# **Machine Learning Engineering**

#### Welcome

- CS 5781 Machine Learning Engineering
- A new class for an emerging topic
- Completely designed for virtual teaching

#### **Class Context**

- Development of deep learning models
- Deep learning models in industrial context
- Programming large systems

#### **Current Context: MLE**

| Indeed's best jobs of 2019 |                           |                                            |  |  |  |
|----------------------------|---------------------------|--------------------------------------------|--|--|--|
| Rank                       | Job title                 | % growth in<br># of postings,<br>2015–2018 |  |  |  |
| 1                          | Machine Learning Engineer | 344%                                       |  |  |  |
| 2                          | Insurance Broker          | 242%                                       |  |  |  |
| 3                          | Full-stack Developer      | 206%                                       |  |  |  |
| 4                          | Insurance Advisor         | 190%                                       |  |  |  |
| 5                          | Litigation Attorney       | 168%                                       |  |  |  |
| 6                          | Litigation Associate      | 165%                                       |  |  |  |
| 7                          | Dental Hygienist          | 157%                                       |  |  |  |
| 8                          | Associate Attorney        | 149%                                       |  |  |  |
| 9                          | Realtor                   | 138%                                       |  |  |  |

# **Future Context: Self-Driving**



#### **Future Context: Code Gen**



### **Future Challenges: ML in Society**



### Question

What does it look like to be an engineer in this context?

# **Personal Introduction**

### Hi!



#### **Academic Work**

- Website: http://rush-nlp.com/
- Area of Study: Natural Language Processing (NLP)
- Area of Study: Deep Learning

# **Academic Work: Projects**

- Automatic text summarization
- Accurate math OCR
- Machine learning on cell phones

#### My Path

- Coder -> Student -> Industry -> Professor
- Professor at Harvard for 5 years
- Moved to Cornell Tech last year!

### **Intro: Engagement**

• Open-source development projects for NLP

• Part-time at **Hugging Face** 

#### TA

• Ge Gao

• PhD Student in NLP / Machine Learning

# **Class Introduction**

#### **Class Focus**

- Machine Learning Engineering
- Machine Learning **Engineering**
- Focus: software engineering behind machine learning

# **Future Context: Multi-Agent**



#### **Applied Machine Learning**

- Coverage of different models and learning setups
- Focus on algorithms and mathematical underpinnings
- Broad coverage of the field and its future

### **Machine Learning Engineering**

- Coverage of only one model (neural network)
- Focus on implementation details and design
- Deep dive into its positives / negatives
- (For those who care about the weeds)

### **Machine Learning**

- Rich and interesting field
- Buildnig models is a core skill
- Probabilistic reasoning for decision making

#### **Hidden Factor**

Many recent successes based on:

- Hardware
- Tooling
- Brute-force search

### Skill Set of a ML Engineer

- Math
- Experimentation
- Systems

# **Machine Learning Systems**

#### **Machine Learning Engineering**

- ML practitioners build large-scale mathematical systems.
- Tooling has been key to speed up ML development.
- Most work done in *Deep Learning frameworks*.

#### **Deep Learning Frameworks**

- Implement mathematical functions as efficient code
- Provide organization and structure to ML projects
- Allow for easy training and deployment
- Think: "Programming language for machine learning"

### **Popular Frameworks**

• TensorFlow



• **PyTorch** (Tool used at Tech)



#### **Deep Learning Frameworks**

Example of code in PyTorch.

```
class Network(torch.nn.Module):
def __init__(self):
super().__init__()
self.layer1 = Linear(2, HIDDEN)
self.layer2 = Linear(HIDDEN, HIDDEN)
self.layer3 = Linear(HIDDEN, 1)

def forward(self, x):
    h = self.layer1.forward(x).relu()
    h = self.layer2.forward(h).relu()
return self.layer3.forward(h).sigmoid()
```

#### **Deep Learning Frameworks**

- Used for all the major projects shown.
- Provide easy user programming interface
- Connect to fast hardware under the hood

#### **ML Day-to-Day**

- Data scientist or ML practitioners and use these systems
- However, an ML Engineer should really know what is going on...

#### **CS 5781 - 2020**

We're going to build PyTorch.

### **Course Outline**

#### **My Learning Philophy**

- Engineering is learned through implementing
- You don't understand it until the tests pass
- Build your own demos

### **Future Context: Image Gen**

Progressive Growing of GANs for Improved Quality, Stability, and Vari...

#### **Learning Objectives**

- Reason about the requirements for large system systems
- Be comfortable designing and testing mathematical code
- Gain confidence reading large open-source codebases

### **Learning Non-Objectives**

- Rigorous understanding of mathematical foundations
- Development of new or creative models
- Details of state-of-the-art ML systems

### **Course Style**

- Highly applied, focus on building
- Project directed, questions from students
- Interactive and grounded in the project

## **Course Outline**

### **PyTorch**

- Big codebase on CPU and GPU
- Large team of professional developers
- Used in thousands of academic papers
- Deployed by Facebook, Uber, Tesla, Microsoft, OpenAI ...

## **Challenge**

• Q: How are you going to build PyTorch?

• A: One commit at a time

#### **Course Project**

- 5 modules walking you through the process
- Each covers a different topic in MLE
- Final module yields a full image recognition system.

#### **Module 0 - Foundations**



#### **Module 1 - Autodifferentiation**



#### **Module 2 - Tensors**



## **Module 3 - Efficiency**



#### **Module 4 - Networks**



## **Grading**

- Assignments Completion and Correctness
- In-Class Quizzes
- Assignments are done individually

#### **Course Structure**

- Co-working session on Fridays
- Lectures Tuesday Morning and Thursday Evening
- Thursday Morning practical session

#### **Caveats**

#### **Course Prerequisites**

- Programming experience
- Mathematical notation / calculus experience
- Willingness to debug
- https://forms.gle/j1VZjwDUVCEqubi36

#### **Next Lecture**

- Getting dev setup
- Getting started for Module-0
- Come ready to program.

# **Q & A**