Instance Segmentation & Object Tracking in Point Clouds

Jiantao Gao

2020.6.26

Paper List

• PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation (CVPR 2020 oral)

OccuSeg: Occupancy-aware 3D Instance Segmentation (CVPR 2020)

Leveraging Shape Completion for 3D Siamese Tracking (CVPR 2019)

3D Semantic Instance Segmentation

Input: 3D Point Cloud

Object Center Votes & Aggregated Proposals

Output: 3D Semantic Instances

PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation

Li Jiang^{1*} Hengshuang Zhao^{1*} Shaoshuai Shi¹ Shu Liu² Chi-Wing Fu¹ Jiaya Jia^{1,2}

¹The Chinese University of Hong Kong ²SmartMore

{lijiang, hszhao, cwfu, leojia}@cse.cuhk.edu.hk ssshi@ee.cuhk.edu.hk sliu@smartmore.com

Pipeline:

Backbone Network:

- 1. Semantic Branch: CE Loss
- 2. Offset Branch:
 - a. L1 regression loss:

$$L_{o_reg} = \frac{1}{\sum_{i} m_i} \sum_{i} ||o_i - (\hat{c}_i - p_i)|| \cdot m_i$$

b. Direction Loss:

$$L_{o_dir} = -\frac{1}{\sum_{i} m_{i}} \sum_{i} \frac{o_{i}}{||o_{i}||_{2}} \cdot \frac{\hat{c}_{i} - p_{i}}{||\hat{c}_{i} - p_{i}||_{2}} \cdot m_{i}.$$

Clustering Part:

ScoreNet:

ScanNet v2:

Method	Avg AP ₅₀	bathtub	peq	bookshe.	cabinet	chair	counter	curtain	desk	door	otherfu.	picture	refrige.	s. curtain	sink	sofa	table	toilet	window
SGPN [49]	0.143	0.208	0.390	0.169	0.065	0.275	0.029	0.069	0.000	0.087	0.043	0.014	0.027	0.000	0.112	0.351	0.168	0.438	0.138
3D-BEVIS [11]	0.248	0.667	0.566	0.076	0.035	0.394	0.027	0.035	0.098	0.099	0.030	0.025	0.098	0.375	0.126	0.604	0.181	0.854	0.171
R-PointNet [54]	0.306	0.500	0.405	0.311	0.348	0.589	0.054	0.068	0.126	0.283	0.290	0.028	0.219	0.214	0.331	0.396	0.275	0.821	0.245
DPC [12]	0.355	0.500	0.517	0.467	0.228	0.422	0.133	0.405	0.111	0.205	0.241	0.075	0.233	0.306	0.445	0.439	0.457	0.974	0.23
3D-SIS [19]	0.382	1.000	0.432	0.245	0.190	0.577	0.013	0.263	0.033	0.320	0.240	0.075	0.422	0.857	0.117	0.699	0.271	0.883	0.235
MASC [27]	0.447	0.528	0.555	0.381	0.382	0.633	0.002	0.509	0.260	0.361	0.432	0.327	0.451	0.571	0.367	0.639	0.386	0.980	0.276
PanopticFusion [32]	0.478	0.667	0.712	0.595	0.259	0.550	0.000	0.613	0.175	0.250	0.434	0.437	0.411	0.857	0.485	0.591	0.267	0.944	0.35
3D-BoNet [53]	0.488	1.000	0.672	0.590	0.301	0.484	0.098	0.620	0.306	0.341	0.259	0.125	0.434	0.796	0.402	0.499	0.513	0.909	0.439
MTML [23]	0.549	1.000	0.807	0.588	0.327	0.647	0.004	0.815	0.180	0.418	0.364	0.182	0.445	1.000	0.442	0.688	0.571	1.000	0.396
PointGroup (Ours)	0.636	1.000	0.765	0.624	0.505	0.797	0.116	0.696	0.384	0.441	0.559	0.476	0.596	1.000	0.666	0.756	0.556	0.997	0.513

Table 1: 3D instance segmentation results on ScanNet v2 testing set with AP_{50} scores. Our proposed PointGroup approach yields the highest average AP_{50} , outperforming all state-of-the-art methods by a large margin. All numbers are from the ScanNet benchmark on 15/11/2019.

S3DIS:

Method	AP ₅₀	mPrec ₅₀	mRec ₅₀
SGPN [†] [49]	-	0.360	0.287
$ASIS^{\dagger}$ [50]	-	0.553	0.424
PointGroup [†]	0.578	0.619	0.621
SGPN [‡] [49]	0.544	0.382	0.312
PartNet [‡] [31]	-	0.564	0.434
ASIS [‡] [50]	-	0.636	0.475
3D-BoNet [‡] [53]	-	0.656	0.476
PointGroup [‡]	0.640	0.696	0.692

Table 5: Instance segmentation results on the S3DIS validation set. Methods marked with † are evaluated on Area 5; those marked with ‡ are on the 6-fold cross validation.

Figure 5: Visualization of the semantic and instance segmentation results on ScanNet v2 (top) and S3DIS (bottom). For instance predictions, different colors represent separate instances, and the semantic results indicate the categories of instances.

Ablation Study on ScanNet v2:

Method	Metric	mean	bathtub	bed	bookshe.	cabinet	chair	counter	curtain	desk	door	otherfu.	picture	refrige.	s. curtain	sink	sofa	table	toilet	window
	AP	0.283	0.414	0.327	0.244	0.167	0.493	0.083	0.269	0.089	0.193	0.286	0.205	0.207	0.373	0.226	0.361	0.251	0.684	0.231
Original P	AP ₅₀	0.507	0.692	0.647	0.481	0.347	0.685	0.231	0.508	0.308	0.384	0.453	0.359	0.301	0.632	0.537	0.660	0.531	0.961	0.413
	AP_{25}	0.659	0.840	0.764	0.597	0.496	0.791	0.588	0.614	0.686	0.529	0.600	0.432	0.401	0.660	0.775	0.777	0.721	0.995	0.601
	AP	0.328	0.499	0.383	0.248	0.217	0.713	0.008	0.241	0.165	0.216	0.318	0.211	0.238	0.422	0.292	0.383	0.362	0.799	0.194
Shifted Q	AP ₅₀	0.529	0.738	0.694	0.550	0.435	0.884	0.035	0.389	0.410	0.413	0.501	0.363	0.366	0.617	0.590	0.648	0.571	0.948	0.375
	AP_{25}	0.677	0.863	0.795	0.699	0.617	0.931	0.426	0.541	0.697	0.538	0.623	0.446	0.366	0.765	0.826	0.848	0.669	0.999	0.533
	AP	0.348	0.597	0.376	0.267	0.253	0.712	0.069	0.266	0.140	0.229	0.339	0.208	0.246	0.416	0.298	0.434	0.385	0.758	0.275
Both P & Q	AP ₅₀	0.569	0.805	0.696	0.549	0.481	0.877	0.224	0.449	0.416	0.420	0.530	0.377	0.372	0.644	0.611	0.715	0.629	0.983	0.462
	AP ₂₅	0.713	0.865	0.795	0.744	0.673	0.925	0.648	0.616	0.741	0.548	0.654	0.482	0.383	0.711	0.828	0.851	0.742	1.000	0.636

<u>Table 2</u>: Ablation results using different coordinate sets on the ScanNet v2 validation set. Adopting both the original and shifted coordinates for clustering yields the best 3D instance segmentation performance.

<u>Figure 4</u>: Instance predictions produced by models trained with clustering on (i) \mathbf{P} only, (ii) shifted coordinates \mathbf{Q} only, and (iii) both. The last column shows the predicted instances of (iii) represented with \mathbf{Q} , where stuff points are ignored.

Ablation Study on ScanNet v2:

Method	avg AP	avg AP ₅₀	avg AP ₂₅
r = 2cm	0.285	0.501	0.651
r = 3cm	0.348	0.569	0.713
r = 4cm	0.337	0.552	0.700
r = 5 cm	0.342	0.552	0.699

Table 3: A	blation resul	ts for c	lustering	with	different	radii
r on the Sc	anNet v2 val	lidation	set.			

	#Points	Total	BB			g on P	SCN	NMS	
	"I OHIES	Time	DD	BQ_p	CL_p	BQ_q	CL_q	bert	11115
1	239,261	865	332	95	16	95	70	176	82
2	45,557	261	177	5	2	5	5	52	14
3	186,857	567	281	44	9	45	31	95	62
4	60,071	271	180	6	3	7	15	55	6
avg	132,937	491	243	38	8	38	30	95	41

Table 4: Inference time (ms). BB denotes backbone + two branches; BQ denotes ballquery; subscripts p and q denote clustering on P and Q respectively; CL denotes our clustering algorithm; and SCN denotes ScoreNet.

OccuSeg: Occupancy-aware 3D Instance Segmentation

Lei Han^{1,2}, Tian Zheng¹, Lan Xu^{1,2}, and Lu Fang^{1⊠}

¹Tsinghua University
²Hong Kong University of Science and Technology

Motivation:

2D/3D Occupancy: the number of pixels/voxels occupied by each instance

2D Occupancy is uncertain on 2D image,

3D Occupancy is certain and can be predicted robustly for the reconstructed 3D model

Introduce such occupancy signal to guide the clustering stage of 3D instance segmentation?

Pipeline:

Multi-task Learning

Instance Clustering

Multi-task Learning:

Occupancy

Learned Embeddings
Spatial Term
$$(N * 3)$$
Semantic Term $(N * K)$
Covariance $(N * 2)$

Let $L_{se} = L_{var} + L_{dist} + L_{res}$
 L_{cov}

$$\begin{array}{c} \textbf{Learned Embeddings} \\ \textbf{Spatial Term } (N*3) \\ \textbf{Semantic Term } (N*K) \\ \textbf{Covariance } (N*2) \\ \textbf{Loov} \\ \textbf$$

Semantic Seg.
$$(N*C)$$
 L_c : CE Loss $\mathcal{L}_{ioint} = \mathcal{L}_c + \mathcal{L}_e + \mathcal{L}_o$.

$$\mathcal{L}_{\text{sp}} = \frac{1}{C} \sum_{c=1}^{C} \frac{1}{N_c} \sum_{i=1}^{N_c} ||\mathbf{d}_i + \mu_i - \frac{1}{N_c} \sum_{i=1}^{N_c} \mu_i||$$

$$\mathcal{L}_{\text{se}} = \mathcal{L}_{\text{var}} + \mathcal{L}_{\text{dist}} + \mathcal{L}_{\text{reg}},$$

$$\mathcal{L}_{\text{var}} = \frac{1}{C} \sum_{c=1}^{C} \frac{1}{N_c} \sum_{i=1}^{N_C} [||\mathbf{u}_c - \mathbf{s}_i|| - \delta_v]_+^2,$$

$$\mathcal{L}_{\text{dist}} = \frac{1}{C(C-1)} \sum_{c_A=1}^{C} \sum_{c_B=c_A+1}^{C} [2\delta_d - ||\mathbf{u}_{c_A} - \mathbf{u}_{c_B}||]_+^2,$$
(6)

$$\mathcal{L}_{\text{reg}} = \frac{1}{C} \sum_{c=1}^{C} ||\mathbf{u}_c||. \tag{6}$$

$$\mathbf{L_{e}} \begin{cases} \mathbf{L_{sp}} \\ \mathbf{L_{se}} = \mathbf{L_{var}} + \mathbf{L_{dist}} + \mathbf{L_{reg}} \\ \mathbf{L_{cov}} \end{cases} \qquad \mathcal{L_{cov}} = -\frac{1}{C} \sum_{c=1}^{C} \frac{1}{N} \sum_{i=1}^{N} [y_i log(p_i) + (1 - y_i) log(1 - p_i)]$$

$$\mathbf{L_{o}} \qquad p_i = \exp(-(\frac{||\mathbf{s}_i - \mathbf{u}_c||}{\sigma^c})^2 - (\frac{||\mu_i + \mathbf{d}_i - \mathbf{e}_c||}{\sigma^c})^2)$$

$$\mathcal{L}_{o} = \frac{1}{C} \sum_{c=1}^{C} \frac{1}{N_c} \sum_{i=1}^{N_c} ||o_i - \log(N_c)||.$$

Instance Clustering:

- 4. Iterate until none of the weight is larger than $T_0 = 0.5$.
- 5. Finally, the remaining vertices are labeled as instances if their occupancy ratio 0.3 < r < 2

1. Bottom-up Strategy:

Input voxels -- grouping --> super-voxels v_i $D_i = \frac{1}{|\Omega_i|} \sum_{k \in \Omega_i} (\mathbf{d}_i + \mu_i), \quad S_i \dots O_i \dots \sigma_i$

 Ω_i denotes the collection of all the voxels belonging to the super-voxel v_i

2. Establish an undirected graph G = (V, E, W):
v_i ∈ V : the generated super-voxels
(v_i, v_j) ∈ E : the pairs of vertices with a weight w_{i,j}

 $w_{i,j} = \frac{\exp\left(-\left(\frac{||\mathbf{S_i} - \mathbf{S_j}||}{\sigma_s}\right)^2 - \left(\frac{||\mathbf{D_i} - \mathbf{D_j}||}{\sigma_d}\right)^2\right)}{\max(r, 0.5)}, \qquad r_i = \frac{O_i}{|\Omega_i|}.$

 $w_{i,j} \in W$: the weights for the pairs of vertices

3. Select the edge $e_i = (v_i, v_j) \in E$ with the highest weight $w_{i,j}$, if $w_{i,j} > T_0 = 0.5$, merge the super-voxels v_i, v_j as a new vertex

ScanNet v2:

Method	mAP	bath	bed	bkshf	cab	chair	cntr	curt	desk	door	ofurn	pic	fridg	showr	sink	sofa	tabl	toil	wind
3D-SIS [18]	16.1	40.7	15.5	6.8	4.3	34.6	0.1	13.4	0.5	8.8	10.6	3.7	13.5	32.1	2.8	33.9	11.6	46.6	9.3
PanopticFusion [31]	21.4	25.0	33.0	27.5	10.3	22.8	0.0	34.5	2.4	8.8	20.3	18.6	16.7	36.7	12.5	22.1	11.2	66.6	16.2
3D-BoNet [48]	25.3	51.9	32.4	25.1	13.7	34.5	3.1	41.9	6.9	16.2	13.1	5.2	20.2	33.8	14.7	30.1	30.3	65.1	17.8
MTML [22]	28.2	57.7	38.0	18.2	10.7	43.0	0.1	42.2	5.7	17.9	16.2	7.0	22.9	51.1	16.1	49.1	31.3	65.0	16.2
Occipital-SCS	32.0	67.9	35.2	33.4	22.9	43.6	2.5	41.2	5.8	16.1	24.0	8.5	26.2	49.6	18.7	46.7	32.8	77.5	23.1
OccuSeg	44.3	85.2	56.0	38.0	24.9	67.9	9.7	34.5	18.6	29.8	33.9	23.1	41.3	80.7	34.5	50.6	42.4	97.2	29.1

Table 1. Quantitative comparison on the ScanNetV2 [4] benchmark in terms of mAP score on 18 classes. Our approach achieves **the best performance in 17 out of 18 classes**. Note that the ScanNetV2 benchmark data is accessed on 11/14/2019.

	mAP	mAP@0.5	mAP@0.25
3D-SIS [18]	16.1	38.2	55.8
3D-BoNet [48]	25.3	48.8	68.7
MASC [28]	25.4	44.7	61.5
MTML [22]	28.2	54.9	73.1
Occipital-SCS	32.0	51.2	68.8
OccuSeg	44.3	63.4	73.9

Table 2. Quantitative results on the ScanNetV2 [4] benchmark in terms of mAP, mAP@0.5 and mAP@0.25, respectively. Our approach outperforms previous methods by a significant margin. ScanNetV2 benchmark data is accessed on 11/14/2019.

S3DIS:

	mPrec	mRec
PartNet [30]	56.4	43.4
ASIS [44]	63.6	47.5
3D-BoNet [48]	65.6	47.6
OccuSeg	72.8	60.3

Table 3. Comparison on the S3DIS [1] dataset. Our method outperforms previous methods in terms of mean Precision (mPrec) and mean recall (mRec) with an IoU threshold of 0.5.

Figure 6. Representative 3D instance segmentation results on the validation set of public datasets, including ScanNetV2 [4] and S3DIS [1].

SceneNN:

Method	mAP@0.5	wall	floor	cabinet	bed	chair	sofa	table	desk	tv	prop
MT-PNet [36]	8.5	13.1	27.3	0.0	15.0	21.2	0.0	0.7	0.0	6.0	2.0
MLS-CRF [36]	12.1	13.9	44.5	0.0	32.9	12.9	0.0	5.7	10.8	0.0	0.8
OccuSeg	47.1	39.0	93.8	5.7	66.7	91.3	8.7	50.0	31.6	76.9	7.14

Table 4. Quantitative results on the SceneNN [19] dataset in terms of mAP@0.5 score of each class. Our approach achieves the best performance for all the 10 classes.

Ablation Study on ScanNet v2:

	mAP	mAP@0.5	mAP@0.25
w/o_feature	36.7	51.8	62.6
w/o_spatial	42.8	58.5	69.7
w/o_occupancy	40.9	55.7	67.4
OccuSeg	44.2	60.7	71.9

Table 6. Ablation study of each component of our method on the ScanNetV2 validation split, in terms of mAP, mAP@0.5 and mAP@0.25.

	Details	Total
	network(GPU): 650	
SGPN [43]	group merging(CPU): 46562	49433
	block merging(CPU): 2221	
	network(GPU): 650	
ASIS [44]	mean shift(CPU): 53886	56757
	block merging(CPU): 2221	
	network(GPU): 500	
GSPN [50]	point sampling(GPU): 2995	3963
	neighbour search(CPU): 468	
3D-SIS [18]	network (GPU+CPU): 38841	38841
	network(GPU): 650	
3D-BoNet [48]	SCN (GPU parallel): 208	2871
	block merging(CPU): 2221	
	network(GPU): 59	
OccuSeg	supervoxel(CPU): 375	594
	clustering(GPU+CPU): 160	

Table 5. The processing time (seconds) on the validation set of ScanNetV2 [4]. Note that all the other methods are evaluated based on their released codes according to [48].

3D Single Object tracking

Leveraging Shape Completion for 3D Siamese Tracking

Silvio Giancola*, Jesus Zarzar*, and Bernard Ghanem King Abdullah University of Science and Technology (KAUST), Saudi Arabia

{silvio.giancola, jesusalejandro.zarzartorano, bernard.ghanem}@kaust.edu.sa

Pipeline:

3D Siamese Tracker

Shape Completion Regularization

3D Siamese Tracker:

Figure 2. Our encoder takes as input a point cloud with N = 2048 points. Point clouds are encoded into a K-dimensional (K = 128) latent vector \mathbf{z} using 3 layers of 1D CNN with ReLU and BN.

Similarity Metric:

$$CosSim(\mathbf{z}, \hat{\mathbf{z}}) = \frac{\mathbf{z}^{\top} \hat{\mathbf{z}}}{\|\mathbf{z}\|_2 \|\hat{\mathbf{z}}\|_2}$$

Tracking Loss:

$$\mathcal{L}_{tr} = \frac{1}{n} \sum_{\mathbf{x}} \left(CosSim(\phi(\mathbf{x}), \phi(\hat{\mathbf{x}})) - \rho(d(\mathbf{x}, \hat{\mathbf{x}})) \right)^{2}$$

 $d(\cdot,\cdot)$: the L2-norm $\|\cdot\|^2$ of the difference

 $\rho(\cdot)$: Gaussian function with $\mu = 0$, $\delta = 1$

Shape Completion Regularization:

Completion Loss:

$$\mathcal{L}_{comp} = \sum_{\mathbf{\hat{x}}_i \in \mathbf{\hat{x}}} \min_{\mathbf{\tilde{x}}_j \in \mathbf{\tilde{x}}} \|\mathbf{\hat{x}}_i - \mathbf{\tilde{x}}_j\|_2^2 + \sum_{\mathbf{\tilde{x}}_j \in \mathbf{\tilde{x}}} \min_{\mathbf{\hat{x}}_i \in \mathbf{\hat{x}}} \|\mathbf{\hat{x}}_i - \mathbf{\tilde{x}}_j\|_2^2$$

 $\psi(\cdot)$: Two fully connected layers

Input: N x K (2048 x 128)

Output: M x 3 (2048 x 3)

The tracking loss enforces encoded partial shapes to be similar to their respective encoded model

The completion loss enforces the encoded model to hold semantic information to enable its decoding. Thus, this regularization is used to enforce the latent space learned by the Siamese network to hold meaningful shape semantic information.

Kitti:

Table 1. Ablation study for different losses we are training with. We report the OPE Success/Precision metrics for different losses averaged over 5 runs. Best results shown in bold.

Ablation	Success	Precision
(i) Before Training (Random)	39.06	41.79
(ii) Pre-trained on ShapeNet	44.54	49.38
(iii) Ours – Completion only	65.36	70.62
(iv) Ours – Tracking only	73.96	78.68
(v) Ours – λ_{comp} @1 e^{-6}	76.94	81.38

	Method	Previous result	Previous GT	Current GT
Success	SC3D [11]	41.3	64.6	76.9
	P2B (ours)	56.2	82.4	84.0
Precision	SC3D [11]	57.9	74.5	81.3
	P2B (ours)	72.8	90.1	90.3

Table 2. **Comprehensive comparison with SC3D.** The right three columns differ in their ways to generate search area.

Figure 4. Example of model completion (from left to right): (i) Candidate point cloud, (ii) Decoded candidate point cloud when it is pre-trained with ShapeNet, (iii) Decoded candidate point cloud when it is trained with completion loss only ($\lambda_{comp} = \infty$), (iv) Decoded candidate point cloud when it is trained with tracking loss only ($\lambda_{comp} = 0$) (the decoder trained for completion is used for fair comparison), (v) Decoded candidate point cloud when it is trained with both tracking and completion losses ($\lambda_{comp} = 1e^{-6}$).

Ablation Study:

Figure 3. Ablation study for different regularization λ_{comp} of the shape completion (top) and for the latent representation size K (bottom). We report the OPE Success/Precision metrics for different values of λ_{comp} and K averaged over 5 runs.

Figure 5. Heatmap of model cosine similarity scores on an exhaustive search space grid: From bottom to top: (i) activation using random weights model, (ii) activation on pre-trained model (ShapeNet), (iii) our model.

Thanks