Tutoriat 8 - Rezolvări Inele. Polinoame.

Savu Ioan Daniel, Tender Laura-Maria

- 13 ianuarie 2021 -

Exercitiul 1

Arătați că:

- $\mathbf{Q}/(X^2-1)\cong \mathbf{Q}\times \mathbf{Q}$.
- $\mathbf{Z}/(X^2 X) \cong \mathbf{Z} \times \mathbf{Z}$.
- $\mathbf{Z}/(X^2-1) \ncong \mathbf{Z} \times \mathbf{Z}$.

Rezolvare

• Putem rescrie $\mathbf{Q}/(X^2-1)\cong \mathbf{Q}/((X-1)(X+1))$. Pentru a arăta că (X-1) și (X+1) sunt comaximale, trebuie să arătăm că suma lor generează tot $\mathbf{Q}[X]$. Este suficient să arătâm că suma idealelor conține elementul unitate.

Observăm că (X+1)-(X-1)=2. Înmulțind relația cu $\frac{1}{2}$ (putem face această operație întrucât lucrăm în mulțimea numerelor raționale) obținem 1.

$$\mathbf{Q}/((X-1)(X+1)) \cong \mathbf{Q}/(X-1) \cap (X+1)$$

$$\mathbf{Q}/(X-1) \cap (X+1) \cong \mathbf{Q}/(X-1) \times \mathbf{Q}/(X+1)$$

Clasele de echivalență ale lui $\mathbf{Q}/(X-1)$ sunt resturile obținute prin împărțirea oricărui polinom la X-1, deci sunt polinoame de grad 0, de forma $\{a \mid a \in \mathbf{Q}\}$, deci $\mathbf{Q}/(X-1) \cong \mathbf{Q}$. Analog pentru $\mathbf{Q}/(X+1) \cong \mathbf{Q}$

În concluzie, $\mathbf{Q}/(X^2-1) \cong \mathbf{Q} \times \mathbf{Q}$.

- Demonstrația decurge asemănător pentru ${\bf Z}/(X^2-X)$, cu observația că $X^2-X=X(X-1)$. Sunt comaximale deoarece X-(X-1)=1.
- Spre deosebire de primul subpunct, aici nu mai putem înmulți relația cu $\frac{1}{2}$, întrucât lucrăm cu mulțimea numerelor întregi.

Presupunem că inelul factor ar fi izomorf cu $\mathbf{Z} \times \mathbf{Z}$. Ne uităm la elementele idempotente ale acestor două inele.

Observație: de
oarece X^2-1 aparține idealului prin care factorizăm,
 $\widehat{X^2-1}=\widehat{0},$ de unde $\widehat{X^2}=\widehat{1}.$

Fie $\hat{a}X + \hat{b}$ un element indempotent.

Atunci $(\widehat{a}X + \widehat{b})^2 = \widehat{a}X + \widehat{b}, \ \widehat{a}^2X^2 + 2\widehat{a}\widehat{b}X + \widehat{b}^2 = \widehat{a}X + \widehat{b}, \ \widehat{a}^2 + 2\widehat{a}\widehat{b}X + \widehat{b}^2 = \widehat{a}X + \widehat{b}$

$$\begin{cases} \widehat{a}^2 + \widehat{b}^2 = \widehat{b} \\ 2\widehat{a}\widehat{b} = \widehat{a} \end{cases} \quad \text{Singurele soluții ale ecuațiilor în } \mathbf{Z} \text{ sunt } a = 0 \text{ și } b \in \{0,1\}.$$

Deci obtinem 3 elemente indempotente.

În $\mathbf{Z} \times \mathbf{Z}$, sunt 4 elemente idempotente: $\{(0,0),(0,1),(1,0),(1,1)\}$. Având număr diferit de idempotenți, inelele nu sunt izomorfe.

Exercițiul 2

Fie idealul $I = (X^3, X^5)$ al inelului de polinoame $\mathbf{Q}[X]$.

- 1. Dați un exemplu de polinom care aparține lui I și are 4 termeni nenuli.
- 2. Dați un exemplu de polinom care nu aparține lui I și are 3 termeni nenuli.
- 3. Este adevărat că $I = (X^3)$? Dar că $I = (X^5)$? Justificati.
- 4. Determinați elementele nilpotente din inelul factor $\mathbf{Q}[X]/I$.
- 5. Determinati elementele idempotente din inelul factor $\mathbf{Q}[X]/I$.
- 6. Sunt izomorfe inelele $\mathbb{Q}[X]/I$ și $\mathbb{Q} \times \mathbb{Q}$?. Justificați.

Rezolvare

- (1) Cum $X^5 \in I$, un astfel de polinom este $X^5 + X^6 + X^7 + X^8$.
- (2) Fie $P = X^2 + X^1 + 1$. Presupunem ca $P \in I$. Atunci $P = X^3 * A + X^5 * B$, unde A, B sunt polinoame. Observăm că P poate fi rescris ca $P = X^3 * C$, cu C polinom. Comparând gradele posibile pentru $X^3 * C$ și pentru P, rezultă că P nu poate fi egal cu $X^3 * C$. Contradicție. Prin urmare $P \notin I$ și P are 3 termeni nenuli, deci este un polinom valid pentru cerintă.
- (3) Orice polinom din I poate fi scris sub forma X^3*A+X^5*B cu A,B polinoame. Astfel, aranjând termenii, putem scrie mai departe că un polinom din I este de forma X^3*C cu C polinom. Putem observa imediat că $I=(X^3)$. De asemenea, din ultima relație, avem că $I\neq (X^5)$ deoarece $I=(X^3)$ și $X^3\in (X^3)$ dar $X^3\not\in (X^5)$.
- (4) Elementele din grupul factor sunt de forma $P = aX^2 + bX + c = X(b + aX) + c$, cu $a, b, c \in \mathbf{R}$. P este nilpotent daca $\exists n \in \mathbf{N}$ a.î. P^n este multiplu de X^3 . Din ultima relație, daca scriem P^n folosind binomul lui Newton observăm ca acesta

este multiplu de $X^3 \iff c=0$. Prin urmare, există o infinitate de elemente nilpotente, acestea fiind de forma aX^2+bX .

- (5) Analog subpunctului anterior, $P = ax^2 + bX + c$. Trebuie să rezolvăm ecuația $P^2 = P$, de unde $(b^2 + 2ac)X^2 + 2bcX + c^2 = aX^2 + bX + c$. Avem două soluții, și anume 0 și 1 care sunt idempotenții triviali. Prin urmare, idempotenții inelului factor sunt idempotentii triviali.
- (6) În $\mathbf{Q} \times \mathbf{Q}$ singurul element nilpotent este (0,0). În inelul factor, conform (4), există o infinitate de elemente nilpotente. Prin urmare, cele două inele nu pot fi izomorfe.

Exercitiul 3

Fie polinomul $P(X) = X^4 - X^2 + 1$ având rădăcinile complexe $\alpha_1, ..., \alpha_4$.

- 1. Descompuneți polinomul P(X) în factori ireductibili peste fiecare dintre corpurile $\mathbf{R}, \mathbf{Q}, \mathbf{Z}_2, \mathbf{Z}_3$.
- 2. Calculați $\alpha_1^5 + \dots + \alpha_4^5$.
- 3. Determinați explicit coeficienții unui polinom nenul care să aibă ca rădăcini pe $2\alpha_1-1,...,2\alpha_4-1$.

Rezolvare

1. $P(X) = X^4 - X^2 + 1 = X^4 + 1 - X^2 = X^4 + 2X^2 + 1 - 3X^2 = (X^2 + 1)^2 - 3X^2 = (X^2 + 1 - \sqrt{3}X)(X^2 + 1 + \sqrt{3}X).$

Știm că un polinom este ireductibil peste ${\bf C}$, dacă este descompus în polinoame de gradul întâi. Însă, peste ${\bf R}$, un polinom este ireductibil dacă este descompus în polinoame de gradul întâi sau în polinoame de gradul al doilea cu $\Delta < 0$.

Calculăm Δ pentru cele două polinoame de gradul al doilea în care lam descompus pe P(X). $\Delta_1 = \Delta_2 = 3 - 4 = -1 < 0$. Deci forma este ireductibilă peste \mathbf{R} .

Vom arăta că P(X) este ireductibil peste **Q**. Presupunem că există $\frac{m}{n}, (m,n) = 1, m \in \mathbf{Z}, n \in \mathbf{N}^*$ astfel încât $P(\frac{m}{n}) = 0, \frac{m}{n}$ rădăcină a lui P(X).

$_{-}$ TEOREMĂ

Fie
$$f \in \mathbb{Z}[X]$$
, $f = a_0 + a_1 X + ... + a_n X^n$, $a_0 \neq 0$, $a_n \neq 0$.

Dacă $\frac{p}{q}$, (p, q) = 1, este o rădăcină rațională a polinomului f, atunci p / a_0 și q / a_n .

Atunci $m|1 \neq n|1$, deci $\frac{m}{n} \in \{+1, -1\}$.

 $P(1)=1\neq 0, P(-1)=1\neq 0.$ Astfel, presupunerea făcută este falsă, deciP(X) este ireductibil peste ${\bf Q}.$

Peste
$$\mathbf{Z}_2$$
, $P(X) = X^4 + X^2 + 1 = (X^2 + X + 1)^2 \cdot f(X) = (X^2 + X + 1)^2 \cdot f(X)$

este ireductibil peste \mathbf{Z}_2 întrucât $f(\widehat{0}) = \widehat{1}$ și $f(\widehat{1}) = \widehat{1}$. Peste \mathbf{Z}_3 , $P(X) = X^4 + \widehat{2}X + \widehat{1} = (X^2 + \widehat{1})^2$. $X^2 + \widehat{1}$ este ireductibil peste \mathbf{Z}_3 .

- 2. $P(\alpha_i) = 0, i \in \overline{(1,4)}$. Deci $\alpha_i^4 \alpha_i^2 + 1 = 0 \iff \alpha_i^4 = \alpha_i^2 1$. $\alpha_i^5 = \alpha_i^3 \alpha_i$. $\sum_{i=1}^4 \alpha_i^5 = \sum_{i=1}^4 \alpha_i^3 \sum_{i=1}^4 \alpha_i$ Conform relațiilor lui Viete, $s_1 = p_1 = \sum_{i=1}^4 \alpha_i = 0$. $s_2 = -1, s_3 = 0, s_4 = 1$. Dorim să aflăm $p_3 = \sum_{i=1}^4 \alpha_i^3$. Conform formulelor lui Newton $p_3 p_2 s_1 + p_1 s_2 3 s_3 = 0$ $p_1 = s_1 = 0 \Rightarrow p_3 = 3 s_3 = 0$ În concluzie, $\sum_{i=1}^4 \alpha_i^5 = 0$.
- 3. $2\alpha_i 1 = \beta_i \iff \alpha_i = \frac{\beta_i + 1}{2}$ Răspunsul este polinomul $Q(X) = P(\frac{X+1}{2}) = (\frac{X+1}{2})^4 - (\frac{X+1}{2})^2 + 1$.