Data Mining

UNIT 2

Why we need Data Mining?

Volume of information is increasing everyday that we can handle from business transactions, scientific data, sensor data, Pictures, videos, etc. So, we need a system that will be capable of extracting essence of information available and that can automatically generate report, views or summary of data for better decision-making.

Why Data Mining is used in Business?

Data mining is used in business to make better managerial decisions by:

- Automatic summarization of data
- Extracting essence of information stored.
- Discovering patterns in raw data.

What is Data Mining?

Data Mining is defined as extracting information from huge sets of data. In other words, we can say that data mining is the procedure of mining knowledge from data. The information or knowledge extracted so can be used for any of the following applications –

- Market Analysis
- Fraud Detection
- Customer Retention
- Production Control
- Science Exploration

Knowledge discovery from Data (KDD) is essential for data mining. While others view data mining as an essential step in the process of knowledge discovery. Here is the list of steps involved in the knowledge discovery process –

- **Data Cleaning** In this step, the noise and inconsistent data is removed.
- **Data Integration** In this step, multiple data sources are combined.
- Data Selection In this step, data relevant to the analysis task are retrieved from thedatabase.
- **Data Transformation** In this step, data is transformed or consolidated

into formsappropriate for mining by performing summary or aggregation operations.

- **Data Mining** In this step, intelligent methods are applied in order to extract datapatterns.
- Pattern Evaluation In this step, data patterns are evaluated.
- Knowledge Presentation In this step, knowledge is represented.

Data mining as a step in the process of knowledge discovery.

What kinds of data can be mined?

- 1. Flat Files
- 2. Relational Databases
- 3. Data Warehouse
- 4. Transactional Databases
- 5. Multimedia Databases
- 6. Spatial Databases
- 7. Time Series Databases
- 8. World Wide Web (WWW)

1. Flat Files

- Flat files are defined as data files in text form or binary form with a structure that can be easily extracted by data mining algorithms.
- Data stored in flat files have no relationship or path among themselves, like if a relational database is stored on flat file, and then there will be no relations between the tables.
- Flat files are represented by data dictionary. Eg: CSV file.
- Application: Used in Data Warehousing to store data, Used in carrying data to and from server, etc.

2. Relational Databases

- A Relational database is defined as the collection of data organized in tables withrows and columns.
- Physical schema in Relational databases is a schema which defines the structure oftables.
- Logical schema in Relational databases is a schema which defines the relationshipamong tables.
- Standard API of relational database is SQL.
- Application: Data Mining, ROLAP model, etc.

3. Data Warehouse

- A data warehouse is defined as the collection of data integrated from multiplesources that will query and decision making.
- There are three types of data warehouse:
 Enterprise data warehouse, DataMart and Virtual Warehouse.
- Two approaches can be used to update data in Data Warehouse:
 Query-driven Approach and Update-driven Approach.

Application: Business decision making, Data mining, etc

4. Transactional Databases

- Transactional databases are a collection of data organized by time stamps, date, etc to represent transaction in databases.
- This type of database has the capability to roll back or undo its operation when atransaction is not completed or committed.
- Highly flexible system where users can modify information without changing anysensitive information.
- Follows ACID property of DBMS.

• Application: Banking, Distributed systems, Object databases, etc.

5. Multimedia Databases

- Multimedia databases consists audio, video, images and text media.
- They can be stored on Object-Oriented Databases.
- They are used to store complex information in pre-specified formats.
- Application: Digital libraries, video-on demand, news-on demand, musicaldatabase, etc.

6. Spatial Database

- Store geographical information.
- Stores data in the form of coordinates, topology, lines, polygons, etc.
- Application: Maps, Global positioning, etc.

7. Time-series Databases

- Time series databases contain stock exchange data and user logged activities.
- Handles array of numbers indexed by time, date, etc.
- It requires real-time analysis.
- **Application**: eXtremeDB, Graphite, InfluxDB, etc.

8. WWW

- WWW refers to World wide web is a collection of documents and resources like audio, video, text, etc. which are identified by Uniform Resource Locators (URLs) through web browsers, linked by HTML pages, and accessible via the Internet network.
- It is the most heterogeneous repository as it collects data from multiple resources.
- It is dynamic in nature as Volume of data is continuously increasing and changing.
- **Application**: Online shopping, Job search, Research, studying, etc.

Data Mining Techniques

What kinds of Patterns can be mined?

On the basis of the kind of data to be mined, there are two categories of functions involved in Data Mining –

- a) Descriptive
- b) Classification and Prediction

a) DescriptiveFunction

The descriptive function deals with the general properties of data in the database.

Here is the list of descriptive functions -

- 1. Class/Concept Description
- 2. Mining of Frequent Patterns
- 3. Mining of Associations
- 4. Mining of Correlations
- 5. Mining of Clusters

1. Class/Concept Description

Class/Concept refers to the data to be associated with the classes or concepts. For example, in a company, the classes of items for sales include computer and printers, and concepts of customers include big spenders and budget spenders. Such descriptions of a class or a concept are called class/concept descriptions. These descriptions can be derived by the following two ways –

- Data Characterization This refers to summarizing data of class under study. This class under study is called as Target Class.
- **Data Discrimination** It refers to the mapping or classification of a class with somepredefined group or class.

2. Mining of Frequent Patterns

Frequent patterns are those patterns that occur frequently in transactional data. Here is the list of kind of frequent patterns –

- Frequent Item Set It refers to a set of items that frequently appear together, forexample, milk and bread.
- Frequent Subsequence A sequence of patterns that occur frequently such aspurchasing a camera is followed by memory card.
- Frequent Sub Structure Substructure refers to different structural forms, such asgraphs, trees, or lattices, which may be combined with item-

sets or subsequences.

3. Mining of Association

Associations are used in retail sales to identify patterns that are frequently purchased together. This process refers to the process of uncovering the relationship among data and determining association rules.

For example, a retailer generates an association rule that shows that 70% of time milk is sold with bread and only 30% of times biscuits are sold with bread.

- i. Buys(X, "computer")=>buys(X, "software") [support = 1%, confidence = 50%],
- ii. age(X, "20..29")^income(X, "40K..49K")=>buys(X, "laptop") [support = 2%, confidence = 60%].

4. Mining of Correlations

It is a kind of additional analysis performed to uncover interesting statistical correlations between associated-attribute-value pairs or between two item sets to analyze that if they have positive, negative or no effect on each other.

5. Mining of Clusters

Cluster refers to a group of similar kind of objects. Cluster analysis refers to forming group of objects that are very similar to each other but are highly different from the objectsin other clusters.

A 2-D plot of customer data with respect to customer locations in a city, showing three data clusters.

b) Classification and Prediction

Classification is the process of finding a model that describes the data classes or concepts. The purpose is to be able to use this model to predict the class of objects whose class label is unknown. This derived model is based on the analysis of sets of training data. The derived model can be presented in the

following forms -

- 1. Classification (IF-THEN) Rules
- 2. Prediction
- 3. Decision Trees
- 4. Mathematical Formulae
- Neural Networks
- 6. Outlier Analysis
- 7. Evolution Analysis

The list of functions involved in these processes is as follows –

- Classification It predicts the class of objects whose class label is unknown. Its objective is to find a derived model that describes and distinguishes data classes or concepts. The Derived Model is based on the analysis set of training data i.e. the data object whose class label is well known.
- 2. Prediction It is used to predict missing or unavailable numerical data values rather than class labels. Regression Analysis is generally used for prediction. Prediction can also be used for identification of distribution trends based on available data.
- 3. Decision Trees A decision tree is a structure that includes a root node, branches, and leaf nodes. Each internal node denotes a test on an attribute, each branch denotes the outcome of a test, and each leaf node holds a class label.

A classification model can be represented in various forms: (a) IF-THEN rules, (b) a decision tree, or (c) a neural network.

- **4. Mathematical Formulae** Data can be mined by using some mathematical formulas.
- 5. Neural Networks Neural networks represent a brain metaphor for information processing. These models are biologically inspired rather than an exact replica of how the brain actually functions. Neural networks have been shown to be very promising systems in many forecasting applications and business classification applications due to their ability to "learn" from the data.
- **6. Outlier Analysis** Outliers may be defined as the data objects that do not comply with the general behavior or model of the data available.
- 7. **Evolution Analysis** Evolution analysis refers to the description and model regularities or trends for objects whose behavior changes over time.

Data Mining Task Primitives

- We can specify a data mining task in the form of a data mining query.
- This query is input to the system.
- A data mining query is defined in terms of data mining task primitives.

Note – These primitives allow us to communicate in an interactive manner with the datamining system. Here is the list of Data Mining Task Primitives –

- Set of task relevant data to be mined.
- Kind of knowledge to be mined.
- Background knowledge to be used in discovery process.
- Interestingness measures and thresholds for pattern evaluation.
- Representation for visualizing the discovered patterns.

Which Technologies are used in data mining?

Data mining adopts techniques from many domains.

1. Statistics:

- It uses the mathematical analysis to express representations, model and summarizeempirical data or real world observations.
- Statistical analysis involves the collection of methods, applicable to large amount ofdata to conclude and report the trend.

2. Machine learning

- Arthur Samuel defined machine learning as a field of study that gives computers the ability to learn without being programmed.
- When the new data is entered in the computer, algorithms help the data to grow orchange due to machine learning.
- In machine learning, an algorithm is constructed to predict the data from the available database (Predictive analysis).
- It is related to computational statistics.

The fo

four types of machine learning are:
a. Supervised learning
☐ It is based on the classification.
$\hfill \mbox{It}$ is also called as $\mbox{inductive}$ $\mbox{learning}.$ In this method, the desired outputs
are included in the training dataset.
b. Unsupervised learning
□Unsupervised learning is based on clustering. Clusters are formed on the
basis of similarity measures and desired outputs are not included in the
training dataset.
c. Semi-supervised learning
Semi-supervised learning includes some desired outputs to the training
dataset to generate the appropriate functions. This method generally avoids

d. Active learning

Active learning is a powerful approach in analyzing the data efficiently.
∃The algorithm is designed in such a way that, the desired output should
be decided by the algorithm itself (the user plays important role in this
type).

the large number of labeled examples (i.e. desired outputs).

3. Information retrieval

☐ Information deals with uncertain representations of the semantics of objects (text, images).

For example: Finding relevant information from a large document.

4. Database systems and data warehouse

Databases are used for the purpose of recording the data as well as data
warehousing.
Online Transactional Processing (OLTP) uses databases for day to day
transaction purpose.
Data warehouses are used to store historical data which helps to take
strategically decision for business.
It is used for online analytical processing (OALP), which helps to analyze the
data.

5. Pattern Recognition:

Pattern recognition is the automated recognition of patterns and regularities in data. Pattern recognition is closely related to artificial intelligence and machine learning, together with applications such as data mining and knowledge discovery in databases (KDD), and is often used interchangeably with these terms.

6. Visualization:

It is the process of extracting and visualizing the data in a very clear and understandable way without any form of reading or writing by displaying the results in the form of pie charts, bar graphs, statistical representation and through graphical forms as well.

7. Algorithms:

To perform data mining techniques, we have to design best algorithms.

8. High Performance Computing:

High Performance Computing most generally refers to the practice of aggregating computing power in a way that delivers much higher performance than one could get out of atypical desktop computer or workstation in order to solve large problems in science, engineering, or business.

Data Mining Applications

Here is the list of areas where data mining is widely used –

Financial Data Analysis

- Retail Industry
- Telecommunication Industry
- Biological Data Analysis
- Other Scientific Applications
- Intrusion Detection

Financial Data Analysis

The financial data in banking and financial industry is generally reliable and of highquality which facilitates systematic data analysis and data mining. Like,

☐ Loan payment prediction and customer credit policy analysis.

□ Detection of money laundering and other financial crimes.

Retail Industry

Data Mining has its great application in Retail Industry because it collects large amount of data from on sales, customer purchasing history, goods transportation, consumption and services. It is natural that the quantity of data collected will continue to expand rapidly because of the increasing ease, availability and popularity of the web.

Telecommunication Industry

Today the telecommunication industry is one of the most emerging industries providing various services such as fax, pager, cellular phone, internet messenger, images, e- mail, web data transmission, etc. Due to the development of new computer and communication technologies, the telecommunication industry is rapidly expanding. This is the reason why data mining is become very important to help and understand the business.

Biological Data Analysis

In recent times, we have seen a tremendous growth in the field of biology such as genomics, proteomics, functional Genomics and biomedical research. Biological data mining is a very important part of Bioinformatics.

Other Scientific Applications

The applications discussed above tend to handle relatively small and homogeneous data sets for which the statistical techniques are appropriate. Huge amount of data has been collected from scientific domains such as geosciences, astronomy, etc.

A large amount of data sets is being generated because of the fast numerical simulations in various fields such as climate and ecosystem modeling, chemical

engineering, fluid dynamics, etc.

Intrusion Detection

Intrusion refers to any kind of action that threatens integrity, confidentiality, or the availability of network resources. In this world of connectivity, security has become themajor issue. With increased usage of internet and availability of the tools and tricks for intruding and attacking network prompted intrusion detection to become a critical component of network administration.

Major Issues in data mining:

Data mining is a dynamic and fast-expanding field with great strengths. The major issuescan divided into five groups:

- a) Mining Methodology
- b) User Interaction
- c) Efficiency and scalability
- d) Diverse Data Types Issues
- e) Data mining society

a) Mining Methodology:

It refers to the following kinds of issues -

it refers to the following kinds of issues –
☐ Mining different kinds of knowledge in databases – Different users may
be interested in different kinds of knowledge. Therefore it is necessary for
data mining to cover a broad range of knowledge discovery task.
☐ Mining knowledge in multidimensional space – when searching for
knowledge in large datasets, we can explore the data in multidimensional
space.
☐ Handling noisy or incomplete data – the data cleaning methods are
required to handle the noise and incomplete objects while mining the data
regularities. If the datacleaning methods are not there then the accuracy of
the discovered patterns will be poor.
□ Pattern evaluation – the patterns discovered should be interesting because
either they represent common knowledge or lack novelty.
b) User Interaction:
☐ Interactive mining of knowledge at multiple levels of abstraction – The
data mining process needs to be interactive because it allows users to focus
the search for patterns, providing and refining data mining requests based

on the returned results.	
☐ Incorporation of background knowledge – To guide discovery prod	ess
and to express the discovered patterns, the background knowledge car	ı be
used. Background knowledge may be used to express the discove	red
patterns not only in concise terms but at multiple levels of abstraction.	
□ Data mining query languages and ad hoc data mining - Data Min	ning
Query language that allows the user to describe ad hoc mining tasks, sho	ould
be integrated with a data warehouse query language and optimized	for
efficient and flexible data mining.	
☐ Presentation and visualization of data mining results — Once	the
patterns are discovered it needs to be expressed in high level language	jes,
and visual representations. These representations should be ea	ısily
understandable.	
c) Efficiency and scalability	
There can be performance-related issues such as follows -	
☐ Efficiency and scalability of data mining algorithms - In order	r to
effectively extract the information from huge amount of data in database	ses,
data mining algorithm must be efficient and scalable.	
 Parallel, distributed, and incremental mining algorithms – The fac 	tors
such as huge size of databases, wide distribution of data, and complexit	y of
data mining methods motivate the development of parallel and distribu	ıted
data mining algorithms. These algorithms divide the data into partiti	
which is further processed in a parallel fashion. Then the results from	
partitions is merged. The incremental algorithms, update databases with	out
mining the data again from scratch.	
d) Diverse Data Types Issues	
☐ Handling of relational and complex types of data — The database r	•
contain complex data objects, multimedia data objects, spatial d	
temporal data etc. It is not possible for one system to mine all these kin	d of
data.	
☐ Mining information from heterogeneous databases and glo	
information systems – The data is available at different data sources	
LAN or WAN. Thesedata source may be structured, semi structured	
unstructured. Therefore mining the knowledge from them adds challen	ges

to data mining.

e) Data Mining and Society

Social impacts of data mining – With data mining penetrating our everyday
lives, it is important to study the impact of data mining on society.

- □ **Privacy-preserving data mining** data mining will help scientific discovery, business management, economy recovery, and security protection.
- □ Invisible data mining we cannot expect everyone in society to learn and master data mining techniques. More and more systems should have data mining functions built within so that people can perform data mining or use data mining results simply by mouse clicking, without any knowledge of data mining algorithms.

Data Objects and Attribute Types:

Data Object:

An Object is real time entity.

Attribute:

It can be seen as a data field that represents characteristics or features of a data object. For a customer object attributes can be customer Id, address etc. The attribute types can represented as follows—

Nominal Attributes – related to names: The values of a Nominal attribute
are name of things, some kind of symbols. Values of Nominal attributes
represent some category or state and that's why nominal attribute also
referred as categorical attributes.

Example:

Attribute	Values
Colors	Black, Green, Brown, red

- 2 **Binary Attributes:** Binary data has only 2 values/states. For Example yes or no,affected or unaffected, true or false.
 - i) Symmetric: Both values are equally important (Gender).
 - ii) Asymmetric: Both values are not equally important (Result).

Attribute	Values	Attribute	Values
Gender	Male, Female	Result	Pass, Fail

3. Ordinal Attributes: The Ordinal Attributes contains values that have a meaningful sequence or ranking (order) between them, but the magnitude

between values is not actually known, the order of values that shows what is important but don't indicate how important it is.

Attribute	Values
Grade	O, S, A, B, C, D,
	F

- **4 Numeric:** A numeric attribute is quantitative because, it is a measurable quantity, represented in integer or real values. Numerical attributes are of 2 types.
- i An interval-scaled attribute has values, whose differences are interpretable, but the numerical attributes do not have the correct reference point or we can call zero point. Data can be added and subtracted at interval scale but cannot be multiplied or divided. Consider an example of temperature in degrees Centigrade. If a day's temperature of one day is twice than the other day we cannot say that one day is twice as hot as another day.
- ii. A **ratio-scaled** attribute is a numeric attribute with a fix zero-point. If a measurement is ratio-scaled, we can say of a value as being a multiple (or ratio) of another value. The values are ordered, and we can also compute the difference between values, and the mean, median, mode, Quantile-range and five number summaries can be given.
- 5. Discrete: Discrete data have finite values it can be numerical and can also be in categorical form. These attributes has finite or countably infinite set of values. Example

Attribute	Values
Profession	Teacher, Business man,
	Peon
ZIP Code	521157, 521301

6 Continuous: Continuous data have infinite no of states. Continuous data is of float type. There can be many values between 2 and 3.

Example:

Attribute	Values
Height	5.4, 5.7, 6.2, etc.,
Weight	50, 65, 70, 73,

oto
eic.,

Basic Statistical Descriptions of Data:

Basic Statistical descriptions of data can be used to identify properties of the data and highlight which data values should be treated as noise or outliers.

1. Measuring the central Tendency:

There are many ways to measure the central tendency.

a) **Mean:** Let us consider the values are x1, x2,, xN be a set of N observed values or observations of X.

The Most common numeric measure of the "center" of a set of data is the *mean*.

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{x_1 + x_2 + \dots + x_N}{N}.$$

Sometimes, each values in a set maybe associated with weight for i=1, 2,, N.

then the mean is as follows

$$\bar{x} = \frac{\sum_{i=1}^{N} w_i x_i}{\sum_{i=1}^{N} w_i} = \frac{w_1 x_1 + w_2 x_2 + \dots + w_N x_N}{w_1 + w_2 + \dots + w_N}.$$

This is called **weighted arithmetic mean** or **weighted average**.

b) *Median:* Median is middle value among all values.

For N number of odd list median is middle value

For N number of even list median is mean of two middlemost values.

c) Mode:

➤ The *mode* is another measure of central tendency.

- > Datasets with one, two, or three modes are respectively called unimodal, bimodal, and trimodal.
- A dataset with two or more modes is multimodal. If each data occurs only once, then there is no mode.

Mean, median, and mode of symmetric versus positively and negatively skewed data.

- **2.** Measuring the Dispersion of data:
- > The data can be measured as range, quantiles, quartiles, percentiles, and interquartilerange.
- The kth percentile of a set of data in numerical order is the value x_i having the propertythat k percent of the data entries lay at or below x_i.
- ➤ The measures of data dispersion: Range, Five-number summary, Interquartile range(IQR), Variance and Standard deviation.

Five Number Summary:

This contains five values Minimum, Q1 (25% value), Median, Q3 (75% value), and Maximum. These Five numbers are represented as Boxplot in graphical format.

- Boxplot is Data is represented with a box.
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IRQ.
- > The median is marked by a line within the box.
- Whiskers: two lines outside the box extend to Minimum and Maximum.
- ➤ To show outliers, the whiskers are extended to the extreme low and high observations only if these values are less than 1.5 * IQR beyond the quartiles.

Boxplot for the unit price data for items sold at four branches of *AllElectronics* during a given time period.

Variance and Standard Deviation:

Let us consider the values are x1,x2,....,xN be a set of N observed values or observations of X. The variance formula is

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2} = \left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}\right) - \bar{x}^{2},$$

- > Standard Deviation is the square root of variance σ^2 .
- σ measures spread about the mean and should be used only when the mean is chosen as the measure of center.
- \triangleright σ =0 only when there is no spread, that is, when all observations have the same value.

3. Graphical Displays of Basic Statistical data:

There are many types of graphs for the display of data summaries and distributions, such as:

- Bar charts
- > Pie charts
- Line graphs
- Boxplot
- Histograms
- Quantile plots, Quantile Quantile plots
- Scatter plots

The data values can represent as Bar charts, pie charts, Line graphs, etc. Quantile plots:

- ➤ A quantile plot is a simple and effective way to have a first look at a univariate datadistribution.
- Plots quantile information
 - For a data xi data sorted in increasing order, fi indicates that approximately 100fi% of the data are below or equal to the value xi

Note that

- the 0.25 quantile corresponds to quartile Q1,
- the 0.50 quantile is the median, and
- the 0.75 quantile is Q3.

Quantile - Quantile plots:

In statistics, a Q-Q plot is a portability plot, which is a graphical method for comparing two portability distributions by plotting their quantiles against each other.

A q-q plot for unit price data from two AllElectronics branches.

Histograms or frequency histograms:

- A univariate graphical method
- Consists of a set of rectangles that reflect the counts or frequencies of the classespresent in the given data
- ➤ If the attribute is categorical, then one rectangle is drawn for each known value of A, and the resulting graph is more commonly referred to as a bar chart.
- If the attribute is numeric, the term histogram is preferred.

• Example: A set of unit price data for items sold at a branch of *AllElectronics*

Unit price (\$)	Count of items sold
40	275
43	300
47	250
 74	360
75	515
78	540
115	320
117	270
120	350

Scatter Plot:

Scatter plot

- Is one of the most effective graphical methods for determining if there
 appears tobe a relationship, clusters of points, or outliers between two
 numerical attributes.
- Each pair of values is treated as a pair of coordinates and plotted as points in

the plane

Data Visualization:

Visualization is the use of computer graphics to create visual images which aid in theunderstanding of complex, often massive representations of data.

- Categorization of visualization methods:
 - a) Pixel-oriented visualization techniques
 - b) Geometric projection visualization techniques
 - c) Icon-based visualization techniques
 - d) Hierarchical visualization techniques
 - e) Visualizing complex data and relations
- a) Pixel-oriented visualization techniques
 - > For a data set of m dimensions, create m windows on the screen, one for eachdimension
 - ➤ The m dimension values of a record are mapped to m pixels at the corresponding positions in the windows
 - ➤ The colors of the pixels reflect the corresponding values

> To save space and show the connections among multiple dimensions, space filling isoften done in a circle segment.

b) Geometric projection visualization techniques

Visualization of geometric transformations and projections of the data Methods

- Direct visualization
- > Scatterplot and scatterplot matrices
- Landscapes
- Projection pursuit technique: Help users find meaningful projections of multidimensional data
- Prosecution views
- > Hyper slice
- > Parallel coordinates

- c) Icon-based visualization techniques
 - Visualization of the data values as features
 - of iconsTypical visualization methods

- Chernoff Faces
- > Stick
- Figures

General

techniques

- > Shape coding: Use shape to represent certain information encoding
- > Color icons: Use color icons to encode more information
- > Tile bars: Use small icons to represent the relevant feature vectors in document retrieval

d) Hierarchical visualization techniques

Visualization of the data using a hierarchical partitioning into subspacesMethods

- Dimensional Stacking
- > Worlds-within-Worlds
- > Tree-Map
- Cone Trees
- InfoCube

Info Cube

Worlds-within-worlds

c) Visualizing complex data and relations

- Visualizing non-numerical data: text and social networks
- **Tag cloud:** visualizing user-generated tags
 - ➤ The importance of tag is represented by font size/color
- ♣ Besides text data, there are also methods to visualize relationships, such asvisualizing

Similarity and Dissimilarity

Distance or similarity measures are essential to solve many pattern recognition problems such as classification and clustering. Various distance/similarity measures are available in literature to compare two data distributions. As the names suggest, a similarity measures how close two distributions are. For multivariate data complex summary methods are developed to answer this question.

Similarity Measure

- Numerical measure of how alike two data objects are.
- Often falls between 0 (no similarity) and 1 (complete similarity).

Dissimilarity Measure

- Numerical measure of how different two data objects are.
- Range from 0 (objects are alike) to ∞ (objects are different).

Proximity refers to a similarity or dissimilarity.

Similarity/Dissimilarity for Simple Attributes

Here, p and q are the attribute values for two data objects.

Attribute Type	Similarity	Dissimilarity
Nominal	$s = egin{cases} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{cases}$	$d = \left\{egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$
Ordinal	$s=1-\frac{\ p-q\ }{n-1}$ (values mapped to integer 0 to n-1, where n is the number of values)	$d=rac{\ p-q\ }{n-1}$
Interval or Ratio	$s=1-\ p-q\ $, $s=rac{1}{1+\ p-q\ }$	$d = \ p - q\ $

Common Properties of Dissimilarity Measures

Distance, such as the Euclidean distance, is a dissimilarity measure and has some well knownproperties:

- 1. $d(p, q) \ge 0$ for all p and q, and d(p, q) = 0 if and only if p = q,
- 2. d(p, q) = d(q, p) for all p and q,
- 3. $d(p, r) \le d(p, q) + d(q, r)$ for all p, q, and r, where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.

A distance that satisfies these properties are called a **metric**. Following is a list of several common distance measures to compare multivariate data. We will assume that the attributes are all continuous.

a) Euclidean Distance

Assume that we have measurements x_{ik} , i = 1, ..., N, on variables k = 1, ..., p (also called attributes). The Euclidean distance between the ith and jth objects is

$$d_E(i,j) = \left(\sum_{k=1}^p \left(x_{ik} - x_{jk}
ight)^2
ight)^{rac{1}{2}}$$

for every pair (i, j) of observations. The weighted Euclidean distance is

$$d_{WE}(i,j) = \left(\sum_{k=1}^p W_k (x_{ik}-x_{jk})^2
ight)^{rac{1}{2}}$$

If scales of the attributes differ substantially, standardization is necessary.

b) Minkowski Distance

The Minkowski distance is a generalization of the Euclidean distance. With the measurement, xik, i = 1, ..., N, k = 1, ..., p, the Minkowski distance is

$$d_M(i,j) = \left(\sum_{k=1}^p \left|x_{ik} - x_{jk}
ight|^{\lambda}
ight)^{rac{1}{\lambda}},$$

where $\lambda \ge 1$. It is also called the $L\lambda$ metric.

 $\lambda = 1$: L1 metric, Manhattan or City-block

distance. $\lambda = 2$: L2 metric, Euclidean distance.

$$\lim \lambda o \infty = \left(\sum_{k=1}^p \left|x_{ik} - x_{jk}
ight|^{\lambda}
ight)^{rac{1}{\lambda}} = \max\left(\left|x_{i1} - x_{j1}
ight|, \ldots, \left|x_{ip} - x_{jp}
ight|
ight)$$

Note that λ and p are two different parameters. Dimension of the data matrix remainsfinite.

c) Mahalanobis Distance

Let X be a $N \times p$ matrix. Then the ith row of X is

The Mahalanobis distance is

$$d_{MH}(i,j) = \left((x_i-x_j)^T \Sigma^{-1} \left(x_i-x_j
ight)
ight)^{rac{1}{2}}$$

where \sum is the pxp sample covariance matrix.

Common Properties of Similarity Measures

Similarities have some well known properties:

1. s(p, q) = 1 (or maximum similarity) only if p = q,

2. s(p, q) = s(q, p) for all p and q, where s(p, q) is the similarity between data objects, p and q.

Similarity Between Two Binary Variables

The above similarity or distance measures are appropriate for continuous variables. However, for binary variables a different approach is necessary.

	q=1	q=0
p=1	n _{1,1}	n _{1,0}
p=0	n _{0,1}	n _{0,0}

Simple Matching and Jaccard Coefficients

Simple matching coefficient = $(n_{1,1} + n_{0,0}) / (n_{1,1} + n_{1,0} + n_{0,1} + n_{0,0})$. Jaccard coefficient = $n_{1,1} / (n_{1,1} + n_{1,0} + n_{0,1})$.

DATA PREPROCESSING

1. Preprocessing

Real-world databases are highly susceptible to noisy, missing, and inconsistent data due to their typically huge size (often several gigabytes or more) and their likely origin from multiple, heterogeneous sources. Low-quality data will lead to low-quality mining results, so we prefer a preprocessing concept.

Data Preprocessing Techniques

- * **Data cleaning** can be applied to remove noise and correct inconsistencies in the data.
- * **Data integration** merges data from multiple sources into coherent data store, such as a data warehouse.
- * **Data reduction** can reduce the data size by aggregating, eliminating redundant features, or clustering, for instance. These techniques are not mutually exclusive; they may work together.
- Data transformations, such as normalization, may be applied.

Need for preprocessing

- ➤ Incomplete, noisy and inconsistent data are common place properties of large realworlddatabases and data warehouses.
- ➢Incomplete data can occur for a number of reasons:
- Attributes of interest may not always be available

- Relevant data may not be recorded due to misunderstanding, or because of equipmentmalfunctions.
- Data that were inconsistent with other recorded data may have been deleted.
- Missing data, particularly for tuples with missing values for some attributes, mayneed to be inferred.
- The data collection instruments used may be faulty.
- There may have been human or computer errors occurring at data entry.
- Errors in data transmission can also occur.
- There may be technology limitations, such as limited buffer size for coordinating synchronized data transfer and consumption.
- Data cleaning routines work to -clean the data by filling in missing values, smoothing noisy data, identifying or removing outliers, and resolving inconsistencies.
- Data integration is the process of integrating multiple databases cubes or files. Yet some attributes representing a given may have different names in different databases, causing inconsistencies and redundancies.
- Data transformation is a kind of operations, such as normalization and aggregation, are additional data preprocessing procedures that would contribute toward the successof the mining process.
- Data reduction obtains a reduced representation of data set that is much smaller in volume, yet produces the same(or almost the same) analytical results.

Forms of data preprocessing.

2. DATA CLEANING

Real-world data tend to be incomplete, noisy, and inconsistent. Data cleaning (or data cleansing) routines attempt to fill in missing values, smooth out noise while identifying outliers and correct inconsistencies in the data.

Missing Values

Many tuples have no recorded value for several attributes, such as customer income.so we can fill the missing values for this attributes.

The following methods are useful for performing missing values over several attributes:

- 1. Ignore the tuple: This is usually done when the class label missing (assuming the mining task involves classification). This method is not very effective, unless the tuple contains several attributes with missing values. It is especially poor when the percentage of the missing values per attribute varies considerably.
- 2 Fill in the missing values manually: This approach is time –consuming and may not be feasible given a large data set with many missing values.
- 3. Use a global constant to fill in the missing value: Replace all missing attribute value by the same constant, such as a label like –unknown or -∞.
- **4. Use the attribute mean to fill in the missing value**: For example, suppose that the average income of customers is \$56,000. Use this value to replace the missing value for income.
- 5. Use the most probable value to fill in the missing value: This may be determined with regression, inference-based tools using a Bayesian formalism or decision tree induction. For example, using the other customer attributes in the sets decision tree is constructed to predict the missing value for income.

Noisy Data

Noise is a random error or variance in a measured variable. Noise is removed using data smoothing techniques.

Binning: Binning methods smooth a sorted data value by consulting its -neighborhood, I that is the value around it. The sorted values are distributed into a number of -bucketsII or -bins—.

Because binning methods consult the neighborhood of values, they perform local smoothing. Sorted data for price (in dollars): 3,7,14,19,23,24,31,33,38.

Example 1: Partition into (equal-frequency) bins:

Bin 1: 3,7,14

Bin 2: 19,23,24

Bin 3: 31,33,38

In the above method the data for price are first sorted and then partitioned into equalfrequency bins of size 3.

Smoothing by bin means:

Bin 1: 8,8,8

Bin 2: 22,22,22

Bin 3: 34,34,34

In smoothing by bin means method, each value in a bin is replaced by the mean value of thebin. For example, the mean of the values 3,7&14 in bin 1 is 8[(3+7+14)/3] Smoothing by bin boundaries:

Bin 1: 3,3,14

Bin 2: 19,24,24

Bin 3: 31,31,38

In smoothing by bin boundaries, the maximum & minimum values in give bin or identify as the bin boundaries. Each bin value is then replaced by the closest boundary value.

In general, the large the width, the greater the effect of the smoothing. Alternatively, bins may be equal-width, where the interval range of values in each bin is constant Example 2: Remove the noise in the following data using smoothing techniques:

Sorted data for price (in dollars):4,8,9,15,21,21,24,25,26,28,29,34

Partition into equal-frequency (equi-depth) bins:

Bin 1: 4, 8,9,15

Bin 2: 21,21,24,25

Bin 3: 26,28,29,34

Smoothing by bin means:

Bin 1: 9,9,9,9

Bin 2: 23,23,23,23

Bin 3: 29,29,29,29

Smoothing by bin boundaries:

Bin 1: 4, 4,4,15

Bin 2: 21,21,25,25

Bin3: 26,26,26,34

Regression: Data can be smoothed by fitting the data to function, such as with regression. Linear regression involves finding the -best line to fit two attributes (or variables), so that one attribute can be used to predict the other. Multiple linear regressions is an extension of linear regression, where more than two attributes are involved and the data are fit to a multidimensional surface.

Clustering: Outliers may be detected by clustering, where similar values are organized into groups, or -clusters. I Intuitively, values that fall outside of the set

of clusters may be considered outliers.

Inconsistent Data

Inconsistencies exist in the data stored in the transaction. Inconsistencies occur due to occur during data entry, functional dependencies between attributes and missing values. The inconsistencies can be detected and corrected either by manually or by knowledge engineering tools.

Data cleaning as a process

- a) Discrepancy detection
- b) Data transformations
 - a) Discrepancy detection

The first step in data cleaning is discrepancy detection. It considers the knowledge of meta data and examines the following rules for detecting the discrepancy.

Unique rules- each value of the given attribute must be different from all other values for that attribute.

Consecutive rules – Implies no missing values between the lowest and highest values

for theattribute and that all values must also be unique.

Null rules - specifies the use of blanks, question marks, special characters, or other stringsthat may indicates the null condition

Discrepancy detection Tools:

- ❖ Data scrubbing tools use simple domain knowledge (e.g., knowledge of postal addresses, and spell-checking) to detect errors and make corrections in the data
- Data auditing tools analyzes the data to discover rules and relationship, anddetecting data that violate such conditions.

b) Data transformations

This is the second step in data cleaning as a process. After detecting discrepancies, we need to define and apply (a series of) transformations to correct them.

Data Transformations Tools:

❖ Data migration tools – allows simple transformation to be specified, such to replaced the string –gender∥ by –sex∥.

ETL (Extraction/Transformation/Loading) tools – allows users to specific transforms through a graphical user interface(GUI)

3. Data Integration

Data mining often requires data integration - the merging of data from stores into a coherent data store, as in data warehousing. These sources may include multiple data bases, datacubes, or flat files.

Issues in Data Integration

- a) Schema integration & object matching.
- b) Redundancy.
- c) Detection & Resolution of data value conflict

a) Schema Integration & Object Matching

Schema integration & object matching can be tricky because same entity can be represented in different forms in different tables. This is referred to as the entity identification problem. Metadata can be used to help avoid errors in schema integration. The meta data mayalso be used to help transform the data.

b) Redundancy:

Redundancy is another important issue an attribute (such as *annual revenue*, for instance) may be redundant if it can be -derived from another attribute are set of

attributes. Inconsistencies in attribute of dimension naming can also cause redundancies in the resulting data set. Some redundancies can be detected by correlation analysis and covariance analysis.

For Nominal data, we use the \Box^2 (Chi-Square) test.

For Numeric attributes we can use the correlation coefficient and covariance.

□ ²Correlation analysis for numerical data:

For nominal data, a correlation relationship between two attributes, A and B, can be discovered by a □2 (Chi-Square) test. Suppose A has c distinct values, namely a1, a2, a3,

....., a_C. B has r distinct values, namely b1, b2, b3,, b_r. The data tuples are described by table.

The □2 value is computed as

$$\chi^2 = \begin{matrix} c & r & \frac{o_{ij} - e_{ij}}{e_{ij}} \end{matrix}$$

Where oij is the observed frequency of the joint event (Ai,Bj) and eij is the expected frequency of (Ai,Bj), which can computed as

$$e_{ij} = \frac{count \ A = a_i \ Xcount(B = b_j)}{n}$$

For Example,

	Male	Female	Total
Fiction	250	200	450
Non_Fiction	0	1000	1050
Total	300	1200	1500

$$\mathbf{e}_{11} = \frac{count \ male \ Xcount \ (\underline{fiction})}{n} = \frac{300 X 450}{1500} = 90$$

$$\mathbf{e}_{12} = \frac{count \ male \ Xcount \ (\underline{non \ fiction})}{n} = \frac{300 X 1050}{1500} = 210$$

$$\mathbf{e}_{21} = \frac{count \ female \ Xcount \ (\underline{fiction})}{n} = \frac{1200 X 450}{1500} = 360$$

$$\mathbf{e}_{22} = \frac{count \ female \ Xcount \ (\underline{non \ fiction})}{n} = \frac{1200 X 1050}{1500} = 840$$

	Male	Female	Total
Fiction	250 (90)	200 (360)	450

Non_Fiction	50 (210)	1000	1050
		(840)	
Total	300	1200	1500

For x^2 computation, we get

$$x^{2} = \frac{(250 - 90)^{2} + (50 - 210)^{2} + 200 - 360^{2} + (1000 - 840)^{2}}{90 + 210 + 360 + 840}$$

$$= 284.44 + 121.90 + 71.11 + 30.48 = 507.93$$

For this 2 X 2 table, the degrees of freedom are (2-1(2-1)=1. For 1 degree of freedom, the x2 value needed to reject the hypothesis at the 0.001 significance level is 10.828(from statistics table). Since our computed value is greater than this, we can conclude that two attributes are strongly correlated for the given group of people.

Correlation Coefficient for Numeric data:

For Numeric attributes, we can evaluate the correlation between two attributes, A and B, by computing the correlation coefficient. This is

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n\bar{A}\bar{B}}{n\sigma_A \sigma_B},$$

For Covariance between A and B defined as

$$n \quad a_i - A \quad b_i - B$$

$$Cov(A,B) = \underbrace{}_{i=1}$$

c) Detection and Resolution of Data Value Conflicts.

A third important issue in data integration is the *detection and resolution of data value conflicts*. For example, for the same real—world entity, attribute value from different sources may differ. This may be due to difference in representation, scaling, or encoding.

For instance, a weight attribute may be stored in metric units in one system and British imperial units in another. For a hotel chain, the *price* of rooms in different cities may involve not only different currencies but also different services (such as free breakfast) and taxes. An attribute in one system may be recorded at a lower level

of abstraction than the -same attribute in another.

Careful integration of the data from multiple sources can help to reduce and avoid redundancies and inconsistencies in the resulting data set. This can help to improve the accuracy and speed of the subsequent of mining process.

4. Data Reduction:

Obtain a reduced representation of the data set that is much smaller in volume but yetproduces the same (or almost the same) analytical results.

Why data reduction? — A database/data warehouse may store terabytes of data.

Complex data analysis may take a very long time to run on the complete data set.

Data reduction strategies

- 4.1. Data cube aggregation
- 4.2. Attribute Subset Selection
- 4.3. Numerosity reduction e.g., fit data into models
- 4.4. Dimensionality reduction Data Compression

Data cube aggregation:

For example, the data consists of AllElectronics sales per quarter for the years 2014 to 2017. You are, however, interested in the annual sales, rather than the total per quarter. Thus, the data can be **aggregated** so that the resulting data summarize the total sales per year instead of per quarter.

Attribute Subset Selection

Attribute subset selection reduces the data set size by removing irrelevant or redundant attributes (or dimensions). The goal of attribute subset selection is to find a minimum set of attributes. It reduces the number of attributes appearing in the discovered patterns, helping to make the patterns easier to understand.

For *n* attributes, there are 2*n* possible subsets. An exhaustive search for the optimal subset of attributes can be prohibitively expensive, especially as *n* and the number of data classes increase. Therefore, heuristic methods that explore a reduced search space are commonly used for attribute subset selection. These methods are typically greedy in that, while searching to attribute space, they always make what looks to be the best choice at that time. Their strategy to make a locally optimal choice in the hope that this will lead to a globally optimal solution. Many other attributes evaluation measure can be used, such as theinformation gain measure used in building decision trees for classification.

Techniques for heuristic methods of attribute sub set selection

- Stepwise forward selection
- Stepwise backward elimination
- Combination of forward selection and backward elimination
 Decision tree induction

1. **Stepwise forward selection**: The procedure starts with an empty set of attributes as the reduced set. The best of original attributes is determined and added to the reduced set. At each subsequent iteration or step, the best of the remaining original attributes is added to the set.

- 2. **Stepwise backward elimination**: The procedure starts with full set of attributes. At each step, it removes the worst attribute remaining in the set.
- **3.** Combination of forward selection and backward elimination: The stepwise forwardselection and backward elimination methods can be combined so that, at each step, the procedure selects the best attribute and removes the worst from among the remaining attributes.
- **4. Decision tree induction**: Decision tree induction constructs a flowchart like structure where each internal node denotes a test on an attribute, each branch corresponds to an outcome of the test, and each leaf node denotes a class prediction. At each node, the algorithm choices the -best attribute to partition the data into individual classes. A tree is constructed from the given data. All attributes that do not appear in the tree are assumed to be irrelevant. The set of attributes appearing in the tree from the reduced subset of attributes. Threshold measure is used as stopping criteria.

Numerosity Reduction:

Numerosity reduction is used to reduce the data volume by choosing alternative, smallerforms of the data representation

Techniques for Numerosity reduction:

- Parametric In this model only the data parameters need to be stored, instead of theactual data. (e.g.,) Log-linear models, Regression
- ➤ Nonparametric This method stores reduced representations of data include histograms, clustering, and sampling

Parametric model

1. Regression

Linear regression

- In linear regression, the data are model to fit a straight line. For example, a random variable, Y called a response variable), can be modeled as a linear function of another random variable, X called a predictor variable), with the equation $Y=\alpha X+\beta$
- Where the variance of Y is assumed to be constant. The coefficients, α and β (called regression coefficients), specify the slope of the line and the Y- intercept, respectively.
- Multiple- linear regression
- Multiple linear regression is an extension of (simple) linear regression, allowing a

response variable Y, to be modeled as a linear function of two or more predictor variables.

Nonparametric Model

1. Histograms

A histogram for an attribute A partitions the data distribution of A into disjointsubsets, or buckets. If each bucket represents only a single attribute-value/frequency pair, the buckets are called singleton buckets.

Ex: The following data are bast of prices of commonly sold items at All Electronics.

The numbers have been sorted:

1,1,5,5,5,5,5,8,8,10,10,10,10,12,14,14,14,15,15,15,15,15,15,15,18,18,18,18,18,18,18,18,2

0,20,20,2

0,20,20,21,21,21,21,21,25,25,25,25,25,28,28,30,30,30

Figure 3.7 A Histogram for price using Singleton Buckets

There are several partitioning rules including the following:

Equal-width: The width of each bucket range is uniform

(Equal-frequency (or equi-depth): the frequency of each bucket is constant

An equal-width histogram for *price*, where values are aggregated so that each bucket has a

uniform width of \$10.

1. Clustering

Clustering technique consider data tuples as objects. They partition the objects into groups or clusters, so that objects within a cluster are similar to one another and dissimilar to objects in other clusters. Similarity is defined in terms of how close the objects are in space, based on a distance function. The quality of a cluster may be represented by its diameter, the maximum distance between any two objects in the cluster. Centroid distance is an alternative measure of cluster quality and is defined as the average distance of each cluster object from the cluster centroid.

2. Sampling:

Sampling can be used as a data reduction technique because it allows a large data set to be represented by a much smaller random sample (or subset) of the data. Suppose that a large data set D, contains N tuples, then the possible samples are Simple Random sample without Replacement (SRS WOR) of size n: This is created by drawing "n" of the "N" tuples from D (n<N), where the probability of drawing any tuple in D is 1/N, i.e., all tuples are equally likely to be sampled.

Startified sample (according to age)

T38	youth
T256	youth
T307	youth
T391	youth
T96	middle_aged
T117	middle_aged
T138	middle_aged
T263	middle_aged
T290	middle_aged
T308	middle_aged
T326	middle_aged
T387	middle_aged
T69	senior
T284	senior

T38	youth
T391	youth
T117	middle_aged
T138	middle_aged
T290	middle_aged
T326	middle_aged
T69	senior

Sampling can be used for data reduction.

Dimensionality Reduction:

In dimensionality reduction, data encoding or transformations are applied so as to obtained reduced or -compressed representation of the oriental data.

Dimension Reduction Types

- ➤ Lossless If the original data can be *reconstructed* from the compressed data without any loss of information
- ➤ Lossy If the original data can be reconstructed from the compressed data with loss of information, then the data reduction is called lossy.

Effective methods in lossy dimensional reduction

- a) Wavelet transforms
- b) Principal components analysis.
- a) Wavelet transforms:

The discrete wavelet transform (DWT) is a linear signal processing technique that, when applied to a data vector, transforms it to a numerically different vector, of wavelet coefficients. The two vectors are of the same length. When applying this technique to data reduction, we consider each tuple as an n-dimensional data vector, that is, X=(x1,x2,...,xn), depicting n measurements made on the tuple from n database attributes.

For example, all wavelet coefficients larger than some user-specified threshold can be retained. All other coefficients are set to 0. The resulting data representation is therefore very sparse, so that can take advantage of data sparsity are computationally very fast if performed in wavelet space.

The numbers next to a wave let name is the number of vanishing moment of the wavelet this is a set of mathematical relationships that the coefficient must satisfy and is related to number of coefficients.

- 1. The length, L, of the input data vector must be an integer power of 2. This condition can be met by padding the data vector with zeros as necessary (L >=n).
 - 2. Each transform involves applying two functions
 - The first applies some data smoothing, such as a sum or weighted average.
- The second performs a weighted difference, which acts to bring out the detailed features of data.
- 3. The two functions are applied to pairs of data points in X, that is, to all pairs of measurements (X2i, X2i+1). This results in two sets of data of length L/2. In general, these represent a smoothed or low-frequency version of the input data and high frequency content of it, respectively.
- 4. The two functions are recursively applied to the sets of data obtained in the previous loop, until the resulting data sets obtained are of length 2.
 - *b*) Principal components analysis

Suppose that the data to be reduced, which Karhunen-Loeve, K-L, method consists of tuples or data vectors describe by n attributes or dimensions. Principal components analysis, or PCA (also called the Karhunen-Loeve, or K-L, method), searches for k n-dimensional orthogonal vectors that can best be used to represent the data where $k \le n$. PCA combines the essence of attributes by creating an alternative, smaller set of variables. The initial data can then be projected onto this smaller set.

The basic procedure is as follows:

- The input data are normalized.
- PCA computes *k* orthonormal vectors that provide a basis for the normalized input data. These are unit vectors that each point in a direction perpendicular to the others.
- The principal components are sorted in order of decreasing significance or strength.

In the above figure, Y1 and Y2, for the given set of data originally mapped to the axes X1 and X2. This information helps identify groups or patterns within the data. The sorted axes are such that the first axis shows the most variance among the data, the second axis shows thenext highest variance, and so on.

- The size of the data can be reduced by eliminating the weaker components. Advantage of PCA
- PCA is computationally inexpensive
- Multidimensional data of more than two dimensions can be handled by reducing the problem to two dimensions.
- Principal components may be used as inputs to multiple regression and cluster analysis.

5. Data Transformation and Discretization

Data transformation is the process of converting data from one format or structure into another format or structure.

In *data transformation*, the data are transformed or consolidated into forms appropriate for mining. Strategies for data transformation include the following:

- 1. **Smoothing**, which works to remove noise from the data. Techniques include binning, regression, and clustering.
- 2. Attribute construction (or *feature construction*), where new attributes are constructed and added from the given set of attributes to help the mining process.
- **3. Aggregation**, where summary or aggregation operations are applied to the data. For example, the daily sales data may be aggregated so as to compute monthly and annual totalamounts. This step is typically used in constructing a data cube for data analysis at multiple abstraction levels.

- **4. Normalization**, where the attribute data are scaled so as to fall within a smaller range, such as 1.0 to 1.0, or 0.0 to 1.0.
- **5. Discretization**, where the raw values of a numeric attribute (e.g., *age*) are replaced by interval labels (e.g., 0–10, 11–20, etc.) or conceptual labels (e.g., *youth, adult, senior*). The labels, in turn, can be recursively organized into higher-level concepts, resulting in a *concept hierarchy* for the numeric attribute. Figure 3.12 shows a concept hierarchy for the attribute *price*. More than one concept hierarchy can be defined for the same attribute to accommodate the needs of various users.
- 6. Concept hierarchy generation for nominal data, where attributes such as *street* can be generalized to higher-level concepts, like *city* or *country*. Many hierarchies for nominal attributes are implicit within the database schema and can be automatically defined at the schema definition level.

Data Transformation by Normalization:

The measurement unit used can affect the data analysis. For example, changing measurement units from meters to inches for *height*, or from kilograms to pounds for *weight*, may lead to very different results.

For distance-based methods, normalization helps prevent attributes with initially large ranges (e.g., *income*) from outweighing attributes with initially smaller ranges (e.g., binary attributes). It is also useful when given no prior knowledge of the data.

There are many methods for data normalization. We study *min-max normalization, z-score normalization,* and *normalization by decimal scaling.* For our discussion, let A be a numeric attribute with n observed values, $v_1, v_2, ..., v_n$.

a) Min-max normalization performs a linear transformation on the original data. Suppose that *minA* and *maxA* are the minimum and maximum values of an attribute, A. Min-max normalization maps a value, v_i , of A to v_i in the range $[new_minA, new_maxA]$ by computing

$$v_i' = \frac{v_i - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A.$$

Min-max normalization preserves the relationships among the original data values. It will encounter an -out-of-bounds error if a future input case for normalization falls outside of the original data range for *A*.

Example:-Min-max normalization. Suppose that the minimum and maximum values forth attribute *income* are \$12,000 and \$98,000, respectively. We would like to map *income* to the range [0.0, 1.0]. By min-max normalization, a value of \$73,600 for *income* is transformed to

$$\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716.$$

b) Z-Score Normalization

The values for an attribute, *A*, are normalized based on the mean (i.e., average) and standard deviation of *A*. A value, *vi*, of *A* is normalized to *vi'* by computing

$$v_i' = \frac{v_i - \bar{A}}{\sigma_A}$$

where *A* and □A are the mean and standard deviation, respectively, of attribute A. **Example** z-score normalization. Suppose that the mean and standard deviation of the values for the attribute income are \$54,000 and \$16,000, respectively. With z-score normalization, avalue of \$73,600 for income is transformed to

$$\frac{7\overline{3,600-54,000}}{16,000} = 1.225.$$

a) Normalization by Decimal Scaling:

Normalization by decimal scaling normalizes by moving the decimal point of values of attribute A. The number of decimal points moved depends on the maximum absolute value of A. A value, vi, of A is normalized to vi' by computing

$$v_i' = \frac{v_i}{10^j}$$

where j is the smallest integer such that $max(|v|^2) < 1$.

Example Decimal scaling. Suppose that the recorded values of A range from -986 to 917. The maximum absolute value of A is 986. To normalize by decimal scaling, we therefor divide each value by 1000 (i.e., j = 3) so that -986 normalizes to -0.986 and 917normalizes to 0.917.

5.2. Data Discretization

a) Discretization by binning:

Binning is a top-down splitting technique based on a specified number of bins. For example, attribute values can be discretized by applying equal-width or equal-

Frequency binning, and then replacing each bin value by the bin mean or median, as in *smoothing by bin means* or *smoothing by bin medians*, respectively. These techniques can be applied recursively to the resulting partitions to generate concept hierarchies.

b) Discretization by Histogram Analysis:

Like binning, histogram analysis is an unsupervised discretization technique because it does not use class information. A histogram partitions the values of an attribute, A, into disjoint ranges called buckets or bins.

In an equal-width histogram, for example, the values are partitioned into equal-size partitions or ranges (e.g., for price, where each bucket has a width of \$10). With an equal- frequency histogram, the values are partitioned so that, ideally, each partition contains the same number of data tuples.

c) Discretization by Cluster, Decision Tree, and Correlation Analyses

Cluster analysis is a popular data discretization method. A clustering algorithm can be applied to discretize a numeric attribute, A, by partitioning the values of A into clusters or groups.

Techniques to generate decision trees for classification can be applied to discretization. Such techniques employ a top-down splitting approach. Unlike the other methods mentioned so far, decision tree approaches to discretization are supervised, that is, they make use of class label information.

Concept Hierarchy Generation for Nominal Data

Nominal attributes have a finite (but possibly large) number of distinct values, with no ordering among the values. Examples include geographic location, job category, and item type.

Manual definition of concept hierarchies can be a tedious and time-consuming task for a user or a domain expert. Fortunately, many hierarchies are implicit within the database schema and can be automatically defined at the schema definition level. The concept hierarchies can be used to transform the data into multiple levels of granularity.

- 1. Specification of a partial ordering of attributes explicitly at the schema level by users or experts: A user or expert can easily define a concept hierarchy by specifying a partial or total ordering of the attributes at the schema level.
- 2. Specification of a portion of a hierarchy by explicit data grouping: In a large database, it is unrealistic to define an entire concept hierarchy by explicit value enumeration. For example, after specifying that province and country form a hierarchy at the schema level, a user could define some intermediate levels manually.
- 3. Specification of a set of attributes, but not of their partial ordering: A user may specify a set of attributes forming a concept hierarchy, but omit to explicitly state their partial ordering. The system can then try to automatically generate the attribute ordering so as to construct a meaningful concept hierarchy.
- 4. Specification of only a partial set of attributes: Sometimes a user can be careless when defining a hierarchy, or have only a vague idea about what should be included in a hierarchy. Consequently, the user may have included only a small subset of the relevant attributes in the hierarchy specification.