第二章 极限与连续

一、单项选择

- **1.** 设 $x_n > 0$, 且 $\lim_{n \to \infty} x_n$ 存在, 则 $\lim_{n \to \infty} x_n$ (). (A) > 0 (B) ≥ 0 (C) = 0

- (D) < 0

- **2.** 极限 $\lim_{x\to 1} e^{\frac{1}{x-1}} = ($).
- (A) ∞
- (C) 不存在
- (D) 0

- 3. $\lim_{x \to 0} (1+x)^{-\frac{1}{x}} + \lim_{x \to \infty} x \sin \frac{1}{x} = ($ (B) e^{-1}

- (C) e + 1
- (D) $e^{-1} + 1$

- **4.** 下列运算过程正确的是 () (A) $\lim_{n \to \infty} (\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{n+n}) = \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{1}{n+1} + \dots + \lim_{n \to \infty} \frac{1}{n+n} = 0 + 0 + \dots + 0 = 0$
- (B) 当 $x \to 0$ 时, $\tan x \sim x$, $\sin x \sim x$, 故 $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} = \lim_{x \to 0} \frac{x x}{x^3} = 0$
- (C) 当 $x \to 0$ 时, $\tan x \sim x$, $\sin x \sim x$, 故 $\lim_{x \to 0} \frac{\sin 2x}{\sin 5x} = \lim_{x \to 0} \frac{2x}{5x} = \frac{2}{5}$ (D) 当 $x \to 0$ 时, $\tan x \sim x$, 故 $\lim_{x \to 0} \frac{\sqrt{1 + \tan x} \sqrt{1 \tan x}}{x} = \lim_{x \to 0} \frac{\sqrt{1 + x} \sqrt{1 x}}{x} = \frac{1}{1 + 1}$

$$\lim_{x \to 0} \frac{2x}{(\sqrt{1+x} + \sqrt{1-x})x} = 1$$

- (A) 1
- (C) a
- (D) *b*
- **6.** 设 f(x) 在 $(-1, 0)\cup(0, 1)$ 定义. 如果极限 $\lim_{x \to 0} f(x)$ 存在,则下列结论正确的是 ()
- (A) f(x) 在 (-1,1) 有界;
- (B) 存在正数 δ , f(x) 在 ($-\delta$, 0) \cup (0, δ) 有界;
- (C) f(x) 在 $(-1,0)\cup(0,1)$ 有界;
- (D) 存在正数 δ , f(x) 在 $(-\delta, \delta)$ 有界.
- 7. 己知 $\lim_{x\to 0} \frac{f(x)}{x} = 2$, 则 $\lim_{x\to 0} \frac{\sin 2x}{f(3x)} = ($)

(A) $\frac{2}{3}$	(B) $\frac{3}{2}$	(C) $\frac{1}{3}$	(D) $\frac{4}{3}$
8. 若 $\lim_{x \to x_0} f(x)$ 存在, $\lim_{x \to x_0} g(x)$ 不存在, 则 ().			
(A) $\lim_{x \to x_0} [f(x) \cdot g(x)] \ \mathcal{D} \lim_{x \to x_0} \frac{g(x)}{f(x)}$ 一定都不存在;			
(B) $\lim_{x \to x_0} [f(x) \cdot g(x)]$ 及 $\lim_{x \to x_0} \frac{g(x)}{f(x)}$ 一定都存在;			
(C) $\lim_{x \to x_0} [f(x) \cdot g(x)]$ 及 $\lim_{x \to x_0} \frac{g(x)}{f(x)}$ 恰有一个存在,而另一个不存在;			
(D) $\lim_{x \to x_0} [f(x) \cdot g(x)] \mathcal{D} \lim_{x \to x_0} \frac{g(x)}{f(x)}$ 都不一定存在.			
9. 当 $x \to 0$ 时,下列四个无穷小量中,哪一个是比另三个更高阶的无穷小量().			
(A) x^2	(B) $1-\cos x$	(C) $\sqrt{1-x^2}-1$	(D) $x - \tan x$
10 . 当 <i>x</i> → 0 时, 1 - (A) 高阶无穷小量 (C) 低阶无穷小量	-cos2 <i>x</i> 与 <i>x</i> ² 相比是	(). (B) 同阶但不等价的 (D) 等价无穷小量]无穷小量
11. 当 $x \to 0$ 时, $\frac{1}{x^2} \sin \frac{1}{x}$ 是 ()			
(A) 无穷小量	. A	(B) 无穷大量	
(C) 有界量非无穷小量		(D) 无界但非无穷大量	
12 . 当 $x \rightarrow 0$ 时, 下列函数中比 x 高阶的无穷小量是 ().			
(A) $x + \sin x$	(B) $x - \sin x$	(C) $ln(1+x)$	(D) $ln(1-x)$
13. 设在某个极限过程中函数 $f(x)$ 与 $g(x)$ 均是无穷大量,则下列函数中哪一个也必是无穷大量().			
(A) f(x) + g(x)	(B) $f(x) - g(x)$	(C) $f(x) \cdot g(x)$	(D) $\frac{f(x)}{g(x)}$
14. $x \to 0$ 时, $1 - \cos 3x$ 是 x^2 的 ().			
(A) 高阶无穷小		(B) 同阶无穷小,但不等价	
(C) 等价无穷小		(D) 低阶无穷小	
15. $x = 1$ 是 $f(x) =$	$\begin{cases} \frac{x^2-1}{x-1}e^{\frac{1}{x-1}} & x \neq 1 \\ 0 & x = 1 \end{cases}$	()	
(A) 连续点	(B) 跳跃间断点	(C) 可去间断点	(D) 无穷间断点

16. $y = \frac{\sqrt{x-3}}{(x+1)(x+2)}$ 的连续区间是 ()

(A)
$$(-\infty, -2) \cup (-2, -1) \cup (-1, +\infty)$$

$$(B)[3,+\infty)$$

(C)
$$(-\infty, -2) \cup (-2, +\infty)$$

(D)
$$(-\infty, -1) \cup (-1, +\infty)$$

17. 设
$$f(x) = \begin{cases} \frac{\sin x}{x - x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
, 则 $f(x)$ 的间断点个数为 ().

18. 设
$$f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0 \\ k & x = 0 \end{cases}$$
 为连续函数,则 $k = ($)

$$(B) -3$$

19. 函数
$$f(x) = \begin{cases} x & x \le 0 \\ e^{\frac{1}{x}} & x > 0 \end{cases}$$
 在点 $x = 0$ 处是否连续? ()

(A) 连续

- (B) 不连续, 因为无定义
- (C) 不连续, 因为极限不存在
- (D) 前面都不对

20. 要使
$$f(x) = (1+x^2)^{-\frac{2}{x^2}}$$
 在 $x = 0$ 处连续, 应补充定义 $f(0)$ 的值为 ().

- (A) 0
- (B) e^{-2}
- (C) e^{-4}
- (D) e^{-1}

二、填空题

2. 若
$$a > 0$$
, $b > 0$ 均为常数, 则 $\lim_{x \to 0} \left(\frac{a^x + b^x}{2} \right)^{\frac{3}{x}} = \underline{\qquad}$

3.
$$\lim_{x \to 1} (1-x) \tan \frac{\pi x}{2} = \underline{\hspace{1cm}}$$

4. 设
$$P(x)$$
 是 x 的多项式, 且 $\lim_{x\to\infty} \frac{P(x)-6x^3}{x^2} = 2$, $\lim_{x\to0} \frac{P(x)}{x} = 3$, 则 $P(x) = \underline{\qquad}$.

5.
$$\lim_{x\to\infty} \left(1-\frac{2}{x}\right)^{\frac{x}{3}} = \underline{\hspace{1cm}}$$

7.
$$\mbox{if } f(x) = x \sin \frac{2}{x} + \frac{\sin x}{x}, \ \mbox{iii} \ \lim_{x \to \infty} f(x) = \underline{\qquad}.$$

8.
$$\lim_{x \to 0} \frac{x^2 + \sin^3 x \cdot \sin \frac{1}{x}}{3x^2} =$$

9.
$$\lim_{n\to\infty} \left(\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)}\right) = \underline{\hspace{1cm}}$$

10.
$$\lim_{x \to +\infty} (\arcsin(\sqrt{x^2 + x} - x)) =$$

11.
$$\lim_{x \to \infty} x \sin \frac{2x}{1 + x^2} = \underline{\hspace{1cm}}$$

12. 当
$$x \to 0$$
 时, $2x^2 + 3x^{\frac{5}{2}}$ 是关于 x 的 ______ 阶无穷小.

13. 当
$$x \to 0$$
 时, $\sqrt{1-3x} = 1 + ax + bx^2 + o(x^2)$, 则 a 和 b 的值分别为

14. 当
$$x \rightarrow 0$$
 时, $2\sin x - \sin 2x$ 与 x^k 是等价无穷小量, 则 $k =$ ____.

15. 函数
$$y = \frac{\sqrt{1+x}}{(x-1)(x+2)}$$
 的间断点是_____.

16. 设函数
$$y = \begin{cases} (1-x)^{\frac{3}{x}} & x \neq 0 \\ K & x = 0 \end{cases}$$
 在 $x = 0$ 处连续, 则参数 $K =$ _____.

17. 函数
$$f(x) = \begin{cases} x+a & x \le 0 \\ e^x+1 & x > 0 \end{cases}$$
 在点 $x = 0$ 处连续,则 $a =$ _____

18. 设函数
$$f(x) = \begin{cases} \frac{2\sin 2x}{x} & x < 0 \\ a & x = 0 \text{ 在 } x = 0 \text{ 处间断, 则 } a \\ \frac{\ln(1+4x)}{x} & x > 0 \end{cases}$$

19. 函数
$$f(x) = \frac{\sqrt{x^2 - 4}}{x - 2}$$
 的连续区间是______.

20.
$$x = 1$$
 是函数 $f(x) = \arctan \frac{1}{1-x}$ 的_____.

三、计算题

1. 求极限
$$\lim_{x \to \frac{\pi}{2}} (1 + \cos x)^{\tan x}$$
.

2.
$$\lim_{x \to \infty} \left(\frac{x-1}{x+3} \right)^{x+2}$$

3.
$$\lim_{x \to +\infty} (\sqrt{x^2 + 2x + 2} - \sqrt{x^2 - 2x + 2})$$

知识点: 极限的四则运算法则及有理分式的极限

- **4.** $\lim_{x\to\infty} \left(\arctan x \cdot \arcsin \frac{1}{x}\right)$
- **5.** $\lim_{n\to\infty} \left(\frac{n}{n^2+1} + \frac{n}{n^2+2} + \dots + \frac{n}{n^2+n}\right)$
- 7. 已知 $\lim_{x \to \infty} f(x)$ 存在,且 $f(x) = x^2 (e^{-\frac{1}{x^2}} 1) + \frac{2x^2}{\sqrt{1 + x^4}} \cdot \lim_{x \to \infty} f(x)$,求 $\lim_{x \to \infty} f(x)$
- 8. 设 $f(x) = \begin{cases} \left(\frac{1-x}{1+x}\right)^{\frac{1}{x}} & x > 0 \\ a & x = 0 \quad (其中 k \neq 0) \\ \frac{\sin kx}{x} & x < 0 \end{cases}$
- (1) 求 f(x) 在点 x = 0 的左、右极限;
- (2) 当 a 和 k 取何值时, f(x) 在点 x=0 连续?