Apunte de Estudio

Clase 03: Fundamentos de Datos Geoespaciales

Guía de trabajo autónomo

Curso: Geoinformática Prof. Francisco Parra O.

Semestre 2, 2025

NOTA IMPORTANTE

Este apunte está diseñado para trabajo autónomo. Lean cada sección cuidadosamente, ejecuten los códigos y completen los ejercicios. Trabajen en grupos de 2-3 personas para discutir conceptos y resolver dudas.

Índice

1 Introducción

1.1 Objetivos de Aprendizaje

Al finalizar esta sesión de estudio, serán capaces de:

- Distinguir entre datos vectoriales y raster
- Crear y manipular geometrías básicas (puntos, líneas, polígonos)
- **Ejecutar** operaciones espaciales fundamentales
- Aplicar transformaciones de sistemas de coordenadas
- Implementar análisis que combinen vector y raster
- Desarrollar features espaciales para machine learning

1.2 Preparación del Ambiente

Antes de comenzar, verifiquen que tienen instaladas las siguientes librerías:

```
# Verificar instalacion
import geopandas as gpd
import shapely
import rasterio
import folium
import matplotlib.pyplot as plt
print("Ambiente listo!")
```

Si falta alguna librería, instálenla con:

```
conda install -c conda-forge geopandas rasterio folium
```

2 Parte 1: Datos Vectoriales

2.1 Conceptos Fundamentales

Modelo Vectorial

El modelo vectorial representa el mundo como **objetos discretos** con geometrías precisas. Cada objeto tiene:

- Geometría: La forma espacial (punto, línea, polígono)
- Atributos: Las características descriptivas
- Topología: Las relaciones espaciales con otros objetos

Piensen en un mapa de Google Maps: cada restaurant es un punto, cada calle es una línea, cada manzana es un polígono.

2.2 Puntos: Tu Primera Geometría

Los puntos son la geometría más simple. Solo necesitan coordenadas X e Y.

```
from shapely.geometry import Point
  import geopandas as gpd
  import matplotlib.pyplot as plt
  # Crear un punto - USACH
  usach = Point(-70.681, -33.450)
  print(f"Tipo: {type(usach)}")
  print(f"Coordenada X: {usach.x}")
  print(f"Coordenada Y: {usach.y}")
  # Crear multiples puntos - Estaciones de Metro Linea 1
11
  estaciones = [
12
      {'nombre': 'Universidad de Santiago', 'linea': 1,
13
        geometry': Point(-70.681, -33.450)},
14
      {'nombre': 'Estacion Central', 'linea': 1,
15
        geometry': Point(-70.678, -33.452)},
16
      {'nombre': 'ULA', 'linea': 1,
17
       'geometry': Point(-70.675, -33.453)},
18
      {'nombre': 'Republica', 'linea': 1,
19
        'geometry': Point(-70.671, -33.454)}
20
21
22
23 # Crear GeoDataFrame
gdf_estaciones = gpd.GeoDataFrame(estaciones)
  print(gdf_estaciones)
27 # Visualizar
18 fig, ax = plt.subplots(figsize=(8, 6))
29 gdf_estaciones.plot(ax=ax, color='red', markersize=100)
30 ax.set_title('Estaciones Metro Linea 1')
31 plt.show()
```

Ejercicio

Ejercicio 1.1: Creen un GeoDataFrame con al menos 5 lugares importantes de su comuna (colegios, plazas, centros comerciales, etc.). Incluyan como atributos: nombre, tipo, y año de construcción.

2.3 Líneas: Conectando Puntos

Las líneas son secuencias ordenadas de puntos. La dirección importa en muchos casos (ej: sentido del tráfico).

```
from shapely.geometry import LineString
  # Crear linea conectando las estaciones
  coordenadas = [
      (-70.681, -33.450), # U. de Santiago
      (-70.678, -33.452), \# Estacion Central
      (-70.675, -33.453), # ULA
      (-70.671, -33.454)
                           # Republica
9
  linea_metro = LineString(coordenadas)
11
13 # Propiedades de la linea
  print(f"Longitud: {linea_metro.length:.4f} grados")
  print(f"Numero de vertices: {len(linea_metro.coords)}")
  print(f"Es simple (no se cruza)?: {linea_metro.is_simple}")
17
  print(f"Es cerrada?: {linea_metro.is_ring}")
19 # Buffer - zona de influencia de 100 metros
20 # OJO: Como estamos en grados, 0.001 grados
21 zona_influencia = linea_metro.buffer(0.001)
print(f"Area de influencia: {zona_influencia.area:.6f} grados^2")
```

${ m Importante}$

Unidades: Cuando trabajamos con coordenadas geográficas (lat/lon), las unidades están en grados. Para distancias reales en metros, necesitamos proyectar a un sistema métrico como UTM.

2.4 Polígonos: Definiendo Áreas

Los polígonos son áreas cerradas. El primer y último punto deben ser iguales.

```
from shapely.geometry import Polygon
  # Campus USACH simplificado (rectangulo)
  campus = Polygon([
      (-70.683, -33.448), \# Esquina NO
      (-70.679, -33.448), # Esquina NE
      (-70.679, -33.452), \# Esquina SE
      (-70.683, -33.452), # Esquina SO
      (-70.683, -33.448)
                           # Cierre (igual al primero)
  ])
10
11
  print(f"Area: {campus.area:.6f} grados^2")
12
  print(f"Perimetro: {campus.length:.4f} grados")
13
14
  # Verificar relaciones espaciales
  print(f"USACH esta dentro del campus? {campus.contains(usach)}")
16
  print(f"La linea de metro cruza el campus? {campus.intersects(linea_metro)}")
17
19 # Poligono con hueco (donut)
20 exterior = [(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]
interior = [(2, 2), (8, 2), (8, 8), (2, 8), (2, 2)]
22 donut = Polygon(exterior, [interior])
print(f"Area del donut: {donut.area}") # Sera 100 - 36 = 64
```

Ejercicio

Ejercicio 1.2:

1. Creen un polígono que represente su manzana o barrio

- 2. Verifiquen cuáles de los puntos del Ejercicio 1.1 están dentro
- 3. Calculen el área y perímetro

3 Parte 2: Operaciones Espaciales

3.1 Operaciones Geométricas Básicas

Operaciones Fundamentales

- Buffer: Zona de influencia alrededor de una geometría
- Intersección: Área común entre geometrías
- Unión: Combinación de geometrías
- Diferencia: Resta de una geometría de otra
- Dissolve: Fusión de geometrías por atributo

```
from shapely.ops import unary_union
  import geopandas as gpd
  # Crear dos poligonos que se solapan
  poly1 = Polygon([(0, 0), (2, 0), (2, 2), (0, 2), (0, 0)])
poly2 = Polygon([(1, 1), (3, 1), (3, 3), (1, 3), (1, 1)])
  # Operaciones geometricas
  intersection = poly1.intersection(poly2)
union = poly1.union(poly2)
diferencia1 = poly1.difference(poly2) # poly1 - poly2
diferencia2 = poly2.difference(poly1) # poly2 - poly1
print(f"Area poly1: {poly1.area}")
print(f"Area poly2: {poly2.area}")
print(f"Area interseccion: {interseccion.area}")
print(f"Area union: {union.area}")
print(f"Area diferencia1: {diferencia1.area}")
  print(f"Area diferencia2: {diferencia2.area}")
19
20
  # Visualizar
21
22 fig, axes = plt.subplots(2, 3, figsize=(12, 8))
23
  # Poligonos originales
24
  gpd.GeoSeries([poly1]).plot(ax=axes[0,0], color='blue', alpha=0.5)
  gpd.GeoSeries([poly2]).plot(ax=axes[0,0], color='red', alpha=0.5)
  axes[0,0].set_title('Originales')
27
29 # Interseccion
30 gpd. GeoSeries([interseccion]).plot(ax=axes[0,1], color='purple')
axes[0,1].set_title('Interseccion')
32
33 # Union
gpd.GeoSeries([union]).plot(ax=axes[0,2], color='green')
axes[0,2].set_title('Union')
37 # Diferencias
38 gpd.GeoSeries([diferencia1]).plot(ax=axes[1,0], color='blue')
  axes[1,0].set_title('Poly1 - Poly2')
39
40
41 gpd.GeoSeries([diferencia2]).plot(ax=axes[1,1], color='red')
  axes[1,1].set_title('Poly2 - Poly1')
42
43
44 # Buffer
  buffer = poly1.buffer(0.5)
46 gpd.GeoSeries([buffer]).plot(ax=axes[1,2], color='orange')
```

```
gpd.GeoSeries([poly1]).plot(ax=axes[1,2], color='blue')
48 axes[1,2].set_title('Buffer 0.5')
49
plt.tight_layout()
plt.show()
```

3.2 Predicados Espaciales

Los predicados espaciales evalúan relaciones entre geometrías y retornan True/False.

```
1 # Crear geometrias de ejemplo
punto = Point(1.5, 1.5)
3 linea = LineString([(0, 0), (3, 3)])
 poligono = Polygon([(0, 0), (2, 0), (2, 2), (0, 2), (0, 0)])
6 # Predicados espaciales
  print("=== Relaciones Espaciales ===")
  print(f"Punto dentro del poligono? {punto.within(poligono)}")
  print(f"Poligono contiene punto? {poligono.contains(punto)}")
  print(f"Linea cruza poligono? {linea.crosses(poligono)}")
  print(f"Linea intersecta poligono? {linea.intersects(poligono)}")
11
  print(f"Poligono toca linea? {poligono.touches(linea)}")
  print(f"Distancia punto a poligono: {punto.distance(poligono):.4f}")
13
 # Aplicacion con GeoDataFrame
15
  puntos_random = gpd.GeoSeries([
      Point(0.5, 0.5), Point(1.5, 1.5), Point(2.5, 2.5),
17
      Point(0, 3), Point(3, 0)
18
  ])
19
20
21 # Filtrar puntos dentro del poligono
22 dentro = puntos_random[puntos_random.within(poligono)]
23 fuera = puntos_random[~puntos_random.within(poligono)]
print(f"\nPuntos dentro: {len(dentro)}")
26 print(f"Puntos fuera: {len(fuera)}")
```

Ejercicio

Ejercicio 2.1:

- 1. Creen un buffer de 500 metros alrededor de las estaciones de metro
- 2. Encuentren la intersección de todas las zonas de influencia
- 3. Identifiquen qué puntos del Ejercicio 1.1 están dentro de estas zonas

3.3 Spatial Joins

Los spatial joins combinan datos basándose en relaciones espaciales.

```
Polygon([(-70.63, -33.43), (-70.62, -33.43),
11
                   (-70.62, -33.42), (-70.63, -33.42), (-70.63, -33.43)])
12
      ]
13
  })
14
15
16
  # Colegios (puntos)
  colegios = gpd.GeoDataFrame({
17
       'nombre': ['Colegio A', 'Colegio B', 'Colegio C', 'Colegio D'],
18
       'tipo': ['Municipal', 'Particular', 'Subvencionado', 'Municipal'],
19
       'geometry': [
20
          Point(-70.645, -33.445),
21
          Point(-70.635, -33.435),
22
          Point(-70.625, -33.425),
23
          Point(-70.648, -33.448)
24
25
  })
26
27
28 # Spatial join - encontrar en que comuna esta cada colegio
29 colegios_con_comuna = gpd.sjoin(colegios, comunas,
                                    predicate='within', how='left')
30
31
  print(colegios_con_comuna[['nombre', 'tipo', 'comuna', 'poblacion']])
32
33
34 # Contar colegios por comuna
35 colegios_por_comuna = colegios_con_comuna.groupby('comuna').size()
general print("\nColegios por comuna:")
  print(colegios_por_comuna)
```

4 Parte 3: Datos Raster

4.1 Conceptos Fundamentales

Modelo Raster

El modelo raster divide el espacio en una **grilla regular** de celdas (píxeles). Cada celda tiene un valor que representa:

- Elevación (DEM Digital Elevation Model)
- Temperatura
- Reflectancia espectral (imágenes satelitales)
- Clasificación de cobertura del suelo
- Cualquier variable continua en el espacio

4.2 Creando y Manipulando Rasters

```
import numpy as np
  import matplotlib.pyplot as plt
  from matplotlib import cm
5 # Crear un raster sintetico de elevacion
  # Simular una montana con ruido
  x = np.linspace(-5, 5, 100)
  y = np.linspace(-5, 5, 100)
  X, Y = np.meshgrid(x, y)
11 # Formula de montana gaussiana + ruido
| elevacion = 1000 * np.exp(-(X**2 + Y**2)/10) + \
              np.random.normal(0, 20, (100, 100))
13
14
15 # Visualizar
fig, axes = plt.subplots(1, 3, figsize=(15, 4))
17
  # Imagen basica
18
19
  im1 = axes[0].imshow(elevacion, cmap='terrain')
20 axes[0].set_title('Elevacion (m)')
  plt.colorbar(im1, ax=axes[0])
21
22
23 # Contornos
24 contours = axes[1].contour(X, Y, elevacion, levels=10, colors='black')
25 axes[1].clabel(contours, inline=True, fontsize=8)
26 axes[1].set_title('Curvas de Nivel')
27
28 # 3D
29 from mpl_toolkits.mplot3d import Axes3D
ax3d = fig.add_subplot(133, projection='3d')
31 ax3d.plot_surface(X, Y, elevacion, cmap='terrain', alpha=0.8)
32 ax3d.set_title('Vista 3D')
ax3d.set_xlabel('X')
34 ax3d.set_ylabel('Y')
ax3d.set_zlabel('Elevacion (m)')
36
  plt.tight_layout()
37
38
  plt.show()
39
40 # Estadisticas del raster
```

```
print(f"Elevacion minima: {elevacion.min():.2f} m")
print(f"Elevacion maxima: {elevacion.max():.2f} m")
print(f"Elevacion promedio: {elevacion.mean():.2f} m")
print(f"Desviacion estandar: {elevacion.std():.2f} m")
```

4.3 Resolución y Remuestreo

La resolución determina el nivel de detalle. Mayor resolución = más detalle pero archivos más grandes.

```
# Diferentes resoluciones
  from scipy import ndimage
  # Raster original 100x100
  original = elevacion
  # Reducir resolucion (downsampling)
  baja_res_10x10 = ndimage.zoom(original, 0.1, order=1)
  media_res_50x50 = ndimage.zoom(original, 0.5, order=1)
# Visualizar diferentes resoluciones
fig, axes = plt.subplots(1, 3, figsize=(12, 4))
13
axes[0].imshow(original, cmap='terrain')
axes[0].set_title(f'Alta Res: {original.shape[0]}x{original.shape[1]}')
axes[1].imshow(media_res_50x50, cmap='terrain')
  axes[1].set_title(f'Media Res: {media_res_50x50.shape[0]}x{media_res_50x50.shape
      [1]}')
19
  axes[2].imshow(baja_res_10x10, cmap='terrain')
20
  axes[2].set_title(f'Baja Res: {baja_res_10x10.shape[0]}x{baja_res_10x10.shape
21
      [1]}')
22
  plt.tight_layout()
23
  plt.show()
24
26 # Tamaño en memoria
print(f"Tamaño alta res: {original.nbytes / 1024:.2f} KB")
print(f"Tamaño media res: {media_res_50x50.nbytes / 1024:.2f} KB")
print(f"Tamaño baja res: {baja_res_10x10.nbytes / 1024:.2f} KB")
```

Importante

Trade-off Resolución vs Tamaño:

- Doblar la resolución = 4x más píxeles = 4x más memoria
- Para análisis regional: 30m (Landsat) o 10m (Sentinel)
- Para análisis urbano: 1-5m
- Para inspección detallada: ¡1m

4.4 Índices Espectrales: NDVI

El NDVI (Normalized Difference Vegetation Index) es el índice más usado para detectar vegetación.

```
# Simular bandas espectrales
```

```
p.random.seed(42)
  # Banda roja (Band 4 en Landsat/Sentinel)
  # Vegetacion absorbe mucho rojo
6 \text{ red} = \text{np.random.uniform}(0.05, 0.15, (100, 100))
  # Banda infrarrojo cercano (Band 5/8)
  # Vegetacion refleja mucho NIR
nir = np.random.uniform(0.30, 0.50, (100, 100))
11
12 # Agregar patrones espaciales (parches de vegetacion)
13 for i in range(5):
      x, y = np.random.randint(20, 80, 2)
14
      r = 15
15
      mask = (X - x)**2 + (Y - y)**2 < r**2
16
17
      red[mask] *= 0.5 # Menos rojo en vegetacion
18
      nir[mask] *= 1.5 # Mas NIR en vegetacion
19
20 # Calcular NDVI
21 ndvi = (nir - red) / (nir + red + 1e-10)
22
23 # Clasificar
  agua = ndvi < 0
24
  suelo = (ndvi >= 0) & (ndvi < 0.2)
25
  vegetacion_baja = (ndvi >= 0.2) & (ndvi < 0.4)</pre>
26
27
  vegetacion_alta = ndvi >= 0.4
29 # Visualizar
30 fig, axes = plt.subplots(2, 3, figsize=(12, 8))
31
32 # Bandas originales
axes[0,0].imshow(red, cmap='Reds')
axes[0,0].set_title('Banda Roja')
35
ases[0,1].imshow(nir, cmap='YlGn')
axes[0,1].set_title('Banda NIR')
38
39 # NDVI
40 im = axes[0,2].imshow(ndvi, cmap='RdYlGn', vmin=-1, vmax=1)
axes[0,2].set_title('NDVI')
42 plt.colorbar(im, ax=axes[0,2])
43
44 # Clasificacion
45 clasificacion = np.zeros_like(ndvi)
46 clasificacion[agua] = 0
47 clasificacion[suelo] = 1
  clasificacion[vegetacion_baja] = 2
48
49 clasificacion[vegetacion_alta] = 3
51 from matplotlib.colors import ListedColormap
colors = ['blue', 'brown', 'lightgreen', 'darkgreen']
cmap = ListedColormap(colors)
54
55 axes[1,0].imshow(clasificacion, cmap=cmap, vmin=0, vmax=3)
56 axes[1,0].set_title('Clasificacion')
57
58 # Histograma NDVI
59 axes[1,1].hist(ndvi.flatten(), bins=50, color='green', alpha=0.7)
axes[1,1].axvline(0, color='blue', linestyle='--', label='Agua')
axes[1,1].axvline(0.2, color='brown', linestyle='--', label='Suelo')
axes[1,1].axvline(0.4, color='darkgreen', linestyle='--', label='Veg. Alta')
axes[1,1].set_xlabel('NDVI')
axes[1,1].set_ylabel('Frecuencia')
```

```
65 axes[1,1].legend()
  axes[1,1].set_title('Distribucion NDVI')
66
67
 68
69
70
71
             vegetacion_alta.sum()],
             color=colors)
72
 axes[1,2].set_ylabel('Pixeles')
73
 axes[1,2].set_title('Pixeles por Clase')
74
75
76 plt.tight_layout()
77 plt.show()
```

Ejercicio

Ejercicio 3.1:

- 1. Creen un raster sintético que represente temperatura (hint: usen gradientes)
- 2. Apliquen diferentes niveles de suavizado (smoothing)
- 3. Clasifiquen en categorías: Muy frío, Frío, Templado, Cálido, Muy cálido

5 Parte 4: Sistemas de Coordenadas (CRS)

5.1 Por Qué Importa el CRS

Sistema de Referencia de Coordenadas

El CRS define cómo las coordenadas se relacionan con lugares en la Tierra. Incluye:

- Datum: Modelo matemático de la forma de la Tierra
- Proyección: Método para aplanar la superficie curva
- Unidades: Grados (geográficas) o metros (proyectadas)

Para Chile:

- WGS84 (EPSG:4326): Coordenadas geográficas, usado por GPS
- UTM Zona 19S (EPSG:32719): Sistema métrico para Chile continental
- SIRGAS-Chile (EPSG:5361): Sistema oficial de Chile

```
import geopandas as gpd
  from shapely.geometry import Point
  import pyproj
  # Crear punto en coordenadas geograficas (grados)
  santiago_geo = gpd.GeoSeries([Point(-70.65, -33.45)],
                                crs='EPSG:4326')
  print("=== Coordenadas Geograficas (WGS84) ===")
  print(f"CRS: {santiago_geo.crs}")
  print(f"Coordenadas: {santiago_geo[0].x:.3f}, {santiago_geo[0].y:.3f}")
# Proyectar a UTM 19S (metros)
  santiago_utm = santiago_geo.to_crs('EPSG:32719')
14
15
print("\n=== Coordenadas UTM 19S ===")
print(f"CRS: {santiago_utm.crs}")
18 print(f"Coordenadas: {santiago_utm[0].x:.0f} E, {santiago_utm[0].y:.0f} N")
19
20 # Diferencia en calculos de distancia
punto1_geo = Point(-70.65, -33.45)
  punto2_geo = Point(-70.64, -33.44)
22
23
  # Distancia en grados (incorrecto para distancia real)
24
  dist_grados = punto1_geo.distance(punto2_geo)
25
  print(f"\nDistancia en grados: {dist_grados:.4f}")
26
27
  # Convertir a GeoSeries para proyectar
  puntos_geo = gpd.GeoSeries([punto1_geo, punto2_geo], crs='EPSG:4326')
  puntos_utm = puntos_geo.to_crs('EPSG:32719')
31
32 # Distancia en metros (correcto)
dist_metros = puntos_utm[0].distance(puntos_utm[1])
34 print(f"Distancia real en metros: {dist_metros:.2f} m")
35
36 # Factor de conversion aproximado en Santiago
37 factor = dist_metros / dist_grados
38 print(f"\nFactor conversion (m/grado) en Santiago: {factor:.0f}")
```

Importante

Regla de Oro:

- Para visualización y almacenamiento: WGS84 (EPSG:4326)
- Para cálculos de distancia y área: UTM local
- SIEMPRE verificar el CRS antes de hacer análisis
- NUNCA mezclar datos con diferentes CRS sin reproyectar

Ejercicio

Ejercicio 4.1:

- 1. Creen un polígono (cuadrado de 1km x 1km) en coordenadas UTM
- 2. Proyéctenlo a WGS84
- 3. Comparen las áreas calculadas en ambos sistemas
- 4. ¿Por qué son diferentes?

6 Parte 5: Machine Learning Espacial

6.1 Feature Engineering Espacial

El ML espacial requiere features especiales que capturen la naturaleza espacial de los datos.

Primera Ley de Tobler

"Todo está relacionado con todo lo demás, pero las cosas cercanas están más relacionadas que las cosas distantes."

Esto significa que:

- Los valores cercanos tienden a ser similares (autocorrelación espacial)
- No podemos usar train_test_split aleatorio
- Necesitamos features que capturen contexto espacial

```
1 import pandas as pd
2 import geopandas as gpd
3 from shapely.geometry import Point
4 import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
  # Crear dataset sintetico de propiedades
  np.random.seed(42)
10 n_propiedades = 200
11
# Generar propiedades aleatorias en Santiago
13 propiedades = {
       'x': np.random.uniform(-70.70, -70.60, n_propiedades),
14
       'y': np.random.uniform(-33.50, -33.40, n_propiedades),
15
      'habitaciones': np.random.randint(1, 6, n_propiedades),
16
      'banos': np.random.randint(1, 4, n_propiedades),
17
      'superficie': np.random.uniform(40, 300, n_propiedades),
18
      'ano': np.random.randint(1960, 2024, n_propiedades)
19
20 }
21
22 # Crear GeoDataFrame
gdf = gpd.GeoDataFrame(propiedades)
24 gdf['geometry'] = [Point(x, y) for x, y in zip(gdf['x'], gdf['y'])]
gdf = gdf.set_crs('EPSG:4326')
27 # Precio base (funcion de caracteristicas + ubicacion)
28 # Mas caro hacia el nororiente (Las Condes, Vitacura)
  gdf['precio_base'] = (
29
      gdf['habitaciones'] * 50 +
30
      gdf['banos'] * 30 +
31
      gdf['superficie'] * 0.5 +
32
      (2024 - gdf['ano']) * (-0.5) + # Depreciacion
33
      (gdf['x'] + 70.65) * 5000 +
34
                                        # Mas caro hacia el este
      (-gdf['y'] - 33.45) * 3000
                                        # Mas caro hacia el norte
35
36
37
38 # Agregar ruido
  gdf['precio'] = gdf['precio_base'] + np.random.normal(0, 50, n_propiedades)
41 # FEATURE ENGINEERING ESPACIAL
42 # 1. Distancia a punto central (Plaza de Armas)
43 plaza_armas = Point(-70.65, -33.44)
```

```
gdf['dist_centro'] = gdf.geometry.distance(plaza_armas) * 111 # km aprox
45
  # 2. Distancia a punto premium (Las Condes)
46
  las\_condes = Point(-70.58, -33.41)
47
48 gdf['dist_premium'] = gdf.geometry.distance(las_condes) * 111
50
  # 3. Densidad de vecinos
51 # Contar propiedades en radio de 1km
52 gdf['vecinos_1km'] = gdf.geometry.apply(
      lambda x: sum(gdf.geometry.distance(x) < 0.009) # ~1km</pre>
53
54 )
55
56 # 4. Precio promedio de los 5 vecinos mas cercanos (lag espacial)
57 from sklearn.neighbors import NearestNeighbors
58
59 coords = np.column_stack([gdf['x'], gdf['y']])
60 nbrs = NearestNeighbors(n_neighbors=6, algorithm='ball_tree').fit(coords)
distances, indices = nbrs.kneighbors(coords)
62
63 # Calcular precio promedio de vecinos (excluyendo el punto mismo)
64 precio_vecinos = []
65 for idx in indices:
      vecinos_idx = idx[1:6] # Excluir el primero (si mismo)
66
67
      precio_vecinos.append(gdf.iloc[vecinos_idx]['precio'].mean())
68
69
  gdf['precio_lag'] = precio_vecinos
  # 5. Cuadrante (feature categorica)
71
  gdf['cuadrante'] = 'SO' # Default
  gdf.loc[(gdf['x'] > -70.65) & (gdf['y'] > -33.45), 'cuadrante'] = 'NE'
74 gdf.loc[(gdf['x'] \leftarrow -70.65) & (gdf['y'] > -33.45), 'cuadrante'] = 'NO'
75 gdf.loc[(gdf['x'] > -70.65) & (gdf['y'] <= -33.45), 'cuadrante'] = 'SE'
77 # One-hot encoding del cuadrante
78 gdf = pd.get_dummies(gdf, columns=['cuadrante'], prefix='zona')
80 print("=== Features Creadas ===")
81 print(gdf[['dist_centro', 'dist_premium', 'vecinos_1km',
             'precio_lag']].describe())
```

6.2 Modelo con Validación Espacial

```
# Preparar features y target
  feature_cols = ['habitaciones', 'banos', 'superficie', 'ano',
                    'dist_centro', 'dist_premium', 'vecinos_1km',
                    'precio_lag', 'zona_NE', 'zona_NO', 'zona_SE', 'zona_SO']
6 X = gdf[feature_cols]
  y = gdf['precio']
9 # SPLIT INCORRECTO (aleatorio) - NO USAR
10 X_train_bad, X_test_bad, y_train_bad, y_test_bad = train_test_split(
      X, y, test_size=0.3, random_state=42
11
12
13
14 # SPLIT CORRECTO (espacial) - dividir por zona
  train_mask = gdf['x'] < -70.64  # Zona oeste para train
test_mask = ~train_mask  # Zona este para test</pre>
15
16
18 X_train = X[train_mask]
19 X_test = X[test_mask]
20 y_train = y[train_mask]
```

```
21 y_test = y[test_mask]
22
  print(f"Train: {len(X_train)} propiedades (zona oeste)")
23
  print(f"Test: {len(X_test)} propiedades (zona este)")
24
25
26 # Entrenar modelo
27 modelo = RandomForestRegressor(n_estimators=100, random_state=42)
29 # Modelo con split aleatorio (INCORRECTO)
30 modelo_bad = RandomForestRegressor(n_estimators=100, random_state=42)
modelo_bad.fit(X_train_bad, y_train_bad)
score_bad = modelo_bad.score(X_test_bad, y_test_bad)
33
# Modelo con split espacial (CORRECTO)
modelo.fit(X_train, y_train)
score_good = modelo.score(X_test, y_test)
37
38 print(f"\n=== Comparacion de Validacion ===")
39 print(f"R con split aleatorio (INCORRECTO): {score_bad:.3f}")
40 print(f"R
             con split espacial (CORRECTO): {score_good:.3f}")
41 print(f"Diferencia: {(score_bad - score_good):.3f}")
42 print("\nEl split aleatorio da resultados demasiado optimistas!")
43
44
  # Feature importance
  importancia = pd.DataFrame({
45
      'feature': feature_cols,
46
      'importance': modelo.feature_importances_
47
  }).sort_values('importance', ascending=False)
48
  print("\n=== Feature Importance ===")
50
  print(importancia.head(10))
51
53 # Visualizar predicciones
54 gdf['prediccion'] = modelo.predict(X)
55 gdf['error'] = gdf['prediccion'] - gdf['precio']
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
59 # Precio real
60 gdf.plot(column='precio', cmap='YlOrRd', legend=True,
           ax=axes[0], markersize=20)
61
  axes[0].set_title('Precio Real')
62
63
  # Precio predicho
64
  gdf.plot(column='prediccion', cmap='YlOrRd', legend=True,
65
66
           ax=axes[1], markersize=20)
  axes[1].set_title('Precio Predicho')
67
68
69 # Error
  gdf.plot(column='error', cmap='RdBu', legend=True,
70
           ax=axes[2], markersize=20, vmin=-100, vmax=100)
71
72 axes[2].set_title('Error (Pred - Real)')
73
74 plt.tight_layout()
75 plt.show()
```

Importante

Features Espaciales Clave:

- Distancia a puntos de interés (metro, parques, centro)
- Densidad de features en buffers
- Lag espacial (valor promedio de vecinos)
- Coordenadas X, Y (capturan tendencias)
- Índices de accesibilidad
- Variables ambientales de rasters (temperatura, NDVI)

7 Parte 6: Integración Vector-Raster

7.1 Estadísticas Zonales

Las estadísticas zonales calculan resúmenes de raster dentro de polígonos.

```
import numpy as np
  import geopandas as gpd
  from shapely.geometry import Polygon
  import matplotlib.pyplot as plt
  # Crear raster de temperatura (100x100)
  np.random.seed(42)
  x = np.linspace(-70.70, -70.60, 100)
  y = np.linspace(-33.50, -33.40, 100)
10 X, Y = np.meshgrid(x, y)
11
12 # Temperatura con gradiente + islas de calor
13 temperatura = 20 + (X + 70.65) * 10 + (Y + 33.45) * 5
14 # Agregar islas de calor urbanas
15 for i in range(3):
      cx, cy = np.random.uniform(-70.68, -70.62), <math>np.random.uniform(-33.48, -70.62)
16
      -33.42)
      isla_calor = 5 * np.exp(-((X - cx)**2 + (Y - cy)**2) / 0.001)
17
18
      temperatura += isla_calor
19
  # Crear comunas (poligonos)
20
  comunas = gpd.GeoDataFrame({
21
       'nombre': ['Comuna A', 'Comuna B', 'Comuna C', 'Comuna D'],
22
       'geometry': [
23
           Polygon([(-70.70, -33.50), (-70.65, -33.50),
24
                   (-70.65, -33.45), (-70.70, -33.45), (-70.70, -33.50)]),
25
          Polygon([(-70.65, -33.50), (-70.60, -33.50),
26
                   (-70.60, -33.45), (-70.65, -33.45), (-70.65, -33.50)]),
27
          Polygon([(-70.70, -33.45), (-70.65, -33.45),
28
                   (-70.65, -33.40), (-70.70, -33.40), (-70.70, -33.45)]),
29
          Polygon([(-70.65, -33.45), (-70.60, -33.45),
30
                   (-70.60, -33.40), (-70.65, -33.40), (-70.65, -33.45)])
31
      ]
32
  })
33
34
  # Funcion para estadisticas zonales manuales
35
  def zonal_stats_manual(raster, x_coords, y_coords, polygon):
      """Calcula estadisticas de un raster dentro de un poligono"""
37
      from matplotlib.path import Path
38
39
      # Crear mascara del poligono
40
      xx, yy = np.meshgrid(x_coords, y_coords)
41
      points = np.column_stack([xx.ravel(), yy.ravel()])
42
43
      # Vertices del poligono
44
      vertices = list(polygon.exterior.coords)
45
      path = Path(vertices)
46
47
      # Puntos dentro del poligono
      mask = path.contains_points(points).reshape(raster.shape)
49
50
      # Extraer valores dentro del poligono
51
      valores = raster[mask]
53
      # Calcular estadisticas
54
      stats = {
          'mean': valores.mean(),
```

```
'min': valores.min(),
           'max': valores.max(),
58
           'std': valores.std(),
           'count': len(valores)
60
61
62
63
       return stats
64
  # Calcular estadisticas zonales para cada comuna
65
  for idx, comuna in comunas.iterrows():
66
       stats = zonal_stats_manual(temperatura, x, y, comuna.geometry)
67
       for key, value in stats.items():
68
           comunas.loc[idx, f'temp_{key}'] = value
69
70
  print("=== Estadisticas Zonales de Temperatura ===")
71
72
  print(comunas[['nombre', 'temp_mean', 'temp_min', 'temp_max', 'temp_std']])
73
74 # Visualizar
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
76
77
  # Raster de temperatura
  im = axes[0].imshow(temperatura, extent=[-70.70, -70.60, -33.50, -33.40],
78
                      cmap='hot', origin='lower')
79
  axes[0].set_title('Temperatura ( C )')
80
  plt.colorbar(im, ax=axes[0])
81
82
83
  # Comunas
  comunas.plot(ax=axes[1], column='temp_mean', cmap='YlOrRd',
               legend=True, edgecolor='black')
  axes[1].set_title('Temperatura Media por Comuna')
86
87
  # Grafico de barras
88
  comunas.plot(kind='bar', x='nombre', y='temp_mean',
89
               ax=axes[2], color='orange', legend=False)
90
91 axes[2].set_title('Comparacion de Temperatura Media')
  axes[2].set_ylabel('Temperatura ( C )')
  axes[2].set_xlabel('Comuna')
95 plt.tight_layout()
  plt.show()
96
97
  # Comuna mas caliente y mas fria
98
  mas_caliente = comunas.loc[comunas['temp_mean'].idxmax()]
99
  mas_fria = comunas.loc[comunas['temp_mean'].idxmin()]
100
102
  print(f"\nComuna mas caliente: {mas_caliente['nombre']} ({mas_caliente['
      temp_mean']:.1f} C )")
  print(f"Comuna mas fria: {mas_fria['nombre']} ({mas_fria['temp_mean']:.1f} C )")
```

7.2 Extracción de Valores en Puntos

```
"""Extrae valor de raster en un punto"""
12
      # Encontrar indices mas cercanos
13
      x_idx = np.argmin(np.abs(x_coords - point.x))
14
      y_idx = np.argmin(np.abs(y_coords - point.y))
15
      return raster[y_idx, x_idx]
16
17
18
  # Extraer temperaturas
19
  puntos_muestreo['temperatura'] = puntos_muestreo.geometry.apply(
      lambda pt: extract_raster_value(pt, temperatura, x, y)
20
21
22
23 print("=== Temperaturas en Puntos de Muestreo ===")
24 print(puntos_muestreo.groupby('tipo')['temperatura'].agg(['mean', 'std']))
25
26 # Visualizar
27
  fig, ax = plt.subplots(figsize=(10, 8))
28
29 # Raster de fondo
_{30} im = ax.imshow(temperatura, extent=[-70.70, -70.60, -33.50, -33.40],
31
                 cmap='hot', origin='lower', alpha=0.7)
32
  # Puntos coloreados por temperatura
33
  scatter = ax.scatter(puntos_muestreo.geometry.x,
34
                       puntos_muestreo.geometry.y,
35
                       c=puntos_muestreo['temperatura'],
36
37
                       cmap='hot', s=100, edgecolor='black')
38
  # Comunas
39
  comunas.boundary.plot(ax=ax, color='black', linewidth=2)
40
plt.colorbar(im, ax=ax, label='Temperatura ( C )')
43 ax.set_title('Extraccion de Temperatura en Puntos')
44 ax.set_xlabel('Longitud')
ax.set_ylabel('Latitud')
47 plt.tight_layout()
48 plt.show()
```

Ejercicio

Ejercicio 6.1 - Proyecto Integrador:

Analicen la ubicación óptima para un nuevo parque urbano:

- 1. Creen un raster de densidad poblacional (pueden simularlo)
- 2. Creen polígonos de manzanas/barrios
- 3. Identifiquen parques existentes (puntos)
- 4. Calculen para cada manzana:
 - Densidad poblacional promedio (del raster)
 - Distancia al parque más cercano
 - Temperatura promedio (del raster de temperatura)
- 5. Creen un índice de prioridad: alta densidad + lejos de parques + alta temperatura
- 6. Visualicen y recomienden las 3 mejores ubicaciones

8 Ejercicios Integradores

8.1 Proyecto 1: Análisis de Accesibilidad a Servicios

Ejercicio

Analicen la accesibilidad a servicios de salud en una comuna:

1. Datos necesarios:

- Puntos: Centros de salud (hospitales, consultorios)
- Líneas: Red vial principal
- Polígonos: Manzanas censales con población
- Raster: Densidad poblacional o población por edad

2. Análisis a realizar:

- Buffer de 500m, 1km y 2km alrededor de centros de salud
- Calcular población dentro de cada buffer
- Identificar zonas sin cobertura
- Proponer ubicación para nuevo centro

3. Entregables:

- Mapa de cobertura actual
- Tabla con población por nivel de accesibilidad
- Mapa con propuesta de nuevo centro
- Justificación basada en datos

8.2 Proyecto 2: Monitoreo de Cambios en Cobertura Vegetal

Ejercicio

Detecten cambios en vegetación urbana:

1. Simular datos:

- Dos rasters NDVI (tiempo 1 y tiempo 2)
- Polígonos de parques y plazas
- Puntos de árboles urbanos

2. Análisis:

- Calcular diferencia NDVI
- Identificar pérdidas y ganancias
- Estadísticas zonales por parque
- Clasificar magnitud del cambio

3. Machine Learning:

- Features: NDVI_t1, NDVI_t2, distancia a vías, densidad urbana
- Target: Tipo de cambio (pérdida/estable/ganancia)
- Modelo: Random Forest o SVM
- Validación espacial

8.3 Proyecto 3: Optimización de Rutas de Recolección

Ejercicio

Optimicen rutas de recolección de residuos:

1. Crear red:

- Líneas: Calles con sentido y velocidad
- Puntos: Contenedores o puntos de recolección
- Polígonos: Zonas de servicio

2. Análisis:

- Clustering espacial de puntos de recolección
- Asignación de zonas a camiones
- Cálculo de ruta óptima por zona
- Estimación de tiempo y distancia

3. Optimización:

- Minimizar distancia total
- Balancear carga entre camiones
- Considerar horarios y tráfico
- Proponer mejoras

9 Recursos y Referencias

9.1 Documentación Oficial

- GeoPandas: https://geopandas.org
- Shapely: https://shapely.readthedocs.io
- Rasterio: https://rasterio.readthedocs.io
- Folium: https://python-visualization.github.io/folium/
- GDAL/OGR: https://gdal.org

9.2 Datos para Practicar

- Natural Earth: Datos vectoriales globales https://www.naturalearthdata.com
- OpenStreetMap: Datos urbanos detallados https://www.openstreetmap.org
- IDE Chile: Datos oficiales de Chile https://www.ide.cl
- Sentinel Hub: Imágenes satelitales https://www.sentinel-hub.com
- Earth Explorer: Landsat y otros https://earthexplorer.usgs.gov

9.3 Tutoriales Recomendados

- Automating GIS Processes (Universidad de Helsinki): Excelente curso completo con notebooks
- Earth Data Science (Universidad de Colorado): Enfocado en análisis ambiental
- Geocomputation with Python: Libro online gratuito y actualizado
- PyGIS: Recursos en español para SIG con Python

9.4 Cheat Sheet: Operaciones Comunes

```
13 dissolved = gdf.dissolve(by='campo') # Agrupar
14
  # Spatial join
15
resultado = gpd.sjoin(puntos, poligonos, predicate='within')
17
18 # === RASTER ===
19 # Leer
20 import rasterio
with rasterio.open('imagen.tif') as src:
      data = src.read(1) # Banda 1
22
      meta = src.meta
                          # Metadata
23
24
25 # Estadisticas zonales
26 import rasterstats
27 stats = rasterstats.zonal_stats(poligonos, 'raster.tif',
28
                                   stats=['mean', 'max', 'min'])
29
30 # === VISUALIZACION ===
31 # Estatico
gdf.plot(column='campo', cmap='viridis', legend=True)
33
34 # Interactivo
_{35} m = folium.Map(location=[-33.45, -70.65], zoom_start=11)
36 folium.GeoJson(gdf.to_json()).add_to(m)
  m.save('mapa.html')
```

${f Importante}$

Para el Laboratorio:

- Traigan laptop con ambiente configurado
- Descarguen datos de ejemplo de IDE Chile
- Formen grupos de 2-3 personas
- Preparen preguntas sobre los conceptos