Language Representation

Lecturer: Eilam Shapira

NLP Course - Unit 3 - Lecture

Based on Amir Feder's slides & Stanford's CS224n

Today's Agenda

- Word2Vec
- GloVe
- Sentence representations
- Applications

Before we start...

- Can you engineer features to represent:
 - O Words?
 - Sentences?
 - O Documents?
 - O What about yourselves?
- What's the dimension?
 - Remember PCA?

Embedding is a powerful way to represent data

Openness to experience - 79	out	of	100
Agreeableness 75	out	of	100
Conscientiousness 42	out	of	100
Negative emotionality 50	out	of	100
Extraversion 58	out	of	100

Similarity-preserving Representation

Word2Vec

Word2vec: Skip-Gram Task

- Word2vec provides a variety of options. Let's do
 - "skip-gram with negative sampling" (SGNS)
 - Continuous Bag-of-words (CBOW)

- Word2vec actually uses a logistic regression initialized with random weights
 - But we'll show it with a shallow NN

Skip-Gram Algorithm

- 1. Treat the target word and a neighboring context word as positive examples.
- 2. Randomly sample other words in the lexicon to get negative samples
- 3. Use NN to train a classifier to distinguish those two cases
- 4. Use the weights as the embeddings

Skip-Gram Goal

Given a tuple (t,c) = target, context

```
(hotel, haifa)(hotel, aardvark)
```

Return probability that c is a real context word:

$$P(+|t,c)$$

 $P(-|t,c) = 1-P(+|t,c)$

How to compute p(+|t,c)?

Intuition:

- Words are likely to appear near similar words
- •Model similarity with dot-product!
- \circ Similarity(t,c) \propto t · c

Problem:

- •Dot product is not a probability!
 - (Neither is cosine)

Turning dot product into a probability

$$egin{align} P(+|t,c) &= rac{1}{1+e^{-t\cdot c}} \ P(-|t,c) &= 1-P(+|t,c) \ &= rac{e^{-t\cdot c}}{1+e^{-t\cdot c}} \ \end{gathered}$$

For all the context words

Assume they are independent

$$egin{aligned} P(+|t,c_{1:k}) &= \prod_{i=1}^K rac{1}{1+e^{-t\cdot c_i}} \ log P(+|t,c_{1:k}) &= \sum_{i=1}^K log rac{1}{1+e^{-t\cdot c_i}} \end{aligned}$$

Positive Training Examples

Negative Training Examples

Objective Criteria

We want to maximize...

$$\sum_{(t,c)\in +} log P(+|t,c) + \sum_{(t,c)\in -} log P(-|t,c)$$

Maximize the + label for the pairs from the positive training data, and the – label for the pairs sample from the negative data.

Focusing on one target word t

$$egin{aligned} L(heta) &= log P(+|t,c) + \sum_{i=1}^k log P(-|t,n_i) \ &= log \sigma(c \cdot t) + \sum_{i=1}^k log \sigma(-n_i \cdot t) \ &= log rac{1}{1+e^{-c \cdot t}} + \sum_{i=1}^k log rac{1}{1+e^{n_i \cdot t}} \end{aligned}$$

Training step (via GD)

Word2vec – Forward Step

Word2Vec – Result

Summary: How to learn word2vec (skip-gram) embeddings

- Start with 2 random 300-dimensional layers (1 NN)
- In a corpus, take pairs of words that co-occur as positive examples
- Take pairs of words that don't as negative examples
- Train a classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier performance
- Throw away the classifier code and keep the embeddings.

Evaluating embeddings

Compare to human scores on word similarity-type tasks:

- WordSim-353 (Finkelstein et al., 2002)
- SimLex-999 (Hill et al., 2015)
- Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012)
- TOEFL dataset: Levied is closest in meaning to: imposed, believed, requested, correlated

Word Vector Space Models - Discussion

The model is derived from context, but not context sensitive:

One representation (one vector) for the words: *play* and *bank*.

Yet they have many different senses, which are context dependent.

bank: border of the lake, financial institute, to pile up...

play: to play a piano, to play with a ball, a play...

- Vectors represent words, but how can we represent phrases and sentences?
- What about combining different modalities such as visual and textual?

Today's Agenda

- Word2Vec
- GloVe
- Sentence representations
- Applications

GloVe

GloVe - TL;DR

- GloVe is a static word embedding algorithm
- Combines ideas from co-occurrence and language modeling
- Essentially closed the static word embedding lit.
 - Whenever we say we use *static word embedding*, we use GloVe

Word2vec parameters and computations

"Bag of words" model!

The model makes the same predictions at each position

We want a model that gives a reasonably high probability estimate to *all* words that occur in the context (at all often)

Gradient Descent

Update equation (in matrix notation):

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

$$\alpha = \text{step size or learning rate}$$

• Update equation (for a single parameter):

$$\theta_j^{new} = \theta_j^{old} - \alpha \frac{\partial}{\partial \theta_j^{old}} J(\theta)$$

Algorithm:

```
while True:
    theta_grad = evaluate_gradient(J,corpus,theta)
    theta = theta - alpha * theta_grad
```

Stochastic Gradient Descent

- **Problem**: $J(\theta)$ is a function of all windows in the corpus (often, billions!)
 - ullet So $abla_{ heta}J(heta)$ is very expensive to compute
- You would wait a very long time before making a single update!
- Very bad idea for pretty much all neural nets!
- Solution: Stochastic gradient descent (SGD)
 - Repeatedly sample windows, and update after each one, or each small batch
- Algorithm:

```
while True:
    window = sample_window(corpus)
    theta_grad = evaluate_gradient(J,window,theta)
    theta = theta - alpha * theta_grad
```

Stochastic gradients with word vectors! [Aside]

- Iteratively take gradients at each such window for SGD
- But in each window, we only have at most 2m + 1 words, so $abla_{ heta}J_{t}(heta)$ is very sparse!

Stochastic gradients with word vectors!

- We might only update the word vectors that actually appear!
- Solution: either you need sparse matrix update operations to only update certain rows of full embedding matrices U and V, or you need to keep around a hash for word vectors

 If you have millions of word vectors and do distributed computing, it is important to not have to send gigantic updates around!

Why not capture co-occurrence counts directly?

Building a co-occurrence matrix X

- 2 options: windows vs. full document
- Window: Similar to word2vec, use window around each word
 - o captures some syntactic and semantic information
- Word-document co-occurrence matrix will give general topics (all sports terms will have similar entries) leading to "Latent Semantic Analysis"

Example: Window based co-occurrence matrix

- Window length 1 (more common: 5–10)
- Symmetric (irrelevant whether left or right context)
- Example corpus:
 - I like deep learning
 - I like NLP
 - I enjoy flying

counts	1	like	enjoy	deep	learning	NLP	flying	
1	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

Co-occurrence vectors

- Simple count co-occurrence vectors
 - Vectors increase in size with vocabulary
 - Very high dimensional: require a lot of storage (though sparse)
 - Subsequent classification models have sparsity issues -> Models are less robust
- Low-dimensional vectors
 - Idea: store "most" of the important information in a fixed, small number of dimensions: a dense vector
 - Usually 25–1000 dimensions, similar to word2vec
 - How to reduce the dimensionality?

Classic Method: Dimensionality Reduction on X

Singular Value Decomposition of co-occurrence matrix X

Factorizes X into U Σ VT, where U and V are orthonormal

Retain only *k* singular values, in order to generalize.

X is the best rank k approximation to X, in terms of least squares. Classic linear algebra result. Expensive to compute for large matrices.

Hacks to X (several used in Rohde et al. 2005 in COALS)

- Running an SVD on raw counts doesn't work well
- Scaling the counts in the cells can help a lot
 - - log the frequencies
 - min(X,t), with $t \approx 100$
 - Ignore the function words
- Ramped windows that count closer words more than further away words
- Use Pearson correlations instead of counts, then set negative values to 0
- Etc.

Interesting semantic patterns emerge in the scaled vectors

COALS model from Rohde et al. ms., 2005. An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence

Towards GloVe: Count based vs. direct prediction

- LSA, HAL
- COALS, Hellinger-PCA

- Fast training
- Efficient usage of statistics
- Primarily used to capture word similarity
- Disproportionate importance given to large counts

- Skip-gram/CBOW
- NNLM, HLBL, RNN

- Scales with corpus size
- Inefficient usage of statistics
- Generate improved performance on other tasks
- Can capture complex patterns beyond word similarity

Encoding meaning components in vector differences

Crucial insight: Ratios of co-occurrence probabilities can encode meaning components

		x = solid	x = gas	x = water	x = random
	P(x ice)	large	small large		small
P	(x steam)	small	large	large	small
\overline{P}	$\frac{P(x \text{ice})}{(x \text{steam})}$	large	small	~1	~1

Encoding meaning in vector differences

Crucial insight: Ratios of co-occurrence probabilities can encode meaning components

		x = solid	x = gas	x = water	x = fashion
\overline{P}	(x ice)	1.9 x 10 ⁻⁴	6.6 x 10 ⁻⁵ 3.0 x 10 ⁻³		1.7 x 10 ⁻⁵
P(x)	c steam)	2.2 x 10 ⁻⁵	7.8 x 10 ⁻⁴	2.2 x 10 ⁻³	1.8 x 10 ⁻⁵
$\frac{P}{P(x)}$	$\frac{(x ice)}{c steam)}$	8.9	8.5 x 10 ⁻²	1.36	0.96

Encoding meaning in vector differences

Q: How can we capture ratios of co-occurrence probabilities as linear meaning components in a word vector space?

with vector differences

A: Log-bilinear model:
$$w_i \cdot w_j = \log P(i|j)$$

$$w_x \cdot (w_a - w_b) = \log \frac{P(x|a)}{P(x|b)}$$

Combining the best of both worlds - GloVe

$$w_i \cdot w_j = \log P(i|j)$$

$$J = \sum_{i,j=1}^{V} f(X_{ij}) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij} \right)^2$$

- Fast training
- Scalable to huge corpora
- Good performance even with small corpus and small vectors

GloVe results

Nearest words to frog:

- 1. frogs
- 2. toad
- 3. litoria
- 4. leptodactylidae
- 5. rana
- 6. lizard
- 7. eleutherodactylus

litoria

rana

leptodactylidae

eleuther odactylus

How to evaluate word vectors?

- Related to general evaluation in NLP: Intrinsic vs. extrinsic
- Intrinsic:
 - Evaluation on a specific/intermediate subtask
 - Fast to compute
 - Helps to understand that system
 - Not clear if really helpful unless correlation to real task is established
- Extrinsic:
 - Evaluation on a real task
 - Can take a long time to compute accuracy
 - Unclear if the subsystem is the problem or its interaction or other subsystems
 - If replacing exactly one subsystem with another improves accuracy

Intrinsic word vector evaluation

Word Vector Analogies

- Evaluate word vectors by how well their cosine distance after addition captures intuitive semantic and syntactic analogy questions
- Discarding the input words from the search!
- Problem: What if the information is there but not linear?

$$d = \arg\max_{i} \frac{(x_b - x_a + x_c)^T x_i}{||x_b - x_a + x_c||}$$

Glove Visualizations

Glove Visualizations: Company - CEO

Glove Visualizations: Comparatives and Superlatives

Analogy evaluation and hyperparameters

Glove word vectors evaluation

Model	Dim.	Size	Sem.	Syn.	Tot.
SVD	300	6B	6.3	8.1	7.3
SVD-S	300	6B	36.7	46.6	42.1
SVD-L	300	6B	56.6	63.0	60.1
CBOW [†]	300	6B	63.6	<u>67.4</u>	65.7
SG [†]	300	6B	73.0	66.0	69.1
GloVe	300	6B	<u>77.4</u>	67.0	<u>71.7</u>

Analogy evaluation and hyperparameters

- More data helps
- Wikipedia is better than news text!

- Dimensionality
- Good dimension is ~300

Another intrinsic word vector evaluation

- Word vector distances and their correlation with human judgments
- Example dataset: SimLex999 http://www.cl.cam.ac.uk/~fh295/simlex.html

Word 1	Word 2	Human (mean)
tiger	cat	7.35
tiger	tiger	10
book	paper	7.46
computer	internet	7.58
plane	car	5.77
professor	doctor	6.62
stock	phone	1.62
stock	CD	1.31
stock	jaguar	0.92

Correlation evaluation

• Word vector distances and their correlation with human judgments

Model	Size	WS353	MC	RG	SCWS	RW
SVD	6B	35.3	35.1	42.5	38.3	25.6
SVD-S	6B	56.5	71.5	71.0	53.6	34.7
SVD-L	6B	65.7	<u>72.7</u>	75.1	56.5	37.0
CBOW [†]	6B	57.2	65.6	68.2	57.0	32.5
SG [†]	6B	62.8	65.2	69.7	<u>58.1</u>	37.2
GloVe	6B	<u>65.8</u>	<u>72.7</u>	<u>77.8</u>	53.9	<u>38.1</u>
SVD-L	42B	74.0	76.4	74.1	58.3	39.9
GloVe	42B	<u>75.9</u>	<u>83.6</u>	<u>82.9</u>	<u>59.6</u>	<u>47.8</u>
CBOW*	100B	68.4	79.6	75.4	59.4	45.5

Extrinsic word vector evaluation

- Extrinsic evaluation of word vectors: All subsequent NLP tasks in this class. More examples soon.
- One example where good word vectors should help directly: named entity recognition: identifying references to a person, organization or location

Model	Dev	Test	ACE	MUC7
Discrete	91.0	85.4	77.4	73.4
SVD	90.8	85.7	77.3	73.7
SVD-S	91.0	85.5	77.6	74.3
SVD-L	90.5	84.8	73.6	71.5
HPCA	92.6	88.7	81.7	80.7
HSMN	90.5	85.7	78.7	74.7
CW	92.2	87.4	81.7	80.2
CBOW	93.1	88.2	82.2	81.1
GloVe	93.2	88.3	82.9	82.2

Today's Agenda

- Word2Vec
- GloVe
- Sentence representations
- Applications

Sentence representations

A sentence is a bunch of words

- We learned how to represent words
- We can just concatenate
- But what will we lose?

Words now represent meaning

Sentence = Concatenated Word Rep.

Concatenated Word Rep.

- \bigcirc

- OC
- 000
- $\circ \circ \circ$
- \bigcirc
- $\circ\circ\circ$

Count-based Representation

- We also learned to represent windows with multiple words
- But this is high-dimensional and sparse
- We can use only some of the dimensions
- We can cluster, but how?

Latent Dirichlet Allocation

Latent Dirichlet Allocation

K – total number of topics

 β_k – topic, a distribution over the vocabulary

D - total number of documents

 Θ_{d} – per-document topic proportions

N – total number of words in a document (it fact, it should be N_d)

 $Z_{d,n}$ – per-word topic assignment

W_{d.n} – observed word

 α , η – Dirichlet parameters

- Several inference algorithms are available (e.g. sampling based)
- A few extensions to LDA were created:
 - Bigram Topic Model

Latent Dirichlet Allocation

Today's Agenda

- Word2Vec
- GloVe
- Sentence representations
- Applications

Applications

Let's build some models together (on board)

- Sentiment Classifier
- Named Entity Recognizer
- Part-of-Speech Tagger

Sentence Representation

- 0

Sentiment Classification

	text	sentiment
0	For a movie that gets no respect there sure ar	0
1	Bizarre horror movie filled with famous faces	0
2	A solid, if unremarkable film. Matthau, as Ein	0
3	It's a strange feeling to sit alone in a theat	0
4	You probably all already know this by now, but	0
5	I saw the movie with two grown children. Altho	0
6	You're using the IMDb. You've given some heft	0
7	This was a good film with a powerful message o	0
8	Made after QUARTET was, TRIO continued the qua	0
9	For a mature man, to admit that he shed a tear	0

Named Entity Recognition

Parts of Speech

8 Parts of Speech

NOUN

A **noun** names a person, place, things or idea.

Examples

dog, cat, horse, student, teacher, apple, Mary and etc...

PREPOSITION

A **preposition** is used before a noun, pronoun, or gerund to show place, time, direction in a sentence.

Examples

at, in, on, about, to, for, from and etc...

ADVERB

An **adverb** tells how often, how, when, where. It can describe a verb, an adjective or an adverb.

Examples

loudly, always, never, late, soon etc...

CONJUNCTION

Conjuntions join words or groups of words in a __ sentence.

Examples

and, because, yet, therefore, moreover, since, or, so, until, but and etc...

VERB

A **verb** is a word or group of words that describes an action, experience.

Examples

realize, walk, see, look, sing, sit, listen and etc...

PRONOUN

Pronouns replace the name of a person, place, thing or idea in a sentence.

Examples

he, she, it, we, they, him, her, this ,that and etc...

ADJECTIVE

An **adjective** describes a noun or pronoun.

Examples

red, tall, fat, long, short, blue, beautiful, sour and etc...

INTERJECTION

Interjections express strong emotion and is often followed by an exclamation point.

Examples

Bravo! Well! Aha! Hooray! Yeah! Oops! Phew!

REAL ENGLISH.Ik