Algèbre linéaire

David Loiseaux et Fanny Simões

28 Février 2022

Contenu

Algèbre linéaire rapidement

Système linéaire

Gauss

Exemple

Décomposition LU

L'algèbre de « Algèbre linéaire »

Raccourci: Un invariant par Gauss.

Dimension 2.

Dimension quelconque.

Diagonalisation

Bases

Valeur propre, vecteur propre.

Théorèmes clés

Normes

Pseudo-diagonalisation (SVD)

Application

Contenu

Algèbre linéaire rapidement Système linéaire

Gauss

Exemple

Décomposition LU

L'algèbre de « Algèbre linéaire »

Raccourci: Un invariant par Gauss.

Dimension 2.

Dimension quelconque.

Diagonalisation

Bases

Valeur propre, vecteur propre

Théorèmes clés

Normes

Pseudo-diagonalisation (SVD)

Application

Qu'est-ce que l'algèbre linéaire?

Systèmes d'équations linéaires

On appelle système de m équations linéaires à n inconnues, un système de la forme :

$$\begin{cases} a_{11}x_1 + \dots + a_{1j}x_j + \dots + a_{1n}x_n = b_1 & L_1 \\ \vdots & & \vdots \\ a_{i1}x_1 + \dots + a_{ij}x_j + \dots + a_{in}x_n = b_i & L_i \\ \vdots & & \vdots \\ a_{m1}x_1 + \dots + a_{mj}x_j + \dots + a_{mn}x_n = b_m & L_m \end{cases}$$
(1)

Systèmes d'équations linéaires

On appelle système de m équations linéaires à n inconnues, un système de la forme :

$$\begin{cases} a_{11}x_{1} + \dots + a_{1j}x_{j} + \dots + a_{1n}x_{n} = b_{1} & L_{1} \\ \vdots & \vdots & \vdots \\ a_{i1}x_{1} + \dots + a_{ij}x_{j} + \dots + a_{in}x_{n} = b_{i} & L_{i} \\ \vdots & \vdots & \vdots \\ a_{m1}x_{1} + \dots + a_{mj}x_{j} + \dots + a_{mn}x_{n} = b_{m} & L_{m} \end{cases}$$

$$(1)$$

Pour la résolution ⇒ Pivot de Gauss.

Systèmes d'équations linéaires

On appelle système de m équations linéaires à n inconnues, un système de la forme :

$$\begin{cases} a_{11}x_1 + \dots + a_{1j}x_j + \dots + a_{1n}x_n = b_1 & L_1 \\ \vdots & & \vdots \\ a_{i1}x_1 + \dots + a_{ij}x_j + \dots + a_{in}x_n = b_i & L_i \\ \vdots & & \vdots \\ a_{m1}x_1 + \dots + a_{mj}x_j + \dots + a_{mn}x_n = b_m & L_m \end{cases}$$
(1)

Pour la résolution ⇒ Pivot de Gauss. Systèmes résolubles?

Contenu

Algèbre linéaire rapidement Système linéaire

Gauss

Exemple Décomposition *LU*

L'algèbre de « Algèbre linéaire »

Raccourci: Un invariant par Gauss.

Dimension 2.

Dimension quelconque.

Diagonalisation

Bases

Valeur propre, vecteur propre

Théorèmes clés

Normes

Pseudo-diagonalisation (SVD

Application

Le système :

$$\begin{cases} 2x + y - z = 1 & L_1 \\ -x + y - z = -2 & L_2 \\ x - 2y - z = 3 & L_3 \end{cases}$$
 (2)

se réécrit sous forme matricielle

$$\begin{pmatrix} 2 & 1 & -1 \\ -1 & 1 & -1 \\ 1 & 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$

Le système :

$$\begin{cases} 2x + y - z = 1 & L_1 \\ -x + y - z = -2 & L_2 \\ x - 2y - z = 3 & L_3 \end{cases}$$
 (2)

$$\left(\begin{array}{ccc|c}
2 & 1 & -1 & 1 \\
-1 & 1 & -1 & -2 \\
1 & -2 & -1 & 3
\end{array}\right)$$

Le système :

$$\begin{cases} 2x + y - z = 1 & L_1 \\ -x + y - z = -2 & L_2 \\ x - 2y - z = 3 & L_3 \end{cases}$$
 (2)

$$\left(\begin{array}{ccc|c}
1 & -2 & -1 & 3 \\
-1 & 1 & -1 & -2 \\
2 & 1 & -1 & 1
\end{array}\right)$$

Le système :

$$\begin{cases} 2x + y - z = 1 & L_1 \\ -x + y - z = -2 & L_2 \\ x - 2y - z = 3 & L_3 \end{cases}$$
 (2)

$$\left(\begin{array}{ccc|c}
1 & -2 & -1 & 3 \\
0 & -1 & -2 & 1 \\
0 & 5 & 2 & -5
\end{array}\right)$$

Le système :

$$\begin{cases} 2x + y - z = 1 & L_1 \\ -x + y - z = -2 & L_2 \\ x - 2y - z = 3 & L_3 \end{cases}$$
 (2)

$$\left(\begin{array}{ccc|c}
1 & -2 & -1 & 3 \\
0 & 1 & 2 & -1 \\
0 & 0 & -8 & 0
\end{array}\right)$$

Le système :

$$\begin{cases} 2x + y - z = 1 & L_1 \\ -x + y - z = -2 & L_2 \\ x - 2y - z = 3 & L_3 \end{cases}$$
 (2)

$$\left(\begin{array}{ccc|c}
1 & -2 & 0 & 3 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)$$

Le système :

$$\begin{cases} 2x + y - z = 1 & L_1 \\ -x + y - z = -2 & L_2 \\ x - 2y - z = 3 & L_3 \end{cases}$$
 (2)

est équivalent à

$$\left(\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)$$

 \longrightarrow le système est équivalent à x = 1, y = -1, z = 0.

Remarque:

Ajouter une ligne à une autre en dessous est équivalent à multiplier par une matrice *triangulaire inférieure*, de diagonale $1:\lambda E^{i,j}$

$$\left(\begin{array}{cc} 1 & 0 \\ \lambda & 1 \end{array}\right) \times \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} a & b \\ \lambda a + c & \lambda b + d \end{array}\right)$$

où $E_{k,k}^{i,j} = 1$, $E_{i,j}^{i,j} = 1$ et sinon 0.

Remarque:

Ajouter une ligne à une autre en dessous est équivalent à multiplier par une matrice *triangulaire inférieure*, de diagonale $1: \lambda E^{i,j}$ où $E_{k,k}^{i,j} = 1$, $E_{i,j}^{i,j} = 1$ et sinon 0.

Donc, via pivot de gauss, si on a pas besoin de permuter

$$A = L_1 \times L_2 \times \cdots \times L_k [\text{matrice triangulaire supérieure}]$$
 (3)

Remarque:

Ajouter une ligne à une autre en dessous est équivalent à multiplier par une matrice *triangulaire inférieure*, de diagonale $1:\lambda E^{i,j}$ où $E^{i,j}_{k,k}=1$, $E^{i,j}_{i,j}=1$ et sinon 0. Donc, via pivot de gauss, si on a pas besoin de permuter

$$A = L_1 \times L_2 \times \cdots \times L_k [\text{matrice triangulaire supérieure}]$$
 (3)

i.e. A = LU avec L triangulaire inférieure ($L \leftarrow$ "lower") de diagonale 1, et U triangulaire supérieure ($U \leftarrow$ "upper").

Remarque:

Ajouter une ligne à une autre en dessous est équivalent à multiplier par une matrice *triangulaire inférieure*, de diagonale $1:\lambda E^{i,j}$ où $E^{i,j}_{k,k}=1, E^{i,j}_{i,j}=1$ et sinon 0.

Donc, via pivot de gauss, si on a pas besoin de permuter

$$A = L_1 \times L_2 \times \cdots \times L_k [\text{matrice triangulaire supérieure}]$$
 (3)

i.e. A = LU avec L triangulaire inférieure ($L \leftarrow$ "lower") de diagonale 1, et U triangulaire supérieure ($U \leftarrow$ "upper").

En pratique:

Utiliser un algo (optimisé) déjà implémenté. Complexité : $O(n^3)$.

Autre remarque

Si on connaît un x_1 , x_2 , et x_3 tels que

Autre remarque

Si on connaît un x_1 , x_2 , et x_3 tels que

$$Ax_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad Ax_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad Ax_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Autre remarque

Si on connaît un x_1 , x_2 , et x_3 tels que

$$Ax_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad Ax_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad Ax_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Alors, pour n'importe quel $b \in \mathbb{R}^3$,

$$Ax_b := A(b_1x_1 + b_2x_2 + b_3x_3) = b_1Ax_1 + b_2Ax_2 + b_3Ax_3 = b.$$

 \longrightarrow **Quand ça existe** on appelle $A^{-1} := (x_1|x_2|x_3)$ l'inverse de A.

Autre remarque

Si on connaît un x_1 , x_2 , et x_3 tels que

$$Ax_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad Ax_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad Ax_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Alors, pour n'importe quel $b \in \mathbb{R}^3$,

$$Ax_b := A(b_1x_1 + b_2x_2 + b_3x_3) = b_1Ax_1 + b_2Ax_2 + b_3Ax_3 = b.$$

 \longrightarrow **Quand ça existe** on appelle $A^{-1} := (x_1|x_2|x_3)$ l'inverse de A. **Remarque**: $A = PLU \implies P, L$ inversible, et U est inversible ssi ses coeffs diagonaux sont non nuls.

Contenu

Algèbre linéaire rapidement Système linéaire

Gauss

Exemple
Décomposition *LU*

L'algèbre de « Algèbre linéaire »

Raccourci: Un invariant par Gauss.

Dimension 2.

Dimension quelconque.

Diagonalisation

Bases

Valeur propre, vecteur propre

Théorèmes clés

Normes

Pseudo-diagonalisation (SVD

Application

Équations linéaires — Algèbre linéaire

Le système :

$$\begin{cases} 2x + y - z = 1 & L_1 \\ -x + y - z = -2 & L_2 \\ x - 2y - z = 3 & L_3 \end{cases}$$
 (4)

se réécrit en

$$\begin{pmatrix} 2 & 1 & -1 \\ -1 & 1 & -1 \\ 1 & 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$

qui se réécrit en général

$$AX = b$$

οù

$$A = (a_{i,j})_{1 \le i,j \le n}, \quad X = (x_1, \dots, x_n)^T$$
, et $b = (b_i)_{1 \le i \le n}^T$.

Équations linéaires — Algèbre linéaire

Le système :

$$\begin{cases} 2x + y - z = 1 & L_1 \\ -x + y - z = -2 & L_2 \\ x - 2y - z = 3 & L_3 \end{cases}$$
 (4)

qui se réécrit en général

$$AX = b$$

οù

$$A = (a_{i,j})_{1 \le i,j \le n}, \quad X = (x_1, \dots, x_n)^T, \text{ et } b = (b_i)_{1 \le i \le n}^T.$$

 \longrightarrow Ce qui compte c'est donc comprendre comment les applications $x \mapsto Ax$ se comportent.

Petit raccourci

L'identification:

A de dimension $n \times m \longleftrightarrow x \in \mathbb{R}^m \longmapsto Ax \in \mathbb{R}^n$ permet de faire passer la théorie des fonctions aux matrices.

Petit raccourci

L'identification:

A de dimension $n \times m \longleftrightarrow x \in \mathbb{R}^m \longmapsto Ax \in \mathbb{R}^n$ permet de faire passer la théorie des fonctions aux matrices.

Exemple : injectivité, surjectivité, continuité, différentiabilité, inversibilité ...

Petit raccourci

L'identification:

A de dimension $n \times m \longleftrightarrow x \in \mathbb{R}^m \longmapsto Ax \in \mathbb{R}^n$ permet de faire passer la théorie des fonctions aux matrices.

Exemple : injectivité, surjectivité, continuité, différentiabilité, inversibilité ...

Remarque: $x \mapsto A^{-1}x$ défini plus haut est l'inverse de $x \mapsto Ax$.

Autre remarque anodine mais pas trop

Une matrice est caractérisée par son image des vecteurs $e_i = (0, ..., 1, ..., 0)^T$.

$$Ae_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{ni} \end{pmatrix} = \operatorname{Col}_i(A)$$

Autre remarque anodine mais pas trop

Une matrice est caractérisée par son image des vecteurs $e_i = (0, ..., 1, ..., 0)^T$.

$$Ae_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{ni} \end{pmatrix} = \operatorname{Col}_i(A)$$

En particulier, pour toute application linéaire (de dimension finie) *i.e.* application $f: x \in \mathbb{R}^n \longmapsto f(x) \in \mathbb{R}^m$ qui vérifie

$$\forall x, y \in \mathbb{R}^n, \lambda \in \mathbb{R}, \quad f(x + \lambda y) = f(x) + \lambda f(y)$$

il existe une matrice A_f de dimension $n \times m$ telle que $f = x \mapsto A_f x$.

En remarquant

$$Ax = Ay \Leftrightarrow A(x - y) = 0$$

En remarquant

$$Ax = Ay \Leftrightarrow A(x - y) = 0$$

→ injectivité caractérisée par les *x* tels que

$$Ax = \mathbf{0} = (0, \dots, 0)^T$$

En remarquant

$$Ax = Ay \Leftrightarrow A(x - y) = 0$$

 \longrightarrow injectivité caractérisée par les x tels que

$$Ax = \mathbf{0} = (0, \dots, 0)^T$$

D'où la définition du noyau (kern en Allemand) de A

$$\ker A = \{x \in \mathbb{R}^n : Ax = \mathbf{0}\} = A^{-1} \{\mathbf{0}\}\$$

En remarquant

$$Ax = Ay \Leftrightarrow A(x - y) = 0$$

 \longrightarrow injectivité caractérisée par les x tels que

$$Ax = \mathbf{0} = (0, \dots, 0)^T$$

D'où la définition du noyau (kern en Allemand) de A

$$\ker A = \{x \in \mathbb{R}^n : Ax = \mathbf{0}\} = A^{-1} \{\mathbf{0}\}\$$

Calcul?

 \implies Pareil que pour résoudre un système Ax = b avec b = 0: Gauss.

Contenu

Algèbre linéaire rapidement Système linéaire

Gauss

Exemple

L'algèbre de « Algèbre linéaire »

Raccourci : Un invariant par Gauss.

Dimension 2.

Dimension quelconque.

Diagonalisation

Bases

Valeur propre, vecteur propre

Théorèmes clés

Normes

Pseudo-diagonalisation (SVD)

Application

À quel point une matrice est proche d'être inversible? Un indicateur :

À quel point une matrice est proche d'être inversible? Un indicateur :

À quel point une matrice est proche d'être inversible? Un indicateur :

À quel point une matrice est proche d'être inversible? Un indicateur :

On veut une fonction f(x, y) qui soit linéaire en x et en y et telle que f(x, x) = 0.

On veut une fonction f(x,y) qui soit linéaire en x et en y et telle que f(x,x)=0. Ça impose :

$$f(x+y,x+y) = f(x,x+y) + f(y,x+y)$$

On veut une fonction f(x, y) qui soit linéaire en x et en y et telle que f(x, x) = 0.

$$f(x + y, x + y) = f(x, x + y) + f(y, x + y)$$

= $f(x, x) + f(y, y) + f(y, x) + f(x, y)$

Donc
$$f(x, y) = -f(y, x)$$
.

On veut une fonction f(x, y) qui soit linéaire en x et en y et telle que f(x, x) = 0.

Donc f(x, y) = -f(y, x).

Compatibilité avec Gauss (version colonne) :

Ajouter une colonne à une autre :

$$f(x, \lambda x + y) = \lambda f(x, x) + f(x, y) = f(x, y)$$

▶ Permuter deux colonnes : on perd un −1.

On veut une fonction f(x, y) qui soit linéaire en x et en y et telle que f(x, x) = 0.

Donc
$$f(x, y) = -f(y, x)$$
.

 \longrightarrow Faire du Gauss ne change pas f à un signe près.

On veut une fonction f(x, y) qui soit linéaire en x et en y et telle que f(x, x) = 0.

Donc f(x, y) = -f(y, x).

- \longrightarrow Faire du Gauss ne change pas f à un signe près.
- → On se ramène via Gauss à

$$f(A) = \pm f \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} = \pm a_1 \cdot a_2 f(I_2) = \pm a_1 a_2$$

où a_1 et a_2 sont les coeffs diagonaux de U dans la décompo PLU de A; si on impose $f(I_2) = aire([0, 1]^2) = 1$.

On veut une fonction f(x, y) qui soit linéaire en x et en y et telle que f(x, x) = 0.

Donc f(x, y) = -f(y, x).

- \longrightarrow Faire du Gauss ne change pas f à un signe près.
- → On se ramène via Gauss à

$$f(A) = \pm f \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} = \pm a_1 \cdot a_2 f(I_2) = \pm a_1 a_2$$

où a_1 et a_2 sont les coeffs diagonaux de U dans la décompo PLU de A; si on impose $f(I_2) = aire([0, 1]^2) = 1$.

 $\longrightarrow f$ est caractérisée par : f(x, x) = 0 et f(carr'e) = 1.

On veut une fonction f(x, y) qui soit linéaire en x et en y et telle que f(x, x) = 0.

Donc f(x, y) = -f(y, x).

 \longrightarrow Faire du Gauss ne change pas f à un signe près.

 $\longrightarrow f$ est caractérisée par : f(x, x) = 0 et f(carr'e) = 1.

Remarque: $f(A) \neq 0 \Leftrightarrow A$ inversible.

En général (dimension ≥ 2) si :

$$x_i = x_j \implies f(x_1, x_2, \dots, x_n) = 0, \quad \text{et } f(I_n) = \text{vol}([0, 1]^n) = 1$$

En général (dimension ≥ 2) si :

$$x_i = x_j \implies f(x_1, x_2, \dots, x_n) = 0, \quad \text{ et } f(I_n) = \text{vol}([0, 1]^n) = 1$$

alors:

$$A = PLU \implies f(A) = f(PLU) = \varepsilon(P)f(LU) = \varepsilon(P)f(U) = \varepsilon(P)a_1 \cdots a_n$$

où $\varepsilon(P)$ est la signature de la permutation P, et $(a_i)_i$ les coeffs diagonaux de U.

En général (dimension ≥ 2) si :

$$x_i = x_j \implies f(x_1, x_2, \dots, x_n) = 0, \quad \text{et } f(I_n) = \text{vol}([0, 1]^n) = 1$$

alors:

$$A = PLU \implies f(A) = f(PLU) = \varepsilon(P)f(LU) = \varepsilon(P)f(U) = \varepsilon(P)a_1 \cdots a_n$$

où $\varepsilon(P)$ est la signature de la permutation P, et $(a_i)_i$ les coeffs diagonaux de U.

$$\Longrightarrow f(A) = \det(A) = \frac{1}{n!} \sum_{P} \varepsilon(P) \det(PA) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i} a_{i,\sigma(i)}.$$

En général (dimension ≥ 2) si :

$$x_i = x_j \implies f(x_1, x_2, \dots, x_n) = 0, \quad \text{et } f(I_n) = \text{vol}([0, 1]^n) = 1$$

alors:

$$A = PLU \implies f(A) = f(PLU) = \varepsilon(P)f(LU) = \varepsilon(P)f(U) = \varepsilon(P)a_1 \cdots a_n$$

où $\varepsilon(P)$ est la signature de la permutation P, et $(a_i)_i$ les coeffs diagonaux de U.

$$\implies f(A) = \det(A) = \frac{1}{n!} \sum_{P} \varepsilon(P) \det(PA) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i} a_{i,\sigma(i)}.$$

En pratique : Utiliser un algo déjà implémenté. Complexité : $O(n^3)$.

Contenu

```
Algèbre linéaire rapidement
Système linéaire
Gauss
Exemple
Décomposition LU
```

L'algebre de « Algebre lineaire »

Raccourci : Un invariant par Gauss.

Dimension 2.

Dimension quelconque.

Diagonalisation

Bases

Valeur propre, vecteur propre.

Théorèmes clés

Normes

Pseudo-diagonalisation (SVD

Application

 (x_1, \ldots, x_k) famille libre $\Leftrightarrow (x_1 | \cdots | x_k)$ matrice injective.

```
(x_1,\ldots,x_k) famille libre \Leftrightarrow (x_1|\cdots|x_k) matrice injective. (x_1,\ldots,x_k) famille génératrice \Leftrightarrow (x_1|\cdots|x_k) matrice surjective.
```

```
(x_1,\ldots,x_k) famille libre \Leftrightarrow (x_1|\cdots|x_k) matrice injective. (x_1,\ldots,x_k) famille génératrice \Leftrightarrow (x_1|\cdots|x_k) matrice surjective. (x_1,\ldots,x_n) base de \mathbb{R}^n \Leftrightarrow (x_1,\ldots,x_n) libre et génératrice de \mathbb{R}^n.
```

```
(x_1,\ldots,x_k) famille libre \Leftrightarrow (x_1|\cdots|x_k) matrice injective. (x_1,\ldots,x_k) famille génératrice \Leftrightarrow (x_1|\cdots|x_k) matrice surjective. (x_1,\ldots,x_n) base de \mathbb{R}^n \Leftrightarrow (x_1,\ldots,x_n) libre et génératrice de \mathbb{R}^n. Dimension d'une famille : dimension de ce qui reste après Gauss.
```

 (x_1, \ldots, x_n) est une base $\Leftrightarrow P = (x_1 | \cdots | x_n)$ inversible $\Leftrightarrow \det(P) \neq 0$.

 (x_1, \ldots, x_n) est une base $\Leftrightarrow P = (x_1 | \cdots | x_n)$ inversible $\Leftrightarrow \det(P) \neq 0$. Donc si A est de dimension $n \times n$:

$$Ae_i = (AP^{-1})(Pe_i) = (AP^{-1})x_i$$

 (x_1, \ldots, x_n) est une base $\Leftrightarrow P = (x_1 | \cdots | x_n)$ inversible $\Leftrightarrow \det(P) \neq 0$. Donc si A est de dimension $n \times n$:

$$Ae_i = (AP^{-1})(Pe_i) = (AP^{-1})x_i$$

Donc $x \mapsto AP^{-1}x$ est caractérisée par son image sur les x_i , donc $x \mapsto Ax$ idem.

 $(x_1, ..., x_n)$ est une base $\Leftrightarrow P = (x_1 | \cdots | x_n)$ inversible $\Leftrightarrow \det(P) \neq 0$. Donc si A est de dimension $n \times n$:

$$Ae_i = (AP^{-1})(Pe_i) = (AP^{-1})x_i$$

Donc $x \mapsto AP^{-1}x$ est caractérisée par son image sur les x_i , donc $x \mapsto Ax$ idem.

Plus précisément, si $Ae_i = \operatorname{Col}_i(A) = \sum_{j=1}^n \lambda_j e_j$, on a

$$PAP^{-1}x_i = PAe_i = P\left(\sum_j \lambda_j e_j\right) = \sum_j \lambda_j x_j.$$

Donc, si $e_i \leftrightarrow x_i$ alors $\operatorname{Col}_i(A) \leftrightarrow \operatorname{Col}_i(A) \ll \operatorname{dans} \operatorname{la} \operatorname{base} x_i \gg$.

Valeur propre, vecteur propre.

A matrice $n \times n$.

$$\lambda \in \mathbb{C}$$
 valeur propre $\Leftrightarrow \det(A - \lambda I_n) = 0$
$$\updownarrow$$

$$A - \lambda I_n \text{ non inversible.}$$

Valeur propre, vecteur propre.

A matrice $n \times n$.

$$\lambda \in \mathbb{C}$$
 valeur propre $\Leftrightarrow \det(A - \lambda I_n) = 0$
$$\updownarrow$$

$$A - \lambda I_n \text{ non inversible.}$$

$$x \in \mathbb{C}^n$$
 vecteur propre associé à $\lambda \Leftrightarrow Ax = \lambda x$
$$\updownarrow$$

$$x \in E_{\lambda} \Leftrightarrow x \in \ker(A - \lambda I_n)$$

Polynôme caractéristique

Polynôme caractéristique de A :

$$\chi_A(X) = \det(A - XI_n)$$

Polynôme caractéristique

Polynôme caractéristique de A :

$$\chi_A(X) = \det(A - XI_n)$$

$$\lambda \in \mathbb{C}$$
 valeur propre $\Leftrightarrow \det(A - \lambda I_n) = 0$
$$\updownarrow \qquad \qquad \updownarrow$$

$$\chi_A(\lambda) = 0 \Leftrightarrow A - \lambda I_n \text{ non inversible.}$$

Diagonalisation

Une matrice est diagonalisable si elle est diagonale dans une base de vecteurs propres.

$$PAP^{-1} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

Diagonalisation

Une matrice est diagonalisable si elle est diagonale dans une base de vecteurs propres.

$$PAP^{-1} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

Diagonalisabilité?

Arguments techniques pour la diagonalisation

--- Théorème de d'Alembert-Gauss :

$$\chi_A(X) = \sum_{i=0}^n a_i X^i = \prod_{\lambda} (X - \lambda)^{m_{\lambda}}$$

Arguments techniques pour la diagonalisation

--- Théorème de d'Alembert-Gauss :

$$\chi_A(X) = \sum_{i=0}^n a_i X^i = \prod_{\lambda} (X - \lambda)^{m_{\lambda}}$$

→ Théorème de Cayley-Hamilton :

$$\chi_A(A) = \sum_{i=0}^n a_i A^i = \prod_{\lambda} (A - \lambda I_n)^{m_{\lambda}} = 0$$

Arguments techniques pour la diagonalisation

--- Théorème de d'Alembert-Gauss :

$$\chi_A(X) = \sum_{i=0}^n a_i X^i = \prod_{\lambda} (X - \lambda)^{m_{\lambda}}$$

--- Théorème de Cayley-Hamilton :

$$\chi_A(A) = \sum_{i=0}^n a_i A^i = \prod_{\lambda} (A - \lambda I_n)^{m_{\lambda}} = 0$$

→ Lemme des noyaux :

$$\mathbb{R}^{n} = \ker(\chi_{A}(A)) = \bigoplus_{\lambda} \ker\left[(A - \lambda I)^{m_{\lambda}} \right] = \bigoplus_{\lambda} E_{\lambda}$$

Conditions suffisantes pour la diagonalisation

Conditions suffisantes

^{1.} Théorème spectral

Conditions suffisantes pour la diagonalisation

Conditions suffisantes

► Toutes les valeurs propres sont distinctes.

Conditions suffisantes pour la diagonalisation

Conditions suffisantes

- ► Toutes les valeurs propres sont distinctes.
- Matrice symétrique (avec des valeurs propres réelles ¹).
 Conditions équivalentes

Conditions suffisantes pour la diagonalisation

Conditions suffisantes

- ► Toutes les valeurs propres sont distinctes.
- Matrice symétrique (avec des valeurs propres réelles ¹).
 Conditions équivalentes
- Polynôme minimal scindé. (pas défini ici)

Conditions suffisantes pour la diagonalisation

Conditions suffisantes

- ► Toutes les valeurs propres sont distinctes.
- Matrice symétrique (avec des valeurs propres réelles ¹).
 Conditions équivalentes
- Polynôme minimal scindé. (pas défini ici)
- ▶ $\ker(A \lambda I)^{m_{\lambda}}$ est composé seulement de vecteurs propres.

Conditions suffisantes pour la diagonalisation

Conditions suffisantes

- ► Toutes les valeurs propres sont distinctes.
- Matrice symétrique (avec des valeurs propres réelles ¹).
 Conditions équivalentes
- Polynôme minimal scindé. (pas défini ici)
- ► $\ker(A \lambda I)^{m_{\lambda}}$ est composé seulement de vecteurs propres.

En pratique: Une matrice est *presque sûrement* diagonalisable, on utilise un algo déjà implémenté.

Contenu

```
Algèbre linéaire rapidement
Système linéaire

Gauss
Exemple
Décomposition LU

L'algèbre de « Algèbre linéaire
Raccourci : Un invariant par C
Dimension 2.
```

Diagonalisation

Bases

Valeur propre, vecteur propre

Théorèmes clés

Normes

Pseudo-diagonalisation (SVD)

Application

Norme d'un vecteur

Pour $x \in \mathbb{R}^n$.

90% du temps: Norme Euclidienne

$$||x||_2 = ||(x_1, \ldots, x_n)||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}.$$

Norme d'un vecteur

Pour $x \in \mathbb{R}^n$.

90% du temps: Norme Euclidienne

$$||x||_2 = ||(x_1, \ldots, x_n)||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}.$$

99% du temps: Norme L^p . Pour $p \in [1, \infty)$

$$||x||_p = ||(x_1, \ldots, x_n)||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}.$$

ou $p = \infty : ||x||_{\infty} = \max\{x_1, \dots, x_n\}.$

En image

► (Séparation) $||x|| = 0 \Leftrightarrow x = 0$,

- \blacktriangleright (Séparation) $||x|| = 0 \Leftrightarrow x = 0$,
- ► (Inégalité triangulaire) $|||x|| ||y|| \le ||x + y|| \le ||x|| + ||y||$,

- \blacktriangleright (Séparation) $||x|| = 0 \Leftrightarrow x = 0$,
- ► (Inégalité triangulaire) $|||x|| ||y||| \le ||x + y|| \le ||x|| + ||y||$,
- (Homogénéité) ||ax|| = |a|||x||,

- $(S\'{e}paration) ||x|| = 0 \Leftrightarrow x = 0,$
- ► (Inégalité triangulaire) $|||x|| ||y||| \le ||x + y|| \le ||x|| + ||y||$,
- (Homogénéité) ||ax|| = |a|||x||,
- ► (Positivité) $||x|| \ge 0$,

- \blacktriangleright (Séparation) $||x|| = 0 \Leftrightarrow x = 0$,
- ► (Inégalité triangulaire) $|||x|| ||y|| \le ||x + y|| \le ||x|| + ||y||$,
- (Homogénéité) ||ax|| = |a|||x||,
- ▶ (Positivité) $||x|| \ge 0$,
- ||-x|| = ||x||.

- $||x|| = 0 \Leftrightarrow x = 0,$
- ► (Inégalité triangulaire) $|||x|| ||y|| \le ||x + y|| \le ||x|| + ||y||$,
- (Homogénéité) ||ax|| = |a|||x||,
- ▶ (Positivité) $||x|| \ge 0$,
- ||-x|| = ||x||.
- Toutes les normes sont équivalentes.

Normes issue de: matrice = tableau de nombres = gros vecteur

Norme de Frobenius :

$$||A||_F = \sqrt{\sum_{i} \sum_{j} A_{i,j}^2} = \sqrt{\text{trace}(A^*A)}$$

Normes issue de : matrice = tableau de nombres = gros vecteur

Norme de Frobenius :

$$||A||_F = \sqrt{\sum_{i} \sum_{j} A_{i,j}^2} = \sqrt{\text{trace}(A^*A)}$$

Normes L^p :

$$||A||_{\infty} = \max_{i,j} |A_{i,j}|, \quad ||A||_{L^p} = \left(\sum_{i} \sum_{j} |A_{i,j}|^p\right)^{\frac{1}{p}}$$

Normes issue de : matrice = tableau de nombres = gros vecteur

Norme de Frobenius :

$$||A||_F = \sqrt{\sum_{i} \sum_{j} A_{i,j}^2} = \sqrt{\text{trace}(A^*A)}$$

Normes L^p :

$$||A||_{\infty} = \max_{i,j} |A_{i,j}|, \quad ||A||_{L^p} = \left(\sum_{i} \sum_{j} |A_{i,j}|^p\right)^{\frac{1}{p}}$$

Normes issues de l'identification : $x \in \mathbb{R}^m \longmapsto Ax \in \mathbb{R}^n$. Idée : «taille» de Ax VS «taille» de x?

Normes issue de : matrice = tableau de nombres = gros vecteur

Norme de Frobenius :

$$||A||_F = \sqrt{\sum_{i} \sum_{j} A_{i,j}^2} = \sqrt{\text{trace}(A^*A)}$$

Normes L^p :

$$||A||_{\infty} = \max_{i,j} |A_{i,j}|, \quad ||A||_{L^p} = \left(\sum_{i} \sum_{j} |A_{i,j}|^p\right)^{\frac{1}{p}}$$

Normes issues de l'identification : $x \in \mathbb{R}^m \longmapsto Ax \in \mathbb{R}^n$. Idée : «taille» de Ax VS «taille» de x? *i.e.*

$$||Ax||_{\mathbb{R}^n}$$
 VS $||x||_{\mathbb{R}^m}$?

Normes issue de : matrice = tableau de nombres = gros vecteur

Norme de Frobenius :

$$||A||_F = \sqrt{\sum_{i} \sum_{j} A_{i,j}^2} = \sqrt{\text{trace}(A^*A)}$$

Normes L^p :

$$||A||_{\infty} = \max_{i,j} |A_{i,j}|, \quad ||A||_{L^p} = \left(\sum_{i} \sum_{j} |A_{i,j}|^p\right)^{\frac{1}{p}}$$

Normes issues de l'identification : $x \in \mathbb{R}^m \longmapsto Ax \in \mathbb{R}^n$. Idée : «taille» de Ax VS «taille» de x? i.e.

$$||Ax||_{\mathbb{R}^n}$$
 VS $||x||_{\mathbb{R}^m}$?

$$\longrightarrow ||A|| = ||x \mapsto Ax|| = \sup_{||x||=1} ||Ax|| = \sup_{||x|| \le 1} \frac{||Ax||}{||x||}$$

Propriétés

► Subordonnées ou Frobenius ⇒ norme d'algèbre i.e.

$$\|AB\| \leq \|A\| \cdot \|B\|,$$

Propriétés

► Subordonnées ou Frobenius ⇒ norme d'algèbre i.e.

$$||AB|| \leq ||A|| \cdot ||B||,$$

Cas spéciaux des normes subordonnées, avec A diagonalisable :

$$||A||_1 = \max_j \sum_i |a_{i,j}|, \quad ||A||_{\infty} = \max_i \sum_j |a_{i,j}|, \quad ||A||_2 = |\lambda_{\max}(A)|$$

Propriétés

► Subordonnées ou Frobenius ⇒ norme d'algèbre i.e.

$$||AB|| \leq ||A|| \cdot ||B||,$$

Cas spéciaux des normes subordonnées, avec A diagonalisable :

$$||A||_1 = \max_j \sum_i |a_{i,j}|, \quad ||A||_{\infty} = \max_i \sum_j |a_{i,j}|, \quad ||A||_2 = |\lambda_{\max}(A)|$$

Pour Frobenius,

$$||A||_F = \sqrt{\operatorname{trace}(A'A)} = \sqrt{\lambda_1^2 + \dots + \lambda_n^2}$$

Contenu

Algèbre linéaire rapidement Système linéaire

Gauss

Exemple

Décomposition LU

L'algèbre de « Algèbre linéaire »

Raccourci: Un invariant par Gauss.

Dimension 2.

Dimension quelconque.

Diagonalisation

Bases

Valeur propre, vecteur propre

Théorèmes clés

Normes

Pseudo-diagonalisation (SVD)

Application

 \longrightarrow Bien :

- \longrightarrow Bien :
 - Pas d'hypothèses pour l'existence,

- \longrightarrow Bien :
 - ► Pas d'hypothèses pour l'existence,
 - Marche sur des matrices pas carrées,

\longrightarrow Bien :

- ► Pas d'hypothèses pour l'existence,
- Marche sur des matrices pas carrées,
- Même complexité (algo) en $O(n^3)$,

\longrightarrow Bien :

- ► Pas d'hypothèses pour l'existence,
- Marche sur des matrices pas carrées,
- Même complexité (algo) en $O(n^3)$,
- Pratique en pratique.

- \longrightarrow Bien :
 - ► Pas d'hypothèses pour l'existence,
 - Marche sur des matrices pas carrées,
 - Même complexité (algo) en $O(n^3)$,
 - Pratique en pratique.
- → Moins bien :

- \longrightarrow Bien :
 - ► Pas d'hypothèses pour l'existence,
 - Marche sur des matrices pas carrées,
 - Même complexité (algo) en $O(n^3)$,
 - Pratique en pratique.
- → Moins bien :
 - 2 changements de bases au lieu d'un,

\longrightarrow Bien :

- Pas d'hypothèses pour l'existence,
- Marche sur des matrices pas carrées,
- Même complexité (algo) en $O(n^3)$,
- Pratique en pratique.
- → Moins bien :
 - ▶ 2 changements de bases au lieu d'un,
 - ► Valeurs singulières au lieu de valeurs propres.

Décomposition polaire

Toute matrice M est le produit d'une matrice symétrique positive S et une matrice orthogonale O (*i.e.* $O^TO = I_n$). M = SO.

$$z \leftrightarrow re^{i\theta} \in \mathbb{C}.$$

Décomposition polaire

Toute matrice M est le produit d'une matrice symétrique positive S et une matrice orthogonale O (*i.e.* $O^TO = I_n$). M = SO.

$$z \leftrightarrow re^{i\theta} \in \mathbb{C}$$
.

Idée (cas M inversible)

 $M \longrightarrow M'M$ symétrique positive donc il existe une matrice orthogonale U telle que

$$M'M = U \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} U^{-1}$$

avec des $\lambda_i > 0$.

Décomposition polaire

Toute matrice M est le produit d'une matrice symétrique positive S et une matrice orthogonale O (*i.e.* $O^TO = I_n$). M = SO.

$$z \leftrightarrow re^{i\theta} \in \mathbb{C}$$
.

Idée (cas M inversible)

 $M \longrightarrow M'M$ symétrique positive donc il existe une matrice orthogonale U telle que

$$M'M = U \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} U^{-1}$$

avec des $\lambda_i > 0$.

$$S := U \begin{pmatrix} \sqrt{\lambda_1} & 0 \\ & \ddots & \\ 0 & \sqrt{\lambda_n} \end{pmatrix} U^{-1}$$

Idée (cas M inversible)

 $M \longrightarrow M'M$ symétrique positive donc il existe une matrice orthogonale U telle que

$$\mathcal{M}'\mathcal{M} = U \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} U^{-1}$$

avec des $\lambda_i > 0$.

$$S := U \begin{pmatrix} \sqrt{\lambda_1} & 0 \\ & \ddots & \\ 0 & \sqrt{\lambda_n} \end{pmatrix} U^{-1}$$

 \longrightarrow On vérifie que $O := S^{-1}M$ est orthogonale et M = SO.

Idée (cas M inversible)

 $M \longrightarrow M'M$ symétrique positive donc il existe une matrice orthogonale U telle que

$$\mathcal{M}'\mathcal{M} = U \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} U^{-1}$$

avec des $\lambda_i > 0$.

$$S := U \begin{pmatrix} \sqrt{\lambda_1} & 0 \\ & \ddots & \\ 0 & \sqrt{\lambda_n} \end{pmatrix} U^{-1}$$

- \longrightarrow On vérifie que $O := S^{-1}M$ est orthogonale et M = SO.
- \longrightarrow Si M n'est pas inversible : densité de $GL_n(\mathbb{C})$ dans $\mathcal{M}_n(\mathbb{C})$.

$$M \longrightarrow M = SO$$
 (Décomposition polaire)
 $\longrightarrow S = UDU^{-1}$ (Théorème spectral)
 $\longrightarrow M = UDU^{-1}O = (U) \times (D) \times (U^{-1}O)$.

$$M \longrightarrow M = SO$$
 (Décomposition polaire)
 $\longrightarrow S = UDU^{-1}$ (Théorème spectral)
 $\longrightarrow M = UDU^{-1}O = (U) \times (D) \times (U^{-1}O)$.

Remarque : *D* est positive.

$$M \longrightarrow M = SO$$
 (Décomposition polaire)
 $\longrightarrow S = UDU^{-1}$ (Théorème spectral)
 $\longrightarrow M = UDU^{-1}O = (U) \times (D) \times (U^{-1}O)$.

Remarque : *D* est positive.

En pratique : On utilise un algo optimisé déjà implémenté.

Complexité $O(n^3)$.

Contenu

```
Algèbre linéaire rapidement
Système linéaire
Gauss
Exemple
Décomposition LU
```

L'algebre de « Algebre lineaire »

Raccourci: Un invariant par Gauss.

Dimension 2.

Dimension quelconque.

Diagonalisation

Bases

Valeur propre, vecteur propre

Théorèmes clés

Normes

Pseudo-diagonalisation (SVD

Application

Application SVD.