8 ストークスの定理

ここでは念のため、出てくる関数はすべて C^2 級と仮定する.

 \mathbb{R}^3 内の曲面 S が、 \mathbb{R}^2 内の領域 U 上で定義された関数 $P:U\to\mathbb{R}^3$ 、 $(u,v)\mapsto (x(u,v),y(u,v),z(u,v))$ でパラメータ表示されているとする。 さらに、U は有界閉領域とし、その境界をなす曲線 α を U を左回りに回るようにとり、それが関数 $\mathbf{a}(s)=(u(s),v(s))$ で表されているとしよう。 α は有限個の点を除き滑らかであると仮定する。また、 α に対応する S 内の曲線(つまり S の境界をなす曲線)を γ とし、それを表す関数を $\mathbf{r}=P\circ \mathbf{a}$ と書いておく。

さてS の単位法ベクトルn をとる:

$$\boldsymbol{n} = \frac{P_u \times P_v}{|P_u \times P_v|}.$$

一般に, S を含む領域で定義された \mathbb{R}^3 のベクトル場 F に対し, F の法成分 $F \cdot n$ を S 上で面積分した

$$\int_{S} \mathbf{F} \cdot \mathbf{n} \ dS \ \ (= \int_{U} \mathbf{F} \cdot \mathbf{n} \ dS)$$

を F の面積分と呼ぶ.

ストークスの定理の主張は、S を含む領域で定義された \mathbb{R}^3 のベクトル場 \boldsymbol{v} について、 $\operatorname{curl} \boldsymbol{v}$ の面積分が

$$\int_{S} (\operatorname{curl} \boldsymbol{v}) \cdot \boldsymbol{n} \ dS = \int_{\gamma} \boldsymbol{v} \cdot \boldsymbol{r}' ds$$

という風に境界線上の線積分に一致する、というものである。ここで、 ${m r}'=d{m r}/ds$ は γ の接ベクトルで、もう少し詳しく書くと、

$$\mathbf{r}' = \frac{d(P \circ \mathbf{a})}{ds} = P_u \frac{du}{ds} + P_v \frac{dv}{ds}$$

だから, $dP = P_u du + P_v dv$ と書けば, r'ds = dP となって教科書の記述と一致する.

演習 8.1 次で与えられる曲面 S とベクトル場 v について、ストークスの定理の両辺の面積分と線積分を直接計算し、両者が一致することを確かめよ.

- (1) S は正方形 $0 \le x \le 1$, $0 \le y \le 1$, z = 1, ベクトル場は $\mathbf{v}(x, y, z) = (z^2, 5x, 0)$.
- (2) S は半円 $x^2 + y^2 \le 4$, $y \ge 0$, z = 0, ベクトル場は $\mathbf{v}(x, y, z) = (y^2, -x^2, 0)$.
- (3) S は放物面 $x^2 + y^2 + z = 1$ (z > 0), ベクトル場は $\mathbf{v}(x, y, z) = (y, z, x)$.