Course overview

- · Logic (week 1)
- Proof techniques (weeks 1-2)
- · Set theory (weeks 2-3)
- · Relations today + next lecture
- Functions (week 4)
- · Combinatorics (week 5)

Overview of today

- · Relations: definition
- Reflexive relations
- · Symmetric relations
- Transitive relations
- · Equivalence relations

Book chapter 3, sections 3.1, 3.2, 3.3

Relations

A relation R describes the relationship between different elements of a given set A.

• Notation:
$$x R y$$
, $x, y \in A$

· Example:

 \bullet Formal (abstract) definition: A relation R on a set A is a subset of the product set A \times A.

$$A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2)\}$$

Relation diagrams

$$xRy \downarrow x=y$$

Reflexive relations

A relation R on a set A is reflexive if every element of A is related to itself (every element has a loop)

VX EA: XRX negation: 3x EA: XXX

XRy of XKy of XRy of XRy of X=y

not reflexive not reflexive reflexive

· examples: < (on IR), < (on sets),...

Symmetric relations

A relation R on a set A is symmetric if for all elements a,b in A: aRb ->bRa

Va, b E A: aRb -s bRa (every arrow gas in 2 directions)

xRy if x < y x xry if x + y) 5 xry if x = y not symmetric symmetric symmetric symmetric

XRY (S) Xty) (S) 41×>(YRX

Transitive relations

A relation R on a set A is transitive if for all elements a,b,c in A:

(aRb $^{\circ}$ bRc) \rightarrow aRc

Ya,b,c EA: (aRb & bRc) -> aRc

negation: Jaihic EA: (aRb , bRc) rake

transitive not transitive transitive

 $a \rightarrow b \rightarrow c$ $2R3 \land 3R2$ then but 2R2

Equivalence relations

A relation R is called an equivalence relation if it is reflexive, symmetric and transitive.

· reflexive ? VX E A : XRX

· symmetric? Yx, y EA: XRy - syrx

· transitive? Yx,y,z EA: (XRy AyRz) -> XRZ

Assure X, y, 2 EN, XRy A yRZ then x-y is even and y-2 is even then (x-y)+(y-2) is even (son of so x-2 is even. -s xRz even humbers) R is reflexive, Econsitive and symmetric > itis an equivalence relation!

Equivalence classes

is even all odd all even numbers numbers.

equivalence relation on A induces a partition of A. subsets

= equivalence

classes.

Checklist

- Do you understand what a relation is?
- Given a relation, are you able to draw a relation diagram?
- Do you know what symmetry, transitivity and reflexivity are?
- Can you prove (or disprove) that a relation has these properties?
- Do you know how to prove that a relation is an equivalence relation?
- Do you know how to identify the equivalence classes of an equivalence relation?

Example
$$\mathbb{R} \times \mathbb{R}$$
, $(x,y) \times (a,b)$ if $x+y=a+b$ of $\mathbb{R} \times \mathbb{R}$. $\mathbb{R} \times \mathbb{R}$ is $\mathbb{R} \times \mathbb{R}$. $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$. $\mathbb{R} \times \mathbb{R} \times \mathbb{$

(x,y,)R(x,y,) ~ (x,y,)R(x,y) (x,y,) R(x,,y,) Let (x, y,)R(x,y) ~ (x,y,)R(x,y) then x1+y1 = x2+y2 ~ x2+y2 = x3+y3 so X, +y, = x, + y3 so (x, y,) R (x3, y3) tre

$$(x,y)R(a,b)$$
 if $x+y=a+b$

(a3)

(3,0)