Business Analysis & Business analytics

PMP COURSE

MACHINE LEARNING COURSE

BUSINESS ANALYSIS COURSE

PRODUCT MANAGEMENT COURSE

Contact Us	About Me	Survey	Coaching	Resume	
PMP Course	Machine lea	rning course	Business	analysis course	Product management course

You are here: Home / Data Science / Evaluation Metrics for Regression models- MAE Vs MSE Vs RMSE vs RMSLE

Evaluation Metrics for Regression models-MAE Vs MSE Vs RMSE vs RMSLE

by akhilendra leave a comment

Machine learning & Data Science course

Everything you need to start your career as data scientist. Learn machine learning fundamentals, applied statistics, R programming, data visualization with ggplot2, seaborn, matplotlib and build machine learning models with R, pandas, numpy & scikit-learn using rstudio & jupyter notebook. More than 15 projects, Code files included & 14 Days full money Refund guarantee. Only \$11.70 (720 INR)

Enroll Now

Subscribe to our free newsletter.

Email address:	Name:	
		SUBSCRIBE TODAY!

If you are working on a regression-based machine learning model like linear regression, one of the most importar tasks is to select an appropriate evaluation metric.

In fact, if you are working on a machine learning projects in general or preparing to become a data scientist, it's kind of must for you to know the top evaluation metrics.

These are also called loss functions.

There are two kinds of machine learning problems – classification and regression.

And these have different kind of loss functions.

In this post, I am going to talk about regression's loss functions.

Since every project or data set is different, we must select appropriate evaluation metrics. Usually, more than 1 metrics is required to evaluate a machine learning model.

Instead of including all the loss functions or evaluation metrics for regression machine learning models, I will try to focus on top loss functions.

Evaluation Metrics or Loss functions for Regression

- Mean absolute error (MAE)
- Mean squared error (MSE)
- Root mean square error (RMSE)
- Root mean square log error (RMSLE)

Before we start with loss functions, you need to understand what we are trying to do here. In a typical regression-based machine learning model, our model will produce continuous values (predicted value).

Our primary objective is to keep these predicted values closer to actual values.

Predicted values are denoted by y hat ().

Actual values are denoted by y.

Error = y - y hat

Residual Error =
$$y - \hat{y}$$

So, whenever we are talking about error in this post, we are talking about this error. And yes, ideal condition (hypothetical one) is that this error (difference) is 0, which means our model can predict all values correctly (whic is not going to happen).

Let's start with mean absolute error.

Mean absolute error (MAE)

In simple terms, mean absolute error is the sum of absolute/positive errors of all values. So, if there are 5 values in our data set, we find out the difference between the actual value and predicted values for all 5 values and take their positive value. So even if the difference between actual and predicted value is negative, we take positive value for calculation.

So we take the positive value of all errors, add them and find out their mean.

Mean absolute error illustration;

Actual Value	Predicted Value (y	Error	Absolute	
(y)	hat)	(difference)	Error	
100	130	-30	30	
150	170	-20	20	
200	220	-20	20	
250	260	-10	10	
300	325	-25	25	
			21	Mean
Note- You tak	e the absolute value	of error which is	the positive	
value, therefo	re -30 becomes 30			

MAE is the sum of **absolute** differences between actual and predicted values. It doesn't consider the direction, that is, positive or negative.

Got questions?

When we consider directions also, that is called Mean Bias Error (MBE), which is a sum or errors (unrerence).

Never take your phone out.

On-board **Google maps navigation. Ather 450X.** Quick. Electric. Intelligent.

Book Now

ATHER

(i)

Formula for mean absolute Error or MAE is represented by;

$$\mathsf{MAE} = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_1|}{n}$$

Mean Square Error (MSE)

Mean square error is always positive and a value closer to 0 or a lower value is better. Let's see how this this is calculated;

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y})^2$$

Let's use the last illustration to understand it better.

Actual Value (y)	Predicted Value (y hat)	Error (difference)	Squared Error	
100	130	-30	900	
150	170	-20	400	
200	220	-20	400	
250	260	-10	100	
300	325	-25	625	
			485	Mean

So if we were to run a model with different parameters/independent variables, model with lower MSE will be deemed better.

We will look at its comparison with other loss functions in a while in this post. First quic

Root mean square error (RMSE)

Square root of MSE yields root mean square error (RMSE). So it's formula is quite similar to what you have seen with mean square error, it's just that we need to add a square root sign to it;

RMSE =
$$\sqrt{\frac{1}{n}} \sum_{i=1}^{n} (y_i - \hat{y})^2$$

It is the standard deviation of error (residual error).

it indicates the spread of the residual errors. It is always positive, and a lower value indicates better performance Ideal value would be 0 but it is never achieved.

Actual	Predicted	Error	Squared	
Value	Value (y	(difference)	Error	
(y)	hat)			

2	11	\cap	10	02	1
ാ	/Ι	U	12	υz	- 1

100	130	-30	900	
150	170	-20	400	
200	220	-20	400	
250	260	-10	100	
300	325	-25	625	
			485	Mean
				Square root of mean

Effect of each error on RMSE is directly proportional to the squared error therefore, RMSE is sensitive to outliers and can exaggerate results if there are outliers in the data set.

Before moving to their comparison, I just want to mention one more evaluation metric and that is Root mean squared log error (RMSLE)

Root mean squared log error (RMSLE)

Root mean squared log error is basically RMSE but calculated at logarithmic scale. So, if you understand the above mentioned 3 evaluation metrics, you won't have any problem understanding RMSLE or most other evaluation metric or loss functions used in regression-based machine learning model.

While calculating RMSLE, 1 is added as constant to actual and predicted values because they can be 0 and log of 0 is undefined. Overall formula remains same. Standard denotation for RMSLE is;

Never take your phone out.

On-board **Google maps navigation. Ather 450X.** Quick. Electric. Intelligent.

Book Now

⚠ ATHER

(i):

RMSLE=
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log (y_i + 1) - (\widehat{y+1})^2)}$$

In this illustration, I have used log for calculation;

Actual Value	Predicted	Actual +	Predicted	log (Actual)	Log	Error	Squared
(y)	Value (y	1	+ 1		(Predicted)	(difference)	Error
	hat)						
100	130	101	131	2.004321374	2.117271296	-0.112949922	0.012757685
150	170	151	171	2.178976947	2.23299611	-0.054019163	0.00291807
200	220	201	221	2.303196057	2.344392274	-0.041196216	0.001697128
250	260	251	261	2.399673721	2.416640507	-0.016966786	0.000287872
300	325	301	326	2.478566496	2.5132176	-0.034651104	0.001200699
							Got questions?

			0.061418977	Squre
				root of
				mean

Let's look their difference now.

MAE vs MSE vs RMSE Vs RMSLE

In terms of comparison, primary differences are between MAE & MSE because they both are calculated in different ways. RMSE & RMSLE are extension of MSE therefore they share lots of properties with MSE.

Mean absolute Error (MAE)	Mean square Error (MSE)	Root mean square error (RMSE)	Root mean square log Error (RMSLE)	
It doesn't account for the direction of the value. Even if value is negative, positive value is used for calculation.	positive or negative	It does account for positive or negative value.	It does account for positive or negative value.	
	RMSE & MSE share many properties with MSE because RMSE is simply the square root of MSE.	ľ		
MAE is less biased for higher values. It may not adequately reflect the performance when dealing with large error values.	MSE is highly biased for higher values.	RMSE is better in terms of reflecting performance when dealing with large error values.		
		RMSE is more useful when lower residual values are preferred.		t question:
MAE is less than RMSE		RMSE tends to be		

10/2021	Evaluation Metrics	tor Regression models- MAI	E VS MSE VS RMSE VS RMSLI
as the sample size goes		higher than MAE	
up.		as the sample	
		size goes up.	
MAE doesn't necessarily	MSE penalize large	RMSE penalize	RMSLE doesn't
oenalize large errors.	errors.	large errors.	penalize large errors.
			It is usually used
			when you don't want
			to influence the
			results if there are
			large errors. RMSLE
			penalize lower errors.
445		D1405 :	
MAE is more useful		RMSE is more	
when the overall impact		useful when the	
s proportionate to the		overall impact is	
actual increase in error.		disproportionate	
For example- if error		to the actual	
values go up to 6 from 3,		increase in error.	
actual impact on the		For example- if	
result is twice. It is more		error values go up	1
common in financial		to 6 from 3, actual	
ndustry where a loss of		impact on the	
6 would be twice of 3.		result is more	
		than twice. This	
		could be common	
		in clinical trials, as	
		error goes up,	
		overall impact	
		goes up	
		disproportionately.	
		When actual and	When actual and
		predicted values	predicted values are
		ľ	low, RMSE & RMSLE
		RMSLE are	are usually same.
		usually same.	
		NA/II	NA/1
		When either of	When either of actual
		actual or	or predicted value
		predicted values	

MAE vs MSE vs RMSE Vs RMSLE Conclusion

I have mentioned only important differences. If there is no valid point for one, I haven't included in the above table and that's why we have empty cells in the table.

Few important points to remember when using loss functions for your regression;

Never compare apple with oranges, that is, never compare different metrics with each other. For example don't compare values of MSE with MAE or others. They would be different.

Try to use more than 1 loss function.

Always calculate evaluation metrics (loss functions) for both testing and training data set.

Compare evaluation metrics between test and training data set. There shouldn't be a huge difference between them. If there is, there is a problem with your model. For example- if you are using RMSE, calculate RMSE for testing and training data set. There should be huge difference between these values for this data set.

If you have outlier in the data and you want to ignore them, MAE is a better option but if you want to account for them in your loss function, go for MSE/RMSE.

Questions or feedback? Please leave your comments.

filed under: data science tagged with: data science, evaluation metrics, loss function, machine learning, mae, mean absolute error, mean square error, mse, regression model, rmse, rmsle, root mean square error, root mean square log error

About akhilendra

Hi, I'm Akhilendra and I write about Product management, Business Analysis, Data Science, IT & Web. Join me on Twitter, Facebook & Linkedin

Speak Your Mind

Business analyst-Product owner-Scrum master interview questions

How to become a great Scrum Master? Skills-Roles & Responsibilities

GATE EXAM 2021 IITB-Exam dates, Eligibility & Details

Website Redesign – When Is The Best Time To P Got questions?

Learning Computer File Structure

What is Activation Function & Why you need it in Neural Networks

Amazing SaaS Startup Growth Strategies You Shouldn't Miss

How to find jobs (Naukri)

What Business Owners Need to Know About Scrum Agile Implementation

Take
exposure to
the top 100
companies
by fre
ma
capita
thre
a si
inves

Important Stuff

Articles

Business

Business

Data Science	
Gadgets	
Internet Marketing	
IPO	
Personal Finance	
Programming	
SEO	
Social Media Marketing	
Technology	
Web Hosting	
Wordpress	