# Снижение размерности пространства в задачах декодирования сигналов

#### Исаченко Роман Владимирович

Диссертация на соискание ученой степени кандидата физико-математических наук

05.13.17 - Теоретические основы информатики

Научный руководитель: д.ф.-м.н. В. В. Стрижов

Москва, 2021 г.

# Снижение размерности пространства в задачах декодирования сигналов

Исследуется задача выбора модели при восстановлении скрытых зависимостей в исходном и в целевом пространствах.

#### Проблема

Целевая переменная – вектор, компоненты которого являются зависимыми. Гетерогенные пространства исходных и целевых переменных обладают существенно избыточной размерностью.

#### Требуется

Требуется построить модель, адекватно описывающую исходное и целевое пространства при наблюдаемой мультикорреляции в обоих пространствах.

#### Метод решения

Предлагается снизить размерность путём проецирования исходных и целевых переменных в скрытое пространство. Предлагаются линейные и нелинейные методы согласования прогностических моделей в пространствах высокой размерности.

# Восстановление зависимости в исходном и целевом пространствах





## Прогностическая модель декодирования



## Согласование зависимостей в скрытом пространстве

$$\begin{aligned} \mathbf{x} &\in \mathbb{R}^n & \xrightarrow{\mathbf{f}} \mathbf{y} \in \mathbb{R}^r \\ \phi_e & & \phi_d & \psi_d & \psi_e \\ \mathbf{t} &\in \mathbb{R}^\ell & \xrightarrow{\mathbf{h}} \mathbf{u} \in \mathbb{R}^s \\ g(\mathbf{t}, \mathbf{u}) &\to \max_{\phi_e, \psi_e, \mathbf{h}}, \\ \phi_e &\circ \phi_d(\mathbf{x}) = \mathbf{x}, \quad \psi_e \circ \psi_d(\mathbf{y}) = \mathbf{y}. \end{aligned}$$

## Задача декодирования сигналов

 $\mathbf{Y} = \mathbf{F}(\mathbf{X}, \mathbf{\Theta}) + \mathbf{E}_{\mathbf{y}}$  – модель с параметрами  $\mathbf{\Theta}$ .

Функция потерь модели декодирования

$$\mathcal{L}(f, \mathbf{X}, \mathbf{Y}) = \|\mathbf{Y} - \mathbf{F}(\mathbf{X}, \mathbf{\Theta})\|_{2}^{2} = \rightarrow \min_{\mathbf{\Theta}}.$$

**Особенностью задачи** является избыточность размерности пространств переменных  ${\bf x}$  и  ${\bf y}$ . Требуется найти многообразия низкой размерности:

$$\mathbb{X} \subset \mathbb{R}^{n} \xrightarrow{\mathbf{f}} \mathbb{Y} \subset \mathbb{R}^{r} 
 \phi_{e} \bigwedge^{\bullet} \phi_{d} \qquad \psi_{d} \bigvee^{\bullet} \psi_{e} 
 \mathbb{T} \subset \mathbb{R}^{\ell} \xrightarrow{\mathbf{h}} \mathbb{U} \subset \mathbb{R}^{s}$$

 $\mathbb{T}\subset\mathbb{R}^\ell$  и  $\mathbb{U}\subset\mathbb{R}^s$  скрытые пространства для  $\mathbb{X}\in\mathbb{R}^n$  ( $\ell\leq n$ ) и  $\mathbb{Y}\in\mathbb{R}^r$ ( $s\leq r$ ), если существуют функции кодирования  $\phi_e:\mathbb{X}\to\mathbb{T}$ ,  $\psi_e:\mathbb{Y}\to\mathbb{U}$  и декодирования  $\phi_d:\mathbb{T}\to\mathbb{X}$ ,  $\psi_d:\mathbb{U}\to\mathbb{Y}$ :

для любого 
$$\mathbf{x} \in \mathbb{X}$$
 существует  $\mathbf{t} \in \mathbb{T}$  :  $\phi_d(\phi_e(\mathbf{x})) = \phi_d(\mathbf{t}) = \mathbf{x}$ , для любого  $\mathbf{y} \in \mathbb{Y}$  существует  $\mathbf{u} \in \mathbb{U}$  :  $\psi_d(\psi_e(\mathbf{y})) = \psi_d(\mathbf{u}) = \mathbf{y}$ .

## Согласование зависимостей в задаче декодирования

Скрытые пространства  $\mathbb T$  и  $\mathbb U$  называются **согласованными**, если существует функция связи  $\mathbf h: \mathbb T \to \mathbb U$ :

$$\mathbf{y} = \mathbf{f}(\mathbf{x}) = oldsymbol{\psi}_d \Big( \mathbf{h} ig( oldsymbol{\phi}_{\mathsf{e}}(\mathbf{x}) ig) \Big).$$

#### Функция согласования проекций

$$g: \mathbb{T} imes \mathbb{U} o \mathbb{R}, \quad g(\mathbf{t}, \mathbf{u}) = g(\phi_e(\mathbf{x}), \psi_e(\mathbf{y})) o \max_{\phi_e, \psi_e, \mathbf{h}}$$

Рассмотрим  $\mathbf{Y} = \mathbf{F}(\mathbf{X}, \mathbf{\Theta}) + \mathbf{E_y} = \mathbf{X}\mathbf{\Theta}^{^\mathsf{T}} + \mathbf{E_y} -$ модель с параметрами  $\mathbf{\Theta} \in \mathbb{R}^{r \times n}$ .

$$\mathcal{L}(f, \mathbf{X}, \mathbf{Y}) = \left\| \mathbf{Y} - \mathbf{X} \mathbf{\Theta}^{\mathsf{T}} \right\|_{2}^{2} \rightarrow \min_{\mathbf{\Theta}}.$$

Метод проекции в скрытое пространство 
$$X = TP^T + E_v$$
.

$$\boldsymbol{Y} = \boldsymbol{UQ}^{\mathsf{T}} + \boldsymbol{E_y}.$$

$$\begin{array}{ccc}
\mathbb{X} \subset \mathbb{R}^{n} & \xrightarrow{f} & \mathbb{Y} \subset \mathbb{R}^{r} \\
\mathbf{W} & & \mathbf{P} & & \mathbf{Q} & & \mathbf{C} \\
\mathbb{T} \subset \mathbb{R}^{\ell} & \xrightarrow{B} & \mathbb{U} \subset \mathbb{R}^{s}
\end{array}$$

$$\mathbf{U} = \mathbf{h}(\mathbf{T}) = \mathbf{T}\mathbf{B}, \quad \mathbf{B} = \mathrm{diag}(\beta_k), \quad \beta_k = \mathbf{u}_k^\mathsf{T} \mathbf{t}_k / (\mathbf{t}_k^\mathsf{T} \mathbf{t}_k).$$

$$\mathbf{Y} = \mathbf{U}\mathbf{Q}^\mathsf{T} + \mathbf{E}_{\mathbf{v}} \approx \mathbf{T}\mathbf{B}\mathbf{Q}^\mathsf{T} + \mathbf{E}_{\mathbf{v}} = \mathbf{X}\mathbf{W}^*\mathbf{B}\mathbf{Q}^\mathsf{T} + \mathbf{E} = \mathbf{X}\mathbf{\Theta}^\mathsf{T} + \mathbf{E}_{\mathbf{v}},$$

$$\mathsf{T} = \mathsf{XW}^*$$
. где  $\mathsf{W}^* = \mathsf{W}(\mathsf{P}^\mathsf{T}\mathsf{W})^{-1}$ .

## Согласованная модель проекции в скрытое пространство

#### Утверждение (Исаченко, 2017)

Вычисленные вектора  $\mathbf{t}_k$  и  $\mathbf{u}_k$  с помощью итеративной процедуры обновления:

$$\begin{aligned} \mathbf{t}_k &:= \frac{\mathbf{X}_k \mathbf{w}_k}{\|\mathbf{w}_k\|}, \quad \mathbf{w}_k &:= \mathbf{X}_k^\mathsf{T} \mathbf{u}_{k-1} / (\mathbf{u}_{k-1}^\mathsf{T} \mathbf{u}_{k-1}); \\ \mathbf{u}_k &:= \frac{\mathbf{Y}_k \mathbf{c}_k}{\|\mathbf{c}_k\|}, \quad \mathbf{c}_k &:= \mathbf{Y}_k^\mathsf{T} \mathbf{t}_k / (\mathbf{t}_k^\mathsf{T} \mathbf{t}_k). \end{aligned}$$

обладают максимальной ковариацией  $cov(\mathbf{t},\mathbf{u})$ .

#### Теорема (Исаченко, 2017)

В случае линейных функций декодирования  $\phi_e(\mathbf{T}) = \mathbf{TP}^\mathsf{T}$ ,  $\psi_e(\mathbf{U}) = \mathbf{UQ}^\mathsf{T}$  и функции согласования  $g(\mathbf{t},\mathbf{u}) = \mathsf{cov}(\mathbf{t},\mathbf{u})$  параметры

$$\mathbf{\Theta} = \mathbf{W}(\mathbf{P}^{\mathsf{T}}\mathbf{W})^{-1}\mathbf{B}\mathbf{Q}^{\mathsf{T}}$$

являются оптимальными для модели  $F(X,\Theta)$ .

## Пример согласованной проекции в скрытое пространство

Исходные переменные  $\mathbf{x}_i \sim \mathcal{N}(0, \mathbf{\Sigma})$ .

Целевые переменные  $\mathbf{y}_i$  линейно зависят от  $pc_2$  и не зависят от  $pc_1$ .



Согласование проекций матриц  $\mathbf{X}$  и  $\mathbf{Y}$  позволяет найти оптимальное скрытое представление, отклоняя вектора  $\mathbf{w}_k$  и  $\mathbf{c}_k$  от направления главных компонент.

## Суперпозиция моделей декодирования сигналов

Пусть  $\mathbf{f}_1(\mathbf{x}_1, \mathbf{\Theta}_1)$ ,  $\mathbf{f}_2(\mathbf{x}_2, \mathbf{\Theta}_2)$  — линейные модели декодирования сигналов.

### Утверждение (Исаченко, 2021)

Пусть модель декодирования является аддитивной суперпозицией линейных моделей:

$$\mathbf{y} = \mathbf{f}_1(\mathbf{x}_1, \mathbf{\Theta}_1) + \mathbf{f}_2(\mathbf{x}_2, \mathbf{\Theta}_2) + \boldsymbol{\varepsilon}_{\mathbf{y}} = \mathbf{\Theta}_1 \mathbf{x}_1 + \mathbf{\Theta}_2 \mathbf{x}_2 + \boldsymbol{\varepsilon}_{\mathbf{y}}.$$

Тогда оптимальные параметры имеют вид

$$\begin{split} \boldsymbol{\Theta}_1 &= (\boldsymbol{X}_1^{\mathsf{T}}\boldsymbol{\mathsf{M}}_{\boldsymbol{\mathsf{X}}_2}\boldsymbol{\mathsf{X}}_1)^{-1}\boldsymbol{\mathsf{X}}_1^{\mathsf{T}}\boldsymbol{\mathsf{M}}_{\boldsymbol{\mathsf{X}}_2}\boldsymbol{\mathsf{Y}}, \\ \boldsymbol{\Theta}_2 &= (\boldsymbol{\mathsf{X}}_2^{\mathsf{T}}\boldsymbol{\mathsf{M}}_{\boldsymbol{\mathsf{X}}_1}\boldsymbol{\mathsf{X}}_2)^{-1}\boldsymbol{\mathsf{X}}_2^{\mathsf{T}}\boldsymbol{\mathsf{M}}_{\boldsymbol{\mathsf{X}}_1}\boldsymbol{\mathsf{Y}}, \end{split}$$

где 
$$\mathbf{M}_{\mathbf{X}_1} = \mathbf{I} - \mathbf{X}_1 (\mathbf{X}_1^{\mathsf{T}} \mathbf{X}_1)^{-1} \mathbf{X}_1^{\mathsf{T}}$$
,  $\mathbf{M}_{\mathbf{X}_2} = \mathbf{I} - \mathbf{X}_2 (\mathbf{X}_2^{\mathsf{T}} \mathbf{X}_2)^{-1} \mathbf{X}_2^{\mathsf{T}}$ .

## Теорема (Исаченко, 2021)

Если  $span(\mathbf{X}_1) \neq span(\mathbf{X}_2)$ , то ошибка аддитивной суперпозиции линейных моделей декодирования не превышает ошибки отдельной модели:

$$\mathcal{L}_{\mathsf{dep}}(\boldsymbol{\Theta}_1^*, \boldsymbol{\Theta}_2^*, \mathbf{X}_1, \mathbf{X}_2, \mathbf{Y}) \leq \mathcal{L}(\boldsymbol{\Theta}_i, \mathbf{X}_i, \mathbf{Y}), \quad i = 1, 2.$$

# Нелинейные методы согласования скрытого пространства

Функции кодирования и декодирования являются глубокими нейросетями вида:

$$\mathbf{T} = \phi_{e}(\mathbf{X}) = \mathbf{W}_{x}^{L} \sigma(\dots \sigma(\mathbf{W}_{x}^{2} \sigma(\mathbf{X} \mathbf{W}_{x}^{1})) \dots) \qquad \qquad \mathbb{X} \subset \mathbb{R}^{n} \longrightarrow \mathbb{Y} \subset \mathbb{R}^{r}$$

$$\mathbf{U} = \psi_{e}(\mathbf{Y}) = \mathbf{W}_{y}^{L} \sigma(\dots \sigma(\mathbf{W}_{y}^{2} \sigma(\mathbf{Y} \mathbf{W}_{y}^{1})) \dots) \qquad \qquad \phi_{e} \downarrow \phi_{d} \qquad \psi_{d} \downarrow \psi_{e}$$

$$\mathbf{X} = \phi_{d}(\mathbf{T}) = \mathbf{W}_{t}^{L} \sigma(\dots \sigma(\mathbf{W}_{x}^{2} \sigma(\mathbf{T} \mathbf{W}_{t}^{1})) \dots) \qquad \qquad \Phi_{e} \downarrow \phi_{d} \qquad \Phi_{e} \downarrow \phi_{d} \qquad \Phi_{e} \downarrow \psi_{d} \downarrow \psi_{e}$$

$$\mathbf{Y} = \psi_{d}(\mathbf{U}) = \mathbf{W}_{u}^{L} \sigma(\dots \sigma(\mathbf{W}_{x}^{2} \sigma(\mathbf{U} \mathbf{W}_{u}^{1})) \dots) \qquad \qquad \mathbb{T} \subset \mathbb{R}^{\ell} \longrightarrow \mathbb{U} \subset \mathbb{R}^{s}$$

#### Согласование проекций

Для нахождения оптимальной модели декодирования предложен метод согласования нелинейных проекций

$$g(\mathbf{T}, \mathbf{U}) \rightarrow \max_{\mathbf{W}}, \quad \mathbf{W} = \{\mathbf{W}_x^i, \mathbf{W}_y^i, \mathbf{W}_t^i, \mathbf{W}_u^i\}_{i=1}^L.$$

#### Требуется

Найти бинарный вектор  $\mathbf{a} = \{0,1\}^n$ , компоненты – индикаторы выбранных признаков.

#### Функция ошибки отбора признаков

$$\mathbf{a} = \underset{\mathbf{a}' \in \{0,1\}^n}{\operatorname{arg \, min}} S(\mathbf{a}', \mathbf{X}, \mathbf{Y}).$$

#### Релаксация

Замена дикретной области определения  $\{0,1\}^n$  на непрерывную релаксацию  $[0,1]^n$ :

$$\mathbf{z} = \underset{\mathbf{z}' \in [0,1]^n}{\min} S(\mathbf{z}', \mathbf{X}, \mathbf{Y}), \quad a_j = [z_j > \tau].$$

Получив а, решаем задачу регрессии:

$$\mathcal{L}(\boldsymbol{\Theta}_{a}, \boldsymbol{X}_{a}, \boldsymbol{Y}) = \left\| \boldsymbol{Y} - \boldsymbol{X}_{a} \boldsymbol{\Theta}_{a}^{\mathsf{T}} \right\|_{2}^{2} 
ightarrow \min_{\boldsymbol{\Theta}_{a}},$$

где индекс **a** обозначает подматрицу с номерами столбцов, для которых  $a_i=1$ .

## Выбор признаков с помощью квадратичного

#### программирования

 $\mathbf{X}=[\chi_1,\ldots,\chi_n]\in\mathbb{R}^{m imes n}$  – матрица объектов;  $\mathbf{Y}=[
u_1,\ldots,
u_r]\in\mathbb{R}^{m imes r}$  – матрица ответов

$$\|oldsymbol{
u} - oldsymbol{\mathsf{X}}oldsymbol{ heta}\|_2^2 
ightarrow \min_{oldsymbol{ heta} \in \mathbb{R}^n}.$$

#### Задача квадратичного программирования

$$S(\mathbf{z}, \mathbf{X}, \boldsymbol{\nu}) = (1 - \alpha) \cdot \underbrace{\mathbf{z}^{\mathsf{T}} \mathbf{Q} \mathbf{z}}_{\mathsf{Sim}(\mathbf{X})} - \alpha \cdot \underbrace{\mathbf{b}^{\mathsf{T}} \mathbf{z}}_{\mathsf{Rel}(\mathbf{X}, \boldsymbol{\nu})} \to \min_{\substack{\mathbf{z} \geq \mathbf{0}_n \\ \mathbf{1}_n^{\mathsf{T}} \mathbf{z} = 1}}.$$

 $\mathbf{z} \in [0,1]^n$  – значимость признаков;

 $\mathbf{Q} = ig[ig| \mathsf{corr}(\chi_i,\chi_j)ig]_{i,j=1}^n \in \mathbb{R}^{n imes n}$  – матрица парных взаимодействий признаков;

 $\mathbf{b} = ig[|\mathsf{corr}(m{\chi}_i, m{
u})|ig]_{i=1}^n \in \mathbb{R}^n$  – вектор релевантностей признаков к целевой переменной.

#### Утверждение (Исаченко, 2018)

Пусть матрица парных взаимодействий признаков  $\hat{\mathbf{Q}}$  получена полуопределенной релаксацией исходной матрицы  $\mathbf{Q}$ :

$$\hat{\mathbf{Q}} = \mathbf{Q} - \lambda_{\min}(\mathbf{Q})\mathbf{I}.$$

Тогда задача выбора признаков с помощью квадратичного программирования имеет единственный глобальный минимум.  $_{11/21}$ 

## Агрегирование релевантностей по целевым векторам (RelAgg)

$$\mathbf{b} = \left[ |\mathsf{corr}(\boldsymbol{\chi}_i, \boldsymbol{\nu})| \right]_{i=1}^n \to \mathbf{b} = \left[ \sum_{k=1}^r |\mathsf{corr}(\boldsymbol{\chi}_i, \boldsymbol{\nu}_k)| \right]_{i=1}^n.$$

Недостаток: нет учёта зависимостей в целевом пространстве матрицы Y.

#### Симметричный учёт значимостей (SymImp)

Штрафуем коррелированные целевые вектора с помощью  $Sim(\mathbf{Y})$ :

$$S(\mathbf{z}, \mathbf{X}, \mathbf{Y}) = \alpha_1 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{x}} \mathbf{z}_{\mathbf{x}}}_{\mathsf{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{\mathbf{y}}}_{\mathsf{Rel}(\mathbf{X}, \mathbf{Y})} + \alpha_3 \cdot \underbrace{\mathbf{z}_{\mathbf{y}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{y}} \mathbf{z}_{\mathbf{y}}}_{\mathsf{Sim}(\mathbf{Y})} \rightarrow \min_{\substack{\mathbf{z}_{\mathbf{x}} \geq \mathbf{0}_{n}, \mathbf{1}_{n}^{\mathsf{T}} \mathbf{z}_{\mathbf{x}} = 1 \\ \mathbf{z}_{\mathbf{y}} \geq \mathbf{0}_{r}, \mathbf{1}_{r}^{\mathsf{T}} \mathbf{z}_{\mathbf{y}} = 1}},$$

$$\mathbf{Q}_{x} = \left[ \left| \mathsf{corr}(\boldsymbol{\chi}_{i}, \boldsymbol{\chi}_{j}) \right| \right]_{i,j=1}^{n}, \ \mathbf{Q}_{y} = \left[ \left| \mathsf{corr}(\boldsymbol{\nu}_{i}, \boldsymbol{\nu}_{j}) \right| \right]_{i,j=1}^{r}, \ \mathbf{B} = \left[ \left| \mathsf{corr}(\boldsymbol{\chi}_{i}, \boldsymbol{\nu}_{j}) \right| \right]_{i=1,\dots,r}^{i=1,\dots,n},$$

$$\alpha_{1} + \alpha_{2} + \alpha_{3} = 1, \quad \alpha_{i} > 0.$$

SymImp штрафует коррелированные целевые вектора, которые в меньшей мере объясняются признаками.

$$\alpha_1 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{x}} \mathbf{z}_{\mathbf{x}}}_{\mathsf{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{\mathbf{y}}}_{\mathsf{Rel}(\mathbf{X}, \mathbf{Y})} \to \min_{\substack{\mathbf{z}_{\mathbf{x}} \geq \mathbf{0}_n \\ \mathbf{1}_n^{\mathsf{T}} \mathbf{z}_{\mathbf{x}} = 1}}; \quad \alpha_3 \cdot \underbrace{\mathbf{z}_{\mathbf{y}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{y}} \mathbf{z}_{\mathbf{y}}}_{\mathsf{Sim}(\mathbf{Y})} + \alpha_2 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{\mathbf{y}}}_{\mathsf{Rel}(\mathbf{X}, \mathbf{Y})} \to \min_{\substack{\mathbf{z}_{\mathbf{y}} \geq \mathbf{0}_r \\ \mathbf{1}_r^{\mathsf{T}} \mathbf{z}_{\mathbf{y}} = 1}}.$$

#### Минимаксный подход (MinMax / MaxMin)

$$S(\mathbf{z},\mathbf{X},\mathbf{Y}) = \min_{\substack{\mathbf{z}_x \geq \mathbf{0}_n \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_x = 1}} \max_{\substack{\mathbf{r}_y \geq \mathbf{0}_r \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_y = 1}} \left( \text{or} \max_{\substack{\mathbf{z}_y \geq \mathbf{0}_n \\ \mathbf{r}_y^\mathsf{T} \mathbf{z}_y = 1}} \min_{\substack{\mathbf{z}_x \geq \mathbf{0}_n \\ \mathbf{r}_y^\mathsf{T} \mathbf{z}_x = 1}} \right) \left[ \alpha_1 \cdot \underbrace{\mathbf{z}_x^\mathsf{T} \mathbf{Q}_x \mathbf{z}_x}_{\mathrm{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\mathbf{z}_x^\mathsf{T} \mathbf{B} \mathbf{z}_y}_{\mathrm{Rel}(\mathbf{X},\mathbf{Y})} - \alpha_3 \cdot \underbrace{\mathbf{z}_y^\mathsf{T} \mathbf{Q}_y \mathbf{z}_y}_{\mathrm{Sim}(\mathbf{Y})} \right].$$

#### Теорема (Исаченко, 2018)

Для положительно определенных матриц  $\mathbf{Q}_{x}$  и  $\mathbf{Q}_{y}$  minmax и тахтіп задачи достигают одинакового значения функционала  $S(\mathbf{z},\mathbf{X},\mathbf{Y})$ 

#### Теорема (Исаченко, 2018)

Минимаксная задача эквивалентна задаче квадратичного программирования с n+r+1 переменными.

Для получения выпуклой задачи применяется полуопределенная рекласация сдвига спектра.

## Максимизация релевантностей (MaxRel)

$$S(\mathbf{z}, \mathbf{X}, \mathbf{Y}) = \min_{\substack{\mathbf{z}_x \geq \mathbf{0}_n \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_x = 1}} \max_{\substack{\mathbf{z}_y \geq \mathbf{0}_r \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_y = 1}} \left( \text{or} \max_{\substack{\mathbf{z}_y \geq \mathbf{0}_r \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_y = 1}} \min_{\substack{\mathbf{T}_x = 1 \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_x = 1}} \right) \left[ (1 - \alpha) \cdot \mathbf{z}_x^\mathsf{T} \mathbf{Q}_x \mathbf{z}_x - \alpha \cdot \mathbf{z}_x^\mathsf{T} \mathbf{B} \mathbf{z}_y \right].$$

#### Теорема (Исаченко, 2018)

Для положительно определенной матрицы  $\mathbf{Q}_{\mathsf{x}}$  minmax и тахтіп задачи достигают одинакового значения функционала  $S(\mathbf{z},\mathbf{X},\mathbf{Y})$ .

## Асимметричный учёт значимостей (AsymImp)

$$\alpha_1 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{x}} \mathbf{z}_{\mathbf{x}}}_{\mathsf{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\left(\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{y} - \mathbf{b}^{\mathsf{T}} \mathbf{z}_{y}\right)}_{\mathsf{Rel}(\mathbf{X}, \mathbf{Y})} + \alpha_3 \cdot \underbrace{\mathbf{z}_{y}^{\mathsf{T}} \mathbf{Q}_{y} \mathbf{z}_{y}}_{\mathsf{Sim}(\mathbf{Y})} \rightarrow \min_{\substack{\mathbf{z}_{x} \geq \mathbf{0}_{r}, \, \mathbf{1}_{r}^{\mathsf{T}} \mathbf{z}_{x} = 1 \\ \mathbf{z}_{y} \geq \mathbf{0}_{r}, \, \mathbf{1}_{r}^{\mathsf{T}} \mathbf{z}_{y} = 1}}.$$

При  $b_j = \max_{i=1,\dots,n} [\mathbf{B}]_{i,j}$  коэффициенты при  $\mathbf{z}_y$  в  $\mathsf{Rel}(\mathbf{X},\mathbf{Y})$  неотрицательны.

# Обобщение предложенных методов выбора признаков Теорема (Исаченко, 2018)

В одномерном случае r=1 предлагаемые методы выбора признаков SymImp, MinMax, MaxMin, MaxRel, AsymImp совпадают с исходной задачей минимизации функции ошибок  $S(\mathbf{z}, \mathbf{X}, \mathbf{Y})$ .

| Алгоритм | Критерий                                                                                                                                                                   | Функция ошибки $S(z,X,Y)$                                                                                                                                                                                                                                                                                 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RelAgg   | $min[Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y})]$                                                                                                                       | $\min_{\mathbf{z}_{x}} \left[ (1 - \alpha) \cdot \mathbf{z}_{x}^{T} \mathbf{Q}_{x} \mathbf{z}_{x} - \alpha \cdot \mathbf{z}_{x}^{T} \mathbf{B} 1_{r} \right]$                                                                                                                                             |
| SymImp   | $\begin{aligned} \min \left[ Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y}) \\ + Sim(\mathbf{Y}) \right] \end{aligned}$                                                     | $\min_{\mathbf{z}_{x},  \mathbf{z}_{y}} \left[ \alpha_{1} \cdot \mathbf{z}_{x}^{T} \mathbf{Q}_{x} \mathbf{z}_{x} - \alpha_{2} \cdot \mathbf{z}_{x}^{T} \mathbf{B} \mathbf{z}_{y} + \alpha_{3} \cdot \mathbf{z}_{y}^{T} \mathbf{Q}_{y} \mathbf{z}_{y} \right]$                                             |
| MinMax   | $\begin{aligned} & \min \left[ Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y}) \right] \\ & \max \left[ Rel(\mathbf{X}, \mathbf{Y}) + Sim(\mathbf{Y}) \right] \end{aligned}$ | $\min_{\mathbf{z}_{x}} \max_{\mathbf{z}_{y}} \left[ \alpha_{1} \cdot \mathbf{z}_{x}^{T} \mathbf{Q}_{x} \mathbf{z}_{x} - \alpha_{2} \cdot \mathbf{z}_{x}^{T} \mathbf{B} \mathbf{z}_{y} - \alpha_{3} \cdot \mathbf{z}_{y}^{T} \mathbf{Q}_{y} \mathbf{z}_{y} \right]$                                        |
| MaxRel   | $\begin{aligned} &\min \left[ Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y}) \right] \\ &\max \left[ Rel(\mathbf{X}, \mathbf{Y}) \right] \end{aligned}$                     | $\min_{\mathbf{z}_{_{\boldsymbol{X}}}} \max_{\mathbf{z}_{_{\boldsymbol{Y}}}} \bigl[ (1-\alpha) \cdot \mathbf{z}_{_{\boldsymbol{X}}}^{T} \mathbf{Q}_{_{\boldsymbol{X}}} \mathbf{z}_{_{\boldsymbol{X}}} - \alpha \cdot \mathbf{z}_{_{\boldsymbol{X}}}^{T} \mathbf{B} \mathbf{z}_{_{\boldsymbol{Y}}} \bigr]$ |
| AsymImp  | $\begin{aligned} &\min\left[Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y})\right] \\ &\max\left[Rel(\mathbf{X}, \mathbf{Y}) + Sim(\mathbf{Y})\right] \end{aligned}$         | $\left  \min_{\mathbf{z}_{x}, \mathbf{z}_{y}} \left[ \alpha_{1} \mathbf{z}_{x}^{T} \mathbf{Q}_{x} \mathbf{z}_{x} - \alpha_{2} \left( \mathbf{z}_{x}^{T} \mathbf{B} \mathbf{z}_{y} - \mathbf{b}^{T} \mathbf{z}_{y} \right) + \alpha_{3} \mathbf{z}_{y}^{T} \mathbf{Q}_{y} \mathbf{z}_{y} \right] \right $  |

## Внешние критерии качества решения задачи

#### декодирования

#### Нормированное RMSE

Качество прогнозирования:

$$\mathsf{sRMSE}(\boldsymbol{Y},\widehat{\boldsymbol{Y}}_a) = \sqrt{\frac{\mathsf{MSE}(\boldsymbol{Y},\widehat{\boldsymbol{Y}}_a)}{\mathsf{MSE}(\boldsymbol{Y},\overline{\boldsymbol{Y}})}} = \frac{\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_a\|_2}{\|\boldsymbol{Y}-\overline{\boldsymbol{Y}}\|_2}, \quad \text{где} \quad \widehat{\boldsymbol{Y}}_a = \boldsymbol{X}_a\boldsymbol{\Theta}_a^{\mathsf{T}}.$$

 $\overline{\mathbf{Y}}$  — константный прогноз.

#### Мультикорреляция

Среднее значение коэффициента множественной корреляции:

$$R^2 = \frac{1}{r} \operatorname{tr} \left( \mathbf{C}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{C} \right), \quad \mathbf{C} = [\operatorname{corr}(\chi_i, \nu_j)]_{\substack{i=1,\dots,n\\j=1,\dots,r}}^{i=1,\dots,n}, \ \mathbf{R} = [\operatorname{corr}(\chi_i, \chi_j)]_{\substack{i,j=1\\i\neq j=1,\dots,r}}^{n}.$$

#### Байесовский информационный критерий

Компромисс между качеством предсказания и числом выбранных признаков  $\|\mathbf{a}\|_0$ :

$$\mathsf{BIC} = m \ln \left( \mathsf{MSE}(\mathbf{Y}, \widehat{\mathbf{Y}}_{\mathbf{a}}) \right) + \|\mathbf{a}\|_0 \cdot \log m.$$

## Задача декодирования сигналов электрокортикограммы



Заданы:

$$\mathbf{X} \in \mathbb{R}^{m \times (32 \cdot 27)}$$
 — сигналы ECoG,

 $\mathbf{Y} \in \mathbb{R}^{m imes 3k}$  – траектория движения руки, где

$$\mathbf{Y} = \begin{pmatrix} x_1 & y_1 & z_1 & \dots & x_k & y_k & z_k \\ x_2 & y_2 & z_2 & \dots & x_{k+1} & y_{k+1} & z_{k+1} \\ \dots & \dots & \dots & \dots \\ x_m & y_m & z_m & \dots & x_{m+k} & y_{m+k} & z_{m+k} \end{pmatrix}.$$

Столбцы матрицы  ${f Y}$  сильно скоррелированы по временной оси.

http://neurotycho.org



Матрица корреляций **Y** 

## Анализ предложенных методов выбора признаков



Предложены методы выбора модели, имеющей меньшую ошибкой по отношению к базовому алгоритму.

# Сравнение метода проекции в скрытое пространство с методами выбора признаков



- ▶ Предлагаемые методы выбора признаков достигают меньшей ошибки по сравнению с базовыми алгоритмами Lasso и Elastic.
- ▶ PLS показывает сравнимое качество с QPFS.
- Комбинация двух алгоритмов показывает наилучший результат.

## Результаты, выносимые на защиту

- 1. Исследована проблема снижения размерности сигналов в пространствах высокой размерности. Предложены методы декодирования сигналов, учитывающие зависимости как в исходном, так и в целевом пространстве сигналов.
- 2. Доказаны теоремы об оптимальности предлагаемых методов декодирования сигналов. Предлагаемые методы позволяют осуществлять выбор согласованных моделей в случае избыточной размерности описания данных.
- 3. Предложены методы выбора признаков, учитывающие зависимости как в исходном, так и в целевом пространстве. Предложенные алгоритмы доставляют устойчивые и адекватные решения в коррелированных пространствах высокой размерности.
- 4. Предложены нелинейные методы согласования скрытых пространств для данных со сложноорганизованной целевой переменной.
- 5. Предложен ряд моделей для прогнозирования гетерогенных наборов сигналов для задачи построения нейрокомпьютерных интерфейсов.

## Список работ автора по теме диссертации Публикации ВАК

- Isachenko R., Strijov V. Quadratic Programming Feature Selection for Multicorrelated Signal Decoding with Partial Least Squares Expert Systems with Applications, 2021, на рецензировании.
- 2. Исаченко Р.В., Яушев Ф.Р., Стрижов В.В. Модели согласования скрытого пространства в задаче прогнозирования // Системы и средства информатики, 31(1), 2021.
- 3. Isachenko R., Vladimirova M., Strijov V. Dimensionality Reduction for Time Series Decoding and Forecasting Problems. *DEStech Transactions on Computer Science and Engineering*, optim, 2018.
- Isachenko R., Strijov V. Quadratic programming optimization for Newton method. Lobachevskii Journal of Mathematics, 39(9), 2018.
- Isachenko R. et al. Feature Generation for Physical Activity Classification. Artificial Intellegence and Decision Making, 3, 2018.
- 6. Исаченко Р.В., Стрижов В. В. Метрическое обучение в задачах мультиклассовой классификации временных рядов Информатика и её применения, 10(2), 2016.

#### Выступления с докладом

- Intelligent Data Processing Conference, 2020, Снижение размерности в задаче декодирования временных рядов.
- Intelligent Data Processing Conference, 2018, Dimensionality reduction for multicorrelated signal decoding with projections to latent space.
- 3. Математические методы распознавания образов, 2017. Локальные модели для классификации объектов сложной структуры.
- 4. Intelligent Data Processing Conference, 2016. Multimodel forecasting multiscale time series in internet of things.
- 5. Ломоносов, 2016. Метрическое обучение в задачах мультиклассовой классификации временных рядов.