03-ROS2-单臂X5-SDK

一、硬件配置

1、硬件清单

类目	型号	数量
机械臂	X5	1
机械臂底座	/	1
USB2CAN	CAN	1
电源	DC24V	1
G型夹	G型	2

本体 底座 USB2CAN

夹持端参数

夹持范围	0-80mm
反馈及控制方式	位置 速度 扭矩
末端接口	集成机械臂(xt30 2+2)

最大夹持力	10NM
重量	约585g

2、整体组装

连接底座

G型夹固定

将底座与机械臂本体,通过螺丝连接,并通过G型夹将机械臂固定在桌子边缘。

右侧接口

连接

如右图所示连接电源、can模块和机械臂。 将电源插入插排,将usb线插入电脑。

确保机械臂为折叠的状态,确保接口在机械臂右侧

开始配置软件。

二、软件配置

1、环境配置

注意一定按照安装顺序

ROS2-humble安装: ubuntu系统22.04 推荐鱼香ROS安装

wget http://fishros.com/install -0 fishros && . fishros

配置can环境

- 1 配置can
- 2 sudo apt install can-utils
- 3 sudo apt install net-tools

编译:

```
5
   — ARX_CAN
   ARX_VR_SDK
7
8
   ├— ру
9
  arx_x5_python
10
   - readme
11
12
   ├─ ROS
13
  ____ X5_ws
14
└── X<mark>5 ws</mark>
16
17
```

00-sh/ROS2目录下

此时一个完整的ros项目就搭建完成。

2、配置CAN

参考文档:配置CAN手册。

三、操作方式及注意事项

在00-sh目录下运行

```
1 ./04single_arm.sh
```

1、控制说明

变量名称	作用	备注
end_pos	末端位姿	xyz + rpy
joint_pos	关节位置	六个关节
gripper	夹爪	
mode	控制模式	

mode	模式功能	备注
0	力矩清零	所有关节力矩为0
1	机械臂复位	回到初始位形
2	阻尼模式	在"0"的基础上增加阻尼
3	重力补偿	可任意拖动
4	末端位姿控制	通过 "end_pos" 控制
5	关节控制	通过"joint_pos"控制

下面为PosCmd.mg的内容

- 1 //单位: 米、弧度
- 2 //[x y z]:末端位置
- 3 //[roll pitch yaw]:末端姿态

```
4 float64 x //末端位置 前后 范围:[0, 0.5]
5 float64 y //末端位置 左右 范围:[-0.5, 0.5]
6 float64 z //末端位置 上下 范围:[-0.5, 0.5]
7 float64 roll //末端roll 正负1.3弧度
8 float64 pitch //末端pitch 正负1.3弧度
9 float64 yaw //末端yaw 正负1.3弧度
10 float64 gripper //夹爪开合 0-5 对应 0-80mm
```

关节限位:

关节	1	2	3	4	5	6
范围(弧度)	[-3.14, 2.6]	[-3.6, 0.1]	[-1.57, 1.57]	[-1.3, 1.3]	[-1.57, 1.57]	[-2.1, 2.1]

注意,只有在对应的mode下,对应的变量才会其作用。其中gripper在任何模式下都可以控制夹爪。

查看机械臂的状态:

在工作空间再开一个终端,运行:

```
source ./install/setup.bash
ros2 topic echo /arm_status
```

变量名称	作用	备注
end_pos	末端位姿	xyz + rpy
joint_pos	关节位置	六个关节+夹爪
joint_vel	关节速度	六个关节+夹爪
joint_cur	关节力矩	六个关节+夹爪

2、注意事项

关闭终端前务必先输入:

```
1 Ctrl + c
```

不可直接关闭终端,若不正常退出且出现异常,应该重启电脑,关闭后台的线程。

串联机械臂,奇异位置是不可避免的,尽量不要在工作空间边缘进行控制。 当关节超限时,机械臂会停止运动。

机械臂各个关节轴向

不同型号的机械臂,其关节的轴向都是相同的。关节转向符合右手定理,大拇指的指向关节轴向,四指方向就是电机转动的正方向。

末端坐标系

在初始位置,末端坐标系和参考坐标系重合,位置和姿态都是0,如上图所示。

异常处理

机械臂垂落,无法控制	终端是否提示safe mode(碰撞检测进入保护模式,断电复位,重启即可)
某个can口打不开	检查can连接,重新插拔对应的usb,重新开启can。
电机无法连接	重新插拔机械臂底座的插头
程序一直在初始化	保证usb接口带宽足够,不要和usb wifi等数据量较大设备公用一个usb