RATE OF CONVERGENCE OF THE ARITHMETIC-GEOMETRIC MEAN PROCESS

JAN DE LEEUW

ABSTRACT. This (didactic) note gives a simple counter-example to the notion that Picard iterations converge super-linearly if and only if the sup-norm of the Jacobian at the solution is equal to zero and sub-linearly if and only if it is equal to one.

1. Introduction

Suppose S is an open subset of \mathbb{R}^n and $\Gamma: S \Rightarrow S$ is a differentiable map. Assume the Picard iterations $x^{(k+1)} = \Gamma(x^{(k)})$ starting from some $x^{(0)} \in S$ converge to $x \in S$. We can derive information about the rate of convergence from the sup-norm (the eigenvalue of maximum modulus) of the derivative $\mathcal{D}\Gamma(x)$. If $\|\mathcal{D}\Gamma(x)\| = \lambda < 1$ we have linear convergence with rate λ , and if $\|\mathcal{D}\Gamma(x)\| = 0$ we have super-linear convergence [Ortega and Rheinboldt, 1970, Chapter 10]. $\|\mathcal{D}\Gamma(x)\| = 1$ often indicates sub-linear convergence. Our elementary example below, however, has $\|\mathcal{D}\Gamma(x)\| = 1$ and quadratic convergence.

2. THE ARITHMETIC-GEOMETRIC MEAN

Suppose a and b are two positive numbers. Their *arithmetic mean* is defined as $AM(a, b) = \frac{1}{2}(a + b)$ and their *geometric mean* as $GM(a, b) = \sqrt{ab}$.

Result 1. $AM(a, b) \ge GM(a, b)$ with equality if and only if a = b.

Proof.
$$0 \le (\sqrt{a} - \sqrt{b})^2 = 2(AM(a, b) - GM(a, b)).$$

From now on suppose, without loss of generality, that a > b. Let $a_0 = a$ and $b_0 = b$ and define the sequences

(1a)
$$a_n = AM(a_{n-1}, b_{n-1}),$$

(1b)
$$b_n = \mathbf{GM}(a_{n-1}, b_{n-1}).$$

Result 2. $a_n > b_n$

Proof. From Result 1.

Result 3. $\{a_n\}$ is a decreasing sequence, which is bounded below, and thus converges to some a_{∞} . $\{b_n\}$ is an increasing sequence, which is bounded above, and thus converges to some b_{∞} .

Proof.
$$a_n < \max(a_{n-1}, b_{n-1}) = a_{n-1} \text{ and } b_n > \min(a_{n-1}, b_{n-1}) = b_{n-1}.$$
 Moreover $a_n > b_n > b$ and $b_n < a_n < a$.

Result 4. $a_{\infty} = b_{\infty}$.

Proof. Take limits on both sides of (1). This gives

$$a_{\infty} = \mathbf{AM}(a_{\infty}, b_{\infty}),$$

 $b_{\infty} = \mathbf{GM}(a_{\infty}, b_{\infty}).$

Both equations imply $a_{\infty} = b_{\infty}$.

The common limit $a_{\infty} = b_{\infty}$ is called the *arithmetic-geometric mean* of a and b, written as AGM(a,b). The arithmetic-geometric mean was studied by Legendre and Gauss, and it has fascinating applications in many areas of mathematics and numerical analysis. There are excellent reviews of these applications in Carlson [1971], Cox [1984], and Almqvist and Berndt [1988].

Result 5. b
$$<$$
 GM $(a,b) <$ **AGM** $(a,b) <$ **AM** $(a,b) <$ a

Proof. **AGM**(
$$a,b$$
) = a_{∞} < a_{1} = **AM**(a,b) < a_{0} = a and **AGM**(a,b) = $b_{\infty} > b_{1}$ = **GM**(a,b) > b_{0} = b . □

For another proof of the convergence to a common limit we define the sequence $\delta_n = a_n - b_n$. It should be noted that δ_n is a reasonable way to measure distance to the solution, since

$$|a_n - AGM(a, b)| + |b_n - AGM(a, b)| =$$

 $a_n - AGM(a, b) + AGM(a, b) - b_n = \delta_n.$

Result 6. $\{\delta_n\}$ is a decreasing sequence bounded below by zero, and thus converges to some $\delta_\infty \ge 0$.

Proof. Since $a_n < a_{n-1}$ and $b_n > b_{n-1}$ we have $\delta_n = a_n - b_n < a_{n-1} - b_{n-1} = \delta_{n-1}$. Moreover $\delta_n > 0$ for all n.

Result 7. $\delta_{\infty} = 0$

Proof.

(2a)
$$\delta_n = \mathbf{AM}(a_{n-1}, b_{n-1}) - \mathbf{GM}(a_{n-1}, b_{n-1}) = \frac{1}{2}(\sqrt{a_{n-1}} - \sqrt{b_{n-1}})^2,$$

(2b)
$$\delta_{n-1} = a_{n-1} - b_{n-1} = (\sqrt{a_{n-1}} - \sqrt{b_{n-1}})(\sqrt{a_{n-1}} + \sqrt{b_{n-1}}),$$

and thus $\delta_n < \frac{1}{2}\delta_{n-1}$ It follows that $0 < \delta_n < (\frac{1}{2})^n \delta_0$ and thus $\lim_{n \to \infty} \delta_n = 0$.

The proof shows that convergence of $\{\delta_n\}$ is faster than that of a geometric sequence with radius $\frac{1}{2}$. But we can be more precise.

Result 8. Convergence of the sequence $\{\delta_n\}$ to zero is superlinear, i.e.

$$\lim_{n\to\infty}\frac{\delta_n}{\delta_{n-1}}=0.$$

Proof. From Equations (2)

$$\frac{\delta_n}{\delta_{n-1}} = \frac{1}{2} \frac{\sqrt{a_{n-1}} - \sqrt{b_{n-1}}}{\sqrt{a_{n-1}} + \sqrt{b_{n-1}}} \to 0.$$

In fact, we can be even more precise.

Result 9. Convergence of the sequence $\{\delta_n\}$ to zero is quadratic.

$$\lim_{n\to\infty}\frac{\delta_n}{\delta_{n-1}^2}=\frac{1}{8}\frac{1}{\mathbf{AGM}(a,b)}.$$

Proof. From Equations (2)

$$\frac{\delta_n}{\delta_{n-1}^2} = \frac{1}{2} \frac{1}{(\sqrt{a_{n-1}} + \sqrt{b_{n-1}})^2} \to \frac{1}{8} \frac{1}{\mathsf{AGM}(a,b)}.$$

In a sense, the sequences $\{a_n\}$ and $\{b_n\}$ converge equally fast.

Result 10.
$$(a_n - a_{n-1}) \sim -(b_n - b_{n-1})$$
, i.e.

$$\lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = -1.$$

Proof.

$$a_n-a_{n-1}=-\frac{1}{2}(\sqrt{a_{n-1}}-\sqrt{b_{n-1}})(\sqrt{a_{n-1}}+\sqrt{b_{n-1}}),$$

$$b_n-b_{n-1}=\sqrt{b_{n-1}}(\sqrt{a_{n-1}}-\sqrt{b_{n-1}}).$$

and thus

$$\frac{a_n-a_{n-1}}{b_n-b_{n-1}}=-\frac{1}{2}\frac{\sqrt{a_{n-1}}+\sqrt{b_{n-1}}}{\sqrt{b_{n-1}}}\to -1.$$

3. COUNTEREXAMPLE

Equation (1) defines a mapping $\Gamma : \mathbb{R}^2 \Rightarrow \mathbb{R}^2$. The derivative of this mapping is

$$\mathcal{D}\Gamma(a,b) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2}\sqrt{\frac{b}{a}} & \frac{1}{2}\sqrt{\frac{a}{b}} \end{bmatrix},$$

and thus

$$\mathcal{D}\Gamma(\mathbf{AGM}(a,b),\mathbf{AGM}(a,b)) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix},$$

which has eigenvalues one and zero.

The fact that $\|\mathcal{D}\Gamma(\mathbf{AGM}(a,b),\mathbf{AGM}(a,b))\|_{\infty} = 1$ seems to suggest sublinear convergence, while in fact we know convergence is quadratic. If y_n is the two-element vector with elements $a_n - a_{n-1}$ and $b_n - b_{n-1}$, normalized to length one, then Result 10 shows that y_n converges to a vector with elements -1 and +1. This eigenvector corresponds with the smallest eigenvalue of the Jacobian at the solution, and that smallest eigenvalue is equal to zero.

REFERENCES

- G. Almqvist and B. Berndt. Gauss, Landen, Ramanujan, the Arithmetic-Geometric Mean, Ellipses, π , and the Ladies Diary. *The American Mathematical Monthly*, 95:585–608, 1988.
- B.G. Carlson. Algorithms Involving Arithmetic and Geometric Means. *The American Mathematical Monthly*, 78:496–505, 1971.
- D.A. Cox. The Arithmetic-Geometric Mean of Gauss. *L'Enseignement Mathématique*, 30:275–330, 1984.
- J. M. Ortega and W. C. Rheinboldt. *Iterative Solution of Nonlinear Equations in Several Variables*. Academic Press, New York, N.Y., 1970.

APPENDIX A. CODE

```
agm<-function(a,b,eps=1e-8,itmax=1000,verbose=TRUE)
   xold < -max(a,b); yold < -min(a,b); dold < -xold - yold; itel < -1
   repeat {
        xnew<-(xold+yold)/2; ynew<-sqrt(xold*yold)</pre>
5
        dnew<-xnew-ynew; rat1<-dnew/dold; rat2<-dnew/(dold^2)</pre>
6
        if (verbose) cat(
7
             "Iteration: ", <a href="format">format</a> (itel, width=3, <a href="format">format</a>="d"),
8
             "old: ",formatC(c(xold,yold,dold),digits=8,
9
                       width=12, format="f"),
10
             "old: ",formatC(c(xnew,ynew,dnew),digits=8,
11
                       width=12, format="f"),
12
             "rat: ",formatC(c(rat1, rat2), digits=8,
13
                       width=12, format="f"),
14
             "\n")
15
        if ((dnew < eps) || (itel == itmax))</pre>
16
             return(c(xnew,ynew))
17
        xold<-xnew; yold<-ynew; dold<-dnew; itel<-itel+1</pre>
18
        }
19
20 }
```

Department of Statistics, University of California, Los Angeles, CA 90095-1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu