.תהי $\left\{a_n\right\}_{n=0}^{\infty}$ סדרת מספרים

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + \dots$$
 טור הוא הסכום האינסופי

$$S_n = \sum_{k=0}^n a_k = a_0 + a_1 + \ldots + a_n$$
 סדרת סכומים חלקיים היא הסכום הסופי

טור מתכנס אם קיים גבול סופי $\lim_{n \to \infty} S_n = S$ לסדרת הסכומים החלקיים, ואז סכום

. אם הגבול של S_n לא קיים או אינסופי זהו טור מתבדר . $S = \sum_{n=0}^{\infty} a_n$ הטור הוא

 $\lim_{n o \infty} a_n = 0$ מתכנס, אז מתקיים $\sum_{n o \infty}^\infty a_n$ אם הטור תכונות נוספות של טורים:

א. הורדת/הוספת מספר סופי של אברים אינה משפיעה על התכנסות/התבדרות הטור.

ב. אם
$$c
eq 0$$
 קבוע, אז הטורים $\sum_{n=0}^{\infty} a_n$ -ו $\sum_{n=0}^{\infty} a_n$ מתכנסים או מתבדרים ביחד.

.
$$\sum_{n=0}^{\infty}(a_n\pm b_n)=\sum_{n=0}^{\infty}a_n\pm\sum_{n=0}^{\infty}b_n$$
 : ג. אם 2 טורים מתכנסים אז גם סכומם מתכנסים

- $a_n, b_n \geq 0$ המבחנים להלן מניחים שהטורים הם אי שליליים \star
- . עבור סדרה חיובית, סדרת הסכומים החלקים $S_{\scriptscriptstyle n}$ היא מונוטונית עולה. \star

 $a_n \le b_n$ מבחן השוואה ראשון: יהיו $\sum_{n=0}^\infty b_n$ - ו $\sum_{n=0}^\infty a_n$ היו המקיימים

. אם הטור
$$\sum_{n=0}^{\infty}a_n$$
 מתכנס, אז גם הטור $\sum_{n=0}^{\infty}b_n$ מתכנס י

. אם הטור
$$\sum_{n=0}^{\infty}b_n$$
 מתבדר, אז גם הטור $\sum_{n=0}^{\infty}a_n$ מתבדר \cdot

.
$$\lim_{n\to\infty} \frac{a_n}{b} = k$$
 מבחן השוואה שני: נסמן

. אם
$$k < \infty$$
 , אז הטורים $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ אז הטורים אז הטורים יחד.

. אם
$$b_n$$
 אז $a_n \leq b_n$ אז השוואה ראשון - גדולים וניתן להשתמש במבחן השוואה ראשון

. אם
$$k=\infty$$
 א ל ח - גדולים וניתן להשתמש במבחן השוואה ראשון. אם $b_n \leq a_n$ אם .

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$$
 מבחן דלמבאר: נסמן

- אם L < 1 , אז הטור מתכנס.
- אם L>1 אז הטור מתבדר.
 - אם L=1, לא ניתן לדעת.

$$\lim_{n\to\infty} \sqrt[n]{a_n} = L$$
 מבחן קושי: נסמן:

- . אם L < 1 אם L < 1
- אם L>1 אז הטור מתבדר.
 - אם L=1 אם, L=1

מבחן אינטגרלי: תהי f(x) פונקציה חיובית יורדת בקטע f(x), כך ש

. אז הטור אז הטור האינטגרל $\sum_{n=1}^{\infty} a_n$ מתכנסים או מתבדרים ביחד. $a_n = f(n)$

.00טור $\sum\limits_{n=0}^{\infty} |a_n|$ נקרא מתכנס בהחלט, אם הטור מקרא $\sum\limits_{n=0}^{\infty} a_n$ טור

טור $\sum_{n=0}^{\infty} |a_n|$ נקרא מתכנס בתנאי, אם הוא מתכנס, אבל הטור $\sum_{n=0}^{\infty} a_n$ מתבדר.

משפט: טור מתכנס בהחלט הינו טור מתכנס.

$$\sum_{n=0}^{\infty} (-1)^n a_n$$
 , $a_n > 0$: טור מחליפים סימן לסירוגין מחליף סימן הוא טור שאיבריו מחליפים סימן

אז: תהי אפס, אז: $\left\{a_n\right\}_{n=0}^\infty$ תהי יורדת לאפס, אז:

.02 מתכנס
$$\sum_{n=0}^{\infty} (-1)^n a_n$$
 מתכנס מחליף הסימן .1

$$|S-S_n| = |r_n| < a_{n+1}$$
 מקיימת: $r_n = \sum_{k=1}^{\infty} (-1)^k a_k$.2

$$c \ll (\ln n)^b \ll n^p \ll a^n \ll n! \ll n^n$$
 ברני גודל:

$$a>1$$
 , $b,c,p>0$ כאשר הקבועים מקיימים

$$a>1$$
 , $b,c,p>0$ נאשר הקבועים מקיימים

$$n! \approx \frac{n^n \sqrt{2\pi n}}{e^n}$$
 נוסחת סטירלינג:

טורי חזקות

.
$$x_0$$
 ביב סביב זהו טור חזקות סביב . $\sum_{n=0}^{\infty} a_n \left(x-x_0\right)^n$ הינו טור מהצורה

. עבורו: מספר לכל טור קיים מספר $R \ge 0$ שנקרא רדיוס התכנסות הטור, עבורו:

- .(בהחלט) טור החזקות מתכנס $|x-x_0| < R$
 - . כאשר $|x-x_0|>R$ טור החזקות מתבדר
- בקצוות $x_0\pm R$ בודקים ישירות על ידי הצבה בטור.

משפט <u>Cauchy – Hadamard:</u> את רדיוס ההתכנסות של טור חזקות ניתן למצוא לפי

$$\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a} \right| \qquad \frac{1}{R} = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}$$

. הוא הגבול העליון של הסדרה $\lim \sqrt[n]{a_n}$

משפט: בתחום ההתכנסות של טור חזקות ניתן לבצע אינטגרציה איבר-איבר, גזירה . איבר-איבר ולעבור לגבול בנקודה מסוימת איבר-איבר, כלומר:

$$\int_{a}^{b} f(x)dx = \sum_{n=0}^{\infty} a_{n} \int_{a}^{b} (x - x_{0})^{n} dx$$

$$\frac{df(x)}{dx} = \sum_{n=1}^{\infty} a_{n} \frac{d(x - x_{0})^{n}}{dx} = \sum_{n=1}^{\infty} na_{n} (x - x_{0})^{n-1}$$

$$\lim_{x \to c} f(x) = \sum_{n=0}^{\infty} a_{n} \lim_{x \to c} (x - x_{0})^{n} = \sum_{n=0}^{\infty} a_{n} (c - x_{0})^{n}$$

, $f\left(x
ight)$ אם טור חזקות $\sum_{n=0}^{\infty}a_{n}\left(x-x_{0}
ight)^{n}$ מתכנס בקטע מסוים לפונקציה

. $a_n = \frac{f^{(n)}(x_0)}{n!}$: כלומר מתקיים: $a_n = f$ בסביבה של אז זהו טור טיילור של

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots \qquad x \in (-1,1)$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \qquad x \in \mathbb{R}$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \qquad x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots \qquad x \in \mathbb{R}$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots \qquad x \in (-1,1]$$

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots \qquad x \in [-1,1]$$

פונקציות במספר משתנים

.
$$\left|f(x,y)-L\right| מתקיים , $0<\left\|(x,y)-(x_0,y_0)\right\|<\delta$$$

אם (x_0,y_0) פונקציה (גי, y) פונקציה (קראת רציפה בנקודה נקראה ו $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=f(x_0,y_0)$

נגזרות חלקיות מוגדרות ע"י הגבולות:

$$\frac{\partial f}{\partial x}(x_0, y_0) = f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$
$$\frac{\partial f}{\partial y}(x_0, y_0) = f_y(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

של פונקציה החלקיות הנגזרות הוא הוא בנקודה $f\left(x,y
ight)$ הוא הוא של פונקציה ל $f\left(x,y
ight)$

$$\overrightarrow{grad}(f) = \overrightarrow{\nabla} f = (f_x, f_y)$$
 : (x_0, y_0) בנקודה $f(x, y)$

אם $f\left(x,y
ight)$, אם נקציא פונקציה (x_0,y_0) נקראת דיפרנציאביליות: פונקציה פונקציה $f\left(x_0+\Delta x,y_0+\Delta y\right)=$

$$f(x_0,y_0)+A\cdot\Delta x+B\cdot\Delta y+r(\Delta x,\Delta y)\cdot\sqrt{\Delta x^2+\Delta y^2}$$

$$\lim_{(\Delta x,\Delta y)\to(0,0)}r(\Delta x,\Delta y)=0$$
 כאשר

משפט: אם פונקציה f(x,y) דיפרנציאבילית בנקודה, אז בנקודה זו היא רציפה ביפרנגיאבילות החלקיות שלה קיימות. נגזרות אלו הן הקבועים מההגדרה, ז"א:

$$A = f_x(x_0, y_0)$$
 $B = f_y(x_0, y_0)$

משפט: אם עבור פונקציה $f\left(x,y\right)$ הנגזרות החלקיות קיימות ורציפות בסביבת נקודה, אז $f\left(x,y\right)$ דיפרנציאבילית בנקודה.

דיפרנציאבילית בנקודה (x,y), אז החלק f(x,y) דיפרנציאבילית בנקודה הפונקציה נקרא דיפרנציאל, כלומר

$$df(x_0, y_0) = f_x(x_0, y_0) \cdot \Delta x + f_y(x_0, y_0) \cdot \Delta y$$

 $\|\vec{s}\|=1$, $\vec{s}=(a,b)$ בנקודה (x_0,y_0) בנקודה בנקודת של פונקציה (מעדבת על זה בנקודה בנקוד) בנקודה במעלים בנקודה בכנידה במעלים בנקודה במעלים בודר במעלים בנקודה במעלים במעלים במעלים בנקודה במעלים במע

(כלומר
$$\vec{s}$$
 וקטור יחידה) מוגדרת על ידי הגבול:
$$\frac{\partial f}{\partial \vec{s}}(x_0,y_0)=\lim_{h\to 0}\frac{f(x_0+ah,y_0+bh)-f(x_0,y_0)}{h}$$

אז $\|\vec{s}\|=1$ ו , (x_0,y_0) אם פונקציה f(x,y) דיפרנציאבילית בנקודה $\frac{\partial f}{\partial \vec{s}}(x_0,y_0)=\overrightarrow{\nabla}f\cdot\vec{s}$

מאונך $\left(x_0,y_0
ight)$ בנקודה $f\left(x,y
ight)$ מאונך משפט: הגרדיאנט של פונקציה דיפרנציאבילית בנקודה f בנקודה זו.

תהינה (x_0,y_0) דיפרנציאבילית בסביבה של $f\left(x,y\right)$ ותהינה , (u_0,v_0) עם פונקציות דיפרנציאביליות בסביבה של y=y(u,v) , x=x(u,v) כאשר בסביבה $x_0=x\left(u_0,v_0\right)$, $y_0=y\left(u_0,v_0\right)$ המורכבת כאשר דיפרנציאבילית בסביבה של $f\left(x(u,v),y(u,v)\right)$

$$f_u = f_x \cdot x_u + f_y \cdot y_u$$
 $f_v = f_x \cdot x_v + f_y \cdot y_v$

נגזרות מסדר גבוה הן נגזרות חלקיות של נגזרות חלקיות, למשל

$$f_{xx} = (f_x)_x$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right)$$

משפט: אם לפחות אחת מהנגזרות המעורבות מסדר גבוה f_{xy} או f_{yx} קיימת ורציפה . $f_{xy}=f_{yx}$ אז גם הנגזרת המעורבת השנייה קיימת ורציפה ומתקיים

. תוצאה דומה נכונה עבור נגזרות מעורבות מסדר גבוה יותר.

ן ויהיו (x_0,y_0), ויהיו פעמים פעמים דיפרנציאבילית f(x,y) היהיו קירוב טיילור: תהי $x=x_0+\Delta x$, $y=y_0+\Delta y$

$$f(x,y) = \sum_{k=0}^{n} \frac{d^{n} f(x_{0}, y_{0})}{n!} + R_{n}(x_{0}, y_{0})$$

כאשר

$$d^{n} f = d\left(d^{n-1} f\right) = \left(\frac{\partial}{\partial x} \Delta x + \frac{\partial}{\partial y} \Delta y\right)^{n} f(x, y)$$
$$R_{n}(x_{0}, y_{0}) = d^{n+1} f(c, d)$$

. y – בין y_0 לבין d – וx – לבין x_0 לבין c עבור

<u>נורמל ומישור משיק למשטח</u>

משמעות דיפרנציאביליות – קיום מישור משיק בנקודה.

עבור נקודה P_0 על משטח כלשהו עם נורמל , $ec{n}$. $ec{n} \perp \left(\underline{x} - P_0
ight)$ נקודה \underline{x} על המישור המשיק תקיים נבפרט:

$$-f_x(P_0)\cdot(x-x_0)-f_y(P_0)\cdot(y-y_0)+z-f(x_0,y_0)=0$$

בנקודה משטח נתון בצורה סתומה F , כאשר קורה סתומה סתומה סתומה . $\vec{n}=\vec{\nabla}F=(F_x,F_y,F_z)$, הנורמל למשטח הוא המשיק למשטח בנקודה זו:

$$F_x(P_0) \cdot (x - x_0) + F_y(P_0) \cdot (y - y_0) + F_z(P_0) \cdot (z - z_0) = 0$$

קיצון של פונקציות במספר משתנים

כך שלכל (x_0,y_0) עם סביבה של (x_0,y_0) עם על (x_0,y_0) כך שלכל בסביבה זו מתקיים בסביבה או מתקיים $f(x,y) \geq f(x_0,y_0)$

 (x_0,y_0) של f אם קיימת סביבה של (x_0,y_0) של f אם קיימת סביבה של פלכל $f(x,y) \leq f(x_0,y_0)$ מתקיים מתקיים שלכל $f(x,y) \leq f(x_0,y_0)$

 $.\, ar{
abla} f\left(x_0,y_0
ight) = (0,0)$ נקודה קריטית (x_0,y_0) אם (x_0,y_0) אם (x_0,y_0) אם (x_0,y_0) אם היא :Fermat אם (x_0,y_0) נקודת קיצון מקומי של פונקציה (x_0,y_0) אז היא נקודה קריטית.

<u>סיווג נקודות קיצון מקומי:</u>

תהי (x_0,y_0) נקודה חשודה לקיצון. נגדיר

$$\Delta(x_0, y_0) = \begin{vmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{xy}(x_0, y_0) & f_{yy}(x_0, y_0) \end{vmatrix}$$

- :אם (x_0,y_0) אז אז (x_0,y_0) אז אז $\Delta(x_0,y_0)>0$
- . אם $f_{xx}(x_0,y_0)>0$ אם $f_{xx}(x_0,y_0)$ אם \circ
- . אם $f_{xx}(x_0,y_0)$ זוהי נקודת מקסימום מקומי $f_{xx}(x_0,y_0)$
- . (אין קיצון) נקודת אוכף (x_0,y_0) אז $\Delta(x_0,y_0)<0$

 $(x,y)\in D$ אם לכל , D בתחום f של (x_0,y_0) של לכל . $f(x,y)\geq f(x_0,y_0)$ מתקיים

 $(x,y)\in D$ אם לכל , D בתחום f של (x_0,y_0) של הסימום מוחלט . $f(x,y)\leq f(x_0,y_0)$ מתקיים

<u>תחום קומפקטי</u> הוא תחום $\,D\,$ חסום וסגור.

ערך מקבלת ערך פונקציה פונקציה רציפה f(x,y) בתחום פונקציה יפונקציה ביפה יפונקציה וערך מקסימלי בתוך D , או על השפה של

עחת אילוץ תחת f(x,y) אילון מקומי של (x_0,y_0) מקודת אילוץ: אם היא נקודת קיצון של f בקבוצת כל הנקודות המקיימות את תנאי , g(x,y)=0

g(x,y)=0 תחת אילוץ למציאת קיצון של f(x,y) שיטת כופלי לגרנג': . $F(x, y, \lambda) = f(x, y) - \lambda \cdot g(x, y)$ מגדירים פונקציית לגרנג':

הנקודות החשודות לקיצון תחת אילוץ הינן נקודות קריטיות של F , ז"א נקודות בהן אחת הנגזרות החלקיות לא קיימת, או שמתקיים:

$$\vec{\nabla} F = 0 \quad \Leftrightarrow \quad \begin{cases} F_x = 0 \\ F_y = 0 \\ F_{\lambda} = 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} f_x = \lambda g_x \\ f_y = \lambda g_y \\ g = 0 \end{cases}$$

• ניתן להרחיב את שיטת לגרנג' לפונקציות עם יותר משתנים ולבעיות קיצון עם יותר $F(x,y,\lambda_1,\lambda_2)=f(x,y)-\lambda_1\cdot g_1(x,y)-\lambda_2\cdot g_2(x,y)$ אילוצים, למשל

אינטגרל כפול ואינטגרל משולש

אינטגרל כפול של f(x,y) פונקציה רציפה למקוטעין בתחום מישורי || f(x,y) dA

משפט פוביני: ניתן לחשב את האינטגרל באמצעות אינטגרלים חוזרים:

הוא G פונקציה רציפה למקוטעין בתחום מרחבי f(x,y,z) אינטגרל משולש של

ניתן לחשב את האינטגרל באמצעות אינטגרלים חוזרים, למשל:

$$G: \begin{cases} a \le x \le b \\ g(x) \le y \le h(x) \\ m(x, y) \le z \le k(x, y) \end{cases}$$

יישומים של אינטגרל כפול ומשולש

 $:\!D$ שטח של תחום מישורי

:G של גוף מרחבי

אז

$$Area(D) = \iint_D dA$$

 $Volume(G) = \iiint dV$

: $G = \{(x,y,z) \mid (x,y) \in D, g(x,y) \le z \le f(x,y)\}$ בפרט עבור תחום $G = \{(x,y,z) \mid (x,y) \in D, g(x,y) \le z \le f(x,y)\}$

Volume
$$(G) = \iint_{D} (f(x, y) - g(x, y)) dA$$

 $\iiint\limits_{G} f(x,y,z)dV = \int\limits_{a}^{b} \int\limits_{\alpha(x)}^{n(x)} \int\limits_{M(x,y)}^{K(x,y)} f(x,y,z)dzdydx$

 $mig(Gig) = \coprod_G
ho(x,y,z) dV :
ho(x,y,z)$ בעל צפיפות בעל בעיפות הרחבי G

$$x_{cm} = \frac{\iiint\limits_{G} x \cdot \rho dV}{m(G)}$$
 $y_{cm} = \frac{\iiint\limits_{G} y \cdot \rho dV}{m(G)}$ $z_{cm} = \frac{\iiint\limits_{G} z \cdot \rho dV}{m(G)}$

החלפת משתנים באינטגרל כפול

החלפת משתנים היא העתקה $(x,y) \rightarrow (u,v)$ המעתיקה את התחום

$$J = rac{D(x,y)}{D(u,v)} = egin{array}{cc} x_u & x_v \ y_u & y_v \ \end{pmatrix}$$
 ולה מוגדר היעקוביאן , $D_{xy} \mapsto D_{uv}$

(u,v) o (x,y) אם בהחלפת משתנים J
eq 0 אז קימת העתקה הופכית, $J \neq 0$

$$J^{-1}=rac{1}{J}$$
 מקיים $J^{-1}=rac{D(u,v)}{D(x,y)}=egin{array}{cc} u_x & u_y \ v_x & v_y \ \end{array}$ שהיעקוביאן שלה

$$\iint_{D_{xy}} f(x,y)dxdy = \begin{bmatrix} x = x(u,v) \\ y = y(u,v) \end{bmatrix}, \quad u,v \in D_{uv} \quad , \quad J = \frac{D(x,y)}{D(u,v)} \end{bmatrix}$$

$$= \iint_{D} f(x(u,v),y(u,v)) |J| dudv$$

החל<u>פה קוטבית מוכללת של אליפסה:</u>

$$\begin{cases} x = ra\cos\theta \\ y = rb\sin\theta \end{cases}, \quad J = abr \quad , \quad 0 \le r \le 1$$

החלפת משתנים באינטגרל משולש

התחום התחום המעתיקה את התחום $(x,y,z) \rightarrow (u,v,w)$ המעתיקה את התחום אז ההעתקה $J \neq 0$ אם $J = \frac{D(x,y,z)}{D(u,v,w)}$ אז ההעתקה , $G_{xyz} \mapsto G_{uvw}$ הפיכה, קיימת העתקה הופכית, ומתקיים:

$$J = \begin{vmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{vmatrix} , \quad J^{-1} = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} , \quad J^{-1} = \frac{1}{J}$$

$$\iiint_{G_{xyz}} f(x, y, z) dV_{xyz} = \begin{bmatrix} x = x(u, v, w) & u, v, w \in G_{uvw} \\ y = y(u, v, w), \\ z = z(u, v, w) \end{bmatrix} = \frac{D(x, y, z)}{D(u, v, w)}$$

$$= \iiint f(x(u, v, w), y(u, v, w), z(u, v, w)) |J| dV_{uvv}$$

 $= \iiint_C f(x(u,v,w),y(u,v,w),z(u,v,w))|J|dV_{uvw}$

 $x = r \cos \theta$

. x זוית ההיטל עם הכיוון החיובי של ציר - heta

החלפה כדורית:

 $x = r \cos \theta \sin \varphi$ $\begin{cases} v = r \sin \theta \sin \phi , J = r^2 \sin \phi \end{cases}$ $z = r \cos \varphi$

. המרחק מהראשית-1. x זוית ההיטל עם הכיוון החיובי של ציר - heta

. z זווית עם הכיוון החיובי של ציר - arphi

 $x^2 + v^2 + z^2 = r^2$

אינטגרל קווי

הנתונה $\vec{r}:[a,b] \to C$ העתקה הא העתקה במרחב במרחב היא העתונה של עקומה הלקה

$$C: \vec{r}(t) = (x(t), y(t), z(t)) \quad , \quad t \in [a, b]$$

. $B=ec{r}\left(b
ight)$ בפרמטריזציה נקודת ההתחלה היא $A=ec{r}\left(a
ight)$. ונקודת הסיום היא

תהי f(x,y,z) פונקציה מוגדרת לאורך

$$\int_{C} f(x, y, z) dt = \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} dt$$

נוסחה דומה תקפה עבור עקומה מישורית.

<u>יישומים של אינטגרל קווי מסוג I</u>

: C אורך של עקומה

$$length(C) = \int dl$$

:
ho(x,y,z) של עקומה C בעלת צפיפות של

אינטגרל קווי מסוג II

יהי $\vec{F}(x,y,z) = (P(x,y,z),Q(x,y,z),R(x,y,z))$ יהי לאורך $d\vec{r} = (dx, dy, dz)$ ונסמן, C אז

$$\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{C} Pdx + Qdy + Rdz =$$

$$= \int_{a}^{b} \overrightarrow{F} (x(t), y(t), z(t)) \cdot (x'(t), y'(t), z'(t)) dt =$$

$$= \int_{a}^{b} (P \cdot x' + Q \cdot y' + R \cdot z') dt$$

- . נוסחה דומה תקפה עבור עקומה מישורית. $\int\limits_{A\to B} \overrightarrow{F}\cdot d\overrightarrow{r} = -\int\limits_{B\to A} \overrightarrow{F}\cdot d\overrightarrow{r} \ :$ החישוב תלוי כיוון: \star

עבודה של שדה כוחות \overrightarrow{F} במעבר חלקיק לאורך מסלול C , או שטף שדה \overrightarrow{F} דרך עבודה . $\int \overrightarrow{F} \cdot d \overrightarrow{r}$ עקומה C מחושבת ע"י

מסלול בכיוון חיובי הוא מסלול סגור שבמעבר לאורכו התחום החסום נמצא משמאלו. משפט Green: יהי $\overline{F} = (P,Q)$ שדה מישורי בעל רכיבים גזירים ברציפות בתחום: בעל שפה חלקה למקוטעין C מכוונת בכיוון החיובי, אז D

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_D (Q_x - P_y) dx dy$$

- . יכולה להיות מורכבת ממספר מסילות זרות. *
- $Area(D) = \frac{1}{2} \oint -y dx + x dy$ עבור תחום כנ"ל מתקיים: *

בתחום $\overrightarrow{F}=(P,Q,R)$ או מישורי (או $\overrightarrow{F}=(P,Q)$ בתחום שדה משמר מרחבי), הוא שדה שקימת לו **פונקציית פוטנציאל** ϕ דיפרנציאבילית ב- D, כך $. \overrightarrow{\nabla} \varphi = \overrightarrow{F}$ שמתקיים

הטענות D שדה בעל רכיבים דיפרנציאביליים בתחום \overrightarrow{F} הטענות: הבאות שקולות:

- .שדה משמר \hat{F} (1)
- רכוומר) $\overrightarrow{
 abla} \varphi = \overrightarrow{F}$ ער קיימת פונקציית פוטנציאל φ רציפה בD -רציפה ב . במרחב). $\varphi_x=P, \quad \varphi_v=Q, \quad \varphi_z=R$ במרחב). במישור, או $\varphi_x=P, \quad \varphi_v=Q$
 - $.\oint \vec{F} \cdot d\vec{r} = 0$ לכל מסלול סגור γ בתוך D מתקיים (3)
- לא תלוי במסלול האינטגרל $\int \overrightarrow{F} \cdot d\overrightarrow{r}$ לא תלוי במסלול (4) . $\int\limits_{A
 ightarrow B} \overrightarrow{F} \cdot d\overrightarrow{r} = \varphi(B) - \varphi(A)$ המחבר בין A ל המחבר בין A ל בתוך B בתוך

 $rot \overrightarrow{F} = \overrightarrow{0}$ אם בנוסף D הינו תחום פשוט קשר, אז $Q_{x} = P_{y}$ אם בנוסף D הינו תחום פשוט קשר, אז

$$.rot\overrightarrow{F}=\overrightarrow{
abla} imes\overrightarrow{F}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$
במרחב, כאשר הרוטור

אינטגרל משטחי

: הנתונה על ידי $ec{r}:D o\sigma$ במרחב היא העתקה במרחב היא הנתונה על ידי $\sigma: \vec{r}(u,v) = (x(u,v), y(u,v), z(u,v))$, $u,v \in D_{uv}$

$$\vec{n} = \vec{r}_u \times \vec{r}_v = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x_u & y_u & z_u \\ x_v & y_v & z_v \end{vmatrix}$$

, σ על פני משטח פשוט אינטגרל המשטחי מסוג f(x,y,z) של ושל

- אם למשטח יש פרמטריזציה $||\vec{n}|| = ||\vec{r}_n \times \vec{r}_n||$ אז $||\vec{r}_n \times \vec{r}_n||$ ולכן: $\iint_{\sigma} f(x, y, z) dS = \iint_{D_{m.}} f(x(u, v), y(u, v), z(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv$
- אם המשטח נתון בצורה מפורשת $\| ec{n} \| = \sqrt{z_x^2 + z_y^2 + 1}$ א המשטח נתון בצורה מפורשת , z = z(x,y) ולכן $\iint_{\sigma} f(x, y, z) dS = \iint_{D_{m}} f(x, y, z(x, y)) \sqrt{z_{x}^{2} + z_{y}^{2} + 1} dx dy$

<u>ישומים של אינטגרל משטחי מסוג</u>

 $Area(\sigma) = \iint dS$

 σ שטח פנים של משטח: σ : ho(x,y,z) של משטח σ בעל צפיפות: $m(\sigma) = \iint \rho(x, y, z) dS$

אינטגרל משטחי מסוג II

 σ על פני משטח דו צדדי \overrightarrow{F} = (P,Q,R) של שדה וו של שדה . $\int \int (ec{F}\cdot\hat{n})dS$ בעל נורמל יחידה בכיוון נתון $|ec{n}| = ec{n}/|ec{n}|$, הוא

- :ולכן $\vec{n}=\vec{r}_{\!\!u}\times\vec{r}_{\!\!v}$ אם למשטח יש פרמטריזציה σ $\iint \left(\overrightarrow{F} \cdot \widehat{n} \right) dS = \iint_{\mathcal{C}} \left(P(u, v), Q(u, v), R(u, v) \right) \cdot \left(\overrightarrow{r}_{u} \times \overrightarrow{r}_{v} \right) du dv$
- :ולכן $\vec{n}=\left(-z_{_{X}},-z_{_{Y}},1
 ight)$ אז המשטח נתון בצורה מפורשת z=z(x,y) הפורשת \star $\iint_{C} (\overrightarrow{F} \cdot \hat{n}) dS = \iint_{D} (-P \cdot z_{x} - Q \cdot z_{y} + R) dx dy$ $\iint_{\Gamma} (\overrightarrow{F} \cdot \hat{n}) dS = 0$ אז \overrightarrow{F} אז \hat{n} וי \hat{r} ניצבים על פני σ אז \hat{r}
 - אם נחליף את הכיוון של \hat{n} , אז האינטגרל יחליף את סימנו.

יישומים של אינטגרל משטחי מסוג II

 $\Phi_{\sigma}(\vec{F}) = \iint (\vec{F} \cdot \hat{n}) dS$ σ שטף של שדה וקטורי \overrightarrow{F} דרך משטח

יהי (קבים בעל מרחבי בעל $\overrightarrow{F}=(P,Q,R)$ יהי יהי (**Gauss משפט הדיוורגנץ של** ויהי , σ ויהי בתחום בתחום קומפקטי פשוט קשר בעל שפה חלקה למקוטעין, דיפרנציאביליים בתחום קומפקטי אז . σ נורמל יחידה חיצוני לשפה \hat{n}

$$\bigoplus_{\sigma} (\overrightarrow{F} \cdot \hat{n}) dS = \iiint_{G} div \overrightarrow{F} dV$$

. כאשר $div \vec{F} = \vec{
abla} \cdot \vec{F} = P_x + Q_v + R_z$ כאשר כאשר

שדה מרחבי בעל רכיבים דיפרנציאביליים על $\overrightarrow{F} = (P,Q,R)$ יהי :**Stokes משפט** פני משטח דו צדדי σ בעל שפה γ , כך שכיוון הנורמל \hat{n} למשטח נבחר לפי כלל יד ימין ביחס לכיוון γ . אז

$$\oint \vec{F} \cdot d\vec{r} = \iint \left(rot \vec{F} \cdot \hat{n} \right) dS$$

נוסחאות כלליות

$\int u \cdot v' dx = uv - \int u' \cdot v dx$

$$\int f(x(t))x'(t)dt = \int f(x)dx$$
 אז $x = x(t)$ אם החלפת משתנים: אם

$$\int \sin^n x \cos^m x dx$$
 בחישוב בחישוב הצבות טריגונומטריות:

 $t = \cos x$ אם n אי זוגי נציב \circ

שיטות אינטגרציה

- $t = \sin x$ אם m אי זוגי נציב \circ
- » אם שניהם זוגיים ניתן להוריד חזקה ע"י זווית כפולה.

וחנוטוט ונטטוט

 $2\pi r$ איקף , πr^2 שטח - r מעגל ברדיוס

 $4\pi r^2$ שטח פנים $4\pi r^3$. נפח 7 - נפח פרים - 7

. $\pi r \left(\sqrt{r^2 + h^2} + r
ight)$ פטח פנים , $\frac{\pi r^2 h}{3}$ נפח - h נפח r וגובה r

$$\sin(2\alpha) = 2\sin\alpha\cos\alpha$$
$$\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$$

$$\cos(2\alpha) = 2\cos^2\alpha - 1$$

$$\cos(2\alpha) = 1 - 2\sin^2\alpha$$

 $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$

<u>גבולות מוכרים</u>

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{x} = e$$

 $\sin^2 \alpha + \cos^2 \alpha = 1$

 $1 + \tan^2 \alpha = 1/\cos^2 \alpha$

 $1 + \cot^2 \alpha = 1/\sin^2 \alpha$

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\begin{cases} f(x) \le g(x) \le h(x) \\ \lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \end{cases} \Rightarrow \lim_{x \to a} g(x) = L$$
 כלל הסנדוויץ:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L$$
 אם $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$ אם $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$

נגזרות יסודיות

$$\left(x^{n}\right)'=nx^{n-1}$$

$$\int' = e^x \qquad \left(\ln x\right)' = \frac{1}{x}$$

$$\left(a^{x}\right)' = a^{x} \ln a \qquad \left(\log_{a} x\right)' = \frac{1}{x \ln a}$$

$$(\sin x)' = \cos x \qquad (\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(\cos x)' = -\sin x \qquad (\arccos x)' = \frac{-1}{\sqrt{1 - x^2}}$$

$$(\tan x)' = \frac{1}{\cos^2 x} \qquad (\arctan x)' = \frac{1}{1+x^2}$$

אינטגרלים יסודיים

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$$

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int e^x dx = e^x + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int \sin x dx = -\cos x + C \qquad \qquad \int \cos x dx = \sin x + C$$

$$\int \frac{dx}{\cos^2 x} = \tan x + C$$

$$\int \frac{dx}{\sin^2 x} = -\cot x + C$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln\left|x + \sqrt{x^2 \pm a^2}\right| + C$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

$$\int \sqrt{x^2 \pm a^2} dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln \left(x + \sqrt{x^2 \pm a^2} \right) + C$$