LAB 03 REPORT

MTH00051 - Applied Mathematics and Statistics

Nguyen Cong Phuc - 1753085

31.08.2020 Ho Chi Minh University Of Science

LIBRARIES

- 1. Data Manipulation Pandas, numpy.
- 2. Building Model Statsmodels.
- 3. Features Manipulation, Features Preprocessing, Scoring Scikit-learn.

HELPERS

SMWrapper(BaseEstimator, RegressorMixin)
 Wrapper for statsmodels regressors to use in scikit-learn functions.

RESULTS

a) Full Attributes

	coefficient
fixed acidity	0.005925
volatile acidity	-1.108038
citric acid	-0.263046
residual sugar	0.015322
chlorides	-1.730503
free sulfur dioxide	0.003801
total sulfur dioxide	-0.003899
density	4.338588
рН	-0.458535
sulphates	0.729719
alcohol	0.308859

Building model: model_full = sm.OLS(y,X).fit()
Compute average r2 score of 5 folds: mf_score =
np.mean(cross_val_score(SMWrapper(sm.OLS), X, y, scoring='r2', cv=5))

b) Sorted By Mean Of All Fold R2 Score Alcohol is the best single attribute score.

	Attributes	r2 Score
1	alcohol	0.163181
2	volatile acidity	0.028825
3	total sulfur dioxide	-0.073043
4	citric acid	-0.084692
5	chlorides	-0.129122
6	fixed acidity	-0.132844
7	pH	-0.139813
8	free sulfur dioxide	-0.143103
9	residual sugar	-0.147915
10	density	-0.162868
11	sulphates	-0.176188

Loop through each attributes and compute the score: for col in X.columns:

```
att_score.append(np.mean(cross_val_score(SMWrapper(sm.OLS), X[col], y,
scoring='r2', cv=5)))
```

Make it a dataframe and sorted by the score:

df_score = pd.DataFrame(zip(X.columns, att_score),columns=['Attributes','r2
Score']).sort_values(by='r2 Score', ascending= False).reset_index(drop=True)

Sorted by Fold1

	r2 Score fold1	r2 Score fold2	r2 Score fold3	r2 Score fold4	Attributes
1	0.063166	0.197865	0.133434	0.226652	alcohol
2	-0.011582	-0.000635	0.048694	-0.014407	volatile acidity
3	-0.093504	0.001409	-0.143423	-0.223374	total sulfur dioxide
4	-0.144679	0.019359	-0.074247	-0.239200	citric acid
5	-0.155578	-0.007559	-0.164458	-0.358526	fixed acidity
6	-0.213676	-0.050337	-0.148017	-0.276457	chlorides
7	-0.215880	-0.045690	-0.139860	-0.310643	pН
8	-0.217667	-0.047050	-0.159717	-0.315076	free sulfur dioxide
9	-0.219697	-0.053777	-0.156278	-0.310569	residual sugar
10	-0.328743	-0.314689	-0.059804	-0.226508	density
11	-0.520102	0.034172	-0.054130	-0.281518	sulphates

Sorted by Fold2

Attributes	r2 Score fold4	r2 Score fold3	r2 Score fold2	r2 Score fold1	
alcohol	0.226652	0.133434	0.197865	0.063166	1
sulphates	-0.281518	-0.054130	0.034172	-0.520102	2
citric acid	-0.239200	-0.074247	0.019359	-0.144679	3
total sulfur dioxide	-0.223374	-0.143423	0.001409	-0.093504	4
volatile acidity	-0.014407	0.048694	-0.000635	-0.011582	5
fixed acidity	-0.358526	-0.164458	-0.007559	-0.155578	6
pН	-0.310643	-0.139860	-0.045690	-0.215880	7
free sulfur dioxide	-0.315076	-0.159717	-0.047050	-0.217667	8
chlorides	-0.276457	-0.148017	-0.050337	-0.213676	9
residual sugar	-0.310569	-0.156278	-0.053777	-0.219697	10
density	-0.226508	-0.059804	-0.314689	-0.328743	11

Sorted by Fold3

core fold	Score fold3	Score fold2	r2 Score fold1	
0.22665	0.133434	0.197865	0.063166	1
-0.01440	0.048694	-0.000635	-0.011582	2
-0.28151	-0.054130	0.034172	-0.520102	3
-0.22650	-0.059804	-0.314689	-0.328743	4
-0.23920	-0.074247	0.019359	-0.144679	5
-0.31064	-0.139860	-0.045690	-0.215880	6
-0.22337	-0.143423	0.001409	-0.093504	7
-0.27645	-0.148017	-0.050337	-0.213676	8
-0.31056	-0.156278	-0.053777	-0.219697	9
-0.31507	-0.159717	-0.047050	-0.217667	10
-0.35852	-0.164458	-0.007559	-0.155578	11

Sorted by Fold4

	r2 Score fold1	r2 Score fold2	r2 Score fold3	r2 Score fold4	Attributes
1	0.063166	0.197865	0.133434	0.226652	alcohol
2	-0.011582	-0.000635	0.048694	-0.014407	volatile acidity
3	-0.093504	0.001409	-0.143423	-0.223374	total sulfur dioxide
4	-0.328743	-0.314689	-0.059804	-0.226508	density
5	-0.144679	0.019359	-0.074247	-0.239200	citric acid
6	-0.213676	-0.050337	-0.148017	-0.276457	chlorides
7	-0.520102	0.034172	-0.054130	-0.281518	sulphates
8	-0.219697	-0.053777	-0.156278	-0.310569	residual sugar
9	-0.215880	-0.045690	-0.139860	-0.310643	pН
10	-0.217667	-0.047050	-0.159717	-0.315076	free sulfur dioxide
11	-0.155578	-0.007559	-0.164458	-0.358526	fixed acidity

d) Improving Model

Full Attributes CV Score: 0.2604353464190211 Improved Final CV Score: 0.325033020959744 Steps:

Make the polynomial with max degree = 2
 poly = PolynomialFeatures(degree = 2)
 poly_x = poly.fit_transform(X)

Rename x0..x10 to the original attributes name

cols = poly.get_feature_names()

cols[0] = 'bias'

for i in range(len(cols)):

 cols[i] = cols[i].replace(' ',' . ').replace('x10','alcohol')

 for j in range(len(X.columns)):

 cols[i] = cols[i].replace(f'x{j}',X.columns[j])

- 2) Set the p value threshold (in this case, 0.05) threshold = 0.05
- 3) Recurrence compute and remove attributes which have p value equal or greater than the threshold p value.

Finding current max p value and its index

max_pval = np.max(df_pval['Pvalues'])

max_pval_index = np.argmax(df_pval['Pvalues'])

Add to drop list drop_att = df_pval.iloc[max_pval_index]['Atrributes'] drop_list.append(drop_att)

Building model without dropped attributes

X2_new = X2.drop(drop_list, axis=1)

model = sm.OLS(y,X2_new).fit()

model_score = np.mean(cross_val_score(SMWrapper(sm.OLS), X2_new, y, scoring='r2', cv=5))

4) Final model with the optimize R2 score

coefficient	
-28.546312	fixed acidity
26.380443	alcohol
-0.034238	fixed acidity^2
-0.131926	fixed acidity . volatile acidity
-1.287134	fixed acidity . chlorides
29.421214	fixed acidity . density
0.010700	volatile acidity . total sulfur dioxide
-0.988443	volatile acidity . pH
0.276158	volatile acidity . alcohol
6.683647	citric acid . density
-3.493100	citric acid . pH
0.440354	citric acid . alcohol
9.553580	chlorides . density
-0.000175	free sulfur dioxide . total sulfur dioxide
0.036245	free sulfur dioxide . density
-0.027197	free sulfur dioxide . sulphates
0.000043	total sulfur dioxide^2
-0.012626	total sulfur dioxide . density
-18.477886	density^2
9.831975	density . pH
-25.986988	density . alcohol
-1.328206	pH^2
-0.939161	sulphates^2
0.287921	sulphates . alcohol
-0.031657	alcohol^2

REFERENCES

- 1. https://numpy.org/
- 2. https://pandas.pydata.org/pandas-docs/stable/index.html
- 3. https://www.statsmodels.org/stable/index.html
- 4. https://scikit-learn.org/stable/index.html