Topological characterisation of affine \mathbb{C} -schemes (Stein manifolds)

Tien NGUYEN MANH

June 11, 2018

Contents

1	The statement of Cieliebak-Eliashberg about topology of	
	Stein manifold.	1
2	Morse theory and strategy of the proof.	3
3	J-convex functions	3
4	Extension of complex structure.	3
5	Extension of <i>J</i> -convex function.	3
	This is the note of my presentation as final exam of the course Inta	ro-
du	ction au h-principe de Gromov given by Patrick Massot at Departeme	$_{ m nt}$
de	Mathématiques d'Orsay. I presented how Cieliebak and Eliashberg	[?]
ap	plied h-principle to characterise the topology of Stein manifold. Furth	ier
dis	cussion can be found in the book [?].	

1 The statement of Cieliebak-Eliashberg about topology of Stein manifold.

Stein manifolds are affine schemes over \mathbb{C} . There are many equivalent definitions of Stein manifolds, but we will use the following two:

• They are complex manifolds that can be properly embedded into \mathbb{C}^N for some $N \in \mathbb{Z}_{>0}$.

• They are complex manifolds that admit an exhaustive, strictly plurisubharmonic (PSH) function ϕ . The exhaustive part means that ϕ is a proper, real-value function bounded below, and the strictly plurisubharmonic part means that $-dd^c\phi(v,Jv)>0$ for all tangent vector v, where $d^c\phi=d\phi\circ J$.

Strictly PSH condition locally reads: $\frac{\partial^2 \phi}{\partial z^i \bar{\partial} z^j} \xi^i \bar{\xi}^j > 0$, this means that the restriction of ϕ on each complex line is subharmonic, i.e. it satisfies the sub-mean property.

Since we will frequently change the complex structure on manifold, it is better to make it appear explicitly in the notation of plurisubharmonicity. So instead of saying a function ϕ is (strictly) PSH with respect to the complex structure J, we will say that ϕ is J-convex.

Example 1 (Stein manifolds). Here are a few example of Stein manifolds:

- 1. The complex affine spaces \mathbb{C}^n , a sub complex manifold of \mathbb{C}^N .
- 2. Let X be a closed sub complex manifold of $\mathbb{P}^N_{\mathbb{C}}$ and $H \subset \mathbb{P}^N_{\mathbb{C}}$ be a complex hyperplan. Then $X \setminus H \hookrightarrow \mathbb{P}^N_{\mathbb{C}} \setminus H = \mathbb{C}^N$ is a Stein manifold.

Our goal will be to answer the following question:

Question. Topologically, what are Stein manifolds.

In other words, we want to find a necessary and sufficient condition of a differential manifold V (without boundary) such that we can equip V with a complex structure J that makes it a Stein manifold. It is easy to see that the following two conditions are necessary:

- 1. V admits an almost complex structure.
- 2. V is an open manifold, i.e. there is no compact connected component of V. This is an immediate consequence of Maximum modulus principle for holomorphic functions.

There is another less obvious necessary condition:

Remark 1. Let (V, J, ϕ) be a Stein manifold. By a generic perturbation we can suppose that ϕ is a Morse function (the Hessian of ϕ is non-degenerate at the critical points of ϕ). Then the index of any critical point p of ϕ is less than $n = \dim_{\mathbb{C}} V$.

The remark follows from a kind of Pigeonhole principle. Suppose that the index of p is strictly bigger than n, then there exists a complex dimension

in T_pV where the Hessian of ϕ is definite negative, this means that there is a complex curve C passing by p on which the function ϕ admits a local maximum at p. This contradicts the pluriharmonicity.

It was proved by Cieliebak and Eliashberg that these conditions are sufficient.

Theorem 1 (Cieliebak-Eliashberg). Let V be a smooth manifold of real dimension 2n > 4 and J be an almost complex structure on V and ϕ be an exhaustive Morse function without any critical points of index k > n. Then there exists an integrable complex structure \tilde{J} such that (V, \tilde{J}) is a Stein manifold.

In fact, the authors proved that one can obtain \tilde{J} by a homotopy of J and the function ϕ is \tilde{J} -convex. In the next part, we will not only modify the complex structure J, but also modify the function ϕ to a PSH function.

- 2 Morse theory and strategy of the proof.
- 3 J-convex functions
- 4 Extension of complex structure.
- 5 Extension of *J*-convex function.