

DESAFIO DE PROGRAMAÇÃO - ACADEMIA CAPGEMINI

Olá! Seja bem-vindo (a) à terceira etapa do processo de seleção para a Academia Capgemini 2022. O objetivo dessa etapa é testar os seus conhecimentos em lógica de programação. Para isso, preparamos três questões com diferentes níveis de dificuldade. A implementação das questões pode ser feita em qualquer linguagem, porém a utilização de Java será um diferencial.

Questão 01

Escreva um algoritmo que mostre na tela uma escada de tamanho **n** utilizando o caractere * e espaços. A base e altura da escada devem ser iguais ao valor de **n**. A última linha não deve conter nenhum espaço.

Exempl	lo:
Entrada	:
n = 6	
Saída:	
*	
**	

Questão 02

Débora se inscreveu em uma rede social para se manter em contato com seus amigos. A página de cadastro exigia o preenchimento dos campos de nome e senha, porém a senha precisa ser forte. O site considera uma senha forte quando ela satisfaz os seguintes critérios:

- Possui no mínimo 6 caracteres.
- Contém no mínimo 1 digito.
- Contém no mínimo 1 letra em minúsculo.
- Contém no mínimo 1 letra em maiúsculo.
- Contém no mínimo 1 caractere especial. Os caracteres especiais são: !@#\$%^&*()-+

Débora digitou uma string aleatória no campo de senha, porém ela não tem certeza se é uma senha forte. Para ajudar Débora, construa um algoritmo que informe qual é o número mínimo de caracteres que devem ser adicionados para uma string qualquer ser considerada segura.

Exemplo:
Entrada:
Ya3
Saída:
3
Explicação:
Ela pode tornar a senha segura adicionando 3 caracteres, por exemplo, &ab, transformando a senha em Ya3&ab. 2 caracteres não são suficientes visto que a senha precisa ter um tamanho mínimo de 6 caracteres.
Questão 03
Duas palavras podem ser consideradas anagramas de si mesmas se as letras de uma palavra podem ser realocadas para formar a outra palavra. Dada uma string qualquer, desenvolva um algoritmo que encontre o número de pares de substrings que são anagramas.
Exemplo:
Exemplo 1)
Entrada:
ovo
Saída:
3

Explicação:

A lista de todos os anagramas pares são: [o, o], [ov, vo] que estão nas posições [[0, 2], [0, 1], [1, 2]] respectivamente.

Exemp	lo 2)	١
-------	-------	---

Entrada:

ifailuhkgg

Saída:

3

Explicação:

A lista de todos os anagramas pares são: [i, i], [q, q] e [ifa, fai] que estão nas posições [[0, 3]], [[8, 9]] e [[0, 1, 2], [1, 2, 3]].

O que será avaliado

- Documentação
- Estrutura do código
- Atendimento aos requisitos
- Testes unitários

Envio das questões

As soluções para as questões devem ser hospedadas no GitHub e o link do repositório deve ser postado na sua área do candidato a partir do dia 14/02/2022. Para entrar na sua área do candidato acesse: https://capgemini.proway.com.br/inscricao/login.php. O link do repositório deve ser postado no campo "Github para o desafio de programação". O link deve ser similar a este: https://github.com/nome-de-usuario/repositorio. Lembrando que a data final para postagem do desafio será no dia 20/02/2022. Quanto antes você fizer, maiores as chances de ser selecionado (a) para a próxima etapa.

O repositório deve conter um arquivo README.md com as instruções de como rodar a aplicação e as tecnologias utilizadas.