# Kolmogorov-Smirnov Goodness-of-fit Tests

### October 16, 2023

This test is used in situations where a comparison has to be made between an observed sample distribution and a theoretical distribution. The *goodness-of-fit* test that we will learn about about was developed by two probabilists.





Andrey Kolmogorov (1903-1987) and Nikolai Smirnov (1900-1966)

In this, we will learn how to conduct a test to see how well a hypothesized distribution function F(x) fits an empirical distribution function  $F_n(X)$ .

## Empirical distribution function

Given an observed random sample  $X_1, X_2, \ldots, X_n$  an empirical distribution function  $F_n(x)$  is the fraction of sample observations less than or equal to the value x.

More specifically, if  $x_1 < x_2 < \dots, < x_n$  are the order statistics of the observed random sample, with no two observations being equal, than the empirical distribution function is defined as

$$F_n(x) = \begin{cases} 0; & x < x_1, \\ \frac{k}{n}; & x_k \le x \le x_{k+1}, \ k = 1, 2, \dots, n-1 \\ 1; & x \ge x_n \end{cases}$$

**Example:** A random sample of 8 people yields the following counts the number of times they read in the past months;

Calculate the empirical distribution function  $F_n(x)$ . Solution: The empirical distribution function is

| sample    | X            | 0   | 1   | 2   | 4   | 6   | 7   |                                               |
|-----------|--------------|-----|-----|-----|-----|-----|-----|-----------------------------------------------|
| Frequency | $\mathbf{f}$ | 1   | 1   | 2   | 1   | 2   | 1   |                                               |
| PDF       | $f_X(x)$     | 1/8 | 1/8 | 2/8 | 1/8 | 2/8 | 1/8 |                                               |
| CDF       | $F_X(x)$     | 1/8 | 2/8 | 4/8 | 5/8 | 7/8 | 8/8 | $\rightarrow F_n(x)$ ; empirical distribution |

**Results:** Let X be continuous random variable with a CDF F and let U = F(X). Then  $U \sim U[0,1]$ .

## K-S approximation to Null Distribution:

Kolmogorov-Smirnov (K-S) tests statistics  $D_n$  is defined as

$$D_n = \sup |F_0(x) - F(x)|, \ x \in \mathbb{R},$$

where  $F_0(x)$  =Theoretical distribution; F(x) =Empirical distribution and n =total number of data sets.

**Results:** Let F be a continuous CDF and let  $X_1, X_2, \ldots, X_n$  be a sequence of iid rv's with CDF F. Then

- 1. The null distribution of  $D_n$  does not depend on  $F_0$  (Non-parametric distribution); it depends only on n.
- 2. If  $n \to \infty$ , the distribution of  $\sqrt{n}D_n$  is asymptotically Kolmogorov-Smirnov's distribution with the CDF

$$Q(x) = 1 - 2\sum_{k=1}^{\infty} (-1)^{k-1} e^{-2k^2 x^2}$$

That is,

$$\lim n \to \infty P(\sqrt{n}D_n \le x) = Q(x).$$

## K-S One Sample Test:

- Small sample: when sample size n < 30.
- Large sample: when size size  $n \geq 30$ .

### Hypothesis (3 step rule)

- I) Define the Hypothesis:
  - Null Hypothesis:

$$H_0: F_0(x) = F_n(x)$$

i.e. assume no difference between the observed (empirical)  $F_n(x)$  and theoretical  $F_0(x)$  distribution.

• Alternative Hypothesis:

$$H_1: F_0(x) \neq F_n(x)$$

- II) Compute test statistics:
  - Order sample x as  $(x_1 < x_2 < \cdots < x_n)$ .
  - Value of test statistics  $D = \sup |F_0(x) F_n(x)|$ .

**Note:** The rule for computing the KS test statistic: For each ordered observation,  $x_k$  computes the differences

$$D^{+} = \max_{1 \le k \le n} |F_0(x_k) - F_n(x_k)|$$
  
= \text{max} \left| F\_0(x\_k) - \frac{k}{n} \right|, \ k = 1, 2, \dots, n

and

$$D^{-} = \max_{1 \le k \le n} |F_0(x_k) - F_n(x_{k-1})|$$
$$= \max \left| F_0(x_k) - \frac{k-1}{n} \right|.$$

The largest of these is the K-S test statistic and the test statistics value is

$$D = \max(D^+, D^-)$$

III) Conclusion:

The critical value of D is found from the K-S table values for one sample test.

- Reject  $H_0$ : if D > critical value.
- Accepted  $H_0$ : if D < critical value.

**Example:** Consider the data points 1.1, 0.26, 1.97, 0.33, 0.55, 0.77, 1.46, 1.18; Is there any evidence to suggest that the data were not randomly samples from a Uniform (0,2) distributed?

### Solution. Step I:

Define the hypothesis:

$$H_0: F(x) = F_0$$
  
 $H_1: F(x) \neq F_0$ 

Where F(x) is the unknown CDF from which our data were sampled, and  $F_0(x)$  is the CDF of the Uniform (0,2) distribution.

The PDF of Uniform(0,2) is

$$f(x) = \frac{1}{2}$$
;  $0 < x < 2$ 

and CDF

$$F_0(x) = P(X \le x) = \begin{cases} 0; & 0 < x \\ \frac{x}{2}; & 0 < x < 2 \\ 1; & x \ge 2 \end{cases}$$

And the empirical CDF F(x) satisfies

$$F_n(x_n) = \frac{k}{8}$$
 for  $k = 1, 2 \dots, 8$ . (: the number of samples is 8.)

### Step II:

Compute observed and theoretical distribution.

| k | $x_k$ | $F_n(x_k)$            | $F_0(x_k)$               | $D^{+} =  F_0(x_k) - F_n(x_k) $ | $F_n(x_{k-1})$ | $D^{-} =  F_0(x_k) - F_n(x_{k-1}) $ |
|---|-------|-----------------------|--------------------------|---------------------------------|----------------|-------------------------------------|
| 1 | 0.26  | $\frac{1}{8} = 0.125$ | $\frac{0.26}{2} = 0.130$ | 0.005                           | 0.000          | 0.130                               |
| 2 | 0.33  | $\frac{2}{8} = 0.250$ | $\frac{0.33}{2} = 0.165$ | 0.085                           | 0.125          | 0.040                               |
| 3 | 0.55  | 0.357                 | 0.275                    | 0.100                           | 0.250          | 0.025                               |
| 4 | 0.77  | 0.500                 | 0.385                    | 0.115                           | 0.375          | 0.010                               |
| 5 | 1.18  | 0.625                 | 0.590                    | 0.035                           | 0.500          | 0.090                               |
| 6 | 1.41  | 0.750                 | 0.705                    | 0.045                           | 0.625          | 0.080                               |
| 7 | 1.46  | 0.875                 | 0.730                    | 0.145                           | 0.750          | 0.020                               |
| 8 | 1.97  | $\frac{8}{8} = 1$     | 0.985                    | 0.015                           | 0.875          | 0.090                               |

The test statistics D is

$$D = \max |F_0(x) - F_n(x)| = 0.145$$

OR

$$D = \max(D^+, D^-) = \max(0.130, 0.145) = 0.145$$

#### Setp III:

Since n = 8 < 30. So, we apply small sample K-S test. From the K-S table, the critical value of D is 5% significance level with n = 8 is given by

$$D_{0.05} = 0.454$$

As 0.145 < 0.454, Hence we fail to reject the null hypothesis and conclude that the were sampled from  $\mathrm{Uniform}(0,2)$  distributed.



## Kolmogorov-Smirnov Test Critical Values

| SAMPLE      | LEVEL OF SIGNIFICANCE FOR D = MAXIMUM [ $F_0(X) - S_n(X)$ ] |          |      |          |          |  |  |  |
|-------------|-------------------------------------------------------------|----------|------|----------|----------|--|--|--|
| SIZE<br>(N) | .20                                                         | .15      | .10  | .05      | .01      |  |  |  |
| 1           | .900                                                        | .925     | .950 | .975     | .995     |  |  |  |
| 2           | .684                                                        | .726     | .776 | .842     | .929     |  |  |  |
| 3           | .565                                                        | .597     | .642 | .708     | .828     |  |  |  |
| 4           | .494                                                        | .525     | .564 | .624     | .733     |  |  |  |
| 5           | .446                                                        | .474     | .510 | .565     | .669     |  |  |  |
| 6           | .410                                                        | .436     | .470 | .521     | .618     |  |  |  |
| 7           | .381                                                        | .405     | .438 | .486     | .577     |  |  |  |
| 8           | .358                                                        | .381     | .411 | .457     | .543     |  |  |  |
| 9           | .339                                                        | .360     | .388 | .432     | .514     |  |  |  |
| 10          | .322                                                        | .342     | .368 | .410     | .490     |  |  |  |
| 11          | .307                                                        | .326     | .352 | .391     | .468     |  |  |  |
| 12          | .295                                                        | .313     | .338 | .375     | .450     |  |  |  |
| 13          | .284                                                        | .302     | .325 | .361     | .433     |  |  |  |
| 14          | .274                                                        | .292     | .314 | .349     | .418     |  |  |  |
| 15          | .266                                                        | .283     | .304 | .338     | .404     |  |  |  |
| 16          | .258                                                        | .274     | .295 | .328     | .392     |  |  |  |
| 17          | .250                                                        | .266     | .286 | .318     | .381     |  |  |  |
| 18          | .244                                                        | .259     | .278 | .309     | .371     |  |  |  |
| 19          | .237                                                        | .252     | .272 | .301     | .363     |  |  |  |
| 20          | .231                                                        | .246     | .264 | .294     | .356     |  |  |  |
| 25          | .210                                                        | .220     | .240 | .270     | .320     |  |  |  |
| 30          | .190                                                        | .200     | .220 | .240     | .290     |  |  |  |
| 35          | .180                                                        | .190     | .210 | .230     | .270     |  |  |  |
| OVER 35     |                                                             | 1.14<br> |      | 1.36<br> | 1.63<br> |  |  |  |