MA Math Camp Exam: Wednesday, Sept 4th, 2019

Instructions:

- The exam is from 11:40 12:55 pm.
- You may use any results covered in the class directly without proofs.
- All answers must be justified
- The exam is closed book. Calculators are not allowed.
- 1. Consider the 2×2 matrix.

$$A = \begin{bmatrix} 0 & \frac{2}{3} \\ -\frac{1}{3} & 1 \end{bmatrix}$$

- (a) (5 points) Find the eigen values of this matrix A.
- (b) (3 points) Find a 2×2 invertible matrix P and a 2×2 diagonal matrix Λ s.t. $A = P\Lambda P^{-1}$
- (c) (2 points) Consider the quadratic form Q = x'Ax where A is the matrix given above. Determine whether Q is positive definite, negative definite or indefinite.
- 2. (5 points) Define the kernel of a matrix A as:

$$ker(A) \equiv \{x \in \mathbb{R}^n | Ax = 0\}$$

Prove that the ker(A) is a subspace of \mathbb{R}^n i.e. it contains the 0 vector and is closed under addition and scalar multiplication.

3. (10 points) Solve the following system of equations:

$$x_1 + 2x_2 - x_3 = -1$$
$$2x_1 + 2x_2 + x_3 = 1$$

$$3x_1 + 5x_2 - 2x_3 = -1$$

- 4. State whether each of the following statements is True or False. If it is False, provide a counter-example. If True, give a sketch of a proof:
 - (a) (5 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a strictly concave function. If f is twice-differentiable at $x_0 \in \mathbb{R}$, then we must have $f''(x_0) < 0$.
 - (b) (5 points) If A and B are compact sets in the metric space (X, d), then $A \cup B$ is a compact set.
- 5. (10 points) Suppose \mathcal{D} is a convex open set of \mathbb{R}^n and let $f: \mathcal{D} \to \mathbb{R}$ be a concave function. Then show that the set of maximizers is a convex set i.e. show that :

$$M = \left\{ x \in \mathcal{D} | f(x) \ge f(x') \ \forall x' \in \mathcal{D} \right\}$$

is a convex set.

- 6. Define $f:[1,\infty)\to [1,\infty)$ as $f(x)=x+\frac{1}{x}$.
 - (a) (5 points) Show that $|f(x) f(y)| < |x y| \ \forall x, y \text{ such that } x \neq y.$
 - (b) (5 points) Show that $f(\cdot)$ has no fixed point i.e. there does not exist x^* such that $f(x^*) = x^*$. Argue why this does not contradict Banach's Contraction Mapping Theorem.
- 7. Consider a consumer with a utility function $u(x_1, x_2) = x_1^{\frac{2}{3}} x_2^{\frac{1}{3}}$. Each good x_i costs p_i per unit and the consumer has a budget of M dollars. Find the consumer's optimal mix of consumption i.e. solve the program:

$$\max_{x_1, x_2} x_1^{\frac{2}{3}} x_2^{\frac{1}{3}}$$
 subject to $p_1 x_1 + p_2 x_2 = M$

- (a) (10 points) What is the optimal choice of consumption for the consumer i.e. what is (x_1^*, x_2^*) ?
- (b) (10 points) Write down the value function $V(p_1, p_2, M)$. Verify that :

$$-\frac{\frac{\partial V}{\partial p_1}}{\frac{\partial V}{\partial M}} = x_1^*$$

(This is known as **Roy's Identity**)