Technische Universität München

Ferienkurs Lineare Algebra 1

Mengenlehre, Aussagen, Relationen und Funktionen

Aufgaben mit Musterlösung

21. März 2011

Tanja Geib

Aufgabe 1

Geben Sie zu $B = \{0, 2, 4\}$ und $C = \{0, 2\}$ explizit die folgende Menge an:

$$E = (B \times C) \cap (C \times B)$$

Lösung:

$$E = \{(0,0), (0,2), (2,0), (2,2)\}$$

Aufgabe 2

Bestimmen Sie jeweils das Komplement:

(a)
$$A = \{x = (x_1, x_2) : x_1 > x_2\} \ bzgl \ \mathbb{R}^2$$

(b)
$$B = \{..., -6, -3, 0, 3, 6, ...\}$$
 bzgl \mathbb{Z}

Lösung:

(a)
$$\overline{A} = \{x = (x_1, x_2) : x_1 \le x_2\}$$

(b)
$$\overline{B} = \{..., -5, -4, -2, -1, 1, 2, 4, 5, ...\}$$

Aufgabe 3

Seien M und N in der Grundmenge X. Zeigen Sie:

$$(M \subseteq N) \Leftrightarrow (\mathcal{C}N \subseteq \mathcal{C}M)$$

Lösung:

$$(M \subseteq N) \Leftrightarrow (x \in M \Rightarrow x \in N) \Leftrightarrow (x \notin N \Rightarrow x \notin M) \Leftrightarrow (X \setminus N \subseteq X \setminus M)$$

Aufgabe 4

A, B und C seinen Teilmengen einer Grundmenge G. Die folgenden Aussagen sind entweder wahr oder falsch. Geben Sie einen Beweis an für die wahren bzw ein Gegenbeispiel für die falschen Aussagen.

- (a) Wenn $B = \emptyset$ ist, dann ist $A \backslash B = A$.
- (b) Wenn $A \setminus B = A$, dann ist $B = \emptyset$.
- (c) $A \setminus B$ und $B \setminus C$ sind immer disjunkt, dh $(A \setminus B) \cap (B \setminus C) = \emptyset$.

Lösung:

- (a) Das ist wahr. $(A \setminus B) \subset A$ ist offensichtlich. Und $A \subset (A \setminus B)$ gilt da: für jedes beliebige $a \in A$ gilt, dass $a \in A \setminus B$, da ja $a \in A$, aber $a \notin B$.
- (b) Falsch. Siehe $A = \{1, 2\}$ und $B = \{3\}$.
- (c) Wahr, da $B \setminus C \subset B$.

Aufgabe 5

Zeigen Sie bezüglich einer beliebigen Grundmenge M:

$$((A \cup B)^{\mathcal{C}} \cap C)^{\mathcal{C}} \cup (D \cap A) = A \cup B \cup C^{\mathcal{C}}$$

Lösung:

$$((A \cup B)^{\mathcal{C}} \cap C)^{\mathcal{C}} \cup (D \cap A) = ((A^{\mathcal{C}} \cap B^{\mathcal{C}}) \cap C)^{\mathcal{C}} \cup (D \cap A) = ((A^{\mathcal{C}} \cap B^{\mathcal{C}})^{\mathcal{C}} \cup C^{\mathcal{C}}) \cup (D \cap A) = ((A \cup B) \cup C^{\mathcal{C}}) \cup (D \cap A) = [((A \cup B) \cup C^{\mathcal{C}}) \cup D] \cap [((A \cup B) \cup C^{\mathcal{C}}) \cup A] = (A \cup B \cup C^{\mathcal{C}} \cup D) \cap (A \cup B \cup C^{\mathcal{C}}) = A \cup B \cup C^{\mathcal{C}}$$

Aufgabe 6

Seien $f:X\to Y$ eine Funktion und $A,\ B\subseteq X$ und $U,\ V\subseteq Y.$ Beweisen Sie folgende Rechenregeln zu Bild- und Urbildmengen:

- (a) $f(A \cap B) \subseteq f(A) \cap f(B)$;
- (b) $f(A \cup B) = f(A) \cup f(B)$;
- (c) $f^{-1}(U) \subseteq f^{-1}(V)$ für $U \subseteq V$;
- $(d)\ f^{-1}(U\cap V)=f^{-1}(U)\cap f^{-1}(V).$

Lösung:

- (a) Sei $y \in f(A \cap B)$ beliebig. $\Rightarrow \exists x \in A \cap B : f(x) = y \Rightarrow \exists x \in X : x \in A \wedge x \in B \wedge f(x) = y \Rightarrow y \in f(A) \wedge y \in f(B) \Rightarrow y \in f(A) \cap f(B)$, also $f(A \cap B) \subseteq f(A) \cap f(B)$
- (b) Sei $y \in f(A \cup B)$ beliebig. $\Leftrightarrow \exists x \in (A \cup B) : f(x) = y \Leftrightarrow x \in X : (x \in A \lor x \in B) \land f(x) = y \Leftrightarrow (\exists x \in A : f(x) = y) \land (\exists x \in B : f(x) = y) \Leftrightarrow (y \in f(A)) \land (y \in f(B)) \Leftrightarrow y \in f(A) \cup f(B)$, also ist $y \in f(A \cup B) \Leftrightarrow y \in f(A) \cup f(B)$.
- (c) Sei $x \in f^{-1}(U)$ beliebig. $\Rightarrow f(x) \in U \Rightarrow f(x) \in V$, da $U \subseteq V \Rightarrow x \in f^{-1}(V)$, also $f^{-1}(U) \subseteq f^{-1}(V)$.
- $(d) \ x \in f^{-1}(U \cap V) \Leftrightarrow (x \in X) \land (f(x) \in (U \cap V) \Leftrightarrow (x \in X) \land (f(x) \in U) \land (f(x) \in V)$ $\Leftrightarrow (x \in f^{-1}(U)) \land (x \in f^{-1}(V)) \Leftrightarrow x \in (f^{-1}(U) \cap f^{-1}(V)), \text{ also } f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V).$

Aufgabe 7

Es sei $a_1 = 3$, $a_{n+1} = 4 - \frac{1}{a_n}$. Zeigen Sie durch Induktion, dass $a_n \in [3, 4]$.

Lösung:

Die Behauptung lautet: $3 \le a_n \le 4$.

- (IA): n=1. $3 \le a_1 \le 4$.
- (IV): Es gilt für a_n .

(IS):
$$n \to n+1$$
. Nach (IV): $3 \le a_n \le 4 \Leftrightarrow \frac{1}{4} \le \frac{1}{a_n} \le \frac{1}{3} \Leftrightarrow 4 - \frac{1}{3} \le 4 - \frac{1}{a_n} = a_{n+1} \le 4 - \frac{1}{4}$. Insbesondere: $3 \le a_{n+1} \le 4$.

Aufgabe 8

Gegeben sei eine binäre Relation auf $\mathbb{Z} \times \mathbb{Z}$, die durch folgende Eigenschaft definiert wird:

$$a|b :\Leftrightarrow \exists c \in \mathbb{Z} : ac = b.$$

Diese Relation heißt Teilbarkeitsrelation, wobei a|b als "a teilt b" zu lesen ist. Untersuchen Sie, ob die Teilbarkeitsrelation reflexiv, symmetrisch und/ oder transitiv ist.

Lösung:

- reflexiv: Sei $a \in \mathbb{Z}$ vorgegeben. Weil $1 \in \mathbb{Z}$, $a \cdot 1 = a \Rightarrow a \mid a \ \forall a \in \mathbb{Z}$
- nicht symmetrisch: Es seien $a, b \in \mathbb{Z}$: $a|b \to \exists c \in \mathbb{Z}$: $ac = b \to b = \frac{1}{c} \cdot a$. Wenn $c \neq 1 \to \frac{1}{c} \notin \mathbb{Z} \to b$ /a. Beispiel $2|4 \not\Rightarrow 4|2$.
- transitiv: Es seien $a, b \in \mathbb{Z}$: $a|b \wedge b|c \Rightarrow \exists d, e \in \mathbb{Z}$: $ad = b \wedge be = c \Rightarrow ade = be = c \Rightarrow a|c$.

Aufgabe 9

Seien $f:X\to Y,\,g:Y\to Z$ Abbildungen und sei $g\circ f:X\to Z$ die Komposition von f und g. Zeigen Sie:

- (a) Sind f und g injektiv, so ist auch $g \circ f$ injektiv;
- (b) Sind f und g surjektiv, so ist auch $g \circ f$ surjektiv.

- (a) Da f,g injektiv:
- (I) für $x, x' \in X$, $x \neq x'$ gilt: $f(x) \neq f(x')$
- (II) für $y, y' \in Y$, $y \neq y'$ gilt: $g(y) \neq g(y')$

Es folgt, dass $g \circ f(x) \neq g \circ f(x')$ für $x \neq x'$, da nach (I) $f(x) \neq f(x')$ und damit nach (II) $g(f(x)) \neq g(f(x'))$. Also ist $g \circ f$ injektiv.

(b) Sei
$$z \in \mathbb{Z}$$
 beliebig $\stackrel{g \text{ surj.}}{\Rightarrow} \exists y \in Y : g(y) = z \stackrel{f \text{ surj.}}{\Rightarrow} \exists x \in X : f(x) = y \Rightarrow (g \circ f)(x) = g(f(x)) = g(y) = z$, also ist $g \circ f$ surjektiv.

Aufgabe 10

Man untersuche die folgenden Abbildungen auf Injektivität und Surjektivität:

- (a) $g: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto xy$,
- (b) $h: \mathbb{R} \to \mathbb{R}^2$, $x \mapsto (x^2 + 1, (x+1)^2)$.

Lösung:

(a)

- Injektivität: $g(0,1) = 0 = g(0,0) \Rightarrow g$ ist nicht injektiv.
- Surjektivität: $y \in \mathbb{R} \Rightarrow g(1,y) = y \Rightarrow$ g ist surjektiv.

(b)

- Injektivität (Beweis durch Widerspruch): Annahme: $x_1, x_2 \in \mathbb{R}, x_1 \neq x_2 \ mit \ h(x_1) = h(x_2) \Rightarrow x_1^2 + 1 = x_2^2 + 1 \ und \ (x_1 + 1)^2 = (x_2 + 1)^2 \Rightarrow x_1 = \pm x_2 \ und \ x_1 = \pm (x_2 + 1) 1 \Rightarrow x_1 = x_2 \ Widerspruch \ zur \ Annahme! \Rightarrow h \ ist \ injektiv.$
- Surjektivität: h ist nicht surjektiv, da nur nicht-negative Werte im Bildbereich von h auftreten (es sind keine negativen Werte erzielbar).

Aufgabe 11

Seien M, N, P Mengen und $f:M\to N,\,g:N\to P$ bijektive Abbildungen. Man zeige, dass $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$ ist.

Sei $g \circ f : M \to P$ mit g(f(x))=y, dann folgt: $(g \circ f)^{-1}(y) = x \Leftrightarrow g(f(x)) = y \Leftrightarrow g^{-1}(y) = f(x) \Leftrightarrow (f^{-1} \circ g^{-1})(y) = x$. Es folgt also $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Aufgabe 12

Es ist anhand einer Wahrheitstabelle zu beweisen, dass folgende Aussage allgemeingültig ist:

$$(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$$

Lösung:

Р	Q	$P \Rightarrow Q$	$\neg P$	$\neg Q$	$\neg Q \Rightarrow \neg P$	$(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$
W	W	W	f	f	W	W
w	f	f	f	W	f	W
f	W	w	w	f	W	W
f	f	w	w	w	W	W

Tabelle 1: Wahrheitstabelle

Aufgabe 13

Es seien A, B und C Mengen. Man beweise die folgenden Distributivgesetze:

$$(a) (A \cap B) \cup C = (A \cup B) \cap (B \cup C)$$

$$(b)\ A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

Lösung:

$$(a) \ (A \cap B) \cup C = \{z: \ z \in A \cap B \lor z \in C\} = \{z: \ (z \in A \land z \in B) \lor z \in C\} = \{z: \ (z \in A \lor z \in C) \land (z \in B \lor z \in C)\} = \{z: \ z \in A \cup C \land z \in B \cup C\} = \{z: \ z \in (A \cup C) \cap (B \cup C)\} = (A \cup C) \cap (B \cup C)$$

(b) Sei $x \in A \cap (B \cup C) \Leftrightarrow x \in A \text{ und } x \in (B \cup C) \Leftrightarrow x \in A \text{ und } (x \in B \text{ oder } x \in C)$ $\Leftrightarrow (x \in A \text{ und } x \in B) \text{ oder } (x \in A \text{ und } x \in C) \Leftrightarrow x \in (A \cap B) \text{ oder } x \in (A \cap C)$ $\Leftrightarrow x \in (A \cap B) \cup (A \cap C).$

Aufgabe 14

Gegeben ist die Menge $M := \{0, 0, \Delta\}$. Bilden Sie die Menge $\mathcal{P}(M)$ aller Teilmengen (Potenzmenge) von M. Bilden Sie das kartesiche Produkt $M \times M$.

$$\mathcal{P}(M) = \{\emptyset, \{0\}, \{\circ\}, \{\Delta\}, \{0, \circ\}, \{0, \Delta\}, \{\circ, \Delta\}, M\}$$

$$M \times M = \{(0, \circ), (0, \Delta), (\circ, \Delta), (\circ, 0), (\Delta, 0), (\Delta, \circ), (0, 0), (\circ, \circ), (\Delta, \Delta)\}$$

Aufgabe 15

Auf $\mathbb{R} \times \mathbb{R}$ werden durch

$$(x_1, x_2)R_1(y_1, y_2) :\Leftrightarrow x_1 = y_1$$

 $(x_1, x_2)R_2(y_1, y_2) :\Leftrightarrow x_1 < y_1$

Relationen definiert. Untersuchen Sie diese auf Reflexivität, Symmetrie und Transitivität.

Lösung:

Zu R_1 :

$$x_1, x_2 \in \mathbb{R} \Rightarrow (x_1, x_2) R_1(x_1, x_2)$$
, dh R_1 ist reflexiv.

$$(x_1,x_2)R_1(y_1,y_2) \Rightarrow x_1 = y_1 \Rightarrow y_1 = x_1 \Rightarrow (y_1,y_2)R_1(x_1,x_2)$$
, dh R_1 ist symmetrisch.

$$\begin{array}{l} (x_1, x_2) R_1(y_1, y_2) \Rightarrow x_1 = y_1 \\ (y_1, y_2) R_1(z_1, z_2) \Rightarrow y_1 = z_1 \end{array} \} \quad \Rightarrow x_1 = z_1, dh \ R_1 \ ist \ transitiv$$

Zu R_2 :

Ist nicht reflexiv, da (1,0) $R_2(1,0)$.

 $(1,0)R_2(2,0)$, aber (2,0) $R_2(1,0)$, dh R_2 nicht symmetrisch.

$$\begin{array}{l} (x_1, x_2) R_2(y_1, y_2) \Rightarrow x_1 < y_1 \\ (y_1, y_2) R_2(z_1, z_2) \Rightarrow y_1 < z_1 \end{array} \Rightarrow x_1 < z_1, dh \ R_2 \ ist \ transitiv$$

Aufgabe 16

A, B seien Mengen mit $a \in A$ und $b \in B$. Durch $a \mapsto b = f(a)$ wird im folgenden jeweils eine Abbildung $f: A \to B$ definiert. Geben Sie jeweils an, ob f surjektiv, injektiv, bijektiv ist. mit Begründung!

(a)
$$f_1: A = \mathbb{R}, B = \mathbb{R}^2, a \mapsto (a+1, a-1)$$

(b)
$$f_2: A = \mathbb{R}^2, B = \mathbb{R}, a = (a_1, a_2) \mapsto (a_1 + a_2)$$

(b)
$$f_3: A = B = \mathbb{R}^2, a = (a_1, a_2) \mapsto (a_2, 3)$$

(a) Nicht jedes Element von \mathbb{R}^2 tritt bei dieser Abbildung als Bild auf: Es gibt z. B. kein $a \in \mathbb{R}$ mit $a \mapsto (1,1)$. Die Abbildung ist also nicht surjektiv. Wegen

$$(a+1, a-1) = (a'+1, a'-1) \Rightarrow a = a'$$

ist die Abbildung injektiv. Die Abbildung ist nicht bijektiv.

- (b) Zu jedem $b \in \mathbb{R}$ gibt es mindestens ein $a = (a_1, a_2) \in \mathbb{R}^2$ mit $a_1 + a_2 = b$, etwa a := (b, 0). Die Abbildung ist also surjektiv. Etwa aus $(2, 2) \mapsto 4$ und $(3, 1) \mapsto 4$ ergibt sich, dass sie nicht injektiv ist. Sie ist ebenfalls nicht bijektiv.
- (c) Die Abbildung ist nicht surjektiv, weil beispielsweise kein $a = (a_1, a_2) \in \mathbb{R}^2$ mit $a \mapsto (a_2, 1)$ gibt. Die Abbildung ist auch nicht injektiv: Es gilt z. B. $(1, 1) \mapsto (1, 3)$ und $(2, 1) \mapsto (1, 3)$. Die Abbildung ist folglich auch nicht bijektiv.

Aufgabe 17

Es werden nun die Kompositionen der Abbildungen aus Aufgabe 16 gebildet. Geben Sie jeweils Definitionsmenge, Bildmenge und Abbildungsvorschrift an.

- (a) $f_1 \circ f_2$
- (b) $f_2 \circ f_1$

Lösung:

- (a) Es ist $(f_1 \circ f_2) : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$, $(a_1, a_2) \mapsto (a_1 + a_2 + 1, a_1 + a_2 1)$. Definitionsmenge, sowie Bildmenge sind hier $\mathbb{R} \times \mathbb{R}$.
- (b) Es ist $(f_2 \circ f_1) : \mathbb{R} \to \mathbb{R}, \ a \mapsto 2a$. Definitionsmenge, sowie Bildmenge sind hier \mathbb{R} .

Aufgabe 18

f, g, h seien Abbildungen $\mathbb{N} \to \mathbb{N}$, definiert durch

$$f: x \mapsto x+1, \ q: x \mapsto x^2, \ h: x \mapsto x^3$$

Gilt
$$(1)f \circ g = f \circ f$$
, $(2)f \circ h = h \circ f$, $(3)g \circ h = h \circ g$?

Zu (1): Dies gilt nicht für alle $x \in \mathbb{N}$, dies ist durch ein Gegenbeispiel leicht zu zeigen: $(f \circ g)(1) = 2 \neq 4 = (g \circ f)(1)$.

Zu (2): Dies gilt nicht für alle $x \in \mathbb{N}$, dies sieht man am Gegenbeispiel: $(f \circ h)(1) = 2 \neq 8 = (h \circ f)(1)$.

Zu (3):

$$\begin{array}{l} (\mathrm{g}\circ h)(x):=g(h(x))=g(x^3)=x^6\\ (\mathrm{h}\circ g)(x):=h(g(x))=h(x^2)=x^6 \end{array} \} \quad \text{gleich für alle } x\in\mathbb{N}, \, \text{somit } g\circ h=h\circ g.$$