SUITES NUMÉRIQUES

SOLUTION 1.

Notons ℓ_1, ℓ_2 et ℓ_3 les limites respectives des suites :

$$(u_{2n})_{n\in\mathbb{N}}, (u_{2n+1})_{n\in\mathbb{N}} \text{ et } (u_{3n})_{n\in\mathbb{N}}.$$

La suite de terme générale \mathfrak{u}_{6n} étant extraite de $(\mathfrak{u}_{3n})_{n\geqslant 0}$ mais également de $(\mathfrak{u}_{2n})_{n\geqslant 0}$, elle converge vers ℓ_3 et ℓ_1 , d'où $\ell_3=\ell_1$ par unicité de la limite. De même, la suite de terme générale \mathfrak{u}_{6n+3} étant extraite de $(\mathfrak{u}_{3n})_{n\geqslant 0}$ mais également de $(\mathfrak{u}_{2n+1})_{n\geqslant 0}$, elle converge vers ℓ_3 et ℓ_2 , d'où $\ell_3=\ell_2$ par unicité de la limite. Ainsi $\ell_1=\ell_2$ et, d'après le cours, $(\mathfrak{u}_n)_{n\geqslant 0}$ converge.

SOLUTION 2.

Posons $u_n = \{\sqrt{n}\}$. Alors $u_{n^2} = 0$ pour tout $n \in \mathbb{N}$. De plus, $n-1 \leqslant \sqrt{n^2-1} < n$ pour $n \geqslant 1$ donc $\{\sqrt{n^2-1}\} = n$. Enfin

$$\{\sqrt{n^2-1}\} = \sqrt{n^2-1} - (n-1) = 1 + \sqrt{n^2-1} - n = 1 - \frac{1}{n+\sqrt{n^2-1}}$$

Les suites $(u_{n^2})_{n\in\mathbb{N}}$ et $(u_{n^2-1})_{n\geqslant 1}$ sont des suites extraites de la suite (u_n) de limites respectives 0 et 1. La suite (u_n) n'admet donc pas de limite.

SOLUTION 3.

Première méthode

Supposons qu'une des suites ne soit pas majorée – la suite (a_n) pour fixer les idées. Alors on peut extraire une suite $(a_{\varphi(n)})$ qui diverge vers $+\infty$. Puisque $e^{a_{\varphi(n)}} + e^{b_{\varphi(n)}} + e^{c_{\varphi(n)}} \geqslant e^{a_{\varphi(n)}}$, $e^{a_{\varphi(n)}} + e^{b_{\varphi(n)}} + e^{c_{\varphi(n)}}$ tend vers $+\infty$, ce qui contredit le fait que $e^{a_n} + e^{b_n} + e^{c_n}$ tend vers 3.

Supposons maintenant qu'une des suites ne soit pas minorée – la suite (a_n) pour fixer les idées. Alors on peut extraire une suite $(a_{\varphi(n)})$ qui diverge vers $-\infty$. Les deux autres suites ne peuvent pas être majorées sinon $a_{\varphi(n)} + b_{\varphi(n)} + c_{\varphi(n)}$ tendrait vers $-\infty$. Ainsi une des suites n'est pas majorée et on est ramené au cas précédent dont on a vu qu'il était impossible.

Par conséquent, les trois suites sont bornées.

La suite (a_n) est bornée donc, d'après le théorème de Bolzano-Weierstrass, il existe donc une suite extraite $(a_{\varphi_1(n)})$ convergente. La suite $(b_{\varphi_1(n)})$ est également bornée donc il existe une suite extraite $(b_{\varphi_1\circ\varphi_2(n)})$ convergente. Enfin, la suite $(c_{\varphi_1\circ\varphi_2(n)})$ est bornée donc il existe une suite extraite $(c_{\varphi_1\circ\varphi_2\circ\varphi_3(n)})$ convergente. Pour simplifier les notations, posons $\varphi = \varphi_1 \circ \varphi_2 \circ \varphi_3$. Ainsi les suites $(a_{\varphi(n)}), (b_{\varphi(n)}), (c_{\varphi(n)})$ convergent. Notons a, b, c leurs limites. On a donc a+b+c=0 et $e^a+e^b+e^c=3$. Pour tout $x\in\mathbb{R}$, on a $e^x\geqslant 1+x$ avec inégalité stricte lorsque $x\neq 0$. Supposons que l'un des réels a,b,c soit non nul -a pour fixer les idées. Alors $e^a>1+a,e^b\geqslant 1+b$ et $e^c\geqslant 1+c$ donc $e^a+e^b+e^c>3+a+b+c$ i.e. 3>3 ce qui est absurde. Ainsi a=b=c=0.

Ce qui précède montre que 0 est la seule valeur d'adhérence des suites (a_n) , (b_n) , (c_n) . Il est classique de montrer que 0 est la limite de ces trois suites.

Seconde méthode

Posons $f(x) = e^x - 1 - x$. On montre facilement que f est positive et ne s'annule qu'en 0. D'après l'énoncé $u_n = f(a_n) + f(b_n) + f(c_n)$ tend vers 0 lorsque n tend vers $+\infty$. De plus, $0 \le f(a_n) \le u_n$ donc, par encadrement, $(f(a_n))$ converge vers 0. La représentation graphique de f montre bien que (a_n) doit converger vers 0. Soit $\varepsilon > 0$. Posons $m = \min(f(\varepsilon), f(-\varepsilon))$. Il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, $|f(a_n)| < m$. Les variations de f montrent alors que pour $n \ge N$, $|a_n| < \varepsilon$. Ainsi (a_n) converge vers 0. On raisonne de la même manière pour (b_n) et (c_n) .

SOLUTION 4.

Supposons (\mathfrak{u}_n) non majorée. Alors on peut en extraire une sous-suite $(\mathfrak{u}_{\phi(n)})$ divergeant vers $+\infty$. Puisque $\nu_n=(\mathfrak{u}_n+\nu_n)-\mathfrak{u}_n$ pour tout $n\in\mathbb{N}$ et que $\mathfrak{u}_n+\nu_n\overset{}{\longrightarrow}0$, $(\nu_{\phi(n)})$ diverge vers $-\infty$. Mais alors $\lim_{n\to+\infty}\mathfrak{u}_{\phi(n)}^p=+\infty$ et, \mathfrak{q} étant impair, $\lim_{n\to+\infty}\nu_{\phi(n)}^q=-\infty$. Ainsi $\lim_{n\to+\infty}\mathfrak{u}_{\phi(n)}^p-\nu_{\phi(n)}^q=+\infty$, ce qui contredit l'énoncé.

Supposons (u_n) non minorée. Alors on peut en extraire une sous-suite $(u_{\phi}(n))$ divergeant vers $-\infty$. Puisque $\nu_n = (u_n + \nu_n) - u_n$ pour tout $n \in \mathbb{N}$ et que $u_n + \nu_n \xrightarrow[n \to +\infty]{} 0$, $(\nu_{\phi(n)})$ diverge vers $+\infty$. Mais alors, p étant impair, $\lim_{n \to +\infty} u_{\phi(n)}^p = -\infty$ et $\lim_{n \to +\infty} \nu_{\phi(n)}^q = +\infty$. Ainsi $\lim_{n \to +\infty} u_{\phi(n)}^p - \nu_{\phi(n)}^q = -\infty$, ce qui contredit l'énoncé.

La suite (u_n) est donc bornée. D'après le théorème de Bolzano-Weierstrass, elle admet une valeur d'adhérence $l \in \mathbb{R}$. Soit $(u_{\phi(n)})$ une sous-suite convergeant vers l. Puisque $\lim_{n \to +\infty} u_n + \nu_n = 0$, $(\nu_{\phi(n)})$ converge vers -l. Enfin, puisque $\lim_{n \to +\infty} u_n^p - \nu_n^q = 0$, $l^p - (-l)^q = 0$. p et q étant impairs, ceci équivaut à $l^p + l^q = 0$. La fonction $x \mapsto x^p + x^q$ étant strictement croissante (encore une fois, on utilise le fait que p et q sont impairs) et s'annulant en 0, on a donc l = 0. 0 est l'unique valeur d'adhérence de la suite (u_n) : on démontre alors classiquement que (u_n) converge vers 0. Puisque $\nu_n = (u_n + \nu_n) - u_n$, on en déduit que (ν_n) converge vers 0.

SOLUTION 5.

1. Les racines de l'équation caractéristique

$$z^2 - z - 1 = 0$$

sont

$$\frac{1\pm\sqrt{5}}{2}$$
,

il existe donc $\lambda, \mu \in \mathbb{R}$ tels que $\forall n \geq 0$,

$$u_n = \lambda \left(\frac{1-\sqrt{5}}{2}\right)^n + \mu \left(\frac{1+\sqrt{5}}{2}\right)^n.$$

$$u_0 = 0 = \lambda + \mu, \quad u_1 = 1 = -\sqrt{5}\lambda,$$

on aboutit à

$$\lambda = -\mu = -\frac{1}{\sqrt{5}}.$$

On a donc, $\forall n \geq 0$,

$$u_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 - \sqrt{5}}{2} \right)^n - \left(\frac{1 + \sqrt{5}}{2} \right)^n \right].$$

2. Posons pour tout $n \in \mathbb{N}$,

$$\alpha_n = \varphi_{n+1}^2 - \varphi_n \varphi_{n+2}.$$

On a alors,

$$\begin{split} \alpha_n &= \, \varphi_{n+1}^2 - \varphi_n (\varphi_{n+1} + \varphi_n) \\ &= \, \varphi_{n+1}^2 - \varphi_n^2 - \varphi_n \varphi_{n+1} \\ &= \, \varphi_{n+1} (\varphi_{n+1} - \varphi_n) - \varphi_n^2 \\ &= \, \varphi_{n+1} \varphi_{n-1} - \varphi_n^2 \\ &= \, -\alpha_{n-1} \end{split}$$

La suite $(\alpha_n)_{n\geqslant 0}$ est donc géométrique de raison -1 et de premier terme $\alpha_0=1$, on a donc pour tout $n\geqslant 0$,

$$\phi_{n+1}^2 = \phi_n \phi_{n+2} + (-1)^n$$
.

3. On prouve par une récurrence sans difficulté que

$$\forall n \geqslant 1, \quad u_n > 0,$$

ce qui justifie l'existence de la somme étudiée que nous noterons σ_n . D'après la formule démontré à la question 2., pour tout $k \geqslant 1$,

$$\phi_{k+1}^2 = \phi_k \phi_{k+2} + (-1)^k,$$

d'où en divisant par $\phi_k \phi_{k+1} > 0$,

$$\frac{\varphi_{k+1}}{\varphi_k} = \frac{\varphi_{k+2}}{\varphi_{k+1}} + \frac{(-1)^k}{\varphi_k \varphi_{k+1}},$$

et donc

$$\alpha_k = \frac{(-1)^k}{\varphi_k \varphi_{k+1}} = \beta_k - \beta_{k+1}$$

οù

$$\beta_k = \frac{\varphi_k}{\varphi_{k+1}}.$$

Après telescopage, il reste donc

$$\sigma_n = \beta_1 - \beta_{n+1}$$
.

Or,

$$\phi_n \sim \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n,$$

d'où

$$\beta_{n+1} \sim \frac{1+\sqrt{5}}{2},$$

et puisque $\beta_1 = 1$,

$$\lim_{n\to +\infty}u_n=1-\frac{1+\sqrt{5}}{2}=\frac{1-\sqrt{5}}{2}.$$

SOLUTION 6.

On prouve par une réurrence sans difficulté que

$$\forall n \geqslant 0, \quad u_n > 0.$$

Posons alors

$$v_n = \frac{1}{u_n}$$
.

Pour tout $n \geqslant 0$,

$$\nu_{n+2} = \frac{1}{2}(\nu_{n+1} + \nu_n).$$

On reconnaît une récurrence linéaire d'ordre deux d'équation caractéristique

$$2r^2 - r - 1 = (2r + 1)(r - 1) = 0$$

Il existe donc $\lambda, \mu \in \mathbb{R}$ tels que

$$\forall n \geqslant 0, \ \nu_n = \lambda + \mu \left(-\frac{1}{2}\right)^n,$$

et plus précisément,

$$\lambda = \frac{\nu_0 + 2\nu_1}{3} = \frac{u_1 + 2u_0}{3u_0u_1} > 0$$

et

$$\mu = \frac{2\nu_0 - 2\nu_1}{3}.$$

On a donc

$$\lim_{n\to+\infty}\nu_n=\lambda,$$

et

$$\lim_{n\to+\infty}u_n=\frac{3u_0u_1}{2u_0+u_1}.$$

SOLUTION 7.

On prouve par une réurrence sans difficulté que

$$\forall n \geqslant 0, \ u_n > 0.$$

Posons alors

$$v_n = \ln(u_n)$$
.

Pour tout $n \ge 0$,

$$v_{n+2} = \frac{1}{3}v_{n+1} + \frac{2}{3}v_n.$$

Les racines de l'équation caractéristique

$$z^2 - \frac{z+2}{3} = 0,$$

sont 1 et $-\frac{2}{3}$, il existe donc λ et μ dans $\mathbb R$ tels que $\forall n \geqslant 0$,

$$v_n = \lambda + \mu \left(-\frac{2}{3}\right)^n$$
.

On a donc

$$\lim_{n\to +\infty} \nu_n = \lambda.$$

Puisque

$$\nu_0=\lambda+\mu,\ \nu_1=\lambda-\frac{2\mu}{3},$$

on aboutit à

$$\lambda = \frac{2\nu_0 + 3\nu_1}{5} = \frac{\ln\left(u_0^2 u_1^3\right)}{5},$$

et par continuité de l'exponentielle,

$$\lim_{n\to +\infty} u_n = \left(u_0^2 u_1^3\right)^{\frac{1}{5}}.$$

SOLUTION 8.

1. L'équation caractéristique

$$2x^2 = 3x - 1$$

admet pour solutions 1 et $\frac{1}{2}$. Il existe donc $\lambda, \mu \in \mathbb{R}$ tels que,

$$\forall n \geqslant 0, \quad u_n = \lambda + \mu \frac{1}{2^n}.$$

On calcule μ et λ grâce aux deux premiers termes de la suite,

$$\lambda+\mu=-1,\ \lambda+\mu\frac{1}{2}=1,$$

ainsi $\lambda = 3$ et $\mu = -4$ et

$$\forall n \geqslant 0, \quad u_n = 3 - \frac{4}{2^n}.$$

2. L'équation caractéristique

$$4x^2 = 4x - 1$$

admet la racine double $\frac{1}{2}$. Il existe donc $\lambda, \mu \in \mathbb{R}$ tels que,

$$\forall n \geqslant 0, \ u_n = \frac{\lambda + \mu n}{2^n}.$$

On calcule μ et λ grâce aux deux premiers termes de la suite,

$$\lambda = 1, \quad \frac{\lambda + \mu}{2} = 9,$$

ainsi $\lambda = 1$ et $\mu = 17$ et

$$\forall n \geqslant 0, \quad u_n = \frac{17n+1}{2^n}.$$

3. L'équation caractéristique

$$x^2 = x + 1$$

admet pour solutions

$$\frac{1\pm\sqrt{5}}{2}$$
.

Il existe donc $\lambda, \mu \in \mathbb{R}$ tels que ,

$$\forall n\geqslant 0,\ \nu_n=\lambda\frac{1-\sqrt{5}}{2}+\mu\frac{1+\sqrt{5}}{2}.$$

On calcule μ et λ grâce aux deux premiers termes de la suite ,

$$\lambda+\mu=0,\ \lambda\frac{1-\sqrt{5}}{2}+\mu\frac{1+\sqrt{5}}{2}=1,$$

ainsi $\lambda = -\mu = -\frac{1}{\sqrt{5}}$ et $\forall n \geqslant 0$,

$$\nu_n = -\frac{1}{\sqrt{5}} \Biggl(\left(\frac{1-\sqrt{5}}{2}\right)^n - \left(\frac{1+\sqrt{5}}{2}\right)^n \Biggr).$$

4. L'équation caractéristique

$$x^2 - 6x + 8 = (x - 2)(x - 4) = 0$$

admettant 2 et 4 pour racines, il existe deux nombres réels λ et μ tels que pour tout $n \ge 0$,

$$u_n = \lambda 2^n + \mu 4^n$$
.

En particulier , pour n = 0 et n = 1 , on a les équations suivantes,

$$u_0 = 1 = \lambda + \mu$$
, $u_1 = 1 = 2\lambda + 4\mu$.

On trouve alors que $\lambda=\frac{3}{2}$ et $\mu=-\frac{1}{2}$ et donc

$$\forall n \geqslant 0, \ u_n = 3 \times 2^{n-1} - 2^{2n-1}.$$

SOLUTION 9.

1. Soit HR(n) l'hypothèse de récurrence $u_0\leqslant u_1\leqslant \cdots \leqslant u_n.$

On a $u_2=\sqrt{u_1}\geqslant u_1$ car $u_1\in]0,1[.$ Ainsi HR(2) est vérifiée.

Supposons HR(n) vraie pour un certain $n \ge 2$. Alors $u_{n+1} - u_n = \sqrt{u_n} - \sqrt{u_{n-2}} \ge 0$ d'après notre hypothèse de récurrence. Donc HR(n+1) est vraie.

On en déduit que (u_n) est croissante.

Remarque. On est obligé d'initialiser au rang 2 car l'étape d'hérédité $HR(n) \Rightarrow HR(n+1)$ fait intervenir \mathfrak{u}_{n-2} .

2. Montrons par récurrence double que (u_n) est majorée par 4. On a bien $u_0 \le 4$ et $u_1 \le 4$. Supposons que $u_n \le 4$ et $u_{n+1} \le 4$ pour un certain $n \in \mathbb{N}$. Alors $u_{n+2} \le \sqrt{4} + \sqrt{4} = 4$.

Remarque. Comment trouver le majorant? On choisit un majorant M qui nous arrange i.e. tel que $\sqrt{M} + \sqrt{M} \le M$. On vérifie ensuite qu'il convient.

 (u_n) est croissante et majorée donc elle converge. Par continuité de la racine carrée, sa limite l vérifie $l = \sqrt{l} + \sqrt{l}$ donc l = 4.

SOLUTION 10.

1. On raisonne par récurrence double. Tout d'abord, $u_0, u_1 \in]0, 1[$. On suppose alors que $u_n, u_{n+1} \in]0, 1[$ pour un certain $n \in \mathbb{N}$. Alors $\sqrt{u_n}, \sqrt{u_{n+1}} \in]0, 1[$ puis $u_{n+2} \in]0, 1[$. On conclut que $u_n \in]0, 1[$ pour tout $n \in \mathbb{N}$.

- **2.** Soit $n \in \mathbb{N}$.
 - ▶ Si $u_n \leqslant u_{n+1}$, alors $v_n = u_n$. De plus, $u_{n+2} \geqslant \sqrt{u_n} \geqslant u_n$ puisque $u_n \in]0,1[$. On a donc $v_{n+1} = \min(u_{n+1},u_{n+2}) \geqslant u_n = v_n$.
 - ▶ Si $u_n \ge u_{n+1}$, alors $v_n = u_{n+1}$. De plus, $u_{n+2} \ge \sqrt{u_{n+1}} \ge u_{n+1}$ puisque $u_{n+1} \in]0,1[$. On a donc $v_{n+1} = \min(u_{n+1},u_{n+2}) = u_{n+1} = v_n$.

Dans les deux cas, $v_{n+1} \ge v_n$. Ainsi (v_n) est croissante.

- **3.** Soit $n \in \mathbb{N}$.
 - ▶ Si $u_n \leq u_{n+1}$, alors $v_n = u_n$. De plus, $u_{n+2} \geqslant \sqrt{u_n} \geqslant u_n$ puisque $u_n \in]0,1[$. Donc $\sqrt{u_{n+2}} \geqslant \sqrt{u_n}$. On a également $u_{n+3} \geqslant \sqrt{u_n}$ puisque $\sqrt{u_{n+1}} \geqslant \sqrt{u_n}$ et $\sqrt{u_{n+2}} \geqslant \sqrt{u_n}$. On a montré que $u_{n+2} \geqslant \sqrt{u_n}$ et $u_{n+3} \geqslant \sqrt{u_n}$ donc $v_{n+2} \geqslant \sqrt{u_n} = \sqrt{v_n}$.
 - ▶ Si $u_n \ge u_{n+1}$, alors $v_n = u_{n+1}$. De plus, $u_{n+2} \ge \sqrt{u_{n+1}} = \sqrt{v_n} \ge v_n$ puisque $v_n = u_{n+1} \in]0,1[$. On a également $u_{n+3} \ge \sqrt{v_n}$ puisque $u_{n+2} \ge v_n$ et $u_{n+1} = v_n$. On a alors $u_{n+2} \ge \sqrt{v_n}$ et $u_{n+3} \ge \sqrt{v_n}$ donc $v_{n+2} \ge \sqrt{v_n}$.

Dans les deux cas, $v_{n+2} \ge \sqrt{v_n}$.

- 4. On a $\nu_n \in]0,1[$ pour tout $n \in \mathbb{N}$ donc (ν_n) est bornée et croissante; elle converge. Notons l sa limite. On a bien entendu $l \in [0,1]$. De plus, $\nu_{n+2} \geqslant \sqrt{\nu_n}$ donc par passage à la limite (la fonction racine carrée est continue), $l \geqslant \sqrt{l}$ et donc $l \geqslant 1$. Ainsi l = 1.
 - De plus $v_n \leq u_n < 1$ pour tout $n \in \mathbb{N}$ donc, d'après le théorème des gendarmes, (u_n) converge vers 1.

SOLUTION 11.

L'équation caractéristique associée à cette suite récurrente est $X^2-(3-2i)X+5-5i=0$. Son discriminant est $\Delta=-15+8i$. Soit $\delta=x+iy$ une raciné carrée de Δ . On a donc $\begin{cases} x^2+y^2=17\\ x^2-y^2=-15. \text{ On en déduit } \delta=\pm(1+4i). \text{ Les racines } 2xy=8\\ \text{de l'équation caractéristique sont donc } \frac{3-2i+1+4i}{2}=2+i \text{ et } \frac{3-2i-1-4i}{2}=1-3i. \text{ On en déduit que le terme général } u_n \text{ est de la forme } \lambda(2+i)^n+\mu(1-3i)^n \text{ avec } \lambda, \mu\in\mathbb{C}. \text{ Les conditions } u_0=1 \text{ et } u_1=1+4i \text{ donnent } \begin{cases} \lambda+\mu=0\\ \lambda(2+i)+\mu(1-3i)=1+4i. \end{cases}$ On trouve $\lambda=1$ et $\mu=-1$. Ainsi $u_n=(2+i)^n-(1-3i)^n$ pour tout $n\in\mathbb{N}$.

SOLUTION 12.

Tout d'abord, une récurrence simple montre que (u_n) est bien définie et positive.

Supposons que $u_n \geqslant 1$ pour tout $n \geqslant 1$. Alors pour tout $n \geqslant 2$, $1 + u_n u_{n-1} \geqslant u_n$ et donc $u_{n+1} \leqslant u_n$. La suite (u_n) est donc décroissante et minorée par 1 à partir du rang 2 : elle converge vers une certaine limite l vérifiant $l = \frac{l^2}{l+l^2}$, ce qui équivaut à $l(1-l+l^2)=0$. Or $1-l+l^2\neq 0$ (considérer le discriminant du trinôme) donc l=0, ce qui est absurde puisque (u_n) est minorée par 1.

On en déduit qu'il existe $\mathfrak{n}_0 \in \mathbb{N}^*$ tel que $\mathfrak{u}_{\mathfrak{n}_0} < 1$. De plus, $\mathfrak{u}_{\mathfrak{n}+1} \leqslant \mathfrak{u}_{\mathfrak{n}}^2 \leqslant \mathfrak{u}_{\mathfrak{n}}$ pour tout $\mathfrak{n} \geqslant \mathfrak{n}_0$. La suite $(\mathfrak{u}_{\mathfrak{n}})$ est décroissante à partir du rang \mathfrak{n}_0 et minorée par 0. On en déduit qu'elle converge mais ce qui précède montre que $(\mathfrak{u}_{\mathfrak{n}})$ ne peut converger que vers 0.

SOLUTION 13.

- 1. Puisque $\forall n \ge 0$, on a $a_{5n} = 0$ et $a_{5n+1} = -1/5$, la suite (a_n) n' a pas de limite lorsque n tend $+\infty$.
- **2.** Puisque $\forall n \ge 2$, on a

$$b_n - b_{n-1} = \cos\left(\frac{n\pi}{5}\right),\,$$

cette suite est donc périodique non constante et ne converge donc pas vers 0; la suite $(\mathfrak{b}_n)_{n\geqslant 1}$ n'est donc pas convegeante.

3. Puisque $\forall n \geq 0$, on a

$$\frac{n^2 - 3n + 1}{n + 2} = n - 5\frac{11}{n + 2},$$

on a

$$c_n = (-1)^{n+1} \cos\left(\frac{11\pi}{n+2}\right),$$

et donc, par continuité de la fonction cosinus,

$$\lim_{n+\infty} c_{2n} = -1$$

et

$$\lim_{n+\infty} c_{2n+1} = 1.$$

La suite (a_n) n' a donc pas de limite lorsque n tend $+\infty$.

SOLUTION 14.

1. Pour tout $n \ge 1$,

$$H_{n+1} - H_n = \frac{1}{n+1} > 0,$$

la suite $(H_n)_{n\geqslant 1}$ est donc croissante. On en déduit, d'après le théorème des suites monotones , qu'elle est soit majorée et convergente, soit non majorée et tend vers $+\infty$ avec n.

2. Pour tout $n \ge 1$,

$$H_{2n} - H_n = \sum_{k=n+1}^{2n} \frac{1}{k},$$

or $\forall n + 1 \leq k \leq 2n$,

$$\frac{1}{k}\geqslant \frac{1}{2n},$$

d'où

$$H_{2n} - H_n \geqslant \sum_{k=n+1}^{2n} \frac{1}{2n} = \frac{n}{2n} = \frac{1}{2}$$

On montre que H_n tend vers $+\infty$ par l'absurde : supposons le contraire , d'après le résultat de la question 1., $(H_n)_{n\geqslant 1}$ est donc convergente de limite $\ell\in\mathbb{R}$. La suite extraite $(H_{2n})_{n\geqslant 1}$ converge aussi vers ℓ , d'où par passage à la limite dans l'inégalité obtenue à la question 2. :

$$0\geqslant \frac{1}{2},$$

ce qui est absurde. Ainsi,

$$\lim_{n\to+\infty}H_n=+\infty.$$

SOLUTION 15.

- 1. On a bien-sûr que la suite (α_n) est nulle donc elle converge vers 0.
- **2.** Etude de $(\beta_n)_{n \in \mathbb{N}^*}$.
 - a. Soit $n \in \mathbb{N}^*$. On a

$$n^2 + 3n - (n+1)^2 = n - 1 \ge 0$$
 et $(n+2)^2 - n^2 - 3n = n + 4 > 0$

ainsi

$$\forall n \in \mathbb{N}^*, \quad (n+1)^2 \leqslant n^2 + 3n < (n+2)^2.$$

b. On a

$$\forall n \in \mathbb{N}^*, \quad n+1 \leqslant \sqrt{n^2+3n} < n+2,$$

et donc $\lfloor \sqrt{n^2 + 3n} \rfloor = n + 1$ puis $\beta_n = \sqrt{n^2 + 3n} - (n + 1)$.

c. Pour tout $n \in \mathbb{N}^*$, on a

$$\beta_n = \sqrt{n^2 + 3n} - \sqrt{(n+1)^2} = \frac{n^2 + 3n - (n+1)^2}{\sqrt{n^2 + 3n} + n + 1} = \frac{n-1}{\sqrt{n^2 + 3n} + n + 1}$$

Ainsi,

$$\beta_n = \frac{n-1}{n(\sqrt{1+3/n}+1+1/n)} \sim \frac{n}{2n} = \frac{1}{2}$$

et la suite (β_n) est convergente de limite 1/2.

3. La suite $(u_n)_{n\in\mathbb{N}}$ ne converge pas car admet deux sous-suites (α_n) et (β_n) convergente mais de limites différentes.

SOLUTION 16.

1. En utilisant les formules d'addition on a pour tout n:

$$\left\{ \begin{array}{ll} u_{n+1} &= \sin(n\alpha + \alpha) &= \sin(\alpha)\cos(n\alpha) + \cos(\alpha)\sin(n\alpha) &= \sin(\alpha)\nu_n + \cos(\alpha)u_n \\ \nu_{n+1} &= \cos(n\alpha + \alpha) &= \cos(\alpha)\cos(n\alpha) - \sin(\alpha)\sin(n\alpha) &= \cos(\alpha)\nu_n - \sin(\alpha)u_n \,. \end{array} \right.$$

Puisque $\sin(\alpha) \neq 0$ grâce à l'hypothèse sur α , on en déduit les relations

$$v_n = \frac{1}{\sin(\alpha)} (u_{n+1} - \cos(\alpha) u_n). \tag{1}$$

et

$$u_n = \frac{1}{\sin(\alpha)} (\cos(\alpha) \nu_n - \nu_{n+1}) . \tag{2}$$

Si $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ , la relation (1) entraı̂ne que $v_n \underset{n\to+\infty}{\longrightarrow} \frac{\ell(1-\cos(\alpha))}{\sin(\alpha)}$. De même, si $(v_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ' , la relation (2) entraı̂ne que $u_n \underset{n\to+\infty}{\longrightarrow} \frac{\ell'(\cos(\alpha)-1)}{\sin(\alpha)}$.

2. Si les deux suites sont convergentes de limites respectives ℓ et ℓ' , on a alors d'après la question précédente le système suivant :

$$\begin{cases} \ell' &= \frac{\ell \left(1 - \cos(\alpha)\right)}{\sin(\alpha)} \\ \ell &= \frac{\ell' \left(\cos(\alpha) - 1\right)}{\sin(\alpha)} \end{cases}$$

Il en découle que $\ell = -\frac{\left(1-\cos\alpha\right)^2}{\sin^2\alpha}\ell$, ce qui implique $\ell = 0$, car $\frac{\left(1-\cos\alpha\right)^2}{\sin^2\alpha} \geqslant 0 > -1$). Comme $\ell = 0$, on a donc aussi $\ell' = 0$

Par ailleurs, puisque pour tout $n \ge 0$, on a la relation $u_n^2 + v_n^2 = \sin^2(n\alpha) + \cos^2(n\alpha) = 1$, en passant à la limite on obtient $\ell^2 + \ell'^2 = 1$, ce qui est impossible si $\ell = \ell' = 0$.

L'hypothèse de départ que les suites convergent **toutes les deux** était donc fausse. **De plus**, on a vu à la question précédente, que si l'une des deux converge, alors l'autre converge aussi : on en conclut qu'aucune des deux suites ne peut converger.

SOLUTION 17.

1. Nous avons

$$\sqrt{u_n} \leqslant \sqrt{u_n + \sqrt{u_{n+1}}}$$
.

En ajoutant u_{n-1} à chaque membre et en prenant la racine carrée, on en déduit que

$$\sqrt{u_{n-1} + \sqrt{u_n}} \leqslant \sqrt{u_{n-1} + \sqrt{u_n + \sqrt{u_{n+1}}}}.$$

En procédant ainsi, on obtient $\nu_n \leqslant \nu_{n+1}$; la suite $(\nu_n)_{n\geqslant 1}$ est donc croissante.

2. Si α est la valeur de la suite constante $(u_n)_{n\geqslant 1}$, notons $(a_n)_{n\geqslant 1}$ sa suite associée, c'est-à-dire celle qui vérifie, pour tout $n\in\mathbb{N}^*$, $a_{n+1}=\sqrt{a+a_n}$. Montrons par récurrence sur n, que si $\ell=\sqrt{a+\ell}$, alors il majore $(a_n)_{n\geqslant 1}$. Nous avons $a_1=\sqrt{a}\leqslant l$; supposons que $a_n\leqslant \ell$; en ajoutant a à chaque membre et en prenant la racine, on obtient

$$a_{n+1} = \sqrt{a + a_n} \leqslant \sqrt{a + \ell} = \ell.$$

La suite $(\mathfrak{a}_{\mathfrak{n}})_{\mathfrak{n}\geqslant 1}$ est majorée et croissante, donc convergente.

3. Si \mathfrak{a} est un majorant de la suite $(\mathfrak{u}_n)_{n\geqslant 1}$, nous avons, pour tout $\mathfrak{n}\in\mathbb{N}^*$, $\nu_{\mathfrak{n}}\leqslant\mathfrak{a}_n$; comme $(\mathfrak{a}_n)_{n\geqslant 1}$ est majorée, $(\nu_n)_{n\geqslant 1}$ est donc convergente, car croissante et majorée.

SOLUTION 18.

- 1. Soit $n \in \mathbb{N}$. Notons $E_n = \{u_p, p \ge n\}$. $E_{n+1} \subset E_n$ donc $\sup E_{n+1} \le \sup E_n$ et $\inf E_{n+1} \ge \inf E_n$ i.e. $v_{n+1} \le v_n$ et $w_{n+1} \ge w_n$. Ainsi (v_n) est décroissante et (w_n) est croissante.
- 2. On a $E_n \subset E_0$ donc $\sup E_n \geqslant \inf E_0$ et $\inf E_n \leqslant \sup E_0$ pour tout $n \in \mathbb{N}$. Ceci signifie que (ν_n) est minorée et que (w_n) est majorée. Ainsi (ν_n) et (w_n) convergent.
- 3. Comme $u_n \in E_n$, on a $w_n \le u_n \le v_n$. Si $\lim_{n \to +\infty} v_n w_n = 0$, alors $\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n$. (u_n) converge d'après le théorème des gendarmes.

Si (u_n) converge, notons l sa limite. Soit $\epsilon > 0$. Comme (u_n) converge vers l, il existe $N \in \mathbb{N}$ tel que $E_N \subset [l-\epsilon, l+\epsilon]$. Donc $0 \le \nu_N - w_N \le 2\epsilon$. Comme $(\nu_n - w_n)$ est décroissante, on a $0 \le \nu_n - w_n \le 2\epsilon$ pour tout $n \ge N$. Ceci prouve que $(\nu_n - w_n)$ tend vers 0.

SOLUTION 19.

1. Appliquons le lemme de Césaro à la suite de terme général

$$v_n = u_{n+1} - u_n.$$

La suite de terme général

$$S_{n-1} = \frac{\nu_0 + \ldots + \nu_n}{n} = \frac{u_n - u_0}{n}$$

tend vers ℓ et puisque u_0/n tend vers 0,

$$\lim_{n\to +\infty}\frac{u_n}{n}=\ell.$$

- **2.** Puisque $(u_n)_{n\geqslant 0}$ est à termes positifs, ℓ appartient à $\mathbb{R}_+ \cup \{+\infty\}$.
 - ightharpoonup Cas où $\ell > 0$. Alors u_n est strictement positif à partir d'un certain rang et par continuité du logarithme,

$$\lim_{n\to+\infty} \left[\ln(u_{n+1}) - \ln(u_n) \right] = \ln(\ell),$$

et donc, d'après le résultat de la question 1.,

$$\lim_{n\to+\infty}\frac{\ln(u_n)}{n}=\ln(\ell),$$

et par continuité de l'exponentielle,

$$\lim_{n\to+\infty} \sqrt[n]{u_n} = \ell.$$

ightharpoonup Cas où $\ell = +\infty$. Alors \mathfrak{u}_n est strictement positif à partir d'un certain rang et

$$\lim_{n \to +\infty} \left[\ln(u_{n+1}) - \ln(u_n) \right] = +\infty,$$

et donc, d'après le résultat de la question 1.,

$$\lim_{n\to +\infty}\frac{\ln(u_n)}{n}=+\infty,$$

et par composition des limites,

$$\lim_{n\to +\infty} \sqrt[n]{u_n} = +\infty.$$

On remarque que $\forall n \geq 1$,

$$\frac{\binom{2n+2}{n+1}}{\binom{2n}{n}} = \frac{4n+2}{n+1},$$

ainsi

$$\lim_{n\to+\infty}\frac{\binom{2n+2}{n+1}}{\binom{2n}{n}}=4,$$

et d'après le résultat de la question 2.,

$$\lim_{n\to+\infty} a_n = 4.$$

On remarque que $\forall n \geqslant 1$,

$$\frac{\sqrt[n]{n!}}{n} = \sqrt[n]{\frac{n!}{n^n}}.$$

Or,

$$\frac{(n+1)!}{(n+1)^{n+1}}\frac{n^n}{n!}=\frac{n^n}{(n+1)^n}=\frac{1}{(1+\frac{1}{n})^n}.$$

De plus,

$$\lim_{n\to+\infty}\left(1+\frac{1}{n}\right)^n=e,$$

et d'après le résultat de la question 2.,

$$\lim_{n\to +\infty} b_n = \frac{1}{e}.$$

SOLUTION 20.

3. Puisque

$$k\ln\left(1-\frac{1}{k}\right)\sim-1,$$

on a par continuité de l'exponentielle,

$$\lim_{k\to +\infty} \left(1-\frac{1}{k}\right)^k = \frac{1}{e},$$

et d'après le lemme de Césaro,

$$\lim_{n\to +\infty}\alpha_n=\frac{1}{e}.$$

2. Puisque

$$\ln(\beta_n) = \frac{1}{n} \sum_{k=1}^k \frac{\ln(k)}{k},$$

et que

$$\lim_{k\to+\infty}\frac{\ln(k)}{k}=0,$$

on a d'après le lemme de Césaro,

$$\lim_{n\to+\infty}\ln(\beta_n)=0,$$

et par continuité de l'exponentielle,

$$\lim_{n\to +\infty}\beta_n=1.$$

SOLUTION 21.

On montre par récurrence que $u_n > 0$ pour tout n. On en déduit que (u_n) est strictement croissante puisque

$$u_{n+1} - u_n = \frac{1}{u_n} > 0.$$

Si (u_n) était majorée, elle convergerait vers une limite l qui vérifierait $l = l + \frac{1}{l}$, ce qui est impossible. Ainsi (u_n) est croissante et non majorée : $\lim_{n \to +\infty} u_n = +\infty$.

On remarque que pour tout $n \in \mathbb{N}$:

$$u_{n+1}^2 - u_n^2 = 2 + \frac{1}{u_n^2}$$

Donc la suite (v_n) de terme général $v_n = u_{n+1}^2 - u_n^2$ converge vers 2. Le lemme de Césaro nous permet de dire que

$$\frac{\sum_{k=0}^{n-1}\nu_k}{n} = \frac{u_n^2 - u_0^2}{n}$$

tend aussi vers 2. Ainsi $u_n^2 \sim 2n$. Comme (u_n) est une suite positive, on en déduit $u_n \sim \sqrt{2n}$.

SOLUTION 22.

1. Tout d'abord, une récurrence évidente montre que $u_n>0$ et $v_n>0$ pour tout $n\in\mathbb{N}$. Ensuite, pour tout $n\in\mathbb{N}$, $v_{n+1}-u_{n+1}=\frac{1}{2}\left(v_n-u_n\right)$. Puisque $v_0-u_0>0$, on en déduit par une récurrence évidente que $v_n-u_n>0$ i.e. $u_n< v_n$ pour tout $n\in\mathbb{N}$. On en déduit également que la suite de terme général v_n-u_n est géométrique de raison $\frac{1}{2}$ et donc $\lim_{n\to+\infty}v_n-u_n=0$. Pour tout $n\in\mathbb{N}$

$$\begin{split} u_{n+1}-u_n &= \frac{1}{2} \left(\sqrt{u_n \nu_n} - u_n \right) = \frac{\sqrt{u_n}}{2} \left(\sqrt{\nu_n} - \sqrt{u_n} \right) \geqslant 0 \\ \nu_{n+1}-\nu_n &= \frac{1}{2} \left(\sqrt{u_n \nu_n} - \nu_n \right) = \frac{\sqrt{\nu_n}}{2} \left(\sqrt{u_n} - \sqrt{\nu_n} \right) \leqslant 0 \end{split}$$

Ainsi (u_n) est croissante tandis que (v_n) est décroissante.

Les suites (u_n) et (v_n) sont donc adjacentes : elles convergent donc vers une limite commune l.

2. On rappelle l'inégalité classique $\ln(1+\mathfrak{u})\leqslant\mathfrak{u}$ pour tout $\mathfrak{u}\in]-1,+\infty[$. Il s'ensuit que

$$\ln y - \ln x = \ln \frac{y}{x} = \ln \left(1 + \frac{y - x}{x} \right) \leqslant \frac{y - x}{x}$$
$$\ln x - \ln y = \ln \frac{x}{y} = \ln \left(1 + \frac{x - y}{y} \right) \leqslant \frac{x - y}{y}$$

On en déduit alors facilement l'inégalité voulue en tenant compte du fait que y-x>0 et x-y<0.

3. On a vu à la question **1** que $0 < u_n < v_n$ pour tout $n \in \mathbb{N}$, ce qui justifie que (c_n) est bien définie. Pour tout $n \in \mathbb{N}$,

$$\begin{split} c_{n+1} &= \frac{\nu_{n+1} - u_{n+1}}{\ln \nu_{n+1} - \ln u_{n+1}} \\ &= \frac{\nu_n - u_n}{\ln \left(\nu_n + \sqrt{u_n \nu_n}\right) - \ln \left(u_n + \sqrt{u_n \nu_n}\right)} \\ &= \frac{\nu_n - u_n}{\ln \left(\sqrt{\nu_n} \left(\sqrt{u_n} + \sqrt{\nu_n}\right)\right) - \ln \left(\sqrt{u \nu_n} \left(\sqrt{u_n} + \sqrt{\nu_n}\right)\right)} \\ &= \frac{\nu_n - u_n}{\ln \nu_n - \ln u_n} = c_n \end{split}$$

Ainsi la suite (c_n) est bien constante.

4. D'après la question 2 et le fait que $0 < u_n < \nu_n$ pour tout $n \in \mathbb{N}$, on a $\frac{1}{\nu_n} \leqslant \frac{\ln \nu_n - \ln u_n}{\nu_n - u_n} \leqslant \frac{1}{u_n}$ i.e. $u_n \leqslant c_n \leqslant \nu_n$ pour tout $n \in \mathbb{N}$. Le théorème des gendarmes assure que (c_n) converge vers l. Mais comme (c_n) est constante,

$$l = c_0 = \frac{b - a}{\ln b - \ln a}$$

SOLUTION 23.

1. Posons pour tout $n \ge 0$,

$$\beta_n = u_n - v_n$$
.

On a alors $\forall n \geq 0$,

$$\beta_{n+1} = (p-q)\beta_n$$

ainsi $\forall n \geq 0$,

$$\beta_n = (p - q)^n (u_0 - v_0).$$

Puisque p + q = 1 et 0 < q < p, on a

$$0$$

et donc

$$\lim_{n\to+\infty}(u_n-v_n)=0.$$

De plus, $\forall n \geq 0$,

$$u_{n+1} - u_n = -(v_{n+1} - v_n)$$
$$= -a\beta_n$$

Lorsque $u_0 = v_0$, les deux suites sont constantes. Dans le cas contraire, les calculs précédents prouvent que les deux suites sont monotones de sens de variation contraires :elles sont donc adjacentes.

2. On remarque que la suite de terme général

$$\alpha_n = u_n + \nu_n$$

est constante. Si on note ℓ la limite commune des deux suites, on a donc par passage à la limite

$$2\ell = u_0 + v_0$$

d'où

$$\ell = \frac{\mathfrak{u}_0 + \mathfrak{v}_0}{2}.$$

Solution 24.

Puisque $u_0 \leq v_0$ et $\forall n \geq 0$,

$$v_{n+1} - u_{n+1} = \frac{\left(\sqrt{u_n} - \sqrt{v_n}\right)^2}{2} \geqslant 0,$$

 $v_n \geqslant u_n$ pour tout $n \geqslant 0$. De plus

$$v_{n+1}-v_n=\frac{u_n-v_n}{2}\leqslant 0,$$

et $(\nu_n)_{n\geqslant 0}$ est décroissante minorée par \mathfrak{u}_0 donc converge vers ℓ_1 . De même,

$$u_{n+1} - u_n = \sqrt{u_n} \left[\sqrt{v_n} - \sqrt{u_n} \right] \geqslant 0,$$

et $(\mathfrak{u}_n)_{n\geqslant 0}$ est croissante majorée par ν_0 donc converge vers ℓ_2 . Et puisque $\forall n\geqslant 0$,

$$v_{n+1} = \frac{u_n + v_n}{2},$$

par passage à la limite,

$$\ell_2 = \frac{\ell_1 + \ell_2}{2},$$

et donc $\ell_1 = \ell_2$: les deux suites sont adjacentes.

SOLUTION 25.

1. Soient a et b strictement positifs, on remarque que

$$\frac{2}{a+b} \leqslant \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$$

si et seulement si

$$\frac{2}{a+b} \leqslant \frac{a+b}{2ab}$$

ie

$$4ab \leq (a+b)^2$$

soit encore

$$0 \leqslant (a-b)^2$$
.

La dernière inégalité étant acquise, le résultat est démontré.

2. Par une récurrence immédiate , on a $\forall n \in \mathbb{N}$,

$$a_n > 0$$
 et $b_n > 0$.

Les deux suites sont donc bien définies. On remarque que, pour tout $n \in \mathbb{N}$, on a

$$\alpha_{n+1}\leqslant\alpha_n$$

 $si\ et\ seulement\ si$

$$b_n \leqslant b_{n+1}$$

si et seulement si

$$b_n \leq a_n$$
.

Il suffit donc de démontrer les inégalités

$$\forall n \in \mathbb{N}, b_n \leqslant a_n$$
.

- \blacktriangleright Montrons le cas $\mathfrak{n}=0$: c'est l'hypothèse $\mathfrak{b}_0\leqslant\mathfrak{a}_0$ de l'énoncé.
- ▶ Montrons les cas $n \ge 1$; on a alors $n-1 \ge 0$, d'où , en appliquant le résultat de la question a. pour $a = a_{n-1}$ et $b = b_{n-1}$,

$$\frac{2}{a_{n-1} + b_{n-1}} \leqslant \frac{1}{2} \left(\frac{1}{a_{n-1}} + \frac{1}{b_{n-1}} \right)$$

soit encore

$$\frac{1}{a_n} \leqslant \frac{1}{b_n},$$

c'est-à-dire

$$b_n\leqslant \alpha_n$$

puisque $a_n > 0$.

3. Démontrons l'inégalité par récurrence sur $\mathfrak n.$ Notons , pour tout $\mathfrak n\in\mathbb N,\,\mathcal I_\mathfrak n$ la proposition :

$$0\leqslant a_n-b_n\leqslant \frac{a_0-b_0}{2^n}.$$

- $\blacktriangleright \ \mathcal{I}_0 \ \mathrm{est} \ \mathrm{v\'erifi\'ee} \ \mathrm{puisque} \ 0 \leqslant \alpha_0 b_0 \leqslant \alpha_0 b_0.$
- \blacktriangleright Montrons que la propriété \mathcal{I}_n est héréditaire. Supposons \mathcal{I}_n vérifiée. On a alors

$$a_{n+1} - b_{n+1} = \frac{a_n + b_n}{2} - \frac{2a_n b_n}{a_n + b_n}$$

$$= \frac{(a_n - b_n)^2}{2(a_n + b_n)}$$

$$= \frac{a_n - b_n}{2} \times \frac{a_n - b_n}{a_n + b_n}$$

Or , on a démontré à la question \mathbf{c} . que

$$a_n - b_n \geqslant 0$$
,

d'où

$$0 \leqslant \frac{a_n - b_n}{a_n + b_n} \leqslant \frac{a_n}{a_n + b_n} \leqslant 1$$

puisque $a_n > 0$ et $b_n > 0$ ainsi

$$0 \leqslant a_{n+1} - b_{n+1} \leqslant \frac{1}{2}(a_n - b_n)$$

 \mathcal{I}_{n+1} est donc vérifiée.

- ▶ D'après le principe de récurrence , l'inégalité \mathcal{I}_n est vraie pour tout $n \in \mathbb{N}$.
- **4.** D'après le résultat de la question \mathbf{b} ., $(a_n)_{n\in\mathbb{N}}$ est décroissante et $(b_n)_{n\in\mathbb{N}}$ est croissante, de plus, on déduit de l'inégalité établie à la question \mathbf{c} . et du théorème d'encadrement que

$$\lim_{n\to+\infty}(a_n-b_n)=0.$$

Les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont donc adjacentes.

5. Pour tout $n \in \mathbb{N}$,

$$a_{n+1}b_{n+1} = \frac{a_n + b_n}{2} \frac{2a_n b_n}{a_n + b_n} = a_n b_n.$$

la suite $(a_nb_n)_{n\in\mathbb{N}}$ est donc constante. Soit ℓ la limite commune de $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$, puisque

$$\forall n \in \mathbb{N}, \quad a_n b_n = a_0 b_0,$$

 $\ell^2 = a_0 b_0$, , et par passage à la limite dans l'inégalité

$$a_n \geqslant 0$$
,

on a $\ell \geqslant 0$ et donc

$$\lim_{n\to +\infty} a_n = \lim_{n\to +\infty} b_n = \sqrt{a_0 b_0}.$$

SOLUTION 26.

1. Etudions les variations de P_n sur [0,1]. La fonction polynôme P_n est continue sur [0,1] or $P_n(0)=1$ et $P_n(1)=2-n\leqslant 0$, le théorème des valeurs intermédiaires permet donc de conclure qu'il existe $c\in [0,1]$ tel que $P_n(c)=0$. P_n est dérivable sur [0,1] et $\forall x\in [0,1[$,

$$P'_n(x) = n(x^{n-1} - 1) < 0.$$

La fonction polynôme P_n est donc strictement décroissante sur [0,1], il existe donc une unique racine u_n de P_n sur [0,1].

2. Pour tout $n \ge 2$, $P_n(u_{n+1}) = u_{n+1}^n - nu_{n+1} + 1$. Or $P_{n+1}(u_{n+1}) = 0$ i.e. $u_{n+1}^{n+1} - (n+1)u_{n+1} + 1 = 0$ et donc $nu_{n+1} = u_{n+1}^{n+1} - u_{n+1} + 1$. On en déduit que

$$P_n(u_{n+1}) = u_{n+1}^n - u_{n+1}^{n+1} + u_{n+1} = u_{n+1}^n (1 - u_{n+1}) + u_{n+1}$$

 $\mathrm{Puisque}\ u_{n+1} \in [0,1],\ P_n(u_{n+1}) \geqslant 0.\ \mathrm{Or}\ P_n\ \mathrm{est}\ \mathrm{strictement}\ \mathrm{d\'{e}croissante}\ \mathrm{sur}\ [0,1]\ \mathrm{et}\ P_n(u_n) = 0\ \mathrm{donc}\ u_{n+1} \leqslant u_n.$

3. Pour tout $n \ge 2$,

$$n\mathfrak{u}_n-1=\mathfrak{u}_n^n\leqslant 1,$$

d'où

$$0 \leqslant u_n \leqslant \frac{2}{n}$$

ainsi, d'après le théorème d'encadrement,

$$\lim_{n\to+\infty}u_n=0.$$

4. On reprend l'encadrement de la question précédente,

$$0 \leqslant nu_n - 1 \leqslant \left(\frac{2}{n}\right)^n$$

on a donc d'après le théorème d'encadrement,

$$\lim_{n\to +\infty}(nu_n-1)=0$$

et ainsi

$$u_n \sim \frac{1}{n}$$
.

SOLUTION 27.

On a $g_n(0) = -1$ et $g_n(1) = 1$ donc d'après le théorème des valeurs intermédiaires g_n s'annule sur [0, -1]. La fonction g_n étant strictement croissante sur \mathbb{R}_+ en tant que somme de fonctions strictement croissantes sur cet intervalle, elle ne prend qu'une seule fois la valeur 0, d'où l'existence et l'unicité de a_n . Remarquons que

$$g_{n+1}(a_n) = a_n^{n+1} + a_n - 1$$

$$= a_n^{n+1} - a_n^n$$

$$= a_n^n(a_n - 1) < 0$$

Ainsi $a_n \leqslant a_{n+1}$ d'après les variations de g_{n+1} . La suite $(a_n)_{n\geqslant 1}$ étant positive, croissante et majorée par 1, elle converge vers une limite $0\leqslant \ell\leqslant 1$. Prouvons que $\ell=1$ par l'absurde en supposant $\ell<1$. Dans ce cas, $\forall n\geqslant 1$,

$$0 \leqslant a_n \leqslant \ell^n$$

et donc

$$\lim_{n\to+\infty}a_n^n=0,$$

et donc, puisque $1 - a_n = a_n^n$,

$$\lim_{n\to +\infty} a_n = 1 \neq \ell,$$

ce qui absurde. Ainsi

$$\lim_{n\to +\infty}\alpha_n=1.$$

Solution 28.

1. Posons pour tout x > 0,

$$f(x) = x - n \ln(x).$$

La fonction f est dérivable sur \mathbb{R}_+ et sur cet intervalle,

$$f'(x) = \frac{x - n}{x}.$$

La fonction f est donc strictement décroissante sur]0,n] et strictement croissante sur $[n,+\infty[$. On a de plus

$$\lim_{x \to 0^+} f(x) = +\infty$$

et d'après les croissances comparées,

$$\lim_{x\to+\infty} f(x) = +\infty.$$

Puisque $n \ge 3 \ge e$, on a

$$f(n) = n - n \ln(n) < 0.$$

L'équation f(x) = 0 admet donc exactement deux solutions $u_n < n < v_n$.

2. Puisque $\nu_n > n$, on a

$$\lim_{n\to +\infty} \nu_n = +\infty.$$

Puisque $f(2) = 2 - n \ln(2) < 0$, on a

$$0 < u_n < 2$$

d'où

$$0 < \ln(u_n) = \frac{u_n}{n} < \frac{2}{n}$$

et d'après le théorème d'encadrement,

$$\lim_{n\to+\infty}\ln(\mathfrak{u}_n)=0,$$

et par continuité de l'exponentielle,

$$\lim_{n\to +\infty} u_n = 1.$$

SOLUTION 29.

1. Notons f_n l'application suivante :

$$\begin{array}{cccc} f_n: & \mathbb{R}_+ & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & x^n + x^{n-1} + \dots + x - 1 \end{array}$$

L'application f_n est clairement continue et même dérivable et

$$\forall x \in \mathbb{R}_+, f'_n(x) = nx^{n-1} + \dots + 1 > 0.$$

 f_n est donc strictement croissante. De plus, $f_n(0) = -1$ et $\lim_{x \to +\infty} f_n(x) = +\infty$. L'application f_n induit donc une bijection de \mathbb{R}_+ dans $[-1; +\infty[$. L'équation $f_n(x) = 0$ admet donc une unique solution strictement positive a_n .

2. On constate que pour tout $n \in \mathbb{N}^*$

$$f_n(a_{n+1}) = -a_{n+1}^{n+1} < 0 = f_n(a_n).$$

La stricte croissance de f_n permet donc que conclure que $a_{n+1} < a_n$ pour tout $n \in \mathbb{N}^*$.

3. La suite (a_n) est décroissante et minorée par 0 donc elle converge. Remarquons que

$$\alpha_n^{n+1} - 1 = (\alpha_n - 1)(\alpha_n^n + \alpha_n^{n-1} + \dots + \alpha_n + 1) = 2(\alpha_n - 1)$$

Comme (a_n) est strictement décroissante et positive,

$$0 \leqslant a_n < a_2 < a_1 = 1 \text{ pour } n \geqslant 3.$$

On en déduit donc que $0 \leqslant \alpha_n^{n+1} \leqslant \alpha_2^{n+1}$ pour $n \geqslant 3$. De plus, $\lim_{n \to +\infty} \alpha_2^{n+1} = 0$ car $0 \leqslant \alpha_2 < 1$. Donc $\lim_{n \to +\infty} \alpha_n^{n+1} = 0$. Ainsi

$$\lim_{n\to +\infty} 2(\alpha_n-1) = \lim_{n\to +\infty} \alpha_n^{n+1} - 1 = -1$$

Pra conséquent, $\lim_{n\to+\infty} a_n = \frac{1}{2}$.

SOLUTION 30.

- 1. Il suffit d'étudier la fonction $x \mapsto \tan x x$ sur l'intervalle $\left[-\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right]$.
- 2. On a $-\frac{\pi}{2} + n\pi \leqslant \mathfrak{u}_n \leqslant \frac{\pi}{2} + n\pi.$ On en déduit

$$1 - \frac{2}{n} \leqslant \frac{u_n}{n\pi} \leqslant 1 + \frac{2}{n}$$

Le théorème des gendarmes nous dit que $\lim_{n\to+\infty}\frac{u_n}{n\pi}=1$ i.e. $u_n\sim n\pi$.

3. Par π -périodicité de tan, on a $\tan \nu_n = u_n$. Remarquons que $-\frac{\pi}{2} < \nu_n < \frac{\pi}{2}$. On a donc

$$v_n = \arctan(\tan v_n) = \arctan(u_n)$$

- Or $\lim_{n \to +\infty} u_n = +\infty$. Donc $\lim_{n \to +\infty} v_n = \frac{\pi}{2}$.
- **4.** Posons $w_n = v_n \frac{\pi}{2}$. On a donc $u_n = w_n + \frac{\pi}{2} + n\pi$. Et donc $-\frac{1}{\tan v_n} = u_n$. D'après la question précédente, $w_n \underset{n \to +\infty}{\longrightarrow} 0$ donc $\tan w_n \sim w_n$. De plus, $u_n \sim n\pi$. Donc $w_n \sim -\frac{1}{n\pi}$. Un développement asymptotiques à 3 termes de (u_n) est donc :

$$u_n = n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + o\left(\frac{1}{n}\right)$$

SOLUTION 31.

- 1. Soit $n \in \mathbb{N}^*$. Posons $f_n : x \mapsto \cos x nx$. f_n est dérivable et $f'_n(x) = -\sin x n < 0$ pour tout $x \in [0,1]$. f_n est continue et strictement décroissante sur [0,1]. De plus, $f_n(0) = 1 > 0$ et $f_n(1) = \cos(1) n < 0$. On en déduit que f_n s'annule une unique fois sur [0,1]. D'où l'existence et l'unicité de x_n .
- **2.** On a $\cos x_n = nx_n$ et donc $x_n = \frac{\cos x_n}{n}$ pour tout $n \in \mathbb{N}^*$. On en déduit que $|x_n| \leq \frac{1}{n}$ pour tout $n \in \mathbb{N}^*$ puis que (x_n) converge vers 0.
- 3. Soit $n \in \mathbb{N}^*$. Remarquons que $f_n \geqslant f_{n+1}$ sur [0,1]. Donc $f_n(x_{n+1}) \geqslant f_{n+1}(x_{n+1}) = 0 = f_n(x_n)$. La stricte décroissance de f_n implique que $x_{n+1} \leqslant x_n$. Par conséquent la suite (x_n) est décroissante.
- **4.** Comme $x_n \xrightarrow[n \to +\infty]{} 0$ et que cos est continue en 0, $\cos x_n \xrightarrow[n \to +\infty]{} \cos 0 = 1$. Donc $x_n = \frac{\cos x_n}{n} \underset{n \to +\infty}{\sim} \frac{1}{n}$.
- $5. \text{ Comme } x_n \underset{n \to +\infty}{\longrightarrow} 0, \ \cos x_n \underset{n \to +\infty}{=} 1 \frac{x_n^2}{2} + o(x_n^2). \ \text{Or } x_n \underset{n \to +\infty}{\sim} \frac{1}{n} \ \text{donc } \cos x_n \underset{n \to +\infty}{=} 1 \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right). \ \text{Ainsi } x_n = \frac{\cos x_n}{n} \underset{n \to +\infty}{=} \frac{1}{n} \frac{1}{2n^3} + o\left(\frac{1}{n^3}\right). \ \text{On en déduit que } x_n \frac{1}{n} \underset{n \to +\infty}{\sim} -\frac{1}{2n^3}.$

SOLUTION 32.

- 1. Soit $n \ge 2$. On étudie la fonction f_n définie par $f_n(x) = x \ln x n$ pour x > 0. f_n est dérivable sur \mathbb{R}_+^* et pour tout x > 0, $f_n'(x) = 1 \frac{1}{x}$. f_n est donc strictement croissante sur]0,1] et strictement décroissante sur $[1,+\infty[$. De plus, $\lim_{n\to 0^+} f_n(x) = +\infty$, $f_n(1) = 1 n < 0$ car $n \ge 2$ et $\lim_{n\to +\infty} f_n(x) = +\infty$ par croissances comparées. Comme f_n est continue sur \mathbb{R}_+^* , le théorème de la bijection appliqué à f_n sur les intervalles]0,1[et $]1,+\infty[$ assure qu'il existe une unique solution à l'équation $f_n(x) = 0$ sur chacun des intervalles]0,1[et $]1,+\infty[$. Comme 1 n'est évidemment pas solution, l'équation $f_n(x) = 0$ admet exactement deux solutions.
- 2. a. Comme x_n est la plus petite des deux solutions, $x_n \in]0,1[$ pour tout $n \ge 2$. Or $\ln x_n = x_n n$ pour tout $n \ge 2$. Donc $\lim_{n \to +\infty} \ln x_n = -\infty$. Par conséquent, $\lim_{n \to +\infty} x_n = 0$.
 - **b.** Puisque pour $n \ge 2$, $\ln x_n = -n + x_n$, $x_n = e^{-n}e^{x_n}$. Or $x_n \xrightarrow[n \to +\infty]{} 0$ donc $e^{x_n} \xrightarrow[n \to +\infty]{} 1$. Ceci prouve que $x_n \xrightarrow[n \to +\infty]{} e^{-n}$.
 - $\begin{array}{lll} \textbf{c.} \ \operatorname{Remarquons} \ \operatorname{d\`ej\`a} \ \operatorname{que} \ u_n & \underset{n \to +\infty}{=} \ o(e^{-n}). \ \operatorname{On} \ \operatorname{a} \ \operatorname{pour} \ \operatorname{tout} \ n \geqslant 2, \ x_n = \ln(e^{-n} + u_n) + n = \ln(1 + e^n u_n). \ \operatorname{Or} \ e^n u_n & \underset{n \to +\infty}{=} \ o(1) \ \operatorname{donc} \ \ln(1 + e^n u_n) & \underset{n \to +\infty}{\sim} \ e^n u_n. \ \operatorname{Ainsi} \ e^n u_n & \underset{n \to +\infty}{\sim} \ x_n & \underset{n \to +\infty}{\sim} \ e^{-n}. \ \operatorname{D'où} \ u_n & \underset{n \to +\infty}{\sim} \ e^{-2n}. \end{array}$
 - d. Posons $s_n=u_n-e^{-2n}$ pour $n\geqslant 2$ de sorte que $s_n\underset{n\to +\infty}{=}e^{-2n}.$ On rappelle que

$$x_n = \ln(1 + e^n u_n) = \ln(1 + e^{-n} + e^n s_n)$$

D'une part,

$$x_n = e^{-n} + e^{-2n} + o(e^{-2n})$$

et d'autre part, en posant $\alpha_n = e^{-n} + e^n s_n$,

$$\ln(1+\alpha_n) = \alpha_n - \frac{\alpha_n^2}{2} + o(\alpha_n^2)$$

Or $\alpha_n \sim e^{-n}$ donc

$$\ln(1+\alpha_n) = e^{-n} + e^n s_n - \frac{e^{-2n}}{2} + o(e^{-2n})$$

On en déduit que $e^n s_n \underset{n \to +\infty}{=} \frac{3}{2} e^{-2n} + o(e^{-2n})$ ou encore $s_n \underset{n \to +\infty}{\sim} \frac{3}{2} e^{-3n}$.

- 3. a. Pour tout $n \geqslant 2$, $y_n \geqslant 1$ donc $y_n = \ln y_n + n \geqslant n$. En particulier, $\lim_{n \to +\infty} y_n = +\infty$.
 - **b.** Comme $y_n \xrightarrow[n \to +\infty]{} +\infty$, $\ln y_n = o(y_n)$. Donc $n = y_n \ln y_n \sim y_n$.
 - c. Remarquons tout d'abord que $\nu_n = o(n)$. On a pour tout $n \ge 2$,

$$\nu_n = y_n - n = \ln y_n = \ln (n + \nu_n) = \ln n + \ln \left(1 + \frac{\nu_n}{n}\right)$$

 $\mathrm{Comme}\ \tfrac{\nu_n}{n} \underset{_{n \to +\infty}}{=} o(1), \ \ln\left(1+\tfrac{\nu_n}{n}\right) \underset{_{n \to +\infty}}{\sim} \tfrac{\nu_n}{n}. \ A \ \mathrm{fortiori}, \ \ln\left(1+\tfrac{\nu_n}{n}\right) \underset{_{n \to +\infty}}{=} o(\nu_n). \ \mathrm{Ceci} \ \mathrm{prouve} \ \mathrm{que}\ \nu_n \underset{_{n \to +\infty}}{\sim} \ln n.$

 $\mathbf{d.} \ \ \mathrm{Posons} \ t_n = \nu_n - \ln n \ \mathrm{pour} \ n \geqslant 2. \ \mathrm{On} \ \mathrm{rappelle} \ \mathrm{que} \ \mathrm{pour} \ n \geqslant 2, \ \nu_n = \ln n + \ln \left(1 + \frac{\nu_n}{n} \right). \ \mathrm{Ainsi}$

$$t_n = \ln\left(1 + \frac{\nu_n}{n}\right) \underset{n \to +\infty}{\sim} \frac{\nu_n}{n} \underset{n \to +\infty}{\sim} \frac{\ln n}{n}$$

SOLUTION 33.

1. Soit $k \in \mathbb{N}^*$. Puisque $\forall t \in [k, k+1]$,

$$\frac{1}{k+1} \leqslant \frac{1}{t} \leqslant \frac{1}{k},$$

on obtient après intégration sur [k, k+1],

$$\frac{1}{k+1} \leqslant \int_{k}^{k+1} \frac{\mathrm{d}t}{t} \leqslant \frac{1}{1+k}.$$

2. Etudions le sens de variation de la suite $(u_n)_{n \ge 0_1}$. $\forall n \ge 0_1$,

$$u_{n+1} - u_n = \frac{1}{n+1} - \ln(n+1) + \ln(n)$$

En appliquant le résultat de la question 1. à k = n, on obtient

$$u_{n+1} - u_n \leq 0$$

ainsi $(u_n)_{n\geqslant 1}$ est-elle croisssante.

Posons

$$S_n = \sum_{k=1}^k \frac{1}{k}$$

et

$$u_n = S_n - \ln(n)$$
.

En additionnant les n-1 inégalités de la question 1. correspondant aux valeurs entières k comprises entre 1 et n-1, on obtient :

$$S_n - 1 \leqslant \ln(n) \leqslant S_n - \frac{1}{n},$$

et donc

$$\frac{1}{n} \leqslant u_n \leqslant 1.$$

la suite $(u_n)_{n\geqslant 0}$ est croissante majorée par 1 , elle est donc convergente.

SOLUTION 34.

Puisque la fonction $t \longmapsto \frac{1}{t}$ est décroissante sur \mathbb{R}_+^* , pour tout entier naturel k non nul, on a

$$\forall\, k\,\leqslant t\leqslant k+1\quad,\quad \frac{1}{k+1}\leqslant \frac{1}{t}\leqslant \frac{1}{k},$$

ce qui entraîne par positivité de l'intégrale,

$$\frac{1}{k+1} = \int_{k}^{k+1} \frac{dt}{k+1} \leqslant \frac{dt}{t} \leqslant \int_{k}^{k+1} \frac{dt}{k} = \frac{1}{k}.$$

Soit $n \ge 1$. En additionnant les inégalités précédentes pour k variant de n à 2n, on obtient en appliquant la relation de Chasles pour les intégrales,

$$\sum_{k=n}^{2n}\frac{1}{k+1}\leqslant \int_{n}^{2n+1}\frac{dt}{t}\leqslant \sum_{k=n}^{2n}\frac{1}{k},$$

c'est-à-dire,

$$\sum_{k=n+1}^{2n+1} \frac{1}{k} \leqslant \ln(2n+1) - \ln(n) \leqslant u_n,$$

ie

$$u_n - \frac{1}{n} + \frac{1}{2n+1} \leqslant \ln\left(2 + \frac{1}{n}\right) \leqslant u_n,$$

et finalement,

$$\ln\left(2+\frac{1}{n}\right)\leqslant u_n\leqslant \ln\left(2+\frac{1}{n}\right)+\frac{1}{n}-\frac{1}{2n+1}.$$

La fonction ln étant continue en 2, le théorème d'encadrement permet de conclure que

$$\lim_{n\to+\infty}\mathfrak{u}_n=\ln(2).$$

SOLUTION 35.

Les suites (a_n) et (b_n) sont convergentes donc bornées. Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que

$$n \geqslant N \Rightarrow |a_n - a| < \epsilon \text{ et } |b_n - b| < \epsilon$$

Soit maintenant $n \ge 2N$. On va couper la somme suivante en 3 parties :

$$\sum_{k=0}^{n} a_k b_{n-k} = \sum_{k=0}^{N-1} a_k b_{n-k} + \sum_{k=N}^{n-N} a_k b_{n-k} + \sum_{k=n-N+1}^{n} a_k b_{n-k}$$

(ceci est valide car on a bien $N \leq n - N$). Par conséquent,

$$\begin{split} \frac{1}{n+1} \sum_{k=0}^{n} a_k b_{n-k} - a b &= \frac{1}{n+1} \sum_{k=0}^{N-1} (a_k b_{n-k} - a b) \\ &+ \frac{1}{n+1} \sum_{k=N}^{n-N} (a_k b_{n-k} - a b) \\ &+ \frac{1}{n+1} \sum_{k=n-N+1}^{n} (a_k b_{n-k} - a b) \end{split}$$

Par inégalité triangulaire, on a donc :

$$\begin{split} \left| \frac{1}{n+1} \sum_{k=0}^{n} a_k b_{n-k} - a b \right| &\leqslant \frac{1}{n+1} \sum_{k=0}^{N-1} |a_k b_{n-k} - a b| \\ &+ \frac{1}{n+1} \sum_{k=N}^{n-N} |a_k b_{n-k} - a b| \\ &+ \frac{1}{n+1} \sum_{k=n-N+1}^{n} |a_k b_{n-k} - a b| \end{split}$$

Pour $0 \le k \le N-1$, on a par une majoration brutale :

$$|a_k b_{n-k} - ab| \le |a_k b_{n-k}| + |ab| \le 2M^2$$

De même, pour $n - N + 1 \le k \le N$, on a

$$|a_k b_{n-k} - ab| \leq 2M^2$$

Enfin, pour $N \leqslant k \leqslant n-N$, on a à la fois $k \geqslant N$ et $n-k \geqslant N$. Donc $|a_k-a| < \epsilon$ et $|b_{n-k}-b| < \epsilon$. De manière classique :

$$|a_k b_{n-k} - ab| = |a_k b_{n-k} - a_k b + a_k b - ab|$$

 $\leq |a_k| |b_{n-k} - b| + |b| |a - a_k| \leq 2M\epsilon$

Par conséquent,

$$\left| \frac{1}{n+1} \sum_{k=0}^{n} a_k b_{n-k} - ab \right| \leqslant \frac{4NM^2}{n+1} + \frac{2M(n-2N)\epsilon}{n+1}$$
$$\leqslant \frac{4NM^2}{n+1} + 2M\epsilon$$

Or $\lim_{n \to +\infty} \frac{4NM^2}{n+1} = 0$ donc il existe N' tel que

$$n\geqslant N'\Rightarrow \frac{4NM^2}{n+1}<\epsilon$$

Pour $n \ge \max(N, N')$, on a donc :

$$\left|\frac{1}{n+1}\sum_{k=0}^{n}a_{k}b_{n-k}-ab\right|\leqslant (1+2M)\varepsilon$$

Quitte à changer ε en $\frac{\varepsilon}{1+2M}$, on a le résultat voulu.

SOLUTION 36.

- 1. On sait (ou on redémontre) que pour $m, k \in \mathbb{N}^*, k \binom{m}{k} = m \binom{m-1}{k-1}$. Soit $n \in \mathbb{N}^*$. Il suffit alors de prendre m = n+p+1 et k = n+1.
- 2. On utilise le principe de la sommation d'Abel:

$$\begin{split} S_n &= \sum_{k=1}^n u_k = \sum_{k=1}^n (k+1-k) u_k = \sum_{k=1}^n (k+1) u_k - \sum_{k=1}^n k u_k \\ &= (n+1) u_{n+1} - u_1 + \sum_{k=1}^n (k+1) u_k - \sum_{k=1}^n (k+1) u_{k+1} = (n+1) u_{n+1} - u_1 + \sum_{k=1}^n (k+1) (u_k - u_{k+1}) \end{split}$$

Or d'après la question précédente, $(k+1)(u_{k+1}-u_k)=pu_{k+1},$ d'où :

$$\begin{split} S_n &= (n+1)u_{n+1} - u_1 + p \sum_{k=1}^n u_{k+1} = (n+1)u_{n+1} - u_1 + p(S_n - u_1 + u_{n+1}) = (n+p+1)u_{n+1} - (p+1)u_1 + pS_n \\ \mathrm{Or} \ u_1 &= \frac{1}{p+1} \ \mathrm{donc} \ S_n = \frac{1}{p-1} \left(1 - (n+p+1)u_{n+1}\right). \end{split}$$

3. On majore brutalement :

$$0 \leqslant (n+p)u_n = \frac{n!p!}{(n+p-1)!} = \frac{p!}{\prod_{k=n+1}^{n+p-1} k} \leqslant \frac{p!}{\prod_{k=n+1}^{n+p-1} n} = \frac{p!}{n^{p-1}}$$

 $\mathrm{Comme}\ \mathfrak{p}\geqslant 2,\ \lim_{n\to+\infty}\frac{1}{n^{p-1}}=0\ \mathrm{et}\ \mathrm{donc}\ \lim_{n\to+\infty}\nu_n=0.$

4. On a $S_n = \frac{1}{p-1}(1-\nu_{n+1})$. On en déduit que (S_n) converge vers $\frac{1}{p-1}$.

SOLUTION 37.

Montrons que la suite (u_n) est croissante. Soit $n \in \mathbb{N}^*$ et étudions $f: x \in [1,n] \mapsto (n+1) \ln \frac{x+1}{n+1} - n \ln \frac{x}{n}$. f est clairement dérivable sur [1,n] et pour tout $x \in [1,n]$, $f'(x) = \frac{n+1}{x+1} - \frac{n}{x} = \frac{x-n}{x(x+1)} \leqslant 0$. Comme f(n) = 0, on en déduit que f est positive sur [1,n]. En particulier, pour tout $k \in [1,n]$, $n \ln \frac{k}{n} \leqslant (n+1) \ln \frac{k+1}{n+1}$, ce qui équivaut à $\left(\frac{k}{n}\right)^n \leqslant \left(\frac{k+1}{n+1}\right)^{n+1}$. On en déduit que

$$u_{n+1} = \sum_{k=1}^{n+1} \left(\frac{k}{n}\right)^{n+1} = \left(\frac{1}{n}\right)^{n+1} + \sum_{k=1}^{n} \left(\frac{k+1}{n+1}\right)^{n+1} \geqslant \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n} = u_n$$

La suite (u_n) est donc bien croissante.

Montrons que la suite (\mathfrak{u}_n) est majorée. Soit $\mathfrak{n}\in\mathbb{N}^*$. On a classiquement $\ln x\leqslant x-1$ pour tout $x\in\mathbb{R}_+^*$. On a donc notamment $\ln\frac{k}{n}\leqslant\frac{k}{n}-1$ puis $\mathfrak{n}\ln\frac{k}{n}\leqslant k-n$ et finalement $\left(\frac{k}{n}\right)^n\leqslant e^{k-n}$ pour tout $k\in[\![1,n]\!]$. En utilisant la formule de la série géométrique

$$u_n = \sum_{k=1}^n \left(\frac{k}{n}\right)^n \leqslant \sum_{k=1}^n e^{k-n} = e^{1-n} \frac{e^n-1}{e-1} = \frac{e-e^{1-n}}{e-1} \leqslant \frac{e}{e-1}$$

La suite (u_n) est donc bien majorée.

Elle converge d'après le théorème de la limite monotone.

SOLUTION 38.

- 1. Il suffit d'étudier $x \mapsto \ln(1+x) x \operatorname{sur}] 1, +\infty[$.
- 2. Soit $p \in \mathbb{N}^*$. D'après la question précédente

$$\ln\left(1+\frac{1}{p}\right)\leqslant\frac{1}{p}$$

ce qui équivaut à

$$\ln\left(\frac{p+1}{p}\right)\leqslant\frac{1}{p}$$

ou encore

$$\ln(p+1) - \ln(p) \leqslant \frac{1}{p}$$

Toujours d'après la question précédente,

$$\ln\left(1-\frac{1}{p+1}\right)\leqslant -\frac{1}{p+1}$$

ce qui équivaut à

$$\ln\left(\frac{p}{p+1}\right)\leqslant -\frac{1}{p+1}$$

ou encore

$$\ln(p) - \ln(p+1) \leqslant -\frac{1}{p+1}$$

et finalement à

$$\ln(p+1) - \ln(p) \leqslant \frac{1}{p+1}$$

3. Pour tout $n \in \mathbb{N}^*$,

$$u_{n+1} - u_n = \frac{1}{n+1} + \ln(n) - \ln(n+1) \le 0$$

d'après la question précédente. Ainsi (\mathfrak{u}_n) est-elle décroissante.

4. Puisque pour tout $k \in \mathbb{N}^*$,

$$\frac{1}{k+1} \leqslant \ln(k+1) - \ln(k)$$

on obtient pour tout $n \ge 2$

$$\sum_{k=1}^{n-1} \frac{1}{k+1} \leqslant \sum_{k=1}^{n-1} \ln(k+1) - \ln(k)$$

autrement dit

$$\sum_{k=1}^n \frac{1}{k} - 1 \leqslant \ln(n)$$

via un changement d'indice et un télescopage. Ceci équivaut encore à $u_n \leqslant 1$. De même, puisque pour tout $k \in \mathbb{N}^*$,

$$\ln(k+1) - \ln(k) \leqslant \frac{1}{k}$$

on obtient pour tout $n \ge 2$

$$\sum_{k=1}^{n-1} \ln(k+1) - \ln(k) \leqslant \sum_{k=1}^{n-1} \frac{1}{k}$$

autrement dit

$$\ln(n)\leqslant u_n-\frac{1}{n}$$

via un changement d'indice et un télescopage. Ceci équivaut encore à $u_n \geqslant \frac{1}{n}$. A fortiori, $u_n \geqslant 0$. La suite (u_n) étant décroissante et minorée par 0, elle converge vers un réel γ . Mais puisque $0 \leqslant u_n \leqslant 1$ pour tout $n \geqslant 2, \gamma \in [0, 1]$.

Remarque. La majoration par 1 pouvait également être obtenue en utilisant le fait que (u_n) est décroissante et que $u_1 = 1$.

SOLUTION 39.

1. Soit $u \ge 0$. On a $\forall t \in [0, u]$,

$$1-t\leqslant \frac{1}{1+t}\leqslant 1,$$

d'où, après intégration sur [0, u],

$$\int_0^u (1-t)dt \leqslant \int_0^u \frac{dt}{1+t} \leqslant \int_0^u dt,$$

c'est-à-dire

$$u - \frac{u^2}{2} \leqslant \ln(1 + u) \leqslant u.$$

2. On a

$$\ln(u_n) = \sum_{k=1}^n \ln{\left(1 + \frac{k}{n^2}\right)}.$$

Or, d'après le résultat de la question 1., $\forall k \leq n$,

$$\frac{k}{n^2} \leqslant \ln\left(1 + \frac{k}{n^2}\right) \leqslant \frac{k}{n^2} + \frac{k^2}{n^4},$$

et en additionnant ces n inégalités membre à membre,

$$\frac{n(n+1)}{2n^2}\leqslant \ln(\mathfrak{u}_n)\leqslant \frac{n(n+1)}{n^2}+\frac{\nu_n}{n^4},$$

οù

$$v_n = \sum_{k=1} n^2.$$

Or, par un encadrement grossier,

$$0 \leqslant v_n \leqslant n \times n^2 = n^3$$
.

et puisque

$$\frac{n(n+1)}{2n^2} \sim \frac{1}{2},$$

d'après le théorème d'encadrement,

$$\lim_{n \to \infty} \ln(\mathfrak{u}_n) = \frac{1}{2}.$$

Par continuité de l'exponentielle en 1/2,

$$\lim_{n+\infty} u_n = \sqrt{e}.$$

SOLUTION 40.

1. Soit $x \in \mathbb{R}$. Si x = 1, on a $P_n(x) = 2^{n+1}$. Soit $x \neq 1$. Raisonnons par réurrence sur n. Pour tout n dans \mathbb{N} , notons HR(n) l'hypothèse suivante

$$P_n(x) = \frac{x^{2^{n+1}} - 1}{x - 1}.$$

- ▶ HR(0) estvraie puisque $P_0(x) = x + 1 = \frac{x^2 1}{x 1}$.
- ▶ Soit $n \ge 0$. Supposons HR(n) vraie. On a

$$\begin{split} P_{n+1}(x) &= P_n(x) \times \left(x^{2^{n+1}} + 1\right) \\ &= \frac{x^{2^{n+1}} - 1}{x - 1} \times \left(x^{2^{n+1}} + 1\right) \\ &= \frac{x^{2 \times 2^{n+1}} - 1}{x - 1} = \frac{x^{2^{n+2} - 1}}{x - 1} \end{split}$$

d'où HR(n+1).

- 2. Distinguons trois cas.
 - ▶ Si |x| > 1 ou x = 1, la suite $(P_n(x))_{n \ge 0}$ diverge (vers $+\infty$ si $x \ge 1$ et vers $-\infty$ si x < -1).
 - ▶ Si x = -1, la suite est constante égale à 0.
 - ▶ Si |x| < 1, la suite $(P_n(x))_{n \ge 0}$ converge vers $\frac{1}{1-x}$.

SOLUTION 41.

1. Le résultat découle immédiatement de l'inégalité suivante :

$$(2x+1)^2 = 4x^2 + 4x + 1 \geqslant 4x(x+1).$$

2. D'apr'es le résultat de la question 1., $\forall n \ge 0$,

$$0 \leqslant u_n \leqslant \left(\frac{1}{4}\right)^n$$

et d'après le théorème d'encadrement,

$$\lim_{n\to+\infty}u_n=0.$$

Solution 42.

Puisque $\forall n \geq 0$,

$$1 \leqslant \binom{n}{k} \leqslant 2^n$$

on a l'encadrement suivant :

$$1 \leqslant u_n \leqslant 2^{n(n+1)/n^3}.$$

Et puisque $x \mapsto 2^x$ est continue en 0,

$$\lim_{n\to +\infty} 2^{n(n+1)/n^3}=1$$

ainsi

$$\lim_{n\to +\infty}u_n=1.$$

SOLUTION 43.

- 1. On multiplie au numérateur et au dénominateur par $2 \times 4 \times 6 \times \cdots \times (2n) = 2^n n!$ et on trouve $u_n = \frac{(2n)!}{2^{2n}(n!)^2} = \frac{1}{2^{2n}} \binom{2n}{n}$.
- $\textbf{2.} \ \mathrm{Pour} \ n \in \mathbb{N}^*, \ u_{n+1} = \frac{2n+1}{2n+2} u_n \leqslant u_n. \ \mathrm{La \ suite} \ (u_n) \ \mathrm{est \ donc \ d\'{e}croissante} \ \mathrm{et \ minor\'{e}e} \ \mathrm{par} \ 0 : \mathrm{elle \ converge}.$
- 3. Pour $n \in \mathbb{N}^*$, $\nu_{n+1} = (n+2)u_{n+1}^2 = (n+2)\left(\frac{2n+1}{2n+2}\right)^2 u_n^2 = \frac{n+2}{n+1}\left(\frac{2n+1}{2n+2}\right)^2 \nu_n$. Or $(n+2)(2n+1)^2 (n+1)(2n+2)^2 = -3n-2 < 0$ donc $\nu_{n+1} \le \nu_n$ pour tout $n \in \mathbb{N}^*$. Ainsi (ν_n) est décroissante minorée par 0: elle converge. On a $u_n = \sqrt{\frac{\nu_n}{n+1}}$ pour tout $n \in \mathbb{N}^*$. On en déduit que (u_n) converge vers 0.

SOLUTION 44.

On prouve aisément par récurrence que pour tout $n \in \mathbb{N}$.

$$(1-z)\prod_{k=0}^{n}(1+z^{2^{k}})=1-z^{2^{n+1}}$$

Puisque |z| < 1, $z \neq 1$ et donc

$$\prod_{k=0}^{n} (1+z^{2^k}) = \frac{1-z^{2^{n+1}}}{1-z}$$

pour tout $n \in \mathbb{N}$.

Enfin $\lim_{n\to+\infty}|z|^{2^{n+1}}=0$ car |z|<1 d'où le résultat demandé.

Solution 45.

Il s'agit de prouver que la suite de terme général

$$\alpha_n = \sum_{k=0}^{n-1} \frac{k!}{n!}$$

converge vers 0. Or,

$$\alpha_n = \frac{1}{n} + \sum_{k=0}^{n-2} \frac{k!}{n!}.$$

Le plus grand terme de la somme correspondant à l'indice n-2 on a l'encadrement suivant,

$$0 \leqslant \sum_{k=0}^{n-2} \frac{k!}{n!} \leqslant (n-1) \times \frac{(n-2)!}{n!},$$

ainsi,

$$0\leqslant \sum_{k=0}^{n-2}\frac{k!}{n!}\leqslant \frac{1}{n},$$

et par encadrement

$$\lim_{n\to +\infty}\alpha_n=0.$$

SOLUTION 46.

Soit $f:[1,+\infty[\longrightarrow \mathbb{R}$ définie par

$$\chi \longmapsto \sqrt{\chi}$$
.

La fonction f est donc strictement croissante sur $[1, +\infty[$. Ainsi, $\forall k \ge 1, \ \forall x \in [k, k+1],$

$$f(k) \leqslant f(x) \leqslant f(k+1)$$

d'où, $\forall k \ge 1$,

$$f(k) \leqslant \int_{k}^{k+1} f(x) dx \leqslant f(k+1),$$

et en sommant de k = 1 à k = n - 1, pour $n \ge 2$,

$$\sum_{k=1}^{n} f(k) \leqslant \int_{1}^{n} f(x) dx \leqslant \sum_{k=2}^{n+1} f(k_{i}),$$

c'est-à-dire

$$S_n \leqslant \int_1^n f(x) dx \leqslant S_n + f(n+1) - 1.$$

Or, une primitive de f sur $[1, +\infty[$ est donnée par

$$x \longmapsto F(x) = \frac{2}{3}x^{3/2}$$

d'où $\forall n \geqslant 2$,

$$\frac{2}{3}n^{3/2} - \sqrt{n+1} + \frac{1}{3} \leqslant S_n \leqslant \frac{2}{3}n^{3/2} - \frac{2}{3},$$

Et par croissances comparées,

$$S_n \sim \frac{2}{3} n^{3/2}$$
.

SOLUTION 47.

- 1. Récurrence évidente.
- $\begin{aligned} \textbf{2.} \ &\text{Si} \ u_n\geqslant 1, \ \text{alors} \ u_n\leqslant u_n^2. \ \text{De plus}, \ n\geqslant 1 \ \text{donc} \ 1+u_n\leqslant n+u_n^2. \ \text{Par consequent}, \ u_{n+1}\leqslant 1. \\ &\text{Si} \ u_n\leqslant 1, \ \text{alors} \ 1+u_n\leqslant 2. \ \text{On a aussi} \ n+u_n^2\geqslant n \ \text{de manière \'evidente}. \ \text{Donc} \ u_{n+1}\leqslant \frac{2}{n}. \end{aligned}$

3. Si $u_2 \ge 1$, alors $u_3 \le 1$. Si $u_2 \le 1$, alors $u_3 \le \frac{2}{2} = 1$.

Montrons par récurrence que pour $n \geqslant 3$, $u_n \leqslant \frac{2}{n-1}$.

Initialisation : On a vu que $u_3 \le 1$ donc l'hypothèse de récurrence est vraie au rang 3.

Hérédité : Supposons que $u_n \le \frac{2}{n-1}$ pour un certain $n \ge 3$. On a donc $u_n \le 1$ et donc $u_{n+1} \le \frac{2}{n}$ et l'hypothèse de récurrence est vraie au rang n+1.

Conclusion : L'hypothèse de récurrence est vraie pour tout $n \geqslant 3$.

- 4. Par le théorème des gendarmes, on conclut que (u_n) converge vers 0.
- 5. Pour $n \ge 2$, on $a: u_n = \frac{1+u_{n-1}}{n+u_{n-1}^2}$. Or $u_{n-1} = o(1)$ d'après la question précédente. Donc $1+u_{n-1} \sim 1$ et $n+u_n^2 \sim n$. On en déduit que $u_n \sim \frac{1}{n}$.
- 6. Après un calcul laborieux, on trouve :

$$\nu_{n+1} = \frac{2n^2 + n^2\nu_n + n + n\nu_n - \nu_n^2 - 2\nu_n - 1}{n^3 + \nu_n^2 + 2\nu_n + 1}$$

7. On a $\nu_n = o(1)$. Par conséquent

$$2n^2 + n^2\nu_n + n + n\nu_n - \nu_n^2 - 2\nu_n - 1 \sim 2n^2$$

 $n^3 + \nu_n^2 + 2\nu_n + 1 \sim n^3$

Ainsi $v_{n+1} \sim \frac{2}{n}$ et $v_n \sim \frac{2}{n-1} \sim \frac{2}{n}$.

8. Comme $v_n = \frac{2}{n} + o\left(\frac{1}{n}\right)$, on a:

$$u_n=\frac{1}{n}+\frac{\nu_n}{n}=\frac{1}{n}+\frac{2}{n^2}+o\left(\frac{1}{n^2}\right)$$

SOLUTION 48.

1. On utilise l'expression factorielle des coefficients binomiaux :

$$\frac{\alpha_{n+1}}{\alpha_n} = \frac{(2n+2)!}{((n+1)!)^2} \frac{(n!)^2}{(2n)!} = \frac{(2n+2)(2n+1)}{(n+1)^2} = \frac{2(2n+1)}{n+1}$$

2. Remarquons que les termes de (u_n) sont strictement positifs. De plus, pour tout $n \in \mathbb{N}$:

$$\frac{u_{n+1}}{u_n} = \frac{\sqrt{n+1}}{4^{n+1}} \frac{4^n}{\sqrt{n}} \frac{a_{n+1}}{a_n} = \frac{1}{4} \frac{\sqrt{n+1}}{\sqrt{n}} \frac{2(2n+1)}{n+1} = \frac{2n+1}{2\sqrt{n(n+1)}}$$

Or $(2n+1)^2=4n^2+4n+1>4n^2+4n=(2\sqrt{n(n+1)}).$ On en déduit que $\frac{\mathfrak{u}_{n+1}}{\mathfrak{u}_n}>1$ pour tout $n\in\mathbb{N}.$ La suite (\mathfrak{u}_n) est donc (strictement) croissante.

3. On procède par récurrence comme indiqué dans l'énoncé. Notre hypothèse de récurrence est donc

$$HR(n) : u_n \leqslant \sqrt{\frac{n}{2n+1}}$$

 $\mbox{\bf Initialisation On a $u_0=0$ donc $HR(0)$ est vraie.}$

Hérédité On suppose HR(n) pour un certain $n \in \mathbb{N}$. D'après la question précédente, $u_{n+1} = \frac{2n+1}{2\sqrt{n(n+1)}}$ donc en utilisant HR(n):

$$u_{n+1} \leqslant \frac{2n+1}{2\sqrt{n(n+1)}}\sqrt{\frac{n}{2n+1}} = \frac{\sqrt{2n+1}}{2\sqrt{n+1}}$$

Or on a les équivalence suivantes

$$\frac{\sqrt{2n+1}}{2\sqrt{n+1}} \leqslant \sqrt{\frac{n+1}{2n+3}} \iff \sqrt{(2n+1)(2n+3)} \leqslant 2(n+1) \iff (2n+1)(2n+3) \leqslant 4(n+1)^2 \iff 4n^2+8n+3 \leqslant 4n^2+8n$$

La dernière égalité est toujours vraie : on en déduit que $u_{n+1} \leqslant \sqrt{\frac{n+1}{2n+3}}$ i.e. HR(n+1) est vraie.

Conclusion Par récurrence, HR(n) est vraie pour tout $n \in \mathbb{N}$.

4. D'après la question précédente, $u_n \leqslant \sqrt{\frac{n}{2n+1}} \leqslant \frac{1}{sqrt2}$. La suite (u_n) est croissante et majorée, elle converge vers un réel $K \leqslant \frac{1}{\sqrt{2}}$. De plus, $u_1 = \frac{1}{2}$ et donc $u_n \geqslant \frac{1}{2}$ pour $n \geqslant 1$. Ainsi $K \geqslant \frac{1}{2}$. On a donc $\frac{\alpha_n \sqrt{n}}{4^n} \xrightarrow[n \to +\infty]{} K$ i.e. $\binom{2n}{n} \sim K \frac{4^n}{\sqrt{n}}$.

SOLUTION 49.

► Commençons par une figure.

On conjecture que la suite converge vers 0.

lacktriangle La suite est définie : notons f l'application de $\mathbb R$ dans $\mathbb R$ définie par

$$x \longmapsto \frac{x}{1+x^2}$$
.

Puisque f est définie sur \mathbb{R} , la suite $(\mathfrak{u}_n)_{n\geqslant 0}$ est définie $\forall \mathfrak{u}_0 \in \mathbb{R}$.

ightharpoonup Point(s) fixe(s) de f : Un réel x est point fixe de f si et seulement si

$$\frac{x}{1+x^2} = x \iff x^3 = 0,$$

ie x = 0.

▶ Etude de la convergence : supposons $\mathfrak{u}_0 \geqslant 0$. Posons $I = [0, +\infty[$. Puisque I est stable par f , on prouve par une récurrence sans difficulté que

$$\forall n \geqslant 0, \ u_n \in I.$$

On a alors , pour tout $n \ge 0$,

$$u_{n+1} = \frac{u_n}{u_n^2 + 1} \leqslant u_n.$$

La suite $(u_n)_{n\geqslant 0}$ est décroissante minorée par 0 donc convergente. Puisque sa limite est un point fixe de f qui n'en admet qu'un , 0 , on a

$$\lim_{n\to +\infty}u_n=0.$$

Puisque la fonction f est impaire , pour tout u_0 négatif , la suite $(u_n)_{n\geqslant 0}$ croît vers 0.

SOLUTION 50.

► Commençons par une figure.

On conjecture la convergence de la suite vers 2 pour tout condition initiale $0 \le u_0 < 4$, vers 4 pour pour $u_0 = 4$ (plus précisemment : la suite est constante dans ce cas) et la divergence de la suite pour tout $u_0 > 4$.

lacktriangle Définition et points fixes : otons f l'application de $\mathbb R$ dans $\mathbb R$ définie par

$$x \longmapsto \frac{x^2 + 8}{6}$$
.

Puisque f est définie sur \mathbb{R} , la suite $(\mathfrak{u}_n)_{n\geqslant 0}$ est définie $\forall \mathfrak{u}_0 \in \mathbb{R}$. On a, pour tout $x\in \mathbb{R}$,

$$f(x) - x = \frac{x^2 - 6x + 8}{6} = \frac{(x - 2)(x - 4)}{6}.$$

Si $u_0 = 2$ ou 4, la suite $(u_n)_{n\geqslant 0}$ est constante. Notons

$$I_1 = [0, 2[, I_2 =] 2, 4[, I_3 =] 4, +\infty].$$

La fonction f est croissante sur \mathbb{R}_+ , les réels 2 et 4 sont des points fixes de f et f(0) > 0, donc les trois intervalles I_k sont stables par f.

▶ Etude de la convergence : puisque $\forall x \in I_1$, $f(x) \ge x$, pour tout $u_0 \in I_1$, $(u_n)_{n \ge 0}$ est croissante majorée par 2 donc converge vers l'unique point fixe de f appartenant à [0,2] ie 2. puisque $\forall x \in I_2$, $f(x) \le x$, pour tout $u_0 \in I_2$, $(u_n)_{n \ge 0}$ est décroissante minorée par 2 donc converge vers l'unique point fixe de f appartenant à [2,4[ie 2. Puisque $\forall x \in I_3$, $f(x) \ge x$, pour tout $u_0 \in I_3$, $(u_n)_{n \ge 0}$ est croissante non convergente car

$$[u_0, +\infty[$$

ne contient aucun point fixe de f. La suite diverge donc vers $+\infty$. On en déduit l'étude de la convergence pour toute condition initiale négative : si $u_0 = -2$ ou -4, on a $u_1 = 2$ ou 4 et la suite est constante à partir du rang 1. Di $u_0 \in]-4,0]$, on a $u_1 \in [0,4[$ et la suite converge vers 2. Si $u_0 \in]-\infty,-4[$, on a $u_1 \in]4,+\infty[$ et la suite diverge vers $+\infty$.

SOLUTION 51.

► Figure.

On conjecture que, pour $u_0 > 1$, la suite diverge vers $+\infty$ et, pour $u_0 \leqslant 1$, la suite converge vers 1.

- \blacktriangleright Définition de la suite : comme f est définie sur \mathbb{R} , la suite est définie pour toute condition initiale $\mathfrak{u}_0 \in \mathbb{R}$.
- ▶ Monotonie de la suite : soit δ la fonction définie sur \mathbb{R} par $\delta(x) = e^{x-1} x$. Cette fonction est dérivable sur \mathbb{R} et , pour tout réel x, $\delta'(x) = e^{x-1} 1$. La fonction δ est donc strictement décroissante sur $]-\infty,1]$ et strictement croissante sur $[1,+\infty[$. Puisque $\delta(0)=0$, δ est positive sur \mathbb{R} . La fonction f admet donc un unique point fixe valant 0 et , $\forall u_0 \in \mathbb{R}$, pour tout $n \in \mathbb{N}$, $\delta(u_n) \geqslant 0$ ie $u_{n+1} \geqslant u_n$. La suite est donc croissante.
- ▶ Convergence de la suite : supposons que $u_0 \le 1$. Puisque $I =]-\infty, 1]$ est stable par f, on prouve par une récurrence immédiate que $\forall n \in \mathbb{N}, \quad u_n \in I$. La suite est croissante majorée par 1 donc convergente. Sa limite est un point fixe de f, elle vaut donc 1. Supposons $u_0 > 1$. Puisque $I =]1, +\infty[$ est stable par f, on prouve par une récurrence immédiate que $\forall n \in \mathbb{N}, \quad u_n \in I$. La suite est croissante minorée par $u_0 > 1$, elle ne peut converger car $[u_0, +\infty[$ ne contient aucun point fixe de f. La suite diverge donc vers $+\infty$ d'après le théorème des suites monotones.

SOLUTION 52.

► Figure.

On conjecture que la suite converge toujours vers 0.

- ▶ Définition de la suite : puisque que arctan est définie sur \mathbb{R} , la suite est définie pour toute condition initiale $\mathfrak{u}_0 \in \mathbb{R}$.
- ▶ Monotonie de la suite : soit δ la fonction définie sur \mathbb{R} par $\delta(x) = \arctan(x) x$. Cette fonction est dérivable sur \mathbb{R} et , pour tout réel x ,

$$\delta'(x) = \frac{1}{x^2 + 1} - 1 = -\frac{x^2}{x^2 + 1}.$$

La fonction δ est donc strictement décroissante sur \mathbb{R} . Puisque $\delta(0)=0$, δ est négative sur \mathbb{R}_+ et positive sur \mathbb{R}_- . La fonction f admet donc un unique point fixe valant 0.

▶ Convergence de la suite : si $u_0 \le 0$. Puisque $I =]-\infty, 0]$ est stable par f, on prouve par une récurrence immédiate que $\forall n \in \mathbb{N}, \ u_n \in I$. Ainsi , pour tout $n \in \mathbb{N}$, $\delta(u_n) \ge 0$ ie $u_{n+1} \ge u_n$. La suite est donc croissante. Puisqu'elle est majorée par 0 , elle converge. Sa limite est un point fixe de f , elle vaut donc 0. Si $u_0 \le 0$. Puisque $I = [0, +\infty[$ est stable par f , on prouve par une récurrence immédiate que $\forall n \in \mathbb{N}, \ u_n \in I$. Ainsi , pour tout $n \in \mathbb{N}$, $\delta(u_n) \le 0$ ie $u_{n+1} \le u_n$. La suite est donc décroissante. Puisqu'elle est minorée par 0 , elle converge. Sa limite est un point fixe de f , elle vaut donc 0.

SOLUTION 53.

► Figure.

On conjecture que la suite converge vers 0.

- ▶ Définition de la suite : comme $f(\mathbb{R}_+) \subset \mathbb{R}_+$, la suite est définie pour toute condition initiale $\mathfrak{u}_0 \in \mathbb{R}_+$.
- ▶ Convergence de la suite : soit δ la fonction définie sur \mathbb{R}_+ par $\delta(x) = \ln(1+x) x$. Cette fonction est dérivable sur \mathbb{R}_+ et , pour tout réel x strictement positif ,

$$\delta'(x) = \frac{1}{1+x} - 1 = -\frac{x}{1+x} < 0.$$

La fonction δ est donc strictement décroissante sur \mathbb{R}_+ . Puisque $\delta(0) = 0$, δ est négative sur \mathbb{R}_+ . La fonction f admet donc un unique point fixe valant 0. Puisque $I = [0, +\infty[$ est stable par f , on prouve par une récurrence immédiate

que $\forall n \in \mathbb{N}$, u_n appartient à I. Ainsi, pour tout $n \in \mathbb{N}$, $\delta(u_n) \leq 0$ ie $u_{n+1} \leq u_n$. La suite est donc décroissante. Puisqu'elle est minorée par 0 , elle converge. Sa limite est un point fixe de f , elle vaut donc 0.

SOLUTION 54.

▶ Figure.

On conjecture que la suite converge vers 0.

- Définition de la suite : comme the est définie sur \mathbb{R} , la suite est bien définie pour toute condition initiale $u_0 \in \mathbb{R}$.
- Convergence d ela suite : soit δ la fonction définie sur $\mathbb R$ par $\delta(x)=\operatorname{th}(x)-x$. Cette fonction est dérivable sur $\mathbb R$ et , pour tout réel x non nul ,

 $\delta'(x) = 1 - \text{th}^2(x) - 1 = -\text{th}^2(x) < 0.$

La fonction δ est donc strictement décroissante sur \mathbb{R} . Puisque $\delta(0) = 0$, δ est négative sur \mathbb{R}_+ et positive sur \mathbb{R}_- . La fonction f admet donc un unique point fixe valant 0.

- $\text{local } Cas \ 1: \ u_0 \leqslant 0.$ Puisque $I =]-\infty,0]$ est stable par f, on prouve par une récurrence immédiate que $\forall n \in \mathbb{N}$ $\mathbb{N}, \ u_n \in I$. Ainsi , pour tout $n \in \mathbb{N}$, $\delta(u_n) \geqslant 0$ ie $u_{n+1} \geqslant u_n$. La suite est donc croissante. Puisqu'elle est majorée par 0 , elle converge. Sa limite est un point fixe de f , elle vaut donc 0.
- * Cas 2: $u_0 \leq 0$. Puisque $I = [0, +\infty[$ est stable par f, on prouve par une récurrence immédiate que $\forall n \in [$ $\mathbb{N},\ u_n\in I.\ Ainsi\ ,$ pour tout $n\in\mathbb{N}\ ,$ $\delta(u_n)\leqslant 0$ ie $u_{n+1}\leqslant u_n.$ La suite est donc décroissante. Puisqu'elle est minorée par 0, elle converge. Sa limite est un point fixe de f, elle vaut donc 0.

SOLUTION 55.

1. Pour tout $n \in \mathbb{N}$, on pose $v_n = a^{-n^2 + n}u_n$.

a. Soit $n \in \mathbb{N}$. Comme $a^{-(n+1)^2+n+1} = a^{-n(n+1)}$, on a

$$v_{n+1} - v_n = a^{-n(n+1)}(a^{2n}u_n + a^{n^2}) - a^{-n^2+n}u_n$$

= a^{-n}

b. Après telescopage et puisque $v_0 = 1$, on a pour tout entier naturel n non nul,

$$v_n - v_0 = \sum_{k=0}^{n-1} (v_{k+1} - v_k) = \sum_{k=0}^{n-1} a^{-k},$$

d'après la question précédente. Ainsi,

$$\forall n \in \mathbb{N}^*, \quad \nu_n = 1 + \sum_{k=0}^{n-1} \frac{1}{\alpha^k}.$$

c. Il y a deux cas à considérer...

▶ Si a = 1, on a

$$\forall n \in \mathbb{N}, \quad v_n = n+1,$$

et donc

$$\forall n \in \mathbb{N}^*, \quad u_n = n + 1.$$

▶ Si $a \neq 1$, on peut applquer la formule de la série géométrique : pour tout entier naturel n non nul,

$$\nu_n = 1 + \frac{1-1/\alpha^n}{1-1/\alpha}$$

et donc, $\forall n \in \mathbb{N}^*$,

$$\begin{split} u_n &= a^{n^2-n} + a^{n^2-n} \frac{1 - 1/a^n}{1 - 1/a} \\ &= \frac{2a^{n^2} - a^{n^2-1} - a^{n^2-n}}{a^n - a^{n-1}} \\ &= a^{n^2-n} \frac{(2 - 1/a - a^{-n})}{1 - 1/a} \end{split}$$

2. D'après ce qui précède,

 $\blacktriangleright \ \mathrm{Si} \ \mathfrak{a} = 1, \ \lim_{n \to +\infty} \mathfrak{u}_n = +\infty.$

► Si a = -1, on a

$$\forall n \geqslant 1, \quad u_n = 1 + \frac{1 - (-1)^n}{2}$$

et $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ diverge.

► Si |a| > 1, on a

$$u_n \sim a^{n^2 - n} \frac{2 - 1/a}{1 - 1/a}$$

et la suite diverge vers $+\infty$.

▶ Si |a| < 1, on a

$$u_n \sim -\frac{a^{n^2-2n}}{1-1/a}$$

et la suite tend vers 0.

SOLUTION 56.

1. On prouve par une récurrence forte imméditae que $\forall n \ge 0$, $u_n \ge 0$. Ainsi, pour tout $n \ge 0$,

$$u_{n+1} - u_n \geqslant 0$$

et la suite $(u_{n\geqslant 0})$ est croissante.

2. Prouvons le résultat par récurrence. L'hypothèse au rang n étant que la formule est vraie pour tous les entiers $k \leq n$.

- ▶ Le cas n = 1 est banal. Pour n = 2, le résultat est acquis car $u_2 = u_1 + \alpha u_0 < 2u_1$.
- ▶ Supposons l'hypothèse au rang $n \ge 2$. On a alors,

$$\begin{array}{l} u_{n+1} & \leqslant u_1 \prod_{k=0}^{n-1} (1+\alpha^k) \\ \\ & + \alpha^n u_1 \prod_{k=0}^{n-2} (1+\alpha^k) \\ \\ & \leqslant \ \alpha^n u_1 \prod_{k=0}^{n-2} (1+\alpha^k) \\ \\ & \times [\alpha^n + \alpha^{n-1} + 1] \end{array}$$

or,

$$\alpha^{n} + \alpha^{n-1} + 1 \leq (1 + \alpha^{n-1})(1 + \alpha^{n}),$$

donc

$$u_{n+1} \leqslant u_1 \prod_{k=0}^n (1+\alpha^k)$$

et l'hypothèse au rang n + 1 est vérifiée.

ightharpoonup L'inégalité est acquise pour tout rang $n\geqslant 1$ d'après le principe de récurrence.

Soit $u \geqslant 0$, puisque

$$\forall t \in [0,u], \quad \frac{1}{1+t} \leqslant 1,$$

on obtient après intégration sur [0, u],

$$ln(1+u) \leq u$$
.

Ainsi, $\forall n \geq 1$,

$$\ln\left(\prod_{k=0}^{n-1}\left(1+\alpha^k\right)\right)\leqslant \sum_{k=0}^{n-1}u^k.$$

Or, $\forall n \geq 1$,

$$\sum_{k=0}^{n-1} u^k = \frac{\alpha^n - 1}{\alpha - 1} \leqslant \frac{1}{1 - \alpha}.$$

D'après le résultat de la question 2, la suite $(u_n)_{n\geqslant 0}$ est donc majorée. Puisqu' elle est croissante, elle converge.

Solution 57.

3. Par une récurrence immédiate, on prouve que $\forall n \ge 1, x_n > 0$. On a donc, $\forall n \ge 1$,

$$x_{n+1} = \frac{x_n}{1 + n x_n^2} \leqslant x_n.$$

La suite $(x_n)_{n\geqslant 1}$ est décroissante et minorée par 0, elle converge donc vers un réel $\ell\geqslant 0$. Raisonnons par l'absurde en supposant $\ell>0$. Alors, $\forall n\geqslant 1$,

$$0\leqslant x_{n+1}\leqslant \frac{x_1}{1+n\ell^2},$$

et d'après le théorème d'encadrement,

$$\ell = 0$$
,

ce qui est absurde. Ainsi,

$$\lim_{n\to+\infty}x_n=0.$$

2. Prouvons la propriété par récurrence sur $n \ge 2$. Puisque $\forall x \in \mathbb{R}, x(1-x) \le 1/4$, on a

$$x_2 \leqslant \frac{1}{4}$$
.

Supposons l'inégalité vérifiée au rang $n \ge 2$. Alors $1 - x_n \ge 0$ et donc

$$nx_n(1-x_n) \leqslant (1-x_n),$$

ainsi

$$(n+1)x_{n1} \leq 1$$
,

et la propriété est acquise au rang n + 1.

3. On remarque que $\forall n \geq 1$,

$$\frac{(n+1)x_{n+1}}{nx_n} = \frac{n+1}{n} \times \frac{1}{1+nx_n^2} \geqslant 1$$

si et seulement si

$$n^2x_n^2 \leqslant 1$$

ce qui est vrai d'après la question 2. Puisque $\forall n \ge 1$, on en déduit que la suite de terme général nx_n est croissante.

4. On remarque que $\forall n \ge 2$ et $\forall k \le n$,

$$1 \geqslant (k-1)x_{k-1} = \frac{1}{x_k} - \frac{1}{x_{k-1}}.$$

D'où, en additionnant membre à membre ces n-1 inégalités et après telescopage.

$$\frac{1}{x_n} - \frac{1}{x_1} \leqslant n - 1,$$

puis,

$$n\leqslant \frac{1}{x_n}\leqslant n-1+\frac{1}{x_1},$$

donc

$$\frac{1}{x_n} \sim n$$

et ainsi

$$x_n \sim \frac{1}{n}$$
.

SOLUTION 58.

1. La minoration par 0 est évidente. Prouvons la majoration par 2 par récurrence. On a $u_1=1$ donc l'inégalité est vraie au rang 1. Supposons que $\frac{u_{n-1}}{\sqrt{n-1}} \leqslant 2$ pour un certain $n \geqslant 2$. Alors

$$\frac{u_n}{\sqrt{n}} = \sqrt{1 + \frac{u_{n-1}}{n}} \leqslant \sqrt{1 + \frac{u_{n-1}}{\sqrt{n-1}}} \leqslant \sqrt{3} \leqslant 2$$

L'inégalité est donc établie pour tout $n \ge 1$.

2. Comme pour tout entier $n \geqslant 2$, $\frac{u_n}{\sqrt{n}} = \sqrt{1 + \frac{u_{n-1}}{n}} = \sqrt{1 + \frac{u_{n-1}}{\sqrt{n-1}} \frac{\sqrt{n-1}}{n}}$, on a en utilisant l'inégalité de la question précédente :

$$1 \leqslant \frac{u_n}{\sqrt{n}} \leqslant \sqrt{1 + 2\frac{\sqrt{n-1}}{n}}$$

D'après le théorème des gendarmes, $\left(\frac{u_n}{\sqrt{n}}\right)_{n\geq 1}$ converge vers 1.

 $\begin{aligned} \textbf{3.} \ \ & u_n - \sqrt{n} = \sqrt{n + u_{n-1}} - \sqrt{n} = \frac{u_{n-1}}{\sqrt{n + u_{n-1}} + \sqrt{n}}. \text{ Or d'après la première question } u_{n-1} = \mathcal{O}\left(\sqrt{n}\right) = o\left(n\right) \text{ donc} \\ & \sqrt{n + u_{n-1}} \sim \sqrt{n}. \text{ Ainsi } \frac{u_{n-1}}{\sqrt{n + u_{n-1}} + \sqrt{n}} \sim \frac{u_{n-1}}{2\sqrt{n}} \sim \frac{u_{n-1}}{2\sqrt{n-1}}. \text{ Or } \lim_{n \to +\infty} \frac{u_{n-1}}{2\sqrt{n-1}} = \frac{1}{2} \text{ d'après la deuxième question.} \\ & \text{On en déduit que } \lim_{n \to +\infty} u_n - \sqrt{n} = \frac{1}{2}. \end{aligned}$

SOLUTION 59.

1. a. Comme $|z_n| \in \mathbb{R}$, $y_{n+1} = \frac{y_n}{2}$. On en déduit que (y_n) converge vers 0.

b. Par inégalité triangulaire, pour tout $n \in \mathbb{N}$:

$$|z_{n+1}| \leqslant \frac{|\operatorname{Re}(z_n)| + |z_n|}{2} \leqslant |z_n|$$

puisque pour tout complexe z, $|\operatorname{Re}(z)| \leq |z|$.

 $\mathbf{c.}$ On a pour tout $n\in\mathbb{N}$:

$$\operatorname{Re}(z_{n+1}) = \frac{\operatorname{Re}(z_n) + |z_n|}{2} \geqslant \operatorname{Re}(z_n)$$

puisque pour tout complexe z, $\operatorname{Re}(z) \leq |z|$. Ainsi (x_n) est croissante.

d. Pour tout $n \in \mathbb{N}$, $\text{Re}(z_n) \leq |z_n| \leq |z_0|$ par décroissance de $(|z_n|)$. Ainsi (x_n) est croissante et majorée; elle converge.

e. Comme (x_n) et (y_n) convergent, (z_n) converge. Puisque (y_n) converge vers 0, la limite de (z_n) est réelle.

f. Si $z_0 \in \mathbb{R}_+$, on montre par récurrence que $z_n = z_0$ pour tout $n \in \mathbb{N}$. Donc (z_n) converge vers z_0 . Si $z_0 \in \mathbb{R}_-$, alors $z_1 = 0$ et on montre par récurrence que $z_n = 0$ pour tout $n \ge 1$. Donc (z_n) converge vers 0.

2. a. En appliquant la méthode de l'arc-moitié, on a :

$$z_{n+1} = r_n \cos \frac{\theta_n}{2} e^{i\frac{\theta_n}{2}}$$

Puisque $\theta_n \in]-\pi,\pi]$, $\frac{\theta_n}{2} \in \left]-\frac{\pi}{2},\frac{\pi}{2}\right]$ et donc $r_n \cos \frac{\theta_n}{2} \geqslant 0$. On en déduit que $r_{n+1} = r_n \cos \frac{\theta_n}{2}$. Comme $\frac{\theta_n}{2} \in]-\pi,\pi]$, $\theta_{n+1} = \frac{\theta_n}{2}$.

b. On en déduit immédiatement que (θ_n) converge vers 0.

c. Comme $\alpha \in]-\pi,0[\cup]0,\pi[,\frac{\alpha}{2^k}\not\equiv 0[\pi]$ pour tout $k\in [1,n]$. On utilise alors l'indication de l'énoncé :

$$S_n = \prod_{k=1}^n \frac{\sin \frac{\alpha}{2^{k-1}}}{2 \sin \frac{\alpha}{2^k}}$$

Par télescopage, on a $S_n = \frac{\sin\alpha}{2^n \sin\frac{\alpha}{2^n}}.$

 $\text{Comme } \xrightarrow[n \to +\infty]{\alpha} \text{0, } \sin \frac{\alpha}{2^n} \underset{n \to +\infty}{\sim} \frac{\alpha^2}{2^n}. \text{ Par conséquent, } 2^n \sin \frac{\alpha}{2^n} \underset{n \to +\infty}{\longrightarrow} \alpha \text{ puis } S_n \xrightarrow[n \to +\infty]{\sin \alpha} \frac{\sin \alpha}{\alpha}.$

d. Par une récurrence facile, $\theta_n = \frac{\theta_0}{2^n}$. On montre aussi facilement que pour $n \geqslant 1$:

$$r_n = r_0 \prod_{k=0}^{n-1} \cos \frac{\theta_k}{2} = r_0 \prod_{k=0}^{n-1} \cos \frac{\theta_0}{2^{k+1}} = r_0 \prod_{k=1}^{n} \cos \frac{\theta_0}{2^k}$$

Si $\theta_0 = 0$, $z_0 \in \mathbb{R}_+$ et on a vu que (z_n) est constante égale à z_0 . Ainsi (z_n) converge vers z_0 .

Si $\theta_0 = \pi$, $z_0 \in \mathbb{R}_-$ et on a vu que (z_n) est nulle à partir du rang 1. Ainsi (z_n) converge vers 0.

Si $\theta_0 \in]-\pi, 0[\cup]0, \pi[$, la question précédente montre que (r_n) converge vers $r_0 \frac{\sin \theta_0}{\theta_0}$. Comme (θ_n) converge vers $(0, z_n)$ converge également vers $(0, z_n)$ converge $(0, z_n)$ converge également vers $(0, z_n)$ converge $(0, z_n$

SOLUTION 60.

Supposons que (z_n) converge vers une limite $l \in \mathbb{C}$. Pour tout $n \in \mathbb{N}$, on a $z_{2n} = \exp(i \ln 2) z_n$ et par passage à la limite, $l = \exp(i \ln 2) l$. Puisque $\frac{\ln 2}{2\pi}$ est non entier (on a $0 < \frac{\ln 2}{2\pi} < 1$), $\exp(i \ln 2) \neq 1$ et donc l = 0. Mais pour tout $n \in \mathbb{N}$, $|z_n| = 1$ et donc |l| = 1, ce qui est absurde. Ainsi (z_n) ne converge pas.