Linear Algebra

[KOMS120301] - 2023/2024

13.3 - Sifat-Sifat Transformasi Linier

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 13 (November 2023)

Tujuan pembelajaran

Setelah perkuliahan ini, Anda diharapkan mampu:

• menjelaskan berbagai sifat dari masing-masing transformasi linier dalam ruang vektor.

Sifat-sifat Transformasi Matriks

(page 270 of Elementary LA Applications book)

Komposisi transformasi matriks

Let:

- T_A : transformasi matriks dari \mathbb{R}^n menjadi \mathbb{R}^k
- T_B : transformasi matriks dari \mathbb{R}^k menjadi \mathbb{R}^m

Misalkan $\mathbf{x} \in \mathbb{R}^n$, dan definisikan transformasi:

$$\mathbf{x} \xrightarrow{T_A} T_A(\mathbf{x}) \xrightarrow{T_B} T_B(T_A(\mathbf{x}))$$

mendefinisikan transformasi dari \mathbb{R}^n menjadi \mathbb{R}^m .

Ini disebut komposisi T_B dengan T_A dan dilambangkan dengan $T_B \circ T_A$. Jadi:

$$(T_B \circ T_A)(\mathbf{x}) = T_B(T_A(\mathbf{x}))$$

Komposisi transformasi matriks

Komposisinya merupakan transformasi matriks, karena:

$$(T_B \circ T_A)(\mathbf{x}) = T_B(T_A(\mathbf{x})) = B(T_A(\mathbf{x})) = B(A\mathbf{x}) = (BA)\mathbf{x}$$

artinya hasil komposisi ke \mathbf{x} diperoleh dengan cara mengalikan \mathbf{x} dengan BA di sebelah kiri.

Dilambangkan dengan:

$$T_{B} \circ T_{A} = T_{BA}$$

$$T_{A} \qquad T_{B}$$

$$T_{B} \circ T_{A} \qquad T_{B} \circ T_{A}$$

Komposisi tiga transformasi

Komposisi dapat didefinisikan untuk setiap suksesi terbatas dari transformasi matriks yang domain dan rentangnya mempunyai dimensi yang sesuai. Misalnya, diberikan:

$$T_A: \mathbb{R}^n \to \mathbb{R}^k, \ T_B: \mathbb{R}^k \to \mathbb{R}^\ell, T_C: \mathbb{R}^\ell \to \mathbb{R}^m$$

kita dapat menentukan komposisinya:

$$(T_C \circ T_B \circ T_A) : \mathbb{R}^n \to \mathbb{R}^m$$

dengan:

$$(T_C \circ T_B \circ T_A)(\mathbf{x}) = T_C(T_B(T_A(\mathbf{x})))$$

Dapat ditunjukkan bahwa ini merupakan transformasi matriks dengan matriks standar *CBA*, dan:

$$T_C \circ T_B \circ T_A = T_{CBA}$$

Notasi

Kita dapat menulis matriks standar untuk transformasi $T: \mathbb{R}^n \to \mathbb{R}^m$ tanpa menentukan nama matriks standar.

Ini sering ditulis sebagai [T].

Sebagai contoh:

- T(x) = [T]x
- $[T_2 \circ T_1] = [T_2][T_1]$
- $[T_3 \circ T_2 \circ T_1] = [T_3][T_2][T_1]$

Komposisi tidak bersifat komutatif

Contoh

Misal

- $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ menjadi bayangan garis y = x;
- $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ menjadi proyeksi ortogonal ke sumbu y.

Secara geometris, kedua transformasi mempunyai pengaruh yang berbeda pada

8/28

Komposisi tidak bersifat komutatif (cont.)

Secara aljabar, kita dapat menghitung:

$$[T_1 \circ T_2] = [T_1][T_2] = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$[T_2 \circ T_1] = [T_2][T_1] = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

Perhatikan bahwa: $[T_1 \circ T_2] \neq [T_2 \circ T_1]$.

Komposisi rotasi bersifat komutatif

Contoh

Diketahui:

$$T_1: \mathbb{R}^2 \to \mathbb{R}^2$$
 dan $T_2: \mathbb{R}^2 \to \mathbb{R}^2$

operator matriks yang memutar vektor terhadap titik asal masing-masing melalui sudut θ_1 dan θ_2 .

Jadi, operasinya:

$$T_2 \circ T_1(\mathbf{x}) = T_2(T_1(\mathbf{x}))$$

pertama-tama putar x melalui sudut θ_1 , lalu putar $T_1(\mathbf{x})$ melalui sudut θ_2 .

Oleh karena itu, $(T_2 \circ T_1)(\mathbf{x})$ mendefinisikan rotasi \mathbf{x} melalui sudut $\theta_1 + \theta_2$.

Komposisi rotasi bersifat komutatif (cont.)

Dalam hal ini, kami memiliki:

$$[T_1] = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix} \quad \text{and} \quad [T_2] = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{bmatrix}$$

Kita tunjukkan bahwa: $[T_2 \circ T_1] = [T_2][T_1]$

Note that
$$[T_2 \circ T_1] = \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{bmatrix}$$

Lebih lanjut:

$$\begin{split} [T_2][T_1] &= \begin{bmatrix} \cos\theta_2 & -\sin\theta_2 \\ \sin\theta_2 & \cos\theta_2 \end{bmatrix} \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 \end{bmatrix} \\ &= \begin{bmatrix} \cos\theta_2\cos\theta_1 - \sin\theta_2\sin\theta_1 & -(\cos\theta_2\sin\theta_1 + \sin\theta_2\cos\theta_1) \\ \sin\theta_2\cos\theta_1 + \cos\theta_2\sin\theta_1 & -\sin\theta_2\sin\theta_1 + \cos\theta_2\cos\theta_1 \end{bmatrix} \\ &= \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{bmatrix} \\ &= [T_2 \circ T_1] \end{split}$$

Dapat dengan mudah dilihat bahwa $[T_2 \circ T_1] = [T_1 \circ T_2]$ (karenanya, komutatif).

Read Contoh 3 and Contoh 4 (page 272-273)

One-to-one matrix transformation

Transformasi matriks $T_A : \mathbb{R}^n \to \mathbb{R}^m$ dikatakan one-to-one jika T_A memetakan vektor-vektor (titik) berbeda di \mathbb{R}^n menjadi vektor-vektor berbeda (poin) dalam \mathbb{R}^m .

Equivalent statements:

- T_A adalah satu-satu jika $\forall \mathbf{b}$ dalam rentang A, terdapat tepat satu vektor $\mathbf{x} \in \mathbb{R}^n$, s.t. $T_A \mathbf{x} = \mathbf{b}$.
- T_A adalah satu-ke-satu jika persamaan $T_A(\mathbf{u}) = T_A(\mathbf{v})$ menyiratkan bahwa $\mathbf{u} = \mathbf{v}$.

Contoh: transformasi satu-ke-satu dan bukan transformasi satu-ke-satu

Operator rotasi pada \mathbb{R}^2 adalah operator rotasi satu-ke-satu.

karena vektor-vektor berbeda yang diputar melalui sudut yang sama mempunyai bayangan yang berbeda.

Proyeksi ortogonal \mathbb{R}^2 ke sumbu x bukanlah proyeksi satu-ke-satu.

karena ia memetakan titik-titik berbeda pada garis vertikal yang sama ke titik yang sama.

▲ Figure 4.10.6 Distinct vectors \mathbf{u} and \mathbf{v} are rotated into distinct vectors $T(\mathbf{u})$ and $T(\mathbf{v})$.

▲ Figure 4.10.7 The distinct points P and Q are mapped into the same point M.

Kernel dan range

Jika $T_A: \mathbb{R}^n \to \mathbb{R}^m$ adalah transformasi matriks, maka himpunan semua vektor di RR^n yang dipetakan T_A menjadi 0 disebut kernel dari T_A dan dilambangkan dengan ker (T_A) , yaitu:

$$\ker(T_A) = \{\mathbf{x} \in \mathbb{R}^n \text{ s.t. } A\mathbf{x} = \mathbf{0}\}$$

Himpunan semua vektor dalam \mathbb{R}^m yang merupakan gambar di bawah transformasi setidaknya satu vektor dalam \mathbb{R}^n disebut range of T_A dan dilambangkan dengan $R(T_A)$, yaitu:

$$R(T_A) = \{ \mathbf{b} \in \mathbb{R}^m \text{ s.t. } \exists \mathbf{x} \in \mathbb{R}^n, \text{ where } A\mathbf{x} = \mathbf{b} \}$$

Secara singkat:

$$ker(T_A) = null \text{ space of } A$$

 $R(T_A) = column \text{ space of } A$

Matriks - sistem linier - transformasi

Misalkan A adalah matriks $(m \times n)$.

Three ways of viewing the same subspace of \mathbb{R}^n :

- Matrix view: ruang null dari A
- System view: ruang solusi Ax = 0
- Transformation view: kernel dari T_A

Tiga cara melihat subruang yang sama \mathbb{R}^m :

- Matrix view: ruang kolom A
- System view: semua $\mathbf{b} \in \mathbb{R}^m$ yang $A\mathbf{x} = \mathbf{b}$ konsisten
- Transformation view: krange dari T_A

Baca Contoh 5 dan Contoh 6 di halaman 275.

One-to-one matrix operator

Misalkan $T_A: \mathbb{R}^n \to \mathbb{R}^n$ adalah operator matriks satu-ke-satu. Jadi, A dapat dibalik.

inverse operator atau inverse dari T_A didefinisikan sebagai:

$$T_{A^{-1}}: \mathbb{R}^n \to \mathbb{R}^n$$

Dalam hal ini:

$$T_A(T_{A^{-1}}(\mathbf{x})) = AA^{-1}\mathbf{x} = I\mathbf{x} = \mathbf{x}$$
 or, equivalently $T_A \circ T_{A^{-1}} = T_{AA^{-1}} = T_I$
 $T_{A^{-1}}(T_A(\mathbf{x})) = A^{-1}A\mathbf{x} = I\mathbf{x} = \mathbf{x}$ or, equivalently $T_{A^{-1}} \circ T_A = T_{A^{-1}A} = T_I$

 T_A memetakan **x** ke **w** dan $T_{A^{-1}}$ memetakan **w** kembali ke **x**, yaitu.,

$$T_{A^{-1}}(\mathbf{w}) = T_{A^{-1}}(T_A(\mathbf{x})) = \mathbf{x} \Rightarrow \mathbf{x} \Rightarrow$$

Baca Contoh 7 dan Contoh 8 di halaman 276.

Kesimpulan

THEOREM 4.10.2 Equivalent Statements

If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) A is invertible.
- (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (c) The reduced row echelon form of A is I_n .
- (d) A is expressible as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- (g) $\det(A) \neq 0$.
- (h) The column vectors of A are linearly independent.
- (i) The row vectors of A are linearly independent.
- (j) The column vectors of A span \mathbb{R}^n .
- (k) The row vectors of A span \mathbb{R}^n .
- (1) The column vectors of A form a basis for \mathbb{R}^n .
- (m) The row vectors of A form a basis for \mathbb{R}^n .
- (n) A has rank n.
- (o) A has nullity 0.
- (p) The orthogonal complement of the null space of A is \mathbb{R}^n .
- (q) The orthogonal complement of the row space of A is $\{0\}$.
- (r) The kernel of T_A is $\{0\}$.
- (s) The range of T_A is R^n .
- (t) T_A is one-to-one.

Geometri Operator Matriks pada \mathbb{R}^2

(page 280 of Elementary LA Applications book)

bersambung...

Rotated

Sheared horizontally

Compressed horizontally

Diberikan transformasi $T: \mathbb{R}^2 \to \mathbb{R}^2$ yang merupakan perkalian dengan matriks yang dapat dibalik. Tentukan bayangan dari:

- Sebuah garis lurus
- Garis yang melalui titik asal
- Garis paralel
- Ruas garis yang menghubungkan titik P dan Q
- Tiga titik terletak pada satu garis

Task:

Bagilah diri Anda menjadi 5 kelompok, dan periksalah setiap pertanyaannya!

Pertanyaan 1

Diberikan matriks transformasi:

$$A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$

Find the image of line y = 2x + 1 under the transformation.

Pertanyaan 2

Given a transformation matrix:

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$$

Temukan gambar persegi satuan pada *kuadran pertama* di bawah transformasi.

Tentukan bayangan persegi satuan pada transformasi berikut:

- Refleksi terhadap sumbu y
- Refleksi terhadap sumbu x
- Refleksi terhadap garis y = x
- ullet Rotasi terhadap titik asal melalui sudut positif heta
- ullet Kompresi dalam arah x dengan faktor k dengan 0 < k < 1
- Kompresi dalam arah y dengan faktor k dengan 0 < k < 1
- Ekspansi ke arah x dengan faktor k dengan k > 1
- ullet Ekspansi ke arah y dengan faktor k dengan k>1
- Shear ke arah x dengan faktor k dengan k > 0
- Shear ke arah x dengan faktor k dengan k < 0
- Shear ke arah y dengan faktor k dengan k > 0
- Shear ke arah y dengan faktor k dengan k < 0

This is the end of slide...