Instructors: Jason Ku, Julian Shun, and Virginia Williams Lecture 7: Binary Trees II

Sep. 26, 2019

Lecture 7: Binary Trees II

Last Time

- Learned to navigate the in-order traversal of a binary tree
- Learned to change tree structure by adding and removing leaves, and performing rotations

Today

- Keep tree balanced after leaf insertions and deletions, i.e., $h = O(\log n)$
- Implement efficient Set and Sequence Interfaces using a Binary Tree

Height Balance

- How to maintain height $h = O(\log n)$ where n is number of nodes in tree?
- A binary tree that maintains $O(\log n)$ height under dynamic operations is called **balanced**
 - There are many balancing schemes (Red-Black Trees, Splay Trees, 2-3 Trees...)
 - First proposed balancing scheme was the **AVL Tree** (1962)
- AVL trees maintain **height-balance** (also called the **AVL Property**)
 - A node is **height-balanced** if heights of its left and right subtrees differ by at most 1
 - Let skew of a node be the height of its right subtree minus that of its left subtree
 - Then a node is height-balanced if its skew is -1, 0, or 1
- Claim: A binary tree with height-balanced nodes has height $h = O(\log n)$ (i.e., $n = 2^{\Omega(h)}$)
- **Proof:** Suffices to show fewest nodes F(h) in any height h tree is $F(h) = 2^{\Omega(h)}$

$$F(0) = 1, \ F(1) = 2, \ F(h) = 1 + F(h-1) + F(h-2) \geq 2F(h-2) \implies F(h) \geq 2^{h/2} \quad \Box$$

- Suppose adding or removing leaf from a height-balanced tree results in imbalance
 - Only subtrees of the leaf's ancestors have changed, to skew of magnitude at most 2
 - Idea: Fix height-balance of ancestors starting from leaf up to the root
 - Repeatedly rebalance lowest ancestor that is not height-balanced, wlog assume skew 2

Rebalancing

- Local Rebalance: Given binary tree node :
 - whose skew 2 and
 - every other node in 's subtree is height-balanced,
 - then 's subtree can be made height-balanced via one or two rotations
 - (after which 's height is the same or one less than before)

• Proof:

- Since skew of is 2, 's right child <F> exists
- Case 1: skew of $\langle F \rangle$ is 0 or Case 2: skew of $\langle F \rangle$ is 1
 - * Perform a left rotation on

- * Let h = H(A), then H(G) = h + 1 and H(D) is h + 1 in Case 1, h in Case 2
- * After rotation:
 - the skew of is either 1 in Case 1 or 0 in Case 2, so is height balanced
 - the skew of $\langle F \rangle$ is -1, so $\langle F \rangle$ is height balanced
 - the height of $\langle B \rangle$ before is h+3, then after is h+3 in Case 1, h+2 in Case 2
- Case 3: skew of $\langle F \rangle$ is -1, so the left child $\langle D \rangle$ of $\langle F \rangle$ exists
 - * Perform a right rotation on <F>, then a left rotation on

- * Let h = H(A), then H(G) = h while H(C) and H(E) are each either h or h 1
- * After rotation:
 - the skew of $\langle B \rangle$ is either 0 or -1, so $\langle B \rangle$ is height balanced
 - the skew of $\langle F \rangle$ is either 0 or 1, so $\langle F \rangle$ is height balanced
 - the skew of $\langle D \rangle$ is 0, so D is height balanced
 - the height of $\langle B \rangle$ is h+3 before, then after is h+2

• Global Rebalance: Add or remove a leaf from height-balanced tree T to produce tree T'. Then T' can be transformed into a height-balanced tree T'' using at most $O(\log n)$ rotations.

• Proof:

- Only ancestors of the affected leaf have different height in T' than in T
- Affected leaf has at most $h = O(\log n)$ ancestors whose subtrees may have changed
- Let <X> be lowest ancestor that is not height-balanced (with skew magnitude 2)
- If a leaf was added into T:
 - * Insertion increases height of <x>, so in Case 2 or 3 of Local Rebalancing
 - * Rotation decreases subtree height: balanced after one rotation
- If a leaf was removed from T:
 - * Deletion decreased height of one child of <X>, not <X>, so only imbalance
 - * Could decrease height of <x> by 1; parent of <x> may now be imbalanced
 - * So may have to rebalance every ancestor of <x>, but at most $h = O(\log n)$ of them
- So can maintain height-balance using only $O(\log n)$ rotations after insertion/deletion!
- But requires us to evaluate whether possibly $O(\log n)$ nodes were height-balanced

Computing Height

- How to tell whether node <x> is height-balanced? Compute heights of subtrees!
- How to compute the height of node <X>? Naive algorithm:
 - Recursively compute height of the left and right subtrees of <X>
 - Add 1 to the max of the two heights
 - Runs in $\Omega(n)$ time, since we recurse on every node :(
- Idea: Augment each node with the height of its subtree! (Save for later!)
- Height of < x > can be computed in O(1) time from the heights of its children:
 - Look up the stored heights of left and right subtrees in O(1) time
 - Add 1 to the max of the two heights
- During dynamic operations, we must **maintain** our augmentation as the tree changes shape
- Recompute subtree augmentations at every node whose subtree changes:
 - Update relinked nodes in a rotation operation in O(1) time
 - Update all ancestors of an inserted or deleted node in O(h) time by walking up the tree

Steps to Augment a Binary Tree

- In general, to augment a binary tree with a **subtree property** P, you must:
 - State the subtree property P (<X>) you want to store at each node <X>
 - Show how to compute $P(\langle X \rangle)$ from the augmentations of $\langle X \rangle$'s children in O(1) time
- Then stored property $P(\langle X \rangle)$ can be maintained without changing dynamic operation costs

Application: Sequence

- Idea! Sequence Tree: Traversal order is sequence order
- To find an index, could just iterate through traversal order, but that's bad, O(n)
- However, if we could compute a subtree's size in O(1), can index in O(h) time
 - How? Check the size n_L of the left subtree and compare to i
 - If $i < n_L$, recurse on the left subtree
 - If $i > n_L$, recurse on the right subtree with $i' = i n_L 1$
 - Otherwise, $i = n_L$, and you've reached the desired node!
- Maintain the size of each node's subtree at the node via **augmentation!**
 - Can compute size from sizes of children by summing them and adding 1
- Sequence operations follow directly from a fast subtree_node_at(i) operation
- Naively, build (A) takes $O(n \log n)$ time, but can be done in O(n) time
- You will go over their implementations in recitation

Application: Set

- Idea! Binary Search Tree: Traversal order is sorted order increasing by key
- Then can find the node with key k in node <X>'s subtree in O(h) time:
 - If k is smaller than the key at <x>, recurse in left subtree (or return None)
 - If k is larger than the key at <X>, recurse in right subtree (or return None)
 - Otherwise, return the item stored at <X>
- Other Set operations follow a similar pattern
- You will go over their implementations in recitation