Lecture 5 **Basic Addition and Counting**

Half Adders and Full Adders

Basic building blocks for arithmetic circuits

Half Adder

Inputs: x, y

Outputs: $s = x \oplus y$

$$c = x \cdot y$$

Full Adder

Inputs: x, y, c_{in}

Outputs: $s = x \oplus y \oplus c_{in}$

$$c_{out} = x \cdot y + (x + y) \cdot c_{in}$$

Two's complement number

Mixed +/- digit set number

Conditions, Flags, and Exceptions

- Overflow The output cannot be represented in the format of the result.
- Sign 1 if the result is negative, 0 if the result is positive.
- Zero The result is zero.

Signed Overflow

• Overflow_{two's-comp} = sign of result is wrong

$$= x_{k-1}y_{k-1}\overline{s}_{s-1} + \overline{x}_{k-1}\overline{y}_{k-1}s_{s-1}$$

$$\text{when } c_{k-1} = 1$$

$$= \underbrace{x_{k-1}y_{k-1}\overline{s}_{s-1}}_{0} + \underbrace{\overline{x}_{k-1}\overline{y}_{k-1}s_{s-1}}_{\overline{c}_{k}}$$

$$\text{when } c_{k-1} = 0$$

$$= \underbrace{x_{k-1}y_{k-1}\overline{s}_{s-1}}_{C_{k}} + \underbrace{\overline{x}_{k-1}\overline{y}_{k-1}s_{s-1}}_{0}$$

$$= c_{k} \cdot \overline{c}_{k-1} + \overline{c}_{k} \cdot c_{k-1}$$

$$= c_{k} \oplus c_{k-1}$$

Unsigned Overflow

• Overflow_{unsigned} = carry out of last stage = c_k

Sign

Sign_{signed} = 0 when positive, 1 when negative = s_{k-1} when Overflow = 0 = \overline{s}_{k-1} when Overflow = 1 = $s_{k-1} \oplus$ Overflow = $s_{k-1} \oplus c_k \oplus c_{k-1}$

 $Sign_{unsigned} = 0$ (always positive!)

Flag Summary

Flag	Sign	Unsigned
Overflow	$c_k \oplus c_{k-1}$	c_k
Sign	$c_k \oplus c_{k-1} \oplus s_{k-1}$	0
Zero	$\overline{S}_{k-1} \cdot \overline{S}_{k-2} \cdots \overline{S}_0$	$\overline{s}_{k-1} \cdot \overline{s}_{k-2} \cdots \overline{s}_0$

Carry Completion Detection

- For asynchronous arithmetic, (not useful for synchronous arithmetic)
- Carry Completion Detection gives a *done* signal when carry chain is done.
- Average time $\propto \log_2 k$
- Two rail logic:

$b_i c_i$	
0 0	Carry not known yet
0 1	Carry known to be 1
1 0	Carry known to be 0

 b_i and c_i all start at 0's

Speeding Up Addition

Making Low Latency Carry Chains

- From point of view of carry propagation
 - computation of *sum* is not important.
 - At each position a carry is either
 - generated : $x_i + y_i \ge r$
 - propagated : $x_i + y_i = r 1$, or
 - annihilated : $x_i + y_i < r 1$

$$c_{i+1} = \underbrace{x_i y_i}_{g_i} + \underbrace{(x_i \oplus y_i)}_{p_i} \cdot c_i$$

$$c_{i+1} = g_i + p_i \cdot c_i$$

$$c_{i+1} = g_i + p_i \cdot c_i$$
"Carry Recurred Re

 $s_i = p_i \oplus c_i$ Recurrence"

Propagation of Carry

$$c_{i+1} = g_i + p_i c_i$$

$$= g_i (1 + c_i) + p_i c_i$$

$$= g_i + \underbrace{(g_i + p_i)}_{t_i} \cdot c_i$$

$$= g_i + t_i c_i$$

$$t_i = x_i + y_i$$

Propagation of Inverse Carry

$$\overline{c}_{i+1} = \overline{g_i + p_i c_i}$$

$$= \overline{g_i} \cdot (\overline{p_i} + \overline{c_i})$$

$$= \overline{g_i} \overline{p_i} + \overline{g_i} \overline{c_i}$$

$$= a_i + (a_i + p_i) \cdot \overline{c_i}$$

$$= a_i + p_i \overline{c_i}$$

Manchester Carry Chains

(a) Conceptual representation.

(b) Possible CMOS realization.