INTRODUÇÃO A BUSCA - EXERCÍCIOS

1. Formule um problema de busca de forma que um agente possa planejar sua ida do **Portal da Graciosa** à **Antonina** pelo caminho de menor custo. Não é necessário prever caminhos de ida e volta (espaço de estados = grafo direcionado acíclico).

- 2. Sobre o problema formulado em 1, faça/responda:
 - a. Desenhe o grafo de estados.
 - b. Desenhe a árvore de busca gerada pelo algoritmo busca-em-árvore a partir do grafo de estados (=formulação do problema). Estratégia de busca: selecione o nó mais raso da árvore e, em caso de empate, escolha o nó (cidade) por ordem alfabética DECRESCENTE. Se persistir o empate, escolha aquele que foi inserido antes na fronteira. O algoritmo termina somente quando o nó que contém o estado objetivo é selecionado para expansão.
 - c. Compare as medidas obtidas para o espaço de estados e para a árvore de busca construída
 - i. número de vértices do grafo do espaço de estados x nós da árvore de busca
 - ii. tamanho máximo de caminho para dois nós quaisquer do espaço de estados x máxima profundidade da árvore de busca (m)
 - iii. qual a profundidade do nó objetivo mais raso (d) x tamanho do menor caminho do estado inicial ao estado objetivo?
 - iv. número máximo de sucessores de um estado do grafo de estados x número máximo de sucessores de um nó da árvore (b).
- 3. Suponha um personagem de um jogo que pode se deslocar em uma matriz de dimensões 3 x 2. Considere que em uma modalidade do jogo o personagem somente

se move para cima, baixo, esquerda e direita e, em outra modalidade, ele é capaz de se mover também nas diagonais. O estado inicial é A e o estado objetivo, F.

Α	В	С
D	Е	F

- a. Desenhe os grafos que representam os espaços de estados para a 1ª. e 2ª. modalidade
- b. Caracterize os espaços de estados das duas modalidades em função das medidas: quantidade de vértices e arestas, fator de ramificação máximo, tamanho máximo de caminho no grafo de estados e caminho mais curto do estado inicial ao estado objetivo (em arestas).
- c. O que poderia causar aumento no tamanho do espaço de estados neste exemplo?
- d. Assuma uma <u>estratégia de busca</u> onde o <u>nó mais raso da fronteira</u> é selecionado primeiramente (e em caso de empate, escolha por ordem alfabética do estado e, se persistir o empate, escolha aquele que foi inserido antes na fronteira). Desenhe a árvore de busca para cada uma das modalidades e compare os parâmetros: número de nós, m (tamanho máximo de caminho), b (fator de ramificação) e d (profundidade do nó objetivo mais raso). Utiliza o algoritmo de busca em grafo com teste de objetivo somente quando o nó é selecionado para expansão.
- e. Suponha que o custo de cada ação que movimente o agente na horizontal ou vertical é igual a 1 e na diagonal, 1.4. Encontre as soluções ótimas para as duas modalidades e as compare em termos de custo e solução (sequência de ações).

RESPOSTAS

1.

Estados S = {PG, SJ, M, B, A} // iniciais das cidades

Aç \tilde{o} es $A = \{ir(SJ), ir(M), ir(B), ir(A)\}$

Estado inicial: PG Estado objetivo: A

ações(s): S → A // ver abaixo

ações(PG)={ir(SJ)}

ações(SJ)={ir(B), ir(M)}

ações(M)={ir(B)}

ações(B)={ir(A)}

suc(s,a): (s,a) → s' // função sucessora

S	а	s'
PG	ir(SJ)	SJ
SJ	ir(B)	В
SJ	ir(M)	М
M	ir(B)	В
В	ir(A)	Α

Custo(s,a,s'):(s,a,s') \rightarrow R // o custo pode ser distância ou tempo – vou colocar os dois, porém, se for usar busca em custo uniforme deve escolher somente uma medida

S	а	s'	Km	tempo
PG	ir(SJ)	SJ	19,1	18'
SJ	ir(B)	В	17,7	18'
SJ	ir(M)	М	13,2	14'
М	ir(B)	В	7	8'
В	ir(A)	Α	6,9	8'

2.

a) espaço de estados foi representado como um grafo direcionado acíclico. O tamanho do espaço de estados é 5, pois temos os estados {PG, SJ, B, M, A} que correspondem às localidades onde o agente pode estar.

b) árvore de busca gerada pelo algoritmo *busca-em-árvore* com a estratégia "mais raso primeiro (desempate: pegar por ordem alfabética DECRESCENTE)". Observar que o teste de objetivo só é realizado quando o <u>nó é selecionado para expansão</u>.

[PG [SJ[M[-B]][B[(A)]]]]

c) comparação das medidas

	espaço de	árvore de
	estados	busca
tamanho (qtd. vértices)	5	6
tam. máximo de caminho	4	4
prof. nó objetivo mais raso	3	3
fator de ramificação	2	2

A árvore de busca tem 1 vértice a mais do que o espaço de estados porque há dois caminhos que levam a Bufara. Então Bufara aparece 2x na árvore.

A profundidade máxima da árvore = 4 (a profundidade máxima obtida foi igual ao tamanho máximo de caminho do grafo = caminho mais longo = PG-SJ-M-B-A). Se a profundidade máxima da árvore fosse maior, significaria que o algoritmo fez passos desnecessários dado que cada passo custa >= 0.

Fator de ramificação no espaço de estados é igual ao da árvore de busca (SJ tem o maior fator de ramificação = dois sucessores). Como o grafo de estados é direcionado, não contamos o caminho de volta para PG.

A profundidade do nó objetivo mais raso na árvore de busca corresponde ao nó A que está no caminho PG-SJ-B-A. Sua profundidade é 3 e equivale ao caminho mais curto em número de arestas do estado inicial ao estado objetivo no espaço de estados.

```
3.
a)
1º. modalidade
A --- B --- C
! ! !
D --- E --- F

2º. modalidade
A --- B --- C
! !!
```

b)

	modalidade 1	modalidade 2	
tam. espaço de estados	6 vértices	6 vértices	
	7 arestas	11 arestas	
fator de ramificação	3 (B tem 3 sucessores)	5 (B tem 5 sucessores)	
	(E tem 3 sucessores)	(C tem 5 sucessores)	
tam. máximo de caminho	5 A-D-E-B-C-F	5 A-D-E-B-C-F	
caminho mais curto do	3	2	
início ao objetivo			

c) Primeiramente, o tamanho do espaço de estados é dado pelo estado inicial e pelos estados alcançáveis a partir das ações possíveis para cada estado (função sucessora). Um aumento nas dimensões da matriz causaria um aumento no número de estados alcançáveis a partir do estado inicial (ex. matriz 4 x 4 = 16 estados).

d)

ÁRVORE MODALIDADE 1: os nós precedidos por x não foram inseridos na fronteira por já terem sido explorados. Os precididos por – por já estarem na fornteira. Para fins didáticos, consideramos que eles foram inseridos na árvore de busca. O nó entre parênteses representa a solução encontrada (F).

x: nó já explorado

-: nó já está na fronteira

(): nó solução

http://ironcreek.net/phpsyntaxtree/? [A [B[xA][C[xB][(F)]][E[xB][xD][-F]]] [D[xA][-E]]]

ÁRVORE MODALIDADE 2

x: nó já explorado

-: nó já está na fronteira

(): nó solução

http://ironcreek.net/phpsyntaxtree/? [A [B [xA][C[xB][-C][-F]][xD][-E][(F)]] [D [xA][xB][-E]] [E[xA][xB][-C][xD][-F]]]

medidas	modalidade 1	modalidade 2
nós	13	20 (devido ao número de sucessores para cada estado ser maior, o número de nós também aumentou)
d	3	2 (como há movimentos na diagonal, o nó objetivo mais raso é alcançável com apenas duas ações)
b	3	5 (as posições do meio do tabuleiro permitem movimentos para todas as demais, com exceção dela mesma).
m	3	3 (observar que foi menor do que o <i>m</i> para o grafo do espaço de estados; significa que não necessitou explorar caminhos tão longos quanto o mais longo possível)

e)

soluções de menor custo para modalidade 1:

A-B-C-F : custo = 3 = solução encontrada

A-D-E-F: custo =3 A-B-E-F: custo = 3

soluções de menor custo para modalidade 2

A-B-F: Custo 2.4 = solução encontrada

A-E-F: custo 2.4