ACC Analysis

Project Effect Fire Dung Beetle

David Vanegas-Alarcón

November 21, 2024

```
ACCDB <- read.csv("DataACC.csv", header = T, sep = ";")

ID <- ACCDB[1]
```

Data Frame Summary

```
dfSummary(ACCDB, plain.ascii = FALSE, style = "grid", graph.magnif = 0.75,
     valid.col = FALSE, tmp.img.dir = "/tmp")
```

temporary images written to 'C:\tmp'

```
### Data Frame Summary
#### ACCDB
**Dimensions:** 15 x 18
**Duplicates:** 0
```

No 	Variable	Stats / Values 	Freqs (% of Valid) 	Graph 	Missing
+==== 1 	ID\ [character] 	1\. 13\ 2\. 14\ 3\. 18\ 4\. 2\ 5\. 3\ 6\. 6\ 7\. 9\ 8\. JTCP1\ 9\. S1.3b\ 10\. S3\ [5 others]	1 (6.7%) \ 1 (6.7%) \ 1 (6.7%) \ 1 (6.7%) \ 1 (6.7%) \ 1 (6.7%) \ 1 (6.7%) \ 1 (6.7%) \ 1 (6.7%) \ 1 (6.7%) \ 1 (6.7%) \ 1 (6.7%) \ 5 (33.3%)		O\ (0.0%)
+ 2 		1\. Biodiverse pasture\ 2\. Grass Monoculture\ 3\. Secondary Forest	5 (33.3%)\ 5 (33.3%)\ 5 (33.3%)	 	0\ (0.0%)
+ 3 	FireRegime\ [character]	S	5 (33.3%)\ 5 (33.3%)\ 5 (33.3%)	 	0\ (0.0%)

4	Abundance\ [integer] 	Mean (sd) : 71 (48)\ min < med < max:\ 13 < 70 < 179\ IQR (CV) : 73.5 (0.7)	15 distinct values 	 	0\ (0.0%)
5	Richness\ [integer] 	Mean (sd) : 7 (1.8)\ min < med < max:\ 4 < 7 < 10\ IQR (CV) : 2 (0.3)	4 : 1 (6.7%) \ 5 : 2 (13.3%) \ 6 : 4 (26.7%) \ 7 : 2 (13.3%) \ 8 : 3 (20.0%) \ 9 : 1 (6.7%) \ 10 : 2 (13.3%)	 	0\ (0.0%)
6	q0\ [integer] 	Mean (sd) : 7.1 (1.8)\ min < med < max:\ 4 < 7 < 10\ IQR (CV) : 2 (0.3)	4 : 1 (6.7%) \ 5 : 2 (13.3%) \ 6 : 4 (26.7%) \ 7 : 1 (6.7%) \ 8 : 4 (26.7%) \ 9 : 1 (6.7%) \ 10 : 2 (13.3%)	 	0\ (0.0%)
7	q1\ [numeric] 	Mean (sd) : 4.2 (1.2)\ min < med < max:\ 2.4 < 4.1 < 6\ IQR (CV) : 2 (0.3)	14 distinct values 	 	0\ (0.0%)
8	q2\ [numeric] 	Mean (sd) : 3.3 (1.2)\ min < med < max:\ 1.7 < 3 < 5.1\ IQR (CV) : 1.9 (0.3)	14 distinct values 	 	0\ (0.0%)
9	pH\ [numeric] 	Mean (sd) : 6 (0.3)\ min < med < max:\ 5.5 < 5.9 < 6.7\ IQR (CV) : 0.3 (0)	14 distinct values 	 	0\ (0.0%)
10	Humidity\ [numeric] 	Mean (sd) : 29.9 (6.8)\ min < med < max:\ 20.8 < 28.7 < 43.3\ IQR (CV) : 8 (0.2)	15 distinct values 	 	0\ (0.0%)
11	DA\ [numeric] 	Mean (sd) : 2 (0.1)\ min < med < max:\ 1.8 < 2.1 < 2.2\ IQR (CV) : 0.2 (0.1)	13 distinct values 	 	0\ (0.0%)
12	N\ [numeric] 	Mean (sd) : 0.2 (0.1)\ min < med < max:\ 0 < 0.2 < 0.5\ IQR (CV) : 0.1 (0.7)	14 distinct values 	 	0\ (0.0%)
	+ C\ [numeric]	Mean (sd) : 2.8 (1.4)\ min < med < max:\	15 distinct values 	+ 	+ 0\ (0.0%)

	 	1.2 < 2.5 < 5.9\ IQR (CV) : 1.7 (0.5)	 		
14 14 		Mean (sd) : 6.1 (9.5)\ min < med < max:\ 0.7 < 2.8 < 34.8\ IQR (CV) : 2.2 (1.5)	14 distinct values - -		0\
15 15 	P_total\ [numeric] 	Mean (sd) : 306.9 (79.8)\ min < med < max:\ 156.7 < 304.4 < 447.9\ IQR (CV) : 95.3 (0.3)	15 distinct values 		0\
16 16 	Arena\ [numeric] 	Mean (sd) : 37.7 (8.8) min < med < max: 24.8 < 36.8 < 52.8 IQR (CV) : 10.5 (0.2)	12 distinct values - -		0\
17	Arcilla\ [numeric] 	Mean (sd) : 44.5 (8.9)\ min < med < max:\ 30.2 < 45.2 < 61.2\ IQR (CV) : 14.5 (0.2)	12 distinct values 	! [] (/tmp/ds0415.png)	0\
18 	Limo\ [integer] 	Mean (sd) : 17.8 (3.8)\ min < med < max:\ 13 < 17 < 24\ IQR (CV) : 6.5 (0.2) 	13 : 1 (6.7%) \ 14 : 4 (26.7%) \ 15 : 1 (6.7%) \ 17 : 2 (13.3%) \ 19 : 2 (13.3%) \ 20 : 1 (6.7%) \ 21 : 1 (6.7%) \ 22 : 1 (6.7%) \ 24 : 2 (13.3%)		0\

Analysis ACC

Obtenemos los valores de las correlaciones entre variables

Conocemos las variables de coprofagos a relacionar

```
names(ACCDB[, 4:8])

[1] "Abundance" "Richness" "q0" "q1" "q2"

Conocemos las variables de suelo a relacionar

names(ACCDB[, 9:18])

[1] "pH" "Humidity" "DA" "N" "C" "P_disp"

[7] "P_total" "Arena" "Arcilla" "Limo"
```


Calculamos las correlaciones canónicas.

```
cc1 <- cc(dungbeetles, soil)
cc1$cor</pre>
```

[1] 0.9991714 0.9177246 0.7935859 0.6399311 0.3757272

Calculamos los vectores canónicos

cc1[3:4]

\$xcoef

```
[,1] [,2] [,3] [,4] [,5]
Abundance 0.006272365 -0.02566235 -0.01636723 -0.0211524 0.003455225
Richness 0.699480607 0.37125319 -1.19936491 -1.0290469 -3.949423043
q0 -0.053908847 0.44016596 3.17233910 1.1690544 3.745015457
q1 -2.272684000 -2.91841159 -9.47006677 4.0408423 0.477779784
q2 2.642174667 2.99564029 8.27438012 -4.7142311 -0.458064794

$ycoef
```

```
6.033541000 -6.253917331 1.795131e+00 0.015617629 -6.283923838
DA
     -22.936628986 4.648850573 -2.937635e+01 -5.352747436 46.890802493
N
      3.648240062 -0.669148264 2.639224e+00 0.457785279 -5.111987653
С
      P_disp
P_total
      -0.005923043 -0.004098261 5.496685e-03 0.012075794 0.008560338
Arena
      Arcilla
      -0.026390175 -0.047091599 2.232582e-02 0.048477598 0.031151203
Limo
```

```
barplot(cc1$cor, xlab = "Dimensión", ylab = "Correlaciones canónicas", ylim = c(0, 1))
```


Dimensión

Prueba de dimensiones canónicas

```
rho <- cc1$cor

n <- dim(ACCDB)[1]
p <- length(dungbeetles)
q <- length(soil)
p.asym(rho, n, p, q, tstat ="Wilks")</pre>
```

```
Wilks' Lambda, using F-approximation (Rao's F):

stat approx df1 df2 p.value
1 to 5: 4.907268e-05 0.5253122 50 3.364210 0.8653439
2 to 5: 2.962345e-02 0.2373145 36 5.484777 0.9967445
3 to 5: 1.877498e-01 0.2081070 24 6.401825 0.9979303
4 to 5: 5.071284e-01 0.1732453 14 6.000000 0.9966933
5 to 5: 8.588291e-01 0.1095840 6 4.000000 0.9899378
```