Brain Stroke Analysis from Non-Contrast CT and Path-Planning for Robot-Assisted Surgical Intervention

Supervisor: Dr. Mirnalinee TT Members: A Anirudh, Karthik Desingu

Highlights of the Project

Objectives

- To detect the presence of, localize, and segment stroke regions from NCCT volumes.
- To devise a path-planning strategy for surgical intervention using a robotic arm.
- To enable clinicians to visualize stroke region and planned-path using a web application.

Distinguishing Features

- Multi-dimensional fusion for feature context-aware segmentation,
- Improvements to Q-learning for robotic path-planning to attain faster convergence.

Dataset & Environment

- Benchmark Intracranial Hemorrhage Dataset comprising 2500 brain window images collected from 82 patient samples.
- Three-dimensional workspace with rectangular obstacles and target defined in the xyz-space, chosen to represent a realistic surgical environ.

User Interface

Proposed Method

Figure 2. Overall architecture and workflow of the proposed system

Module 1: Stroke Region Detection

Figure 3. Proc. steps of NCCT analysis workflow

Figure 1. Screenshots from the visualization web-app Figure 4. Proposed neural network for segmentation

Module 2: Enhanced Q-Learning for Path-planning

Figure 5. Intermediate steps of the robotic arm

$$P(\Delta E, T(t)) = \exp\left(-\frac{\Delta E}{T(t)}\right)$$
$$T(t) = T_0 \cdot \alpha^t$$

Equation 1. Simulated annealing for exploratory actions

$$\max \left(\max_{i=1}^{n} |u_i - v_i|, \left(\sum_{i=1}^{n} |u_i - v_i|^p \right)^{1/p} - \left(\sum_{i=1}^{n} |u_i' - v_i'|^p \right)^{1/p} \right)$$

$$||\text{current arm position - target}||^2 - ||\text{previous arm position - target}||^2$$

Equation 2. Novel distance metric for arm position

Performance Analysis

Approach	Backbone	Dataset	DSC	Mean IoU	AuROC
FPN	EffNet-B0		41.18%	28.20%	1
UNet	EffNet-B0		46.73%	30.42%	_
PSPNet		Peer-Reviewed	40.21%	27.51%	<u>=</u>
DeepLabV3+		Intracranial	33.82%	17.43%	=
Best UNet *		Hemorrhage Dataset	44%	27.5%	=
AutoEncoder+ChanVese [2]*		Hssayeni et al.	70%		==
M-Net		(2020)	70.41%	59.95%	86.13%
Proposed			76.11%	64.52%	89.15%

Table 1. Quantitative comparison of segmentation

Figure 6. Qualitative comparison of segmentation

Figure 7. Performance of proposed distance metric

Inferences

- A novel neural network is proposed for segmenting stroke regions from NCCT volumes that leverages context-awareness and pure dimensional features.
- path-planning analyzing multiple strategies, a modified Q-learning algorithm is proposed for robotic surgical inerventions.
- A web-app was developed to visualize identified stroke regions and the planned robotic path.

References

[1] Murtadha Hssayeni, MS Croock, AD Salman, HF Al-khafaji, ZA Yahya, and B Ghoraani. Computed intracranial hemorrhage tomography images for segmentation. Intracranial Hemorrhage Segmentation Using A Deep Convolutional Model. Data, 5(1):179, 2020.

[2] Erdal Baskaran, Zafer Comert, and Yuksel C elik. Convolutional neural network approach for automatic tympanic membrane detection and classification. Biomedical Signal Processingl, 56:101734, 2020.