		Q	Q(next)	J	K	
		0	0	Q	Q(next) = JQ' + K'Q	0	0	0	Х	
JK		0	1	0		0	1	1	X	
		1	0	1		1	0	X	1	
		1	1	Q'		1	1	X	0	
D	D Q Q					Q	Q(nex	t)	D	
		D Q	D Q _(next)		0	0		0		
		0)	0	Q _(next) = D	0	1		1	
		1		1		1	0		0	
						1	1		1	
Т	T Q					Q	Q(nex	t)	Т	
		T Q		Γ	Q(next)		0	0		0
		()	Q	Q(next) = TQ' + T'Q	0	1		1	
		1	1	Q'		1	0		1	
						1	1		0	

Example_2

A flip-flop can be constructed from two NAND gates connected as follows:

(c) Complete the following timing diagram for the flip-flop.

Example_2(solution)

DIGITAL SYSTEMS DESIGN

A δ t time delay should be considered when constructing timing diagram. Although it is not required, drawing S', P', R', and Q' is helpful.

$$Q = S'+P'$$
 $P = R'+Q'$

$$Q_+ = S' + RQ$$

CHARACTERISTIC TABLE				
S	R	Q(next)		
0	0	Q		
0	1	0		

 $Q_{(next)} = S + R'Q$ SR = 0

Example_3(solution)

Considering the RS _FF
Draw the Output Diagram if the initial value of is zero
(Q=0 and its sensitive to the rising edge)

CHARACTERISTIC TABLE					
S	R	Q(next)			
0	0	Q			
0	1	0			
1	0	1			
1	1	?			

Q(next) = S + R'Q	
SR = 0	

CLK

R

S

Q

Jiangxi University of Science and Technology

Make FF from each others

DR AJM

Example_7: Making the Flip flops

WITH THE HELP OF D ff MAKE THE T TYPE

Example_8: Making the Flip flops

WITH THE HELP OF JK ff MAKE THE D TYPE

$$D = 0 \rightarrow J = 0, K = 1 \rightarrow Q^* = 0$$

$$D=1 \rightarrow J=1$$
, $K=0 \rightarrow Q^*=1$

$$Q_{(next)} = D$$

Example_9: Making the Flip flops

WITH THE HELP OF T FF make the JK ff

T-FF equation

$$Q^* = T \oplus Q$$

$$T = Q* \oplus Q$$

JK-FF equation $\cdot : O^* = J.\overline{O} + \overline{K}.O$

$$Q* = J.\overline{Q} + \overline{K}.Q$$

$$T = (J.\overline{Q} + \overline{K}.Q) \oplus Q$$

$$Q_{(next)} = TQ' + T'Q$$

$$T = (J.\overline{Q} + \overline{K}.Q).Q + (J.\overline{Q} + \overline{K}.Q).\overline{Q}$$

$$T = (\overline{J+Q}).(K+\overline{Q}).Q + J.\overline{Q}$$

$$T = K.Q + J.\overline{Q}$$

Example_4:

Q(next) = JQ' + K'Q

Make the T flip flop from JK FF

Example_5:

Make the D type flip flop From JK FF

$$Q_{(next)} = JQ' + K'Q$$

Example_6:

Make the JK FF from T type flip flop

Q(t)	J	K	Т	Q(t+1)
0	0	0	0	0
U	U	U	U	U
0	0	1	0	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	1
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

$$T = J\overline{Q}(t) + KQ(t)$$

