1.

$$f(S_1) = \sum_{e \in E} w_e^-$$

$$f(S_2) = \sum_{e \in E} w_e^+$$

2. For each partition, the endpoints of an edge will be either in one set or in different set, so we can add either w^- or w^+ , it's easy to see that

$$OPT \le f(S_1) + f(S_2)$$

So pick the larger one from $f(S_1), f(S_2)$ will give an $\frac{1}{2}$ -approximation.

3. You can assign one vertex to any possible cluster, and there will be at most n clusters.

And if two vertices are in the same cluster, you will add $w_{(i,j)}^+$ to the result, if not you will add $w_{(i,j)}^-$.

Each feasible solution corresponds to a valid assignment, and vice versa. Also, the objective values are the same.

4. The probability is two independent hyperplanes both fail to separate the two vertices, each with a probability $P = 1 - \frac{\theta_{(i,j)}}{\pi}$. So both two fails with probability:

$$P(X_{ij} = 1) = (1 - \frac{\theta_{(i,j)}}{\pi})^2$$

5.

$$E(X_{ij}) = g(\theta_{(i,j)})$$

$$E(f(R)) = \sum_{(i,j)\in E} \left(w_{(x,j)}^+ E(X_{ij}) + w_{(i,j)}^- E(1 - X_{ij}) \right)$$
$$= \sum_{(i,j)\in E} \left(w_{(i,j)}^+ g(\theta_{(i,j)}) + w_{(i,j)}^- (1 - g(\theta_{(i,j)})) \right)$$

6. The constraint $v_i \cdot v_j \geq 0$ guarantees that θ_{ij} is in range $[0, \frac{\pi}{2}]$. And we know the length of each vector is 1, So $\cos(\theta_{ij}) = v_i \cdot v_j$, and the expectation above will be larger than or equal to

$$E(f(R)) \geq \frac{3}{4} \sum_{(i,j)\in E} \left(w_{ij}^{+} \cos(\theta) + w_{ij}^{-} (1 - \cos(\theta)) \right)$$

$$= \frac{3}{4} \sum_{(i,j)\in E} \left(w_{ij}^{+} x_{i} \cdot x_{j} + w_{ij}^{-} (1 - x_{i} \cdot x_{j}) \right)$$

$$\geq \frac{3}{4} Z$$

Since SDP is a relaxation to the original problem, then it's a $\frac{3}{4}$ -approximation.