# Machine learning tools: learning to classify

Vanessa Gómez Verdejo

 $\rm http://vanessa.webs.tsc.uc3m.es/blog/$ 







# Summary

#### Introduction

The classification problem

Ingredients of the classification problem

Classifying classifiers

From the binary classifier to the multiclass decision

Performance evaluation

#### Some classifiers

K-Nearest Neighbours

Support Vector Machines

Linear Discriminant Analysis

Logistic Regression

Decision Trees

Random Forest

#### Ensembles

Introduction to ensembles

Bagging







# The classification problem









# Machines can learn to classify

### Machine learning...

designs algorithms that allow computers to learn tasks based on empirical data









# Machines can learn to classify

### Machine learning...

designs algorithms that allow computers to learn tasks based on empirical data



### Final goal

Then machine needs to obtain good results in new patterns; this is known as **GENERALIZATION** (**OVERFITTING** problems has to be avoided).







#### The data

- Training data: input samples  $\left\{\mathbf{x}^{(l)}\right\}_{l=1}^{L} \in \mathbb{R}^{M}$  and their labels  $\left\{y^{(l)}\right\}_{l=1}^{L}$  which belong to the set of categories  $\{C_1, C_2, ... C_J\}$ .
- Validation data: useful to adjust free parameters.
- Test data: to evaluate the final performance of the classifier.









#### The loss function

Parametric models fix a decision function:

$$D = f_{\mathbf{w}}(\mathbf{x})$$

and need to adjust their free parameters (w) minimizing a loss function. In the ideal case, this cost would be the **classification rate**; however, this cost function is not differentiable, so upper-bounds are preferred.



- Exponential:  $\exp(-yf(\mathbf{x}))$
- Binomial Deviance:  $\log [1 + \exp(-yf(\mathbf{x}))]$
- Squared error:  $(y - f(\mathbf{x}))^2 = (1 - yf(\mathbf{x}))^2$
- SVM Hinge loss:  $[1 yf(\mathbf{x})]_+$



### The regularization term

It's typical to include a regularization term during the optimization of the cost function to add some properties to the solution:

- An L2 term helps to avoid overfitting problems (it maximizes the classifier margin).
- An L1 term provides sparsity to the solution.









### Hiperparameter selection

- The training process depends on hyperparameter values.
- These values are critical in the generalization capability.
- Cross validation (CV): divides the data set in K subsets without replacement and successively train K models with all the subsets but one which is used to validate.









# Criteria to classify classifiers

- Binary vs. multiclass (and multilabel)
- Linear vs. non-linear
- Parametric vs. non-parametric
- Discriminative vs. generative
- Single vs. ensembles







# Strategies in multiclass problems

#### One vs. one

- It trains a binary classifier per pair of classes.
- At prediction time, the class which receives the most votes is selected.
- It requires to train  $n_{classes} * (n_{classes} 1)/2$  classifiers.
- Each individual learning problem involves a small subset of the data.

#### One vs. all

- It defines binary problems fitting each class against the remaining classes.
- Only  $n_{classes}$  classifiers are trained (computational efficiency).
- A gain of interpretability (each class is represented by one classifier).
- This is the most commonly used strategy.





# Performance evaluation in binary problems

- Classification error or accuracy
- $\bullet$  False positive (FP) rate, True positive (TP) or detection rate,  $\dots$

|       | D=1 | D = 0 |
|-------|-----|-------|
| H=1   | TP  | FP    |
| H = 0 | TN  | FN    |

• ROC curve (AUC)







# Performance evaluation in multiclass problems

- Classification error or accuracy
- Confusion matrix: It analyzes the number of errors by class

|               |             | ACTUAL |             |           | Prediction Prediction |        |
|---------------|-------------|--------|-------------|-----------|-----------------------|--------|
|               |             | Setosa | Versicolour | Virginica | Totals                | Error% |
| PRED          | Setosa      | 50     | 0           | 0         | 50                    | 0.00%  |
|               | Versicolour | 0      | 48          | 1         | 49                    | 2.04%  |
|               | Virginica   | 0      | 2 .fm       | 49        | 51                    | 3.92%  |
| Actual Totals |             | 50     | 50          | 50        | 150                   | 2.00%  |
| Act           | tual Error% | 0.00%  | 4.00%       | 2.00%     | 2.00%                 |        |







## K-Nearest Neighbours

It is a **non-parametric** classifier, i.e, there are not parameters to be learned.

To classify a test data  $\mathbf{x}^*$ :

- Select the value of K.
- Search, among the training data, the K nearest neighbours of  $\mathbf{x}^*$ .
- Decide that x\* belongs to the majority class of the neighbours.

It's intrinsically a **multiclass** classifier.









# The support vector machine

- It is the reference (baseline) binary classifier.
- It is characterized for maximizing the classification margin.
- It minimizes the *hinge-loss*.
- Its formulation can be reduced to a convex optimization problem (unique solution).
- Its linear formulation can provide non linear classifiers by means of the kernel trick.
- There are multiple extensions: for regression and novelty-detection, with different cost functions, different regularizations....







### The linear SVM: separable case

Let's start considering that training data are linearly separable...

• We want a **maximum margin** classifier

$$\rho = \frac{1}{\|\mathbf{w}\|_{\mathbf{2}}}$$

• which is able to classify all training data:

$$\begin{aligned} & \min_{\mathbf{w},b} & \|\mathbf{w}\|_{\mathbf{2}}^{2} \\ & \text{st.} y^{(l)} \left(\mathbf{w}^{T}\mathbf{x}^{(l)} + b\right) \geq 1; & \forall l \end{aligned}$$







## The linear SVM: separable case

When training data aren't linearly separable or we let some data be misclassified...

- We can add some slack variables in the formulation
- Linear binary classifier

$$\min_{\mathbf{w}, b, \xi_{(l)}} \|\mathbf{w}\|_{2}^{2} + \mathbf{C} \sum_{l=1}^{L} \xi^{(l)}$$
st. 
$$y^{(l)} \left(\mathbf{w}^{T} \mathbf{x}^{(l)} + b\right) \ge 1 - \xi^{(l)}; \quad \forall l$$

$$\xi^{(l)} \ge 0; \quad \forall l$$







### The linear support vector machine

• The training of the linear SVM relies on solving

$$\min_{\mathbf{w}, b, \xi_{(l)}} \|\mathbf{w}\|_{2}^{2} + \mathbf{C} \sum_{l=1}^{L} \xi^{(l)}$$
st. 
$$y^{(l)} \left(\mathbf{w}^{T} \mathbf{x}^{(l)} + b\right) \ge 1 - \xi^{(l)}; \quad \forall l$$

$$\xi^{(l)} \ge 0; \quad \forall l$$

an optimization problem with a **unique solution**.

- ullet The value of C has to be properly selected.
- The soft-output of the classifier is given by

$$f(\mathbf{x}^*) = \mathbf{w}^T \mathbf{x}^* + b,$$

if  $f(\mathbf{x}^*) > 0$  (< 0) the datum is assigned to class +1 (-1).

 This optimization problem can be reformulated by means of the Lagrangian multipliers, providing a dual formulation... (next).





### The SVM dual formulation

 Previous SVM optimization problem can be reformulated by means of the Lagrangian multipliers, providing a dual formulation

$$\max_{\alpha^{(1)}, \dots, \alpha^{(L)}} \quad \sum_{l=1}^{L} \alpha^{(l)} - \frac{1}{2} \sum_{l=1}^{L} \sum_{l'=1}^{L} y^{(l)} y^{(l')} \alpha^{(l)} \alpha^{(l')} \mathbf{x}^{(l)T} \mathbf{x}^{(l')}$$

st. 
$$0 < \alpha^{(l)} < C \quad \forall l$$
  
$$\sum_{l=1}^{L} \alpha^{(l)} y_{(l)} = 0; \quad \forall l$$

where now the optimization has to be solved regarding to the dual variables  $\alpha^{(l)}$ .

• The problem complexity is given by the number of data (L).





#### The SVM dual formulation

• Once  $\left\{\alpha^{(l)}\right\}_{l=1}^{L}$  values are obtain, one can compute the weight vector as:

$$\mathbf{w}^T = \sum_{l=1}^L y^{(l)} \alpha^{(l)} \mathbf{x}^{(l)}$$

• Then, the soft-output of the classifier for a new data  $\mathbf{x}^*$  is given by

$$f(\mathbf{x}^*) = \mathbf{w}^T \mathbf{x}^* + b = \sum_{l=1}^{L} y^{(l)} \alpha^{(l)} \mathbf{x}^{(l)} \mathbf{x}^* + b$$

- Sparsity of the SVM solution:
  - Most dual variables are zero;
  - The SVM output is given by a linear combination of just few input data
  - These data, which support the solution of the classifier, are call support vectors.





#### No-linear SVM

### Mapping the data

- When we cannot find linear solutions in the input space
- We can map the data to a high dimensional space (even of infinitive dimension)

$$\mathbf{x} \longrightarrow \phi(\mathbf{x})$$

 then, a liner solution of the problem can be found in this high dimensional space







#### No-linear SVM

#### Kernel trick

- In most cases, you cannot compute the kernel transformation explicitly.
- But you can compute the dot product of the data in the feature space.

$$K\left(\mathbf{x}, \mathbf{x}'\right) = \phi\left(\mathbf{x}\right)^{T} \phi\left(\mathbf{x}'\right)$$

 K(·,·), which is called kernel function, measures similarities between the data.

### Some examples

- Linear kernel:  $K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$
- Polynomial kernel:  $K(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)^d$
- Gaussian kernel:  $K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} \mathbf{x}'||^2)$





#### No-linear SVM

• We can obtain no-linear classification boundaries by replacing the dot products of the dual formulation by a kernel function.

$$\max_{\alpha^{(1)}, \dots, \alpha^{(L)}} \quad \sum_{l=1}^{L} \alpha^{(l)} - \frac{1}{2} \sum_{l=1}^{L} \sum_{l'=1}^{L} y^{(l)} y^{(l')} \alpha^{(l)} \alpha^{(l')} K\left(\mathbf{x}^{(l)}, \mathbf{x}^{(l')}\right)$$

st. 
$$0 < \alpha^{(l)} < C \quad \forall l$$
  
$$\sum_{l=1}^{L} \alpha^{(l)} y_{(l)} = 0; \quad \forall l$$

- Now, the SVM weight cannot be explicitly computed.
- But, the SVM output can be obtained as:



$$f(\mathbf{x}^*) = \mathbf{w}^T \mathbf{x}^* + b = \sum_{l=1}^{L} y^{(l)} \alpha^{(l)} K\left(\mathbf{x}^{(l)}, \mathbf{x}^*\right) + b$$



## Linear Discriminant Analysis

- It is a **generative** classification model.
- It considers that the data follow a gaussian distribution with the same covariance matrix.
- Then, the optimum classifier is linear.
- It finds the direction of minimum overlap among the classes. We can project the data over this direction and classify them in this new space.
- Fisher discriminant generalizes it to any data set.









# Linear Discriminant Analysis

 Let's consider that the data follow a gaussian distribution with the same covariance matrix.

$$p(\mathbf{x}|y=-1) \sim G(\mathbf{m}_0, V)$$
  $p(\mathbf{x}|y=1) \sim G(\mathbf{m}_1, V)$ 

• Then, the optimum classifier is

$$\hat{y} = \operatorname{sign}\left(\mathbf{w}^T \mathbf{x}\right)$$

where 
$$\mathbf{w} = V^{-1} (\mathbf{m}_1 - \mathbf{m}_0)$$
.

- To decide, we project the input data over w, i.e., for each multidimensional input data, a unidimensional value is obtained and a threshold is applied.
- In multiclass problems there are as many linear discrimination functions as number of classes minus one.







## Logistic Regression

• Define the posterior probabilities (for the binary case) as:

$$P(Y = 1|\mathbf{x}) = \frac{\exp(\mathbf{w}^T \mathbf{x})}{1 + \exp(\mathbf{w}^T \mathbf{x})} = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

$$P(Y = 0|\mathbf{x}) = 1 - P(Y = 1|\mathbf{x}) = \frac{1}{1 + \exp(\mathbf{w}^T \mathbf{x})}$$

• In this way, the MAP classifier is linear:

$$\log \frac{P(Y=1|\mathbf{x})}{P(Y=0|\mathbf{x})} = \mathbf{w}^T \mathbf{x}$$

• Taking into account that the probability that Y is 1 is given by  $P(Y = 1|\mathbf{x}) = p(\mathbf{x})$  and  $1 - p(\mathbf{x})$  is the probability of being 0, the joint likelihood over all training data is:



$$L(\mathbf{w}) = \prod_{l=1}^{L} p(\mathbf{x}_l)^{y_l} (1 - p(\mathbf{x}_l))^{y_l}$$



## Logistic Regression

 Then, to learn the parameters of the model, we can maximize the log-likelihood for N observations:

$$l(\mathbf{w}) = \sum_{l=1}^{L} \{y_l \log (p(\mathbf{x}_l)) + (1 - y_l) \log (1 - p(\mathbf{x}_l))\}$$

$$l(\mathbf{w}) = \sum_{l=1}^{L} \left\{ y_l(\mathbf{w}^T \mathbf{x}) - \log \left( 1 + \exp(\mathbf{w}^T \mathbf{x}_l) \right) \right\}$$

- A Newton method is used to find the maximum of this loss function.
- Regularized Logistic Regression: we can minimize the equivalent loss function with a regularization term

$$\min_{\mathbf{w}} - \sum_{l=1}^{L} \left\{ y_l(\mathbf{w}^T \mathbf{x}) - \log \left( 1 + \exp(\mathbf{w}^T \mathbf{x}_l) \right) \right\} + C \|\mathbf{w}\|_2^2$$



## Decision trees: working principles







### Decision trees: working principles

Do we grant a mortgage?



## Training a decision tree

- Inputs:  $\left\{\mathbf{x}^{(l)}\right\}_{l=1}^{L} \in \Re^{M} \text{ and } \left\{y^{(l)}\right\}_{l=1}^{L} \in \{C_{1}, C_{2}, ... C_{J}\}.$
- for d = 1: DM # For each feature
  - for  $u_{d,l} \in \text{all values of } x_d \# \text{Exploring thresholds}$ 
    - Evaluate the index Gini :

$$g(u_{d,l}) = \sum_{j=1}^{J} P_j(u_{d,l}) (1 - P_j(u_{d,l}))$$

being  $P_j(u_{d,l})$  the fraction of items classified in the class  $C_j$  by the threshold  $u_{d,l}$ 

- Select threshold  $(u_{d,l})$  and feature  $(x_d)$  minimizing  $g(u_{d,l})$
- Split the data according to  $x_d$  and threshold  $u_{d,l}$
- Apply recursively

The minimization of Gini index aims at getting leaves "pure enough".





#### Random Forest

### Working principles

- Build many trees (forest) randomizing samples and features
- Key points:
  - Low correlation among trees
  - Strength of each tree

#### Test data classification

- Then, each test data  $(\mathbf{x}^*)$  is classified by all the tree
- The forest classification rule is given by:

$$C_j^* = \underset{j}{\operatorname{argmax}} \frac{1}{T} \sum_{t=1}^{T} P_t(C_j | \mathbf{x}^*)$$

where  $C_j|\mathbf{x}^*$  is the probability output of each tree.



## Training a Random Forest

- Inputs:  $\left\{\mathbf{x}^{(l)}\right\}_{l=1}^{L} \in \mathbb{R}^{M}$  and  $\left\{y^{(l)}\right\}_{l=1}^{L} \in \{C_1, C_2, ... C_J\}$ .
- For each tree  $(1, \ldots, T)$ :
  - Sample with replacement from the original data set (boostrap sampling) : L?(< L) data
  - Randomly select D'(< D) features
  - Train a tree optimizing the index Gini with the data matrix  $(L? \times D')$ .
  - Once the forest is trained, each leaf of the tree has the class probabilities:  $P_t(C_i|\mathbf{x})$





### Introduction to ensembles

#### Goal

- Combine a set of weak learners to build a strong one
- Exploit the diversity among the base learners

#### Kind of ensembles

- Bagging, boosting, mixture of experts...
- Random forests is set of bagged trees







# Bagging: Boostrap Aggregating

- Generate T data subsets by subsampling the training data with replacement.
- Train T models, one model for each training subset
- Classification: obtain T outputs and majority vote









# Boosting

#### Idea

Iteratively pay more attention to the misclassified data (-; emphasis function).



Emphasis function:

$$D_{t+1}(\mathbf{x}^{(l)}) = \frac{D_t(\mathbf{x}^{(l)}) \exp\left(-\alpha_t o_t(\mathbf{x}^{(l)}) y^{(l)}\right)}{Z_t}$$

- Output weights  $(\alpha_t)$  can be analytically computed
- Final output:

$$f(\mathbf{x}^*) = \sum_{t=1}^{T} \alpha_t o_t(\mathbf{x}^*)$$

