МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Н. Э. БАУМАНА

УДК	УТВЕРЖДАЮ	
№ госрегистрации Инв. №	Преподаватель	
	«»	2019 г
	ИНА АНАЛИЗ АЛГОРИТМО ОТЧЁТ БОРАТОРНОЙ РАБОТЕ №1	ОВ
P	асстояние Левенштейна (промежуточный)	
Студент		Ф.М. Набиев

Л.Л. Волкова, Ю.В. Строганов

Преподаватели

СОДЕРЖАНИЕ

Введение	3
1 Аналитический раздел	4
1.1 Описание алгоритмов	4
1.1.1 Алгоритм Левенштейна	4
1.1.2 Алгоритм Дамерау-Левенштейна	5
2 Конструкторский раздел	6
2.1 Модель	6
2.2 Разработка алгоритмов	6
2.2.1 Алгоритм Вагнера-Фишера	6
2.2.2 Матричный алгоритм Дамерау-Левенштейна	8
2.2.3 Рекурсивный алгоритм Дамерау-Левенштейна	10
3 Технологический раздел	13
4 Исследовательский раздел	14
Заключение	15

ВВЕДЕНИЕ

Целью данной работы является изучение динамического программирования на материале алгоритмов Левенштейна и Дамерау-Левенштейна.

Данные алгоритмы решают проблему поиска редакционного расстояния между двумя строками. Редакционное расстояние определяется количеством некоторых операций, необходимых для превращения одного слова в другое, а так же стоимостью этих операций.

Для достижения поставленной цели необходимо решить следующие задачи:

- изучение алгоритмов Левенштейна и Дамерау-Левенштейна нахождения расстояния между строками;
- применение метода динамического программирования для матричной реализации указанных алгоритмов;
- получение практических навыков реализации указанных алгоритмов:
 двух алгоритмов в матричной версии и одного из алгоритмов в рекурсивной версии;
- сравнительный анализ линейной и рекурсивной реализаций выбранного алгоритма определения расстояния между строками по затрачиваемым ресурсам (времени и памяти);
- экспериментальное подтверждение различий во временной эффективности рекурсивной и нерекурсивной реализаций выбранного алгоритма определения расстояния между строками при помощи разработанного программного обеспечения на материале замеров процессорного времени выполнения реализации на варьирующихся длинах строк;
- описание и обоснование полученных результатов в отчете о выполненной лабораторной работе, выполненного как расчётно-пояснительная записка к работе.

1 Аналитический раздел

1.1 Описание алгоритмов

Алгоритм Дамерау-Левенштейна является модификацией алгоритма Левенштейна. Рассмотрим данные методы подробнее.

1.1.1 Алгоритм Левенштейна

Расстояние Левенштейна между двумя строками - это минимальная сумма произведений количества операций вставки, удаления и замены одного символа, необходимых для первращения одной строки в другую, на их стоимость.

Вышеописанные операции имеют следующие обозначения:

- I (insert) вставка;
- D (delete) удаление;
- R (replace) замена;

При этом cost(x) есть обозначение стоимости некоторой операции x. Будем считать, что символы в строках нумеруются с первого. Пусть S_1 и S_2 - две строки с длинами N и M соответственно. Тогда расстояние Левенштейна вычисляется по формуле D(M, N):

$$D(i,j) = \begin{cases} 0, & i = 0, j = 0\\ i * cost(D), & j = 0, i > 0\\ j * cost(I), & i = 0, j > 0\\ D(i-1, j-1), & S_1[i] = S_2[j]\\ min(& & \\ D(i,j-1) + cost(I),\\ D(i-1, j) + cost(D), & j > 0, i > 0, S_1[i] \neq S_2[j]\\ D(i-1, j-1) + cost(R)\\), \end{cases}$$

$$(1.1)$$

где $\min(a, b, c)$ возвращает наименьшее значение из a, b, c.

1.1.2 Алгоритм Дамерау-Левенштейна

Определение расстояния Дамерау-Левенштейна аналогично определению расстояния Левенштейна с учётом новой операции - перестановки соседних символов. Соответственно, обозначения операций:

- I (insert) вставка;
- D (delete) удаление;
- R (replace) замена;
- T (transpose) перестановка соседних символов.

При тех же обозначениях имеем формулу:

$$D(i,j) = \begin{cases} min(A, D(i-2, j-2) + cost(T), & i > 1, j > 1, \\ S_1[i] = S_2[j-1], \\ S_1[i-1] = S_2[j] \end{cases}$$

$$A$$
Whave

где А:

$$A = \begin{cases} 0, & i = 0, j = 0 \\ i * cost(D), & j = 0, i > 0 \\ j * cost(I), & i = 0, j > 0 \\ D(i - 1, j - 1), & S_1[i] = S_2[j] \\ min(& & \\ D(i, j - 1) + cost(I), & \\ D(i - 1, j) + cost(D), & j > 0, i > 0, S_1[i] \neq S_2[j] \\ D(i - 1, j - 1) + cost(R) \\), & \end{cases}$$

$$(1.3)$$

2 Конструкторский раздел

2.1 Модель

Рисунок 2.1 - IDEFØ модель

2.2 Разработка алгоритмов

Для непосредственной реализации вышеописанных алгоритмов важно иметь их некоторые упрощённые формальные представления, так как чтение таких представлений упрощает написание кода. Подходящим для этого вариантом визуализации являются схемы алгоритмов.

2.2.1 Алгоритм Вагнера-Фишера

Алгоритм Вагнера-Фишера является матричной реализацией поиска расстояния Левенштейна. Ниже приведена схема данного алгоритма.

Рисунок 2.2 — Алгоритм Вагнера-Фишера

2.2.2 Матричный алгоритм Дамерау-Левенштейна

Матричный алгоритм Дамерау-Левенштейна представляет из себя модификацию алгоритма Вагнера-Фишера, в которой происходит дополнительная проверка на возможность проведения операции транспозиции.

Рисунок 2.3- Матричный алгорит
м Дамерау-Левенштейна, часть 1

Рисунок 2.4- Матричный алгорит
м Дамерау-Левенштейна, часть 2

2.2.3 Рекурсивный алгоритм Дамерау-Левенштейна

Рисунок 2.5 -Рекурсивный алгорит
м Дамерау-Левенштейна, часть 1

Рисунок 2.6 — Рекурсивный алгорит
м Дамерау-Левенштейна, часть 2

Рисунок 2.7- Рекурсивный алгорит
м Дамерау-Левенштейна, часть 3

3 Технологический раздел

4 Исследовательский раздел

ЗАКЛЮЧЕНИЕ