Roll No.

SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY

Subject Code: BAS 101

Subject: Engineering Physics

Course: B. Tech

Semester: I

Sections: A & B

Branch: ALL

SECOND SESSIONAL EXAMINATION, ODD SEMESTER, (2024-2025)

Time: 2 hrs.

Maximum Marks - 45

1.	Attemp	ot any	<i>five</i> q	uestions.

QN	QUESTION	Marks	CO	BL
a.	Define coherent sources of light.	2	CO3	L1
b.	Why two independent sources not produced interference pattern?	2	CO3	L1
c.	Why Newton's rings are circular and center spot is dark?	2	CO4	Ll
d.	State Rayleigh's criterion of resolution.	2	CO4	L1
e.	Draw the energy level diagrams for three and four level lasers.	2	CO5	L2
f.	What do you mean by missing order?	2	CO5	L1

2. Attempt any **ONE** of the following:

QN	QUESTION	Marks	CO	BL
a.	Show that interference pattern obtained by thin film in reflected light and transmitted light are complimentary to each other	5	CO3	L3
b.	(i) Prove that for reflected light in Newton's rings Experiment, the diameters	5	CO3	L5
	of dark rings are proportional to square root of natural number.			
	(ii) In N.R experiment, the diameters of 4 th and 12 th rings are 0.4 cm and 0.7 cm respectively. Find the diameter of 20 th ring.			Ll
c.	What do you understand by the phenomenon of Fraunhoffer diffraction? Find	5	CO3	Li
	out the ratio of intensities of successive secondary maxima compared to the intensity of the principle maximum for the single slit.			

	opt any five questions. QUESTION	Marks	CO	BL
.QN		2	CO4	Ll
a.	What do you mean by population inversion?	2	CO4	Ll
b.	What are the basic components of laser?	2	CO4	LI
C.	What do you mean by acceptance angle and acceptance cone of a fibre?	2	CO4	LI
d.	List a few advantages of optical fibre communication.	2	CO4	L2
e.	Explain the propagation mechanism of optical fiber.	2		LI
f	What do you mean by attenuation and dispersion in optical fiber?	2	CO4	1 11
1.	11 200 00 7 00 000			

4 Attempt any ONE of the following:

	QUESTION	Marks	CO	BL
Q N a.	Explain the basic principle of optical fibre. Discuss fibre classification on the	5	CO4	L2
b.	basis of refractive index profile. What are the important features of Stimulated emission? Obtain a relation between transition probabilities of spontaneous and stimulated emissions i.e.	5	CO4	L1
c.	 Relation between Einstein's coefficients. (i) The optical power, after propagating through a fibre that is 500 m long is reduced to 25% of its original value. Calculate the fibre loss in dB/km. (ii) Calculate the numerical Aperture, Acceptance angle, critical Angle, V number (cutoff parameter) and number of mode from the following data: refractive index of core = 1.50, refractive index of cladding = 1.45, Diameter of core = 50 μm, operating wavelength = 1300 nm. 	5	CO4	L1

5. Attempt any five questions.

	QUESTION	Marks	CO	BL
QN		2	CO5	L1
a.	What is superconductivity? What is transition temperature?	2	CO5	L1
<u>b.</u>	What is transition temperature: What are high TC superconductors? Give an example.	2	CO5	L1
C.	Explain the concept of quantum confinement.	2	CO5	L2
d.	What is the significance of the surface area to volume ratio in Nanomaterials?	2	CO5	L1
e.	What is the significance of the started what are the potential applications of Nanomaterials in medicine?	2	CO5	L1
f.	What are the potential applications of runormore			

6 Attempt any ONE of the following:

	OUESTION	Marks	CO	BL
QN	Describe top down (CVD) and bottom up (Sol-Gel) approach for the preparation of	5	CO5	L2
a. b.	Quantum Nanostructure. What is Meissner's Effect? Show that magnetic susceptibility of Superconductor is negative. Distinguish between Type I (soft) and Type II	5	CO5	L1 L2
c.	(hard) superconductor For a specimen of superconductor, the critical fields are 1.4x10 ⁵ and 4.2x10 ⁵ A/m respectively for temperature 14 K and 13 K respectively. Calculate the transition temperature and critical field at 0 K and 4.2 K.	5	CO5	L1

Bloom's Taxonomy Level (BL):-

Remember (L1), Understanding (L2), Apply (L3), Analyze (L4), Evaluating (L5), Creating (L6)