Poglavje 1

Moč množic

1.1 Množica naravnih števil

Izrek 1 (o indukciji) Naj bo $L \subseteq \mathbb{N}$. Če velja:

- 1. $0 \in L$,
- 2. $\forall n \in \mathbb{N} : (n \in L \implies n' \in L),$

potem je $L = \mathbb{N}$.

Dokaz: Po predpostavkah izreka je množica L induktivna, torej je $\mathbb{N} \subseteq L$. Ker pa je tudi $L \subseteq \mathbb{N}$, je $L = \mathbb{N}$.

1.2 Relaciji \sim in \preceq

Definicija 1 Množici A in B imata enako moč oziroma sta ekvipolentni, če obstaja bijekcija $f: A \to B$. V tem primeru pišemo: $A \sim B$.

Trditev 1 Za vse množice A, B, C velja:

- 1. $A \sim A$ (refleksivnost),
- 2. $A \sim B \implies B \sim A \ (simetri\check{c}nost),$
- 3. $A \sim B \wedge B \sim C \implies A \sim C$ (tranzitivnost).

Dokaz:

1. Identična preslikava id_A: $A \to A$ je bijekcija.

- 2. Če je $f\colon A\to B$ bijekcija, je tudi $f^{-1}\colon B\to A$ bijekcija.
- 3. Če sta $f: A \to B$ in $g: B \to C$ bijekciji, je tudi $g \circ f: A \to C$ bijekcija.

Relacija ekvipolence je torej ekvivalenčna relacija v razredu V vseh množic.

Definicija 2 Množica A ima manjšo ali enako moč kot B, če obstaja injekcija $f: A \to B$. V tem primeru pišemo: $A \preceq B$.

Trditev 2 Za vse množice A, B, C velja:

- 1. $A \subseteq B \implies A \preceq B$,
- 2. $A \leq B \iff \exists C \subseteq B : A \sim C$,
- 3. $A \leq A$ (refleksivnost),
- 4. $A \leq B \land B \leq C \implies A \leq C \ (tranzitivnost),$

Dokaz:

- 1. Vložitev $i:A\hookrightarrow B$ je injekcija.
- 2. Naj bo $f: A \to B$ injekcija in $C = f_*(A)$. Potem je preslikava $g: A \to C$, kjer za vse $x \in A$ velja: g(x) = f(x), bijekcija.

Obratno: Če je $C\subseteq B$ in $g\colon A\to C$ bijekcija, je preslikava $f\colon A\to B$, kjer za vse $x\in A$ velja: f(x)=g(x), injekcija.

- 3. Identična preslikava id $_A : A \to A$ je injekcija.
- 4. Če sta $f: A \to B$ in $g: B \to C$ injekciji, je tudi $g \circ f: A \to C$ injekcija.

Izrek 2 (Schroeder-Bernsteinov izrek, SBI)

$$A \leq B \land B \leq A \implies A \sim B$$

Dokaz: Naj bosta $f: A \to B$ in $g: B \to A$ injekciji. Če kodomeno preslikave $g: B \to A$ skrčimo na $g_*(B)$, dobimo bijekcijo $B \to g_*(B)$, torej je $B \sim g_*(B)$. Zadošča torej pokazati, da je $A \sim g_*(B)$.

To bomo storili tako, da bomo konstruirali bijekcijo $h: A \to g_*(B)$. V ta namen vzemimo kompozitum $g \circ f: A \to g_*(B)$, ki je injekcija, in definirajmo zaporedje množic $A_1, A_2, A_3, \dots \subseteq A$ takole:

$$A_1 = A \setminus g_*(B),$$

$$n \ge 1 \colon A_{n+1} = (g \circ f)_*(A_n).$$

Naj bo $C = \bigcup_{n=1}^{\infty} A_n \subseteq A$. Definirajmo preslikavo $h: A \to g_*(B)$ s formulo

$$h(x) = \begin{cases} (g \circ f)(x), & x \in C, \\ x, & x \notin C. \end{cases}$$

Če $x \in C$, je $h(x) = g(f(x)) \in g_*(B)$. Če $x \notin C$, je $h(x) = x \notin A_1 = A \setminus g_*(B)$, torej $h(x) \in g_*(B)$. Res za vse $x \in A$ velja: $h(x) \in g_*(B)$. Nadalje velja:

$$x \in C \implies \exists n > 1 : x \in A_n \implies h(x) \in A_{n+1} \subseteq C$$

torej je $h(x) \in C$ za vse $x \in C$. Pokažimo, da je h injekcija. Ločimo štiri primere:

a)
$$x, y \in C$$
: $h(x) = h(y) \implies (g \circ f)(x) = (g \circ f)(y) \implies x = y \checkmark$

b)
$$x, y \notin C$$
: $h(x) = h(y) \implies x = y \sqrt{x}$

c)
$$x \in C, y \notin C$$
: $h(x) \in C, h(y) = y \notin C \implies h(x) \neq h(y) \checkmark$

d)
$$x \notin C, y \in C$$
: $h(y) \in C, h(x) = x \notin C \implies h(x) \neq h(y) \checkmark$

Pokažimo še, da je h surjekcija. Naj bo $y \in g_*(B)$. Ločimo dva primera:

a)
$$y \in C \implies y \in C \cap g_*(B) \implies \exists n \ge 2 : y \in A_n$$

 $\implies \exists x \in A_{n-1} : y = (g \circ f)(x) = h(x) \checkmark$

b)
$$y \notin C \implies y = h(y) \sqrt{}$$

Torej je h bijekcija in velja: $A \sim g_*(B)$, zato tudi $A \sim B$.

Izrek 3 Če obstaja surjekcija $f: A \to B$, je $A \succeq B$.

Dokaz: Zadošča pokazati, da obstaja injekcija $g: B \to A$, saj je potem $B \leq A$ oziroma $A \succeq B$. – Ker je $f: A \to B$ surjekcija, velja

$$\forall y \in B : f^*(\{y\}) \neq \emptyset,$$

torej je $(f^*(\{y\}))_{y\in B}$ družina nepraznih podmnožic množice A. Po AC zato obstaja funkcija izbire

$$g \colon B \longrightarrow \bigcup_{y \in B} f^*(\{y\}) = f^*\left(\bigcup_{y \in B} \{y\}\right) = f^*(B) = A,$$

tako da za vsak $y \in B$ velja: $g(y) \in f^*(\{y\})$. Za vsak $y \in B$ je torej $f(g(y)) \in \{y\}$ oziroma f(g(y)) = y. Sledi $f \circ g = \mathrm{id}_B$, kar pomeni, da je $g : B \to A$ injekcija. \square

Zdaj imamo na razpolago veliko načinov, kako pokazati, da imata množici A in B enako moč oziroma da je $A \sim B$, npr.:

- poiščemo bijekcijo v eni ali v drugi smeri, ali
- poiščemo injekciji v obeh smereh, ali
- poiščemo surjekciji v obeh smereh, ali
- poiščemo injekcijo in surjekcijo v isti smeri, ali
- pokažemo, da je $A \sim C$ in $B \sim C$ za neko množico C itd.

Zgled 1 A. Pokažimo: $[0,1] \sim \mathbb{R}$.

- a) $[0,1] \subseteq \mathbb{R} \implies [0,1] \preceq \mathbb{R}$
- b) Naj bo funkcija $f: \mathbb{R} \to [0,1]$ definirana s predpisom

$$f(x) = \frac{1}{\pi} \arctan x + \frac{1}{2}.$$

Potem je $f_*(\mathbb{R}) = (0,1)$. Ker je $f'(x) = \frac{1}{\pi(x^2+1)} > 0$ za vse $x \in \mathbb{R}$, je f strogo naraščajoča na \mathbb{R} in zato injektivna. Torej je $\mathbb{R} \leq [0,1]$.

Po SBI je torej $[0,1] \sim \mathbb{R}$.

- B. Pokažimo: $\mathcal{P}\mathbb{N} \sim \mathbb{R}$.
- a) Definirajmo $f: \mathcal{PN} \to [0,1]$ takole:

$$\forall A \subseteq \mathcal{PN} \colon f(A) \ = \ \sum_{i \in A} 10^{-(i+1)}$$

Velja npr.: $f(\emptyset) = 0$, $f(\mathbb{N}) = 10^{-1} + 10^{-2} + 10^{-3} + \cdots = 0.111 \dots {}_{(10)} = \frac{1}{9}$, $f(\{k \in \mathbb{N}; k \text{ liho število}\}) = 10^{-2} + 10^{-4} + 10^{-6} + \cdots = 0.010101 \dots {}_{(10)} = \frac{1}{99}$. Ker števka 9 v desetiškem zapisu realnega števila f(A) ne nastopa, je f injekcija, torej je $\mathcal{P}\mathbb{N} \leq [0, 1]$.

b) Definirajmo $g: \mathcal{PN} \to [0,1]$ takole:

$$\forall A \subseteq \mathcal{P}\mathbb{N} \colon g(A) \ = \ \sum_{i \in A} 2^{-(i+1)}$$

Velja npr.: $g(\emptyset) = 0$, $g(\mathbb{N}) = 2^{-1} + 2^{-2} + 2^{-3} + \cdots = 0.111..._{(2)} = 1$, $f(\{k \in \mathbb{N}; k \text{ liho število}\}) = 2^{-2} + 2^{-4} + 2^{-6} + \cdots = 0.010101..._{(2)} = \frac{1}{3}$. Ker ima vsako realno število $x \in [0, 1]$ dvojiški zapis oblike $0.c_1c_2c_3...$, kjer so $c_1, c_2, c_3, \cdots \in \{0, 1\}$, je g surjekcija, torej je $\mathcal{P}\mathbb{N} \succeq [0, 1]$.

Po SBI je torej $\mathcal{PN} \sim [0,1]$. Iz točke A zdaj sledi: $\mathcal{PN} \sim \mathbb{R}$.

Definicija 3 Množica A ima strogo manjšo moč kot množica B, če velja:

$$A \leq B \wedge A \not\sim B$$
.

 $Pi\check{s}emo: A \prec B.$

Izrek 4 (o trihotomiji) Za vse A, B velja natanko ena od treh možnosti:

- 1. $A \prec B$, ali
- 2. $A \sim B$, ali
- $3. A \succ B.$

Dokaz: S pomočjo DU (dolg).

Posledica 1 Za vse A, B velja $A \leq B \vee B \leq A$. Relacija \leq je torej strogo sovisna v razredu V vseh množic.

1.3 Končne in neskončne množice

Definicija 4 (Dedekindova definicija neskončne množice) Množica A je neskončna $natanko tedaj, ko <math>\exists B \subset A : A \sim B$. V nasprotnem primeru je A končna.

Z besedami: množica A je neskončna natanko tedaj, ko je ekvipolentna neki svoji pravi podmnožici; in končna natanko tedaj, ko ni ekvipolentna nobeni svoji pravi podmnožici.

Zgled 2 1. Množica \mathbb{R} je neskončna, ker je $\mathbb{R} \sim [0,1]$.

2. Množica \mathbb{N} je neskončna, ker je $\mathbb{N} \sim \mathbb{N} \setminus \{0\}$. Preslikava $f: \mathbb{N} \to \mathbb{N} \setminus \{0\}$, definirana s formulo

$$\forall n \in \mathbb{N} : f(n) = n',$$

kjer je n' (neposredni) naslednik števila n, je namreč bijekcija.

Izrek 5 Množica A je neskončna natanko tedaj, ko je $A \succeq \mathbb{N}$.

Dokaz:

 (\Longrightarrow) Naj bo A neskončna. Potem obstaja $B \subset A$, tako da je $A \sim B$. Naj bo $f: A \to B$ bijekcija in $a \in A \setminus B$. Definirajmo $g: \mathbb{N} \to A$ s formulo

$$\forall n \in \mathbb{N} : g(n) = f^n(a) = (\overbrace{f \circ f \circ \cdots \circ f}^n)(a).$$

Trdimo, da je g injekcija. Predpostavimo, da je g(n) = g(k) in $n \neq k$. Brez škode za splošnost vzemimo, da je n > k, torej $n \geq k + 1$. Zaradi injektivnosti f velja:

$$g(n) = g(k) \implies f^n(a) = f^k(a) \implies f^{n-1}(a) = f^{k-1}(a) \implies \cdots$$

$$\implies f^{n-k}(a) = a \implies a = f\left(f^{n-k-1}(a)\right) \in \mathcal{Z}_f = B,$$

v protislovju z izbiro $a \in A \setminus B$. Torej podčrtana predpostavka ne drži in iz g(n) = g(k) sledi n = k. Ker sta bila $n, k \in \mathbb{N}$ poljubna, je g injektivna in $\mathbb{N} \leq A$.

 (\Longleftarrow) Naj bo $A\succeq\mathbb{N}.$ Potem obstaja injekcija $g:\mathbb{N}\to A.$ Definirajmo $f\colon A\to A\setminus\{g(0)\}$ s formulo

$$\forall x \in A$$
: $f(x) = \begin{cases} g(n+1), & \text{\'e } x = g(n), \\ x, & \text{\'e } x \notin \mathcal{Z}_g. \end{cases}$

Trdimo, da je f bijekcija. Definirajmo $h: A \setminus \{g(0)\} \to A$ s formulo

$$\forall x \in A \setminus \{g(0)\} \colon \ h(x) = \begin{cases} g(n-1), & \text{\'e } x \in \mathcal{Z}_g \setminus \{g(0)\} \text{ in } x = g(n), \\ x, & \text{sicer.} \end{cases}$$

Naj bo $x \in A$. Če je x = g(n) za neki $n \in \mathbb{N}$, je f(x) = f(g(n)) = g(n+1) in h(f(x)) = h(g(n+1)) = g((n+1)-1) = g(n) = x. Če $x \notin \mathcal{Z}_g$, je f(x) = x in h(f(x)) = h(x) = x. Torej je h(f(x)) = x za vse $x \in A$ in je $h \circ f = \mathrm{id}_A$.

Naj bo $x \in A \setminus \{g(0)\}$. Če je x = g(n) za neki $n \in \mathbb{N} \setminus \{0\}$, je h(x) = g(n-1) in f(h(x)) = f(g(n-1)) = g((n-1)+1) = g(n) = x. Če $x \notin \mathcal{Z}_g$, je h(x) = x in f(h(x)) = f(x) = x. Torej je f(h(x)) = x za vse $x \in A \setminus \{g(0)\}$ in je $f \circ h = \mathrm{id}_{A \setminus \{g(0)\}}$. – Zaključimo, da je f bijekcija in je množica A neskončna.

Definicija 5 1. Množica A je števno neskončna, če je $A \sim \mathbb{N}$.

- 2. Množica A je števna, če je končna ali števno neskončna.
- 3. Množica A je neštevna, če ni števna.

Izrek 6 Za vsako množico A velja:

- 1. $A \ kon\check{c}na \iff A \prec \mathbb{N}$
- 2. $A \ \check{s}tevna \iff A \prec \mathbb{N}$
- 3. A števno neskončna \iff $A \sim \mathbb{N}$
- 4. $A \ neskon\check{c}na \iff A \succeq \mathbb{N}$
- 5. $A \text{ neštevna} \iff A \succ \mathbb{N}$

Dokaz: Uporabimo definicije ter izreka 4 in 5. Dokažimo npr. točko 1:

1.
$$A$$
 končna $\stackrel{\text{def. 4}}{\Longleftrightarrow} A$ ni neskončna $\stackrel{\text{izr. 5}}{\Longleftrightarrow} A \not\succeq \mathbb{N} \stackrel{\text{izr. 4}}{\Longleftrightarrow} A \prec \mathbb{N}$.

V ekvivalenčnih razredih relacije ekvipolence \sim , ki vsebujejo vse množice enake moči, izberemo predstavnike, ki jih imenujemo kardinalna števila. Za predstavnika razreda vseh množic z n elementi izberemo naravno število n, za predstavnika razreda vseh števno neskončnih množic pa množico \mathbb{N} , ki jo v tej vlogi označujemo z \aleph_0 (beri $alef\ ni\check{c}$; \aleph je prva črka hebrejske abecede). Rečemo, da imajo števno neskončne množice moč \aleph_0 .

1.4 Lastnosti števnih množic

Pri dokazovanju števnosti množice nam pogosto pomaga naslednja trditev.

Trditev 3 Če obstaja surjekcija $g: \mathbb{N} \to A$, je množica A števna.

Dokaz: Če je $g: \mathbb{N} \to A$ surjekcija, po izreku 3 velja $\mathbb{N} \succeq A$ oziroma $A \preceq \mathbb{N}$, torej je po izreku 6.2 množica A števna.

Trditev 3 lahko povemo tudi takole:

Če lahko elemente množice A razvrstimo v zaporedje tako, da pride vsak od njih vsaj enkrat na vrsto, je množica A števna.

Zgled 3 1. Ali je množica celih števil

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$$

števna? Razvrstimo elemente v zaporedje

$$(0,1,-1,2,-2,3,-3,4,-4,\ldots)$$

Vsako celo število pride v tem zaporedju na vrsto vsaj enkrat, torej je $množica \mathbb{Z}$ po $trditvi \ 3 \ števna$. Eksplicitna definicija surjekcije $g: \mathbb{N} \to \mathbb{Z}$ je v tem primeru

$$g(n) = \begin{cases} -\frac{n}{2}, & n \text{ sodo število,} \\ \frac{n+1}{2}, & n \text{ liho število.} \end{cases}$$

V resnici vsako celo število nastopi v gornjem zaporedju natanko enkrat (torej je g bijekcija), a to za dokaz števnosti množice A po trditvi 3 niti ni pomembno.

2. Podobno pokažemo, da je unija števnih množic A in B števna. Če je katera od njiju prazna, to drži. Sicer pa lahko njune elemente razvrstimo v zaporedji

$$A: (a_0, a_1, a_2, \ldots),$$

 $B: (b_0, b_1, b_2, \ldots),$

kjer elemente ponavljamo, če je katera od A, B končna. Zaloga vrednosti zaporedja

$$(a_0, b_0, a_1, b_1, a_2, b_2, \dots)$$

je potem ravno njuna unija $A \cup B$, ki je po trditvi 3 torej števna.

Definicija 6 Za družino množic $(A_{\lambda})_{\lambda \in \mathcal{I}}$ rečemo, da je števna (neštevna, končna, neskončna, števno neskončna) natanko tedaj, ko je takšna indeksna množica \mathcal{I} .

Izrek 7 Unija vsake števno neskončne družine števno neskončnih množic je števno neskončna.

Dokaz: Naj bo $(A_{\lambda})_{{\lambda}\in\mathcal{I}}$ števno neskončna družina števno neskončnih množic. Ker je množica \mathcal{I} števno neskončna, lahko njene elemente razvrstimo v zaporedje

$$\mathcal{I}: (\lambda_0, \lambda_1, \lambda_2, \dots),$$

kjer so vsi elementi λ_i različni med seboj. Podobno lahko razvrstimo v zaporedja elemente vsake od množic A_{λ} , saj so prav tako števno neskončne:¹

$$A_{\lambda_0} \colon (a_{0,0}, \ a_{0,1}, \ a_{0,2}, \dots)$$

$$A_{\lambda_1} \colon (a_{1,0}, \ a_{1,1}, \ a_{1,2}, \dots)$$

$$A_{\lambda_2} \colon (a_{2,0}, \ a_{2,1}, \ a_{2,2}, \dots)$$

$$\vdots$$

¹tu uporabimo aksiom izbire na družini $(B_{\lambda})_{\lambda \in \mathcal{I}}$, kjer je B_{λ} množica vseh bijekcij $\mathbb{N} \to A_{\lambda}$

Zdaj vse elemente množice $\bigcup_{\lambda \in \mathcal{I}} A_{\lambda}$ oziroma zgornje tabele razvrstimo v eno samo zaporedje – npr. v *diagonalni urejenosti* množice $\mathbb{N} \times \mathbb{N}$, torej po naraščajoči vsoti indeksov, tiste z enako vsoto indeksov pa po naraščajočem prvem indeksu:

$$\bigcup_{\lambda \in \mathcal{I}} A_{\lambda} : \left(\underbrace{a_{0,0}}_{i+j=0}, \underbrace{a_{0,1}, a_{1,0}}_{i+j=1}, \underbrace{a_{0,2}, a_{1,1}, a_{2,0}}_{i+j=2}, \ldots \right)$$

V tem zaporedju pride vsak element množice $\bigcup_{\lambda \in \mathcal{I}} A_{\lambda}$ vsaj enkrat na vrsto (lahko tudi večkrat, saj si množice A_{λ} v splošnem niso tuje), torej je po trditvi 3 množica $\bigcup_{\lambda \in \mathcal{I}} A_{\lambda}$ števna. Ker je vsaka od množic A_{λ} neskončna, pa je tudi njihova unija neskončna, torej je $\bigcup_{\lambda \in \mathcal{I}} A_{\lambda}$ števno neskončna.

Posledica 2 Unija vsake števne družine števnih množic je števna.

Dokaz: Naj bo $(A_{\lambda})_{{\lambda}\in\mathcal{I}}$ števna družina števnih množic. Dopolnimo jo do števno neskončne družine števno neskončnih množic $(B_{\mu})_{{\mu}\in\mathcal{J}}$, npr. takole:

$$\mathcal{J} = \mathcal{I} \cup \mathbb{N},$$

$$\forall \mu \in \mathcal{J} \colon B_{\mu} = \begin{cases} A_{\mu} \cup \mathbb{N}, & \text{\'e } \mu \in \mathcal{I}, \\ \mathbb{N}, & \text{sicer.} \end{cases}$$

Po izreku 7 je $\bigcup_{\mu \in \mathcal{J}} B_{\mu} \leq \mathbb{N}$. Ker je očitno

$$\bigcup_{\mu \in \mathcal{J}} B_{\mu} = \left(\bigcup_{\lambda \in \mathcal{I}} A_{\lambda}\right) \cup \mathbb{N},$$

je
$$\bigcup_{\lambda \in \mathcal{I}} A_{\lambda} \subseteq \bigcup_{\mu \in \mathcal{J}} B_{\mu}$$
, torej $\bigcup_{\lambda \in \mathcal{I}} A_{\lambda} \preceq \bigcup_{\mu \in \mathcal{J}} B_{\mu} \preceq \mathbb{N}$.

Izrek 7 oziroma posledica 2 sta močni orodji za dokazovanje števnosti množic.

Trditev 4 1. Množica vseh racionalnih števil \mathbb{Q} je števna.

2. Množica vseh urejenih parov naravnih števil $\mathbb{N} \times \mathbb{N}$ je števna.

Dokaz: 1. Množico \mathbb{Q} lahko zapišemo v obliki unije $\mathbb{Q} = \bigcup_{n=1}^{\infty} A_n$, kjer je

$$\forall n \in \mathbb{N} \setminus \{0\} \colon A_n = \left\{ \frac{k}{n}; \ k \in \mathbb{Z} \right\}$$

množica vseh ulomkov z imenovalcem n. Očitno za vsak $n \in \mathbb{N} \setminus \{0\}$ velja: $A_n \sim \mathbb{Z}$, torej je \mathbb{Q} števna unija števnih množic in je po posledici 2 števna.

2. Množico $\mathbb{N} \times \mathbb{N}$ lahko zapišemo v obliki unije $\mathbb{N} \times \mathbb{N} = \bigcup_{n=0}^{\infty} A_n$, kjer je

$$\forall n \in \mathbb{N} \colon A_n = \{n\} \times \mathbb{N} = \{(n,k); k \in \mathbb{N}\}\$$

množica vseh urejenih parov naravnih števil s prvo komponento enako n. Očitno za vsak $n \in \mathbb{N}$ velja: $A_n \sim \mathbb{N}$, torej je $\mathbb{N} \times \mathbb{N}$ števna unija števnih množic in je po posledici 2 števna.

1.5 Neštevne množice

Izrek 8 (Cantorjev izrek) Za vsako množico A je $\mathcal{P}A \succ A$.

Dokaz: Pokazati moramo, da je $A \leq \mathcal{P}A$ in $A \nsim \mathcal{P}A$.

- 1. Naj bo $f: A \to \mathcal{P}A$ preslikava, definirana s formulo $\forall x \in A: f(x) = \{x\}$. Očitno je f injekcija, torej velja: $A \preceq \mathcal{P}A$.
- 2. Predpostavimo, da obstaja surjekcija $g:A\to \mathcal{P}A$. Za vsak $x\in A$ je $g(x)\in \mathcal{P}A$, torej $g(x)\subseteq A$. Za vsak $x\in A$ velja: $x\in g(x)$ ali $x\notin g(x)$. Naj bo

$$C = \{x \in A; \ x \notin g(x)\}.$$

Velja: $C \subseteq A$, torej je $C \in \mathcal{P}A$. Ker je $g: A \to \mathcal{P}A$ surjekcija, obstaja $x_0 \in A$, tako da je $g(x_0) = C$. Ali je $x_0 \in C$? Velja:

$$x_0 \in C \stackrel{\text{def. } C}{\Longrightarrow} x_0 \notin g(x_0) \stackrel{\text{def. } x_0}{\Longrightarrow} x_0 \notin C,$$

kar je protislovje. Torej ni nobene surjekcije $g:A\to\mathcal{P}A$ in zato $A\not\sim\mathcal{P}A$.

Posledica 3 1. Množica $\mathcal{P} \mathbb{N}$ je neštevna.

- 2. Množica \mathbb{R} je neštevna.
- 3. Množica vseh iracionalnih števil je neštevna.
- 4. Za vse $a, b \in \mathbb{R}$, kjer je a < b, so intervali [a, b], (a, b), [a, b), (a, b] neštevni.
- 5. Množica \mathbb{C} je neštevna.
- 6. Vse množice \mathbb{R}^n za $n \in \mathbb{N} \setminus \{0\}$ so neštevne.
- 7. Kartezični produkt števno neskončne družine množic moči vsaj 2 je nešteven.

8. Obstajajo neskončna zaporedja neskončnih množic različnih moči, npr.

$$\mathbb{N} \, \prec \, \mathcal{P} \, \mathbb{N} \, \prec \, \mathcal{P} \mathcal{P} \, \mathbb{N} \, \prec \, \mathcal{P} \mathcal{P} \mathcal{P} \, \mathbb{N} \, \prec \, \cdots$$

Dokaz: 7. Naj bo $(A_{\lambda})_{\lambda \in \mathbb{N}}$ družina množic, pri kateri za vse $\lambda \in \mathbb{N}$ velja: $A_{\lambda} = \{0,1\}$. Potem je $\bigcup_{\lambda \in \mathbb{N}} A_{\lambda} = \{0,1\}$ in so funkcije izbire za družino $(A_{\lambda})_{\lambda \in \mathbb{N}}$ natanko vse preslikave $f : \mathbb{N} \to \{0,1\}$. To pa so ravno karakteristične funkcije vseh podmnožic množice \mathbb{N} , torej obstaja bijekcija med $\prod_{\lambda \in \mathbb{N}} A_{\lambda} = \prod_{\lambda \in \mathbb{N}} \{0,1\}$ in $\mathcal{P}\mathbb{N}$. Zato je kartezični produkt $\prod_{\lambda \in \mathbb{N}} \{0,1\}$ neštevna množica, enako pa potem velja za vse števno neskončne družine množic moči vsaj 2.

Za množice, ki so ekvipolentne množici realnih števil \mathbb{R} , rečemo, da imajo moč kontinuuma (s simbolom: moč \mathfrak{c} ali moč 2^{\aleph_0}).