External Memory Three-Sided Range Reporting and Top-k Queries with Sublogarithmic Updates

"the result is obtained by combining already existing techniques (and no new techniques are introduced)"

- anonymous reviewer

Gerth Stølting Brodal
Aarhus University

Internal Memory – Priority Search Trees

McCreight 1985 Frederickson 1993

Properties

- leaves x-sorted
- point p stored on leaf p-to-root path
- y-values satisfy heap-order

Updates $O(\log n)$ 3-sided & top-k $O(\log n + k)$

External Memory Model

Aggarwal & Vitter 1988

External Memory Results

		Updates	Query
3-sided	Ramaswamy, Subramanian 1995	$O_A(\log n \cdot \log B)$	$O(\log_B n + k/B)$
	Subramanian, Ramaswamy 1995	$O_A(\log_B n + (\log_B n)^2/B)$	$O(\log_B n + k/B + \log^{**} B)$
	Arge et al. 1999	$O(\log_B n)$	$O(\log_B n + k/B)$
	NEW	$O_A(1/(\epsilon B^{1-\epsilon}) \cdot \log_B n)$	$O_A(1/\epsilon \cdot \log_B n + k/B)$
top- <i>k k</i> = 3	Afshani et al. 2011	(static)	$O(\log_B n + k/B)$
	Sheng, Tao 2012	$O_A((\log_B n)^2)$	$O(\log_B n + k/B)$
	Tao 2014	$O_A(\log_B n)$	$O(\log_B n + k/B)$
	NEW	$O_A(1/(\epsilon B^{1-\epsilon}) \cdot \log_B n)$	$O_A(1/\epsilon \cdot \log_B n + k/B)$

 O_A = amortized

NEW result: Combination of Arge 1995, Arge et al. 1999, Frederickson 1993, Blum et al. 1973

External Memory 3-sided Data Structure

- Insertions / deletions : Update root P_v or add to delayed update buffer I_v / D_v
- Update buffer overflow: Flush recursively to child with most updates ($\geq B^{1-\epsilon}$)
- Leaf overflow: split leaf, and recursively split ancestors of degree Δ+1
- Underflowing point buffer P_v : pull elements recursively from children using C_v
- 3-sided query : i) Identify nodes to visit using C_v structures. ii) flush updates down from ancestors of visited nodes. iii) report from nodes using P_v , C_v and update buffers

Child Structure C_{ν}

Arge et al. 1999

Insert / delete s points : $O(1 + s/B^{1-\epsilon})$ IOs

3-sided query : O(1 + k/B) IOs

y-samples for range $[x_1,x_2]$: O(1) IOs (new)

- Capacity : B^{1+ε}
- Insetion /deletion buffer O(B) points
- $O(B^{\varepsilon})$ blocks
- Catalog block
- y-samples block (new)

External Memory Top-k - Overall Approach

Construct (on demand) a **binary heap** over the samples of every $\Theta(B)$ 'th element in the C_{ν} structures – and select the $\Theta(\log_{\Delta}(n/B) + k/B)$ 'th element using Frederickson 1993

Summary - The End

		Updates	Query
3-sided	Ramaswamy , Subramanian 1995	$O_A(\log n \cdot \log B)$	$O(\log_B n + k/B)$
	Subramanian, Ramaswamy 1995	$O_A(\log_B n + (\log_B n)^2/B)$	$O(\log_B n + k/B + \log^{**} B)$
	Arge et al. 1999	$O(\log_B n)$	$O(\log_B n + k/B)$
	NEW	$O_A(1/(\epsilon B^{1-\epsilon}) \cdot \log_B n)$	$O_A(1/\epsilon \cdot \log_B n + k/B)$
top-k k = 3	Afshani et al. 2011	(static)	$O(\log_B n + k/B)$
	Sheng, Tao 2012	$O_A((\log_B n)^2)$	$O(\log_B n + k/B)$
	Tao 2014	$O_A(\log_B n)$	$O(\log_B n + k/B)$
	NEW	$O_A(1/(\epsilon B^{1-\epsilon}) \cdot \log_B n)$	$O_A(1/\epsilon \cdot \log_B n + k/B)$

 O_A = amortized

Open problem: Remove amortization?