LAPORAN KUIS 4

Yasmin Sekar Arum (13218063)

Selasa, 11 Februari 2020

EL 2008 – Pemecahan Masalah dengan C Sekolah Teknik Elektro dan Informatika ITB

1. PERMASALAHAN

Diberikan rangkaian sebagai berikut:

Sumber gambar : Sadiku, Matthew N. , 2013, Fundamental of Electrical Circuits

Dengan keterangan sebagai berikut:

$$R = 10k \text{ ohm}$$

$$C = 1uF$$

$$V = 5V$$

Rangkain diatas merupakan rangakan RC orde 1, dengan anggapan capasitor kosong pada awalnya, dimint untuk menampilan grafik pengisian kapastor tiap waktunya yang disimpan dalam file ekstensi .csv.

2. PENURUNAN RUMUS

Asumsi awal yang digunakan adalah kapasitor berada dalam keadaan kosong, sehingga

$$V(0^{-}) = V(0^{+}) = V_{0}$$

Saat arus pertama kali mucul pada rangkaian, dengan menggunakan KCL didapatkan :

$$C\frac{dv}{dt} + \frac{v - Vs}{R} = 0$$

$$\frac{dv}{dt} + \frac{v}{RC} = \frac{Vs}{RC}$$

Dalam penurunan rumus dilakukan pendekatan terhadap nilai dt dan dv menjadi Δt dan Δd .

$$\frac{\Delta v}{\Delta t} + \frac{v}{RC} = \frac{Vs}{RC}$$

$$\frac{v - v'}{t - t'} + \frac{v}{RC} = \frac{Vs}{RC}$$

$$\frac{v}{t-t'} + \frac{v}{RC} = \frac{Vs}{RC} + \frac{v'}{t-t'}$$

$$\left(\frac{1}{t-t'} + \frac{1}{RC}\right)v = \frac{Vs}{RC} + \frac{v'}{t-t'}$$

Sehingga didapatkan persamaan akhir yang digunakan sebagai berikut :

$$v = \frac{\frac{Vs}{RC} + \frac{v'}{t - t'}}{\left(\frac{1}{t - t'} + \frac{1}{RC}\right)}$$

Keterangan:

Vs = nilai tegangan sumber

R = nilai hambatan

C = nilai kapasitansi

t-t' = sesuai keterangan nilainya 0.001 s

V' = nilai tegangan sebleumnya.

Untuk menentukan nilai maksimum digunakan penurunan dari persamaan :

$$\frac{\Delta v}{\Delta t} + \frac{v}{RC} = \frac{Vs}{RC}$$

$$\frac{\Delta v}{\Delta t} = \frac{Vs}{RC} - \frac{v}{RC}$$

$$\Delta t = \frac{\Delta vRC}{Vs - V}$$

Untuk mendekati nilai maksimum sampai keadaan steady state, maka nilai V yang digunakan 0.9 dari nilai Vs (agar nilainya mendekati nol). Nilai Δv dibuat maksimum menjadi Vs. Sehinga didapatkan nilai t maksimum sampai keadaan steady state: Yasmin Sekar Arum

 $tmaks = \frac{VsRC}{Vs - (0.9 Vs)}$

FLOWCHART

Keterangan Variable: V2 = Kecepatan untk t(n-0.001) t = waktu R = niai hambatan (ohm) C = nilai Kapasitor (Farad) V = perhitungan kecepatan saat t tmaks = perhitungan waktu maksimum

Start

4. HASIL OUTPUT

Hasil keluaran berupa data pada file test.csv, dan bila dibuat gravik sebaai berikut.

	А	В
1	0.454545	0
2	0.867769	0.001
3	1.243426	0.002
4	1.584933	0.003
5	1.895393	0.004
6	2.17763	0.005
7	2.434209	0.006
8	2.667463	0.007
9	2.879512	0.008
10	3.072284	0.009
11	3.247531	0.01
12	3.406846	0.011
13	3.551678	0.012
14	3.683344	0.013
15	3.80304	0.014
16	3.911854	0.015
17	4.010777	0.016