Algorithmen und Datenstrukturen

Übungsgruppe 14

Utz Pöhlmann 4poehlma@informatik.uni-hamburg.de 6663579

Louis Kobras 4kobras@informatik.uni-hamburg.de 6658699

> Der dritte Typ Ihm seine Mail-Adresse Ihm seine Matrikelnummer

> > 24. Oktober 2015

Punkte für den Hausaufgabenteil:

1 Zettel vom 14.-16. Oktober // Abgabe: N/A

1.1 Präsenzaufgabe 1.1

Wiederholen Sie die O-Notation und die verwandten Notationen. Wie sind die einzelnen Mengen definiert? Was bedeutet es, wenn $f \in O(g)$ gilt, was wenn $f \in O(g)$ gilt und so weiter?

```
\begin{array}{lll} O(g(n)): & f(n) \in O(g(n)) & \Leftrightarrow \exists c \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \forall n >= n_0: & \|f(n)\| <= c \cdot \|g(n)\| \\ o(g(n)): & f(n) \in o(g(n)) & \Leftrightarrow \forall c \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \forall n >= n_0: & \|f(n)\| <= c \cdot \|g(n)\| \\ \Omega(g(n)): & f(n) \in \Omega(g(n)) & \Leftrightarrow \exists c \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \forall n >= n_0: & \|f(n)\| >= c \cdot \|g(n)\| \\ \omega(g(n)): & f(n) \in \omega(g(n)) & \Leftrightarrow \forall c \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \forall n >= n_0: & \|f(n)\| >= c \cdot \|g(n)\| \\ \Theta(g(n)): & f(n) \in \Theta(g(n)) & \Leftrightarrow \exists c_1, c_2 \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \forall n >= n_0: & c_1 \cdot \|g(n)\| <= \|f(n)\| <= c_2 \cdot \|g(n)\| \end{array}
```

1.2 Präsenzaufgabe 1.2

Beweisen Sie:

- $n^2 + 3n 5 \in O(n^2)$
- $n^2 2n \in \Theta(n^2)$
- $n! \in O((n+1)!)$

Gilt im letzten Fall auch $n! \in o((n+1)!)$?

$$\begin{split} f(n) &\in O(g(n)) &\iff \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \\ f(n) &= n^2 + 3n - 5 \\ g(n) &= n^2 \\ \frac{f(n)}{g(n)} &= \frac{n^2 + 3n - 5}{n^2} \\ \\ \lim_{n \to \infty} \frac{n^2 + 3n - 5}{n^2} &= \lim_{n \to \infty} 1 + \frac{3}{n} - \frac{5}{n^2} \\ &= 1 + \frac{3}{\infty} - \frac{5}{\infty^2} \\ &= 1 + 0 + 0 \\ &= 1 < \infty \Rightarrow f(n) \in O(g(n)) \end{split}$$

$$c_1, c_2 \in \mathbb{R}^+, n_0 \in \mathbb{N} \forall n >= n_0: c_1 \cdot n^2 <= n^2 - 2n <= c_2 \cdot n^2$$

 $\Leftrightarrow c_1 <= 1 - \frac{1}{n} <= c_2$

Dies ist erfüllbar ab $n_0 >= 2$, da für n=1 im mittleren Ausdruck 0 herauskommt und c_1 größer als 0, aber kleiner als der mittlere Ausdruck sein muss. Ist n>=2, so kommt im mittleren Ausdruck 0,5 heraus, für c_1 lässt sich ein beliebiger Wert aus]0;0.5[wählen, sei es an dieser Stelle $\frac{1}{4}$. Als Obergrenze für c_2 lässt sich jeder Wert größer oder gleich 1 wählen, da der mittlere Ausdruck nicht größer als 1 werden kann und somit die Bedingung des "kleiner gleichßofort erfüllt ist.

Somit wird als Ergebnis für die Belegung gewählt: $c_1 = \frac{1}{4}$; $c_2 = 1$; $n_0 = 2$. Mit dieser Belegung gilt $n^2 - 2n \in \Theta(n^2)$

$$\begin{split} f(n) &\in O(g(n)) & \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \\ f(n) &= n! \\ g(n) &= (n+1)! = (n+1) \cdot n! \\ \\ \lim_{n \to \infty} \frac{n!}{(n+1) \cdot n!} &= \lim_{n \to \infty} \frac{1}{n+1} \\ &= \frac{1}{\infty} \\ &= 0 < \infty \Rightarrow f(n) \in O(g(n)) \end{split}$$

Da die Bedingung für o(g(n)) ist, dass der Quotient nicht nur kleiner unendlich, sondern gleich null ist, was hier wie oben gezeigt gegeben ist, gilt auch $n! \in o((n+1)!)$.

1.3 Präsenzaufgabe 1.3

Beweisen oder widerlegen Sie:

1.
$$f(n), g(n) \in O(h(n)) \Rightarrow f(n) + g(n) \in O(h(n))$$

2.
$$f(n), g(n) \in O(h(n)) \Rightarrow f(n) \cdot g(n) \in O(h(n))$$

$$\exists c_1 \in \mathbb{R}^+ \exists n_{0_1} \in \mathbb{N} \forall n >= n_{0_1} : ||f(n)|| <= c_1 \cdot ||h(n)||$$

$$\exists c \geq 1 \in \mathbb{R}^+ \exists n_{0_2} \in \mathbb{N} \forall n >= n_{0_2} : ||g(n)|| <= c_2 \cdot ||h(n)||$$

$$n_0 = \max(n_{0_1}, n_{0_2})$$

$$||f(n) + g(n)|| <= c_1 \cdot ||h(n)|| + c_2 \cdot ||h(n)|| <= (c_1 + c_2) \cdot ||h(n)||$$

Seien f(n) und g(n) Polynome zweiten Grades sowie h(n) ein Polynom dritten Grades. Dann sind sowohl f(n) als auch g(n) durch die *limes*-Bedingung in O(h(n)). Das Produkt zweier Polynome zweiten Grades ist allerdings ein Polynom vierten Grades, sodass gilt:

$$\lim_{n \to \infty} \frac{n^2 \cdot n^2}{n^3} = \lim_{n \to \infty} \frac{n^4}{n^3} = \lim_{n \to \infty} n = \infty$$

Damit ist das Produkt der Polynome nicht mehr in O(h(n)), da die *limes*-Bedingung, nach der der Quotient der Polynome für n gegen Unendlich kleiner als Unendlich sein zu hat, nicht erfüllt ist. Damit ist (2) widerlegt.

2 Zettel vom 15.10. // Abgabe: 26.10.

2.1 Übungsaufgabe 2.1

Begründen Sie formal, warum folgende Größenabschätzungen gelten bzw. nicht gelten:

1.
$$3n^3 - 6n + 20 \in O(n^3)$$

2.
$$n^2 \cdot \log n \in O(n^3) \cap \Omega(n^2)$$

2.1.1

$$3n^{3} - 6n + 20 \in O(n^{3}) \Leftrightarrow \lim_{n \to \infty} \frac{3n^{3} - 6n + 20}{n^{3}} < \infty$$

$$\lim_{n \to \infty} \frac{3n^{3} - 6n + 20}{n^{3}} = \lim_{n \to \infty} \frac{3n^{3}}{n^{3}} - \frac{6n}{n^{3}} + \frac{20}{n^{3}} = \lim_{n \to \infty} 3 - \frac{6}{n^{2}} + \frac{20}{n^{3}} = 3 - 0 + 0 < \infty$$

$$\Rightarrow 3n^{3} - 6n + 20 \in O(n^{3}) \qquad \Box$$

2.1.2

$$\begin{split} n^2 \cdot \log n \in O(n^3) \cap \Omega(n^2) &\Leftrightarrow \lim_{n \to \infty} \frac{n^2 \cdot \log n}{n^3} < \infty \wedge \lim_{n \to \infty} \frac{n^2 \cdot \log n}{n^2} > 0 \\ &\frac{n^2 \cdot \log n}{n^2} = \frac{1 \cdot \log n}{1} = \log n > 0 \ \forall n > 1 \Rightarrow n^2 \cdot \log n \in \Omega(n^2) \\ \lim_{n \to \infty} \frac{n^2 \cdot \log n}{n^3} = \lim_{n \to \infty} \frac{\log n}{n} \overset{\text{l'H}}{=} \lim_{n \to \infty} \frac{1}{n} \cdot \frac{1}{1} = \lim_{n \to \infty} \frac{1}{n} = \frac{1}{\infty} = 0 \Rightarrow n^2 \cdot \log n \in O(n^3) \\ &\Rightarrow n^2 \cdot \log n \in O(n^3) \cap \Omega(n^2) \quad \Box \end{split}$$

2.2 Übungsaufgabe 2.2

 $[\quad | \quad 4]$

Ordnen Sie die folgenden Funktionen nach ihrem Wachstumsgrad in aufsteigender Reihenfolge, d.h. folgt eine Funktion g(n) einer Funktion f(n), so soll $f(n) \in O(g(n))$ gelten.

$$n, \log n, n^2, n^{\frac{1}{2}}, \sqrt{n}^3, 2^n, \ln n, 1000$$

Mit log ist hier der Logarithmus zur Basis 2, mit l
n der natürliche Logarithmus (Basis e) gemeint. Begründen Sie stets Ihre Aussage. Zwei Funktionen f(n) und g(n) befinden sich ferner in der selben Äquivalenzklasse, wenn $f(n) \in \Theta(g(n))$ gilt. Geben Sie an, welche Funktionen sich in derselben Äquivalenzklasse befinden und begründen Sie auch hier ihre Aussage.

Die bearbeitete Menge wird i.F. als M_F bezeichnet. Die Menge, die gerade alle Elemente von M_F in aufsteigend sortierter Reihenfolge enthält, wird als M'_F bezeichnet.

 M_F wird mit InsertionSort in M'_F hineinsortiert.

Sei $e \in M_F$. Für e wird das Element 1000 gewählt. Da $|M_F'|$ leer ist, muss 1000 nicht weiter geprüft werden.

$$M_F' = \{1000\}$$

e wird nun über M_F iteriert, bis $M_F' = Sorted(M_F)$.

e = n

$$\begin{array}{ll} f(n) = n \\ g(n) = 1000 & \lim_{n \to \infty} \frac{n}{1000} & = \infty \Rightarrow n > 1000 & \Rightarrow n \not\in O(1000) \end{array}$$

 $M_F' = \{1000, n\}$

 $e = \log n$

•

 $M_F' = \{1000, \log n, n\}$

e = 4

.

 $M_F' = \{4, 1000, \log n, n\}$

 $e=n^2$

.

 $M_F' = \{4, 1000, \log n, n, n^2\}$

 $e = n^{\frac{1}{2}}$

.

 $M_F' = \{4, 1000, n^{\frac{1}{2}}, \log n, n, n^2\}$

 $e = \sqrt{n}^3$

.

 $M_E' = \{4, 1000, n^{\frac{1}{2}}, \log n, n, \sqrt{n}^3, n^2\}$

 $e = 2^n$

.

 $M_F' = \{4, 1000, n^{\frac{1}{2}}, \log n, n, \sqrt{n}^3, n^2, 2^n\}$

 $e = \ln n$

.

 $M_F' = \{4, 1000, \ln n, \log n, n^{\frac{1}{2}}, n, \sqrt{n}^3, n^2, 2^n\}$

In der selben Äquivalenzklasse befinden sich zum einen 4 und 1000 und zum anderen log(n) und ln(n). Die restlichen Werte sind jeweils alleine in ihrer Äquivalenzklasse.

2.3 Übungsaufgabe 2.3

 $\begin{bmatrix} & 2 \end{bmatrix}$

Beweisen oder widerlegen Sie:

$$f(n), g(n) \in O(h(n)) \Rightarrow f(n) \cdot g(n) \in O((h(n))^2)$$

Für diesen Beweis wird der Beweis des dritten Satzes der Summen- und Produkteigenschaften der O-Notation¹ zu Hilfe genommen:

Beweis. Sei $f \in O(h_1)$ und $g \in O(h_2)$, dann gibt es ein c, n_0 , so dass $f(n) \le c \cdot h_1(n) \forall n \ge n_0$ und ebenso c', n'_0 , so dass $g(n') \le c' \cdot h_2(n') \forall n' \ge n'_0$. Daraus folgt $f(n'') \cdot g(n'') \le c \cdot c' \cdot h_1(n'') \cdot h_2(n'') \forall n'' \ge \max(n_0, n'_0)$, also $f \cdot g \in O(h_1 \cdot h_2)$.

Setzt man nun $h_1, h_2 = h$ folgt daraus für den letzten Ausdruck des Beweises $f(n) \cdot g(n) \in O(h(n) \cdot h(n)) \Rightarrow f(n) \cdot g(n) \in O((h(n))^2)$.

2.4 Übungsaufgabe 2.4

 $\begin{bmatrix} & 8 \end{bmatrix}$

Seien

1.

$$T(n) := \begin{cases} 0, & \text{für } n = 0 \\ 3 \cdot T(n-1) + 2, & \text{sonst} \end{cases}$$

2.

$$S(n) := \begin{cases} c, & \text{für } n = 1\\ 16 \cdot S(\frac{n}{4}) + n^2, & \text{sonst} \end{cases}$$

Rekurrenzgleichungen (c ist dabei eine Konstante).

Bestimmen Sie wie in der Vorlesung jeweils die Größenordnung der Funktion $T: \mathbb{N} \to \mathbb{N}$ einmals mittels der (a) Substitutionsmethode und einmal mittes des (b) Mastertheorems. Ihre Ergebnisse sollten zumindest hinsichtlich der O-Notation gleich sein, so dass Sie etwaige Rechenfehler entdecken können! Führen Sie bei (a) auch den Induktionsbeweis, der in der Vorlesung übersprungen wurde!

1. a)
$$T(n) = 3 \cdot T(n-1) + 2$$

$$= 3 * (3 * T(n-2) + 2) + 2 = 3^2 * T(n-2) + 3^2 - 1$$

$$= 3^2 * (3 * T(n-3) + 2) + 8 = 3^3 * T(n-3) + 3^3 - 1$$

$$= \dots$$

$$= 3^k * T(n-k) + 3^k - 1$$

Wir kommen auf eine sinnvolle Verallgemeinerung der Formel. Beweis der Formel durch vollständige Induktion:

 $^{^{1}\}mathrm{vgl.}$ Vorlesung, Foliensatz 1 (14.10.), S.33

Induktionsanfang: T(0) gilt nach Definiton.

Induktionsschritt: Sei $n \in \mathbb{N}$ (s. Aufgabenstellung). Wir nehmen an, dass T(n) gilt (Induktionsannahme) und zeigen T(n+1). Es gilt

$$T(n) = 3 * T(n-1) + 2$$

$$T(n+1) = 3 * T(n+1-1) + 2$$

$$= 3 * T(n) + 2$$

$$T(n) = 3^{k} * T(n-k) + 3^{k} - 1$$

$$T(n+1) = 3^{k} * T(n+1-k) + 3^{k} - 1$$

Das zeigt T(n+1).

Damit sind der Induktionsanfang und der Induktionsschritt bewiesen. Es folgt, dass T(n) für alle $n \in \mathbb{N}$ gilt.

Da die Rekursion bei T(0) = 0, also n - k = 0 abbricht, wird mit k = n weiter gerechnet.

$$T(n) = 3^{k} * T(n-k) + 3^{k} - 1$$

$$= 3^{n} * T(n-n) + 3^{n} - 1$$

$$= 3^{n} * T(0) + 3^{n} - 1$$

$$= 3^{n} * 0 + 3^{n} - 1$$

$$= 3^{n} - 1 \in \Theta(3^{n})$$

b) Das Mastertheorem ist auf Aufgabe 1. nicht anwendbar, da die Form

$$T(n) := \begin{cases} c, & \text{falls } n = 1\\ a \cdot T(\frac{n}{b}) + f(n), & \text{falls } n > 1 \end{cases}$$

bei

$$T(n) := \begin{cases} 0, & \text{für } n = 0\\ 3 \cdot T(n-1) + 2, & \text{sonst} \end{cases}$$

nicht eingehalten wurde.

2. a)

$$\begin{split} S(n) &= 16 \cdot S(\frac{n}{4}) + n^2 \\ &= 16 \cdot S(\frac{16 \cdot S(\frac{n}{4}) + n^2}{4}) + n^2 \\ &= 16 \cdot S(\frac{16 \cdot S(\frac{16 \cdot S(\frac{n}{4}) + n^2}{4}) + n^2}{4}) + n^2 \\ &= 16 \cdot S(\frac{16 \cdot S(\frac{16 \cdot S(\frac{16 \cdot S(\frac{n}{4}) + n^2}{4}) + n^2}{4}) + n^2}{4}) + n^2 \\ &= 16 \cdot S(\frac{16 \cdot S(\frac{16 \cdot S(\frac{16 \cdot S(\frac{16 \cdot S(\frac{n}{4}) + n^2}{4}) + n^2}{4}) + n^2}{4}) + n^2 \end{split}$$

Keine sinnvolle Vereinfachung erkennbar. => Substitutionsmethode nicht anwendbar.

b) Die Form

$$S(n) := \begin{cases} c, & \text{falls } n = 1\\ a \cdot T(\frac{n}{b}) + f(n), & \text{falls } n > 1 \end{cases}$$

ist bei

$$S(n) := \begin{cases} c, & \text{für } n = 1\\ 16 \cdot S(\frac{n}{4}) + n^2, & \text{sonst} \end{cases}$$

eingehalten. Das Mastertheorem ist daher anwendbar.

I. $S(n) \in \Theta(n^{\log_b(a)})$, falls $f(n) \in O(n^{\log_b(a) - \epsilon})$ für ein $\epsilon > 0$.

$$f(n) \in O(n^{\log_b(a) - \epsilon})$$

$$n^2 \in O(n^{\log_4(16) - \epsilon})$$

$$n^2 \in O(n^{2 - \epsilon})$$

Hierfür kann kein ϵ gefunden werden. Daher gilt diese Aussage nicht

II. $S(n) \in \Theta(n^{\log_b(a)} \cdot \log_2(n))$, falls $f(n) \in \Theta(n^{\log_b(a)})$.

$$f(n) \in O(n^{\log_b(a)})$$

$$n^2 \in O(n^{\log_4(16)})$$

$$n^2 \in O(n^2)$$

Dies stimmt, daher gilt diese Aussage.

III. $S(n) \in \Theta(f(n))$, falls $f(n) \in \Omega(n^{\log_b(a) + \epsilon})$ für ein $\epsilon > 0$ und $a \cdot f(\frac{n}{b}) \le \delta \cdot f(n)$ für ein $\delta < 1$ und große n.

$$f(n) \in \Omega(n^{\log_b(a)+\epsilon})$$

$$n^2 \in \Omega(n^{\log_4(16)+\epsilon})$$

$$n^2 \in \Omega(n^{2+\epsilon})$$

Dies stimmt für alle $\epsilon \geq 0$, also auch für mindestens ein $\epsilon > 0$.

$$\begin{array}{ll} a\cdot f(\frac{n}{b}) \leq \delta \cdot f(n) & \text{ \einsetzen} \\ 16\cdot (\frac{n}{4})^2 \leq \delta \cdot n^2 & \sqrt{()} \\ 4\cdot \frac{n}{4} \leq \sqrt{\delta} \cdot n & \text{ \end{n}} \\ n \leq \sqrt{\delta} \cdot n & \text{ \end{n}} & \text{ \end{n}} & \text{ \end{n}} \\ 1 \leq \sqrt{\delta} & \text{ \end{n}} & \text{ \end{n}} \\ 1 \leq \delta & \text{ \end{n}} & \text{ \end{n}} & \text{ \end{n}} \end{array}$$

Damit ist $\delta \geq 1$ und nicht, wie benötigt, $\delta < 1$. Daher gilt diese Aussage nicht.

Da nur II. gilt, gilt $S(n) \in \Theta(n^{\log_b(a)} \cdot \log_2(n))$, also $S(n) \in \Theta(n^2 \cdot \log_2(n))$.