Analiza 1. Predavanja

Matija Sirk

25. oktober 2017

${\bf Povzetek}$

Skupni zapiski s predavanj Analize 1. Lose all hope you who enter here.

Kazalo

_	Štev		3
	1.1	Naravna Števila	3
	1.2	Cela Števila	3
	1.3	Racionalna Števila	4

1 Števila

1.1 Naravna Števila

So števila s katerimi štejemo. Množica naravnih števil: $\mathbb{N} = \{1, 2, 3, \dots\}$

Vsako naravno število n ima svojega naslednika n^+ . 1 je edini element \mathbb{N} , ki ni naslednik nobenega $n \in \mathbb{N}$.

Opisana so s Peanovimi aksiomi. Naravna števila so množica, skupaj s pravilom, ki vsakemu naravnemu številu n priredi njegovega naslednika n^+ , ki je prav tako naravno število in velja:

Aksiom 1.1. $\forall m, n \in \mathbb{N} : m^+ = n^+ \Leftrightarrow m = n$

Aksiom 1.2. Obstaja $1 \in \mathbb{N}$, ki ni n^+ nobenega $n \in \mathbb{N}$

Aksiom 1.3.
$$A \subset \mathbb{N}$$
 in $1 \in A$ in $n \in A \Rightarrow n^+ \in A \Leftrightarrow A = \mathbb{N}$

Tretjemu Peanovemu aksiomu pravimo tudi aksiom popolne indukcije. Pazi, da je tukaj simbol ⊂ simbol za podmnožico, ne za pravo podmnožico.

Primer 1.1. Dokaži, da je za vsak $n \in \mathbb{N}$ izraz $4^n - 3n + 8$ deljiv z 9.

$$n=1:$$

$$4^1-3*1+8=9,\;9\mid 9\;\text{(Dokaz za bazo indukcije)}$$

$$n\to n+1:$$

$$4^n-3n+8=9k,\ k\in\mathbb{Z}$$

$$4^n=9k+3n-8\ ({\tt Indukcijska\ predpostavka})$$

$$4^{n+1} - 3(n+1) + 8 = 4 * 4^n - 3n + 5 = 4 * (9k + 3n - 8) - 3n + 5 =$$

$$= 9 * 4k + 9n - 9 * 3 = 9(4k + n - 3),$$
 $9 \mid 9(4k + n - 3)$ (Dokaz za indukcijski korak)

Ker velja trditev za bazo indukcije in ker za vse $n \in \mathbb{N}$ velja indukcijski korak, po načelu popolne indukcije trditev velja $\forall n \in \mathbb{N}$.

Naravna števila lahko seštevamo in množimo (aksiomatska definicija bo pri $Logiki\ in\ Množicah$). Prav tako jih lahko uredimo po velikosti - $\mathbb N$ je (linearno) urejena. Vsaka neprazna podmnožica $\mathbb N$ ima najmanši element in je urejena. Vsaka končna neprazna podmnožica $\mathbb N$ ima največji element.

1.2 Cela Števila

V celih številih je smiselno definirano tudi odštevanje. $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ Seštevanje in množenje se z \mathbb{N} razširita tudi na \mathbb{Z} . Tudi \mathbb{Z} ima definirano urejenost na običajen način.

Urejenost:

$$x - y = 0 \Rightarrow x = y$$
$$x - y > 0 \Rightarrow x > y$$

V splošnem deljenje ni definirano.

1.3 Racionalna Števila

Racionalna števila so kvocienti celih in naravnih števil. $\mathbb{Q} = \{\frac{m}{n}; m \in \mathbb{Z}, n \in \mathbb{N}\}$ Racionalna števila lahko pogosto napišemo na več načinov - različni ulomki lahko zaznamujejo isto število (kvocient): $\frac{4}{3} = \frac{8}{6}$

lahko zaznamujejo isto število (kvocient): $\frac{4}{3} = \frac{8}{6}$ Enakost v racionalnih številih: $\frac{m}{n} = \frac{k}{l} \Leftrightarrow ml = kn$ Racionalna števila lahko naivno skonstruiramo takole:

$$\mathbb{Z} \times \mathbb{N} = \{ (m, n); \ m \in \mathbb{Z}, \ n \in \mathbb{N} \}$$
 (1)

To množico razdelimo na ekvivalenčne razrede tako, da grupiramo skupaj v razred tiste ulomke, ki predstavljajo isti kvocient. Torej, urejena para $\frac{m}{n}$ in $\frac{k}{l}$ sta v istem razredu, če zanju velja: $\frac{m}{n}=\frac{k}{l}\Leftrightarrow ml=kn$. Racionalno število je razred urejenih parov in ga označimo z $\frac{m}{n}$ (oziroma z poljubnim drugim predstavnikom razreda).

Računske operacije v \mathbb{Q} :