Einführung in das Wissenschaftliche Rechnen Praktikumsblatt 10 Aufgabe 23 (Phasen-Seperation in Elektrodenpartikeln)

Lena Hilpp Matr.Nr.: 1941997 Jan Frithjof Fleischhammer Matr.Nr.: 2115491

09.07.2020

Problemstellung

In dieser Aufgabe modelliert man die Einlagerung von Lithium in Elektrodenpartikel von Lithium-lonen Batterien. $\Omega=(0,1)$ ist das Gebiet des Elektrodenpartikels über dem die Einlagerung stattfindet. Bis zur Zeit T=0.98 werden die Partikel mit einem uniformen Ladestrom, $\mu^N=-1$, geladen. Folgendes Anfangswertproblem wird betrachtet:

$$\begin{cases} \partial_t c = \nabla (m \nabla \mu) & \text{in } (0,T) \times \Omega \\ \mu = f'(c) - \kappa \Delta c & \text{in } (0,T) \times \Omega \\ \nabla c \cdot \mathbf{n} = 0 & \text{in } (0,T) \times \partial \Omega \\ \nabla \mu \cdot \mathbf{n} = 0 & \text{in } (0,T) \times \\ \nabla \mu \cdot \mathbf{n} = \mu^N & \text{in } (0,T) \times \\ c(0,\cdot) = c_0 & \text{in } \Omega, \end{cases}$$

mit m=1, $\kappa=5\times 10^{-3}$ und der chemischen freien Energiedichte f(c)=4.5c(1-c)+clog(c)+(1-c)log(1-c) und $c_0=0.01$.

Die Diskretisierung der zwei gekoppelten PDEs mit Finiten-Elementen führt auf das System

$$M\partial_t c_h = -mS\mu_h + m\mu^N$$

$$M\mu_h = Mf'(c_h) + \kappa Sc_h.$$

Dieses Problem wird mit Hilfe eines *MATLAB-ODE*-Löser gelöst und die theoretische und tatsächliche Energiedichte gegenüber dem Ladezustand geplottet.

Ergebnis

Da hier ein steifes Problem vorliegt wird der Löser ODE15s verwendet. Mit diesem erhält man die Lösung u_h , zu verschiedenen Zeitpunkten, die man in $Abbildung\ 1$ sehen kann. Man kann die zeitliche Entwicklung der Einlagerung von Lithium in das Elektrodenpartikel deutlich erkennen. Das Gebiet ist zu jedem Zeitpunkt in zwei Teile geteilt.

Abbildung 1: numerische Lösung u_h zu verschiedenen Zeiten

Verwendet wurde der Polynomgrad pd=2 und ncpd=50 Zellen pro Raumdimension. Diese Triangulierung zeigt das erste Bild in *Abbildung 2*. Die weiteren Bilder in dieser Abbildung sind beispielhaft für pd=1 mit ncpd=10 und pd=2 mit ncpd=10. Hier kann man erkennen, dass man bei höherem Polynomgrad Zwischenstellen erhält.

Da die Faustregel gilt, dass die Breite des Phasenübergangs $\sim \sqrt{\kappa}$ mindestens mit 10 Freiheitsgraden aufgelöst sein soll, ergibt sich für lineare Finite Elemente (pd=1) eine Schranke $ncpd=\frac{10}{\sqrt{\kappa}}$. Für größere Polynomgrade braucht man aufgrund der hinzukommenden Zwischenstellen weniger Zellen pro Raumdimension (ncpd).

Abbildung 2: verschiedene Triangulierungen

In *Abbildung 3* ist die theoretische chemische freie Energiedichte und die tatsächliche freie Energiedichte des Systems gegenüber dem Ladezustand des Partikels in einem Plot aufgetragen.

Abbildung 3: theoretische und tatsächliche Kurve