PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

POWERTRAIN ELECTRONIC CONTROL STRATEGY BOOK

STRATEGY LEVEL "LHBH1"

FOR USE WITH 2ND GENERATION EEC-IV MODULE: EFI-SD20

THE PROCEDURE FOR OBTAINING COPIES OF THIS BOOK OR ANY OTHER AVAILABLE "LH"

DOCUMENTATION IS EXPLAINED ON THE NEXT PAGE.

LARRY SIERSMA
PHONE: (313)390-2159
STRATEGY PLANNING & PROCESS DESIGN SECTION
CONTROL SYSTEMS DEPT
POWERTRAIN ELECTRONICS
DEVELOPMENT - PTE

SOFTWARE RELEASE DATE: MARCH 24, 1993 STRATEGY BOOK RELEASE DATE: MARCH 25, 1993

OBTAINING DOCUMENTATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

"LH" STRATEGY DOCUMENTATION

All current strategy documentation is stored on the VAX computer cluster.

Documentation can be obtained by logging into a VAX computer (I.E. SYS2.

SYS3, SYS4, ETC.) and issuing one or more of the following VAX/DCL commands.

Generally, two types of documentation are available:

- 1. UPDATE PACKAGES Change bars at the left margin are used to indicate where changes in text have occurred since the previous level. Some of these changes may simply be enhancements or corrections to the text of the previous level and may be unrelated to the strategy level change. This file can be used as a quick reference to show the changes which have been made for this release. The file name format is LH***UP.MEM, where *** is the desired new strategy level.
- 2. COMPLETE BOOKS The file name format is LH***.MEM, where *** is the desired strategy level. Changes in text which have occurred since the previous level book will be indicated with change bars. The INDEX contains an entry, "CHANGED PAGES," which lists all pages containing changes.

The following VAX/DCL commands may be helpful in working with Strategy Book documentation:

TO DETERMINE IF A SPECIFIC STRATEGY BOOK IS AVAILABLE, TYPE:

DIR STRATEGY:LH***.MEM
DIR STRATEGY:LH***UP.MEM

TO OBTAIN A LINE PRINTER COPY OF A GIVEN DOCUMENT, TYPE:

PRINT/NOFEED STRATEGY:LH***.MEM where *** = the desired strategy level

TO OBTAIN A XEROX COPY OF A GIVEN DOCUMENT, TYPE:

XEROX STRATEGY:LH***.MEM/DEST=EEE/USERNAME=name/COPIES=no/PMODE=P

where: *** = the desired strategy level
 name = your user name
 no = desired number of copies (i.e. 1)

TO DETERMINE TARGETING OF EMR'S FOR FUTURE RELEASES, TYPE:

EDTS

3

AT THE EDTS MAIN MENU, SELECT "Standard Reports Menu" (number 6) THEN, SELECT "EMR's Within EMR Group" (number 3)

TO DETERMINE THE STATUS OF STRATEGY BOOK DOCUMENTATION, TYPE:

@STRATEGY:BOOKSTATUS

OBTAINING DOCUMENTATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PAGES	SUBJECT	LAST REVISION
1-1 to 1-28	STRATEGY EVOLUTION	LHBH1
2-1 to 2-18	SYMBOLOGY	LHBD0
3-1 to 3-6	EEC OVERVIEW	LHAS0
4-1 to 4-6	CRANK/UNDERSPEED/RUN MODE SELECTION	LHJ0
5-1 to 5-4	THROTTLE MODE SELECTION	LHE0
6-5 to 6-8 6-9 to 6-11 6-12 to 6-13 6-14 to 6-16 6-17 to 6-18 6-19 to 6-30 6-31 to 6-39 6-40 6-41 to 6-57 6-58 to 6-59 6-60 to 6-66 6-67 to 6-68 6-69 to 6-70 6-71 to 6-74 6-75 to 6-80 6-81 to 6-89 6-90 6-91	OVERVIEW ACCELERATION ENRICHMENT WARM EGO LOGIC LAMMUL RESET LOGIC OPEN LOOP FLAG DETERMINATION CALCULATION OF LAMAVE OPEN LOOP LAMBSE CALCULATION CLOSED LOOP LAMBSE CALCULATION DAC REGISTER CALCULATION ADAPTIVE FUEL LOGIC KAM ADAPTIVE FUEL LOGIC TRANSIENT FUEL COMPENSATION HOT INJECTOR COMPENSATION INJECTOR DELAY LOGIC IDLE FUEL MODULATION	LHAQ0 LHAQ0 LHAQ0 LHAH0 LHBC0 LHAT0 LHBH0 LHBD0 LHAQ0
7-2 to 7-24 7-25 to 7-31 7-32 to 7-35 7-36 to 7-39	IGNITION TIMING STRATEGY BASE SPARK DWLBSE/DWLCOR CALCULATION DWELL_CALCULATION MKAY/SIGKAY CALCULATION TRANSIENT SPARK COMPENSATION PIP_DATA SPOUT_KNOCK ROUTINE VIP, EOS_IDM INDIVIDUAL CYLINDER KNOCK	LHBH0 LHJ0 LHJ0 LHL0 LHKO LHK0 LHJ0 LHJ0 LHJ0 LHJ0
8-1 to 8-20 8-2 to 8-6 8-7 to 8-16 8-17 to 8-20	EGR STRATEGY EGR SELECT LOGIC SONIC EGR EVR CONTROL ALGORITHM	LHBE0 LHBE0 LHF0

9-1 to 9-52 9-2 to 9-10 9-11 to 9-23 9-24 to 9-26 9-27 to 9-32 9-33 to 9-39 9-40 to 9-43 9-44 to 9-46 9-47 to 9-52	IDLE SPEED CONTROL GENERIC IDLE SPEED CONTROL DESIRED RPM CALCULATION RPM ERROR CALCULATION DASPOT CALCULATIONS MODE SELECT KAM UPDATE DUTY CYCLE CALCULATION IPSIBR CALCULATION	LHAX0 LHBH0 LHBH0 LHAX0 LHAP0 LHAX0 LHAU0 LHBG0
10-1 to 10-4	GOVERNOR MAP SIGNAL STRATEGY	LHAX0
11-1 to 11-8	CANISTER PURGE STRATEGY	LHBA0
12-1 to 12-10	THERMACTOR AIR STRATEGY	LHBG0
13-2 to 13-6 13-7 to 13-29 13-30 to 13-34 13-35 to 13-38	DIAGNOSIS MODE PID TABLES AND BIMAP DEFINITIONS UART MESSAGE CHECK	LHI0 LHAZ0 LHAZ0 LHBH0
14-1 to 14-8 14-2 to 14-4 14-5 to 14-8	DATA OUTPUT LINK DATA OUTPUT LINK PULSE CALCULATION	LHAX0 LHBD0
15-1 to 15-6 15-2 to 15-3 15-4 to 15-6	ALTERNATIVE CALIBRATION CALIBRATION INITIALIZE LOGIC CALIBRATION CLEAR LOGIC	LHBH0 LHBH0
16-9 to 16-14	SHIFT CONTROL E4OD TRANSMISSION STRATEGY OVERVIEW PRNDL BASED DESIRED GEAR DETERMINATION GR_DS, PRNDL = 3 OR 4 LOGIC	LHAPO LHLO LHAVO
16-19 to 16-23	DELAY/VERIFY SHIFT LOGIC PRNDL BASED COMMANDED GEAR DETERMINATION	LHD0 LHBB0
16-26 to 16-27 16-28 16-29 to 16-32	GR_CM, PRNDL = 1 LOGIC GR_CM, PRNDL = 2 LOGIC GR_CM, PRNDL = 3 or 4, DOWNSHIFT LOGIC LOAD SHIFT IN PROGRESS TIMER DETERMINE SHIFT SOLENOID STATES SHIFT VALIDATION LOGIC	LHAPO LHAPO LHAPO LHLO LHLO LHBAO
17-1 to 17-48 17-2 to 17-15 17-16 17-17 to 17-18 17-19 to 17-25 17-26 to 17-32 17-33 to 17-34 17-35 to 17-39 17-40 to 17-43 17-44 to 17-45 17-46 to 17-48	ELECTRONIC PRESSURE CONTROL ELECTRONIC PRESSURE CONTROL GUIDE START-UP TV LOGIC COAST BOOST LOGIC ENGAGEMENT/STALL TV LOGIC NORMAL TV CALCULATION TQ_IALPHA CALCULATION DYNAMIC TV CALCULATION OFMFLG LOGIC TV VFS OUTPUT ROUTINE TRANSMISSION OVERTEMPERATURE TEST	LHBG0 LHAS0 LHM0 LHBG0 LHBB0 LHG0 LHAX0 LHBB0 LHA0 LHBB0

18-13 to 18-16 18-17 18-18 to 18-19 18-20 to 18-24 18-25 to 18-28 18-29 to 18-33 18-34 to 18-36 18-37 to 18-38 18-39 to 18-41 18-42 to 18-45	CONVERTER CLUTCH CONTROL UNCONDITIONAL UNLOCK LOGIC SHIFT UNLOCK LOGIC INITIALIZE DOWNSHIFT DOWNSHIFT CONVERTER CLUTCH INITIALIZE UPSHIFT UPSHIFT CONVERTER CLUTCH SCHEDULED LOCK/UNLOCK LOGIC WOT LOCK-UP LOGIC HIGH SPEED UPSHIFT CONVERTER CLUTCH VALIDATION COAST CLUTCH CONTROL	LHBB0
19-8 to 19-11 19-12 to 19-15 19-16 19-17 19-18 to 19-19 19-20 to 19-21	TRANSMISSION INPUT CONVERSIONS TRANSMISSION CONTROL INDICATOR LIGHT TCIL OUTPUT TORQUE CALCULATIONS E40D TRANSMISSION CALCULATIONS VSBART_FM CALCULATION ETV OVERCURRENT MONITOR VOLTAGE TRANSMISSION CONTROL SWITCH 4 X 4 LOW SWITCH RT_NOVS_KAM CALCULATION	LHBB0 LHAS0 LHAS0 LHAY0 LHAS0 LHAS0 LHAS0 LHBB0 LHAS0
20-1 to 20-72 20-2 to 20-26 20-27 to 20-28 20-29 to 20-44 20-45 to 20-48 20-49 to 20-51 20-52 to 20-55 20-56 to 20-57 20-58 20-59 to 20-60 20-61 to 20-62 20-63 to 20-64 20-65 to 20-66 20-67 to 20-72	SYSTEM EQUATIONS VS_RATEPH CALCULATIONS MANIFOLD ABSOLUTE PRESSURE ENGINE SPEED CALCULATION SPEED DENSITY AIR MASS CALCULATION ROLLING AVERAGE ROUTINE TCSTRT, ACSTRT, INIT_TOT ROUTINE PIP NOISE FILTERING POWER MODE COLD TEMPERATURE TV SOLENOID OPERATION DYNAMIC TV DUE TO COLD TRANSMISSION COLD SHIFT MULTIPLIER	LHASO LHAUO LHAZO LHHO LHAZO LHASO LHFO LHAO LHAO LHASO LHASO LHCO LHASO LHBBO
21-1 to 21-22	TIMERS	LHBB0
22-1 to 22-24 22-2 22-3 to 22-4 22-5 to 22-7 22-8 to 22-11 22-12 to 22-15 22-16 to 22-17 22-18 to 22-19 22-20 to 22-24	FAILURE MODE MANAGEMENT OVERVIEW FAILURE RECOGNITION ACT SENSOR UPDATE ADAPTIVE FUEL TABLE FMEM ECT SENSOR UPDATE EVP SENSOR FMEM TOT SENSOR FMEM TP SENSOR FMEM	LHAQ0 LHAQ0 LHAQ0 LHAS0 LHAQ0 LHAQ0 LHAQ0 LHAQ0

29-1 to 29-76	CONTINUOUS TEST STRUCTURE	
29-2	FILTERING LOGIC	LHBB0
29-3 to 29-4	FAULT THRESHOLD/UPCOUNT VALUE	
	SELECTION	LHBB0
29-5	KAM CODE WARM_UP COUNTER/ERASE LOGIC	LHBB0
29-6 to 29-11	COOLING SYSTEM TEST	LHBB0
29-12	ECT OPEN/SHORT TESTS	LHBB0
29-13	ACT SENSOR TESTS	LHBB0
29-14	TRANSMISSION OIL TEMPERATURE SENSOR	LHBB0
29-15	MANIFOLD ABSOLUTE PRESSURE SENSOR	LHBB0
29-16 to 29-20	MAP SENSOR VACUUM CIRCUIT TEST	LHBB0
29-21 to 29-29	SONIC EGR	LHBE0
29-30 to 29-31	EGR SYSTEM SELECT	LHBE0
29-32 to 29-34	IGNITION DIAGNOSTIC MONITOR	LHBB0
29-35	CONVERTER CLUTCH VALIDITY TEST	LHBB0
29-36	ELECTRONIC PRESSURE CONTROL SOLENOID	LHBB0
29-37	THROTTLE POSITION SENSOR TEST	LHBB0
29-38 to 29-40	VEHICLE SPEED SENSOR TEST	LHBF0
29-41 to 29-45	BRAKE ON/OFF CIRCUIT TEST	LHBB0
29-46 to 29-50	ADAPTIVE TABLE CLIP TEST	LHBB0
29-51 to 29-66	EGO SWITCHING TEST	LHBH0
29-67 to 29-70	FUEL PUMP CIRCUIT TEST	LHBB0
29-71 to 29-76	MALFUNCTION INDICATOR LIGHT	LHBB0
30-1 to 30-4	ERROR CODE DESCRIPTION	LHBB0
31-1 to 31-2	ROM IDENTIFICATION CODE	LHA0
31-1 (0 31-2	KOM IDENTIFICATION CODE	⊔пАО
	INDEX	LHBH1

CHAPTER 1

STRATEGY EVOLUTION

STRATEGY EVOLUTION - LHBH1 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

STRATEGY EVOLUTION

RELEASE FILE		ERD/ URD NO.		DESCRIPTION OF CHANGE
LHBH1 (03/24/93	LHBH0		=======	
		10169	94-1237	COMMUNICATION - DCL - Running change needed to correct lose of ISCDTY.
		10394	94-1247	COMMUNICATION - DCL - Update code to properly set bits in DCL BITMAP_1 register.
LHBH0 (09/28/92)	LHBG0		=======	
(, , ,		8143	93-769	IDLE SPEED - IPSIBR CALC - IPSIBR not updating during RUNNING SELF-TEST.
		8384 check	93-77	EGR - OTHER - Bypass EGR enabled
		8629	93-775A	during wiggle for 327/337. EGR - EGR FMEM - EMR # 93-775, was improperly implemented in LHBGA and LHBHO.
		7682	94-745	SPARK - OTHER - Add anti plug fouling strategy.
		8458	94-820C	OBD-I CONT TEST EGO SWITCHING TEST - update LH ego test.
		8458	94-820D	OBD-I CONT TEST EGO SWITCHING TEST - lazy/buzz logic not in code.
		8458	94-820E	OBD-I CONT TEST EGO SWITCHING TEST - associate parameter with LH.
		8458	94-820F	OBD-I CONT TEST EGO SWITCHING TEST - change V_EGO_BYPS := 0 to := 1
		8392	94-858	GENERAL - OTHER - ALT_CAL_FLG is set during PWR UP aftr battery disconnect.
		8447	94-873	SPARK - OTHER - Documentation clean
		up. 8559	94-92	SPARK - OTHER - Corrections to anti plug fouling strategy.
		7564	95-122	FUEL - CRANK - Allow greater flexibility with de-choke and APT.
		7564	95-122A	<pre>FUEL - CRANK - Strat. err: TP_REL>TP_DECHOKE should be TP_REL<=TP_DECHOKE.</pre>
LHAG0 (07/15/92)	LHAF0	======	=======	
,		2185 flexibi		SELF-TEST - KOER - Greater
		7781	93-761	for RUNNING EGO SENSOR TEST. FUEL - ADAPTIVE - Function
		enhance 7005 low	ment. 94-588B	TRANSMISSION - SELF TEST/FMEM - 4X4
		7005 low	94-588C	input error detection. TRANSMISSION - SELF TEST/FMEM - 4X4
		7082 Improve	94-603	input error detection. TRANSMISSION - SHIFT CONTROL -

engagm't strategy by using TOT and NEBART.

7231 94-641 IDLE SPEED - OTHER - Induction of the A/C pressure switch in 94-E&F CALIB.

	7231	94-641A	IDLE SPEED - OTHER - Induction of the A/C pressure switch in 94-E&F CALIB.
	7741 during	94-718	TRANSMISSION - EPC - EPC spikes
	7184	95-102	engagements. GENERAL - OTHER - RPM calc. does not take advantage of full 0.25 accuracy.
	7783	95-141	THERMACTOR - UP/DOWN STREAM - Allow capability to dump thermactor during closed loop fuel.
LHBF0 LHBE0 (06/04/92)			
	7202 Replace	93-740	TRANSMISSION - SELF TEST/FMEM -
			N with nebart in vehicle speed sensor test.
	7519	93-746	EGR - EGR CONTROL - Correct software error in EGR RATE calculation.
	7745	93-757	EGR - EGR CONTROL - Software: omitted FN240(WOTTMR) from EGRATE calculation.
============	=======	========	
LHBE0 LHBD0 (05/29/92)			
	7078 to	93-710A	EGR - EGR CONTROL - Change EGR logic
	7078	93-710B	enable EGR for periods at WOT. EGR - EGR CONTROL - Change EGR at WOT logic to provide MAP hysteresis.
	7405	93-734	THERMACTOR - UP/DOWN STREAM - Modify Thermactor Dump as a f'n of RPM, avoid backfires.
	7405	93-734A	THERMACTOR - UP/DOWN STREAM - Correct error in flop flop. Required change.
	7705	93-734B	THERMACTOR - UP/DOWN STREAM - Revise thermactor dump at low TP_REL to allow
	7408 enhancer	93-737 ment	air at idle. FUEL - ADAPTIVE - Function
	6049	94-280	that will allow more adaptive learning. SELF-TEST - KOER - Correct spark
	control)4 ZUU	test in koer - software only.
			cost in roci software only.

	7523 referen	94-477B ce	FUEL - ADAPTIVE - Do not use
	7025 337	94-551C	cell values for update rates. OBD-I CONT TEST EGR - Lock out 327,
	7025	94-551н	til EGR enabled. Convert to ladder diagram. EGR - EGR ENABLE - Correct strategy
	7025 to	94-5511	error in EGR enable logic. OBD-I CONT TEST EGR - Match strategy
	7005	94-588	existing software. Sonic EGR test. TRANSMISSION - SELF TEST/FMEM - 4X4
	7385	94-647	low input error detection. OBD-I ENG OFF - OUTPUT TEST MODE - Software error in output test mode
	7637	94-690	self-test. FMEM - FAILURE RECOGNITION - Many failures of code 628 have been
	7667	94-702	reported. FUEL - DECEL FUEL SHUT-OFF - Software error found in fuel pulsewidth calculation.
LHBD0 LHBC0		=======	
(05/01/92)	6727	92-562A	TRANSMISSION - SELF TEST/FMEM - Modify FMEM action for Transmission
	5089	93-150G	Overtemperature - LH,AC. SELF-TEST - CONTINUOUS - Create variant strategy for 5.81/o to alter ego test.
	7035	93-708	GENERAL - OTHER - Avoid future software/strategy errors.
	6623	94-431	COMMUNICATION - DOL - Addition of
	6834	94-471	distance-to-empty feature (DOL). GENERAL - OTHER - Update SYMBOLOGY chapter to current symbology usage.
	6862	94-477	FUEL - ADAPTIVE - Four adaptive improvements.
	7302	94-477A	FUEL - ADAPTIVE - Random number algorithm will not function properly.
	7241	94-589	FUEL - OTHER - FUEL_SUM should be in ticks for LL and LH.
	=====	=====	
LHBC0 LHBB1 (01/23/92)		00.655	
	6100 limit	93-657	5
	6100	93-657A	the time to adapt in WOT. FUEL - ADAPTIVE - Correct parameter XMAPPA base value in Parameter Dictionary.
LHBB1 LHBB0	======	=======	=======================================
(11/11/91)	6076	93-616	TRANSMISSION - MLPS - IPDL getting intermittant values outside correct
	6098 going	93-621	range. TRANSMISSION - EPC - Fix TV from

to 127.5 every background loop.

LHBBO	LHBAO			
(10/02/91)		4724	93-333	TRANSMISSION - Revise coverter clutch validation error code setting logic.
		5409 need	93-365B	FUEL - DFSO - Thermactor and DFSO
		5056	93-396	<pre>different d_tp_dt terms. TRANSMISSION - FMEM - Rename OCIL,</pre>
		ASML,		and ASMIL to TCIL.
		5056 Paramete	93-396H er	TRANSMISSION - FMEM - Correct
				Transactions for LH.
		5264 SCSLPXXX	93-432 X,	TRANSMISSION - NORM TV CALC -
				and SCSLPX cal constants overflow a byte.
		5340	93-454	TRANSMISSION - DET SHFT SOL - Main Control Rev'ns require calibratible sol.
				states in Neu.
		5359 Improve	93-461	TRANSMISSION - FMEM - Request to
				FMEM Action for E4OD.
		5359 C657_KAI	93-461A M_BIT	TRANSMISSION - FMEM - Add
		5359 TOT_OTE	93-461D MP	to AC, LH, and AG. TRANSMISSION - FMEM - Define
				for LH,AC and AG strategies.
		5437 improver	93-500 ment.	SELF-TEST - KOEO - MLPS test
			93-500D	SELF-TEST - KOEO - New MLPS test improvement.
		5563	93-534	FUEL - CLOSED LOOP - allow switching into/out-of closed loop for f450
		5713 Calculat	93-546 te	superduty. TRANSMISSION - NORM TV CALC -
		5713 Calculat	93-546A te	converter clutch torque capacity. TRANSMISSION - NORM TV CALC -
		5707 FMEM.	93-564	converter clutch torque capacity. FMEM - UNKNOWN - Driveability in
		5714	95-037	TRANSMISSION - OTHER - Coast Clutch Control Software Error.

	5714	95-037A	TRANSMISSION - OTHER - Coast Clutch Control Software Error.
LHBAO LHAZ1			
(06/10/91)	4516	91-589	OTHER - N/A - Software documentation
	4650 validat:	93-327 ion	needs 1991 copyright date. TRANSMISSION - Revise shift
	5271	93-327A	logic error codes, improve FMEM. TRANSMISSION - Delete OCIL_HP from LH
	4834 7.5L.	93-334	strategy. OTHER - Revise purge strategy for
	4579 and	93-365	FUEL - DFSO - Add d/dt(TP) to DFSO
	4579 to	93-365A	THERMACTOR to control backfire. FUEL - DFSO - Match timer resolution
	5355 Incorre	93-453	strategy. MISCELLANEOUS - INFERRED BP -
			read done for BPPTWTLO for rolav.
LHAZ1 LHAZ0			
(03/20/91)	4922 were	92-507	EGR - EVR CONTROL - EGRACT and EGRERR
	wcrc		incorrectly calculated.
T.U770 T.U7V0			
LHAZO LHAYO (03/04/91)	4204	00 2041	MIGGELL ANDOLIG Durani de la computa
	4204 LAMMAX	92-324L	MISCELLANEOUS - Provide a separate
		92-324L 92-325	MISCELLANEOUS - Provide a separate for PURGE logic; documentation error. SELF TEST - CONTINUOUS - TRLOAD is
	LAMMAX 3541		for PURGE logic; documentation error. SELF TEST - CONTINUOUS - TRLOAD is value, but loaded as word. SYSTEM COMM - DCL - Verify BITMAP_x
	LAMMAX 3541 byte	92-325	for PURGE logic; documentation error. SELF TEST - CONTINUOUS - TRLOAD is value, but loaded as word.
	3541 byte 3123 3123	92-325 92-368	for PURGE logic; documentation error. SELF TEST - CONTINUOUS - TRLOAD is value, but loaded as word. SYSTEM COMM - DCL - Verify BITMAP_x definition and add new PID codes. SYSTEM COMM - DCL - Replace PID code (adder of LTMTB1) with IOCC. SYSTEM COMM - DCL - Revisions to PID
	3541 byte 3123 3123 2E	92-325 92-368 92-368A	for PURGE logic; documentation error. SELF TEST - CONTINUOUS - TRLOAD is value, but loaded as word. SYSTEM COMM - DCL - Verify BITMAP_x definition and add new PID codes. SYSTEM COMM - DCL - Replace PID code (adder of LTMTB1) with IOCC.
	3541 byte 3123 3123 2E 3123 4494	92-325 92-368 92-368A 92-368D 92-469	for PURGE logic; documentation error. SELF TEST - CONTINUOUS - TRLOAD is value, but loaded as word. SYSTEM COMM - DCL - Verify BITMAP_x definition and add new PID codes. SYSTEM COMM - DCL - Replace PID code (adder of LTMTB1) with IOCC. SYSTEM COMM - DCL - Revisions to PID tables and BITMAPS.
	3541 byte 3123 3123 2E 3123 4494 TEST 4513	92-325 92-368 92-368A 92-368D 92-469	for PURGE logic; documentation error. SELF TEST - CONTINUOUS - TRLOAD is value, but loaded as word. SYSTEM COMM - DCL - Verify BITMAP_x definition and add new PID codes. SYSTEM COMM - DCL - Replace PID code (adder of LTMTB1) with IOCC. SYSTEM COMM - DCL - Revisions to PID tables and BITMAPS. SELF TEST - CONTINUOUS - False SELF code 173 (EGO1 sensor fault-rich).
	3541 byte 3123 3123 2E 3123 4494 TEST 4513 complain	92-325 92-368 92-368A 92-368D 92-469 92-477	for PURGE logic; documentation error. SELF TEST - CONTINUOUS - TRLOAD is value, but loaded as word. SYSTEM COMM - DCL - Verify BITMAP_x definition and add new PID codes. SYSTEM COMM - DCL - Replace PID code (adder of LTMTB1) with IOCC. SYSTEM COMM - DCL - Revisions to PID tables and BITMAPS. SELF TEST - CONTINUOUS - False SELF code 173 (EGO1 sensor fault-rich). TRANSMISSION - Lack of power after light throttle 1-2 upshifts.

3719	93-191	purge. SELF TEST - Allow KOEO self test in neutral instead of PARK, E4OD.
3876 switch	93-196	FUEL - OPEN LOOP - 7.0L thermactor
		open loop error.
2830	93-221	TRANSMISSION - Some of the governor parameters are incorrectly defined.
4533	93-273	SELF TEST - KOEO - Software in KOEO canister purge OCC test.

			93-283	TRANSMISSION - Filter MAP_WORD for transmission TQ_NET calculation.
		4554 filteri		TRANSMISSION - Clarify MAP_WORD
			93-304	technique for transmission use. MISCELLANEOUS - PURGE - Improve base calibration for PURG_ADP_SF.
		4581 caniste		FUEL - PURGE - Remove the 2nd
=======	=====	======	=======	purge output.
LHAY0 (10/29/90)	LHAXA			
(10/25/50)		1758 START_U		TRANSMISSION - ENGAG/STALL TV;
				TV; TV PRES GUIDE - Correct errors in EMR 91-158.
		4133 EMR's	92-139C	SELF TEST - KOEO - Implementation of
		4107 Caniste	92-324K r	92-139 and 92-139B was not correct. SELF TEST - CONTINUOUS - Revise
		3364 Calcula		Purge Filter. MISCELLANEOUS - INPUT CNVRT -
				$\begin{array}{lll} {\tt VSBART_FM-based} & {\tt on\ NIBART,\ NOBART} & {\tt or\ NEBART.} \end{array}$
		3938	92-391	TRANSMISSION - EPC - Improve VFS temperature compensation.
		3936 reset t	-	ISC - IPSIBR CALC - Remove IPSIBR
		4212 drops	92-442	0 on closed to part throttle change. AIR MEASUREMENT - MAP SAMPLE - Fuel
		агорь		out during high speed wot to pt tip outs.
			93-055	FUEL - Fix CRKPIPCTR logic so that a partial reset is possible.
		3343 VSS	93-116B	TRANSMISSION - FMEM - Limit VS with
		4080 EDTS fo	94-010H	failure. TRANSMISSION - GRCMKIV appears in
========	=====		- ========	LH, but not code/strategy book.
	LHAX0			
(09/13/90)	ППАХО			
		3995	91-409Y	SELF TEST - CONTINUOUS - Protect EGO test from vacuum controlled purge overload.
=======	=====	======	=======	=======================================
LHAX0 (09/07/90)	LHAW0			
, 0 - , , 0 0)		3752 EGO	91-409W	SELF TEST - CONTINUOUS - Prevent rich
		0140 from	92-139	failure due to purging. MISCELLANEOUS - Protect background
		3346	92-139B	infinite loop with watchdog. MISCELLANEOUS - Change parameter

3146 with	92-200	dictionary for RAM/ROM byte thrift. FUEL - INJECTOR OUTPUT - Collision
3177 fuel		asynchronous AE may cause improper
		pulse.
3146 with	92-200A	FUEL - INJECTOR OUTPUT - Collision
3177 fuel		asynchronous AE may cause improper
1401		pulse.
3597 coast	92-313	TRANSMISSION - Allow application of
coasc		clutch for PDL = 4, $GR_CM < 4/$
		1-7

		92-324B	SELF TEST - MIL - Lack of HEGO
	switchi	ng	codes 173 and 177 are being set.
	3863	92-324D	OTHER - Purge strategy resolution improvement.
		92-324F tion for	OTHER - Add EDTS parameter
	4004 clipping	92-324G g	PRG_INIT_FLG. MISCELLANEOUS - Purge decrement
	4004	92-324Н	normal purge. MISCELLANEOUS - PURGE - Limit PRG_DEC 0.99 to make code shorter.
	4028 during	92-324I	FUEL - MIL light turns on/off/on
	3728	92-366	rich purge condition. TRANSMISSION - CSDYN cold TV modifier problem.
	3887	92-408	ISC - ISCKAM UPDATE - Documentation commonality needed for ISCKAM UPDATE
	2858 paramete	93-060 ers	logic. MISCELLANEOUS - Match engine
	2858 paramete	93-060A	to MY 91-1/2 7.0L LL strategy. MISCELLANEOUS - Match engine
	3334 engine	93-060B	to MY 91-1/2 7.0L LL strategy. MISCELLANEOUS - Want to transfer
	3769 logic	93-115	calibration from LL calibration. ISC - DASHPOT - Minimum DASPOT clip
=========	_	=======	was not governed with respect to N/D.
LHAWO LHAVO	======:	======	
	======:	91-229	SELF TEST - Unused IGNCNT should be
LHAWO LHAVO	-		
LHAWO LHAVO	2096 3446 of 3318	91-229 91-568 92-241	SELF TEST - Unused IGNCNT should be removed from dictionary and code.
LHAWO LHAVO	2096 3446 of 3318 TV_COUNT	91-229 91-568 92-241 IS	SELF TEST - Unused IGNCNT should be removed from dictionary and code. MISCELLANEOUS - Incorrect description parameter V_EGO_ENA in DOC file. TRANSMISSION - OFMFMG - Force to zero when ETV_TEST = 1 (FN622 > 15).
LHAWO LHAVO	2096 3446 of 3318	91-229 91-568 92-241	SELF TEST - Unused IGNCNT should be removed from dictionary and code. MISCELLANEOUS - Incorrect description parameter V_EGO_ENA in DOC file. TRANSMISSION - OFMFMG - Force to zero when ETV_TEST = 1 (FN622 > 15). SELF TEST - KOER - Logic gates for
LHAWO LHAVO	2096 3446 of 3318 TV_COUNT	91-229 91-568 92-241 IS	SELF TEST - Unused IGNCNT should be removed from dictionary and code. MISCELLANEOUS - Incorrect description parameter V_EGO_ENA in DOC file. TRANSMISSION - OFMFMG - Force to zero when ETV_TEST = 1 (FN622 > 15). SELF TEST - KOER - Logic gates for Running Self Test initialization incorrect.
LHAWO LHAVO	2096 3446 of 3318 TV_COUNT	91-229 91-568 92-241 IS	SELF TEST - Unused IGNCNT should be removed from dictionary and code. MISCELLANEOUS - Incorrect description parameter V_EGO_ENA in DOC file. TRANSMISSION - OFMFMG - Force to zero when ETV_TEST = 1 (FN622 > 15). SELF TEST - KOER - Logic gates for Running Self Test initialization
LHAWO LHAVO	2096 3446 of 3318 TV_COUNT	91-229 91-568 92-241 TS	SELF TEST - Unused IGNCNT should be removed from dictionary and code. MISCELLANEOUS - Incorrect description parameter V_EGO_ENA in DOC file. TRANSMISSION - OFMFMG - Force to zero when ETV_TEST = 1 (FN622 > 15). SELF TEST - KOER - Logic gates for Running Self Test initialization incorrect. ISC - Unable to calibrate FN825A and
LHAWO LHAVO	2096 3446 of 3318 TV_COUNT 3300 Engine 3429 3503	91-229 91-568 92-241 TS 92-242	SELF TEST - Unused IGNCNT should be removed from dictionary and code. MISCELLANEOUS - Incorrect description parameter V_EGO_ENA in DOC file. TRANSMISSION - OFMFMG - Force to zero when ETV_TEST = 1 (FN622 > 15). SELF TEST - KOER - Logic gates for Running Self Test initialization incorrect. ISC - Unable to calibrate FN825A and FN825B using cal-console.
LHAW0 (05/24/90)	2096 3446 of 3318 TV_COUNT 3300 Engine 3429 3503 shifts. NONE DDVS to	91-229 91-568 92-241 TS 92-242 92-253 92-287 93-064A	SELF TEST - Unused IGNCNT should be removed from dictionary and code. MISCELLANEOUS - Incorrect description parameter V_EGO_ENA in DOC file. TRANSMISSION - OFMFMG - Force to zero when ETV_TEST = 1 (FN622 > 15). SELF TEST - KOER - Logic gates for Running Self Test initialization incorrect. ISC - Unable to calibrate FN825A and FN825B using cal-console. TRANSMISSION - DYN TV CALC - Harsh
LHAW0 (05/24/90)	2096 3446 of 3318 TV_COUNT 3300 Engine 3429 3503 shifts. NONE DDVS to	91-229 91-568 92-241 TS 92-242 92-253 92-287 93-064A	SELF TEST - Unused IGNCNT should be removed from dictionary and code. MISCELLANEOUS - Incorrect description parameter V_EGO_ENA in DOC file. TRANSMISSION - OFMFMG - Force to zero when ETV_TEST = 1 (FN622 > 15). SELF TEST - KOER - Logic gates for Running Self Test initialization incorrect. ISC - Unable to calibrate FN825A and FN825B using cal-console. TRANSMISSION - DYN TV CALC - Harsh OTHER - Documentation change from VSLIM.
LHAW0 (05/24/90)	2096 3446 of 3318 TV_COUNT 3300 Engine 3429 3503 shifts. NONE DDVS to	91-229 91-568 92-241 TS 92-242 92-253 92-287 93-064A	SELF TEST - Unused IGNCNT should be removed from dictionary and code. MISCELLANEOUS - Incorrect description parameter V_EGO_ENA in DOC file. TRANSMISSION - OFMFMG - Force to zero when ETV_TEST = 1 (FN622 > 15). SELF TEST - KOER - Logic gates for Running Self Test initialization incorrect. ISC - Unable to calibrate FN825A and FN825B using cal-console. TRANSMISSION - DYN TV CALC - Harsh OTHER - Documentation change from VSLIM.

		add throttle adjust modes to
		strategies.
1775	91-230	SELF TEST - KOER - Surge during VIP.
2732	91-230A	SELF TEST - KOER - Documentation for EMR 91-230.
0064	01 400	
2964	91-483	SELF TEST - MIL - Change strategy
book		
		to use DISABLE_NOSTART.
NONE	91-531A	TRANSMISSION - DYN TV CALC -
Inappro	priate	
		upshift TV ramp during verification.
2764	91-540	TRANSMISSION - SHIFT VAL - TP Failure
and	71 010	
and		Olife 77-1:3-+:
		Shift Validation.
3236 in	91-554	TRANSMISSION - FMEM - Software error

==========	NONE	92-155K 92-155L =======	LHAT2. TRANSMISSION - DSRD GEAR DET - PPH - Correct parameter specifications. TRANSMISSION - DSRD GEAR DET - PPH - Correct parameter specifications.
LHAU2 LHAU1			
(03/26/90)	3299	91-565	TRANSMISSION - EPC - FN622(TOT) does not return signed results, but should.
	3280	92-223	OTHER - RCON macros corrupt SMP.
LHAU1 LHAU0 (03/06/90)			
(03/00/50)	3217 Softwar	91-555 e	TRANSMISSION - NORM TV CALC -
	2131	91-556	errors in LHAU0. TRANSMISSION - SHIFT CONTROL - Make FN12_DC, FN23_DC, and FN34_DC signed functions.
==========	======	=======	
LHAU0 LHAT1 (02/16/90)			
	1542	91-199	SELF TEST - KOER - Engine running initialization revisions and new documentation.
	NONE	91-199A	SELF TEST - KOER - Engine running initialization revisions and new documentation.
	NONE	91-199C	SELF TEST - KOER - Documentation to support EMR 91-199/B and 3-digit codes.
	2582	91-412	SPARK - Thrift; reduce resolution of SPK LAMBSE.
	3171	91-412A	TRANSMISSION - NORM TV CALC - EMR 91-412 cannot be implemented as written.
	NONE 2623 E.R.	91-428A 91-435	ISC - Improvement to LOWVOL strategy. SELF TEST - KOER - Delete the old
	2629	91-437	spout test. TRANSMISSION - EPC - Shift quality
	varies 2310 DEBYMA	91-440	with temperature. ISC - DUTY CYCLE - Improve ISC's
	2863 shift	91-454	output. TRANSMISSION - EPC - Inconsistent
	2832	91-464	qualify with altitude. SELF TEST - CONTINUOUS - Remove VIP EGO switching repetitive one-shot
	NONE not	91-464A	test. FMEM - EGO SENSOR - EMR 91-464 did
	3005 cold	91-527	cover the FMEM chapter. TRANSMISSION - EPC - TVCHARGE and
	2856	91-528	engagement strategies may not work. MISCELLANEOUS - THERMACTOR - OBD-1

2976	91-537	implementation with thermactor. OTHER - Delay in AM2 turn-off.
NONE off.	91-537A	OTHER - Timer resolution, AM2 turn-
3167	91-542	AIR MEASUREMENT - MAP SAMPLE -
Incorre	ct	
		long MAP averaging at wide open throttle.
3186 band	91-543	SELF TEST - KOER - Extend clips on
Darra		limits for running idle adjust test.
		1-9

	3200	91-546	TRANSMISSION - FMEM - Remove VSFMFLG being set by C452_KAM_BIT on power-
	1891	92-086	up. MISCELLANEOUS - Cannot load two regions into calibration console.
	NONE	92-155D	MISCELLANEOUS - INPUT CNVRT - Specify VS_RATEPH calculation.
	NONE prevent	92-155G	TRANSMISSION - DSRD GEAR DET - To
	NONE prevent	92-155Н	powertrain hunting with E- transmissions. TRANSMISSION - DSRD GEAR DET - To
	2540	92-161	powertrain hunting with E- transmissions. SELF TEST - CONTINUOUS - Upgrade fuel pump test and documentation.
	2937	92-161A	SELF TEST - CONTINUOUS - Error in EMR 92-161, calibration parameter name used for RAM flag.
	3134 pump	92-161B	SELF TEST - Correct typo's in fuel
	2913	92-170	test. MISCELLANEOUS - Correct potential problem.
	3041 always	92-178	TRANSMISSION - FMEM - OFMFLG is
	3100	92-201	set using base calibration. MISCELLANEOUS - Install shadow instruction for IPPC(R-CON) function.
============	=======		=======================================
LHAT1 LHAT0	-		
	3018	91-126F	SELF TEST - CONTINUOUS - MIL light remains on after correction of EGR
LHAT1 LHAT0		91-126F 91-170G	SELF TEST - CONTINUOUS - MIL light remains on after correction of EGR flow fault. SELF TEST - CONTINUOUS -
LHAT1 LHAT0	3018 2947	91-126F 91-170G	SELF TEST - CONTINUOUS - MIL light remains on after correction of EGR flow fault. SELF TEST - CONTINUOUS - of continuous BOO test. FMEM - Problem with FMEM fuel when
LHAT1 LHAT0	3018 2947 Bulletpr	91-126F 91-170G coofing	SELF TEST - CONTINUOUS - MIL light remains on after correction of EGR flow fault. SELF TEST - CONTINUOUS - of continuous BOO test. FMEM - Problem with FMEM fuel when MAP vacuum failure recognized. SELF TEST - CONTINUOUS - Correction
LHAT1 LHAT0	3018 2947 Bulletpr 3037 NONE	91-126F 91-170G coofing 91-394C	SELF TEST - CONTINUOUS - MIL light remains on after correction of EGR flow fault. SELF TEST - CONTINUOUS - of continuous BOO test. FMEM - Problem with FMEM fuel when MAP vacuum failure recognized. SELF TEST - CONTINUOUS - Correction self test strategy. SELF TEST - CONTINUOUS - EGO test/
LHAT1 LHAT0	3018 2947 Bulletpr 3037 NONE in	91-126F 91-170G coofing 91-394C 91-394D	SELF TEST - CONTINUOUS - MIL light remains on after correction of EGR flow fault. SELF TEST - CONTINUOUS - of continuous BOO test. FMEM - Problem with FMEM fuel when MAP vacuum failure recognized. SELF TEST - CONTINUOUS - Correction self test strategy. SELF TEST - CONTINUOUS - EGO test/mechanical purge. SELF TEST - CONTINUOUS - V_LEGOTMR1 is held to zero after a jumpback with
LHAT1 LHAT0	3018 2947 Bulletpr 3037 NONE in 2987	91-126F 91-170G coofing 91-394C 91-394D 91-409N	SELF TEST - CONTINUOUS - MIL light remains on after correction of EGR flow fault. SELF TEST - CONTINUOUS - of continuous BOO test. FMEM - Problem with FMEM fuel when MAP vacuum failure recognized. SELF TEST - CONTINUOUS - Correction self test strategy. SELF TEST - CONTINUOUS - EGO test/mechanical purge. SELF TEST - CONTINUOUS - V_LEGOTMR1 is held to zero after a jumpback with failure present. SELF TEST - KOER - Revise running self test code 998 abort with
LHAT1 LHAT0	3018 2947 Bulletpr 3037 NONE in 2987 3016	91-126F 91-170G coofing 91-394C 91-394D 91-409N 91-409O	SELF TEST - CONTINUOUS - MIL light remains on after correction of EGR flow fault. SELF TEST - CONTINUOUS - of continuous BOO test. FMEM - Problem with FMEM fuel when MAP vacuum failure recognized. SELF TEST - CONTINUOUS - Correction self test strategy. SELF TEST - CONTINUOUS - EGO test/mechanical purge. SELF TEST - CONTINUOUS - V_LEGOTMR1 is held to zero after a jumpback with failure present. SELF TEST - KOER - Revise running self test code 998 abort with corresponding code 128. SELF TEST - Software coding error. SELF TEST - CONTINUOUS - Change 3-digit slow code pulsewidth to 0.4
LHAT1 LHAT0	3018 2947 Bulletpr 3037 NONE in 2987 3016 2773	91-126F 91-170G coofing 91-394C 91-394D 91-409N 91-409O 91-411 91-466	SELF TEST - CONTINUOUS - MIL light remains on after correction of EGR flow fault. SELF TEST - CONTINUOUS - of continuous BOO test. FMEM - Problem with FMEM fuel when MAP vacuum failure recognized. SELF TEST - CONTINUOUS - Correction self test strategy. SELF TEST - CONTINUOUS - EGO test/mechanical purge. SELF TEST - CONTINUOUS - V_LEGOTMR1 is held to zero after a jumpback with failure present. SELF TEST - KOER - Revise running self test code 998 abort with corresponding code 128. SELF TEST - Software coding error. SELF TEST - CONTINUOUS - Change 3-digit slow code pulsewidth to 0.4 seconds. SELF TEST - CONTINUOUS - Adaptive
LHAT1 LHAT0	3018 2947 Bulletpr 3037 NONE in 2987 3016 2773 2945 2988	91-126F 91-170G coofing 91-394C 91-394D 91-409N 91-409O 91-411 91-466 91-485	SELF TEST - CONTINUOUS - MIL light remains on after correction of EGR flow fault. SELF TEST - CONTINUOUS - of continuous BOO test. FMEM - Problem with FMEM fuel when MAP vacuum failure recognized. SELF TEST - CONTINUOUS - Correction self test strategy. SELF TEST - CONTINUOUS - EGO test/mechanical purge. SELF TEST - CONTINUOUS - V_LEGOTMR1 is held to zero after a jumpback with failure present. SELF TEST - KOER - Revise running self test code 998 abort with corresponding code 128. SELF TEST - Software coding error. SELF TEST - CONTINUOUS - Change 3-digit slow code pulsewidth to 0.4 seconds.

NONE	91-503A	SELF TEST - KOEO - MLPS service code in KOEO.
NONE	91-503B	SELF TEST - CONTINUOUS - Amend EMR 91-503 for accuracy.
NONE	91-503C	FMEM - Modify setting and clearing of flag VSFMFLG.

	3000	91-509	SELF TEST - CONTINUOUS - Software
	error		in continuous ego software test.
===========	======	=======	
LSAT0 LHA:	S0		
(,,,	2829	91-170F	SELF TEST - CONTINUOUS -
		ntation. 91-191C	SELF TEST - KOEO - DCL documentation and VIP executive.
	NONE constra	91-409M aint	SELF TEST - CONTINUOUS - Add
	2209	91-414	on adaptive clip test. OTHER - Prevent thermactor in WOT.
	1656	91-414	ISC - BYPASS - RPM flairs when restarting a warm engine.
	2860	91-442	SELF TEST - V_LESTMR will not count up due to software error.
	2877	91-445	FUEL - Improve the LAMBDA average calculation for VIP test.
	2930	91-462	SELF TEST - CONTINUOUS - STO turns on when starting engine with STI grounded.
==========	======	=======	
LHAS0 LHA (11/16/89)	R0		
	NONE	89-554E	TRANSMISSION - Rename FNXXDC's to FNXX_DC's for AC, LD and LH.
	NONE	89-554I	TRANSMISSION - Document TP_REL high byte is the X-input to fox function.
	904 EGO	90-190A	SELF TEST - CONTINUOUS - Cleanup of
	904 level	90-190C	switching test. SELF TEST - CONTINUOUS - Provide a
	1995 specif:	90-190E ic	of fuel system testing. SELF TEST - CONTINUOUS - More
			failure criteria for continuous EGO/fuel.
	NONE specif:	90-190G ic	SELF TEST - CONTINUOUS - More
	NONE	90-190н	<pre>failure criteria for continuous EGO/fuel. SELF TEST - CONTINUOUS - EGO test modifications.</pre>
	NONE	90-190J	SELF TEST - CONTINUOUS - Development.
	NONE	90-190K	SELF TEST - CONTINUOUS - Development.
	NONE 2376 Therma	90-241M 90-362A	SELF TEST - CONTINUOUS - Development. MISCELLANEOUS - THERMACTOR -
	NONE	90-362B	air does not bypass with failed ego. MISCELLANEOUS - THERMACTOR -
	Incorre	ect	VID godog: ghanga from 41 to 144
	2693 failure	90-369B	VIP codes; change from 41 to 144. TRANSMISSION - TV PRES GUIDE - TP
	NONE	91-126A	at altitude. SELF TEST - Changes made in base EMR
	NONE	91-126B	91-126 are also required in LL. SELF TEST - MIL - Additional MIL

		changes are required for 1991
		production.
2425	91-126C	SELF TEST - MIL - Allow codes 194 and
		195 to control EGO FMEM flags.
1795	91-161	SELF TEST - CONTINUOUS - Thermostat
		warranty returns with no trouble
		found.
NONE	91-161A	SELF TEST - CONTINUOUS - Thermostat
		warranty returns with no trouble
		found.

NONE	91-161B	SELF TEST - CONTINUOUS - Revisions required to implement EMR 91-161A.
NONE	91-170C	SELF TEST - CONTINUOUS - To add continuous BOO test.
NONE	91-170D	SELF TEST - CONTINUOUS - To add continuous BOO test.
NONE	91-190A	MISCELLANEOUS - INPUT CONVERTER - VS is calculated regardless of VSTYPE - Electronic Transmission.
2034 Test	91-191	SELF TEST - Prevent entry into Self
2130 17)	91-191A	if vehicle is in Drive or moving. SELF TEST - Conflicting pages (16 and
2751	91-191B	for LH strategy. SELF TEST - KOEO - Documentation for EMR 91-191.
NONE	91-247B	SELF TEST - Erroneous code 29; VSSTMR runs with key on-engine off.
2523	91-272B	MISCELLANEOUS - Revise open loop fuel flag logic; add TP_REL criteria.
2329	91-289	EGR - ENABLE LOGIC - Incorrect DOC file definitions.
NONE	91-289A	EGR - ENABLE LOGIC - Incorrect DOC file definitions.
2538	91-289B	EGR - EMRS 91-289, A not applicable to LL, LH, LU strategies.
2327 revisio		SELF TEST - KOEO - ACC/NDS test
NONE	91-299A	SELF TEST - KOEO - Documentation correction for A/C switch test EMR 91-299.
2341	91-301	MISCELLANEOUS - SMP vector will be incorrect in production strategies.
2419	91-313	SELF TEST - MIL - MIL light will not turn on if fault 32 is present.
2507 the	91-336	SELF TEST - CONTINUOUS - Revisions to
NONE the	91-336A	Cooling System Test. SELF TEST - CONTINUOUS - Revisions to
2152	91-339	Cooling System Test. SELF TEST - Lansdale request for CPU/ RAM/ROM test output pulse spec.
NONE	91-339A	SELF TEST - Lansdale request for CPU/RAM/ROM test output pulse spec.
2508 at	91-350	FUEL - Eliminate fuel pump drop-out power-up.
2534 same	91-358	SELF TEST - LH strategy must have
2543	91-367	EGR updates as all other strategies. SELF TEST - KOER - Hot Injector Compensation not correct during
2571	91-369	Self Test. SELF TEST - Software error; incorrect continuous VIP codes can be
2286	91-380	transmitted. SELF TEST - EOL - Unexpected 35 msec
2678	91-382	pulse on STO during Lansdale Test. SPARK - Base value for DWL_XS_MIN
2679	91-383	inadequate for generic modules. SELF TEST - CONTINUOUS - Change

required

to Adaptive Test. SELF TEST - CONTINUOUS - Change NONE 91-383A

required

to EGO Test.
91-383C SELF TEST - Corrections.
91-383G SELF TEST - Corrections. NONE NONE

171 91-394 SELF TEST - Enhancement to continuous sensor test.					
NONE 91-394A SELF TEST - Change logic of continuous MAP VAC test for robustness. SPARK - Error found on DV tester in mode output. SELF TEST - CONTINUOUS - Software reviewers' convenience. SELF TEST - CONTINUOUS - Software reviewers' convenience. SELF TEST - Consolidation of EMRS. SELF TEST - Eliminate EGO test SELF TEST - Eliminate EGO test SELF TEST - Eliminate EGO test SELF TEST - Commonality of VIP SELF TEST - Change from stereo to wold. SELF TEST - Sepont circuit test documention clarification. TRANSMISSION - Torque calculation/ engine calibration issues. TRANSMISSION - Revise base for FNXXT and X-input for FNXXDC. SELF TEST - Spout circuit test documents. NONE				91-394	SELF TEST - Enhancement to continuous
2708 91-396 SPARK - Error found on DV tester in ICCD mode output.			-		
2753 91-409 SELF TEST - CONTINUOUS - Software reviewers' convenience. NOME 91-409H SELF TEST - Consolidation of EMRS. NOME 91-409H SELF TEST - Consolidation of EMRS. Salf TEST - Commonality of VIP software 2819 91-423 SELF TEST - Commonality of VIP used by AA, AC, GT, LL and LH. 2729 91-427 SELF TEST - Change from stereo to sego. 2553 92-137 FMEM - Remove TOTFMFLG logic in all strategies. 2395 93-017 MISCELLANEOUS - Background loop times for generic strategies are high. 2467 93-027 MISCELLANEOUS - 7.0L governor strategy NONE 93-027A STRANEOUS - 7.0L governor required in LH strategy. MISCELLANEOUS - 7.0L governor required in LH strategy. LHARO LHAQO (09/14/89) 2486 90-345C TRANSMISSION - Comp torque calculation in EMR 90-345 needs additional variable. 2398 91-310 ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. TRANSMISSION - Torque calculation/engine calibration issues. NONE 91-353D TRANSMISSION - Torque calculation/engine calibration issues. LHAQO LHAPO (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. NONE 89-554D calibration FOR FINXT and X-input for FNXXDC. SELF TEST - Documentation improvements. SELF TEST - Documentation for EMR 90-089.			2708		
NOME 91-409H SELF TEST - Consolidation of EMRS. NOME 91-409H failure void. 2819 91-423 SELF TEST - Commonality of VIP software used by AA, AC, GT, LL and LH. 2729 91-427 SELF TEST - Change from stereo to mono ego. 2553 92-137 FMEM - Remove TOTFMFLG logic in all strategies. 2395 93-017 MISCELLANEOUS - Background loop times generic strategies are high. 2467 93-027 MISCELLANEOUS - 7.0L governor strategy required in LH strategy. NONE 93-027A Strategy required in LH strategy. LHARO (09/14/89) LHAQO (09/14/89) LHAQO (09/14/89) 2486 90-345C TRANSMISSION - Comp torque in EMR 90-345 needs additional variable. 2398 91-310 ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. TRANSMISSION - Torque calculation/ engine callibration issues. NONE 91-353D TRANSMISSION - Torque calculation/ engine callibration insues. NONE 91-353D TRANSMISSION - Torque calculation/ engine callibration issues. LHAQO LHAPO (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. NONE 89-54D Calibration 945 90-089 SELF TEST - Documentation improvements. NONE 90-089A clarification for EMR 90-089.			2753	91-409	SELF TEST - CONTINUOUS - Software
2819 91-423 SELF TEST - Commonality of VIP software 2729 91-427 SELF TEST - Change from stereo to mono 2553 92-137 FMEM - Remove TOTFMFLG logic in all strategies. 2395 93-017 MISCELLANEOUS - Background loop times for generic strategies are high. 2467 93-027 Strategy NONE 93-027A MISCELLANEOUS - 7.0L governor required in LH strategy. NONE 93-027A MISCELLANEOUS - 7.0L governor required in LH strategy. LHARO LHAQO (09/14/89) 2486 90-345C Calculation in EMR 90-345 needs additional variable. 2398 91-310 ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. 2541 91-353 TRANSMISSION - Torque calculation/engine calibration issues. NONE 91-353A TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. NONE 91-353D TRANSMISSION - Torque calculation/engine calibration issues. LHAQO LHAPO (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. TRANSMISSION - Torque calculation/engine calibration issues. SELF TEST - Spout circuit test documention clarification. TRANSMISSION - Torque calculation/engine calibration issues. TRANSMISSION - Torque calculation/engine calibration issues. SELF TEST - Strategy documentation improvements. SELF TEST - Documentation for EMR 90-089.			NONE		SELF TEST - Consolidation of EMRS.
2729 91-427 SELF TEST - Change from stereo to mono ego. 2553 92-137 FMEM - Remove TOTFMFLG logic in all strategies. 2395 93-017 MISCELLANEOUS - Background loop times for generic strategies are high. 2467 93-027 MISCELLANEOUS - 7.0L governor strategy NONE 93-027A MISCELLANEOUS - 7.0L governor required in LH strategy. MISCELLANEOUS - 7.0L governor required in LH strategy. MISCELLANEOUS - 7.0L governor required in LH strategy. LHARO LHAQO (09/14/89) 2486 90-345C TRANSMISSION - Comp torque calculation in EMR 90-345 needs additional variable. 2398 91-310 ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. 2541 91-353 TRANSMISSION - Torque calculation/engine calibration issues. NONE 91-353D TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. NONE 91-353D TRANSMISSION - Droque calculation/engine calibration issues. ELHAQO LHAPO (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. TRANSMISSION - Revise base for FNXXT and X-input for FNXXDC. SELF TEST - Strategy documentation improvements. NONE 90-089A clarification for EMR 90-089.					
2553 92-137 FMEM - Remove TOTFMFLG logic in all strategies. Strategies. MISCELLANEOUS - Background loop times generic strategies are high. 2467 93-027 MISCELLANEOUS - 7.0L governor strategy required in LH strategy. NONE 93-027A Strategy required in LH strategy. MISCELLANEOUS - 7.0L governor strategy required in LH strategy. MISCELLANEOUS - 7.0L governor strategy required in LH strategy.				91-427	
2395 93-017 MISCELLANEOUS - Background loop times for generic strategies are high. 2467 93-027 MISCELLANEOUS - 7.0L governor strategy required in LH strategy. NONE 93-027A MISCELLANEOUS - 7.0L governor strategy required in LH strategy. ELHARO LHAQO (09/14/89) 2486 90-345C Calculation 2486 90-345C Calculation EMR 90-345 needs additional variable. 2398 91-310 ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. 2541 91-353 TRANSMISSION - Torque calculation/engine calibration issues. NONE 91-353A TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. NONE 91-353D TRANSMISSION - Torque calculation/engine calibration issues. ELHAQO LHAPO (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. TRANSMISSION - Revise base for FNXXT and X-input for FNXXDC. SELF TEST - Strategy documentation improvements. NONE 90-089A clarification for EMR 90-089.			2553	92-137	FMEM - Remove TOTFMFLG logic in all
2467 93-027 MISCELLANEOUS - 7.0L governor strategy required in LH strategy. NONE 93-027A MISCELLANEOUS - 7.0L governor strategy required in LH strategy. required in LH strategy. 109/14/89) 2486 90-345C TRANSMISSION - Comp torque calculation in EMR 90-345 needs additional variable. 2398 91-310 ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. 2541 91-353 TRANSMISSION - Torque calculation/ engine calibration issues. NONE 91-353A TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. NONE 91-353D TRANSMISSION - Torque calculation/ engine calibration issues. LHAQO LHAPO (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. NONE 89-54D TRANSMISSION - Revise base calibration for FNXXT and X-input for FNXXDC. 945 90-089 SELF TEST - Strategy documentation improvements. NONE 90-089A clarification for EMR 90-089.				93-017	
required in LH strategy. MISCELLANEOUS - 7.0L governor required in LH strategy. MISCELLANEOUS - 7.0L governor required in LH strategy. required in LH strategy. required in LH strategy. ILHAPO (09/14/89) IN EMR 90-345 needs additional variable. 2398 91-310 ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. REANSMISSION - Define AMT and AMPEMT which were used in the base EMR. NONE 91-353D TRANSMISSION - Torque calculation/ engine calibration issues. NONE 89-130B SELF TEST - Spout circuit test documention clarification. NONE 89-130B SELF TEST - Spout circuit test documention clarification. FOR FINXT and X-input for FNXXDC. SELF TEST - Strategy documentation improvements. NONE 90-089A Clarification FOR FNXXT and X-input for FNXXDC. SELF TEST - Documentation for EMR 90-089.					
required in LH strategy. LHARO (09/14/89) 2486 90-345C TRANSMISSION - Comp torque calculation in EMR 90-345 needs additional variable. 2398 91-310 ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. 2541 91-353 TRANSMISSION - Torque calculation/ engine calibration issues. NONE 91-353A TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. NONE 91-353D TRANSMISSION - Torque calculation/ engine calibration issues. LHAQO (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. NONE 89-554D calibration for FNXXT and X-input for FNXXDC. 945 90-089 SELF TEST - Strategy documentation improvements. NONE 90-089A clarification for EMR 90-089.			NONE	93-027A	
LHARO (09/14/89) 2486 90-345C TRANSMISSION - Comp torque calculation in EMR 90-345 needs additional variable. 2398 91-310 ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. 2541 91-353 TRANSMISSION - Torque calculation/ engine calibration issues. NONE 91-353A TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. NONE 91-353D TRANSMISSION - Torque calculation/ engine calibration issues. LHAQO (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. NONE 89-554D TRANSMISSION - Revise base calibration for FNXXT and X-input for FNXXDC. 945 90-089 SELF TEST - Strategy documentation improvements. NONE 90-089A Clarification for EMR 90-089.				•	
2486 90-345C TRANSMISSION - Comp torque calculation in EMR 90-345 needs additional variable. 2398 91-310 ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. 2541 91-353 TRANSMISSION - Torque calculation/ engine calibration issues. NONE 91-353A TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. NONE 91-353D TRANSMISSION - Torque calculation/ engine calibration issues. ===================================					2
calculation in EMR 90-345 needs additional variable. 2398 91-310 ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. 2541 91-353 TRANSMISSION - Torque calculation/engine calibration issues. NONE 91-353A TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. NONE 91-353D TRANSMISSION - Torque calculation/engine calibration issues. LHAQO LHAPO (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. NONE 89-554D TRANSMISSION - Revise base calibration for FNXXT and X-input for FNXXDC. 945 90-089 SELF TEST - Strategy documentation improvements. NONE 90-089A clarification for EMR 90-089.	========	=====:	======	-=====:	2
variable. 2398 91-310 ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. 2541 91-353 TRANSMISSION - Torque calculation/engine calibration issues. NONE 91-353A TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. NONE 91-353D TRANSMISSION - Torque calculation/engine calibration issues. LHAQO LHAPO (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. NONE 89-554D TRANSMISSION - Revise base calibration for FNXXT and X-input for FNXXDC. 945 90-089 SELF TEST - Strategy documentation improvements. NONE 90-089A SELF TEST - Documentation clarification for EMR 90-089.	LHAR0				=======================================
and zero KAM if outside clip. 2541 91-353 TRANSMISSION - Torque calculation/ engine calibration issues. NONE 91-353A TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. NONE 91-353D TRANSMISSION - Torque calculation/ engine calibration issues. LHAQO LHAPO (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. NONE 89-554D TRANSMISSION - Revise base calibration for FNXXT and X-input for FNXXDC. 945 90-089 SELF TEST - Strategy documentation improvements. NONE 90-089A SELF TEST - Documentation clarification for EMR 90-089.	LHAR0		2486	90-345C	TRANSMISSION - Comp torque
engine calibration issues. NONE 91-353A TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. NONE 91-353D TRANSMISSION - Torque calculation/engine calibration issues. LHAQO LHAPO (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. NONE 89-554D TRANSMISSION - Revise base calibration for FNXXT and X-input for FNXXDC. 945 90-089 SELF TEST - Strategy documentation improvements. NONE 90-089A SELF TEST - Documentation clarification for EMR 90-089.	LHAR0		2486	90-345C cion	TRANSMISSION - Comp torque in EMR 90-345 needs additional variable.
which were used in the base EMR. NONE 91-353D TRANSMISSION - Torque calculation/ engine calibration issues. LHAQO LHAPO (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. NONE 89-554D TRANSMISSION - Revise base calibration for FNXXT and X-input for FNXXDC. 945 90-089 SELF TEST - Strategy documentation improvements. NONE 90-089A SELF TEST - Documentation clarification for EMR 90-089.	LHAR0		2486 calculat	90-345C cion 91-310	TRANSMISSION - Comp torque in EMR 90-345 needs additional variable. ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip.
NONE 91-353D TRANSMISSION - Torque calculation/ engine calibration issues. LHAQO LHAPO (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. NONE 89-554D TRANSMISSION - Revise base calibration for FNXXT and X-input for FNXXDC. 945 90-089 SELF TEST - Strategy documentation improvements. NONE 90-089A SELF TEST - Documentation clarification for EMR 90-089.	LHAR0		2486 calculat 2398	90-345C tion 91-310 91-353	TRANSMISSION - Comp torque in EMR 90-345 needs additional variable. ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. TRANSMISSION - Torque calculation/
LHAQ0 LHAP0 (08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. NONE 89-554D TRANSMISSION - Revise base calibration for FNXXT and X-input for FNXXDC. 945 90-089 SELF TEST - Strategy documentation improvements. NONE 90-089A SELF TEST - Documentation clarification for EMR 90-089.	LHAR0		2486 calculat 2398 2541	90-345C tion 91-310 91-353	TRANSMISSION - Comp torque in EMR 90-345 needs additional variable. ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. TRANSMISSION - Torque calculation/ engine calibration issues. TRANSMISSION - Define AMT and AMPEMT
(08/29/89) NONE 89-130B SELF TEST - Spout circuit test documention clarification. NONE 89-554D TRANSMISSION - Revise base calibration for FNXXT and X-input for FNXXDC. 945 90-089 SELF TEST - Strategy documentation improvements. NONE 90-089A SELF TEST - Documentation clarification for EMR 90-089.	LHAR0 (09/14/89)	LHAQ0	2486 calculat 2398 2541 NONE	90-345C tion 91-310 91-353 91-353A	TRANSMISSION - Comp torque in EMR 90-345 needs additional variable. ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. TRANSMISSION - Torque calculation/ engine calibration issues. TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. TRANSMISSION - Torque calculation/
documention clarification. NONE 89-554D TRANSMISSION - Revise base calibration for FNXXT and X-input for FNXXDC. 945 90-089 SELF TEST - Strategy documentation improvements. NONE 90-089A SELF TEST - Documentation clarification for EMR 90-089.	LHAR0 (09/14/89)	LHAQ0	2486 calculat 2398 2541 NONE	90-345C tion 91-310 91-353 91-353A	TRANSMISSION - Comp torque in EMR 90-345 needs additional variable. ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. TRANSMISSION - Torque calculation/ engine calibration issues. TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. TRANSMISSION - Torque calculation/
NONE 89-554D TRANSMISSION - Revise base calibration for FNXXT and X-input for FNXXDC. 945 90-089 SELF TEST - Strategy documentation improvements. NONE 90-089A SELF TEST - Documentation clarification for EMR 90-089.	LHAR0 (09/14/89)	LHAQ0	2486 calculat 2398 2541 NONE	90-345C tion 91-310 91-353 91-353A	TRANSMISSION - Comp torque in EMR 90-345 needs additional variable. ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. TRANSMISSION - Torque calculation/ engine calibration issues. TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. TRANSMISSION - Torque calculation/
945 90-089 SELF TEST - Strategy documentation improvements. NONE 90-089A SELF TEST - Documentation clarification for EMR 90-089.	LHAR0 (09/14/89)	LHAQ0	2486 calculat 2398 2541 NONE NONE	90-345C tion 91-310 91-353 91-353A 91-353D	TRANSMISSION - Comp torque in EMR 90-345 needs additional variable. ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. TRANSMISSION - Torque calculation/ engine calibration issues. TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. TRANSMISSION - Torque calculation/ engine calibration issues. SELF TEST - Spout circuit test
NONE 90-089A SELF TEST - Documentation clarification for EMR 90-089.	LHAR0 (09/14/89)	LHAQ0	2486 calculate 2398 2541 NONE NONE	90-345C tion 91-310 91-353 91-353A 91-353D ===================================	TRANSMISSION - Comp torque in EMR 90-345 needs additional variable. ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. TRANSMISSION - Torque calculation/ engine calibration issues. TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. TRANSMISSION - Torque calculation/ engine calibration issues. SELF TEST - Spout circuit test documention clarification. TRANSMISSION - Revise base
	LHAR0 (09/14/89)	LHAQ0	2486 calculate 2398 2541 NONE NONE NONE	90-345C cion 91-310 91-353 91-353A 91-353D ===================================	TRANSMISSION - Comp torque in EMR 90-345 needs additional variable. ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. TRANSMISSION - Torque calculation/ engine calibration issues. TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. TRANSMISSION - Torque calculation/ engine calibration issues. SELF TEST - Spout circuit test documention clarification. TRANSMISSION - Revise base for FNXXT and X-input for FNXXDC. SELF TEST - Strategy documentation
	LHAR0 (09/14/89)	LHAQ0	2486 calculate 2398 2541 NONE NONE NONE 4000 NONE 4011 4045 NONE	90-345C cion 91-310 91-353 91-353A 91-353D ===================================	TRANSMISSION - Comp torque in EMR 90-345 needs additional variable. ISC - Add ISC-BPA KAM adaptive clips and zero KAM if outside clip. TRANSMISSION - Torque calculation/ engine calibration issues. TRANSMISSION - Define AMT and AMPEMT which were used in the base EMR. TRANSMISSION - Torque calculation/ engine calibration issues. SELF TEST - Spout circuit test documention clarification. TRANSMISSION - Revise base for FNXXT and X-input for FNXXDC. SELF TEST - Strategy documentation improvements. SELF TEST - Documentation

Ē
ons
ons
ns

	2468 lookup.	90-373	FUEL - Correct error in bias table
	_	91-190	MISCELLANEOUS - VS is calculated regardless of VSTYPE.
	895	91-235	SYSTEM COMMUNICATION - Revise DCL diagnostic mode protocol for self test codes.
	1596 of	91-254	SELF TEST - Eliminate the possibility
			setting a false code 33.
	2170	91-256	MISCELLANEOUS - Document the use of NEW PIP.
	2121 FMEM	91-257	FMEM - Documentation error in EGR
			logic.
	2308		SYSTEM COMMUNICATION - Correct
interface		ce	
	NONE 2205	91-287A 91-288	issue with 9.1 cal con update. ISC - Assist in calibrating ISC. ISC - DASPOT airmass is clipped under utilizing feature.

========	=======	========	
EVOLUTION FILE	SOURCE FILE	EMR NO.	DESCRIPTION/REMARKS
LHAP0 file	LHAN0	90-326	FUEL - CRANK - Software error in FCA
(06/01/89)			for FN023. ERD 1768.
(90-345	TRANSMISSION - OTHER - Compensate
		torque	
		1	calculation for SAF. ERD 1856.
		90-345A torque	TRANSMISSION - OTHER - Compensate
			calculation for SAF. No ERD.
		90-347	TRANSMISSION - SHIFT CONTROL - Improve downshift quality. ERD 1911.
		90-351	ISC - DESIRED RPM - Unable to get hicam kick down. ERD 2068.
		91-149	OTHER - Correct documentation to Keep
		04 454-	Alive Memory chapter. ERD 1806.
		91-154A	TRANSMISSION - EPC - Possible damage to
		01 165	electronic transmission. No ERD.
		91-165	MISCELLANEOUS - Lack of MPG mode. ERD
		1807. 91-172	TCC DVDACC Multiple recognished of TCC
		91-172	ISC - BYPASS - Multiple versions of ISC MODE_SELECT documentation. ERD 1873.
		91-172A error	ISC - BYPASS - Correct documentation
		ELLOI	shown in 91-172. ERD 1873.
		91-174	FUEL - Correct timer reset(s) logic
		upon a	Toll Collect timel lebet(b) logic
		aron a	LAMBSE reset. ERD 1934.
		91-174A	FUEL - Correct timer reset(s) logic
		upon a	
		91-177	LAMBSE reset. No ERD. ISC - BYPASS - Multiple versions of ISC dashpot documentation. ERD 1886.
		91-179	FUEL - CLOSED LOOP - Errors in closed
		loop	TAMPOR 1
		91-197	LAMBSE documentation. ERD 1932. FUEL - Change vector clips on function

91-205 handle	FN023. ERD 2037. ISC - DASHPOT - Improve ability to
	tip-in/tip-out clunk. ERD 1390.
91-222 loop	FUEL - CLSD LOOP ENABL - Allow closed
	fuel control when in MPG mode. ERD 1951.
92-065	MISCELLANEOUS - OTHER - The codes transmitted to the SBDS on the DCL could
	be incomplete. ERD 1661.

LHAN0 INIT TOT	LHMA	89-552	FMEM - TRAN OIL TEMP - Correct FMEM
(02/24/89)		90-271B the	Calculation. ERD 1778. VIP - Correct implementation of 90-271:
			vector range maximum value of V_VSS_NMIN
			should be 16,383.75 RPM, not 10,000
		00 2007	RPM. URD 1708.
		90-308A all	S/W - The software documentation for
			current & future S/W version prereleases needs to be upgraded to a 1989
			copyright date beginning 01/01/89. URD 1639.
		90-317 and	FMEM - Revise ISC FMEM to exclude ACT
		90-325	ECT effects. URD 1709. TRANS - Some engagements may be
		preformed	with inappropriate EPC pressure. URD
		00 2257	1734.
		90-325A in	TRANS - ENGAG/STALL TV - Correct error
		90-332	original EMR. ERD 1734. TRANSMISSION - TQ_IALFA CALC - Correct
		clip	check for TQ_IALFA CALC. ERD 1814.
		91-063D BITMAP 1	MISC - DCL - Revise BITMAP_0 and
		91-130A to 79	documentation. URD 861,985,1205. SELF TEST - Continuous code 49 changed
		91-130B	to make common. ERD 1821. SELF TEST - Change of service code not desired from year to year. ERD 1851. SELF TEST - Add change pages that
		91-130C should	
		91-135A improve	have been on 91-130B. No ERD. VIP - S.M.A.C. recommendation to
		Implove	diagnostics. URD 1606,1694.
LHMA vehicle	LHM1	89-550	TRANS - Insufficient EPC pressure if
(02/09/89)		89-551	speed sensor is questionable. URD 1754. TRANS - Shift error flags can be set erroneously if PDL_ERROR is set. URD
		90-323 pressure.	1753. TRANS - Incorrect clipping of EPC
		90-324 required	URD 1745. VIP - DASPOT function revisions
		90-324A	before signoff. URD 1715. VIP - Documentation changes required to implement EMR 90-324. URD 1715.
LHM1 (01/12/89)	LHM0	0V-271A	VIP - Correct implementation of OV-271 to refresh VSFMFLG in continuous VIP as well as in the VIP executive.

		0V-314	URD 1352. FMEM- EPT sensor (open/short) will not turn on MIL light, doees not set failure flag (codes 31/35 are set). URD 1674.
LHM0 LH (12/21/88)	HLO	9-541	FUEL - Reset TSLEGO and ACCUM upon a lambse reset to 1.0. URD 1561.
		9-542	TRANS - Neutral to manual 1 lever movement results in 1st gear at all speeds. URD 1583.
		0V-301 0V-302	MISC - DCL to VIP interface. URD 1500. FUEL - VIP requires idle fuel modulation to stabilize engine during
		0V-302A	the throttle adjust mode. URD 931. FUEL - Documentation pages included

		in EMR OV-302 were incorrect. URD
	0V-302B	931. MISC - Documentation pages included in EMR OV-302 were incorrect. URD
	0-311	931. MISC - Set communication flags every
	1-106A	background loop. URD 1655. MISC - DCL - Processor resets occasionally when DCL is enabled. URD 1600.
LHL0 LHK1	9-454	TRANS - Incorrect shift logic documentation. URD 799.
(22/11/88)	9-511E	MISC - CANP - Modify canister purge strategy to handle high vapor production. commonize canister purge logic with the final version developed for the 1989 running changes. URD 1272.
	9-519A	FUEL - LAMBSE will be clipped to the minimum value (0.01) instead of the maximum value (1.99) if LMBJMP calculation on tip-in results in a
	9-520	LAMBSE greater than 1.99. URD 1282. SPARK - Allow more flexible octane adjustment which accounts for all
	9-520A	combinations of ECT and ACT. URD 1296. SPARK - The table specification was shown as a 7 x 7 instead of a 6 x 6. URD 1296.
	9-520B	SPARK - EMR 9-520 was written primarily for running change LU and LH. In order to incorporate the ECT, ACT spark table in the mainline LL and LH, it is necessary to make changes for BRDRLN_SPK which is used in Generic ISC. URD 1296.
	0V-117F	VIP - Evaluation of TP adjust mode requires modifications of test conditions. URD 931.
	0V-117G modification	VIP - EMR OV-117F requires
	0 115-	URD 931.
	0V-117I modification	VIP - EMR OV-117F requires n.
	0V-117J	Cancel EMR 0V-117G. URD 931. VIP - Base strategy KAM qualification test must be revised in order that fuel cells are not reset on exit from the VIP
	0V-117K	throttle adjust mode. URD 931. VIP - Clean up EMR is required to implement all previous associated EMRs.
	0V-117L	URD 931. VIP - Byte thrift and clarification of EMR 0V-117K. Cancel KAM changes from EMRs 0V-117E and 0V-117F. Cancel EMR
	0V-118	OV-117J. URD 931. VIP - Improvements to Engine Running Goose Test for robustness. URD 328,996.
	0V-118B	VIP - Strategy documentation updates required to implement 0V-118. URD 996.

OV-118D VIP - Final updates required to

	implement EMRs OV-118 and OV-118B into
0V-118F	Speed Density strategies. URD 996. VIP - Revise Goose Test documentation
0-144B	for added clarity. URD 1581. TRANS - Attachment 9 of EMR 0-144A
0V-190D	contains an error. URD 1092. VIP - Allow EGO Full Time to switch
0 10-	before indicating a failure. URD 904.
0V-195	VIP - Review of EMR 9V-399 for release of 'TT' strategy required changes to the documentation of the KAM Code Erase logic. URD 945.
0-197A	MISC - Cleanup EMR. URD 1444.
0-210 unlocks	TRANS - RPM flare when converter
dillocks	in first gear due to slight reduction
0-219	in throttle position. URD 1175. TRANS - Compensation of EPC is required for transmission oil temperature and
	4x4 Low operation. Engagement TV pressure
	needs to be a fraction of engine RPM
	and time since engagement began.
0-219A	URD 1176,1194,1204,1249,1281. TRANS - Change dynamic EPC from engine
0-219A	RPM to throttle position. Correct
	specifications of EPC parameters
0-219B	introduced by EMR 0-219. URD 1326,1381. TRANS - Correct errors in original EMR
	0-219. URD not required.
0-219C	TRANS - Correct errors in original EMR 0-219. URD not required.
0-221	TRANS - The optimum speed ratio delta
	to unlock/relock the torque converter during upshifts varies with throttle
	position, but current logic uses scalar
0-226	value independent of TP. URD 1178. SPARK - KNOCK - The 4.9L engine is
0 220	knock limited above a certain RPM. To
	allow maximum use of the knock sensor, spark is advanced beyond SAF which
	causes detonation when the engine
	enters
	then knock limited speed range. URD 1294.
0-226A	SPARK - KNOCK - FN146B is listed in
	strategy book and FN146A is in the code.
	FN146A is a word function and is
	correct for the code. URD 1294.
0-232	FUEL - INJECTOR TIMING - If the INJCNT
	register becomes corrupted, the
	recovery code will not set IBETA and INJCNT to zero as desired since the
	foreground temporary register that is
	stored as IBETA and INJCNT will not contain a zero value. This could
	prevent
0 225	correct injecor timing. URD 1148.
0-235	TRANS - It is difficult to detect shift errors on 1 -> 2 shift because of a

single minimum vehicle speed criteria to validate a shift. Dividing the vehicle speed paraemter by RT_NOVS prior to comparing to VSBART is extensively used

0V-252	in transmission control. Time/byte thrift is possible. URD 1123,1250. VIP - Code used only for GS strategy is done for all strategies. URD 1344.
0-255	TRANS - VEHICLE SPEED - Electronic transmissions require a rapidly responding rationality test of vehicle speed to avoid unwanted shifts if the vehicle sensor input is providing incorrect data. Vehicle speed calculation needs bullet-proofing modifications. URD 1177.
0-255B 0-255.	TRANS - Correction/cleanup of EMR
	Original EMR incorrectly specified "VSCNT" instead of "VSCTR" in "GR_DR_AUTO" module for selecting shift logic. URD
0-256 time	N/A. SYSEQUAT - VSBART - Calibrating the
	constant for VSBART to a large value results in a significant deadband. The Rolling Average remainder is not currently
	saved, and VSBART will not continue to update when within the deadband. URD 1347.
0V-271 that	VIP - Changes in E-TRANS FMEM require
	VSFMFLG be able to set when in 4x4 mode. URD 1352.
0-272	FMEM - All DIS logic should have been removed including FMEM logic. DIS_FMEM is
	still included in the MILTMR logic and should have been removed with the DIS logic.
1-070	URD 1405. MISC - Add clock in engineering unit, CLOCK_SEC. Add capability to gather real
	time in engineering units when data logging. URD 1318.
1-084 mode	MISC - MPGTMR - To enable fuel economy
	during dynamometer certification of "over 8500" truck applications, where the vehicle
1-085 fuel	speed sensor input is non-functional. URD 1125. FUEL - INJECTOR OUTPUT IN CRANK - No
	output on 1st pip down edge. When down edge fueling for crank is selected, and the first edge processing is a PIP down edge, no fuel is output because the foreground fuel routine is called from the

PIP up edge and FUELPW is still zero. URD 1362.

1-085A fuel FUEL - INJECTOR OUTPUT IN CRANK - No

output on 1st pip down edge. When down edge fueling for crank is selected, and the first edge processing is a PIP down edge, no fuel is output because the foreground fuel routine is called from the

PIP up edge and FUELPW is still zero.

Cancel EMR 1-085. URD 1362.

1-091 MISC - DCL - The 184 byte block of RAM, which was previously reserved for SBDS use, is now needed for engine control

strategy. This reduces the RAM

available

			to the SBDS for downloaded programs
			from 600 to 416 bytes. URD 376.
LHK1 (10/13/88)	LHK0	1-043D	MISC - Permit use of V8.2 cal console. Floating SMP data prohibits the use of V8.2 cal consoles. LHKO does not exceed 8K of SMP data, so V8.2 cal consoles would be able to access all parameters. URD 1340.
LHK0 (09/28/88)	LHJ0	9-511	MISC - PURGE/THERMACTOR - Thermactor and/or purge inducted Open Loop Fuel on high rpm extended idles is undesirable. URD 454,568,1151.
		9-511A	MISC - Clean up existing EMR (9-511). Byte savings can be realized and revisions
			to start book documentation to reflect actual paragraph names. URD 454,568,1151.
		9-511B	FUEL - Fuel goes lean when PRGTMR is reset to zero because LAMBSE is close to the upper clip. URD 1272.
		9-511C	FUEL - EMR 9-511B did not include
		proper	"" attackment 2 for IIIII atractory
		9-519	"new" attachment 2 for LUVF strategy. Some applications don't want to clip LAMBSE when PRGTMR is reset. URD 1272. CLOSED LOOP - If the LAMBSE jumpback
		<i>y</i> 313	calculates a requested value which is greater than 2.0, LAMBSE will be set to 0.01 instead of 1.99 prior to the LAMMIN/LAMMMAX clips. Therefore, the clipped LAMBSE value will be LAMMIN when it should have been LAMMAX. URD 1282.
		0V-035	VIP - Engine running: evaluate new approach to testing the spout circuit. URD 310.
		0V-035A	VIP - Strategy change and documentation update required for clarification. URD 310.
		0V-117 setting	VIP - Evaluate proposed throttle
		beceing	mode in Engine Running test. This EMR cancels EMR OV-097, which was created for
		0V-117A for	EAO strategy (CE). URD 777,778,931. VIP - Changes of original EMR required
		0V-117C	implementation of EMR OV-117. URD 931. VIP - Changes of original EMR required
			implementation of EMR 0V-117,0V-117A. URD 931.
		0-141	TRANS - To correct errors in the strategy book documentation for E40D. URD 802,836,837.
		0-146	SPARK - TRANSIENT SPARK - TLOFLG can change state each pass once started. this can cause spark errors in delivery with resultant driveability complaints.

0-161 0-163	URD 1067. FUEL - Incorrect FUEL_A calculation. URD 1132. ISC - Commonize RPMERR documentation
	1-19

versions exist for the Generic ISC OVERVIEW strategy. URD 1137. 1SC - Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW documentation, it was discovered that certain software implementations were incorrect. URD 1137. 0-246 SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode to normal spark mode, and from falling edge dwell to ECHO PIP mode, fail to put out SPOUT signals URD 1333. 0-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever		for Generic ISC. Multiple documentation versions exist for the Generic ISC RPMERR strategy modules, even though
0-172 ISC - FHEM strategy for Generic Idle Speed. URD 223. 0-172A ISC - FHEM for Generic ISC. Revisions to 0-172. HCAMFG was accidentally shown as HCAMFLG in 0-172. Page 4 of 0-172 shows a logical AND which should be an OR. URD 223. 0-174 MISC - Landsdale tester is not compatible with 56K EPROM EEC-IV. URD 1005. 0-180 MISC - Add RAM initialization pages to strategy books. URD 324. 0V-190 VIP - More robust continuous EGO switching test. URD 904. 0V-190A VIP - Cleanup of EGO switching test. URD 904. 0V-190B VIP - Provide more explicit continuous EGO test initialization logic. Modify logic to reflect actual implementation. URD 904. 0V-190B VIP - Prevent high TV pressure when in Engine Running Self Test. Commonize all electronic trans. control during Engine Running. URD 1122. 0V-204 VIP - Prevent high TV pressure when in Engine Running. URD 1122. 0V-205 VIP - Software error when coding TOT testing. Multiple failure (ECT and TOT concurrently) cannot be detected in KOEO VIP. URD 1197. 0-212A ISC - Commonize overview documentation for Generic ISC. Multiple documentation versions exist for the Generic ISC OVERVIEW strategy. URD 1137. 0-212B ISC - Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW documentation, it was discovered that certain software implementations were incorrect. URD 1137. 0-246 SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode to normal spark mode, and from falling edge dwell to ECHO PIP mode, fail to put out SPOUT signals URD 1333. 0-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. 0-246A VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0-163D	ISC - Correct parameter definitions in 0-163. Certain parameter definitions were left out of list in EMR 0-163.
URD 904. 0-197 MISC - FHEM for Generic ISC. Revisions to 0-172. HCAMFG was accidentally shown as HCAMFLG in 0-172. Page 4 of 0-172 shows a logical AND which should be an OR. URD 223. 0-174 MISC - Landsdale tester is not compatible with 56K EPROM EEC-IV. URD 1005. 0-180 MISC - Add RAM initialization pages to strategy books. URD 324. 0V-190 VIP - More robust continuous EGO switching test. URD 904. 0V-190A VIP - Cleanup of EGO switching test. URD 904. 0V-190B VIP - Provide more explicit continuous EGO test initialization logic. Modify logic to reflect actual implementation. URD 904. 0-197 MISC - Supply flags for continuous EGO VIP test. URD 1227. 0V-204 VIP - Prevent high TV pressure when in Engine Running Self Test. Commonize all electronic trans. control during Engine Running. URD 1122. 0V-205 VIP - Software error when coding TOT testing. Multiple failure (ECT and TOT concurrently) cannot be detected in KOEO VIP. URD 1197. 0-212A ISC - Commonize overview documentation for Generic ISC. Multiple documentation versions exist for the Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW documentation, it was discovered that certain software implementations were incorrect. URD 1137. 0-246 SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode, fail to put out SPOUT signals URD 1333. 0-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. 0-246A VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0-172	ISC - FHEM strategy for Generic Idle
0-174 MISC - Landsdale tester is not compatible with 56K EPROM EEC-IV. URD 1005. 0-180 MISC - Add RAM initialization pages to strategy books. URD 324. 0V-190 VIP - More robust continuous EGO switching test. URD 904. 0V-190A VIP - Cleanup of EGO switching test. URD 904. 0V-190B VIP - Provide more explicit continuous EGO test initialization logic. Modify logic to reflect actual implementation. URD 904. 0-197 MISC - Supply flags for continuous EGO VIP test. URD 1227. 0V-204 VIP - Prevent high TV pressure when in Engine Running Self Test. Commonize all electronic trans. control during Engine Running. URD 1122. 0V-205 VIP - Software error when coding TOT testing. Multiple failure (ECT and TOT concurrently) cannot be detected in KOEO VIP. URD 1197. 0-212A ISC - Commonize overview documentation for Generic ISC. Multiple documentation for Generic ISC. Multiple documentation of the Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW software implementations were incorrect. URD 1137. 0-212B ISC - Generic ISC OVERVIEW software implementations were incorrect. URD 1137. 0-216 SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode to normal spark mode, and from falling edge dwell to ECHO PIP mode, fail to put out SPOUT signals URD 1333. 0-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. 0-246A VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0-172A	ISC - FHEM for Generic ISC. Revisions to 0-172. HCAMFG was accidentally shown as HCAMFLG in 0-172. Page 4 of 0-172 shows a logical AND which should
0-180 MISC - Add RAM initialization pages to strategy books. URD 324. 0V-190 VIP - More robust continuous EGO switching test. URD 904. 0V-190A VIP - Cleanup of EGO switching test. URD 904. 0V-190B VIP - Provide more explicit continuous EGO test initialization logic. Modify logic to reflect actual implementation. URD 904. 0-197 MISC - Supply flags for continuous EGO VIP test. URD 1227. 0V-204 VIP - Prevent high TV pressure when in Engine Running Self Test. Commonize all electronic trans. control during Engine Running. URD 1122. 0V-205 VIP - Software error when coding TOT testing. Multiple failure (ECT and TOT concurrently) cannot be detected in KOEO VIP. URD 1197. 0-212A ISC - Commonize overview documentation for Generic ISC. Multiple documentation versions exist for the Generic ISC OVERVIEW strategy. URD 1137. 0-212B ISC - Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW documentation, it was discovered that certain software implementations were incorrect. URD 1137. 0-246 SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode to normal spark mode, and from falling edge dwell to ECHO PIP mode, fail to put out SPOUT signals URD 1333. 0-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. 0V-264 VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0-174	MISC - Landsdale tester is not compatible with 56K EPROM EEC-IV.
OV-190 VIP - More robust continuous EGO switching test. URD 904. OV-190A VIP - Cleanup of EGO switching test. URD 904. OV-190B VIP - Provide more explicit continuous EGO test initialization logic. Modify logic to reflect actual implementation. URD 904. O-197 MISC - Supply flags for continuous EGO VIP test. URD 1227. OV-204 VIP - Prevent high TV pressure when in Engine Running Self Test. Commonize all electronic trans. control during Engine Running. URD 1122. OV-205 VIP - Software error when coding TOT testing. Multiple failure (ECT and TOT concurrently) cannot be detected in KOEO VIP. URD 1197. O-212A ISC - Commonize overview documentation for Generic ISC. Multiple documentation versions exist for the Generic ISC OVERVIEW strategy. URD 1137. O-212B ISC - Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW documentation, it was discovered that certain software implementations were incorrect. URD 1137. O-246 SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode to normal spark mode, and from falling edge dwell to ECHO PIP mode, fail to put out SPOUT signals URD 1333. O-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. OV-264 VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0-180	MISC - Add RAM initialization pages to
URD 904. OV-190B VIP - Provide more explicit continuous EGO test initialization logic. Modify logic to reflect actual implementation. URD 904. O-197 MISC - Supply flags for continuous EGO VIP test. URD 1227. OV-204 VIP - Prevent high TV pressure when in Engine Running Self Test. Commonize all electronic trans. control during Engine Running. URD 1122. OV-205 VIP - Software error when coding TOT testing. Multiple failure (ECT and TOT concurrently) cannot be detected in KOEO VIP. URD 1197. O-212A ISC - Commonize overview documentation for Generic ISC. Multiple documentation versions exist for the Generic ISC OVERVIEW strategy. URD 1137. O-212B ISC - Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW documentation, it was discovered that certain software implementations were incorrect. URD 1137. O-246 SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode to normal spark mode, and from falling edge dwell to ECHO PIP mode, fail to put out SPOUT signals URD 1333. O-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0V-190	VIP - More robust continuous EGO
EGO test initialization logic. Modify logic to reflect actual implementation. URD 904. 0-197 MISC - Supply flags for continuous EGO VIP test. URD 1227. 0V-204 VIP - Prevent high TV pressure when in Engine Running Self Test. Commonize all electronic trans. control during Engine Running. URD 1122. 0V-205 VIP - Software error when coding TOT testing. Multiple failure (ECT and TOT concurrently) cannot be detected in KOEO VIP. URD 1197. 0-212A ISC - Commonize overview documentation for Generic ISC. Multiple documentation versions exist for the Generic ISC OVERVIEW strategy. URD 1137. 0-212B ISC - Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW documentation, it was discovered that certain software implementations were incorrect. URD 1137. 0-246 SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode to normal spark mode, and from falling edge dwell to ECHO PIP mode, fail to put out SPOUT signals URD 1333. 0-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0V-190A	
0-197 MISC - Supply flags for continuous EGO VIP test. URD 1227. OV-204 VIP - Prevent high TV pressure when in Engine Running Self Test. Commonize all electronic trans. control during Engine Running. URD 1122. OV-205 VIP - Software error when coding TOT testing. Multiple failure (ECT and TOT concurrently) cannot be detected in KOEO VIP. URD 1197. O-212A ISC - Commonize overview documentation for Generic ISC. Multiple documentation versions exist for the Generic ISC OVERVIEW strategy. URD 1137. O-212B ISC - Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW documentation, it was discovered that certain software implementations were incorrect. URD 1137. O-246 SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode to normal spark mode, and from falling edge dwell to ECHO PIP mode, fail to put out SPOUT signals URD 1333. O-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. OV-264 VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0V-190B	EGO test initialization logic. Modify logic to reflect actual implementation.
OV-204 VIP - Prevent high TV pressure when in Engine Running Self Test. Commonize all electronic trans. control during Engine Running. URD 1122. OV-205 VIP - Software error when coding TOT testing. Multiple failure (ECT and TOT concurrently) cannot be detected in KOEO VIP. URD 1197. O-212A ISC - Commonize overview documentation for Generic ISC. Multiple documentation versions exist for the Generic ISC OVERVIEW strategy. URD 1137. O-212B ISC - Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW documentation, it was discovered that certain software implementations were incorrect. URD 1137. O-246 SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode to normal spark mode, and from falling edge dwell to ECHO PIP mode, fail to put out SPOUT signals URD 1333. O-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. OV-264 VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0-197	MISC - Supply flags for continuous EGO
OV-205 Engine Running. URD 1122. VIP - Software error when coding TOT testing. Multiple failure (ECT and TOT concurrently) cannot be detected in KOEO VIP. URD 1197. O-212A ISC - Commonize overview documentation for Generic ISC. Multiple documentation versions exist for the Generic ISC OVERVIEW strategy. URD 1137. ISC - Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW documentation, it was discovered that certain software implementations were incorrect. URD 1137. O-246 SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode to normal spark mode, and from falling edge dwell to ECHO PIP mode, fail to put out SPOUT signals URD 1333. O-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0V-204	VIP - Prevent high TV pressure when in Engine Running Self Test. Commonize
ISC - Commonize overview documentation for Generic ISC. Multiple documentation versions exist for the Generic ISC OVERVIEW strategy. URD 1137. 1SC - Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW documentation, it was discovered that certain software implementations were incorrect. URD 1137. 1SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode to normal spark mode, and from falling edge dwell to ECHO PIP mode, fail to put out SPOUT signals URD 1333. 1-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0V-205	Engine Running. URD 1122. VIP - Software error when coding TOT testing. Multiple failure (ECT and TOT
OVERVIEW strategy. URD 1137. O-212B ISC - Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW documentation, it was discovered that certain software implementations were incorrect. URD 1137. O-246 SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode to normal spark mode, and from falling edge dwell to ECHO PIP mode, fail to put out SPOUT signals URD 1333. O-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. OV-264 VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0-212A	ISC - Commonize overview documentation for Generic ISC. Multiple documentation
O-246 SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode to normal spark mode, and from falling edge dwell to ECHO PIP mode, fail to put out SPOUT signals URD 1333. O-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. OV-264 VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0-212B	OVERVIEW strategy. URD 1137. ISC - Generic ISC OVERVIEW software is incorrect. While doing commonization of the Generic ISC OVERVIEW documentation, it was discovered that certain software implementations were incorrect. URD
0-246A SPARK - OUTPUT SCHEDULING - Wrong parameter set to DATA_TIME. URD 1333. 0V-264 VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0-246	SPARK - OUTPUT SCHEDULING - Missing SPOUT signal with ICCD and ECHO PIP. Transitions from ECHO PIP mode to normal spark mode, and from falling edge dwell to ECHO PIP mode, fail to
OV-264 VIP - More efficient code and increased robustness. Provide a single exit point for common housekeeping whenever	0-246A	SPARK - OUTPUT SCHEDULING - Wrong
continuous VIP is exited early due to	0V-264	VIP - More efficient code and increased robustness. Provide a single exit point

		1-043 1-043A 1-043C truncated	being in crank mode or being in the first four seconds since power up. URD 1376. MISC - Change S/W calling sequence to support new 48K cal console. URD 1102. MISC - Correct 48K cal console calling routine. An EEC-IV system reset is required before the cal console will enter the CS mode. URD 1325. OTHER - SMP data is still being with version 9 cal console. URD 1340.
(06/02/88)	LHI0	0-144A 0-144A 0-145 0-145A 0-162	TRANS - improve execution time and create common strategy modules. URD 1092. TRANS - Clarify documentation. SPARK - avoid premature TFI failure. URD 715. SPARK - revise 0-145. URD 715. FUEL - Increase calibration resolution. URD 970. TRANS - avoid engine RPM flare on subsequent tip-in before transmission upshifts correctly when VSS fails. URD 1113.
LHIO (05/13/88)	LHH0	9-092 9-294 9-497 9-500 9-501 0-071 0V-072 0-099 0-099A 376. 0-102 0-102A 0-106 calculation 0-131 logic. 0-137 0-166 modes. 0-168	OTHER/SW - New macro. URD 127. MISC - Common CRKTMR. URD 556. ISC/SW - Add generic idle. TRANS - Revise converter unlock. URD 1022. FUEL - Premature VS limiting in 4x4 low mode. URD 1032. FUEL - Revise CRANK fuel to be a function of PIPS (not time) in CRANK. URD 854. VIP - Define KAM bits associated with continuous error codes. URD 135. DCL - Add DCL. DCL - Revise PID table/Bit Map. URD DCL - modifications. URD 701. ISC - Revert to former IPSIBR . URD 923. AE - Revise AEFUEL enable/disable URD 978. MISC - Revise AO Base value; too large. URD 1045. DCL - Reset RAM/CART when changing URD 1121. E40D/SW - Correct Gear Selection logic. URD 1140.
LHH0 (03/14/88)	LHG1	9V-489 9-491 0V-046C	VIP-OCIL operates normally during ENGINE-RUNNING S/T. URD 967. OTHER - Add proprietary messages. URD 974 VIP - Rename FMEM_MONITR1 to 2.

0-092 ISC - Add Generic Idle. URD 017

		0-092A 0V-098 0V-101	ISC - Revisions to 0-092. URD 017 VIP - Delete unused calibration constants, VTOT3, VTOT5. URD 966. VIP/ISC - Update to coincide with Generic Idle Speed. URD 017.
LHG1	LHG0	9-486	SW/FMEM - Correct erroneous OFMFLG
(02/25/88)		9-487	definition. URD 955. FUEL - Do Open loop fuel control during speed limiting. URD 956.
LHG0 (02/19/88)	LHF0	9-456A	TRANS - Move ETVOCM conversion logic from System Equations to
		9-470	ATOD CNVRT. URD 914. TRANS - Create Calibration switch to inc/exclude "shift errors" from transmission fault(s) causing OCIL
		9V-476	flash. Refer to URD 887. VIP/SW - Revise EPC Solenoid Test in KOEO Self Test. URD 903.
		9V-476A 9-477	Revisions to 9V-476. URD 903. TRANS - Avoid harsh WOT upshifts.
		9-480	Refer to URD 929. MISC - Reduce memory. (No URD #)
		9-481	TRANS - Insure correct entry to
		9- 4 01	Torque Truncation at high throttle
			angles when EPC circuit open. URD 939.
		9-482	TRANS - Insure EPC on high engine RPM engagements and on first auto shift.
		0-047	Refer to URD 938. MISC - Redefine registers containing flag bits. Refer to URD 748.
LHF0 (1/27/88)	LHE0	9V-032E	VIP/KOEO - Fix sw error in ETV solenoid test performance. URD 816
		9-154B	MISC - Correct documentation of
		0 1555	original EMR. URD 729.
		9-155B original	TRANS - Correct documentation of
		Original	EMR. URD 729.
		9-267B	TRANS/SW - Correct Shift validation
		0.0607	software error. URD 877
		9-268A 9-268B	TRANS - Byte thrift. TRANS - Cancel 9-268A.
		9-387	MISC - Add copyrights.
		9-389C	FMEM/TRANS - Correct software error in
		J 307C	ETV current monitor test. URD 828.
		9-393A	TRANS/SW - Update FLG_PWR determination flip-flops every BG Loop.
		9-394	Refer to URD 692. TRANS - Revise Coast Boost logic to use FN3CB if GEAR_CUR >OR= 3.
		9-406	Refer to URD 757. TRANS - Modify Shift logic to enable downshift while upshift in progress. Refer to URD 758.
		9-411	TRANS - Avoid long delays for manual downshifts. URD 759.
		9-415	MISC/THERMACTOR - Replace AWOTMR with

	0 416	Bypass logic. URD 771.
	9-416	MISC - Thrift, remove DPLGHP. URD 446.
	9-417	SPARK - Respecify FN1128 to signed table, resolution: 0.0156, range -2.00
		to 1.98. URD 792.
	9-417A	SPARK - Correct calculation of
	7 11/11	FN1127*FN1128. Refer to URD 849.
	9-434	FUEL - TORQUE Trunction, improve
		function of torque limiting strategy.
		Refer to URDs 630, 631, 825.
	9-435	TRANS - delay transmission shifts
		during torque limiting to improve
		drive.
		Refer to URD 831.
	9-437	SYSEQUA/FMEM - ECT & TOT start rolling
		averages routines revised. URD 606.
	9V-440	VIP - Avoid shift val. & converter
		clutch monitoring errors during running
	0 440	Wiggle mode. URD 848.
	9-442	MISC - Revise POWSFG definition.
	9-443	Refer to URD 668. SW/TRANS - Revise Base Calibration.
	9-443	URDs 679,718.
	9-445	MISC - Incorrect FLG_NO_TV_UP.
	, 110	Refer to URD 725.
	9-446	MISC - Correct VBAT computation
		documentation. URD 739.
	9-450	MISC - Incorrect BIHP documentation.
	9-452	TRANS - Revise shift logic
		documentation. Refer to URD 782.
	9V-455	VIP - Fix fault filter subroutine so
		error-detect flag is always = 0 before
	0.456	subroutine returns. URD 851.
	9-456	TRANS - compensate ETVOCM for VREF
	0 457	variability. Refer to URD 731.
	9-457	TRANS - Avoid harsh transmission engagements after a very cold start.
		Refer to URD 844.
	9-461	TRANS - Modify NOV_ACT calculation
	J 101	pacing. Refer to URD 866.
	0-048	SYMB - Add hexidecimal explanation.
		-
LHE0 LHD0	9-001H	TRANS - Documentation corrections.
(11/28/87)		URDs 520, 582, 588, 591.
	9V-032A	VIP - Addition of ETV solenoid test to
	0 000-	KOEO. URD 285.
	9V-032B	VIP - Revise KOEO ETV solenoid eror
	code. 9V-032C	VIP - Scaling revisions for ETV
	parameters.	
	9V-032D	VIP - Revise ETV test.
	9-038C	TRANS - Documentation corrections. URD
	638.	
	9V-102D	VIP - Corrections to 9V-102C.
	9V-170	VIP - Insure correct RPM if engine in
		FMEM mode, upon entry to Self Test. URD
	A 4	266.
	9V-170A	VIP - Modify 9V-170 implementation.
	9V-244B	VIP/SW - Avoid false indications of EGR
	9V-246	failure. URD 698. VIP -Prevent execution Engine Running
	9V-246 Test	vir -rievent execution bugine kunning
	1000	if vehicle moving. URD 396.

9V-261 operation.

VIP - Correct erratic TP sensor

URD 471.

STRATEGY EVOLUTION - LHBH1 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

9V-261A VIP - Cancel 9V-261.

		9-145A 140.	Watchdog_BG. Refer URD 140 BACKGROUND - Refine 9-145. Refer to URD
		rates. 9-105 9-105A 9-145	FUEL - Update of fuel computation. Cancel 9-105. BACKGROUND - BG_MANAGER, load register
(10/2/87)	шисо	9-003B 9-029D	ISC - Correct Bypass Air Idle speed documentation. S/W - Correct Closed loop fuel ramp
LHD0	LHC0	0V-019A 8V-165E	VIP - Modify 0-019. VIP - Clutch switch failure.
		0-019	1st gear converter clutch lock-up. FMEM - Delete immobile TP test in FMEM. Refer to URD 625
		9-401	TRANS - thrift/delete unused scheduled
		9-399 9V-400 479.	S/W - Modify VIP KAM code. URD 742. VIP - Correct warmup counter logic. URD
		9-391	TRANS - Improve shift error detection. URDs 716, 738.
		9-389B	OFMFLG logic. URD 731. TRANS - Modify register use.
		9-389A and	TRANS - Deletes 9-389; Modify TV Guide
		9-387 9-389	S/W - Copyright paragraphs. NO URD. TRANS - Modify TV Guide. Add test for open/short if failure indicated. URD 731.
		9-385 failures.	FMEM - modify with RPM/RP sensor
		9V-382A	VIP - General cleanup: documentation.
		9-381	ISC - Clear FFMTMR each time BGCNT is clearedn in FAM. Refer to URD 708.
		#2	of 9V-375B. URD 425
		9V-375B 9V-375C	VIP - Clarify VSS Test documentation. VIP - Correct logic error in Attachment
		9-375	FUEL - Modify DFSO/FMEM interaction. URD 425.
		9-364	FMEM - S/W - force full h/w reset if BG_POINT range check fails. URD 661.
		9-361 558.	TRANS - Avoid unwanted downshifts. URD
		erroneous	VSS error code. URD 664.
		9V-359	VIP - Reduce potential storage of
		9-345	628. TRANS - Cleanup: delete TM_LK_RATE. Refer to URD 527.
		9-344	VIP compatibility. Cancel 9-145, 9-145A 9-300. Refer to URDs 612, 614, 623,
		9-341A	TRANS - Update 9-341, replace TP_REL and FIPL_REL with DD_UN_UNL. URD 602.
			the converter clutch when brake applied. Refer to URD 602.
		9-341	Test documentation correction. URD 462. TRANS - Add TP requirement to unlock
		9V-265 9V-292	VIP - Software thrift. URD 477 VIP - KOEO MAF test revision; ECT, ACT
		JV ZUIA	VIF Cancer JV 201.

9-146	FUEL - provide more consistent CRANK
fuel.	
9V-158	VIP - Correct code in VIP_KAMOUT_O.AST.
9V-166	VIP - Minimize Vectorfile compare
effort.	
9V-200	VIP - enhance continuous EGO.
9V-200A	VIP - revisions to strategy.
9V-200B	VIP - Correct documentation error.
9-226	TRANS - Commonize Converter Clutch
Routines.	

STRATEGY EVOLUTION - LHBH1 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

9-235 FUEL - INJ timing. CIBETA - TOTAL

		9-235 DELAY <0	FUEL - ING CIMING. CIBEIA - TOTAL
		DDD111_ \ 0	set TOTAL DELAY = 0.
		9-239	TRANS - Flash OCIL light if failure
		occurs.	
			Refer to URD 419
		9-239A failure	TRANS - FLASH OCIL if ETV and shift
		9-243	occurs. URD 419. FUEL - FN071(MAP) current load input FN1343, 1354, 1355.
		9-251A	S/W - TRANS - byte thrift.
		9V-259A	VIP - S/W thrift. Apply 9-259 to LH. Refer to URD 285.
		9-267	TRANS - Correct shift validation logic. URD 496.
		9V-267A	VIP - Continuous test for Conv. Clutch. Refer to URD 442,478, 496.
		9-268 validation.	TRANS - Correct convertor clutch
			Refer to URD 442.
		9-269	TRANS - Delete VBAT Check in PRNDL
		convert.	D-5 +- UDD 470
		9-274	Refer to URD 478. TRANS - S/W bullet-proofing. Refer to URD 529.
		9-281	MISC/THRIFT - remove unused code. Refer to URD 540.
		9-282	S/W - MISC-Byte and Time thrift.
		9-283	S/W - MISC-Notification of Memory
		Overrun.	ECD ECDDO relaulated C atomed before
		9-290	EGR EGRDC calculated & stored before corresponding values of EGRCNT & EGRPRF.
		9V-290A	VIP&S/W - eliminates EGRDC = 0 check.
		9-297	DOCUMENTATION - \$SW_RELK> \$SW_RLK.
		9-314	S/W - SYSEQUAT - Temp at start routine
		uses	byte instructions.
		9V-318	VIP & S/W - Replace allign stmts with
		9V-319	conditional assembly. VIP-S/W set VSFMFLG according to
		0 000	C29 KAM BIT in procedure.
		9V-320 9-321	VIP & S/W - thrift bytes. TRANS - ETV overcurrent failure flag
		not	TAMES ETV OVERCUITER LATITUE LIAG
			setting properly. Refer to URD 531.
		9-324	TRANS - Move setting of GR_DS_TV from Delay Shift Logic to PRNDL Based Desired
		9V-327	Gear Determination. Refer to URD 559. VIP & S/W - fuel pump circuit monitor check function. URD 597.
LHC0	LHB1	8V-165	VIP - Provide Continuous clutch switch
test. (8/12/87)		8V-165A	VIP - Modify clutch switch test.
(3, 22, 3,)		8V-165B	VIP - Remove MTXSW logic.
		8V-165C	VIP - Correct 8V-165B.
		8V-165D 9V-010D	VIP - Add new Continuous clutch test. VIP - Correct the SW implementation of 9V-010 - 9-010C.

9-029C	S/W - Improve implementation of fox
	functions. Refer to URD #113.
9V-032	VIP - Add VIP test logic to the E40D
	transmission strategy.
9-049C	Modify Air Charge calculation.
9V-052A	VIP - Split LU self test strategy into
	LL, LH, and LD. Refer to URD #96.

9V-052B	VIP - Change from Dual EGR to Sonic.
9V-058	VIP - Free up service code 75 for other
	use. Refer to URD #76.
9V-058A	VIP - Delete service code 75 from IVSC
	test.
9V-058B	VIP - Revise flag names and sense of
flags	
	used in KOER brake test.
9V-129	VIP - SW.
9V-130	VIP - Restructure Engine-running Self
Test	D C
057 1207	Refer to URD #219.
9V-130A 9-131C	VIP - Clarify variable names. S/W - Correct PPCTR initialization.
9V-132	VIP - Byte and time thrift in
Continuous	vir byte and time thrift in
Concinadas	VIP. Refer to URD #139.
9V-133	VIP - Revise fault filter call.
9V-147	VIP - Byte thrift.
9V-165	VIP - Clarify source code for VIP KOER.
	Refer to URD #299.
9V-183	VIP - Provide for two types of IDM.
Refer	
	to URD #518.
9-184	Revise CRKTMR logic to supply correct
0 1047	cranking fuel. Refer to URD #323.
9-184A 9-187	Clearly define the CRKTMR strategy. S/W - Protect future assemblies. Refer
9-107 to	5/W - Protect future assemblies. Refer
CO	URD #317.
9-197	SYSEQUA - Improve MAP average during
large	
J -	pulsations in manifold. Refer to URD
	#209.
9-197A	Cleanup EMR for original.
9V-199A	VIP - Make VIP compatible with strategy
EMR	0.400 - 6
0 205	9-199. Refer to URD #11.
9-205	SPARK - Revise OSCMOD to apply to decel
as	well as off idle.
9-220	Add Transmission Oil Strategy. Refer to
<i>y</i> 220	URD #309.
9-220B	Use ECT for TOT if ITOT is out of
limits.	
9V-223	VIP - Add TOT sensor tests. Refer to
	URD #309.
9V-223A	VIP - Revise parameter and register
names.	
9V-224	VIP - Byte thrift. Refer to URD #411.
9-227 #421.	Correct TSLAMU update. Refer to URD
9V-240	VIP - Boo Test. Refer to URD #436.
9-251	Add a calibration parameter (TVPMIN)
and	Add a calibration parameter (IVIMIN)
3.2.0	clip TV_PRES to TVPMIN as a minimum.
	URD #456.
9-258	Set FLG_ENG_TV to 0 on F/R and R/F
manual	
	shifts. Refer to URD #461.
9-271	Correct documentation of DSTPBR.
9-273	Clip daspot to 1.99 or FN882 * FN891,
	whichever is less. Refer to URD #499.

		9-276 VSMFLG 9-278 routine.	Documentation - Delete reference to and VSFAIL. Refer to URD #506. S/W - Correct temperature _@ start Refer to URD #532.		
LHB1 (6/30/87)	LHB0	9-038B 9-144A	TRANS - Correct misspelling of FLG_SF_AUTO. FUEL S/W - Correct KAMREF lookups. Refer to URD #174.		

LHB0 (6/12/87)	LHAO	9-049 9-049B 9-087B 9-152A 9-155A 9-189	FUEL - Add torque limiting strategy for ETV overcurrent failure. Refer to URD #98. FUEL - Clarify 9-049. TRANS - Cleanup ETVOCM logic. TRANS - Update SPD_RATIO once per BG pass. Refer to URD #358. TRANS - Do not delay shift logic for manual shifts. Refer to URD #278. TRANS - Revise TV Pressure logic for Reverse engagements. Refer to URD #326. TRANS S/W - Correctly scale parameters. Refer to URD #355.
LHA0 (5/28/87)	LUX0	9-014 9V-032 9-052 9V-052A	TRANS - Delete SIL. VIP - Add VIP for E4OD. MISC - Split LH from LU. Refer to URD #96. VIP - Split LU into LL, LH, and LD.
		9V-052B 9-052C 9-087	VIP - Drop PFEEGR. EGR - Remove PFE EGR from LH. TRANS - Add ETV failure flags. Split from LD. Refer to URD #98.
		9-087A 9-112B	TRANS - Add OFMFLG logic. TRANS - Add failsafe to Dynamic TV logic. Refer to URD #186.
		9-112C	TRANS - Revise failsafe to Dynamic TV logic.
		9-131	FUEL - Add Generic Open Loop fuel. Refer to URD #165.
		9-131A	FUEL - Clean-up for 9-131.
		9-131B	FUEL - Correct CL LAMBSE reset.
		9-144	FUEL - Expend VOLEFF & Adaptive fuel tables. Refer to URDs #174 & #253.
		9-149	TRANS - Combine the tip-out and TV shift delays. Refer to URD #279.
		9-149A	MISC - Correct documentation in 9-149.
		9-150	TRANS - Reverse the sign of the speed ratio check during manual downshifts. Refer to URD #272
		9-151	TRANS - Only delay the manual 1-2 upshifts during power-off mode. Refer to URD #273.
		9-152	TRANS - Modify Converter Clutch routines. Refer to URD #274.
		9-153	TRANS - Revise the back-out upshift logic. Refer to URD #276.
		9-154	TRANS - Revise TV strategy to provide coast boost TV when coast clutch is on. Refer to URD #271.
		9-154A	TRANS - Clear FLG_DEL_MDN when shift is complete.
		9-155	TRANS - Recognize a 4-2/2-4 shift. Refer to URD #278.
		9-156	TRANS - Revise the "Infer Coast Clutch Engaged Logic." Refer to URD #291.
		9-164	TRANS - S/W clean-up. Implement 9-119. Refer to URD #307.

9-164A	TRANS S/W - Clarify 9-164.
9-164B	TRANS S/W - Correct flag code.
9-172	MISC - Clean-up TP-RATCH vs TP_REL
	substitution. Refer to URD #314.
9-172A	MISC - Clean-up TP-RATCH vs TP_REL
	substitution. Refer to URD #314.

CHAPTER 2

SYMBOLOGY

SYMBOLOGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SYMBOLOGY

DEFINED PARAMETERS

A defined parameter is a variable or a constant that $% \left(1\right) =\left(1\right$

source code according to its definition in the strategy parameter dictionary.

Defined parameters are represented in the strategy description by identifiers

whose alphabetic characters are in the upper case.

STRATEGY SPECIFICATION PARAMETERS

A strategy specification parameter is a variable or a constant that is not

defined in the strategy parameter dictionary. Strategy specification

parameters are represented in the strategy description by identifiers whose

alphabetic characters are in the lower case. These parameters are used only

to facilitate the description of strategy function. A strategy specification $% \left(1\right) =\left(1\right) +\left(1\right$

parameter need not be defined in the EEC-IV source code if the implementation structure does not require it.

The scope of the identifier representing a strategy specification

parameter may include more than one strategy module, but it is strictly local to one

strategy chapter. A strategy specification variable cannot be used to pass

information between strategy modules that execute asynchronously. The value

of a strategy specification variable does not persist between repeated

executions of any particular strategy module in which it is referenced.

INPUTS

The inputs to most logical operations will be conditional statements of the form:

X > Y

where, ${\tt X}$ is a variable (RAM), and ${\tt Y}$ is a calibration constant, fox function

or table look-up, or a mathematical expression. In some cases, Y may also represent a variable.

Typically, six types of conditional statements will appear in the strategy logic diagrams. They are; X > Y, X < Y, X >= Y, X <= Y, X = Y, and X <> Y.

SYMBOL	MEANING
=	EQUAL TO
<>	NOT EQUAL TO
>	GREATER THAN

- >= GREATER THAN OR EQUAL TO
- < LESS THAN
- <= LESS THAN OR EQUAL TO

It should be noted that when the expression X > Y or X < Y is encountered,

the conditional statement can be calibrated such that it will never be true,

and the appropriate strategy action will never take place. For example, if

the $\mbox{variable}$ \mbox{X} has a range of 0 to 255, and the calibration constant in the

logical statement, X > Y, is selected to be 255, the statement will always be

false. This provides a means for calibrating out certain strategy functions.

When any conditional statement is true, the INPUT STATE to the logical

operation is said to be 'TRUE', and is assigned a value of '1'.

When the

statement is false, the INPUT STATE is 'FALSE', and is assigned a value of '0'.

SYMBOLOGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

LOGICAL OPERATIONS

Two logical operations are used, the 'AND' gate and the 'OR' gate. An 'AND' gate is represented by the following symbol:

Α			
	AND	-	C
В			

where A and B are INPUT STATES and C is defined as the OUTPUT STATE of the logical 'AND' operation. The value of the OUTPUT STATE is a function of the INPUT STATES as shown in the following truth table:

	AND GATE	
========= INPUT STATE	======================================	OUTPUT STATE
A =======	B ========	С
0	0	0
0	1	0
1	0	0
1	1	1

Likewise, the 'OR' gate is represented by:

And the OUTPUT STATE for various INPUT STATES is given by the 'OR' truth table:

	OR GATE	
INPUT STATE A	INPUT STATE B	OUTPUT STATE C
0	0	0
0	1	1
1	0	1
1	1	1

SYMBOLOGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

The output of all logical operations results in one of two possible paths:

1) The output is an input to another logical operation.

In this case, OUTPUT STATE C is an input to an 'OR' gate. It should be treated like any other conditional statement when determining the value of the final OUTPUT STATE E.

2) ACTION is taken based upon the OUTPUT STATE.

The ACTION described in the action box is taken when OUTPUT STATE C is 'true'. If an ALTERNATE ACTION is required when OUTPUT STATE C is 'false', the alternate action is described below an ELSE statement in the action box. If no alternate action is required, no ELSE statement will appear.

SYMBOLOGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Multiple "ELSE/ACTION" blocks can appear in a logic diagram in which three or more alternate actions are possible. Consider the following example:

Α				
_	AND	 С		ACTION #1
В			-	ELSE
D			ŀ	БПОБ
	AND	 F	İ	ACTION #2
Ε				DI OD
			ł	ELSE
			İ	ACTION #3

The procedure is:

- 1. Test for ACTION #1. If "C" is true, perform ACTION #1.
- 2. Otherwise, test for ACTION #2. If "F" is true, perform ACTION #2.
- 3. Otherwise, perform ACTION #3.

Notes about multiple "ELSE/ACTION" logic:

- 1. When logic has multiple "ELSE/ACTION" blocks, only one action block can
 - be performed during a program pass. Priority is always top down. In the
 - example, if "C" and "F" are simultaneously true, "C" takes precedence and $\,$

ACTION #1 is performed.

- 2. If the final "ELSE/ACTION" block does not have logic as input pointing to it (as in the example), the final action block is performed when no preceeding action block is true. Action is always performed during each program pass with this type of logic.
- 3. If the final "ELSE/ACTION" block has logic as input pointing to it, the
 - final action block is performed only when no preceeding action block is
 - true and when its input logic is true. Action is not always performed
 - during each program pass with this type of logic.

SYMBOLOGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

HYSTERESIS

Hysteresis in a strategy is a situation in which the logic used to make an output true is different from the logic used to make the output false. An example use would be to prevent on/off cycling of an output because of jitter in an input parameter.

Hysteresis is represented in strategy logic diagrams using the following "flip-flop" notation:

The actual conditional statements and direction of hysteresis will depend upon the specific application in each strategy module The action of this hysteresis notation is given by the following truth table:

HYSTERESIS FLIP-FLOP						
=======================================						
S(SET)	C(CLEAR)	Q-OUTPUT				
A	В	С				
======	=======	=======				
0	0	no change				
0	1	0				
1	0	1				
1	1	1				
======	========	=======				

The action of the flip-flop can be described as follows:

When the "A" (set) input is true, regardless of the "B" (clear) input level, the flip-flop sets and the "C" output is true. When the "B" input is true and the "A" input is false, the flip-flop clears and the "C" output is false.

When "A" and "B" are both false, the "C" output remains unchanged.

ADVICE:

- Since the intent of a flip-flop is to provide hysteresis, the state
 of a
 flip-flop must be remembered from pass to pass. The output is
 usually
 defined as a flag.
- 2. All flip-flops must be serviced every pass through the program,

even

though some flip-flops are shown in portions of logic that may not execute each pass. The normal practice is to lump and service the flip-flops together at the beginning of a routine. This guarantees that all flip-flop outputs will reflect the correct state based on current input conditions. Then, when logic refers to a flip-flop, the logic only

needs to look at the flag which represents the state of the flip-flop.

SYMBOLOGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

3. Clear (0) is the default initial value of the output flag for a flip-flop. The strategy specification must explicitly state if the initial value should be set (1).

4. The set input always takes precedence over the clear input. When both

are true, the flip-flop output should set. In some instances, the

software practice has been to perform the clear logic first, followed by $% \left\{ 1,2,\ldots ,n\right\} =0$

the set logic. The procedure may initially clear the flag and then

reverse the decision later. This practice could cause $% \left(1\right) =\left(1\right) +\left(1$

flip-flop output flag is tested during an EOS interrupt because the EOS

can catch the flag in the wrong state.

The flip-flop procedure should always be:

IF set condition met
THEN set flip-flop output flag
ELSE IF clear condition met
THEN clear flip-flop output flag
ELSE

No change to flip-flop output flag ENDIF

Some flip-flops are specified without a hysteresis term to save bytes; this is the preferred method of presenting flip-flops. In this case there are two calibration parameters, one for the set condition, and one for the clear condition. When flip-flops are specified this way, the calibration parameter used to set the flip-flop will end in _SH or _SL. The parameter used to clear will end in _CH or _CL. The H or L determines the larger (H) or smaller (L) parameter.

Example:

SYMBOLOGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

HOW TO INTERPRET THE HEXADECIMAL REPRESENTATION OF A REGISTER CONTAINING BIT FLAGS

- 1) Display the register on the calibration console.
- 2) Press the 'HEX' button on the calibration console to display the register in hexadecimal format.
- 3) Two hexadecimal digits will be displayed. In order to determine which bit

flags are set, use the following hexadecimal-to-binary conversion chart:

HEXADECIMAL DIGIT DISPLAYED	BINARY EQUIVALENT STRING
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
В	1011
C	1100
D	1101
E	1110
F	1111

The LEFTMOST hexadecimal digit represents the state of bit flags in bit positions 7 through 4. The RIGHTMOST hexadecimal digit represents the state of bit flags in bit positions 3 through 0.

Consider the following: The 8-bit binary string representing the leftmost and rightmost hexadecimal digits together, read from left to right, represents the state of bit flags in bit position 7 through bit position

SYMBOLOGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EXAMPLE:

You want to examine the state of NDSFLG, a bit flag in bit position $\,\,^5$ of a register which is at address B0.

- 1) Display the contents of BO on the calibration console.
- 2) Display the contents in hexadecimal format.
- 3) The hexadecimal value '2F' is displayed.

HEXADECIMAL		F			
BINARY	0 0 1 0				
BIT POSITION	7 6 5 4	3 2 1 0			

This means that bit flags in position 5 (NDSFLG), 3, 2, 1 and 0 are set to 1.

SYMBOLOGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

THE "DO: " STATEMENT

The DO: statement is used to call a logic subroutine in strategy. It is not used, as it often is by software, to avoid repeating a frequently used piece of code. It is primarily used to allow a process to be broken up into smaller pieces so that the strategy can be easily represented without resorting to large, cumbersome, confusing pieces of logic. The DO: statement can also provide an "executive routine" or calling structure for a

series of sequential pieces of logic.

The DO: statement can call either an entire strategy module or strategy process. A strategy module is a segment of strategy that has an overview, definitions and a process and usually corresponds to a software module. A strategy process is a subset of a strategy module, usually used to conveniently break up a logic diagram in a strategy book. Do not use the version type extension for strategy modules, i.e. COM1, COM5. This makes the calling module independent of various module varieties. The syntax

DO: DSDRD_GR MODULE or DO: RPM LIMITER PROCESS

The DO: statement is used on the "ACTION" or right hand side of logic diagram.

The format for the called subroutine (Module or Process) is that it must have an explicitly stated start and end point. This shows that the piece of strategy contained within the start and end points is executed as a subroutine, not necessarily every background loop through the strategy. The syntax is:

CONTINUE: DSDRD_GR MODULE CONTINUE: RPM LIMITER PROCESS (if required) (if required)

END: DSDRD_GR MODULE END: RPM LIMITER PROCESS

The CONTINUE: syntax is used to identify the continuation of a logic diagram

on to a page that does not have either a START: or an END: statement. The

intent is to have any page of a strategy book be able to be

identified as being part of a subroutine or not. For example, a logic diagram that takes

up 3 pages will begin with a START: statement on the first page, begin with

a CONTINUE: statement on the second page and end with an END: statement on the third page.

SYMBOLOGY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

At the end of the module or process, there is an implicit "RETURN" statement, that is, the next execution step of the strategy must return to the place where the DO: statement was called. For example, if a DO: statement is executed in the middle of an ELSE/ACTION block, the strategy continues

A									
В		AND -	ACT1	ION 1	•				
ם				ELSE					
С									
		AND - PROCESS	DO:	XYZ	PROCESS		>	BEGIN:	XYZ
D						<			
				ELSE		ļ			
			ACT]	ON 2	!			END:	XYZ.
		ΡΙ	ROCES	SS					
							l		1
						'	!		'
E	> F	1	ΔСТΊ	ION 1					
_	· -	İ			•				

execution after returning to the originating point.

If the first AND gate containing "A" and "B" is false and the second AND gate containing "C" and "D" is true, then the XYZ PROCESS is called and executed.

After returning to the DO: statement, strategy execution continues with

--- ELSE ---

ACTION 2

the evaluation of the "E > F" condition in the second ELSE/ACTION block.

DO: statements can be nested, that is, one DO: statement can call a

subroutine which contains another DO: statement within itself. There are no

restrictions on this other than the basic rule continues to apply: Each

process or module that is executed must return to the originating point upon its execution.

Flip flops should not be included within a DO: statement since they must be

evaluated every background loop. The strategy designer must have the flip

flops shown as being executed every background loop and use the appropriate $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(

flop flop output flags within the DO: statement.

SYMBOLOGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The "ROLAV" Statement

The ROLAV statement is used to invoke the rolling average routine in the

strategy. The EEC-IV filters inputs using this rolling average routine.

This is a difference equation implementation of a first order low pass $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}$

filter. The filter behaviour is defined by the discrete time solution to the $\ensuremath{\mathsf{T}}$

first order differential equation and takes the form:

$$f = 1 - e$$

Where "f" is called the filter constant in the difference equation:

Using the first two terms of the series expansion:

$$x$$
 $e = 1 + x + \frac{x^2}{2!}$

Simplifying, the exponential "f" becomes:

The time constant (TC) is a function of the input being filtered. It is

calibratable. Generally, a longer time constant filters more heavily, but

also introduces more time lag into the signal.

For most filters, the sampling period (FK $_$ TMR) will equal the background loop

time (BG_TMR). In those case where the sample period is not equal to the $\,$

background loop time, the true sample period is to be passed to the rolling

average routine. See the calling convention below.

The ROLAV statement is used on the "ACTION" or right hand side of a logic

diagram. The strategy will specify calls to the rolling average routine $% \left(1\right) =\left(1\right) +\left(

using the following convention:

condition ----- new_average = ROLAV(new_value,TC[,FK_TMR])

Where:

- old_average = Current value of new_average prior to filtering.
 This
- parameter is implicit in the call to the rolling average routine.
 new_average = Output value of rolling average filter. This

parameter

becomes the old_average on the next filtering event.

- new_value = Input value to be filtered.
 TC = Time constant.
 FK_TMR = Elapsed time between successive calculations.

optional argument only to be specified if it is different from background loop time.

SYMBOLOGY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The "ABS" Statement

The ABS function returns a value which is the absolute value of parameter \mathbf{x} . ABS has the following form:

ABS(x)

The parameter x cannot be of flag type.

The "CLIP" Statement

The CLIP function returns the value x clipped between the range low and high. low is the lower limit and high is the upper limit. low and high MUST be specified in the given order. CLIP has the following form:

CLIP(x, low, high)

EXAMPLE:

y = CLIP(x, low, high)

This is equivalent to the following logic chart.

NOTE:

If the limits high and low are calibrated such that low >= high, then the output will be high. The high limit ALWAYS take priority.

SYMBOLOGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The "MAX" Statement

The MAX function returns the maximum value of a list of parameters $x1, \dots xn$.

MAX has the following form:

MAX(x1,...,xn)

The parameters x1 through xn cannot be of flag type.

Example:

y = MAX(x, 10)

This is equivalent to the following logic chart.

The "MIN" Statement

The MIN function returns the minimum value of a list of parameters $x1, \dots xn$.

MIN has the following form:

MIN(x1,...,xn)

The parameters x1 through xn cannot be of flag type.

Example:

y = MIN(x, 15)

This is equivalent to the following logic chart.

SYMBOLOGY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The "SQR" Statement

The SQR function returns a value which represents the square of the parameter $\ensuremath{\mathsf{SQR}}$

x. SQR has the following form:

SQR(x)

The parameter x cannot be a flag type.

The "SQRT" Statement

The SQRT function returns a value which represents the square root of the

parameter x. SQRT has the following form:

SQRT(x)

The parameter x cannot be a flag type, and MUST NOT be NEGATIVE.

SYMBOLOGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The "pid_def()" Construct

A PID is a way to access parameter values by name via a communication protocol between the Powertrain Control Module and an outside requestor.

Parameter values from within the PCM can be accessed from the outside

environment $\,$ via the communication network. This is done by the generic scan

tool as required by CARB-OBDII regulations to obtain information in reference $% \left(1\right) =\left(1\right) +\left(1$

to \mbox{OBDII} system monitors and their status. This can also be done by \mbox{SBDS} or

other systems capable of establish and sustaining communications using the ${\tt SCP}$.

CARB regulations require the availability of a number of PIDs $\;$ regarding the

state of the on board diagnostic system. These, as well as the Ford specific

PIDs, will be defined via the strategy documents in a similar manner. A

construct $% \left(1\right) =\left(1\right) =\left(1\right)$ will be used in the strategy documents to define the data conveyed

in a PID request. That construct is the:

pid_def(pid_number, description)

Where:

"pid_number" is the symbol used to refer to the PID. For example, all PIDs defined by SAE standard J1979 will by of the form j1979_xx[_xxx]. The portion inside the brackets [] is optional. Other conventions will be used

for j2190 or SBDS specific PIDs.

"description" is the actual data to be used in the transmission of $% \left(1\right) =\left(1\right)$ the PID.

This could reference a register (RAM, KAM or ROM) that is maintained in the $\,$

strategy. For example ECT or TEST_SW. This could also be an equation used

to compute the PID. This equation may or may not reference other internal

registers in the strategy. An example of this would be (((ECT - 32) * 5/9) +

40). The PID may also be a bit map of a number of flag bits. In this case $\frac{1}{2}$

the following convention is used for the "description" parameter:

Whenever a parameter is referenced in the "description" and is in lower case

in the $\operatorname{pid_definitions}$ context, logic will be present in the context that

describes how that parameter is to be determined. The pid_definitions

context is delineated by a "BEGIN: pid_defintions" statement and a "END:

 $\operatorname{pid_defintions}$ " statement. The $\operatorname{pid_defintions}$ context is located in the

module $% \left(1\right) =\left(1\right) \left(1\right) =\left(1\right) \left(1\right)$ in the strategy that is most relavent to the PIDs being defined. The

pid_definitions contexts will therefore be distrubuted throughout
the

strategy. See the following for an example of a module with PID definitions:

The "pid_def()" constructs do not imply anything with respect to

implementation. It is left up to the best judgement of the software designer $% \left(1\right) =\left(1\right) +\left(1\right$

as to how to implement the PID scheme.

SYMBOLOGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MODULE NAME OVERVIEW Put overview text here. . . **DEFINITIONS** Put definitions text here. . . PROCESS STRATEGY MODULE: STRATEGY_MODULE_COM1n BEGIN: pid_definitions ; comment describing that this section is defining PIDs. REGISTER1 = Y -----|AND - | flag1 := 1 REGISTER2 = X ----flag1 := 0 unconditionally -----| parameter1 := (REGISTER3 * M) + B pid_def(j1979_xx_xxx, REGISTER4) pid_def(j2190_xx, parameter1) pid_def(sbds_xx_xxx, FNnnn(REGISTER5)) pid_def(xxxx_xx_xx, (REGISTER6 * M) + B)) pid_def(xxxx_xx, bo: flag1, b1: FLG_1, b2: 0, b3: 1, b4: FLG_2, b5: CAL_SW_1, b6: 0, b7: 0) END: pid_definitions Continue with the control strategy logic here. . .

10/21/2000 LHBH1.TXT

SYMBOLOGY - LHBH0 PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

The "send()" Construct

The SCP interface strategy allows for numerous messages to be supported by

the Powertrain Control Module and the vehicle network databus.

These messages can be sent from various locations in the strategy, depending

on their functional intent, to be received by one or more recieving nodes on the bus.

In order to provide a uniform method of sending an SCP message, a construct

will be used in the strategy documents to define the data to be transmitted

in an SCP message. That construct is the

send(msg_name: scp_data_[])

Where:

"msq name" is the name of the particular message to be sent. For example, a

response to an SAE standard J1979 request might be named REPORT_OBDII_PID.

"scp_data_[]" is the actual data to be sent in the message transmission.

Since there are up to seven (7) data bytes available to be sent in

message, the values of scp_data_[] could all be defined. These values could

be either register names, or constant hex values, or even a PID which was

defined in the "pid_def()" construct. While not all seven of the scp data []

values are required to be defined in a "send()" command, the construct does

not allow for data to be missing in between defined values.

An example of the use of the "send()" construct follows:

send(REPORT_OBDII_PID: 41h, 01h, j1979_01_011, j1979_01_012, j1979_01_013, j1979_01_014)

..which tells the software designer to send a message called REPORT_OBDII_PID

over the network with the following defined values:

```
scp_data_1 = 41h
scp_data_2 = 01h
scp_data_3 = the value defined in pid_def(j1979_01_011,...)
scp_data_4 = the value defined in pid_def(j1979_01_012,...)
scp_data_5 = the value defined in pid_def(j1979_01_013,...)
scp_data_6 = the value defined in pid_def(j1979_01_014,...)
```

NOTES: SCP messages which contain no variable data bytes are to be sent from the strategy without the "scp_data_[]" portion defined.

The priority/type and target specifier bytes are unique values

for each message, and thus are NOT defined in the "send()" construct.

As a result, all messages referenced by "send()" must also be defined $% \left(1\right) =\left(1$

in the SCP interface strategy for the software designers' reference.

The "send()" constructs do not attempt to imply software implementation, but

rather a means of communicating information to the software designer to

transmit over the SCP network.

CHAPTER 3

EEC OVERVIEW

EEC OVERVIEW - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ELECTRONIC ENGINE CONTROL SYSTEM OVERVIEW

The Electronic Engine Control system is intended to provide a more optimum engine control strategy than is possible through a strictly mechanical system. This is accomplished by using a microprocessor which interprets input data from a number of engine parameter sensors, and based on a control strategy in the microprocessor's program chips, generates output control signals to a number of actuators.

The control strategy is divided into two segments, an engine control strategy, and self test diagnostics. The diagnostics will be discussed in another section. The engine control strategy is segmented into three principal modes:

- -CRANK
- -UNDERSPEED
- -RUN

The strategy description and the entrance and exit conditions for CRANK/UNDERSPEED/RUN are shown on the following pages. RUN is of particular interest because it contains the control logic for most engine operating regions. The RUN strategy is further broken down into three modes to facilitate optimum control. Based primarily on throttle position, they are:

- -CLOSED THROTTLE
- -PART THROTTLE
- -WIDE OPEN THROTTLE

The specific entrance and exit conditions for these modes are described in the throttle mode selection section.

The remainder of this document describes the normal engine control strategy (RUN) for the various outputs, including fuel, spark, EGR, thermactor air, and idle speed control (ISC). It also contains the utility functions, filters, ratchets, and timers, and a parameter dictionary of calibration constants, fox functions and tables.

HARDWARE CALIBRATION SWITCHES

The LH strategy is an EFI, speed density strategy designed to handle any

vehicle speed or non-vehicle speed engine application. Hardware complexity

is taken into account via a set of user accessible software calibration

switches. These switches are detailed below:

- BIHP If a brake on/off switch is present, set BIHP = 1, otherwise
 set
 BIHP = 0.
- CANPHP If EEC controlled canister purge hardware is present, set CANPHP
 - = 1, otherwise set CANPHP = 0 to bypass the canister purge logic.
- DOLHP If Data Output Link is being utilized, set DOLHP = 1, otherwise

set DOLHP = 0 to bypass the DOL fuel calculation.

EEC OVERVIEW - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- GOVHP - If output to stand-alone governor is present, set GOVHP = 1; otherwise set = 0.

- PFEHP - If a Sonic EGR system is being used, set PFEHP = 0. Sonic EGR

systems utilize an EVR (Electronic Vacuum Regulator) output. In order to

conserve memory, registers and fox functions have been scaled $% \left(1\right) =\left(1\right) +\left(1$

both the PFE and Sonic EGR logic can share calibration locations. For

example; both EGR strategies use FN219, FN221, and FN239. Also, the $_{\mbox{\scriptsize EVR}}$

output routine, EGR enable/disable logic, and the desired EGR rate are

common software code segments. If PFEHP is set to 1 or 2, then the EGR

Strategy is always disabled.

- PSPSHP If a power steering pressure switch is present, set PSPSHP = 1.
 - otherwise set PSPSHP = 0. PSPSHP is used in the Idle Speed Control logic.
- THRMHP If Thermactor air pump hardware is present, set THRMHP = 1.

otherwise set $\mbox{THRMHP} = 0$. Also, the following logic sets $\mbox{CHKAIR} = 1$ for

proper function of the Closed Loop/Open Loop fuel logic $% \left(1\right) =\left(1\right) +\left(

Air is not used.

THRMHP = 0 ------ CHKAIR = 1

--- ELSE --
Do NOT modify CHKAIR

(Set within Thermactor logic)

- TSTRAT = Transmission Strategy switch 0 -> No Transmission Control; 1
 - -> Shift Indicator Light Control; 2 -> A4LD with Vehicle Speed Sensor; 4
 - -> C6E4 Electronic Transmission Control.
- TRLOAD = 0 Manual trans, no clutch or gear switch, forced neutral (NDSFLG
 - = 0); TRLOAD = 1 Manual trans, no clutch or gear switch; TRLOAD = 2

Manual trans, one clutch or gear switch; TRLOAD = 3 Manual trans; TRLOAD

= 4 Auto trans, non-electronic, Neutral Drive Switch; TRLOAD = 5 Auto

trans, non-electronic, Neutral Pressure Switch (AXOD); TRLOAD = 6
Auto

trans, electronic, PRNDL sensor Park, Reverse, Neutral, Overdrive,

Manual2, Manual1 configuration.

- IMS - If no IMS (Inferred Mileage Sensor) hardware is present,
IMS
 defaults to a value of 1 (1 -> no IMS hardware or high mileage).
 IMS is
 referenced in the EGR and Thermactor Air logic.

- VSTYPE - If a Vehicle Speed Sensor is present, set VSTYPE = 1,
otherwise
 set VSTYPE = 0.

98

EEC OVERVIEW - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DCL HARDWARE PRESENT SWITCHES

Hardware present switches define the types of devices connected to the EEC module through the wiring harness. (See also DCL Chapter)

LINK_SW 00 -> UART MODE disabled / no DOL, no DCL 01 -> UART MODE disabled / DOL present, no DCL 02 -> UART MODE disabled / no DOL, DCL present 03 -> UART MODE disabled / DOL present, DCL present 04 -> UART MODE enabled / DOL present, DCL present 05 -> UART MODE enabled / no DOL, no DCL 05 -> UART MODE enabled / DOL present, no DCL 06 -> UART MODE enabled / no DOL, DCL present 07 -> UART MODE enabled / DOL present, DCL present

NOTE: All applications, except FN-9, should have UART mode enabled.

EEC OVERVIEW - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

INITIALIZATION ROUTINE

INITIAL VALUE

60.00 DEG F

255.0 SEC

1.0 (OPEN LOOP)

RACHIV (250 COUNTS)

NVBASE

NVBASE

7.0

4.0 PIPNUM

1.0

1.0

1.0

GRRAT1

GRRAT1

8193

FFFF (63.99 SEC)

After power is first applied, the software initializes all of the Read/Write (RAM) registers before executing the strategy. All RAM registers are set equal to zero unless initialized to another value (either set value or a calculated value) as shown below. NOTE: The parameters are not necessarily initialized in the order shown.

AEMAP MAP APT -1.0 (CLOSED THROTTLE) BP INTR 1.0 CFIEPT 650.0 COUNTS 370.0 COUNTS CONPR CRKFLG 1.0 (CRANK MODE) ECT 60.0 DEG F **EGRBAR** 307.0 COUNTS EOFF 307.0 COUNTS **EPTBAR** 650.0 COUNTS 650.0 COUNTS FIEPT GEAR_CUR 1.0 GEAR OLD 1.0 1.0 GR CM GR_CM_LST 1.0 1.0 GR_DS GR_DS_LST 1.0 GR_OLD 1.0 **IEGR** 307.0 COUNTS INJ PIP CNT 1.0 7.0 IPDL ISCMOD 1.0 LAM OLD 1.0 LAMAVE 1.0 LAMBSE 1.0 LAMMUL 0.996 LOACT 245.0 DEG F MAP 27.0 IN. HG 27.0 IN. HG MAPBAR 150.0 HZ MAP_FREQ MAP_WORD 27.0 IN. HG MKAY 1.0

RAM/FLAG

A3CTMR

MULTMR

OLFLG

PPCTR PUMP

RANNUM

RT_GR_CUR

RT_GR_OLD

RT NOVS

RATCH RLKCTR

PDL LST

NOV_ACT

NOV_ACT_LST

ACT

EEC OVERVIEW - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

INITIALIZATION ROUTINE (CONTINUED)

RAM/FLAG INITIAL VALUE

SAF 10.0 DEG. BTDC

SYNCTR 1.0

TBART RACHIV (250 COUNTS)

TLSCTR FFFF (ALL BITS EQUAL ONE)

TPBAR RACHIV (250 COUNTS)

TPBART RATIV
TPBARTC RATIV
TPBARTV RATIV
TSLMPH 0.249 SEC

UNDSP 1.0 (UNDERSPEED)

VBAT 12.5 VOLTS

WINDOW_BETA 0.95

CHAPTER 4

CRANK/UNDERSPEED/RUN MODE SELECTION

CRANK/UNDERSPEED/RUN MODE SELECTION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CRANK/UNDERSPEED/RUN MODE SELECTION

The EEC-IV strategy operation is divided into three distinct strategy segments. These are:

- 1) CRANK
- 2) UNDERSPEED
- 3) RUN

The CRANK mode is entered after a power-up initialization or after an engine stall. CRANK employs a special strategy to aid engine starting. When the CRANK logic first becomes false, the UNDERSPEED mode is entered. The UNDERSPEED mode employs a special spark and fuel strategy in place of the normal engine control strategy (RUN). After start, the RUN mode is entered and the normal engine control strategy is executed. If the engine stumbles during RUN mode, the UNDERSPEED mode can again be entered to help recover.

The specific strategies are:

from the stumble and prevent a stall.

CRANK STRATEGY

Fuel Energize all injector ports simultaneously

every CRKPIP PIPS on PIP Falling Edges.

Injector Synchronization Logic is disabled.

See the BACKGROUND FUEL PULSEWIDTH CALCULATION section of the FUEL Chapter for a description

of the FUELPW calculation.

Spark Advance 10 degrees BTDC (on PIP signal)

Thermactor Air bypass
EGR disabled
Purge disabled

ISC disabled (0% duty cycle if N = 0, 100%

duty cycle if N <> 0)

CRANK/UNDERSPEED/RUN MODE SELECTION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

UNDERSPEED STRATEGY

Fuel Energize all injector ports in the

same manner as in the RUN mode, referenced to PIP Rising Edges.

See the FUEL Chapter for the FUELPW

calculation.

Spark Advance 10 degrees BTDC (on PIP signal)

Other outputs are the same as the RUN mode.

RUN STRATEGY

Injector Synchronization Logic is enabled if SIGNATURE PIP distributor is present.

(See the FUEL Section)

The normal engine control strategy is described in the remainder of this book.

CRANK/UNDERSPEED/RUN MODE SELECTION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CRANK/UNDERSPEED/RUN MODE SELECT

DEFINITIONS

INPUTS:

Registers:

- ECTCNT = Number of times ECT sensor input was read.
- N = Engine RPM.
- PIPCNT = Number of PIPs which have occurred.
- TSLPIP = Time since last PIP occurred, msec.

Bit Flags:

- CRKFLG = Flag indicating engine mode. 1 -> cranking; 0 ->
 run or
 underspeed mode.
- FIRST PIP = Bit Flag set to 1 if First PIP has been received.

Calibration Constants:

- CRKPIP = Number of PIPs between injector firing.
- IGN_TYPE = Inidcator of ignition type (0 = TFI, 1 = TFI_ICCD,
 2 =
 LDR-DIS).
- NCNT = Minimum number of PIPs necessary to exit CRANK Mode.
- NRUN = Minimum Engine Speed to exit CRANK Mode.
- NSTALL = Engine Stall speed to re-enter CRANK Mode.
- STALLN = Stall RPM: If the first RPM calculated is greater than this value assume that there was a reinit.
- UNRPM = Underspeed Engine Speed.
- UNRPMH = Hysteresis term for UNDERSPEED Mode.

OUTPUTS

Registers:

- ECTCNT = See above.
- INIT_TOT = Temperature of transmission oil at start-up, deg. F.
- N = See above.
- PIPCNT = See above.
- RUNUPTMR = Time since RUNUP_FLG was set, sec.

CRANK/UNDERSPEED/RUN MODE SELECTION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- TCSTRT = Temperature of Engine Coolant at Startup, deg F.

Bit Flags:

- CRKFLG = See above.
- FLG_STALL = Flag indicating a stall has occurred; transition
 from
 underspeed/run to crank.
- REFLG = Reinit flag: 1 -> reinit occurred; 0 -> no reinit.
- RUNUP_FLG = Flag indicating that Runup is complete; 1 -> Runup complete.
- UNDSP = Flag indicating engine mode: 1 -> cranking or underspeed,
 0 ->
 run mode.

CRANK/UNDERSPEED/RUN MODE SELECTION LOGIC

CRKFLG = 1 (Crank mode) AND	CRANK MODE CRKFLG = 1 UNDSP = 1 FLG_STALL = 0 ELSE A Stall has occurred
CRKFLG = 0 (Run or Underspeed mode) AND -	
CRKFLG = 1 OR S Q N < UNRPM C	UNDERSPEED Mode CRKFLG = 0 UNDSP = 1 FLG_STALL = 0 ELSE RUN Mode CRKFLG = 0 UNDSP = 0 FLG_STALL = 0

CRANK/UNDERSPEED/RUN MODE SELECTION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PIP COUNTER AND ECT COUNTER CONTROL LOGIC

CRKFLG = 1		
(CRANK mode)	AND -	Count PIP signals as they occur (PIPCNT is the counter)
N > NRUN		ELSE
		Stop counting PIP signals PIPCNT = 0

NOTE: If the PIP period (time elapsed since the last PIP signal) becomes >= 800 msec, the engine speed RPM is set to zero. This insures that if the PIP signal goes away because of a stall, RPM will become zero to trigger CRANK mode.

ENGINE RUNNING REINIT STRATEGY

The reinit strategy attempts to differentiate an engine running reinit from a normal start engine run-up. After a reinit, a "first RPM" is calculated from the first two PIP rising edges. If the calculated RPM is greater than idle RPM, then a reinit is assumed.

When the engine is not moving and a LDR-DIS ignition system is used, the SPOUT output from the EEC computer to the ignition module should be held in the HIGH state to prevent the coil from charging.

CHAPTER 5

THROTTLE MODE SELECTION

THROTTLE MODE SELECTION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

THROTTLE MODE SELECTION

OVERVIEW

The throttle mode scheduler is used to determine what engine operating region

is currently extant. The variable APT (At Part Throttle flag) is used to

indicate throttle mode and is assigned the following values:

THROTTLE MODE	APT
Closed Throttle	-1
Part Throttle	0
Wide Open Throttle	1

The value of APT is determined by the logic shown on the following page.

Briefly, throttle angle breakpoints, in terms of counts, are used to define

the CLOSED/PART THROTTLE and PART/WIDE OPEN THROTTLE transitions. Hysteresis

is incorporated in both breakpoints to prevent jitter between modes.

 ${\tt TP_REL}$ is a parameter which indicates the amount of throttle movement beyond

the closed throttle/idle setting. $\ensuremath{\mathtt{TP}}$ _REL is computed by subtracting RATCH

from TP . Larger values of TP _REL indicate wide open throttle, smaller values

of TP indicate part throttle, and near zero TP_REL indicates closed throttle.

The variable RATCH is the output of a ratchet $\mbox{algorithm}$ which continuously

seeks the minimum throttle angle corresponding to a CLOSED THROTTLE position.

This alleviates the necessity to set the throttle position sensor at an

absolute position and compensates for system changes and differences

vehicles. The ratchet algorithm uses filtered throttle position for the

determination of RATCH. RATCH is initialized to the non-calibratable value

RATIV, currently set to 250 counts.

A more detailed explanation of the throttle position $% \left(1\right) =\left(1\right) +\left(1\right$

position filter is contained in the SYSTEM EQUATIONS section.

DEFINITIONS

INPUTS

Registers:

- APT = Throttle Mode Flag; -1 -> closed throttle, 0 -> part throttle,
1 ->
 wide open throttle.

- TP_REL = Relative Throttle Position.

Bit Flags:

- CRKFLG = Flag indicating engine mode; 1 -> cranking, 0 ->
run or
underspeed mode.

Calibration Constants:

- DELTA = CT/PT Breakpoint Value above RATCH.

THROTTLE MODE SELECTION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- HYST2 = Hysteresis term to enter WOT Mode.
- HYSTS = Hysteresis term to exit Closed Throttle Mode.
- THBP2 = PT/WOT Breakpoint Value above RATCH.

OUTPUTS

Registers:

- APT = Throttle Mode Flag; -1 -> closed throttle, 0 -> part throttle,
 1 ->
 wide open throttle.
- CTPTFG = Closed throttle to PT/WOT transition flag.
- PTSCR = Part throttle mode since exiting CRANK flag.

PROCESS

The logic described below considers the current position of the throttle and compares that value to the RATCH, Closed Throttle, plus the change in throttle position from the last setting. If both flip-flops in the logic clear, then Part Throttle is set.

TP_REL <= DELTA	S Q	CLOSED THROTTLE MODE APT = -1
TP_REL >= DELTA + HYSTS	[C	ELSE
TP_REL > THBP2 + HYST2		WIDE OPEN THROTTLE MODE APT = 1
TP_REL <= THBP2	C	ELSE
		PART THROTTLE MODE APT = 0

THROTTLE MODE SELECTION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Previous APT = -1	
Current APT <> -1 AND -	CTPTFG = 1 (Closed Throttle to Part/WOT
CRKFLG = 0	transition) PTSCR = 1 (Part Throttle since Crank)
	ELSE
	CTPTFG = 0

NOTE: PTSCR and CTPTFLG are initialized to zero.

CHAPTER 6

FUEL STRATEGY

FUEL STRATEGY, OVERVIEW - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OVERVIEW

The purpose of the Fuel Control Strategy is to provide fuel to the engine in appropriate quantities to achieve the desired Air/Fuel ratio in the combustion chambers. The desired A/F ratio is determined by the fuel control strategy and calibration for all operating conditions. It can either be a predetermined value that is calibration dependent and can vary with engine operating conditions (Open Loop Control); or the EEC may ramp the value up and down in a limit cycle to maintain an average stoichiometric mixture, as determined by the EGO sensor (Closed Loop Control).

The fuel control actuators, or fuel injectors, consist of a solenoid and metering needle or pintle which is moved off a seat by energizing the solenoid, thus releasing fuel through a nozzle. Each cylinder has an injector installed in the intake manifold to direct fuel toward the intake valve. The length of time the solenoid is energized (pulsewidth) determines the amount of fuel delivered.

Fuel is supplied to the injectors by a high pressure electric fuel pump, controlled by the EEC. Fuel supply pressure is modulated by a regulator sensing MAP to maintain the pressure differential across the injectors constant.

A group of 2,3 or 4 injectors are energized simultaneously by a single output port of the processor. If only one output port is used, all injectors are energized every PIPOUT pips. If two output ports are used, they can be energized individually in an alternating manner, with each port being energized PIPOUT/NUMOUT pips after the other port, or simultaneously every PIPOUT pips. The calibration parameter OUTINJ selects the injection scheme.

Except while in CRANK mode, until the #1 cylinder is identified from a Signature Pip System, or if a Signature Pip System is not used, the injectors are energized on the rising edge of PIP. If it is desired to optimize the fuel delivery timing relative to intake valve opening, the injectors must be grouped into banks with each bank containing cylinders in consecutive spark firing order. Bank "A" must contain cylinder #1. This provides a

time (or window) during the engine cycle when all intake valves for a given injector bank are closed. After synchronization, the injections can be delayed to occur after the rising edge of the reference (signature) pip signal. CIBETA (in pip periods) is the delay. CIBETA should be calibrated to cause the injection during the closed valve window.

Except while in CRANK mode, the amount of air entering the engine is divided by the desired A/F ratio to obtain the desired fuel flow. The desired A/F ratio is expressed in terms of lambda, where lambda is the desired A/F ratio divided by 14.64, the chemically correct ratio for complete combustion (stoichiometry). This desired fuel flow is then converted to a pulsewidth for the injectors, based on the engine RPM, number of cylinders, injector flow characteristics, number of injectors and the desired injection frequency.

In CRANK mode, since the airflow measurement is unreliable, the injector pulsewidth is based on ECT, ACT, MAP and elapsed time in CRANK. Also, to maximize the voltage available to activate the injectors, they are energized on PIP Falling Edges.

FUEL STRATEGY, OVERVIEW - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The strategy has the ability to modify the fuel pulsewidth to account for

intake manifold wall wetting (TRANSIENT FUEL), injector flow reduction due to $% \left(1\right) =\left(1\right) +\left(1$

high temperatures (${\tt HICOMP/AOCOR}$), or while operating in UNDERSPEED mode. The

pulsewidth is also modulated during idle to stabilize idle RPM on $\ensuremath{\mathsf{Speed}}$

Density systems (ISCMOD). The fuel can also be turned off during

decelerations (DFSO). Asynchronous with the main pulses, additional pulses

can be issued to account for the manifold filling effect during throttle openings (AEFUEL).

The strategy also has the ability to adjust the fuel pulsewidth just prior to

energizing the injectors. The base pulsewidth is calculated in the

background sequence, using the then available MAP value. It may be a

significant time period before that pulsewidth is actually used, and ${\tt MAP}$ (and

airflow) may have changed. MAP is updated in the foreground on PIP up edges $\,$

prior to performing the fuel logic. For small changes in MAP, airflow can be

approximated as a linear function of MAP. Therefore, a $\mbox{\em more}$ accurate fuel

pulsewidth can be obtained by adjusting the pulsewidth by the ratio of the

most current MAP value to the value used to calculate airflow. This

technique is called "Foreground Fuel".

FUEL STRATEGY, OVERVIEW - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FUEL MODE DESCRIPTION

The purpose of the FUEL_MODE module is to determine the fuel control mode (Open Loop/Closed Loop) and the value of LAMBSE. The fuel control strategy consists of 3 mutually exclusive modes:

OPEN LOOP (OLFLG = 1) CLOSED LOOP (OLFLG = 0) SELF TEST OPEN LOOP (OLFLG = 1)

OPEN LOOP MODE

During open loop operation, the computer calculates the injector fuel pulsewidths required to provide a pre-determined A/F ratio or lambda value. The desired lambda value (LAMBSE) can vary with engine operating conditions and is calibration dependent.

CLOSED LOOP MODE

During closed loop operation, the computer ramps the desired lambda value (LAMBSE) in a limit cycle manner about stoichiometry. Using the EGO (Exhaust Gas Oxygen) sensor, the computer increases or decreases LAMBSE at a calculated rate of change. The rate at which LAMBSE changes is calibration dependent.

SELF TEST OPEN LOOP MODE

During Self Test, the computer calculates lambda values (LAMBSEL, LAMBSER) that will exercise the fuel, EGO, and thermactor systems. These calculations are done in Self Test, outside of "Base Fuel Strategy" (See the SELF TEST SECTION).

FUEL STRATEGY, ACCELERATION ENRICHMENT - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ACCELERATION ENRICHMENT

(Called from SOFTWARE TAR routine which is done in the CONVRT module)

OVERVIEW

Whenever the rate of change of throttle angle exceeds a certain value

additional injection pulses are delivered during throttle opening transients

until the manifold filling effect is completed (MAP stops increasing). These

pulses are added to the normal pulse train to provide Acceleration ${\tt Enrichment}$ (AE).

AEFUEL = The acceleration enrichment desired fuel flow rate, lb/hr

The AE pulse period (AEPP) is controlled by FN332 which adds pulses at a rate determined by the desired AE fuel flow (AEFUEL). The duration of

each AE pulse is given by AEPW.

AEPW is then used to update the DOL summer register FUEL_SUM_TKS.

NOTE: The "MINPW" minimum pulsewidth clip is only applied to FUELPW, the main

fuel pulsewidth. The clip does not apply to AEPW. Since AEPW is determined

by the AEFUEL and AE pulse period calibration, it is expected that the developer will not request AE pulses in the non-linear injector range.

ADDITIONAL REQUIREMENTS

All injectors are energized together when delivering AE pulses.

AE pulses are asynchronous to normal fuel pulsewidths. If a fuel pulse is

not in progress when an AE pulse is required, the AE pulse is sent

immediately. In this case, the injector offset (FN367) is added to the AE

pulsewidth calculation (AEPW).

If a normal fuel pulsewidth is in progress when an AE pulse is required, the

AE pulse is added to the base pulse for that injector. In this case, the $\,$

injector offset (FN367) is not added to the AE pulsewidth calculation (AEPW)

(it is done once in the normal pulsewidth calculation).

For throttle angle rates of change below that of the first column of the $\ensuremath{\mathtt{TAE}}$

table (AETAR), TAE is set to zero.

AE pulses are enabled during run and underspeed modes only.

The AE fuel is turned off by setting TAR equal to zero in the S/W TAR logic. See SOFTWARE TAR CALCULATION in the System Equations Chapter.

FUEL STRATEGY, ACCELERATION ENRICHMENT - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- ACT = Air charge temperature, degrees F.
- AOCOR = Corrected fuel flow rate of injectors, lb/sec (see Fuel chapter).
- BP = Barometric pressure, inches Hg.
- ECT = Engine coolant temperature, degrees F.
- FUEL_SUM_TKS = Register for DOL summer, ticks.
- MAP = Manifold absolute pressure, inches Hg.
- NBAR = Rolling average RPM.
- RATCH = Kicker off lowest filtered TP, counts.
- TAR = Throttle Angle Rate, deg/sec.
- TLSPAT = Torque limiting strategy injection pattern.
- TP = Throttle position, counts.
- VBAT = Battery voltage, volts.

Bit Flags:

- CRKFLG = Flag indicating status of engine mode.

Calibration Constants:

- AEM = ECT/ACT weighting factor, unitless.
- AETAR = TAR above which AE may be enabled.
- FN019A(TAR) = x-axis input to FN1303.
- FN020(FRCTAE * ACT + (1-FRCTAE) * ECT) = y-axis input to FN1303.
- FN1303(TAR, TEMP) = Desired AE fuel flow, lbm/hr.
- FN324(MAP) = Accel enrichment fuel flow multiplier, unitless.
- FN331A(TP-RATCH) = Accel enrichment fuel flow multiplier, unitless.
- FN332(AEFUEL) = Accel enrichment pulse period, seconds.
- FN378(BP) = Accel enrichment fuel flow multiplier, unitless.
- FN379(NBAR) = Accel enrichment fuel flow multiplier, unitless.
- FN367(VBAT) = Injector offset, millisec.

FUEL STRATEGY, ACCELERATION ENRICHMENT - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- FRCTAE = ACT to ECT proportioning factor, unitless.
- INJOUT = Number oof injectors fired by each output port.
- NUMOUT = Number of injector output ports, unitless.
- stcf = Seconds to clock ticks conversion factor, ticks/second.

OUTPUTS

Registers:

- AEFUEL = The acceleration enrichment desired fuel flow rate, lb/hr.
- AEPP = The AE pulse period as defined by FN332, sec.
- AEPW = Acceleration Enrichment Pulsewidth, ticks.
- FUEL_SUM_TKS = Register for DOL summer, ticks.

FUEL STRATEGY, ACCELERATION ENRICHMENT - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: FUEL_AE_COM5

AE ENABLE LOGIC

CRKFLG = 0 (RUN/UNDERSPEED)	 	
	AND -	Enable AE
TAR > AETAR	 	AEFUEL = AEM * FN1303 * FN331A * FN378 * FN379 * FN324
TLSPAT = 65535		AEPP = FN332(AEFUEL)
	.	AEPW = [AEFUEL * FN332 / (NUMOUT
		* INJOUT * 3600 * A0COR)
		+ FN367 / 1000] * stcf
		FUEL_SUM_TKS = FUEL_SUM_TKS + AEPW
		ELSE
		Disable AE
		AEFUEL = 0
		AEPW = 0
		AEPP = 0
		FUEL SUM TKS = 0

FUEL STRATEGY, WARM EGO LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

WARM EGO LOGIC

OVERVIEW

The Warm EGO Logic determines if the EGO sensor is warm enough to enter Closed Loop control. Time since start-up and coolant temperature at start-up are used to determine if the sensor is warm. The output from the logic is the flag, 'WRMEGO'.

DEFINITIONS

INPUTS

Registers:

- ATMR1 = Time since start (time since exiting crank mode), sec.
- ATMR2 = Time since ECT became greater than TEMPFB, sec.
- ECT = Engine Coolant Temperature, degrees F.
- EGOSSS = Number of EGO switches since start-up.
- MFAMUL = MFA table ramp-in Multiplier, unitless.

Bit Flags:

- CRKFLG = Flag indicating engine mode; 1 -> cranking, 0 ->
 run or
 underspeed mode.
- FLG_ECTSTABLQ = ECT stabilized flag; 1 -> ECT stabilized, use ${\tt FN1360}$.
- MPGFLG = Flag that indicates whether in Fuel Economy mode; 1 -> In Fuel Economy mode, 0 -> Not in Fuel Economy mode.
- SWTFL = EGO switch flag; 0 -> no EGO switch, 1 -> EGO switch
 this
 background loop.

Calibration Constants:

- CTHIGH = Hot start engine coolant temperature, deg F.
- CTLOW = Cold start engine coolant temperature, deg F.
- ECTSTABL = Minimum ECT to use stabilized engine open loop fuel table FN1360.
- ECTSTHYS = Hysteresis for ECTSTABL. This value should be larger than the $\,$
 - drop in ECT when the thermostat opens on a 0 degree cold warm-up.
- MFARMP = MFAMUL ramp increment when ramping into MPG table.

MFARMP is added every background loop.

- OPCLT1 = Cold start closed loop delay, seconds.

FUEL STRATEGY, WARM EGO LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- OPCLT2 = Mid-ambient start closed loop delay, seconds.
- OPCLT3 = Hot start closed loop delay time, seconds.
- TCSTRT = ECT at start-up.

OUTPUTS

Registers:

- MFAMUL = MFA table ramp-in Multiplier, unitless.

Bit Flags:

- FFULFG = Foreground fuel flag; 1 -> Compute fuel pulsewidth in foreground
 - using latest computed manifold absolute pressure, 0 -> otherwise use background fuel pulsewidth.
- WRMEGO = Flag that is set equal to 1 if the EGO sensor is warm and reset

to zero if the sensor has cooled off.

PROCESS

STRATEGY MODULE: FUEL_WRMEGO_COM3

CRKFLG = 1 ------ | WRMEGO = 0 | FFULFG = 0 | Exit FUEL MODE

EXIC FUEL_MODE

--- ELSE ---

Continue with FUEL_MODE and LAMBSE DETERMINATION

EGOSSS LOGIC

FUEL STRATEGY, WARM EGO LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

WRMEGO LOGIC

TCSTRT >= CTHIGH	 AND		ı					
ATMR1 >= OPCLT3	AND	_	 					
CTLOW < TCSTRT < CTHIGH	AND		 OR -	1	WRME	ico	_	1
ATMR1 >= OPCLT2	AND	_	OK -					_
TCSTRT <= CTLOW			 			ELS	E	
ATMR2 >= OPCLT1	AND	-			WRME	GO	=	0

STABILIZED ECT FLIP/FLOP LOGIC (FLG_ECTSTABLQ)

MFAMUL LOGIC (MFAMUL ramps LAMBSE to the MPG mode table FN1328)

MPGFLG = 0 ----- | MFAMUL = 0 | --- ELSE --- | MFAMUL = MFAMUL + MFARMP | Clip MFAMUL to 1.0 as a maximum

FUEL STRATEGY, LAMMUL RESET LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

LAMMUL RESET LOGIC

OVERVIEW

LAMMUL provides a means to adjust LAMBSE (rich or lean) momentarily on transmission engagements while in Open Loop. LAMMUL and FN371 have a range of 0 through 1.99. The LAMMUL RESET and RAMP BACK logic are done both in Open Loop and Closed Loop fuel. LAMMUL, however is only applies in Open Loop fuel.

DEFINITIONS

INPUTS

Registers:

- LAMMUL = Fuel multiplier for Neutral-to-Drive transitions used to prevent cold engine stalls following transmission engagement.
- MULTMR = Time since incrementing LAMMUL, sec.

Bit Flags:

- ALT_CAL_FLG = Flag to indicate use of alternate calibration.
- DNDSUP = Delayed Neutral/Drive flag; 0 -> neutral, 1 -> drive.
- NEUFLG = Neutral/Drive transition occurred.

Calibration Constants:

- FN371 = Initial LAMMUL as a function of ECT.
- FN371_ALT = Alternative FN371.
- MULTM = Minimum time interval incrementing LAMMUL.
- TRLOAD = Transmission load switch.

OUTPUTS

Registers:

- LAMMUL = Fuel multiplier for Neutral-to-Drive transitions used to prevent cold engine stalls following transmission engagement.

FUEL STRATEGY, LAMMUL RESET LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS STRAT	regy module: fu	JEL_LAMMUL_COM3
ALT_CAL_FLG = 1	 	<pre>fn371 = FN371_ALT(ECT) ELSE fn371 = FN371(ECT)</pre>
TRLOAD <= 3 (manual transmission)	 	No change to LAMMUL No change to NEUFLG
<pre>DNDSUP = 1 (transmission in gear) NEUFLG = 1 (transition from neutral)</pre>	 AND	LAMMUL = fn371(ECT) (LAMMUL reset) NEUFLG = 0 (N/D fuel enrichment) ELSE
DNDSUP = 0(transmission in neutral)		NEUFLG = 1
	LAMMUL RAMP BA	ACK LOGIC
MULTMR >= MULTM (free running timer)		LAMMUL = LAMMUL + .0039 Clip at .996 maximum MULTMR = 0

FUEL STRATEGY, OPEN LOOP FLAG DETERMINATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OPEN LOOP FLAG DETERMINATION

OVERVIEW

This module determines the state of the Open Loop Flag, FLG_OPEN_LOOP.

DEFINITIONS

INPUTS

Registers:

- APT = At Part Throttle; -1 -> Closed throttle, 0 -> Part throttle,
 1 ->
 Wide Open throttle.
- APTMR = Timer to limit time in close loop fuel control when at Wide Open
 Throttle.
- BIAS = A/F biasing term: FN1355(N,MAP). Units are lambdas.
- EGO_CNT_IDLE = Number of EGO switches which have occurred since entering

Idle Fuel Modulation.

- IDLTMR = Time since entering Idle mode, seconds. IDLTMR is defined in the TIMER Chapter.
- LAMAVE = Average LAMBSE between EGO switches.
- MAP = Manifold Absolute Pressure, inches Hg.
- N = RPM.
- TP_REL = Relative TP (TP RATCH).
- XAPT = Time elapse afterwhich you leave Closed Loop at Wide Open
 Throttle, to return to Open Loop.

Bit Flags:

- CHKAIR = Thermactor forced open loop flag; 0 -> thermactor logic forcing open loop, 1 -> closed loop permitted.
- DFSFLG = Indicates decel fuel shut off.
- MPGFLG = Flag that indicates whether in Fuel Economy mode; 1 -> In Fuel

Economy mode, 0 -> Not in Fuel Economy mode.

- OFMFLG = ETV over-current monitor failure flag: 0 -> ETV O.K.; 1 ->
 ETV
 failure mode.
- TLS_NV_FLG = Engine speed/Vehicle speed limiting flag; 0 -> not limiting

speed, 1 -> limiting speed.

FUEL STRATEGY, OPEN LOOP FLAG DETERMINATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Calibration Constants:

- EGO_IDLE = Number of EGO switches required to enter Open Loop Fuel at extended idles.
- FN311 = Minimum TP_REL required to force open loop.
- FN1360 = Stabilized open loop fuel table, an 8 \times 10 table of lambda
 - values as a function of engine speed N, and load, MAPPA. FN070B is the
 - normalizing function for N. FN072C is the normalizing function for MAPPA.
- HLDTIM = Time delay before high load forced open loop, sec.
- LAMDLT = LAMAVE delta to allow open loop fuel.
- LAMRHYS = Hysteresis for LAMRICH.
- LAMRICH = FN1360 Lambda value below which enrichment is requested.
- LMAP = Minimum MAP for open loop decels, inches Hg.
- LOMAPH = Hysteresis for LMAP, inches Hg.
- MPG_CL_SW = MPG mode closed loop switch; 1 -> operate in closed loop, 0
 - -> operate in open loop.
- OLITD1 = Time delay to go open loop at idle, seconds.
- T70LSW = 7.0L thermactor application switch.
- TP_HYS_OL = TP_REL hysteresis for operation in open loop.

OUTPUTS

Bit Flags:

- FLG_OPEN_LOOP = Open Loop Fuel flag; 1 -> Open Loop fuel, 0 -> Closed
 - Loop fuel may be permitted.
- MPGTFG = MPG transition mode flag; 1 -> MPG mode exit into Closed Loop fuel.

FUEL STRATEGY, OPEN LOOP FLAG DETERMINATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: FUEL_OLFLG_COM7

```
FN1360 <= LAMRICH ----- | S O - |
 (enrichment required)
FN1360 > LAMRICH + LAMRHYS ---- C
                              AND -
 (return to closed loop)
HLTMR >= HLDTIM -----
 (high load delay time)
OPEN_TMR <= TIME_OL -----
 (O.K. to remain in open loop; not time
 to adaptive or force purge control)
MAP < LMAP - LOMAPH ----- | S Q -
 (decel load)
MAP >= LMAP ----- | C
APT = 1 -----
                              AND - OR -- | FLG_OPEN_LOOP = 1
APTMR >= XAPT -----
                                         (open loop
conditions
                                           met)
MPG_CL_SW = 0 -----
                                         MPGTFG = 0
                              AND -
                                         Stop MPG mode fuel
                              ramp
MPGFLG = 1 -----
(MPG mode)
                                         --- ELSE ---
DFSFLG = 1 -----
                                         Check to see if EGO
sensor
 (decel fuel shutoff)
                                         ready or fuel ramp
 in
                                          progress
IDLTMR > OLITD1 ------
                                         FLG\_OPEN\_LOOP = 0
 (idle)
                                          (closed loop
operation
                                           possible)
EGO_CNT_IDLE >= EGO_IDLE ----- AND -
|1.0 + BIAS - LAMAVE| <= LAMDLT -----|
CHKAIR = 0 ------
 (thermactor forced open loop)
                              AND -
T70LSW = 0 -----
 (1 = 7.0L application; no thermactor
 forced open loop)
OFMFLG = 1 -----
 (ETV sol. shorted to ground)
TLS_NV_FLG = 1 -----
 (vehicle/engine speed limiting)
TP_REL > FN311(N) -----|S Q -
TP_REL <= FN311(N) - TP_HYS_OL ----- | C
```

Where: BIAS = FN1355(N, MAP).

FUEL STRATEGY, CALCULATION OF LAMAVE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CALCULATION OF LAMAVE

OVERVIEW

This module calculates the LAMBSE average to be used in Self Test to determine if the adaptive tables have reached their clip.

The LAMBSE average, LAMAVE, is only calculated in Closed Loop. Also, it requires at least two EGO switches after entering Closed Loop to calculate an average.

DEFINITIONS

Registers:

- LAMBSE = Desired Air/Fuel ratio. LAMBSE(N) = New LAMBSE.
 LAMBSE(O) =
 previously calculated LAMBSE.
- LAM_OLD = Value of LAMBSE at previous EGO switch.

Bit Flags:

- OLFLG = Open Loop Fuel flag; 1 -> open loop, 0 -> closed loop possible.

OUTPUTS

Registers:

- LAMAVE = Average LAMBSE between EGO switches.
- LAM_OLD = See above.

FUEL STRATEGY, CALCULATION OF LAMAVE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS STRATEGY MODULE: FUEL_LAMAVE_COM2 OLFLG = 1 ----- LAM OLD = 0 LAMAVE = 1.0Exit FUEL_LAMAVE_COM1 module EGO switch -----| OLFLG = 0 ------ | AND - | LAM_OLD = LAMBSE (not enough EGO switches LAM_OLD = 0 ----since going Closed Loop to calculate LAMAVE) --- ELSE ---EGO switch -----| AND - LAMAVE = (LAM_OLD + LAMBSE) / 2 LAM_OLD = LAMBSE (update LAM_OLD for next time)

NOTE: LAMAVE and LAM_OLD are initialized to 1.0.

FUEL STRATEGY, OPEN LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OPEN LOOP LAMBSE CALCULATION

OVERVIEW

Due to the current design of the EGO sensor, Closed Loop operation about stoichiometry only can be utilized. In the future, Universal EGOs will be able to provide feedback at points either rich or lean of stoich. Closed loop operation is also required for adaptive fuel to "learn" the variabilities associated with production tolerances of airflow measuring and fuel metering devices. Given, however, that closed loop fuel is not always the appropriate mode of operation, the FUEL_MODE logic performs two functions:

- determine whether open loop fuel is appropriate, and
- schedule the optimum equivalence ratio (LAMBSE).

Optimum Air/Fuel (A/F) ratio at any given engine speed-load is that which will develop the required torque with the lowest fuel consumption consistent ${\bf P}$

with smooth reliable operation. This optimum ${\tt A}/{\tt F}$ ratio is not $% {\tt constant}$ but

depends on many factors. The proper ${\tt A}/{\tt F}$ ratio for each particular set of

operating conditions is most conveniently viewed under the two headings, $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right) +\frac{$

Stabilized and Cold Engine/Startup. Stabilized is taken to mean continuous

operation with normal engine temperatures. Cold engine/startup includes

starting and warming up or when the EGO sensor is not ready to switch.

COLD/START-UP OPEN LOOP FUEL

ENTRY CONDITIONS

- WRMEGO = 0, EGO sensor may not be ready to switch or,
- ECT < ECTSTABL, engine coolant temperature too cold and FLG OPEN LOOP =
 - 1, standard open loop conditions met. (see Stabilized Open Loop entry condition below.)

FUEL SCHEDULING

 Fuel may be scheduled as a function of load, temperature and time since start.

FUEL STRATEGY, OPEN LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

STABILIZED ENGINE OPEN LOOP FUEL

Mixture requirements for lowest fuel consumption can generally be adequately described as a function of engine load.

Idle, extremely light loads or deceleration:

- No useful work is being done at idle other than driving accessory loads,
 - i.e. brake torque is zero. The lowest fuel consumption is that $\ensuremath{\mathrm{A}/\mathrm{F}}$
 - which provides steady, reliable cylinder firing. Extremely light loads
 - or decels at high RPMs may require A/F scheduling. This is because the
 - mass of residual gas tends to be constant, therefore, at closed
 - throttle/slight part throttle decels, the percentage of residual diluting
 - the fresh charge increases, hence the need to enrichen the incoming charge.
- During Closed Throttle, High RPM Decels, the fuel can be completely $% \left(1\right) =\left(1\right) +\left(1$
 - turned off to improve fuel economy and/or limit catalyst temperatures.
 - See Decel Fuel Shut-off logic in this chapter.

Medium loads, typical part throttle operation at road load:

- Best economy is around $18:1\,$ A/F ratio, however, this may lead to
 - ad to excessive highway NOx levels. Also, current catalyst technology
 - makes use of the closed loop fuel limit cycle to maximize conversion
 - efficiency. This, closed loop fuel operation is desirable from both an
 - adaptive fuel and catalyst efficiency standpoint. Provisions are in
 - place to schedule lean open loop operation during steady state cruise

Full load, typical W.O.T operation:

modes (MPG mode).

- A rich A/F ratio is required to maximize the torque output of the engine $% \left(1\right) =\left(1\right) +\left(1\right)$
 - during periods of high driver demand. Maximum torque output is about
 - 13:1 A/F ratio (LBT). Best fuel economy is sacrificed in return for higher torque output.
- Best economy at a given load is independent of RPM at least down to idle
 - type loads, under conditions at which fuel distribution is good.
 - Departures from best fuel economy may be required due to the following:

- Poor distribution (usually a function of TP and RPM).
- To reduce temperature of hot spots such as exhaust valves, spark plug

points or piston crowns - that is, to assist cooling.

FUEL STRATEGY, OPEN LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

STABILIZED OPEN LOOP FUEL

ENTRY CONDITIONS

- WRMEGO = 1 engine coolant hot and engine is stabilized, EGO sensor is ready to switch.
- High Load enrichment required scheduled as a function of $\ensuremath{\mathsf{speed}}\xspace/\ensuremath{\mathsf{load}}\xspace$.

An open loop delay time is provided to prevent unnecessary enrichment

during high load spikes such as during shifts. A second enrichment

provides the ability to schedule fuel as a function of time in the $\,$

- enrichment mode to enhance durability in heavy truck applications.
- Decel loads either enrichment or enleanment can be scheduled as a function of speed/load.
- Extended idle the ability to go open loop for idle stability is provided as a function of time at idle.
- Lean cruise mode uses a unique speed/load table to schedule open loop
 lambdas.
- W.O.T. mode open loop is automatically scheduled as a function of wide open throttle mode.
- CHKAIR = 0 thermactor air control can put upstream air into the exhaust manifold ahead of the EGO sensor causing the EGO to always read lean.

Open loop is therefore required.

- Lack of EGO switching requires the scheduling of open loop operation.
- Decel Fuel Shutoff is an open loop state.

FUEL SCHEDULING

- Fuel may be scheduled as a function of load, RPM, temperature and time at high load.

SPECIAL EXIT CONDITIONS

- If MPG mode or Decel Fuel Shut-Off logic had previously dictated $\ensuremath{\mathsf{Open}}$

Loop control, and that mode is no longer desired, special logic maintains

Open Loop control and decrements LAMBSE to $1.0\,$ before allowing closed loop control.

FUEL STRATEGY, OPEN LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- APT = At Part Throttle; -1 -> Closed throttle, 0 -> Part throttle,
 1 ->
 Wide Open throttle.
- APTMR = Timer to limit time in close loop fuel control when at Wide Open Throttle.
- ATMR1 = Time since start (time since exiting crank mode), sec.
- BIAS = A/F biasing term: FN1355(N,MAP). Units are LAMBDAS.
- ECT = Engine coolant temperature.
- EGOSSS = Number of EGO switches since start-up.
- EGOSW_OL_CTR = Number of EGO switches in closed loop; used to determine when o.k. to return to open loop.
- when o.k. to retain to open roop.
- LAMAVE = Average of last two LAMBSE values.
- LAMBSE = Desired ratiometric air/fuel ratio.
- LAMMUL = Fuel multiplier for Neutral-to-Drive transitions used to prevent
 - cold engine stalls following transmission engagement.
- MAPPA = MAP/BP, inches of Hq.
- MFAMUL = MFA table ramp-in Multiplier, unitless.
- N = Engine speed, rpm.
- PPCTR = PIP counter; updated at PIP rising edge before injector pulsewidth is calculated and output.

Bit Flags:

- ALT_CAL_FLG = Flag to indicate use of alternate calibration.
- DNDSUP = Delayed Neutral/Drive flag; 0 -> neutral, 1 -> drive.
- CLFLG = Closed Loop Flag; 0 -> open loop, 1 -> closed loop.
- FLG_ECTSTABLQ = ECT stabilized flag; 1 -> ECT stabilized, use ${\tt FN1360}$.
- FLG_NOT_ADP = Adaptive enabled within an act and ect range.
- FLG_OPEN_LOOP = Open Loop Fuel flag; 1 -> Open Loop fuel, 0 ->
 Closed
 Loop fuel may be permitted.

- ISCFLG = ISC mode flag; 1 -> RPM control mode.

- LESFLG = Lack of EGO switching flag; 0 -> EGO switching, 1 -> EGO
did not
 switch for LESTIM seconds.

FUEL STRATEGY, OPEN LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- MPGFLG = Flag that indicates whether in Fuel Economy mode; 1 -> In Fuel
 - Economy mode, 0 -> Not in Fuel Economy mode.
- MPGTFG = MPG transition mode flag; 1 -> MPG mode exit into Closed Loop fuel.
- OLFLG = Open Loop fuel flag; 1 -> open loop fuel, 0 -> closed loop fuel.
- SWTFL = EGO switched flag.
- WOTTMR = Time of WOT.
- WRMEGO = Flag that is set equal to 1 if the EGO sensor is warm and reset $\,$
 - to zero if the sensor has cooled off.

FUEL STRATEGY, OPEN LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Calibration Constants:

- EGOCL1 = Number of EGO switches required to enter Closed Loop.
- DFSLAM = Relative LAMBSE value to exit decel fuel shut-off.
- EGO_CNT_OL = Number of EGO switches required in closed loop to return to open loop control.
- FN301(N) = Multiplier for closed throttle as a function of engine speed $$\rm N_{\odot}$$
- FN303(N) = Multiplier for WOT as a function of engine speed N.
- FN310(WOTTMR) = WOT fuel multiplier as a function of time in WOT mode.
 - WOTTMR is a count up/count down timer to prevent resets during normal shifts. FN310 is used only within a WOTRPL and WOTRPH RPM range.
- FN325(ECT) = Multiplier as a function of ECT for FN1360.
- FN1325L = LTMTBL learning/use control table.
- FN1328 = MPG fuel table, lambdas. It is a 10 x 8 table of fuel economy
 - open loop lambda values as a function of N and MAPPA.
- FN1360 = Stabilized open loop fuel table, an 8 \times 10 table of lambda
 - values as a function of engine speed N, and load, MAPPA. FN070B is the
 - normalizing function for N. $\,$ FN072C is the normalizing function for MAPPA.
- FN1361 = Start-up fuel table = an 8 x 10 table of lambda values
 as a
 function of [FRCSFT * ACT + (1 FRCSFT) * ECT] and MAPPA. FN022A
 is the
 - temperature normalizing function. FN018A is the time normalizing function.
- FN1362 = Base fuel table = an 8 \times 10 table of lambda values as a function
 - of [FRCBFT 8 ACT + (1 FRCBFT) * ECT] and MAPPA. FN022A is the temperature normalizing function.
- FN1362 = Alternatice FN1362.
- LAMDLT_OL = LAMAVE DELTA to allow return to open loop fuel control.
- LAMRICH = FN1360 Lambda value below which enrichment is requested.
- MPG_CL_SW = MPG mode closed loop switch; 1 -> operate in closed loop, 0
 - -> operate in open loop.
- MPGDEC = Lambse decrement when exiting MPG mode.

- OLIDRV = Drive Open Loop Idle Fuel Multiplier.
- OLINEUT = Neutral Open Loop Idle Fuel Multiplier.
- OLMCL = Open loop fuel multiplier for development only.

- PIPNUM = Number of PIPs for DFSO exit fuel ramp.

FUEL STRATEGY, OPEN LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

- TRLOAD = Transmission load switch.
- WOTRPH = Maximum RPM to use FN310 for WOT enleanment.
- WOTRPL = Minimum RPM to use FN310 for WOT enleanment. Set to WOTRPL to

10,000 RPM to disable use of FN310.

- XAPT = Time elapse afterwhich you leave Closed Loop at Wide Open

Throttle, to return to Open Loop.

- XMAPPA = Calibratable MAPPA value above which APTMR is enabled.

OUTPUTS

Registers:

- APTMR = See above.
- EGOSW OL CTR = See above.
- LAMBSE = Desired air/fuel ratio.
- OPEN TMR = TIME IN OPEN LOOP, SECONDS.

Bit Flags:

- ACCUM = Accumulator for closed loop LAMBSE ramp increments. Used
 - jumpback when TSLEGO <= transport lag.</pre>
- CLFLG = See above.
- OLFLG = See above.
- MPGTFG = MPG transition mode flag; 1 -> MPG mode exit into Closed Loop fuel.

FUEL STRATEGY, OPEN LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: FUEL_OL_LAMBSE_COM3

FINAL FUEL MODE DETERMINATION (OLFLG/CLFLG)
AND OPEN LOOP LAMBSE CALCULATION

```
ALT_CAL_FLG = 1 ------ | fn1362 = FN1362_ALT(TEMP, MAPPA)
                                    --- ELSE ---
                                   fn1362 = FN1362(TEMP, MAPPA)
MPGFLG = 1 -----|
                             AND -
                                   LAMBSE = 1 + [FN1328(N, MAPPA) *
MPG CL SW = 0 -----
                                          (MFAMUL)]
                                   OLFLG = 1
                                   CLFLG = 0
                                   ACCUM = 0
                                    (lean cruise mode)
                                    --- ELSE ---
MPGTFG = 1 -----
 (exiting MPG mode)
                             AND -
                                   LAMBSE = LAMBSE - MPGDEC
MPG CL SW = 0 -----
                                   Do: MPGTFG RESET LOGIC
                                   OLFLG = 1
                                   CLFLG = 0
                                   ACCUM = 0
                                    (lean cruise mode exit into
                                     closed loop fuel (ramp fuel))
                                   --- ELSE ---
PPCTR < PIPNUM -----
(decel fuel shut-off)
                             AND -
                                   LAMBSE = 1 + DFSLAM -
FLG_OPEN_LOOP = 0 -----
                                            [(PPCTR / PIPNUM)
 (closed loop conditions met)
                                            * DFSLAM]
                                   OLFLG = 1
                                   CLFLG = 0
                                   ACCUM = 0
                                    (decel fuel shut-off exit into
                                     closed loop fuel (ramp fuel))
                                   --- ELSE ---
```

(continued on next page)

FUEL STRATEGY, OPEN LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

```
WRMEGO = 0 -----|
 (cold EGO)
FLG_OPEN_LOOP = 1 -
                              OR -- Do: 'C' MULTIPLIER LOGIC
 (open loop req'd)
                                    LAMBSE = [fn1362(TEMP,MAPPA) -
EGOSSS < EGOCL1 --- OR -- |
                                             FN1361(TEMP, ATMR1)] * C
                                             LAMMUL * OLMCL
 (not enough EGO
                                     OLFLG = 1
 switches)
                        AND -
                                     CLFLG = 0
LESFLG = 1 -----
                                     ACCUM = 0
(lack of EGO
                                     (cold engine/start-up fuel
 tables)
 switching)
FLG_ECTSTABLO = 0 -----
 (ECT cold)
                                    --- ELSE ---
WRMEGO = 1 -----
 (warm EGO)
                              AND -
                                    Do: 'C' MULTIPLIER LOGIC
FLG_OPEN_LOOP = 1 -----
                                     LAMBSE = FN1360(N,MAPPA) *
                                             FN325(ECT) * C *
(open Loop required)
                                             LAMMUL * OLMCL
EGOSSS < EGOCL1 -----OR --
                                     OLFLG = 1
 (not enough EGO
                                     CLFLG = 0
 switches)
                                     ACCUM = 0
                                     (stabilized engine fuel table)
LESFLG = 1 -----
 (lack of EGO switching)
                                     --- ELSE ---
                                     Do: CLOSED LOOP LAMBSE
                                   CALCULATION
                                     OLFLG = 0
                                     CLFLG = 1
                                     (closed loop fuel)
```

FUEL STRATEGY, OPEN LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Compute OPEN_TMR to determine if conditions exist to return to open loop: FN1360 <= LAMRICH -----CLFLG = 1 -----EGOSW_OL_CTR >= EGO_CNT_OL ----- AND -|1.0 + BIAS - LAMAVE | <= LAMDLT_OL -- | FN1325L < 0 -----(not in an adaptable area; forced | OR -- | OPEN_TMR = 0 adaptive not required) ISCFLG = 1 ------(at idle; forced adaptive not required) APTMR >= XAPT ------FLG_NOT_ADP = 0 -------- ELSE ---CLFLG = 0 -----Increment OPEN_TMR. --- ELSE ---Freeze OPEN_TMR. ACT > AFACT1 ------ACT < AFACT2 -----AND - FLG_NOT_ADP = 1 ECT <= AFECT2 -----ECT >= AFECT1 --------- ELSE ---FLG NOT ADP = 0

FUEL STRATEGY, OPEN LOOP LAMBSE CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Increment EGOSW_OL_CTR when EGO switches du	ring closed loop:
CLFLG = 1	AND - Increment
SWTFL = 1(EGO switched)	EGOSW_OL_CTR.
CLFLG = 0	EGOSW_OL_CTR = 0
Increment APTMR to limit time in close loop	when at Wide Open Throttle.
MAPPA >= XMAPPA OLFLG = 0 (closed loop)	AND
GLOBAL LAMBSE C	LIP
always	Clip LAMBSE to a maximum and 0.0000305

as a minimum

FUEL STRATEGY, OPEN LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

"C" MULTIPLIER LOGIC

DNDSUP = 1 (in drive)	OR	I	
TRLOAD <= 3 (manual trans)	OR	 	
APT = -1		į į	<pre>"C" = FN301(N) (closed throttle decel/idle,</pre>
WRMEGO = 0 (cold EGO)	OR	FN1360 	not available)
<pre>FLG_ECTSTABLQ = 0 (ECT cold) DNDSUP = 0 (in neutral)</pre>			ELSE
APT = -1 (closed throttle)		AND -	<pre>"C" = OLINEUT (neutral idle) ELSE</pre>
DNDSUP = 1 (in drive) APT = -1		 AND	"C" = OLIDRV (drive idle)
APT = 1 WOTRPL <= N <= WOTRPH		 AND - 	ELSE "C" = FN303(N) * FN310(WOTTMR (wide open throttle)
APT = 1		 	ELSE "C" = FN303(N) (wide open throttle)
			ELSE "C" = 1

MPGTFG RESET LOGIC

FUEL STRATEGY, CLOSED LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

CLOSED LOOP LAMBSE CALCULATION (Background software module CLFUEL, called from FUEL_MODE)

OVERVIEW

The goals of the closed loop strategy are:

- add the capability of introducing A/F ratio biasing,
- maximize the feedback limit cycle frequency for all bias values, and
- maintain a simple calibration procedure to describe the closed loop limit cycle.

The fuel flow is driven in a limit cycle manner about stoichiometry. Using

the EGO (Exhaust Gas Oxygen) sensor, the computer increases or decreases the

injector pulsewidths in a controlled manner. If the EGO reads rich, the

pulsewidths will be decreased (made leaner) at a calculated rate. If the ${\tt EGO}$

reads lean, the pulsewidths will be increased (made richer) at a calculated rate.

When an EGO switch occurs, an instantaneous change (or "jumpback") is made in

the $\ensuremath{\mathrm{A}/\mathrm{F}}$ ratio back towards stoichiometry. The jump is made relative to the

A/F ratio (LAMBSE) value at the EGO switch.

The limit cycle can be biased to operate on the average richer or leaner of stoichiometry.

An example of the closed loop limit cycle is shown on the next page.

FUEL STRATEGY, CLOSED LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

LIMIT CYCLE DESCRIPTION

**** NOTE ****

The direction of the bias is controlled by the sign of the $\,$ bias $\,$ value. If

the bias term is negative, a rich bias is indicated. If the sign of the bias

term is positive, a lean bias is indicated.

* * * * * * * * * * * * * * *

****** WARNING ****

It is imperative that an accurate value for the system transport delay be entered. An incorrect value will result in greatly reduced catalyst efficiencies due to excessively fast or slow ramp rates, incorrect jumpback amounts, etc.

FUEL STRATEGY, CLOSED LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

Prior to calculating a new Closed Loop LAMBSE value, LAMBSE may be clipped to

1.0 maximum and/or multiplied by JMPMUL under the conditions listed below.

LAMBSE is not reset in Open Loop fuel control because the value of

calculated using the Open Loop fuel logic. LAMBSE is reset in Closed Loop as follows:

- when entering or exiting the filtered idle air mass region (FAM),
- when changing load states within the filtered idle air mass region (FAM), and
- any time a transition is made from Open Loop to Closed Loop fuel control.

LAMBSE is always clipped to 1.0 as a maximum. The intent is to allow

errors and to prevent lean errors, given that running rich does not cause any driveability concerns.

CALIBRATION PHILOSOPHY

Although appearing somewhat complicated, this closed loop algorithm has designed to be easy to use.

There are 3 tables which must be calibrated. They are:

- 1) limit cycle peak to peak amplitude; FN1354(N,MAP); a typical value is
 - 0.034 lambdas (0.034 * 14.64 = 0.49776 A/F ratio) = PTPAMP
- 2) fuel system transport delay; FN1343(N,MAP); typical values have been 10 engine revolutions, but note earlier WARNING.
- 3) BIAS; FN1355(N, MAP) for closed throttle mode:
 - a) a positive bias value is lean; a negative bias value is rich
 - b) any calculated absolute value of BIAS/PTPAMP exceeding .2 is clipped
 - to .2. This is done to avoid extremely long limit cycle periods.

FUEL STRATEGY, CLOSED LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- ACCUM = Accumulator for closed loop LAMBSE ramp increments. Used for jumpback when TSLEGO <= transport lag.</pre>
- APT = Throttle mode flag; -1 -> Closed throttle, 0 -> Part throttle,
 1 ->
 Wide-Open throttle.
- BIAS = A/F biasing term: FN1355(N,MAP). Units are lambdas.
- ISFLAG = Indication of engine load state at idle (See IDLE SPEED CONTROL
 - Chapter); 0 -> Drive, 1 -> Drive and A/C clutch engaged, 2 -> Neutral, 3
 - -> Neutral and A/C clutch engaged.
- ISLAST = Register which tracks the state of engine load from the previous
 - background pass. Used in determining when it is necessary to increment
 - the filtered air mass (FAM) and clip the $\ensuremath{\text{C/L}}$ idle speed integrator to a minimum value.
- JUMP = Amount of jumpback after an EGO switch, either ACCUM or based on table FN1343.
- LAMBSE = Desired Air/Fuel ratio. LAMBSE(N) = New LAMBSE.
 LAMBSE(O) =
 previously calculated LAMBSE.
- PTPAMP = Limit cycle peak to peak amplitude.
- R = Ramp rate; can be set to either RF or RS.
- RF = Fast ramp rate used on the side of stoichiometry that bias is

desired: RF = FN1354(N,MAP) * FN372(|BIAS/PTPAMP|) *
N/FN1343(N,MAP).

Units are lambdas/second.

- ${\tt RS}$ = Slow ramp rate used on the side of stoichiometry that bias is not
 - desired: RS = FN1354(N,MAP) * (0.01660 FN372(|BIAS/PTPAMP|)) * N/FN1343(N,MAP). Units are lambdas/second.
- TDSEC = 60 * FN1343/N (temporary register).
- TSLAMU = Time since the last LAMBSE update (1 background loop).
- TSLEGO = Time since last EGO switch occurred, seconds.

Bit Flags:

JMPFLG = LAMBSE reset flag.

- OLFLG = Open Loop fuel flag; 1 -> Open Loop fuel, 0 -> Closed Loop fuel.

- REFFLG = Indication of Idle Air Flow; 1 -> Idle Air Flow.

FUEL STRATEGY, CLOSED LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

Calibration Constants:

- FN025 = MAP normalizing function for Bias, Peak-to-Peak and Transport
 - Delay Tables. Input = MAP, Output = Table Entry Point.
- FN372(|BIAS/PTPAMP|) = Ramp rate multiplier (not a calibration item) -

provides correct multiplier to produce desired waveform; function of

|BIAS/PTPAMP|. Units are minutes/sec.

- FN1343(N,MAP) = System transport lag time; time delay from when a fuel
 - change is made until the EGO sensor indicates this change.

Units are

REVS. X-input = FN039 normalized engine speed, RPM; Y-input = FN025

normalized manifold absolute pressure, MAP; output = transport delay, REVS.

- FN1354(N,MAP) = Closed loop Peak-to-Peak amplitude: units are lambdas.
 - X-input = FN039 normalized engine speed, RPM; Y-input = FN025 normalized
 - manifold absolute pressure, MAP; output = Peak-to-Peak amplitude, PTPAMP.
- FN1355(N,MAP) = Amount of BIAS from stoichiometry: X-input = FN039

normalized engine speed, RPM; Y-input = FN025 normalized manifold

absolute pressure, MAP; output = BIAS from stoichiometry.

- JMPMUL = FAM exit LAMBSE reset multipler.
- LAMMAX = Maximum closed loop LAMBSE clip.
- LAMMIN = Minimum closed loop LAMBSE clip.

OUTPUTS

Registers:

- ACCUM = See above.
- BIAS = See above.
- JUMP = See above.
- LAMBSE = See above.
- R = See above.
- TDSEC = See above.
- TSLEGO = See above.

Bit Flags:

- JMPFLG = See above.
- V_LAMJMP = Flag when 1 indcates base strategy caused a LAMBSE jump since

last EGO switch.

FUEL STRATEGY, CLOSED LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: FUEL_CL_LAMBSE_COM3

LAMBSE RESET - LOAD STATE CHANGE

APT = -1 (closed throttle)	
<pre>ISFLAG <> ISLAST (load state change)</pre>	AND - Clip LAMBSE to 1.0 as a
LAMBSE > 1.0	TSLEGO = 0 ACCUM = 0 V LAMJMP = 1

OPEN LOOP/CLOSED LOOP LAMBSE RESET

Previous OLFLG = 1 (last pass was open loop)	
<pre>Current OLFLG = 0 (current pass is closed loop)</pre>	AND - Clip LAMBSE to 1.0 as a maximum TSLEGO = 0
LAMBSE > 1.0	ACCUM = 0 V_LAMJMP = 1

FAM ENTRY/EXIT LAMBSE RESET

REFFLG = 1	
JMPFLG = 0 A LAMBSE > 1.0	ND - JMPFLG = 1 Clip LAMBSE to 1.0 as a maximum TSLEGO = 0 ACCUM = 0 (entering idle region) V_LAMJMP = 1
REFFLG = 1	ELSE ND - JMPFLG = 1
JMPFLG = 0	ELSE
	ND - JMPFLG = 0 LAMBSE = LAMBSE * JMPMUL (exiting idle region) V_LAMJMP = 1
	 ELSE
	No change

FUEL STRATEGY, CLOSED LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

CALCULATE PTPAMP, RF AND RS

RAMP RATE CALCULATIONS BASED ON BIAS AND EGO STATE

	1	
BIAS = 0 (no bias)	 AND -	LAMBSE(N) = LAMBSE(O) - RF * TSLAMU
EGO IS LEAN		ACCUM = ACCUM + RF * TSLAMU (ramp in rich direction)
		ELSE
BIAS = 0 (no bias)	AND -	LAMBSE(N) = LAMBSE(O) + RF * TSLAMU
EGO IS RICH		ACCUM = ACCUM + RF * TSLAMU (ramp in lean direction)
7776		ELSE
BIAS > 0 (lean bias)	 AND - 	LAMBSE(N) = LAMBSE(O) - RS * TSLAMU
EGO IS LEAN		ACCUM = ACCUM + RS * TSLAMU (ramp in rich direction)
	,	ELSE
BIAS > 0 (lean bias)	: :	LAMBSE(N) = LAMBSE(O) + RF * TSLAMU
EGO IS RICH		ACCUM = ACCUM + RF * TSLAMU (ramp in lean direction)
		ELSE
BIAS < 0 (rich bias)	 AND -	LAMBSE(N) = LAMBSE(O) - RF * TSLAMU
EGO IS LEAN		ACCUM = ACCUM + RF * TSLAMU (ramp in rich direction)
		ELSE
BIAS < 0 (rich bias)	AND -	LAMBSE(N) = LAMBSE(O) + RS * TSLAMU
EGO IS RICH		ACCUM = ACCUM + RS * TSLAMU (ramp in lean direction)

NOTE: TSLAMU is time since the last LAMBSE update (1 background loop).

FUEL STRATEGY, CLOSED LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

JUMPBACK CALCULATIONS BASED ON BIAS AND EGO STATE

BIAS = 0	
(no bias) AND -	LAMBSE(N) = LAMBSE(O) + JUMP R = RF
EGO SWITCHED FROM LEAN TO RICH	ACCUM = 0 (jumpback in lean direction) TSLEGO = 0
	ELSE
	LAMBSE(N) = LAMBSE(O) - JUMP R = RF ACCUM = 0
EGO SWITCHED FROM RICH TO LEAN	(jumpback in rich direction) TSLEGO = 0
BIAS > 0	ELSE
: :	LAMBSE(N) = LAMBSE(O) + JUMP R = RS
EGO SWITCHED FROM LEAN TO RICH	ACCUM = 0 (jumpback in lean direction) TSLEGO = 0
BIAS > 0	ELSE
!!!	LAMBSE(N) = LAMBSE(O) - JUMP R = RF
EGO SWITCHED FROM RICH TO LEAN	ACCUM = 0 (jumpback in rich direction) TSLEGO = 0
BIAS < 0	ELSE
	LAMBSE(N) = LAMBSE(O) + JUMP R = RF
EGO SWITCHED FROM LEAN TO RICH	ACCUM = 0 (jumpback in lean direction) TSLEGO = 0
	ELSE
BIAS < 0	LAMBSE(N) = LAMBSE(O) - JUMP
EGO SWITCHED FROM RICH TO LEAN	<pre>R = RS ACCUM = 0 (jumpback in rich direction) TSLEGO = 0</pre>
TSLEGO <= TDSEC	JIIMP = ACCIIM
(time since last EGO <=	ELSE
transport lag)	
I	JUMP = R * TDSEC

FUEL STRATEGY, CLOSED LOOP LAMBSE CALCULATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

APT = -1	7.110	G1		1 0	
ISFLAG <> ISLAST	AND -	Clip LAMBSE	to	1.0 as	a maximum
·		ELSE	-		
	r	Clip LAMBSE naximum	to	LAMMAX	as a
always		Clip LAMBSE minimum	to	LAMMIN	as a

FUEL STRATEGY, DAC REGISTER CALCULATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

DAC REGISTER CALCULATION (software module DACEQN, called from FUEL_MODE)

OVERVIEW

A special register, DSLMBS, has been added to assist in calibration development by increasing the resolution of LAMBSE for display purposes.

DSLMBS is updated every time LAMBSE is updated, both Open & Closed Loop.

DEFINITIONS

INPUTS

Registers:

- LAMBSE = Desired ratiometric air/fuel ratio.

OUTPUTS

Registers:

- DSLMBS = Special display version of LAMBSE.

PROCESS

STRATEGY MODULE: FUEL DAC REG COM2

The value of DSLMBS is calculated as shown:

DSLMBS = LAMBSE - 1.0

Because DSLMBS is a signed word quantity, a value of zero will be output as 5 volts.

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ADAPTIVE FUEL LOGIC (Background software module ADAPT)

OVERVIEW

Fuel injected systems may exhibit vehicle to vehicle steady state A/F ratio errors due to normal variability in fuel system components.

The adaptive fuel strategy attacks this problem by memorizing the characteristics of the individual fuel system being used. This memorized

information is used to predict what the system will do based on $\ensuremath{\mathsf{past}}$.

experience.

The ability to predict fuel system behavior improves both open loop and

closed loop fuel control. As an example, the memorized information can be

used on cold starts to achieve better open loop fuel control before $% \left(1\right) =\left(1\right) +\left(1\right)$

sensor reaches operating temperature.

The chief benefit of the adaptive fuel strategy will be to reduce the effects

of product variability in the field.

The memorized or adaptive information is stored in table \mbox{form} in the Keep

Alive Memory (KAM). KAM is continuously powered by the vehicle battery even

when the vehicle is shut off. As a result, the table is not lost on vehicle

shutdown.

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ADAPTIVE FUEL TABLE

The adaptive fuel table, LTMTBL, is a 2-dimensional array of learned fuel

system corrections. Ideally, if LAMBSE = 1.0 and data from a mature adaptive

fuel table is used, a stoichiometric $\,\text{A/F}\,$ ratio would result at whatever

speed-load point adaptive learning had taken place.

Present table size is 10 (rows) \times 10 (columns) plus 6 special idle adaptive cells, for a total of 106 cells.

The total learned fuel system correction is called KAMREF where KAMREF = 0.5

+ LTMTBLrc.

During adaptive learning, only the LTMTBL cells are modified. Therefore, the

range of the KAMREF multiplier is (0.5 + 0.0) to (0.5 + 1.0) or 0.5 to 1.5.

The range of the LTMTBL cells can be further restricted by use of the calibration parameter clips, MINADP and MAXADP.

The precise location where KAMREF is used is shown in the ${\tt FUELPW}$ equation.

If KAM fails the KAM validation test (described later), all LTMTBL cells are initialized to 0.5 or 80 (HEX) resulting in a value of KAMREF = 0.5 + 0.5 = 1.0.

When allowed, updates to LTMTBL are statistically distributed in the vicinity

of the speed-load operating point except in the case of the idle cells. Only

the current idle cell is updated, no statistical distribution is done.

Data extracted from the table undergoes a $4\ \mathrm{point}$ linear interpolation. This

is explained further under the ${\tt FN1325L}$ description. Note that idle cells do

not undergo four point interpolation. Only the current idle cell is used.

LTMTBL and FN1325L share the same normalizing functions. FN031 is the ${\tt MAPOPE}$

normalizing function. FN070L is the engine speed N normalizing function.

The adaptive fuel table, LTMTBL, is shown on the next page.

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

ADAPTIVE FUEL TABLE (LTMTBL)

LTMTBLrc CELLS

special idle adaptive cells	>	100	101	102	103	104	105				
	9	90	91	92	93	94	95	96	97	98	99
8	8	80	81	82	83	84	85	86	87	88	89
	7	70	71	72	73	74	75	76	77	78	79
	6	60	61	62	63	64	65	66	67	68	69
FN031 ANORMALIZED	5	50	51	52	53	54	55	56	57	58	59
	4	40	41	42	43	44	45	46	47	48	49
	3	30	31	32	33	34	35	36	37	38	39
(MAPOPE)	2	20	21	22	23	24	25	26	27	28	29
1	1	10	11	12	13	14	15	16	17	18	19
	0	00	01	02	03	04	05	06	07	08	09
		0	1	2	3	4	5	6	7	8	9

FN070L NORMALIZED ENGINE SPEED (N)

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FN1325L DESCRIPTION

FN1325L is an 11 (row) x 10 (column) table containing 1 cell corresponding to each cell in the adaptive fuel table LTMTBL. (The 11th row is used to reference the idle cells and is not accessible from FN031 which only goes from 0 to 9)

The normalizing functions for FN1325L and LTMTBL are shared. FN031 is the MAPOPE normalizing function. FN070L is the engine speed N normalizing function.

FN1325L is designed to do the following:

FN1325L is

shown on the next page.

- Identify LTMTBL cells where learning is allowed to occur.
 - Learning is allowed in any LTMTBLrc cell whose corresponding FN1325Lrc cell contains a value >= 0. Negative FN1325L cell values disallow learning in the corresponding LTMTBL cell.
- Define a high confidence speed-load region that can be referenced from any other speed-load point.
 - This occurs whenever a negative value is entered into a FN1325L cell. The negative number serves as an offset to LTMTB00. If 1 of cells used by the 4 point linear interpolation LTMTBL table lookup routine contained -42, the cell value used by the interpolation routine for the cell that contained the -42 would be the value found in the LTMTBL cell located at the intersection of row 4 and column 2. In the extreme, if -42 was entered into every cell of FN1325Lrc except for the cell corresponding to LTMTB42, learning would be allowed only in cell LTMTB42 and the learned correction in would be applied to all speed-load points (every cell referenced by the 4 point linear interpolation routine during the LTMTBL table lookup would point to cell LTMTB42). This calibration for
- Specify the values of LOPCT1 and LOPCT2 required to update an individual LTMTBL cell.

- This is done by entering a value into FN1325L that is >= 0.

value entered represents 1/2 the required update value. A value of 20 entered would require LOPCT1 and/or LOPCT2 to be greater than 40

for an update to occur.

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

LTMTBL LEARNING/USE CONTROL TABLE (FN1325L)

FN1325L CELLS

special idle adaptive cell	Ls>	-42	-42	-42	-42	-42	-42				
	9	-42	-42	-42	-42	-42	-42	-42	-42	-42	-42
8	-42	-42	-42	-42	-42	-42	-42	-42	-42	-42	
	7	-42	-42	-42	-42	-42	-42	-42	-42	-42	-42
	6	-42	-42	-42	-42	-42	-42	-42	-42	-42	-42
FN031 4 NORMALIZED ENGINE 3 LOAD (MAPOPE) 2	5	-42	-42	-42	-42	-42	-42	-42	-42	-42	-42
	4	-42	-42	20	-42	-42	-42	-42	-42	-42	-42
	3	-42	-42	-42	-42	-42	-42	-42	-42	-42	-42
	2	-42	-42	-42	-42	-42	-42	-42	-42	-42	-42
	1	-42	-42	-42	-42	-42	-42	-42	-42	-42	-42
	0	-42	-42	-42	-42	-42	-42	-42	-42	-42	-42
		0	1	2	3	4		6	 -	8	9

FN070L NORMALIZED ENGINE SPEED (N)

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- ACT = Air Charge Temperature, deg F.
- ADPTMR = Adaptive Learning Enable Timer (see TIMER section).
- AEFUEL = Acceleration enrichment fuel flow, lb/hr.
- BIAS = A/F biasing term: FN1355(N,MAP). Units are lambdas.
- CHKSUM = KAM word containing the sum of the LTMTBL contents.
- ECT = Engine Coolant Temperature.
- EFTR = EQUIL fuel transfer rate BIN 16 LBM/SEC.
- EGOCNT = Number of EGO switches required before allowing updates to the Adaptive Fuel cell.
- FUELPW = Fuel Pulsewidth.
- KWUCTR = KAM Warm Up counter. Stores number of warm ups in KAM. Reset
 - to zero if KAM is corrupted (battery disconnect, etc.).
- LAMBSE = Desired air/fuel ratio.
- LAMWIN = LAMBSE window outside which adaptive is enabled.
- LSTROW = Last pass normalized row.
- LTMTBL = Adaptive Fuel Table.
- MAPOPE = MAP/ABS exhaust pressure.
- N = Engine speed RPM.
- PTPAMP = Limit cycle peak_to_peak amplitude
- PURGDC = Canister Purge Duty Cycle.
- RANNUM = Random numbers used to statistically distribute the corrections
 - to the Adaptive Fuel Table among four adjacent cells.
- TCSTRT = ECT at start-up.
- UPRATE = KAM update rate.

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Bit Flags:

- AFMFLG = ACT Failure flag set to 1 if the ACT fails range check.
- CFMFLG = ECT Failure flag set to 1 if the ECT fails range check.
- DFSFLG = Indicates decel fuel shut off.
- DISABLE_ADAPT = Adaptive fuel disable flag; 1 -> disable adaptive fuel.
- \mbox{HCAMFG} = \mbox{Flag} indicating the completion of $\mbox{Hi-Cam}$; 0 -> \mbox{no} desired engine
 - speed adder exists, 1 -> an rpm adder above base idle is present.
 - is used in the ISC adaptive update routine to disable updates when $\ensuremath{\mathsf{HCAMFG}}$
 - = 1.
- ISCFLG = ISC MODE Flag; 1 -> rpm control mode.
- ISFLAG = Indication of engine load state at Idle (See ISC Chapter).
- LIMIT_PURGE = Flag which indicates Purge Duty Cycle is being limited due
 - to LAMBSE being clipped; 1 -> limited Purge.
- MFMFLG = MAP Failure flag set to 1 if MAP sensor fails.
- REFFLG = Indication of Idle Air Flow; 1 -> Idle Air Flow.
- SWTFL = EGO switch flag; 0 -> no EGO switch, 1 -> EGO switch this
 - background loop.
- TFMFLG = TP Failure flag set to 1 if TP sensor fails range check.
- WARM_UP = Engine Warm-up flag; 1 -> engine warmed-up.

Calibration Constants:

- ADAPTM = Adaptive learning enable time delay (seconds).
- ADEFTR = Transient fuel threshold to update adaptive fuel.
- ADEGCT = Number of EGO switches required to permit Adaptive Learning
 - within the cell boundaries.
- AELIM = Maximum acceleration enrichment fuel flow to allow adaptive
 - learning, lb/hr.
- AFACT1 = Minimum ACT to Update Adaptive Fuel Table, deg F.
- AFACT2 = Maximum ACT to Update Adaptive Fuel Table, deg F.
- AMPMUL = Multiplier to determine LAMWIN from PTPAMP.
- DELAMB = Deadband (around LAMBSE = 1.0) within which loop counter values
 - are not altered.

- DELCOL = Calibration constant (normalized engine speed N) which
provides
 the ability to lock out table updates under transient
 conditions;
 establishes an operating range (engine speed) within which
 the
 appropriate loop counter may be incremented.

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- DELROW = Same function as DELCOL but for normalized load MAPOPE.
- FAEGCT = Fast Adaptive EGO count. Number of EGO switches required to
 - permit adaptive learning when KWUCTR < KWUCNT. Should be set to 0 to
 - permit fast adaptive learning for the first few warm-up cycles.
- ${\tt FN031}$ = MAPOPE normalizing function used with both ${\tt FN1325L}$ and ${\tt LTMTBL}$.
- FN025 = MAP normalizing function for Bias, Peak-to-Peak and Transport
 - Delay Tables. Input = MAP, Output = Table Entry Point.
- FN039 = Engine Speed (N) normalizing function for FN1355.
- FN070L = Normalizing function for N, used with FN1325L as well as LTMTBL.
- FN1325Lrc = LTMTBL learning/use control table.
- FN1355 (N,MAP) = Amount of BIAS from stoichiometry, units are lambdas.
 - X-input = FN039 (Normalized engine speed, rpm). Y-input = FN025
 - (Normalized Manifold Absolute pressure, Inches ${\tt Hg}$), ${\tt Output} = {\tt BIAS}$ from
 - stoichiometry, lambdas.
- HCAMSW = Calibration switch which allows the developer to select how the
 - adaptive fuel idle cells are to be used.
 - If HCAMSW is set to 0, the adaptive fuel idle cells are used as soon $% \left\{ 1\right\} =\left\{ 1\right$
 - the filtered air mass region is entered (REFFLG = 1).
 - If HCAMSW is set to 1, the adaptive fuel idle cells are used only when in
 - the $% \left(1\right) =\left(1\right) +\left(1\right)$
 - (HCAMFG = 0). This includes FN825A, FN825B, FN826, and BZZRPM.
- KWUCNT = Maximum number of warm-up cycles to use fast adaptive EGO count.
 - Should be set to approximately 3 to 5 warm-ups.
- MAXADP = Maximum adaptive correction.
- MINADP = Minimum adaptive correction.
- MINPW = Minimum pulsewidth clip value.
- RANMUL = Multiplier for random number generation.
- VECT3 = Minimum coolant temperature, engine on.
- VECT5 = Starting coolant temperature for warm-up counter.

Registers:

- COLTBU = Column address of Adaptive cell to be updated, integer = FN070L
+ 0.5 + upper byte of RANNUM (where the upper byte of RANNUM is a random number ranging from -0.5 to 0.496).

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

- EGOCNT = See above.
- FUELPW = See above.
- KWUCTR = See above.
- LAMWIN = See above.
- LOPCT1 = See above.
- LOPCT2 = See above.
 - $\ensuremath{\mathsf{NOTE}}\colon\ \ensuremath{\mathsf{A}}$ background loop occurs when the computer reaches the same point
 - in the program after executing all other necessary instructions.
- LSTCOL = Last pass normalized column.
- LSTROW = See above.
- LTMTBL = Adaptive Fuel Table.
- RANNUM = See above.
- ROWTBU = Row address of adaptive cell to be updated, integer = FN031 +
 - 0.5 + lower byte of RANNUM (where the lower byte of RANNUM is a random
 - number ranging from -0.5 to 0.496).
- UPRATE = See above.

Bit Flags:

- DISABLE_ADAPT = Adaptive fuel disable flag; 1 -> disable adaptive fuel.
- WARM_UP = Engine Warm-up flag; 1 -> engine warmed-up.

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBH0 PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

(EGO switch)

STRATEGY MODULE: FUEL_ADAPT_COM4

Calculate the random number to be used this background pass: always ----- RANNUM = RANNUM * RANMUL + RANMUL/4 rancol = rannum_hi = the high byte of the low word of RANNUM ranrow = rannum_lo = the low byte of the low word of RANNUM RANNUM = the low word of RANNUM (save for next pass) Calculate the cell to be updated this background pass: REFFLG = 1 -----ISCFLG = 1 ------|AND - | kamcol = ISFLAG COLTBU = ISFLAG HCAMFG = 0 ----kamrow = 10 ROWTBU = 10 OR --| HCAMSW = 0 -----(special idle cells) --- ELSE --kamcol = FN070L(N)COLTBU = kamcol + 0.5 +rancol kamrow = FN031(MAPOPE) | ROWTBU = kamrow + 0.5 +ranrow Calculate the DISABLE_ADAPT value: DFSFLG = 1 -----| DISABLE ADAPT = 1 --- ELSE ---FUELPW < MINPW -----DISABLE ADAPT = 1 FUELPW = MINPW --- ELSE --- $DISABLE_ADAPT = 0$ Calculate EGO switch logic:

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

Determine if adaptive is enabled/disabled of if adaptive area has changed:

AFMFLG = 1		
CFMFLG = 1		
TFMFLG = 1		
MFMFLG = 1		
ACT <= AFACT1		
ACT >= AFACT2		LOPCT1 = 0
DISABLE_ADAPT = 1	! - !	LOPCT1 = 0 LOPCT2 = 0 EGOCNT = 0
OPEN LOOP FUEL CONTROL		LSTCOL = kamcol LSTROW = kamrow
ADPTMR < ADAPTM		
kamrow - LSTROW > DELROW		Do: NEW_UPRATE_CALC
kamcol - LSTCOL > DELCOL		Exit FUEL_ADAPT_COM4
AEFUEL > AELIM		
EFTR >= ADEFTR		
REFFLG = 1		
AND - ISCFLG <> 1		
		ELSE
	 F	Continue with

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Calculate the LAMBSE window, LAMWIN:	
always	- LAMWIN = DELAMB + (PTPAMP = AMPMUL)
Calculate the EGO based learning rate: (This logic gives the system the capability 'green engine conditions').	v to learn faster during
WARM_UP = 0	
TCSTRT < VECT5	- WARM_UP = 1
ECT > VECT3	KWUCTR = KWUCTR + 1 Clip KWUCTR to 255
RUN mode	CIIP RWOCIR to 255
KWUCTR < KWUCNT (first few warm-up cycles)	- egolearn_rat = FAEGCT (use fast learning rate)
	ELSE
KWUCTR >= KWUCNT	egolearn_rat = ADEGCT (use normal learning rate)
Calculate loop counters:	
(LOPCT1 and LO	OPCT2)
EGO IS RICH	
LAMBSE >= (1 + BIAS + LAMWIN) AND -	- Increment LOPCT1 (max 255)
EGOCNT >= egolearn_rat	
LIMIT_PURGE = 0 OR	
PURGDC = 0	 ELSE
EGO IS LEAN	
LAMBSE <= (1 + BIAS - LAMWIN) AND -	- Increment LOPCT2 (max 255)
EGOCNT >= egolearn_rat	ELSE
	No change to LOPCT1 or LOPCT2

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

Determine if adaptive cells should be incremented/decremented: LTMTBL cells are updated when the following conditions are satisfied: Note that r = ROWTBU and c = COLTBU in the following charts.

FN1325Lrc >= 0		
LOPCT1 > 2 * UPRATE	 AND	LTMTBLrc = LTMBLrc - 0.0039 Decrement CHKSUM
LTMTBLrc > MINADP		LOPCT1 = 0 EGOCNT = 0
		ELSE
LOPCT1 > 2 * UPRATE	 	LOPCT1 = 0 EGOCNT = 0
LOPCT2 > 2 * UPRATE		ELSE
LTMTBLrc < MAXADP	AND -	
FN1325Lrc >= 0		Increment CHKSUM LOPCT2 = 0 EGOCNT = 0
		ELSE
LOPCT2 > 2 * UPRATE	 	LOPCT2 = 0 EGOCNT = 0

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

```
BEGIN: NEW_UPRATE_CALC
This algorithm calculates the average loop counter value to be used
the adaptive algorithm. The standard four point interpolation
routine is
used. If, however, one or more of the cells in the four points
reference cell, then the average of the values in the positive cells is
in place of the negative values.
If the system is in the special idle cells, the UPRATE value is equal to
value in FN1325L specified by kamcol.
Note: kamrow_max = maximum number of table rows (excluding the Special
Idle
                    Cells row).
       kamrow_spec = row number for the Special Idle Adaptive Cells.
       kamcol_max = maximum number of table columns.
kamrow = kamrow_spec ------ | Read the value in FN1325L specified
                                   by kamcol.
                                  Load this value in UPRATE.
                                   Exit the subroutine NEW_UPRATE_CALC
                                  --- ELSE ---
                                  Continue with subroutine
                                 NEW_UPRATE_CALC
Separate kamcol and kamrow into an integer and remainder.
always -----| kamcol_rem = kamcol - int(kamcol)
                                  kamcol = int(kamcol)
                                  kamrow_rem = kamrow - int(kamrow)
                                  kamrow = int(kamrow)
Check for row and column boundary conditions:
                           | adapt1_uprat = FN1325L(kamcol,kamrow)
|AND - adapt2_uprat = FN1325L(kamcol +
                           1, kamrow)
                               adapt3_uprat = FN1325L(kamcol,kamrow
kamrow < kamrow_max -----
+ 1)
                                 | adapt4_uprat =
                                            FN1325L(kamcol + 1,kamrow
                                 + 1)
                                  --- ELSE ---
kamcol = kamcol_max -----|
                           |AND - | adapt1_uprat = FN1325L(kamcol,kamrow)
kamrow = kamrow max -----
                                  adapt2_uprat = adapt1_uprat
                                  adapt3_uprat = adapt1_uprat
```

cells)

adapt4_uprat = adapt1_uprat

(use FN1325L 4 times so not to wrap around table or use special idle

| --- ELSE --- (continued on next page)

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBH0 PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

```
kamcol = kamcol_max ------ | adapt1_uprat = FN1325L(kamcol,kamrow)
                             adapt2 uprat = adapt1 uprat
                             | adapt3_uprat = FN1325L(kamcol,kamrow
                             | adapt4_uprat = adapt3_uprat
                             | (use kamcol_max values twice so not
                                wrap around table)
                              --- ELSE ---
kamrow = kamrow_max ------ | adapt1_uprat = FN1325L(kamcol,kamrow)
                             | adapt2_uprat = FN1325L(kamcol +
                            1, kamrow)
                             | adapt3_uprat = adapt1_uprat
| adapt4_uprat = adapt2_uprat
                             | (use kamrow_max values twice so not
                            to
                                wrap around table or use special
                                idle cells)
always -----| uprat cnt = 0
Check for reference cells:
adapt1 uprat >= 0 ------ | uprat cnt = uprat cnt + 1
                              adapt1_uprat_ref = 0
                              --- ELSE ---
                              adapt1_uprat = 0
                              adapt1 uprat ref = 1
adapt1 uprat ref = 0
                              --- ELSE ---
                              adapt2 uprat = 0
                              adapt2_uprat_ref = 1
adapt3_uprat_ref = 0
                              --- ELSE ---
                              adapt3_uprat = 0
                              adapt3_uprat_ref = 1
```

FUEL STRATEGY, ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

adapt4_uprat_ref = 0 --- ELSE --adapt4_uprat = 0 adapt4_uprat_ref = 1 If all cells are referenced cells, set UPRATE to a maximum value. Else, find UPRATE average. uprat cnt = 0 ----- | UPRATE = 127 (maximum value) --- ELSE --uprat_avg = (adapt1_uprat + adapt2_uprat + adapt3_uprat +
adapt4_uprat) / uprat_cnt Truncate UPRATE to an integer adapt1_uprat_ref = 1 ------| adapt1_uprat = uprate_avg adapt2 uprat ref = 1 ------| adapt2 uprat = uprate avg adapt3_uprat_ref = 1 ------| adapt3_uprat = uprate_avg adapt4_uprat_ref = 1 ------ adapt4_uprat = uprate_avg always ----- Make kamcol and kamrow real numbers kamcol = kamcol + kamcol_rem
kamrow = kamrow + kamrow_rem Do four point interpolation using kamrow and kamcol, and the four adaptn_uprat values calculated above. Store this value in UPRATE.

END: NEW_UPRATE_CALC

10/21/2000 LHBH1.TXT

FUEL STRATEGY, KAM ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

KAM ADAPTIVE FUEL LOGIC (Background software module KAMREF, called from BG_FUELPW)

OVERVIEW

The adaptive fuel table stored in KAM is used as a reference for both and closed loop fuel control. The use of KAMREF is shown in the pulsewidth equation section of this chapter.

NOTE: The following Adaptive Fuel Logic is not executed during RUNNING Self Test MODE.

DEFINITIONS

INPUTS

Registers:

- ISFLAG = Indication of engine load state at idle (See IDLE SPEED CONTROL
 - Chapter); 0 -> Drive, 1 -> Drive and A/C clutch engaged, 2 -> Neutral, 3
 - -> Neutral and A/C clutch engaged.
- LTMTBL = Adaptive fuel table.

Bit Flags:

- CRKFLG = Flag indicating engine mode; 1 -> Cranking, 0 -> Run or Underspeed mode.
- HCAMFG = Flag indicating the completion of Hi-Cam; 0 -> no desired engine
 - speed adder exists, 1 -> an rpm adder above base idle is present. Flag
 - is used in the ISC adaptive update routine to disable updates when **HCAMFG** = 1.
- REFFLG = Indication of Idle Air Flow; 1 -> Idle Air Flow.

Calibration Constants:

- HCAMSW = Calibration switch which allows the developer to select how the
 - adaptive fuel idle cells are to be used.
 - If HCAMSW is set to 0, the adaptive fuel idle cells are used as
 - the filtered air mass region is entered (REFFLG = 1).
 - If HCAMSW is set to 1, the adaptive fuel idle cells are used only when in
 - the filtered air mass region and no rpm adder above base idle is present

(HCAMFG = 0). This includes FN825A, FN825B, FN826, and BZZRPM.

OUTPUTS

Registers:

FUEL STRATEGY, KAM ADAPTIVE FUEL LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- KAMREF = Adaptive fuel strategy correction factor.

PROCESS

STRATEGY MODULE: FUEL_KAM_ADAPT_COM3

CRKFLG = 1 (crank mode)		 	KAMREF = 1.0 (use no interpola	ation)
REFFLG = 1	ı		 ELSE	
REFFLG = 1		AND -	 KAMREF = 0.5 + LTN	MTBLrc
HCAMFG = 0	·	i	(where r = 10 and	_
(no rpm adder)	OR	İ	c = ISFLAG)	
			use no interpola	ation)
HCAMSW = 0	1	ļ		
(ignore HCAMFG)			ELSE 	
		İ	KAMREF = 0.5 + LTM	MTBLrc
		ĺ	(use 4-point	
			interpolation)	

NOTE: For purposes of interpolation, the LTMTBL100 to LMTBL105 cells are not included. These cells should correspond to the special idle cells.

FUEL STRATEGY, TRANSIENT FUEL COMPENSATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

TRANSIENT FUEL COMPENSATION (Background software module TFCOMP, called from BG_FUELPW)

OVERVIEW

Transient Fuel is variously referred to as manifold wall wetting, puddling, filling, and fuel film condensation/evaporation.

A liquid fuel film resides on the walls of the intake manifold. The film mass varies primarily with manifold absolute pressure and manifold wall temperature. During steady state conditions, the film mass is constant. The rates of condensation and evaporation on the manifold walls are equal.

During transients, the film mass changes creating air/fuel ratio errors.

- During accelerations, the film mass increases. Fuel will condense faster $% \left(1\right) =\left(1\right) +\left(1\right)$
 - on the manifold walls until equilibrium is reached. In an uncompensated
 - system at stoichiometry, fuel is diverted from the $% \left(1\right) =\left(1\right) +\left(1\right)$
 - in a momentary lean condition.
- During decelerations, the $% \left(1\right) =1$ film mass decreases. Fuel will evaporate

faster from the manifold walls until equilibrium is reached. In an $% \left(1\right) =\left(1\right) +\left(1\right)$

uncompensated system at stoichiometry, fuel is added to the cylinders, $% \left(1\right) =\left(1\right) +\left(

resulting in a momentary rich condition.

The problem is magnified in closed loop fuel systems because the fuel control will incorrectly chase the transient air/fuel excursions.

INTENT

The Transient Fuel Compensation Strategy (TFC) augments the closed/open loop fuel control to keep cylinder events at the desired air/fuel ratio during all engine transients. The goals are:

- eliminate lean air/fuel excursions during accelerations, and
- eliminate rich air/fuel excursions during decelerations.

NOTE: Transient Fuel Compensation is not run in Self Test.

FUEL STRATEGY, TRANSIENT FUEL COMPENSATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

APPROACH

The computer adjusts fuel flow to match the transient fuel flow to or from the manifold fuel film.

COMPENSATED CLOSED/OPEN LOOP FILM MASS RATE OF CHANGE FUEL FLOW = FUEL FLOW + OR FUEL FLOW (ACTUAL) (BASE STRATEGY) (TFC STRATEGY)

The film mass rate of change is proportional to the amount of fuel that $\ensuremath{\mathsf{must}}$

be added to or subtracted from the manifold film.

The time constant and steady state film mass are calculated from MAP and $\,$

temperature variables and must be calibrated for different applications.

The actual film mass is a time integration of the film mass rate of change.

FUEL STRATEGY, TRANSIENT FUEL COMPENSATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- AISF = Actual Intake Surface Fuel Calculation, lb.
- ATMR1 = Time since Start-up, sec.
- DELTIM = Time since last AISF update, sec.
- EFTR = Equilibrium fuel transfer rate, fuel flow to and from the manifold puddle.

Bit Flags:

- DFSFLG = Indicates decel fuel shut off.
- EFFLG1 = Equilibrium Fuel Transfer flag.
- ISCFLG = ISC Mode Flag. 1 -> RPM control; 2 -> RPM lockout
- MPGFLG = Manage fuel air state flag.
- REFFLG = Indicates idle fuel modulation enabled.

Calibration Constants:

- AISFM = Multiplier on AISF when in DFSO (0 2). Determines Fuel
 Puddle
 size upon re-entering Normal Fuel.
- ALPHA = Multiplier proportioning the dependency of ACT to ECT.
- EFTC = TEFTC(FN1322) = an 8 X 10 table of equilibrium fuel transfer time constants as a function of ALPHA * ACT + (1 - ALPHA) * ECT and MAP.
- EISF = TEISF(FN1321) = an 8 X 10 table of fuel mass values as a function of ALPHA * ACT + (1 - ALPHA) * ECT and MAP.
- FN307(N BYTE) = MTEFTC Multiplier as a function of N BYTE.
- FN1321(TEISF) = Equlibrium intake surface fuel function.
- KFT = Multiplier (if set = 0, disables TFC) when not in MPG mode.
- KFTMPG = Transient Fuel multiplier in MPG mode.
- MEFTRA = Transient fuel PW multiplier during accels.
- MEFTRD = Transient fuel PW multiplier during decels.
- MTEISF = Multiplier for FN1321.
- TFCBITS = Minimum difference in Equilibrium Intake Surface Fuel to
 - trigger transient fuel. 1 bit = 0.000015259, therefore to have a deadband of 5 bits, set TFCBITS = 0.000076295.

 $\ensuremath{\texttt{NOTE:}}$ To see how many bits are contained in the desired fuel puddle,

FUEL STRATEGY, TRANSIENT FUEL COMPENSATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

calculate FN1321 * MTEISF/0.000015259. For example, if FN1321 =

0.0014648, MTEISF = 0.0625, then the number of bits in the puddle is 6.

Thus even a 1 bit change would require an 18% TFCDED to eliminate it.

TFCBITS resolves this issue when puddle values are extremely small.

- TFCDED = Percentage deadband around Equilibrium Intake Surface Fuel to

turn off Transient Fuel.

- TFCISW = Switch for Transient Fuel Control.
- TFCTM = Time since entering Transient Fuel, sec.
- TFRFSW = Trans fuel REFFLG enable switch; 0 = disable REFFLG logic.

OUTPUTS

Registers:

- AISF = Actual Intake Surface Fuel Calculation, lb.
- EFTR = Equilibrium fuel transfer rate, fuel flow to and from the manifold puddle.
- EFTRFF = Equilibrium fuel flow.

Bit Flags:

- EFFLG1 = Equilibrium Fuel Transfer flag.

10/21/2000 LHBH1.TXT

FUEL STRATEGY, TRANSIENT FUEL COMPENSATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: FUEL_TRANS_COM5

CRANK mode (CRKFLG = 1)	
UNDERSPEED mode OF (UNDSP = 1)	R EFFLG1 = 0 EFTR = 0 EFTRFF = 0
ATMR1 < TFCTM	(do not run transient fuel compensation)
EFFLG1 = 0	ELSE
RUN mode AN (CRKFLG = 0, UNDSP = 0) TFCISW = 1	<pre>EFFLG1 = 1 (do not run transient fuel compensation)</pre>
(assume wet manifold at start-up) EFFLG1 = 0) ELSE
RUN mode AN	
TFCISW = 0 (assume dry manifold at start-up)	EFFLG1 = 1 (do not run transient) ELSE
RUN mode	
DFSFLG = 1 (in DFSO) AN	ND - AISF = MTEISF * FN1321(TEISF) *
EFFLG1 = 1	EFFLG1 = 1 EFTR = 0 (do not run transient)
EFFLG1 = 1	ELSE
RUN mode AN (CRKFLG = 0, UNDSP = 0)	ND - DO ACTUAL INTAKE SURFACE FUEL CALCULATIONS DO EQUILIBRIUM FUEL TRANSFER CALCULATIONS (run transient fuel compensation)

NOTE: During ENGINE RUNNING Self Test MODE, the above logic is not executed;

the Self Test software prevents Transient Fuel Compensation.

FUEL STRATEGY, TRANSIENT FUEL COMPENSATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

EQUILIBRIUM FUEL TRANSFER CALCULATIONS

These calculations are performed during each program pass (background loop) while Transient Fuel Compensation is enabled. The general form of the rate calculation is:

EFTR = A * [(EISF * MTEISF - AISF) / (EFTC * FN307(N BYTE))]

MPGFLG = 0 ------ | A = KFT (not in MPG mode) | --- ELSE --- | MPGFLG = 1 ------ | A = KFTMPG (in MPG mode)

ACTUAL INTAKE SURFACE FUEL CALCULATION (AISF)

This calculation is performed during each program pass (background loop) while TFC is enabled. AISF is a time integration of the fuel flow to and from the manifold puddle. Clip AISF to 0 as a minimum.

AISF = AISF + (EFTR * DELTIM)

FUEL STRATEGY, TRANSIENT FUEL COMPENSATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

TRANSIENT FUEL FLOW MULTIPLIER

KELLPTG = T			
TFRFSW = 1 (enable REFFLG logic)	AND - 		
ISCFLG > 0 (in RPM control)	 		EERDEE - 0
TFISCW = 1 (enable ISCFLG logic)	AND -	OK	EFTRFF = 0 (stop adding transient fuel to
MTEISF * FN1321 - AISF <= TFCBITS (difference is less than a few bits			pulsewidth continue AISF update)
(MTEISF * FN1321 - AISF) / (MTEISF * FN1321) <= TFCDED (percentage difference is small)			ELSE
MTEISF * FN1321 < AISF		 	EFTRFF = MEFTRD * 60 EFTR (use decel multiplier)
			ELSE
			<pre>EFTRFF = MEFTRA * 60 * EFTR (use accel multiplier)</pre>

FUEL STRATEGY, HOT INJECTOR COMPENSATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

HOT INJECTOR COMPENSATION (Done in background software module CNVRT)

OVERVIEW

Under conditions of high injector tip temperatures, injector fuel delivery decreases as a function of increasing injector tip temperature. The amount of vaporized fuel delivered by the injector increases as hot soak time increases, or as conducted heat (from cylinder head) and/or radiated heat (from intake/exhaust manifold) increases. Higher fuel pressure or lower fuel volatility helps the situation, but fuel volatility is beyond the developers control. Hot Injector compensation has therefore been applied to the fuel delivery slope A0. Tip temperature has been characterized to be a function of ECT/ACT, ACSTRT, ATMR3 and AM as follows:

- ECT/ACT for conducted or radiated heat.
- ACSTRT for soak time.
- ATMR3 for fuel mass to cool the injector.
- AM for fuel mass to cool the injector.

Hot injector compensation, as a percent above base A0 is,
HICOMP =
FN1349(TEMP,ACSTRT) * FN1348(ATMR3,AM).

A0 corrected = A0/(1 + HICOMP) = A0COR

Thus when HICOMP goes to 0, no enrichment is desired. FN1350 has been added for crank fuel enrichment as a function of ACT and CRKPIP_CTR. ACT is the input - in case of a stall and no key off, you will get a better enrichment factor as opposed to ACSTRT.

FUEL STRATEGY, HOT INJECTOR COMPENSATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- ACSTRT = ACT at start-up; arithmetic average of the first 8 ACT readings.
- ACT = Air Charge Temperature, degrees F.
- AM = Air mass flow, lb/min.
- ATMR3 = Time since entering RUN mode, secs.
- CRKPIP_CTR = Foreground PIP counter for crank fuel.
- ECT = Coolant temp, degree F.

Calibration Constants:

- FN1349 = Fuel enrichment factor. X = FN005(TEMP) Y = FN005(ACSTRT)
- FN1348 = Time multiplier. X = FN008(ATMR3) Y = FN007(AM)
- FN1350 = CRANK fuel enrichment multiplier as a function of "number of

PIPs" in CRANK and ACT. X = FN023(CRKPIP_CTR) Y = FN024(ACT)

- FRCHIC = Fraction of ECT or ACT to use in FN1349. If FRCHIC = 1.0,
all
 ACT is used, if FRCHIC = 0, all ECT is used.

OUTPUTS

Registers:

- HICOMP = Hot injector compensation enrichment factor.

PROCESS

STRATEGY MODULE: FUEL_HOT_INJ_COMP_COM2

 ${\tt HICOMP = FN1349(TEMP, ACSTRT) * FN1348(ATMR3, AM)}$

FUEL STRATEGY, INJECTOR DELAY LOGIC - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

INJECTOR DELAY LOGIC

OVERVIEW

UNSYNCHRONIZED (SYNFLG = 0 or FUEL_SYNC = 0) The injector timing routine is disabled (IBETA = 0). All injector output ports are fired on the rising edge of their respective reference PIPs.

SYNCHRONIZED (SYNFLG = 1 and FUEL_SYNC = 1) All injector output port firings are delayed CIBETA PIP periods from their respective reference PIPs.

NOTE: A Signature PIP distributor is required in order to delay injector firing by CIBETA PIP periods. If a Signature PIP distributor is not used, SYNFLG will always be 0.

CALIBRATION PHILOSOPHY

CIBETA should be calibrated so that the injector firings occur within the optimum window determined by camshaft geometry.

DESIRED INJECTOR DELAY IN CRANK DEGREES - 10 DEG
CIBETA = -----CRANK DEGREES BETWEEN PIPS

The range of CIBETA is 0 to 6.5 PIP periods.

DEFINITIONS

INPUTS

Registers:

- TOTAL_DELAY = Register which is equivalent to CIBETA.
TOTAL_DELAY
 changes during synchronization until the requested CIBETA is obtained.

Bit Flags:

- FUEL_SYNC = Flag which indicates that PIP and fuel are in synch.
- NEW_DELAY = Flag to indicate that new TOTAL_DELAY is being requested by the FUEL SERVICE module.
- SYNFLG = Signature PIP correctly identified flag: 1 -> Signature PIP in correct place; 0 -> not Signature PIP or in wrong place.

Calibration Constants:

- CIBETA = Number of PIPs to delay Bank A from rising edge of Signature PIP.

FUEL STRATEGY, INJECTOR DELAY LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

 PIPOUT = Number of PIP periods between injector outputs on each injector port.

OUTPUTS

Registers:

- NEW_DELAY = See above.
- TOTAL_DELAY = See above.

FUEL STRATEGY, INJECTOR DELAY LOGIC - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: FUEL_INJDLY_COM4

SYNFLG = 0	
FUEL_SYNC = 0 (fuel not sync'd)	
SYNFLG = 1	
FUEL_SYNC = 1	
NEW_DELAY = 1 AND - OR	TOTAL_DELAY = 0 NEW DELAY = 0
CIBETA > PIPOUT (requested delay too long)	Exit FUELPW ROUTINE
SYNFLG = 1	
FUEL_SYNC = 1	
NEW_DELAY = 1 AND -	
CIBETA < TOTAL_DELAY (requested delay less than present delay)	
SYNFLG = 1	ELSE
FUEL_SYNC = 1 AND -	 Exit FUELPW ROUTINE
NEW_DELAY = 0	ELSE
CIBETA - TOTAL_DELAY > 0.5 (requested delay more than 1/2 PIP away)	TOTAL_DELAY = TOTAL_DELAY + 0.5 NEW_DELAY = 0 Exit FUELPW ROUTINE
	 ELSE
	TOTAL_DELAY = CIBETA NEW_DELAY = 0 Exit FUELPW ROUTINE

NOTE: TOTAL_DELAY is used by the FUEL SERVICE routine to compute IBETA.

FUEL STRATEGY, IDLE FUEL MODULATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

IDLE FUEL MODULATION

OVERVIEW

Idle fuel modulation is used to enhance the idle stability of speed density The strategy achieves A/F modulation by multiplying the systems. FUELPW equation by the parameter ISCMOD, which has a nominal value of 1.0. ISCMOD is inversely proportional to rate of change of rpm. If rpm is increasing, the value of ISCMOD becomes less than 1.0, which leans the A/F and tends to The opposite happens if rpm is decreasing. To stop the increase. prevent the A/F modulation from being excessive, ISCMOD is clipped between maximum

Idle speed modulation is enabled when TP is near RATCH, and rpm is near DSDRPM. The flag REFFLG indicates that idle speed modulation is

DEFINITIONS

enabled.

and minimum values.

INPUTS

Registers:

- DNDT_ISC = Rate of change of rpm. From the rpm calculation.
- DSDRPM = Desired rpm. Calculated in Idle Speed Control.
- N_BYTE = Byte value of rpm. From the rpm calculation.
- RATCH = Lowest filtered throttle position (see System Equations Chapter).
- TP_REL = Throttle Position relative to RATCH; TP_REL = TP RATCH.

Bit Flags:

- DISABLE_ISC = Flag set in Running VIP to disable ISCMOD; 1->
 disable
 ISCMOD.
- REFFLG = Idle fuel modulation flag; 1 -> idle fuel modulation enabled
- RUNUP_FLG = Flag indicating that a stall has occurred; 1 -> Runup
 rpm
 exceeded.
- VRUN_ISCFLG = Flag which indicates that idle speed is being controlled by

 Fragine Running VIP: 1 -> in Fragine Running VIP 0 ->

Engine Running VIP; 1 -> in Engine Running VIP, 0 -> not in Engine Running VIP.

Calibration Constants:

- DELRAT = Throttle position adder to RATCH. Used to describe a throttle

position below which idle fuel modulation is enabled.

- DLHYST = Hysteresis for DELRAT.
- ISCMOD_MAX = Maximum clip on ISCMOD. Limits the maximum $% \left(1\right) =\left(1\right) +\left(1\right) +$

that will result from the idle fuel modulation strategy.

FUEL STRATEGY, IDLE FUEL MODULATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

- ISCMOD_MIN = Minimum clip on ISCMOD. Limits the maximum lean excursion

that will result from the idle fuel modulation strategy.

- ISCMOD_RPM = Incremental adder to DSDRPM; total defines an engine speed

below which idle fuel modulation can occur. Should be kept to a minimum

to avoid unnecessary activation of the fuel modulation routine.

- $\mbox{KDNDT} = \mbox{Gain term for idle fuel modulation.}$ Larger values result in more

fuel being added when engine speed falls and more fuel being taken away

when engine speed rises. Too small a value results in unstable idle and

too large a value results in unnecessary A/F excursions at idle.

- V_ISCMOD_MAX = VIP maximum clip on ISCMOD when in VIP throttle adjust mode.
- V_ISCMOD_MIN = VIP minimum clip on ISCMOD when in VIP throttle adjust mode.
- V_KDNDT = gain term for idle fuel modulation when in VIP Throttle Adjust mode.

OUTPUTS

Registers:

- EGO_CNT_IDLE = Number of EGO switches which have occurred since entering

Idle Fuel Modulation.

- ISCMOD = FUELPW equation multiplier for idle fuel modulation.
- LAM_OLD = Value of LAMBSE at previous EGO switch.
- LAMAVE = Average LAMBSE between EGO switches.

Bit Flags:

- REFFLG = See above.

CALIBRATION INFORMATION

Typical Values:

- DELRAT = 15 counts.
- DLHYST = 10 counts.
- ISCMOD_MAX = 1.2 (allows up to 20_% rich A/F to correct for decreasing

rpm).

- ISCMOD_MIN = 0.9 (allows up to 10_% lean A/F to correct for increasing

- rpm).
 ISCMOD_RPM = 75 to 150 rpm.
 KDNDT = 0.0003 sec/rpm.

FUEL STRATEGY, IDLE FUEL MODULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: FUEL_IDLE_MOD_COM3

DISABLE_ISC = 1 (freeze ISCDTY for VIP)	REFFLG = 1 ISCMOD = 1.0 (disable idle fuel modulation for VIP)				
	 ELSE				
VRUN_ISCFLG = 1(throttle adjust mode)	REFFLG = 1 ISCMOD = (1 - V_KDNDT * DNDT_ISC) Clip ISCMOD between V_ISCMOD_MIN and V_ISCMOD_MAX (enable VIP Idle Fuel Modulation) ELSE				
TP_REL <= DELRAT + DLHYST	EDSE				
RUNUP_FLG = 1	REFFLG = 1 ISCMOD = (1 - KDNDT * DNDT_ISC) Clip ISCMOD between ISCMOD_MIN and ISCMOD_MAX (enable idle fuel modulation) ELSE REFFLG = 0 ISCMOD = 1.0 (disable idle fuel modulation)				
Previous value of REFFLG = 0 AND - Current value of REFFLG = 1	EGO_CNT_IDLE = 0				
EGO switchEGO CNT IDLE	Increment				

FUEL STRATEGY, IDLE FUEL MODULATION - LHBHO PED-PTE, FomoCo, PROPRIETARY & CONFIDENTIAL

NOTE:

- REFFLG = 1 indicates idle fuel modulation is enabled.
- ISCMOD is a multiplier on the FUELPW equation.
- DNDT_ISC is a filtered dn/dt (see rpm calculation)
- ISCMOD_RPM = Delta rpm above DSDRPM to enable idle fuel modulation.
- Most MAF systems should not use Idle Fuel Modulation (set KDNDT = 0).

FUEL STRATEGY, DECEL FUEL SHUT-OFF LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DECEL FUEL SHUT-OFF LOGIC (Software module DECEL_FUEL_SHUTOFF, called by BG_FUELPW)

OVERVIEW

This logic turns off the fuel on a deceleration condition.

DEFINITIONS

INPUTS

Registers:

- BG_TMR = Background loop time, sec.
- CTTMR = Time at closed throttle, sec.
- DSDRPM = Desired engine speed. See the IDLE SPEED CONTROL Chapter

Overview section for definition of the various uses of this register.

- D TP DT = Time derivitive of TP (ticks/sec).
- DFSO_A_TMR = Free running, down counting, TP based thermactor air shut off timer.
- DFSO_F_TMR = Free running, down counting, TP based DFSO timer.
- ECT = Engine Coolant Temperature.
- MAP = Manifold Absolute Pressure, " Hg (byte value).
- N = Engine speed, rpm.
- NACTMR = Time since leaving Closed Throttle mode. NACTMR is defined in the TIMERS Chapter.
- NOVS = The ratio of engine speed (NBAR) over vehicle speed (VSBAR).
- OLD_TP_DFSO = Previous value of TP used in DFSO logic.
- TP = Throttle position, counts.
- VSBAR = Time dependent rolling average of instantaneous vehicle speed,
 VS.

Bit Flags:

- DFSVS_HYS_FG = Decel fuel vehicle speed flip-flop.
- FLG_DFSO_NOVS = Flip flop state flag using transmission gear to engage DFSO.
- FPWQ2 = Fuel pulsewidth flip-flop 2.

FUEL STRATEGY, DECEL FUEL SHUT-OFF LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- FPWQ3 = Fuel pulsewidth flip-flop 3.
- MFMFLG = MAP failure flag; 1 -> MAP sensor has failed.
- NDSFLG = Flag that indicates Neutral/Drive switch position; 0 ->
 neutral,
 1 -> drive.
- RUNNING = Flag which indicates that idle speed is being controlled by

Engine Running VIP; $1 \rightarrow in$ Engine Running VIP, $0 \rightarrow not in$ Engine Running VIP.

- TFMFLG = Flag indicating that the TP sensor is in/out of range;
 1 ->
 failed range check.
- VSFMFLG = Flag indicating the Vehicle Speed Sensor has failed;
 1 ->
 failed sensor.

Calibration Constants:

- CTDSFO = Time at closed throttle for DFSO, sec.
- CTEDSO = Time at extended decel for DFSO, sec.
- DFNOVH = Hysteresis for DENOVS, rpm/mph.
- DFNOVS = NOVS value below which DFSO is permitted. Used to disable $\ensuremath{\mathsf{DFSO}}$
 - in lower transmission gears to prevent large torque changes.
- DFSECT = Minimum ECT to do DFSO, degrees F.
- DFSMAP = Minimum MAP for DFSO. Should be calibrated to $% \left(1\right) =1$ not allow DFSO

when the engine is making power so as to minimize torque change at fuel shut off point, Hq.

- DFSO_ECT = Ect above which TP based DFSO is allowed.
- DFSO_OUT = Switch to disable DFSO under a throttle position faliure;
 1 ->
 DFSO disabled.
- DFSMPH = Hysteresis for DFSMAP, Hg.
- DFSRPH = Hysteresis value for DFSRPM.
- DFSRPM = Minimum value of (N DSDRPM) for DFSO, rpm.
- DFSTM = Time delay before DFSO, sec.
- DFSVS = Minimum vehicle speed to allow Decel Fuel Shut-Off. Used to $% \left(1\right) =\left(1\right) +\left(1$
 - limit DFSO when in a high gear, low speed decel. Also prevents use of DFSO in parking lots, etc, mph.
- DFSVSH = Hysteresis value for DFSVS, mph.

- D_TP_DT_F = TP tip out rate needed to trigger TP based DFSO (should never

be greater that zero). TP tip out can be turned off by setting this

scalar to its maximum negative value.

FUEL STRATEGY, DECEL FUEL SHUT-OFF LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- FND_TP_DT_A = TP rate at which to activate air bypass.
- TRLOAD = Transmission load switch.
- FN222A(n) = The amount of time which thermactor air is shut off, sec.
- FN222F(n) = The amount of time which DFSO is active, sec.

OUTPUTS

Registers:

- D = Decel fuel shut-off multiplier.
- D_TP_DT = See above.
- DFSO_A_TMR = See above.
- DFSO_F_TMR = See above.
- OLD_TP_DFSO = See above.

Bit Flags:

- DFSFLG = Decel Fuel Shut-Off flag; 1 -> the decel fuel multiplier is not one.
- FLG_DFSO_NOVS = See above.
- DFSVS_HYS_FG = See above.
- FPWQ2 = See above.
- FPWQ3 = See above.

FUEL STRATEGY, DECEL FUEL SHUT-OFF LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS STRATEGY MODULE: FUEL_DFSO_COM2 always ----- D TP DT = (TP -OLD_TP_DFSO) / BG_TMR OLD_TP_DFSO = TP ECT > DFSO_ECT -----(ECT high enough) AND - [dfso_condition] = 1 TFMFLG = 0 -----(TP sensor OK) --- ELSE --- $[dfso_condition] = 0$ [dfso_condition] = 1 -----(condition right) DFSO_F_TMR = 0 ------ | AND - | DFSO_F_TMR = FN222F(N) (initialize once) D TP DT < D TP DT F -----(tipping out) --- ELSE --decrement DFSO_F_TMR (clip at zero) [dfso condition] = 1 ------(condition right) DFSO_A_TMR = 0 ------ | AND - | DFSO_A_TMR = FN222A(N) (initialize once) D_TP_DT < FND_TP_DT_A(N) ------</pre> (tipping out) --- ELSE --decrement DFSO_A_TMR (clip at zero)

FUEL STRATEGY, DECEL FUEL SHUT-OFF LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Evaluate each flip flop each background pass:

NACTMR > DFSTM (long tip-in)	S Q - FPWQ3
NACTMR > 0	c
VSBAR >= DFSVS	S Q - DFSVS_HYS_FG
VSBAR < DFSVS - DFSVSH	C
NOVS <= DFNOVS (in higher gear)	S Q - FLG_DFSO_NOVS
NOVS > DFNOVS + DFNOVH	c
<pre>N - DSDRPM >= DFSRPM (rpm high enough) MFMFLG = 1 MAP <= DFSMAP (not making power)</pre>	I
MAP <= DFSMAP (not making power)	
N - DSDRPM < DFSRPM - DFSRPH	OR C
MAP > DFSMAP + DFSMPH MFMFLG = 0	IAND - I

FUEL STRATEGY, DECEL FUEL SHUT-OFF LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FPWQ2 = 1			 			
RUNNING = 0 (not in KOER VIP)						
TRLOAD < 2 (ignore N/D input)		OR				
NDSFLG = 1 (in gear)						
ECT > DFSECT (engine warm enough)						
TFMFLG = 0						
DFSO_OUT = 0	AND - 					
MFMFLG = 0			<u> </u> 			
DFSO_OUT = 0	AND - 	OR	 AND	"A"	= 1	
TFMFLG = 0						
MFMFLG = 0	AND - 					
TFMFLG = 1						
CTTMR > CTDSFO (closed throttle long enough)		OR				
CTTMR > CTEDSO (extended closed throt.)	AND					
FPWQ3 = 1 OR						
AND - FLG_DFSO_NOVS = 1 -						
VSFMFLG = 1 (VS sensor bad)		OR				
DFSVS_HYS_FG = 1					DT 0D	
					ELSE	
			l	"A"	= 0	
DFSO_F_TMR <> 0					0.00	
"A" = 1			 OR 	FUEL D = DFSF		1
					ELSE	
			 	FUEL D = DFSF		0

FUEL STRATEGY, BACKGROUND PULSEWIDTH DETERMINATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FUEL PULSEWIDTH CALCULATION (BGFUEL) (Background Module BG_FUELPW)

OVERVIEW

Except for crank mode and Asynchronous Acceleration Enrichment, fuel pulsewidths are calculated from the following equation:

DEFINITIONS

INPUTS

Registers:

- AOCOR = Corrected fuel injector slope.
- ACT = Air Charge Temperature.
- ${\tt AM}$ = ${\tt Air}$ Mass flow as defined in the SYSTEM EQUATIONS Chapter, lb/min.
- BASE_EM = Fuel requirement based on EGR flow (non-displayable).
- BASEFF = Fuel amount to provide stoichiometric operation
 based on
 inducted air mass (AM) = (KAMREF * AM)/(14.64 * LAMBSE).
- CRKPIP_CTR = Foreground PIP counter for crank fuel.
- CRKPIP_CTR_BG = Background equivalent of CRKPIP_CTR.
- D = Decel fuel shutoff multiplier.
- ECT = Engine Coolant Temperature.
- EFTRFF = Equilibrium fuel transfer rate for transient fuel compensation (lbf/min).
- EM = Actual EGR mass flow.
- FUEL_A = Fuel pulsewidth multiplier for Idle Fuel Modulation /
 Decel /
 Underspeed operation, unitless (non-displayable).
- FUELPW = Foreground/background calculated fuel pulsewidth.
- ISCMOD = Multiplier for idle speed fuel.

FUEL STRATEGY, BACKGROUND PULSEWIDTH DETERMINATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- KAMREF = Adaptive fuel strategy correction factor.
- LAMBSE = Desired ratiometric air/fuel ratio. Normalized to stoichiometry (14.7 a/f).
- MAP = Manifold Absolute Pressure, "Hg (byte value).
- MAPWBG = MAP_WORD updated once per background pass at calculation of AMPEM. Used in fuel pulsewidth calculation.
- N = Engine speed in revolutions per minute.
- OFMFLG = ETV overcurrent monitor failure flag; 0 -> ETV O.K., 1 ->
 ETV
 failure mode.
- PWCF = Pulsewidth Conversion Factor converts total computed for engine into amount per injector = [1/(N * ENGCYL)]/[PIPOUT/(NUMOUT *
- RT_NOVS_KAM = Ratio of actual N-OVER-V to base N-OVER-V.
- TLS_NV_FLG = Torque limiting strategy no fuel flag; 0 -> normal
 fuel, 1
 -> no fuel.
- TLS_24_FLG = Torque limiting strategy 1/2 fuel flag; 0 -> normal fuel, 1 -> 1/2 fuel.
- TLS_34_FLG = Torque limiting strategy 3/4 fuel flag; 0 -> normal fuel, 1 -> 3/4 fuel.
- TP_REL = TP RATCH.

INJOUT)].

- VBAT = Battery voltage.
- VSBAR = Time dependent rolling average of instantaneous vehicle speed, VS.
- VSBART_FM = VS calculated based on NIBART, NOBART, or NOBART.
- VSFMFLG = Vehicle speed sensor FMEM flag.

Bit Flags:

- ALT_CAL_FLG = Flag to indicate use of alternate calibration.
- CRKFLG = Flag indicating engine mode; 1 -> cranking, 0 ->
 run or
 underspeed mode.
- DSFFLG = Decel Fuel Shutoff flag; 1 -> the decel fuel multiplier is not one.
- MFMFLG = MAP sensor failure flag.

- REFFLG = Idle air flow region flag; 1 -> in region.
- TFMFLG = TP sensor failure flag; 1 -> TP failure.

- UNDSP = Run/Underspeed Engine Mode flag; 1 -> Underspeed/Crank, 0 ->
Run
 mode.

FUEL STRATEGY, BACKGROUND PULSEWIDTH DETERMINATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Calibration Constants:

- BFULSW = Calibration switch to force use of background calculation of
 - fuel pulsewidth; 1 -> do all fuel calculations in background, 0
 -> use
 foreground fuel flag logic.
- ENGCYL = Number of cylinders per engine revolution.
- FN348(ECT) = Crank fuel pulsewidth as a function of ECT.
- FN367(VBAT) = Injector offset as a function of VBAT.
- FN387(ECT) = Fuel pulsewidth multiplier as a function of ECT.
- FN387_ALT = Alternative FN387.
- FN1350(CRKPIP_CTR_BG,ACT) = Cranking fuel pulsewidth multiplier
 as a
 function of number of PIPs in crank and air charge temperature.
- FREQ18 = Seconds to clock ticks conversion factor. 1 clock tick =
 3 *
 10E-6 seconds.
- INJOUT = Number of injectors fired by each output port.
- MINPW = Minimum pulsewidth for repeatable fuel delivery.
- NLMT = Overspeed RPM.
- NLMTH = Hysteresis for overspeed RPM.
- NUMOUT = Number of injector output ports.
- OUTINJ = Injector scheme selection switch; 1 -> alternate injections, 2
 - -> simultaneous injections.
- PIPOUT = Number of PIP periods between injector outputs on each injector port.
- TLSNV = Torque limiting pattern for engine RPM/vehicle speed, unitless.
- TLS24D = Torque limiting pattern for 1/2 fuel, double fire, unitless.
- TLS34D = Torque limiting pattern for 3/4 fuel, double fire, unitless.
- TLS24S = Torque limiting pattern for 1/2 fuel single fire.
- TLS34S = Torque limiting pattern for 3/4 fuel single fire.
- TP DECHOKE = TP value above which to de-choke.
- TQMAX1 = Maximum torque before 3/4 fuel.
- TQMAX2 = Maximum torque before 1/2 fuel.

- TQMAXH = Hysteresis for TQMAX1.
- VSLIM = Maximum vehicle speed, MPH.

FUEL STRATEGY, BACKGROUND PULSEWIDTH DETERMINATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- VSLIMH = Hysteresis for maximum vehicle speed, MPH.

OUTPUTS

Registers:

- BASE_EM = See above.
- BASEFF = See above.
- BGFUEL = Background fuel pulsewidth, clock ticks.
- FFULC = The constant that is added in the foreground fuel pulsewidth equation, lb/cyl.
- FFULM = The value that is multiplied by MAP_WORD in the foreground fuel pulsewidth equation (lb/cyl - "Hg).
- FUEL_A = See above.
- FUEL_PIPS = Number of PIPs between injections.
- LAMBSE = See above.
- TLS_NV_FLG = See above.
- PWCF = See above.
- $TLS_24_FLG = See above.$
- TLS 34 FLG = See above.
- TLSPAT = Torque limiting strategy injection pattern.

Bit Flags:

- DISABLE_ADAPT = Adaptive fuel disable flag; 1 -> disable adaptive fuel.
- FFULFG = Foreground fuel flag; 1 -> Compute fuel pulsewidth in foreground
 - using latest computed manifold absolute pressure, 0 -> otherwise use background fuel pulsewidth.

FUEL STRATEGY, BACKGROUND PULSEWIDTH DETERMINATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: FUEL_BG_PW_DET_COM5

CRANK MODE FUEL PULSEWIDTH

ALT_CAL_FLG = 1 ------| fn387 = FN387_ALT(ECT) --- ELSE --fn387 = FN387(ECT)CRKFLG = 1 -----| AND - BGFUEL = FN348(ECT) * TP REL <= TP_DECHOKE -----FN1350(CRKPIP_CTR_BG,ACT) * (MAP/29.875) TFMFLG = 0 -----| (clip to 0.249 sec as a max) (tp sensor o.k.) Goto "CONVERT PULSEWIDTH TO CLOCK TICKS" Exit FUELPW Routine --- ELSE ---CRKFLG = 1 -----BGFUEL = 0(WOT de-choke mode) Goto "CONVERT PULSEWIDTH TO CLOCK TICKS" Exit FUELPW Routine

CALCULATE KAMREF

always ----- Do "KAMREF" Module

CALCULATE TRANSIENT FUEL

always ----- Do "TFCOMP" Module

DETERMINE BASE FUEL FLOW (BASEFF)

BASEFF is used in the foreground fuel calculation and contains base fuel flow, unadjusted for transient fuel, AE fuel, or injector hardware.

AM * KAMREF BASEFF = ------14.64 * LAMBSE

FUEL STRATEGY, BACKGROUND PULSEWIDTH DETERMINATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DETERMINE BASE EM (BASE_EM)

BASE_EM is used in the foreground fuel calculation to adjust the base fuel for EGR mass that may be present at the time.

CALCULATE PULSEWIDTH CONVERSION FACTOR (PWCF)

PWCF converts total fuel required for the engine into an amount required per injection.

PWCF = [1/(N * ENGCYL * A0COR)] * [PIPOUT/(INJOUT * NUMOUT)]

CALCULATE IDLE FUEL MODULATION/DECEL/UNDERSPEED MULTIPLIER (FUEL_A)

always ------ | Do "DECEL FUEL SHUTOFF" Logic | (determine the value of D) | Do "IDLE FUEL MODULATION" Logic | (determine the value of "ISCMOD")

APPLY MINIMUM FUELPW AND LAMBSE CLIPS

FUEL STRATEGY, BACKGROUND PULSEWIDTH DETERMINATION - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

ENGINE AND VEHICLE SPEED LIMITER LOGIC

 $\ensuremath{\mathsf{NOTE}} \colon$ This strategy does not limit based on vehicle speed. It limits based

on propshaft speed as a result of dividing VSLIM by RT_NOVS_KAM, and assumes $\,$

that with a change in axle ratio, the equivalent change is made to the $\ensuremath{\text{VSS}}$

drive gear.

ENGINE TORQUE LIMITING STRATEGY

FUEL STRATEGY, BACKGROUND PULSEWIDTH DETERMINATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TLS_NV_FLG = 1			TLSPAT = TLSNV
PIPOUT/ENGCYL = 2(single fire)			ELSE
TLS_24_FLG = 1	AND ·	-	TLSPAT = TLS24S
PIPOUT/ENGCYL = 2	 		ELSE
TLS_34_FLG = 1	AND ·	-	TLSPAT = TLS34S
PIPOUT/ENGCYL = 1	 	ļ	ELSE
(double fire)	ļ	- İ	TLSPAT = TLS24D
TLS_24_FLG = 1	İ	İ	ELSE
PIPOUT/ENGCYL = 1	AND ·	- İ	TLSPAT = TLS34D
TLS_34_FLG = 1			ELSE
			TLSPAT = 65535

CONVERT PULSEWIDTH TO CLOCK TICKS (can be entered from CRANK MODE FUEL PULSEWIDTH)

CALCULATE NUMBER OF PIPS BETWEEN INJECTIONS (FUEL_PIPS) (used in FUEL SERVICE FOREGROUND routine)

PIPOUT * OUTINJ always ------| FUEL_PIPS = -------

FUEL STRATEGY, BACKGROUND PULSEWIDTH DETERMINATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DETERMINE STATE OF FOREGROUND FUEL FLAG (FFULFG)

BFULSW =	= 1	l			
MFMFLG =	= 1	1			
CRKFLG =	= 1	1	OR	FFULFG = 0 (do background f	[uel)
REFFLG =	= 1	L		ELSE	
				FFULFG = 1 (do foreground f	[uel)

CALCULATE FOREGROUND PARTS OF THE FUEL EQUATION (FFULM, FFULC)

always	FFULM = FUEL_A * [(BASEFF +
	BASE_EM) / MAPWBG] *
	PWCF
	FFULC = FUEL_A * (EFTRFF -
	BASE_EM) * PWCF

CALCULATE INJECTOR DELAY (CIBETA)

always -----| Do "INJECTOR DELAY" Logic

VBAT INJECTOR OFFSET

 ${\rm FN367(VBAT)}$ is compensation for low battery voltage. It is added to the fuel pulsewidth in foreground as the pulse is sent out. The displayed pulsewidth does not include ${\rm FN367}.$

FUEL STRATEGY, FUEL PUMP CONTROL LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FUEL PUMP CONTROL LOGIC

OVERVIEW

EFI vehicles are equipped with an electric fuel pump controlled by the computer via a relay. The fuel pump relay is energized according to the logic below.

DEFINITIONS

INPUTS

Registers:

- TSLPIP = Timer indicating time since last PIP low-to-high transition, sec.

OUTPUTS

Registers:

- PUMP = Bit flag indicating fuel pump mode; 0 -> fuel pump disabled,
1 ->
fuel pump enabled.

PROCESS

STRATEGY MODULE: FUEL PUMP COM1

TSLPIP < 1 SECOND ------ PUMP = 1
--- ELSE --PUMP = 0

FUEL STRATEGY, PPCTR CONTROL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PPCTR CONTROL (Updated during PIP_DATA foreground routine)

OVERVIEW

This counter counts PIPs when not in Decel Fuel Shut-Off. PPCTR is updated at PIP rising edge before injector pulsewidth is calculated and output.

DEFINITIONS

INPUTS

Bit Flags:

- DFSFLG = Decel Fuel Shut-Off flag; 1 -> the decel fuel multiplier is not one.

Calibration Constants:

- PIPNUM = Number of PIPs to remain in Open Loop fuel after DFSO. Prevents

LAMBSE from ramping off rich due to normal transport delay time. Set to

1 to calibrate out.

OUTPUTS

Registers:

- PPCTR = PIP counter; updated at PIP rising edge before injector pulsewidth is calculated and output.

PROCESS

STRATEGY MODULE: FUEL PPCTR COM2

FUEL STRATEGY, FUEL SERVICE ROUTINE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FUEL SERVICE ROUTINE (foreground module FUEL_SERVICE executed on PIP falling edge in CRANK

and PIP rising edge in UNDSP & RUN)

OVERVIEW

The purpose of the Fuel Service module is to issue the on-off signals to the injectors to attain the desired amount of fuel (FUELPW) at the desired time in the engine cycle (TOTAL_DELAY). This module also updates the background calculated fuel pulsewidth to the most current MAP if so desired (Foreground Fuel).

A software switch, OUTINJ, can be calibrated to yield the desired injection scheme:

OUTINJ	=	1	 ALTERNATE IN	JECTIONS
			ELSE	
OUTINJ	=	2	 SIMULTANEOUS	INJECTIONS

FUEL STRATEGY, FUEL SERVICE ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- BGFUEL = Background fuel pulsewidth, clock ticks.
- CRKPIP = Number of PIPs between injector firing.
- ENGCYL = Number of PIPs (or injections) per revolution.
- FFULM = The valve which is multiplied by MAP_WORD in the foreground fuel pulsewidth equation, lb/cyl -- " Hg.
- FUEL_PIPS = Number of PIPs which have occurred between injections.
- FUEL_SUM_TKS = Register for DOL summer, ticks.
- FUELPW = Fuel pulsewidth, displayed in clock ticks.
- IBETA = Fractional part of total injector delay, PIPs.
- INJ_PIP_CNT = Counter which counts the number of PIPs between injections.
- INJCNT = Injector portion of total delay.
- MAP_WORD = Manifold absolute pressure, " Hg.
- N = Engine rpm.
- NUMOUT = Number of injector output ports.
- OUTINJ = Injector scheme selection switch; 1 -> alternate injections, 2
 - -> simultaneous injections.
- SYNCTR = Counter which counts PIP signals until its value equal NUMCYL;
 - always initialized to zero.
- TLSCTR = Torque limiting strategy injection counter.
- TLSPAT = Torque limiting strategy injection pattern.

FUEL STRATEGY, FUEL SERVICE ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Bit Flags:

- CRKFLG = Flag indicating engine mode; 1 -> crank mode, 0 ->
 run or
 underspeed.
- FFULFG = Foreground fuel flag; 1 -> compute fuel pulsewidth in foreground using latest computed manifold absolute pressure, 0 -> otherwise use background fuel pulsewidth.
- FUEL_FINISHED = Flag indicating status of fuel calculations; 1 ->
 fuel
 calculations are complete.
- INJ_BANK = Flag indicating which injector bank is being energized;
 0 ->
 Bank A, 1 -> Bank B.
- NO_SYNC = 1 -> Fuel injectors are not sychronized with the Signature PIP.
- PIPOUT = Number of PIP periods betwen injector outputs on each injector port.
- RUNNING = Engine running VIP enable flag.
- STALL = Flag which indicates Run to Crank transition.
- SYNFLG = Signature PIP correctly identified flag; 1 -> Signature PIP in correct place, 0 -> not Signature PIP or in wrong place.
- TLS_24_FLG = Torque limiting strategy 1/2 fuel flag; 0 -> normal fuel, 1 -> 1/2 fuel.
- TLS_34_FLG = Torque limiting strategy 3/4 fuel flag; 0 -> normal fuel, 1 -> 3/4 fuel.
- TLS NV FLG = Engine RPM/Vehicle speed limiting flag.
- UNDSP = Engine mode flag; 1 -> cranking or underspeed, 0 -> run.

Calibration Constants:

- DT12S = The value, in clock ticks, of the current PIP period.
- FFULC = The constant which is added in the foreground fuel pulsewidth equation, lb/cyl.
- FREQ18 = Seconds to clock ticks conversion factor. 1 clock tick =
 3 *
 10E-6 seconds.

- MINPW = Minimum pulsewidth for repeatable fuel delivery.
- STALLN = Stall rpm: If the first rpm calculated is greater than
 this
 value, then assume a reinit occurred, rpm.

FUEL STRATEGY, FUEL SERVICE ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- FUELPW = See above.
- FUEL_SUM_TKS = See above.
- IBETA = See above.
- INJ_PIP_CNT = See above.
- INJCNT = See above.
- SYNCTR = See above.
- TLS_SHFTR = Foreground scratch register for injection pattern.
- TLSCTR = See above.

Bit Flags:

- FUEL_FINISHED = See above.
- FUEL_SYNC = See above.
- INJ1_PIP = Injector number one PIP occurred, if set to one.
- INJ2_PIP = Injector number two PIP occurred, if set to one.
- NO SYNC = See above.
- STALL = See above.
- SYNFLG = See above.

FUEL STRATEGY, FUEL SERVICE ROUTINE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: FUEL_INJ_OUT_COM6

FUEL SERVICE START

STALL = 1 ----- | STALL = 0 SYNFLG = 0(N < STALLN) SYNCTR = 0 $FUEL_SYNC = 0$ $NO_SYNC = 0$ $INJ_PIP_CNT = 1$ Divide TOTAL_DELAY into an integer portion, INJCNT and a fraction portion, IBETA. TOTAL DELAY = 0 ----- | IBETA = 0 INJCNT = 0SYNCH_VALUE = 0 Do: "FUEL FIRING PIP" --- ELSE ---IBETA = TOTAL DELAY - INJCNT IBETA < 0 ----- IBETA = 0 INJCNT = 0SYNCH VALUE = 0 Do: "Fuel Firing PIP" --- ELSE ---IBETA >= 1.0 ----- | IBETA = IBETA - 1 INJCNT = INJCNT + 1 INJ_PIP_CNT = INJ_PIP_CNT + 1 (number of PIPs between injections) always -----| SYNCH_VALUE = (2 * ENGCYL) -INJCNT SYNCH VALUE <= 0 ----- | IBETA = 0 INJCNT = 0SYNCH_VALUE = 0 Do: "FUEL FIRING PIP"

SYNCH_VALUE = 2 * ENGCYL ----- | SYNCH_VALUE = 0

FUEL STRATEGY, FUEL SERVICE ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FUEL FIRING PIP

Check to see if this is the correct PIP for firing fuel. SYNCH_VALUE is the integer portion of TOTAL_DELAY.

SYNFLG = 1 (PIP in synch)		
SYNCTR = SYNCH_VALUE (proper PIP for fuel firing)	УИ D _	FUEL SYNC = 1
<pre>INJ_BANK = 0 (signature PIP must contain bank A)</pre>		(PIP is synched with fuel)
INJ_PIP_CNT = 1		ELSE
SYNFLG = 1		
SYNCTR = SYNCH_VALUE	AND -	<pre>NO_SYNC = 1 (PIP is synched but fuel is on wrong bank)</pre>
always		Decrement INJ_PIP_CNT
INJ_PIP_CNT > 0		EXIT "FUEL SERVICE" routine (no fuel to be output this PIP)

FUEL STRATEGY, FUEL SERVICE ROUTINE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FOREGROUND FUEL DETERMINATION

FFULFG = 1FFULC	1	<pre>FUELPW = (FFULM * MAP_WORD) + (use foreground fuel calculation) ELSE</pre>
FFULFG = 0		FUELPW = BGFUEL (use background fuel calculation)
MINII	MUM PUI	LSEWIDTH CLIP
DSFFLG = 0 (not in DFSO)	 	
RUNNING = 0 (not in VIP)	 AND	FUELPW = MINPW * FREQ18 (convert to clock ticks)
FUELPW < MINPW (less than minimum pulse)		
FFULFG = 1		ELSE
FUELPW >= 0.250	:	
FFULFG = 1		FUELPW = .25 * FREQ18
FFULFG = 1		<pre>FUELPW = FUELPW * FREQ18 (FREQ18 = 1/3 * 10E-6 ticks per sec)</pre>
always		<pre>INJ_PIP_CNT = FUEL_PIPS (FUEL_PIPS = [PIPOUT * OUTINJ]</pre>
CRKFLG = 1 (crank mode)	 	<pre>INJ_PIP_CNT = CRKPIP (fire every CRKPIP PIPs in crank mode)</pre>
UNDSP = 0 (run mode) NO_SYNC = 1 (fuel not synched)	 AND	Decrement INJ_PIP_CNT (walk injector bank B back 1 PIP at a time)

FUEL STRATEGY, FUEL SERVICE ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FUEL STRATEGY, FUEL SERVICE ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FUEL_REPEAT

This section sets up the fuel output edge, if required.

TLS_NV_FLG = 0	
TLS_24_FLG = 0 AND -	TLSCTR = 1 Do: "SET UP INJECTOR OUTPUT EDGE"
TLS_34_FLG = 0	DO: SET OF INDECTOR COTFOR EDGE ELSE
	 Frof
	Decrement TLSCTR (check next bit in pattern)
TLSCTR = 0 (pattern completed)	TLSCTR = 16 TLS_SHFTR = TLSPAT
Always	Shift TLS_SHFTR 1 bit to the left
carry bit = 1(OK to output fuel this PIP)	Do: "SET UP INJECTOR OUTPUT EDGE"
(on to output ruer this FIF)	ELSE
	 SKIP "SET UP INJECTOR OUTPUT EDGE"
•	but continue through FUEL_REPEAT
SET UP INJEC	FOR OUTPUT EDGE
SET UP INJECTUNDSP = 1	injector edge = (Time of last PIP
	injector edge = (Time of last PIP rising edge)
	injector edge = (Time of last PIP rising edge) Set immediate output request
UNDSP = 1	<pre>injector edge = (Time of last PIP</pre>
UNDSP = 1	injector edge = (Time of last PIP rising edge) Set immediate output request ELSE injector edge = (Time of last PIP rising edge) +
UNDSP = 1	<pre>injector edge = (Time of last PIP</pre>
UNDSP = 1	<pre>injector edge = (Time of last PIP</pre>

FUEL STRATEGY, FUEL SERVICE ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

NUMOUT = 2 (2 outputs)	
FUEL_FINISHED = 0 AND	- FUEL_FINISHED = 1 NO SYNC = 0
CRKFLG = 1	Do: "FUEL_REPEAT"
OUTINJ = 2 OR	
PIPOUT = 2 AND -	
NO_SYNC = 1	EI CE
	ELSE
	NO_SYNC = 0 EXIT "FUEL SERVICE" routine

FUEL STRATEGY, INJECTOR TIMING ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

INJECTOR TIMING ROUTINE (Done during PIP_DATA foreground routine)

OVERVIEW

CRANK or UNDERSPEED mode (UNDSP = 1) OR MHPFD = 0.99

The injector synchronization routine is disabled and SYNFLG is cleared.

RUN mode (UNDSP = 0) AND MHPFD < 0.99

The injector synchronization routine is enabled. The objective of the routine is to identify the cylinder #1 PIP and to alter the injector timing schedule so that Injector Output Port "A", which fires Injector #1, is synchronized with the cylinder #1 PIP.

NOTE: THE USER MUST SET UP THE TWO INJECTOR OUTPUT PORTS SUCH THAT THE CYLINDER #1 INJECTOR IS FIRED BY INJECTOR OUTPUT PORT "A".

A Signature PIP distributor must be used in order to achieve the identification of the cylinder #1 PIP. Refer to the Spark Section for a description of the Signature PIP Distributor.

When a new PIP down-edge-interrupt is received, HFDLTA (the elapsed time since the last up-edge-interrupt was seen) is calculated.

Next, the fractional difference between HFDLTA and the previous upedge to down-edge elapsed time, PHFDLT, is calculated and compared to a critical value, MHPFD, as shown below:

(PHFDLT - HFDLTA) / PHFDLT > MHPFD ?

MHPFD is a calibration constant which is dependent only upon number of cylinders and the value of the Signature PIP duty cycle. The user must calibrate MHPFD to the appropriate value as shown below:

- If 8-cyl & Signature PIP duty cycle <= 35%, then set MHPFD = .20
- If 6-cyl & Signature PIP duty cycle <= 30%, then set MHPFD = .24
- If 4-cyl & Signature PIP duty cycle <= 30%, then set MHPFD = .29

NOTE: IF A SIGNATURE PIP DISTRIBUTOR IS NOT PRESENT, THEN SET MHPFD = .99

When the above comparison is true, then the current PIP is the Signature PIP.

If Injector Output Port "A", which fires Injector #1, is timed from the up-edge of the Signature PIP, then the system is synchronized.

FUEL STRATEGY, INJECTOR TIMING ROUTINE - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

If the system is determined to be unsynchronized, then Injector Output Port

"B" is fired one PIP earlier than normal. This causes the injector firing

schedule to be shifted one PIP per revolution until synchronization is achieved.

A decrementing counter, SYNCTR, that starts at the number of cylinders and counts down to 0, 1 count per PIP, is used to predict when the Signature PIP should be seen again after it is first identified.

Each time that SYNCTR = 0 and the above comparison is true, a synchronization flag, SYNFLG, is set to 1 and SYNCTR is reset to the number of cylinders.

If the above comparison is ever false when SYNCTR = 0, then SYNFLG is set to 0, and the entire synchronization routine of first finding the Signature PIP and then "Stepping" the injection firing schedule to it is repeated.

FUEL STRATEGY, INJECTOR TIMING ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- ENGCYL = Number of PIPs (or injections) per revolution.
- HFDLTA = Most recent PIP first half period.
- MHPFD = Signature PIP difference check value.
- ${\tt MKAY}$ = ${\tt Half}$ period multiplier to correct for average error caused by ${\tt Hall}$

effect sensor in distributor and armature.

- PHFDLT = Previous PIP first half period.
- SIGKAL = Signature PIP half period multiplier initial value = 1.66666 for 30% duty cycle signature PIP = 1.42857 for 35% duty cycle signature PIP.
- SYNCTR = Counter which counts PIP signals until its value is equal to NUMCYL (number of cylinders). SYNCTR is initialized to 0.

Bit Flags:

- SIGPIP = A flag that indicates that signature PIP half period has been identified; 1 -> signature PIP, 0 -> not signature PIP.
- UNDSP = Flag indicating engine mode; 1 -> Cranking or Underspeed,
 0 ->
 Run mode.

OUTPUTS

Registers:

- HFDLTA = See above.
- SYNCTR = See above.

Bit Flags:

- SIGPIP = See above.
- SYNFLG = Signature PIP correctly identified flag; 1 -> Signature PIP in correct place, 0 -> not Signature PIP or in wrong place.

FUEL STRATEGY, INJECTOR TIMING ROUTINE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS STRATEGY MODULE: FUEL_INJ_TIM_COM2 (PHFDLT - HFDLTA) / PHFDLT > MHPFD - | SIGPIP = 1 (this is signature PIP) --- ELSE ---SIGPIP = 0(not signature PIP) SYNCTR <> 0 ----- EXIT (not cylinder #1) --- ELSE ---UNDSP = 1 -----SYNCTR = 2 * ENGCYL(not RUN mode) EXIT (do not attempt to synchronize fuel in CRANK or UNDERSPEED) --- ELSE ---SIGPIP = 1 -----(signature PIP) AND -SYNFLG = 1(in synch OK to SYNCTR = 0 ----synchronize fuel) (cylinder #1) HFDLTA = (HFDLTA * SIGKAL) / MKAY (correct signature PIP to 50% duty cycle) SYNCTR = 2 * ENGCYL EXIT --- ELSE ---SYNFLG = 0(not in synch) SYNCTR = (2 * ENGCYL) - 1EXIT

FUEL STRATEGY, INJECTOR TIMING ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 7

IGNITION TIMING STRATEGY

10/21/2000 LHBH1.TXT

IGNITION TIMING STRATEGY, BASE SPARK - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

BASE SPARK ANGLE CALCULATION (background calculation)

OVERVIEW

The spark advance provided by the Ignition Timing Strategy depends on engine operating mode. The three modes are:

- 1. SELF TEST See SELF TEST Section
- CRANK/UNDERSPEED MODE

The Spark Advance, SAF, is set at 10 deg BTDC. The spark is fired the PIP rising edge signal is received.

3. RUN MODE (includes all throttle modes)

During RUN MODE, the spark strategy can operate in any one of following four distinct states:

- state 0 = Normal spark state. Spark advance is calculated from the
 - spark tables and modifying functions. Normal spark is used as the
 - starting point for the transition ramp into idle spark, and as
 - ending point for the transition out of idle spark.
- state 1 = Entry spark state. The purpose of this state is to provide
 - a smooth transition into feedback spark state. Spark is ramped
 - its last value in normal spark state to the mean operating point
 - feedback spark state. At the same time, the proportional component
 - is increased to its maximum contribution.
- state 2 = Feedback spark state. In this state, there is a mean value
 - for idle spark. A proportional gain term increases spark above the
 - mean value if RPM is too low, and decreases spark below the mean
 - value if RPM is too high. The error term, RPMERR_S, is filtered
 - using time constant TCFBS.
- state 3 = Exit spark state. The purpose of this state is to provide
 - a smooth transition from feedback spark state to normal spark state.
 - Spark is filtered toward the value of normal spark at a rate which is
 - proportional to TAR using filter constant FKEXIT. At high throttle
 - rates, spark moves immediately to the normal value.

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Depending on the value of SPK_STATE, the base spark advance in RUN MODE equals:

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SPARK STATE TRANSITION DIAGRAM (For transitions between normal and feedback spark)

NOTES:

- Boxes represent the 4 states in which the RUN MODE spark can exist.
- The contents of the boxes show the actions which take place $% \left(1\right) =\left(1\right) +\left(1$

state.

- Arrows represent transitions from one state to another (from one box to $% \left(1\right) =\left(1\right) +$
 - another).
- Numbers on the arrows indicate priority of that transition, compared to $\ensuremath{\mathsf{to}}$
 - the priorities of other transitions out of the same state (out of the same box).
- Labels on the arrows represent logic which determines whether of not that
 - particular transition is to take place.

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- ACT = Air Charge Temperature, deg F.
- APT = Throttle Mode; -1 -> Closed Throttle, 0 -> Part Throttle, 1 ->
 Wide
 Open Throttle.
- ATMR1 = Time since leaving CRANK Mode, sec. See TIMER chapter.
- BRDRLN_SPK = Maximum SAF clip in spark states 1 and 2. Calculated using

MBT and OCTANE subtractor terms in SPK_NORM equation, deg BTDC.

- DASPOT = Dashpot contribution to idle air flow, ppm. See Idle Speed
 - Control chapter for calculation. Used here as input to Dashpot Spark multiplier, FN839.
- DNDT_SPK = Filtered rate of change of engine RPM for OSCMOD, RPM/sec.

Filtered using time constant TCNDT SPK.

- DSDRPM = Desired engine idle speed, RPM.
- ECT = Engine Coolant Temperature, deg F.
- EGRACT = Actual EGR Percentage, _%.
- FKEXIT = TAR/TARMAX, unitless. Filter constant for spark ramping
 - function in SPK_STATE 3. FKEXIT is clipped between FKEXIT_MAX as a maximum, and FKEXIT_MIN as a minimum.
- IDLTMR = Time since entering Idle mode, sec. See TIMER Chapter.
- ISCFLG = ISC mode indicator; -1 -> Dashpot Mode; 0 -> Dashpot Preposition
 - Mode; 1 -> Closed Loop RPM Control Mode; 2 -> Closed Loop RPM
 Control
 (Lock-out entry to RPM control).
- KSPARK = Gain term for feedback spark, (deg/RPM). There are 4 values:
 - KSPKDO, KSPKDU, KSPKNO and KSPKNU for drive/speed high, drive/speed low, neutral/speed high, and neutral/speed low, respectively.
- MAP = Manifold Absolute Pressure, "Hg.
- N = Engine Speed, RPM.
- N_BYTE = Engine Speed, rpm; resolution is 16 RPM.
- OSCMOD = Oscillation mode spark multiplier, unitless.
- OSCTMR = OSCMOD spark delay timer, sec. See TIMERS chapter.

- RPMERR = DSDRPM N. Idle speed error term, RPM.
- $RPMERR_S = RPM$ error term for feedback spark. Time dependent rolling

average filter of the instantaneous RPM error, RPMERR, using time constant TCFBS.

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- SAF = Final Spark Advance, deg BTDC. Method of calculation depends on SPK_STATE.
- SPKAD(n) = Spark advance adjustment term for knock for cylinder "n".
 See
 KNOCK Strategy.
- SPK_ENTRY = Spark advance used when in SPK_STATE "1" to ramp from normal spark to feedback spark, deg BTDC.
- SPK_EXIT = Spark advance used when in SPK_STATE "3" to ramp from feedback spark to normal spark, deg BTDC.
- SPK_FBS = Spark advance used in SPK_STATE "2" to do feedback spark control, deg BTDC.
- SPK_IDLE = Mean operating point for spark in feedback spark state,
 deg
 BTDC. Equals SPKIDR in drive, or SPKINU FN180 in neutral.
- SPK_NORM = Normal Mode Spark value, deg BTDC.
- SPK_RAMP = Time dependent rolling average filter of spark advance,
 deg
 BTDC. Uses SPK_IDLE as the "new" value and time constant TCRAMP.
 - Used in calculating SPK ENTRY in SPK STATE "1" to ramp spark from the
 - last
 - value in the previous state to the spark for feedback spark mode.
- SPK_STATE = Spark State indicator; 0 -> Normal spark, 1 -> entry spark, 2
 - -> feedback spark, 3 -> exit spark.
- SPKTMR = Spark feedback entry transition timer, sec. Used to pace
 the
 transition into feedback spark control. Set to 0 on entry into
 SPK_STATE
 "1". Otherwise, counts up.
- TAPBAR = A time and MAP dependent rolling average of TP, counts.
- TAR = Throttle angle rate of change, deg/sec.
- TCSTRT = ECT at start-up, deg F.
- TIPRET = Tip-in Spark retard term, deg BTDC. See KNOCK section.
- TP = Throttle Position, counts.
- TP_REL = Relative Throttle Position, counts. TP RATCH.
- TPDLBR = Filtered change of throttle position, counts. Time constant is TCTPDL.
- TRANS_T = SPKTMR/STTIM, unitless. Transition pacer used to ramp in the effect of feedback spark during SPK_STATE "1". Set to 0 on

transition into state 1, and clipped to 1.0 maximum. Feedback spark cannot be entered until TRANS_T reaches ENTRY_T.

- VSBAR = Filtered vehicle speed, MPH.

Bit Flags:

- ALT_CAL_FLG = Flag to indicate use of alternate calibration.

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- CSSFLG = Cold start spark flag: 0 -> no cold start spark required;
 1 ->
 cold start spark required.
- DNDSUP = Delayed Neutral/Drive state flag. Set equal to NDSFLG when

delay is complete; 1 -> drive, 0 -> neutral. See SYSTEM
EQUATIONS
chapter.

- MPGFLG = Flag that indicates state of Fuel Economy mode: 1 -> in Fuel
 - Economy mode; 0 -> Not in Fuel Economy mode.
- NEWSA = Flag which indicates that a new spark advance calculation is required; 1 = new PIP received since last spark calculation.
- PTSCR = Part throttle since crank mode flag: 0 -> driver has not tipped

in since start; 1 -> driver tipped in, kick down desired RPM.

- RUNUP_FLG = Flag indicating if initial runup is complete; 0 -> runup
 not
 complete, 1 -> runup complete.
- SA10FG = Flag indicating if spark advance should echo PIP in RUN mode; 0
 - -> do RUN mode spark advance logic, 1 -> Set SAF to 10 deg. BTDC and fire spark on rising edge of PIP.
- UNDSP = Flag indicating Engine mode; 0 -> RUN mode, 1 ->
 UNDERSPEED or
 CRANK mode.
- V_MODE_SETUP = VIP throttle adjust mode enabled flag; 1 -> enabled.

Calibration Constants:

- CSHIGH = Maximum TCSTRT for cold start spark, deg F.
- CSLOW = Minimum TCSTRT for cold start spark, deg F.
- CSSPRK = Cold start spark multiplier, unitless.
- CSSTIM = Maximum time to use cold start spark, sec.
- DELTA_SPK = Deadband to determine when spark transitions are complete, deg BTDC.
- DFTRPM = Maximum engine rpm to issue spark on the rising edge of PIP when at WOT, RPM.
- DFTRPH = Hystersis term for DFTRPM, RPM.
- DRBASE = Base desired engine idle speed in drive, RPM.
- DRBASE_ALT = Alternative Cal DRBASE.
- ENGCYL = Number of PIP up edges per revolution; (number of

cylinders/2).

- ENTRY_T = Time threshold for entry into feedback spark, sec.

- FBS_MIN = Minimum clip on SAF in states 1 and 2, deg BTDC.
- FBS_MIN_ALT = Alternative Cal FBS_MIN.

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- FKEXIT_MAX = Maximum clip for FKEXIT, SPK_EXIT filter constant, unitless.
- FKEXIT_MIN = Minimum clip for FKEXIT, SPK_EXIT filter constant, unitless.
- FN070(N) = RPM normalizing function for FN1120, FN1121, FN1122, FN1126,

FN1127 and FN1129.

- FN071(MAP) = MAP normalizing function for FN1120, FN1121, FN1122, FN1126,

FN1127 and FN1129.

- FN091(TEMP_FRAC) = TEMP_FRAC normalizing function for FN1128, where

TEMP_FRAC = FRCCTM * ACT + (1 - FRCCTM) * ECT.

- FN092(TP TAPBAR) = TP TAPBAR normalizing function for FN1128.
- FN151(ECT) = Octane Table (FN1122) multiplier vs. ECT.
- FN152(ACT) = Octane Table (FN1122) multiplier vs. ACT.
- FN153(N) = WOT Spark Adder for Fuel Enrichment (APT = 1) vs engine speed.
- FN180(IDLTMR) = Spark reduction vs. time at idle (IDLTMR). Used as
 part
 of the inspection/maintenance strategy.
- FN182(DNDT_SPK) = Oscillation mode spark adder vs rate of change of engine speed.
- FN183(VSBAR) = Multiplier on oscillation mode spark adder (FN182) vs VSBAR.
- ${\tt FN839(DASPOT)}$ = Decel spark multiplier as a function of dashpot air flow.
- FN1120(N,MAP) = Base MBT Spark Table, deg BTDC.
- FN1121(N,MAP) = Spark Advance Adder Table for EGR, deg BTDC per 1% EGR.
- FN1122(N,MAP) = Spark Advance Reduction Table for Octane, deg BTDC.
- FN1126(N,MAP) = Base spark table for MPG mode, deg BTDC.
- FN1127(N,MAP) = Spark Advance Adder Table for Cold Temperatures
 and
 tip-ins.
- FN1128 = Multiplier for FN1127 vs TEMP_FRAC and TP TAPBAR
- FN1129(N,MAP) = Spark Advance Adder Table for EGR in MPG mode, deg BTDC per 1_% EGR.
- FN1150 = Spark octane multiplier of FN1122(N,MAP); inputs are FN051(ECT)

and FN052(ACT).

- FN1150_ALT = Alternate FN1150.

- FRCCTM = ACT/ECT proportioning factor for temperature input to ${\tt FN1128}$.

- KS1 = Spark Adder, deg BTDC.

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- KSPKDO = Feedback spark gain Drive/speed high, deg BTDC/RPM.
- KSPKDU = Feedback spark gain Drive/speed low, deg BTDC/RPM.
- KSPKNO = Feedback spark gain Neutral/speed high, deg BTDC/RPM.
- KSPKNU = Feedback spark gain Neutral/speed low, deg BTDC/RPM.
- MINMPH = Minimum speed to enter Closed Loop RPM control and $% \left(1\right) =\left(1\right) +\left(1$

spark control, MPH. .. Typical value - 3 MPH.

- NUBASE = Base desired engine idle speed in neutral, RPM.
- NUBASE_ALT = Alternative Cal NUBASE.
- OSCDLY = OSCMOD disable time after large negative change in TP, secs.
- SPKCTL = Maximum difference between DSDRPM and DRBASE/NUBASE to enable spark feedback, RPM.
- SPKCTL ALT = Alternative Cal SPKCTL.
- SPKIDR = Nominal feedback spark operating point in drive, deg BTDC.
- SPKIDR ALT = Alternative Cal SPKIDR.
- SPKINU = Nominal feedback spark operating point in neutral, deg BTDC.
- SPKINU_ALT = Alternative Cal SPKINU.
- SPK_RUNUP = Value used for SAF after entering RUN mode and before initial

runup is complete, deg BTDC.

SPLCLP = Lower spark clip for total spark advance (SAFTOT, including

knock and TIPRET terms), deg BTDC.

- SPKLIM = Percent of "crank degrees between PIPs" used to determine the
 - maximum spark advance increase allowed between consecutive spark events.
 - Do NOT calibrate higher than 0.06 without Ignition Department approval.
 - $\mbox{\tt Maximum}$ spark advance increase between events varies with the number of
 - cylinders; Maximum increase = SPKLIM * 360/ENGCYL.

```
For 4 cyl; 0.06 * 360/2 = 10.8 degrees
6 cyl; 0.06 * 360/3 = 7.2 degrees
8 cyl; 0.06 * 360/4 = 5.4 degrees
```

- SPUCLP = Upper spark clip for total spark advance (SAFTOT, including
 - knock and TIPRET terms), deg BTDC.
- STTIM = Time after transition into SPK_STATE "1" when TRANS_T will equal

1.0, sec. Controls rate at which feedback spark is included in $\ensuremath{\mathtt{SPK_ENTRY}}.$

- TARMAX = Maximum TAR to ramp into normal spark. deg/sec. Higher
TARs
 will cause SAF to jump to SPK_NORM.

IGNITION TIMING STRATEGY, BASE SPARK - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- TCFBS = Time constant for RPMERR_S rolling average filter, sec.
- TCRAMP = Time constant for SPK_RAMP rolling average filter, sec.
- TPDLMX = Maximum filtered TP change for oscillation mode spark, counts.
- TPOBP2 = Maximum TP_REL for oscillation mode spark, counts.
- TPOH2 = Hysteresis for TPOBP2, counts.
- Y = Calibration development spark multiplier, unitless.
- VSOMAX = Maximum VSBAR for oscillation mode spark, MPH.
- VSOMXH = Hysteresis for VSOMAX, MPH.

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- BRDRLN_SPK = See above.
- FKEXIT = See above.
- KSPARK = See above.
- OSCMOD = See above.
- SAF = See above.
- SAFTOT = Total spark advance, including knock and tip-in retard, deg
 - BTDC. SAFTOT = SAF + SPKAD(n) + TIPRET
- SPK_ENTRY = See above.
- SPK_EXIT = See above.
- SPK_FBS = See above.
- SPK_IDLE = See above.
- SPK_NORM = See above.
- SPK_RAMP = See above.
- SPK_STATE = See above.
- SPKTMR = See above.
- TRANS_T = See above.

Bit Flags:

- CSSFLG = See above.
- NEWSA = See above.
- SA10FG = See above.

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: SPARK_BASE_COM2

NORMAL SPARK CALCULATION (SPK_NORM) (All spark states)

SPK_NORM refers to the value of spark advance determined from the spark tables and appropriate modifying functions as shown below. SPK_NORM is the value used for SAF when SPK_STATE = 0. However, SPK_NORM is always calculated, even if SPK_STATE is not 0, to provide the correct value to the SPK_EXIT calculation when leaving feedback spark.

APT = 1	L G2107G 1
AND - S Q N_BYTE < DFTRPM	- SA10FG = 1
APT < 1	ELSE
N_BYTE < DFTRPM	SA10FG = 0
UNDSP = 1	
SA10FG = 1	- SAF = 10 deg BTDC EXIT Base Spark Angle
	ELSE
NEWSA = 0(previous value not used yet) Logic	Do NOT update SAF EXIT Base Spark Angle
	ELSE
NEWSA = 1	Continue with Base Spark Angle Logic Calculate new SAF based
	on SPK STATE
	· —

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

```
ALT_CAL_FLG = 1 ------ fn1150 =
FN1150_ALT(ECT,ACT)
                                           --- ELSE ---
                                           fn1150 = FN1150(ECT,ACT)
SPK_NORM = \{(FN1120 \text{ or } FN1126\}
                                              MBT SPARK
                                               COLD TEMP and TIP IN
           + FN1127 * FN1128
          ADDER
          + (FN1121 or FN1129) * EGRACT
                                              EGR ADDER
           - FN1122 * fn1150(ECT,ACT)
                                              OCTANE SUBTR.
          [+ FN153]
                                              WOT ADDER
          [+ OSCMOD])
                                              OSCILLATION SPARK
          ADDER
          [* FN839]
                                              DASHPOT MULT.
          [* CSSPRK]
                                               COLD START MULT.
          * Y}
                                               DEVELOPMENT MULT.
           + KS1
                                               DEVELOPMENT ADDER.
MPGFLG = 0 ----- | Use FN1120(N, MAP) and
FN1121(N,MAP)
(not MPG mode)
                                     --- ELSE ---
                                    Use FN1126(N,MAP) and
                                    FN1129(N,MAP)
NOTE: Terms enclosed by "[ ]" are optional. See following
logics to
determine their usage.
                     WIDE OPEN THROTTLE SPARK ADDER
APT = 1 -----| Include FN153(N) in SPK_NORM
 (WOT mode)
                                   --- ELSE ---
                                   Do NOT include FN153
```

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

LIGHT LOAD RPM OSCILLATION ADDER

Spark advance can be modulated by to reduce engine RPM oscillations under light load conditions as follows:

TP_REL <= TPOBP2 S Q (Near closed throttle)	
TP_REL > TPOBP2 + TPOH2 C	
VSBAR <= VSOMAX S Q AND - (Not at high speed) FN183(VSBAR)	Include OSCMOD = FN182(DNDT_SPK) *
VSBAR > VSOMAX + VSOMXH C	in SPK_NORM
	ELSE
TPDLBR <= TPDLMX	
(Not a quick tip in)	Do NOT include OSCMOD in SPK_NORM
OSCTMR >= OSCDLY (Gear change delay)	
ISCFLG <= 0 (Dashpot or preposition)	

DASHPOT SPARK MULTIPLIER

ISCFLG = -1 SPK NORM	Include FN839(DASPOT) in
	1
(Dashpot mode)	
	ELSE
	Do NOT include FN839

COLD START SPARK FLAG AND MULTIPLIER

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MISCELLANEOUS SPARK CALCULATIONS

TRANS_T CALCULATION

Always		TRANS	_T =	SPK'	TMR	/	ST'	TIM	1
		Clip	TRA	NS_T	to	1.	0	as	а
	Ţ	maximum							

SPK_IDLE SELECT LOGIC

DNDSUP = 1		
!	AND -	SPK_IDLE = SPKIDR_ALT
		ELSE
DNDSUP = 1		SPK_IDLE = SPKIDR
		ELSE
V_MODE_SETUP = 1		SPK_IDLE = SPKINU
		ELSE
ALT_CAL_FLG = 1		SPK_IDLE = SPKINU_ALT - FN180(IDLTMR)
		ELSE
		SPK_IDLE = SPKINU - FN180(IDLTMR)

IGNITION TIMING STRATEGY, BASE SPARK - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

KSPARK SELECT LOGIC

<pre>V_MODE_SETUP = 1</pre>	KSPARK = 0
-	ELSE
DNDSUP = 1 AND	 - KSPARK = KSPKDO
RPMERR_S < 0	
DNDSUP = 1	ELSE
AND	- KSPARK = KSPKDU
RPMERR_S >= 0	(Drive, speed low)
	ELSE
DNDSUP = 0	 - KSPARK = KSPKNO
RPMERR_S < 0	(Neutral, speed high)
	ELSE
DNDSUP = 0	 - KSPARK = KSPKNU
RPMERR_S >= 0	(Neutral, speed low)

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ENTRY LOGIC -- ENTRY INTO IDLE SPARK

	>= 1 control or lockout)							
ALT_CAI	_FLG = 1				 			
DNDSUP	= 1	AND	-		 			
	- DRBASE_ALT SPKCTL_ALT				 			
DNDSUP	= 1	AND	_		 			
	- DRBASE <= SPKCTL Idle RPM)			OR	 AND	ENTRY	CONDITIONS	TRUE
DNDSUP	= 0			 	 	EI	LSE	
DSDRPM TRUE	- NUBASE <= SPKCTL	AND -				ENTRY	CONDITIONS	NOT
ALT_CAI	_FLG =1							
DNDSUP	= 0	AND	-		 			
	- NUBASE_ALT SPKCTL_ALT				 			
	= 0							

EXIT LOGIC -- EXIT FROM IDLE SPARK

ENTRY COMPLETE LOGIC -- CONTINUE WITH FEEDBACK SPARK

```
| SPK_RAMP - SPK_IDLE | <= DELTA_SPK --- |
(Spark ramp to idle done) | AND - | ENTRY COMPLETE

TRANS_T >= ENTRY_T ------- | --- ELSE --- |
(Transition time complete) | ENTRY NOT COMPLETE
```

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EXIT COMPLETE LOGIC -- CONTINUE WITH NORMAL SPARK

|SPK_NORM - SAF| <= DELTA_SPK ------ | EXIT COMPLETE (Spark has filtered to normal value) | --- ELSE --- | EXIT NOT COMPLETE

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SPARK STATE DETERMINATION LOGIC

SPK_STATE = 0 (Current state is 0)	AND -	(Do fixed runup spark) SPK_STATE = 0 SAF = SPK_RUNUP
RUNUP_FLG = 0 (Initial runup not complete)		NEWSA = 0
SPK_STATE = 0 (Current state is 0) OR		ELSE (Transition to entry
SPK_STATE = 3 (Current state is 3) ENTRY CONDITIONS TRUE (See entry logic)		SPK_STATE = 1 SPKTMR = 0 TRANS_T = 0 SPK_RAMP = SAF DO SPK_ENTRY calculations SAF = SPK_ENTRY NEWSA = 0
SPK_STATE = 0 (Current state = 0) SPK_STATE = 3 AND -	OR	ELSE (Do normal spark) SPK_STATE = 0 SAF = SPK_NORM NEWSA = 0
EXIT COMPLETE		ELSE
SPK_STATE = 2 AND - Current state is 2) EXIT CONDITIONS TRUE (See exit logic)		Do SPK_EXIT calculations
SPK_STATE = 3 (Current state is 3)		SAF = SPK_EXIT NEWSA = 0 ELSE

(continued on next page)

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

<pre>SPK_STATE = 1 (Current state is 1)</pre>	 AND	
ENTRY COMPLETE (See entry complete logic)		(Do feedback spark) SPK_STATE = 2 Do PK_FBS calculations SAF = SPK FBS
<pre>SPK_STATE = 2 (Current state is 2)</pre>		NEWSA = 0
		ELSE
<pre>SPK_STATE = 1 (Current state is 1)</pre>		<pre>(Continue entry spark) SPK_STATE = 1 Do SPK ENTRY calculations</pre>
(carrent brace 15 1)		SAF = SPK_ENTRY NEWSA = 0

10/21/2000 LHBH1.TXT

IGNITION TIMING STRATEGY, BASE SPARK - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

ENTRY SPARK CALCULATION (SPK_ENTRY) (state 1)

The entry spark calculation is performed in entry spark state (SPK STATE =

The purpose of entry spark state is to perform a smooth transition 1). into

feedback spark. This is accomplished by ramping spark from the last value in

the previous state to the mean value in feedback spark state. This 'ramp' is

referred to as SPK_RAMP. Superimposed on SPK_RAMP is the feedback spark

term, KSPARK * RPMERR_S. This term is phased in by a multiplier, TRANS T,

which starts at 0 when the entry state is first entered, and increases to 1.0

at a calibratable rate (the parameter, STTIM defines when TRANS_T reaches

1.0). Therefore, at the same time SPK_RAMP is approaching SPK_IDLE, the

feedback component increases from 0 to its maximum contribution (TRANS T =

1.0). SPK_ENTRY is clipped between FBS_MIN as a minimum and BRDRLN_SPK as a

The minimum clip is done last, so that if BRDRLN SPK is less maximum.

FBS_MIN, SPK_ENTRY will equal FBS_MIN.

SPK ENTRY = SPK RAMP + TRANS T * KSPARK * RPMERR S

maximum clip (done first): SPK_ENTRY <= BRDRLN_SPK</pre> clips: minimum clip (done last): SPK_ENTRY >= FBS_MIN (or FBS MIN ALT if ALT CAL FLG = 1)

where,

- BRDRLN_SPK = FN1120(N,MAP) FN1122(N,MAP) * FN1150(ECT,ACT)
- KSPARK = KSPKDO, KSPKDU, KSPKNO or KSPKNU
- RPMERR_S = ROLAV(RPMERR, TCFBS)
- SPK IDLE = SPKIDR or (SPKINU FN180)
- SPK_RAMP = ROLAV(SPK_IDLE, TCRAMP)
 - SPK RAMP is initialized to the previous value of SAF on the

transition into state 1.

- The ramp is considered complete when SPK_RAMP is within DELTA SPK of SPK_IDLE, and SPK_RAMP is set equal to SPK_IDLE.
- | SPK_RAMP SPK_IDLE | <= DELTA_SPK ----- | SPK_RAMP = SPK IDLE

- TRANS_T = SPKTMR/STTIM

SPKTMR and TRANS_T are set to zero on the transition into state 1.

Otherwise, SPKTMR always counts up, and TRANS_T is clipped to 1.0 maximum.

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The feedback spark calculation is performed in feedback spark state (SPK_STATE = 2). Spark is increased or decreased about a mean value based on a filtered RPM error term (RPMERR_S). Note the equation for SPK_FBS is identical to SPK_ENTRY with TRANS_T = 1.0, and SPK_RAMP = SPK_IDLE. The feedback spark gain has four values: KSPKDO, KSPKDU, KSPKNO and KSPKNU for drive/neutral and overspeed/underspeed, based on DNDSUP and RPMERR_S.

SPK_FBS is clipped between FBS_MIN as a minimum and BRDRLN_SPK as a maximum.

The minimum clip is done last, so that if BRDRLN_SPK is less than FBS_MIN,

SPK_FBS will equal FBS_MIN. SPK_IDLE has values for both neutral and

SPK_FBS = SPK_IDLE + KSPARK * RPMERR_S

where,

drive.

- BRDRLN_SPK = FN1120(N,MAP) FN1122(N,MAP) * FN1150(ECT,ACT)
- KSPARK = KSPKDO, KSPKDU, KSPKNO or KSPKNU
- RPMERR_S = ROLAV(RPMERR, TCFBS)
- SPK_IDLE = SPKIDR or (SPKINU FN180)

NOTE: KSPARK is set to zero when in VIP throttle adjust mode; $V_MODE_SETUP = 1$

IGNITION TIMING STRATEGY, BASE SPARK - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EXIT SPARK CALCULATION (SPK_EXIT) (state 3)

The exit spark calculation is performed in exit spark state (SPK_STATE = 3).

The purpose of exit spark is to perform a smooth transition to normal spark

state. This is accomplished by filtering spark from the last value of SAF in

the previous state to the present value of normal spark. Normal spark is

calculated in all spark states so it will be available as an input to the

exit spark equation.

The exit rate is controlled by the filter constant, FKEXIT, which is a

function of TAR. Higher TARs result in faster filter constants. This allows

the exit rate to vary with the type of tip-in which $\,$ occurs - fast tip-ins

have a filter constant of 1.0, so $\ensuremath{\mathtt{SPK_EXIT}}$ goes immediately to $\ensuremath{\mathtt{SPK_NORM}}.$ The

relationship between the filter constant and TAR is calibratable.

SPK_EXIT = (1 - FKEXIT) * SAF + FKEXIT * SPK_NORM

where,

- FKEXIT = TAR/TARMAX

clips: FKEXIT <= FKEXIT_MAX
 FKEXIT >= FKEXIT_MIN

- SAF = Spark advance from the previous calculation. On the transition $\ \ \,$

into state 3, it will be the last value from the previous state.

Otherwise, it will be the previous value of SPK_EXIT.

IGNITION TIMING STRATEGY, BASE SPARK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

NOTES:

- The register SAF does not include the output of the individual cylinder

knock strategy. The knock registers, SPKAD(n) and TIPRET, may be

displayed separately and are added to SAF by the \mbox{EOS} when the waiting

time is calculated. SAFTOT does include SPKAD(n) and TIPRET. However,

since SAFTOT is updated on PIP interupts, it may NOT display every update

if the background loop time is longer than a PIP period. Refer to the $\,$

knock strategy documentation within this chapter for additional

information on SPKAD and TIPRET.

- The final value of spark advance, SAFTOT, is limited to the range:

SPLCLP <= SAFTOT <= SPUCLP

where,

SAFTOT = SAF + SPKAD(n) + TIPRET

SPLCLP is the lower spark clip. SPUCLP is the upper spark clip. SPLCLP

and SPUCLP are calibrated to match the rotor registry of the distributor.

Intermediate spark calculations and results are maintained in an $% \left(1\right) =\left(1\right) +\left$

unlimited fashion.

- The software allows the lower spark clip, $\ensuremath{\mathsf{SPLCLP}}$, to be calibrated to

values down to -10 deg (10 deg ATC). This feature has been initially

provided for the sole use of the Ignition Department in performing rotor

registry tests. Unless prior approval has been received from the

Ignition Department, Engine Systems engineers are hereby requested to

refrain from calibrating SPLCLP to a value which is less than the \min

value of the "Spark Range" which is shown on the Rotor Registry page of

this Chapter. Otherwise, such a calibration may result in $\min/\operatorname{crossfire}$.

- Due to physical time constraints for arming the coil and firing the next

spark, the largest spark advance increase allowed between consecutive

spark events is limited to SPKLIM*360/ENGCYL degrees. There is no limit

on the amount of spark advance decrease allowed on consecutive spark

events. NOTE: SPKLIM is set to 0.06 and should not be increased without $\ensuremath{\text{NOTE}}$

the prior approval of the Ignition Department. This clip is performed

just prior to issuing the the spark, and is not reflected in

SAF or SAFTOT. Therefore, the actual delivered spark may not be as advanced as indicated by SAF or SAFTOT.

new actual spark <= previous actual spark + SPKLIM * 360/ENGCYL</pre>

327

IGNITION TIMING STRATEGY, DWLBSE/DWLCOR CALCULATION - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

DWLBSE/DWLCOR CALCULATION

OVERVIEW

This strategy is designed to work with both Thick Film Ignition -Improved Computer Control Dwell (TFI-ICCD)(IGN_TYPE = 1) and Low Data Rate

Distributorless Ignition System (LDR-DIS)(LGN TYPE = 2) ignition systems.

When in operation, this strategy will provide control of the ignition coil

charge time as well as the correct positioning of the ignition spark

events being commanded by the EEC-IV module. Because the both requirement

remains that spark timing is paramount, the positioning of the SPOUT

could not be changed. The difference between the two ignition systems,

effects the strategy, is the type of signal available from the ignition

module on the Ignition Diagnostic Monitor (IDM) input to the EEC computer.

For the TFI-ICCD module, the signal provides information indicating when

coil starts to charge and when it reaches current limit. The LDR-DIS module

IDM signal is a digital signal that indicates coil start to charge and

The strategy can use the current limit information in discharge. the IDM

signal from the TFI-ICCD module to reduce the dwell so the ignition system

operates at near zero excess dwell at low engine speeds. Because the current

limit information is not available from the LDR-DIS module, the strategy will

not be able to reduce the dwell from the base dwell value and will have to

operate with some excess dwell at all times.

The Computer Controlled Dwell strategy is designed to provide a function

determines when both the dwell edge of SPOUT and the spark edge of SPOUT can

be positioned within the time limits after the PIP down edge and the

rotor registry. In those instances when the dwell edge can not be positioned

after the PIP down edge, the dwell strategy provides PIP acceleration and

factors to the dwell calculation. spark change Under steady state

conditions, this will produce some excess dwell, but will protect for

of acceleration rates of up to 8000 RPM/second and/or spark changes of up to

6 percent of a PIP period.

During CRANK or UNDERSPEED engine modes, the strategy schedules the

dwell signal at the down edge of PIP due to the highly variable acceleration rates of the engine and the low data rate of the incoming PIP signal. For LDR-DIS systems, to protect the ignition module, the SPOUT signal is held high to prevent the coil from charging, when the engine stalls or during power-up before the first PIP edge is detected.

IGNITION TIMING STRATEGY, DWLBSE/DWLCOR CALCULATION - LHBH0 PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

Falling edge dwell mode: (DWLELD = 1) Calculations: |<-- desired spark position
-->| |<-- DWLIDM
-->| |<-- excess dwell
-->| |<-- DWELL
max. spark advance permitted -->| |<-- (2 * SPKLIM *HFDLTA)
-->| | |<-- NEXT_SPOUT_ADVANCED
| |<-- SPOUT_ICCD_DELTA Schedule SPOUT edge from vertical bar using information computed on down edge of PIP: ---->|-->| PIP SPOUT COIL CURRENT IDM as seen at CPU

IDM at Corporate Connector

IGNITION TIMING STRATEGY, DWLBSE/DWLCOR CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Rising edge dwell mode: (DWLELD = 0)

Dwell is calculated on the up edge of PIP but is not used until after the up-edge of SPOUT has been scheduled. Up-edge of SPOUT is calculated and queued

from the down of edge of PIP if there is sufficient time.

Calculations:

```
| <-- desired spark position | <-- excess dwell | <-- DWELL | max. spark advance permitted --> | <-- (2 * SPKLIM *HFDLTA) | <-- NEXT_SPOUT_ADVANCED | <--> | <-- SPOUT_ICCD_DELTA | <-- SPOUT_LOW_DELTA | <-- dwell_extra
```

Schedule SPOUT edge from vertical bar using spark information computed on down edge

of PIP and dwell information computed on previous up edge of PIP:

IGNITION TIMING STRATEGY, DWLBSE/DWLCOR CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DWLBSE/DWLCOR_CALCULATION (background calculation)

DEFINITIONS

INPUTS

Registers:

- DWELL = Value for system required dwell.
- DWLBSE = Dwell required for particular battery voltage.
- DWLCOR = Interactive correction to DWLBSE.
- DWLIDM = Measured Coil Rise Time.
- VBAT = Battery voltage.

Bit Flags:

- DWLELD = Dwell edge leads spark edge 1 <- falling edge dwell.
- NEW_DWLIDM = Flag indicating when new excess dwell can be computed.
- UNDSP = Flag indicating Engine mode; 0 -> RUN mode, 1 ->
 UNDERSPEED or
 CRANK mode.

Non-Calibratable:

- FREQ18 = Seconds to clock ticks conversion factor. 1 clock tick =
3 *
10E-6 seconds.

Calibration Constants:

- DWELLA = Base Dwell additive element.
- DWELLM = Base Dwell multiplicative element.
- DWLMIN = Minimum dwell allowed.
- DWL_XS_MIN = Minimum excess dwell in falling edge dwell.
- ENGCYL = Number of PIP up edges per revolution; (number of cylinders/2).
- IGN_TYPE = Indicator of ignition type (0 = TFI, 1 = TFI_ICCD,
 2 =
 LDR-DIS).
- PACOFF = Offset in RPM-PIP accel bata function.
- PACPER = PIP period time switchpoint for change between PIPACL equations.
- VBAT_DWELL = Minimum battery voltage to use IDM for dwell correction.
- VBAT_DWL_HYS = Battery voltage to enable the use of IDM for $\ensuremath{\mathsf{dwell}}$

correction.

IGNITION TIMING STRATEGY, DWLBSE/DWLCOR CALCULATION - LHBH0 PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- DWELL = Value for system required dwell.
- DWLBSE = Dwell required for particular battery voltage.
- DWLCOR = Interactive correction to DWLBSE.
- POFFENG = Foreground value of PACOFF divided by ENGCYL.
- PPERENG = Foreground value of PACPER divided by ENGCYL.

Bit Flags:

- CCD_HP = Flag indicating presence of computer controlled dwell hardware.
- NEW_DWLIDM = Flag indicating when new excess dwell can be computed.

PROCESS

1. Determine if there is hardware present that will support computer controlled dwell.

2. When CCD hardware is present, the amount of dwell required to charge a coil is related to the battery voltage and the values used for DWELLM and DWELLA are calibrated by the Ignition Department to include the worst case coil. The calculation of base dwell is:

3. Calculate values for use in the maximum PIP acceleration calculation that is performed in the foreground:

```
PPERENG = PACPER / ENGCYL
POFFENG = PACOFF / ENGCYL
```

IGNITION TIMING STRATEGY, DWLBSE/DWLCOR CALCULATION - LHBH0 PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

4. The base dwell will be larger than the coil requires in most cases

the TFI-ICCD system, can be reduced by a correction that uses the

DWLBSE/DWLCOR_CALCULATION (continued)

information supplied by the Ignition Diagnostic signal is not present to allow the cadwell correction is not altered. The dwell correction are determined by the log	alculation calculati	of a new DWLIDM, the base
UNDSP = 1 (Not in run mode) IGN_TYPE = 2 (LDR-DIS hardware) VBAT < VBAT_DWELL S Q	 	<pre>DWLCOR = 0 DWELL = DWLBSE (Initial dwell) NEW_DWLIDM = 0</pre>
<pre>(Low battery voltage) VBAT > VBAT_DWL_HYS C (Slightly higher voltage) IGN_TYPE = 1</pre>		ELSE
<pre>DWLELD = 1 (Falling edge dwell mode) UNDSP = 0 (In run mode)</pre>	 AND 	DWLCOR = DWLCOR + [(DWELL - DWLIDM) / 2] DWELL = DWLBSE - DWLCOR
<pre>DWLIDM < (DWELL - DWL_XS_MIN) (Too much excess dwell) NEW_DWLIDM = 1 (New dwell error available)</pre>		NEW_DWLIDM = 0 ELSE
IGN_TYPE = 1 DWLELD = 1		
UNDSP = 0	AND	DWLCOR = DWLCOR -

(Clip DWLCOR to zero as

DWELL = DWLBSE - DWLCOR

DWELL = DWLBSE - DWLCOR

a minimum)

 $NEW_DWLIDM = 0$

--- ELSE ---

NEW DWLIDM = 0

DWLIDM >= DWELL -----

NEW_DWLIDM = 1 -----

IGN TYPE = 1 -----

(Insufficient charge time)

IGNITION TIMING STRATEGY, DWLBSE/DWLCOR CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DWELL < DWLMIN ----- DWELL = DWLMIN

IGNITION TIMING STRATEGY, DWELL_CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DWELL_CALCULATION (called from various foreground routines)

OVERVIEW

Calculate the percent change in PIP period under maximum acceleration

for use in the calculation of the possible dwell requirement. The $\parbox{\ensuremath{\mbox{}}}$

acceleration factor is comprised of two linear functions which can be related

to the current PIP period. The decision on which function to use is based on

the number of cylinders in the engine and the possible acceleration rate for

that engine. There is a clip on the maximum amount of acceleration factor

since as the engine speed goes down the amount of time required to protect

for any acceleration increases expontentially, and the amount of time $\ensuremath{\operatorname{desired}}$

for the coil to be in current limit has a finite limit.

DEFINITIONS

INPUTS

Registers:

- DT12S = The value, in clock ticks, of the current pip period.
- DWELL = Value for system required dwell.
- HFDLTA = Most recent PIP first half period.
- PIPACL = Percentage change in PIP under acceleration of 8K RPM/sec.
- POFFENG = Foreground value of PACOFF divided by ENGCYL.
- PPERENG = Foreground value of PACPER divided by ENGCYL.

Bit Flags:

- CCD_HP = Flag indicating presence of computer controlled dwell hardware.
- DWLELD = Dwell edge leads spark edge 1 <- falling edge dwell.

Calibration Constants:

- DWLMAX = Maximum dwell allowed.
- DWLTSW = Time switchpoint for maximum percentage dwell.
- MINDLA = Maximum percent of PIP period not charging coil for PIP periods greater than DWLTSW.
- MINDLB = Maximum percent of PIP period not charging coil for PIP periods less than DWLTSW.

- PACLIM = PIP period acceleration factor for dwell.
- PACSLO = Slope in RPM-PIP accel beta function.

IGNITION TIMING STRATEGY, DWELL_CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- SPKLIM = Percent of "crank degrees between PIPs" used to determine the

maximum spark advance increase allowed between consecutive spark
events.

Do NOT calibrate higher than 0.06 without Ignition Department approval.

Maximum spark advance increase between events varies with the number of $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

cylinders; Maximum increase = SPKLIM * 360/ENGCYL.

For 4 cyl; 0.06 * 360/2 = 10.8 degrees 6 cyl; 0.06 * 360/3 = 7.2 degrees 8 cyl; 0.06 * 360/4 = 5.4 degrees

OUTPUTS

Registers:

- PIPACL = Percentage change in PIP under acceleration of 8K RPM/sec.
- SPOUT_LOW_DELTA = Delta time from spark edge to dwell edge.

IGNITION TIMING STRATEGY, DWELL_CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

CCD_HP = 1 (ICCD hardware present) DWLELD = 0 AN (not in ICCD mode)	ND	PIPACL = PACSLO * DT12S - POFFENG clip PIPACL so that: 0 < PIPACL <= PACLIM dwell_extra = [(SPKLIM + PIPACL) * DT12S] + DWELL
DT12S >= PPERENG (RPM below accel bkpt)		
		ELSE
CCD_HP = 1	 ND	PIPACL = 2 * DT12S dwell extra = [(SPKLIM + PIPACL)
DWLELD = 0	1412	* DT12S] + DWELL

Under the most adverse conditions, the ignition department has determined that there is a maximum amount of dwell. This amount is the clip, DWLMAX.

IGNITION TIMING STRATEGY, DWELL_CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DWELL_CALCULATION (continued)

In Rising edge computer controlled dwell, it is necessary to schedule the SPOUT down or dwell edge from the SPOUT up or spark edge. The logic below decides if the PIP period minus the dwell period (i.e. time coil is off) is greater than some value, typically 50% at low speeds and 20% at all other speeds, and extends the amount of time the coil is off until the percentage is within these limits.

CCD_HP = 1		
DWLELD = 0 (rising edge mode)	CDOUT LOW DELTA - MINDLA * DT12C	
DT12S > DWLTSW speeds) (RPM below switchpoint)	SPOUT_LOW_DELTA = MINDLA * DT12S (extend coil off time for low	
[(DT12S - dwell_extra)/ DT12S] <= MINDLA (coil off percentage too short)		
	ELSE 	
CCD_HP = 1		
DWLELD = 0 AND	SPOUT_LOW_DELTA = MINDLB * DT12S (extend coil off time)	
[(DT12S - dwell_extra)/ DT12S] <= MINDLB		
	ELSE 	
CCD_HP = 1 AND dwell extr	 SPOUT_LOW_DELTA = DT12S -	
DWLELD = 0		
	ELSE	
<pre>IGN_TYPE = 0 (TFI hardware present)</pre>	SPOUT_LOW_DELTA = HFDLTA	
(III naraware present)	ELSE	
	Do not calculate value for SPOUT_LOW_DELTA	

IGNITION TIMING STRATEGY, MKAY/SIGKAY CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MKAY/SIGKAY CALCULATIONS

DEFINITIONS

INPUTS

Registers:

- DT12S = Last PIP period.
- DT23S = Previous PIP period before DT12S.
- DTPCYC = PIP period ENGCYL * 2 + 1 cylinders previous.
- DTSIG = PIP period of last signature PIP.
- HFDLTA = Last period from PIP up-edge to down-edge.
- HFPCYC = Period from PIP up to down-edge ENGCYL * 2 cylinders previous.
- KAYCTR = A counter to indicate how often to update MKAY.
- MKAY = Half period multiplier to correct for average error caused by Hall
 - effect sensor in distributor and armature.
- PSGDLT = Previous uncorrected signature PIP half period.
- SIGDLT = Uncorrected signature PIP half period.
- SIGKAL = Signature PIP half period multiplier initial value = 1.66666
 - for 30% duty cycle signature PIP = 1.42857 for 35% duty cycle signature PIP.

Calibration Constants:

- ENGCYL = The number of cylinders in one engine revolution.
- FKMKAY = Filter constant of update rate to MKAY.
- FKSKAY = Filter constant of update rate to SIGKAL.
- IGN_TYPE = Indicator of ignition type (0 = TFI, 1 = TFI-ICCD,
 2 =
 LDR-DIS-DP, 3 = LDR-DIS, and 4 = HDR-DIS).
- KLLIM = Lowest value for MKAY multiplier initial value = 0.9.
- KULMT = Highest value for MKAY multiplier initial value = 1.1.
- SIGKLL = Lowest value for signature PIP multiplier initial value = 1 42857 for 30% duty cycle signature PIP = 1 25000 for 35% duty
 - 1.42857 for 30% duty cycle signature PIP = 1.25000 for 35% duty cycle signature PIP.
- SIGKLU = Highest value for signature PIP multiplier initial
 value =
- 1.99996 for 30% duty cycle signature PIP = 1.66666 for 35% duty cycle signature PIP.

- SSFCTR = Steady state factor for MKAY and signature KAY calculations.

IGNITION TIMING STRATEGY, MKAY/SIGKAY CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- SKSSLC = Steady state factor for Signature Kay calculation.

Bit Flags:

- SIGPIP = A flag that indicates that signature PIP half period has been identified.
- SYNFLG = Flag when set indicates Signature PIP has been identified;
 else
 Signature PIP not yet seen. It is initialized to 0.

OUTPUTS

Registers:

- DTPCYC = PIP period ENGCYL * 2 + 1 cylinders previous.
- DTSIG = PIP period of last signature PIP.
- HFDLTA = Last period from PIP up-edge to down-edge.
- ${\tt HFPCYC}$ = ${\tt Period}$ from ${\tt PIP}$ up to down-edge ${\tt ENGCYL}$ * 2 cylinders previous.
- KAYCTR = A counter to indicate how often to update MKAY.
- ${\sf MKAY}$ = ${\sf Half}$ period multiplier to correct for average error caused by ${\sf Hall}$

effect sensor in distributor and armature.

- PSGDLT = Previous uncorrected signature PIP half period.
- SIGDLT = Uncorrected signature PIP half period.
- SIGKAL = Signature PIP half period multiplier initial value = 1.66666
 - for 30% duty cycle signature PIP = 1.42857 for 35% duty cycle signature PIP.

IGNITION TIMING STRATEGY, MKAY/SIGKAY CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

PIP DATA MODULE

MKAY/SIGKAY CALCULATIONS

Foreground module KAY (EOS_KAY_CALCULATIONS) (called from PIP_DATA during PIP rising edge)

SIGNATURE KAY CALCULATION

MKAY CALC. ENTRY POINT

KAYCTR > ENGCYL * 2 ------ Set KAYCTR = 1
Set DTPCYC = DT12S
Set HFPCYC = HFDLTA
Return
--- ELSE --Increment KAYCTR

IGNITION TIMING STRATEGY, MKAY/SIGKAY CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SIGPIP = 0		
KAYCTR <= ENGCYL * 2	AND	Do MKAY Kay Calculation
		ELSE
		Return

MKAY CALCULATION

NOTE: On every PIP down edge transition, in the PIP_DATA routine

SIGPIP = 1------|
AND --- | PSGDLT = SIGDLT

SYNFLG = 1 ------ | SIGDLT = HFDLTA

HFDLTA = (HFDLTA*SIGKAL)/MKAY

IGNITION TIMING STRATEGY, TRANSIENT SPARK COMPENSATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TRANSIENT SPARK COMPENSATION

DEFINITIONS

INPUTS

Registers:

- DIFCTR = Counter for TLOFLG state changes.
- DIFF0 = Steady State Spark TLO error.
- DIFF1 = Transient Spark TL0 error.
- DT12S = Last PIP period.
- DT23S = Previous PIP period before DT12S.
- HFDLTA = Last period from PIP up-edge to down-edge.
- ${\tt MKAY}$ = ${\tt Half}$ period multiplier to correct for average error caused by ${\tt Hall}$
 - effect sensor in distributor and armature.
- PHFDLT = Previous time elapsed between up-edge to down-edge of PIP.
- SPOUT = Time to fire spark.
- TPPLW = Actual time at PIP down edge (SPOUT reference).
- TSPKUP = Time to output SPOUT.

Bit Flags:

- TLOFLG = Transient Spark calculation flag.

Calibration Constants:

- DFMINO = Minimum number of TSOFLG 1 to 0 state changes.
- DFMIN1 = Minimum number of TSOFLG 0 to 1 state changes.
- TRSRPM = Minimum RPM to enable transient spark routine.
- TRSRPH = Hysteresis for TRSRPM.

IGNITION TIMING STRATEGY, TRANSIENT SPARK COMPENSATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- DIFCTR = see above.

Bit Flags:

- TLOFLG = See above.

TRANSIENT SPARK COMPENSATION LOGIC

IGNITION TIMING STRATEGY, TRANSIENT SPARK COMPENSATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

After a PIP up-edge occurs, the following logic is executed:

Where:

No change to TLOFLG

After a PIP down-edge occurs, TLOFLG is checked and the appropriate tlo calculation is included for SPOUT.

10/21/2000 LHBH1.TXT

IGNITION TIMING STRATEGY, PIP_DATA - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

PIP_DATA

OVERVIEW

The spark output routine (SPARK_KNOCK_CALCULATION) is called from the edge processing routine. Depending on the conditions and the hardware, the SPARK KNOCK CALCULATION routine may be called from either the PIP

high transition or the PIP low transition. Additionally, when the engine is in

crank mode, underspeed mode, or SA10FG mode, the SPOUT signal will reflect

the PIP signal input.

DEFINITIONS

INPUTS

Registers:

Bit Flags:

- CCD HP = Flag indicating presence of computer controlled dwell hardware.
- DWLELD = Dwell edge leads spark edge 1 <- falling edge dwell.
- ECHO_PIP A flag that indicates when the spark output signal is output

coincident with the PIP edges as they are received.

- ECHO_TRANS = A flag that indicates when the spark output signal is process of transitioning to or from normal spark output to the ECHO_PIP mode.
- PIP DOUBLE = A flag indicating which edge is referenced for spark: 1 -> use PIP down edge; 0 -> use PIP up-edge.

OUTPUTS

Registers:

- OLD_BETA = The percentage of PIP period from the reference PIP edge on the last spark output.

Bit Flags:

- DOUBLE_EDGE = A foreground (DOS) flag used to indicate the current output calculation method.
- ECHO_TRANS = A flag that indicates when the spark output signal is in the

process of transitioning to or from normal spark output to the ECHOPIP mode.

IGNITION TIMING STRATEGY, PIP_DATA - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

RISING EDGE CALCULATIONS

Determine if and when to perform the rising ed the following logic:	dge dwell calculation by	
CCD_HP = 0	Coll DWELL CALCULATION	
CCD_HP = 0 OR DWLELD = 0 OR (Rising edge mode)	Call DWELL_CALCULATION	
	(reflect PIP in SPOUT)	
ECHO_PIP = 1 (Not in echo mode) AND ECHO_TRANS = 0	"echo the PIP edge transition as a SPOUT transition" DOUBLE_EDGE = 0	
(Transition completed)	OLD_BETA = 1 "continue PIP processing"	
	ELSE (transition from normal spark to PIP echo mode)	
ECHO_PIP = 1	DOUBLE_EDGE = 0 OLD_BETA = 1 "continue PIP processing"	
PIP_DOUBLE = 0	 ELSE	
(Double edge spark not requested)	(transition from PIP echo to normal spark mode)	
 DATA_TIME	SPOUT_HIGH_EDGE =	
ECHO_TRANS = 1	"echo the PIP edge transition as a SPOUT transition"	
	ECHO_TRANS = 0 Call SPOUT_CALCULATION "continue PIP processing"	
	 ELSE	
	 (normal spark mode)	
PIP_DOUBLE = 0	 Call SPOUT_CALCULATION "continue PIP processing"	
	 ELSE	

"continue PIP processing"

IGNITION TIMING STRATEGY, PIP_DATA - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FALLING EDGE CALCULATIONS

ECHO_PIP = 1 (In PIP echo mode)	(transition from falling edge dwell to PIP echo mode)
ECHO_TRANS = 1 AND (In transition) DWLELD = 1 (In falling edge dwell)	
ECHO_PIP = 1 (In echo pip mode) AND ECHO_TRANS = 1 (In transition) ECHO_PIP = 1 OR PIP_DOUBLE = 0 (Double edge	ELSE (transition from normal spark to PIP echo mode) ECHO_TRANS = 0 "continue with PIP processing" ELSE (reflect PIP as SPOUT) "echo the PIP transition as a SPOUT transition" "continue with PIP processing"
ECHO_TRANS = 1 PIP_DOUBLE = 1	ELSE (normal falling edge spark mode) Call SPOUT_CALCULATION ECHO_TRANS = 0 "continue with PIP processing" ELSE "continue with PIP processing"

IGNITION TIMING STRATEGY, SPOUT_KNOCK ROUTINE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SPOUT_KNOCK ROUTINE

OVERVIEW

Falling edge computer controlled dwell can only be used in falling edge spark

 $(PIP_DOUBLE = 1)$ and when there is sufficient time to permit the dwell edge

to be scheduled after the high-to-low transition of PIP. The period of time

between the high-to-low transition of PIP and the desired position of $\operatorname{\mathsf{spark}}$

in time is calculated as a temporary value and also saved as ${\tt NEXT_SPOUT_BETA}$.

DEFINITIONS

INPUTS

Registers:

- DWELL = Value for system required dwell.
- HFDLTA = Most recent PIP first half period.
- LAST_HI_PIP = Time of last PIP up-edge.
- NEW_BETA = Percent of PIP period from reference PIP edge to the spark

firing signal.

- MKAY = Half period multiplier to correct for average error caused by Hall

effect sensor in distributor and armature.

- NEXT_SPOUT_ADVANCED = Delta time from PIP down edge to position of spark

with maximum spark advance on next cylinder.

- NEXT_SPOUT_BETA = The percentage of PIP period (betas) from the reference
 - PIP edge to the signal on the spark output (SPOUT) that causes the

ignition module to discharge the coil across the spark plug.

- SPOUT_HIGH_EDGE = Time of next scheduled SPOUT transition from low to high.
- SPOUT_ICCD_DELTA = Delta time from PIP down edge to the dwell $% \left(1\right) =\left(1\right) +\left($

in falling edge mode.

- SPOUT_LOW_DELTA = Delta time from spark edge to dwell edge.
- SPOUT_LOW_EDGE = Time of next scheduled SPOUT transition from high to low.

Bit Flags:

- CCD_HP = Flag indicating presence of computer controlled dwell hardware.

- DWLELD = Dwell edge leads spark edge; 1 -> falling edge dwell.
- PIP_DOUBLE = A flag indicating which edge is referenced for spark;
 1 ->

use PIP down-edge, 0 -> use PIP up-edge.

IGNITION TIMING STRATEGY, SPOUT_KNOCK ROUTINE - LHBH0 PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

Non-Calibratable:

- TICKS_DOUBLE = The value in clock-ticks when there is sufficient time in

Rising-edge mode to put out spark from the falling edge (currently set equivalent to $0.0010~{\rm seconds}$).

- TICKS_SINGLE = The value in clock-ticks when here is insufficient time to

put out spark from the falling edge of PIP (currently set equivalent of $0.0010 \,\, \mathrm{seconds})$.

Calibration Constants:

- SPKLIM = The maximum percentage of a PIP period by which the spark may be advanced between two outputs.

OUTPUTS

Registers:

- NEXT_SPOUT_ADVANCED = Delta time from PIP down edge to position of spark
 - with maximum spark advance on next cylinder.
- NEXT_SPOUT_BETA = The percentage of PIP period (betas) from the reference
 - PIP edge to the signal on the aprk output (SPOUT) that causes the
 - ignition module to discharge the coil across the spark plug.
- SPOUT_HIGH_EDGE = Time of next scheduled SPOUT transition from low to high.
- SPOUT_ICCD_DELTA = Delta time from PIP down edge to the dwell edge when in falling edge mode.
- SPOUT_LOW_EDGE = Time of next scheduled SPOUT transition from high to low.

Bit Flags:

- DWLELD = Dwell edge leads spark edge 1 <- falling edge dwell.

IGNITION TIMING STRATEGY, SPOUT_KNOCK ROUTINE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

1. The temporary value for NEXT_SPOUT_BETA is calculated by the following logic:

2. Based on the current requested position of spark and the maximum amount of change allowed in the advance direction, calculate the amount of time from the next PIP down edge to the earliest possible spark position on the next cylinder. This term will be used to decide whether there is a need to switch modes for dwell.

```
CCD_HP = 1 ---- | NEXT_SPOUT_ADVANCED = temp_value - (2 * SPKLIM *
HFDLTA)
```

3. Compute the time for turning on the coil (dwell edge) for the current cylinder based on the spark time and the amount of dwell required to reach current limit.

CCD HP = 1 ---- | SPOUT ICCD DELTA = temp value - DWELL

IGNITION TIMING STRATEGY, SPOUT_KNOCK ROUTINE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SPOUT_KNOCK ROUTINE

4. Determine the output values and sequence for both edges of SPOUT:

CCD_HP = 1(CCD hardware present)			
PIP_DOUBLE = 1 (spark from PIP down)			
DWLELD = 1(falling edge mode)	AND	FALLING EDGE DWELL MODE (compute time for coil start to charge and schedule as the	
(NEXT_SPOUT_ADVANCED - DWELL) >= HFDLTA TICKS_SINGLE SPOUT_ICCD_DELTA (sufficient time to output dwell edge from PIP down)		SPOUT_LOW_EDGE:) SPOUT_LOW_EDGE = LAST_HI_PIP +	
		+	
		<pre>(when SPOUT_LOW_EDGE is output compute time of spark and schedule the SPOUT_HIGH_EDGE:) SPOUT_HIGH_EDGE = SPOUT_LOW_EDGE</pre>	
		ELSE	
CCD_HP = 1		TRANSITION FROM FALLING EDGE DWELL MODE TO RISING EDGE CCD DWLELD = 0 (change to CCD mode) (compute time for coil start to charge and schedule as the SPOUT LOW EDGE:)	
	 AND	SPOUT_LOW_EDGE = LAST_HI_PIP +	
DWLELD = 1		+ SPOUT_ICCD_DELTA (when SPOUT_LOW_EDGE is output, compute time of spark and schedule the SPOUT_HIGH_EDGE:) SPOUT_HIGH_EDGE = SPOUT_LOW_EDGE + DWELL (when SPOUT_HIGH_EDGE is output, call DWELL_CALCULATION to calculate the next coil turn on time, SPOUT_LOW_DELTA and then schedule the SPOUT_LOW_EDGE: SPOUT_LOW_EDGE = SPOUT_HIGH_EDGE	
FOUT_LOW_DELTA			
		ELSE	

(continued on next page)

IGNITION TIMING STRATEGY, SPOUT_KNOCK ROUTINE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SPOUT_KNOCK ROUTINE

(continued from previous page)

CCD HP = 1 -----AND ----TRANSITION FROM RISING EDGE DWELL PIP_DOUBLE = 1 -----MODE TO FALLING EDGE DWELL MODE DWLELD = 1 (change to ICCD mode) (when the SPOUT_LOW_EDGE is no longer pending in the queue, (NEXT_SPOUT_ADVANCED - DWELL) >= TICKS_DOUBLE ----compute time of spark and schedule) (sufficient time to output | SPOUT HIGH EDGE: dwell edge from PIP down) SPOUT_HIGH_EDGE = LAST_HI_PIP + NEXT_SPOUT_BETA + HFDLTA --- ELSE ---RISING EDGE DWELL MODE OR TFI WITH FALLING EDGE SPARK MODE (compute time of spark and schedule as the SPOUT_HIGH_EDGE:) PIP_DOUBLE = 1 -----SPOUT_HIGH_EDGE = LAST_HI_PIP + NEXT_SPOUT_BETA + HFDLTA (when SPOUT_HIGH_EDGE is output, compute time for coil start to charge and schedule as SPOUT LOW EDGE:) SPOUT LOW EDGE = SPOUT HIGH EDGE + SPOUT_LOW_DELTA --- ELSE ---RISING EDGE DWELL MODE OR TFI WITH RISING EDGE SPARK MODE SPOUT_HIGH_EDGE = LAST_HI_PIP NEXT SPOUT BETA (when SPOUT_HIGH_EDGE is output, compute time for coil start to charge and schedule as SPOUT_LOW_EDGE:) SPOUT_LOW_EDGE = SPOUT_HIGH_EDGE + SPOUT_LOW_DELTA

IGNITION TIMING STRATEGY, VIP, EOS_IDM - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

VIP, EOS_IDM

OVERVIEW

Upon the change in state of the high speed input for Ignition Diagnostic Monitor, the flag IDM_INT is set to one. When new input data is processed, a check is made of the flag IDM INT, and if set, will cause this module to be called to process the IDM state change. If the transition has been high to low at the CPU (IDM_HIGH = 0), the self test logic is notified by setting the flag NEW IDM. If the ignition system provides an IDM signal that can be to determine the amount of excess dwell and the EEC is controlling the dwell (IGN_TYPE = 1), the time of coil charging is determined and a flag, NEW_DWLIDM, is set.

NOTE: IDM_HIGH reflects the state of the High Speed Input (HSI) pin and not the IDM voltage. Because of an inversion, when IDM voltage = 0, IDM_HIGH = 1, and when IDM voltage is greater than 3.5 volts, IDM_HIGH = 0.

DEFINITIONS

INPUTS

Registers:

- DATA_TIME = Time of latest digital input edge.
- SPOUT_LOW_EDGE = Time of next scheduled SPOUT transition from high to low.

Bit Flags:

- DWLELD = Dwell edge leads spark edge 1 <- falling edge dwell.
- IDM_HIGH = Flag that reflects the state of the High speed Input
 (HSI)
 pin. Because of an inversion, when IDM voltage = 0, IDMHIGH =
 1, and
 when IDM voltage is greater than 3.5 volts, IDMHIGH = 0.
- IDM_INT = Flag that indicates that a change of state has occurred on the IDM input pin.

Calibration Constants:

- IGN_TYPE = Indicator of ignition type (0 = TFI, 1 = TFI_ICCD,
2 =
 LDR-DIS).

IGNITION TIMING STRATEGY, VIP, EOS_IDM - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- DWLIDM = Measured Coil Rise Time.

Bit Flags:

- IDM_INT = Flag that indicates that a change of state has occurred on the IDM pin.
- NEW_DWLIDM = Flag indicating when new excess dwell can be computed.
- NEW_IDM = A flag that indicates that the EOS has processed new IDM information for use by the self test (VIP) strategy.

PROCESS

Always		Clear IDM_INT
IDM_HIGH = 0 (High-to-low transition)		Calculate Dwell Time
 DWLELD = 1	AND	DWLIDM = (DATA_TIME - SPOUT_LOW_EDGE)
(In ICCD mode) 		Set NEW_DWLIDM Set NEW_IDM
		ELSE
IDM_HIGH = 0		Set NEW_IDM
		ELSE
		Return

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

INDIVIDUAL CYLINDER KNOCK

OVERVIEW

KNOCK HARDWARE DESCRIPTION

The knock sensor is a piezo-electric accelerometer which resonates at engine knock frequencies of approximately 5.45, 5.7, 6.0 or 8.05 kHz. The bandwidth of the resonant frequency is quite narrow (<+/- 150 Hz) to avoid resonance due to noise from other sources. The resonation causes the sensor to transmit a positive voltage, KNOCK, to the EEC hardware circuit. This hardware circuit compares the KNOCK voltage to a threshold voltage, NOTSE. When KNOCK > NOISE, the hardware circuit sends a KNOCK INPUT signal to EEC software. This event is represented on the next page as KI = 1. The EEC software stores this information until the next rising edge of PIP is

received. At that time, the information is used by the KNOCK LOGIC as described in the remainder of this document.

NOISE, the threshold voltage, is a positive voltage in an RC circuit which is

proportional to the Knock Input level at the time that a charging pulse, $\ensuremath{\mathtt{KTS}}$,

is output. This threshold voltage is established to avoid treating $\operatorname{\mathsf{rod}}$

knock, piston slap, valve train noise and other noise as spark knock.

During normal engine operation, the software opens and closes a $% \left(1\right) =\left(1\right) +\left($

per PIP period. While the window is open, KTS charges up the capacitor in

the RC circuit. While the window is closed, the NOISE level decays

(decreases) at a steady rate determined by the time constant of the RC circuit.

NOISE \sim (D.C. Bias + KNOCK(A))*(1-exp(-KTS/RC)) + LAST NOISE

Where, NOISE is the noise threshold level
KNOCK(A) is the Knock input level at the time
KTS is being output.
KTS is the pulsewidth (secs) of the charging pulse
RC is the RC time constant.
LAST NOISE is the noise level at the time
KTS is output.

WARNING: To avoid raising the NOISE threshold level too high, the KTS pulse

should charge the RC circuit only during that portion of the PIP

wherein no Knock is indicated, normally late in the current PIP

period, or early in the following PIP period. The calibration of the

timing of the window is described in the Knock Threshold Sense Logic section

of this strategy.

Since the noise level is a function of rpm, the NOISE threshold tends to

increase with increasing rpm. At high rpm and heavy detonation conditions,

knock usually continues well into the following PIP period. To avoid opening

the window during this period of knock, the software withholds KTS for WINCLD

PIP periods to avoid raising the noise threshold too high.

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS/OUTPUTS:

- APT = Throttle Mode Flag.
- CTFLG = Flag set to 1 to indicate Closed Throttle Tip-in.
- CWCTR = Cancel Window Counter incorporated each PIP period.
- ECT = Engine Coolant Temperature, deg F.
- KI = Knock indicated, knock level is higher than noise level; called KNK_HIGH in code.
- KIHP = Knock hardware present switch; 1 -> Knock sensor present.
- KNOCK_DETECTED = Flag set to 1, if knock occurred in current PIP half-period.
- KNOCK_OCCURRED = Flag set to 1, if knock occurred in current or last PIP period.
- KTS = Pulsewidth (clock ticks) of the charging pulse. (This signal is internal to the EEC.) Start time = LAST HI-PIP + (WINDOW_BETA * MKAY * 2 * HFDLTA).
- "LAST PIP PERIOD" = MKAY*2*HFDLTA. (MKAY and HFDLTA are defined in Base Spark Chapter)
- N_BYTE = Low Resolution rpm.
- RETINC = Calculated as a function of rpm and is subtracted from
 each
 SPKAD corresponding to a knocking cylinder. (positive degree)
- SPKADn = Spark adder terms for the nth cylinder. It is added to SAF, may be positive or negative degress.
- TBART = Filtered Throttle position (initialized to RATCH).
 = UROLAV(TP,TCTPT)
- TCF = Value indicating difference between TP and TBART. TCF =
 (TP TBART)
- TIPFLG = Flag set to 1 to indicate a Tip-in.
- TIPRET = Degrees of tip-in retard added to SAF.
- TSLADV = Free-running millisecond timer which counts the time since the spark was last advanced by the KNOCK STRATEGY.

FOX FUNCTIONS:

- FN143 = Retard Increment as function of N (positive degrees).
- FN144 = Width of KTS as a function of N, fraction of pip period.

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- FN145 = Position of KTS as a function of N, fraction of PIP period.
- FN146A = Spark Advance rate (secs) as function of N.
- FN190 = Maximum spark advance allowed from SPKAD(n) registers
 as a
 function of engine speed (N_BYTE), degrees.

CALIBRATION CONSTANTS:

- ECTIP = Minimum ECT to enable TIP-in Knock logic, deg F.
- ECTNOK = Minimum ECT to enable Knock Strategy, deg F.
- ENGCYL = Number of PIPS per revolution. = (Number of Engine Cylinders/2.)
- KACRAT = Minimum change in TP that indicates a Tip-in, counts.
- KIHP = KNOCK hardware present switch; 1 -> KNOCK sensor present.
- KNKCYL = Calibration constant which can be calibrated equal to number of cylinders, or 1. This number determines whether it is an Individual Cylinder Knock or Multi- cylinder knock strategy.
- LODNOK = Minimum MAPPA at which Knock Strategy is enabled, unitless.
- NTIP = Maximum rpm to enable Tip-in logic, rpm.
- RETLIM = Means of preventing excessive retard; SPKAD is clipped to RETLIM, degrees.
- RPMCNL = Threshold rpm below which the window is always opened, rpm.
- RPMMIN = Minimum rpm to enable Knock Strategy. (Helps prevent Spark Retard at Idle.) rpm.
- TIPINC = Advance per PIP following a Tip-in retard. (Must be a positive number; units are degrees.)
- TIPMAX = Initial amount of retard following a Tip-in. (Must be a negative number; units are degrees.)
- TPFK = Calibratible filter constant.
- WINCLD = Maximum number of PIP periods to withhold KTS KTS (to refresh NOISE threshold level) during periods of sustained knock, PIP periods.
- WINLEN = Minimum KTS pulsewidth, (fraction of PIP period).
- WOPEN = Minimum delay after the rising edge of PIP before the KTS
 pulse
 will be output (fraction of PIP period).

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBHO PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: SPKKNOCK_LL KNOCK SIGNAL DETECTION

10/21/2000 LHBH1.TXT

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBHO PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

STRATEGY DESCRIPTION

The Individual Cylinder Knock Strategy consists of four major substrategies:

- 1. KNOCK STRATEGY ENABLE LOGIC
- 2. KNOCK THRESHOLD SENSE LOGIC
- 3. SPARK RETARD LOGIC 4. SPARK ADVANCE LOGIC

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

KNOCK STRATEGY ENABLE LOGIC

The following logic is checked every background loop:

KIHP = 1		
MAPPA > LODNOK		
	AND -	ENABLE KNOCK STRATEGY
ECT > ECTNOK		
N > DDMMTN		ELSE
N > RPMMIN	l	 DISABLE KNOCK STRATEGY
		SPKAD(ALL) = 0
		SFRAD(ALL) - 0 TSLADV = 0

LODNOK, ECTNOK, and RPMMIN define the minimum engine operating conditions to enable the Knock Control Strategy. These are calibration parameters accessible through VECTOR and through the calibration console.

 ${\tt SPKAD}({\tt ALL})$ are spark adder terms; ${\tt SPKAD1}, {\tt SPKAD2}, {\tt SPKAD3}, \ldots.$ ${\tt SPKADn};$ where

 $\ensuremath{\mathtt{n}}$ = KNKCYL. If KNKCYL is calibrated to be equal to the number of cylinders,

then there is a unique SPKAD term for each cylinder $\operatorname{\mathsf{--}}$ INDIVIDUAL CYLINDER

 ${\tt KNOCK.}$ If ${\tt KNKCYL}$ is calibrated to 1, the Knock Strategy functions as a

Multi-Cylinder Knock Strategy; i.e., there is only one $\mbox{\sc SPKAD}$ term. It is

applied to all cylinders. If one cylinder knocks, then all cylinders get

retarded an equal amount. Negative values for SPKAD mean that spark is being

retarded.

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

KNOCK THRESHOLD SENSE (KTS) LOGIC

The software periodically opens a window which allows a Noise threshold

charging $% \left(1\right) =\left(1\right) +\left$

circuit. The window always opens once per PIP period unless the $\ensuremath{\operatorname{\textsc{pm}}}$ exceeds

RPMCNL. The engine developer defines the window during which the charging

pulse is on by means of two fox functions (FN144, FN145) and two calibration $% \left(1\right) =\left(1\right) \left(1$

constants (WOPEN, WINLEN). The pulsewidth of KTS defines the period of time

that the capacitor in the RC circuit will be charged. Wide KTS pulses cause

the threshold to increase. The timing of the KTS pulse must coincide with

the optimum non-knocking portion of the PIP period over all engine $\ensuremath{\operatorname{\textsc{rpm}}}$.

Since Knock tends to extend longer through the PIP period with increasing

 $\operatorname{rpm},$ the KTS pulse should be timed late in the current PIP period, or early

in the following PIP period (95 - 110 % PIP period).

Noise threshold elevation will result when the capacitor charging rate

greatly exceeds the discharge rate or when the KTS pulse is output during $% \left(1\right) =\left(1\right) +$

conditions of Knock. When knock occurs at high rpm, the charging pulse

window is kept closed for WINCLD PIP periods to prevent elevating the $\ensuremath{\mathtt{NOISE}}$

threshold to the level of $\ensuremath{\mathsf{KNOCK}}$, thereby preventing the EEC hardware circuit

from sensing additional spark knock.

The WINDOW LOGIC and calculations shown below are checked every rising edge of PIP except in Engine Running VIP (RUNNING = 1):

The pulsewidth of KTS is equal to

WINLEN + FN144(N) * ("LAST PIP PERIOD")

Where, WINLEN is minimum KTS pulsewidth, clock ticks FN144(N) is fraction of pip period, BETA Units "LAST PIP PERIOD" is equal to 60/(ENGCYL*N) ENGCYL is number of PIPS per revolution

At the start of the Goose Test, the pulsewidth of KTS is set to V_KTS.

The timing of KTS is equal to

(WOPEN + FN145(N)) * ("LAST PIP PERIOD")

Where, WOPEN is the minimum delay after the rising edge of the PIP before the KTS pulse will be output.

 ${\tt FN145(N)}$ is fraction of pip period, BETA Units.

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The WINDOW LOGIC show below is checked every falling edge of PIP:

KIHP = 0	 :)	DO NOT OUTPUT KTS
, 11 1 1 1 1 1 1 1 1 1		ELSE
N <= RPMCNL	-	GIJGTD 0
CWCTR >= WINCLD	- OR	CWCTR = 0 OPEN WINDOW AT CALCULATED TIME
NOT SIGNATURE PIP		ELSE
KNOCK_DETECTED = 0 (No KNOCK in current PIP half period)		Increment CWCTR DO NOT OPEN WINDOW

NOTE: If KIHP = 1, the KTS pulse is output even if the knock strategy is disabled to refresh the threshold level in the event that the Knock Strategy becomes enabled. The absence of the KTS pulse for more than a few PIP periods would result in full retard upon entering Knock Strategy.

Note: Range of A is typically 90 - 110 % of PIP period.

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EXAMPLES

EXAMPLE 1: N < RPMCNL

EXAMPLE 2: N > RMPCNL

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The following logic is checked every pip UP edge before calculating SPOUT.

KIHP = 0	KNOCK_DETECTED = 0 KNOCK_OCCURRED = 0
	ELSE
KNOCK_DETECTED = 1 AND -	KNOCK_OCCURRED = 1
KNK_HIGH = 1 (KI currently indicating KNOCK)	ELSE
KNOCK_DETECTED = 1 AND -	KNOCK_OCCURRED = 1 KNOCK DETECTED = 0
MKNK_HIGH = 0 (KI currently indicating no KNOCK)	ELSE
İ	KNOCK_OCCURRED = 0

The following code is executed in real time (almost).

KNOCK INTERRUPT ENABLE LOGIC

The following logic is executed upon Power-up, upon Re-Init, and every Background Loop.

KIHP = 1 ----- ALLOW KNOCK INTERRUPTS TO OCCUR.

--- ELSE --
PREVENT KNOCK INTERRUPTS FROM OCCURRING.

10/21/2000 LHBH1.TXT

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

SPARK RETARD LOGIC

Whenever the Knock strategy is enabled, the software calculates RETINC funcion of rpm. RETINC is subtracted from each SPKAD that corresponds "knocking" cylinder. The software keeps track of the cylinders by means of a "PIP counter". The "PIP counter" is incremented once per PIP period and is set to 1 every time it exceeds KNKCYL. To prevent excessive retard

(perhaps

due to erroneous knock sense) each SPKAD is clipped to RETLIM.

RETINC = FN143(N)

During a particular PIP period ("PIP counter" = n), the software makes adjustments to SPKAD(n-1) based on whether Knock was sensed during the previous PIP period and uses SPKAD(n), calculated during the previous cycle (KNKCYL PIP periods ago) to determine the final value of spark advance for the next spark output.

KNOCK STRATEGY ENABLED -----KNOCK_OCCURRED = 1 -(knock sensed |AND --| SPKAD(n-1) = SPKAD(n-1) - RETINCduring last PIP Period) (Clip min. SPKAD(n-1) to RETLIM) TIPRET = 0 -----

A separate part of the retard logic responds to Tip-in detonation, and to potential Tip-in detonation, by retarding the spark TIPRET degrees.

Tip-in detonation is a result of the relatively slow response of both MAP and

N, which are average values during a PIP period, to the sudden increase in

manifold pressure and decrease in engine speed, respectively, which occur

within a PIP period during a Tip-in. The result is that the delivered spark

is over-advanced for the instantaneous conditions until the MAP calculation

has updated to reflect the higher manifold pressure and the engine speed has

recovered. The recovery from a Tip-in is normally complete within a few PTP periods.

The KNOCK STRATEGY is designed to anticipate detonation following a from idle (the worst case Tip-in condition) and respond by

retarding the

spark before detonation occurs. Tip-in from part- throttle results in retarded spark only if knock is sensed. In both cases, Tip-in retard is applied to whichever cylinders follow the Tip-in, not to individual cylinders as is usually done in the individual cylinder knock strategy. Thus, there is no need to wait an entire engine cycle before responding to Tip-in detonation.

The Tip-in condition is recognized by comparing TP to a filtered TP, called TBART. If TCF, the difference between TP and TBART, exceeds KACRAT, and if either the Tip-in occurred from idle or if the knock is sensed following a Tip-in from part-throttle, then the spark for the next PIP is retarded by TIPMAX degrees. On the ensuing PIPS, the amount of retard is decremented by TIPINC degrees until all Tip-in retard is removed. The Tip-in logic can be disabled by setting KACRAT = 1023.

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The following Tip-in logic is checked every background loop:

CTFLG LOGIC

TIPFLG LOGIC

Where,

TCF = TP - TBART

TBART = UROLAV(TP,TCTPT) (TBART is initialized to RATCH)

TCTPT = calibratable time constant

KACRAT = calibration constant

ECTIP = calibration constant

NTIP = calibration constant

NOTE: TIPMAP + TIPHYS is clipped to 31.875 in. Hg.

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The following Tip-in logic is checked every rising edge of PIP:

Where,

TIPRET = Tip-in retard

TIPMAX = initial amount of retard following a Tip-in

(Must be a negative number; units are degrees)

TIPINC = advance per PIP following a TIP-in retard

(Must be a positive number; units are degrees)

NOTE: The final value of Spark advance is calculated by the EOS immediately prior to calculating the waiting time:

CALCULATED SPARK OUT = SAF + TIPRET

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SPARK ADVANCE LOGIC

The following logic is checked every rising edge of PIP:

```
KNOCK STRATEGY ENABLED - AND -- SPKAD(ALL) = SPKAD(ALL) + SPKAD(ALL) + O.25 deg.

(Clip SPKAD(ALL) to FN190(N_BYTE) as a maximum)

TSLADV = TSLADV - FN146A/4
```

TSLADV is a free running millisecond timer which counts the time since the spark was last advanced by the KNOCK STRATEGY.

If the Knock Strategy is enabled, all of the spark adders, SPKAD1 through

SPKADn are incremented 0.25 degrees every ${\rm FN146A/4}$ seconds. ${\rm FN146A}$ is

equivalent to 1/FN146A (used in previous strategies). Each of the SPKADn's

is clipped to FN190. If FN190 = 0, the KNOCK STRATEGY will not advance the

spark beyond SAF. The output of function FN190 $% \left(1\right) =1$ is the maximum amount of

advance beyond the SAF value that can be tolerated for a particular engine $\,$

speed. The input to FN190 is $\ensuremath{\text{N_BYTE}}$, engine speed in 16 rpm increments, and

the output is in degrees of spark, with a range of 0 to 31.875 and a $\,$

resolution of 0.25 degrees.

NOTE: If the Knock Strategy is enabled and no cylinders $% \left(x\right) =x^{2}$ are knocking, the

spark to each cylinder will advance to SAF + FN190. If a particular cylinder $\,$

is knocking, the Retard Strategy will tend to dominate the advancing

mechanism. To insure that the spark to knocking cylinders is retarded more

than the strategy can advance it, FN146A should be greater than or equal to

 $1/{\rm FN}143\,.$ When ${\rm FN}146{\rm A}$ is large, then the spark advance rate is small. For

example, FN146A = 0.5 is equivalent to a spark advance rate of 2 degrees/sec.

FN146A = 0.25 is equivalent to spark advance rate of 4 degrees/sec.

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

SUMMARY AND EXAMPLE

The final value of spark advance is calculated by the EOS immediately prior to calculating the waiting time:

CALCULATED SPARK OUT (n+1) = SAF + SPKAD(n+1) + TIPRET

The table shown below is included as an illustration of the Individual

Cylinder Knock Control adjustment to the Spark Advance.

Example of Individual Cylinder Knock Control (4 cyl)

1	2	3	4
TIPRET+ SPKAD1 = +2	TIPRET+ SPKAD2 = +4	TIPRET+ SPKAD3 = -6	TIPRET+ SPKAD4 = +6
24	24	24	24
26 	28	18	30
26 	28	18	28.8
	TIPRET+ SPKAD1 = +2 24	TIPRET+ TIPRET+ SPKAD1 SPKAD2 = +2 = +4 24 24 26 28	TIPRET+ TIPRET+ TIPRET+ SPKAD1 SPKAD2 SPKAD3 = +2 = +4 = -6 24 24 24 26 28 18

Due to the physical time constraints for arming the coil and firing the next

spark, the maximum spark advance increase between consecutive spark events

must be no more than SPKLIM*360/ENGCYL degrees.

In this example, SPKLIM = .06 and ENGCYL = 2. Therefore, the largest

advance increase allowed between cylinders is 10.8 deg. There is no limit on

the amount of spark advance decrease allowed between cylinders.

IGNITION TIMING STRATEGY, INDIVIDUAL CYLINDER KNOCK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 8

EGR STRATEGY

EGR STRATEGY, EGR SELECT LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EGR SELECT LOGIC

PFEHP = 0 ------ DO SONIC EGR CONTROL

--- ELSE --
EGR IS DISABLED, NO EGR CONTROL

REQUIRED

EM = 0

EGRACT = 0

RETURN

DEFINTIONS

INPUTS

Registers:

- APT = Throttle mode flag; -1 -> closed throttle.
- ATMR1 = Time since startup (entering RUN mode), sec.
- ATMR2 = Time since Engine Coolant temperature exceeded TEMPFB, sec.
- ${\tt EOFF}$ = The EGR valve reading when the valve is full closed in A/D counts.
- EVP = EGR valve position (Sonic EGR) in A/D counts.
- MAP = Manifold Absolute Pressure, BIN 3.
- NACTMR = Time not at closed throttle, seconds.
- RATCH = Lowest closed throttle position, counts.
- TCSTRT = Engine Coolant Temperature at Start-up, deg F.
- TP = Throttle position, A/D counts.
- TP_REL = Relative Throttle Position, TP RATCH.

Bit Flags:

- AFMFLG = Flag indicating ACT sensor has failed; 1 -> failure.
- CFMFLG = Flag indicating ECT sensor has failed; 1 -> failure.
- CRKFLG = Crank mode flag; 0 -> underspeed or run, 1 -> crank.
- EFMFLG = Flag indicating EVP sensor has failed; 1 -> failure.
- IMS = Inferred Mileage Sensor input; 0 -> low mileage, 1 -> high mileage
 - or no sensor present.
- MFMFLG = Flag indicating ECT sensor has failed; 1 -> failure.

EGR STRATEGY, EGR SELECT LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- TFMFLG = Flag indicating TP sensor has failed; 1 -> failure.
- WOT_EGR_FLG = Flag to enable WOT EGR.

Calibration Constants:

- EGRDED = EVP breakpoint above/below EOFF to determine open/closed EGR
 - valve and if EOFF has learned closed valve position, counts.
- EGRTD1 = Hot Start Time Delay before enabling EGR, secs. Low mileage.
- ${\tt EGRTD2}$ = Time delay before enabling EGR when the coolant temperature at

Start-up was in the mid-range, sec. Low mileage.

- EGRTD3 = Cold Start Time delay before enabling EGR after the coolant $\overline{}$
 - temperature exceeds TEMPFB, sec. Low mileage.
- EGRTD4 = Hot Start Time delay before enabling EGR, secs. High mileage or no IMS.
- EGRTD5 = Time delay before enabling EGR when the coolant temp at start-up
 - was in the mid-range, secs. High mileage or no IMS.
- EGRTD6 = Cold Start Time delay before enabling EGR after the coolant temp exceeds TEMPFB sec. High mileage or no IMS.
 - g anger a
- EGRTD8 = Time delay at part throttle before EGR enabled.
- EGRTB1 = Throttle angle breakpoint to disable EGR, counts.
- EGTB1H = Hysteresis for EGR disable throttle angle, counts.
- CTHIGH = Hot Start Engine Coolant Temperature, deg F.
- CTLOW = Cold Start Engine Coolant Temperature, deg F.
- MAP_WOT_EGRC = MAP below which WOT EGR is disabled.
- MAP_WOT_EGRS = MAP above which WOT EGR is enabled.
- PFEHP = PFE hardware present; 0 -> Sonic EGR being used, 1 or 2 ->
 EGR
 not used.

OUTPUTS

Bit Flags:

- EGREN = Flag indicating of EGR is enabled; 0 -> disabled, 1 -> enabled.

EGR STRATEGY, EGR SELECT LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: EGR_ENABLE_LH

EGR ENABLE/DISABLE LOGIC
APPLICATION: SONIC AND PFE WITH IMS AND OCTANE ADJUST

The following logic describes the operating conditions during which EGR is enabled. (When PFEHP = 1 or 2, no EGR is required and the EGR Strategy is always disabled)

MAP > MAP_WOT_EGRS ------|S Q - | WOT_EGR_FLG MAP < MAP_WOT_EGRC -----C "A" (See Below) -----AND -IMS = 0 -----"B" (See Below) -----AND -CRKFLG = 0 -----EFMFLG = 0 -----(EGR sensor is OK) MFMFLG = 0 -----(MAP sensor is OK) AFMFLG = 0 -----(ACT sensor is OK) |AND - | egr rdy = 1 $V_EGR_RDY = 1$ CFMFLG = 0 -----(set flag to initiate (ECT sensor is OK) EGR self test as applicable) TFMFLG = 0 -----(TP sensor is OK) EVP >= (EOFF - EGRDED) -----NACTMR >= EGRTD8 -----i (EGR turn on delay time) --- ELSE -- $egr_rdy = 0$

EGR STRATEGY, EGR SELECT LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

"A" AND "B" LOGIC

TCSTRT >= CTHIGH						
ATMR1 >= EGRTD1	AND -					
CTLOW < TCSTRT < CTHIGH		0.0	11 75 11			
ATMR1 >= EGRTD2	: :	OR	"A"			
TCSTRT <= CTLOW						
ATMR2 >= EGRTD3	AND - 					
TCSTRT >= CTHIGH						
ATMR1 >= EGRTD4	AND -					
CTLOW < TCSTRT < CTHIGH		!				
ATMR1 >= EGRTD5	AND -	OR	"B"			
TCSTRT <= CTLOW	1					
ATMR2 >= EGRTD6	AND -					
TP_REL < EGRTB1 - EGTB1H			S Q -	EGRTPQ		
TP_REL >= EGRTB1			C			
egr_rdy = 1			ļ .			
(Time, Temprature, etc)			AND - 	EGREN =	1 (egr	enabled)
APT = 0 (part throttle)		- OR				
APT = 1 (At WOT)	- AND -	_				
WOT_EGR_FLG = 1 (MAP high)	11112	1				
EGRTPQ = 1						
(tp within range)				ELS	E	
				EGREN =	0 (egr	disabled)

EGR STRATEGY, SONIC EGR - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SONIC EGR VALVE STRATEGY (PFEHP = 0)

The Sonic Exhaust Gas Recirculation (EGR) system offers a high degree of flexibility. The chief benefit is improved drive and fuel economy. The abilities are:

- EGR flow can be precisely varied depending upon engine operating conditions.
- Spark advance can be precisely adjusted to compensate for the actual ${\tt EGR}$ ${\tt flow}\,.$

The Sonic EGR system consists of:

- _ Sonic EGR valve
- _ EGR valve position (EVP) sensor
- _ Electronic Vacuum Regulator (EVR)

The EGR valve controls the flow of exhaust gases to the intake manifold. The pintle valve and seat assembly are designed such that EGR flow is proportional to pintle position. Further, the output of the EVP sensor is directly proportional to the pintle position. This design allows direct calculation of EGR flow.

The EGR valve is operated by manifold vacuum.

The EVR:

- Applies more vacuum to the EGR valve (increases EGR flow).
- Maintains existing EGR valve vacuum (maintains EGR flow).
- Applies less vacuum (decreases EGR flow).

The strategy enables EGR during various engine operating modes. These modes are calibration items. Typical calibrations will enable EGR when these

conditions are met:

- Time since start is greater than a calibration value.
- Engine is in part throttle mode.
- Current EGR valve position is not less than the fully closed position.

EGR STRATEGY, SONIC EGR - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The sonic EGR strategy makes two sets of calculations:

1. Desired EGR rate = EGRATE (%)
 Desired EGR mass = DESEM (PPM)
 Desired EGR valve position = DELOPT (counts)

The feedback for the sonic system is the difference between the desired and actual EGR valve position.

EGRERR = DELOPT - EVP

EGR STRATEGY, SONIC EGR - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- AM = Air Mass flow, lb/min.
- AMT = Air Mass flow for torque calculation.
- AMPEM = Air Mass plus EGR Mass Flow, lb/min. (See SYSTEMS EQUATIONS Chapter).
- AMPEMT = Air Mass plus EGR Mass Flow for torque calculation.
- BP = Barometric pressure, in. Hg.
- BPCOR = Corrected BP = FN004(BP)
- DELOPT = Filtered desired EGR valve position.
- ECT = Engine Coolant Temperature.
- EGRACT = Filtered actual EGR Percentage = UROLAV(EM * 100/AMPEM, TCEACT).
- EGRDC = Desired EVR duty cycle, %/100.
- EGRERR = DELOPT EVP.
- EGRTMR = Accumulated time EGR is enabled, sec. (See TIMER Chapter)
- EM = Actual EGR mass flow, lb/min.
- EOFF = The lowest EGR valve reading when the valve is fully closed, in

A/D counts. See System Equations.

- EVP = EGR valve position reading in A/D counts.
- MAPOPE = MAP/PEXH
- PEXH = Absolute Exhaust Pressure, "Hg = FN074A(AM) * (29.875/BPCOR) + BP.
- WOTTMR = Time at WOT.

Bit Flags:

- AFMFLG = Flag indicating ACT sensor has failed; 1 -> failure.
- CFMFLG = Flag indicating ECT sensor has failed; 1 -> failure.
- EFMFLG = Flag indicating EVP sensor has failed; 1 -> failure.
- EGREN = EGR enable/disable flag: 0 -> disable EGR; 1 -> enable EGR.
- EGRFLG = Flag that indicates whether DCOFF has been added to EGRDC.
- ISCFLG = Idle speed control mode flag (see Idle Speed Control Chapter).

EGR STRATEGY, SONIC EGR - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- MFMFLG = Flag indicating MAP sensor has failed; 1 -> failure.
- MPGFLG = Flag indicating Fuel Economy Mode.
- TFMFLG = Flag indicating TP sensor has failed; 1 -> failure.

Calibration Constants:

- DCOFF = Duty cycle required to start to open the valve equivalent to LGAOD in the Vent/Vac system.
- EGRDED = EVP breakpoint above/below EOFF to determine open/closed EGR valve and if EOFF has learned closed valve position, counts.
- EGRTD7 = Calibration time delay to ramp on EGR, sec.
- FN074A = Exhaust pressure as a function of AM. FN074A should be measured
 - at sea level when mapping the data.
- FN211 = EGR rate multiplier as a function of Engine Coolant Temperature ECT.
- FN212A = EGR rate multiplier as a function of Barometric Pressure BP.
- FN218 = Ratio of mass flow to choked flow as a function of MAP/PEXH.
- FN219 = EGR mass flow as a function of EGR valve position ${\tt EVP}$ ${\tt EOFF}$.
- FN220 = EGR rate multiplier as a function of Air Charge Temperature, ACT.
- FN221 = Desired EGR valve position as a function of desired EM.
- FN239 = Change in EVR duty cycle as a function of the EGR valve position error, EGRERR.
- FN1220 = EGR rate table as a function of LOAD and N, percent.
- FN1222 = Fuel Economy EGR Rate Table, percent.
- KPEI = Constant EGR adder.
- TCDLOP = Time constant for DELOPT rolling average filter.
- TCEACT = Time constant for EGRACT rolling average filter.
- X = EGRATE multiplier for development.

EGR STRATEGY, SONIC EGR - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- DELOPT = See above.
- DESEM = Desired EM + EGRATE * AMPEM/100
- EGRATE = Desired EGR rate in percent.
- EGRDC = See above.

EGR STRATEGY, SONIC EGR - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: EGR_SONIC_COM2

If EGR is enabled, the base amount of EGR to be added is determined from ${\rm FN}1220$, or ${\rm FN}1222$ if in MPG mode.

The table values are a function of engine speed (N) and load, where load = ${\rm MAP}$.

The base amount of EGR can be adjusted by ECT, ACT, and BP to reflect special engine operating conditions.

Desired EGR rate = EGRATE = [A * FN211(ECT) * FN212A(BP) * FN220(ACT) * (EGRTMR/EGRTD7) * FN240(WOTTMR) * X] + KPEI

Where,

DESEM CALCULATION.

EGR STRATEGY, SONIC EGR - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Desired EGR mass = DESEM = (EGRATE * AMPEM)/100 (lbm/min)

Clip DESEM to 1.99 ppm as a maximum.

The desired EGR mass is then converted into a desired position as:

Desired EGR valve position = DELOPT' = FN221 + EOFF

NOTE: The input to FN221 is corrected desired EGR mass flow = (DESEM/FN218) * (29.875/BP)

To prevent over control of the EGR valve, the valve position, DELOPT' filtered as DELOPT using the rolling average filter routine.

DELOPT = UROLAV(DELOPT',TCDLOP) (counts)

Clip DELOPT from 0 to 1023.99 counts.

EGR STRATEGY, SONIC EGR - LHBHO
PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Actual EGR rate = EGRACT' = (EM/AMPEM) * 100

EGRACT is used to modify spark advance (see SAF calculations). To prevent large instantaneous changes in calculated spark, EGRACT' is filtered as EGRACT using the rolling average filter routine.

EGRACT = UROLAV(EGRACT',TCEACT) (percent EGR)

ACTUAL EGR MASS

EFMFLG = 1 -----(EGR sensor is not OK) MFMFLG = 1 -----(LOAD sensor is not OK) AFMFLG = 1 -----(ACT sensor is not OK) OR -- EGR IS OFF CFMFLG = 1 -----| EM = 0(ECT sensor is not OK) TFMFLG = 1 -----(TP sensor is not OK) ISCFLG = 1 OR 2 -----(RPM CONTROL) |AND -| DELOPT = 0 -----| (Filtered desired EGR position) --- ELSE ---EM = FN218(MAPOPE) * FN219(EVP-EOFF) * (BP/29.875) Clip EM to 1.99 ppm as a maximum

AM = AMPEM - EM
(AM is used to calculate fuel flow in the FUELPW calculation)

AMT = AMPEMT - EM
(AMT is used to calculate ARCHG in the torque calculation)

EGR STRATEGY, SONIC EGR - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The error signal used to control the EGR valve is the difference between desired and actual EGR valve position.

EGR valve position error = EGRERR = DELOPT - EVP

EGRERR in turn is used to calculate the change in EVR duty cycle (plus or minus) via FN239(EGRERR).

NOTES:

- 1. When the desired EGR rate EGRATE equals zero, DELOPT is then set to zero.
 - This action will close the EGR valve when zero EGR is requested.
- 2. When the desired EGR rate EGRATE is nonzero $% \left(1\right) =\left(1\right) +\left($
 - DELOPT is set to EOFF before the DELOPT filter is run. This makes the DELOPT filter start at the closed EGR valve position when EGR is desired.
- 3. DELOPT is clipped to 922 counts (90% of VREF).

EGR STRATEGY, SONIC EGR - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SONIC EGR VALVE OUTPUT CONTROL

The EGR valve is controlled in a closed loop manner using proportional control, and the EGR valve position, EVP, as the feedback variable. The valve is moved to the desired EGR position DELOPT through output commands to the Electronic Vacuum Regulator, EVR.

EGR FLOW

HOLD

MAINTAIN DUTY CYCLE

INCREASE

INCREASE DUTY CYCLE

DECREASE

DECREASE DUTY CYCLE

NONE

(FULLY CLOSED)

The change in the EVR duty cycle is a function of the sign and magnitude of the error in valve position according to the following logic.

NOTE: EGRDC is clipped to 0.90.

An EVR calibration method, EVR.MEM, is available in the Strategy group user area. Copies can be made by exercising the Xerox option as explained on the second page of this Strategy Book.

EGR STRATEGY, EVR CONTROL ALGORITHM - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EVR CONTROL ALGORITHM SONIC AND PFE

OVERVIEW

The EVR Control routine produces a variable frequency duty cycle signal to the EVR solenoid. To produce an 80-180 Hz signal on a low speed output while minimizing real execution time, a foreground repeater process is is a section of code that is executed approximately repeater every millisecond as signaled by the internally-generated Output Interrupt #1. Once a background loop, the EVR Control module converts the current EGR duty cycle (EGRDC) into "on time" (EGRCNT) and total period (EGRPER) for use by the foreground repeater. The foreground repeater module transfers values into corresponding foreground registers, EGRCTF and EGRPRF when requested and the current value of EGRPRF < 1.0. The values of the foreground registers, which are decremented by one each time through the repeater, determine if the EVR is to be energized. If the foreground period (EGRPRF) is >= 1.0 and the on-count (EGRCTF) > 0, the EVR is energized. If the period >= 1 and the count is 0 ("on time" complete, period incomplete), the EVR is de-energized. When the period becomes < 1.0 (period complete), the foreground registers are updated with the current background counter period, and the process is repeated. Any fractional part left in EGRPRF is included in the next period to produce duty cycles (on the average)

Calibration Guides for both PFE and EVR are available. Xerox copies may be obtained in the same manner as Strategy books. The file names are PFE1.MEM and EVR.MEM.

obtainable with integer on times and periods.

EGR STRATEGY, EVR CONTROL ALGORITHM - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- EGRCNT = Background EVR "on" count, unitless.
- EGRCTF = Foreground EVR "on" count, unitless.
- EGRDC = Requested EVR duty cycle, unitless.
- EGRPER = Background EVR duty cycle period, unitless.
- EGRPRF = Foreground EVR duty cycle period, unitless.

Bit Flags:

- NO_START = Engine off VIP enable flag.

OUTPUTS

Registers:

- EGRCNT = See above.
- EGRCTF = See above.
- EGRPER = See above.
- EGRPRF = See above.

Bit Flags:

- EVR = Flag indicating state of EVR output, 0 = OFF, 1 = ON.

EGR STRATEGY, EVR CONTROL ALGORITHM - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: EGR_EVR_CONTROL_COM1

BACKGROUND EVR CONTROL MODULE

EGRDC = 0	EGRCNT = 0 EGRPER = 0
	ELSE
EGRDC > 0.86	EGRCNT = 6
	ELSE
0.69 < EGRDC <= 0.86	EGRCNT = 5
ļ	ELSE
0.50 < EGRDC <= 0.69	EGRCNT = 4
	ELSE
0.35 < EGRDC <= 0.50	EGRCNT = 3
	ELSE
0.18 < EGRDC <= 0.35	EGRCNT = 2
	ELSE
0.08 < EGRDC <= 0.18	EGRCNT = 1
	ELSE
j	EGRCNT = 0
EGRDC <> 0	EGRPER = (EGRCNT/EGRDC) (clip EGRPER to 12.0 as maximum)

EGR STRATEGY, EVR CONTROL ALGORITHM - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EVR FOREGROUND REPEATER MODULE (Performed on one-millisecond interrupt)

NO_START = 1 (in KOEO VIP Test)	EVR IS UNDER VIP CONTROL Do NOT Update EVR in this Module		
	 ELSE		
EGRCNT = 0 (EGR not requested)	EVR = 0 (turn EVR off) EGRPRF = 0		
	ELSE		
EGRPRF < 1.0 (last period complete, get new data)	EVR = 1 (turn EVR on) EGRCTF = EGRCNT - 1 EGRPRF = EGRPRF + EGRPER - 1.0		
	 ELSE		
EGRPRF >= 1.0	EVR = 1 (continue EVR on) EGRCTF = EGRCTF - 1 EGRPRF = EGRPRF - 1.0		
(on time incomplete)	ELSE		
EGRPRF >= 1.0 (period incomplete) AND -	 EVR = 0 (turn EVR off, or continue off)		
EGRCTF = 0 (on time complete)	EGRPRF = EGRPRF - 1.0		

EGR STRATEGY, EVR CONTROL ALGORITHM - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 9

IDLE SPEED CONTROL

IDLE SPEED CONTROL, GENERIC IDLE SPEED CONTROL - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

GENERIC IDLE SPEED CONTROL

OVERVIEW

This chapter describes the adaptive air bypass idle speed control system. In

general, the ISC system is designed to regulate the duty cycle to an air

bypass solenoid as necessary to obtain the desired engine speed for all idle

operating conditions (base idle; hi-cam; various accessory loads) and provide

for a dashpot action. Predicted airflows for the different $\mbox{\ load}$ states at

idle are adaptively corrected to minimize the impact of hardware variability.

Acceptable idling performance is achieved by a careful balance of bypass air

solenoid control, feedback spark control, and idle fuel modulation.

Idle Fuel Modulation is used to eliminate the fueling errors common to speed $% \left(1\right) =\left(1\right) +\left(1\right$

density systems. Although Idle Fuel Modulation is important to overall

idling performance, it should not be used to control $% \left(1\right) =\left(1\right) +\left(1\right$

modulation is described in the fuel chapter.

Feedback Spark offers the fastest way to change engine torque. As such, its

use is important in the control of load transitions like A/C, power steering,

and neutral/drive changes. Aggressive use of Feedback Spark is very $% \left(1\right) =\left(1\right) +\left(1\right)$

effective in limiting rpm changes during these conditions. The Feedback

Spark strategy is described in the spark chapter.

The amount of airflow through the air bypass is controlled by the solenoid

position, which is in turn determined by the solenoid duty cycle. The $\,$

objective of the idle speed control strategy is to determine ISCDTY. As

mentioned above, calibration of the bypass actuator control must be

coordinated with that of Feedback Spark and Idle Fuel Modulation.

The overall bypass air ISC logic sets ISCDTY to one of the following:

I. CRANK

a) Engine Stopped:

ISCDTY = 0%

b) Engine Moving:

ISCDTY = FN884(TCSTRT)%

II. FMEM (MAP or TP sensor out of range):

ISCDTY = FMMISC

III. NORMAL RUNNING ISC:

ISCDTY = IDCMUL * FN800(DEBYMA) * FN820(VACUUM) + IDCOFS

IDLE SPEED CONTROL, GENERIC IDLE SPEED CONTROL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

NORMAL ISC

Under most operating conditions, ISCDTY is obtained from the Normal $\ensuremath{\mathsf{ISC}}$

logic. During Normal ISC, the strategy can operate in any one of four modes:

DASHPOT PREPOSITION, DASHPOT, RPM CONTROL, or LOCKOUT. The modes will be

described in more detail shortly.

Regardless of which of the four modes is active, the strategy first calculates a total desired idle airflow, DESMAF:

DESMAF = DESMAF_PRE + DASPOT + IPSIBR + ISCKAM

DESMAF represents the total engine airflow required for idle. There are

slight differences in the calculation of DESMAF depending on which mode is

active. These differences are summarized below and will be described in $\ensuremath{\mathsf{more}}$

detail in the discussion of each individual mode.

DASHPOT PREPOSITION MODE (ISCFLG = 0)

- DESMAF_PRE = Initial prediction, based on rpm, load, and temperature
- DASPOT = DASPTK * (DSTPBR (RATCH + DELHYS)) + DASPTO
- IPSIBR = Fixed at last calculated value (not updated in this mode)
- ISCKAMn = KAM cell n, where n is selected by ISFLAG

DASHPOT MODE (ISCFLG = -1)

- DESMAF_PRE = Initial prediction, based on rpm, load and temperature
- DASPOT = old DASPOT FN879(DASPOT)
- IPSIBR = Fixed at last calculated value (not updated in this mode)
- ISCKAMn = KAM cell n, where n is selected by ISFLAG

RPM CONTROL MODE (ISCFLG = 1)

- DESMAF_PRE = Initial prediction, based on $\ensuremath{\mathtt{rpm}}$, load and temperature
- DASPOT <= DASCTL (DASPOT must be below DASCTL to enter rpm control)
- IPSIBR = old IPSIBR + ISCPSI
- ISCKAMn = KAM cell n, where n is selected by ISFLAG

RPM CONTROL LOCKOUT MODE (ISCFLG = 2)

- DESMAF PRE = Initial prediction, based on rpm, load and

temperature

- DASPOT <= DASCTL (DASPOT must be below DASCTL to enter Lockout Mode

- IPSIBR = old IPSIBR + ISCPSI ISCKAMn = KAM cell n, where n is selected by ISFLAG

IDLE SPEED CONTROL, GENERIC IDLE SPEED CONTROL - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

During Normal ISC, the strategy executes a number of tasks in a specific order. These tasks perform the actual logic and calculations required for any of the four modes of operation. The order of execution of the tasks is listed below. The details of each task are described in separate sections which follow.

NORMAL ISC TASKS

- 1) DSDRPM_CALC calculation of DSDRPM & DESMAF_PRE
- 2) RPMERR_CALC calculation of RPMERR_A & RPMERR_S
- 3) DASPOT_CALC calculation of DASPOT
- 4) MODE_SELECT selection of mode & setting of ISCFLG
- 5) IPSIBR_CALC IPSIBR update & calculation of DESMAF 6) ISCDTY_CALC calculation of DEBYMA & ISCDTY 7) ISCKAM_UPDATE adaptive update of ISCKAM

IDLE SPEED CONTROL, GENERIC IDLE SPEED CONTROL - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- APT = Throttle Mode flag.
- ATMR3 = Time since entering RUN mode, secs.
- N = Engine revolutions, RPM.
- N_RATCH = RPM value which only ratchets down. When not at closed throttle, N = N_RATCH. When at closed throttle, N_RATCH is only allowed

allowed to go down. N_RATCH is an input to the minimum daspot clip. N RATCH

ratchets down to prevent rpm flares after a declutch.

- RATCH = Closed throttle position, counts.
- TCSTRT = Temperature of ECT at Cold Start-up, deg F.
- TSLPIP = Time since last PIP, msecs.
- VACUUM = Intake manifold vacuum.
- VSBAR = Filtered vehicle speed for transmission.

Bit Flags:

- AFMFLG = ACT Failure flag; 1 -> ACT out of range.
- CFMFLG = ECT Failure flag; 1 -> ECT out of range.
- CRKFLG = Crank Mode flag; 1 -> Crank mode.
- DISABLE_ISC = Flag used by VIP to disable the ISC strategy and freeze ISCDTY at it's present value.
- DNDSUP = Delayed Neutral/Drive switch position. Set when
 drive
 engagement delay is exceeded; 1 -> Drive engaged.
- ISC_LATCH = ISC delay logic flag; 1 -> Enable delay logic.
- MFMFLG = MAP Failure flag; 1 -> MAP out of range.
- NDSFLG = 0 -> transmission in Neutral, 1 -> transmission in gear.
- REFLG = Re-initialization flag; 1 -> Re-init occurred.
- RUNUP_FLG = Flag indicating that initial runup is complete; 1 ->
 runup
 rpm exceeded.
- TFMFLG = TP Failure flag; 1 -> TP out of range.

Calibration Constants:

- CRKTIM = Time in run mode to clear 100% cranking duty cycle.

IDLE SPEED CONTROL, GENERIC IDLE SPEED CONTROL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- DASMHYST = Hysteresis for DASMPH, mph.
- DASMPH = Minimum VSBAR for declutch DASPOT clip, mph.
- FMMDSD = Failure mode management default desired rpm.
- FMMISC = Default Duty Cycle to ISC, fraction.
- FN884(TCSTRT) = ISC Duty Cycle in Crank, deg.
- TRLOAD = Transmission Load.
 - 0 -> Manual Transmission, no clutch or gear switches, forced neutral state (NDSFLG = 0).
 - 1 -> Manual Transmission, no clutch or gear switch.
 - 2 -> Manual Transmission, one clutch or gear switch.
 - 3 -> Manual Transmission, both clutch and gear switches.
 - 4 -> Auto Transmission, non-electronic, neutral drive switch.
 - $5 \rightarrow \text{Auto Transmission}$, non-electronic, neutral pressure switch,
 - (AXOD).
 - 6 -> Auto Transmission, electronic, PRNDL sensor park, reverse, neutral, overdrive, manual 1, manual 2.

IDLE SPEED CONTROL, GENERIC IDLE SPEED CONTROL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- DSDRPM = Desired engine speed.
- DSTPBR = Dashpot filtered throttle position.
- ISCDTY = Idle speed control duty cycle.
- N_RATCH = See above.

Bit Flags:

- FLG_DASMNQ = VSBAR flip-flop flag for minimum DASPOT clip.
- $\mbox{HCAMFG} = \mbox{Flag}$ indicating the completion of $\mbox{Hi-Cam; 0} \rightarrow \mbox{No desired}$ engine

speed adder exists, 1 -> an RPM adder above base idle is present.

is used in the ISC adaptive update routine to disable updates when $\mbox{HCAMFG} = 1$.

- ISCFLG = ISC mode flag; -1 -> Dashpot Mode, 0 -> Dashpot Preposition

Mode, 1 -> Closed Loop rpm Control Mode, 2 -> Closed Loop rpm Control (Lock-out entry to rpm control).

- RUNUP_FLG = See above.

IDLE SPEED CONTROL, GENERIC IDLE SPEED CONTROL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: ISC_OVERVIEW_COM3

The purpose of the ISC logic is to determine ISCDTY. Under certain conditions, ISCDTY is set to specific values. Under most operating conditions, ISCDTY is determined from the Normal ISC logic which is described later. The logic below describes, at highest level, how ISCDTY is determined.

OVERALL BYPASS AIR ISC LOGIC

DISABLE_ISC = 1 (Flag set by VIP logic)	(ISC logic disabled) freeze ISCDTY
	EXIT ISC LOGIC
	ELSE
CRKFLG = 1	<pre>(engine stopped) ISCDTY = 0 (0% - actuator closed) DSTPBR = RATCH EXIT ISC LOGIC</pre>
	ELSE
CRKFLG = 1	<pre>(engine moving) ISCDTY = FN884(TCSTRT)% (duty cycle function of temperature at start) Do DSDRPM_CALC Do RPMERR_CALC (Update RUNUP_FLG) DSTPBR = RATCH EXIT ISC LOGIC</pre>
MFMFLG = 1 OR TFMFLG = 1	ELSE (FMEM fault present) ISCFLG = 0 HCAMFG = 1 RUNUP_FLG = 1 DSDRPM = FMMDSD ISCDTY = FMMISC EXIT ISC LOGIC
	ELSE (normal ISC) update FLG_DASMNQ update N_RATCH ISCDTY is calculated from the Normal ISC logic described ater

IDLE SPEED CONTROL, GENERIC IDLE SPEED CONTROL - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CRANK DUTY CYCLE DELAY LOGIC

This logic is part of the overall Bypass Air ISC logic described previously.

The duty cycle used during engine cranking is 100%. The following logic (crank duty cycle delay) can be used to cause the 100% crank duty cycle to continue to be used for a calibratable time after entering run mode.

REFLG = 0 (Not a reinit)				
RUNUP_FLG = 0 (runup not complete)			AND -	"TRUE"
DNDSUP = 1 (in drive)		 OR 		
APT = -1 (closed throttle)	 AND -			
ATMR3 < CRKTIM (time since run mode)				
ISC_LATCH = 1				ELSE
				"FALSE"

ISC_LATCH LOGIC

ISC_LATCH is a software flag which is used to implement the above crank duty cycle delay logic. It is not displayable and is only included here to describe the above logic function.

IDLE SPEED CONTROL, GENERIC IDLE SPEED CONTROL - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FLG_DASMNQ and N_RATCH LOGIC

This logic is used by DASPOT. It is shown here because it is executed as part of the OVERALL ISC LOGIC. It is executed anytime the Normal Isc logic is done so it will be available, if required by DASPOT mode.

FLG_DASMNQ

VSBAR >= DASMPH + DASMHYST S	Q-	FLG_DASMNQ = 1
VSBAR < DASMPH C		(Prepare to add dashpot to prevent declutch stall)
		ELSE
		FLG_DASMNQ = 0

N_RATCH

APT = 0 OR 1			
		OR	N_RATCH = N
NDSFLG = 1			
TRLOAD = 3	AND -		ELSE
IRLOAD = 3	I		
APT = -1		ı i	
		AND -	N_RATCH = N
N <= N_RATCH			(let N_RATCH come down)
		ļ	ELSE
		ļ	6056
		j	No change to N_RATCH
		ļ	(RPM flare, keep N_RATCH
			the same)

IDLE SPEED CONTROL, DESIRED RPM CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DSDRPM CALCULATION

OVERVIEW

This section describes the calculation of desired idle rpm (DSDRPM) and the

predicted mass air flow at idle (DESMAF_PRE). DSDRPM is used to calculate

DESMAF_PRE, and also as a control input for closed loop and adaptive idle speed control.

The strategy calculates a desired value for engine speed, $\ensuremath{\mathsf{DSDRPM}}, \ensuremath{\mathsf{which}}$ it

attempts to maintain while in idle speed control. DSDRPM is composed of a

Base portion, plus a Hicam portion, plus additional adders for A/C, Power $\,$

Steering and Low ACT.

DSDRPM = Base + Hicam [+ RPMINC] [+ DNAC] [+ DNPOWS]

The square brackets indicate that the adders may or may not be present,

depending on certain control logic. Whenever a square bracket appears in the

text, there will be control $\log ic$ which follows to indicate under what

conditions the adder is used.

GPAS Requirements:

Automatic transmission vehicles operating in drive are limited by $\mbox{\footset}$ Ford $\mbox{\footset}$ GPAS

requirements to a maximum desired idle RPM. Under these conditions, $\ensuremath{\mathsf{DSDRPM}}\,,$

including all adders, is clipped to the value ISCLPD as a maximum.

Base portion of DSDRPM:

The Base portion of DSDRPM is the part that does not go away after the engine warms up.

Base = NUBASE or DRBASE

Hicam portion of DSDRPM:

In normal (non-VIP) strategy, the Hicam portion of DSDRPM is composed of a variety of adders for special operating conditions (ECT, ACT, IDLTMR, etc).

Non-VIP: Hicam = pre_fn825a + FN825B [+pre_bzzrpm] [+FN826A] [+ (FN880 + FN821A)]

In VIP, a special equation is used for DSDRPM:

VIP: DSDRPM = RVIPRPM [+RPMINC] [+DNAC] [+DNPOWS]

DSDRPM is allowed to rise instantaneously, but any decrease in value is filtered to prevent a sudden drop. This filtered value of DSDRPM is called DESNLO (time constant TCDESN for non-VIP, VTCDSN for VIP). If DSDRPM is decreasing, it is set to the filtered value, DESNLO. The flag, HCAMFG, is set if Hicam is non-zero, or if DSDRPM is decreasing. HCAMFG is used to prevent adaptive airflow updates (ISCKAM).

IDLE SPEED CONTROL, DESIRED RPM CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DESMAF_PRE CALCULATION

The predicted desired mass air flow (DESMAF_PRE) is the airflow which is expected to be required to provide a particular engine speed. The

expected to be required to provide a particular engine speed. The prediction

is a function of DSDRPM, ECT, ATMR3 (time since entering run mode), power

steering, A/C, and Cold Start Spark. This term is later added to an $\,$

integration term (IPSIBR), a dashpot term (DASPOT), and an adaptive term $\,$

(ISCKAM), to produce the total DESMAF.

DESMAF_PRE = (FN875D or FN875N) * FN1861 [+ AC_PPM] [+ PSPPM] [+ CSSMAF]

- DESMAF_PRE is a non-displayable parameter.
- FN875N and D are functions of DSDRPM. This means that, if a DSDRPM adder $\,$
 - is used for power steering or A/C, the airflow to give the RPM increase
 - is already accounted for in DESMAF_PRE. AC_PPM, PSPPM, and CSSMAF
 - represent only the airflow needed for the increased load, not the $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$
 - increased RPM.

IDLE SPEED CONTROL, DESIRED RPM CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- AC_PPM = AC delta air mass, calculated.
- ACT = Air charge temperature, deg F.
- A3CTMR = A/C state transition timer. Timer is reset to 0 on every A/C state change.
- APT = Throttle mode flag.
- ATMR1 = Timer which counts up in run/underspeed mode.
- ATMR3 = Timer which counts up in run mode. (Reset to 0 only at powerup)
- Base = Symbol used to represent the base RPM portion of DSDRPM.
 Base is
 not displayable.
- DSDRPM = Desired engine speed. See Overview section for definition of
 - the various uses of this register.
- DESNLO = Filtered value of DSDRPM. Applied only when DSDRPM is decreasing, using time constant TCDESN. Engine running VIP uses time constant VTCDSN.
- ECT = Engine coolant temperature, deg. F.
- Hicam = Symbol used to represent the hi-cam adders to DSDRPM.
 Hicam is
 not displayable.
- ISFLAG = Flag that indicates the degree of loading on the engine at Idle. See table at the end of the DSDRPM logic.
- bee table at the end of the babkem logic.
- ISLAST = Register which indicates the engine load state from the previous background pass.
- LOACT = Lowest value of ACT since startup.

Bit Flags:

- ACCFLG = A/C engaged flag: 1 -> A/C engaged; 0 -> A/C disengaged.
- ACIFLG = A/C engagement impending flag: 1 -> A/C about to
 engage adjust airflow and fuel immediately; 0 -> A/C not about to engage.

- ALT_CAL_FLG = Flag to indicate use of alternate calibration.

- CSSFLG = Cold start spark flag; 0 -> no cold start spark required,

cold start spark required.

- DNDSUP = Delayed neutral/drive flag: 0 -> in neutral, no load; 1
-> in
 drive, loaded.

IDLE SPEED CONTROL, DESIRED RPM CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- POWSFG = Flag used to indicate that power steering load is high:
 1 ->
 power steering on.
- PSFLAG = Flag to indicate last pass value of power steering to check
 for
 transitions: 1 -> power steering was on.
- PTSCR = Part throttle since crank mode flag: 0 -> driver has not tipped

in since start; 1 -> driver tipped in, kick down desired RPM.

- VRUN_ISCFLG = Flag which indicates that idle speed is being controlled by

Engine Running VIP: 1 -> in Engine Running VIP; 0 -> not in Engine Running VIP.

Calibration Constants:

- BZZRPM = RPM adder intended to provide a short increase in RPM for engine
 - cleanout on start-up. The buzz-up function is not affected by the part throttle kickdown until BZZTM expires. ..Typical value 300 RPM.
- BZZRPM ALT = Alternate BZZRPM.
- BZZTM = Time for which BZZRPM adder is in effect. ..Typical value
 3 seconds.
- BZZTM_ALT = Alternate BZZTM.
- CHGRPM = Maximum RPM delta above base to enable battery charge, I/M
 - logic. Also upper clip on DSDRPM adder due to battery charge and I/M. (FN821A + FN880), RPM.
- CSSMAF = Cold start spark DESMAF multiplier. Used to compensate for increased airflow requirement due to retarded spark.
- DACTM = Time to maintain A/C rpm adder after A/C has been disengaged.

Used to prevent RPM changes when A/C cycles rapidly. ..Typical value - 30 sec.

- DNAC = RPM increment requested with the A/C on. ..Typical value
 75
 RPM.
- DNPOWS = If a power steering pressure switch is used, this parameter $% \frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right$

increments the desired RPM when an increased load is sensed. ..Typical value - 75 RPM.

- DRBASE = Base desired engine speed in drive.
- DRBASE ALT = Alternative Cal DRBASE.

- FN825A(ECT) = RPM adder as a function of ECT. Provides base Hi-Cam function.

- FN825A_ALT = Alternative FN825A.
- FN825B(ACT) = RPM adder as a function of ACT. Provides higher idle at very low ambients.

10/21/2000 LHBH1.TXT

IDLE SPEED CONTROL, DESIRED RPM CALCULATION - LHBHO PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

- FN826A(TCSTRT) = RPM adder as a function of ECT at start. This
- adder is $\mbox{not used when either the first part throttle transition since}$ exiting
 - crank is observed or the time since start exceeds a calibrated (TKDTM).
- FN875D(DSDRPM) = Airflow required for closed throttle operation in drive.

Input to this function is DSDRPM.

- ** Airflow requirements must be measured as accurately as possible
- representative population of vehicles. Data should be collected over a range
- of anticipated desired speeds on a stabilized engine for both neutral and
- drive (a temperature modulator (FN1861) will automatically adjust calibrated
- airflow to account for increased requirements at low ambients).
- A hot wire airmeter can be remotely mounted to measure airflow directly over
- the desired speed range. Equipment is available at APTL to perform this procedure.
- FN875N(DSDRPM) = Airflow required for closed throttle operation in
 - neutral. Input to this function is DSDRPM.
- FN880(IDLTMR) = DSDRPM adder vs. time at idle (IDLTMR). Used as part of
 - the inspection/maintenance strategy. Remember that any RPM above base
 - idle disables ISCKAM adaptive learning via HCAMFG. Also, IDLTMR requires
 - RPM to be below IDLRPM, an absolute parameter which is not tied to
 - DSDRPM. Too high an RPM adder in FN880 could disable IDLTMR.
- FN885 = A/C DESMAF adder based on N.
- FN887A(ACT) = A/C air flow correction based on ACT.
- FN1861(ECT, ATMR3) = Airflow multiplier vs. ECT and ATMR3. Used to
 - compensate for additional friction at start-up as a function of time in
 - addition to normal ECT compensation. Increased friction effects tend to
 - go away after about one minute. Inputs are ECT normalizing by FN020C,
 - ATMR3 normalizing by FN018B.
- ISCLPD = A clip on the maximum desired speed that can be requested with
 - vehicle in drive. Usually the GPAS defined speed allowed at 0.2 miles on
 - a cold start. ..Typical value 1100 RPM.
- MINACT = Minimum ACT before adding RPMINC to desired RPM.

- NUBASE = Base desired engine speed in neutral.
- NUBASE_ALT = Alternative Cal NUBASE.
- PSPPM = Airflow increment required when power steering load is sensed.

Value increments the desired flow through the ISC actuator to account for $% \left(1\right) =\left(1\right) =\left(1\right)$

increased load. .. Typical value - 0.10 ppm.

- PSPSHP = Software switch used to indicate if Power Steering Pressure

Switch is present; 1 -> switch used; 0 = no switch.

- TCDESN = Filter constant for the desired engine speed calculated value

(DSDRPM). Used to slow changes in desired speed in the decreasing $% \left(1\right) =\left(1\right) \left$

direction. ..Typical value - 3.5 sec

IDLE SPEED CONTROL, DESIRED RPM CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- TKDTM = Time since start after which FN826A is eliminated as a desired $\,$
 - RPM adder. ..Typical value 20 seconds.
- TRLOAD = Transmission Load switch 0 -> Manual transmission, no clutch
 - or gear switch, NDSFLG = 0; 1 -> Manual trans, no clutch or gear switch;
 - $2 \rightarrow \text{Manual trans, one clutch or gear switch; } 3 \rightarrow \text{Manual trans, both}$
 - switches; 4 -> Automatic trans, NDS; 5 -> Automatic trans, NPS;
 - Automatic trans, 7 position PRNDL; $7 \rightarrow$ Automatic trans, PRNDL switches (4EAT).
- RVIPRPM = Desired RPM controlled by Engine Running VIP strategy.
- VTCDSN = Filter constant for ISC ramp down down, unitless.

OUTPUTS

Registers:

- DSDRPM = See above.
- DESMAF_PRE = Predicted desired idle air flow, ppm. This is the open loop
 - air flow prediction which is required to idle, calculated as a function
 - of ECT and time since start and including A/C, power steering and heated $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$
 - windshield adders. It does not include any closed loop or \mathtt{KAM}
 - corrections, and is NOT DISPLAYABLE.
- DESNLO = See above.
- LOACT = See above.

Bit Flags:

- HCAMFG = Flag indicating the completion of Hi-Cam; 0 -> no desired engine
 - speed adder exists, 1 -> an rpm adder above base idle is present. Flag
 - is used in the ISC adaptive update routine to disable updates when $\ensuremath{\mathsf{HCAMFG}}$
 - = 1.
- ISFLAG = See above.
- PSFLAG = Flag to indicate last pass value of power steering to check for
 - transitions: 1 -> power steering was on.

IDLE SPEED CONTROL, DESIRED RPM CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

```
PROCESS
```

STRATEGY MODULE: ISC_DSDRPM_COM1

For Normal Strategy: (VRUN_ISCFLG = 0)

DSDRPM = (NUBASE or DRBASE) + Hicam [+ RPMINC] [+ DNAC] [+ DNPOWS]

For VIP strategy: (VRUN_ISCFLG = 1)

DSDRPM = RVIPRPM [+ RPMINC] [+ DNAC] [+ DNPOWS]

If DSDRPM is decreasing, the following filtering is done:

DSDRPM < DESNLO ------ (Filter DSDRPM - see notes below)

(Decreasing) DESNLO = UROLAV(DSDRPM, TCDESN)

DSDRPM = DESNLO

--- ELSE --
(Do Not filter DSDRPM)

DESNLO = DSDRPM

NOTES:

- For VIP: The time constant VTCDSN is used in place of TCDESN. If $\ensuremath{\text{VTCDSN}}$
 - = 0, the time constant defaults to TCDESN.
- DESNLO carries an extra byte of resolution which is not reflected in DSDRPM.

IDLE SPEED CONTROL, DESIRED RPM CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ALT_CAL_FLG = 1	pre_bzzrpm = BZZRPM_ALT pre_fn825a = FN825A_ALT pre_bzztm = BZZTM_ALT
	ELSE
	pre_fn825a = FN825A pre_bzzrpm = BZZRPM pre_bzztm = BZZTM
If automatic transmission and in d	drive, the GPAS clip is applied:
ALT_CAL_FLG = 1	pre_isclpd = ISCLPD_ALT
	ELSE pre_isclpd = ISCLPD
	pre_isclpd = ISCLPD
TRLOAD > 3 (Not manual transmission) DNDSUP = 1 (In drive) AND - DSDRPM > ISCLPD	Clip DSDRPM to pre_isclpd as a maximum ELSE
	Do not clip DSDRPM

NOTE: The square brackets above, "[]", indicate that a term is optional.

Anytime a square bracket appears in this chapter, there will be logic which

follows to indicate under what conditions the optional term is used. The $\,$

logic DOES NOT necessarily indicate the order in which software is executed.

IDLE SPEED CONTROL, DESIRED RPM CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(NUBASE or DRBASE) Logic:	
TRLOAD > 3 (Auto transmission) OR	Use pre_drbase in DSDRPM calculation
DNDSUP = 1 (In drive)	Use pre_nubase in DSDRPM calculation
[+RPMINC] Logic: (Low ACT and A/	(C panel switch adder)
ACT < LOACT	LOACT = ACT (lowest ACT since startup)
LOACT <= MINACT (ACT below normal) ACD = 1	OR Add RPMINC to DSDRPM
[+DNAC] Logic: (Air Conditioning	g adder)
ACCFLG = 0 (A/C Clutch off) ACIFLG = 0 AND - (A/C Load off)	.
	OR Add DNAC to DSDRPM
ACCFLG = 1	
ACIFLG = 1	.
[+DNPOWS] Logic: (Power Steering	g adder)
PSPSHP = 1 (PSPS Present) POWSFG = 1 (PS On)	AND - Add DNPOWS to DSDRPM
	Do NOT add DNPOWS 9-19
	2 ±2

IDLE SPEED CONTROL, DESIRED RPM CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OPTIONAL TERMS FOR Hicam CALCULATION

[+pre_bzzrpm] Logic: (Buzz up adder)	
ATMR1 < pre_bzztm (Buzz time not expired)	Add pre_bzzrpm to Hicam
	Do NOT add pre_bzzrpm
[+FN826A] Logic: (Engine Cleanout adder	?)
ATMR1 < TKDTM (Kickdown time not up)	Add FN826A to DSDRPM
PTSCR = 0 AND - (Not PT since Crank) OR	Add TNOZOA CO DDDNT
ATMR1 < pre_bzztm (Buzz time not up)	ELSE
	Do NOT add FN826A
[+ (FN880 + FN821A)] Logic: (Battery charge control and Inspection	Maintenance)
DSDRPM < CHGRPM	Add (FN880 + FN821A) to DSDRPM Clip DSDRPM to CHGRPM as a maximum
	ELSE
	Do NOT add (FN880 + FN821A)

IDLE SPEED CONTROL, DESIRED RPM CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DESMAF_PRE CALCULATION

DESMAF_PRE = ((FN875N or FN875) [*CSSMAF]	D) * F1	N1861 [+AC_PPM] [+PSPPM])
(FN875N or FN875D) Logic: TRLOAD <= 3 (Manual transmission) DNDSUP = 0 (In Neutral)	OR 	Use FN875N in DESMAF_PRE ELSE Use FN875D in DESMAF_PRE
[+AC_PPM] Logic: ACCFLG = 1	OR 	AC_PPM = FN885 * FN887A Add AC_PPM to DESMAF_PRE ELSE AC_PPM = 0 Add AC_PPM to DESMAF_PRE
[+PSPPM] Logic: PSPSHP = 1	AND - 	Add PSPPM to DESMAF_PRE ELSE Do NOT add PSPPM
<pre>[*CSSMAF] Logic: CSSFLG = 1 (Cold Start spark in use)</pre>		Multiply DESMAF_PRE by CSSMAF ELSE Do NOT Multiply by CSSMAF

NOTE: DESMAF_PRE is a non-displayable parameter.

IDLE SPEED CONTROL, DESIRED RPM CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ISFLAG/ISLAST LOGIC

ISLAST reflects the state of ISFLAG on the last program pass. ISFLAG is set according to the following chart:

	_	TO IN DRIV NDSUP = 1	-	L OR AUTO IN NDSUP = 0)	NEUTRA
A/C Off		0		3	
A/C Panel SW o LOACT <= MINA		1		4	
A/C On	 	2		5	

PSPSHP = 0 ----- Bypass PSFLAG logic (No pressure switch) --- ELSE ---POWSFG = 0 -----(PS is off) |AND - | PSFLAG = 0PSFLAG = 1 -----IBGPSI = 0--- ELSE ---PSFLAG = 0 -----| (PS is Off->On transition) POWSFG = 1 -----AND -PSFLAG = 1IBGPSI = 0--- ELSE ---No Change to PSFLAG

IDLE SPEED CONTROL, DESIRED RPM CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

HCAMFG Logic: (Enable/Disable Adaptive airflow updates) VRUN_ISCFLG = 1 -----| (In running VIP) AND -RVIPRPM <> NUBASE -----VRUN_ISCFLG = 0 ------(In Normal Strategy) AND - OR -- (Disable Adaptive airflow Hicam <> 0 ----update) (See Hicam Equation) HCAMFG = 1DSDRPM < DESNLO -----(DSDRPM decreasing) PSPSHP = 1 -----| (PSPS Switch present) AND -POWSFG = 1 -----(PS is on) --- ELSE ---(Allow Adaptive airflow update) HCAMFG = 0

IDLE SPEED CONTROL, RPM ERROR CALCULATION - LHBHO PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

RPM ERROR CALCULATION

OVERVIEW

Two separate RPM error calculations are executed in RPMERR_CALC.

instantaneous value (RPMERR) is calculated as the difference between the

desired and actual RPM -- positive value of RPMERR is an engine speed

desired, a negative value indicates engine speed above desired.

The instantaneous value of RPMERR is then filtered using time constants

(for bypass air) and TCFBS (for feedback spark). The two filtered values.

RPMERR_A and RPMERR_S are used in bypass air RPM control and feedback spark,

respectively.

In addition, RPMERR_CALC contains the set logic for RUNUP_FLG, which is

to disable IPSIBR updates, idle fuel modulation and feedback spark during the

initial runup. The flag is cleared in CRANK/UNDERSPEED/RUN mode selection.

DEFINITIONS

INPUTS

Registers:

- DSDRPM = Desired engine speed. See overview section for definition of
 - the various uses of this register.
- ECTCNT = Number of times the ECT sensor input was read.
- ISCFLG = ISC mode indicator flag; -1 -> Dashpot mode, 0 -> Dashpot

Preposition Mode, 1 -> Closed Loop RPM Control Mode, 2 -> Closed Loop RPM

Control (Lock-out entry to RPM control).

- N = Engine RPM.
- RPMERR_A = Filtered rpm error for bypass air calculations.
- RPMERR S = Filtered rpm error for feedback spark.

Bit Flags:

- ALT_CAL_FLG = Flag to indicate use of alternate calibration.
- RUNUP_FLG = Flag indicating initial runup is complete; 1 -> runup complete.
- VRUN ISCFLG = RVIP idle speed control flag.

Calibration Constants:

- RUNUP_DIFF = RPM difference from DSDRPM to set RUNUP_FLG = 1.
- RUNUP_DIFF_A = Pre-delivery RPM difference from DSDRPM to set
 RUNUP_FLG =
 1.

IDLE SPEED CONTROL, RPM ERROR CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- TCBPA = Time constant for RPMERR_A.
- TCFBS = Time constant for RPMERR_S.
- V_RUNUP_DIFF = RPM difference from DSDRPM to set RUNUP_FLG = 1
 when in
 VIP.

OUTPUTS

Registers:

- RPMERR = Instantaneous rpm error (DSDRPM N).
- RPMERR_A = See above.
- RPMERR_S = See above.

Bit Flags:

- RUNUP_FLG = See above.

IDLE SPEED CONTROL, RPM ERROR CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS STRATEGY MODULE: ISC_RPMERR_COM3 always ----- RPMERR = DSDRPM - N (RPM control or lockout) (calculate RPM error for airflow control) | RPMERR_S = ROLAV(RPMERR, TCFBS) (calculate RPM error for spark control) --- ELSE ---RPMERR_A = RPMERR RPMERR_S = RPMERR VRUN_ISCFLG = 1 ------| pre_runup = V_RUNUP_DIFF --- ELSE ---ALT_CAL_FLG = 1 -----pre_runup = RUNUP_DIFF_A --- ELSE --pre_runup = RUNUP_DIFF ECTCNT >= 8 -----(TCSTRT OK to use) N > DSDRPM + pre_runup --- AND - RUNUP_FLG = 1 (runup RPM exceeded) (initial runup complete) RUNUP_FLG = 0 -----| (first time this start) --- ELSE ---No change to RUNUP_FLG

IDLE SPEED CONTROL, DASHPOT CALCULATIONS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DASHPOT CALCULATIONS

OVERVIEW

Dashpot Pre-position

Logic controlling the dashpot pre-position airflow is intended to increase the ISC duty cycle during part/WOT operation. Strategy determines the rate at which ISC valve flow increases/decreases in part/WOT operation as well as the maximum allowed pre-position airflow. Adequate pre-position

the maximum allowed pre-position airilow. Adequate pre-position airflow

(DASDOT) is assential prior to entering the dashnet control mode in

(DASPOT) is essential prior to entering the dashpot control mode in order to avoid HC spiking and/or deceleration stalls. The calculated preposition

airflow increment is added to an adaptively corrected idle flow requirement

(DESMAF) prior to output of the ISC duty cycle. Pre-position $\operatorname{\operatorname{airflow}}$

(DASPOT) is a function of the difference between a filtered throttle position $% \left(1\right) =\left(1\right) +\left(1$

(DSTPBR) and the lowest recorded throttle position (RATCH).

DSTPBR is a time dependent rolling average filter of Throttle $\,$ position. $^{\rm T+}$

is updated once per background loop while in RUN or Underspeed Mode. The two

time constants, TCDASU and TCDASD are calibratable. TCDASU is used when $% \left(1\right) =\left(1\right) \left($

DSTPBR is filtering UP to TP. TCDASD is used to filter DSTPBR DOWN to TP.

The DASPOT value is adjusted as TP changes to provide the desired dashpot action to decelerations as initiated over the range of possible engine

operating conditions, using separate time constants (TCDASU/TCDASD) to control the response of DSTPBR.

Dashpot Bleed

During Closed Throttle Mode, the DASPOT airflow is "bled off" by decrementing

it. This action smooths the transition into RPM control by $\ensuremath{\mathsf{gradually}}$

eliminating the DASHPOT contribution to the Idle airflow, DESMAF. The bleed

rate is determined by FN879. This allows a more aggressive daspot $\,$

calibration to eliminate clunk in gear without affecting neutral.

IDLE SPEED CONTROL, DASHPOT CALCULATIONS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- APT = Throttle Mode Flag; -1 -> Closed Throttle, 0 -> Part Throttle,
 1 ->
 Wide Open Throttle.
- DSTPBR = Time dependent rolling average filter of throttle position.

Filtered using TCDASU when filtering UP to TP, and TCDASD when filtering DOWN to TP.

- ISCFLG = ISC mode indicator flag; -1 -> Dashpot Mode; 0 ->
 Dashpot
 - Preposition Mode; 1 -> Closed Loop RPM Control Mode; 2 -> Closed Loop RPM Control (Lock-out entry to RPM control)
 - Conclot (bock out energy to kem contr
- N = Engine revolutions, RPM.
- $N_RATCH = RPM$ value which only ratchets down. When not at closed
 - throttle, $N = N_RATCH$. When at closed throttle, N_RATCH is only allowed
 - to go down. N_{RATCH} is an input to the minimum daspot clip. N_{RATCH}

ratchets down to prevent rpm flares after a declutch.

- RATCH = Closed throttle position, counts
- TP = Throttle position sensor.
- VSBAR = Vehicle speed, MPH.

Bit Flags:

- FLG_DASMNQ = VSBAR flip-flop flag for minimum DASPOT clip.
- VRUN_ISCFLG = RVIP Idle Speed Control flag; 1 -> running VIP ISC action,
 - 0 -> normal ISC action.

Calibration Constants:

- DASPTK = Gain associated with the desired DASPOT airflow. To calibrate
 - this value first determine the throttle position above RATCH at which
 - $\mbox{\tt maximum}$ DASPOT airflow is desired. Subtract DASPTO from DASMAX and
 - divide the result by the throttle delta between RATCH and this $\ensuremath{\mathtt{maximum}}$
 - dashpot airflow to determine the DASPTK value.
- DASPTO = An offset term applied to the DASPOT $\,$ calculation. Insures $\,$ at
 - least some dashpot airflow on rapid tip-in/tip-outs.

IDLE SPEED CONTROL, DASHPOT CALCULATIONS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- DELHYS = Closed to part throttle hysteresis in $\ensuremath{\mathtt{TP}}$ counts. DELHYS should
 - be set equal to DELTA + HYSTS (closed throttle breakpoint). This starts
 - the dashpot calculation relative to the ${\tt C.T./P.T.}$ breakpoint to prevent
 - changes in dashpot when leaving closed throttle.
- DPNEU_MUL = Neutral daspot multiplier, unitless.
- FN879 = A background driven decrement to the dashpot preposition $\operatorname{airflow}$
 - register (DASPOT) as a function of DASPOT. FN879 can be calibrated to
 - achieve an exponentially decaying dashpot which is useful in decaying the
 - large DASPOT values used to control over-rich tip out conditions.
- FN882A(N DSDRPM) = Maximum dashpot clip as a function of the RPM delta
 - above desired rpm. (N DSDRPM) is clipped to 0 as a minimum.
- FN891(VSBAR) = Dashpot maximum clip as a function of vehicle speed. Used
 - in automatic transmission vehicles at higher vehicle speeds to prevent
 - harsh backout shifts by limiting large values of dashpot.
- FN894(N_RATCH DSDRPM) = Minimum DASPOT airflow clip for 1st, 2nd, and
 - 3rd gears, ppm. For manual transmissions, FN894 can be used to prevent
 - declutch stalls. The input is $\ensuremath{\text{N_RATCH}}$ which only ratchets down after the
 - declutch. This is done to prevent the rpm from hanging up if it flares
- after the declutch.
- ${\tt TCDASD}$ = ${\tt Time}$ constant used when ${\tt TP}$ is less than or equal to the filtered
 - TP value. Should be calibrated such that part throttle backouts where
 - closed throttle is not entered do not exhibit a run-on feel. Too fast a
 - filter can have the effect of greatly reducing dashpot airflow prior to $% \left(1\right) =\left(1\right) +\left($
 - entry into dashpot control.
- TCDASU = Filter constant used when TP is greater than the filtered $\ensuremath{\text{TP}}$
 - value (DSTPBR). The larger the time constant the more slowly
 - pre-position airflow will be available to respond to tip in/tip out
 - actions. Fast response can also be obtained by use of the offset value
 - DASPTO without the potential runaway feel that may come with too fast $\ \ a$
 - filter constant/airflow gain (DASPTK) combination.
- V_879_MULT = VIP multipler for DASPOT function FN879.

IDLE SPEED CONTROL, DASHPOT CALCULATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- DASPOT = Dashpot contribution to idle air flow. Used to provide a
 - preposition air flow in Part Throttle and Wide Open Throttle Modes, which
 - is "bled off" after a transition to Closed Throttle. This gradual air
 - decrement allows a smooth transition to RPM control.
- DSTPBR = See above.

CALIBRATION INFORMATION

Typical values are provided for the following calibration constants:

- DASPTK = 0.002 ppm/TP count
- DASPTO = 0.10 ppm
- FN879 = (0,0.001) (0.1,0.002) (0.3,0.006) (0.75,0.05) (2.00,0.10)
- TCDASD = 0.75 sec.
- TCDASU = 3.3 sec.

IDLE SPEED CONTROL, DASHPOT CALCULATIONS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: ISC_DASPOT_COM1

DASHPOT-PREPOSITION MODE (APT >= 0) (Mode select logic will set ISCFLG to 0)

While at PT or WOT, airflow is added to the DASPOT term to prepare for a deceleration:

DASPOT = DASPTK * (DSTPBR - (RATCH + DELHYS)) + DASPTO

Where, DSTPBR = ROLAV(TP, time constant)

Clips:

- DASPOT is clipped to the smaller of FN882A(N DSDRPM) *FN891(VSBAR) or
 - 2.99 as a maximum; clip (N DSDRPM) to zero as a minimum.
- minimum clip may be in effect.

FN894 minimum DASPOT clip logic

FLG_DASMNQ = 1 -----(speed above threshold) DASPOT < FN894(N RATCH - DSDRPM) --- AND - Clip DASPOT to FN894(N_RATCH - DSDRPM) * (airflow too low) DPNEU_MUL as a minimum DNDSUP = 0 -----| --- ELSE ---FLG DASMNQ = 1 -----| (speed above threshold) DASPOT < FN894(N RATCH - DSDRPM) --- AND - Clip DASPOT to (airflow too low) FN894(N_RATCH - DSDRPM) as a minimum DNDSUP = 1 -------- ELSE ---Do not clip to FN894

IDLE SPEED CONTROL, DASHPOT CALCULATIONS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DASHPOT MODE (APT = -1) (Mode select logic will set ISCFLG to -1)

At closed throttle, the airflow which was previously added to the DASPOT term $\,$

is bled away. DASPOT is calculated from the equation below either during $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

non-VIP vehicle operation, or in running VIP when VRUN_ISCFLG = 0.

DASPOT = DASPOT - FN879(DASPOT)

clips:

- no maximum clip
- DASPOT is clipped to either 0, FN894 * DPNEU_MUL, or FN894 as a minimum $\,$

(see FN894 on the previous page)

DASPOT is calculated from the equation below when in running VIP, and VRUN_ISCFLG = 1:

DASPOT = DASPOT - (FN879(DASPOT) * V_879_MULT)

clips:

- no maximum clip
- DASPOT is clipped to either 0, FN894 * DPNEU_MUL, or FN894 as a minimum $\,$

(see FN894 on the previous page)

IDLE SPEED CONTROL, MODE SELECT - LHBH0 PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

MODE SELECT (MODE_SELECT)

OVERVIEW

Bypass idle speed control has four modes of operation; dashpot, dashpot preposition, RPM control, and RPM control lockout. A flag is used to identify these modes for both calibrator convenience and required interaction

with fuel modulation and spark feedback strategies.

The mode select logic selects the mode of operation and sets a flag (ISCFLG) which is used to adjust the total desired airflow through the air bypass valve.

- * ISCFLG = -1 DASHPOT CONTROL
- * ISCFLG = 0 DASHPOT PRE-POSITION
- * ISCFLG = 1 CLOSED LOOP RPM CONTROL
- * ISCFLG = 2 CLOSED LOOP RPM CONTROL (Lock-out entry to RPM control)

- DASHPOT PRE-POSITION MODE (ISCFLG = 0)

In engine run/underspeed mode and when operating at part or wide open throttle the ISC system is placed in dashpot pre-position mode. In this mode the ISC duty cycle is incremented a calibratable amount in anticipation of a required dashpot action. Proper dashpot operation is essential on systems having speed density fuel controls in order to avoid tip in/tip out stalls and HC spiking on decels.

- DASHPOT MODE (ISCFLG = -1)

In engine run/underspeed mode and having just transitioned from part to closed throttle the system is placed in ISC dashpot control mode. The length of time the ISC system will remain in dashpot control is both hardware/strategy dependent (some applications have VSS; some manual transmission applications have gear and clutch switches). Regardless of the length of time required to enter RPM control, as long as closed throttle operation is maintained the amount of airflow specified by the

dashpot pre-position (see dashpot pre- position logic) is

decremented at
a constant rate until exhausted (until DASPOT = 0).

- CLOSED LOOP RPM CONTROL (ISCFLG = 1 OR 2)

For normal entry into ${\ensuremath{\mathsf{C/L}}}$ RPM control the following conditions must be satisfied:

- . If VSS hardware is used it must indicate a speed less than $\ensuremath{\mathsf{MINMPH}}$
- . If a manual trans. with gear/clutch switches; must indicate neutral $% \left(1\right) =\left(1\right) +\left(1$

IDLE SPEED CONTROL, MODE SELECT - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

* Note: Although the system can provide acceptable function

without the above mentioned hardware either item will increase

reliability in production. The vehicle speed sensor has

calibration benefits outside of ISC (lean cruise control, etc.)

and should be considered when specifying system $% \left(z\right) =\left(z\right) +\left($

future applications utilizing ISC.

. Regardless whether the above hardware is used, normal entry into $\ensuremath{\mathtt{RPM}}$

control requires that actual engine speed be less than or equal to (DSDRPM + RPMCTL) and that closed throttle is indicated.

The following discussion will attempt to describe entry into ${\hbox{\footnotesize C/L}}$ RPM control

through the lock-out logic (ISCFLG = 2). In a normal deceleration the

dashpot bleed time will be short relative to the vehicle coastdown time. As

soon as engine speed drops low enough the ISC system should enter $\ensuremath{\mathtt{RPM}}$

control. However, due to hysteresis in the bypass valve, overspecification

of idle airflow requirements prior to adaptive ISC learning, ISC learning in

an unusually high state of engine load (400 psi A/C head pressure), etc. the $\ensuremath{^{1}}$

 ISC actuator may flow too much air at the specified idle duty cycle to allow

normal entry in RPM control. When this condition occurs the system will

remain in dashpot control until it can recognize that it should in fact be in RPM control.

Obviously this task is easy if you happen to have a $\ensuremath{\mathsf{VSS}}$ or have a manual

calibration with gear/clutch switches. The problem without this hardware is

to differentiate between a deceleration condition (especially a constant rate

of speed deceleration $\mbox{--}$ as in a coast down a mountain) and a true

locked-out-of-idle condition. Most of the logic in the above-mentioned $% \left(1\right) =\left(1\right) +\left($

attachment deals with this lock-out feature.

To differentiate between deceleration and idle the rate of change in $\ensuremath{\mathtt{RPM}}$ is

first evaluated over a calibrated period of time (ISCTM). If the speed has ${}^{\prime}$

remained within a specified deadband (NDIF) for this time period a $\ensuremath{\mathsf{second}}$

check is performed to compare MAP with a calibrated value (FN862(BP) for A/C

off; FN862(BP) + ACMAP for A/C on). The assumption is that all idle MAP values, including green engine/altitude effects etc., will be greater than this value and all true deceleration conditions, including the

same

variabilities, will yield lower MAP. It goes without saying that great care

must be taken in selecting the correct calibration for FN862(BP).

If the ISC system were locked in dashpot control and both the rate of $\ensuremath{\mathsf{engine}}$

 $\operatorname{\mathtt{speed}}$ change and MAP criteria were satisfied the strategy would be forced

into $\ensuremath{\text{C/L}}$ RPM control with ISCFLG indicating 2. This state would be present

until the speed fell below the normal entry point. The adaptive ISC would

learn the required correction, assuming sufficient time at idle, and

subsequent dashpot to RPM control transitions should follow a normal entry path.

10/21/2000 LHBH1.TXT

IDLE SPEED CONTROL, MODE SELECT - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- APT = Throttle Mode flag.
- BP = Barometric Pressure.
- DASCTL = Value of DASPOT, below which RPM control can begin, with any remaining DASPOT airflow being rolled into IPSIBR.
- DASPOT = Dashpot contribution to idle air flow. provide a

preposition air flow in Part Throttle and Wide Open Throttle Modes, which

is "bled off" after a transition to Closed Throttle. air

decrement allows a smooth transition to RPM control.

- DSDRPM = Desired engine speed.
- ISCFLG = ISC mode indicator flag; -1 -> Dashpot Mode, 0 -> Dashpot

Preposition Mode, 1 -> Closed Loop RPM Control Mode, 2 -> Closed Loop RPM

Control (Lock-out entry to RPM control).

- ISCTMR = RPM sample timer for lockout logic, secs. Timer is cleared on each RPM sample.
- MAP = Manifold Absolute Pressure.
- N = Engine speed, RPM.
- NLAST = Last sampled RPM for lockout logic. NLAST is re-calculated when ISCTMR exceeds ISCTM.
- SETTMR = RPM control entry delay timer, secs. Used to delay entry RPM control until manifold stabilizes.
- VSBAR = Filtered vehicle speed, mph.

Bit Flags:

- ACCFLG = A/C engaged flag; 1 -> A/C engaged, 0 -> A/C disengaged.
- DNDSUP = Delayed neutral/drive flag; 1 -> in drive, loaded.
- VRUN_ISCFLG = RVIP Idle Speed Control flag; 1 -> Running VIP ISC action,
 - 0 -> normal ISC action.

Calibration Constants:

- ACMAP = An adder to FN862(BP) when A/C is on. Should be based on observed differences between A/C on & A/C off idle MAP readings.

- FN862(BP) = Decel MAP value as a function of BP. This value takes the $$\operatorname{place}$$ of LOWMAP and is used to vary decel MAP as a function of altitude.

IDLE SPEED CONTROL, MODE SELECT - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- ISCTM = Time interval over which the rate of change in $% \left(1\right) =1$ engine speed is
 - evaluated. Value should be small enough to avoid prolonged speed
 - hang-ups if the ISC system were locked out of C/L speed control but not
 - too short such that the rate of speed change check becomes meaningless.
- MINMPH = Minimum speed to enter C/L RPM control. Applies to systems
 - having VSS. Should be set below the speed at which an automatic trans.
 - vehicle rolls along in drive without the brakes. This is to prevent
 - going into RPM control during parking lot maneuvers.
- NDIF = The deviation in engine speed allowed $% \left(1\right) =1$ over the ISCTM specified
 - time interval. Values too small could lock the ISC system out of $\ensuremath{\text{C/L}}$
 - speed control indefinitely. Values too large invalidate the check.
- RPMCTL = Added to DSDRPM. The total defines the engine speed threshold
 - below which entry into $\ensuremath{\text{C/L}}$ RPM control is allowed. This value should be
 - reasonably small to avoid inadvertent entry into $\ensuremath{\text{C/L}}$ ISC.
- SETLNG_TM = Manifold stabilization time. Used to delay entry into $\ensuremath{\mathtt{RPM}}$
 - control.
- TRLOAD = Transmission Load switch;

 - 1 -> Manual Transmission, no clutch or gear switch.
 - 2 -> Manual Transmission, one clutch or gear switch.
 - 3 -> Manual Transmission, both clutch and gear switches.
 - 4 -> Auto Transmission, non-electronic, neutral drive switch.

 - 6 -> Auto Transmission, electronic, PRNDL sensor park, reverse, neutral, overdrive, manual 1, manual 2.
- V SETLNG TM = VIP delay to enter ISC rpm control.

OUTPUTS

Registers:

- ISCFLG = See above.
- ISCTMR = See above.
- NLAST = See above.

IDLE SPEED CONTROL, MODE SELECT - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CALIBRATION INFORMATION

Typical values are supplied for the following calibration constants:

- ACMAP = 2 " Hg (engine specific parameter).
- FN862(BP) = (0,6.5) (19.5,6.5) (31.875,8.5)
- ISCTM = 4 sec.
- MINMPH = 3 MPH
- NDIF = 32 RPM
- RPMCTL = 90 RPM

IDLE SPEED CONTROL, MODE SELECT - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: ISC_MODE_SELECT_COM1

APT >= 0 (Not closed throttle)	(In Dashpot Preposition mode ISCFLG = 0 NLAST = N ISCTMR = 0
VSBAR <= MINMPH (Vehicle stopped)	ELSE (In RPM Control Mode)
DASPOT <= DASCTL (Dashpot complete)	
TRLOAD <> 3	ISCFLG = 1
DNDSUP = 0 (Neutral)	
SETTMR > SETLNG_TM (Manifold stable)	
N <= (DSDRPM + RPMCTL)	
VSBAR <= MINMPH (Vehicle stopped)	ELSE (In RPM Control Lockout mode same action as RPM Control
DASPOT <= DASCTL mode) (Dashpot complete)	
TRLOAD <> 3 (Not manual transmission w/ both switches) OR AND -	ISCFLG = 2
DNDSUP = 0 (Neutral)	
SETTMR > SETLNG_TM (Manifold stable)	ELSE
LOCKOUT LOGIC TRUE	(In Dashpot mode)
(Locked out of RPM control)	ISCFLG = -1

 ${\tt NOTE: SETTMR}$ and ${\tt ISCTMR}$ are cleared in ${\tt MODE_SELECT}$ logic. See TIMERS chapter for complete timer logic.

IDLE SPEED CONTROL, MODE SELECT - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

LOCKOUT LOGIC

ISCFLG >= 1	
VRUN_ISCFLG = 1 OR falls)	LOCKOUT LOGIC TRUE (Stay in lockout until RPM
(VIP modifying ISC) AND	EXIT LOCKOUT LOGIC
SETTMR > V_SETLNG_TM (manifold stable)	ELSE
ISCTMR < ISCTM	LOCKOUT LOGIC FALSE (Not time to sample RPM yet) EXIT LOCKOUT LOGIC
	ELSE
N - NLAST > NDIFdecel)	LOCKOUT LOGIC FALSE (RPM changing quickly, must be
decel)	NLAST = N ISCTMR = 0 EXIT LOCKOUT LOGIC
TRLOAD >= 3 (Auto trans)	ELSE
	D - LOCKOUT LOGIC TRUE (Can't be decel when in neutral) EXIT LOCKOUT LOGIC
(Decel MAP)	ELSE
	LOCKOUT LOGIC FALSE (MAP indicates decel) EXIT LOCKOUT LOGIC
ACCFLG = 0 AND -	ELSE
MAP < FN862(BP) (Decel MAP)	LOCKOUT LOGIC TRUE EXIT LOCKOUT LOGIC

IDLE SPEED CONTROL, KAM UPDATE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

KAM UPDATE (ISCKAM_UPDATE)

OVERVIEW

This section describes the adaptive ISC update routine. In general, under

steady state conditions on a stabilized engine at idle, the adaptive $\ensuremath{\mathsf{ISC}}$

logic will evaluate whether the open loop prediction of airflow requires

correction. If a correction factor was applied, IPSIBR has a non-zero value.

the adaptive ISC strategy will roll this correction value into KAM and drive

the IPSIBR term back to zero. Control of the rate at which the IPSIBR value

is driven to zero is calibration-dependent.

There are six ISCKAM cells designated for idle corrections. The appropriate

cell is pointed to by the flag ISFLAG which tracks the load state at idle.

The following logic must be satisfied to update KAM:

- * In RPM control
- * Within the RPM deadband for a calibrated time interval (UPDISC)
- * No hi-cam adder present (HCAMFG = 0)
- * IPSIBR non zero
- * No kam errors
- * IBGPSI >= UPDATM

 ISCKAM corrections are clipped to the same maximum and minimum limits as the

 ${
m C/L}$ RPM integrator (PSIBRM/PSIBRN). Each time the update criteria are

satisfied both IPSIBR and ISCKAM are adjusted one bit (0.00024 ppm) in

opposite directions until IPSIBR = 0.

DEFINITIONS

INPUTS

Registers:

- IBGPSI = Background loop counter, used to pace ISCKAMn update.
- ISCKAMn = Adaptive ISC correction for each load condition n, where n is the value of ISFLAG. The calculated value of ISCKAMn is added

to the total desired idle air flow (DESMAF).

- ISCTMR = RPM sample timer for adaptive ISC, secs. Timer is cleared if
 - |RPMERR_A| exceeds the rpm deadband, RPMDED.
- IPSIBR = The closed loop integration component of total DESMAF, ppm.

Designed to provide integral feedback, IPSIBR adjusts the value of ${\tt DESMAF}$

to correct for sustained changes in idle load. An increase or decrease $% \left(1\right) =\left(1\right) \left(1\right) =\left(1\right) \left($

in IPSIBR results in a corresponding change to bypass valve duty cycle.

Bit Flags:

- HCAMFG = Flag indicating the completion of $\operatorname{Hi-Cam}$; 0 -> no desired engine

speed adder exists, 1 -> an rpm adder above base idle is present. Flag

is used in the ISC adaptive update routine to disable updates when $\ensuremath{\mathsf{HCAMFG}}$

= 1.

IDLE SPEED CONTROL, KAM UPDATE - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

- ISCFLG = ISC mode indicator flag; -1 -> Dashpot Mode; 0 -> Dashpot
 - Preposition Mode; 1 -> Closed Loop RPM Control Mode; 2 -> Closed Loop RPM
 - Control (Lock-out entry to RPM control)
- ISFLAG = Idle load state indicator used to select the ISCKAM cell.
- KAM ERROR = KAM error flag; 1 -> KAM data invalid.

Calibration Constants:

- PSIBRM = Maximum allowed value for ISCKAMn. ISCKAMn is clipped to this value.
- PSIBRN = Minimum allowed value for ISCKAMn. ISCKAMn is clipped to this value.
- RPMDED = Adaptive ISC learning deadband. Learning is disabled if RPMERR A exceeds this deadband.
- UPDATM = Pacing at which the IPSIBR correction factor is rolled into KAM.
 - Value is in terms of background loop counts.
- UPDISC = Time that engine speed must be within the specified deadband (RPMDED) prior to KAM update.

OUTPUTS

Registers:

- IBGPSI = See above.
- ISCKAMn = See above.
- ISCTMR = See above.
- ISKSUM = CHECKSUM for adaptive idle speed KAM cells, used in KAM
 - initialization strategy.
- IPSIBR = See above.

CALIBRATION INFORMATION

The following typical values are provided for calibration constants:

- RPMDED = 50 rpm.
- UPDATM = 5 background passes.
- UPDISC = 2 seconds.

IDLE SPEED CONTROL, KAM UPDATE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS	STRATEGY MOD	ULE: IS	C_ISCKAM_COM1
always			<pre>IBGPSI = IBGPSI + 1 Clip to Maximum</pre>
ISCFLG <> 1			<pre>IBGPSI = 0 Exit ISCKAM_UPDATE logic</pre>
RPMERR_A > RPMDED			ISCTMR = 0
ISCTMR < UPDISC			
HCAMFG = 1		 	
IPSIBR = 0		OR 	<pre>IBGPSI = 0 Exit ISCKAM_UPDATE logic</pre>
KAM_ERROR = 1			
IBGPSI < UPDATM			Exit ISCKAM_UPDATE logic
			ELSE
			IBGPSI = 0
TDCTDD > 0		I	
TESTER > 0		AND -	Increment ISCKAMn
IPSIBR > 0 ISCKAMn < PSIBRM			Decrement ISKSUM Decrement IPSIBR
		, <u> </u>	ELSE
IPSIBR <= 0		1 7 NTD 1	Decrement ISCKAMn
ISCKAMn > PSIBRN	AMn > PSIBRN		Decrement ISKSUM Increment IPSIBR

IDLE SPEED CONTROL, DUTY CYCLE CALCULATION - LHBHO PED-PTE, PROPRIETARY & CONFIDENTIAL

DUTY CYCLE CALCULATION

OVERVIEW

The ISC duty cycle is calculated in $\ensuremath{\mathsf{ISCDTY_CALC}}$. The mass air flow through

the $\bar{\text{ISC}}$ actuator (DEBYMA) is calculated as the desired mass air flow at idle

(DESMAF) less the flow through the throttle plate etc, corrected for altitude.

The desired duty cycle is calculated as follows:

Once the desired mass flow value is finalized, the appropriate duty cycle is calculated and output. The final DESMAF value is calculated in

calculated and output. The final DESMAF value is calculated in $\ensuremath{\mathtt{IPSIBR_CALC}}.$

The calibrated leakage term (ITHBMA) is subtracted from DESMAF to obtain the

actual flow required from the ISC actuator (DEBYMA). If ${\tt BPCOR_SW}$ is set,

 ${\tt DEBYMA}$ is adjusted for altitude. This value, clipped at ${\tt DEBYCP}$ as a minimum

allowed actuator airflow, becomes the input to the ISC duty cycle transfer $% \left(1\right) =\left(1\right) +\left(1\right)$

nature of the bypass air solenoid is such that at high manifold vacuum the $\ensuremath{\mathsf{L}}$

device flows less air than at idle vacuum levels $% \left(1\right) =\left(1\right) +\left$

cycle. To account for this a modulator (FN820A) is available to increase the $\,$

duty cycle as necessary to hold constant flow.

The final value of ISCDTY includes an offset and a multiplier (IDCOFS and IDCMUL) used primarily as calibration tools.

IDLE SPEED CONTROL, DUTY CYCLE CALCULATION - LHBH0 PED-PTE, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- BP = Barometric pressure, " Hg.
- DEBYMA = Desired mass air flow through the ISC valve, ppm. This quantity
 - is calculated as the total desired idle air flow (DESMAF) less the air
 - flow through the throttle plate, and is corrected for altitide using FN890(BP).
- DESMAF = Total desired idle air flow, ppm. Calculated as the sum of
 - predicted air flow (DESMAF_PRE), dashpot air flow (DASPOT),
 integral air
 - flow (IPSIBR) and KAM correction (ISCKAMn).
- VACUUM = Intake manifold vacuum.

Bit Flags:

- VRUN_ISCFLG = RVIP Idle Speed Control flag; 1 -> Running VIP ISC action,
 - 0 -> normal ISC action.

Calibration Constants:

- BPCOR_SW = Calibration switch for BP correction to DEBYMA; 0
 -> no
 correction, 1 -> use correction.
- DEBYCP = Minimum allowed airflow through the ISC actuator. This is a clip on DEBYMA.
- ${\tt FN800(DEBYMA)}$ = Transfer function for the ISC actuator. Initial values
 - for this function should come directly from flow data provided by fuel
 - systems. Data must be generated at the expected idle vacuum setting for $% \left(1\right) =\left(1\right) +\left($
 - each $% \left(1\right) =\left(1\right) +\left(1\right$
 - to connect a duty cycle box to the ISC actuator, vary the duty cycle and
 - plot actual airflow using a hot wire type air meter. .. Typical values
 - vary based on engine application and flow capacity of the ISC actuator.
- FN820A(VACUUM) = ISC duty cycle multiplier versus VACUUM. Used to hold
 - constant actuator airflow on a decel after dashpot action is complete.
- FN890(BP) = ISC duty cycle altitude compensation subtractor. Required to
 - offset the effect with altitude of a varying pressure drop across

the ISC actuator, which affects its air flow.

- IDCMUL = ISCDTY multiplier, no units.
- IDCOFS = ISCDTY adder, fraction of fully open.
- ITHBMA = Throttle body idle mass air flow with throttle plate at idle

screw stop and 0% ISC duty cycle. This is any airflow which does not go

through the bypass air solenoid, i.e. throttle plate, PCV system, intake

leakage, etc.

- V820A = ISC duty cycle multiplier, used for VIP only.

IDLE SPEED CONTROL, DUTY CYCLE CALCULATION - LHBH0 PED-PTE, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- DEBYMA = See above.

- ISCDTY = Idle speed control valve duty cycle, fraction of fully open.

Calculated as a transfer function (FN800) of the desired mass flow through the ISC valve.

PROCESS

STRATEGY MODULE: ISC_ISCDTY_COM1

DEBYMA AND ISCDTY CALCULATION

ISCDTY = IDCMUL * FN800(DEBYMA) * FN820A(VACUUM) + IDCOFS

where:

BP correction logic:

- DEBYMA is clipped to DEBYCP as a minimum.
- ISCDTY is clipped to 1.0 as a maximum.

NOTE: During certain times, Running VIP may need to control ISC. When

this is the case, Running VIP will set VRUN_ISCFLG = 1. This causes

Causes

V820A to be used in the ISCDTY equation above, instead of FN820A.

10/21/2000 LHBH1.TXT

IDLE SPEED CONTROL, IPSIBR CALCULATION - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

IPSIBR CALCULATION (IPSIBR_CALC)

OVERVIEW

IPSIBR is the closed loop integration component of total DESMAF. Designed to provide integral feedback, IPSIBR adjusts the value of DESMAF to correct for sustained changes in idle load. An increase or decrease in IPSIBR results in

The IPSIBR calculation has the following characteristics:

a corresponding change to bypass valve duty cycle.

- IPSIBR is only updated in RPM control or lockout mode.
- Different time constants are used depending on whether RPM is too high or too low.
- IPSIBR is not updated if the ISC valve is already at its maximum or minimum position (PSIBRM and PSIBRN, respectively).
- On load state transitions (A/C, N/DR and CT/PT), IPSIBR is always clipped

to zero as a minimum.

- The IPSIBR update has no deadband. Instead, it is driven by an RPM term RPMERR_A (A for "air"). The time constant is TCBPA.
- Calibration of gain is not required. The term (DESMAF_PRE / DSDRPM) in ISCPSI calculation automatically adjusts the gain for the RPM,
- The IPSIBR pacing calibration is controlled by the two scalars TC OVER

and TC_UNDER for speed higher and lower than desired, respectively.

These scalars represent time constants for the engine to respond to changes in duty cycle.

DEFINITIONS

INPUTS

Registers:

- ATMR1 = Time since start (time since exiting crank mode).
- BG_TMR = Background loop time, secs.

temperature and accessory loads.

- DASPOT = Dashpot contribution to idle air flow. Used to provide a

preposition air flow in Part Throttle and Wide Open Throttle Modes, which

is "bled off" after a transition to Closed Throttle. This $% \left(1\right) =\left(1\right) +$

decrement allows a smooth transition to RPM control.

IDLE SPEED CONTROL, IPSIBR CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- DEBYMA = Desired mass air flow through the ISC valve, ppm. This quantity
 - is calculated as the total desired idle air flow (DESMAF) less the air ${\sf air}$
 - flow through the throttle plate and is corrected for altitude using FN890(BP).
- DSDRPM = Desired engine speed.
- ECT = Engine Coolant Temperature.
- ISCDTY = Idle speed control valve duty cycle, fraction of fully open.
 - Calculated as a transfer function (FN800) of the desired mass flow through the ISC valve.
- ISCFLG = ISC mode indicator flag: -1 -> Dashpot Mode; 0 ->
 Dashpot
 - Preposition Mode; 1 -> Closed Loop RPM Control Mode; 2 -> Closed Loop RPM Control (Lock-out entry to RPM control).
- ISCPSI = The quantity of air which is added to IPSIBR each background pass.
- ISLAST = Register which tracks the state of engine load from the previous background pass.
- IPSIBR = The closed loop integration component of total DESMAF. Designed
 - to provide integral feedback, IPSIBR adjusts the value of DESMAF to
 - correct for sustained changes in idle load. An increase or decrease in
 - IPSIBR results in a corresponding change to bypass valve duty cycle.
- ISCKAM(ISFLAG) = Adaptive correction for each load condition.
- ISFLAG = Idle load indicator, set according to the current state $% \left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right)$
 - A/C (on or off) and of the transmission (neutral or drive).
- KAM_ERROR = KAM error flag; 1 -> KAM invalid.
- RPMERR = Unfiltered RPM error, DSDRPM N.
- RPMERR_A = Filtered RPMERR for airflow control, time constant TCBPA.
- RUNUPTMR = Time since runup RPM exceeded (0.125 sec).

Bit Flags:

- ACCFLG = A/C engaged flag; 1 = A/C engaged, 0 -> A/C disengaged.
- CTPTFG = Closed throttle to part / wide open throttle transition flag; $\ 1$
 - -> transition occurred.
- KAM ERROR = KAM error flag; 1 -> KAM invalid.

- V_MODE_SETUP = VIP throttle adjust mode enabled flag; 1 -> enabled.

- VRUN_ISCFLG = Self test engine running flag; 1 -> Engine running
 self
 test in progress.
- RUNUP_FLG = Flag indicating the initial runup is complete; 1 ->
 Runup RPM
 exceeded.

IDLE SPEED CONTROL, IPSIBR CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Calibration Constants:

- ACHPTM = Calibrated time since start to recognize high AC head pressure.
- DEBYCP = Minimum value of ISC valve airflow, ppm.
- ECT_HP = ECT temperature where AC head pressure is capable of switching the A/C off.
- FN852(RPMERR) = Proportional control function used to modify DESMAF.
- IPSIDLY = Time delay to disable IPSIBR Update, sec.
- PSIBRM = Maximum allowed value for IPSIBR when in normal strategy.
- PSIBRN = Minimum allowed value for IPSIBR when in normal strategy.
- TC_OVER = Time constant used to control the integral gain (or pacing) of
 the term IDSIRP TC_OVER is used when RDMERR A <= 0 is

the term, IPSIBR. TC_OVER is used when RPMERR_A <= 0, i.e., when the

actual speed is higher than desired. A large value of ${\tt TC_OVER}$

corresponds to a small integral gain, a small value corresponds to a high gain.

- TC_UNDER = Time constant used to control the integral gain (or pacing) of
 - the term, IPSIBR. TC_UNDER is used when RPMERR_A > 0, i.e., when the

actual speed is lower than desired. A large value of ${\tt TC_UNDER}$

corresponds to a small integral gain, a small value corresponds to a high gain.

- VSIBRM = Maximum allowed value for IPSIBR when in Running VIP.
- VSIBRN = Minimum allowed value for IPSIBR when in Running VIP.
- VTC_OVER = Time constant used to control the integral gain (or pacing) of

the term, IPSIBR, when in Engine Running VIP. $\mbox{VTC_OVER}$ is used when

 $\mbox{\sc RPMERR_A} <= 0\,, \mbox{ i.e. }$ when the actual speed is higher than desired.

Corresponds to TC_OVER in normal strategy.

- - of the term, IPSIBR, when in Engine Running VIP. VTC_UNDER is used when
 - $\mbox{\sc RPMERR}_{\mbox{\sc A}} > 0\,,$ i.e. when the actual speed is lower than desired.

Corresponds to TC_UNDER in normal strategy.

Non-displayable Parameters:

- DESMAF_PRE = Predicted desired idle air flow, ppm. This is the open loop

air flow prediction which is required to idle, calculated as a function of ECT and time since start and including A/C, power steering and heated windshield adders. It does not include any closed loop or KAM corrections.

IDLE SPEED CONTROL, IPSIBR CALCULATION - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- DESMAF = Total desired idle air flow, ppm. Calculated as the sum of predicted air flow (DESMAF_PRE), dashpot air flow (DASPOT), integral air flow (IPSIBR) and KAM correction (ISCKAM).

- IBGPSI = Background counter used to control pacing of ISC KAM learning.
- IPSIBR = See above.
- ISCPSI = See above.
- ISKSUM = Checksum for adaptive idle speed KAM cells, used in
 KAM
 initialization strategy.

PROCESS

STRATEGY MODULE: ISC_IPSIBR_COM1

NOTE: In Engine Running VIP (VRUN_ISCFLG = 1), IPSIBR is clipped to VSIBRM as a maximum and VSIBRN as a minimum.

IDLE SPEED CONTROL, IPSIBR CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

	Where ISCPSI i	s calculated	as follows:
--	----------------	--------------	-------------

Normal Conditions

ISCPSI = RPMERR_A * (DESMAF_PRE)/DSDRPM * BG_TMR /(TC_UNDER |
TC_OVER)

DECISION LOGIC

In Engine Running VIP (VRUN_ISCFLG = 1)

ISCPSI = RPMERR_A * (DESMAF_PRE)/DSDRPM * BG_TMR /(VTC_UNDER |
VTC_OVER)

DECISION LOGIC

Where: "|" means "or"

IDLE SPEED CONTROL, IPSIBR CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TOTAL DESIRED IDLE AIR FLOW (DESMAF) CALCULATION

ISFLAG <> ISLAST	
CTPTFG = 1 (Closed throttle to load)	OR Clip IPSIBR at 0 as a minimum (Reset IPSIBR for a new
part/WOT transition) AND -	IBGPSI = 0 (Reset C/L correction pacer)
<pre>VRUN_ISCFLG = 0 (Not in running VIP)</pre>	·

Total DESMAF CALCULATION

<pre>KAM_ERROR = 1 (KAM qualify error)</pre>	
<pre>ISCKAM(ISFLAG) > PSIBRM invalid</pre>	 OR Assume ISCKAM cells are
(greater than maximum) cells:	Reinitialize all ISCKAM
<pre>ISCKAM(ISFLAG) < PSIBRN (less than minimum)</pre>	All ISCKAM cells = 0 ISKSUM = 0
<pre>V_MODE_SETUP = 1 (VIP Throttle Adjust Mode)</pre>	DESMAF = DESMAF_PRE
ACCFLG = 1	ELSE
ECT > ECT_HP	
ATMR1 > ACHPTMISCKAM(ISFLAG) +	DASPOT +
ISCFLG > 0	FN852
	ELSE
	DESMAF = DESMAF_PRE + IPSIBR + DASPOT +
	ISCKAM(ISFLAG)

NOTE: If KAM_ERROR = 1 (KAM data invalid), the adaptive ISC cells (ISCKAM) are initialized to zero.

IDLE SPEED CONTROL, IPSIBR CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 10

7.0L GOVERNOR MAP SIGNAL

7.0L GOVERNOR MAP SIGNAL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

7.0L GOVERNOR MAP SIGNAL (GOVHP = 1)

OVERVIEW

The DPI output, HSO-0, is used on the 7.0L heavy duty truck application as an

input to the stand alone governor. It is used to provide information about

engine load, compensated for altitude, so that high governor gains can be used

to achieve a quick response on an unloaded engine, while lower gains can be used

on a loaded engine for normal throttle control. The value MAPPA is $% \left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right)$

load parameter compensated for altitude.

The signal is a 100 Hz pulse width modulated signal.

TP_REL is output to the Governor via the DOL. The strategy associated with this is located in the DOL chapter.

CALIBRATION PHILOSOPHY

Set GOVHP = 1 to activate the logic.

DEFINITIONS

INPUTS

Registers:

- BP = Barometric pressure, " Hg.
- MAP = Manifold Absolute Pressure, " Hg.
- MAPPA = MAP/BP.

Bit Flags:

- MFMFLG = MAP sensor failure; 1 -> failure.
- TFMFLG = Flag indicating TP sensor has failed; 1 -> failure.

Calibration Constants:

- FN501(MAPPA) = MAPPA to duty cycle ratio transfer function.
- GOVHP = 7.0L Governor hardware present switch; set GOVHP =
- activate this logic.

OUTPUTS

Registers:

- GMAPDC = Time of next high edge relative to master timer, ticks.

7.0L GOVERNOR MAP SIGNAL - LHBH0 PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: ACC_GOV_MAP_COM2

(follows calculation of MAPPA)

NOTE:

- In LOS, the output will de-energize, giving no transitions.
 The
 governor will detect this state and act accordingly.
- The DPI strategy is disabled when GOVHP = 1.
- Should the MAP sensor fail, MAP is simulated from TP and output. Should the TP sensor also fail, no signal is output.

7.0L GOVERNOR MAP SIGNAL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 11

CANISTER PURGE STRATEGY

CANISTER PURGE STRATEGY, CANISTER PURGE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CANISTER PURGE

OVERVIEW

Canister Purge refers to the solenoid and valve combination that is located in the line between the intake manifold and the carbon canister.

When the solenoid is energized the valve opens, allowing the flow of vapors from the canister to the intake manifold.

The strategy enables canister purge during various engine operating modes.

These modes are calibration items. Typical calibrations will enable purge

when these conditions are met:

- Fuel control is in the desired mode. The calibrator can choose between purging during closed loop only or during both open loop and closed loop.
- 2. The EGO sensor has been warm at least 1 time or ECT indicates that the engine is warm. Set PURECT to 254 to calibrate out ECT gate.
- 3. The not at closed throttle delay has been met.
- 4. The current value of the air mass modulator function, FN605A, is non-zero.

The strategy includes features to prevent the rich surge which may occur on

initial purge turn-on and to prevent purge vapors from driving the ${\it Closed}$

Loop Fuel Control beyond its control $\mbox{limit.}$ When purge is enabled, the

output is a 10HZ variable duty cycle, determined from the product of two fox $\,$

functions. FN600 determines the duty cycle (and purge flow) based on the

total accumulated time that purge has been enabled. This allows the purge

flow to be slowly introduced when the fuel vapor concentration may be high.

 ${\tt FN605A}$ further modulates the output of ${\tt FN600}$ versus total air flow. This

permits limiting the purge flow to a small percentage of total engine air flow.

Certain adverse conditions, such as extended idles at elevated engine speed,

may cause the purge vapors to contribute a significant amount of the fuel

required to run the engine. When this condition, defined as LAMBSE at a $\,$

large value while in Closed Loop Fuel, is encountered, the timer

input to

 $\overline{\text{FN600}(\text{PRGTMR})}$ is decremented to reduce purge flow and allow proper control of

the air/fuel ratio. $\mbox{\sc PRGTMR}$ is also decremented if the engine is above normal

operating temperature and is operating in $\ensuremath{\text{Open}}$ Loop Fuel Control because of a

condition that can exist when the vehicle is stopped (i.e., WRMEGO = 0,

 ${\tt LESFLG} = 1$, ${\tt OFMFLG} = 1$). This is to prevent the purge vapors from causing an

excessively rich condition in open loop. In order for the purge duty cycle

to be reduced immediately when PRGTMR begins decrementing, PRGTMR is clipped

to ${\tt FULPRGTM}$ as a maximum. ${\tt FULPRGTM}$ should be calibrated to the time when

output of FN600 equals 1.0 (i.e., the end of the ramp-in).

CANISTER PURGE STRATEGY, CANISTER PURGE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- ACT = Air charge temperature, deg. F.
- AM = Air mass flow, ppm.
- ECT = Engine coolant temperature, deg F.
- KAMREF = Adaptive fuel correction.
- LAMBSE = Air/fuel equivalence ratio.
- N = Engine RPM.
- NACTMR = Not at Closed Throttle timer, sec.
- PRGTMR = Purge ramp up/down timer, sec.
- PURG_ADP_SF = Adaptive learning safety factor; delta from minadp at which time purge is disabled.
- PURGDC = Canister Purge Duty Cycle.

Bit Flags:

- ADT1FMFLG = Adaptive table 1 failure mode.
- CRKFLG = CRANK mode flag; 1 -> closed loop.
- LESFLG = Lack of EGO switching flag; 1 -> EGO not switching.
- OFMFLG = ETV solenoid shorted flag; 1 -> ETV solenoid circuit shorted to ground.
- OLFLG = Open Loop Fuel Control flag; 1 -> Open Loop.
- PURGING = Purge enabled flag; 1 -> purge enabled.
- WRMEGO = Warm EGO flag; 1 -> EGO is currently warm.

CANISTER PURGE STRATEGY, CANISTER PURGE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Calibration Constants:

- CANPHP = Canister purge hardware present switch; 1 -> EEC controlled purge hardware present.
- EVTDOT = Minimum time not at Closed throttle to enable purge, sec.
- Set to "zero" to purge at Closed Throttle.
- FN600(PRGTMR) = Purge duty cycle as a function of accumulated purge enable time.
- FN603 = Maximum LAMBSE allowed before purge duty cycle is decremented.
- FN605A(AM) = Purge duty cycle modulator as a function of air mass.
- FULPRGTM = Maximum clip for PRGTMR, sec. Should be set to the time
 when
 the output of FN600 first reaches its maximum.
- MINADP = Minimum allowable correction.
- NLMT = Maximum engine RPM.
- PRG_DEC = PURGDC decrement value.
- PURECT = Minimum ECT to enable purge if WMEGOL is not set, deg F.
- PURECT1 = Minimum ECT to decrement PRGTMR when EGO is cold or not switching, deg F.
- PURGSW = Calibration switch to enable purge in Open Loop.

OUTPUTS

Registers:

- PRGTMR = See above.
- PURGDC = See above.

Bit Flags:

- LIMIT_PURGE = Flag which indicates Purge Duty Cycle is being limited due
- to LAMBSE being clipped; 1 -> limited Purge.
- PURGING = See above.

CANISTER PURGE STRATEGY, CANISTER PURGE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: CANP_COM4

CANISTER PURGE CONTROL LOGIC

CRKFLG = 0			
CANPHP = 1		 	
NACTMR >= EVTDOT		 	
OLFLG = 0	1	 	(enable purge) PURGING = 1
PURGSW = 1	OR		purgdc = FN600(PRGTMR) * FN605A(AM)
WRMEGO = 1	 OR		(MA)ACOOM1 "
ECT > PURECT	OR		
FN605A(AM) > 0			
N < NLMT			
OFMFLG = 0			ELSE
			ELSE
		ļ	(disable purge)
			PURGING = 0
		l I	<pre>purgdc = 0 PURGDC = 0</pre>
		I	101000 - 0

CANISTER PURGE STRATEGY, CANISTER PURGE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PURGE DUTY CYCLE DECREMENT/INCREMENT LOGIC

LIMIT_PURGE = 0	PURGDC = purgdc
	ELSE
	Continue to Increment/ Decrement with old value of PURGDC
The following logic allows the reduction of (PURGDC)	f the purge duty cycle
when conditions indicate that the fuel sypurge is	ystem may be failing. The
backed out to prevent the continuous EGO TH	ESTS and adaptive fuel test
indicating failure due to purge overload. when	Also, the purge is backed out
the engine temperature is extremely hot and or are	
not warmed-up yet. Once a failure has been	been indicated or control has
restored for one of the areas indicated by purging is	the logic show below,
resumed. If subsequently another area purging	begins indicating failure,
will again be backed out until the appropri	iate failure is verified or
until the system comes back into full control.	
OLFLG = 0 (closed loop)	
LAMBSE => FN603(ACT) AND - AND - ego failure condition present)	
LESFLG = 0	
KAMRF <= MINADP + 0.5 +	
PURG_ADP_SF (adaptive limit imminent) AND - (:
ADT1FMFLG = 0 minimum	PRG_DEC Clip to zero as a
(adaptive failure not yet recognized)	Clip to purgdc as a maximum
ECT > PURECT1 (extreme hot temperatures) AND -	
WRMEGO = 0 (EGO not warm)	
LESFLG = 1 (lack of EGO switching)	
(1doil of 100 bwittening)	ELSE

PURGDC = PURGDC + PRG_DEC

| Clip to purgdc as a maximum

CANISTER PURGE STRATEGY, CANISTER PURGE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

purgdc > PURGDC	LIMIT_PURGE = 1 (purge is being limited due to LAMBSE being at its clip) ELSE LIMIT_PURGE = 0
PRGTMR LOGIC	
CRKFLG = 1 (CRANK mode)	PRGTMR = 0
(CIVINIC IIIOGC)	ELSE
PURGING = 1	Increment PRGTMR (clip to FULPRGTM as a maximum)
	ELSE
	Freeze PRGTMR

CANISTER PURGE STRATEGY, CANISTER PURGE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 12

THERMACTOR AIR STRATEGY

THERMACTOR AIR STRATEGY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

THERMACTOR AIR STRATEGY

Thermactor air refers to air added to the exhaust gas mixture from the belt-driven thermactor air pump.

The computer controls two solenoids to create three mutually exclusive air states:

Thermactor Air State AM1 Solenoid AM2 Solenoid

Upstream	on	on
Downstream	on	off
Bypass	off	off

Upstream refers to air added at or near the exhaust ports. This is done to

provide better oxidation of the exhaust gas mixture when a richer exhaust gas

mixture is anticipated. It is not possible to operate in closed loop fuel

control $% \left(1\right) =\left($

a lean condition).

Downstream refers to air added to the catalyst mid-bed. Downstream air is compatible with closed loop fuel control and is the normal

thermactor air state.

Bypass refers to the condition in which no thermactor air $\,$ is $\,$ added $\,$ to the

exhaust gas mixture. This feature is used primarily to protect the catalyst

from over-temperature conditions.

NOTE: THRMHP must be set to 1 to enable the Thermactor Air logic.

THERMACTOR AIR STRATEGY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- ACT = Air charge temperature deg. F.
- APT = Throttle mode indicator; -1 -> closed throttle, 0 -> part throttle,
 - 1 -> wide open throttle.
- ATMR1 = Time since start, sec.
- ATMR2 = Time after coolant temperature exceeded TEMPBF, sec.
- AWOTMR = Time at wide open throttle, sec.
- BYPTMR = Thermactor bypass timer, sec.
- DFSO_A_TMR = Free running, down counting, TP based thermactor air shut off timer.
- ECT = Engine coolant temperature, deg F.
- HMUTMR = High MAPPA upstream air timer, sec.
- HTPTMR = Heat protection timer (bankline timer), sec.
- LMBTMR = Low MAP bypass timer, sec.
- MAP = Manifold absolute pressure BIN 3.
- N = Engine speed RPM.
- TCSTRT = Temperature of engine coolant at startup, deg F.
- TP_REL = Relative TP (TP RATCH).
- WOTTMR = Time at wide open throttle.

Bit Flags:

- AFMFLG = ACT FMEM flag.
- CFMFLG = ECT FMEM flag.
- CRKFLG = Crank mode flag; 1 -> in crank mode.
- DFSFLG = Flag indicating status of Decel Fuel Shut-off; 0 -> Fuel not
 - shut-off for decel, 1 -> Fuel shut-off for decel.
- EGO1FMFLG = EGO #1 FMEM flag.
- HMUTMR_FLG = High Mappa Upstream Air timer control flag.
- IMS = Inferred milage sensor flag; 0 -> low milage, 1 -> high milage.

10/21/2000 LHBH1.TXT

THERMACTOR AIR STRATEGY - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

- LESFLG = Lack of EGO switching flag.
- MFMFLG = MAP FHEM flag.
- MPGFLG = MPG mode flag.
- OLFLG = Open loop flag.
- OFMFLG = ETV overcurrent monitor failure flag; 0 -> ETV O.K., 1 -> ETV

failure mode.

- TAQ1 = Thermactor air latch flag (Based on ECT)
- TFMFLG = TP FMEM flag.
- TP_AIR_OFF_F = flag to indicate state of FNTP_AIR_OFF Flip Flop (dump thermactor air at low TP_REL as a f'n of RPM)

Calibration Constants:

- BYPMAP = Minimum value of BYPTMR to bypass thermactor, sec.
- BYPWOT = Minumum time to wide open throttle to bypass air, sec.
- BYSTM1 = Maximum time to bypass thermactor after a high ECT startup,
- BYSTM2 = Maximum time to bypass thermactor after an intermediate startup, sec.
- BYSTM3 = Maximum time to bypass thermactor after ECT > TEMPFB for a low
 - ECT startup, sec.
- BYSTM4 = Minimum time at closed throttle idle to bypass thermactor, sec.
- BYSTM8 = Minimum time at low MAP to bypass thermactor during decel, sec.
- CHKASW = Control switch for CHKAIR.
- CTBYS = Minimum coolant temperature to bypass thermactor air, deg F.
- CTBYSH = Hysteresis term for CTBYS, deg F.
- CTHIGH = Hot start minimum ECT, deg F.
- CTLOW = Cold start maximum ECT, deg F.
- DSFTSW = Control switch for thermactor air decel fuel.
- FNTP_AIR_OFF = TP_REL at which to dump air below.
- SW_MPD = Control switch for Thermactor air bypass MPG mode; 0 -> bypass in MPG Mode, 1 -> bypass in MPG mode.
- TP_AIR_OFF_H = Hystersis for FNTP_AIR_OFF (bypass air at low TP_REL

f'n of ROM)

- T70LSW = 7.0L thermactor application switch.

THERMACTOR AIR STRATEGY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- T75LSW = Switch to dump air during closed loop for 7.5L applications.
- UPSMAP = Maximum time for upstream air at high MAPPA, sec.
- UPSTM1 = Maximum time for upstream air after a low milage, high ECT startup, sec.
- UPSTM2 = Maximum time for upstream air after a low milage, intermediate ECT startup, sec.
- UPSTM3 = Maximum time for upstream air after ECT > TEMPFB for a low milage, low ECT startup, sec.
- UPSTM4 = Maximum time for upstream air after a high milage, high ECT startup, sec.
- UPSTM5 = Maximum time for upstream air after a high milage, intermediate ECT startup, sec.
- UPSTM6 = Maximum time for upstream air after ECT > TEMPFB for a high milage, low ECT startup, sec.
- UPSWOT = Maximum time for upstream air at W.O.T., sec.

OUTPUTS

Bit Flags:

- AM1 = Flag that controls the state of the AM1 output; 0 -> output off, 1 -> output on.
- AM2 = Flag that controls the state of the AM2 output; 0 -> output off,
 - 1 -> output on.
- CHKAIR = Thermactor forced open loop flag; 1 -> not forced Open loop,
 - 0 -> Force Open loop.
- TAQ1 = Thermactor air latch flag (Based on ECT)
- TP AIR OFF F = See above.

THERMACTOR AIR STRATEGY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: THERM_LH

THERMACTOR AIR CONTROL LOGIC

THERMACTOR AIR STRATEGY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

<pre>DFSO_A_TMR <> 0 (turn or keep air off)</pre>				
EGO1FMFLG = 1 (EGO failure)			 	
CRKFLG = 1 (in crank mode)				
OFMFLG = 1 (ETV solenoid short	:ed)		 	
AFMFLG = 1 (ACT failure)			 	
CFMFLG = 1 (ECT failure)			 	
TFMFLG = 1 (TPS failure)			 	
MFMFLG = 1 (MAP failure)			 	
HTPTMR >= BYSTM4 (Bankline timed out)				
LESFLG = 1 (EGO not switching)			 	
"A" (See next page)(startup bypass)				
TAQ1 = 1 (ECT meets CTBYS criteria)			 OR 	AM1 = 0
MPGFLG = 1 (MPG mode)				AM2 = 0 CHKAIR = 1
SW_MPD = 1		AND -		(not forced O.L.)
DFSFLG = 1 (in DFSO)				
DSFTSW = 1 (select bypass if in DFSO)		AND -		
APT = 1 (WOT)				
WOTTMR >= BYPWOT (WOT bypass)		AND -		
CHKASW = 1 (Calib. Sw)		A NID		
BYPTMR = BYPMAP (cruise bypass)	OR	AND -		
LMBTMR >= BYSTM8 (low MAP bypass)				
<pre>TP_AIR_OFF_F = 1 (dump air at low tp_rel)</pre>				
T75LSW = 1 (7.5L application)		AND -		
OLFLG = 0 (dump air during closed loop)				ELSE

THERMACTOR AIR STRATEGY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued on next page)

THERMACTOR AIR STRATEGY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

 OR	AND	(bypass air) AM1 = 0 AM2 = 0 CHKAIR = 0 (forced O.L.)
i	 	ELSE
İ		
AND -		
İ	 OR 	(upstream air) AM1 = 1 AM2 = 1 CHKAIR = 0
1		(force O.L.)
AND -	 	
AND -		
		ELSE
		<pre>(downstream air) AM1 = 1 AM2 = 0 CHKAIR = 1 (not forced O.L.)</pre>
	AND - AND - AND - AND -	AND - AND - AND - AND - AND -

THERMACTOR AIR STRATEGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TCSTRT >= CTHIGH ATMR1 < BYSTM1	 AND 	_		
CTLOW < TCSTRT < CTHIGH ATMR1 < BYSTM2	 AND 	-	 OR 	"A"
TCSTRT <= CTLOW ATMR2 < BYSTM3	 AND 	-		
TCSTRT >= CTHIGH ATMR1 < UPSTM1	 AND 	-		
CTLOW < TCSTRT < CTHIGH ATMR1 < UPSTM2	 AND 	-	 OR 	"B"
TCSTRT <= CTLOW ATMR2 < UPSTM3	 AND 	-		
TCSTRT >= CTHIGH ATMR1 < UPSTM4	 AND 	_		
CTLOW < TCSTRT < CTHIGH ATMR1 < UPSTM5	 AND 	_	 OR 	"C"
TCSTRT <= CTLOW ATMR2 < UPSTM6	 AND 	-		

CHAPTER 13

DATA COMMUNICATIONS LINK

DATA COMMUNICATIONS LINK, OVERVIEW - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DATA COMMUNICATION LINK (DCL) (LINK_SW = 2, 3, 6 or 7)

OVERVIEW

The EEC communicates with other vehicle microcomputers through the 81C62

 ${
m RAM/CART}$ chip. The ${
m RAM/CART}$ is a special microchip which contains a serial

 $\ensuremath{\text{I/O}}$ port. This port performs serial communications on the data communication

link (DCL). The communication link consists of a twisted pair (DATA+ and $\,$

 ${\tt DATA-}).$ The EEC treats the RAM/CART as read/write memory. The RAM/CART is

identical to the 81C61 RAM-I/O chip, with exception of the serial port.

The RAM/CART chip may operate as an UART (Universal Asynchronous Receiver

Transmitter), or a CART (Custom Asynchronous Receiver Transmitter). In \mathtt{UART}

 ${\tt mode}$, information is sent character by character, requiring large software

overhead. In CART mode, information is sent in frames with minimal software $\ensuremath{\mathsf{S}}$

intervention.

The strategy initializes to UART mode. Under most vehicle operating

conditions, there is no communication on the DCL and the strategy remains in $% \left(1\right) =\left(1\right) +\left(1\right$

UART mode. Under these conditions, the EEC waits for a message from SBDS and $\,$

does not transmit. The SBDS can tell the EEC to either go permanently $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left($

off-line or to wake-up in CART mode to perform diagnostics.

DATA COMMUNICATIONS LINK, OVERVIEW - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DCL STATE DIAGRAM
 (UART Mode Enabled)
(Link_sw = 4,5,6 or 7)

DATA COMMUNICATIONS LINK, OVERVIEW - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DIAGNOSTIC MODE

The intent of the Data Communications Link (DCL) usage for diagnostics is to

provide on-board, Electronic Engine Control Module (EEC-IV) to off-board,

Service Bay Diagnostic System (SBDS), communications for enhanced diagnostic

capabilities. To accomplish this task, the SBDS will specify various tasks

which will be dependent on the level of diagnostics required.

If the strategy is in Standby (UART mode), the SBDS will send a message

instructing the EEC to enter Diagnostics (CART mode), then monitor the $\ensuremath{\mathsf{DPS}}$

for further commands.

Once the EEC is in diagnostic mode, the SBDS designates the task $% \left(1\right) =\left(1\right) +\left$

commands in the DPS triggering the vehicle subsystems to perform the $\,$

appropriate actions. The diagnostic task specified by the contents of the

DPS takes effect at the start of the next block. All remaining link devices ${\ensuremath{\mathsf{E}}}$

SBDS. Non-active devices must refrain from transmitting or receiving

non-pertinent information until the DPS specifies a new diagnostic mode or

returns to the idle value.

DATA COMMUNICATIONS LINK, OVERVIEW - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

- Block = A group of sixteen sequential frames, transmitted in ascending
 - numerical order from 0 to 15.
- Byte = Eight bits of data.
- Cart_Mode = Bit flag that indicates the current RAM/CART operating mode;
 - 0 -> UART mode; 1 -> CART mode.
- DCLCT_START = Flag to cause VIP to load continuous Self Test codes into a
 - RAM table for transmission over DCL, unitless.
- DCLST_DONE = Handshaking flag which indicates VIP has finished loading
 - the RAM table, commands 25H and 26H.
- DCLST_START = Handshaking flag which causes VIP to load the continuous
 - codes into a RAM table for subsequent transmission over DCL. Used in DCL 25H.
- DEFAULT_LVF = Default value for the last valid frame in CART mode, unitless.
- Diagnostic Parameter Slots = The diagnostic parameter slots are a
 - sequence of four information words, contained in the first four frames of $% \left(1\right) =\left(1\right) \left(1\right)$
 - ${\tt IS1}$, which define the diagnostic mode, beginning at the start of the next
 - block. The sequence is defined as IW1:F0, IW1:F1, IW1:F2, IW2:F3.
- Frame = A defined number of slots (1-16) preceded by an idle time. The
 - first slots are used for link control (sync and ID) and status
 - information, and the remaining slots are used for information transfer.
- ID Slot = The slot immediately following the sync slot, also referred to
 - as IWO, which contains the 4 bit frame identification number.
- Idle Slot = A slot where no message is transmitted (all logic ones
 - expected) (i.e. empty slot, blank slot)
- Information Slot = All slots except for sync slot and ID slot (IW1-IWE).
- Link Master = The control module which generates the sync sequence and ID slot.
- Link_sw = Hardware present switch for communication link configuration. See EEC Overview Chapter.

- Message = A serial information flow consisting of two bytes of data. The $\,$

two bytes of data are also referred to as a word.

- Nibble = The upper or lower four bits of data in a byte.
- Slot = A dedicated time period relative to the $% \left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) =\left(1\right) +\left(1\right) =\left$

used for transmission of a message.

- Sync Message = The message which contains the sync word 0000H (H denotes hexadecimal).

DATA COMMUNICATIONS LINK, OVERVIEW - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- UART_State = State counter for UART message check.
- Word = The 16 data bits of a message.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OVERVIEW

The intent of the Data Communications Link (DCL) usage for diagnostics is to provide on-board, Electronic Engine Control Module (EEC-IV), to off-board, Service Bay Diagnostic System (SBDS), communications for enhanced diagnostic capabilities.

In order to accomplish this task, SBDS will provide various modes of operation which will be dependent upon the level of diagnostics required.

The desired mode of operation will be determined by the SBDS and broadcast on the DCL in the Diagnostic Parameter Slots, (DPS), which is defined to be Information Word 1, Frames 0 through 3 inclusive. For normal (non-diagnostic mode) operation, the Diagnostic Parameter Slots will be idle.

Once the SBDS is connected to the DCL, the operational mode may change at which time the predetermined vehicle subsystems will recognize the change and take the appropriate action.

The diagnostic mode specified by the contents of the Diagnostic Parameter Slots will take effect at the start of the next Block, (ie., Frame 0 of the next Block).

All remaining link devices will continue to monitor the DPS unless they have been permanently disconnected by the SBDS. Non-active devices must refrain from transmitting or receiving non-pertinent information until the DPS specifies a new diagnostic mode or returns to the idle value.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINED EEC-IV DIAGNOSTIC MODES

An eight (8) bit value is used to encode the various diagnostic modes for each device. The following diagnostic modes are defined in this document:

DIAGMODE	Value	Function
00000001	======== 1H	clear DCL error/flag bits
00000010	2H	clear Continuous Self Test codes
00000011	3H	display status information only
00100001	21H	transmit PID values
00100010	22H	transmit DMR values
00100011	23H	transmit PID map
00100100	24H	transmit DMR map
00100101	25H	run Self Test (KOEO or KOER)
00100110	26H	transmit Continuous Self Test codes
00100111	27H	transmit PID and DMR values
01000001	41H	read Parameter Identification (PID) map
01000010	42H	read Direct Memory Reference (DMR) map
01000011	43H	read program/data bytes
01000101	45H	read program execution vector
01000110	46H	read A/D substitution values

In addition, one two diagnostic codes are reserved for all link devices.

DIAGMODE	Value	Function
10000000	80H	go permanently offline, disable DCL function
10000001	81H	Set DCL baud rate

These functions are described in the text below.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DCL DIAGNOSTIC STATUS INFORMATION

The EEC-IV Status Display

When the EEC-IV module has been selected with a DIAGMODE command in the range

00H through 7FH inclusive, the EEC will write the following status

information in Slot IW1, Frames 04H through 0FH inclusive:

Frame	Description
======	
4	Display the current diagnostic mode
5	Display the diagnostic mode for the next Block
6	DCL Error/Flag bits - Low byte
7	DCL Error/Flag bits - High byte
8	Direct Memory Reference (DMR) Base register - Low byte
9	Direct Memory Reference (DMR) Base register - High byte
A	ROM Calibration ID - Low byte
В	ROM Calibration ID - High byte
С	Idle
D	Idle
E	Idle
F	Idle

The DCL Error/Flag register, (16 bit), is used to maintain status information $\ensuremath{\text{STR}}$

regarding the actual DCL system. The SBDS will use this information to

insure error free DCL communications and the determination of system status.

The Error/Flag bits are assigned as follows:

Bit	Function	Condition
0	Read Bytes	Load Address (low byte) Parity
1	Read Bytes	Load Address (high byte) Bad Value
2	Read Bytes	Data or Checksum Parity
3	Read Bytes	Incorrect Checksum
4	Read A/D Values	Parity Error
5	Read PID Map	Parity Error
6	Read (DMR) Offset	Parity Error
7	*** not used ***	
8	*** not used ***	
9	*** not used ***	
10	Read Execute Vector	Parity Error
11	Read Execute Vector	Incorrect Checksum
12	DCL Mode Scheduler	Bad Diagnostic Parameter Slot
13	EEC Reset	Set if EEC Resets
14	Self Test	Self Test Complete
15	Background	Set to Disable Program* Execution

^{*} Refers to execution of diagnostic programs downloaded into the EEC-IV by the SBDS.

This error register is initialized to BC1FH on EEC power-up/initialize.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The Direct Memory Reference, (DMR), Base Register is a 16 bit value which is

used by the EEC-IV DCL software for information requested by address. The $\,$

SBDS will request data by sending 8-bit offset values which are added to the

base register to compute the absolute address of the parameters requested.

All parameters requested in this manner are to be returned as unscaled byte

values.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DCL DIAGNOSTIC MODE CHANGE PROTOCOL

All devices connected to the DCL will change operational modes based on the $\ensuremath{\mathsf{L}}$

contents of the Diagnostic Parameter Slots, (DPS), which are defined to be

Information Word 1, Frames 0 through 3 inclusive. Normal mode is indicated

by all Diagnostic Parameter Slots being Idle.

The Diagnostic Parameter Slots

The DPS may be divided into five (5) fields as follows:

Frame	Bits	Description
0	0-11 0-11	DCL Module Select Bit Map
2	0-7	DCL Module Offline Bit Map DIAGMODE Command Code
2 3	8-11 0-11	Frame Length Specifier DIAGMODE Command Qualifier

The Module Select Bit Map [IW:1 F:0 b:0-11]

The first field is the Module Select Bit Map which is defined as follows:

Bit	Selected Module
=======	
0	Electronic Engine Control Module (EEC-IV)
1	Cluster Control Assembly (CCA)
2	Message Center Control Assembly (MCCA)
3-11	reserved for future expansion

If bit 0 is set (1), the EEC-IV should execute the specified DIAGMODE command. If bit 0 is clear (0), the EEC-IV should ignore the DIAGMODE command.

The Module Offline Bit Map [IW:1 F:1 b:0-11]

The second field is the Module Select Bit Map which is defined as follows:

Bit	Selected Module
=======	
0	Electronic Engine Control Module (EEC-IV)
1	Cluster Control Assembly (CCA)
2	Message Center Control Assembly (MCCA)
3-11	reserved for future expansion

If bit 0 is set (1), the EEC-IV should not transmit or receive any normal map information. If bit 0 is clear (0), the EEC-IV MUST transmit its normal map information.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The DIAGMODE Command Code [IW:1 F:2 b:0-7]

The third field is the DIAGMODE Command Code. This is a byte value which

identifies the requested diagnostic mode. DIAGMODE codes in the range $0.0\ \mathrm{H}$

through 7FH inclusive are to be considered as specific, (or private),

diagnostic modes. DIAGMODE codes in the range $80\mathrm{H}$ through FFH inclusive are

used to designate common diagnostic modes. Common diagnostic command codes

MUST NOT be assigned without approval by all link devices.

The Frame Length Specifier [IW:1 F:2 b:8-11]

The fourth field is the Frame Length Specifier for the next Block. This is a

four bit value in the range 1H through EH inclusive. This value specifies

the Frame Length as the last valid Slot number. Therefore, this value is one

(1) less than the value to be written to the CART Frame Length Register.

The DIAGMODE Command Qualifier [IW:1 F:3 b:0-11]

The fifth and last field is the DIAGMODE Command Qualifier. This is a 12-bit

value which may contain additional information required to process the

requested diagnostic procedure. Currently, only one defined ${\tt EEC-IV}$

diagnostic mode uses this information, (see DIAGMODE CODE 80H, Go Permanently Offline).

Diagnostic Parameter Slots Error Processing

Unless normal mode is specified, (ie., all DPS idle), all DPS fields ${\tt MUST}$

contain valid information. That is to say, all DPS MUST not be idle and all

Slots MUST have the correct Vertical Parity value.

If any of the above conditions are not met, then the $% \left(1\right) =\left(1\right) =\left(1\right)$ entire $\left(1\right) =\left(1$

considered in error and disregarded. Normal map information must then be

transmitted at the start of the next Block.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

DCL DIAGNOSTIC MODE DESCRIPTIONS

The diagnostic modes used by the SBDS/EEC-IV interface may be divided into

the following categories:

- Read information from the EEC-IV module

- II. Parameter Substitution
 III. Download programs/data
 IV. Run Self Test (KOEO and KOER)
- Housekeeping functions

Each of these functions are described, in detail, below.

Read Information from the EEC-IV Module

All diagnostic modes in this category are used by the SBDS to request information from the EEC-IV module. Information may be requested in

two ways depending on the mode selected: by name, (PID index code), or by

address, (DMR offset).

Parameter Reference by Name

Certain key engine parameters will be referenced by a unique index code

name). This mode is intended to provide a fast strategy independent means of

requesting parameter values which are considered to be vital to

diagnostic procedures. It is our intent to keep this list as small as

possible to minimize the index table storage requirements.

The SBDS will specify these parameters in the following way:

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

DPS Field Value Module Select 001H Module Offline FFFH DIAGMODE Code 41H Frame Length X DIAGMODE Qualifier 000H

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline. Frame length can vary from 2 to E slots.

II. The SBDS will then transmit the parameter reference index codes in the selected Slots when mode 41H has taken effect. These index codes are single byte values in the range 1 through 255 inclusive. An IDLE Slot or a Slot containing the value 0 indicates that the EEC-IV should not transmit in that Slot during the response phase, (mode 21H).

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

III. The EEC-IV will read these index codes and store them in a RAM table for later usage. This table needs to be 208 bytes in length, (16 Frames by 13 Slots; Slots IWO and IW1 are not represented in this table). This table will begin at the end of reference by address table i.e., DCL_RAM_START + 208.

IV. While in mode 041H, the EEC-IV will transmit only the Sync and ID Slots along with status information in the Diagnostic Slot, (IW1).

After the Parameter Identification, (PID), map has been sent to the ${\tt EEC-IV}\,,$

the SBDS will change modes to allow the EEC-IV to transmit the requested parameters.

I. Once the table has been loaded by the SBDS, (a minimum of one Block time), the SBDS will specify mode 21H by transmitting the following DPS:

DPS Field	Value
=======================================	======
Module Select	001H
Module Offline	FFFH
DIAGMODE Code	21H
Frame Length	X
DIAGMODE Qualifier	000H

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline. Frame length can vary from 2 to E slots.

When mode 21H takes effect, the EEC-IV will transmit the requested parameter values in the same Slots that their index codes were transmitted in by the SBDS in mode 41H. The parameter values may be up to 12 bits in length and are to be scaled appropriately. If an unused PID code is requested, a value of zero will be returned in that slot.

The parameter names, indices (PIDs), and scaling factors are included towards the end of this chapter.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Parameter Reference by Address Offset

In order to allow the SBDS to access any strategy parameter, another method

of requesting data will be provided by the EEC-IV module. In this mode, the $\,$

SBDS will request information by transmitting an $\,$ 8 bit offset to a base

address. The sum of the base address value and offsets will form the $\,$

absolute addresses used to reference the required engine parameters.

The offset values are specified in the following way:

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- II. At the start of the next Block, the SBDS will transmit the the desired offset values in the appropriate Slots. The EEC-IV must read these values and store them in a RAM table, called the Direct Memory Reference (DMR) map, for future use. The table must be 208 bytes in length, (16 Frames by 13 Slots; Slots IWO and IW1 are not represented in this table). This table space cannot be shared with the PID RAM table as the SBDS may have loaded valid data into both tables at the same time. This table is located at DCL RAM START.
- III. While in mode 42H, the EEC-IV will transmit only the Sync and ID Slots along with the status information in the Diagnostic Slot, IW1.
- IV. Slots which are IDLE or contain the value 0 indicate that the EEC-IV should not transmit any information in these Slots during the response phase (mode 22H).

After the byte offset values have been loaded into the EEC-IV, the SBDS may then command the requested information be returned as follows:

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

DPS Field	Value
=======================================	======
Module Select	001H
Module Offline	FFFH
DIAGMODE Code	22H
Frame Length	X
DIAGMODE Qualifier	XXXH

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline.

II. The base address is read from the command qualifier slot and is normalized by shifting left 4 bit positions to obtain a 16-bit address aligned on a 16-byte boundary in memory. While mode 22H is in effect, the EEC-IV will transmit the requested information in the specified Slots. Each parameter to be returned is an unscaled byte value whose address is obtained by adding the 8 bit offset to the 16 bit base address value (obtained as above, or the default value of 0000H).

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Parameter Reference by both PID MAP and Address Offset:

After both the PID Map and the DMR byte offset values have been $\,$ loaded into

the EEC-IV, the SBDS may then command the requested information to be $\begin{tabular}{ll} \hline \end{tabular}$

returned using a combination of PID and DMR as follows:

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

DPS Field	Value
=======================================	======
Module Select	001H
Module Offline	FFFH
DIAGMODE Code	27H
Frame Length	X
DIAGMODE Oualifier	000H

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline.

II. While mode 27H is in effect, the EEC-IV will transmit the requested information in the specified Slots. The transmission will be done via either PID or DMR, depending upon whether PID codes or address offsets have been specified by SBDS. If a conflict arises, where both a PID code and an address offset have been specified for the same slot, the PID transmission will have priority. The parameters will be returned according to the descriptions in commands 21H and 22H, above.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EEC-IV Transmission of Parameter Identification (PID) Map

The SBDS May request that the EEC-IV module transmit the current PID map to $\,$

verify the information which was previously requested. The PID map is $% \left(1\right) =\left(1\right) +\left(1$

requested as follows:

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

DPS Field	Value
=======================================	======
Module Select	001H
Module Offline	FFFH
DIAGMODE Code	23H
Frame Length	E
DIAGMODE Qualifier	000H

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline.

- II. The EEC-IV will transmit a single byte value in all data Slots (Slots IW2 through IWE). This value will be the parameter index for that Slot. A value of 0 will indicate that no request was made for that information slot.
- III. The EEC-IV will also transmit the Sync and ID Slots as well the status information in the Diagnostic Slot, IW1, as usual.

EEC-IV Transmission of Direct Memory Reference (DMR) Map

The SBDS May request that the EEC-IV module transmit the current base address

offset map to verify the information which was previously requested. The

base address offset map is requested as follows:

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

DPS Field	Value
=======================================	======
Module Select	001H
Module Offline	FFFH
DIAGMODE Code	24H
Frame Length	E
DIAGMODE Qualifier	000H

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline.

II. The EEC-IV will transmit a single byte value in all data Slots (Slots IW2 through IWE). This value will be the address offset for that slot. A value of 0 will indicate that no request was made for that information slot.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

III. The EEC-IV will also transmit the Sync and ID Slots as well as the status information in the Diagnostic Slot, IW1, as usual

Parameter Substitution

The only diagnostic mode of this type defined thus far is the substitution of

the $\mbox{A/D}$ sensor values. The SBDS will transmit the values to be used in place

of the normal strategy values.

A/D Sensor Value Substitution

The instantaneous A/D sensor values will be substituted in the following way:

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

DPS Field	Value
=======================================	======
Module Select	001H
Module Offline	FFFH
DIAGMODE Code	46H
Frame Length	E
DIAGMODE Qualifier	000H

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline.

II. When mode 46H has taken effect, the SBDS will write up to 13 A/D substitution values in Slot IW2, Frames 0 through C, inclusive. These 10 bit binary 0 values will be substituted for their respective A/D sensor values according to the following table:

A/D Register	Slot
=============	
ACH-0	IW2
ACH-1	IW3
ACH-2	IW4
ACH-3	IW5
ACH-4	IW6
ACH-5	IW7
ACH-6	IW8
ACH-7	IW9
ACH-8	IWA
ACH-9	IWB
ACH-10	IWC
ACH-11	IWD
ACH-12	IWE

III. The EEC-IV will transmit only the Sync and ID Slots and the status information in the Diagnostic Slot, IW1, as usual.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- IV. The values substitution should begin during the next background loop and continue until changed later by the SBDS.
- V. A/D parameter substitution is disabled for a particular A/D channel when its associated Slot is left IDLE during mode 46H.
- VI. When A/D parameter substitution is no longer requested all RAM must be re-initialized.
- VII. Before substituting A/D values all KAM must be read and stored by the SBDC using parameter reference by address offset. At the completion of the A/D substitutions the KAM data stored in the SBDC must be read back to the EEC using data download.

Downloading Programs and Data

The next class of operations involves the transmission of data and diagnostic

transmitted during each Frame. An Exclusive-Or checksum is provided to $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left$

ensure data integrity.

Program / Data Download

There is no real difference between the transmission of $% \left(x\right) =x^{2}$ data and programs.

In fact, the two may be transmitted at the same time. To keep processing to

a minimum, only 10 bytes may be transmitted in a given Frame in Slots IW2

through IWE inclusive. This information is downloaded as follows:

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline.

II. The SBDS will then transmit the program/data using the following format for each Frame in the Block:

10/21/2000 LHBH1.TXT

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

Slot	Contents				
========					
IW2	load address - low byte				
IW3	load address - high byte				
IW4	data byte 1				
IW5	data byte 2				
IW6	data byte 3				
IW7	data byte 4				
IW8	data byte 5				
IW9	data byte 6				
IWA	data byte 7				
IWB	data byte 8				
IWC	data byte 9				
IWD	data byte 10				
IWE	Exclusive-Or checksum				

- III. If Slot IW2 is IDLE, the EEC-IV should ignore the rest of the data in that Frame. If Slot IW2 contains the low byte of the load address, then Slot IW3 MUST contain the load address high byte. The data Slots may contain byte values or be IDLE. An IDLE Slot indicates that no data should be written into the address associated with that Slot. Data byte #1 will be loaded into the address specified in Slots IW2 and IW3. Data byte #2 will be loaded into the next sequential address and so on. A new load address is provided in every Frame. The load address MUST be between 'DCL_RAM_START' and 'DCL_RAM_END', or KAM_START and KAM_END. The only data written between KAM_START and KAM_END is previously saved KAM data. DCL_RAM_END is equal to DCL_RAM_START + 600.
 - IV. Slot IWE will contain an 8 bit Exclusive-Or checksum of Slots IW2, IW3 and all data Slots which are not IDLE. This checksum must be used by the EEC-IV to validate the received data bytes.
 - V. The EEC-IV will transmit only the Sync and ID Slots as well as the status information in the Diagnostic Slot, IW1.
 - VI. This mode will remain in effect for as many Blocks as necessary to transmit all of the required data/program bytes.
- VII. Before downloading a program to execute all KAM must be read and stored by the SBDC using Parameter Reference by Address Offset. At the completion of running a downloaded program the KAM data must be written back to the EEC using data down load.

After a program has been downloaded, the SBDS may enable execution of

program by sending the start address of the desired program. requested

routine is to be executed once per background loop until the

request is revoked by the SBDS transmitting an execution address of 0000H, or $\,$ when bit

15 of the DCL Error/Flag register is set, or when the EEC-IV is reset. When

the request is revoked all RAM must be re-initialized.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The program execution vector will be specified as follows:

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

DPS Field	Value
=======================================	======
Module Select	001H
Module Offline	FFFH
DIAGMODE Code	45H
Frame Length	4
DIAGMODE Qualifier	000H

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline.

- II. As soon as this mode takes effect, the SBDS will transmit the 16 bit start address by writing the low byte in Slot IW2 and the high byte in Slot IW3. An 8 bit checksum of the address will be transmitted in Slot IW4, all in Frame 0.
- III. The program should begin execution within the next background loop time and be repeated during each background loop.
- IV. The program execution must be inhibited if any of the associated error bits in the DCL Error/Flag register are set (bits 0-3 and bits 10-11). In addition, the program may disable itself by setting bit 15 of the DCL Error/Flag register.

Running On Demand Self Test (Key-On-Engine-Off and Key-On-Engine-Running)

The next class of diagnostic operational modes are used to initiate on demand

self test and to return the fault (service) codes. A single DCL mode command

is used to initiate both Key-On-Engine-Off and Key-On-Engine- Running self

tests. The PIP signal will be used to determine which test sequence is performed.

Continuous Self Test codes are not to be transmitted along with the ondemand

codes and must not be cleared during this time.

The EEC will set a flag DCLST_START after receiving diagnostic mode code 25H.

This flag is continuously read by VIP to initiate self test.

```
DIAGMODE = 25H ------ | DCLST_START = 1
(SBDC request for VIP) | (initiate self test)
| --- ELSE ---
| DCLST_START = 0
(clear request for self test)
```

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Key On Engine Off Self Test

One of these tests will be performed when the SBDS has requested on demand Self Test. PIP is used to determine which Self Test is performed.

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

DPS Field	Value
=======================================	======
Module Select	001H
Module Offline	FFFH
DIAGMODE Code	25H
Frame Length	E
DIAGMODE Oualifier	000H

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline.

- II. The EEC-IV will transmit only the Sync and ID Slots and the status information in the Diagnostic Slot, IW1, while self test is being run. All other link devices will be offline.
- III. When the self test has completed, the EEC-IV will transmit the service/fault codes in the last two slots. The codes will begin in the last slot of frame 0, and continue in the last slot of each successive frame up to frame 15. If there are more than 16 codes, the 17th code will be transmitted in slot (last slot 1) of frame 0. The rest will be transmitted in successive frames, as above. The maximum number of codes is presently 20. These codes are to be transmitted every Block until the diagnostic mode has been changed by the SBDS. The EEC-IV will inform the SBDS that all codes have been transmitted, at least once, by setting bit 14 in the DCL Error/Flag register.

Key On Engine Running Self Test

This self test will be performed when the engine is running, (normal engine running strategy) and the SBDS has requested on demand self test.

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

DPS Field	Value
=======================================	======
Module Select	001H
Module Offline	FFFH
DIAGMODE Code	25H
Frame Length	E
DIAGMODE Qualifier	000H

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

II. The EEC-IV will transmit only the Sync and ID Slots and the status information in the Diagnostic Slot, IW1, while self test is being run. All other link devices will be offline.

III. When the self test has completed, the EEC-IV will transmit the service/fault codes in Slots IW2 through IWE, starting in Frame 0 and using as many Frames as necessary to transmit all of the service code table. (In strategy MUN1, this table is called SERV_CODE_TAB and is 20 bytes in length; therefore, only Frames 0 and 1 are required to transmit all possible service/fault codes). These codes are to be transmitted every Block until the diagnostic mode has been changed by the SBDS. The EEC-IV will inform the SBDS that all codes have been transmitted at least once, by setting bit 14 in the DCL Error/Flag register.

Transmit Continuous Self Test Codes

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

DPS Field	Value
=======================================	=======
Module Select	001H
Module Offline	FFFH
DIAGMODE Code	26H
Frame Length	X
DIAGMODE Qualifier	000H

The EEC-IV will change to this mode at the start of the next block.

- II. The EEC-IV will transmit only the Sync and ID Slots and the status information in the Diagnostic Slot, IW1.
- III. When the self test is complete, the EEC-IV will transmit the service/fault codes in the last two slots. The codes will begain in the last slot of frame 0, and continue in the last slot of each successive frame up to frame 15. If there are more than 16 codes, the 17th code will be transmitted in slot (last slot - 1) of frame 0. The rest will be transmitted in successive frames as above. The maximum number of codes is presently 32 (2 slots in 16 frames). Each time the codes are transmitted, the flag DCLST DONE is cleared causing VIP to reload the RAM table with the latest continuous codes. The latest codes will be transmitted every block until the diagnostic mode has been changed by the SBDS. If the diagnostic command remains 26H, and VIP does not have time to load the RAM table before the next block begins, that block will be idle. The EEC-IV will inform the SBDS that a given block contains codes by setting bit 14 of the DCL Error/Flag register.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Miscellaneous Housekeeping Functions

The following operational modes are used by the SBDS System to provide

housekeeping functions. Currently, three of these diagnostic modes have been defined.

Clear DCL Error/Flag Register

This diagnostic mode is specified by the SBDS to clear the EEC-IV $_{\rm DCL}$

Error/Flag Register. The sequence of events proceeds as follows:

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline.

- II. While this mode is in effect, the EEC-IV will clear all bits except bit 12 of the DCL Error/Flag Register. Bit 12 will remain at its previous value.
- III. During this mode, the EEC-IV will continue to transmit the Sync and ID Slots and the status information in the Diagnostic Slot, IW1. All other link devices will be offline.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Clear Continuous VIP Codes

This diagnostic mode is specified by the SBDS to clear the EEC-IV Continuous

Self Test Codes. The sequence of events proceeds as follows:

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

DPS Field	Value
=======================================	======
Module Select	001H
Module Offline	FFFH
DIAGMODE Code	02H
Frame Length	1
DIAGMODE Qualifier	000H

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline.

- II. While this mode is in effect, the EEC-IV will clear the four KAM bytes which hold the Continuous Self Test Codes.
- III. During this mode, the EEC-IV will continue to transmit the Sync and ID Slots and the status information in the Diagnostic Slot, IW1. All other link devices will be offline.

Display DCL Status Information

This diagnostic mode is used by the SBDS to read the DCL status $% \left(1\right) =\left(1\right) +\left($

are transmitted in the Diagnostic Slot, IW1, without having the ${\tt EEC-IV}$

reading from or writing to any other Slots, (except the usual Slots in \mbox{II}

below). This mode may also be used by the SBDS for certain critical mode $\ensuremath{\mathsf{mode}}$

timing change requirements. The sequence of events proceeds as follows:

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

DPS Field	Value
=======================================	
Module Select	001H
Module Offline	FFFH
DIAGMODE Code	03H
Frame Length	1
DIAGMODE Qualifier	000H

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline.

II. During this mode, the EEC-IV will continue to transmit the Sync and ID Slots and the status information in the Diagnostic Slot, IW1. All other link devices will be offline.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

COMMON DCL DIAGNOSTIC MODES

One diagnostic mode has been defined which is common to all link devices.

This mode is defined below.

All DCL Devices Go Offline

Permanent Device Disconnect

This mode is used by the SBDS to command all link devices to go offline.

This mode may be used to diagnose the link itself, or when external

diagnostic devices may be attached to the link.

This mode will be specified by the SBDS as follows:

I. The SBDS will specify this diagnostic mode by transmitting the following DPS:

DPS Field	Value
=======================================	======
Module Select	001H
Module Offline	FFFH
DIAGMODE Code	80H
Frame Length	X
DIAGMODE Oualifier	07FH

The EEC-IV will change to this mode at the start of the next Block. All other link devices will go offline.

- II. The EEC-IV will completely disable all DCL functions. The CART circuit should be placed into PAUSE mode. The EEC-IV must not generate Sync Words in this mode.
- III. This mode will remain in effect until the EEC-IV has been reset, (ignition key OFF-ON).

Note that this mode makes use of the DIAGMODE Command Qualifier Field.

 ${\tt EEC-IV}$ MUST verify this command by taking the 1's complement of the ${\tt DIAGMODE}$

Command Qualifier and comparing it to the DIAGMODE Code. If the comparison $% \left(1\right) =\left(1\right) +\left(1\right)$

fails, the EEC-IV MUST NOT go offline.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ERROR PROCESSING

I. Vertical Nibble Parity Error

In general, ignore data and retain previous valid data. Exceptions have been noted in this chapter.

II. Non-EEC Diagnostic Codes

EEC-IV DCL is idle. No intervention until EEC-IV Diagnostic Modes or Normal Mode are in effect. The EEC-IV will continue to transmit the Sync and ID Slots. No status information should be transmitted in a non-EEC-IV diagnostic mode.

DATA COMMUNICATIONS LINK, DIAGNOSIS MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SET DATA COMMUNICATIONS LINK BAUD RATE

This diagnostic mode is used by the diagnostic computer system to command all

link devices to change baud rate. If any module is not capable of supporting

the new desired baud rate, it must first be placed permanently offline.

I. The diagnostic computer will specify this diagnostic mode by transmitting the following DPS:

DPS Field	Value	Comment
Module Select Module Offline DIAGMODE Code Frame Length DIAGMODE qualifier	FFFH XXXH 81H 2H 000H	Select all active modules as required, FFF in bay 0 on road command code minimum required frame length ignored, 0 recommended

The EEC-IV will change to this mode at the start of the next Block.

II. The diagnostic computer will then transmit the baud rate specifier information in Frame F, IW2 according to the following table:

Specifier	Requested Baud Rate
00н	2400 baud
01H	4800 baud
02H	9600 baud
03Н	19200 baud

- III. The EEC-IV will set the new baud rate immediately upon reading and verifying the baud rate specifier, (during the CART service routine for receive frame F). Therefore, the EEC-IV will use the new baud rate beginning at the next Block.
- IV. If the baud rate specifier is missing or invalid, the default baud rate of 2400 will be used and the corresponding error bit must be set. The error bit must be clear before the baud rate can be set to any value other than 2400 baud.
- V. The EEC-IV will transmit the Sync and ID Slots during mode OCOM. Status information should also be transmitted in the Diagnostic Slot, IW1, as usual. Normal mode information may also be transmitted depending upon the state of the Module Offline Bit Mask.

A sample information map of this diagnostic mode is presented in Appendix P of this document.

DATA COMMUNICATIONS LINK, PID TABLES AND BIMAP DEFINITIONS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

9.0 Parameter Identification (PID) Code Tables:

Parameter Name	PID Code	Data Type	Output Scaling	Output Resolution
N MAP BP SAFTOT IACT	01 02 03 04 05	word byte byte byte word	bin -2 bin 3 bin 3 bin 2 bin 0	4 RPM 0.125 "Hg 0.125 "Hg 0.25 degrees S.A. 1 A/D count
IECT IEGR IEGO1 ITP ***NOT USED***	06 07 08 09 0A	word word word word	bin 0 bin 0 bin 0 bin 0	1 A/D count 1 A/D count 1 A/D count 1 A/D count
IVCAL FUELPW1 LAMBSE1 APT	OA OB OC OD OE	word word word byte	bin 0 bin -5 bin 11 bin 0	1 A/D count 32 clock ticks 1/2048 unitless -1,0,1 unitless
ACT ECT VBAT MAP FREO	0E 0F 10 11	byte byte byte word	bin -1 bin -1 bin 4 bin 4	
EGRDC ***NOT USED*** ISCDTY ***NOT USED***	13 14 15 16	word word	bin 11 bin 11	1 EEC-IV count
VSBAR VS ***NOT USED***	17 18 19	byte word	bin 1 bin 5	0.5 MPH 0.03125 MPH
BITMAP_0 BITMAP_1 ***NOT USED***	1A 1B 1C 1D	word word	N/A N/A	N/A (see def. below) N/A (see def. below)
SBDS01 SBDS02 SBDS03 SBDS04 SBDS05 SBDS06	1E 1F 20 21 22 23	byte byte byte byte byte byte	bin 0 bin 0 bin 0 bin 0 bin 0 bin 0 bin 0	N/A N/A N/A N/A N/A

DATA COMMUNICATIONS LINK, PID TABLES AND BIMAP DEFINITIONS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

9.0 Parameter Identification (PID) Code Tables (continued):

PID Code	Data Type	Output Scaling	Output Resolution
24 25	byte byte	bin 0 bin 0	N/A N/A
27	word	bin 11	0.0488% of standard air
28 29	word	bin 4	0.0625 A/F
2A	byte	bin -4	16 r.p.m.
	word	bin 2	0.25 count
	-		
			1 second
	word		1 A/D count
2F	word	bin 0	1 A/D count
30	word	bin 11	0.0488% duty cycle on time
31			
32	byte	bin 1	N/A
33			
34			
35	word	bin 2	0.25 volts
36	byte	bin 1	0.5 p.s.i
37	word	bin 0	1 A/D count
			N/A
39	-1		
	Code 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38	Code Type 24 byte 25 byte 26 27 word 28 word 29 2A byte 2B word 2C 2D word 2F word 30 word 31 32 byte 33 34 35 word 36 byte 37 word 38 byte	Code Type Scaling 24 byte bin 0 25 byte bin 0 26 27 word bin 11 28 word bin 4 29 2A byte bin -4 2B word bin 2 2C 2D word bin 0 2E word bin 0 30 word bin 11 31 32 byte bin 1 33 34 35 word bin 2 36 byte bin 1 37 word bin 0 38 byte bin 1

Where:

FLG_LK_CM = 1 ----- | BCSDC = 1 | --- ELSE --- | BCSDC = 0

DATA COMMUNICATIONS LINK, PID TABLES AND BIMAP DEFINITIONS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BITMAP REGISTER DEFINITIONS

9.1 BITMAP 0:

```
HIGH: | v | v | v | 3 | 2 | 1 | 0 |
        *** not used ***, always 0.
*** not used ***, always 0.
0:
1:
        1 if canister purge has non-zero duty cycle.
2:
        1 if A/C clutch is disengaged.
4-7: Vertical Nibble Parity (VNP)
        7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
LOW:
        *** not used ***, always 0.

*** not used ***, always 0.

*** not used ***, always 0.
2:
        *** not used ***, always 0.

*** not used ***, always 0.

*** not used ***, always 0.
3:
4:
5:
        1 if not in neutral or park.
6:
7:
        1 if fuel pump is on.
```

9.2 BITMAP_1:

```
HIGH: | v | v | v | 3 | 2 | 1 | 0 |
0:
       1 if alternate shift mode/overdrive cancel is selected.
      *** not used ***, always 0.

*** not used ***, always 0.

*** not used ***, always 0.
3:
4-7: Vertical Nibble Parity (VNP)
      | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
LOW:
0:
       1 if in closed loop fuel control.
       1 if power sterring pressure switch is closed.
1:
2:
       1 if driver has selected A/C.
       *** not used ***, always 0.
      1 if Ignition Diagnostic Monitor EEC module input is high. 1 if output AM1 is on.
4:
5:
6:
      1 if output AM2 is on.
      *** not used ***, always 0.
```

DATA COMMUNICATIONS LINK, PID TABLES AND BIMAP DEFINITIONS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PLEASE NOTE: If the hardware related to a certain BITMAP bit is not present on a specific application then that bit will always be zero for that application.

DATA COMMUNCATIONS LINK, UART MESSAGE CHECK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

UART MESSAGE CHECK

OVERVIEW

The message check logic first checks to see if the UART receive buffer is full (bit 0 of CART_STATUS = 1). If the buffer is not full, then reception of data did not cause the interrupt. BYTE_NUM and EEC_CHKSUM are set to 0, CART_STATUS is set to 1818H and the message check logic is exited. If buffer is full, then the new byte is read from UART receive buffer and following logic is executed.

DEFINITIONS

INPUTS

Registers:

- BYTE_NUM = Indicates which byte of UART message.
- CMD_CODE = Command from SBDS.
- EEC_CHKSUM = XOR checksum of bytes 6 thru 10 of UART message.
- SBDS_CHKSUM = CHECKSUM computed by SBDS.

Bit Flags:

- MODULE_ID = 1 -> EEC selected.

OUTPUTS Registers:

- BYTE_NUM = See above.
- CART_STATUS = CART status register.
- EEC_CHKSUM = See above.
- NO_OF_STARTS = Number of starts using alternative calibration.
- NO_START_CHK = Number of starts, check byte.
- XDCL_BAUD = Current DCL baud rate.

Bit Flags:

- CART_MODE = 1 -> CART mode, 0 -> UART mode.
- XDCL_ERR0 = Error/flag register 0.

DATA COMMUNCATIONS LINK, UART MESSAGE CHECK - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: DCL_UART_COM1

RECEIVE OVERRUN ERROR (bit 5 of CART_STATUS = 1)	/had 2002 2000000
BYTE_NUM < 5 OR OR	(bad sync sequence or byte lost in
(5 zeros not received) AND -	CART_STATUS = 1818H BYTE_NUM = 0
new byte <> 0 (non-zero received)	EEC_CHKSUM = 0 Exit message check logic
BYTE NUM < 5	ELSE
(5 zeros not received) AND -	(normal sync sequence) CART_STATUS = 1818H
new byte = 0 (zero received)	Increment BYTE_NUM EEC_CHKSUM = 0 Exit message check logic
DVID NUM F	ELSE
BYTE_NUM = 5 (5 zeros received) AND -	(sync sequence complete) CART_STATUS = 1818H
new byte = 0 (zero received)	EEC_CHKSUM = 0 Exit message check logic
	ELSE
	(first non-zero received) Increment BYTE_NUM Store new byte in uart_msg DO SBDS COMMAND LOGIC

Byte numbers 6 through 11 of the message are stored in RAM as follows:

uart_msg:	6 MODULE_ID	(1 -> EEC-IV selected)
	7 CMD_CODE	(Command from SBDS)
	8 BYTE_8	(Not presently used)
	9 BYTE_9	(Not presently used)
	10 BYTE_10	(Not presently used)
	11 SBDS_CHKSUM	(Checksum sent by SBDS)

DATA COMMUNCATIONS LINK, UART MESSAGE CHECK - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SBDS COMMAND LOGIC

CART_STATUS = 1818H (update the check sum) EEC_CHKSUM = EEC_CHKSUM XOR new byte Exit message check logic
ELSE
(ignore message) CART_STATUS = 1818H BYTE_NUM = 0 EEC_CHKSUM = 0 Exit message check logic
ELSE
(echo MODULE_ID to SBDS) CART_STATUS = 1818H uart transmit buffer = MODULE_ID BYTE_NUM = 0 EEC_CHKSUM = 0 Exit message check logic ELSE
 (go permanently off-line) CART_STATUS = 4040H BYTE_NUM = 0 EEC_CHKSUM = 0 Exit message check logic ELSE
(go to CART Mode) XDCL_BAUD = 03H CART_MODE = 1 CART_STATUS = 9292H XFRAME = 0FH XDCL_ERRO = BC1FH BYTE_NUM = 0 EEC_CHKSUM = 0 Exit message check logic ELSE

(continued on next page)

DATA COMMUNCATIONS LINK, UART MESSAGE CHECK - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

DATA COMMUNCATIONS LINK, UART MESSAGE CHECK - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 14

DATA OUTPUT LINK

DATA OUTPUT LINK - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DATA OUTPUT LINK

OVERVIEW

DEFINITIONS

INPUTS

Registers:

- RATCH = Lowest filtered throttle position (see SYSTEM EQUATIONS Chapter).
- TP = Throttle position, counts.
- TP_REL = Relative TP (TP RATCH).

Bit Flags:

- MFMFLG = Flag indicating MAP sensor failure; 1 -> failure.
- TFMFLG = Flag indicating a TP sensor failure; 1 -> failure.

Calibration Constants:

- GOVHP = Governor hardware present switch; 0 -> no governor, 1 -> governor present.
- FN500 = Transfer function to convert TPREL counts to percent duty
 cycle
 for transmission on the DOL.

OUTPUTS

Registers:

- DOL_DUTY = Duty cycle to be output to the stand alone governor.

DATA OUTPUT LINK - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: DOL_LH

NOTE:

- Should the TP sensor fail, TP is simulated from MAP and is output to the governor. Should the MAP sensor also fail, no value for TP is output.

DATA OUTPUT LINK - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DATA OUTPUT LINK, PULSE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PULSE CALCULATION

OVERVIEW

The Data Output Link (DOL) provides fuel consumption information to the $\,$

vehicle dashboard fuel economy display products (Tripminder or Message

Center). The output, in the form of pulses, represents the amount of fuel

used since the last update. This information is used in calculating $\ensuremath{\text{fuel}}$

economy and distance-to-empty for display to the driver.

The injector fuel flow (in lbmf/(injector/port)) is accumulated in the

register FUEL_SUM every time an injector port is energized. Both normal and

AE pulses are accumulated in FUEL_SUM. Once a background loop, ${\tt FUEL_SUM}$ is

converted to the appropriate integer number of DOL pulses, and $\mathtt{DOL_COUNT}$ is

updated according to the equation shown below. The amount of FUEL_SUM which

cannot be converted to an integer count remains in ${\tt FUEL_SUM}$ for the next

conversion. For some strategies, the injector fuel flow $% \left(1\right) =\left(1\right) +\left($

ticks (register ${\tt FUEL_SUM_TICKS})$ instead of lbmf. The ticks are then

converted to 1bmf when the DOL pulses are calculated.

Approximately every two milliseconds, the value of DOL_COUNT is checked. If

DOL_COUNT is greater than 1.0, the DOL output is energized for about one

msec, and DOL_COUNT is reduced by 1.0.

DEFINITIONS

INPUTS

Registers:

- A0COR = Corrected fuel flow rate of injectors, lb/sec.
- DOL_COUNT = Number of pulses to be output to the Fuel Economy display device.
- FUEL SUM TKS = Register for DOL summer, ticks.
- INJOUT = Number of injectors per output port, unitless.
- stcf = Seconds to clock ticks conversion factor, ticks/second.

Calibration Constants:

- PUL_PER_GAL = Number of DOL pulses to be issued for each gallon of fuel used, pulse per gal.

NOTE: THE VALUE FOR PUL_PER_GAL MUST BE OBTAINED FROM

EED/INSTRUMENT
SYSTEMS FOR EACH APPLICATION.

DATA OUTPUT LINK, PULSE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- DOL_COUNT = See above.
- FUEL_SUM_TKS = See above.

DATA OUTPUT LINK, PULSE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: DOL_PULSE_CALC_COM3

Once per background loop execute the following:

Once per millisecond execute the following:

```
bit 0 of LINK_SW = 1 ---- AND - Toggle DOL output

DOL_COUNT > 0.5 ------ DOL_COUNT = DOL_COUNT - 1

bit 0 of LINK_SW = 1 ------ DOL_COUNT = 0.5
```

DATA OUTPUT LINK, PULSE CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 15 ALTERNATIVE CALIBRATION

ALTERNATIVE CALIBRATION, CALIBRATION INITIALIZE LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CALIBRATION INITIALIZE LOGIC

OVERVIEW

This module sets the flag which will invoke the alternate calibration. To do this, it looks at the value of the parameter NO_OF_STARTS which may have been downloaded in DCL, and it also checks the check byte which is the one's complement of NO_OF_STARTS. The value of NO_OF_STARTS is subsequently decremented. These checks are performed during the RAM initialization process only.

DEFINITIONS

INPUTS

Registers:

- NO_OF_STARTS = Number of starts using alternative calibration.
- NO_START_CHK = Number of starts, check byte.

Bit Flags:

- ALT_CAL_FLG = Flag to indicate use of alternate calibration.

OUTPUTS

Registers:

- NO_OF_STARTS = See above.
- NO_START_CHK = See above.

Bit Flags:

- ALT_CAL_FLG = See above.

ALTERNATIVE CALIBRATION, CALIBRATION INITIALIZE LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: ALTR_CAL_INIT_COM1

Do nothing

Performed during RAM Initialization only.

ALT_CAL_FLG = 1 ----------------- Decrement NO_OF_STARTS Increment NO_START_CHK --- ELSE ---

ALTERNATIVE CALIBRATION, CALIBRATION CLEAR LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CALIBRATION CLEAR LOGIC

OVERVIEW

This module erases any remaining alternate calibration starts should the vehicle travel further than ALT_CAL_DIST in any one journey. The

value of

ALT_CAL_FLG is also set each background loop to reduce the effect of any

possible corruption of the register that may occur.

DEFINITIONS

INPUTS

Registers:

- BG_TMR = Background loop timer.
- DISTANCE = Distance traveled since start, miles.
- NO_OF_STARTS = Number of starts using alternative calibration.
- NO_START_CHK = Number of starts, check byte.
- VSBAR = Filtered vehicle speed.

Calibration Constants:

 ALT_CAL_DIST = Distance traveled before alternate calibration is revoked, miles.

OUTPUTS

Registers:

- DISTANCE = See above.
- NO_OF_STARTS = See above.
- NO_START_CHK = See above.

Bit Flags:

- ALT_CAL_FLG = Flag to indicate use of alternate calibration.

ALTERNATIVE CALIBRATION, CALIBRATION CLEAR LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: ALTR_CAL_CLR_COM1

DISTANCE = DISTANCE + (VSBAR * BG_TMR) / 3600

ALTERNATIVE CALIBRATION, CALIBRATION CLEAR LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 16
SHIFT CONTROL

SHIFT CONTROL, E40D TRANSMISSION STRATEGY OVERVIEW - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

E4OD TRANSMISSION STRATEGY OVERVIEW

The E40D strategy and software are comprised of a set of distinct. independent modules, each with a specific function. The modules are designed to minimize the software impact of different transmission hardware and can thus be re-used in other future transmission strategies. The main modules and subroutines are show on the following page. They are executed in order shown except for System Equations which is done immediately after

conversion. Also shown are the main output parameters of the modules.

****	********************	* *
***	*****************	* *
***	*	* *
* * *	*	* *
* * *	All leferences to PDD , PRIDD , Of Variations thereof	* *
***	with respect to electronic transmission controls are	* *
* * *	synonymous with "Manual Level Indicated Position" as deter- *	* *
***	mined from the manual lever position sensor. *	* *
* * *	*	* *
***	All references to iv, Elv, or terms containing iv	* *
***	with respect to electronic transmission controls are synon-	* *
***	ymous with Electionic Flessule Contion, and ale not	* *
***	associated with any control function of the engine throttle.*	* *
* * *	*	* *
***	*	* *
* * * *	******************	* *
ata ata ata ata		

SHIFT CONTROL, E40D TRANSMISSION STRATEGY OVERVIEW - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

STRUCTURE

MAIN ROUTINE

SUBROUTINES OUTPUT

PARAMETERS

E4OD_SYS_EQU_COM1 NEBART
E4OD_INPUT_PROCESSING_COM1 VSBART_RT
NOBART
PDL

PDL SPD_RATIO TP_REL FLG_4X4L FLG_OCS FLG_PWR TO_NET

DESRD_GR_DETR_COM1 GR_DS

GR_DS_AUTO_COM1 FLG_SFT_UP
VER_AUTO_SHFT_COM1 FLG_SFT_DN
FLG_SF_AUTO

CM_GR_DETR_COM1 GR_CM GR OLD

CM_GR_MAN1_COM1 RT_GR_OLD
CM_GR_MAN2_COM1 FLG_FRST_CM
CM_GR_AUTO_DWN_COM1

SHFT_TIMER_COM1 TM_SFT_IN FLG_SFT_IN

FLG_SFT_IN FLG_SFT_MDN

SHFT_SOL_CTL_COM1 FLG_SS_1 FLG SS_2

RT_GR_CUR GEAR_CUR

SHIFT_VALID_COM1 SFT_ERROR

CST_CLTCH_CTL_COM1 FLG_CS_CM

FLG_CS_ENG

TV_GUIDE_COM1 TV_PRES
TV_STARTUP_COM1 TV_COUNTS

TV_CST_BOOST_COM4 OFMFLG
TV_ENGMT_STALL_COM1

TV_NORM_COM1 TV_STAT
TV_TQ_IALPHA_COM4 TQ_IALPHA
TV_DYNAMIC_COM1 TV_DYN

SHIFT CONTROL, E4OD TRANSMISSION STRATEGY OVERVIEW - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MAIN ROUTINE

SUBROUTINES OUTPUT

PARAMETERS

ET_EPC_OFM_COM2 ET_TV_VFS_OUT_COM2

 CNVRTR_CLUTCH_CTL_COM1
 FLG_LK_CM

 UNCOND_UNLCK_COM1
 FLG_UNC_UNLK

 SHFT_UNLCK_COM1
 FLG_SFT_UNLK

 INI_DWN_CNVR_CLCH_COM1
 TM_SFT_CCO

INI_DWN_CNVR_CLCH_COMI
DWN_CNVR_CLCH_COM1
INI_UP_CNVR_CLCH_COM2
UP_CNVR_CLCH_COM2

SCHLD_LCK_UP_COM1 FLG_CRV_LK WOT_LCK_UP_COM2 FLG_WOT_LK

RT_NOVS_KAM_CALC_COM1 RT_NOVS

CONV_CLCH_VALID_COM1 CC_ERROR

OD_CANCEL_SW_COM1 FLG_OCS

OCIL_STATE_COM1 OCIL_STATE

OCILTMR

OCIL_FLASH_TMR

OCIL REPEAT COM1

CST_OUT_REPEAT_COM1

CONVERTER_CLUTCH_REPEAT_COM3

TV_VFS_OUT_REPEAT_COM1

SHIFT CONTROL, PRNDL BASED DESIRED GEAR DETERMINATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PRNDL BASED DESIRED GEAR DETERMINATION

OVERVIEW

The desired transmission gear is calculated based on PRNDL position.
Possible gears are:

GR_CM	Transmission State	GEAR_CUR	RT_GR_CUR
1	1ST	1	2.710
2 (PDL < 3)	2ND, interm. band ON	2	1.538
2 (PDL > 2)	2ND, interm. band OFF	2	1.538
3	3RD	3	1.0
4	4TH	4	0.742

In the normal Drive/Overdrive position, the desired gear is calculated based

on a maximum WOT RPM shift point or as a function of throttle position versus $% \left(1\right) =\left(1\right) +\left(1$

vehicle speed. All shift points are adjusted for altitude. There are no

excluded shifts in automatic mode, that is $1\,-\,4$ shifts or $3\,-\,1$ shifts are

permitted if the calibration calls for it.

In manual 2 or 1, desired gear is set to the ultimate $% \left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) +\left(1\right) =\left(1\right) +\left(1$

manual 2 and 1 in manual 1. Sequencing through the downshift routine is left

to the commanded gear routine.

The main outputs of the desired gear routine are:

- GR_DS, the desired gear;
- FLG_FRST_DS, global flag to indicate a shift is desired this background pass.

DEFINITIONS

INPUTS

Registers:

- GEAR CUR = Current transmission gear.
- GR_DS = Desired transmission gear.
- GR_DS_LST = Desired gear in the last background pass
- GR DS TV = Desired gear used to compute TV pressure.
- GEAR_OLD = Last commanded gear (global register).
- PDL = Current PRNDL position.

- PDL_LST = Last PRNDL position.

SHIFT CONTROL, PRNDL BASED DESIRED GEAR DETERMINATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- TM_DEL_SFT = Time during which a shift is delayed.

OUTPUTS

Registers:

- GR_DS = See above.
- GR_DS_LST = See above.
- GR_DS_TV = Desired gear used to compute TV pressure.
- TM_DEL_SFT = See above.
- TM_SFT_IN = Shift in progress timer.

Bit Flags:

- FLG_DE_DSGR = Delay desired gear 1st pass flag.
- FLG_DEL_MDN = Flag indicating a manual downshift is being delayed:
 0 ->
 no manual downshift is being delayed, 1 -> a manual downshift is being delayed.
- FLG_FRST_DS = First time a shift is desired flag; 0 -> no shift desired,
 - 1 -> shift desired this background pass.
- FLG_SF_AUTO = Automatic upshift/downshift flag; 1 -> automatic shift (PRNDL = 3 or 4), 0 -> manual shift (PRNDL = 2 or 1).
- FLG_SFT_DN = Downshift flag; 1 -> indicates current or last shift
 is/was
 a downshift.
- FLG_SFT_IN = Shift in progress flag; 1 -> shift in progress, 0
 -> no
 shift in progress.
- FLG_SFT_UP = Upshift flag; 1 -> indicates current or last shift is/was an upshift.

SHIFT CONTROL, PRNDL BASED DESIRED GEAR DETERMINATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: SC_DESRD_GR_DETR_COM1

PDL = 3 OR 4	7 7 7	TIM CITE IN - 0
PDL_LST <> 3 OR 4		TM_SFT_IN = 0 FLG_SFT_IN = 0
always		GR_DS_LST = GR_DS
PDL = 1(PRNDL in manual 1)		GR_DS = 1
(TRISE III Mariaal I)	į	ELSE
PDL = 2(PRNDL in manual 2)		$GR_DS = 2$
PDL = 3		ELSE
(PRNDL in overdrive cancel) Logic	OR	Do "GR_DS, PRNDL = 3 OR 4"
PDL = 4(PRNDL in overdrive)		
PDL = 5(PRNDL in neutral)		ELSE
PDL = 6 (PRNDL in reverse)	OR	GR_DS = 1
PDL = 7 (PRNDL in park)		
always		GR_DS_TV = GR_DS

SHIFT CONTROL, PRNDL BASED DESIRED GEAR DETERMINATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

	TM_DEL_SFT = 0
PDL_LST <> 3 OR 4 AND -	FLG_DE_DSGR = 0 FLG_SF_AUTO = 0
PDL = 3 OR 4 (man-to-auto shift)	ELSE
	Do "Delay Shift Logic"
TM_DEL_SFT = 0	FLG_DEL_MDN = 0
GR_DS_TV > GEAR_CUR	<pre>FLG_SFT_UP = 1 FLG_SFT_DN = 0 (indicate upshift) ELSE</pre>
(last shift was an upshift)	FLG_SFT_UP = 0 FLG_SFT_DN = 1 (indicate downshift)
GR_DS <> GR_DS_LST (desired gear has changed)	<pre>FLG_FRST_DS = 1 (new desired gear for this program pass only)</pre>
	ELSE
	$FLG_FRST_DS = 0$

SHIFT CONTROL, GR_DS, PRNDL = 3 OR 4 LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

GR_DS , PRNDL = 3 OR 4 LOGIC

OVERVIEW

This module handles the Desired Gear computation when PRNDL = 3 or 4.

DEFINITIONS

INPUTS

Registers:

- BP INTR = BP interpolation factor.
- CS_SFT_MULT = Cold start shift multiplier.
- GR_DS = Desired transmission gear.
- GR_DS_LST = Desired gear, last background pass.
- GEAR_CUR = Current transmission gear
- NEBART = Filtered engine RPM for transmission.
- PDL = Current PRNDL position.
- RT_NOVS = Ratio of actual N/V to base N/V in KAM.
- TP_REL = Relative throttle position, counts.
- TP_REL_H = Relative TP (TP RATCH) high byte only.
- VS RATEPH = Vehicle accel rate for Powertrain Hunting.
- $VSBART_RT$ = Filtered vehicle speed adjusted for RT_NOVS for transmission.
- VSCTR = Counter for unrealistic changes in vehicle speed.

Bit Flags:

- FLG 4X4L = Flag indicating 4X4 low mode; 1 -> in 4X4 low mode.
- FLG_SFT_IN = Shift in progress flag; 1 -> shift in progress, 0
 -> no
 shift in progress.
- VSFMFLG = Vehicle speed sensor failure flag; 1 -> VSS failure, 0
 -> no
 VSS failure.

SHIFT CONTROL, GR_DS, PRNDL = 3 OR 4 LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Calibration Constants:

- FN12A(TP_REL_H) = Vehicle speed for 1 2 upshift at altitude.
- FN12S(TP REL H) = Vehicle speed for 1 2 upshift at sea level.
- FN21A(TP_REL_H) = Vehicle speed for 2 1 downshift at altitude.
- FN21S(TP_REL_H) = Vehicle speed for 2 1 downshift at sea level.
- FN23A(TP_REL_H) = Vehicle speed for 2 3 upshift at altitude.
- FN23PPH(TP_REL) = Min VS_RATEPH to allow 2 3 upshift.
- FN23S(TP_REL_H) = Vehicle speed for 2 3 upshift at sea level.
- FN32A(TP_REL_H) = Vehicle speed for 3 2 downshift at altitude.
- FN32S(TP_REL_H) = Vehicle speed for 3 2 downshift at sea level.
- FN34A(TP_REL_H) = Vehicle speed for 3 4 upshift at altitude.
- FN34PPH(TP_REL) = Minimum VS_RATEPH to allow 3 4 upshift.
- FN34S(TP_REL_H) = Vehicle speed for 3 4 upshift at sea level.
- FN43A(TP_REL_H) = Vehicle speed for 4 3 downshift at altitude.
- FN43S(TP_REL_H) = Vehicle speed for 4 3 downshift at sea level.
- FN689D(TP_REL) = Engine speed for downshifts during VSS failure.
- FN689U(TP_REL) = Engine speed for upshifts during VSS failure.
- NE12A = WOT RPM 1 2 shift point, altitude.
- NE12S = WOT RPM 1 2 shift point, sea level.
- NE23A = WOT RPM 2 3 shift point, altitude.
- NE23S = WOT RPM 2 3 shift point, sea level.
- NE34A = WOT RPM 3 4 shift point, altitude.
- NE34S = WOT RPM 3 4 shift point, sea level.

SHIFT CONTROL, GR_DS, PRNDL = 3 OR 4 LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- GR_DS = See above.

Bit Flags:

-

FLG_UP_NE = WOT engine RPM upshift flag; 1 -> upshift due to WOT
RPM

0 -> upshift due to shift curves.

SHIFT CONTROL, GR_DS, PRNDL = 3 OR 4 LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS STRATEGY MODULE: SC_GR_DS_AUTO_COM1 Always ----- | FLG UP NE = 0 (Start fresh every time) VSFMFLG = 0 -----| AND - DO "VEHICLE SPEED SENSOR (VS sensor OK) OK SHIFT LOGIC" VSCTR = 0 ------(stable VS values) --- ELSE ---Do "VEHICLE SPEED SENSOR FAILURE SHIFT LOGIC" GR_DS > GR_DS_LST -----| AND - GR_DS = GR_DS_LST FLG SFT IN = 1 -----(Do not allow an upshift if a previous shift is still in progress) $FLG_UP_NE = 0$

SHIFT CONTROL, GR_DS, PRNDL = 3 OR 4 LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

VEHICLE SPEED SENSOR OK SHIFT LOGIC

GEAR_CUR = 1		
NEBART > NE12S + [BP_INTR * NE12A] (1-2 WOT RPM upshift)	AND -	GR_DS = 2 FLG_UP_NE = 1
FLG_4X4L = 0 (not in 4X4 low)		ELSE
GEAR_CUR = 2		FDSE
NEBART > NE23S + [BP_INTR * NE23A] (2-3 WOT RPM upshift)	AND -	GR_DS = 3 FLG_UP_NE = 1
FLG_4X4L = 0 (not in 4X4 low)		ELSE
GEAR_CUR >= 3		EUSE
NEBART > NE34S + [BP_INTR * NE34A]	7.110	an na 4
PDL = 4 (3-4 WOT RPM upshift, if PRNDL = 4)	AND -	GR_DS = 4 FLG_UP_NE = 1
FLG_4X4L = 0 (not in 4X4 low)		ELSE
GEAR_CUR < 4		EDSE
VSBART_RT > [FN34S + (BP_INTR * FN34A)] * CS_SFT_MULT		CD DC - 4
PDL = 4(VS vs. TP_REL upshift to 4th gear, if PRNDL = 4)		GR_DS = 4
VS_RATEPH > FN34PPH * RT_NOVS (VS_RATEPH vs. TP_REL upshift to 4th gea if minimum accel rate is satisfied)	ır,	
GEAR_CUR < 3		ELSE
VSBART_RT > [FN23S + (BP_INTR * FN23A)] * CS_SFT_MULT	AND -	GR_DS = 3
VS_RATEPH > FN23PPH * RT_NOVS (VS_RATEPH vs. TP_REL upshift to 3rd gea if minimum accel rate is satisfied)		
		ELSE

(continued on next page)

SHIFT CONTROL, GR_DS, PRNDL = 3 OR 4 LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

GEAR_CUR < 2	GR_DS = 2
VSBART_RT > [FN12S + (BP_INTR * FN12A)] * CS_SFT_MULT	
GEAR_CUR > 1	ELSE
VSBART_RT < [FN21S + (BP_INTR * FN21A)] * CS_SFT_MULT (VS vs. TP REL downshift to 1st gear)	GR_DS = 1
GEAR CUR > 2	ELSE
AND -	$GR_DS = 2$
VSBART_RT < [FN32S + (BP_INTR * FN32A)] * CS_SFT_MULT (VS vs. TP_REL downshift to 2nd gear)	ELSE
GEAR_CUR > 3	EUSE
AND -	GR_DS = 3
GEAR_CUR > 3	
PDL = 3 AND -	
(manual 4-3 downshift)	ELSE
	GR_DS = GEAR_CUR

VEHICLE SPEED SENSOR FAILURE SHIFT LOGIC

NEBART > FN689U(TP_REL)	
	GR_DS = GEAR_CUR + 1
GEAR_CUR <> 4	 ELSE
NEBART < FN689D(TP_REL)	
GEAR_CUR <> 1 AND -	GR_DS = GEAR_CUR - 1
FLG_SFT_IN = 0	
GR_DS = 4	
PDL = 3	GR_DS = 3

SHIFT CONTROL, DELAY/VERIFY SHIFT LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DELAY/VERIFY SHIFT LOGIC

OVERVIEW

This logic delays the commanding of the desired gears a calibratable amount of time to:

- allow for the TV pressure to ramp-up prior to commanding the $% \left(1\right) =\left(1\right) +\left($
- is increased tremendously during a shift. It is necessary to start
 - commanding the extra TV prior to the shift to overcome the delays associated with the time constant of the TV solenoid.
- allow the RPM to decrease before commanding a tip-out upshift.
 - Commanding an upshift immediately after a tip-out feels harsh, since the
 - clutches will be used to slow the engine down. Waiting a period of time $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(e commanding this shift, smoothes the shift significantly.
- verify a shift is absolutely necessary. Noise perturbations $\ensuremath{\text{may}}$ result
 - in incorrect gears being desired for one or two background loops.
 - Delaying the shift, verifies that a gear is truly desired, and that it is

not just noise.

Entering into this logic is the parameter, GR_DS, the desired gear.

logic first transfers this gear value into another parameter, $\ensuremath{\mathsf{GR}}\xspace_{\mathsf{DS}}\xspace_{\mathsf{TV}}$, which

is used to calculate the additional amount of TV required $% \left(1\right) =\left(1\right) \left(1\right) =\left(1\right) \left(1\right)$ for the upcoming

shift. The delay logic then proceeds to delay the shift by setting the ${\tt GR}\ {\tt DS}$

to its previous value until the delay timer runs out. When the timer

expires, the GR_DS is no longer set to its previous value, but is allowed to

pass through to the Commanded Gear Determination logic and Shift Solenoid

logic which actually processes the GR_DS into shift solenoid commands; i.e.,

the shift is commanded.

By the time the shift is commanded, the necessary TV required for the shift

will have been commanded, the engine RPM will have slowed some to make the

tip-out upshifts feel smooth, and the shift will have been verified.

If the GR_DS changes prior to the timer expiring, the timer continues to

count down. The timer does not affect the amount of TV which is commanded.

because GR DS TV will always be set to the latest desired gear, and

the TV will be commanded based on that value. Worst case, the TV pressure will be unnecessarily increased for a short period of time if the GR_DS/GR_DS_TV fluctuates due to a noise spike. When the timer becomes zero, the latest GR_DS is passed through.

NOTES:

The delay timer is set to one of three values. These are:

- delay to allow TV to ramp up for an upshift, and/or the delay to verify a gear; TM_DEL_UP
- delay to allow TV to ramp up for a downshift, and/or the delay to verify a gear; TM_DEL_DOWN
- delay for a tip-out upshift to allow the RPM decrease, TM_DEL_TO_UP

SHIFT CONTROL, DELAY/VERIFY SHIFT LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- GEAR_CUR = Current transmission gear.
- GR_DS = Desired transmission gear.
- GR_DS_LST = Desired gear in last background pass.
- PDL = PRNDL position.
- TM_DEL_SFT = Time to delay automatic desired shift.
- TP_RATE = Throttle rate = TP TBART.

Bit Flags:

- FLG_DE_DSGR = Delay desired gear first pass flag; 0 -> First pass through DELAY DESIRED GEAR, 1 -> Delay desired gear in process.

Calibration Constants:

- TM_DEL_DOWN = Time to delay/verify a downshift.
- TM_DEL_TO_UP = Time to delay a tip-out upshift.
- TM_DEL_UP = Time to delay/verify an upshift.
- TO_TP_RATE = TP_RATE required to recognize a tip-out.

OUTPUTS

Registers:

- GR_DS = See above.
- GR_DS_TV = Desired gear used to compute TV pressure.
- TM_DEL_SFT = See above.

Bit Flags:

- FLG_DE_DSGR = See above.
- FLG_DEL_MDN = Flag indicating a manual downshift is being delayed:
 0 ->
 - no manual downshift is being delayed; 1 -> a manual downshift is being delayed.
- FLG_TIP_OUT = Flag which indicates a tip-out upshift in progress:
- 0 ->
 no tip-out upshift in progress; 1 -> a tip-out upshift in progress.

SHIFT CONTROL, DELAY/VERIFY SHIFT LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: SC_VER_AUTO_SHFT_COM1

```
GR DS <> GR DS LST -----
 (shift is desired)
FLG_DE_DSGR = 1 ------ | AND - | GR_DS = GR_DS_LST
 (delay in process)
                                    (hold original desired gear until
                                     new desired gear is verified)
TM DEL SFT > 0 -----|
 (timer not expired)
                                    --- ELSE ---
GR DS <> GR DS LST -----
 (shift is desired)
FLG_DE_DSGR = 1 ------ | AND - | FLG_DE_DSGR = 0
                                    (new desired gear is delayed,
(delay in process)
                                     allow it to pass thru to
TM DEL SFT = 0 -----|
                                     commanded gear module)
                                    FLG_SF_AUTO = 1
 (timer expired)
                                    (this is an automatic shift,
                                     cleared in converted clutch)
                                    --- ELSE ---
GR_DS > GR_DS_LST -----|
 (upshift is desired)
                                   FLG_DE_DSGR = 1
                            AND -
                                    (set first pass flag)
FLG_DE_DSGR = 0 -----
                                    DO "LOAD TM_DEL_SFT FOR UPSHIFTS"
 (first pass thru)
                                    (load timer)
                                    GR_DS = GR_DS_LST
                                    (hold original desired gear until
                                     new desired gear is delayed)
                                    FLG\_SF\_AUTO = 0
                                    (clear auto shift flag)
GR DS < GR DS LST -----
                                    --- ELSE ---
 (downshift is desired)
                             AND -
                                    FLG_DE_DSGR = 1
FLG DE DSGR = 0 -----
                                    (set first pass flag)
 (first pass through)
                                    TM DEL SFT = TM DEL DOWN
                                    (load timer)
                                   DO "MANUAL DOWNSHIFT
                                  DETERMINATION"
                                    GR DS = GR DS LST
                                    (hold original desired gear until
                                     new desired gear is delayed)
                                    FLG SF AUTO = 0
                                    (clear auto shift flag)
                                    FLG_TIP_OUT = 0
                                    --- ELSE ---
                                    FLG_DE_DSGR = 0
                                    (clear first pass flag)
```

SHIFT CONTROL, DELAY/VERIFY SHIFT LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PDL = 3		
	AND -	FLG_SF_AUTO = 0
GEAR_CUR = 4		(clear auto shift flag for a
(driver did manual 4-3)	·	manual 4 - 3 downshift. All
		subsequent downshifts will be
		considered automatic downshifts.
	İ	Also clear shift flag for manual PRNDL positions)

MANUAL DOWNSHIFT DETERMINATION

LOAD TM_DEL_SFT FOR UPSHIFTS LOGIC

SHIFT CONTROL, PRNDL BASED COMMANDED GEAR DETERMINATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PRNDL BASED COMMANDED GEAR DETERMINATION

OVERVIEW

The commanded transmission gear is calculated based on PRNDL position. The

logic looks at the current gear and the desired gear to determine if an

upshift or a downshift is required and then $% \left(1\right) =\left(1\right) +\left(1\right)$

gear in the sequence.

In the drive or overdrive position, there are no restrictions on shifts. The

commanded gear routine, therefore does not have to sequence through any

particular pattern. The only restriction is that downshifts are done only

after the converter clutch has unlocked.

In neutral, first gear is commanded, unless a calibratible vehicle speed is

reached. At this point, the gear commanded is calibratible ($\mbox{GR_NEU}$). This

feature is provided to protect the direct clutch from rotating at $% \left(1\right) =\left(1\right) +$

speeds in neutral. In the case of a vehicle speed sensor failure, $\ensuremath{\mathtt{GR_NEU}}$

will be commanded.

In the manual 2 or 1 position, the downshift sequence is as follows:

1. Unlock the converter clutch and command 3rd gear (This is because

commanded 4th gear in a manual low range results in 2nd intermediate band on, based on both shift solenoids being off).

- 2. Apply the coast clutch in 3rd gear to absorb some inertia torque.
- 3. When the coast clutch has engaged and the converter clutch has unlocked
 - command second gear, intermediate band off.
- 4. Delay the application of the intermediate band for a calibratable period of time.
- 5. Command first gear if PRNDL = 1 and below the 2 1 pull-in speed.

The main outputs of the commanded gear routine are:

- $\mbox{-}$ GR_CM, commanded gear which reflects the actual shift solenoid states.
- GR OLD, GEAR OLD, RT GR OLD, last gear the transmission was in.
- FLG_FRST_CM, global flag to indicate a shift is commanded this background pass.

SHIFT CONTROL, PRNDL BASED COMMANDED GEAR DETERMINATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- GEAR_CUR = Current transmission gear (global register).
- GR_CM = Commanded gear for shift solenoids.
- GR_CM_LST = Commanded gear in last background pass.
- GR_DS = Desired transmission gear.
- PDL = Current PRNDL position.
- RT_GR_CUR = Current transmission gear ratio.
- TP_REL = Relative throttle position, counts.
- VSBART_RT = Vehicle Speed, corrected for N/V, MPH.

Bit Flags:

- FLG_FRST_DS = First time a shift is desired flag; 0 -> no shift desired,
 - 1 -> shift desired this background pass.
- VSFMFLG = Vehicle speed sensor FMEM flag; 1 -> sensor failed.

Calibration Constants:

- FN624(TP_REL) = Time to delay downshift to unlock converter.
- GRMSFT = Gear commanded for manual shifting.
- GR_NEU = Gear commmanded in neutral at a vehicle speed above VS_NEU.
- SW_MSF = Switch to select GR_CM manually; 1 -> manual gear selection, <>
 - 1 -> automatic gear selection.
- VS_NEU = Vehicle speed above which an alternate gear is commanded in neutral.

SHIFT CONTROL, PRNDL BASED COMMANDED GEAR DETERMINATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- DNUN_TM = FN624(TP_REL) = Time to delay downshift for converter to unlock.
- GEAR_OLD = Last commanded transmission gear (global register).
- GR_CM = See above.
- GR_CM_LST = See above.
- GR_OLD = Last commanded gear.
- RT_GR_OLD = Last gear transmission gear ratio.

Bit Flags:

- FLG_FRST_CM = First time a shift is commanded flag; 1 -> shift commanded

this background pass, 0 -> no shift commanded this background pass.

PROCESS

SHIFT CONTROL, PRNDL BASED COMMANDED GEAR DETERMINATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

STRATEGY MODULE: SC_CM_GR_DETR_COM1 Always -----| GR CM LST = GR CM (Update last pass current gear) FLG_FRST_DS = 1 ------ | DNUN_TM = FN624(TP_REL) (new desired gear) (time to delay downshift to unlock converter) SW MSF = 1 ----- GR CM = GRMSFT (Manual shift selection) --- ELSE ---PDL = 1 ----- DO "GR_CM, PRNDL = 1" LOGIC --- ELSE ---PDL = 2 -----DO "GR_CM, PRNDL = 2" LOGIC --- ELSE ---PDL = 3 OR 4 -----AND - $GR_CM = GR_DS$ GR_DS > GR_CM -------- ELSE ---PDL = 3 OR 4 ----- $|AND - | DO "GR_CM, PRNDL = 3 OR 4$ DOWNSHIFT" GR_DS < GR_CM -----LOGIC --- ELSE ---

AND - GR_CM = GR_NEU

--- ELSE ---

PDL = 6 ----- | OR -- | GR_CM = 1

OR --

PDL = 5 -----

PDL = 5 -----|

PDL = 7 -----

VSBART_RT > VS_NEU ----|
(Vehicle at high

VSFMFLG = 1 -----

(Vehicle Speed sensor failure)

(Neutral)

speed)

(Neutral)

(Reverse)

(Park)

SHIFT CONTROL, PRNDL BASED COMMANDED GEAR DETERMINATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SHIFT CONTROL, GR_CM, PRNDL = 1 LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

 GR_CM , PRNDL = 1 LOGIC

OVERVIEW

This logic determines the commanded gear when PRNDL = 1.

DEFINITIONS

INPUTS

Registers:

- DNUN_TM = FN624(TP_REL) = Time to delay downshift for converter to unlock.
- GR_CM = Commanded gear for shift solenoids.
- PDL_LST = Manual lever position previous background pass.
- TM_UNLK_CONV = Time since converter was commanded to unlock, sec.
- VSBART_RT = Filtered vehicle speed adjusted for RT_NOVS for transmission.

Bit Flags:

- FLG_CS_ENG = Coast clutch state of engagement: 1 -> coast clutch inferred to be on; 0 -> coast clutch not engaged.
- VSFMFLG = Vehicle speed sensor failure flag: 1 -> VSS failure; 0
 -> no
 VSS failure.

Calibration Constants:

- VS21PI = Maximum vehicle speed for 2 - 1 pull in.

OUTPUTS

Registers:

- GR_CM = See above.

SHIFT CONTROL, GR_CM, PRNDL = 1 LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: SC_CM_GR_MAN1_COM1

GR_CM = 4		<pre>GR_CM = 3 (always do a 4-3, otherwise 2nd will result if no action is taken)</pre>
PDL_LST = 5	ļ	12 (33.75.7)
GR_GM = 2 OR OR		ELSE
GR_CM = 3		5035
TM_UNLK_CONV >= DNUN_TM AND - AND -		
FLG_GC_ENG = 1 (coast clutch engaged)	AND -	GR_CM = 2
VSFMFLG = 1 OR		
VSBART_RT > VS21PI		ELSE
TM_UNLK_CONV >= DNUN_TM (converter clutch unlocked)		ELGE
FLG_CS_ENG = 1 (coast clutch engaged)	AND -	GR_CM = 1
VSFMFLG = 0		
VSBART_RT <= VS21PI (below 1st gear pull-in)		

SHIFT CONTROL, GR_CM, PRNDL = 2 LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

 GR_CM , PRNDL = 2 LOGIC

OVERVIEW

This module determines the commanded gear when PRNDL = 2.

DEFINITIONS

INPUTS

Registers:

- DNUN_TM = FN624(TP_REL) = Time to delay downshift for converter to unlock.
- GR_CM = Commanded gear for shift solenoid.
- PDL_LST = PRNDL position last background pass.
- TM_SFT_12MN = Manual 1-2 delay timer.
- TM_UNLK_CONV = Time since converter was commanded to unlock.

Bit Flags:

- FLG_CS_ENG = Coast clutch state of engagement; 1 -> coast clutch
 inferred
 to be on, 0 -> coast clutch not engaged.
- FLG_PWR = Power mode flag; 1 -> power on mode, 0 -> power off mode.

Calibration Constants:

- TM12MN = Time to remain in 1st gear on a manual 1-2 to allow first/reverse clutch to release.

OUTPUTS

Registers:

- GR_CM = See above.
- TM_SFT_12MN = See above.

SHIFT CONTROL, GR_CM, PRNDL = 2 LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: SC_CM_GR_MAN2_COM1

PDL_LST = 1 (manual 1-2)		
GR_CM = 1 (current gear is first)	AND -	(load timer to retain first gear until the
FLG_PWR = 0 (power off)		<pre>low/reverse clutch released) GR_CM = 1</pre>
		ELSE
TM_SFT_12MN > 0		GR_CM = 1
		ELSE
		<pre>GR_CM = 3 (always do a 4-3, otherwise 2nd will result if no action is taken)</pre>
TM_UNLK_CONV >= DNUN_TM		ELSE
(converter clutch unlocked)	AND -	$GR_CM = 2$
<pre>FLG_CS_ENG = 1 (coast clutch engaged)</pre>		

SHIFT CONTROL, GR_CM, PRNDL = 3 OR 4, DOWNSHIFT LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

GR_CM, PRNDL = 3 OR 4, DOWNSHIFT LOGIC

OVERVIEW

This module determines the commanded gear on a downshift when PRNDL = 3 or 4.

DEFINITIONS

INPUTS

Registers:

- DNUN_TM = FN624(TP_REL) = Time to delay downshift for converter to unlock.
- GR_DS = Desired transmission gear.
- TM_SFT_CCO = Time since converter clutch commanded on or off during a shift, sec.

Bit Flags:

- FLG_LK_CM = Converter clutch commanded state: 1 -> command converter clutch lockup; 0 -> command converter clutch unlock.

OUTPUTS

Registers:

- GR_CM = Commanded gear for shift solenoids.

PROCESS

STRATEGY MODULE: SC_CM_GR_AUTO_DWN_COM1

10/21/2000 LHBH1.TXT

SHIFT CONTROL, LOAD SHIFT IN PROGRESS TIMER - LHBHO PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

LOAD SHIFT IN PROGRESS TIMER

OVERVIEW

The shift in progress timer (TM_SFT_IN) is a down-counting timer which is used in many places in the strategy to determine that a shift is currently taking place. When the timer has a value of 0, no shift is taking place. Since the E4OD transmission has no turbine speed sensor, there is no absolute way to determine the completion of a shift. A worst case time is loaded the timer at the start of a shift. The only exception is a power-off manual downshift. In this special case, speed ratio can be monitored to infer completion of the shift. Different default values are provided for upshifts, downshifts, power on, and power off.

DEFINITIONS

INPUTS

Registers:

- GR_CM = Current transmission gear.
- GR_OLD = Last commanded gear.
- TM_DEL_SFT = Time during which a shift is delayed.
- TM_SFT_IN = Time during which shift is in progress.
- VSBART_RT = Filtered vehicle speed adjusted for RT_NOVS for transmission.

Bit Flags:

- FLG 4X4L = Flag indicating 4X4 low mode; 1 -> in 4X4 low mode.
- FLG_FRST_CM = First time a shift is commanded flag; 1 -> shift commanded

this background pass, 0 -> no shift commanded this background pass.

- FLG_PWR = Power mode flag; 1 -> power on mode, 0 -> power off mode.
- FLG SF AUTO = Automatic upshift/downshift flag; 1 -> automatic shift
 - $(PRNDL = 3 \text{ or } 4), 0 \rightarrow \text{manual shift } (PRNDL = 2 \text{ or } 1).$
- FLG_SFT_IN = Shift in progress flag; 1 -> shift in progress, 0 -> no shift in progress.
- FLG_SFT_MDN = Power off manual downshift flag; 1 -> power off manual downshift in progress, 0 -> power off manual downshift not in

progress.

Calibration Constants:

- ${\tt TCDHMF}$ = ${\tt Time}$ delay to infer coast clutch engagement on manual downshifts

at high vehicle speed, sec.

- TCDLMF = Time delay to infer coast clutch engagement on manual downshifts

at low vehicle speeds, sec.

SHIFT CONTROL, LOAD SHIFT IN PROGRESS TIMER - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- TCDNAF = Time to complete auto downshift, power off.
- TCDNON = Time to complete downshift, power on.
- TCUPOF = Time to complete upshift, power off.
- TCUPON = Time to complete upshift, power on.
- TCUPON4L = Time to complete upshift, power on, in 4X4L mode.
- VSDNMF = Maximum vehicle speed to use TCDLMF, MPH.

OUTPUTS

Registers:

- TM_SFT_IN = See above.

Bit Flags:

- FLG_SFT_MDN = See above.
- FLG_TIP_OUT = 0 -> no tip-out upshift in progress; 1 -> a tip-out
 upshift
 in progress.
- FLG_SFT_IN = See above.

SHIFT CONTROL, LOAD SHIFT IN PROGRESS TIMER - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: SC_TIMER_COM1

```
FLG FRST CM = 1 -----
(shift has been commanded)
GR_CM > GR_OLD -----
(upshift)
                             AND - TM_SFT_IN = TCUPON
                                   (time to complete upshift,
FLG_PWR = 1 ------
                                     power on)
                                   FLG_SFT_MDN = 0
(power on)
                                   (not power off manual
                            downshift)
FLG_4X4L = 0 ------
(not in 4X4 low)
                                   --- ELSE ---
FLG_FRST_CM = 1 -----|
(shift has been commanded)
GR_CM > GR_OLD -----
                             AND - TM_SFT_IN = TCUPON4L
(upshift)
                                    (time to complete upshift,
FLG_PWR = 1 -----
                                    power on, in 4X4 low)
                                   FLG\_SFT\_MDN = 0
(power on)
                                    (not power off manual
                            downshift)
FLG 4X4L = 1 -----|
(in 4X4 low)
                                   --- ELSE ---
FLG FRST CM = 1 -----|
(shift has been commanded)
GR_CM > GR_OLD -----
(upshift)
                             AND - TM_SFT_IN = TCUPOF
                                   (time to complete
FLG PWR = 0 -----
                                     upshift, power off)
                                   FLG\_SFT\_MDN = 0
(power off)
FLG FRST CM = 1 -----|
(shift has been commanded)
                                   --- ELSE ---
GR_CM < GR_OLD -------AND - TM_SFT_IN = TCDNON
(downshift)
                                    (time to complete
downshift,
                                     power on)
FLG_PWR = 1 -----
                                   FLG SFT MDN = 0
(power on)
FLG_FRST_CM = 1 -----|
(shift has been commanded)
                                   --- ELSE ---
GR_CM < GR_OLD -----
                                   TM_SFT_IN = TCDNAF
(downshift)
                             AND -
                                   (time to complete
                           downshift,
FLG PWR = 0 -----
                                    auto, power off)
(power off)
                                  FLG\_SFT\_MDN = 0
FLG_SF_AUTO = 1 -----
(automatic shift)
                                   --- ELSE ---
```

(continued on next page)

SHIFT CONTROL, LOAD SHIFT IN PROGRESS TIMER - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

```
FLG FRST CM = 1 -----
 (shift has been commanded)
GR_CM < GR_OLD -----
(downshift)
                               AND - TM_SFT_IN = TCDHMF
FLG PWR = 0 -----
                                     (time to complete
downshift,
(power off)
                                      manual, power off, high
vehicle
                                       speed)
FLG SF AUTO = 0 -----
                                     FLG\_SFT\_MDN = 1
                                      (manual power off downshift
(manual shift)
                                       in progress)
VSBART_RT > VSDNMF -----
                                     --- ELSE ---
FLG FRST CM = 1 -----
GR_CM < GR_OLD -----
FLG PWR = 0 ------|AND - | TM_SFT_IN = TCDLMF
                                      (time to complete
                              downshift,
FLG SF AUTO = 0 -----|
                                      manual, power off, low
vehicle
                                       speed)
                                     FLG\_SFT\_MDN = 1
VSBART RT <= VSDNMF -----
                                      (manual power off downshift
                                       in progress)
FLG SFT MDN = 1 -----
 (manual power off downshift
                               AND - TM SFT IN = TCDNON
 in progress)
                                     (reset timer to power on
                              value
FLG PWR = 1 -----
                                      if power mode changes in
(suddenly becomes power on)
                                      middle of a downshift)
                                     FLG\_SFT\_MDN = 0
                                     (clear manual downshift
                                    flag)
TM SFT IN = 0 ------ | FLG SFT MDN = 0
(timer expired)
                                     (manual downshift
                                       is complete)
                                     FLG\_SFT\_IN = 0
                                      (no shift in progress)
                                     --- ELSE ---
                                     FLG\_SFT\_IN = 1
                                      (shift in progress)
FLG_SFT_IN = 0 -----
(no shift in progress)
                               AND - | FLG_TIP_OUT = 0
                                    (reset tip-out flag)
TM DEL SFT = 0 -----
```

(no delay shift in progress)

SHIFT CONTROL, DETERMINE SHIFT SOLENOID STATES - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DETERMINE SHIFT SOLENOID STATES

OVERVIEW

The shift solenoid state logic configures the shift solenoid output states based on the commanded gear (GR_CM). Most of the time, this is very straightforward. Although the solenoids have different reaction rates (SS2 takes longer to move than SS1) shifts are normally made by moving only one solenoid at a time. The exception is when PRNDL moves from 1 or 2 while GR_CM = 2 to PRNDL 3 or 4 and 2nd gear is still commanded. This requires both solenoids to go from off to on. The timer TM_SS1_GR2 takes care of this by moving SS2 early so that they both switch at the same time.

The main outputs of the shift solenoid routine, besides the shift solenoid states are:

- GEAR_CUR, global gear indicator which reflects only the transmission gear ratio, not any transmission specific combination of engine braking bands or clutches;
- RT_GR_CUR, current transmission gear ratio.

DEFINITIONS

INPUTS

Registers:

- CYCCTR = Cold shift solenoid cycling counter.
- GR_CM = Commanded gear for shift solenoids.
- NEBART = Filtered engine RPM for transmission.
- NOBART = Filtered output shaft speed.
- PDL = Current PRNDL position.
- RT GR CUR = Current transmission gear ratio.
- TM_SS1_GR2 = Time delay for SS1 on manual to auto 2nd gear shift.

Bit Flags:

- FLG_FRST_CM = First time a shift is commanded flag; 1 -> shift
 commanded
 this background pass, 0 -> no shift commanded this background pass.
- FLG FRST TV = Start-up TV pressure flag; 0 -> do start-up TV logic,

1 ->
 do not do start-up TV logic.

- FLG_TVENG_CD = Flag which indicates cold temperature for engagement
TV; 0
 -> don't use TVEMAX in engagement TV, 1 -> use TVEMAX in engagement
TV.

SHIFT CONTROL, DETERMINE SHIFT SOLENOID STATES - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- FLG_TVENG_MD = Flag which indicates moderate temperature for engagement
 - TV; 0 -> don't use TVEMOD in engagement TV, 1 -> use TVEMOD in engagement TV.
- UNDSP = Flag indicating engine mode; 1 -> cranking or underspeed,
 0 ->
 run mode.

Calibration Constants:

- CLDCTM = Cold shift solenoid cycle period (in background loops).
- GRRAT1 = First gear ratio.
- GRRAT2 = Second gear ratio.
- GRRAT3 = Third gear ratio.
- GRRAT4 = Fourth gear ratio.
- TMS1G2 = Time to delay SS1 on manual to auto 2nd gear shift.

OUTPUTS

Registers:

- CCYCTR = See above.
- GEAR_CUR = Current transmission gear (global register).
- RT_GR_CUR = See above.
- SPD_RT_STRT = Speed ratio at start of shift.
- TM_SS1_GR2 = See above.

Bit Flags:

- FLG_SS_1 = Shift solenoid 1 output state; 1 -> SS1 energized, 0 ->
 SS1
 de-energized.
- FLG_SS_2 = Shift solenoid 2 output state; 1 -> SS2 energized, 0 ->
 SS2
 de-energized.

SHIFT CONTROL, DETERMINE SHIFT SOLENOID STATES - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS STRATEGY MODULE: SC_SOL_CTL_COM1 always ----- Increment CYCCTR CYCCTR >= CLDCTM ------ CYCCTR = 0 FLG_FRST_TV = 0 ------| (no engagement yet) CYCCTR > CLDCTM/2 -----(cycle shift solenoids) FLG_TVENG_MD = 1 -----OR --FLG_TVENG_CD = 1 ----- $|AND - | FLG_SS_1 = 0$ $FLG_SS_2 = 1$ (moderately cold) RT_GR_CUR = GRRAT1 UNDSP = 0 -----GEAR_CUR = 1 (do cold shift solenoid (RUN mode) cycling strategy) GR_CM = 1 -------- ELSE ---GR_CM = 1 ------ $FLG_SS_1 = 1$ $FLG_SS_2 = 0$ (1st gear) RT_GR_CUR = GRRAT1 GEAR_CUR = 1 --- ELSE ---GR CM = 2 ------AND - $FLG_SS_1 = 0$ PDL <= 2 -----FLG SS 2 = 0(2nd gear, intermediate band on) $TM_SS1_GR2 = TMS1G2$ (load timer in case 2nd gear is commanded in PDL 3 or 4) $RT_GR_CUR = GRRAT2$ $GEAR_CUR = 2$ --- ELSE ---GR_CM = 2 -----| AND - | FLG SS 1 = 0TM SS1 GR2 > 0 ----- $FLG_SS_2 = 1$ (2nd gear has been commanded in PDL 3 or 4. Move SS2 early due to its longer response time) $RT_GR_CUR = GRRAT2$ GEAR CUR = 2--- ELSE ---

(continued on next page)

SHIFT CONTROL, DETERMINE SHIFT SOLENOID STATES - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

<pre>GR_CM = 2 (2nd gear, intermediate band OFF, PRNDL position in 3 or 4)</pre>	FLG_SS_1 = 1 FLG_SS_2 = 1 RT_GR_CUR = GRRAT2 GEAR_CUR = 2
	ELSE
GR_CM = 3 (3rd gear)	FLG_SS_1 = 0 FLG_SS_2 = 1 RT_GR_CUR = GRRAT3 GEAR_CUR = 3
	ELSE
GR_CM = 4(4th gear if PRNDL is in 4, 2nd gear if PRNDL is in 1 or 2)	FLG_SS_1 = 0 FLG_SS_2 = 0 RT_GR_CUR = GRRAT4 GEAR_CUR = 4

FLG_FRST_CM = 1 ------ | SPD_RT_STRT = ----- * RT_GR_CUR NEBART

SHIFT CONTROL, SHIFT VALIDATION LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SHIFT VALIDATION LOGIC

OVERVIEW

The Shift Validation logic verifies that a shift has taken place after it is

commanded. This logic is only capable of verifying automatic upshifts which

take place during a steady, off idle, throttle position.

The logic works as follows: if the transmission control has just commanded

an automatic upshift, and throttle position and vehicle speed are high

enough, the shift is considered verifiable and the current converter clutch

state, throttle position, vehicle speed and engine $\ensuremath{\operatorname{\textsc{rpm}}}$ are recorded. The

logic then waits until the shift is complete; FLG_SFT_IN = 0. At that time,

the $\dot{}$ logic verifies that the throttle position and the vehicle speed have not

varied significantly, and the converter clutch has not changed from a locked $% \left(1\right) =\left(1\right) +\left(1\right$

to unlocked state. If all conditions are met , then the engine speed should

decrease if a shift actually took place.

If a shift error is detected, failure mode action will be performed for a calibratable number of warm up cycles.

DEFINITIONS

INPUTS

Registers:

- C617CNT = 1-2 shift error warm up counter.
- C617FIL = 1-2 miss shift fault filter.
- C617_KAM_BIT = 1-2 shift error detected.
- C618CNT = 2-3 shift error warm up counter.
- C618FIL = 2-3 miss shift fault filter.
- C618_KAM_BIT = 2-3 shift error detected.
- C619CNT = 3-4 shift error warm up counter.
- C619FIL = 3-4 miss shift fault filter.
- C619 KAM BIT = 3-4 shift error detected.
- GEAR_CUR = Current commanded gear.
- GEAR OLD = Last commanded gear.

- NEBART = Filtered engine speed.
- NEV_STRT_SFT = Engine speed at start of the shift.

- SFT_STEADY = Number of steady shifts since power-up.

10/21/2000 LHBH1.TXT

SHIFT CONTROL, SHIFT VALIDATION LOGIC - LHBHO PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

- SFT_TOTAL = Total shifts commanded since power-up.
- TP_REL = Relative throttle position; TP RATCH.
- TPV STRT SFT = Throttle position at start of the shift.
- VSBART_RT = Filtered vehicle speed adjusted for RT_NOVS for transmission.
- VSCTR = Count vehicle speed sensor errors.
- VSV_STRT_SFT = Vehicle speed at start of the shift.

Bit Flags:

- CCV STRT SFT = Converter clutch position at start of shift.
- FLG_FRST_CM = New commanded gear this pass flag.
- FLG_LK_CM = Converter clutch commanded flag.
- FLG_NOV_KAM = Flag indicating at least one update of RT_NOVS_KAM.
- FLG_SF_AUTO = Automatic shift flag.
- FLG_SFT_IN = Shift in progress flag: 1 -> shift in progress.
- FLG_SFT_VAL = Shift validity flag: 0 -> Shift cannot be verified; 1 Shift may be verified.
- PDL ERROR = PRNDL sensor failure; 0 -> no PRNDL sensor failure, 1 -> PRNDL sensor failure.
- TFMFLG = Throttle position FMEM flag; 1 -> throttle position failure detected.
- VSFMFLG = Vehicle speed sensor FMEM flag; 1 -> vehicle speed failure detected.

Calibration Constants:

- S_VAL_NESUB = Tolerance on NE to verify an engine speed drop (negative direction) during the shift validation.
- S_VAL_TPADD = Tolerance on TP to verify steady TP (positive direction) during the shift validation.
- S_VAL_TPSUB = Tolerance on TP to verify steady TP (negative direction) during the shift validation.
- S_VAL_VSADD = Tolerance on VS to verify steady vehicle speed (positive direction) during the shift validation.
- S_VAL_VSSUB = Tolerance on VS to verify steady vehicle speed (negative

direction) during the shift validation.

- SFT_FM_LVL = Total number of warm up cycles that failure mode action
will
 be executed after a shift error is detected.

SHIFT CONTROL, SHIFT VALIDATION LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- TP_SH_VALID = Minimum TP to validate a shift.
- VS_SH_VAL2 = Minimum vehicle speed to validate an upshift to 2nd gear.
- VS_SH_VAL3 = Minimum vehicle speed to validate an upshift to 3rd gear.
- VS_SH_VAL4 = Minimum vehicle speed to validate an upshift to 4th gear.

OUTPUTS

Registers:

- NEV_STRT_SFT = Engine speed at start of the shift.
- SFT_STEADY = See above.
- TPV_STRT_SFT = See above.
- VSV_STRT_SFT = See above.

Bit Flags:

- CCV_STRT_SFT = See above.
- FLG_SFT_VAL = See above.
- SFT_ERROR = Shift error flag: 0 -> No shift error; 1 -> Shift error.
- SFT_FM_FLG = Shift error failure mode flag; 0 -> no failure mode action,
 - 1 -> shift error failure mode action will be executed.

SHIFT CONTROL, SHIFT VALIDATION LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: SC_VALID_COM1

PDL_ERROR = 0 (MLPS ok)			
FLG_FRST_CM = 1			
FLG_SF_AUTO = 1 (automatic shift)		 	
GEAR_CUR > GEAR_OLD (upshift)		 	
TP_REL > TP_SH_VALID (off idle)			
GEAR_CUR = 2		AND -	CCV_STRT_SFT = FLG_LK_CM
VSBART_RT > VS_SH_VAL2	AND		(record CC state at start of shift)
GEAR_CUR = 3			TPV_STRT_SFT = TP_REL (record TP at start of
VSBART_RT > VS_SH_VAL3	1		<pre>shift) NEV_STRT_SFT = NEBART (record filtered engine</pre>
GEAR_CUR = 4shift)			speed at start of
	AND - 		<pre>VSV_STRT_SFT = VSBART_RT (record filtered</pre>
veiligie		 shift)	speed at start of
FLG_NOV_KAM = 1 (RT_NOVS_KAM learned)	· 		<pre>FLG_SFT_VAL = 1 (shift may be checked</pre>
TFMFLG = 0			for validity)
VSCTR = 0			
VSFMFLG = 0			ELSE
FLG_FRST_CM = 1		 	
IBO_IRBI_CM = I		ı	110_011
FLG_FRST_CM = 1			SFT_TOTAL = SFT_TOTAL +
FLG_SFT_IN = 0			DO "SHIFT VERIFICATION
(shift complete, may be ver	ified)	 	ELSE
			EXIT "SHIFT VALIDATION" MODULE

SHIFT CONTROL, SHIFT VALIDATION LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SHIFT VERIFICATION LOGIC (Part 1)

```
FLG_SFT_VAL = 1 -----
 (shift can be verified)
VSBART_RT > VSV_STRT_SFT - S_VAL_VSSUB -
 (steady vehicle speed)
VSBART RT < VSV STRT SFT + S VAL VSADD - AND - (steady conditions
during
 (steady vehicle speed)
                                               entire shift)
                                             SFT STEADY =
TP_REL < TPV_STRT_SFT + S_VAL_TPADD ----
                                               SFT STEADY + 1
(steady TP)
                                              FLG_SFT_VAL = 0
                                              (reset valid shift
                                      flag)
TP_REL > TPV_STRT_SFT - S_VAL_TPSUB ----
                                              Do "Part 2" and "Shift
(steady TP)
                                              Error Flag Logic"
FLG_LK_CM >= CCV_STRT_SFT -----
 (CC has not moved from a locked
                                              --- ELSE ---
 to an unlocked state during
 validation)
                                              (unsteady conditions)
                                             FLG_SFT_VAL = 0
                                              (reset valid shift
                                            flag)
                                             Exit "Shift Validation"
                                              Module
```

SHIFT CONTROL, SHIFT VALIDATION LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SHIFT VERIFICATION LOGIC (Part 2)

GEAR_CUR	= 2		
NEBART >	NEV_STRT_SFT - S_VAL_NESUB		error_detected = 1 (missed 1-2 shift) DO: FAULT FILTER for code 617 procedure
			ELSE
GEAR_CUR	= 2		(1-2 shift occurred) DO: FAULT FILTER for
			617 procedure
GEAR CUR	= 3		ELSE
			error_detected = 1 (missed 2-3 shift) DO: FAULT FILTER for
			618 procedure
		·	ELSE
GEAR_CUR	= 3		(2-3 shift occurred) DO: FAULT FILTER for
			618 procedure
GFAR CUR	= 4		ELSE
			error_detected =1 (missed 3-4 shift) DO: FAULT FILTER for
			619 procedure
			ELSE
GEAR_CUR	= 4		(3-4 shift occurred) DO: FAULT FILTER for
		Ì	619 procedure

SHIFT CONTROL, SHIFT VALIDATION LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SHIFT CONTROL, SHIFT VALIDATION LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 17

ELECTRONIC PRESSURE CONTROL

ELECTRONIC PRESSURE CONTROL, ELECTRONIC PRESSURE CONTROL GUIDE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ELECTRONIC PRESSURE CONTROL GUIDE

OVERVIEW

EPC pressure is regulated by a variable force solenoid which is under EEC-IV control. The purpose of EPC pressure is to modulate the hydraulic pressure used to apply, release, and hold the various clutches and bands in the transmission. The higher the pressure, the more torque the transmission can transmit. This input torque in a conventional transmission has been approximated by either a mechanical linkage connected to the throttle plates, or a vacuum diaphragm which sees manifold vacuum. The electronic

EPC strategy looks up engine torque from a table and varies the EPC

pressure to contain the static capacity requirement of the transmission.

In general, EPC pressure is calculated as follows:

- Static Capacity - This is the EPC required to hold the $% \left(1\right) =\left(1\right) +\left$

element due to combustion torque (TQ_NET) and inertia torque (TQ_IALPHA) $\,$

during a shift. Inertia torque is ${\tt 0}$ when a shift is not taking place.

The sum of the combustion torque and inertia torque values is multiplied

by the torque converter torque ratio to determine the total torque the

transmission must transmit (TQ_STAT_CAP). This in turn determines the static EPC capacity requirement (TV_STAT).

- Dynamic EPC This is EPC required to obtain acceptable shift feel and is
 - the powertrain developers' main calibration tool. A switch is provided
 - $(\mbox{SW_DYN})$ to allow the developer to either freeze RPM at a the start of a
 - shift, or to allow dynamic EPC pressure to follow RPM during the shift
 - (TV_DYN). The combustion torque always updates, even during the shift.
- AETV Additional EPC provided on quick tip-ins to counteract the lag in
 - EEC-IV updates to torque and to compensate for hydraulic lag times in the VFS/EPC hydraulic system.
- Total EPC (TV_PRES) is simply the $\,$ sum $\,$ of $\,$ static, $\,$ dynamic $\,$ and $\,$ AETV $\,$

requirements.

- Additional features -
 - Cold Starts additional EPC can be requested to counteract the $\,$

viscous effect of cold transmission oil on engagements - Rock cycling and high speed engagements - additional EPC can be

requested to protect the transmission capacity during severe

engagement conditions

- Tip-out from stall capacity hold - delay the $\mbox{ release }$ of $\mbox{ stall }$ EPC

pressure during a quick tip-out to contain powertrain wind-up - Stall EPC - at low speed ratio and vehicle speed stall EPC is

computed as a function of throttle position

- Coast boost - coast boost on a manual downshift is computed as a

function of output shaft speed

- Start-up - additional EPC can be requested once per startup to

"charge" the EPC system in extremely cold ambients.

- When sensors critical to determining the correct EPC pressure have

failed, or a shift error is detected, EPC is either set to the

 $\mbox{\sc maximum}$ value or clipped to $\mbox{\sc TVFMMN}$ as a $\mbox{\sc minimum}$ to $\mbox{\sc protect}$ the

transmission. See the logic diagrams for specifics.

- \mbox{EPC} is always clipped to \mbox{TVPMIN} as a $\mbox{minimum}$ to $\mbox{prevent}$ fluid

drain-back.

ELECTRONIC PRESSURE CONTROL, ELECTRONIC PRESSURE CONTROL GUIDE - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- CS_SFT_MULT = Cold start shift multiplier.
- GEAR_CUR = Global bear indicator, reflects only.
- GR_DS_TV = Desired gear used to compute EPC pressure.
- N = RPM.
- NEBART = Filtered engine RPM for transmission, rpm.
- NEU_RES_TMR = Neutral residency timer.
- PDL = Current MLIP position.
- PDL_LST = MLIP position last background pass.
- SPD_RATIO = Speed ratio across torque converter.
- TM_DEL_SFT = Timer to verify automatic desired shift, sec.
- TM_ENG_TV = Engagement EPC pressure ramp timer, sec.
- TOT = Transmission oil temperature, deg F.
- TP = Throttle Position, counts.
- TSFETMR = Time Since first transmission engagement (sec)
- TV_COUNTS = $FN620(TV_PRES) + FN622(TOT) = Requested EPC counts based$

transfer function and temperature compensation, counts.

- TV_PRES = EPC pressure, psi.
- VSBART_RT = Filtered vehicle speed adjusted for RT_NOVS, mph. end list
- VSCTR = Count of mph sensor errors.

Bit Flags:

- CC FM FLG = Converter Clutch Failure Mode flag.
- DRV2NEU_FLG = Forward prior to neutral flag.
- ETV_TEST = Flag indicating that the ETV open/short test is in progress; $\mathbf{1}$
 - -> test in progress.
- FLG_DEL_MDN = Flag indicating a manual downshift is being delayed;
 0 ->
 - no manual downshift is being delayed, 1 -> a manual downshift is being delayed.
- FLG_DRV_REV = Forward gear to reverse gear engagement flag; 1 ->
 most

recent engagement was forward to reverse.

ELECTRONIC PRESSURE CONTROL, ELECTRONIC PRESSURE CONTROL GUIDE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- FLG_ENG_IN = Engagement in progress flag; 1 -> engagement in progress.
- FLG_ENG_TV = Engagement EPC pressure flag; 1 -> do engagement logic,
 0 ->
- do not do engagement logic.
- FLG_FRST_DS = First time a shift is desired flag; 0 -> no shift desired,
 - 1 -> shift desired this background pass.
- FLG_FWD_REV = Forward to reverse or reverse to forward engagement in

progress flag: 1 -> "rock cycling" engagement in progress.

- FLG_NEU_DRV = Neutral gear to forward gear engagement flag; 1 -> most

recent engagement was neutral to forward.

- FLG_NEU_REV = Neutral gear to reverse gear engagement flag; 1 -> most

recent engagement was neutral to reverse.

- FLG_PWR = Power mode flag; 1 -> power on mode, 0 -> power off mode.
- FLG_REV_DRV = Reverse gear to forward gear engagement flag; 1 -> most

recent engagement was reverse to forward.

- FLG_SFT_IN = Shift in progress flag; 1 -> shift in progress.
- FLG_SFT_MDN = Power off manual downshift flag; 1 -> power off manual

downshift in progress, $0 \rightarrow power off manual downshift not in progress.$

- FLG_TVENG_MD = Flag which indicates moderate temperature for engagement
 - EPC; 0 -> Don't use TVEMOD in engagement EPC, 1 -> Use TVEMAX in engagement EPC.
- MFMFLG = Flag indicating MAP sensor failure; 1 -> failure.
- OTMP_EPC_FLG = Flag indicating RPM is high enough to raise EPC pressure

due to transmission overtemperature.

- OTEMP_FM_FLG = Transmission overtemperature FMEM flag; 1 -> Transmission

is overtemperature.

- PDL ERROR = Flag indicating a MLIP sensor failure; 1 -> failure.
- REV2NEU_FLG = Reverse prior to neutral flag.
- SFT_FM_FLG = Shift error failure mode flag; 0 -> no failure mode
 action,
 - 1 -> failure mode action will be executed.
- TFMFLG = Flag indicating a TP sensor failure; 1 -> failure.
- VSFMFLG = Flag indicating a vehicle speed sensor failure; 1 ->

failure.

Calibration Constants:

- CSDYN12 = Dynamic EPC multiplier for 1-2 shifts.

- CSDYN23 = Dynamic EPC multiplier for 2-3 shifts.

- CSDYN34 = Dynamic EPC multiplier for 3-4 shifts.

ELECTRONIC PRESSURE CONTROL, ELECTRONIC PRESSURE CONTROL GUIDE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- EPC_OTEMP = EPC adder for transmission overtemperature.
- FN12T(TOT) = TV_PRES multiplier versus TOT for upshift to 2nd gear.
- FN21T(TOT) = TV_PRES multiplier versus TOT for downshift to 2nd gear.
- FN23T(TOT) = TV_PRES multiplier versus TOT for upshift to 3nd gear.
- FN32T(TOT) = TV_PRES multiplier versus TOT for downshift to 3nd gear.
- FN34T(TOT) = TV_PRES multiplier versus TOT for upshift to 4nd gear.
- FN43T(TOT) = TV_PRES multiplier versus TOT for downshift to 4nd gear.
- FN620(TV_PRES) = EPC VFS transfer function.
- FN622(TOT) = EPC VFS transfer function modifier as a function \cdot

transmission oil temperature, counts.

- FN622A(TOT) = TV_PRES multiplier for TOT.
- NE_OTEMP_MAX = Engine speed above which EPC pressure is raised for tranmission overtemperature.
- NE_OTEMP_MIN = Engine speed below which EPC returns to normal
 while
 tranmission is overtemperature.
- NEUTIM = Minimum time in neutral to use neutral to in-gear engagement ${\tt EPC}$

functions.

- NRUN = Minimum engine speed to exit crank mode.
- RTSTAL = Maximum SPD_RATIO to do stall epc.
- TM46BLP = Time after a forward to reverse engagement to use FN46B for EPC pressure, sec.
- TM54BLP = Time after a neutral to forward engagement to use FN54B for EPC pressure, sec.
- TM56BLP = Time after a neutral to reverse engagement to use FN56B for EPC pressure, sec.
- TM64BLP = Time after a reverse to forward engagement to use FN64B for EPC $\,\,$ pressure, sec.
- TMDRVREV = Time to complete a forward to reverse engagement, sec.
- TMNEUDRV = Time to complete a neutral to forward engagement, sec.
- TMNEUREV = Time to complete a neutral to reverse engagement, sec.

- TMREVDRV = Time to complete a reverse to forward engagement, sec.

- TVASOF = EPC pressure for power off automatic shift, psi.
- TVFMMN = Minimum EPC clip for VS, PRNDL or RPM sensor failures, psi.

- TVPMIN = Global minimum TV_PRES clip, psi.
- TVPMN1 = Minimum EPC clip, PDL = 1, GEAR = 1, psi.
- TVPMN2 = Minimum EPC clip, PDL = 1, GEAR = 2, psi.
- TVPMN3 = Minimum EPC clip, PDL = 1, GEAR = 3, psi.
- TVPMX1 = Maximum EPC clip, PDL = 1, GEAR = 1, psi.
- TVPMX2 = Maximum EPC clip, PDL = 1, GEAR = 2, psi.
- TVPMX3 = Maximum EPC clip, PDL = 1, GEAR = 3, psi.
- VSSTAL = Maximum vehicle speed to do stall EPC.

ELECTRONIC PRESSURE CONTROL, ELECTRONIC PRESSURE CONTROL GUIDE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- NEU_RES_TMR = See above.
- TM_BLP_TV = Engagement EPC pressure blip timer, sec.
- TM_ENG_TV = See above.
- TSFETMR = See above.
- TV_COUNT_LST = EPC Pressure counts last update.
- TV_COUNTS = See above.
- TV_PRES = See above.

Bit Flags:

- DRV2NEU_FLG = See above.
- FLG_DRV_REV = See above.
- FLG_ENG_IN = See above.
- FLG_ENG_TV = See above.
- FLG_FRST_TV = Start-up EPC pressure flag; 0 -> do start-up EPC logic, 1
 - -> do not do start-up EPC logic.
- FLG_FWD_REV = See above.
- FLG_NEU_DRV = See above.
- FLG_NEU_REV = See above.
- FLG_REV_DRV = See above.
- OTMP_EPC_FLG = See above.
- REV2NEU_FLG = See above.

ELECTRONIC PRESSURE CONTROL, ELECTRONIC PRESSURE CONTROL GUIDE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: EPC_GUIDE_COM1

ENGAGEMENT FLAGS/TIMERS

PDL = 5 (in neutral)	 OR	 	
PDL = 7 (in park)		 AND	NEU_RES_TMR = NEUTIM (load neutral timer) DRV2NEU FLG = 1
PDL_LST <= 4 (fwd last pass)			REV2NEU_FLG = 0 (indicate fwd prior to neu)
			ELSE
PDL = 5 (in neutral)	OR	 	
PDL = 7 (in park)		AND -	NEU_RES_TMR = NEUTIM (load neutral timer) DRV2NEU FLG = 0
PDL_LST = 6 (rev last pass)			REV2NEU_FLG = 1 (indicate rev prior to neu)
			ELSE
			NO ACTION

TM_ENG_TV > 0	FLG_ENG_IN = 1 (engagement in progress)
	ELSE
	FLG_ENG_IN = 0 (no engagement in progress)
FLG_ENG_IN = 1 (engagement in progress)	
FLG_DRV_REV = 1	FLG FWD REV = 1
FLG_REV_DRV = 1 (rev to fwd)	DRV2NEU_FLG = 0 REV2NEU_FLG = 0 (set direction change flag and clear "prior to neutral' flags)
FLG_NEU_REV = 1 OR OR AND -	
DRV2NEU_FLG = 1 (fwd prior to neu)	
FLG_NEU_DRV = 1 AND -	
REV2NEU_FLG = 1 (rev prior to neu)	
	ELSE
<pre>FLG_ENG_IN = 0 (no engagement in progress)</pre>	FLG_FWD_REV = 0 (clear direction change flag)
	ELSE
	NO ACTION

FLG_FWD_REV = 1 (direction change)		
PDL >= 5 (not in forward gear)	OR	<pre>FLG_ENG_TV = 1 (perform engagement/stall TV)</pre>
GR_DS_TV = GEAR_CUR (no verify in progress) AND -		
FLG_ENG_IN = 1 (engagement in progress)		ELSE
GR_DS_TV <> GEAR_CUR		5101
FLG_FRST_DS = 1 (shift is desired) TV;	OR	<pre>FLG_ENG_TV = 0 (Stop doing engagement/stall</pre>
		forward engagement is over
PDL <= 4 (forward gear) AND -	and 	trans is warm or a shift is pending)
FLG_TVENG_MD = 0		
(Clansinission warm)		ELSE
		NO ACTION

PDL = 5 OR 7	- Do: "START-UP EPC" LOGIC
FLG_ENG_TV = 1 (no shift yet after engagement)	ELSE
SPD_RATIO <= RTSTAL OR - LOGIC (Low speed ratio)	Do: "ENGAGEMENT/STALL EPC"
VSBART_RT <= VSSTAL AND - AND -	
FLG_SFT_IN = 0 (No shift in progress)	EL CE
FLG_PWR = 0 (Power off)	ELSE
FLG_SFT_MDN = 1 AND	Do: "COAST BOOST" LOGIC
TM_DEL_SFT > 0 (Verify/delay in AND - progress)	
FLG_DEL_MDN = 1 OR	
PDL <= 3 (Drive, Manual1, or Manual2)	
FLG_SFT_IN = 0 (No shift in progress)	
TM_DEL_SFT = 0 (No delay in progress)	EL CE
FLG_PWR = 0 (Power off)	ELSE
FLG_SFT_IN = 1 (Auto shift in progress)	- TV_PRES = TVASOF
TM_DEL_SFT > 0 (Delay in progress)	 ELSE
	Do: "NORMAL EPC CALCULATION"
	20 NOTHILL LIC CHLCOLATION

ELECTRONIC PRESSURE CONTROL, ELECTRONIC PRESSURE CONTROL GUIDE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

```
Determine Transmission Overtemperature FMEM action:
NEBART > NE_OTEMP_MAX -----|S Q -| OTMP_EPC_FLG
NEBART < NE OTEMP MIN -----C
OTEMP_FM_FLG = 1 -----|
 (Transmission Overtemperature)
                         |AND - | TV PRES = TV PRES + EPC OTEMP
OTMP_EPC_FLG = 1 -----
Clip TV_PRES as necessary:
TFMFLG = 1 -----
(TP failed)
(MAP failed)
ETV TEST = 1 -----
                               --- ELSE ---
VSFMFLG = 1 -----
(VS failed)
VSCTR > 0 -----
SFT_FM_FLG = 1 ------|OR --| Clip TV_PRES to TVFMMN as a
minimum
(shift error detected)
CC_FM_FLG = 1 -----
(conv clutch error detected)
PDL ERROR = 1 -----|
(MLPS failed)
                               --- ELSE ---
PDL = 1 ------
                         AND - Clip TV PRES to TVPMX1 as a
                         maximum
GEAR_CUR = 1 -----|
                             | Clip TV_PRES to TVPMN1 as a
minimum
                               --- ELSE ---
PDL = 1 ------
                         |AND - | Clip TV_PRES to TVPMX2 as a
                         maximum
GEAR_CUR = 2 -----|
                              | Clip TV_PRES to TVPMN2 as a
minimum
```

(continued on next page)

ELECTRONIC PRESSURE CONTROL, ELECTRONIC PRESSURE CONTROL GUIDE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

PDL = 1	Clip TV_PRES to TVPMN3 as a ELSE
GR_DS_TV = 1	<pre>transmission oil temperature unless shifting) ELSE TV_PRES = TV_PRES * FN21T(TOT)</pre>
GR_DS_TV = 2 AND - *	ELSE TV_PRES = TV_PRES * FN12T(TOT)
CS_SFT_MULT <> 1	CSDYN12 ELSE TV_PRES = TV_PRES * FN12T(TOT) ELSE
GR_DS_TV = 2 GR_DS_TV = 3	TV_PRES = TV_PRES * FN32T(TOT)
FLG_SFT_UP = 1 AND - * CS_SFT_MULT <> 1	TV_PRES = TV_PRES * FN23T(TOT) CSDYN23
GR_DS_TV = 3 AND - FLG_SFT_UP = 1	ELSE TV_PRES = TV_PRES * FN23T(TOT)
GR_DS_TV = 3	TV_PRES = TV_PRES * FN43T(TOT)

(continued on next page)

ELECTRONIC PRESSURE CONTROL, ELECTRONIC PRESSURE CONTROL GUIDE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

	ELSE
GR_DS_TV = 4 AND -	TV_PRES = TV_PRES * FN34T(TOT)
CS_SFT_MULT <> 1	CSDYN34
	ELSE
GR_DS_TV = 4	TV_PRES = TV_PRES * FN34T(TOT)
always	TV_PRES = max (TV_PRES,TVPMIN) TV_COUNT_LST = TV_COUNTS
ETV_TEST = 0FN622A(TOT)	tv_comp = TV_PRES * TV_COUNTS = max (FN620(tv_comp) +
always	Do "TV VFS OUTPUT ROUTINE" (set VFS_OUT_FLG = 1 for repeater)

ELECTRONIC PRESSURE CONTROL, START-UP TV LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

START-UP TV LOGIC

OVERVIEW

DEFINITIONS

INPUTS

Registers:

- RATCH = Closed throttle position, counts.
- TP = Throttle position sensor.
- TP_REL = Relative TP = TP RATCH, counts.
- TP_REL_H = Relative TP (TP RATCH) high byte only.

Bit Flags:

- FLG_FRST_TV = Start-up TV pressure flag; 0 -> do start-up TV logic, 1 -> do not do start-up TV logic.
- FLG_TVSTR_CD = Flag which indicates cold temperature for start-up EPC;

0 ->

Don't use TVCHRG in start-up EPC, 1 -> Use TVCHRG in start-up EPC.

Calibration Constants:

- FN616(TP_REL_H) = Stall EPC pressure, psi.
- TVCHRG = EPC charge pressure for first start-up, psi.

OUTPUTS

Registers:

- TV_PRES = EPC pressure, psi.

PROCESS

STRATEGY MODULE: EPC_STARTUP_COM1

ELECTRONIC PRESSURE CONTROL, COAST BOOST LOGIC - GAAIO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

COAST BOOST LOGIC

OVERVIEW

Coast boost TV is supplied during manual downshifts and in manual gear positions when in power off mode only.

DEFINITIONS

INPUTS

Registers:

- GEAR_CUR = Current transmission gear.
- RT_NOVS = Ratio of actual N/V to base N/V in KAM.
- VSBART_RT = Filtered vehicle speed adjusted for RT_NOVS for transmission, mph.

Calibration Constants:

- FN1CB(VSBART_RT) = First gear coast boost TV pressure.
- FN2CB(VSBART_RT) = Second gear coast boost TV pressure.
- FN3CB(VSBART_RT) = Third gear coast boost TV pressure.

OUTPUTS

Registers:

- TV_PRES = TV pressure.

ELECTRONIC PRESSURE CONTROL, COAST BOOST LOGIC - GAAIO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: TV_CST_BOOST_COM4

GEAR_CUR = 1 ----- TV_PRES = FN1CB(VSBART_RT)
--- ELSE --
GEAR_CUR = 2 ----- TV_PRES = FN2CB(VSBART_RT)
--- ELSE --
GEAR_CUR >= 3 ---- TV_PRES = FN3CB(VSBART_RT)

NOTE: In the case of a vehicle speed sensor failure, $VSBART_RT = 0$. FN1CB,

 ${\tt FN2CB}$, and ${\tt FN3CB}$ should be calibrated at zero vehicle speed to provide enough

 coast boost to cover the worst case manual downshift. These functions should

therefore be calibrated as a step function from ${\tt VSBART_RT~0}$ to 1 ${\tt mph}$ and

revert to normal coast boost TV from 1 mph and higher. This will provide

proper VSS failure mode protection.

ELECTRONIC PRESSURE CONTROL, ENGAGEMENT/STALL TV LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ENGAGEMENT/STALL TV LOGIC

DEFINITIONS

INPUTS

Registers:

- NEBART = Filtered engine RPM for transmission.
- PDL = Current PRNDL position.
- TOT = Transmission oil tempterature, degrees F.
- TP_REL = Relative Throttle position, counts.
- TP_REL_H = Relative TP (TP RATCH) high byte only.
- TPBARTV = Filtered TP for TV strategy.
- TM_ENG_TV = Engagament EPC pressure ramp timer.
- VSBART_RT = Filtered vehicle speed adjusted for RT_NOVS for transmission, mph.

Bit Flags:

- FLG_DRV_REV = Forward to reverse engagement flag.
- FLG_ENG_IN = Engagement in progress flag.
- FLG_ENG_TV = Engagement TV pressure flag; 0 -> do engagement logic,
 1 ->
 do not do engagement logic.
- FLG_FWD_REV = Rock cycling engagement in progress flag.
- FLG_NEU_DRV = Neutral to drive engagement flag.
- FLG_NEU_REV = Neutral to reverse engagement flag.
- FLG_TVENG_MD = Moderate temperature for TV engagement flag.

ELECTRONIC PRESSURE CONTROL, ENGAGEMENT/STALL TV LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Calibration Constants:

- FN46B_T = Engagement EPC for first TM46BLP seconds of forward to reverse engagement, psi; function of TOT.
- FN46F_T = Engagement EPC at finish of engagement ramp for a forward to reverse engagement, psi; function of TOT.
- FN46S_T = Engagement EPC at start of engagement ramp for a forward
 to
 reverse
 engagement, psi; function of TOT.
- FN46_NE = Multiplier for FN46S_T and FN46F_T; function of NEBART.
- FN54B_T = Engagement EPC for first TM54BLP seconds of neutral to forward engagement, psi; function of TOT.
- FN54F_T = Engagement EPC at finish of engagement ramp for a neutral
 to
 forward
 engagement, psi; function of TOT.
- FN54S_T = Engagement EPC at start of engagement ramp for a neutral
 to
 forward
 engagement, psi; function of TOT.
- FN54_NE = Multiplier for FN54S_T and FN54F_T; function of NEBART.
- FN56B_T = Engagement EPC for first TM56BLP seconds of neutral to reverse engagement, psi; function of TOT.
- FN56F_T = Engagement EPC at finish of engagement ramp for a neutral
 to
 reverse
 engagement, psi; function of TOT.
- FN56S_T = Engagement EPC at start of engagement ramp for a neutral
 to
 reverse
 engagement, psi; function of TOT.
- FN56_NE = Multiplier for FN56S_T and FN56F_T; function of NEBART.
- FN616(TP_REL_H) = Stall TV pressure.
- FN64B_T = Engagement EPC for first TM64BLP seconds of reverse to forward engagement, psi; function of TOT.
- FN64F_T = Engagement EPC at finish of engagement ramp for a reverse to forward engagement, psi; function of TOT.
- FN64S_T = Engagement EPC at start of engagement ramp for a reverse to

forward engagement, psi; function of TOT.

- FN64_NE = Multiplier for FN64S_T and FN64F_T; function of NEBART.

- NETVMN = Minimum RPM to use TVEMOD engagement TV.

ELECTRONIC PRESSURE CONTROL, ENGAGEMENT/STALL TV LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- NETVMX = Minimum RPM to use TVEMAX engagement TV.
- REV_ENG_ADD = Reverse Engagement Adder.
- STALLTV_SW = Calibration switch to select FN616 during engagement; 0
 -> select FN616, 1 -> do not select FN616.
- TMDRVREV = Time to complete a forward to reverse engagement, sec.
- TMNEUDRV = Time to complete a neutral to forward engagement, sec.
- TMREVDRV = Time to complete a revolution to forward engagement, sec.
- TOTVTP = Tip-out TP cahnge to hold stall Tv.
- TPTVMN = Minimum TP_REL to use TVEMOD engagement TV.
- TPTVMX = Minimum TP_REL to use TVEMAX engagement TV.
- TVEMAX = TV for worst case engagement.
- VSTVMN = Minimum vehicle speed to use TVEMOD engagement TV.
- VSTVMX = Minimum vehicle speed to use TVEMAX engagement TV.

ELECTRONIC PRESSURE CONTROL, ENGAGEMENT/STALL TV LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: EPC_ENGMT_STALL_COM1

ENGAGEMENT/STALL TV LOGIC

STALLTV_SW = 1			
(FN616 selection switch)	AND -	tempreg1	= 0
		(do not	consider FN616
FLG_ENG_IN = 1	j i	during	engagement)
(engagement in progress)	`		
		ELSE	
			$= FN616(TP_REL_H)$
		(determ:	ine stall TV)

ELECTRONIC PRESSURE CONTROL, ENGAGEMENT/STALL TV LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ELECTRONIC PRESSURE CONTROL, ENGAGEMENT/STALL TV LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

tempreg2 > tempreg1 -----| tempreg1 = tempreg2 (choose the larger of the stall or engagement EPC pressure) (TPVARTV - TP) >= TOTVTP -----| AND - No change to TV_PRES (high tip-out rate) (use last pass value to hold TV_PRES > tempreg1 -----| TV pressure on tip-out) (last pass value has enough capacity) --- ELSE ---TV_PRES = tempreg1 (use the higher of stall or engagement TV)

REVERSE ENGAGEMENT ADDER LOGIC

PDL = 6 -----| tempreg2 = tempreg2 + REV ENG ADD

ELECTRONIC PRESSURE CONTROL, ENGAGEMENT/STALL TV LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DRIVE/REVERSE ENGAGEMENT LOGIC

```
FLG DRV REV = 1 ------
                               AND -
                                     tempreg2 = FN46B T(TOT)
TM BLP TV > 0 -----
                                      --- ELSE ---
FLG_DRV_REV = 1 ------
                                      temp ne = FN46 NE(NEBART)
                                      tempreg2 = FN46S_T(TOT) *
                                    temp_ne +
                                      [FN46F T(TOT) - FN46S T(TOT)] *
                                      [1 - TM_ENG_TV / TMDRVREV] *
                                      [temp_ne]
                                      --- ELSE ---
FLG_NEU_DRV = 1 -----
                               AND -
                                      tempreg2 = FN54B_T(TOT)
TM BLP TV > 0 -----
                                      --- ELSE ---
FLG NEU DRV = 1 -----
                                      temp_ne = FN54_NE(NEBART)
                                     tempreg2 = FN54S_T(TOT) *
                                    temp_ne +
                                      [FN54F_T(TOT) - FN54S_T(TOT)] *
[1 - TM_ENG_TV / TMNEUDRV] *
                                      [temp_ne]
                                      --- ELSE ---
FLG NEU REV = 1 -----
                               AND -
                                      tempreg2 = FN56B_T(TOT)
TM_BLP_TV > 0 -----
                                      --- ELSE ---
FLG NEU REV = 1 -----
                                      temp_ne = FN56_NE(NEBART)
                                      tempreg2 = FN56S_T(TOT) *
                                    temp ne +
                                      [FN56F T(TOT) - FN56S T(TOT)] *
                                      [1 - TM_ENG_TV / TMNEUREV] *
                                      [temp_ne]
                                      --- ELSE ---
FLG_REV_DRV = 1 -----
                               AND -
                                      tempreg2 = FN64B_T(TOT)
TM BLP TV > 0 ----
                                      --- ELSE ---
                                     temp_ne = FN64_NE(NEBART)
FLG REV DRV = 1 -----
                                      tempreg2 = FN64S T(TOT) *
                                    temp_ne +
                                      [FN56F_T(TOT) - FN64S_T(TOT) *
                                      [1 - TM_ENG_TV / TMREVDRV] *
                                     [temp_ne]
```

ELECTRONIC PRESSURE CONTROL, NORMAL TV CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

NORMAL TV CALCULATION

OVERVIEW

Normal TV computes the TV pressure required to maintain static capacity, that is, the capacity required when no shift is in progress.

DEFINITIONS

INPUTS

Registers:

- EPC_TQ_CONV = Torque converter static capacity EPC pressure requirement.
- GR_CM = Current transmission gear.
- GR_DS_TV = Desired gear used to compute EPC pressure.
- NEBART = Filtered engine RPM for transmission.
- RATCH = Closed throttle position, counts.
- SPD_RATIO = Speed ratio across the torque converter.
- TP = Throttle Position, counts.
- - is calculated using the ROLAV subroutine, but with a different time

constant then the values used in the $\ensuremath{\mathtt{TPBART}}$ and $\ensuremath{\mathtt{TPBARTC}}$ calculation.

TPBARTV is used in the $\,$ TV $\,$ routine to determine a tip-in condition.

During a tip-in condition in the TV routine, extra TV is added.

- TP_REL = Relative Throttle Position, TP RATCH.
- TP_STRT_SFT = TP_REL at the start of a shift, counts.
- TQ_IALPHA = I-ALPHA torque due to ratio change.
- TQ_NET = Net torque into torque converter.
- TQ_STAT_CAP = Static Capacity Torque of transmission.
- TR_STRT_SFT = Torque ratio at the start of a shift.
- TV DYN = TV pressure required for dynamic shift control.
- TV_PRES = TV pressure.
- TV_STAT = TV pressure required for static capacity.
- TV_ST_SFT = Static TV pressure while shifting.

ELECTRONIC PRESSURE CONTROL, NORMAL TV CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Bit Flags:

- FLG_4X4L = 4X4L flag; 0 -> not in 4X4 L, 1 -> in 4X4 L.
- FLG_DYN_CD = Flag which indicates that it is necessary to add dynamic $\, \, {\rm TV} \,$

due to cold transmission conditions.

- FLG_FRST_CM = Flag indicating a shift was commanded this background loop.
- FLG_LK_CM = Converter clutch lock-up commanded flag.
- FLG_SFT_IN = Shift in progress flag.

Calibration Constants:

- AETV = Anticipatory TV adder for heavy tip-ins.
- AETVTP = Minimum throttle change to include AETV in TV_STAT.
- EPC_TQMAX = Maximum clip on torque converter static capacity EPC
 pressure
 requirement.
- FN617(SPD_RATIO) = Torque converter torque ratio.
- MUSLP = Torque converter coefficient of friction temperature compensation; slope.
- MUINT = Torque converter coefficient of friction temperature compensation; intercept.
- SCINT1 = Static capacity TV intercept, first gear.
- SCINT2 = Static capacity TV intercept, second gear.
- SCINT3 = Static capacity TV intercept, third gear.
- SCINT4 = Static capacity TV intercept, fourth gear.
- SCSLP1 = Static capacity TV slope, first gear.
- SCSLP1SD = Static capacity TV slope, downshift to first gear.
- SCSLP2 = Static capacity TV slope, second gear.
- SCSLP2SD = Static capacity TV slope, downshift to second gear.
- SCSLP2SU = Static capacity TV slope, upshift to second gear.
- SCSLP3 = Static capacity TV slope, third gear.
- SCSLP3SD = Static capacity TV slope, downshift to third gear.
- SCSLP3SU = Static capacity TV slope, upshift to third gear.
- SCSLP4 = Static capacity TV slope, fourth gear.
- SCSLP4SU = Static capacity TV slope, upshift to fourth gear.

ELECTRONIC PRESSURE CONTROL, NORMAL TV CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- TQCONVINT = Static capacity EPC intercept for the torque converter.
- TQCONVSLP = Static capacity EPC slope for the torque converter.

OUTPUTS

Registers:

- EPC_TQ_CONV = See above.
- NE_STRT_SFT = Engine RPM at start of a shift.
- TQ_STAT_CAP = See above.
- TP_STRT_SFT = See above.
- TV_DYN = See above.
- TV_PRES = See above.

ELECTRONIC PRESSURE CONTROL, NORMAL TV CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: EPC_NORM_COM7

FLG_SFT_IN = 1 ------| TQ_STAT_CAP = (TQ_NET + TQ_IALPHA) *

(shift in progress,
use IALPHA term)TR_STRT_SFT
(calculate static torque capacity
required)

through torque converter ratio)

Calculate steady state pressure for current gear.

FLG_SFT_IN = 0 ------| DO "NON-SHIFTING STATIC TV CALCULATION"

FLG_SFT_IN = 0 ------|
| AND -| DO "TORQUE CONVERTER STATIC TV
FLG_LK_CM = 1 ------| CALCULATION"

Select larger of TV_STAT and EPC_TQ_CONV.

FLG_SFT_IN = 0 ------ | AND - | TV_STAT = EPC_TQ_CONV TV_STAT < EPC_TQ_CONV ------

ELECTRONIC PRESSURE CONTROL, NORMAL TV CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Calculate pressure for shift using shifting slopes and Dynamic TV.

Select proper value for TV_PRES.

Now add anticipatory TV value for a tip-in.

```
FLG_SFT_IN = 0 ------|

AND - TV_PRES = TV_PRES + AETV

(TP - TPBARTV) >= AETVTP ----- (adjust TV pressure for heavy tip-in to compensate for all system delays)
```

ELECTRONIC PRESSURE CONTROL, NORMAL TV CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

NON-SHIFTING STATIC TV CALCULATION

SHIFTING STATIC TV CALCULATION

```
GR_DS_TV = 1 ------ | TV_ST_SFT = (TQ_STAT_CAP *
SCSLP1SD) +
                                               SCINT1
                                   --- ELSE ---
GR DS TV = 2 -----
                             AND - TV ST SFT = (TO STAT CAP *
                            SCSLP2SU) +
FLG SFT UP = 1 ----
                                               SCINT2
                                   --- ELSE ---
GR DS TV = 2 ----- TV ST SFT = (TO STAT CAP *
SCSLP2SD) +
                                               SCINT2
                                   --- ELSE ---
GR_DS_TV = 3 -----
                            AND - TV_ST_SFT = (TQ_STAT_CAP *
                            SCSLP3SU) +
FLG SFT UP = 1 ----
                                               SCINT3
                                   --- ELSE ---
GR DS TV = 3 -----
                                  TV ST SFT = (TO STAT CAP *
SCSLP3SD) +
                                               SCINT3
                                   --- ELSE ---
                                   TV ST SFT = (TQ STAT CAP *
                                 SCSLP4SU) +
                                               SCINT4
```

ELECTRONIC PRESSURE CONTROL, NORMAL TV CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TORQUE CONVERTER STATIC TV CALCULATION

ELECTRONIC PRESSURE CONTROL, TQ_IALPHA CALCULATION - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

TQ_IALPHA CALCULATION

OVERVIEW

The I-ALPHA torque calculation determines the torque that results from a transmission upshift or downshift.

DEFINITIONS

INPUTS

Registers:

- GEAR_CUR = Current transmission gear.
- GEAR_OLD = Last commanded gear.
- NE_STRT_SFT = Engine RPM at start of a shift.
- RT_GR_CUR = Current transmission gear ratio.
- RT_GR_OLD = Last gear transmission gear ratio.

Calibration Constants:

- TQIA12 = I-ALPHA torque constant for 1 2.
- TQIA21 = I-ALPHA torque constant for 2 1.
- TQIA23 = I-ALPHA torque constant for 2 3.
- TQIA32 = I-ALPHA torque constant for 3 2.
- TQIA34 = I-ALPHA torque constant for 3 4.
- TQIA43 = I-ALPHA torque constant for 4 3.

OUTPUTS

Registers:

- TQ_IALPHA = I-ALPHA torque due to ratio change.

ELECTRONIC PRESSURE CONTROL, TQ_IALPHA CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: EPC_TQ_IALPHA_COM4

GEAR_CUR = 2	
GEAR_OLD = 1	- TQ_IALPHA = NE_STRT_SFT * TQIA12 * [1 - (RT_GR_CUR/RT_GR_OLD)]
GDAD GUD 1	ELSE
GEAR_CUR = 1	 - TQ_IALPHA = NE_STRT_SFT * TQIA21 *
GEAR_OLD > 1	[1 - (RT_GR_CUR/RT_GR_OLD)]
	ELSE
GEAR_CUR = 3	
GEAR_OLD < 3 AND -	- TQ_IALPHA = NE_STRT_SFT * TQIA23 * [1 - (RT_GR_CUR/RT_GR_OLD)]
	ELSE
GEAR_CUR = 2	
GEAR_OLD > 2	- TQ_IALPHA = NE_STRT_SFT * TQIA32 * [1 - (RT_GR_CUR/RT_GR_OLD)]
	 ELSE
GEAR_CUR = 4	
	- TQ_IALPHA = NE_STRT_SFT * TQIA34 * [1 - (RT_GR_CUR/RT_GR_OLD)]
	 ELSE
GEAR_CUR = 3	
	- TQ_IALPHA = NE_STRT_SFT * TQIA43 * [1 - (RT_GR_CUR/RT_GR_OLD)]

ELECTRONIC PRESSURE CONTROL, DYNAMIC TV CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DYNAMIC TV CALCULATION

DEFINITIONS

INPUTS

Registers:

- GEAR CUR = Global Gear Indicator, reflects only.
- GR_DS_TV = Commanded gear for TV.
- TOT = Transmission oil temperature, deg F.
- TP_REL_H = Relative TP (TP RATCH) high byte only.
- TP_STRT_SFT = TP at start of shift.
- TSLSFT = Time since last shift timer.

Bit Flags:

- $FLG_4X4L = 4x4$ low flag.
- FLG_FRST_CM = First time a shift is commanded flag; 0 -> no shift
 - commanded.
- FLG_SFT_DN = Downshift flag.
- FLG_SFT_IN = Shift in progress flag.
- FLG_SFT_UP = Upshift flag.

Calibration Constants:

- FN12CA = Time dependent Dynamic EPC pressure adder for 1-2 shift, psi.
- FN12 DC = Dynamic TV pressure for 1-2 shift.
- FN21_DC = Dynamic TV pressure for 2-1 shift.
- FN23CA = Time dependent Dynamic EPC pressure adder for 1-2 shift, psi.
- FN23 DC = Dynamic TV pressure for 2-3 shift.
- FN32_DC = Dynamic TV pressure for 3-2 shift.
- FN34CA = Time dependent Dynamic EPC pressure adder for 3-4 shift, psi.
- FN34_DC = Dynamic TV pressure for 3-4 shift.
- FN43_DC = Dynamic TV pressure for 4-3 shift.
- SW_DYN = Software switch for dynamic TV; 0 -> allow shift dynamics to
 - vary with rpm, 1 -> use rpm at start of shift.

ELECTRONIC PRESSURE CONTROL, DYNAMIC TV CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- TMTVRMP_12 = TV ramp time for 1-2 shift.
- TMTVRMP_23 = TV ramp time for 2-3 shift.
- TMTVRMP 34 = TV ramp time for 3-4 shift.
- TOTTV5 = Maximum TOT to adjust TV_DYN for cold accum.
- TV_4L_12 = Dynamic TV adder for 1-2 shift in 4x4L.
- TV_4L_21 = Dynamic TV adder for 2-1 shift in 4x4L.
- TV_4L_23 = Dynamic TV adder for 2-3 shift in 4x4L.
- TV_4L_32 = Dynamic TV adder for 3-2 shift in 4x4L.
- TV_4L_34 = Dynamic TV adder for 3-4 shift in 4x4L.
- TV_4L_43 = Dynamic TV adder for 4-3 shift in 4x4L.
- TVRMP_12 = TV adder during 1-2 upshift.
- TVRMP_23 = TV adder during 2-3 upshift.
- TVRMP_34 = TV adder during 3-4 upshift.

OUTPUTS

Registers:

- TSLSFT = See above.
- TV_DYN = TV pressure required for dynamic shift control.
- TV_RAMP = TV value added during upshift.
- TV_RAMP_TMR = TV adder during upshift control timer.
- TVRMPTM = TV Ramp Timer initail value for upshifts.

ELECTRONIC PRESSURE CONTROL, DYNAMIC TV CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: EPC_DYNAMIC_COM1

SW_DYN = 1		
FLG_SFT_IN = 1	AND - 	<pre>tempreg = TP_STRT_SFT (Do not allow shift dynamics to vary)</pre>
		ELSE
		<pre>tempreg = TP_REL_H (Allow shift dynamics to vary)</pre>
FLG_FRST_CM = 1		TSLSFT = 0
		ELSE
		Increment TSLSFT
GR_DS_TV = 1		TV_DYN = FN21_DC(tempreg)
GR_DS_TV = 2		ELSE
	AND -	TV_DYN = FN12_DC(tempreg)
FLG_SFT_UP = 1	' į	ELSE
GR_DS_TV = 2	AND -	TV_DYN = FN32_DC(tempreg)
FLG_SFT_DN = 1		ELSE
GR_DS_TV = 3	 AND -	TV_DYN = FN23_DC(tempreg)
FLG_SFT_UP = 1	İ	ELSE
GR_DS_TV = 3		TV_DYN = FN43_DC(tempreg)
FLG_SFT_DN = 1	AND -	
		ELSE
$GR_DS_TV = 4$		$TV_DYN = FN34_DC(tempreg)$

ELECTRONIC PRESSURE CONTROL, DYNAMIC TV CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

COLD ACCUMULATOR DYNAMIC TV COMPENSATION

TOT >= TOTTV5	
OR	Do not adjust TV_DYN for a cold
accumul	ator
FLG_SFT_UP = 0	
	ELSE
GEAR CUR = 1	
_ ! !	TV DYN = TV DYN + FN12CA(TSLSFT)
GEAR_CUR = 2	11_5111 11_5111 11112611(151511)
<u> </u>	
	ELSE
_	
GEAR_CUR = 3	$TV_DYN = TV_DYN + FN23CA(TSLSFT)$
	EI CE
	ELSE
GEAR CUR = 4	TV DYN = TV DYN + FN34CA(TSLSFT)
~ 	

4X4L DYNAMIC TV COMPENSATION

FLG_4X4L = 0	Do not adjust TV_DYN for 4X4L mode.
	ELSE
GEAR_CUR = 1	TV_DYN = TV_DYN + TV_4L_21
	ELSE
GEAR_CUR = 2 AND -	TV_DYN = TV_DYN + TV_4L_12
FLG_SFT_UP = 1	ELSE
GEAR_CUR = 2	
FLG_SFT_DN = 1	TV_DYN = TV_DYN + TV_4L_32
GEAR_CUR = 3	ELSE
FLG_SFT_UP = 1	TV_DYN = TV_DYN + TV_4L_23
	ELSE
GEAR_CUR = 3 AND -	TV_DYN = TV_DYN + TV_4L_43
FLG_SFT_DN = 1	ELSE
CEAD CUD - 4	
GEAR_CUR = 4	$IV_{DYN} = IV_{DYN} + IV_{4L_34}$

ELECTRONIC PRESSURE CONTROL, DYNAMIC TV CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FLG_FRST_CM = 1	
FLG_SFT_UP = 1 AND -	TVRMPTM = TMTVRMP_12 TV_RAMP_TMR = TMTVRMP_12
GR_DS_TV = 2	TV_RAMP = TVRMP_12
FLG_FRST_CM = 1	ELSE
FLG_SFT_UP = 1 AND -	TVRMPTM = TMTVRMP_23 TV RAMP TMR = TMTVRMP 23
GR_DS_TV = 3	TV_RAMP_IMR - IMIVRMP_23 TV_RAMP = TVRMP_23
FLG_FRST_CM = 1	ELSE
FLG_SFT_UP = 1 AND -	
GR_DS_TV = 4	TV_RAMP_TMR = TMTVRMP_34 TV_RAMP = TVRMP_34
	ELSE
FLG_FRST_CM = 1	TIVE TO A TOTAL TOTAL TO A TOTAL TO A TOTAL TO A TOTAL TO A TOTAL TO A TOTAL TO A TOTAL TO A TOTAL TO A TOTAL TO A TOTAL TO A TOTAL TO A TOTAL
AND - FLG_SFT_DN = 1	TVRMPTM = 1 TV_RAMP_TMR = 1 TV_RAMP = 0
FLG_SFT_IN = 1	TV_DYN = TV_DYN + TV_RAMP * [(TVRMPTM - TV_RAMP_TMR) / TVRMPTM]
	ELSE
	No action (shift is being verified; do not apply the upshift TV_RAMP to TV_DYN)

ELECTRONIC PRESSURE CONTROL, OFMFLG LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OFMFLG LOGIC

OVERVIEW

The Electronic Pressure Control VFS is a current control device with a 0 to 1 amp control range. One amp produces the lowest line pressure (handles idle torque capacity). The ETV Overcurrent Circuit Monitor, ETVOCM, is a voltage representative of the current in the ETV solenoid. This voltage is

read by the EEC-IV through the A/D.

The monitor is checked once per background loop after ETV current has had time to stabilize to verify that the solenoid is operating within specification. The expected monitor voltage is a function of battery voltage and solenoid current. Measured voltage decreases with increasing current or decreasing battery voltage.

If the measured voltage is less than the allowable minimum (ETV_OCM_MIN) , the ETV solenoid failure flag, ETV_ERROR, is set and an "ETV Test" sequence is initiated. This sequence commands zero TV_COUNTS and then rechecks voltage to differentiate an open from a short. Through the use "pull-up" circuit connected to the ETV output, at zero TV_COUNTS, a short will result in low voltage on ETVOCM, while an open will show a nearnormal voltage. If a short is detected, the torque truncation/failure mode routine is enabled by setting the OFMFLG to 1. If an open is detected, the EPC OPEN FLG is set to 1. If either the OFMFLG or the EPC OPEN FLG and

DEFINITIONS

INPUTS

Registers:

- ETVOCM = Actual ETV monitor voltage, counts.

EPC_ERR_SW is set, the TCIL will flash.

- ETV_OCM_MIN = Minimum acceptable ETVOCM, counts.
- TM_TV_SS = ETV current settling timer, sec.
- TV_COUNTS = Commanded ETV current, counts.
- UNDSP = In Underspeed mode flag; 1 -> in Underspeed or Crank, 0 -> in run

mode.

- VBAT = Battery Voltage, volts.

Bit Flags:

- ETV_TEST = Flag indicating that the ETV open/short test is in progress; 1

-> test in progress.

ELECTRONIC PRESSURE CONTROL, OFMFLG LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Calibration Constants:

- ETV_BIAS = ETVOCM voltage at 10 volts VBAT and 0 counts commanded ETV, counts.
- ETV_GAIN = ETVOCM gain per one count of commanded ETV, counts/count.
- ETV_GAIN_BAT = ETVOCM count gain per one battery volt, counts/volt.
- TV_SLT_TM = Minimum time after a significant change in TV_COUNTS before

performing the current monitor test. Used to allow ETV current to stabilize before measurement, sec.

- TVCDLT = Minimum change in TV_COUNTS from previous value to reset TM_TV_SS, counts.

OUTPUTS

Registers:

- TM_TV_SS = See above.

Bit Flags:

- EPC_OPEN_FLG = Indicates EPC open circuit; 1 -> EPC open circuit detected.
- ETV ERROR = ETV Solenoid error.
- ETV_TEST = See above.
- OFMFLG = ETV Overcurrent Monitor Failure flag.

ELECTRONIC PRESSURE CONTROL, OFMFLG LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: EPC_OFM_COM2

ETV CURRENT MONITOR TEST

Calculate ETV_OCM_MIN:

ELECTRONIC PRESSURE CONTROL, OFMFLG LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ETVOCM < ETV_OCM_MIN AND - ETV_TEST = 0	(Initiate Open/Short Test) ETV_ERROR = 1 OFMFLG = 0 EPC_OPEN_FLG = 0 ETV_TEST = 1 TM_TV_SS = 0
ETVOCM < ETV_OCM_MIN AND - ETV_TEST = 1	ELSE (Over Current/Short Circuit) ETV_ERROR = 1 OFMFLG = 1 EPC_OPEN_FLG = 0 ETV_TEST = 1
ETVOCM >= ETV_OCM_MIN AND - ETV_TEST = 1	ELSE (Under Current/Open Circuit) ETV_ERROR = 1 OFMFLG = 0 EPC_OPEN_FLG = 1 ETV_TEST = 0 TM_TV_SS = 0
	ELSE (No Error) ETV_ERROR = 0 OFMFLG = 0 EPC_OPEN_FLG = 0 ETV_TEST = 0

ELECTRONIC PRESSURE CONTROL, TV VFS OUTPUT ROUTINE - LHBHO PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

TV VFS OUTPUT ROUTINE

OVERVIEW

 ${\ensuremath{\mathsf{TV}}}$ pressure is controlled by a variable force solenoid in the transmission.

Current to the VFS ranges from 0 to 1 $\ensuremath{\mathtt{amp}}\xspace$. and is controlled by a custom

integrated circuit which converts an 8 bit binary value to a proportional $% \left(1\right) =\left(1\right) +$

current using the following relationship:

I ave. = requested counts/255

This 8 bit word is clocked into the IC via two low speed output lines from the EEC-IV called data and clock. The following conventions must be observed:

- 1) Both data and clock lines shall be held high between data words
- 2) Holding the data line low during a falling edge of the clock initiates an input sequence at any point in time (even in the middle of a data

sequence). The LSB (Least Significant Bit) is assumed to follow next,

bit 7

- 3) A rising edge of the clock shifts the current state of the data line into the IC buffer.
- 4) The eighth rising edge indicates that the MSB (Most Significant Bit), bit
 - 0, has been shifted in. This latches the new 8 bit word in the ${\tt IC}$ and

forces the output current to the commanded level.

DEFINITIONS

INPUTS

Registers:

- TV_COUNTS = FN620(TV_PRES) = Requested TV counts based on transfer function.

OUTPUTS

Bit Flags:

- FLG_TV_CLK = TV VFS clock line.
- FLG TV DATA = TV VFS data line.

ELECTRONIC PRESSURE CONTROL, TV VFS OUTPUT ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: EPC_VFS_OUT_COM2

PAUSE
(Latch data bit)
FLG_TV_DATA = 1
PAUSE
FLG_TV_CLK = 0
PAUSE
(set up for next bit)
Shift TV_COUNTS right, 1 bit

ELECTRONIC PRESSURE CONTROL, TRANSMISSION OVERTEMPERATURE TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TRANSMISSION OVERTEMPERATURE TEST

OVERVIEW

At very high temperatures, the torque capacity of the transmission is decreased, which can impact its durabilty. When a high transmission oil temperature is reached, the fault filter for the Transmission overtemperature code will count up. Once the KAM bit is set, the OTEMP_FM_FLG is set. The OTEMP_FM_FLG is used throughout the strategy for FMEM action. The OTEMP_FM_FLG will remain set until the transmission drops below the overtemperature threshold minus the hysteresis.

DEFINITIONS

INPUTS

Registers:

- TOT = Transmission oil temperature, deg F.

Calibration Constants:

- C657LVL = Threshold for Transmission overtemperature fault.
- C657UP = Transmission overtemperature fault up-count.
- TOT_OTEMP = Temperature above which the Transmission overtemperature fault filter is called.
- HYS_OTEMP = Delta Temperature below which the Transmission is considered no the be overtemperature.

OUTPUTS

Bit Flags:

- OTEMP_FM_FLG = Transmission overtemperature FMEM flag; 1 ->
Transmission
 is overtemperature.

ELECTRONIC PRESSURE CONTROL, TRANSMISSION OVERTEMPERATURE TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: EPC_OTEMP_TEST_COM2

ELECTRONIC PRESSURE CONTROL, TRANSMISSION OVERTEMPERATURE TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 18

CONVERTER CLUTCH CONTROL

CONVERTER CLUTCH CONTROL, CONVERTER CLUTCH CONTROL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CONVERTER CLUTCH CONTROL

OVERVIEW

The converter clutch is an electronically controlled wet clutch which essentially bypasses the torque converter when actuated. This eliminates torque converter slippage and excess heat generation leading to fuel economy and vehicle performance benefits. The converter clutch is also used during transmission gear changes to minimize the customer perceived engine RPM change during upshifts and downshifts. Hydraulically, the converter clutch circuit is a two pass (two circuit) system. This allows only on/off control

The converter clutch strategy is broken down into four basic parts:

1) Unconditional Unlock Logic - The converter clutch is unconditionally

released under a number of conditions such as closed throttle, brake

applied, high tip-in or tip-out rates, etc. A timer is then loaded to $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left($

allow $\mbox{re-application}$ of the converter clutch after the condition is no

longer true. All times are independent such that the longest converter

clutch release time for multiple release conditions controls

re-application of the clutch.

of the application of the clutch.

There are two versions of the E4OD control logic; one for diesel engine applications and one for gasoline engine applications. To minimize software/strategy workload, the majority of the logic is kept generic, so that it may be used for both versions.

In the converter clutch routine, it is desired to unconditionally unlock

the converter clutch during closed throttle. The means by which closed $% \left(1\right) =\left(1\right) +\left($

throttle is determined is different in the two $\mbox{versions}$. Therefore, a

 dummy variable, $\operatorname{DD_UNC_UNL},$ is created. This variable is loaded with

TP_REL in the gasoline version. The entire converter clutch routine

would then be generic between the two strategies.

2) Shift Unlock Logic - Shift unlock logic is used to control the converter

clutch during upshifts and downshifts. For power on upshifts, speed

ratio is monitored after the gear change begins and is used to release

the converter clutch. In this way, the drop in RPM caused by the ratio $\,$

change is offset by an RPM rise due to the release of the converter $% \left(1\right) =\left(1\right) \left(1\right)$

clutch. After the converter clutch is released, speed ratio is monitored

again to reapply the converter clutch. The end result is $% \left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) +\left(1\right) =\left(1\right) +\left$

change during the shift has been minimized and converter clutch control $% \left(1\right) =\left(1\right) +\left($

has been imperceptible to the driver. If speed ratio conditions are not

 $\mbox{\it met}$ a default timer controls the converter clutch. The speed ratio

check, due to the accuracy required for proper control, is done during

the $\bar{1}$ msec. interrupt. Power off upshifts and all downshifts are

controlled by the default timer due to the lower required timing

accuracy. Downshifts are all performed on an open converter to aid shift quality.

CONVERTER CLUTCH CONTROL, CONVERTER CLUTCH CONTROL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

3) Scheduled Lock/Unlock Logic - When there are no unconditional releases in

effect and the converter clutch is not being controlled during shifts,

converter clutch applies and releases are scheduled as a function of

throttle position versus vehicle speed for each gear. An identical set

of fox functions exists for altitude as well (BP_INTR is the

interpolation factor). Vehicle speeds are modified by the learned N $\,$ over

V of the vehicle. Some additional features exist for scheduled converter clutch applies.

- a) Speed ratio must be greater than a minimum value. This prevents
 - application of the converter clutch while significant torque multiplications are taking place.
- b) Throttle rate must be less than some maximum rate. This prevents

application of the converter clutch when driver business would continually release and apply the converter clutch.

c) Intermediate altitude scheduled apply delay. This delays

re-application of the converter clutch when driving in mountainous

terrain to prevent business due to constantly changing throttle position associated with driving up and down hills.

d) W.O.T. Lockup Logic - WOT lockup logic is used to apply the $\,$

converter $% \left(1\right) =\left(1\right) +$

and efficiency benefit. In any gear other than first, the converter

clutch is automatically applied. In first gear, a minimum speed

ratio criteria must be met. If the converter clutch must be released

due to increasing load. The speed ratio criteria becomes

increasingly more difficult so as to prevent cycling of the

Clutch Control Logic fails, Lock-ups will be based on information from

the available sensors.

- a) If the TP Sensor fails, locks are based on SPD_RATIO. If both the TP Sensor and the VS Sensor fail, locks are based on Engine RPM.
- b) If the Vehicle Speed Sensor fails, locks are based on a

function of NEBART and TP_REL.

CONVERTER CLUTCH CONTROL, CONVERTER CLUTCH CONTROL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Bit Flags:

- FLG_CRV_LK = Scheduled curve lock-up flag; 0 -> no scheduled lockup, 1
 - -> scheduled lock-up.
- FLG_FMM_LK = Failure Mode Management lock-up flag; 1 -> lock
 converter

due to FMEM action.

- FLG_SFT_UNLK = Shift control unlock flag; 0 -> no shift control
 unlock, 1
 - -> shift control unlock.
- FLG_UNC_UNLK = Converter clutch unconditional unlock flag; 0
 -> no
 unconditional unlock, 1 -> unconditional unlock.
- FLG_WOT_LK = WOT lock-up flag; 0 -> no WOT lock-up, 1 -> WOT lock-up.

Calibration Constants:

- SW_MLK = Switch for manual converter clutch control; 0 -> automatic
 - converter clutch control, 1 -> unconditional converter clutch lock-up, 2
 - -> unconditional converter clutch unlock.

OUTPUTS

Bit Flags:

- FLG_LK_CM = Converter clutch lock-up commanded flag; 0 -> de-energize

solenoid, unlock converter clutch, 1 -> energize solenoid, lock
converter
clutch.

CONVERTER CLUTCH CONTROL, CONVERTER CLUTCH CONTROL - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

PROCESS STRATEGY MODULE: CCC_COM1 always ----- Do "UNCONDITIONAL UNLOCK" LOGIC Do "SHIFT UNLOCK" LOGIC Do "SCHEDULED LOCK/UNLOCK" LOGIC Do "WOT LOCK-UP" LOGIC Do "FAILURE MODE MANAGEMENT LOCK-UP" LOGIC SW_MLK = 1 ----- | FLG_LK_CM = 1 (Development unconditional lock-up) | (Lock converter clutch) --- ELSE ---FLG_UNC_UNLK = 1 -----| $|OR --| FLG_LK_CM = 0$ (Unconditional unlock) (Unlock converter clutch) FLG_SFT_UNLK = 1 -----(Shift control unlock) --- ELSE ---FLG_WOT_LK = 1 -----| (WOT lockup) FLG_CRV_LK = 1 ------ OR -- FLG_LK_CM = 1 (Scheduled curve lock-up) (Lock converter clutch) FLG FMM LK = 1 -----| (FMEM lock-up) --- ELSE ---FLG LK CM = 0

(Unlock converter clutch)

CONVERTER CLUTCH CONTROL, UNCONDITIONAL UNLOCK LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

UNCONDITIONAL UNLOCK LOGIC

DEFINITIONS

INPUTS

Registers:

- BP = Barometric pressure.
- CS_SFT_MULT = Cold start shift multiplier.
- DD_UNC_UNL = The driver demand position used in the unconditional unlock routine, counts.
- GEAR_CUR = Current transmission gear.
- GEAR_OLD = Last commanded gear.
- GR_CM = Commanded gear for shift solenoids.
- GR_DS = Desired transmission gear.
- NEBART = Filtered engine speed, RPM.
- PDL = Current PRNDL position.
- TM_LK_DLY = Timer for converter clutch unconditional unlock.
- TM_UN_CT = Timer for closed throttle converter clutch relock.
- TP_RATE = Throttle position rate.
- TP_REL = Relative Throttle Position.
- VSBART_RT = Filtered vehicle speed adjusted for RT_NOVS for transmission, MPH.

Bit Flags:

- BIFLG = Brake applied flag; 0 -> brake not applied, 1 -> brake applied.
- FLG_FRST_CM = First time a shift is commanded flag; 0 -> no shift commanded this background pass, 1 -> shift commanded this background pass.
- FLG_LK_CM = Converter clutch lock-up commanded flag; 0 -> deenergize solenoid, unlock converter clutch, 1 -> energize solenoid, lock

converter clutch, I -> energize solenoid, lock
converter
clutch.

- FLG_UN_ALT = High altitude unconditional unlock flag; 0 -> not at high altitude, 1 -> high altitude.
- FLG_UN_BRK = Brake applied unconditional unlock flag; 0 -> brake not applied, 1 -> brake applied.

CONVERTER CLUTCH CONTROL, UNCONDITIONAL UNLOCK LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- FLG_UN_CT = Closed throttle unconditional unlock flag; 0 -> not closed
 - throttle, 1 -> closed throttle.
- FLG_UN_MDN = Manual downshift sequence unconditional unlock flag; 0 -> no manual downshift unlock, 1 -> manual downshift unlock.
- FLG_UN_NE = Engine speed unconditional unlock flag; 0 -> no low engine
 - speed unlock, 1 -> low engine speed unlock.
- FLG_UN_PRN = PRNDL position unconditional unlock flag; 0 -> no PRNDL position unconditional unlock, 1 -> PRNDL in park, reverse, neutral, or manual one.
- FLG_UN_TEMP = Cold temperature unconditional unlock flag; 0 -> no cold unlock, 1 -> cold unlock.
- FLG_UN_TRA = Throttle rate accel unconditional unlock flag; 0 -> not high positive throttle rate, 1 -> high positive throttle rate.
- FLG_UN_TRD = Throttle rate decel unconditional unlock flag; 0 -> not high negative throttle rate, 1 -> high negative throttle rate.
- FLG_UN_ULSF = Unlocked shift unconditional unlock flag; 0 -> locked
 up
 prior to start of shift, 1 -> unlocked prior to start of shift.
- OFMFLG = ETV overcurrent monitor failure flag; 0 -> ETV O.K., 1 -> ETV failure mode.
- TFMFLG = TP FMEM flag = 0 -> no TP failure; 1 -> TP failure, operating in FMEM mode.

Calibration Constants:

- BPUNMH = Hysteresis for BPUNMN.
- BPUNMN = Minimum BP to unlock converter clutch.
- BRKDLY = Brake relock delay.
- CTDLY = Closed throttle relock delay.
- D21DLY = Unlocked 2 -> 1 shift relock delay.
- D32DLY = Unlocked 3 -> 2 shift relock delay.
- D43DLY = Unlocked 4 -> 3 shift relock delay.
- LUDLY = High altitude/cold engine relock delay.
- NELUMN = Minimum NEBART to lock-up converter clutch.
- PRNDLY = PRNDL relock delay.
- SW_MLK = Switch for manual converter clutch control; 0 -> automatic converter clutch control, 1 -> unconditional converter clutch lock-

up,
2 -> unconditional converter clutch unlock.

CONVERTER CLUTCH CONTROL, UNCONDITIONAL UNLOCK LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- TMCTDY = Minimum time before relock at closed throttle.
- TPUNBRK = Maximum relative TP for brake applied unlock.
- TPUNCH = Hysteresis for TPUNCT.
- TPUNCT = Maximum relative TP for closed throttle unlock.
- TPUNTR = Relative TP breakpoint for high and low unlock throttle rate.
- TRADLY = High throttle rate, accel, relock delay.
- TRDDLY = High throttle rate, decel, relock delay.
- TRUHAC = Throttle rate unlock, high TP, accel.
- TRULAC = Throttle rate unlock, low TP, accel.
- TRUHDC = Throttle rate unlock, high TP, decel.
- TRULDC = Throttle rate unlock, low TP, decel.
- U12DLY = Unlocked 1 -> 2 shift relock delay.
- U23DLY = Unlocked 2 -> 3 shift relock delay.
- U34DLY = Unlocked 3 -> 4 shift relock delay.
- VSCTDY = Minimum vehicle speed for closed throttle relock.

CONVERTER CLUTCH CONTROL, UNCONDITIONAL UNLOCK LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- TM_LK_DLY = See above.
- TM_UN_CT = See above.

Bit Flags:

- FLG_UN_ALT = See above.
- FLG_UN_BRK = See above.
- FLG_UN_CT = See above.
- FLG_UN_MDN = See above.
- FLG_UN_NE = See above.
- FLG_UN_PRN = See above.
- FLG_UN_TEMP = See above.
- FLG_UN_TRA = See above.
- FLG_UN_TRD = See above.
- FLG_UN_ULSF = See above.

CONVERTER CLUTCH CONTROL, UNCONDITIONAL UNLOCK LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: CCC_UNCOND_UNLCK_COM1

DD_UNC_UNL = TP_REL (Performed during engineering units conversion)

DD_UNC_UNL < TPUNCT ------|S Q--| FLG_UN_CT = 1 (Closed throttle unlock)

TP_RATE >= TRUHAC ------ | AND - |
DD_UNC_UNL >= TPUNTR ----- | OR -- | FLG_UN_TRA = 1
TP_RATE >= TRULAC ------ | (High tip-in rate)
DD_UNC_UNL < TPUNTR ----- | FLG_UN_TRA = 0

TP_RATE <= TRUHDC ------ | AND - |
DD_UNC_UNL >= TPUNTR ----- | OR -- | FLG_UN_TRD = 1
TP_RATE <= TRULDC ------ | (High tip-out rate)
DD_UNC_UNL < TPUNTR ----- | FLG_UN_TRD = 0

BIFLG = 1 ------ | FLG_UN_BRK = 1

DD_UNC_UNL <= TPUNBRK ----- | AND - (Brake applied)

--- ELSE --
FLG_UN_BRK = 0

CONVERTER CLUTCH CONTROL, UNCONDITIONAL UNLOCK LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CS_SFT_MULT <> 1.0	FLG_UN_TEMP = 1 (Cold engine)
	ELSE
	FLG_UN_TEMP = 0
PDL = 2 OR 1 AND - GR_DS <> GR_CM	FLG_UN_MDN = 1 (Manual downshift sequence not completed)
	not completed)
	ELSE
	FLG_UN_MDN = 0
BP <= BPUNMN S Q BP > BPUNMN + BPUNMH C	FLG_UN_ALT = 1 (High altitude) ELSE
BP > BPUNMIN + BPUNMIH C	ELSE
	FLG_UN_ALT = 0
FLG_FRST_CM = 1 (Shift commanded)	
FLG_LK_CM = 0 AND - (Converter already unlocked)	(Minimum unlock time after start of unlocked shift)
	ELSE
	FLG_UN_ULSF = 0
NEBART < NELUMN	FLG_UN_NE = 1 (Low engine speed)
	ELSE
	FLG_UN_NE = 0
FLG_UN_CT = 1	Allow TM_UN_CT to count up
(Closed throttle)	ELSE
	TM_UN_CT = 0

CONVERTER CLUTCH CONTROL, UNCONDITIONAL UNLOCK LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

<pre>FLG_UN_CT = 1 (Closed throttle)</pre>	 AND	-	TM_	LK_	DLY	=	CTDLY
TM_LK_DLY < CTDLY							
FLG_UN_TRA = 1(High tip-in rate)	 AND	-	TM_	LK_	DLY	=	TRADLY
TM_LK_DLY < TRADLY							
<pre>FLG_UN_TRD = 1 (High tip-out rate)</pre>	 AND	-	TM_	LK_	DLY	=	TRDDLY
TM_LK_DLY < TRDDLY							
FLG_UN_BRK = 1(Brake applied)	l	-	TM_	LK_	DLY	=	BRKDLY
TM_LK_DLY < BRKDLY							
FLG_UN_PRN = 1(Park, rev, neut)	 AND	-	TM_	LK_	DLY	=	PRNDLY
TM_LK_DLY < PRNDLY							
OFMFLG = 1 (ETV sol. shorted)							
FLG_UN_NE = 1 (Low engine speed)							
<pre>FLG_UN_TEMP = 1 (Cold temperature)</pre>		D -	TM_LK_I		DI V		I JINI V
<pre>FLG_UN_MDN = 1 (Manual downshift)</pre>				· v		_	
FLG_UN_ALT = 1 (High altitude)	עזאט			"ז הות	=	т∩∩г	
TFMFLG = 1 (TP failure)							
TM_LK_DLY < LUDLY							

CONVERTER CLUTCH CONTROL, UNCONDITIONAL UNLOCK LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FLG_UN_ULSF = 1		
GEAR_CUR = 2	AND -	TM_LK_DLY = U12DLY
GEAR_OLD = 1		ELSE
FLG_UN_ULSF = 1		
GEAR_CUR = 1	AND -	TM_LK_DLY = D21DLY
GEAR_OLD > 1		ELSE
FLG_UN_ULSF = 1		
GEAR_CUR = 3	AND -	TM_LK_DLY = U23DLY
GEAR_OLD < 3		ELSE
FLG_UN_ULSF = 1		
GEAR_CUR = 2	AND -	TM_LK_DLY = D32DLY
GEAR_OLD > 2		ELSE
FLG_UN_ULSF = 1		
GEAR_CUR = 4	AND -	TM_LK_DLY = U34DLY
GEAR_OLD < 4		ELSE
FLG_UN_ULSF = 1		
GEAR_CUR = 3	AND -	TM_LK_DLY = D43DLY
GEAR_OLD = 4		

CONVERTER CLUTCH CONTROL, UNCONDITIONAL UNLOCK LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

<pre>SW_MLK = 2 (Unconditional unlock)</pre>		 						
FLG_UN_CT = 1	:							
<pre>TM_UN_CT <= TMCTDY (Closed throttle, short time)</pre>	AND -							
<pre>TM_UN_CT > TMCTDY (Closed throttle long enough)</pre>	 AND	ļ	ļ	ļ	ļ	 		
VSBART_RT < VSCTDY (Low speed)								
FLG_UN_TRA = 1 (High tip-in)								
<pre>FLG_UN_TRD = 1 (High tip-out) unlock</pre>		OR	S Q	<pre>FLG_UNC_UNLK = 1 (Unconditionally</pre>				
FLG_UN_BRK = 1		 	 	converter clutch)				
(Brake applied)				ELSE				
<pre>FLG_UN_PRN = 1 (Park, rev, neut)</pre>		 		<pre>FLG_UNC_UNLK = 0 (Allow lock-up if scheduled)</pre>				
<pre>FLG_UN_TEMP = 1 (Cold temperature)</pre>			 	scheduled)				
<pre>FLG_UN_MDN = 1 (Manual downshift)</pre>								
<pre>FLG_UN_ALT = 1 (High altitude)</pre>								
<pre>FLG_UN_ULSF = 1 (Unlocked shift)</pre>								
TFMFLG = 1 (TP failure)								
FLG_UN_NE = 1 (Low engine speed)								
OFMFLG = 1 (ETV solenoid shorted)			 					
TM_LK_DLY = 0			C					

CONVERTER CLUTCH CONTROL, SHIFT UNLOCK LOGIC - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

SHIFT UNLOCK LOGIC

DEFINITIONS

INPUTS

Registers:

- GR CM = Commanded gear for shift solenoids.
- GEAR_CUR = Current transmission gear.
- GR_DS = Desired transmission gear.
- GEAR_OLD = Last commanded gear.

Bit Flags:

- FLG_DN_LK = Downshift relock control flag.
- FLG_DN_UNLK = Downshift unlock control flag.
- FLG_FRST_CM = First time a shift is commanded flag; 0 -> no shift

commanded this background pass, 1 -> shift commanded this
background
pass.

- FLG_FRST_DS = First time a shift is desired flag; 0 -> no shift.
- FLG_UP_LK = Upshift relock control flag.
- FLG_UP_UNLK = Upshift unlock control flag.

OUTPUTS

Registers:

- TM_SFT_CCO = Time for converter clutch to unlock prior to commanded shift.

CONVERTER CLUTCH CONTROL, SHIFT UNLOCK LOGIC - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: CCC_SHFT_UNLCK_COM1

<pre>FLG_FRST_DS = 1 (Shift desired this pass)</pre>	<u> </u>	
GR_DS < GR_CM (Downshift) LOGIC	AND	DO "INITIALIZE DOWNSHIFT CONVERTER CLUTCH" LOGIC DO "DOWNSHIFT CONVERTER CLUTCH"
<pre>FLG_FRST_CM = 1 (Shift commanded this pass)</pre>	 AND -	ELSE DO "INITIALIZE UPSHIFT CONVERTER
GEAR_CUR > GEAR_OLD (Upshift)		CLUTCH" LOGIC DO "UPSHIFT CONVERTER CLUTCH" LOGIC
FLG_DN_UNLK = 1 (Downshift unlock control)		ELSE
	OR LOGIC	DO "DOWNSHIFT CONVERTER CLUTCH"
FLG_DN_LK = 1 (Downshift relock control)		ELSE
FLG_UP_UNLK = 1 (Upshift unlock control)		
FLG UP LK = 1		DO "UPSHIFT CONVERTER CLUTCH" LOGIC
(Upshift relock control)	' į	ELSE
	j	TM SFT CCO = 0

CONVERTER CLUTCH CONTROL, INITIALIZE DOWNSHIFT - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

INITIALIZE DOWNSHIFT

DEFINITIONS

OUTPUTS

Registers:

 TM_SFT_CCO = Time for converter clutch to unlock prior to commanded shift.

Bit Flags:

- FLG_DN_LK = Downshift relock control flag.
- FLG_DN_UNLK = Downshift unlock control flag.
- FLG_HS_LK = High speed upshift relock control flag.
- FLG_HS_UNLK = High speed upshift unlock control flag.
- FLG_SFT_UNLK = Shift control unlock flag; 0 -> no shift control unlock, 1
 - -> shift control unlock.
- FLG_UP_LK = Upshift relock control flag.
- FLG_UP_UNLK = Upshift unlock control flag.

PROCESS

STRATEGY MODULE: CCC_INI_DWN_COM1

CONVERTER CLUTCH CONTROL, DOWNSHIFT CONVERTER CLUTCH - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DOWNSHIFT CONVERTER CLUTCH

DEFINITIONS

INPUTS

Registers:

- DNUN_TM = FN624(TP_REL) = Time to delay downshift for converter to unlock.
- TM_SFT_CCO = Time for converter clutch to unlock prior to commanded shift.

Bit Flags:

- FLG_DN_LK = Downshift relock control flag.
- FLG_DN_UNLK = Downshift unlock control flag.

Calibration Constants:

- TMDNLK = Time for converter clutch relock after commanded downshift, sec.

OUTPUTS

Registers:

- TM_SFT_CCO = See above.

Bit Flags:

- FLG_DN_LK = See above.
- FLG_DN_UNLK = See above.
- FLG_SF_AUTO = Automatic upshift/downshift flag; 0 -> manual.
- FLG_SFT_UNLK = Shift control unlock flag; 0 -> no shift control
 unlock, 1
 - -> shift control unlock.

CONVERTER CLUTCH CONTROL, DOWNSHIFT CONVERTER CLUTCH - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: CCC_DWN_CNVR_CLCH_COM1

```
FLG_DN_UNLK = 1 -----
 (Downshift unlock control)
                            AND - | FLG_DN_UNLK = 0
TM SFT CCO >= DNUN TM -----
                                   (Clear downshift unlock control
flag)
 (Converter clutch released)
                                   FLG_DN_LK = 1
                                    (Set downshift relock control flag)
                                   TM\_SFT\_CCO = 0
                                    (Reset converter clutch relock
                                 timer)
                                   A downshift will be commanded at
                                    this time
                                   --- ELSE ---
FLG_DN_LK = 1 -----
 (Downshift relock control)
                                   FLG_DN_LK = 0
                            AND -
TM_SFT_CCO >= TMDNLK -----
                                   (Clear downshift relock control
 (Shift is complete)
                                   FLG\_SF\_AUTO = 0
                                    (Automatic downshift completed)
                                   FLG\_SFT\_UNLK = 0
                                   (Permit relock if desired)
```

CONVERTER CLUTCH CONTROL, INITIALIZE UPSHIFT - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

INITIALIZE UPSHIFT

DEFINITIONS

INPUTS

Registers:

- GEAR CUR = Current transmission gear.
- NOBART = Filtered output shaft speed, RPM.
- RT_GR_CUR = Current transmission gear ratio.
- RT_ULK_PWR = Power on upshift unlock speed ratio.
- SPD_RT_STRT = Speed Ratio at Start of shift.
- TP_REL = Relative Throttle Position.

Bit Flags:

- FLG_LK_CM = Conv. clutch lockup commanded flag.
- FLG_UN_UPSFT = Unlocked upshift flag.
- FLG_UP_NE = WOT engine RPM upshift flag.

Calibration Constants:

- FN2LK = Speed ratio delta to relock on upshift to 2nd gear.
- FN2ULK = Speed ratio delta to unlock on usphift to 2nd gear.
- FN3LK = Speed ratio delta to relock on upshift to 3rd gear.
- FN3ULK = Speed ratio delta to unlock on usphift to 3rd gear.
- FN4LK = Speed ratio delta to relock on upshift to 4th gear.
- FN4ULK = Speed ratio delta to unlock on usphift to 4th gear.
- PUL_PER_REV = Pulses per revolution. Number of PIPs per engine revolution
 - for E40D gas; 1/2 the number of fuel pump teeth for E40D_DIESEL.
- SRLK2 = Minimum speed ratio for scheduled 2nd gear lockup.
- SRLK3 = Minimum speed ratio for scheduled 3rd gear lockup.
- SRLK4 = Minimum speed ratio for scheduled 4th gear lockup.
- TMLFN2 = Power off upshift to 2nd relock time, sec.
- TMLFN3 = Power off upshift to 3rd relock time, sec.
- TMLFN4 = Power off upshift to 4th relock time, sec.

CONVERTER CLUTCH CONTROL, INITIALIZE UPSHIFT - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

- TMLFW2 = Power off WOT upshift to 2nd relock time, sec.
- TMLFW3 = Power off WOT upshift to 3rd relock time, sec.
- TMLFW4 = Power off WOT upshift to 4th relock time, sec.
- TMLON2 = Power on upshift to 2nd relock time, sec.
- TMLON3 = Power on upshift to 3rd relock time, sec.
- TMLON4 = Power on upshift to 4th relock time, sec.
- TMLOW2 = Power on WOT upshift to 2nd relock time, sec.
- TMLOW3 = Power on WOT upshift to 3rd relock time, sec.
- TMLOW4 = Power on WOT upshift to 4th relock time, sec.
- TMUFN2 = Power off upshift to 2nd unlock time, sec.
- TMUFN3 = Power off upshift to 3rd unlock time, sec.
- TMUFN4 = Power off upshift to 4th unlock time, sec.
- TMUFW3 = Power off WOT upshift to 3rd unlock time, sec.
- TMUFW4 = Power off WOT upshift to 4th unlock time, sec.
- TMUOW3 = Power on WOT upshift to 3rd unlock time, sec.
- TMUOW4 = Power on WOT upshift to 4th unlock time, sec.

CONVERTER CLUTCH CONTROL, INITIALIZE UPSHIFT - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- RT GR CUR = See above.
- RT_LK_PWR = Power on upshift relock speed ratio.
- RT_ULK_PWR = See above.
- SR_PP_LIM = Power on upshift speed ratio, PIP-to-PIP limit.
- SRLK = Shift ratio to allow lockup.
- TE_LK_PWR = Power on upshift relock time.
- TE_LK_UP = Power off upshift relock time.
- TE_ULK_PWR = Power on upshift unlock time.
- TE_ULK_UP = Power off upshift unlock time.
- TM_SFT_CCO = Time for converter clutch to unlock prior to commanded shift.

Bit Flags:

- FLG_DN_LK = Downshift relock control flag.
- FLG_DN_UNLK = Downshift unlock control flag.
- FLG_HS_LK = High speed upshift relock control flag.
- FLG_HS_UNLK = High speed upshift unlock control flag.
- FLG_TIP_RATE = Upshift tip-in rate flag; 0 -> no tip-in occured during
 - upshift, 1 -> tip-in occurred during.
- FLG_UP_LK = Upshift relock control flag.
- FLG_UP_UNLK = Upshift unlock control flag.

CONVERTER CLUTCH CONTROL, INITIALIZE UPSHIFT - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

```
PROCESS
                      STRATEGY MODULE: CCC_INI_UP_COM1
                       FLG DN UNLK = 0
always -----|
                       FLG_DN_LK = 0
                       FLG_UP_LK = 0
                        (clear all other shift control flags)
                       FLG UP UNLK = 1
                        (set upshift unlock control flag)
                       TM\_SFT\_CCO = 0
                        (reset unlock default timer)
                       FLG HS LK = 0
                       (disable high speed relock check)
                       FLG_TIP_RATE = 0
                        (reset tip-in rate flag)
FLG_UP_NE = 0 - |
                AND -
                       TE ULK UP = TMUFN4
                       TE_LK_UP = TMLFN4
GEAR\_CUR = 4 -- |
                        (power off unlock/relock timer)
                       TE ULK PWR = TMUON4
                       TE_LK_PWR = TMLON4
                        (power on unlock/relock timers)
                       RT_ULK_PWR = SPD_RT_STRT + FN4ULK(TP_REL)
                       RT LK PWR = SPD RT STRT + FN4LK(TP REL)
                        (power on speed ratio checks)
                       SRLK = SRLK4
                       --- ELSE ---
FLG UP NE = 1 -
                AND -
                       TE\_ULK\_UP = TMUFW4
                       TE_LK_UP = TMLFW4
GEAR CUR = 4 --
                        (power off unlock/relock timers)
                       TE_ULK_PWR = TMUOW4
                       TE LK PWR = TMLOW4
                        (power on unlock/relock timers)
                       RT_ULK_PWR = SPD_RT_STRT + FN4ULK(TP_REL)
                       RT_LK_PWR = SPD_RT_STRT + FN4LK(TP_REL)
                        (power on speed ratio checks)
                       SRLK = SRLK4
                       --- ELSE ---
FLG\_UP\_NE = 0 -
                AND -
                       TE\_ULK\_UP = TMUFN3
                       TE_LK_UP = TMLFN3
GEAR_CUR = 3 --
                        (power off unlock/relock timers)
                       TE ULK PWR = TMUON3
                       TE_LK_PWR = TMLON3
                        (power on unlock/relock timers)
                       RT_ULK_PWR = SPD_RT_STRT + FN3ULK(TP_REL)
                       RT_LK_PWR = SPD_RT_STRT + FN3LK(TP_REL)
                        (power on speed ratio checks)
                       SRLK = SRLK3
                       --- ELSE ---
                          (continued on next page)
```

CONVERTER CLUTCH CONTROL, INITIALIZE UPSHIFT - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

(continued from previous page) FLG UP NE = 1 -AND - $TE_ULK_UP = TMUFW3$ TE LK UP = TMLFW3 GEAR CUR = 3 --1(power off unlock/relock timers) TE_ULK_PWR = TMUOW3 $TE_LK_PWR = TMLOW3$ (power on unlock/relock timers) RT_ULK_PWR = SPD_RT_STRT + FN3ULK(TP_REL) RT_LK_PWR = SPD_RT_STRT + FN3LK(TP_REL) (power on speed ratio checks) SRLK = SRLK3 --- ELSE ---FLG UP NE = 0 -AND - $TE_ULK_UP = TMUFN2$ TE_LK_UP = TMLFN2 GEAR CUR = 2 --(power off unlock/relock timers) TE_ULK_PWR = TMUON2 $TE_LK_PWR = TMLON2$ (power on unlock/relock timers) RT ULK PWR = SPD RT STRT + FN2ULK(TP REL) RT_LK_PWR = SPD_RT_STRT + FN2LK(TP_REL) (power on speed ratio checks) SRLK = SRLK2 --- ELSE --- $FLG_UP_NE = 1 - |$ AND -TE ULK UP = TMUFW2 TE_LK_UP = TMLFW2 GEAR CUR = 2 --1(power off unlock/relock timers) TE_ULK_PWR = TMUOW2 $TE_LK_PWR = TMLOW2$ (power on unlock/relock timers) RT_ULK_PWR = SPD_RT_STRT + FN2ULK(TP_REL) RT LK PWR = SPD RT STRT + FN2LK(TP REL) (power on speed ratio checks) SRLK = SRLK2 always -----| SR_PP_LIM = (RT_ULK_PWR * 60) / (NOBART * RT_GR_CUR * PUL_PER_REV) FLG_HS_UNLK = 1 (enable high speed unlock check) FLG LK CM = 0 ----- | FLG UN UPSFT = 1 (upshift commanded on an unlocked converter) --- ELSE ---FLG UN UPSFT = 0

CONVERTER CLUTCH CONTROL, UPSHIFT CONVERTER CLUTCH - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

UPSHIFT CONVERTER CLUTCH

DEFINITIONS

INPUTS

Registers:

- NOBART = Filtered output shaft speed.
- RT_GR_CUR = Current transmission gear ratio.
- RT_LK_PWR = Power on upshift relock speed ratio.
- RT ULK PWR = Power on upshift unlock speed ratio.
- SPD_RATIO = Speed ratio across torque converter (Output/Input).
- SRLK = Shift ratio to allow lockup.
- TE_LK_PWR = Power on upshift relock time.
- TE_LK_UP = Power off upshift relock time.
- TE_ULK_PWR = Power on upshift unlock time.
- TE_ULK_UP = Power off upshift unlock time.
- TM_SFT_CCO = Time for converter clutch to unlock prior to commanded shift.
- TP_RATE = Delta TP Counts Per BG Pass = (TP TPBART).
- TSLSFT = Time since last shift timer.

Bit Flags:

- FLG_HS_LK = High speed upshift relock control flag.
- FLG_HS_UNLK = High speed upshift unlock control flag.
- FLG_PWR = Power mode flag; 0 -> power off, 1 -> power on.
- FLG_UP_LK = Upshift relock control flag.
- FLG_TIP_RATE = Unlocked upshift tip-in rate flag; 0 -> no tip-in occurred

during upshift, 1 -> tip-in occurred during.

- FLG_UP_UNLK = Upshift unlock control flag.
- FLG UN UPSFT = Unlocked upshift flag.

Calibration Constants:

- PUL_PER_REV = Pulses per revolution. Number of PIPs per engine revolution

for E4OD gas; 1/2 the number of fuel pump teeth for E4OD DIESEL.

CONVERTER CLUTCH CONTROL, UPSHIFT CONVERTER CLUTCH - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- TM_ACT_SFT = Re-lock delay time after a tip-in.
- UP_TIP_RATE = Tip-in rate above which FLG_TIP_RATE is set.

OUTPUTS

Registers:

- SR_PP_LIM = Power on upshift speed ratio, PIP-to-PIP limit.
- TM_SFT_CCO = See above.

Bit Flags:

- FLG_HS_LK = See above.
- FLG_HS_UNLK = See above.
- FLG_SFT_UNLK = Shift control unlock flag; 0 -> no shift control
 unlock,
 - 1 -> shift control unlock.
- FLG_SF_AUTO = Automatic shift flag.
- FLG TIP RATE = See above.
- FLG_UP_LK = See above.
- FLG UP UNLK = See above.

PROCESS

STRATEGY MODULE: CCC_UP_CNVR_CLCH_COM2

```
FLG PWR = 0 ----- | SR PP LIM = 0
(power off)
                                       (zero will never meet
speed
                                       ratio criteria, uses
                                    default
                                       timer)
                                      --- ELSE ---
FLG PWR = 1 -----
(power on)
                                AND - SR_PP_LIM = RT_ULK_PWR *
                               60 /
FLG UP UNLK = 1 -----|
                                       NOBART * RT_GR_CUR *
(upshift unlock control)
                                       PUL PER REV
                                       (calculate upshift unlock
                                       speed ratio comparator)
                                      --- ELSE ---
FLG PWR = 1 -----
(power on)
                                AND - SR_PP_LIM = RT_LK_PWR * 60
                                       NOBART * RT GR CUR *
FLG UP LK = 1 -----
(upshift relock control)
                                        PUL PER REV
```

CONVERTER CLUTCH CONTROL, UPSHIFT CONVERTER CLUTCH - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

```
FLG_UN_UPSFT = 1 ------
                                   AND - | FLG_TIP_RATE = 1
TP RATE > UP TIP RATE -----
FLG_UP_UNLK = 1 -----
(upshift unlock control)
FLG HS UNLK = 0 -----
                                  AND - | FLG_UP_UNLK = 0
                                         (done with upshift unlock
(high speed routine unlock)
                                           control)
FLG_PWR = 1 -----|
                                        FLG_UP_LK = 1
(power on)
                                         (set upshift relock
control
                       |AND - | OR - |
                                          flag)
TM_SFT_CCO >= TE_ULK_PWR --
                                        TM SFT CCO = 0
(default timer expired)
                                         (reset default relock
timer)
                                         FLG\_SFT\_UNLK = 1
FLG PWR = 0 -----|
                                          (unlock converter clutch)
(power off)
                                         SR_PP_LIM = RT_LK_PWR * 60
                        AND -
                       NOBART*RT_GR_CUR*PUL_PER_REV
TM_SFT_CCO >= TE_ULK_UP ---|
                                         FLG_HS_LK = 1
(default timer expired)
                                          (enable high speed relock
                                           check)
                                         FLG_HS_UNLK = 0
                                          (disable high speed
                                       unlock
                                           check)
                                         --- ELSE ---
FLG_TIP_RATE = 0 ------
FLG UP LK = 1 -----
(upshift relock control)
                                  |AND - | FLG UP LK = 0
FLG_HS_LK = 0 -----|
                                         (clear upshift relock
flag)
(high speed routine relock)
                                        | FLG_HS_LK = 0
                                        (disable high speed
                            relock
FLG_PWR = 1 -----|
                                          check)
(power on)
                                        | FLG_SFT_UNLK = 0
                       |AND - | OR -- |
                                        | (permit relock if
                       permitted)
TM_SFT_CCO >= TE_LK_PWR --
                                        | FLG_SF_AUTO = 0
(default timer expired)
                                         (done with automatic
shift)
FLG_PWR = 0 -----|
(power off)
                        AND -
TM_SFT_CCO >= TE_LK_UP ---
                                         --- ELSE ---
FLG TIP RATE = 1 -----
                                  |AND - | FLG_HS_LK = 0
TSLSFT < TM ACT SFT -----
                                          (disable high speed
relock
                                          check)
                                         FLG\_SFT\_UNLK = 1
                                          (don't allow scheduled
```

continued on next page)

CONVERTER CLUTCH CONTROL, UPSHIFT CONVERTER CLUTCH - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

FLG_UN_UPSFT = 1 (unlocked upshift)		
FLG_TIP_RATE = 1 A (tip-in detected) scheduled)	AND -	<pre>FLG_SFT_UNLK = 0 (allow a lock if</pre>
SPD_RATIO >= SRLK (speed ratio is high enough)		<pre>FLG_TIP_RATE = 0 (reset tip-in flag)</pre>
<pre>FLG_UN_UPSFT = 1 (unlocked upshift) </pre>	\NID =	ELSE FLG SFT UNLK = 1
FLG_TIP_RATE = 1 lock) (tip-in detected)	ן מאת	(don't allow scheduled

CONVERTER CLUTCH SOLENOID CONTROL, SCHEDULED LOCK/UNLOCK LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SCHEDULED LOCK/UNLOCK LOGIC

DEFINITIONS

INPUTS

Registers:

- BP = Barometric pressure.

and converter lockup as a function of barometric pressure.

- GEAR CUR = Current transmission gear.
- SPD_RATIO = Speed ratio across the torque converter.
- TM_CRV_UNLK = Timer for converter clutch scheduled relocks.
- TP = Throttle position.
- TP_REL_H = Relative TP (TP RATCH) high byte only.
- TPBARTC = UROLAV(TP,TCTPTC)
- VSBART_RT = Filtered vehicle speed adjusted for RT_NOVS for transmission,

Bit Flags:

- FLG_CRV_DS = Scheduled lockup desired from curve flag.
- FLG_CRV_LST = Last pass value of FLG_CRV_DS.
- FLG_FRST_CM = First time a shift is commanded flag; 0 -> no shift

commanded this background pass, 1 -> shift commanded this
background
pass.

- FLG_SCHD_DLY = Scheduled unlock flag.
- FLG_SFT_IN = Shift in progress flag.
- FLG_UNC_UNLK = Converter clutch unconditional unlock flag; 0
 -> no
 unconditional unlock, 1 -> unconditional unlock.
- FLG_UN_BRK = Brake applied unconditional unlock flag; 0 -> brake
 not
 applied, 1 -> brake applied.
- FLG_UN_CT = Closed throttle unconditional unlock flag; 0 -> not closed throttle, 1 -> closed throttle.

Calibration Constants:

- ALTDLY = Time to delay scheduled lockups at intermediate altitudes, \sec .

- BPUNMN = Minimum BP to unlock converter clutch.

CONVERTER CLUTCH SOLENOID CONTROL, SCHEDULED LOCK/UNLOCK LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- BPUNMX = Maximum BP altitude unlock delay, " Hg.
- CRVDLY = Time to delay scheduled lockups after STEADYSRLK1 throttle achieved, sec.
- FN2LA(TP_REL_H) = Delta vehicle speed for 2nd gear lockup at altitude:

Input TP_REL_H, counts; Output vehicle speed, MPH.

- FN2LS(TP_REL_H) = Vehicle speed for 2nd gear lockup at sea level: Input

TP_REL_H, counts; Output vehicle speed, MPH.

- FN2UA(TP_REL_H) = Delta Vehicle speed for 2nd gear unlock at altitude:

Input TP_REL_H, counts; Output vehicle speed, MPH.

- FN2US(TP_REL_H) = Vehicle speed for 2nd gear unlock at sea level: Input

TP_REL_H, counts; Output vehicle speed, MPH.

- FN3LA(TP_REL_H) = Delta vehicle speed for 3rd gear lockup at altitude:

Input TP_REL_H, counts; Output vehicle speed, MPH.

- FN3LS(TP_REL_H) = Vehicle speed for 3rd gear lockup at sea level: Input

TP_REL_H, counts; Output vehicle speed, MPH.

- FN3UA(TP_REL_H) = Delta Vehicle speed for 3rd gear unlock at altitude:

Input TP_REL_H, counts; Output vehicle speed, MPH.

- FN3US(TP_REL_H) = Vehicle speed for 3rd gear unlock at sea level: Input

TP_REL_H, counts; Output vehicle speed, MPH.

- FN4LA(TP_REL_H) = Delta vehicle speed for 4th gear lockup at altitude:

Input TP_REL_H, counts; Output vehicle speed, MPH.

- FN4LS(TP_REL_H) = Vehicle speed for 4th gear lockup at sea level: Input

TP_REL_H, counts; Output vehicle speed, MPH.

- FN4UA(TP_REL_H) = Delta Vehicle speed for 4th gear unlock at altitude:

Input TP_REL_H, counts; Output vehicle speed, MPH.

- FN4US(TP_REL_H) = Vehicle speed for 4th gear unlock at sea level: Input

TP REL H, counts; Output vehicle speed, MPH.

- SRLK2 = Minimum speed ratio for scheduled 2nd gear lockup.
- SRLK3 = Minimum speed ratio for scheduled 3rd gear lockup.
- SRLK4 = Minimum speed ratio for scheduled 4th gear lockup.
- SW_RLK = Closed throttle/brake hysteresis switch; 0 -> unlock in

hysteresis zone, 1 -> remain locked in hysteresis zone.

- TPUNCT = Maximum relative TP for closed throttle unlock.

- TPUNCH = Hysteresis for TPUNCT.

CONVERTER CLUTCH SOLENOID CONTROL, SCHEDULED LOCK/UNLOCK LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- TM CRV UNLK = Timer for converter clutch scheduled relocks.

Bit Flags:

- FLG_CRV_DS = See above.
- FLG_CRV_LK = Scheduled curve lock-up flag; 0 -> no scheduled lockup, 1
 - -> scheduled lock-up.
- FLG_CRV_LST = See above.
- FLG_SCHD_DLY = See above.

PROCESS

STRATEGY MODULE: CCC_SCHLD_LCK_UNLCK_COM1

FLG_UNC_UNLK = 1 ------| FLG_CRV_DS = 0
 (Unconditional unlock)

CONVERTER CLUTCH SOLENOID CONTROL, SCHEDULED LOCK/UNLOCK LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

GEAR_CUR = 2	
SPD_RATIO >= SRLK2 (Speed ratio high enough)	
FLG_SFT_IN = 0 AND -	- FLG_CRV_DS = 1
FLG_SFT_IN = 1 (Shifting disregard speed ratio)	
VSBART_RT > FN2LS + [BP_INTR * FN2LA] -	 ELSE
GEAR_CUR = 3	 FT2F
SPD_RATIO >= SRLK3 (Speed ratio high enough) AND -	
FLG_SFT_IN = 0	- FLG_CRV_DS = 1
FLG_SFT_IN = 1	
VSBART_RT > FN3LS + [BP_INTR * FN3LA] -	ELSE
GEAR_CUR = 4	
SPD_RATIO >= SRLK4 AND -	
FLG_SFT_IN = 0 OR - AND -	- FLG_CRV_DS = 1
FLG_SFT_IN = 1	
VSBART_RT > FN4LS + [BP_INTR * FN4LA] -	 ELSE
GEAR_CUR = 1	 - FLG_CRV_DS = 0
	ELSE
	 - FLG_CRV_DS = 0
VSBART_RT < FN2US + [BP_INTR * FN2UA] -	 ELSE
GEAR_CUR = 3 AND -	 - FLG_CRV_DS = 0
VSBART_RT < FN3US + [BP_INTR * FN3UA] -	 ELSE
GEAR_CUR = 4 AND -	 - FLG CRV DS = 0
VSBART_RT < FN4US + [BP_INTR * FN4UA] -	ELSE
	No change to FLG_CRV_DS

CONVERTER CLUTCH SOLENOID CONTROL, SCHEDULED LOCK/UNLOCK LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

```
FLG_FRST_CM = 1 ------ | FLG_SCHD_DLY = 0
(Shift is commanded)
                                    (Shift about to occur,
do not
                                      check steady state
                                    criteria)
                                      --- ELSE ---
FLG_CRV_DS = 0 -----
FLG CRV LST = 1 ------ AND - FLG SCHD DLY = 1
                                      (Set flag to indicate
                                       scheduled unlock. Apply
FLG UNC UNLK = 0 -----
(Unlock transition due
                                       steady state throttle
 solely to schedule)
                                       criteria for relock)
FLG SCHD DLY = 1 -----|
FLG_CRV_DS = 1 ------ | AND - | TM_CRV_UNLK = CRVDLY
(Relock after scheduled unlock)
                                    (If throttle is not
steady
                                        state load delay timer)
|TP - TPBARTC| >= TPUNSC -----|
(Throttle not steady state)
FLG_CRV_LST = 0 -----|
FLG CRV DS = 1 --------AND - TM CRV UNLK = ALTDLY
(Scheduled lock desired)
                                    | (Delay scheduled relock
at
                                      altitude)
BPUNMN < BP < BPUNMX -----
(Intermediate altitude)
TM_CRV_UNLK = 0 ------ | FLG_CRV_LK = FLG_CRV_DS
                                    (Allow desired state to
                                    pass
                                       through)
                                     FLG\_SCHD\_DLY = 0
                                    | (Reset steady state
                                    relock
                                      flag)
```

CONVERTER CLUTCH CONTROL, WOT LOCK-UP LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

WOT LOCK-UP LOGIC

DEFINITIONS

INPUTS

Registers:

- GEAR OLD = Last commanded gear.
- NEBART = Filtered engine speed, RPM.
- PDL = Current PRNDL position.
- RLKCTR = WOT converter clutch relock counter.
- SPD_RATIO = Speed ratio across the torque converter.
- TP_REL = Relative Throttle Position.

Bit Flags:

- FLG_LK_CM = Converter clutch lock-up commanded flag; 0 -> deenergize solenoid, unlock converter clutch, 1 -> energize solenoid, lock converter
 - clutch.
- FLG_RLK_WOT = WOT relock first pass flag.

Calibration Constants:

- NELKWH = Hysteresis for NELKWOd, RPM.
- NELKWO = Minimum RPM for converter clutch WOT lockup, RPM.
- RTLKWO = Minimum speed ratio for 1st gear WOT converter clutch lockup.
- RTLKWH = Hysteresis for RTLKWO.
- TPLKWO = Minimum TP for converter clutch WOT lockup, counts.
- TPLKWH = TPLKWO hysteresis for converter clutch WOT lockup, counts.

OUTPUTS

Registers:

- RLKCTR = See above.

Bit Flags:

- FLG_RLK_WOT = See above.
- FLG_WOT_LK = WOT lock-up flag; 0 -> no WOT lock-up, 1 -> WOT lock-up.

CONVERTER CLUTCH CONTROL, WOT LOCK-UP LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: CCC_WOT_LCK_UP_COM1

TP_REL < TPLKWO - TPLKWH (low TP)	
TP_REL >= TPLKWO OR OR	RLKCTR = 1 FLG_RLK_WOT = 0 (not at WOT or at WOT
GEAR_CUR <> 1 AND (not 1st gear)	in higher gear. Set up for next time.)
PDL <> 2 (not manual 2)	ELSE
NEBART > NELKWO (above engine torque peak)	<pre>FLG_RLK_WOT = 1 (set first pass relock flag)</pre>
NEBART > NELKWO - NELKWH (in hystersis zone)	ELSE
FLG_LK_CM = 1 AND AND	FLG_RLK_WOT = 0 RLKCTR = RLKCTR + 1 (RPM is dropping with a
FLG_RLK_WOT = 1 (rpm was high)	locked converter. Increment counter to relock at a higher speed ratio next time and clear first pass flag)
	ELSE
	Do Not Change FLG_RLK_WOT or RLKCTR

CONVERTER CLUTCH CONTROL, WOT LOCK-UP LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CONVERTER CLUTCH SOLENOID CONTROL, HIGH SPEED UPSHIFT - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

HIGH SPEED UPSHIFT

DEFINITIONS

INPUTS

Registers:

- DT12S AVG = Filtered PIP period for transmission, ticks.
- NOBART = Filtered output shaft speed, RPM.
- RT_GR_CUR = Current transmission gear ratio.
- SR_PP_LIM = Power on upshift speed ratio, PIP-to-PIP limit.

Bit Flags:

- FLG_HS_LK = High speed upshift relock control flag.
- FLG_HS_UNLK = High speed upshift unlock control flag.
- FLG_LK_CM = Converter clutch lock-up commanded flag; 0 -> deenergize solenoid, unlock converter clutch, 1 -> energize solenoid, lock converter clutch.

Calibration Constants:

- PUL_PER_REV = Pulses per revolution. Number of PIPs per engine revolution for E4OD gas; 1/2 the number of fuel pump teeth for E4OD_DIESEL.

OUTPUTS

Registers:

- SR_PP_LIM = See above.

Bit Flags:

- FLG_HS_LK = See above.
- FLG_HS_UNLK = See above.
- FLG_LK_CM = See above.
- FLG_SFT_UNLK = Shift control unlock flag; 0 -> no shift control unlock, 1 $\,$
 - -> shift control unlock.

CONVERTER CLUTCH SOLENOID CONTROL, HIGH SPEED UPSHIFT - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: CONVERTER_CLUTCH_REPEAT_COM3

HIGH SPEED UPSHIFT SPEED RATIO CHECK (Executed during 1 msec repeater)

FLG HS UNLK = 1 -----(Look for unlock speed ratio) AND - | FLG_HS_UNLK = 0 DT12S_AVG > SR_PP_LIM -----| (Disable high speed unlock check) (Speed ratio high enough) $FLG_SFT_UNLK = 1$ (Request conv. clutch unlock) $FLG_LK_CM = 0$ (Unlock conv. clutch) --- ELSE ---FLG_HS_LK = 1 -----(Look for relock speed ratio) AND - FLG_HS_LK = 0 DT12S_AVG > SR_PP_LIM ------(Disable high speed relock check) (Speed ratio high enough) FLG_SFT_UNLK = 0 (End upshift unlock)

NOTE: SR_PP_LIM is computed each background pass.

CONVERTER CLUTCH OUTPUT CONTROL (Executed during 1 msec repeater)

FLG_LK_CM = 1 ------ Energize conv. clutch output to apply converter clutch --- ELSE --
FLG_LK_CM = 0 ------ De-energize conv. clutch output to release converter clutch

CONVERTER CLUTCH CONTROL, CONVERTER CLUTCH VALIDATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CONVERTER CLUTCH VALIDATION

OVERVIEW

The converter clutch validation logic verifies that the engine speed over vehicle speed computation is consistent. This in turn verifies that the converter clutch was applied.

The actual computed N/V divided by the base N/V should equal the N/V ratio stored in KAM. If the ratio remains consistent, it verifies that the converter clutch was applied during the actual N/V calculation.

If these do not equal, then either:

a) the converter clutch was not applied during the actual $\ensuremath{\text{N/V}}$ calculation

--- OR ---

b) the converter clutch was not applied when the original $\rm N/V$ KAM $\,$ calculation was made.

In either case, there was a fault with converter clutch, and an error code is flagged.

If the converter clutch was not applied when the N/V value was stored in KAM, yet the current calculation matches the incorrect KAM value, then no error is stored. It is, however, highly probable that the actual N/V computation will differ from the KAM value eventually during the vehicle operation (since the converter is not applied), and the error will be noted at that time.

DEFINITIONS

INPUTS

Registers:

- C628CNT = Warm up cycle counter for code 628.
- C628 KAM BIT = Code 628 KAM bit.
- NOV_ACT = Actual N/V calculation.
- RT_NOVS_KAM = N/V value stored in KAM.
- TP REL = Relative TP (TP RATCH)

CONVERTER CLUTCH CONTROL, CONVERTER CLUTCH VALIDATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Bit Flags:

- FLG_FRST_NOV = Flag indicating a new value has been stored in RT_NOVS_KAM during current power-up.
- FLG_NEW_NOV = Flag, if set to 1, indicates a new NOV_ACT has been calculated.
- $FLG_4X4L = 4x41$ flag, 0 -> not in 4x4 low mode, 1 -> in 4x4 low mode Calibration Constants:
- CCE_TPMN = Minimum TP required to do converter clutch validation logic.
- CC_FM_LVL = number of warm up cycles converter clutch failure mode
 action
 will be executed after a fault is detected.
- ${\tt NOV_ERR_BAND}$ = Error band allowed on the N/V calculation.
- NVBASE = Base N/V.

OUTPUTS

Bit Flags:

- CC_FM_FLG = Converter clutch failure mode flag; 0 -> normal operation, 1 $\,$
 - -> Converter clutch failure mode

CONVERTER CLUTCH CONTROL, CONVERTER CLUTCH VALIDATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: CCC_VALID_COM2

CONVERTER CLUTCH CONTROL, COAST CLUTCH CONTROL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

COAST CLUTCH CONTROL

OVERVIEW

The coast clutch is a clutch used to provide engine braking in 3rd gear when the PRNDL is in the drive position. Without the coast clutch the transmission would free-wheel in third gear while the vehicle was coasting.

- * In overdrive, the coast clutch is hydraulically off. Engine braking is provided by the overdrive clutch in fourth gear.
- * In drive, the software turns on the coast clutch to provide engine
 braking. A short delay is provided to allow the overdrive clutch to release fully.
- * $\,$ In manual 2 or 1 the coast clutch is applied hydraulically. Intermediate

band application is delayed until the coast clutch actually engages as inferred by the shift in progress timer. This is to prevent the intermediate band from absorbing excessive driveline deceleration

energy which could be better handled by the larger coast clutch.

* If the vehicle speed sensor has failed, the coast clutch is applied in all gears below fourth to provide engine braking and prevent rapid

free-wheeling downshifts to first gear when the throttle is closed.

DEFINITIONS

INPUTS

Registers:

- GR CM = Commanded gear for shift solenoids.
- GR_OLD = Last commanded gear.
- PDL = Current PRNDL position.
- PDL_LST = PRNDL position last background pass.
- TM_CS_DLY = Timer to delay coast clutch application.
- TM_CS_ENG = Timer for coast clutch to engage.

Bit Flags:

- FLG_CS_CM = Coast clutch commanded output state; 1 -> command coast

clutch on, 0 -> command coast clutch off.

- FLG_CS_FRST = Coast clutch engagement first pass flag; 1 -> first time

coast clutch engages, 0 \rightarrow not first time for coast clutch engagement.

- FLG_DEL_MDN = Flag which indicates a manual downshift is being delayed; 0 $\,$
 - -> no manual downshift is being delayed, 1 -> a manual downshift is being delayed.

CONVERTER CLUTCH CONTROL, COAST CLUTCH CONTROL - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- FLG_FRST_CM = First time a shift is commanded flag; 1 -> shift commanded
 - this background pass, 0 -> no shift commanded this background pass.
- FLG_PWR = Power mode flag; 1 -> power on mode, 0 -> power off mode.
- FLG_SFT_MDN = Power off manual downshift flag; 1 -> power off
 manual
 - downshift in progress, $0 \rightarrow power off manual downshift not in progress.$

Calibration Constants:

- TMCSE2 = Time for coast clutch to engage, PDL = 2 or 1.
- TMCSE3 = Time for coast clutch to engage, PDL = 3.
- TMCSOD = Time to delay coast clutch when PDL = 3.

OUTPUTS

Registers:

- TM_CS_DLY = See above.
- TM_CS_ENG = See above.

Bit Flags:

- FLG_CS_CM = See above.

CONVERTER CLUTCH CONTROL, COAST CLUTCH CONTROL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: CCC_CST_CLTCH_CTL_COM1

TM_CS_DLY TIMER CONTROL

<pre>FLG_FRST_CM = 1((shift commanded)</pre>		
	AND -	TM_CS_DLY = TMCSOD
GR_OLD = 4		(delay coast clutch engagement
		in third gear to prevent two
GR_CM = 3		elements being on at once)

TM_CS_ENG TIMER CONTROL

PDL = 3 (PRNDL = 3)			
FLG_CS_CM = 1 A (coast clutch commanded on)	AND -	<pre>TM_CS_ENG = TMCSE3 (coast clutch will be engaged timer expires)</pre>	when
FLG_CS_FRST = 0 (1st pass thru)	į	<pre>FLG_CS_FRST = 1 (set first pass flag)</pre>	
		ELSE	
PDL = 1 OR			
PDL = 2 (M1 or M2)			
PDL_LST = 4 A (4-2 or 4-1)	 	<pre>TM_CS_ENG = TMCSE2 (coast clutch will be engaged timer expires) FIG_CS_ENST_= 1</pre>	when
FLG_CS_FRST = 0 (first pass thru)		<pre>FLG_CS_FRST = 1 (set first pass flag)</pre>	

CONVERTER CLUTCH CONTROL, COAST CLUTCH CONTROL - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

COAST CLUTCH OUTPUT CONTROL

INFER COAST CLUTCH ENGAGEMENT

```
FLG CS CM = 0 ------ | FLG CS ENG = 0
                                   (coast clutch is hydraulically
                                off)
                                  FLG_CS_FRST = 0
                                  --- ELSE ---
TM_CS_ENG = 0 -----
 (timer expired)
                      AND -
TM CS DLY = 0 -----
FLG_PWR = 1 -----|
                           |OR --| FLG_CS_ENG = 1
 (power on)
                                   (coast clutch is inferred to be
                                    on. Once on, it remains on until
FLG_SFT_MDN = 0 -----
                                    the PRNDL goes to overdrive
 (manual downshift | AND -
                                    position)
 complete
FLG_PWR = 0 -----
 (power off)
FLG DEL MDN = 0 -----
 (manual downshift
 delay is complete)
```

CONVERTER CLUTCH CONTROL, FAILURE MODE MANAGEMENT LOCK-UP - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FAILURE MODE MANAGEMENT LOCK-UP

OVERVIEW

This module determines converter clutch lock-ups during a TP Sensor or a Vehicle Speed Sensor failure. If the Vehicle Speed Sensor fails, locks are

based on a function of NEBART and TP_REL. If the TP Sensor fails, locks are based on SPD_RATIO.

Once an FMEM lock-up is requested, locks continue to be based on this module, until the next power-up.

Unlocks occur as a result of Unconditional unlocks only.

DEFINITIONS

INPUTS

Registers:

- NEBART = Filter engine speed, RPM.
- SPD_RATIO = Speed Ratio across the torque converter.

Bit Flags:

- FLG_FMM_LK = Failure Mode Management lock-up flag; 1 -> lock converter due to FMEM action.
- FLG_FMM_CC = Flag used to insure once FMEM lock-up is activated,
 it is
 not de-activated until next power-up; 0 -> Failure mode lock-up is
 not in
 use this power-up, 1 -> Failure mode lock-up is in use this power-up.
- FLG_UNC_UNLK = Converter clutch unconditional unlock flag; 0
 -> no
 unconditional unlock, 1 -> unconditional unlock.
- TFMFLG = TP FMEM flag; 0 -> no TP failure, 1 -> TP failure, operating in FMEM mode.
- VSFMFLG = Vehicle speed sensor failure flag; 1 -> VSS failure, 0
 -> no
 VSS failure.

CONVERTER CLUTCH CONTROL, FAILURE MODE MANAGEMENT LOCK-UP - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Calibration Constants:

- FN689L(TP_REL) = Engine Speed to lock converter when TP sensor is still
 - available, for Failure Mode Management, RPM.
- NELK_FM = Engine Speed to lock converter when TP sensor has failed, for
 - Failure Mode Management, RPM.
- SRLK_FM = Speed Ratio to lock converter for Failure Mode Management.

OUTPUTS

Bit Flags:

- FLG_FMM_LK = Failure Mode Management lock-up flag; 1 -> lock converter
 - due to FMEM action.
- FLG_FMM_CC = Flag used to insure once FMEM lock-up is activated,
 it is
 - not de-activated until next power-up; 0 -> Failure mode lock-up is not in
 - use this power-up, 1 -> Failure mode lock-up is in use this power-up.

CONVERTER CLUTCH CONTROL, FAILURE MODE MANAGEMENT LOCK-UP - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: CCC_FMEM_COM2

<pre>FLG_FMM_LK = 1</pre>				į į	<pre>FLG_FMM_LK = 0 (Reset FMEM lock-up flag)</pre>
VSFMFLG = 1(VS Sensor failure)			-		
TFMFLG = 0 (TP Sensor OK)	 AND -		AND -		
<pre>NEBART > FN689L(TP_REL) (Engine Speed above failure mode minimum)</pre>		 OR	- -		FLG_FMM_LK = 1
TFMFLG = 1 (TP Sensor failure)	AND -				FLG_FMM_CC = 1 (Continue with FMEM Lock-up
NEBART > NELK_FM (Engine Speed above failure mode minimum)					until next power-up)
TFMFLG = 1(TP Sensor Failure)	:	 OR	-		
FLG_FMM_CC = 1			AND -		
SPD_RATIO > SRLK_FM(Speed Ratio above failure mode n			-		

CHAPTER 19

TRANSMISSION INPUT CONVERSIONS

TRANSMISSION INPUT CONVERSIONS, TRANSMISSION CONTROL INDICATOR LIGHT - LHBHO

PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

TRANSMISSION CONTROL INDICATOR LIGHT

OVERVIEW

cancel mode.

The Transmission Control Indicator Light (TCIL), located in the instrument panel, visually indicates the status of "Transmission Control" to the driver, or alerts the driver to certain transmission faults. If not indicating a fault, the light is on when overdrive is canceled; off when overdrive is enabled. A flashing light indicates a transmission fault. The transmission control switch and inhibition of fourth gear will continue to operate normally in the flashing mode, but there is no visual indication of

To disable flashing for any fault, set TCIL_TM_DLY = 31.875.

To enable flashing for specific faults, set TCIL_TM_DLY < 31.875, and set the calibration switch for that fault = 1. For example, to flash the

TCIL for converter clutch errors and shift errors, set CC_ERR_SW = 1 and SFT ERR SW =

1, and all remaining switches = 0.

NOTE: The OFMFLG does not have a switch associated with it. When TCIL_TM_DLY < 31.875, the TCIL flash for an EPC short circuit, regardless of the state of any of the calibration switches.

DEFINITIONS

INPUTS

Registers:

- TCILTMR = Time since transmission fault occurred, sec.
- TCIL_FLASH_TMR = Time since TCIL changed states in flashing mode, sec.

Bit Flags:

- CC_FM_FLG = converter clutch failure mode flag; 0 -> normal action,
 1 ->
 execute converter clutch failure mode action.
- CRKFLG = Flag indicating engine mode status; 0 -> not in CRANK mode, 1 -> in CRANK mode.
- EPC_OPEN_FLG = Indicates EPC open circuit; 1 -> EPC open circuit

detected.

- FLG_TCS = Transmission Control flag; 0 -> overdrive enable,
1 ->
 overdrive lockout mode.

- OFMFLG = Flag indicating that an EPC solenoid short circuit $% \left(1\right) =\left(1\right) +\left(1$
 - been detected; 0 -> EPC solenoid circuit not shorted, 1 -> EPC solenoid circuit shorted.
- OTEMP_FM_FLG = Transmission overtemperature FMEM flag; 1 ->
 Transmission
 is overtemperature, 0 -> Transmission temperature okay.

TRANSMISSION INPUT CONVERSIONS, TRANSMISSION CONTROL INDICATOR LIGHT - LHBHO

PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- MFMFLG = MAP sensor FMEM flag; 1 -> MAP sensor failure, 0 -> MAP sensor okay.
- PDL_ERROR = PRNDL error flag; 1 -> PRNDL error, 0 -> PRNDL okay.
- SFT_FM_FLG = Flag indicating whether 1-2 or 2-3 or 3-4 shifts are failing to occur properly; 0 -> shifts OK, 1 -> Shifts not OK.
- STIFLG = Flag which, if set, indicates Self Test has been requested.
- TCIL_STATE = Flag indicating state of TCIL; 0 -> TCIL off, 1 -> TCIL on.
- TFMFLG = TP FMEM flag; 0 -> no TP failure, 1 -> TP failure, operating in FMEM mode.
- VSFMFLG = Vehicle Speed FMEM flag; 1 -> Vehicle speed sensor failure, 0 -> Vehicle speed sensor okay.

Calibration Constants:

- CC_ERR_SW = Calibration selection switch to enable/disable flashing TCIL
 - for converter clutch error; 0 -> disable, 1 -> enable.
- EPC_ERR_SW = Calibration selection switch to enable/disable flashing TCIL
 - for EPC open circuit error; 0 -> disable, 1 -> enable.
- PDL_ERR_SW = Calibration selection switch to enable/disable flashing TCIL
 - for PRNDL error; 0 -> disable, 1 -> enable.
- MAP_ERR_SW = Calibration selection switch to enable/disable flashing TCIL for MAP sensor failure; 0 -> disable, 1 -> enable.
- for MAP Selisor ratture, 0 -> disable, 1 -> eliable.
- OTEMP_ERR_SW = Calibration selection switch to enable/disable flashing
 - TCIL for Transmission overtemperature condition; 0 -> disable, 1 -> enable.
- SFT_ERR_SW = Calibration selection switch to enable/disable flashing TCIL
 - for Shift Errors; 0 -> disable, 1 -> enable.
- TCILTM1 = Flashing TCIL "ON"/"OFF" time period, sec.
- $\mbox{TCIL_TM_DLY} = \mbox{Time}$ after fault has occurred before the TCIL begins to
 - flash, sec. Set to 31.875 to disable flashing.
- $\mbox{TP_ERR_SW} = \mbox{Calibration selection switch to enable/disable flashing TCIL}$
 - for TP sensor failure; 0 -> disable, 1 -> enable.
- VS ERR SW = Calibration selection switch to enable/disable flashing

TCTI.

for VS Sensor failure; 0 -> disable, 1 -> enable.

TRANSMISSION INPUT CONVERSIONS, TRANSMISSION CONTROL INDICATOR LIGHT - LHBH0 $\,$

PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- TCILTMR = See above.
- TCIL_FLASH_TMR = See above.

Bit Flags:

- TCIL_STATE = See above.

TRANSMISSION INPUT CONVERSIONS, TRANSMISSION CONTROL INDICATOR LIGHT - LHBH0 $\,$

PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: INTRN_TCIL_STATE_COM1

TRANSMISSION INPUT CONVERSIONS, TRANSMISSION CONTROL INDICATOR LIGHT - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TCILTMR LOGIC

STIFLG = 1							
CRKFLG = 1				 			
OFMFLG = 0				 			
SFT_ERR_SW = 0		 		OR	TCILTMR = 0		
SFT_FM_FLG = 0	OR						
CC_ERR_SW = 0							
CC_FM_FLG = 0	OR						
EPC_OPEN_FLG = 0							
EPC_ERR_SW = 0	OR						
PDL_ERROR = 0	OR			 			
PDL_ERR_SW = 0			AND -				
OTEMP_FM_FLG = 0							
OTEMP_ERR_SW = 0							
TFMFLG = 0	 OR						
TP_ERR_SW = 0	OK		 				
MFMFLG = 0	 OR		 				
MAP_ERR_SW = 0			 				
VSFMFLG = 0							
VS_ERR_SW = 0	OR		I		FI.S	E	
							шиг
					Increme	nt TCII	TMK

TRANSMISSION INPUT CONVERSIONS, TCIL OUTPUT - LHBHO PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

TCIL OUTPUT

OVERVIEW

The Transmission Control Indicator Light (TCIL), located in the instrument panel, visually indicates the status of "Overdrive Cancel" to the drive, or alerts the driver to certain transmission fault. If not indicating a fault, the light is on when overdrive is canceled; off when overdrive is enabled. A flashing light indicates a transmission fault. The transmission control switch and inhibition of fourth gear will continue to operate normally, but since the light is flashing, there is no visual indication of cancel mode selection.

DEFINITIONS

INPUTS

Bit Flags:

- TCIL_STATE = Flag indicating state of TCIL; 0 -> TCIL off, 1 -> TCIL on.

PROCESS

STRATEGY MODULE: INTRN_TCIL_REPEAT_COM1

<pre>TCIL_STATE = 0 (normal overdrive and since</pre>	De-engerize TCIL output (turns off the transmisison control light
start-up mode)	the turned off transistor provides no
	for the light)
	ELSE
TCIL_STATE = 1 (overdrive lockout mode) since	Energize TCIL output (turns on the transmission control light
	the turned on transistor provides a ground for
	the light)

TRANSMISSION INPUT CONVERSIONS, TORQUE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TORQUE CALCULATION

OVERVIEW

The engine output torque, or net torque, is calculated from a table of indicated torque versus speed/load, determined at MBT spark timing, 14.6 A/F ratio and no EGR. This torque value is then adjusted by multiplying by a factor dependent on the difference between MBT spark (adjusted for actual EGR flow), actual spark advance, and if in open loop fuel control, by a factor dependent on the value of lambse. This value is then further reduced by subtracting friction torque and accessory load torque. Net torque (TQ_NET) is used in the electronic transmission control strategy in calculating the EPC required for "static capacity".

DEFINITIONS

INPUTS

Registers:

- AMT = Air Mass flow for torque calculation.
- ARCHG = Air charge inducted per intake stroke. Value is updated once per background loop at the time that AMT is computed, lb.
- EGRACT = Actual EGR rate, %.
- ENGCYL = Number of injections per engine revolution = 2, 3, 4 for 4, 6, and 8-cylinder engines respectively.
- LAMBSE = Air/fuel equivalence ratio.
- LOAD = Normalized air charge value (ARCHG/SARCHG).
- N = Engine speed, rpm.
- N_BYTE = Byte value of engine speed, rpm.
- SAFTOT = Total spark advance, including knock and tip-in retard, deg BTDC.
- SPD_RATIO = Speed ratio across torque converter.
- SPK_DELTA = Difference between MBT spark and SAFTOT, deg BTDC.
- SPK_LAMBSE = Value of LAMBSE to be used in SPARK calculations, unitless.
- TLS_24_FLG = Torque limiting strategy 1/2 fuel flag; 0 -> normal fuel,

 $1 \rightarrow 1/2 \text{ fuel.}$

- TLS_34_FLG = Torque limiting strategy - 3/4 fuel flag; 0 -> normal fuel, 1 -> 3/4 fuel.

- TQ_NET = Net engine torque into transmission, ft-lb.

TRANSMISSION INPUT CONVERSIONS, TORQUE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Bit Flags:

- ACCFLG = Air conditioning clutch status flag; 1 -> A/C on.
- OLFLG = Open Loop fuel flag: 1 -> open loop fuel; 0 -> closed loop fuel.
- TLS_NV_FLG = Engine speed/Vehicle speed limiting flag; 0 -> not limiting speed, 1 -> limiting speed.

Calibration Constants:

- FN034A(LOAD) = LOAD normalizing function for torque calculation table lookups.
- FN070C(N) = Engine speed normalizing function for torque calculation table lookups.
- FN617(SPD_RATIO) = Torque converter torque ratio.
- FN618(N_BYTE) = Accessory load torque, less A/C load, ft-lb.
- FN619(N_BYTE) = Air conditioning compressor load torque, ft-lb.
- FN621(SPK_DELTA) = Indicated torque table (FN1615A) multiplier versus SPK DELTA.
- FN623(LAMBSE) = Fuel multiplier used to calculate TQ_NET in open loop.
- $FN730(SPK_LAMBSE)$ = Required adjustment to the base spark in order to

maintain MBT as the air/fuel ratio changes.

- FN1615A = Indicated engine torque at MBT spark and no EGR, ft-lb. x = FN070C(N) = Normalized engine rpm. y = FN034A(LOAD) = Normalized LOAD.
- FN1616 = Engine friction torque, ft-lb.
 x = FN070C(N) = Normalized engine rpm.
 y = FN034A(LOAD) = Normalized LOAD.
- FN1617 = MBT spark advance with no EGR, deg BTDC. x = FN070C(N) = Normalized engine rpm. y = FN034A(LOAD) = Normalized LOAD.
- MBTEGR = Number of degrees MBT spark increases per percent EGR, $\deg/_{\ }$.
- SARCHG = Standard Aircharge = 4.4256E-05 * CID / of cylinders.
- TCTTA = Time constant for torque truncation aircharge filtering.

OUTPUTS

Registers:

- ARCHG = See above.

- LOAD = Normalized air charge value (ARCHG/SARCHG).

TRANSMISSION INPUT CONVERSIONS, TORQUE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

```
- SPK_DELTA = See above.
 - SPK LAMBSE = See above.
 - TQ_NET = See above.
 - TO OFM = Transmission input torque, ft-lb.
PROCESS
                   STRATEGY MODULE: INTRN_EQ_TQ_CALC_COM2
TLS NV FLG = 1 ----
TLS_24_FLG = 1 ---- OR -- ARCHG = UROLAV(AMT/[ENGCYL*N], TCTTA)
 (1/2 \text{ fuel})
                           (Filter ARCHG in torque truncation)
TLS_34_FLG = 1 ----|
                           --- ELSE ---
 (3/4 \text{ fuel})
                          ARCHG = AMT/(ENGCYL * N)
Always ----- LOAD = ARCHG / SARCHG
                 SPK_DELTA = FN1617(N,LOAD) + MBTEGR * EGRACT
                             + FN730(SPK_LAMBSE) - SAFTOT
                           (clip SPK DELTA to ZERO minimum)
OLFLG = 1 ---- | TQ_NET = [FN1615A(N,LOAD)*FN621(SPK_DELTA)
*FN623(LAMBSE)]
                        - FN1616(N,LOAD) - FN618(N_BYTE) [-
               FN619(N BYTE)]
                          (clip TQ_NET to ZERO minimum)
                --- ELSE ---
                TO NET = FN1615A(N,LOAD)*FN621(SPK DELTA) -
               FN1616(N,LOAD)
                           - FN618(N_BYTE) [- FN619(N_BYTE)]
                           (clip TQ NET to ZERO minimum)
always ----- TQ_OFM = TQ_NET * FN617(SPD_RATIO)
Note: "[]" indicates FN619 is not always included in TQ_NET
caculation.
The following logic controls FN619 usage:
ACCFLG = 1 ----- Include FN619 in TQ_NET
                     --- ELSE ---
                    Do not include FN619 in TQ_NET
```

TRANSMISSION INPUT CONVERSIONS, TORQUE CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

 $\ensuremath{\mathsf{SPK_LAMBSE}}$ is one when the fuel calculation is closed loop because the

air/fuel mixture will be at stoichiometry regardless of the value of LAMBSE.

By assuming the $\ensuremath{\mathsf{SPK_LAMBSE}}$ to be one, the spark is not erroneously corrected

for a mixture when closed loop fuel control has controlled to stoichiometry.

Note that LAMBSE1 and LAMBSE2 are the same in the open loop calculation.

TRANSMISSION INPUT CONVERSIONS, E40D TRANSMISSION CALCULATIONS - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

E4OD TRANSMISSION CALCULATIONS

OVERVIEW

These System Equations are used in the E4OD Transmission Calculation $\mbox{Process.}$

DEFINITIONS

INPUTS

Registers:

- AM = Air Mass flow through the throttle body, lb/min.
- BP = Barometric pressure as defined in the Inferred BP Section.
- DT12S_AVG = Filtered PIP period for transmission, ticks.
- N = Engine RPM.
- NEBART = Filtered engine RPM for transmission.
- NOBART = Filtered output shaft speed.
- RATCH = Closed throttle position, counts.
- RT GR CUR = Current transmission gear ratio.
- RT_NOVS_KAM = Ratio of actual N/V to base N/V in KAM.
- TP = Throttle Position, counts.
- TPBART = Filtered throttle position for transmission.
- VS = Instantaneous vehicle speed.
- VSBART = Filtered vehicle speed for transmission.
- VSBART_RT = Filtered vehicle speed adjusted for RT_NOVS for transmission.

Calibration Constants:

- NVBASE = Base N/V.
- PIPFIL = Filter constant factor for DT12S_AVE, unitless.
- TCNE = Time constant for filtered RPM.
- TCTPTC = Time constant for filtered TP for converter clutch.
- TCTPTE = Time constant for filtered TP.
- TCTPTV = Time constant for filtered TP for TV pressure.

TRANSMISSION INPUT CONVERSIONS, E4OD TRANSMISSION CALCULATIONS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- TCVST = Time constant for vehicle speed filter.

OUTPUTS

Registers:

- BP_INTR = BP interpolation factor = FN615(BP).
- LOAD = Nondimensional, generic engine load.
- NEBART = See above.
- NOBART = See above.
- SPD_RATIO = Speed ratio across torque converter.
- TP_RATE = Throttle rate.
- TP_REL = Relative TP = TP RATCH.
- TPBART = See above.
- VSBART = See above.
- VSBART RT = See above.

TRANSMISSION INPUT CONVERSIONS, E4OD TRANSMISSION CALCULATIONS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: INTRN_E4OD_SYS_EQU_COM1

(Performed on PIP rising edge)

CRKFLG = 1 ------ DT12S_AVG = DT12S
--- ELSE --DT12S_AVG = (1 - FK)*DT12S_AVG + FK*DT12S

Where:

1 FK = -----2**PIPFIL

* RELATIVE TP *

TP REL = TP - RATCH (Clip to 0 as a minimum)

NEBART = UROLAV(N,TCNE)

VSBART = UROLAV(VS,TCVST)

VSBART_RT = VSBART * RT_NOVS

TRANSMISSION INPUT CONVERSIONS, E40D TRANSMISSION CALCULATIONS - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL * FILTERED THROTTLE POSITION FOR TRANSMISSION USE * TPBART = UROLAV(TP.TCTPTE) * FILTERED TRANSMISSION OUTPUT SHAFT SPEED * ********** NOBART = VSBART RT * NVBASE * THROTTLE POSITION RATE * ******* TP_RATE = TP - TPBART (TP_RATE is clipped to +/- 512 counts) * BP INTERPOLATION FACTOR * $BP_INTR = FN615(BP)$ * SPEED RATIO ACROSS TORQUE CONVERTER * NOBART * RT GR CUR SPD RATIO = -----NEBART *********** * FILTERED THROTTLE POSITION FOR TV PRESSURE * TPBARTV = UROLAV(TP,TCTPTV) * FILTERED THROTTLE POSITION FOR CONVERTER CLUTCH *

19-15

TPBARTC = UROLAV(TP,TCTPTC)

TRANSMISSION INPUT CONVERSIONS, VSBART_FM CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

VSBART_FM CALCULATION

OVERVIEW

This module defines the calculation of VSBART_FM. VSBART_FM is the vehicle

speed calculated from the engine speed NEBART. It is only correct during

power-on non-shifting operation. When not power-on, one-way clutches may be

overrunning, resulting in VSBART_FM being lower then VSBART. During shifts,

the value of VSBART_FM is frozen at the value prior to commanding the shift.

DEFINITIONS

INPUTS

Registers:

- NEBART = Filtered engine RPM for transmission.
- RT_GR_CUR = Current transmission gear ratio.
- RT_NOVS = Ratio of actual N/V to base N/V in KAM.

Bit Flags:

- FLG_SFT_IN = Shift in progress flag.

Calibration Constants:

- NVBASE = Base N/V.

OUTPUTS

Registers:

- VSBART_FM = VS calculated based on NIBART, NEBART, or NOBART.

PROCESS

STRATEGY MODULE: INTRN_CALC_VSBART_FM_COM4

TRANSMISSION EQUATIONS, ETV OVERCURRENT MONITOR VOLTAGE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ETV OVERCURRENT MONITOR VOLTAGE

OVERVIEW

(Performed during A to D conversion)

The A to D conversion of the ETV overcurrent monitor voltage (ETVOCM) will vary depending on the actual value of VREF (+/-5%). To increase the capability to detect a partial failure in the solenoid circuit, ETVOCM is adjusted by a calibration voltage input.

DEFINITIONS

INPUTS

Registers:

- IETVOCM = A to D conversion of the ETV overcurrent monitor voltage, counts.
- IVCAL = A to D conversion of the calibration input voltage, counts.

OUTPUTS

Registers:

- ETVOCM = Corrected ETV overcurrent monitor voltage, counts.

PROCESS

STRATEGY MODULE: INPUT_ETVOCM_COM1

ETVOCM = IETVOCM * 512/IVCAL

Where: (512/IVCAL) is clipped between 0.95 and 1.05.

TRANSMISSION INPUT CONVERSIONS, TRANSMISSION CONTROL SWITCH - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TRANSMISSION CONTROL SWITCH

OVERVIEW

The momentary contact Transmission Control Switch allows the driver to 1)

select an alternate shift pattern or 2) lockout overdrive (fourth gear). The

function of the Transmission Control Switch is dependent on the application.

On each power-up, the state of the Transmission Control Switch is 1)

alternate shift pattern disabled or 2) overdrive lockout disabled.

DEFINITIONS

INPUTS

Registers:

- TM_TCS_RES = Transmission Control switch input residence timer, sec.

Bit Flags:

- FLG_FRST_TCS = Flag used to prevent multiple toggles of FLG_TCS
 during a
 single activation of TCS button; 0 -> FLG_TCS has not been toggled,
 1 ->
 FLG TCS has been toggled.
- ITCS = Transmission Control switch input state; 0 -> TCS depressed,
 1 ->
 TCS not depressed.

Calibration Constants:

- TMTCS = Transmission Control switch residence time, sec.

OUTPUTS

Registers:

- TM_TCS_RES = See above.

Bit Flags:

- FLG_FRST_TCS = See above.
- FLG_TCS = Transmission control switch flag.

TRANSMISSION INPUT CONVERSIONS, TRANSMISSION CONTROL SWITCH - LHBH0 PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

PROCESS STRATEGY MODULE: INTRN_TCS_COM1					
ITCS = 1 (TCS button depressed, 12 volts)		Allow TM_TCS_RES to count up			
		ELSE			
<pre>ITCS = 0(normal state, 0 volts)</pre>	<pre>TM_TCS_RES = 0 (zero residence timer) FLG_FRST_TCS = 0 (clear first pass flag)</pre>				
TM_TCS_RES >= TMTCS					
(button depressed long enou	ugh) AND -	Toggle FLG_TCS (change TCS state)			
FLG_FRST_TCS = 0		FLG_FRST_TCS = 1			
(1st time to toggle TCS)		(set first pass flag)			

TRANSMISSION INPUT CONVERSIONS, 4 x 4 LOW SWITCH - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

4×4 LOW SWITCH

OVERVIEW

The 4 x 4 switch indicates that the driver has attempted to shift the transfer case to low range. In the "shift on the fly" package, the 4 x 4 light will flash if the transfer case has not been allowed to shift into 4 x 4 low. If the transfer case has been allowed to shift into 4 x 4 low or in the non-electronic system, the light will remain steadily on if in 4 x 4 low mode. If in this mode, the shift schedule will be adjusted by the transfer case ratio to get shifts at the correct output shift speed. This is done by modifying RT_NOVS. Since 12 volts at the module pin means normal mode and 0 volts means 4 x 4 mode, the input to the CPU is read as an inverted input.

DEFINITIONS

INPUTS

Registers:

- I4X4L = Input 4 x 4 state indicator.
- I4X4L LST = Last pass state of I4X4L.
- $TM_4X4L_RES = 4 \times 4$ residence timer.

Calibration Constants:

- TM4X4L = 4 X 4 low switch residence time.

OUTPUTS

Registers:

- I4X4L LST = See above.
- $TM_4X4L_RES = See above.$

Bit Flags:

- $FLG_4X4L = Flag indicating 4 x 4 mode; 1 -> in 4 x 4 mode.$

TRANSMISSION INPUT CONVERSIONS, 4 \times 4 LOW SWITCH - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: INTRN_E4OD_INPUT_PROCESSING_COM1

TRANSMISSION INPUT CONVERSIONS, RT_NOVS_KAM CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

RT_NOVS_KAM CALCULATION

OVERVIEW

This module calculates RT_NOVS_KAM.

DEFINITIONS

INPUTS

Registers:

- GEAR_CUR = Current transmission gear (global register).
- NEBART = Filtered engine RPM for transmission.
- NOV_ACT = Actual computed N over V.
- NOV_ACT_LST = Last pass value of NOV_ACT.
- NOVCTR = NOV calculation sampling counter.
- RT_GR_CUR = Current transmission gear ratio.
- RT_NOVS_KAM = NOV ratio in KAM.
- TM_LK_CONV = Time since converter clutch commanded on, sec.
- TM_NOV_CALC = Time since last NOV_ACT calculation.
- VSBART = Filtered vehicle speed for transmission.
- VSCTR = Count of MPH sensor errors.

Bit Flags:

- FLG_4X4L = 4X4L flag; 0 -> not in 4X4 L, 1 -> in 4X4 L.
- FLG_FRST_CM = Flag indicating a shift was commanded this background loop.
- FLG_FRST_NOV = First pass to store NOV in KAM flag; 0 -> RT_NOVS_KAM
 has
 not been loaded, 1 -> RT_NOVS_KAM has been loaded.
- FLG_LK_CM = Converter clutch commanded state; 0 -> command converter clutch unlock, 1 -> command converter clutch lock-up.
- TM SFT IN = Time during which shift is in progress.
- PDL_ERROR = PRNDL sensor failure; 0 -> no PRNDL sensor failure,
 1 ->
 PRNDL sensor failure.
- ERROR_4X4L = 4x4L switch failure; 0 -> no 4x4L switch failure, 1 -> 4x4L switch failure.

TRANSMISSION INPUT CONVERSIONS, RT_NOVS_KAM CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- SFT_ERROR = Shift error flag; 1 -> Shift error, 0 -> No shift error.
- VSFMFLG = Vehicle speed sensor failure flag; 1 -> VSS failure, 0
 -> No
 VSS failure.
- CC_FM_FLG = Converter clutch failure mode flag; 0 -> normal operation, 1 $\,$
 - -> Converter clutch failure mode.

TRANSMISSION INPUT CONVERSIONS, RT_NOVS_KAM CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Calibration Constants:

- NOVCNT = Minimum number of good NOV samples to update KAM.
- NOVDIF = Maximum difference between NOV samples.
- NVBASE = Base N/V.
- RT4X4L = 4X4 low transfer case ratio.
- RTNVMN = Minimum valid RT_NOVS_KAM.
- RTNVMX = Maximum valid RT_NOVS_KAM.
- TMNVCAL = Time between consecutive NOV_ACT calculations.
- TMNVLK = Time delay after converter clutch commanded on before allowing NOV_ACT calculation, seconds.
- ERR_BAN_4X4L = Maximum allowed deviation between rt_novs_kam and rt_novs actual in 4x4L.

OUTPUTS

Registers:

- NOV ACT = See above.
- NOV_ACT_LST = See above.
- NOVCTR = See above.
- RT_NOVS = Ratio of actual N/V to base N/V in RAM.
- RT_NOVS_KAM = See above.
- TM_LK_CONV = See above.
- TM_UNLK_CONV = Time since converter clutch commanded off.

Bit Flags:

- FLG_FRST_NOV = See above.
- FLG NEW NOV = 1 -> a new NOV ACT has been calculated.
- FLG_NOV_KAM = Flag indicating at least one update of RT_NOVS_KAM since
 - last KAM initialization.
- $ERROR_4X4L = See above.$

TRANSMISSION INPUT CONVERSIONS, RT_NOVS_KAM CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS STRATEGY MODULE: INTRN_RT_NOVS_KAM_CALC_COM1 Increment TM_LK_CONV FLG LK CM = 1 -----| (converter clutch commanded on) Increment TM_NOV_CALC $TM_UNLK_CONV = 0$ --- ELSE --- $TM_LK_CONV = 0$ $TM_NOV_CALC = 0$ Increment TM_UNLK_CONV GEAR CUR = 3 OR 4 -----(3rd or 4th) TM_LK_CONV >= TMNVLK -----(conv. clutch fully applied) TM_NOV_CALC >= TMNVCAL -----(enough time since last calculation) AND - NOV_ACT_LST = NOV_ACT SFT ERROR = 0 -----(update last pass NOV calc.) TM NOV CALC = 0PDL ERROR = 0 -----(reset interval pacer) NOVCTR = NOVCTR + 1VSFMFLG = 0 -----(increment sample counter) FLG NEW NOV = 1TM SFT IN = 0 -----(new NOV_ACT occurred) VSCTR = 0 --------- ELSE ---FLG NEW NOV = 0(no new NOV_ACT) FLG NEW NOV = 1 -----AND - NOV ACT = NEBART/(VSBART*RT_GR_CUR)

(compute actual N/V, not in 4x41)

* RT4X4L)

AND - NOV_ACT = NEBART/(VSBART*RT_GR_CUR

(compute actual NOV, in 4x41)

--- ELSE ---

FLG_4x4L = 0 -----

FLG_NEW_NOV = 1 -----|

FLG 4X4L = 1 -----

TRANSMISSION INPUT CONVERSIONS, RT_NOVS_KAM CALCULATION - LHBH0 PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

```
|NOV_ACT_LST - NOV_ACT| > NOVDIF -----|
 (too much variation in NOV calculations) | OR -- | NOVCTR = 0
                                      | (reset sample
                                   counter)
FLG FRST CM = 1 -----|
 (shift commanded this loop)
FLG 4X4L = 0 -----
NOVCTR > NOVCNT -----
 (enough consecutive matches)
FLG_FRST_NOV = 0 ------|AND - | RT_NOVS_KAM =
 (new value for KAM)
                                             (NOV_ACT/NVBASE)
                                          (store new NOV ratio
                                   in
RTNVMN <= (NOV_ACT/NVBASE) <= RTNVMX -----
                                          KAM)
                                         FLG_FRST_NOV = 1
                                         FLG_NOV_KAM = 1
                                          (indicate at least
                                           one update)
CC_FM_FLG = 1 -----
NOVCTR <= NOVCNT -----
FLG_NEW_NOV = 0 ------OR --|
                                        NO ACTION ON FAULT
FLG 4X4L = 0 -----
                                        FILTER OR 4X4L ERROR
                                        FLAG
FLG_NOV_KAM = 0 -----
                                        --- ELSE ---
|NOV_ACT/NVBASE - RT_NOVS_KAM| > ERR_BAN_4X4L - |
                                        error_detected = 1
                                        CALL FAULT FILTER 691
                                        (4x41 sw. fault filter)
                                        ERROR_4X4L = 1
                                        --- ELSE ---
                                        error_detected = 0
                                        CALL FAULT FILTER 691
                                        ERROR 4X4L = 0
FLG 4X4L = 1 -----
(in 4x4 low)
                             AND - RT NOVS = RT NOVS KAM * RT4X4L
ERROR_4X4L = 0 -----
 (4x4 is ok)
                                   --- ELSE ---
                                  RT_NOVS = RT_NOVS_KAM
```

CHAPTER 20
SYSTEM EQUATIONS

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- A3C = A/C clutch.
- AEMAP = Acceleration Enrichment Map Filter.
- AETP = Filtered TP for recognizing stable TP after AE.
- AM = Air mass flow.
- APT = Throttle mode flag.
- BG_TMR = Time to complete the previous background loop.
- BP = Barometric Pressure. (Note: Upper byte of BP_WORD.)
- BPCOR = Corrected BP = FN004(BP).
- BRAKE_INPUT = State of the brake on/off input to the module. 1 -> Brake
 - applied, 0 -> Brake not applied.
- CLOCK_SEC = Dacable clock in seconds; 60 sec. rollover period.
- DATA_TIME = Interrupt time, clock ticks.
- DNDTI = Derivitive of RPM (unfiltered).
- EVP = EGR valve position, counts.
- EGRBAR = Rolling average EGR position.
- EOFF = Lowest filtered EGR position.
- FIRST_MPH = Flag which indicates 1st VSS edge.
- IIVPWR = Ignition voltage, A/D counts.
- INDS = Neutral / drive input.
- IVCAL = Calibration input voltage, A/D counts.
- MAP = Manifold Absolute Pressure, " Hg.
- MAPAEF = MAP sample used for aefuel calculations.
- MPHCNT = MPH sensor transition count.
- MPHTIM1 = Last MPH transition time.
- MPHTIM2 = First MPH transition time.
- N = Engine speed, RPM.

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- NDDTIM =
- OI_A4LD = A4LD Solenoid or SIL Output (1 = ON).
- OLDTP = Previous A/D conversion of TP.
- OTIM = Last software TAR update time, lower 16 bits.
- PDL = PRNDL Position from A to D conversion.
- RATCH = Lowest throttle position since start, stored in KAM.
- TAR = Throttle angle rate.
- TARTMR = S/W TAR time since OLDTP updated.
- TP = Throttle position, counts.
- TP_REL = Relative TP (TP_REL).
- TP_REL_LST = Previous value of TP_REL.
- TPBAR = Rolling average throttle angle.
- TSLMPH = Time since last rising VSS edge.
- V_MODE_SETUP = Use Throttle Mode VIP Constants in.
- VBAT = Battery voltage.
- VS = Vehicle speed.
- VSBAR = Filtered vehicle speed.
- VSCTR = Counter for unrealistic changes in vehicle speed.

Bit Flags:

- CRKFLG = Crank flag.
- FLG_LK_CM = Converter clutch lockup commanded flag.
- MUPET_FLAG = Filtered MAP update enable time: 1 -> MAP register has been
 - updated, run AEMAP filter; 0 -> MAP has not been updated, do not run AEMAP filter.
- NDSFLG = Neutral/drive flag; 1 -> drive.
- RUNNING = RVIP enable flag.

Calibration Constants:

- AEDLMP = Minimum change in MAP to indicate manifold filling (in. ${\rm Hg}$)
- BIHP = Calibration switch which determines if a brake on/off switch is

 present 1 -> Brake on/off switch present 0 -> Brake on/off
 - present. 1 -> Brake on/off switch present, 0 -> Brake on/off switch not present.

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- FN004 = Corrected BP as a function of actual BP.
- FN074A = Exhaust pressure as a function of AM. FN074A should be
 - corrected to sea level when mapping the data.
- FN093 = Time constant for TAPBAR.
- FN394F = Time delay before recognition of N/D transition Forward.
- KSF = Keypower Scaling Factor; a calibration constant which has
 - historically been 3.731; this value can be changed on VECTOR to satisfy
 - the requirements of different processors; a newer value for KSF is 5.5991; the user should check with the EEC Design Group to determine
 - which value for KSF is applicable to a specific processor level.
- MAXAET = Maximum time before turning off AE.
- MAXTTM = Maximum time delay before updating OLDTP (150 msec, not calibratable).
- MPGLSW = MPG mode converter clutch development switch; 1 -> enable TRANSW
 - logic, 0 -> disable TRANSW logic.
- NDDELT = Time before N/D, D/N switch registers.
- RACHIV = RATCH, TPBAR AND TBART initialization value.
- SMTPDL = Deadband for stable TP AETP (counts).
- TCAEMP = Time constant for AEMP.
- TCEGR = Time constant for EGRBAR.
- TCMBAR = Time constant for MAP.
- TCN = Time constant for N.
- TCNDT ISC = Time constant for DNDT ISC.
- TCNDT_SPK = Time constant for DNDT_SPK.
- TCTP = Time constant for TPBAR.
- TCTPDL = Time constant for TPDLBR.
- TCVBAT = VBAT time constant. ..Typical value 0.1 seconds.
- TCVS = Time constant for VS.
- TPDLTA = Minimum TP change for tip-out.
- TRLOAD = Transmission Load Switch.
- TSTRAT = Transmission Strategy Switch; 0 -> no transmission control (man,
 - AOD, ATX, etc.), 1 -> Shift Indicator.

- VCAL = The value is normally 2.5 volts; this value can be changed on VECTOR to satisfy the requirements of certain processors.

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- VSCNT = Increment to VSCTR when VS changes unrealistically.
- VSDELT = Maximum realistic change in vehicle speed in one background loop.
- VSTYPE = Integrated vehicle speed/cruise control system present switch; 0 -> no MPH and no VSC, 1 -> MPH and no VSC.

OUTPUTS

Registers:

- AEMAP = Acceleration Enrichment Map Filter.
- AEMTMR = AEMAP filter timer.
- CLOCK_SEC = See above.
- DNDSUP = Drive neutral select.
- DNDT_ISC = Filtered rate of change of RPM for Idle Speed Control.
- DNDT_SPK = Filtered rate of change of RPM for OSCMOD spark.
- EGRBAR = See above.
- EOFF = See above.
- FIRST_MPH = See above.
- MAPAEF = See above.
- MAPBAR = Time-dependent rolling average filter of filtered MAP.
- MAPOPE = MAP/PEXH, unitless.
- MPHCNT = See above.
- MPHTIM1 = See above.
- MPHTIM2 = See above.
- NBAR = Filtered engine RPM.
- NDSFLG = See above.
- NOVS = N/VSBAR to infer transmission gear (rpm/mph).
- OLDTP = See above.
- OTIM = See above.
- PEXH = Absolute exhaust pressure, in. Hg, FN074A(AM) *
 (29.875/BPCOR) +
 BP.

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- RATCH = See above.
- TAR = See above.
- TARTMR = See above.
- TAPBAR = Filtered TP for Spark.
- TP_REL = See above.
- TP_REL_H = Relative TP (TP RATCH) high byte only.
- TPBAR = See above.
- TPDLBR = Filtered change of throttle position.
- TSLMPH = See above.
- VACUUM = Engine manifold vacuum (BP MAP).
- VBAT = Rolling average of instantaneous battery voltage.
- VBAT' = Instantaneous battery voltage.
- VS = See above.
- VSBAR = See above.
- VSCTR = See above.

Bit Flags:

- ACCFLG = A/C clutch status; 0 -> disengaged, 1 -> engaged.
- ACIFLG = ISC system should prepare for A/C load.
- BIFLG = Brake applied flag. 1 -> Brake applied, 0 -> Brake not applied.
- MUPET_FLAG = See above
- TARFLG = AE Demand Flag; 1 -> Manifold filling, 0 -> Manifold
 NOT
 filling.

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: EQUA_LH

S2 ACCEL ENRICHMENT TP FILTER (AETP)

It is used to sense stable TP for purposes of resetting TARFLG to enable AE.

The AETP time constant TCAETP is a calibratable parameter which should be

large enough to prevent TARFLG reset before the TP stops moving.

AETP = UROLAV(TP,TCAETP)

AUTOMATIC TRANSMISSION:

DNDSUP delays strategy recognition of a transmission shift until the transmission actually engages or disengages (regardless of the state of the gear switch (or pressure switch) inputs). The time delays, FN394R and FN394F are dependent upon the type of transmission used. Therefore, calibration of these functions should be coordinated with the appropriate transmission development activity.

MANUAL TRANSMISSION:

If TRLOAD = 0, NDSFLG is forced to 0, therefore DNDSUP is always 0. If TRLOAD is 1, 2, or 3, DNDSUP will follow the state of NDSFLG with no time delay.

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BRAKE INPUT

The brake input flag, BIFLG, is set/cleared based on the status of the brake input hardware present switch, BIHP; and, the status of the brake input, BRAKE_INPUT. BIFLG is used in the converter clutch control logic.

BIHP = 1		
	AND -	BIFLG = 1
BRAKE_INPUT = 1		
		ELSE
		BIFLG = 0

CLOCK SEC

CLOCK_SEC is a register which contains a clock in engineering units. The clock rolls over every 60 seconds and displays seconds with millisecond accuracy. As with any other background calculation, the clock is updated every background loop.

always 	<pre>CLOCK_SEC = CLOCK_SEC + BG_TMR (add current background loop time to the clock)</pre>
CLOCK_SEC >= 60.000	CLOCK_SEC = CLOCK_SEC + 60.000 (allows clock to roll over)

EGR POSITION FILTER (EGRBAR)

The EGRBAR calculation is a time dependent rolling average filter of instantaneous EGR valve position EVP. It is updated each background pass while in RUN or UNDERSPEED mode. The EGRBAR time constant TCEGR is calibratable, but should be set to 2.0 seconds.

EGRBAR = UROLAV(EVP, TCEGR)

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EGR POSITION RATCHET (EOFF)

The lowest filtered EGR position EOFF is controlled by the following logic:

A/C CLUTCH STATUS (ACCFLG)

ACCFLG reflects the status of the A/C Clutch via the A3C input. The A3C input differs from the ACD input which indicates whether the driver has pressed the A/C button on the instrument panel. ACD will indicate driver demand, however A3C must be used to determine whether the A/C clutch is actually engaged.

MANIFOLD ABSOLUTE PRESSURE FILTER (MAPBAR)

The MAPBAR calculation is a time dependent rolling average filter of filtered manifold absolute pressure MAP. The MAPBAR time constant TCMBAR is a calibration parameter. MAPBAR is used in the Inferred Barometric Pressure Strategy.

MAPBAR = UROLAV(MAP, TCMBAR)

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ACCEL ENRICHMENT MAP FILTER (AEMAP)

The AEMAP calculation is a time dependent rolling average filter of manifold

absolute pressure MAP. It is used as a means of sensing the manifold filling $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right)$

effect during an acceleration, especially from Idle. The AEMAP time constant

 $\ensuremath{\mathsf{TCAEMP}}$ is a calibration parameter which should be small enough to prevent a

false inference of manifold filling after the MAP has reached a stable value

and AE fuel is no longer required. AEMAP will be updated only if MAP has

been updated within the last background loop.

The stored MAP value, MAPAEF is used for the AEMAP filter and for $\ensuremath{\mathsf{TAR}}$

calculation (TAR is used to enable and disable AEFUEL). This is done to $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

ensure a consistent MAP value for all AEFUEL calculations.

MUPET_FLAG = 1 ----- | MAPAEF = MAP

(store current MAP for AEMAP
 filter and TAR calculation)
AEMAP = UROLAV(MAPAEF,TCAEMP)
AEMTMR is the sample rate
 (filter AE MAP)
MUPET_FLAG = 0
 (wait for MAP update)
AEMTMR = 0
 (reset AEMAP timer for next
 update)

NOTE: MUPET_FLAG is set by the foreground MAP code after the MAP conversion is done. The above logic clears the flag.

ENGINE SPEED FILTER (NBAR)

The NBAR calculation is a time dependent rolling average filter of instantaneous engine speed N. It is updated each background pass while in RUN or UNDERSPEED mode. The NBAR time constant TCN is a calibration parameter and should be set to produce a 0.5 seconds.

NBAR = UROLAV(N,TCN)

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

NDS - NEUTRAL DRIVE SWITCH

This switch reflects the change in transmission states (i.e., neutral/park, drive/in gear). Automatic transmissions, except AXOD, use a Neutral/Drive switch from the transmission; Manuals use a clutch switch, gear switch, or no switch. A clutch or gear switch is recommend for manuals. Among its many uses (primarily fuel control), it is most heavily used in controlling Idle Speed. The output sets a flag (NDSFLG) equal to one if the transmission is

in gear (or drive) and equal to zero if the transmission is in neutral.

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

INDS INPUT - NEUTRAL DRIVE SWITCH INPUT

This input reflects the applied transmission load to the engine, i.e., neutral/park, drive/in-gear.

- Manual transmissions can be configured with a clutch and gear switch, a clutch switch only, a gear switch only, or neither switch. The input therefore can be used to determine a neutral state (transmission in neutral or clutch depressed) versus an in-gear state. If neither clutch nor gear switch is used, the 5-volt module pull up provides an in-gear indication which can be overridden by proper selection of the TRLOAD software switch (set TRLOAD=0).
- Non-electronic automatic transmissions typically have a two state switch

which indicates neutral or drive. All transmissions except the \mathtt{AXOD} use

a mechanical switch connected to the gearshift lever. Drive is indicated $% \left(1\right) =\left(1\right) +\left$

by a 5-volt signal, neutral is indicated by a 0-volt signal.

AXOD transmissions are unique in that instead of using a Neutral/Drive

switch, the AXOD uses a Neutral Pressure Switch. This is a hydraulic

switch which senses hydraulic pressure in the forward clutch. The $\,$

voltage indicated by the NPS is opposite to that indicated by the NDS.

Drive is indicated by 0 volts and neutral is indicated by 5 volts (except $\,$

in overdrive). The NPS must be used in conjunction with the two other

transmission hydraulic switches (THS2/3 and THS3/4) to properly decode

neutral, forward, and reverse states.

- Electronic automatic transmissions typically use a position PRNDL sensor
 - to determine the operator selected gear. The PRNDL sensor is a

ratiometric sensor with six discrete resistors in series. The sensor is

decoded by looking at the differing voltages produced by each of the

PRNDL positions.

The engine control strategy typically requires information on the current

state of engine loading. This is provided by NDSFLG. If NDSFLG = 1, the

engine is loaded (transmission in gear or in drive). If NDSFLG = 0, the

engine is unloaded (transmission in neutral or clutch depressed).

DNDSUP,

the delayed neutral/drive flag contains exactly the same information as $% \left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) +\left(1\right) =\left(1\right) +\left($

 \mbox{NDSFLG} except that it is delayed (see FN393F/R, NDDTIM, etc.) in an attempt

to match PRNDL movement with actual application of transmission load (manual

transmissions automatically get a 0 delay time).

 $\ensuremath{\mathsf{NDSFLG}}$ or $\ensuremath{\mathsf{DNDSUP}}$ are typically used in idle speed control mode select and air

flow computations, fuel enrichment on auto transmission neutral/drive $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(itions, adaptive fuel, decel fuel shutoff and vehicle speed control (as $% \left(1\right) =\left(1\right) +\left(1\right$

well as VIP).

10/21/2000 LHBH1.TXT

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TRLOAD ASSIGNMENTS

- TRLOAD = 0 Manual trans, no clutch or gear switch, forced neutral (NDSFLG = 0)
 - = 1 Manual trans, no clutch or gear switch
 - = 2 Manual trans, one clutch or gear switch
 - = 3 Manual trans

 - = 4 Auto trans, non-electronic, Neutral Drive Switch
 = 5 Auto trans, non-electronic, Neutral Pressure Switch (AXOD)
 - = 6 Auto trans, electronic, PRNDL sensor Park, Reverse, Neutral, Overdrive, Manual2, Manual1 configuration.

NDSFLG - INSTANTANEOUS (NON-DELAYED) TRANSMISSION STATE

INDS < 512		 AND -	I	
TRLOAD <= 4 (not NPS)		AND -		
TRLOAD = 0(norced neutral)			 OR 	NDSFLG = 0 (neutral state; zero NDDTIM timer on the
TRLOAD = 6(PRNDL sensor)			 	transition)
,		AND -	j	ELSE
PDL = 7				
(park)	OR			<pre>NDSFLG = 1 (drive/loaded state;</pre>
PDL = 5				zero NDDTIM timer or
(neutral)	•			the transition)

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

RATE OF CHANGE OF ENGINE RPM FILTER FOR OSCMOD SPARK AND ISC

DNDT_ISC and DNDT_SPK are time dependent rolling average filters of the rate of change of engine RPM. These are updated each time a new value of N is calculated. The time constants, (TCNDT_ISC and TCNDT_SPK) are calibration parameters. DNDT_SPK is the input to FN182, the light load RPM oscillation

spark multiplier. DNDT_ISC is used to calculate the Idle Fuel Modulation

multiplier, ISCMOD.

For ISC:

DNDT_ISC = ROLAV(DNDTI,TCNDT_ISC)

For OSCMOD SPARK:

DNDT_SPK = ROLAV(DNDTI,TCNDT_SPK)

Where:

- DNDTI = N N_PREV/DT_DNDT, RPM/Sec.
- N_PREV = Previous value of N.
- DT_DNDT = Time of current PIP up-edge minus time of up-edge used to calculate N_PREV, sec.

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ABSOLUTE EXHAUST PRESSURE (PEXH)

Exhaust back pressure as a function of AM and altitude, in. Hg.

PEXH = FN074A(AM) * (29.875/BPCOR) + BP

Where:

open

- BPCOR = BP corrected = FN004(BP).

FN074A should be calibrated at sea level since the altitude correction is made by the (29.875/BPCOR) term. Note that the altitude correction used to be (29.875/BP) however actual data obtained from the altitude chamber disagreed with the calculated correction. Therefore FN004(BP) was added to allow an empirical correction. If no correction is desired, calibrate on a diagonal, that is, (0,0), (31.875,31.875). Actual data indicates that backpressure does not increase linearly with BP, but at about half that rate, roughly (0,8), (31.875,31.875). This will generate a corrected BP to be used in calculating a more accurate PEXH and PE (PFE EGR only). Overprediction of PEXH results in a smaller MAPOPE and PE which in turn results in leaner

loop fuel values and underprediction of actual EM at altitude.

NOTE: MAPOPE = MAP/PEXH

SYSTEM EQUATIONS - LHBH0 PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

BATTERY VOLTAGE (VBAT)

The VBAT calculation is a time dependent rolling average filter of instantaneous battery voltage. It is updated each background pass while in RUN or UNDERSPEED mode. The VBAT time constant TCVBAT is a calibration parameter and should be set to 0.1 seconds.

VBAT = UROLAV(VBAT',TCVBAT)

Instantaneous battery voltage is calculated from;

VBAT' = IIVPWR * (VCAL/IVCAL) * KSF/IVCAL

Where:

- VCAL/IVCAL is clipped between 0.00867 and 0.004; and
- VBAT' is clipped to 15.94 maximum.

THROTTLE POSITION FILTER (TPBAR)

The TPBAR calculation is a time dependent rolling average filter of instantaneous throttle position (TP). It is updated each background pass while in RUN or UNDERSPEED mode. The TPBAR time constant, TCTP, is a calibration parameter and should be set to 2.0 seconds.

TPBAR = UROLAV(TP,TCTP)

THROTTLE POSITION FILTER (TAPBAR)

The TAPBAR calculation is a time and MAP dependent rolling average filter of instantaneous throttle position (TP). It is updated each background pass while in RUN or UNDERSPEED mode. The TAPBAR time constant is FN093(MAP).

TAPBAR = UROLAV(TP, FN093(MAP))

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHANGE OF THROTTLE POSITION FILTER (TPDLBR)

TPDLBR is a time dependent rolling average filter of the change (or delta) in
TP on successive background loops. It is updated each background pass while
in Run or Underspeed mode. TPDLBR is used in the light load RPM oscillation
spark multiplier logic. The time constant, TCTPDL, is a calibration parameter.

TPDLBR = ROLAV(TP_REL - TP_REL_LST, TCTPDL)

Where:

- TP_REL = TP RATCH (clip to 0 as a minimum)
- TP_REL_LST = Previous value of TP_REL

THROTTLE POSITION - RELATIVE TO RATCH (TP_REL)

The parameter TP_REL is an indication of the amount of throttle movement, TP, beyond the idle setting, RATCH. TP_REL is calculated every background pass, in all engine modes.

TP_REL = TP_REL_H = TP - RATCH
 (clip to zero as a minimum)

Where:

- TP REL H = (high byte of TP REL)

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ENGINE SPEED OVER VEHICLE SPEED (NOVS)

NOVS is the ratio of engine speed over vehicle speed. It is $% \left(1\right) =\left(1\right) +\left(1\right)$

the transmission gear ratio selected - both in automatic and $\mbox{\tt manual}$

transmissions. NOVS is currently used to specify separate entry conditions

based on transmission gear for MPG mode. NOVS is set to $255\ \mathrm{in}$ some special

cases: vehicle speed is near 0 or converter clutch is unlocked and MPGLSW =

1. MPGLSW is a development switch to enable/disable the NOVS calculation

with auto transmissions until 3rd gear converter clutch lockup is achieved.

VSBAR <= 5 (vehicle speed low)	NOVS = 255 (vehicle speed too low)
TSTRAT = 2 (A4LD)	ELSE
OI_A4LD = 0 AND - (unlocked)	
MPGLSW = 1	
TSTRAT = 4 OR (C6E4)	NOVS = 255 (auto trans, clutch unlocked)
FLG_LK_CM = 0 AND - (unlocked)	ELSE
MPGLSW = 1	NOVS = N/VSBAR (clip NOVS between 0 and 255)

TSTRAT - TRANSMISSION STRATEGY SWITCH

The TSTRAT software switch selects which transmission control strategy is to be executed.

TSTRAT = 0 No transmission control (Manual trans, AOD, ATX, C6, C3, etc.)

- = 1 SIL (Shift Indicator Light)
- = 2 A4LD with 3 -> 4 shift control and converter clutch control
- = 3 AXOD
- = 4 C6E4 (E4OD)
- = 5 A4LD-E
- = 6 FAX-4
- = 7 AOD-E (AOD-I)
- = 8 4EAT
- = 9 CD4E

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

THROTTLE POSITION RATCHET (RATCH)

The throttle position ratchet (RATCH) continuously seeks a lower value for $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1$

both throttle angle breakpoints, CLOSED THROTTLE/PART THROTTLE AND PART

THROTTLE/WOT, by seeking the lowest filtered throttle angle (TPBAR). The

algorithm is not used during CRANK mode. RATCH is continuously updated

during the VIP Throttle Adjust Mode.

During the VIP Throttle Adjust Mode the value of RATCH is always updated to TPBAR. RATCH is clipped to RACHIV as maximum.

During RUNNING VIP RATCH is not updated.

CRKFLG = 1	No change to RATCH
	 ELSE
V_MODE_SETUP = 1	RATCH = TPBAR (clip RATCH to RACHIV as maximum)
TPBAR <= RATCH	 ELSE
N > 450 RPM AND -	RATCH = TPBAR
RUNNING = 0	 ELSE
	No change to RATCH

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SOFTWARE TAR CALCULATION

Background:

The S/W TAR Logic replaces the H/W TAR Logic and circuit. The H/W TAR Logic reads and A/D channel and converts the count value into deg/sec for use in the AE Fuel Calculation (normalized input to FN1303). The S/W TAR Logic calculates a throttle rate of change directly from the TP input:

Where:

- OLDTP is last TP, and ("NTIM" "OTIM") is time between successive A/D conversions.
- Because TAR is used as an anticipatory driver demand indicator, additional logic prevents the value of TAR from becoming 0 until the Accel Enrichment requirements of the engine are met.
- TAR is calculated by the software after initiation of a tip-in, until the manifold starts to fill. In general, this TAR value remains constant until after the manifold has filled (MAP - AEMAP < AEDLMP). This "latching" of TAR causes AEFUEL to be calculated until the need for it goes away, even if TP stops moving. TAR will be reset to 0 when engine transient has dissipated (i.e., manifold has filled) or if a decel is recognized. (Throttle moves in closed direction). During part and mode, the higher airflow causes TP jitter. To avoid W.O.T. erroneous TAR calculation, as a result of this jitter, TPDLTA must be at least 20 counts.
- The original software TAR algorithm updated TAR every background
 loop
 (approximately 13 msecs at idle). This update rate prevented
 recognition
 of accels which are less than 160 deg/sec, i_.e_., TAR =
 (20
 counts)/(9.57 counts per degree * 13 msec) = 160 deg/sec.
- The revised S/W TAR strategy implements a pacing scheme to accommodate slow accels. The software will wait up to 150 msec (approx. 12 background loops) for the TP sensor to travel TPDLTA counts. If

the TP sensor has not moved within the 12 background loops, the software will update OLDTP and "OTIM".

NOTE: The first TAR calculated after a tip-in will probably be incorrect. To enable the S/W TAR calculation, set TARHP = 0.

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TARFLG LOGIC

TARFLG is the mechanism for latching TAR until engine demand conditions can be met by the normal fuel equation. TARFLG is set when the manifold is filling and reset after the TP remains stable for a period of time (or as a result of a decel).

MAPAEF - AEMAP >= AEDLMP	TARFLG = 1 (manifold filling)
OLDTP - TP >= TPDLTA OR	ELSE
TP - AETP < SMTPDL	TARFLG = 0 (manifold not filling)
	 ELSE
	No change to TARFLG

SYSTEM EQUATIONS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TAR CALCULATION (Do in Engineering Units Conversion)

TP - OLDTP >= TPDLTA		
		Do TAR CONVERSION LOGIC
MAPAEF - AEMAP >= AEDLMP OR		"OTIM" = "NTIM"
OR TARFLG = 0	·	TARTMR = 0
		ELSE
0 < TP - OLDTP < TPDLTA		,
MAPAEF - AEMAP >= AEDLMP	 	<pre>(steady state mode or very slow accel) (do not calculate TAR, wait</pre>
TARFLG = 0		until TP - OLDTP is larger)
TARTMR < MAXTTM		No change to "OTIM", OLD TP or TAR
		ELSE
OLDTP - TP >= TPDLTA		
TARFLG = 1 AND -		
	!!!	TAR = 0
MAPAEF - AEMAP < AEDLMP		OLDTP = TP "OTIM" = "NTIM"
TP - AETP < SMTPDL		TARTMR = 0
TARTMR > MAXAET		(turn off AE)
	j j	ELSE
CRKFLG = 1		No change to TAR
		"OTIM" = "NTIM"
		OLDTP = TP
		(manifold is filling due
		to previous tip-in)

SYSTEM EQUATIONS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TAR CONVERSION LOGIC

always	(TP - OLDTP)
	TAR' =
TAR' > TAR	TAR = TAR' (new value of TAR is larger than old value, use it as TAR)
	ELSE
	TAR = UROLAV(TAR', TCTAR) (TAR is falling off, filter down the highest value so far)

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

VACUUM - MANIFOLD VACUUM

VACUUM is used in the idle speed logic (FN820A) and the A4LD logic (FN002A).

VACUUM = BP - MAP (clip vacuum to 0 as a minimum)

VSS - VEHICLE SPEED SENSOR

VSS is part of the EEC system and is used also by the dashboard computer.

VSS is a digital input whose frequency is proportional to vehicle speed

(similar to relationship of PIP signal to RPM).

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

VEHICLE SPEED (VS)

The variable reluctance type Vehicle Speed Sensor produces an AC signal with frequency proportional to vehicle speed. Through appropriate gearing, the sensor generates 8000 cycles/mile, for a frequency range of 0 HZ at 0 MPH to 283.3 Hz at 127.5 MPH. Interface hardware in the EEC converts the AC signal to a digital signal for input to the CPU. The strategy updates VS once per background loop if at least one new rising edge was received (MPHCNT > 0) during the previous loop. If, after 255 milleseconds, no new signals are received (< 1.75 MPH), VS is set to 0. This ensures a zero vehicle

On the rising edge of the vehicle speed sensor interrupt:

the vehicle is stopped, or if the sensor fails.

FIRST_MPH = 0	FIRST_MPH = 1 MPHTIM2 = DATA_TIME TSLMPH = 0
	 ELSE
	MPHTIM1 = DATA_TIME MPHCNT = MPHCNT + 1 TSLMPH = 0

Once per background; the following logic is executed:

```
VSTYPE = 0 -----
(no vehicle speed sensor)
                            OR -- VS = 0
TSLMPH >= 255 msec -----
                                 MPHCNT = 0
                                  FIRST_MPH = 0
                                  --- ELSE ---
                                       0.45 * MPHCNT
MPHCNT > 0 -----
                                  VS = -----
                                     (MPHTIM1 - MPHTIM2)
                                  MPHCNT = 0
                                 MPHTIM2 = MPHTIM1
                                  --- ELSE ---
                                 Do not update VS
                                  or MPHTIM2
```

SYSTEM EQUATIONS - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

NOTE:

- (MPHTIM1 MPHTIM2) must be converted from clock ticks to seconds.
- The software will handle the units conversion from clock ticks to seconds

(1 tick = 3.0*10E-6 sec., 12 MHz EEC, = 2.4*10E-6 sec., 15 MHz EEC).

VEHICLE SPEED FILTER (VSBAR)

The VSBAR calculation is a time dependent rolling average filter of instantaneous vehicle speed (VS). The time constant, TCVS, is a calibration parameter.

VSBAR = UROLAV(VS,TCVS)

VSCTR LOGIC

Previous VS = 0			
TSLMPH >= 255 msec		Exit, no action (don't update counter if r new data)	10
		ELSE	
VS - Previous VS > VSDELT		VSCTR = VSCTR + VSCNT	
		ELSE	
		Decrement VSCTR	

VEHICLE SPEED FILTER (VSBAR)

The VSBAR calculation is a time dependent rolling average filter of instantaneous vehicle speed (VS). It is updated each background pass in RUN or UNDERSPEED mode. The VSBAR time constant, TCVS, is a calibration parameter.

VSBAR = UROLAV(VS,TCVS)

INPUT CONVERSIONS AND FILTERS, VS_RATEPH CALCULATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

VS_RATEPH CALCULATIONS

OVERVIEW

Vehicle acceleration rate VS_RATEPH is calculated by differentiating VS with time.

DEFINITIONS

INPUTS

Registers:

- CTR_VSRATE = Counts the # of background loops of VSRATE.
- TM_VSRATE = Time between VSRATE calculations.
- VSBARTL = Low byte vehicle speed for transmission, mph.
- VSBARTL PREV = Previous value of VSBARTL.
- VS_RATEPH = Filtered vehicle acceleration rate for Powertrain
 Hunting
 prevention.

Calibration Constants:

- CNTVSRATE = Number of background loops between VSRATE calculations.
- TCVSRPH = Time constant for vehicle acceleration for Powertrain Hunting prevention.

OUTPUTS

Registers:

- CTR_VSRATE = See above.
- TM_VSRATE = See above.
- VSBARTL_PREV = See above.
- VS_RATEPH = See above.

INPUT CONVERSIONS AND FILTERS, VS_RATEPH CALCULATIONS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: INPUT_VS_RATE_CALC_COM2

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MANIFOLD ABSOLUTE PRESSURE (MAP_WORD and MAP)

OVERVIEW

The MAP_WORD calculation is a conversion of the SCAP (Silicon CAPacitance) The sensor outputs a digital frequency modulated sensor output. signal in the 89 to 162 Hz range. Each edge output from the sensor is the equivalent of the integration of the pressure seen at the sensor since the last edge. The conversion of SCAP edges into frequency and then into a MAP_WORD value in inches of mercury is carried out during one of two foreground routines. If the sensor is determined to be not operating properly, a background routine (CNVERT) will substitute a value for MAP_WORD. The value of MAP is a precise value of MAP_WORD that is contained within a byte.

1. During CRANK or MAPCNT register overflow:

The calculation of MAP_WORD is performed on every other SCAP edge by dividing the number of edges (2) by the time period which starts at the time of the last calculation and ends with the second edge. This produces the value of MAP_FREQ which is then converted to MAP_WORD by a linear equation.

SCAP INPUT SIGNAL

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

2. During UNDERSPEED and RUN:

next PIP up-edge.

The calculation of MAP_WORD is performed in three parts. In some special cases, the second part may be extended to provide a sufficient number of edges for stability in the calculation.

- a. The first part is the interpolation of the fractional SCAP edge between the time of the last PIP up-edge and the next SCAP edge following that PIP up-edge. (see diagram on next page)
- b. The second part is the counting of the number of SCAP edges between PIP up-edges. The counting SCAP edges continues until there have been at least MAPEDG (minimum of 2) edges since the last calculation of MAP_WORD and a PIP up-edge is reached. If MAPCNT is not at least (MAPEDG - 1) edges by the next PIP up-edge, the third part is computed and the time for the PIP period is accumulated in DT12SA. No registers or flags are changed and a new MAP_WORD value is not computed. This feature prevents the calculation of a new MAP_WORD using only fractional data and provides increased stability in the MAP WORD value. In exceptional cases, it may be necessary to compute the value of MAP WORD over an engine cycle to provide enough stability to the value. At present, the only known requirement for this is at wide open throttle and must be requested by the calibrator by setting LONG_MAP_RQD If the number of SCAP edges counted and stored in MAPCNT is greater than or equal to 28 (MAX_SCAP_EDGES), then the "MAPCNT overflow flag" (MAPOFL) is set and the calculation of MAP_FREQ and MAP_WORD is performed by the same method used in CRANK. MAPOFL is cleared on the
- c. The third part is the extrapolation of the fractional SCAP edge between the time of the last SCAP edge prior to and including the PIP up-edge. After this extrapolation, the calculation of MAP_FREQ is the summation of each of these parts divided by two (number of edges in a whole SCAP period) and the time between the PIP up-edges. The value of MAP_FREQ is checked to insure that the frequency is within an acceptable band and then it is converted to MAP WORD by a linear equation.

MAP is set equal to MAP_WORD.

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

3. In some exceptional cases when the amplitude of the pulsations in the manifold become large and the signal at the SCAP sensor is not symmetrical for all cylinders, it may be necessary to compute the value of MAP WORD either an engine revolution or over an engine cycle to provide enough stability in the computed value. At present, the only known requirement this is at wide open throttle, and must be requested by the calibrator by setting LONG_MAP_RQD to one (1). In the event that LONG_MAP_RQD is one then when the throttle mode is wide open, the flag LONG_MAP_AVG is set indicating a desire to perform the long average. MAP_WORD will continue to be computed on each PIP if enough SCAP information is available until the appropriate number of cylinders have passed since start of the routine. This allows the MAP_WORD value to follow the transient changes and then stabilize. The flag LONG_MAP_FST is used to tell the system when enough cylinders have passed and the long average can actually begin. The number of cylinders to average over is computed from the calibration parameter MAP_CYCLE, which if set to zero (0), negates the long average; if set to one (1), averages an engine revolution; and if set to two (2), averages over an engine cycle. An example of the start of the long average is shown below for a cylinder engine with MAP CYCLE = 2: PTP | _| |__| |__| |__| |__| MAP calculated at arrows for period indicated |<---->|<---->| |<---->| <-----SAMPLE PERIOD----->| <-----SAMPLE PERIOD----> |<----WOT-----<--- LONG_MAP_AVG = 1</pre> <--- LONG MAP FST = 1

927

MAP PIPCNT

LHBH1.TXT 10/21/2000
.0....0...1...2...3...4.0...1...2...3...

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

4. During SCAP sensor failure:

In a background routine (CNVRT), there are two checks to verify proper SCAP sensor operation. These checks are:

a. LAST_MAP2 = LAST_MAP - this checks to see if the sensor ever $% \left(1\right) =\left(1\right) \left($

started, since once an edge is captured, the time in ${\tt LAST_MAP}$ will not

be equal to LAST_MAP2. b. MAPTMR >= VMPMAX - this check uses a

background timer to count the amount of time since the last SCAP edge

was processed and if the timer exceeds the calibration value VMPMAX, the

sensor is assumed to have stopped putting out edges.

Once the sensor has been determined to have $\mbox{ failed, }$ the $\mbox{ condition }$ of the

throttle position sensor is checked, and if the $\ensuremath{\mathsf{TP}}$ failure flag is not set,

the value of MAP and MAP_WORD are set to the output of the function ${\tt FN095}$

 $(\mathsf{TP}_\mathsf{REL})$. If the TP sensor has also failed, then the value substituted for

 ${\tt MAP}$ and ${\tt MAP_WORD}$ is the calibration value, ${\tt MAPFMM}.$ If the sensor has failed

and the CRANK flag is set, the values substituted for MAP and MAP_WORD is a constant, 29.875.

The calculation of MAP and MAP_WORD on a PIP up-edge is based on the $\,$

assumption that in engines with a vacuum tap properly placed, the $\ensuremath{\operatorname{signal}}$

supplied to the SCAP sensor will be of near equal height and shape for all

cylinders. Therefore, obtaining the value over one or more cylinders should produce the same average and no errors for partial period averaging.

At each PIP up-edge after FIRST_PIP = 1:

always	MAPOFL = 0 (clear MAP overflow flag
CRKFLG = 1 (in crank)	Return
anyer a	ELSE
CRKFLG = 0 (not in crank) AND -	DT12SA = DT12SA + DT12S (PIP period accumulator)
<pre>ISF_UP_FLG = 0 (not first SCAP transition after PIP up-edge)</pre>	,
LONG_ISF_UP_FLG = 0(at PIP edge and in long MAP average)	LONG_DT12SA = LONG_DT12SA + DT12S (PIP period accumulator)

```
| MAP_PIPCNT = MAP_PIPCNT + 1
| (increment PIP period
counter)
```

```
LONG_DT12SA > 65536 ticks ------ | LONG_MAP_AVG = 0
(PIP period accumulator has overflowed) | LONG_DT12SA = 0
| LONG_MAPCNT = 0
| MAP_PIPCNT = 0
| LONG_ISF_UP_FLG = 1
| (leave long MAP mode)
```

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

always		(LAST_HI_PIP - LAST_MAP)
(compute last sample fraction)	lsf =	
		(LAST_MAP - LAST_MAP2)

NOTE: MAPEDG is the minimum number of SCAP transitions between PIP $% \left(1\right) =\left(1\right) +\left(1\right)$

required to compute a MAP update. "One" is subtracted from MAPEDG because

MAPCNT is incremented by ISF (a number less than 1) on the first ${\tt SCAP}$

transition. MAPEDG should not be calibrated larger than the $\min \operatorname{\mathsf{minimum}}$

necessary to avoid unacceptable MAP jitter. The minimum value is 2 and the

maximum recommended values are: 4 cyl = 6; 6 cyl = 4; and 8 cyl = 3. Values

greater than these will result in multiple PIPs between MAP $\,$ updates $\,$ at low

engine speeds, causing slow MAP response.

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- APT = At part throttle flag.
- DT12S = Time between two PIP rising edges.
- DT12SA = An accumulation of DT12S over a SCAP averaging period.
- IMAP_WORD = Raw manifold absolute pressure.
- ISF = Initial sample fraction; the ratio of time between last PIP
 up-edge
 and latest SCAP transition, and the time between the most recent two

and latest SCAP transition, and the time between the most recent two SCAP transitions.

- LONG_DT12SA = Time period accumulator for LONG_MAP_AVG.
- LONG_ISF = Initial sample fraction for LONG_MAP_AVG.
- LONG_MAP_AVG = Flag that indicates when a long period average of MAP is in progress.
- LONG_MAPCNT = SCAP edge counter in LONG_MAP_AVG.
- LAST HI PIP = Time of last PIP up-edge.
- LAST_MAP = Time of most recent processed SCAP transition.
- LAST_MAP2 = Time of the second most recent processed SCAP transition.
- MAP_FREQ = Integrated value of frequency in Hertz of the output of SCAP sensor.
- MAP_PIPCNT = Cylinder counter to determine period for averaging MAP over a long period.
- MAP_WORD = Same function as MAP, but with greater precision.
- MAPTMR = Free-running timer which is cleared in background $% \left(1\right) =\left(1\right) +\left(1\right$
 - one SCAP edge is recognized in the foreground. Its purpose is to provide detection of a sensor failure.
- MAPUP_NORM = Set -> MAP update is complete and ready for calculation of normalized value; Clear -> Normalized value has been calculated.
- MDELTA = Latest SCAP half period.
- NEW_MAP = Flag indicating whether SCAP edge has been received to allow
 - clearing of MAPTMR in background.

- TP_REL = Relative TP (TP_REL).
- UNDSP = Underspeed flag; 0 -> engine is in RUN mode.

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Bit Flags:

- CRKFLG = State of engine mode; 0 -> Run/Underspeed, 1 -> Crank.
- ISF_UP_FLG = Flag which indicates whether initial sample has been calculated after last PIP up-edge.
- LONG_ISF_UP_FLG = Flag to indicate new MAP average completed
 and to
 computed the new ISF for long average.
- LONG_MAP_FST = Flag to indicate first pass through a long period average of
- MAPCNT = Number of SCAP transitions occurring between PIP up-edges.
- MAPOFL = Flag that indicates that MAPCNT has reached the overflow limit and that MAP calculations will be performed as during crank.
- MFMFLG = Map failure mode flag.
- MUPET_FLAG = Filtered MAP update enable time; 1 -> MAP register has been updated, run AEMAP filter, 0 -> MAP has not been updated, do not run AEMAP filter.
- TFMFLG = TP failure mode flag.
- V_VACFLG = MAPVAC error flag.

Calibration Constants:

- FN095(TP_REL) = Provides reasonable engine load value if MAP sensor is
 - faulty. Input: TP RATCH, counts; Output: MAP, in Hg.
- LONG_MAP_RQD = 1 = Request long MAP avg. at WOT. MAP is in progress.
- ${\tt MAPBK1}$ = Point of intersection of the first two line segments describing
 - MAP function (frequency versus inches).
- ${\tt MAPBK2}$ = Point of intersection of the second and third line segments
 - describing the MAP function (frequency versus inches).
- MAPBK3 = Point of intersection of the third and fourth segments $\$
 - describing the MAP function (frequency versus inches).
- MAPBK4 = Point of intersection of fourth and fifth segments describing
 - the MAP function (frequency versus inches).
- MAPBK5 = Point of intersection of the fifth and sixth segments describing
 - the MAP function (frequency versus inches).

- MAPEDG = Minimum number of SCAP edges to calculate a MAP value.
- MAPFMM = Value that MAP is set equal to if both SCAP and TP sensors fail.
- ${\tt MAX_SCAP_EDGES}$ = ${\tt Maximum}$ number of SCAP edges to calculate a MAP value.
- OFSET1 = Offset for the first linear equation describing MAP as function $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) +\left(1\right) \left(1\right) +$

of frequency and inches of Hg.

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

- OFSET2 = Offset for the second linear equation describing MAP
 as a
 function of frequency and inches of Hg.
- OFSET3 = Offset for the third linear equation describing MAP as a function of frequency and inches of Hg.
- OFSET4 = Offset for the fourth linear equation describing MAP
 as a
 function of frequency and inches of Hg.
- OFSET5 = Offset for the fifth linear equation describing MAP
 as a
 function of frequency and inches of Hg.
- OFSET6 = Offset for the sixth linear equation describing MAP
 as a
 function of frequency and inches of Hg.
- SLOPE1 = Slope for the first linear equation for MAP.
- SLOPE2 = Slope for the second linear equation for MAP.
- SLOPE3 = Slope for the third linear equation for MAP.
- SLOPE4 = Slope for the fourth linear equation for MAP.
- SLOPE5 = Slope for the fifth linear equation for MAP.
- SLOPE6 = Slope for the sixth linear equation for MAP.
- TCMAPW = Time constant to use in rolling average routine for ${\tt MAP_WORD}.$
- VMPMAX = Maximum amount of time to wait for next SCAP edge before deciding sensor has failed.

OUTPUTS

Registers:

- DT12SA = See above.
- IMAP WORD = See above.
- ISF = See above.
- LONG_DT12SA = See above.
- LONG_MAPCNT = See above.
- MAP = See above.
- MAP PIPCNT = See above.
- MAP_FREQ = See above.
- MAP WORD = See above.

- MAPCNT = See above.

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- MAPUP_NORM = See above.
- MAPWBAR = Rolling average of MAP_WORD.

Bit Flags:

- ISF_UP_FLG = See above.
- LONG_ISF_UP_FLG = See above.
- LONG_MAP_AVG = See above.
- LONG_MAP_FST = See above.
- MFMFLG = See above.
- MUPET_FLAG = See above.

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: SYSEQ_MAP_COM1

```
LONG MAP AVG = 1 -----
                                 AND - LONG MAP FST = 1
 (need long MAP average)
                                        fractot = LONG_ISF + lsf +
MAP PIPCNT >=
                                                     LONG_MAPCNT
     (MAP_CYCLE * ENGCYL) -----|
                                        MAP FREO =
                                         (fractot * 0.5) /
 (enough PIPs have passed)
 LONG_DT12SA
                                        Call Subroutine "MAP_CALC"
                                        LONG DT12SA = 0
                                        LONG MAPCNT = 0
                                        MAP\_PIPCNT = 0
                                        LONG ISF UP FLG = 1
                                        --- ELSE ---
LONG_MAP_AVG = 0 ------
 (need normal MAP average)
                                         (normal MAP average)
                                 |AND - | LONG_MAP_FST = 0
MAPCNT >= (MAPEDG - 1.0) -----
                                        fractot = MAPCNT + lsf
 (enough edges to average)
                                        MAP FREQ =
                                              (fractot * 0.5) /
                                DT12SA
ISF UP FLG = 0 -----|
                                        Call Subroutine "MAP_CALC"
                                        LONG DT12SA = 0
                                        LONG\_MAPCNT = 0
                                        MAP\_PIPCNT = 0
                                        LONG_ISF_UP_FLG = 1
                                        --- ELSE ---
LONG_MAP_AVG = 1 ------|
 (need long MAP avg)
                                         (normal MAP average during
                                          first long MAP average)
LONG MAP FST = 0 ----- | AND - |
                                        LONG_MAP_FST = 0
                                        fractot = MAPCNT + lsf
 (first time for long MAP)
                                        MAP_FREQ =
MAPCNT >= (MAPEDG - 1.0) -----|
                                               (fractot * 0.5) /
(enough edges to average)
                                        Call Subroutine "MAP CALC"
                                        --- ELSE ---
LONG MAP AVG = 1 -----
LONG MAP FST = 1 ----- | AND - |
                                        ISF\_UP\_FLG = 1
                                        DT12SA = 0
MAPCNT >= (MAPEDG - 1.0) -----
                                        MAPCNT = 0
                                         (long MAP average without
                                          sufficient PIP's)
                                        --- ELSE ---
                                        Return
```

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

As each SCAP sensor edge is processed:

Clear MAP_INT flag (new SCAP transition available), then:

```
MAPOFL = 1 -----
(too many edges)
                     OR --|
CRKFLG = 1 -----
                          AND - MAP_FREQ = 1/(DATA TIME -
 (crank mode)
LAST_MAP2)
                                Call MAP_CALC
MAPCNT >= 1 -----
 (average over two periods)
                                --- ELSE ---
MAPOFL = 1 -----
               OR -- I
CRKFLG = 1 -----|
                     AND -
MAPCNT < 1 -----
                          OR -- MAPCNT = MAPCNT + 1
CRKFLG = 0 -----
                                 (increment SCAP edge counter)
                    AND -
ISF_UP_FLG = 0 -----
(not 1st SCAP after PIP)
                                --- ELSE ---
CRKFLG = 0 -----
                                     (DATA_TIME - LAST_HI_PIP)
                          AND -
                                ISF = -----
ISF_UP_FLG = 1 -----
                                     (DATA_TIME - LAST_MAP)
                                ISF_UP_FLG = 0
(this is 1st SCAP after PIP)
                                MAPCNT = ISF
                                 (calculate inital sample fraction)
```

After incrementing MAPCNT, check the following:

MAPCNT >= MAX_SCAP_EDGES ----- MAPOFL = 1 (too many SCAP edges)

NOTE: MAX_SCAP_EDGES is set to 28 and must not be changed. This prevents

the registers "MAPCNT" and "FRACTOT" from overflowing if an additional SCAP

edge comes in before PIP and allows for the addition of the last sample

fraction to "FRACTOT" without an overflow check.

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

CRKFLG = 0		
LONG_MAP_AVG = 1 (need long MAP avg)	 AND	LONG_ISF_UP_FLG = 0 LONG_ISF = ISF
LONG_ISF_UP_FLG = 1 (this is 1st SCAP after PIP) LONG_MAP_AVG = 1 LONG_ISF_UP_FLG = 0	: :	ELSE LONG_MAPCNT = LONG_MAPCNT + 1 (increment SCAP edge counter)
Additionally: Set LAST_MAP2 = LAST_ Set LAST_MAP = DATA_T Set NEW_MAP flag edge) Set MDELTA = LAST_MAN	_ FIME	(move time of previous SCAP edge) (store time of current SCAP edge) (notify self test of new T MAP2 (time between SCAP edges)
SEC MDELIA = LASI_MAI	- LAS	I_MAPZ (time between SCAP edges)

10/21/2000 LHBH1.TXT

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBHO PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

The subroutine "MAP CALC" consists of the conversion routine for MAP

frequency into MAP_WORD. The logic below is describing the method to perform

the conversion in the least number of steps. A partial example of

MAP_FREQ < MAPBK1 ------|AND - | IMAP_WORD = SLOPE1 * FMAP1 - OFSET1 MAP FREQ < FMAP1 -----MAP_FREQ >= MAPBK3 -----| MAP FREQ >= MAPBK5 ----- | AND -IMAP_WORD = SLOPE6 * FMAP2 - OFSET6 MAP FREQ >= FMAP2 -------- ELSE ---MAP_FREQ < MAPBK3 -----|AND - | IMAP_WORD = SLOPE1 * MAP_FREQ -OFSET1 MAP FREQ < MAPBK1 -----| --- ELSE ---MAP_FREQ < MAPBK3 -----AND -IMAP_WORD = SLOPE2 * MAP_FREQ -OFSET2 MAP_FREQ < MAPBK2 -------- ELSE ---OFSET3 --- ELSE ---MAP_FREQ < MAPBK5 -----IMAP_WORD = SLOPE4 * MAP_FREQ -AND -OFSET4 MAP FREO < MAPBK4 -------- ELSE ---MAP_FREQ < MAPBK5 ----- | IMAP_WORD = SLOPE5 * MAP_FREQ -OFSET5 --- ELSE ---

| IMAP_WORD = SLOPE6 * MAP_FREQ - OFSET6

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

After the calculation of MAP_WORD, complete the following:

Set ISF_UP_FLG = 1 Set DT12SA = 0 Set MAPCNT = 0	(New MAP value for AEMAP calculation) (Ready to restart MAP calculation) (Clear normal MAP time accumulator) (Clear normal MAP edge counter) (New MAP value for MAP normalizing routine)			
V_VACFLG = 0	MFMFLG = 0 MAP_WORD = IMAP_WORD MAPWBAR = ROLAV(MAP_WORD, TCMAPW) MAP = IMAP_WORD ELSE MFMFLG = 1			
MAPUP_NORM = 1	MAPWBAR = ROLAV(MAP_WORD,TCMAPW)			
	Do not calculation MAPWBAR			

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

In the background module CNVRT, perform the following:

```
MFMFLG = 1 -----
 (MAP sensor failure)
                                 AND - (crank mode and SCAP
                                 sensor
CRKFLG = 1 -----|
                                          have failed)
 (in crank)
                                        MAP = 29.875
                                        MAP WORD = 29.875
                                        MFMFLG = 1
                                        MUPET_FLAG = 1
                                        MAPUP\_NORM = 1
                                        --- ELSE ---
MFMFLG = 1 -----|
MAPTMR >= VMPMAX -----| OR --|
(time since last edge too long)
LAST_MAP2 = LAST_MAP -----
                                 |AND - | (SCAP sensor failed to
start
 (MAP sensor did not start)
                                        or has stopped; TP
okay)
                                        MAP = FN095(TP\_REL)
TFMFLG = 0 -----
                                        MAP_WORD = FN095(TP_REL)
 (throttle position sensor okay)
                                        MFMFLG = 1
                                        MUPET_FLAG = 1
                                        MAPUP_NORM = 1
                                        --- ELSE ---
MFMFLG = 1 -----
MAPTMR >= VMPMAX -----| OR --|
LAST MAP2 = LAST MAP -----
                                  AND -
                                        MAP = MAPFMM
                                        MAP WORD = MAPFMM
TFMFLG = 1 ------
                                        MFMFLG = 1
 (throttle sensor failure)
                                        MUPET_FLAG = 1
                                        MAPUP NORM = 1
                                        (SCAP sensor never
                                      started
                                       or has stopped; TP
                                      sensor
                                          has also failed)
                                        --- ELSE ---
                                        Calculate MAP and
                                      MAP_WORD
                                         in the normal manner in
                                         "Foreground MAP"
```

SYSTEM EQUATIONS, MANIFOLD ABSOLUTE PRESSURE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

APT = 1 (at wide open throttle)		
UNDSP = 0 (in run mode) average)	AND -	LONG_MAP_AVG = 1 (need to do long MAP
LONG_MAP_RQD = 1 (long average requested when above		ELSE
conditions are met)		LONG_MAP_AVG = 0

SYSTEM EQUATIONS, ENGINE SPEED CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ENGINE SPEED CALCULATION (EQNCALC)

OVERVIEW

The rpm calculation is performed in background if the foreground has signaled that a new PIP period is available for calculation - (NEW_RPM = 1). If the time since last PIP up-edge is >= 800 msec, rpm is set to zero.

DEFINITIONS

INPUTS

Registers:

- DNDTI = Rate of change of Engine rpm.
- DT_DNDT = Time delta between PIP up-edges used to calculate current
 and
 previous values of N.
- LAST_HI_PIP = Time of last PIP up-edge.
- N = Engine rpm.
- N_PREV = Previous value of N.
- TSLPIP = A timer that indicates the time since last PIP low-to-high transition.

Bit Flags:

- FIRST_RPM = Flag indicating first PIP received.
- NEW_RPM = Flag indicating new PIP information is available for calculation of rpm.

Calibration Constants:

- ENGCYL = Number of PIPs (or injections) per revolution.
- STALLN = Stall rpm; If the first rpm calculated is greater than this

value assume that there was a re-init.

- TCNDT_ISC = Time constant for DNDT_ISC.
- TCNDT SPK = Time constant for DNDT SPK.

OUTPUTS

Registers:

- DNDT_ISC = A derivative of rpm (filtered).
- DNDTI = See above.

SYSTEM EQUATIONS, ENGINE SPEED CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- DNDT_SPK = Filtered rate of change of rpm for OSCMOD.
- FIRST_RPM = See above.
- N = See above.
- N_BYTE = Byte value of N.
- N_PREV = See above.
- NBAR = Filtered engine rpm.
- NEW_RPM = See above.
- PREV_N_PIP = Time of previous high PIP used for rpm calculation.

Bit Flags:

- FIRST_PIP = Flag indicating first PIP has been received.
- REFLG = Re-init flag; 1 -> re-init occurred, 0 -> no re-init.

SYSTEM EQUATIONS, ENGINE SPEED CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

TSLPIP $>= 800 \text{ msec } --- \mid \text{FIRST PIP} = 0$ (engine is stopped) REFLG = 0N = 0 $N_BYTE = 0$ $N_PREV = 0$ $\overline{DNDTI} = 0$ DNDT_ISC = 0 DNDT_SPK = 0 NBAR = 0Do FIRST_RPM and REFLG Logic (below) Look up normalized N EXIT RPM LOGIC --- ELSE --- $NEW_RPM = 1 ---- NEW_RPM = 0$ (new PIP information $N_PREV = N$ N = 60/(ENGCYL * PIP period)is available for calculation of rpm) N_BYTE = byte value of N (resolution = 16, max value = 4080) DNDTI = (N - N PREV)/DT DNDTDNDT_ISC = ROLAV(DNDTI,TCNDT_ISC) DNDT_SPK = ROLAV(DNDTI,TCNDT_SPK) PREV_N_PIP = LAST_HI_PIP Calculate NBAR Do FIRST_RPM and REFLG Logic (below) Look up normalized N EXIT RPM LOGIC --- ELSE ---No action EXIT RPM LOGIC

WHERE: DT_DNDT = Time of current PIP up-edge (LAST_HI_PIP) minus the time of the PIP up-edge last used to calculate N (PREV_N_PIP).

NOTE: PREV_N_PIP IS INITIALIZED TO THE TIME OF THE FIRST HI PIP IN FOREGROUND.

SYSTEM EQUATIONS, ENGINE SPEED CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FIRST_RPM and REFLG LOGIC

SYSTEM EQUATIONS, SPEED DENSITY AIR MASS CALCULATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SPEED DENSITY AIR MASS CALCULATION

OVERVIEW

The total air mass flow into the engine (AMPEM) is computed from the basic equation:

Mass = Pressure * Volume / (Gas Law Constant * Temperature in Rankine)

Because the pressure can not be directly computed it is inferred from engine speed and manifold absolute pressure and a table of volumetric efficiency as a function of engine speed and load. BASEMD must be calibrated to provide

 ${\tt AMPEM}$ and ${\tt AMPEMT}$ are calculated in the same manner but use $% {\tt AMPEM}$ unique $% {\tt AMPEM}$ are calculated in the same manner but use $% {\tt AMPEM}$

the engine volume for this calculation as well as the Gas Law Constant.

multipliers from functions of air charge temperature and volumetric $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1$

efficiency. AMPEM and AMPEMT both get EM (EGR mass) subtracted from them in

 AMT is only used for air mass in the torque calculation. AM is used

everywhere else that air mass is required.

DEFINITIONS

INPUTS

Registers:

- ACT = Air Charge Temperature in degrees Fahrenheit (input to FN305).
- ACT(DEG R) = ACT in degrees Rankine (not displayed).
- AM = Air Mass (input to FN074A).
- BP = Barometric Pressure " Hg (input to PEXH equation).
- BPCOR = Barometric Pressure Corrected [output from FN004(BP)].
- ECT = Engine Coolant Temperature in degrees Fahrenheit (input to FN326).
- MAPWBAR = Rolling average of Manifold Absolute Pressure Word (" Hg).
- MAP WORD = Manifold Absolute Pressure " Hq.
- N = Engine speed.
- $NORM_MAPOPE21$ = The output from the evaluation of FN021(MAPOPE), the

MAPOPE normalizing function (input to FN1320).

- NORM_N070 = The output from the evaluation of FN070(N), the engine speed normalizing function (input to FN1320).

- PEXH = Absolute exhaust pressure " $^{\rm Hg}$ (not displayed) = FN074(AM) * (29.75/BPCOR) + BP

SYSTEM EQUATIONS, SPEED DENSITY AIR MASS CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Calibration Constants:

- BASEMD = 0.0234393 * Engine Displacement in Liters (lbm deg R/in.
 Hg rev).
- FN004(BP) = Empirical correction to PEXH for altitude with input a function of barometric pressure.
- FN074A(AM) = Exhaust pressure as a function of air flow. NOTE: FN074A $\,$

should be corrected to sea level when mapping the data. [Exhaust

Pressure (Gauge) * BP / 29.875]

- FN305(ACT) = Multiplier of air mass as a function of Air Charge Temperature in degrees Fahrenheit.
- FN326(ECT) = Multiplier of air mass as a function of Engine Coolant Temperature in degrees Fahrenheit.
- FN405(ACT) = Multiplier of air mass as a function of Air Charge

Temperature, degree F.

- FN1320(NORM_N070,NORM_MAPOPE21) = TABLVF is a 10 x 10 table of volumetric efficiency multipliers for air mass as a function of

NORM_N070,

normalized engine speed, and NORM_MAPOPE21, normalized MAPOPE.

- $FN1420(NORM_N070,NORM_MAPOPE21) = 10 \times 10$ table of volumetric efficiency

multipliers for air mass as a function of NORM_N070, and NORM_MAPOPE21, normalized MAPOPE.

- KVEFF = AMPEM and AMPEMT multiplier.

SYSTEM EQUATIONS, SPEED DENSITY AIR MASS CALCULATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- AMPEM = Air mass flow plus EGR mass flow, lb/min.
- AMPEMT = Air mass flow plus EGR mass flow, lb/min.
- MAPOPE = MAP_WORD/PEXH.
- MAPWBG = MAP_WORD updated once per background pass. Used in fuel pulsewidth calculation.

PROCESS

STRATEGY MODULE: EQSDMA_LL

Store the current value of MAP_WORD for this background pass:

MAPWBG = MAP_WORD

Compute the value of AMPEM and AMPEMT:

AMPEM = KVEFF * BASEMD * FN305(ACT) * FN326(ECT) * FN1320(NORM_N070,NORM_MAPOPE21) * MAPWBG * N/ACT(deg R)

AMPEMT = KVEFF * BASEMD * FN405(ACT) * FN326(ECT) * FN1420(NORM_N070,NORM_MAPOPE21) * MAPWBAR * N/ACT(deg R)

SYSTEM EQUATIONS, ROLLING AVERAGE ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ROLLING AVERAGE ROUTINE (ROLAV/UROLAV)

OVERVIEW

The EEC-IV filters inputs using a rolling average routine. This routine requires a time constant, a sampling rate, an old average, and a new value to compute the new average. The equation is:

NEW AVERAGE = FILTER CONSTANT * NEW VALUE + (1 - FILTER CONSTANT) * OLD AVERAGE

where FILTER CONSTANT = 1/(1 + TIME CONSTANT / SAMPLE RATE); the
sampling
rate is the time elapsed between new calculations. For most
filters, the
sampling rate will equal the background loop time. The time constant
is a
function of the input being filtered. When the (NEW VALUE - OLD
AVERAGE) *
FILTER CONSTANT is less than the bit resolution of new average, the
old
average is incremented or decremented by 1 bit per calculation until
the new
average equals the new value. The strategy will specify rolling
average
filters using the following structure:

DEFINITIONS

INPUTS

Registers:

- FK_TMR = sampling rate (seconds).
- old average = Last output from filter routine.
- new value = Most recent value of input to be filtered.

OUTPUTS

Registers:

- new average = Latest filtered value.

SYSTEM EQUATIONS, ROLLING AVERAGE ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

--- ELSE ---

average

average)

new average = old

| (new value - old

+ FK *

SYSTEM EQUATIONS, ROLLING AVERAGE ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

INPUT LIST FOR ROLLING AVERAGE FILTER ROUTINE

new value	old average	FK_TMR	TCxxxx
AM/(ENGCYL*N) EGRACT'	ARCHG EGRACT	BG_TMR BG_TMR	TCTTA TCEACT
DELOPT'	DELOPT	BG TMR	TCDLOP
TP	DSTPBR	BG_TMR	TCDASU
TP	DSTPBR	BG_TMR	TCDASD
DSDRPM	DESNLO	BG_TMR	TCDESN
TP	AETP	BG_TMR	TCAETP
EVP	EGRBAR	BG_TMR	TCEGR
MAP	MAPBAR	BG_TMR	TCMBAR
IECT	ECT	BG_TMR	TCECT
ACT	ECT	BG_TMR	TCECT
MAPAEF	AEMAP	AEMTMR	TCAEMP
N	NBAR	BG_TMR	TCN
N	NEBART	BG_TMR	TCNE
VBAT'	VBAT	BG_TMR	TCVBAT
TP	TPBAR	BG_TMR	TCTP
TP	TAPBAR	BG_TMR	FN093
TP	TPBARTV	BG_TMR	TCTPTV
TP	TPBARTC	BG_TMR	TCTPTC
TP	TPBART	BG_TMR	TCTPTE
TAR'	TAR	BG_TMR	TCTAR
VS	VSBAR	BG_TMR	TCVS
VS	VSBART	BG_TMR	TCVST
MAP+FN1033*BP	BPPTWT	BG_TMR	TCBP
IEGO	EGOBAR	BG_TMR	VTCEGO
TP	TBART	BG_TMR	TCTPT
TP_REL-TP_REL_LST	TPDLBR	BG_TMR	TCTPDL
DNDTI	DNDT_SPK	DT_DNDT	TCNDT_SPK
DNDTI	DNDT_ISC	DT_DNDT	TCNDT_ISC
SPK_IDLE	SPK_RAMP	BG_TMR	TCRAMP
RPMERR	RPMERR_A	BG_TMR	TCBPA
RPMERR	RPMERR_S	BG_TMR	TCFBS

SYSTEM EQUATIONS, ROLLING AVERAGE ROUTINE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CALIBRATION PHILOSOPHY

1. The values for the time constants in the base calibration were calculated $\ \ \,$

using the filter constants in the base calibration an assumed background $% \left(1\right) =\left(1\right) +\left$

loop time of 25 msec, and the following equation:

time constant = [(1/filter constant) - 1] * sample rate
(Sample rate approximately equals background loop time for most
filters.)

2. Several filter constants were previously non-calibratable. With ${\tt EMR}$

8-059, the time constants for these become calibratable. The effective

time constants for these have been increasing as the background loops $% \left(1\right) =\left(1\right) \left(1$

have increased. This could develop into some problems in the calibration

if the time constants were to suddenly change, so the values in the base

calibration are equal to the current effective time constant (assume 25

msec loop time).

3. In previous releases the filter constant was the $% \left(1\right) =\left(1\right) +\left(1\right)$

This gave an increasing time constant as rpm (loop time) increased. Now

the time constant is fixed. All filters will act differently with the

implementation of EMR 8-059.

SYSTEM EQUATIONS, TCSTRT, ACSTRT, INIT_TOT ROUTINE - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

TCSTRT, ACSTRT, AND INIT_TOT ROUTINE

OVERVIEW

This routine computes TCSTRT (engine coolant temperature), ACSTRT (air charge

temperature), and INIT_TOT (transmission oil temperature) at start-up. If

one or more of the sensor readings are out-of-range, the other sensor's

reading is substituted as indicated in the logic below.

DEFINITIONS

INPUTS

Registers:

- ACT = Air charge temperature, deg F.
- ECTCNT = Number of times that ECT sensor input was read.
- IECT = A/D conversion of ECT sensor, counts.
- PUTMR = Power-up timer, sec.

Calibration Constants:

- ECTMAX = Maximum valid A/D value for ECT sensor, counts.
- ECTMIN = Minimum valid A/D value for ECT sensor, counts.
- FN703(IECT) = Transfer function for ECT sensor.
- TKYON2 = Time at which BPKYON, TCSTRT, & ACSTRT updates begin
 (NOT
 calibratable).
- TOTMAX = Maximum allowable Transmission Oil Temperature counts.
- TOTMIN = Minimum allowable Transmission Oil Temperature counts.

OUTPUTS

Registers:

- ACSTRT = ACT at start-up; arithmetic average of first 8 readings, deg F.
- ECTCNT = See above.
- INITTOT = Transmission Oil Temperature at start-up; arithmetic average of
 - the first 8 Transmission Oil Temperature readings.
- TCSTRT = ECT at start-up; arithmetic average of first 8 readings, deg F.

SYSTEM EQUATIONS, TCSTRT, ACSTRT, INIT_TOT ROUTINE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS PUTMR > TKYON2 -----AND - ECTCNT = ECTCNT + 1 ECTCNT < 8 -------- ELSE ---Exit Routine Do NOT update TCSTRT, ACSTRT, INIT_TOT, or ECTCNT IECT <= ECTMAX -----AND - TCSTRT = TCSTRT + FN703(IECT)/8 IECT >= ECTMIN -------- ELSE ---TCSTRT = TCSTRT + ACT/8 ITOT <= TOTMAX -----|AND - | INIT_TOT = INIT_TOT + FN703D(ITOT)/8 ITOT >= TOTMIN -----| --- ELSE ---IECT <= ECTMAX -----AND - INIT_TOT = INIT_TOT + FN703(IECT) /8 IECT >= ECTMIN -------- ELSE ---INIT_TOT = INIT_TOT + ACT/8

SYSTEM EQUATIONS, PIP NOISE FILTERING - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PIP NOISE FILTERING

OVERVIEW

In the EEC-IV system, there is a method of noise blanking to eliminate some of the noise that occurs on the PIP input. There is a PIP up edge to PIP up edge filter. An interval value is usually picked out of a table and is in the units of clock ticks. The equivalent millisecond value of this time corresponds to some high value of engine rpm. If a pip up edge follows a previous PIP up edge at an interval less than this time, then that pip up edge is treated as noise.

The table value (TABVAL) is divided by four and is used to filter the PIP up edge to PIP down edge interval. If the computed time from the PIP down edge to the previous PIP up edge is less than (TABVAL/4), then that PIP down edge is ignored.

A typical value for the table value would be the equivalent time interval for the PIP input at maximum engine rpm. For an 8 cylinder engine, the value would be: 2.5 milliseconds (833 clock ticks for 12 MHz).

SYSTEM EQUATIONS, POWER MODE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

POWER MODE (PWRMODE)

OVERVIEW

This module determines Power-On or Power-Off mode and set the flag, FLG_PWR

accordingly. If the throttle position is greater than the sum of the minimum

throttle position, RATCH, and some calibratable delta, DELTAT, then the

engine/transmission is considered to be in the Power-On mode.

Otherwise, the

engine/transmission is considered to be in the Power-Off mode.

Hysteresis is

provided for mode stability.

actual speed ratio (SPD_RATIO). If the speed ratio is greater than some $\,$

calibratable \min , SPD_PM, then the mode is considered to be Power-Off.

Again, hysteresis is provided for mode stability.

DEFINITIONS

INPUTS

Registers:

- SPD RATIO = Speed Ratio.
- RATCH = Kicker off lowest filtered throttle position.
- TP = Throttle position, counts.
- TP_REL = Relative Throttle Position, TP RATCH.

Bit Flags:

- TFMFLG = Flag indicating TP sensor is in/out of range.

Calibration Constants:

- DELTAT = Part throttle to closed throttle breakpoint for Power mode.
- HYSTSPD = Hysteresis for SPD_PM for FMEM Power mode.
- HYSTST = Hysteresis for DELTAT for Power Mode.
- SPD_PM = Minimum Speed Ratio for Power-Off mode.

OUTPUTS

Bit Flags:

- FLG_PWR = Power Mode flag; 1 -> Power-On mode, 0 -> Power-Off mode.

SYSTEM EQUATIONS, POWER MODE - LHBH0 PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

SYSTEM EQUATIONS, COLD TEMPERATURE TV SOLENOID OPERATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

COLD TEMPERATURE TV SOLENOID OPERATION

OVERVIEW

The amount of Engagement TV pressure is a function of the Transmission Oil

Temperature, TOT. This logic sets the flag, FLG_TVENG_CD , if the TOT sensor

indicates cold and the flag, FLGTVENG_CD if moderately cold.

FLG_TVENG_CD will be cleared when the time since the first engagement

exceeds a calibratable value, even if TOT does not increase.

The amount of start-up TV is a function of TOT also. This logic sets the flag, FLG_TVSTR_CD if the TOT sensor indicates cold temperature.

DEFINITIONS

INPUTS

Registers:

- TSFETMR = Time since first transmission engagement, sec.
- TOT = Transmission Oil Temperature, deg. F.

Calibration Constants:

- CD_TVENG_TM = Maximum time since the first transmission engagement to use TVEMAX engagement TV, sec.
- TOTTV1 = Maximum TOT to use TVCHRG for start-up, deg F.
- TOTTV2 = Minimum ECT to use TVEMAX engagement TV, deg F.
- TOTTV3 = Minimum ECT to use TVEMOD engagement TV, deg F.

OUTPUTS

Bit Flags:

- FLG_TVENG_CD = Flag which indicates cold temperature for engagement TV:
 - 0 -> Don't use TVEMAX in engagement TV; 1 -> Use TVEMAX in engagement TV.
- FLG_TVENG_MD = Flag which indicates moderate temperature for engagement
 - TV: 0 -> Don't use TVEMOD in engagement TV; 1 -> Use TVEMOD in engagement TV.
- FLG_TVSTR_CD = Flag which indicates cold temperature for start-up TV: 0
 - -> Don't use TVCHRG in start-up TV; 1 -> Use TVCHRG in start-up TV.

SYSTEM EQUATIONS, COLD TEMPERATURE TV SOLENOID OPERATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

SYSTEM EQUATIONS, DYNAMIC TV DUE TO COLD TRANSMISSION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DYNAMIC TV DUE TO COLD TRANSMISSION

OVERVIEW

The accumulator pressure is the hydraulic pressure used to apply, release,

and hold the various clutches and bands in the transmission during shifts.

When the transmission is not shifting, the hydraulic pressure is determined

by the line pressure. The accumulator pressure is less than the

pressure. Therefore, it is necessary to add additional hydraulic pressure

via the TV solenoid during shifts. This additional pressure is called

"dynamic TV."

The accumulator in the E4OD transmission may stick when the transmission is

 $\ensuremath{\mathsf{cold}}.$ When the accumulator sticks, the transmission always operates with

accumulator pressure; during shifts and during steady-state gear conditions.

Of course, the pressure is inadequate during the steady-state conditions, $% \left(1\right) =\left(1\right) +$

since the EEC-IV is not adding the additional TV which is $% \left(1\right) =\left(1\right) +$

shifts. With inadequate pressure, the transmission is unable to transmit

large amounts of torque.

Therefore, logic is needed to also add dynamic TV when conditions exist, such

that the accumulator may stick.

DEFINITIONS

INPUTS

Registers:

- TOT = Transmission Oil Temperature.

Calibration Constants:

- ${\tt TOTTV4}$ = The maximum temperature where it is no longer necessary to add

dynamic TV due to the accumulator sticking.

OUTPUTS

Registers:

- FLG_DYN_CD = Flag which indicates that it is necessary to add dynamic TV

due to cold transmission conditions.

SYSTEM EQUATIONS, DYNAMIC TV DUE TO COLD TRANSMISSION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: EQCOLDTV_LH

TOT < TOTTV4 ----- | FLG_DYN_CD = 1

--- ELSE ---

 $FLG_DYN_CD = 0$

SYSTEM EQUATIONS, COLD SHIFT MULTIPLIER - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

COLD SHIFT MULTIPLIER (CS_SFT_MULT)

OVERVIEW

During cold weather starts/drives, the initial shifts of the transmission $\ \ \,$

seem delayed. This impression results from the decrease in engine torque

during the early part of the cold start. Therefore, strategy which computes

shift schedules as a function of the initial $Transmission\ Oil\ Temperature,$

TOT, (temperature at the time of the start), as well as the $% \left(1\right) =\left(1\right)$

The strategy shown below sets CS_SFT_MULT , the cold start shift multiplier,

to a \mbox{value} other than one, when cold transmission conditions exist. Cold

transmission conditions exist when the actual TOT is $\$ not $\$ greater $\$ than the

initial TOT by some calibratable value. The multiplier is then applied to

the appropriate shift curve to alter the shift schedules such that the shifts

occur earlier during cold weather conditions.

The cold weather strategy output CS_SFT_MULT , is also used in the

unconditional converter clutch unlock strategy. When CS_SFT_MULT is not

equal to one, the converter clutch is unconditionally unlocked; i.e., when

cold transmission conditions exist, the converter clutch is kept unlocked.

Cold shift schedule logic will be disabled when the time since the first $% \left(1\right) =\left(1\right) +\left$

engagement exceeds a calibratable value, even if TOT has not increased.

 ${\tt CS_SFT_MULT}$ is also used to raise the vehicle speed where shifts $\mbox{ occur}$ when

an ETV overcurrent condition has been detected (OFMFLG = 1) to provide better

drivability during torque limiting operation.

SYSTEM EQUATIONS, COLD SHIFT MULTIPLIER - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- TOT = Transmission Oil Temperature, deg F.
- TSFETMR = Time since the first transmission engagement, sec.

Bit Flags

- OFMFLG = Flag, when set, indicates an ETV solenoid overcurrent.

Calibration Constants:

- CS_MAX_TIME = Maximum time allowed in cold start shift schedules.
- CS_MUL = Cold Start Multiplier.
- FN690(INIT_TOT) = Temperature required to leave cold start
 shift
 schedules.
- OFM_MUL = Shift schedule multiplier for ETV solenoid overcurrent.

OUTPUTS

Registers:

- CS_SFT_MULT = Cold Start Shift Multiplier.

PROCESS

TRANSMISSION INPUT CONVERSIONS, MLPS CONVERSION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MLPS CONVERSION

OVERVIEW

This strategy is a fully calibratable control strategy to allow the use of $\ a$

 six position Manual Lever Position Sensor (MLPS) combined with the

Transmission Control Switch (TCS-if present). As defined by TAPME, all

transmissions have three forward positions, neutral, reverse and park. The

three forward positions are overdrive, second (if TCS present) or \mbox{drive} (if

no TCS present) and first. The second to last PRNDL position is calibratable $\,$

to second or drive using the MLPS_2 parameter discussed later.

The analog MLPS input is decoded into IPDL to give one of six positions. In

this decoding, deadbands can be calibrated between each position range. The

calibration constants PARKHI, PARKLO, REVHI, REVLO, NEUHI, NEULO, ODHI, ODLO,

 ${\tt MLPS_2HI}\,,$ ${\tt MLPS_2LO}\,,$ ${\tt MAN1HI}\,,$ and ${\tt MAN1LO}$ are the parameters for each

corresponding PRNDL position band.

DEFINITIONS

INPUTS

Registers:

- INDS = Input from manual lever position sensor (MLPS) in counts.
- IPDL = Unverified PRNDL position.
- IPDL_LST = Last unverified PRNDL position.
- PDL = Verified PRNDL position.
- TM_PDL_RES = Input residence timer.

Bit Flags:

- FLG_TCS = Transmission control switch flag.
- PARK_ERR = High vehicle speed in park error flag; 1 -> High vehicle speed
 - in park band error, 0 -> Vehicle speed in park range.
- PDL_ERROR = PRNDL error flag; 1 -> PRNDL error, 0 -> PRNDL in range.

Calibration Constants:

- FMMMLP = IPDL value when PDL_ERROR is present.
- MAN1HI = MLPS manual 1 position band high limit.

- MAN1LO = MLPS manual 1 position band low limit.
- MLPS_2 = IPDL value when MLPS is in the second to last position;
 2 ->
 Manual 2 has been selected (TCS present), 3 -> Drive

mode/Overdrive
cancel has been selected (no TCS present).

TRANSMISSION INPUT CONVERSIONS, MLPS CONVERSION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- MLPS_2HI = MLPS second to last position band high limit.
- MLPS_2LO = MLPS second to last position band low limit.
- NEUHI = MLPS neutral position band high limit.
- NEULO = MLPS neutral position band low limit.
- ODHI = MLPS overdrive position band high limit.
- ODLO = MLPS overdrive position band low limit.
- PARKHI = MLPS park position band high limit.
- PARKLO = MLPS park position band low limit.
- PDLTIM = PRNDL load residence time.
- REVHI = MLPS reverse postion band high limit.
- REVLO = MLPS reverse position band low limit.

OUTPUTS

Registers:

- IPDL = Unverified PRNDL value.
- IPDL LST = Last unverified PRNDL value.
- PDL = Verified PRNDL value.
- PDL LST = Last verified PRNDL value.

Bit Flags:

- PARK_ERR = See above.
- PDL ERROR = See above.

TRANSMISSION INPUT CONVERSIONS, MLPS CONVERSION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: INTRN_MLPS_CONV_COM1

As the PRNDL switch moves from position to position, the next contact is made before the current contact is broken. This prevents sensing an open

circuit condition during PRNDL transitions.

To convert voltage to counts in the INDS register:

To record the last PDL and IPDL before processing a new one.

```
always ----- | PDL_LST = PDL | IPDL_LST = IPDL
```

TRANSMISSION INPUT CONVERSIONS, MLPS CONVERSION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

To verify the INDS signal is in an allowable range and convert the counts into a PRNDL position.

PARKLO < INDS < PARKHI		
VS > VSPMIN	AND -	ipdl = FMMMLP PDL_ERROR = 1 PARK_ERR = 1
		ELSE
PARKLO < INDS < PARKHI		(PARK position) ipdl = 7 PDL_ERROR = 0
		ELSE
REVLO < INDS < REVHI		(REVERSE position) ipdl = 6 PDL_ERROR = 0
		ELSE
NEULO < INDS < NEUHI		(NEUTRAL position) ipdl = 5 PDL_ERROR = 0
		ELSE
ODLO < INDS < ODHI		(OVERDRIVE position) ipdl = 4 PDL_ERROR = 0
		ELSE
MLPS_2LO < INDS < MLPS_2HI		(MLPS_2 postion) ipdl = MLPS_2 PDL_ERROR = 0
		ELSE
MAN1LO < INDS < MAN1HI		(MANUAL 1 postion) ipdl = 1 PDL_ERROR = 0
		ELSE
		(ERROR detected) ipdl = FMMMLP PDL_ERROR = 1 PARK_ERR = 0

TRANSMISSION INPUT CONVERSIONS, MLPS CONVERSION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

To perform fault filtering and set SELF TEST code:

PDL_ERROR = 1			
	AND -	<pre>error_detected = 1 CALL FAULT FILTER 659 (HIGH VEHICLE SPEED IN PA FAULT FILTERING)</pre>	.RK
		ELSE	
PDL_ERROR = 1	 	error_detected = 1 CALL FAULT FILTER 634 (MLPS FAULT FILTERING)	
		ELSE	
		CALL FAULT FILTER 634 CALL FAULT FILTER 659	

To check if a TCS has been calibrated in and if Overdrive cancel has been selected:

MLPS_2 = 2 (TCS present)		
FLG_TCS = 1	AND -	IPDL = 3
(Overdrive canceled)	 	(Overdrive cancel/Drive position selected)
ipdl = 4		position selected,
(Overdrive mode selected)		
		ELSE
		IPDL = ipdl (let input pass through)

To verify that a new PRNDL position has been commanded:

IPDL <> IPDL_LST	<pre>TM_PDL_RES = PDLTIM (load residence timer)</pre>
<pre>TM_PDL_RES = 0 (MLPS reading is stable) through)</pre>	PDL = IPDL (let input value pass

TRANSMISSION INPUT CONVERSIONS, MLPS CONVERSION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 21

TIMERS

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TIMER SUMMARY

TIMER DESCRIPTION

A3CTMR Time between A3C state changes.

ADPTMR Adaptive fuel timer (seconds)

ATMR1 Time since start (time since exiting CRANK mode)

(seconds)

ATMR2 Time since engine coolant temperature became greater than

TEMPFB (seconds)

ATMR3 Time since entering run mode (seconds)

AWOTMR Time in wide open throttle (seconds)

BYPTMR Thermactor air bypass-enable timer (seconds)

CRKPIP_CTR PIP Counter for Cranking fuel

CTTMR Time at closed throttle timer (0.125 seconds)

EGRTMR EGR enabled timer (seconds)

HLTMR High load timer (0.125 seconds)

HMUTMR High MAPPA upstream air timer.

HTPTMR Heat protection timer (seconds)

IDLTMR Idle time (seconds)

ISCTMR RPM Sample/KAM Update Delay Timer (seconds)

LMBTMR Low MAP bypass timer (seconds)

LUTIMR Transmission lock-up control timer (0.125 seconds)

MPGTMR MPG mode control timer (seconds)

MULTMR Time since incrementing LAMMUL (0.001 seconds)

NACTMR Time not at closed throttle (seconds)

NDDTIM Time since neutral/drive switch state change (0.125

seconds)

OSCTMR OSCMOD delay timer (0.125 seconds)

PUTMR Time since CPU power-up (0.001 seconds)

SETTMR RPM Control Entry Delay Timer (0.125 seconds)

SHFTMR Shift in progress timer (0.125 seconds)

TARTMR Time since OLDTP was updated (0.001 seconds)

TIMERS - LHBH0

PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

TSLEGO Time since last EGO switch (0.001 seconds)

TSLPIP Time since last PIP (0.001 seconds)

 $V_{NACTMR_CUM} \quad \text{Accumulative time at part WOT}$

VOLTMR Time of low battery voltage

WOTTMR Time at wide open throttle

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINTIONS

INPUTS

Registers:

- A3C = A/C clutch.
- APT = Register indicating throttle mode.
- ATMR1_LST = Last calculated value of ATMR1.
- BP = Barometric Pressure, in. Hg.
- CRKPIP_CTR = Foreground register to count PIPs for CRANK fuel.
- CRKPIP_CTR_BG = Background register equivalent of CRKPIP_CTR.
- DASPOT = Dashpot desired mass air flow.
- ECT = Engine Coolant Temperature, deg F.
- GEAR_CUR = Register indicating current transmission gear.
- MAPPA = MAP/BP, unitless
- MAP = Manifold Absolute Pressure, in. Hg.
- N = RPM.
- NEW PIP = New high PIP has occurred.
- NOVS = Engine speed over vehicle speed ratio, rpm/mph.
- N_BYTE = Byte form of engine speed, rpm.
- NLAST = RPM at P.T.; differentiates decel/idle.
- RPMERR_A = RPMERR(DESIRED RPM N) filtered for ISC.
- TPDLBR = Filtered change of TP.
- VBAT = Rolling average of IKYPWR.
- VSBAR = Rolling average of Vehicle Speed, mph.
- WRMEGO = EGO sensor should be warm flag.

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Bit Flags:

- CFMFLG = Flag indicating the ECT sensor is out of range.
- CRKFLG = Crank flag.
- FLG_STALL = Indicated a stall has occured.
- IDLFLG = Flag which is set to 1 when at closed throttle and below "IDLRPM"

rpm. See IDLTMR logic in this chapter.

- ISCFLG = Mode indicator flag.
- LESFLG = 1 -> EGO is not switching.
- MFMFLG = Flag indicating the MAP sensor has failed.
- MPGFLG = Flag that indicates Fuel Economy Mode if set to 1.
- OLFLG = Flag indicating open loop fuel control.
- UNDSP = Underspeed flag.

Calibration Constants:

- AFECT1 = Min. ECT for starting the adaptive fuel timer
- AFECT2 = Overtemp. ECT to disable adaptive learning
- BYRPM = Maximum RPM for closed throttle bypass.
- BYRPMH = Hysteresis for BYRPM.
- CHGTM = Time delay after leaving closed throttle to permit VOLTMR to decrement, sec.
- CRKCTR_RESET = CRKPIP_CTR reset switch; 1 -> reset CRKPIP_CTR upon stall.
- CRKPIPCNT2 = CRKPIP_CTR reset value for UNDERSPEED to CRANK transitions,
 sec.
- $CRKTMR_INC$ = Calibration switch which determines whether $CRKPIP_CTR$ counts

when the engine state is out of CRANK.

- DASCTL = Lower daspot limit to allow RPM control (PPM).
- EGRTD7 = Time delay to ramp EGR turn on.
- FN900(VSBAR) = Time delay before enabling MPG Mode as a function of vehicle
 - speed. NOTE: Vehicle Speed is always ZERO if a Vehicle Speed Sensor is not present.
- FN1360 = Stabilized Open Loop Fuel 8 X 10 table of lambda values as

a function of N and PERLOAD.

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- HIMAPF = Highest MAP that allows BYPTMR to count down.
- ${\tt HMUMAP}$ = A calibratable minimum MAPPA to increment ${\tt HMUTMR}$ for upstream air.
- HMUMPH = HMUMAP hysteresis term.
- IDLRPM = Max RPM for closed throttle mode idle, RPM.
- IDRPMH = Hysteresis for IDLRPM, RPM.
- ISCTM = Pacing to evaluate rate of change of engine speed.
- LAMRHYS = Hysteresis for LAMRICH.
- LAMRICH = Minimum lambse value for enrichment.
- LESTM = Time delay before forced open loop fuel after last ego switch (seconds).
- LMBMAP = Minimum decel MAP to increment LMBTMR.
- LOMAPF = Lowest MAP that allows BYPTMR to count up.
- LOWVOL = System voltage level, below which the battery is discharging, volts.
- MAPAHI = Maximum MAPPA value for MPG mode, unitless.
- MAPLO = Minimum MAP value for MPG mode, in. Hg.
- MAPLOH = Hysteresis for MAPLO, in. Hg.
- MAXTIM = Maximum time to wait for TAR change on SW TAR.
- MPAHIH = Hysteresis for MAPAHI, unitless.
- MPGCTH = Maximum ECT for Fuel Economy Mode, deg F.
- MPGCTL = Minimum ECT for Fuel Economy Mode, deg F.
- MPGGR = Minimum gear for Fuel Economy Mode.
- MPGNOV = Maximum NOV for Fuel Economy Mode, rpm/mph.
- MPGRPH = Hysteresis for MPGRPM, rpm.
- MPGRPM = Minimum RPM for Fuel Economy Mode, rpm.
- MPGRT = Minimum delay time to re-enter MPG mode once exited, sec.
- MPMNBP = Minimum BP for Fuel Economy Mode, in. Hg.
- MPNBPH = Hysteresis for MPMNBP, in. Hg.
- MPNOVH = Hysteresis term for MPGNOV, rpm/mph.
- NACTMR = Time at P.T. or WOT.

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- NDIF = Time dependent RPM limit to differentiate decel from idle.
- O_8500_{SW} = Calibration switch to select vehicle speed or transmission gear
 - for Fuel Economy Mode determination. "0" selects vehicle speed; "1" selects
 - transmission gear. Set to "1" only for over 8500 GVW aplications with E40D transmission.
- OLITD3 = Time to go back to closed loop fuel control (see Closed Loop/ Open
 - Loop Logic). Closed loop from IDLTMR = 0 to OLITD1, open loop fuel
 - ${\tt IDLTMR}$ = ${\tt OLITD1}$ to ${\tt OLITD3}$, then back to closed loop fuel when ${\tt IDLTMR}$ reset
 - to
 - O at OLITD3. Closed loop/Open loop feature can be calibrated out by setting OLITD3 to 255 sec.
- RAMPSW = Ramp EGR on switch; 0 -> ramp on every EGR turn on, 1 -> ramp
 - first egr turn on only.
- RPMDED = RPM deadband C/L ISC.
- SHFDLT = a calibration parameter giving $\ensuremath{\mathsf{TP}}$ change to infer $\ensuremath{\mathsf{M}}/\ensuremath{\mathsf{T}}$ shift.
- TEMPFB = Warm Engine Temperature
- VOLHYS = Hysteresis term for LOWVOL, volts.
- VOLTCLP = Maximum clip value to freeze VOLTMR at upper threshold.
- VSMPG = Minimum vehicle speed value for MPG mode, mph.
- VSMPGH = Hysteresis for VSMPG, mph.
- VSTYPE = Must be set to 1 if Vehicle Speed Sensor is present.

OUTPUTS

Registers:

- ATMR1 LST = See above.
- CRKPIP_CTR = See above.
- CRKPIP CTR BG = See above.
- NEW_PIP = See above.

TIMERS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Bit Flags:

- IDLFLG = See above.
- LESFLG = See above.
- MPGFLG = See above.
- MPGTFG = Flag indicating a transition from Fuel Economy Mode is in progress.

TIMERS - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: TIMER_LH

A3CTMR - A3C TRANSITION TIMER (0.001 sec)

The A3CTMR measures the time between A3C state changes.

always -----| Increment A3CTMR

A3CTMR is reset to 0 on any A3C transition - (LSTA3C - A3C <> 0 in successive background passes).

LSTA3C - A3C <> 0 ------ | LSTA3C = A3C (A3C state changed) | A3CTMR = 0

Where, LSTA3C is the last pass A3C flag.

ADPTMR - ADAPTIVE FUEL ENABLE TIMER

NOTE: These coolant temperature parameters should bracket normal engine coolant temperature range.

TIMERS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ATMR1 - TIME SINCE ENGINE START-UP

ATMR1_LST = ATMR1
(save last calculated value of ATMR1)
Increment ATMR1
(calculate new value)

--- ELSE ---

ATMR1_LST = ATMR1
(save last calculated value of ATMR1)
ATMR1 = 0

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ATMR2 - TIME SINCE ENGINE COOLANT TEMPERATURE BECAME GREATER THAN TEMPFB

NOTE: Except at power-up initialization; timer is used to delay closed loop fuel and EGR after a cold start.

TIMERS - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

ATMR3 - TIME SINCE ENTERING RUN MODE	
UNDSP = 0(RUN mode)	Increment ATMR3
AWOTMR - TIME AT WIDE OPEN THROTTLE	
APT = 1 (wide open throttle mode)	Increment AWOTMR
(wide open chrottle mode)	 ELSE
	AWOTMR = 0
BYPTMR - THERMACTOR AIR BYPASS-ENABLE TIMER LOMAPF < MAPPA < HIMAPF	
APT >= 0AND - (part or wide open throttle)	Increment BYPTMR Clip at BYMAP
WRMEGO = 1	 ELSE
	Decrement BYPTMR Clip at 0

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CRKPIP_CTR - PIP COUNTER FOR CRANKING FUEL

CRKPIP_CTR is used as a Crank Fuel Multiplier to do a lean-out or fuel shut-off during sub-zero cold operation. Some calibrators are using the logic to improve restarts following a stall during -20 deg F testing by turning off the fuel during the first seconds of crank. This allows the engine to restart on the residual fuel remaining in the manifold after the stall.

t way IPCNT2
RKPIPCNT2
CTR every
IP RKPIP_CTR
IP_CTR_BG

In Foreground PIP_DATA Module:

always ------ | Increment CRKPIP_CTR every | rising edge of PIP | Clip CRKPIP_CTR at 255 | as a maximum

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CTTMR - TIME AT CLOSED THROTTLE

APT = -1 (closed throttle mode)	<pre>Increment CTTMR ELSE CTTMR = 0</pre>			
EGRTMR - EGR ENABLED TIMER				
EGR ENABLED	Increment EGRTMR Clip at EGRTD7			
	ELSE			
RAMPSW = 0(ramp EGR on every time)	EGRTMR = 0 (prepare for next ramp)			
	ELSE			
RAMPSW = 1 (ramp EGR on first time only)	Freeze EGRTMR (do not ramp next time)			
HLTMR - HIGH LOAD TIMER The HLTMR delays Open Loop fuel control during crowds. Running Closed Loop fuel during crowds eliminates the need for Upstream Air during those conditions.				
FN1360 <= LAMRICH S Q -	Increment HLTMR			
FN1360 <= LAMRICH S Q -	ELSE			
j	HLTMR = 0			
HMUTMR - HIGH MAPPA UPSTREAM AIR TIMER				
MAPPA >= HMUMAP + HMUMPH S Q -	<pre>Increment HMUTMR HUMTMR_FLG = 1 ELSE</pre>			
	HMUTMR = 0 HMUTMR_FLG = 0			

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

HTPTMR - HEAT PROTECTION TIMER (BANKLINE) APT = -1 ------| (closed throttle mode) AND - Increment HTPTMR N_BYTE < BYRPM -----|S Q -| (clipped at BYSTM4) N BYTE > BYRPM + BYRPMH ----- | C --- ELSE ---Decrement HTPTMR (clipped at 0) IDLTMR - TIME AT IDLE APT = -1 ------(closed throttle mode) AND - Increment IDLTMR N < IDLRPM -----|S Q--| IDLFLG = 1 N > IDLRPM + IDRPMH-----C --- ELSE ---IDLTMR = 0IDLFLG = 0

IDLTMR > OLITD3 -----| IDLTMR = 0

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ISCTMR - RPM SAMPLE / KAM UPDATE DELAY TIMER (seconds)

This timer is used for two separate purposes in the normal idle speed control strategy. It is always cleared in dashpot-preposition mode.

- In RPM conrol mode, it is used to prevent ISCKAM updates while RPMERR_A is outside the deadband allowed for ISCKAM learning.
- In dashpot mode, it is used to pace the rate of change of RPM checks to determine whether or not to go to lockout mode.

LMBTMR - LOW MAP BYPASS TIMER

MAP <= LMBMAP ----- Increment LMBTMR
--- ELSE --LMBTMR = 0

LUTIMR - TRANSMISSION LOCK-UP CONTROL TIMER

Refer to the desired transmission section (AXOD or A4LD) for the LUTIMR logic.

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MPGTMR - MPG MODE CONTROL TIMER

MPGTMR enables Fuel Economy Mode as a function of Vehicle Speed or Transmission gear, provided the Engine is operating in a steady state mode (cruise) within a limited range of Manifold Pressures and Engine Coolant Temperatures.

MPGTMR is used to control the Fuel Economy Mode Flag (MPGFLG), which is used to select the Fuel Economy Mode calibrations for Fuel, Spark, EGR and Thermactor.

CFMFLG = 0 -----MFMFLG = 0 -----OLFLG = 0 -----OR --MPGFLG = 1 -----IDLFLG = 0 -----APT < 1 -----ECT >= MPGCTL -----ECT <= MPGCTH ------ AND - Increment MPGTMR Clip to FN900(VSBAR) as GEAR CUR >= MPGGR ----a maximum OR ----- ELSE ---O 8500 SW = 0 -----N BYTE >= MPGRPM + MPGRPH -----Decrement MPGTMR Clip to FN900(VSBAR) MAP >= MAPLO + MAPLOH -----MPGRT as a maximum | Clip to ZERO as a MAPPA <= MAPAHI - MPAHIH -----BP >= MPMNBP + MPNBPH ----- AND - S Q -NOVS <= MPGNOV - MPNOVH -----VSBAR >= VSMPG + VSMPGH -VSTYPE = 0 -----OR --O 8500 SW = 1 -----

(continued on next page)

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

N_BYTE < MPGRPM	
MAP < MAPLO	
MAPPA > MAPAHI	OR C
BP < MPMNBP	OR C
NOVS > MPGNOV	
VSBAR < VSMPG	

MPG MODE FLAG LOGIC (MPGFLG)

MPGTMR >= FN900(VSBAR) ------ | MPGFLG = 1 | --- ELSE --- | MPGFLG = 0

MPG MODE TRANSITION FLAG SET LOGIC (MPGTFG)

Previous MPGFLG = 1 ------ | AND - | MPGTFG = 1 Current MPGFLG = 0 ------ | (transition from MPG Mode)

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MULTMR - TIME SINCE INCREMENTING LAMMUL	
always	Increment MULTMR
NOTE: MULTMR is periodically set to 0 within t	the Open Loop Fuel Logic.
NACTMR - NOT AT CLOSED THROTTLE TIMER	
NACTMR - NOT AT CLOSED THROTTLE TIMER APT = 0	<pre>Increment NACTMR ELSE NACTMR = 0</pre>
NDDTIM - TIME SINCE NEUTRAL/DRIVE SWITCH STATE	CHANGE
NEUTRAL/DRIVE SWITCH STATE CHANGE	NDDTIM = 0 ELSE Increment NDDTIM
OSCTMR - OSCMOD DELAY TIMER (0.125 SEC)	
This timer is used to prevent OSCMOD spark feed transmission shifts.	Bback during manual
TPDLBR >= SHFDLT	<pre>Increment OSCTMR ELSE OSCTMR = 0</pre>
PUTMR - TIME SINCE CPU POWER-UP	
CPU POWER ON	Increment PUTMR

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SETTMR - RPM CONTROL ENTRY DELAY TIMER (0.125 seconds)

This timer is used to delay entry into RPM control for a time which corresponds to the manifold stabilization time. SETTMR is cleared in Idle Speed Control MODE_SELECT.

In mode select			 	
APT >= 0 (not Closed Throttle)		OR	 AND - 	SETTMR = 0
APT = -1				ELSE
DASPOT > DASCTL (daspot too large)	AND - 			Increment SETTMR

SHFTMR - SHIFT IN PROGRESS TIMER

always -----| Decrement SHFTMR (free running)

NOTE: SHFTMR is loaded with SHFTTM when any 3-4 or 4-3 shift is made. Thus when SHFTMR = 0, no shift is in progress.

TARTMR - TIME SINCE OLDTP WAS UPDATED

always ----- Increment TARTMR | Clip at MAXTIM

NOTE: TARTMR is reset within the software TAR logic.

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TSLEGO - TIME SINCE LAST EGO SWITCH

OPEN LOOP FUEL CONTROL		
LESFLG = 0 (ego switching)	AND -	TSLEGO = 0 Freeze TSLEGO
EGO SWITCH	 	ELSE LESFLG = 0 (EGO switching)
		Increment TSLEGO
TSLEGO > LESTM		LESFLG = 1 (EGO not switching) Increment TSLEGO
		ELSE
		Increment TSLEGO

NOTE: TSLEGO is also set to zero within the closed loop fuel logic after the jumpback is calculated following an EGO switch.

TSLPIP - TIME SINCE LAST PIP

NEW_PIP = 1 ------ | TSLPIP = 0 | NEW_PIP = 0 | --- ELSE --- | Count up TSLPIP

NOTE: NEW_PIP is set equal to 1 upon a PIP interrupt.

V_NACTMR_CUM - SELF TEST CUMULATIVE NOT A CLOSED THROTTLE TIMER

TIMERS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

VOLTMR - LOW VOLTAGE TIMER

Low voltage timer (VOLTMR) represents the amount of time that battery voltage, as indicated by the VBAT calculation, is lower than a calibrated threshold voltage LOWVOL. VOLTMR is referenced by FN821A to determine the increase in engine speed necessary to provide battery charge compensation (see Desired RPM calculation in the Idle Speed Control Chapter).

<pre>CRKFLG = 0 (run/underspeed mode)</pre>		
VBAT < LOWVOL S Q -	 AND -	Count up VOLTMR
VBAT >= LOWVOL + VOLHYSC		CIIP VOLIMA CO VOLICLE
APT = -1	 	
NACTMR >= CHGTM		ELSE
VBAT >= LOWVOL + VOLHYS	AND -	Count down VOLTMR
	1	ELSE
		Freeze VOLTMR

WOTTMR - TIME AT WIDE OPEN THROTTLE

APT = 1	Increment WOTTMR
	ELSE
	Decrement WOTTMR

CHAPTER 22

FAILURE MODE MANAGEMENT

FAILURE MODE MANAGEMENT, OVERVIEW - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FAILURE MODE STRATEGY

The Failure Mode (FMEM) strategy protects vehicle function from adverse $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

effects of an EEC component failure. The strategy recognizes open or short

circuit failure for five sensors: MAP, TP, ECT, ACT and EGR(EVP/PFE). In

general, if the continuous Self Test strategy recognizes a failure the $\ensuremath{\mathsf{FMEM}}$

strategy will execute an alternative vehicle strategy. The alternative

strategy disables logic which relies on realistic sensor values. Some sensor $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left($

FMEM strategies also substitute a "safe" value for the bad sensor. A summary $\ensuremath{\mathsf{S}}$

of the alternate strategies is tabulated below.

	Sensors				
Alternate Strategy	MAP	TP	ECT	ACT	EGR
Transmission - Do not Lock Up			l X		
	<u>^</u>	<u>^</u>	<u>^</u>		
Inferred BP - No PT/WOT Update	X	X	X	X	
Adaptive Fuel - No Update	X	X	x	X	
Idle Speed - Fixed Duty Cycle	x	x	x	Х	
EGR - Disabled	x	x	x	Х	x
THERMACTOR - Bypass Air	x	x	x	Х	
MPG MODE - Do Not Enter	x	 	x		
DECEL FUEL S/O - Disable	*	*			

NOTE: DFSO is disabled only if both the MAP and TP sensors have failed.

FAILURE MODE MANAGEMENT, FAILURE RECOGNITION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FAILURE RECOGNITION

OVERVIEW

The FMEM strategy checks the "Continuous Self Test Code" Filters to ascertain whether a sensor has failed. If the sensor failure lasts long enough to trigger a Self Test Code, the FMEM strategy will substitute an alternate value and strategy. Until the Self Test filters exceed their fault thresholds, the strategy continues to use the last known valid value. logic diagram below APPROXIMATELY describes the Fault recognition and value substitution strategy. However, to more effectively use the Self Test Fault filters, the logic is divided into two sections; the Fault Flag logic and the Sensor input process logic. (See Specific Sensor FMEMs.)

DEFINITIONS

INPUTS

Bit Flags:

- CRKFLG = Flag indicating Crank mode.

Calibration Contants:

- FILHYS = Hysteresis term to permit normal TP update, if sensor is functioning properly.

FAILURE MODE MANAGEMENT, FAILURE RECOGNITION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: INPUT_FAIL_REC_COM1

SENSOR >= SENSORMIN	SENSOR WITHIN ACCEPTABLE RANGE UPDATE SENSOR INPUT Failure Flags = 0 ELSE SENSOR OUTSIDE RANGE SENSOR = INITIAL VALUE ELSE
<pre>C***FIL > C***LVL</pre>	SENSOR OUTSIDE RANGE - NOT DUE TO LOW BATTERY VOLTAGE Failure Flags = 1 ALTERNATE STRATEGY SENSOR = SUBSTITUTED VALUE ELSE SENSOR DATA NOT RELIABLE - DO NOT UPDATE UNTIL CHECK PROVES VALUE VALID.

NOTE: MAP Failure Mode Recognition is described in the MAP calculation (See INPUT CONVERSIONS AND FILTERS Chapter).

Should this strategy be implemented in the Continuous Self Test Strategy, the following specifications must be met:

- FMEM Code must be executed following the A/D conversion.
- FMEM Code must be executed, once per background loop, during ALL Engine

Modes (CRANK, UNDERSPEED, RUN, KEYON).

- Continuous Self Test Check provides two functions: It does Normal Fault

also executes the FMEM_FLAG logic.

FAILURE MODE MANAGEMENT, ACT SENSOR UPDATE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ACT SENSOR UPDATE

OVERVIEW

DEFINITIONS

INPUTS

Registers:

- C112FIL = Self Test Register which counts the number of ACT high failures.
- ${\tt C113FIL}$ = Self Test Register which counts the number of ACT low failures.
- ECT = Engine Coolant Temperature, deg F.
- IACT = A/D conversion of ACT sensor input, counts.
- IECT = A/D conversion of ECT sensor, counts.

Bit Flags:

- AFMFLG = Flag indicating that ACT sensor has failed.
- CFMFLG = Flag indicating that ECT sensor is in/out of range.
- WRMEGO = Ego sensor should be warm flag; 1 -> Ego warm, 0 -> Ego is

Calibration Constants:

- ACTFMM = FMEM default value for ACT.
- ACTMAX = Maximum ACT (ACT Open), Counts.
- ACTMIN = Minimum ACT (ACT Shorted), Counts.
- C112LVL = Threshold for ACT short fault, unitless.
- C113LVL = Threshold for ACT Open fault, unitless.
- FILHYS = Hysteresis term to prevent spurious exit of Failure
 Mode
 strategy.
- FN703 = ECT/ACT transfer function.

OUTPUTS

Registers:

- ACT = Air Charge Temperature, deg F.

FAILURE MODE MANAGEMENT, ACT SENSOR UPDATE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Bit Flags:

- AFMFLG = Flag indicating that ACT sensor has failed.

PROCESS

STRATEGY MODULE: INPUT_ACT_COM2

This module is performed during engineering units conversion.

AFMFLG = 0			
IACT <= ACTMAX	AND -	ACT = FN703(IACT) (sensor OK)	
IACT >= ACTMIN			
WRMEGO = 0 (start up Open Loop)		ELSE	
CFMFLG = 0			
IECT <= ECTMAX	AND -	ACT = FN703(IECT) (sensor bad, use ECT if 0	K)
IECT >= ECTMIN			
		ELSE	
AFMFLG = 1		ACT = ACTFMM	
		ELSE	
		Do not update ACT	

FAILURE MODE MANAGEMENT, ACT SENSOR UPDATE - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

AFMFLG LOGIC (FOR ACT SENSOR)

CONTINUOUS SELF TEST

C112FIL > C112LVL	afmlo = 1
	ELSE
C112FIL < C112LVL - FILHYS	afmlo = 0
C113FIL > C113LVL	afmhi = 1
	ELSE
C113FIL < C113LVL - FILHYS	afmhi = 0
afmhi	
afmlo	AFMFLG = 1
armio	ELSE
	AFMFLG = 0

FAILURE MODE MANAGEMENT, ADAPTIVE FUEL TABLE FMEM - LHBH0 PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

ADAPTIVE FUEL TABLE FMEM

OVERVIEW

This module sets and clears two adaptive fuel failure mode flags; one flag for each adaptive table in a two EGO control system.

DEFINITIONS

INPUTS

Registers:

- _ C179FIL = At adaptive fuel limit, system lean fault filter.
- _ C181FIL = At adaptive fuel limit, system rich fault filter.
- _ C182FIL = At adaptive fuel limit, system lean at idle fault filter.
- _ C183FIL = At adaptive fuel limit, system rich at idle fault filter.
- _ C188FIL = At adaptive fuel limit (EGO #2), system lean fault filter.
- _ C189FIL = At adaptive fuel limit (EGO #2), system rich fault filter.
- _ C191FIL = At adaptive fuel limit (EGO #2), system lean at idle fault filter.
- _ C192FIL = At adaptive fuel limit (EGO #2), system rich at idle fault filter.

Bit Flags:

NUMEGO = Number of EGO sensors.

Calibration Constants:

- $_$ C179LVL = At adaptive fuel limit, system lean fault filter threshold.
- _ C181LVL = At adaptive fuel limit, system rich fault filter threshold.
- _ C182LVL = At adaptive fuel limit, system lean at idle fault filter threshold.
- _ C183LVL = At adaptive fuel limit, system rich at idle fault filter threshold.
- _ C188LVL = At adaptive fuel limit (EGO #2), system lean fault filter threshold.
- $_$ C189LVL = At adaptive fuel limit (EGO #2), system rich fault filter

threshold.

_ C191LVL = At adaptive fuel limit (EGO #2), system lean at idle fault filter threshold.

FAILURE MODE MANAGEMENT, ADAPTIVE FUEL TABLE FMEM - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

_ C192LVL = At adaptive fuel limit (EGO #2), system rich at idle fault filter threshold.

_ FILHYS = Hysteresis term to prevent spurious exit of Failure
Mode
 strategy.

OUTPUTS

Bit Flags:

- _ ADT1FMFLG = Adaptive table 1 failure mode.
- _ ADT2FMFLG = Adaptive table 2 failure mode.

FAILURE MODE MANAGEMENT, ADAPTIVE FUEL TABLE FMEM - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: INPUT_ADAPT_COM1

	> C179LVL lean clip, ego 1)		
	> C181LVL rich clip, ego 1)	OR	ADT1FMFLG = 1
	> C182LVL		ADITEMELIG - I
	> C183LVLrich clip at idle, ego 1)		ELSE
C179FIL	< C179LVL - FILHYS		EDSE
C181FIL	< C181LVL - FILHYS		ADTIEMET C - 0
C182FIL	< C182LVL - FILHYS	 	ADT1FMFLG = 0
C183FIL	< C183LVL - FILHYS	! 	

FAILURE MODE MANAGEMENT, ADAPTIVE FUEL TABLE FMEM - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

For Stereo EGO systems:

FAILURE MODE MANAGEMENT, ECT SENSOR UPDATE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ECT SENSOR UPDATE

OVERVIEW

DEFINITIONS

INPUTS

Registers:

- _ ACT = Air Charge Temperature, deg F.
- _ C117FIL = Self Test Register which counts the number of ECT high failures.
- $_$ Cl18FIL = Self Test Register which counts the number of ECT low failures.
- _ ECT = Engine Coolant Temperature, deg F.
- _ ECTCNT = ECT counter used in TCSTRT average.
- _ FMECTR = Background loop counter used to ramp failed ECT from ACT in crank mode to ECTFMM.

Bit Flags:

- _ CFMFLG = Flag indicating that ECT sensor is in/out of range.
- _ CRKFLG = Crank flag.
- _ IECT = A/D conversion of ECT sensor, counts.

Calibration Constants:

- _ C117LVL = Threshold for ECT Short Fault, unitless.
- _ C118LVL = Threshold for ECT Open fault, unitless.
- _ ECTFMM = FMEM default value for ECT, deg F.
- _ ECTMAX = Maximum engine ECT, Counts.
- _ ECTMIN = Minimum engine ECT, Counts.
- _ FILHYS = Hysteresis term to prevent spurious exit of Failure Mode strategy.
- _ FMECNT = Number of background loops between

incrementing/decrementing ECT

- register by 2 deg.F. A good estimate of The ECT ramp is 2 deg.F/6 seconds,
- therefore, FMECNT = 6 sec./.030 sec. per background loop = 200.
- $_{\rm L}$ FN703 = ECT/ACT transfer function.

FAILURE MODE MANAGEMENT, ECT SENSOR UPDATE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

_ TCECT = Time constant for ECT, sec.

OUTPUTS

Registers:

- _ ECT = Engine Coolant Temperature, deg F.
- _ FMECTR = Background loop counter used to ramp failed ECT from ACT in crank mode to ECTFMM.

Bit Flags:

_ CFMFLG = Flag indicating that ECT sensor is in/out of range.

FAILURE MODE MANAGEMENT, ECT SENSOR UPDATE - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: INPUT_ECT_COM2

This module is performed during engineering units conversion.

CFMFLG = 0	
IECT <= ECTMAX AND	- ECT = FN703(IECT) (sensor OK)
ECTCNT = 0	ELSE
ECTCNT = 0	ECT = ACT (sensor bad, start rolling average at ACT)
CFMFLG = 0	ELSE
IECT <= ECTMAX AND	<pre>ECT = ROLAV(FN703(IECT),TCECT) (sensor OK)</pre>
IECT >= ECTMIN	ELSE
<pre>CRKFLG = 1 (crank mode) ACT)</pre>	ECT = ROLAV(ACT),TCECT) (sensor bad, infer ECT from
	ELSE
<pre>CFMFLG = 1 (every background loop)</pre>	Increment FMECTR (clip at 255 as a max) Perform ECT RAMP LOGIC
	ELSE
	Do not update ECT

FAILURE MODE MANAGEMENT, ECT SENSOR UPDATE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ECT RAMP LOGIC

ECT > ECTFMM AND - FMECTR >= FMECNT	ECT = ECT - 2 deg. F FMECTR = 0 (ramp down to ECTFMM)
ECT < ECTFMM AND - FMECTR >= FMECNT	ELSE
ECT = ECTFMM	ELSE Do not update ECT (ECT is already ECTFMM)

CFMFLG LOGIC (FOR ECT SENSOR)

CONTINUOUS SELF TEST

C117FIL > C117LVL	cfmlo = 1
	ELSE
C117FIL < C117LVL - FILHYS	cfmlo = 0
C118FIL > C118LVL	cfmhi = 1
	ELSE
C118FIL < C118LVL - FILHYS	cfmhi = 0
cfmhi = 1	
OR cfmlo = 1	CFMFLG = 1
CIMIO = 1	ELSE
	CFMFLG = 0

FAILURE MODE MANAGEMENT, EVP SENSOR FMEM - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EVP SENSOR FMEM (PFEHP = 0)

OVERVIEW

The EVP sensor failure Mode strategy will force the EGR valve to close and will have no adverse impact on Spark or Fuel.

DEFINITIONS

INPUTS

Registers:

 $_$ C327FIL = Self Test Register which counts the number of EVP low failures.

_ C337FIL = Self Test Register which counts the number of EVP high failures.

 $_$ EOFF = The EGR valve reading when the valve is fully closed in $\ensuremath{\mathrm{A}/\mathrm{D}}$ counts.

_ IEGR = A/D conversion of EVP or EPT sensor, counts.

Bit Flags:

_ EFMFLG = Flag indicating that EVP EGR sensor has failed. (This
flag
 performs for both Sonic and PFE EGR.)

Calibration Constants:

- _ C327LVL = Threshold for EVP fault, unitless.
- _ C337LVL = Threshold for (PFE) EVP fault, unitless.
- _ EVPMAX = Maximum EGR Valve position, counts.
- _ EVPMIN = Minimum EGR Valve position, counts.
- _ FILHYS = Hysteresis term to prevent spurious exit of Failure
 Mode
 strategy.

OUTPUTS

Registers:

_ EVP = EGR valve position reading in A/D counts.

Bit Flags:

_ EFMFLG = Flag indicating that EVP EGR sensor has failed. (This flag performs for both Sonic and PFE EGR.)

FAILURE MODE MANAGEMENT, EVP SENSOR FMEM - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: INPUT_EVP_COM2

This module is performed during engineering units conversion.

EFMFLG LOGIC (FOR EVP SENSOR)

CONTINUOUS SELF TEST

C337FIL > C3	337LVL	efmhi = 1
		ELSE
C337FIL < C	337LVL - FILHYS	efmhi = 0
C327FIL > C3	327LVL	efmlo = 1
		ELSE
C327FIL < C3	327LVL - FILHYS	efmlo = 0
efmhi = 1		
	 OR	EFMFLG = 1
efmlo = 1		ELSE
		EFMFLG = 0

FAILURE MODE MANAGEMENT, TOT SENSOR FMEM - CAAJO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TOT SENSOR FMEM

DEFINTIONS

INPUTS

Registers:

- _ ECT = Engine Coolant Temperature, deg F.
- _ ECTCNT = ECT counter used in TCSTRT average.
- _ ITOT = Transmission Oil temperature, counts.

Bit Flags:

Calibration Constants:

- _ FN703D(ITOT) = TOT transfer function; purpose: convert ITOT A/D counts into deg. F, counts.
- _ TCTOT = Time constant for filtered TOT, sec.
- _ TOTMAX = Maximum allowable TOT counts, counts.
- _ TOTMIN = Minimum allowable TOT counts, counts.

OUTPUTS

Registers:

_ TOT = Transmission Oil Temperature, deg F.

FAILURE MODE MANAGEMENT, TOT SENSOR FMEM - CAAJO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: INPUT_TOT_COM1

This module is performed during engineering units conversion.

ITOT <= TOTMAX	
ITOT >= TOTMIN AND -	TOT = FN703D(ITOT) (sensor OK, start rolling
ECTCNT = 0	average at actual value)
THOM 4 HORMAN	ELSE
ITOT <= TOTMAX	TOT = ROLAV(FN703D(ITOT),TCTOT)
ITOT >= TOTMIN	(sensor OK)
	ELSE
	TOT = ECT
	(sensor bad, use ECT)

FAILURE MODE MANAGEMENT, TP SENSOR FMEM - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TP SENSOR FMEM

OVERVIEW

The FMEM strategy checks the Continuous Self Test Code Filters to ascertain whether the TP sensor failed. If the sensor failure lasts long enough to trigger a Self Test Code, the FMEM strategy will infer throttle position based upon a load parameter (usually MAP). [NOTE: The load parameters has protective logic in the event of a load sensor failure. See the MAP calculation in the Systems Equation Chapter.

DEFINITIONS

INPUTS

Registers:

- _ C122FIL = Throttle Position(TP) sensor circuit below minimum voltage fault filter.
- _ C123FIL = Throttle Position(TP) sensor circuit above maximum voltage fault filter.
- _ MAP = Manifold absolute pressure.
- _ RATCH = Closed throttle position, counts.

Bit Flags:

- _ CRKFLG = Crank Flag.
- _ ITP = Throttle position value from A/D conversion, counts.
- _ TFMFLG = Flag indicating that TP sensor has failed.

Calibration Constants:

- _ C122LVL = Throttle Position(TP) sensor circuit below minimum voltage threshold.
- _ C123LVL = Throttle Position(TP) sensor circuit above maximum voltage threshold.
- _ FILHYS = Hysteresis term to prevent spurious exit of Failure
 Mode
 strategy.
- _ FN090 = Change in TP as a function of MAP. This function is designed to permit Closed and Part Throttle operation.

_ TAPMAX = Maximum valid TP value, counts. (Calibrated by Self Test Design Section)

_ TAPMIN = Minimum valid TP value, counts. (Calibrated by Self Test Design Section)

FAILURE MODE MANAGEMENT, TP SENSOR FMEM - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- _ RATCH = Closed throttle position, counts.
- _ TP = Throttle position, counts.

Bit Flags:

_ TFMFLG = Flag indicating that TP sensor has failed.

FAILURE MODE MANAGEMENT, TP SENSOR FMEM - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: INPUT_TP_COM3

This module is performed during engineering units conversion.

TFMFLG = 0 -----| ITP >= TAPMIN ------ | AND - | TP = ITP (TP sensor within ITP <= TAPMAX ----acceptable range) --- ELSE ---CRKFLG = 1 -----TP = RATCH (crank mode) (TP sensor out of limits) --- ELSE ---TFMFLG = 1 -----TP = RATCH + FN090(MAP)RATCH = RACHIV (TP sensor out of limits but NOT due to Low battery voltage) --- ELSE ---No change to TP (TP sensor data unreliable DO NOT update until confident data valid)

FAILURE MODE MANAGEMENT, TP SENSOR FMEM - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TFMFLG LOGIC (FOR TP SENSOR)

CONTINUOUS SELF TEST CHECK

C122FIL > C122LV	'L		tfmlo = 1	
			ELSE -	
C122FIL < C122LV	L - FILHYS		tfmlo = 0	
C123FIL > C123LV	′L		tfmhi = 1	
			ELSE -	
C123FIL < C123LV	L - FILHYS		tfmhi = 0	
tfmhi = 1				
tfmlo = 1		OR	TFMFLG = 3	1
			ELSE -	
		 	TFMFLG = ()

FAILURE MODE MANAGEMENT, TP SENSOR FMEM - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 23

INFERRED BAROMETRIC PRESSURE STRATEGY

INFERRED BAROMETRIC PRESSURE STRATEGY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

INFERRED BAROMETRIC PRESSURE STRATEGY

BACKGROUND:

Earlier EEC systems used two pressure sensors (manifold absolute and

barometric absolute pressure) to provide full altitude capability. Since

of one sensor, via time sharing or software inference was considered a

significant system cost reduction. Since MAP is a primary input for both

spark and fuel control and BAP is a secondary modifier, elimination of $\ensuremath{\mathsf{BAP}}$

sensor resulted in cost reduction.

In the Inferred Barometric Pressure strategy, the BAP sensor is replaced by a

software algorithm which uses available inputs (i.e. MAP, RPM, Throttle

Position, ECT) to infer the Barometric Pressure. The EEC-IV Barometric

Pressure (BP) is saved in Keep Alive Memory (KAM) to bridge the power-down to power-up sequence.

DEFINITIONS

- ATMR1 = Time since engine start-up, sec.
- BPKAM = Barometric pressure stored in KAM.
- BPKFLG = KAM flag indication state of BPKYON. If it is equal to zero,

normal KEY-ON is assumed.

- BPKYON = Calculated BP while KEY ON.
- BPPTWT = Barometric pressure calculated during part throttle or WOT.
- BPUFLG = Flag which indicates that BP update is or is not permitted.
- CFMFLG = Flag indicating state of ECT sensor.
- CRKFLG = State of engine mode; 0 -> Run/Underspeed.
- ECT = Engine Coolant Temperature, deg F.
- KAM = Keep Alive Memory.
- KAMOK = Flag indicating whether KAM error exists or not.
- MAP = Manifold absolute pressure.
- MAPBAR = Calculated as rolling average filter of MAP.

- MFMFLG = Flag indicating state of MAP sensor.
- PIP = Profile ignition pickup (rpm input).

- PTPFLG = Flag indicating engine is running.

INFERRED BAROMETRIC PRESSURE STRATEGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- PUTMR = Power up timer.
- RATCH = Lowest throttle position since start.
- TFMFLG = Flag indicating state of TP sensor.
- TP = Throttle position.
- TP REL = Relative Throttle Position, TP RATCH.

CALIBRATION CONSTANTS:

- ECTBP = Temperature at which inferred BP is enabled.
- FKBP = BPPTWT filter constant.
- FN046A = Normalizing function for AM/BP as Y-input to FN1033.
- FN047A = Normalizing function for relative TP input to FN1033.
- FN069A = The minimum relative throttle angle (TP_REL) for Inferred BP
 - update. This function prevents BP updates when the airflow becomes sonic
 - at a particular throttle area (constant airflow for constant throttle
- angle and increasing rpm).
- ${\tt FN1033}$ = The pressure drop/BP table as a function of relative throttle
 - position (TP_REL) and air mass flow (AM/BP). The normalizing function
 - for AM/BP is FN046A. The normalizing function for TP_REL is FN047A.
- SSMAP = Steady state MAP.
- TKYON1 = Time at which PIP sensing is enabled. (NOT calibratable)
- TKYON2 = Time at which BPKYON update begins. (NOT calibratable)
- TKYON3 = Maximum time at which BPKYON update may begin.
 (NOT
 calibratable)
- TKYON4 = Locks out additional KEYON inferred BP updates. (NOT
 - calibratable)

SUMMARY:

Barometric Pressure is inferred by two methods:

- 1. KEY ON ENGINE OFF condition (BPKYON).
- 2. PART THROTTLE/WIDE OPEN THROTTLE condition (BPPTWT).

The BP calculation uses Keep Alive Memory to maintain accuracy. During

Key on engine off condition, MAP is read and stored in KAM to be used as BP after start. During Part Throttle and Wide Open Throttle conditions, BP is calculated using MAP and the pressure drop across the air inlet.

INFERRED BAROMETRIC PRESSURE STRATEGY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The inferred Barometric Pressure Strategy is described in the following pages.

The Barometric Pressure from each method is saved separately in Keep Alive

Memory (KAM). When Barometric Pressure is updated its value is also saved in $% \left(1,2,...,N\right) =0$

the Keep Alive Memory Register called BPKAM. This register will always

contain the most recent update of Barometric Pressure.

BPKYON	updated	 BPKAM = BPKYON
		 ELSE
BPPTWT	updated	 BPKAM = BPPTWT
		 ELSE
		 BPKAM not updated

INFERRED BAROMETRIC PRESSURE STRATEGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BPKYON - KEY ON BAROMETRIC PRESSURE UPDATE PROCEDURE:

During key-on engine-off, the Manifold Absolute Pressure is filtered and

saved as Barometric Pressure in the Keep Alive Memory. The Key On BP Value

BPKYON is updated as follows:

Consider the time period immediately after power up.

1) During the 50 millisecond period after power up:

PIP signals are ignored by the BP strategy. Power up noise transients can create false PIP signals.

The MAPBAR filter is continuously initialized at the current IMAP value.

The KAM flag BPKFLG is checked. This flag bridges the reset (loss of computer control) that can occur with starter engagement. The flag is set when the BPKYON value is actually updated. If BPKFLG is clear, a normal key-on power up is assumed. The BPKYON update will be permitted (later on). If BPKFLG is set, a starter engagement is assumed (engine cranking). The BPKYON update will not be permitted.

2) During the 50 to 110 millisecond period after power up:

MAPBAR is calculated as a rolling average filter of MAP.

PIP sensing is enabled. This time period allows the BP strategy 1) to

detect engine cranking after a reset due to starter engagement or 2) to

detect engine running after a spurious reset during normal operation.

If the engine is turning with a PIP period less than 60 millisecond, a

PIP signal should occur during this time period. (The equivalent RPM

values are 500 for 4-cylinder, 333 for 6-cylinder, and 250 for

8-cylinder.)

INFERRED BAROMETRIC PRESSURE STRATEGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

3) During the 110 to 510 millisecond period after power up:

MAPBAR is calculated as a rolling average filter of MAP.

PIP sensing is enabled.

If a PIP has not been sensed yet and if the BPKYON update $% \left(1\right) =\left(1\right) +$

from step 1), MAPBAR is saved as barometric pressure in KAM (as both

 ${\tt BPKAM}$ and ${\tt BPKYON}). The <math display="inline">{\tt BPKYON}$ update continues until a ${\tt PIP}$ occurs or

the time limit is reached.

INFERRED BAROMETRIC PRESSURE STRATEGY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

4) After 10 seconds of normal run mode operation, the BPKFLG is cleared to get ready for the next power down/power up sequence.

KEY-ON BAROMETRIC PRESSURE UPDATE LOGIC

PUTMR > TKYON1 PIP OCCURRED AFTER TKYON1	AND - PTPFLG = 1
KAMOK = 0 (KAM DATA BAD) BPKFLG = 0	
LAST_MAP2 <> LAST_MAP BPUFLG = 1 PUTMR > TKYON2 PUTMR < TKYON3 PTPFLG = 0 (NO PIP'S YET)	 AND Update KEY-ON BP BPKFLG = 1
BPKFLG = 1 MAPBAR > 16" Hg BPKFLG = 1	 ELSE
CRKFLG = 0, UNDSP = 0 (RUN MODE) ATMR1 > TKYON4	 AND - Enable KEY-ON BP update for next START-UP Clear BPKFLG = 0

NOTE:

- 1) BPKAM, BPKYON are restricted from 16" ${\rm Hg}$ to 31.875" ${\rm Hg}.$
- 2) BPKAM is saved first in KAM , followed by BPKYON. Since a reset can occur between these saves, BPKAM (used by strategy) will have the highest chance to be current and correct.

INFERRED BAROMETRIC PRESSURE STRATEGY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BPPTWT - PART THROTTLE/WIDE OPEN THROTTLE BAROMETRIC PRESSURE UPDATE :

During Part Throttle and Wide Open Throttle conditions, Barometric Pressure

is calculated as Manifold Absolute Pressure plus the pressure drop through

the throttle body. This is saved as BPPTWT and BPKAM in the Keep Alive Memory.

MFMFLG = 0 -----(MAP sensor OK) CRKFLG = 0, UNDSP = 0 -----(RUN mode) CFMFLG = 0 -----(ECT OK) ECT > ECTBP -----TP_REL > FN069A(AM/BP) -----|AND - | Calculate BPPTWT as a rolling average MAP >= MAPBAR ----filter of Manifold Absolute Pressure MAP - MAPBAR <= SSMAP ----plus the Pressure Drop across the throttle. ATMR1 > TKYON4 -----BPPTWT = UROLAV[MAP + FN1033(TP REL, AM/BP)*BP, TCBP] TFMFLG = 0 -----BPKAM = BPPTWT (TP sensor OK) AFMFLG = 0 -----(ACT sensor OK)

FN1033 is the pressure drop/BP table as a function of relative throttle position (TP_REL) and air mass flow (AM/BP), clipped to 0.996 as a minimum. The normalizing function for AM/BP is FN046A. The normalizing function for TP REL is FN047A.

FN069A defines the minimum relative throttle angle [(TP_REL) clipped at 0 as a minimum] for Inferred BP update. This function prevents BP updates when the airflow becomes sonic at a particular throttle area (constant airflow for constant throttle angle and increasing rpm).

Note: BPKAM, BPPTWT are restricted from 16" Hg to 31.875" Hg. TKYON4 is also used in the key-on BP logic. It is a fixed 10 seconds.

INFERRED BAROMETRIC PRESSURE STRATEGY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BAROMETRIC PRESSURE PIP COUNTER CONTROL LOGIC:

PUTMR > TKYON1 ------ Increment PTPCNT as PIPs occur --- ELSE ---

INFERRED BAROMETRIC PRESSURE STRATEGY - LHBH0 PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

CHAPTER 24

KEEP ALIVE MEMORY

KEEP ALIVE MEMORY - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

KEEP ALIVE MEMORY (KAM) QUALIFICATION TEST

OVERVIEW

Each time the vehicle is started, the data stored in KAM may $\$ not $\$ be valid.

Power interruptions, noise, etc., may have altered KAM contents. Or, the $\,$

computer may not be reading KAM registers correctly because of a hardware $\,$

fault. When the KAM registers are initialized, a special binary pattern is $% \left(1\right) =\left(1\right) +\left(1\right)$

written into three bytes of KAM. The KAM register names are KAMQA, KAMOB.

and KAMQC. During each background loop, the KAM registers are tested. The

 ${\tt KAM}$ qualification test judges the validity of the ${\tt KAM}$ data by looking for the

proper binary pattern. The alternate courses of action are either:

- 1) If the proper pattern is present, the KAM data is considered OK for use by the strategy.
- 2) If not present, the KAM data is suspect. The KAM is overwritten to $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left($
- a set of initial values. The initial values are also used in place of $% \left(1\right) =\left(1\right)$

the KAM data when the strategy references KAM.

The KAM registers KAMQA, KAMQB, and KAMQC are assigned to different areas of the KAM. This will help protect for partial KAM failures. The assignments are:

KAM KAM Register Address

KAMQA LOWEST ADDRESS OF KAM
KAMQB MIDDLE ADDRESS OF KAM
KAMQC HIGHEST ADDRESS OF KAM

The KAM qualification test is normally performed each $\,$ background $\,$ loop when

the computer is running.

KEEP ALIVE MEMORY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

KAM QUALIFICATION TEST LOGIC (Performed each background loop)

KAMQA = 10101010 BINARY		
KAMQB = 11000110 BINARY	AND -	
KAMQC = 01110101 BINARYto		Assume KAM DATA is VALID ALL Strategy references
RT_NOVS_KAM >= RTNVMN		KAM will use KAM DATA. BP = BPKAM
RT_NOVS_KAM <= RTNVMX		ELSE KAM ERROR = 1
BPKAM >= 16		VIP_KAM = 1
BPKYON >= 16		Assume KAM DATA is BAD Initialize all KAM locations used in the
BPPTWT >= 16		strategy Clear all VIP CODES Write the special BINARY PATTERNS to KAM: KAMQA = 10101010 BINARY KAMQB = 11000110 BINARY KAMQC = 01110101 BINARY LTMTBLrc = 0.5 CHKSUM = 13568 ISCKAMn = 0.0 (n=0-5) ISKSUM = 0.0 BPKAM = 29.875 BPKYON = 29.875 BPFTWT = 29.875 BPFTWT = 29.875 BPFFLG = 0 KWUCTR = 0 NOVCTR = 0 RT_NOV_KAM = 1.0 FLG_FRST_NOV = 0 FLG_NOV_KAM = 0 LESFLG = 0

KEEP ALIVE MEMORY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ISCKAM VALIDATION PROCEDURE (Performed during power up sequence)

|ISCKAM0 + ISCKAM1 + ASSUME THE ISCKAMS ARE VALID ISCKAM2 + ISCKAM3 + ISCKAM4 + ISCKAM5 -ISCKAM2 + ISCKAM3 ISKSUM | <= 1 BIT -----ISCKAM4 + ISCKAM5 --- ELSE ---ASSUME ISCKAMS DATA ARE INVALID RE-INITIALIZE THE ISCKAM ISCKAM0 = 0ISCKAM1 = 0ISCKAM2 = 0ISCKAM3 = 0ISCKAM4 = 0ISCKAM5 = 0ISKSUM = 0

VIP THROTTLE MODE SET (Done each background loop in running VIP)

KEEP ALIVE MEMORY - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ADAPTIVE FUEL TABLE VALIDATION PROCEDURE

Each time the vehicle is started, the data stored in KAM may or $% \left(1\right) =\left(1\right) +\left($

valid. Power interruptions, noise, etc., may have altered the KAM contents.

Or, the computer may not be reading KAM $% \left(1\right) =\left(1\right) +\left($

hardware fault. The KAM qualification test judges the validity of the KAM $\,$

data. Based on the result, KAM can be initialized as required. See the ${\tt KAM}$

section for more details on the KAM qualification test.

Based on the results of the KAM qualification test, validate the adaptive fuel table as follows;

(SUM OF ALL KAM CELLS)		ASSUME THE ADAPTIVE FUEL
- CHKSUM <= 1 BIT	AND -	DATA IN KAM IS VALID.
		CHKSUM = SUM OF ADAPTIVE FUEL CELLS
CHKFLG = 0		
		ELSE
		ASSUME THE ADAPTIVE FUEL
		DATA IN KAM IS WRONG.
		DO A TOTAL INITIALIZATION
		OF THE ADAPTIVE FUEL
		DATA IN KAM.
		FOR EACH CELL:

1) SET LTMTBLrc = 0.5 2) SET CHKSUM = 13568 KWUCTR = 0

CHKSUM is a KAM memory word containing the sum of the LTMTBL contents. CHKSUM is incremented or decremented each time any LTMTBL cell is updated. A

one count difference between the present sum and the stored sum is allowed to

account for the case of power down after a KAM update but prior to \mathtt{CHKSUM} $\mathtt{update}\,.$

KEEP ALIVE MEMORY - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 25

EEC-IV SELF TEST

ENGINE OFF SELF TEST, EEC-IV SELF TEST OVERVIEW - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EEC-IV SELF TEST OVERVIEW

Self Test is divided into two types of testing, one which occurs only at the

"request" of the service technician (the "on-demand" tests), and one which

continuously surveys the system during normal operating modes (the

"continuous" tests). The on-demand portion is further divided into

"engine-running" and "engine-off" tests.

The engine-off portion of the test "looks" for normal engine-off sensor

readings. Any out-of-limits, open, or shorted sensor input is signalled by

sending a service code. If all sensors are within expected ranges, a "111"

code is issued. Codes are repeated to make it easier for the technician to

verify the code sequence. After the service codes, a single pulse occurs to

signal the technician that the next set of codes will be from the continuous

test. Continuous test codes are issued using the same format as the $\operatorname{service}$

codes, and are also repeated. Finally, the test enters the "output state

test", which simply turns actuator outputs "on" and "off" based on "requests" $\,$

from the technician (these consist of depressing the throttle and letting it

return to closed position). STO is also turned "on" and "off" in this mode,

so that the technician knows the state in which the other outputs should be.

The engine-running portion signals that it has begun by sending an $\ensuremath{\mathsf{S}}$

"identification" code (=no. of cylinders/2). It then tests inputs and

EEC-IV-controlled functions by forcing various conditions and "looking" for

expected engine response to them. A single output pulse is sent to signal

the test operator to "goose" the throttle, during which inputs are tested for $\ensuremath{\mathsf{T}}$

dynamic response. If no RPM change is detected, a special code (code 538)

will be sent to indicate that the test was incorrectly performed. When the

"goose" test has completed, service codes are sent.

The "continuous" self test monitors inputs during normal operation, and

stores information in keep-alive memory (KAM) when errors are detected. In

general, checks are made only for open-or short-circuits. When the number of

errors in a given time period exceeds a calibratable threshold, that code is $% \frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{$

stored in KAM. As a special diagnostic aid, in engine-off conditions

and STI

is latched or when ${\tt STI=GND}$ and the on-demand (running) test has completed,

codes will be stored every time an error is detected, and STO will be turned

on as long as the fault is present. This is designed to help isolate $% \left(1\right) =\left(1\right) +\left(1\right$

intermittent faults (eg.: the test operator can "wiggle" the harness and $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

connectors, and STO will indicate when the intermittent fault recurs). Codes

which indicate faults that have not recurred in $80\ \mathrm{engine}\ \mathrm{warm-up}\ \mathrm{cycles}$ are

"erased". Codes can also be manually "erased" by opening up STI while codes $\ensuremath{\mathsf{Codes}}$

are being output in the engine-off mode.

ENGINE OFF SELF TEST, EEC-IV SELF TEST BLOCK DIAGRAMS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EEC-IV SELF TEST BLOCK DIAGRAMS

PROCESS

STRATEGY MODULE: VO BLOCKDIAG COM1

ENGINE OFF SELF TEST, EEC-IV SELF TEST BLOCK DIAGRAMS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

"CONTINUOUS" TESTS (STI=OPEN)

ENGINE-OFF:	ENGINE-RUNNING:		
!!	!!		
! "WIGGLE" !	! CONTINUOUS !		
! TEST !	! TEST MODE !		
!!	!!		

CHAPTER 26

SELF TEST ENTRY/EXIT LOGIC

SELF TEST ENTRY/EXIT LOGIC, SELF TEST ENTRY/EXIT LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SELF TEST ENTRY/EXIT LOGIC

OVERVIEW

This logic checks for entry and exit conditions for the various self test modes described below:

Engine Off Test
Engine Off Wiggle Mode
Engine Running Test
Engine Running Wiggle Mode
Continuous Self Test

Engine Running Test is disabled if an automatic transmission is put into drive or if vehicle speed is above MINMPH. This is done for safety

drive or if vehicle speed is above MINMPH. This is done for safety reasons.

If STI is ungrounded during the output of codes in Engine Off Test, all continuous self test codes are erased from KAM. This allows for

repair verification by the mechanic.

DEFINITIONS

INPUTS

Registers:

- IEGR = EGR sensor input.
- PUTMR = Time after CPU power up.
- TSSTIL_TMR = Time since STI low timer.
- VSBAR = Filtered vehicle speed.

Bit Flags:

- CRANKING = Engine Cranking Flag.
- DISABLE_NOSTART = NST VIP disable flag.
- DISABLE_RUNNING = RVIP disable flag.
- NDSFLG = Neutral/Drive flag; 1 -> Drive.
- NO_START = NST VIP enable flag.
- RUNNING = RVIP Enable Flag.
- STIFLG = Self Test Input (demultiplexed); 1 -> STI grounded.

26-2

SELF TEST ENTRY/EXIT LOGIC, SELF TEST ENTRY/EXIT LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- STI_RESET = 1 -> Operator requested Throttle Plate.
- STO_TRIGGER = Trigger indicates STO output requested.
- STO_WORKING = Self Test Output in use.
- UNDSP = Underspeed Flag.
- VIP_ENABLE = VIP enable flag.

Calibration Constants:

- TRLOAD = Transmission load switch: See Base Strategy
- VSTYPE = Integrated vehicle speed/cruise control system present switch; $\mathbf{0}$
 - -> no MPH and no VSC, 1 -> MPH and no VSC.
- VTCEPT = EPT Time constant.

OUTPUTS

Registers:

- FIEPT = VIP EPT filter.

Bit Flags:

- DISABLE NOSTART = See above.
- DISABLE_RUNNING = See above.
- NO_START = See above.
- RUNNING = See above.
- VFS_OUT_FLG = 1 -> VFS output requested.
- VIP_ENABLE = See above.
- VIP_FP_OVERRIDE = 1 -> regular strategy controls fuel pump.
- WIGFLG = Indicates Vip wiggle test.

SELF TEST ENTRY/EXIT LOGIC, SELF TEST ENTRY/EXIT LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VO_I_EXEC_COM2

For application with EPC VFS SOLENOID, SONIC EGR

```
(make sure base strategy can
                                    control pump)
                                  Call LOADPOINT
always ----- WIGFLG = 0
PUTMR >= 4 SEC ----- VIP ENABLE = 1
NO_START = 1 ------
(the KOEO mode)
STIFLG = 1 ------|AND - | (continue in Engine Off Test
(STI grounded)
                                    continue executing NO START
VIP
                                    background sequence, and
CRANKING = 1 -----
                                    outputting codes)
                                  VFS_OUT_FLG = 1
  (output TV pressure)
(engine stopped)
                                  --- ELSE ---
NO START = 1 -----|
STIFLG = 1 -----
                  AND -
CRANKING = 0 -----
                            AND -
                                   (exit Engine Off Test)
                       OR --|
                                  Call RAM_INIT
STIFLG = 0 -----
                                  NO START = 0
                                  DISABLE_NOSTART = 1
                                  VIP\_ENABLE = 0
STO_WORKING = 0 ----- | AND - |
                                   (turn STO off)
STO TRIGGER = 0 -----
                                   (return to Background)
(not outputting codes)
                                  --- ELSE ---
NO START = 1 -----|
STIFLG = 0 ------AND - Call VIP_CODE_ERASE
                                   (erase all continuous codes
STO WORKING = 1 -----
                                    from KAM)
                       OR --|
                                   (exit Engine Off Test)
STO_TRIGGER = 1 -----
                                  Call RAM_INIT
(outputting codes)
                                  NO_START = 0
                                  DISABLE_NOSTART = 1
                                  VIP ENABLE = 0
                                   (turn STO off,
                                    return to Background)
                                  --- ELSE ---
```

(continued on next page)

SELF TEST ENTRY/EXIT LOGIC, SELF TEST ENTRY/EXIT LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page) RUNNING = 1 -----(in KOER mode) STI_RESET = 1 -----OR --STI_RESET = 0 -----AND -STIFLG = 1 -----TRLOAD < 3 -----OR --AND - FIEPT = ROLAV(IEGR, VTCEPT) TRLOAD >= 3 -----(auto trans) (continue in Engine Running AND -Test - continue executing NDSFLG = 0 -----Engine Running background (in neutral) sequence and outputting codes) VSTYPE <> 0 -----(VSS present) AND -VSBAR <= MINMPH -----OR --VSTYPE = 0 -----(no VSS) --- ELSE ---RUNNING = 1 -----(vehicle is moving, in gear, or exit requested) (exit Engine Running Test) Call RAM_INIT RUNNING = 0DISABLE_RUNNING = 1 VIP ENABLE = 0DISABLE NOSTART = 1 --- ELSE ---CRANKING = 1 -----STIFLG = 1 ----- AND -(enter Engine Off Test) $NO_START = 1$ DISABLE_NOSTART = 0 -------- ELSE ---CRANKING = 1 -----STIFLG = 1 ------|AND - | (enter Engine Off Wiggle Mode) WIGFLG = 1DISABLE_NOSTART = 1 -------- ELSE ---

(continued on next page)

SELF TEST ENTRY/EXIT LOGIC, SELF TEST ENTRY/EXIT LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page)								
CRANKING = 0	-							
UNDSP = 0 (run mode)	-							
STIFLG = 1(STI grounded)	-							
VIP_ENABLE = 1	-							
PUTMR >= 6 SEC (time since powerup)	 - 							
TSSTIL_TMR >= 1 SEC (time since STI grounded)	- AND -	(enter Engine Running Test) RUNNING = 1						
DISABLE_RUNNING = 0								
TRLOAD < 3								
TRLOAD => 3 OR (auto trans) AND -	- 							
NDSFLG = 0 (in neutral)								
VSTYPE = 0 (no VSS)								
VSTYPE <> 0	·							
AND - VSBAR <= MINMPH		 ELSE						
CRANKING = 0	-							
UNDSP = 0 (run mode)	- 							
STIFLG = 1 (STI grounded)	- AND -	 						
VIP_ENABLE = 1	-	because vehicle is						
PUTMR >= 6 SEC (time since powerup)	- -	moving or is in gear) DISABLE_RUNNING = 1 						
TSSTIL_TMR >= 1 SEC (time since STI grounded)	- 							
DISABLE_RUNNING = 0	-	 ELSE						

(continued on next page)

SELF TEST ENTRY/EXIT LOGIC, SELF TEST ENTRY/EXIT LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

CRANKING = 0			
UNDSP = 0			
STIFLG = 1			
VIP_ENABLE = 1	AND -	(enter Engine Running Wiggle Mode)	
PUTMR >= 6 SEC		WIGFLG = 1	
TSSTIL_TMR >= 1 SEC			
DISABLE_RUNNING = 1		DI OD	
	ļ	ELSE	
VIP_ENABLE = 1	Enter Continuous Test		

NOTE:

- The flag NO_START is set immediately after the two 2msec pulses are $\,$
 - output on STO. The two 2msec pulses indicate that the module test and RAM test were successfully completed.
- A RAM_INIT sets CRKFLG=1 which causes WIGFLG to toggle during engine
 - run-up if STI was grounded prior to cranking.

26-7

SELF TEST ENTRY/EXIT LOGIC, SELF TEST ENTRY/EXIT LOGIC - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

CHAPTER 27

ENGINE OFF SELF TEST

ENGINE OFF SELF TEST, ENGINE OFF SELF TEST SEQUENCE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ENGINE OFF SELF TEST SEQUENCE

PROCESS

STRATEGY MODULE: VO_EOTS_COM1

ENGINE OFF SELF TEST, ENGINE OFF SELF TEST SEQUENCE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

NOTE:

- Execute normal background until conditions are met.
- Calibration Recommendation: Since ${\tt TSSTIL_TMR}$ update may lag PUTMR by one

background, V_LANSDTM should be calibrated to .275 sec. and V_HICKOKTM

should be

calibrated to .180 sec to insure delay integrity.

ENGINE OFF SELF TEST, ENGINE OFF SELF TEST SEQUENCE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

^{*}See Normal Strategy KAM qualification test logic for setting of VIP_KAM=1.
Code 512 is output during continuous code output.

^{**} NOTE: Fuel pump check test must be performed after OCC test.

ENGINE OFF SELF TEST, KAM/RAM TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

KAM/RAM TEST

PROCESS

STRATEGY MODULE: VO_KAMRAM_COM1

ENGINE OFF SELF TEST, KAM/RAM TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ENGINE OFF SELF TEST, READ-ONLY MEMORY TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

READ-ONLY MEMORY TEST

PROCESS

STRATEGY MODULE: VO ROM COM1

NOTE: A specific location will contain checksum such that sum of correct ROM contents (including checksum)=0. Location is labeled "Rom_To" or "Rom_Total".

ENGINE OFF SELF TEST, ENGINE COOLANT TEMPERATURE SENSOR - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ENGINE COOLANT TEMPERATURE SENSOR

OVERVIEW

The ECT sensor test checks the ECT sensor and associated circuitry in four specific areas.

- Low voltage output such as short circuits. -Service code 117.
- High voltage output. i.e. open circuits, disconnects. -Service code
 118.
- Lower ECT range fault. -Service code 116.
- Upper ECT range fault. -Service code 116.

The analog signal from the ECT sensor undergoes A/D conversion and IECT is compared to four calibration parameters; ECTMIN, ECTMAX, VIECT1, and VIECT2.

Cross checks are made first to direct service to a hard fault. -i.e. short

circuits or simple disconnects. Shorts are tested first determined by ECTMIN, then open circuits determined by ECTMAX.

ECIMIN, chen open circuits decermined by ECIMAN.

VIECT1 and VIECT2 define low and high range values and are subsequently compared to IECT to evaluate normal sensor readings.

Specific vehicle preparation must be performed to establish a standard against which the range is checked.

The calibration values are established by PEDD/EED and should not be changed.

DEFINITIONS

INPUTS

Registers:

- ECT
- IECT

Calibration Constants:

- ECTMIN; Minimum Engine off ECT -COUNTS
- ECTMAX; Maximum Engine off ECT -COUNTS
- VIECT1; Minimum Engine off ECT (RANGE) -COUNTS

- VIECT2; Maximum Engine off ECT (RANGE) -COUNTS

27-8

ENGINE OFF SELF TEST, ENGINE COOLANT TEMPERATURE SENSOR - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VO_ECT_COM1

ENGINE OFF SELF TEST, MANIFOLD ABSOLUTE PRESSURE SENSOR TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MANIFOLD ABSOLUTE PRESSURE SENSOR TEST

OVERVIEW

The MAP sensor test has been designed to test three conditions:

- MAP signal presence.
- Low MAP signal (BP lower range fault)
- High MAP signal (BP upper range fault)

To verify if a MAP signal is present, MAPTMR, a 1/8 second timer which counts

up time since last scap edge, is compared to parameter ${\tt VMPMAX.}$ If ${\tt MAPTMR}$

exceeds VMPMAX it is ascertained that no MAP signal is present and service

code 126 is output.

MAP (in this case BP) range is checked by utilizing the MAP sensors' digital

frequency output. This output is translated into computer ticks and compared

to parameters VMDEL1 and VMDEL2. If the signal doesn't meet or exceeds these $\,$

calibratable values, service code 126 is output.

Notice that all three failure conditions will produce the same service code.

Calibration of VMPMAX is dependant on the microprocessor background loop time

and the time elapsed to detect an open sensor.

 $\label{lower} \mbox{VMDEL1 AND VMDEL2 must take into account running Self-Test at \ \mbox{altitude} \\ \mbox{(low}$

BP), sea level (high BP) and tolerance stack-ups.

27-10

ENGINE OFF SELF TEST, MANIFOLD ABSOLUTE PRESSURE SENSOR TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- MAP
- MAPTMR
- MDELTA

Calibration Constants:

- VMPMAX; Max. time since last MAP update. -MSEC
- VMDEL1; Min. MAP during engine-off Self-Test. -TICKS
- VMDEL2; MAX. MAP during engine-off Self-Test. -TICKS

ENGINE OFF SELF TEST, MANIFOLD ABSOLUTE PRESSURE SENSOR TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VO_MAP_COM2

ENGINE OFF SELF TEST, THROTTLE POSITION SENSOR - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

THROTTLE POSITION SENSOR

PROCESS

STRATEGY MODULE: VO TP COM1

ENGINE OFF SELF TEST, AIR CHARGE TEMPERATURE SENSOR TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ACT SENSOR TEST

PROCESS

STRATEGY MODULE: VO ACT COM1

ENGINE OFF SELF TEST, TRANSMISSION OIL TEMPERATURE SENSOR TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TRANSMISSION OIL TEMPERATURE SENSOR TEST

OVERVIEW

The TOT (Transmission Oil Temp) sensor test checks the TOT sensor and associated circuitry in four specific areas.

- Low voltage output such as short circuits. -Service code 638
- High voltage output. i.e. open circuits, disconnects. -Service code
 637.
- Lower TOT range fault. -Service code 636.
- Upper TOT range fault. -Service code 636.

The analog signal from the TOT sensor undergoes A/D conversion and ITOT is compared to four calibration parameters; TOTMIN, TOTMAX, VITOT1, and

compared to four calibration parameters; TOTMIN, TOTMAX, VITOTI, and VITOT2.

Gross checks are made first to direct service to a hard fault. -i.e. short

circuits or simple disconnects. Shorts are tested first determined by

 ${\tt TOTMIN},$ then open circuits determined by ${\tt TOTMAX}.$

VITOT1 and VITOT2 define low and high range values and are subsequently

compared to ITOT to evaluate normal sensor readings.

Specific vehicle preparation must be performed to establish a standard against which the range is checked. Refer to section entitled; Initiating Self-Test.

The calibration values are established by $\ensuremath{\mathtt{ESD}/\mathtt{EED}}$ and should not be changed.

27-15

ENGINE OFF SELF TEST, TRANSMISSION OIL TEMPERATURE SENSOR TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- TOT
- ITOT

Calibration Constants:

- TOTMIN; Maximum Engine off TOT -COUNTS
- TOTMAX; Minimum Engine off TOT -COUNTS
- VITOT1; Minimum Engine off TOT (RANGE) -COUNTS
- VITOT2; Maximum Engine off TOT (RANGE) -COUNTS

ENGINE OFF SELF TEST, TRANSMISSION OIL TEMPERATURE SENSOR TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VO_TOT_COM2

ENGINE OFF SELF TEST, EXHAUST GAS RE-CIRCULATION SENSOR TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EXHAUST GAS RE-CIRCULATION SENSOR TEST

PROCESS

STRATEGY MODULE: VO_EGR_COM5

ENGINE OFF SELF TEST, A/C SWITCH TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

A/C SWITCH TEST

ı	$\cap \tau$	717	R١	7 T	777	T.7
١		/ Pi	T 1	/ 1	r.	VΝ

This test determines whether the A/C is on or the A/C input is high when the A/C switch is in the off position.

DEFINITIONS

Bit Flags:

- A3C

PROCESS

STRATEGY MODULE: VO_ACCS_COM2

A3C = 1 -----| Set code 539 (A/C on indicated)

ENGINE OFF SELF TEST, MANUAL LEVER POSITION SENSOR INPUT TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MANUAL LEVER POSITION SENSOR INPUT TEST (E40D)

OVERVIEW

this

The Manual Lever Position Sensor (MLPS) Input Test is to be performed with the transmission selector lever in the PARK position (when V_SW_PARK = 1).

The voltage input, INDS (in counts), is checked to verify that all 6 resistances in series (Park, Reverse, Neutral, Overdrive, Manual 2, and Manual 1) are within the range VND1 to VND2. The values for the range are determined by the tolerances of the 6 MLPS resistance to VREF and a 560 OHM resistance to VREF as the voltage divider. For vehicles without the PARK position, V_SW_PRK is set to zero and the test is run in NEUTRAL. In

The divider network consists of the input to the EEC (INDS), divided by the 560 OHM resistance to VREF and the 6 resistors in series (MLPS) to signal return.

The INDS register is in "counts". To convert voltage to counts:

INDS counts = MLPS voltage * (VREF/1023)

DEFINITIONS

Registers:

- INDS = Input Neutral/drive switch. -counts

case, INDS must be within the range VND3 to VND4.

Calibration Constants:

- VND1 = Lower limit for MLPS test. -counts
- VND2 = Upper limit for MLPS test. -counts
- VND3 = Lower limit for MLPS test in neutral. -counts
- VND4 = Upper limit for MLPS test in neutral. -counts
- V_SW_PRK = Calibration switch to select PARK (=1) or NEUTRAL (=0) test.

ENGINE OFF SELF TEST, MANUAL LEVER POSITION SENSOR INPUT TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VO_MLPS_INPUT_COM1

V_SW_PRK = 1 (test in park)		 AND		code 654 in park
INDS < VND1	 OR		1100	III palii
INDS > VND2	OK			
V SW PRK = 0				ELSE
(test in neutral)		AND -		code 655 in neutral
INDS < VND3			NOC	III Heutrai
INDS > VND4	OR			ELSE
TINDS > AIND4	I		Exit	this test

ENGINE OFF SELF TEST, 4X4L SWITCH INPUT TEST - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

4X4L SWITCH INPUT TEST

PROCESS

STRATEGY MODULE: VO_4X4L_SWITCH_COM2

ENGINE OFF SELF TEST, POWER STEERING PRESSURE SWITCH TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

POWER STEERING PRESSURE SWITCH TEST

PROCESS

STRATEGY MODULE: VO PSPS COM1

> ENGINE OFF SELF TEST, IVPWR INPUT TEST - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

> > IVPWR INPUT TEST

PROCESS

STRATEGY MODULE: VO IVPWR COM1

NOTE: This test is designed to check continuity of the IVPWR circuit internal to the EEC module and can be used as a battery voltage check, if the parameter VKYPWR is calibrated to the minimum voltage to prevent

occurrence

of false codes.

COUNTS = IIVPWR *.1786 * 1023 VREF

IIVPWR = VREF * COUNTS .1786 * 1023

NOTE: Recommended VKYPWR value: 400 counts (10.9 volts)

ENGINE OFF SELF TEST, OUTPUT CIRCUIT CHECK - LHBHO PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

OUTPUT CIRCUIT CHECK

OVERVIEW

The OCC uses special module hardware to test certain output channels for open

circuits/shorted drivers. The hardware consists of a resistordivider

network which is fed back into an A/D channel. The test begins by turning

off all outputs in the network. Outputs are then turned on and off, one

time, and the A/D channel is used to determine the change in

associated with each. A voltage change smaller than expected causes a fault

code to be registered. The output channels, their associated fault codes,

and expected voltage change calibration parameters for each appear below.

PROCESS

STRATEGY MODULE: VO_OCC_COM12

OC#	CIRCUIT FUNCT.	CAL. PARAMETER	ERROR CODE
1	AM2 1)	OCCDT1	553
2	AM1 1)	OCCDT2	552
4	EVR 2)	OCCDT4	558
5	CANP 3)	OCCDT5	565
7	FP	OCCDT7	556
10	SS-1 4)	occss1	621
11	SS-2 4)	occss2	622
12	CCS 4)	occcs	626
13	CCC 4)	occcc	629
14	TCIL 4)	OCCTCIL	631

NOTES:

- 1) ONLY IF THRMHP=1
- 2) ONLY IF PFEHP=0
- 3) ONLY IF CANPHP=1
- 4) ONLY IF TSTRAT= 4

AM1 - AIR MANAGEMENT 1 (BYPASS)

AM2 - AIR MANAGEMENT 2 (DIVERT)

EVR - ELECTRONIC VACUUM REG.

CANP - CANISTER PURGE FP - FUEL PUMP

SS-1 - SHIFT SOLENOID #1 SS-2 - SHIFT SOLENOID #2

CCS - COAST CLUTCH SOLENOID

CCC - CONVERTER CLUTCH SOLENOID

TCIL - TRANSMISSION CONTROL INDICATOR LIGHT

ENGINE OFF SELF TEST, OUTPUT CIRCUIT CHECK TEST STRUCTURE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUT CIRCUIT CHECK TEST STRUCTURE

PROCESS

STRATEGY MODULE: VO OCCTS COM4

ENGINE OFF SELF TEST, OUTPUT CIRCUIT CHECK TEST STRUCTURE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OCC PARAMETER DEFINITIONS

		RANGE			
NAME	DESCRIPTION	UNITS	MIN	MAX	BASE
OC	OUTPUT CIRCUIT #	j –	j o	9	–
OCCSAV	SAVED OCC A/D	COUNTS	0	1023	-
IOCC	OCC A/D	COUNTS	0	1023	_
OCCDTx(1-9)	MIN A/D CHANGE	COUNTS	-1023	1023	36

FUEL PUMP MONITOR TEST (K.O.E.O.) - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FUEL PUMP MONITOR TEST

OVERVIEW:

This test determines if the proper FPM input is received by the processor as the fuel pump is commanded on and off.

DEFINTIONS:

Self Test Calibration Constants:

- V_FPMDLY = Fuel Pump Monitor test fuel pump on-to-off/offto-on stabilization delay time.
- V_FPMFLG = Fuel Pump Monitor test enable switch, 1 = enable.

Self Test Flags:

- FPM = State of the FPM input 1 = high, implying pump on.
- CODE_556 = Primary fuel pump circuit failure (from OCC test)
- CODE_543 = Fuel pump circuit open-battery to ECA
- CODE_542 = Fuel pump circuit open-ECA to motor ground

Self-Test Registers:

- VIP_CNT_EX Self test executive pointer

Base Strategy Flags:

PROCESS

STRATEGY MODULE: VO_FPM_COM2

<pre>VIP_CNT_EX = fpm_test_1 </pre>	DO: FPM TEST 1 PROCESS (If test is enabled, start pump, initialize delay timer.)
	ELSE
VIP_CNT_EX = fpm_test_2	DO: FPM TEST 2 PROCESS (Check for FPM = 1, if not, set code 543. Stop pump, initialize delay timer.)
	ELSE
VIP_CNT_EX = fpm_test_3	DO: FPM TEST 3 PROCESS (Check for FPM = 0, if not, set code 542. End of test)

FUEL PUMP MONITOR TEST (K.O.E.O.) - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: FPM TEST 1 PROCESS

VFPMFLG = 1 -----(Start test) (Test enabled) |AND ----| VIP TIMER EX = 0 (Initialize delay timer) $CODE_{556} = 0 -----$ (No fuel pump OCC PUMP = 1failure) (Command fuel pump on) VIP_CNT_EX = fpm_test_2 (Set up for next process) ---ELSE---(Skip to next test) VIP_CNT_EX = fpm_test_3 + 1 (Next test)

END: FPM TEST 1 PROCESS

BEGIN: FPM TEST 2 PROCESS

(pass code 543 test) VIP_TIMER_EX > V_FPMDLY -AND ---- VIP_TIMER_EX = 0 (re_init timer for next (time delay) FPM = 1 ----delay) (Indicates pump on) PUMP = 0(command pump off) VIP_CNT_EX = fpm_test_3 (Set up for next process) ---ELSE---SET CODE_543 = 1VIP_TIMER_EX > V_FPMDLY -AND ----(fail test) (Time delay) FPM = 0 -----| VIP TIMER EX = 0(re-init timer for next (Indicates pump off) delay) PUMP = 0(command pump off) VIP_CNT_EX = fpm_test_3 (Set up for next process)

END: FPM TEST 2 PROCESS

FUEL PUMP MONITOR TEST (K.O.E.O.) - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: FPM TEST 3 PROCESS

VIP_TIMER_EX > V_FPMDLY - AND	<pre> (pass code 542 test) VIP_CNT_EX = fpm_test_3+1 (next test)</pre>
FPM = 0	
(indicates pump off)	
,	ELSE
VIP TIMER EX > V FPMDLY -	 SET CODE 542 = 1
(time delay)	(fail test)
AND	
FPM = 1	VIP CNT EX = fpm test $3+1$
(indicates pump on)	(next test)

END: FPM TEST 3 PROCESS

ENGINE OFF SELF TEST, ELECTRONIC PRESSURE CONTROL SOLENOID TEST - LHBH0 PED-PTE, FoMoCo, PROPRIETARY & CONFIDENTIAL

ELECTRONIC PRESSURE CONTROL SOLENOID TEST

PROCESS

STRATEGY MODULE: VO_EPC_SOLENOID_COM1

ENGINE OFF SELF TEST, ELECTRONIC PRESSURE CONTROL SOLENOID TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ENGINE OFF SELF TEST, OUTPUT TEST MODE - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUT TEST MODE

OVERVIEW

In this mode, outputs are turned on/off based on operator requests which consist of throttle position moving above an upper limit, then below a lower limit. A timeout is used when outputs are turned on to protect module circuity.

ONLY OUTPUTS IN THE FOLLOWING TABLE WILL BE FUNCTIONED:

1989 EFI-SD
-----STO
WAC
AM1
AM2
EVR
CCC
CANP
ISC
SS-2
CCS
OCIL
SS-1

PROCESS

STRATEGY MODULE: VO_OTM_LH_COM1

ON ENTRY TO THIS MODE, DE-ENERGIZE THE ABOVE OUTPUTS

OUTTMR >= 10 MINUTES ----- Turn outputs off

ITP > VTAP5 ----- Set REQFLG

ENGINE OFF SELF TEST, OUTPUT TEST MODE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 28

ENGINE RUNNING SEQUENCE

ENGINE RUNNING SEQUENCE, ENGINE RUNNING TEST STRUCTURE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ENGINE RUNNING TEST STRUCTURE

PROCESS

STRATEGY MODULE: VR ERTS LH COM1

ENGINE RUNNING SEQUENCE, ENGINE RUNNING TEST STRUCTURE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

The Throttle Plate Adjust Mode Entry is dependent upon operator action as described in it's documentation unit.

ENGINE RUNNING SELF TEST, EGOBAR FILTER AND STATE FLAGS - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EGOBAR FILTER AND STATE FLAGS

STRATEGY MODULE: VR_EGOBAR_COM1

IEGO is filtered in EGOBAR (side) -where side =left or right on stereo systems, left only on mono systems. Time constant for EGOBAR is VTCEGO (a calibratible parameter). EGOSTE (side) is the resultant ego state flag, determined as follows:

Non-shared ego{EGOBAR (side) > 855 counts-->EGOSTE (side)=lean(1) {EGOBAR (side) <=855 counts-->EGOSTE (side)=rich(0)

Shared ego/STI{EGOBAR (side) > 425 counts-->EGOSTE (side)=lean(1) {EGOBAR (side) <=425 counts-->EGOSTE (side)=rich(0)

ENGINE RUNNING SELF TEST, DELAY LOGIC CLARIFICATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DELAY LOGIC CLARIFICATION

PROCESS

STRATEGY MODULE: VR_DELAYLOGIC_COM1

Delay VDLY(x) means:

NOTE: "RESTART VIPTMR" means "SET VIPTMR = 0".

ENGINE RUNNING SELF TEST, ENGINE RUNNING INITIALIZATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ENGINE RUNNING INITIALIZATION

OVERVIEW

The Engine Running Initialization sets specific inputs and outputs as required in preparation for performing the Engine Running On-demand Test.

The inputs and outputs are determined based on the Strategy application.

Part of the initialization process is to check the FMEM failure flags for any

hard fault present. These flags would have been set from the ${\tt VIP}$ <code>EXECUTIVE</code>

when a 2 second time period is allowed to do Continuous testing prior to entry into the Engine Running Test.

If any of the failure flags are present, the test is aborted and a service code 998 and the corresponding fault code(s) will be output on STO as notification that a hard fault currently exists.

DEFINITIONS

INPUTS

Registers:

- VIP_CNT_EX = Vip State Counter.
- VIP_TIMER_EX = VIP state timer.

Bit Flags:

- AFMFLG = ACT FMEM Flag.
- CFMFLG = ECT failure mode (FMEM) flag.
- DIS_FMFLG = Dual Plug DIS FMEM flag.
- MFMFLG = MAP/MAF FMEM flag.
- TFMFLG = TP FMEM flag.

Calibration Constants:

- VIPSPK = Vip Spark advance units are Deg.
- VISCN = Extended idle CLISC desired RPM.
- VRLAM = Rich LAMBDA for EGO test units are LAMBDAS.

ENGINE RUNNING SELF TEST, ENGINE RUNNING INITIALIZATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

OUTPUTS

Registers:

- EFTR = Equil fuel transfer rate BIN 16 LBM.
- EGRDC = EGR duty cycle.
- KAMREF = Adaptive Fuel correction.
- KAMRF1 = EGO-1 Adaptive fuel correction.
- KAMRF2 = EGO-2 Adaptive fuel correction.
- LAMBSE = Closed loop desired equivalence rate.
- LAMBSE1 = LAMBDA equivalence ratio (EGO-1).
- LAMBSE2 = LAMBDA equivalence ratio (EGO-2).
- PURGDC = Purge duty cycle (FN600 output).
- RVIPRPM = RVIP "desired RPM" to CLISCP.
- SAF = Spark advance Bin 2.
- VCUTOUT = Number of injector cutout during Cylinder Bal Test.
- VIP_CNT_EX = Vip state counter.

Bit Flags:

- ACR = --
- AM1 = Air Management 1 solenoid.
- AM2 = Air Management 2 = TAD.
- BRK_NEVER_OFF = Brake always on during RVIP test.
- BRK_NEVER_ON = Brake not applied during RVIP test.
- ERROR 543 = Fuel pump fault in running VIP; Impacts EGO2.

ENGINE RUNNING SELF TEST, ENGINE RUNNING INITIALIZATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- OCS_OPEN = Overdrive cancel switch set to open.
- OCS_SHORT = Overdrive cancel switch set to close.
- POWOFF = 1 -> power steering is OFF.
- POWON = 1 -> power steering is ON.
- RVIP_CYL_BAL = Indicates running VIP cylinder.
- RVIP_CYL_QUIT = 1 -> cyl balance test aborted.
- STI_RESET = 1 -> Operator requested Throttle Plate Adjust Mode.
- VRUN_ISCFLG = RVIP idle speed control flag.
- V_LOW_FAN_ON = 1 -> turn on low speed fan during K.O.E.R. VIP.
- V_MODE_SETUP = 1 -> Use throttle mode VIP constants.
- WAC = --

PROCESS

STRATEGY MODULE: VR_RUN_INIT_COM8

always ------ | Turn STO off
(when in VR_RUN_INIT) | CODE COUNT = 0
| STI_RESET = 0
| V_MODE_SETUP = 0

ENGINE RUNNING SELF TEST, ENGINE RUNNING INITIALIZATION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FMEM FAULT PRESENT AND INITIALIZATION LOGIC

AFMFLG = 1	
CFMFLG = 1 OR	
· · · · · · · · · · · · · · · · · · ·	(output Code 998 and the
Corres- MFMFLG = 1	ponding FMEM fault codes(s) except replace service code
126 V_VACFLG = 1	with 128) (exit Engine Running Self sequence)
	ELSE (output Code 998 and Code
128) V_VACFLG = 1 Test	exit Engine Running Self sequence)
AFMFLG = 1	ELSE
CFMFLG = 1 OR corres-	 (output Code 998 and the
TFMFLG = 1	ponding FMEM fault code(s) (exit Engine Running Self
MFMFLG - 1	sequence) ELSE

ENGINE RUNNING SELF TEST, ENGINE RUNNING INITIALIZATION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

 $VRUN_ISCFLG = 1$ LAMBSE = VRLAM RVIPRPM = VISCN $KNOCK_ENABLED = 0$ EFTR = 0KAMREF = 1.0SAF = VIPSPK EGRDC = 0WAC = 1AM1 = 0AM2 = 0PURGDC = 0 $BRK_NEVER_ON = 1$ BRK_NEVER_OFF = 1 POWON = 0POWOFF = 0OCS_OPEN OCS_SHORT $VIP_TIMER_EX = 0$ VIP_CNT_EX = VR_OUT_ENGCYL

The following logic outputs engine ID pulses on STO. ID code equals 1/2 number of cylinders in engine.

always ------ Output ENGCYL pulses for the (when in VR_OUT_ENGCYL) engine I.D. code on STO (I.D. code = of CYL/2) Wait until pulsing is complete VIP_TIMER_EX = 0 VIP_CNT_EX = VR_HICAM_ISC

ENGINE RUNNING SELF TEST, GENERIC IDLE SPEED CONTROL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

GENERIC IDLE SPEED CONTROL

OVERVIEW

The ISC is an adaptive air bypass system designed to regulate the duty cycle $\,$

to the air bypass solenoid to obtain a desired engine speed for all idle

operating conditions and provide a dashpot action. Predicted airflow is

adaptively corrected to minimize the impact of hardware variability.

The Self Test ISC test is designed to check control of the ISC system at an extended RPM or high cam condition, as well as a low RPM relative to, but not equal to, normal base idle. Self Test uses the base control system algorithm, but substitutes certain calibration parameters in order to maintain Self Test commonality among the many engine calibrations. The

following documentation describes the Self Test portion of ISC. See the base

strategy chapter on Generic ISC for detailed information.

PROCESS

STRATEGY MODULE: VR GENISC COM1

VIP Strategy: (VRUN_ISCFLG = 1)

DSDRPM CALCULATION

DSDRPM = RVIPRPM [+DNAC] [+DNPOWS] [+HEDFRPM]

DSDRPM is allowed to rise instantaneously, but any decreasing value is filtered to prevent a sudden drop in DSDRPM. DESNLO is the filtered value of the DSDRPM register.

DSDRPM < DESNLO ------ | Filter DSDRPM | DESNLO = UROLAV_TC(DESNLO, VTCDSN) | (TCDESN is used when VTCDSN = 0)

The flag, HCAMFG, is set when in VIP. HCAMFG is used to prevent adaptive airflow updates (ISCKAM).

update)

NOTE: A/C [DNAC], Power Steering [DNPOWS] and electrodrive fan [HEDFRPM] adders are also included in the final equation; see base strategy logic for conditions.

ENGINE RUNNING SELF TEST, GENERIC IDLE SPEED CONTROL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DESMAF CALCULATION

DESMAF = DESMAF_PRE(predicted air flow) + IPSIBR + DASPOT + ISCKAMn

DESMAF_PRE = FN875N * FN1861(ECT,ATMR3) [+ACPPM] [+PSPPM] [+EDFPPM] [+HWPPM]

 ${\tt FN875N}$ is the air flow required, closed throttle, in neutral, for the desired engine speed.

[ACPPM],[PSPPM],[EDFPPM] and [HWPPM] represent the airflow needed in DESMAF_PRE for the increased load due to rpm adders.

IPSIBR adjusts DESMAF for load changes. Changes in IPSIBR results in corresponding change to bypass valve duty cycle.

IPSIBR = IPSIBR + ISCPSI
(clipped to VSIBRN as a minimum and VSIBRM as a maximum.)

Where ISCPSI is calculated as:

ISCPSI = RPMERR_A * (DESMAF_PRE/DSDRPM) * BG_TIMER/VTC_UNDER OR VTC_OVER

* * *

RPMERR_A = ROLAV(RPMERR, TCBPA) where RPMERR = DSDRPM - N

DASPOT is the air flow to provide a preposition at open throttle positions (APT = 0 OR 1). It is bled off after a closed throttle transition allowing a smooth transition to RPM control.

ENGINE RUNNING SELF TEST, GENERIC IDLE SPEED CONTROL - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DASPOT DECREMENT

ISCKAMn = Adaptive correction for load condition, where n is the value of ISFLAG (see base strategy for load state definition).

ISCDTY CALCULATION

The mass air flow through the ISC actuator (DEBYMA) is calculated as the mass air flow at idle (DESMAF), less the flow through the throttle plate, corrected for altitude (FN890).

ISCDTY = FN800(DEBYMA) * V820A * IDCMUL + IDCOFS
DEBYMA = (DESMAF - ITHBMA) * (29.92/BP) - FN890(BP)

ITHBMA is the air flow through the throttle plate at idle.

V820A is the ISC duty cycle multiplier used to replace base strategy FN820A, usually set to 1.

IDCMUL is a multiplier for development, usually set to 1.

IDCOFS is the ISCDTY adder for development, usually set to 0.

28-13

ENGINE RUNNING SELF TEST, HIGH RPM ISC TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

HIGH RPM ISC TEST

PROCESS

STRATEGY MODULE: VR_HICAM_ISC_COM2

ENGINE RUNNING SELF TEST, ECT SENSOR TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ECT SENSOR TEST

PROCESS

STRATEGY MODULE: VR_ECT_COM1

ENGINE RUNNING SELF TEST, MAP SENSOR TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MAP SENSOR TEST

PROCESS

STRATEGY MODULE: VR_MAP_COM1

ENGINE RUNNING SELF TEST, THROTTLE POSITION SENSOR - LHBH0
PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

THROTTLE POSITION SENSOR

PROCESS

STRATEGY MODULE: VR_TPS_COM1

ENGINE RUNNING SELF TEST, AIR CHARGE TEMPERATURE SENSOR - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

AIR CHARGE TEMPERATURE SENSOR

PROCESS

STRATEGY MODULE: VR_ACT_COM1

ENGINE RUNNING SELF TEST, TRANSMISSION OIL TEMPERATURE SENSOR - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TRANSMISSION OIL TEMPERATURE SENSOR

PROCESS

STRATEGY MODULE: VR_TOT_COM1

ENGINE RUNNING SELF TEST, BRAKE ON/OFF TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BRAKE ON/OFF TEST

OVERVIEW

The BRAKE ON/OFF test checks the integrity of the brake switch input to the

processor. This test requires the operator to depress the brake pedal any

time during the ENGINE RUNNING test, from the I.D. code to the service code

output, (including the ${\tt GOOSE}$ test). This will toggle the input, ${\tt BIFLG}$, when

the switch opens and closes. The BIFLG check is done every background pass

and the service code setup is done just prior to the code output routine.

DEFINITIONS

Bit Flags:

- BIFLG = Brake input signal.
- BRK_NEVER_OFF = Brake always on during test; initialized to 1 in engine

running initialization.

- BRK_NEVER_ON = Brake not applied during test; initialized to 1 in engine

running initialization.

Calibration Constants:

- BIHP = Base strategy hardware present indicator; 1 = switch present.
- VBISW = Brake input test enable switch; 1 = enable test.

28-20

ENGINE RUNNING SELF TEST, BRAKE ON/OFF TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VR_BOO_COM1

BIFLG CHECK

SERVICE CODE SET-UP

VBISW = 1 ------ | AND - | AND - | BIHP = 1 ------- | AND - | AND - | SET CODE 536

BRK_NEVER_ON = 1 ------ | OR -- | OR -- |

ENGINE RUNNING SELF TEST, POWER STEERING PRESSURE SWITCH TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

POWER STEERING PRESSURE SWITCH TEST

OVERVIEW

The PSPS (power steering pressure switch) test is a functional check of the pressure switch input to the processor. The power steering system must be filled with fluid, and pressurized by the operator turning the steering wheel fully in one direction to the stop and then releasing. This will toggle the input, POWSFG, as the switch opens and closes. This input is used in strategy as a power steering load adder for idle speed control. The POWSFG check is done every background pass and the service code setup is done

DEFINITIONS

Bit Flags:

- POWOFF = Power steering was never off; initialized to 0 in engine running initialization.
- POWON = Power steering was never on; initialized to 0 in engine running initialization.
- POWSFG = Power steering pressure switch input signal.

Calibration Constants:

prior to the code output routine.

- PSPSHP = Base strategy hardware present indicator; 1 -> switch
 present
- VPSSW = PSPS input test enable switch; 1 -> enable test.

28-22

ENGINE RUNNING SELF TEST, POWER STEERING PRESSURE SWITCH TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VR_PSPS_COM2

POWSFG CHECK

SERVICE CODE SET-UP

ENGINE RUNNING SELF TEST, TRANSMISSION CONTROL SWITCH TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TRANSMISSION CONTROL SWITCH CIRCUIT TEST

OVERVIEW

The Transmission Control (TCS) switch circuit test checks the integrity of the circuit from the switch to the processor. This test requires the operator to manually depress and release the switch at any time during the KOER test from the I.D. code to the service code output, (including the GOOSE test). This action will cause the input, ITCS to toggle, setting flags as shown in the logic below. The ITCS input check is done every background pass and the service code set-up is done just prior to the code output routine.

DEFINITIONS

INPUTS

Bit Flags:

- ITCS = Switch input signal.
- TCS_SHORT = Transmission Control switch on state (ITCS = 1)
 initialized
 - to 0 in engine running initialization.
- TCS_OPEN = Transmission Control switch off state (ITCS = 0) initialized
 - to 0 in engine running initialization.

Calibration Constants:

- TSTRAT = Transmission Strategy Switch. The TSTRAT software switch
 - selects which transmission control strategy is to be executed;
 - 0 -> No transmission control, (Manual trans., AOD, ATX, C6, C3,
 - etc.),
- 1 -> SIL (Shift Indicator Light),
- $2 \rightarrow A4LD$ with 3-4 shift control and converter clutch control,
- $3 \rightarrow AXOD,$
- $4 \rightarrow E40D$,
- $5 \rightarrow A4LD-E$,
- $6 \rightarrow AXOD-E$,
- $7 \rightarrow AOD-I$,
- 8 -> F4E,
- $9 \rightarrow CD4E$
- 10 -> JATCO

OUTPUTS

Bit Flags:

- TCS_SHORT = See above.
- TCS_OPEN = See above.

28-24

ENGINE RUNNING SELF TEST, TRANSMISSION CONTROL SWITCH TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VR_TCS_COM4

SERVICE CODE SET-UP

ENGINE RUNNING SELF TEST, EGO SWITCHING TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EGO SWITCHING TEST

OVERVIEW

The Ego switching test has been designed to check the switching capability of the Ego sensor, Ego circuit continuity and connections. Hego heater supply voltage is not addressed.

Test preconditioning is done during the initialization sequence where engine rpm is adjusted to an upper level and lambda is set to a slightly rich condition (VRLAM). Spark advance is fixed to VIPSPK and selected items such as canister purge, thermactor air, and egr are de-activated to eleminate interaction with engine A/F ratio.

An Ego warm-up delay (VISDL1) is used to help warm-up the Ego sensor before entering the test. This delay is also used to allow the ISC circuit to settle.

The test begins by comparing NBAR (filtered rpm) to VNMIN. If engine rpm is below VNMIN, the test is aborted and jumps to the goose test section. A service code 416 will be output to indicate a low rpm condition at the end of the Engine-Running test.

If the engine rpm is above VNMIN, the test continues by ramping fuel lean from VRLAM to the clip LEQV at the rate of VIPLR1. Ego state is monitored during this ramping sequence and a time constraint (VIPTM3) is used to determine the maximum time allowed. If VIPTM3 is calibrated larger than the time needed to reach LEQV, a dwell time at the clip will result.

If an Ego switch has not occured within this time period, a service code 173 (fuel always rich) is set and the test exits under a specific set of conditions. Lambse jumps back to VRLAM and AM1 and AM2 is turned off. A delay (VISDL8) is used just prior to entering the egr test for stabilization.

If a lean Ego switch has occured, fuel is ramped rich from the lean switch point to the rich clip REQV at the rich rate VIPRR1. Again, Ego state is monitored during this process and a dwell timer VIPTM4 is used at the rich clip.

If a rich ego switch has not occured within the VIPTM4 dwell, a service

code

172 (fuel always lean) is set and the test exits under the same conditions as in the code 173 failure.

If a rich Ego switch has occured within the allowable time, the test exits

with the next path being either the thermactor air test and/or the egr test.

It should be noted that in a correctly operating system the \max timers

 ${\tt VIPTM3/VIPTM4}$ may never be realized if the Ego responds quickly. The test

therefor takes only as long as necessary to verify ego switches.

Calibration of the timers and clips have to take into account how accurate

the fuel strategy volumetric efficiency tables are calibrated at he $\,$

speed/load point the Ego switching test is performed. Wider fuel ramp

excursions $% \left(1,2\right) =0$ may be necessary if stoichiometry is observed at a lambda of 1.25

for example.

ENGINE RUNNING SELF TEST, EGO SWITCHING TEST - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

The following is a list of Ego $\,$ switching $\,$ test $\,$ calibration $\,$ parameters and $\,$ recommended values.

PARAMETER	RECOMMENDED VALUE
VNMIN VIPLR1	1000 rpm .05 lambda/sec.
LEQV	1.3 lambda
VIPTM3	13 sec.
VIPRR1	.075 lambda/sec.
REQV VIPTM4	.75 lambda
VIPIM 4	5 sec.

ENGINE RUNNING SELF TEST, EGO SWITCHING TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VR_EGO_COM1

ENGINE RUNNING SELF TEST, THERMACTOR AIR TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

THERMACTOR AIR TEST

PROCESS

STRATEGY MODULE: VR_THERMAIR_COM2

ENGINE RUNNING SELF TEST, THERMACTOR AIR TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ENGINE RUNNING SELF TEST, SPARK CONTROL TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SPARK CONTROL TEST

OVERVIEW

The Spark Control Test provides verification that the EEC spark output is actually controlling by means of using the engine RPM as feedback while other parameters are held constant. The ISC duty cycle is held constant to prevent engine speed correction and LAMBSE is fixed to VRLAM as the spark output is ramped from an initial starting point to a final spark and the engine (NBAR) input is compared to a calibrated delta for the expected change. The delta distance to be ramped divided by the spark ramp rate plus the delay times result in total test time required when there is a failure. However, when the delta is reached, indicating the system is controlling, the

DEFINITIONS

time is less.

Registers:

- NSAV = Temporary register to store current NBAR.
- NBAR = Filtered engine speed input used to compare to NSAV.
- SAF = Final spark advance output to spark controller.
- VIP_TIMER_EX = VIP execution time; 1/8 second later, also used as
 medium
 for ramping spark advance.

Calibration Constants:

- V_SPK_ENABL = Calibration switch to enable/disable test, flag bit
 0 =
 bypass test; 1 = do test.
- V SPK INIT = Initial spark starting point to begin ramping from.
- VDLY8 = Delay time used before beginning spark ramp or used as delay

before entering the EGR TEST when the SPARK TEST is bypassed.

- V_SPK_RATE = Spark ramp rate required during test.
- V_SPK_FINAL = Final spark for spark ramp to end.
- VIPSPK = Normal VIP spark (30 deg's BTC).
- VSPTDL = Delay time before exiting test after setting SAF = VIPSPK.
- CODE 213 = Service code which indicated spark control fault present.

28-31

ENGINE RUNNING SELF TEST, SPARK CONTROL TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VR_SPARK_COM1

ENGINE RUNNING SELF TEST, EXHAUST GAS RE-CIRCULATION SYSTEM TEST - LHBH0

PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EXHAUST GAS RE-CIRCULATION SYSTEM TEST (SONIC)

PROCESS

STRATEGY MODULE: VR_EGR_COM6

ENGINE RUNNING SELF TEST, EXHAUST GAS RE-CIRCULATION SYSTEM TEST - LHBH0

PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

ENGINE RUNNING SELF TEST, LOW RPM ISC TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

LOW RPM ISC TEST

PROCESS

STRATEGY MODULE: VR_LOW_ISC_COM4

--- ELSE ---

VIP_TIMER_EX = 0 VIP_CNT_EX = VR_GOOSE

VIP_CNT_EX = VR_GOOSE

10/21/2000 LHBH1.TXT

ENGINE RUNNING SELF TEST, GOOSE TEST - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

GOOSE TEST SPEED DENSITY, MONO EGO

OVERVIEW

Test operator is directed to Goose the throttle as soon as he sees the single

pulse (readout of 10 on Star unit) so that dynamic response can be tested.

The test will end when one of the following conditions are met.

- V_GOOS_DELAY seconds elapse after the RPM response occurs
- Time in test exceeds VGOOSEC seconds.

In the second case, a code 538 is sent to indicate that the test was incorrectly performed.

DEFINITIONS

Registers:

- NSAV = Temporary register to store current NBAR.
- TPSAV = Temporary register to store current TP value.
- MAPSAV = Temporary register to store current MAP value.

Bit Flags:

- VF1 = Flag indicating VIPTMR has been loaded with a new value,
 - (VGOOS DELAY), based on an RPM response.
- CODE_225 = Flag bit for error code 225, to be cleared during the test if knock is present.
- CODE_129 = Flag bit for error code 129, to be cleared during the
 - when the MAP indicates movement beyond a calibrated target.
- CODE_167 = Flag bit for error code 167, to be cleared during the test when the TP indicates movement beyond a calibrated target.
- CODE_538 = Flag bit for error code 538, to be cleared during the test when the RPM has increased above a calibrated target.

Calibration Constants:

- V_GOOSW = Flag to enter GOOSE test (1=enter;0-bypass).
- V_GOOSPK = Spark advance for knock sensing (50 deg's BTC) NOTE: V_GOOSPK
 - is limited by normal strategy parameter SPUCLP.
- V GOOSN = RPM change to determine GOOSE test has been performed

(400 RPM).

- V_GOOSTP = TP change required in GOOSE test (200 cnts).

28-36

ENGINE RUNNING SELF TEST, GOOSE TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- V_GOOSMP = MAP change required in GOOSE test (10in.Hg).
- V_GOOSEC = Time in GOOSE test loop (15 sec's).
- V_GOOS_DELAY = Time elapse after RPM change to exit test (min.
 1.5
 sec's).
- VIPSPK = Normal VIP spark (30 deg's BTC).
- V_KNK_DLY = Delay time for GOOSE initialization (1 sec).
- V_KNK_FUEL = New LAMBSE setting for engine knock enhancement
 (0.8
 LAMBDAS).
- V_KTS = Knock threshold pulse time (25 ticks).
- VRLAM = Normal LAMBSE setting from EGO switching test (0.9 LAMBDAS).

ENGINE RUNNING SELF TEST, GOOSE TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VR_GOOSE_SD_COM1

ENGINE RUNNING SELF TEST, GOOSE TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

```
( G1 )
    /----! YES /VIP_KNOCK = 1 \YES !-----! KIHP=1 ? \----> \(KNOCK DETECTED?) /--->! CLEAR CODE_225!
        NO
        <---
               YES !----!
    (N-NSAV) >= \---->! CLEAR CODE_538!
    V_GOOSN ? / !----!
       l NO
    ABS `\
               YES !----!
     (TP-TPSAV)
              \---->! CLEAR CODE_167 !
     >=
    V GOOSTP ?/
    \----/
      NO
    ABS
               YES !----!
  /(MAP-MAPSAV) \---->! CLEAR CODE 129 !
   >= V_GOOSMP?/ !----!
       l NO
   / IS
              YES /----! YES !----!
                   /-----!
VF1 \-----! .SET VF1 !
\ CLEAR ? / ! VIP_TIMER_EX=!
\-----/ ! (V_GOOSEC- !
| NO ! V_GOOS_DELAY)!
   CODE_538
     CLEAR ? /
                   \----/
| NO
      NO
                                     !----!
                         V
NO /-----YES /-----YES !-----!
----/VIP_TIMER_EX \--->/ KIHP=1? \--->!.SET LAMBSE =VRLAM!---
   > V_GOOSEC ?/
```

ENGINE RUNNING SELF TEST, GOOSE TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ENGINE RUNNING SELF TEST, THROTTLE PLATE ADJUSTMENT MODE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

THROTTLE PLATE ADJUSTMENT MODE

OVERVIEW

The THROTTLE ADJUST MODE allows checking and if necessary adjustment of the throttle hard set at the desired rpm V_RPM_SET .

NOTE: The ignition timing should be checked and adjusted to specification prior to any adjustment of the throttle.

The operator can enter the throttle adjust mode any time during the 2 minute

timing check by ungrounding and again grounding STI within a $4\ \text{second}$ lapsed time (STI_RESET).

STI_RESET is cleared on entry to Engine Running when VRUN_ISCFLG is set to 1.

Exit from Engine Running Test will only be allowed when STI_RESET is 0.

STI_RESET can only be set to 1 during the 2 minute timing check. See exit

logic page for other conditions which will cause exit from Engine Running $\ensuremath{\mathsf{Test}}.$

Once the mode is entered the preset engine conditions are allowed to stabilize for a calibrated period of time. To signal that this time has elapsed and throttle adjustment may proceed, a seperator pulse is output on Self Test Output (STO). The MODE SET UP LOGIC can be exited by ungrounding the STI.

NOTE: Applications which have electrodrive fan require low speed fan operation during this mode. (Flag V_LOW_FAN_ON = 1)

VIP flags, RUNNING and VRUN_ISCFLG, remain set (=1) during this mode.

The STO is also used as feedback to the operator during the adjust mode. If

the idle speed is within the range the STO will be "on" constantly, otherwise

it will "flash" at a rate of 1 Hz when below the range or at a rate of $4\ \mathrm{Hz}$

when above the range. If at anytime during this mode the $\ensuremath{\mathsf{TP}}$ sensor goes out

of range the STO will flash at a rate of 8 Hz.

The Adjustment Mode ends when a calibrated time \mbox{period} (V_MODE_END), or a

maximum of 10 minutes (600 sec's) is reached. As long as the time period is

less than (V_MODE_END) the mode can be re-entered by ungrounding STI and

again grounding STI within 4 sec's. The re-entry point is at the MODE SET $\ensuremath{\mathsf{UP}}$

LOGIC where all the parameters are set up and the STO signals that the mode is entered. $\,$

ENGINE RUNNING SELF TEST, THROTTLE PLATE ADJUSTMENT MODE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

INPUTS

Registers:

- VIP_TIMER_EX = VIP execution time; timer (eighths of sec).
- OUTTMR = VIP output test timer (sec's); revised from flag driven to free running timer.

Bit Flags:

- DISABLE_ISC = Flag used for idle fuel modulation determination 1 =
 disable,
 0 = enable.
- OLFLG = Base Strategy flag which indicates type of fuel control, 0 = closed loop control, 1 = open loop control.
- V_MODE_SETUP = Flag indicates entry in the Throttle Adjust Mode, 1 = enabled.
- STIFLG = Self Test input which indicates VIP testing requested, 1 = tester input is grounded.
- STI_RESET = STI status flag during 2 minute timing check. See STI_RESET LOGIC and TIMER LOGIC within the process.

Calibration Constants:

- VDLY_ENTER = Delay time to stabilize engine before sending pulse on STO which indicates adjust mode entered, base value = $4 \, \text{sec's}$.
- V_ISCMOD_MAX = Lean limit clip on idle fuel modulation, base value = 1.1.
- V_{ISCMOD_MIN} = Rich limit clip on idle fuel modulation, base value = 0.9.
- V_KDNDT = VIP gain for idle fuel modulation, base value = 0.0005.
- V_MODE_END = Time to allow in service mode, base value = 300 sec's.
- V_MODE_OPT = Enable flag for throttle plate adjust mode, 1 = enable.

ENGINE RUNNING SELF TEST, THROTTLE PLATE ADJUSTMENT MODE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- V_NHIGH = Maximum range of rpm set, base value = 50 rpm.
- V_NLOW = Minimum range of rpm set, base value = 30 rpm.
- V_RPM_SET = Desired rpm to be used in DSDRPM calculation, base value = 1000

rpm. Note: Must be above NUBASE rpm.

- V_STO_DELAY = Time delay to allow the tester to clear after sending the 1/2

second pulse on STO, base value = 4 sec's. Note: clipped to a minimum of 4 seconds.

OUTPUTS

Registers:

- VIP_TIMER_EX = See above.
- OUTTMR = See above.

Bit Flags:

- STI_RESET = See above.
- V_MODE_SETUP = See above.
- OLFLG = See above.
- DISABLE_ISC = See above.

ENGINE RUNNING SELF TEST, THROTTLE PLATE ADJUSTMENT MODE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

forced closed loop.

STRATEGY MODULE: VR_TPADJ_MODE_COM1

This logic is performed once STI_RESET = 1 from the 2 min. delay logic. The purpose is to allow a 4 second time period to enter the TP ADJUST MODE by again grounding STI. If the 4 seconds elapses without action on STI the result is to exit RUNNING VIP. When TP ADJUST MODE is requested, DSDRPM is calculated based on the calibration parameter V_RPM_SET and fuel control is

VIP_CNT_EX = STI_RESET TIMER LOGIC ---- | PROCESS: STI_RESET TIMER LOGIC

STI_RESET TIMER LOGIC

VIP_TIMER_EX < .25 seconds	Allow 1/4 second for switch debounce to prevent clearing ISCKAM when not entering the THROTTLE ADJUST MODE	
	ELSE	
VIP_TIMER_EX < 4 seconds AND - STIFLG = 0 (STI not grounded)	Allow 4 seconds to determine if THROTTLE ADJUST MODE entry is selected.	
(211 1.00 510411404)	ELSE	
VIP_TIMER_EX < 4 seconds AND - STIFLG = 1 (STI is grounded)	<pre>V_MODE_SETUP = 1 RVIPRPM = V_RPM_SET OLFLG = 0 (closed loop fuel) VIP_TIMER_EX = 0 VIP_CNT_EX = MODE SETUP LOGIC</pre>	
	ELSE	
VIP_TIMER_EX >OR= 4 seconds AND - STIFLG = 0 (STI not grounded)	STI_RESET = 0 VIP_CNT_EX = VIP_REINIT (TP ADJUST MODE not selected)	
	ELSE	
VIP_TIMER_EX >OR= 4 seconds AND - STIFLG = 1 (STI is grounded)	<pre>STI_RESET = 0 VIP_CNT_EX = VIP_REINIT (TP ADJUST MODE has been bypassed and WIGGLE TEST is requested)</pre>	

ENGINE RUNNING SELF TEST, THROTTLE PLATE ADJUSTMENT MODE - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

This logic sets up the conditions for the test and allows the engine to

stabilize. Feedback spark is locked at the mean idle spark value and $\ensuremath{\mathsf{Kam}}$ is

disabled from learning by clearing each background loop. The total $\operatorname{airflow}$

becomes the predicted airflow by ignoring airflow correction factor IPSIBR AND DASPOT.

Idle Fuel Modulation is used for idle stability of speed density

 $\bar{\text{Most}}$ MAF systems do not need Idle Fuel Modulation and can be disabled by

setting the gain term $V_KDNDT = 0$. Certain MAF configurations may require

compensation which is opposite of what is required for speed density. In

these cases the gain term V_KDNDT can be made negative.

Please note that Engine Running VIP also has Idle Fuel Modulation capability

and if it was necessary to use it there, then it is needed here also.

VIP_CNT_EX = MODE SET UP LOGIC ------ | OUTTMR = 0 | PROCESS: MODE SET UP LOGIC

MODE SET UP LOGIC

STIFLG = 0 ----- | VIP_CNT_EX = STI_RESET TIMER LOGIC --- ELSE ---RETURN TO BACKGROUND Wait for engine to stabilize Base strategy actions: DESMAF = DESMAF PRE VIP TIMER EX < VDLY ENTER -----(ISCKAM is cleared each background loop. IPSIBR is ignored) SPK_FBS = SPK_IDLE (KSPARK = 0; mean idle spark) --- ELSE ---Send single 0.5 sec. pulse on STO | VIP_TIMER_EX = 0

ENGINE RUNNING SELF TEST, THROTTLE PLATE ADJUSTMENT MODE - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TP ADJUST MODE FEEDBACK LOGIC

VIP_TIMER_EX < V_STO_DELAY (Clipped to 4 sec's min.)	Delay to clear tester after 0.5 sec. pulse on STO
	ELSE
OUTTMR => V_MODE_END (Vector clipped at 600 sec's max.)	
	ELSE
STI_FLG = 0	VIP_CNT_EX = STI_RESET TIMER LOGIC
	ELSE
ITP < VTAP3 OR ITP > VTAP4	Dulgo CTO of 0 II
ITP > VTAP4	Puise SIO at 6 HZ
	ELSE
NBAR <= (DSDRPM - V_NLOW)	Pulse STO at 1 Hz
	ELSE
NBAR > (DSDRPM - V_NLOW)	Turn STO on continuous
NBAR < (DSDRPM + V_NHIGH)	ELSE
NBAR >= (DSDRPM + V_NHIGH)	Pulse STO at 4 Hz

NOTE: VIP flags V_MODE_SETUP and STI_RESET are cleared on exit from the TP ADJUST MODE during the re-init procedure.

CHAPTER 29

CONTINUOUS TEST STRUCTURE

CONTINUOUS TEST STRUCTURE, FILTERING LOGIC - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FILTERING LOGIC

OVERVIEW

Each fault to be detected and stored requires an event counter-timer which will be incremented by an "Up-count" value (calibratable) each time a fault is detected, and decremented by 1 each time the fault is not detected.

Fault detection and up/down counting are done once per background loop.

When the

counter-timer for a particular fault exceeds a "threshold"
value

(calibratable) for that fault, the corresponding KAM fault code will be stored.

The "Wiggle Test" is a special case. Whenever the wiggle test mode is active and any one of the fault filters active during the wiggle mode

exceeds its threshold (WIGLVL), STO is turned "on" (otherwise it will be "off").

PROCESS

STRATEGY MODULE: VC_FILTER_COM2

CONTINUOUS SELF TEST, FAULT THRESHOLD/UPCOUNT VALUE SELECTION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FAULT THRESHOLD/UPCOUNT VALUE SELECTION "WIGGLE" VERSUS NORMAL CONTINUOUS TEST

OVERVIEW

Continuous Self-Test can operate in one of two modes, normal continuous Wiaale. In normal continuous, the calibrated values for fault filter upcounts and thresholds (CxxxUP and CxxxLVL) are used to control the setting of service codes. During Wiggle mode, a value of 255 is used for all non-zero upcounts (except as noted) and the value of WIGLVL is used for all thresholds (except as noted). Also, STO will be activated at any time that a continuous fault is present. This will cause a STAR tester to output a tone whenever a failure is caused by a service technician manipulating the EEC harness and/or connectors. This is done to assist the diagnosis of intermittent harness problems.

Wiggle mode is entered when Self-Test In (STI) is grounded after initiating and exiting, or aborting, on demand self test (KOEO or KOER). This can be done by grounding, ungrounding, then re-grounding STI with the engine off or Or, wiggle will be entered after an on demand Self-Test running. (KOEO or KOER) is completed. If the vehicle is in gear when engine running (KOER) Self-Test is initiated, or the vehicle is placed in gear during engine running Self-Test; wiggle mode will be entered. See the Self-Test entry/exit logic for a complete description.

CONTINUOUS SELF TEST, FAULT THRESHOLD/UPCOUNT VALUE SELECTION - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VC_FAULT_COM1

WIGFLG = 1 ----- | Wiggle test: (set in Self-Test entry logic) Set all non-zero upcounts to 255 except as noted in test descriptions Set all continuous thresholds to WIGLVL except as noted in test descriptions --- ELSE ---Not in Wiggle Use calibrated upcounts and thresholds WIGFLG = 1 -----| (in wiggle test) AND - Turn STO on CxxxFIL > CxxxLVL-----(any fault filter greater than threshold) --- ELSE ---WIGFLG = 1 ----- Turn STO off (in wiggle test) (all fault filters less than or equal to the threshold)

CONTINUOUS CODE PARAMETER NAMING CONVENTION

FAULT	FILTER	UPCOUNT	THRESHOLD	WARM-UP COUNTER	
FAULT DESCRIPTION	CXXXFIL	CXXXUP	CXXXLVL	CXXXCNT	CXXX_KAM_BIT

CONTINUOUS SELF TEST, KAM CODE WARM_UP COUNTER/ERASE LOGIC - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

KAM CODE WARM_UP COUNTER/ERASE LOGIC

OVERVIEW

Each KAM code has a counter for "Number of Engine warm-ups" since the fault

was last stored. The warm up counters are incremented once per each power

up, only if a true warm up has occurred as described below.

Each individual code is erased when its counter is >= 80. Codes can also be

manually cleared by ungrounding STI during Engine-Off code output mode.

DEFINITIONS

Calibration Constants:

- VECT3 = coolant temp. limit to trigger warm up counters (150 \deg . F).
- VECT5 = starting coolant temp. for warm up counters (120 deg. F).

CONTINUOUS SELF TEST, KAM CODE WARM_UP COUNTER/ERASE LOGIC - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VC_WARMUP_KAM_ERASE_COM1

WARM_UP COUNTER LOGIC

WARM_UP = 0	
TCSTRT < VECT5	AND LODGE WARM UP 1
ECT > VECT3	AND - SET WARM_UP = 1 (the flag WARM_UP is initialized to 0 on
RUN MODE (CRKFLG=0, UNSP=0)	power up and is never cleared once a true warmup has occurred
STIFLG = 0	
POWER_UP = 1 (set in RAM INIT.)	INCREMENT ALL CODE AND - WARM-UP COUNTERS
WARM_UP = 1	SET POWER_UP = 0

KAM CODE ERASE LOGIC

WARM-UP COUNTER(N) >= 80		ERASE	KAM	CODE(N)
		 I	ELSE	
STO_WORKING = 1 (engine off code output mode*) OR				
STO_TRIGGER = 1	V VID	 	71 T	KAM CODES
NO_START = 1 (engine off test in process)		EKASE	АПП	KAM CODES
STIFLG = 0 (self test not requested)				

^{*} Note: Includes the output of any codes in Engine Off Self Test; service codes, separator pulse, and continuous codes.

COOLING SYSTEM TEST (CONTINUOUS) - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

COOLING SYSTEM TEST

OVERVIEW

This module is designed to verify that the cooling system is controlling the

engine temperature by monitoring the ECT input to determine whether the $\,$

thermostat has opened. It is based upon the observation of a predicted

temperature drop within a specific control range.

Certain entry conditions must be met to enable the testing process. A stabilization time is required to initialize the test. There is a predetermined starting point at which processing will begin. A time limit is allowed for the system to control engine temperature during which the determination is made that either: 1) there is a system fault; or 2)

the system is controlling as expected. Once a decision is made the test will be

bypassed for the rest of that power up.

The system faults are indicated by two service codes as listed below.

Condition:

- 1) code 338; cooling system is not heating (i.e. thermostat stuck open,
 low
 coolant level, very cold ambient temperature, etc.)
- 2) code 339; cooling system is not cooling (i.e. thermostat stuck closed, flow restriction within the system, coolant level/ condition or system operating pressure, etc.)

DEFINITIONS

INPUTS

Registers:

- C338CNT = Continuous code 338 warmup counter.
- C339CNT = Continuous code 339 warm up counter.
- C338FIL = Cont. code 338 register update, counts. Initialized to 0.
- C339FIL = Cont. code 339 register update, counts. Initialized to 0.
- V ATMR2 = Time since ECT became greater than V ECTCTMIN, seconds.
- V_ECTCTL = Register used in determining the delta temperature drop for setting the thermostat open flag, V_THMOPN, deg F. initialized to 254 deg. F.
- _ V_ECT_CTR = Counter which increments when the ECT is within the calibrated control range. Initialized to 0.
- V_ECTHI = Register used to load current ECT input as long as the value is increasing, deg. F. Initialized to 0.

Continued on Next Page

COOLING SYSTEM TEST (CONTINUOUS) - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Continued from Previous Page

- OUTTMR = Counter used throughout VIP to limit test time, seconds. Initialized to 0.

Bit Flags:

- C338_KAM_BIT = Code 338 KAM bit used in service code output routine.
- C339_KAM_BIT = Code 339 KAM bit used in service code output routine.
- VATMR2_FLG = Flag used to count up V_ATMR2.
- V_CST_PASS = Flag used to bypass testing once a decision has been made that either there is a fault or the system is controlling within the temperature range, 1 = bypass. Initialized to 0.
- V_STABLFLG = Flag with is set upon stabilization time V_STABLTIM. Initialized to 0.
- V_THMOPN = Flag which indicates the thermostat has opened, 1 = opened. Initialized to 0.
- V_WARM_FLG = Flag which indicates the engine has warmed up, 1 =
 warm. Initialized to 0.

Calibration Constants:

- C338LVL = Continuous code 338 filter level. Base value = 250 cnts.
- C339LVL = Continuous code 339 filter level. Base value = 250 cnts.
- C338UP = Continuous code 338 filter upcount. Base value = 255 cnts.
- C339UP = Continuous code 339 filter upcount. Base value = 255 cnts.
- V_CSTE_SW = Cooling System Test enable. 1 = enable, 0 = disable.
- V_ECT_DEL = Delta temperature drop required which indicates that the thermostat has opened. Base value = 10 deg. F.
- V_ECT_LIM = Number of valid ECT readings within the control range before the system is considered warmed up. Base value = 20.
- V_ECTCTMAX = ECT high limit within the control range. Base value = 220 deg. F.
- $V_ECTCTMIN$ = ECT low limit within the control range. Base value = 170 deg. F.

Continued on Next Page

COOLING SYSTEM TEST (CONTINUOUS) - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Continued from Previous Page

- V_ECT_TIME = Time allowed for engine warmup from $V_ECTCTMIN$. Base value = 240 secs.
- V_STABLTIM = Time allowed for cooling system stabilization after run mode is entered. Base value = 30 secs.
- V_TIME_LIM = Total time allowed for engine warmup from run mode. Base value = 1200 secs.

OUTPUTS

Registers:

- V_ECTCTL = See above
- V_ECT_CTR = See above
- _ V_ECTHI = See above

Bit Flags:

- V_CST_PASS = See above
- V_STABLFLG = See above
- V_THMOPN = See above
- V_WARM_FLG = See above

COOLING SYSTEM TEST (CONTINUOUS) - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VC_COOLING_SYS_COM1

TEST ENTRY CONDITIONS:

BEGIN: STABILIZATION CHECK

END: STABILIZATION CHECK

BEGIN: STARTING POINT CHECK

ECT >OR= V_ECTCTMIN ------ DO: ECT MONITORING LOGIC

(ECT above control min.) DO: COOLING SYSTEM FUNCTION LOGIC

---ELSE--
DO: COOLING SYSTEM FUNCTION LOGIC

END: STARTING POINT CHECK

COOLING SYSTEM TEST (CONTINUOUS) - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: ECT MONITORING LOGIC

ECT >OR= V_ECTHI (Coolant Temp. rising) ECT < V_ECTHI (Coolant temp. falling) ECT < V_ECTCTL (Sys. controlling temp.) AND ECT > V_ECTCTMIN (ECT above control min.)	ELSE V ECTCTL = ECT
<pre>V_WARM_FLG = 1 (Engine has warmed up) V_THMOPN = 0 (Thermostat not open yet) V_ECTHI - V_ECTCTL > V_ECT_DEL (ECT has dropped required delta)</pre>	AND V_THMOPN = 1 (Thermostat has opened)
V_ECT_CTR >OR= V_ECT_LIM (Valid ECT readings limit) AND V_ATMR2 >OR= V_ECT_TIME (Time allowed for warmup) ECT >OR= V_ECTCTMAX (ECT above control max.)	OR V_WARM_FLG = 1 (Warmup occurred at some previous time)
ECT > V_ECTCTMIN	AND V_ECT_CTR = V_ECT_CTR + 1 (ECT within control range; increment counter,clip at 255)

END: ECT MONITORING LOGIC

NOTE: V_{ATMR2} starts running based on the calibration constant $V_{ECTCTMIN}$.

COOLING SYSTEM TEST (CONTINUOUS) - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: COOLING SYSTEM FUNCTION LOGIC

V_WARM_FLG = 0 (Engine not warm yet) AND OUTTMR >OR= V_TIME_LIM (Total time allowed to warmup)	<pre>V_CST_PASS = 1 Set: ERROR_DETECTED Cooling system is not heating Do: FAULT FILTERING C338 (Note: calibrate fault filter to store code in one upcount).</pre>
W WDW DIG 1	ELSE
<pre>V_WARM_FLG = 1 (warmup completed) V_THMOPN = 0 AND (Thermostat not open) ECT > V_ECTCTMAX (ECT above control limit)</pre>	<pre>V_CST_PASS = 1 Cooling system is not cooling Set: ERROR_DETECTED Do: FAULT FILTERING C339 (Note: calibrate fault filter to store code in one upcount).</pre>
	ELSE
V_WARM_FLG = 1 (Warmup completed) AND V_THMOPN = 1 (Thermostat open)	<pre>V_CST_PASS = 1 (Cooling sys. is controlling) EXIT: VC_COOLING_SYS_TEST Do: FAULT FILTERING C338 and C339</pre>
	ELSE
	EXIT: VC_COOLING_SYS_TEST

END: COOLING SYSTEM FUNCTION LOGIC

TIMER CONTROL LOGIC (Included within this test module)

V_ATMR2 - TIME SINCE ECT BECAME GREATER THAN V_ECTCTMIN

ECT > V_ECTCTMIN AND	VATMR2_FLG = 1 V_ATMR2 = 0
VATMR2_FLG = 0	ELSE
VATMR2_FLG = 1	COUNT UP V_ATMR2
	ELSE
	$V_ATMR2 = 0$

CONTINUOUS SELF TEST, ECT OPEN/SHORT TESTS - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ECT OPEN/SHORT TESTS

PROCESS

STRATEGY MODULE: VC_ECT_COM1

CONTINUOUS SELF TEST, ACT SENSOR TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ACT SENSOR TEST

PROCESS

STRATEGY MODULE: VC_ACT_COM1

TRANSMISSION OIL TEMPERATURE SENSOR (CONTINUOUS) - LHBHO PED-PTEM FOMOCO, PROPRIETARY & CONFIDENTIAL

TOT OPEN/SHORT TESTS

PROCESS

STRATEGY MODULE: VC_TOT_COM2

CONTINUOUS SELF TEST, MANIFOLD ABSOLUTE PRESSURE SENSOR - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MAP SENSOR TEST

PROCESS

STRATEGY MODULE: VC_MAP_COM1

CONTINUOUS SELF TEST, MAP SENSOR VACUUM CIRCUIT TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MAP SENSOR VACUUM CIRCUIT TEST

OVERVIEW

The purpose of this test is to check the vacuum circuit integrity of the map sensor in speed density systems.

The test philosophy is such that a required difference between $\,{\tt BP}\,$ and $\,{\tt MAP}\,$

should be observed. This difference is evaluated each background loop and if

present, normal down fault is executed.

Operating modes or situations that prevent this change would be:

- 1) Cranking/Stall
- 2) WOT or,
- 3) MAP vacuum hose disconnect. (MAP = BP)

In order to isolate the disconnect, testing is conducted in Continuous Self

Test and is restricted to closed throttle and run mode where the $\operatorname{BP-MAP}$ change is greatest.

 ${\tt TP}$ and ${\tt MAP}$ electrical integrity must be assured and checked because they are

essential inputs to the testing conditions. If either input has failed, the $\,$

test is immediately exited.

The test is further restricted so that updated BP is greater than about $20\,\mathrm{"}$

(V_BPMIN). This is to prevent executing the test due to low updated BP at

altitude which may cause the MAP difference to be calculated low. In

addition, a time since last PIP limit (V_PIPMAP_LMT) parameter is utilized to

abort testing if a stall is imminent. This is to preclude false failure recognition.

If all testing requirements are met $% \left(1\right) =\left(1\right) +\left(1\right)$

 V_MAPDIF i.e. 2", then a fault is indicated and up filtering is executed.

When the fault filter exceeds the calibrated threshold, an error code

 $(128 \mbox{*}/81 \mbox{**})$ is stored in KAM, and a fault flag (V_VACFLG) is set and passed

to base strategy to be used for activating MAP MFMFLG.

Continuous checks are made on the fault filter to ascertain whether or not a ${\bf a}$

fault is present in order to set or clear the failure flag.

The test may be calibrated out if desired by setting V_MAPFLG = 0.

^{* 3-}digit codes

^{** 2-}digit codes

CONTINUOUS SELF TEST, MAP SENSOR VACUUM CIRCUIT TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

Self Test Registers:

- V_IMAP = Stored MAP after MAP_WORD calculation.
- C126*/22**FIL = Error C126/22 fault filter.
- C128*/81**CNT = Warm-up counter for Fault 128/81.
- C128*/81**FIL = Fault filter for error code 128/81.

Self Test Calibration Constants:

- V_MAPDIF = Required minimum MAP change.
- V_PIPMAP_LMT = Max TSLPIP to do MAPVAC test.
- V_MAPFLG = MAP vacuum circuit test enable flag 1 = enable.
- V_BPMIN = Minimum BP required to do test.
- C128*/81**LVL = Threshold level for fault 128/81.
- C128*/81**UP = Upcount for fault 128/81.

Self Test Flags:

- WIGFLG = Flag to indicate wiggle mode. 1 = enable.
- V_VACFLG = Error flag passed to base strategy to indicate vacuum circuit

failure. 1 = failure.

- ERROR_DETECTED = Flag passed to fault filter routine indicating self test

detected a failure.

- * 3-digit codes
- ** 2-digit codes

CONTINUOUS SELF TEST, MAP SENSOR VACUUM CIRCUIT TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Base Strategy Registers:

- BP = Inferred BP used by control strategy.
- APT = Throttle mode.

Base Strategy Flags:

- UNDSP = Underspeed flag.
- TFMFLG = TP FMEM flag.

Base Strategy Calibration Constants:

- FILHYS = FMEM filter count hysteresis.

NOTE: V_MAPFLG is set to 0 on Power-up.

CONTINUOUS SELF TEST, MAP SENSOR VACUUM CIRCUIT TEST - LHBHO PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VC_MAPVAC_COM1

<pre>V_MAPFLG = 0 (test cal'd out)</pre>	j j	DO: Fault Filter C128*/81**
<pre>BP-IMAP_WORD => V_MAPDIF (MAP difference indicated)</pre>		
	İ	ELSE
WIGFLG = 0 (not in Wiggle Mode)		
UNDSP = 0 (Run mode)		
TFMFLG = 0 (TP ok)		
C126*FIL = 0 22** (MAP elect ok)	 AND	 SET: ERROR_DETECTED DO: FAULT FILTER C128*/81** DO: FAILURE MODE LOGIC
TSLPIP <= V_PIPMAP_LMT (RPM high enough)		
APT = -1 (closed throttle)		
<pre>BP > V_BPMIN (min BP req'd)</pre>		
<pre>BP-IMAP_WORD < V_MAPDIF (req'd MAP diff)</pre>		
		ELSE
V_VACFLG = 0 (error flag set)		SET: C128*FIL = 0 81**
		EXIT: MODULE
		 ELSE
		 EXIT: MODULE

^{* 3-}Digit code ** 2-digit code

CONTINUOUS SELF TEST, MAP SENSOR VACUUM CIRCUIT TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

FAILURE MODE LOGIC:

^{* 3-}digit code ** 2-digit code

CONTINUOUS SELF TEST, SONIC EGR - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SONIC EGR SYSTEM TEST

OVERVIEW

In the documentation, this module is enabled via the lower case parameters

egr_system and sonic_egr from VC_xxxx_SEL_COMn. In the software, a similar

parameter may be used or the test may be enabled based on whatever $% \left(1\right) =\left(1\right) +\left(1\right)$

combinations of PFEHP, PFEHP_FG, EGRHP_FG, etc. are available.

When the test is entered, the IEGR input is checked to insure that it is

within the max/min limits. If this test fails, the appropriate fault filter

is upcounted and no further testing is required. If the $\mbox{ voltage }$ is within

limits, it is then checked to insure that it is not below the lowest voltage $\,$

expected from a closed valve. Note that these checks are bypassed until ${\tt EGR}$

is enabled for the first time.

Additional checks are made when the EGR is commanded off to insure that the

valve is returning to the closed position. When the EGR is on (high duty $\,$

cycle), a check is made (if the vacuum is high enough) to see $% \left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) +\left(1\right) =\left(1\right) +\left(1$

has moved sufficiently from the closed position.

Lowercase parameters such as sonic_egr_test_ena, sonic_egr_off_test, etc.

are used to control flow through the ladder diagrams. The use of these

parameters in the documentation does not imply that $\mbox{similar}$ parameters are

required in the software.

Note that the flags $V_EGR_STK_ON$ and, $V_EGR_ON_CR$ are used to reset any fault

filters that have partially counted up and control timers when a particular $\$

test mode is first entered.

DEFINITIONS

INPUTS

Registers:

- BP = Barometric pressure. (note: Upper byte of BP_WORD).
- C332FIL = EGR valve opening not detected (Sonic, PFE) fault filter
- C334FIL = EVP voltage above closed limit (sonic) fault filter.
- EGRDC = EGR duty cycle.

- IEGR = EGR sensor input.
- MAP = Manifold absolute pressure BIN 3.
- V_EGR_RDY = Continuous EGR test ready flag (Latched)

- VIP_TIMER_EX = VIP state timer.

CONTINUOUS SELF TEST, SONIC EGR - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Bit Flags:

- $V_EGR_STK_ON$ = Indicates that the EGR off continuous test is in progress.
- WIGFLG = Indicates VIP wiggle test.

Calibration Constants:

- C332LVL = EGR valve opening not detected (sonic/PFE) threshold.
- C334LVL = EVP voltage above closed limit (sonic) threshold.
- EVPMAX = Maximum EVP reading (open) units are counts.
- EVPMIN = Minimum EVP reading (short) units are counts.
- VCRTDC = GR cruise test duty cycle limit, percent.
- VEGVAC = Minimum manifold VAC for cruise test units are inches hg.
- V_EGR_CTMR = EGR cruise test timer limit.
- VEITMR = EGR idle test timer limit units are seconds.
- V_EGR_ON_CR = Indicates that the EGR on cruise test (test for flow)
 was
 in progress last background loop.
- VEVPCL = EVP cruise test limit units are counts.
- VEVPHL = EVP high limit (valve closed) units are counts end of essential ordering of constants.
- VEVPLL = EVP low limit (valve closed) units are counts

CONTINUOUS SELF TEST, SONIC EGR - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

```
PROCESS
```

STRATEGY MODULE: VC_EGR_SON_SD_COM10

```
Step one (if sonic EGR is present) is to test for an input voltage
out of range. If an open or short circuit is detected, the test is
complete.
Otherwise, the test continues to check for flow or a stuck open valve.
EFMLO is passed to the fault filter routine every time it is called for
327 and returns value of 1 if the code is set and returns a value of 0
if the
code is clear. Similarly, EFMHI is passed with code 337. EFMHI and
are used to set and clear EFMFLG. This logic is described in
the EGR
chapter.
egr_system <> sonic_egr -----| sonic_egr_test_ena := 0
                                   (no sonic EGR hardware, no
(parameters eqr system
 and sonic_egr from the
                                     testing)
 VC_xxxx_SEL_COMn module)
                                   --- ELSE ---
IEGR <= EVPMIN -----
(voltage below minimum)
                            |AND - | error detected := 1
                                   Fault Filter Code 327
V EGR RDY = 1 -----|
                                   (upcount fault)
 (EGR has been
                                   (see note above)
 enabled)
                        OR --|
                                  | Fault Filter Code 337
                                   (see note above)
WIGFLG = 1 -----|
 (Wiggle mode - allow testing)
                                  Fault Filter Code 328
                                   (downcount faults not
                                 present)
                                   V_EGR_ON_CR := 0
                                   V\_EGR\_STK\_ON := 0
                                    (clear flags - modes not to
                                 be
                                    active)
                                   sonic_egr_test_ena := 0
                                    (done testing)
                                   --- ELSE ---
```

(continued on next page)

CONTINUOUS SELF TEST, SONIC EGR - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page)

```
IEGR >= EVPMAX ------
 (voltage above maximum)
                                 AND - error_detected := 1
V_EGR_RDY = 1 -----|
                                       | Fault Filter Code 337
 (EGR has been
                                         (upcount fault)
 enabled)
                           OR -- |
                                         (see note above)
WIGFLG = 1 -----
                                        Fault Filter Code 327
 (Wiggle mode - allow testing)
                                         (see note above)
                                       Fault Filter Code 328
                                         (downcount faults not
                                       present)
                                         V_EGR_ON_CR := 0
                                        V\_EGR\_STK\_ON := 0
                                          (clear flags - modes not to
                                       be
                                          active)
                                        sonic_egr_test_ena := 0
                                          (done testing)
                                         --- ELSE ---
IEGR < VEVPLL -----
 (voltage below closed
 valve voltage)
                                 AND -
                                        error_detected := 1
                                        Fault Filter Code 328
WIGFLG = 0 -----
                                         (upcount fault)
                                        Fault Filter Code 327
                                        Fault Filter Code 337
                                         (downcount faults not
                                       present)
                                         sonic_egr_test_ena := 1
                                          (allow further testing)
                                         --- ELSE ---
                                         Fault Filter Code 327
                                        Fault Filter Code 337
Fault Filter Code 328
(no faults, downcount)
                                        sonic_egr_test_ena := 1
                                         (allow further testing)
```

CONTINUOUS SELF TEST, SONIC EGR - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

To get here, sonic_egr_test_ena must be set by the previous diagram (sonic

hardware present, no open or short fault). This diagram determines which ${\tt EGR}$

mode (on or off) is to be tested. For whichever mode is enabled, the flags

that control action in the other mode are cleared.

```
sonic egr test ena := 1 ------
(testing allowed
                             | AND - | V_EGR_ON_CR := 0
 by previous diagram)
                                    sonic_egr_on_test := 0
EGRDC = 0 -----|
                                    (EGR on test not active)
(EGR not on)
                                    sonic_egr_off_test := 1
                                    (perform test for valve stuck
                                      open)
                                    --- ELSE ---
(testing allowed
                                   sonic eqr off test := 0
 by previous diagram; EGR is on)
                                    (EGR off test not active)
                                   sonic_egr_on_test := 1
                                    (perform test for valve
                                  opening)
                                    --- ELSE ---
                                    sonic_egr_off_test := 0
                                    sonic_egr_on_test := 0
                                     (no more testing)
```

Test to see if this is the first pass through the EGR off test. If so, reset the timer VIP_TIMER_EX and clear out the fault filter for code 334. If it is not the first pass, continue on. Of course, if the EGR off test is not enabled, no action is required.

```
V_EGR_STK_ON = 0 ------
 (last pass was not in
                                | AND - | V_EGR_STK_ON := 1
 EGR off test)
                                        (this is the first background
sonic_egr_off_test = 1 ------|
                                         loop in this test mode)
 (mode enabled)
                                       VIP TIMER EX := 0
                                        (reset for time delay before
                                         testing)
                                       Do: EGR Off Fault Filter Reset
                                       Do: EGR Off Test
                                       --- ELSE ---
sonic_egr_off_test = 1 ------ Do: EGR Off Test
 (mode enabled)
```

CONTINUOUS SELF TEST, SONIC EGR - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: EGR Off Test

This diagram, which follows the previous, tests to determine if the input voltage is too high for a closed valve (valve not closing). If it is, code 334 may be set after the time delay.

IEGR > VEVPHL -----| (voltage above closed value) VIP_TIMER_EX >= VEITMR ------|AND -| error_detected := 1 (mode enabled) Fault Filter Code 334 (upcount fault filter) WIGFLG = 0 -----(not in wiggle mode) --- ELSE ---IEGR <= VEVPHL ------ Fault Filter Code 334 (downcount fault filter) (voltage OK) --- ELSE --no action (mode not active or fault present but not timed out yet)

END: EGR Off Test

CONTINUOUS SELF TEST, SONIC EGR - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

This test (enabled by sonic_egr_on_test = 1) checks to see if the conditions are right to test the EGR valve for opening. This requires that there is adequate vacuum and the EGR duty cycle be high to indicate that the EEC is trying to open the valve. Alternately, if code 332 is already set, the test will be enabled to allow the system to clear the code (and the MIL light) if the failure disappears.

sonic_egr_on_test <> 1 ----- no action (do not perform test for valve opening) --- ELSE ---C332FIL > C332LVL -----(Code set, bypass entry conditions) OR -- Do: Test for EGR Flow (perform check to see BP - MAP > VEGVAC ----if valve opening can be (enough muscle vacuum) AND detected) EGRDC > VCRTDC -----(trying to open EGR valve) --- ELSE --- $V_EGR_ON_CR = 0$ (can't run test yet because vacuum / duty cycle entry conditions have not been met)

CONTINUOUS SELF TEST, SONIC EGR - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: Test for EGR FLow

At this point, the vacuum and EGR duty cycle (or code 332) requirements have

been $\mbox{\it met}$ to determine if valve opening can be detected. A check is $\mbox{\it made}$ to

see if this is the first pass through the test - if it is, C332FIL may be

reset. Otherwise, the test continues on.

This is the test to determine if the EGR valve has opened. At this point all

of the conditions should be right to insure that the valve should be opened ${\tt a}$

significant amount. If an adequate opening is not detected for a period of

time, a fault is assumed.

```
IEGR <= VEVPCL ------
(open valve not observed)
VIP TIMER EX >= V EGR CTMR ----- | AND - | error detected := 1
(enough time in test)
                                   | Fault Filter Code 332
                                     (upcount fault filter)
WIGFLG = 0 -----|
(not in wiggle mode)
                                     --- ELSE ---
IEGR > VEVPCL ------ Fault Filter Code 332
(voltage OK.)
                                     (downcount fault filter)
                                     --- ELSE ---
                                    no action
                                     (mode not active or fault
                                   present
                                   but not timed out yet)
```

END: Test for EGR FLow

CONTINUOUS SELF TEST, SONIC EGR - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: EGR Off Fault Filter Reset

This is called on the first entry into the EGR off test to allow resetting

the fault filter if it has yet set it's code to avoid "pumping up" the filter

and setting a fault if the mode is repeatedly exited and entered.

C334FIL <= C334LVL ------ | C334FIL := 0 (Get fresh start on fault filter) | --- ELSE --- (no action)

END: EGR Off Fault Filter Reset

BEGIN: EGR On Fault Filter Reset

This is called on the first entry into the EGR on test to allow resetting the fault filter if it has yet set it's code to avoid "pumping up" the filter and setting a fault if the mode is repeatedly exited and entered.

C332FIL <= C332LVL ------- | C332FIL := 0 (code 332 not set) | (Get fresh start on fault filter) | --- ELSE ---

(no action)

END: EGR On Fault Filter Reset

CONTINUOUS SELF TEST, EGR SYSTEM SELECT - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EGR SYSTEM SELECTION (SONIC)

OVERVIEW

This module determines if EGR is or is not present based on PFEHP. If there

is no EGR, the FMEM flags and Code 332 are set to zero for bullet proofing.

It also sets the value of egr_system to enable/disable the Sonic test if

PFEHP is not equal to two.

By putting this logic in a separate module outside the actual EGR tests, the

total number of unique strategy modules required to document the tests for

the various combinations of EGR types along with the variations on PFEHP,

 $\mbox{\sc PFEHP_FG},$ no $\mbox{\sc PFEHP},$ etc. are reduced. Note that the use of lower case

parameters (egr_system, pfe_egr) does not imply that a parameter be created

in the software - PFEHP can still be used in the assembly code if the same $\,$

functionality is maintained.

DEFINITIONS

Registers:

- C332FIL = EGR valve opening not detected (Sonic, PFE) fault filter.

Bit Flags:

- EFMHI = EGRHI FMEM flag.
- EFMLO = EGRLO FMEM flag.

Calibration Constants:

- PFEHP = Switch to select EGR strategy; $2 \rightarrow$ do not use any EGR, $1 \rightarrow$ use

PFE strategy, 0 -> use sonic strategy.

CONTINUOUS SELF TEST, EGR SYSTEM SELECT - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

```
PROCESS
                   STRATEGY MODULE: VC_SON_SEL_COM2
unconditionally ------ sonic eqr := 0
                                   no\_egr := 2
                                    (supply numeric value because
                                     symbolic names are not part
                                  of
                                     this language. Note that
                                  there is
                                  | no real reason to actually
                                  look
                                     at this diagram since the
                                  numeric
                                     values are not actually used
                                     anywhere)
EFMHI := 0
                                   C332FIL := 0
                                    (No EGR system, therefore no
                                  EGR
                                      failure)
                                   egr_system := no_egr
                                    (Done testing EGR system,
                                  exit)
                                    --- ELSE ---
                                    egr_system := sonic_egr
```

(continue to EGR tests; this parameter is used to enable

EGR test)

IGNITION DIAGNOSTIC MONITOR (CONTINUOUS) - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

IGNITION DIAGNOSTIC MONITOR (IDM)

OVERVIEW:

The continuous PIP/IDM routine basically checks if time since last PIP (TSLPIP) and time since last IDM (TSLIDM) have exceeded a calibrated timeout period.

Decisions are made in software to assure the engine is running and stabilized before the test is executed. RPM is compared against VLORPM and if greater, entry into the PIP/IDM test is permitted.

The PIP/IDM test utilizes free-running timers for processing PIP and IDM and high speed digital inputs are used to re-start the timers.

Each transition of pip starts a new time-out function. When the time since last pip > VPIPTM, a pip fault is present.

If a pip fault has been detected, software bypasses the IDM test for a calibrated time period VIDMST. This is to insure sufficient time for the TFI module to calculate a TACH output once PIPS have been restored.

The IDM test is similar to the PIP test in that each transition of IDM also starts a time-out function. When the time since last IDM is > VIDMTM, an IDM fault is present.

Both PIP and IDM tests use traditional fault filtering.

IGNITION DIAGNOSTIC MONITOR (CONTINUOUS) - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EOS_IDM MODULE

The following logic describes the input processing which occurs when an IDM transition (IDM_INT = 1) occurs:

NOTE: IDM_HIGH reflects the state of the High Speed Input (HSI) pin and not

the IDM voltage. Because of an inversion, when IDM voltage = 0, IDM_HIGH =

1, and when IDM voltage is greater than 3.5 volts, $IDM_HIGH = 0$.

ALWAYS -----| Clear IDM_INT

IDM_HIGH = 0 ------| Set NEW_IDM

IGNITION DIAGNOSTIC MONITOR (CONTINUOUS) - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PIP/IDM LOGIC (BACKGROUND) (FOR TACH BUFFER)

PROCESS

STRATEGY MODULE: VC_PIP_IDM_COM2

NOTE: Pip fault filtering uses C211LVL. IDM fault filtering uses C212LVL.

CONVERTER CLUTCH VALIDITY TEST (CONTINUOUS) - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CONVERTER CLUTCH VALIDITY TEST

PROCESS

STRATEGY MODULE: VC_CONVERTER_CLUTCH_COM1

ELECTRONIC PRESSURE CONTROL SOLENOID (CONTINUOUS) - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ELECTRONIC PRESSURE CONTROL SOLENOID TEST

PROCESS

STRATEGY MODULE: VC_EPC_SOLENOID_COM2

CONTINUOUS SELF TEST, THROTTLE POSITION SENSOR TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

TP SENSOR TEST

PROCESS

STRATEGY MODULE: VC_TPS_COM1

CONTINUOUS SELF TEST, VEHICLE SPEED SENSOR TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

VEHICLE SPEED SENSOR TEST

OVERVIEW

The Vehicle Speed Sensor (VSS) Test monitors the input for VSBAR = or > VSSMN1. When there is not sensor input and the parameters that infer the vehicle is moving are true, [FN689V (speed, load (TP)), indicators of transmission in gear with brake not applied], a timer, (VSSTMR), is incremented. After enough settling time has elapsed, (VSSTMR = or > VSSTIM), it is assumed the input is not working. The fault flag (VSFMFLG), which is used by control strategy for shift schedule determination, is set or based on three independent checks, 1) prior to continuous VIP entry if a fault code is stored in KAM the flag is set, otherwise it is cleared 2) during continuous VIP if the fault filter exceeds the level the flag is otherwise 3) any time the input VSBAR is equal to or greater than minimum, VSSMN1, the flag is cleared.

DEFINITIONS

Registers:

- C452FIL = Insufficient input from Vehicle Speed Sensor (VSS)
 fault
 filter.
- NEBART = Filtered Engine RPM For Transmission.
- VSBAR = Filtered vehicle speed.
- VSSTMR = Vehicle speed sensor test timer.

Bit Flags:

- BIFLG = Brake on flag.
- NDSFLG = Neutral/drive flag; 1 -> drive.
- TFMFLG = TP FMEM flag.
- VIP_ENABLE = VIP enable flag.
- VSFMFLG = Vehicle speed sensor FMEM flag.

Calibration Constants:

- BIHP = BRAKE INPUT "Hardware Present" indicator; 0 -> NO, 1 -> YES.
- C452LVL = Insufficient input from Vehicle Speed Sensor(VSS) threshold.

- FN689V = Minimum engine speed at a given TP to test VSS input.

- VSSMN1 = Maximum vehicle speed to enter VSS test, MPH.
- VSSSW = CVIP VSS test enable switch, unitless; 1 -> do VSS test.

CONTINUOUS SELF TEST, VEHICLE SPEED SENSOR TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- ${\tt VSSTIM}$ = ${\tt Minimum}$ stablized time before performing CVIP VSS test, sec.
- VSTYPE = Integrated vehicle speed/cruise control system present switch; 0
 - -> no MPH and no VSC, 1 -> MPH and no VSC.
- V_VSS_MULT = Multiplier for FN689V when in 4x4 mode.

PROCESS

STRATEGY MODULE: VC_VSS_COM6

TFMFLG = 0 (TP Sensor OK)	
NDSFLG = 1 (In Drive)	
I4X4L = 0 (Not in 4x4 mode) AND -	
NEBART => FN689V OR	
NEBART => FN689V *	AND - INCREMENT VSSTMR
BIHP = 0 OR	
BIHP = 1	
VSBAR < VSSMN1 (low VSS reading)	DI OD
	ELSE VSSTMR = 0
	1 4221111 - 0

CONTINUOUS SELF TEST, VEHICLE SPEED SENSOR TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

VSSSW = 1		
VSTYPE <> 0	AND -	SET ERROR DETECTED Do: FAULT FILTERING
VSSTMR => VSSTIM		ELSE
		Do: FAULT FILTERING
VIP_ENABLE = 1 (VIP in progress)	 AND -	VSFMFLG = 1
C452FIL > C452LVL		ELSE
		NO ACTION ON VSFMFLG
VSBAR => VSSMN1		VSFMFLG = 0
		ELSE
		NO ACTION ON VSFMFLG

CONTINUOUS SELF TEST, BRAKE ON/OFF CIRCUIT TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BRAKE ON/OFF CIRCUIT TEST

OVERVIEW

If BIFLG (BOO input) does not change state after V_ZTOSPD_CNT transitions from a vehicle speed of zero to a vehicle speed of V_BOO_SPD sustained for V_BOOSPD_TM, then the BOO input is assumed to be faulty.

DEFINITIONS

Self Test Registers:

- C452FIL = Fault filter register for VSS test.
- V_ZTOSPD_CTR = Number of vehicle speed transitions from a speed of zero to a speed of V_BOO_SPD without a BOO transition.

Self Test Flags:

- V_SPDTOZ_FLG = When set this flag indicates a transition from a vehicle speed of V_BOO_SPD to a speed of zero has occurred.
- V_BOO_OLD = BIFLG from previous background loop.
- WIGFLG = When 1 indicates wiggle mode.

Self Test Calibration Constants:

- C536UP = Continuous BOO test fault filter increment.
- C536LVL = Continuous BOO test fault filter threshold.
- V_BOOSPD_TM = VSBAR threshold to reset V_BOOSPD_TMR.
- V_BOO_SPD = Vehicle speed required to increment V_ZTOSPD_CTR.
- V_CBOO_ENA = Continuous BOO test enable flag, 1 = test enabled.
- V_ZTOSPD_CNT = Number of zero MPH to vehicle speed = V_BOO_SPD transitions without a brake input considered a BOO failure.

Self Test Timers:

- V_BOOSPD_TMR = Non cumulative time VSBAR greater than V_BOO_SPD.

CONTINUOUS SELF TEST, BRAKE ON/OFF CIRCUIT TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Base Strategy Registers:

- VSBAR

Base Strategy Flags:

- BIFLG
- CRKFLG
- NO_START
- RUNNING

Base Strategy Calibration Constants:

- BIHP

Base Strategy Timers:

- PUTMR

CONTINUOUS SELF TEST, BRAKE ON/OFF CIRCUIT TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VC_BOO_COM1

Test Entry Conditions: V_CBOO_ENA = 0 -----(test cal'd out) BIHP = 0 -----(no brake input hardware) RUNNING = 1 -----(KOER) |OR -- | exit BRAKE ON/OFF CIRCUIT NO START = 1 -----TEST (KOEO) CRKFLG = 1 -----| AND -(in crank mode) WIGFLG = 0 -----PUTMR < 4 -----(less than 4 sec since: powerup, exiting KOEO or KOER VIP, or a reset) --- ELSE ---DO: BOO SPD TMR DO: BOO TEST MAIN

(test is performed)

CONTINUOUS SELF TEST, BRAKE ON/OFF CIRCUIT TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: BOO_TEST_MAIN

(boo input changed) V ZTOSPD CTR := 0 call fault filter for code 536 --- ELSE ---V_BOOSPD_TMR > V_BOOSPD_TM -----AND -V_ZTOSPD_CTR := V_ZTOSPD_CTR + 1 V SPDTOZ FLG = 1 -----V_SPDTOZ_FLG := 0 DO: BOO_FAILURE_PROCESS call fault filter for code 536 --- ELSE ---VSBAR = 0 ----- V_SPDTOZ_FLG := 1 call fault filter for code 536 --- ELSE --call fault filter for code 536

END: BOO_TEST_MAIN

BEGIN: BOO_FAILURE_PROCESS

END: BOO FAILURE PROCESS

CONTINUOUS SELF TEST, BRAKE ON/OFF CIRCUIT TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: BOO_SPD_TMR

VSBAR < V_BOO_SPD ------| V_BOOSPD_TMR := 0

END: BOO_SPD_TMR

ADAPTIVE TABLE CLIP TEST (CONTINUOUS) - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ADAPTIVE TABLE CLIP TEST - SPEED DENSITY

OVERVIEW:

When the fuel system is using a KAMREF that is at its rich or lean limit a service code is stored in KAM. The test distinguishes between the lean limit and the rich

limit and also whether at idle or not at idle.

DEFINITIONS

Self Test Registers:

- C179FIL = At adaptive fuel limit, system lean fault filter.
- C181FIL = At adaptive fuel limit, system rich fault filter.
- C182FIL = At adaptive fuel limit, system lean at idle fault filter.
- C183FIL = At adaptive fuel limit, system rich at idle fault filter.

Self Test Calibration Constants:

- C179LVL = At adaptive fuel limit, system lean fault filter threshold.
- C179UP = At adaptive fuel limit, system lean fault filter increment.
- C181LVL = At adaptive fuel limit, system rich fault filter threshold.
- C181UP = At adaptive fuel limit, system rich fault filter increment.
- C182LVL = At adaptive fuel limit, system lean at idle fault filter threshold.
- C182UP = At adaptive fuel limit, system lean at idle fault filter increment.
- C183LVL = At adaptive fuel limit, system rich at idle fault filter threshold.
- C183UP = At adaptive fuel limit, system rich at idle fault filter increment.

Continued on Next Page

ADAPTIVE TABLE CLIP TEST (CONTINUOUS) - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Continued from Previous Page

- V_ADAPTV_ENA = Adaptive fuel clip test enable switch, 1 = enable.
- V ADPMP MAX = Maximum MAPPA to perform adaptive clip test.
- V_ADPMP_MIN = Minimum MAPPA to perform adaptive clip test.
- V_ADPN_MAX = Maximum N to perform adaptive clip test.
- V_ADPN_MIN = Minimum N to perform adaptive clip test.
- V_LAMAV_MAX = LAMAVEn above which a clipped adaptive cell may be failed.
- V_LAMAV_MIN = LAMAVEn below which a clipped adaptive cell may be failed.

Self Test Flags:

- ERROR_DETECTED = Flag indicates a failure is indicated, 1 = failure.

Base Strategy Registers:

- KAMREF = Total learned fuel system correction.
- LAMAVE = Average LAMBSE
- MAPPA = MAP/BP.
- N = Engine speed, RPM.

Base Strategy Constants:

- MAXADP = Maximum adaptive correction.
- MINADP = Minimum adaptive correction.

Base Strategy Flags:

- REFFLG = Indication of Idle Air Flow; 1 = Idle Air Flow.

Continued on Next Page

ADAPTIVE TABLE CLIP TEST (CONTINUOUS) - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Continued from Previous Page

Continued on Next Page

PROCESS:

STRATEGY MODULE: VC_SDADP_COM1

Fault Filters not currently illuminating the MIL (CxxFIL <= CxxLVL get a fresh start each time the test conditions become true.

C179FIL <= C179LVL	AND C179FIL :=0
C181FIL <= C181LVL (failure no longer indicated) MAPPA <= V_ADPMP_MIN MAPPA >= V_ADPMP_MAX N >= V_ADPN_MAX (outside test condition) REFFLG = 1 (idle air flow)	AND C181FIL :=0
C182FIL <= C182LVL (failure no longer indicated) REFFLG = 0 (not idle air flow)	 AND C182FIL := 0
C183FIL <= C183LVL (failure no longer indicated) REFFLG = 0 (not idle air flow)	 AND C183FIL := 0

ADAPTIVE TABLE CLIP TEST (CONTINUOUS) - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Continued from Previous Page

Test Logic.

AND	<pre>ERROR_DETECTED := 1 call fault filter routine (code 179) call fault filter routine (code 181) call fault filter routine (code 182) call fault filter routine (code 183)</pre>
 AND	ERROR_DETECTED := 1 call fault filter routine (code 181) call fault filter routine (code 179) call fault filter routine (code 182) call fault filter routine
	(code 183)
AND	ERROR_DETECTED := 1 call fault filter routine (code 182) call fault filter routine (code 179) call fault filter routine (code 181) call fault filter routine (code 183)ELSE
	AND

Continued on Next Page

ADAPTIVE TABLE CLIP TEST (CONTINUOUS) - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Continued from Previous Page

REFFLG = 1 (idle air flow) KAMREF = MAXADP + 0.5 (failure criteria) V_ADAPTV_ENA = 1 (test cal'd in) LAMAVE <= V_LAMAV_MIN	AND	ERROR_DETECTED := call fault filter (code 183) call fault filter (code 179) call fault filter (code 181)	routine routine
		call fault filter (code 182)ELSE	routine
<pre>V_ADPMP_MAX >MAPPA > V_ADPMP_MIN (load window)</pre>		call fault filter (code 179) call fault filter (code 181) call fault filter (code 182) call fault filter (code 183)	routine

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

EGO SWITCHING TEST - SD W/SINGLE EGO STRATEGIES

OVERVIEW

This test determines that the EGO sensor is switching properly when conditions are present that will allow a functional fuel system to cause the EGO sensor to switch.

DEFINITIONS

Registers:

- AEFUEL = Acceleration enrichment fuel flow, lb/hr.
- ATMR1 = Time since exiting crank mode.
- C171FIL = Lack of EGO switch, adaptive fuel at limit fault filter.
- C172FIL = Lack of EGO switch, EGO indicates lean fault filter.
- C173FIL = Lack of EGO switch, EGO indicates rich fault filter.
- EGOSSS = Number of EGO switches since start.
- EGOTSTCUMTMR = Accumulated time that the EGO test test conditions
 are
 true.
- KAMREF = Total learned fuel system correction.
- MAPPA = MAP/BP.
- PPCTR = PIP counter; updated at PIP rising edge before injector pulsewidth is calculated and output.
- PRGTMR = Total accumulative purge on time.
- PURGDC = Purge duty cycle.
- PUTMR = Time since powerup.
- TP_REL = Relative Throttle Position, counts. TP RATCH.
- V_EGOTST_TMR = Time since self test closed loop conditions have been met.
- V EGR DLYTMR = Test delay timer for EGR transitions.
- V_LEGOTMR = EGO sensor test time since last EGO state change
 while
 testing is active.
- V_LESTMR = Self test lack of EGO switchng timer.
- V_PRG_DLYTMR = Test delay timer for purge transitions.
- V_VACPRGTMR = Indicates when non-EEC controlled purge

canister is presumed empty.

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Bit Flags:

- AFMFLG = Flag indicating that ACT sensor is in/out of range.
- CFMFLG = Flag indicating that ECT sensor is in/out of range.
- CRKFLG = Flag indicating crank mode.
- EGOFL = EGO sensor state flag; 1 -> rich.
- error_detected = Flag indicates a failure is indicated; 1 ->
 failure.
- FLG_OPEN_LOOP = Open loop fuel flag; 1 -> Open loop fuel
- ISCFLG = ISC mode indicator flag; -1 -> dashpot mode, 0 -> dashpot
 - preposition mode, 1 -> closed loop RPM control mode, 2 -> closed loop RPM control lockout.
- LEGONOTPURG = In EGO test, when equal to 1, testing while purging is appropriate.
- LESFLG = Lack of EGO switching flag; 0 -> switching.
- MFMFLG = MAP failure flag; 1 -> MAP sensor fails.
- MPGFLG = Flag that indicates whether in Fuel Economy mode; 1 -> in Fuel Economy mode.
- MPGTFG = MPG transition mode flag; 1 -> MPG mode exit into Closed Loop fuel.
- NO_START = Engine off VIP enable flag.
- RUNNING = Flag which indicates that idle speed is being controlled by Engine Running VIP.
- SWTFL = EGO switch flag; 1 -> EGO switched this background loop.
- TFMFLG = Flag indicating TP sensor is in/out of range.
- V EGO BYPS = Prevents additional EGO service code.
- V_EGOL_BYPS = Prevents additional EGO service code.
- $V_LAMJMP = 1$ -> base strategy caused a LAMBSE jump since last EGO switch.
- WRMEGO = 1 -> EGO sensor is warm, 0 -> sensor has cooled off.

Calibration Constants:

- C171LVL = Lack of EGO switch, adaptive fuel at limit fault filter
 - threshold.
- C171UP = Lack of EGO switch, adaptive fuel at limit fault

filter increment.

- C172LVL = Lack of EGO switch, EGO indicates lean fault fault filter threshold.

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

- ${\tt C172UP}$ = Lack of EGO switch, EGO indicates lean fault filter increment.
- C173LVL = Lack of EGO switch, EGO indicates rich fault filter threshold.
- ${\tt C173UP}$ = Lack of EGO switch, EGO indicates rich fault filter increment.
- ${\tt ETST_SWCUMTM}$ = Accumulated time ${\tt EGO}$ test active before failure is
 - indicated because of number of switches failure.
- MAXADP = Maximum adaptive correction.
- MINADP = Minimum adaptive correction.
- PIPNUM = Number of PIPs for DFSO exit fuel ramp.
- PRG_DEC = $Purge\ DC$ decrement amount when purge overwhelms fuel control.
- V_EEC_PRG = 1 -> EEC controlled purge, 0 -> mechanical purge.
- V_EGOAEMAX = Maximum AEFUEL to perform EGO test.
- V_EGOIDL_ENA = Switch to enable EGO sensor test at idle air flows;
 1 -> enable.
- V_EGOMAP_MAX = $Maximum\ MAPPA$ to perform EGO sensor test when not at idle.
- V_EGOMAP_MIN = Minimum MAPPA to perform EGO sensor test when not at idle.
- V_EGORNTM = Time since exiting crank mode (ATMR1) to wait before enabling ego test.
- V_EGO_EGR_SW = When equal to zero allows EGO test to ignore egr transitions.
- V_EGOSWNUM = Value of EGOSSS .LT. indicating an ego
- V_EGOTP_MIN = $Minimum\ TP_REL$ to perform EGO sensor test when not at idle.
- V_EGOTST_TM = Time since closed loop conditions minus EGO input have been met.
- V_EGO_ENA = Continuous EGO test enable switch; 1 -> enable.
- V_LEGO_MAX = Maximum time since last EGO switch before failure indication.
- V_LEGO_MAX2 = Maximum time since last EGOn switch before failure incication.

- V_LESTM = Time since last EGO switch limit to fail continuous EGO switching test.

- V_{PRGTOT} = Total accumulative purge on time to perform continuous EGO test.

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

PROCESS

STRATEGY MODULE: VC_EGO_TEST_COM13

Test Entry Conditions:

V_EGO_ENA = 0 -----(test cal'd out) RUNNING = 1 -----|OR --| EXIT EGO SWITCHING TEST (KOER)

NO_START = 1 -----(KOEO)

CRKFLG = 1 -----(in crank mode) | OR -- | EGOTSTCUMTMR := 0 PUTMR < 4 -----| (less than 4 sec since: powerup, exiting KOEO

or KOER VIP, or a reset)

--- ELSE ---

Do: EGO_TEST_TMR_CLEAR (test is bypassed, clear timers until test is executed) Do: CANISTER_FILLING_TIMER_CONTROL (used when purge not controlled by EEC)

--- ELSE ---

Do: EGR_TRANSITION_DELAY_FLAG_CONTROL

Do: EGO_PURG_CHK

Do: CANISTER FILLING TIMER CONTROL

(used when purge not controlled by EEC)

Do: PURG_NOT_CAUSE_FOR_FAILURE

Do:

EGO SWITCHING FAILURE INDICATION CONTROL

Do: ACCUM TIMER CONTROL Do: EGOTST_TMR_CONTROL Do: EGOTST_TMR_CHK

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: EGOTST_TMR_CONTROL

The following test conditions logic must be true for V_EGOTST_TM seconds before the fuel system can be tested.

WRMEGO = 1		
MPGFLG = 0		
MPGTFG = 0		
FLG_OPEN_LOOP = 0	 	
PPCTR >= PIPNUM (past decel fuel shutoff)	 	
AFMFLG = 0 (act ok)		
CFMFLG = 0 (ect ok)	 	
TFMFLG = 0 (tp ok)	 AND - 	(test conditions true) allow V_EGOTST_TMR to
MFMFLG = 0	run 	
ATMR1 >= V_EGORNTM		EGOTSTCUMFLG := 1
<pre>V_PRG_DLYTMR = 0 (purge transition delay past)</pre>		
<pre>V_EGR_DLYTMR = 0 (EGR transition delay past)</pre>		
AEFUEL <= V_EGOAEMAX (max AEFUEL to perform test)		
ISCFLG = 0		
TP_REL >= V_EGOTP_MIN AND -		
MAPPA > V_EGOMAP_MIN (load indicator)		
MAPPA < V_EGOMAP_MAX OR		
ISCFLG = 1		
V_EGOIDL_ENA		ELSE
		Do: EGO_TEST_TMR_CLEAR Do: VEGOFIL_ZERO

END: EGOTST_TMR_CONTROL

| EGOTSTCUMFLG := 0

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: EGOTST_TMR_CHK

Control of how long the test conditions must be present before testing is to

take place is accomplished with the calibration parameter V EGOTST TM.

V_EGOTST_TMR > V_EGOTST_TM ------ | Do: EGO_TESTS
 (test conditions present
 sufficiently long to test)

END: EGOTST_TMR_CHK

BEGIN: ACCUM_TIMER_CONTROL

The timer ${\tt EGOTSTCUMTMR}$ is a cumulative timer that documents total accumulated

time that the EGO test conditions are true while there are no purging restrictions since the last time crank mode was exitted. If crank mode is

re-entered, this timer is cleared (see "Test Entry Conditions").

END: ACCUM_TIMER_CONTROL

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: EGO_TEST_TMR_CLEAR

Conditions other than fuel system failures which may prevent EGO switches are present. The following timers which are indicators of fuel system failure are

cleared until conditions for testing become true.

V_LESTMR := 0 V_EGOTST_TMR := 0 V_LEGOTMR := 0

END: EGO_TEST_TMR_CLEAR

BEGIN: EGO_PURG_CHK

END: EGO_PURG_CHK

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: PURG_NOT_CAUSE_OF_FAILURE

If the control system has gone open loop (LESFLG = 1) while the ego test was being bypassed then testing for a rich failure may take place if no purging is allowed during open loop (PURGSW = 0).

END: PURG_NOT_CAUSE_OF_FAILURE

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: VEGOFIL_ZERO

Fault filters not currently illuminating the MIL (CxxFIL > CxxLVL) get a fresh start each time the test conditions become true.

1. C171FIL <= C171LVL ----- | C171FIL := 0

2. C172FIL <= C172LVL ----- | C172FIL := 0

3. C173FIL <= C173LVL ----- | C173FIL := 0

END: VEGOFIL_ZERO

BEGIN: EGO_TESTS

Base strategy will assign LAMBSE a new value of after TSLEGO > LESTM.

Failure codes 171, 172 or 173 as appropriate will be stored upon failure,

with the MIL being illuminated. But as a result of the Base Strategy action,

the failure condition is overwritten. The fault filter will down count. The $\ensuremath{\mathsf{T}}$

service code will remain stored in KAM, but the MIL will be turned off.

The following logic segment within the below logic will maintain the fault

filter value after failure (CxxxFIL > (CxxxLVL) until the sensor starts

switching, causing the MIL to remain illuminated until the actual failure

condition is not present.

C17xFIL > C17xLVL ------ (failure has been indicated) AND - |

LESFLG = 1 ------ (ego hasn't switched since failure)

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

```
C171FIL > C171LVL -----|
                                  AND - error_detected := 1 call fault filter
 (failure has been indicated)
                                 routine
LESFLG = 1 -----|
                                        (code 171)
 (ego hasn't switched since
                                       call fault filter
routine
 failure)
                                         (code 172)
                                       | call fault filter
                                       routine
                                         (code 173)
                                        --- ELSE ---
C172FIL > C172LVL ------
                                  AND - error_detected := 1
 (failure has been indicated)
                                 | call fault filter
                                 routine
LESFLG = 1 -----|
                                        (code 172)
                                       call fault filter
 (ego hasn't switched since
routine
 failure)
                                        (code 171)
                                       call fault filter
                                       routine
                                         (code 173)
                                        --- ELSE ---
C173FIL > C173LVL -----|
                                  AND - error_detected := 1 call fault filter
 (failure has been indicated)
                                 routine
LESFLG = 1 -----| |
                                        (code 173)
(ego hasn't switched since
                                       | call fault filter
routine
 failure)
                                        (code 171)
                                       call fault filter
                                       routine
                                        (code 172)
                                       --- ELSE ---
```

(continued on next page)

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page) V_LESTMR > V_LESTM -----(failure indicated) EGOSSS < V_EGOSWNUM ----ego_purg_byps = 0 -----AND -OR --EGOTSTCUMTMR > ETST_SWCUMTM -AND - error_detected := 1 (sufficient cumulated test time) (code 171) V_LEGOTMR > V_LEGO_MAX ----call fault filter routine (code 172) KAMREF = 0.5 + MINADP -----| call fault filter routine (adaptive clip) OR --(code 173) (fuel system failure) KAMREF = 0.5 + MAXADP -------- ELSE ---V_LESTMR > V_LESTM -----(failure indicated) EGOSSS < V_EGOSWNUM -----| OR -- | V EGOL BYPS = 0 ----- AND -AND - error detected := 1 EGOTSTCUMTMR > ETST_SWCUMTM call fault filter routine (sufficient cumulated test time) (code 172) call fault filter routine V_LEGOTMR > V_LEGO_MAX -----| (code 171) call fault filter routine EGOFL = 0 -----(code 173) (lean) V EGO BYPS := 1

(continued on next page)

--- ELSE ---

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

(continued from previous page) LEGONOTPURG = 1 -----| (purge not implicated as cause of failure) AND -V_LEGOTMR > V_LEGO_MAX2 -----V_LESTMR > V_LESTM -----(lambse at clip) EGOSSS < V_EGOSWNUM -----| (fail from start) OR -- | ego_purg_byps = 0 ----- | AND -V_EGO_BYPS = 0 -----AND - error_detected := 1 EGOTSTCUMTMR > ETST_SWCUMTM -Call fault filter routine (code 173) V_LEGOTMR > V_LEGO_MAX -----Call fault filter (gross lack of ego switch) (code 171) call fault filter routine EGOFL = 1 -----| (code 172) V_EGOL_BYPS := 1 (rich) --- ELSE ---| call fault filter routine (code 171) call fault filter routine (code 172) call fault filter routine (code 173) (no failures present)

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: EGR_TRANSITION_DELAY_FLAG_CONTROL

The EGR transition flag V_EGR_DLYFG when set indicates that an EGR transition

has taken place. To allow the EGO test to disregard EGR transitions, calibrate $V_EGO_EGR_SW = 0$. Otherwise any EGR transition (on/off, off/on)

will reset the EGO test timer and associated EGO fuel system failure indicators.

EGRDC = 0 -----| temp := 1 (egr off) --- ELSE --temp := 0V_EGR_OLD <> temp -----| AND - V_EGR_DLYFG := 1 (egr transition) (ego test reset due to V_EGO_EGR_SW = 1 ------| egr transition) (egr considered to V_EGR_OLD := temp affect ego) --- ELSE ---V EGR DLYFG := 0 (egr not affecting ego test)

END: EGR_TRANSITION_DELAY_FLAG_CONTROL

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: EGO_SWITCHING_FAILURE_INDICATION_CONTROL

Timer V_LESTMR indicate the time LAMBSE has been at its clip.

VIP Lack of EGO Switching Timer:

Time Since Last EGO Switch Logic:

END: EGO_SWITCHING_FAILURE_INDICATION_CONTROL

CONTINUOUS SELF TEST, EGO SWITCHING TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: CANISTER_FILLING_TIMER_CONTROL

V_EEC_PRG = 0 ------| Do: CANISTER_CONTENT_MODEL

(purge is not controlled by EEC)

END: CANISTER_FILLING_TIMER_CONTROL

BEGIN: CANISTER CONTENT MODEL

TP_REL <= V_TPREL_PRG ------| decrement V_VACPRGTMR | (canister is filling)

--- ELSE ---

V_VACPRGTMR > V_PRGTOT ------ freeze V_VACPRGTMR

(max required purge time

reached)

--- ELSE ---

increment V_VACPRGTMR
 (canister emptying)

END: CANISTER_CONTENT_MODEL

CONTINUOUS SELF TEST, FUEL PUMP CIRCUIT TEST - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

FUEL PUMP CIRCUIT TEST

OVERVIEW

The state of the Fuel Pump Monitor (FPM) is compared to the expected state based on the fuel pump on/off command. Also, after a stall, the

based on the fuel pump on/off command. Also, after a stall, the Output

Circuit Check (OCC) is performed on the fuel pump relay.

When the fuel pump is commanded off, $\ensuremath{\mathsf{FPM}}$ should be low. If it is not (after

waiting V_FPMTM seconds for the relay to settle) code 542 is set. This

indicates that either the fuel pump relay is stuck "on" or there is an open

circuit between the ECA and the fuel pump ground (circuit ooo in the diagram)

allowing the ECA pull-up circuit to hold FPM high.

If the fuel pump is commanded on, FPM should be high. If it is not (after

waiting V_FPMTM seconds) code 543 is set. This indicates a break in the line

between the battery and the FPM input to the ECA (circuit xxx in diagram) or $\frac{1}{2}$

no contact inside the fuel pump relay.

If the engine stalls, the fuel pump is commanded off and $% \left(1\right) =\left(1\right) =\left(1\right)$ then exercised to

perform the output circuit check (OCC). An OCC failure indicates a break in $\,$

the line between the battery and the driver inside the ECA (circuit *** in the diagram).

FUEL PUMP / FUEL PUMP MONITOR (FPM) CIRCUIT

B+ xxxxxxxxxxxxx	xx		00000000	0000	
	X		0	0	g
b+ *********	x		o	0	r
S *	X				0
0*.	.x	. P	UMP .		u
L ! >	x !			-	n
E ! <	\ !		0		d
N ! >	x \ !		0		
0! <	x !		0		
I !*.	.x!		0		
D *	XXXXXXXXX	xxoooooc	0		
*		x			
* .		0			
! *		x		!	
! **	* OCC	0	ECA	!	
! *		x	(EEC-IV	!	
! Driv	rer	FPM	MODULE)	!	
!				.!	

CONTINUOUS SELF TEST, FUEL PUMP CIRCUIT TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

DEFINITIONS

Self test Registers:

- IOCC = OCC A/D input level.
- OCCSAV = Saved value of OCC A/D input.

Self Test Calibration Constants:

- OCCDT7 = Fuel pump primary OCC calibration level.
- V_FPMDLY = Fuel pump monitor test fuel pump on-to-off offto-on stabilization delay time.
- V_FPMFLG = Fuel pump monitor test enable switch, 1 = enable.
- V_FPMTM = Fuel pump transition delay time.
- VPUMP_LAST = State of fuel pump during last background loop.

Self Test Flags:

- ERROR_DETECTED = Flag passed to fault filter routine indicating self test detected a failure.
- FPM = State of the FPM input. 1 = high (Pump on).

Self Test Timers:

- VIP_FPMTMR = Fuel pump on-to-off transition delay timer.

Base Strategy Flags:

- PUMP = Controls state of fuel pump control output. 1 = commanded on.

CONTINUOUS SELF TEST, FUEL PUMP CIRCUIT TEST - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS STRATEGY MODULE: VC_FUEL_PUMP_COM2 Every Background Loop (in continuous or not): PUMP <> VPUMP_LAST ----- | VIP_FPMTMR = 0 (Fuel Pump changed on/off state) (restart timer) VPUMP LAST = PUMP PUTMR < 4 -----| NO START = 1 -----OR -- Exit this test (not in "continuous") RUNNING = 1 -------- ELSE --call fault filter for code 542 call fault filter for code 543 V_FPMFLG = 0 ------| (test cal'd out) call fault filter for code 556 exit this test --- ELSE ---PUMP = 1 -----DO: FP COMMANDED ON PROCESS --- ELSE ---RMSPRU = 1 ------De-energize all OCC outputs (Run mode since powerup = true delay 50 msec and PUMP = 0, engine has stalled) OCCSAV = IOCC PUMP = 1(command fuel pump on) delay 50 msec DO: FP OCC PROCESS --- ELSE ---VIP_FPMTMR >= V_FPMTM -----| (FPM high when pump (Pump has been off for commanded off, code 542) V FPMTM seconds) AND -ERROR DETECTED = 1FPM = 1 -----call fault filter for code 542 (indicates pump on) call fault filter for code 556 --- ELSE ---

(No errors detected)

call fault filter for code 542 call fault filter for code 556

CONTINUOUS SELF TEST, FUEL PUMP CIRCUIT TEST - LHBHO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

BEGIN: FP COMMANDED ON PROCESS

UNDSP = 0 (Run mode)	<pre>RMSPRU = 1 (run mode since powerup = true)</pre>
FPM = 0 AND - AND -	<pre>(FPM low with pump commanded on - fault 543 detected) ERROR_DETECTED = 1 call fault filter for code 543 call fault filter for code 542 call fault filter for code 556</pre>
	ELSE (No error detected) call fault filter for code 543 call fault filter for code 542
END: FP COMMANDEI	call fault filter for code 556 ON PROCESS
BEGIN: FP OCC	C PROCESS
OCCSAV-IOCC < OCCDT7 (insufficient change in OCC)	<pre>(FP relay primary circuit failure; code 556) PUMP = 0 RMSPRU = 0 ERROR_DETECTED = 1 call fault filter for code 556 ELSE</pre>
	(No failure detected) PUMP = 0 RMSPRU = 0 call fault filter for code 556

END: FP OCC PROCESS

MALFUNCTION INDICATOR LIGHT (CONTINUOUS) - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MALFUNCTION INDICATOR LIGHT - SPEED DENSITY - SINGLE EGO

OVERVIEW

The purpose of the Malfunction Indicator Light (MIL) is to alert the driver that the computer has detected a fault with the EEC-IV system. If the MIL was not present, the driver may not be aware that a problem exists. The Failure Mode Effects Management (FMEM) strategy is capable of maintaining good drive characteristics with a fault present. However, the vehicle will not be operating at an optimum point with regard to emissions, economy and performance. When the MIL is on, the driver of the vehicle should seek service at his earliest convenience. It is not necessary to immediately shut the vehicle down and have it towed in for service.

The malfunction indicator light (MIL) warning system was implemented to comply with California regulations for the 1988 model year. A pilot program was carried out in 1987 on the 2.3L TC T'Bird/Cougar, 2.3L OHC Mustang and the 3.0L Taurus/Sable. By the 1989 model year both California and 49 States EEC-IV equipped passenger car and light and medium duty trucks were equipped with MIL. The only exception was the 2.3L TC Merkur XR4Ti.

The light, which is labeled "Check Engine" or "Service Engine Soon" is located on the dashboard such that the driver can see it. Power is supplied to the light whenever the ignition switch is in the run or crank position. The ground circuit for the light is provided through the EEC module self-test output (STO). Whenever the EEC-IV strategy determines that the light should be on, the STO output driver is turned on (STO voltage will be low). Since the light is controlled by STO, the self-test error codes can be determined by counting the check engine light pulses during self-test.

The light will be turned on by the EEC module (after a delay of FMDTM seconds) whenever a fault is detected for any of the monitored signals. When MILTMR exceeds the calibrateable delay time (FMDTM), the light will turn on for at least a calibrateable time of V-MILONTM seconds. If the fault is no longer present, then the light will turn off as soon as the light has been on for at least V-MILONTM seconds.

Continued on Next Page

MALFUNCTION INDICATOR LIGHT (CONTINUOUS) - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Continued from Previous Page

If the light is on for a period less than V_MILONTM seconds, it indicates that the light was not activated by the check engine light strategy. This could be caused by an intermittent short to ground of the STO wire, intermittent operation in HLOS, or fault detection while in the wiggle self-test mode (STI grounded). With the exception of the grounded STO wire, operation in HLOS, or an intermittent fault with VSS in the wiggle test mode, a continuous error code will always be present, indicating the reason for the fault.

The check engine light is turned on in the crank mode until a PIP signal is detected as a bulb check. The bulb check can be disabled by setting MILLIM to zero. If the light does not turn off while the engine is cranking, it indicates that the EEC module is not receiving PIP signals.

The calibration parameter MIL_SW can take values of 0, 1 or 2. If MIL_SW is set to zero, the MIL light is not activated by the MIL logic. Note that the MIL light will still turn on whenever STO is grounded (HLOS, self-test). Production calibrations must have MIL_SW set to 1 to meet California regulations. When MIL-SW is set to 2, the MIL light will activate whenever any continuous fault filter indicates a fault is present for at least FMDTM seconds.

DEFINITIONS

INPUTS

Registers:

- C332FIL = Fault Filter indicating EGR flow problem.
- CXXXFIL = Fault Filter for any continuous fault.
- MILTMR = Timer used to record the time that a continuous fault has been present, sec.

Bit Flags:

- ADT1FMFLG = Flag indicating that one or more of the adaptive table one cells have reached the max or min clip values (MAXADP OR MINADP).
 - 1 -> TABLE IS AT CLIP.
 - 0 -> TABLE NOT AT CLIP.

Continued on Next Page

MALFUNCTION INDICATOR LIGHT (CONTINUOUS) - LHBH0 PED-PTE, FOMoCo, PROPRIETARY & CONFIDENTIAL

Continued from Previous Page

- EGO1FMFLG = Flag indicating there is an EGO-1 failure.
- AFMFLG = Flag indicating the ACT sensor has failed.
- CFMFLG = Flag indicating the ECT sensor has failed.
- CRKFLG = Flag indicating status of CRANK MODE (1 -> in CRANK MODE 0 -> not in CRANK MODE).
- DISABLE_NOSTART = Flag set to 1 when KOEO VIP test is entered Disables bulb check when KoEO test is exited.
- EFMFLG = Flag indicating the EVP/EPT sensor has failed.
- FIRST_PIP = Flag set to 1 when the first PIP is detected. Reset to zero on power-up or stall.
- MFMFLG = Flag indicating the MAF sensor has failed.
- RUNNING = Flag indicating that engine-running VIP is active. 1 -> IN ENGINE-RUNNING VIP.
 - 0 -> NOT IN ENGINE-RUNNING VIP
- STIFLG = Flag indicating the state of STI (1 -> low, Self-Test requested; 0 -> high, Self-Test not requested).
- TFMFLG = Flag indicating the TP sensor has failed.

Continued on Next Page

MALFUNCTION INDICATOR LIGHT (CONTINUOUS) - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

Continued from Previous Page

Calibration Constants:

- C332LVL = Fault threshold for EGR flow problem.
- C332UP = Upcount for fault filter 332.
- CXXXLVL = Fault threshold for any continuous fault.
- CXXXUP = Upcount for any continuous fault.
- FMDTM = Time delay after fault is detected to turn on MIL, sec.
- MILLIM = Software switch to enable/disable bulb check, unitless (1 -> enable; 0 -> disable).
- MIL_SW = MIL enable switch, unitless,
 - 0 = Do not turn on MIL
 - 1 = Do MIL logic to meet California regulation, must be 1 for production
 - 2 = Do MIL logic and turn MIL light on for any continuous fault, development calibration only.
- V_MILONTM = Minimum MIL on time, sec.

OUTPUTS

Registers:

- MILTMR = See above.

Calibration Information

FMDTM should be set at 4.5 seconds. This will allow the check engine light to turn on within 5 seconds of the fault occurrence. The .5 seconds of time is used to allow the fault filter to reach the fault threshold.

V_MILONTM should be large enough to easily distinguish between an intermittent harness short and a strategy controlled activation of the check engine light. A 10 second on time is suggested. If set to 8191.875, then the MIL light will remain on once it is on, until the engine is turned off.

MIL_SW must be set to 1 for production calibration.

MALFUNCTION INDICATOR LIGHT (CONTINUOUS) - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

PROCESS:

STRATEGY MODULE: VC_MIL_SD_COM1

MILTMR IS A FREE-RUNNING INCREMENTING TIMER

NO_START = 1 (KOEO VIP)		
,	OR	EXIT
RUNNING = 1 (ENGINE RUNNING VIP)		ELSE
STIFLG = 1		ZERO MILTMR
CRKFLG = 1 (IN CRANK)		ELSE
DISABLE_NOSTART = 0 (KOEO VIP NOT REQUESTED)		DO BULB CHECK (TURN STO ON) ZERO MILTMR
FIRST_PIP = 0 (PIP NOT YET RECEIVED)		
MILLIM = 1 (BULB CHECK REQUIRED)		ELSE
MIL_SW = 0		TURN MIL OFF (STO OFF)
CRKFLG = 1	OR	ZERO MILTMR
CHECK MIL FAULT NOT PRESENT LOGIC (MIL FAULT IS NOT PRESENT		ELSE
MILTMR <= FMDTM		TURN MIL OFF (STO OFF)
		ELSE
		TURN MIL ON (STO ON)

MALFUNCTION INDICATOR LIGHT (CONTINUOUS) - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

MIL FAULT NOT PRESENT LOGIC

	AFMFLG = 0			
	(ACT)			
	CFMFLG = 0			
	(ECT)			MIL FAULT IS NOT
	EFMFLG = 0		j i	PRESENT
	(EGR)		İ	
	MFMFLG = 0		AND	
	(MASS AIR FLO	OW OR MAP)	ĺ	ELSE
	TFMFLG = 0		ĺ	
	(TP)		İ	MIL FAULT IS
	EGO1FMFLG = 0		ĺ	PRESENT
	ADT1FMFLG = 0		·	
	(ADAPTIVE FUE	EL)		
	C332FIL <= C33	32LVL		
	(EGR FLOW)			
MIL_SW <>	2			
		OR		
CXXXFIL<=	CXXXLVL			
(NO OTHER	R CONTINUOUS FA	AULTS)		
MILTMR <=	FMDTM			
		OR		
MILTMR >=				
V_MILONTN				
(MIL ON	MINIMUM TIME)			

CHAPTER 30

ERROR CODE DESCRIPTION

ERROR CODE DESCRIPTION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ERROR CODE DESCRIPTION

SELF TEST SECTION

EDDOD	1	SELF TI	EST SEC	TION
ERROR CODE	DESCRIPTION	K.O.E.O	E.R.	CONT.
111	 PASS	X		X
112	254 deg. ind. ACT-ckt. grounded.	X	xx	x
113	-40 deg. ind. ACT-sensor ckt. open.	X	XX	i x i
114	ACT out of S-T range.	X	X	į į
116	ECT out of S-T range.	X	X	į į
117	254 deg. ind. ECT-ckt. grounded.	X	XX	x
118	-40 deg. ind. ECT-sensor ckt. open.	X	XX	X
121	TP out of S-T range.	X	X	İ
122	TPS ckt. below minimum voltage.	X	XX	X
123	TPS ckt. above max. voltage.	X	XX	X
126	MAP/BP out of S-T range.	X	xx	X
128	MAP vacuum circuit failure			X
129	Insuff. MAP change-dyn resp. test.		X	
167	Insuff. TP change-dyn resp. test.		X	
172	EGO sensor ckt. ind. system lean.		X	X
173	EGO sensor ckt. ind. system rich.		X	X
179	Adaptive Fuel Limit Lean			X
181	Adaptive Fuel Limit Rich			X
182	Adaptive Fuel Limit Lean @idle			X
183	Adaptive Fuel Limit Rich @idle			X
194	Hego switch rate too fast			X
211	PIP ckt. fault.			X
212	Loss of tach input to processor.			X
213	Spark control fault present		X	
225	Knock not sensed-dyn response test.		X	
311	Themactor air system inop.		X	
312	Thermactor air upstream during S-T.		X	!!
313	Therm. air not bypassed during S-T.		X	
327	EPT/EVP below min. voltage.	X	X	X
328	EVP volt below closed lim (SONIC)	X	X	X
332	EGR valve not opening (SONIC).		X	X
334	EVP volt. above closed limit.	X	X	X
337	EVP ckt. above max volt.	X	X	X
338	Cooling System not Heating			X
339	Cooling System not Cooling			X
411	RPM not within S-T lower band limit		X	
412	RPM not within S-T upper band limit		X	37
452	Insufficient input from VSS.		l	X

ERROR CODE DESCRIPTION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

SELF TEST SECTION

ERROR	l I	SELF 1	TEST SE	CTION
CODE	DESCRIPTION	K.O.E.O.	E.R.	 CONT.
511	ROM test failed	X		
512	KAM Test Failed			X
513	Failure in EEC ref. voltage.	X		
519	PSPS ckt. open.	X		!!
521 536	PSPS did not change states.		X X	
230	BOO Sw. Ckt failed open/closed -ECA input open or brake not actuated during test		Δ	
538	Operator error-dyn response test.		Х	i i
539	A/C Swith error	Х		i i
542	FP Ckt Open -ECA to Motor Ground	X		x
543	FP Ckt Open Bat. to Relay	X		X
552	Air Management 1 (AM1) ckt. failure	X		
553	Air Management 2 (AM2) ckt. failure	X		
556	Fuel pump ckt. failure.	X		X
558	Elect. vac. reg. (EVR) ckt. failure	X		
565	Canister Purge (CANP) ckt. failure.	X		!!!
617	1-2 Shift Error			X *
618	2-3 Shift Error			X *
619	3-4 Shift Error			x *
621	SS1 Sol Ckt Failure	X		
622	SS2 Sol. Ckt. Failure	X		
624	EPC Solenoid Circuit Failure/Shor- Output Driver	X		X
626	CCS Sol Ckt Failure	X		
628	Converter Clutch Failure			X
629	CCC Sol. Ckt. Failure	X		!!
631	OCIL Ckt. Failure	X		
632	OCS Not Changing State		X	!!
633	4X4 Switch closed	X		
634	MLPS Out of Range			X
636	TOT Out of S-T range	X	X	
637	-40 deg. ind. TOT sensor ckt open	X		X
638	315 Deg ind. TOT sensor ckt grounded			X
654	MLPS not in park	X		
655	MLPS not in neutral	X	3737	
998	FMEM failure/Failed (open)EPC Output Driver	X	XX	

XX - Service Code 998 and corresponding code(s) are output which constitute FMEM mode failure.

^{*} SEE BASE STRATEGY FOR TEST DOCUMENTATION

ERROR CODE DESCRIPTION - LHBH0 PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

CHAPTER 31

ROM IDENTIFICATION CODE

ROM IDENTIFICATION CODE - LUTO PED-PTE, FOMOCO, PROPRIETARY & CONFIDENTIAL

ROM IDENTIFICATION CODE

ROM identification codes are used by both IC and module $% \left(1\right) =10^{-3}$ suppliers. The $% \left(1\right) =10^{-3}$

suppliers require a means of identifying ROM chip contents quickly since they

produce different calibration bit patterns on the same wafer. The module

suppliers utilize these codes to insure that the $\ensuremath{\mathsf{ROM}}\xspace/\ensuremath{\mathsf{module}}\xspace$ combination is correct.

In the past, the ROM identification codes (CALID and VERID) were generated by

hand. They were then distributed to Engine Systems to put in their

calibrations for Cert. If any change to the Cert calibration was made or a

different strategy used, new values had to be generated and calibrated in.

For 1988 and beyond, the procedure has been changed to make this process

easier. The new process removes CALID and replaces it with $\ensuremath{\mathtt{ROM_TO}}$. In

addition, VERID has been deleted and a new parameter "FIXSUM" has been added.

FIXSUM should always be set to 0. Specifically:

1. The non-modifiable Vector parameter "ROM_TO" replaces the old ${\tt CALID}$

parameter as the ROM chip identifier. The ROM_TO value is generated by

Vector during a calibration release and is located at 200A HEX. This

value is the complement of the ROM pattern CHECKSUM and is also used to

perform the EEC-IV diagnostic "CHECKSUM Memory Test".

2. The new parameter "FIXSUM" is a Vector calibration parameter located at

2004 HEX and should always be set to 0. This parameter will be used to $\,$

assure the $\ensuremath{\mathtt{ROM_TO}}$ values are unique and will only be changed by the $\ensuremath{\mathtt{SWDV}}$

engineer if a duplicate ROM_TO value is found.

ROM IDENTIFICATION CODE PROCEDURES

- PEDD SW will set the value of the calibration parameter FIXSUM to
 in the base release.
- 2. When Engine Systems releases a CERT calibration, the ROM chip ID code,

ROM_TO, will be automatically generated by VECTOR, and the value is to be

recorded on the calibration release sheet submitted to SWDV.

3. PEDD SWDV will verify that the $\ensuremath{\mathtt{ROM_TO}}$ value is not the same as any other

previous ROM_TO prior to sending the binary file to EED. If the $\ensuremath{\mathtt{ROM}}\xspace_{\ensuremath{\mathsf{TO}}}$

value matches another, PEDD SWDV will change the value of FIXSUM and

generate a new ROM_TO value, which will be checked again for a match.

This process is repeated until a unique ROM_TO value is generated.

4. For production calibrations only, $\ensuremath{\mathsf{EED}}$ systems will receive and record the

value of ROM_TO for final ROM verification.

5. EED will then transmit the binary file to the $\ensuremath{\text{vendors}}, \ensuremath{\text{verify}}$ the $\ensuremath{\text{ROM}}$

chip against the binary file, verify the checksum, verify the \mathtt{RAM}

read/write test, and verify the ROM_TO value and location.

INDEX - LHBH1

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL

INDEX

AISFM, 6-61, 6-63 A, 8-11 AOCOR, 6-8, 6-81, 6-86, 14-7 ALPHA, 6-61 A3C, 20-9, 21-9, 27-19 ALT_CAL_DIST, 15-5 A3CTMR, 3-5, 9-19, 21-9 AC_PPM, 9-12, 9-21 ALT_CAL_FLG, 6-13, 6-26, 6-85, 7-13, 7-15, 7-17, 9-17 to 9-18, 9-26, 15-3, 15-5 ACCELERATION ENRICHMENT, 6-5 ACCFLG, 9-19, 9-21, 9-35, 9-39, ALTDLY, 18-33 9-51, 19-10, 20-9 ALWAYS, 7-52 AM, 6-67, 6-81, 6-85, 11-5, 20-15, ACCUM, 6-26 to 6-27, 6-36 to 6-38 ACD, 9-19 23-8 ACDHP, 9-19 AM1, 12-8 to 12-9, 28-10 ACHPTM, 9-51 AM2, 12-8 to 12-9, 28-10 ACIFLG, 9-19, 9-21, 20-9 AMPEM, 8-12 to 8-13, 20-51ACMAP, 9-34 to 9-35, 9-37, 9-39 AMPEMT, 20-51 ACSTRT, 6-67, 20-56 to 20-57 AMPMUL, 6-52 ACT, 3-5, 6-28, 6-51, 6-67, 6-85, AMT, 19-10 7-13, 8-11, 20-51, 20-54, APT, 3-5, 5-2 to 5-4, 6-16, 6-30, 20-56 to 20-57, 22-5 to 22-6, 6-36 to 6-37, 6-39, 7-12 to 7-13, 7-17, 7-64, 8-5, 9-9 to 9-10, 9-28, 9-35, 9-38, 12-8, 22-12, 22-14 ACTFMM, 22-5 to 22-620-9, 20-44, 21-12, 21-14 to 21-17, 21-19 to 21-22, 29-20, ACTMAX, 22-5 to 22-6, 27-14, 29-14 29-58 ACTMIN, 22-5 to 22-6, 27-14, 29-14 APTMR, 6-16, 6-28 to 6-29ARCHG, 19-10, 20-54 ADAPTM, 6-51 ADEFTR, 6-51 ATMR1, 6-9, 6-11, 6-27, 6-61, 6-63, 7-14, 8-5, 9-20, 9-51, ADEGCT, 6-52 ADPTMR, 6-51, 21-9 12-10, 21-10, 23-2, 23-7 to ADT1FMFLG, 11-6, 22-10 23-8, 29-56 ADT2FMFLG, 22-11 ATMR1_LST, 21-10, 21-13 AEDLMP, 20-21 to 20-22 ATMR2, 6-9, 6-11, 8-5, 12-10, 21-11 AEFUEL, 6-8, 6-51, 29-56 ATMR3, 6-67, 9-9, 9-18, 21-12 AELIM, 6-51 AEM, 6-8AWOTMR, 12-9, 21-12 AEMAP, 3-5, 20-10, 20-21 to 20-22, 20-54 BAP, 23-4 BASE_EM, 6-86, 6-89 AEMTMR, 20-10, 20-54AEPP, 6-8 AEPW, 6-5, 6-8 BASEFF, 6-85, 6-88 to 6-89BASEMD, 20-51 AETAR, 6-8 AETP, 20-7, 20-21, 20-54 BETA, 7-48 BFULSW, 6-89 AETV, 17-30 BG_TMR, 6-78, 15-5, 20-8, 20-54 AETVTP, 17-30 BGFUEL, 6-81, 6-85 to 6-86, 6-88, AFACT1, 6-28, 6-51 6-98 BIAS, 6-16, 6-28, 6-37 to 6-38, AFACT2, 6-28, 6-51 AFECT1, 6-28, 21-9 AFECT2, 6-28, 21-9 6-52 BIFLG, 18-10, 20-8, 28-21, 29-40, AFMFLG, 6-51, 8-4, 8-13, 12-8, 29-45 22-5 to 22-7, 23-8, 28-9, BIHP, 3-2, 20-8, 28-21, 29-40, 29-56 29-44 AISF, 6-61 to 6-65 Block, 13-5

Index-1

INDEX - LHBH1

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL

```
BOO_FAILURE_PROCESS, 29-45
BOO_SPD_TMR, 29-44, 29-46
BOO_TEST_MAIN, 29-44 to 29-45
                                             C118FIL, 22-12, 22-15
                                              C118LVL, 22-12, 22-15
                                              C122FIL, 22-20, 22-23
BP, 6-8, 8-11 to 8-13, 9-35, 9-39, C122LVL, 22-20, 22-23
      9-44 to 9-45, 18-11, 18-33, C123FIL, 22-20, 22-23 19-15, 20-15, 20-24, 21-17 to C123LVL, 22-20, 22-23
      21-18, 23-8, 24-3, 29-20, C128FIL, 29-21
29-28 C128LVL, 29-21
CMAP_WORD, 29-20 C171FIL, 29-60 to 29-61, 29-63
BP_IMAP_WORD, 29-20
                                               C171LVL, 29-60 to 29-61
BP_INTR, 3-5, 16-13 to 16-14,
                                               C172FIL, 29-60 to 29-61, 29-63
     18-32
BPCOR, 20-15
                                               C172LVL, 29-60 to 29-61
                                              C173FIL, 29-60 to 29-61, 29-63
BPCOR_SW, 9-44 to 9-45
BPKAM, 23-2, 23-4, 23-7 to 23-8, C173LVL, 29-60 to 29-61
                                               C179FIL, 22-10
      24 - 3
BPKFLG, 23-2, 23-5, 23-7, 24-3
BPKYON, 23-2, 23-4 to 23-5, 23-7,
                                               C179LVL, 22-10
C181FIL, 22-10
C181LVL, 22-10
      24 - 3
BPPTWT, 20-54, 23-2, 23-4, 23-8,
                                               C182FIL, 22-10
      24 - 3
                                               C182LVL, 22-10
                                               C183FIL, 22-10
BPUFLG, 23-2, 23-7
BPUNMH, 18-11
                                               C183LVL, 22-10
BPUNMN, 18-11, 18-33
                                               C188FIL, 22-11
BPUNMX, 18-33
                                               C188LVL, 22-11
BRAKE_INPUT, 20-8
BRDRLN_SPK, 7-21 to 7-22
                                               C189FIL, 22-11
C189LVL, 22-11
BRK_NEVER_OFF, 28-10, 28-21
BRK_NEVER_ON, 28-10, 28-21
                                              C191FIL, 22-11
                                              C191LVL, 22-11
                                              C192FIL, 22-11
BRKDLY, 18-12
BYMAP, 21-12
                                              C192LVL, 22-11
BYPMAP, 12-8 to 12-9
                                              C327FIL, 22-16 to 22-17
                                           C32/FIL, 22-10 to 22 I.

C327LVL, 22-16 to 22-17

C332FIL, 29-28, 29-30, 29-32

C332LVL, 29-28, 29-30

C334FIL, 29-30

C334LVL, 29-30
BYPTMR, 12-8 to 12-9, 21-12
BYPWOT, 12-8
BYRPM, 21-15
BYRPMH, 21-15
BYSTM1, 12-10
BYSTM2, 12-10
                                               C337FIL, 22-16 to 22-17
                                               C337LVL, 22-16 to 22-17
BYSTM3, 12-10
BYSTM4, 12-8, 21-15
                                               C338LVL, 29-8
                                               C338UP, 29-8
BYSTM8, 12-8 to 12-9
                                               C339UP, 29-8
Byte, 13-5
BYTE_8, 13-37
                                               C452FIL, 29-41, 29-45
                                               C452LVL, 29-41
C536FIL, 29-45
BYTE_9, 13-37
BYTE_NUM, 13-35 to 13-37
BZZRPM, 9-11, 9-17 to 9-18
                                              C617_KAM_BIT, 16-43
BZZRPM ALT, 9-18
                                              C617CNT, 16-43
BZZTM, 9-18, 9-20
                                               C617FIL, 16-43
BZZTM_ALT, 9-18
                                               C618_KAM_BIT, 16-43
                                              C618CNT, 16-43
C112FIL, 22-5, 22-7

C112LVL, 22-5, 22-7

C113FIL, 22-5, 22-7

C113LVL, 22-5, 22-7

C117FIL, 22-12, 22-15

C117FIL, 22-12, 22-15
                                              C618FIL, 16-43
                                              C619_KAM_BIT, 16-43
                                              C619CNT, 16-43
C619FIL, 16-43
                                              C628_KAM_BIT, 18-41
                                              C628CNT, 18-41
```

Index-2

INDEX - LHBH1

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL

C81FIL, 29-21 CRKFLG, 3-5, 4-4 to 4-6, 5-2, 5-4, C81LVL, 29-21 6-8 to 6-10, 6-57 to 6-58, CANPHP, 3-2, 11-5 6-63, 6-85, 6-89, 6-98, 6-101, CART, 13-5, 13-29 8-4, 9-8 to 9-9, 11-5, 11-7, CART_MODE, 13-36 12-8, 19-6, 20-9, 20-22, Cart_Mode, 13-5 20-32, 20-39 to 20-40, 20-43, 21-10, 21-13, 21-22, 22-3 to 22-4, 22-12, 22-14, 22-20, 22-22, 23-2, 23-7 to 23-8, 29-6, 29-44, 29-55 CART STATUS, 13-35 to 13-37 CC_ERR_SW, 19-6 CC_FM_FLG, 17-13, 18-41, 19-6, 19-26 CRKPIP, 4-4, 6-98 CC_FM_LVL, 18-41 CCD_HP, 7-29, 7-32, 7-35, 7-43 to CRKPIP_CTR, 6-67, 21-13 7-44, 7-46, 7-48 to 7-50 CRKPIP_CTR_BG, 6-85, 21-13 ccd_hp, 7-34 CCDHP, 7-48 CRKPIPCNT2, 21-13 CRKTIM, 9-9, 9-18 CCE_TPMN, 18-41 CCV_STRT_SFT, 16-40 to 16-41 CD_TVENG_TM, 20-62 CRKTM1, 21-13 CRKTMR_INC, 21-13 CRVDLY, 18-33 CFIEPT, 3-5 CS_MAX_TIME, 20-66 CFMFLG, 6-51, 8-4, 8-13, 12-8, CS_MUL, 20-66 21-17, 22-5 to 22-6, 22-12 to CS_PDL_4, 18-45 22-15, 23-2, 23-8, 28-9, CS_SFT_MULT, 16-13 to 16-14, 29-56 17-14 to 17-15, 18-11, 20-65 CHANGED PAGES, 1, 5, 9, 1-2 to 20-66 CHGTM, 21-22 CHKAIR, 6-16, 12-8 to 12-9 CSDYN12, 17-14 CSDYN23, 17-14 CHKASW, 12-8 to 12-9 CSDYN34, 17-15 CHKFLG, 24-5 CSHIGH, 7-14 CHKSUM, 6-53, 24-3, 24-5 CSLOW, 7-14 CSSFLG, 7-14, 7-17, 9-21 CIBETA, 6-68, 6-70 CSSPRK, 7-13 CSSTIM, 7-14 CKRFLG, 20-19 CLDCTM, 16-35 CLFLG, 6-26 to 6-29 CTBYS, 12-6 CLFLG, 0-20 CC CLOCK_SEC, 20-8 CMD_CODE, 13-36 to 13-37 CTBYSH, 12-6 CTDLY, 18-12 CNTVSRATE, 20-27 to 20-28 CTDSFO, 6-80 CODE 112, 27-14 CTEDSO, 6-80 CTFLG, 7-64 to 7-65 CODE 113, 27-14 CODE 114, 27-14, 28-18 CTHIGH, 6-9, 6-11, 8-5, 12-10 CTLOW, 6-9, 6-11, 8-5, 12-10 CODE 213, 28-32 COLTBU, 6-50 CTPTFG, 5-3 to 5-4, 9-51CTR_VSRATE, 20-27 to 20-28 CTTMR, 6-80, 21-14 CWCTR, 7-60 CONPR, 3-5 COUNT, 28-8 COUNTERS ECT & PIP, 4-6 CXXX_KAM_BIT, 29-4 PIP & ECT, 4-6 CXXXCNT, 29-4 CRANK/UNDERSPEED/RUN MODE SELECT CXXXFIL, 29-4 DEFINITIONS, 4-4 CXXXLVL, 29-4 CRANK/UNDERSPEED/RUN MODE CXXXUP, 29-4 SELECTION CYCCTR, 16-35 LOGIC, 4-5 CRANKING, 26-4 to 26-7 D, 6-80, 6-86 D21DLY, 18-13 D32DLY, 18-13 CRKCTR_RESET, 21-13 D43DLY, 18-13

INDEX - LHBH1

D_TP_DT, 6-78	DFSRPH, 6-79
D_TP_DT_F, 6-78	DFSRPM, 6-79
DACTM, 9-19	DFSTM, 6-79
DASCTL, 9-35, 9-38, 21-20	DFSVS, 6-79
DASMHYST, 9-10	DFSVS HYS FG, 6-79 to 6-80
DASMPH, 9-10	DFSVSH, 6-79
DASPOT, 9-3, 9-30 to 9-33, 9-35,	DFTRPH, 7-12
9-38, 9-51, 21-20	DFTRPM, 7-12
DASPTK, 9-28, 9-30	DIAGMODE, 13-11
DASPTO, 9-28, 9-30	DIAGNOSTIC PARAMETER SLOTS, 13-5
DATA COMMUNICATIONS LINK>DCL	DIFCTR, 7-40 to 7-42
STATE DIAGRAM, 13-3	DIFF0, 7-40, 7-42
DATA_TIME, 7-44, 7-51 to 7-52,	DIFF1, 7-40, 7-42
20-25, 20-39	DISABLE_ADAPT, 6-50 to 6-51, 6-86
DCL_RAM_START, 13-14	DISABLE_ISC, 6-71, 6-73, 9-8 to
DCLCT_START, 13-5	9-9, 28-14, 28-35
DCLST_DONE, 13-5, 13-24	DISABLE_NOSTART, 26-4 to 26-5
DCLST_START, 13-5	DISABLE_RUNNING, 26-5 to 26-7
DCOFF, 8-15	DISTANCE, 15-5
DD_UNC_UNL, 18-10	DLHYST, 6-71 to 6-73
DEBYCP, 9-44 to 9-45, 9-49	DNAC, 9-11, 9-17
DEBYMA, $9-2$, $9-44$ to $9-45$, $9-49$	DNDSUP, 6-13, 6-30, 7-15 to 7-17,
DEFAULT_LVF, 13-5	9-9, 9-18, 9-21, 9-35, 9-38
DELAMB, 6-52	to 9-39, 20-7
DELCOL, 6-51	DNDT_ISC, 6-71, 6-73, 20-45,
DELHYS, 9-29	20-47, 20-54
DELOPT, 8-7, 8-11 to 8-15, 20-54	DNDT_SPK, 20-46 to 20-47, 20-54
DELOPT', 8-12, 20-54	DNDTI, 20-45, 20-47, 20-54
DELRAT, 6-71 to 6-73	DNPOWS, 9-11, 9-17
DELROW, 6-51	DNUN_TM, 16-22, 16-25, 16-27 to
DELTA, 5-2 to 5-3	$\overline{16-28}$, 18-19
DELTA_SPK, 7-17 to 7-18, 7-21	DOL_COUNT, 14-7
DELTAT, 20-59 to 20-60	DOL_DUTY, 14-3
DELTIM, 6-61, 6-64	DOLHP, 3-2
DESEM, 8-11 to 8-12	DOUBLE_EDGE, 7-43 to 7-44
DESMAF, 9-3, 9-44 to 9-45, 9-51,	DPLGHP, 8-4
28-45	DPNEU_MUL, 9-29, 9-31
DESMAF_PRE, 9-3, 9-50 to 9-51,	DPS, 13-4, 13-7, 13-11
28-45	DRBASE, 7-17
DESMAF_PRE CALCULATION, 9-12	DRBASE_ALT, 7-17, 9-17
DESNLO, 9-23, 20-54	DRV2NEU_FLG, 17-8 to 17-10
DFMINO, 7-40, 7-42	DSDRPM, 6-71, 6-73, 6-79, 7-17,
DFMIN1, 7-40, 7-42	9-8, 9-23, 9-26, 9-31, 9-34
DFNOVH, 6-79	to 9-35, 9-38, 20-54, 28-14,
DFNOVS, 6-79	28-35, 28-46
DFSECT, 6-80	DSFFLG, 6-98
DFSFLG, 6-16, 6-50, 6-61, 6-63,	DSFTSW, 12-8
6-80, 6-86, 6-91, 12-8	DSLMBS, 6-40
DFSLAM, 6-26	DSTPBR, 9-8, 9-28, 9-30, 20-54
DFSMAP, 6-79	DT12S, 6-100, 7-32, 7-36, 7-38 to
DFSMPH, 6-79	7-42, 7-48, 20-32
	dt12s, 7-34 to 7-35
DFSO_A_TMR, 6-78, 12-8 DFSO_ECT, 6-78	
DFSO_EC1, 6-78 DFSO F TMR, 6-78, 6-80	DT12S_AVG, 18-37 to 18-38 DT12SA, 20-32, 20-38
DFSO_F_IMR, 6-76, 6-80 DFSO_OUT, 6-80	DT23S, 7-36, 7-38, 7-40 to 7-41
DESO_001, 0-00	D1235, 1-30, 1-30, 1-40 to 1-41

INDEX - LHBH1

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL

DT DNDT, 20-45, 20-47, 20-54 EFFLG1, 6-61 to 6-63 EFMFLG, 8-4, 8-13, 22-16 to 22-17 DTPCYC, 7-36 to 7-39 DTSIG, 7-36 to 7-38 EFMLO, 29-32 DWELD, 7-30EFTC, 6-61 DWELL, 7-28 to 7-30, 7-32, 7-46, EFTR, 6-51, 6-61 to 6-65, 28-10 7-48 to 7-50 EFTRFF, 6-62 to 6-63, 6-65, 6-81, dwell, 7-31 6-88 to 6-89 DWELL CALCULATION, 7-35, 7-44 EGO, 6-37, 6-52 dwell_extra, 7-34 to 7-35 EGO1FMFLG, 12-8 DWELLA, 7-28 to 7-29 EGO_CNT_IDLE, 6-16, 6-72 to 6-73 DWELLM, 7-28 to 7-29 EGO_CNT_OL, 6-28 EGO_IDLE, 6-16 DWL_XS_MIN, 7-28, 7-30 DWLBSE, 7-28 to 7-30 EGO_TEST_TMR_CLEAR, 29-58 DWLCOR, 7-28 to 7-30 EGOBAR, 20-54 DWLELD, 7-28, 7-32, 7-35, 7-43 to EGOCL1, 6-27 EGOBAR, 20-54 EGOCNT, 6-50 to 6-53 EGOFL, 29-62 to 29-63, 29-65 7-47, 7-49 to 7-52 dwleld, 7-34 DWLIDM, 7-28, 7-30, 7-52 EGOSSS, 6-9 to 6-10, 6-27, 29-62 DWLMAX, 7-32 to 29-63 dwlmax, 7-34EGOSW_OL_CTR, 6-28 to 6-29 DWLMIN, 7-28 EGOTSTCUMFLG, 29-56 to 29-57 dwlmin, 7-31EGOTSTCUMTMR, 29-55, 29-57, 29-62 DWLTSW, 7-32 to 29-63 dwltsw, 7-35 EGRACT, 7-13, 8-2, 8-13, 19-10, 20-54 EGRACT', 8-13, 20-54 EGRATE, 8-11 to 8-12 ECHO PIP, 7-43 to 7-45 ECHO_TRANS, 7-43 to 7-45 EGRBAR, 3-5, 20-8 to 20-9, 20-54 ECT, 3-5, 4-3, 6-9, 6-11, 6-13, 3-5, 4-3, 5-9, 5-11, 6-27 to 6-28, 6-52, 6-67, EGRCNT, 8-1/ LO 5-1/ EGRCTF, 8-16 to 8-17, 8-19 7-13, 7-58, 7-64, 8-11, 9-51, EGRDC, 8-11, 8-15, 8-17 to 8-18, 11-5 to 11-6, 12-6, 20-51, 28-10, 29-26, 29-28, 29-64 20-54, 20-56, 21-9, 21-11, 21-17, 22-5, 22-12 to 22-15, EGRDED, 8-4, 8-15 EGREN, 8-4 to 8-5, 8-11 EGRERR, 8-7, 8-14 to 8-15 22-18 to 22-19, 23-2, 23-8, EGRFLG, 8-15 29-6 EGRPER, 8-17 to 8-19 COUNTER LOGIC, 4-6 ECT_HP, 9-51 EGRPRF, 8-16 to 8-17, 8-19 ECTBP, 23-3, 23-8 EGRTB1, 8-5 ECTCNT, 4-4 to 4-5, 9-26, 20-56 EGRTD1, 8-5 to 20-57, 22-12, 22-14, 22-18 EGRTD2, 8-5 to 22-19 EGRTD3, 8-5 ECTFMM, 22-12, 22-15 ECTIP, 7-64 EGRTD4, 8-5 EGRTD5, 8-5 ECTMAX, 20-56 to 20-57, 22-12, EGRTD6, 8-5 22-14, 29-13 EGRTD7, 8-11, 21-14 ECTMIN, 20-56 to 20-57, 22-12, EGRTD8, 8-4 22-14, 29-13 EGRTMR, 8-11, 21-14 ECTNOK, 7-58 EGRTPQ, 8-5 ECTSTABL, 6-9, 6-11 EGTB1H, 8-5 ECTSTHYS, 6-9, 6-11 EISF, 6-61 EEC OVERVIEW EM, 6-86, 8-2, 8-13 DCL HW SWITCHES, 3-4 EEC-IV, 13-9 EEC_CHKSUM, 13-35 to 13-37

INDEX - LHBH1

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL

ENGCYL, 6-81, 6-86, 6-88, 6-96, REFLG 6-104 to 6-105, 7-28 to 7-29, SET/CLEARED, 4-6 7-36, 7-38 to 7-39, 19-10, FLG_4X4L, 16-13, 16-31, 17-30, 20-38, 20-45, 20-47, 28-10 17-38, 18-41, 19-21, 19-25 to ENTRY_T, 7-17 19-26 EOFF, 3-5, 8-4, 8-12 to 8-13, FLG_CRV_DS, 18-31 to 18-33FLG_CRV_LK, 18-5, 18-33 FLG_CRV_LST, 18-31, 18-33 8-15, 20-9, 22-16 to 22-17 EPC ERR SW, 19-6 FLG_CS_CM, 18-44 to 18-45 EPC_OPEN_FLG, 17-43, 19-6 EPC_OTEMP, 17-13 FLG_CS_ENG, 16-25, 16-27 EPC_TQ_CONV, 17-29, 17-32 FLG_CS_FRST, 18-44 FLG_DASMNQ, 9-8, 9-10, 9-28, 9-31 EPC_TQMAX, 17-32 EPTBAR, 3-5 FLG_DASMNQ LOGIC, 9-10 ERMHI, 29-32 FLG_DE_DSGR, 16-8, 16-17 ERR_BAN_4X4L, 19-26 FLG_DEL_MDN, 16-8, 16-18, 17-12, ERROR_4X4L, 19-26 18-45 FLG_DFSO_NOVS, 6-79 to 6-80 ERROR_DETECTED, 29-20, 29-45 ETST SWCUMTM, 29-62 to 29-63 FLG_DN_LK, 18-16 to 18-17, 18-19, ETV_ERROR, 17-43 18 - 23ETV_GAIN_BAT, 17-42 FLG_DN_UNLK, 18-16 to 18-17, ETV OCM MIN, 17-43 18-19, 18-23 ETV_TEST, 17-13, 17-43 FLG_DRV_REV, 17-9 to 17-10, 17-25 ETVOCM, 17-43, 19-17 FLG_DYN_CD, 17-30, 20-64 EVP, 8-4, 8-7, 8-13 to 8-15, 20-8, FLG_ECTSTABLO, 6-27 FLG_ECTSTABLQ, 6-9, 6-11, 6-30 FLG_ENG_IN, 17-10 to 17-11, 17-22 20-54, 22-16 to 22-17 EVPMAX, 22-16 to 22-17, 27-18, 28-33, 29-25 to 17-23 FLG_ENG_TV , 17-11 to 17-12, 17-23 EVPMIN, 22-16 to 22-17, 27-18, 28-33, 29-24 FLG_FMM_CC, 18-48 EVR, 8-17, 8-19 FLG_FMM_LK, 18-5, 18-48 EVTDOT, 11-5 FLG_FRST_CM, 16-23, 16-31 to 16-32, 16-36, 16-40, 17-29, 17-37, 17-39, 18-11, 18-16, 18-33, 18-44 .F, 7-17FAEGCT, 6-52 FFULC, 6-89, 6-98 FLG_FRST_DS, 16-8, 16-22, 17-11, FFULFG, 6-10, 6-89, 6-98 18-16 FFULM, 6-89, 6-98 FLG_FRST_NOV, 18-41, 24-3 FIEPT, 3-5, 26-5 FLG_FRST_TCS, 19-19 FILHYS, 22-3 to 22-5, 22-7, 22-10, FLG_FRST_TV, 17-8, 17-16 FLG_FWD_REV, 17-10 to 17-11, 22-12, 22-15 to 22-17, 22-20, 22-23, 29-21 FIRST_MPH, 20-25 17-23 FLG_GC_ENG , 16-25FIRST_PIP, 4-4, 4-6, 20-46 to FLG_HS_LK, 18-17, 18-23, 18-28, 20 - 4718-37 to 18-38 FLG_HS_UNLK, 18-17, 18-24, 18-28, FIRST_RPM, 20-45 to 20-46, 20-48 FK TMR, 20-52 18-37 to 18-38 FKBP, 23-3 FLG_LK_CM, 16-28, 16-40 to 16-41, FKEXIT, 7-23 17-29, 17-32, 18-5, 18-11, FKMKAY, 7-36, 7-39 FKSKAY, 7-36, 7-38 18-24, 18-35, 18-37 to 18-38, 19-25, 20-18 FLG_NEU_DRV, 17-9 to 17-10, 17-25 FLG_NEU_REV, 17-9 to 17-10 FLG_NEW_NOV, 18-41, 19-25 to FKTP, 23-8 FL, 29-14 FL ACCEPT, 29-14 FL UNDERLINE, 29-14 19-26 FLG_NOT_ADP, 6-28 FLAGS

INDEX - LHBH1

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL

FLG_NOV_KAM, 16-40, 19-26, 24-3 FLG_UP_NE, 16-13, 18-23 to 18-24 FLG_OPEN_LOOP, 6-16, 6-26 to 6-27, FLG_UP_NE |, 16-12 FLG UP UNLK, 18-16 to 18-17. 29-56 FLG_PWR, 16-27, 16-31 to 16-32, 18-23, 18-26, 18-28 17-12, 18-26, 18-28, 18-45, FLG_WOT_LK, 18-5 20-59 to 20-60 FLGWOTLK, 18-36 FLG_REV_DRV, 17-9 to 17-10, 17-25 FLG_RLK_WOT, 18-35FMAP1, 20-41 FMAP2, 20-41 FMECNT, 22-12, 22-15 FLG_SCHD_DLY, 18-33 FLG_SF_AUTO, 16-8, 16-17 to 16-18, FMECTR, 22-12 to 22-15 16-31 to 16-32, 16-40, 18-19, FMEM, 22-3 to 22-418-28 FMEM FLAG, 22-4 FLG_SFT_DN, 16-8, 17-37 to 17-39 FMMDSD, 9-8FMMISC, 9-2 FLG_SFT_IN, 16-7, 16-12, 16-14, 16-32, 16-40, 17-12 to 17-13, FMMMLP, 20-70FN031, 6-50 17-29 to 17-30, 17-32, 17-37, 18-32, 19-16 FN046A, 23-3, 23-8 FN047A, 23-3, 23-8 FLG_SFT_MDN, 16-31 to 16-32, FN069, 23-8 17-12, 18-45 FN069(AM/BP), 23-8 FLG_SFT_UNLK, 18-5, 18-17, 18-19, 18-28, 18-37 to 18-38 FN069A, 23-3, 23-8 FLG_SFT_UP, 16-8, 17-14, 17-31, FN070L, 6-50 17-37 to 17-39 FN074A, 20-15 FLG_SFT_VAL, 16-40 to 16-41FN090, 22-20 FLG_SS_1, 16-36 FLG_SS_2, 16-36 FN090(MAP), 22-22 FN093, 20-16, 20-54 FLG_STALL, 4-5, 21-13 FN093(MAP), 20-16 FLG_TCS, 19-5, 20-71 FN095(TP_REL), 20-43 FLG_TIP_OUT, 16-17 to 16-18, FN1033, $\overline{2}3-3$, 23-8 16 - 32FN1120, 7-13 FN1120(N,MAP), 7-13, 7-21 to 7-22 FLG_TIP_RATE, 18-23, 18-27 FLG_TV_CLK, 17-45 FN1121, 7-13 FLG_TV_DATA, 17-45 FN1121(N,MAP), 7-13 FLG_TVENG_CD, 17-23, 20-62 FLG_TVENG_MD, 17-11, 17-23, 20-62 FLG_TVSTR_CD, 17-16, 20-62 FN1122, 7-13 FN1122(N,MAP), 7-21 to 7-22 FN1126, 7-13 FLG_UN_ALT, 18-11 to 18-12, 18-14 FN1126(N,MAP), 7-13 FLG_UN_BRK, 18-10, 18-12, 18-14, FN1127, 7-13 18 - 31FN1128, 7-13 FLG UN CT, 18-10 to 18-12, 18-14, FN1129, 7-13 18-31 FN1129(N, MAP), 7-13 FLG_UN_MDN , 18-11 to 18-12, 18-14 FN1150(ECT, ACT), 7-13, 7-21 to FLG_UN_NE, 18-11 to 18-12, 18-14 FLG_UN_PRN, 18-10, 18-12, 18-14 7-22 FN1150_ALT, 7-13 FLG_UN_TEMP, 18-11 to 18-12, FN1220(N, MAP), 8-11 18-14 FN1222(N,MAP), 8-11 FLG_UN_TRA, 18-10, 18-12, 18-14 FN12_DC, 17-37 FLG_UN_TRD, 18-10, 18-12, 18-14 FN12A, 16-14 FN12CA(TSLSFT), 17-38 FLG_UN_ULSF, 18-11, 18-13 to FN12S, 16-14 FN12T, 17-14 18 - 14FLG_UN_UPSFT, 18-24, 18-27 FLG_UNC_UNLK, 18-5, 18-14, 18-31, FN1303, 6-8 18-33, 18-48 FN1320(NORM_N070,NORM_MAPOPE21), FLG_UP_LK, 18-16 to 18-17, 18-23, 20-51 18-26, 18-28 FN1321, 6-63, 6-65

Index-7

INDEX - LHBH1

FN1321(TEISF), 6-61, 6-63 FN1325L, 6-28, 6-54 to 6-55 FN1325Lrc, 6-53 FN1328, 6-26 FN1343, 6-37 FN1348, 6-67 FN1349, 6-67 FN1350, 6-67, 6-85 FN1355, 6-16 FN1355, 6-16 FN1360, 6-16, 6-27 to 6-28, 21-14 FN1361, 6-27 FN1362_ALT, 6-26 FN143, 7-63, 7-66 FN153, 7-13 FN153(N), 7-13 FN1615A, 19-10 FN1617, 19-10 FN1617, 19-10 FN180, 7-21 to 7-22 FN180(IDLTMR), 7-15 FN182(DNDT_SPK), 7-14 FN12B, 7-18 FN1CB(VSBART_RT), 17-17 to 17-18 FN121A, 8-11 FN21A, 8-11 FN21A, 8-14 FN21B(MAPOPE), 8-13 FN21B, 16-14 FN21B, 16-14 FN22A, 6-78 FN23A, 16-13 FN23S, 16-13 FN23S, 16-13 FN23S, 16-13 FN23T, 17-14	FN326, 20-51 FN326(ECT), 20-51 FN32_DC, 17-37 FN32A, 16-14 FN32S, 16-14 FN32T, 17-14 FN331A, 6-8 FN332, 6-8 FN34B, 6-85 FN34_DC, 17-37 FN34A, 16-13 FN34CA(TSLSFT), 17-38 FN34PPH, 16-13 FN34S, 16-13 FN34S, 16-13 FN371, 6-13 FN371, 6-13 FN371, 6-13 FN371, 6-15 FN371, 6-18 FN371, 6-18 FN379, 6-8 FN387, 6-85 FN387_ALT, 6-85 FN387_ALT, 6-85 FN387_ALT, 6-85 FN38CB(VSBART_RT), 17-17 to 17-18 FN3CB(VSBART_RT), 17-17 to 17-18 FN3LA, 18-32 FN3LA, 18-32 FN3UA, 18-32 FN3UA, 18-32 FN3UA, 18-32 FN3UA, 18-32 FN3UA, 18-32 FN3UA, 18-32 FN3UA, 18-32 FN3UA, 18-37 FN43A, 16-14 FN43S, 16-14 FN43S, 16-14 FN43T, 17-15 FN46_NE, 17-25
FN23A, 16-13 FN23CA(TSLSFT), 17-38	FN43_DC, 17-37 FN43A, 16-14
	·
FN23T, 17-14	FN46_NE, 17-25
FN2CB, 17-18	FN46B_T, 17-25
FN2CB(VSBART_RT), 17-17 to 17-18 FN2LA, 18-32	FN46F_T, 17-25 FN46S_T, 17-25
FN2LK, 18-24	FN4LA, 18-32
FN2LS, 18-32	FN4LK, 18-23
FN2UA, 18-32	FN4LS, 18-32

INDEX - LHBH1

PED-PTE, FOMOCO, PROPRIETARY CONFIDENTIAL

FN4UA, 18-32	FN852, 9-51
FN4ULK, 18-23	FN862, 9-39
FN4US, 18-32	FN862(BP), 9-34 to 9-35, 9-37
FN500, 14-3	FN879, 9-29 to 9-30, 9-32
FN501, 10-3	FN880, 9-11, 9-17
FN54_NE, 17-25	FN882A(N, 9-29
FN54B_T, 17-25	FN884, 9-2, 9-8
FN54F_T, 17-25	FN885, 9-21
FN54S_T, 17-25	FN887A, 9-21
FN56_NE, 17-25	FN890(BP), 9-44
FN56B_T, 17-25	FN891(VSBAR), 9-29
FN56F_T, 17-25	FN894, 9-31
FN56S_T, 17-25	FN894(N_RATCH, 9-29
FN600, 11-5	FN900, 21-17
FN605A, 11-5	FN900(VSBAR), 21-18
FN615, 19-15	FND TP DT A, 6-78
FN615(BP), 19-15	FNTP_AIR_OFF(N), 12-6
FN616, 17-16, 17-22	FPWQ2, 6-79 to 6-80
FN616(TP_REL), 17-16	FPWQ3, 6-79 to 6-80
FN617, 17-29, 19-10	Frame, 13-5
FN618, 19-10	FRCHIC, 6-67
FN619, 19-10	FREQ18, 6-88, 6-98, 7-28
FN620, 17-15	FUEL_A, 6-81, 6-86, 6-88 to 6-89
FN621, 19-10	FUEL_FINISHED, 6-99
FN622, 17-15	FUEL_PIPS, 6-88, 6-98
FN622A, 17-15	FUEL_SUM_TKS, 6-8, 6-98, 14-7
FN623, 19-10 FN624, 16-22 FN64_NE, 17-25 FN64B_T, 17-25	FUEL_SYNC, 6-68, 6-70, 6-96 to 6-97 FUELPW, 6-50, 6-71, 6-86, 6-98, 6-100
FN64B_T, 17-25 FN64S_T, 17-25 FN689D(TP_REL), 16-14 FN689L, 18-48	FUELPW CALCULATION UNDERSPEED MODE, 4-3
FN689U(TP_REL), 16-14 FN689V, 29-40 FN690(INIT_TOT), 20-66 FN703, 22-5, 22-12 FN703(IACT), 22-6 FN703(IECT), 20-56 to 20-57, 22-14	GEAR_CUR, 3-5, 16-8, 16-13 to 16-14, 16-18, 16-23, 16-33, 16-36, 16-40, 16-42, 17-11, 17-13 to 17-14, 17-17 to 17-18, 17-34, 17-38, 18-13, 18-16, 18-23 to 18-24, 18-32, 18-35, 19-25, 21-17
FN703D(ITOT), 20-57, 22-18 to 22-19 FN730, 19-10	GEAR_OLD, 3-5, 16-8, 16-40, 17-34, 18-13, 18-16 GEARCUR, 18-36
FN800, 9-2	GMAPDC, 10-3, 14-3
FN800(DEBYMA), 9-44	GOVHP, 3-3, 10-3, 14-3
FN820, 9-2	GR_CM, 3-5, 16-22 to 16-23, 16-25,
FN820A(VACUUM), 9-44	16-27 to 16-28, 16-31 to
FN821A, 9-17, 9-20	16-32, 16-35 to 16-36, 17-30
FN825A, 9-17 to 9-18	to 17-31, 18-11, 18-16, 18-44
FN825A_ALT, 9-18	to 18-45
FN825B, 9-17	GR_CM_LST, 3-5, 16-22 to 16-23
FN826A, 9-11, 9-17	GR_DS, 3-5, 16-7 to 16-8, 16-12
FN839, 7-13	to 16-14, 16-17, 16-22, 16-28,
FN839(DASPOT), 7-14	18-11, 18-16

Index-9

INDEX - LHBH1

```
GR_DS_LST, 3-5, 16-7 to 16-8, IDRPMH, 21-15
    16-12, 16-17
                                       IECT, 20-54, 20-56 to 20-57, 22-5,
GR_DS_TV, 16-8, 17-11, 17-13 to
                                           22-12, 22-14, 29-13
    \overline{17}-15, 17-30 to 17-31, 17-37, IEGO, 20-54
    17-39, 18-45
                                        IEGR, 3-5, 22-16 to 22-17, 26-5,
GR_NEU, 16-22
                                           29-24 to 29-25, 29-27, 29-29
GR_OLD, 3-5, 16-23, 16-31 to
                                        IETVOCM, 19-17
                                        IGN TYPE, 4-4, 4-6, 7-28 to 7-30,
    16-32, 18-44
                                             7-35 to 7-36, 7-38, 7-51 to
GRMSFT, 16-22
                                            7-52
GRRAT1, 16-35 to 16-36
GRRAT2, 16-35 to 16-36
                                        IGNITION TIMING
GRRAT3, 16-35 to 16-36
                                         UNDERSPEED MODE, 4-3
GRRAT4, 16-35 to 16-36
                                        IIVPWR, 20-16
                                       IMAP, 23-5
HARDWARE CALIBRATION SWITCHES,
                                      IMAP_WORD, 20-41 to 20-42
                                        IMS, 3-3, 8-4, 12-9
HCAMFG, 6-50, 6-57 to 6-58, 9-8, INDS, 20-13, 20-69 to 20-70
                                        INFERRED BAROMETRIC PRESSURE
    9-42
                                       BACKGROUND, 23-4
BPPTWT CALCULATION, 23-8
BPPTWT LOGIC, 23-8
HCAMSW, 6-50, 6-57 to 6-58
HCAMSW, 6-50, 0-5, 65 5 5 HFDLTA, 6-102, 6-104 to 6-105,
     7-32, 7-36 to 7-42, 7-46,
    7-48 to 7-50
                                         KEY ON UPDATE PROCEDURE, 23-5,
hfdlta, 7-35
HFPCYC, 7-36 to 7-39
                                               23-7
                                         LOGIC, 23-7
Hicam, 9-23
                                          SUMMARY, 23-4
                                       INFORMATION SLOT, 13-5
HICOMP, 6-67
HIMAPF, 21-12
                                       ING_TYPE, 7-29
                                      \frac{-}{1000} INIT_TOT, 4-4 to 4-5, 20-57
HLDTIM, 6-16
HLTMR, 6-16, 21-14
                                      INITTOT, 20-56
HMUMAP, 21-14
                                       INJ1_PIP, 6-100
HMUMPH, 21-14
HMUTMR, 12-9, 21-14
HMUTMR_FLG, 12-9, 21-14
HMUTMR_FLG, 12-9, 21-15
INJ_BANK, 6-97, 6-99 to 6-100
INJ_PIP_CNT, 3-5, 6-96 to 6-99
INJCNT, 6-96
HTPTMR, 12-8, 21-15
HWRPM, 9-17
                                        INJECTOR SYNCHRONIZATION, 4-3
                                       INJOUT, 6-8, 6-81, 6-86, 14-7
HYS_OTEMP, 17-47
HYST2, 5-3
                                       IPDL, 3-5, 20-69 to 20-71
                                       IPDL_LST, 20-69, 20-71
HYSTS, 5-3
HYSTSPD, 20-59 to 20-60
                                      IPSIBR, 9-3, 9-42, 9-51
                                       IPSIDLY, 9-49
HYSTST, 20-59 to 20-60
                                        ISC_LATCH, 9-9
                                        ISCDTY, 9-2, 9-8, 9-45, 9-49
I4X4L, 19-21, 29-40
I4X4L_LST, 19-21
                                        ISCFLG, 6-28, 6-50 to 6-51, 6-61,
                                            7-14, 7-17, 8-13, 9-8, 9-26, 9-28, 9-33, 9-35 to 9-36,
IACT, 22-5 to 22-6, 28-18, 29-14
IBETA, 6-68, 6-96, 6-100
                                            9-38 to 9-39, 9-42, 9-49,
IBGPSI, 9-42
ID SLOT, 13-5
                                            9-51, 21-16, 29-56
IDCMUL, 9-2, 9-44
                                       ISCKAM, 9-3, 9-42, 9-51, 21-16,
IDCOFS, 9-2, 9-44
                                            28-44 to 28-45
IDLE SLOT, 13-5
                                        ISCKAMO, 24-4
IDLFLG, 21-15, 21-17
IDLRPM, 21-15
                                       ISCKAM1, 24-4
ISCKAM2, 24-4
ISCKAM3, 24-4
IDLTMR, 6-16, 21-15
IDM_HIGH, 7-51 to 7-52
IDM_INT, 7-51 to 7-52
                                       ISCKAM4, 24-4
                                       ISCKAM5, 24-4
```

INDEX - LHBH1

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL

ISCKAMn, 24-3 KSF, 20-16 ISCLPD, 9-18 KSPARK, 7-16, 7-21 to 7-22, 28-45 ISCLPD_ALT, 9-18 KSPKDO, 7-16, 7-21 to 7-22 ISCMOD, 3-5, 6-72 to 6-73, 6-86 KSPKDU, 7-16, 7-21 to 7-22 KSPKNO, 7-16, 7-21 to 7-22 KSPKNU, 7-16, 7-21 to 7-22 ISCMOD_MAX, 6-71 to 6-73 $ISCMOD_MIN, 6-72 to 6-73$ $ISCMOD_RPM$, 6-72 to 6-73 KTS, 7-56 KULMT, 7-36, 7-39 KVEFF, 20-51 ISCTM, 9-36 to 9-37, 9-39, 21-16 ISCTMR, 9-35 to 9-36, 9-38 to 9-39, 9-42, 21-16 KWUCNT, 6-52 ISF, 20-39 to 20-40KWUCTR, 6-52, 24-3, 24-5 ISF_{UP}_{FLG} , 20-32, 20-38 to 20-39 ISFLAG, 6-36, 6-39, 6-50, 6-57 to LAM_OLD, 3-5, 6-17 to 6-18, 6-72 6-58, 9-51 LAMAVE, 3-5, 6-16 to 6-18, 6-28, ISKSUM, 9-42, 9-51, 24-3 to 24-4 6 - 72ISLAST, 6-36, 6-39, 9-51 ISLBND, 28-35 ISUBND, 28-14 LAMBSE, 3-5, 6-17 to 6-18, 6-26 to 6-27, 6-29 to 6-30, 6-36 to 6-40, 6-52, 6-81, 6-85 to ITCS, 19-19, 28-25 6-86, 11-6, 19-10, 28-10, ITHBMA, 9-44 to 9-45 29-65 ITOT, 20-57, 22-18 to 22-19 LAMBSE(N), 6-37ITP, 22-20, 22-22, 27-33, 28-46, LAMBSE(O), 6-3729-38 LAMBSE1, 19-11 IVCAL, 19-17, 20-16 LAMDLT, 6-16 LAMDLT_OL, 6-28 LAMMAX, 6-39, 29-65 JMPFLG, 6-36JMPMUL, 6-36 LAMMIN, 6-39, 29-65 JUMP, 6-38LAMMUL, 3-5, 6-13, 6-27 LAMRHYS, 6-16, 21-14 KACRAT, 7-63 to 7-64 LAMRICH, 6-16, 6-28, 21-14 KAM, 23-2, 23-4 to 23-5, 23-7LAMWIN, 6-52 LAST_HI_PIP, 7-46, 7-49 to 7-50, 20-33, 20-39, 20-45, 20-47 KAM_ERROR, 9-42, 9-51, 24-3 KAMOK, 23-2, 23-7 KAMQA, 24-2 to 24-3 KAMQB, 24-2 to 24-3 KAMQC, 24-2 to 24-3 LAST_MAP, 20-33, 20-39, 20-43, 23 - 7LAST_MAP2, 20-33, 20-39, 20-43, KAMREF, 6-57 to 6-58, 6-81, 6-85 23-7 to 6-86, 28-10, 29-62 LEGOFG, 11-6 KAMRF, 11-6 LEGONOTPURG, 29-59, 29-63, 29-65 KAYCTR, 7-36 to 7-39 LEQV, 28-28 KDNDT, 6-72 to 6-73LESFLG, 6-16, 6-27, 11-6, 12-8, 21-21, 24-3, 29-59, 29-61 KFT, 6-61, 6-64 KFTMPG, 6-61, 6-64 LESTM, 21-21 KI, 7-56 LIMIT_PURGE, 6-52, 11-6 to 11-7 LINK MASTER, 13-5 KIHP, 7-58, 7-62, 28-38 to 28-39 KLLIM, 7-36, 7-39 LINK SWITCH, 13-5 LINK_SW, 14-7 KNK HIGH, 7-62 KNKCYL, 7-65 KNOCK, 7-56 Link_sw, 13-5 LMAP, 6-16KNOCK_DETECTED, 7-60, 7-62 KNOCK_ENABLED, 7-65, 28-10 LMBMAP, 21-16 LMBTMR, 12-8 to 12-9, 21-16 KNOCK_INTERRUPT, 7-62 KNOCK_OCCURRED, 7-62, 7-65 LOACT, 3-5 LOAD, 9-2, 19-10

KPEI, 8-11 KS1, 7-13 LODNOK, 7-58

LOGIC

INDEX - LHBH1

```
CHKAIR, 3-3
                                       MAPBK3, 20-41
  CRANK STRATEGY
                                       MAPBK4, 20-41
    PIP & ECT COUNTER, 4-6
                                       MAPBK5, 20-41
  CRANK/UNDERSPEED/RUN MODE
                                       MAPCNT, 20-38 to 20-39
                                       MAPEDG, 20-38
MAPFMM, 20-43
      SELECT, 4-5
  CRANK/UNDERSPEED/RUN SELECT,
                                       MAPLO, 21-17 to 21-18 MAPLOH, 21-17
      4-5
  REFLG, 4-6
LOMAPF, 21-12
LOMAPH, 6-16
                                       MAPOFL, 20-32, 20-39
                                       MAPOPE, 6-50
LONG_DT12SA, 20-32, 20-38
                                       MAPPA, 6-26 to 6-27, 6-29, 7-58,
LONG_ISF, 20-38, 20-40
                                            10-3, 21-12, 21-14, 21-17 to
LONG_ISF_UP_FLG, 20-32, 20-38,
                                            21-18, 29-56, 29-63
    20 - 40
                                       MAPTMR, 20-43, 29-16
LONG_MAP_AVE, 20-40
                                       MAPUP_NORM, 20-42 to 20-43
LONG_MAP_AVG, 20-32, 20-38, 20-44
LONG_MAP_FST, 20-38
LONG_MAP_RQD, 20-44
                                       MAPWBAR, 20-42, 20-51
                                       MAPWBG, 6-89, 20-51
                                       MAX_SCAP_EDGES, 20-39
LONG_MAPCNT, 20-38, 20-40
                                       MAXADP, 6-53, 29-62
LOPCT1, 6-51 to 6-53
                                       MAXAET, 20-22
LOPCT2, 6-51 to 6-53
                                       MAXTIM, 21-20
LOWVOL, 21-22
                                       MAXTTM, 20-22
LSTA3C, 21-9
                                       MBTEGR, 19-10
LSTCOL, 6-51
                                       MDELTA, 29-16
LSTROW, 6-51
                                       MEFTRA, 6-61, 6-65
LTMTBL, 6-57
                                       MEFTRD, 6-61, 6-65
LTMTBLrc, 6-53, 6-58, 24-3
                                       MESSAGE
LUDLY, 18-12
                                         SYNC, 13-5
LUTIMR, 21-16
                                       Message, 13-5
                                       MFAMUL, 6-9 to 6-11, 6-26
                                       MFARMP, 6-9, 6-11
MAN1HI, 20-70
MAN1LO, 20-70
                                       MFMFLG, 6-51, 6-79 to 6-80, 6-89,
MAP, 3-5, 6-16, 6-37, 6-79, 6-85,
                                            8-4, 8-13, 9-8, 10-3, 12-8,
     7-64, 8-4, 9-34 to 9-35, 9-39,
                                            14-3, 17-13, 19-6, 20-42 to
                                            20-43, 21-17, 23-2, 23-8,
    20-9 to 20-10, 20-16, 20-24,
    20-42 to 20-43, 20-54, 21-16
                                            28-9, 29-56
    to 21-18, 22-4, 22-20, 23-2,
                                       MHPFD, 6-102, 6-104 to 6-105
    23-4 to 23-5, 23-7 to 23-8,
                                       MINACT, 9-19
    29-28
                                       MINADP, 6-53, 11-6
MAP CYCLE, 20-38
                                       MINDLA, 7-32
                                       mindla, 7-35
MINDLB, 7-32
MINMPH, 7-17, 9-33, 9-36 to 9-38,
MAP_ERR_SW, 19-6
MAP_FREQ, 3-5, 20-38 to 20-39,
    20 - 41
MAP_PIPCNT, 20-32, 20-38
                                            26-5 to 26-6
MAP_WORD, 3-5, 6-98, 20-42 to
                                       MINPW, 6-50, 6-86, 6-98
                                       MKAY, 3-5, 6-104 to 6-105, 7-36
    20 - 43
MAP_WOT_EGRC, 8-4
                                            to 7-37, 7-39 to 7-40, 7-42,
MAP_WOT_EGRS, 8-4
                                            7-46, 7-48
MAPAEF, 20-10, 20-21 to 20-22,
                                       mkay', 7-39
    20 - 54
                                       MLPS_2, 20-71
MAPAHI, 21-17 to 21-18
MAPBAR, 3-5, 20-9, 20-54, 23-2,
                                       MLPS_2HI, 20-70
                                       MLPS_2LO, 20-70
MODE SET UP LOGIC, 28-45
    23-5, 23-7 to 23-8
MAPBK1, 20-41
                                       MODULE_ID, 13-36
MAPBK2, 20-41
                                       MPAHIH, 21-17
```

INDEX - LHBH1

```
MPG_CL_SW, 6-16, 6-26
                                       NE23A, 16-13
MPGCL, 21-17
                                       NE23S, 16-13
MPGCTH, 21-17
                                       NE34A, 16-13
MPGDEC, 6-26
                                       NE34S, 16-13
MPGFLG, 6-9, 6-11, 6-16, 6-26,
                                       NE_OTEMP_MAX, 17-13
    6-61, 6-64, 7-13, 8-11, 12-8,
                                       NE_OTEMP_MIN, 17-13
    21-17 to 21-18, 29-56
                                       NE_STRT_SFT, 17-29, 17-34
MPGGR, 21-17
                                       NEBART, 16-13 to 16-14, 16-36,
MPGLSW, 20-18
                                            16-40, 16-42, 17-9, 17-13,
MPGNOV, 21-17 to 21-18
                                            17-23, 17-29, 18-11, 18-35 to
MPGRPH, 21-17
                                            18-36, 18-48, 19-15 to 19-16,
MPGRPM, 21-17 to 21-18
                                            19-25, 20-54, 29-40
MPGTFG, 6-16, 6-26, 6-30, 21-18,
                                       NELK_FM, 18-48
    29-56
                                       NELKWH, 18-35 to 18-36
                                       NELKWO, 18-35 to 18-36
MPGTMR, 21-17 to 21-18
MPHCNT, 20-25
MPHTIM1, 20-25
MPHTIM2, 20-25
                                       NELUMN, 18-11
NETVMN, 17-23
NETVMX, 17-23
MPMNBP, 21-17 to 21-18
                                       NEU_RES_TMR, 17-8 to 17-9
MPNBPH, 21-17
                                       NEUFLG, 6-13
                                       NEUHI, 20-70
MPNOVH, 21-17
MTEISF, 6-61, 6-63, 6-65
                                       NEULO, 20-70
MUINT, 17-32
                                       NEUTIM, 17-8
                                       NEV_STRT_SFT, 16-40, 16-42
MULTM, 6-13
MULTMR, 3-5, 6-13, 21-19
MUPET_FLAG, 20-10, 20-43
                                       new average, 20-52
                                       new value, 20-52
                                       NEW_BETA, 7-46, 7-48
MUSLP, 17-32
                                       NEW_DELAY, 6-68 to 6-69, 6-99
N, 4-4 to 4-6, 6-16, 6-26 to 6-27, NEW_DWLIDM, 7-28 to 7-30, 7-52
    6-30, 6-37, 6-50, 6-78 to
                                       NEW_IDM, 7-52
    6-79, 6-81, 6-86 to 6-87,
                                       NEW_PIP, 21-21
    6-96, 7-58, 7-60, 9-10, 9-26, 9-28, 9-35, 9-38 to 9-39, 11-5, 12-6, 17-8, 19-10,
                                       NEW_RPM, 20-45 to 20-47
                                       NEWSA, 7-12, 7-20
                                       NEXT_SPOUT_ADVANCED, 7-46 to 7-50
    19-14, 20-10, 20-18 to 20-19,
                                       NEXT SPOUT BETA, 7-46 to 7-48,
                                            7-50
    20-45 to 20-48, 20-51, 20-54,
    21-15 to 21-16, 29-63
                                       NGOOSE, 28-35
N_BYTE, 6-71, 6-73, 7-12, 7-64,
                                       Nibble, 13-5
    19-10, 20-46 to 20-47, 21-15,
                                       NLAST, 9-35 to 9-36, 9-38 to 9-39,
    21-17 to 21-18
                                            21-16
N_{PREV}, 20-45 to 20-47
                                       NLMT, 6-87, 11-5
N_RATCH, 9-8, 9-10, 9-28, 9-31
                                       NLMTH, 6-87
N_RATCH LOGIC, 9-10
                                        255 NO OF STARTS, 15-3
                                       NO_OF_STARTS, 13-37, 15-3, 15-5
NACTMR, 6-79, 8-4, 11-5, 21-19,
                                       NO_START, 8-17, 8-19, 26-4, 29-6,
    21-22
NBAR, 6-8, 20-10, 20-46 to 20-47,
                                            29-44, 29-55
                                       NO_START_CHK, 13-37, 15-3, 15-5
    20-54, 28-14, 28-35, 28-46
NCNT, 4-4 to 4-5
                                       NO_SYNC, 6-96 to 6-98
NDDELT, 20-7
                                       NOBART, 16-36, 18-24, 18-26,
NDDTIM, 20-7, 21-19
                                            18-28, 18-37 to 18-38, 19-15
NDIF, 9-36 to 9-37, 9-39, 21-16
NDSFLG, 6-80, 9-10, 20-7, 20-13,
                                       NOISE, 7-56
                                       NORM_MAPOPE21, 20-51
    26-5 to 26-6, 29-40
                                       NORM_N070, 20-51
NE12A, 16-13
                                       NOV_ACT, 3-5, 18-41, 19-25 to
NE12S, 16-13
                                            19-26
```

INDEX - LHBH1

```
NOV_ACT_LST, 3-5, 19-25 to 19-26
                                         OLITD1, 6-16
NOV_ERR_BAND, 18-41
                                          OLITD3, 21-15
NOVCNT, 19-26
                                          OLMCL, 6-27
NOVCTR, 19-26, 24-3
                                          OPCLT1, 6-9
NOVDIF, 19-26
                                          OPCLT2, 6-10 to 6-11
                                         OPCLT3, 6-10 to 6-11
NOVS, 6-79, 20-18, 21-17 to 21-18
NRUN, 4-4 to 4-6, 17-8
                                          OPCTL1, 6-11
NSTALL, 4-4 to 4-5
                                          OPEN TMR, 6-16, 6-28
"NTIM", 20-22 to 20-23 NTIP, 7-64
                                         OSCDLY, 7-14
OSCMOD, 7-13 to 7-14
OSCTMR, 7-14, 21-19
NUBASE, 7-17, 9-11, 9-17, 9-23
                                         OTEMP_ERR_SW, 19-6
NUBASE_ALT, 7-17, 9-17
NUMEGO, 22-11
                                         OTEMP_FM_FLG, 17-13, 17-47, 19-6
NUMOUT, 6-8, 6-81, 6-86, 6-88,
                                         "OTIM", 20-22 to 20-23
                                         OTMP_EPC_FLG, 17-13
     6-98, 6-100 to 6-101
                                         OUTINJ, 6-88, 6-92, 6-99, 6-101
OUTTMR, 27-33, 28-46
NVBASE, 18-41, 19-15 to 19-16,
    19-26
0, 6-37
                                         PACLIM, 7-32
O_8500_SW, 21-17
OCCCCC, 27-25
                                         paclim, 7-34
                                         PACOFF, 7-28 to 7-29
OCCCCS, 27-25
OCCDT1, 27-25
OCCDT2, 27-25
OCCDT4, 27-25
OCCDT5, 27-25
OCCDT7, 27-25, 29-70
                                         PACPER, 7-28 to 7-29
PACSLO, 7-32
pacslo, 7-34
                                          PARK_ERR, 20-70 to 20-71
                                         PARKHI, 20-70
OCCSS1, 27-25
                                         PARKLO, 20-70
                                         PDL, 3-5, 16-7 to 16-8, 16-13 to
OCCSS2, 27-25
OCCTCIL, 27-25
                                              16-14, 16-18, 16-22, 16-35,
OCS_OPEN, 28-10
                                              17-8 to 17-9, 17-11 to 17-13,
OCS_SHORT, 28-10
                                              17-24, 18-10 to 18-11, 18-35
ODHI, 20-70
ODLO, 20-70
                                              to 18-36, 18-44 to 18-45,
                                              20-13, 20-69, 20-71
                                         PDL_ERR_SW, 19-6
PDL_ERROR, 16-40, 17-13, 19-6,
OFM MUL, 20-66
OFMFLG, 6-16, 6-87, 11-5, 12-8,
     17-43, 18-12, 18-14, 19-6,
                                              19-25, 20-70 to 20-71
                                          PDL_LST, 3-5, 16-7 to 16-8, 16-25,
     20-65 to 20-66
OFSET1, 20-41
                                              16-27, 17-8 to 17-9, 18-44,
                                              20-69
OFSET2, 20-41
OFSET3, 20-41
OFSET4, 20-41
OFSET5, 20-41
OFSET6, 20-41
                                          PDLTIM, 20-71
                                          PEXH, 20-15
                                          PFEHP, 3-3, 8-2, 8-4, 22-16,
                                              29-32
OI_A4LD, 20-18
                                          PHFDLT, 6-102, 6-104 to 6-105,
                                             7-40 to 7-42
old average, 20-52
                                          PIP, 6-68, 7-38, 7-49 to 7-50.
OLD_BETA, 7-43 to 7-44
OLD_TP_DFSO, 6-78
                                              7-56, 23-2
OLDTP, 20-21 to 20-23
                                            COUNTER LOGIC, 4-6
OLFLG, 3-5, 6-17 to 6-18, 6-26 to
                                         PIP_DOUBLE, 7-43 to 7-46, 7-48 to
     6-27, 6-29, 6-36, 11-5, 12-8
                                              7-50
                                         PIPACL, 7-32 to 7-33 pipacl, 7-34 PIPCNT, 4-4 to 4-6
     to 12-9, 19-10 to 19-11,
     21-17, 28-44
OLIDRV, 6-30
OLINEUT, 6-30
                                         PIPNUM, 6-26, 6-91, 29-56
```

INDEX - LHBH1

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL

PIPOUT, 6-69, 6-81, 6-86, 6-88, REFLG, 4-5 to 4-6, 9-9, 20-46 to 20-48 6-98, 6-101 POFFENG, 7-29, 7-32 LOGIC, 4-6 poffeng, 7-34 REQFLG, 27-33 POWER_UP, 29-6 REQV, 28-28 POWOFF, 28-10, 28-23 REV2NEU_FLG, 17-8 to 17-10POWON, 28-10, 28-23 POWSFG, 9-19, 9-21 to 9-23, 28-23 REV_ENG_ADD, 17-24 REVHI, 20-70 REVLO, 20-70 PPCTR, 3-5, 6-26, 6-91, 29-56 PPERENG, 7-29, 7-32 RF, 6-37 to 6-38RLKCTR, 3-5, 18-35 to 18-36 ppereng, 7-34 PREV_N_PIP, 20-46 to 20-47 RMSPRU, 29-70 PRG_DEC, 11-6, 29-58 ROLAV, 20-47, 26-5 PRGTMR, 11-5, 11-7 ROLAV(DNDTI,TCNDT_ISC), 20-47 PRNDLY, 18-12 ROLAV(DNDTI,TCNDT_SPK), 20-47 PSGDLT, 7-36 to 7-39 PSIBRM, 9-42, 9-51 ROLAV(RPMERR, TCFBS), 7-21 ROM IDENTIFICATION CODE, 31-2 PSIBRN, 9-42, 9-46, 9-51 PROCEDURES, 31-2 PSPPM, 9-12 ROWTBU, 6-50 RPMCNL, 7-60 PSPSHP, 3-3, 9-19, 9-21 to 9-23, 28-23 RPMCTL, 9-34, 9-36 to 9-38 RPMDED, 9-42, 21-16 PTPAMP, 6-37, 6-52PTPCNT, 23-9 PTPFLG, 23-2, 23-7 RPMERR, 7-22, 9-26, 20-54 RPMERR_A, 9-26, 9-42, 9-49 to 9-50, 20-54, 21-16 RPMERR_S, 7-2, 7-16, 7-21 to 7-22, 9-26, 20-54 PTSCR, 5-3 to 5-4, 7-14, 9-20PUL_PER_GAL, 14-7 PUL_PER_REV, 18-24, 18-26, 18-28, 18-37 to 18-38 RPMIN, 7-58 RT4X4L, 19-25 to 19-26 PUMP, 3-5, 6-90 PURECT, 11-5 RT_GR_CUR, 3-5, 16-23, 16-33, PURECT1, 11-6 16-35 to 16-36, 17-34, 18-24, 18-26, 18-28, 18-37 to 18-38, PURG_ADP_SF, 11-6 PURGDC, 6-52, 11-5 to 11-7, 28-10, 19-15 to 19-16, 19-25 RT_GR_OLD, 3-5, 16-23, 17-34 RT_LK_PWR, 18-23 to 18-24, 18-26, 29-58 PURGING, 11-5, 11-7 PURGSW, 11-5, 29-59 18-28 PUTMR, 20-56 to 20-57, 21-19, RT_NOVS, 3-5, 16-13, 17-17, 19-14, 23-3, 23-7, 23-9, 26-4, 26-6 19-16, 19-26 to 26-7, 29-44, 29-55 RT NOVS KAM, 6-87, 18-41, 19-26, PWCF, 6-86, 6-88 to 6-89 24 - 3RT_ULK_PWR, 18-23 to 18-24, 18-26RTLKWH, 18-36 RTLKWO, 18-36 RTNVMN, 19-26, 24-3 RTNVMX, 19-26, 24-3 R, 6-38 RACHIV, 20-19, 22-22 RAM/CART, 13-5 RAM_INIT, 26-4 RAMPSW, 21-14 RTSTAL, 17-12 RUN MODE, 29-6 RANMUL, 6-50 RANNUM, 3-5, 6-50 RUNNING, 6-80, 6-98, 20-19, 26-5 RATCH, 3-5, 5-2 to 5-3, 6-71, 9-8, to 26-6, 29-44, 29-55 9-28, 19-14, 20-17, 20-19, RUNUP_DIFF, 9-26 20-59, 22-20 to 22-22, 23-3 RUNUP_DIFF_A, 9-26 RATIV, 5-2RUNUP_FLG, 4-5, 6-71, 6-73, 7-20, 9-8 to 9-9, 9-26 REFFLG, 6-36, 6-50 to 6-51, 6-57 RUNUPTMR, 4-4, 9-49 to 6-58, 6-61, 6-71 to 6-73, 6-89

INDEX - LHBH1

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL

RVIPRPM, 9-23, 28-10, 28-35, 28-44	SELF TEST CODES>543, 29-69 SELF TEST CODES>556, 29-69 SELF TEST CODES>81, 29-20 to
S_VAL_NESUB, 16-42	29-21
S VAL TPADD, 16-41	SELF TEST FLAGS>171, 29-61 to
S_VAL_TPSUB, 16-41	29-63
S_VAL_VSADD, 16-41	SELF TEST FLAGS>172, 29-61 to
S_VAL_VSSUB, 16-41	29-63
SA10FG, 7-12	SELF TEST FLAGS>173, 29-61 to
SAF, 3-6, 7-12, 7-18, 7-20, 7-23	29-63
to 7-24, 28-10	SELF TEST FLAGS>174, 29-63
SAFTOT, 7-24, 19-10	SELF TEST FLAGS>194, 29-63
SARCHG, 19-10	SETLNG_TM, 9-36, 9-38
SBDS, 13-4, 13-7	SETTMR, 9-35, 9-38 to 9-39, 21-20
SBDS_CHKSUM, 13-36	SFT_ERR_SW, 19-6
SCINT1, 17-31	SFT_ERROR, 16-43, 19-25
SCINT2, 17-31	SFT_FM_FLG, 16-43, 17-13, 19-6
SCINT3, 17-31	SFT_FM_LVL, 16-43
SCINT4, 17-31	SFT_STEADY, 16-41
SCSLP1, 17-31	SFT_TOTAL, 16-40
SCSLP1SD, 17-31	SHFDLT, 21-19
SCSLP2, 17-31	SHFTMR, 21-20
SCSLP2SD, 17-31	SIGDLT, 7-36 to 7-39
SCSLP2SU, 17-31	SIGKAL, $6-104$ to $6-105$, $7-36$ to
SCSLP3, 17-31	7-39
SCSLP3SD, 17-31	sigkal', 7-38
SCSLP3SU, 17-31	SIGKLL, 7-36, 7-38
SCSLP4, 17-31	SIGKLU, 7-36, 7-38
SCSLP4SU, 17-31	SIGPIP, 6-104 to 6-105, 7-37 to
Self Test CODE>334, 29-27	7-39 SKSSLC, 7-38
SELF TEST CODES 128, 28-9	SLOPE1, 20-41
411, 28-35	SLOPE1, 20-41 SLOPE2, 20-41
412, 28-14	SLOPE3, 20-41
521, 28-23	SLOPE4, 20-41
536, 28-21	SLOPE5, 20-41
998, 28-9	SLOPE6, 20-41
SELF TEST CODES>112, 29-14	Slot, 13-5
SELF TEST CODES>113, 29-14	SLOTS
SELF TEST CODES>117, 29-13	DIAGNOSTIC PARAMETERS, 13-5
SELF TEST CODES>118, 29-13	ID, 13-5
SELF TEST CODES>122, 29-38	IDLE, 13-5
SELF TEST CODES>123, 29-38	INFORMATION, 13-5
SELF TEST CODES>126, 29-16	SMTPDL, 20-21
SELF TEST CODES>128, 29-20 to	SPD_PM, 20-59 to 20-60
29-21	SPD_RATIO, 17-12, 17-29, 18-32, 18-48, 19-10, 20-59 to 20-60
SELF TEST CODES>327, 29-24 to 29-25	SPD RT STRT, 16-36, 18-23 to
SELF TEST CODES>328, 29-24 to	18-24
29-25	SPDRATIO, 18-36
SELF TEST CODES>332, 29-29	SPK DELTA, 19-10
SELF TEST CODES>337, 29-24 to	SPK ENTRY, 7-20 to 7-21
29-25	SPK_EXIT, 7-20, 7-23
SELF TEST CODES>536, 29-45	SPK_FBS, 7-20, 7-22, 28-45
SELF TEST CODES>542, 29-69	

Index-16

INDEX - LHBH1

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL

SPK_IDLE, 7-15, 7-17, 7-21 to CCC_VALID_COM2, 18-41 7-22, 20-54, 28-45 DCL_UART_COM1, 13-35 SPK LAMBSE, 19-10 to 19-11 DOL PULSE CALC COM3, 14-7 SPK_NORM, 7-13 to 7-14, 7-18, EGR_ENABLE_LH, 8-4 7-20, 7-23 SPK_RAMP, 7-17, 7-20 to 7-21, EGR_SONIC_COM2, 8-11 EPC_ENGMT_STALL_COM1, 17-22 EPC_GUIDE_COM1, 17-8 EPC_NORM_COM7, 17-29 EPC_OFM_COM2, 17-42 20-54 SPK_RUNUP, 7-20 SPK_STATE, 7-20 SPKAD(n), 7-24 EPC_OTEMP_TEST_COM2, 17-47 SPKCTL, 7-17 EPC_TQ_IALPHA_COM4, 17-34 SPKCTL_ALT, 7-17 EQCOLDTV_LH, 20-64 SPKIDR, 7-15, 7-21 to 7-22EQUAL_LH, 20-7 FUEL_ADAPT_COM4, 6-50 SPKIDR_ALT, 7-15 SPKINU, 7-15, 7-21 to 7-22FUEL_AE_COM5, 6-8 SPKINU_ALT, 7-15 FUEL_BG_PW_DET_COM5, 6-85 SPKLIM, 7-33, 7-47 to 7-48 spklim, 7-34 FUEL_CL_LAMBSE_COM3, 6-36 SPKTMR, 7-15, 7-20 to 7-21 SPLCLP, 7-24 FUEL_DFSO_COM2, 6-78 FUEL_INJ_OUT_COM6, 6-96 FUEL_LAMMUL_COM3, 6-13 SPOUT, 4-6, 7-40 to 7-41 FUEL_OL_LAMBSE_COM3, 6-26 SPOUT_CALCULATION, 7-44 to 7-45 INTRN_MLPS_CONV_COM1, 20-69 SPOUT_HIGH_EDGE, 7-44, 7-46 to INTRN_RT_NOVS_KAM_CALC_COM1, 7-47, 7-49 to 7-50 SPOUT_ICCD_DELTA, 7-46 to 7-49 SPOUT_LOW_DELTA, 7-33, 7-46, 7-49 19-25 INTRN_TCIL_REPEAT_COM1, 19-7
INTRN_TCIL_STATE_COM1, 19-5 to 7-50 INTRN_TCS_COM1, 19-19 spout_low_delta, 7-35 ISC_DSDRPM_COM1, 9-17 SPOUT_LOW_EDGE, 7-46 to 7-47, ISC_IPSIBR_COM1, 9-49 7-49 to 7-52ISC_RPMERR_COM3, 9-26 SPUCLP, 7-24 SC_CM_GR_DETR_COM1, 16-22 SPARK_BASE_COM2, 7-12 SR_PP_LIM, 18-24, 18-26, 18-28, 18-37 to 18-38 SPKKNOCK_LL, 7-56 SRLK, 18-23 to 18-24 THERM_LH, 12-6 TIMER_LH, 21-9 SRLK2, 18-24, 18-32 SRLK3, 18-23 to 18-24, 18-32 VO_4X4L_SWITCH_COM2, 27-22 SRLK4, 18-23, 18-32 VO_ACCS_COM2, 27-19 SRLK_FM, 18-48 VO_ACT_COM1, 27-14 SSFCTR, 7-36, 7-39 VO_BLOCKDIAG_COM1, 25-3 SSMAP, 23-3, 23-8 VO_ECT_COM1, 27-9 STALLN, 4-4, 4-6, 6-96, 20-45, VO_EGR_COM5, 27-18 20-48 VO_EOTS_COM1, 27-2 STALLTV_SW, 17-22 STI_RESET, 26-5, 28-8, 28-44 STIFLG, 19-5 to 19-6, 26-4 to VO_EPC_SOLENOID_COM1, 27-31 VO_I_EXEC_COM2, 26-4 VO_IVPWR_COM1, 27-24 26-7, 28-44 to 28-45, 29-6VO_KAMRAM_COM1, 27-5 VO_MAP_COM2, 27-12 STO, 28-46 STO_TRIGGER, 26-4, 29-6 VO_MLPS_INPUT_COM1, 27-21 STO_WORKING, 26-4, 29-6 VO_OCC_COM12, 27-25 VO_OCCTS_COM4, 27-26 STRATEGY MODULES ALTR_CAL_CLR_COM1, 15-5 VO_OTM_LH_COM1, 27-33 VO_PSPS_COM1, 27-23 VO_ROM_COM1, 27-7 VO_TOT_COM2, 27-17 ALTR_CAL_INIT_COM1, 15-3 CCC_COM1, 18-5 CCC_FMEM_COM2, 18-48 CCC_SCHLD_LCK_UNLCK_COM1, 18-31 VO_TP_COM1, 27-13

Index-17

INDEX - LHBH1

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL

VR ACT COM1, 28-18 SW_MLK, 18-5, 18-14 VR_BOO_COM1, 28-21 SW_MPD, 12-8 VR DELAYLOGIC_COM1, 28-5 SW_MSF, 16-22 VR_ECT_COM1, 28-15 SW_RLK, 18-31 VR_EGO_COM1, 28-28 SWITCHES VR_EGOBAR_COM1, 28-4 LINK, 13-5 SWTFL, 6-9 to 6-10, 6-29, 6-50, VR_EGR_COM6, 28-33 VR_ERTS_LH_COM1, 28-2 29-65 VR_GENISC_COM1, 28-11 SYNC MESSAGE, 13-5 VR_GOOSE_SD_COM1, 28-38 SYNCH_VALUE, 6-96 to 6-97 VR_HICAM_ISC_COM2, 28-14 SYNCTR, 3-6, 6-96 to 6-97, 6-104 VR_LOW_ISC_COM4, 28-35 to 6-105 VR_MAP_COM1, 28-16 SYNFLG, 6-68, 6-96 to 6-97, 6-104 VR_PSPS_COM2, 28-23 to 6-105, 7-37 to 7-39 VR_RUN_INIT_COM8, 28-8 T70LSW, 6-16, 12-9 T75LSW, 12-8 TABVAL, 20-58 VR_SPARK_COM1, 28-32 VR_TCS_COM4, 28-25 VR_THERMAIR_COM2, 28-29 TAPBAR, 20-16, 20-54 VR_TOT_COM1, 28-19 TAPMAX, 22-20, 22-22, 27-13, VR_TPADJ_MODE_COM1, 28-44 VR TPS COM1, 28-17 29-38 STRATEGY MODULES> TAPMIN, 22-20, 22-22, 27-13, VC_WARMUP_KAM_ERASE_COM1, 29-38 TAQ1, 12-6, 12-8 29 - 6TAR, 6-8, 7-23, 20-23, 20-54 TAR', 20-23, 20-54 STRATEGY MODULES>VC ACT COM1, 29-14 TARFLG, 20-21 to 20-22 STRATEGY MODULES>VC_BOO_COM1, TARMAX, 7-2329 - 44TARTMR, 20-22, 21-20 STRATEGY MODULES>VC ECT COM1, TBART, 3-6, 20-54 29 - 13STRATEGY TCAEMP, 20-10, 20-54 MODULES>VC_EGO_TEST_COM13, TCAETP, 20-7, 20-54 29-55 TCBP, 20-54 STRATEGY TCBPA, 9-26, 20-54 TCDASD, 9-29 to 9-30, 20-54 MODULES>VC EGR SON SD COM10, TCDASU, 9-29 to 9-30, 20-54 29-24 TCDESN, 20-54 STRATEGY MODULES>VC_FAULT_COM1, 29 - 4TCDHMF, 16-32 STRATEGY MODULES>VC FILTER COM2, TCDLMF, 16-32 TCDLOP, 8-12, 20-5429 - 2TCDNAF, 16-31 TCDNON, 16-31 to 16-32 TCEACT, 8-13, 20-54 TCECT, 20-54, 22-13 to 22-14 TCEGR, 20-8, 20-54 STRATEGY MODULES>VC_FUEL_PUMP_COM2, 29-69 STRATEGY MODULES>VC_MAP_COM1, 29-16 TCF, 7-64STRATEGY MODULES>VC MAPVAC COM1, TCFBS, 7-2, 7-22, 9-26, 20-54 29-20 TCIL_FLASH_TMR, 19-5 STRATEGY MODULES>VC_SON_SEL_COM2, TCIL_STATE, 19-5, 19-7 29 - 32TCIL_TM_DLY, 19-5 STRATEGY MODULES>VC_TPS_COM1, 29 - 38TCILTM1, 19-5 TCILTMR, 19-5 to 19-6 TCMAPW, 20-42 TCMBAR, 20-9, 20-54 STRATEGY MODULES>VC_VSS_COM6, 29-40 STTIM, 7-15, 7-21 SW DYN, 17-37 TCN, 20-10, 20-54

INDEX - LHBH1

TCNDT_ISC, 20-45, 20-54 TCNDT_SPK, 20-45, 20-47, 20-54 TCNE, 19-14, 20-54 TCRAMP, 7-21, 20-54 TCS_OPEN, 28-25	TIPRET, 7-24, 7-65 TKYON1, 23-3, 23-5, 23-9 TKYON2, 20-56 to 20-57, 23-3, 23-5, 23-7 TKYON3, 23-3, 23-5, 23-7
TCS_SHORT, 28-25	TKYON4, 23-3, 23-7 to 23-8
TCSTRT, 4-5, 6-10 to 6-11, 6-52,	TL0, 7-40
7-14, 8-5, 9-2, 9-8, 12-10,	TL0FLG, 7-40 to 7-41
20-56 to 20-57, 29-6	TLOFLG, 7-42
TCTAR, 20-23, 20-54	TLS24D, 6-88
TCTOT, 22-18 to 22-19	TLS24X, 6-88
TCTP, 20-16, 20-54	TLS34D, 6-88
TCTPDL, 20-17, 20-54	TLS34S, 6-88
TCTPT, 20-54 TCTPTC, 19-15, 20-54	TLS_24_FLG, 6-87 to 6-88, 6-100, 19-10
TCTPTE, 19-15, 20-54	TLS_34_FLG, 6-87 to 6-88, 6-100,
TCTPTV, 19-15, 20-54	19-10
TCTTA, 19-10, 20-54	TLS_NV_FLG, 6-16, 6-87 to 6-88,
TCUPOF, 16-31	19-10
TCUPON, 16-31	TLS_SHFTR, 6-100
TCUPON4L, 16-31	TLSCTR, 3-6, 6-100
TCVBAT, 20-16, 20-54	TLSNV, 6-88
TCVS, 20-26, 20-54	TLSPAT, 6-8, 6-88, 6-100
TCVSRPH, 20-27 to 20-28	TM12MN, 16-27
TCVST, 19-14, 20-54	TM46BLP, 17-9
TDSEC, 6-38	TM54BLP, 17-9
TE_LK_PWR, 18-23 to 18-24, 18-28	TM56BLP, 17-9
TE_LK_UP, 18-23 to 18-24, 18-28 TE_ULK_PWR, 18-23 to 18-24, 18-28	TM64BLP, 17-9 TM_4X4L_RES, 19-21
TE_ULK_UP, 18-23 to 18-24, 18-28	TM_BLP_TV, 17-9, 17-25
TEISF, 6-63	TM_CRV_UNLK, 18-33
TEMP_VALUE, 7-48	TM_CS_DLY, 18-44 to 18-45
TEMPFB, 21-11	TM_CS_ENG, 18-44 to 18-45
TFCBITS, 6-61, 6-65	TM_DEL_DOWN, 16-17
TFCDED, 6-62, 6-65	TM_DEL_SFT, 16-8, 16-17 to 16-18,
TFCISW, 6-62 to 6-63	16-32, 17-12
TFCTM, 6-62 to 6-63	TM_DEL_TO_UP, 16-18
TFMFLG, 6-51, 6-78, 6-80, 6-85,	TM_DEL_UP, 16-18
8-4, 8-13, 9-8, 10-3, 12-8,	TM_ENG_TV, 17-9 to 17-10, 17-25
14-3, 16-40, 17-13, 18-12, 18-14, 18-48, 19-6, 20-43,	TM_LK_CONV, 19-25 TM_LK_DLY, 18-12 to 18-14
20-59 to 20-60, 22-20 to	TM_NOV_CALC, 19-25
22-23, 23-3, 23-8, 28-9,	TM_PDL_RES, 20-71
29-20, 29-40, 29-56	TM_SFT_12MN, 16-27
TFRFSW, 6-62	TM_SFT_CCO, 16-28, 18-16 to 18-17,
THBP2, 5-3	18-19, 18-23, 18-28
THRMHP, 3-3	TM_SFT_IN, 16-7, 16-31 to 16-32,
TICKS_DOUBLE, 7-47, 7-50	19-25
TICKS_SINGLE, 7-47, 7-49	TM_SS1_GR2, 16-35 to 16-36
TIME_OL, 6-16	TM_TCS_RES, 19-19
TIPFLG, 7-64 to 7-65	TM_TV_SS, 17-42 to 17-43
TIPHYS, 7-64 TIPINC, 7-65	TM_UN_CT, 18-11, 18-14 TM_UNLK_CONV, 16-25, 16-27, 19-25
TIPINC, 7-05 TIPMAP, 7-64	TM_UNLK_CONV, 16-25, 16-27, 19-25 TM_VSRATE, 20-27 to 20-28
TIPMAX, 7-65	TMCSE2, 18-44
,	,

INDEX - LHBH1

```
TMCSE3, 18-44
                                           TP, 5-3, 6-8, 6-78, 9-28, 17-30,
TMCSOD, 18-44
                                               18-33, 19-14 to 19-15, 20-7,
TMCTDY, 18-14
                                               20-16 to 20-17, 20-21 to
TMDNLK, 18-19
                                               20-23, 20-54, 20-59, 22-3,
TMDRVREV, 17-9, 17-25
                                               22-20 to 22-22, 23-3 to 23-4
TMLFN2, 18-24
                                          TP_AIR_OFF_F, 12-6, 12-8
TMLFN3, 18-23
TMLFN4, 18-23
                                           TP_AIR_OFF_H, 12-6
                                           TP_DECHOKE, 6-85
TMLFW2, 18-24
                                           TP_ERR_SW, 19-6
TMLFW3, 18-24
                                           TP_HYS_OL, 6-16
TMLFW4, 18-23
                                           TP_RATE, 16-18, 18-10, 18-27
TMLON2, 18-24
                                           TP_REL, 5-2, 6-16, 6-71, 6-73,
TMLON3, 18-23
                                               6-85, 7-14, 8-5, 12-6, 14-3,
TMLOW2, 18-24
                                               16-13 to 16-14, 16-22, 16-40
\texttt{TMLOW3}, 18-24
                                               to 16-41, 17-16, 17-23, 17-29,
                                               18-10, 18-23 to 18-24, 18-35, 18-41, 18-48, 20-17, 20-59 to 20-60, 23-3, 23-8, 29-56,
TMLOW4, 18-23
TMNEUDRV, 17-9, 17-25
TMNEUREV, 17-9
TMNVCAL, 19-25
                                               29-66
TMNVLK, 19-25
                                          TP_REL_H, 17-22, 17-37, 20-17
TMREVDRV, 17-9, 17-25
                                          TP_REL_LST, 20-17
TMS1G2, 16-35 to 16-36
                                          TP_SH_VALID, 16-40
                                          TP_STRT_SFT, 17-37
TMTVRMP_12, 17-39
TMTVRMP_23, 17-39
TMTVRMP_34, 17-39
                                          TPBAR, 3-6, 20-16, 20-19, 20-54
                                           TPBART, 3-6, 19-15, 20-54
                                           TPBARTC, 3-6, 18-33, 19-15, 20-54
TMUFN2, 18-24
TMUFN3, 18-23
                                           TPBARTV, 3-6, 17-30, 19-15, 20-54
                                           TPDLBR, 7-14, 20-17, 20-54, 21-19
TMUFN4, 18-23
TMUFW2, 18-24
                                          TPDLMX, 7-14
TMUFW3, 18-24
                                           TPDLTA, 20-21 to 20-22
TMUFW4, 18-23
                                           TPLKWH, 18-35 to 18-36
TMUON2, 18-24
TMUON3, 18-23
TMUON4, 18-23
TMUOW2, 18-24
TMUOW3, 18-24
                                          TPLKWO, 18-35 to 18-36
TPOBP2, 7-14
TPOH2, 7-14
TPPLW, 7-40 to 7-41
TPREL, 18-36
TMUOW4, 18-23
                                           TPTVMN, 17-23
TO_TP_RATE, 16-18
                                           TPTVMX, 17-23
TOT, 17-14 to 17-15, 17-32, 17-38, TPUNBRK, 18-10
     17-47, 20-62, 20-64, 20-66,
                                          TPUNCH, 18-10
     22-18 to 22-19
                                           TPUNCT, 18-10
                                          TPUNSC, 18-33
TPUNTR, 18-10
TOT_OTEMP, 17-47
TOTAL_DELAY, 6-68 to 6-70, 6-96
                                           TPV_STRT_SFT, 16-40 to 16-41
TOTMAX, 20-56 to 20-57, 22-18 to
                                           TQ_IALPHA, 17-29, 17-34
     22-19, 27-17, 29-15
TOTMIN, 20-56 to 20-57, 22-18 to
                                           TQ_NET, 17-29, 19-10
     22-19, 27-17, 29-15
                                           TQ_OFM, 6-87, 19-10
TOTTV1, 20-62
                                           TQ_STAT_CAP, 17-29, 17-31 to
TOTTV2, 20-62
                                               17-32
TOTTV3, 20-62
TOTTV4, 20-64
                                           TQCONVINT, 17-32
                                           TQCONVSLP, 17-32
                                          TQIA12, 17-34
TQIA21, 17-34
TQIA23, 17-34
TOTTV5, 17-38
                                           TQIA32, 17-34
```

INDEX - LHBH1

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL

```
TQIA34, 17-34
                                           TVPMIN, 17-15
TQIA43, 17-34
                                           TVPMN1, 17-13
                                           TVPMN2, 17-13
TQMAX1, 6-87
TQMAX2, 6-87
                                           TVPMN3, 17-13
                                           TVPMX1, 17-13
TQMAXH, 6-87
TR_STRT_SFT, 17-29
                                           TVPMX2, 17-13
TRADLY, 18-12
                                           TVPMX3, 17-13
                                          TVRPM_12, 17-39
TVRPM_23, 17-39
TRANS_T, 7-15, 7-17, 7-20 to 7-21
TRDDLY, 18-12
                                           TVRPM_34, 17-39
TRLOAD, 3-3, 6-13, 6-30, 6-80,
     9-10, 9-18 to 9-19, 9-21,
                                           TVRPMTM, 17-39
     9-36, 9-38 to 9-39, 20-7,
     20-13, 26-5 to 26-6
                                           U12DLY, 18-13
TRSRPH, 7-40, 7-42
TRSRPM, 7-40, 7-42
                                           U23DLY, 18-13
                                          U34DLY, 18-13
TRUHAC, 18-10
TRUHDC, 18-10
TRULAC, 18-10
                                          UART, 13-4 to 13-5
UART_State, 13-6
UNDSP, 3-6, 4-5, 6-63, 6-86, 6-98,
                                               6-100, 6-104 to 6-105, 7-12, 7-28, 7-30, 17-42, 20-44,
TRULDC, 18-10
TS0FLG, 7-40
                                                21-12, 23-7 to 23-8, 26-6 to
TSFETMR, 17-8, 20-62, 20-66
TSLADV, 7-66
                                               26-7, 29-20, 29-70
TSLAMU, 6-37
                                          UNRPM, 4-4 to 4-5
TSLEGO, 6-36, 6-38, 21-21
                                          UNRPMH, 4-4 to 4-5
TSLMPH, 3-6, 20-25 to 20-26 TSLPIP, 4-4, 4-6, 6-90, 9-8,
                                          UNSP, 29-6
                                           UP_TIP_RATE, 18-27
     20-45, 20-47, 21-21, 29-20
                                          UPDATM, 9-42
TSLSFT, 17-37
                                          UPDISC, 9-42
TSPKUP, 7-40 to 7-41
                                          UPRATE, 6-53 to 6-54, 6-56
TSSTIL_TMR, 26-6 to 26-7
                                          UPSMAP, 12-9
TSTRAT, 3-3, 20-18, 20-69, 28-25
                                          UPSTM1, 12-10
                                          UPSTM2, 12-10
UPSTM3, 12-10
UPSTM4, 12-10
UPSTM5, 12-10
UPSTM6, 12-10
TV1CNTS_TEST, 27-31
TV2CNTS_TEST, 27-32
TV_4L_12, 17-38
TV_4L_21, 17-38
TV_4L_23, 17-38
TV_4L_32, 17-38
                                           UPSWOT, 12-9
TV_4L_34, 17-38
                                           UROLAV, 19-10, 19-14 to 19-15
TV 4L 43, 17-38
                                           UROLAV(N,TCNE), 19-14
TV_COUNT_LST, 17-15
                                          UROLAV(TP,TCTPTC), 19-15
TV_COUNTS, 17-15, 17-42, 17-45
                                          UROLAV(TP, TCTPTE), 19-15
                                          UROLAV(TP,TCTPTV), 19-15
TV_DYN, 17-30, 17-37 to 17-38
TV_PRES, 17-12 to 17-15, 17-17 to
                                          UROLAV(VS,TCVST), 19-14
    17-18, 17-30
                                           V820A, 9-44 to 9-45
TV_RAMP, 17-39
TV_RAMP_TMR, 17-39
                                           V_879_MULT, 9-29, 9-32
TV_SLT_TM, 17-42
                                           V_BOO_OLD, 29-45
TV_ST_SFT, 17-30 to 17-31
                                          V_BOO_SPD, 29-46
TV_STAT, 17-29 to 17-31
                                          V_BOOSPD_TM, 29-45
                                          V_BOOSPD_TMR, 29-45 to 29-46
TVASOF, 17-12
TVCDLT, 17-42
                                          V_BPMIN, 29-20
TVCHRG, 17-16
TVEMAX, 17-23
                                          V_CBOO_ENA, 29-44
                                          V_CSTE_SW, 29-8
V_ECT_DEL, 29-8, 29-11
TVEMOD, 17-23
                                          V_ECT_LIM, 29-8, 29-11 to 29-12
TVFMMN, 17-13
```

Index-21

INDEX - LHBH1

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL

V_ECT_TIME, 29-8, 29-11 V_LESTMR1, 29-58 V_ECTCTMIN, 29-8, 29-11 V_MAPDIF, 29-20 V_EEC_PRG, 29-58, 29-66 V_MAPFLG, 29-20 V_EGO_BYPS, 29-63 V_MODE_END, 28-46 V_MODE_SETUP, 7-15 to 7-16, 9-51, V_EGO_EGR_SW, 29-64 V_EGO_ENA, 29-55 V_EGOAEMAX, 29-56 20-19, 24-4, 28-8, 28-44 V_NACTMR_CUM, 21-21 V_NHIGH, 28-46 V_NLOW, 28-46 V_EGOBUZ_ERR, 29-63 V_EGOBUZ_MAP, 29-63 V_EGOBUZ_N, 29-63 V_PIPMAP_LMT, 29-20 V_EGOHP, 28-28 V_PRG_DLYTMR, 29-56 V_EGOMAP_MIN, 29-56 V_PRGTOT, 29-58, 29-66 V_EGORNTM, 29-56 V_RPM_SET, 28-44 V_RUNUP_DIFF, 9-26 V_SETLNG_TM, 9-36, 9-39 V_SPDTOZ_FLG, 29-45 V_SPK_ENABL, 28-32 V_EGOSWNUM, 29-62 to 29-63 V_EGOTP_MIN, 29-56 V_EGOTST_TM, 29-57 V_EGOTST_TMR, 29-57 to 29-58 V_SPK_FINAL, 28-32 V_SPK_INIT, 28-32 V_EGR_CTMR, 29-29 V_EGR_DLY, 29-64 V_EGR_DLYFG, 29-64 V_SPK_RATE, 28-32 V_EGR_DLYTMR, 29-56 V_STABLTIM, 29-8 V_EGR_OLD, 29-64 V_SW_PRK, 27-21 V_TDSECAV_AV, 29-63 $V_EGR_ON_CR$, 29-24 to 29-26, V_TIME_LIM, 29-8 V_TPREL_PRG, 29-66 V_TSLEGO_AV, 29-63 29-28 to 29-29 V_EGR_RDY, 29-24 V_EGR_STK_ON, 29-24 to 29-26 V_ETV_TEST, 27-31 V_VACFLG, 20-42, 28-9, 29-21 V_FPMDLY, 29-70 V_VACPRGTMR, 29-58, 29-66 V_FPMFLG, 29-70 V_FPMTM, 29-69 to 29-70 V_VSS_MULT, 29-40 V_ZTOSPD_CNT, 29-45 V_GOOS_DELAY, 28-39 V_ZTOSPD_CTR, 29-45 VACUUM, 9-44, 20-24 VAIRFL, 28-29 VATMR2, 28-29 V_GOOSEC, 28-39 V_GOOSMP, 28-39 V_GOOSN, 28-39 VBAT, 3-6, 7-28 to 7-30, 17-42, 20-16, 20-54, 21-22 V_GOOSPK, 28-38 V_GOOSTP, 28-39 V_GOOSW, 28-38 VBAT', 20-16, 20-54 VBAT DWELL, 7-28, 7-30 V HICKOKTM, 27-4 V_ISCMOD_MAX, 6-72 to 6-73 VBAT_DWL_HYS, 7-28, 7-30 VBISW, 28-21 VCAL, 20-16 V_{ISCMOD_MIN} , 6-72 to 6-73 V_ISDL2, 28-38 V_KDNDT, 6-72 to 6-73 VCRTDC, 29-28 VDCMAX, 28-34 VDCMIN, 28-34 V_KTS, 28-38 V_LAMAV_MAX, 29-51 VDLY2, 28-30 V_LAMAV_MIN, 29-51 V_LAMJMP, 6-36, 29-65 VDLY8, 28-30, 28-32 VECT3, 6-52, 29-6 VECT5, 6-52, 29-6 V_LANSDTM, 27-4 V_LEGO_MAX, 29-62 to 29-63 VEGIS, 0-32, VEGOFK, 28-4 VEGRAT, 28-34 VEGVAC, 29-28 VEITMR, 29-27 VETVDT, 27-32 V_LEGO_MAX2, 29-63 V_LEGOTMR, 29-62 to 29-63, 29-65 V_LEGOTMR1, 29-58 V_LEGOTMR2, 29-58 V_LESTM, 29-62 to 29-63 V_LESTMR, 29-62 to 29-63, 29-65 VEVPCL, 29-29

INDEX - LHBH1

```
VEVPDL, 28-34
                                          VR_LOW_ISC, 28-35
VEVPHL, 27-18, 28-33, 29-27
                                          VR_OUT_ENGCYL, 28-10
VEVPLL, 27-18, 28-33, 29-25
                                          VR RUN INIT, 28-8
VFPMDLY, 27-29
                                          VR_SENSOR_CHK, 28-14
VFPMFLG, 27-29
                                          VREF, 20-69
                                          VRLAM, 28-10, 28-30, 28-39
VFS_OUT_FLG, 17-15, 26-4
VIACT1, 27-14
VIACT2, 27-14
VIACT3, 28-18
                                          VRLAM2, 28-38
                                          VRUN ISCFLG, 6-71, 6-73, 9-23,
                                               9-26, 9-28, 9-35, 9-39, 9-44
VIACT4, 28-18
                                               to 9-45, 9-51, 28-10
VIDMST, 29-35
                                          VS, 16-13 to 16-14, 19-14, 20-25
VIDMTM, 29-35
                                               to 20-26, 20-54
VIP_CNT_EX, 28-10, 28-14, 28-35,
                                          VS21PI, 16-25
     28-44 to 28-46
                                          VS_ERR_SW, 19-6
VIP_ENABLE, 26-4 to 26-7, 29-41
                                          VS_NEU, 16-22
                                          VS_RATEPH, 16-13, 20-27 to 20-28
VS_SH_VAL2, 16-40
VS_SH_VAL3, 16-40
VIP_FP_OVERRIDE, 26-4
VIP_KAM, 24-3, 27-4
VIP_KNOCK, 7-62
                                          VS_SH_VAL4, 16-40
VIP REINIT, 28-44
VIP_TIMER_EX, 28-10, 28-14, 28-35, VSBAR, 6-79, 6-87, 7-14, 7-17,
     28-44, 28-46, 29-26 to 29-27,
                                               9-10, 9-28, 9-35, 9-38, 15-5,
                                               20-18, 20-26, 20-54, 21-17 to
     29-29
                                               21-18, 26-5 to 26-6, 29-40 to
VIPLR1, 28-28
VIPRR1, 28-28 to 28-29
VIPSPK, 28-10, 28-32, 28-39
VIPTM2, 28-29
VIPTM3, 28-28
                                               29-41, 29-45 to 29-46
                                          VSBART, 17-18, 19-14, 19-25,
                                               20-54
                                          VSBART_FM, 6-87, 19-16
VIPTM4, 28-28
                                          VSBART_RT, 16-13 to 16-14, 16-22,
VISCN, 28-10
                                               16-25, 16-32, 16-40 to 16-41,
VISDL1, 28-14
                                               17-12, 17-17, 17-23, 18-14,
VISDL3, 28-35
                                               18-32, 18-48, 19-14 to 19-15
VITOT1, 27-17
VITOT2, 27-17
VITOT3, 28-19
VITOT4, 28-19
                                          VSBARTL, 20-27 to 20-28
                                          VSBARTL_PREV, 20-27 to 20-28
                                          VSCNT, 20-26
VSCTDY, 18-14
VSCTR, 16-12, 16-40, 17-13, 19-25,
VKYPWR, 27-24
VLORPM, 29-35
                                               20-26
VMDEL3, 28-16
                                          VSDELT, 20-26
VMDEL4, 28-16
                                          VSDNMF, 16-32
VMDEL5, 29-16
                                          VSFMFLG, 6-80, 6-87, 16-12, 16-22,
VMDEL6, 29-16
                                               16-25, 16-40, 17-13, 18-45,
VMPMAX, 20-43, 28-16, 29-16
                                               18-48, 19-6, 19-25, 29-41
VND1, 27-21
VND2, 27-21
VND3, 27-21
                                          VSLIM, 6-87
                                          VSLIMH, 6-87
                                          VSLK_FM, 18-48
VND4, 27-21
                                          VSMPG, 21-17 to 21-18
VNMIN, 28-28
                                          VSMPGH, 21-17
                                          VSOMAX, 7-14
VSOMXH, 7-14
VOLHYS, 21-22
VOLTCLP, 21-22
VOLTMR, 21-22
VPIPTM, 29-35
VPSSW, 28-23
                                          VSPOUT_INIT, 28-30
                                         VSPTDL, 28-32
VSSMN1, 29-40 to 29-41
VSSSW, 29-41
VPUMP_LAST, 29-70
VR_GOOSE, 28-35
                                         VSSTAL, 17-12
                                         VSSTIM, 29-41
VR_HICAM_ISC, 28-10
```

INDEX - LHBH1

PED-PTE, FOMOCO, PROPRIETARY CONFIDENTIAL

VSSTMR, 29-40 to 29-41 WINCLD, 7-60 VSTVMN, 17-23 WINDOW_BETA, 3-6 WINLEN, 7-56 WOPEN, 7-56 VSTVMX, 17-23 VSTYPE, 3-3, 20-25, 21-17, 26-5 to 26-6, 29-41 VSV_STRT_SFT, 16-40 to 16-41 Word, 13-6 WOT, 12-8 WOT_EGR_FLG, 8-4 to 8-5 VTABFL, 28-30 VTAP1, 27-13 VTAP2, 27-13 WOTRPH, 6-30 WOTRPT, 6-30 VTAP3, 28-17, 28-46 WOTTMR, 6-30, 8-11, 12-8, 21-22 VTAP4, 28-17, 28-46 WRMEGO, 6-10 to 6-11, 6-27, 6-30, VTAP5, 27-33 VTAP6, 27-33 11-5 to 11-6, 21-12, 22-5 to 22-6, 29-56 VTCEGO, 20-54, 28-4 VTCEPT, 26-5 X, 8-11 XAPT, 6-16, 6-28 XDCL_BAUD, 13-36 XDCL_ERRO, 13-36 WAC, 28-10 WARM_UP, 6-52, 29-6 WIGFLG, 26-4 to 26-5, 26-7, 29-4, XFRAME, 13-36 29-20, 29-24 to 29-25, 29-27, XMAPPA, 6-29 29-29, 29-44 WIGLVL, 29-4 Y, 7-13

INDEX - LHBH1

_

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL

Please feel free to use this form to record faults with the book, and/or general comments and complaints about Strategy Group documentation. As we make improvements, we would also like to know about the things you would like to see in the strategy book.

This form, if used, should be directed to the responsible person listed on the cover of this document.

INDEX - LHBH1

PED-PTE, FOMoCo, PROPRIETARY CONFIDENTIAL ****************** Do you have any general comments on this book, or its availability? ******************* Specific errors found in this book. Please list the page on which the was found, the error itself, and the correction if known. ******************* Please indicate your area, and/or primary use made of this book. If you would like to be notified when a change is made, or if you would like to discuss something, please write your name and extension below.

Name_____ Ext____ Date____