بسمه تعالى

دانشکدهی مهندسی کامپیوتر

۲ آذر ماه ۱۴۰۰		جبرخطي
زمان: ۱:۳۰ ساعت	امتحان ميان ترم	
		امتیاز: ۱۰۰

توضيحات:

- لطفا پاسخها را خوانا بنویسید.
- به توضیحات ابتدای هر سوال توجه نمایید.
- اگر در سوالی مستقیم اشاره نشده باشد که همه چیز نیاز به اثبات دارد، میتوانید از قضایا یا خواص مطرح شده در کلاس (نه هر منبعی) بدون اثبات استفاده نمایید.
 - استفاده از اسلاید درس یا منابع اینترنتی یا صحبت با دوستانتان چه شفاهی چه کتبی در طول زمان امتحان مجاز نیست!

بخش اول- سوالات كوتاه پاسخ (۲۷ نمره) [زمان پیشنهادی: ۱۵ دقیقه]

ا. (۸ نمره) مقدار نرمهای $|x||_{0}$ و $|x||_{1}$ را برای بردارهای زیر محاسبه نمایید. پاسخهای نهایی لطفا تا آخرین حد ساده شده باشد.

$$x = \begin{bmatrix} 2\\0\\-4\\\frac{3}{2}\\\frac{\sqrt{11}}{2} \end{bmatrix}$$
 (i

- ب) $y = \begin{bmatrix} 2^t \\ \sin(t) \\ \cos(t) \end{bmatrix}$ به طوری که t مقادیر مثبت صحیح دارد.
- ۱. (۵ نمره) اگر مجموعه برداریهایی در فضای R^2 به این صورت $M = \{(0,0),(2,0),(0,3),(1,1)\}$ داشته باشیم، آیا این مجموعه مستقل افاین (affine independent) هستند؟ دلیل آن را توضیح دهید.
- ۳. (٤ نمره) سه ماتریس $A_{10\times 2}$ ، $A_{10\times 10}$ داریم. برای محاسبه بهینه ABC با چه ترتیبی ماتریسها را در هم ضرب و flop عداد و flop و حافظه بررسی نمایید)
- ۴. (۵ نمره) پوش محدب (Convex hull) مجموعه $S = \left\{ \begin{bmatrix} 0 \\ y \end{bmatrix} : 0 \le y < 1 \right\} \cup \left\{ \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\}$ مجموعه (2 نمره) پوش محدب (Convex hull) مجموعه نمایید. (توصیف: یعنی رسم و توضیح دهید)
 - ۵. (٥ نمره) ضرب داخلي دو بردار با اندازه يكسان را برحسب ضرب خارجي آنها به دست آوريد.
 - ۶. (۵ نمره) با روشهای خوانده شده در جبرخطی تعداد مسیرها به طول پنج از x به z را در شکل زیر به دست آورید.

بخش دوم – درست/نادرست (۱۸ نمره) [زمان پیشنهادی: ۱۵ دقیقه]

مواردی که درست هستند: حل آن را بنویسید یا دلیلی برای درستی ذکر نمایید. مواردی که نادرست هستند: یا یک مثال نقض بنویسید یا جملهی آن را به شیوه منطقی (!) اصلاح نمایید. در کل نشان دهید که با دلیل جملات را قبول یا رد میکنید نه تصادفی!

- مجموعه چندجملهایها با ضرایب اعداد حقیقی یک فیلد هستند.
- $x^T A x = 0$ یک ماتریس پادمتقارن است، برای هر ستون x این ماتریس داریم: A
- ۳. تبدیل خطی که ماتریس استاندارد آن مربعی باشد، پوشاست (onto) است اگر و فقط اگر یک به یک (one to one) باشد.
 - ۴. ماتریس (A) با ۵ سطر و ۳ ستون که ax=0 فقط در حالت x=0 برقرار باشد، full rank است.
- ۵. ترکیب affine دو نقطه در فضای دوبعدی، فضایی ایجاد شده بین بردارهای گذرنده از مبدا تا این نقاط است. (راهنمایی: اگر جمله ناواضح است، برای اینکه اشتباه نکنید تصویر روبرو را ببینید!)
 - ۶. اگر A و B دو ماتریس هم ارز سطری باشند، آنگاه فضای ستونیشان باهم برابر است.

بخش سوم- سوالات محاسباتی (۵۵ نمره) [زمان پیشنهادی: ۴۰ دقیقه]

۱. (۱۰ نمره) مجموعه دادههای جدول زیر حاصل مشاهدات یک آزمایش هستند. ادعا می کنیم که این دادهها با یک row reduced echelon form چندجمله درجه دوم $(y = ax^2 + bx + c)$ مدلسازی می شوند. با استفاده از روش (RREF) پارامترهای این مدل را به دست آورید.

$$\begin{array}{c|cc}
y & x \\
5 & -2 \\
2 & -1 \\
0 & 1 \\
3 & 2
\end{array}$$

- ۲۰ نمره) یک تصویر داریم که هر پیکسل آن با یک بردار RGB نمایش داده می شود. ما بردارهای scaled شده ی چهار u_1 یک بردار RGB نمایش داده می شود. ما بردارهای u_2 ی است! ولی تا از پیکسلهای این تصویر را به اسم u_3 , u_4 و u_4 داریم که یکی از آنها تخریب شده و مقادیر آن خالی است! ولی طبق دانش پیشین می دانیم که بردارهایی که اسم u_4 دارند، باهم یک مجموعه متعامد (orthogonal) هستند.
- أ) ابتدا بردار تخریبی را تخمین بزنید. سپس با استفاده از مجموعه بردارهای u پایههای یکه متعامد (orthonormal) برای فضای R^3 به دست آورید.
- ب) زاویه ی (angle) پایه های یکه متعامد به دست آمده از قسمت قبل را با بردار $[1,0,0]^T$ به دست آورید. آنگاه برحسب زاویه شان مرتب کرده و اسم آن ها را t_i به ترتیب از i=1,2,... برحسب زاویه شان مرتب کرده و اسم آن ها را قسمت اول در بیارین!) تعدادش محدوده اما ننوشتم که خودتون از قسمت اول در بیارین!)
- ج) زیرفضای W ای را در نظر بگیرید که با $\{t_1,t_2\}$ اسپن (span) شده است. فاصلهی (distance) بردار v را از W به دست آورید.

$$u_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \ u_2 = \begin{bmatrix} 2 \\ 4 \\ -3 \end{bmatrix} \ u_3 = \begin{bmatrix} ? \\ ? \\ ? \end{bmatrix} \ y = \begin{bmatrix} 0 \\ -3 \\ 2 \end{bmatrix}$$

- $^{\circ}$. (6 نمره) اگر ماتریس A مربعی باشد و بدانیم که عدد طبیعی وجود دارد که با توان رساندن این ماتریس با آن عدد به ماتریس پوچ برایتان عجیب ماتریس پوچ برایتان عجیب (null matrix) برسیم، آنگاه $(I-A)^{-1}$ را حساب نمایید. (راهنمایی: اگر اسم ماتریس پوچ برایتان عجیب است، در کلاس صحبت کرده بودیم.)
 - $\dim(\ker(A)) + \dim(\ker(B)) \ge n$ نمره) اگر $A, B \in \mathbb{R}^{n \times n}$ و $A, B \in \mathbb{R}^{n \times n}$. ثابت کنید که $A, B \in \mathbb{R}^{n \times n}$. ثابت کنید که راهنمایی:
 - در طی حل سوال اگر از لمهای مختلف استفاده میکنید، اثباتشان کنید.
 - میدانیم که ker یا هسته همان فضای پوچ (null space) است.

موفق باشيد