

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчет по практикуму

«Стохастический анализ»

Студент 415 группы К.И. Салихова

Руководитель практикума А.Ю. Заночкин

Содержание

1	Зад	ание №1	4
	1.1	Генератор схемы Бернулли. Датчик биномиального распределения	4
	1.2	Датчик геометрического распределения. Его свойство отсутствия памяти .	5
	1.3	Игра в орлянку	7
2	Зал	ание №2	8
	2.1	Построение датчика «канторовой» случайной величины	8
	2.2	Проверка корректности работы датчика	10
	2.3	Симметричность «канторовой» случайной величины	
		относительно $\frac{1}{2}$	11
	2.4	Самоподобие «канторовой случайной величины относительно деления на 3	12
	2.5	Математическое ожидание и дисперсия канторовой случайной величины	14
3	Зал	ание №3	15
_	3.1	Построение датчика экспоненциальной случайной величины	15
	3.2	Отсутствие памяти у экспоненциального распределения	16
	3.3	Распределение минимума экспоненциальных случайных величин	17
	3.4	Построение датчика распределения Пуассона	18
	3.5	Построение датчика распределения Пуассона как предел биномиального	
		распределения	19
	3.6	Проверка корректности работы датчика	19
	3.7	Построение датчика нормального распределения методом моделирования	
		парами с переходом в полярные координаты	20
	3.8	Проверка равенства математического ожидания и дисперсии	21
4	Зад	ание №4	23
	4.1	Построение датчика распределения Коши	23
	4.2	Построение датчика стандартного нормального распределения методом фон	
		Неймана	24
	4.3	Сравнение скорости работы метода моделирования парами и метода фон	
		Неймана	27
5	Зад	ание №5	28
	5.1	Закон больших чисел. Центральная предельная теорема	28
	5.2	Построение доверительных интервалов для среднего и дисперсии нормаль-	
		ной случайной величины	29
	5.3	Поведение частичных сумм распределения Коши	31
6	Зад	ание №6	33
	6.1	Метод Монте–Карло	33
	6.2	Метод квадратур	34
7	Зад	ание №7	35
	7.1	Метод случайного поиска	35
	7.2	Метод имитации отжига	37

8	Задание №8	39
	8.1 Алгоритм решения задачи	39
9	Задание №9	41
	9.1 Винеровский процесс	41
	9.2 Процесс Орнштейна—Уленбека	43
10	Задание №10	45
	10.1 Фильтр Калмана	45
11	Задание №11	48
	11.1 Система массового обслуживания	48
	11.2 Система массового обслужиания с циклической интенсивностью и единич-	
	ными скачками	50
	11.3 Работа страховой компании	52

1 Задание №1

- 1. Реализовать генератор схемы Бернулли с заданной вероятностью успеха p. На основе генератора схемы Бернулли построить датчик для биномиального распределения.
- 2. Реализовать генератор геометрического распределения. Проверить для данного распределения свойство отсутствия памяти.
- 3. Рассмотреть игру в орлянку бесконечную последовательность независимых испытаний с бросанием правильной монеты. Выигрыш S_n определяется как сумма по всем n испытаниям значений 1 и -1 в зависимости от выпавшей стороны. Проиллюстрировать (в виде ломаной) поведение нормированной суммы $Y(i) = \frac{S_i}{\sqrt{n}}$ как функции от номера испытания $i=1,\ldots,n$ для одной отдельно взятой траектории. Дать теоретическую оценку для Y(n) при $n\to\infty$.

1.1 Генератор схемы Бернулли. Датчик биномиального распределения

Определение 1.1. *Схемой Бернулли* с заданной вероятностью успеха р называется эксперимент, состоящий из серии испытаний, удовлетворяющих следующим свойствам:

- 1. Отсутствие взаимного влияния,
- 2. Воспроизводимость испытаний (испытания производятся в сходных условиях),
- 3. В каждом испытании наблюдается признак, причем вероятность его проявления (успеха) равна p.

Определение 1.2. Случайная величина Y, принимающая значение 1 с вероятностью p и значение 0 с вероятностью 1-p, называется случайной величиной с распределением Бернулли.

Будем обозначать такую случайную величину:

$$X \sim \text{Bern}(p)$$
.

Определение 1.3. Пусть X_1, \ldots, X_n — набор независимых случайных величин с распределением Бернулли. Тогда, случайная величина:

$$Y = \sum_{i=1}^{n} X_i$$

называется случайной величиной, имеющей биномиальное распределение с параметрами $n\ u\ p.$

Будем обозначать такую случайную величину:

$$Y \sim \text{Bi}(n, p)$$
.

Чтобы смоделировать случайную величину $X \sim \mathrm{Bern}(p)$, будем генерировать случайную величину $X_0 \sim \mathrm{U}[0,1]$. Тогда если задать Y следующим образом:

$$Y = \begin{cases} 1, & X_0 \in [0, p), \\ 0, & X_0 \in [p, 1], \end{cases}$$

то $\mathbb{P}(Y=1)=p, \, \mathbb{P}(Y=0)=1-p.$ То есть Y имеет распределение Бернулли.

Теперь смоделируем случайную величину $Y \sim \mathrm{Bi}(n,p)$. Для этого n раз будем генерировать случайную величину $Y_0 \sim \mathrm{Bern}(p)$ и просуммируем. Тогда $\mathbb{P}(Y=k) = C_n^k p^k (1-p)^{n-k}$, и Y имеет биномиальное распределение.

Рис. 1.1: Гистограмма биномиального распределения случайной величины с параметрами $n=100,\,p=0.5$ при 100000 испытаний.

1.2 Датчик геометрического распределения. Его свойство отсутствия памяти

Определение 1.4. Случайная величина Y, равная количеству неудач до появления первого успеха в схеме Бернулли с параметром p, называется случайной величиной, имеющей геометрическое распределение с параметром p.

Будем обозначать такую случайную величину:

$$Z \sim \text{Geom}(p)$$
.

Исходя из определения, чтобы смоделировать случайную величину $Z \sim \text{Geom}(p)$, будем несколько раз генерировать случайную величину $Z_0 \sim \text{Bern}(p)$, и считать, сколько раз Z_0 приняла значение 0 до первого появления значения 1. Тогда $\mathbb{P}(Z=k)=(1-p)^k p$, и Z имеет геометрическое распределение.

Утверждение 1.1 (Свойство отсутствия памяти). Пусть $Z \sim Geom(p)$, тогда для любых $n, m \in \mathbb{N}_0$ справедливо:

$$\mathbb{P}(Z > m + n \mid Z \geqslant m) = \mathbb{P}(Z > n).$$

Доказательство.

$$\mathbb{P}(Z > m + n \mid Z \geqslant m) = \frac{\mathbb{P}(Z > m + n, Z \geqslant m)}{\mathbb{P}(Z \geqslant m)} = \frac{\mathbb{P}(Z > m + n)}{\mathbb{P}(Z \geqslant m)} = \frac{\sum_{i=m+n}^{\infty} (1 - p)^{i} p}{\sum_{i=m}^{\infty} (1 - p)^{i} p} = \frac{(1 - p)^{m+n}}{(1 - p)^{m}} = (1 - p)^{n}.$$

С другой стороны:

$$\mathbb{P}(Z > n) = \sum_{i=n}^{\infty} (1-p)^{i} p = p \frac{(1-p)^{n}}{p} = (1-p)^{n}.$$

Таким образом:

$$\mathbb{P}(Z > m + n \mid Z \geqslant m) = \mathbb{P}(Z > n).$$

Рис. 1.2: Гистограмма геометрического распределения случайной величины с параметром p=0.3 при 1000 испытаний.

Рис. 1.3: Свойство отсутствия памяти геометрического распределения. Здесь задан параметр геометрического распределения p = 0.1, а также «сдвиг» m = 10.

1.3 Игра в орлянку

Для того, чтобы дать теоретическую оценку для Y(n) при $n \to \infty$, воспользуемся Центральной предельной теоремой.

Теорема 1.1 (Центральная предельная теорема). Пусть X_1, \ldots, X_n, \ldots есть бесконечная последовательность независимых одинаково распределенных случайных величин, имеющих конечное математическое ожидание μ и дисперсию σ^2 . Пусть также $S_n = \sum_{i=1}^n X_i$. Тогда

$$\frac{S_n - \mu n}{\sigma \sqrt{n}} \longrightarrow N(0, 1)$$

по распределению при $n \to \infty$.

В нашей задаче X_i - независимые одинаково распределенные дискретные случайные величины, принимающие только два значения: 1 и -1. Поэтому:

$$\mathbb{E} X_i = 1 \cdot \frac{1}{2} - 1 \cdot \frac{1}{2} = 0,$$

$$Var X_i = \frac{1}{2} \cdot (1-0)^2 + \frac{1}{2} \cdot (-1-0)^2 = 1.$$

Применяя ЦПТ, получим:

$$Y(n) \xrightarrow{dist.} N(0, 1).$$

Тогда по «правилу трех сигм»:

$$-3 \leqslant \lim_{n \to \infty} Y(n) \leqslant 3$$

с вероятностью приблизительно 0,9973.

Рис. 1.4: Поведение суммы Y(i) на отрезке $1 \leqslant i \leqslant 1000$.

2 Задание №2

- 1. Построить датчик сингулярного распределения, имеющий в качестве функции распределения канторову лестницу. С помощью критерия Колмогорова убедиться в корректности работы датчика.
- 2. Для канторовых случайных величин проверить свойство симметричности относительно $\frac{1}{2}$ (X и (1-X) распределены одинаково) и самоподобия относительно деления на 3 (условное распределение Y при условии $Y \in [0, \frac{1}{3}]$ совпадает с распределением $\frac{Y}{3}$) с помощью критерия Смирнова.
- 3. Вычислить значение математического ожидания и дисперсии для данного распределения. Сравнить теоретические значения с эмпирическими для разного объема выборок. Проиллюстрировать сходимость.

2.1 Построение датчика «канторовой» случайной величины

Определение 2.1. Функция распределения некоторой случайной величины называется *сингулярной*, если она непрерывна и ее множество точек роста имеет нулевую меру Лебега.

Определение 2.2. *Канторовым множеством* называется совершенное нигде не плотное множество.

Как известно, точка принадлежит канторовому множеству тогда и только тогда, когда в записи этой точки в троичной системе координат нет единиц. Канторова лестница K(x) действует на такие точки по следующему правилу:

$$K(\{\alpha_1,\ldots,\alpha_n,\ldots\}_3) = \left\{\frac{\alpha_1}{2},\ldots,\frac{\alpha_n}{2},\ldots\right\}_2.$$

Здесь $\{\alpha_1, \ldots, \alpha_n, \ldots\}_3$ - запись аргумента в троичной системе счисления. Для моделирования воспользуемся методом обращения функции распределения.

Теорема 2.1 (Метод обратной функции распределения). Пусть некоторая функция распределения F имеет обратную F^{-1} . Тогда функцией распределения случайной величины

$$\eta = F^{-1}(\xi),$$

 ${\it rde}\ \xi$ — равномерно распределенная на отрезке $[0,\,1]$ случайная величина, является F.

 Π о к а з а т е л ь с т в о. Найдем функцию распределения случайной величины η :

$$F_{\eta}(x) = \mathbb{P}(\eta \leqslant x) = \mathbb{P}(F^{-1}(\xi) \leqslant x) = \mathbb{P}(\xi \leqslant F(x)) = F(x).$$

Итак, в качестве случайной величины, имеющей равномерное на [0,1] распределение, возмем следующую случайную величину:

$$\xi = \sum_{k=1}^{\infty} \frac{\alpha_k}{2^k},$$

где $\alpha_k \sim \text{Bi}(1, 0.5)$. Таким образом мы равновероятно генерируем знаки разложения числа в двоичной системе счисления. Если мы хотим моделировать случайную величину с функцией распределения K(x), то нужно выснить, по какому приниципу действует функция $K^{-1}(\xi)$. Из определение канторовой функции следует, что:

$$\eta = K^{-1}(\xi) = \{2\alpha_1, \dots, 2\alpha_n, \dots\}_3 = \sum_{k=1}^{\infty} \frac{2\alpha_k}{3^k}.$$

Вычислим погрешность, которую мы будем совершать, считая вместо бесконечных сумм конечные. Для этого оценим остаток ряда:

$$\sum_{k=n}^{\infty} \frac{2\alpha_k}{3^k} \leqslant 2\sum_{k=n}^{\infty} \frac{1}{3^k} = \frac{1}{3^{n-1}} \leqslant \varepsilon.$$

Чтобы выполнялось последнее неравенство для фиксированного ε будем выбирать n так, чтобы:

$$n \geqslant 1 - \lceil \log_3 \varepsilon \rceil \ \forall \varepsilon < 1.$$

Для того чтобы убедиться в правильности работы датчика, сравним получившуюся функцию распределения канторовой случайной величины с эмперической.

Определение 2.3. Пусть задана выборка $\xi = (\xi_1, \xi_2, \dots, \xi_n)$. Эмперической (выборочной) функцией распределения, построенной на этой выборке, называется функция $F_n(x)$:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{(-\infty, x)}(\xi_i),$$
 где $\mathbb{I}_{(-\infty, x)}(\xi_i) = \begin{cases} 1, & \text{при } \xi_i < x, \\ 0, & \text{иначе.} \end{cases}$

Таким образом, $F_n(x)$ равна доле таких значений ξ_i , что $\xi_i < x$.

Рис. 2.1: Эмпирическая и теоретическая функции распределения канторовой случайной величины X при выборке из 1000 испытаний.

2.2 Проверка корректности работы датчика

Определение 2.4. Пусть в некотором эксперименте доступна наблюдению случайная величина ξ , распределение которой $\mathbb P$ полностью или частично неизвестно. Тогда любое утверждение относительно $\mathbb P$ называется *статистической гипотезой* H.

Теорема 2.2 (Критерий согласия Колмогорова). Обозначим нулевую гипотезу H_0 как гипотезу о том, что выборка подчиняется распределению $F(\xi)$. Введем статистику критерия

$$D_n = \sup_{x} |F_n(x) - F(x)|.$$

Тогда если гипотеза H_0 верна, то $\sqrt{n}D_n$ с ростом n сходится по распределению κ случайной величине K с функцией распределения Колмогорова

$$F_K(x) = 1 + 2\sum_{i=1}^{+\infty} (-1)^k e^{-2k^2x^2}.$$

Гипотеза H_0 отвергается, если при большом объеме выборки n статистика $\sqrt{n}D_n$ превышает квантиль распределения $K_{\alpha} = F_K^{-1}(1-\alpha)$, заданного уровня значимости α , и принимается в противном случае.

Но вместо того, чтобы считать значение K_{α} , будем получать p-значение для нашей статистики: $p_{value} = 1 - F_K(\sqrt{n}D_n)$. Тогда гипотеза принимается при уровне значимости α , если $p_{value} > \alpha$.

В следующей таблице показаны результаты проведенных экспериментов. Можно заметить, что гипотеза о равенстве построенной нами функции распределения и эмперической функции распределения отвергается с вероятностью, не превышающей текущий уровень значимости.

Число испытаний	Размер выборки	Уровень значимости	Частота принятия гипотезы
1000	1000	0, 10	0,9050
1000	1000	0,05	0,9480
1000	10000	0, 10	0,9030
1000	10000	0,05	0,9630
10000	1000	0, 10	0,9091
10000	1000	0,05	0,9561
10000	10000	0, 10	0,9027
10000	10000	0,05	0,9498

Таблица 1: Частота принятия гипотезы H_0 о том, что построенный датчик случайной величины имеет канторову лестницу в качестве функции распределения.

2.3 Симметричность «канторовой» случайной величины относительно $\frac{1}{2}$

Утверждение 2.1 (Свойство симметричности относительно $\frac{1}{2}$). Пусть X-cлучайная величина, с канторовой лестницей в качестве функции распределения. Тогда верно

$$F_X(x) = F_{1-X}(x).$$

Доказательство. Рассмотрим случайную величину 1-X:

$$1 - X = 1 - \sum_{k=1}^{\infty} \frac{2\alpha_k}{3^k} = \sum_{k=1}^{\infty} \frac{2}{3^k} - 2\sum_{k=1}^{\infty} \frac{\xi_k}{3^k} = \sum_{k=1}^{\infty} \frac{2(1 - \xi_k)}{3^k} = \sum_{k=1}^{\infty} \frac{2\eta_k}{3^k}.$$

Случайные величины $\eta_k = 1 - \xi_k$ имеют распределение Бернулли с параметром 0.5.

Но так как α_k по построению тоже имеют распределение Бернулли с параметром 0.5, можно утверждать, что функции распределения случайных величин X и 1-X совпадают.

 \blacksquare Теперь с помощью *критерия Смирнова* проверим, что выборки слуйчаных величин вида x и 1-x принадлежат одному распределению.

Теорема 2.3 (Критерий однородности Смирнова). Обозначим за нулевую гипотезу H_0 гипотезу о том, что две исследуемые выборки объемами n и m c эмперическими функциями распределения $F_n(x)$ и $F_m(x)$ соответственно распределениы по одному закону. Введем статистику критерия

$$D_{n,m} = \sup_{x} |F_n(x) - F_m(x)|.$$

Тогда если гипотеза H_0 верна, то при увеличении объемов выборок n и m случайная величина $\sqrt{\frac{nm}{n+m}}D_{n,m}$ будет сходиться по распределению к случайной величине K с функцией распределения Колмогорова

$$F_K(x) = 1 + 2\sum_{i=1}^{+\infty} (-1)^k e^{-2k^2 x^2}.$$

Для того, чтобы принять или отклонить гипотезу, также будем вычислять p- для нашей статистики: $p_{value}=1-F_K\left(\sqrt{\frac{nm}{n+m}}D_{n,m}\right)$.

Рис. 2.2: Свойство симметричности относительно $\frac{1}{2}$ канторовой случайной величины.

Размер выборки x_1	Размер выборки x_2	Уровень значимости	Частота принятия гипотезы
1000	1000	0, 10	0,899
1000	1000	0,05	0,949
1000	10000	0, 10	0,906
1000	10000	0,05	0,953
10000	1000	0, 10	0,900
10000	1000	0,05	0,948
10000	10000	0, 10	0,904
10000	10000	0,05	0,947

Таблица 2: Частота принятия гипотезы H_0 о том, что случайные величины X и (1-X) имеют одинаковое распределение.

2.4 Самоподобие «канторовой случайной величины относительно деления на 3

Утверждение 2.2 (Свойство самоподобия относительно деления на 3). Пусть X — случайная величина с канторовой лестницей в качестве функции распределения. Тогда верно

$$F_{\frac{X}{3}}(x) = F_{X \mid X \in \left[0, \frac{1}{3}\right]}(x).$$

Д о к а з а т е л ь с т в о. Легко заметить, что по построению случайная величина $X=\sum_{k=1}^{\infty}\frac{2\alpha_k}{3^k}\in\left[0,\frac{1}{3}\right]$ тогда и только тогда, когда $\alpha_1=0$. Поэтому случайная величина $Y=X|X\in\left[0,\frac{1}{3}\right]$ равна:

$$Y = \sum_{k=2}^{\infty} \frac{2\alpha_k}{3^k} = \sum_{k=1}^{\infty} \frac{2\alpha_{k+1}}{3^{k+1}} = \sum_{k=1}^{\infty} \frac{2}{3} \frac{2\alpha_k}{3^k} = \frac{1}{3} X.$$

Рис. 2.3: Свойство самоподобия относительно деления на 3 канторовой случайной величины.

Проверим получившийся результат при помощи критерия Смирнова.

Размер выборки x_1	Размер выборки x_2	Уровень значимости	Частота принятия гипотезы
1000	1000	0, 10	0,901
1000	1000	0,05	0,946
1000	10000	0, 10	0,906
1000	10000	0,05	0,956
10000	1000	0, 10	0,898
10000	1000	0,05	0,955
10000	10000	0, 10	0,893
10000	10000	0,05	0,939

Таблица 3: Частота принятия гипотезы H_0 о том, что случайные величины $X\,|\,X\in[0,\,\frac{1}{3}]$ и $\frac{X}{3}$ имеют одинаковое распределение.

2.5 Математическое ожидание и дисперсия канторовой случайной величины

Найдем математическое ожидание и дисперсию случайной величины X, имеющей в качестве функции распределения канторову лестницу:

$$\mathbb{E}\,X = \mathbb{E}\sum_{k=1}^{\infty} \frac{2\alpha_k}{3^k} = \sum_{k=1}^{\infty} \frac{2}{3^k} \mathbb{E}\alpha_k = \{\text{так как } \alpha_k \sim Bern(0.5)\} = \sum_{k=1}^{\infty} \frac{2}{3^k} \cdot \frac{1}{2} = \frac{\frac{1}{3}}{1-\frac{1}{3}} = \frac{1}{2}.$$

$$\mathbb{V}\text{ar}\,X = \mathbb{V}\text{ar}\sum_{k=1}^{\infty} \frac{2\xi_k}{3^k} = \{\text{так как } \alpha_k \text{ независимы}\} = \sum_{k=1}^{\infty} \left(\frac{2}{3^k}\right)^2 \mathbb{V}\text{ar}\,\xi_k = \sum_{k=1}^{\infty} \frac{4}{9^k} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{\frac{1}{9}}{1-\frac{1}{9}} = \frac{1}{8}.$$

В качестве эмпирических значений построим графики выборочного среднего \overline{X} и несмещенной выборочной дисперсии S^2 :

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 и $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$.

Рис. 2.4: График выборочного среднего случайной величины X в зависимости от объема выборки: $400 \leqslant n \leqslant 4000$.

Рис. 2.5: График несмещенной выборочной дисперсии случайной величины X в зависимости от объема выборки: $400 \leqslant n \leqslant 10000$.

3 Задание №3

- 1. Построить датчик экспоненциального распределения. Проверить для данного распределения свойство отсутствия памяти. Пусть X_1, X_2, \ldots, X_n независимо экспоненциально распределенные случайные величины с параметрами $\lambda_1, \lambda_2, \ldots, \lambda_n$ соответственно. Найти распределение случайной величины $Y = \min\{X_1, X_2, \ldots, X_n\}$.
- 2. На основе датчика экспоненциального распределения построить датчик пуассоновского распределения.
- 3. Построить датчик пуассоновского распределения как предел биномиального распределения. С помощью критерия хи-квадрат Пирсона убедиться, что получен датчик распределения Пуассона.
- 4. Построить датчик стандартного распределения методом моделирования случайных величин парами с переходом в полярные координаты. Проверить при помощи t-критерия Стьюдента равенство математических ожиданий, а при помощи критерия Фишера равенство дисперсий.

3.1 Построение датчика экспоненциальной случайной величины

Определение 3.1. Будем говорить, что случайная величина X имеет экспоненциальное распределение c параметром $\lambda > 0$, если ее функция распределения имеет вид

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x}, & \text{при } x \geqslant 0, \\ 0, & \text{при } x < 0. \end{cases}$$

Обозначение:

$$X \sim \text{Exp}(\lambda)$$
.

Для моделирования экспоненциально распределенной случайной величины снова воспользуемся методом обращения функции распределения. Пусть $\xi \sim U[0,1]$. Тогда по теореме 2.1:

$$\eta = F_X^{-1}(\xi) = -\frac{1}{\lambda} \ln(1 - \xi) \Rightarrow \eta \sim \text{Exp}(\lambda).$$

Рис. 3.1: Гистограмма экспоненциального распределения с параметром $\lambda=2$ при 10000 испытаниях.

3.2 Отсутствие памяти у экспоненциального распределения

Утверждение 3.1 (Свойство отсутствия памяти). Пусть $X \sim Exp(\lambda)$, тогда $\forall t \neq 0$, $\forall s : \mathbb{P}(X \geqslant s + t \mid X \geqslant t) = \mathbb{P}(X \geqslant s)$.

Д о к а з а т е л ь с т в о. Аналогично тому, как мы поступали в доказательстве свойства отсутствия памяти геометрического распределения:

$$\mathbb{P}(X \geqslant s+t \,|\, X \geqslant t) = \frac{\mathbb{P}(X \geqslant s+t, \, X \geqslant t)}{\mathbb{P}(X \geqslant t)} = \frac{\mathbb{P}(X \geqslant s+t)}{\mathbb{P}(X \geqslant t)}.$$

Тогда нужно показать, что:

$$\mathbb{P}(X \geqslant s + t) = \mathbb{P}(X \geqslant t)\mathbb{P}(X \geqslant s).$$

Но это равенство равносильно тому, что:

$$1 - F_X(s+t) = (1 - F_X(t))(1 - F_X(s)) \Rightarrow e^{-\lambda(s+t)} = e^{-\lambda s}e^{-\lambda t}.$$

Получили тождество, и так как все переходы были равносильными, доказали утверждение. \blacksquare

Рис. 3.2: Свойство отсутствия памяти у экспоненциального распределения с параметром $\lambda=1.5$ при 10000 испытаниях. Сдвиг равен 1.

3.3 Распределение минимума экспоненциальных случайных величин

Рассмотрим следующую случайную величину:

$$Y = \min\{X_1, X_2, \dots, X_n\},$$
 где $X_i \sim Exp(\lambda_i) \, \forall i = \overline{1, n}.$

Вычислим ее функцию распределения:

$$F_Y(x)=\mathbb{P}(Y< x)=\mathbb{P}(\min_{i=\overline{1,n}}X_i< x)=$$

$$=1-\mathbb{P}(\min_{i=\overline{1,n}}X_i\geqslant x)=1-\mathbb{P}(X_1\geqslant x,\dots,X_n\geqslant x)=1-\prod_{i=1}^n\mathbb{P}(X_i\geqslant x)=$$

$$=1-\prod_{i=1}^n(1-F_{X_i}(x))=1-\prod_{i=1}^ne^{\lambda_ix}=1-e^{\sum\limits_{i=1}^n\lambda_ix}.$$
 Получили, что $Y\sim \mathrm{Exp}\left(\sum\limits_{i=1}^n\lambda_i\right).$

Рис. 3.3: Случайная величина $Y = \min\{X_1, X_2, \dots, X_n\}$ имеет экспоненциальное распределение с параметром $\lambda = \sum_{i=1}^n \lambda_i$. Число испытаний 10000.

3.4 Построение датчика распределения Пуассона

Определение 3.2. Случайная величина X имеет распределение Пуассона c параметром $\lambda > 0$, если

$$\mathbb{P}(X=k)=rac{\lambda^k}{k!}e^{-\lambda},$$
 где $k=0,1,\ldots$

Обозначение:

$$X \sim \text{Pois}(\lambda)$$
.

Теорема 3.1 (О распределении суммы экспоненциальных случайных величин). Пусть $\eta_1, \ldots, \eta_n, \ldots$ - независимые случайные величины, имеющие экспоненциальное распределение с параметром λ , и пусть:

$$\xi = \max\{n : \eta_1 + \ldots + \eta_n < 1\}.$$

Тогда случайная величина ξ имеет распределение Пуассона с параметром λ .

Доказательство можно найти в [3].

Воспользуемся этим утверждением для моделирования случайной величины с Пуассоновским распределением. Будем генерировать случайные величины $\eta_k \sim \text{Exp}(\lambda)$ до тех пор, пока их сумма не станет больше 1. Тогда, согласно утверждению, случайная величина k-1 будет иметь распределение Пуассона с параметром λ .

Рис. 3.4: Распределение Пуассона с параметром $\lambda = 5$ при 10000 испытаниях.

3.5 Построение датчика распределения Пуассона как предел биномиального распределения

Для моделирования воспользуемся следующим свойством. При фиксированном λ , если n - достаточно велико:

$$\operatorname{Bin}\left(n, \frac{\lambda}{n}\right) \approx \operatorname{Pois}(\lambda).$$

Доказательство этого утверждения можно найти в [3].

3.6 Проверка корректности работы датчика

С помощью критерия Пирсона проверим, что полученное в предыдущем пункте распределение действительно является распределением Пуассона.

Теорема 3.2 (Критерий согласия Пирсона). Обозначим нулевую гипотезу H_0 как гипотезу о том, что выборка $\xi_1, \xi_2 \dots \xi_n$ подчиняется закону распределения \mathbb{P} . Обозначим за n_k количество элементов в выборке, равных k. За r обозначим количество различных элементов выборки. А за p_k — вероятность выпадения значения в теоретическом распределении $p_k = \mathbb{P}(\xi = k)$. Введем статистику критерия

$$X_n^2 = n \sum_{k=1}^r \frac{\left(\frac{n_k}{n} - p_k\right)^2}{p_k}.$$

Тогда если гипотеза H_0 верна, то статистика X_n^2 имеет χ^2 распределение $c\ r-1$ степенью свободы.

Функцию распределения χ^2 с l степеней свободы

$$F_{\chi_l^2}(x) = \frac{\gamma(l/2, x/2)}{\Gamma(l/2)}$$

сложно посчитать аналитически, поэтому воспользуемся встроенными функциями языка Python для вычисления квантилей распределения χ^2 . Результаты экспериментов представлены в следующей таблице.

Число испытаний	Размер выборки	Уровень значимости	Частота принятия гипотезы
100	1000	0,05	0,940
1000	1000	0,05	0,959

Таблица 4: Критерий Пирсона. H_0 - гипотеза о том, что построенный датчик случайной величины имеет распределение Пуассона.

Рис. 3.5: Распределение Пуассона с параметром $\lambda=5$ построенное как приближение биномиальным распределением с параметрами p=0.01, n=500 при 10000 испытаниях.

3.7 Построение датчика нормального распределения методом моделирования парами с переходом в полярные координаты

Определение 3.3. Случайная величина X имеет нормальное распределение c параметрами μ и σ^2 , если ее плотность распределения задается формулой

$$\rho_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}.$$

Будем обозначать такие случайные величины

$$X \sim N(\mu, \sigma^2)$$
.

Определение 3.4. Случайная величина X имеет стандартное нормальное распределение, если $X \sim N(0, 1)$. Пусть $\eta \sim Exp(1)$, $\xi \sim U[0, 2\pi]$, тогда случайная величина $Z = \sqrt{2\eta} \sin \xi$ имеет стандартное нормальное распределение:

$$\begin{split} F_Z(x) &= \iint\limits_{\{(\eta,\xi)|\sqrt{2\eta}\sin\xi < x\}} \frac{e^{-\eta}}{2\pi} d\eta d\xi = \left\{\eta = \frac{r^2}{2}\right\} = \iint\limits_{\{(r,\xi)\,|\,r\sin\xi < x\}} \frac{e^{-\frac{r^2}{2}}}{2\pi} r dr d\eta = \\ &= \{X = r\cos\xi, Y = r\sin\xi\} = \iint\limits_{\{(X,Y)|Y < x\}} \frac{e^{-\frac{X^2}{2}}e^{-\frac{Y^2}{2}}}{2\pi} dX dY = \int\limits_{-\infty}^{+\infty} \frac{e^{-\frac{X^2}{2}}}{\sqrt{2\pi}} dX \int\limits_{-\infty}^{x} \frac{e^{-\frac{Y^2}{2}}}{\sqrt{2\pi}} dY = \\ &= \int\limits_{-\infty}^{x} \frac{e^{-\frac{Y^2}{2}}}{\sqrt{2\pi}} dY \end{split}$$

Рис. 3.6: Стандартное нормальное распределение случайной величины при 10000 испытаниях.

3.8 Проверка равенства математического ожидания и дисперсии

Теорема 3.3 (Критерий Стьюдента). Обозначим нулевую гипотезу H_0 как гипотезу о том, что математическое ожидание выборки $X = \{X_1, X_2, \dots, X_n\}$ равно некоторому известному значению μ . Введем статистику критерия:

$$t = \frac{\overline{X} - \mu}{S_X / \sqrt{n}}.$$

Tогда если гипотеза H_0 верна, то статистика t имеет распределение Cтьюдента c n-1 степенью свободы.

Теорема 3.4 (Критерий Фишера). Обозначим нулевую гипотезу H_0 как гипотезу о том, что дисперсии двух выборок $X = \{X_k\}_{k=1}^n$ и $Y = \{Y_k\}_{k=1}^m$ равны друг другу. Введем статистику критерия

$$F=rac{\hat{\sigma}_X^2}{\hat{\sigma}_Y^2},$$
 где $\hat{\sigma}^2-$ выборочная дисперсия.

Тогда если гипотеза H_0 верна, то статистика F имеет распределение Фишера F(n-1, m-1).

Для того, чтобы удостовериться в корректности построенного датчика:

- 1. С помощью критерия Стьюдента проверим, что математическое ожидание полученной выборки равно нулю.
- 2. С помощью критерия Фишера проверим, что дисперсия полученной выборки равна 1. Для этого нужна будет еще одна выборка, у которой дисперсия точно равна 1. Для создания такой выборки будем использовать датчик случайной величины игры в орлянку.

Для того, чтобы принять или отвергнуть гипотезу будем использовать значения квантилей K_r распределений Стьюдента и Фишера. Посчитаем их с помощью соответствующих встроенных функций языка Python. Тогда гипотеза H_0 принимается при уровне значимости α , если для значения статистики S выполнено:

$$K_{\alpha/2} < S < K_{1-\alpha/2}.$$

Число испытаний	Размер выборки	Уровень значимости	Частота принятия гипотезы
1000	1000	0,05	0,953
1000	1000	0, 10	0,902
1000	10000	0,05	0,956
1000	10000	0, 10	0,921
10000	1000	0,05	0,952
10000	1000	0, 10	0,8991
10000	10000	0,05	0,950
10000	10000	0, 10	0,907

Таблица 5: Критерий Стьюдента. H_0 - гипотеза о том, что построенный датчик случайной величины имеет равное нулю математическое ожидание.

Число испытаний	Размер выборки	Уровень значимости	Частота принятия гипотезы
1000	1000	0,05	0,991
1000	1000	0, 10	0,984
1000	10000	0,05	0,994
1000	10000	0, 10	0,9670
10000	1000	0,05	0,996
10000	1000	0, 10	0,979
10000	10000	0,05	0,995
10000	10000	0, 10	0,980

Таблица 6: Критерий Фишера. H_0 - гипотеза о том, что построенный датчик случайной величины имеет дисперсию, равную единице.

4 Задание №4

- 1. Построить датчик распределения Коши.
- 2. На основе датчика распределения Коши с помощью метода фон Неймана построить датчик стандартного нормального распределения. При помощи функции normal probability plot убедиться в корректности работы построенного датчика и обосновать наблюдаемую линейную зависимость.
- 3. Сравнить скорость моделирования стандартного нормального распределения в заданиях 3 и 4.

4.1 Построение датчика распределения Коши

Определение 4.1. Случайная величина X имеет распределение Kоши c параметрами a u b, если ее функция распределения имеет вид:

$$F_X(x) = \frac{1}{\pi} \arctan\left(\frac{x-a}{b}\right) + \frac{1}{2}.$$

Обозначение:

$$X \sim C(a, b)$$
.

Для моделирования распределения Коши снова воспользуемся методом обращения функции распределения. Будем генерировать случайную велиичну $\xi \sim \mathrm{U}[0,1]$. Тогда случайная величина:

$$\eta = F_X^{-1}(\xi) = a + b \operatorname{tg}\left(\pi\left(\xi - \frac{1}{2}\right)\right)$$

будет иметь распределение Коши.

Рис. 4.1: Распределение Коши с параметрами $a=2,\,b=0.2$ при 1000 испытаниях.

4.2 Построение датчика стандартного нормального распределения методом фон Неймана

Плотность стандартного нормального распределения:

$$p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

Плотность распределения Коши:

$$q(x) = \frac{1}{\pi} \frac{b}{(x-a)^2 + b^2}.$$

Будем моделировать стандартное нормальное распределение следующим образом:

- 1. Найдем число k такое, что $\forall x \in \mathbb{R}$ выполнялось: $p(x) \leqslant kq(x)$.
- 2. Способом, описанным в предыдущем пункте, будем генерировать случайную величину $x \sim C(a,b)$.
- 3. Сгенерируем случайную величину $\eta(x) \sim Bern\left(\frac{p(x)}{kq(x)}\right)$.
- 4. Если $\eta=1$, то $x\sim N(0,1)$. Если $\eta=0$, то повторим все пункты алгоритма, начиная со второго.

Легко заметить, что $\eta=1$ тем чаще, чем ближе значение $\frac{p(x)}{kq(x)}$ к единице. Так как мы хотим увеличить скорость сходимости алгоритма, будем выбирать k так, чтобы:

$$k = \min_{a,b} \max_{x} \frac{p(x)}{q(x)} = \min_{a,b} \max_{x} \frac{\sqrt{\pi}}{b\sqrt{2}} ((x-a)^2 + b^2)e^{-\frac{x^2}{2}}.$$

Положим a=0 и обозначим $g(x)=(x^2+b^2)e^{-\frac{x^2}{2}}$. Найдем точку максимума этой функции.

$$g'(x) = -xe^{-\frac{x^2}{2}}(x^2 + b^2) + 2xe^{-\frac{x^2}{2}} = -e^{-\frac{x^2}{2}}x(x^2 + b^2 - 2).$$

Поэтому либо x = 0, либо $x = \pm \sqrt{2 - b^2}$:

$$k_{a=0} = \min \left\{ \min \left(\frac{b\sqrt{\pi}}{\sqrt{2}} \right), \min \left(\frac{\sqrt{2\pi}}{b} e^{\frac{b^2 - 2}{2}} \right) \right\}.$$

При $a \neq 0$:

$$k_{a\neq 0} = \min_{a,b} \max_{x} \frac{p(x)}{q(x)} = \min_{a} \left\{ \min_{b>\sqrt{2}} \frac{p(x)}{q(x)} \Big|_{x=0}, \min_{0< b \leqslant \sqrt{2}} \frac{p(x)}{q(x)} \Big|_{x=\pm\sqrt{2-b^2}} \right\} >$$

$$> \min_{a} \left\{ \min_{b>\sqrt{2}} \frac{\sqrt{\pi}}{b\sqrt{2}} (a^2 + b^2), \min_{0< b \leqslant \sqrt{2}} (\sqrt{2-b^2} + |a|) \right\} = k_{a=0}.$$

Получили, что $k_{a\neq 0}>k_{a=0}$. Поэтому искомое k достигается при a=0.

Обозначим $f(x) = \frac{\sqrt{2\pi}}{b} e^{\frac{b^2-2}{2}}$. Найдем её минимум по переменной b:

$$f'(x) = \sqrt{2\pi}e^{\frac{b^2-2}{2}}\left(1 - \frac{1}{b^2}\right) = 0 \Rightarrow b = 1.$$

Итак, оптимальные значения параметров: $a=0,\,b=1,\,k=\sqrt{\frac{2\pi}{e}}.$

Рис. 4.2: Стандартное нормальное распределение случайной, полученное методом фон Неймана при 10000 испытаниях.

Для того, чтобы убедиться в корректности построенного нами датчика стандартного нормального распределения, воспользуемся функцией probability plot. Она, получив на вход некоторую выборку, построит график, на оси абсцисс которого будут отложены точки выборки, а на оси ординат - квантили стандартного нормального распределения.

Пусть $X \sim N(\mu, \sigma^2), Y \sim N(0, 1)$. Тогда:

$$F_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt = \left\{ \xi = \frac{t-\mu}{\sigma} \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x-\mu}{\sigma}} e^{-\frac{\xi^2}{2}} d\xi = F_Y\left(\frac{x-\mu}{\sigma}\right),$$

Отсюда следует, что любая случайная величина $X \sim N(\mu, \sigma^2)$ представима в виде $X = \sigma Y + \mu$, где $Y \sim N(0, 1)$.

Таким образом, подавая на вход функции probability plot нормально распределенную выборку, мы ожидаем увидеть прямую с угловым коэффициентом σ и со сдвигом μ . Графики ниже демонстрируют то, что построенный нами датчик действительно работает правильно.

Рис. 4.3: Результат работы функции probability plot на выборках X (слева) и $0.5 \cdot X + 2$ (справа), где X - выборка, полученная методом фон Неймана.

Рис. 4.4: Результат работы функции probability plot на выборках $Y \sim \text{Geom}(0.4)$ (слева) и $Z \sim \text{Exp}(3)$ (справа).

4.3 Сравнение скорости работы метода моделирования парами и метода фон Неймана

Сравним, сколько единиц времени потребуется данным двум методам для моделирования выборки размером N. Для этого введем обозначения:

- ullet t_f время работы метода фон Неймана,
- ullet t_p время работы метода моделирования парами,
- а время выполнения одной из стандартный арифметических операций,
- b время, необходимое для генерирования одной равномерно, распределенной случайной величины. При этом b > a, так как генерирование равномерно распределенной случайной величины включает в себя выполнение нескольких стандартных арифметических операций.

Тогда:

$$t_f = N\sqrt{\frac{2\pi}{e}}(2b + 2a),$$

$$t_p = \frac{N}{2}(2b + 6a).$$

Причем:

$$\frac{1}{2}\sqrt{\frac{2\pi}{e}} = \sqrt{\frac{2\pi}{e}} \frac{b}{2b} \leqslant 2\sqrt{\frac{2\pi}{e}} \frac{a+b}{b+3a} = \frac{t_f}{t_p} = 2\sqrt{\frac{2\pi}{e}} \frac{a+b}{b+3a} \leqslant \sqrt{\frac{2\pi}{e}} \frac{2b+2b}{b} = 4\sqrt{\frac{2\pi}{e}}$$

Таким образом $\frac{t_f}{t_p} \in [0.76, 6.08].$

Рис. 4.5: Сравнение времени работы методов моделирования парами и фон Неймана в зависимости от объема выборки.

5 Задание №5

1. Пусть $X \sim N(\mu, \sigma^2)$. Убедиться в справедливости ЗБЧ и ЦПТ, то есть исследовать поведение суммы S_n и эмперического распределения случайной величины

$$\sqrt{n}\left(\frac{S_n}{n}-\mu\right).$$

- 2. Считая μ и σ^2 неизвестными, для пункта 1 построить доверительные интервалы для среднего и дисперсии.
- 3. Пусть $X \sim \mathrm{C}(a,\,b)$ имеет распределение Коши со сдвигом a и масштабом b. Проверить эмперически, как ведут себя суммы $\frac{S_n}{n}$. Результат объяснить, а также найти закон распределения данных сумм.

5.1 Закон больших чисел. Центральная предельная теорема.

Теорема 5.1 (Закон больших чисел). Пусть $X_1, X_2, ..., X_n, ... - nоследовательность независимых одинаково распределенных случайных величин, определенных на одном вероятностном пространстве <math>(\Omega, \mathcal{F}, \mathbb{P})$, с конечным первым моментом, равным $\mathbb{E} X_i = \mu$. Обозначим $S_n = \sum_{i=1}^n X_i$. Тогда

$$\frac{S_n}{n} \stackrel{\mathbb{P}}{\to} \mu,$$

то есть

$$\forall \varepsilon > 0 \quad \lim_{n \to \infty} \mathbb{P}\left(\left| \frac{S_n}{n} - \mu \right| < \varepsilon \right) = 1.$$

Рис. 5.1: Выполнение ЗБЧ для нормально распределенной случайной величины с параметрами $\mu=2,\,\sigma=3.$ Выборка объема $10^5.$

Теорема 5.2 (Центральная предельная теорема). Пусть $X_1, X_2, \ldots, X_n, \ldots - n$ о-следовательность независимых одинаково распределенных случайных величин, определенных на одном вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$, с конечным первым моментом, равным $\mathbb{E} X_i = \mu$ и конечной дисперсией $\mathbb{V}ar X_i = \sigma^2 \neq 0$. Обозначим $Y_n = \frac{S_n - \mu n}{\sigma \sqrt{n}}$, тогда

$$Y_n \xrightarrow{dist.} N(0, 1),$$

то есть

$$\lim_{n \to \infty} \mathbb{P}(Y_n < x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt = F_N(x).$$

Рис. 5.2: Выполнение ЦПТ для нормально распределенной случайной величины с параметрами $\mu=2,\,\sigma=3.$ Выборка объема $10^5.$

5.2 Построение доверительных интервалов для среднего и дисперсии нормальной случайной величины.

Пусть теперь X_1, X_2, \ldots, X_n независимые одинаково распределенные случайные величины с некоторым распределением $N(\mu, \sigma^2)$. Будем считать параметры μ, σ^2 неизвестными.

Теорема 5.3. Случайная величина

$$T = \sqrt{n} \cdot \frac{\overline{X} - \mu}{s},$$

zде $\overline{X}-$ выборочное среднее, а s- несмещенное выборочное стандартное отклонение, имеет распределение Стьюдента с (n-1) степенью свободы.

Воспользуемся этим утверждением для построения доверительного интервала для неизвестного математического ожидания μ . Пусть K_r - квантиль порядка r распределения Стьюдента с n-1 степенью свободы. Тогда по утверждению теоремы и, исходя из симметричности распределения Стьюдента:

$$\mathbb{P}(-K_{1-\frac{r}{2}} \leqslant T \leqslant K_{1-\frac{r}{2}}) = 1 - r \Rightarrow$$

$$\mathbb{P}(\overline{X} - \frac{s}{\sqrt{n}}K_{1-\frac{r}{2}} \leqslant \mu \leqslant \overline{X} + \frac{s}{\sqrt{n}}K_{1-\frac{r}{2}}) = 1 - r.$$

При малых r получим искомый доверительный интервал:

$$\mu \in \left[\overline{X} - \frac{s}{\sqrt{n}}K_{1-\frac{r}{2}}, \, \overline{X} + \frac{s}{\sqrt{n}}K_{1-\frac{r}{2}}\right].$$

Рис. 5.3: Доверительный интервал для математического ожидания нормально распределенной случайной величины: $\mu=2,\,\sigma^2=9.$

Теорема 5.4 (Фишер). Случайная величина

$$H = \frac{s^2}{\sigma^2}(n-1)$$

имеет распределение хи-квадрат с (n-1) степенью свободы.

Аналогичным образом, используя данное утверждение, найдем доверительный интервал для дисперсии нормального распределения. Пусть K_r - квантиль порядка r распределения χ^2 с n-1 степенью свободы. Тогда по утверждению теоремы:

$$\mathbb{P}(K_{1+\frac{r}{2}}\leqslant H\leqslant K_{1-\frac{r}{2}})=r\Rightarrow$$

$$\mathbb{P}\left(\frac{s^2}{\chi^2_{\frac{1+\alpha}{2}}}(n-1) \leqslant \sigma^2 \leqslant \frac{s^2}{\chi^2_{\frac{1-\alpha}{2}}}(n-1)\right) = r.$$

При r, близких к единице, получим искомый доверительный интервал:

$$\sigma^2 \in \left[\frac{s^2}{\chi^2_{\frac{1+\alpha}{2}}} (n-1), \frac{s^2}{\chi^2_{\frac{1-\alpha}{2}}} (n-1) \right].$$

Рис. 5.4: Доверительный интервал для дисперсии нормально распределенной случайной величины: $\mu=2,\,\sigma^2=9.$

5.3 Поведение частичных сумм распределения Коши

Покажем, что суммы $\frac{S_n}{n}$ имеют распределение Коши. Пусть $X_k \sim \mathrm{C}(a,b)$. Тогда ее характеристическая функция:

$$\varphi_{Xk}(x) = e^{aix - b|x|}.$$

Теперь найдем характеристическую функцию случайной величины $\frac{S_n}{n}$:

$$\varphi_{\frac{S_n}{n}}(x) = \varphi_{\sum_{k=1}^n X_k}(x) = \{\varphi_{aX}(x) = \varphi_X(ax)\} = \varphi_{\sum_{k=1}^n X_k}\left(\frac{x}{n}\right) = \varphi_{x}(ax)$$

$$=\prod_{k=1}^n \varphi_{X_k}\left(\frac{x}{n}\right) = \left(\varphi_{X_1}\left(\frac{x}{n}\right)\right)^n = \left(e^{\frac{aix}{n}-|\frac{x}{n}|b}\right)^n = e^{aix-b|x|} = \varphi_{X_1}(x).$$

Так как характеристическая функция случайной величины однозначно характеризует ее распределение, получим, что случайная величина $\frac{S_n}{n}$ имеет распределение Коши.

Известно, что математическое ожидание случайной величины, имеющей рапределение Коши, не существует, так как значение:

$$\mathbb{E} X = \frac{b}{\pi} \int_{-\infty}^{+\infty} \frac{1}{(x-a)^2 + b^2} dx$$

не определено. Таким образом, предположения закона больших чисел не выполнены.

Рис. 5.5: Распределения частичных сумм S_{100} случайной величины с распределением Коши с параметрами $a=0,\,b=1.5.$ Выборка объемом 1000.

Рис. 5.6: Невыполнение закона больших чисел для распределения Коши с параметрами $a=5,\,b=1.$

6 Задание №6

1. Посчитать интеграл

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \frac{e^{-\left(x_1^2 + \dots + x_{10}^2 + \frac{1}{2^7 \cdot x_1^2 \cdot \dots \cdot x_{10}^2}\right)}}{x_1^2 \cdot \dots \cdot x_{10}^2} dx_1 dx_2 \dots dx_{10}$$

- методом Монте-Карло;
- методом квадратур, сводя задачу к вычислению собственного интеграла Римана.
- 2. Для каждого случая оценить точность вычислений.

6.1 Метод Монте-Карло

Обозначим:

$$f(x) = \frac{e^{-\left(x_1^2 + \dots + x_{10}^2 + \frac{1}{2^7 \cdot x_1^2 \cdot \dots \cdot x_{10}^2}\right)}}{x_1^2 \cdot \dots \cdot x_{10}^2}$$

Пусть с.в. X имеет плотность распределения $\rho(x)$. Тогда:

$$\int\limits_{\mathbb{R}^n} f(x)dx = \int\limits_{\mathbb{R}^n} \frac{f(x)}{\rho(x)} \rho(x)dx = \int\limits_{\mathbb{R}^n} \tilde{f}(x) \rho(x)dx = \mathbb{E}\tilde{f}(X) \approx \frac{\sum\limits_{i=1}^n \tilde{f}(x^i)}{n}.$$

Пусть $X \sim N(O,I), O, I \in \mathbb{R}^{10 \times 10},$ тогда плотность распределения этой случайной величины:

$$\rho(x) = \frac{1}{(2\pi)^5} e^{-\frac{x_1^2 + \dots + x_{10}^2}{2}}.$$

Кроме того:

$$\tilde{f}(x) = \frac{f(x)}{\rho(x)} = (2\pi)^5 \frac{e^{-\left(\frac{1}{2^7 \cdot x_1^2 \cdot \dots \cdot x_{10}^2} + \frac{x_1^2 + \dots + x_{10}^2}{2}\right)}}{x_1^2 \cdot \dots \cdot x_{10}^2}$$

Таким образом, мы можем посчитать значение данного интеграла I следующим образом:

$$I = \mathbb{E}\tilde{f}(X) pprox rac{\sum\limits_{i=1}^{n} \tilde{f}(x^{i})}{n},$$
 где $x^{i} = (x_{1}^{i}, \ldots, x_{10}^{i}), x_{k}^{i} \sim \mathrm{N}(0, 1), k = \overline{0, 10}.$

Чтобы получить точность метода Монте–Карло, воспользуемся ЦПТ. В обозначениях Теоремы 5.2:

$$\mathbb{P}(|Y_n - I| < \varepsilon) = \mathbb{P}\left(\left|\frac{S_n - nI}{n}\right| < \varepsilon\right) = \mathbb{P}\left(\left|\frac{S_n - nI}{\sqrt{n}\sigma_n}\right| < \frac{\varepsilon\sqrt{n}}{\sigma_n}\right) =$$

$$= \mathbb{P}\left(\frac{S_n - nI}{\sqrt{n}\sigma_n} < \frac{\varepsilon\sqrt{n}}{\sigma_n}\right) - \mathbb{P}\left(\frac{S_n - nI}{\sqrt{n}\sigma_n} < -\frac{\varepsilon\sqrt{n}}{\sigma_n}\right) \approx$$

$$\approx F\left(\frac{\varepsilon\sqrt{n}}{\sigma_n}\right) - F\left(-\frac{\varepsilon\sqrt{n}}{\sigma_n}\right) = 2F\left(\frac{\varepsilon\sqrt{n}}{\sigma_n}\right) - 1.$$

Пусть K_r - квантиль порядка r стандартного нормального распределения. Тогда:

$$\varepsilon = K_{1-r/2} \cdot \frac{\sigma_n}{\sqrt{n}}.$$

Результаты экспериментов представлены в следующей таблице.

Число испытаний	Время работы(с)	Погрешность	Результат
10^{4}	0.109375	11.412638	128.196599
10^{5}	0.046875	3.590046	122.308228
10^{6}	0.437500	1.143693	124.793092
10^{7}	3.984375	0.360412	124.483013
10^{8}	83.687500	0.113965	124.657149

Таблица 7: Результаты подсчета данного интеграла методом Монте-Карло.

6.2 Метод квадратур

После замены переменных: $x_i = tg\left(\frac{\pi}{2}t_i\right)$, $t_i \in [0,1]$ получим:

$$I = \left(\frac{\pi}{2}\right)^{10} \int_{0}^{1} \cdots \int_{0}^{1} \frac{exp\left\{-\left[\sum_{i=1}^{10} tg\left(\frac{\pi}{2}t_{i}\right)^{2} + \frac{1}{2^{7} \prod_{i=1}^{10} tg\left(\frac{\pi}{2}t_{i}\right)^{2}}\right]\right\}}{\prod_{i=1}^{10} tg\left(\frac{\pi}{2}t_{i}\right)^{2} \cdot \prod_{i=1}^{10} cos\left(\frac{\pi}{2}t_{i}\right)^{2}} dt_{1} dt_{2} \dots dt_{10}.$$

Воспользуемся методом прямоугольника. Равномерно разобьем отрезок [0,1] на N частей и посчитаем величину:

$$I_n = \frac{1}{N^{10}} \sum_{i_1=1}^N \dots \sum_{i_{10}=1}^N f\left(\frac{i_1}{N}, \dots, \frac{i_{10}}{N}\right)$$

Известно, что погрешность метода прямоугольников на равномерной сетке отрезка [0,1] равна:

$$\varepsilon = \frac{h^2}{24} \sum_{i,j=1}^{10} \max |f_{x_i,x_j}''|, \ h = \frac{1}{N}.$$

Результаты экспериментов представлены в следующей таблице.

Число разбиений	Время работы(с)	Результат
3	2.062600	0.053938
4	32.015625	0.086482
5	342.468750	0.130859
6	2176.734375	0.125344

Таблица 8: Результаты подсчета интеграла методом квадратур.

7 Задание №7

1. Методом случайного поиска найти минимальное значение функции f на множестве $A=\{x_1,x_2:x_1^2+x_2^2\leqslant 1\}$, т.е. $y=\min_{x\in A}f(x)$, где

$$f(x) = x_1^3 \sin\left(\frac{1}{x_1}\right) + 10x_1x_2^4 \cos\left(\frac{1}{x_2}\right)$$

при $x_1 \neq 0$ и $x_2 \neq 0$, функция доопределяется по непрерывности при $x_1 = 0$ или $x_2 = 0$.

2. Методом имитации отжига найти минимальное значение функции Розенброка g в пространстве \mathbb{R}^2 , где

$$g(x) = (x_1 - 1)^2 + 100(x_2 - x_1^2)^2.$$

3. Оценить точность. Сравнить результаты со стандартными методми оптимизации.

7.1 Метод случайного поиска

Для поиска минимального значения функции f(x) будем n раз разыгрывать случайные величины x_1 и x_2 , считать для каждой пары значение функции $f(x_1, x_2)$ и затем из полученных значений выберем наименьшее.

Пусть (x_1, x_2) равномерно распределены на единичном круге, тогда:

$$\mathbb{P}((x_1, x_2) \in A) = \frac{1}{\pi} \iint_{\substack{x_1^2 + x_2^2 \le 1}} dx_1 dx_2 = \{x_1 = r\cos\varphi, \ x_2 = r\sin\varphi\} = \frac{1}{\pi} \int_0^1 r \, dr \int_0^{2\pi} d\varphi = \int_0^{2\pi} \frac{1}{2\pi} d\varphi \int_0^1 dr^2.$$

Сделаем замену:

$$u = r^2 > 0 \Rightarrow r = \sqrt{u}, u \in [0, 1].$$

Тогда:

$$\mathbb{P}((x_1, x_2) \in A) = \int_0^{2\pi} \frac{1}{2\pi} d\varphi \int_0^1 du.$$

Значит, совместное распределение x_1 и x_2 совпадает с совместным распределением следующих случайных величин: $u \sim U[0,1], \varphi \sim U[0,2\pi]$.

С учетом производимых замен переменных получим:

$$\begin{cases} x_1 = \sqrt{u}\cos\varphi, \\ x_2 = \sqrt{u}\sin\varphi, \end{cases}$$

Рис. 7.1:
$$f(x) = x_1^3 \sin\left(\frac{1}{x_1}\right) + 10x_1x_2^4 \cos\left(\frac{1}{x_2}\right)$$
.

Пусть (x_1^*, x_2^*) - теоретическая точка минимума, (x, y) - точка минимума, полученная методом случайного поиска. Так как f непрерывна, она липшицева. Поэтому для f справедлива оценка ([9]):

$$|f(x_1^*, x_2^*) - f(x, y)| \le \max_{(x_1, x_2) \in A} |\nabla f| |(x_1^*, x_2^*) - (x_1, x_2)|.$$

Для данной функции f:

$$\left| \frac{\partial f}{\partial x_1} \right| = \left| 3x_1^2 \sin \frac{1}{x_1} - \frac{1}{x_1^2} x_1^3 \cos \frac{1}{x_1} + 10x_2^4 \cos \frac{1}{x_2} \right| \le |3x_1^2 - x_1 + 10x_2^4| =$$

$$= |3x_1^2 - x_1 + 10(1 - x_1^2)^2| = |3x_1^2 - x_1 + 10(1 - 2x_1^2 + x_1^4)| =$$

$$= |10x_1^4 - 17x_1^2 - x_1 + 10| \le 11$$

$$\left| \frac{\partial f}{\partial x_2} \right| = \left| 40x_1x_2^3 \cos \frac{1}{x_2} + 10\frac{1}{x_2^2} x_1 x_2^4 \sin \frac{1}{x_2} \right| \le |40x_1x_2^3 + 10x_1x_2^2| =$$

$$= \left| 40x_1(1 - x_1^2)^{\frac{3}{2}} + 10x_1(1 - x_1^2) \right| \le 17$$

$$|\nabla f| = \sqrt{\left(\frac{\partial f}{\partial x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2}\right)^2} \le \sqrt{11^2 + 17^2} \le 21.$$

Теперь оценим $|(x^*, y^*) - (x, y)|$. Вероятность того, что точка (x, y) попадет в ε -окрестность теоретической точки минимума (x^*, y^*) :

$$\mathbb{P}((x,y) \in B_{\varepsilon}(x^*,y^*)) = \frac{\pi \varepsilon^2}{\pi} = \varepsilon^2.$$

Так как функция f четна по x_2 , точек минимума будет 2: (x^*, y^*) , $(x^*, -y^*)$. Тогда, если (x^*, y^*) принадлежит границе множества A (то есть у каждой точки минимума множеству принадлежит только половина окрестности), то искомая вероятность равна ε^2 . Если же (x^*, y^*) лежит внутри множества A, то искомая вероятность равна $2\varepsilon^2$.

Взяв самую маленькую вероятность из этих двух, получим, что вероятность того, что хотя бы одна из n точек (x,y) попадет в окрестность точки (x^*,y^*) равна $p=n\varepsilon^2$. Таким образом:

$$|(x^*, y^*) - (x, y)| \le \varepsilon = \sqrt{\frac{p}{n}}$$

Итогова оценка погрешности алгоритма случайного поиска:

$$f(x^*, y^*) - f(x, y) \leqslant 21\sqrt{\frac{p}{n}}.$$

Число генераций	Результат	Погрешность
100	-1.288473	2.089474
1000	-1.288486	0.660750
10000	-1.288489	0.208947

Таблица 9: Результат работы метода случайного поиска, p = 0.99.

7.2 Метод имитации отжига

Пусть t_i - некоторая убывающая последовательность, сходящаяся к нулю. Метод имитации отжига работает следующим образом:

- 1. Новый сосед x^* генерируется как нормально распределенная случайная величина со средним x_i и дисперсией $\sigma^2 t_i$
- 2. Если $\Delta g = g(x_{i+1}) g(x_i) < 0$, то повторяем алгоритм, начиная с пункта 1 с новой точкой $x_{i+1} = x^*$.

3. Если $\Delta g>0$, то продолжаем алгоритм с новой точкой $x_{i+1}=x^*$ с вероятностью $p(x^*,\,x^i)=\exp\left(-\frac{g(x^*)-g(x^i)}{t_i}\right)$.

Рис. 7.2: Погрешность метода случайного поиска. p=0.99.

Рис. 7.3: $g(x_1, x_2) = (x_1 - 1)^2 + 100(x_2 - x_1^2)^2$.

Результаты экспериментов продемонстрированы в следующей таблице:

Число генераций	Время работы(с)	Результат
100	0.140625	0.022022
1000	1.203125	0.004591
10000	13.484375	0.0315778

Таблица 10: Результат работы метода имитации отжига. $t_{i+1}=0.99t_i,\ \sigma=1.$

Применить метод Монте-Карло к решению первой краевой задачи для двумерного уравнения Лапласа в единичном круге:

$$\begin{cases} \Delta u = 0, (x, y) \in D, \\ u|_{\delta D} = f(x, y), \\ u \in C^{2}(D), f \in C(\delta D), \\ D = \{x, y : x^{2} + y^{2} \leq 1\}. \end{cases}$$

Для функции $f(x,y)=x^2-y^2$ найти аналитическое решение и сравнить с полученным по методу Монте–Карло.

8.1 Алгоритм решения задачи

Пусть u(x,y) - искомое решение уравнения Лапласа.

- На равномерной сетке множества D выделим внутренние и граничные точки. Будем называть узел сетки (i,j) внутренним, если он и все четыре соседних с ним узла: $(i-1,j),\ (i+1,j),\ (i,j-1),\ (i,j+1)$ принадлежат области $D+\delta D$; в противном случае узел (i,j), принадлежащий $D+\delta D$, будем называть граничным.
- В граничных точках положим: u(x, y) = f(x, y).
- Во внутренних точках с вероятностью $\frac{1}{4}$ будем переходить в одну из соседних точек до тех пор, пока не окажемся в одной из граничных точек. Для каждой внутренней точки (x,y) повторим этот алгоритм n раз, и положим в данной внутренней точке: $u(x,y) = \frac{1}{n} \sum_{i=1}^{n} f(x_i,y_i)$, где (x_i,y_i) посещенные нами граничные точки.

Убедимся в корректности алгоритма, сравнив полученные результаты с аналитическим решением для функции $f(x,y) = x^2 - y^2$.

Будем искать аналитическое решение в виде $u(x,y) = Ax^2 + By^2 + C$. Тогда:

$$u_{xx} + u_{yy} = 2A + 2B = 0 \Rightarrow A + B = 0A(1 - y^2) + By^2 + C = 1 - 2y^2 \Rightarrow A + C = 1, A - B = 2$$

То есть: A = 1, B = -1, C = 0. Аналитическое решение: $u(x, y) = x^2 - y^2$.

Рис. 8.1: Аналитическое решение задачи $u(x,y) = x^2 - y^2$.

Рис. 8.2: Решение задачи методом Монте–Карло. Сетка с шагом 0.02.

Рассмотреть два вида процессов:

- Винеровский процесс $W(t), t \in [0, 1], W(0) = 0.$
- Процесс Орнштейна—Уленбека $X(t), t \in [0, 1], X(0) = X_0$, то есть стационарный гауссовский процесс. Начальные значения X_0 генерируются случайным образом так, чтобы получееный процесс был стационарным.

Для данных гауссовских процессов:

- 1. Найти ковариационную функцию и переходные вероятности;
- 2. Моделировать независимые траектории процесса с данными переходными вероятностями методом добавления разбиения отрезка;
- 3. Построить график траектории, не соединяя их ломанной, с целью получения визуально непрерывной линии.

9.1 Винеровский процесс

Определение 9.1. Рассмотрим вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$. Тогда назовём случайным процесом параметризированное семейство $\{W_t\}_{t\in T}$ случайных величин

$$W_t: \Omega \to \mathbb{R}, \ t \in T, \ T \subset [0, +\infty).$$

Определение 9.2. Будем называть случайный процесс $\{W_t\}_{t\in T}$ гауссовским, если для любых $t_0,\,t_1,\,\ldots,\,t_n\in T$ соответствующий случайный вектор $w=(W_{t_1},\,W_{t_2},\,\ldots,\,W_{t_n})$ имеет многомерное нормальное распределение, то есть имеет плотность

$$\rho(W_{t_1}, \ldots, W_{t_n}) = \frac{1}{(2\pi)^{n/2} |R|^{1/2}} \cdot \exp\left\{-\frac{1}{2} \cdot \langle R^{-1}(w-m), w-m \rangle\right\},\,$$

где $m=(m_1,\,m_2,\,\ldots,\,m_n)^{\mathrm{T}}$ — вектор средних, а $R\in\mathbb{R}^{n\times n}$ — ковариационная матрица: $R=\|\mathrm{cov}(t_i,\,t_j)\|_{i,j},\,R=R^{\mathrm{T}}>0.$

Определение 9.3. Определим винеровский процесс как гауссовский процесс на отрезке [0, 1] с нулевым средним и ковариационной функцией $\operatorname{cov}(W(t_i), W(t_i)) = \min\{t_i, t_i\}.$

Вычислим переходные вероятности для винеровского процесса.

Пусть $t = t_1 + \alpha(t_2 - t_1)$, $\alpha \in (0, 1)$, тогда $t \in [t_1, t_2]$. Пусть $\tilde{x} = [x_1, x_2]^T$, $\hat{x} = [x_1, x, x_2]^T$. Тогда из определения гауссовского процесса:

$$\rho_{W(t_1),W(t_2)}(\tilde{x}) = \frac{1}{2\pi\sqrt{|R_2|}}e^{-\frac{1}{2}\tilde{x}^TR_2^{-1}\tilde{x}},$$

$$\rho_{W(t_1),W(t),W(t_2)}(\hat{x}) = \frac{1}{(2\pi)^{\frac{3}{2}}\sqrt{|R_3|}}e^{-\frac{1}{2}\hat{x}^TR_3^{-1}\hat{x}},$$

где
$$R_2=\begin{bmatrix} t_1 & t_1 \\ t_1 & t_2 \end{bmatrix},\ R_3=\begin{bmatrix} t_1 & t_1 & t_1 \\ t_1 & t & t \\ t_1 & t & t_2 \end{bmatrix}$$
 - ковариационные матрицы.

Тогда $|R_2| = t_1(t_2 - t_1), |R_3| = t_1(t - t_1)(t_2 - t).$ Обратные матрицы:

$$R_2^{-1} = \begin{bmatrix} \frac{t_2}{t_1(t_2 - t_1)} & -\frac{1}{t_2 - t_1} \\ -\frac{1}{t_2 - t_1} & \frac{1}{t_2 - t_1} \end{bmatrix}, R_3^{-1} = \begin{bmatrix} \frac{t}{t_1(t - t_1)} & -\frac{1}{t_2 - t_1} & 0 \\ -\frac{1}{t_1 - t_1} & \frac{t_2 - t_1}{(t_2 - t)(t - t_1)} & -\frac{1}{t_2 - t} \\ 0 & -\frac{1}{t_2 - t} & \frac{1}{t_2 - t} \end{bmatrix}.$$

Тогда:

$$\rho_{W(t)}(x|W(t_1) = x_1, W(t_2) = x_2) = \frac{1}{\sqrt{2\pi(1-\alpha)(t_2-t_1)}} \exp\left\{-\frac{(x-(1-\alpha)x_1 + \alpha x_2)^2}{2\alpha(1-\alpha)(t_2-t_1)}\right\}.$$

Таким образом:

$$W(t) \sim N((1-\alpha)x_1 + \alpha x_2, \alpha(1-\alpha)(t_2-t_1)).$$

Для моделирования винеровского процесса зададим начальную инициализацию: $W(t_0 = 0) = 0$, $W(t_1 = 1) \sim N(0,1)$. Далее будем рекурсивно вызывать функцию, которая разбивает отрезок $[t_0,t_1]$ в отношении $\alpha = 0.2$ и в новой точке t будем вычислять значение W(t) как случайную величину с распределением $N((1-\alpha)x_1 + \alpha x_2, \alpha(1-\alpha)(t_2-t_1))$.

Остановим алгоритм по достижении заданной точности $t_{k+1}-t_k<\varepsilon.$

Рис. 9.1: Непрерывность винеровского процесса. $\varepsilon = 10^{-5}$.

Рис. 9.2: 30 винеровских процессов - все находятся внутри доверительного интервала, вычисленного по правилу трех сигм.

9.2 Процесс Орнштейна-Уленбека

Определение 9.4. Случайный процесс $\{W_t\}_{t\in T}$ называется *стационарным*, если конечномерные распределения инвариантны относительно сдвига времени.

Определение 9.5. Гауссовский процесс $\{W_t\}_{t\in T}$ называется *процессом Орнштейна*– Уленбека, если он является стационарным и марковским.

Из стационарности следует, что: $\mathbb{E}W(t) = const = \mu$, R(t,s) = R(|s-t|).

Из того, что процесс марковский: $\rho(s,t)=\rho(s,\tau)\rho(\tau,t)$, где $\rho(s,t)$ - коэффициент корреляции случайных величин W_s и W_t .

Пусть $\mathbb{V}arW(t) = \sigma^2$. Тогда: $R(t,s) = \sigma^2 \rho(s,t)$.

Так как R(t,s)=R(|s-t|), то $\rho(s,t)=\rho(s-t)\Rightarrow \rho(x+y)=\rho(x)\rho(y),$ где $x=s-\tau,$ $y=\tau-t.$

Теорема 9.1. Пусть функция f(t) определена при t > 0 и ограничена на каждом конечном интервале. Если f(t) удовлетворяет соотношению f(t+s) = f(t)f(s), то либо $f(t) \equiv 0$, либо $f(t) = e^{-\lambda t}$, где $\lambda = const > 0$.

Рассмотрим случай, когда $\rho(s,t)=e^{-\lambda|s-t|}$. Пусть $\tilde{x}=(x_1,x_2)^T$. Так как процесс Орнштейна-Уленбека гауссовский:

$$\rho_{W(t),W(s)}(\tilde{x}) = \frac{1}{2\pi\sqrt{|R|}} e^{-\frac{1}{2}\tilde{x}^T R^{-1}\tilde{x}},$$

$$\rho_{W(s)}(x_2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x_2^2}{2\sigma^2}}.$$

Ковариационная матрица: $R = \begin{bmatrix} \sigma^2 & \sigma^2 e^{-\lambda|s-t|} \\ \sigma^2 e^{-\lambda|s-t|} & \sigma^2 \end{bmatrix}$.

Тогда:

$$\rho_{W(t)}(x_1|W(s) = x_2) = \frac{\rho_{W(t),W(s)}((x_1,x_2))}{\rho_{W(s)}(x_2)} = \frac{1}{\sigma\sqrt{2\pi\left(1 - e^{-2\lambda|t - s|}\right)}} exp\left\{-\frac{\left(x_1 - x_2e^{-\lambda|t - s|}\right)^2}{2\sigma^2\left(1 - e^{-2\lambda|t - s|}\right)}\right\}.$$

Чтобы смоделировать процесс Орнштейна-Уленбека, будем действовать аналогично тому, как поступали с винеровским процессом. В данном случае будем делить отрезки пополам: $t=\frac{t_2-t_1}{2},$ ковариационные матрицы будут выглядеть следующим образом:

$$R_2 = \sigma^2 \begin{bmatrix} 1 & e^{-\lambda(t_2 - t_1)} \\ e^{-\lambda(t_2 - t_1)} & 1 \end{bmatrix}, R_3 = \sigma^2 \begin{bmatrix} 1 & e^{-\lambda(t - t_1)} & e^{-\lambda(t_2 - t_1)} \\ e^{-\lambda(t_2 - t_1)} & 1 \end{bmatrix}$$

В конечном итоге получим, что:

$$W(t) \sim N\left((x_1 + x_2) \frac{e^{-\frac{\lambda(t_2 - t_1)}{2}}}{1 + e^{-\lambda(t_2 - t_1)}}, \sigma^2 \frac{1 - e^{-\lambda(t_2 - t_1)}}{1 + e^{-\lambda(t_2 - t_1)}}\right).$$

Если $\rho(t) \equiv 0$, то $cov(W(t), W(s)) \equiv 0$, поэтому, так как процесс W(t) - гауссовский, W(t) независимы в совокупности. В этом случае моделирование процесса Орнштейна-Уленбека заключается в моделировании случайных величин с распределением $N(a, \sigma^2)$.

Рис. 9.3: Непрерывность процесса Орштейна–Уленбека. $\lambda=25,\,\sigma^2=1,\,\varepsilon=10^{-5}.$

Рис. 9.4: 30 процессов Оршетейна—Уленбека - все находятся внутри доверительного интервала, вычисленного по правилу трех сигм. $\lambda = 15$, $\sigma^2 = 4$, $\varepsilon = 10^{-4}$.

Провести фильтрацию одномерного процесса Орнштейна-Уленбека:

- 1. Используя генератор белого шума, добавить случайную ошибку с известной дисперсией к реализации процесса Орнштейна—Уленбека.
- 2. При помощи фильтра Калмана оценить траекторию процесса по зашумленному сигналу. Параметры процесса и белого шума считать известными.
- 3. Рассмотреть случай, когда шум
 - является гауссовским,
 - имеет распределение Коши.

10.1 Фильтр Калмана

Пусть:

 $x_{n+1} = ax_n + \nu_n$, где $\nu_n \sim N(0,q), \, x_1 \sim N(0,\sigma^2)$. Это исходный процесс, который мы хотим восстановить с помощью фильтра.

 $y_n = x_n + \varepsilon_n$, где $\varepsilon_n \sim N(0, r)$. Это зашумленный процесс, который мы наблюдаем и подаем на вход фильтру.

Зная параметры исходного процесса σ и λ , найдем параметры a,q:

$$R(t_n, t_n) = \sigma^2 = \mathbb{V}ar(x_n),$$

$$R(t_n, t_{n+1}) = \sigma^2 e^{-\lambda(t_{n+1} - t_n)} = Cov(x_n, x_{n+1}) = a \mathbb{V}ar(x_n) = a\sigma^2,$$

$$R(t_{n+1}, t_{n+1}) = \sigma^2 = \mathbb{V}ar(x_{n+1}) = a^2 \mathbb{V}ar(x_n) + q = a^2 \sigma^2 + q.$$

Отсюда следует, что: $a=e^{-\lambda(t_{n+1}-t_n)},\ q=\sigma^2(1-e^{-2\lambda(t_{n+1}-t_n)})$ Будем восстанавливать значения x по следующему алгоритму:

- $x_{0|0} = \mathbb{E}x_0 = 0$
- $R_{0|0} = \mathbb{V}arx_0 = \sigma^2$
- $\bullet \ x_{k+1|k} = ax_{k|k}$
- $\bullet \ R_{k+1|k} = a^2 R_{k|k} + q$
- $x_{k+1|k+1} = x_{k+1|k} \left(1 \frac{R_{k+1|k}}{R_{k+1|k}+r} \right) + \frac{R_{k+1|k}}{R_{k+1|k}+r} y_{k+1|k}$
- $R_{k+1|k+1} = R_{k+1|k} \left(1 \frac{R_{k+1|k}}{R_{k+1|k}+r} \right)$

Доверительный интервал будет выглядеть следующим образом:

$$[x-3\sqrt{R},x+3\sqrt{R}].$$

Рис. 10.1: Результаты работы фильтра Калмана для гауссовского шума. $\lambda=12,\,\sigma^2=1.$

Рис. 10.2: Результаты работы фильтра Калмана для шума с распределением C(0,0.1).

Рис. 10.3: Результаты работы фильтра Калмана для шума с распределением C(0,0.1). Фильтр работает плохо: наблюдаются сильные выбросы в доверительных интервалах изза тяжелых хвостов распределения Коши.

Построить двумерное пуассоновское поле, отвечающее сложному пуассоновскому процессу:

- 1. Первая интерпретация: система массового обслуживания. При этом первая координата поля время поступления заявки в СМО (равномерное распределение), вторая время её обслуживания (распределение χ^2 с 10-ю степенями свободы).
- 2. Вторая интерпретация: система массового обслуживания с циклической интенсивностью $\lambda(1+\cos(t))$ и единичными скачками. Свести данную задачу моделирования неоднородного пуассоновского процесса при помощи метода Льюиса и Шедлеара к моделированию двумерного пуассоновского поля, где первая координата имеет равномерное распределение, а вторая распределение Бернулли.
- 3. Третья интерпретация: работа страховой компании. Первая координата момент наступления страхового случая (равномерное распределение), вторая координата величина ущерба (распределение Парето). Поступление капитала по времени линейно со скоростью c>0, начальный капитал W>0.
- 4. Для каждой системы рассмотреть всевозможные случаи поведения системы в зависимости от значения параметров.

11.1 Система массового обслуживания

Рассмотрим систему на отрезке времени [0,T]. Будем генерировать $t_i \sim U[0,T]$ - времена поступления заявок, $s_i \sim \chi^2(10)$ - времена обработки заявок.

Тогда время окончания обработки i-ой заявки:

$$Q_i = egin{cases} t_i + s_i, & \text{если обработка } (i-1)$$
 - ой заявки в момент времени t_i уже завершена, $Q_{i-1} + s_i, & \text{иначе.} \end{cases}$

To ecth: $Q_i = t_i + max\{0, Q_{i-1} - t_i\} + s_i$.

Будем подсчитывать количество заявок, ожидающих обработки, во время поступления новой заявки:

$$n_i$$
 — количество заявок j , таких, что: $\begin{cases} j < i, \\ Q_j > t_i. \end{cases}$

Так как $\delta_i = (t_{i+1} - t_i) \sim Exp(\lambda)$, $\mathbb{E}\delta_i = \frac{1}{\lambda}$ - среднее время между поступлениями заявок. При этом среднее время обработки заявки: $\mathbb{E}s_i = 10$.

Тогда:

- 1. если $\frac{1}{\lambda}=10$, то скорость поступления заявок совпадает со скоростью их обработки,
- 2. если $\frac{1}{\lambda} > 10$, то скорость обработки заявок превышает скорость их поступления,
- 3. если $\frac{1}{\lambda} < 10$, то заявки не успевают обрабатываться и накапливаются в очереди.

Рис. 11.1: При $\lambda = 0.05$ очередь почти не образуется.

Рис. 11.2: При $\lambda = 0.1$ наблюдаем относительное равновесие.

Рис. 11.3: При $\lambda = 0.3$ очередь неограниченно растет.

11.2 Система массового обслужиания с циклической интенсивностью и единичными скачками

Будем генерировать $t_i \sim U[0,T]$ - времена поступления заявок, $s_i \sim \chi^2(10)$ - времена обработки заявок.

Введем обозначение:

$$\lambda(t) = \lambda(1 + \cos(t)) \le 2\lambda = \lambda^*.$$

Тогда по методу Льюиса и Шедлеара оставим t_i с вероятностью $\frac{\lambda(t_i)}{\lambda^*}$: Пусть $\xi \sim U[0,1]$, тогда:

$$P\left(\xi < \frac{\lambda(t_i)}{\lambda^*}\right) = F_{\xi}\left(\frac{\lambda(t_i)}{\lambda^*}\right) = \frac{\lambda(t_i)}{\lambda^*}.$$

Поэтому будем оставлять только те t_i , для которых выполнено: $\xi_i < \frac{\lambda(t_i)}{\lambda^*}$.

Поведение системы в зависимости от значений параметра $\hat{\lambda}$ остается тем же, что и в обычной системе массового обслуживания, так как средняя мгновенная интенсивность сохраняется: она равна $\hat{\lambda}$.

Рис. 11.4: При $\lambda = 0.05$ очередь почти не образуется.

Рис. 11.5: При $\lambda = 0.1$ наблюдаем относительное равновесие.

Рис. 11.6: При $\lambda = 0.8$ очередь неограниченно растет.

11.3 Работа страховой компании

Определение 11.1. Случайная величина ξ имеет *pacnpedeлeниe Парето* с параметрами x_m и k, если ее функция распределения имеет вид

$$F_{\xi}(x) = 1 - \left(\frac{x_m}{x}\right)^k.$$

Для моделирования паретовской случайной величины воспользуемся методом обращения функции распределения. Обратная функции имеет вид:

$$F_{\xi}^{-1}(x) = \frac{x_m}{1-x}^{1/k}.$$

Будем генерировать $t_i \sim Pois(\lambda), \ s_i \sim P(x_m, k), \$ где s_i - величина ущерба. Тогда величина капитала страховой компании:

$$W(t) = W(0) + ct - s(t)$$
, где $s(t) = \sum_{t_i < t} s_i$.

Страховая компания разорится в момент времени: $T = \min\{t > 0 \mid W(t) < 0\}$.

Из того, что $(t_{i+1}-t_i)\sim Exp(\lambda),\, \mathbb{E} s_i=rac{kx_m}{k-1},$ получим:

$$\mathbb{E} W'(t) = c - \mathbb{E}' s(t) = c - \left(\sum_{t_i < t} \mathbb{E} s_i\right)' = c - \left(t\lambda \frac{kx_m}{k-1}\right)' = c - \lambda \frac{kx_m}{k-1}.$$

Откуда следует, что:

1. При $c(k-1) = \lambda k x_m$ капитал страховой системы не изменяется,

- 2. При $c(k-1) < \lambda k x_m$ капитал будет уменьшаться,
- 3. При $c(k-1) > \lambda k x_m$ капитал будет увеличиваться.

Рис. 11.7: Увеличение капитала при $c=1,\,k=2,\,x_m=1,\,\lambda=0.1.$

Рис. 11.8: Относительное равновесие при тех же параметрах, кроме $\lambda=0.5.$

Рис. 11.9: Уменьшение капитала при тех же параметрах, кроме $\lambda=1.$

Список литературы

- [1] Ширяев А. Н. Вероятность, в 2-х кн. 4-е изд., переработанное и дополненное М.: МЦНМО, 2007.
- [2] Феллер В. Введение в теорию вероятностей и её приложения. М.: Мир, 1964.
- [3] Кропачёва Н.Ю., Тихомиров А.С. Моделирование случайных величин: Метод. указания. НовГУ им. Ярослава Мудрого Великий Новгород, 2004.
- [4] Novak S.Y. Extreme value methods with applications to finance. London: CRC/ Chapman and Hall/Taylor and Francis, 2011.
- [5] Булинский А. В., Ширяев А. Н. Теория случайных процессов. М.: «ФИЗМАТЛИТ», 2005
- [6] Лопаткин А. С. Метод отжига Санкт-Петербургский государственный университет, 2005.
- [7] Соболь И.М. Численные методы Монте-Карло. Наука, 1973
- [8] Heinonen J. Lectures on Lipschitz analysis. Department of mathematics, University of Michigan, Ann Arbor, USA.