Colles - Semaine 10

Planche 1

Question de cours

Intégrale de Riemann au voisinage de $+\infty$

Exercice

Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \int_0^{+\infty} \frac{e^{-x}}{x + \frac{1}{n}} dx$.

1. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est bien définie.

2. Pour tout $n \in \mathbb{N}^*$, on pose alors $v_n = \int_0^1 \frac{\mathrm{e}^{-x}}{x + \frac{1}{n}} dx$ et $w_n = \int_1^{+\infty} \frac{\mathrm{e}^{-x}}{x + \frac{1}{n}} dx$.

a) Montrer que : $\forall n \in \mathbb{N}^*, \ 0 \leqslant w_n \leqslant \frac{1}{e}$.

b) Montrer que : $\forall n \in \mathbb{N}^*, \ v_n \geqslant \frac{1}{e} \ln(n+1).$

c) Donner la limite de la suite (u_n) .

3. On se propose de déterminer un équivalent de u_n lorsque n est au voisinage de $+\infty$.

a) Montrer que l'intégrale $I=\int_0^1 \ \frac{1-\mathrm{e}^{-x}}{x} \ dx$ est une intégrale convergente.

b) Établir que : $\forall n \in \mathbb{N}^*, \ 0 \leqslant \int_0^1 \frac{1 - e^{-x}}{x + \frac{1}{n}} \ dx \leqslant I.$

c) En déduire un encadrement de v_n valable pour tout $n \in \mathbb{N}^*$.

d) Donner enfin, en utilisant cet encadrement, un équivalent simple de u_n .

1

Planche 2

Question de cours

Intégrale de Riemann au voisinage de 0

Exercice

Pour tout
$$n \in \mathbb{N}^*$$
, on pose $I_n = \int_{-\infty}^{+\infty} \frac{1}{(1+x^2)^n} dx$ et $u_n = \sqrt{n} I_n$.
On admet que $\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$.

- 1. Pour tout $n \in \mathbb{N}^*$, montrer que I_n est convergente. Établir une relation de récurrence entre I_n et I_{n+1} .
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est monotone et étudier sa convergence.
- 3. Calculer I_n , pour tout $n \ge 1$.
- 4. a) Montrer que, pour tout réel x, $\ln(1+x^2) \leqslant x^2$. En déduire que pour tout $n \geqslant 1$, $I_n \geqslant \int_{-\infty}^{+\infty} \mathrm{e}^{-nx^2} \ dx$.
 - **b)** Montrer que, pour tout $n \in \mathbb{N}^*$: $\int_{-\infty}^{+\infty} e^{-nx^2} dx = \frac{\sqrt{\pi}}{\sqrt{n}}$.
 - c) En déduire une minoration de la suite $(u_n)_{n\in\mathbb{N}^*}$ et conclure que la suite $(u_n)_{n\in\mathbb{N}^*}$ ne tend pas vers 0 lorsque n tend vers $+\infty$.
- 5. Montrer qu'il existe un réel α tel que $\binom{2n}{n} \underset{n \to +\infty}{\sim} \frac{\alpha \, 4^n}{\sqrt{n}}$.

Planche 3

Question de cours

Théorème d'intégration par parties sur un segment

Exercice

On pose, pour tout $n \in \mathbb{N}$, $I_n = \int_0^1 \frac{x^n}{\sqrt{1-x}} dx$.

- 1. Montrer que I_n existe, pour tout $n \in \mathbb{N}$.
- 2. Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est convergente.
- 3. a) Montrer que, pour tout $n \in \mathbb{N}^*$, $I_n = \frac{2n}{2n+1} I_{n-1}$.
 - b) En déduire l'existence et la nature de la série de terme général $v_n = \ln(I_n) \ln(I_{n-1})$, puis la limite de $(I_n)_{n \in \mathbb{N}}$.
- 4. Pour tout $n \in \mathbb{N}$, on pose $J_n = \sqrt{n} I_n$ et $K_n = \sqrt{n+1} I_n$.
 - a) Montrer que les suites $(J_n)_{n\in\mathbb{N}}$ et $(K_n)_{n\in\mathbb{N}}$ sont adjacentes.
 - **b)** En déduire qu'il existe un réel $\alpha > 0$ tel que $I_n \sim \frac{\alpha}{\sqrt{n}}$
- 5. a) Calculer I_n en fonction de n.
 - **b)** On admet la formule de Stirling : $n! \sim n^n e^{-n} \sqrt{2\pi n}$. Montrer que $I_n \sim e^{-n} \left(\frac{2n}{2n+1}\right)^{2n+1} \frac{\sqrt{\pi}}{\sqrt{n}}$.
 - c) Déterminer la valeur de α .