Predictive Analysis of Cryptocurrency Price

Nilabja Bhattacharya - 2018201036 Ajay Jadhav - 2018201095 Nitish Dwivedi - 2018201068 Ravi Hooda - 2018201041

- Introduction
- Data Analysis
- Neural Network for Bitcoin price prediction
- Twitter sentiment analysis for Bitcoin price prediction
- Observations
- Conclusion

Data Analysis

Pairplot of All Fields

Correlation between features:

Open and Low Price

Open and Volume

Top 5 opening prices

Top 5 closing prices

Year wise Analysis

Price Max Min Year

Highest Variation 2018

Highest Variation 2018

Data Analysis: Social Media Perspective

Fluctuation of various cryptocurrency price from Nov 2017 to Nov 2018

Data Analysis : Google Trends

Data Analysis: Reddit Subscriber's Growth

Neural Network for Bitcoin price prediction

Architecture

LSTM	GRU	CONV1D
LSTM - 32 units	GRU - 32 units	CONV1D - (64, 3)
Dropout - 0.2	Dropout - 0.2	MAXPOOL - 2
LSTM - 64 units	GRU - 64 units	LSTM - 100
Dropout - 0.2	Dropout - 0.2	Dropout - 0.2
LSTM - 128	GRU - 128	CONV1D - (32, 3)
Dropout - 0.5	Dropout - 0.5	MAXPOOL - 2
LSTM - 256	GRU - 256	Dropout - 0.2
Dropout - 0.5	Dropout - 0.5	Flatten
Dense	Dense	Dense

Performance

Prediction vs Actual

LSTM GRU

ERROR COMPARISON USING VARIOUS NN ARCHITECTURE

Architecture	MSE	MASE	SMAPE	MAE
LSTM (32, 64, 128, 256)	1.64761e- 05	0.00019	1.94857	0.00392
GRU (32, 64, 128, 256)	1.96731e- 05	0.00019	1.95842	0.00400
CONV1D ((64,3), (32, 3))	2.61811e- 05	0.00024	2.52501	0.00497

CONV1D

Errors on various cryptocurrencies

Cryptocurrency	MAE	SMAPE	MAPE
Bitcoin	0.01987	7.33737	0.01064
Litecoin	0.09476	8.39628	0.00730
Bitcoin Cash	0.00671	11.91254	0.26043
Ethereum	0.00671	11.91254	0.26043
Ripple	0.01552	14.75899	0.013525
Stellar	0.01680	10.26539	0.01185
Cardona	0.00362	6.70209	0.14048
EOS	0.01659	7.98707	0.06755
Tether	0.014260	2.17750	0.01348
Binance	0.09476	11.97607	0.12174

Using Tweets to improve prediction

- Tweets of people help to get insight on the general trend following in market.
- We use positive and negative sentiments on tweets in addition to Bitcoin price.
- We used the sentiment of around 17.7 million tweets (in compressed form).
- Features used:
 - Number of tweets
 - Positive sentiment tweets
 - Negative sentiment tweets
 - Closing price of stock

Architecture used is same as before.

Prediction on training

Comparison of Bitcoin Price with and without sentiment data

Other experiments

- Giving weights to the prices with decreasing order of time (largest weight being the current) to make timeseries data for LSTM
 - This didn't perform as expected.
 - The prediction were very poor. Reason for this was the change in price from the original price in past which resulted in inaccurate data to the model.
 - Model performs best when given data without any modification.
- Training price prediction model solely on twitter sentiment data.
 - Training data solely on sentiment data didn't work very well. The predictions were very poor.
 - It seemed necessary to include bitcoin prices to predict well.

Conclusion

- We have applied GRU, LSTM, CONV1D to predict bitcoin price and the results were promising.
- We have also incorporated sentiment analysis of twitter data to predict bitcoin price using LSTM neural network.
- Future research should extend the proposed approach by considering additional parameters such as the political environment, human relations, and regulations, which vary across countries.