ZAWARTOŚĆ IZOTOPU ⁴⁰K W POTASIE NATURALNYM

T. Fas

31 grudnia 2017

STRESZCZENIE

W doświadczeniu wyznaczono zawartość procentową p radioizotopu 40 K w solach potasu K_2CO_3 . Otrzymano wartość $s=(0,0203\pm0,0012)\%$. Wartość ta jest prawie dwukrotnie wyższa od oczekiwanej, prawdopodobnie na skutek błędnie działającej aparatury. Oprócz tego określono energetyczną zdolność rozdzielczą spektrometru, która wynosi około 9%.

WSTEP

W środowisku naturalnym występują trzy izotopy potasu: 39 K, 40 K i 41 K, z czego tylko 40 K jest radioaktywny. W 89% przypadków ulega on rozpadowi β^- . W pozostałych 11% przypadków dochodzi do emisji kwantu γ . W doświadczeniu mierzono liczbę rozpadów γ w czasie 30 minut i na tej podstawie wyznaczono stosunek masy 40 K do całości naturalnie występującego potasu.

Jeśli w czasie t odnotowano N rozpadów, to z prawa zaniku promieniotwórczego można wyznaczyć początkową liczbę N_0 jąder 40 K. Relacją między N i N_0 dana jest następującym wzorem:

$$N = N_0 \left(1 - e^{-\lambda t} \right),\tag{1}$$

gdzie λ jest stałą rozpadu. Znając czas połowicznego zaniku $T_{1/2}=1,26\cdot 10^9$ lat można go powiązać z wartością λ następującą relacją:

$$\lambda = \frac{\ln 2}{T_{1/2}}.\tag{2}$$

Znając masy molowe $^{39}{\rm K}$ i $^{40}{\rm K}$ oznaczone kolejno m_{39} i $m_{40},$ całkowitą masę M próbki soli ${\rm K_2CO_3}$ oraz jej masę molową m_s można wyznaczyć:

mase potasu ⁴⁰K ze wzoru:

$$M_{40} = \frac{N_0}{N_A} m_{40},\tag{3}$$

gdzie N_A jest liczą Avogadra; masę $^{39}{\rm K}$ ze wzoru:

$$M_{39} = \left(\frac{2M}{m_s} - \frac{N_0}{N_A}\right) m_{39} \tag{4}$$

oraz szukany stosunek $s = M_{40}/(M_{39} + M_{40})$.

UKŁAD DOŚWIADCZALNY

Układ doświadczalny składał się ze spektrometru podłączonego do komputera, próbki cezu 137 Cs, kobaltu 60 Co oraz próbki soli $\rm K_2CO_3$ o masie M=1011,91g. Wykonano 15-minutowy pomiar widma cezu oraz pomiar widma kobaltu, węglanu potasu i tła, z czego każdy z tych pomiarów trwał po 30 minut. Wyniki zostały zapisane w pamięci komputera.

Rysunek 3: Widmo potasu.

Rysunek 4: Widmo tła.

WYNIKI POMIARÓW

Wyniki pomiarów w postaci wykresów widm przedstawione są na Rysunkach 1-4.

ANALIZA DANYCH

Liczba odnotowanych zliczeń podlega rozkładowi Poissona, tak więc niepewność dla n zliczeń wynosi \sqrt{n} . W ten sposób obliczono niepewności związane z każdym z widm. Następnie od każdego z widm odjęto widmo tła. Niepewność tej różnicy obliczono, korzystając z metody propagacji małych błędów. Ogólny wzór przenoszenia niepewności w tej metodzie jest następujący:

$$u_f^2 = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i} u_i\right)^2 + \sum_{i=1, i \neq j}^n \left(\frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} c_{ij}\right),\tag{5}$$

gdzie wielkość f zależy od wielkości x_i o niepewnościach u_i i o ocenach kowariancji c_{ij} [1].

Następnie do każdego z pików przy pomocy programu gnuplot dopasowano zależność postaci:

$$n(x) = \frac{N}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right),\tag{6}$$

gdzie x jest numerem kanału. Krzywe najlepszego dopasowania przedstawiono na Rysunkach 5-7. Parametry dopasowania przedstawiono w Tabeli 1.

Wartości μ wskazują na numer kanału, dla którego funkcja osiąga maksimum. Wartość tę można bezpośrednio powiązać z energią E emitowanego kwantu γ , znając wartości energii dla cezu i kobaltu oraz wiedząc, że zależność między numerem kanału, a energią jest zależnością liniową.

W Tabeli 2 przedstawiono wartości μ , jej niepewności oraz wartości energii opowiadające danemu rozpadowi γ . Do tych danych dopasowano krzywą postaci $\mu = aE + b$. W tej samej tabeli przedstawiono parametry najlepszego dopasowania tej krzywej. Samą krzywą wraz z punktami przedstawiona na Rysunku 8.

Niestety wartość χ^2 dla tej krzywej wynosi 12,73, która to jest znacznie większa od wartości krytycznej wynoszącej 3,84. Tak więc zależność między energią a numerem kanału nie jest zależnością liniowa. Mimo to postanowiono kontynuować analizę posługując się tą zależnością oraz wyznaczonymi parametrami.

200 450 550 550 650 700 750 660

Rysunek 5: Krzywa dopasowania: pik cezu.

Rysunek 6: Krzywa dopasowania: piki kobaltu.

Rysunek 7: Krzywa dopasowania: pik potasu.

0,45

0,40

Niepewność

Rysunek 8: Krzywa zależności energii od kanału.

0,25

135

Potas Cez Parametr NParametr N σ σ $332,\!\overline{242}$ Wartość Wartość 12,733 49955 21,50 717,25 5196,88 Niepewność 0,067 0,075 271 Niepewność 0,35 0,40 87,72 Pierwszy pik kobaltu Drugi pik kobaltu Wartość 23,12 577,75 19158 Wartość 656,29 12780 19,54

Tabela 1: Parametry dopasowania.

Tabela 2: Dane: zależność energii od kanału; parametry dopasowania prostej.

Niepewność

0,25

295

Próbka	Cez	Kobalt 1	Kobalt 2
μ	332,242	577,75	656,29
Niepewność	0,075	0,40	0,25
Energia E [keV]	661,7	1173,2	1332,5
Parametry dopasowania	Wartość [keV]	Niepewność [keV]	Kowariancja
a	0,4825	0,0013	-0,965
b	12,94	0,96	-0,900

Aby wyznaczyć energię E przy znanym numerze kanału należy odwrócić zależność $\mu=aE+b$. Tak więc $E=\mu/a-b/a$. Przy obliczaniu niepewności energii należy dodatkowo uwzględnić ocenę kowariancji między parametrami a i b.

Wykorzystano odwróconą zależność do obliczenia wartości energii dla rozpadu γ potasu. Niepewność obliczono przy pomocy Równania (5). Otrzymano wartość $E=1460\pm110$ keV, która jest zgodna z wartością rzeczywistą wynoszącą 1460,8 keV.

Dodatkowo, na podstawie parametrów piku cezu wyznaczono energetyczną zdolność rozdzielczą spektrometru. Obliczono ją ze stosunku szerokości piku w połowie jego wysokości do położenia maksimum piku. Otrzymano wartość $9{,}024\%$, którą to zaokrąglono do 9%.

Wiedząc, że wydajność rejestracji kwantów gamma wynosi $\eta=(0,086\pm0,005)\%$ jak i znając liczbę N

przypadków pełnej absorpcji oraz to, że rozpad γ następuje tylko w 11% przypadków obliczono początkową liczbę N_0 atomów potasu 40 K. Skorzystano z danych z Tabeli 1 oraz z Równania (1), Równania (2) jak i z Równania (5), by obliczyć niepewność. Otrzymano wartość $N_0=(17,48\pm1,06)\cdot10^{20}$. Znając tę wartość, można podstawić ją do Równania (3) oraz Równania (4) przyjmując wartości $m_{39}=39,1$ g/mol, $m_{40}=40,0$ g/mol, $m_s=138,2$ g/mol, $N_A=6,022\cdot10^{23}$ 1/mol oraz M=1011,91 g. Zakładając, że wszystkie te wartości są znane dokładnie, otrzymano: $M_{40}=0,1161\pm0,0070$ g, $M_{39}=572,4723\pm0,0069$ g. Tak więc stosunek $s=M_{40}/(M_{39}+M_{40})$ wynosi $s=(0,0203\pm0,0012)\%$. Wartość ta nie jest zgodna z wartością rzeczywistą, która wynosi 0,0117%.

Aby dopełnić analizę potasu $^{40}{\rm K}$ postanowiono obliczyć aktywność badanej próbki. Otrzymano wartość $A=30500\pm1847~{\rm Bg}.$

DYSKUSJA WYNIKÓW I WNIOSKI

Otrzymana wartość s choć niezgodna z wartością rzeczywistą, daje poprawne oszacowanie rzędu wielkości szukanego stosunku. Samą niezgodność wyników można usprawiedliwić tym, iż wykorzystywany spektrometr był uszkodzony i nie mierzył poprawnie liczby rozpadów. Jednakże otrzymane informacje mówiły o tym, iż otrzymane wartości powinny być dwukrotnie niższe od rzeczywistych, tymczasem jak się okazuje, błąd następuje w drugą stronę: otrzymane wartości są dwukrotnie wyższe. Aby rozstrzygnąć tę kwestię, należałyby sprawdzić spektrometr przy pomocy znanego źródła i skorygować ten błąd.

Literatura

[1] J. R. Taylor, Wstęp do analizy błędu pomiarowego, PWN, Warszawa, 1995, s. 175.