

Funkcijų interpoliavimas: Interpoliavimas daugianariais

Temoje aiškinama:

- Interpoliavimo uždavinio formuluotė ir taikymo sritys;
- Interpoliavimas daugianariais vienanarių bazėje.
 Hemingo metodas;
- Interpoliavimas Lagranžo bazėje;
- Čiobyševo interpoliavimas: "mažiausiai banguotas" daugianaris;
- Erdvėje duotos taškų sekos interpoliavimas.
 Parametrinis funkcijos vaizdavimas

Interpoliavimo uždavinio formuluotė ir taikymo sritys

Funkcijų interpoliavimas. Uždavinio formuluotė

Interpoliavimas – tai tolydžiosios kreivės y=f(x), einančios per duotus taškus, radimas.

- kreivė y=f(x) turi praeiti per visus duotus taškus (x_i,y_i),
 y. f(x_i)=y_i, i=0, 1,2, ..., n-1; Jie vadinami interpoliavimo mazgais;
- 2. funkcijos f(x) analitinė išraiška neturi būti labai sudėtinga;
- 3. funkcija f(x) turi būti nesunkiai integruojama ir diferencijuojama;
- 4. funkcija f(x) turi būti nesunkiai apskaičiuojama(pvz., jos parametrai apskaičiuojami pagal žinomas formules, arba sprendžiant tiesinių lygčių sistemą).

Dvi skirtingos interpoliavimo uždavinio sampratos:

1) Kai daugianariu interpoliuojame iš anksto žinomą funkciją pagal ant jos kreivės esančius interpoliavimo mazgus. Interpoliuojanti funkcija visame intervale turi galimai geriau atitikti duotosios funkcijos kreivės formą.

Formuluotė būdinga sprendžiant *matematinius ir inžinerinius uždavinius*, kai norime analitiškai sudėtingą arba nežinomos išraiškos funkciją pakeisti analitiškai paprastesne funkcija

Dvi skirtingos interpoliavimo uždavinio sampratos:

2)Kai duotos tik interpoliavimo mazgų koordinatės. Interpoliuojančios funkcijos geometrinei formai nenustatome griežtų matematinių atitikties kriterijų. Vadovaujames daugiau vizualiniu-estetiniu interpoliavimo kokybės suvokimu.

Formuluotė būdinga kompiuterinei grafikai, geometrinio dizaino ir pan. uždaviniams.

Interpoliavimas daugianariais vienanarių bazėje. Hemingo metodas

Interpoliavimas daugianariais *vienanarių bazėje*

Duoti interpoliavimo mazgai:

$$(x_i, y_i), y_i = f(x_i), i = 0, 1, ..., n-1$$

$$f(x) = a_0 + a_1 x + \dots + a_{n-2} x^{n-2} + a_{n-1} x^{n-1} = \begin{bmatrix} 1 & x \end{bmatrix}$$

Daugianario pavidalo interpoliuojanti funkcija $f(x) = a_0 + a_1 x + \ldots + a_{n-2} x^{n-2} + a_{n-1} x^{n-1} = \begin{bmatrix} 1 & x & \ldots & x^{n-2} & x^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-2} \\ a_{n-1} \end{bmatrix}$ Bazinės funkcijos

Tiesinių lygčių sistema
$$\begin{bmatrix} 1 & x_0 & \cdots & x_0^{n-1} \\ 1 & x_1 & \cdots & x_1^{n-1} \\ & & \vdots \\ 1 & x_{n-1} & \cdots & x_{n-1}^{n-1} \\ \end{bmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{pmatrix}$$

$$\begin{matrix} a_{n-1}, & a_{n-2}, & \dots, & a_0 \end{matrix}$$

$$f(x) = a_0 + a_1 x + \dots + a_{n-2} x^{n-2} + a_{n-1} x^{n-1} = \begin{bmatrix} 1 & x & \dots & x^{n-2} & x^{n-1} \end{bmatrix} \begin{cases} a_0 \\ a_1 \\ \vdots \\ a_{n-2} \\ a_{n-1} \end{cases}$$

- Interpoliuojančiam daugianariui sudaryti parenkamos tam tikros <u>bazinės funkcijos</u>. Čia buvo parinkta <u>vienanarių bazė</u>;
- Bendruoju atveju bazines funkcijas galima parinkti ir kitokias. Tačiau jos turi būti <u>tiesiškai nepriklausomos</u>
- Interpoliuojančio daugianario koeficientus galime apskaičiuoti, spręsdami tiesinių lygčių sistemą. Toks skaičiavimas vadinamas <u>Hemingo metodu</u>;
- Yra sukurti tobulesni ir mažiau skaičiavimų reikalaujantys būdai interpoliuojančiam daugianariui apskaičiuoti;

Interpoliavimas Lagranžo bazėje

Lagranžo išraiška interpoliuojančiam daugianariui

apskaičiuoti (1)

$$f(x) = \sum_{j=1}^{n} L_{j}(x)y_{j}$$
 yra interpoliavimo mazgų

Daugianarių tiek, kiek

$$L_j(x), \ i = \overline{0, n-1}$$

 $L_i(x), i = 0, n-1$ n-1 eilės daugianariai, kurie interpoliavimo mazguose įgauna reikšmes:

Nėra nario $(x-x_i)$, todėl daugianaris L_i virsta nuliu visuose interpoliavimo mazguose , išskyrus x_i

$$L_{j}(x_{i}) = \delta_{ij} = \begin{cases} 1, & kai \ i = j, \\ 0, & kai \ i \neq j. \end{cases}$$

Diskrečioji delta-funkcija

$$L_{\mathbf{j}}(\mathbf{x}) = \frac{(\mathbf{x} - x_1)(\mathbf{x} - x_2)...(\mathbf{x} - x_{j-1})}{(x_{\mathbf{j}} - x_1)(x_{\mathbf{j}} - x_2)...(x_{\mathbf{j}} - x_{j-1})(x_{\mathbf{j}} - x_{j+1})...(x_{\mathbf{j}} - x_n)}$$

$$L_{j}(\mathbf{x}) = \prod_{\substack{i=0 \ i \neq i}}^{n-1} \frac{\mathbf{x} - x_i}{x_j - x_i}$$

Interpoliuojantį daugianarį užrašę Lagranžo bazinėmis funkcijomis ir sudarę lygčių sistemą koeficientams rasti, gauname: $f(x) = \begin{bmatrix} L_0(x) & L_2(x) & \dots & L_{n-1}(x) & L_{n-1}(x) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-2} \end{bmatrix}$

Bazinės funkcijos

$$\begin{bmatrix} L_{0}(x_{0}) & L_{1}(x_{0}) & \cdots & L_{n-2}(x_{0}) & L_{n-1}(x_{0}) \\ L_{0}(x_{1}) & L_{1}(x_{1}) & \cdots & L_{n-2}(x_{1}) & L_{n-1}(x_{1}) \\ \vdots & & & & \\ L_{0}(x_{n-1}) & L_{1}(x_{n-1}) & \cdots & L_{n-2}(x_{n-1}) & L_{n-1}(x_{n-1}) \end{bmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} y_{0} \\ y_{1} \\ \vdots \\ y_{n-1} \end{pmatrix}$$

$$\begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ & \vdots & & & \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{pmatrix}$$

$$f(x) = \sum_{j=0}^{n-1} a_j L_j(x) = \sum_{j=0}^{n-1} y_j L_j(x)$$

Lagranžo išraiška interpoliuojančiam daugianariui apskaičiuoti (2)

• Matematine prasme interpoliuojantis daugianaris yra žinomas, jeigu žinomos bazinės funkcijos ir koeficientai prie jų. Todėl interpoliavimo uždavinys išspręstas, kai užrašyta *n* formulių pavidalo

$$L_{\mathbf{j}}(\mathbf{x}) = \frac{(\mathbf{x} - x_0)(\mathbf{x} - x_1)...(\mathbf{x} - x_{j-1})(\mathbf{x} - x_{j+1})...(\mathbf{x} - x_{n-1})}{(x_{\mathbf{j}} - x_0)(x_{\mathbf{j}} - x_1)...(x_{\mathbf{j}} - x_{j-1})(x_{\mathbf{j}} - x_{j+1})...(x_{\mathbf{j}} - x_{n-1})}$$

Norint interpoliuotą kreivę pavaizduoti grafiškai, to nepakanka.
 Interpoliuojanti kreivė atrodys glotniai tik tada, kai daugianariai bus apskaičiuoti ir pavaizduoti daugelyje taškų N, artimų vienas kitam.
 Tai <u>vaizdavimo taškai</u>. Dažniausiai N >> n. Patogu Lagranžo daugianarių reikšmes pateikti matricos pavidale:

$$\begin{bmatrix} \mathbf{L} \end{bmatrix}_{N \times n} = \begin{bmatrix} L_0(x_0) & L_1(x_0) & \cdots & L_{n-1}(x_0) \\ L_0(x_0 + \Delta x)) & L_1(x_0 + \Delta x) & \cdots & L_{n-1}(x_0 + \Delta x) \\ \vdots & \vdots & \ddots & \vdots \\ L_0(x_0 + (N-1)\Delta x) & L_1(x_0 + (N-1)\Delta x) & \cdots & L_n(x_{n-1} + (N-1)\Delta x) \end{bmatrix}$$

Lagranžo išraiška interpoliuojančiam daugianariui apskaičiuoti (3)

$$\left\{ \mathbf{F} \right\}_{N \times 1} = \left[\mathbf{L} \right]_{N \times n} \left\{ \mathbf{y} \right\}_{n \times 1}$$

- Vektoriuje F gautas reikšmes galima vaizduoti grafiškai, kaip funkcijos reikšmes ties vaizdavimo abscisėmis, ir gauti glotnios kreivės įspūdį;
- Jeigu žinoma matrica L, ją galime naudoti pakartotinai, imdami vis kitas interpoliavimo mazgų ordinačių reikšmes y;
- Jeigu pakanka pavaizduoti kreivę esant tik vienam y vektoriui, pakanka paeiliui apskaičiuoti matricos L stulpelius, ankstesniųjų neišsaugant

$$\begin{cases} F(x_0) \\ F(x_0 + \Delta x) \\ \vdots \\ F(x_0 + (N-1)\Delta x) \end{cases} = \begin{bmatrix} L_0(x_0) & L_1(x_0) & \cdots & L_{n-1}(x_0) \\ L_0(x_0 + \Delta x)) & L_1(x_0 + \Delta x) & \cdots & L_{n-1}(x_0 + \Delta x) \\ \vdots & \vdots & \ddots & \vdots \\ L_0(x_0 + (N-1)\Delta x) & L_1(x_0 + (N-1)\Delta x) & \cdots & L_{n-1}(x_0 + (N-1)\Delta x) \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{bmatrix}$$

$$x = \begin{bmatrix} 0,1,1,0 \\ 0,1,1,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,0 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1 \end{bmatrix} \text{ interpoliavimo mazgai } \\ y = \begin{bmatrix} 0,0,1,1 \\ 0,1$$

- Interpoliuojant vienu daugianariu per visus interpoliavimo mazgus, kreivė yra visiškai glotni, "be defektų" (t.y. kiekviename interpoliavimo mazge pati funkcija ir visos jos išvestinės yra tolydžios);
- Jeigu interpoliavimo mazgų daug, kreivė neišvengiamai tampa labai banguota. Taip yra dėl aukštos Lagranžo daugianarių eilės;

Čiobyševo interpoliavimas: "mažiausiai banguotas" daugianaris

- Be Lagranžo išraiškos, dar žinomos ir kitokios (Aitkeno, Nevilio, Niutono, Čiobyševo) išraiškos interpoliacinio daugianario koeficientams apskaičiuoti;
- Taikant bet kurią iš minėtų išraiškų gaunamas toks pats interpoliacinis daugianaris. Skiriasi tik koeficientų apskaičiavimo formulių pavidalai ir taikomos algebrinių veiksmų sekos(algoritmai);
- Viena ar kita išraiška gali būti matematiškai patogesnė, esant tam tikram taikomojo uždavinio pobūdžiui

Čiobyševo interpoliavimas. "Mažiausiai banguoto" daugianario radimas.

- Kai daugianariu interpoliuojame iš anksto žinomą funkciją, interpoliuojančios funkcijos kreivė ir žinomos funkcijos kreivė dažniausiai skiriasi;
- Kreivių skirtingumas priklauso nuo parinktų interpoliavimo mazgų padėčių Ox ašyje;
- Kai interpoliavimo mazgai parenkamai ant žinomos kreivės, abiejų kreivių sutaptis tuo geresnė, kuo mažiau "banguota" interpoliuojanti funkcija

Čiobyševo interpoliavimo intervalas (1)

- Nagrinėjame funkciją, duotą intervale -1 <= x <= 1. Tai nemažina formuluotės bendrumo;
- Kai turime kitokį apibrėžimo intervalą a<= X<= b, pakanka pakeisti kintamąjį:

$$X = Ax + B;$$

 $x = -1 \implies X = a \implies a = -A + B;$
 $x = 1 \implies X = b \implies b = A + B;$
 $A = \frac{b-a}{2}; \quad B = \frac{b+a}{2}$

$$X = \frac{b-a}{2}x + \frac{b+a}{2};$$

$$x = \frac{2X}{b-a} - \frac{b+a}{b-a}$$

Čiobyševo interpoliavimo intervalas (2)

 Argumento iš intervalo [-1,1] reikšmės į duotąjį intervalą [a,b] perskaičiuojamos pagal formulę

$$X = \frac{b-a}{2}x + \frac{b+a}{2}, \quad -1 \le x \le 1$$

 Jeigu funkcija arba formulė f(x) žinoma normuotame intervale [-1,1], ji gali būti pavaizduota intervale a<= X<= b, pakeičiant kintamąjį

$$x = \frac{2X}{b-a} - \frac{b+a}{b-a} , \qquad a \le X \le b$$

```
a=-0.5;b=4;
xxx=np.linspace(-1,1,100);
fff=fnk(xxx);
plt.plot(xxx,fff);

XXX=(b-a)/2*xxx+(b+a)/2;
FFF=fnk(2*XXX/(b-a)-(b+a)/(b-a))
plt.plot(XXX,FFF)
```


Tokiu būdu pasiekiama, kad normuotame intervale (pvz.,[-1,1]) duota formulė galėtų būti pritaikoma bet kuriame intervale [a,b]

Čiobyševo abscisės

Čiobyševo interpoliavimo intervale [-1,1] apskaičiuojamos nustatomos tokios interpoliavimo mazgų koordinatės, vadinamos *Čiobyševo abscisėmis*:

$$x_i = \cos\left(\frac{\pi(2i+1)}{2n}\right), \quad i = 0, 1, ..., n-1$$

Čiobyševo abscises galima perskaičiuoti į duotąjį intervalą [a,b]:

$$X_i = \frac{b+a}{2} + \frac{b-a}{2} x_i, \quad i = 0, 1, ..., n-1$$

 per funkcijos grafiko taškus ties Čiobyševo abscisėmis pravesta interpoliuojančio daugianario kreivė yra "mažiausiai banguota", palyginus su tos pačios eilės daugianarių kreivėmis, pravestomis per kitaip išdėstytą tą patį skaičių interpoliavimo mazgų

"Mažiausiai banguoto" daugianario radimas

- Pagal duotą funkciją intervale [a;b] norime nubrėžti n-os eilės daugianarį;
- Interpoliavimo mazgus reikia parinkti ties n-os eilės Čiobyševo abscisėmis, perskaičiuotomis į intervalą [a;b]

$$x_i = \frac{b-a}{2}\cos\left(\frac{\pi(2i+1)}{2n}\right) + \frac{b+a}{2}, \quad i = 0, 1, ..., n-1$$

Pvz_SMA_7_2_Lagranzo_1D_pagal_duota_funkcija_L_ir_LC

Erdvėje duotos taškų sekos interpoliavimas. Parametrinis funkcijos vaizdavimas

Erdvėje duotos taškų sekos interpoliavimas

- Iki šiol nagrinėjome, kaip interpoliuoti funkcijos kreivę pagal duotas abscises;
- Laikėme, kad abscisių sekos reikšmės didėjančios;
- Toks priėjimas būtų netinkamas, jeigu interpoliavimo taškais siektume interpoliuoti ne funkcijos grafiką, tačiau bet kokią kreivę

Parametrinis funkcijos vaizdavimas 1

Pvz_SMA_7_4_Parametrinis_funkcijos_vaizdavimas

Parametrinė funkcijos išraiška pavaizduoja, kaip tolydžio didėjant parametro reikšmei (pvz. laikui bėgant) sukuriami vis nauji funkcijos kreivei priklausantys taškai;

Parametrinis funkcijos vaizdavimas 2

Priklausomybę f(x,y)=0 dažniausiai galima pakeisti parametrinėmis priklausomybėmis, ir atvirkščiai;

Keičiant funkcijos išraišką iš parametrinės į įprastinę, reikia algebriškai eliminuoti parametrą t. Jeigu išraiškos sudėtingos, tai gali būti nelengva. Tačiau jeigu reikia tik pavaizduoti funkciją, tą galima atlikti tiesiog pagal parametrinį pavidalą, tolydžio didinant t reikšmę

$$x = x(t); y = y(t)$$
 \Rightarrow $f(x, y) = 0$
 $x = R\cos(t); y = R\sin(t)$ \Rightarrow $x^2 + y^2 - R^2 = 0$

$$y = f(x)$$
 $\Rightarrow x = t; y = f(t)$

Taip pakeisti galima visuomet, tačiau funkcijos išraiška išlieka iš esmės tokia pati.

Plokščiosios kreivės parametrinis pavidalas

Kiekvienam mazgui priskiriamas parametras ("laiko momentas").

$$\begin{bmatrix} x_0 & x_1 & \cdots & x_k & \cdots \\ y_0 & y_1 & \cdots & y_k & \cdots \end{bmatrix}$$

$$\begin{bmatrix} t_0 & t_1 & \cdots & t_k & \cdots \end{bmatrix}$$

$$x = x(t);$$
$$y = y(t)$$

Interpoliuojamos dvi mazgų sekos. Kiekvienos argumentas t yra didėjantis

$$\begin{bmatrix} x_0 & x_1 & \cdots & x_k & \cdots \\ t_0 & t_1 & \cdots & t_k & \cdots \end{bmatrix}$$

$$\begin{bmatrix} y_0 & y_1 & \cdots & y_k & \cdots \\ t_0 & t_1 & \cdots & t_k & \cdots \end{bmatrix}$$

Pvz_SMA_7_5_Lagranzo_interpoliavimas_parametrinis

Kokias parametro reikšmes priskirti?

- 1) Galima būtų imti bet kokią didėjančią reikšmių seką, pvz. t=1,2,3,...,k,..;
- 2) Galima parametro reikšmes priskirti, priklausomai nuo atstumo tarp gretimų interpoliavimo mazgų:

Duota mazgų seka

$$\begin{bmatrix} x_0 & x_1 & \cdots & x_k & \cdots \\ y_0 & y_1 & \cdots & y_k & \cdots \end{bmatrix}$$

$$\begin{bmatrix} 0 & s_{01} & \cdots & \sum_{j=1}^k s_{j-1,j} & \cdots \end{bmatrix}$$

$$x = x(t);$$
$$y = y(t)$$

mazgų sekos

Interpoliuojamos dvi mazgų sekos
$$\begin{bmatrix} x_0 & x_1 & \cdots & x_k & \cdots \\ 0 & s_{01} & \cdots & \sum_{j=1}^k s_{j-1,j} & \cdots \\ y_0 & y_{21} & \cdots & y_k & \cdots \\ 0 & s_{01} & \cdots & \sum_{j=1}^k s_{j-1,j} & \cdots \end{bmatrix}$$

Kaip parametro reikšmės įtakoja interpoliuojančios

kreivės formą:

Pvz_SMA_7_6_Lagranzo_interpoliavimas_2D_parametrinis_mouse.m Pvz_SMA_7_06_Lagranzo_interpoliavimas_2D_parametrinis_mouse.py

SMA_07_Klausimai savikontrolei(1):

- 1. Apibūdinkite interpoliavimo uždavinį. Kas yra interpoliavimo mazgai;
- Kas yra bazinė funkcija, kiek jų reikia naudoti, interpoliuojant per n duotų taškų;
- 3. Paaiškinkite, kaip sprendžiamas interpoliavimo uždavinys Hemingo metodu. Kokie jo privalumai ir trūkumai;
- 4. Kas yra Lagranžo funkcijos, sprendžiant interpoliavimo uždavinį. Kiek jų, kokia daugianarių eilė;
- 5. Kas yra vaizdavimo taškai;
- 6. Kuo pasižymi Čiobyševo interpoliavimo metodu gauta kreivė;
- 7. Kaip gaunami Čiobyševo interpoliavimo mazgai;
- 8. Kas yra parametrinis funkcijos vaizdavimas;
- 9. Kaip parenkama parametro reikšmių seka;
- 10. Kaip interpoliuojamos daugiareikšmės funkcijos