Matrices : quelques révisions

Diagonalisation assistée par Python

On dit qu'une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est **diagonalisable** si il existe $P \in GL_n(\mathbb{R})$ et $D \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonale telles que : $M = PDP^{-1}$, ou encore $P^{-1}MP = D$.

On effectuera les importations suivantes :

import numpy as np ; import numpy.linalg as al

Exercice 1

Partie I - Diagonalisation d'une matrice avec Python

On considère $M=\begin{pmatrix}4&2&-2\\5&1&-5\\3&-3&-1\end{pmatrix}$. Définir cette matrice M en Python :

M =

Etape 1: Recherche des "valeurs propres".

On cherche les valeurs de $\lambda \in \mathbb{R}$ telles que la matrice $M - \lambda I_3$ soit non-inversible.

Vérifier, à l'aide de Python, que les valeurs $\lambda = 2, 6, -4$ conviennent.

On calculera pour cela le rang de 3 matrices appropriées, à l'aide de l'instruction al.matrix_rank(A).

Etape 2 : Recherche des "vecteurs propres" associés.

Si la matrice $M - \lambda I_3$ est non-inversible, on peut alors trouver une matrice colonne X non-nulle telle que $(M - \lambda I_3)X = 0$, c'est à dire $MX = \lambda X$.

• Pour la valeur $\lambda = 2$, déterminer par un calcul une telle matrice colonne X.

• Pour la valeur $\lambda=6$, vérifier avec Python que la colonne $Y=\begin{pmatrix}1\\1\\0\end{pmatrix}$ convient, c'est à dire que $MY=\lambda Y$.

• Pour la valeur $\lambda = -4$, vérifier avec Python que la colonne $Z = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ convient.

Etape 3: Construction de la matrice inversible P.

On définit
$$P = \begin{pmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \end{pmatrix}$$
 la matrice obtenue en concaténant les colonnes

X, Y et Z obtenues précédemment.

A l'aide de Python, vérifier que P est inversible et afficher l'inverse P^{-1} .

Calculer, à l'aide de Python, la matrice $D=P^{-1}MP$ et constater la diagonale.

D =
print(D)

Finalement, on a obtenu $M = PDP^{-1}$ avec $D = \begin{pmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{pmatrix}$.

Exercice 2

Partie II - Interprétation mathématique

On considère $f \in \mathcal{L}(\mathbb{R}^3)$ l'endomorphisme canoniquement associé à la matrice M. Autrement dit, en notant \mathcal{B} la base canonique de \mathbb{R}^3 , on a $Mat_{\mathcal{B}}(f) = M$.

- 1. On admet que les seuls λ tels que $M \lambda I_3$ est non-inversible sont $\lambda = 2, 6, -4$. Que dire des ensembles $Ker(f \lambda Id)$, en fonction de la valeur de $\lambda \in \mathbb{R}$?
- 2. Donner (au vu de l'étude en Python précédente), trois vecteurs non-nuls $u \in Ker(f-2Id), \ v \in Ker(f-6Id), \ w \in Ker(f+4Id).$
- 3. Montrer que $\mathcal{B}' = (u, v, w)$ est une base de \mathbb{R}^3 , puis déterminer $Mat_{\mathcal{B}'}(f)$.
- 4. Donner la matrice de passage de \mathcal{B} à \mathcal{B}' (notée $P_{\mathcal{B},\mathcal{B}'}$)

Moralité: "Diagonaliser" la matrice M revient exactement à déterminer une base \mathcal{B}' où la matrice de l'endomorphisme f est diagonale. La matrice P dans l'égalité $D = P^{-1}MP$ est en fait la matrice de passage de \mathcal{B} à \mathcal{B}' .