The Derivative Function

Thought Experiment

• For a given function, f(x), imagine determining the instantaneous rate of change (tangent slope or m_{tan}) of the function for every "x" value of the function.

- The relationship between "x" and its corresponding tangent slope m_{tan} creates a new function called the "derivative function"
- This derivative function is denoted as:

"f prime at x" or "f prime of x"

$$\frac{dy}{dx}$$
 or

What do derivative functions look like?

- Determine the value of the slope of the tangent for different values of x
- Sketch the derivative functions... if possible write the equation of f'(x)

1. CONSTANT FUNCTIONS

$$f(x) = 2$$
 $f'(x) =$

f(x) = -4 $f'(x) = \bigcirc$

	X	f(x)	f'(x)
>	-3	-4	0
Ė	-2	-4	0
	-1	-4	0
ŧ	0	-4	0
	1	-4	0
	2	-4	0
}	3	-4	0

2. LINEAR FUNCTIONS

$$f'(x) = \lim_{h \to 6} \frac{2(x+h) - 5 - 2x + 5}{h}$$

$$= \lim_{h \to 0} \frac{2x}{h}$$

$$f(x) = 2x^{1} - 5$$
 $f'(x) = \frac{\chi^{6}}{2}$

X	f(x)	f'(x)
-2	-9	2
-1	-7	2
0	-5	2
1	-3	2
2	-1	2

22

X	f(x)	f'(x)
-2	4	-0.5
-1	3.5	-0.5
0	3	-0.5
1	2.5	-0.5
2	2	-0.5

3. QUADRATIC FUNCTIONS

$$f(x) = x^2$$
 $f'(x) = 2x$

$$f(x) = -(x+3)(x-4)$$
 $f'(x) = -2x+1$

X	f(x)	f'(x)
-2	4	-4
-1	1	-2
0	0	0
1	1	2
2	4	4

X	f(x)	f'(x)
-3	0	7
-2	6	5
-1	10	3
0	12	1
1	10	-1
2	6	-3

3. CUBIC FUNCTIONS

$$f(x) = 0.5(x+4)(x+1)(x-3)$$

$$f'(x) = order 2$$

X	f(x)	f'(x)
-3	6	2
-2	5	-3.5
-1	0	-6
0	-6	-5.5
1	-10	-2
2	-9	4.5
3	0	14

$$f'(u) = ax^2 + bx + C$$

2 = 99 - 36 + C

X	f(x)	f'(x)
-4	7	-8
-3	1.5	-3.25
-2	0	0
-1	1	1.75
0	3	2
1	4.5	0.75
2	4	-2
3	0	-6.25
4	-9	-12

$$f'(x) = 1.5x^2 + 2x - 5.5$$

$$f'(x) = \frac{-3}{4}x^2 - \frac{1}{2}x + 3$$

SUMMARY

The derivative function of a:

constant function is a <u>zero</u> function. $f(x) = constant \longrightarrow f'(x) = 0$ linear function is a <u>constant</u> function. $f(x) = ax^{-1} \longrightarrow f'(x) = 0$

quadratic function is a <u>linear</u> function. $f(x) = \alpha x^2 \longrightarrow f'(x) = x$ cubic function is a <u>quadratic</u> function. $f(x) = \alpha x^3 \longrightarrow f'(x) = x^2$