Choosing the right graph

ME447 Visualizing Data Fall 2017–18

Richard Layton

Based on Jean-luc Doumont and Philippe Vandenbroeck (2002 March) Choosing the right graph, *IEEE Transactions on Professional Communication* 45(1)

To chose a graph, answer these basic questions about your data and your story

What story are you telling?

- distribution
- comparison
- correlation between variables
- evolution over time

How many variables are relevant to the story?

Each variable is of what type?

- quantitative (continuous)
- categorical (discrete)

BUT YOU SPEND TWICE AS MUCH TIME WITH ME AS WITH ANYONE ELSE. I'M A CLEAR OUTLIER.

Story: distribution

point plot or box plot

Data: 1 variable (quantitative)

Story: comparing distributions

point plot

Story: comparing distributions

point plot

Story: comparing distributions

box plot

comparing distributions **Story:**

box plot

3 variables (1 quantitative, 2 categorical) Data:

Story: comparing frequency

diverging stacked bar

Data: 3 variables (Likert-like scales)

A response belongs to a mutually exclusive combination of levels.

Story: comparing frequency

mosaic

Data: 3 variables (1 quantity, 2 categories)

dot plot

dot plot

dot plot

multiway

Data: 3 variables (1 quantitative, 2 categorical)

A quantitative value for every combination of levels of the two categorical variables.

Story: correlation scatterplot

Data: 2 quantitative variables

Story: correlation & comparison

scatterplot

Story: comparison

scatterplot-like

Data: 3 categorical variables

Story: correlation & comparison

Data: 3 variables (2 quantitative, 1 categorical)

scatterplot multi-panel

Story: correlation & comparison

Data: 3 variables (2 quantitative, 1 categorical)

scatterplot small multiples

Story: correlation

scatterplot matrix

Data: 3 quantitative variables

Correlations, one pair of variables at a time. Suitable for any N quantitative variables.

correlation **Story:**

3 quantitative variables

co-plot

Story: evolution line plot

Data: 2 variables (time, 1 quantity)

multi-lines

Story: evolution & comparison

Data: 3 variables (time, 1 quantity, 1 category)

evolution & comparison **Story:**

multi-panels

3 variables (time, 1 quantity, 1 category) Data:

Story: evolution & comparison

slopegraph

Data: 3 variables (1 quantity, 2 categories)

Story: evolution & comparison

cycle plot

Data: 3 variables (time, 1 quantity, 1 category)

evolution of distributions **Story:**

combination

Data:

3 variables (time, 1 quantity, 1 category) evolution of boxplots recession

Story: evolution of distributions

Data: 3 variables (1 quantity, 2 category)

combination evolution of boxplots

Story: evolution & comparison

Data: 4 variables (time, 1 quantity, 2 categories)

line plot small multiples

Story: evolution of frequency

mosaic

Data: 4 variables (1 quantity, 3 categories)

Implications for the designer

Find a story

Grasp the data structure

Choose a graph that suits both