11.15

EE23BTECH11030 - Shravya Kantayapalam

Question:

The transverse displacement of a string (clamped at its both ends) is given by

$$y(x,t) = 0.06 \sin\left(\frac{2\pi}{3}x\right) \cos\left(120\pi t\right) \tag{1}$$

where x and y are in m and t in s. The length of the string is 1.5 m and its mass is 3.0×10^{-2} kg. Answer the following:

- (a) Does the function represent a travelling wave or a stationary wave?
- (b) Interpret the wave as a superposition of two waves travelling in opposite directions. What is the wavelength, frequency, and speed of each wave?
- (c) Determine the tension in the string.

Solution:

Standing Wave	Traveling Wave	
Formed by the interference of two waves traveling in opposite directions	Propagates through a medium without interference	
Pattern appears station- ary, with nodes and antinodes	Waveform moves through space	
No net transport of energy	Transports energy from one place to another	
Nodes do not move, so	Moves with a constant	
velocity is zero	velocity	

TABLE-1: DIFFERENCE BETWEEN STANDING AND TRAVELLING WAVE

(a) The given function represents a stationary wave. In a stationary wave, the displacement pattern does not propagate through space, instead, it oscillates in a fixed position. The given wave can be interpreted as a superposition of two waves traveling in opposite directions as explained in next part.

(b) y(x, t) can be represented as

$$y_1(x,t) = -A\sin(\omega t - kx) \tag{2}$$

$$y_2(x,t) = A\sin(\omega t + kx) \tag{3}$$

$$y(x,t) = y_1(x,t) + y_2(x,t)$$
 (4)

$$= 2A\sin(kx)\cos(\omega t) \tag{5}$$

In the given function

$$y(x,t) = 0.06 \sin\left(\frac{2\pi}{3}x\right) \cos(120\pi t)$$
 (6)

Camparing (5) and (6) then

$$y_1(x,t) = -0.03 \sin\left(120\pi t - \frac{2\pi}{3}x\right)$$
 (7)

$$y_2(x,t) = 0.03 \sin\left(120\pi t + \frac{2\pi}{3}x\right)$$
 (8)

we know

$$\lambda = \frac{2\pi}{k} \tag{9}$$

$$f = \frac{\omega}{2\pi} \tag{10}$$

$$f = \frac{\omega}{2\pi} \tag{10}$$

$$v = \lambda f \tag{11}$$

Variable	Description	Value
λ	Wavelength	3m
f	Frequency	60Hz
ν	Speed	180m/s
TARIFO		

Table-2: wavelength, frequency and velocity of $y_1(x, t)$

Variable	Description	Value
λ	Wavelength	3m
f	Frequency	60Hz
ν	Speed	180m/s
TARIFO		

Table-3: wavelength, frequency and velocity of $y_2(x, t)$

(c) Velocity in terms of tension can be written as

$$v = \sqrt{\frac{T}{\mu}} \tag{12}$$

$$T = v^2 \mu \tag{13}$$

 μ is mass per unit length

$$\mu = \frac{\left(\frac{3}{100}\right)}{1.5}$$

$$= \frac{1}{50}$$

$$T = v^{2}\mu$$

$$= (180)^{2} \left(\frac{1}{50}\right)$$

$$= 648$$
(14)
(15)
(16)
(17)
(17)

Tension in string = 648 N