Théorème. Soit A une matrice de taille $m \times n$. Les énoncés suivants sont équivalents

- a) $\forall \vec{b} \in \mathbb{R}^m$, $\exists \vec{x} \in \mathbb{R}^n$ tel que $A\vec{x} = \vec{b}$,
- b) $\forall \vec{b} \in \mathbb{R}^m, \ \vec{b} \in \operatorname{Col}(A) = \operatorname{Vect}\{\vec{a}_1, \dots, \vec{a}_n\},\$
- b1) $Col(A) = \mathbb{R}^n$,
- c) $A\vec{x} = \vec{b}$ represente un système compatible pour tout $\vec{b} \in \mathbb{R}^m$,
- d) La forme échelonnée réduite de A a une position pivot dans chaque ligne,
- d1) La forme échelonnée de A a une position pivot dans chaque ligne.

Preuve. Nous allons démontrer le circuit d'implications suivant en commençant par la droite et en avançant vers la gauche:

$$a) \implies d) \implies c) \implies b) \implies a$$
.

b) \implies **a**). Considerons un vecteur $\vec{b} \in \mathbb{R}^m$. En supposant \vec{b}) vrai, $\vec{b} \in \text{Col}(A)$, ce qui implique

$$\exists \alpha_1, \dots, \alpha_n \in \mathbb{R} \text{ tel que } \vec{b} = \alpha_1 \vec{a}_1 + \dots + \alpha_n \vec{a}_n,$$

où a_1, \ldots, a_n sont les colonnes de A. Soit maintenant

$$\vec{x} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix},$$

alors $\alpha_1 \vec{a}_1 + \ldots + \alpha_n \vec{a}_n = A\vec{x} = \vec{b}$ et l'énoncé a) est vrai.

- c) \Longrightarrow b). En supposant c) vrai, pour tout $\vec{b} \in \mathbb{R}^m$ il existe $\vec{s} \in \mathbb{R}^n$ tel que $A\vec{s} = \vec{b}$. Comme $A\vec{s} = s_1\vec{a}_1 + \ldots + s_n\vec{a}_s$ est une combinaison linéaire des colonnes de A, nous avons $A\vec{s} \in \text{Col}(A)$, et comme $\vec{b} = A\vec{s}$, nous avons $\vec{b} \in \text{Col}(A)$ aussi.
- **d**) \Longrightarrow **c**). En supposant d) vrai, pour tout $\vec{b} \in \mathbb{R}^m$ la forme échelonnée réduite de la matrice augmentée représentante le système $A\vec{x} = \vec{b}$ n'a pas de ligne de la forme $(0,0,\ldots,0,\alpha)$ pour $\alpha \neq 0$, ce qui implique c).
- a) \Longrightarrow d). Nous allons montrer l'implication équipollente "non" d) \Longrightarrow "non" a). Si "non" d) est vrai, la forme échelonnée réduite de A a au moins une ligne sans pivot, ou équivalemment la forme échelonnée réduite de A a que des zéros à la dernière ligne. Pour que "non" a) soit vrai, il faut que pour au moins un vecteur $\vec{b} \in \mathbb{R}^m$ il n'existe pas un $\vec{x} \in \mathbb{R}^n$ tel que $A\vec{x} = \vec{b}$. Appellons $(A \mid \vec{b})$ la matrice augmentée de $A\vec{x} = \vec{b}$, dont la forme échelonnée réduite, obtenue avec les mêmes oprations utilisée pour mettre A sous forme échelonnée réduite, a des zéros sur la dernière ligne, où graphiquement

Forme échelonnée réduite de
$$(A \mid b) = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & c_1 \\ 0 & 1 & 0 & \dots & 0 & c_2 \\ \vdots & & & & & \vdots \\ 0 & 0 & 0 & 0 & 0 & c_m \end{pmatrix}$$
.

Où c_1, \ldots, c_m sont obtenus de b_1, \ldots, b_m avec les opérations sur les lignes nécessaires pour obtenir la forme échelonnée réduite. Choisissons maintenant

$$\vec{c}^* = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}.$$

En appliquants les opérations sur le lignes "dans le sens enverse", on obtient un vecteur \vec{b}^* qui depend de \vec{c}^* et tel que le problème $A\vec{x} = \vec{b}^*$ n'a pas de solution car la forme échelonnée réduite de la matrice augmentée a une ligne de la forme $(0,0,\ldots,0,1)$, ce qui implique "non" a).