Dijkstras Algorithmus

Definition

Ein gewichteter Graph ist ein Tripel G = (V, E, f) mit: (V, E) ist ein Graph und f eine Gewichtsfunktion $f : E \to \mathbb{R}_{\geq 0}$.

Definition

Es sei G = (V, E, f) ein gewichteter Graph.

- ► Es sei $z = (v_0, ..., v_l)$ ein Kantenzug in G. $f(z) := \sum_{i=1}^{l} f(v_{i-1}v_i)$ heißt das *Gewicht* von z.
- Für alle $v, w \in V$ mit $v \sim w$ definieren wir die *Distanz* zwischen v und w als

$$d(v, w) := \min\{f(z) \mid z \text{ ist } v\text{-}w\text{-Pfad in } G\} \in \mathbb{R}_{\geq 0}.$$

▶ Für alle $v, w \in V$ mit $v \nsim w$ wird $d(v, w) := \infty$ gesetzt.

```
DIJKSTRA(\Gamma, w, f)
      initialisiere array d[1, \ldots, n] mit allen Einträgen gleich \infty
      initialisiere array p[1, ..., n] mit allen Einträgen gleich NIL
  3
      initialisiere priority queue Q mit Elementen 1, \ldots, n und
     allen Prioritäten = \infty
  5 d[w] \leftarrow 0
     INSERT(Q, w, d[w])
    while Q nicht leer
  8
      do v \leftarrow \text{EXTRACTMIN}(Q)
          for u \in \Gamma[v]
          do if d[v] + f(uv) < d[u]
10
                 then d[u] \leftarrow d[v] + f(uv)
11
12
                       p[u] \leftarrow v
                       INSERT(Q, u, d[u])
13
14
      return d, p
```

Kommentare (zum Algorithmus)

- ► Eingabe:
 - Γ: Adjazenzliste des Graphen G = (V, E) mit $V = \underline{n}$
 - ▶ w: Knoten $w \in V$
 - ▶ f: Liste der Werte f(e), $e \in E$
- ▶ Der array d[1,...,n] enthält nach der Terminierung an Position v den Wert d(w,v).
- Der array p[1,..., n] enthält nach der Terminierung an Position v einen Knoten u, der auf einem w-v-Pfad der Distanz d(w, v) unmittelbar vor v kommt.

Kommentare (zum Algorithmus), Forts.

- priority queue ist eine Vorrangwarteschlange, bei der jedem ihrer Element ein Prioritätswert zugeordnet ist.
- ▶ Der Aufruf INSERT(Q, x, k) fügt das Element x in die Warteschlange ein und ordnet x die Priorität k ≥ 0 zu. Falls x bereits in der Warteschlange enthalten ist, wird nur die Priorität neu auf k gesetzt.
- ▶ Der Aufruf ExtractMin(Q) entnimmt das Element mit der niedrigsten Priorität.

Beispiel

d	p	Q	v	Γ(ν)	d[v] + f(uv) < d[u]
$ \begin{bmatrix} 0, \infty, \infty, \infty \\ [0, 6, 4, 9] \\ [0, 5, 4, 9] \\ [0, 5, 4, 8] \\ [0, 5, 4, 8] \end{bmatrix} $	$ \begin{bmatrix} -, -, -, - \\ -, 1, 1, 1 \\ -, 3, 1, 1 \\ -, 3, 1, 2 \\ -, 3, 1, 2 \end{bmatrix} $	{1,2,3,4} {2,3,4} {2,4} {4} {}	1 3 2 4	[2,3,4] [1,2] [1,3,4] [1,2]	[2,3,4] [2] [4]

Bäume und Wälder

Es sei G = (V, E) ein Graph mit $n_G > 0$.

Definition

- ► G heißt kreisfrei bzw. Wald, falls G keine Kreise enthält.
- ► Ein zusammenhängender Wald heißt *Baum*.
- ▶ Die Knoten eines Waldes mit Grad ≤ 1 heißen Blätter.

Beispiel

Es sei G = (V, E) ein Graph mit $n_G > 0$.

Bemerkung

- ► G ist genau dann kreisfrei, wenn jede Kante eine Brücke ist.
- ▶ Ist G ein Baum mit $n_G \ge 2$, dann hat G mindestens zwei Blätter.
- ▶ Ist G ein Baum mit $n_G \ge 3$, dann hat G höchstens $n_G 1$ Blätter.

Es sei G = (V, E) ein Graph mit $n_G > 0$.

Erinnerung

- ► r_G: Anzahl der Zusammenhangskomponenten von G
- ▶ Es ist $r_G \ge n_G m_G$.
- ▶ Es sei $e \in E$ und $G' := (V, E \setminus \{e\})$. Dann ist $r_{G'} \le r_G + 1$. Weiter ist $r_{G'} = r_G + 1$ genau dann, wenn e eine Brücke ist.

Satz

Es gilt $r_G = n_G - m_G$ genau dann, wenn G kreisfrei ist.

Es sei G = (V, E) ein Graph mit $n_G > 0$.

Folgerung

 ${\it G}$ ist genau dann ein Baum, wenn mindestens zwei der folgenden Bedingungen erfüllt sind.

- ► *G* ist kreisfrei.
- ► *G* ist zusammenhängend.
- ► $m_G = n_G 1$.

Es sei G = (V, E) ein Graph mit $n_G > 0$.

Erinnerung

- ▶ Ist *G* zusammenhängend, dann ist $m_G \ge n_G 1$.
- ▶ Ist *G* kreisfrei, dann ist $m_G = n_G r_G \le n_G 1$.

Bemerkung

- ► Ein Baum ist ein zusammenhängender Graph mit minimal möglicher Kantenzahl.
- Ein Baum ist ein kreisfreier Graph mit maximal möglicher Kantenzahl.

Spannbäume

Es sei G = (V, E) ein Graph mit $n_G > 0$.

Definition

Ein Teilgraph G' = (V', E') von G heißt Spannbaum von G (engl. $spanning\ tree$), wenn G' ein Baum ist und V' = V.

Beispiel

Satz

Jeder zusammenhängende Graph hat einen Spannbaum.

Beweis

Breitensuche.

Es sei G = (V, E) ein zusammenhängender Graph.

Algorithmus (Sukzessives Entfernen von Kanten)

- ▶ Initialisiere B := E.
- ▶ Entferne sukzessive solche Kanten aus B, die keine Brücken in (V, B) sind.
- ▶ Ist das nicht mehr möglich, dann ist (V, B) ein Spannbaum von G.

Es sei G = (V, E) ein zusammenhängender Graph.

Algorithmus (Sukzessives Hinzufügen von Kanten)

- ▶ Initialisiere $B := \emptyset$.
- ► Füge sukzessive solche Kanten zu B hinzu, deren Endknoten in verschiedenen Zusammenhangskomponenten von (V, B) liegen.
- ▶ Ist das nicht mehr möglich, dann ist (V, B) ein Spannbaum.

Es sei G = (V, E, f) ein gewichteter Graph.

Erinnerung

- ▶ (V, E) ist ein Graph, und $f : E \to \mathbb{R}_{\geq 0}$ eine Gewichtsfunktion.
- ▶ Für $T \subseteq E$ heißt $f(T) := \sum_{e \in T} f(e)$ das Gewicht von T.

Definition

Ein minimaler Spannbaum von G ist ein Spannbaum (V, B) von G mit minimalem Gewicht f(B) unter allen Spannbäumen von G.

Es sei G = (V, E, f) ein gewichteter Graph.

Algorithmus (Kruskal)

- ▶ Initialisiere $B := \emptyset$.
- ► Füge sukzessive solche Kanten zu B hinzu, deren Endknoten in verschiedenen Zusammenhangskomponenten von (V, B) liegen, und unter allen solchen jeweils einen von minimalem Gewicht.
- ► Ist das nicht mehr möglich, dann ist (V, B) ein minimaler Spannbaum.

Austauschlemma

Es seien (V, A) und (V, B) zwei Bäume mit derselben Knotenmenge V.

Für jedes $a \in A \setminus B$ gibt es ein $b \in B \setminus A$ so, dass $(V, B \cup \{a\} \setminus \{b\})$ auch ein Baum ist.