

Probability Distributions: Continuous

Introduction to Data Science Algorithms

Dirk Grunwald

- The most common continuous distribution is the *normal* distribution, also called the Gaussian distribution.
- The density is defined by two parameters:
 - μ : the *mean* of the distribution
 - σ^2 : the *variance* of the distribution (σ is the *standard deviation*)
- The normal density has a "bell curve" shape and naturally occurs in many problems.

Carl Friedrich Gauss 1777 – 1855

The probability density of the normal distribution is:

$$f(x) = \underbrace{\frac{1}{\sqrt{2\pi\sigma^2}}}_{\substack{\text{Does not} \\ \text{depend on } x}} \underbrace{\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}_{\substack{\text{Largest when } x = \mu; \\ \text{shrinks as } x \text{ moves} \\ \text{away from } \mu}}_{\substack{\text{depend on } x \text{ moves} \\ \text{away from } \mu}}$$

- Notation: $\exp(x) = e^x$
- If X follows a normal distribution, then $\mathbb{E}[X] = \mu$.
- ullet The normal distribution is symmetric around $\mu.$

Standard Normal

- $Z \sim \mathcal{N}(0,1)$ is the standard normal distribution
- All normal distributions can be cast into *standard normal* using $X \sim N(\mu, \sigma)$ transformed into $Z = (X \mu)/\sigma$

Standard Normal

- $Z \sim \mathcal{N}(0,1)$ is the standard normal distribution
- All normal distributions can be cast into *standard normal* using $X \sim N(\mu, \sigma)$ transformed into $Z = (X \mu)/\sigma$
- Assume people are $\sim N(6,0.1)$. What's the probability that someone is less than 6.05 feet tall?
 - Let z = (6.05 6)/.1 = 0.4999
 - Look up z in standard normal table and get 0.69
 - Thus, 69% of people are less than 6.05 feet tall (assuming N(6,0.1))

The Standard Normal Table

- Every stats book used to have standard normal table in the back.
- Thank goodness for computers!

Table of Standard Normal Probabilities for Positive Z-scores

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.0	0.8150	0.8186	0.8212	0.8338	0.8364	0.8380	0.9315	0.9340	0.8365	0.8380

Applying the normal distribution

- Most variables in the real world don't follow an exact normal distribution, but it is a very good approximation in many cases.
 - Measurement error (e.g., from experiments) is often assumed to follow a normal distribution.
 - Biological characteristics (e.g., heights of people, blood pressure measurements) tend to be normal distributed.
 - Test scores − e.g. IQ ~ N(100, 10)
- Why? Central Limit Theorem
 - The central limit theorem proves that if you take the sum of multiple randomly generated values, the sums will follow a normal distribution. (Even if the randomly generated values do not!)

Quantiles

Let F be the CDF of a random variable X and let p be an arbitrary number between 0 and 1. The p^{th} quantile or $p \times 100^{th}$ percentile of the distribution of X is the smallest number q_p such that

$$F(q_p) = P(X \le q_p) = p$$

- Assume $IQ \sim N(100, 10) = F$.
- F(87.18) = 0.10, or $P(X \le 87.18) = 0.10$
- This means $F^{-1}(0.10) = 87.18$
- The .10-quantile is 87.18

If the "shape" of two distribution are similar, then a plot of the q^{th} -quantile of each distribution will be linear.

- Vertical axis ~ Z
- Horizontal axis ∼ N(100, 10)
- In each case, we're showing the 0.1, 0.2, ... 0.8, 0.9 quantile from easy distribution.
- Linear relationship indicates that test data (height) has the same "shape" as standard normal.
- Ergo, it's likely normal.

If the plot of the q^{th} -quantile of each variable is not linear, than the variables are likely not from the same distribution.

- Vertical axis ∼ Z
- Horizontal axis ~ Exp(10)
- We've draw 100 samples from each distributions, sorted them and then plotted the ith sample in each case.
- non-linear relationship indicates that test data (Exp) does not have the "shape" as standard normal.
- Ergo, it's likely not normal.

Quantiles

Let F be the CDF of a random variable X and let p be an arbitrary number between 0 and 1. The p^{th} quantile or $p \times 100^{th}$ percentile of the distribution of X is the smallest number q_p such that

$$F(q_p) = P(X \le q_p) = p$$

- Assume $IQ \sim N(100, 10) = F$.
- F(87.18) = 0.10, or $P(X \le 87.18) = 0.10$
- This means $F^{-1}(0.10) = 87.18$
- The .10-quantile is 87.18

If the "shape" of two distribution are similar, then a plot of the q^{th} -quantile of each distribution will be linear.

- Vertical axis ~ Z
- Horizontal axis ∼ N(100, 10)
- In each case, we're showing the 0.1, 0.2, ... 0.8, 0.9 quantile from easy distribution.
- Linear relationship indicates that test data (height) has the same "shape" as standard normal.
- Ergo, it's likely normal.

If the plot of the q^{th} -quantile of each variable is not linear, than the variables are likely not from the same distribution.

- Vertical axis ∼ Z
- Horizontal axis ~ Exp(10)
- We've draw 100 samples from each distributions, sorted them and then plotted the ith sample in each case.
- non-linear relationship indicates that test data (Exp) does not have the "shape" as standard normal.
- Ergo, it's likely not normal.

