

RF Phase Drift Measurements Using Two-tone Scheme

Maciej Grzegrzółka, Andžej Šerlat, Krzysztof Czuba

LLRF 2025

Newport News, 14.10.2025

Introduction

- Phase drift of cables, couplers, and other components is a significant issue in phase reference line design.
- Manufacturers rarely provide information about component phase drifts.
- Characterizing the components is important to select the best available ones.
- Several measurement methods exist, but their performance is often insufficient.
- We aim to test a two-tone method and verify its performance.

Single Tone Measurement

$$\Delta \varphi = (\Delta t_L + \Delta t_{ADC}) f_{MT}$$

$$\Delta \varphi_{MT} = (\Delta t_L + \Delta t_{ADC}) f_{MT}$$

$$\Delta \varphi_{ST} = (\Delta t_{STG} + \Delta t_L + \Delta t_{ADC}) f_{ST}$$

Master Oscillator
$$O_{f_{MT}}$$
 $O_{f_{MT}}$ $O_{f_{MT}}$

2025.10.14 M.Grzegrzółka

2025.10.14 M.Grzegrzółka LLRF2025, Newport News, VA, USA 16

$$\Delta t_L = \frac{\Delta \varphi_{ST1} - \Delta \varphi_{ST2}}{2f_{ST}} - \frac{\Delta \varphi_{MT1} - \Delta \varphi_{MT2}}{2f_{MT}}$$

Test System

- Test system assembled to evaluate method performance
- Mechanical phase shifter simulating line drifts
- Main tone: 162.5 MHz
- Second tones tested:
 - 20.3125 MHz \rightarrow 142.1875 MHz separation
 - 161.32 MHz \rightarrow 1.18 MHz separation

Signal processing

Measurements – Comparison to AD8302

- Second tone: 20.3125 MHz
- Measured error: < 2.6 %

Measurements – Comparison to AD8305

- Second tone: 161.32 MHz
- Measured error: < 1.5 %

Measurements - Selfdrifts

- Second tone: 20.3125 MHz
- Temperature change: 12 °C
- Drift: 250 fs
- Drift coefficient: 20.83 fs/°C

Measurements - Selfdrifts

- Second tone: 161.32 MHz
- Temperature change: 12 °C
- Drift: 8 fs
- Drift coefficient: 667 as/°C

Plans for future

- Two-tone system planned for PIP-II phase reference distribution
- Dedicated hardware developed and in production
- New test setup with this hardware to be assembled this year

Summary

- Two-tone phase drift measurement system developed and tested
- Performance:
 - 2.6% error 142.1875 MHz separation
 - 1.5% error 1.18 MHz separation
- Self-drift:
 - 20.83 fs/°C 142.1875 MHz separation
 - 667 as/°C 1.18 MHz separation
- More information can be found in:

Šerlat, Andžej, Maciej Grzegrzółka, and Krzysztof Marek Czuba. 2025. "Two-Tone RF Signal Phase Drift Measurement System." Measurement 243. https://doi.org/10.1016/j.measurement.2024.116183

Thank you for attention!