CompPhys Assignment 05

李尚坤 物理学系 20307130215

1 Richardson Extrapolation

1.1 题目描述

Compute the derivative of $f(x) = \sin x$ at $x = \pi/3$ using the Richardson extrapolation algorithm. Start with h = 1 and find the number of rows in the Richardson table required to estimate the derivative with six significant decimal digits. Output the Richardson table.

1.2 解决方案描述

对于 Richardson 方法而言, 最终要的是计算各项 D(m,n), 它们之间满足的关系为:

$$D(n,0) = \varphi\left(\frac{h}{2^n}\right) = \frac{f\left(x + \frac{h}{2^n}\right) - f\left(x + \frac{h}{2^n}\right)}{2 \times \frac{h}{2^n}}$$
(1.1)

$$D(n,m) = D(n,m-1) + \frac{1}{4^m - 1} \left[D(n,m-1) - D(n-1,m-1) \right]$$
 (1.2)

在本题中,我们采用按行来构建 Richardson table, 其具体步骤如下:

- 1. 首先由公式: $D(0,0) = \frac{f(x+h) f(x-h)}{2h}$ 计算出 D(0,0), 这相当于一个 1×1 的矩阵;
- 2. 先在 D(0,0) 下方添加一个元素 D(1,0), 再由 (2) 式计算出 D(1,1), 于是我们 就得到了如下左侧的 2×2 矩阵:

$$\begin{bmatrix} D(0,0) & 0 \\ D(1,0) & D(1,1) \end{bmatrix} \rightarrow \begin{bmatrix} D(0,0) & 0 & 0 \\ D(1,0) & D(1,1) & 0 \\ D(2,0) & D(2,1) & D(2,2) \end{bmatrix}$$

- 3. 对于上面左侧矩阵,我们再在 D(1,0) 下方添加一个元素 D(2,0),这样我们可以由 D(1,0) 与 D(2,0) 计算得到 D(2,1),再由 D(1,1) 与 D(2,1) 计算得到 D(2,2),这样我们就得到了一个 3×3 矩阵,如上方右侧矩阵所示;
- 4. 按照这上述步骤可以不断将矩阵扩充下去,其中对于已求出的 n+1 阶方阵,元素 D(n,n) 是精度最高的结果;
- 5. 我们每扩充完一行之后,就将元素 D(n+1,n+1) 与元素 D(n,n) 进行比较,如果二者之差满足精度要求,就停止构造矩阵,然后输出结果。

1.3 伪代码

Algorithm 1: Richardson Extrapolation

```
Input: h and the precision eps
```

Output: The derivative of f(x) at $x = x_0$, the number of rows and Richardson table

```
\begin{array}{l} \mathbf{1} \ \ D(0,0) \leftarrow \frac{f(x_0+h)-f(x_0-h)}{2h} \\ \mathbf{2} \ \ i \leftarrow 0 \\ \mathbf{3} \ \ \mathbf{do} \\ \mathbf{4} \ \ | \ \ i \leftarrow i+1 \\ \mathbf{5} \ \ \ | \ \ D(i,0) \leftarrow \frac{f(x_0+(\frac{h}{2^i}))-f(x_0-(\frac{h}{2^i}))}{2\times \frac{h}{2^i}} \\ \mathbf{6} \ \ \ \ \mathbf{for} \ \ j \leftarrow 1 \ \mathbf{to} \ i \ \mathbf{do} \\ \mathbf{7} \ \ \ \ \ | \ \ D(i,j) \leftarrow D(i,j-1) + \frac{1}{4^j-1} \left[D(i,j-1) - D(i-1,j-1)\right] \\ \mathbf{8} \ \ \ \ \mathbf{end} \\ \mathbf{9} \ \ \mathbf{while} \ \ ABS(D(i,i) - D(i-1,i-1)) > eps; \\ \mathbf{10} \ \ \mathbf{return} \ \ D(i,i), i, D \end{array}
```

1.4 输入输出示例

本题中我们要求函数 $f(x) = \sin x$ 在点 $x_0 = \frac{\pi}{3}$ 处的导数值。我们给定的 h 的初始值为 h = 1,精度定为 $eps = 10^{-6}$,输出结果如下:

- 1. **The number of rows** in the Richardson table required to estimate the derivative with six significant decimal digits is **5**.
- 2. The derivative of f(x) at $x = \pi/3$ is 0.500000.
- 3. The Richardson table is

```
\begin{bmatrix} 0.4207354924 \\ 0.4794255386 & 0.4989888873 \\ 0.4948079185 & 0.4999353785 & 0.4999984779 \\ 0.4986989335 & 0.49999959386 & 0.4999999759 & 0.4999999997 \\ 0.4996745427 & 0.4999997458 & 0.4999999996 & 0.5000000000 & 0.50000000000 \\ \end{bmatrix}
```

程序在终端运行时的输出结果如下:

图 1: Richardson Extrapolation

1.5 用户手册

- 1. 本程序的源程序为 Richardson.py
- 2. 本程序利用 Richardson Extrapolation 方法进行导数计算
- 3. 运行程序后,将在终端依次输出:为达到要求有效数字位数所需计算行数,符合有效数字要求导数结果以及 Richardson table

2 Simpson's Rule

2.1 题目描述

Radial wave function of the 3s orbital is:

$$R_{3s} = \frac{1}{9\sqrt{3}} \times (6 - 6\rho + \rho^2) \times Z^{\frac{3}{2}} \times e^{-\frac{\rho}{2}}$$
 (2.3)

- r = radius expressed in atomic units (1 Bohr radius = 52.9 pm)
- $\cdot e = 2.71828$ approximately
- $\cdot Z =$ effective nuclear charge for that orbital in that atom
- $\rho = 2Zr/n$ where n is the principal quantum number (3 for the 3s orbital)

Compute $\int_0^{40} |R_{3s}|^2 r^2 dr$ for Si atom (Z=14) with Simpson's rule using two different radial grids:

- (1) Equal spacing grids: r[i] = (i-1)h; $i = 1, \dots, N$ (try different N)
- (2) A nonuniform integration grid, more finely spaced at small r than at large r: $r[i] = r_0(e^{t[i]} 1)$; t[i] = (i 1)h; $i = 1, \dots, N$ (One typically choose $r_0 = 0.0005$ a.u., try different N)
 - (3) Find out which one is more efficient, and discuss the reason.

2.2 解决方案描述

由 Simpson's rule 可知,在区间 (a,b) 上,积分公式为:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{6} \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right]$$
 (2.4)

当整个积分区间被分成偶数个区间时,整个区间的积分值可近似为:

$$\int_{x_1}^{x_n} f(x)dx \approx \sum_{i=1,3,5}^{n-2} \frac{x_{i+1} - x_i}{3} \left[f(x_i) + 4f(x_{i+1}) + f(x_{i+2}) \right]$$
 (2.5)

因此只要将区间分为偶数个,带入相应的积分函数进行计算即可。

题目中给出了两种不同的变量代换的方式,我们将 n=3,Z=14 带入,对于 (1) 中的代换方式,其对应的积分公式为:

$$\int_0^{40} \frac{1}{81 \times 3} \left(6 - 56r + \left(\frac{28r}{3} \right)^2 \right) \times 14^{\frac{3}{2}} \times e^{-\frac{14r}{3}} r^2 dr \tag{2.6}$$

对于(2)中的代换方式,其对应的积分公式为:

$$\int_{0}^{\ln(1+\frac{40}{r_0})} \frac{14^{\frac{3}{2}} r_0}{81 \times 3} \left(6 - 56 r_0(e^t - 1) + \left(\frac{28r}{3} r_0(e^t - 1) \right)^2 \right) \times e^{-\frac{14r_0(e^t - 1)}{3}} (r_0(e^t - 1))^2 e^t dt$$
(2.7)

因此,只需要将上面两个积分公式中的积分函数分别定义为 $f_1(r)$ 与 $f_2(t)$,再分别带入 (2.5) 式计算即可。

2.3 伪代码

Algorithm 2: Simpson's Rule

Input: The number of points N

Output: The integration of f(x)

1 for $i \leftarrow 0$ to N-2 by 2 do

 $\mathbf{integration} \leftarrow integration + \frac{x_{i+1} - x_i}{3} \left[f(x_i) + 4f(x_{i+1}) + f(x_{i+2}) \right]$

з end

4 return integration

2.4 输入/输出示例

在本题中,对于积分函数 $f_1(r)$ 与 $f_2(t)$,我们将其分别划分为 $N_1 - 1$ 与 $N_2 - 1$ 个区间,输出结果如下:

N_1	N_2	$\int f_1(r)dr$	$\int f_2(t)dt$
131	131	0.075045	0.076360
101	101	0.071754	0.076360
71	71	0.069530	0.076360
51	51	0.090188	0.076360
31	31	0.119175	0.076788

表 1: 输入输出结果

程序在终端运行时的输出结果如下:

Plese input two numbers of points:(must be odd number)
101 101
intergra1= 0.071753873467746
intergra2= 0.0763603548321187

图 2: Simpson's Rule

由 Simpson's rule 的误差公式可知: $error = \frac{(x_{i+1}-x_i)^5}{90} \frac{d^4 f(x_j)}{dx^4}$, 当取 $N_1 = N_2 = 101$ 时,可大致估算得到 $error(\int f_1(r)dr) \sim 10^{-4}$, $error(\int f_2(t)dt) \sim 10^{-7}$ 。因此两个积分在取相同 N 的值时,积分 $\int f_2(t)dt$ 的精度更高。

由上表也可以看出,在我们所取的 N 的范围中,随着 N 的下降 $\int f_1(r)dr$ 的积分 值误差急剧增加,而 $\int f_2(t)dt$ 的积分值基本稳定。也就是说,要达到相同的计算精度,采用计算 $\int f_2(t)dt$ 可以计算更少的次数。

下面我们简要分析一下原因。我们分别作出 $f_1(r)$ 在区间 [0,40], $f_2(t)$ 在区间 $[0,ln(1+\frac{40}{r_0})]$ 内的函数图像:

图 3: 积分函数图像

可以看出,积分函数 $f_1(r)$ 对应的积分区间 [0,40] 非常长,但主要对积分结果有贡献的函数区间只占很小一部分,大致为 [0,5]。而积分函数 $f_2(t)$ 的积分区间较短,并且 "有效"的积分区间占比较大。因此当我们取相同的 N 时,我们将区间分成了 N-1 个间隔,其中 r 的间隔较大,t 的间隔较小,因此 $\int f_2(t)dt$ 的精度更高。

其实,积分变量代换 $r=r_0(e^t-1)$ 相当于将积分区间进行了一定的压缩, r_0 用于表征压缩的程度,如果 r_0 越大,就说明压缩的程度越大,取相同 N 时得到的积分结果也就更准确。

2.5 用户手册

- 1. 本程序的源程序为 Simpson.py
- 2. 在执行源程序之前,应当先安装 numpy 库
- 3. 本程序分别利用 Simpson's Rule 计算一个积分在两种变量代换下的结果
- 4. 运行程序后,在终端将输出积分值 integral 与 integra2