The Metro Interstate Traffic Volume Prediction

Instructor: Dr. Reza Jafari

By: Madhuri Yadav

Problem Statement

To Predict the The Metro Interstate Traffic Volume Prediction using Time Series Prediction models.

- 1. Increase the efficiency and life of roads
- 2. Reduces traffic volume at a particular section
- 3. Provide better means for development of infrastructures
- 4. Provide better means to utilize other roads in case of special events in the city
- 5. Provide estimate of no vehicles against no of persons
- 6. During the given pandemic situations where social distancing has higher priority.

Applications:

- Source: <u>UCI Machine Learning Repository</u>
- Shape: 433845 rows × 9 columns
- Important features:
 - holiday
 - o temp
 - rain_1h
 - o snow_1h
 - clouds_all
 - weather_main
 - weather_description
 - date_time
 - traffic_volume

Dataset

The Metro Interstate Traffic Volume

- 1. Replacing None values with the nan.
- 2. "date_time" column is converted to datetime format
- 3. Aggregation of the data based on the date
- 4. Holiday data column is then converted to two values Yes and No.
- 5. Drizzle, Haze, Thunderstorm, Fog are changed to Rain and Mist accordingly foe weather column
- 6. Dataset Shape: 1067, 7

Data Preprocessing

EDA 1

Distribution of target variable.

EDA 2

EDA 3

Train-Test Split

- Shape of the entire dataset: (1067, 7)
- Shape of the train set: (853, 7)
- Shape of the test set: (214, 7)

ADF test for traffic_volume

ADF Statistic: -4.711791

p-value: 0.000080

Critical Values:

1%: -3.437

5%: -2.864

10%: -2.568

 P-value is 0.000078 i.e. less than 0.05(95% or more confidence interval), hence we reject Null Hypothesis and conclude that the dependent variable is stationary.

Stationarity

Time series Decomposition:

The strength of trend for this data set is: 0.54
The strength of seasonality for this data set is: 0.83

The summary of the model after features elimination.

OLS Regression Results

Dep. Variable: traffic volume R-squared: 0.089

Dep. Variable: traffic volume Model: OLS Adj. R-squared: 0.080 Method: **Least Squares** F-statistic: 9.443 Date: Wed. 16 Dec 2020 Prob (F-statistic): 6.63e-10 Time: 19:47:31 Log-Likelihood: -4506.3 No. Observations: AIC: 9027. Df Residuals: 577 BIC: 9057.

Df Model:

Covariance Type: nonrobust

coef etd err t Politi [0.025 0.075]

	coei	Sid ell	ι	- / 4	[0.025	0.975]	
const	1717.216	 1	67.487	25.445	0.000	1584.665	1849.767
holiday_No	1161.698	1	53.340	21.779	0.000 1	056.934	1266.462
holiday_Yes	555.5181	89.513	6.206	0.000	379.708	731.329	
temp	273.4530	110.391	2.477	0.014	56.636	490.270	
weather_main_Clea	ır	326.1443	83.552	3.903	0.000	162.041	490.248
weather_main_Clou	ids 362.0	308	92.468	3.915	0.000	180.415	543.646
weather_main_Mist	241.5281	110.285	2.190	0.029	24.919	458.137	
weather_main_Rain		174.5027	101.121	1.726	0.085	-24.108	373.113
==========	======				======	=======	

 Omnibus:
 39.070
 Durbin-Watson:
 1.296

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 45.334

 Skew:
 -0.673
 Prob(JB):
 1.43e-10

Kurtosis: -0.073 Prob(JB): 1.43e-10

Kurtosis: 2.772 Cond. No. 8.19e+15

Feature selection:

"snow_1h", "rain_1h", "clouds_all",

"weather_main_Snow"

The Coefficients for the LSE model are:

33017.199475 const holiday No -13654.444346 holiday_Yes -8688.635940 273.452969 temp weather_main_Clear 326.144272 weather main Clouds 362.030830 weather_main_Mist 241.528093 weather_main_Rain 174.502723

Name: traffic_volume, dtype: float64

-2451489.231002282 -6076.655145079008

Multiple Linear Regression

ARMA Model

[(2,0),(2,2),(4,0),(4,2),(4,7),(7,11), (8,1),(8,8),(9,0),(9,5),(9,7),(10,1), (10,3),(11,2)]

Levenberg Marquardt Algorithm:

The Model Summary is as Follows: ARMA (3,6)

Final parameters are: [-2.25 2.25 -1. -1.81 1.41 0.03 -0.69 0.38 -0.1]

[-2.2475869708739005, 2.2484706904368155, -1.0008095440306755, 0, 0, 0]

[-1.8107999196270776, 1.4134001746938882, 0.02646795751095804, -0.6864335286859218, 0.3841354061559829, -0.09606344681977062]

Confidence Interval are:

$$-0.995 < a3 < -1.007$$

$$-1.727 < b1 < -1.894$$

$$-0.488 < b4 < -0.885$$

Continued....

Best Model: SARIMAX

Best model: ARIMA(0,0,3)(0,1,1)[7] intercept

Total fit time: 36.500 seconds

Summary of all the Models

Methods/Values	Q-Value	R-value	MSE Prediction	MSE forecast	Mean Prediction Err	Mean Forecast Err	Var of Prediction Err	Var of Forecast Err
Average	893.88	1	327442.22	282937.54	58.03	55.48	324074.73	279859.84
Naive	644.57	1	393938.74	1191763.08	-1.98	954.94	393934.82	279859.84
Drift	641.83	0.99	398446.03	1497497.77	2.92	1101.43	398437.49	284349.23
SES	993.41	1	377483.02	492899.34	-2.27	461.56	377477.89	279859.84
Holt-Linear	937.24	1	316945.19	280808.81	8.99	30.81	316864.41	279859.84
Holt-Winter	84.35	0.41	124792.18	106484.61	-5.19	-117.35	124765.22	92714.55
SARIMA	296.25	0.56	222608.94	88359.25	93.23	62.67	213917.96	84431.72
ARMA(3,6)	62.5	0.68	184160.18	143525.41	8.68	8.95	184084.86	143445.32
ARMA(5,5)	14.32	0.43	148895.8	98287.35	5.85	-23.9	148861.59	97716.32
ARMA(5,7)	11.85	0.46	143495.5	95854.1	6.97	5.9	143446.93	95819.24

Conclusion & Challenges

- Since our data has strong seasonality of 0.83 as well as performed SARIMAX model gives the best results of all the other models we choose SARIMAX as our best model with MSE = 88359.25
- We could also perform further analysis of our model and implement SARIMA model to get the better results for prediction of our dataset. Also future work would include to work with prediction and forecast function for SARIMA.