Population Dynamics

Malthusian population growth model

$$rac{dN}{dt} = bN - dN = rN$$

where b and d are the birth and death rates respectively.

Logistic growth model

$$rac{dN}{dt} = r \left(1 - rac{N}{K}
ight) N$$

where K is the carrying capacity.

Fibonacci's rabbits

- two rabbits give birth to one pair of infant
- infant grows up in one month and mate, pair infant born next month

$$\left\{ egin{array}{ll} A(N) &= A(N-1) + B(N-1) \ B(N) &= A(N-1) \end{array}
ight.$$

Lotka-Volterra Model

$$\begin{cases} \frac{dR}{dt} = \alpha R - \beta RF & R(0) = R_0 \\ \frac{dF}{dt} = \gamma RF - \delta F & F(0) = F_0 \end{cases}$$

Chemical Kinetics

Component balance

$$\dot{n}_{i,in} - \dot{n}_{i,out} + \sum_{r} v_{r,i} \, \dot{\xi}_r = \frac{dN_i}{dt}$$

Molar flow rate of i entering system Molar flow rate of i leaving system

Reaction rates of i generated/consumed by all reactions in system v > 0 for generation,

v < 0 for consumption,

v = 0 for not involved in reaction

From equation, obtain stoichiometric numbers.

• We define the *extent of reaction*, ξ :

$$\delta\xi \equiv \frac{dN_1}{\nu_1} = \frac{dN_2}{\nu_2} = \frac{dN_3}{\nu_3} = \dots$$

$$\nu_i \xi = \Delta N_i$$

$$\nu_i \dot{\xi} = \frac{dN_i}{dt}$$

- Stirred-tank Reactor
- Catalysis

$$S + E \longrightarrow SE$$
 (rate constant: k_1)

$$SE \longrightarrow S + E$$
 (rate constant: k_{-1})

$$SE \longrightarrow P + E$$
 (rate constant: k_2)

Second-Order Differential Equations

$$rac{d^2y}{dt^2}=f\left(t,y,rac{dy}{dt}
ight)$$

- $\{y(t_0),y'(t_0)\}$: initial value problem (IVP)
- $\{y(t_1),y(t_2)\}$: boundary value problem (**Dirichlet type**)
- $\{y'(t_1), y'(t_2)\}$: boundary value problem (Neumann type)

Solving second-order ODEs by computer

• The trick is to convert a second-order ODE into a system of two first-order ODEs, which we know how to solve, by defining the first derivative as a new variable:

$$\frac{d^2y}{dt^2} = f\left(t, y, \frac{dy}{dt}\right) \Rightarrow \begin{cases} \frac{dy}{dt} = \dot{y} & \frac{\text{Initial values:}}{y(0) = y_0} \\ \frac{d\dot{y}}{dt} = f(t, y, \dot{y}) & \dot{y}(0) = \frac{dy}{dt} \bigg|_{t=0} = v_0 \end{cases}$$

· Package into vector form:

$$\frac{d}{dt}\vec{Y} = \vec{F}(t, \vec{Y}) \quad where \quad \vec{Y} = \begin{bmatrix} y \\ \dot{y} \end{bmatrix} \; ; \quad \vec{F} = \begin{bmatrix} \dot{y} \\ f(t, y, \dot{y}) \end{bmatrix} \qquad \frac{\text{Initial value:}}{\vec{Y}(0) = \begin{bmatrix} y_0 \\ v_0 \end{bmatrix}}$$

Shooting Method

- Simulate 2nd-order ODE by computer
- Compare the value of the function at $y(t_2)$ and the given initial condition
- Using method of bisection find the missing initial value

Finite Difference Methods

For a linear second order ODE

$$rac{d^2y}{dt} + p(t)\left(rac{dy}{dt}
ight) + q(t)y(t) = r(t)$$

Approximate derivatives by finite differences:

$$rac{dy}{dt} pprox rac{y_{i+1} - y_{i-1}}{2h} \qquad rac{d^2y}{dt^2} pprox rac{rac{y_{i+1} - y_i}{h} - rac{y_i - y_{i-1}}{h}}{h} = rac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$$

Substituting these finite differences back into our *ODE* and rearranging the y_i terms, we have

$$\left(\frac{1}{h^2} + \frac{p(t_i)}{2h}\right)y_{i+1} + \left(-\frac{2}{h^2} + q(t_i)\right)y_i + \left(\frac{1}{h^2} - \frac{p(t_i)}{2h}\right)y_{i-1} = r(t_i)$$

The two types of boundary conditions give us 2 extra equations. Lastly, we transform our (n + 1) equations into a

linear system of equations:

Transport Phenomena and Partial Differential Equations

- Partial differential equations (PDEs) are equations involving partial derivatives.
 - By definition, this means our dependent variable is a multivariable function.
- Types of linear PDEs (A, B, C, D, E, F, G) can depend on t and x, but not on M):

$$A\frac{\partial^{2}M}{\partial t^{2}} + B\frac{\partial^{2}M}{\partial t\partial x} + C\frac{\partial^{2}M}{\partial x^{2}} + D\frac{\partial M}{\partial t} + E\frac{\partial M}{\partial x} + FM + G = 0$$

- First-order (A = B = C = 0): e.g. advection
- Parabolic ($B^2 4AC = 0$): e.g. one-dimensional heat conduction / diffusion
- Elliptic ($B^2 4AC < 0$): e.g. steady-state two-dimensional heat conduction / diffusion
- Hyperbolic (B^2 4AC > 0): e.g. wave equation

Heat Conduction T(t,x)

Lumped model (Finite Volume)

1. Balance Equation

$$\Delta E = mC\Delta T \Longrightarrow rac{dE}{dt} = mCrac{dT}{dt} = q_{in}A - q_{out}A$$

q: heat flux

2. Constitutive Equation

$$q_{in}=rac{k}{L}(T_{in}-T)$$

Also consider that T_{in} and T_{out} varies as time.

Continuous Model

$$q \Big|_{x \to \Delta x}$$

1. Balance Equation (continuous energy conservation)

$$rac{dE}{dt} = A(q(x) - q(x + \Delta x)) \stackrel{E = mC\Delta T}{\Longrightarrow} rac{\partial T}{\partial t} = -rac{1}{
ho C} igg(rac{\partial q}{\partial x}igg)$$

2. Constitutive Equation (Fourier's Law)

$$q_x = -krac{\partial T}{\partial x}$$

Finally, we get

$$\frac{\partial T}{\partial t} = \frac{k}{\rho C} \frac{\partial^2 T}{\partial x^2}$$

• Fick's Law: $J_x = -D\left(\frac{\partial C}{\partial x}\right)$

Method of Lines

Example: 1D diffusion

$$\frac{\partial C}{\partial t} = D\left(\frac{\partial^2 C}{\partial x^2}\right); C(t = 0, x) = C_0; C(t > 0, x = 0) = C_a; C(t > 0, x = 0) = C_b$$

$$\frac{\partial C_i}{\partial t} = D\left(\frac{\partial^2 C}{\partial x^2}\right)\Big|_{x_i, c_i}$$

$$\frac{\partial C_i}{\partial t} = D\left(\frac{C_{i+1} - 2C_i + C_{i-1}}{h^2}\right)$$

becomes a system of coupled equations

$$\frac{dC_i}{dt} = \left(\frac{D}{h^2}\right)C_{i+1} + \left(\frac{-2D}{h^2}\right)C_i + \left(\frac{D}{h^2}\right)C_{i-1}$$

which we can model as a matrix or shifted vectors

- Steady-state: $\frac{\partial C}{\partial t}=0$
- 2D Steady-state Diffusion: $\frac{\partial C}{\partial t} = D\left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y}\right)$, fix boundaries discretize x and y coordinates, and use finite differences to get a system of linear equations

Basic MATLAB Syntax

```
# Matrix manipulation
A(:, 2)
A(2, [2, 3])
A.'  # transpose
zeros(4, 3)  # zero matrix
eye(3)  # identity matrix
ones(4, 3)  # ones matrix

x = 1:1:10  # (first element):(step size):(last element)
linspace(1,10,100)  # (first):(last):(total elements)
```

```
# For loops:

for i=1:1:top
...
end

# If statements:
if n ==0
...
elseif n == 1
...
else
else
...
end
```

Some useful functions in Matlab

Graph Plotting

MATLAB simply plots a series of data points (x_i, y_i) and (optionally) joins them together.
Syntax: plot(x, y, style)

x is the vector (row or column) of x-coordinates of the data points: x = [x₁, x₂, x₃ ...]
y is the vector (row or column) of y-coordinates of the data points: y = [y₁, y₂, y₃ ...]
style is a string:
'b-' means blue solid line
'g:' means green dotted line
'rx' means red crosses (no line)
'k-x' means black solid line, with data points marked with crosses

figure(1)	shows a figure
hold on, hold off	whether to overlay on the old graph
xlabel('x'), ylabel('1/x')	
title('reciprocal')	
legend('x')	
grid on, grid off	
plot(x1,y1,style1,x2,y2,style2)	
plot3(x,y,z,style)	
>> x=1:1:10;y=1:1:10; >> [XX YY]=meshgrid(x,y) >> zz = log(1+XX .^ 2+YY.^2) >> surf(XX,YY,zz)	plotting a surface

Root Finding

```
r = fzero(@function, initial_guess)

# initial_guess can be
# x_0: initial guess
# [x_0, x_1]: root range
```

Definite Integration

```
I = integral(@function, limit_lower, limit_upper)
```

Solving ODEs

```
function [] = doLotka(a, b, c, e)
```

```
[T, Y] = ode45(@lotka, [0, 365], [100; 10]);

plot(T, Y(:,1), 'r-', T, Y(:,2), 'g-');

function D = lotka(t, X)
    R = X(1);
    F = X(2);
    dRdt = a .* R - b .* R .* F;
    dFdt = e .* b .* R .* F - c .* F;
    D = [dRdt; dFdt];
end
end
```