Value-Based Reinforcement Learning

- DQN
- DDQN (Double DQN)
- DRQN
- Dueling Network (with Advantage)

Deep Q Network (DQN)

Atari 2600 Games – a Big Success of DQN

• Learn to play Atari games from video only (without knowing the game

a priori) by DeepMind, 2013. (in Nature, 2015)

Illustrations of DQN

Deep Q Network (DQN)

- Single deep network estimates the action value function of each discrete action
 - Action Value: $Q(s_t, a_t | \theta)$
 - Select action: $\arg \max_{a'} Q(s_t, a'|\theta)$
- Target Q (A real number): States

$$- Y_t^Q = r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a' | \theta)$$

• Loss Function:

$$-L_Q(s_t, a_t | \theta) = \left(Y_t^Q - Q(s_t, a_t | \theta)\right)^2$$

• Gradient descent:

$$- \nabla_{\theta} L_{Q}(s_{t}, a_{t}|\theta) = \left(Y_{t}^{Q} - Q(s_{t}, a_{t}|\theta)\right) \nabla_{\theta} Q(s_{t}, a_{t}|\theta)$$

Stability Issues with Deep RL

- Data is sequential (overfitting)
 - Successive samples are correlated, non-iid
- Policy changes rapidly with slight changes to Q-values (hard to converge)
 - Policy may oscillate
 - Distribution of data can swing from one extreme to another
- Scale of rewards and Q-values is unknown (not normalized)
 - Naive Q-learning gradients can be large and unstable when backpropagated

Solution for Stability

- Use experience replay
 - Break correlations in data, bring us back to iid setting
 - Learn from all past policies
- Freeze target Q-network
 - Avoid oscillations
 - Break correlations between Q-network and target
- Clip rewards or normalize network adaptively to sensible range (simply normalization, not discussed here)
 - Robust gradients

Deep Q Network (DQN)

- Techniques
 - 1. Target Network with parameters θ^-
 - 2. Experience Replay
 - Sample experiences at random.

• Apply Target Network on DQN:

$$- Y_t^Q = r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a' | \theta^-)$$

Gradient descent on behavior network:

- Copy parameters from θ to θ ⁻ every N iterations (updates).
 - ► Ex. N=1000

Initialize replay memory D to capacity N

Behavior and target network

Initialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^-=\theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t

otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $\left(y_j - Q\left(\phi_j, a_j; \theta\right)\right)^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

ε-greedy based on behavior network

With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

Initialize replay memory *D* to capacity *N*

Initialize action-value function Q with random weights θ

Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t

otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Expe

Experience replay

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_i, a_i, r_i, \phi_{i+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $\left(y_j - Q\left(\phi_j, a_j; \theta\right)\right)^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$ **For** episode = 1, M **do** Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$ **For** t = 1, T **do**

With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $\left(y_j - Q\left(\phi_j, a_j; \theta\right)\right)^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

Update the behavior network

End For

DQN in Atari

- End-to-end learning of values Q(s, a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

Network architecture and hyperparameters fixed across all games

DQN Results in Atari

How much does DQN help?

	Q-learning	Q-learning	Q-learning + Replay	Q-learning + Replay
		+Target Q	· _copidj	+Target Q
Breakout	3	10	241	317
Enduro	29	142	831	1006
River	1453	2868	4103	7447
Seaquest	276	1003	823	2894
Space Invaders	302	373	826	1089

Experiments - DQN

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency 4	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690

• The upper table compares average total reward for various learning methods by running an ϵ -greedy policy with $\epsilon = 0.05$ for a fixed number of steps.

Double DQN

Double DQN (DDQN)

- Prevent over-optimistic value estimates on DQN.
- Decouple the selection from the evaluation.

$$Y_t^{Q} = r_{t+1} + \gamma \max_{a} Q(S_{t+1}, a|\theta^{-})$$

$$V_t^{DoubleQ} = r_{t+1} + \gamma Q\left(S_{t+1}, \arg\max_{a} Q(S_{t+1}, a|\theta)|\theta^{-}\right)$$

Overestimation Problem

Q-Learning update

$$Q(s,a) = r + \gamma \max_{a'} Q(s',a')$$

Algorithm 1: Double DQN Algorithm.

```
input: \mathcal{D} – empty replay buffer; \theta – initial network parameters, \theta^- – copy of \theta
input: N_r - replay buffer maximum size; N_b - training batch size; N^- - target network replacement freq.
for episode e \in \{1, 2, \dots, M\} do
     Initialize frame sequence \mathbf{x} \leftarrow ()
     for t \in \{0, 1, \ldots\} do
           Set state s \leftarrow \mathbf{x}, sample action a \sim \pi_{\mathcal{B}}
           Sample next frame x^t from environment \mathcal{E} given (s,a) and receive reward r, and append x^t to \mathbf{x}
           if |\mathbf{x}| > N_f then delete oldest frame x_{t_{min}} from \mathbf{x} end
           Set s' \leftarrow \mathbf{x}, and add transition tuple (s, a, r, s') to \mathcal{D},
                  replacing the oldest tuple if |\mathcal{D}| \geq N_r
           Sample a minibatch of N_b tuples (s, a, r, s') \sim \text{Unif}(\mathcal{D})
           Construct target values, one for each of the N_b tuples:
           Define a^{\max}(s';\theta) = \arg \max_{a'} Q(s',a';\theta)
          y_j = \begin{cases} r & \text{if } s' \text{ is terminal} \\ r + \gamma Q(s', a^{\max}(s'; \theta); \theta^-), & \text{otherwise.} \end{cases}
           Do a gradient descent step with loss ||y_j - Q(s, a; \theta)||^2
           Replace target parameters \theta^- \leftarrow \theta every N^- steps
     end
end
```


Experiments - DDQN

Predicted Q-value at training (showing over-optimism)

Real Scores

DRQN

Deep Recurrent Q-Network (DRQN)

- Replace only its first fullyconnected layer with a LSTM.
- Take a single 84 x 84 preprocessed image (not 4 consecutive images)
- Finally, LSTM outputs become Q-values for each action after passing through a fully-connected layer.

Update for DRQN

Update: episodes are selected randomly from the replay memory (for example, choose an episode with $s_1, ..., s_{200}$ states)

Sequential:

- Updates begin at the beginning of the episode to the end of the episode (always start from s_1)
- Good for LSTM, but violate DQN's random sampling policy

Random:

- Updates begin at random points in the episode and proceed for only *unroll iterations* time-steps (randomly pick s_i)
- LSTM's hidden state must be zeroed at the start of each update.
 Harder for the LSTM to learn.
- Both have similar performance (use random here)

DRQN Results

- It can generalize its policies to the case of complete observations (on Flickering Pong)
- DRQN's performance generalizes better than DQN's at all levels of partial information

Figure 5: When trained on normal games (MDPs) and then evaluated on flickering games (POMDPs), DRQN's performance degrades more gracefully than DQN's.

Dueling Network (with Advantage)

Dueling Network

- In most states, learning the effect of each action is not necessary.
 - Actions do not affect the environment in any relevant way

• Intuitively, the dueling architecture can learn whether states are valuable (or not).

- Advantage stream
- Value stream

Dueling Network

Q-network (top) and the dueling Q-network (bottom). The dueling network has two streams to separately estimate (scalar) state-value and the advantages for each action; the green output module combines them by the equation $Q(s, \alpha; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, \alpha; \theta, \alpha)$. Both networks output Q-values for each action.

I-Chen Wu

Dueling Network

- A relative measure of the importance of each action
 - $Q(s, \alpha; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, \alpha; \theta, \alpha)$
 - Unidentifiable in the sense that given Q we cannot recover V and A uniquely.
- Address the issue of identifiability
 - $P(s, \alpha; \theta, \alpha, \beta) = V(s; \theta, \beta) + (A(s, \alpha; \theta, \alpha) \max_{\alpha' \in |A|} A(s, \alpha'; \theta, \alpha))$
 - Force the advantage function estimator have zero advantage at the chosen action
 - When $a^* = \max_{a'} Q(s, a')$, $Q(s, a^*) = V(s)$
- Improvement (increase stability)
 - $Q(s,a; \theta,\alpha,\beta) = V(s; \theta,\beta) + (A(s,a; \theta,\alpha) \frac{1}{|A|} \sum_{a'} A(s,a'; \theta,\alpha))$
 - When $a^* = \max_{a'} Q(s, a')$, $Q(s, a^*) \neq V(s)$
 - The advantages only need to change as fast as the mean.

Experiments – Dueling Network

• Achieve human level performance on 42 out of 57 games

	30 n	o-ops	Human Starts		
	Mean	Median	Mean	Median	
Prior. Duel Clip	591.9%	172.1%	567.0%	115.3%	
Prior. Single	434.6%	123.7%	386.7%	112.9%	
Duel Clip	373.1%	151.5%	343.8%	117.1%	
Single Clip	341.2%	132.6%	302.8%	114.1%	
Single	307.3%	117.8%	332.9%	110.9%	
Nature DQN	227.9%	79.1%	219.6%	68.5%	

Measured in percentage of human performance

DQN – Genealogy

DQN – Genealogy

Before DQN

- NFQ (Neural Fitted Q Iteration, 2005)
 - First Experiences with a Data Efficient Neural Reinforcement Learning Method
 - Using neural network (MLP)
 - ▶ 2 hidden layers with 5 neurons
 - Using experience replay
 - collected in triples of the form (s,a,s')
 - Internal state:
- DFQ (Deep Fitted Q Iteration, 2010)
 - Applying deep learning (MLP, but not CNN)
 - Deep auto-encoders
 - 21 layers
 - 900-900-484-225-121-113-57-29-15-8-2-8-15-29-57-113-121-225-484-900-900 neurons
 - AutoEncoder visualization (2D latent space) to train policy.

DQN – Summary

- Using convolutional neural network (CNN)
 - Alex Net (2012)
 - ReLU
 - GPU
- Arcade Learning Environment (ALE), 2013
 - For Atari games
 - An Evaluation Platform for General Agents
- Using experience replay

Bootstrapped DQN – Summary

- Bootstrapped with k-heads DQN
- No ϵ -greedy
 - ϵ select a head at episode initial
 - Greedy with this head
 - Deep exploration
- * A way go to distribution
 - Bootstrapped distribution

Bootstrapped DQN – Method

Algorithm 1 Bootstrapped DQN

```
1: Input: neural network (Q_k)_{k=1}^K, sampling distribution P
 2: for each episode do
 3:
       Update network parameters via minibatches
       Sample k \sim \text{Uniform}\{1,...,K\}
       while not end of episode do
 5:
          Choose a_t \in \operatorname{argmax}_a Q_k(s_t, a)
 6:
          Receive state s_{t+1} and reward r_t from environment
 7:
          Sample bootstrap mask m_t^k \sim P for all k
 8:
          Add (a_t, r_t, s_{t+1}, m_t) to replay buffer
 9:
       end while
10:
11: end for
```


Bootstrapped DQN – Deep Exploration

: different greedy paths

Bootstrapped DQN – Result

Compare to DQN (Different head count, in Breakout)

$Bootstrapped\ DQN-\hbox{Diverse exploration policies}$

Compare to DQN (faster, stronger)

(a) All heads vote right.

(b) Heads disagree on policy.

Bootstrapped DQN - Result

Compare to DQN (faster, stronger)

Bootstrapped DQN at human level faster than DQN.

Bootstrapped DQN improves cumulative rewards.

NoisyNet – Summary

- Add trainable noise to neural network
 - Stochastic policy (through latent state space)
 - ▶ No ϵ -greedy
 - Better optimization
- A way go to distribution
 - [ICLR 2018]

NoisyNet – Result

- Better than DQN & Dueling (using e-greedy)
- But, close to A3C.

Rainbow - Genealogy

Rainbow – Ablation studies

Prioritized replay and multi-step

the two most crucial components

Distributional Q-learning

- Perform after 40 million frames
- Relatively to human performance

Noisy Nets

- ϵ greedy when removed
- large drop in performance for several games

Dueling network

median score/above-human performance levels may hide the impact

Double Q-learning

- Actual returns are often higher than 10
 - Underestimated
- May increase if the support of the distributions is expanded

