Data Mining Note

Chauncey Liu

November 15, 2017

Contents

1	\mathbf{Ass}	sociation Rules and Frequent Pattern Mining 2		
	1.1	The Frequent Pattern Mining Model		
	1.2	Association Rules		
		1.2.1 Mining Association Rules		
		1.2.2 Itemset Lattice		
		1.2.3 Anti-monotonicity (downward closure) property		
		1.2.4 Computing the Association Rules		
		1.2.5 Interestingness of Association Rules		
	1.3	The Apriori Algorithm		
		1.3.1 Approach		
		1.3.2 Candidate Generation		
		1.3.3 Support Counting		
		1.3.4 Hash Tree		
		1.3.5 Methods of Efficiency Improvement		
	1.4	Enumeration-Tree Algorithms		
		1.4.1 Example Algorithms		
	1.5	Suffix-based Pattern Growth Methods		
		1.5.1 Recursive Suffix-based Pattern Growth		
		1.5.2 FP-Tree		
	1.6	Constraint-Based Association Mining		
		1.6.1 Motivation		
		1.6.2 Types of constraints		
		1.6.3 Application of the Constraints		
		1.6.4 Anti-Monotonicity		
	1.7	Multi-level Association Rules		
		1.7.1 Definitions		
	1.8	Determining the Frequent Itemsets		
		1.8.1 Idea		
		1.8.2 Optimizations of the Basic Algorithm		
		1.8.3 Stratification		
	19			

1 Association Rules and Frequent Pattern Mining

1.1 The Frequent Pattern Mining Model

Basic Concepts:

- Items $I = \{i_1, i_2, ..., i_m\}$, a set of literals
- Itemset X (transaction): set of items $X \subseteq I$
- Database D: set of transactions T_i where $T_i \subseteq I$
- T contains X: $X \subseteq T$
- Items in transactions or itemsets are sorted in lexicographic order
- Length of itemset: number of elements of itemset
- \bullet k-itemset: itemset of length k

Supermarket example:

- Items $I = \{Bread, Butter, Milk, Eggs, Yogurt\}$
- Itemset X, Transaction T:

$$-X_1 = \{Bread, Butter\}, X_2 = \{Eggs, Milk\}$$
$$-T_1 = \{Bread, Butter, Milk\}, T_2 = \{Eggs, Milk, Yogurt\}$$

• Database D: set of transactions T_i where $T_i \subseteq I$

$$-T_1 = \{Bread, Butter, Milk\}, T_2 = \{Eggs, Milk, Yogurt\}$$

- $D = \{T_1, T_2\} = \{\{Bread, Butter, Milk\}, \{Eggs, Milk, Yogurt\}\}$

• T contains X: $X \subseteq T$

$$- X_1 = \{Bread, Butter\}, T_1 = \{Bread, Butter, Milk\}$$
$$- X_1 \subseteq T_1$$

- Items in transactions or itemsets are sorted in lexicographic order
- Length of itemset: number of elements of itemset
- ullet k-itemset: itemset of length k

Further Concept

• Support of itemset X in D: percentage of transactions in D containing X

$$- sup(X, D) = \frac{|T \in D|X \subseteq T|}{|D|}$$

• Frequent itemset X in D: item set X with

$$-freq(X,D) :\Leftrightarrow sup(X,D) \geq minsup$$

• Association rule: implication of the form $X \Rightarrow Y$

– where
$$X \subseteq I, Y \subseteq I$$
 and $X \cap Y = \emptyset$

- Support s of association rule $X \Rightarrow Y$ in D:
 - indicates how frequently the itemset appears in the dataset
 - support of $X \cup Y$ in D

$$-s = \frac{|T \in D|(X \cup Y) \subseteq T|}{|D|}$$

- Confidence c of association rule $X \Rightarrow Y$ in D:
 - indicates how often the rule has been found to be true
 - percentage of transactions containing Y in the subset of all transactions in D that contain X

$$-c = \frac{|T \in D|(X \cup Y) \subseteq T|}{|T \in D|X \subseteq T|} = \frac{\sup(X \cup Y)}{\sup(X)}$$

1.2 Association Rules

1.2.1 Mining Association Rules

1. Determine the frequent itemsets in the database

Naive algorithm: count the frequencies of all k-itemsets $\subseteq I$, inefficient since $\binom{m}{k}$ such itemsets

2. Generate the association rules from the frequent itemsets

Itemset X frequent and $A \subseteq X$

 $A \Rightarrow (X - A)$ satisfies minimum support constraint (confidence remaining to be checked)

1.2.2 Itemset Lattice

- Lattice: a partially ordered set with unique least upper bound and greatest lower bound.
- Itemset lattice:
 - elements: itemsets $X_1 \subseteq I, X_2 \subseteq I, ..., X_n \subseteq I$
 - partial order: $X_1 < X_2 :\Leftrightarrow X_1 \subset X_2$
 - least upper bound: ${\cal I}$
 - greatest lower bound: \varnothing

Figure 1: Itemset Lattice

1.2.3 Anti-monotonicity (downward closure) property

Each subset of a frequent itemset is also frequent.

$$\forall T_1 \subseteq I, T_2 \subseteq I : T_1 \subseteq T_2 \land freq(T_2, D) \Rightarrow freq(T_1, D)$$

because of

$$\forall T_1 \subseteq I, T_2 \subseteq I : T_1 \subseteq T_2 \Rightarrow sup(T_1, D) \ge sup(T_2, D)$$

If one subset is not frequent, then superset cannot be frequent.

This property makes frequent itemset mining efficient, since in practice most itemsets are infrequent.

1.2.4 Computing the Association Rules

- \bullet Given a frequent itemset X
- For each subset A of X, form the rule $A \Rightarrow (X A)$
- Compute confidence of the rule $A \Rightarrow (X A)$
 - $confidence(A \Rightarrow (X A)) = \frac{sup(X)}{sup(A)}$
- Discard rules that do not have minimum confidence
- Store frequent itemsets with their supports in a hash table
 - no DB acesses, no disk I/O

1.2.5 Interestingness of Association Rules

- Filter out misleading association rules
- Expected support for the rule $A \Rightarrow B$
 - $-P(A \cup B) = P(A) \cdot P(B)$
 - assuming the idependence of A and B
- Interestingness measure for rule $A \Rightarrow B$
 - $-\frac{P(A\cup B)}{P(A)}-P(B)$
 - The larger this measure, the more interesting the discovered association between A and B
- An alternative interestingness measure is the lift of an association rule
- If A and B are independent, then $P(A \cup B) = P(A) \cdot P(B)$

- i.e.
$$\frac{P(A \cup B)}{P(A) \cdot P(B)} = 1$$

- We define the lift of a rule $A \Rightarrow B$ as follows:
 - $lift(A \Rightarrow B) = \frac{P(A \cup B)}{P(A) \cdot P(B)}$
 - Can also be formulated as:

*
$$lift(A \Rightarrow B) = \frac{P(A \cup B)/P(A)}{P(B)} = \frac{support_{actual}}{support_{expected}}$$

- * as the ratio of the conditional probability P(B|A) and the unconditional probability P(B)
- A lift >> 1 indicates that the discovered association between A and B is interesting.

1.3 The Apriori Algorithm

1.3.1 Approach

- ullet Determine first the frequent 1-itemsets, then frequent 2-itemsets, ...
- To determine the frequent k+1-items, consider only the k+1-items for which all k-subsets are frequent
- Calculation of support: one database scan counting the support for all relevant itemsets

Algorithm 1 Algorithm Apriori

```
/* C_k : set of candidate itemsets of length k *//* F_k : set of all frequent itemsets of length k */
```

function Apriori(D, minsup)

while
$$F_k \neq \emptyset$$
 do

Generate C_{k+1} by joining itemset-pairs in F_k ;

Prune itemsets from C_{k+1} that violate anti-monotonicity;

Determine F_{k+1} by counting support of C_{k+1} in D and retaining itemsets fron C_{k+1} with support at least minsup;

$$\mathbf{k} = \mathbf{k} + 1;$$
return $\cup_k F_k$;

1.3.2 Candidate Generation

Requirements for set C_k of candidate itemsets

- Superset of F_k
- \bullet Significantly smaller than set of all k-subsets of I

Step1: Join

- Frequent k-1-itemsets p and q, p and q are joined if they aggre in their first k-2 items
- E.g. $p \in F_{k-1} = \{1, 2, 3\}, q \in F_{k-1} = \{1, 2, 4\} \Rightarrow (1, 2, 3, 4) \in C_k$
- Choose first k-2 items to avoid duplication without missing any candidates

Step2: Pruning

- Remove all elements from C_k having a k-1-subset not contained in F_{k-1}
- E.g. $F_3 = \{(1,2,3), (1,2,4), (1,3,4), (1,3,5), (2,3,4)\}$
- After join step: $C_4 = \{(1, 2, 3, 4), (1, 3, 4, 5)\}$
- In pruning step: remove (1,3,4,5) since subsets (1,4,5),(3,4,5) are missing
- $C_4 = \{(1, 2, 3, 4)\}$

1.3.3 Support Counting

```
for each candidate c \in c_k do c.count = 0;
for each transaction T \in D do CT := subset(C_k, T); // all candidates from C_k that are contained in transaction T for each candidate c \in CT do c.count++;
F_k := \{c \in C_k | (c.count/|D|) \ge minsup\}
```

To achieve one scan over the database D, $subset(C_k, T)$ should be implemented properly. Thus we need Hash Tree.

1.3.4 Hash Tree

Hash tree as a data stucture for C_k

- Leaf node: records list of itemsets (with frequencies)
- Inner node: contains hash table (apply hash function to d-th elements), each hash bucket at level d references son node at level d+1
- Root has level 1

Finding an itemset

- Start from the root
- ullet At level d: apply hash function h to the d-th element of the itemset.

Inserting an itemset

- Find the corrsponding leaf node and insert new itemset
- In case of overflow:
 - Covert leaf node into inner node and create all its son nodes (new leaves).
 - Distribute all entries over the new leaf nodes according to hash function h.

Find all candidates contained in $T = (t_1t_2t_3...t_m)$

- At root
 - Determine hash values $h(t_i)$ for each item t_i in T
 - Continue search in all correspoding son nodes
- \bullet At inner node of level d
 - Assumption: innder node has been reached by hashing t_i
 - Determine hash values and continue search for all items t_k in T with k > i
- At leaf node
 - For each itemset X in this node, test whether $X \subseteq T$

1.3.5 Methods of Efficiency Improvement

- Support counting using a hash table
 - Hash table instad of hash tree, support counters for hash buckets
 - k-itemset with correspoding bucket counter; minsup cannot be frequent
 - * more efficient access to candidates but inaccurate counts
- Reduction of transactions
 - Transactions that do not contain any frequenct k-itemset are irrelevant
 - Remove such transactions for future phases
 - * more efficient database scan, but additional writing of database
- Partitioning of the database
 - Itemset is only frequent if frequent in at least one partition
 - Form memory-resident partions of the database
 - * more efficient on partitions, but expensive combination of intermediate results
- Sampling
 - Apply algorithm to sample to find frequent itemsets
 - Count support of these frequent itemsets in the whole database
 - Determine further candicates and support counting on the whole database

1.4 Enumeration-Tree Algorithms

- Frequent itemsets are stored in a tree-like data structure, the enumeration tree, which provides an abstract, hierarchical representation of the lattice of itemsets.
- Items within a set are ordered lexicographically (Lexicographic tree).
- Hierarchical structure supports systematic and non-redundant exploration of the lattice of itemsets.
- Nodes represent itemsets
- Edges represent subset relationships
- A child node $C = \{i_1, i_2, ..., i_k\}$ extends the parent node $P = \{i_1, i_2, ..., i_k 1\}$ by one item that is lexicographically larger than all items of the parent node
- The root represents the empty itemset (null)

Figure 2: The lexicographic or enumeration tree of frequent itemsets

Algorithm 2 Generic Enumeration Tree

```
function Generic Enumeration Tree (D, minsup)

/* Initialize enumeration tree ET to Null Node*/

while any node in ET has not been examined do

select one or more unexamined nodes P;

for each p in P do

Generate candidate extensions C(p);

Count support in D for all n in any C(p);

if support of n \ge \min then

extend node p by node n

return ET;
```

1.4.1 Example Algorithms

- Apriori
 - candidate generation is level-wise (breadth-first)
 - joining siblings
 - single databse scan to count support of all candidates of a level
- FP-growth
 - candidate generation is depth-first
 - create projected databse of transactions supporting an itemset
 - count support of candidate extensions only in projected database
 - * Minimize the number of candidate itemsets generated and counted, without missing any frequent itemsets

1.5 Suffix-based Pattern Growth Methods

1.5.1 Recursive Suffix-based Pattern Growth

- $\bullet\,$ In Apriori, have to count support from scratch at every level
- ullet In order not to waste the computational effort of counting, form projected database for a frequent itemset P: all transactions containing itemset P
- If a transaction does not contain the itemset corresponding to an enumeration-tree node, then this will not be relevant for counting at any descendent (superset itemset) of the node.
- Count support of extensions of P only in projected database of P.
- Use absolute minsup, not relative minsup.
- \bullet Start with empty pattern (suffix) and complete database D, where D has been filtered to contain only frequent items.
- Recursive calls for all extensions and their projected databases.

Algorithm 3 Algorithm Recursive Suffix Growth confusion waiting to be solved

```
/* D: transactions in terms of frequent 1-items, i.e. without infrequent items */
/* P: current suffix itemset */
/* reports all frequent itemsets with suffix P */

function RecursiveSuffixGrowth(D, minsup, P)
   for each item i in D do
        report itemset P_i = \{i\} \cup P as frequent;
        Form D_i with all transactions from D containing item i;
        Remove all items from D_i that are lexicographically y \ge i;
        Rmove all infrequent items from D_i
        if D_i \ne \emptyset then RecursiveSuffixGrowth(D_i, minsup, P_inb)
```

1.5.2 FP-Tree

- Space-efficient data structure for projected database
- $\bullet\,$ Trie structure represents conditional database by consolidating the prefixes
- Path from the root to a leaf represents a transaction (or a set of identical transactions)
- Path from the root to internal node represents a prefix of a transaction (or a transaction)
- Each node has count (in the original database) of transactions that support that prefix (or transaction)
- Prefixes are sorted in dictionary order
- Lexicographic ordering of items from most frequent to least frequent
 - Maximizes the effect of prefix-based compression
 - * Item with a large support is more likely to be the prefix of many other itemsets
 - Balances the size of different conditional databases

Construction of FP-Tree

- Create an empty tree
- Remove infrequent items from the transactions
- Insert the modified transactions into the tree, one by one
- When the prefix of the transaction overlaps with an existing path, increment the counts of that path by 1
- For the non-overlapping part of the transaction, create new nodes with a count of 1.
- If applicable, create pointer to "next" node with the same item

Extraction of conditional FP-Tree of item i

- Chase pointers for item i to extract the tree of its conditional prefix paths. Prune remaining branches.
- Adjust counts in the prefix paths to account for the pruned branches
- Count frequency of each item by aggregating the counts of that item in the tree of prefix paths. Remove infrequent items. Item i is also removed.
 - conditional FP-tree may have to be re-created by successive insertion of prefix paths

1.6 Constraint-Based Association Mining

1.6.1 Motivation

- Too many frequent itemsets
 - Mining is inefficient
- Too many association rules
 - hard to evaluate
- Constraints may be known apriori
 - Constraints on the frequent itemsets
 - e.g. "association rules on product A but not on product B"
 - e.g. "only association rules with toal price > 100"

1.6.2 Types of constraints

- Domain Constraints
 - $-S\theta v, \theta \in \{=, \neq, <, \leq, >, \geq\}$ * e.g. S.price < 100
 - $-v\theta S, \theta \in \{\in, \notin\}$
 - * e.g. $snack \notin S.type$
 - $-V\theta S \text{ or } S\theta V, \theta \in \{\subseteq, \subset, \not\subset, =, \neq\}$
 - * e.g. $\{snacks, wines\} \subseteq S.type$
- Aggregation Constraints
 - $agg(S)\theta v$, where
 - $*\ agg \in \{min, max, sum, count, avg\}$
 - $* \theta \in \{=, \neq, <, \leq, >, \geq\}$
 - $count(S_1.type) = 1, avg(S_2.price) > 100$

1.6.3 Application of the Constraints

- When determining the association rules
 - Solves the evaluation problem
 - But not the efficiency problem
- When determining the frequent itemsets
 - Can also solve the efficiency problem
 - Challenge for candidate generation

1.6.4 Anti-Monotonicity

- ullet Definition: If an itemset S violates an anti-monotone constraints C, then all supersets of S violate this constraint.
- Examples
 - $sum(S.price) \le v$ is anti-monotone
 - $sum(S.price) \ge v$ is not anti-monotone
 - sum(S.price) = v is partly anti-monotone
- Application
 - Push anti-monotone constraints into candidate generation

1.7 Multi-level Association Rules

1.7.1 Definitions

- $I = \{i_1, i_2, ..., i_m\}$ a set of literals (Items)
- \bullet H a directed acyclic graph over I
- Edge in H i to j:
 - -i is a generalization of j
 - -i is called father or direct predecesor of j
 - j is a son or direct sucessor of i
- \bar{x} is predecessor of x (x successor of \bar{x}) w.r.t H:
 - there is a path from x to x in H
- Set of items \bar{Z} is predecessor of set items Z:
 - at least one item in \bar{Z} predecessor of an item in Z
- D is a set of transaction T, where $T \subseteq I$
- \bullet Typically, transactions T contain only elements from the leaves of graph H
- Transaction T supports item $i \in I$
 - $-i \in T$ or i is predecessor of an item $j \in T$
- T supports set $X \subseteq I$ of items
 - -T supports each item in X
- Support of set $X \subseteq I$ of items in D
 - Percentage of transactions in D supporting X.
- Multilevel association rule:
 - $-X \Rightarrow Y \text{ where } X \subseteq I, Y \subseteq I, X \cap T = \emptyset$
 - and no item in Y is predecessor w.r.t. H of an item in X
- Support s of a multilevel association rule $X \Rightarrow Y$ in D:
 - Support of set $X \cup Y$ in D
- Confidence c of a multilevel association rule $X \Rightarrow Y$ in D:
 - Percentage of transactions containing Y in the subset of all transactions in D that contain X

1.8 Determining the Frequent Itemsets

1.8.1 Idea

- Extend database transactions by all predecessors of items contained in that transaction
- Method
 - Insert each item i transaction T together with all its predessors w.r.t. H into new transaction T'
 - Do not insert duplicates
- Then Determine frequent itemsets for basic association rules (e.g. Apriori algorithm)
- Basic algorithm for multilevel association rules

1.8.2 Optimizations of the Basic Algorithm

- Materialization of Predecessors
 - Additional data structure H: Item \rightarrow list of all its predecessors
 - More efficient access to the predecessors
- Filtering the predecessors to be added
 - Add only those predecessors that occur in an element of candidate set C_k
 - Example: $C_k = \{\{Clothes, Shoes\}\}$, replace "JacketXT" by "Clothes"
- Discard redundant item sets
 - Let X an k-item set, i an item an \bar{i} a predecessor of i
 - $-X = \{i, \bar{i}, ...\}$
 - Support of X i = support of X
 - X can be discarded during candidate generation
 - Do not need to count support of k-itemset that contains item i and predecessor of i
- Algorithm Cumulate

1.8.3 Stratification

- Alternative to the basic algorithm (Apriori-algorithm)
- Stratification = form layers in the candidates sets
- Property: Itemset \bar{X} is infrequent and \bar{X} is predecessor of X: X is infrequent
- Method:
 - Do not count all k-itemsets at the same time
 - Count support first for the more general itemsets and cunt more special item serts only if necessary
- Example:
 - $-C_k = \{\{Clothes, Shoes\}, \{Outerwear, Shoes\}, \{JacketsShoes\}\}$
 - Count support first for {Clothes, Shoes}
 - Count support for $\{Outerwear, Shoes\}, \{JacketsShoes\}\}\$ only if $\{Clothes, Shoes\}\$ is frequent
- Notations
 - Depth of an itemset
 - * For itemsets X in candidate set C_k without direct predecessor in C_k : Depth(X) = 0
 - * For all other itemsets X in C_k : $Depth(X) = max\{Depth(\bar{X}) | \bar{X} \in C_k \text{ is direct predecessor of } X\} + 1$
 - $-C_k^n$: Set of itemsets from C_k with depth $n, 0 \le n \le \text{maximal depth } t$

1.9	Pattern	Summarization