5. Логика предикатов.

- 1. Для каждого из следующих высказываний найдите предикат (одноместный или многоместный), который обращается в данное высказывание при замене предметных переменных подходящими значениями из соответствующих областей:
 - (a) $\ll 3 + 4 = 7$; (б) «3 делит 12»;
 - (B) $\langle tg(\pi/4) = 1 \rangle$: (r) $\langle (-1) + (-3) + 4 = 0 \rangle$.
- 2. Определите, какие из следующих высказываний являются истинными, а какие ложными, если известно, что все переменные пробегают множество R.
 - (a) $\forall x \exists y \ (x+y=7);$ (6) $\exists y \, \forall x \, (x+y=7);$

 - (a) $\forall x \, \exists y \, (x+y-1),$ (b) $\exists y \, \forall x \, (x+y-1),$ (c) $\exists y \, \forall x \, (x+y-1),$ (d) $\exists x \, \forall y \, (x+y=7);$ (e) $\forall x \, \forall y \, (x+y=7);$ (e) $\forall x \, ((x^2 > x) \sim ((x > 1) \vee (x < 0));$
 - (A) $(\exists a \ \forall y \ (a \ \exists a))$, (b) $(\exists a \ \forall x \ (x^2 + ax + b > 0);$ (c) $(\exists a \ \forall x \ ((x > 1) \lor (x < 2)) \sim (x = x));$ (d) $(\exists b \ \exists a \ \exists x \ (x^2 + ax + b = 0);$ (e) $(\exists a \ \forall b \ \exists x \ (x^2 + ax + b = 0).$
- 3. Из предиката $D(x,y) = \langle x \rangle (x,y) \in \mathbb{N}$ с помощью кванторов постройте всевозможные высказывания и определите, какие из них истинны, а какие ложны.
- 4. Пусть P(x) и Q(x) такие одноместные предикаты, заданные над одним и тем же множеством M, что высказывание:
 - (a) $\exists x \ (P(x) \to (\overline{P}(x) \lor \overline{\overline{Q}(x) \to P(x)}))$ истиню: докажите, что высказывание $\forall x \ P(x)$ ложно:
 - (б) $\forall x \ ((\overline{Q}(x) \& P(x)) \to (P(x) \to Q(x))$ ложно; докажите, что высказывание $\exists x \ P(x)$ истинно, а высказывание $\forall x \ Q(x)$ ложно;
 - (в) $\exists x \; (P(x) \& (P(x) \sim (Q(x) \lor \overline{P}(x))))$ истиню; докажите, что высказывание $\exists x \ (P(x) \& Q(x))$ также будет истинным;
 - (г) $\forall x \ (\overline{P}(x) \to (P(x) \lor \overline{\overline{Q}(x) \to P(x)}))$ ложно; докажите, что высказывание $\forall x \ P(x)$ ложно, а высказывание $\exists x \ Q(x)$ истинно.
- 5. Придайте следующим формулам указанные интерпретации и определите истинностные значения получающихся высказываний:
 - (a) $(\forall x \ \overline{P(x,x)}) \& (\forall x \forall y \forall z \ ((P(x,y) \& P(y,z)) \rightarrow P(x,z))) \& (\forall x \exists y \ P(x,y)),$ $M = \{1, 2, \dots, n\}, P(x, y) = \langle x < y \rangle;$
 - (б) предыдущая формула, $M = \mathbb{N}$, $P(x, y) = \langle x \langle y \rangle$;
 - (в) $(\exists x \ P(x)) \to P(y), M = \{2,3\}, P(x) = \text{$<$2$ делит x}, y = 3;$
 - (г) $(\forall x \ P(x)) \sim (\forall x \ Q(x)), M = \mathbb{N}, P(x) = «3 делит x», Q(x) = «2 делит x».$
- 6. Определите, какие из следующих формул выполнимы, а какие нет (т. е. являются тождественно ложными):
 - (a) $\exists x \, \forall y \, (Q(x,y) \to (\forall z \, R(x,y,z)));$ (6) $\exists x \, \forall y \, (Q(x,x) \, \& \, \overline{Q(x,y)});$
 - (B) $(\forall x (P(x) \lor Q(x))) \to ((\forall x P(x)) \lor (\forall x (Q(x))));$ (r) $\forall x (P(x) \& \overline{P(x)}).$
- 7. Докажите, что следующие формулы являются тавтологиями логики предикатов:
 - (a) $(\forall x \ (P(x) \& Q(x))) \sim ((\forall x \ P(x)) \& (\forall x \ Q(x)));$ (6) $(\exists x \ P(x,x)) \rightarrow (\exists x \ \exists y \ P(x,y));$
 - (B) $(\forall x \ (P(x) \to Q)) \sim ((\exists x \ P(x)) \to Q);$ $(\Gamma) \exists x \ (P(y) \to P(x)).$
- 8. Докажите, что справедливы следующие равносильности:
 - (a) $\forall x \ (P(x) \& Q(x)) \equiv (\forall x \ P(x)) \& (\forall x \ Q(x));$ (b) $\overline{\exists x \ P(x)} \equiv \forall x \ \overline{P(x)};$ (c) $\overline{\forall x \ P(x)} \equiv \exists x \ \overline{P(x)};$

5. Логика предикатов.

- 1. Для каждого из следующих высказываний найдите предикат (одноместный или многоместный), который обращается в данное высказывание при замене предметных переменных подходящими значениями из соответствующих областей:
 - (a) $\ll 3 + 4 = 7$; (б) «3 делит 12»;
 - (B) $\langle tg(\pi/4) = 1 \rangle$: (r) $\langle (-1) + (-3) + 4 = 0 \rangle$.
- 2. Определите, какие из следующих высказываний являются истинными, а какие ложными, если известно, что все переменные пробегают множество R.
 - (a) $\forall x \exists y \ (x+y=7);$ (6) $\exists y \, \forall x \, (x+y=7);$

 - (a) $\forall x \, \exists y \, (x+y-1),$ (b) $\exists y \, \forall x \, (x+y-1),$ (c) $\exists y \, \forall x \, (x+y-1),$ (d) $\exists x \, \forall y \, (x+y=7);$ (e) $\forall x \, \forall y \, (x+y=7);$ (e) $\forall x \, ((x^2 > x) \sim ((x > 1) \vee (x < 0));$
 - (A) $(\exists a \ \forall y \ (a \ \exists a))$, (b) $(\exists a \ \forall x \ (x^2 + ax + b > 0);$ (c) $(\exists a \ \forall x \ ((x > 1) \lor (x < 2)) \sim (x = x));$ (d) $(\exists b \ \exists a \ \exists x \ (x^2 + ax + b = 0);$ (e) $(\exists a \ \forall b \ \exists x \ (x^2 + ax + b = 0).$
- 3. Из предиката $D(x,y) = \langle x \rangle (x,y) \in \mathbb{N}$ с помощью кванторов постройте всевозможные высказывания и определите, какие из них истинны, а какие ложны.
- 4. Пусть P(x) и Q(x) такие одноместные предикаты, заданные над одним и тем же множеством M, что высказывание:
 - (a) $\exists x \ (P(x) \to (\overline{P}(x) \lor \overline{\overline{Q}(x) \to P(x)}))$ истиню: докажите, что высказывание $\forall x \ P(x)$ ложно:
 - (б) $\forall x \ ((\overline{Q}(x) \& P(x)) \to (P(x) \to Q(x))$ ложно; докажите, что высказывание $\exists x \ P(x)$ истинно, а высказывание $\forall x \ Q(x)$ ложно;
 - (в) $\exists x \; (P(x) \& (P(x) \sim (Q(x) \lor \overline{P}(x))))$ истиню; докажите, что высказывание $\exists x \ (P(x) \& Q(x))$ также будет истинным;
 - (г) $\forall x \ (\overline{P}(x) \to (P(x) \lor \overline{\overline{Q}(x) \to P(x)}))$ ложно; докажите, что высказывание $\forall x \ P(x)$ ложно, а высказывание $\exists x \ Q(x)$ истинно.
- 5. Придайте следующим формулам указанные интерпретации и определите истинностные значения получающихся высказываний:
 - (a) $(\forall x \ \overline{P(x,x)}) \& (\forall x \forall y \forall z \ ((P(x,y) \& P(y,z)) \rightarrow P(x,z))) \& (\forall x \exists y \ P(x,y)),$ $M = \{1, 2, \dots, n\}, P(x, y) = \langle x < y \rangle;$
 - (б) предыдущая формула, $M = \mathbb{N}$, $P(x, y) = \langle x \langle y \rangle$;
 - (в) $(\exists x \ P(x)) \to P(y), M = \{2,3\}, P(x) = \text{$<$2$ делит x}, y = 3;$
 - (г) $(\forall x \ P(x)) \sim (\forall x \ Q(x)), M = \mathbb{N}, P(x) = «3 делит x», Q(x) = «2 делит x».$
- 6. Определите, какие из следующих формул выполнимы, а какие нет (т. е. являются тождественно ложными):
 - (a) $\exists x \, \forall y \, (Q(x,y) \to (\forall z \, R(x,y,z)));$ (6) $\exists x \, \forall y \, (Q(x,x) \, \& \, \overline{Q(x,y)});$
 - (B) $(\forall x (P(x) \lor Q(x))) \to ((\forall x P(x)) \lor (\forall x (Q(x))));$ (r) $\forall x (P(x) \& \overline{P(x)}).$
- 7. Докажите, что следующие формулы являются тавтологиями логики предикатов:
 - (a) $(\forall x \ (P(x) \& Q(x))) \sim ((\forall x \ P(x)) \& (\forall x \ Q(x)));$ (6) $(\exists x \ P(x,x)) \rightarrow (\exists x \ \exists y \ P(x,y));$
 - (B) $(\forall x \ (P(x) \to Q)) \sim ((\exists x \ P(x)) \to Q);$ $(\Gamma) \exists x \ (P(y) \to P(x)).$
- 8. Докажите, что справедливы следующие равносильности:
 - (a) $\forall x \ (P(x) \& Q(x)) \equiv (\forall x \ P(x)) \& (\forall x \ Q(x));$ (b) $\overline{\exists x \ P(x)} \equiv \forall x \ \overline{P(x)};$ (c) $\overline{\forall x \ P(x)} \equiv \exists x \ \overline{P(x)};$