Your name:

EECS 215. Final Exam April 25, 2016

This text consists of 8 problems with points as indicated to total 90 points. Please note that Laplace tables are attached at the end of the exam.

Read through the entire exam before beginning. **Show all work** (on the pages provided in this booklet) to earn partial credit.

No credit will be given if no work is shown.

Briefly explain major steps, include units, and write your final answers in the areas provided.

Do not unstaple the pages.

Exam policies

- The College of Engineering Honor Code is followed. Please write and sign the honor code pledge ("I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code.") in the box below.
- Only scientific calculators are allowed no exceptions.
- No communication of any kind is allowed. No use of cell phones, computers, or any devices besides *scientific* calculators.
- Three sides of 8.5x11 inch notes pages are allowed. No books allowed (closed book exam).

ite and sign th	ne honor pledg	ge:			
Signed:					
	l be given for	this exam with	out a signed he	onor pledge.	

Do not write in this space

Problem 1: []/10	Problem 5: []/5
Problem 2: []/10	Problem 6: []/15
Problem 3: []/15	Problem 7: []/10
Problem 4: []/10	Problem 8: []/15

Total score []/90

1. (10 points total). Given the circuit below:

- a. (2 points). Assuming switch has been connected to the 10V source for a long time prior to switching at t = 0, determine the initial value for the voltage $v_0(0^+)$.
- b. (8 points). Derive (but do not solve) the differential equation describing $v_o(t)$, $t \ge 0$.

Write your answer here:

- a. $v_o(0^+) =$ ______
- b. Differential equation for $v_0(t)$: _____

Problem 1 score: []/10

2. (10 points total). A circuit voltage is governed by the following differential equation and initial conditions:

$$\frac{d^2v}{dt^2} + 4\frac{dv}{dt} + 3v = -10e^{-5t}, \qquad v(0) = 3, \qquad \frac{dv}{dt}\Big|_{t=0} = v'(0) = 5$$

- a. (8 points). Use the Laplace transform method to solve for V(s). Express your answer as a ratio of polynomials that are factored into first and/or second order terms.
- b. (2 points). Is this circuit critically damped, underdamped, or overdamped?

Write your answer here:

a.
$$V(s) = _{-}$$

b. Which type of damping (circle one): critically damped, underdamped, overdamped

Problem 2 score: []/10

3. (15 points total). Given the circuit below:

- a. (9 points). Establish the nodal equations for nodes 1 and 2, and express the equations in matrix form. Simplify the equations so that each element of the matrix is a complex number in rectangular form. (See part b for an example of the required form.)
- b. (6 points). The nodal matrix equation for the same circuit but with some different component values is given below. (The 4Ω resistor from node 2 to ground is unchanged from the above figure.) Find the voltage at node 1 (V_1) when the 4Ω resistor has a current $I = 3 \angle 45^\circ$ A.

$$\begin{bmatrix} 3+2j & -5 \\ -2-3j & 1+2j \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} (5+2j)V_S \\ 0 \end{bmatrix}$$

Write your answer here:

- a. Please clearly circle your solution, written in matrix form, above or on the next page.
- b. $V_1 =$

Problem 3 score: []/15

- 4. (10 points total). An inductive load connected to a 220 V power supply draws a current of 7.6 A. (Both voltage and current are RMS values.) The average power delivered to the load is 1317 W.
 - a. (4 points). Find the apparent power, the reactive power, and the power factor of the load. (Don't forget to specify whether the power factor is leading or lagging.)
 - b. (4 points). The system frequency is $\omega = 377$ rad/sec. Determine the capacitance of a parallel capacitor that will result in a power factor of 1 (unity power factor) for the combined load and capacitor.
 - c. (2 points). What is the value of the current drawn from the power supply after the capacitor is installed?

		_
Write	our answer here:	
a.	Apparent power:	
b.	Power factor: Capacitance:	
	Current:	
	Problem 4 score: []/10	

5.	(5 points total). A load impedance with $S = 500 - j200$ VA is supplied from a voltage source
	$V_s = 10 \angle 20^o \text{ volts (RMS)}.$

- a. (2 points). Compute the current drawn by the load, expressed as an RMS phasor in polar form.
- b. (2 points). Determine the apparent power and the power factor of the load.
- c. (1 points). Sketch the complex power triangle, clearly labelling P, Q and S.

Write	your answer here:	
a.	Current:	
b.	Apparent power:	
	Power factor:	
c.	Please circle your clearly labeled power triangle above or on the next page.	
	Problem 5 score: []/5	

6. (15 points total). A circuit is characterized by the following transfer function:

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{5s + 2}{(s^2 + 2s + 1)}$$

Apply partial fraction expansion to find the output $v_o(t)$ if $v_i(t) = 10 u(t)$ Volts.

Write your answer here:

 $v_o(t) = \underline{\hspace{1cm}}$

Problem 6 score: []/15

7. (10 points). Given the circuit below with initial conditions $v_c(0) = 0$ and $i_L(0) = \frac{1}{2}A$.

- a. (3 points). Draw the s-domain circuit.
- b. (7 points). Solve for $V_o(s)$, the Laplace transform of $v_o(t)$. Express your answer as a ratio of polynomials that are factored into first and/or second order terms.

Write your answer here:

- a. Please circle the s-domain circuit above or on the next page.
- b. $V_o(s)$

Problem 7 score: []/10

8. (15 points total). A circuit has a voltage transfer function as follows:

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{500s}{s^2 + 1000s + 250,000}$$

- a. (2 points). What is the resonant frequency ω_0 for the filter?
- b. (2 points). What is M_o , the magnitude of the transfer function at the resonant frequency?
- c. (3 points). Write H(s) in standard form for Bode plots.
- d. (5 points). Sketch the straight-line approximation to the magnitude response using the semilog paper on the page 18.
- e. (2 points). Indicate the location of ω_o on the Bode plot.
- f. (1 point). What type of filter does this circuit represent?

Write	your answer here:
a. b.	$\omega_o = \underline{\hspace{1cm}}$ $M_0 = \underline{\hspace{1cm}}$
c.	H(s) =
d.	Sketch the magnitude plot on the semilog paper provided on page 18.
e.	Label ω_o on your sketch on page 18.
f.	Filter type:
	Problem 8 score: []/15

Property f(t) $\mathbf{F}(\mathbf{s}) = \mathbf{\mathcal{L}}[f(t)]$

- 1. Multiplication by constant $K f(t) \iff K F(s)$
- $K_1 f_1(t) + K_2 f_2(t) \iff K_1 F_1(s) + K_2 F_2(s)$ 2. Linearity
- 3. Time scaling f(at), $a > 0 \iff \frac{1}{a} \mathbf{F}\left(\frac{\mathbf{s}}{a}\right)$
- 4. Time shift $f(t|-T) u(t-T) \iff e^{-Ts} \mathbf{F}(s), T \ge 0$
- 5. Frequency shift $e^{-at} f(t) \iff F(s+a)$
- 6. Time 1st derivative $f' = \frac{df}{dt} \iff \mathbf{s} \mathbf{F}(\mathbf{s}) f(0^-)$
- 7. Time 2nd derivative $f'' = \frac{d^2 f}{dt^2} \iff s^2 F(s) s f(0^-)$ $f'(0^-)$ 8. Time integral $\int_{0^-}^t f(\tau) d\tau \iff \frac{1}{s} F(s)$ 9. Frequency derivative $t f(t) \iff -\frac{d}{ds} F(s)$ 10. Frequency integral $\frac{f(t)}{t} \iff \int_{s}^{\infty} F(s') ds'$

Laplace Transform Pairs				
	f(t)		$\mathbf{F}(\mathbf{s}) = \mathcal{L}[f(t)]$	
1	$\delta(t)$	\leftrightarrow	1	
1a	$\delta(t-T)$	\leftrightarrow	$e^{-T\mathbf{s}}$	
2	1 or $u(t)$	\leftrightarrow	$\frac{1}{s}$	
2a	u(t-T)	\leftrightarrow	$\frac{e^{-Ts}}{s}$	
3	$e^{-at} u(t)$	\leftrightarrow	$\frac{1}{s+a}$	
3a	$e^{-a(t-T)}\;u(t-T)$	\leftrightarrow	$\frac{e^{-Ts}}{s+a}$	
4	t u(t)	⇔	$\frac{1}{2}$	
4a	$(t-T) u(t-T)$ $t^2 u(t)$	\leftrightarrow	$\frac{e^{-Ts}}{s^2}$	
5	$t^2 u(t)$	\leftrightarrow	$\frac{2}{s^3}$	
6	$te^{-at} u(t)$	\leftrightarrow	$\frac{ 1 }{(s+a)^2}$	
7	$t^2e^{-at} u(t)$	\leftrightarrow	$\frac{(\mathbf{s}+a)^2}{2}$ $\frac{2}{(\mathbf{s}+a)^3}$	
8	$t^{n-1}e^{-at}\ u(t)$	\leftrightarrow	$\frac{(n-1)!}{(s+a)^n}$	
9	$\sin \omega t \ u(t)$	\leftrightarrow	$\frac{\omega}{\mathrm{s}^2 + \omega^2}$	
10	$\sin(\omega t + \theta) \ u(t)$	\leftrightarrow	$\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$	
11	$\cos \omega t \ u(t)$	*	$\frac{\mathrm{s}}{\mathrm{s}^2 + \omega^2}$	
12	$\cos(\omega t + \theta) \ u(t)$	\leftrightarrow	$\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$	
13	$e^{-at}\sin\omega t\ u(t)$	*	$\frac{\omega}{(\mathbf{s}+a)^2 + \omega^2}$	
14	$e^{-at}\cos\omega t\ u(t)$	\leftrightarrow	$\frac{(s+a)^2 + \omega^2}{s+a}$ $\frac{(s+a)^2 + \omega^2}{(s+a)^2 + \omega^2}$	
15	$2e^{-at}\cos(bt-\theta)\ u(t)$	⇔	$\frac{e^{j\theta}}{s+a+jb} + \frac{e^{-j\theta}}{s+a-jb}$	
16	$\frac{2t^{n-1}}{(n-1)!} e^{-at} \cos(bt - \theta) u(t)$	⇔	$\frac{e^{j\theta}}{(s+a+jb)^n} + \frac{e^{-j\theta}}{(s+a-jb)^n}$	