

Storage Management

Venkatesh Prasad

Department of Computer Science

Implementing File-Systems – Disk Space Allocation Methods

Venkatesh Prasad

Department of Computer Science

Slides Credits for all PPTs of this course

- Slides of Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne - 9th edition 2013 and some slides from 10th edition 2018
- 2. Some conceptual text and diagram from Operating Systems Internals and Design Principles, William Stallings, 9th edition 2018
- 3. Some presentation transcripts from A. Frank P. Weisberg
- Some conceptual text from Operating Systems: Three Easy Pieces,
 Remzi Arpaci-Dusseau, Andrea Arpaci Dusseau

Allocation Methods - Contiguous

- An allocation method refers to how disk blocks are allocated for files:
- Contiguous allocation each file occupies set of contiguous blocks
 - Best performance in most cases
 - Simple only starting location (block #) and length (number of blocks) are required
 - Supports both sequential and direct access
 - Problems include finding space for file, knowing file size, external fragmentation, need for compaction off-line (downtime) or on-line

Contiguous Allocation

Mapping from logical to physical

- LA Length of the area allocated for this file
- Q = displacement into index table
- Block to be accessed = Q + starting address
- Displacement into block = R

		,
file	start	length
count	0	2
tr	14	3
mail	19	6
list	28	4
f	6	2

directory

Extent-Based Systems

PES UNIVERSITY ONLINE

Many newer file systems (i.e., Veritas File System) use a modified contiguous allocation scheme

Extent-based file systems allocate disk blocks in extents

- An extent is a contiguous block of disks
 - Extents are allocated for file allocation
 - A file consists of one or more extents

Allocation Methods - Linked

PES UNIVERSITY

- Linked allocation each file a linked list of blocks
 - File ends at null pointer
 - No external fragmentation
 - Each block contains pointer to next block
 - No compaction, external fragmentation
 - Free space management system called when new block needed
 - Improve efficiency by clustering blocks into groups but increases internal fragmentation
 - Reliability can be a problem
 - Locating a block can take many I/Os and disk seeks

Allocation Methods – Linked (Cont.)

- FAT (File Allocation Table) variation
 - Beginning of volume has table, indexed by block number
 - Much like a linked list, but faster on disk and cacheable
 - New block allocation simple

Linked Allocation

■ Each file is a linked list of disk blocks: blocks may be scattered anywhere on the disk

Mapping

Block to be accessed is the Qth block in the linked chain of blocks representing the file.

Linked Allocation

- •Each block contains a pointer to the next block.
- •If each block is 512 bytes and a disk address (pointer) requires 4 bytes then the user sees blocks of 508 bytes (i.e. some disk space is wasted)
- •Collect blocks into multiples called **clusters** and allocate clusters rather than blocks

File-Allocation Table (variation on linked allocation)

- •Unused block is indicated by a table value of 0
- •To allocate a new block to a file, find the first 0-valued table entry and replace the previous EOF value with the address of the new block.
- •Then replace 0 with EOF value

Allocation Methods - Indexed

■ Indexed allocation

 Each file has its own index block(s) of pointers to its data blocks

Logical view

Example of Indexed Allocation

- In this scheme, a special block known as the Index block contains the pointers to all the blocks occupied by a file.
- Each file has its own index block. The ith entry in the index block contains the disk address of the ith file block.
- The directory entry contains the address of the index block as shown in the figure.

Allocation Methods – Indexed (Cont.)

Advantages:

- This supports direct access to the blocks occupied by the file and therefore provides fast access to the file blocks.
- > It overcomes the problem of external fragmentation.

Disadvantages:

- The pointer overhead for indexed allocation is greater than linked allocation.
- For very small files, say files that expand only 2-3 blocks, the indexed allocation would keep one entire block (index block) for the pointers which is inefficient in terms of memory utilization. (Note: In linked allocation we lose the space of only 1 pointer per block.)

Indexed Allocation – Mapping (Cont.)

- For files that are very large, single index block may not be able to hold all the pointers.
- Other Schemes such as Linked scheme, Multilevel index and Combined Scheme are used.

Combined Scheme: UNIX UFS

4K bytes per block, 32-bit addresses

More index blocks than can be addressed with 32-bit file pointer

Performance

PES UNIVERSITY

- Best method depends on file access type
 - Contiguous great for sequential and random
- Linked good for sequential, not random
- Declare access type at creation -> select either contiguous or linked
- Indexed more complex
 - Single block access could require 2 index block reads then data block read
 - Clustering can help improve throughput, reduce
 CPU overhead

THANK YOU

Venkatesh Prasad

Department of Computer Science Engineering

venkateshprasad@pes.edu