Major Wheater Events in the US: Period 1950 - 2011

Peer-graded Assignment: Course Project 2

Carlos Sanchez

15 February 2021

#Synopsis

The following study analyze data from the U.S. National Oceanic and Atmospheric Administration's (NOAA) storm database from different points of view. This database includes information about:

- a. Storms and other significant weather phenomena that have provoked injuries or fatalities to people and crop or property damages
- b. Rare weather phenomena
- c. Other meteorological events that occur combined with another event

The current study includes the data collected between the years 1950 and 2011. Data from last years are more complete and with better quality.

#Data Processing

First we load the data:

```
zipFile <- "StormData.bz2"

if(!file.exists(zipFile)){
fileUrl <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
download.file(fileUrl, destfile = "StormData.bz2")
}

StormData <- read.csv("StormData.bz2")</pre>
```

Once loaded, we analyze the dataset dimensions and the different variables we have. We can see that we have 902297 rows and 37 variables. We can also see the first rows of the dataset:

```
dim(StormData)
```

```
## [1] 902297 37
head(StormData)
```

##		STATE		BGN_DATE	BGN_TIME	TIME_ZONE	COUNTY	COUNTYNAME	STATE	EVTYPE
##	1	1	4/18/1950	0:00:00	0130	CST	97	MOBILE	AL	TORNADO
##	2	1	4/18/1950	0:00:00	0145	CST	3	BALDWIN	AL	TORNADO
##	3	1	2/20/1951	0:00:00	1600	CST	57	FAYETTE	AL	TORNADO
##	4	1	6/8/1951	0:00:00	0900	CST	89	MADISON	AL	TORNADO
##	5	1	11/15/1951	0:00:00	1500	CST	43	CULLMAN	AL	TORNADO
##	6	1	11/15/1951	0:00:00	2000	CST	77	${\tt LAUDERDALE}$	AL	TORNADO
##		BGN_RANG	GE BGN_AZI	BGN_LOCAT	TI END_DAT	E END_TIME	COUNTY	LEND COUNTY	YENDN	
##	1		0					0	NA	
##	2		0					0	NA	
##	3		0					0	NA	

```
## 4
              0
                                                                    0
                                                                               NA
## 5
              0
                                                                    0
                                                                               NΑ
## 6
              0
                                                                    0
                                                                               NA
##
     END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES INJURIES PROPDMG
## 1
              0
                                        14.0
                                                100 3
                                                         0
                                                                     0
                                                                              15
                                                                                     25.0
## 2
              0
                                         2.0
                                                150 2
                                                         0
                                                                     0
                                                                               0
                                                                                      2.5
## 3
                                                123 2
                                                                     0
                                                                               2
                                                                                     25.0
              0
                                         0.1
                                                         0
                                                                               2
                                                                                      2.5
## 4
              0
                                         0.0
                                                100 2
                                                         0
                                                                     0
## 5
              0
                                         0.0
                                                150 2
                                                         0
                                                                     0
                                                                               2
                                                                                      2.5
                                                         0
                                                                     0
                                                                               6
                                                                                      2.5
## 6
              Λ
                                         1.5
                                                177 2
     PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES LATITUDE LONGITUDE
## 1
                                                                                   8812
               K
                        0
                                                                        3040
## 2
               K
                        0
                                                                        3042
                                                                                   8755
               K
                        0
                                                                        3340
                                                                                   8742
## 3
## 4
               K
                        0
                                                                        3458
                                                                                   8626
## 5
               K
                        0
                                                                        3412
                                                                                   8642
## 6
               K
                        0
                                                                        3450
                                                                                   8748
     LATITUDE E LONGITUDE REMARKS REFNUM
## 1
            3051
                        8806
                                             1
                                             2
## 2
               0
                            0
## 3
               0
                            0
                                             3
## 4
               0
                            0
                                             4
## 5
               0
                            0
                                             5
## 6
               0
                            0
                                             6
```

#Results

##Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?

To answer this question, we will group the data by EVTYPE variables and will summarize the total number of Fatalities and Injuries that each event have provoked.

```
StormData_death_injured <- StormData %>% group_by(EVTYPE) %>% summarise(TotalFatalities = sum(FATALITIE
# StormData_death_injured <- subset(StormData_death_injured, TotalFatalities>100 | TotalInjuries > 1000
colors <- c("Total Injuries" = "blue", "Total Fatalities" = "red")</pre>
  # ggplot(StormData_death_injured) +
  \# geom\_point(aes(reorder(EVTYPE, \neg TotalFatalities), TotalFatalities, color = "Total Fatalities")) +
      geom_point(aes(EVTYPE, TotalInjuries, color = "Total Injuries")) +
  #
      theme(axis.text.x = element\_text(angle = 45, vjust = 1, hjust = 1, size = 6),
            legend.position = "right") +
  #
  #
      labs(x = "Event Type",
           y = "Total Events",
  #
           color = "") +
  #
      scale color manual (values = colors)
   ggplot(head(StormData_death_injured,10)) +
  geom_point(aes(reorder(EVTYPE, -TotalFatalities), TotalFatalities, color = "Total Fatalities")) +
    geom_point(aes(EVTYPE, TotalInjuries, color = "Total Injuries")) +
    theme(axis.text.x = element_text(angle= 45, vjust = 1, hjust = 1, size = 6),
          legend.position = "right") +
   labs(x = "Event Type",
         y = "Total Events",
         color = "") +
    scale color manual(values = colors)
```


Figure 1: Total Fatalities and Injuries by Event

```
# ggplot(StormData_death_injured) +
# geom_point(aes(reorder(EVTYPE, -TotalFatalities), log10(TotalFatalities), color = "Total Fatalities
# geom_point(aes(EVTYPE, log10(TotalInjuries), color = "Total Injuries")) +
# theme(axis.text.x = element_text(angle= 45, vjust = 1, hjust = 1, size = 6),
# legend.position = "right") +
# labs(x = "Event Type",
# y = "Total Events",
color = "") +
# scale_color_manual(values = colors)
```

If we display the top 10 Events in total Fatalities and Injuries in a table:

knitr::kable(head(StormData_death_injured, 10))

EVTYPE	TotalFatalities	TotalInjuries
TORNADO	5633	91346
EXCESSIVE HEAT	1903	6525
FLASH FLOOD	978	1777
HEAT	937	2100
LIGHTNING	816	5230
TSTM WIND	504	6957
FLOOD	470	6789
RIP CURRENT	368	232
HIGH WIND	248	1137
AVALANCHE	224	170

##Across the United States, which types of events have the greatest economic consequences?

```
# StormData <- select(StormData, BGN_DATE, EVTYPE, PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP)
convert_letters <- function(x){ifelse(toupper(x)=="H", 100,</pre>
                                   ifelse(toupper(x)=="K", 1000,
                                           ifelse(toupper(x)=="M", 1e6,
                                                  ifelse(toupper(x)=="B", 1e9, 1))))}
StormData$PROPDMGEXP_num <- convert_letters(StormData$PROPDMGEXP)</pre>
StormData$CROPDMGEXP num <- convert letters(StormData$CROPDMGEXP)
StormData_Property_Damage <- StormData %>%
  filter(PROPDMG>0 | CROPDMG>0) %>%
  select(BGN_DATE, EVTYPE, PROPDMG, PROPDMGEXP_num, CROPDMG, CROPDMGEXP_num) %>%
  group_by(EVTYPE) %>%
  mutate(Total_Damage = PROPDMG*PROPDMGEXP_num + CROPDMG*CROPDMGEXP_num) %>%
  summarise(Total_Damage = sum(Total_Damage)) %>%
  arrange(desc(Total_Damage))
  ggplot(head(StormData_Property_Damage, 10)) +
  geom_col(aes(reorder(EVTYPE, -Total_Damage), Total_Damage, fill = Total_Damage)) +
   theme(axis.text.x = element_text(angle= 45, vjust = 1, hjust = 1, size = 6),
          legend.position = "right") +
   labs(x = "Event Type",
         y = "Total Damage",
         legend_title="",
```


Figure 2: Total Damage of Crop and Property by Cause