HW 10

Due: Friday, April 20, 9am.

Exercises

Section 5.3: 8, 16, 22

Section 5.4: 2, 12, (21), (25), 26, (27)

Section 6.1: 6, 10, 14, 20

Section 5.3

Exercises: 8, 16, 22

Diagonalize the matrices in Exercises 8 and 16, if possible. The eigenvalues for Exercise 16 are 1 and 2.

5.3.8.
$$\begin{bmatrix} 5 & 1 \\ 0 & 5 \end{bmatrix}$$

5.3.16.
$$\begin{bmatrix} 0 & -4 & -6 \\ -1 & 0 & -3 \\ 1 & 2 & 5 \end{bmatrix}$$

5.3.22. Let A, B, P, and D be $n \times n$ matrices. Mark each statement True or False. Justify each answer. (Study Theorems 5 and 6 and the examples in this section carefully before you try this exercise.)

a. A is diagonalizable if A has n-eigenvectors.

 ${f b}.$ If A is diagonalizable, then A has n distinct eigenvalues.

c. If AP = PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A.

d. If A is invertible, then A is diagonalizable.

Section 5.4

Exercises: 2, 12, (21), (25), 26, (27)

5.4.2. Let $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2\}$ and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ be bases for vector spaces V and W, respectively. Let $T: V \to W$ be a linear transformation satisfying

$$T(\mathbf{d}_1) = 2\mathbf{b}_1 - 3\mathbf{b}_2$$
 and $T(\mathbf{d}_2) = -4\mathbf{b}_1 + 5\mathbf{b}_2$.

Find the matrix for T relative to \mathcal{D} and \mathcal{B} .

5.4.12. Find the \mathcal{B} -matrix for the transformation $\mathbf{x}\mapsto A\mathbf{x}$, when $\mathcal{B}=\{\mathbf{b}_1,\mathbf{b}_2\}$, where

$$A = egin{bmatrix} -1 & 4 \ -2 & 3 \end{bmatrix}, \quad \mathbf{b}_1 = egin{bmatrix} 3 \ 2 \end{bmatrix}, \quad \mathbf{b}_2 = \quad egin{bmatrix} -1 \ 1 \end{bmatrix}.$$

5.4.21. (recommended)

Prove the following statement for square matrices, A, B, C. If B is similar to A and C is similar to A, then B is similar to C.

5.4.25. (recommended)

The *trace* of a square matrix A is the sum of the diagonal entries in A and is denoted by $\operatorname{tr} A$. It can be verified that $\operatorname{tr}(FG) = \operatorname{tr}(GF)$ for any two $n \times n$ matrices F and G. Show that if A and B are similar, then $\operatorname{tr} A = \operatorname{tr} B$.

5.4.26. It can be shown that the *trace* (see Exercise 5.4.25 for definition) of a matrix A equals the sum of the eigenvalues of A. Verify this statement for the case when A is diagonalizable.

5.4.27. (recommended)

Let V be \mathbb{R}^n with a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, let W be \mathbb{R}^n with a the standard basis, denoted \mathcal{E} . Consider the identity transformation $I: V \to W$, where $I(\mathbf{x}) = \mathbf{x}$. Find the matrix for I relative to \mathcal{B} and \mathcal{E} . What was this matrix called in Section 4.4?

Section 6.1

Exercises: 6, 10, 14, 20

6.1.6. Let
$$\mathbf{w} = \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix}$. Compute $\left(\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{x} \cdot \mathbf{x}}\right) \mathbf{x}$

6.1.10. Find a unit vector in the direction of the vector
$$\begin{bmatrix} -6 \\ 4 \\ -3 \end{bmatrix}$$

6.1.14. Find the distance between
$$\mathbf{u} = \begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}$$
 and $\mathbf{z} = \begin{bmatrix} -4 \\ -1 \\ 8 \end{bmatrix}$

6.1.20. Mark each statement True or False. Justify each answer. All vectors are assumed to be in \mathbb{R}^n .

$$\mathbf{a.}\ \mathbf{u}\cdot\mathbf{v}-\mathbf{v}\cdot\mathbf{u}=0$$

b. For any scalar c, $||c\mathbf{v}|| = c||\mathbf{v}||$.

c. If ${\bf x}$ is orthogonal to every vector in a subspace W, then ${\bf x}$ is in W^{\perp} .

d. If
$$\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$$
, then \mathbf{u} and \mathbf{v} are orthogonal.

e. For an $m \times n$ matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.