Departamento de Física Universidade de Aveiro

Modelação de Sistemas Físicos

9ª aula Prática

Sumário:

Realização e resolução de problemas sobre:

- Energia e movimento, integração numérica

Bibliografia:

Problemas cap 5 Bola de Ténis

- 5. Uma bola de ténis é batida junto ao solo (posição inicial y=0)com a velocidade 100 km/h, a fazer um ângulo de 10º com a horizontal e no sentido positivo dum eixo horizontal OX, sendo OY eixo vertical.
- a) Calcule a energia mecânica em qualquer instante, no caso de não considerar a resistência do ar.
- b) Considerando a resistência do ar, calcule a energia mecânica de $t_0=0\,$ até $t_f=0.8\,$ s.
- c) Considerando a resistência do ar, calcule o trabalho realizado pela força de resistência do ar até às posições nos três instantes

$$t_0 = 0$$
, $t_1 = 0.4$ s e $t_2 = 0.8$ s.

Use a aproximação trapezoidal para calcular os integrais. A velocidade terminal da bola de ténis é 100 km/h. A massa da bola é 57 g.

Problemas cap 5 Bola de Ténis

Análise do erro

a) Nas mesmas condições do problema anterior, repete o calculo do trabalho realizado pela força de resistência do ar no instante $t_1=0.4$ s, usando os seguintes valores de δt :

$$\{0.1, 0.01, 0.001, 0.0001, 0.00001\}$$

b) Faça um plot em escala log-log do erro $|W^{(\delta t)} - W^{(exato)}|$ nos valores do trabalho calculado em a), em função de δt .

Para o valor exato do trabalho use $W^{(exato)} = -4.9768522$ J.

Qual é a ordem do erro em termos de δt ?

c) Repete alinhas a) e b) usando a aproximação retangular para calcular os integrais. Qual o ordem do erro? Qual dos métodos é preferível usar?