Sistemas Elétricos de Potência I

PROF. LUCAS CLAUDINO

Sumário

Unidade 1 | Introdução aos sistemas elétricos de potência (SEP)

Seção - 1.1 O sistema elétrico de potência (SEP)

Seção - 1.2 Equipamentos elétricos utilizados em SEP

Seção - 1.3 Subestações de energia

Unidade 2 | Análise do sistema elétrico de potência

Seção - 2.1 Sistema por unidade (PU)

Seção - 2.2 Geradores e cargas utilizados em SEP

Seção - 2.3 Introdução ao fluxo de potência

Sumário

Unidade 3 | Sistemas de transmissão em corrente contínua (HVDC)

- Seção 3.1 Introdução aos sistemas de transmissão em corrente contínua
- Seção 3.2 Sistemas HVDC com elo de corrente
- Seção 3.3 Sistemas HVDC com elo de tensão

Unidade 4 | Automação dos sistemas de distribuição de energia

- Seção 4.1 Motivações para a automação do sistema de distribuição de energia
- Seção 4.2 Monitoramento das redes de distribuição
- Seção 4.3 O sistema de gerenciamento da distribuição e suas funções

CONCEITOS

Contextualização

SEP

Longas distâncias Alta potência Interferência

http://www.ons.org.br/paginas/sobre-o-sin/mapas

CONCEITOS

Introdução à transmissão em corrente contínua

Motivação

- Transmissão em CA: desvantagens para transmitir muita potência a grandes distâncias.
- Exemplo:

$$X_{LT} = 0.03 \text{ pu/km}$$

Para 50 km:
$$X_{LT} = 0.03 \times 50 = 1.5 \text{ pu}$$

Para 500 km:
$$X_{LT} = 0.03 \times 500 = 15 \text{ pu}$$

Fonte: Silva, 2019, p. 105.

Considerando que $|V_1|$ e $|V_2|$ permaneçam em 1 pu:

Potência ativa que trafega pela linha:

$$P_{12} = \frac{V_1 V_2}{X_{LT}} sen(\delta)$$

Redução na capacidade de transferência de potência

Fonte: Silva, 2019, p. 106.

Motivação

- Redução de perdas -> aumento do nível da tensão;
- Elevação de tensão CC: grandes conversores de frequência;
- Elevação de tensão CA: possível uso de transformador;
- Bons resultados enquanto a demanda era baixa.

Linha do tempo

Até início do séc. XX: baixa demanda 1945: primeiro sistema HVDC 1954: primeiro uso comercial de HVDC

Fonte: elaborada pelo autor.

1901: válvula de mercúrio e retificador a vapor de mercúrio

Linha do tempo

1972: primeiro HVDC com válvulas de tiristores

1990: evolução de semicondutores

Fonte: elaborada pelo autor.

1970-2000: evolução de conversores comutados

Dispositivos semicondutores de potência Tiristor, IGCT IGBT e MOSFET

Desenvolvimento e escolha de semicondutores

Fonte: MOHAN, 2014, p. 102.

CONCEITOS

Transmissão em corrente contínua

Sistema HVDC - Corrente Contínua em Alta Tensão

Elementos de um HVDC

- Disjuntor CA: isolação em caso de falhas;
- Filtro CA e banco de cap.: filtrar harmônicos do conversor;
- Reatores e filtros CC: reduzir ondulação e proteger dispositivos durante a comutação

Conversor → principal componente

- Maior a LT -> mais componentes são adicionados!
- RC é um filtro e atenua tensões.
- Maior RC -> maior atenuação
- DC -> $Z_L = 0$ e $Z_c = \inf$.

$$S = P + jQ$$

DC só transfere potência ativa! O que realmente interessa!

- ↑ freq. ↓ seção efetiva ↑ Resist.
- DC usa toda a seção!!!

- **DC:** facilidade de conexão entre sistemas distintos
- Mesma magnitude e mesma polaridade
- Conexão com diodos ainda protege contra polaridade reversa
- AC: dificuldade de conexão entre sistemas distintos:
- Mesma magnitude
- Mesma fase
- Mesma forma
- Mesma frequência

Desvantagens do HVDC

- Necessário mais pot. reativa no conversor;
- Manutenção frequente dos isoladores;
- Perdas adicionais em transformadores e conversores;
- Necessidade de boa refrigeração;
- Semicondutores de potência: tecnologia cara;
- Introdução de harmônicos.

SITUAÇÃO PROBLEMA

SP: Consultoria para sistema de transmissão

Situação Problema

- Você: consultor de planejamento de sistemas de transmissão.
- ▶ Desafio: licitação para LT maior que 700 km conectando dois sistemas CA.
- Complicações ambientais (direitos);
- Instabilidade;
- Alta radiointerferência

Fonte: Elaborado pelo Autor (2022)

Qual tecnologia utilizar?

Resolução da SP

- Utilizar HVDC
- Boa para transmissão de grandes potências;
- Economia em cabeamento e torres de sustentação;
- Grandes distâncias -> CA oferece muitas perdas
- CA -> necessidade de manipulações intermediárias;
- HVDC: menos susceptível a radiointerferências;
- Baixas perdas por efeito corona

Resolução da SP

Fonte: Elaborado pelo Autor (2020)

As restrições socioeconômicas e ambientais para a construção de novas linhas de transmissão têm sido um entrave para a expansão dos sistemas de transmissão. Dessa forma, no planejamento da transmissão busca-se sempre diversificar as fontes de geração e, concomitantemente, busca-se otimizar a área ocupada pelas linhas de transmissão com a garantia de uma maximização da sua capacidade de transmissão de energia.

Assinale a alternativa em que contém uma justificativa viável para construção de uma linha HVDC.

- a) As linhas HVDC são mais baratas que as linhas de transmissão convencionais CA.
- b) É possível utilizar linhas de transmissão CC por conta da facilidade de conversão de tensão utilizando transformadores.
- c) Em alguns casos os limites de estabilidade das linhas CA podem ser alcançados mais facilmente, pois com o aumento da distância também se aumenta a reatância da linha.
- d) Ao realizar a transmissão CC em baixas tensões, as perdas de transmissão são menores que quando utilizadas as linhas de transmissão CA em altas tensões.
- e) O uso da tecnologia HVDC não exige elementos de eletrônica de potência que causam harmônicas na linha e, dessa forma, tornam-se mais viáveis que as linhas CA.

- Quando falamos de sistemas de transmissão em corrente contínua, podemos destacar algumas vantagens em relação aos tradicionais sistemas CA. Considere as afirmativas a seguir sobre as principais vantagens do sistema HVDC:
- I As perdas por efeito corona são baixas, e a radiointerferência é menor.
- II A estabilidade transitória do fluxo de potência pode ser melhorada ao se fazer uma conexão paralela de linhas HVAC (high-voltage alternating current) e HVDC.
- III Estações intermediárias são necessárias.

Assinale a alternativa correta.

- a) Apenas as afirmativas I e II são corretas.
- b) Apenas as afirmativas I e III são corretas.
- c) Apenas as afirmativas II e III são corretas.
- d) Todas as afirmativas estão corretas.
- e) Nenhuma afirmativa está correta.

A aplicação do HVDC é destinada a transmitir ______ quantidades de potência por ______ distâncias, onde um sistema de transmissão CC tende a ser mais econômico que um sistema de transmissão CA. Por exemplo, quando se utiliza a transmissão de energia por meio de cabos submarinos, o sistema HVDC é quase sempre a opção ______.

Assinale alternativa que completa corretamente os espaços do texto.

- a) Pequenas longas descartada.
- b) Pequenas pequenas descartada.
- c) Grandes pequenas escolhida.
- d) Grandes longas escolhida.
- e) Grandes pequenas descartada.

Uma das aplicações das linhas de transmissão em corrente continua é a interligação de fazendas eólicas de geração de energia em alto mar, aplicações chamadas de offshore.

Com base na escolha por linhas de transmissão em CC, avalie a seguinte asserção preenchendo suas lacunas:

Dentre as				do ι	iso d	a corrente conti	nua nessas	aplica	ações é que a	as linha	as de trai	nsmissão
produzem campos magnéticos e elétricos estáticos, os quais são incapazes de induzir correntes e tensão em objetos												
próximos	as	instalações	por	meio	de	acoplamento	indutivo	ou	capacitivo.	Um	outro	aspecto
			das li	nhas de	trar	nsmissão em co	rrente cor	ntinua	em aplicaçõ	ses off	shore é	que em
condições de mau tempo, os níveis de ruído devido à radio interferência são em relação												
à corrente	conti	nua.										
Assinale a	alterr	nativa correta	:									

Escolha uma:

a.melhorias – econômico – iguais

b.vantagens – positivo – menores

c.desvantagens – interessante – maiores

d.desvantagens – negativo - maiores

e.vantagens – menor – negativos

Usina Hidroelétrica Santo Antônio, a quarta em geração no Brasil, utiliza transmissão em corrente continua para interligação com o Sistema Interligado Nacional.

"A Usina Hidrelétrica Santo Antônio, localizada no rio Madeira, com sede no Município de Porto Velho (RO), tem potência instalada mínima de 3.568,8 MW e 2.424,2 MW médios de energia assegurada e é composta por 50 turbinas do tipo Bulbo.[...] A construção da UHE Santo Antônio teve início em setembro de 2008 e, iniciou sua operação comercial em março de 2012. Em 03 de janeiro de 2017, a usina foi concluída, entrando em operação plena com a capacidade para fornecer energia elétrica suficiente para abastecer cerca de 45 milhões de habitantes.[...]

Sistema de conexão associado

A Hidrelétrica Santo Antônio está conectada ao Sistema Interligado Nacional (SIN) por duas linhas de transmissão em alta tensão (600 kV) e corrente contínua. E outra linha de 230kV, construída para atender ao consumo exclusivo dos Estados de Rondônia e Acre. Com extensão de 2.375 km – a mais longa do mundo – essas linhas ligarão a subestação conversora construída na cidade de Porto Velho (RO), à subestação de Araraquara, no estado de São Paulo, após atravessar cinco estados e 90 municípios. A produção da Hidrelétrica Santo Antônio é colocada no Sistema Interligado Nacional (SIN) pela subestação de Araraquara e distribuída aos consumidores de todas as regiões do país. Este sistema de transmissão permite a conexão total do estado de Rondônia ao SIN, também realizada parcialmente pelo sistema Acre-Rondônia. Essa conexão aumenta a qualidade e confiabilidade da energia elétrica recebida e permite a desativação das térmicas instaladas na região.[...]"

Disponível em: https://bit.ly/2HRDGaZ> Acesso em 26/01/2018

Duas Plantas: Jirau e S. Antôni Potência Total: 6450 MW

Considerando as vantagens e desvantagens da transmissão em corrente continua, marque falso (F) ou verdadeiro(V) para as afirmações a seguir:

- () Para o projeto de interligação da Hidrelétrica Santo Antônio com o SIN foi escolhida a transmissão em corrente continua devido ao menor custo, em relação a transmissão em corrente alternada, para transmissão a grandes distancias como nesse projeto onde as conexões estão separadas por 2375km.
- () Uma desvantagem da transmissão em corrente continua é a necessidade de subestações intermediárias.
- () A necessidade de investimentos em conversores de alto custo representa uma desvantagem do sistema de transmissão em corrente continua em relação ao sistema de corrente alternada.
- () No projeto de interligação da Hidrelétrica de Santo Antônio ao SIN um dos fatores que reduziram o custo da linha de transmissão foi o fato da transmissão em corrente continua utilizar apenas dois cabos, um para cada pólo, o que reduz também o dimensionamento das torres que irão suportar um número menor de cabos.
- () A linha de transmissão entre a Hidrelétrica de Santo Antônio e Araraquara em São Paulo passa por regiões de clima tropical chuvoso. Segundo Vasconcelos (2015), uma das vantagens da transmissão em corrente continua em relação a corrente alternada é a diminuição do efeito corona em situações de tempestades, as perdas no sistema de corrente continua são menores que nos sistemas de corrente alternada.

A seguir assinale a alternativa com a sequência correta.

a.V-V-V-F-F

b.F-F-V-F-F

c.V-F-V-V

d.F-F-V-F-V

e. V-V-F-F-V

"As vantagens técnicas aliadas às vantagens de ordem econômica oferecidas por linhas ou cabos de custos mais baixos, a redução nas faixas de servidão e os níveis mais baixos de campos eletromagnéticos tornam a utilização de elos de corrente contínua uma boa opção para a transmissão de energia em longas distâncias." Analisando o conjunto de vantagens relacionadas à transmissão em corrente continua, verifique as afirmações a seguir e assinale a alternativa INCORRETA:

- a. O solo representa um ótimo condutor para a corrente continua, por isso em projetos onde há a necessidade de linhas subterrâneas a transmissão em corrente continua deve ser considerada em conjunto com outros fatores como potência a ser transmitida e distância entre as conexões.
- b. Diminuição das perdas por efeito Joule, considerando mesma seção e mesmo nível de isolamento dos condutores: um sistema de transmissão em corrente continua otimizado gera menores perdas que um sistema em corrente alternada. para uma mesma capacidade de potência.
- c. Linhas de transmissão em corrente continua apresentam um custo de implantação menor em relação à corrente alternada por utilizarem menos cabos e consequentemente torres transmissão mais leves.
- d. Do ponto de vista ambiental a transmissão em corrente continua apresenta vantagens como a necessidade de áreas menores para a faixa de servidão.
- e. Para a transmissão de grandes blocos de potência a longas distancias a transmissão em corrente continua em geral se mostra econômica e tecnicamente vantajosa em relação a corrente alternada.

INTERVALO

Sistemas Elétricos de Potência I

PROF. LUCAS CLAUDINO