INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4093B gates Quadruple 2-input NAND Schmitt trigger

Product specification
File under Integrated Circuits, IC04

January 1995

Quadruple 2-input NAND Schmitt trigger

HEF4093B gates

DESCRIPTION

The HEF4093B consists of four Schmitt-trigger circuits. Each circuit functions as a two-input NAND gate with Schmitt-trigger action on both inputs. The gate switches at different points for positive and negative-going signals. The difference between the positive voltage (V_P) and the negative voltage (V_N) is defined as hysteresis voltage (V_H).

HEF4093BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4093BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4093BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications

Philips Semiconductors Product specification

Quadruple 2-input NAND Schmitt trigger

HEF4093B gates

DC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	
Hysteresis	5		0,4	0,7	_	V
voltage	10	V _H	0,6	1,0	_	V
	15		0,7	1,3	_	V
Switching levels	5		1,9	2,9	3,5	V
positive-going	10	V _P	3,6	5,2	7	V
input voltage	15		4,7	7,3	11	V
negative-going	5		1,5	2,2	3,1	V
input voltage	10	V _N	3	4,2	6,4	V
	15		4	6,0	10,3	V

Philips Semiconductors Product specification

Quadruple 2-input NAND Schmitt trigger

HEF4093B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Propagation delays	5		90	185 ns	63 ns + (0,55 ns/pF) C _L
$I_n \rightarrow O_n$	10	t _{PHL}	40	80 ns	29 ns + (0,23 ns/pF) C _L
HIGH to LOW	15		30	60 ns	22 ns + (0,16 ns/pF) C _L
	5		85	170 ns	58 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	40	80 ns	29 ns + (0,23 ns/pF) C _L
	15		30	60 ns	22 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120 ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60 ns	9 ns + (0,42 ns/pF) C _L
	15		20	40 ns	6 ns + (0,28 ns/pF) C _L
	5		60	120 ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60 ns	9 ns + (0,42 ns/pF) C _L
	15		20	40 ns	6 ns + (0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$1300 f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	$6400 f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	18 700 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Quadruple 2-input NAND Schmitt trigger

HEF4093B gates

Fig.6 Typical drain current as a function of input voltage; $V_{DD} = 5 \text{ V}$; $T_{amb} = 25 \text{ °C}$.

Fig.7 Typical drain current as a function of input voltage; V_{DD} =10 V; T_{amb} = 25 °C.

Fig.8 Typical drain current as a function of input voltage; $V_{DD} = 15 \text{ V}$; $T_{amb} = 25 ^{\circ}\text{C}$.

Philips Semiconductors Product specification

Quadruple 2-input NAND Schmitt trigger

HEF4093B gates

APPLICATION INFORMATION

Some examples of applications for the HEF4093B are:

- Wave and pulse shapers
- · Astable multivibrators
- · Monostable multivibrators.

If a Schmitt trigger is driven via a high impedance (R > 1 $k\Omega$) then it is necessary to incorporate a capacitor C of such value that:

 $\frac{C}{C_D} > \frac{V_{DD} - V_{SS}}{V_H}$, otherwise oscillation can occur on the edges of a pulse.

 C_p is the external parasitic capacitance between inputs and output; the value depends on the circuit board layout.

Note

The two inputs may be connected together, but this will result in a larger through-current at the moment of switching.