Child Errors as a Window into Morphological Acquisition

Sarah Brogden Payne

Stony Brook University sarah.payne@stonybrook.edu

Ling 444: First Language Development October 18, 2024

Background: Morphological Acquisition

Children learn inflectional morphology

- From highly sparse, skewed input
- On <1000 lemmas
- Despite exceptions
- With complex systems of allomorphy

Challenging problem!

Background: Morphological Acquisition

Children make systematic errors cross-linguistically

- Overregularization: e.g. "feel-feeled"
- Omissions of Marking: e.g. "Papa have it"

Why **these** errors and not others?

What do the errors tell us about:

- Acquisition?
- The resulting grammar?

Almost all errors

Models of morphological acquisition should address these questions

Outline

Why computational modeling?
What makes a good model?
Previous work: The Past Tense Debate
Proposal

- ATP: mapping features to form
- SCL: learning inflectional classes

Discussion & future work

Why Computational Modeling?

A Mechanistic Account

A Mechanistic Account

A Mechanistic Account

What Happens

- Sparse, skewed input
- Errors
- Acquisition trajectories

Description, not explanation

Why it Happens

- What are the mental computations that allow the child to learn from this input?
- How do these computations yield the errors we see?
- How do they lead to the trajectories we observe?

What Makes a Good Mechanistic Account?

What Makes a Good Model?

Input:

- Small vocabulary
- Sparse paradigms

Errors:

- Omissions, not substitutions
- Over-regularizations, not over-irregularizations
- Developmental regression

Interpretability: why does it do what it does?

Input Sparsity: Early Vocabulary

At 2;0: 200-500 words crosslinguistically

At 3;0: <1000 words crosslinguistically

Early vocabulary makeup:

- ~50% nouns
- ~25% verbs

The Long Tail: Zipf's Law

Zipf's law: word **rank** inversely proportional to **frequency**

$$f(r) \propto \frac{1}{r}$$

Consequences:

- A few forms occur very frequently
- Most occur very rarely (long tail)

How many of its possible inflected forms does a word **actually** occur in?

$$saturation = \frac{\# seen}{\# possible}$$

	Present	Preterite	Imperfect	Conditional	Future
1SG	amo	amé	amaba	amaría	amaré
2SG	amas	amaste	amabas	amarías	amarás
3SG	ama	amó	amaba	amaría	amará
1PL	amamos	amamos	amábamos	amaríamos	amaremos
2PL	amáis	amasteis	amabais	amaríais	amaréis
3PL	aman	amaron	amaban	amarían	amarán

(Chan 2008, Lignos & Yang 2016)

How many of its possible inflected forms does a word **actually** occur in?

$$saturation = \frac{\# seen}{\# possible}$$

	Present	Preterite	Imperfect	Conditional	Future
1SG	amo		amaba		amaré
2SG		amaste			
3SG	ama		amaba		
1PL	amamos				
2PL					
3PL					

=
$$\dfrac{7}{\text{# possible}}$$

(Chan 2008, Lignos & Yang 2016)

How many of its possible inflected forms does a word **actually** occur in?

$$saturation = \frac{\# seen}{\# possible}$$

	Present	Preterite	Imperfect	Conditional	Future
1SG	amo	trabajé	amaba	trabajía	amaré
2SG	tomas	amaste	mirabas	mirarías	esperás
3SG	ama	esperó	amaba	espería	tomará
1PL	amamos	miramos	mirabamos	tomaríamos	miraremos
2PL	tratáis				
3PL	esperan	miraron	entraban	tratarían	entrarán

$$= \frac{7}{\# possible}$$
$$= \frac{7}{26} \approx 27\%$$

(Chan 2008, Lignos & Yang 2016)

Errors: Omissions vs. Substitutions

Omissions

e.g., "Papa have it"

Substitutions

• e.g. "I has it"

(Clahsen & Penke 1992, Philips 1995, Legate & Yang 2007)

Errors: Over-regularization

Over-regularization

• e.g. feel-feeled

Over-irregularization

• e.g. bite-bote

Language

2.2

English

Over-regularization vs. Over-irregularization Rates

(Maslen et al 2004, Xu & Pinker 1995, Clahsen et al 2002)

1.2

Spanish

Background: Developmental Regression

Background: Developmental Regression

(from Clahsen, Aveledo, and Roca 2002)

Summary: What Makes a Good Model?

Learn from:

- Small vocabulary
- Sparse paradigms

Errors:

- Omissions, not substitutions
- Over-regularizations, not over-irregularizations
- Developmental regression

Interpretability: we want to know why it does what it does

The Past Tense Debate(s): Are Neural Networks Good Models?

Are Neural Networks Good Models?

So true bestie!

Yes, our neural network models morphological acquisition!

Exhibits developmental regression

Over-regularizes

James Mclelland

David Rumelhart

Not Really...

Not actually trained on plausible data

- First trained on 80% irregulars
- Then trained on 80% regulars

Developmental regression results from implausible training data

Over-irregularizes

sip-sept, type-typeded, mail-membled

Hey guys, your model isn't plausible actually!

so implausible bestie:/

Alan Prince

Steven Pinker

Are we there yet?

Modern
NNs can be
plausible
models!

R&M's model just wasn't advanced enough!

- Today's NNs overcome practical limitations!
 - Near 100% test accuracy
 - Learn several inflectional classes

✓ Main errors = over-regularizations

Ryan Cotterell

Christo Kirov

No, we aren't...

Still over-irregularizes way more than humans

- Predictions don't match well with wug test judgments
- No developmental regression
- Implausible training data
 - Trained on > 3500 verbs in their full paradigm
 - Children know < 350 verbs at 3;0
 - Would need to see > 15k unique words to see 3,500 in full paradigm

Summary: The Past Tense Debate(s)

What have we gotten from ~30 years of NN research?

- Better accuracy
- More developed architecture

What haven't we gotten?

- Still overproduce irregulars
- Still no developmental regression
- Still data-hungry

Good for engineering!

Persistence of issues ⇒
fundamental difference
between neural models &
human language faculty

What would they tell us about acquisition, anyway?

They aren't interpretable!

Proposal: Recursive, Rule-based Learning

Mechanistic Account of Errors

Past tense debate(s):

Create a model in a certain existing framework

In this case, connectionism

Check whether it can learn from plausible data

Check whether it matches errors

What if:

The design of our model was motivated by:

- The need to learn from small, sparse data
- The types of errors we expect it to make

No a-priori reason to expect either

Expect it to follow developmental patterns!

Error-Motivated Modeling

Children over-regularize & don't over-irregularize

Account for this with rule-based mappings:

- Learn rule like Past ⇒ -ed
- Apply rule when no exception is known
 - Over-regularization when exception not yet learned
 - Developmental regression when rule first learned

Abduction of Tolerable Productivity (ATP): recursively learn productive rules & their exceptions

Error-Motivated Modelling

Children omit inflectional affixes, but don't substitute them

Account for this with **initially-underspecified inflectional categories**

- Must learn e.g. that English contrasts +3SG with -3SG
- Underspecified category can't be productively mapped to form, so omit inflection

Sufficient Contrast Learner (SCL): recursively learn inflectional categories

Preliminaries: The TSP

Intuitions: given a set of N items:

- If most do X, then all do X (generalization)
- If few do X, memorize those that do (lexicalization)

Tolerance of exceptions

Generalize a rule applying to N items with e exceptions iff:

$$e \leq \theta_N = \frac{N}{\ln N}$$

Sufficient positive evidence

Generalize a rule applying to N items and seen applying to M iff:

$$N-M \leq \theta_N = \frac{N}{\ln N}$$
worst-case e

(Yang 2016)

Preliminaries: The TSP

Experimental evidence for the Tolerance-Sufficiency Principle

Emond & Shi (2020)

Preliminaries: Training Data

Children learn frequent forms earlier (Goodman et al 2008)

Use most frequent forms from CHILDES

Children use of distributional cues to learn meaning

Intersect CHILDES with UniMorph features as a proxy for these cues

Input: (lemma, inflected, features)

Language	Lemma	Inflected	Features
English	walk	walked	{V, PAST, 3, SG}
Spanish	amar	amaban	{V, 3, PL, PAST, IMPFV}
German	Sache	Sachen	{N, FEM, PL}

Mapping Features to Form: Abduction of Tolerable Productivity

(Belth et al 2021)

Abduction of Tolerable Productivity

Apply TSP recursively

- Given N items, do enough of them take -x affix?
 - If yes, productive rule learnt!
 - If not, subdivide into disjoint subsets & recurse

Caleb Belth

Me :)

Deniz Beser

Jordan Kodner

Charles Yang

Abduction of Tolerable Productivity

Apply TSP recursively

- Given N items, do enough of them take -x affix?
 - If yes, productive rule learnt!
 - If not, subdivide into disjoint subsets & recurse

Terminate when:

- Productive rule found (generalization)
- No more subdivisions possible (lexicalization)

Apply to English past tense and German noun plurals

ATP Model: Toy Example

- 11 items: 4 -s, 5 -ed, 2 other
- Generalize most frequent?

$$N - M = 11 - 5 = 6 > \theta_{11} = 4.5$$

• **Subdivide!** Hypothesize a rule:

ATP Model: Toy Example

typed

presented

ate

thought

watered

- 11 items: 4 -s, 5 -ed, 2 other
- Generalize most frequent?

$$N - M = 11 - 5 = 6 > \theta_{11} = 4.5$$

- **Subdivide!** Hypothesize a rule:
 - PAST → -ed
- **Test** the rule:
 - $N M = 2 < \theta_7 = 3.5$
- R1 productive! PAST → -ed
 - Memorize ate and thought

ATP Model: Toy Example

- 11 items: 4 -s, 5 -ed, 2 other
- Generalize most frequent?

$$N - M = 11 - 5 = 6 > \theta_{11} = 4.5$$

- **Subdivide!** Hypothesize a rule:
 - PAST → -ed
- Test the rule:
 - $N M = 2 < \theta_7 = 3.5$
- R1 productive! PAST → -ed
 - Memorize ate and thought
- Recurse: Pres,3,SG → -s

ATP Model: Sample learning trace

English past tense: morphophonological conditioning

ATP Model: Inflection and Generation

During test, given **novel forms & features** to inflect Traverse decision tree to correct node

- If node has productive rule, apply the rule
- If no productive rule, either:
 - Produce unmarked form
 - Analogize to a known form at this node

ATP Model: Sample learning trace

English past tense: inflect /want/

ATP: English Results

Trained on plausible vocabulary

• 1000 inflected forms

Developmental regression and **overregularization**

Mechanistic account of developmental regression

ATP: German Results

Relies less on gender than K&C

- Solid lines = gender info given at test
- Dashed lines = gender info not given at test

Trained on plausible vocabulary

• 400 inflected forms

ATP: Summary

Children overregularize

So does ATP!

Children show developmental regression when learning some paradigms

So does ATP!

Children learn from extremely sparse, skewed input

So does ATP!

ATP gives a mechanistic account of why these errors occur and what the resulting grammar looks like

ATP: Summary

ATP: Summary

Learning which Features are Marked: Sufficient Contrast Learner

(Payne 2022, 2023)

SCL Model: Preliminaries

Principle of Contrast: distinct forms ⇒ distinct meanings

• e.g. walk and walked must mean something different

Collisions: one lemma in multiple inflected forms

e.g. walk-walked tells us that ±PAST is marked

TSP: when are there enough collisions to learn marking?

- e.g. don't learn from am-are that 1 vs. 2 marked in English
- Learn from walk-walked, sing-sang, etc. that **±PAST** marked

SCL Model: Collisions

Apply TSP recursively again!

- Input taken in incrementally
- When jth input encountered, is there a collision?
- If so, do enough forms appearing in **inflection A** also appear in **inflection B** in a different form?
 - If yes, productive contrast learnt! Subdivide and recurse
 - If no, continue to take in input

Apply to English verbs, German noun plurals, Spanish verbs, and Hebrew verbs

- Collision: walk-walking
- **±Participle** marked?

- Collision: walk-walking
- **±Participle** marked?
 - 5 participles, 4 collisions (not wanting)

•
$$N - M = 1 < \theta_5 = 3$$

±Participle marked

- Collision: walk-walking
- **±Participle** marked?
 - 5 participles, 4 collisions (not wanting)
 - $N M = 1 < \theta_5 = 3$
- Contrast 1 productive!
 ±Participle marked
- **Subdivide** into **+Participle** and **-Participle** forms

- Collision: walk-walking
- **±Participle** marked?
 - 5 participles, 4 collisions (not wanting)
 - $N M = 1 < \theta_5 = 3$
- Contrast 1 productive!
 ±Participle marked
- Subdivide into +Participle and
 -Participle forms
- Recursively learn that ± 3SG marked

SCL: English Results

Plausible order of acquisition

- 1. PARTICIPLE (-ing)
- **2. 3SG** (-S)
- 3. PAST (-ed)

Plausible vocabulary size:

- 112 lemmas
- 238 inflected forms

SCL: German results

- Plausible vocabulary size:
 - 66 lemmas
 - 70 inflected forms
- Well under vocab size at which plural affix overapplication begins

SCL: Spanish Results

- Spanish order of acquisition:
 - Finiteness & person marking: 1;7
 - Number marking: 1;7-2;0
 - Second plural emerges later than other agreements in many learners
 - Tense: 2;0-2;2
 - Mood: 1;7-2;2

(Montrul 2004)

SCL: Spanish Results

SCL: Hebrew Results

Hebrew order of acquisition:

- Person, number, gender before tense
- Person vs. number varies
- Gender appears before or at the same time as number

Our model:

- Order of acquisition:
 - Gender, person & number, tense
- Vocab size:
 - 323 lemmas
 - 1861 inflected forms

SCL Implications: Root Infinitives

Root Infinitive (RI) Stage: stage of omission errors

Cross-linguistically, "richer" morphology ⇒ shorter RI stage

Richer morphology also means more subdivision

- TSP tolerates more exceptions for smaller N
- More subdivision ⇒ smaller N
- Smaller N ⇒ quicker learning of inflectional categories

SCL gives a mechanistic account of cross-linguistic differences

(Philips 1995, Legate & Yang 2007)

SCL: Summary

Children omit affixes

SCL gives an account for why!

Children show clear order of acquisition effects

So does SCL!

Children learn from extremely sparse, skewed input

· So does SCL!

SCL gives mechanistic account of order of acquisition, omission errors and cross-linguistic differences in acquisition

SCL: Summary **Recursive** Subdivision Omission errors Order of Sparse, Initial acquisition skewed input Underspecification Cross-linguistic differences **Principle of Contrast**

Discussion & Future Directions

What Makes a Good Model?

Input:

- Small vocabulary
- Sparse paradigms

Errors:

- Omissions, not substitutions
- Over-regularizations, not over-irregularizations
- Developmental regression

Interpretability: why does it do what it does?

A Mechanistic American

Sparse, skewed input

Recursive Subdivision

Productive Rules

Initial Underspecification

Principle of Contrast

Omission errors

Order of acquisition

Cross-linguistic differences

Overregularization

Developmental regression

Conclusion: Getting the Right Stuff Wrong

	NNs	ATP	SCL
Learn from plausible data	×	<u>✓</u>	<u>✓</u>
Account for over-regularization and developmental regression	×	<u>~</u>	
Account for omission and the RI stage	×		
Interpretability	×		

Future Work

SCL learns the features required by **ATP**

- Combination of these two learning strategies
- First learn the inflectional classes, then map them to form

Expand ATP:

Handle templatic & agglutinative morphology

Expand SCL:

- Explore model subdivision predictions
- Learn features from distributional information

Thank you!!

Caleb Belth
University of Utah

Deniz Beser **ISI**

Jodan Kodner
Stony Brook

Charles Yang **UPenn**

Special thanks to Charles Yang, Jordan Kodner, Caleb Belth, Jeff Heinz, Julie Anne Legate, Mark Aronoff, and Bob Berwick.

This work was supported by the Institute for Advanced Computational Science Graduate Research Fellowship and NSF Graduate Research Fellowship.

Background: Earliest Stages

Early Segmentation

- English learners:
 - 0;6: segment -s
 - 0;8: segment -ing
 - Both: not pseudomorphemes
- French learners (0;11):
 - Segment -e (infinitive & pastp)
 - Don't segment pseudomorpheme -u

Early Understanding of Use

- English-learners:
 - 1;7: can't use -s as cue to subject number
 - 5;0: use -s as a cue to subject number in comprehension

(Kim & Sundara 2021, Marquis & Shi 2012, Soderstrom et al 2002, Johnson et al 2005)

SCL: English Results

Learning past tense separately for each agreement?

- Yang, Ellman, and Legate (2015): past tense acquired later for learners of AAE
- Difference in input = agreement, not tense
- TSP tolerates relatively fewer exceptions for larger N

German Noun Plurals: We really aren't there

Other Neural Models: Still not there!

 Ongoing work with Salam Khalifa, Jordan Kodner & Zoey Liu: test more models on more paradigms, find same problems

Rumelhart & McClelland: single-route, connectionist

model can:

Exhibit developmental regression

- Exhibit overregularization
- ∴ Rule-like behavior!

Pinker & Prince's dual-route model:

Pinker & Prince's dual-route model: regular inflection

Pinker & Prince's dual-route model: irregular inflection

Pinker & Prince's dual-route model: overregularization

Pinker & Prince's dual-route model:

- Interpretable model of the grammar!
- But how are rules actually learned?

ATP: German Results

Correlates better with nonce word predictions than K&C:

	Neuter			Unknown		
	%R	%NR	ρ	%R	%NR	ρ
-(e)n	0.17	0.04	-0.26	0.19	0.23	0.43
-e	0.27	0.35	-0.14	0.45	0.62	0.01
-Ø	0.11	0.0	0.55	0.07	0.00	0.55
-er	0.44	0.17	0.53	0.29	0.0	0.46
-S	0.01	0.44	0.3	0.01	0.15	0.64
other	0.00	0.00		0.00	0.00	

ATP: Results

