Formal Specification of the Plutus Core Language (rev. 9a)

I. PLUTUS CORE

Plutus Core is a typed, strict, eagerly-reduced λ -calculus design to run as a transaction validation scripting language on blockchain systems. It's designed to be simple and easy to reason about using mechanized proof assistants and automated theorem provers. The grammar of the language is given in Figures 1 and 2, using a modified s-expression format. As is standard in λ -calculi, we have variables, λ -abstractions, and application. In addition to this, there are also polymorphic and instantiation, data constructors, case expressions, declared names, computational primitives, primitive values, and built-in functions. Terms live within top-level declarations, which can also consist of data and type declarations as well as type signature declarations. Declarations themselves reside within modules, and a program is a collection of such modules.

In this grammar, we have multi-argument application, both in types ($[T\ T^+]$) and in terms ($[M\ M^+]$). This is to be understood as a convenient form of syntactic sugar for iterated binary application associated to the left, and the formal rules treat only the binary case.

As an example, consider the program in Figure 3, which defines the type of natural numbers as well as lists, and the factorial and map functions. This program is not the most readable, which is to be expected from a representation intended for machine interpretation rather than human interpretation, but it does make explicit precisely what the roles are of the various parts.

II. Type Correctness

We define for Plutus Core a number of typing judgments which explain ways that a program can be well-formed. First, in Figure 4, we define the grammar of the various kinds of contexts that these judgments hold under. Nominal contexts contain information about the various declared names that exist within the system — module names, exported types, exported terms, and then term names and their definitions, term constructors, type constructors, and type names and their definitions.

We refer to the components of a nominal context by dotted names $(\Theta.\bar{l}, \Theta.\kappa|\nu, \Theta.c|n,$ and $\Theta.n\bar{j})$. Variable contexts contain information about the nature of variables — type variables with their kind, and term variables with their type. The overall context Θ consists of nominal and variable contexts, along with the name of the current module being elaborated and the name of imported modules. As with nominal contexts, we also refer to these by dotted names $(\Theta.l, \Theta.\bar{l}, \Theta.\Delta, \text{ and } \Theta.\Gamma)$ In the inference rules, we use $\Theta, \alpha :: K$ to mean Θ with it's variable context Γ extended with $\alpha :: K$, and $\alpha :: K$ to mean $\alpha :: K$ to mean

Then, in Figure 5, we define what it means for a type construct to inhabit a kind. Plutus Core is a higher-kinded version of System-F with constructors and some primitive types, so we have a number of standard System-F rules together with some obvious extensions

Next, in Figure 6, we define the type checking judgment that explains when a type contains a term. This is defined together with Figure 7's type synthesis judgment, which explains how a term synthesizes a type. Together, these two judgments constitute a standard bidirectional type theory [1] [2].

A number of auxiliary judgments are defined in Figure 8. In particular, we define when a type contains a clause for that type's constructors, and how that then synthesizes a type. We also define what it means for a qualified name to be permitted for use. Finally, we define the various elaboration judgments in Figure 9, which explain how declarations, modules, and programs elaborate out to complete nominal contexts. Declarations for the types and definitions of terms are separated into two distinct forms, rather than a single construct. One reason for this is that it makes type checking mutual recursion relatively simple, because all the types of names can be put before use sites.

We note that the judgment for modules makes use of a meta-level operation $\lfloor ed \rfloor_l$. This is defined in 10, translating from exports to nominal contexts for those exports. We note also that various mentions of freshness are made. The details of this are also verbose, boring, and obvious, and thus similarly elided.

Finally, type synthesis for built-in operations $(n \text{ is } (\text{fun } \overline{T} \ T'))$ is given in tabular form rather than in inference rule form, in Figure 24, which also gives the reduction semantics. The types in the arguments column constitute \overline{T} , and the type in the return column constitutes T', in the judgment form. The same is done for synthesis of built-in computations (n is T).

III. REDUCTION AND EXECUTION

The execution of a program in Plutus Core does not in itself result in any reduction. Instead, the declarations are bound to their appropriate names in a declaration environment δ , which we will represent by a list of items of the form $n\mapsto M$. Then, designated names can be chosen to be reduced in this declaration environment generated. For instance, we might designate the name main to be the name who's definition we reduce, as is done in Haskell. Declaration environments are generated by restricting nominal environments to just the term definition judgments as shown in Figure 11.

To give the computation rules for Plutus Core, we must define what the return values are of the language, as given in

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Term	M	::=	x	variable
$(abs \ \alpha \ M) (inst \ M \ T) (inst \ M \ T) (inst \ M \ T) (inst \ M \ M) (inst \ M \ T) (inst \ M \ M) (inst \ M \ T) (inst instinction type instantiation type instantiation the property of the primitive integer of the primitive integer of the primitive bytestring integer of the property of the property of type declaration to the property of the primitive bytestring to the primitive bytes$				n	declared name
$(abs \ \alpha \ M) (inst \ M \ T) (inst \ M \ T) (inst \ M \ T) (inst \ M \ M) (inst \ M \ T) (inst \ M \ M) (inst \ M \ T) (inst instinction type instantiation type instantiation the property of the primitive integer of the primitive integer of the primitive bytestring integer of the property of the property of type declaration to the property of the primitive bytestring to the primitive bytes$				$(\mathtt{isa}\;M\;T)$	type annotation
$(inst \ MT) \qquad type instantiation \\ \lambda \ abstraction \\ \lambda \ abstraction \\ (con \ c \ M^*) \qquad constructed \ data \\ (case \ M \ C^*) \qquad case \\ (success \ M) \qquad (case \ M \ C^*) \qquad case \\ (success \ M) \qquad (computation \ bill time) \qquad failure \\ (compbuiltin \ n) \qquad (computation \ bill time) \qquad computation \ builtin \\ \lambda \ b \qquad (builtin \ n \ M^*) \qquad computation \ builtin \ computation \ builtin \ computation \ builtin \ n \ M^*)$				(abs $lpha$ M)	
$[MM^+] (\operatorname{con} c M^*) (\operatorname{constructed} \operatorname{data} (\operatorname{case} M C^*) (\operatorname{comptucted} \operatorname{data} (\operatorname{case} M C^*) (\operatorname{case} M C^*) (\operatorname{comptucted} \operatorname{data} (\operatorname{comptucted} M C^*) (\operatorname{comptucted} M$				$(\mathtt{inst}\ M\ T)$	type instantiation
$(con \ c\ M^*) \qquad constructed data \\ (case \ M\ C^*) \qquad case \\ (success \ M) \qquad success \\ (failure) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad case clause \\ (compar \ M\ built-in function \\ (compar \ M\ built-in functi$				$(\mathtt{lam}\;x\;M)$	λ abstraction
$(case \ M\ C^*) \qquad case \\ (success \ M) \qquad success \\ (failure) \qquad (computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad computation builtin \\ (bind \ M\ x\ M) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad case clause \\ (bind \ in \ m\ M) \qquad case clause \\ (bind \ in \ m\ M) \qquad case clause \\ (bind \ in \ m\ M) \qquad case clause \\ (bind \ in \ m\ M) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad case clause \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad import decls \\ (bind \ in \ m\ M^*) \qquad import decls \\ (con \ \kappa\ T^*) \qquad (con \ \kappa\ T^*) $				$[M M^+]$	function application
$(success M) \\ (failure) \\ (compbuiltin n) \\ (compbuiltin n) \\ (compton M x M) \\ (computation bind primitive integer primitive float primitive bytestring built-in function case clause Program G := (c \ (x^*) \ M) \\ (compon M x M) \\ (compton M x$				$(\mathtt{con}\ c\ M^*)$	constructed data
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				(case M C^st)	case
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				(success M)	success
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				(failure)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Clause C ::= $(c (x^*) M)$ case clause Program G ::= $(program L^*)$ program Module L ::= $(module \ lid \ ed \ D^*)$ module Imported ed ::= $(export \ l^*)$ import decls Exported ed ::= $(export \ lx^*) \ (nm^*)$) exported claration $ext{Module}$ $ext{Modu$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CI.	α		•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					<u>-</u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Deciaration	L	••		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					term defn.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Type	S, T	::=		type variable
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• 1			u	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$(\mathtt{fun}\ T\ T)$	function type
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				(con κ T^*)	type constructor
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
Kind K ::= (type) type kind (fun K K) arrow kind Type Export tx ::= nm type export (cn (cn) data export Data Declaration dd ::= (data cn (ks^*) alt^*) data decl. Type Declaration td ::= (type nm T) type decl. Kind Signature ta ta ::= (ta ta ta ta ta ta data decl. Alternative ta ta ta ta ta ta ta ta					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Vind	ν			
Type Export tx ::= nm type export $(cn \ (cn^*))$ data export Data Declaration dd ::= $(\text{data} \ cn \ (ks^*) \ alt^*)$ data decl. Type Declaration td ::= $(\text{type} \ nm \ T)$ type decl. Kind Signature ks ::= $(\alpha \ K)$ kind signature Alternative alt ::= $(cn \ T^*)$ alternative Term Declaration md ::= $(\text{declare} \ nm \ T)$ term decl.	Killü	n	::=		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Type Export	t_{x}			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Type Export	ιx			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Data Declaration	dd			-
Kind Signature $ks ::= (\alpha K)$ kind signature Alternative $alt ::= (cn T^*)$ alternative Term Declaration $md ::= (declare nm T)$ term decl.					
Alternative $alt ::= (cn \ T^*)$ alternative Term Declaration $md ::= (declare \ nm \ T)$ term decl.					
Term Declaration $md ::= (declare nm T)$ term decl.	_				
•					
· ·	Term Definition	df	::=	$(\texttt{define}\ nm\ M)$	name definition

Fig. 1. Grammar of Plutus Core

Figure 12. Rather than using values directly, we wrap them in a return value form, because reduction steps can fail. These then let us define a parameterized binary relation $M \to_{\delta}^* R$ which means M eagerly reduces to R using declarations δ , in Figure 18. This uses a standard contextual dynamics to separate the local reductions, reduction contexts, and repeated reductions into separate judgments. We also define a step-indexed dynamics $M \to_{\delta}^n R$, which means that M reduces to R using δ in at most n steps. Step-indexed reduction is useful in settings where we want to limit the number of computational

steps that can occur. These relations represent the transitive closure of the single-step reduction relation $M \to_{\delta} R$, which is itself the lifting of local (i.e. β) reduction $M \Rightarrow_{\delta} R$ to the non-local setting by digging through a reduction context.

One such setting for step-indexing is that of blockchain transactions, for which Plutus Core has been explicitly designed. In order to prevent transaction validation from looping indefinitely, or from simply taking an inordinate amount of time, which would be a serious security flaw in the blockchain systemn, we can use step indexing to put an upper bound on

n	::=	l.nm	qualified term name
ν	::=	l.nm	qualified type name
c	::=	l.cn	qualified term constructor
κ	::=	l.cn	qualified type constructor
nm	::=	$[a-z][a-zA-Z0-9_{'}]^{*}$	name
l	::=	$[A-Z][a-zA-Z0-9_']^*$	module name
cn	::=	[A-Z][a-zA-Z0-9_']*	constructor name
i	::=	[+-] [?] [0-9] ⁺	integer
			float
e	::=	[eE][+-] [?] [0-9] ⁺	exponent
b	::=	#([a-fA-F0-9][a-fA-F0-9])+	hex string
		#"char*"	ASCII string
x	::=	$[a-z][a-zA-Z0-9_{'}]^{*}$	variable
α	::=	[a-z][a-zA-Z0-9_']*	type variable
	$\begin{array}{c} \nu \\ c \\ \kappa \\ nm \\ l \\ cn \\ i \\ f \\ e \\ b \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{lll} l & ::= & [A-Z][a-zA-Z0-9_']^* \\ cn & ::= & [A-Z][a-zA-Z0-9_']^* \\ i & ::= & [+-]^?[0-9]^+ \\ f & ::= & [+-]^?[0-9]^+ (\setminus \cdot $

Fig. 2. Lexical Grammar of Plutus Core

the number of computational steps that a program can have. In this setting, we would pick some upper bound max and then perform reductions of terms M by computing which R is such that $M \to_{\delta}^{max} R$.

Because built-in reduction is implemented directly in terms of meta-language functionality, the specifications for them are subtly different than for other parts of this spec. In particular, we must explain what these meta-language implementations are that constitute the implicit spec. Primitive numeric integers are implemented as Haskell *Integers*, primitive floats as Float, and primitive bytestrings as ByteString. For numeric built-ins, the operations are interpreted as the corresponding Haskell operations. So for example, addInteger is interpreted as (+) :: $Integer \rightarrow Integer \rightarrow Integer$. The function names in the definitions are the same as the Haskell implementations where applicable. Some minor differences exist in some places, however. The cryptographic functions sha2_256 and sha3_256, in particular. They are implemented in terms of hashing into the SHA256 and SHA3256 digest types using the Crypto. Hash and Crypto. Sign. Ed25519 modules. More indirectly, the specification for these are the cryptographic standards for SHA2 256 and SHA3 256.

All of these operations are given in tabular form. The arguments column specifies what sorts of arguments are required for correct application of the given built in, which results in the production of an $(ok\ V)$ return value that wraps the value given in the result column. When the arguments are not of the specified form, the result of the built in application is err.

A final note on built-in reduction is that some built-ins return constructed data using qualified names in the *Prelude* module. This specification assumes that an implementation will have such a module defined, that it declares exported constructors names *True* and *False*, and that it will always incorporated it as part of any use of Plutus Core usage so that the results of these built-ins can be used by programs in case expressions.

Moving to execution, the computation constructions (success M), (failure), (compbuiltin n), and (bind M x M) constitute a first order representation of a reader monad with failure and a particular environment type. Reduction of such terms proceeds as any first order data does.

However, such data can also be *executed*, which involves performing actual reader operations as well as failing. We can make an analogy to Haskell's IO, where an IO value is just a value, but certain designated names with IO type, in additional to being reduced, are also executed by the run time system. We therefore also define a binary relation $M \rightsquigarrow_{E,\delta}^* R$ that specifies when a term M reduces to return value R in some reader environment E and declaration environment δ , as well as a step indexed variant $M \rightsquigarrow_{E,\delta}^n R$. The reader environment E consists of three values, a bytestring E_{txhash} which is the hash of the host transaction, an integer $E_{blocknum}$ for the block number of the host block, and an integer $E_{blocktime}$ for the block time of the host block.

Note that the success and failure terms are not effectful. That is to say, (failure) does not throw an exception of any sort. They are merely primitive values that represent computational success and failure. They are analogous to Haskell Maybe values, except that they cannot be inspected, and all computational control is done via the *bind* construct.

IV. BASIC VALIDATION PROGRAM STRUCTURE

The basic way that validation is done in Plutus Core is slightly different than in Bitcoin Script. Whereas in Bitcoin Script, a validation is successful if the validating script successfully executes and leads true on the top of the stack, in Plutus Core, we have special data constructs for validation. In particular, the (success V) and (failure). Any program which validates a transaction must declare a function Validator.validator, while the corresponding program supplied by the redeemer must declare Redeemer.redeemer. The declarations of both are combined into a single set of declarations, and these two declared terms are then composed with a bind. The overall validation, therefore, involves reducing the term

(bind Redeemer.redeemer x [Validator.validator x])

. If this executes to produce (ok V) for some V, then the transaction is valid, analogous to Bitcoin Script successfully executing and leaving true on the top of stack. On the other hand, if it reduces to err, then the transaction is invalid, analogous to Bitcoin Script either leaving false on the top of stack, or failing to execute. The value returned in the success

```
(program
 (module Ex
   (import Prelude)
   (export ((Nat (Zero Suc)) (List (Nil Cons))) (fibonacci map))
   (data Nat () (Zero) (Suc (con Prelude.Nat)))
   (data List ((a (type))) (Nil) (Cons a (con Prelude.List a)))
   (declare fibonacci (fun (con Prelude.Nat) (con Prelude.Nat)))
   (define fibonacci
     (lam n
       (case (builtin equalsInteger n 0)
         (Prelude.True () 1)
         (Prelude.False ()
           (builtin multiplyInteger
             [Ex.fibonacci
                (builtin subtractInteger n 1) ])))))
   (declare map
     (forall a (type) (forall b (type)
       (fun (fun a b) (fun (con Prelude.List a) (con Prelude.List b))))))
   (define map
     (abs a (abs b
       (lam f
         (lam xs
            (case xs
              (Ex.Nil () (con Ex.Nil))
              (Ex.Cons (x xs')
                (con Ex.Cons
                 [f x]
                 [(inst (inst Ex.map a) b) f xs']))))))))))
```

Fig. 3. Example with Fibonacci and Map

case is irrelevant to validation but may be used for other purposes.

REFERENCES

- [1] Pfenning, F. Lecture Notes on Bidirectional Type Checking. 2004. https://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf
- [2] Christiansen, D. R. *Bidirectional Typing Rules: A Tutorial*. http://www.davidchristiansen.dk/tutorials/bidirectional.pdf

Fig. 4. Contexts

$\Theta \vdash T :: K$

In context Θ , type T has kind K

$$\frac{\Theta.\Gamma\ni\alpha::K}{\Theta\vdash\nu::K}$$

$$\frac{\Theta\vdash\nu::K}{\Theta\vdash\nu::K}$$

$$\Theta\vdash T:: (\mathsf{type}) \qquad \Theta\vdash T':: (\mathsf{type})$$

$$\Theta\vdash (\mathsf{fun}\;T\;T')\;:: (\mathsf{type})$$

$$\Theta\vdash\kappa:: (\mathsf{fun}\;\overline{K}\;(\mathsf{type}))$$

$$\frac{|\overline{K}|=|\overline{T}|}{\Theta\vdash(\mathsf{con}\;\kappa\;\overline{T})}\;:: (\mathsf{type})$$

$$\frac{\Theta\vdash T:: (\mathsf{type})}{\Theta\vdash(\mathsf{comp}\;T)} :: (\mathsf{type})$$

$$\frac{\Theta\vdash T:: (\mathsf{type})}{\Theta\vdash(\mathsf{forall}\;\alpha\;K\;T)} :: (\mathsf{type})$$

$$\frac{\Theta\vdash (\mathsf{integer}):: (\mathsf{type})}{\Theta\vdash(\mathsf{float}):: (\mathsf{type})}$$

$$\frac{\Theta\vdash (\mathsf{float}):: (\mathsf{type})}{\Theta\vdash(\mathsf{float})} :: (\mathsf{type})$$

$$\frac{\Theta\vdash (\mathsf{bytestring}):: (\mathsf{type})}{\Theta\vdash(\mathsf{lam}\;\alpha\;K\;T):: (\mathsf{fun}\;K\;K')}$$

$$\frac{\Theta\vdash T:: (\mathsf{fun}\;K\;K')}{\Theta\vdash T:: (\mathsf{fun}\;K\;K')} \qquad \Theta\vdash T':: K}$$

Fig. 5. Type Well-formedness

Fig. 6. Type Checking

$\Theta \vdash M \in T$

In context Θ , term M synthesizes type T

$$\frac{\Theta.\Gamma\ni x:T}{\Theta\vdash x\in T}$$

$$\frac{\Theta\vdash n:T}{\Theta\vdash n\in T}$$

$$\frac{\Theta\vdash T\ni M}{\Theta\vdash (\mathrm{isa}\ M\ T)\in T}$$

$$\Theta\vdash M\in (\mathrm{forall}\ \alpha\ K\ T)$$

$$\Theta\vdash M\in (\mathrm{fun}\ T\ T')\in [T'/\alpha]T$$

$$\Theta\vdash M\in (\mathrm{fun}\ T\ T')$$

$$\frac{\Theta\vdash T\ni M}{\Theta\vdash [M\ N]\in T'}$$

$$n\ \mathrm{is}\ T$$

$$\Theta\vdash (\mathrm{compbuiltin}\ n)\in (\mathrm{comp}\ T)$$

$$\Theta\vdash M\in (\mathrm{comp}\ T)$$

$$\Theta\vdash x:T\vdash M'\in (\mathrm{comp}\ T')$$

$$\Theta\vdash (\mathrm{bind}\ M\ x\ M')\in (\mathrm{comp}\ T')$$

$$\overline{\Theta\vdash i\in (\mathrm{integer})}$$

$$\overline{\Theta\vdash f\in (\mathrm{float})}$$

$$\overline{\Theta\vdash b\in (\mathrm{bytestring})}$$

$$n\ \mathrm{is}\ (\mathrm{fun}\ \overline{T'}\ T)$$

$$|\overline{T'}|=|\overline{M}|$$

$$\forall i(\Theta\vdash T'_i\ni M_i)$$

$$\overline{\Theta\vdash (\mathrm{builtin}\ n\ \overline{M})\in T}$$

Fig. 7. Type Synthesis

$$\Theta; S \vdash T \ni C$$

In context Θ under type S, clause C has type T

$$\begin{split} \Theta \vdash c : & (\text{forall } \overline{\alpha} \ \overline{K} \ (\text{fun } \overline{T'} \ [\kappa \ \overline{\alpha}])) \\ & |\overline{x}| = |\overline{T'}| \\ & \underline{\Theta, \overline{x} : [\overline{T}/\overline{\alpha}]\overline{T'} \vdash T'' \ni M} \\ & \underline{\Theta; \ (\text{con } \kappa \ \overline{T}) \ \vdash T'' \ni (c \ (\overline{x}) \ M)} \end{split}$$

$$\Theta \vdash \nu :: K$$

In context Θ , qualified type name ν has kind K

$$\begin{array}{c|c} \Theta.l = l & \Theta.\Delta.\overline{nj} \ni l.nm = T :: K \\ \hline \Theta \vdash l.nm :: K \\ \\ \Theta.\overline{l} \ni l & \Theta.\Delta.\overline{\kappa|\nu} \ni l.nm \\ \hline \Theta.\Delta.\overline{nj} \ni l.nm = T :: K \\ \hline \Theta \vdash l.nm :: K \\ \end{array}$$

$$\Theta \vdash \kappa :: (\mathtt{fun} \ \overline{K} \ (\mathtt{type}))$$

In context $\Theta,$ qualified type constructor name κ has kind (fun \overline{K} (type))

$$\Theta \vdash n : T$$

Context Θ permits the use of qualified name n at type T

$$\begin{array}{c|c} \Theta.l = l & \Theta.\Delta.\overline{nj} \ni l.nm:T \\ \hline \Theta \vdash l.nm:T \\ \\ \Theta.\overline{l} \ni l & \Theta.\Delta.\overline{c|n} \ni l.nm \\ \hline \underline{\Theta.\Delta.\overline{nj}} \ni l.nm:T \\ \hline \Theta \vdash l.nm:T \\ \hline \\ \Theta \vdash c: \text{ (forall } \overline{\alpha} \ \overline{K} \ \text{ (fun } \overline{T} \ [\kappa \ \overline{\alpha}]\text{))} \\ \end{array}$$

Context Θ permits the use of qualified constructor name c with type parameters $\overline{\alpha}$ of kinds \overline{K} , argument types \overline{T} , and return type constructor κ

Fig. 8. Auxiliary Judgments

 $G\dashv \Delta$

Program G elaborates to nominal context Δ

$$\begin{array}{c} \epsilon \vdash L_0 \dashv \Delta_0 \\ \Delta_0 \vdash L_1 \dashv \Delta_1 \\ \Delta_0, \Delta_1 \vdash L_2 \dashv \Delta_2 \\ \vdots \\ \underline{\Delta_0, \dots, \Delta_{n-1} \vdash L_n \dashv \Delta_n} \\ \hline (\texttt{program} \ \overline{L}) \dashv \Delta_0, \dots, \Delta_n \end{array}$$

 $\Delta \vdash L \dashv \Delta'$

In nominal context Δ , module L elaborates to Δ'

$$\begin{split} \Delta_{\overline{l}} \not\ni l \\ \forall i(\Delta_{\overline{l}} \ni l_i) \\ l; \overline{l}; \Delta \vdash D_0 \dashv \Delta'_0 \\ l; \overline{l}; \Delta, \Delta'_0 \vdash D_1 \dashv \Delta'_1 \\ l; \overline{l}; \Delta, \Delta'_0, \Delta'_1 \vdash D_2 \dashv \Delta'_2 \\ & \vdots \\ l; \overline{l}; \Delta, \Delta'_0, \dots, \Delta'_{n-1} \vdash D_n \dashv \Delta'_n \\ \hline \Delta \vdash (\mathsf{module}\ l\ (\mathsf{import}\ \overline{l})\ ed\ \overline{D}) \dashv \Delta, \Delta'_0, \dots, \Delta'_n, \lfloor ed \rfloor_l \\ \hline l; \overline{l}; \Delta \vdash D \dashv \Delta' \end{split}$$

Declaration D in module l, with imported modules \bar{l} , elaborates nominal context Δ to nominal context Δ'

 $l; \overline{l}; \Delta \vdash alt \text{ alt } cn \text{ on } \overline{ks} \dashv \Delta'$

Constructor alternative alt for type constructor cn with kind signatures $\overline{k}s$ in module l importing \overline{l} elaborates nominal context Δ to nominal context Δ'

$$(comp\ H)$$
 computation
$$\Delta \not\ni l.cn \quad \forall i(l; \overline{l}; \Delta; \overline{\alpha} :: \overline{K} \vdash T_i :: (type)) \quad (fun\ H\ T) \quad left\ approx{eight}$$
 left approximation
$$(fun\ H\ T) \quad (fun\ U\ H) \quad right\ approximation
$$(fun\ U\ H) \quad right\ approximation \\ (fun\ U\ H) \quad (fun\ U\ H)$$$$$$$$$$$$$$$$$$

Fig. 9. Elaboration Judgments

Fig. 10. Translating Exports to Nominal Context

Fig. 11. Declaration Environment Generation

Fig. 12. Return Values of Plutus Core

Fig. 13. Grammar of Type Reduction Contexts

Fig. 14. Type Context Insertion

$$T \to_{ty}^* U$$

Type T reduces to type value U in some number of steps

$$T \rightarrow_{ty} T'$$

Type T reduces in one step to type T'

$$\frac{T \Rightarrow_{ty} T'}{H\{T\} \rightarrow_{ty} H\{T'\}}$$

$$T \Rightarrow_{ty} T'$$

Type T locally reduces to type T'

[(lam
$$\alpha$$
 K T) T'] \Rightarrow_{ty} $[T'/\alpha]T$

Fig. 15. Type Reduction via Contextual Dynamics

Fig. 16. Grammar of Reduction Contexts

Fig. 17. Context Insertion

$$M \to_{\delta}^* V$$

Term M reduces in some number of steps to value V in declaration environment δ

$$M \to_{\delta} M'$$

Term M reduces in one step to term M' in declaration environment δ

$$\frac{M \Rightarrow_{\delta} M'}{E\{M\} \rightarrow_{\delta} E\{M'\}}$$

Fig. 18. Reduction via Contextual Dynamics

$$M \Rightarrow_{\delta} M'$$

Term M locally reduces to term M' in declaration context δ

$$\begin{array}{c|c} \hline n \Rightarrow_{\delta,n\mapsto V} V \\ \hline \hline (\operatorname{isa} M\ T) \Rightarrow_{\delta} M \\ \hline \\ (\operatorname{inst} \ (\operatorname{abs} \alpha\ M)\ T) \Rightarrow_{\delta} [T/\alpha]M \\ \hline \\ [(\operatorname{lam} x\ M)\ V] \Rightarrow_{\delta} [V/x]M \\ \hline \\ c, \vec{V} \sim \vec{C} \rhd M \\ \hline \\ (\operatorname{case} \ (\operatorname{con} c\ \vec{V})\ \vec{C}) \Rightarrow_{\delta} M \\ \hline \\ \underline{n\ \text{on}\ \vec{V}\ \text{reduces to}\ V} \\ (\operatorname{builtin} n\ \vec{V}) \Rightarrow_{\delta} V \end{array}$$

Fig. 19. Local Reduction

$$c, \vec{V} \ \sim \ \vec{C} \ \triangleright \ M$$

Constructor c with arguments \vec{V} matches clauses \vec{C} to produce result M

$$\frac{c = c'}{c, \vec{V} \sim (c' (\vec{x}) M), \vec{C} \triangleright [\vec{V}/\vec{x}]M}$$

$$\frac{c \neq c' \quad c, \vec{V} \sim \vec{C} \triangleright M}{c, \vec{V} \sim (c' (\vec{x}) M'), \vec{C} \triangleright M}$$

Fig. 20. Case Matching

$$I \ \leadsto_{E,\delta}^* \ V$$

Instruction I executes in some number of steps to return value R in declaration environment δ and blockchain environment E

$$\begin{array}{c} I \rightarrow_{\delta}^* \ (\texttt{success}\ V) \\ \hline I \rightsquigarrow_{E,\delta}^* \ (\texttt{ok}\ V) \\ \hline I \rightsquigarrow_{E,\delta}^* \ (\texttt{ok}\ V) \\ \hline I \rightarrow_{\delta}^* \ (\texttt{failure}) \\ \hline I \sim_{E,\delta}^* \ \texttt{err} \\ \hline I \rightarrow_{\delta}^* \ (\texttt{compbuiltin}\ n) \\ \hline I \sim_{E,\delta}^* \ (\texttt{ok}\ E_n) \\ \hline I \rightarrow_{\delta}^* \ (\texttt{bind}\ V\ x\ M) \\ V \sim_{E,\delta}^* \ (\texttt{ok}\ V') \\ \hline [V'/x]M \sim_{E,\delta}^* R \\ \hline I \sim_{E,\delta}^* R \\ \hline I \rightarrow_{\delta}^* \ (\texttt{bind}\ V\ x\ M) \\ \hline V \sim_{E,\delta}^* \ \texttt{err} \\ \hline I \sim_{E,\delta}^* \ \texttt{err} \\ \hline I \sim_{E,\delta}^* \ \texttt{err} \\ \hline I \sim_{E,\delta}^* \ \texttt{err} \\ \hline \end{array}$$

Fig. 21. Execution

Fig. 22. Grammar of CK Machine States

```
s \rhd n \; \mapsto_{\delta, n \mapsto M} \; s \rhd M
s \triangleright (\mathtt{isa}\ M\ T) \mapsto_{\delta} s, (\mathtt{isa}\ T) \triangleright M
s \triangleright (\mathsf{abs} \ \alpha \ M) \ \mapsto_{\delta} \ s \triangleleft (\mathsf{abs} \ \alpha \ M)
s \triangleright (\texttt{inst } M \ T) \mapsto_{\delta} s, (\texttt{inst } \_T) \triangleright M
s \triangleright (\operatorname{lam} x M) \mapsto_{\delta} s \triangleleft (\operatorname{lam} x M)
s \triangleright [M \ M'] \mapsto_{\delta} s, [\_M'] \triangleright M
s \triangleright (\operatorname{con} c \epsilon) \mapsto_{\delta} s \triangleleft (\operatorname{con} c \epsilon)
s \triangleright (\operatorname{con} c \ M\overline{M}) \mapsto_{\delta} s, (\operatorname{con} c \ \epsilon \ \overline{M}) \triangleright M
s \triangleright (\mathtt{case}\ M\ \overline{C}) \mapsto_{\delta} s, (\mathtt{case}\ \overline{C}) \triangleright M
s \triangleright (\mathtt{success}\ M) \mapsto_{\delta} s, (\mathtt{success}\ ) \triangleright M
s \triangleright (failure) \mapsto_{\delta} s \triangleleft (failure)
s \triangleright (\text{compbuiltin } n) \mapsto_{\delta} s \triangleleft (\text{compbuiltin } n)
s \triangleright (\text{bind } M \ x \ M') \mapsto_{\delta} s, (\text{bind } \_x \ M') \triangleright M
s \triangleright (\text{builtin } n \ \epsilon) \mapsto_{\delta} s \triangleleft (\text{builtin } c \ \epsilon)
s \triangleright (\text{builtin } n \ M\overline{M}) \mapsto_{\delta} s, (\text{builtin } c \in \overline{M}) \triangleright M
s, (isa _T) \triangleleft V \mapsto_{\delta} s \triangleleft V
s, (inst T) \triangleleft (abs \alpha M) \mapsto_{\delta} s \triangleright [T/\alpha]M
s, [\_M'] \triangleleft V \mapsto_{\delta} s, [V\_] \triangleright M'
s, [ (lam x M) _] \triangleleft V \mapsto_{\delta} s \triangleright [V/x]M
s, (con c \overline{V} - \epsilon) \triangleleft V \mapsto_{\delta} s \triangleleft (\text{con } c \overline{V}V)
s, (con c\ \overline{V}\ \underline{M}M) \triangleleft V\ \mapsto_{\delta}\ s, (con c\ \overline{V}V\ \underline{M}) \triangleright M
s, (\mathtt{case} \ \underline{\overline{C}}) \triangleleft (\mathtt{con} \ c \ \overline{V}) \mapsto_{\delta} \dots
s, (success \_) \triangleleft V \mapsto_{\delta} s \triangleleft (success V)
s, (bind \_x M) \triangleleft ... \mapsto_{\delta} ...
```

s, (builtin $c \overline{V} M\overline{M}$) $\triangleleft V \mapsto_{\delta} s$, (builtin $c \overline{V}V \overline{M}$) $\triangleright M$

Fig. 23. CK Machine

s, (builtin $c \ \overline{V} \ \underline{\hspace{1cm}} \epsilon$) $\triangleleft V \mapsto_{\delta} s \triangleleft ...$

 $\sigma \mapsto_{\delta} \sigma'$

Builtin Name	Arguments	Result
addInt subtractInt multiplyInt divideInt remainderInt lessThanInt lessThanEqualsInt greaterThanInt greaterThanEqualsInt equalsInt intToFloat	$i_0: ({\tt integer}), i_1: ({\tt integer})$	$\begin{aligned} &i_0+i_1: (\text{integer}) \\ &i_0-i_1: (\text{integer}) \\ &i_0>i_1: (\text{integer}) \\ ÷ \ i_0 \ i_1: (\text{integer}) \\ &mod \ i_0 \ i_1: (\text{integer}) \\ &mod \ i_0 \ i_1: (\text{integer}) \\ &i_0< i_1: (\text{con Prelude.Boolean}) \\ &i_0<=i_1: (\text{con Prelude.Boolean}) \\ &i_0>i_1: (\text{con Prelude.Boolean}) \\ &i_0>=i_1: (\text{con Prelude.Boolean}) \\ &i_0==i_1: (\text{con Prelude.Boolean}) \\ &i_0==i_1: (\text{con Prelude.Boolean}) \\ &i_0=i_1: ($
intToByteString	i: (integer)	intToByteString i: (bytestring)
addFloat subtractFloat multiplyFloat divideFloat lessThanFloat lessThanEqualsFloat greaterThanFloat greaterThanEqualsFloat equalsFloat ceil floor round	$f_0: ({ t float}), f_1: ({ t float})$ $f: ({ t float})$ $f: ({ t float})$ $f: ({ t float})$	$f_0+f_1: (\texttt{float})$ $f_0-f_1: (\texttt{float})$ $f_0\times f_1: (\texttt{float})$ $f_0/f_1: (\texttt{float})$ $f_0< f_1: (\texttt{con Prelude.Boolean})$ $f_0<=f_1: (\texttt{con Prelude.Boolean})$ $f_0>f_1: (\texttt{con Prelude.Boolean})$ $f_0>=f_1: (\texttt{con Prelude.Boolean})$ $f_0==f_1: (\texttt{con Prelude.Boolean})$ $ceil\ f: (\texttt{integer})$ $floor\ f: (\texttt{integer})$ $round\ f: (\texttt{integer})$
concatenate take	b_0 : (bytestring), b_1 : (bytestring) i : (integer), b : (bytestring)	$concat [b_0, b_1]$: (bytestring) $take (from Integral \ i) \ b$: (bytestring)
drop sha2 256	<pre>i: (integer), b: (bytestring) b: (bytestring)</pre>	$drop (fromIntegral \ i) \ b: (bytestring) \\ sha2_256 \ b: (bytestring)$
sha3 256	b: (bytestring)	$sha2_256 b$: (bytestring)
equalsByteString	b_0 : (bytestring), b_1 : (bytestring)	$b_0 == b_1$: (con Prelude.Boolean)

Fig. 24. Builtin Types and Reductions

Comp Builtin Name	Result
txhash	(bytestring)
blocknum	(integer)
blocktime	(con Prelude.DateTime)

Fig. 25. Comp Builtin Types