

Europäisches Patentamt

(19)

European Patent Office

Office européen des brevets

(11) Veröffentlichungsnummer:

O 164 514

A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 85104029.5

(51) Int. Cl. 1: **C 02 F 5/08**

(22) Anmeldetag: 03.04.85

B 01 J 39/14, C 11 D 3/08

(30) Priorität: 11.04.84 DE 3413571

(71) Anmelder: HOECHST AKTIENGESELLSCHAFT
Postfach 80 03 20
D-6230 Frankfurt am Main 80 (DE)

(43) Veröffentlichungstag der Anmeldung:
18.12.85 Patentblatt 85/51

(72) Erfinder: Rieck, Hans-Peter, Dr.
Staufenstrasse 13a
D-6238 Hofheim am Taunus (DE)

(84) Benannte Vertragsstaaten:
BE CH DE FR GB IT LI NL SE

(54) Verwendung von kristallinen schichtförmigen Natriumsilikaten zur Wasserenthärtung und Verfahren zur Wasserenthärtung.

(57) Kristalline schichtförmige Natriumsilikate der Zusammensetzung $\text{NaMSi}_x\text{O}_{2x+1-y}\text{H}_2\text{O}$, wobei M Natrium oder Wasserstoff bedeutet und x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist, werden verwendet zur Enthärtung von Wasser, das Calcium- und/oder Magnesium-Ionen enthält.

1

Verwendung von kristallinen schichtförmigen Natriumsilikaten zur Wasserenthärtung und Verfahren zur Wasserenthärtung

Die vorliegende Erfindung betrifft die Verwendung von kristallinen schichtförmigen Natriumsilikaten zur Wasserenthärtung und ein Verfahren zur Enthärtung von Wasser, das Ca- und/oder Mg-Ionen enthält.

5

Das in der Natur vorkommende Wasser, sei es Oberflächenwasser oder Grundwasser sowie das gewöhnliche Leitungswasser, enthält neben gelösten Gasen eine Reihe von Salzen, die aus den Böden und Gesteinen herausgelöst werden oder

10 teilweise auch aus Abwasserzuläufen stammen. Die wichtigsten Bestandteile sind die Salze des Natriums, Kalziums und des Magnesiums. Für die Härte des Wassers sind von diesen nur die Erdalkalien Kalzium und Magnesium verantwortlich. Üblich ist die Angabe von mg Erdalkalioxid

15 pro Liter Wasser. Dabei entsprechen 10,00 mg CaO bzw. 7,19 mg MgO/l der Maßeinheit von einem Deutschen Grad (${}^{\circ}\text{d}$). Im allgemeinen besteht die Gesamthärte des Wassers (in der Bundesrepublik Deutschland) zu 70 - 85 % aus Ca- und zu 30 - 15 % aus Mg-Härte.

20

In Wasch- und Reinigungsprozessen stört diese Härte, da die Erdalkalionen die Waschwirksamkeit der Tenside beeinträchtigen. Aus diesem Grunde werden den Wasch- und Reinigungsmitteln sogenannte Builder zugegeben, die die 25 Härte der Waschlösung ganz oder teilweise beseitigen, so eine Wechselwirkung der Erdalkalionen mit den Tensiden verhindern und die Waschwirksamkeit der Tenside erhöhen. Diese Enthärtung kann erreicht werden durch Überführung der Erdalkalionen in lösliche Komplex-

30 salze. Weniger erwünscht ist eine Ausfällung, wenn die Gefahr besteht, daß sich die unlöslichen Erdalkalisalze auf dem Gewebe oder auf Teilen der Waschmaschine nieder-

schlagen. Nach einer weiteren Methode werden die Natriumionen eines Ionenaustauschers gegen die Erdalkalitionen der Waschlösung ausgetauscht.

5 Pentanatriumtriphosphat, $\text{Na}_5\text{P}_3\text{O}_{10}$, ist ein weitverbreiteter und sehr wirksamer Builder in Waschmittelformulierungen. Phosphate werden jedoch für die Eutrophierung von Flüssen und Seen, d.h. für eine Steigerung des Algenwachstums und des Sauerstoffverbrauchs, verantwortlich gemacht.

10 Es sind deshalb in vielen Ländern gesetzliche Maßnahmen getroffen worden, um den Anteil von Phosphaten in Waschmitteln zu beschränken.

Ein weiters Komplexierungsmittel ist Trinatriumnitrilotriacetat, $3 \text{Na}^+ \text{N}(\text{CH}_2\text{CO}_2^-)_3$. Auch bei dieser Substanz bestehen ökologische Bedenken, da noch nicht genau bekannt ist, inwieweit das Nitrilotriacetat Schwermetalle aus Gesteinen der Flüsse und Seen herauslösen kann.

20 Als Ersatzstoff für diese komplexierenden Builder wird in den letzten Jahren Zeolith A verwendet. Der Zeolith vermag durch Ionenaustausch den Ca^{2+} -Gehalt zu vermindern, sein Mg-Bindevermögen ist jedoch gering.

25 Natriumsilikate werden schon seit langer Zeit in Waschmitteln eingesetzt. Ihre hauptsächliche Funktion ist darin zu sehen, daß sie Na^+ -Ionen liefern und den pH-Wert erhöhen. In den handelsüblichen Waschmitteln werden nur amorphe Natriumsilikate der molaren Zusammensetzung

30 $\text{Na}_2\text{O} : \text{SiO}_2$ von etwa 1 : 2 bis 1 : 3,3 verwendet. In der Patentliteratur, die den Einsatz von Natriumsilikaten in Waschmitteln zum Gegenstand hat, finden sich keine Hinweise darauf, daß kristalline Verbindungen mit einer entsprechenden Zusammensetzung eingesetzt werden sollen.

lange bekannt, jedoch sind sie nach den bekannten Verfahren wesentlich aufwendiger herzustellen als ihre amorphen Analoga. Im allgemeinen Gebrauch sind deshalb nur amorphe Silikate, die - in Form von Gläsern - wasserfrei sind

5 oder als wasserhaltige Feststoffe angeboten werden. Schließlich werden noch wäßrige Silikat-Lösungen verwendet.

10 Es bestand die Aufgabe, für den Einsatz als Wasserenthärtungsmittel Natriumsilikate mit besonders hoher Wirksamkeit aufzufinden.

Gegenstand der Erfindung ist die Verwendung von kristallinen schichtförmigen Natriumsilikaten der Zusammensetzung 15 $\text{NaMSi}_x\text{O}_{2x+1}\cdot y\text{H}_2\text{O}$, wobei M Natrium oder Wasserstoff bedeutet und x 1,9 bis 4 und y 0 bis 20 ist, zur Enthärtung von Wasser, das Calcium- und/oder Magnesium-Ionen enthält.

20 Die erfindungsgemäß verwendeten kristallinen Natriumsilikate erweisen sich in rasterelektronenmikroskopischen Aufnahmen als schichtförmig.

25 Aus den bekannten Verbindungen der Formel $\text{Na}_2\text{Si}_x\text{O}_{2x+1}\cdot y\text{H}_2\text{O}$ lassen sich durch Behandlung mit Säuren und teilweise auch mit Wasser die entsprechenden Verbindungen $\text{NaHSi}_x\text{O}_{2x+1}\cdot y\text{H}_2\text{O}$ herstellen. Der durch die Zahl y angegebene Wassergehalt unterscheidet nicht zwischen Kristallwasser und an-

30 haftendem Wasser. Vorzugsweise steht M für Natrium. Bevorzugte Werte für x sind 2 oder 3 oder 4. Besonders bevorzugt werden Verbindungen der Zusammensetzung $\text{NaMSi}_2\text{O}_5\cdot y\text{H}_2\text{O}$. Da es sich bei den erfindungsgemäß eingesetzten Natriumsilikaten um kristalline Verbindungen

35 handelt, lassen sie sich auch durch ihre Röntgenbeugungsdiagramme gut charakterisieren.

In dem angegebenen Bereich für x sind viele kristalline schichtförmige Natriumsilikate bekannt, die erfundungsgemäß eingesetzt werden können.

5 Beim Joint Committee on Powder Diffraction Standards sind unter den folgenden Nummern Röntgenbeugungsdiagramme von entsprechenden Natriumsilikaten aufgeführt: 18-1241, 22-1397, 22-1397 A, 19-1233, 19-1234, 19-1237, 23-529, 24-1123, 24-1123 A, 29-1261, 18-1242, 22-1395, 19-1235,
10 22-1396, 19-1236, 18-1240, 19-1232, 18-1239, 12-102, 23-703, 25-1309, 27-708, 27-709.

In den Tabellen 1 bis 7 sind die charakteristischen Röntgenbeugungsexpresse von kristallinen schichtförmigen
15 Natriumsilikaten angegeben, die sich mit Erfolg erfundungsgemäß einsetzen lassen.

Im Vergleich zu den gebräuchlichen amorphen Natriumsilikaten zeigen einige kristalline schichtförmige Natriumsilikate ein deutlich erhöhtes Kalkbindevermögen. Dies gilt z.B. für die Silikate der Tabellen 1 und 3, und insbesondere für das Natriumsilikat der Tabelle 2. Die kristallinen schichtförmigen Natriumsilikate können die amorphen Wassergläser oder Wasserglaslösungen in
25 Wasch- und Reinigungsmitteln ersetzen. Sie können aber auch ergänzend verwendet werden.

Die kristallinen schichtförmigen Natriumsilikate sind in Abhängigkeit von ihrem Natriumgehalt teilweise nur begrenzt wasserlöslich oder sogar schwerlöslich.
30

Die im Vergleich zu amorphen Silikaten gleicher Zusammensetzung erhöhten wasserenthärtenden Eigenschaften sind vermutlich auf den kristallinen, schichtförmigen Aufbau und auf den erhöhten Polymerisationsgrad des Silikatgerüsts zurückzuführen.
35

Der unerwartete Einfluß der Kristallstruktur auf das Kalkbindevermögen zeigt sich darin, daß bei gleicher analytischer Zusammensetzung deutlich unterschiedliche Werte in Abhängigkeit vom kristallinen Aufbau (zu identifizieren durch das Röntgenbeugungsdiagramm) erhalten werden.

In den Tabellen 1 bis 7 sind charakteristische Röntgenbeugungsreflexe (d -Werte in 10^{-8} cm) von kristallinen 10 Natriumschichtsilikaten, die erfindungsgemäß eingesetzt werden können, aufgeführt. Besonders bevorzugt ist das Silikat gemäß Tabelle 2.

Die relativen Intensitäten werden in den Tabellen 1 bis 15 7 als sst (sehr stark= 75 bis 100), st (stark= 50 bis 75), m (mittel= 25 bis 50) und schw (schwach= 0 bis 25) angegeben.

Es gehört zu den charakteristischen Eigenschaften der 20 erfindungsgemäß eingesetzten Natriumsilikate, daß sie mit Mineralsäuren in die entsprechenden freien Kiesel säuren überführt werden können. Sie verlieren dabei teilweise ihre Kristallinität.

25 Durch potentiometrische Titration mit einer Mineralsäure in wässriger Lösung, vorzugsweise an feuchten Proben, läßt sich die Ionenaustauschkapazität des Natriumsilikats bestimmen. Durch parallele Bestimmung des Trocknungsverlustes lassen sich die gefundenen Werte auf getrocknetes 30 Produkt umrechnen.

Zur Wasserenthärtung werden bevorzugt Natriumsilikate eingesetzt, die nach dieser Bestimmungsmethode Ionenaustauschwerte von 400 bis 1200 mmol Na^+ /100 g trockenes 35 Silikat liefern. Besonders bevorzugt sind jene Silikate,

600 mmol Na⁺/100 g Produkt haben. Diese Produkte bestehen im wesentlichen aus NaHSi₂O₅. Bevorzugt sind ferner jene Produkte, die etwa der Formel Na₂Si₂O₅ und eine Austauschkapazität von etwa 1000 bis 1100 mmol Na⁺/100 g
5 haben. Diese Produkte bestehen im wesentlichen aus Na₂Si₂O₅.

Es können kristalline schichtförmige Natriumsilikate natürlichen Ursprungs, aber auch synthetische Produkte eingesetzt werden.
10

Die Herstellung der kristallinen Silikate kann aus amorphen glasartigen Natriumsilikaten erfolgen und wird beispielsweise in Phys. Chem. Glasses, 7, 127 - 138 (1966) und Z. Kristallogr., 129, 396 - 404 (1969) beschrieben.
15 Auch andere Synthesewege sind möglich.

Insbesondere Na-SKS-6, welches dem δ-Na₂Si₂O₅ ähnelt, und Na-SKS-7, welches dem β-Na₂Si₂O₅ ähnelt, sind zur Wasserenthärtung geeignet. Weiterhin können auch natürliche
20 kristalline Silikate der Formel Na₂Si₂O₅, wie Natrosilit, eingesetzt werden, und auch hydratisierte Silikate, wie der Kanemit, NaHSi₂O₅·y H₂O. Für die Enthärtungswirkung ist der Kristallwasser-Gehalt und das anhaftende Wasser unwesentlich. Daher werden Natriumsilikate bevorzugt, in
25 denen y für 0 bis 2, insbesondere 0, steht.

Die kristallinen schichtförmigen Silikate können in reiner Form oder als Gemisch verschiedener Silikate eingesetzt werden. Es ist von Vorteil, daß sie auch in
30 Gegenwart von beliebigen anderen Wasserenthärtungsmitteln verwendet werden können, beispielsweise zusammen mit Pentanatriumtriphosphat, Trinatriumnitriolotrisulfonat und/oder Zeolith A; aber auch Phosphonate, Polycarboxylate oder andere amorphe oder kristalline
35 Silikate sowie Mischungen der erwähnten oder anderer

- 7 -

Die kristallinen schichtförmigen Natriumsilikate können auch durch Ionenaustausch aus entsprechenden kristallinen freien Kieselsäuren oder entsprechenden anderen Alkalisilikaten, insbesondere Kalium- und Lithiumsilikaten,

5 mit Schichtstruktur hergestellt werden. Dieser Ionenaustausch kann auch während der Enthärtung von Wasser erfolgen, sofern Natriumionen im Überschuß vorhanden sind. Dies ist z.B. bei Einsatz der meisten Textil-Waschmittel der Fall.

10

Die Kristallgröße der erfindungsgemäß eingesetzten Natriumsilikate kann in weiten Grenzen schwanken. Diese Silikate können eine Größe von etwa 0,01 μm bis etwa 1000 μm , bevorzugt von 0,1 – 10 μm haben. Es ist ein

15 Vorteil der kristallinen schichtförmigen Natriumsilikate, daß sie insbesondere im alkalischen Bereich der Waschlauge bei einem pH-Wert von etwa 9 – 12 sowie in Gegenwart von Na^+ -Ionen gut wirksam ist. Dies gilt auch für Waschlaugen, die einen deutlich kleineren Gehalt als etwa 20 350 mg CaO/l bzw. etwa 144 mg MgO/l haben. Auch die Anwesenheit größerer Na^+ -Konzentrationen, die in Waschmitteln üblich sind, verringert die wasserenthärtende Wirksamkeit der erfindungsgemäßen Natriumsilikate nur unwesentlich.

25 Deshalb lassen sich die kristallinen schichtförmigen Natriumsilikate vorteilhafterweise in Wasch- und Reinigungsmitteln (insbesondere Geschirrspülmitteln) als Builder einsetzen. Die Gegenwart von Tensiden beeinträchtigt die Wirkung der Natriumsilikate nicht.

30

Gegenstand der Erfindung ist weiterhin ein Verfahren zur Enthärtung von Wasser, das Calcium- und/oder Magnesium-Ionen sowie Natrium-Ionen enthält und einen pH-Wert von etwa 8 bis 12 aufweist. Dieses Verfahren ist dadurch

Na⁺ x Zn²⁺ Y²⁻ zufügt. Wobei Y der angegebene Wert

mel M entweder Natrium oder Wasserstoff bedeutet und x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist. Bei diesem Enthärtungsverfahren wird die Reaktionsmischung vorzugsweise in Bewegung gehalten.

5

Die Wirksamkeit des erfindungsgemäß eingesetzten Wasserenthärtungsmittels sowie des Verfahrens zur Enthärtung von Wasser lässt sich dadurch überprüfen, daß eine Calcium- bzw. Magnesiumchloridlösung mit verdünnter Natronlauge

- 10 auf einen pH-Wert von 10 eingestellt und mit dem Mittel versetzt wird. Die erhaltene Suspension wird im allgemeinen 15 Minuten bei Raumtemperatur (etwa 22 - 26°C) gerührt, danach wird der in der Suspension vorhandene Feststoff abfiltriert. Anschließend bestimmt man die
- 15 Resthärte des Filtrats und errechnet aus der Differenz zur Ausgangshärte die Verminderung der Ca^{2+} - bzw. Mg^{2+} -Konzentration, die mit der Einwaage des erfindungsgemäßen Wasserenthärtungsmittels in Beziehung gesetzt wird. Bei der Einwaage wird ein vorhandener Wasseranteil des Wasser-
- 20 enthärtungsmittels mit erfaßt, der sich durch Trocknung bei 400°C ermitteln lässt. Man erhält so das Ca- bzw. Mg-Bindevermögen, welches in mg CaO bzw. mg MgO pro g kristallines schichtförmiges Natriumsilikat (wasserfrei) angegeben wird. Die folgende Gleichung zeigt, wie das
- 25 Ca-Bindevermögen berechnet wird.

$$\text{Ca-Bindevermögen} = \frac{\text{mg CaO (Ausgangslösung)} - \text{mg CaO (Resthärte)}}{\text{Einwaage krist. schichtf. Natriumsilikat (wasserfrei)}}$$

- 30 Bei dieser Bestimmungsmethode wird nur der Anteil der Wasserenthärtung erfaßt, der durch Ionenaustausch und ggf. durch Fällung verursacht worden ist. Nicht erfaßt wird die komplexierende Wirkung der gelösten kristallinen schichtförmigen Natriumsilikats, welche insbesondere bei
- 35 geringeren pH-Werten an Bedeutung gewinnen kann. Die tatsächliche wasserenthärtende Wirkung ist deshalb größer

Die Größe des Ca- und Mg-Bindevermögens ist sowohl von der Erdalkalikonzentration der Ausgangslösung, von der Einwaage bzw., damit verbunden, der angestrebten Resthärte, der Temperatur, vom pH-Wert, der Korngröße des

5 Silikats, der Applikationsform (gelöst, als Hydrat, wasserfrei, sprühgetrocknet mit anderen Substanzen usw.), der Austauschdauer, dem Natriumgehalt des Silikates und insbesondere von der Kristallstruktur abhängig. Bevorzugt sind pH-Werte von 9,5 - 11,5.

10 Für die Austauschdauer existiert im allgemeinen ein Optimum, da in wässriger Lösung eine langsame Hydrolyse des Silikats stattfindet. Vorzugsweise wird man das Silikat 5 bis 240 min, insbesondere 10 - 60 min mit dem zu ent-15 härtenden Wasser in Kontakt bringen. Die Menge Natriumsilikat muß für eine vollständige Enthärtung (falls wei-tere Enthärtungsmittel fehlen) den Härtebestandteilen mindestens äquivalent sein. Größenordnungsmäßig enthält das zu enthärtende Wasser 10 - 200 mg MgO/l und 50 - 20 500 mg CaO/l, insbesondere 20 - 100 mg MgO/l und 60 - 350 mg CaO/l. Ein hoher Natriumgehalt des kristallinen Natriumsilikats bedeutet im allgemeinen auch eine hohe spezifische Austauschkapazität.

25 Grundsätzlich wird der Wert des Calcium- bzw. Magnesium-Bindevermögens, bezogen auf die Einwaage, durch hohe Ausgangskonzentrationen an Calcium- und Magnesium-Ionen erhöht. Bei vergleichenden Untersuchungen der Wasserenthärtung ist es daher wichtig zu beachten, welche Aus-30 gangshärte gewählt wurde. Entscheidend ist weiterhin die angestrebte Resthärte; damit gekoppelt ist die notwendige Menge an kristallinem schichtförmigem Natriumsilikat, das zugesetzt werden muß. Es hat sich gezeigt, daß zur Verminderung einer kleinen Resthärte eine überpropor-35 nale Menge Wasserenthärtungsmittel zugesetzt werden muß.

Bei Zusatz von 500 mg kristallinem $\text{Na}_2\text{Si}_2\text{O}_5$, welches charakteristische Röntgenbeugungsreflexe bei $(3,97 \pm 0,08) \cdot 10^{-8}$ cm sowie $(2,43 \pm 0,5) \cdot 10^{-8}$ cm (mit geringerer Intensität) hat (Na-SKS-6), zu 1 l wäßriger Lösung, die etwa 300 mg

5 CaO enthält und einen pH-Wert von 10 hat, wird bei Raumtemperatur nach der beschriebenen Bestimmungsmethode ein Ca-Bindevermögen von etwa 150 bis nahezu 200 mg CaO/g kristallinem $\text{Na}_2\text{Si}_2\text{O}_5$ ermittelt. Wird 1 l einer wäßriger Lösung die etwa 200 mg MgO enthält und einen pH-Wert von 10 hat,

10 mit etwa 500 mg kristallinem $\text{Na}_2\text{Si}_2\text{O}_5$ versetzt, so kann eine Reduzierung der gelösten Mg^{2+} -Ionen erreicht werden, die einem Mg-Bindevermögen von etwa 160 - 170 mg MgO/g $\text{Na}_2\text{Si}_2\text{O}_5$ entspricht.

15 Die Erfindung wird durch die folgenden Beispiele näher erläutert.

Beispiele

20 Die untersuchten kristallinen Natriumsilikate der Zusammensetzung $\text{Na}_2\text{Si}_2\text{O}_5$ zeigen die in den Tabellen 11 bis 16 aufgeführten Röntgenbeugungsdiagramme. Die Proben 1 bis 4 wurden durch Kristallisation von röntgenamorphem Natriumsilikat des Moduls (Molverhältnis $\text{SiO}_2/\text{Na}_2\text{O}$) 2,0 bei 550 bis

25 800°C hergestellt. Der zum Vergleich untersuchte Zeolith A (Natriumform) hat einen Wassergehalt von 17,1 %; sein Röntgenbeugungsdiagramm ist in Tabelle 13 aufgeführt.

Das Kalzium- bzw. Magnesium-Bindevermögen wurde bestimmt, indem zu einer CaCl_2 -Lösung bzw. MgCl_2 -Lösung, die mit verdünnter Natronlauge auf pH 10 eingestellt und deren Gehalt durch Titration mit EDTA-Lösung bestimmt worden war, eine bestimmte Menge des kristallinen Silikats gegeben wurde. Die Reaktionsmischung wurde im allgemeinen 35 15 Minuten gerührt und anschließend über ein Blauband-Filter abgesaugt. Im Filtrat wurde der Gehalt an Kalzium- bzw.

dieser Bestimmungsmethode werden lösliche Komplexe des Wasserenthärtungsmittels mit den Magnesium- und den Kalzium-Ionen nicht von diesen Ionen unterschieden. Die tatsächliche Wasserenthärtung ist deshalb größer, als 5 sie nach dieser Methode gefunden und in den Tabellen angegeben wird. Die Versuchsergebnisse sind in den Tabellen 8 und 9 aufgeführt.

Diese Ergebnisse zeigen, daß die untersuchten kristallinen 10 Natriumsilikate der Zusammensetzung $\text{Na}_2\text{Si}_2\text{O}_5$ beim Kalziumbindevermögen etwa ein gleich gutes Ergebnis liefern wie Zeolith A, diesem teilweise sogar überlegen sind. Eine deutliche Überlegenheit zeigt sich gegenüber Zeolith A beim Magnesium-Bindevermögen.

15 In Tabelle 10 sind die Ergebnisse aufgeführt, die bei der Bestimmung des Kalzium-Bindevermögens einer Kombination des erfindungsgemäß eingesetzten Wasserenthärtungsmittels mit anderen Wasserenthärtungsmitteln erhalten 20 wurden. Der Vergleich von Beispiel 22 mit 21 und Beispiel 24 mit 23 zeigt jeweils, daß durch den Zusatz von kristallinem $\text{Na}_2\text{Si}_2\text{O}_5$ die Gesamtwirkung der Wasserenthärtung deutlich erhöht wird.

25 Ferner wurde geprüft, ob die kristallinen Natriumsilikate auch nach starker Beanspruchung unter Hydrolysebedingungen noch ein Bindevermögen für Kalzium zeigen. In Beispiel 25 wurden 200 ml der Probe 2 in 10 ml entionisiertem Wasser aufgekocht. Dabei löste sich die Substanz zu einer leicht 30 trüben Lösung. Nach dem Abkühlen wurde diese zu 200 ml einer Kalziumlösung entsprechend Beispiel 8 gegeben. Es wurde ein Kalzium-Bindevermögen von 111 mg CaO/g Probe 2 gefunden.

35 Ein kristallines Hydrolyseprodukt von Probe 2 einer Zu-

trocknet wurde. Das Röntgenbeugungsdiagramm des bei 105°C getrockneten Produktes wird in Tabelle 16 aufgeführt. Die Substanz hat unter den Bedingungen von Beispiel 8 ein Kalziumbindevermögen von 124 mg CaO/g.

5

Ein röntgenamorphes Natriumsilikat mit gleicher Zusammensetzung wie die Proben 1 bis 4 wird erhalten, wenn Wasserglaslösung mit einem Molverhältnis von $\text{SiO}_2/\text{Na}_2\text{O}$ von etwa 2,06 : 1 zwei Stunden auf 500°C erhitzt wird. Bei 10 einer analogen Bestimmung des Kalziumbindevermögens wurden Werte von 0 bis 40 mg CaO/g amorphes Silikat erhalten (vgl. Beispiel 26).

Tabelle 1

Na-SKS-5

$d(10^{-8} \text{ cm})$	rel. Intensität
4,92 ($\pm 0,10$)	m - st
3,95 ($\pm 0,08$)	schw
3,85 ($\pm 0,08$)	m - st
3,77 ($\pm 0,08$)	st - sst
3,29 ($\pm 0,07$)	sst
3,20 ($\pm 0,06$)	schw
2,64 ($\pm 0,05$)	schw - m
2,53 ($\pm 0,05$)	schw
2,45 ($\pm 0,05$)	m - st
2,41 ($\pm 0,05$)	schw
2,38 ($\pm 0,05$)	schw

Tabelle 2

Na-SKS-6

$d(10^{-8} \text{ cm})$	rel. Intensität
4,92 ($\pm 0,10$)	schw
...	...

3,31	(\pm 0,07)	schw
3,02	(\pm 0,06)	schw - m
2,85	(\pm 0,06)	schw
2,65	(\pm 0,05)	schw
2,49	(\pm 0,05)	schw
2,43	(\pm 0,05)	m

Tabelle 3

Na-SKS-7

d(10^{-8} cm)		rel. Intensität
7,96	(\pm 0,16)	schw
6,00	(\pm 0,12)	st - sst
5,48	(\pm 0,11)	schw
4,92	(\pm 0,11)	schw
4,30	(\pm 0,09)	m
4,15	(\pm 0,08)	st
3,96	(\pm 0,08)	st - sst
3,78	(\pm 0,08)	m - st
3,63	(\pm 0,07)	sst
3,31	(\pm 0,07)	schw
3,12	(\pm 0,06)	schw - m
3,08	(\pm 0,06)	schw - m
3,06	(\pm 0,06)	m - st
2,97	(\pm 0,06)	st - sst
2,85	(\pm 0,06)	schw
2,70	(\pm 0,05)	schw - m
2,66	(\pm 0,05)	m - st
2,63	(\pm 0,05)	schw
2,59	(\pm 0,06)	schw - m
2,54	(\pm 0,05)	schw - m
2,43	(\pm 0,05)	sst

Tabelle 4

Na-SKS-11

$d(10^{-8} \text{ cm})$	rel. Intensität
6,08 ($\pm 0,12$)	schw
5,88 ($\pm 0,12$)	schw - m
4,22 ($\pm 0,08$)	sst
3,26 ($\pm 0,07$)	schw - m
3,03 ($\pm 0,06$)	schw - m
2,94 ($\pm 0,06$)	m
2,89 ($\pm 0,06$)	schw
2,64 ($\pm 0,05$)	schw - m
2,56 ($\pm 0,05$)	schw - m
2,49 ($\pm 0,05$)	schw
2,43 ($\pm 0,05$)	schw

Tabelle 5

Na-SKS-9

$d(10^{-8} \text{ cm})$	rel. Intensität
7,79 ($\pm 0,16$)	m - sst
4,68 ($\pm 0,09$)	m - sst
4,06 ($\pm 0,08$)	schw - m
3,94 ($\pm 0,08$)	schw - m
3,86 ($\pm 0,08$)	schw - m
3,62 ($\pm 0,07$)	sst
3,55 ($\pm 0,07$)	st - sst
3,53 ($\pm 0,07$)	st - sst
3,26 ($\pm 0,07$)	schw - m
3,18 ($\pm 0,06$)	schw - m
2,72 ($\pm 0,05$)	schw - m
2,46 ($\pm 0,05$)	schw - m

Tabelle 6

Na-SKS-10

$d(10^{-8} \text{ cm})$		rel. Intensität
10,3	($\pm 0,21$)	m - sst
5,17	($\pm 0,10$)	schw - m
4,02	($\pm 0,08$)	sst
3,65	($\pm 0,07$)	m - st
3,45	($\pm 0,07$)	m - sst
3,17	($\pm 0,06$)	m - sst
3,11	($\pm 0,06$)	schw - st
2,48	($\pm 0,05$)	m - sst
2,33	($\pm 0,05$)	schw - m
2,01	($\pm 0,04$)	schw - m

Tabelle 7

Na-SKS-13

$d(10^{-8} \text{ cm})$		rel. Intensität
6,37	($\pm 0,13$)	m - st
4,04	($\pm 0,08$)	m - st
3,87	($\pm 0,08$)	sst
3,58	($\pm 0,07$)	m - st
3,20	($\pm 0,06$)	schw - m
3,04	($\pm 0,06$)	schw - m
2,67	($\pm 0,05$)	schw - m
2,45	($\pm 0,05$)	schw - m
2,31	($\pm 0,05$)	schw - m

Na-SKS-5 lässt sich herstellen gemäß Glastechn. Ber. 37,
194 - 200 (1964). Das Röntgenspektrum hat die Nummern
18 - 1241 und 22 - 1397. Das Produkt hat die ungefähre Zu-
sammensetzung $\text{Na}_2\text{Si}_2\text{O}_5$. Es ähnelt im Röntgenbeugungsdia-
gramm $\alpha\text{-Na}_2\text{Si}_2\text{O}_5$. Probe 4 entspricht Na-SKS-5 mit
geringen Verunreinigungen an Na-SKS-6.

Na-SKS-6 lässt sich herstellen gemäß Zeitschrift für Kri-
stallogr. 129, 396 - 404 (1969). Es hat die ungefähre
10 Zusammensetzung $\text{Na}_2\text{Si}_2\text{O}_5$ und ähnelt $\delta\text{-Na}_2\text{Si}_2\text{O}_5$. Proben
1 und 2 entsprechen Na-SKS-6.

Na-SKS-7 lässt sich herstellen gemäß Glastechn. Ber. 37,
194 - 200 (1964). Es ähnelt $\beta\text{-Na}_2\text{Si}_2\text{O}_5$. Probe 3 ent-
15 spricht Na-SKS-7.

Na-SKS-11 lässt sich herstellen gemäß Glastechn. Ber. 37,
194 - 200 (1964), sowie gemäß Zeitschrift für Kristallogr.
129, 396 - 404 (1969). Es ähnelt $\gamma\text{-Na}_2\text{Si}_2\text{O}_5$.
20

Na-SKS-9 lässt sich herstellen gemäß Bull. Soc. franc.
Min. Crist., 95, 371 - 382 (1972). Es weist die unge-
fahre Zusammensetzung $\text{NaHSi}_2\text{O}_5 \cdot \text{H}_2\text{O}$ auf. Das Röntgen-
spektrum hat die Nummer 27 - 709. Das Hydrolyseprodukt
25 von Probe 2 entspricht Na-SKS-9.

Na-SKS-10 lässt sich herstellen gemäß Bull. Soc. franc.
Min. Crist., 95, 371 - 382 (1972) sowie gemäß Amer.
Mineral., 62, 763 - 771 (1977). Das Röntgenspektrum
30 hat die Nummer 25 - 1309. Das Produkt hat die ungefähre
Zusammensetzung $\text{NaHSi}_2\text{O}_5 \cdot 2\text{H}_2\text{O}$. Es ähnelt dem Mineral
Kanemit.

Na-SKS-13 lässt sich herstellen gemäß Bull. Soc. franc.
35 Min., Crist., 95, 371 - 382 (1972). Das Röntgenspektrum
hat die Nummer 27 - 708. Das Produkt hat die ungefähre

suchsergebnisse zur Wasserenthärtung (Ca-Bindevermögen) von kristallinem $\text{Na}_2\text{Si}_2\text{O}_5$

des Spiels	Probe	Einwaage (mg) (wasserfrei)	Konz. der Ausgangslsg. (mg CaO/1)	Menge der Ausgangslsg. (ml)	Temp. (°C)	Dauer (min)	Konz. der Lsg. nach Filtration (mg CaO/1)	Ca-Bindevermögen (mg CaO/g $\text{Na}_2\text{Si}_2\text{O}_5$)
	Zeolith A	396	294	500	22 - 26	15	162	167
	Zeolith A	462	289	985	90	15	213	163
	Zeolith A	200	294	200	22 - 26	15	133	161
	Zeolith A	413	98**	1000	22 - 26	15	52	111
1		533	316	1000	22 - 26	15	216	187
1		235	98**	1000	22 - 26	15	77	86
1		489	292	1000	90	15	211	164
2		200	294	200	22 - 26	15	128	166
2		533	316	1000	22 - 26	15	221	178
3		520	306	1000	22 - 26	15	221	164
3		512	306	1000	22 - 26	15	128	166
3		462	306	1000	90	15	212	142
3		997	316	500	22 - 25	25	27	205
4		351	292	1000	22 - 25	15	131	131
							259	94

gleichsbeispiele

** Ausgangslösung enthält zusätzliche 2 g Na^+ /l

• 1 und 2 entsprechen Na-SKS-6 (zwei verschiedenen Chargen),

• 3 entspricht Na-SKS-7, Probe 4 entspricht Na-SKS-5

- 17 -

0164514

2

Ergebnisse zur Wasserenthärtung (Mg-Bindevermögen) von kristallinem Na₂Si₂O₅

els	Probe	Eltwasser (mg) (wasserfrei)	Konz. der Ausgangslsg. (mg MgO/l)	Menge der Ausgangslsg. (ml)	Temp. (°C)	Dauer (min)	Konz. der Lsg. nach Filtration (mg MgO/l)	Mg-Bindevermögen (mg MgO/g Na ₂ Si ₂ O ₅)
	Zeolith A	413	198	1000	22 - 26	15	186	29
	Zeolith A	445	72	1000	22 - 26	15	71	2
	Zeolith A	200	72	200	22 - 26	15	72	0
1	545	198	1000	22 - 26	15	105	171	
3	536	198	1000	22 - 26	15	108	167	
3	200	72	200	22 - 26	15	10	61	

eichsbeispiele

1 - 8

0164514

Tabelle 10

Versuchsergebnisse zur Wasserenthärtung (Ca-Bindevermögen) von kristallinem Natriumsilikat mit anderen Wasserenthärtungsmitteln

Nr. des Beispiels	Probe	Einwaage (mg) (wasserfrei)	Konz. der Ausgangslsg. (mg CaO/l)	Menge der Ausgangslsg. (ml)	Temp. (°C)	Dauer (min)	Konz. der Lösung nach Filtration (mg CaO/l)
21*	Zeolith A	100	294	200	22 - 26	15	196
22	Zeolith A	100	294	200	22 - 26	15	135
	2	100					
23*	NTPP**	100	294	200	22 - 26	15	125
24	NTPP**	100	294	200	22 - 26	15	20
	2	100					
25	2	200	280	210	22 - 26	15	173
	hydrolys.						
26*	Na-silikat amorph (S.12)	200	287	200	22 - 26	15	276

*Vergleichsbeispiele

**Pantanatriumtriphosphat (wasserfrei gerechnet)

Tabelle 11

Probe 1

2THETA	d (10^{-8} cm)	I/I ₀
4,30	20,5	3
12,80	6,91	3
14,60	6,06	18
18,00	4,92	14
19,70	4,50	1
20,70	4,29	3
21,10	4,21	13
21,40	4,15	6
21,80	4,07	8
22,40	3,97	100
23,00	3,86	9
23,45	3,79	52
24,45	3,64	15
25,80	3,45	9
26,95	3,31	10
27,80	3,21	2
28,75	3,10	8
29,15	3,06	4
29,55	3,02	24
30,05	2,97	5
30,75	2,91	10
31,45	2,84	17
32,85	2,72	5
33,30	2,69	1
33,75	2,65	4
34,70	2,58	2
34,95	2,57	7
35,35	2,54	9
36,00	2,49	11
36,60	2,45	6
37,00	2,43	40
37,95	2,37	2
39,15	2,30	4

Tabelle 12

<u>2THETA</u>	Probe 2	
	d (10^{-8} cm)	I/I ₀
12,80	6,91	3
14,60	6,06	9
18,00	4,92	12
21,10	4,21	13
21,70	4,09	4
22,40	3,97	100
23,00	3,86	6
23,45	3,79	38
24,40	3,64	8
25,80	3,45	8
26,90	3,31	9
27,70	3,22	2
28,70	3,11	5
29,50	3,03	15
30,70	2,91	8
31,40	2,85	11
32,80	2,73	5
33,80	2,65	2
34,90	2,57	5
35,30	2,54	5
35,95	2,50	10
36,50	2,46	4
37,00	2,43	36
37,95	2,37	3
39,20	2,30	3

Tabelle 13

<u>2THETA</u>	Probe 3 d (10^{-8} cm)	I/I ₀
4,40	20,1	7
11,40	7,96	6
14,75	6,00	66
16,15	5,48	8
18,00	4,92	10
20,65	4,30	34
21,40	4,15	63
22,40	3,97	90
22,45	3,96	100
23,00	3,86	5
23,50	3,78	45
24,48	3,63	90
25,80	3,45	5
26,90	3,31	8
27,70	3,22	3
28,63	2,12	22
28,95	3,08	23
29,20	3,06	43
29,50	3,03	19
30,03	2,97	73
30,70	2,91	8
31,40	2,85	14
32,80	2,73	5
33,20	2,70	23
33,60	2,66	47
34,00	2,63	8
34,55	2,59	34
35,00	2,56	5
35,35	2,54	19
35,95	2,50	7
36,90	2,43	100
38,55	2,33	6
39,60	2,27	7

0164514

- 23 -

Tabelle 14

2THETA	Probe 4 d (10^{-8} cm)	I/I ₀
9,20	9,60	3
12,80	6,91	1
14,60	6,06	4
17,95	4,94	32
21,15	4,20	4
22,40	3,97	30
23,00	3,86	91
23,50	3,78	71
24,45	3,64	4
25,55	3,48	4
25,80	3,45	3
26,92	3,31	100
27,70	3,22	15
28,65	3,11	5
29,50	3,03	7
30,10	2,97	1
30,75	2,91	3
31,45	2,84	4
32,65	2,74	4
33,80	2,65	19
35,30	2,54	14
35,95	2,50	3
36,10	2,49	3
36,60	2,45	32
37,05	2,42	20
37,60	2,39	17

Tabelle 15

2THETA	Zeolith A	
	d (10^{-8} cm)	I/I ₀
7,10	12,4	63
10,10	8,75	47
12,40	7,13	50
16,05	5,52	40
17,60	5,03	3
20,35	4,36	11
21,30	4,17	7
21,60	4,11	58
22,75	3,91	7
23,90	3,72	90
25,00	3,56	1
26,05	3,42	27
27,05	3,29	79
28,95	3,08	4
29,90	2,99	100
30,75	2,91	16
32,50	2,75	23
33,30	2,69	7
34,10	2,63	61
35,70	2,51	11
36,45	2,46	9
37,95	2,37	6
40,05	2,25	6

Tabelle 16

Hydrolyseprodukt von Probe 2

<u>2THETA</u>	d (10^{-8} cm)	I/I ₀
11,35	7,79	55
16,60	5,34	3
16,90	5,24	4
18,95	4,68	43
19,90	4,46	6
20,50	4,33	9
21,90	4,06	17
22,55	3,94	17
23,00	3,86	17
24,60	3,62	100
25,05	3,55	82
25,20	3,53	82
27,30	3,26	28
28,00	3,18	16
23,90	2,72	25
36,55	2,46	24

Patentansprüche:

1. Verwendung von kristallinen schichtförmigen Natriumsilikaten der Zusammensetzung $\text{NaMSi}_x\text{O}_{2x+1}\cdot y \text{H}_2\text{O}$, wobei M Natrium oder Wasserstoff bedeutet und x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist, zur Enthärtung von Wasser, das Calcium- und/oder Magnesium-Ionen enthält.
5
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß ein kristallines schichtförmiges Natriumsilikat eingesetzt wird, dessen charakteristische Reflexe im Röntgenbeugungsdiagramm den Tabellen 1 bis 7 entspricht.
10
3. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß man ein kristallines schichtförmiges Natriumsilikat der Zusammensetzung $\text{NaMSi}_2\text{O}_5\cdot y \text{H}_2\text{O}$ einsetzt.
15
4. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß ein kristallines schichtförmiges Natriumsilikat eingesetzt wird, das bei der potentiometrischen Titration mit Mineralsäure einen Umschlagpunkt aufweist.
20
5. Verwendung gemäß Anspruch 4, dadurch gekennzeichnet, daß das kristalline schichtförmige Natriumsilikat eine Ionenaustauschkapazität von 400 bis 1200 mmol $\text{Na}^+/\text{100 g Produkt}$ (gerechnet als wasserfreie Substanz) hat.
25
6. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß das zu enthartende Wasser bereits Natriumionen enthält und einen pH-Wert von 8 bis 12 aufweist.
30
7. Verfahren zur Enthärtung von Wasser, das Calcium-

und einen pH-Wert von etwa 8 bis 12 aufweist, dadurch gekennzeichnet, daß man dem Wasser ein kristallines schichtförmiges Natriumsilikat der Zusammensetzung
5 $\text{NaMSi}_x\text{O}_{2x+1} \cdot y \text{H}_2\text{O}$ zufügt, wobei M Natrium oder Wasserstoff bedeutet und x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist.

8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, daß das zu entwässernde Wasser maximal 500 mg CaO/l
10 und maximal 200 mg MgO/l enthält.
9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das schichtförmige Natriumsilikat in Kombination mit anderen Wasserenthärtungsmitteln eingesetzt wird.

EP 85 10 4029

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl. 4)
Y	GB-A-1 141 032 (KINNIS & BROWN) * Insgesamt *	1-9	C 02 F 5/08 B 01 J 39/14 C 11 D 3/08
Y	US-A-3 912 649 (O.L. BERTORELLI et al.) * Insgesamt *	1-9	
A	US-A-4 019 998 (R.W. BENSON et al.) * Spalte 5, Zeile 44 - Spalte 6, Zeile 58 *	1-9	
A	DE-A-2 549 167 (WOELLNER-WERKE) * Insgesamt *	1-9	
	-----		RECHERCHIERTE SACHGEBiete (Int. Cl. 4)
			C 02 F B 01 J C 11 D
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt.			
Recherchenort DEN HAAG	Abschlußdatum der Recherche 12-08-1985	Prüfer VAN AKOLEYEN H.T.M.	

KATEGORIE DER GENANNTEN DOKUMENTEN		E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument S : Schriftliche Bekanntmachung einer Patentschrift P : Prioritätsanmeldung eines anderen Landes
X : von besonderer Bedeutung allein betrachtet	~ von besonderer Bedeutung in Verbindung mit einer anderen Patentschrift betrachtet	E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument S : Schriftliche Bekanntmachung einer Patentschrift P : Prioritätsanmeldung eines anderen Landes