Doble Grado en Informática y Matemáticas - Ejercicios y cuestiones teóricas

1. Estudia la convergencia absoluta y la convergencia de las siguientes series.

a)
$$\sum_{n\geqslant 1} \frac{6^n n!}{\sqrt[5]{n} \ 11 \cdot 17 \cdot 23 \cdots (5+6n)};$$
 b) $\sum_{n\geqslant 2} (-1)^{n+1} \log \frac{n^2+n+1}{n^2+1}$

2. Estudia la convergencia absoluta y la convergencia de las siguientes series.

a)
$$\sum_{n\geqslant 1} \frac{5^n n!}{\sqrt[4]{n} \ 9 \cdot 14 \cdot 19 \cdots (4+5n)};$$
 b) $\sum_{n\geqslant 1} (-1)^{n+1} \left(\sqrt[3]{n+1} - \sqrt[3]{n}\right)$

- 3. Sea $f: [-1,1] \to \mathbb{R}$ Una función continua verificando que $-1 \leqslant f(x) \leqslant 1$ para todo $x \in [-1,1]$. Prueba que hay algún $c \in [-1,1]$ tal que $f(c) = c^3$.
- 4. Sea $f:[-1,1] \to \mathbb{R}$ una función continua verificando que $-1 \leqslant f(x) \leqslant 1$ para todo $x \in [-1,1]$. Prueba que hay algún $c \in [-1,1]$ para el que se verifica la igualdad $f(c) = \frac{1}{4}(c^3 + 3c)$.
- 5. Sea $f:[a,b]\to\mathbb{R}$ una función creciente y continua en [a,b] tal que $a\leqslant f(x)\leqslant b$ para todo $x\in[a,b]$. Prueba que la sucesión $\{x_n\}$ definida por:

$$x_1 = f(a), \quad x_{n+1} = f(x_n)$$
 para todo $n \in \mathbb{N}$

converge a un punto $u \in [a, b]$ tal que f(u) = u.

- 6. Sea $f:]0,1[\to \mathbb{R}$ la función definida para todo $x \in]0,1[$ por $f(x)=\frac{2x-1}{x(x-1)}$. Calcula el conjunto imagen f(]0,1[).
- 7. Sea $f:]-1,1] \to \mathbb{R}$ la función dada para todo $x\in]-1,1]$ por $f(x)=\sqrt{\dfrac{1-x}{\sqrt{1+x}}}$.
 - a) Calcula, haciendo uso del teorema del valor intermedio que debes enunciar, el conjunto f(]-1,1]).
 - b) Calcula, usando un resultado sobre continuidad y monotonía que debes enunciar, el conjunto f([-1/2,1/2]). ProQar \longrightarrow os imperior
- 8. Sea $f:[a,b] \to \mathbb{R}$ continua, pongamos $M = \max f([a,b])$, $m = \min f([a,b])$ y supongamos que f(a) = f(b) y que m < f(a) < M. Prueba que f toma todo valor de f [m, f [m] en al menos dos puntos de f [m].
- 9. Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua y creciente. Prueba que para todo conjunto acotado y no vacío, $A \subset \mathbb{R}$, se verifica que $\sup f(A) = f(\sup A)$.
- 10. Sea $f:[a,b] \to \mathbb{R}$ una función estrictamente creciente verificando que a < f(x) < b para todo $x \in [a,b]$. Definamos $x_1 = a$, y $x_{n+1} = f(x_n)$ para todo $n \in \mathbb{N}$. Prueba que $\{x_n\}$ converge a un número $\beta \in]a,b]$ tal que $\beta = \sup f([a,\beta[)])$. Además $\beta \leqslant f(\beta)$. Si suponemos que f es continua en β entonces $\beta = f(\beta)$.
- 11. Explica si las siguientes afirmaciones son ciertas o falsas, indicando el resultado de teoría que lo justifica, o proporcionando una prueba o un contraejemplo.
 - 1) Hay un conjunto $A\subseteq\mathbb{R}$ que no es vacío y cuyo conjunto de minorantes es un intervalo del tipo $]-\infty,a[.$

- 2) Una sucesión monótona no acotada no tiene ninguna sucesión parcial convergente.
- 3) Una sucesión no acotada no puede tener una sucesión parcial convergente.
- 4) Una sucesión monótona que tenga una parcial convergente es convergente.
- 5) Existe una sucesión de números reales $\{x_n\}$ acotada y que verifica que $|x_n x_m| \ge 10^{-10}$ siempre que $n \ne m$.
- 6) Sea $\{x_n\}$ una sucesión tal que $\{x_{n+1} x_n\}$ es convergente. Entonces la sucesión $\{x_n/n\}$ es convergente.
- 7) Si una sucesión $\{x_n\}$ es tal que $\frac{x_1 + x_2 + \dots + x_n}{n} \to 1$ entonces $\{x_n\} \to 1$.
- 8) Una sucesisón de números reales está acotada si, y sólo si, tiene una sucesión parcial convergente.
- 9) Una sucesión que no tiene ninguna sucesión parcial convergente tampoco tiene ninguna sucesión parcial acotada.
- 10) Toda función definida en un intervalo cuya imagen es un intervalo es continua.
- 11) Toda función inyectiva cuya imagen es un intervalo es continua.
- 12) La función inversa de una función estrictamente monótona definida en un intervalo es continua.
- 13) La función inversa de una función continua e inyectiva es continua.

 14) Si $f: I \to \mathbb{R}$ es una función inyectiva y continua en un intervalo no vacío I entonces f^{-1} es
- continua en J = f(I). 15) Si $f: I \to \mathbb{R}$ es una función inyectiva, I es un intervalo y J = f(I) es un intervalo entonces
- su función inversa f^{-1} es continua en J. 16) Si $f:A\to\mathbb{R}$ es una función inyectiva, f(A) un intervalo, y f^{-1} es continua, entonces f es
- 17) Si $\sum_{n\geqslant 1} x_n$ es una serie convergente de términos positivos, entonces la sucesión $\{x_n\}$ es decreciente
- 18) Toda serie de términos positivos mayorada es convergente.
- 19) Si $f:A\to\mathbb{R}$ es una función continua que no está mayorada ni minorada, entonces $f(A)=\mathbb{R}$.
- 20) Toda función polinómica o se anula en algún punto o alcanza un máximo o un mínimo absolutos en ℝ.
- 21) Si $f: \mathbb{R} \to \mathbb{R}$ es continua y verifica que $f(\mathbb{R}) \subset \mathbb{Q}$ entonces f es constante.
- 22) Hay una función $f:[0,1] \to \mathbb{R}$ que es continua y verifica que f[0,1] = [2,3[.
- Toda función continua en un intervalo alcanza en algún punto de dicho intervalo un valor mínimo.
- 24) Si $\{x_n\}$ es una sucesión estrictamente creciente y se verifica que la sucesión $\{x_n x_{n-1}\}$ converge a 0 entonces $\{x_n\}$ es convergente.
- 25) Toda sucesión estrictamente creciente verifica la condición de Cauchy.
- 26) Toda serie convergente es una sucesión acotada.
- 27) Si $\{x_n\}$ es una sucesión acotada, entonces para todo $\varepsilon > 0$ existen términos x_p y x_q de dicha sucesión tales que $|x_p x_q| < \varepsilon$.
- 28) Si $f:[0,1[\to\mathbb{R}]$ es una función continua y estrictamente creciente verificando que f(0)=0 y que $\{f(1-(1/n))\}\to 1$, entonces f([0,1[)=[0,1[.