# INFERENCIA FILOGENÉTICA

ORÍGENES, CRITERIO DE OPTIMALIDAD Y MÁXIMA PARSIMONIA

#### PEDIGREE OF MAN.



#### Classification of Angiosperns by Cronquist 1981







Phylum Psychozoa

#### SISTEMÁTICA FILOGENÉTICA



**Objetivo**: reconstruir las relaciones de parentesco entre taxones y proveer una clasificación concordante usando clados monofiléticos





Los caracteres permiten reconstruir ese orden

Se acepta la reconstrucción con menor número de explicaciones



#### FUNDAMENTOS DE LA SISTEMÁTICA DE ACUERDO A HENNIG

I. La única base objetiva de relación entre especies es la genealógica

2. La monofilia, como el grupo compuesto por la especie ancestral y todos sus descendientes, define los taxones objetivamente

3. Especies y taxones superiores pueden definirse como monofiléticos si y solo si comparten una novedad evolutiva única (sinapomorfía)

# **ARGUMENTACIÓN HENNIGIANA**

• Determinar homología primaria

Determinar polaridad (Grupo ajeno)

Identifique congruencias

Construya el o los árboles

# **ARGUMENTACIÓN HENNIGIANA**



## **TALLER: Argumentación Hennigiana**

Infiera las relaciones filogenéticas de las monocotiledóneas con base en la siguiente matriz:

|         | Flores<br>trímeras | Trepadora | Cuerpos<br>de sílica | Cera tipo<br>"Strelitzia" | Plantas<br>dioicas | Fruto<br>capsular | Venación<br>palmeada | Ovario<br>súpero |
|---------|--------------------|-----------|----------------------|---------------------------|--------------------|-------------------|----------------------|------------------|
| Algodón | 0                  | 0         | 0                    | 0                         | 0                  | 0                 | 0                    | 0                |
| Ñame    | 1                  | 1         | 0                    | 0                         | 1                  | 0                 | 0                    | 1                |
| Coco    | 1                  | 0         | 0                    | 0                         | 1                  | 1                 | 1                    | 0                |
| Piña    | 1                  | 0         | 1                    | 1                         | 0                  | 1                 | 1                    | 1                |
| Banano  | 1                  | 0         | 1                    | 1                         | 0                  | 1                 | 1                    | 1                |

## TALLER # 3: Argumentación Hennigiana

# Abrir enlace del chat:

https://jamboard.google.com/d/1aRz1gV2ikx6hH1 BjWx4u50ZJR0MkOWbyRW3e8-lumKk/edit?usp= sharing

#### PROBLEMAS DE LA ARGUMENTACIÓN HENNIGIANA

• Polarización a priori de caracteres (grupo ajeno = ancestral)

- El método asume que no hay homoplasia (poco realista)
  - Caracteres inconsistentes con otros violan el modelo Hennigiano

 Imposible evitar errores o malas interpretaciones al codificar caracteres

#### CRITERIO DE OPTIMALIDAD

Medida que permite decidir, con base en un conjunto de datos, cuáles árboles (hipótesis) son mejores y cuales son peores



**Cuchilla de Occam**: la mejor hipótesis para explicar un proceso es aquella que requiere el menor número de suposiciones

En inferencia filogenética: el mejor árbol es aquel que explica los datos observados con la menor cantidad de homoplasia posible (menos transformaciones)

- Contar el mínimo número de cambios (pasos) de cada caracter en un árbol determinado
- 2. Sumar todos los números de pasos para determinar la **LONGITUD DEL ÁRBOL**
- Repetir en los otros árboles alternativos y escoger aquel con la menor longitud como el ÁRBOL MÁS PARSIMONIOSO

**EJEMPLO** 

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|
| o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| A | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| В | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| С | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |



Árbol I

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|
| o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| A | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| В | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| С | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |

$$O = 0 A = |B| = |C| = 0 O = 0 A = |B| = |C| = 0 O = 0 A = |B| = |C| = 0$$



0 **→** I

2 pasos



 $I \longrightarrow 0$ 

2 pasos



0 - 1

2 pasos

Árbol I

| I | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|
| o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| A | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| В | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| С | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |



Árbol 2

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|
| o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| A | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| В | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| C | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |



Árbol 3





|                  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |              |
|------------------|---|---|---|---|---|---|---|---|--------------|
| o                | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |              |
| A                | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |              |
| В                | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |              |
| С                | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | Total length |
| Length on tree 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 11           |
| Length on tree 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 12           |
| Length on tree 3 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 9            |

Árbol más parsimonioso

#### • HOMOPLASIA VS. CONSISTENCIA

| Taxa    |   | Co  | nsist | ent | Homoplastic |     |      |      |     |      |  |
|---------|---|-----|-------|-----|-------------|-----|------|------|-----|------|--|
| A       | A | G   | Т     | G   | G           | G   | С    | G    | A   | T    |  |
| В       | A | G   | Т     | G   | G           | G   | Т    | т    | С   | G    |  |
| С       | A | G   | Т     | G   | С           | A   | т    | G    | G   | A    |  |
| D       | A | G   | Т     | Т   | Т           | A   | С    | Т    | С   | Т    |  |
| Е       | A | А   | С     | Т   | A           | G   | С    | A    | A   | С    |  |
| F       | A | G   | С     | С   | A           | G   | T    | А    | G   | G    |  |
| States  | 1 | 2   | 2     | 3   | 4           | 2   | 2    | 3    | 3   | 4    |  |
| Changes | 0 | 1   | 1     | 2   | 3           | 2   | 3    | 3    | 4   | 4    |  |
| CI      |   | 1.0 | 1.0   | 1.0 | 1.0         | 0.5 | 0.33 | 0.66 | 0.5 | 0.75 |  |

Índice de consistencia (ci)

$$ci = L_{min}/L_{obs}$$



#### Otros índices

Indice de Homoplasia (hi) = 
$$1 - CI$$
  
Indice de Retención (ri) =  $(L_{max} - L_{obs})/(L_{max} - L_{min})$ 

• Índices a través del árbol

$$\mathbf{CI} = \Sigma L_{\min} / \Sigma L_{\text{obs}}$$

$$\mathbf{RI} = (\Sigma L_{\max} - \Sigma L_{\text{obs}}) / (\Sigma L_{\max} - \Sigma L_{\min})$$

# MÁXIMA PARSIMONIA Variaciones de optimización de caracteres en árboles

Caracteres no ordenados o no aditivos (pesos iguales) =
 Parsimonia de Fitch



# MÁXIMA PARSIMONIA Variaciones de optimización de caracteres en árboles

 Caracteres ordenados o aditivos (pesos diferentes de caracter) = Parsimonia de Wagner



#### Variaciones de optimización de caracteres en árboles

#### Parsimonia de Dollo

 Una vez un carácter complejo se puede perder muchas veces pero no podrá evolucionar de nuevo





#### Variaciones de optimización de caracteres en árboles

- PESAJE DE CARACTERES
  - Pesaje a priori (Parsimonia generalizada)
    - Asignación de peso a criterio del investigador
    - Ej.: transversiones vs. transiciones, codones, caracteres diagnósticos

- Pesos a posteriori
  - Pesaje a posteriori después de un análisis de pesos iguales (homólogos pesan más)

|               | 1 | 2 | 3 | 4  | 5 | 6 | 7 | 8 |               |                |
|---------------|---|---|---|----|---|---|---|---|---------------|----------------|
| О             | 0 | 0 | 1 | 0  | 1 | 1 | 0 | 0 |               |                |
| A             | 0 | 1 | 1 | 0  | 1 | 0 | 1 | 0 |               |                |
| В             | 1 | 1 | 1 | 1  | 0 | 0 | 1 | 1 |               |                |
| С             | 0 | 0 | 0 | 1  | 1 | 1 | 0 | 0 |               |                |
| Peso          | 1 | 1 | 1 | 5  | 1 | 1 | 1 | 1 | Longi-tu<br>d | Costo<br>total |
| Costo árbol I | 1 | 2 | 1 | 5  | 1 | 2 | 2 | 1 | 11            | 15             |
| Costo árbol 2 | 1 | 2 | 1 | 10 | 1 | 2 | 2 | 1 | 12            | 20             |
| Costo árbol 3 | 1 | 1 | 1 | 10 | 1 | 1 | 1 | 1 | 9             | 17             |

#### **ACCTRAN y DELTRAN**



- ACCTRAN: Transformación acelerada (favorece reversiones)
- DELTRAN: Transformación retrasada (favorece los paralelismos)

#### ¿Qué pasa si hay más de un árbol más parsimonioso?



# MÁXIMA PARSIMONIA Problemas

- Longitud de ramas no se toma en cuenta (se ignora la tasa de evolución de los caracteres en cada rama)
- Atracción de ramas largas (¡¡entre más caracteres, peor!!)

- Pesaje de caracteres es necesario (aún si son pesos iguales)
  - No hay métodos formales para decidir pesos

El problema de encontrar árboles óptimos...

| Taxa | Árboles resueltos     |
|------|-----------------------|
| 1    |                       |
| 2    | 1                     |
| 3    | 1                     |
| 4    | 3                     |
| 5    | 15                    |
| 6    | 105                   |
| 7    | 945                   |
| 8    | 10395                 |
| 9    | 135135                |
| 10   | 2027025               |
| 11   | 34459425              |
| 12   | 654729075             |
| 13   | 13749310575           |
| 14   | 316234143225          |
| 15   | 7905853580625         |
| 16   | 213458046676875       |
| 17   | 6190283353629370      |
| 18   | 191898783962510000    |
| 19   | 6332659870762850000   |
| 20   | 221643095476699000000 |
| 62   | 6,66409461 x 10 E 98  |
| 63   | > 10 E 100            |

#### Métodos exactos:

I. Búsqueda exhaustiva



#### Métodos exactos:

2. Branch & Bound



#### Métodos heurísticos:

- Buscar árbol inicial:
- Adición paso a paso (Stepwise addition)
- Aleatorio



#### Métodos heurísticos:

- 2. Perturbar árbol inicial:
- Nearest Neighbor Interchange (NNI)



0. Starting tree

#### Métodos heurísticos:

- 2. Perturbar árbol inicial:
- Subtree Pruning & Regrafting (SPR)

1. Generate two subtrees by breaking an internal node

2. Try to insert the red subtree at each node of the blue subtree



#### Métodos heurísticos:

- 2. Perturbar árbol inicial:
- Tree Bisection & Reconnection (TBR)



Try to insert all possible rooted red subtrees at each node of the blue subtree



#### Métodos heurísticos:

3. Visitar óptimos locales para tener óptimo global:

- Réplicas
- Stepwise-random-additi on





#### Métodos heurísticos:

Para más de 100 terminales:

- Nueva Tecnología: Parsimonia RATCHET y Tree-Drifting
  - Sacrifican búsquedas intensivas en islas para poder visitar más islas en el espacio de árboles (escapar de óptimos locales).
  - 2 pasos:
    - Búsquedas en subset de datos con nuevos pesos (para explorar islas)
    - Volver a pesos originales y escoger mejores árboles