Программа лабораторной работы

Цель работы: Изучить основные параметры операционных усилителей и распространённые схемы усилителей на их основе. Освоить методику проектирования усилителей на операционных усилителях. Научиться снимать основные параметры операционных усилителей — напряжения насыщения, напряжение смещения, частоту единичного усиления и основные параметры схем на основе ОУ— АЧХ, входное и выходное сопротивление.

- 1. Получить у преподавателя задание марку операционного усилителя и значение требуемого коэффициента усиления.
- 2. Подключить к операционному усилителю источники питания согласно паспортным данным ОУ и убедиться, что ОУ функционирует адекватно. Самый простой способ это сделать собрать повторитель напряжения (соединить выход ОУ с его инвертирующим входом), подать на вход повторителя сигнал с частотой около 1 кГц и амплитудой около 1 В и убедиться с помощью осциллографа, что повторитель работает корректно. Затем увеличить амплитуду до значений больше напряжения источника питания и пронаблюдать наступление насыщения.
- 3. Осуществить коррекцию нуля операционного усилителя. Для этого подключить оба входа операционного усилителя к земле, последовательно с одним из входов включить источник постоянного напряжения $U_{\text{кор}}$ (рис.7.8) и, изменяя его величину (и, возможно, знак), добиться обращения в 0 выходного напряжения операционного усилителя.

Рис. 7.8. Коррекция нуля операционного усилителя

Полученное значение $U_{\text{кор}}$ будет являться (с точностью до знака) напряжением смещения операционного усилителя $U_{\text{см}}$. Подать $U_{\text{см}}$ на один из входов ОУ (либо $-U_{\text{см}}$ на противоположный вход) и убедиться, что выходное напряжение ОУ обращается в 0. При необходимости немного уточнить значение $U_{\text{см}}$.

4. Измерить передаточную характеристику ОУ по постоянному току (рис. 7.9). Измерения провести в диапазоне изменения входного напряжения $U_{_{+}}-U_{_{-}}$ от $-E_{_{\text{пит}}}$ до $+E_{_{\text{пит}}}$ с достаточным количеством (не менее 5) точек на линейном участке характеристики. Измерения можно провести по точкам, устанавливая различные значения $U_{_{\text{вх}}}$ и измеряя $U_{_{\text{вых}}}$ (в этом случае следует в отчёте привести таблицу измерений), можно использовать для этого окно анализа Proteus.

Рис. 7.9. Измерение передаточной характеристики ОУ

Построить передаточную характеристику ОУ. На графике должны быть отчётливо видны напряжения насыщений операционного усилителя $U_{\text{нас}+}$ и $U_{\text{нас}-}$, его напряжение смещения $U_{\text{см}}$ и линейная часть характеристики, (содержащая не менее 5 точек). По линейной части передаточной характеристики определить коэффициент усиления операционного усилителя как $\Delta U_{\text{вых}}/\Delta U_{\text{вх}}$

Передаточную характеристику ОУ снять как для неинвертирующего, так и для инвертирующего входов.

5. Измерить АЧХ операционного усилителя (только для неинвертирующего входа). Для этого подключить ко входу ОУ (с

выполненной коррекцией нуля) источник переменного напряжения (рис.7.10). При измерении АЧХ с помощью окна анализа Proteus подключить к выходу ОУ индикатор напряжения и провести измерения. В случае измерения по точкам вольтметр АС подключить к выходу ОУ через разделительный конденсатор такой ёмкости C, чтобы выполнялось условие $R_{\rm V}C > 10T$, где $R_{\rm V}$ — сопротивление вольтметра, а T — период используемого входного сигнала (постоянная времени вольтметра, конечно, должна быть $\approx 10T$), и, изменяя частоту входного сигнала, измерить значение АЧХ на этой частоте.

Построить АЧХ в двойном логарифмическом масштабе так, чтобы на ней были отчётливо видны горизонтальный участок, участок с наклоном 20 дБ/дек, и, возможно, участки с наклонами 40 дБ/дек и 60 дБ/дек. По значению горизонтального

Рис. 7.10. Измерение АЧХ ОУ и частоты единичного усиления ОУ

участка определить значение коэффициента усиления ОУ и сравнить его с полученным в п.4.

Для измерения АЧХ ОУ можно использовать средства Proteus.

Нанести на построенную АЧХ прямые линии с наклоном 20 дБ/дек (и, возможно, с наклонами 40 дБ/дек и 60 дБ/дек) так, чтобы они максимально совпадали с соответствующими участками АЧХ.

По пересечению AЧX с горизонтальной осью координат определить частоту единичного усиления ОУ.

6. Подать на вход ОУ (с коррекцией нуля) переменное напряжение с частотой около частоты единичного усиления (п.5) и с амплитудой несколько десятых долей вольта. Изменяя частоту входного напряжения и амплитуду выходного сигнала, найти частоту единичного усиления, то есть такую частоту, при которой амплитуда выходного сигнала равняется амплитуде входного. Измерения провести на нескольких (не менее 3) значениях амплитуды входного сигнала. Измерения можно проводить с помощью

осциллографа, с помощью окна анализа (Analogue) или вольтметром АС через разделительный конденсатор.

7. Измерить входное сопротивление ОУ по инвертирующему и по неинвертирующему входам. Для этого нагрузить ОУ на резистор с сопротивлением около $E_{\rm пит}/1$ мА , подать на вход ОУ (с компенсированным нулём) переменное напряжение с частотой на горизонтальном участке АЧХ ОУ и достаточно малой (чтобы ОУ не входил в насыщение) амплитудой $U_{\rm вx}$, и измерить входной ток $I_{\rm вx}$. Этих данных достаточно, чтобы вычислить входное сопротивление: $R_{\rm bx} = U_{\rm вx}/I_{\rm вx}$. Процедура измерения входного сопротивления показана на рис.7.10.

При измерении в системе Proteus следует иметь в виду, что амперметры переменного тока измеряют действующее значение суммы постоянной и переменной составляющих, поэтому постоянную составляющую необходимо устранить

Puc. 7.10. Измерение входного сопротивления ОУ

с помощью специального разделительного конденсатора, как это изображено (схема приведена для примера, её не следует повторять) на рис. 7.11. Для изображённой схемы

$$I_{\text{bx}} = 29,9 \text{ HA}$$

$$R_{\text{BX}} = \frac{1 \text{ B/}\sqrt{2}}{29.9 \text{ HA}} = 47.3 \text{ MOM}$$
.

Puc. 7.11. Измерение входного сопротивления повторителя напряжения на ОУ

Измерения входного сопротивления следует провести как для неинвертирующего, так и для инвертирующего входов.

- 8. Рассчитать и собрать на операционном усилителе неинвертирующий (либо инвертирующий, по заданию) усилитель. Снять АЧХ усилителя, построить на одном графике АЧХ ОУ, полученную в п.5, и АЧХ собранного усилителя. Измерить верхнюю частоту среза и частоту единичного усиления собранного усилителя. Измерить коэффициент усиления этого усилителя. При этом измерения следует проводить на частоте горизонтального участка АЧХ, выходное напряжение измерять вольтметром АС через разделительный конденсатор, для устранения возможной постоянной составляющей выходного сигнала. Сравнить полученный коэффициент усиления с заданным.
- 9. Измерить входное сопротивление построенного усилителя, по аналогии со схемами рис.7.10, 7.11. Измерения следует провести как минимум на трёх частотах в конце полосы пропускания, на как можно меньшей частоте, и посередине (в логарифмическом масштабе) между ними.
- 10. Измерить выходное сопротивление построенного усилителя. Для этого измерить выходное напряжение усилителя без нагрузки, затем нагрузить его таким сопротивлением, чтобы выходное напряжение уменьшилось на 5-10% и вычислить выходное сопротивление по формуле $R_{\text{вых}} = -\Delta U_{\text{вых}}/\Delta I_{\text{вых}}$. Измерения выходного напряжения следует проводить так же, как в п.8, на тех же частотах, как в п.9.

Содержание отчёта

Отчет должен содержать:

1. Задание лабораторной работы — марку операционного и значения коэффициентов усиления для инвертирующего и для неинвертирующего усилителей.

- 2. Измеренное в п.3 Программы выполнения работы напряжение смещения ОУ.
- 3. Передаточную характеристику ОУ, измеренную для неинвертирующего и для инвертирующего входов. Для каждой характеристики измеренные напряжения насыщений, напряжение смещения и коэффициент усиления.
- 4. АЧХ операционного усилителя. Измеренные по АЧХ коэффициент усиления и его сравнение с результатом, полученным по передаточной характеристики, и частоту единичного усиления.
- 5. Результат непосредственного измерения частоты единичного усиления (п.6 Программы выполнения работы) и его сравнение с результатом, полученным в п.5.
- 6. Схемы измерения входного сопротивления ОУ по инвертирующему и по неинвертирующему входам. Результаты измерения для различных частот.
- 7. Схему разработанного усилителя на ОУ. Измеренные значения его коэффициента усиления, а также значения входного и выходного сопротивлений на различных частотах (с таблицей измерений). Построенные на одном графике АЧХ ОУ и разработанного усилителя на ОУ. Измеренные по графику значение коэффициента усиления усилителя, его сравнение с заданным и с прогнозируемым (п.9), частоту среза его АЧХ, и его частоту единичного усиления.

Варианты Лаб.4 приведены в таблице:

<u>№</u> варианта	Марка ОУ	Епит, В	Структура	Коэф. усил.
1	AD704P	±15	BiFET	46
2	AD706AP	±15	BiFET	250
3	AD712	±15	BiFET	-17
4	AD712 AD812	±15	DITEI	8
			MOCEET	
5	CA3240	±5	MOSFET	115
6	EL2030CN	±18	BT	-350
7	LF155A	±22	JFET	230
8	EL2232	±15		3
9	LF353	±18	JFET	-30
10	LF353N	±18	JFET	-19
11	LF347	±18	JFET	4
12	LF412	±18	JFET	-42
13	LF442	±18	JFET	85
14	LF442A	±18	JFET	2
15	LF444	±18	JFET	-70
16	LF444A	±18	JFET	150
17	LF453	±18	JFET	-3
18	LM124	±16	BT	-115
19	LM158	±15		90
20	LM224	±16	BT	-180
21	LM258	±15		-165
22	LM2902	±16	BT	-175
23	LM2904	±16	BT	13
24	LM324	±16	BT	300
25	LM358	±15		170
26	LM6118	±21	BT	-12
27	LM6181	±18	BT	14
28	LM6211	±12	ъ	-160
29	LM6218	±16	BT	-18
30	LM7121	±15		-190
31	LM7341	±15		-85
32	LM7372IMA LM7372MR	±15 ±15		-11 6
33	LM8261M5	±15 ±15		-100
35	LM8272	±13 ±12	BT	30
36	LM837	±12 ±18	BT	-7
37	LMC6022	±18 ±8	CMOS	-10
38	LMC6022 LMC6024	±8 ±8	CMOS	200
39	LMC6032	±8	CMOS	16
40	LMC6034	±8	CMOS	-240
41	LME49720	±15		48
42	LT1014	±15		11
43	LT1057	±15	JFET	-230
44	LT1078	±15		-65
45	LT1178	±15	BT	130

№ варианта	Марка ОУ	Епит, В	Структура	Коэф. усил.
46	LT1201	±15	BT	-32
47	LT1208	±15	BT	-300
48	LT1209	±15	BT	42
49	LT1211(LT1221)	±15	BT	19
50	LT1213	±15	BT	-280
51	LT1215	±15	BT	50
52	LT1220	±15	BT	95
53	LT1224	±15	BT	-36
54	LT1226	±15	BT	-125
55	LT1229	±15	BT	210
56	LT1252	±14	BT	-50
57	LT1254	±14	BT	-4
58	LT1354	±15	BT	-290
59	LT1356	±15	BT	-260
60	LT1357	±15	BT	-24
61	LT1359	±15	BT	10
62	LT1361	±15	BT	190
63	LT1363	±15	BT	-46
64	LT1365	±15	BT	-150
65	LTC1051	±8		12
66	LTC1053	±8		-55
67	MAX4486ASA	±2,5		350
68	MAX477ESA	±5		-320
69	MC33172P	±15	BT	290
70	MC33174P	±15	BT	120
71	MCP6001	±3,5		80
72	MCP6002	±2,5		-38
73	MCP6004	±3,5		1,5
74	MCP601	±2,5		34
75	MCP6021	±2,5		-120
76	MCP6024	±2,5		24
77	MCP604	±2,5		38
78	MCP6041	±3		260
79	MCP6044	±3		-13
80	MCP607	±3	CMOC	-75
81	MCP609	±3	CMOC	-44
82	MCP6141	±3		70
83	MCP6144	±3		-270
84	MCP616	±2,5	BiCMOC	-90
85	MCP619	±2,5	BiCMOC	270
86	NE5532	±15	BT	-105
87	OP113P	±15	BT	65
88	OP1177ARZ	±15		44
89	OP162P	±6	BT	-5
90	OP220AP	±15	BT	175

№ варианта	Марка ОУ	Епит, В	Структура	Коэф. усил.
91	OP400P	±12	BT	-8
92	OPA4137U	±15	JFET	-170
93	OPA4172D	±15	CMOC	320
94	OPA4234P	±15		-22
95	OPA703NA	С	MOSFET	9
96	OPA704UA	±5	MOSFET	15
97	TL032	±15	BT	-250
98	TC1029	±1,5	CMOC	-6
99	TC1034	±1,5	CMOC	-95
100	TLC1079	±15	MOSFET	110
101	TL032	±18	BT	-20
102	TL034	±18	BT	17
103	TL052	±18	BT	60
104	TL054	±18	BT	7
105	TL062	±18	JFET	-40
106	TL064	±18	JFET	-155
107	TL072	±18	JFET	240
108	TL074	±18	JFET	105
109	TL082	±18	JFET	155
110	TL084	±18	JFET	-16
111	TLC2252	±8	MOSFET	-200
112	TLC254C	±18	MOSFET	-60
113	TLC1078	±9	MOSFET	22
114	TLC2201	±8	MOSFET	165
115	TLC2254	±8	MOSFET	-110
116	TLC2262	±8	MOSFET	-140
117	TLC2264	±8	MOSFET	160
118	TLC2272	±8	MOSFET	135
119	TLC2274	±8	MOSFET	5
120	TLC252C	±9	MOSFET	-80
121	TLC27L2	±9	MOSFET	-9
122	TLC274	±9	MOSFET	100
123	TLC277	±9	MOSFET	-135
124	TLC279	±9	MOSFET	18
125	TLV271CD	±8	JFET	-2
126	TLV272CP	±8	JFET	20
127	TS951ID	±5	BiCMOS	28
128	TLE2022	±20	BT	-130
129	TLE2024	±20	BT	280
130	TLE2062	±19	JFET	180
131	TLE2064	±19	JFET	36
132	TLE2072	±19	JFET	140
133	TLE2074	±19	JFET	-14
134	TLE2082	±19	JFET	-1,5
135	TLE2084	±19	JFET	-34

№ варианта	Марка ОУ	Епит, В	Структура	Коэф. усил.
136	TLE2142	±22	BT	-210
137	TLE2144	±22	BT	-145
138	TLE2227	±19	BT	220
139	TLE2237	±19	BT	40
140	TLV2252	±8	MOSFET	-28
141	TLV2254	±8	MOSFET	55
142	TLV2262	±8	MOSFET	-26
143	TLV2264	±8	MOSFET	-15
144	TLV2322I	±8	MOSFET	145
145	TLV2324I	±8	MOSFET	32
146	TLV2332I	±8	MOSFET	-220
147	TLV2334I	±8	MOSFET	-48
148	TLV2342I	±8	MOSFET	75
149	TLV2344I	±8	MOSFET	125
150	TLV2379ID	±2	JFET	26

Выполненная в срок Лаб.4 оценивается (максимум) в 10 баллов. Можно выполнить дополнительное задание:

Рассчитать (не пользуясь принципом виртуального замыкания) и используя значения коэффициента усиления ОУ без ОС (пп.4-5), коэффициент усиления разработанной схемы на ОУ (п.8) и сравнить полученный результат с результатом п.8.

Выполнение дополнительного задания оценивается (максимум) в 5 баллов.