# Лабораторная работа №1 Звуки и сигналы

Смирнов Никита

5 апреля 2021 г.

### Оглавление

| 1        | Упражнение 1.1                      | 4  |
|----------|-------------------------------------|----|
| <b>2</b> | Упражнение 1.2                      | 5  |
|          | 2.1 Скачивание звука и работа с ним | 5  |
|          | 2.2 Спектр звука                    |    |
|          | 2.3 Фильтрация звука                |    |
| 3        | Упражнение 1.3                      | 10 |
|          | 3.1 Создание сложного сигнала       | 10 |
|          | 3.2 Добавление новой частоты        |    |
| 4        | Упражнение 1.4                      | 13 |
| 5        | Выводы                              | 15 |

# Список иллюстраций

| 2.1 | Исходный звук                  |
|-----|--------------------------------|
| 2.2 | Исходный звук                  |
| 2.3 | Спектр сегмента звука          |
| 2.4 | Увеличиный маштиаб             |
| 2.5 | Спектр сегмента звука          |
| 3.1 | Спектр сегмента звука          |
| 3.2 | Визуализация сегмента звука    |
| 4.1 | Визуализация ускоренного звука |

# Листинги

| 2.1 | Загрузка и прослушивание звука             |
|-----|--------------------------------------------|
| 2.2 | Визуализация звука                         |
| 2.3 | Изменение и прослушивание звука 6          |
| 2.4 | Визуализация укороченного звука 6          |
| 2.5 | Спектр сегмента звука                      |
| 2.6 | Основные и доминирующие частоты            |
| 2.7 | Фильтрация и воспроизведение звука         |
| 2.8 | Визуализация фильтрации                    |
| 3.1 | Создание сложного сигнала из 4 элементов   |
| 3.2 | Воспроизведение сложного сигнала           |
| 3.3 | Визуализация сигнала                       |
| 3.4 | Добавление новой частоты и воспроизведение |
| 4.1 | Загрузка и прослушивание звука             |
| 4.2 | Функция stretch                            |
| 4.3 | Прослушивание ускоренного звука            |
| 4.4 | Визуализация ускоренного звука             |

# Упражнение 1.1

В данном упражнении нам нужно открыть **chap01.ipynb**, прочитать пояснения и запустить примеры. Поэтому я просто изучил все примеры с комментариями.

1 wave.plot()

# Упражнение 1.2

#### 2.1 Скачивание звука и работа с ним

С предложенного нам сайта скачан звук проезжающей машины. Ссылка на соответствующий звук:

```
https://freesound.org/people/gmetaxas/sounds/347662/.
Далее звук был загружен, прослушан, и получена его визуализация.
```

```
wave =
          thinkdsp.read_wave('347662_gmetaxas_motor-sound-road-no-effect.wav')
wave.normalize()
wave.make_audio()
          Листинг 2.1: Загрузка и прослушивание звука
```

Листинг 2.2: Визуализация звука



Рис. 2.1: Исходный звук

Берем полусекундный сегмент.

- segment = wave.segment(start=1, duration=2)
- 2 segment.make\_audio()

Листинг 2.3: Изменение и прослушивание звука

segment.plot()

Листинг 2.4: Визуализация укороченного звука



Рис. 2.2: Исходный звук

#### 2.2 Спектр звука

Теперь рассмотрим спектр нашего полусекундного сегмента звука.

- spectrum = segment.make\_spectrum()
- 2 spectrum.plot(high=5000)

Листинг 2.5: Спектр сегмента звука



Рис. 2.3: Спектр сегмента звука

Увеличим маштаб.

- spectrum = segment.make\_spectrum()
- 2 spectrum.plot(high=1000)

Листинг 2.6: Основные и доминирующие частоты



Рис. 2.4: Увеличиный маштиаб

#### 2.3 Фильтрация звука

Применим фильтр нижних частот.

- spectrum.low\_pass(400)
- 2 spectrum.make\_wave().make\_audio()

Листинг 2.7: Фильтрация и воспроизведение звука

spectrum.make\_wave().plot()

Листинг 2.8: Визуализация фильтрации



Рис. 2.5: Спектр сегмента звука

Видно, что график изменился, а звук стал, как из туннеля.

# Упражнение 1.3

#### 3.1 Создание сложного сигнала

Нужно создать сложный сигнал из объектов SinSignal и CosSignal.

Листинг 3.1: Создание сложного сигнала из 4 элементов



Рис. 3.1: Спектр сегмента звука

Теперь нужно получить звук.

```
wave = signal.make_wave(duration=2)
wave.apodize()
wave.make_audio()
```

Листинг 3.2: Воспроизведение сложного сигнала

Наж звук схож со звуком при звонке. Выведем спектр полученного звука.

```
spectrum = wave.make_spectrum()
spectrum.plot(high=1000)
```

Листинг 3.3: Визуализация сигнала



Рис. 3.2: Визуализация сегмента звука

#### 3.2 Добавление новой частоты

Изменим наш сигнал.

- signal += thinkdsp.SinSignal(freq=1000)
- 2 signal.make\_wave().make\_audio()

Листинг 3.4: Добавление новой частоты и воспроизведение

Теперь слышно добавленную новую частоту, при чём более высокую, потому что freq=1000. Теперь звук более похож на набор цифр при звонке через стационарный телефон.

### Упражнение 1.4

```
Подготовим звук.
1 wave =
     thinkdsp.read_wave('sounds/414062__felix-blume__machine-gears.wav')
2 wave.normalize()
3 wave.make_audio()
             Листинг 4.1: Загрузка и прослушивание звука
    Теперь сделаем функцию stretch.
def stretch(wave, factor):
    wave.ts *= factor
     wave.framerate /= factor
                     Листинг 4.2: Функция stretch
    Попробуем прослушать полученный звук, введя 0.25.
stretch(wave3, 0.25)
wave.make_audio()
            Листинг 4.3: Прослушивание ускоренного звука
    По таймеру в колабе время сократилсь с 5 до 2 секунд.
1 wave.plot()
             Листинг 4.4: Визуализация ускоренного звука
```



Рис. 4.1: Визуализация ускоренного звука

# Выводы

Во время выполнения лабораторной работы получены навыки работаты со звуками, волнами и спектрами.