Machine Learning – Take home messages

Week 11

Machine Learning Models

Unsupervised

Supervised

Clusterin g Dimensionality Reductio n

Linear

Non-Linear

Linear regress-ion

Logistic regressio n/classifi cation

K nearest neighbor

SVM

Decision Tree Random Forest

Neural Network

Deep Learning

Unsupervised

Clustering

Dimensionality reduction

Cluster can vary based on the properties

Distance measures

Euclidean
Mahalanobis
Jaccard
Cosine
Manhattan

Intra-cluster

distances are

minimized

Algorithms

Kmeans++

KMeans

Inter-cluster

distances are

maximized

Performance measures

Rand Index
Purity
Mutual Information
Silhouette Coefficient

Clustering

Dimensionality reduction

Principal Component Analysis

Correlated
High
Dimensional
Data

Compute Covariance Matrix Eigenvectors + Eigenvalues Pick n<d eigenvectors with highest eigenvalues Project data points to those eigenvectors

Uncorrelated Low Dimensional Data

- Linear combinations of all dimensions (w>0)
- Ranked based on described variance
- Drop dimension with very low variance

- Impossible to find effect of individual attributes
- Limits importance of hand-crafted features
- Reduce clarity of domain knowledge

Linear

Nonlinear

What we want to learn?

$$h: X \to Y$$

How the machine learns?

$$\min_{h \in H} \frac{1}{n} \sum_{i=1}^{n} L(y_i, h(x_i))$$

rate	Performa Alg 1	ance M	eası	urement	S cted Class	
rat	False positive rate 1.0	Actual Class		Positive	Negative	
positive			Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
rue po			Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $TN \over (TN + FP)$
Ė				Precision $\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN+FN)}$	$\frac{Accuracy}{TP + TN}$ $\frac{TP + TN}{(TP + TN + FP + FN)}$

$$R_{str}(h) = R_{emp}(h) + \lambda C(h)$$

Supervised

Linear

Nonlinear

Nonlinear

Recap of the unit ...

Supervised

Linear

Nonlinear

K Nearest Neighbor

- Small values of K
 - Restrains the region of a given prediction
 - Forces classifier to be more focused on the close regions and neighbours
 - This will result in a low bias and high variance

- Higher values of K
 - Asking for more information from distant training points
 - Smoother decision boundaries
 - Lower variance but increases bias

- Finding the best K
 - There is no rule of thumb in selecting K_{max} since it depends on your desired rate of exploration for K
 - A simple and handy method
 - Cross-validation to partition your data into test and training samples
 - Evaluate model with different ranges of K values
 - The misclassification error can be used as a measurement of performance

Nonlinear

- Nonlinearly separable data
- Kernel

$$\min_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j) \longleftrightarrow \mathbf{K}(\mathbf{X}_i, \mathbf{X}_j)$$

Subject to:
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 and $0 \le \alpha_i \le C$ $\forall i$

Supervised

Linear

Nonlinear

Linear

Nonlinear

Hyperparameter

Parameter

Performance measurement

Data splitting

Overfitting

Model generalisation

Linear

Nonlinear

Design questions

Which ML model to use?

- Sample size
- Class balance
- Dimensionality of the data
- Application environment
- Realtime or asynchronous

How to optimize the model?

- Identify hyperparameters (especially sensitive ones)
- Do not try to use any rule of thumb
- Do not use the test data in the model selection process
- Select the best model based on cross-validation results
- Generate multiple test performance and report the aggregated results

eVALUate

- Completing the survey is an important way that Deakin listens to student voices about their experience (especially during this time)
- Responses are confidential, students are not identified, and eVALUate reports are only sent out after student results are released
- You must only give respectful and polite feedback to better represent your views
 - There is a useful set of guidelines on constructive feedback for eVALUate developed by the University of Tasmania – here.
- You can complete your eVALUate surveys on any device, from anywhere using this link https://deakin.is/evaluating-us

Thank You.