

02/10/00

JCS 678 U.S. PTO

02-11-00
A

IN THE UNITED STATES
PATENT AND TRADEMARK OFFICE

PATENT APPLICATION

JCS 678 U.S. PTO
09/501199

02/10/00

INVENTOR(S) Joseph E. Ford, Keith W. Goossen and James A. Walker

CASE Ford 47-86-61

TITLE ARTICLE COMPRISING A TUNABLE FILTER

THE COMMISSIONER OF PATENTS AND TRADEMARKS
BOX PATENT APPLICATION
WASHINGTON, D.C. 20231

SIR:

Enclosed are the following papers relating to the above-named application for patent:

20 Pages of Specification (including 4 pages of claims)

1 Page of Abstract

9 Sheets of drawing(s)

Assignment and 2 copies of Recordation Cover Sheet

Declaration and Power of Attorney

Return Postcard

		CLAIMS AS FILED		
	<u>NO. FILED</u>	<u>NO. EXTRA</u>	<u>RATE</u>	<u>CALCULATIONS</u>
Total Claims	22 - 20 =	2	x \$18 =	\$ 36.00
Independent Claims	2 - 3 =	0	x \$78 =	\$ -0-
Multiple Dependent Claim(s), if applicable				\$ -0-
Basic Fee				\$ 690.00
		TOTAL FEE:		<u>\$ 726.00</u>

- 2 -

Please file the application and charge **LUCENT TECHNOLOGIES Deposit Account No. 12-2325** the amount of **\$726.00**, to cover the filing fee. Duplicate copies of this letter are enclosed. In the event of non-payment or improper payment of a required fee, the Commissioner is authorized to charge or to credit **Deposit Account No. 12-2325** as required to correct the error.

Please address all correspondence to: **Wayne S. Breyer, DeMONT & BREYER, L.L.C., 35 Malus Lane, Middletown, N.J. 07748.** Telephone calls should be made to Wayne S. Breyer at (732) 706-3497.

Respectfully,

DeMONT & BREYER, L.L.C.

By Wayne S. Breyer

Wayne S. Breyer

Reg. No.: 38,089

Attorney for Applicant(s)

35 Malus Lane

Middletown, N.J. 07748

Date: February 10, 2000

Lucent Technologies Inc.
600 Mountain Avenue (Room 3C-512)
P. O. Box 636
Murray Hill, New Jersey 07974-0636

"Express Mail" mailing label number EK171675729US

Date of Deposit February 10, 2000

I certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Commissioner of Patents and Trademarks, U.S.P.T.O., D.C. 20231.

Wayne S. Breyer
(Signature or printed name of person mailing paper or fee)

Wayne S. Breyer
(Signature of person mailing paper or fee)

ARTICLE COMPRISING A TUNABLE FILTER

Field of the Invention

The present invention relates to optical communications. More particularly, the present
10 invention relates to a tunable filter for use in conjunction with optical communications systems.

Background of the Invention

FIG. 1a depicts a simplified schematic diagram of a typical WDM network **100** in the prior art. WDM network **100** includes a plurality of transmitters **TX-1** through **TX-n**. Each of the
15 transmitters includes an optical source for generating an optical signal $\lambda-i$, $i = 1, n$. Each optical signal $\lambda-i$ is characterized by a unique peak wavelength onto which information may be modulated in well-known fashion. The plurality of optical signals $\lambda-1$ through $\lambda-n$ are combined into a single “multiplexed” signal $m-\lambda$ by wavelength multiplexer **102**, and the multiplexed signal $m-\lambda$ is then launched into optical fiber **104**.

20 A plurality of subscriber terminals (e.g., **106-S1**, **106-S2** and **108-S1** through **108-Sn**) are in optical communication with network **100**. Each such subscriber terminal includes a receiver(s) (not shown) for receiving information that is carried over network **100** via multiplexed signal $m-\lambda$. An individual subscriber terminal may subscribe to the information contained on only a single channel (*i.e.*, on a single optical signal $\lambda-i$) of multiplexed signal $m-\lambda$.

25 Subscriber terminals **108-S1** through **108-Sn** located at end terminal **108** require, collectively, most or all of the individual channels $\lambda-1$ through $\lambda-n$ multiplexed signal $m-\lambda$. To provide such channels to subscriber terminals **108-S1** through **108-Sn**, multiplexed signal $m-\lambda$ is typically demultiplexed, fully resolving it into its constituent channels. Demultiplexer **110** is used for that purpose.

30 Subscriber terminals **106-S1** and **106-S2** are located at “small” intermediate node **106**. Node **106** requires only a few of the channels of multiplexed signal $m-\lambda$ (*i.e.*, terminal **106-S1** receives only channel $\lambda-1$ and terminal **106-S2** receives only channel $\lambda-3$). As a consequence, rather than fully demultiplexing multiplexed signal $m-\lambda$ at node **106**, only the required channels

are dropped (*i.e.*, removed or separated) from multiplexed signal $m-\lambda$ and delivered to the appropriate subscriber terminal. One or more “wavelength” (add)/drop filters (*i.e.*, filters **106-WAD1**, **106-WAD2**), which are operable to drop a single channel, are advantageously used for this purpose.

5 For example, in network **100** at node **106**, add-drop filter **106-WAD1** separates and drops channel $\lambda-1$ from multiplexed signal $m-\lambda$. Channel $\lambda-1$ is then transmitted to subscriber terminal **106-S1**. Also, add-drop filter **106-WAD2** separates and drops channel $\lambda-3$, which is then transmitted to subscriber terminal **106-S2**. As the name implies, in at least some embodiments, wavelength add-drop filters are operable to add a single channel having the same characteristic wavelength as the drop channel. For example, in network **100**, transmitter **106-T1** generates signal $\lambda-1$ that is added to multiplexed signal $m-\lambda$ via **106-WAD1**. Alternatively, such a channel may be added to the multiplexed signal elsewhere in network **100**.

10 It will be clear to those skilled in the art that a typical WDM optical communications network will have many more nodes and typically includes many other elements (*e.g.*, amplifiers for maintaining signal strength, *etc.*) than are depicted in FIG. 1a. These other nodes and other elements are not shown so that attention can be focused on those elements that are germane to an understanding of the present invention.

15 FIG. 1b depicts a known wavelength add-drop filter. The particular filter depicted in FIG. 1b is a Fabry-Perot etalon filter, well known in the art. Etalon filter **150** consists of a pair of highly reflective dielectric mirrors **M1** and **M2** that are separated by a precisely defined gap **G**. An optical cavity **OC** is defined between opposed surfaces **SM1** and **SM2** of the final dielectric layer of each mirror.

20 A multiple-wavelength signal **MWS-IN** from input waveguide (*e.g.*, an optical fiber) **F-IN** is collimated by lens **L1** and illuminates the mirrors **M1** and **M2**. Most of wavelengths of signal **MWS-IN** are reflected from the filter and couple into output waveguide **F-OUT**. Signals $D\lambda_1 - D\lambda_j$ having a wavelength within a very narrow range or “passband” are, however, transmitted through the mirrors, pass through lens **L2**, and couple into drop waveguide **F-D**. Any signals **Aλ** having a wavelength within the narrow pass band of the filter can be delivered to filter **150** from “add” waveguide **F-A** and coupled into output waveguide **F-OUT**.

25 Performance parameters of the etalon filter **150**, such as reflectivity/transmissibility, passband, center transmission wavelength of the passband and finesse are readily calculable and

are dependent on properties of the optical cavity OC (*i.e.*, gap G) and mirror reflectivity and the coupling efficiency into output waveguides.

Returning to illustrative network 100, to “drop” two channels (*e.g.*, $\lambda\text{-}1$ and $\lambda\text{-}3$) from multiplexed signal $m\text{-}\lambda$, two add-drop switches (*e.g.*, implemented as described above) can be used. Alternatively, it is possible to drop the same two channels using a single “tunable” etalon filter having an adjustable passband “center” wavelength. The “center” wavelength is the predominant wavelength of the passband (hereinafter “center transmission wavelength”).

In such tunable etalon filters, one of the two mirrors is typically placed on a translation actuator (*e.g.*, a piezoelectric transducer) that is under electrical control. Moving the actuator changes the size of the gap between the mirrors. Since the gap (size) controls the center transmission wavelength of the filter, moving the actuator changes that center transmission wavelength.

A problem exists, however, with existing tunable filters. As explained above, to change the center transmission wavelength, the size of the gap between the two mirrors is altered. In doing so, the gap will assume a number of intermediate sizes until the desired size is attained. At such intermediate gap sizes, the optical cavity will tune to channels or signals having intervening wavelengths (hereinafter “intervening channels” or “intervening signals”). Such intervening signals will be transmitted by the filter, delivered to the drop fiber and passed to the subscriber terminal rather than to the intended destination. To prevent intervening signals from being delivered to a subscriber terminal in this manner, those signals must be disadvantageously temporarily interrupted while tuning the filter to a new center transmission wavelength.

The art would therefore benefit from a tunable filter that, during tuning, does not disrupt intervening channels.

25

Summary of the Invention

Some embodiments of the present invention provide a tunable filter without some of the disadvantages of the prior art. In particular, the illustrative embodiment of the present invention is a tunable filter that does not interrupt intervening channels during tuning.

In accordance with the illustrative embodiment of the present invention, a tunable filter 30 includes an optical cavity, a tuning device and a filter-disabling device. The length of the optical

cavity defines the center transmission wavelength of the filter. Other attributes of the optical cavity and the mirrors define the finesse of the filter.

As used herein, the term “**passband**” refers to the range of wavelengths that are transmitted or passed by a filter, the term “**center transmission wavelength**” refers to the predominant or peak wavelength in the passband, and the term “**finesse**” refers to the transmissibility of the filter. The term “finesse” is also properly considered to be a measure of the “sharpness” of the transmission peak of the filter. And, as will be appreciated by those skilled in the art, the term “finesse” also has mathematical definitions (e.g., assuming equal reflectivity mirrors: finesse = $4r / (1-r^2)$, where “r” is the reflectivity of the mirrors). In the context of the present invention, the term “finesse” is intended to refer to the transmissibility of the filter, as will become clear later in this Specification.

The tuning device is operable to change the center transmission wavelength of the tunable filter. The filter-disabling device is operable to temporarily disrupt the finesse or otherwise substantially lower the transmissibility of the optical cavity, thereby preventing the transmission of any wavelengths through the tunable filter. In some embodiments, filter transmissibility is lowered by disrupting the reflectivity (along the optical axis) of at least one of the two mirrors defining an optical cavity.

In accordance with the present teachings, before changing the center transmission wavelength, the filter-disabling device is enabled. Doing so disrupts the finesse of the optical cavity thereby substantially preventing the transmission of any optical signals through the filter. The tuning device is then used to change the center transmission wavelength. Even though the tuning device will tune to undesired intervening channels during the tuning process, the filter will not transmit such intervening channels since the finesse of the optical cavity is disrupted (*i.e.*, the transmissibility of the filter is low). After tuning is complete, the filter-disabling device is defeated and the filter exhibits its desired transmission characteristic (*i.e.*, transmits the desired channel through the filter).

The inventive concept may be implemented in a variety of ways. Several illustrative embodiments are summarized below and described in more detail later in this Specification.

In some embodiments, the optical cavity comprises two spaced-apart mirrors. In a few of those embodiments, one of the mirrors is movable and functions as the tuning device. In particular, moving the movable mirror changes the length of the optical cavity thereby changing the center transmission wavelength of the filter. The movable mirror can be readily implemented

using well-known surface micromachining techniques (e.g., micro-electromechanical systems “MEMS”).

In one embodiment, filter-disabling device comprises an arrangement for tilting or rotating one of the mirrors. Tilting a mirror disrupts the finesse of the optical cavity such that the
5 filter becomes reflective of all wavelengths of light.

In other embodiments, the optical cavity is modified wherein one of the two mirrors is “split” into two groups of layers of dielectric material that are separated by a gap. Thus, the filter has two “gaps,” a primary gap between the first and the second mirror (tuning device), and an auxiliary gap (filter-disabling device) that divides the layers of the “split” mirror. Both the
10 primary gap and the auxiliary gap are variable. When the auxiliary gap is at a (readily) predetermined size, the finesse of the filter is at a maximum. By appropriately changing the auxiliary gap, the finesse of the filter is disrupted and the filtering function is defeated.

In other embodiments, the filter-disabling device comprises an electrically-switched absorbing, scattering or depolarizing media that is disposed in the optical cavity. By applying a
15 voltage, the optical characteristic of the media can be changed from non-transmissible to transmissible (or visa-versa). The cavity is tuned (*i.e.*, the center transmission wavelength is changed) by changing the length of the optical cavity.

In still other embodiments, an optical cavity incorporates a semiconductor optical amplifier that provides either a zero-loss or highly lossy roundtrip as a function of whether
20 current is flowing through the optical amplifier.

Brief Description of the Drawings

FIG. 1a depicts a simplified schematic diagram of a typical WDM network 100 in the prior art.

FIG. 1b depicts a typical wavelength add-drop filter, which is implemented using a
25 Fabry-Perot etalon.

FIG. 2a depicts a block diagram of a tunable filter in accordance with the present teachings.

FIG. 2b depicts a method in accordance with the illustrated embodiment of the present
30 invention.

FIGS. 3a - 6a depict the operation of a first illustrative embodiment of a tunable filter in accordance with the present teachings.

FIGS. 3b - 6b depict plots showing reflectivity versus wavelength at the various stages of operation depicted in FIGS. 3a – 6a, respectively.

5 **FIGS. 3c – 6c** depict plots showing transmissibility versus wavelength at the various stages of operation depicted in FIGS. 3a – 6a, respectively.

FIG. 7 depicts a plan view of a movable, tiltable mirror for use in the first illustrative embodiment of a tunable filter.

FIG. 8 depicts a side view of the movable, tiltable mirror of FIG. 7.

10 **FIGS. 9a – 9c** depict the operation of the movable, tiltable mirror of FIGS. 7 and 8.

FIG. 10 depicts a side view of a second illustrative embodiment of a tunable filter in accordance with the present invention.

15 **FIG. 11** depicts an arrangement of layers that comprise the dielectric mirrors of the tunable filter of FIG. 10.

15 **FIG. 12** depicts a side view of a third illustrative embodiment of a tunable filter in accordance with the present invention.

20 **FIG. 13** depicts a fourth illustrative embodiment of a tunable filter in accordance with the present invention.

FIG. 14 depicts a fifth illustrative embodiment of a tunable filter in accordance with the

20 present invention.

FIG. 15 depicts the operation of the tunable filter of FIGS. 10 and 11.

Detailed Description

25 FIG. 2a depicts a block diagram of a tunable filter 200 in accordance with the present invention. Tunable filter 200 comprises optical cavity 210, tuning device 220 and filter-disabling device 230.

The length of the optical (resonant) cavity 210 determines the center transmission wavelength of tunable filter 200. Tuning device 220 is operable to change the center transmission

wavelength of tunable filter **200**. To do so, tuning device **220** varies a parameter (*e.g.*, cavity length, *etc.*) that is determinative of the center transmission wavelength.

Filter-disabling device **230** is operable to temporarily disable the transmission behavior of the filter by disrupting the finesse or transmission characteristic of optical cavity **210**. Though depicted as separate elements in FIG. 2a, in some embodiments, tuning device **220** and filter-disabling device **230** are realized by a single element.

Tunable filter **200** is advantageously operated in accordance with illustrative method **250** depicted in FIG. 2b. By doing so, tunable filter **200** operates in a “hitless” manner, wherein it does not transmit or “hit” any undesired intervening channels during tuning, even though such channels are not otherwise interrupted.

In accordance with operation **252** of method **250**, the finesse of optical cavity **210** is disrupted so that optical signals are not transmitted by filter **200**, regardless of their wavelength. This is done by enabling filter-disabling device **230**. In operation **254**, tunable filter **200** is tuned using tuning device **220**. After tunable filter **200** is tuned to the desired center transmission wavelength, finesse is recovered by disabling filter-disabling device **230**, in accordance with operation **256**.

In use as a drop filter or an add/drop filter, waveguides (not shown in FIG. 2a) are of course placed in optical communication with tunable filter **200** to effect that function. Several specific embodiments of a tunable add-drop filter in accordance with foregoing description are now described.

FIGS. 3a, 4a, 5a and 6a depict an illustrative embodiment of tunable filter **200** and the operation thereof in accordance with illustrative method **250**. In the embodiment depicted in FIGS. 3a, 4a, 5a and 6a, tunable filter **200** is configured in the manner of the tunable Fabry-Perot etalon add-drop switch of FIG. 1b. Unlike the switch of FIG. 1b however, tunable filter **200** advantageously includes a filter-disabling device.

In more detail, tunable filter **200** of FIGS. 3a, 4a, 5a and 6a, in its implementation as an add-drop filter, has two spaced-apart mirrors **310** and **312**, two lenses **306** and **308**, input waveguide **302**, output waveguide **304**, add waveguide **314** and drop waveguide **316**, arranged as shown.

Spaced-apart mirrors **310** and **312** define an optical cavity. Mirror **310** is “fixed” (*i.e.*, non-movable) while mirror **312** is movable. In the depicted embodiment, mirror **312** is advantageously capable of “tilting” or being rotated relative to fixed mirror **310**, in addition to

being “translatable” (*i.e.*, non-rotational movement) to vary the spacing between the mirrors (*i.e.*, to vary the cavity length). As described further below, by virtue of such functionality, mirror 312 serves as both tuning device 220 and filter-disabling device 230.

Lens 306 is operative to receive an optical signal from input waveguide 302 and to
5 collimate it. Lens 306 is also operative to receive a collimated optical signal reflected
by/transmitted through mirror 310 and focus it into output waveguide 304. Similarly, lens 308 is
operable to receive a collimated optical signal reflected by/transmitted through mirror 312 and
focus it into drop waveguide 316, and to receive an optical signal from add waveguide 314 and to
collimate it. Ray tracings depict the path of optical signals through tunable filter 200 as described
10 above. Lenses 306 and 308 can be, without limitation, a graded index (GRIN) lens, a ball lens and
a molded (*e.g.*, injection molded) lens.

For pedagogical purposes, it is assumed for the following description that a multiplexed optical signal is delivered to tunable filter 200 by input waveguide 302. The multiplexed optical signal consists of five channels, each characterized by a different peak wavelength.

15 FIG. 3a depicts tunable filter 200 in a specific state, wherein mirrors 310 and 312 are parallel to one another and are separated by gap G₁ (*i.e.*, G₁ is the length of optical cavity). In the state illustrated in FIG. 3a, tunable filter 200 is assumed to reflect channels 1-3 and 5 and to transmit channel 4, as illustrated by the plots of FIGS. 3b and 3c.

Given the foregoing assumptions, in the state depicted in FIG. 3a, channel 4 is
20 transmitted through mirror 312 to lens 308, which focuses channel 4 into drop waveguide 316. The multiplexed signal, without channel 4, is reflected by the optical cavity to lens 306, which focuses the signal into output waveguide 304. A signal having the same peak wavelength as channel 4 can be added to reflected channels 1-3 and 5 via add waveguide 314.

As will be appreciated by those skilled in the art, in some embodiments, an “add”
25 waveguide (*e.g.*, add waveguide 314) is not present, so that the filter is simply a “drop” filter. The “add” functionality can be provided elsewhere in the optical communications network, or not at all, as appropriate. In still other embodiments, a “drop” waveguide is not present. Rather, the passed signal is transmitted directly to an optical device, such as a detector.

FIGS. 4a – 6a depict, collectively, “hitless” tuning of tunable filter 200 in accordance
30 with method 250. In particular, those Figures show how tunable filter 200 is tuned to a new center transmission wavelength (*e.g.*, wherein channel 2 is transmitted and channels 1 and 3-5 are reflected) while none of the intervening channels are transmitted.

In accordance with operation 252 of method 250, before tuning filter 200 to a new center transmission wavelength, finesse is disrupted. To do so, the filter-disabling device is enabled. In the context of the present embodiment, the filter-disabling device is enabled by tilting mirror 312 so that mirrors 310 and 312 are no longer parallel to one another. FIG. 4b depicts the filter-disabling device enabled wherein mirror 312 is “tilted” or “rotated” along path TL.

FIGS. 4b and 4c illustrate the effect that tilting mirror 312 has on the finesse of the optical cavity. In particular, the cavity becomes substantially completely reflective to all wavelengths (e.g., channels 1-5).

In accordance with operation 254 of method 250, after disabling the filter, it is tuned to a desired center transmission wavelength. In the context of the present invention, filter 200 is tuned by translating mirror 312, thereby changing the gap between mirrors 310 and 312 (*i.e.*, the length of the optical cavity). The *tilt* of mirror 312 is maintained during translation thereby ensuring that filter 200 does not transmit undesired intervening channels during the tuning operation. FIG. 5a depicts the gap between mirrors 310 and 312 being increased as mirror 312 is translated along path TR.

FIGS. 5b and 5c show that filter 200 remains disabled wherein channels 1-5 are substantially completely reflected.

In accordance with operation 256 of method 250, after tuning to the desired center wavelength, finesse is recovered. To do so, the filter-disabling device is disabled. In the context of the present invention, the filter-disabling device is disabled by returning mirror 312 to its “original” non-tilted orientation so that mirrors 310 and 312 are once again parallel. FIG. 6a depicts mirror 312 rotated, along path DTL, to its non-tilted orientation, and further depicts mirrors 310 and 312 separated by gap G₂ (different in size from gap G₁). Since mirrors 310 and 312 are returned to a parallel disposition, the transmission characteristic of filter 200 is again exhibited. With mirrors 310 and 312 separated by gap G₂, filter 200 is tuned to a different center transmission wavelength than when the mirrors were separated by gap G₁. (Compare FIGS. 6b and 6c showing transmission of channel 2 and reflection of channels 1 and 3-5 with FIGS. 3b and 3c showing transmission of channel 4 and reflection of channels 1-3 and 5.)

It will be appreciated that the “translation” and “tilting” functionality of mirror 312 can be implemented using any one of a variety of different structural arrangements. One such arrangement is depicted in FIGS. 7, 8 and 9a – 9c.

FIG. 7 (top view) and FIG. 8 (side view along line 1-1 of FIG. 7) depict an illustrative embodiment of translatable and tiltable mirror 312. Translatable/tiltable mirror 312 comprises mirror 708 disposed on layer 706. Though depicted as a single layer, mirror 708 is advantageously realized as a dielectric mirror, well known in the art, comprising multiple layers of material(s) wherein the refractive indices of adjacent layers are different. Supports 804 suspend layer 706 above substrate 702, forming gap 714 therebetween. Two independently controllable electrodes 710 and 712 are disposed on layer 706 flanking mirror 708.

In operation, a voltage applied across one or both electrodes 710, 712 (and substrate 716) generates an electrostatic force that attracts the layer 706, and mirror 708, toward substrate 716. Applying voltage unequally to electrodes 710 and 712 imparts a controllable angle (*i.e.*, tilt or rotation) to layer 706 and, hence, mirror 708. (*See* FIG. 9b.) In such a manner, movable mirror 312 functions as the filter-disabling device, disrupting the finesse of the optical cavity by destroying the parallel relationship of the two mirrors that define the optical cavity.

Once the tilted disposition of mirror 312 is established, translation of the mirror is effected, as required, by increasing the voltage (but maintaining an imbalance of applied voltage as between the two electrodes). In this manner, a “tilt” is maintained, but layer 706 is drawn closer to substrate 716. To recover the finesse of the optical cavity, the voltage of the appropriate electrode is increased until layer 706 is rotated back to a non-tilted orientation. (*See* FIG. 9c). For additional information pertaining to electrically-controlled “tilt” mirrors, see U.S. Pat. App. Serial No. 09/271,577, which is incorporated by reference herein.

In an embodiment depicted in FIG. 8, fixed mirror 718 is disposed on back surface 717 of substrate 716 to create the optical cavity. Alternatively, in the embodiment depicted in FIGS. 9a – 9c, fixed mirror 918 is fabricated as part of a separate multi-layer structure that includes substrate 916. As desired or necessary, a window 719 is formed within the substrate (*e.g.*, substrate 716 of FIG. 7). Window 719 is required, for example, if substrate 716 is not optically transparent at the operating wavelengths of filter 200.

Tunable filter 200 is fabricated in well-known fashion using standard micro-machining techniques and devices.

When in use as an add-drop filter in an optical communications system, the embodiments of tunable filter 200 described in this Specification incorporate various waveguides (*e.g.*, optical fibers, *etc.*) and lenses for effecting communication with the communications system and subscriber terminals. (*See*, for example, FIG. 3a – 6a.) Such waveguides and lenses are not

shown in conjunction with the various embodiments of tunable filter 200 so that attention is focused on elements that are germane to an understanding of the present invention. Those skilled in the art will know how use waveguides and lenses in conjunction with tunable filter 200.

FIGS. 10 and 11 depict yet another embodiment of a tunable filter 200 in accordance with the present teachings. More particularly, FIG. 10 depicts the overall structure of tunable filter 200 and FIG. 11 provides additional detail concerning the structure of the mirrors that define the optical cavity of the tunable filter.

Like the previously described embodiments of tunable filter 200, the embodiment depicted in FIG. 10 includes an optical cavity, tuning device and filter-disabling device. Such elements are, however, implemented in a different manner than for the translatable, tilting mirror filter previously described.

In the embodiment illustrated in FIG. 10, tunable filter 200 includes substrate 1002, fixed mirror 1016 and movable mirror 1008, arranged as shown. Movable mirror 1008 is suspended above fixed mirror 1016 by supports 1004 such that a primary gap PG is defined therebetween.

Movable mirror 1008 is bifurcated into two groups of layer(s) 1010 and 1012. Each group of layer(s) comprises at least one layer. Layer(s) 1012, hereinafter referred to as “the upper movable layer,” is suspended over layer(s) 1010, hereinafter referred to as “the lower movable layer,” by supports 1006 defining auxiliary gap AG therebetween.

Like movable mirror 312 previously-described, movable mirror 1008 functions as both the tuning device and the filter-disabling device. Such dual functionality is achieved, however, in a different manner by virtue of the differences in structure of those mirrors. In particular, as described further below, rather than tilting mirror 1008 to disrupt the finesse of the optical cavity, the size of auxiliary gap AG is changed, which achieves the same result. Note, however, that in both such cases, finesse is disrupted by altering the reflectivity, *along the optical axis*, of (at least) one of the two mirrors that define the optical cavity.

Regarding the structure of the mirrors, movable mirror 1008 is advantageously divided into layers of material that are an odd-multiple of an eighth of a wavelength (of the optical signal) thick (as measured in the layer). For example, in the embodiment depicted in FIG. 11, upper layer 1012 comprises a layer 1116 of material that has a thickness of five-eighths of a wavelength. Bottom layer 1010 comprises three layers of material including a layer 1110 that has a thickness of one-quarter of a wavelength, a layer 1112 that has a thickness of one-quarter of a wavelength and a layer 1114 that has a thickness of one-eighth of a wavelength.

By virtue of the overall thickness of movable mirror **1008** (5/4 wavelengths plus the gap), the finesse of illustrative tunable filter **200** of FIGS. 10 and 11 is at a maximum when auxiliary gap **AG** is equal to an integer number of one-half wavelengths. As auxiliary gap **AG** changes, the finesse is disrupted. In this manner, the filter-disabling device is implemented. Changing primary gap **PG** (*i.e.*, changing the optical cavity defined between opposed surfaces of layers **1110** and **1108**) changes the center transmission wavelength of the filter and, as such, implements the tuning function. Since upper and lower movable layers **1012** and **1010** of movable mirror **1008** are independently movable, auxiliary gap **AG** can be changed independently of primary gap **PG** to some extent. Note, however, that changes in the auxiliary gap **AG** affect tuning and changes in the primary gap affect finesse.

FIG. 15 depicts the operation (theoretical) of illustrative tunable filter **200** of FIGS. 10 and 11 based on values of the primary and the auxiliary gap for states A – J listed in TABLE 1 below.

TABLE 1

State	<u>Operating λ (nm)</u>	<u>-----Auxiliary Gap-----</u>		<u>-----Primary Gap-----</u>	
		<u>Angstroms</u>	<u>Fract λ</u>	<u>Angstroms</u>	<u>Fract λ</u>
A	1550	7750	0.500	15,500	1.000
	1565	7750	0.495	15,500	0.990
B	1550	7300	0.471	15,550	1.003
	1565	7300	0.467	15,550	0.994
C	1550	6700	0.432	15,600	1.007
	1565	6700	0.428	15,600	0.997
D	1550	5600	0.361	15,650	1.010
	1565	5600	0.358	15,650	1.000
E	1550	5600	0.361	15,700	1.013
	1565	5600	0.358	15,700	1.003

TABLE 1, cont'd.

<u>Identifier</u>	<u>Operating λ (nm)</u>	<u>----Auxiliary Gap----</u>		<u>----Primary Gap----</u>		
		<u>Angstroms</u>	<u>Fract λ</u>	<u>Angstroms</u>	<u>Fract λ</u>	
5	F	1550	5600	0.361	15,800	1.019
		1565	5600	0.358	15,800	1.010
10	G	1550	5600	0.361	15,850	1.023
		1565	5600	0.358	15,850	1.013
15	H	1550	6650	0.429	15,800	1.019
		1565	6650	0.425	15,800	1.010
20	I	1550	7300	0.471	15,750	1.016
		1565	7300	0.467	15,750	1.006
25	J	1550	7825	0.505	15,700	1.013
		1565	7825	0.500	15,700	1.003

Referring to FIG. 15 and TABLE 1 above, at state **A**, tunable filter **200** exhibits strong notch filter characteristics (*i.e.*, high Q) at a passband having a center transmission wavelength of about 1550 nm. As auxiliary gap **AG** is changed from $\lambda/2$ as indicated at states **B**, **C** and **D**, the finesse of the optical cavity is disrupted. As shown in FIG. 15, the transmissibility of the filter falls off sharply with the movements indicated proceeding from state **A** to **B** to **C** to **D**.

With finesse suitably low at state **D**, the auxiliary gap **AG** is maintained at 5600 angstroms while primary gap **PG** is increased as indicated at states **E**, **F** and **G**. From state **G**, auxiliary gap **AG** is then sequentially increased to $\lambda/2$ at final state **J**. Primary gap **PG** is decreased from its value at state **G** to its final value at state **J**. At state **J**, tunable filter **200** exhibits high Q at a passband having a center transmission wavelength of about 1565 nm.

Thus, in proceeding from state **A** to state **J**, tunable filter **200** is tuned to a new center transmission wavelength in accordance with method **250**, wherein:

- in a first operation **252** (implemented by the sequential decrease in auxiliary gap **AG** from $\lambda/2$), finesse is disrupted (by enabling the filter-disabling device);
- in a second operation **254** (implemented by the sequential increase in primary gap **PG**), the filter is tuned; and

- in a third operation **256** (implemented by the sequential increase in auxiliary gap **AG** back to $\lambda/2$), finesse is recovered (by disabling the filter-disabling device).

It will be understood by those skilled in the art that primary gap **GP** was increased to a maximum at state **G**, then *decreased* from state **G** to final state **J** to keep the finesse suitably low during the tuning operation. In other words, if auxiliary gap **AG** is increased to 7825 angstroms ($\lambda/2$ at the new center transmission wavelength) from state **E** (**AG** = 5600 angstroms, **PG** = 15,700 angstroms), finesse begins recovering (*i.e.*, transmissibility increases) before the new center transmission wavelength at 1565 nm is established. It is within the capabilities of those skilled in the art to calculate finesse and center transmission wavelength as a function of auxiliary gap size, primary gap (optical cavity) size and mirror specifics to determine preferred tuning routes.

FIG. 12 depicts a further embodiment a tunable filter **200** in accordance with the illustrated embodiment of the present invention. Tunable filter **200** depicted in FIG. 12 is a Fabry-Perot etalon comprising two dielectric mirrors **1208** and **1218** that define an optical cavity having a size or gap **G12**. Mirror **1208** is configured as a movable mirror. In particular, dielectric layers **1208** are disposed on a layer **1206** that is supported, via supports **1204**, over substrate **1202**. As a voltage is applied across layer **1206** and substrate **1202** (which are suitably conductive or include electrodes, *etc.*), the resulting electrostatic force draws layer **1206** and mirror **1208** toward substrate **1202**. In such a manner, the size of the optical cavity can be varied so that the filter can be tuned.

Tunable filter **200** of FIG. 12 also includes electrically-switched absorbing, scattering or depolarizing media **1210** that is disposed within the optical cavity. Media **1210** functions as the filter-disabling device. Under applied voltage, such as from controlled voltage source **1212**, media **1210** changes from being transparent at the operating wavelengths to being opaque or reflecting (or visa-versa). Thus, assuming a multiplexed signal is entering filter **200** through mirror **1208**, when media **1210** is transparent, the notch filter transmission characteristic is unaffected and signals that are within the passband are transmitted through the media and mirror **1218**. When, however, media **1210** is opaque to optical signals, such signals can not be transmitted through the filter even if they are within the passband of the filter. Suitable electrically-switched absorbing media include, without limitation, a quantum well modulator. Suitable electrically-switched scattering and depolarizing media include, without limitation, liquid crystal material.

In the various embodiments described above, one of the mirrors that defines the optical cavity is suspended, or is disposed on a suspended layer, so that the mirror is movable on application of a voltage across the layer and a substrate. To apply a voltage, the layer or mirror and the substrate must include electrically-conductive electrodes (*e.g.*, metallized regions) or comprise an electrically conductive material (polysilicon) or comprise a material that can be rendered suitably conductive via dopants (boron, *etc.*).
5

Moreover, a movable mirror must be robust as it is subjected to various mechanical stresses. To that end, the movable mirror advantageously incorporates a layer of silicon nitride. As is well known, the stress/mechanical strength of silicon nitride can be tailored during its 10 deposition/growth. Thus, in one embodiment, movable mirror **1008** depicted in FIG. 10 is configured as follows: layers **1116**, **1114** and **1110** comprise polysilicon, and layer **1112** comprises silicon nitride. The fixed (*i.e.*, non-moving) mirror also advantageously comprises layers of polysilicon and silicon nitride. If the optical signal must pass through the substrate, then the substrate must be optically transparent at the operating wavelengths of the filter. Silicon and 15 gallium arsenide, for example, are suitably transparent at communications wavelengths.
15

FIG. 13 depicts an additional embodiment of a tunable filter in accordance with the present teachings. Tunable filter **200** depicted in FIG. 13 includes two spaced-apart mirrors **1308** and **1304** that define an optical cavity. Mirror **1308** is disposed on substrate **1312** and mirror **1304** is disposed on substrate **1302**. Antireflection coating **1306** is advantageously disposed on substrate **1302**. Adjacent to mirror **1308** and within the optical cavity is electrically switched **1210**. Controlled voltage source **1314** is electrically connected to media **1210**. A gap **G13** separates media **1210** from mirror **1304**. The tunable filter also includes heater **1316**.
20
20

In operation, illustrative filter **200** of FIG. 13 is tuned by activating heater **1316** so that substrate **1312** is heated and expands. The expansion of substrate **1312** decreases the size of the 25 optical cavity (*i.e.*, mirror **1308** moves closer to mirror **1304**) effecting the tuning function. Electrically switched media **1210** again functions as the filter-disabling device and is used in the manner previously described.

FIG. 14 depicts a final illustrative embodiment of a tunable filter **200** in accordance with the present teachings. As in the previous embodiments, the tunable filter of FIG. 14 includes an 30 optical cavity, tuning device and a filter-disabling device. Such elements are, however, configured somewhat differently in the present embodiment as compared with previously-described embodiments.

Tunable filter **200** comprises ring resonator **1404**, adjustable delay device **1412** and adjustable loss device **1416**, arranged as shown. Multiplexed optical signal $m\text{-}\lambda$ is delivered over waveguide **1402** to ring resonator **1404** via one-percent coupler **1410**. Dropped signal λ_i is removed from the filter **200** via one-percent coupler **1414** over “drop” waveguide **1408**.

- 5 Similarly, a signal having wavelength λ_i identical to the dropped signal can be added over “add” waveguide **1406** via one-percent coupler **1414**.

In operation, coupler **1410** couples about one percent of multiplexed optical signal $m\text{-}\lambda$ to ring resonator **1404**. The ring resonator, which is a waveguide configured in circular fashion as depicted in FIG. 14, defines an optical cavity. The resonance of ring resonator **1404** (*i.e.*, the 10 passband of the filter) is a function of its length (*i.e.*, the length of the optical cavity). An optical signal within the passband of the filter is coupled, via coupler **1414**, to drop waveguide **1408**.

As in previous embodiments, the filter is tuned by changing the size of the optical cavity. In the present embodiment, this is done using adjustable delay device **1412**. In one embodiment, the adjustable delay device is implemented electro-optically wherein the index of refraction of a portion of the ring resonator is changed by altering a voltage applied thereto. Changing the index of refraction changes the effective cavity length and hence tunes the cavity. In another 15 embodiment, the adjustable delay device is implemented thermo-optically, wherein a current heats ring resonator **1404**, causing an increase in cavity length.

Filter **200** depicted in FIG. 14 is disabled while tuning using adjustable loss device **1416**.
20 The adjustable loss device can be implemented, for example, as a semiconductor optical amplifier. The semiconductor optical amplifier, which can be, for example, indium-gallium-arsenide, can be coupled in-line with ring resonator **1404**. In the absence of current, the semiconductor optical amplifier is opaque. With an appropriate amount of applied current, the optical amplifier becomes transmissible. Adjustable loss device **1416** thus functions as the filter-
25 disabling device.

It is to be understood that the above-described embodiments are merely illustrative of the invention and that many variations can be devised by those skilled in the art without departing from the scope of the invention. It is therefore intended that such variations be included within the scope of the following claims and their equivalents.

We claim:

1. An article comprising a tunable filter, the tunable filter comprising:
2 an optical cavity having a length that is determinative of a center transmission
3 wavelength of a passband of said tunable filter;
4 a tuning device operative to change said length of said optical cavity; and
5 a filter-disabling means operative to disrupt a finesse of said optical cavity.

1 2. The article of claim 1 further comprising:
2 a first filter input for receiving a multiplexed optical signal having a plurality of spectral
3 channels and delivering it to said optical cavity;
4 a first filter output for receiving at least one of said spectral channels from said optical
5 cavity, wherein said received spectral channel is within said passband of said
6 tunable filter.

1 3. The article of claim 2, further comprising:
2 a first waveguide in optical communication with said first filter input; and
3 a second waveguide in optical communication with said first filter output.

1 4. The article of claim 3 further comprising:
2 a plurality of transmitters for generating a plurality of optical signals;
3 a multiplexer for multiplexing said optical signals into said multiplexed optical signal,
4 said optical signals defining said spectral channels thereof;
5 a node comprising said tunable filter and a subscriber terminal, wherein said subscriber
6 terminal is in optical communication with said second waveguide and is
7 operable to receive said spectral channel therefrom; and
8 an optical fiber for transmitting said multiplexed optical signal to said node, wherein said
9 first waveguide is in optical communication with said optical fiber via said
10 node.

1 5. The article of claim 1 wherein said optical cavity is defined by first and second
2 spaced mirrors.

1 6. The article of claim 5 wherein said first mirror is movable, and further wherein
2 said tuning device comprises said first mirror.

1 7. The article of claim 6 wherein said filter-disabling device comprises said first
2 mirror.

1 8. The article of claim 7 wherein said first mirror is operative to tilt.

1 9. The article of claim 8 wherein said first mirror comprises:
2 a layer suspended over a substrate;
3 a dielectric mirror disposed on said layer; and
4 two individually-addressable electrically-conductive electrodes.

1 10. The article of claim 7 wherein said first mirror is bifurcated into an upper layer
2 and a lower layer, wherein:
3 said upper layer and said lower layer are spaced from one another defining an
4 auxiliary gap; and
5 said upper layer and said lower layer are movable.

1 11. The article of claim 10 wherein:
2 said upper layer and said lower layer each comprise at least one layer of material; and
3 said one layer of material has a thickness that is an odd-multiple of an eighth of
4 an operating wavelength of said tunable filter.

1 12. The article of claim 6 wherein said filter-disabling device comprises electrically-
2 switched media selected from the group consisting of absorbing media, scattering media
3 and depolarizing media.

1 13. The article of claim 12, wherein said electrically-switched absorbing media is a
2 quantum well modulator.

1 14. The article of claim 1 wherein:
2 said optical cavity comprises a ring resonator;
3 said tuning device comprises an adjustable delay device operative to change a length of
4 said optical cavity; and
5 said filter-disabling device is an adjustable loss device characterized by a
6 transmissibility that varies with applied current.

1 15. The article of claim 14 wherein:
2 said filter-disabling device comprises a semiconductor optical amplifier that is disposed
3 in said ring resonator.

1 16. A method comprising:
2 disrupting finesse of a tunable filter;
3 tuning said tunable filter to a desired center transmission wavelength; and
4 recovering said finesse of said tunable filter.

1 17. The method of claim 16 wherein said filter has two spaced mirrors in parallel
2 relation to one another, said two mirrors defining an optical cavity, wherein:
3 the step of tuning comprises changing a length of said optical cavity.

1 18. The method of claim 17 wherein said step of tuning further comprises moving at
2 least one of said two mirrors to change said length of said optical cavity.

1 19. The method of claim 17 wherein the step of disrupting finesse comprises tilting
2 one of said two mirrors so that said two mirrors are not in parallel relation to one another.

1 20. The method of claim 17 wherein:
2 one of said mirrors is bifurcated so that a gap is defined within the bifurcated mirror;
3 when said filter is not being tuned, said gap has a first size that provides a first finesse
4 suitable for transmitting said center transmission wavelength through said
5 tunable filter;
6 the step of disrupting finesse comprises changing said first size of said gap to provide a
7 second finesse that is unsuitable for transmitting said center transmission
8 wavelength through said tunable filter.

- 1 21. The method of claim 17 wherein:
2 an electrically-switched media selected from the group consisting of absorbing media,
3 scattering media and depolarizing media is disposed in said optical cavity;
4 when said filter is not being tuned, said electrically-switched media is transmissible at
5 operating wavelengths of said filter;
6 said step of disrupting finesse comprises electrically switching said electrically-
7 switched media so that it is non-transmissible at said operating
8 wavelengths of said filter.
- 1 22. The method of claim 16 wherein:
2 said filter comprises a ring resonator having an in-line semiconductor optical amplifier;
3 when said filter is not being tuned, said semiconductor optical amplifier is transmissible
4 at operating wavelengths of said filter;
5 said step of tuning comprises changing an effective length of said ring resonator; and
6 said step of disrupting finesse comprises changing operation of said semiconductor
7 optical amplifier so that it is non-transmissible at operating wavelengths of said
8 filter.

ABSTRACT

An article comprising a tunable filter includes an optical cavity, a tuning device and a filter-disabling device. The tuning device is operable to change the center transmission wavelength of the tunable filter. The filter-disabling device is operable to temporarily disrupt the finesse or otherwise affect the transmissibility of the optical cavity, thereby preventing the transmission of any intervening wavelengths during tuning.

1/9

FIG. 1A

PRIOR ART

2/9

FIG. 1B
PRIOR ART

FIG. 2A

FIG. 2B

3/9

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 4A

FIG. 4B

FIG. 4C

4/9

FIG. 5A

FIG. 5B

FIG. 5C

FIG. 6A

FIG. 6B

FIG. 6C

5/9

FIG. 7

FIG. 8

6/9

*FIG. 9A**FIG. 9B**FIG. 9C*

7/9

FIG. 10

FIG. 11

FIG. 12

8/9

FIG. 13

FIG. 14

9/9

FIG. 15

IN THE UNITED STATES
PATENT AND TRADEMARK OFFICE

Declaration and Power of Attorney

As the below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and joint inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled **ARTICLE COMPRISING A TUNABLE FILTER** the specification of which is attached hereto.

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by an amendment, if any, specifically referred to in this oath or declaration.

I acknowledge the duty to disclose all information known to me which is material to patentability as defined in Title 37, Code of Federal Regulations, 1.56.

I hereby claim the benefit under Title 35, United States Code, 119(e) of any United States provisional application(s) identified below:

None

I hereby claim foreign priority benefits under Title 35, United States Code, 119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

None

I hereby claim the benefit under Title 35, United States Code, 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, 112, I acknowledge the duty to disclose all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application:

None

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

I hereby appoint the following attorney(s) with full power of substitution and revocation, to prosecute said application, to make alterations and amendments therein, to receive the patent, and to transact all business in the Patent and Trademark Office connected therewith:

Lester H. Birnbaum	(Reg. No. 25830)
Richard J. Botos	(Reg. No. 32016)
Jeffery J. Brosemer	(Reg. No. 36096)
Kenneth M. Brown	(Reg. No. 37590)
Craig J. Cox	(Reg. No. 39643)
Donald P. Dinella	(Reg. No. 39961)
Guy Eriksen	(Reg. No. 41736)
Martin I. Finston	(Reg. No. 31613)
James H. Fox	(Reg. No. 29379)
William S. Francos	(Reg. No. 38456)
Barry H. Freedman	(Reg. No. 26166)
Julio A. Garceran	(Reg. No. 37138)
Mony R. Ghose	(Reg. No. 38159)
Jimmy Goo	(Reg. No. 36528)
Anthony Grillo	(Reg. No. 36535)
Stephen M. Gurey	(Reg. No. 27336)
John M. Harman	(Reg. No. 38173)
Michael B. Johannessen	(Reg. No. 35557)
Mark A. Kurisko	(Reg. No. 38944)
Irena Lager	(Reg. No. 39260)
Christopher N. Malvone	(Reg. No. 34866)
Scott W. McLellan	(Reg. No. 30776)
Martin G. Meder	(Reg. No. 34674)
John C. Moran	(Reg. No. 30782)
Michael A. Morra	(Reg. No. 28975)
Gregory J. Murgia	(Reg. No. 41209)
Claude R. Narcisse	(Reg. No. 38979)
Joseph J. Opalach	(Reg. No. 36229)
Neil R. Ormos	(Reg. No. 35309)
Eugen E. Pacher	(Reg. No. 29964)
Jack R. Penrod	(Reg. No. 31864)
Daniel J. Piotrowski	(Reg. No. 42079)
Gregory C. Ranieri	(Reg. No. 29695)
Scott J. Rittman	(Reg. No. 39010)
Eugene J. Rosenthal	(Reg. No. 36658)
Bruce S. Schneider	(Reg. No. 27949)
Ronald D. Slusky	(Reg. No. 26585)
David L. Smith	(Reg. No. 30592)
John P. Veschi	(Reg. No. 39058)
David Volejnicek	(Reg. No. 29355)
Charles L. Warren	(Reg. No. 27407)
Jeffrey M. Weinick	(Reg. No. 36304)
Eli Weiss	(Reg. No. 17765)

-3-

I hereby appoint the attorney(s) on ATTACHMENT A as associate attorney(s) in the aforementioned application, with full power solely to prosecute said application, to make alterations and amendments therein, to receive the patent, and to transact all business in the Patent and Trademark Office connected with the prosecution of said application. No other powers are granted to such associate attorney(s) and such attorney(s) are specifically denied any power of substitution or revocation.

Full name of 1st joint inventor: Joseph E. Ford

Inventor's signature Joseph E. Ford Date 2/8/00

Residence: Oakhurst, New Jersey

Citizenship: U.S.

Post Office Address: 446 West Lincoln Avenue
Oakhurst, New Jersey 07755

Full name of 2nd joint inventor: Keith W. Goossen

Inventor's signature K.W.G. Date 2/8/00

Residence: Aberdeen, New Jersey

Citizenship: U.S.

Post Office Address: 18 Deborah Lane
Aberdeen, N.J. 07747

Ford 47-86-61

(2493)

-4-

Full name of 3rd joint inventor: James A. Walker

Inventor's signature James A. Walker Date 2/8/00

Residence: Howell, New Jersey

Citizenship: U.S.

Post Office Address: 4 Plantation Drive
Freehold, New Jersey 07728

ATTACHMENT A

Attorney Names: Wayne S. Breyer Reg. No.: 38089
Jason Paul DeMont Reg. No.: 35793

Telephone calls should be made to Wayne S. Breyer at:

Voice: (732) 706-3497
Facsimile: (732) 706-9098

All written communications are to be addressed to:

Wayne S. Breyer
DeMont & Breyer, LLC
35 Malus Lane
Middletown, N.J. 07748