26 Radioactivity

26.1 The Discovery of the Nucleus

α Particle Scatter Experiment

It was known that α radiation consists of **fast-moving positively charged** particles.

- 1. Using a **narrow beam** of α particles all of the **same energy**.
- 2. A **thin metal foil** is placed in the path of the beam.
- 3. α particles scattered by the metal foil were detected by a detector which could be moved around at a constant distance from the point of impact of the beam on the metal foil.

The result showed that

- Most α particles pass straight through the foil with **little to no deflection**.
- About 1 in 2000 were deflected.
- 1 in 10000 α particles were deflected through angles of more than 90°.

It can be concluded that

- Most of the atom's mass is **concentrated in a small region** called the nucleus, in the centre of the atom.
- The nucleus is **positively charged** because it repels α particles that approaches it too closely.

Estimation of Size of the Nucleus

For a **single scattering** by a foil of n layers of atoms, the probability of an α particle being deflected by a given atom is 1 in 10000n.

For a nucleus of diameter d in an atom of diameter D

$$\frac{\frac{1}{4}\pi d^2}{\frac{1}{4}\pi D^2} = \frac{1}{10000n}$$
$$d^2 = \frac{D^2}{10000n}$$

A typical value of $n = 10^4$ gives $d = \frac{D}{10000}$.

26.2 The Properties of α , β and γ Radiation

Rutherford found that radiation emitted

- Ionises air, making it conduct electricity.
- Is of three types, α , β and γ .
- A magnetic field deflects α and β radiation in opposite directions, and has no effect on γ radiation.

Ionisation Experiments

The ionising effect of each type of radiation can be investigated using an **ionisation chamber** and a **picoammeter**, containing air at atmospheric pressure.

Ions created in the chamber are attracted to oppositely charged electrodes where they are discharged, causing a current proportional to the number of ions per second created.

- α radiation causes **strong ionisation**.
 - Ionisation ceases beyond a certain distance, because α radiation has a range in air no more than a few centimetres.
- β radiation is **muck weakly ionising**, and range in air up to a metre.
 - A β particle therefore produces less ions per millimetre along its path than an α particle does.
- γ radiation has a much weaker ionising effect than α or β radiation. This is because photons carry no charge, so have less effect.

Cloud Chamber Observations

A cloud chamber contains air **saturated with vapour** at a very low temperature.

An α or β particle passing through the cloud chamber leaves a **visible track** of condensed vapour droplets.

- \bullet α particles create straight tracks and are easily visible.
 - The tracks from a given isotope are all of the same length, indicating they have the same range.
- β particles produced wispy tracks and are easily deflected as a result of collisions with air molecules.

The tracks are not as easy to see as α particle tracks.

Absorption Tests

A Geiger tube and a counter is used to investigate absorption by different materials. Each particle of radiation that enters the tube is registered by the counter as a single count.

The **count rate** is the number of counters divided by time taken.

- 1. The count rate due to background radioactivity is measured.
- 2. The count rate is then measured with the source at a **fixed distance** from the tube, **without any absorber** present.
 - The **corrected count rate** is the background count rate subtracted from the count rate with source present.
- 3. The count rate is then measured with the **absorber present** between the source and the tube.
- 4. The corrected count rate with and without the absorber present can then be compared.

The Geiger Tube

The Geiger tube is a sealed metal tube, containing

- Argon gas at low pressure.
- A tiny mica window at the end to allow α and β particles in.
- A **metal rod** with positive potential down the middle of the tube.
- **Tube walls** are connected to the negative terminal of the power supply.

When a particle of ionising radiation enters the tube,

- The particle ionises the gas atoms along its track.
- Negative ions are attracted to the tube, and positive ions to the wall.
- The ions accelerate and collide with other gas atoms, producing more ions.
- Causing many ions to discharge at the electrodes.
- A pulse of charge passes round the circuit through resistor *R*, causing a voltage pulse which is recorded as a single count by the pulse counter.

26.3 More about α , β and γ Radiation

- α radiation consists of **positively charge particles** each α particle is composed of two protons and two neutrons.
- β radiation from naturally occurring radioactive substances consists of **fast-moving electrons**.

This is proved by measuring the **deflection of a beam of** β **particles**, which is used to work out the **specific charge** of the particles, to be the same as the electron.

A nucleus with too many proton emits a **positron**.

• γ radiation consists of photon.

A γ photon is emitted if a nucleus has excess energy after it has emitted an α or β particle.

Inverse Square Law for γ Radiation

The **intensity** of radiation is the **radiation energy per second** passing normally through unit area.

- For a point source that emits n γ photons per second, each energy hf, radiation energy per second from the source is nhf.
- At distance r from the source, all photons pass through a total area of $4\pi r^2$.

 $I = \frac{nhf}{4\pi r^2}$

Equations for Radioactive Change

• α emission: ${}_Z^A X \rightarrow {}_2^4 \alpha + {}_{Z-2}^{A-4} Y$

• β^- emission: ${}_Z^A X \rightarrow {}_{Z+1}^A Y + {}_{-1}^0 \beta + \bar{\nu_e}$

• β^+ emission: ${}_Z^A X \rightarrow {}_{Z-1}^A Y + {}_{+1}^0 \beta + \nu_e$

• Electron capture: ${}_{Z}^{A}X + {}_{-1}^{0}e \rightarrow {}_{Z-1}^{A}Y + \nu_{e}$

26.4 The Dangers of Radioactivity

Ionising radiation is hazardous because it damage living cells.

 \bullet Destroy cell membrane which causes cells to ${\bf die}.$

High doses of ionising radiation kill living cells.

• Damage vital molecules such as DNA to cause cells to **grow uncontrollably or mutate**.

Cell mutations and cancerous growth occurs at low and high doses.

Radiation Monitoring

Anyone using equipment that produces ionising radiation must wear a **film badge** to monitor his exposure to ionising radiation.

• Different areas of the film are covered by absorbers of different material and different thickness.

- When the film is developed, the amount of exposure to each form of ionising radiation can be estimated from the blackening of the film,
- If the film is overexposed, the wearer is not allowed to continue working with the equipment.

Dose is measured in energy absorbed per unit mass of matter from the radiation.

Background Radiation

Background radiation occurs naturally due to **cosmic radiation** and from **radioactive materials**.

Storage: radioactive materials should be in lead-lined containers. The lead lining must be thick enough to reduce the γ radiation from the source in the container to about the background level.

No source should be allowed to come into contact with the skin.

- Solid sources should be transferred using handling tools or handling robots to ensure the material is as far from the user as practicable.
 - So the user is beyond the range of α and β radiation of the source, and the γ radiation at the user is as low as possible.
- Liquid, gas and solid in powdered form should be in **sealed containers**, so radioactive gas cannot be breathed in, liquid splashed or drunk.
- Radioactive sources should not be used for longer than necessary.

26.5 Radioactive Decay

The **decay curve** shows the mass of the initial isotope decreases gradually as the number of nuclei of the isotope decreases. The mass **decreases exponentially**, which means the mass drops by a constant factor in equal intervals of time.

The half-life $T_{1/2}$ of a radioactive isotope is the time taken for the mass of the isotope to decrease to half the initial mass.

The mass decreases exponentially, because radioactive decay is a **random process** and the number of nuclei that decay in a certain time is in proportion to the number of nuclei remaining.

Activity

The activity A of a radioactive isotope is the number of nuclei of the isotope that disintegrate per second - the rate of change of the number of nuclei of isotope.

The unit of activity is the **becquerel** (Bq), 1Bq=1 disintegration per second.

- The activity of a radioactive isotope is **proportional to the mass** of the isotope.
- The mass of a radioactive isotope **decreases with time**, so the activity decreases with time.

Activity and Power

For a radioactive source of activity A that emit particles of the same energy E.

$$P = AE$$

26.6 The Theory of Radioactive Decay

The decay of an unstable nucleus is an **unpredictable event**, every nucleus of a radioactive isotope has an **equal probability of undergoing radioactive decay** in any given time interval.

For a large number of nuclei of a radioactive isotope, the number of nuclei that disintegrate in a certain time interval depends only on the total number of nuclei present.

The rate of disintegration

$$\frac{dN}{dt} = -\lambda N$$

where λ is the **decay constant**.

So the activity A of N atoms of a radioactive isotope is given by

$$A = N\lambda$$

From the rate of disintegration, we have

$$N = N_0 e^{-\lambda t}$$
$$m = m_0 e^{-\lambda t}$$
$$A = A_0 e^{-\lambda t}$$

The **corrected count rate** C due to a sample of radioactive isotope at a fixed distance from a Geiger tube is **proportional to the activity** of the source.

$$C = C_0 e^{-\lambda t}$$

where C_0 is the count rate at time t = 0.

The Decay Constant

The decay constant λ is the probability of an individual nucleus decaying per second.

 $\lambda = \frac{\Delta N}{N}/\Delta t$

And

$$T_{1/2} = \frac{\ln 2}{\lambda}$$

26.7 Radioactive Isotopes in Use

The choice of an isotope for a particular purpose depends on

- Its half-life.
- The **type of radiation** it emits.

Carbon Dating

- 1. Carbon dioxide from the atmosphere is **taken up by living plants**, a small percentage of the carbon content of any plant is the radioactive carbon-14.
- 2. Once a tree has died, no further carbon is taken in, so the proportion of carbon-14 in the dead tree decreases as the carbon-14 nuclei decay.
- 3. The age of the tree can be calculated by **measuring the activity** of the dead sample. Provided the activity of the same mass of living wood is known.

Argon Dating

Ancient rocks contains **trapped argon gas** as a result of the decay of radioactive isotope of potassium. The age of the rock can be calculated by measuring the proportion of argon-40 to potassium-40.

Radioactive Tracers

A radioactive tracer is used to follow the path of a substance through a system.

The radioactive tracer should

- Have a half-life which is stable enough for the necessary measurements to be made, and short enough to decay quickly after use.
- Emit β or γ radiation so it can be detected outside of the flow path.

26.8 More about Decay Modes

The N-Z Graph

The N-Z graph is a graph of the neutron number N against the proton number Z for all known isotopes.

- **Light isotopes** (Z < 20) follow the straight line N = Z, such nuclei have an equal number of protons and neutrons.
- For Z > 20, stable nuclei have more neutrons and protons. The extra neutrons help bind the nucleons together without introducing repulsive electrostatic forces, which adding more protons would do.
- α emitters occur beyond Z=60, they have more neutrons than protons but they are too large to be stable. The strong nuclear force is **unable to** overcome the electrostatic force of repulsion between two protons.
- β^- emitters occur to the left of the stability belt where isotopes are **neutron-rich** compared to stable isotopes.
- β^+ emitters occur to the right of the stability belt where the isotopes are **proton-rich** compared to stable isotopes.

Nuclear Energy Levels

If the daughter nucleus is formed in an **excited state** after it emits an α or β particle or undergoes electron capture, the nucleus moves to its **ground state** either directly or via one or more lower-energy excited states.

The short-lived excited state is said to be a **metastable state**.

26.9 Nuclear Radius

We can estimate the diameter of different nuclides using **high-energy electrons**.

- When a **beam of high-energy electron** is directed at a thin solid sample of an element, the incident electrons are **diffracted by the nuclei** of the atoms in the foil.
- The electrons are diffracted because the de Broglie wavelength of such high-energy electrons is about the same as the diameter of the nucleus.
- A detector is used to measure the number of electrons per second diffracted through different angles.

Result shows

• Scattering of the beam electrons by the nuclei occurs due to their charge, this causes the intensity to decrease as angle θ increases.

• **Diffraction** of the beam electrons by each nucleus causes intensity maxima and minima to be superimposed on the scattering patter.

The angle of the first minimum θ_{\min} is measured and used to calculate the diameter of the nucleus. Provided the wavelength of the incident electrons is known.

Nucleon Radius and Nucleon Number

It can be shown that R depends on mass number A according to

$$R = r_0 \sqrt[3]{A}$$

where $r_0 = 1.05$ fm.

The graph of $\ln r$ against $\ln A$ gives

- A straight line of gradient 1/3
- With y-intercept $\ln r_0$.

Nuclear Density

Assuming the nucleus is spherical.

Volume
$$V = \frac{4}{3}\pi R^3$$

$$= \frac{4}{3}\pi (r_0 \sqrt[3]{A})^3$$

$$= \frac{4}{3}\pi r_0^3 A$$

This means the **nuclear volume** V is proportional to the mass of the nucleus.

- The density of the nucleus is constant, independent, and same throughout a nucleus.
- We can conclude that nucleons are **separated by the same distance** regardless of the size of the nucleus, and therefore evenly separated inside the nucleus.

$$\rho_{\rm nuc} = \frac{Au}{\frac{4}{3}\pi r_0^3 A}$$