تاریخ بارگذاری: ۱۷ اردیبهشت ۱۴۰۲

صفحهٔ ۱ از ۴

• همهٔ پاسخهایتان را خوانا، با توضیح دقیق و کامل و مستدل بنویسید.

• پاسخ هر سؤال را در برگهٔ مستقل بنویسید.

• جمع نمرهها برابر ۱۲۰ است، و نمرهٔ ۱۰۰ نمرهٔ کامل محسوب می شود.

د فرض کنید $A\in\mathcal{M}_n(\mathbb{R})$ قرار دهید: ۱

$$e^A = I + A + \frac{A^{\mathsf{Y}}}{\mathsf{Y}!} + \cdots$$

(۵ نمره) الف. نشان دهید
$$e^A \in \mathcal{M}_n(\mathbb{R})$$
 الف.

(۲ نمره) ماتریس قطری است. نشان دهید
$$e^A$$
 نیز یک ماتریس قطری است. نشان دهید e^A نیز یک ماتریس قطری است.

ج. به ازای هر ماتریس وارونپذیر $P \in \mathcal{M}_n(\mathbb{R})$ نشان دهید:

$$Pe^A P^{-1} = e^{PAP^{-1}}.$$

د. فرض کنید $Av=\lambda v$ و $\lambda\in R$ ، $\gamma\neq v\in\mathbb{R}^n$ نشان دهید:

$$e^A v = e^{\lambda} v$$
.

(۳ نمره)

x(t)=x(t) مشتق آن در نقطه t است. قرار دهید $x_i(\circ):\mathbb{R} o\mathbb{R}$ ، $0 \leq i \leq n$ مشتق آن در نقطه است. قرار دهید

را حدس بزنید و درستی آن را
$$x'(t) = x'(t) = x'(t)$$
 با شرط اولیه $x'(t) = x'(t) = x'(t)$ را حدس بزنید و درستی آن را $x'(t) = x'(t)$ و درستی آن را $x'(t) = x'(t)$ با شرط اولیه $x'(t) = x'(t)$ دره نمره)

و. فرض كنيد $B \in \mathcal{M}_n(\mathbb{R})$ و $B \in \mathcal{M}_n(\mathbb{R})$ نشان دهيد

$$e^{A+B} = e^A e^B.$$

آیا حکم فوق به ازای هر
$$B\in\mathcal{M}_n(\mathbb{R})$$
 دلخواه صادق است؟

و. فرض کنید. رویه ای برای محاسبه e^A ارائه کنید. $N^n = \circ$ ، DN = ND ، A = D + N ز. فرض کنید Λ)

ره نشان دهید e^A وارونپذیر است. e^A نشان دهید مید مید مید مینان دهید است.

ط. فرض کنید
$$a,b\in\mathbb{R}$$
 ، $A=egin{bmatrix} a & -b \ b & a \end{bmatrix}$ نشان دهید:

$$e^{A} = e^{a} \begin{bmatrix} \cos b & -\sin b \\ \sin b & \cos b \end{bmatrix}$$

(۳ نمره)

۲. اثبات وجود پایه برای هر فضای خطی دلخواه..

برای اثبات حکم فوق چند تعریف و لم زرن نیاز است. در ادامه با این تعاریف و لم زرن آشنا میشوید.

تعریف ۱. مجموعه A مجهز به رابطه \geq ، یک مجموعه جزئی مرتب نامیده می شود هرگاه دارای خواص زیر باشد:

- $a \leq a$ ، $a \in A$ هر . ۱
- a=b و $b\leq a$ و نتیجه دهد a=b د ده. a
- $a \leq c$ به ازای هر $a \leq c$ هر $a \leq b$ هر $a \leq b$ هر $a \leq c$ بتیجه دهد .۳
- $a \leq b$ را ماکسیمال میگویند هرگاه به ازای هر $A \in A$ اگر داشته باشیم عنصر $a \in A$ را ماکسیمال میگویند هرگاه به ازای هر $a \in A$ اگر داشته باشیم a = b .
- $b\in B$ تعریف $a\in A$ نید $a\in A$ زیرمجموعه ناتهی از یک مجموعه جزئی مرتب $a\in A$ باشد. گوییم $a\in A$ دارای کران بالای $a\in A$ است هر گاه به ازای هر $a\in B$ داشته باشیم $a\in A$ داشته باشیم $a\in A$ ناته باشد.
- تعریف ۴. منظور از یک زنجیر در مجموعه جزئی مرتب A، زیرمجموعه ناتهی از A مانند B است به طوری که هر دو عنصر آن قابل مقایسهاند. یعنی $b \leq a$ یا $a \leq b$, $a, b \in B$ یا

لم زرن. اگر A یک مجموعه جزئی مرتب باشد و هر زنجیر A دارای کران بالایی در A باشد، در این صورت A دارای عضو ماکسیمال است.

قضیه: هر فضای خطی \mathcal{V} روی $\mathbb{F}=\mathbb{F}$ درای پایه است.

مراحل اثبات قضیه فوق به شرح زیر است.

الف. قرار دهيد:

$$\Sigma = \{S \subseteq \mathcal{V} \mid$$
 روی \mathbb{F} مستقل خطی است $S\}$

نشان دهید
$$\Sigma$$
 ناتهی و با رابطه \subseteq مجموعه جزئی مرتب است.

$$T\in \Sigma$$
 نشان دهید $T=\bigcup_{i\in I}S_i$ بک زنجیره در Σ است. قرار دهید Σ است. قرار دهید $T=\bigcup_{i\in I}S_i$ نشان دهید

ج. نشان دهید
$$\Sigma$$
 دارای یک عضو ماکسیمال مانند B است.

د. نشان دهند
$$B$$
 یابهای برای ${\cal V}$ است.

ت. فرض کنید v فضای خطی حقیقی، v=0 فرv=0 و v=0 زیرفضای خطی است. رابطه v روی v را به صورت زیر تعریف میکنیم:

$$\forall a, b \in \mathcal{V} \quad aRb \Longleftrightarrow b - q \in \mathcal{W}$$

aرا کلاس همارزی aRx که $x\in\mathcal{V}$ مجموعه همه $a\in\mathcal{V}$ مجموعه همارزی است. بنابراین به ازای هر aRx می میتوان نشان داد که aRx که aRx را کلاس همارزی مینامیم و با نماد aRx نمایش میدهیم. به عبارت دیگر

$$[a] = \{x \in \mathcal{V} \mid xRa\} = \{x \in \mathcal{V} \mid a - x \in \mathcal{W}\}\$$

قرار دهید:

$$\frac{\mathcal{V}}{\mathcal{W}} = \{ [a] \mid a \in \mathcal{V} \}$$

به ازای هر $\frac{\mathcal{V}}{\mathcal{W}}$ به ازای هر $[a],[b]\in\frac{\mathcal{V}}{\mathcal{W}}$ تعریف کنید:

$$[a] + [b] = [a+b], r.[a] = [ra]$$

الف. نشان دهید
$$(\frac{\mathcal{V}}{\mathcal{W}}, +, .)$$
 یک فضای خطی است.

تاریخ بارگذاری: ۱۷ اردیبهشت ۱۴۰۲

صفحهٔ ۳ از ۴

 \mathcal{W} بایهای برای \mathcal{W} بایهای برای \mathcal{W} به طوریکه $\{w_1, \cdots, w_m\}$ بایهای برای \mathcal{W} به طوریکه $\{w_1, \cdots, w_m\}$ بایهای برای فضای خطی \mathcal{W} معرفی کنید.

ج. نگاشت $\mathcal{W} o T: \mathcal{V} o \mathcal{W}$ با ضابطه

$$T(\sum_{i=1}^{m} c_i w_i + \sum_{i=m+1}^{n} d_i v_i = \sum_{i=1}^{m} c_i w_i)$$

را در نظر بگیرید. نشان دهی T یک تبدیل خطی است و سپس رابطه N(T) و فضای خطی $\frac{\mathcal{V}}{\mathcal{W}}$ را تشریح کنید.

۴. فرض کنید V فضای خطی حقیقی باشد. مجموعه V مجموعه همه تابعهای خطی از V به \mathbb{R} است. به راحتی می توان دید که V فضای خطی حقیقی است.

الف. فرض کنید $B^*=\{f_1,\cdots,f_n\}$ بطوریکه \mathcal{V} است. قرار دهید $B=\{v_1,\cdots,v_n\}$ بطوریکه:

$$f_i(\alpha_j) = \delta_{ij} = \begin{cases} \gamma & i = j \\ \circ & i \neq j \end{cases}$$

نشان دهید B^* پایه ای برای \mathcal{V}^* است.

ب. فرض کنید $\{f_1,\cdots,v_n\}$ پایهای برای \mathcal{V}^* است. ثابت کنید وجود دارد مجموعه بردارهای $\{f_1,\cdots,f_n\}$ بطوریکه (۴) نصره و B پایهای برای \mathcal{V} است.

ج. فرض کنید $\mathcal V$ فضای چندجملهای های حداکثر درجه ۲ روی اعداد حقیقی است و t_1,t_7,t_7 اعداد حقیقی متمایزاند. تابع $t_i:\mathcal V\to\mathbb R$ با ضایطه $t_i:\mathcal V\to\mathbb R$ به ازای هر $t_i:\mathcal V\to\mathbb R$ با را درنظر بگیرید. به راحتی میتوان دید که $t_i:t_i:\mathcal V\to\mathbb R$ به ازای هر $t_i:t_i:t_i:\mathcal V\to\mathbb R$

ج-۱ نشان دهید $B^* = \{l_1, l_7, l_7\}$ پایهای برای \mathcal{V}^* است.

ج-۲ $\{v_1, v_7, v_7\}$ به ازای هر ۳ $\{v_i\}$ به ازای هر ۴ یایهای بیابید که $\{v_i\}$ پایهای برای $\{v_i\}$ به ازای هر چندجملهای حداکثر درجه ۲ مانند $\{v_i\}$ نشان دهید $\{v_i\}$ به ازای هر چندجملهای حداکثر درجه ۲ مانند و با نشان دهید

$$p(x) = l_1(p)v_1 + l_7(p)v_7 + l_7(p)v_7$$

(۴ نمره)

توجه کنید $l_i(p)$ ها در روش تقریب توابع با چندجملهای حداکثر درجه ۲ به ضرایب لاگرانژ معروفاند.

د. برای فضای خطی \mathcal{V}^* را تعریف کردیم. حال برای فضای خطی \mathcal{V}^* ، \mathcal{V}^* را در نظر بگیرید. برای راحتی آن را با \mathcal{V}^* نمایش میدهیم. فرض کنید $\mathcal{V} \in \mathcal{V}$ و تعریف میکنیم \mathcal{R} با ضابطه $\mathcal{L}_v: \mathcal{V}^* \to \mathcal{R}$ با ضابطه $\Phi: \mathcal{V} \to \mathcal{V}$ با ضابطه $\Phi: \mathcal{V} \to \mathcal{V}$ با ضابطه $\Phi: \mathcal{V} \to \mathcal{V}$ را در نظر بگیرید. به راحتی میتوان دید \mathcal{L}_v یک تابع خطی، یک به یک و پوشا است.

(۵ نمره)

k فرض کنید $A\in\mathcal{M}_n(\mathbb{R})$ منظور از زیرماتریس اصلی مرتبه k از A ماتریسی است که ازتقاطع A سطر با شمارههای $A\in\mathcal{M}_n(\mathbb{R})$ منظور از زیرماتریسی اصلی از rank(A)=r و A ماتریسی متقارن باشد، A دارای زیرماتریسی اصلی از مرتبه a با رتبه a است.

(۱۰ نمره)

آزمون (درخانه) میانترم

تاریخ بارگذاری: ۱۷ اردیبهشت ۱۴۰۲

صفحهٔ ۴ از ۴

باشد، نشان $\mathcal V$ یک فضای ضرب داخلی است و فرض کنید $\{\alpha_1,\cdots,\alpha_n\}$ مجموعه متعامدی از بردارهای ناصفر $\mathcal V$ باشد، اگر β برداری از $\mathcal V$ باشد، نشان دهید

$$\sum_{k=1}^{n} \frac{|\langle \beta, \alpha_k \rangle|^{\mathsf{Y}}}{|\alpha_k|^{\mathsf{Y}}} \le |\beta|^{\mathsf{Y}}$$

و حالت تساوی برقرار است اگر و تنها اگر

$$\beta = \sum_{k=1}^{n} \frac{\langle \beta, \alpha_k \rangle}{|\alpha_k|^{\mathsf{Y}}} \alpha_k$$

(۱۰ نمره)

(۳ نمره)

... الف. نشان دهید مجموعه $v_{\mathsf{T}}^T = \begin{bmatrix} \circ & \mathsf{I} & \mathsf{I} \end{bmatrix}$ و $v_{\mathsf{T}}^T = \begin{bmatrix} \mathsf{I} & \mathsf{I} & \mathsf{I} \end{bmatrix}$ که $B = \{v_\mathsf{I}, v_\mathsf{T}, v_\mathsf{T}\}$ پایهای برای $V_\mathsf{T}^T = \begin{bmatrix} \mathsf{I} & \mathsf{I} & \mathsf{I} \end{bmatrix}$ است. $B = \{v_\mathsf{I}, v_\mathsf{T}, v_\mathsf{T}\}$ پایهای برای $V_\mathsf{T}^T = \begin{bmatrix} \mathsf{I} & \mathsf{I} & \mathsf{I} \end{bmatrix}$ نصره $V_\mathsf{T}^T = \begin{bmatrix} \mathsf{I} & \mathsf{I} & \mathsf{I} \end{bmatrix}$ نصره $V_\mathsf{T}^T = \begin{bmatrix} \mathsf{I} & \mathsf{I} & \mathsf{I} \end{bmatrix}$

ب. تابع خطی
$$T:\mathbb{R}^{7} o \mathbb{R}$$
 در این این مایش $A=egin{bmatrix} \Upsilon & \circ & 1 \\ \circ & 1 \\ \circ & \circ & 1 \end{bmatrix}$ در پایه B در بیابید. $T:\mathbb{R}^{7} o \mathbb{R}^{7}$

۸. دادههای جدول زیر را با چندجملهای درجه ۲ با روش حداقل مربعات، برازش کنید. نتایج برازش و همچنین دادهها را در یک دستگاه مختصات رسم کنید.

برای حل این سوال آزادید با استفاده از برنامهنویسی یا ابزارهایی مانند اکسل، نمودار را رسم کنید و خط حاصل از برازش را به دست آورید. ولی توضیح چگونگی و تئوری انجام این فرایند الزامی است.

(۵ نمره)

موفق باشيد.