Assignment

Assignment: Battery State-of-Health (SOH) Estimation Using AI method

Assignment Objective:

Implement battery SOH estimation using the Oxford battery aging dataset.

Course: SEEN6001B (Prof. Xiangyu Li)

TA: Shuo Zhang

1. What is SOH?

SOH refers to the health status of a battery relative to its ideal state when brand - new. It reflects the battery's ability to store and deliver energy, and how much its performance has degraded over time or usage.

2. Why is SOH Important?

- It helps predict the remaining useful life of a battery.
- Enables timely maintenance or replacement to ensure system reliability (e.g., in electric vehicles, energy storage systems).
- Assists in estimating the battery's capacity, efficiency, and safety.

3. How is SOH Assessed?

Common methods include analyzing capacity fade, internal resistance increase, voltage characteristics changes (Incremental Capacity Analysis or Differential Voltage Analysis), and some closed-loop estimation algorithms.

Advanced techniques involve AI algorithms to model degradation patterns.

Dataset Description - Oxford Battery Degradation Dataset:

Figure. 1 Aging trajectories of Cell1-Cell8

Dataset Description:

- 1. The Oxford battery degradation dataset includes battery ageing data collected from eight cells with capacity of 740 mAh at 40°C.
- 2. They are labeled as cell 1 to cell 8 respectively. The negative electrode material of the Kokam pouch cells is graphite, the positive electrode material is a blend of lithium cobalt oxide (LCO) and lithium nickel cobalt oxide (NCO).
- 3. The eight batteries are subjected to a constant-current and then constant-voltage charging profile up to 4.2 V, followed by a variance discharge current rate from the urban Artemis derived profile process down to 2.7 V.

Access Document FxampleDC_C1.mat Oxford_Battery_Degradation_Dataset_1.mat Readme.txt Authors/Creators

Specifications of the Oxford degradation datas	set.
--	------

Dataset parameters	Specifications
Battery chemistry	LiCoO ₂ /LiNiMnCoO ₂
Temperature	40 °C
Capacity	0.74 Ah
Charging	1.48A CC
Discharging	Dynamic Artemis profile
EOL	80%

Link: Oxford Battery Degradation Dataset 1 - ORA - Oxford University Research Archive

Data Preprocessing -Oxford Battery Degradation Dataset:

(MATLAB/Python)

Feature Selection / Engineering

Feature (For different electrochemical systems, appropriate features should be selected accordingly):

- 1. Constant current charge time within the charge segment (CCCT)
- 2. Constant current discharge time within the discharge segment
- 3. Peak value of the IC curve within the charge segment (IC Curve)
- 4. Differential temperature voltammetry curve (DTV)

Feature Selection / Engineering IC Curve Peak Point -SOH

$$Q = \int_{\tau=1}^{t} I d\tau \qquad \frac{dQ}{dV} = \frac{I \cdot dt}{dV} = I \cdot \frac{dt}{dV}$$
$$V = f(Q), \ Q = f^{-1}(V)$$

The differencing process and sensor noise introduce additional noise, which is detrimental to the peak extraction of signals in Independent Component Analysis (ICA). - lower P value

Filtered- Pearson Correlation Coefficient=0.9+

Model Design and Training the Model

This stage is about choosing the right AI architecture and deciding how the model will process features to predict SOH.

Model Structure Decisions

- •Input layer: selected features (e.g., IC peak values/other features).
- •Hidden layers: number of layers, neurons per layer, activation functions.
- •Output layer: predicted **SOH value.**

Optimization Process

- •Define a **loss function** (e.g., Mean Squared Error, Mean Absolute Error).
- •Choose an **optimizer** (e.g., SGD, Adam) to update model weights.
- •Adjust hyperparameters (learning rate, batch size, regularization).(You can use some optimization algorithm to get them)

Data Splitting Strategy

1.Data-wise split

- 1. About 70% of the data is used for training.
- 2. About 30% of the data is used for validation.

2.Cell-wise Split

- 1. To test generalization across different cells, the dataset is divided at the **cell level**:
 - 1. 6 cells are used for training.
 - **2. 2 cells** are held out for validation/testing.

Case 1 IC Curve Peak Point –SOH (SVR model)

```
clc
  clear all
  close all

%% Data Preparation
% Training set: Cell1~Cell6
  train_set = [];
  for i = 1:6
    load(['Cell' num2str(i) '_Peak_HF.mat']);
    load(['Cell' num2str(i) '_SOH.mat']);
    temp_train = [Peak_HF; SOH];
    train_set = [train_set temp_train];
  end

% Test set: Cell7 and Cell8
  load('Cell7_Peak_HF.mat'); load('Cell7_SOH.mat');
  test_Cell7_x = Peak_HF; test_Cell7_y = SOH;

load('Cell8_Peak_HF.mat'); load('Cell8_SOH.mat');
  test_Cell8_x = Peak_HF; test_Cell8_y = SOH;
```

Data input

```
%% Prediction for Cell7
y_pre7 = predict(svr_model, xt_Cell7');
y_pre7 = y_pre7*(My-my) + my; % Denormalize
% Plot SOH estimation
plot(test_Cell7_y, 'k-o', 'LineWidth', 1.5); hold on
plot(y_pre7, 'r-s', 'LineWidth', 1.5);
xlabel('Cycle Number', 'FontName', 'Times New Roman');
ylabel('SOH', 'FontName', 'Times New Roman');
legend('True SOH', 'Predicted SOH', 'Location', 'best', 'FontName', 'Times New Roman');
title('SOH Estimation of Cell7 using SVR', 'FontName', 'Times New Roman');
grid on
% Plot Absolute Error
plot(abs(test_Cell7_y - y_pre7'), 'b-d', 'LineWidth',1.5);
xlabel('Cycle Number', 'FontName', 'Times New Roman');
ylabel('Absolute Error (AE)', 'FontName', 'Times New Roman');
title('Absolute Error of Cell7 Estimation', 'FontName', 'Times New Roman');
grid on
```

Predict results

```
%% Normalization
Mx = max(train_set(1,:)); mx = min(train_set(1,:));
My = max(train_set(2,:)); my = min(train_set(2,:));

% Normalize training data
x = (train_set(1,:) - mx) / (Mx - mx);
y = (train_set(2,:) - my) / (My - my);

% Normalize test data
xt_Cell7 = (test_Cell7_x - mx) / (Mx - mx);
xt_Cell8 = (test_Cell8_x - mx) / (Mx - mx);

%% Support Vector Regression (SVR)
% Using RBF kernel
svr_model = fitrsvm(x', y', 'KernelFunction', 'rbf', 'Standardize', true, 'BoxConstraint',1);
```


Case 2 Four features input –SOH (LSTM model)

- 1. Constant Current Charging Time
- 2. Constant Voltage Charging Time
- 3. Constant Voltage Discharging Time
- 4. Ohmic/Internal Resistance

As the battery ages, the charging and discharging times in certain segments tend to change.

AI-Based SOH Estimation Report for Oxford Battery Dataset

Suggested Report Structure:

- 1. Introduction
- 2. Data Description
- 3. Feature Selection / Engineering
- 4. AI Model Selection and Model Description
- 5. AI Training and Validation Process
- 6. Validation Results (e.g., RMSE, MAE, Max Error, etc.)
- 7. Conclusion

The score is determined by two factors:

- 1. Achieve the battery SOH estimation using AI method.
- 2. Overall completeness of the report.

1. Data Splitting Strategy

Any strategy

Data-wise split

- 1. About 70% of the data is used for training.
- 2. About 30% of the data is used for validation.

Cell-wise Split

- 1. To test generalization across different cells, the dataset is divided at the **cell level**:
 - 1. 6 cells are used for training.
 - **2. 2 cells** are held out for validation/testing.

2. Language: MATLAB/Python

3. Upload Zip: Report +Coding

Tutorial

可持续能源与环境学域 SUSTAINABLE ENERGY AND ENVIRONMENT THRUST 功能枢纽

TA: Shuo Zhang (SEE)

Email: szhang382@connect.hkust-gz.edu.cn