Computer Arithmetics

Debiprasanna Sahoo Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Roorkee

Content

Book

Computer Organization and Design: The Hardware/Software Interface-RISC-V Edition, 5th Edition, 2017

Chapter-3

David A. Patterson and John L. Henessey

Reference Books

Computer Organization and Design: The Hardware/Software Interface-MIPS Edition, 5th Edition, 2017

Chapter-3

David A. Patterson and John L. Henessey

Manual

The RISC-V Instruction Set Manual

Volume I: User-Level ISA

Document Version 2.2

Andrew Waterman and Krste Asanovi

Primitive Data Types Supported by Programming Languages

Data Types	Example	16 bit System (in Bytes)	32 bit System (in Bytes)	64 bit System (in Bytes)
Character	char c;	1	1	1
Unsigned Character	unsigned char uc;	1	1	1
Integer	int i;	2	4	4
Short Integer	short int s;	2	2	2
Long Integer	long int I;	4	4	8
Unsigned Integer	unsigned int ui;	2	4	4
Unsigned Short	unsigned short us;	2	2	2
Unsigned Long	unsigned long ul;	4	4	8
Long Long	long long II;	8	8	8
Float	float f;	4	4	4
Double	double d;	8	8	8
Long Double	long double ld;	16	16	16

Characters

Range of Signed Characters is -128 to 127

Range of Positive Number Supported

S = 0, 7 bits 00000000 to 1111111 1's Complement 00000000 to 1111111 2's Complement 00000000 to 1111111 Integer 0 to 127

Range of Negative Number Supported

S = 1, 7 bits 00000000 to 1111111 1's Complement 1111111 to 0000000 2's Complement 10000000 to 0000001 Integer -128 to -1

Unsigned Characters

8 Bits

Characters are stored as ASCII numbers Range of Signed Characters is -128 to 127

Range of Positive Number Supported

 8 bits
 00000000 to 1111111

 1's Complement
 00000000 to 1111111

 2's Complement
 00000000 to 1111111

 Integer
 0 to
 255

Short Integers

Range of Positive Number Supported

15 bits 000,0000,0000,0000 to 111,1111,1111 1's Complement 000,0000,0000,0000 to 111,1111,1111,1111 2's Complement 000,0000,0000,0000 to 111,1111,1111,1111 Integer 0 to 32767

Range of Negative Number Supported

15 bits 000,0000,0000,0000 to 111,1111,1111 1's Complement 111,1111,1111 to 000,0000,0000,0000 2's Complement 1000,0000,0000,0000 to 000,0000,0000,0001 Integer -32768 to -1

Range of Signed Short Integers is -32768 to 32767

Floating Point Numbers

Three parts: Sign bit (S), Exponent (E), Mantissa/Fraction (F). IEEE 754 Standards represents float as (-1)^S * F * 2^E

Normalized Numbers: Number represented in the following binary format of x's and y's where any x and any y can take values 0 or 1

1.xxxxxxxxxxxxxxxx * 2^{yyyyyyyy}

Architectures support both Normalised and De-normalised Numbers

Types of Floating Point Numbers

Single Precision		Double Precision			Object	
Exponent	Fraction	Range	Exponent	Fraction	Range	
0	0	0	0	0	0	0
0	Non-Zero	2 ⁻¹⁴⁹ to -2 ⁻¹⁴⁹	0	Non-Zero		+ve or -ve De-normalized Number
1-254	Anything	-1.0000023 Times * 2 ⁻¹²⁶ to 1.1111123 Times * 2 ¹²⁷	1-2046	Anything	-1.0000052 Times * 2 ⁻¹⁰²² to 1.1111152 Times * 2 ¹⁰²³	+ve or -ve Normalized Number
255	0	+ve or -ve Infinity	2047	0	+ve or -ve Infinity	+ve or -ve Infinity
255	Non-Zero	NaN	255	Non-Zero	NaN	Not a number (NaN)

Normalised Floating Point Numbers

Next 16 Bits Mantissa

Bias = 127 for Floats and 2046 for Double in the formula fixed by IEEE 754, $(-1)^S * F * 2^{E-Bias}$ Min value of E = 1 and Max value of E = 254 Min value of F = 000000...23 times and Max value of F = 11111....23 times When S=0, Max +ve number = 1.11111....23 Times * $2^{254-127}$ = 1.11111....23 Times * 2^{127} When S=0, Min +ve number = 1.000000....23 Times * 2^{1-127} = 1.000000....23 Times * 2^{1-126} When S=1, Min -ve number = -1.11111....23 Times * $2^{254-127}$ = -1.11111....23 Times * 2^{127} When S=1, Max -ve number = -1.000000....23 Times * 2^{1-127} = -1.000000....23 Times * 2^{1-126}

De-Normalised Floating Point Numbers

Next 16 Bits Mantissa

Squeeze every bit in the 4/8 Byte to increase the range further.

Bias = 127 for Floats and 2046 for Double in the formula fixed by IEEE 754, (-1)^S * F * 2^E-Bias

Value of E = 0, treat it as 1 for calculations

Min value of F = 000000...22 times...1 and Max value of F = 11111.....23 times

When S=0, Max +ve number = 0.11111....23 Times * 2¹⁻¹²⁷ = 1.11111....22 Times * 2⁻¹²⁷

When S=0, Min +ve number = 0.000000....22 Times...1 * 2^{1-127} = 2^{-149}

When S=1, Min -ve number = -0.11111....23 Times * 2^{1-127} = -1.111111....22 Times * 2^{-127}

When S=1, Max -ve number = -0.00000....22 Times..1 * 2¹⁻¹²⁷ = -2⁻¹⁴⁹