Lineare Algebra I - Prüfung Sommer 2019

- 1. (20 Punkte) Kreuzen Sie auf dem Abgabeblatt ihre Antwort an. Pro Teilaufgabe ist genau eine der vier Antwortmöglichkeiten richtig. Für jede richtig beantwortete Teilaufgabe erhalten Sie 2 Punkte, sonst 0 Punkte. Bei dieser Aufgabe müssen Sie die Antworten nicht begründen.
 - (I) Sei A wahr und B falsch. Welcher der folgenden Ausdrücke ist dann wahr?
 - (a) $(\neg B \land \neg A) \lor (B \land A)$
 - **(b)** $(A \wedge (B \vee \neg A)) \vee (B \vee \neg A)$
 - (c) $(\neg B \land A) \land ((B \lor A) \land A)$
 - (d) $B \wedge (A \vee (B \wedge A) \vee \neg A)$
 - (II) Welcher Ausdruck ist äquivalent zur Aussage $C \Leftrightarrow D$?
 - (a) $(C \wedge D) \wedge (\neg C \wedge \neg D)$
 - **(b)** $(C \vee \neg C) \vee (D \vee \neg D)$
 - (c) $(C \vee D) \wedge (\neg C \vee \neg D)$
 - (d) $(\neg C \lor D) \land (\neg D \lor C)$
 - (III) Welche Eigenschaft gilt *nicht* für jede Gruppe (G, \circ, e) ?
 - (a) Für alle $a, b \in G$ ist $a \circ b = b \circ a$.
 - (b) Für alle $a \in G$ ist $a \circ e = e \circ a = a$.
 - (c) Für alle $a \in G$ existiert ein $b \in G$ so dass $a \circ b = b \circ a = e$ ist.
 - (d) Für alle $a, b, c \in G$ gilt $(a \circ b) \circ c = a \circ (b \circ c)$.
 - (IV) Im Körper \mathbb{F}_{23} ist $\overline{8} \cdot \overline{9}$ gleich
 - (a) $\overline{3}$.
 - **(b)** $\overline{20}$.
 - (c) $\overline{22}$.
 - (d) $\overline{8}$.
 - (V) Für welche $\alpha \in \mathbb{R}$ ist die Matrix $\begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix}$ reell diagonalisierbar?
 - (a) Für alle $\alpha \neq 0$ mit $\alpha^2 \in \mathbb{Q}$.
 - (b) Für alle $\alpha > 0$.
 - (c) Für alle geraden ganzen Zahlen $\alpha \neq 0$.
 - (d) Für alle α mit $\alpha^2 = 1$.

- (VI) Ein homogenes lineares Gleichungssystem bestehend aus n Gleichungen in m Variablen hat garantiert eine von Null verschiedene Lösung, wenn gilt:
 - (a) n = m.
 - (b) n > m.
 - (c) n < m.
 - (d) $n \neq m$.
- **(VII)** Für wieviele Teilmengen $B \subset \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \right\}$ ist B eine Basis des \mathbb{R} -Vektorraumes \mathbb{R}^3 ?
 - **(a)** 0
 - **(b)** 2
 - **(c)** 5
 - (d) 7
- (VIII) Welche Aussage über Homomorphismen von Vektorräumen ist falsch?
 - (a) Die Komposition zweier Isomorphismen ist ein Isomorphismus.
 - (b) Jeder injektive Endomorphismus ist ein Automorphismus.
 - (c) Jeder Automorphismus ist die Komposition zweier Isomorphismen.
 - (d) Jeder surjektive Homomorphismus ist ein Isomorphismus.
- (IX) Seien A und B zwei $n \times n$ -Matrizen. Welche Rechenregel gilt im Allgemeinen nicht?
 - (a) $\det(2A) = 2\det(A)$
 - **(b)** $\det(A) \det(B) = \det(AB)$
 - (c) $\det(AB) = \det(BA)$
 - (d) $\det(I_n) = 1$
- (X) Welche Aussage ist richtig für jede lineare Abbildung zwischen Vektorräumen $f \colon V \to W$?
 - (a) Der Rang von f ist abhängig von der Wahl von Basen in V und W.
 - (b) Ist f ein Isomorphismus, so gilt $Rang(f) = \dim V = \dim W$.
 - (c) Ist f kein Isomorphismus, so gilt Rang(f) = 0.
 - (d) Es gilt $\operatorname{Rang}(f) = \min \{ \dim V, \dim W \}.$

2. Sei V der Vektorraum aller reellen Folgen $(x_n)_{n\geqslant 0}$, und betrachte die beiden Verschiebungsoperatoren

$$T_+: V \to V, \quad (x_n)_n \mapsto (x_{n+1})_n,$$

 $T_-: V \to V, \quad (x_n)_n \mapsto (x_{n-1})_n \text{ mit } x_{-1} := 0.$

- (a) (3 Punkte) Zeige, dass die Folgen, welche nur endlich viele verschiedene Werte annehmen, einen Unterraum W von V bilden.
- (b) (2 Punkte) Zeige, dass der Unterraum W invariant ist unter T_+ und T_- .
- (c) (7 Punkte) Finde alle Eigenwerte und Eigenvektoren von $T_{+}|_{W}$ und $T_{-}|_{W}$.
- (d) (3 Punkte) Finde alle Eigenwerte von $T_+ + T_-$ (auf V!) und ihre geometrischen Vielfachheiten.
- 3. Für jede ganze Zahl $n \ge 1$ betrachte die reelle Matrix

$$M_n := \left(\binom{i+j}{2}\right)_{i,j=1,\dots,n}.$$

- (a) (1 Punkt) Gib die Definition der Determinante einer allgemeinen $n \times n$ -Matrix an.
- (b) (2 Punkte) Schreibe M_n explizit aus.
- (c) (3 Punkte) Berechne $det(M_n)$ für die Werte n = 1, 2, 3.
- (d) (9 Punkte) Berechne die Determinante und den Rang von M_n für alle $n \ge 1$.
- **4.** Betrachte einen beliebigen Körper K. Eine quadratische Matrix A heisst *idempotent*, wenn $A^2 = A$ ist. Zeige:
 - (a) (4 Punkte) Jede idempotente Matrix ist diagonalisierbar mit Eigenwerten in der Menge $\{0,1\}$.
 - (b) (5 Punkte) Zwei idempotente $n \times n$ -Matrizen sind genau dann zueinander konjugiert, wenn sie den gleichen Rang besitzen.
 - (c) (3 Punkte) Ein inhomogenes lineares Gleichungssystem Ax = b mit einer idempotenten $n \times n$ -Matrix A und einem Vektor $b \in K^n \setminus \{0\}$ hat genau dann eine Lösung, wenn b ein Eigenvektor von A zum Eigenwert 1 ist. Beschreibe die Lösungsmenge in diesem Fall.
 - (d) (3 Punkte) Seien nun $K=\mathbb{Q}$ und $A:=\begin{pmatrix}2&-2&-4\\-1&3&4\\1&-2&-3\end{pmatrix}$ und $b:=\begin{pmatrix}0\\2\\-1\end{pmatrix}$. Bestimme die Lösungsmenge des linearen Gleichungssystems Ax=b explizit.

5. Sei V der \mathbb{C} -Vektorraum aller komplexen 2×2 oberen Dreiecksmatrizen und betrachte die Matrix

$$S := \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \in V.$$

(a) (3 Punkte) Zeige, dass

$$\Phi \colon V \to V, A \mapsto SAS$$

eine wohldefinierte lineare Abbildung ist.

(b) (3 Punkte) Zeige, dass die Matrizen

$$b_1 := \begin{pmatrix} i & -2 \\ 0 & i \end{pmatrix}, \ b_2 := \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}, \ b_3 := \begin{pmatrix} 1 & i \\ 0 & 2 \end{pmatrix}$$

eine Basis von V bilden.

- (c) (4 Punkte) Bestimme die Darstellungsmatrix von Φ bezüglich der Basis in (b).
- (d) (5 Punkte) Finde eine Basis von V, bezüglich welcher Φ trigonal ist.
- **6.** (a) (3 Punkte) Zeige durch Induktion die folgende Formel für alle ganzen Zahlen $n \ge 0$:

$$\sum_{k=1}^{n} (-1)^k k^2 = (-1)^n \cdot \frac{n(n+1)}{2}.$$

(b) (4 Punkte) Seien V_1, V_2 Untervektorräume eines Vektorraumes W. Beweise die Formel

$$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2).$$

(c) (5 Punkte) Sei V ein endlichdimensionaler K-Vektorraum, und seien V_1 und V_2 Unterräume von V mit der Eigenschaft

$$\dim(V_1) + \dim(V_2) = \dim(V).$$

Zeige, dass die folgenden Aussagen äquivalent sind:

- (i) $V_1 + V_2 = V$
- (ii) $V_1 \cap V_2 = \{0\}.$
- (iii) $V = V_1 \oplus V_2$.
- (d) (3 Punkte) Sei nun K ein endlicher Körper der Kardinalität q. Bestimme die Anzahl der Unterräume von K^2 .

4