Answers to Advanced Microeconomics Problem Set 1

Marek Chadim (42624), Clara Falkenek (42615), Rocio Medina Polar (42621) *
September 1, 2023

1 Exercise **1.17**

1.1 Original question

Suppose that preferences are convex but not strictly convex. Give a clear and convincing argument that a solution to the consumer's problem still exists, but that it need not be unique. Illustrate your argument with a two-good example.

1.2 Solution

Suppose the consumer's preference relation \succsim is complete, transitive, continuous, strictly monotonic, and convex on R^n_+ . Therefore, by Theorems 1.1 and 1.3 it can be represented by a real-valued utility function, u, that is continuous, strictly increasing, and quasiconcave on R^n_+ . Under the assumptions on preferences, the utility function u(x) is real-valued and continuous. The budget set B is a non-empty, closed, bounded, and thus compact subset of R^n . By the Weierstrass theorem, a maximum of u(x) over B exists. However, it need not be unique. Proof: Since B is convex, any convex combination x^t of $x^1, x^2 \in B$ is also in B and $u(x^t) \geq min\left[u(x^1), u(x^2)\right]$ by quasiconcavity of u. Denote u^* the maximum of u(x) over u. If $u(x^1) = u(x^2) = u^*$, then also $u(x^t) = u^*$. This holds, for example, if the indifference curves are linear and have the same slope as the budget constraint, as illustrated by Figure 1:

Figure 1: Non-uniqueness solution

^{*42624@}student.hss.se, 42615@student.hhs.se, 42621@student.hhs.se

Original question

Suppose preferences are represented by the Cobb-Douglas utility function $u(x_1, x_2) =$ $Ax_1^{\alpha}x_2^{1-\alpha}$, $0 < \alpha < 1$, and A > 0. Assuming an interior solution, solve for the Marshallian demand functions.

2.2 Solution

Cobb-Douglas utility function:
$$u(x_1, x_2) = Ax_1^{x_1}x_2^{1-x}$$

Assumption: interior solution

Using the dagrangian:

$$\lambda = Ax_1^{x_1}x_2^{1-x} + \lambda(y - p_1x_1 - p_2x_2) \qquad y = -p_1x_1 - p_2x_2$$
Finding the first order conditions; settin them equal to zero:

$$\frac{\partial \lambda}{\partial x_1} = xAx_1^{x_1-x_1}x_2^{1-x} - \lambda p_1 = 0$$

$$\frac{\partial \lambda}{\partial x_2} = (1-x)Ax_1^{x_1}x_2^{x_2} - \lambda p_2 = 0$$

$$\frac{\partial \lambda}{\partial x_2} = y - p_1x_1 - p_2x_2 = 0$$

$$\frac{\partial \lambda}{\partial x_3} = y - p_1x_1 - p_2x_2 = 0$$

$$\frac{\partial \lambda}{\partial x_3} = \frac{xAx_1^{x_1-x_1}x_2^{1-x}}{(1-x)Ax_1^x}x_2^{x_2} - \frac{\lambda p_1}{p_2}$$

$$= \frac{x}{1-x} \cdot \frac{A}{x_1} \cdot \frac{x_1^{x_1-x}}{x_2^x} + \frac{\lambda p_2}{p_2}$$

$$= \frac{x}{1-x} \cdot 1 \cdot \frac{1}{x_1} \cdot x_2 = \frac{p_2}{p_2}$$

$$= \frac{x}{1-x} \cdot 1 \cdot \frac{1}{x_1} \cdot x_2 = \frac{p_2}{p_2}$$

$$= \frac{x}{1-x} \cdot 1 \cdot \frac{1}{x_1} \cdot x_2 = \frac{p_2}{p_2}$$

$$= \frac{x}{1-x} \cdot 1 \cdot \frac{1}{x_1} \cdot x_2 = \frac{p_2}{p_2}$$

$$= \frac{x}{1-x} \cdot \frac{x}{1-x} \cdot \frac{x}{1-x} \cdot \frac{x}{1-x} \cdot \frac{x}{1-x}$$
Expression $x_1 : x_1 = \frac{p_1}{p_2}$

$$x_2 = \frac{p_1(1-x)x_1}{x_1-x_2}$$
The following x_1 into constraint $x_1 = x_1 + x_2 = y$ to express marshallian demand functions:

$$y = P_{1}\left(\frac{\alpha x_{2}p_{2}}{(1-\alpha)p_{1}}\right) + P_{2}x_{2}$$

$$y = P_{1}x_{1} + p_{2}\left(\frac{1-\alpha)y}{p_{2}}\right)$$
Answer:

The two Marshallian demand functions are

$$y = P_{1}x_{1} + p_{2}\left(\frac{1-\alpha)y}{p_{2}}\right)$$

$$y = P_{1}x_{1} + q_{1}x_{2}$$

$$y = P_{1}x_{1} + q_{2}x_{2}$$

$$y = P_{1}x_{1} + q_{2}x$$

3.1 Original question

Prove Theorem 1.3.

3.2 Solution

Considering the consumer's preference relation is represented by u: $\mathbb{R}^n_+ \to \mathbb{R}$. And assuming that for all $x^0, x^1 \in \mathbb{R}^n_+$, $x^0 < x^1$. Then, the following properties will be proved:

- a) $u(\mathbf{x})$ is strictly increasing if and only if \succeq is strictly monotonic.
 - Part 1: Considering $u(\mathbf{x})$ is strictly increasing,

$$u(\mathbf{x^1}) > u(\mathbf{x^0})$$

Following the Theorem 1.1 (Existence of a Real-Valued Function Representing the Preference Relation),

$$u(\mathbf{x^1})e \sim x^1$$

$$u(\mathbf{x^0})e \sim x^0$$

Then,

$$u(\mathbf{x^1})e \sim x^1 > u(\mathbf{x^0})e \sim x^0$$

And, as $u(\mathbf{x})$ is a function representing the consumer's preferences, then

$$x^1 \succ x^0$$

Hence, it is shown that the consumer's preference relation is strictly monotonic, as $x^1 > x^0$.

• Part 2: Considering ≥ is strictly monotonic,

$$x^1 \succ x^0$$

Following the Theorem 1.1 (Existence of a Real-Valued Function Representing the Preference Relation),

$$u(\mathbf{x^1})e \sim x^1 \succ u(\mathbf{x^0})e \sim x^0$$

And following the transitivity axioms of \sim and \succ ,

$$u(\mathbf{x^1}) \succ u(\mathbf{x^0})$$

because the preference relation is strictly monotonic. Thus

$$u(\mathbf{x^1}) > u(\mathbf{x^0})$$

Hence, it is shown that the utility function is strictly increasing.

b) $u(\mathbf{x})$ is quasiconcave if and only if \succeq is convex.

• Part 1: Considering $u(\mathbf{x})$ is quasiconcave, then, for all $t \in [0,1]$,

$$u(x^t) \ge min[u(x^1), u(x^2)]$$

where $x^t = tx^1 + (1-t)x^2$. Assuming $x^2 \ge x^1$, following the Theorem 1.1 (*Existence of a Real-Valued Function Representing the Preference Relation*),

$$u(\mathbf{x}^2) \geqslant u(\mathbf{x}^t) \geqslant u(\mathbf{x}^1)$$

$$u(x^2)e \sim x^2 \geqslant u(x^t)e \sim x^t \geqslant u(x^1)e \sim x^1$$

Following the transitivity axiom and that preferences are strictly monotonic,

$$x^2 \geqslant x^t \geqslant x^1$$

$$x^2 \succ x^t \succ x^1$$

As we stated that u(x) is quasiconcave, then

$$x^2 \succeq tx^1 + (1-t)x^2 \succeq x^1$$

Which demonstrates convexity in the consumer's preferences, as the consumption bundle x^t is at least as good as x^1 .

• Part 2: Considering that the consumer's preference relation is convex, then:

$$tx^{1} + (1 - t)x^{2} \succeq x^{1}$$
, for all $t \in [0, 1]$

As $x^2 \ge x^1$, following strict monotonicity and based on the transitivity axiom,

$$x^2 \succeq tx^1 + (1-t)x^2 \succeq x^1$$

As $u(\mathbf{x})$ is a function that represents the consumer's preferences (Theorem 1.1),

$$u(x^{2})e \sim x^{2} \geqslant u(tx^{1} + (1-t)x^{2})e \sim (tx^{1} + (1-t)x^{2}) \geqslant u(x^{1})e \sim x^{1}$$
$$u(x^{2}) \geqslant u(tx^{1} + (1-t)x^{2}) \geqslant u(x^{1})$$

Hence, it is shown that the utility function is quasiconcave, as the consumer's satisfaction with the consumption bundle created as a linear combination of x^1 and x^2 is greater or equal to the minimum utility between x^1 and x^2 .

- c) $u(\mathbf{x})$ is strictly quasiconcave if and only if \succeq is strictly convex.
 - Part 1: Considering $u(\mathbf{x})$ is strictly quasiconcave, then, for all $t \in (0,1)$,

$$u(x^t) > min[u(x^1), u(x^2)]$$

where $x^t = tx^1 + (1-t)x^2$. Assuming $x^2 > x^1$, following the Theorem 1.1 (Existence of a Real-Valued Function Representing the Preference Relation),

$$u(\mathbf{x}^2) > u(\mathbf{x}^t) > u(\mathbf{x}^1)$$

$$u(x^2)e \sim x^2 > u(x^t)e \sim x^t > u(x^1)e \sim x^1$$

Following the transitivity axiom and that preferences are strictly monotonic,

$$x^2 > x^t > x^1$$

$$x^2 \succ x^t \succ x^1$$

As we stated that u(x) is strictly quasiconcave, then

$$x^2 > tx^1 + (1-t)x^2 > x^1$$

This demonstrates strictly convexity in the consumer's preferences, as the consumption bundle x^t is better than x^1 .

• Part 2: Considering that the consumer's preference relation is strictly convex, then:

$$tx^{1} + (1 - t)x^{2} > x^{1}$$
, for all $t \in (0, 1)$

As $u(\mathbf{x})$ is a function that represents the consumer's preferences (Theorem 1.1),

$$u(tx^{1} + (1-t)x^{2})e \sim (tx^{1} + (1-t)x^{2}) > u(x^{1})e \sim x^{1}$$

Following the transitivity axiom,

$$u(tx^{1} + (1 - t)x^{2}) > u(x^{1})$$
 (P1)

And considering that $u(\mathbf{x})$ is strictly monotonic, it can be inferred that $u(\mathbf{x}^2) > u(\mathbf{x}^1)$. Hence, it is possible to rephrase the previous expression (P1) as the following

$$u(tx^1 + (1-t)x^2) > min[u(\mathbf{x^1}), u(\mathbf{x^2})]$$

This shows that the utility function is strictly quasiconcave, as the consumer's satisfaction with the consumption bundle created as a linear combination of x^1 and x^2 is greater thant the minimum utility between x^1 and x^2 .

4.1 Original question

Let u(x) represent some consumer's monotonic preferences over $x \in \mathbb{R}^n_+$. For each of the functions f(x) that follow, state whether or not f also represents the preferences of this consumer. In each case, be sure to justify your answer with either an argument or a counterexample.

a)
$$f(x) = u(x) + (u(x))^3$$

b)
$$f(x) = u(x) - (u(x))^2$$

c)
$$f(x) = u(x) + \sum_{i=1}^{n} x_i$$

4.2 Solution

Invoking the invariance of the utility function to positive monotonic transforms, if f is strictly increasing on the set of values taken on by u (where u = u(x)), it represents the same preferences. Denote f'(u) the derivative of f with respect to u. Then f represents the same preferences as u as long as f'(u) > 0 for all possible values of u.

$$f' = 1 + 3u^2$$

 $\forall u: 3u^2 \ge 0 \implies f'(u) > 0 \implies f$ represents the same preferences as u.

Since f'(u) is positive, f(u) is a strictly increasing function, same as u, then f(u) represents the consumer's preference relation.

$$b) f' = 1 - 2u$$

For all cases when u > 0.5, then f'(u) < 0. Hence, $f(x) = u(x) - (u(x))^2$ is not a strictly increasing function, therefore it does not represent the preferences of the consumer.

c)
$$f' = 1$$

As $\frac{d}{du}(\sum_{i=1}^n x_i) = 0 \implies \forall u : f'(u) > 0 \implies f$ represents the same preferences as u.

Since f'(u) is positive (a positive constant), f(u) is a strictly increasing function, same as u. Then f(u) represents the consumer's preference relation.

5.1 Original question

An infinitely lived agent owns 1 unit of a commodity that he consumes over his lifetime. The commodity is perfectly storable and he will receive no more than he has now. Consumption of the commodity in period t is denoted x_t , and his lifetime utility function is given by

$$u(x_0, x_1, x_2, ...) = \sum_{t=0}^{\infty} \beta^t ln(x_t)$$

where $0 < \beta < 1$. Calculate his optimal level of consumption in each period.

5.2 Solution

$$\max_{x_0, x_1, x_2 \dots} \sum_{t=0}^{\infty} \beta^t ln(x_t)$$
$$s.t. \sum_{t=0}^{\infty} x_t = 1$$

Then setting up the lagrangian:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^{t} ln(x_{t}) - \lambda (\sum_{t=0}^{\infty} x_{t} - 1)$$

Next step is finding the F.O.C: $\frac{\partial \mathcal{L}}{\partial x_t} = \frac{\beta^t}{x_t} - \lambda = 0$ - from which we can express x_t as: $x_t = \frac{\beta^t}{\lambda}$ Now we can put the expression for x_t into $\frac{\partial \mathcal{L}}{\partial \lambda}$ (also the constraint expression):

$$\sum_{t=0}^{\infty} x_t = 1$$

Then this becomes:

$$\sum_{t=0}^{\infty} \frac{\beta^t}{\lambda} = 1$$

By using the geometric series formula we can then rewrite the summation of β^t $(\sum_{t=0}^{\infty} \beta^t)$ as: $\beta^t = \frac{1}{1-\beta}$. We are then left with the equation $\frac{1}{\lambda(1-\beta)} = 1$

Rearranging the equation to formulate an expression for λ :

$$\lambda = \frac{1}{1 - \beta}$$

Now we have all the components to formulate an expression stating the optimal consumption in each period.

We place the expression for λ into $x_t = \frac{\beta^t}{\lambda}$, which becomes $x_t = \frac{\beta^t}{\frac{1}{1-\beta}}$.

By simplifying the function we get that the agent's optimal level of consumption in each period is:

$$x_t = \beta^t (1 - \beta).$$

To conclude, the agent's optimal level of consumption in each period is:

$$x_t = \beta^t (1 - \beta).$$