An Introduction to Fourier Transforms

D. S. Sivia

St. John's College Oxford, England

June 28, 2013

Outline

Approximating functions

- **♦** Taylor series
- lacktriangle Fourier series \rightarrow transform

Outline

Approximating functions

- **♦** Taylor series
- lacktriangle Fourier series \rightarrow transform

Some formal properties

- ♦ Symmetry
- ◆ Convolution theorem
- **♦** Auto-correlation function

Outline

- Approximating functions
 - **♦** Taylor series
 - lacktriangle Fourier series \rightarrow transform
- Some formal properties
 - ◆ Symmetry
 - ◆ Convolution theorem
 - **♦** Auto-correlation function
- Physical insight
 - **♦** Fourier optics

Taylor Series

Taylor Series (0)

 \blacksquare $f(x) \approx a_0$

Taylor Series (1)

Taylor Series (2)

$$f(x) \approx a_0 + a_1(x - x_0) + a_2(x - x_0)^2$$

Taylor Series (3)

$$f(x) \approx a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3$$

Taylor Series (4)

$$f(x) \approx a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + a_4(x - x_0)^4$$

Fourier Series

Periodic: $f(x) = f(x + \lambda)$

$$k = \frac{2\pi}{\lambda}$$
 (wavenumber)

Fourier Series (0)

Fourier Series (1)

Fourier Series (1)

$$\mathbf{f}(x) \approx \frac{a_0}{2} + a_1 \cos(kx) + b_1 \sin(kx)$$

Fourier Series (2)

$$f(x) \approx \frac{a_0}{2} + a_1 \cos(kx) + a_2 \cos(2kx) + b_1 \sin(kx) + b_2 \sin(2kx)$$

Fourier Series (3)

$$f(x) \approx \frac{a_0}{2} + a_1 \cos(kx) + a_2 \cos(2kx) + a_3 \cos(3kx)$$

$$+ b_1 \sin(kx) + b_2 \sin(2kx) + b_3 \sin(3kx)$$

Fourier Series (4)

$$f(x) \approx \frac{a_0}{2} + a_1 \cos(kx) + a_2 \cos(2kx) + a_3 \cos(3kx) + a_4 \cos(4kx)$$

$$+ b_1 \sin(kx) + b_2 \sin(2kx) + b_3 \sin(3kx) + b_4 \sin(4kx)$$

Taylor Versus Fourier Series

Taylor:
$$f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$$

$$|x-x_{\rm o}| < R$$

Taylor Versus Fourier Series

Taylor:
$$f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$$

$$|x-x_{\rm o}| < R$$

Fourier:
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nkx) + b_n \sin(nkx)$$
 $k = \frac{2\pi}{\lambda}$

•
$$a_n = \frac{2}{\lambda} \int_0^{\lambda} f(x) \cos(nkx) dx$$
 and $b_n = \frac{2}{\lambda} \int_0^{\lambda} f(x) \sin(nkx) dx$

Complex Fourier Series

$$e^{i\theta} = \cos\theta + i\sin\theta$$
 , where $i^2 = -1$

Complex Fourier Series

$$e^{i\theta} = \cos\theta + i\sin\theta$$
, where $i^2 = -1$

Fourier:
$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inkx}$$

$$c_n = \frac{1}{\lambda} \int_{-\lambda/2}^{\lambda/2} f(x) e^{-inkx} dx$$

Complex Fourier Series

$$e^{i\theta} = \cos\theta + i\sin\theta$$
 , where $i^2 = -1$

Fourier: $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inkx}$

$$c_n = \frac{1}{\lambda} \int_{-\lambda/2}^{\lambda/2} f(x) e^{-inkx} dx$$

- $c_{\pm n} = \frac{1}{2}(a_n \mp i b_n) \quad \text{for } n \geqslant 1$
- $c_0 = a_0$

Fourier Transform

■ As $\lambda \to \infty$, so that $k \to 0$ and f(x) is non-periodic,

$$\bullet \quad \sum_{n=-\infty}^{\infty} c_n e^{inkx} \longrightarrow \int_{-\infty}^{\infty} c(q) e^{iqx} dq$$

Fourier Transform

■ As $\lambda \to \infty$, so that $k \to 0$ and f(x) is non-periodic,

- In the continuum limit,
 - **♦** Fourier sum (series) → Fourier integral (transform)

$$\mathbf{F}(q) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{f}(x) e^{-\mathbf{i}qx} dx$$

Some Symmetry Properties

- **Even:** $f(x) = f(-x) \iff F(q) = F(-q)$
- Odd: $f(x) = -f(-x) \iff F(q) = -F(-q)$

Some Symmetry Properties

Even:
$$f(x) = f(-x) \iff F(q) = F(-q)$$

Odd:
$$f(x) = -f(-x) \iff F(q) = -F(-q)$$

Real:
$$f(x) = f(x)^* \iff F(q) = F(-q)^*$$

(Friedel pairs)

Convolution

$$f(x) = g(x) \otimes h(x) = \int_{-\infty}^{\infty} g(t) h(x-t) dt$$

Convolution

$$f(x) = g(x) \otimes h(x) = \int_{-\infty}^{\infty} g(t) h(x-t) dt$$

Convolution Theorem

$$f(x) = g(x) \otimes h(x) \iff F(q) = \sqrt{2\pi} G(q) \times H(q)$$

Convolution Theorem

$$f(x) = g(x) \otimes h(x) \iff F(q) = \sqrt{2\pi} G(q) \times H(q)$$

$$f(x) = g(x) \times h(x) \iff F(q) = \frac{1}{\sqrt{2\pi}} G(q) \otimes H(q)$$

Auto-correlation Function

$$\int_{-\infty}^{\infty} \mathbf{F}(q) e^{\mathbf{i} q x} dq = \mathbf{f}(x)$$

Auto-correlation Function

$$\int_{-\infty}^{\infty} F(q) e^{iqx} dq = f(x)$$

Patterson map

Auto-correlation Function (1)

Auto-correlation Function (2)

Fourier Optics

Fraunhofer:
$$\psi(q) = \psi_0 \int_{-\infty}^{\infty} \mathbf{A}(x) e^{\mathbf{i} q x} dx$$
 where $q = \frac{2\pi \sin \theta}{\lambda}$

where
$$q = \frac{2\pi \sin \theta}{\lambda}$$

Young's Double Slits

Young's Double Slits

Young's Double Slits

Single Wide Slit

Single Wide Slit

Single Wide Slit

Two Wide Slits (0)

Two Wide Slits (1)

Two Wide Slits (2)

Two Wide Slits (3)

Finite Grating (0)

Finite Grating (1)

Finite Grating (2)

Finite Grating (3)

Write up of this Talk!

■ Foundations of Science Mathematics (Chapter 15)
Oxford Chemistry Primers Series, vol. 77

D. S. Sivia and S. G. Rawlings (1999), Oxford University Press

■ Elementary Scattering Theory for X-ray and Neutron Users (Chapter 2)

D. S. Sivia (January 2011), Oxford University Press

Foundations of Science Mathematics: Worked Problems (Chapter 15)
Oxford Chemistry Primers Series, vol. 82

D. S. Sivia and S. G. Rawlings (1999), Oxford University Press

The phaseless Fourier problem

The phaseless Fourier problem

