Mathematical Logic, Part 2 – Answers to Tutorial Questions

- 1. D(x) is the predicate x is a duck, defined over the domain of animals.
 - a) Write the following statements in words:
-) D(BASIL)
- ii) $\forall x \bullet \neg D(x)$
- iii) $\exists x \bullet D(x)$
- iv) $\exists !x \bullet \neg D(x)$
- $\mathsf{v)} \qquad \neg \forall x \bullet D(x)$
- b) If we had not stated the domain of discourse in advance, how would we have written part (ii), using A to represent the set of animals?

Solution

- a) i) Basil is a duck.
 - ii) No animal is a duck.
 - iii) There is at least one animal that is a duck.
 - iv) There exists one and only one animal that is not a duck.
 - v) Not all animals are ducks.
- b) $\forall x \in A \bullet \neg D(x)$

- 2. B(x) is the predicate x is a bird, and F(x) is the predicate x can fly, both defined over the domain of animals.
 - a) Write the following statements in words:
 - i) $\forall x \bullet (B(x) \Rightarrow F(x))$
 - ii) $\exists x \bullet (B(x) \land F(x))$
 - iii) $B(JACK) \vee \exists x \bullet F(x)$

Solution

- i) All birds can fly (for every animal, if x is a bird then x can fly).
- ii) There is at least one bird that can fly (there exists an animal that is a bird and can fly).
- iii) Jack is a bird or there is at least one animal that can fly.
- b) Write the following statements in symbols:
 - i) If Mary is a bird, then no animal can fly.
 - ii) Only birds can fly (every animal is a bird or it cannot fly).
 - iii) There is one and only one bird that cannot fly.

Solution

- i) $B(MARY) \Rightarrow \forall x \bullet \neg F(x)$
- ii) $\forall x \bullet (B(x) \vee \neg F(x))$
- iii) $\exists !x \bullet (B(x) \land \neg F(x))$

3. Negate the predicate $\exists x \bullet (\neg P(x) \land \neg Q(x))$ using the universal quantifier (\forall) instead of the existential quantifier (\exists) .

Solution

$$\neg \exists x \bullet (\neg P(x) \land \neg Q(x)) \quad \equiv \quad \forall x \bullet \neg (\neg P(x) \land \neg Q(x))$$

4. Simplify your answer to question 3 by using De Morgan's law.

<u>Solution</u>

$$\forall x \bullet (P(x) \lor Q(x))$$

- 5. Show that if the following statements are true:
 - if I do the ironing I have a cup of tea in the afternoon;
 - if I have a cup of tea in the afternoon it is Thursday.
 - I do the ironing.

then it follows that:

• it is Thursday.

Solution

First assign letters to the propositions: D: I do the ironing

C: I have a cup of tea in the afternoon

T: It is Thursday

We have to show that: $\frac{D \Rightarrow C; C \Rightarrow T; D}{T}$

<u>Proof</u> 1. $D \Rightarrow C$ Premise

2. $C \Rightarrow T$ Premise

3. *D* Premise

4. $D \Rightarrow T$ Chain rule on 1 and 2

5. *T* Modus Ponens on 3 and 4

6. Show that if the following statements are true:

Bernard is a cat and Susan is a cat; Bernard likes watching television.

If there is at least one cat that likes watching television then the moon is made of cheese.

then it follows that:

The moon is made of cheese.

Solution on next slide

Solution

Define the following predicates: C(x): x is a cat.

T(x): x likes watching television.

the following proposition: *P:* the moon is made of cheese.

and the following constants: b: Bernard

s: Susan

We must prove that: $\underline{C(b) \land C(s); \ T(b); \ \exists x \bullet (C(x) \land T(x)) \Rightarrow P }$

<u>Proof</u> 1. $C(b) \wedge C(s)$: Premise

2. T(b) Premise

3. $\exists x \bullet (C(x) \land T(x)) \Rightarrow P$ Premise

4. C(b) AND-Elimination on 1

5. $C(b) \wedge T(b)$ AND-Introduction on 2 and 4

6. $\exists x \bullet (C(x) \land T(x))$ Existential Generalisation on 5

7. *P* Modus Ponens on 3, 6

7. Show that if the following statements are true:

- Sam is a snake;
- If Sam can bite then Paris is in France;
- All snakes can bite;

then it follows that: Paris is in France.

Solution

Define the following predicates: S(x): x is a snake.

B(x): x can bite.

and the following proposition: *P:* Paris is in France.

Proof 1. S(SAM)

Premise

 $2. B(SAM) \Rightarrow P$

Premise

3. $\forall x \cdot (S(x) \Longrightarrow B(x))$

Premise

 $4. S(SAM) \implies B(SAM)$

Universal Instantiation on 3

5. *B*(*SAM*)

Modus Ponens on 1, 4

6. *P*

Modus Ponens on 2, 5

8. Prove that the following statement holds for all $n \ge 1$:

$$2 + 2^2 + 2^3 + 2^4 + \dots + 2^n = 2^{n+1} - 2$$

<u>Solution</u>

Base step

Show that it holds when n = 1:

$$2 = 2^2 - 2$$

Inductive step

Assume the statement is true for some value n = k:

$$2 + 2^2 + 2^3 + 2^4 + \dots + 2^k = 2^{k+1} - 2$$

Equation 1

Now take the sequence up to k + 1:

$$2 + 2^2 + 2^3 + 2^4 + \dots + 2^k + 2^{k+1}$$

Substituting from equation 1 this becomes:

$$2^{k+1} - 2 + 2^{k+1} = 2 \times 2^{k+1} - 2$$

= $2^1 \times 2^{k+1} - 2 = 2^{(k+1)+1} - 2$

Thus if it true for n = k, it is true for n = k + 1, and since it is true for n = 1, it is true for all $n \ge 1$.