

Multiclass Classification

- □ Classification involving more than two classes (i.e., > 2 Classes)
- Methodology
 - Reducing the multi-class problem into multiple binary problems
- Method 1. One-vs.-rest (or one-vs.-all)
 - ☐ Given *m* classes, train *m* classifiers: One for each class
 - Classifier j: Treat tuples in class j as positive & all the rest as negative
 - □ To classify a tuple **X**, the set of classifiers vote as an ensemble
- ☐ Method 2. One-vs.-one (or all-vs.-all): Learn a classifier for each pair of classes
 - Given m classes, construct m(m-1)/2 binary classifiers
 - A classifier is trained using tuples of the two classes
 - ☐ To classify **X**, each classifier votes: **X** is assigned to the class with maximal vote
- Comparison: One-vs.-one tends to perform better than one-vs.-rest
- Many new algorithms have been developed to go beyond binary classifier method

Weak Supervision: A New Programming Paradigm for Machine Learning

- Overcome the training data bottleneck
 - Leverage higher-level and/or noisier input from experts
- Exploring weak label distributions provided more cheaply and efficiently by
 - Higher-level, less precise supervision (e.g., heuristic rules, expected label distributions)
 - Cheaper, lower-quality supervision (e.g., crowdsourcing)
 - Existing resources (e.g., knowledge bases, pre-trained models)
- These weak label distributions could take many forms
 - Weak labels from crowd workers, output of heuristic rules, or the result of distant supervision (from KBs), or the output of other classifiers, etc.
 - Constraints and invariances (e.g., from physics, logic, or other experts)
 - Probability distributions (e.g., from weak or biased classifiers, userprovided labels, feature expectations, or measurements)

Relationships Among Different Kinds of Supervisions

Many areas of machine learning are motivated by the bottleneck of labeled training data, but are divided at a high-level by what information they leverage instead.

Semi-Supervised Classification

- Semi-supervised: Uses labeled and unlabeled data to build a classifier
- Self-training
 - Build a classifier using the labeled data
 - Use it to label the unlabeled data, and those with the most confident
 - label prediction are added to the set of labeled data
 - Repeat the above process
 - Adv.: Easy to understand; Disadv.: May reinforce errors
- Co-training: Use two or more classifiers to teach each other
 - Each learner uses a mutually independent set of features of each tuple to train a good classifier, say f_1 and f_2

unlabeled

labeled

- Then f₁ and f₂ are used to predict the class label for unlabeled data X
- Teach each other: The tuple having the most confident prediction from f_1 is added to the set of labeled data for f_2 & vice versa
- Other methods include joint probability distribution of features and labels

- A special case of semi-supervised learning
 - Unlabeled data: Abundant
 - Class labels are expensive to obtain
- Active learner: Interactively query teachers (oracle) for labels
- Pool-based approach: Uses a pool of unlabeled data
 - L: A small subset of D is labeled; U: A pool of unlabeled data in D
 - Use a query function to carefully select one or more tuples from U and request labels from an oracle (a human annotator)
 - ☐ The newly labeled samples are added to L, and learn a model
 - Goal: Achieve high accuracy using as few labeled data as possible
- Evaluated using *learning curves*: Accuracy as a function of the number of instances queried (# of tuples to be queried should be small)
- ☐ A lot of algorithms have been developed for active learning

Transfer Learning: Conceptual Framework

- ☐ Transfer learning: Extract knowledge from one or more source tasks (e.g., recognizing cars) and apply the knowledge to a target task (e.g., recognizing trucks)
- Traditional learning: Build a new classifier for each new task
- Transfer learning: Build new classifier by applying existing knowledge learned from source tasks
- Many algorithms are developed, applied to text classification, spam filtering, etc.

Summary

- Model Evaluation and Selection
- ☐ Techniques to Improve Classification Accuracy: Ensemble Methods
- Multiclass Classification and Weak Supervision

Recommended Readings

- Breiman, L. (1996). Bagging predictors. *Machine Learning*, *24*(2), 123-140. Retrieved from https://link.springer.com/article/10.1023/A:1018054314350
- □ Efron, B. & Tibshirani, R. (1993). *An introduction to the bootstrap*. London, UK: Chapman & Hall/CRC.
- Freund, Y. & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. *JCSS*, *55*(1), 119-139. Retrieved from https://www.sciencedirect.com/science/article/pii/S002200009791504X
- Gao, J., Fan, W., & Han, J. (2007). A general framework for mining concept-drifting data streams with skewed distributions. *Proc. of SDM*. DOI: 10.1137/1.9781611972771.1. Retrieved from http://epubs.siam.org/doi/abs/10.1137/1.9781611972771.1
- Grossman, R., Seni, G., Elder, J., Agarwal, N., & Liu, H. (2010). *Ensemble methods in data mining: Improving accuracy through combining predictions*. San Rafael, CA: Morgan & Claypool.
- Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. *IJCAI*, *2*, 1137-1143. Retrieved from https://dl.acm.org/citation.cfm?id=1643047
- Pan, S. J. & Yang, Q. (2010). A Survey on transfer learning. *IEEE Trans. on Knowledge and Data Eng.* Retrieved from http://ieeexplore.ieee.org/document/5288526/
- Sun, Y., Wong, A. K. C., & Kamel, M. S. (2009). Classification of imbalanced data: A review. *Int. Journal of Pattern Recognition and Artificial Intelligence*, 23(4), 687. Retrieved from http://www.worldscientific.com/doi/abs/10.1142/S0218001409007326
- □ Zhou, Z.-H. (2012). *Ensemble methods: Foundations and algorithms*. Boca Raton, FL: CRC Press.

References

- □ Stanford DAWN. (2017). *Labeled training data graphic* [Online image]. Retrieved from https://goo.gl/EaXfBj
- □ All other multimedia elements belong to © 2018 University of Illinois Board of Trustees.