

Mathematisch-Naturwissenschaftliche Fakultät

3D Computer Vision

Sommersemester 2020 - Übungsblatt 5

WSI / Visual Computing

Dozent: Prof. A. Schilling Tutor: Dipl.-Inf. M. Lange

Optical Flow

In dieser Aufgabe soll anhand verschiedener Verfahren der optische Fluss von Bildpaaren berechnet werden.

a) Gradienten (2 Punkte)

Schreiben Sie die Namen aller Ihrer Teammitglieder in den Dateinamen der Datei Team_[...].

Implementieren Sie die zwei Verfahren für die Gradientenbildung nach Horn-Schunck (*Determining optical flow*) und Horn-Schunck modifiziert nach Barron et al. (*Performance of optical flow techniques* Seite 5) (Ableitungen nach x, y, und t). Verwenden Sie dafür die im Rahmenprogramm vorgegebene Funktion *computeGradients*.

b) Optical flow nach Lucas-Kanade (4 Punkte)

Implementieren Sie das optical flow Verfahren nach Lucas-Kanade (*An Iterative Image Registration Technique with an Application to Stereo Vision*). Überlegen Sie dabei zuerst:

- 1. Wie sehen die Matrizen A^TA und A^Tb aus?
- 2. Wie lautet die Inverse von A^TA ? (Leiten Sie diese am besten analytisch her).
- 3. Wann ist A^TA nicht invertierbar? Und was heißt das? Was könnte man in diesem Fall berechnen?

Zusätzlich soll anhand der Eigenwerte λ_1 und λ_2 ($\lambda_1 >= \lambda_2$) der Matrix A^TA ein Maß für die Zuverlässigkeit der Schätzung angegeben werden. Verwenden Sie $100 * \frac{\lambda_2}{\lambda_1}$ als Maß. Begründen Sie diese Wahl! Was für Sonderfälle können auftreten? (So sollte z.B. auch λ_1 eine Mindestgröße haben. Wann?).

Verwenden Sie für die Implementierung die im Rahmenprogramm vorgegebene Funktion *computeLK-Flow*.

c) Optical flow nach Horn-Schunck (2 Punkte)

Implementieren Sie das optical flow Verfahren nach Horn-Schunck. Verwenden Sie dafür die Funktion computeHSFlow.

d) Analyse (2 Punkte)

Testen Sie die verschiedenen Verfahren anhand der gegebenen Bilder und erklären Sie das Verhalten!

Abgabe: Siehe ILIAS Übung 5