

Rules of the System

- The cars run on electricity and self-charge themselves.
- The amount of cars in the ecosystem is always surplus of the demand. (At a point some cars are always charging).
- The car is a passenger car (upto 4 people) not a cargo/autonomous bus etc. (The self charging flow in such cases will be different since the route is set).

Setting the Goal

The goal depends on

- The distance between the destination and the nearest charging station
- The distance of the pick up location from the
- The distance between pick up and drop locations.

current location of the car.

Main components of an electrical autonomous car

Regulates the car's

battery, and accelerator

pedal with the help of a

operation, motor,

microprocessor

distance to pick up and drop

locations as well as the current

Keeps a track of charging stations,

Electric cars run on a lithium-ion/lead-acid or a nickel metal hydride battery.

The amount of charge in the battery is measured in kWh.

THE ALGORITHM

CUSTOMER

a ride

destination.

Requests

Computes whether the goal is achievable at all times.

state of the battery,

ALGORITHM

the ride

source

Matches the

customer to

Communicates with all other cars in the network for ride allocation.

It is a motor which actually propels the car by transmitting mechanical power to the wheels.

ELECTRIC

ENGINE

ONBOARD CHARGER

It inputs current into the battery to charge it.

An Example of the System in Action

Lets assume a future scenario where external cars are not allowed into San Francisco. The city has its own fleet of autonomous passenger cars which can communicate with each other.

- If the current state of the car battery reaches a critical level, where it is just slightly over the capacity for the car to drive to the nearest charging-station from the current location of the car, the car stops accepting further rides and self-drives to the charging station.
- fully charged if it crosses a certain level of other available cars in the vicinity.

DESIRED STATE The Goal The goal feeds in to the

algorithm.

CAR

Completes

the ride

The ultimate aim of the system is to gain profit. A car will accept a ride even if it is not charge (lets assume 90%) and there are no

Response to Disturbances

ERROR STATE 1: Roadblock

In case of a roadblock, the car may have to take a detour which increases the distance and in turn affects the amount of charge left in the battery to complete the trip.

In such a scenario, the car may stop at a charging station before

completing the trip in order to meet the goal.

ERROR STATE 2: Inaccuracy in calculating the battery capacity

In case the algorithm is not able to calculate the battery capacity with precision, the car may die before it is able to reach a charging station. To account for such situations, the minimum current charge requirement is always set slightly higher than the actual requirement to reach the charging station.

