National University of Singapore Department of Electrical & Computer Engineering

EE3331C Feedback Control Systems Mid-Term Quiz

		. •	
ı	nstri	ictions	•

1.	There are	TWO	(2)	questions,	carrying	${\it a\ total}$	of	TWENTY	(20)	marks.	Answer	BOTH
	questions.											

- 2. A formula list is provided on Page 8.
- 3. Please show all working clearly.
- 4. Time allowed: 1 hour

Name :	Q1	
Matriculation Number :	Q2	
	Total	

1. A closed-loop control system and its root locus plot are shown in Figures 1 and Figure 2 respectively.

Figure 1: Feedback System

Figure 2: Root Locus Plot

- (a) The transfer function of the plant is $G(s) = \frac{s^2 + as + b}{s^3 + cs^2 + ds}$. Find a, b, c and d.
- (b) Find the value of K_0 in Figure 2.
- (c) What is the steady-state error (E(s) = R(s) Y(s)), when the reference signal, r(t) is a unit ramp function, t. You may assume that $K < K_0$, i.e. the closed-loop system is stable.

(10 Marks)

2. Figures 3 and 4 shows a series RLC circuit and its output voltage, $v_o(t)$.

Figure 3: Series RLC circuit

Figure 4: Output voltage of series RLC circuit

(a) Derive the differential equation relating the input voltage, $v_i(t)$, and output voltage, $v_o(t)$. Assuming zero initial conditions, show that

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{1}{LCs^2 + RCs + 1}$$

(b) Figure 4 shows the output voltage, $v_o(t)$, of the series RLC circuit in part (a) when $v_i(t)$ is a step voltage of 2V. Estimate L and C given that $R = 3\Omega$.

(10 Marks)

ſ	

SOME USEFUL LAPLACE TRANSFORM RULES

Transform of derivatives, $\mathcal{L}\left\{\frac{dy(t)}{dt}\right\}$	sY(s) - y(0)
Transform of integral, $\mathcal{L}\left\{\int_0^t y(\tau)d\tau\right\}$	$\frac{Y(s)}{s}$
Shift in time domain, $\mathcal{L}\{y(t-L)u(t-L)\}$	$Y(s)e^{-sL}$
Shift in s-domain, $\mathcal{L}\left\{y(t)e^{-at}\right\}$	Y(s+a)
Final Value Theorem	$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$

SOME USEFUL LAPLACE TRANSFORMS

Function, $f(t)$	Laplace Transform, $F(s)$	Function, $f(t)$	Laplace Transform, $F(s)$
delta function, $\delta(t)$	1	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
unit step function, $u(t)$	$\frac{1}{s}$	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
t	$\frac{1}{s^2}$	$1 - e^{-at}$	$\frac{a}{s(s+a)}$
ke^{-at}	$\frac{k}{s+a}$	$t - \frac{1}{a} \left(1 - e^{-at} \right)$	$\frac{a}{s^2(s+a)}$

SOME DESIGN FORMULAE FOR UNDERDAMPED 2^{nd} ORDER SYSTEM

Standard 2^{nd} order system : $\frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

Maximum overshoot, M_p	$M_p = Ke^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}$
Settling time (2%), t_s	$t_s = \frac{4}{\zeta \omega_n}$
Rise time, t_r	$t_r = \frac{1.8}{\omega_n}$
Peak time, t_p	$t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$

1. (a). zeros:
$$S = |\pm j^2|$$

 $(s-1+j^2)(s-1-j^2) = s^2-2s+5$
 $\Rightarrow a = -2, b = 5$
poles: $-s = 0, -4, -5$
 $\Rightarrow c = 9, d = 20$

(b)
$$k=K_0$$
,
 $\frac{1}{4}$ poles: $-1+GK=0$
 $\frac{1}{2}$ $\frac{$

(c).
$$e_{SS} = \int_{S \to 0}^{hm} s = \int_{S \to 0}^{L} \frac{R(s)}{1 + G(s)}$$

$$= \int_{S \to 0}^{hm} s = \int_{S \to 0}^{L} \frac{R(s)}{1 + \frac{K_1(s^2 - 2s + 5)}{s(s^2 + 9s + 20)}} \cdot \int_{S^2}^{2s} \frac{1}{s^2 s} \int_{S^2}^{L} \frac{K_1(s)}{s(s^2 + 9s + 20)} \cdot \int_{S^2}^{2s} \frac{1}{s^2 s} \int_{S^2}^{L} \frac{1}{s^2$$

Q2 (a).
$$|V_{o}(t)| + |L_{d}(t)| + |R_{o}(t)| = |V_{o}(t)| + |L_{d}(t)| + |R_{o}(t)| = |V_{o}(t)| + |L_{d}(t)| + |V_{o}(t)| = |V_{o}(t)| + |V_{o}(t)| = |V_{o}(t)| + |V_{o}(t$$

(b).
$$c.f.$$
 $s^{2}+2g H_{n}s+U_{n}$
 $\Rightarrow H_{n}=\frac{1}{LC}$, $2gH_{n}=\frac{R}{L}$, $R=3\Omega$
From the graph, $7gH_{n}=\frac{0.37}{2}$
 $\Rightarrow g=\frac{\left(\frac{L}{2}\left(\frac{0.27}{2}\right)\right)^{2}}{T_{n}^{2}+\left(\frac{L}{2}\left(\frac{0.37}{2}\right)\right)}=0.47$
 $2l_{0}f_{0}=\frac{4}{gH_{n}}=0.00267$ $\Rightarrow H_{n}=\frac{0.47}{(0.47)(0.0047)}=3187.5$
 $\Rightarrow gH_{n}=\frac{R}{2}\frac{0.00267}{4}=\frac{1}{LH_{n}^{2}}=100 \text{ pc}$