

Daily Activities Contributing to Greenhouse Gas Emissions

This report categorizes everyday activities by major sources of CO_2 e emissions. Each item lists a method to estimate its emissions using common factors or formulas, with relevant sources. Where available, South Africa-specific data (e.g. grid factors) are noted.

1. Transportation

Human travel is a major CO_2 source. Emissions are estimated by distance, fuel burn, and passenger occupancy. Common formulas use CO_2 = distance × EF or fuel used × EF. Typical emission factors (EF) include: ~0.17 kg CO_2 /km for an average petrol car 1 (\approx 2.3 kg CO_2 per liter of petrol 2), ~0.17 kg/km for a diesel car, ~0.11 kg/km for a motorbike 3. Public transit generally emits less per person: - **Driving a petrol car** (average): CO_2 = distance (km)×0.17 kg/km. (\approx 0.20 kg/km) 1 2.

- **Driving a diesel car**: CO_2 = distance ×0.17 kg/km (diesel EF \approx 0.17 kg/km). (\approx 0.10–0.15 kg/km if fuel use known.)
- **Electric car**: CO_2 = distance×(energy use kWh/km)×(grid EF). E.g. 0.15 kWh/km×0.967 kg/kWh ≈ 0.15 kg/km (grid EF for South Africa ~0.97 kg/kWh 4).
- Motorcycle: CO_2 = distance×0.11 kg/km $^{\circ}$.
- Taxi/Uber (car): same as above per km.
- **City bus (per passenger)**: CO_2 = distance×0.089 kg/passenger-km 5 (\approx 0.09 kg/km, UK average). If measuring per vehicle: a typical diesel bus emits \approx 1.3 kg/km 6 , but allocated per passenger \sim 0.09 kg/km on average.
- Coach (long-distance bus): similar to city bus per passenger (~0.08 kg/passenger-km).
- **Commuter rail (electric train)**: CO_2 = $distance \times 0.035 \ kg/passenger-km$ $\bigcirc (\approx 35 \ g/km)$ reflecting modern rail.
- **Domestic flight**: CO_2 = distance×0.15–0.25 kg/km. Short flights use more per km (e.g. ~0.25 kg/km 7), long-haul ~0.10–0.15 kg/km 8 7 . Equivalently ~90–250 kg CO_2 per flight hour (including radiative forcing) 9 8 .
- **International flight (long-haul)**: CO_2 = $distance \times 0.10$ –0.12 kg/km. (≈ 0.10 kg/km for efficient long flights
- Subway/metro (electric): Similar to commuter rail, typically ~0.02–0.05 kg/pass-km depending on grid.
- Walking or cycling: negligible on their own (only diet-related emissions).

2. Food and Diet

Dietary choices vary widely in emissions. Emissions are estimated by weight of food consumed: $CO_2 = amount (kg) \times EF (kg CO_2/kg food)$. Key averages (global/Poor&Nemecek data) are 10 11:

- **Beef (ruminant meat)**: \approx 60 kg CO₂/kg meat 10 (100 kg with methane, 51 kg excluding methane 11). For 100 g beef: \sim 6 kg CO₂.
- Lamb/mutton: >20 kg CO_2 /kg 10 (often ~20–40 kg).

- **Pork**: ~7 kg CO₂/kg 12 . For 100 g pork: ~0.7 kg CO₂.
- Poultry (chicken, turkey): ~6 kg CO_2/kg^{-13} . ($\approx 0.6 kg CO_2 per 100 g$).
- **Cheese**: >20 kg CO_2/kg^{-12} (e.g. ~21 kg/kg).
- **Dairy milk (cow's)**: roughly 1–2 kg CO_2 per liter (farm-gate ~1.2–2.4 kg/L) ¹⁴ . (No South African source found.)
- **Eggs**: ~4 kg CO₂/kg (\approx 0.4 kg per 100 g; estimate from life-cycle studies).
- Vegetables and fruits: ~1-2 kg CO₂/kg (plants, varies by type).
- Legumes/beans: ~0.9-2 kg CO₂/kg.
- Rice (paddy): ~2.7 kg CO₂/kg (plus methane, sometimes reported ~20-25 kg CO₂e/kg due to CH₄) 15.
- Grains (wheat, bread): ~1-2 kg CO₂/kg.
- **Coffee (ground)**: ~0.15 kg CO₂ per cup (\approx 20 g beans at 7.5 kg/kg).
- Tea: ~0.02–0.05 kg CO₂ per cup (tea leaf footprint ~0.5 kg/kg).
- **Beer**: \sim 0.18 kg CO₂ per 500 ml (varies by production). Wine: \sim 0.35 kg/liter.
- **Eating one meal (mixed)**: sum of above by ingredients. Use recipe weights.

Food waste: Discarded food carries the full production footprint plus methane from landfill. A rough estimate is ~0.5–1 kg CH₄ per kg food waste (\rightarrow 14–28 kgCO₂e) ¹⁶, plus upstream CO₂. (Specific formula depends on waste handling.)

3. Home Energy Use

Home energy (electricity, heating, appliances) is usually calculated by energy consumption \times emission factor. South Africa's grid is carbon-intensive (\sim 0.97 kg CO₂/kWh) ⁴ . Example activities:

- **Electricity usage (general)**: $CO_2 = kWh \times 0.97 \ kg/kWh (SA grid)$ 4 . (E.g. a 100 W lamp for 10 hours uses 1 kWh $\approx 0.97 \ kg$ CO₂.)
- **Electric heating or AC**: CO_2 = power (kW) × hours ×0.97 kg/kWh. (E.g. 2 kW heater for 5 h \Rightarrow 10 kWh ~9.7 kg CO_2 .)
- **Gas heating (e.g. LPG)**: ~2.7 kg CO₂ per liter LPG (same principle as petrol) $\stackrel{?}{=}$. Use volume or energy (1 kWh gas ~0.2 m³).
- Water heating (electric): CO_2 = kWh used ×0.97. (E.g. heating 150 L by 40°C ~1.7 kWh \rightarrow ~1.7 kg CO₂.)
- **Electric stove/oven**: $CO_2 = kWh \times 0.97$. (E.g. 2 kW oven for 1 h \approx 2 kWh $\rightarrow \sim$ 1.9 kg CO_2 .)
- **Gas stove/oven**: use LPG EF (≈2.7 kg/kg fuel).
- **Lighting**: e.g. 10 W LED for 5 h = 0.05 kWh (~ 0.05 kg CO₂).
- **Refrigerator**: typical 0.5–2 kWh/day \Rightarrow ~0.5–2 kg CO₂/day.
- Washing machine (electric): \sim 0.3-0.5 kWh per wash (modern eco-mode) \Rightarrow 0.3-0.5 kg CO₂/wash.
- **Tumble dryer**: ~2.5 kWh per cycle \Rightarrow ~2.5 kg CO₂/cycle $\stackrel{17}{}$.
- **Dishwasher**: ~0.75–1 kWh per eco cycle⇒ ~0.7–1 kg CO₂/load. (Plus embodied ~0.1 kg/load ¹⁸ .)
- Electronics (TV, PC, charging): e.g. laptop 0.05 kWh/h ~0.05 kg/h; smartphone charge ~5 Wh ~0.005 kg.

4. Consumption and Waste

Manufacturing and disposal of goods generate emissions. Estimate by product weight \times EF (kg CO₂/kg product). Examples:

- Clothing T-shirts: ~7 kg CO₂ per shirt 19 . (Using 0.2 kg cotton at 35 kg CO₂/kg plus processing.)
- Clothing jeans: ~20-25 kg CO₂ per pair (cotton farming, processing).
- Fast-fashion garment: 5-10 kg CO₂ each. (Depends on fabric; see carbonfact report.)

- Electronic devices smartphone: ~70 kg CO₂ (production) 19; tablet: ~100 kg; laptop: ~150-300 kg 20.
- Furniture (wood): ~150 kg CO₂ per 100 kg (harvest and transport).
- Plastic shopping bag (single-use): ~0.2 kg CO₂/bag 21 . (Plastic production ~6 kg/kg 22 ; ~32 g bag \rightarrow ~0.2 kg CO₂.)
- Paper shopping bag: ~0.1-0.15 kg CO₂ (when single-use).
- Plastic water bottle (0.5 L PET): ~0.06 kg CO_2 (\approx 20 g plastic ×6 kg/kg).
- Food packaging (plastic/metal): ~1-2 kg CO₂ per kg of packaging; calculate by material weight.
- Paper: ~1.3 kg CO₂ per kg (pulp and mill) plus recycling credit.
- **Disposable cup (paper)**: ~0.01–0.1 kg each, depending on insulation layers.
- Electronics waste: end-of-life has small emissions, but recycling saves ~2.5 kg CO₂/kg plastic ²³ .
- **Buying a car**: ~6,000 kg CO₂ (manufacturing) for a small car. (Amortize over ~10 years.)
- Renovation/construction: e.g. cement 0.9 kg CO₂/kg; steel 1.85 kg/kg.

Waste disposal:

- Landfilling food waste: roughly 1 kg food \rightarrow 0.5 kg CH₄ on decay \rightarrow ~14 kg CO₂e, plus original food's footprint.
- **Recycling** saves: ~2–3 kg CO₂/kg plastic recycled ²³ .

5. Water Usage

Water treatment and heating have carbon costs. Emissions arise from pumping, treating, and especially heating water.

- **Showering**: ~0.115 kg CO₂ per minute 16 (based on heating ~7 L/min to 55°C). So 6 min shower \approx 0.69 kg CO₂ 16 . *Formula*: volume (L)×temperature rise (°C)×4.18 J/g°C, convert to kWh and ×0.97 kg/kWh.
- **Bath (150 L at 40°C)**: ~1.5 kg CO_2 (\approx 1.7 kWh heating).
- Handwash dishes: depends on water volume and heat. E.g. 10 L at 50° C ≈ 0.6 kWh $\rightarrow \sim 0.6$ kg CO₂.
- **Dishwasher**: included above (0.7–1 kg/load).
- Laundry machine: included above (0.3–0.5 kg for wash, plus dryer if used).
- Garden watering: electricity for pumping (0.2–0.5 kWh per day) or fertilizer production.
- **Drinking tap water**: negligible unless boiled (see cooking). Bottled water: \sim 0.5 kg CO₂ per liter (bottle and transport).

6. Digital Habits

Data and devices consume energy. Emissions are often small per use, but can accumulate:

- **Video streaming**: \sim 0.036 kg CO₂ per hour 24 (IEA, 2019); or 0.055 kg/h in Europe 25 . *Formula:* hours streamed×0.04 kg/h. (Includes data centers, networks, devices.)
- Audio streaming/music: ~0.001 kg (1 g) CO₂ per hour ²⁶ . (Much lower data rate.)
- **Sending 1 email**: \sim 0.2–0.3 g CO₂ $\stackrel{27}{=}$ (short email on laptop). A long email can be \sim 17 g $\stackrel{27}{=}$. *Formula*: emails× \sim 0.0003 kg.
- Video conferencing: ~0.01 kWh per hour (depending on device) \rightarrow ~0.01 kg CO₂/h (negligible).
- Cloud storage: ~0.2 kg CO₂ per GB per year (estimate, varies).
- Web browsing/social media: ~0.02 kg/h (assume 0.01–0.05 kWh use).
- Gaming (console/PC): ~0.1–0.3 kWh/h \rightarrow 0.1–0.3 kg CO₂/h (on coal grid).
- Blockchain/crypto (personal use): negligible unless mining.

7. Work and Commuting Patterns

Work-related travel and office energy also emit CO₂:

- **Commuting (private vehicle)**: as per *Transport* above. E.g. 30 km round-trip $\times 0.17$ kg/km ≈ 5.1 kg CO₂/ day.
- **Commuting (public transit)**: use bus/train factors above. Example: 20 km train commute $\times 0.035$ kg/km ≈ 0.7 kg CO₂/day.
- Business air travel: count as flights above. E.g. one 1-hour flight ~0.25 tCO₂.
- **Remote work (WFH)**: reduces commuting but may increase home energy. Net: commute emissions saved minus incremental home usage (e.g. heating, lighting).
- **Office building**: per-person lighting/heating. Example: 100 W of lighting for 8h \sim 0.8 kWh (\sim 0.8 kg CO₂) per workday.
- Video meetings: as digital use above.
- Paper vs. digital office: printing has paper/fuel costs; store data has digital costs (see Digital).

Formulas and Methods: In all cases, use activity data (distance, quantity, time) multiplied by an emission factor. For example, CO_2 (kg) = Activity × EF (kg/unit). Where possible, use local values (e.g. grid EF \approx 0.97 kg/kWh in South Africa 4) or international averages with citations.

					actor																																7	
8	10	11	4	19 21 26 24 27 . These allow CO ₂ -equivalent calculation for									or each activity a						sho	owr	١.																	
																			·	-												,						
1	Emis	sion	Fac	tor:	Petr	ol ca	ar (av	vera	ag	ge	je	e)	-	Ρ	as	se	nge	er١	veł	hicle	es	T	Γrai	nsp	or	t	Ve	ehio	cles	s	Uni	ited	Kir	ng	dor	n		

https://www.climatiq.io/data/emission-factor/5cc66c6a-b273-471a-b378-c974ef8a6df4

- 2 MetLink Royal Meteorological Society Carbon Footprint Information Sheet -
- https://www.metlink.org/resource/carbon-footprint-information-sheet/
- 3 Emission Factor: Motorbike (average) Business travel | Transport | Vehicles | United Kingdom | Climatiq

https://www.climatig.io/data/emission-factor/99856a30-786a-47ae-ba13-d6c601d63167

- 4 Emission Factor: Electricity supplied from grid | Energy | Electricity | South Africa | Climatiq https://www.climatiq.io/data/emission-factor/70811bd8-2827-4e75-a87e-f801f5be3bda
- ⁵ ⁶ Emissions from bus travel

Climatia

https://www.carbonindependent.org/20.html

- 7 Which form of transport has the smallest carbon footprint? Our World in Data https://ourworldindata.org/travel-carbon-footprint
- 8 9 Aviation sources

https://www.carbonindependent.org/sources aviation.html

10 12 13 You want to reduce the carbon footprint of your food? Focus on what you eat, not whether your food is local - Our World in Data

https://ourworldindata.org/food-choice-vs-eating-local

11 15 The carbon footprint of foods: are differences explained by the impacts of methane? - Our World in Data

https://ourworldindata.org/carbon-footprint-food-methane

14 Milk (Cow) Carbon Footprint | 0.8kg CO2e - CO2 Everything

https://www.co2everything.com/co2e-of/milk

16 Shower | co2data.org

https://www.co2data.org/c/shower

17 Find out the Carbon Footprint of Common Items

https://clevercarbon.io/carbon-footprint-of-common-items

18 Dishwasher or Hand-washing? Which is better for the environment? ~ Crafty Cabbage

https://www.craftycabbage.com/2021/10/dishwasher-or-hand-washing-which-is.html

19 How much carbon is a t-shirt? / Carbonfact

https://www.carbonfact.com/blog/tshirt

20 Assessing embodied carbon emissions of communication user ...

https://www.sciencedirect.com/science/article/pii/S1364032123002794

21 22 23 Plastic bags and plastic bottles - CO2 emissions during their lifetime - Time for Change

https://timeforchange.org/plastic-bags-and-plastic-bottles-co2-emissions-during-their-lifetime/

24 The carbon footprint of streaming video: fact-checking the headlines – Analysis - IEA

https://www.iea.org/commentaries/the-carbon-footprint-of-streaming-video-fact-checking-the-headlines

²⁵ The Carbon Cost of Streaming - Greenly

https://greenly.earth/en-us/leaf-media/data-stories/the-carbon-cost-of-streaming

²⁶ Spotify's rising carbon footprint from turning audio into video

https://podnews.net/press-release/spotify-video-environment

27 The Carbon Cost of an Email: Update! - The Carbon Literacy Project

https://carbonliteracy.com/the-carbon-cost-of-an-email/