Projet 4 OC : Segmentation des clients d'un site e-commerce

Présenté par : NAMA NYAM Guy Anthony

Mentor: Julien Hendrick

22 Février 2020

DPENCLASSROOMS

- Introduction
- Source de données
- Segmentation avec l'analyse RFM
- 4 Segmentation automatique : K-Means
- Maintenance
- Conclusion

Contexte

- Toute entreprise aspire à un retour sur investissement le plus rapidement possible.
- Pour atteindre cet objectif pour les sites d'e-commerces, les entreprises préconisent la segmentation pour réduire les ressources à allouer dans le secteur du marketing.
- La segmentation des clients dans notre contexte consiste à découper analytiquement en sous-clients homogènes.
- Ces segments constituent la base des campagnes de communication des équipes de marketing, c'est dire l'importance d'une telle opération.

Problématiques et objectifs

- De diverses difficultés se dressent dans la recherche des segments clients, donc :
- Comprendre les différents types d'utilisateurs grâce à leurs données personnelles.
- Rechercher les critères ou variables de mise en évidence des segments pour une utilisation optimale.

Objectif

Fournir une description actionnable de la segmentation obtenue et proposer une analyse de la stabilité des segments au cours du temps.

Approches

- Pour ce faire, nous utilisons deux approches à savoir :
 - L'approche analytique avec la technique RFM
 - 2 L'approche automatique avec l'algorithme de K-Means
- L'analyse RFM(Recency, Frequency, Monetary) combinent ces trois paramètres(provenant de l'historique des transactions) pour segmenter les clients basés sur leurs comportements.
- L'algorithme de K-Means partitionne en K groupes l'ensemble des observations en minimisant la distance euclidienne de chaque observation à la moyenne de son cluster d'appartenance.

- Introduction
- Source de données
- Segmentation avec l'analyse RFM
- 4 Segmentation automatique : K-Means
- Maintenance
- Conclusion

Description

- Base de données(olist_customers_dataset.csv) anonymisée du site d'e-commerce Olist, téléchargeable (https://www.kaggle.com/olistbr/brazilian-ecommerce).
- Quatre(6) tables retenues sur les huit(8) initiales pour déduire le comportement RFM de chaque client et regrouper les noms des catégories de produits.
- Les tables retenues : olist_customers_dataset,
 olist_orders_dataset, olist_order_items_dataset ,
 olist_products_dataset, olist_order_reviews_dataset,
 product_category_name_translation

Nettoyage de la donnée et fusion

La suppression des transactions non approuvées.

```
orders_data["order_approved_at"].isna().sum()

168

orders_data = orders_data[-order_approved_at"].isna()]
```

La suppression des transactions sans catégories produits

```
products_data["product_category_name"].isna().sum()
618
products_data = products_data[-products_data["product_category_name"].isna()]
```

Jointure naturelle entre les lignes des différentes tables.

[72] donnees.shape

- Introduction
- Source de données
- Segmentation avec l'analyse RFM
- 4 Segmentation automatique : K-Means
- Maintenance
- 6 Conclusion

Comportement clients

- De l'historique de transaction des clients(identifiant client), on déduit les comportements suivants :
 - R : nombre de jour écoulé du dernier achat
 - F : nombre d'achat effectué.
 - M : somme totale dépensée.
- La table RFM obtenue :

```
        customer_unique_ld
        recency
        fequency
        monetary_value

        0000066f3bba9992bf8c7e6cftr32242
        115
        1
        12950

        00000649777469e4a4ce2b2a4ca5be31
        118
        1
        18,90

        00000f6ca931flacc88544438337064
        51
        1
        6600

        000046ca647456a4cb8665a16ce9078
        325
        1
        25,98

        0004aace4a0df4da2b147fca70ce9255
        282
        1
        1800
```

Calcul RFM score

 Pour regrouper les clients, nous avons utilisé les quartiles de leurs différents comportements.

```
#### Calcuts des valeurs de quartiles pour notre jeu de données
quartiles = rfmTable.quantile(q=[0.25, 0.5, 0.75])
print(quartiles)|

recency frequency monetary_value
0.25 118.0 1.0 47.9
0.25 218.0 1.0 89.8
0.75 351.0 1.0 155.8
```

Attribuer les valeurs selon les quartiles.

	recency	frequency	monetary_value	r_quartile	f_quartile	m_quartile	RFMScore
customer_unique_id							
0000366f3b9a7992bf8c76cfdf3221e2	115	1	129.90	1	4	2	1-4-2
0000b849f77a49e4a4ce2b2a4ca5be3f	118	1	18.90	1	4	4	1-4-4
0000f46a3911fa3c0805444483337064	541	1	69.00	4	4	3	4-4-3
0000f6ccb0745a6a4b88665a16c9f078	325	1	25.99	3	4	4	3-4-4
0004aac84e0df4da2b147fca70cf8255	292	1	180.00	3	4	1	3-4-1

Segmentation clients

 Dans le premier essai, nous avons utilisé la segmentation la plus présente dans la littérature.

Conseil d'action	activité	nombre de clients	segments clients	rfm	
Pas d'incitation aux prix, Nouveaux produits et programmes de fidélité	Les clients qui ont acheté le plus récemment, le plus souvent et qui dépensent le plus.	1482	Best Customers	1-1-1	0
Vendre des produits de plus grande valeur. Demandez des commentaires. Engagez-les	Les clients ayant acheté le plus récemment	4492	Loyal Customers	X-1-X	1
Commercialisez vos produits les plus chers	Les clients qui dépensent le plus	8847	Big Spenders	X-X-1	2
Offrez d'autres produits pertinents et des rabais spéciaux	N'ont pas acheté depuis un certain temps, mais ont acheté fréquemment et ont dépensé le plus.	1365	Almost Lost	3-1-1	3
Incitations à des prix agressifs	N'ont pas acheté depuis longtemps, mais ont acheté fréquemment et ont dépensé le plus.	1215	Lost Customers	4-1-1	4
Ne passez pas trop de temps à essayer de vous ré-acquérir	Demier achat il y a longtemps, acheté peu et dépensé peu.	5681	Lost Cheap Customers	4-4-4	5
Ajuster les intervales pour le réduire si important		71014	autres	autres	6

 Usage de la distribution des inter-quartiles pour équilibrer les segments(satisfaction client)

Recency X Frequency				
	1	2	3	4
1	3003	0	0	20779
2	2971	0	0	20347
3	2958	0	0	20605
4	2741	0	0	20692

Segmentation clients

Nouvelle segmentation avec les RFM score suivants :

```
Best customers : ["1-1-1"] Loyal Customers : ["1-1-2", "1-1-3", "1-1-4", "2-1-1", "2-1-2", "2-1-3", "2-1-4", "1-4-2", "2-4-2"] Promissing : ["1-4-3", "1-4-4", "2-4-3", "2-4-4"] Big Spenders : ["1-2-1", "1-3-1", "1-4-1", "2-3-1", "2-4-1"] Almost Lost : ["3-1-1", "3-4-1", "3-4-2"] Lost Customers : ["3-4-3", "3-4-4", "4-1-1", "4-4-1", "4-4-2"] Lost Cheap Customers : ["4-4-4", "4-4-3"]
```

	segment	nombre de clients	description	marketing
0	Best Customers	1482	Les clients qui ont acheté le plus récemment, le plus souvent et qui dépensent le plus.	Pas d'incitation aux prix, Nouveaux produits et programmes de fidélité
1	Loyal Customers	14888	Les clients ayant acheté le plus récemment	Vendre des produits de plus grande valeur. Demandez des commentaires. Engagez-les.
2	Promissing	21883	Des acheteurs récents, mais qui n'ont pas beaucoup dépensé	offrir des essais gratuits
3	Big Spenders	8847	Les clients qui dépensent le plus	Commercialisez vos produits les plus chers.
4	Almost Lost	10869	N'ont pas acheté depuis un certain temps, mais ont acheté fréquemment et ont dépensé le plus.	Offrez d'autres produits pertinents et des rabais spéciaux.
5	Lost Customers	21958	N'ont pas acheté depuis longtemps, mais ont acheté fréquemment et ont dépensé le plus.	Incitations à des prix agressifs
6	Lost Cheap Customers	11050	Dernier achat il y a longtemps, acheté peu et dépensé peu.	Ne passez pas trop de temps à essayer de vous ré-acquérir.
7	Autres	3119		Ajuster les intervales pour le réduire si important

Visualisation des segments

• Distribution de clients par segment.

Nombre moyen de jours écoulé du dernier achat par segment.

Importance relative des variables aux segments

• Compréhension rapide des segments avec cette visualisation.

 Le résultat est assez satisfaisant dans l'ensemble pour tous les segments hormis le segment Loyal Customers biaisé par le comportement de la variable fréquency.

- Introduction
- 2 Source de données
- Segmentation avec l'analyse RFM
- Segmentation automatique : K-Means
- Maintenance
- Conclusion

Algorithme de K-Means

- L'algorithme de **K-Means** est utilisé pour le clustering des variables numériques.
- Nous avons utilisé le One-hot-encoding pour l'encodage des catégorielles.

Algorithme 1 Algorithme K-Means

- 1: Choisir aléatoirement K points(centre de gravité) de l'hyperplan(dimension correspondant au nombre de features)
- 2: Calculer la distance euclidienne de chaque observation aux centres de gravité
- 3: Affecter chaque observation au centroïde de distance minimale
- 4: Mise à jour des centroïdes par la moyenne des observations de leur cluster

Mise en place

- L'information de la RFM est porté uniquement par la variable M car la majorité des clients ont effectué un seul achat.
- Donc en plus des variables R-F-M(log1p(M)), nous avons ajouté à notre bunch des features les variables : état, densité de population de l'état, catégories de produits, score de revue d'un produit acheté, le nombre de produits achetés par client.
- Les variables retenues qui améliorent la silhouette RFM : état, densité de population de l'état, catégories de produits.

Hyper-paramètre K de clusters

• Recherche du nombre optimal K de clusters; nous utilisons un critère de forme : le coefficient de silhouette.

• L'hyperparamètre est K = 14

Visualisation PCA et TSNE

• Visualisation PCA : variance expliquée par 0.126

Pour n_clusters = 14 , Le score de la silhouette moyenne est : 0.4362573911195213

Analyse de la silhouette pour l'algorithme de clusterisation K-means avec n_clusters = 14

Visualisation TSNE.

Pour o clusters = 14 . Le score de la silhouette movenne est : 9.3345528

Pour n_clusters = 14 , Le score de la silhouette moyenne est : 0.33455202

Analyse de la silhouette pour l'algorithme de clusterisation K-means pour les données RFM avec n_clusters = 14

Statistiques : centroïdes clusters

• Statistiques sur les clusters obtenus :

	recency	frequency	monetary_value	size
	mean	mean	mean	
cluster_appartenance				
0	0.067151	-0.161146	0.026390	11684.0
1	0.070968	-0.070336	0.013764	3426.0
2	1.068827	-0.161146	-0.199652	4173.0
3	-0.624377	-0.161146	0.121485	6498.0
4	0.089379	-0.145897	-0.004249	5022.0
5	-0.067002	-0.161146	-0.116804	38038.0
6	0.170898	-0.026756	0.216970	926.0
7	0.035055	-0.056346	0.061879	3197.0
8	0.087519	-0.159001	0.172256	6695.0
9	-0.015755	-0.080021	0.027911	4720.0
10	0.013553	-0.085818	-0.041265	4702.0
11	-0.117602	4.774786	0.956548	2688.0
12	0.034184	-0.037275	-0.008281	1932.0
13	0.185986	-0.015738	0.272557	395.0

Identification des clusters

'	segment		number of customers	is segment description	marketing action
0	Best Customers	11	2688.0	Les clients qui ont acheté le plus récemment,	Pas d'incitation aux prix, Nouveaux produits e
1	Loyal Customers	6	926.0	Les clients ayant acheté le plus récemment	Vendre des produits de plus grande valeur. Dem
2	Promissing	3	6498.0	Des acheteurs récents, mais qui n'ont pas beau	offrir des essais gratuits
3	Big Spenders	13	395.0	Les clients qui dépensent le plus	Commercialisez vos produits les plus chers.
4	Almost Lost	0	11684.0	N'ont pas acheté depuis un certain temps, mais	Offrez d'autres produits pertinents et des rab
5	Lost Customers	8	6695.0	N'ont pas acheté depuis longtemps, mais ont ac	Incitations à des prix agressifs
6	Lost Cheap Customers	2	4173.0	Dernier achat il y a longtemps, acheté peu et	Ne passez pas trop de temps à essayer de vous

21 / 29

- Introduction
- Source de données
- Segmentation avec l'analyse RFM
- 4 Segmentation automatique : K-Means
- Maintenance
- 6 Conclusion

Diagramme de flux graphique

- Pour la maintenance, nous avons analysé la stabilité des segments au cours du temps qui consiste à étudier les migrations des clients entre les segments pour une période donnée.
- Nous avons pour ce faire, considéré les trois derniers mois

```
{0: datetime.datetime(2018, 9, 3, 0, 0), 1: datetime.datetime(2018, 8, 3, 0, 0), 2: datetime.datetime(2018, 7, 3, 0, 0), 3: datetime.datetime(2018, 6, 3, 0, 0)}
```

• Les résultats obtenus sont représentés par le diagramme de Sankey

Diagramme de flux de clients entre segments

Diagramme de flux en chiffres

	Best Customers (2018, 7, 3)	Loyal Customers (2018, 7, 3)	Promissing (2018, 7, 3)	Big Spenders (2018, 7, 3)	Almost Lost (2018, 7, 3)	Lost Customers (2018, 7, 3)	Lost Cheap (2018, 7, 3)	Autres (2018, 7, 3)
Best Customers (2018, 6, 3)	1203	2	0	0	0	0	0	0
Loyal Customers (2018, 6, 3)	32	11717	288	0	0	0	0	0
Promissing (2018, 6, 3)	18	33	17825	0	0	0	0	0
Big Spenders (2018, 6, 3)	19	22	0	7155	0	0	0	0
Almost Lost (2018, 6, 3)	12	2	0	0	8373	300	0	3
Lost Gustomers (2018, 6, 3)	19	11	0	0	0	17313	441	3
Lost Cheap (2018, 6, 3)	4	7	0	0	0	0	8884	0
Autres (2018, 6, 3)	6 Best Customers	4 Loyal Customers	0 Promissing	0 Big Spenders	O Almost Lost	0 Lost Customers	0 Lost Cheap	2567 Autres
	(2018, 8, 3)	(2018, 8, 3)	(2018, 8, 3)	(2018, 8, 3)	(2018, 8, 3)	(2018, 8, 3)	(2018, 8, 3)	(2018, 8, 3)
Best Customers (2018, 7, 3)	1306	7	0	0	0	0	0	0
Loyal Customers (2018, 7, 3)	19	11683	0	0	82	0	0	14
Promissing (2018, 7, 3)	14	28	17950	0	0	121	0	0
Big Spenders (2018, 7, 3)	12	33	0	7064	46	0	0	0
Almost Lost (2018, 7, 3)	13	1	0	0	8313	33	0	13
Lost Customers (2018, 7, 3)	13	10	0	0	0	17540	43	7
Lost Cheap (2018, 7, 3)	2	6	0	0	0	0	9317	0
Autres (2018, 7, 3)	0	4	0	0	0	0	0	2569
	Best Customers (2018, 9, 3)	Loyal Customers (2018, 9, 3)	Promissing (2018, 9, 3)	Big Spenders (2018, 9, 3)	Almost Lost (2018, 9, 3)	Lost Customers (2018, 9, 3)	Lost Cheap (2018, 9, 3)	Autres (2018, 9, 3)
Best Customers (2018, 8, 3)	1366	13	0	0	0	0	0	0
Loyal Customers (2018, 8, 3)	12	11760	0	0	0	0	0	0
Promissing (2018, 8, 3)	6	20	17924	0	0	0	0	0
Big Spenders (2018, 8, 3)	9	0	0	7055	0	0	0	0
Almost Lost (2018, 8, 3)	14	0	0	0	8427	0	0	0
Lost Customers (2018, 8, 3)	14	4	0	0	0	17676	0	0
Lost Cheap (2018, 8, 3)	5	8	0	0	0	0	9347	0
Autres (2018, 8, 3)	3	1	0	0	0	0	_ 0	2599

Observations sur le spectre de flux

 Il suffit juste d'un nouvel achat pour presque passé dans le lot de "Best Customers".

	recency (2018, 8, 3)	frequency (2018, 8, 3)	monetary_value (2018, 8, 3)	RFMScore (2018, 8, 3)	recency (2018, 9, 3)	frequency (2018, 9, 3)	monetary_value (2018, 9, 3)	RFMScore (2018, 9, 3)
customer_unique_id								
cd6c68c5fad15e0a5a5c1150546704e0	417	1	572.00	4-4-1	20	2	636.90	1-1-
46ed126bcf1df6e195dbc63d7c320983	438	1	199.90	4-4-1	12	2	229.80	1-1-
3fe3e628c6c7a15ae96416826a4c5952	374	1	119.99	4-4-2	15	2	368.99	1-1-
d08c29302907086e8fe823369542f3ae	383	2	388.98	4-1-1	10	4	418.78	1-1-
71a92fd3087501bcfba6e6e1ef7e8fd7	449	1	198.00	4-4-1	23	2	223.00	1-1-
ee04cc9bca4c9198bec5c54c2542dd3b	408	1	79.90	4-4-3	27	2	206.89	1-1-
5eefb861d4921a3e628bbc65c50a480a	515	1	45.99	4-4-4	28	2	195.89	1-1-
2e49a3bbeb76297ee0ff49df39c2456c	468	1	72.90	4-4-3	14	2	171.90	1-1-
4702ba5faa8283e0f6b6a545cdaf8a9f	444	1	59.00	4-4-3	26	2	219.00	1-1-
4cfa5155cf7cff8eb15e0b12041d058e	363	1	59.90	4-4-3	29	2	189.89	1-1-

• Cela montre une fois de plus la sensibilité du dataset lorsque lorsqu'on a des fréquences peu variables.

- Introduction
- Source de données
- Segmentation avec l'analyse RFM
- 4 Segmentation automatique : K-Means
- Maintenance
- 6 Conclusion

Observations et discussions

- L'analyse RFM nous permet d'identifier les différents clients en particulier les meilleurs(best customer).
- Cette analyse peut être utilisé dans différent types de métiers tel que call center, etc.
- La principale difficulté à l'analyse RFM est lorsque les clients ont à majorité un seul achat comme le dataset d'étude.
- L'analyse est fortement liée à la satisfaction client.

Observations et discussions

- Les algorithmes de clustering permettent de regrouper les données proches mais posent néanmoins un problème d'interprétation(par exemple quel est le segment de best customer).
- Ces algorithmes sont meilleurs lorsque le nombre de variables est important et donc les combinaisons moins exhaustives comme RFM.
- L'analyse RFM dans ce cas est meilleur que les algorithmes automatiques. Ces derniers peuvent néanmoins être combinés pour une analyse encore plus pertinentes.
- Le diagramme de flux donne un bon spectre de la mise à jour de la segmentation RFM.

Perspectives

- Appliquer la segmentation des quintiles telle que réalisée dans l'outil d'analyse RFM de PUTLER et comparer avec nos résultats.
- Appliquer l'analyse RFM sur un dataset plus réel pour une meilleure visualisation des difficultés en entreprise.