

recursive function is URM-computable

 ${\bf Canonical\ name} \quad {\bf Recursive Function Is URM computable}$

Date of creation 2013-03-22 19:04:51 Last modified on 2013-03-22 19:04:51

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)

Entry type Result
Classification msc 03D10
Classification msc 68Q05

Related topic RecursiveFunction

Proposition 1. Every recursive function is URM-computable function.

The proof can be broken down in several simple steps.

Proposition 2. The zero function, the successor function, and the projection functions are URM-computable.

Proof. The zero function is computed by Z(1), the successor function is computed by S(1), and for any n > 0, the *i*-th projection function $p_i^n(x_1, \ldots, x_n) = x_i$ is computed by T(i, 1).

Proposition 3. URM-computability is closed under functional composition.

Proof. This is proved in the entry on combining URMs. \Box

Proposition 4. URM-computability is closed under primitive recursion.

Proof. Suppose $f: \mathbb{N}^m \to \mathbb{N}, g: \mathbb{N}^{m+2} \to \mathbb{N}$ are computed by M, N respectively. Let $h: \mathbb{N}^{m+1} \to \mathbb{N}$ be obtained from f, g by primitive recursion, namely,

$$h(0, x_1, \dots, x_m) := f(x_1, \dots, x_m)$$

 $h(n+1, x_1, \dots, x_m) := g(h(x_1, \dots, x_m, n), n, x_1, \dots, x_m).$

Let P be the following URM:

$$T(1, p + 1), T(2, p + 2), \dots, T(m + 1, p + m + 1),$$

 $M[p + 2, \dots, p + m + 1; p + m + 2], J(p + 1, p + m + 3, q), S(p + m + 3),$
 $N[p + 2, \dots, p + m + 1, p + m + 3, p + m + 2; p + m + 2],$
 $J(1, 1, m + 3), T(p + m + 2, 1).$

where $p = \max(m + 2, \rho(M), \rho(N))$ and q = m + 7. The program works as follows:

 I_1, \ldots, I_{m+1} : transfer the first m+1 registers to another are on the tape:

$$T(1, p + 1), T(2, p + 2), \dots, T(m + 1, p + m + 1)$$

 I_{m+2} : compute $h(0, x_1, \dots, x_m)$ using $M[p+2, \dots, p+m+1; p+m+2]$

 I_{m+3} : if the content of register p+1 (formerly the content of register 1) is the same as the content of p+m+3 (initially set to 0), go to the last instruction whose index is q(=m+7); otherwise continue to the next instruction: J(p+1, p+m+3, q)

 I_{m+4} : increment register p+m+3 by 1: S(p+m+3)

 I_{m+5} : compute $h(i, x_1, \dots, x_m)$, where i is the content of register p+m+3, using

$$N[p+2,\ldots,p+m+1,p+m+3,p+m+2;p+m+2]$$

 I_{m+6} : go to instruction m+3: J(1,1,m+3)

 I_{m+7} : transfer result back to register 1: T(p+m+2,1).

Note that if $(x_1, \ldots, x_m, n) \in \text{dom}(h)$, then $P(x_1, \ldots, x_m, n) \downarrow h(x_1, \ldots, x_m, n)$. Otherwise, $h(x_1, \ldots, x_m, n)$ is undefined. This can happen either $f(x_1, \ldots, x_m)$ is undefined, in which case M diverges, $g(x_1, \ldots, x_m, i, h(x_1, \ldots, x_m, i))$ is undefined, in which case N diverges, or $h(x_1, \ldots, x_m, i) \neq 0$ for all $i \in \mathbb{N}$, in which case P loops indefinitely. In all cases, P diverges. This shows that P computes h.

Proposition 5. URM-computability is closed under minimization.

Proof. Suppose $f: \mathbb{N}^{m+1} \to \mathbb{N}$ is computed by M. Let $g: \mathbb{N}^m \to \mathbb{N}$ be obtained from f by minimization. In other words, for any $\mathbf{x} = (x_1, \dots, x_m) \in \mathbb{N}^m$, set

$$A(\boldsymbol{x}) := \{ y \in \mathbb{N} \mid (z, \boldsymbol{x}) \in \text{dom}(f) \text{ for all } z \leq y \text{ and } f(y, \boldsymbol{x}) = 0 \}$$

and define

$$g(\boldsymbol{x}) := \left\{ \begin{array}{ll} \min A(\boldsymbol{x}) & \text{if } A(\boldsymbol{x}) \neq \varnothing, \\ \text{undefined} & \text{otherwise.} \end{array} \right.$$

Let Q be the following URM:

$$T(1, p+1), T(2, p+2), \cdots, T(m, p+m), M[p+m+1, p+1, \dots, p+m; 1],$$

 $J(1, p+m+2, q), S(p+m+1), J(1, 1, m+1), T(p+m+1, 1)$

where $p = \max(m+1, \rho(M))$ and q = m+5. The program works as follows:

 I_1, \ldots, I_m : transfer the first m registers to another are on the tape:

$$T(1, p + 1), T(2, p + 2), \cdots, T(m, p + m)$$

 I_{m+1} : compute $f(0, x_1, \dots, x_m)$ using $M[p+m+1, p+1, \dots, p+m; 1]$, where the content of register p+m+1 is set to 0 initially.

 I_{m+2} : if the content of register p+m+2 (which is always 0) is the same as the content of register 1 (value of $f(0, x_1, \ldots, x_m)$, if defined), go to the last instruction whose index is q(=m+5); otherwise continue to the next instruction: J(1, p+m+2, q)

 I_{m+3} : increment register p+m+1 by 1 (counter): S(p+m+1)

 I_{m+4} : go to instruction m+1: J(1,1,m+1)

 I_{m+5} : transfer content of register p+m+1 to register 1: T(p+m+1,1).

If $(x_1, \ldots, x_m) \in \text{dom}(g)$, then $Q(x_1, \ldots, x_m) \downarrow g(x_1, \ldots, x_m)$. Otherwise, $g(x_1, \ldots, x_m)$ is undefined, which can happen either when $f(i, x_1, \ldots, x_m) \neq 0$ for all $i \in \mathbb{N}$, in which case Q loops indefinitely, or $f(i, x_1, \ldots, x_m)$ is undefined, while $f(j, x_1, \ldots, x_m)$ are defined and non-zero, for all j < i, in which case M diverges. In both cases, Q diverges. Hence Q computes q. \square

Since a recursive function is obtained by a finite application of functional operations specified in Propositions 3,4,5 on the basic arithmetic functions specified in Proposition 2, every recursive function is URM computable as result, proving Proposition 1.