第五章 触发器(Flip-Flop)

(第六章) 时序逻辑电路 触发器 或门, 非门 与门,

触发器原理

- •基本SR触发器 (锁存器)
- •钟控触发器(电平触发)
- •主从触发器(脉冲触发)
- •边缘触发器(边缘触发)

触发器描述与转换

第5章

需求与改进

基本逻辑门(chapter2)

希望有记忆能力

5.1.1 基本SRFF(锁存器)

■ 希望有 | 门控能力

5.1.2 钟控SRFF(电平触发)

希望有 时钟沿触发能力

5.1.3 主从SRFF(脉冲触发) 缺点: clk为1期间, 要求S,R 稳定不变 希望有 可靠的沿触发能力

5.1.4 边沿SRFF(边沿触发)

S _D 'R _D '	Q*
0 0	111
0 1	1
1 0	0
1 1	Q

CLK	SR	Q*
1	0 0	Q
1	0 1	0
1	10	1
1	11	1 ①
0	XX	Q

CLK	SR	Q*
4	0 0	Q
7	0 1	0
7	10	1
Ŧ	11	1 ^①
0, 1	XX	Q

需求与改进

基本逻辑门(chapter2)

希望有记忆能力

5.1.1 基本SRFF(锁存器)

希望有 门控能力

5.1.2 钟控SRFF(电平触发)

希望有 时钟沿触发能力

5.1.3 主从SRFF(脉冲触发)

希望有 可靠的沿触发能力

5.1.4 边沿SRFF(边沿触发)

5. 2. 1 主从JK触发器(主从JKFF)

(一次性变化)

一个时钟周期中, 状态仅翻转- 次

消除不同时为1的约束

3)特性表

Clk	JK	Q*	
√	00	Q	保持
1 €	0 1	0	置0
1	10	1	置1
₹	11	Q'	取反
0, 1	XX	Q	保持

2) 内部电路

- (1) J=0, K=0, clk=1 时,S=0,R=0, →Qm保持原值,
- 则 clk↓后 ,从FF的Q*=Q

S = Qm =]

- (2) J=0, K=1, clk=1 时,S=0,若Q=0,则R=0 \rightarrow Qm保持0,则 clk \downarrow 后,从FF的Q*保持0 }置0 S=0,若Q=1,则R=1 \rightarrow Qm=0,则 clk \downarrow 后,从FF的Q*=0
- (3) J=1, K=0, clk=1 时,R=0,若Q=0,则S=1 → Qm=1,则 clk↓后,从FF的Q*=1 R=0,若Q=1,则S=0 → Qm保持1,则 clk↓后,从FF的Q*保持1 }置1
- (4) J=1, K=1, clk=1 时,若Q=0,则S=1,R=0 \rightarrow Qm=1 , 则 clk \downarrow 后,从FF的Q*=Q'=1 若Q=1,则S=0,R=1 \rightarrow Qm=0,则 clk \downarrow 后,从FF的Q*=Q'=0 } 取反

例1 已知主从JKFF的输入波形,求(a)(b)(c)三种情况下的输出波形

CIk

J

主从JKFF缺点

要求clk=1期间, J,K值保持稳定不变, 否则可能导致输出错误

Q=1, clk=1期间,K不允许变高,否则Q出错

Q=0, clk=1期间,J不允许变高,否则Q出错

5. 2. 2 边沿JK触发器(边沿JKFF)

例2 已知边沿JKFF的输入波形, 求输出波形

Clk	JK	Q*
1	0 0	Q
1	0 1	0
1	10	1
1	11	Q'
0,1	XX	Q

需求与改进

基本逻辑门(chapter2)

希望有记忆能力

5.1.1 基本SRFF

5.1.2 钟控SRFF

5.1.3 主从SRFF

5.1.4 边沿SRFF

约束 S_D'+R_D'=1

改进

5.3.1钟控DFF

CLK—C1

1R

约束 SR=0

改进

-- *Q′*

不同时为

5.3.2边沿DFF

5.3.1 钟控D触发器(钟控DFF)

2) 特性表

Q*=D

例3 已知钟控DFF的输入波形, 求输出波形

5.3.2 边沿D触发器(边沿DFF)

5. 3. 2 边沿D触发器(边沿DFF)

内部结构方法II: 维持阻塞型边缘DFF

2)特性表

3) 逻辑符号

例4 已知边沿DFF的输入波形, 求输出波形

5.3.2 边沿D触发器(边沿DFF)

内部结构方法III: 两个电平触发器构成的边缘触发DFF

· 电路结构: CMOS

Page250 ,5.13,5.15 , CMOS 边沿触发器

FF₁

• 工作原理:

(1) CLK = 0时, $\begin{cases} TG_1$ 通, TG_2 断 $\rightarrow Q_1 = D, Q_1$ 随着D变化 TG_3 断, TG_4 通 $\rightarrow Q$ 保持,自锁

(2) $CLK \uparrow \Xi$, $\begin{cases} TG_1 \text{ 断}, TG_2 \text{ 通} \rightarrow \text{"} 主 \text{"} 保持此前的状态 D \\ TG_3 \text{ 通}, TG_4 \text{ 断} \rightarrow Q = Q_1 \end{cases}$

(3) $CLK \downarrow \begin{cases} TG_1$ 通, TG_2 断 $\rightarrow Q_1 = D$,接收新的输入 TG_3 断, TG_4 通 $\rightarrow Q$ 保持,反馈通路接通 直到下个CLK个后,输出才能变化。

• 特性表

CLK	D	Q	Q^*
0,1	X	X	Q
1	0	X	0
1	1	X	1

5.3.2 边沿D触发器(边沿DFF)

触发器保存下来的状态是CLK作用沿到达时刻的输入状态。

特别注意: 当D端信号和CLK作用沿同时跳变时,

触发器存入的是D跳变前的状态。

例5 已知边沿DFF的输入波形,求输出波形

作业

- 5.12 主从JKFF, 带异步置数清零端
- 5.15 边沿JKFF, 带异步置数清零端
- 5.13 边沿DFF
- 5.19 JK,SR,D边缘FF
- 5.2**②** 边缘JKFF
- 5.2**7** 边缘DFF