Tota	l No	o. of Questions : 8]	SEAT No. :	
PB		22	[Total No. of Pages : 2	
		[6261]-27 S.E. (E & TC/Electronics/Computer E	_	O
		DIGITAL CIRCUITS	angineering)	
		(2019 Pattern) (Semester - III) (2	204182)	
<i>m</i> :	•			
		½ Hours] ions to the candidates:	[Max. Mari	ks:70
110001	<i>1</i>)	Answer Q. No.1 or Q.No.2, Q.No.3 or Q.No.4, Q.No.5 or Q	Q.No.6 and Q.No.7 or Q).No.8.
	<i>2</i>)	Neat diagrams must be drawn wherever necessary.	~ ~	
	<i>3</i>)	Figures to the right indicate full marks.		
	<i>4</i>)	Use of Calculator is allowed.	9	
	<i>5</i>)	Assume Suitable data, if necessary.		
Q 1)	a)	Explain implementation of full adder using 8:	1 MUX.	[6]
~ .	b)	Explain 3-bit parity checker circuit.) Y	[6]
	c)	Implement 1:16 demux using 1:4 demux,		[6]
		20, 2.		
		QR		
Q 2)	a)	Implement the given logic function using a 4:1	l multiplexer.	[6]
		$f(A, B, C) = \sum m(0, 1, 2, 4, 7)$		
	b)	Implement 3-bit parity generator circuit.		[6]
	c)	Explain the working of a half-subtractor? Draw	wits logic diagram.	[6]
	ŕ	.6.		
Q3)	a)	Design a circuit to generate the following seque	ence using DFFs 10	11.[8]
		× .		Y
	b)	Explain with neat diagram the types of shift reg	gister.	[9]
		OR		
<i>Q4</i>)	a)	Design a 3- Bit asynchronous counter using J	KFE.	[9]
	b)	Convert SR flip - flop into JK flip flop.		[8]
			, 03,	
Q 5)	a)	Write short note on state diagram and state table	with suitable examn	ole.[6]
رد	b)	Write short note on Principal Component of an	1. '	[6]
	0)	The short hote on I interput component of the	is I solve Citate.	[6]

Draw the state diagram of SR flip flop and JK flip flop.

c)

[6]

Q6)	a)	Draw ASM chart for 2 bit binary counter having enable line E St $E = 1$, Count Enable and $E = 0$, Count Disable.		
	b)	Compare Mealy and Moore machine.		
Q7)	a)	Classify and explain the characteristics of memories.		
	b)	Implement 3-bit binary to Gray code converter using PROM.		
		OR		
Q8)	a)	Design and implement 2-bit comparator using PAL?	[9]	
~	b)		[8]	
		Explain CPLD architecture. * * * P. M. D.		
		9.7		
[626	[1]-2	2		