Números enteros y polinomios

- 1. Para cada una de las siguientes parejas de números enteros, hallar el máximo común divisor, el mínimo común múltiplo y una identidad de Bezout.
 - a) 10672, 4147;
- b) 12075, 4655;
- c) 2597, 1369;
- d) 2048, 1275.

- 2. Resolver las congruencias siguientes:
 - a) $5x \equiv 17 \pmod{19}$;
- b) $5x \equiv 17 \pmod{15}$;
- c) $34x \equiv 60 \pmod{98}$;

- d) $35x \equiv 119 \pmod{139}$;
- e) $125x \equiv 27 \pmod{256}$;
- f) $211x \equiv 658 \pmod{900}$.
- 3. Determina las soluciones de las siguientes ecuaciones.
 - a) 12x = 2 en \mathbb{Z}_{19} ;
- b) 7x = 2 en \mathbb{Z}_{24} ;
- c) 31x = 1 en \mathbb{Z}_{50} ;

- d) 15x = 9 en \mathbb{Z}_{18} ; e) 25x = 10 en \mathbb{Z}_{65} ; f) 35x = 2 en \mathbb{Z}_5 ;
- 4. Resolver los siguientes sistemas de congruencias cuando tengan solución.

a)
$$x \equiv 2 \pmod{4}$$

 $x \equiv 4 \pmod{5}$

$$x \equiv 1 \pmod{2}$$
b)
$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$\begin{array}{c} x \equiv 2 \, (\bmod{\,4}) \\ x \equiv 4 \, (\bmod{\,5}) \end{array} \right\} \hspace{1cm} \begin{array}{c} x \equiv 1 \, (\bmod{\,2}) \\ x \equiv 2 \, (\bmod{\,3}) \\ x \equiv 3 \, (\bmod{\,5}) \end{array} \right\} \hspace{1cm} \begin{array}{c} x \equiv 18 \, (\bmod{\,7}) \\ x \equiv 3 \, (\bmod{\,12}) \\ x \equiv 7 \, (\bmod{\,5}) \\ x \equiv 11 \, (\bmod{\,28}) \end{array}$$

$$\left. \begin{array}{l} x \equiv 3 \, (\operatorname{mod} 17) \\ \operatorname{d}) \quad x \equiv 4 \, (\operatorname{mod} 18) \\ x \equiv 5 \, (\operatorname{mod} 19) \end{array} \right\} \qquad \begin{array}{l} 2x \equiv 4 \, (\operatorname{mod} 6) \\ \operatorname{e}) \quad x \equiv 3 \, (\operatorname{mod} 4) \\ x \equiv 4 \, (\operatorname{mod} 5) \end{array} \right\}$$

$$2x \equiv 4 \pmod{6}$$
e)
$$x \equiv 3 \pmod{4}$$

$$x \equiv 4 \pmod{5}$$

$$2x \equiv 3 \pmod{7}$$
f)
$$5x \equiv 4 \pmod{9}$$

$$3x \equiv 1 \pmod{10}$$

- 5. Calcular (i) $(a+b)^2$ en \mathbb{Z}_2 , (i) $(a+b)^5$ en \mathbb{Z}_5 . Deducir una formula para $(a+b)^p$ en \mathbb{Z}_p con p un número primo. (Sugerencia: usa el binomio de Newton).
- 6. Hallar un número de tres cifras que dé restos 1, 2 y 3 cuando se divide por 7, 9 y 11 respectivamente.
- 7. a) Demostrar que sólo existe una terna de números primos consecutivos: 3, 5 y 7.
 - b) Demostrar que si $3|a^2 + b^2$ entonces 3|a y 3|b.
 - c) Probar que para $n \ge 1$, el entero $n(7n^2 + 5)$ es de la forma 6k.
 - d) Si n es un entero positivo impar, probar que $n^4 + 4n^2 + 11$ es divisible por 16.
 - e) Probar que para cualquier entero a se verifica que $3|a(2a^2+7)$.
- 8. Calcular las soluciones positivas de las siguientes ecuaciones diofánticas lineales:
- a) 18x + 5y = 48; b) 54x + 21y = 906; c) 1588x 5y = 7.
- 9. Probar que $\operatorname{mcd}(n, n+1) = 1, \forall n \in \mathbb{Z}$. ¿Cuáles son los posibles valores de $\operatorname{mcd}(n, n+2)$ y mcd(n, n+6)?
- 10. Sean $a, b, c \in \mathbb{Z}$ tales que $\operatorname{mcd}(a, b) = \operatorname{mcd}(a, c) = 1$. Decir si son verdaderas o falsas las siguientes afirmaciones y justificar las respuestas:
 - a) mcd(ab, a) = 1,
- b) mcd(b, c) = 1,
- c) mcd(bc, a) = 1,
- d) mcd(ab, c) = 1.

- 11. Un empresario compró 100 unidades de material informático por 4000 euros. Los precios fueron los siguientes: discos duros a 120 euros, impresoras a 50 euros y dispositivos USB a 25 euros, cada uno. Sabiendo que el empresario compró al menos una unidad de cada tipo, determinar cuantas compró.
- 12. Estando en Estados Unidos el se\u00e0or Herrera se qued\u00e0 sin dinero en efectivo y fue a un banco a cambiar un cheque de viaje. El cajero al pagarle confundi\u00e0 el n\u00e0mero de d\u00e0lares con el n\u00e0mero de centavos y viceversa. Sin darse cuenta de este hecho el se\u00e0or Herrera gast\u00e0 68 centavos en sellos, y entonces vio para su sorpresa que la cantidad de dinero en efectivo que ten\u00ea a exactamente el doble del valor del cheque de viaje que hab\u00ea cambiado. Determinar el valor m\u00eanimo que podr\u00ea tener dicho cheque.
- 13. Probar que para todo entero n los números $n^3 7n + 7$ y n 1 son primos entre sí.

Grupos

1. Un subconjunto no vacío H de un grupo (G,*) es un subgrupo si se verifica que

$$a, b \in H \Rightarrow a * b \in H$$
 y además $a \in H \Rightarrow a^{-1} \in H$.

Prueba que H es un subgrupo si y sólo si $a, b \in H \Rightarrow a * b^{-1} \in H$.

- 2. Prueba que si H es un subconjunto finito de un grupo (G,*) tal que $a,b \in H \Rightarrow a*b \in H$ entonces H es un subgrupo.
- 3. Muestra que los siguientes conjuntos tienen estructura de grupo:
 - (a) $G = \{x \in \mathbb{R} \mid x \neq 0\}$ con el producto.
 - (b) $G = \{1, -1, i, -i\} \subset \mathbb{C}$ con el producto.
 - (c) $G = \{x \in \mathbb{C} \mid x^n = 1\}$ con el producto, para $n \in \mathbb{N}$ fijo.
 - (d) $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ con el producto.

(e)
$$O(2, \mathbb{Z}_3) = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}_3, ad - bc \neq_3 0, A^t = A^{-1} \right\}.$$

(f)
$$GL(2, \mathbb{Z}_3) = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}_3, ad - bc \neq_3 0 \right\}.$$

- 4. Indica por qué no son grupos los siguientes conjuntos:
 - (a) $G = \{x \in \mathbb{R} \mid x < 0\}$ con el producto.
 - (b) $G = \{a \in \mathbb{Z} \mid a \text{ es un cuadrado perfecto }\}$ con la suma.
 - (c) $G = \{a \in \mathbb{Z} \mid a \text{ es un cuadrado perfecto }\}$ con el producto.
 - (d) $G = \{[0], [2], [3], [6]\} \subset \mathbb{Z}_8$
- 5. Indica los elementos de matrices invertibles con coeficientes en \mathbb{Z}_2 ,

$$GL(2, \mathbb{Z}_2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}_2, ad - bc \neq_2 0 \right\}$$

y calcula la tabla del grupo. Indica los órdenes de sus elementos y si el grupo es cíclico o abeliano.

6. Comprueba que conjunto G formado por las siguientes matrices,

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}, C = \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}, D = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}, E = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix},$$

es un grupo con el producto de matrices. ¿Es G cíclico? ¿Es G abeliano? Encontrar si lo hubiera un subgrupo de G con k elementos, en los casos k = 2, 3, 4.

7. En el grupo diédrico D_4 consideramos la rotación r y la simetría axial s de manera que $\operatorname{ord}(r) = 4$, $\operatorname{ord}(s) = 2$ y $r \circ s = s \circ r^3$.

(a) Prueba que son subgrupos los siguientes subconjuntos de D_4 :

$$H = \{1, r, r^2, r^3\}, L = \{1, r^2, s, r^2 \circ s\}, G = \{1, r^2, r \circ s, r^3 \circ s\}.$$

- (b) Halla los subgrupos de D_4 que tengan orden dos.
- (c) Indica cuáles de los subgrupos de los apartados anteriores son abelianos o cíclicos.
- (d) Halla las clases de congruencia módulo M a la izquierda (es decir los conjuntos $a \circ M$, $a \in D_4$) y a la derecha (es decir los conjuntos $M \circ a$, $a \in D_4$) para $M = \{1, s\}$ y para M = L. ¿Es alguno de estos dos subgrupos normal?
- 8. Prueba que D_3 es isomorfo al grupo simétrico S_3 . ¿Es D_4 isomorfo a S_4 ?
- 9. Demostrar que el orden de un grupo finito G es un número primo si y sólo si G no tiene ningun subgrupo propio (es decir, un subgrupo distinto de $\{e\}$ y de G).
- 10. Sean G un grupo y $a, b \in G$. Demostrar que:
 - (a) Si $\operatorname{ord}(a) = n \in \mathbb{N}$ y si n = pq prueba que $\operatorname{ord}(a^p) = q$.
 - (b) $\operatorname{ord}(a^{-1}) = \operatorname{ord}(a) \text{ y } \operatorname{ord}(ab) = \operatorname{ord}(ba).$
 - (c) Si a y b conmutan y tienen órdenes finitos y primos entre sí, entonces $\langle a \rangle \cap \langle b \rangle = \{e\}$ y ord(ab) = ord(a) ord(b). ¿Es cierta esta propiedad si $ab \neq ba$?.
- 11. Encuentra explícitamente un isomorfismo de grupos $f: \mathbb{Z}_{12} \times \mathbb{Z}_{11} \to \mathbb{Z}_{132}$.
- 12. Calcula el orden de los elementos de \mathbb{Z}_n^* para n=6,7,8,9,10,12. Indica generadores para cada uno de estos grupos. ¿Cuáles son cíclicos?
- 13. En el grupo diédrico D_6 consideramos la rotación r y la simetría axial s de manera que $\operatorname{ord}(r) = 6$, $\operatorname{ord}(s) = 2$ y $r \circ s = s \circ r^5$.
 - (a) Calcula los órdenes de los elementos de D_6 .
 - (b) ¿Puede tener D_6 un subgrupo de orden 5? ¿y de orden 4?
 - (c) Determina los elementos de los subgrupos

$$M = \langle r^2, r^3 \rangle, \, H = \langle r^3, s \rangle, \, G = \langle r^2, s \rangle \text{ y } L = \langle s, r^5 \rangle.$$

- (d) Indica cuáles de los subgrupos anteriores son abelianos, ¿cuáles de estos son cíclicos?
- (e) Halla los índices $[D_6: M], [D_6: H], [D_6: G] y [D_6: L].$
- 14. Considera las siguientes matrices complejas

$$\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} , \quad \mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} , \quad \mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} , \quad \mathbf{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

Prueba que el conjunto $G = \{1, -1, i, -i, j, -j, k, -k\}$ es un grupo con la multiplicación de matrices (se llama grupo de cuaterniones). Da la tabla de multiplicación de G e indica el orden de G y el orden de cada uno de sus elementos. Estudia si G es isomorfo al grupo diédrico D_4 o al grupo S_4 de permutaciones de cuatro elementos.

- 15. Sea $f: \mathbb{R} \to \mathbb{C}^*$ la aplicación definida por $f(t) = \cos(2\pi t) + i \sin(2\pi t)$. Consideramos \mathbb{R} como grupo con la suma y \mathbb{C}^* como grupo con la multiplicación.
 - (a) Prueba que f es un homomorfismo de grupos.
 - (b) Halla el núcleo y la imagen de f.
 - (c) Deduce que el grupo cociente \mathbb{R}/\mathbb{Z} es isomorfo al grupo S^1 del ejercicio 2 (d).
- 16. Sea $f: G \to G'$ un homomorfismo de grupos. Demostrar:
 - a) Si $a \in G$ tiene orden finito, entonces ord(f(a)) | ord(a).
 - b) f es invectivo si y sólo si para todo $a \in G$ se tiene que $\operatorname{ord}(f(a)) = \operatorname{ord}(a)$.
- 17. Halla todos los homomorfismos (indicando su imagen y núcleo) entre los pares de grupos siguientes:
 - a) De $(\mathbb{Z}_3, +)$ en $(\mathbb{Z}_2, +)$. d) De (D_3, \circ) en $(\mathbb{Z}_6, +)$. g) De $(\mathbb{Z}_6, +)$ en $(\mathbb{Z}_3, +)$. b) De $(\mathbb{Z}_n, +)$ en $(\mathbb{Z}, +)$. e) De (D_3, \circ) en (D_3, \circ) . h) De $(\mathbb{Z}_8, +)$ en $(\mathbb{Z}_{12}, +)$. c) De $(\mathbb{Z}_6, +)$ en (D_3, \circ) . f) De $(\mathbb{Z}_3, +)$ en $(\mathbb{Z}_6, +)$. i) De $(\mathbb{Z}_{12}, +)$ en $(\mathbb{Z}_{18}, +)$.
- 18. Sea p un número primo. Consideramos los conjuntos de matrices siguientes:

$$GL(2, \mathbb{Z}_p) = \{ A \in M_2(\mathbb{Z}_p) / \det A \neq_p 0 \}, \quad SL(2, \mathbb{Z}_p) = \{ A \in GL(2, \mathbb{Z}_p) / \det A =_p 1 \}.$$

- (a) Probar que $SL(2, \mathbb{Z}_p)$ es un subgrupo del grupo lineal $GL(2, \mathbb{Z}_p)$.
- (b) Indicar un homomorfismo de grupos $\phi: \mathrm{GL}(2,\mathbb{Z}_p) \longrightarrow \mathbb{Z}_p^*$, siendo \mathbb{Z}_p^* el grupo de unidades de \mathbb{Z}_p .
- (c) Mostrar que $SL(2, \mathbb{Z}_p)$ es un subgrupo normal de $GL(2, \mathbb{Z}_p)$.
- (d) Prueba que el grupo cociente $GL(2,\mathbb{Z}_p)/SL(2,\mathbb{Z}_p)$ es isomorfo a \mathbb{Z}_p^* .
- 19. Calcula los órdenes de las siguientes permutaciones:

(a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 2 & 6 & 3 & 4 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & 5 & 6 & 7 & 8 & 9 & 2 & 1 \end{pmatrix}$

Se pide descomponer las permutaciones anteriores en producto de ciclos disjuntos y hallar su signo.

- (a) Sean G un grupo y $H \leq G$. Si [G:H] = 2, prueba que H es subgrupo normal.
 - (b) Deduce que el subgrupo H de D_n formado por las rotaciones es normal.
- 21. Indica los ocho elementos del grupo ortogonal

$$O(2, \mathbb{Z}_3) = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}_3, ad - bc \neq_3 0, A^t = A^{-1} \right\}.$$

y calcula la tabla de este grupo. Indica los órdenes de sus elementos y si el grupo es cíclico o abeliano.

- 22. a) Determina la última cifra de $2^{333}\ {\rm y}$ de $3^{1313}.$
 - b) Calcula el resto de dividir $2^{37\cdot73}$ por 37.
 - c) Determina las dos últimas cifras de 2^{4927} .
- 23. Encontrar todos los ceros en \mathbb{Z}_5 de cada uno de los polinomios $f(x) = x^5 + 3x^3 + x^2 + 2x \in \mathbb{Z}_5[x]$ y $g(x) = 2x^{219} + 3x^{74} + 2x^{57} + 3x^{44} \in \mathbb{Z}_5[x]$.

Grupos abelianos finitamente generados

- 1. Determinar todas las clases de isomorfía de grupos abelianos de orden 144. Escribir sus divisores elementales y factores invariantes. Estudiar en cuáles de las clases existen elementos de orden 12 ó 15, y en caso de que exista, dar un ejemplo.
- 2. Dado el grupo abeliano libre con base $\{g_1, g_2, g_3\}$, encontrar una base del subgrupo H generado por los elementos $x_1 = 2g_1 g_2$, $x_2 = 2g_1 + g_2$, $x_3 = 2g_2$.
- 3. Hallar todas las clases de isomorfía de grupos abelianos de orden 1000. Escribir sus divisores elementales y factores invariantes. Estudiar en cuáles de las clases existe un elemento de orden 100, y en caso de que exista, dar un ejemplo.
- 4. Si $G = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ y H es el subgrupo de G engendrado por los elementos a = (2, 1, 0) y b = (1, 5, 0), determinar el grupo cociente G/H por un conjunto de generadores y relaciones.
- 5. Calcular el rango y los coeficientes de torsión del grupo abeliano G que tiene los generadores x, y, z, t y el sistema completo de relaciones:

$$3x + 9y + 9z = 0$$
, $9x - 3y + 9z = 0$, $2x + 3y + 6t = 0$.

6. Determinar los factores invariantes y los divisores elementales de los grupos:

a)
$$\mathbb{Z}_5 \times \mathbb{Z}_{15} \times \mathbb{Z}_{25} \times \mathbb{Z}_{36}$$
 b) $\mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_{35}$ c) $\mathbb{Z}_{26} \times \mathbb{Z}_{42} \times \mathbb{Z}_{49} \times \mathbb{Z}_{200} \times \mathbb{Z}_{100}$

7. Clasificar los grupos abelianos generados por elementos a, b, c y d que verifican las relaciones:

a)
$$2b - 4c - 12d = 0$$

 $12a + 4b + 10c + 6d = 0$ b) $6a + 12b - 12d = 0$
 $8a + 4b + 8c + 16d = 0$

- 8. Sean $G_1 = \mathbb{Z}_{24} \times \mathbb{Z}_{60}$ y $G_2 = \mathbb{Z}_2 \times \mathbb{Z}_6 \times \mathbb{Z}_6 \times \mathbb{Z}_{20}$.
 - a) Demostrar que G_1 y G_2 no son isomorfos.
 - b) Estudiar si existen homomorfismos (de grupos aditivos) sobreyectivos de G_1 sobre \mathbb{Z}_{120} y de G_2 sobre \mathbb{Z}_{120} .
 - c) Obtener cuatro grupos conmutativos de orden 1440 no isomorfos entre sí y que tampoco sean isomorfos ni a G_1 ni a G_2 .

Anillos y cuerpos

- 1. Indicar si los siguientes conjuntos tienen estructura de anillo, indicando en su caso si son conmutativos, unitarios, íntegros o cuerpos:
 - (a) Los enteros positivos
 - (b) Los enteros múltiplos de 7.
 - (c) $\{0, 1, -1, i, -i\}$.
 - (d) $\mathcal{M}_{2\times 3}(\mathbb{R})$.
 - (e) $\mathcal{M}_{2\times 2}(\mathbb{Z}_3)$.
 - (f) $\mathbb{Z} \times \mathbb{Z}_3 \times 2\mathbb{Z}$.
 - (g) $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}.$
 - (h) $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$
 - (i) El conjunto de polinomios $\{a + bx + cx^2 \mid a, b, c \in \mathbb{R}\}\ de\ \mathbb{R}[x]$.
- 2. Recordemos que un subconjunto no vacío B de un anillo A es un subanillo si para todo $b,b'\in B$ se tiene que b-b' y bb' pertenecen a B. Además, B es un ideal de A si para todo $b,b'\in B$ y $a\in A$ se verifica que b-b', ab, y ba pertenecen a B.

Da un ejemplo de un subanillo de $\mathbb{Z}[x]$ que no sea un ideal.

- 3. Probar que el conjunto $A = \{0, 2, 4, 6, 8\}$ es un subanillo de \mathbb{Z}_{10} . ¿Es A un ideal de Z_{10} ?. Calcula la tabla de A para el producto y estudia si A tiene elemento neutro para el producto. ¿Es A un cuerpo?
- 4. Mostrar que el conjunto $B:=\left\{\left(\begin{array}{cc} a & b \\ 0 & c\end{array}\right) \mid a,b,c\in\mathbb{R}\right\}$ es un subanillo de $\mathcal{M}_2(\mathbb{R})$. Probar que el conjunto I de matrices de la forma $\left(\begin{array}{cc} 0 & b \\ 0 & 0\end{array}\right)$ es un ideal de B. ¿Es I un ideal de $\mathcal{M}_2(\mathbb{R})$?
- 5. Un elemento b de un anillo B es divisor de cero si $b \neq 0$ y existe $0 \neq a \in B$ tal que ab = 0. Decimos que $a \in B$ es nilpotente si $a \neq 0$ y existe un entero n > 1 tal que $a^n = 0$. Prueba que si a es nilpotente entonces es divisor de cero.
 - (a) Consideramos el anillo B del ejercicio 4. Prueba que todo elemento no nulo en el ideal I del ejercicio 4 es nilpotente. Halla dos divisores de cero en el anillo B que no estén en I.
 - (b) Halla los elementos nilpotentes del anillo \mathbb{Z}_{12} .
- 6. Mostrar que el conjunto B de matrices de la forma $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ con $a,b \in \mathbb{R}$ es un subanillo unitario de $\mathcal{M}_2(\mathbb{R})$. Sea $f:B\to\mathbb{C}$ la aplicación definida por $f\begin{pmatrix} a & b \\ -b & a \end{pmatrix}=a+bi$. Prueba que f es un isomorfismo de anillos. Deduce que B es un cuerpo.

- 7. Recordemos que un dominio de integridad es un anillo unitario, conmutativo e íntegro.
 - (a) Sean A_1 y A_2 dominios de integridad, ¿es $A_1 \times A_2$ un dominio de integridad?
 - (b) Sea A un dominio de integridad con n elementos. Prueba que si $a \in A$ entonces la aplicación $f: A \to A$, f(b) = ab es biyectiva. Deduce que A es un cuerpo.
- 8. Prueba que $\mathbb{Q}[\sqrt{2}] := \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ es un subcuerpo de \mathbb{R} .
- 9. Prueba que $\mathbb{Q}[i] = \{a + bi \mid a, b \in \mathbb{Q}\}$ es un subcuerpo de \mathbb{C} .
- 10. Sean I, J ideales de un anillo conmutativo con unidad A. Probar que la intersección $I \cap J$ y la suma $I + J = \{a + b \mid a \in I, b \in J\}$ son ideales de A.
- 11. Sean $f: A \to B$ un homomorfismo de anillos, I un ideal de A y J un ideal de B. Demostrar que $f^{-1}(J)$ es un ideal de A; en particular, $\ker f = \{a \in A \mid f(a) = 0\}$ es un ideal de A. Probar que f(I) es un subanillo de B. Dar un ejemplo en el que f(I) no sea un ideal de B.
- 12. (a) Demostrar que si un ideal contiene una unidad, entonces coincide con todo el anillo. Deducir que los únicos ideales de un cuerpo K son los triviales: $\{0\}$ y K.
 - (b) Demostrar que todo homomorfismo no nulo de un cuerpo en un anillo es inyectivo.
- 13. Sea $f: R \to S$ un homomorfismo de anillos. Probar que si f es sobreyectivo, $S \neq \{0_S\}$ y R es unitario entonces S es unitario y $f(1_R) = 1_S$.
- 14. Si R y S son anillos unitarios un homomorfismo de anillos unitarios es un homomorfismo de anillos $f: R \to S$ tal que $f(1_R) = 1_S$.
- 15. Estudia si la aplicación inclusión de $A = \{0, 2, 4, 6, 8\}$ en \mathbb{Z}_{10} es un homomorfismo de anillos unitarios (ver ejercicio 3).

Anillos de polinomios, anillos cociente y cuerpos finitos

- 1. Calcular el cociente y el resto de dividir:
 - a) $x^4 + 3x^3 + 2x^2 + x + 4$ por $3x^2 + 2x$ en $\mathbb{Z}_5[x]$,
 - b) x^{10} por $x^2 + 1$ en $\mathbb{Z}_2[x]$;
 - d) $x^4 + 3x^3 + 2x^2 + x + 4$ por $x^2 + 2x$ en $\mathbb{Z}[x]$;
 - e) $x^4 + 3x^3 + 2x^2 + x + 4$ por $3x^2 + 2x$ en $\mathbb{Q}[x]$.
- 2. Calcular el máximo común divisor de cada uno de los siguientes pares de polinomios y expresarlo en la forma a(x)f(x) + b(x)g(x):
 - a) $f(x) = x^3 1$, $g(x) = x^4 x^3 + x^2 + x 2$, en $\mathbb{Q}[x]$;
 - b) $f(x) = x^2 + 1$, $g(x) = x^3 + 2x i$, en $\mathbb{C}[x]$;
 - c) $f(x) = x^3 + x + 1$, g(x) = x + 1, en $\mathbb{Z}_3[x]$;
 - d) $f(x) = x^3 + x + 1$, g(x) = x + 1, en $\mathbb{Z}_5[x]$;
 - e) $f(x) = x^4 + x^3 x^2 + x 2$, $g(x) = x^3 + 6x^2 + x + 6$, en $\mathbb{Q}[x]$;
 - f) $f(x) = x^4 + x^3 + x^2 + x$, $g(x) = x^2 + x 1$ en $\mathbb{Z}_3[x]$
 - g) $f(x) = x^5 + 5x^4 + 3x^3 + 2x + 1$, $g(x) = x^4 + 3$, en $\mathbb{Z}_7[x]$.
- 3. El polinomio $f(x) \in \mathbb{R}[x]$ tiene resto -45 al dividirlo por x+1 y -165 al dividirlo por x-3. Se pide:
 - a) el resto de la división de f(x) por $x^2 2x 3$;
 - b) el polinomio f(x), sabiendo que es de grado 4 y que es divisible por $x(x^2-4)$;
- 4. Encontrar todos los ceros en \mathbb{Z}_5 de los polinomios $f(x) = x^5 + 3x^3 + x^2 + 2x \in \mathbb{Z}_5[x]$ y $g(x) = x^5 x \in \mathbb{Z}_5[x]$.
- 5. (a) Encontrar todos los polinomios mónicos irreducibles de grados 2 y 3 en $\mathbb{Z}_2[x]$ y $\mathbb{Z}_3[x]$, y de grado 2 en $\mathbb{Z}_5[x]$.
 - (b) Descomponer en producto de polinomios irreducibles el polinomio $x^4 + 4$ en $\mathbb{Z}_5[x]$.
- 6. Descomponer en factores irreducibles los polinomios $f = x^6 1$ y $g = x^6 + 1$ vistos en los anillos $\mathbb{R}[x]$ y $\mathbb{C}[x]$.
- 7. Factorizar $f = 4x^2 4x + 8$ como producto de irreducibles en $\mathbb{Z}[x]$, $\mathbb{Q}[x]$ y $\mathbb{Z}_{11}[x]$.
- 8. Descomponer en factores irreducibles el polinomio $f = x^4 + 1$ visto, sucesivamente, en los anillos $\mathbb{Z}[x]$, $\mathbb{R}[x]$, $\mathbb{Z}_2[x]$, $\mathbb{Z}_3[x]$ y $\mathbb{Z}_7[x]$.
- 9. Sea $f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}[x]$ un polinomio de grado n con $a_0 \neq 0$. Mostrar que si p, q son dos enteros primos entre si, entonces f(p/q) = 0 implica que $p|a_0$ y $q|a_n$. Empleando este resultado factorizar $f = 3x^3 + 4x^2 + 2x 4$ en $\mathbb{Q}[x]$.
- 10. Estudiar la irreducibilidad en $\mathbb{Z}[x]$ y en $\mathbb{Q}[x]$ de los polinomios:
 - a) $f_1 = x^3 + 3x^2 + 3x + 9$, b) $f_2 = 5x^{10} + 10x^7 + 20x^3 + 10$, c) $f_3 = x^3 + 5x^2 + 3x + 35$,
 - d) $f_4 = -x^7 + 25x^2 15x + 10$, e) $f_5 = 7x^3 + 6x^2 + 4x + 6$, f) $f_6 = 9x^4 + 4x^3 3x + 7$.

- 11. Sea f un polinomio irreducible en $\mathbb{Q}[x]$.
 - (a) Para $a \in \mathbb{C}$ considera el homomorfismo evaluación $ev_a : \mathbb{Q}[x] \to \mathbb{C}$ definido por $h(x) \mapsto h(a)$. Probar que si f(a) = 0 entonces el núcleo de ev_a es el ideal principal generado por f.
 - (b) Deduce que si además $g \in \mathbb{Q}[x]$ y g(a) = 0 entonces f divide a g en $\mathbb{Q}[x]$.
- 12. Consideramos el homomorfismo evaluación $ev_i : \mathbb{R}[x] \to \mathbb{C}$ definido por $ev_i(P(x)) = P(i)$. Calcula la imagen de ev_i . Prueba que el núcleo $\ker(ev_i)$ es el ideal generado por el polinomio $H(x) = x^2 + 1$. Deducir que $\mathbb{R}[x]/(H(x))$ es un cuerpo isomorfo a \mathbb{C} .
- 13. Descomponer en factores irreducibles el polinomio $f=4x^2-12$ considerado, sucesivamente, como elemento de $\mathbb{Z}[x]$, $\mathbb{Q}[x]$ y $\mathbb{R}[x]$. ¿Es $\mathbb{Q}[x]/(f)$ cuerpo? ¿Y $\mathbb{R}[x]/(f)$? En caso afirmativo indica su característica y su dimensión como espacio vectorial sobre \mathbb{Q} y \mathbb{R} respectivamente.
- 14. ¿Es $\mathbb{Q}[x]/(x^2 5x + 6)$ un cuerpo? ¿Y $\mathbb{Q}[x]/(x^2 6x + 6)$? En caso afirmativo indica su característica y su dimensión como espacio vectorial sobre \mathbb{Q} .
- 15. Estudiar el anillo cociente $\mathbb{Z}_2[x]/(f)$, indicando el número de elementos y construyendo la tabla de adición y de multiplicación en los siguientes casos:

(i)
$$f = x^2 + 1$$
, (ii) $f = x^2 + x$ (iii) $f = x^2 + x + 1$ (iv) $f = x^3 + x + 1$ (v) $f = x^3 + x^2 + 1$

¿Alguno de estos anillos es cuerpo? Indica en este caso su característica. ¿Cúal es la dimensión de estos anillos como espacios vectoriales sobre el cuerpo \mathbb{Z}_2 ?

- 16. Construir cuerpos con 4, 8, 9 y 25 elementos, indicando su característica.
- 17. Hallar un divisor de cero en el anillo cociente $A := \mathbb{Q}[x]/(x^3 x^2 + x 1)$. ¿ Es $\alpha = [x]$ (clase de x en el anillo A) una unidad en este anillo? En caso afirmativo encuentra su inverso.
- 18. Consideramos $\alpha = [x]$ como elemento de $\mathbb{Z}_3[x]/(x^2+x-1)$. Calcular, si existe, el inverso de $\alpha^4 + \alpha^3 + \alpha^2 + \alpha$.
- 19. Sea $f = x^3 + x + 1 \in \mathbb{F}[x]$ y se considera el cociente $L = \mathbb{F}[x]/(f)$.
 - a) Estudiar si L es un cuerpo en los casos $\mathbb{F} = \mathbb{Z}_3$ y $\mathbb{F} = \mathbb{Z}_5$.
 - b) Denotamos $\alpha = [x] \in L$. En cada caso, estudiar si $\alpha 1$ tiene o no inverso en L, calculándolo si existe.
- 20. Consideramos un número primo $n \geq 2$ y el anillo cociente $A = \mathbb{Z}_n[x]/(x^2-x)$. Mostrar que es un isomorfismo de anillos la aplicación $f: A \to \mathbb{Z}_n \times \mathbb{Z}_n$ dada por $f(a+b\alpha) = (a+b,a)$ (siendo $\alpha = [x]$ en A).
- 21. Estudiar si hay isomorfismos entre los siguientes anillos

$$\mathbb{Z}_2 \times \mathbb{Z}_2$$
, \mathbb{Z}_4 , $\mathbb{Z}_2[x]/(x^2+x+1)$, $\mathbb{Z}_2[x]/(x^3+x+1)$, $\mathbb{Z}_2[x]/(x^3+x^2+1)$, $\mathbb{Z}_2[x]/(x^2)$, justificando la respuesta en cada caso.

- 22. Sea K un cuerpo finito. Sea a un elemento del grupo multiplicativo $K^* = K \setminus \{0\}$ tal que $ord(a) = \max\{ord(b) \mid b \in K^*\}$.
 - a) Prueba que para todo $b \in K^*$ se tiene que ord(b)|ord(a).
 - b) Comprueba que todos los elementos de K^* son raíces del polinomio $x^{ord(a)} 1$.
 - c) Deducir que K^* es el grupo cíclico generado por a.
- 23. Sea A el anillo $\mathbb{Z}_3[x]/(f)$, con $f = x^2 + x 1$ y $\alpha = [x]$.
 - a) Indica los órdenes posibles de los elementos del grupo multiplicativo de unidades de A.
 - b) Calcula el orden de α y de $\alpha + 2$ en A^* .
- 24. Sea $f = x^3 + x^2 + x + 1 \in \mathbb{Z}_5[x]$. Denotamos $L := \mathbb{Z}_5[x]/(f)$ y $\alpha := [x] \in L$.
 - a) Probar que L es un cuerpo indicando su característica, el número de elementos y una base de L como espacio vectorial sobre el cuerpo \mathbb{Z}_5 .
 - b) Indicar los ordenes posibles de los elementos del grupo multiplicativo L^* .
 - c) Deduce que α^4 es de orden 31 (sin calcular las potencias de α^4) e indica el orden de $2\alpha^4$.
- 25. Sean $f = x^5 + x^2 + 1$ y $g = x^2 + x + 1$ en $\mathbb{Z}_2[x]$. Se pide:
 - (a) Calcular el máximo común divisor de f y g, y una identidad de Bezout.
 - (b) Indica los elementos del anillo cociente $K = \mathbb{Z}_2[x]/(f)$ en función de $\alpha = [x] \mod f$. Prueba que K es un cuerpo.
 - (c) Halla un elemento $\beta \in K$ tal que $(\alpha^2 + \alpha + 1)\beta = 1 + \alpha$.
 - (d) Indica los órdenes posibles de los elementos del grupo de unidades K^* de K. Determina, sin calcular las potencias, cúal es el orden de α en K^* .