

Process for Operationalizing a Machine Learning Problem with the CRISP Model

Business Understanding

- 1. Framing the problem
 - What is the expectation of analyzing the data?
 - Is there a question to be answered?
 - Is it completely exploratory? (a lot of data and no questions)
 - Is it a machine learning problem? (What type of prediction?)
 - A visualization or report may be all that is needed.

Data Understanding

2. Setup the workspace

- Use an editor Jupyter
- Folder management
 - Root folder
 - data folder
 - raw folder
 - WIP folder
 - images folder
 - docs folder
- Import and pip install libraries
 - o Numpy, Pandas, Scikit-learn, MatPlotLib, Seaborn, Statsmodels

3. Get the Data

- Import from:
 - o csv or xls/xlsx, URL, SQL, txt, other files/connections

4. Explore the Data

- Visualize the data
 - o histograms, bar charts, scatter plots, correlation matrix
- Group by
- Value counts
- Info()
- Head()
- Describe()

Data Preparation

5. Cleanse the Data

- Cleaning NaN values
 - o fillna with value, median, mean, grouped mean
 - o Drop NaN

6. Transform the Data

- Change categorical data to numerical binary, ordinal, or dummy variables
 - Use a function
 - Label Encoding
 - One Hot Encoding (dummy variables)
- Standardize and normalize the data
- Create a pipeline

7. Feature Engineering

Create new variables based on other features

8. Create your X and y datasets

Create a dataset for your target variable (y) and your features (X)

Modeling

- 9. Split the Data
 - Train test split
 - Standardize X_train and X_test (separately)

10. Select the Model/Test

Supervised Learning

- Numerical target Regression
 - o Lasso
 - Ridge
 - Backwards model building
- Categorical target Classification
- Probabilistic
 - o Logistic regression
 - o Naive Bayes
- Decision tree modeling
- Ensemble
 - Random forest
- SVM

Unsupervised learning

- Clustering
 - o K-means
 - o Hierarchal
- Dimension Reduction
 - o PCA

Evaluation

- 11. Fine tune the Model
 - K-folds
 - For loop alpha scores
 - Grid Search

12. Evaluate the Final Model

- Accuracy Scores (RMSE, etc.)
- Confusion matrix

Deployment

13. Identify and deploy the model for testing and production