Preditor de risco de problema cardiovascular

Motivação

- Doenças cardiovasculares é a principal causa de morte do mundo
- Existe uma enorme quantidades de dados relacionados a tais doenças
- Existe uma demanda de redes hospitalares em relação a análise de tais dados

Top 10 global causes of deaths, 2016

Source: Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016. Geneva, World Health Organization; 2018.

Base de dados - Heart Disease UCI

C•		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
		***	***					***	***	***	***	***		***	***
	298	57	0	0	140	241	0	-1	123	-1	0.2	-1	0	3	0
	299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
	300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
	301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
	302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0
	303 rc)W5 × 1	14 colu	ımns											

Informações dos atributos

Age: Idade em anos sex: 1 masculino; 0 feminino **cp:** Tipo de dor no peito (Angina típica, angina atípica, não-angina ou angina assintomática) <u>trestbps:</u> Pressão arterial (em mm Hg na admissão no hospital) Chol: Colesterol fbs: Açúcar no sangue em jejum restecg: Resultados eletrocardiográficos em repouso thalach: Máx. frequência cardíaca atingida durante o teste de estresse com tálio exang: Angina induzida pelo exercício (1 sim; 0 não) oldpeak: Depressão do segmento ST induzida pelo exercício <u>slope:</u> Declive (Slope) do pico do segmento ST do exercício (0 = subida, 1 = plana ou 2 = descida) ca: Número de vasos principais (0-3) coloridos por flourosopy 4 = NAthal: Resultado do teste de estresse do thalium 3 = normal; 6 = defeito fixo; 7 = defeito reversível 0 = NAtarget: Status da doença cardíaca 1 ou 0 (0 = doença cardíaca 1 = assintomática)

Pré-processamento

```
df.mean() #cálculo da media
             54.366337
age
sex
              0.683168
              0.966997
ср
trestbps
           131.623762
chol
            246.264026
fbs
              0.148515
restecq
              0.528053
thalach
            149.646865
              0.326733
exang
oldpeak
              1.039604
slope
              1.399340
              0.729373
ca
thal
              2.313531
target
             0.544554
dtype: float64
```

```
plt.scatter(df.age, df.chol) #gráfico de correlação idade x colesterol
plt.xlabel('age')
plt.ylabel('chol')
Text(0, 0.5, 'chol')
  500
  400
 dhol
  300
```

Pré-processamento

```
df.iloc[:,12] = df.iloc[:,12:]
%matplotlib inline
df.boxplot()
<matplotlib.axes. subplots.AxesSubplot at 0x7f24a16eb390>
 500
 400
 300
 200
100
  0
     age sex optrestbpshol fosrestettralacetxandidpeastope ca thaltarget
```

```
print('VF:', df.isnull().sum()) #verificando campos vazios e dados duplicados
print('VD:', df.duplicated())
VF: age
sex
trestbps
chol
fbs
restecg
thalach
exang
oldpeak
slope
thal
target
dtype: int64
            False
       False
       False
       False
       False
        . . .
298
       False
299
       False
       False.
       False
301
       False
Length: 303, dtype: bool
```

Pré-processamento

[] corr = df.corr() #gerando matriz de correlação corr.style.background_gradient(cmap='magma')

3	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
age	1	-0.0984466	-0.068653	0.279351	0.213678	0.121308	-0.116211	-0.398522	0.0968008	0.210013	-0.168814	0.276326	0.0680014	-0.225439
sex	-0.0984466	1	-0.0493529	-0.0567688	-0.197912	0.0450318	-0.0581963	-0.0440199	0.141664	0.0960929	-0.0307106	0.118261	0.210041	-0.280937
ср	-0.068653	-0.0493529	1	0.0476078	-0.0769044	0.094444	0.0444206	0.295762	-0.39428	-0.14923	0.119717	-0.181053	-0.161736	0.433798
trestbps	0.279351	-0.0567688	0.0476078	1	0.123174	0.177531	-0.114103	-0.0466977	0.0676161	0.193216	-0.121475	0.101389	0.0622099	-0.144931
chol	0.213678	-0.197912	-0.0769044	0.123174	1	0.0132936	-0.15104	-0.00993984	0.0670228	0.0539519	-0.00403777	0.0705109	0.098803	-0.0852391
fbs	0.121308	0.0450318	0.094444	0.177531	0.0132936	1	-0.0841891	-0.00856711	0.0256651	0.00574722	-0.0598942	0.137979	-0.0320193	-0.0280458
restecg	-0.116211	-0.0581963	0.0444206	-0.114103	-0.15104	-0.0841891	1	0.0441234	-0.0707329	-0.0587702	0.0930448	-0.0720424	-0.0119814	0.13723
thalach	-0.398522	-0.0440199	0.295762	-0.0466977	-0.00993984	-0.00856711	0.0441234	1	-0.378812	-0.344187	0.386784	-0.213177	-0.0964391	0.421741
exang	0.0968008	0.141664	-0.39428	0.0676161	0.0670228	0.0256651	-0.0707329	-0.378812	1	0.288223	-0.257748	0.115739	0.206754	-0.436757
oldpeak	0.210013	0.0960929	-0.14923	0.193216	0.0539519	0.00574722	-0.0587702	-0.344187	0.288223	1	-0.577537	0.222682	0.210244	-0.430696
slope	-0.168814	-0.0307106	0.119717	-0.121475	-0.00403777	-0.0598942	0.0930448	0.386784	-0.257748	-0.577537	1	-0.0801552	-0.104764	0.345877
ca	0.276326	0.118261	-0.181053	0.101389	0.0705109	0.137979	-0.0720424	-0.213177	0.115739	0.222682	-0.0801552	1	0.151832	-0.391724
thal	0.0680014	0.210041	-0.161736	0.0622099	0.098803	-0.0320193	-0.0119814	-0.0964391	0.206754	0.210244	-0.104764	0.151832	1	-0.344029
target	-0.225439	-0.280937	0.433798	-0.144931	-0.0852391	-0.0280458	0.13723	0.421741	-0.436757	-0.430696	0.345877	-0.391724	-0.344029	1

Treino e Teste

```
[ ] from sklearn.model_selection import train_test_split

X=df[['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak', 'slope', 'ca', 'thal']] # Features
y=df['target'] # Labels

# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 70% training and 30% test
```


30%

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865	0.326733	1.039604	1.399340	0.729373	2.313531	0.544554
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161	0.469794	1.161075	0.616226	1.022606	0.612277	0.498835
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000000	0.000000	1.000000	0.000000	2.000000	0.000000
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	0.000000	0.800000	1.000000	0.000000	2.000000	1.000000
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000	1.000000	1.600000	2.000000	1.000000	3.000000	1.000000
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.200000	2.000000	4.000000	3.000000	1.000000
$\overline{\mathbb{D}}$	ataset d	lescribe												

count	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000
mean	54.311321	0.693396	0.929245	131.787736	244.226415	0.136792	0.523585	149.702830	0.306604	0.984906	1.419811	0.683962	2.297170
std	9.083982	0.462175	1.025594	16.635691	46.268490	0.344441	0.528263	22.432868	0.462175	1.135117	0.606586	1.006673	0.616819
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	47.000000	0.000000	0.000000	120.000000	211.750000	0.000000	0.000000	135.500000	0.000000	0.000000	1.000000	0.000000	2.000000

restecg

thalach

153.000000

165.000000

202.000000

oldpeak

0.600000

1.600000

6.200000

exang

0.000000

1.000000

1.000000

slope

1.000000

2.000000

2.000000

thal

2.000000

3.000000

3.000000

ca

0.000000

1.000000

4.000000

fbs

0.000000

0.000000

1.000000

trestbps

130.000000

140.000000

200.000000

1.000000

2.000000

chol

240.000000

271.000000

409.000000

56.000000

61.000000

Train describe

50%

75%

max

age

sex

1.000000

1.000000

1.000000

count	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000	212.000000
mean	54.311321	0.693396	0.929245	131.787736	244.226415	0.136792	0.523585	149.702830	0.306604	0.984906	1.419811	0.683962	2.297170
std	9.083982	0.462175	1.025594	16.635691	46.268490	0.344441	0.528263	22.432868	0.462175	1.135117	0.606586	1.006673	0.616819
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	47.000000	0.000000	0.000000	120.000000	211.750000	0.000000	0.000000	135.500000	0.000000	0.000000	1.000000	0.000000	2.000000
50%	56.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	0.000000	0.600000	1.000000	0.000000	2.000000
75%	61.000000	1.000000	2.000000	140.000000	271.000000	0.000000	1.000000	165.000000	1.000000	1.600000	2.000000	1.000000	3.000000

restecg

thalach

oldpeak

6.200000

exang

1.000000

Os conjuntos de dados são representativos no treino e teste, pois não

houve uma discrepância grande referente ao describe da base de dados

slope

thal

3.000000

ca

4.000000

fbs

chol

original.

trestbps

75% 61.000000 1.000000 2.000000 140.00
max 77.000000 1.000000 3.000000 200.00

sex

age

Test describe

Um dos mais populares e potentes algoritmos supervisionado do machine learning capaz de executar tarefas de regressão ou classificação, sugere criar uma "floresta" com o número das árvores de decisão, quanto mais árvores de decisão na "floresta" mais robusta se torna a predição e acurácia.

A motivação para usar este algoritmo está em seu desempenho em predizer de forma confiável o resultado e o por ser capaz de identificar doenças analisando os testes do paciente

— Iniciamos com um número de 42 estimadores e obtvemos melhor resultado com 150 estimadores, esses estimadores são o conjunto de vários modelos de árvores de decisão e 50 conjugados onde o bootstrap trata os dados, como insere, remove ou armazena para o algoritmo ter uma predição.

```
[] #Import Random Forest Model
    from sklearn.ensemble import RandomForestClassifier
    clfRF=RandomForestClassifier(n_estimators=150, random_state = 50, bootstrap='True')
    clfRF.fit(X_train,y_train)
    y_pred=clfRF.predict(X_test)
    #Import scikit-learn metrics module for accuracy calculation
    from sklearn import metrics
    print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
    print("Precision:",metrics.precision_score(y_test, y_pred))
    print("Recall:",metrics.recall_score(y_test, y_pred))
    from sklearn.metrics import classification_report, confusion_matrix
    from sklearn.metrics import multilabel_confusion_matrix
    cm=confusion_matrix(y_test, y_pred)#A matriz de confusão com as classes concatenadas
    print(cm)
```

```
Accuracy: 0.8131868131868132
Precision: 0.8043478260869565
Recall: 0.82222222222222
[[37 9]
    [ 8 37]]
```


SVM

O SVM (do inglês "Support Vector Machine") é uma técnica supervisionada de aprendizado de máquina amplamente usada em problemas de reconhecimento e classificação de padrões,possui alta precisão, boas garantias teóricas sobre o ajuste excessivo e, com um kernel apropriado, elas podem funcionar bem, mesmo que os dados não sejam linearmente separáveis no espaço de recursos base.

São ótimos algoritmos a ser implementados em problemas com 2 classes, o kernel linear utilizado ofereceu uma melhor formação de hiperplano para separação dessas duas classes (tendo resultado comparado com outros kernels).

SVM

```
#Import svm model
from sklearn import svm
clfSVM = svm.SVC(kernel='linear') # Linear Kernel
clfSVM.fit(X_train, y_train)
y_pred = clfSVM.predict(X_test)

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
print("Precision:",metrics.precision_score(y_test, y_pred))
print("Recall:",metrics.recall_score(y_test, y_pred))
cm=confusion_matrix(y_test, y_pred)#A matriz de confusão com as classes concatenadas
print(cm)
```


SVM

```
Accuracy: 0.8131868131868132
Precision: 0.8275862068965517
Recall: 0.87272727272727
[[26 10]
[ 7 48]]
```


O CatBoost também é um algoritmo machine learning popular e potente, ele utiliza árvore de decisão e vem sendo mais utilizado que o Random Forest por ter um método de otimização conhecido como gradiente boosting capaz de tornar fracos aprendedores em fortes aprendedores nas árvores de decisões.

Esta biblioteca é baseada na biblioteca de aumento de gradiente. O aumento de gradiente é um poderoso algoritmo de aprendizado de máquina que é amplamente aplicado a vários tipos de desafios de negócios, como detecção de fraudes, itens de recomendação, previsão e apresenta bom desempenho. Também pode retornar resultados muito bons com relativamente menos dados, ao contrário dos modelos de DL que precisam aprender com uma quantidade enorme de dados. Ele produz resultados de ponta, sem treinamento extensivo de dados, normalmente exigido por outros métodos de aprendizado de máquina

```
from catboost import CatBoostClassifier
# Initialize data
X = df[set(df.columns)-set(['target'])].values
y = df.target.values

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size = 0.2, random_state = 0)

#Importando o classificador e fazendo o modelo
from catboost import CatBoostClassifier
model=CatBoostClassifier(iterations=300, depth=4, learning_rate=0.01, loss_function='CrossEntropy', task_type='GPU')
model.fit(X_train, y_train,eval_set=(X_val, y_val),plot=True)
```



```
Precision: 0.8823529411764706
Recall: 0.8823529411764706
Acurácia: 86.88524590163934
[[23 4]
[ 4 30]]
```



```
[ ] model.get_feature_importance(data=None, prettified=False, thread_count=-1, verbose=False)
```

O CatBoost possui a função acima que permite saber o atributo mais importante entre as outros, nesse array pode-se visualizar que o colesterol tem importância maior, o que faz sentido tratando de problemas cardiovascular. O cálculo feito pela função compara a variação do valor dos atributos com a média de predição, assim classificando o atributo como o mais importante.

array([4.02324941, 5.01077386, 2.48789337, 2.61655172, 26.68661662,

7.88912868, 10.88999709, 16.531290991)

1.9282344 , 8.06580386, 0.97322999, 5.66139618, 7.23583383,

Teste com novos dados

```
#Teste com novo conjunto dados
flavio = [[21, 1, 2, 120, 123, 0, 1, 180, 0, 0, 1, 1, 2]]
print(clfSVM.predict(flavio)) #SVM
print(clfRF.predict(flavio)) #randomforest
print(model.predict(flavio)) #catboost
```

[1]

[1]

[1

Aqui podemos comparar os 3 algoritmo (onde todos obtiveram acurácia e precisão entre 80-90%) com um novo conjunto de dados de um voluntário em que houve a mesma classificação para os 3

Resultados

Como mencionado obtivemos resultados em intervalos semelhantes para ambos os algoritmos com treino e teste a 70% e 30% e supermercad e uma diferença parcial apenas no catboost para treino e teste 80% e 20%.

Random Forest X Cat Boost

Precision: 0.8823529411764706 Recall: 0.8823529411764706 Acurácia: 86.88524590163934 [[23 4] [4 30]]

Accuracy: 0.8131868131868132 Precision: 0.8043478260869565 Recall: 0.82222222222222 [[37 9] [8 37]] O Random Forest assim como CatBoost utiliza de árvore decisão em seus métodos, porém o CatBoost obteve performance melhor pois possui um método de otimização de Gradiente descendente.

Referências

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

https://www.kaggle.com/ronitf/heart-disease-uci