

Data Matrix and Dissimilarity Matrix

- Data matrix
- A data matrix of n data points with I dimensions □ Dissimilarity (distance) matrix
 - \square n data points, but registers only the distance d(i, j)(typically metric)
 - Usually symmetric, thus a triangular matrix
 - Distance functions are usually different for real, boolean, categorical, ordinal, ratio, and vector variables
 - Weights can be associated with different variables based on applications and data semantics

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
x1	1	2
x2	3	5
<i>x3</i>	2	0
x4	4	5

Dissimilarity Matrix (by Euclidean Distance)

	x1	x2	<i>x3</i>	x4
x1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}$$

where $i = (x_{i1}, x_{i2}, ..., x_{il})$ and $j = (x_{j1}, x_{j2}, ..., x_{jl})$ are two l-dimensional data objects, and p is the order (the distance so defined is also called L-p norm)

Properties

- \Box d(i, j) > 0 if i \neq j, and d(i, i) = 0 (Positivity)
- \Box d(i, j) = d(j, i) (Symmetry)
- \Box d(i, j) \leq d(i, k) + d(k, j) (Triangle Inequality)

- A distance that satisfies these properties is a metric
- Note: There are nonmetric dissimilarities, e.g., set differences

Special Cases of Minkowski Distance

 \square E.g., the Hamming distance: the number of bits that are different between two binary vectors $d(i,j) = |x_{i1} - x_{i1}| + |x_{i2} - x_{i2}| + \cdots + |x_{il} - x_{il}|$

$$p = 2$$
: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

$$p \to \infty$$
: (L_{max} norm, L_∞ norm) "supremum" distance
 \square The maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p} = \max_{f=1}^l |x_{if} - x_{jf}|$$

_

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

Manhattan (L₁)

L	x1	x2	x3	x4
x1	0			
x2	5	0	:	
х3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

· -					
L2	x1	x2	х3	x4	
x1	0				
x2	3.61	0			
х3	2.24	5.1	0		
x4	4.24	1	5.39	0	

Supremum (L _∞) $\rightarrow \sim $				
\mathbf{L}_{∞}	x1	x2	х3	x4
x1	0		3	
x2	3	0	27	
х3	2	5	0	
- 2	2		-	()

ツルカー、ストントリーシー・ 三日子