Analyse de données

L. BELLANGER

Master 1 Ingénierie Statistique Dpt de Mathématiques - Université de Nantes

Plan

- 0. Introduction
- I. Outils de représentation d'un échantillon
- II. Analyse en Composantes Principales (ACP)
- III. Analyse Factorielle des Correspondances (AFC)
- IV. Classification et classement
- V. Conclusion

IV. Classification et classement

3

Plan

- 0. Introduction
- I. Classification
 - 1. Idées générales
 - 2. Classification par partition
- II. Classement par AFD

4

Introduction:

Qu'est-ce que la classification?

- Regrouper des objets en groupes, ou classes, ou familles, ou segments, ou clusters, de sorte que :
 - 2 objets d'un même groupe se ressemblent le + possible
 - 2 objets de groupes distincts diffèrent le + possible
 - le nombre des groupes est parfois fixé
- · Méthode descriptive :
 - pas de variable cible privilégiée
 - décrire de façon simple une réalité complexe en la résumant
- · Les objets à classifier sont :
 - des individus
 - des variables

5

Introduction:

Classification \neq Classement

- La classification consiste à regrouper les individus d'une population en un nombre limité de classes qui :
 - ne sont pas prédéfinies mais déterminées au cours de l'opération, contrairement aux classes du classement;
 - regroupent les individus ayant des caractéristiques similaires et séparent les individus ayant des caractéristiques différentes.
- Le classement consiste à placer chaque individu de la population dans une classe, parmi plusieurs classes prédéfinies, en fonction des caractéristiques de l'individu indiquées comme variables explicatives.
- Le résultat du classement permet d'affecter chaque individu à la meilleure classe.
- Très souvent, il y a 2 classes prédéfinies (« sain » et « malade », par exemple).

6

Introduction:

Classification ≠ Classement (1a)

Le vocabulaire s'appuie aussi sur les mots suivants:

- La Classification est une méthode d'analyse non-supervisée, ce qui sous-entend que le tableau de données n'est pas structuré par opposition au
- Classement qui est une méthode d'analyse supervisée, ce qui sousentend que le tableau de données est structuré. Le classement est toujours associé à une discrimination préalable, même si ce n'est pas précisé de façon explicite: on ne peut classer des individus que dans des classes préalablement définies.
- · De surcroît, les dictionnaires ne sont pas très clairs :
 - Classer peut aussi bien vouloir dire diviser en classes que ranger dans une catégorie.
 - Par contre classifier signifie faire ou établir des classifications.

-

Introduction:

Classification ≠ Classement (1 b)

Donc, pour être précis:

- · Dans une classification, on classifie,
- · dans un classement, on classe.

Enfin de manière générale :

- on classe ou on classifie des individus (= des objets = des observations); mais
- on peut tout aussi bien réaliser ces opérations sur des variables

Introduction:

Classification \neq Classement (2)

Point de terminologie : 3 techniques de data mining
 ...3 terminologies ≠ dans la littérature!

Auteurs anglo- saxons	Certains auteurs francophones	Analyse des données à la française
Clustering	Segmentation	Classification
Classification	Classification	Classement, analyse discriminante
Decision trees	Arbres de décision	segmentation

Introduction:

Structure des classes obtenues

- Soit 2 classes sont toujours disjointes : méthodes de partitionnement :
 - généralement, le nombre de classes est défini a priori ;
 - certaines méthodes permettent de s'affranchir de cette contrainte (analyse relationnelle, méthodes paramétriques par estimation de densité).
- Soit 2 classes sont disjointes ou l'une contient l'autre : méthodes hiérarchiques :
 - ascendantes (agglomératives : agglomération progressive d'éléments 2 à 2);
 - descendantes (divisives).
- Soit 2 classes peuvent avoir plusieurs objets en commun (classes « empiétantes » ou « recouvrantes »):
 - analyse « floue », où chaque objet a une certaine probabilité d'appartenir à une classe donnée.

10

Introduction:

Les différentes méthodes

- · Méthodes de partitionnement
 - k-means : centres mobiles et nuées dynamiques
 - k -modes, k -prototypes, k -représentants (k medoids)
 - réseaux de Kohonen
 - méthodes basées sur une notion de densité
 - méthode « de Condorcet » (analyse relationnelle)
- · Méthodes hiérarchiques
 - ascendantes (agglomératives)
 basées sur une notion de distance ou de densité
 - descendantes (divisives)
- · Méthodes mixtes
- Analyse floue (fuzzy clustering)

11

Introduction:

classification des individus

- Il faut choisir une mesure de ressemblance entre individus, le plus souvent la distance euclidienne ; mais il en existe de nombreuses ! Cf. après
- Nécessité de standardiser les variables si elles ne sont pas toutes mesurées dans la même unité et ont des moyennes ou des variances dissemblables
- Préférable d'isoler les « outliers » (individus horsnorme)
- Quand on a des variables qualitatives \Rightarrow se ramener à une classification de variables continues par une AFCM

12

I. Classification

13

14

1. IDEES GENERALES

1.1 Mesures de ressemblance (« similarity »)

Les mesures de ressemblance entre objets à classer dépendent de la nature des variables mesurées qui peuvent être binaires, nominales, ordinales ou numériques.

Définitions générales:

- distance
- similarité
- dissimilarité

1. IDEES GENERALES

1.1 Mesures de ressemblance (« similarity »)

- On définit d'abord une distance sur un ensemble E de n objets, comme l'application de $E \times E$ dans \mathbb{R}^+ vérifiant :
 - $d(i,j) \ge 0$ et $d(i,j) = 0 \Leftrightarrow i = j$
 - $\bullet \ d(i,j) = d(j,i)$
 - $d(i,j) \le d(i,k) + d(k,j)$ inégalité triangulaire
- Une distance est dite euclidienne si elle est engendrée par un produit scalaire.
- Une distance est dite ultramétrique si :

$$d(i,j) \le \sup (d(i,k);d(j,k))$$

15

1. IDEES GENERALES

1.1 Mesures de ressemblance (« similarity »)

- Si inégalité triangulaire pas vérifiée : dissemblance ou dissimilarité D sur un ensemble E de n objets, est une application de $E \times E$ dans \mathbb{R}^+ vérifiant :
 - $D(i,j) \ge 0$ et $D(i,j) = 0 \iff i = j$
 - D(i,j) = D(j,i)
- On parle de *ressemblance* ou de similarité si on a une application s telle que :
 - $s(i,j) \ge 0$
 - s(i,j) = s(j,i)
 - $s(i,i) \ge s(i,j) \ \forall i,j$

16

1. IDEES GENERALES

1.1 Mesures de ressemblance entre individus x_i

Exemples: x_{ij} : i = 1, ... n (indiv) et j = 1, ..., p (variables)

a/ Données numériques (cf ex 1)

Tableau individus x variables quantitatives

· Distance de Minkowski (1896)

$$d(i,i') = d(x_i,x_{i'}) = \left\{ \sum_{j=1}^{p} \alpha_j \left| x_{ij} - x_{i'j} \right|^{\lambda} \right\}^{\frac{1}{\lambda}} \text{ où } \lambda \text{ et } \alpha_j \in R^+$$

- Cas particuliers:

 $Si \ \lambda = 1 \ et \ \alpha_j = 1 : distance de Manhattan : d(i,i') = \sum_{j=1}^p \left| x_{ij} - x_{i'j} \right|$

Si $\lambda=2$ et $\alpha_j=1$: distance euclidienne classique :

$$d(i,i') = \left\{ \sum_{j=1}^{p} \left| x_{ij} - x_{i'j} \right|^{2} \right\}^{\frac{1}{2}}$$

17

1. IDEES GENERALES

1.1 Mesures de ressemblance entre individus x_i

Exemples: x_{ii} : i = 1, ... n et j = 1, ..., p

b/ Données de fréquences (cf ex 4)

Tableau de contingence

· Distance entre 2 lignes = Distance du Chi-deux

$$d^{2}(i,i') = \sum_{j=1}^{p} \frac{1}{f_{+j}} \left(\frac{f_{ij}}{f_{i+}} - \frac{f_{i'j}}{f_{i'+}} \right)^{2}$$

18

1. IDEES GENERALES

1.1 Mesures de ressemblance entre individus x_i

Exemples: x_{ij} : i = 1, ... n et j = 1, ..., p

c/ Données binaires

i 011000010**1**0010...

i' 010100011**0**0010...

Les n indiv. à classer sont caractérisés par p variables binaires codées 0 ou 1. La ressemblance ou similarité entre 2 individus i et i' s(i,i') se calcule à partir des informations du tableau de contingence suivant:

-	1 50	et 'O	Tot
t 1	а	Ь	a+b
Suj	c	d	c+d
Tot	a+c	b+d	n

- a: nb de concordances communes 11,

b: nb de concordances 10, c: nb de concordances 01,

d: nb de concordances 00.

Ces 4 nbs définissent des indices de similarités entre individus, par exemple :

 $S_1 = \frac{a}{a+b+c}$ Indice de communauté de Jaccard $S_2 = \frac{a+d}{n}$ Indice de Sokal & Michener $S_3 = \frac{a}{a+2(b+c)}$ Indice de Sokal & Sneath $S_4 = \frac{a+d}{a+2(b+c)+d}$ Indice de Rogers et Tanimoto $S_5 = \frac{2a}{2a+b+c}$ Indice de Sorensen $S_6 = \frac{a-b-c+d}{n}$ Indice de Gower & Legendre $S_7 = \frac{a}{\sqrt{(a+b)(a+c)}}$ Indice de Ochiai $S_8 = \frac{ad}{\sqrt{(a+b)(a+c)(d+b)(d+c)}}$ Indice de Sockal & Sneath $S_9 = \frac{ad-bc}{\sqrt{(a+b)(a+c)(d+b)(d+c)}}$ Phi de Pearson

Ces indices sont tous ≤ 1 et la dissimilarité associée est définie par : $D_k = 1 - S_k$

 \Rightarrow Faire exemple Td TP Classification, page 2 Td/TP ch 4 : indices de Jaccard

_

1. IDEES GENERALES

1.1 Mesures de ressemblance entre individus x_i

Exemples: x_{ij} : i = 1, ..., n et j = 1, ..., p

c/ Données binaires

On peut les calculer par la fonction dist.binary dans ade4 qui demandera de choisir:

```
1 = JACCARD index (1901) S3 coefficient of GOWER & LEGENDRE
s1 = a/(a+b+c) --> d = sqrt(1 - s)
2 = SOCKAL & MICHENER index (1958) S4 coefficient of GOWER & LEGENDRE
s2 = (a+d)/(a+b+c+d) --> d = sqrt(1 - s)
3 = SOCKAL & SNEATH(1963) S5 coefficient of GOWER & LEGENDRE
s3 = a/(a+2(b+c)) --> d = sgrt(1 - s)
4 = ROGERS & TANIMOTO (1960) S6 coefficient of GOWER & LEGENDRE
s4 = (a+d)/(a+2(b+c)+d) --> d = sqrt(1 - s)
5 = CZEKANOWSKI (1913) or SORENSEN (1948) S7 coefficient of GOWER & LEGENDRE
s5 = 2*a/(2*a+b+c) --> d = sqrt(1 - s)
6 = S9 index of GOWER & LEGENDRE (1986)
s6 = (a-(b+c)+d)/(a+b+c+d) --> d = sqrt(1 - s)
7 = OCHIAI (1957) S12 coefficient of GOWER & LEGENDRE
s7 = a/sqrt((a+b)(a+c)) --> d = sqrt(1 - s)
8 = SOKAL & SNEATH (1963) S13 coefficient of GOWER & LEGENDRE
s8 = ad/sqrt((a+b)(a+c)(d+b)(d+c)) --> d = sqrt(1 - s)
9 = Phi of PEARSON = S14 coefficient of GOWER & LEGENDRE
s9 = ad-bc)/sqrt((a+b)(a+c)(b+d)(d+c)) --> d = sqrt(1 - s)
10 = S2 coefficient of GOWER & LEGENDRE
s10 = a/(a+b+c+d) \longrightarrow d = sqrt(1 - s) and unit self-similarity
Select an integer (1-10): 0
```

1. IDEES GENERALES

1.2 Qualité d'une classification

- · Détecter les structures présentes dans les données
- · Permettre de déterminer le nombre optimal de classes
- · Fournir des classes bien différenciées
- Fournir des classes stables vis-à-vis de légères modifications des données
- · Traiter efficacement les grands volumes de données
- Traiter tous les types de variables (quantitatives et qualitatives)
 - Ce point est rarement obtenu sans transformation
- Conduire à une interprétation et une utilisation facile des résultats

22

1. IDEES GENERALES

1.3 Concepts courants en classification

Deux idées complémentaires :

- · cohésion interne des classes
- isolement entre classes.

A ces deux idées s'ajoute celle de *hiérarchie* possible entre classes.

Certaines techniques peuvent permettre un certain **recouvrement** des classes.

23

1 IDEES GENERALES

1.4 Considérations combinatoires

 $B_{n,k}$: nb de partitions en k classes de n objets = nb de Stirling

Propriétés :

- $B_{n,1} = B_{n,n} = 1$ et $B_{n,n-1} = C_n^2$
- $B_{n,k} = B_{n-1,k-1} + kB_{n-1,k}$, (récurrence)

Exemple : $B_{12,5} = 1379400$

• B_n = nb total de partitions de n objets (nb de Bell)

$$B_n = \sum_{k=1}^{n} B_{n,k} = \frac{1}{e} \sum_{i=1}^{\infty} \frac{i^n}{i!}$$

Exemple : $B_{12} = 4 \ 213 \ 597$

⇒ Nécessité d'algorithmes pour trouver une « bonne » partition.

Comment définir la qualité d'une partition ?

24

1. IDEES GENERALES

1.5 Inertie inter-classe et inertie intra-classe

- n points dans un espace euclidien ; $d^2(\boldsymbol{i}, \boldsymbol{i}')$ distance euclidienne
- Soit une partition en K classes de poids $p_i = 1/n$
- $g_1, g_2, ..., g_K$: centres de gravité
- $I_1, I_2, ..., I_K$: inerties associées

Inertie totale	$I_T = \frac{1}{n} \sum_{i=1}^n d^2(i, \boldsymbol{g}) \text{ où } \boldsymbol{g} = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i$
Inertie d'une classe C_k $(k = 1,, K)$	$I_k = \frac{1}{n_k} \sum_{i \in C_k} d^2(i, g_k) \text{ où } g_k = \frac{1}{n_k} \sum_{i \in C_k} x_i$
Inertie intra-classe (W= within)	$I_{W} = \sum_{k=1}^{K} \frac{n_{k}}{n} I_{k} = \frac{1}{n} \sum_{k=1}^{K} \sum_{i \in C_{k}} d^{2}(i, \boldsymbol{g}_{k})$
Inertie inter-classe (B= between)	$I_B = \sum_{k=1}^K \frac{n_k}{n} d^2(\boldsymbol{g}_k, \boldsymbol{g})$
Théorème de Huyghens : $T = B + W$	$I_T = I_B + I_W$

1. IDEES GENERALES

Illustration du Théorème de Huyghens : T = B + W

Comparaison de deux partitions en k classes :

La meilleure est celle qui a l'inertie $I_{\it W}$ la plus faible (ou l'inertie $I_{\it B}$ la plus forte).

Remarque : Ce critère ne permet pas de comparer des partitions à nombres différents de classes.

27

1. IDEES GENERALES

Critère de classification

- \cdot Comparaison de deux partitions en K classes :
 - La meilleure est celle qui a l'inertie I_W la plus faible (ou l'inertie I_R la plus forte).
 - Critère global de qualité de la classification : $C_K^2 = \frac{I_B}{I_T}$
 - > Indique la part de la variabilité totale exprimée par la partition (souvent exprimé en %).
 - $ightharpoonup rac{E ext{xemple}}{1}$: Si C_K^2 =0.88 pour une partition en K=3 classes de 6 individus ; 88% de la variabilité des individus est prise en compte par la partition en 3 classes.
 - > Tenir compte du nb de classes au regard du nb d'individus ! nb de classes K $^{\prime}$ \Rightarrow C_{K}^{2} $^{\prime}$

Remarque : critère permettant de comparer des partitions ayant un même nombre de classes !!!

2. CLASSIFICATION PAR PARTITION

2.2 Regroupement d'observations autour de centres mobiles : méthodes k-means Algorithme de Lloyd

Fixer le nombre K de classes, puis :

- Etape 1 : Choix des K centres $g_k^{(0)}$ (par ex par tirage pseudo-aléatoire) et $\mathbf{1}^{\mathtt{ère}}$ partition associée $c_k^{(0)}$ $(k=1,\cdots,K)$ La classe $c_k^{(0)}$ est formée de tous les points plus proches de $g_k^{(0)}$ que de tout autre centre.
- Etape 2 : Calcul des centres de gravité de chaque classe $g_k^{(1)}$

 \Rightarrow définition d'une nouvelle partition $C_k^{(1)}$.

- · <u>Etape 3</u>: Itérations successives de ces étapes
 - \implies jusqu'à stabilisation du critère de classification retenu, i.e. quand le contenu des classes n'est plus modifié.

RÉSULTAT FONDAMENTAL

L'inertie intra-classe I_W diminue à chaque étape.

2. CLASSIFICATION PAR PARTITION

2.2 Regroupement d'observations autour de centres mobiles :

RÉSULTAT FONDAMENTAL

L'inertie intra-classe I_W diminue à chaque étape qd K est fixé.

On définit le critère : $I_{W}^{(m)} = \frac{1}{n} \sum_{k=1}^{k=K} \sum_{i \in C^{(m)}_{k}} d^{2}(\mathbf{i}, \mathbf{g}_{k}^{(m)})$

associé à la partition $C_k^{(m)}(k\!=\!1,\!...,K)$ de centre de gravité ${f g_k}^{(m+1)}$

- $\cdot \quad \text{Il suffit de montrer que}: \quad I_{\boldsymbol{W}}^{(m+1)} = \frac{1}{n} \sum_{k=1}^{k=K} \sum_{i \in C^{(m)}_k} \boldsymbol{d}^2(\mathbf{i}, \mathbf{g_k}^{(m+1)}) \leq I_{\boldsymbol{W}}^{(m)}$
- A l'étape m+1, on associe chaque pt au centre le plus proche donc

$$I_{W}^{(m+1)} \le I_{W}^{(m)}$$

• Le nuage de pts étant fini et la suite $\left(I_W^{(m)}\right)$ étant décroissante et > 0, l'algorithme converge vers une valeur minimale I_W^{lim} .

2. CLASSIFICATION PAR PARTITION

Il existe de nombreuses méthodes k-means puisque :

Un centre mobile peut être :

- une observation unique,
- quelques observations ou
- · leur centre de gravité ou
- tout élément résumant la position d'un certain nombre d'observations.

Le choix initial peut aussi être fait:

- par le classificateur lui-même en fonction, par exemple, de ses connaissances a priori,
- suite à une autre analyse statistique préalable, comme des points très éloignés sur un plan d'analyse en composantes principales,
- · au hasard, faute de mieux!

31

2. CLASSIFICATION PAR PARTITION

Segmentation par centres mobiles

Principe

Regrouper les individus en fonction de leur distance au « centre » des différentes classes .

· Variante: nuées dynamiques

Une classe est caractérisée par un noyau (ensemble formé de q pts appelés étalons) .

2. CLASSIFICATION PAR PARTITION

Avantages des méthodes k-means :

- algorithmes simples
- applicables à des corpus de données de grande quantité d'observations.

Inconvénients:

- le résultat dépend fortement du tirage initial des pts représentant les centres des classes.
 - Remèdes: rechercher les individus partageant les mêmes groupes lors de partitions répétées (formes fortes); combiner avec CAH (classification mixte).
- méthodes ne permettant pas de détecter la présence d'outliers.

Faire exemple 2 page 3 Td/TP ch 4

34

_

Ce qu'il faut retenir

- La classification automatique ou non supervisée permet d'organiser un ensemble d'objets ou d'individus en classes homogènes.
- Il existe un grand nombre de méthodes en fonction
 - de la nature des observations et
 - du type de classes que l'on cherche.
 - Attention :
 - Par partition : Kmeans : algorithme CV mais instable!
- On retiendra la plus appropriée en fonction de l'objectif recherché:
 - une partition sera bien souvent jugée satisfaisante si elle est composée de *classes interprétables*.

37

Exercices Td/TP ch IV: classification « à la main », fonction sous R

Données test supplémentaires

Données	Description		
Eaux1.txt	Corpus 24 eaux minérales décrites par 6 variables		
Eaux2010,txt	Corpus 113 eaux minérales décrites par 9 variables		
ChaZeb-a.txt	Corpus de 23 bovins (Charolais & Zébus) décrits par 6 variables pondérales.		
Loup.txt	Description de 43 crânes Chien/Loup par 6 variables. Identification d'un crane d'origine inconnue.		
CamRiz.xls	données agronomiques concernant la culture du riz		
Iris.xls	caractéristiques de 3 variétés d'iris		

38

II. Classement par AFD

39

L'analyse discriminante : introduction

Objet d'étude de l'analyse discriminante

- Technique statistique visant à décrire, expliquer et/ou prédire l'appartenance à des groupes prédéfinis d'un ens. d'obs. (individus,...) caractérisées par une variable à expliquer Y qualitative à partir de variables explicatives Xi
- Cas particulier de l'ACC pour lequel X décrit un ensemble de variables quantitatives et Y représente les variables indicatrices associées aux K modalités d'une variable qualitative.

L'analyse discriminante : introduction

L'analyse discriminante est utilisée dans de **nombreux** domaines:

- Médecine: détection de groupes à hauts risques cardiaques à partir de caractéristiques telles que l'âge, l'alimentation, le fait de fumer ou pas, les antécédents familiaux, etc.
- Domaine bancaire : évaluation de la fiabilité d'un demandeur de crédit à partir de ses revenus, du nb de personnes à charge, des encours de crédits qu'il détient, etc.
- Biologie : affectation d'un objet à sa famille d'appartenance à partir de ses caractéristiques physiques.
 - Ex très fameux des iris de Fisher, à l'origine de cette méthode. Il s'agit de reconnaître le type d'iris (setosa, virginica, et versicolor) à partir de la longueur/largeur de ses pétales et sépales (4 variables explicatives).

Introduction

2 approches différentes selon les objectifs

Y variable à expliquer qualitative à K catégories $X^1, X^2, ..., X^p$ variables explicatives centrées

- Objectif 1 : Décrire (Analyse discriminante descriptive ou analyse factorielle discriminante)
 - Étude de la distribution des X^j/ Y
 - Géométrie : Analyse Factorielle Discriminante (AFD)
 - trouver une représentation graphique dans un espace réduit qui permette de discerner le plus possible les groupes d'individus (ie liaison entre Y et les X^j).

En ce sens, elle se rapproche de l'analyse factorielle.

- Tests : Analyse de variance multidimensionnelle MANOVA

42

Introduction

- Objectif 2 : Classer (Analyse discriminante prédictive ou décisionnelle) : construire une fonction de classement (règles d'affectation des individus,...) pour prédire le groupe y d'appartenance d'un individu à partir des valeurs des Xi.
 - repose sur un cadre probabiliste.

Le plus connu : distribution multinormale (loi Normale) + homoscédasticité, les nuages de points conditionnels ont la même forme, nous aboutissons à l'analyse discriminante linéaire.

- très séduisante dans la pratique car la fonction de classement s'exprime comme une combinaison linéaire des X^j, facile à analyser et à interpréter.
- Distinction entre ces 2 approches n'est pas aussi tranchée.
 - possible de dériver des règles géométriques d'affectation à partir de l'analyse factorielle discriminante.

43

Les différentes formes d'analyse discriminante

	Méthode descriptive (représenter les groupes)	Méthode prédictive (prédire l'appartenance à un groupe)
Approche géométrique	Oui analyse factorielle discriminante	Oui analyse discriminante linéaire multinormalité homoscédasticis
Approche probabiliste (bayésienne)	Non	Oui équiprobabilité analyse discriminante linéaire a. d. quadratique a. d. non paramétrique régression logistique

(canonical discriminant analysis en anglais)

- 1. Principe et notations
- 2. Les axes et les variables discriminantes
- 3. Méthodes géométriques de classement

45

I. L' analyse factorielle discriminante

1. Principe et notations

- Y variable cible qualitative à K modalités correspondant à K groupes G_k ;
- \mathbf{X}^{j} j=1,...,p. p variables explicatives continues **centrées** (cas courant K);
- \mathbf{X}_i individu i défini dans \mathbb{R}^p

But AFD est de répondre à:

« les K classes diffèrent-elles sur l'ensemble des caractères quantitatifs ? »

46

I. L' analyse factorielle discriminante

1. Principe et notations

L'AFD vise à produire un nouveau système de représentation, constitué de combinaisons linéaires des variables initiales X^j, qui permet de séparer au mieux les K catégories.

Pour cela, il faudra:

- Remplacer les X^j par $d \le \min(K-1; p)$ variables discriminantes $F^{(k)} \cdot k = 1, ..., d$
- F^(k)=u₁^(k)X¹+...u_p^(k)X^p combinaisons linéaires des X^j (centrées);
- prenant des valeurs les plus ≠ possibles pour des individus différents sur la variable cible **Y**.
- Trouver les $d \le \min(K-1; p)$ vecteurs **u** normalisés (facteurs ou fonctions linéaires discriminantes) et orthogonaux. d est la dimension de la représentation des groupes.
 - ⇒ Il existe une grande analogie avec l'ACP.

47

I. L' analyse factorielle discriminante

1. Principe et notations

- technique descriptive : obtention d'une représentation graphique permettant de visualiser les proximités entre les obs, appartenant au même groupe ou non.
- technique explicative: possibilité d'interpréter les axes factoriels, combinaisons linéaires des variables initiales, et ainsi de comprendre les caractéristiques qui distinguent les ≠ groupes.
- Contrairement à l'analyse discriminante prédictive, ne repose sur aucune hypothèse probabiliste :
 - méthode essentiellement géométrique.

Exemple historique: Les iris de Fisher

setosa

versicolor

virginica

Problème: reconnaître les 3 types d'iris (setosa, virginica, et versicolor) à partir de la longueur/largeur de ses pétales et sépales (4 variables explicatives). Ici $d = \min(4; 3 - 1) = 2$

49

I. L' analyse factorielle discriminante Les iris de Fisher data (iris) **Title of the control of the control

I. L' analyse factorielle discriminante Les iris de Fisher data (iris) La valeur discriminante d'un plan varie fortement dans R4! Une mesure varie-t-elle entre espèces, plus généralement entre groupe? En dimension 3, on peut encore voir

Données simulées : 2 populations Normales de 50 obs chacune définies par 2 variables.

- ⇒ Choisir la direction D et projeter les pts sur l'axe ainsi défini permet une meilleure séparation les obs de chacun des 2 groupes (rouge et bleu).

 Par contre la direction B ne permet aucune séparation entre elles!
- ⇒ Suivant la direction de projection, les 2 populations apparaîtront un peu, bcp ou pas du tout différentes.

1. Principe et notations

Les n individus forment un nuage de n points dans \mathbb{R}^p , formé des K sous-nuages G_k à différencier.

On construit une $1^{\text{ère}}$ variable F^1 , combinaison linéaire des p variables initiales qui :

- minimise la variance intra \mathbf{W}_k $k=1,\ldots,K \Rightarrow$ dispersion intra groupe ; Within
- maximise la variance inter $B \Rightarrow$ dispersion inter groupe.

53

I. L' analyse factorielle discriminante

1. Principe et notations

Calcul de W et B:

les n observations \boldsymbol{x}_i

- ont chacune un poids p_i ($i=1,\ldots,n$) défini dans la matrice diagonale $\mathrm{D}_{n\times n}$ et
- forment un nuage de pts de \mathbb{R}^p , formé des K sous-nuages G_k (k=1,...,K) qui ont chacun un poids $q_k=\sum_{i\in G_k}p_i$

· 2 niveaux de variabilité :

- Variance intraclasse (« within ») W = moyenne des matrices de covariance $\mathbf{W}_{\mathbf{k}}$ des classes $\mathbf{G}_{\mathbf{k}}$

$$\mathbf{W_k} = \frac{1}{q_k} \sum_{i \in G_k} p_i (\mathbf{x_i} - \mathbf{g_k}) (\mathbf{x_i} - \mathbf{g_k})^{\mathrm{T}}$$

- D'où la matrice de covariance intraclasse

$$\mathbf{W} = \sum_{k=1}^{k=K} q_k \mathbf{W_k}$$

I. L' analyse factorielle discriminante

1. Principe et notations

Calcul de W et B:

- Variance interclasse (« between ») B = variance des barycentres g_k des classes G_k , k = 1, ..., K.

$$\mathbf{B} = \sum_{k=1}^{k=K} q_k (\mathbf{g_k} - \overline{\mathbf{g}}) (\mathbf{g_k} - \overline{\mathbf{g}})^{\mathrm{T}}$$

matrice de covariance « between »

 Théorème de Huyghens : Si T est la matrice de covariance totale

$$\mathbf{B} + \mathbf{W} = \mathbf{T}$$

55

I. L' analyse factorielle discriminante

1. Principe et notations

Calcul de W et B:

Matriciellement, supposant les var. explicatives centrées, ie $\overline{\mathbf{g}} = \mathbf{0}$ Et notant $\mathbf{X}_{\kappa}(n \times K)$ la matrice indicatrice des classes : $k \to 1 \quad 2 \quad \cdots \quad K$

$$\mathbf{X}_{\mathbf{K}} = \begin{bmatrix} 1 & 2 & \cdots & K \\ 1 & 0 & \cdots & 0 \\ \vdots & & \cdots & 0 \\ 0 & 0 & 1 & 0 \\ \vdots & & \cdots & \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

• Les K barycentres g_1, g_2, \dots, g_K sont les lignes de la matrice :

$$(\mathbf{X}_{\mathbf{K}}^{\mathbf{T}}\mathbf{D}\mathbf{X}_{\mathbf{K}})^{-1}(\mathbf{X}_{\mathbf{K}}^{\mathbf{T}}\mathbf{D}\mathbf{X})$$

où $\mathbf{X}_K^T \mathbf{D} \mathbf{X}_K$ est la matrice diagonale $(K \times K)$ des poids q_k des sousnuages et $\mathbf{D} = \mathrm{diag}(p_i \; ; \; i = 1, ..., n)$.

1. Principe et notations

• La matrice de variance interclasse s'écrit (si $\overline{g} = 0$) :

$$\begin{array}{lll} \boldsymbol{B} & = & \left(\!\!\left(\boldsymbol{X}_K^\mathsf{T}\boldsymbol{D}\boldsymbol{X}_K\right)^{\!-1}\!\left(\boldsymbol{X}_K^\mathsf{T}\boldsymbol{D}\boldsymbol{X}\right)\!\!\right)^{\!T}\boldsymbol{X}_K^\mathsf{T}\boldsymbol{D}\boldsymbol{X}_K\!\left(\!\!\left(\boldsymbol{X}_K^\mathsf{T}\boldsymbol{D}\boldsymbol{X}_K\right)^{\!-1}\!\left(\boldsymbol{X}_K^\mathsf{T}\boldsymbol{D}\boldsymbol{X}\right)\!\right) \\ & = & \boldsymbol{X}^\mathsf{T}\boldsymbol{D}\boldsymbol{X}_K\!\left(\!\boldsymbol{X}_K^\mathsf{T}\boldsymbol{D}\boldsymbol{X}_K\right)^{\!-1}\!\left(\boldsymbol{X}_K^\mathsf{T}\boldsymbol{D}\boldsymbol{X}_K\right)^{\!-1}\!\left(\boldsymbol{X}_K^\mathsf{T}\boldsymbol{D}\boldsymbol{X}\right) \end{array}$$

• Dans le cas où $p_i=1/n$, en notant les effectifs des \underline{K} sousnuages n_1,n_2,\dots,n_K , on montre que l'on a :

$$\begin{cases} \mathbf{B} &= \frac{1}{n} \sum_{k=1}^{k=K} n_k (\mathbf{g_k} - \overline{\mathbf{g}}) (\mathbf{g_k} - \overline{\mathbf{g}})^{\mathrm{T}} \\ \mathbf{W} &= \frac{1}{n} \sum_{k=1}^{k=K} n_k \mathbf{W_k} \end{cases}$$

57

I. L' analyse factorielle discriminante

2. Les axes et les variables discriminantes

Soit \mathbb{R}^p (espace des obs.) muni de la métrique $\mathbf{Q}_{p \times p}$ (cf. ACP). On notera :

- $a_{n\times 1}$ l'axe discriminant,
- $u_{v\times 1}$ le facteur associé u=Qa,
- F = Xu la variable discriminante.

En projection sur l'axe a,

- les K centres de gravité doivent être le + plus séparés possible, tandis que
- chaque sous-nuage doit se projeter de manière groupée autour de la projection de sous centre de gravité.

58

I. L' analyse factorielle discriminante

2. Les axes et les variables discriminantes

Axes discriminants a (Q-normé à 1): 2 objectifs simultanés

Dispersion inter classe maximale: max a^TBa

• Dispersion intra classe minimale: $min a^TWa$

59

I. L' analyse factorielle discriminante

2. Les axes et les variables discriminantes

Axes discriminants : 2 objectifs simultanés

Géométriquement ceci signifie que :

· la matrice d'inertie des barycentres g_k , QBQ doit être maximale en projection sur a,

cette inertie vaut : $a^{\mathrm{T}}\mathrm{QBQ}a$ si a est Q-normé à 1

 Pour qu'un sous-nuage reste bien groupé il faut, qu'en projection sur a, a^TQW_kQa soit la plus faible possible pour toutes les classes, k = 1,...,K.

On cherche donc à minimiser la somme de ces inerties soit :

$$\sum_{k=1}^{k=K} \mathbf{a}^{\mathrm{T}} \mathbf{Q} \mathbf{W}_{k} \mathbf{Q} \mathbf{a} = \mathbf{a}^{\mathrm{T}} \mathbf{Q} \mathbf{W} \mathbf{Q} \mathbf{a}$$

2. Les axes et les variables discriminantes

Axes discriminants : 2 objectifs simultanés

- · Simultanéïté impossible
 - $\max a^{\mathrm{T}} \mathbf{B} a \Rightarrow a \mathsf{tq} \mathbf{B} a = \alpha a$, $\alpha \max$
- · Compromis : On reformule l'objectif

Le théorème de Huyghens entraîne:

$$\boldsymbol{a}^T\boldsymbol{Q}\boldsymbol{T}\boldsymbol{Q}\boldsymbol{a}=\boldsymbol{a}^T\boldsymbol{Q}\boldsymbol{B}\boldsymbol{Q}\boldsymbol{a}+\boldsymbol{a}^T\boldsymbol{Q}\boldsymbol{W}\boldsymbol{Q}\boldsymbol{a}.$$

Avec u = Qa le facteur associé à a, on a donc :

$$u^{\mathrm{T}}\mathbf{T}u = u^{\mathrm{T}}\mathbf{B}u + u^{\mathrm{T}}\mathbf{W}u$$

$$max \qquad min$$

=> On peut alors prendre comme critère à maximiser soit

le rapport « inertie interclasse/inertie intraclasse » ou

le rapport « inertie interclasse/inertie totale ».

61

I. L' analyse factorielle discriminante

2. Les axes et les variables discriminantes

Axes discriminants : 2 objectifs simultanés

On prendra comme critère soit :

(a) inter/intra
$$\Rightarrow$$
 maximiser $F_v = v^T B v / v^T W v$
sous la contrainte $v^T W v = 1$

 \leftarrow

(b) inter/totale \Rightarrow maximiser $F_u = u^T B u / u^T T u$ (Huyghens) sous la contrainte $u^T T u = 1$.

62

I. L' analyse factorielle discriminante

2. Les axes et les variables discriminantes

On montre que dans le cas :

- (a) $v^1: 1^{\text{er}}$ vecteur propre de $\mathbf{W}^{-1}\mathbf{B}$, de valeur propre $\mu_1 = \lambda_1/(1-\lambda_1)$ (contrainte $v^T\mathbf{W}v = 1$).
- **(b)** u^1 est le 1^{er} vecteur propre de $\mathbf{T}^{-1}\mathbf{B}$ associé à $\lambda_1 \in [0;1]$ la plus grande valeur propre de $\mathbf{T}^{-1}\mathbf{B}$ (contrainte $u^T\mathbf{T}u=1$) tq F_u est max .

 \mathbf{u}^{1} est le 1er facteur discriminant, λ_{1} son pouvoir discriminant.

la 1ère variable discriminante $F^1=Xu^1$ obtenue, on cherche $F^2=Xu^2$ non corrélée à F^1 tq le rapport F_u soit maximum et ainsi de suite ...

 $\Rightarrow \lambda$ a les caractéristiques d'un R^2 en régression.

63

I. L' analyse factorielle discriminante

2. Les axes et les variables discriminantes

On montre que :

- Les vecteurs propres u et v sont liés par la relation :

$$\boldsymbol{u} = \left(\sqrt{1-\lambda}\right)\boldsymbol{v}$$

• Il existe $d \le \min(K-1,p)$ axes factoriels discriminants correspondants aux d valeurs propres de $\mathbf{W}^{-1}\mathbf{B}$ (ou de $\mathbf{T}^{-1}\mathbf{B}$) et aux d vecteurs propres associés.

2. Les axes et les variables discriminantes

Les différents cas selon $\lambda_1 \in [0; 1] : \cos(b) \operatorname{diag} \operatorname{de} \mathbf{T}^{-1} \mathbf{B}$

1. $\lambda_1 = 0$: aucune séparation linéaire n'est possible, groupes concentriques

3. Mais $0 < \lambda_1 < 1$: séparation possible avec groupes non recouvrants

I. L' analyse factorielle discriminante

2. Les axes et les variables discriminantes

<u>Rappel:</u> $d \le \min(K-1;p)$ axes factoriels discriminants correspondants aux d valeurs propres μ_k de W⁻¹B, et aux d vecteurs propres associés. Choix du nb ????

Des <u>tests sont possibles</u> sous réserve d'accepter l'hypothèse de Normalité (ou de ne pas en être « trop » éloigné).

1/ Test global de la dimension d de représentation \approx MANOVA 1: H_0 : $\mu_1 = \mu_2 = \cdots = \mu_d$

on calcule le Lambda de Wilks:

$$\Lambda = \frac{\left| \mathbf{W} \right|}{\left| \mathbf{T} \right|} = \frac{\left| \mathbf{W} \right|}{\left| \mathbf{W} + \mathbf{B} \right|} = \frac{1}{\left| \mathbf{W}^{-1} \mathbf{B} + \mathbf{I} \right|} = \prod_{k=1}^{k=d} \left(1 - \lambda_k \right) = \prod_{k=1}^{k=d} \left(\frac{1}{1 + \mu_k} \right)$$

67

I. L' analyse factorielle discriminante

2. Les axes et les variables discriminantes

Remarques:

- Les pratiques anglaise et française diffèrent un peu, et naturellement les logiciels qui en découlent :
 - <u>les anglais</u> : souvent le 1^{er} rapport (a), dans « l'esprit » du modèle linéaire classique (ANOVA, avec 1 seule variable le rapport $\frac{inter(K-1)}{mtra(n-K)}$ est strict[†] une statistique F utilisée dans le modèle linéaire :
 - un F élevé traduit une différence importante entre les traitements;
 - <u>les français</u> préfèrent le 2^{nd} (b), lié à la relation entre le tableau des variables indicatrices des classes X_k et le tableau de données X.

· Sous R

1da (MASS) utilise W⁻¹B et $v^{T}Wv = 1 \Rightarrow$ (a) discrimin (ade4) utilise T⁻¹B et $u^{T}Tu = 1 \Rightarrow$ (b)

66

13

I. L' analyse factorielle discriminante

2. Les axes et les variables discriminantes

$$\Lambda = \frac{\left| \mathbf{W} \right|}{\left| \mathbf{T} \right|} = \frac{\left| \mathbf{W} \right|}{\left| \mathbf{W} + \mathbf{B} \right|} = \frac{1}{\left| \mathbf{W}^{-1} \mathbf{B} + \mathbf{I} \right|} = \prod_{k=1}^{k=d} \left(1 - \lambda_k \right) = \prod_{k=1}^{k=d} \left(\frac{1}{1 + \mu_k} \right)$$

Sous H_0 , Λ suit la loi du même nom, à 3 paramètres (p, n-K, K-1)On utilise généralement l'approximation :

$$-\left[n-1-\frac{1}{2}(p+K)\right]\ln(\Lambda) \approx \chi_{p(K-1)}^{2}$$

Il existe 3 autres tests que l'on peut utiliser, en option dans R, dans la directive summary.manova:

- Lawley-Hotelling: $U^{(d)} = trace(\mathbf{W}^{-1}\mathbf{B}) = \sum_{k=1}^{d} \mu_k$
- **Pillai**: $V^{(d)} = trace(\mathbf{T}^{-1}\mathbf{B}) = \sum_{k=1}^{d} \frac{\mu_k}{1-\mu_k}$
- La plus grande valeur propre de **Roy** : $\theta = \mu_1$

2. Les axes et les variables discriminantes

- 2/ Détermination du nombre d'axes d-a suffisants pour discriminer les nuages de points :
- => repose sur le Lambda de Wilks suivant :

$$\Lambda_q = \prod_{k=d-q}^d (1 - \lambda_k) = \prod_{k=d-q}^d \left(\frac{1}{1 + \mu_k}\right)$$

 H_0 : non significativité simultanée des q derniers axes discriminants

Introduction pas à pas de variables dans la règle d'après leur capacité à faire baisser le Lambda de Wilks :

Test de variation du Lambda de Wilks

$$\left|\frac{n_{-K-q}}{K-1}\left(\frac{\Lambda_q}{\Lambda_{q+1}}-1\right)\right|\cong F_{(K-1;n_{-K-q})}\;;q=1,\ldots,K-1\;ss\;H_0\;"\;\mathsf{NS}\;\mathsf{de}\;\mathsf{l'axe}\;q+1"$$

dès que la statistique précédente n'est plus significative, on décide que la dimension de représentation est d-q.

70

I. L' analyse factorielle discriminante

3. Une ACP particulière

$$i \quad 0 \quad 0 \quad ... \quad 1 \qquad X_i^1 \quad X_i^2 \qquad X_i^j \qquad X_i^j$$

$$n \quad [\ 0 \ 0 \ \dots \ 1] \qquad \underline{X_n^1} \quad X_n^2 \qquad X_n^j \qquad \underline{X_n^j}$$
 catrices des groupes variables explicatives

indicatrices des groupes

définissons la matrice indicatrice X_{κ} $(n \times K)$ des classes.

Matrice X tableau initial $n \times p$, centré

I. L' analyse factorielle discriminante

3. Une ACP particulière

- AFD \Leftrightarrow ACP (X_{Gk} Q, D) du nuage X_{Gk} des K centroïdes
 - La métrique $D_{K\times K}$ sur \mathbb{R}^K (espace des variables):
 - · la matrice diagonale des poids q_k =n_k/n des classes
 - la métrique Q_{pxp} sur R^p (espaces des individus):
 T⁻¹ ou W⁻¹ dite métrique de Mahalanobis.

Remarques:

- L'utilisation de T-1 et W-1 comme métrique est donc indifférente, on dit qu'elles sont équivalentes.
- La métrique $W^{\text{-}1}$ (métrique de Mahalanobis) est plus utilisée par les Anglo-saxons et les éditeurs de logiciels.
- Distance d de 2 indiv x et $\mathbf{v}: d^2(\mathbf{x}, \mathbf{v}) = (\mathbf{x} \mathbf{y})^T \mathbf{W}^{-1}(\mathbf{x} \mathbf{y})$
- · Ces métriques correspondent à une projection oblique. Sans cette oblicité, il s'agirait d'une simple ACP; mais les groupes seraient mal séparés.
- Nombre d'axes discriminants est au plus égal à $K_{-1}1$ dans le cas courant où n > p > K.

I. L' analyse factorielle discriminante

- · Conséquences construction AFD
 - Lien avec d'autres méthodes (cf. Lebart & al. (1995), p.
 - ACP
 - les variables discriminantes sont non corrélées 2 à 2
 - On pourra interpréter les variables discriminantes au moyen du cercle de corrélation
 - Pas de test, mais ... sous réserve de ne pas rejeter l'hypothèse de Normalité
 - Pas d'erreurs standard sur les coefficients
 - MAIS possibilité d'utiliser les méthodes de type « pas à pas » comme en régression. Sous R : stepclass(klaR). 72

4. Méthodes géométriques de classement

Échantillon d'apprentissage

e observation de groupe inconnu

Règle géométrique de classement : - e classé dans le groupe k tel que $d(e; g_k)$ soit minimale

73

L' analyse factorielle discriminante

4. Méthodes géométriques de classement

Règles géométriques : e classé dans le groupe G_k pour lequel la distance (définie par \mathbf{W}^{-1}) à \mathbf{g}_k est minimale : Cte ne dépendant pas de k

$$d^{2}(\boldsymbol{e},\boldsymbol{g}_{k}) = (\boldsymbol{e} - \boldsymbol{g}_{k})^{\mathrm{T}} \mathbf{W}^{-1} (\boldsymbol{e} - \boldsymbol{g}_{k}) = \boldsymbol{e}^{\mathrm{T}} \mathbf{W}^{-1} \boldsymbol{e} - 2\boldsymbol{g}_{k}^{\mathrm{T}} \mathbf{W}^{-1} \boldsymbol{e} + \boldsymbol{g}_{k}^{\mathrm{T}} \mathbf{W}^{-1} \boldsymbol{g}_{k}$$
- D'où

Minimiser $d^2(e, g_k) \Leftrightarrow \text{maximiser } \left(2g_k^T W^{-1} e - g_k^T W^{-1} g_k\right)$

=> règle linéaire par rapport aux coordonnées de e

• Pour chacun des K groupes G_k , on a une fonction discriminante de Fisher (fonction de classement!) obtenue après inversion de la matrice \mathbf{W} :

$$\dot{\alpha}_k + \beta_{k,1} \mathbf{X}^1 + \beta_{k,2} \mathbf{X}^2 + \dots + \beta_{k,n} \mathbf{X}^p$$

 \Rightarrow e classé dans le groupe k où la fonction est maximale. Sous R, utiliser la fonction predict

74

L'analyse discriminante linéaire Les iris de Fisher data (iris)

- > library (MASS)
- > ir.lda<-lda(Species ~ ., iris); ir.lda #va et vp de W-1B [...]

Sepal.Length Sepal.Width Petal.Length Petal.Width 5.006 3.428 1.462 0.246 setosa 5.936 2.770 4.260 1.326 versicolor virginica 6.588 2.974 5.552 2.026

Coefficients of linear discriminants: LD1

Sepal.Length 0.8293776 0.02410215 4 Sepal.Width 1.5344731 2.16452123

Petal.Length -2.2012117 -0.93192121 Petal.Width -2.8104603 2.83918785

Proportion of trace: LD1 LD2

(0.9912)0.0088

99.1% de la variabilité interclasse est expliquée par le 1er axe discriminant! 75

Coefficients des 2=3-1

fonctions discriminantes.

2 variables discriminantes

(non corrélées) = combinaisons linéaires des variables initiales centrées.

Coordonnées des indiv sur les

L'analyse discriminante linéaire Les iris de Fisher data (iris)

> plot(ir.lda)

- # règles géométriques
- > pred<-predict(ir.lda)\$class
- > table(iris\$Species,pred)

pred

F			
	setosa	versicolor	virginica
setosa	50	0	0
versicolor	0	48	2
virginica	0	1	49

L'analyse discriminante linéaire

Les iris de Fisher data (iris)

Utilisation de la fonction discrimin (ade4)
 #va et vp de T-1B

ACP du nuage des centroïdes qu

> dis1 <- discrimin(dudi.pca(iris[, 1:4], scan = F),
 iris\$Species, scan = F)</pre>

> dis1

```
Discriminant analysis
call: discrimin(dudi = dudi.pca(iris[, 1:4], scan = F), fac = iris$Species, scannf = F)
class: discrimin
$fnf (axis saved) : 2
eigen values: 0.9699 0.222 (cf résultats précédents)
```

data.frame nrow ncol content

```
1 $fa 4 2 loadings / canonical weights u
2 $li 150 2 canonical scores F=Xu
3 $va 4 2 cos(variables, canonical scores)
4 $cp 4 2 cos(components, canonical scores)
5 $qc 3 2 class scores
```

77

II Analyse discriminante probabiliste

- Approche géométrique de classement ne prend pas en compte les proba a priori des différentes classes, qui peuvent être très inégales!
- · Modèle bayésien d'affectation :
 - Pour tout i < k, soient :
 - P(G_i/x) = proba a posteriori d'appartenance à G_i sachant x (connaissant les caractéristiques de x, son « dossier »)
 - $p_i = P(G_i) = proba \ a \ priori$ d'appartenance à G_i (proportion de G_i dans la population)
 - $f_i(x) = P(x/G_i)$ = densité conditionnelle de la loi de x connaissant son groupe G_i
 - D'après le théorème de Bayes :

$$P(G_i/\mathbf{x}) = \frac{p_i f_i(\mathbf{x})}{\sum_{i=1}^k p_i f_i(\mathbf{x})}$$

- Règle de classement bayésienne :
 - on classe x dans le groupe G_i où $P(G_i/x)$ est maximum
 - => Pb = estimer $P(G_i/x)$!

78

II Analyse discriminante probabiliste : 3 possibilités pour estimer $P(G_i/x)$

En commençant par calculer $P(x/G_i)$

- Selon une méthode paramétrique (on suppose la multinormalité de P(x/G_i) avec éventuellement égalité des Σ_i, donc le nb de paramètres du problème est fini : AD Linéaire ou AD Quadratique)
- 2. Selon une méthode non paramétrique (pas d'hypothèse sur la densité $P(x/G_i)$: méthode du noyau ou des plus proches voisins)
- 3. Directement par une approche semi-paramétrique (régression logistique) où on écrit $P(G_i/x)$ sous la forme :

 $P(G_i/x) = \frac{e^{\alpha'x+\beta}}{1 + e^{\alpha'x+\beta}}$

79

II Analyse discriminante probabiliste :

La règle bayésienne naïve dans le cadre Normal

La densité d'une loi multinormale N(μ_i,Σ_i) est :

$$f_{i}(\mathbf{x}) = \frac{1}{\left(2\pi\right)^{p/2} \sqrt{\det\left(\Sigma_{i}\right)}} \exp\left[-\frac{1}{2} \left(\mathbf{x} - \mu_{i}\right)' \Sigma_{i}^{-1} \left(\mathbf{x} - \mu_{i}\right)\right]$$

D'après Bayes, maximiser P(G_i/x)

 maximiser p_if_i(x) ie attribuer x au groupe le plus probable a posteriori

$$\max_{i} \left[Log\left(p_{i}\right) - \frac{1}{2}\left(\mathbf{x} - \mu_{i}\right)' \Sigma_{i}^{-1}\left(\mathbf{x} - \mu_{i}\right) - \frac{1}{2}Log\left(\det\left(\Sigma_{i}\right)\right) \right]$$

 \Rightarrow On obtient une règle quadratique en x!

II Analyse discriminante probabiliste : Hypothèses Normalité + homoscédasticité

Hypothèse simplificatrice: $\Sigma_1 = \Sigma_2$... $= \Sigma$ On attribue x au groupe j tel que:

$$\max \left[\operatorname{Ln} \, \mathsf{p}_{\mathsf{j}} - \frac{1}{2} \, x' \, \Sigma^{-1} \, x - \frac{1}{2} \, \, \mu_{\mathsf{j}}' \, \Sigma^{1} \, \mu_{\mathsf{j}} + x' \, \Sigma^{-1} \, \mu_{\mathsf{j}} \right]$$

donc: max
$$\left[\underbrace{\operatorname{Ln} \, \mathbf{p}_{j} - \frac{1}{2} \, \mu_{j}' \, \Sigma^{-1}}_{a_{j}} \, \mu_{j} + x' \, \Sigma^{-1} \, \mu_{j}\right]$$

Règle linéaire équivalente à la règle géométrique si équiprobabilité, après estimation de μ_i par g_i et de \sum par W.

Hypothèses Normalité + homoscédasticité + équiprobabilité => équivalence des règles géométrique (maximiser la fct de Fisher) et bayésienne.

L'analyse discriminante linéaire Les iris de Fisher data (iris) # erreur d'apprentissage : analyse disc probabiliste > table(iris[,"Species"],predict(ir.lda,iris)\$class) # matrice de confusion setosa versicolor virginica setosa 2 versicolor 0 Ω 49 virginica Classes obtenues par resubstitution Classes observées n1=n2=n3 =50 82

L'analyse discriminante linéaire

Les iris de Fisher data (iris)

- > pred<-predict(ir.lda)\$class
- # classement à partir des 2 fonctions de score LD1 et LD2
- > pred.ld1<-predict(ir.lda,dimen=1)\$class
- # classement à partir de la fonction de score LD1 seult
- > table (Species, pred.ld1)

Species	setosa	versicolor	virginica
setosa	50	0	0
versicolor	0	48	2
virginica	0	0	50

gda (règle quadratique) existe sous R

83

L'analyse discriminante linéaire

Les iris de Fisher data (iris)

Autre évaluation des fonctions discriminantes = test ANOVA pour voir si les groupes considérés diffèrent pour les valeurs moyennes de LD1 ef LD2.

- > 1d2 <- predict(ir.1da) \$x[,2] # valeurs de LD2 pour les 150 > anova(lm(ld1 ~ Species)) Analysis of Variance Table Response: 1d1

Df Sum Sq Mean Sq F value Pr(>F)Species 2 4732.2 2366.1 2366.1 < (2.2e-16 Residuals 147 147.0

> ld1 <- predict(ir.lda) \$x[,1] # valeurs de LD1

> anova(lm(ld2 ~ Species)) Analysis of Variance Table

Response: 1d2 Df Sum Sq Mean Sq F value Pr(>F) 2 41.952 20.976 20.976(9.68e-09 Species

Residuals 147 147.000 1.000 > ?qlda #rèqle quadratique

84

facteurs Species

les 2 fonctions de scores discriminent le

Comment estimer un tx d'erreur non biaisé?

- Les performances « par défaut » de la règle sont optimistes!
- La règle est évaluée à partir des données même qui ont conduit à son élaboration

(méthode dite de resubstitution)

• Il faudrait pouvoir l'évaluer sur de nouveaux individus!

Les solutions :

- · Méthode d'échantillon / test
- · Validation croisée (Leave One Out ou LOO)
- Technique du bootstrap

85

Avantages de l'analyse discriminante

- Problème à solution analytique directe (calcul des vecteurs propres de $W^{-1}B$)
- Optimale quand les hypothèses de non colinéarité des variables, homoscédasticité et multinormalité sont vérifiées
- Les coef. des combinaisons linéaires constituent un résultat simple qui peut s'interpréter par la corrélation avec les variables de départ, pratiquement comme dans une régression
- · Modélise très bien les phénomènes linéaires
- · Ne nécessite pas un gros ensemble d'apprentissage
- · Rapidité de calcul du modèle
- · Possibilité de sélection pas à pas
- · Facilité d'intégrer des coûts d'erreur de classement
- · Technique implémentée dans de nombreux logiciels
- · Rééchantillonnage simple en particulier le jackknife.

86

Inconvénients de l'analyse discriminante

- Ne détecte que les phénomènes linéaires, mais il existe une analyse discriminante quadratique qui, tout en s'appuyant sur les mêmes principes introduit davantage de paramètres.
- Ne s'applique pas à tout type de données (données numériques sans valeurs manquantes)
- Hypothèses contraignantes, et pour s'en rapprocher :
 - normaliser les variables
 - sélectionner soigneusement les variables les + discriminantes
 - éliminer les variables colinéaires
 - éliminer les individus hors norme
 - s'il reste de l'hétéroscédasticité, mieux vaut avoir des classes de tailles comparables
 - travailler sur des populations homogènes

87

Références bibliographiques

- L. Bellanger, R. Tomassone, Exploration de données et méthodes statistiques: Data analysis & Data mining avec R. Collection Références Sciences, Editions Ellipses, Paris, 2014.
- A. Bouchier, Documents et supports de cours disponibles sur le site : http://rstat.ouvaton.org/
- B.S. Everitt, S. Landau, L. Morven. Cluster Analysis, 4th ed., Oxford University Press Inc., Oxford, 2001...
- A.D., Gordon, A. D., Classification. 2nd Edition. London: Chapman and Hall / CRC, 1999.
- F. Husson, S. Lê & J. Pagès, Analyse de données avec R. PUR, Rennes, 2009
- L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, New York, 1990.
- L. Lebart, A. Morineau, M. Piron, Statistique exploratoire multidimensionnelle. Dunod, Paris, 2006.
- J.-P. Nakache, J. Confais, Approche pragmatique de la Classification. Editions Technip, Paris, 2005.
- G. Saporta, Probabilités, Analyse des données. Editions Technip, Paris, 2006.
- Statistics with R: http://zoonek2.free.fr/UNIX/48_R/all.html
- S. Tufféry, Data mining et statistique décisionnelle : L'intelligence dans les bases de données. Editions Technip, Paris, 2005.