

Faculty of Engineering and Information Sciences

COURSEWORK COVERSHEET

SUBJECT'S INFORMATION	V:			
Subject:	CSCI203 ALGORITHMS AT	ND DATA STRUCTURES		
Session:	AUTUMN 2016	AUTUMN 2016		
Programme / Section:	BCS/MG1,S1,D1,MC1			
Lecturer:	Ms PAWANI			
Coursework Type	☐ Individual Assignment	☐ Group Assignment	☐ Project	
(tick appropriate box)	☐ Lab Exercise / Journal	Seminar / Tutorial Pap	er	
Coursework Title:	ASSIGNMENT 3	Coursework Percentage:	10%	
Hand-out Date:	Week 12	Received By:		
Due Date:	Week 13	Received Date :	:	
STUDENT'S INFORMATIO	N:	·	•	
Student's Name & ID:				
Contact Number / Email:				
STUDENT'S DECLARATION	N			
	e text and provided a reference list e submission without an authorised further information).	-	dinator may incur a penalty.	
-				
X	XX	X 	X	
	COURSEWORK SUB			
Subject:		Session:		
Programme / Section:		Lecturer:		
Coursework Type: (Tick appropriate box)	☐ Individual Assignment☐ Lab Exercise / Journal☐	☐ Group Assignment ☐ Seminar / Tutorial P	☐ Project ☐ Others	
Coursework Title:		Coursework Percentage:		
Hand-out Date:		Received By: (Signature)		
Due date:		Received Date:		
STUDENT'S INFORMATI	ON:			
Student's Name & ID:				
Contact Number /				

Assessment Criteria		Total Marks	Given Marks
Correctness		4	
Efficiency		2	
Validation		2	
Output presentation		2	
		10	
		Penalty	
Marked by:	Date:	Final Mark (%)	
Lecturer's Comments			

Penalty for late submission:

- 1 day minus 20% of total mark awarded
- 2 days minus 50% of total mark awarded
- 3 days 0 mark for this piece of coursework

CSCI203 Algorithms and Data Structures Assignment 3 Autumn Session 2016

Objectives

- To apply greedy algorithm concepts.
- To be able to represent a minimum spanning tree diagrammatically.
- To write the program to represent a prim's minimum spanning tree.

Problem

Prim's algorithm is a greedy algorithm that finds a minimum spanning tree of a connected, weighted graph G(E,N) by progressively add an edge of minimum weight that has one vertex in the current tree and the other not in the current tree.

Info of a graph is given as below.

The first row shows an integer, being the number of nodes in the graph.

The remaining rows show a sequence of sets of three integers, where the first two are node numbers and the third number is a cost.

Input of edges is terminated by the sequence 0 0 0.

Note: the graph is undirected so an edge from i to j is also an edge from j to i.

Write a program to represent the standard Prim's algorithm for the above graph. You can start from the node 1.

Output should be:

The set of edges in the minimal spanning tree The total length of the tree

Do include some analysis regarding the violated properties