Soham Chatterjee

Email: sohamc@cmi.ac.in

Course: Algebra and Computation

Assignment - 1

Roll: BMC202175 Date: May 14, 2024

Problem 1 Problem Set 1: P5

For a prime p and a positive integer e, prove that $\mathbb{Z}_{v^e}^*$ is cyclic.

Solution: We will prove this in 3 stages: e = 1, e = 2, e > 2.

Case 1: e = 1

Lemma 1. $\sum_{d|n} \varphi(d) = n$

Proof: Consider the list of numbers $S = \{\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\}$. If we express every number in S as simplified form i.e. $\frac{p}{q}$ form where gcd(p,q) = 1. Then the denominators are all the divisors of n.

Then for any $k \in [n]$ we have

$$\frac{k}{n} = \frac{\frac{k}{\gcd(k,n)}}{\frac{n}{\gcd(k,n)}}$$

Denote $d_k := \frac{n}{\gcd(k,n)}$ then d_k is a factor of n. And since $\gcd\left(\frac{k}{\gcd(k,n)}, \frac{n}{\gcd(k,n)}\right) = 1$ we have $\frac{k}{\gcd(k,n)} \in \mathbb{Z}_{d_k}^*$. Let $k \in \mathbb{Z}_d^*$ then suppose l is such that $d \times l = n$ then the fraction $\frac{k}{d} = \frac{k \times l}{n} \in S$ and its simplified form is infact $\frac{k}{d}$.

Hence for any $d \mid n$, the number of fractions with denominator d is $\varphi(d)$, since for all such fractions the numerators are the elements of \mathbb{Z}_d^* . Therefore we have $\sum_{d\mid n} \varphi(d) = n$.

Now define for d such that $d \mid p-1$, $S_d = \{a \in \mathbb{Z}_p^* \mid ord(a) = d\}$. Then we have the following lemma:

Lemma 2. $|S_d| = \varphi(d)$

Proof: First we will show that $|S_d| \in \{0, \varphi(d)\}$ then we will show that $|S_d| = \varphi(d)$. Now if $|S_d| \neq 0$ then $\exists \ a \in S_d$ such that ord(a) = d. Then consider the polynomial $x^d - 1$ over \mathbb{F}_p . $1, a, a^2, \ldots, a^{p-1}$ are its distinct roots. Since the degree is d these are the only roots of the polynomial. Now a^k has order $\frac{d}{gcd(d,k)}$. Then the elements which has order d are a^k where gcd(k,d) = 1. Hence there are $\varphi(d)$ many powers of a which has order d. Therefore $|S_d| \in \{0, \varphi(d)\}$.

Now we have by Lemma 1

$$\sum_{d|p-1} \varphi(d) = p-1$$

Now $\{S_d \mid d \mid p-1\}$ is a partition of \mathbb{Z}_p^* . Therefore $\sum\limits_{d \mid p-1} |S_d| = p-1$. Hence

$$p-1=\sum_{d\mid p-1}|S_d|\leq \sum_{d\mid p-1}\varphi(d)=p-1\iff |S_d|=\varphi(d)\;\forall\;d\; \mathrm{such\;that}\;d\mid p-1$$

Hence the number of elements in \mathbb{Z}_p^* which has order d such that $d \mid p-1$

Now we will introduce another definition. Let H be a group. Then Exponent of H is the smallest number n such that $\forall a \in H$, $a^n = 1$. Now we will show that every finite abelian group has an element which has the order to be exponent of the group. Then we will show that \mathbb{Z}_p^* has exponent p-1. With that we can say \mathbb{Z}_p^* has an element which has order p-1. Therefore \mathbb{Z}_p^* is cyclic since $|\mathbb{Z}_p^*| = p-1$ because \mathbb{Z}_p^* is a finite abelian group.

Lemma 3. If G is a finite abelian group with exponent n then $\exists g \in G$ such that ord(g) = n.

Proof: By structure theorem we have

$$G \cong \mathbb{Z}_{q_1} \times \cdots \times \mathbb{Z}_{q_m}$$

where q_1, \ldots, q_m are primes powers. Now $\forall g \in G$, $ord(g) \mid lcm(q_1, \ldots, q_m)$. The element in $\mathbb{Z}_{q_1} \times \cdots \times \mathbb{Z}_{q_m}$, $(1, 1, \ldots, 1)$ has order $lcm(q_1, \ldots, q_m)$. So the exponent of G is $lcm(q_1, \ldots, q_m)$ and the corresponding element of $(1, \ldots, 1)$ has order $lcm(q_1, \ldots, q_m)$.

Lemma 4. \mathbb{Z}_{p}^{*} has exponent p-1.

Proof: Over \mathbb{F}_p the equation $x^{p-1} - 1$ has p-1 roots which are all the elements of \mathbb{Z}_p^* . There does not exists any polynomial of lower degree which satisfies this property. Hence the exponent of \mathbb{Z}_p^* is p-1.

Therefore there exists an element of \mathbb{Z}_p^* which has order p-1. Therefore the group \mathbb{Z}_p^* is cyclic.

Case 2: e = 2

Lemma 5. Let g be generator of the group \mathbb{Z}_p^* . Then either g or g+p is generator for $\mathbb{Z}_{p^2}^*$.

Proof: We have $|\mathbb{Z}_{p^2}^*|\varphi(p^2)=p(p-1)$. Let g has order m in $\mathbb{Z}_{p^2}^*$. Then $g^p\equiv 1$ mod p. Hence $p-1\mid m$. Therefore m=p(p-1) or m=p-1 since $m\mid p(p-1)$. If its the first case then we are done. For the later take the element g+p. Again let its order is m'. Then $(g+p)^{m'}\equiv 1$ mod p. So $p-1\mid m'$. Hence m' can be either p-1 or p(p-1). If it is also p-1 then we have

$$1 \equiv (g+p)^{p-1} \equiv g^{p-1} + (p-1)g^{p-2}p + p^2(\cdots) \bmod p^2$$
$$\equiv g^{p-1} + p(p-1)g^{p-2} \bmod p^2$$
$$\equiv 1 + p(p-1)g^{p-2} \bmod p^2$$

Therefore

$$p(p-1)g^{p-2} \equiv 0 \bmod p^2 \iff p \mid (p-1)g^{p-2}$$

which is not possible since gcd(p, p-1) = 1 and gcd(p, g) = 1. Contradiction. Hence at least one of g and g + p has order p(p-1).

With this lemma we have an element of $\mathbb{Z}_{p^2}^*$ which has order $p(p-1)=|\mathbb{Z}_{p^2}^*|$. So $\mathbb{Z}_{p^2}^*$ is cyclic.

Case 3: e > 2

Lemma 6. $(1+p)^{p^k} \equiv 1+p^{k+1} \mod p^{k+2}$

Proof:

$$(1-p)^{p^k} \equiv ((1+p)^p)^{p^{k-1}}$$

$$\equiv \left(1+p^2+\binom{p}{2}p^2\right)^{p^{k-1}} \bmod p^{k+2}$$

$$\equiv 1+p^2 \times p^{k-1} \bmod p^{k+2}$$

$$\equiv 1+p^{k+1} \bmod p^{k+2}$$

