

Interdisciplinary Space Master Program

30 November 2022

Computer Vision and Image Analysis Lab #4

AUTHORS: **Elliott Wobler & Patrick Teyssier**

Table of Contents	
1 Raspberry Pi Setup	2
2 Capturing Picture with Raspberry Pi Camera	2
3 Python Code Implementation	3
4 Edge-Detection Intuition	3
5 Results	4

ISM 2022 Page 2 of 11

1 Raspberry Pi Setup

Steps:

- Ensure MicroSD card is inserted into Raspberry Pi
- Attach power cable and turn on Raspberry Pi
- Connect to the laptop with the Ethernet cable
- Open MobaXterm on the laptop
- Ping the Raspberry Pi to verify Ethernet connection
- Connect to Raspberry Pi filesystem with SSH

Issues Encountered:

- Instabilities in the Ethernet connection
- Not possible to ping the Raspberry Pi on Patrick's computer

Solution Implemented:

Use TA's computer

Note: it would have possible, but cumbersome, to work without MobaXterm

2 Capturing Picture with Raspberry Pi Camera

Steps:

- Connect the camera hardware to the Raspberry Pi port
- Capture a test picture using the command:

```
o raspistill -v -o test.jpg
```

• Capture a picture of the CubeSat frame structure

Issues Encountered:

- Determining the camera field of view was difficult
- Focusing the camera on a particular scene was difficult
- Illuminated background

Solution Implemented:

 Place the cubesat model roughly at 50 cm of the Pi-camera and with a dark background

Note: we acquired two images from the Pi-camera that we further processed.

Future Work:

• Determine the camera's intrinsic matrix (K)

ISM 2022 Page 3 of 11

SNT securityandtrust.lu

3 Python Code Implementation

Steps:

- Load the image captured by the Raspberry Pi camera
- Convert the image to grayscale
- Apply a Gaussian filter to blur the image
- Apply a horizontal 3x3 Sobel filter to get Gx
- Apply a vertical 3x3 Sobel filter to get Gy
- Convert the Gx and Gy images to Numpy arrays
- Compute the gradient amplitude image (Gamp)
 - Using the "simple" method:
 - Gx + Gy
 - Using the "full" method:
 - \blacksquare sqrt(Gx² + Gy²)
 - Note: could also alternatively use the hypotenuse function:
 - np.hypot(Gx, Gy)
- Normalize the gradient amplitude
 - o Gamp / Gamp.max() * 255
- Convert back to grayscale a image from Numpy array
 - o Gamp = Image.fromarray(Gamp, "L")

Issue Encountered:

• After the above steps, the output of Gamp still did not appear correct

Note: the results presented in the present report relate to the second image acquired (referred to as version 2 in our folders)

Solution Implemented:

- Cast the gradient amplitude values as 8-bit integers before converting from Numpy array back into a grayscale image:
 - o Gamp.astype(np.int8)

4 Edge-Detection Intuition

How calculating gradients using Sobel filters can detect edges:

By calculating the X and Y gradients using the Sobel filters, we determine the change in pixel intensity in each direction.

A significant change in either direction indicates an edge.

A significant change in both directions indicates a corner.

No significant change in any direction indicates a flat or uniform section.

5 Results

The following images correspond to the second picture taken with the camera.

Initial image (flipped for better readability):

ISM 2022 Page 5 of 11

SNT securityandtrust.lu

I_Gray processed image:

ISM 2022 Page 6 of 11

SNT securityandtrust.lu

I_blur, blurred image with radius 2:

ISM 2022 Page 7 of 11

SIT securityandtrust.lu

I_blur, blurred image with radius 4:

ISM 2022 Page 8 of 11

SNT securityandtrust.lu

Gx, image processed after Sobel filter:

ISM 2022 Page 9 of 11

SNT securityandtrust.lu

Gy, image processed after Sobel filter:

ISM 2022 Page 10 of 11

SNT securityandtrust.lu

Gradient amplitude image with simple method:

ISM 2022

Page 11 of 11

Gradient amplitude image with full method:

----- end of report -----