

Actuarial Sciences Review

作者: Lollins

组织:安徽师范大学数学与统计学院

时间: July 1, 2024

邮箱: jieyu8258@gmail.com

前言

由于 king 哥已经制作好了一份精美且完整的精算学 pdf 电子笔记, 若我再做精算学上课笔记, 实乃多余. 故我决定做一份精算学复习资料, 主要是对精算学的一些重要知识点进行总结¹, 以便大家复习使用.

当然本笔记只是 king 哥电子笔记的简略版, 会有很多不完善且内容不全的地方, 所以本笔记的内容也仅仅只到达了能让大家通过期末考试的水平, 如果想要高分通过这门课, 强烈建议爆肝 king 哥的电子笔记!!!!

在这里,愿大家都能顺利通过这学期的各门考试,也祝大家顺利毕业,前程似锦,来年都能收到心仪高校的录取通知书!

Lollins July 1, 2024

 $^{^1}$ 本文不涉及一些细节上证明以及推导,想了解公式由来的读者直接阅读 king 哥群里的 pdf 即可.

目录

第1章	生存分布	2
1.1	新生儿的生存分布	2
1.2	x 岁个体的生存分布	3
1.3	随机生存群	5
1.4	生命表的元素	6
1.5	分数年龄上的死亡假设	7
佐っ立	I ± /0 %	
	人寿保险	9
2.1	人寿保险概述	
2.2	生存保险	
2.3	n 年期 (定期) 死亡保险	
	2.3.1 死亡立即支付的 <i>n</i> 年期定期寿险	
	2.3.2 死亡年末支付的 <i>n</i> 年期定期寿险	
2.4	终身死亡保险	
	2.4.1 死亡后立即支付的终身死亡保险	
	2.4.2 死亡年末支付的终身寿险	
2.5	生死合险 (两全保险)	13
2.6	延期终身死亡保险	13
2.7	将每年分为 m 个区间,在死亡区间末支付 1 元的终身死亡保险 \dots	
2.8	变额人寿保险	13
2.9	小结	13
	2.9.1 寿险支付现值	13
	2.9.2 寿险精算现值	13
# 2 *	4. + f. A	
	生存年金	14
3.1	期初生存年金	
	3.1.1 终身期初生存年金	
	3.1.2 <i>n</i> 年期初生存年金	
3.2	期末生存年金	
3.3	每年分成 m 个区间的生存年金	
3.4	连续生存年金	
	3.4.1 连续的终身生存年金	
	3.4.2 <i>n</i> 年期连续生存年金	15
	3.4.3 延期 n 年的终身连续生存年金	15
3.5	小结	15
	3.5.1 生存年金支付现值	15
	3.5.2 生存年金精算现值	16
第4章	净保费理论	17
毎年 4.1	平衡准则	
4.1	至交净保费	
4.3	完全连续险种的年均衡净保费	18

		且	录
	4.3.1	完全连续的终身死亡保险	
	4.3.2	缴费期为 h 年的完全连续的 n 年期定期寿险 $(h \le n)$	18
	4.3.3	其他完全连续险种的年均净保费	18
4.4	完全离	散险种的年均衡净保费	19
	4.4.1	完全离散终身寿险	19
	4.4.2	其他完全离散险种的年均衡净保费	19
第5章	净准备	金理论	20
5.1	确定净	·准备金的准则	20
5.2	完全连	续险种在平衡准则下的净准备金	21
	5.2.1	平衡准则下完全连续的终身寿险的净准备金	21
5.3	完全离		22
	5.3.1	平衡准则下完全离散的终身寿险的净准备金	22

期末复习相关内容

精算学的主要内容

- 1. 你能活多久?(生存分布)
- 2. 你死的时候, 保险公司支付你 1 元, 这 1 元的现值为多少?(人寿保险)
- 3. 在你活着时,保险公司每年支付你1元,这些支付的现值是多少?(生存年金)
- 4. 上述的寿险与生存年金, 你该向保险公司缴纳多少保费?(保费理论)
- 5. 保险公司为了保证支付,要准备多少钱?(准备金理论)

题型

- 1. 填空题: $5 \times 3 = 15$ 分; (年金与寿险的关系, UDD 假设关系)
- 2. 分析题: $3 \times 7 = 21$ 分; (解释含义)
- 3. 简答题: 3×4=12分; (生存年金分类, 第四章与第五章的一些定义)
- 4. 计算题: 4 × 10 = 40 分; (前四章一章一题)
- 5. 综合题: $1 \times 12 = 12$ 分. (重点复习第五章的例题)

第1章 生存分布

1.1 新生儿的生存分布

定义 1.1 (生存函数)

称 s(t) := P(X > t), t > 0 为 X 的生存函数.

推论 1.1

$$s(t) = 1 - F(t), s'(t) = -f(t).$$

 \odot

定义 1.2 (死亡力函数)

称 $\mu(t) := -\frac{s'(t)}{s(t)}, t \ge 0$ 为新生儿的死亡力函数.

•

推论 1.2

关于 $\mu(t)$, s(t) 及 $f_X(t)$ 有如下结论:

1.
$$\mu(t) = -\frac{s'(t)}{s(t)} = \frac{f_X(t)}{1 - F_X(t)} = \frac{f_X(t)}{s(t)};$$

2.
$$f_X(t) = \mu(t)s(t)$$
;

3.
$$s(t) = e^{-\int_0^t \mu(s)ds}$$
.

 \odot

注

- 1. 由 $s(t) = e^{-\int_0^t \mu(s) ds}$ 及 $\mu(t) = -\frac{s'(t)}{s(t)}$ 可知, 生存函数 s(t) 与死亡力函数 $\mu(t)$ 相互唯一确定.
- 2. 一个函数 $\mu(t)$ 要作为死亡力, 必须满足以下两条:
 - (a). $\mu(t) \ge 0$, $\forall t \ge 0$ (保证 s(t) 单调递减).
 - (b). $\int_0^\infty \mu(t) dt = \infty$ (保证 $s(\infty) = 0$).

例题 1.1 假设新生儿的寿命服从以 λ 为参数的指数分布,则密度函数 $f_X(t) = \lambda e^{-\lambda t}, \ t > 0.$

解 分布函数 $F_X(t) = \int_0^t f_X(s) ds = 1 - e^{-\lambda t}, t > 0.$

生存函数 $s(t) = 1 - F_X(t) = e^{-\lambda t}, t > 0$. 故其死亡力函数为

$$\mu(t) = -\frac{s'(t)}{s(t)} = -\frac{-\lambda e^{-\lambda t}}{e^{\lambda t}} \equiv \lambda. \tag{1.1}$$

 $\dot{\mathbf{L}}$ 由(1.1)式可知, 若新生儿寿命服从以 λ 为参数的指数分布, 则死亡力 $\mu(t) \equiv \lambda$, 和 t 无关. 这表示新生儿的死亡力在任何时候都是一样的. 也就是说, 新生儿永远年轻. 这当然与实际情况不符. 所以, 指数分布作为寿命分布是有缺陷的. 但由于指数分布的计算较为简单, 所以在理论研究中, 学者们很多时候都采用指数分布作为寿命分布.

定义 1.3 (整数年龄与分数年龄)

很多时候, 保险金都是在整数时刻支付的. 所以有必要研究整数年龄和分数年龄. 设 K(0) 为 X 的整数部分, S(0) 为 X 的分数部分. 即

$$X = K(0) + S(0).$$

记 $\hat{e}_0 = E(X)$, 它表示新生儿的期望寿命; 记 $e_0 = E(K(0))$, 它表示期望整数寿命. 易知

$$e_0 \le \mathring{e}_0 < e_0 + 1$$
.

4

引理 1.1

设随机变量 X 的 n 阶矩存在, 即 $E(X^n) < \infty$, 则 $\lim_{M \to \infty} M^n s(M) = 0$.

推论 1.3

如下结论成立:

1.
$$\dot{e}_0 = E(X) = \int_0^\infty s(t) dt;$$

2.
$$E(X^2) = \int_0^\infty 2t s(t) dt$$
;

3.
$$E(K(0)^2) = \sum_{n=1}^{\infty} (2n-1)s(n);$$

4.
$$e_0 = E(K(0)) = \sum_{n=1}^{\infty} s(n)$$
.

 $\stackrel{\mathbf{!}}{\mathbf{!}} E(X^n) = \int_0^\infty nt^{n-1} s(t) dt.$

1.2 x 岁个体的生存分布

定义 1.4 (x 岁个体余命的分布、密度及生存函数)

将一个x岁还活着的个体记为(x). 个体(x)的余命记为T(x), 显然有T(x) = X - x.

记 $F_{T(x)}(t)$ 为T(x)的分布函数, $f_{T(x)}(t)$ 为T(x)的密度函数,则

$$F_{T(x)}(t) = 1 - \frac{s(x+t)}{s(x)}, \ f_{T(x)}(t) = -\frac{s'(x+t)}{s(x)}.$$

称 $s_{T(x)}(t) := P(T(x) > t)$ 为个体 (x) 的的生存函数.

定义 1.5 (x 岁个体的死亡力)

称 $\mu_x(t) = -\frac{s'_{T(x)}(t)}{s_{T(x)}(t)}$ 为 x 岁个体在 t 年后的死亡力函数.

我们有

1.
$$s_{T(x)}(t) = 1 - F_{T(x)}(t) = \frac{s(x+t)}{s(x)}$$
;

1.
$$s_{T(x)}(t) = 1 - F_{T(x)}(t) = \frac{s(x+t)}{s(x)};$$

2. $\mu_x(t) = \frac{f_{T(x)}(t)}{1 - F_{T(x)}(t)} = \frac{f_{T(x)}(t)}{s_{T(x)}(t)} = -\frac{s'_{T(x)}(t)}{s_{T(x)}(t)}.$

3.
$$f_{T(x)}(t) = s_{T(x)}(t)\mu_x(t)$$
;

4. $\mu_x(t) = \mu(x+t)$;

5.
$$s_{T(x)}(t) = e^{-\int_0^t \mu_x(s)ds} = e^{-\int_0^t \mu(x+s)ds} = e^{-\int_x^{x+t} \mu(s)ds}$$
.

 \dot{z} 理论上, 一个人一旦出生, 其死亡力就"注定"了. 如果他在 x 岁还活着, 在 t 年后他变为 x+t 岁, 此时他的死 亡力是 $\mu_x(t)$. 换一种观点, 如果站在 0 时刻 (他出生时) 看, 他在 x+t 岁的死亡力应为 $\mu(x+t)$. 故有

$$\mu_x(t) = \mu(x+t).$$

例题 1.2 设新生儿的寿命服从以 $\lambda > 0$ 为参数的指数分布. 则 $s(t) = e^{-\lambda t}, t > 0$.

 $\mu_x(t) = \mu(x+t) \equiv \lambda.$

解从而有

$$F_{T(x)}(t) = 1 - \frac{s(x+t)}{s(x)} = 1 - \frac{e^{-\lambda(x+t)}}{e^{-\lambda x}} = 1 - e^{-\lambda t} = F_X(t);$$

$$f_{T(x)}(t) = F'_{T(x)}(t) = F'_X(t) = f_X(t);$$

以上计算再次表明, 在指数分布寿命假设下, 新生儿的的寿命 X 与 x 岁的个体的余命 T(x) 的分布相同. 进一步 说明指数分布作为寿命分布是有缺陷的.

命题 1.1

 $\forall u, t > 0, \, f$

$$P(T(x) > t + u|T(x) > t) = P(T(x+t) > u).$$
(1.2)

该式的含义为: 一个 x 岁的人, 在 x+t 岁还活着的条件下, 再活 u 年不死的概率与一个 x+t 岁的人在 u 年内未死的概率相等.

注由(1.2)式立即可得

$$P(T(x) \le t + u | T(x) > t) = P(T(x+t) \le u). \tag{1.3}$$

例题 1.3 设新生儿的寿命服从指数分布,参数为 λ .

解 我们有 $\mu(t) \equiv \lambda$, 且

$$s(t) = e^{-\lambda t}, t > 0.$$

$$F_{T(x)} = 1 - \frac{s(x+t)}{s(x)} = 1 - e^{-\lambda t} = F_X(t).$$

$$f_{T(x)}(t) = F'_{T(x)}(t) = \lambda e^{-\lambda t} = f_X(t), t > 0.$$

$$s_{T(x)}(t) = \frac{s(x+t)}{s(x)} = e^{-\lambda t} = s(t), t > 0.$$

$$\mu_x(t) = \mu(x+t) \equiv \mu, t > 0.$$

$$e_x = \sum_{k=1}^{\infty} {}_k p_x = \sum_{k=1}^{\infty} e^{-\lambda k} = \frac{e^{-\lambda}}{1 - e^{-\lambda}}.$$

$$\mathring{e}_x = \int_0^{\infty} {}_t p_x dt = \int_0^{\infty} e^{-\lambda t} dt = \frac{1}{\lambda}.$$

显而易见, 这里的 e_x 和 e_x 与 x 无关, 也就是说, 所有人的剩余寿命的期望都是一样的, 和他现在的年龄无关. 这进一步说明指数分布作为寿命分布是有缺陷的. 此外, 因 $e_x = ET(x) = \frac{1}{\lambda}$, 故指数分布的参数 λ 正好是期望寿命的倒数.

命题 1.2

定义如下几个记号:

- 1. 用 $_tp_x\stackrel{\text{def}}{=} P(T(x)>t)=s_{T(x)}(t)$ 表示个体 (x) 在 t 年后还活着的概率. 显然有 $_tp_x=s_{T(x)}(t)=\mathrm{e}^{-\int_0^t\mu_x(s)\mathrm{d}s}=\mathrm{e}^{-\int_0^t\mu(x+s)\mathrm{d}s}=\mathrm{e}^{-\int_x^{x+t}\mu(s)\mathrm{d}s}.$
- 2. 用 $_tq_x\stackrel{\mathrm{def}}{=} P(T(x) \leq t) = F_{T(x)}(t)$ 表示一个 x 岁的人在 t 年内死亡的概率. 易知

$$_tp_x + _tq_x = 1.$$

3. 用 $u|_tq_x\stackrel{\mathrm{def}}{=} P(u < T(x) \leq u+t)$ 表示一个 x 岁的人在 x+u 岁还活着, 但在未来 t 年内死亡的概率.

推论 1.5

如下几个结论成立:

- $1. \frac{d(t_t p_x)}{dt} = -t p_x \mu_x(t);$
- 2. $\frac{d(tp_x)}{dx} = tp_x(\mu(x) \mu(x+t));$
- 3. $f_{T(x)}(t) = {}_{t}p_{x} \cdot \mu_{x}(t);$
- 4. $_{t}p_{x} = _{s}p_{x} \cdot _{t-s}p_{x+s}, 0 \leq s \leq t;$
- 5. $u|tq_x = up_x u+tp_x, u, t > 0;$
- 6. $u|_t q_x = up_x _t q_{x+u}, u, t \ge 0.$

C

定义 1.6 (个体 (x) 的整数与分数余命及期望)

类似处理新生儿的寿命一样, 可将个体 (x) 的余命 T(x) 分为整数部分和小数部分. 设

$$T(x) = K(x) + S(x),$$

其中 K(x) 是 T(x) 的整数部分, S(x) 是 T(x) 的小数部分. 记

$$\mathring{e}_x \stackrel{\text{def}}{=} E(T(x)), \ e_x \stackrel{\text{def}}{=} E(K(x)).$$

则简单计算可知

$$\mathring{e}_x = E(T(x)) = \int_0^\infty {}_t p_x dt, \ e_x = E(K(x)) = \sum_{k=1}^\infty {}_k p_x.$$

1.3 随机生存群

定义 1.7 (模型描述)

设 0 时刻系统中有 l_0 个新生儿, 他们的寿命独立同分布, 服从某分布, 生存函数为 s(t), $t \geq 0$. 记 $\mathcal{L}(x)$ 为在 x 岁还活着的总人数;

 $_{t}\mathcal{D}_{x}$ 为 [x,x+t] 内死去的总人数.

设系统中初始时刻的 l_0 个人的寿命分别为 $X_1, X_2, ..., X_n$, 则他们独立同分布, 且

$$P(X_i > t) = s(t), i = 1, ..., n.$$

显然有

$$\mathscr{L}(x) = \sum_{i=1}^{l_0} I_{\{X_i \geqslant x\}}, \ _t\mathscr{D}_x = \sum_{i=1}^{l_0} I_{\{x \leqslant X_i < x+t\}},$$

其中
$$I_A = \left\{ \begin{array}{ll} 1, & \omega \in A, \\ 0, & \omega \in A^c \end{array} \right.$$
 为示性函数.

 $l_x \stackrel{def}{=} E(\mathcal{L}(x))$, 它表示在x岁还活着的期望人数; $td_x \stackrel{def}{=} E(t\mathcal{D}_x)$, 它表示在[x,x+t)内死去人数的期望.

推论 1.6

如下结论成立:

1.
$$l_x = l_0 s(x), t d_x = l_x - l_{x+t};$$

2.
$$_{t}p_{x}=\frac{l_{x+t}}{l_{-}};$$

$$3. \ _t q_x = \frac{_t d_x}{l};$$

4.
$$l_{x+t} = l_x e^{-\int_x^{x+t} \mu(s) ds}$$
;

$$5. \frac{dl_x}{dx} = -l_x \mu(x);$$

6.
$$_{n}d_{x} = \int_{x}^{x+n} l_{y}\mu(y)dy$$
.

注 下面我们分析等式 $_td_x = \int_x^{x+t} l_y u(y) dy$ 的含义.

等式左端 td_x 表示在 [x,x+t] 内死去的人数. 现分析右端. 注意到

$$\mu(y)dy = -\frac{s'(y)}{s(y)}dy = -\frac{ds(y)}{s(y)} = \frac{s(y) - s(y + \Delta y)}{s(y)}.$$

所以 $\mu(y)dy$ 表示一个人在 y 岁还活着的条件下,在 [y,y+dy] 内死去的概率,于是 $l_y\mu(y)dy$ 表示在 [y,y+dy] 内死去的人数. 对 y 积分可知,等式右端的 $\int_x^{x+t} l_y\mu(y)dy$ 表示在 [x,x+t] 内死去的人数. 所以右端等于左端.

1.4 生命表的元素

命题 1.3

在精算学的诸多记号中, 若左下标是1, 通常将其省略, 所以我们有

$$p_x \triangleq {}_{1}p_x, \ q_x \triangleq {}_{1}q_x,$$
$$L_x \triangleq {}_{1}L_x, \ {}_{u|}q_x \triangleq {}_{u|1}q_x.$$

命题 1.4

记 $a \wedge b = \min\{a,b\}, \ a \vee b = \max\{a,b\}, \ EX = \int_0^\infty x f(x) dx, X \geq 0.$ 计算可得

$$E(X \wedge t) = \int_0^t x f(x) dx + t P(X > t).$$

定义 1.8 (条件数学期望)

设A是一个随机事件,X为一个随机变量,给定事件A的条件下,X的条件期望定义为

$$E(X|A) \stackrel{def}{=} \frac{E(XI_A)}{EI_A} = \frac{E(XI_A)}{P(A)}.$$

可以类似条件概率的定义理解条件期望的定义.

定义 1.9

 $_{t}L_{x}$: 所有人在 [x,x+t) 内活过的总时间, 记作 $_{t}L_{x}=l_{x}E(T(x)\wedge t)$.

推论 1.7

如下结论成立:

$$tL_x = l_x E(T(x) \wedge t)$$

$$= \int_0^t s l_{x+s} u(x+s) ds + t l_{x+t}$$

$$= \int_0^t l_{x+s} ds$$

注 表达式 $\int_0^t s l_{x+s} \mu(x+s) ds + t l_{x+t}$ 的含义如下:

一方面, 在 x+s 岁活着的人有 l_{x+s} 个, 每个人在 [x+s,x+s+ds] 内死去的概率为 $\mu(x+s)ds$, 所以, 在 [x+s,x+s+ds] 内死去的人数为 $l_{x+s}\mu(x+s)ds$, 他们每个人在 [x,x+t] 内活 s 年, 所以在 x+s 岁死去的人在 [x,x+t] 内活的总时间为 $sl_{x+s}\mu(x+s)ds$, 再对 s 在 (0,t) 求积分 (求和) 可知, $\int_0^t sl_{x+s}\mu(x+s)ds$ 表示在 [x,x+t] 内死去的人在这段时间内活过的总时间.

另一方面, 在 x+t 岁还活着的人有 l_{x+t} 个, 他们每个人在 [x,x+t) 内活了 t 岁, 故他们在 [x,x+t) 内总共活了 tl_{x+t} 岁.

综合以上分析, $\int_0^t sl_{x+s}\mu(x+s)ds+tl_{x+t}$ 表示所有人在 [x,x+t] 内活过的总时间, 这是一个复杂的公式, 但它有一个简单的表达 $\int_0^t l_{x+s}ds$.

定义 1.10

a(x): 一个 x 岁的人在 1 年内死去的条件下, 在 [x,x+1) 内活过的期望时间, 记作 $a(x)=E(T(x)|T(x)\leq 1)$.

推论 1.8

以下等式成立:

1.
$$a(x) = \frac{\int_0^1 t_t p_x u_x(t) dt}{q_x};$$

2.
$$L_x = d_x a(x) + l_{x+1}$$
.

注 表达式 $L_x = d_x a(x) + l_{x+1}$ 的含义如下:

等式右端的 $d_x a(x)$ 表示 [x, x+1) 内死去的人在 [x, x+1) 内活过的总时间. 右端的 $l_{x+1} \times 1$ 表示在 x+1 岁 活着的 l_{x+1} 人在 [x, x+1) 内活过的总时间. 所以, 右端表示所有人在 [x, x+1) 活过的总时间, 正好等于左端的

命题 1.5

- 1. 中心死亡率: $_{n}m_{x}=\frac{_{n}q_{x}}{\int_{0}^{n}{_{t}p_{x}dt}}=\frac{_{n}d_{x}}{_{n}L_{x}};$ 2. $T_{x}\triangleq\int_{0}^{\infty}l_{x+s}ds=_{\infty}L_{x},T_{x}$ 表示所有人在 $[x,\infty)$ 内活过的总时间;
- 3. $Y_x \triangleq \int_0^\infty T_{x+s} ds$.

1.5 分数年龄上的死亡假设

定义 1.11 (死亡力均匀分布假设 (UDD 假设))

若x为非负整数,s(t)是生存函数,若 $\forall t \in [0,1)$,都有

$$s(x+t) = (1-t)s(x) + ts(x+1). (1.4)$$

称在 [x,x+1) 上, 死亡力均匀分布假设成立.

推论 1.9

设 [x,x+1) 上 UDD 假设成立, 则有以下结论:

- 1. $l_{x+t} = (1-t)l_x + tl_{x+1}, t \in [0,1);$
- 2. $_td_x = td_x, t \in [0, 1);$
- 3. $tq_x = tq_x, t \in [0, 1);$
- 4. $f_{T(x)}(t) = q_x, t \in [0, 1);$
- 5. $\mu_x(t) = \frac{q_x}{1 tq_x}$.

命题 1.6

在 UDD 假设之下, 我们有如下两个命题:

- 1. 已知在每一年龄段上 UDD 假设成立,则 K(x) 与 S(x) 相互独立,且 S(x) 服从 [0,1] 上的均匀分布;
- 2. 在每一年龄段 UDD 假设成立时,有

$$\mathring{e}_x = e_x + \frac{1}{2}, \ D(T(x)) = D(K(x)) + \frac{1}{12}.$$

定义 1.12 (常数死亡力假设)

设x 为整数, 若 $\forall t \in [0,1)$ 有

$$\ln s(x+t) = (1-t)\ln s(x) + t\ln s(x+1). \tag{1.5}$$

则称生存函数在年龄段 [x,x+1) 满足常数死亡力假设.

推论 1.10

设在年龄段 [x,x+1) 常数死亡力假设成立,则对 $t \in (0,1)$,有

- 1. 期望生存人数满足 $\ln l_{x+t} = (1-t) \ln l_x + t \ln l_{x+1}$;
- 2. 死亡力为常数, 即 $\mu_x(t) = -\ln p_x \stackrel{\triangle}{=} \mu$;
- 3. $l_{x+t} = l_x e^{-\mu t}$, $tq_x = 1 p_x^t$, $f_{T(x)}(t) = -p_x^t \ln p_x$.

0

例题 1.4 设 $S(x) = 1 - \frac{x}{12}$, $0 \le x \le 12$, l_0 个个体相互独立, 生存函数都是 S(x).

- (1) 求 $(3\mathcal{D}_0, 3\mathcal{D}_3, 3\mathcal{D}_6, 3\mathcal{D}_9)$ 的联合分布;
- (2) 求这四个随机变量的期望和方差;
- (3) 求它们两两之间的相关系数.

解 易知 l_0 个人的寿命 $X_1, X_2, ..., X_{l_0} \overset{\text{i.i.d.}}{\sim} U[0, 12]$. 且随机变量满足

$${}_3\mathscr{D}_0 = \sum_{k=1}^{l_0} I_{\{0 \leq X_k \leq 3\}}, \; {}_3\mathscr{D}_3 = \sum_{k=1}^{l_0} I_{\{3 \leq X_k \leq 6\}}, \; {}_3\mathscr{D}_6 = \sum_{k=1}^{l_0} I_{\{6 \leq X_k \leq 9\}}, \; {}_3\mathscr{D}_9 = \sum_{k=1}^{l_0} I_{\{9 \leq X_k \leq 12\}}.$$

(1) 令事件 $A = \{_3 \mathcal{D}_0 = k_1,\ _3 \mathcal{D}_3 = k_2,\ _3 \mathcal{D}_6 = k_3,\ _3 \mathcal{D}_9 = k_4\}$,若事件 A 发生,则在 l_0 个人中,有 k_1 人在 [0,3] 内死亡;有 k_2 人在 [3,6] 内死亡;有 k_3 人在 [6,9] 内死亡;有 k_4 人在 [9,12] 内死亡,其中 $k_1+k_2+k_3+k_4=l_0$. 从 $k_1+k_2+k_3+k_4$ 个人中,选出 k_1 个人在 [0,3] 内死亡,有 $C^{k_1}_{k_1+k_2+k_3+k_4}$ 种选法;从 $k_2+k_3+k_4$ 个人中,选出 k_2 个人在 [3,6] 内死亡,有 $C^{k_2}_{k_2+k_3+k_4}$ 种选法;从 k_3+k_4 个人中,选出 k_3 个人在 [6,9] 内死亡,有 $C^{k_3}_{k_3+k_4}$ 种选法:于是

$$P(A) = \frac{(k_1 + k_2 + k_3 + k_4)!}{k_1! k_2! k_3! k_4!} \cdot {}_{3}q_0^{k_1} \cdot {}_{3|3}q_0^{k_2} \cdot {}_{6|3}q_0^{k_3} \cdot {}_{9|3}q_0^{k_4}.$$

(2) 对于一个二项分布 B(n,p), 其期望 E(X) = np, 方差 Var(X) = np(1-p).

因此,对于每个随机变量 $3\mathcal{D}_k$ 有

期望

$$E(_3\mathscr{D}_k) = \frac{l_0}{4};$$

方差

$$\operatorname{Var}({}_3\mathscr{D}_k) = l_0 \cdot \frac{1}{4} \cdot \left(1 - \frac{1}{4}\right) = \frac{3l_0}{16}.$$

(3) 以 $_3\mathcal{D}_0$, $_3\mathcal{D}_3$ 的相关系数为例:

$$\begin{aligned} \operatorname{Cov}(_3\mathscr{D}_0,\ _3\mathscr{D}_3) &= E(_3\mathscr{D}_0\ _3\mathscr{D}_3) - E(_3\mathscr{D}_0)E(_3\mathscr{D}_3) \\ &= E(\sum_{k=1}^{l_0} I_{\{0 \leq X_k \leq 3\}} \cdot \sum_{j=1}^{l_0} I_{\{3 \leq X_j \leq 6\}}) - (\frac{l_0}{4})^2 \\ &= \sum_{k=1}^{l_0} \sum_{j \neq k} E(I_{\{0 \leq X_k \leq 3\}} \cdot I_{\{3 \leq X_j \leq 6\}}) - (\frac{l_0}{4})^2 \\ &= \frac{l_0(l_0 - 1)}{16} - \frac{l_0^2}{16} = -\frac{l_0}{16}. \end{aligned}$$

(对于 $\sum_{k=1}^{l_0}\sum_{j\neq k}E(I_{\{0\leq x_X\leq 3\}}\cdot I_{\{3\leq X_j\leq 6\}})=\frac{l_0(l_0-1)}{16}$ 的理解: 其中 $\sum_{k=1}^{l_0}\sum_{j\neq k}1=l_0(l_0-1)$, 而 $p(I_{c\leq X_i\leq c+3})=\frac{1}{4}$, 故 $I_{0\leq X_k\leq 3}$ 与 $I_{3\leq X_j\leq 6}$ 同时取 1 的概率为 $\frac{1}{16}$.)

求出协方差后即可求相关系数:

$$\begin{split} \rho(_3\mathscr{D}_0,\ _3\mathscr{D}_3) &= \frac{\text{Cov}(_3\mathscr{D}_0,\ _3\mathscr{D}_3)}{\sqrt{D(_3\mathscr{D}_0)} \cdot \sqrt{D(_3\mathscr{D}_3)}} \\ &= \frac{-\frac{l_0}{16}}{\sqrt{\frac{3}{16}l_0 \cdot \frac{3}{16}l_0}} \\ &= -\frac{1}{3}. \end{split}$$

类似计算可知,两两之间所有相关系数皆为一3.

第2章 人寿保险

2.1 人寿保险概述

2.2 生存保险

定义 2.1 (支付现值)

若被保险人在n年内死亡(即T(x) < n),则不予任何支付;

若他在n年内未死(即 $T(x) \ge n$),则在n时刻支付他1元保险金.

若 T(x) < n, 则 Z = 0; 若 $T(x) \ge n$, 则 $Z = 1 \cdot \nu^n = \nu^n$, 其中贴现因子 $\nu = \frac{1}{i+1}$.

 $\operatorname{FP} Z = \nu^n I_{\{T(x) \geqslant n,\}}.$

命题 2.1 (精算现值与方差)

- 1. $E(Z) = \nu^n \cdot {}_n p_x = A_{x:\overline{n}} = {}_n E_x;$
- 2. $EZ^2 = E\left(\left[\nu^n I_{\{T(x) \geqslant n\}}\right]^2\right) = E\left(\nu^{2n} I_{\{T(x) \geqslant n\}}\right) = \nu^{2n} \cdot {}_n p_x;$
- 3. $DZ = EZ^{2} (EZ)^{2} = \nu^{2n} \cdot {}_{n}p_{x} \cdot {}_{n}q_{x}$.

推论 2.1 (精算现值的性质)

 $\forall 0 \leq k \leq n, \, \hat{\eta}$

- 1. $_nE_x = _kE_x \cdot _{n-k}E_{x+k};$
- 2. $(1+i)^k \cdot l_x \cdot {}_n E_x = l_{x+k} \cdot {}_{n-k} E_{x+k}$.

注 等式 $(1+i)^k \cdot l_x \cdot {}_n E_x = l_{x+k} \cdot {}_{n-k} E_{x+k}$ 的含义如下:

在 0 时刻, l_x 个人各自买了一份 n 年期的生存保险, 保费总额为 $l_x \cdot {}_n E_x$, k 年后, 这笔钱的积累值为 $(1+i)^k \cdot l_x \cdot {}_n E_x$, 若此时保险公司破产不干了, 他分给在 k 时刻还活着的 l_{x+k} 个人每人 $l_x \cdot {}_n E_x$, 这正好够每个人去重新买一份 $l_x \cdot {}_n E_x$ 年期的生存保险.

2.3 *n* 年期 (定期) 死亡保险

2.3.1 死亡立即支付的 n 年期定期寿险

定义 2.2 (支付现值)

若(x) 在n 年内死亡(p) T(x) < n),则在T(x) 时刻支付1元保险金;

若(x)在n年内未死(即 $T(x) <math> \geq n)$,则不予支付.

若 T(x) < n, 则 $Z = \nu^{T(x)}$; 若 $T(x) \ge n$, 则 Z = 0.

所以 $Z = \nu^{T(x)} I_{\{T(x) < n\}}$.

命题 2.2 (精算现值与方差)

1.
$$E(Z) = \int_0^n \nu^t \cdot {}_t p_x \cdot \mu_x(t) dt = \int_0^n e^{-\delta t} \cdot {}_t p_x \cdot \mu_x(t) dt = \overline{A}^1_{x:\overline{n}|};$$
2.
$$DZ = {}^2 \overline{A}^1_{x:\overline{n}|} - (\overline{A}^1_{x:\overline{n}|})^2 = \overline{A}^1_{x:\overline{n}|} @2\delta - (\overline{A}^1_{x:\overline{n}|} @\delta)^2.$$

2.
$$DZ = {}^{2}\overline{A}_{x:\overline{n}}^{1} - (\overline{A}_{x:\overline{n}}^{1})^{2} = \overline{A}_{x:\overline{n}}^{1} @2\delta - (\overline{A}_{x:\overline{n}}^{1} @\delta)^{2}.$$

注 记 ${}^{j}\overline{A}_{x:\overline{n}|}^{1}=\int_{0}^{\infty}e^{-j\delta t}\cdot{}_{t}p_{x}\cdot\mu_{x}(t)dt,{}^{j}\overline{A}_{x:\overline{n}|}^{1}@\delta=\overline{A}_{x:\overline{n}|}^{1}@j\delta.$

推论 2.2 (精算现值的性质)

 $\forall 0 \leq k \leq n, \, \mathbf{f}$

1.
$$\overline{A}_{x:\overline{n}|}^{1} = \overline{A}_{x:\overline{k}|}^{1} + {}_{k}E_{x} \cdot \overline{A}_{x+k:\overline{n-k}|}^{1};$$

2. $l_{x} \cdot \overline{A}_{x:\overline{n}|}^{1} = \int_{0}^{n} \nu^{t} \cdot l_{x+t} \cdot \mu_{x}(t) dt.$

2.
$$l_x \cdot \overline{A}_{x:\overline{n}}^1 = \int_0^n \nu^t \cdot l_{x+t} \cdot \mu_x(t) dt$$

注 等式 $l_x \cdot \overline{A}_{x:\overline{n}}^1 = \int_0^n \nu^t \cdot l_{x+t} \cdot \mu_x(t) dt$ 的含义如下::

 $\mu_x(t)dt$ 表示在 [x+t,x+t+dt] 内死去的概率, 所以 $l_{x+t}\mu_x(t)dt$ 表示在 [x+t,x+t+dt] 内死去的人数, 在 这期间内死去的人每人支付 1 元保险金, 共 $l_{x+t}\mu_x(t)dt$ 元, 这些钱的现值为 $\nu^t l_{x+t}\mu_x(t)dt$, 于是 $\int_0^n \nu^t l_{x+t}\mu_x(t)dt$ 表示在 [x, x+n] 内死去的人领取的保险的总现值, 这些钱应等于初始时刻的 l_x 个人的保费总额 $l_x \overline{A}_{x=n}^1$.

例题 2.1 假设死亡力 $\mu(t) \equiv \mu$, 利息力为 δ , 个体 (x) 投了一个 n 年期寿险, 计算精算现值及支付现值的方差.

解由于死亡力是一个常数,所以

$$\begin{split} \overline{A}^1_{x:\overline{n}} &= \int_0^n e^{-\delta t}{}_t p_x \mu_x(t) dt = \int_0^n e^{-\delta t} \cdot e^{-\int_x^{x+t} \mu ds} \mu dt \\ &= \int_0^n e^{-\delta t} \cdot e^{-\mu t} \mu dt = \frac{\mu}{\mu + \delta} \left(1 - e^{-(\mu + \delta)n}\right). \end{split}$$

进而有

$${}^{2}\overline{A}_{x:\overline{n}|}^{1} = \frac{\mu}{\mu + 2\delta} \left(1 - e^{-(\mu + 2\delta)n} \right).$$

于是

$$\begin{split} DZ &= {}^2\overline{A}_{x:\overline{n}|}^1 - (\overline{A}_{x:\overline{n}|}^1)^2 \\ &= \frac{\mu}{\mu + 2\delta} \left(1 - e^{-(\mu + 2\delta)n} \right) - \left(\frac{\mu}{\mu + \delta} \left(1 - e^{-(\mu + \delta)n} \right) \right)^2. \end{split}$$

2.3.2 死亡年末支付的 n 年期定期寿险

定义 2.3 (支付现值)

若个体 (x) 在 n 年内死亡,则在其死亡年末支付 1 元;

若个体(x)在n年内未死,则不予支付.

$$Z = \nu^{K(x)+1} I_{\{T(x) < n\}}.$$

命题 2.3 (精算现值与方差)

- 1. $E(Z) = \sum_{k=0}^{n-1} \nu^{k+1}{}_{k|} q_x = A^1_{x:\overline{n}|};$
- 2. $DZ = {}^{2}A_{x:\overline{n}}^{1} (A_{x:\overline{n}}^{1})^{2}, \not + {}^{2}A_{x:\overline{n}}^{1} = \sum_{k=0}^{n-1} \nu^{2(k+1)}{}_{k|}q_{x}.$

推论 2.3 (精算现值的性质)

1.
$$A_{x:\overline{n}|}^1 = \nu q_x + \nu p_x \cdot A_{x:\overline{n-1}|}^1$$
;

2.
$$(1+i)l_x A_{x:\overline{n}|}^1 = d_x + l_{x+1} A_{x+1:\overline{n-1}|}^1$$
.

注 等式 $(1+i)l_xA_{x:\overline{n}}^1 = d_x + l_{x+1}A_{x+1:\overline{n-1}}^1$ 的含义如下:

此式的左端表示在 0 时刻, l_x 个人各自买了一份 n 年期的死亡保险, 保费总额为 $l_x A^1_{x:n}$. 一年后, 这笔钱的积累值为 $(1+i)l_x A^1_{x:n}$. 右端表示, 在 [0,1] 之间有 d_x 个人死去, 保险公司需给他们每人 1 元, 共 d_x 元. 若此时保险公司破产不干了, 他分给在 1 时刻还活着的 l_{x+1} 个人每人 $A^1_{x+1:n-1}$ 元, 这正好够每个人去重新买一份 n-1 年期的死亡保险. 所以保险公司一年后的支出总额为 $d_x + l_{x+1} A^1_{x+1:n-1}$, 正好等于保险公司收到总保费在一年后的累计值. 所以左端等于右端.

例题 2.2 设一个 20 岁的人买了一份 10 年期的死亡保险, 设其余命 T(20) 服从 [0,80] 上的均匀分布, i=0.05, 保险金死亡年末支付 10 万元.

解支付现值

$$Z = \nu^{K(20)+1} I_{T(20)<10} \cdot 100000,$$

精算现值

$$E(Z) = 100000 \cdot A_{20:\overline{10}|}^{1}$$

$$= 100000 \cdot \sum_{k=0}^{9} \nu^{k+1} \cdot {}_{k|}q_{20}$$

$$\approx 9652.1687$$

命题 2.4 (死亡年末支付与死亡立即支付的关系)

设死亡力均匀分布假设成立,则 $\overline{A}_{x:\overline{n}}^1 = \frac{i}{\delta}A_{x:\overline{n}}^1$

2.4 终身死亡保险

2.4.1 死亡后立即支付的终身死亡保险

定义 2.4 (支付现值)

在个体 (x) 死亡时刻立刻支付 1 元保险金, $Z = \nu^{T(x)}$.

命题 2.5 (精算现值与方差)

- 1. $E(Z) = \int_0^\infty \nu^t p_x \mu_x(t) dt = \overline{A}_x;$
- 2. $DZ = {}^{2}\overline{A}_{x} (\overline{A}_{x})^{2}, \ \ \sharp + {}^{2}\overline{A}_{x} = \int_{0}^{\infty} \nu^{2t}{}_{t} p_{x} \mu_{x}(t) dt.$

推论 2.4 (精算现值的性质)

1. 对
$$n \geq 1$$
, 有 $\overline{A}_x = \overline{A}_{x:\overline{n}|}^1 + {}_n E_x \cdot \overline{A}_{x+n};$

2.
$$\frac{d\overline{A}_x}{dx} = \delta \overline{A}_x + \mu(x)(\overline{A}_x - 1)$$
.

例题 2.3 设死亡力为 μ , 利息力为 δ , 个体 (x) 投了一份死亡立即支付的终身寿险, 求 \overline{A}_x , ${}^2\overline{A}_x$ 和给付现值 Z 的方 E D(Z).

解

$$\begin{split} \overline{A}_x &= \int_0^\infty e^{-\delta t} \cdot {}_t p_x \cdot \mu_x(t) dt \\ &= \int_0^\infty e^{-\delta t} \cdot e^{-\int_x^{x+t} \mu(s) ds} \cdot \mu_x(t) dt \\ &= \int_0^\infty e^{-\delta t} \cdot e^{-\int_x^{x+t} u ds} \cdot \mu dt \\ &= \int_0^\infty e^{-\delta t} \cdot e^{-ut} \cdot \mu dt \\ &= \frac{\mu}{\delta + \mu}, \\ {}^2 \overline{A}_x &= \frac{\mu}{2\delta + \mu}, \\ DZ &= {}^2 \overline{A}_x - (\overline{A}_x)^2 = \frac{\mu}{2\delta + \mu} - (\frac{\mu}{\delta + \mu})^2. \end{split}$$

2.4.2 死亡年末支付的终身寿险

定义 2.5 (支付现值)

在个体 (x) 死亡的年末, 保险人支付 1 元保险金, $Z = \nu^{K(x)+1}$.

命题 2.6 (精算现值与方差)

1. $E(Z) = \sum_{k=0}^{\infty} \nu^{k+1}{}_{k|} q_x = A_x;$

2.
$$DZ = {}^2\overline{A}_x - (\overline{A}_x)^2$$
, 其中 ${}^2\overline{A}_x = \int_0^\infty \nu^{2t} {}_t p_x \mu_x(t) dt$.

推论 2.5 (精算现值的性质)

1. $A_x = A_{x:\overline{n}}^1 + {}_n E_x \cdot A_{x+n};$

2. $A_x = \nu q_x + \nu p_x \cdot A_{x+1}$;

3. $(1+i)A_x = q_x + p_x \cdot A_{x+1}$;

4. $(1+i)l_x A_x = d_x + l_{x+1} \cdot A_{x+1};$

5. $l_x A_x = \sum_{k=0}^{\infty} \nu^{k+1} \cdot d_{x+k}$.

命题 2.7

在 UDD 假设之下, 有 $\overline{A}_x = \frac{i}{\delta} A_x$.

- 2.5 生死合险 (两全保险)
- 2.6 延期终身死亡保险
- 2.7 将每年分为m个区间,在死亡区间末支付1元的终身死亡保险
- 2.8 变额人寿保险
- 2.9 小结
- 2.9.1 寿险支付现值

	期末寿险	连续寿险
终身	$\nu^{K(x)+1}$	$ u^{T(x)} $
n 年期	$\nu^{K(x)+1}I_{\{K(x)< n\}}$	$\nu^{T(x)} I_{\{T(x) < n\}}$

2.9.2 寿险精算现值

	期末寿险	连续寿险
终身	$A_x = \sum_{k=0}^{\infty} \nu^{k+1}{}_{k } q_x$	$\overline{A}_x = \int_0^\infty \nu^t \cdot {}_t p_x \cdot \mu_x(t) dt$
n 年期	$A_{x:\overline{n} }^1 = \sum_{k=0}^{n-1} \nu^{k+1}{}_{k } q_x$	$\overline{A}_{x:\overline{n}}^1 = \int_0^n \nu^t \cdot {}_t p_x \cdot \mu_x(t) dt$

第3章 生存年金

在本章最后一章节给出了各种生存年金的定义公式及精算现值,故在前面几个章节仅给出一些命题与性质.

3.1 期初生存年金

3.1.1 终身期初生存年金

推论 3.1

因为
$$Z=\ddot{a}_{\overline{K(x)+1}}=\frac{1-\nu^{K(x)+1}}{d},$$
 所以 $\ddot{a}_x=EZ=E(\ddot{a}_{\overline{K(x)+1}})=E(\frac{1-\nu^{K(x)+1}}{d}).$ 故 $\ddot{a}_x=\frac{1-E(\nu^{K(x)+1})}{d}=\frac{1-A_x}{d}.$ 于是如下等式成立,

$$A_x + d\ddot{a}_x = 1.$$

 \sim

3.1.2 n 年期初生存年金

推论 3.2 $(A_{x:\overline{n}})$ 与 $\ddot{a}_{x:\overline{n}}$ 的关系)

 $d\ddot{a}_{x:\overline{n}|} + A_{x:\overline{n}|} = 1.$

命题 3.1

- 1. $\ddot{a}_x = \ddot{a}_{x:\overline{n}} + {}_{n}E_x\ddot{a}_{x+n};$
- 2. $l_x \ddot{a}_x = l_x \ddot{a}_{x:\overline{n}} + \nu^n l_{x+n} \ddot{a}_{x+n}$.

注 等式 $l_x\ddot{a}_x = l_x\ddot{a}_{x:\overline{n}} + \nu^n l_{x+n}\ddot{a}_{x+n}$ 的含义如下:

左端表示初始时刻有 l_x 个 (x) 岁的个体, 各买一份终身期初生存年金, 保险公司共收到保费 $l_x\ddot{a}_x$ 元. 右端表示在收到保费后, 保险公司将其中的 $l_x\ddot{a}_{x:\overline{n}}$ 为 l_x 个人各买一份 n 年期期初生存年金, 保证 n 年内死去的人可以领到年金, 剩余的部分拿去投资, 在第 n 年末, 还有 l_{x+n} 个人活着, 保险公司给他们每人买一份终身期初生存年金, 共需 $l_{x+n}\ddot{a}_{x+n}$ 元. 保险公司支出的总现值为 $l_x\ddot{a}_{x:\overline{n}}+\nu^nl_{x+n}\ddot{a}_{x+n}$. 保险公司收入的现值应等于支出的总现值,所以左端等于右端.

现行的养老保险其实就是保费分期缴纳的延期终身期初生存年金.

3.2 期末生存年金

3.3 每年分成 m 个区间的生存年金

3.4 连续生存年金

定义 3.1 (连续年金)

设年金函数 (年金的支付速率) 为 f(t), 则在 [t,t+dt] 内支付的额度为 f(t)dt, 其现值为 $\nu^t f(t)dt$, 所以在 [0,n] 内支付的总现值为 $\int_0^n \nu^t f(t)dt$. 特别地, 若 $f(t)\equiv 1$, 则得到 $\overline{a}_{\overline{n}}=\frac{1-\nu^n}{\delta}$. 以下总假定年金支付速率为 1.

3.4.1 连续的终身生存年金

推论 3.3 (\overline{a}_x 与 \overline{A}_x 的关系)

 $\delta \overline{a}_x + \overline{A}_x = 1.$

 \Diamond

命题 3.2

$$\frac{d}{dx}\overline{a}_x = (\mu(x) + \delta)\overline{a}_x - 1.$$

例题 3.1 设死亡力为 μ , 利息力为 δ , 求 \overline{a}_x , \overline{A}_x , $D(\overline{a}_{\overline{T(x)}})$.

$$\begin{split} \mathbf{\widetilde{R}} \ \overline{a}_x &= \int_0^\infty \nu^t{}_t p_x dt = \int_0^\infty e^{-\delta t} e^{-\int_x^{x+t} \mu(s) ds} dt = \int_0^\infty e^{-\mu t} e^{-\delta t} dt = \frac{1}{\mu + \delta}. \\ \overline{A}_x &= \int_0^\infty \nu^t{}_t p_x \mu_x(t) dt = \int_0^\infty e^{-\delta t} e^{-\int_x^{x+t} \mu(s) ds} \mu dt = \int_0^\infty e^{-\mu t} e^{-\delta t} \mu dt = \frac{\mu}{\mu + \delta}. \\ {}^2 \overline{A}_x &= \frac{\mu}{\mu + 2\delta}, \not \boxtimes D(\overline{a}_{\overline{T(x)}}) = \frac{{}^2 \overline{A}_x - (\overline{A}_x)^2}{\delta^2} = \frac{1}{\delta^2} [\frac{\mu}{\mu + 2\delta} - (\frac{\mu}{\mu + \delta})^2]. \end{split}$$

3.4.2 n 年期连续生存年金

推论 3.4 $(\overline{a}_{x:\overline{n}})$ 与 $\overline{A}_{x:\overline{n}}$ 的关系)

 $\delta \overline{a}_{x:\overline{n}} + \overline{A}_{x:\overline{n}} = 1.$

 \Diamond

命题 3.3

- 1. $\overline{a}_x = \overline{a}_{x:\overline{n}|} + {}_n E_x \overline{a}_{x+n};$
- 2. $l_x \overline{a}_x = l_x \overline{a}_{x:\overline{n}} + \nu^n l_{x+n} \overline{a}_{x+n};$
- 3. $\overline{a}_{x:\overline{n}|} = \overline{a}_{x:\overline{m}|} + {}_{m}E_{x}\overline{a}_{x+m:\overline{n-m}|};$
- 4. $l_x \overline{a}_{x:\overline{n}|} = l_x \overline{a}_{x:\overline{m}|} + \nu^m l_{x+n} \overline{a}_{x+m:\overline{n-m}|}$.

3.4.3 延期 n 年的终身连续生存年金

3.5 小结

3.5.1 生存年金支付现值

	期初生存年金	期末生存年金	连续生存年金
终身	$\ddot{a}_{\overline{K(x)+1}} = \sum_{j=0}^{K(x)} \nu^j$	$a_{\overline{K(x)}} = \sum_{j=1}^{K(x)} \nu^j$	$\overline{a}_{\overline{T(x)}} = \int_0^{T(x)} \nu^t dt$
n 年期	$\ddot{a}_{(K(x)+1)\wedge n} = \sum_{j=0}^{K(x)\wedge(n-1)} \nu^{j}$	$a_{\overline{K(x)\wedge n}} = \sum_{j=1}^{K(x)\wedge n} \nu^j$	$\overline{a}_{T(x)\wedge n} = \int_0^{T(x)\wedge n} \nu^t dt$
延期 n 年	$\ddot{a}_{\overline{(K(x)+1)}} - \ddot{a}_{\overline{(K(x)+1)\wedge n}}$	$a_{\overline{K(x)}} - a_{\overline{K(x)} \wedge n}$	$\overline{a}_{\overline{T(x)}} - \overline{a}_{\overline{T(x)} \wedge n}$
n 年期确定性	$\ddot{a}_{\overline{(K(x)+1)\vee n}}$	$a_{\overline{K(x)\vee n}}$	$\overline{a}_{\overline{T(x)}\vee n}$

3.5.2 生存年金精算现值

	期初生存年金	期末生存年金	连续生存年金
终身	$\ddot{a}_x = \sum_{j=0}^{\infty} \nu^j{}_j p_x$	$a_x = \ddot{a}_x - 1 = \sum_{j=1}^{\infty} \nu^j{}_j p_x$	$\overline{a}_x = \int_0^\infty \nu^t{}_t p_x dt$
n 年期	$\ddot{a}_{x:\overline{n} } = \sum_{j=0}^{n-1} \nu^j{}_j p_x$	$a_{x:\overline{n} } = \sum_{j=1}^{n} \nu^{j}{}_{j} p_{x}$	$\overline{a}_{x:\overline{n} } = \int_0^n \nu^t{}_t p_x dt$
		$= \ddot{a}_{x:\overline{n}} - 1 + \nu^n{}_n p_x$	
	$ _{n }\ddot{a}_{x} = \ddot{a}_{x} - \ddot{a}_{x:\overline{n}} $	$_{n }a_{x}=a_{x}-a_{x:\overline{n} }$	
延期 n 年	$= {}_{n}E_{x}\ddot{a}_{x+n}$	$= {}_{n}E_{x}a_{x+n}$	5 11
延州 11 平	∞ :	∞ :	$= \overline{a}_x - \overline{a}_{x:\overline{n}}$
	$=\sum_{j=n}\nu^j{}_jp_x$	$=\sum_{j=n+1}\nu^j{}_jp_x$	$= {}_{n}E_{x}\overline{a}_{x+n}$
n 年期确定型	$\ddot{a}_{\overline{x:\overline{n} }} = {}_{n }\ddot{a}_x + \ddot{a}_{\overline{n} }$	$a_{\overline{x:}\overline{n} } = a_{\overline{n} } + {}_{n }a_x$	$\overline{a}_{\overline{x}:\overline{n} } = {}_{n }\overline{a}_x + \overline{a}_{\overline{n} }$

第4章 净保费理论

4.1 平衡准则

定义 4.1 (平衡准则)

投保人缴纳保费的精算现值等于保险人支付保险金的精算现值.

定义 4.2 (保险人签单损失量)

L = "保险人支付保险金的现值" 减去 "投保人缴纳保费的现值". 由平衡准则, 有 E(L) = 0.

定义 4.3 (年均衡净保费)

- 1. 若保费按年分期缴纳, 每年缴纳的数额一样, 则称每年缴纳的保费额为年均净保费;
- 2. 若保费按固定的速率连续缴纳,则称保费缴纳的速率为年均净保费.

例题 4.1 设个体 (x) 买了一份死亡年末支付 1 元的终身死亡保险, 设 $_{k|}q_{x}=0.2, k=0,1,2,3,4$, 利率 i=0.06, 保费每年年初等额分期缴纳. 分别在 (1) 平衡准则, (2) 指数准则 (a=0.1), (3) 分位数准则 $(\alpha=0.2)$ 之下来计算年均衡净保费 P.

解 保险人支付的保险金的现值为 $\nu^{K(x)+1}$;

投保人缴纳的保费总现值为 $P\ddot{a}_{\overline{K(x)+1}}$. 所以签单损失量为:

$$L = \nu^{K(x)+1} - P\ddot{a}_{\overline{K(x)+1}} = \nu^{K(x)+1} - P \cdot \frac{1 - \nu^{K(x)+1}}{d}$$
$$= (1 + \frac{P}{d})\nu^{K(x)+1} - \frac{P}{d}.$$

(1) 平衡准则之下,

$$E(L) = E(\nu^{K(x)+1}) - PE(\ddot{a}_{\overline{K(x)+1}}) = A_x - P\ddot{a}_x = 0,$$

所以 $P = \frac{A_x}{\ddot{a}_x} = \frac{dA_x}{1-A_x}$. 注意到

$$A_x = \sum_{k=0}^{\infty} \nu^{k+1}{}_{k|} q_x = \sum_{k=0}^{4} \nu^{k+1} 0.2 = 0.2 \sum_{k=1}^{5} \nu^k = 0.2 a_{\overline{5}|} = 0.84247276.$$

所以

$$P = \frac{A_x}{\ddot{a}_x} = \frac{dA_x}{1 - A_x} = 0.3027.$$

(2) 指数准则及(3) 分数准则之下的计算留作作业.

4.2 趸交净保费

定义 4.4 (趸交净保费)

若保费是在签定保险单时一次缴清,则将其中净保费的部分称为趸交净保费,通常用 P 表示.

4.3 完全连续险种的年均衡净保费

定义 4.5

称保费连续缴纳、保险金死亡立即支付的险种为完全连续险种.

4.3.1 完全连续的终身死亡保险

命题 4.1

- 签单损失量为 $L = \nu^{T(x)} \overline{P}\left(\overline{A}_x\right)\overline{a}_{\overline{T(x)}} = (1 + \frac{\overline{P}(\overline{A}_x)}{\delta})\nu^{T(x)} \frac{\overline{P}(\overline{A}_x)}{\delta};$ 年均衡净保费为 $\overline{P}\left(\overline{A}_x\right) = \frac{\overline{A}_x}{\overline{a}_x} = \frac{\delta \overline{A}_x}{1 A_x} = \frac{1}{\overline{a}_x} \delta;$
- 签单损失量 L 的方差为

$$DL = \frac{{}^2\overline{A}_x - (\overline{A}_x)^2}{(\delta\overline{a}_x)^2} = \frac{{}^2\overline{A}_x - (\overline{A}_x)^2}{(1 - \overline{A}_x)^2}.$$

例题 **4.2** 设死亡力 $\mu = 0.05$, 利息力 $\delta = 0.05$.

解我们有

$$\overline{A}_x = \frac{\mu}{\mu + \delta} = \frac{1}{2}, \ ^2\overline{A}_x = \frac{\mu}{\mu + 2\delta} = \frac{1}{3}.$$

从而

$$\begin{split} \overline{P}\left(\overline{A}_{x}\right) &= \frac{\delta \overline{A}_{x}}{1 - \overline{A}_{x}} = 0.05, \\ DL &= \frac{{}^{2}\overline{A}_{x} - (\overline{A}_{x})^{2}}{(1 - \overline{A}_{x})^{2}} = \frac{\frac{1}{3} - (\frac{1}{2})^{2}}{(1 - \frac{1}{2})^{2}} = \frac{1}{3}. \end{split}$$

4.3.2 缴费期为 h 年的完全连续的 n 年期定期寿险 (h < n)

命题 4.2

- 签单损失量: 最后的缴费时刻为 $T(x) \wedge h$, 故 $L = \nu^{T(x)} I_{\{T(x) < n\}} {}_h \overline{P}(\overline{A}^1_{x:\overline{n}}) \overline{a}_{\overline{T(x)} \wedge h};$
- 年均衡净保费为 $_{h}\overline{P}(\overline{A}_{x:\overline{n}}^{1})=\frac{\overline{A}_{x:\overline{n}}^{1}}{\overline{a}_{x:\overline{n}}}$

注一般地,

4.3.3 其他完全连续险种的年均净保费

命题 4.3

- 1. 缴费期为 h 年的终身寿险: ${}_h\overline{P}(\overline{A}_x)=rac{\overline{A}_x}{\overline{a}_{x:\overline{h}}};$
- 2. 缴费期为 h 年的延 n 年期终身生存年金: $h\overline{P}(n|\overline{a}_x) = \frac{n|\overline{a}_x}{\overline{a}_{r+1}}$;
- 3. 延期 n 年的终身生存年金: $\overline{P}(n|\overline{a}_x) = \frac{n|\overline{a}_x}{\overline{a}_x:\overline{n}}$
- 4. 延期 n 年的终身死亡保险: $\overline{P}(n|\overline{A}_x) = \frac{n}{a_x}$

4.4 完全离散险种的年均衡净保费

定义 4.6

保费按年等额分期缴纳. 保险金死亡年末支付的险种称为完全离散险种.

a.

4.4.1 完全离散终身寿险

命题 4.4

- 签单损失量 $L=
 u^{K(x)+1}-P_x\ddot{a}_{\overline{K(x)+1}}=(1+\frac{P_x}{d})
 u^{K(x)+1}-\frac{P_x}{d};$
- 年均衡净保费记为 $P_x = \frac{A_x}{\ddot{a}_x} = \frac{dA_x}{1-A_x} = \frac{1}{\ddot{a}_x} d;$
- 答单损失量的方差

$$D(L) = \frac{{}^{2}A_{x} - (A_{x})^{2}}{(d\ddot{a}_{x})^{2}} = \frac{{}^{2}A_{x} - (A_{x})^{2}}{(1 - A_{x})^{2}}.$$

例题 4.3 某人现年 50 岁, 买了一份完全离散的终身寿险, 假设 $T(50) \sim U[0,50)$, i = 0.05. 求年均衡净保费 P_x , 并计算签单损失量 L 的方差.

解

$$P_{50} = \frac{A_{50}}{\ddot{a}_{50}}$$

$$A_{50} = \sum_{k=0}^{\infty} \nu^{k+1}{}_{k|} q_{50} = \sum_{k=0}^{49} \nu^{k+1} \frac{1}{50} = \frac{1}{50} \sum_{k=1}^{50} \nu^{k} \approx 0.3651185$$

$$\ddot{a}_{50} = \sum_{k=0}^{\infty} \nu^{k}{}_{k} P_{50} = \sum_{k=0}^{49} \nu^{k} \frac{50 - k}{50}.$$

利用错位相减法, 可以计算出 \ddot{a}_{50} , 请读者自己完成. 此题可以避开 \ddot{a}_{50} 的计算.

$$P_{50} = \frac{dA_{50}}{1 - A_{50}} = 0.02738558,$$

$$D(L) = \frac{^2A_{50} - (A_{50})^2}{(1 - A_{50})^2} = 0.1496662.$$

4.4.2 其他完全离散险种的年均衡净保费

命题 4.5

- 1. 缴费期为 n 年的终身死亡保险: ${}_{n}P(A_{x})=rac{A_{x}}{\ddot{a}_{x}:\overline{n}};$
- 2. n 年期生存保险: $P_{x:\overline{n}} = \frac{A_{x:\overline{n}}}{\ddot{a}_{x:\overline{n}}}$;
- 3. 延期 n 年的终身期初生存年金: $P(n|\ddot{a}_x) = \frac{n|\ddot{a}_x}{\ddot{a}_{x:\overline{n}}}$;
- 4. 缴费期为 h 年的 n 年期死亡保险: ${}_{h}P_{x:\overline{n}|}^{1} = \frac{A_{x:\overline{n}|}^{1}}{A_{x:\overline{n}|}}$

注 一般地,

第5章 净准备金理论

5.1 确定净准备金的准则

定义 5.1 (未来损失量)

在 t 时刻的未来损失量记为 $_tL$. 若在 t 时刻个体 (x) 还活着, 即 T(x) > t, 则

 $_{t}L=$ "未来需支付的保险金在 t 时刻的现值" 减去"未来支付的保费在t时刻的总现值".

若 t 时刻 (x) 已经死亡, 则 $_{t}L=0$.

1. 对完全连续的终身寿险, 年均衡净保费为 $\overline{P}(\overline{A}_x) = \frac{\overline{A}_x}{\overline{a}_x}$,

$${}_tL = (\nu^{T(x)-t} - \overline{P}(\overline{A}_x)\overline{a}_{\overline{T(x)-t}})I_{\{T(x)>t\}}.$$

2. 对完全离散的终身寿险, 年均衡净保费为 $P_x = \frac{A_x}{a_x}$,

$$_kL = (\nu^{K(x)+1-k} - P_x \ddot{a}_{\overline{K(x)+1-k}})I_{\{K(x)>k\}}.$$

命题 5.1

t 时刻的准备金用 $_tV$ 表示.

- 平衡准则: $_{t}V = E(_{t}L|T(x) > t);$
- 指数准则: 给定 a > 0, 由 $e^{a \cdot tV} = E(e^{a \cdot tL} | T(x) > t)$ 确定净准备金 tV;
- 分位数准则: 给定水平 $\alpha \in (0,1)$, 由 $P(tL > tV | T(x) > t) = \alpha$ 确定净准备金 tV.

注

- 1. 分位数准则下, 保险人越怕风险, 则 α 越小, tV 越大即净准备金额越大;
- 2. 指数准则下,

$$_{t}V = \frac{1}{a} \ln E(e^{a \cdot _{t}L}|T(x) > t).$$

对 a 求偏导数得

$$\frac{\partial_t V}{\partial a} = \frac{\frac{a}{E(e^{a \cdot t^L}|T(x) > t)} E(e^{a \cdot t^L} t L|T(x) > t) - \ln E(e^{a \cdot t^L}|T(x) > t)}{a^2} > 0.$$

所以, a 越大, 净准备金 $_{t}V$ 越大, 保险人越怕风险. 并且

$$\begin{split} _tV &= \frac{1}{a} \ln E(e^{a \cdot _t V} | T(x) > t) > \frac{1}{a} E(\ln e^{a \cdot _t V} | T(x) > t) \\ &= E(_t L_x | T(x) > t) = _t \widetilde{V} =$$
平衡准则下的净准备金.

即指数准则适用于规避风险的保险人. 事实上, 容易验证 $\lim_{a\downarrow 0} tV = t\widetilde{V}$.

5.2 完全连续险种在平衡准则下的净准备金

5.2.1 平衡准则下完全连续的终身寿险的净准备金

命题 5.2

1. 未来损失量

$$\begin{split} {}_tL &= (\nu^{T(x)-t} - \overline{P}(\overline{A}_x)\overline{a}_{\overline{T(x)-t}})I_{\{T(x)>t\}} \\ &= [(1 + \frac{\overline{P}(\overline{A}_x)}{\delta})\nu^{T(x)-t} - \frac{\overline{P}(\overline{A}_x)}{\delta}]I_{\{T(x)>t\}} \\ &= [\frac{1}{\delta \overline{a_x}}\nu^{T(x)-t} - \frac{\overline{P}(\overline{A}_x)}{\delta}]I_{\{T(x)>t\}}. \end{split}$$

2. 在平衡准则下

$$t\overline{V}(\overline{A}_x) = E(tL_x|T(x) > t)$$

$$= E(\nu^{T(x+t)}) - \overline{P}(\overline{A}_x)E(\overline{a}_{\overline{T(x+t)}})$$

$$= \overline{A}_{x+t} - \overline{P}(\overline{A}_x)\overline{a}_{x+t}$$

$$= \frac{\overline{a}_x - \overline{a}_{x+t}}{\overline{a}_x}.$$

3. 未来损失量 $_tL$ 的方差

$$D(_tL|T(x) > t) = \frac{1}{(\delta \overline{a}_x)^2} D(\nu^{T(x+t)}) = \frac{{}^2 \overline{A}_{x+t} - (\overline{A}_{x+t})^2}{(\delta \overline{a}_x)^2} = \frac{{}^2 \overline{A}_{x+t} - (\overline{A}_{x+t})^2}{(1 - \overline{A}_x)^2}.$$

例题 5.1 设 $\mu(t) = \mu$, 利息力为 δ , 某个体 (x) 买了一份完全连续的终身寿险.

- (1) 求 $_{t}p_{x}$;
- (2) 写出签单损失量 L;
- (3) 在平衡准则下求年均衡净保费;
- (4) 求 DL;
- (5) 写出 t 时刻的未来损失量 $_{t}L$;
- (6) 在平衡准则下求 t 时刻的净准备金 $t\overline{V}(\overline{A}_x)$;
- (7) 求 $D(_tL)$.

(1)
$$_tp_x = e^{-\int_x^{x+t} \mu(s)ds} = e^{-\int_x^{x+t} \mu ds} = e^{-\mu t}, \ t \ge 0.$$

(2)
$$L = \nu^{T(x)} - \overline{P}(\overline{A}_x)\overline{a}_{\overline{T(x)}}$$

(3)
$$0 = EL = \overline{A}_x - \overline{P}(\overline{A}_x)\overline{a}_x$$
, 故 $\overline{P}(\overline{A}_x) = \frac{\overline{A}_x}{\overline{a}_x}$, 注意到 $\overline{A}_x = \frac{\mu}{\mu + \delta}$, $\overline{a}_x = \frac{1}{\mu + \delta}$, 故 $\overline{P}(\overline{A}_x) = \frac{\overline{A}_x}{\overline{a}_x} = \mu$.

(4) $DL = \frac{{}^2\overline{A}_x - (\overline{A}_x)^2}{(\delta \overline{a}_x)^2} = \frac{{}^2\overline{A}_x - (\overline{A}_x)^2}{(1 - \overline{A}_x)^2} = \frac{{}^\mu{\mu + 2\delta} - ({}^\mu{\mu + \delta})^2}{(1 - {}^\mu{\mu + \delta})^2}$.

(4)
$$DL = \frac{{}^{2}\overline{A}_{x} - (\overline{A}_{x})^{2}}{(\delta \overline{a}_{x})^{2}} = \frac{{}^{2}\overline{A}_{x} - (\overline{A}_{x})^{2}}{(1 - \overline{A}_{x})^{2}} = \frac{{}^{\mu}_{+2\delta} - ({}^{\mu}_{\mu+\delta})^{2}}{(1 - {}^{\mu}_{+1\delta})^{2}}$$

(5)
$$t$$
 时刻的未来损失量 $_{t}L = (\nu^{T(x)-t} - \overline{P}(\overline{A}_{x})\overline{a}_{\overline{T(x)-t}})I_{\{T(x)>t\}}.$

(6)
$$t$$
 时刻的净准备金 $t\overline{V}(\overline{A}_x) = \frac{\overline{a}_x - \overline{a}_{x+t}}{\overline{a}_x} = 0$

(6)
$$t$$
 时刻的净准备金 $_{t}\overline{V}(\overline{A}_{x})=\frac{\overline{a}_{x}-\overline{a}_{x+t}}{\overline{a}_{x}}=0.$
(7) $D(_{t}L)=\frac{^{2}\overline{A}_{x+t}-(\overline{A}_{x+t})^{2}}{(1-\overline{A}_{x})^{2}}=\frac{\overset{\mu}{\mu+2\delta}-(\overset{\mu}{\mu+\delta})^{2}}{(1-\overset{\mu}{\mu+\delta})^{2}}.$

5.3 完全离散险种的净准备金

5.3.1 平衡准则下完全离散的终身寿险的净准备金

命题 5.3

1. 未来损失量

$$\begin{split} {}_k L &= (\nu^{K(x)-k+1} - P_x \ddot{a}_{\overline{K(x)-k+1}}) I_{\{K(x) \geq k\}} \\ &= [(1 + \frac{P_x}{d}) \nu^{K(x)-k+1} - \frac{P_x}{d}] I_{\{K(x) \geq k\}} \\ &= [\frac{1}{d \ddot{a}_x} \nu^{K(x)-k+1} - \frac{P_x}{d}] I_{\{K(x) \geq k\}}. \end{split}$$

2. 在平衡准则下

$$kV(A_x) = E(kL|T(x) > k)$$

$$= E(\nu^{K(x+k)+1}) - P_x E(\ddot{a}_{\overline{K(x+k)+1}})$$

$$= A_{x+k} - P_x \ddot{a}_{x+k}$$

$$= \frac{\ddot{a}_x - \ddot{a}_{x+k}}{\ddot{a}_x}.$$

3. 未来损失量 $_kL$ 的方差

$$D(_kL|T(x)>k) = \frac{1}{(d\ddot{a}_x)^2}D(\nu^{K(x+k)+1}) = \frac{^2A_{x+k} - (A_{x+k})^2}{(d\ddot{a}_x)^2} = \frac{^2A_{x+k} - (A_{x+k})^2}{(1-A_x)^2}.$$

例题 5.2 某人现年 20 岁, 设 $k|q_{20}=\frac{1}{2k+1}, k=0,1,2,...$, 利率 i=0.05. 考虑 5 年后的净准备金.

- (1) 写出签单损失量 L;
- (2) 在平衡准则下计算年均衡净保费;
- (3) 求 D(L);
- (4) 写出 5 年后的未来损失量 $_{5}L$;
- (5) 在平衡准则下计算 5 年后的净准备金 $_5V(A_{20})$;
- (6) 计算 $D(_5L|T(20) \ge 5)$.

(提示: 由几何分布具有无记忆性可推导出 $k|q_{25} = \frac{1}{2^{k+1}}, k = 0, 1, 2,$)

(1)
$$L = \nu^{K(x)+1} - P_x \ddot{a}_{\overline{K(x)+1}}$$
.

(2)
$$0 = E(L) = A_{20} - P_{20}\ddot{a}_{20}, & P_{20} = \frac{A_{20}}{\ddot{a}_{20}} = \frac{dA_{20}}{1 - A_{20}},$$

$$\stackrel{:}{\times} \stackrel{!}{\otimes} \stackrel{!}{=} A_{20} = \sum_{k=0}^{\infty} \nu^{k+1}{}_{k}|q_{20} = \sum_{k=0}^{\infty} \nu^{k+1} \frac{1}{2^{k+1}} = \frac{\nu}{2 - \nu},$$

$$\text{M.f. } P_{20} = \frac{dA_{20}}{1 - A_{20}} = \frac{\nu}{2}.$$
(3) $D(L) = \frac{^2A_{20} - (A_{20})^2}{(1 - A_{20})^2} = \frac{\frac{\nu^2}{2 - \nu^2} - (\frac{\nu}{2 - \nu})^2}{1 - \frac{\nu}{2 - \nu}}.$
(4) ${}_{5}L = (\nu^{K(20) + 1 - 5} - P_{20}\ddot{a}_{K(20) + 1 - 5})I_{\{K(20) \geq 5\}}.$

(3)
$$D(L) = \frac{{}^{2}A_{20} - (A_{20})^{2}}{(1 - A_{20})^{2}} = \frac{{}^{\nu^{2}}{2 - \nu^{2}} - (\frac{\nu}{2 - \nu})^{2}}{1 - \frac{\nu}{2}}$$

(4)
$$_{5}L = (\nu^{K(20)+1-5} - P_{20}\ddot{a}_{\overline{K(20)+1-5}})I_{\{K(20)\geq 5\}}.$$

(6)
$$D(_5L|T(20) \ge 5) = \frac{^2A_{25} - (A_{25})^2}{(1 - A_{20})^2} = \frac{^2A_{20} - (A_{20})^2}{(1 - A_{20})^2} = D(L)$$