

Tree_App Database Project

- TreeApp is a not-for-profit social startup that wants to accelerate reforestation by using technology.
- They are developing an app, where anyone can register and upload pictures of the trees they have planted, with other information such as description, date, geo location etc.
- Additionally, the users will get points based on the number of trees they
 plant and a number of years they look after them, and Badges (displayed
 on their profile) based on their achievements.

ER Diagram of tree_app

4 entities

1. User

3. Points

2. Planted Tree

4. Badges

Assumptions:

- A user can plant multiple trees, but each tree has only one user.
- 2. A user can earn multiple points, but each point is related to only one user.
- 3. A user can earn multiple badges, but each badge is associated with only one user

Schema Diagram of tree_app

SQL database structure of tree_app

- 4 tables for 4 entities as:
 - 1. users
 - 2. planted_trees

- 3. points
- 4. badges

Table 🔺	Action								0	Туре	Collation	Size	Overhead
badges	*	Browse	M Structure	Rearch (≩≟ Insert	Empty	Drop		2	InnoDB	utf8mb4_general_ci	32.0 KiB	-
planted_trees	ń	Browse	M Structure	Search	≩ insert	Empty	Drop		8	InnoDB	utf8mb4_general_ci	32.0 KiB	-
points	ń	Browse	M Structure	Rearch Search	≩≟ Insert	Empty	Drop		4	InnoDB	utf8mb4_general_ci	32.0 KiB	-
users	ń	Browse	M Structure	Rearch Search	≩≟ Insert	Empty	Drop		4	InnoDB	utf8mb4_general_ci	16.0 KiB	-
4 tables	Sum								18	InnoDB	utf8mb4_general_ci	112.0 KiB	0 B

users table

SQL query to create users table:

```
CREATE TABLE users (
user_id VARCHAR(255) PRIMARY KEY,
email VARCHAR(255),
password VARCHAR(255),
first_name VARCHAR(255),
last_name VARCHAR(255),
date_of_birth DATE,
);
```

Sample SQL query to insert values to users table:

```
INSERT INTO users (user_id, email, password, first_name, last_name, date_of_birth, profile_photo) VALUES

(U001, 'Sanduni@gmail.com', 'sanduni123', 'Sanduni', 'Silva', '2000-06-18'),

(U002, 'buddhileka@gmail.com', 'buddhileka123', 'Buddhileka', 'Gunarathna', '2000-07-22);
```

←T	→		~	user_id	email	password	first_name	last_name	date_of_birth
		≩ Сору	Delete	U001	sanduni@gmail.com	sanduni123	Sanduni	Silva	2000-06-18
		≩ Copy	Delete	U002	buddhileka@gmail.com	buddhileka123	Buddhileka	Gunarathna	2000-07-22
	<i></i> €dit	≩ Copy	Delete	U003	lakmee@gmail.com	lakmee123	Lakmee	Chamodya	1999-01-28
		≩ Copy	Delete	U004	prabhasha@gmail.com	prabhasha123	Bodhini	Prabhasha	2000-03-02

planted_trees table

SQL query to create planted_trees table:

```
CREATE TABLE planted_trees (
tree_id VARCHAR(255) PRIMARY KEY,
tree_type VARCHAR(255),
description TEXT,
date_planted DATE,
geo_location VARCHAR(255),
photos VARCHAR(255), date DATE,
user_id VARCHAR(255, FOREIGN KEY
(user_id) REFERENCES users(user_id));
```

Sample SQL query to insert values to planted_trees table:

INSERT INTO planted_trees (tree_id, tree_type, description,
date_planted, geo_location, photos, date, user_id) VALUES

(Tree001, 'Oak', 'A beautiful oak tree planted in the backyard.', '2021-03-15', '42.1234,-71.5678', 'photo1.jpg', '2021-03-15', U001),

(Tree002, 'Maple', 'A maple tree planted in the park.', '2022-06-10', '39.9876,-75.4321', 'photo2.jpg', '2022-06-10', U002);

←T	→		~	tree_id	tree_type	description	date_planted	geo_location	photos	date	user_id
	<i></i> €dit	≩ Copy	Delete	Tree001	Oak	A beautiful oak tree planted in the backyard.	2021-03-15	42.1234,-71.5678	photo1.jpg	2022-03-15	U001
	<i></i> Edit	≩ Copy	Delete	Tree002	Maple	A maple tree planted in the park.	2022-06-10	39.9876,-75.4321	photo2.jpg	2023-05-10	U002
	<i></i> €dit	≩ Copy	Delete	Tree003	Pine	A pine tree planted near the lake.	2023-01-05	37.5555,-122.3333	photo3.jpg	2023-01-05	U003
	<i></i> Edit	≩ Copy	Delete	Tree004	Mango	A mango tree planted in the garden.	2018-06-05	39.9876,-75.4321	photo4.jpg	2023-05-05	U002
	🥟 Edit	≩ Copy	Delete	Tree005	Apple	An apple tree planted in the backyard.	2015-06-05	38.5555,-162.3345	photo5.jpg	2023-02-10	U004
	<i></i> € Edit	≩ Copy	Delete	Tree006	Mandarin	A mandarin tree planted in the garden.	2020-06-05	42.1234,-71.5678	photo6.jpg	2023-01-05	U001

points table

SQL query to create points table:

```
CREATE TABLE points (
points_id VARCHAR(255) PRIMARY KEY,
tree_count INT,
years_looked_after INT,
points INT,
user_id VARCHAR(255, FOREIGN KEY
(user_id) REFERENCES users(user_id));
```

Sample SQL query to insert values to points table:

```
INSERT INTO points (points_id, tree_count, years_looked_after, points, user_id) VALUES

(P001, 2, 3, 10, U001), (P002, 2, 5, 14, U002), (P003, 1, 1, 4, U003) (P004, 1, 8, 18, U004);
```

←Τ	- →	Clic	k the drop-	points_id down arrow	tree_count	years_looked_after	points	user_id
	<i></i> € Edit			m's visibility.	2	3	10	U001
		≩ Copy	Delete	P002	2	5	14	U002
	<i></i> €dit	≩ Copy	Delete	P003	1	1	4	U003
	<i></i> € Edit	≩ Copy	Delete	P004	1	8	18	U004

badges table

SQL query to create badges table:

```
CREATE TABLE badges (
badges_id VARCHAR(255) PRIMARY
KEY, badge_name VARCHAR(255),
description TEXT,
user_id VARCHAR(255, FOREIGN KEY
(user_id) REFERENCES users(user_id));
```

Sample SQL query to insert values to badges table:

INSERT INTO badges (badges_id, badge_name, description,
user_id) VALUES

(B001, 'Green Thumb', 'Awarded to user who have started to plant this year.', U003),

(B002, 'Tree Champion', 'Awarded to user who have looked after trees for 8 or more years.', U004);

←Ţ			~	badges_id	badge_name	description	user_id
	<i></i>	≩ Copy	Delete	B001	Green Thumb	Awarded to users who have started to plnat this ye	U003
		≩ Copy	Delete	B002	Tree Champion	Awarded to users who have looked after trees for m	U004

Python: Functionality to insert a tree

Code:

```
import mysql.connector
# Connect to the MySQL database
db = mysql.connector.connect(
   host="localhost",
   user="root",
   password="",
   database="tree app"
# Function to insert a new tree record
def insert tree(tree id, tree type, description, date planted, geo location, photos, date, user id):
   cursor = db.cursor()
   values = (tree id, tree type, description, date planted, geo location, photos, date, user id)
   cursor.execute(sql, values)
   db.commit()
   print("Tree record inserted successfully!")
# Insert 2 new trees
insert tree("Tree007", "Birch", "A beautiful birch tree planted in the garden.", "2023-06-20", "40.1234,-74.5678", "photo7.jpg", "2023-07-03", "U001")
insert tree("Tree008", "Guava", "A small guava tree planted in the backyard.", "2023-05-01", "40.1484,-74.6278", "photo8.jpg", "2023-07-04", "U004")
```

Updated database:

⊘ Edit ♣ Copy	Delete Tree007	Birch	A beautiful birch tree planted in the garden.	2023-06-20	40.1234,-74.5678	photo7.jpg 2023-07-03 U001
⊘ Edit ♣ Copy	Delete Tree008	Guava	A small guava tree planted in the backyard.	2023-05-01	40.1484,-74.6278	photo8.jpg 2023-07-04 U004

Python: Functionality to generate 2 reports

Report 01: Details of Planted Trees

```
# Report 01: Details of Planted trees
def get planted trees():
   cursor = db.cursor()
   sql = "SELECT * FROM planted trees"
   cursor.execute(sql)
   result = cursor.fetchall()
   print("Details of Planted Trees:")
   for row in result:
       print("Tree ID:", row[0])
       print("Tree Type:", row[1])
       print("Description:", row[2])
       print("Date Planted:", row[3])
       print("Geo Location:", row[4])
       print("Photos:", row[5])
       print("Date:", row[6])
       print("User ID:", row[7])
       print("----")
```

• Report 02: Users & Points

```
# Report 02: Users & Points
def report_users_and_points():
    cursor = db.cursor()
    sql = "SELECT users.first_name, users.last_name, users.email, SUM(points) as total_points FROM users JOIN points ON users.user_id = points.user_id GROUP BY users.user_
    cursor.execute(sql)
    result = cursor.fetchall()
    print("Users and Points Report:")
    for row in result:
        print("Name:", row[0], row[1])
        print("Email:", row[2])
        print("Total Points:", row[3])
        print("-------")
```


END