3-parameter SHAM model vs 2-parameter model

Jiaxi Yu

24.08.2020

Comparison: Vpeak from the halo catalogue

- ➤ No smearing (master thesis):
 - ➤ Vpeak scattering (sigma) and largest-end truncation (Vcut)
 - ➤ Select the N-th largest value
 - ➤ SHAM 2PCF calculation

- > Vz smearing (3-parameter model):
 - > Vpeak scattering (sigma) and largest-end truncation (Vceil)
 - > Select the N-th largest value
 - **Gaussian smearing Vz (Vsmear) for the selected halos**
 - ➤ SHAM 2PCF calculation

ELG NGC 2PCF

σ	V _{ceil} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ ²
$0.513 \substack{+0.433 \\ -0.081}$	268^{+124}_{-30}	-	52.296	1.376
$0.805^{+0.536}_{-0.163}$	345 +151 -46	5^{+29}_{-1}	54.870	1.482

ELG NGC Prob. Distri. Func.

σ	V _{ceil} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ^2
$0.513^{+0.433}_{-0.081}$	268^{+124}_{-30}	-	52.296	1.376
$0.805^{+0.536}_{-0.163}$	345^{+151}_{-46}	5^{+29}_{-1}	54.870	1.482

ELG NGC Posterior

σ	V _{ceil} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ ²
$0.513^{+0.433}_{-0.081}$	268^{+124}_{-30}	-	52.296	1.376
$0.805^{+0.536}_{-0.163}$	345 +151 -46	5^{+29}_{-1}	54.870	1.482

ELG SGC 2PCF

σ	V _{ceil} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ ²
$0.790^{+0.200}_{-0.285}$	342^{+58}_{-61}	-	51.526	1.356
$0.925^{+0.422}_{-0.208}$	385 +118 -73	8^{+20}_{-6}	53.057	1.434

ELG SGC Prob. Distri. Func.

σ	V _{ceil} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ ²
$0.790^{+0.200}_{-0.285}$	342^{+58}_{-61}	-	51.526	1.356
$0.925^{+0.422}_{-0.208}$	385^{+118}_{-73}	8^{+20}_{-6}	53.057	1.434

ELG SGC Posterior

σ	V _{ceil} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ ²
$0.790^{+0.200}_{-0.285}$	342^{+58}_{-61}	-	51.526	1.356
$0.925^{+0.422}_{-0.208}$	385^{+118}_{-73}	8^{+20}_{-6}	53.057	1.434

LRG NGC 2PCF

σ	V _{ceil} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ ²
$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	-	72.785	1.915
$1.178^{+0.127}_{-0.195}$	1627^{+144}_{-248}	106 +8	34.514	0.933

LRG NGC Prob. Distri. Func.

σ	V _{ceil} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ ²
$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	-	72.785	1.915
$1.178^{+0.127}_{-0.195}$	1627^{+144}_{-248}	106 +8	34.514	0.933

LRG NGC Posterior

σ	V _{ceil} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ ²
$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	-	72.785	1.915
$1.178^{+0.127}_{-0.195}$	$1627 {}^{+144}_{-248}$	106 +8 -9	34.514	0.933

LRG SGC 2PCF

σ	V _{ceil} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ ²
$0.710^{+0.144}_{-0.029}$	994^{+167}_{-12}	-	54.593	1.437
$1.067^{+0.349}_{-0.230}$	1397^{+395}_{-282}	117 +5	29.584	0.800

LRG SGC Prob. Distri. Func.

σ	V _{ceil} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ ²
$0.710^{+0.144}_{-0.029}$	994^{+167}_{-12}	-	54.593	1.437
$1.067^{+0.349}_{-0.230}$	$1397 {}^{+395}_{-282}$	117 +5	29.584	0.800

LRG SGC Posterior

σ	V _{ceil} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ^2
$0.710^{+0.144}_{-0.029}$	994^{+167}_{-12}	-	54.593	1.437
$1.067^{+0.349}_{-0.230}$	$1397 {}^{+395}_{-282}$	117 +5	29.584	0.800

Conclusions:

no smear	σ	V _{cut} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ ²
ELG NGC	$0.513^{+0.433}_{-0.081}$	268^{+124}_{-30}	-	52.296	1.376
ELG SGC	$0.790^{+0.200}_{-0.285}$	342^{+58}_{-61}	-	51.526	1.356
LRG NGC	$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	-	72.785	1.915
LRG SGC	$0.710^{+0.144}_{-0.029}$	994^{+167}_{-12}	-	54.593	1.437
Vz smeared	σ	V _{ceil} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ ²
Vz smeared ELG NGC	σ 0.805 $^{+0.536}_{-0.163}$	V _{ceil} (km/s) 345 ⁺¹⁵¹ ₋₄₆	V_{smear} (km/s) 5^{+29}_{-1}	χ² 54.870	Reduced χ ² 1.482
	·				- 7
ELG NGC	$0.805^{+0.536}_{-0.163}$	345 +151 -46	5^{+29}_{-1}	54.870	1.482

- ✓ Vz smearing works for SHAM **LRG**, improve the quadrupoles
- ✓ but has risk of **overfitting** according to the reduced χ^2 value

Conclusions:

no smear	σ	V _{cut} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ ²
ELG NGC	$0.513^{+0.433}_{-0.081}$	268^{+124}_{-30}	-	52.296	1.376
ELG SGC	$0.790^{+0.200}_{-0.285}$	342^{+58}_{-61}	-	51.526	1.356
LRG NGC	$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	-	72.785	1.915
LRG SGC	$0.710^{+0.144}_{-0.029}$	994^{+167}_{-12}	-	54.593	1.437
Vz smeared	σ	V _{ceil} (km/s)	V _{smear} (km/s)	χ^2	Reduced χ ²
Vz smeared ELG NGC	σ 0.805 $^{+0.536}_{-0.163}$	V _{ceil} (km/s) 345 +151 -46	V _{smear} (km/s) 5^{+29}_{-1}	χ² 54.870	Reduced χ ² 1.482
	·			- ,,	
ELG NGC	$0.805^{+0.536}_{-0.163}$	345 +151 -46	5^{+29}_{-1}	54.870	1.482

- ? Vz smearing doesn't work for SHAM **ELG**, and even **gets worse**
- ✓ ? possible explanation: erroneously introduce the z uncertainty, because their real z uncertainty is very small

Outlooks:

- ✓ Reliable eBOSS LRG & ELG SHAM models
- Robust SHAM models
 - ✓ More averaged realisations: 60
 - ✓ Implement SHAM models with σ_{pec}
 - ☐ C-SHAM scripts (trying to have a functions outline)
 - SHAM LRG and ELG in the same redshift bins
- Multi-tracer SHAM
 - ☐ Generate multiple tracers simultaneously
 - ☐ Cross-Correlation Studies

Difficulties:

- ☐ Generate multiple tracers simultaneously
 - ☐ Single-tracer tests completed in different redshift
 - ☐ LRG and ELG has different sigma to scattering Vpeak
 - □ Vz smearing only works for LRG, but not ELG

Prerequisite tests for multi-tracer SHAM:

- LRG and ELG single-tracer tests in the same redshift bins: is it necessary?
- ☐ The simplest multi-tracer implementation(5 parameters in total):
 - □ scattering & cut & select & vz smearing for SHAM LRG
 - ☐ remove LRG halos
 - □ scattering & cut & select for SHAM ELG from the remaining halos

NGC Prob. Distri. Func.

SGC Prob. Distri. Func.

Prerequisite tests for multi-tracer SHAM:

- ☐ The **simplest multi-tracer** implementation:
 - ☐ LRG first or ELG first may need a physical explanation
 - ☐ Seen from the single-tracer probability distributions, LRG and ELG only occupies a small amount of halos, so the probability for two types of galaxy residing in one halo is small, i.e., we don't have to worry about the overlapped LRG and ELG probability distribution.

Thank you!