ID	Features	Databases	Classifier	Methodology Details	Best Results	Link
1	 Mel-spectrograms Phoneme-embeddings Positional Encoding 	• LJSpeech	• Feed-forward Transformer consists of Phoneme Embeddings + Positional Enmcodings, 6xFFT Block, Length Regulator with Duration Predictor (2xConv1D + 1xLinear Layer), 6xFFT Block, Linear Layer	 first train the autoregressive Transformer TTS model on 4 NVIDIA V100 GPUs batch_size=16, Adam with β1=0.9, β1=0.98, ε=10-9 train the duration predictor -> feed the text and speech pairs in the training set to the model again to obtain the encoder-decoder attention alignments source text sequence + generated melspectrograms with the autoregressive Transformer TTS model => the paired data for FastSpeech model training train the FastSpeech model together with the duration predicton output mel-spectrograms are transformed into audio samples using the pretrained WaveGlow 	• MOS = 3.84 ± 0.08 • Latency = $0.18 \pm 0.078s$	<u>ART</u> 2019
2	• Raw audio waveform	• VCTK	• Causal Conv + Residual Blocks (Dilated Conv + Tanh x Dilated Conv + Sigmoid) + 2x Linear + Softmax	 Causal conv keeps the order of the samples Softmax layer has 65,536 probabilities corresponding to 16-bit integer representation for a sample Condition the model not in text, but speaker Receptive field: 240ms 	 MOS = 4.21 ± 0.081 (American English) MOS = 4.08 ± 0.085 (Mandarin Chinse) 	<u>ART</u> 2016
3	 80-dimensional log-mel filter bank coefficients Phoneme-embeddings 	• LJ Speech • VCTK	VAE (Posterior Encoder – residual blocks from WaveGlow + Prior Encore – transformer encoder + Decoder – HiFi GAN v1 Generator + Stohastic Duration Predictor - residual blocks with dilated and depth-separable convolutional layers)	 AdamW optimizer: β1 = 0.8, β2 = 0.99, weight decay λ = 0.01 Lr = 2 × 10-4 Batch_size=64 800k steps 	• MOS = 4.43 (±0.06) LJSpeech • MOS = 4.38 (±0.06) VCTK	<u>ART</u> 2021
4	 Phoneme-embeddings High-dimensional speech compressed representation. 	 LJSpeech A large-scale text corpus with 200 million sentences for phoneme pre-training 	Phoneme Encoder: 6-layer Feed-Forward Transformer (FFT) blocks+ Duration predictor with upsampling layer + Posterior Encoder (16-layer WaveNet) + Bidirectional Prior and Posterior Module + Waveform Decoder(Residual convolution blocks with upsampling).	 Pre-train phoneme embedding model. Memory-based VAE to simplify the posterior. Bidirectional prior/posterior modeling for enhancing prior and reducing the complexity of posterior. Trained on 8 8 NVIDIA V100 GPUs Optimizer: AdamW Ir=20e-42, γ=0.999875 β1=0.8, β2=0.99 	• MOS = 4.56 ± 0.13	<u>ART</u> 2022
5	 Phoneme-embeddings Mel-spectrograms Scalar Quantization Codec 	 Multilingual LibriSpeech (MLS) WenetSpeech 	• Text Encoder(T5 arihitecture) + Speaker Encoder + SQ-Codec(consists of an encoder, decoder, and scalar quantization for compact latent representations) + Transformer Diffusion Model + Dense Layer	 Ir=10e-41 for transformer diffusion, with a cosine scheduler and warmup of 1k steps. optimizer: Adam optimizer used for both SQ-Codec and transformer diffusion model. Diffusion steps=25 Sentence duration predictors are used to control the length of generated speech. 	• MOS = 4.06 ±.052	ART 2024

6	 speaker latent vectors from the reference mel spectrogram. local frame-level features. 	• LibriTTS • AiShell3	• FastSpeech 2 Integration(Encoder - phoneme encoder integrated with TSCM to incorporate speaker control + Variance Adaptor - adds duration, pitch, and energy information + Mel-spectrogram Decoder - utilizes TSCM for speaker-specific adaptations) + VITS Integration(Text Encoder, Duration Predictor, Generator: Integrated with TSCM to improve speaker control).		1	ART 2024
7	 Mel-spectrograms Spectrogram Tokens (Vector Quantized) Phoneme Embeddings 	• LJSpeech	Spectrogram VQ Model(consists of an encoder, decoder, and discrete codebook) + Text Encoder(EfficientSpeech encoder with 2 transformer blocks) + Discrete Diffusion Model (12-layer transformer with 8 heads) with Contrastive Learning.	1 75 1	MOS: 3.64 ± 0.05 mRTF (Real-Time Factor): 73.9 (GPU), 17.6 (CPU)	ART 2023
8	 Mel-spectrograms Phoneme Representations Dynamic Quantized Representation 	• LJSpeech	Sequential Autoencoder (Encoder - convolution blocks and LSTMs + Dynamic Codebook Module + Decoder: Tacotron 2-based)	 Dynamic Quantized Representation Learning: Quantization with a dynamic codebook that expands based on unpaired data using pseudolabels generated by a pre-trained ASR. Train with a mix of 120 minutes of paired data and 600 minutes of unpaired data. batch_Size=64 Optimizer: Adam (β1=0.9, β2=0.999, , lr=10e-3). Use Connectionist Temporal Classification (CTC) for recognition loss. 	• MOS: 3.12 ± 0.32 with mixed data (120 min paired + 600 min unpaired).	ART 2024
9	 Mel-spectrograms Phoneme embeddings Pitch, duration, and energy features 	LJSpeechVCTKLibriTTS	Phoneme Encoder(Transformer blocks) + Variance Adaptor + CM-Decoder (non-causal WaveNet-like structure) + Vocoder (HiFi-GAN).	 CM-TTS employs a consistency model-based approach for real-time mel-spectrogram generation. Utilizes weighted samplers to improve model training by incorporating dynamic probabilities. Model trained for 300K steps with exponential learning rate decay and a batch size of 32. 	 MOS: 3.9618 ± 0.0186 Latency: Real-time capability with fewer synthesis steps (1, 2, 4 steps tested). 	ART 2024
10	 Prosody features (pitch, duration) Phoneme embeddings 	LibriSpeech:MLS corpus	Phoneme Encoder + Codec Decoder (SoundStream) + VALL-E (12-layer transformers)	 Prosody Tokens are predicted using a Chain-of-Thought (CoT) prompting technique, stabilizing pitch and duration before speech token prediction. Trained on 8 NVIDIA V100 and 16 AMD MI200 GPUs with Adam optimizer. Utilized nucleus sampling for phoneme, pitch, and duration prediction. Tested multiple window sizes for duration-guided masking, with optimal size being 1 for WER improvements. Evaluation on hard sentences to assess robustness, with error types classified as mispronunciation, omission, repetition, and hallucination. 	g	
11	 Mel-spectrograms Vector Quantized Variational codes 	• XTTS • LibriTTS-R • Common Voice	VQ-VAE (13M parameters) encodes melspectrograms to 1024 codebook vectors + GPT-2 encoder (443M parameters) predicts VQ-VAE audio codes from text input + Conditioning Encoder (6 layers) for generating speaker embeddings, producing 32 embeddings per audio + HiFi-GAN based decoder (26M parameters) reconstructs audio from latent vectors	 The model was trained on multilingual datasets using a language batch balancer XTTS was trained for approximately 2.5M step on 4 NVIDIA A100 GPUs (80GB) AdamW optimizer, betas 0.9 and 0.96, with MultiStepLR learning rate scheduler XTTS improves speaker cloning capability by conditioning the encoder on multiple embedding rather than a single embedding 	• English Evaluation: CER: 0.5425 UTMOS: 4.007 ± 0.25 SECS: 0.6423	<u>ART</u> 2024

12	 Phoneme monotonic alignment Merged codec with reduced sampling rate Phoneme prediction during training 	• LibriSpeech	Encoder-decoder (convolution-based encoder) + Residual Vector Quantizer module (8-layer) + Transformer-based architecture (12-layer) + Vocoder	 Two-stage training: autoregressive model predict acoustic tokens from phonemes and aligned phoneme sequences, and NAR model iteratively generates tokens for higher layers. The merged codec reduces the number of autoregressive steps by downsampling in the first layer without retraining the codec. Monotonic alignment ensures that phoneme and acoustic tokens align, improving robustness by preventing repetition or skipping. Experiments used 3-second acoustic prompts and phoneme sequences for zero-shot TTS tasks like speech continuation and cross-sentence synthesis 	 QMOS = 4.02, SMOS = 3.89 Latency: achieved a generation time of 3.67s for 10s of speech 	
13	 Mel-spectrograms Time-Invariant and Time-Variant Style Representations 	VCTKEmotional Speech Dataset.	• Text Encoder(8 layers of Transformer encoders with relative positional embedding and adaptive layer normalization) + Aligner(Convolution-based Duration Predictor) + Diffusion Decoder (convolution blocks and DiT blocks) + Time-Invariant and Time-Variant Encoders (uses cross-attention).	 Batch_size=32 Optimizer: Adam (lr=10e-4) 1000 epochs for VCTK, 1500 epochs for ESD Diffusion Process: Incorporates Gaussian noise into input data and iteratively refines to generate mel-spectrograms. 	• VCTK: Seen Speakers: 3.75 (MOS-N), 3.88 (MOS-S) Unseen Speakers: 3.76 (MOS-N), 3.81 (MOS-S) • ESD: Seen Speakers: 3.73 (MOS-N), 3.84 (MOS-S) Unseen Speakers: 3.57 (MOS-N), 3.52 (MOS-S)	<u>ART</u> 2024
14	 Mel-spectrograms Phoneme-embeddings Scalar Quantization Codec 	Multilingual LibriSpeechWenetSpeech	• Text Encoder (ByT5 model with 2 transformer blocks) + Speaker Encoder (Pre-trained FACodec) + SQ-Codec (Encoder, decoder, and scalar quantization) + Transformer Diffusion Model (flow-based scalar latent transformer diffusion with 12 layers and 8 heads).	 Batch_size =32 Optimizer: Adam (lr=10e-4) 400,000 training steps Diffusion steps: 25 Sentence Duration Prediction:4 strategies explored: ByT5-based, ChatGPT-based, FS2-based, and AR-based duration predictors. Generated mel-spectrograms converted to audio using SQ-Codec decoder. 	• MOS: 4.28 ± 0.12	ART 2024
15	 Mel-spectrograms Style Embeddings (text and audio) Speaker Embeddings 	• Emotional Speech Dataset	General Style Fusion Encoder (CLIP-based text encoder and audio encoder) + Hierarchical Conformer Two-Branch Style Control Module (fuses style and speaker control embeddings into the VITS-based TTS architecture for optimal control of both speaker and style) + Backbone (VITS).	 1,000,000 training steps Multimodal Input Processing: combines style prompts and audio references to control style and speaker embeddings. Gradient Reversal Layer: used to disentangle speaker and style information. HiFi-GAN is used as a vocoder, with Speech Super Resolution upsampling for enhanced quality. 	• Speaker-MOS: 4.19 • Emotion-MOS: 4.28	ART 2024
16	 Phoneme embeddings Pitch Duration Energy 	• BEAT2	Phoneme Encoder (Causal Transformer Encoder) + Rhythmic Predictors (Separate CNN-based predictors for pitch, duration, and energy) + Shared Rhythm Predictors + Speech Decoder (1D dilated convolutions) + Gesture Decoder (Pretrained VQ-VAE for gesture reconstruction using semantic and rhythmic latent features) + Neural Architecture Search	 Joint Generation: the model jointly generates speech and gestures by sharing intermediate rhythmic features (pitch, duration, and energy). Causal Network: redesigned to avoid dependencies on future inputs for realtime applications. Neural Architecture Search: used to 	MOS: 3.93 (speech quality) Latency: 0.17 seconds per second speech and gesture generation on NVIDIA 3090)	<u>ART</u> 2024

17	 Mel-spectrograms Prosody (pitch, duration) Phoneme embeddings Style diffusion modeling (latent random variable for speech style) 	• LJSpeech • VCTK • LibriTTS	• Text Encoder (Causal Transformer for phoneme representation) + Prosodic Text Encoder (BERT-based) +Style Encoder + Duration and Prosody Predictors + Waveform Decoder (iSTFTNet or HifiGAN) + SLM Discriminators (WavLM-based adversarial training, with convolutional head)	 Training Strategy: two-stage process; first pre-train acoustic modules (100 epochs on LJSpeech), then jointly optimize all components with differentiable duration modeling. Adversarial Training: utilizes large pre-trained Speech Language Models (SLMs) like WavLM as discriminators for human-like quality synthesis. End-to-End Training: joint optimization of text encoder, style encoder, prosody predictor, and waveform decoder for direct waveform generation. Diffusion-Based Sampling: style diffusion model samples a latent style vector conditioned on text, enabling diverse and expressive speech generation without reference audio. Zero-Shot Speaker Adaptation: fine-tuned on LibriTTS for zero-shot speaker adaptation using only 3-second reference clips. Maximize the likelihood of training data to a maximize the likelihood of training data	 MOS: 3.83 (LJSpeech, surpasses ground truth with CMOS +0.28) 4.15 (LibriTTS, zero-shot) 4.03 (Similarity score for zero-shot speaker adaptation on LibriTTS) Latency: 0.0185 Real-Time Factor 	ART 2024
18	 Mel-spectrograms Latent space control for speech variation (pitch, tone, speech rate, cadence, accent) 	• LJSpeech • LibriTTS	• Text Encoder (modified Tacotron encoder -instance-norm replaces batchnorm) + Affine Coupling Layer + Latent Space Control (invertible mapping between mel-spectrograms and latent space, modeled using a Gaussian Mixture Model) + Waveform Decoder (WaveGlow)	 Maximize the likelihood of training data to train the autoregressive flow model. Train the model on the LSH dataset for 1,000 epochs and fine-tune for 500 epochs on LibriTTS. Models trained on NVIDIA DGX-1 with 8 GPUs. Variability Control: Adjust the amount of variation in speech output by sampling from a Gaussian prior with different variances (σ² = 0.0, 0.5, 1.0). Posterior Sampling: Style transfer between seen and unseen speakers by sampling from a posterior distribution conditioned on prior evidence (e.g., expressive vs. monotonic speech styles). Interpolation: Smooth interpolation between samples and speakers by manipulating latent space (z-space). 	• MOS: 3.665 ± 0.1634 (Flowtron) 3.521 ± 0.1721 (Tacotron 2) 4.274 ± 0.1340 (real data)	<u>ART</u> 2020
19	 Mel-spectrograms Hierarchical latent variables Phoneme embeddings Positional encoding (sinusoidal) 	 LJSpeech Multi-speaker internal Mandarin Chinese corpus (55 hours, 7 female speakers) 	Very Deep Variational Autoencoder(residual blocks containing 4 convolution layers with GELU activation) + Residual Attention Mechanism + Text Encoder (Feature- wise Linear Modulation + 4 convolution layers and positional encodings) + Speaking Speed Predictor	 Batch size of 32, trained on 2 NVIDIA V100 GPUs for 90k iterations using the Adam optimizer (β1=0.9, β2=0.999), learning rate maxing at 1.5e-4 with 10k warm-up steps. Combined loss including reconstruction loss, Kullback-Leibler divergence, and speaking speed prediction loss. Inference is 16x faster than Tacotron 2 due to the non-autoregressive nature of the model. 	 MOS on LJSpeech: 3.88 ± 0.20 MOS on the multi-speaker Mandarin dataset: 4.49 ± 0.11 VARA-TTS inference speed: 32.01ms 	

20	 Mel-spectrograms (80-dimensional) Speaker embeddings Phoneme-level input for text processing 	• VCTK • LibriTTS	• Speaker Encoder (ECAPA-TDNN) + Squeeze-and-Excitation blocks for channel interdependencies + Res2Net blocks with skip connections for feature aggregation + Improved pooling with channel/context-dependent frame attention + Acoustic Model (FastSpeech 2, non-autoregressive model) + Transformer-based encoder and decoder + Variant adaptor with duration, pitch, and energy predictors + Postnet (Conv1D blocks) added after the decoder for fine-tuning.+ Vocoder (HiFi-GAN)	 Data downsampled to 22,050 Hz for experiments Pretrained speaker encoder on VoxCeleb1 and VoxCeleb2 datasets Acoustic model trained for 400k steps with a batch size of 16 using an RTX 3090 GPU Ground-truth phoneme durations were obtained via Montreal Force Aligner Testing includes seen speakers (from VCTK) and unseen speakers (from LibriTTS and VCTK). Average speaker embedding calculated for each speaker to improve stability and speaker similarity. 	• MOS-N: Ground truth: ~4.19 ECAPA-TDNN: 3.62 (seen), 3.47 (unseen LibriTTS) x-vector: 3.51 (seen), 3.38 (unseen LibriTTS)	ART 2022
21	 Phoneme embeddings (raw phonetic input) Explicit modeling of prosody (pitch, duration) BERT-based contextualized word embeddings Hybrid grapheme-to-phoneme conversion with punctuation modeling 	 French language dataset from Blizzard Challenge 2023 Speaker 1 (NEB): 50 hours of aligned, high-quality audiobook data Speaker 2 (AD): 2 hours of aligned data 	• Custom network for prosody prediction (handles duration and pitch) + CamemBERT for contextualized word embeddings + HiFi-GAN for vocoding + 3 parallel stacks of BiLSTMs for duration, pitch, and vocoder conditioning + Shared sub-network with 3 convolutional layers + BiLSTM for phonetic embeddings + HiFi-GAN conditioned on the predicted duration and pitch embeddings + Grapheme-to-Phoneme Module (Stack of 3 convolutional layers followed by BiLSTMs)	 Training the phonemizer with a split dataset (90% train, 10% validation) Early stopping with sentence accuracy rate Fine-tuned CamemBERT along with the custom prosody network and HiFiGAN BERT optimized with a fixed learning rate of 10e-6, 1M steps Phonetic alignment and pitch annotations used for forced alignment Two layers of non-uniform upsampling to match phonemes with BERT embeddings and duration predictions Training performed on an NVIDIA RTX 3090 with a batch size of 16 over 3 weeks 	 MOS for Speaker NEB: Speech Experts: 4.0 (±1.48) Non-speech experts: 4.3 (±0.74) MOS for Speaker AD: Speech Experts: 3.3 (±1.00) Non-speech experts: 4.1 (±0.83) 	ART 2023
22	 Self-supervised speech representations Mel-spectrograms Phoneme embeddings 	• VCTK • LibriTTS	Hierarchical Conditional Variational Autoencoder: Self-supervised speech representations from XLS-R (12th layer for linguistic information) + Text Encoder (Transformer with relative positional encoding) + Linguistic Encoder (Bi-directional WaveNet) + Acoustic Encoder (Non-causal WaveNet residual blocks for acoustic latent variables) + HiFi-GAN vocoder + Flow-based Stochastic Duration Predictor + Monotonic Alignment Search	 Training with AdamW optimizer (β1 = 0.8, β2 = 0.99, weight decay = 0.01) HierSpeech trained on 4 NVIDIA A100 GPUs for 600k steps, batch size 256 Untranscribed speech training (HierSpeech-U): Speaker adaptation without text transcripts using a style encoder Evaluation using fine-tuned wav2vec 2.0 for phoneme and word error rates (PER, WER) 	 VCTK: MOS = 4.04 (N), 3.22 (S) LibriTTS: MOS = 3.98 (N), 3.26 (S) Untranscribed Speech: MOS (naturalness): 4.08 	ART 2022