

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

NOVEMBER 2008

MEMORANDUM

MARKS: 150

This memorandum consists of 23 pages.

- DoE/November 2008
- Continued Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, only mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

_			T	
1.1.1	$x^{2} = 5x - 4$ $x^{2} - 5x + 4 = 0$ $(x - 4)(x - 1) = 0$ $x = 4 \text{ or } x = 1$	- 1 for not equal to zero in this question only. If = 0 appears once in this question then full marks	✓ standard form = 0 ✓ factorisation ✓ both answers OR By the formula ✓ standard form = 0 ✓ substitution ✓ both answers	(3)
1.1.2	$x(3-x) = -3$ $3x - x^{2} = -3$ $x^{2} - 3x - 3 = 0$ $x = \frac{3 \pm \sqrt{(-3)^{2} - 4(1)(-3)}}{2(1)}$ $x = \frac{3 \pm \sqrt{21}}{2}$ $x = 3,79 \text{ or } x = -0,79$	- 1 for inaccurate rounding off for both answers.	✓ simplification ✓ standard form ✓ substitution into formula ✓ ✓ answers	(5)
	OR $x(3-x) = -3$ $3x - x^{2} = -3$ $-x^{2} + 3x + 3 = 0$ $x = \frac{-3 \pm \sqrt{(3)^{2} - 4(-1)(3)}}{2(-1)}$ $x = \frac{-3 \pm \sqrt{21}}{-2}$ $x = 3,79 \text{ or } x = -0,79$	- 1 for inaccurate rounding off for both answers.	✓ simplification ✓ standard form ✓ substitution into formula ✓ ✓ answers Note: If negative discriminant: max 2 / 5	(5)

1.1.3

$$3-x < 2x^{2}$$

$$-2x^{2}-x+3 < 0$$

$$2x^{2}+x-3 > 0$$

$$(2x+3)(x-1) > 0$$

 $x < -\frac{3}{2}$ or $x > 1$

OR

$$x \in (-\infty; -\frac{3}{2}) \cup (1; \infty)$$

✓ standard form

✓ factorisation

$$\checkmark x < -\frac{3}{2}$$

$$\checkmark x > 1$$

(5)

(5)

OR

$$3 - x < 2x^2$$

$$0 < 2x^2 + x - 3$$

$$0 < (2x+3)(x-1)$$

 $x < -\frac{3}{2}$ or $x > 1$

✓ standard form✓ factorisation

$$\checkmark x < -\frac{3}{2}$$

$$\checkmark x > 1$$

Note:

4 / 5 Inaccurate inequality in the beginning 2 / 5 If final answer does not have inequality signs (ie. question has been changed to an equation) 4 / 5 If the candidate has used AND or \cap instead of OR or \cup

If Answer is

$$(2x+3)(x-1) > 0$$

$$-\frac{3}{2} < x < 1$$

then: 2/5

NSC – Memorandur

1.2 $y = 3 - 2x$ $x^2 + (3 - 2x) + x = (3 - 2x)^2$ $x^2 + 3 - 2x + x = 9 - 12x + 4x^2$ $3x^2 - 11x + 6 = 0$ $3x^2 - 11x + 6 = 0$ $x = \frac{2}{3}$ or $x = 3$ $3x = \frac{2}{3}$ or $x = 3$ $3x = \frac{2}{3}$ or $x = 3$ $3x = \frac{3 - y}{2}$ $3x = \frac{3 - y}{2}$ 3x = 3 -	
$x^{2} + 3 - 2x + x = 9 - 12x + 4x^{2}$ $3x^{2} - 11x + 6 = 0$ $(3x - 2)(x - 3) = 0$ $x = \frac{2}{3} \text{or} x = 3$ $\therefore y = \frac{5}{3}$ $0x$ $x = \frac{3 - y}{2}$ $\left(\frac{3 - y}{2}\right)^{2} + y + \frac{3 - y}{2} = y^{2}$ $\frac{9 - 6y + y^{2}}{4} + y + \frac{3 - y}{2} = y^{2}$ $9 - 6y + y^{2} + 4y + 6 - 2y = 4y^{2}$ $0 = 3y^{2} + 4y - 15$ $0 = (3y - 5)(y + 3)$ $y = \frac{5}{3} \text{or} y = -3$ $\therefore x = \frac{2}{3} \therefore x = 3$ $0x$ $y = 3 - 2x$ $x^{2} - y^{2} + x + y = 0$ $(x + y)(x - y) + (x + y) = 0$ $(x + y)(x - y + 1) = 0$ $y = x + 1$ $y = -x$ $3 - 2x = x + 1$ $3 - 2x = -x$ $x = 3$ x	
$x^{2}+3-2x+x=9-12x+4x^{2}$ $3x^{2}-11x+6=0$ $(3x-2)(x-3)=0$ $x=\frac{2}{3} or x=3$ ∴ $y=\frac{5}{3}$ ∴ $y=-3$ $x=\frac{3-y}{2}$ $\left(\frac{3-y}{2}\right)^{2}+y+\frac{3-y}{2}=y^{2}$ $\frac{9-6y+y^{2}}{4}+y+\frac{3-y}{2}=y^{2}$ $9-6y+y^{2}+4y+6-2y=4y^{2}$ $0=3y^{2}+4y-15$ $0=(3y-5)(y+3)$ $y=\frac{5}{3} or y=-3$ ∴ $x=\frac{2}{3}$ ∴ $x=3$ OR $y=3-2x$ $x^{2}-y^{2}+x+y=0$ $(x+y)(x-y)+(x+y)=0$ $(x+y)(x-y+1)=0$ ∴ $y=x+1$ $y=-x$ $3-2x=-x$ $x=3$ or $x=\frac{2}{3}$ ∴ $x=2$ $x=3$ or $x=\frac{2}{3}$ ∴ $x=3$	
$3x^{2}-11x+6=0$ $(3x-2)(x-3)=0$ $x=\frac{2}{3} \text{or} x=3$ $\therefore y=\frac{5}{3}$ $x=\frac{3-y}{2}$ $\left(\frac{3-y}{2}\right)^{2}+y+\frac{3-y}{2}=y^{2}$ $\frac{9-6y+y^{2}}{4}+y+\frac{3-y}{2}=y^{2}$ $0=3y^{2}+4y-15$ $0=(3y-5)(y+3)$ $y=\frac{5}{3} \text{or} y=-3$ $\therefore x=\frac{2}{3}$ $x=3$ $x=$	
$x = \frac{2}{3} \text{or} x = 3$ $\therefore y = \frac{5}{3} \qquad \therefore y = -3$ $x = \frac{3 - y}{2}$ $\left(\frac{3 - y}{2}\right)^2 + y + \frac{3 - y}{2} = y^2$ $\frac{9 - 6y + y^2}{4} + y + \frac{3 - y}{2} = y^2$ $9 - 6y + y^2 + 4y + 6 - 2y = 4y^2$ $0 = 3y^2 + 4y - 15$ $0 = (3y - 5)(y + 3)$ $y = \frac{5}{3} \text{or} y = -3$ $\therefore x = \frac{2}{3} \qquad \therefore x = 3$ OR $y = 3 - 2x$ $x^2 - y^2 + x + y = 0$ $(x + y)(x - y) + (x + y) = 0$ $(x + y)(x - y + 1) = 0$ $y = x + 1$ $y = -x$ $3 - 2x = x$ $x = 3$ $x = \frac{2}{3}$	
$x = \frac{2}{3} \text{or} x = 3$ $\therefore y = \frac{5}{3} \qquad \therefore y = -3$ $\sqrt{y} \text{ values}$ OR $x = \frac{3-y}{2}$ $\left(\frac{3-y}{2}\right)^2 + y + \frac{3-y}{2} = y^2$ $\frac{9-6y+y^2}{4} + y + \frac{3-y}{2} = y^2$ $9-6y+y^2 + 4y + 6-2y = 4y^2$ $0 = 3y^2 + 4y - 15$ $0 = (3y-5)(y+3)$ $y = \frac{5}{3} \text{or} y = -3$ $\therefore x = \frac{2}{3} \qquad \therefore x = 3$ OR $y = 3-2x$ $x^2 - y^2 + x + y = 0$ $(x+y)(x-y) + (x+y) = 0$ $(x+y)(x-y+1) = 0$ $y = x+1$ $y = -x$ $3-2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $3-2x = -x$ $y = -x$ $y = -x$ $3-2x = -x$ $y = -x$ $y = -x$ $3-2x = -x$ $y = -x$ $y = -x$ $3-2x = -x$ $y $	
OR $x = \frac{3-y}{2}$ $\left(\frac{3-y}{2}\right)^2 + y + \frac{3-y}{2} = y^2$ $\frac{9-6y+y^2}{4} + y + \frac{3-y}{2} = y^2$ $9-6y+y^2 + 4y + 6-2y = 4y^2$ $0 = 3y^2 + 4y - 15$ $0 = (3y-5)(y+3)$ $y = \frac{5}{3} \text{or} y = -3$ $\therefore x = \frac{2}{3} \qquad \therefore x = 3$ OR $y = 3-2x$ $x^2-y^2 + x + y = 0$ $(x+y)(x-y)+(x+y) = 0$ $(x+y)(x-y+1) = 0$ $y = x+1$ $y = -x$ $3-2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $x = 3$ $x = 3$ $x = -x$ $y = x+1$ $3-2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $x = 3$ $x = 2$ $x = 3$ $x = $	
OR $x = \frac{3-y}{2}$ $\left(\frac{3-y}{2}\right)^2 + y + \frac{3-y}{2} = y^2$ $\frac{9-6y+y^2}{4} + y + \frac{3-y}{2} = y^2$ $9-6y+y^2 + 4y + 6-2y = 4y^2$ $0 = 3y^2 + 4y - 15$ $0 = (3y-5)(y+3)$ $y = \frac{5}{3} \text{or} y = -3$ $\therefore x = \frac{2}{3} \qquad \therefore x = 3$ OR $y = 3-2x$ $x^2-y^2+x+y=0$ $(x+y)(x-y)+(x+y)=0$ $(x+y)(x-y+1)=0$ $y = x+1$ $y = -x$ $3-2x = -x$ $x = 3$ Or $x = \frac{2}{3}$ $3-2x = x+1$ $3-2x = -x$ $x = 3$ Or $x = \frac{2}{3}$ $3-2x = -x$ $x = 3$ $x = \frac{2}{3}$ $x = 3$ $x = \frac{2}{3}$ $x = 3$ $x = \frac{2}{3}$ $x = \frac{2}{3}$ $x = 3$ $x = \frac{2}{3}$	
OR $x = \frac{3-y}{2}$ $\left(\frac{3-y}{2}\right)^2 + y + \frac{3-y}{2} = y^2$ $\frac{9-6y+y^2}{4} + y + \frac{3-y}{2} = y^2$ $9-6y+y^2 + 4y + 6-2y = 4y^2$ $0 = 3y^2 + 4y - 15$ $0 = (3y-5)(y+3)$ $y = \frac{5}{3} \text{or} y = -3$ $\therefore x = \frac{2}{3} \qquad \therefore x = 3$ OR $y = 3-2x$ $x^2-y^2+x+y=0$ $(x+y)(x-y)+(x+y)=0$ $(x+y)(x-y+1)=0$ $y = x+1$ $y = -x$ $3-2x = -x$ $x = 3$ Or $x = \frac{2}{3}$ $3-2x = x+1$ $3-2x = -x$ $x = 3$ Or $x = \frac{2}{3}$ $3-2x = -x$ $x = 3$ $x = \frac{2}{3}$ $x = 3$ $x = \frac{2}{3}$ $x = 3$ $x = \frac{2}{3}$ $x = \frac{2}{3}$ $x = 3$ $x = \frac{2}{3}$	
$x = \frac{3-y}{2}$ $\left(\frac{3-y}{2}\right)^2 + y + \frac{3-y}{2} = y^2$ $\frac{9-6y+y^2}{4} + y + \frac{3-y}{2} = y^2$ $9-6y+y^2 + 4y + 6-2y = 4y^2$ $0 = 3y^2 + 4y - 15$ $0 = (3y-5)(y+3)$ $y = \frac{5}{3} \text{or} y = -3$ $\therefore x = \frac{2}{3} \qquad \therefore x = 3$ OR $y = 3-2x$ $x^2 - y^2 + x + y = 0$ $(x+y)(x-y) + (x+y) = 0$ $(x+y)(x-y+1) = 0$ $(x+y)(x-y+1) = 0$ $y = x+1$ $y = -x$ $3-2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $x = 3$ $x = -x$ $y = -x$ $x = 3$ $x = -x$ $y = -x$ $x = 3$ $x = -x$ $y = -x$ $x = 3$ $x = -x$ $y = -x$ $x = 3$ $x = -x$ $y = -x$ $x = 3$ $x = -x$ $y = -x$ $x = 3$ $x = -x$ $x = 3$	(8)
$\left(\frac{3-y}{2}\right)^2 + y + \frac{3-y}{2} = y^2$ $\frac{9-6y+y^2}{4} + y + \frac{3-y}{2} = y^2$ $9-6y+y^2 + 4y + 6-2y = 4y^2$ $0 = 3y^2 + 4y - 15$ $0 = (3y-5)(y+3)$ $y = \frac{5}{3} \text{or} y = -3$ $\therefore x = \frac{2}{3}$ $\therefore x = 3$ OR $y = 3-2x$ $x^2 - y^2 + x + y = 0$ $(x+y)(x-y) + (x+y) = 0$ $(x+y)(x-y+1) = 0$ $y = x+1$ $y = -x$ $3-2x = x + 1$ $3-2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $x = 3$ $x = 2$ $x = 3$	
$\left(\frac{3-y}{2}\right)^2 + y + \frac{3-y}{2} = y^2$ $\frac{9-6y+y^2}{4} + y + \frac{3-y}{2} = y^2$ $9-6y+y^2 + 4y + 6-2y = 4y^2$ $0 = 3y^2 + 4y - 15$ $0 = (3y-5)(y+3)$ $y = \frac{5}{3} \text{or} y = -3$ $\therefore x = \frac{2}{3}$ $\therefore x = 3$ OR $y = 3-2x$ $x^2 - y^2 + x + y = 0$ $(x+y)(x-y) + (x+y) = 0$ $(x+y)(x-y+1) = 0$ $y = x+1$ $y = -x$ $3-2x = x + 1$ $3-2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $x = 3$ $x = 2$ $x = 3$	
$\left(\frac{3-y}{2}\right) + y + \frac{3-y}{2} = y^{2}$ $\frac{9-6y+y^{2}}{4} + y + \frac{3-y}{2} = y^{2}$ $9-6y+y^{2} + 4y + 6-2y = 4y^{2}$ $0 = 3y^{2} + 4y - 15$ $0 = (3y-5)(y+3)$ $y = \frac{5}{3} \text{or} y = -3$ $\therefore x = \frac{2}{3} \qquad \therefore x = 3$ OR $y = 3-2x$ $x^{2}-y^{2} + x + y = 0$ $(x+y)(x-y) + (x+y) = 0$ $(x+y)(x-y+1) = 0$ $y = x+1$ $y = -x$ $3-2x = x+1$ $3-2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $x = 3$ $y = x+1$ $y = -x$ $3-2x = x+1$ $3-2x = -x$ $y = 3-2x$ $y = x+1$ $y = -x$ $3-2x = x+1$ $3-2x = -x$ $y = 5$ $y = x+1$ $y = -x$ $3-2x = x+1$ $3-2x = -x$ $y = x+1$ $y = -x$ $x = 3$ $y = -x$ $y = -x$ $x = 3$ $y = -x$ $x = 3$ $y = -x$ $y = -x$ $x = 3$	
$9-6y+y^2+4y+6-2y=4y^2$ $0=3y^2+4y-15$ $0=(3y-5)(y+3)$ $y=\frac{5}{3} \text{or} y=-3$ $\therefore x=\frac{2}{3}$ $\therefore x=3$ OR $y=3-2x$ $(x+y)(x-y)+(x+y)=0$ $(x+y)(x-y+1)=0$ $(x+y)(x-y+1)=0$ $y=x+1$ $y=-x$ $3-2x=x$ $x=3$ or $x=\frac{2}{3}$ or $x=\frac{2}{3}$ $(x+y)=3-2x$ $(x+y$	
$9-6y+y^2+4y+6-2y=4y^2$ $0=3y^2+4y-15$ $0=(3y-5)(y+3)$ $y=\frac{5}{3} \text{or} y=-3$ $\therefore x=\frac{2}{3}$ $\therefore x=3$ OR $y=3-2x$ $(x+y)(x-y)+(x+y)=0$ $(x+y)(x-y+1)=0$ $(x+y)(x-y+1)=0$ $y=x+1$ $y=-x$ $3-2x=x$ $x=3$ or $x=\frac{2}{3}$ or $x=\frac{2}{3}$ $(x+y)=3-2x$ $(x+y$	
$0 = 3y^{2} + 4y - 15$ $0 = (3y - 5)(y + 3)$ $y = \frac{5}{3} \text{or} y = -3$ $\therefore x = \frac{2}{3} \therefore x = 3$ OR $y = 3 - 2x$ $x^{2} - y^{2} + x + y = 0$ $(x + y)(x - y) + (x + y) = 0$ $(x + y)(x - y + 1) = 0$ $y = x + 1$ $y = -x$ $3 - 2x = x + 1$ $3 - 2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $x = 3$ or $x = \frac{2}{3}$ $x = 3$ $x = 2$ $x = 3$ $x = 3$ $x = 2$ $x = 3$ $x $	
$0 = (3y-5)(y+3)$ $y = \frac{5}{3} \text{or} y = -3$ $\therefore x = \frac{2}{3} \therefore x = 3$ OR $y = 3-2x$ $x^2 - y^2 + x + y = 0$ $(x+y)(x-y) + (x+y) = 0$ $(x+y)(x-y+1) = 0$ $y = x+1$ $y = -x$ $3-2x = x+1$ $3-2x = -x$ $x = 3$ $x = \frac{2}{3}$	
$y = \frac{5}{3} \text{or} y = -3$ $\therefore x = \frac{2}{3} \qquad \therefore x = 3$ OR $y = 3 - 2x$ $x^2 - y^2 + x + y = 0$ $(x + y)(x - y) + (x + y) = 0$ $(x + y)(x - y + 1) = 0$ $y = x + 1$ $y = -x$ $3 - 2x = x + 1$ $3 - 2x = -x$ $x = 3$ $x = \frac{2}{3}$ $x = \frac{2}{3}$ $y = -x$ $3 - 2x = x + 1$ $3 - 2x = -x$ $x = 3$ $y = x + 1$ $y = -x$ $3 - 2x = x + 1$ $y = -x$ $x = 3$ $y = x + 1$ $y = -x$ $y =$	
OR $y = 3 - 2x$ $x^{2} - y^{2} + x + y = 0$ $(x + y)(x - y) + (x + y) = 0$ $(x + y)(x - y + 1) = 0$ $y = x + 1$ $y = -x$ $3 - 2x = x + 1$ $3 - 2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $\sqrt{y} = 3 - 2x$ $\sqrt{common factor}$ $\sqrt{common bracket}$ $\sqrt{y} = -x$ $\sqrt{3} - 2x = -x$ $\sqrt{both } x$ -values	
OR $y = 3 - 2x$ $x^{2} - y^{2} + x + y = 0$ $(x + y)(x - y) + (x + y) = 0$ $(x + y)(x - y + 1) = 0$ $y = x + 1$ $y = -x$ $3 - 2x = x + 1$ $3 - 2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $\sqrt{y} = 3 - 2x$ $\sqrt{common factor}$ $\sqrt{common bracket}$ $\sqrt{y} = -x$ $\sqrt{3} - 2x = -x$ $\sqrt{both } x$ -values	
OR $y = 3 - 2x$ $x^{2} - y^{2} + x + y = 0$ $(x + y)(x - y) + (x + y) = 0$ $(x + y)(x - y + 1) = 0$ $y = x + 1$ $y = -x$ $3 - 2x = x + 1$ $3 - 2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $\sqrt{y} = 3 - 2x$ $\sqrt{common factor}$ $\sqrt{common bracket}$ $\sqrt{y} = -x$ $\sqrt{3} - 2x = -x$ $\sqrt{both } x$ -values	(0)
$y = 3 - 2x$ $x^{2} - y^{2} + x + y = 0$ $(x + y)(x - y) + (x + y) = 0$ $(x + y)(x - y + 1) = 0$ $y = x + 1$ $y = -x$ $3 - 2x = x + 1$ $3 - 2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $x = \frac{2}{3}$ $y = x + 1$ $y = -x$ $3 - 2x = -x$ $y = -x$ $x = 3$	(8)
$x^{2} - y^{2} + x + y = 0$ $(x + y)(x - y) + (x + y) = 0$ $(x + y)(x - y + 1) = 0$ $y = x + 1$ $y = -x$ $3 - 2x = x + 1$ $3 - 2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $x = \frac{2}{3}$ $y = 3 - 2x$ $y = 3 - 2x$ $y = 3 - 2x$ $y = -x$ $y =$	
$(x+y)(x-y) + (x+y) = 0$ $(x+y)(x-y+1) = 0$ $y = x+1$ $y = -x$ $3-2x = x+1$ $3-2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $x = \frac{2}{3}$ $\sqrt{y} = 3-2x$ $\sqrt{common factor}$ $\sqrt{y} = -x$ $\sqrt{3} - 2x = -x$ $\sqrt{both } x$ -values	
$(x+y)(x-y) + (x+y) = 0$ $(x+y)(x-y+1) = 0$ $y = x+1$ $y = -x$ $3-2x = x+1$ $3-2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $x = \frac{2}{3}$ $\sqrt{3-2x} = -x$ $\sqrt{5-2x} = -x$	
$y = x + 1$ $y = -x$ $3 - 2x = x + 1$ $3 - 2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $x = \frac{2}{3}$ $\sqrt{\text{common bracket}}$ $\sqrt{y} = -x$ $\sqrt{3} - 2x = -x$ $\sqrt{\text{both } x\text{-values}}$	
$y = -x$ $3 - 2x = x + 1$ $3 - 2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $x = \frac{2}{3}$ $\sqrt{y} = -x$ $\sqrt{3} - 2x = -x$ $\sqrt{\text{both } x\text{-values}}$	
$3-2x = x+1$ $3-2x = -x$ $x = 3$ or $x = \frac{2}{3}$ $\sqrt{3-2x} = -x$ $\sqrt{\text{both } x\text{-values}}$	
$x = 3$ or $x = \frac{2}{3}$ $\sqrt[4]{3 - 2x} = -x$ both x-values	
1 V 3 1 V V V-Valles	
$y = -3$ $y = \frac{5}{3}$ \sqrt{y} -values	(8)
	. /
OR	

Copyright reserved

DoE/November 2008

Mathemat		DoE/November 2008
	NSC – Memorandum	2
	$x = \frac{3 - y}{2}$	$\checkmark x = \frac{3-y}{2}$
	2	2
	$x^2 - y^2 + x + y = 0$	✓ common factor
	(x + y)(x - y) + (x + y) = 0	✓ common bracket
	(x+y)(x-y+1) = 0	common oracket
		$\checkmark y = -x$
	y = x + 1	J
	y = -x $3-y$	$\checkmark y = -\frac{3-y}{2}$
	$y = -x$ $y = \frac{3-y}{2} + 1$ $y = \frac{3-y}{2} + 2$ $2y = 3-y+2$	$y = -\frac{1}{2}$
	$y = -\frac{y}{2}$ $2y = 3 - y + 2$	✓ both <i>y</i> -values
	$2y = -3 + y \qquad \text{or} \qquad 3y = 5$	$\checkmark \checkmark x$ -values
		(0)
	$y = -3$ $x = 3$ $y = \frac{5}{3}$	(8)
	$x = \frac{2}{3}$	
1.3	$\frac{x^2 - 4}{x - 2} = \frac{(x + 2)(x - 2)}{(x - 2)} = x + 2$	✓ factorisation
	x-2 $(x-2)$	✓ simplification
	Therefore when $x = 999 999 999$, the value is	✓ answer
	$999\ 999\ 999\ +2 = 1\ 000\ 000\ 000\ 001.$	(3)
	OD	Note:
	OR 2 4 (2)(2)	If candidate has
	$\frac{x^2 - 4}{x - 2} = \frac{(x + 2)(x - 2)}{(x - 2)} = x + 2$	substituted directly, 0/3
	, , , , , , , , , , , , , , , , , , , ,	(answer would be
	$999\ 999\ 999\ = 10^{12} - 1$	1×10^{12} by
	x + 2 = 999999999999999999999999999999999	substitution)
	$=10^{12}+1$	Answer only: 2/3 Correct answer but
		incorrect mathematics
		0/3
1.4	$x^4 + 1$ 1 1	✓ inequality
	$\frac{x^4+1}{x^4} = 1 + \frac{1}{x^4} > 1$ since $\frac{1}{x^4} > 0$. 1 A
		✓ conclusion
	$\therefore \frac{x^4 + 1}{x^4} \text{ can never be equal to } \frac{1}{2}$	(2)
	x^*	
	OR	
	$2x^4 + 2 = x^4$	
	$\frac{1}{x^4} = -\frac{1}{2}$	✓ equation
	x^4 2	✓ conclusion
	Which has no real solution since $\frac{1}{r^4} > 0$ for all $x \in R - \{0\}$	(2)
	x^4	
	OR	
ı		

NSC – Memorandum	

$2x^4 + 2 = x^4$	✓ calculation
$x^4 + 2 = 0$	
$x^4 + 0x^2 + 2 = 0$	
$b^2 - 4ac = 0 - 4(1)(2)$	
= -8	$\checkmark \Delta < 0 \text{ or } \Delta = -8$
< 0	(2)
∴ no real roots	
$2x^4 + 2 = x^4$	d aquation
$\therefore x^4 = -2$	✓ equation
	✓ conclusion
Which has no real solution since $x^4 \ge 0$ for all $x \in R$	(2)
	[26]

2.1.1	1 . 13		✓✓ answers
	$\frac{1}{16}$; 13		(2)
2.1.2	$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ to 25 tarms	$(4+7+10+13+to\ 25\ terms)$	✓ formula for
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4+7+10+13+to 23 terms)	geometric series
		$=\frac{n}{2}\big[2a+(n-1)d\big]$	$\checkmark \frac{\frac{1}{2}\left(\left(\frac{1}{2}\right)^{25} - 1\right)}{\frac{1}{2} - 1}$
	$= \frac{\frac{1}{2} \left(\left(\frac{1}{2} \right)^{25} - 1 \right)}{\frac{1}{2} - 1}$	25 г	2
	=	$=\frac{25}{2}\big[2(4)+24(3)\big]$	✓ answer for
	$\frac{1}{2}$ - 1	2	geometric series
		= 1 000	✓ formula for
			linear series
	$S_{50} = 1001,00$		$\checkmark \frac{25}{2} [2(4) + 24(3)]$
		OR	✓ 1000
			✓ answer
	$S_{50} = 25 \text{ terms of } 1^{\text{st}} \text{ sequence}$	e + 25 terms of 2 nd sequence	(7)
	c $(1,1,1,\ldots,25,\ldots)$) . (4 . 7 . 10 . 12 25)	Note:
	$S_{50} = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \right)$ 15 term	ms) + $(4+7+10+13+to 25 terms)$	If used 50 terms in each series: max
	1 ((1)25)	,	
	$\left \frac{1}{2} \left \left(\frac{1}{2} \right) -1 \right \right $		
	$S = \frac{2(2)}{12} + \frac{25}{12}$) + 24(3)]	3876)
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$) 24(3)]	,
	2		Answer only: 6 / 7
	$S_{50} = 0,999999 + 1000$		Write out series
	$S_{50} = 1001,00$		
	, Ju		answer: full marks
			Write out both
	$S_{50} = \frac{\frac{1}{2} \left(\left(\frac{1}{2} \right)^{25} - 1 \right)}{\frac{1}{2} - 1} + \frac{25}{2} \left[2(4 + 1)^{25} \right]$ $S_{50} = 0.9999999 + 1000$ $S_{50} = 1001,00$) + 24(3)]	5/7 (answer then is 3876) Answer only: 6 / 7

Mathematics/P1 7 DoE/November 2008

	NSC – Memorandum	
2.2.1	60;78	✓✓ answers (2)
2.2.2	8 18 30 44	(2)
	10 12 14	
		✓ a = 1
	$ 2 \qquad 2 \\ 2a = 2 $	
	a = 1	✓ substitution
	$T_n = n^2 + bn + c$	
	8 = 1 + b + c	
	7 = b + c(i) 18 = 4 + 2b + c	✓ solving simultaneously
	14 = 2b + c(ii)	simultaneously
	(ii) – (i): $14 = 2b + c$ 7 = b + c	$\checkmark b = 7$ $\checkmark c = 0$
	$\therefore 7 = b$	V C = 0
	c = 0	
	$T_n = n^2 + 7n$	✓ general term
	OR	(6)
	T = 0	
	$T_1 = 8 T_2 - T_1 = 10$	
	$T_3 - T_2 = 12$	$\checkmark T_1 = 8$
	$T_n - T_{n-1} = n$ th term of sequence with $a = 8$ and $d = 2$	$\checkmark T_2 - T_1 = 10$
	Add both sides	✓ $T_3 - T_2 = 12$ ✓ Add both sides
	$T_n = 8 + 10 + 12 + \dots + $ to 25 terms	rad both sides
	$T_n = \frac{n}{2} [16 + 2(n-1)]$	✓ sequence
	$T_n = n(n+7)$	✓ substitution
		(6)
	OR	(6)

$$T_0$$
 T_1 T_2 T_4 T_5

$$T_0 = 0$$

$$a(0)^2 + b(0) + c = 0$$
$$c = 0$$

constant second difference = 2

$$T_1 = 1 + b = 8$$

$$b = 7$$

$$T_n = n^2 + 7n$$

$$T_n = n(n+7)$$

OR

$$T_n = \frac{n-1}{2} \left[2(first\ first\ difference) + (n-2)(second\ difference) \right] + T_1$$

$$T_n = \frac{n-1}{2} [2(10) + (n-2)(2)] + 8$$

$$T_n = 10(n-1) + (n-2)(n-1) + 8$$

$$T_n = 10n - 10 + n^2 - 3n + 2 + 8$$

$$T_n = n^2 + 7n$$

OR

$$T_n = (n-1)T_2 - (n-2)T_1 + 2nd \ difference \frac{(n-1)(n-2)}{2}$$

$$T_n = (n-1)(18) - (n-2)(8) + 2\frac{(n-1)(n-2)}{2}$$

$$T_n = 18n - 18 - 8n + 16 + n^2 - 3n + 2$$

$$T_n = n^2 + 7n$$

OR

✓ finding T₀

$$\checkmark c = 0$$

✓ second difference = 2

$$\checkmark a = 1$$

✓ substitution

$$\checkmark b = 7$$

(6)

✓ formula

✓✓ substitution

√ √ simplification

✓ answer

(6)

✓✓ formula

✓✓ substitution

✓ simplification

✓ answer

(6)

Copyright reserved

Please turn over

NSC - Memorandum

		NSC – Memorandum	
$T_n = \frac{(n^2 - 1)^2}{T_n = 4n^2 - 1}$	-5n+6)(8)-2($-20n+24-18n$	$\frac{n-1)(n-3)T_2 + (n-2)(n-1)T_3}{2}$ $\frac{n^2 - 4n + 3)(18) + (n^2 - 3n + 2)(30)}{2}$ $\frac{n^2 + 72n - 54 + 15n^2 - 45n + 30}{2}$	✓ formula ✓✓ substitution ✓✓ simplification ✓ answer (6)
$T_n = n^2 + $ $T_1 = 8 = 1.$		OR	✓✓✓✓ observation ✓ answer
$T_{2} = 18 = 2$ $T_{3} = 30 = 3$ $T_{4} = 44 = 4$ $T_{n} = n^{2} + 4$	2.9 3.10 4.11		Note: By trial and error: 6 / 6 Answer only: 6 / 6
2.2.3 $n(n+7) = n^2 + 7n - 3$ $(n+22)(n)$ $n = -22$ $n = 15$ $\therefore 15^{th} \text{ term}$	330 = 0 $-15) = 0$ or $n = 15$	Note: 3/4 if did not reject $n = -22Answer only: 4/4By trial and error and then write n = 15:4/41/4 if just equate T_n that they foundIf linear T_n and valid answer: 2/4$	✓ substitution ✓ standard form ✓ factorisation ✓ answer (4)
			[21]

			1	
3.1	$T_n = \left(8x^2\right)\left(\frac{x}{2}\right)^{n-1}$	OB	✓ answer	(1)
	$T_n = 8\left(\frac{1}{2}\right)^{n-1}.x^{n+1}$	OR		
		OR		
	$T_n = 16x \left(\frac{x}{2}\right)^n$	OR		
	$T_n = 2^{4-n} x^{n+1}$			
3.2	$ratio = \frac{x}{2}$		✓ ratio	
	$-1 < \frac{x}{2} < 1$		✓ inequality	
	-2 < x < 2		✓ answer	
				(3)
3.3	$S_{\infty} = \frac{a}{1 - r}$ $S_{\infty} = \frac{8x^2}{1 - \frac{x}{2}}$		\checkmark substitution into formula for S_{∞}	
	_		✓ substitution of $x = \frac{3}{2}$	
	$S_{\infty} = \frac{8\left(\frac{3}{2}\right)^2}{1 - \frac{1}{2}\left(\frac{3}{2}\right)}$ $S_{\infty} = 72$		✓ answer	(3)
	$S_{\infty} - IZ$			
		OR		
	$18 + \frac{27}{2} + \frac{81}{8} + \dots$		✓ series	
	$S_{\infty} = \frac{18}{1 - \frac{3}{4}}$		✓ substitution	
	$\frac{1-\overline{4}}{4}$			
	$S_{\infty} = \frac{18}{\frac{1}{4}}$		✓ answer	(2)
	$S_{\infty} = 72$		Formula Incorrect: 0 / 3	(3)
	$S_{\infty} - 72$			[7]
L	<u> </u>		1	

4.1	p = 4 $q = 2$	✓ answer p ✓ answer q
	$3 = \frac{a}{5-4} + 2$	✓ substitution of (5; 3)
	$1 = \frac{a}{1}$ $a = 1$	✓ answer
	u-1	(4) Answer for p 1 mark Answer for q 1 mark Answer for a 2 marks
4.2	y = -x + c substitute (4; 2) $2 = -4 + c$ $c = 6$	✓ correct point (4; 2) ✓ substitution ✓ answer
	OR	(3)
	Translation of the line $y = -x$ 2 units up and 4 units right $y = -(x-4) + 2$ $y = -x + 6$	✓ substitution of $x - 4$ ✓ adding 2 ✓ answer (3)
		Substitution of T(3; 5): 0/3 Answer only: 3/3 [7]

QUES	TION 5	
5.1 & 5.2	1	EXPONENTIAL ✓ shape (must be increasing above x-axis) ✓ y-int PARABOLA ✓ shape ✓ turning point ✓ y-intercept ✓ x-intercepts (8) INVERSE/LOG ✓ x-int ✓ shape (must be increasing on the right of the y-axis) (2) Note: If x-intercepts not shown but correct on graph 2/2 for x-intercepts.
5.3	Calculation of x-intercepts of parabola $0 = 2(x-1)^{2} - 8$ $8 = 2(x-1)^{2}$ $4 = (x-1)^{2}$ $2 = x-1 \text{ or } -2 = x-1$ $x = 3 \text{ or } x = -1$ $0 = 2(x^{2} - 2x + 1) - 8$ $0 = 2x^{2} - 4x - 6$ $0 = x^{2} - 2x - 3$ $0 = (x-3)(x+1)$ $x = 3 \text{ or } x = -1$ $y = 2(x+1)^{2} - 8$ OR $y = 2x^{2} + 4x - 6$	$\begin{array}{c} \checkmark -8 \\ \checkmark +1 \end{array}$ (2) $\begin{array}{c} \checkmark -6 \\ \checkmark +4 \end{array}$ (2)

NCC	Mamarandum
NSC –	Memorandum

	NSC - Welloralidum	
5.4	$h\left(x + \frac{1}{2}\right) = 4^{x + \frac{1}{2}}$	✓ substitution
	$= 4^{x} \cdot 4^{\frac{1}{2}}$ $= 2(4^{x})$	$\checkmark 4^{x}.4^{\frac{1}{2}}$ $\checkmark 2(4^{x})$
	=2h(x) OR	(3)
	$h\left(x + \frac{1}{2}\right) = 4^{x + \frac{1}{2}}$	✓ substitution x_{+}^{1}
	$= (2^{2})^{x+\frac{1}{2}}$ $= 2^{2x+1}$	$\checkmark (2^2)^{x+\frac{1}{2}}$ $\checkmark 2(4^x)$ (3)
	$= 2^{2x}.2$ $= 2.(4^x)$ $= 2h(x)$	Note: If numerical examples are used: 1/3
		[15]

6.1	$x = -45^{\circ}$	✓ answer
	$x = 135^{\circ}$	✓ answer
		(2)
		Note:
		If correct numbers but
		not writing as an
		equation 1/2
		If units left out: 2 / 2
6.2	$h(x) = \tan(45^\circ - x)$	
	$h(x) = -\tan(x - 45^{\circ}) = -f(x)$	
	h is the reflection of f about the x -axis	✓✓ reflection about <i>x</i> -axis
	wis the following about the x axis	(2)
	OR	
		(/ weflestien shout w
	h is the reflection of f about the line $y = 0$	✓✓ reflection about $y = 0$
		Note:
		If calculation only: 1/2
		If answer is:
		Reflection only: 0/2
		If do calculation and say
		reflection: 1/2
		Only
		$h(x) = \tan(45^\circ - x)$
		$h(x) = -\tan(x - 45^\circ) = -f(x)$
		1/2
6.3	$y = 3\sin 2x$	√ 3
		✓ 2 <i>x</i>
		(2)
		[6]

Mathematics/P1 15 DoE/November 2008

QUESTION 7

Penalise ONCE in question 7 for early rounding off.

7.1	$A = P(1+i)^n$ $23000 = 1570(1.12)^n$		✓ formula ✓ substitution
	$(1.12)^n = 14,64968153$		✓ apply log function
	$n \log(1,12) = \log 14,64968153.$		✓answer (4)
	n = 23,69 years or $n = 24$ years or $n = 23$ years 8 months	(23,68701)	(4)
	or $n = 23,7$ years	Note:	
	OR	Accept 24 years : 4 / 4 Incorrect Formula: 0/4	
	$A = P(1+i)^n$		✓ formula
	$23000 = 1570(1 + \frac{12}{100})^n$		\checkmark substitution of $\frac{12}{100}$
	$(1.12)^n = 14,64968153$		✓ apply log function
	$n \log(1,12) = \log 14,64968153.$		✓answer
	n = 23,69 years	(23,68701)	(4)
	or $n = 24$ years or $n = 23$ years 8 months or $n = 23,7$ years		
7.2.1	$A = P(1+i)^n$		✓ substitution
	$=800000(1.08)^{5}$		✓ R 1 175 462,46
	= R1175462,46		102,10
	∴ R1175462,46 – R200 000		./ D 075 462 46
	= R975462,46		✓ R 975 462,46 (3)
	Some calculators give R 975 462,50		
			Incorrect Formula: 0/3
7.2.2	$F = \frac{x[(1+i)^n - 1]}{i}$ $975462,46 = x \frac{[1,01]^{60} - 1}{0,01}$ $\frac{975462,46 \times 0.01}{[1,01]^{60} - 1} = x$ $x = R11944,00$		✓ F = R975462,46 or answer in 7.2.1 ✓ $n = 60$ ✓ $i = 1,01$ ✓ formula ✓ simplification ✓ answer (6)

OR

975462,46 =
$$x \frac{[1,01]^{60} - 1}{0,01}$$

975462,46 = 81,66966986 x
 $x = R 11944,00$

Y F = R975462,46

Y n = 60

Y i = 1,01

Y formula

Y simplification

Answer

(6)

Note:

Continued Accuracy applies.

7.2.3
$$Service = [5000(1.01)^{1/8} + 5000(1.01)^{1/9} + 5000(1.01)^{2/4} + 5000(1.01)^{1/2} + 50001$$
 $= 32197.77$
 $975462.46 = x \frac{[1.01]^{60} - 1}{0.01} - Service$
 $975462.46 = 81.66966986x - 32197.77$
 $x = R 12338.24$

OR

$$Service = \frac{5000[1.01^{60} - 1]}{1.01^{1/2} - 1}$$
 $= 32197.77$
 $975462.46 = x \frac{[1.01]^{60} - 1}{0.01} - Service$
 $975462.46 = x \frac{[1.01]^{60} - 1}{0.01} - Service$
 $975462.46 = 81.66966986x - 32197.77$
 $x = R 12338.24$

OR

Present Value payment of R 5000
 $= 5000\{(1.01)^{-1/2} + (1.01)^{-2/4} + (1.01)^{-3/6} + (1.01)^{-4/8} + (1.01)^{-6/6}\}$
 $= 5000\{(1.01)^{-1/2} + (1.01)^{-2/4} + (1.01)^{-3/6} + (1.01)^{-4/6}\}$
 $= R 17 723.25$
Present Value of the sinking fund
 $= 975462.46(1.01)^{-6/6}$
 $= R 536 942.94$

Total Value of sinking fund
 $= R 17 723.25 + R 536 942.94$
 $= R 554 666.19$
 $\therefore 554666.19 = x \left\{ \frac{1 - (1.01)^{-6/6}}{0.01} \right\}$
 $\therefore 554666.19 = x \left\{ \frac{1 - (1.01)^{-6/6}}{0.01} \right\}$
 $\therefore 1723.38.24$

OR

NSC – Memorandum	T
$(1+i_{eff}) = (1+0.01)^{12}$	
$i_{eff} = 0.12682503$ $P(1+i)^n$	✓ substitution
$= 5000 \frac{(1,12682503)^5 - 1}{0,12682503}$ $= 32197,77$ $= 32197,77$	into formula ✓ 32 197,77
$975462,46 = x \frac{[1,01]^{60} - 1}{0,01} - 32197,77$ $975462,46 = 81,66966986x - 32197,77$ $x = R 12338,24$	✓ setting up of correct equation ✓ answer
\mathbf{OR} $5000 = \frac{x[(1,01)^{12} - 1)}{0.01}$	R 12 338,24 (4)
$x = \frac{5000 \times 0,01}{1,01^{12} - 1}$ $x = 394,24$ So monthly deposit must be increased by R 394,24	✓ substitution into formula ✓ 394,24
New monthly deposit = R 11 944 + R 394,24 = R 12 338,24	✓ setting up of correct equation
	✓ answer R 12 338,24 (4)
	[17]

8.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{-3(x+h)^2 - (-3x^2)}{h}$ $= \lim_{h \to 0} \frac{-3x^2 - 6xh - 3h^2 + 3x^2}{h}$ $= \lim_{h \to 0} \frac{-6xh - 3h^2}{h}$	definition $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\checkmark -3(x+h)^2$ $\checkmark \text{substitution of } -3x^2$
	$= \lim_{h \to 0} \frac{h(-6x - 3h)}{h}$ $= \lim_{h \to 0} (-6x - 3h)$ $= -6x$	Note: Penalty 1 for incorrect notation If a candidate has used the rules only: 0/5
8.2	$y = \frac{\sqrt{x}}{2} - \frac{1}{6x^3}$ $y = \frac{1}{2} \cdot x^{\frac{1}{2}} - \frac{1}{6} \cdot x^{-3}$ $\frac{dy}{dx} = \frac{1}{4} x^{-\frac{1}{2}} + \frac{3}{6} x^{-4}$ $\frac{dy}{dx} = \frac{1}{4} x^{-\frac{1}{2}} + \frac{1}{2} x^{-4}$ $\frac{dy}{dx} = \frac{1}{4} x^{-\frac{1}{2}} + \frac{1}{2} x^{-4}$ If leave out $\frac{dy}{dx}$ penalise 1 mark. $\frac{dy}{dx} = \frac{1}{4\sqrt{x}} + \frac{1}{2x^4}$	Simplification $ \sqrt{\frac{1}{4}x^{-\frac{1}{2}}} $ $ \sqrt{\frac{1}{2}x^{-4}} \text{ or } \frac{3}{6}x^{-4} $ [8]

Mathematics/P1 19 DoE/November 2008

QUESTION 9

0.4	(2 5)(2) 0	_
9.1	-(2x-5)(x+2) = 0	$\checkmark x = \frac{5}{2}; x = -2$
	$x = \frac{5}{2}or - 2$	2
	AB = 4,5 units	✓ answer
	OR	(2)
	OK .	
	-(2x-5)(x+2) = 0	
	$x = \frac{5}{2}or - 2$	5 2
	<u> </u>	$\checkmark x = \frac{5}{2}; x = -2$
	$AB = \sqrt{(2.5 - (-2)^2 + (0 - 0)^2)}$ $AB = 4.5 \text{ so that}$	✓ answer
	AB = 4.5 units	(2)
9.2	g'(x) = 0	$\checkmark g'(x) = 0$
	$-6x^2 - 6x + 12 = 0$	$\checkmark g'(x) = -6x^2 - 6x + 12$
	$x^2 + x - 2 = 0$	✓ factorisation
	(x+2)(x-1) = 0	ractorisation
	x=-2 or $x=1at T: x=1$	✓ answer
9.3	$g'(x) = -6x^2 - 6x + 12$	(4) ✓ g'(-3)
7.3	$g'(-3) = -6(-3)^2 - 6(-3) + 12$	8 (3)
	g'(-3) = -54 + 18 + 12	
	g'(-3) = -34 + 18 + 12 $g'(-3) = -24$	√ – 24
	$\begin{vmatrix} y & 3y - 24 \\ y = ax + q \end{vmatrix}$	✓ method of setting up
	11 = -24(-3) + q	straight line equation
	q = -61	✓ substitution of point
	y = -24x - 61	$(-3; 11)$ \checkmark answer in equation form
		(5)
	OR	
	$g'(x) = -6x^2 - 6x + 12$	✓ g'(-3)
	$g'(-3) = -6(-3)^2 - 6(-3) + 12$	
	g'(-3) = -54 + 18 + 12	√ – 24
	g'(-3) = -24	V - 24
	y - 11 = -24(x+3)	✓ formula
	y - 11 = -24x - 72	✓ substitution of point $(-3;11)$
	y = -24x - 61	✓ answer in equation form
		(5)

NSC – Memorandum				
9.4	y-coordinate of T is	✓ y-coordinate of T (27)		
	$g(1) = -2(1)^3 - 3(1)^2 + 12(1) + 20$			
	= 27			
	T(1;27)			
	$\therefore 0 < k < 27$	✓✓ answer		
		(3)		
	OR			
	$-2x^3 - 3x^2 + 12x + 20 = k$	$\checkmark -7 < 20 - k < 20$		
	$-2x^3 - 3x^2 + 12x + 20 - k = 0$	✓✓ answer		
	-7 < 20 - k < 20	Answer Only: 3/3		
	-27 < -k < 0	$0 \le k \le 27: 2/3$		
	0 < k < 27	k > 0: 1/3		
		k < 27: 1/3		
9.5	$g'(x) = -6x^2 - 6x + 12$,		
	g''(x) = -12x - 6	$\sqrt{-12x}$		
	12x + 6 = 0	✓ = 0		
	$x = -\frac{1}{2}$	$ \begin{array}{l} \checkmark - 12x \\ \checkmark - 6 \\ \checkmark = 0 \end{array} $ $ \checkmark x = -\frac{1}{2} $		
	$g''(x) < 0 \qquad \qquad g''(x) > 0$	(4)		
	$x = -\frac{1}{2}$			
	$\lambda = -\frac{1}{2}$			
	$g''(x)$ changes sign at $x = -\frac{1}{2}$			
	$g(x)$ changes sign at $x = -\frac{1}{2}$			
	\therefore point of inflection at $x = -\frac{1}{2}$			
	2 OD			
	OR			
	Turning points A(-2;0); T(1;27) Now x co-ordinate of point of inflection is			
		points		
	$x = -\frac{-2+1}{2} = -\frac{1}{2}$	✓ points ✓ $x = -\frac{1}{2}$		
		_		
		(4)		
		[18]		

10.1	$V = \pi r^2 h$	✓ formula
	$200 = \pi r^2 h$	✓ substitution
		(2)
	$h = \frac{200}{\pi r^2}$	(2)
10.2	Surface Area = $2\pi rh + \pi r^2$	✓ formula
	$S(r) = \pi r^2 + \frac{200}{\pi r^2}.2\pi r$	✓ substitution
	$S(r) = \pi r^2 + \frac{400}{r}$	(2)
10.3	$S(r) = \pi r^2 + 400r^{-1}$	✓ exponents correct
	$\frac{dS}{dr} = 2\pi r - 400r^{-2}$	$\checkmark \frac{dS}{dr} = 2\pi r - 400r^{-2}$
	At minimum: $\frac{dS}{dr} = 0$	$\checkmark \frac{dS}{dr} = 0$
	$2\pi r - \frac{400}{r^2} = 0$	
	$\pi r^3 - 200 = 0$	$\checkmark r^3 = \frac{200}{\pi}$
	$r^3 = \frac{200}{\pi}$ $r = 3.99 \text{ cm}$	$\checkmark r = 3.99 \text{ or}$
	r = 3.99 cm	$\checkmark r = 3,99 \text{ or}$ $r = \sqrt[3]{\frac{200}{\pi}}$
		Note:
		Note: If did not put = 0,
		penalise 1 mark
		If notation is $\frac{dy}{dx}$, ignore
		notation. [9]
	<u> </u>	[۶]

11.1	$10x + 8y \le 800$	✓ answer
11.1	$3x + 4y \le 360$	✓ answer
	$y \ge 60$	✓ answer
		(3)
	$x, y \in N_0$	
11.2	See attached graph (5)	11.2
& 11.3	See attached graph (1)	$\checkmark \checkmark y = -\frac{3}{4}x + 90$
11.5	See attached graph (1)	4
		$\checkmark y = -\frac{3}{4}x + 90$ $\checkmark y = -\frac{5}{4}x + 100$ $\checkmark y = 60$
		$\checkmark y = 60$
		(5)
		11.3
		✓ feasible region
		(1)
		Note: If shading only, and did not state feasible
		region 1/1
11.4	P = 200x + 250y	✓ answer
		(1)
11.5	250y = -200x + P	
	$y = -\frac{4}{5}x + \frac{P}{250}$	
	$y = -\frac{1}{5}x + \frac{1}{250}$	✓ gradient
	Maximum at (20; 75)	✓ search line
		✓ answer (3)
		Note:
		Read correctly from the
		candidate's graph for the
		point for maximum
		profit.
		If used vertices method:
11.6		1/3 for accurate answer.
11.6	$m=-\frac{3}{4}$	$\checkmark m = -\frac{3}{4}$
	Since the gradient of the new profit function is equal to the	✓✓ more points in
	gradient of the constraint $3x + 4y \le 360$, there are points	optimal solution (more
	other than (20; 75) that give an optimal solution.	than one solution)
	• • • •	(3)
		Note:
		If just answer Yes 0 / 3
		If just answer No 0 / 3
		[16]

MATATA