Оглавление

$\mathbf{\Pi}_{\mathbf{M}}$	Іинейные пространства и линейные операторы		
1.1	Линейные пространства		
	1.1.1	Определение линейного пространства	
	1.1.2	Базис, координаты, размерность пространства	
	1.1.3	Изоморфизм линейных пространств	
	1.1.4	Матрица перехода от одного базиса к другому. Преобразование координат при изменении базиса	
	1.1.5	Подпространства линейного пространства	
	1.1.6	Сумма и пересечение подпространств	
	1.1.7	Прямая сумма подпространств	
1.2	Линей	іные операторы	
	1.2.1	Линейные операторы на пространстве	
	1.2.2	Матрица линейного оператора	
	1.2.3	Действия с линейными операторами	
	1.2.4	Аннулирующие многочлены	
	1.2.5	Обратный оператор	
	1.2.6	Линейный оператор, действующий из R^n в R^m	
	1.2.7	Ядро и образ линейного оператора. Ранг и дефект оператора	
	1.2.8	Собственные векторы и собственные значения линейного оператора	
	1.2.9	Теорема Гамильтона-Кэли	
	1.2.10	Инвариантные полиространства	

Глава 1

Линейные пространства и линейные операторы

1.1 Линейные пространства

1.1.1 Определение линейного пространства

Поле

Определение 1.1.1. Полем называется множество F, в котором определены две алгебраические бинарные операции + (сложение) и \cdot (умножение) и выполнены аксиомы:

- 1. (a+b)+c=a+(b+c) ассоциативность сложения;
- 2. $\exists (0 \in F) \forall (a \in F)[a+0=a]$ наличие нулевого элемента, т. е. нейтрального по сложению;
- 3. $\forall (a \in F) \exists ((-a) \in F)[a + (-a) = 0]$ обратимость любого элемента по сложению;
- 4. a + b = b + a коммутативность сложения;
- 5. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ ассоциативность умножения;
- 6. $\exists (1 \in F) \forall (a \in F) [1 \cdot a = a]$ наличие единичного элемента, т. е. нейтрального по умножению;
- 7. $\forall (a \in F, a \neq 0) \exists (a^{-1} \in F)[a \cdot a^{-1} = 1]$ обратимость по умножению всех элементов, кроме нулевого;
- 8. $a \cdot b = b \cdot a$ коомутативность умножения;
- 9. $(a+b) \cdot c = a \cdot c + b \cdot c$

Замечание 1.1.1. Из аксиомы 6 определения поля следует, что поле содержит не менее двух элементов.

Замечание 1.1.2. Фактически аксиомы 1-4 утверждают, что (F,+) – абелева группа, аксиомы 5-8 — что $(F \setminus 0, \cdot)$ — абелева группа, а аксиома 9 связывает операции + и \cdot .

Пример 1.1.1. Каждое из множеств \mathbb{Q} , \mathbb{R} и \mathbb{C} с обычными операциями сложения и умножения является полем.

Пример 1.1.2. Множество $\mathbb{Q}(\sqrt{)} = \{x | x = p + q\sqrt{2}, p \in \mathbb{Q}, q \in \mathbb{Q}\}$ с обычными операциями сложения и умножения является полем. Операцию образования такого поля называют расширением поля.

Пример 1.1.3. Пусть p - простое число. На множестве $\mathbb{Z}_p = \{0, 1, ..., p-1\}$ определим операции сложения \oplus и умножения \odot следующим образом: $m \oplus n$ и $m \odot n$ равны остаткам от деления обычной суммы и обычного произведения m и n соответственно. $(\mathbb{Z}_p, \oplus, \odot)$ - поле.

Пример 1.1.4. Множества целых чисел \mathbb{Z} и натуральных чисел \mathbb{N} с обычными операциями сложения и умножения полями не является, т. к. не содержат обратного элемента по умножению, например, для a=2.

Пример 1.1.5. Множество всевозможных рациональных дробей вида $\frac{P(x)}{Q(x)}$, где P(x) и Q(x) - многочлены с вещественными коэффициентами, притом Q(x) - ненулевой многочлен, с обычными операциями сложения и умножения дробей является полем.

Элементы полей мы будем называть скалярами.

Линейные пространства

Определение 1.1.2. Множество R называется линейным (векторным) пространством над полем F и обозначается R((F)), если для $\forall (x,y,z \in R) \forall (\alpha,\beta \in F)$ определены сумма $x+y \in R$ и внешнее умножение $\alpha x \in R$ и выполнены аксиомы:

- 1. (x + y) + z = x + (y + z) ассоциативность сложения;
- 2. $\exists (\theta \in R) \forall (x \in R)[x + \theta = x]$ существованание нулевого, т. е. нейтрального по сложению, элемента;
- 3. $\forall (x \in R) \exists ((-x) \in R)[x + (-x) = \theta]$ обратимость любого элемента по сложению;

- 4. x + y = y + x коммутативность сложения;
- 5. $\alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x$ ассоциативность внешнего умножения;
- 6. $1 \cdot x = x$
- 7. $\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$
- 8. $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$ так как операнды внешнего умножения неравноправны, аксиом дистрибутивности две, а не одна, как в определении поля.

Элементы линейного пространства называют векторами, элемент θ – нулевым вектором, а вектор (-x) – вектором, проивоположным вектору x. Пространства над полем вещественных чисел $\mathbb R$ называют вещественными, над полем комплексных чисел $\mathbb C$ - комплексными.

Для удобства восприятия векторы мы будем обозначать малыми латинскими буквами, скаляры - малыми греческими.

Пример 1.1.6. Множества V_1 , V_2 , V_3 всех обычных векторов (направленных отрезков), выходящих из какой-нибудь фиксированной точки прямой, плоскости или пространства соответственно, с обычными операциями сложения векторов и умножения их на вещественные числа - вещественные линейные пространства.

Пример 1.1.7. Множества всевозможных упорядоченных наборов из n вещественных (или комплексных) чисел \mathbb{R}^n (или \mathbb{C}^n соответственно) являются вещественными (комплексными) пространствами над полями \mathbb{R} (\mathbb{C}).

- 1.1.2 Базис, координаты, размерность пространства
- 1.1.3 Изоморфизм линейных пространств
- 1.1.4 Матрица перехода от одного базиса к другому. Преобразование координат при изменении базиса
- 1.1.5 Подпространства линейного пространства
- 1.1.6 Сумма и пересечение подпространств
- 1.1.7 Прямая сумма подпространств

. . .

- 1.2 Линейные операторы
- 1.2.1 Линейные операторы на пространстве
- 1.2.2 Матрица линейного оператора
- 1.2.3 Действия с линейными операторами
- 1.2.4 Аннулирующие многочлены
- 1.2.5 Обратный оператор
- 1.2.6 Линейный оператор, действующий из R^n в R^m
- 1.2.7 Ядро и образ линейного оператора. Ранг и дефект оператора
- 1.2.8 Собственные векторы и собственные значения линейного оператора
- 1.2.9 Теорема Гамильтона-Кэли

Теорема 1.2.1. Гамильтона-Кэли Характеристический многочлен $\varphi(\lambda)$ линейного оператора $A:R^n\to R^n$ является аннулирующим многочленом оператора A

доказательство. Пусть e — какой-нибудь базис R^n и A_e - матрица оператора A в нём. Обозначим $B=A_e-\lambda I,\ \tilde{B}$ — матрицу, присоединённую к B, т. е.

$$\tilde{B} = \begin{pmatrix} |B_{11}| & \dots & |B_{n1}| \\ \dots & \dots & \dots \\ |B_{1n}| & \dots & |B_{nn}| \end{pmatrix}$$

Мы знаем, что $\tilde{B}B = |B|I$, откуда

$$\tilde{B}(A_e - \lambda I) = \varphi(\lambda)I$$

С другой стороны, элементы матрицы \tilde{B} являются многочленами от λ , притом их степень не превосходит n-1. Значит,

$$\tilde{B} = B_0 \lambda^{n-1} + B_1 \lambda^{n-2} + \dots + B_{n-1}$$

Пусть многочлен $\varphi(\lambda)$ имеет вид

$$\alpha_0 \lambda^n + \alpha_1 \lambda^{n-1} + \dots + \alpha_n$$

Тогда

$$(B_0\lambda^{n-1} + B_1\lambda^{n-2} + \dots + B_{n-1})(A_e - \lambda I) = (\alpha_0\lambda^n + \alpha_1\lambda^{n-1} + \dots + \alpha_n)I$$

Рассмотри это выражение как равенство многочленов относительно λ . Раскрыв скобки, выпишем коэффициенты при одинаковых степенях λ и приравняем их:

$$-B_0 = \alpha_0 I$$

$$B_0 A_e - B_1 = \alpha_1 I$$

$$B_1 A_e - B_2 = \alpha_2 I$$

$$B_{n-2} A_e - B_{n-1} = \alpha_{n-1} I$$

$$B_{n-1} A_e = \alpha_n I$$

Умножая эти равенства справа соответственно на $A_e^n, A_e^{n-1}, ..., A_e, I$ и складывая, получим

$$0 = \alpha_0 A_e^n + \alpha_1 A_e^{n-1} + \alpha_n I$$

Таким образом, $\varphi(A_e)=0$, следовательно, оператор $\varphi(\alpha)$ – нулевой

1.2.10 Инвариантные подпространства

. . .