

Wykrywanie oszustw na kartach płatniczych z wykorzystaniem metod wrażliwych na koszt

Promotor: dr inż. Andrzej Giniewicz

Wydział Matematyki Politechniki Wrocławskiej

Patryk Wielopolski

Problem detekcji oszustw

Możliwości popełnienia przestępstwa:

- przekazanie numeru karty nieznajomemu,
- 🕨 utrata lub kradzież karty,
- skopiowanie danych karty,
- kradzież przesyłki z kartą.

Miary skuteczności modeli

	Stan sprzyjający	Stan niesprzyjający
	$y_i = 1$	$y_i = 0$
Predykcja pozytywna $c_i = 1$	TP	FP
Predykcja negatywna $c_i = 0$	FN	TN

Macierz pomyłek.

$$\begin{split} \mathsf{Precyzja} &= \frac{\mathit{TP}}{\mathit{TP} + \mathit{FP}} \\ \mathsf{Czułość} &= \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}} \\ F_1 &= \left(\frac{2}{\mathsf{Precyzja}^{-1} + \mathsf{Czułość}^{-1}}\right) \end{split}$$

Miary skuteczności modeli wrażliwych na koszt

	Stan pozytywny	Stan negatywny
	$y_i = 1$	$y_i = 0$
Predykcja pozytywna	$C_{1,1}^{(i)}$	$C^{(i)}$
$c_i = 1$	$C_{1,1}$	C _{1,0}
Predykcja negatywna	c(i)	C(i)
$c_i = 0$	$C_{0,1}$	C _{0,0}

Macierz kosztu dla i-tej obserwacji.

Miary skuteczności modeli wrażliwych na koszt

Koszt całkowity
$$(\boldsymbol{y}, \boldsymbol{c}, \boldsymbol{C}) = \mathsf{TC}(\boldsymbol{y}, \boldsymbol{c}, \boldsymbol{C}) = \sum_{i=1}^{N} C_{c_i, y_i}^{(i)}$$

$$\mathsf{Oszczędności}(\textbf{\textit{y}}, \textbf{\textit{c}}, \textbf{\textit{C}}) = \frac{\mathsf{Koszt\ bazowy}(\textbf{\textit{y}}, \textbf{\textit{C}}) - \mathsf{TC}(\textbf{\textit{y}}, \textbf{\textit{c}}, \textbf{\textit{C}})}{\mathsf{Koszt\ bazowy}(\textbf{\textit{y}}, \textbf{\textit{C}})}$$

- **y** = $(y_1, y_2, ..., y_N)$ wektor prawdziwych stanów klasyfikacji,
- $\mathbf{c} = (c_1, c_2, \dots, c_N)$ wektor przewidywanych klas,
- $\boldsymbol{c} = (C_1, C_2, \dots, C_N)$ wektor macierzy kosztu,

Modele predykcyjne

- Standardowe modele predykcyjne:
 - Regresja logistyczna
 - Drzewo decyzyjne
 - Las losowy
 - XGBoost
- Klasyfikacja wrażliwa na koszt:
 - Minimalizacja ryzyka bayesowskiego
 - Optymalizacja progu
- Trening wrażliwy na koszt:
 - Regresja logistyczna wrażliwa na koszt
 - Drzewo decyzyjne wrażliwe na koszt

Zbiór danych

Wykorzystano zbiór danych Credit Card Fraud Detection.

- Zawiera transakcje zawarte europejskimi kartami kredytowymi w ciągu dwóch dni we wrześniu 2013 roku.
- Składa się z 284,807 transakcji, w tym z 492 oszustw.
- Obserwacje są opisane 30 atrybutami, w tym 28 z nich to zanonimizowane zmienne numeryczne, które były wcześniej poddane transformacji PCA (ang. Principal Component Analysis).

Metodologia eksperymentu

- 50 powtórzeń symulacji Monte Carlo
- Podział zbioru danych:
 - 50% zbiór treningowy
 - 17% zbiór walidacyjny
 - 33% zbiór testowy
- Wykorzystane modele:
 - Modele standardowe: regresja logistyczna, drzewo decyzyjne, las losowy, XGBoost
 - Model wrażliwy na koszt: drzewo decyzyjne wrażliwe na koszt
 - Optymalizacja progu oraz minimalizacja ryzyka bayesowskiego nałożona na modele standardowe

Wyniki dla oszczędności

Źródło: Opracowanie własne

Wyniki dla F1 Score

Źródło: Opracowanie własne

Wnioski

Wnioski

