ECSESS RoboElectronics Fall 2014

Week 1 Build

Robot Competition Rules

Objective

Design a robot that can autonomously drive up a ramp and stop when it reaches the top. The robot must stay on the course.

Robot Restrictions:

The robot must observe the following:

- 1. The entire robot must fit in the kit box, which is 20 cm x 13 cm
- It must be designed to survive a 15 inch fall
- 3. It must stop in the "stop zone" at the top of the ramp
- 4. It must stay on the ramp
- 5. It must use an autonomous design, where there is no input from the user
- 6. There must be an ON/OFF switch between the battery and the board
- 7. There must be a LED between the battery and ground
- 8. There must be two modes of operation
 - A STANDBY mode, where the robot is powered but not moving or sensing
 - 2. An ACTIVE mode, where the robot can move
- There must be an activation button to switch the robot from ACTIVE mode to STANDBY mode
- 10. There must be a LED to indicate its current mode, ACTIVE/STANDBY
- 11. There must be a delay between the button push from STANDBY Mode to Active mode of 5 seconds or more. However, a button push from ACTIVE mode must immediately switch it to STANDBY mode.
- 12. A LED must light when it has reached the stop zone.

Arena Setup

 The arena will be a ramp with no sides with the following dimensions.

Robots will be placed at the bottom of the ramp. It is guaranteed that the top of the ramp will be black with the rest of the ramp being white.

Goals for Today

- Collect kits and ensure you have everything you need
- Build the power circuit with the voltage regulator
- Build LED circuit

Next Week

- Programming in C with microprocessors
- Bring a laptop and install software from website ahead of time

Required Material

- LED Circuit
 - Quadruple AA battery holder
 - 4 x AA batteries
 - Yellow LED
 - Blue LED
 - TRI-Colour LED
 - LM7805 5.0V Regulator
 - Resistors
 - Breadboard
 - Wire
 - Switch

Circuit to Build

- LED Circuit
 - Use the 4AA battery holder to create 6.0V
 - Connect the slide switch between the batteries and the bread board
 - Connect the LM7805 voltage regulator to get 5.0 V
 - Calculate the necessary resistance for the two voltages
 - Connect the loose wire of the transistor to the power rail to turn the blue LED on and off

Common Mistakes

- Ground is the black wire of the battery pack. All grounds are the same and should be connected together
- Read the data sheet to know what pin corresponds to what.
 - The voltage regulator has 3 pins: V_{in}, V_{out}, and GND
- Put the LEDs in the right way, the flat side of the LED is the negative terminal
- When in doubt, feel free to ask questions! We are here to help ©

Advanced Goals

- Get the RGB LED working
 - How many colors can you make?
- Resources:
 - LM7805 5.0V Regulator Datasheet: https://www.sparkfun.com/datasheets/Components/LM7805.pdf
 - Yellow LED Datasheet: https://www.sparkfun.
 com/datasheets/Components/LED/COM-09594-YSL-R531Y3D-D2.
 pdf
 - RGB LED: https://www.sparkfun.
 com/datasheets/Components/YSL-R596CR3G4B5C-C10.pdf

ECSESS Robotics Club Committee

LED Reference Sheet

1206 smd LEDs 3.2x1.6x1.1MM		Forward voltage		Dominant wavelength		Luminous Intensity		Viewing angle
Part	Emitting	(V) IF=20mA		IF=20mA		(mcd) IF=20mA		
number	Color	TYP	MAX	MIN	MAX	TYP	MAX	(degree)
<u>SS-1206R</u>	Red	2.1	2.3	640	650	650	660	120
<u>SS-1206Y</u>	Yellow	2.2	2.8	590	600	550	560	120
<u>SS-12060</u>	Orange	2.2	2.8	635	645	470	480	130
<u>SS-1206B</u>	Blue	3.2	3.4	465	475	650	660	120
<u>SS-1206G</u>	Plain Green	3.2	3.4	568	573	420	430	120
<u>SS-</u> 1206JG	Jade-green	3.2	3.4	530	540	590	600	120
<u>SS-1206W</u>	White	3.2	3.4	X=0.285	Y=0.295	500	800	120
SS-1206P	Pink	3.2	3.4			300	400	120
SS- 1206UV	UV(Purple)	3.2	3.4	380	400	120	160	120

Resistor Color Code

