Design of IIR Digital Filters part III

Dr K. Mohanaprasad Associate Professor School of Electronics Engineering (SENSE) VIT Chennai

Problem 2

- Determine the system function H(z) of the lowest-order Chebyshev I analog low pass filter that meets the following specifications:
 - − a. 3 dB ripple in Passband $0 \le |\omega| \le 0.3\pi$
 - b. Atleast 20 dB attenuation in the Stopband $0.6\pi \le |\omega| \ge \pi$
 - c. Use the bilinear transformation

The specified Magnitude frequency response of a Chebyshev I filter is shown above

Prewarping

• Prewarp the band-edge frequencies ω_P = $0.3\pi~rad$ and ω_S = $0.6\pi~rad$ using T=1 sec to get

$$\Omega_P' = \frac{2}{T} \tan\left(\frac{\omega_P}{2}\right) = \frac{2}{1} \tan\left(\frac{0.3\pi}{2}\right) = 1.019$$

$$\Omega_S' = \frac{2}{T} \tan\left(\frac{\omega_S}{2}\right) = \frac{2}{1} \tan\left(\frac{0.6\pi}{2}\right) = 2.75$$

Choose a lowest-order Chebyshev I analog low pass filter.

Let us design a lowpass filter to the meet the following specification.

- Step 2:
- The pass band edge frequency Ω_p of the normalized low pass filter is 1 rad/sec
- Let us the backward design equation to find the stopband edge frequency Ω_s of the normalized low pass filter $\Omega_s = \frac{\Omega'_s}{\Omega'_P} = \frac{2.75}{1.019} = 2.69872 \ rad/sec$.
- This backward equation is for Low pass to Lowpass transformation

Normalized Magnitude frequency response of a Chebyshev I Low pass filter for N being odd

- If the given filter is high pass then the backward design equation to find the stopband edge frequency Ω_s is $\frac{\Omega_P}{\Omega_S}$.
- If the given filter is Bandpass then the backward design equation to find the stopband edge frequency

$$\Omega_s = Min\{|A|, |B|\}$$
. Where $A = \frac{-\Omega_1^2 + \Omega_l \Omega_u}{\Omega_1(\Omega_u - \Omega_l)}$, $B = \frac{\Omega_2^2 - \Omega_l \Omega_u}{\Omega_2(\Omega_u - \Omega_l)}$

 If the given filter is Bandstop then the backward design equation to find the stopband edge frequency

$$\Omega_s = Min\{|A|, |B|\}$$
. Where $A = \frac{\Omega_1(\Omega_u - \Omega_l)}{-\Omega_1^2 + \Omega_l\Omega_u}$, $B = \frac{\Omega_2(\Omega_u - \Omega_l)}{\Omega_2^2 - \Omega_l\Omega_u}$

• The normalized passband edge frequency Ω_P is always equal to 1 rad/sec irrespective of the given filter.

Step 3

$$K_{P} = 20 \log \left(\frac{1}{\sqrt{1 + \epsilon^{2}}}\right)$$

$$-3 = 20 \log \left(\frac{1}{\sqrt{1 + \epsilon^{2}}}\right)$$

$$\epsilon = 0.997628337608751$$

$$\delta_{P} = 1 - \frac{1}{\sqrt{1 + \epsilon^{2}}} = 0.2920541$$

$$K_{S} = -20 dB$$

$$20 \log \delta_{S} = -20$$

$$\delta_{S} = 0.1$$

$$K = \frac{\Omega'_P}{\Omega'_S} = \frac{1}{2.69872} = 0.3705$$

$$d = \sqrt{\frac{(1 - \delta_P)^{-2} - 1}{\delta_S^{-2} - 1}} = 0.1$$

Step 4:

Minimum filter order (of normalized filter) is

$$N \ge \frac{\cosh^{-1}\left(\frac{1}{d}\right)}{\cosh^{-1}\left(\frac{1}{K}\right)} = 1.8$$

Rounding off to the next integer we get, N=2

Appendix-II

Polynomials $V_N(s)$ used in Chebyshev I filter design for $\frac{1}{2}$, 1, 2, and 3 dB ripples

Chebyshev filter
$$H_N(s) = \frac{K_N}{V_N(s)}$$
, where $K_N = \begin{cases} \frac{b_0}{\sqrt{1+\epsilon^2}} & \text{for } N \text{ even} \\ b_0 & \text{for } N \text{ odd} \end{cases}$

$$V_N(s) = s^N + b_{N-1}s^{N-1} + \dots + b_1s + b_0$$

N	b ₀	<i>b</i> ₁	<i>b</i> ₂	<i>b</i> ₃	<i>b</i> ₄	<i>b</i> ₅	<i>b</i> ₆	<i>b</i> ₇	<i>b</i> ₈	<i>b</i> 9
	1		a. $\frac{1}{2}$	dB Ripple (ε	= 0.3493114,	$\epsilon^2 = 0.1220$	184)			
1	2.8627752									
2	1.5162026	1.4256245								
3	0.7156938	1.5348954	1.2529130							
4	0.3790506	1.0254553	1.7168662	1.1973856						
5	0.1789234	0.7525181	1.3095747	1.9373675	1.1724909					
6	0.0947626	0.4323669	1.1718613	1.5897635	2.1718446	1.1591761				
7	0.0447309	0.2820722	0.7556511	1.6479029	1.8694079	2.4126510	1.1512176	1.1460001		
8	0.0236907	0.1525444	0.5735604	1.1485894	2.1840154	2.1492173	2.6567498	1.1460801	1 1425705	
9	0.0111827	0.0941198	0.3408193	0.9836199	1.6113880	2.7814990	2.4293297	2.9027337	1.1425705 3.1498757	1.1400664
10	0.0059227	0.0492855	0.2372688	0.6269689	1.5274307	2.1442372	3.4409268	2.7097415	3.1496737	1.140000-
					0.5000471	-2 0.2580	254)			-
			b. 1	dB Ripple (ϵ	= 0.5088471,	$\epsilon^{-} = 0.2369$	254)			
1	1.9652267									
2	1.1025103	1.0977343								
3	0.4913067	1.2384092	0.9883412							
4	0.2756276	0.7426194	1.4539248	0.9528114						
5	0.1228267	0.5805342	0.9743961	1.6888160	0.9368201					
6	0.0689069	0.3070808	0.9393461	1.2021409	1.9308256	0.9282510	0.0001000			
7	0.0307066	0.2136712	0.5486192	1.3575440	1.4287930	2.1760778	0.9231228	0.0100113		
8	0.0172267	0.1073447	0.4478257	0.8468243	1.8369024	1.6551557	2.4230264	0.9198113	0.9175476	
9	0.0076767	0.0706048	0.2441864	0.7863109	1.2016071	2.3781188	1.8814798 2.9815094	2.6709468 2.1078524	2.9194657	0.9159320
10		0.0344971	0.1824512	0.4553892	1.2444914	1.6129856	2.9813094	2.10/0324		

<i>b</i> ₀	b_1	b_2	<i>b</i> ₃	<i>b</i> ₄	<i>b</i> ₅	<i>b</i> ₆	<i>b</i> ₇	<i>b</i> ₈	<i>b</i> 9
		c. 2	dB Ripple (ε	= 0.7647831,	$\epsilon^2 = 0.58489$	932)			*
1.3075603									
0.6367681	0.8038164								
0.3268901	1.0221903	0.7378216							
0.2057651	0.5167981	1.2564819	0.7162150						
0.0817225	0.4593491	0.693477.0	1.4995433	0.7064606					`
0.0514413	0.2102706	0.7714618	0.8670149	1.7458587	0.7012257				
0.0204228	0.1660920	0.3825056	1.1444390	1.0392203	1.9935272	0.6978929			
0.0128603	0.0729373	0.3587043	0.5982214	1.5795807	1.2117121	2.2422529	0.6960646	0.6046702	
0.0051076	0.0543756	0.1684473	0.6444677	0.8568648	2.0767479	1.3837464	2.4912897	0.6946793	0.6026004
0.0032151	0.0233347	0.1440057	0.3177560	1.0389104	1.1585287	2.6362507	1.5557424	2.7406032	0.6936904
					2			•	6
		d. 3	dB Ripple (ϵ	= 0.9976283,	$\epsilon^2 = 0.99526$	523)			
1.0023773									
0.7079478	0.6448996)							
0.2505943	0.9283480	0.5972404							
0.1769869	0.4047679	1.1691176	0.5815799						
0.0626391	0.4079421	0.5488626	1.4149847	0.5744296					
0.0442467	0.1634299	0.6990977	0.6906098	1.6628481	0.5706979	0.500.1001			
0.0156621	0.1461530	0.3000167	1.0518448	0.8314411	1.9115507	0.5684201	0.5((0.47)		
0.0110617	0.0564813	0.3207646	0.4718990	1.4666990	0.9719473	2.1607148	0.5669476	0.5650224	
0.0039154	0.0475900	0.1313851	0.5834984	0.6789075	1.9438443	1.1122863	2.4101346	0.5659234	0.5652219
0.0027654	0.0180313	0.1277560	0.2492043	0.9499208	0.9210659	2.4834205	1.2526467	2.6597378	0.5652218

- Referring to the normalized 3 dB ripple
 Chebyshev I filter tables, we get for N=2 the following filter coefficients
- $b_0 = 0.7079478$
- $b_1 = 0.6448996$ $V_N(s) = s^N + b_{N-1}s^{N-1} + b_2s^{N-2} + \dots + b_0$ $= (s^2 + b_1s + b_0)$

Step 5:
$$H_2 = \frac{K_N}{\prod_{LHP}(s-s_k)} = \frac{K_N}{(s-s_1)(s-s_2)} = \frac{K_N}{s^2 + b_1 s + b_0}$$

$$H_2(s) = \frac{K_N = \frac{b_0}{\sqrt{1 + \epsilon^2}}}{s^2 + b_1 s + b_0}$$

$$= \frac{\frac{0.7079478}{\sqrt{1 + 0.995263^2}} = 0.50119}{s^2 + 0.6448996s + 0.7079478}$$

Where
$$K_N = \begin{cases} \frac{b_0}{\sqrt{1+\epsilon^2}}, & N = even \\ b_0 & N = odd \end{cases}$$

Since N is odd,
$$K_N = \frac{b_0}{\sqrt{1+\epsilon^2}} = 0.50119$$

Step 6

• If the specified filter is Low pass then apply lowpass to Lowpass transformation on the normalized lowpass filter by replacing $s \to \frac{s}{\Omega_P}$.

 If the specified filter is high pass then apply lowpass to highpass transformation on the normalized low pass filter by replacing

$$S \to \frac{\Omega_P}{S}$$
.

 If the specified filter is Bandpass then apply lowpass to Bandpass transformation on the normalized low pass filter by replacing

$$s \to \frac{s^2 + \Omega_u \Omega_l}{s(\Omega_u - \Omega_l)}$$
.

 If the specified filter is Bandstop then apply lowpass to Bandstop transformation on the normalized low pass filter by replacing

$$s \to \frac{s(\Omega_u - \Omega_l)}{s^2 + \Omega_u \Omega_l}$$
.

• The required lowpass filter $H_a(s)$ is obtained by applying a lowpass-to lowpass transformation to $H_3(s)$

$$H_a(s) = H_2(s)|s \to \frac{s}{\Omega'_P}$$

$$= \frac{0.50119}{s^2 + 0.6448996s + 0.7079478} \mid s \to \frac{s}{1.019}$$

$$H_a(s) = \frac{0.52}{s^2 + 0.657152s + 0.7351053}$$

• Step 7: Finally the transfer function of the digital filter is obtained by applying bilinear transformation to $H_a(s)$ with T=1 sec.

•
$$H(z) = H_a(s)|_{S} \to \frac{2}{T} \left[\frac{1-z^{-1}}{1+z^{-1}} \right]$$

$$\frac{0.52}{\left[\frac{2}{T}\left[\frac{1-z^{-1}}{1+z^{-1}}\right]\right]^{2} + 0.65715269\left[\frac{2}{T}\left[\frac{1-z^{-1}}{1+z^{-1}}\right]\right] + 0.73510538}$$

$$= \frac{0.52(1+z^{-1})^2}{6.0494-6.53z^{-1}+3.420805z^{-2}}$$