شرح پروژه: پیش بینی گونه لوبیا با استفاده ماشین لرنینگ

ابتدا باید فایل دیتا را وارد برنامه ژوپیتر نوتبوک کنیم و پس از انجام کار های پیش پردازش دیتا مدلسازی را انجام دهیم .

ایمپورت کتابخانه ها موارد مورد نیاز:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier

from sklearn import metrics

from sklearn import metrics

from sklearn.metrics import classification_report , confusion_matrix
```

چهار کتابخانه اول برای پیش پردازش دیتا و سایر کتابخانه ها برای مدلسازی استفاده میشود.

فراخوانی دیتا:

```
data = pd.read_excel("C:/Users/mmmma/OneDrive/Desktop/project/Dry_Bean_Dataset.xlsx")
```

با استفاده از پانداس فایل اکسل دیتا را ایمپورت میکنیم.

تغییر فرمت دیتا به CSV:

```
data.to_csv("C:/Users/mmmma/OneDrive/Desktop/project/Dry_Bean_Dataset.xlsx", index = False , encoding = "utf-8")
```

برای انجام کار های مورد نیاز ابتدا فایل اکسل را به فرمت سی اس وی تبدیل میکنیم.

تبدیل دیتا به دیتافریم:

	<pre>df = pd.DataFrame(data) df</pre>										
	Area	Perimeter	MajorAxisLength	MinorAxisLength	AspectRation	Eccentricity	ConvexArea	EquivDiameter	Extent	Solidity	roundness
0	28395	610.291	208.178117	173.888747	1.197191	0.549812	28715	190.141097	0.763923	0.988856	0.958027
1	28734	638.018	200.524796	182.734419	1.097356	0.411785	29172	191.272750	0.783968	0.984986	0.887034
2	29380	624.110	212.826130	175.931143	1.209713	0.562727	29690	193.410904	0.778113	0.989559	0.947849
3	30008	645.884	210.557999	182.516516	1.153638	0.498616	30724	195.467062	0.782681	0.976696	0.903936
4	30140	620.134	201.847882	190.279279	1.060798	0.333680	30417	195.896503	0.773098	0.990893	0.984877
13606	42097	759.696	288.721612	185.944705	1.552728	0.765002	42508	231.515799	0.714574	0.990331	0.916603
13607	42101	757.499	281.576392	190.713136	1.476439	0.735702	42494	231.526798	0.799943	0.990752	0.922015
13608	42139	759.321	281.539928	191.187979	1.472582	0.734065	42569	231.631261	0.729932	0.989899	0.918424
13609	42147	763.779	283.382636	190.275731	1.489326	0.741055	42667	231.653248	0.705389	0.987813	0.907906
13610	42159	772.237	295.142741	182.204716	1.619841	0.786693	42600	231.686223	0.788962	0.989648	0.888380

از دیتای خود یک دیتافریم تشکیل میدهیم که بتوانیم روی آن کار کنیم.

<pre>1 df.describe(include = "all")</pre>										
	Area	Perimeter	MajorAxisLength	MinorAxisLength	AspectRation	Eccentricity	ConvexArea	EquivDiameter	Extent	Solidity
count	13611.000000	13611.000000	13611.000000	13611.000000	13611.000000	13611.000000	13611.000000	13611.000000	13611.000000	13611.000000
unique	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
top	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
freq	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
mean	53048.284549	855.283459	320.141867	202.270714	1.583242	0.750895	53768.200206	253.064220	0.749733	0.987143
std	29324.095717	214.289696	85.694186	44.970091	0.246678	0.092002	29774.915817	59.177120	0.049086	0.004660
min	20420.000000	524.736000	183.601165	122.512653	1.024868	0.218951	20684.000000	161.243764	0.555315	0.919246
25%	36328.000000	703.523500	253.303633	175.848170	1.432307	0.715928	36714.500000	215.068003	0.718634	0.985670
50%	44652.000000	794.941000	296.883367	192.431733	1.551124	0.764441	45178.000000	238.438026	0.759859	0.988283
75%	61332.000000	977.213000	376.495012	217.031741	1.707109	0.810466	62294.000000	279.446467	0.786851	0.990013
max	254616.000000	1985.370000	738.860153	460.198497	2.430306	0.911423	263261.000000	569.374358	0.866195	0.994677

با استفاده از دستور دسکر ایب یک شمای کلی از اطلاعات دیتا بدست می آوریم .

اطلاعاتی مانند ماکسیموم و مینیموم و میانگین و سایر اظلاعات هر ستون را به ما نمایش میدهد.

1 df.dtypes		
Area	int64	
Perimeter	float64	
MajorAxisLength	float64	
MinorAxisLength	float64	
AspectRation	float64	
Eccentricity	float64	
ConvexArea	int64	
EquivDiameter	float64	
Extent	float64	
Solidity	float64	
roundness	float64	
Compactness	float64	
ShapeFactor1	float64	
ShapeFactor2	float64	
ShapeFactor3	float64	
ShapeFactor4	float64	
Class	object	
dtype: object	-	

با استفاده از دستور بالا تایپ اطلاعات هر ستون را میتوانیم ببینیم که اغلب آن ها به صورت عدد اعشاری هستند و دو ستون فرمت دو ستون عدد صحیح است و ستون تارگت در کلاس آبجکت قرار دارد.

تبدیل همه ستون ها به نوع فلوت به غیر از ستون تارگت:

```
1 df.iloc[:, :-1] = df.iloc[:, :-1].astype(float)
 2 df.dtypes
                   float64
Area
Perimeter
                   float64
                   float64
MajorAxisLength
                   float64
MinorAxisLength
AspectRation
                   float64
Eccentricity
                   float64
                   float64
ConvexArea
EquivDiameter
                   float64
Extent
                   float64
                   float64
Solidity
                   float64
roundness
                   float64
Compactness
ShapeFactor1
                   float64
ShapeFactor2
                   float64
                   float64
ShapeFactor3
ShapeFactor4
                   float64
Class
                    object
dtype: object
```

همه ستون هارا بجز ستون تارگت با استفاده از دستور آیلاک به فرمت فلوت تغییر میدهیم. ستون تارگت باید جداگانه اطلاعاتش به عدد تبدیل شود.

```
1 print("missing values of dataframe : \n" , df.isnull().sum())
missing values of dataframe :
Area
Perimeter
                   0
MajorAxisLength
                   0
MinorAxisLength
                   0
AspectRation
                   0
Eccentricity
ConvexArea
                   0
EquivDiameter
Extent
Solidity
roundness
Compactness
ShapeFactor1
ShapeFactor2
ShapeFactor3
ShapeFactor4
                   0
Class
                   0
dtype: int64
 1 df.dropna(inplace = True)
```

با استفاده از دستورات بالا ابتدا متوجه میشویم که که هیچ ستونی دارای میسینگ ولیو نیست. سپس برای اطمینان کامل با استفاده از دستور بعدی میسینگ ولیو های احتمالی را از دیتافریم حذف میکنیم.

نمایش اسکتر یلات همه ستون ها:

```
1 column_options = df.columns.tolist()
 3 fig = px.scatter(df, x='Area', y='Class')
   fig.update_layout(
 6
       updatemenus=[
 7
            dict(
 8
                 buttons=[
9
                     dict(
10
                          label=column,
11
                          method="update",
12
                          args=[
                              {"x": [df[column]], "y": [df["Class"]] },
{"xaxis": {"title": column }, "yaxis": {"title": "Class"}},
13
14
                          ],
15
16
17
                     for column in column_options
18
                 ],
                 direction="down",
19
20
21
        ]
22
23
24 fig.update_traces(
        hovertemplate="%{yaxis.title.text}: %{y}<br>%{xaxis.title.text}: %{x}"
25
26
27
28
29 fig.show()
30
```

با استفاده از این کد میتوانیم اسکتر پلات های جداگانه از هر ستون با ستون تارگت را مشاهده کنیم و یک دید و شمای کلی از نحوه ارتباط هر ستون با ستون تارگت به ما ارایه مدهد.

این پلات به ما همبستگی بین فیچر هارا نمایش میدهد که هرچه به عدد 1 نزدیکتر باشد رنگ آن قرمز تر است و نشان دهنده این است که آن ستون ها با هم همبستگی زیادی دارند و هرچه همبستگی کم باشد به سمت صفر میرود و رنگ آن آبی تر میشود و نشان میدهد همبستگی آن ستون ها با یکدیگر کمتر است. عموما در الگوریتم های رگرشن و پیوسته استفاده میشود و در این پروژه که تارگت ما کلسفیکیشن میباشد کمک خاصی نمیکند و فقط یک دید کلی از میزان همبستگی فیچر ها میتوانیم داشته باشیم.

یک دیتافریم دوم با استفاده از کپی گرفتن از دیتافریم اولیه ایجاد میکنیم که تغییرات ما روی دیتافریم اصلی ایجاد نشود و اگر جایی لازم شد بتوانیم برگردیم و اصلاح کنیم.

در خط بعدی با استفاده از دستور یونیک در ستون کلاس مقدار های یونیک ستون تارگت را مشاهده میکنیم که هفت مورد خاص میباشد.

تبدیل کلاس های تارگت به اعداد قابل درک برای سیستم:

```
1 mapping={'SEKER' : 1 , 'BARBUNYA' : 2 , 'BOMBAY' : 3 , 'CALI' : 4 , 'HOROZ' : 5 , 'SIRA' : 6 , 'DERMASON' : 7 }
1 df2["Class"] = df2["Class"].map(mapping)
```

یک دیکشنری ایجاد میکنیم و به هر گونه خاص در ستون تارگت یک عدد اختصاص میدهیم. سپس با استفاده از دستور مپ ستون تارگت را که مقدار های آبجکتیو داشتند به مقادیر عددی قابل درک برای سیستم تبدیل میکنیم.

1 df2 = df2.astype(float)

1 df2.dtypes

Area float64 Perimeter float64 float64 MajorAxisLength MinorAxisLength float64 AspectRation float64 Eccentricity float64 ConvexArea float64 EquivDiameter float64 float64 Extent Solidity float64 float64 roundness float64 Compactness float64 ShapeFactor1 float64 ShapeFactor2 ShapeFactor3 float64 ShapeFactor4 float64 Class float64 dtype: object

در این مرحله با استفاده از دستور فوق همه ستون هارا به فرمت فلوت تغییر میدهیم که ستون تارگت هم مشاهده میشود که به فرمت فلوت تغییر کرده است و حال میتوانیم مدلسازی را انجام دهیم.

مقياس بندى و اسكيل كردن ديتافريم (بجز ستون تاركت) براى دقت بالاتر:

```
1 scaler = preprocessing.MinMaxScaler(feature_range = (0 , 1))
 1 columns_norm = df2.columns[:-1]
 1 target = df2.columns[-1]
 1 norm1 = scaler.fit_transform(df2[columns_norm])
 1 df2_norm = pd.DataFrame(norm1 , columns = columns_norm)
   df2_norm[target] = df2[target]
 3 df2 norm
          Area Perimeter MajorAxisLength MinorAxisLength AspectRation Eccentricity ConvexArea EquivDiameter
                                                                                                                Extent
                                                                                                                        Solidity roundness Compac
   0 0.034053
                0.058574
                                 0.044262
                                                                          0.477797
                                                                                      0.033107
                                                                                                     0.070804 0.671024 0.922824
                                                                                                                                  0.934823
                                                                                                                                                0.7
                                                 0.152142
                                                              0.122612
    1 0.035500
                0.077557
                                 0.030479
                                                 0.178337
                                                              0.051577
                                                                          0.278472
                                                                                      0.034991
                                                                                                     0.073577 0.735504 0.871514
                                                                                                                                  0.793138
                                                                                                                                                0.9
   2 0.038259
                0.068035
                                 0.052633
                                                 0.158190
                                                              0.131521
                                                                          0.496448
                                                                                      0.037126
                                                                                                     0.078816 0.716671 0.932141
                                                                                                                                  0.914511
                                                                                                                                               0.7
    3 0.040940
                0.082942
                                 0.048548
                                                 0.177691
                                                              0.091623
                                                                          0.403864
                                                                                      0.041389
                                                                                                     0.083854 0.731365 0.761614
                                                                                                                                  0.826871
                                                                                                                                               8.0
   4 0.041504
                0.065313
                                 0.032862
                                                 0.200679
                                                              0.025565
                                                                          0.165680
                                                                                      0.040123
                                                                                                     0.084906 0.700538 0.949832
                                                                                                                                  0.988408
                                                                                                                                               0.9
13606 0.092559
                0.160862
                                 0.189318
                                                 0.187843
                                                              0.375584
                                                                          0.788553
                                                                                      0.089967
                                                                                                     0.172180 0.512286 0.942381
                                                                                                                                  0.852151
                                                                                                                                               0.4
13607 0.092576
                0.159358
                                 0.176450
                                                 0.201964
                                                              0.321303
                                                                          0.746241
                                                                                      0.089910
                                                                                                     0.172207 0.786890 0.947954
                                                                                                                                  0.862952
                                                                                                                                                0.5
13608 0.092739 0.160605
                                0.176384
                                                 0.203370
                                                              0.318558
                                                                          0.743877
                                                                                      0.090219
                                                                                                     0.172463 0.561689 0.936648
                                                                                                                                  0.855785
                                                                                                                                               0.5
```

در این مرحله ابتدا لازم است برای بالا بردن دقت مدل ایجاد شده ابتدا مقادیر دیتافریم را مقیاس بندی کنیم که فواصل بین فیچر ها کمتر شود و کار برای سیستم راحت تر شود.

با استفاده از دستورات بالا همه ستون هارا بجز ستون تارگت که مقادیر مشخص آن را خودمان تایین کردیم به شکل مقیاس بندی شده بین عدد صفر و یک در میاوریم.

ایجاد مدل اول با (random forest):

```
1 ### random forest model ###
```

جدا سازی دیتافریم فیچر ها از تارگت:

```
1 x = pd.DataFrame(df2_norm.drop(columns = [df2_norm.columns[-1]]))
1 y = df2_norm['Class'].values.reshape(-1 , 1)
```

ایجاد دیتای تست و دیتای ترین:

```
x_train , x_test , y_train , y_test = train_test_split ( x , y , test_size = 0.3 , random_state = 0)
```

مدلسازی رندوم فارست با دیتای ترین:

```
clf = RandomForestClassifier(max_depth = 10 , n_estimators = 200)
clf.fit(x_train , y_train)
y_pred = clf.predict(x_test)
```

حال همه چیز برای مدلسازی آماده است . ابتدا با مدل رندوم فارست شروع میکنیم.

در مرحله اول فیچر های همه ستون هارا از فیچر های ستون تارگت جدا میکنیم و در ایکس و ایگرگ جدا قرار میدهیم.

سپس آن هارا به دو بخش ترین و تست تقسیم میکنیم که مدل ما با استفاده از دیتای ترین آموزش میبیند و با استفاده از دیتای تست آن را ارزیابی میکنیم.

مدل خود را ایجاد میکنیم و سپس با دیتای ایکس تست پردیکت یا پیش بینی را انجام میدهیم.

اکیوریسی اسکور بر روی تارگت تست و تارگت پیش بینی شده:

```
print("accuracy :" , metrics.accuracy_score(y_test , y_pred))
```

accuracy: 0.9240940254652301

ریپورت گرفتن اسکور های مختلف بر روی کل دیتای تارگت تست و تارگت پیش بینی شده:

1 print(cla	assification_	_report(y	, clf.pred	ict(x)))
	precision	recall	f1-score	support
1.0	0.98	0.97	0.97	2027
2.0	0.98	0.93	0.95	1322
3.0	1.00	1.00	1.00	522
4.0	0.96	0.97	0.96	1630
5.0	0.98	0.97	0.97	1928
6.0	0.91	0.91	0.91	2636
7.0	0.94	0.96	0.95	3546
accuracy			0.95	13611
macro avg	0.96	0.96	0.96	13611
weighted avg	0.95	0.95	0.95	13611

بر روی ایگرگ تست و ایگرگ پردیکت شده اکیوریسی میگیریم که یک معیار ارزیابی کلی به ما نشان میدهد . اسکور بالای 90 دریافت کرده که مقدار خوبی است.

سپس بر روی کل دیتای ایگرگ و ایگرگ پردیکت بر روی کل ایکس یک کلسفیکیشن ریپورت میگیریم که چندین معیار ارزیابی مهم را به ما نشان میدهد.

همه اسکور ها بالای 90 هستند که نشان میدهد مدل به صورت تقریبا کاملی پیش بینی کرده است در ستون سوم مقادیر ارزیابی عدد یک را نشان میدهند که به ما میگوید مدل در ستون سوم دچار اورفیت شده است.

ایجاد کانفیوزن ماتریکس برای نمایش مقدار های پیش بینی شده ی درست و نادرست:

```
1 confusion_matrix(y , clf.predict(x))
array([[1965,
                                     30,
      [ 6, 1231,
                    0.
                          52,
                                 3.
                                            0],
                                            0],
                          0,
               1, 521,
                                0,
                                      0,
               23,
                     0, 1582,
                                15,
                                      8,
                                            0],
               2,
         0,
                     0, 18, 1862, 33,
                                           13],
                3,
        12,
                           3, 14, 2411, 193],
                                1, 122, 3404]], dtype=int64)
                           0,
 1 cm = confusion_matrix(y , clf.predict(x))
 2 fig , ax = plt.subplots(figsize = ( 9 , 9))
 3 ax.imshow(cm)
 4 ax.grid(False)
 5 ax.xaxis.set(ticks = ( 1 , 2 , 3 , 4 , 5 , 6 , 7), ticklabels = ( "predicted 1s" , "predicted 2s" , "predicted 3s" ,
6 ax.xaxis.set_tick_params(labelsize = 6)
7 ax.yaxis.set(ticks = (1,2,3,4,5,6,7), ticklabels = ( "actual 1s", "actual 2s", "actual 3s", "actual 4
8 | ax.yaxis.set_tick_params(labelsize = 9)
10 for i in range(7):
      for j in range(7):
11
           ax.text(j , i , cm[i , j], ha = "center" , va = "center" , color = "red")
13 plt.show()
```

با استفاده از دستور کانفیوژن ماتریکس میتوانیم ببینیم که مقدار های پیش بینی شده چه میزان با مقدار اصلی مطابقت دارند و چه اندازه از مقادیر پیش بینی شده غلط پیش بینی شده اند.

با استفاده از دستور پایینتر هم میتوانیم به صورت گرافیکی مشاهده کنیم که چگونه دیتاها پردیکت شده اند

¶ ایجاد مدل دوم با (SVM):

```
1 ### SVM Model ###

1 x = pd.DataFrame(df2_norm.drop(columns = [df2_norm.columns[-1]]))

1 y = df2_norm['Class'].values.reshape(-1 , 1)

1 x_train , x_test , y_train , y_test = train_test_split ( x , y , test_size = 0.3 , random_state = 0)

1 clf2 = SVC(kernel = "poly" , degree = 4 , gamma = "scale" , coef0 = 2)
2 clf2.fit(x_train , y_train.ravel())
3 y_pred = clf2.predict(x_test)
```

مدل دوم را با همان روال قبلي اين بار با استفاده از الگوريتم اس وي ام ايجاد ميكنيم.

```
1 print("accuracy :" , metrics.accuracy_score(y_test , y_pred))
accuracy: 0.9297257590597453
 print(classification_report(y , clf2.predict(x)))
                           recall f1-score
              precision
                                               support
                   0.96
         1.0
                             0.95
                                       0.96
                                                  2027
                   0.95
                             0.93
                                       0.94
         2.0
                                                  1322
         3.0
                   1.00
                             1.00
                                       1.00
                                                  522
                   0.94
                             0.95
         4.0
                                       0.95
                                                  1630
         5.0
                   0.97
                             0.96
                                       0.96
                                                  1928
         6.0
                   0.88
                             0.88
                                       0.88
                                                  2636
         7.0
                   0.92
                             0.93
                                       0.92
                                                  3546
```

0.94

0.93

0.93

0.94

0.93

13611

13611

13611

بر روی ایگرگ تست و ایگرگ پردیکت شده اکیوریسی میگیریم که یک معیار ارزیابی کلی به ما نشان میدهد . اسکور بالای 90 دریافت کرده که مقدار خوبی است.

0.95

0.93

accuracy

macro avg

weighted avg

سپس بر روی کل دیتای ایگرگ و ایگرگ پردیکت بر روی کل ایکس یک کلسفیکیشن ریپورت میگیریم که چندین معیار ارزیابی مهم را به ما نشان میدهد.

همه اسکور ها بالای 90 هستند که نشان میدهد مدل به صورت تقریبا کاملی پیش بینی کرده است در ستون سوم مقادیر ارزیابی عدد یک را نشان میدهند که به ما میگوید مدل در ستون سوم دچار اورفیت شدگی شده است.

```
1 confusion_matrix(y , clf2.predict(x))
                                     0,
                               0,
                                          50,
                                                32],
array([[1932,
                  13,
            8, 1224,
                         0,
                              64,
                                     5,
                                          21,
                                                 0],
                       521,
            0,
                   0,
                              1,
                                     0,
                                          0,
                                                 0],
                         0, 1553,
                  40,
                                    22,
                                          10,
                                                 0],
                              24, 1843,
                   5,
                         0,
                                          37,
                                                19],
            0,
                         0,
                                              252],
            26,
                               4,
                                    30, 2317,
                               0,
           46,
                                    3, 186, 3310]], dtype=int64)
```

با استفاده از دستور کانفیوژن ماتریکس میتوانیم ببینیم که مقدار های پیش بینی شده چه میزان با مقدار اصلی مطابقت دارند و چه اندازه از مقادیر پیش بینی شده غلط پیش بینی شده اند.

ایجاد مدل سوم با (Naive Bayes):

```
1 ### Naive Bayes Gaussian model ###

1 x = pd.DataFrame(df2_norm.drop(columns = [df2_norm.columns[-1]]))
2 y = df2_norm['Class'].values.reshape(-1 , 1)

1 x_train , x_test , y_train , y_test = train_test_split ( x , y , test_size = 0.3 , random_state = 0)

1 clf3 = GaussianNB()
2 clf3.fit(x_train , y_train.ravel())
3 y_pred = clf.predict(x_test)
```

مدل سوم را با همان روال قبلی این بار با استفاده از الگوریتم نایو بیز ایجاد میکنیم. نایو بیز خودش چندین الگوریتم دارد که ما از نایو بیز گاوسی استفاده کرده ایم.

```
1 print("accuracy :" , metrics.accuracy_score(y_test , y_pred))
accuracy: 0.9240940254652301
 1 print(classification_report(y , clf3.predict(x)))
              precision
                           recall f1-score
                                               support
                   0.93
                             0.94
                                        0.94
                                                  2027
         1.0
         2.0
                   0.87
                             0.81
                                        0.84
                                                  1322
         3.0
                   0.99
                             1.00
                                        1.00
                                                   522
         4.0
                   0.87
                             0.90
                                        0.89
                                                  1630
         5.0
                   0.95
                             0.95
                                        0.95
                                                  1928
         6.0
                   0.82
                             0.87
                                        0.84
                                                  2636
                   0.93
         7.0
                             0.88
                                        0.90
                                                  3546
    accuracy
                                        0.90
                                                 13611
                                                 13611
   macro avg
                   0.91
                             0.91
                                        0.91
weighted avg
                   0.90
                             0.90
                                        0.90
                                                 13611
```

بر روی ایگرگ تست و ایگرگ پردیکت شده اکیوریسی میگیریم که یک معیار ارزیابی کلی به ما نشان میدهد . اسکور بالای 90 دریافت کرده که مقدار خوبی است.

سپس بر روی کل دیتای ایگرگ و ایگرگ پردیکت بر روی کل ایکس یک کلسفیکیشن ریپورت میگیریم که چندین معیار ارزیابی مهم را به ما نشان میدهد.

همه اسکور ها بالای 90 هستند که نشان میدهد مدل به صورت تقریبا کاملی پیش بینی کرده است در ستون سوم مقادیر ارزیابی عدد یک را نشان میدهند که به ما میگوید مدل در ستون سوم دچار اور فیت شده است.

ایجاد مدل چهارم با (KNN):

```
1 ### KNN Model ###

1 x_train , x_test , y_train , y_test = train_test_split ( x , y , test_size = 0.3 , random_state = 0)

1 k = 5
2 clf4 = KNeighborsClassifier(k)
3 clf4.fit(x_train , y_train.ravel())
```

KNeighborsClassifier()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
1 y_pred = clf4.predict(np.array(x_test))
```

مدل چهارم را با همان روال قبلی این بار با استفاده از الگوریتم کی ان ان ایجاد میکنیم. به صورت پیش فرض مقدار کا را 5 قرار میدهیم.

```
print("accuracy :" , metrics.accuracy_score(y_test , y_pred))
accuracy : 0.9231145935357493
```

بر روی ایگرگ تست و ایگرگ پردیکت شده اکیوریسی میگیریم که یک معیار ارزیابی کلی به ما نشان میدهد . اسکور بالای 90 دریافت کرده که مقدار خوبی است.

اکنون باید مقدار مناسب کا را بیابیم که بهترین دقت را به ما بدهد.

ایجاد حلقه برای یافتن مقدار مناسبk:

```
1  k = 20
2  Acc = np.zeros((k))
3  for i in range (1 , k+1):
4     clf4 = KNeighborsClassifier(n_neighbors = i)
5     clf4.fit(x_train , y_train.ravel())
6     y_pred = clf4.predict(np.array(x_test))
7     Acc[ i - 1 ] = metrics.accuracy_score(y_test , y_pred)
8
9  Acc
```

با استفاده از کد بالا و ایجاد حلقه مدل خود را با مقادیر کا از 1 تا 20 ایجاد میکنیم و هر بار اکیوریسی میگیریم تا در نهایت ببینیم کدام مقدار برای کا بیشترین دقت را به ما میدهد.

```
array([0.90817826, 0.89642507, 0.91895201, 0.91821743, 0.92311459, 0.92213516, 0.92580803, 0.92311459, 0.92531832, 0.92507346, 0.92556317, 0.92654261, 0.92678746, 0.92629775, 0.92580803, 0.92580803, 0.92580803, 0.92580803, 0.92507346, 0.92556317])

1 Acc.max()

0.9267874632713027

1 Acc.min()

0.8964250734573947
```

به این صورت به ما نمایش داده میشود که مقدار ماکس و مین آن را هم میتوانیم ببینیم.

استفاده از گرید سرچ برای یافتن عدد مناسب:

Fitting 5 folds for each of 19 candidates, totalling 95 fits

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with noviewer.org.

```
1 grid_kn.best_params_
{'n_neighbors': 1}
```

گرید سرچ نیز به ما امکان یافتن پارامتر های بهتر را میدهد که میتوانیم از آن برای یافتن مقدار کا مناسب استفاده کنیم.

مشاهده میشود که پیشنهاد گرید سرچ برای مقدار کا عدد یک میباشد.

```
1 x_train , x_test , y_train , y_test = train_test_split ( x , y , test_size = 0.3 , random_state = 0)

1 k = 1
2 clf5 = KNeighborsClassifier(k)
3 clf5.fit(x_train , y_train.ravel())
4 y_pred = clf5.predict(np.array(x_test))
```

مدل خود را مجدد با کا برابر بک ابجاد میکنیم

1 print(classification_report(y , clf5.predict(np.array(x))))

d:\Anacnda\EXE\Lib\site-packages\sklearn\base.py:464: UserWarning:

X does not have valid feature names, but KNeighborsClassifier was fitted

	precision	recall	f1-score	support
1.0	0.98	0.98	0.98	2027
2.0	0.98	0.96	0.97	1322
3.0	1.00	1.00	1.00	522
4.0	0.97	0.98	0.97	1630
5.0	0.98	0.98	0.98	1928
6.0	0.95	0.95	0.95	2636
7.0	0.97	0.97	0.97	3546
accuracy			0.97	13611
macro avg	0.98	0.98	0.98	13611
weighted avg	0.97	0.97	0.97	13611

بر روی کل دیتای ایگرگ و ایگرگ پردیکت بر روی کل ایکس یک کلسفیکیشن ریپورت میگیریم که چندین معیار ارزیابی مهم را به ما نشان میدهد.

همه اسکور ها بالای 90 هستند که نشان میدهد مدل به صورت تقریبا کاملی پیش بینی کرده است در ستون سوم مقادیر ارزیابی عدد یک را نشان میدهند که به ما میگوید مدل در ستون سوم دچار اور فیت شده است.

در نهایت تمامی اسکور های مدل های ساخته شده را مشاهده میکنیم که باید بهترین مدل را بین آن ها انتخاب کنیم.

random forest model scores: ¶

1 print(cla	assification_	report(y	, clf.pred	ict(x)))
	precision	recall	f1-score	support
1.0	0.98	0.97	0.97	2027
2.0	0.98	0.93	0.95	1322
3.0	1.00	1.00	1.00	522
4.0	0.95	0.97	0.96	1630
5.0	0.98	0.96	0.97	1928
6.0	0.91	0.92	0.91	2636
7.0	0.94	0.96	0.95	3546
accuracy			0.95	13611
macro avg	0.96	0.96	0.96	13611
weighted avg	0.95	0.95	0.95	13611

SVM model scores:

1 print(classification	_report(y	, clf2.pre	dict(x)))
	precision	recall	f1-score	support
1	.0 0.96	0.95	0.96	2027
2	.0 0.95	0.93	0.94	1322
3	.0 1.00	1.00	1.00	522
4	.0 0.94	0.95	0.95	1630
5	.0 0.97	0.96	0.96	1928
6	.0 0.88	0.88	0.88	2636
7	.0 0.92	0.93	0.92	3546
accura	cy		0.93	13611
macro a	vg 0.95	0.94	0.94	13611
ighted a	vg 0.93	0.93	0.93	13611

naive bayes model scores:

1 print(c	lassification_	_report(y	, clf3.pre	dict(x)))
	precision	recall	f1-score	support
1.0	0.93	0.94	0.94	2027
2.0	0.87	0.81	0.84	1322
3.0	0.99	1.00	1.00	522
4.0	0.87	0.90	0.89	1630
5.0	0.95	0.95	0.95	1928
6.0	0.82	0.87	0.84	2636
7.0	0.93	0.88	0.90	3546
accuracy			0.90	13611
macro avg	0.91	0.91	0.91	13611
eighted avg	0.90	0.90	0.90	13611

KNN model scores (K = 5, K = 14):

```
print(classification_report(y , clf4.predict(np.array(x))))
d:\Anacnda\EXE\Lib\site-packages\sklearn\base.py:464: UserWarning:
X does not have valid feature names, but KNeighborsClassifier was fitted with
```

	precision	recall	f1-score	support
1.0	0.94	0.95	0.94	2027
2.0	0.96	0.89	0.92	1322
3.0	1.00	1.00	1.00	522
4.0	0.92	0.95	0.94	1630
5.0	0.97	0.95	0.96	1928
6.0	0.87	0.89	0.88	2636
7.0	0.92	0.92	0.92	3546
accuracy			0.93	13611
macro avg	0.94	0.94	0.94	13611
weighted avg	0.93	0.93	0.93	13611

```
print(classification_report(y , clf5.predict(np.array(x))))
```

d:\Anacnda\EXE\Lib\site-packages\sklearn\base.py:464: UserWarning:

X does not have valid feature names, but KNeighborsClassifier was fitted with

	precision	recall	f1-score	support
1.0	0.98	0.98	0.98	2027
2.0	0.98	0.96	0.97	1322
3.0	1.00	1.00	1.00	522
4.0	0.97	0.98	0.97	1630
5.0	0.98	0.98	0.98	1928
6.0	0.95	0.95	0.95	2636
7.0	0.97	0.97	0.97	3546

مدل رندوم فارست در بین سایر مدل ها اسکور بیشتر و عملکرد بهتری را داشته است.