# HashNet: Deep Learning to Hash by Continuation

Zhangjie Cao<sup>†</sup>, Mingsheng Long<sup>†</sup>, Jianmin Wang<sup>†</sup>, and Philip S. Yu<sup>†‡</sup>

†KLiss, MOE; NEL-BDS; TNList; School of Software, Tsinghua University, China

†University of Illinois at Chicago, IL, USA



Figure 1: (left) The proposed HashNet for deep learning to hash by continuation, which is comprised of four key components: (1) Standard convolutional neural network (CNN), e.g. AlexNet and ResNet, for learning deep image representations, (2) a fully-connected hash layer (fch) for transforming the deep representation into K-dimensional representation into K-dimensional representation into K-dimensional representation into K-bit binary hash code, and (4) a novel weighted cross-entropy loss for similarity-preserving learning from sparse data. (right) Plot of smoothed responses of the sign function h = sgn(z): Red is the sign function, and blue, green and orange show functions  $h = \text{tanh}(\beta z)$  with bandwidths  $h = \text{tanh}(\beta z)$  with  $h = \text{tanh}(\beta z)$  with  $h = \text{tanh}(\beta z)$  with  $h = \text{tanh}(\beta$ 

## Summary

- 1. An end-to-end deep learning to hash architecture for image retrieval which unifies four key components:
- a standard convolutional neural network
- a fully-connected hash layer (fch) for transforming the deep
- representation into K-dimensional representation
- a sign activation function (sgn) for binarizing the K-dimensional representation into K-bit binary hash code
- a novel weighted cross-entropy loss for similarity-preserving learning from sparse data
- 2. Learning by continuation method to optimize HashNet

## Challenges

- 1. Limitations of previous works:
- *Ill-posed gradient* problem: We need the *sign* function as activation function to convert deep *continuous* representations to *binary* hash codes. But the gradient of the sign function is zero for all nonzero inputs, making standard back-propagation infeasible.
- $\rightarrow$  attack the *ill-posed gradient* problem by the *continuation* methods, which address a complex optimization problem by smoothing the original function, turning it into a easier to optimize problem.
- Data imbalance problem: The number of similar pairs is much smaller than that of dissimilar pairs in real retrieval systems which makes similarity-preserving learning ineffective.
- → propose a novel weighted cross-entropy loss for similarity-preserving learning from sparse similarity.

# Model Formulation

Weighted Maximum Likelihood (WML) estimation:

$$\log P\left(\mathcal{S}|\boldsymbol{H}\right) = \sum_{s_{ij} \in \mathcal{S}} w_{ij} \log P\left(s_{ij}|\boldsymbol{h}_i, \boldsymbol{h}_j\right),$$

Weight Formulation:

$$w_{ij} = c_{ij} \cdot \begin{cases} |\mathcal{S}| / |\mathcal{S}_1|, & s_{ij} = 1 \\ |\mathcal{S}| / |\mathcal{S}_0|, & s_{ij} = 0 \end{cases}$$

$$(2)$$

Pairwise logistic function:

$$P(s_{ij}|\boldsymbol{h}_{i},\boldsymbol{h}_{j}) = \begin{cases} \sigma(\langle \boldsymbol{h}_{i},\boldsymbol{h}_{j}\rangle), & s_{ij} = 1\\ 1 - \sigma(\langle \boldsymbol{h}_{i},\boldsymbol{h}_{j}\rangle), & s_{ij} = 0 \end{cases}$$

$$= \sigma(\langle \boldsymbol{h}_{i},\boldsymbol{h}_{j}\rangle)^{s_{ij}}(1 - \sigma(\langle \boldsymbol{h}_{i},\boldsymbol{h}_{j}\rangle))^{1-s_{ij}}$$

$$= \sigma(\langle \boldsymbol{h}_{i},\boldsymbol{h}_{j}\rangle)^{s_{ij}}(1 - \sigma(\langle \boldsymbol{h}_{i},\boldsymbol{h}_{j}\rangle))^{1-s_{ij}}$$

Optimization problem of HashNet:

$$\min_{\Theta} \sum_{s_{ij} \in \mathcal{S}} w_{ij} \left( \log \left( 1 + \exp \left( \alpha \left\langle \boldsymbol{h}_{i}, \boldsymbol{h}_{j} \right\rangle \right) \right) - \alpha s_{ij} \left\langle \boldsymbol{h}_{i}, \boldsymbol{h}_{j} \right\rangle \right), \tag{4}$$

# Learning by Continuation

## $\boldsymbol{Algorithm}:$

Input: A sequence  $1 = \beta_0 < \beta_1 < \dots < \beta_m = \infty$ 

for  $stage\ t = 0$  to m do

Train HashNet (4) with  $\tanh(\beta_t z)$  as activation Set converged HashNet as next stage initialization

## end

Output: HashNet with sgn(z) as activation,  $\beta_m \to \infty$ 

# Experiment Setup

Datasets: ImageNet, NUS-WIDE and MS COCO
Baselines: LSH, SH, ITQ, ITQ-CCA, BRE, KSH, SDH, CNNH, DNNH and DHN

Criteria: MAP, Precision-recall curve and Precision@top R curve

### Results

| Dataset                                               | Method  | MAP     |         |         |         |
|-------------------------------------------------------|---------|---------|---------|---------|---------|
|                                                       |         | 16 bits | 32 bits | 48 bits | 64 bits |
| ImageNet                                              | HashNet | 0.5059  | 0.6306  | 0.6633  | 0.6835  |
|                                                       | DHN     | 0.3106  | 0.4717  | 0.5419  | 0.5732  |
|                                                       | DNNH    | 0.2903  | 0.4605  | 0.5301  | 0.5645  |
|                                                       | CNNH    | 2812    | 0.4498  | 0.5245  | 0.5538  |
|                                                       | SDH     | 0.2985  | 0.4551  | 0.5549  | 0.5852  |
|                                                       | KSH     | 0.1599  | 0.2976  | 0.3422  | 0.3943  |
|                                                       | ITQ-CCA | 0.2659  | 0.4362  | 0.5479  | 0.5764  |
|                                                       | ITQ     | 0.3255  | 0.4620  | 0.5170  | 0.5520  |
|                                                       | BRE     | 0.5027  | 0.5290  | 0.5475  | 0.5546  |
|                                                       | SH      | 0.2066  | 0.3280  | 0.3951  | 0.4191  |
|                                                       | LSH     | 0.1007  | 0.2350  | 0.3121  | 0.3596  |
| NUS-<br>WIDE                                          | HashNet | 0.6623  | 0.6988  | 0.7114  | 0.7163  |
|                                                       | DHN     | 0.6374  | 0.6637  | 0.6692  | 0.6714  |
|                                                       | DNNH    | 0.5976  | 0.6158  | 0.6345  | 0.6388  |
|                                                       | CNNH    | 0.5696  | 0.5827  | 0.5926  | 0.5996  |
|                                                       | SDH     | 0.4756  | 0.5545  | 0.5786  | 0.5812  |
|                                                       | KSH     | 0.3561  | 0.3327  | 0.3124  | 0.3368  |
|                                                       | ITQ-CCA | 0.4598  | 0.4052  | 0.3732  | 0.3467  |
|                                                       | ITQ     | 0.5086  | 0.5425  | 0.5580  | 0.5611  |
|                                                       | BRE     | 0.0628  | 0.2525  | 0.3300  | 0.3578  |
|                                                       | SH      | 0.4058  | 0.4209  | 0.4211  | 0.4104  |
|                                                       | LSH     | 0.3283  | 0.4227  | 0.4333  | 0.5009  |
|                                                       | HashNet | 0.6873  | 0.7184  | 0.7301  | 0.7362  |
| MS<br>COCO                                            | DHN     | 0.6774  | 0.7013  | 0.6948  | 0.6944  |
|                                                       | DNNH    | 0.5932  | 0.6034  | 0.6045  | 0.6099  |
|                                                       | CNNH    | 0.5642  | 0.5744  | 0.5711  | 0.5671  |
|                                                       | SDH     | 0.5545  | 0.5642  | 0.5723  | 0.5799  |
|                                                       | KSH     | 0.5212  | 0.5343  | 0.5343  | 0.5361  |
|                                                       | ITQ-CCA | 0.5659  | 0.5624  | 0.5297  | 0.5019  |
|                                                       | ITQ     | 0.5818  | 0.6243  | 0.6460  | 0.6574  |
|                                                       | BRE     | 0.5920  | 0.6224  | 0.6300  | 0.6336  |
|                                                       | SH      | 0.4951  | 0.5071  | 0.5099  | 0.5101  |
|                                                       | LSH     | 0.4592  | 0.4856  | 0.5440  | 0.5849  |
| Table 1: MAP of Hamming Ranking on the three datasets |         |         |         |         |         |



Figure 2: The experimental results of Precision within Hamming radius 2, Precision-recall curve @ 64 bits and Precision curve w.r.t. top-N @ 64 bits on the three datasets.

## Code Quality



### Ablation Study

ImageNetNUS-WIDEMethodImageNetNUS-WIDE16 bits32 bits48 bits64 bitsHashNet+C0.50590.63060.66330.68350.66460.70240.72090.7259HashNet0.50590.63060.66330.68350.66230.69880.71140.7163HashNet-W0.33500.48520.56680.59920.64000.66380.67880.6933HashNet-sgn0.42490.54500.58280.60610.66030.67700.69210.7020Table 2: MAP Results of HashNet and Its Variants on ImageNet and NUS-WIDE

Table 3: MAP Results of HashNet and Its Variants on MS COCO

MS COCOMethodMS COCO16 bits32 bits48 bits64 bitsHashNet+C**0.6876 0.7261 0.7371 0.7419**HashNet0.6873 0.7184 0.7301 0.7362HashNet-W0.6853 0.7174 0.7297 0.7348HashNet-sgn0.6449 0.6891 0.7056 0.7138

HashNet+C: variant using continuous similarity.

HashNet-W: variant using maximum likelihood without weight.

HashNet-sgn: variant using tanh() not sgn() as activation function.

## Convergence Analysis



# Visualization



(a) HashNet (b) DHN Figure 5: The t-SNE of hash codes learned by HashNet and DHN.

## Contact Information

Web: http://ise.thss.tsinghua.edu.cn/~mlong/
 Email: mingsheng@tsinghua.edu.cn

