Числени методи, сп. Информатика Задачи за изпит I

І тип

Задача 1. Като използвате интерполационната формула на Лагранж, намерете полинома $p \in \pi_2$, който удовлетворява условията p(-1) = 2, p(1) = 2, p(2) = 5. Преставете p(x) по степените на x.

Задача 2. Полиномът $L_2(f;x)$ интерполира $f(x) = e^x$ в т. -1,0,1. Като използвате формулата за оценка на грешката, докажете, че

$$\max_{x \in [-1,1]} |f(x) - L_2(f;x)| \le \frac{1}{5}.$$

Задача 3. Като използвате интерполационната формула на Нютон с разделени разлики, намерете полинома $p \in \pi_3$, който удовлетворява условията: p(-2) = -8, p(0) = 2, p(1) = 4, p(2) = 12. Представете p(x) по степените на x.

Задача 4. Нека $S_k=1^2+\cdots+k^2,\ k\geq 1$, където $S_0=0$. Покажете, че съществува единствен $p\in\pi_3$: $p(k)=S_k,\ k=0,1,2,\ldots$ Намерете S_k , като използвате формулата на Нютон с крайни разлики за интерполиране напред.

Задача 5. Като използвате интерполационната формула на Нютон с разделени разлики с кратни възли, намерете интерполационния полином на Ермит, който удовлетворява условията p(0) = -1, p'(0) = 1, p''(0) = 2, p(1) = 0, p'(1) = 1. Представете p(x) по степените на x.

Задача 6. Като използвате формулата за тригонометрична интерполация при равноотдалечени възли, определете коефициентите $a_0,\,a_1,\,b_1$ така, че $\tau(x)=\frac{a_0}{2}+a_1\cos x+b_1\sin x$ да удовлетворява условията $\tau(0)=-1,\,\,\tau\left(\frac{2\pi}{3}\right)=2,\,\,\tau\left(\frac{4\pi}{3}\right)=2.$

II тип

Задача 1. Нека $l_{kn}(x)$, $k=\overline{0,n}$ са базисните полиноми на Лагранж, съответни на възлите x_0,\ldots,x_n . Да се намери

$$\sum_{k=0}^{n} (x - x_n)^{n+1} l_{kn}(x).$$

Задача 2. Нека $f \in C^2[0,1]$ и е известно, че $|f''(x)| \le x^2, \forall x \in [0,1]$. За $\xi \in (0,1)$ да означим с $P_{\xi}(x)$ по части линейната в $[0,\xi]$ и $[\xi,1]$ непрекъсната функция, която интерполира f в $0,\xi,1$. Да се определи ξ така, че

$$\max_{x \in [0,1]} |f(x) - P_{\xi}(x)| \le 0.02.$$

Задача 3. Нека $\{\eta_k\}_{k=0}^n$ са екстремалните точки на полинома на Чебишов $T_n(x)$. Да се докаже, че ако $p\in\pi_n$ и $|p(\eta_k)|\leq 1$ за $k=\overline{0,n}$, то $|p(x)|\leq |T_n(x)|$ за всяко $|x|\geq 1$.

Задача 4. Нека $x_k \neq -1, 0$ за $k=1,\dots,n$. Намерете

$$\sum_{k=1}^{n} \frac{x_k^n f\left(\frac{1}{x_k}\right)}{f'(x_k)(1+x_k)},$$

където $f(x) = (x - x_1) \dots (x - x_n)$.

Задача 5. Нека $l_{kn}(x), k=\overline{0,n}$ са базисните полиноми на Лагранж, съответни на $x_0,\dots,x_n,$ $w(x)=(x-x_0)\dots(x-x_n)$ и

$$\varphi_k(x) = \left(1 - \frac{w''(x)}{w'(x)}(x - x_k)\right) l_{kn}^2(x), \ k = \overline{0, n}.$$

Докажете, че $\varphi_k'(x_k) = 0, \ k = \overline{0,n}.$

Задача 6. Да се докаже, че функциите $\{1, e^{2x}, e^{5x^2}\}$ образуват система на Чебишов.