Statistica - 4ª lezione (parte I)

9 marzo 2021

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

$$f_X(z) = egin{cases} rac{1}{b-a} & ext{se } z \in [a,b] \ 0 & ext{altrimenti} \end{cases}$$

- $\mathbb{E}[X] = \frac{a+b}{2}$ perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

- $\mathbb{E}[X] = \frac{a+b}{2}$ perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$ dove

$$\mathbb{E}\left[X^2\right] = \int_{-\infty}^{+\infty} z^2 \, f_X(z) \, \mathrm{d}z$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

- $\mathbb{E}[X] = \frac{a+b}{2}$ perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$
- $\operatorname{var}\left[X\right] = \mathbb{E}\left[X^2\right] \mathbb{E}\left[X\right]^2$ dove

$$\mathbb{E}\left[X^2\right] = \int_{-\infty}^{+\infty} z^2 f_X(z) dz = \int_a^b z^2 \frac{1}{b-a} dz$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$
 dove

$$\mathbb{E}\left[X^2\right] = \int_{-\infty}^{+\infty} z^2 f_X(z) dz = \int_a^b z^2 \frac{1}{b-a} dz$$
$$= \frac{1}{b-a} \left[\frac{z^3}{3}\right]_{z=a}^{z=b}$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

- $\mathbb{E}[X] = \frac{a+b}{2}$ perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$
- $\operatorname{var}[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$ dove

$$\mathbb{E}\left[X^{2}\right] = \int_{-\infty}^{+\infty} z^{2} f_{X}(z) dz = \int_{a}^{b} z^{2} \frac{1}{b-a} dz$$
$$= \frac{1}{b-a} \left[\frac{z^{3}}{3}\right]_{z=a}^{z=b} = \frac{b^{3}-a^{3}}{3(b-a)} = \frac{b^{2}+ab+a^{2}}{3}$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

•
$$\operatorname{var}[X] = \mathbb{E}\left[X^2\right] - \mathbb{E}[X]^2 = \frac{b^2 + ab + a^2}{3} - \left(\frac{a+b}{2}\right)^2$$

$$\mathbb{E}\left[X^2\right] = \int_{-\infty}^{+\infty} z^2 f_X(z) \, \mathrm{d}z = \int_{0}^{b} z^2 \frac{1}{b-a} \, \mathrm{d}z$$

$$= \frac{1}{b-a} \left[\frac{z^3}{3} \right]_{z=a}^{z=b} = \frac{b^3 - a^3}{3(b-a)} = \frac{b^2 + ab + a^2}{3}$$

$$f_X(z) = \begin{cases} \frac{1}{b-a} & \text{se } z \in [a,b] \\ 0 & \text{altrimenti} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$
 perché f_X è simmetrica rispetto a $z = \frac{a+b}{2}$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{b^2 + ab + a^2}{3} - \left(\frac{a+b}{2}\right)^2$$
$$= \frac{(b-a)^2}{12}$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\mathbb{P}(|X - \mu_X| \ge k \, \sigma_X) \le \frac{\sigma_X^2}{(k \, \sigma_X)^2} = \frac{1}{k^2}$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\mathbb{P}(|X - \mu_X| \ge k \, \sigma_X) \le \frac{\sigma_X^2}{(k \, \sigma_X)^2} = \frac{1}{k^2}$$

$$k=1$$
:

$$\leq \frac{1}{1^2} = 100\%$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\mathbb{P}(|X - \mu_X| \ge k \, \sigma_X) \le \frac{\sigma_X^2}{(k \, \sigma_X)^2} = \frac{1}{k^2}$$

$$k = 2$$
: $\leq \frac{1}{2^2} = 25\%$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\mathbb{P}(|X - \mu_X| \ge k \, \sigma_X) \le \frac{\sigma_X^2}{(k \, \sigma_X)^2} = \frac{1}{k^2}$$

$$k=3$$
:

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge \varepsilon) \le \frac{\operatorname{var}[X]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, \mathrm{d}z$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} \underbrace{(z - \mu_X)^2 f_X(z)}_{\ge 0} dz + \int_{|z - \mu_X| < \varepsilon} \underbrace{(z - \mu_X)^2 f_X(z)}_{\ge 0} dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} \underbrace{(z - \mu_X)^2}_{> \varepsilon^2} f_X(z) dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

$$\geq \int_{|z - \mu_X| \ge \varepsilon} \underbrace{(z - \mu_X)^2}_{>\varepsilon^2} f_X(z) dz \geq \int_{|z - \mu_X| \ge \varepsilon} \varepsilon^2 f_X(z) dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} \underbrace{(z - \mu_X)^2}_{\ge \varepsilon^2} f_X(z) dz \ge \varepsilon^2 \int_{|z - \mu_X| \ge \varepsilon} f_X(z) dz$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) \, dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) \, dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) \, dz \ge \varepsilon^2 \int_{|z - \mu_X| \ge \varepsilon} f_X(z) \, dz$$

$$= \varepsilon^2 \mathbb{P}(|X - \mu_X| \ge \varepsilon)$$

Teorema (disuguaglianza di Chebyshev per variabili aleatorie)

Per qualsiasi v.a. X vale la disuguaglianza

$$\mathbb{P}\left(|X - \mathbb{E}\left[X\right]| \ge \varepsilon\right) \le \frac{\operatorname{var}\left[X\right]}{\varepsilon^2}$$
 per ogni $\varepsilon > 0$

$$\sigma_X^2 = \int_{-\infty}^{+\infty} (z - \mu_X)^2 f_X(z) \, dz$$

$$= \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) \, dz + \int_{|z - \mu_X| < \varepsilon} (z - \mu_X)^2 f_X(z) \, dz$$

$$\ge \int_{|z - \mu_X| \ge \varepsilon} (z - \mu_X)^2 f_X(z) \, dz \ge \varepsilon^2 \int_{|z - \mu_X| \ge \varepsilon} f_X(z) \, dz$$

$$= \varepsilon^2 \mathbb{P}(|X - \mu_X| \ge \varepsilon) \quad \Rightarrow \quad \frac{\sigma_X^2}{\varepsilon^2} \ge \mathbb{P}(|X - \mu_X| \ge \varepsilon)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{z-\mu}{\sigma} \right)^2 \right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

$$X \sim N(\mu, \sigma^2)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

$$X \sim N(\mu, \sigma^2)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{z-\mu}{\sigma} \right)^2 \right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

$$X \sim N(\mu, \sigma^2)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

$$X \sim N(\mu, \sigma^2)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

$$X \sim N(\mu, \sigma^2)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{z-\mu}{\sigma} \right)^2 \right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

è la densità gaussiana (o normale) di parametri μ e σ^2 :

$$X \sim N(\mu, \sigma^2)$$

N(0, 1) è la densità normale standard

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right]$$

con $\mu \in \mathbb{R}$ e $\sigma >$ 0 fissati

•
$$\mu_X = q_{0.5}^X = \mu$$
 (per la simmetria)

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right]$$

con $\mu \in \mathbb{R}$ e $\sigma >$ 0 fissati

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right]$$

con $\mu \in \mathbb{R}$ e $\sigma >$ 0 fissati

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right]$$

 $\operatorname{con}\,\mu\in\mathbb{R}\;\mathrm{e}\;\sigma>\mathrm{0}\;\mathrm{fissati}$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$:

$$f_{aX+b}(t) = \frac{1}{|a|} f_X\left(\frac{t-b}{a}\right)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$:

$$f_{aX+b}(t) = \frac{1}{|a|} f_X\left(\frac{t-b}{a}\right) = \frac{1}{|a|} \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\frac{t-b}{a}-\mu}{\sigma}\right)^2\right]$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$:

$$f_{aX+b}(t) = \frac{1}{|a|} f_X\left(\frac{t-b}{a}\right) = \frac{1}{|a|} \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\frac{t-b}{a}-\mu}{\sigma}\right)^2\right]$$
$$= \frac{1}{|a|\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{t-a\mu-b}{a\sigma}\right)^2\right]$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$:

$$f_{aX+b}(t) = \frac{1}{|a|} f_X\left(\frac{t-b}{a}\right) = \frac{1}{|a|} \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\frac{t-b}{a}-\mu}{\sigma}\right)^2\right]$$
$$= \frac{1}{|a|\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{t-(a\mu+b)}{|a|\sigma}\right)^2\right]$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$:

$$f_{aX+b}(t) = \frac{1}{|a|} f_X\left(\frac{t-b}{a}\right) = \frac{1}{|a|} \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\frac{t-b}{a}-\mu}{\sigma}\right)^2\right]$$
$$= \frac{1}{|a|\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{t-(a\mu+b)}{|a|\sigma}\right)^2\right]$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{z-\mu}{\sigma} \right)^2 \right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Se $X \sim N(\mu, \sigma^2)$, allora $\frac{X \mu}{\sigma} \sim N(0, 1)$ (standardizzazione)

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Se $X \sim N(\mu, \sigma^2)$, allora $\frac{X \mu}{\sigma} \sim N(0, 1)$ (standardizzazione):

$$\frac{X - \mu}{\sigma} = \frac{1}{\sigma}X + \frac{-\mu}{\sigma}$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Se $X \sim N(\mu, \sigma^2)$, allora $\frac{X \mu}{\sigma} \sim N(0, 1)$ (standardizzazione):

$$\frac{X - \mu}{\sigma} = \frac{1}{\sigma}X + \frac{-\mu}{\sigma} \sim N\left(\frac{1}{\sigma}\mu + \frac{-\mu}{\sigma}, \left(\left|\frac{1}{\sigma}\right|\sigma\right)^{2}\right)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Se $X \sim N(\mu, \sigma^2)$, allora $\frac{X \mu}{\sigma} \sim N(0, 1)$ (standardizzazione):

$$\frac{X-\mu}{\sigma} = \frac{1}{\sigma}X + \frac{-\mu}{\sigma} \sim N\left(\frac{1}{\sigma}\mu + \frac{-\mu}{\sigma}, \left(\left|\frac{1}{\sigma}\right|\sigma\right)^2\right) = N(0,1)$$

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Se $X \sim N(\mu, \sigma^2)$, allora $\frac{X \mu}{\sigma} \sim N(0, 1)$ (standardizzazione)
- La f.d.r. di N(0, 1) si indica con Φ e si trova tabulata

Tavola della funzione di ripartizione della distribuzione N(0,1)											$\Phi(0.36) =$	
	z	0.00	0.01	0.02	0.03	0.04	0.05	(0.06)	0.07	0.08	0.09	* (0.0 \ 0.00
	0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586	$= \Phi(0.3+0.06)$
	0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535	`
	0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409	0.04050
	(0.3)	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173	= 0.64058
	0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793	
	0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240	
	0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490	

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

PROPRIETÀ:

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Se $X \sim N(\mu, \sigma^2)$, allora $\frac{X \mu}{\sigma} \sim N(0, 1)$ (standardizzazione)
- La f.d.r. di N(0,1) si indica con Φ e si trova tabulata

Tavola della funzione di ripartizione della distribuzione N(0,1)											$\Phi(0.36) =$	
z	0.00	0.01	0.02	0.03	0.04	0.05	(0.06)	0.07	0.08	0.09	φ(0,0 ± 0,00)	
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586	$= \Phi(0.3+0.06)$	
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535	` ′	
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409	= 0.64058	
(0.3)	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173		
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793		
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240	0.00	
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490	$q_{0.64058} = 0.36$	
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	n 77035	0.78230	n 78524		

4/4