1. 已知x與y的關係如下表所示:

х	1	1	2	3	3	4	5	5
у	36	33	31	29	27	25	23	20

- (1)試求迴歸方程 $\hat{y} = \hat{\alpha} + \hat{\beta}x$ 。
- (2)試求判定係數 R^2 。
- (3)請利用變異數分析表檢定此迴歸方程式否合適?($\alpha = 0.05$)
- (4)試求 x = 4 時 y 的 95%預測區間。

х	1	1	2	3	3	4	5	5
у	36	33	31	29	27	25	23	20

迴歸方程爲 $\hat{y} = 37.67 - 3.22x$,請你使用t檢定,檢定 $H_0: \beta = 0, H_1: \beta \neq 0$

3. 假設自變數 X 表廣告費用,依變數 Y 表銷售量,現隨機抽取 10 個樣本,經計算得下列資料:

$$\sum x_i = 170, \sum y_i = 1110, \sum (x_i - \overline{x})(y_i - \overline{y}) = 16800, \sum (x_i - \overline{x})^2 = 33000,$$
$$\sum (y_i - \overline{y})^2 = 8890$$

- (1)試求簡單線性迴歸方程 $\hat{y} = \hat{\alpha} + \hat{\beta}x$ 。
- (2)求 $V(\hat{\beta})$
- (3)求判定係數 R^2 與相關係數 r_{xy} 。
- 4. 下表爲尚未完成之簡單線性迴歸變異數分析表。

變異來源	平方和	自由度	平均平方和	F
迴歸				165.21
誤差			9244.95	
總和		19		

- (1)請你完成上表。
- (2)根據上表此迴歸方程之判定係數。
- 5. 假設 x 與 y 的關係如下表所示:

х	9	10	13	15	18	13	
у	36	44	48	63	70	45	

- (1)試求 y 對 x 的簡單線性迴歸方程。
- (2)試求母體變異數的點估計值。(假設符合迴歸方程的要求)
- 6. 已知 x 與 y 的簡單線性迴歸方程為: $\hat{y} = 12 + 0.8x$, $R^2 = 0.6$,若兩個假設

為:
$$\begin{cases} H_0: \beta = 0 \\ H_1: \beta \neq 0 \end{cases}$$
,請你分別使用 F 檢定與 t 檢定進行檢定,假設共有 10 個

觀察値。($F_{0.0518} = 5.32$)

7. 已知簡單線性迴歸模式:

$$y_i = \alpha + \beta x_i + \varepsilon_i, i = 1, 2, 3, \dots, n$$

符合傳統線性迴歸假設,請回答下列之問題:

- (1)簡述隨機變數的定義,在上式中隨機變數 y_i 與 ε_i 的機率分配爲何?
- (2)試求 β 的不偏估計式 $\hat{\beta}$,與其變異數 $V(\hat{\beta})$ 。
- $(3)V(\hat{\beta})$ 的不偏估計式爲何?利用其不偏估計試檢定下列之假設:

$$\begin{cases} H_0: \beta = 0 \\ H_1: \beta \neq 0 \end{cases}$$

- (4)請利用上題所提供的資訊,建立 β 的 $1-\alpha$ 信賴區間。
- 8. 假設 x 與 y 的關係如下表所示:

х	30	40	40	50	50	60	70	80	80	90
у	1.6	2.1	2.6	3.6	4.2	4.3	4.9	5.5	5.3	6.2

- (1)試求 y 對 x 的簡單線性迴歸方程。
- (2)檢定: $H_0: \beta = 0, H_1: \beta \neq 0$ 與 $H_0: \alpha = 0, H_1: \alpha \neq 0$, $(\alpha = 0.05)$
- (3) β的 95%信賴區間。
- (4)當x = 85時,y的點估計值爲何?
- 9. 假設 $X \times Y$ 爲二獨立隨機變數,且已知 E(x) = E(y) = 0; V(x) = 5, V(y) = 6,若有另一隨機變數 W,滿足 w = 3x + 2y,求 W 對 X 的迴歸係數與截距。
- 10. 假設 $X \times Y \times Z$ 爲隨機變數,若 X 與 Y 滿足 y = a + bx,請問 γ_{yz} 與 γ_{xz} 是否相等?
- 11. 某班期中考成績平均分數為 60 分,標準差為 15 分,期末考分數也是如此。 已知期中考與期末考成績的相關係數為 0.5。若某位同學期中考成績為 75 分,預測該生期末考的成績
- 12. 已知下列資料:

х	1	2	3	4	5	6
у	6	4	3	5	4	2

- (1)以最小平方法求y對x之迴歸方程式。
- (2)請檢定x對y是否有顯著的影響。($\alpha = 0.05$)
- (3)求 β 之95%信賴區間。
- (4)求 r_{xv} 。
- 13. 考慮下述之迴歸方程模式:

$$y_i = \alpha + \beta x_i + \varepsilon_i, i = 1, 2, 3, \dots, n$$

其中 $\varepsilon_i \sim N(0, \sigma^2)$ 且相互獨立,現以樣本數n = 25的資料 (x_i, y_i) 估計迴歸直

線。若已知
$$\bar{x} = 10.5, \bar{y} = 31, \sum_{i=1}^{25} (x_i - \bar{x})^2 = 65, s_y^2 = \frac{1}{24} \sum_{i=1}^{25} (y_i - \bar{y})^2 = 38.4$$
,樣本

相關係數 $r_{xy} = 0.54$,假設 α 與 β 的估計量分別爲 $\hat{\alpha}$ 與 $\hat{\beta}$ 。

- (1)試求 $\hat{\alpha}$ 。
- (2) $\hat{\beta}$ 的分配爲何?
- (3)試求常數 c 使得 $P(|\hat{\beta} \beta| \le c\sigma) = 0.95$ 。
- 14. 欲知工作年資(x)與月薪(y)之關係,隨機抽取 100 個觀察值,計算得 $\bar{x}=12, \bar{y}=250, s_{yy}=3, s_{z}^{2}=4, s_{y}^{2}=9$
 - (1)假設迴歸模型爲: $y_i = \alpha + \beta x_i + \varepsilon_i$,試以最大概似法求 α 與 β 的估計值。

- (2)假設迴歸模型爲: $y_i \overline{y} = \gamma + \delta(x_i \overline{x}) + e_i$,試以最大概似法求 γ 與 δ 的估計值。
- 15. 假設迴歸方程式 $y_i = \alpha + \beta x_i + \varepsilon_i, i = 1, 2, 3, \cdots, n$,符合傳統迴歸的各項假設條件,且樣本大小爲 n。
 - (1)如果有人提議用 $\bar{\beta} = \frac{y_n y_1}{x_n x_1}$ 來估計 β ,請證明 $\bar{\beta}$ 爲不偏估計式,相對於

對小平方估計式 $\hat{\beta}$ 而言, $\bar{\beta}$ 不具有效性。註:假設 $(x_n-x_1)^2<2\sum_{i=1}^n(x_i-\bar{x})^2$

- (2)假設已知 $\alpha = 10$,請找出 β 的最大概似估計式。
- 16. 假設迴歸方程爲 $\hat{y} = 0.21 + 0.42x$,已知判定係數 $R^2 = 0.78$,樣本數n = 30,

$$SST = \sum_{i=1}^{30} (y_i - \overline{y})^2 = 45$$
 °

(1)求 SSR, SSE。

(2)請檢定
$$\begin{cases} H_0: \beta = 0 \\ H_1: \beta \neq 0 \end{cases} \circ (\alpha = 0.05, F_{0.05,1,28} = 4.2)$$

- (3)求相關係數 r_{xy} 。
- 17. 博碩出版社目前提供該出版社的歷史銷售資料給兩個研究機構,並委託他們利用簡單線性迴歸分析作未來的銷售預測。這兩個研究機構所做的預測值,經整理如下:(單位百萬元)

左/八	公司實際	預測	銷 售 額
年份 	銷售額	研究機構(甲)	研究機構(乙)
1975	217	220	211
1976	123	222	215
1977	126	224	219
1978	220	226	223
1979	219	228	227
7980	240	230	231
1981	235	232	235
1982	235	234	239
1983	245	236	243
1984	250	238	247

如果你是博碩出版社的行銷主管,根據上述資料,你應該使用哪一個研究機構的結果,爲什麼?

- 18. 若將簡單線性迴歸模型中的自變數放大 k 倍之後,請問迴歸方程的斜率項、 截距項與判定係數有何影響?
- 19. 已知 x 與 y 的關係如下表所示:

X	100	95	110	72	86	105	88	94	68	130	84	108	120	90	78
у	70	60	82	50	61	80	65	68	40	96	58	78	90	64	55

試求皮爾森積差相關係數。

- 20. 隨機抽取 30 個學生,得身高與體重之相關係數 $r_{xy} = 0.6$ 。
 - (1)試求 ρ_{xy} 的 95%信賴區間。
 - (2)試以 $\alpha = 0.05$ 檢定 $H_0: \rho_{xy} = 0.5$

(3)試以
$$\alpha = 0.05$$
檢定 $H_0: \rho_{xy} = 0$

21. 自一母體(x,y)隨機抽出若干樣本,資料如下表所示:

- (1)試求 x,y 之簡單線性迴歸方程 $\hat{y} = \hat{\alpha} + \hat{\beta}x$ 。
- (2)試求 r_{xv} 。
- (3)若迴歸方程改成, $\hat{x} = \hat{a} + \hat{b}y$,試求 $\hat{\beta} \times \hat{b}$ 。
- 22. 已知 $\hat{x} = 3 + 0.5y$, $r_{xy} = 0.8$, $\bar{x} = 8$,試問當迴歸方程改爲 $\hat{y} = \hat{\alpha} + \hat{\beta}x$ 時, $\hat{\alpha}$, $\hat{\beta}$ 分 別爲何?
- 23. 假設 x,y 的迴歸方程爲: $\hat{y} = 40.768 + 0.1283x$,已知 $s_{\hat{a}} = 22.14, s_{\hat{\beta}} = 0.0305$,

- (1) x*, y 的迴歸方程與斜率項及截距項的標準差。
- (2) x*, y* 的迴歸方程與斜率項及截距項的標準差。
- 24. 隨機收集某公司在 20 個地區的某種產品每個的售價 x (單位:元)與銷售 量 y (單位:千個)的資料,經計算得部分資料爲:

$$n=20, \sum x_i=3395, \sum y_i=1298, \sum x_iy_i=220347$$
,而 x 與 y 的標準差分別爲: $s_x=0.8507, s_y=0.85224$ 。則

- (1)求x與y的相關係數。
- (2)求 y 對 x 的簡單線性迴歸方程。
- (3)寫出上述迴歸方程的變異數分析表。

若
$$x^* = 0.01x, y^* = 1000y$$
試回答下列各小題。

- (4)求 x^*, y^* 的相關係數。
- (5)求 y^* 對 x^* 的簡單線性迴歸方程。

25. 調查一組成對資料如下所示:

			175 125 200 100
у	160 112 124 28	152 156 42	124 150 104 136

上述資料是否支持x與y成直線關係? ($\alpha = 0.05$)

附註:以 SPSS 進行迴歸分析報表 檢定網路使用行爲對網路成癮的影響

 H_0 :網路使用行為對網路成癮無影響 H_1 :網路使用行為對網路成癮有影響

報表解讀: 報表 1:

模式摘要

模式	R	R 平方	調過後的 R 平方	估計的標準誤
1	.449 ^a	.201	.197	14.16040

a. 預測變數:(常數),網路使用行爲

說明:

相關係數 $\gamma_{xy}=0.449$,判定係數 $R^2=0.201$ (註:簡單線性迴歸不看調整後 R 平方),估計的標準誤 = $\sqrt{MSE}=\sqrt{200.517}=141.6040$ 。

報表 2:

Anova^a

核	过	平方和	平方和 df 平均平方和		F	顯著性
	迴歸	9404.217	1	9404.217	46.900	.000 ^b
1	殘差	37296.139	186	200.517		
	總數	46700.356	187			

a. 依變數: 網路成癮

b. 預測變數:(常數),網路使用行為

說明:

P-value = .000,檢定結果拒絕虛無假設

報表 3:

	係數 ^a											
梼	注	未標準化	と係數	標準化係數	t	顯著性						
		B 之估計値	標準誤差	Beta 分配								
1	(常數)	12.925	5.790		2.232	.027						
1	網路使用行爲	2.345	.342	.449	6.848	.000						
a.	依變數: 網路原											

$$\hat{\beta} = 12.925, s_{\hat{\beta}} = 5.790, t^* = \frac{\hat{\beta}}{s_{\hat{\beta}}} = 2.232, P - value = 0.027$$

$$\hat{\alpha} = 2.345, s_{\hat{\alpha}} = 0.342, t^* = \frac{\hat{\alpha}}{s_{\hat{\alpha}}} = 6.848, P - value = 0.000$$