Tensorflow Basics

CS60010

Deep Learning Package Zoo

Caffe

and others ...

Deep Learning Frameworks

- Scales machine learning code
- Computes gradients!
- Standardise machine learning machine learning applications for sharing
- Zoo of deep learning advantages available with different advantages, levels of abstraction, programming languages, etc.
- Provides an interface with GPU for parallel processing

What is Tensorflow

Idea: Express numeric computation as a graph

- Graph nodes are operations that can have any number of inputs and exactly one output
- Graph edges are **tensors** that flow between nodes

Tensors are n dimensional array

$$h = ReLU(Wx + b)$$

$$h = ReLU(Wx + b)$$

Variables are stateful nodes which output their current value.

State is retained across multiple executions of a graph

(mostly parameters)

$$h = ReLU(Wx + b)$$

Placeholders are nodes whose value is fed in at execution time

(inputs, labels, ...)

$$h = ReLU(Wx + b)$$

Mathematical operations:

MatMul: Multiply two matrix values.

Add: Add elementwise (with broadcasting).

ReLU: Activate with elementwise rectified

linear function.

In code,

- Create weights, including initialization
 W ~ Uniform(-1, 1); b = 0
- 2. Create input placeholder x m * 784 input matrix
- 3. Build flow graph

import tensorflow as tf

```
b = tf.Variable(tf.zeros((100,)))
W = tf.Variable(tf.random_uniform((784, 100), -1, 1))
x = tf.placeholder(tf.float32, (100, 784))
h = tf.nn.relu(tf.matmul(x, W) + b)
```

$$h = ReLU(Wx + b)$$

But where is the graph?

New nodes are automatically built into the underlying graph! tf.get_default_graph().get_operations():

zeros/shape zeros/Const

zeros

Variable

Variable/Assign

Variable/read

random_uniform/shape

random_uniform/min

random_uniform/max

random_uniform/RandomUniform

random_uniform/sub random_uniform/mul

random_uniform

Variable_1

Variable_1/Assign

Variable_1/read

Placeholder

MatMul

add

Relu == h

h refers to an op!

How do we run it?

So far we have defined a graph.

We can deploy this graph with a **session**: a binding to a particular execution context (e.g. CPU, GPU)

Getting output

sess.run(fetches, feeds)

Fetches: List of graph nodes. Return the outputs of these nodes.

Feeds: Dictionary mapping from graph nodes to concrete values. Specifies the value of each graph node given in the dictionary.

```
import numpy as np
import tensorflow as tf
b = tf.Variable(tf.zeros((100,)))
W = tf.Variable(tf.random_uniform((784, 100),
                -1, 1)
x = tf.placeholder(tf.float32, (100, 784))
h = tf.nn.relu(tf.matmul(x, W) + b)
sess = tf.Session()
sess.run(tf.initialize all variables())
sess.run(h, \{x: np.random.random(100, 784)\})
```

So what have we covered so far?

We first built a graph using variables and placeholders

We then deployed the graph onto a session, which is the execution environment

Next we will see how to train the model

How do we define the loss?

Use placeholder for labels

Build loss node using labels and prediction

```
prediction = tf.nn.softmax(...) #Output of neural network
label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label * tf.log(prediction), axis=1)
```

How do we compute Gradients?

```
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

tf.train.GradientDescentOptimizer is an Optimizer object

tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) adds
   optimization operation to computation graph
```

TensorFlow graph nodes have attached gradient operations

Gradient with respect to parameters computed with backpropagation

...automatically

Creating the train_step op

```
prediction = tf.nn.softmax(...)
label = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(label * tf.log(prediction), reduction_indices=[1]))

train step = tf.train.GradientDescentOptimizer(0.5).minimize(cross entropy)
```

Training the Model

sess.run(train_step, feeds)

- 1. Create Session
- 2. Build training schedule
- 3. Run train_step

Variable sharing: naive way

Not good for encapsulation!

Variable sharing: naive way

```
variables_dict = {
    "conv1_weights": tf.Variable(tf.random_normal([5, 5, 32, 32]),
       name="conv1_weights")
    "conv1_biases": tf.Variable(tf.zeros([32]), name="conv1_biases")
    ... etc. ...
def my_image_filter(input_images, variables_dict):
   conv1 = tf.nn.conv2d(input_images, variables_dict["conv1_weights"],
        strides=[1, 1, 1, 1], padding='SAME')
    relu1 = tf.nn.relu(conv1 + variables_dict["conv1_biases"])
   conv2 = tf.nn.conv2d(relu1, variables_dict["conv2_weights"],
        strides=[1, 1, 1, 1], padding='SAME')
    return tf.nn.relu(conv2 + variables_dict["conv2_biases"])
# The 2 calls to my_image_filter() now use the same variables
result1 = my_image_filter(image1, variables_dict)
result2 = my_image_filter(image2, variables_dict)
```

••

What's in a Name?

```
tf.variable scope()
                          provides simple name-spacing to avoid clashes
                          creates/accesses variables from within a variable scope
tf.get variable()
with tf.variable scope("foo"):
    v = tf.get variable("v", shape=[1]) # v.name == "foo/v:0"
with tf.variable scope("foo", reuse=True):
    v1 = tf.get variable("v")  # Shared variable found!
with tf.variable scope("foo", reuse=False):
    v1 = tf.get variable("v") # CRASH foo/v:0 already exists!
```

What's in a Name?

```
def conv_relu(input, kernel_shape, bias_shape):
    # Create variable named "weights".
    weights = tf.get_variable("weights", kernel_shape,
        initializer=tf.random_normal_initializer())
    # Create variable named "biases".
    biases = tf.get_variable("biases", bias_shape,
        initializer=tf.constant_initializer(0.0))
    conv = tf.nn.conv2d(input, weights,
        strides=[1, 1, 1, 1], padding='SAME')
    return tf.nn.relu(conv + biases)
 def my_image_filter(input_images):
    with tf.variable_scope("conv1"):
        # Variables created here will be named "conv1/weights", "conv1/biases".
        relu1 = conv_relu(input_images, [5, 5, 32, 32], [32])
    with tf.variable_scope("conv2"):
        # Variables created here will be named "conv2/weights", "conv2/biases".
        return conv_relu(relu1, [5, 5, 32, 32], [32])
```

Noisy Accuracy Curve

Slow down

Learning rate 0.003 at start then dropping exponentially to 0.0001

Regularisation

```
t = tf.Variable(...)
reg_loss = tf.nn.l2_loss(t,name=None)
```

Next class:

More on regularization and best practices in Tensorflow

Thanks!

References:

- 1. CS231n
- 2. CS224n
- 3. Martin Gorner's Slides on Tensorflow
- 4. tensorflow.org

