Name: UID:

Problem 1.(2 = .5 + .5 + 1 points.)

1a. Let say
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 be a vector containing n observations and $\mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$ be vector of

ones of size n. is mean of x_1, \dots, x_n is given by $\frac{x^T \mathbf{1}}{\mathbf{1}^T \mathbf{1}}$? (True/False)

$$\frac{xT_1}{|T_1|} = \frac{x_1 + x_2 + \cdots + x_n}{1 + 1 + \cdots + 1} = \frac{x_1}{x_1} \frac{x_i}{n}$$

1b. What is the support of binomial random variable with parameters N(Total trials) and p (probability of success). Recall by support, we mean the values taken by a random variable.

1c. Let say $\mathbf{D} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_k]$ be the matrix with k columns \mathbf{a}_i for $i \in \{1, \cdots, k\}$.

Let
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 be a vector. Write the expression for $\mathbf{D}\mathbf{x}$ (Matrix, vector product) using

Problem 2.(1 point) What do you understand by MAP(maximum a posteriori estimate) estimate. Just write one line to explain it.

MAP is mode of the posterior distribution (modeling parameters to be estimated)
or any other similar definition is ok