Applied Statistical Methods II

Introduction to Nonlinear Regression

Tuesday, January 19, 2021

What we will cover:

- Nonlinear regression (reference: Chapter 13 in KNNL)
 - Mean model formulation
 - Assumptions about error (i.e. the mean-variance relationship)
 - How to fit them (i.e. Gauss-Newton)
 - Inference
- General linear models (reference: McCullagh and Nelder)
 - Logistic regression, Poisson regression, other common examples
 - General formulation in terms of cumulant generating function
 - Mean-variance relationship
 - Quasi-likelihood

What we will cover (cont.):

- Mixed models, ANOVA, ANCOVA (reference: McCullagh and Nelder)
 - Modeling dependencies between observations
 - Estimation and inference
 - Lots of data examples
- Advanced topics, if time permits (lecture notes & academic papers)
 - High dimensional factor analysis
 - Dimension reduction
 - Missing data
 - Challenges in modern scientific data

What do each of these topics do?

- Nonlinear Regression
 - The regression function is not linear in the parameters.
 - Still assume Gaussian errors.
 - Parameters often have a nice physical meaning that drives the shape of the regression function.
 - The models we will consider here are parametric models, i.e. the regression function is known up to a parameter γ with fixed dimension.

GLMs

- Your data might not be normal.
- Binomial (developed cancer or did not) or count data (number of murders in a city).
 - First: logistic regression for binomial data.
 - Then: log-linear/ Poisson regression for count data.
 - Finally: tie them together with linear Gaussian regression in the framework of generalized linear models. (We may do this before Poisson regression)
 - We will rely on the moment/cumulant generating functions here.

- Analysis of designed studies
 - ANOVA
 - ANCOVA
 - Balanced and unbalanced designs
- Random and Mixed Effects Models
 - mixed model for ANOVA
 - mixed model for repeated measures

Linear Regression

Last semester mostly looked at models of the form:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \cdots + \beta_{p-1} X_{i(p-1)} + \epsilon_i$$

- ϵ_i iid are normal.
- $\mathbf{X}_i = (1, X_{i1}, \dots, X_{i(p-1)})^T$
- $\bullet \ \beta = (\beta_0, \ldots, \beta_{p-1})^T$
- Recall that we can have that several Xs correspond to one categorical variable or $X_{i2} = X_{i1}^2$ (or other polynomial).
- Model is linear in the parameters β .
- $\bullet \ Y_i = \mathbf{X}_i^T \beta + \epsilon_i$
 - All linear functions of vectors can be written as matrix operations.

Non-linear function

In many of the physical sciences and population studies:

- The science tells you that the data should take a certain non-linear shape.
 - Exponential decay in physics.
 - Logistic population growth model in biology.
- It can be parameterized as a non-linear function of unknown parameters.
- These parameters are the interpretable coefficients we want to estimate.

Real Example

- Proctor & Gamble are manufacturing a certain product.
- The amount of available chlorine in the product decreases over time.
 - It is known that available chlorine is expected to be 0.49 at 8 weeks.
 - Its dynamics after 8 weeks can be described by a starting fraction at 8 weeks, a plateaued fraction, and the rate in between.

The Data

- Several products are held in the factory for some time and their available chlorine is measured.
- The data consist of
 - X_i amount of time from manufacturing
 - Y_i available chlorine.
- Have n=44 observations.
 - X_i is between 8 and 42 weeks.
 - Y_i is between 0.49 and 0.39.

The Data

Possible model class:

$$Y_i = \gamma_0 + \gamma_1 \exp(\gamma_2 X_i) + \epsilon_i$$
. (13.8 in KNNL)

Proctor and Gamble Example

Use a general exponential function:

- $Y_i = \gamma_0 + \gamma_1 \exp(\gamma_2 X_i) + \epsilon_i$. (13.8 in KNNL)
- $\epsilon_i \stackrel{i.i.d}{\sim} N(0, \sigma^2)$.
 - Why might this be a problem? Do we need to worry about this?
- $E(Y_i) = \gamma_0 + \gamma_1 \exp(\gamma_2 X_i)$
- At $X_i = 0$, $E(Y_i) = \gamma_0 + \gamma_1$.
 - $\gamma_0 + \gamma_1$ can be seen as the expected value when $X_i = 0$.
- γ_2 is usually restricted to be negative.
 - $\exp(\gamma_2 X_i)$ gets small as $X_i \to \infty$.
 - $\gamma_0 = \lim_{X_i \to \infty} E(Y_i \mid X_i)$, i.e. the asymptote of the mean function.
 - $\bullet \ \gamma_1 = E(Y_i \mid X_i = 0) \lim_{X_i \to \infty} E(Y_i \mid X_i).$
 - γ_2 is the rate of decay in $E(Y_i)$.

In our example

- We know the expected value at $X_i = 8$ weeks.
 - Reduces the model to only 2 parameters.
- $Y_i = \gamma_0 + (0.49 \gamma_0) \exp \left[\gamma_2(X_i 8)\right] + \epsilon_i$
- We assume that $0 < \gamma_0 < 0.49$ and $\gamma_2 < 0$.
- $E(Y_i)$ at $X_i = 8$ will be 0.49.
- $E(Y_i) \rightarrow \gamma_0$ as $X_i \rightarrow \infty$.
- γ_2 describes how quickly Y_i approaches its minimum γ_0 .
- The parameters are chosen to be interpretable.
 - The function is non-linear in the parameters
 - You no longer have the interpretation that "one unit increase in X_{ij} is associated with an expected increase in Y_i by β_j units."

Three Examples

Idea of Non-Linear Regression

$$Y_i = f(\mathbf{X}_i, \gamma) + \epsilon_i$$

- ullet γ is a vector of unknown parameters.
- The function f is assumed to be known, unlike non-parametric regression.
 - In non-linear regression, convention is to use γ instead of β .
- f is some function of X_i and γ .
- \bullet ϵ_i are the error terms.
- All of the stochastic information comes from ϵ_i .
- When you say "non-linear regression," it is usually assumed that $\epsilon_i \stackrel{i.i.d}{\sim} N(0, \sigma^2)$.
 - **Critical assumption:** variance σ^2 is NOT a function of the mean $f(\mathbf{X}_i, \gamma)$
 - Will talk about this more when compared to GLM.

Popular Non-Linear Functions

Exponential Regression Model:

- $Y_i = \gamma_0 \exp(\gamma_1 X_i) + \epsilon_i$
- ϵ_i are iid $N(0, \sigma^2)$
- $E(Y_i) = \gamma_0 \exp(\gamma_1 X_i)$
- As $X_i \rightarrow 0$, $E(Y_i) \rightarrow \gamma_0$.
 - γ_0 can be seen as the expected value when $X_i = 0$.
- γ_1 is usually restricted to be negative when X_i must be positive.
 - $\exp(\gamma_1 X_i)$ gets small as $X_i \to \infty$.
 - $E(Y_i) \rightarrow 0$ as $X_i \rightarrow \infty$
 - γ_1 is the rate of decay.
 - Used a lot for radioactive or chemical decay.

Exponential Regression Model (Continued):

- γ_1 is usually restricted to be negative when X_i must be positive.
 - e.g. prognostic index vs. days hospitalized in severly injured patients (fig 13.2)

Exponential Regression Model (Continued):

- Less common is to have $\gamma_1 > 0$.
 - Would imply exponential growth.
 - Population explosion of invasive species
 - e.g. zebra mussels in Ontario's Rideau River and Canal.
 - Data: \sim 2000 mussels were first found in 1990 24 mussels per m^2 in 1993 23,000 per m^2 in 1994 383,100 per m^2 in 1995

Logistic Regression Models (might not be a good name)

•
$$Y_i = \frac{\gamma_0}{1 + \gamma_1 \exp(\gamma_2 X_i)} + \epsilon_i$$
.

- Usually, $\gamma_1 \geq 0$ and $\gamma_2 \leq 0$ while $X_i \geq 0$.
 - γ_0 is the maximum $E(Y_i)$.
 - $E(Y_i) \rightarrow \gamma_0$ as $X_i \rightarrow \infty$.
 - $X_i \to 0$, then $E(Y_i) \to \frac{\gamma_0}{1+\gamma_1}$.
 - γ_2 is the rate between $\frac{\gamma_0}{1+\gamma_1}$ when $X_i=0$ and γ_0 as $X_i\to\infty$.
- Popular in modeling animal populations:
 - If *P* is expected population and *X* is time,

$$dP/dt = (-\gamma_2) P\left(1 - \frac{P}{\gamma_0}\right).$$

- $-\gamma_2$ is the growth rate.
- nice conditions allow a population to thrive (P small, γ_0 large).
- slows when they start to compete for resources.
- too much growth eventually inhibits the rate of growth (P approaches γ_0).

Do not confuse non-linear regression with GLM

- This logistic regression model is not what is usually thought of when a statistician says logistic regression.
- What we discussed is better referred to as non-linear regression with a logistic regression function.
- Logistic regression is part of what is known as generalized linear models (GLM)
- Logistic regression is used when the responses are binary
 - ie. person died or they didn't
 - ie. person got cancer or they didn't

Parameterizations

- In linear regression:
 - If we have $X_{i1}, ..., X_{i(p-1)}...$
 - we have $\beta_0, \ldots, \beta_{p-1}$
- In the exponential regression example:
 - We have X_{i1} only ...
 - we have γ_0, γ_1 .
- In the logistic example:
 - We have X_{i1} only ...
 - we have $\gamma_0, \gamma_1, \gamma_2$.
- In general non-linear regression, you can have more/less parameters than covariates.
 - q number of covariates X_{i1},..., X_{iq}
 - p number of parameters $\gamma_0, \ldots, \gamma_{p-1}$

Fitting The Model

- Two equivalent approaches:
 - least squares
 - maximum likelihood.
- These are equivalent because we assume ϵ_i are normal.
- These two approaches minimize/maximize the functions:

2
$$L(\gamma, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n [Y_i - f(\mathbf{X}_i, \gamma)]^2\right]$$

- To see the equivalence:
 - Maximizing *L* is equivalent to minimizing −2 log *L*.
 - This is what is done in numerical packages.

To Minimize Q

- Take the derivative with respect to each parameter and set equal to zero.
- By the chain rule, for k = 0, ..., p 1:

$$\frac{\partial Q}{\partial \gamma_k} = \sum_{i=1}^n -2 \left[Y_i - f(\mathbf{X}_i, \gamma) \right] \left[\frac{\partial f(\mathbf{X}_i, \gamma)}{\partial \gamma_k} \right].$$

- when you know f, you can compute $\left[\frac{\partial f(\mathbf{X}_{i},\gamma)}{\partial \gamma_{k}}\right]$.
- This will give you p normal equations which you must solve.
- Problem: these are non-linear functions in $\gamma_0, \dots, \gamma_{p-1}$ and there is (almost always) no nice closed form.

In Our Data Example

$$f(X, \gamma_0, \gamma_2) = \gamma_0 + (0.49 - \gamma_0) \exp \left[\gamma_2(X - 8)\right]$$

$$\frac{\partial f}{\partial \gamma_0} = 1 - \exp \left[\gamma_2(X - 8)\right]$$

$$\frac{\partial f}{\partial \gamma_2} = (.49 - \gamma_0)(X - 8) \exp \left[\gamma_2(X - 8)\right]$$

The normal equations become:

$$\sum_{i=1}^{n} \{Y_i - \gamma_0 - (.49 - \gamma_0) \exp \left[\gamma_2(X_i - 8)\right]\} \{1 - \exp \left[\gamma_2(X_i - 8)\right]\} = 0$$

$$\sum_{i=1}^{n} \{Y_i - \gamma_0 - (.49 - \gamma_0) \exp \left[\gamma_2(X_i - 8)\right]\}$$

$$\times (.49 - \gamma_0)(X_i - 8) \exp \left[\gamma_2(X_i - 8)\right] = 0$$

There is no nice close-form solution.

Solving Non-Linear Least Squares

$$\hat{\gamma} = \operatorname{argmin}_{\gamma} Q(\gamma) = \sum_{i=1}^{n} [Y_i - f(\mathbf{X}_i, \gamma)]^2$$

- We have to use a numerical method to get $\hat{\gamma}$.
- There are several methods: Newton-Raphson's method, Gradient Descent, etc.
- For non-linear least squares problem, a common method is Gauss-Newton's Method (a simpler version of Newton's method).
 - Start with some initial value for γ .
 - Locally approximate the non-linear function f with a linear function. Equivalent descriptions:
 - Approximate Q with quadratic
 - Approximate the Hessian matrix in Newton's method with a function of Jacobian matrix.
 - based on this approximation to update the parameters.
 - Repeat until convergence.

First Order Taylor's Theorem

- Assume that the function $f(\mathbf{X}, \gamma)$ is well-behaved around the true γ .
 - All second order partial derivatives exist and are continuous at true value γ .
- For some initial value $\gamma^{(0)}$ close to γ :

•
$$f(\mathbf{X}_{i}, \gamma) \approx f(\mathbf{X}_{i}, \gamma^{(0)}) + \sum_{k=0}^{p-1} \left[\frac{\partial f(\mathbf{X}_{i}, \gamma)}{\partial \gamma_{k}} \right]_{\gamma = \gamma^{(0)}} \left(\gamma_{k} - \gamma_{k}^{(0)} \right) = f(\mathbf{X}_{i}, \gamma^{(0)}) + \underbrace{\mathbf{J}_{i}^{T}}_{\mathbf{J}_{i} = \mathbf{J}_{i} \left(\gamma^{(0)} \right)} \left(\gamma - \gamma^{(0)} \right)$$

• Conditional on $\gamma^{(0)}$, right side is a linear function in γ .

$$Q(\gamma) = \sum_{i=1}^{n} [Y_i - f(\mathbf{X}_i, \gamma)]^2$$

$$\approx \sum_{i=1}^{n} \left[\left(Y_i - f(\mathbf{X}_i, \gamma^{(0)}) \right) - \mathbf{J}_i^T \left(\gamma - \gamma^{(0)} \right) \right]^2$$

First Order Taylor's Theorem

- Assume that the function $f(\mathbf{X}, \gamma)$ is well-behaved around the true γ .
 - All second order partial derivatives exist and are continuous at true value γ .
- For some initial value $\gamma^{(0)}$ close to γ :

•
$$f(\mathbf{X}_{i}, \gamma) \approx f(\mathbf{X}_{i}, \gamma^{(0)}) + \sum_{k=0}^{p-1} \left[\frac{\partial f(\mathbf{X}_{i}, \gamma)}{\partial \gamma_{k}} \right]_{\gamma = \gamma^{(0)}} \left(\gamma_{k} - \gamma_{k}^{(0)} \right) = f(\mathbf{X}_{i}, \gamma^{(0)}) + \underbrace{\mathbf{J}_{i}^{T}}_{\mathbf{J}_{i} = \mathbf{J}_{i} \left(\gamma^{(0)} \right)} \left(\gamma - \gamma^{(0)} \right)$$

• Conditional on $\gamma^{(0)}$, right side is a linear function in γ .

•

$$Q(\gamma) = \sum_{i=1}^{n} [Y_i - f(\mathbf{X}_i, \gamma)]^2$$

$$\approx \sum_{i=1}^{n} \left[\left(Y_i - f(\mathbf{X}_i, \gamma^{(0)}) \right) - \mathbf{J}_i^T \left(\gamma - \gamma^{(0)} \right) \right]^2$$

First Order Taylor's Theorem (cont.)

$$Q(\gamma) \approx \sum_{i=1}^{n} \left[\left(Y_i - f(\mathbf{X}_i, \gamma^{(0)}) \right) - \mathbf{J}_i^T \left(\gamma - \gamma^{(0)} \right) \right]^2$$

- Let $r_i = Y_i f(\mathbf{X}_i, \gamma^{(0)})$ be the current residuals, $\mathbf{J} = \begin{pmatrix} \mathbf{J}_1^i \\ \vdots \\ \mathbf{J}_n^T \end{pmatrix}$
- Optimize Q with OLS: $\gamma^{(1)} = \gamma^{(0)} + (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T \mathbf{r}$.
- Intuition: $\mathbf{J} \in \mathbb{R}^q$ acts like the design matrix!

Some properties of Gauss-Newton

$$Q(\gamma) = \sum_{i=1}^{n} [Y_i - f(X_i, \gamma)]^2.$$

• The step $\mathbf{s} = \gamma^{(1)} - \gamma^{(0)} = (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T \mathbf{r}$ is a **descent direction**, i.e. it tends to decrease the objective.

$$\mathbf{s}^{T} \nabla Q_{\gamma} \left(\gamma^{(0)} \right) = -2\mathbf{s}^{T} \sum_{i=1}^{n} \left[Y_{i} - f \left(\mathbf{X}_{i}, \gamma^{(0)} \right) \right] \mathbf{J}_{i} = -2\mathbf{s}^{T} \mathbf{J}^{T} \mathbf{r}$$
$$= -2\mathbf{r}^{T} \mathbf{J} \left(\mathbf{J}^{T} \mathbf{J} \right)^{-1} \mathbf{J}^{T} \mathbf{r} \leq 0$$

- = 0 if and only if $\mathbf{r} \in \ker (\mathbf{J}^T)$, which is true if and only if $\nabla Q_{\gamma}(\gamma^{(0)}) = 0$.
- By Taylor's theorem, taking a step in αs for $\alpha > 0$ small enough is guaranteed to decrease the objective.
- More sophisticated algorithms can be designed to properly choose α (trust region, Wolfe conditions, etc.). This is beyond the scope of this course.

Some properties of Gauss-Newton

$$Q(\gamma) = \sum_{i=1}^{n} [Y_i - f(X_i, \gamma)]^2.$$

• The step $\mathbf{s} = \gamma^{(1)} - \gamma^{(0)} = (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T \mathbf{r}$ is a **descent direction**, i.e. it tends to decrease the objective.

$$\mathbf{s}^{T} \nabla Q_{\gamma} \left(\gamma^{(0)} \right) = -2\mathbf{s}^{T} \sum_{i=1}^{n} \left[Y_{i} - f \left(\mathbf{X}_{i}, \gamma^{(0)} \right) \right] \mathbf{J}_{i} = -2\mathbf{s}^{T} \mathbf{J}^{T} \mathbf{r}$$
$$= -2\mathbf{r}^{T} \mathbf{J} \left(\mathbf{J}^{T} \mathbf{J} \right)^{-1} \mathbf{J}^{T} \mathbf{r} \leq 0$$

- = 0 if and only if $r \in \ker(J^T)$, which is true if and only if $\nabla Q_{\gamma}(\gamma^{(0)}) = 0$.
- By Taylor's theorem, taking a step in αs for $\alpha > 0$ small enough is guaranteed to decrease the objective.
- More sophisticated algorithms can be designed to properly choose α (trust region, Wolfe conditions, etc.). This is beyond the scope of this course.

Accuracy of approximation

Gauss-Newton relies on the approximation

$$f(\mathbf{X}_i, \gamma) \approx f(\mathbf{X}_i, \gamma^{(0)}) + \mathbf{J}_i^T(\gamma - \gamma^{(0)})$$
. How accurate is it?

• Let $M(\gamma) = \nabla_{\gamma}^2 f(X_i, \gamma)$. By Taylor's Theorem:

$$f(\mathbf{X}_{i}, \gamma) = f\left(\mathbf{X}_{i}, \gamma^{(0)}\right) + \mathbf{J}_{i}^{T}\left(\gamma - \gamma^{(0)}\right) + \frac{1}{2}\left(\gamma - \gamma^{(0)}\right)^{T} \mathbf{M}(\tilde{\gamma})\left(\gamma - \gamma^{(0)}\right), \quad \tilde{\gamma} \in \ell\left(\gamma^{(0)}, \gamma\right)$$

- Error of approximation: $\leq \frac{1}{2} M_{\text{max}} \| \gamma \gamma^{(0)} \|^2$
 - $M_{\max} = \sup \left\{ \lambda_{\max} \left(\boldsymbol{M} \left(\tilde{\gamma} \right) \right) : \tilde{\gamma} \in \ell \left(\gamma^{(0)}, \gamma \right) \right\}$
- Gauss-Newton's method is very sensitive to selection of initial values.
- Can use some type of search for good initial values.
- We will work mostly with selecting reasonable values from the data.

Recall Non-Linear Regression

- $Y_i = f(\mathbf{X}_i, \gamma) + \epsilon_i$
 - $\gamma = (\gamma_0, \dots, \gamma_{p-1})$ is a vector of parameters.
 - f is some function of X_i and γ .
 - ϵ_i are the error terms.
- Estimate parameters γ through least squares. Minimize:

•
$$Q(\gamma) = \sum_{i=1}^{n} [Y_i - f(\mathbf{X}_i, \gamma)]^2$$

- Problem: there is no closed form solution for γ that minimizes $Q(\gamma)$.
 - It exists.
 - Can not write it out algebraically.
- Solution: We use Gauss-Newton.
 - Updates took the form $\gamma^{(1)} = \gamma^{(0)} + \alpha \left(\mathbf{J}^T \mathbf{J} \right)^{-1} \mathbf{J}^T \mathbf{r}$. In simple GN, $\alpha = 1$. Can also choose α at each iteration for better convergence properties.

Inference

- Nonlinearity inhibits an exact distribution for our estimates.
 - To be expected seeing as how we don't even have a closed form solution.
- Asymptotic distributions are known.
- Assumes n is large and ϵ_i are i.i.d. By CLT, normality is not necessary, but we will assume it for convenience.

What is the limiting dist'n of $\hat{\gamma}$?

We want something of the form $n^{1/2} (\hat{\gamma} - \gamma) \rightarrow N(0, \mathbf{A})$.

- No closed form for $\hat{\gamma}$, so we have to rely on Taylor's Theorem.
- If $\hat{\gamma} \approx \gamma$, expand $\nabla Q(\hat{\gamma})$ around the true γ . Let $\hat{\mathbf{J}} = \mathbf{J}(\hat{\gamma})$, $\mathbf{J} = \mathbf{J}(\gamma)$, $\hat{\mathbf{r}} = \mathbf{r}(\hat{\gamma})$, $\mathbf{r} = \mathbf{r}(\gamma)$.
- Ideas behind the derivation of the asymptotic distribution:
 - Use a Taylor expansion
 - $\hat{\boldsymbol{J}} \approx \boldsymbol{J}$ if $\hat{\gamma} \approx \gamma$ (i.e. as a function, \boldsymbol{J} is continuous).
 - ${\pmb J}$ is full rank and $\lim_{n \to \infty} \Lambda_{\min}(n^{-1} {\pmb J}^T {\pmb J}) > 0$ (analogous to assumptions on design matrix)

 $0 = \nabla Q(\hat{\gamma}) = \hat{\boldsymbol{J}}^T \hat{\boldsymbol{r}} = \boldsymbol{J}^T \boldsymbol{r} - \boldsymbol{J}^T \boldsymbol{J} (\hat{\gamma} - \gamma) + o_P(\|\hat{\gamma} - \gamma\|)$

$$\Rightarrow n^{1/2} (\hat{\gamma} - \gamma) \approx$$

$$n^{1/2} (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T \mathbf{r} \underset{n \text{ large}}{\underbrace{\approx}} N \left(0, \sigma^2 \left(n^{-1} \mathbf{J}^T \mathbf{J} \right)^{-1} \right)$$

Under suitable regularity conditions,

$$\left(n^{-1}\hat{\boldsymbol{J}}^{T}\hat{\boldsymbol{J}}\right)^{-1} \approx \left(n^{-1}\boldsymbol{J}^{T}\boldsymbol{J}\right)^{-1}$$

•

Large Sample Sampling Distb'n

- $\hat{\boldsymbol{J}}$ is the $n \times p$ matrix of first derivatives evaluated at $\hat{\gamma}$ • $\hat{\boldsymbol{J}}_{ij} = \frac{\partial f(\mathbf{X}_{i}, \gamma)}{\partial \gamma}|_{\gamma = \hat{\gamma}}$
- Assume that there is a positive definite matrix \mathbf{A} such that $\mathbf{n}^{-1}\hat{\mathbf{J}}^T\hat{\mathbf{J}} \to \mathbf{A}$
- $n^{1/2}(\hat{\gamma} \gamma) \to N(0, \sigma^2 A^{-1})$
 - Exact proof is tedious and not the focus of this class.
 Provided a reference by Jennrich 1969 on Canvas.
 - Note that $Var(\hat{\gamma}) \approx \sigma^2 (n\mathbf{A})^{-1}$
 - Goal: get estimates of σ^2 and $n\mathbf{A}$ so that we can do large sample inference.

Estimation of the Variance

- $MSE = \frac{1}{n-p} \sum [Y_i f(\mathbf{X}_i, \hat{\gamma})]^2$.
 - *MSE* is used to estimate σ^2 .
 - Why do we divide by n − p and not n. Can you motivate this mathematically?
 - MSE is not unbiased in the non-linear regression setting.
 - It is asymptotically unbiased.
- Obvious estimate of $n\mathbf{A}$ is $\hat{\mathbf{J}}^T\hat{\mathbf{J}}$.
- Estimate $Var(\hat{\gamma})$ with $s^2(\hat{\gamma}) = MSE \times (\hat{\boldsymbol{J}}^T\hat{\boldsymbol{J}})^{-1}$

Inference

- Inference on a single parameter γ_j uses the approximate distribution
 - $\bullet \ \frac{\hat{\gamma}_j \gamma_j}{s(\hat{\gamma}_j)} \sim t_{n-p}.$
- Hypothesis testing and confidence intervals follow.
- For simultaneous confidence intervals, can use Bonferroni.
- Hypothesis testing for multiple parameters: Approximate F-test.
 - Fit a full and reduced model to obtain the sums-of-squares SSE(F) and SSE(R).
 - $F^* = \frac{(SSE(R) SSE(F))/(df_R df_F)}{SSE(F)/df_F}$
 - When $\epsilon_i \sim N(0, \sigma^2)$, this is the likelihood ratio statistic.
 - When the reduced model fits as well as the full, F* is asymptotically distributed as F_{df_R-df_F,df_F}.
 - Just like linear regression, need reduced model to be a submodel of the original model.

General hypothesis testing

- Suppose $H_0: \gamma \in \mathcal{S}_R$ for some subset \mathcal{S}_R of the full parameter space is true.
- Let $J_R \in \mathbb{R}^{n \times q_R}$ and $J_F \in \mathbb{R}^{n \times q_F}$ are the Jacobians evaluated at the true γ

An overview of inference with large sample sizes

$$\mathbf{Y} = f(\mathbf{X}; \gamma) + \epsilon, \quad \epsilon_i \stackrel{i.i.d}{\sim} (0, \sigma^2)$$

Here, $X \in \mathbb{R}^{n \times p}$ and $\gamma \in \mathbb{R}^q$. Note we typically have $q \neq p$.

• Fundamental idea: for *n* large and $J = \nabla_{\gamma} f(X; \gamma) \in \mathbb{R}^{n \times q}$,

$$\hat{\gamma} \underbrace{\underset{\boldsymbol{\gamma}^{(0)} = \boldsymbol{\gamma}}{\approx} \boldsymbol{\gamma} + (\boldsymbol{J}^T \boldsymbol{J})^{-1} \boldsymbol{J}^T \underbrace{\{\boldsymbol{Y} - f(\boldsymbol{X}; \boldsymbol{\gamma})\}}_{\boldsymbol{\epsilon}} \underbrace{\underset{\boldsymbol{J} \approx \hat{\boldsymbol{J}}}{\approx} \boldsymbol{\gamma} + (\hat{\boldsymbol{J}}^T \hat{\boldsymbol{J}})^{-1} \hat{\boldsymbol{J}}^T \boldsymbol{\epsilon}}$$

Therefore,

$$m{Y} - f(m{X}; \hat{\gamma}) \underbrace{\approx}_{\substack{\text{Taylor's} \\ \text{Theorem}}} \epsilon - \hat{m{J}}(\hat{\gamma} - \gamma) \approx (I_n - H_{\hat{J}})\epsilon$$

- If $f(\mathbf{X}; \gamma) = \mathbf{X}\gamma$, check that the approximation is exact with $\mathbf{J} = \hat{\mathbf{J}} = \mathbf{X}$
- For large n, all inference proceeds as if we are using ordinary least squares with design matrix $\hat{J} \in \mathbb{R}^{n \times q}$

Diagnostics

- Asymptotic normality relies on:
 - **1** Errors ϵ_i are i.i.d with mean 0 and variance σ^2 .
 - 2 If ϵ_i is skewed, convergence is slow. Why?
 - While not essential, it would be nice is ϵ_i were approximately normal, as this would lead to faster convergence and more accurate inference with smaller sample sizes.
- Easy checks:
 - the residuals vs. fitted values. This checks for accuracy of the mean function and constant variance.
 - the qq-plots. This checks normality.

Example in R

- Let's analyze the example from last class in R.
- Determine the relationship between the amount of time from a cleaning product being manufactured and the fraction of available chlorine.
- R function "nls" estimates parameters with GN.
- Will run three statements:
 - Using starting values close to the optimum.
 - Using a poor starting value.
 - Having R choose the starting values.
- In SAS: Proc NLIN.

Bootstrap confidence intervals

Bootstrapping cases to draw the *b*th data set for b = 1, ..., B

- Select *n* numbers $\{m_{b1}, \ldots, m_{bn}\}$ from $\{1, \ldots, n\}$ with replacement.
- ② The *b*th bootstrap data set is $\{(Y_{m_{bi}}, X_{m_{bi}1}, \dots, X_{m_{bi}p-1}) : i = 1, \dots, n\}$

Bootstrapping Residuals

Fit the regression model to obtain the fitted values \hat{Y}_i and the residuals $r_i = Y_i - \hat{Y}_i$. To draw the *b*th data set for b = 1, ..., B

- Select *n* numbers $\{m_{b1}, \ldots, m_{bn}\}$ from $\{1, \ldots, n\}$ with replacement.
- 2 Letting $Y_i^b = \hat{Y}_i + r_{m_{bi}}$, the *b*th bootstrap data set is $\{(Y_i^b, X_{i1}, \dots, X_{ip-1}); i = 1, \dots, n\}$

Bootstrap Inference

- For either sampling scheme, obtain the parameter estimates $\hat{\gamma}_0^b, \dots, \hat{\gamma}_{p-1}^b$ from the *b*th bootstrap data set.
- (1α) confidence intervals can be constructed as follows:
 - Let $\Gamma_j(p)$ be the $100 \times p$ percentile of $\hat{\gamma}_j^1, \dots, \hat{\gamma}_j^B$.
 - The reflection confidence interval is $[2\hat{\gamma} \Gamma_j(1 \alpha/2), 2\hat{\gamma} \Gamma_j(\alpha/2)]$, where $\hat{\gamma}$ is estimate from the original data. See also pp460 for the reflection confidence interval.
 - Percentile bootstrap confidence intervals are just the lower and upper $(1 \alpha/2)$ percentiles.

Results

- Asymptotic inference:
 - The long term fraction of available chlorine γ_0 is estimated as .39 with a 95% CI of (.38, .40) and standard error 0.0052.
 - The growth rate γ_2 is estimated as -.10 with a 95% CI of (-.13, -.07) and standard error 0.013.
- Inference from 1000 bootstrap samples:
 - The 95% CI for the long term fraction of available chlorine is estimated as (0.38, 0.40).
 - The 95% CI for growth rate γ_2 is estimated as (-.13, -.08).
- We end up with the the same inference rounding to two significant digits for this example. This will not always the case.

The Cow data

- We want to know how serum dilution affects the presence of antibodies from cows.
- We take two samples from one cow: one in May and one in June.
- We separate each monthly sample into 16 equal parts.
 Each of these equal parts is then diluted and we observe optical densities Y.
- We have 8 different dilutions so that for each month, two observations are taken per dilution.
- Let $X = \log(\text{dilution})$.
- Main goal: is the relationship between X and Y the same for both months?

Our Model

- For one month, we will model the data as
 - $f(x_i, \theta) = \theta_1 + \frac{\theta_2 \theta_1}{1 + \exp[\theta_3(x_i \theta_4)]}$
 - Assume all parameters are positive and $\theta_2 > \theta_1$.
 - Has a reverse "S" shape as a function over *x*.
 - θ₁ is the smallest value.
 - θ_2 is the largest value.
 - θ_3 describes the rate of change.
 - θ_4 describes the inflection point.
- Our plan:
 - · Look at each month individually.
 - Fit one single model to allow us to test equivalence of the curves.
 - If they are not equal, figure out what is different.

Starting Values

- Let's consider only the data from May.
- We know that θ_1 and θ_2 are the lower and upper bounds.
 - Take initial values to slightly smaller that the smallest and slightly larger than the largest observed Y.
- Conditional on these values, can we find a nice form for θ_3 and θ_4 ?
- Let $z_{i1} = \frac{Y_i \theta_1}{\theta_2 \theta_1}$
- $Ez_{i1} = \frac{1}{1 + \exp(\theta_3(x_i \theta_4))}$.
- Note that $\theta_3(x_i \theta_4) = \log\left(\frac{1 Ez_{i1}}{Ez_{i1}}\right)$.

Starting Values Cont.

- Let $z_{i2} = \log\left(\frac{1-z_{i1}}{z_{i1}}\right)$
- Do a linear regression of z_{i2} on x_i .
- Slope term will be a starting estimate of θ_3 .
- Minus intercept term over slope term will be a starting estimate for θ_4 .

Testing

- We can use dummy variables to form a combined model for the two months.
- Let $M_i = 0$ for May and 1 for June.

•
$$f(x_i, M_i, \theta, \delta) = \theta_1 + \delta_1 M_i + \frac{\theta_2 + \delta_2 M_i - \theta_1 - \delta_1 M_i}{1 + \exp((\theta_3 + \delta_3 M_i)(x_i - \theta_4 - \delta_4 M_i))}$$

- We want to test H_0 : $\delta_1 = \delta_2 = \delta_3 = \delta_4 = 0$.
- Can do it via the F-test.