$TD2: Espaces\ vectoriels$

EXERCICE 1:

- 1. Dans \mathbb{R}^3 , le vecteur (-6, -17, 17) est-il une combinaison linéaire des vecteurs ((2, 1, 3), (3, 5, -2))?
- 2. Dans \mathbb{R}^3 , le vecteur $\begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix}^t$ est-il une combinaison linéaire des vecteurs $\begin{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}^t, \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}^t, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}^t \end{pmatrix}$?

EXERCICE 2:

Montrer que les ensembles suivants sont des espaces vectoriels :

1.
$$F = \{(x+y, x-y, 2y)/(x, y) \in \mathbb{R}^2\}$$

2.
$$G = \{(x, y, z) \in \mathbb{R}^3 / x + 2y - 3z = 0\}$$

3.
$$H = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 0 \text{ et } 2x - y + z = 0\}$$

4.
$$I = \{(x, y, z) \in \mathbb{R}^3 / -x + 2y = y + 6z \text{ et } y + 3z = -2x\}$$

EXERCICE 3:

Pour chaque espace vectoriel, déterminer une famille génératrice :

1.
$$A = \{(x - y, x + y, 2x - 3y)/(x, y) \in \mathbb{R}^2\}$$

2.
$$B = \{(x, y, z) \in \mathbb{R}^3 / x = y = z\}$$

3.
$$C = \{(x, y, z, t) \in \mathbb{R}^4 / 2x - y + 2z - t = 0 \text{ et } y + z - t = 0\}$$

EXERCICE 4:

Montrer que la famille $\mathcal{B} = ((1,6,9),(1,4,6),(3,6,2))$ est une famille génératrice de \mathbb{R}^3 .

EXERCICE 5:

Les familles suivantes sont-elles libres ou liées?

1.
$$\mathcal{B}_1 = ((1, 1, 1, 1), (1, 2, 3, 4), (1, 2, 8, 16)) \text{ dans } \mathbb{R}^4.$$

2.
$$\mathcal{B}_2 = ((1, -1, 3), (2, 3, 4), (1, -6, 5)) \text{ dans } \mathbb{R}^3.$$

3.
$$\mathcal{B}_3 = ((1, -1, 3), (3, -1, 1), (1, 1, -1)) \text{ dans } \mathbb{R}^3.$$

EXERCICE 6:

Déterminer une base des espaces vectoriels suivants :

1.
$$C = \{(x - y + z, 3x + 6z, -2x + 4y)/(x, y, z) \in \mathbb{R}^3\}$$

2.
$$D = \{(x, y, z) \in \mathbb{R}^3 / 2x = y \text{ et } y = 3z\}$$

EXERCICE 7:

Déterminer une base et la dimension des sous-espaces vectoriels de \mathbb{R}^3 suivants :

1.
$$E_1 = \{(x, y, z) \in \mathbb{R}^3 / 2x + y - z = 0\}$$

2.
$$E_2 = \{(x, y, z) \in \mathbb{R}^3 / 2x = 0 \text{ et } 3y - z = 0\}$$

3.
$$E_3 = \{(x, y, z) \in \mathbb{R}^3 / x - z = 0 \text{ et } 3y - z = 0\}$$

4.
$$E_4 = \{(x, y, z) \in \mathbb{R}^3 / -x - y + z = 0 \text{ et } 2x + y - 5z = 0\}$$

5.
$$E_5 = \{(x, y, z) \in \mathbb{R}^3 / 2x - 3z = 4y - 5x\}$$

6.
$$E_6 = \{(x, y, z) \in \mathbb{R}^3 / -x + 2y = y + 6z = 3z - 2x\}$$

EXERCICE 8:

Déterminer si la famille donnée est une base de l'espace donné :

1.
$$\mathcal{B}_1 = ((1,0,-2,5),(7,-4,3,1),(0,1,-1,0),(1,-3,0,2))$$
 dans \mathbb{R}^4

2.
$$\mathcal{B}_2 = ((1,2,3),(4,5,6)) \text{ dans } \mathbb{R}^3$$

EXERCICE 9:

Dans
$$\mathbb{R}^3$$
 on considère les vecteurs : $u = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}^t$, $v = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}^t$, et $w = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}^t$.

- 1. Montrer que (u, v, w) est une base de \mathbb{R}^3 .
- 2. Quelles sont, dans cette base, les coordonnées de $\begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix}^t$?

EXERCICE 10:

Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 .

- 1. Montrer que la famille (u, v, w) = ((1, 1, 1), (1, -1, 0), (-1, 1, -1)) est une base de \mathbb{R}^3 .
- 2. Déterminer les coordonnées de e_1 , e_2 , e_3 dans cette nouvelle base.