Les points précédés d'un astérisque sont l'objet de questions de cours. Les exercices portent sur le chapitre 10 : limites de fonctions, continuité, ainsi que le début du chapitre 11 : dérivabilité. On évitera les exercices trop techniques, nécessitant Rolle ou les accroissements finis. Les études de fonctions sont tout à fait dans l'esprit du programme de cette colle.

Chapitre 11 : Dérivabilité de fonctions de $\mathbb R$ dans $\mathbb K$.

I intervalle réel non vide et non réduit à un point, $f: I \to \mathbb{K}$, $a \in I$.

Fonctions dérivables, fonction dérivée

Taux d'accroissement en a de f, $\tau_a(f): I\setminus \{a\} \to \mathbb{K}$, (f(x)-f(a))/(x-a). On dit que f est dérivable en a lorsque $\tau_a(f)$ admet une limite finie ℓ en a, auquel on note $f'(a)=\ell$. (**) f est dérivable en a ssi elle admet un développement limité à l'ordre en f en f

Extrema et derivation

 (\star) Si f, dérivable en a, admet un extremum local en un point a intérieur à I, alors f'(a) = 0. Théorème de Darboux. (\star) Théorème de Rolle. a < b, $f : [a, b] \to \mathbb{R}$, continue, dérivable sur]a, b[tel que f(a) = f(b). Alors $\exists c \in]a$, b[, f'(c) = 0. Extensions sur des intervalles non bornés. Application au comptage et à la localisation de racines de fonctions, à la recherche de points fixes.

Accroissements finis

 (\star) Egalité des accroissements finis : $a < b, f : [a,b] \to \mathbb{R}$ continue, dérivable sur]a,b[. Alors $\exists c \in]a,b[,f'(c) = (f(b)-f(a))/(b-a)$. Egalité généralisée des accroissements finis. Inégalité des accroissements finis dans le cas des fonctions à valeurs réelles sous l'hypothèse f' bornée. Extension de l'inégalité des accroissements finis aux fonctions à valeurs complexes. (\star) f dérivable sur un intervalle est croissante ssi $f' \geq 0$. f dérivable sur un intervalle est strictement croissante ssi $f' \geq 0$ et $(f')^{-1}(\{0\})$ est d'intérieur vide. Application à « l'intégration » d'inégalités même si les dérivées ne sont pas continues.

* * * * *