MATH 112: Introduction to Analysis Fall 2025 Semester

Homework 4: Due Tuesday October 07, 10:00am PST.

Assignment (2 Problems: 50 + 50 = 100 points total.)

 \square **Problem 1** [Fields] Let $(F, \oplus, \mathbb{O}, \otimes, \mathbb{I})$ be a field satisfying the 10 field axioms from L7. Prove each of the following propositions, indicating which field axioms you use in each step.

- 1.1 [10 points] $\forall x \in F \ \forall y \in F \ \forall c \in F \ \left((x \oplus c = y \oplus c) \ \Rightarrow x = y \right)$.
- 1.2 [10 points] $\forall x \in F \ \mathbb{O} \otimes x = \mathbb{O}$. Hint: $\mathbb{O} = \mathbb{O} \oplus \mathbb{O}$.
- 1.3 [10 points] $\forall x \in F \ \forall y \in F \ \Big((x = \mathbb{O} \ \lor \ y = \mathbb{O}) \ \Rightarrow \ x \otimes y = \mathbb{O} \Big).$
- 1.4 [10 points] $\forall x \in F \ \forall y \in F \ (x \otimes y = \mathbb{O} \ \Rightarrow \ (x = \mathbb{O} \ \lor \ y = \mathbb{O})).$
- 1.5 [10 points] $\neg (\exists \sigma \in F \ \mathbb{O} \otimes \sigma = \mathbb{I}).$
- 1.1) $\forall x \in F \ \forall y \in F \ \forall c \in F \ \left((x \oplus c = y \oplus c) \ \Rightarrow x = y \right).$

Assume $x \oplus c = y \oplus c$. By the hypothetical strategy, if x = y when we make this assumption, the original statement is True. Since, by axiom 4, we know that all elements have \oplus -inverses. if we $\oplus(-c)$ to each side:

$$x \oplus c = y \oplus c$$

$$x \oplus c \oplus (-c) = y \oplus c \oplus (-c)$$

$$x \oplus \mathbb{O} = y \oplus \mathbb{O}$$

$$x = y.$$

Since by axoim 4 any value \oplus its inverse equals $\mathbb O$ the equation simplifies down to $x\oplus\mathbb O=y\oplus\mathbb O$. And since, by axiom 3, any value plus the identity $\mathbb O$ equals itself we can simplify to x=y. Since we have proved that when we assume $x\oplus c=y\oplus c$, x=y is True, by the hypothetical stretegy, $(x\oplus c=y\oplus c)\Rightarrow x=y$) is True for all $x,y,c\in F$. \square

1.2) $\forall x \in F \ \mathbb{O} \otimes x = \mathbb{O}$

let $x \in F$. If we use the Hint that $\mathbb{O} = \mathbb{O} \oplus \mathbb{O}$ and substitute \mathbb{O} for $\mathbb{O} \oplus \mathbb{O}$ in the original equation:

$$\mathbb{O} \otimes x = (\mathbb{O} \oplus \mathbb{O}) \otimes x$$
$$= (\mathbb{O} \otimes x) \oplus (\mathbb{O} \otimes x).$$

Using axiom 9, we can take $(\mathbb{O} \oplus \mathbb{O})$ and distribute \otimes over \oplus to get $(\mathbb{O} \otimes x) \oplus (\mathbb{O} \otimes x)$. Then we can use axiom 4 to take the inverse of $(x \oplus c)$ and $\oplus (-(\mathbb{O} \oplus x))$ to both sides:

$$(\mathbb{O} \otimes x) \oplus (-(\mathbb{O} \oplus x)) = (\mathbb{O} \otimes x) \oplus (\mathbb{O} \otimes x) \oplus (-(\mathbb{O} \otimes x))$$
$$\mathbb{O} = (\mathbb{O} \otimes x) \oplus \mathbb{O}$$
$$= \mathbb{O} \otimes x.$$

Since a value \oplus its inverse equals $\mathbb O$ by axiom 9, $(\mathbb O\otimes x)\oplus(-(\mathbb O\otimes x))=\mathbb O$ and we can substitute one for the other on both sides. Since, by axiom 3 a value \oplus the identity $\mathbb O$, it follows that $(\mathbb O\otimes x)\oplus\mathbb O=\mathbb O\otimes x$. Thus, by the slinky method, $\mathbb O=\mathbb O\otimes x$. \square

1.3)
$$\forall x \in F \ \forall y \in F \ \left((x = \mathbb{O} \ \lor \ y = \mathbb{O}) \ \Rightarrow \ x \otimes y = \mathbb{O} \right)$$

First Assume $(x = \mathbb{O} \lor y = \mathbb{O})$. By the Hypothetical strategy, if we can prove $x \otimes y = \mathbb{O}$ under this assumption, the original statement is True. if $(x = \mathbb{O} \lor y = \mathbb{O})$, we can evaluate the implication by thinking of two cases: case (1) $x = \mathbb{O}$, and case (2) $y = \mathbb{O}$.

Case (1): $x = \mathbb{O}$ if we substitute our value of x into the statement $x \otimes y$:

$$x \otimes y = \mathbb{O} \otimes y$$
$$= \mathbb{O}.$$

Since we proved that the identity, \mathbb{O} , \otimes , any value equals the identity, \mathbb{O} in problem 2, it follows that $\mathbb{O} \otimes y = \mathbb{O}$. Thus, by the sliky method, $x \otimes y = \mathbb{O}$ when $x = \mathbb{O}$. Case (2): $y = \mathbb{O}$ if we substitute our value of x into the statement $x \otimes y$:

$$\begin{aligned} x \otimes y &= x \otimes \mathbb{O} \\ &= \mathbb{O} \otimes x \\ &= \mathbb{O} \,. \end{aligned}$$

First use axiom 2, commutativity, it follows that: $x \otimes \mathbb{O} = \mathbb{O} \otimes x$. Since we proved that the identity, \mathbb{O} , \otimes , any value equals the identity, \mathbb{O} in problem 2, it follows that $\mathbb{O} \otimes x = \mathbb{O}$. Thus, by the sliky method, $x \otimes y = \mathbb{O}$ when $y = \mathbb{O}$. Since $x \otimes y = \mathbb{O}$ when $x = \mathbb{O}$ or when $y = \mathbb{O}$, the original statement holds true. \square

1.4) $\forall x \in F \ \forall y \in F \ (x \otimes y = \mathbb{O} \Rightarrow (x = \mathbb{O} \lor y = \mathbb{O}))$ let $x, y \in F$. Assume $x \otimes y = \mathbb{O}$, Assume $x \neq 0$. Since, by problem 2, $\mathbb{O} = x \otimes \mathbb{O}$ we can substitute one for the other in the eqation. Next, by axiom 8, all $x \neq \mathbb{O}$ have \otimes -inverses. We can $\otimes x^{-1}$ to each side:

$$(x \otimes y) = \mathbb{O}$$

$$x^{-1} \otimes (x \otimes y) = x^{-1} \otimes \mathbb{O}$$

$$(x^{-1} \otimes x) \otimes y = \mathbb{O}$$

$$\mathbb{I} \otimes y = y = 0$$

$$y = 0$$

By axiom 5, \otimes is associative, it follows that $x^{-1} \otimes (x \otimes y) = (x^{-1} \otimes x) \otimes y$. by axiom 8 a value \otimes its inverse is equal to \mathbb{I} , so $x^{-1} \otimes x = \mathbb{I}$. Thus, by the slinky method, $y = \mathbb{O}$. According to the Hypothetical strategy if we prove that statement is true, it is sufficient to prove that, assuming $x \otimes y = \mathbb{O}$, then $(x = \mathbb{O} \vee y = \mathbb{O})$ is true. since we have proved that $(x \otimes y = \mathbb{O}) \Rightarrow y = \mathbb{O}$, then $(x = \mathbb{O} \vee y = \mathbb{O})$ regardless of the truth value of $x = \mathbb{O}$. Thus the original statement holds true. \square

1.5) $\neg (\exists \sigma \in F \ \mathbb{O} \otimes \sigma = \mathbb{I})$ We attempt a proof by contradiction. First, assume the negation of the original statement:

Assume $\exists \sigma \in F \mathbb{O} \otimes \sigma = \mathbb{I}$, Evaluate the statement:

$$\begin{split} \mathbb{I} &= \mathbb{O} \otimes \sigma \\ &= \mathbb{O} \, . \end{split}$$

By the slinky method, $\mathbb{I} = \mathbb{O}$, which is a contradiction. By axiom 10, $\mathbb{O} \neq \mathbb{I}$. Therefore the original statement is True.

□ **Problem 2** [Induction] Prove each of the following propositions by induction.

- 2.1 [10 points] $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \ \Rightarrow \ 2^n < n!\right)$. where $n! = \prod_{k=1}^n k \ and \ 0! = 1$.
- 2.2 [10 points] $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \ \Rightarrow \frac{1}{n} < 0.112\right)$.
- 2.3 [10 points] $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \ \Rightarrow \ 1 + 0.112n \le (1 + 0.112)^n \right)$
- 2.4 [10 points] $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \Big(n_0 \le n \ \Rightarrow \ \sum_{i=1}^n j = \frac{n(n+1)}{2} \Big).$
- 2.5 [10 points] $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \ \Rightarrow \ \sum_{k=0}^n z^k = \frac{1-z^{n+1}}{1-z} \right) \ for \ z \in \mathbb{C} \ and \ z \ne 1.$

Recall from L10: to prove $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \leq n \ \Rightarrow \ P(n)\right)$ by induction requires two steps:

- (i) nominate a base case $n_0 \in \mathbb{N}$ and prove $P(n_0)$
- (ii) prove $\forall n \in \mathbb{N} \ \Big((n_0 \le n) \land P(n) \Rightarrow P(n+1) \Big)$ using the hypothetical strategy from P3. In the inductive step (ii), try to format your proof of the implication via the "slinky method".
- 2.1) $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \leq n \Rightarrow 2^n < n!\right)$. where $n! = \prod_{k=1}^n k$ and 0! = 1.// proof. we will prove this by induction. First note that the statement holds when n = 4.

$$2^4 = 16$$
 $< 4!$
 $= 24.$

since 16 < 24 the statment holds true.

By the principle of mathmatical induction, if we show that if the base case is true then, $\forall n \in \mathbb{N} \ (4 \le n \lor (2^n < n!) \Rightarrow 2^{n+1} < (n+1)!).$

First note that $4 \le n \Rightarrow 2 < n+1$. Assum $4 \le n$. By the hypothertical stretegy, if we prove that 2 < n+1 is true under this assumption, it is sufficent to prove that $4 \le n \Rightarrow 2 < n+1$.

$$2 < 5$$

= $4 + 1$
 $< n + 1$

we know that 2 < 5. and 5 can be rewritten as 4 + 1 since we have assumed $4 \le n$ it follows that $4 + 1 \le n + 1$. thus, By the slinky method: 2 < n + 1 Simmilarly using the hypothetical strategy, assume $4 \le n \land (2^n < n!)$.

$$2^{n+1} = 2^n \cdot 2$$

$$< 2^n(n+1)$$

$$< n!(n+1)$$

$$= (n+1)!$$

You can rewrite 2^{n+1} as $2^n \cdot 2$ by rules of exponents. Since we have previously proved that 2 < n+1 when $4 \le n$, it follows that $2^n \cdot 2 < 2^n(n+1)$ when $4 \le n$. Since, by our assumption that $2^n < n!$, it follows that $2^n(n+1) < n!(n+1)$. Lastly, we know that n!(n+1) = (n+1)! by rules of algebra and factorials. thus, By the Slinky method, the original statement is True via induction \Box

2.2) $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \Rightarrow \frac{1}{n} < 0.112\right)$ proof. Choose $n_0 = 9$, We'll show

$$\forall n \in \mathbb{N} (4 \le n \Rightarrow \frac{1}{n} < 0.112)$$

By the principal of Mathmatical induction, if we show the statement holds for n = 9. let n = 9:

$$\frac{1}{9} < 0.112.$$

Since $\frac{1}{9} < 0.112$ is true, the statement holds for n = 9. Next we will show that:

$$\forall n \in \mathbb{N} \left(9 \le n \land \frac{1}{n} < 0.112 \Rightarrow \frac{1}{n+1} < 0.112\right)$$

Assume $9 \le n \land \frac{1}{2} < 0.112$.

$$\frac{1}{n+1} < \frac{1}{n}$$

$$< 0.112$$

We know that n+1>n, because since we have chosen $n_0=9$ then n>0. Using this, it follows that $\frac{1}{n+1}<\frac{1}{n}$ since the larger a denominator is, the smaller the fraction is. Since we have assumed $\frac{1}{n}\leq 0.112$, we can just evaluate it as given. By the slinky method, we have: $\frac{1}{n+1}<0.112$. Thus we have proven the original statement true by induction. \square

2.3) $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \Rightarrow 1 + 0.112n \le (1 + 0.112)^n\right)$ proof. Choose $n_0 = 1$. We'll show:

$$\forall n \in \mathbb{N} \left(1 \le n \Rightarrow 1 + 0.112n \le (1 + 0.112)^n \right)$$

By the principal of mathmatical induction, to prove this we will first show this statment holds for n = 1

let n=1

$$1 + 0.0112n = 1 + 0.0112 \cdot 1$$

$$= 1.112$$

$$= (1 + 0.112)^{1}$$

$$= (1 + 0.112)^{n}$$

First plug substitute n for 1. this expression evaluates to 1.112. you could also write 1.112 as $1+0.112)^1$. This is the same thing as $(1+0.112)^n$ if you substituted 1 for n. thus $1+0.0112n \le (1+0.112)^n$ when n=1, by the slinky method. Next we will show that:

$$\forall n \in \mathbb{N} \left(1 \le n \land 1 + 0.112n \le (1 + 0.112)^n \Rightarrow 1 + 0.112(n+1) \le (1 + 0.112)^{n+1} \right)$$

First, we will prove that $0.112 \le (0.112)^2 n$. Let $n \in \mathbb{N}$, Assume 1 < N:

$$0.112 < 1(0.0112)^{2}$$

$$\leq n(0.0112)^{2}$$

$$= (0.112)^{2}n.$$

We know that $0.112 < 1 \cdot (0.0112)^2$. Using our assumption that 1 < N, it follows that $1(0.0112)^2 \le n(0.0112)^2$. The last statement just moves around the n term. thus, by the slinky method, $0.112 < (0.0112)^2 n$.

Assume $1 \le n \land 1 + 0.112n \le (1 + 0.112)^n$

$$1 + 0.112(n + 1) = 1 + (0.112)n + (0.112)$$

$$< 1 + (0.112)n + (0.112)^{2}n$$

$$= 1 + (0.112)n + (0.112)n)(0.112)$$

$$= 1 + (0.112)n(1 + 0.112)$$

$$< (1 + 0.112)^{n} \cdot (1 + 0.112)$$

$$= (1 + 0.112)^{n+1}$$

First, 1+0.112(n+1) can be reweitten by distributing 0.112 with (n+1) to get 1+(0.112)n+(0.112). We already proved that $(0.112)<(0.112)^2n$ above, and it follow that $1+(0.112)n+(0.112)<1+(0.112)n+(0.112)^2n$. we can rearange $1+(0.112)n+(0.112)^2n$ to get 1+(0.112)n+(0.112)n. You can then factor (1+0.112) out to get 1+(0.112)n(1+0.112). Using our asumption that $1+0.112n<(1+0.112)^n$, it follows that $1+(0.112)n(1+0.112)<(1+0.112)^n\cdot(1+0.112)$. this can be further rewritten as $(1+0.112)^{n+1}$ by power rules of algebra. Thus, By the slinky method, The original statement is True.

2.4)
$$\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \ \Rightarrow \ \sum_{j=1}^n j = \frac{n(n+1)}{2} \right)$$

proof. Choose $n_0 = 1$. We'll show:

$$\forall n \in \mathbb{N} \left(n_0 \le n \ \Rightarrow \ \sum_{i=1}^n j = \frac{n(n+1)}{2} \right)$$

By the principal of math matical induction, to prove this we will first show this statment holds for n=1 let $n=1\,$

$$\sum_{j=1}^{n} j = \sum_{j=1}^{1} j$$
= 1
= $\frac{2}{2}$
= $\frac{1(1+1)}{2}$
= $\frac{n(n+1)}{2}$

Thus the statement holds when n=1

$$\forall n \in \mathbb{N} \left(n_0 \le n \land \sum_{j=1}^n j = \frac{n(n+1)}{2} \Rightarrow z \right)$$

Assume $\leq n \wedge \sum_{j=1}^{n} j = \frac{n(n+1)}{2}$

$$\sum_{j=1}^{n+1} j = \sum_{j=1}^{n} +(n+1)$$

$$= \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1) + 2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

Thus, the original statement is true by induction.

2.5) $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \ \Rightarrow \ \sum_{k=0}^n z^k = \frac{1-z^{n+1}}{1-z} \right) \ for \ z \in \mathbb{C} \ and \ z \ne 1.$ proof. Choose $n_0 = 0$. We'll show:

$$\forall n \in \mathbb{N} \left(n_0 \le n \Rightarrow \sum_{k=0}^n z^k = \frac{1-z^{n+1}}{1-z} \right)$$

By the principal of math matical induction, to prove this we will first show this statment holds for n=0 let n=0

$$\sum_{k=0}^{n} z^{k} = z^{0}$$

$$= 1$$

$$= \frac{1 - z^{1}}{1 - z}$$

$$= \frac{1 - z^{n+1}}{1 - z}.$$

Thus, the statement holds, for n = 0.

$$\forall n \in \mathbb{N} \left(n_0 \le n \land \sum_{k=0}^n z^k = \frac{1 - z^{n+1}}{1 - z} \Rightarrow \sum_{k=0}^{n+1} z^k = \frac{1 - z^{n+2}}{1 - z} \right)$$

Assume $n_0 \le n \ \land \ \sum_{k=0}^{n} z^k = \frac{1-z^{n+1}}{1-z}$

$$\sum_{k=0}^{n} z^{n+1} = \sum_{k=0}^{n} z^k + z^{n+1}$$

$$= \frac{1 - z^{n+1} + (1 - z)(z^{n+1})}{1 - z}$$

$$= \frac{a - z^{n+1} + z^{n+1} - z^{n+2}}{1 - z}$$

$$= \frac{1 - z^{n+2}}{1 - z}.$$

Thus, the original statment is True, by induction.

 \square Bonus [X points] Construct an example of a field F with |F|=4.