Statistical Machine Learning 2018

Exercises, week 1

7 September 2018

TUTORIAL

Exercise 1

Calculate the gradient ∇f of the following functions $f(\mathbf{x})$. In the left column, $\mathbf{x} = (x_1, x_2, x_3)$. In the right column, $\mathbf{x} = (x_1, \dots, x_n)$.

a)
$$f(x_1, x_2, x_3) = a_1x_1 + a_2x_2 + a_3x_3$$

e)
$$f(\mathbf{x}) = \sum_{i=1}^{n} a_i x_i$$

b)
$$f(x_1, x_2, x_3) = x_2$$

f)
$$f(\mathbf{x}) = x_i$$

c)
$$f(x_1, x_2, x_3) = x_1 x_2 x_3$$

g)
$$f(\mathbf{x}) = \prod_{i=1}^n x_i$$

d)
$$f(x_1, x_2, x_3) = x_1^{k_1} x_2^{k_2} x_3^{k_3}$$

h)
$$f(\mathbf{x}) = \prod_{i=1}^n x_i^{k_i}$$

Note: often it suffices to write down the partial derivative $\partial f/\partial x_i$ (Can you tell why?).

Exercise 2

The function

$$f(x,y) = 2x^2 - xy + y^2 - x + y + 5.5$$
(1)

has a unique minimum (x^*, y^*) . Calculate this point.

Exercise 3

Calculate the minimum x^* of the following two functions.

1.
$$f(x) = \sum_{i=1}^{n} (x - a_i)^2$$

2.
$$f(x) = \sum_{i=1}^{n} \alpha_i (x - a_i)^2$$
 (with $\alpha_i > 0$)

Exercise 4

(see Bishop, appendix C, eq.C.1) A matrix \mathbf{M} has elements M_{ij} (with i the row and j the column index). The transposed matrix \mathbf{M}^{T} has elements $(\mathbf{M}^{\mathrm{T}})_{ij} = M_{ji}$. By writing out the matrix product using index notation show that

$$(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}},\tag{2}$$

where **A** is a $M \times N$ matrix and **B** is a $N \times P$ matrix.

Hint:
$$\mathbf{C} = \mathbf{AB}$$
 corresponds to $C_{ij} = \sum_{k=1}^{N} A_{ik} B_{kj}$

Exercise 5

(see Bishop, Exercise 1.1) Consider the M-th order polynomial

$$y(x; \mathbf{w}) = w_0 + w_1 x + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$
 (3)

and the error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n; \mathbf{w}) - t_n\}^2$$
 (4)

with x_n, t_n the input/output pairs from the data set. Define the error per data point as

$$E_n(\mathbf{w}) = \frac{1}{2} \{ y(x_n; \mathbf{w}) - t_n \}^2$$

$$\tag{5}$$

(so $E = \sum_{n=1}^{N} E_n$). Note that x = 1-dimensional, and that in this exercise the super-indices i, j represent 'power'.

1. Calculate the gradient of the error per data point E_n :

$$\nabla E_n \quad (= \left(\frac{\partial E_n}{\partial w_0}, \dots, \frac{\partial E_n}{\partial w_M}\right)^T). \tag{6}$$

- 2. Calculate the gradient of the total error E.
- 3. Show that the partial derivatives can be written as

$$\frac{\partial E}{\partial w_i} = \sum_{j=0}^{M} A_{ij} w_j - T_i \tag{7}$$

with A_{ij} and T_i defined as

$$A_{ij} = \sum_{n=1}^{N} x_n^{i+j} \qquad T_i = \sum_{n=1}^{N} t_n x_n^i.$$
 (8)

4. When E is minimal it holds that $\nabla E = 0$ (i.e., all partial derivatives are zero). Using this, show that in the minimum of E the parameters **w** satisfy

$$\sum_{i=0}^{M} A_{ij} w_j = T_i. \tag{9}$$

5. Verify that for a single data point $\{x_1, t_1\}$ the optimal solution for a first order polynomial through the origin takes the form

$$w_1 = \frac{1}{A_{11}} T_1 \tag{10}$$

6. Show that for an arbitrary data set $\{x_n, t_n\}$ the optimal solution for an M-th order polynomial takes the form

$$\mathbf{w} = \mathbf{A}^{-1}\mathbf{T} \tag{11}$$

7. One technique that is often used to control the over-fitting phenomenon is *regularization*. Consider adding a penalty term to the squared error loss that takes the form of the sum-of-squares of all coefficients. The error function becomes:

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{ y(x_n; \mathbf{w}) - t_n \}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2,$$
(12)

where $||\mathbf{w}||^2 = \mathbf{w}^{\mathrm{T}}\mathbf{w} = \sum_{j=0}^{M} w_j^2$. Write down the set of coupled linear equations for the modified error function, analogous to the case without regularization:

$$\sum_{j=0}^{M} w_j \tilde{A}_{ij} = \tilde{T}_i. \tag{13}$$

Compare \tilde{A}_{ij} and \tilde{T}_i to A_{ij} and T_i .

Exercise 6

In this exercise, we will have a closer look at the gradient descent algorithm for function minimization. When the function to be minimized is $E(\mathbf{x})$, the gradient descent iteration is

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \eta \nabla E(\mathbf{x}_n) \tag{14}$$

where $\eta > 0$ is the so-called learning-rate.

- 1. Consider the function $E(x) = \frac{\lambda}{2}(x-a)^2$ with parameters $\lambda > 0$, and a arbitrary.
 - (a) Write down the gradient descent iteration rule. Verify that the minimum of E is a and that a is a fixed point of the gradient descent iteration rule.
 - (b) Show that the algorithm converges in one step if $\eta = 1/\lambda$.
 - (c) Define $d_n = x_n a$. Show that if $0 < \eta < 1/\lambda$, subsequent d_n 's have the same signs. Also show that if $\eta > 1/\lambda$, subsequent d_n 's have opposite signs.
 - (d) The distance to the fixed point is $|d_n|$. Show that $|d_{n+1}| = |(1 \eta \lambda)||d_n|$. Show that this implies that the algorithm converges to the fixed point if $0 < \eta < 2/\lambda$, and that it diverges if $\eta > 2/\lambda$.
- 2. Consider now the function $E(x,y) = \frac{\lambda_1}{2}(x-a_1)^2 + \frac{\lambda_2}{2}(y-a_2)^2$ with parameters $0 < \lambda_1 < \lambda_2$, and a_i arbitrary.
 - (a) Write down the gradient descent iteration rule. Verify that the minimum of E is a fixed point.
 - (b) We want to find the learning rate η that leads to the fasted convergence in both x and y direction. This optimal learning rate is the one for which both $|1 \eta \lambda_1|$ and $|1 \eta \lambda_2|$ are as small as possible. For the optimal learning rate, the equation $|1 \eta \lambda_1| = |1 \eta \lambda_2|$ must therefore hold. Since $\lambda_1 < \lambda_2$, this can only hold if $\eta \lambda_1 < 1$ and $\eta \lambda_2 > 1$.
 - Show that solving the equation leads to $\eta^* = 2/(\lambda_2 + \lambda_1)$ (which is the optimal learning rate). What happens if η is smaller than the optimal value? What happens if it is larger?
 - (c) What is the value of $|1 \eta^* \lambda_i|$ in both directions? What does this say about the applicability of gradient descent to functions with steep hills and flat valleys (i.e., if $\lambda_2 \gg \lambda_1$)?

¹A fixed point x^* of an iteration $x_{n+1} = F(x_n)$ satisfies $x^* = F(x^*)$.

BONUS PRACTICE

Exercise 7

In analyzing problems in which a sigma-summation symbol is involved, it is sometimes helpful to write out the sum. By writing out the sum, I mean e.g.,

$$\sum_{i=1}^{5} x_i = x_1 + x_2 + x_3 + x_4 + x_5$$

or more general

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \ldots + x_n .$$

• Show, by explicitly writing out the sums, rearranging terms, and using brackets where needed, that the following four equations hold:

$$\sum_{i=1}^{3} (ax_i) = a\left(\sum_{i=1}^{3} x_i\right) \tag{15}$$

$$\sum_{i=1}^{3} \left(\sum_{j=1}^{2} a_{ij} \right) = \sum_{j=1}^{2} \left(\sum_{j=1}^{3} a_{ij} \right)$$
 (16)

$$\sum_{i=1}^{3} \left(\sum_{j=1}^{2} x_i y_j \right) = \left(\sum_{j=1}^{3} x_i \right) \left(\sum_{j=1}^{2} y_j \right) \tag{17}$$

$$\sum_{i=1}^{3} a = 3a \tag{18}$$

Exercise 8

Calculate the gradient ∇f of

$$f(\vec{h}) = \sum_{i=1}^{n} p_i h_i - \ln\left(\sum_{i=1}^{n} \exp(h_i)\right)$$

$$\tag{19}$$

Exercise 9

Compute the minimum x^* of

$$f(x) = a\ln(x) + \frac{b}{2x^2}$$
 (20)

with a > 0, b > 0 and x > 0. Express your answer in terms of a and b. (Note: $\ln(x)' = 1/x$).

Exercise 10

(see Bishop, eq.C.8 and C.9) The trace $\mathsf{Tr}(\mathbf{A})$ of a square matrix \mathbf{A} is defined as the sum of the elements on the main diagonal:

$$\operatorname{Tr}(\mathbf{A}) = \sum_{i=1}^{N} A_{ii} \tag{21}$$

1. Prove by writing out in terms of indices that

$$\mathsf{Tr}\left(\mathbf{AB}\right) = \mathsf{Tr}\left(\mathbf{BA}\right) \tag{22}$$

2. Show that from this symmetry it follows that the trace is cyclic:

$$Tr(ABC) = Tr(CAB) = Tr(BCA)$$
 (23)

Exercise 11

(see Bishop, eq.C.20) The derivative of a matrix \mathbf{A} with elements A_{ij} depending on x is the matrix $\partial \mathbf{A}/\partial x$ with elements $\partial A_{ij}/\partial x$. Show, by writing out in elements, that

$$\frac{\partial}{\partial x}(\mathbf{A}\mathbf{B}) = \frac{\partial \mathbf{A}}{\partial x}\mathbf{B} + \mathbf{A}\frac{\partial \mathbf{B}}{\partial x}$$
 (24)