AdAstra – dokumentacja projektu

Wersja	Data utworzenia	Data ost. modyfikacji	Autorzy
1.0	16.04.2023	16.04.2023	Wanat, Zakrzewski
2.0	02.05.2023	02.05.2024	Wanat
3.0	20.05.2023	20.05.2023	Wanat

1. Ogólne informacje

1.1 Opis aplikacji

Aplikacja AdAstra realizuje funkcje związane z gromadzeniem oraz prezentowaniem ciał niebieskich (w uproszczeniu nazywanych w dokumencie gwiazdami) w formie mapy nieba.

W ramach rozwiązania użytkownik posiada możliwość dodawania, edytowania, wyświetlania oraz usuwania konstelacji oraz tworzących je gwiazd, które są gromadzone w bazie danych aplikacji. Ciała niebieskie mogą być dowolnie rozmieszczane na wyznaczonym fragmencie ekranu – niebie – przez użytkownika. Każda dodana gwiazda lub konstelacja może być swobodnie wyświetlona lub ukryta. Na prezentowanym fragmencie nieba możliwe jest zastosowanie filtrów symulujących obserwację w różnych porach nocy, czy warunkach atmosferycznych.

Głównym założeniem aplikacji jest budowa narzędzia umożliwiającego swobodne i intuicyjne symulowanie wyglądu nocnego nieba. Dodatkowo program umożliwia tworzenie atlasu gwiazd i konstelacji, a także bazy wiedzy na temat kosmosu i znajdujących się w nim ciał niebieskich. Poprzez uproszczony charakter rozwiązania dedykowanym odbiorcą aplikacji są nauczyciele i astronomowie amatorzy.

Program został wykonany w formie aplikacji webowej w języku programowania JavaScript z wykorzystaniem bazy danych MongoDb oraz interfejsem bazującym na HTML i CSS (oraz Bootstrap), implementującym autorski projekt graficzny.

Aplikacja w związku z mobilnym charakterem będzie korzystała z rozwiązań webowych zgodnych z aktualnymi wersjami przeglądarek Chrome, Mozilla Firefox, Microsoft Edge, Safari oraz będzie dostosowana do różnych rozdzielczości ekranów.

1.2 Odbiorcy docelowi

- 1. Nauczyciele i edukatorzy, wzbogacający prezentowane zagadnienia dotyczące kosmosu o wizualizacje stworzone przy pomocy aplikacji.
- 2. Astronomowie amatorzy, gromadzący dane i zdjęcia na temat obserwowanych przez siebie ciał niebieskich. Użytkownicy Ci mogą tworzyć swoisty atlas gwiazd złożony z fotografii ciał niebieskich własnego autorstwa.

1.3 Oczekiwane korzyści biznesowe

Oczekiwane korzyści dla użytkowników to:

- Wzbogacenie zajęć lekcyjnych dotyczących zagadnień związanych z kosmosem o wizualizacje stworzone w ramach aplikacji,
- Wzbudzenie zainteresowania kosmosem i naukami ścisłymi wśród uczniów,
- Tworzenie własnego katalogu ciał niebieskich wraz ze wskazówkami dotyczącymi ich obserwacji oraz innymi danymi szczegółowymi, co ułatwi dostęp do tych danych,
- Możliwość gromadzenia i prezentowania własnych fotografii gwiazd i konstelacji w przejrzystej i atrakcyjnej formie,
- Tworzenie planu obserwacji ciał niebieskich oraz dostęp do niego z dowolnego miejsca,

2. Aktorzy

Użytkownik aplikacji:

- Nauczyciel lub edukator w dziedzinie fizyki chciałby w wygodny i atrakcyjny sposób zaprezentować wybrane ciała niebieskie swoim uczniom. Ułatwiłoby mu to przekazanie wiedzy oraz wyjaśnienie wybranych zagadnień z dziedziny nauk o kosmosie.
- 2. Astronom amator w wolnym czasie szuka informacji na temat obiektów, które chciałby zobaczyć podczas samodzielnych obserwacji. Jest zainteresowany położeniem obiektu oraz informacjami ułatwiającymi obserwację wybranego ciała niebieskiego. Przed każdą z obserwacji ustala co będzie widział na niebie w danym dniu i o danej porze. Narzędzie symulujące wygląd nieba ułatwiłoby mu planowanie kolejnych obserwacji.

3. Obiekty biznesowe

Gwiazda – ciało niebieskie znajdujące odzwierciedlenie w rzeczywistym świecie i posiadający następujące atrybuty:

- Numer ID,
- Nazwa,
- Opis,
- Zdjęcie,
- Informacja w jakich jest konstelacjach.

Konstelacja – grupa gwiazd znajdująca odzwierciedlenie w rzeczywistym świecie i posiadająca następujące atrybuty:

- Numer ID,
- Nazwa,
- Opis,
- Informacja z jakich składa się gwiazd,
- Zdjęcie

4. Diagramy struktur i zachowań4.1

Diagram przypadków użycia

Diagram bazy danych:

6. Wymagania funkcjonalne

6.1 Opowieści użytkownika

- 1. Jako nauczyciel chciałbym w łatwy i atrakcyjny sposób zaprezentować wybrane ciało niebieskie na niebie aby uczniowie bez problemu zrozumieli co mam na myśli.
- 2. Jako nauczyciel chciałbym móc prezentować wybrane gwiazdy w aplikacji aby nie tracić czasu na poszukiwanie zdjęć w Internecie lub folderach ze zdjęciami na każdej lekcji.
- 3. Jako astronom amator chciałbym móc tworzyć atlas gwiazd w aplikacji, by nie musieć pamiętać, które obiekty już widziałem.
- 4. Jako astronom amator chciałbym móc zapisywać zdjęcia obiektów, które zaobserwowałem w aplikacji, co pozwoli na ich uporządkowanie i łatwiejsze przeglądanie.
- 5. Jako astronom amator chciałbym móc zasymulować wygląd nieba przed obserwacją aby lepiej się do niej przygotować i nie tracić czasu na poszukiwanie wybranego obiektu w terenie.
- 6. Jako astronom amator chciałbym mieć dostęp do zapisanych informacji o wybranym ciele niebieskim z dowolnego miejsca, tak by nie tracić czasu na poszukiwanie informacji podczas obserwacji w terenie.

6.2 Specyfikacja funkcjonalności

- 1. Aplikacja umożliwi dodawanie, edytowanie, wyświetlanie i usuwanie konstelacji przez użytkownika. Obiekty muszą być jednoznacznie identyfikowane.
- 2. Aplikacja umożliwi dodawanie, edytowanie, wyświetlanie i usuwanie gwiazd przez użytkownika. Obiekty muszą być jednoznacznie identyfikowane.
- 3. Użytkownicy muszą mieć wgląd do wszystkich obiektów znajdujących się w bazie wraz z możliwością ich filtrowania.
- 4. Użytkownik musi posiadać możliwość swobodnego ustawiania ciał niebieskich na niebie.
- 5. Użytkownik musi posiadać możliwość przypisywania zdjęć do ciał niebieskich.
- 6. Aplikacja umożliwi symulowanie wyglądu nieba dla różnych warunków czasowych i atmosferycznych.
- 7. Użytkownik musi posiadać możliwość ukrycia i podświetlenia wybranych gwiazd.

7. Wymagania pozafunkcjonalne

- 1. Średni czas odpowiedzi systemu na wykonaną akcję użytkownika nie może być większy niż 4 sekundy.
- 2. System w związku z charakterem aplikacji (aplikacja webowa) musi być kompatybilny z najnowszymi wersjami popularnych przeglądarek takich jak:
 - Google Chrome
 - Mozilla Firefox
 - Microsoft Edge
 - Opera
 - Safari.
- 3. Aplikacja musi implementować graficzny, responsywny interfejs nawiązujący do tematyki związanej z kosmosem. Z tych powodów dominującymi kolorami w ramach aplikacji musi być czerń, niebieski, fioletowy, żółty.
- 4. Aplikacja ma implementować elementy wizualne, które ułatwiają zinterpretowanie np. warunków pogodowych.
- W przypadku poziomu zachmurzenia mogą to być filtry, które jednoznacznie ukażą jaki poziom zachmurzenia obecnie występuje.
- w przypadku deszczu mogą to być animacje prezentujące opad.

8. Scenariusze przypadków testowych:

TA1. Dodawanie gwiazdy

Data utworzenia scenariusza testowego: 13.05.2023r.

Ostatnia modyfikacja scenariusza testowego: 13.05.2023r.

Warunki wstępne: aplikacja posiada połączenie z bazą danych.

Dane wejściowe:

- nazwa: Słońce

- opis: Główna gwiazda układu słonecznego

- zdjęcie: słońce.png

Opis Interakcji:

• Otworzenie formularza dodawania obiektu,

- Wypełnienie formularza, odpowiadającego za dodawanie gwiazdy danymi testowymi;
- Przesłanie zgłoszenia;

• Weryfikacja, czy gwiazda została prawidłowo zapisana w bazie danych.

TA2. Dodawanie konstelacji

Data utworzenia scenariusza testowego: 13.05.2023r.

Ostatnia modyfikacja scenariusza testowego: 13.05.2023r.

Warunki wstępne: aplikacja posiada połączenie z bazą danych.

Dane wejściowe:

- nazwa: Duży wóz

- opis: Jedna z najbardziej znanych konstelacji

- zdjęcie: duzy_woz.png

- gwiazdy wchodzące w skład konstelacji: Dubhe, Merak, Phecda

Opis Interakcji:

- Otworzenie formularza dodawania obiektu,
- Wypełnienie formularza, odpowiadającego za dodawanie konstelacji danymi testowymi;
- Przesłanie zgłoszenia,

• Weryfikacja, czy konstelacja została prawidłowo zapisana w bazie danych.

TA3. Usuwanie gwiazdy:

Data utworzenia scenariusza testowego: 13.05.2023r.

Ostatnia modyfikacja scenariusza testowego: 13.05.2023r.

Warunki wstępne: w bazie danych istnieje przynajmniej jedna gwiazda, aplikacja posiada połączenie z bazą danych.

Dane wejściowe:

- Id gwiazdy
 - Wyświetlenie szczegółów obiektu o wskazanym numerze Id,
 - Usunięcie obiektu,
 - Sprawdzenie, czy obiekt został usunięty z bazy danych.

TA4. Wyświetlenie szczegółów gwiazdy:

Data utworzenia scenariusza testowego: 13.05.2023r.

Ostatnia modyfikacja scenariusza testowego: 13.05.2023r.

Warunki wstępne: w bazie danych istnieje przynajmniej jedna gwiazda, aplikacja posiada połączenie z bazą danych.

Dane wejściowe:

- Id gwiazdy
 - Wyświetlenie szczegółów obiektu o wskazanym numerze Id,

TA5. Edycja danych gwiazdy:

Data utworzenia scenariusza testowego: 13.05.2023r.

Ostatnia modyfikacja scenariusza testowego: 13.05.2023r.

Warunki wstępne: w bazie danych istnieje przynajmniej jedna gwiazda, aplikacja posiada połączenie z bazą danych.

Dane wejściowe:

- Id gwiazdy,
- nowa nazwa,
- nowy opis,

- nowe zdjęcie

- Wyświetlenie szczegółów dotyczących gwiazdy,
- Otworzenie formularza edycji obiektu,
- Wprowadzenie danych testowych do formularza,
- Przesłanie zmodyfikowanego obiektu do bazy danych,
- Sprawdzenie, czy dany obiekt został zaktualizowany w bazie danych.

9. System kontroli wersji

W ramach projektu będzie wykorzystywany system kontroli wersji GIT w rozwiązaniu dostarczanym przez github.com pod linkiem: https://github.com/GrzegorzWanat95/AdAstra.

System kontroli wersji umożliwia równoległą pracę nad projektem przez wszystkich członków zespołu deweloperskiego z kontrolą wszelkich wprowadzanych zmian oraz możliwością ich wycofania lub integracji. Każda zmiana w kodzie wymaga akceptacji przynajmniej jednej osoby z zespołu, innej niż osoba wprowadzająca zmianę.