

Aula 4 Exponenciais complexas e sinais senoidais; Simetria

EA614 ANÁLISE DE SINAIS

- Considere o sinal $f(t) = Ce^{\alpha t}$, em que C e α são números complexos
- ightharpoonup Caso 1: C e α são números reais

Oppenheim et al. (2010)

- lacksquare Caso 2: lpha é imaginário puro $f(t) = e^{j\omega_0 t}$
 - ▶ É periódico?
 - Qual a energia e a potência média do sinal?
 - ► Harmônicas:

- Caso 2: α é imaginário puro $f(t) = e^{j\omega_0 t}$
 - ► Sinais senoidais

$$Acos(\omega_0 t + \theta) = \frac{A}{2} \left[e^{j(\omega_0 t + \theta)} + e^{-j(\omega_0 t + \theta)} \right] = A \Re\{e^{j(\omega_0 t + \theta)}\}$$

$$Asen(\omega_0 t + \theta) = \frac{A}{2j} \left[e^{j(\omega_0 t + \theta)} - e^{-j(\omega_0 t + \theta)} \right] = A \Re\{e^{j(\omega_0 t + \theta)}\}$$

- ▶ Observações:
- 1. ω_0 e θ têm unidades de rad/s e rad, respectivamente
- 2. A frequência fundamental do sinal (em Hz) é $f_0=rac{\omega_0}{2\pi}$

► Caso 3: $C = \alpha$ são complexos $Ce^{\alpha t} = |C|e^{j\theta}e^{(r+j\omega_0)t} = |C|e^{rt}e^{j(\omega_0t+\theta)}$ $Ce^{\alpha t} = |C|e^{rt}[\cos(\omega_0t+\theta) + jsen(\omega_0t+\theta)]$

Oppenheim et al. (2010)

- ► Considere o sinal $f[n] = C\alpha^n$, em que C e α são números complexos
- **Caso 1:** C e α são números reais

- **Caso 2:** Se $\alpha = e^{\beta}$ e β é complexo, então: $f[n] = e^{j\Omega_0 n}$
 - ➤ Sinais senoidais

$$Acos(\Omega_0 n + \Phi) = \frac{A}{2} \left[e^{j(\Omega_0 n + \Phi)} + e^{-j(\Omega_0 n + \Phi)} \right] = A \Re\{e^{j(\Omega_0 n + \Phi)}\}$$

$$Asen(\Omega_0 n + \Phi) = \frac{A}{2j} \left[e^{j(\Omega_0 n + \Phi)} - e^{-j(\Omega_0 n + \Phi)} \right] = A \Re\{e^{j(\Omega_0 n + \Phi)}\}$$

▶ Observação: Se n é adimensional, então Ω_0 e Φ terão ambos unidades de rad.

- Caso 2: Se $\alpha=e^{\beta}$ e β é complexo, então: $f[n]=e^{j\Omega_0n}$
 - Este sinal é sempre periódico?
 - Exercício: Qual o período dos seguintes sinais?

$$\blacktriangleright f[n] = \cos\left(\frac{n}{4}\right)$$

$$\blacktriangleright f[n] = e^{j\left(\frac{\pi}{4}\right)n}$$

$f[n] = \cos(n/4)$

- ▶ Caso 2: Se $\alpha = e^{\beta}$, então: $f[n] = e^{j\Omega_0 n}$
 - \blacktriangleright O que ocorre se $\Omega = \Omega_0 + 2\pi$?

Sinais com frequência iguais a Ω_{0} , $\Omega_{0}\pm2\pi$, $\Omega_{0}\pm4\pi$... serão sempre iguais em tempo discreto!

Sinais de alta frequência terão Ω_0 próximos de $\pm\pi$ e múltiplos ímpares de $\pi!$

► Caso 3: $C \in \alpha$ são complexos $C\alpha^n = |C||\alpha|^n[\cos(\Omega_0 n + \Phi) + jsen(\Omega_0 n + \Phi)]$

Simetria Par e Ímpar

Quais destes sinais possuem simetria par?

Simetria Par e Ímpar

- Definições
 - ► Simetria par:

$$f(t) = f(-t) \text{ ou } f[n] = f[-n]$$

► Simetria ímpar:

$$f(t) = -f(-t)$$
 ou $f[n] = -f[-n]$

Componentes Pares e Ímpares

$$f(t) = \frac{1}{2}[f(t) + f(-t)] + \frac{1}{2}[f(t) - f(-t)]$$
Componente Par
Componente Ímpar

Exemplos:

1.
$$f(t) = e^{jt}$$

2.
$$f[n] = \begin{cases} 1, n \ge 3 \\ 0, n < 3 \end{cases}$$