

Characterising Seismic Vulnerability of Bridge Structures + Infrastructure Vulnerability Assessment

Dr. Gerard J. O'ReillyEUCENTRE and IUSS Pavia

gerard.oreilly@iusspavia.it

Ohrid
October 3rd, 2019

CONTENTS

- Introduction
- Exposure Methodology
- Seismic Vulnerability Framework
- Network Vulnerability Assessment

INTRODUCTION

 Outline the methodology for each of the following packages:

EXPOSURE METHODOLOGY

An exposure model is a georeferenced inventory with standardised information

For any bridge:

- Location
- Structural System (taxonomy)
- Dimensions
- Detailing

EXPOSURE METHODOLOGY

The bridge inventory of an entire country is large

Initial screening for North Macedonia sets the total assets in the range of 2000 bridges

 It is not feasible to have complete information for all assets

EXPOSURE METHODOLOGY

 Information from multiple sources is collected, processed and classified

SETS OF FRAGILITY
CURVES

Intensity Measure

SEISMIC VULNERABILITY FRAMEWORK

In general

DATA COLLECTION Level 0 (OSM) Level 1 (StreetView) Level 2 (Inspections) Level 3 (Blueprints) CALCULATION ENGINE Matlab tool Taxonomy Fragility curves ANALYSIS TOOL

Pier

Type

S. Column

Wall

M. Column

CURVE ASSIGNMENT Taxonomy based

 Considers level of knowledge

Frame

- Representative taxonomies are characterised
- 30/50 numerical models are created compatible with the taxonomy

- For each model
- NLTHA with selected records
- IM chosen is Avg(Sa) in the 0.2s 1.0 s
 range
- 30 EQs x 7 R.P.s x 50 bridges= 10500 runs/taxonomy

0.04

-0.02

-0.04

-0.06

rotazioni

FRAGILITY CALCULATION

Calculation per simulation

Shear

Rotation

Transverse and longitudinal

Bearing

 If we plot the structural response versus ground motion intensity, we get this

Can use this information to describe performance probibalistically

Structural Demand (e.g. Peak Displacement)

- By counting the number of exceedances with increasing intensity, we can start to build an empirical distribution
- By fitting a distribution such as a lognormal distribution, we arrive at what is known as a <u>fragility curve</u>

Intensity Measure - AvgSa [g]

 Mean fragility is obtained and assigned to all elements in the database with same taxonomy

Bridges are part of a road network

Need to consider the effects of bridge collapse in the overall network system

Overall

 Model the network

Identify vulnerable components

 Seismic hazard event

Consequence evaluation

The platform can calculate optimal routes

Then implement for trips between cities

QUESTIONS?

Contents

- Introduction
- Exposure Methodology
- Seismic Vulnerability
 Framework
- Network Vulnerability Assessment

