Question: Find $\lim_{x\to 2^-} e^{3/(2-x)}$.

Solution:

We'll do this step by step.

First, we'll build up the function $e^{3/(2-x)}$ as follows:

Step	Input	Function applied	Result
1:			x
2:	x	multiply by (-1)	-x
3:	-x	add 2	2-x
4:	2-x	take reciprocal	1/(2-x)
5:	1/(2-x)	multiply by 3	3/(2-x)
6:	3/(2-x)	apply exponential function	$e^{3/(2-x)}$

where in going from each step to the next, we are applying an elementary transformation to the current result.

Now we can compute limits at each step:

Step	Input	Function applied	Result	Goes to
1:			x	2-
2:	x	multiply by (-1)	-x	$(-2)^{+}$
3:	-x	add 2	2-x	0+
4:	2-x	take reciprocal	1/(2-x)	$+\infty$
5:	1/(2-x)	multiply by 3	3/(2-x)	$+\infty$
6:	3/(2-x)	apply exponential function	$e^{3/(2-x)}$	$+\infty$

So,
$$\lim_{x\to 2^-} e^{3/(2-x)} = +\infty$$
.

Question: Differentiate the function $y = \frac{e^x}{1 - e^x}$.

Solution:

$$y = \frac{e^x}{1 - e^x}$$

$$\frac{d}{dx}[y] = \frac{d}{dx} \left[\frac{e^x}{1 - e^x} \right]$$

$$\frac{d}{dx}[y] = \frac{(1 - e^x)\frac{d}{dx}[e^x] - (e^x)\frac{d}{dx}[1 - e^x]}{(1 - e^x)^2}$$

$$\frac{d}{dx}[y] = \frac{(1 - e^x)(e^x) - (e^x)(-e^x)}{(1 - e^x)^2}$$

Question: Differentiate the function $y = x^2 e^{-\frac{1}{x}}$.

Solution:

$$y = x^{2}e^{-\frac{1}{x}}$$

$$\frac{d}{dx}[y] = \frac{d}{dx}[x^{2}e^{-\frac{1}{x}}]$$

$$\frac{d}{dx}[y] = \frac{d}{dx}[x^{2}](e^{-\frac{1}{x}}) + (x^{2})\frac{d}{dx}[e^{-\frac{1}{x}}]$$

$$\frac{d}{dx}[y] = (2x)(e^{-\frac{1}{x}}) + (x^{2})\frac{d}{dx}[e^{-\frac{1}{x}}]$$

$$\frac{d}{dx}[y] = (2x)(e^{-\frac{1}{x}}) + (x^{2})(e^{-\frac{1}{x}})\frac{d}{dx}[-\frac{1}{x}]$$

$$\frac{d}{dx}[y] = (2x)(e^{-\frac{1}{x}}) + (x^2)(e^{-\frac{1}{x}})\frac{1}{x^2}$$

Question: Evaluate the integral $\int e^x (4 + e^x)^5 dx$.

Solution:

Try the substition
$$u=4+e^x$$
. Then $\frac{du}{dx}=\frac{d}{dx}[4+e^x]=\frac{d}{dx}[e^x]=e^x$, and $dx=\frac{du}{e^x}$.
$$=\int \frac{e^x(u)^5}{e^x}du$$

$$=\int (u)^5du$$

$$=\frac{u^6}{6}+C$$

$$= \frac{(4+e^x)^6}{6} + C$$