Statistiques mathématiques : Cours 6

Guillaume Lecué

21 septembre 2017

Aujourd'hui

Introduction aux tests

Hypothèse simple contre alternative simple

Lemme de Neyman-Pearson

Tests gaussiens

Tests sur la moyenne

Tests sur la variance

Exemple introductif

On observe 10 lancers d'une pièce de monnaie et on obtient le résultat suivant :

Question : La pièce est-elle équilibrée ?

Répondre à cette question revient à prendre une décision :

$$\varphi = \varphi(P, P, F, F, P, F, P, P, F, P)$$

 $= \left\{ \begin{array}{l} \text{on accepte l'hypothèse} \ll \text{la pièce est équilibrée} \ \gg \\ \text{on rejette l'hypothèse} \ \ll \text{la pièce est équilibrée} \ \gg \end{array} \right.$

Exemple introductif : modèlisation et définition des hypothèses

 <u>Modélisation</u>: On modélise ces observations par l'expérience statistique

$$\mathcal{E}^{10} = \left(\{0,1\}^{10}, \mathcal{P}(\{0,1\}^{10}), \{\mathbb{P}_{\theta}^{10}, \theta \in [0,1]\}\right),$$
 avec $(P=1,\,F=0)$
$$\mathbb{P}_{\theta}^{10} = \left(\theta\delta_1 + (1-\theta)\delta_0\right)^{\otimes 10}$$

et on "traduit" la question en termes mathématiques : résoudre le problème de test suivant

$$H_0: heta = rac{1}{2}$$
 contre $H_1: heta
eq rac{1}{2}$

Définition

L'hypothèse H₀ est appelée hypothèse nulle.

L'hypothèse H_1 est appelée hypothèse alternative.

Définitions

Définition

- 1. Soit Z une observation de l'expérience statistique $\mathcal{E} = (\mathfrak{Z}, \mathcal{Z}, \{\mathbb{P}_{\theta} : \theta \in \Theta\}).$
- 2. Soit $\Theta = \Theta_0 \cup \Theta_1$ une partition de l'espace des paramètres.
- 3. Soit le problème de test

$$H_0: \theta \in \Theta_0$$
 contre $H_1: \theta \in \Theta_1$

Un test ou régle de décision est une statistique de la forme

$$\varphi(Z) = I(Z \in \mathcal{R}) = \begin{cases} H_0 & \text{"on accepte"} \\ H_1 & \text{"on rejette"} \end{cases}$$

 $\mathcal{R} \subset \mathfrak{Z}$ est appelée zone de rejet ou région critique.

Exemple introductif: construction d'un test (1/2)

- ▶ $Z = (X_1, \dots, X_{10})$: observation dans le modèle d'échantillonnage de Bernoulli $\{\mathbb{P}_{\theta}: 0<\theta<1\}$ où $\mathbb{P}_{\theta}=\theta\delta_1+(1-\theta)\delta_0$
- on regarde le problème de test suivant :

$$H_0: \theta = \frac{1}{2}$$
 contre $H_1: \theta \neq \frac{1}{2}$

• on construit un test à partir de l'EMV $\widehat{\theta}_{n}^{\text{mv}} = \bar{X}_{n} = \bar{X}_{10} \ (n = 10)$ et d'un seuil t_{0} donné :

$$\varphi(Z) = I(Z \in \mathcal{R}) = \begin{cases}
H_0 & \text{quand } |\widehat{\theta}_n^{\text{mv}} - \frac{1}{2}| \leq t_0 \\
H_1 & \text{sinon}
\end{cases}$$

▶ la zone de rejet est ici

$$\mathcal{R} = \left\{ z \in \{0,1\}^{10} : \left| \widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mv}}(z) - \frac{1}{2} \right| > t_0 \right\}$$

Exemple introductif : construction d'un test (2/2)

▶ Dans le test précédent

$$\varphi(Z) = I(Z \in \mathcal{R}) = \begin{cases}
H_0 & \text{quand } |\widehat{\theta}_n^{\text{mv}} - \frac{1}{2}| \leq t_0 \\
H_1 & \text{sinon}
\end{cases}$$

l'EMV $\widehat{\theta}_n^{\,mv}$ a été utilisé pour construire le test. C'est une approche classique : ici l'EMV joue le rôle de statistique de test

- ▶ On peut calculer l'EMV sur les données : $\widehat{\theta}_n^{\text{mv}} \stackrel{\text{exemple}}{=} 0,6$ et donc prendre une décision.
 - Question : comment choisir le seuil t_0 ?
- y-a-t'il un meilleur choix de test? une meilleure statistique de test?

Les deux types d'erreurs de décision

Z une observation, $\Theta=\Theta_0\cup\Theta_1$ une partition et le problème de test

$$H_0: \theta \in \Theta_0$$
 contre $H_1: \theta \in \Theta_1$

Définition

Soit φ un test de zone de rejet \mathcal{R} (càd $\varphi(z) = I(z \in \mathcal{R})$)

L'erreur de première espèce (rejeter à tort)

$$\sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}[Z \in \mathcal{R}]$$

La fonction d'erreur de seconde espèce (accepter à tort)

$$\theta \in \Theta_1 \mapsto \mathbb{P}_{\theta}[Z \notin \mathcal{R}] = 1 - \pi_{\varphi}(\theta)$$

où $\pi_{\varphi}(\theta) = \mathbb{P}_{\theta}[Z \in \mathcal{R}]$ est la fonction puissance du test

<u>Note</u>: "rejeter" = rejeter H_0 ; "accepter" = accepter H_0

Exemple introductif: les deux types d'erreurs

Le test $\varphi(z)=I(|\widehat{\theta}_{\mathsf{n}}^{\,\mathrm{mv}}(z)-0.5|>t_0)$ peut faire deux types d'erreurs :

rejeter à tort :

Rejeter
$$(\varphi(Z) = H_1)$$
 alors que $\theta = \frac{1}{2} \in \Theta_0 = {\frac{1}{2}}$

dans ce cas, l'erreur de première espèce est

$$\mathbb{P}_{0.5}[|\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mv}}(Z) - 0.5| > t_0]$$

▶ accepter à tort :

Accepter
$$(\varphi(Z) = H_0)$$
 alors que $\theta \neq \frac{1}{2}$

dans ce cas, la fonction d'erreur de seconde espèce est

$$\theta \neq 1/2 \mapsto \mathbb{P}_{\theta}[|\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mv}}(Z) - 0.5| \leq t_0]$$

et la fonction puissance est $\theta \neq 1/2 \mapsto \mathbb{P}_{\theta}[|\widehat{\theta}_{n}^{mv}(Z) - 0.5| > t_{0}]$ (rejeter à raison).

Niveau asymptotique d'un test

Définition

Dans le modèle d'échantillonnage, on construit une suite de test (φ_n) (où n est le nombre d'observations). Soit $\alpha \in (0,1)$. On dit que (φ_n) est de niveau asymptotique α quand

$$\forall \theta \in \Theta_0, \quad \limsup_{n \to \infty} \mathbb{P}_{\theta}[\varphi_n = H_1] \le \alpha$$

- 1. on veut s'assurer qu'asymptotiquement la probabilité de rejeter à tort est moins que α
- 2. idéalement, on aimerait pouvoir fixer un niveau pour les deux types d'erreurs (1ère et 2-ième) mais ce n'est pas possible en général. On va donc privilégier un contrôle de l'erreur de 1ère espèce en construisant des tests de niveau asymptotique donné : introduction d'une dissymétrie

Exemple introductif : étude asymptotique du test

Sous H_0 (càd $\theta = 1/2$):

$$\boxed{\sqrt{n} (\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mv}} - 0.5) \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1/4)}$$

en particulier, pour $g \sim \mathcal{N}(0,1)$,

$$\mathbb{P}_{0.5}[\left|\widehat{\theta}_{\mathsf{n}}^{\,\mathrm{mv}} - 0.5\right| > t_{n,\alpha}] \longrightarrow \mathbb{P}[|g| > q_{1-\alpha/2}] = \alpha$$

où, pour le quantile $q_{1-lpha/2}$ d'ordre 1-lpha/2 de g

$$t_{n,\alpha} = \frac{q_{1-\alpha/2}}{2\sqrt{n}}$$

Sous H_1 (càd $\theta \neq 1/2$): pour tout $\theta \in \Theta_0^c = \Theta_1 = (0,1) - \{0.5\}$,

$$\sqrt{n} | \widehat{\theta}_{n}^{\text{mv}} - 0.5 | \stackrel{p.s.}{\rightarrow} +\infty$$

(la puissance tend vers 1)

Exemple introductif : prise de décision

Les données d'origines étaient :

$$z = (P, P, F, F, P, F, P, P, F, P)$$

l'EMV vaut donc $\widehat{ heta}_{10}^{\,\mathrm{mv}}(z)=0.6$ et, pour un $lpha\in(0,1)$ donné le test est

$$\varphi(Z) = \begin{cases} H_0 & \text{quand } \left| \widehat{\theta}_{10}^{\,\text{mv}}(Z) - \frac{1}{2} \right| \le t_{10,\alpha} = \frac{q_{1-\alpha/2}}{2\sqrt{10}} \\ H_1 & \text{sinon} \end{cases}$$

Par exemple:

- 1. pour $\alpha = 5\%$, on a $q_{1-\alpha/2} \approx 1.96$ et $t_{10,\alpha} \approx 0.31$ alors comme $\left| \widehat{\theta}_{10}^{\,\text{mv}}(z) \frac{1}{2} \right| = 0.1 \le t_{10,5\%}$, on accepte
- 2. pour $\alpha=10\%$, on a $q_{1-\alpha/2}\approx 1.64$, alors $t_{10,\alpha}\approx 0.26$ alors comme $\left|\widehat{\theta}_{10}^{\,\mathrm{mv}}(z)-\frac{1}{2}\right|=0.1\leq t_{10,10\%}$, on accepte

Exemple introductif : introduction de la p-value

Le choix du niveau α est <u>arbitraire</u>. Dans l'exemple précédent, on va

- lacksquare accepter tant que $q_{1-lpha/2} \geq 2\sqrt{10} * ig| \widehat{ heta}_{10}^{\,\mathrm{mv}} rac{1}{2} ig|$
- rejeter dès que $q_{1-\alpha/2} \leq 2\sqrt{10} * \left| \widehat{\theta}_{10}^{\,\mathrm{mv}} \frac{1}{2} \right|$

La valeur limite de α pour laquelle la décision bascule càd le α tel que

$$q_{1-lpha/2} = 2\sqrt{10} * \left| \widehat{ heta}_{10}^{\,\mathrm{mv}} - \frac{1}{2} \right|$$

est appelée la p-value.

lci la p-value est donnée par l'équation (en α)

$$q_{1-\alpha/2} = 2\sqrt{10} * 0.1 \approx 0.63$$

càd $\alpha = \text{p-value} \approx 0.525$.

p-value: introduction formelle

Définition

Soit φ_{α} un test de niveau asymptotique α et de zone de rejet \mathcal{R}_{α} . On appelle p-value du test la statistique

$$p-value(Z) = \inf(\alpha \in (0,1) : Z \in \mathcal{R}_{\alpha})$$

c'est le seuil critique où la décision bascule :

$$\varphi_{\alpha}(Z) = \begin{cases} H_0 & \text{quand } \alpha \leq p - value(Z) \\ H_1 & \text{quand } \alpha > p - value(Z) \end{cases}$$

▶ la p-value quantifie le niveau de confiance sur l'acceptation (de H_0)

p-value : interprétation

p-value	niveau de confiance sur l'acceptation	décision	
p < 0.01	très faible	rejet (avec confiance)	2
$0.01 \le p < 0.05$	faible	rejet	
$0.05 \le p < 0.1$	fort	acceptation	
$0.1 \le p$	très fort	acceptation (avec confiance)	3

- forte p-value : le test ne permet pas de rejeter H_0
- petite p-value : même si on prend un niveau de test très petit, le test rejetera H₀ (alors qu'on a une forte aversion au risque de 1ère espèce, càd de rejeter à tort)
- ▶ dans l'exemple, on a p-value \approx 0.525, on va donc accepter (avec confiance)

Signification de l'acceptation

Accepter H_0 ne signifie pas que H_0 est vraie

- 1. par défaut, on accepte H_0 à moins qu'on apporte une "preuve" que H_0 n'est pas acceptable
- 2. Accepter signifie seulement qu'on n'a pas pu apporter une preuve que H_0 n'est pas acceptable : on préférera dire que le test ne permet pas de rejeter plutôt que "on accepte".
- 3. une preuve est l'observation d'un événement "rare" sous H_0 : "sous H_0 , la statistique de test prend une valeur qui peut être considérée comme rare" est une preuve de rejet
- 4. la "rareté" d'un événement est fixée par le niveau (asymptotique) α
- 5. si dans l'exemple, le vrai $\theta=0.5+10^{-10}$, il est fort probable qu'on ne rejette pas alors que H_0 est fausse.

Signification du rejet

Seul le rejet est informatif

- 1. rejeter signifie qu'on a apporté la preuve que H_0 ne peut pas être acceptée
- 2. à un niveau α fixé, on rejette quand la valeur prise par la statistique de test est rare étant connue sa loi sous H_0 (déclarer un événement rare dépend du niveau α)
- 3. en général, sous H_0 , on connaît la loi asymptotique de la statistique de test (ex. : $\widehat{\theta}_n^{\,\,\mathrm{mv}} \sim \mathcal{N}(0.5, (4n)^{-1}))$ donc si la valeur prise par cette statistique en les observations : $\widehat{\theta}_n^{\,\,\mathrm{mv}}(z)$ est peu vraisemblable pour sa loi limite (ex. : $\widehat{\theta}_n^{\,\,\mathrm{mv}} = 0.9$) alors on rejettera = on aura apporté une preuve que H_0 n'est pas acceptable
- 4. la p-value mesure le niveau de rareté de la valeur observée de la statistique de test pour la loi de la statistique de test sous H_0 .

Choix des hypothèses : dissymétrie

le choix des hypothèses est important

1. Pour une partition $\Theta = A \cup B$, il n'y a pas équivalence entre les deux problèmes de test

$$H_0: \theta \in A \text{ contre } H_1: \theta \in B$$

et

$$H_0: \theta \in B$$
 contre $H_1: \theta \in A$

- 2. on choisit les hypothèses en fonction de l'intérêt qu'on porte au problème : l'hypothèse H_0 est privilégiée
- 3. l'hypothèse H₀ est privilégiée car on a décidé de se couvrir contre le risque de 1ère espèce avant le risque de 2-ième espèce : càd, on souhaite éviter avant tout de rejeter à tort et par conséquent, on a tendance à "trop accepter"
- 4. il est plus facile d'accepter que de rejeter car le rejet nécessite une "preuve" que l'acceptation n'est pas soutenable

Méthodologie pour les tests asymptotiques (1/2)

- a) trouver une statistique de test (souvent un estimateur) $\widehat{ heta}_n$
- b) telle que sous H_0 (càd ici pour $\theta=\theta_0$), on a une normalité asymptotique

$$\sqrt{\frac{n}{\nu(\widehat{\theta}_n)}} (\widehat{\theta}_n - \theta_0) \stackrel{d}{\longrightarrow} V$$

(ou $v(\theta_0)$ à la place de $v(\widehat{\theta}_n)$)

c) et tel que sous H_1 (càd ici pour $\theta > \theta_0$) :

$$\sqrt{\frac{n}{\nu(\widehat{\theta}_n)}} (\widehat{\theta}_n - \theta_0) \xrightarrow{p.s.} +\infty$$

(avec ou sans valeurs absolues selon la forme de H_1)

Méthodologie pour les tests asymptotiques (2/2)

d) on utilise cette statistique pour construire un test de niveau asymptotique $lpha \in (0,1)$ en posant

$$\varphi(Z) = \begin{cases} H_0 & \text{quand } (\widehat{\theta}_n - \theta_0) \leq \frac{q_{1-\alpha}^V \sqrt{v(\widehat{\theta}_n)}}{\sqrt{n}} := t_{n,\alpha} \\ H_1 & \text{sinon} \end{cases}$$

La forme du test (ici $\hat{\theta}_n - \theta_0$ plus petit que quelque chose) est donnée par le comportement de $\hat{\theta}_n - \theta_0$ sous H_1 .

e) on a, sous H_0 ,

$$\mathbb{P}_{\theta_0}[\textit{rejet}] = \mathbb{P}_{\theta_0}\left[\,\widehat{\theta}_n - \theta_0 > t_{\textit{n},\alpha}\,\right] \longrightarrow \mathbb{P}[\textit{V} > \textit{q}_{1-\alpha}^{\textit{V}}] = \alpha$$

C'est donc un test de niveau asymptotique α .

f) La puissance tend vers 1 car, sous H_1 , $\mathbb{P}_{\theta}[\widehat{\theta}_n - \theta_0 > t_{n,\alpha}] \to 1$.

Choix de tests : notion d'optimalité pour les tests

Hypothèse simple contre alternative simple

 $lackbox{ }$ Cas où $\Theta=\{ heta_0, heta_1\}$ avec $heta_0
eq heta_1$ et

$$\Theta_0 = \{ heta_0\}$$
 contre $\Theta_1 = \{ heta_1\}$

Existe-t-il un test φ^* optimal, au sens où : $\forall \varphi$ test, on a simultanément un meilleur contrôle sur les deux erreurs (1ère et 2-ième espèce)

$$\left\{\begin{array}{l} \mathbb{P}_{\theta_0}\left[\varphi^\star = H_1\right] \leq \mathbb{P}_{\theta_0}\left[\varphi = H_1\right] & \text{"proba de rejet à tort"} \\ \mathbb{P}_{\theta_1}\left[\varphi^\star = H_0\right] \leq \mathbb{P}_{\theta_1}\left[\varphi = H_0\right] & \text{"proba d'accepter à tort"} \end{array}\right.$$

▶ Si \mathbb{P}_{θ_0} et \mathbb{P}_{θ_1} ne sont pas étrangères (cf. Cours 5) un tel test φ^* ne peut pas exister.

Riposte : principe de Neyman (1/2)

➤ On « dissymétrise » les hypothèses H₀ et H₁ : H₀ est « plus importante » que H₁ dans le sens suivant : on impose une erreur de première espèce prescrite :

on souhaite éviter avant tout de rejeter à tort

Définition

Pour $\alpha \in (0,1)$, un test $\varphi = \varphi_{\alpha}$ de l'hypothèse nulle $H_0: \theta \in \Theta_0$ contre une alternative H_1 est de niveau α si

$$\sup_{\theta \in \Theta_0} \mathbb{P}_{\theta} \left[\varphi_{\alpha} = H_1 \right] \leq \alpha$$

▶ Un test de niveau α ne dit rien sur la fonction erreur de seconde espèce (ou la puissance).

Riposte : principe de Neyman (2/2)

Définition

Soit φ un test de zone de rejet \mathcal{R} . La puissance du test φ est la fonction $\pi_{\varphi}: \theta \in \Theta_1 \mapsto \mathbb{P}_{\theta}[Z \in \mathcal{R}]$ (proba de rejeter à raison)

Principe de Neyman: $\alpha \in (0,1)$, parmi les tests de niveau α , chercher celui (ou ceux) qui sont les plus puissants

Définition

Un test de niveau α est dit Uniformément Plus Puissant (UPP) si sa puissance est maximale parmi celles de tous les tests de niveau α :

- 1. $\sup_{\theta \in \Theta_0} \mathbb{P}_{\theta} \left[\varphi^* = H_1 \right] \leq \alpha$
- 2. et si φ est tel que $\sup_{\theta \in \Theta_0} \mathbb{P}_{\theta} \left[\varphi = \mathcal{H}_1 \right] \leq \alpha$ alors

$$\forall \theta \in \Theta_1, \pi_{\varphi^*}(\theta) \geq \pi_{\varphi}(\theta)$$

Test de Neyman-Pearson (test du rapport de vraisemblance)

Pour le cas d'une hypothèse nulle simple (càd $\Theta_0 = \{\theta_0\}$) contre une hypothèse alternative simple (càd $\Theta_1 = \{\theta_1\}$), un test UPP existe : c'est le test de Neyman-Pearson (ou test du rapport de vraisemblance) dont la construction est comme suit :

- $f(\theta,z) = \frac{d \mathbb{P}_{\theta}}{d\mu}(z), z \in \mathfrak{Z}, \theta \in \{\theta_0,\theta_1\}, \mu \text{ mesure dominante}$
- On choisit une région critique de la forme

$$\mathcal{R}(c) = \{z \in \mathfrak{Z} : f(\theta_1, z) > cf(\theta_0, z)\}, \quad c > 0$$

et on calibre $c = t_{n,\alpha}$ de sorte que

$$\boxed{\mathbb{P}_{\theta_0}\left[Z\in\mathcal{R}(t_{n,\alpha})\right]=\alpha}$$

Le test ainsi construit (si cette équation admet une solution) est de niveau α. On montre qu'il est UPP.

Lemme de Neyman-Pearson

Proposition

Soit $\alpha \in [0,1]$. S'il existe $t_{n,\alpha}$ solution de

$$\mathbb{P}_{\theta_0}\left[f(\theta_1,Z) > t_{n,\alpha}f(\theta_0,Z)\right] = \alpha$$

alors le test de région critique

$$\mathcal{R}_{\alpha} = \left\{z : f(\theta_1, z) > t_{n,\alpha} f(\theta_0, z)\right\}$$

est de niveau α et UPP pour tester $H_0: \theta = \theta_0$ contre $H_1: \theta = \theta_1$.

▶ Rem. : Si $U = f(\theta_1, Z)/f(\theta_0, Z)$ est bien définie et $\mathbb{P}_U << \lambda$ (sous \mathbb{P}_{θ_0}), alors $\mathbb{P}_{\theta_0} \left[U > t_{n,\alpha} \right] = \alpha$ admet une solution.

Exemple de test de Neyman-Pearson (1/4)

On observe $Z=(X_1,\ldots,X_n)$ où $X_1,\ldots,X_n\stackrel{i.i.d.}{\sim}\mathcal{N}(\theta,1)$. Pour $\theta_0<\theta_1$, on considère le problème de test

$$H_0: \theta = \theta_0$$
 contre $H_1: \theta = \theta_1$

La vraisemblance en θ est

$$f(\theta, Z) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} X_i^2 + n\theta \overline{X}_n - \frac{n\theta^2}{2}\right)$$

Le rapport de vraisemblance est

$$\frac{f(\theta_1, Z)}{f(\theta_0, Z)} = \exp\left(n(\theta_1 - \theta_0)\overline{X}_n - \frac{n}{2}(\theta_1^2 - \theta_0^2)\right)$$

Exemple de test de Neyman-Pearson (2/4)

▶ Zone de rejet du test de N-P. :

$$\mathcal{R}(c) = \left\{ z \in \mathbb{R}^n : f(\theta_1, z) > cf(\theta_0, z) \right\}$$

$$= \left\{ (x_1, \dots, x_n)^\top \in \mathbb{R}^n : n(\theta_1 - \theta_0) \overline{x}_n - \frac{n}{2} (\theta_1^2 - \theta_0^2) > \log c \right\}$$

$$= \left\{ (x_1, \dots, x_n)^\top \in \mathbb{R}^n : \overline{x}_n > \frac{\theta_0 + \theta_1}{2} + \frac{\log c}{n(\theta_1 - \theta_0)} \right\}$$

► Choix de c : on résout

$$\mathbb{P}_{\theta_0}\left[\overline{X}_n > \frac{1}{2}(\theta_0 + \theta_1) + \frac{\log c}{n(\theta_1 - \theta_0)}\right] = \alpha$$

Sous \mathbb{P}_{θ_0} :

$$\overline{X}_n \sim \mathcal{N}\Big(\theta_0, \frac{1}{n}\Big)$$

Exemple de test de Neyman-Pearson (3/4)

Résoudre en c : pour $g \sim \mathcal{N}(0,1)$,

$$\mathbb{P}\left[\theta_0 + \frac{1}{\sqrt{n}}g > \frac{1}{2}(\theta_0 + \theta_1) + \frac{\log c}{n(\theta_1 - \theta_0)}\right] = \alpha$$

$$\mathsf{c\grave{a}d} \; \mathbb{P}\left[\mathsf{g} > \tfrac{\sqrt{n}}{2}(\theta_1 - \theta_0) + \tfrac{1}{\sqrt{n}} \tfrac{\log \mathsf{c}}{\theta_1 - \theta_0}\right] = \alpha, \, \mathsf{soit}$$

$$\frac{\sqrt{n}}{2}(\theta_1 - \theta_0) + \frac{1}{\sqrt{n}} \frac{\log c}{\theta_1 - \theta_0} = q_{1-\alpha},$$

où q_{1-lpha} est le quantile d'ordre 1-lpha d'une $\mathcal{N}(0,1)$

▶ Conclusion : le test de NP de niveau α a pour zone de rejet $\mathcal{R}(c_{\alpha})$ où

$$c_{\alpha} = \exp\left(\sqrt{n}(\theta_1 - \theta_0)q_{1-\alpha} - \frac{n(\theta_1 - \theta_0)^2}{2}\right)$$

qui peut s'écrire plus simplement par

$$\mathcal{R}(c_{\alpha}) = \{(x_1, \ldots, x_n)^{\top} \in \mathbb{R}^n : \overline{x}_n > \theta_0 + t_{n,\alpha}\} \text{ où } t_{n,\alpha} = \frac{q_{1-\alpha}}{\sqrt{n}}.$$

Exemple de test de Neyman-Pearson (4/4)

On voit que le test de NP s'écrit sous la forme :

$$\varphi(Z) = \left\{ \begin{array}{ll} H_0 & \text{quand } \overline{X}_n \leq \theta_0 + t_{n,\alpha} \\ H_1 & \text{sinon} \end{array} \right. \text{ où } t_{n,\alpha} = \frac{q_{1-\alpha}}{\sqrt{n}}$$

<u>rem.</u>: la valeur θ_1 n'intervient pas dans le test de NP.

▶ la puissance du test est ici :

$$\pi_{\varphi}(\theta_1) = \mathbb{P}_{\theta_1}[\overline{X}_n > \theta_0 + t_{n,\alpha}] = \mathbb{P}[g > \sqrt{n}(\theta_0 - \theta_1) + q_{1-\alpha}]$$

car sous \mathbb{P}_{θ_1} , $\overline{X}_n \sim \mathcal{N}(\theta_1, 1/n)$.

<u>rem.</u>: La puissance augmente quand n augmente et quand $|\theta_0-\theta_1|$ augmente. L'alternative n'intervient que dans la puissance.

Tests classiques dans le modèle d'échantillonnage gaussien

Test sur la moyenne à variance connue

On observe $Z=(X_1,\ldots,X_n)\sim \mathcal{N}(\mu,\sigma^2\mathrm{Id}_n)$ où σ est connue. On considère le problème de test

$$H_0: \mu \leq \mu_0$$
 contre $H_1: \mu > \mu_0$

Principe on estime μ et on rejette H_0 si l'estimateur est « plus grand » que μ_0 . On considère des tests de la forme

$$\varphi_{\alpha}(Z) = \begin{cases} H_0 & \text{si } \overline{X}_n < \mu_0 + t_{n,\alpha} \\ H_1 & \text{sinon} \end{cases}$$

On choisit le seuil $t_{n,\alpha}$ tel que

$$\sup_{\mu \le \mu_0} \mathbb{P}_{\mu} \left[\varphi_{\alpha}(Z) = H_1 \right] = \alpha$$

Rem. : On verra pourquoi \overline{X}_n est la statistique de test naturelle pour ce problème lors de l'étude des problèmes de test à rapport de vraisemblance monotone.

Détermination de $t_{n,\alpha}$

Majoration de l'erreur de première espèce. Soit $\mu \leq \mu_0$. Sous \mathbb{P}_{μ} , $\overline{X}_n \sim \mathcal{N}(\mu, \sigma^2/n)$, alors pour $g \sim \mathcal{N}(0, 1)$

$$\mathbb{P}_{\mu}\left[\overline{X}_{n} - \mu_{0} \geq t_{n,\alpha}\right] = \mathbb{P}\left[\left(\mu + \frac{\sigma}{\sqrt{n}}g\right) - \mu_{0} \geq t_{n,\alpha}\right] \\
= \mathbb{P}\left[\frac{\sigma}{\sqrt{n}}g \geq t_{n,\alpha} + \left(\mu_{0} - \mu\right)\right] \\
\leq \mathbb{P}\left[\frac{\sigma}{\sqrt{n}}g \geq t_{n,\alpha}\right] \quad \stackrel{\mathsf{on veut}}{=} \alpha$$

On prend

$$t_{n,\alpha} = \frac{\sigma q_{1-\alpha}}{\sqrt{n}}$$

En particulier, on a:

$$\sup_{\mu \leq \mu_0} \mathbb{P}_{\mu} \left[\varphi_{\alpha}(Z) = H_1 \right] = \mathbb{P}_{\mu_0} \left[\varphi_{\alpha}(Z) = H_1 \right]$$

Calcul de la puissance du test

Soit $\mu > \mu_0$. Sous \mathbb{P}_{μ} , la loi de \overline{X}_n est $\mathcal{N}(\mu, \sigma^2/n)$ alors la fonction de puissance du $\overline{\text{test est}}$

$$\mu \in (\mu_0, +\infty) \mapsto \mathbb{P}_{\mu} \left[\overline{X}_n - \mu_0 \ge t_{\alpha, n} \right]$$
$$= \mathbb{P} \left[g \ge \frac{\sqrt{n(\mu_0 - \mu)}}{\sigma} + q_{1-\alpha} \right]$$

Rem.:

- ▶ la puissance tend vers 1 quand n tend vers $+\infty$,
- c'est un test UPP; il faut d'autres outils pour le montrer.

Test sur la moyenne à variance inconnue

Ingrédient principal :

$$s_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{n}{n-1} (\widehat{\sigma}_n^2)^{mv}$$

alors

$$(n-1)\frac{s_n^2}{\sigma^2}\sim \chi^2(n-1)$$

et

$$rac{\sqrt{n}(\overline{X}_n - \mu)}{s_n} \sim \mathsf{Student}(n-1)$$

et ces variables sont pivotales : leur loi ne dépend pas de μ, σ^2 sous $\mathbb{P}_{\mu,\sigma^2}$.

Les lois du χ^2 et de Student (à k degrés de liberté) sont classiques et s'étudient indépendamment.

Tests sur la moyenne

On teste H₀: μ ≤ μ₀ contre H₁: μ > μ₀. Un test de niveau α : donné par la zone de rejet

$$\mathcal{R}_{\alpha} = \left\{ z \in \mathbb{R}^n : T(z) > q_{1-\alpha,n-1}^{\mathfrak{T}} \right\}$$

οù

$$T(Z) = \frac{\sqrt{n}(X_n - \mu_0)}{s_n}$$

et $q_{1-\alpha,n-1}^{\mathfrak{T}}=$ quantile d'ordre $1-\alpha$ de la loi de Student à n-1 degrés de liberté :

$$\mathbb{P}\left[\mathsf{Student}_{n-1} > q_{1-lpha,n-1}^{\mathfrak{T}}
ight] = lpha$$

► Rem. : Pour le test H_0 : $\mu = \mu_0$ contre H_1 : $\mu \neq \mu_0$, un test de niveau α est donné par $\mathcal{R}_{\alpha} = \{z \in \mathbb{R}^n : |T(z)| > q_{1-\alpha/2,n-1}^{\mathfrak{T}}\}$.

Test sur la variance

▶ On teste $H_0: \sigma^2 \leq \sigma_0^2$ contre $H_1: \sigma^2 > \sigma_0^2$. Un test de niveau α : donné par la zone de rejet

$$\mathcal{R}_{\alpha} = \left\{ z \in \mathbb{R}^n : V(z) > q_{1-\alpha,n-1}^{\chi^2} \right\},$$

οù

$$V(Z) = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \overline{X})^2$$

et

$$\mathbb{P}\left[\mathsf{Chi\text{-}deux}_{n-1} > q_{1-lpha,n-1}^{\chi^2}
ight] = lpha.$$

Mêmes remarques méthodologiques sur l'optimalité de ces tests que précédemment.

