Barlow Twins

논문명: Self-Supervised Learning via Redundancy Reduction

- · Contrastive Learning
 - SimCLR
 - MoCo
 - Negative sampling에 대한 의존도가 큼.
- Non-contrastive learning
 - BYOL (momentum encoder + asymmetric)
 - Simsiam (Asymmetric)
 - 비대칭적인 구조를 이용해야 함. (다른 레이어에 적용할 때, prediction head를 추 가해야 적용가능)
- Redundancy Reduction을 이용한 SSL
 - Redundancy Reduction : 중복되는(불필요한) 정보를 줄임.
 - Representation : 어떤 입력에 대해 표현하는 요소.
- Only Positive samples
- No large batch
- Feature dimensions이 커질 수록 성능이 향상됨.
 - 。 기존 simclr은 batch가 커야 성능 향상

Barlow Twins 1

기존: feature dim으로 nomalization 진행

Barlow: batch dim으로 nomalization 진행

Cross correlation Matrix

$$\mathcal{C}_{ij} \triangleq \frac{\sum_{b} z_{b,i}^{A} z_{b,j}^{B}}{\sqrt{\sum_{b} \left(z_{b,i}^{A}\right)^{2}} \sqrt{\sum_{b} \left(z_{b,j}^{B}\right)^{2}}}$$

Barlow Twins loss

$$\mathcal{L}_{BT} \triangleq \underbrace{\sum_{i} (1 - C_{ii})^{2}}_{\text{invariance term}} + \lambda \underbrace{\sum_{i} \sum_{j \neq i} C_{ij}^{2}}_{\text{redundancy reduction term}}$$
(1)

SimCLR

$\ell_{i,j} = -\log \frac{\exp(\sin(z_i, z_j)/\tau)}{\sum_{k=1}^{2N} \mathbf{1}_{[k \neq i]} \exp(\sin(z_i, z_k)/\tau)}$ feature dimension feature dimension $0 \qquad 0 \qquad 0 \qquad 0$ $1 \qquad 0 \qquad 0 \qquad 0$ $2 \qquad 0 \qquad 0 \qquad 0$ $2 \qquad 0 \qquad 0 \qquad 0$ $2 \qquad 0 \qquad 0 \qquad 0$ $3 \qquad 0 \qquad 0 \qquad 0$ $4 \qquad 0 \qquad 0 \qquad 0$ $4 \qquad 0 \qquad 0 \qquad 0$ $5 \qquad 0 \qquad 0 \qquad 0$ $6 \qquad 0 \qquad 0 \qquad 0$ $7 \qquad 0 \qquad 0 \qquad 0$ $1 \qquad 0 \qquad 0 \qquad 0$ $2 \qquad 0 \qquad 0 \qquad 0$ $3 \qquad 0 \qquad 0 \qquad 0$ $4 \qquad 0 \qquad 0 \qquad 0$ $5 \qquad 0 \qquad 0 \qquad 0$ $6 \qquad 0 \qquad 0 \qquad 0$ $6 \qquad 0 \qquad 0 \qquad 0$ $7 \qquad 0 \qquad 0 \qquad 0$ $9 \qquad 0 \qquad 0 \qquad 0$ $1 \qquad 0 \qquad 0 \qquad 0$ $2 \qquad 0 \qquad 0 \qquad 0$ $3 \qquad 0 \qquad 0 \qquad 0$ $4 \qquad 0 \qquad 0 \qquad 0$ $5 \qquad 0 \qquad 0 \qquad 0$ $6 \qquad 0 \qquad 0 \qquad 0$ $6 \qquad 0 \qquad 0 \qquad 0$ $7 \qquad 0 \qquad 0 \qquad 0$ $9 \qquad 0 \qquad 0 \qquad 0$ $1 \qquad 0 \qquad 0 \qquad 0$ $2 \qquad 0 \qquad 0 \qquad 0$ $3 \qquad 0 \qquad 0 \qquad 0$ $4 \qquad 0 \qquad 0 \qquad 0$ $4 \qquad 0 \qquad 0 \qquad 0$ $5 \qquad 0 \qquad 0 \qquad 0$ $6 \qquad 0 \qquad 0 \qquad 0$ $7 \qquad 0 \qquad 0 \qquad 0$ $9 \qquad 0 \qquad 0 \qquad 0$

Barlow Twins

Barlow Twins loss는 학습되는 representation이 서로 달라 지도록 학습. (disentanglement)

실험결과

Experiments Barlow Twins

1. Linear evaluation on ImageNet

기존의 방식과 유사

Method	Top-1	Top-5
Supervised	76.5	
МоСо	60.6	
PIRL	63.6	-
SIMCLR	69.3	89.0
MoCo v2	71.1	90.1
SIMSIAM	71.3	-
SWAV (w/o multi-crop)	71.8	-
BYOL	74.3	91.6
SWAV	75.3	-
BARLOW TWINS (ours)	73.2	91.0

2. Semi-supervised learning on ImageNet

더 높은 성능, 적은 데이터로 좋은 효과를 낼 것으로 추측

Method	Top-1		Top-5	
	1%	10%	1%	10%
Supervised	25.4	56.4	48.4	80.4
PIRL	-	-	57.2	83.8
SIMCLR	48.3	65.6	75.5	87.8
BYOL	53.2	68.8	78.4	89.0
SWAV	53.9	70.2	78.5	89.9
BARLOW TWINS (ours)	55.0	69.7	79.2	89.3

3. Transfer learning: image classification

Method	Places-205	VOC07	iNat18
Supervised	53.2	87.5	46.7
SimCLR	52.5	85.5	37.2
MoCo-v2	51.8	86.4	38.6
SwAV (w/o multi-crop)	52.8	86.4	39.5
SwAV	56.7	88.9	48.6
BYOL	54.0	86.6	47.6
BARLOW TWINS (ours)	54.1	86.2	46.5

4. Transfer learning: object detection and segmentation

Method	VOC07+12 det			COCO det			COCO instance seg		
	$\overline{AP_{\mathrm{all}}}$	AP_{50}	AP ₇₅	APbb	AP_{50}^{bb}	AP ₇₅	APmk	AP_{50}^{mk}	AP ₇₅
Sup.	53.5	81.3	58.8	38.2	58.2	41.2	33.3	54.7	35.2
MoCo-v2	57.4	82.5	64.0	39.3	58.9	42.5	34.4	55.8	36.5
SwAV	56.1	82.6	62.7	38.4	58.6	41.3	33.8	55.2	35.9
SimSiam	57	82.4	63.7	39.2	59.3	42.1	34.4	56.0	36.7
BT (ours)	56.8	82.6	63.4	39.2	59.0	42.5	34.3	56.0	36.5

Ablations

1. Loss function ablation

- on-diag term이 모델 collapse를 막아주는 주요 요소
- off-diag term은 모델의 성능을 향상.

Loss function	Top-1	Top-5
Baseline	71.4	90.2
Only invariance term (on-diag term) Only red. red. term (off-diag term)	57.3 0.1	80.5 0.5
Normalization along feature dim. No BN in MLP No BN in MLP + no Normalization	69.8 71.2 53.4	88.8 89.7 76.7
Cross-entropy with temp.	63.3	85.7

2. Robustness to batch size

BYOL과 유사하게 Batch size에 민감하지 않은 성능

Barlow Twins

3. Effect of removing Augmentations

• Barlow Twins는 data augmentation을 지우는 것에 있어서 강인하지 않음

4. Projector dimensionality

- Barlow Twins는 projector의 차원이 커질 수록 성능이 향상함.
- Image Batch를 키우는 것보다 feature dim을 키우는 것이 훨씬 효율적.

5. Breaking Symmetric & sensitivity to hyperparameter

- Stop-gradient의 사용 유무나 predictor의 사용유무에 상관 없이, Barlow Twins는 collapse problem이 일어나지 않음.
- redundancy reduction term에 대해 민감도가 높지 않음(논문의 주장)

case	stop-gradient	predictor	Top-1	Top-5
Baseline	-	-	71.4	90.2
(a)	✓	-	70.5	89.0
(b)	-	✓	70.2	89.0
(c)	✓	✓	61.3	83.5

결과

• 자체 손실로 인해 문제가 무너지는 것을 방지합니다.

6

- 음수표본없음
- 배치 크기에 대한 견고성
- 기능이 더 어두울수록 성능이 향상됩니다.