La classe NPNon-Deterministic Polynomial time

Per ogni k

$$NP = \bigcup NTIME(n^k)$$

La classe PDeterministic Polynomial time

Per ogni k

$$P = \bigcup TIME(n^k)$$

Linguaggi NP-completi

Una funzione f:A->B

è calcolabile in tempo polinomiale se esiste una macchina M che calcola la funzione f in tempo polinomiale

$$w \longrightarrow wOf(w)$$

Un linguaggio A è riducibile in tempo polinomiale a un linguaggio B, $A \le B$, se esiste una funzione polinomiale f tale che per ogni x: $x \in A$ implica $f(x) \in B$

Nota che se A≤B e B è polinomiale allora anche A è polinomiale.

Sia M che decide B,

Sia f che riduce A a B

Sia x elemento di A

- 1. Calcola f(x)
- 2. Calcola M(f(x))

Pari<=Dispari Dispari<=Pari

X è elemento di Pari (div 2 (resto=0)) Dispari X è elemento di dispari Non (div 2)

NP-Completezza

Un problema A è NP-completo se:

·Aè in NP

Ogni problema NP è riducibile ad A

(in tempo polinomiale)

Osservazione:

Se possiamo risolvere un problema NP-complete in tempo Deterministico Polinomiale allora:

P = NP

Osservazione:

Se proviamo che
non possiamo risolvere un problema
NP-complete
in tempo Deterministico Polinomiale
Allora:

 $P \neq NP$

Un Linguaggio L è NP-completo se:

· L è in NP, e

Ogni Linguaggio in NP può essere
 ridotto a L in Tempo Polinomiale

Formule SAT: literal
$$(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4) \land (x_4 \lor x_5 \lor x_6)$$

L: letterale o letterale negato

O: Gruppi di L collegati da V

Sat: Gruppi di O collegati da A

Un Linguaggio NP-completo

Teorema di Cook-Levin:

Linguaggio SAT (satisfiability problem) è NP-complete

Dim:

Part1: SATè in NP (gia provato)

Part2: ridurre tutti i Linguaggi NP al problema SAT in Tempo Polinomiale

Sia $L \in NP$, un arbitrario linguaggio

Definiamo una riduzione Polinomiale of L to SAT

Sia M Macchina di Turing Nondeterministica che decide L in Tempo polinomiale

Per ogni stringa w costruiamo in Tempo Polinomiale una espressione Booleana $\varphi(M, w)$

tale che: $w \in L \Leftrightarrow \varphi(M, w)$ è soddisfacibile

Cammino di computazione

Sequenze di configurazioni

Stato iniziale

1:
$$q_0 \sigma_1 \sigma_2 \cdots \sigma_r$$

1:
$$q_0 \sigma_1 \sigma_2 \cdots \sigma_n$$

2: $\succ \sigma'_1 q_i \sigma_2 \cdots \sigma_n$

$$n^k \geq x : \qquad \succ \sigma'_1 \cdots \sigma'_l \, \overline{q_a} \, \sigma'_{l+1} \cdots \sigma'_{n^k}$$

Stato accettazione

$$\mathbf{W} = \sigma_1 \sigma_2 \cdots \sigma_n$$

Massima area di calcolo sul nastro

durante n^k steps (passi) temporali

Tableau delle configurazioni

Alfabeto del Tableau

$$C = \{\#\} \cup \{\text{alfabeta nastro}\} \cup \{\text{insieme degli stati}\}$$
$$= \{\#\} \cup \{\alpha_1, \dots, \alpha_r\} \cup \{q_1, \dots, q_t\}$$

Dimensione finita (costante)

Per ogni cella con posizione i, jE per ogni simbolo nell'alfabeto del tableau $s \in C$

Definiamo la variabile $X_{i,j,s}$

tale che se la cella i,j contiene il simbolo s allora $x_{i,j,s} = 1$ altrimenti $x_{i,j,s} = 0$

Esempio:

 $\varphi(M,W)$ è costruito con le variabili $X_{i,j,s}$

$$\varphi(M, w) = \varphi_{\text{cell}} \wedge \varphi_{\text{start}} \wedge \varphi_{\text{accept}} \wedge \varphi_{\text{move}}$$

Quando la formula è sodisfatta allora descrive una computazione di accettazione nel tableau della macchina M su input W

 $arphi_{\mathsf{cell}}$

Ci rende sicuri che ogni cella nel tableau contiene esattamente un simbolo

$$\varphi_{\text{cell}} = \bigwedge_{\text{all } i,j} \left[\bigvee_{s \in \mathcal{C}} \mathbf{X}_{i,j,s} \right) \wedge \left(\bigwedge_{\substack{s,t \in \mathcal{C} \\ s \neq t}} \left(\overline{\mathbf{X}_{i,j,s}} \vee \overline{\mathbf{X}_{i,j,t}} \right) \right]$$

Ogni cella contiene almeno un simbolo

Ogni cella contiene al massimo un simbolo

Dimensione di $\varphi_{\rm cell}$:

$$\varphi_{\text{cell}} = \bigwedge_{\text{all } i,j} \left[\left(\bigvee_{s \in C} \mathbf{x}_{i,j,s} \right) \wedge \left(\bigwedge_{\substack{s,t \in C \\ s \neq t}} \left(\mathbf{x}_{i,j,s} \vee \mathbf{x}_{i,j,t} \right) \right) \right]$$

$$(2n^{k} + 3)^{2} \times (|C| + |C|^{2})$$

10/04/2021

 $=O(n^{2k})$

$arphi_{\mathsf{start}}$

il tableau parte con la configurazione iniziale

$$\varphi_{\text{start}} = X_{1,1,\#} \wedge X_{1,2,\Diamond} \wedge \cdots \wedge X_{1,n^k+1,\Diamond}$$

$$\wedge X_{1,n^k+2,q_0} \wedge X_{1,n^k+3,\sigma_1} \wedge \cdots \wedge X_{1,n^k+n+2,\sigma_n}$$

$$\wedge X_{1,n^k+n+3,\Diamond} \wedge X_{1,2n^k+2,\Diamond} \wedge \cdots \wedge X_{1,2n^k+2,\#}$$

Descrive la configurazione iniziale Nella riga 1 del tableau

Dimensione di φ_{start} :

 $arphi_{
m accept}$

Ci da la sicurezza che La computazione raggiunge stato di Accettazione

$$\varphi_{\text{accept}} = \bigvee_{\substack{\text{all } i,j\\ \text{all } q \in F}} X_{i,j,q}$$
Stati di accettazione

Uno stato di accettazione deve apparire Da qualche parte nel tableau

Size of φ_{accept} :

Ci rende sicuri che il tableau $\psi_{ ext{move}}$ ci da una sequenza valida di configurazioni

 φ_{move} è espresso in termini di windows legali

Tableau

Per ogni i,j, elemento centrale superiore

Window

a	q_1	Ь
q_2	a	C

2x6 area di celle

Possibili windows Legali

window Legali obbediscono alle transizioni

Altre finestre legali

#	Ь	a
#	b	α

Ь	Ь	Ь
С	b	b

Possibili window illegali

Formula:

$$X_{i,j,a} \wedge X_{i,j+1,q_1} \wedge X_{i,j+2,b}$$

$$\wedge x_{i+1,j,q_2} \wedge x_{i+1,j+1,a} \wedge x_{i+1,j+2,c}$$

$$\varphi_{\text{move}} = \bigwedge_{\text{alli,j}} (\text{window}(i,j) \text{ is legal})$$

window (i,j) è legale:

Dimensione di φ_{move} :

Dimensione di una formula per una window Legale in una cella i,j: 6

X Numero di possibili legal window in una cella i,j: al max $|C|^6$

X Numero di possibili celle: $(2n^k + 3)n^k$

Dimensione di $\varphi(M,w)$:

$$\varphi(M,w) = \varphi_{cell} \wedge \varphi_{start} \wedge \varphi_{accept} \wedge \varphi_{move}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$O(n^{2k}) + O(n^{k}) + O(n^{2k}) + O(n^{2k})$$

$$= O(n^{2k})$$

Costruita in Tempo $O(n^{2k})$ Quindi Polinomiale in n

$$\varphi(M,w) = \varphi_{\text{cell}} \wedge \varphi_{\text{start}} \wedge \varphi_{\text{accept}} \wedge \varphi_{\text{move}}$$

Abbiamo che:

$$w \in L \Leftrightarrow \varphi(M, w)$$
 is satisfiable

poichè, $w \in L \Leftrightarrow \varphi(M, w)$ is satisfiable $\varphi(M, w)$ è costruita in Tempo Polinomiale

L è riducibile in tempo Polinomiale a SAT

END OF Dim

Osservazione 1:

La $\varphi(M,W)$ formula può essere convertita in CNF (conjunctive normal form) formula in Tempo Polinomiale

NOT CNF

Ma può essere convertita in CNF (distribuitività)

leggi: Distributività

$$P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R)$$

$$P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$$

Osservazione 2:

La $\varphi(M,w)$ formula può essere Convertita in una formula 3CNF in Tempo Polinomiale

$$(a_{1} \lor a_{2} \lor \cdots \lor a_{l})$$

$$Conv$$

$$erti$$

$$(a_{1} \lor a_{2} \lor z_{1}) \land (\overline{z_{1}} \lor a_{3} \lor z_{2}) \land (\overline{z_{2}} \lor a_{4} \lor z_{3}) \land \cdots \land (\overline{z_{l-3}} \lor a_{l-1} \lor z_{l})$$

Nuove z

Linguaggio:

 $3CNF-SAT = \{ w : w \text{ è una formula} \\ 3CNF \text{ soddisfacibile} \}$

CNF-SAT e 3CNF-SAT sono Linguaggi NP-completi

(sappiamo che sono NP Linguaggi)

Esempio di riduzione Tempo-Polinomiale:

Ridurremo il problema

3CNF-satisfiability

al

problema CLIQUE

Una 5-cricca (Clique) nel grafo G

Linguaggio:

CLIQUE = $\{ \langle G, k \rangle : \text{ grafo } G \}$

Teorema: 3CNF-SAT è riducibile

In Tempo Polinomiale

a CLIQUE

Dim: Una riduzione in Tempo Polinomiale da un problema all'altro

Transformare una formula in un grafo

10/04/2021 48

Una 5-cricca (Clique) nel grafo G

Linguaggio:

CLIQUE = $\{ \langle G, k \rangle : \text{ grafo } G \}$

Teorema: 3CNF-SAT è riducibile

In Tempo Polinomiale

a CLIQUE

Dim: Una riduzione in Tempo Polinomiale da un problema all'altro

Transformare una formula in un grafo

Linguaggio:

 $3CNF-SAT = \{ w : w \text{ è una formula} \\ 3CNF \text{ soddisfacibile} \}$

Transformare una formula in un grafo Esempio:

$$(x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) \land (x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$$

Creare I nodi:

Clause 3

$$(x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) \land (x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$$

Addizionare un arco da un letterale ξ A ogni altro letterale in ogni clausola salvo a ξ

$$(x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) \land (x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$$

Grafo risultante

 $x_1 = 1$

 $x_2 = 0$

 $x_3 = 0$

 $x_4 = 1$

La formula è sodisfacibile se e solo se il grafo ha un 4-clique End of Dim

Teorema:

If: a. Linguaggio A is NP-complete

b. Linguaggio B is in NP

c. A è riducibile Tempo Polinomiale a B

Then: B is NP-complete

Dim:

Ogni linguaggio L in NP È riducibile in Tempo Polinomiale a A allora, L è riducibile in Tempo Polinomiale a B (somma di due riducibilità Polinomiali dà

una riduzione Polinomiale)

10/04/2021

56

Corollario: CLIQUE è NP-complete

Dim:

- a. 3CNF-SAT è NP-complete
- b. CLIQUE è in NP (gia visto)
- c. 3CNF-SAT è riducibile Polinomiale a CLIQUE (gia visto)

Applichiamo il teorema precedente A=3CNF-SAT e B=CLIQUE

Fine chap

Osservazione:

SE si dimostra che un Linguaggio NP-complete è in P allora:

$$P = NP$$