Vorlesung Analysis I im Wintersemester 2012/13

Wilhelm Singhof

1. Die reellen Zahlen

Mathematische Objekte (z.B. Zahlen, Funktionen, Punkte oder Geraden in der Ebene, ...) können zu Mengen zusammengefasst werden. Ist M eine Menge und a ein mathematisches Objekt, so schreibt man $a \in M$, wenn a zu M gehört und nennt a ein Element von M; andernfalls schreibt man $a \notin M$.

Beispiel: Sei M die Menge, die aus den beiden natürlichen Zahlen 1 und 2 besteht. Man schreibt $M = \{1, 2\}$. Es ist $1 \in M$, $3 \notin M$.

Sind M und N zwei Mengen und ist jedes Element von N auch Element von M, so nennt man N eine Teilmenge von M und schreibt $N \subseteq M$. Zwei Mengen M und N heißen gleich (in Zeichen M = N), wenn sie dieselben Elemente enthalten, also genau dann, wenn $M \subseteq N$ und $N \subseteq M$ ist.

Die Menge, die keine Elemente enthält, nennt man die leere Menge; sie wird mit \emptyset bezeichnet. Für jede Menge M ist $\emptyset \subseteq M$.

Die reellen Zahlen sind eine Menge \mathbb{R} zusammen mit zwei Rechenvorschriften, die je zwei Elementen $x,y\in\mathbb{R}$ ein Element $x+y\in\mathbb{R}$ und ein Element $x\cdot y\in\mathbb{R}$ zuordnen, wobei ferner eine Teilmenge $\mathbb{R}_{>0}$ von \mathbb{R} ausgezeichnet ist, deren Elemente die positiven Zahlen heißen (wir schreiben x>0 für $x\in\mathbb{R}_{>0}$), so dass die folgenden drei Gruppen I, II, III von Axiomen erfüllt sind:

I. Algebraische Axiome:

- I.a) Kommutativgesetze: x + y = y + x und $x \cdot y = y \cdot x$.
- I.b) Assoziativgesetze: (x + y) + z = x + (y + z) und (xy)z = x(yz).
- I.c) Null und Eins: Es gibt Elemente $0, 1 \in \mathbb{R}$ mit $0 \neq 1$ und x + 0 = x und $x \cdot 1 = x$ für alle $x \in \mathbb{R}$.
- I.d) Inverse Elemente: Zu jedem $x \in \mathbb{R}$ gibt es eine Zahl $-x \in \mathbb{R}$ mit x + (-x) = 0; zu jedem $x \in \mathbb{R}$ mit $x \neq 0$ gibt es eine Zahl $x^{-1} \in \mathbb{R}$ mit $x \cdot x^{-1} = 1$.
- I.e) **Distributivgesetz:** x(y+z) = xy + xz.

Statt ,, $\mathbb R$ erfüllt die Axiome I.a) - I.e)" sagt man kurz: ,, $\mathbb R$ ist ein Körper ".

II. Anordnungsaxiome:

II.a) Ist $x \in \mathbb{R}$, so gilt genau eine der folgenden 3 Möglichkeiten:

$$x > 0$$
, $x = 0$, $-x > 0$.

II.b) Ist x > 0 und y > 0, so ist x + y > 0 und xy > 0.

Bevor wir III formulieren können, müssen wir einige Bemerkungen zu den Axiomengruppen I und II machen:

(1) 1 > 0.

Bew.: Nach I.c) ist $1 \neq 0$. Nach II.a) ist daher entweder 1 > 0 oder -1 > 0. Angenommen, es wäre -1 > 0, so wäre $(-1) \cdot (-1) > 0$ nach II.b), also, da $(-1) \cdot (-1) = 1$ nach I., auch 1 > 0. Damit wäre gleichzeitig 1 > 0 und -1 > 0, im Widerspruch zu II.a). Deswegen ist die Annahme -1 > 0 falsch, und es gilt 1 > 0.

(2) Die Elemente $x \in \mathbb{R}$ mit -x > 0 heißen negativ. Sind $x, y \in \mathbb{R}$, so schreiben wir x < y oder y > x, falls y - x > 0. Insbesondere bedeutet x < 0, dass -x > 0, also dass x negativ ist. Sind $x, y \in \mathbb{R}$, so gilt nach II.a) genau eine der folgenden Möglichkeiten:

$$x > y$$
, $x = y$, $x < y$.

- (3) Ist x < 0 und y < 0, so ist xy > 0.
- (4) Ist $x \in \mathbb{R}$ und $x \neq 0$, so ist $x^2 > 0$.
- (5) Sind $x, y, z \in \mathbb{R}$ mit x < y und y < z, so ist x < z.
- (6) Ist x < y und z > 0, so xz < yz. Ist x < y und z < 0, so xz > yz.
- (7) Ist x < 0 und z > 0, so ist xz < 0.
- (8) Ist x > 0, so ist $x^{-1} > 0$.
- (9) Ist x < y und $z \in \mathbb{R}$ beliebig, so ist x + z < y + z.
- (10) Ist 0 < x < y, so ist $y^{-1} < x^{-1}$.
- (11) Sind $x, y \in \mathbb{R}$, so schreiben wir $x \leq y$, falls x < y oder x = y. Für $x \leq y$ schreiben wir auch $y \geq x$.
- (12) Ist 0 < x < y, so ist $x^2 < y^2$. Sind x, y > 0 und ist $x^2 < y^2$, so ist x < y.

Def. Ist $x \in \mathbb{R}$, so sei

$$\mid x \mid := \left\{ \begin{array}{ccc} x & , & \text{falls } x \ge 0, \\ -x & , & \text{falls } x < 0. \end{array} \right.$$

- |x| heißt der Absolutbetrag von x.
- (13) Ist $x \in \mathbb{R}$, so ist $|-x|=|x| \ge 0$; ist $x \ne 0$, so ist |x| > 0. |x-y| ist, anschaulich gesprochen, der Abstand zwischen x und y.
- $(14) \ x \le |x|.$
- (15) Sind $x, y \in \mathbb{R}$, so ist $|xy| = |x| \cdot |y|$.
- (16) **Dreiecksungleichung:** $|x+y| \le |x| + |y|$.
- $(17) \mid \mid x \mid \mid y \mid \mid \leq \mid x y \mid.$
- (18) Es ist $0 < 1 < 2 = 1 + 1 < 3 = 2 + 1 < \dots$. Diese Zahlen sind also alle voneinander verschieden. Die Menge $\{1, 2, 3, \dots\}$ wird mit \mathbb{N} bezeichnet; ihre Elemente heißen natürliche Zahlen. $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$.

Die Menge $\mathbb{Z} := \mathbb{N} \cup \{0\} \cup \{x \in \mathbb{R} \mid -x \in \mathbb{N}\}$ heißt die Menge der ganzen Zahlen, und $\mathbb{Q} := \{\frac{x}{y} \mid x \in \mathbb{Z}, y \in \mathbb{N}\}$ heißt die Menge der rationalen Zahlen. \mathbb{Q} erfüllt die Axiome I und II.

Kommentar hierzu: Sind M und N zwei Mengen, so sei $M \cup N$ die Menge, die aus allen Elementen besteht, die in M oder in N (oder in beiden) liegen. $M \cup N$ heißt die Vereinigung von M und N.

 $M \cap N$ sei die Menge, die aus allen Elementen besteht, die in M und in N liegen. $M \cap N$ heißt der Durchschnitt von M und N.

 $\{x \in \mathbb{R} \mid -x \in \mathbb{N}\}\$ ist die Menge aller $x \in \mathbb{R}$, für die gilt: $-x \in \mathbb{N}$. Also $\{x \in \mathbb{R} \mid -x \in \mathbb{N}\} = \{-1, -2, -3, \ldots\} = \{-n \mid n \in \mathbb{N}\}.$

Def. Sei $M \subseteq \mathbb{R}$. Dann heißt M nach oben beschränkt, wenn es ein $c \in \mathbb{R}$ gibt mit $x \leq c$ für alle $x \in M$. Ein solches c heißt eine obere Schranke von M.

M heißt nach unten beschränkt, wenn es ein $d \in \mathbb{R}$ gibt mit $x \geq d$ für alle $x \in M$. Ein solches d heißt eine untere Schranke von M.

M heißt beschränkt, wenn es nach oben und unten beschränkt ist.

Wenn es eine kleinste obere Schranke c von M gibt (d.h. c ist obere Schranke und jedes $c' \in \mathbb{R}$ mit c' < c ist keine obere Schranke von M), so heißt c das Supremum von M; schreibe $c =: \sup M$. Wenn es eine größte untere Schranke d von M gibt, so heißt d das Infimum von M; schreibe $d =: \inf M$.

III. Vollständigkeitsaxiom: Ist M eine nicht-leere nach oben beschränkte Menge, so besitzt M ein Supremum.

Satz 1: Ist $a \in \mathbb{R}$, so existiert ein $n \in \mathbb{N}$ mit $n \geq a$.

Satz 2: Ist $b \in \mathbb{R}$ und b > 0, so existiert ein $n \in \mathbb{N}$ mit $\frac{1}{n} \leq b$.

Def. Sei $M \subseteq \mathbb{R}$. Wenn es ein $x_o \in M$ gibt mit $x \leq x_o$ für alle $x \in M$, so heißt x_o das Maximum von M; schreibe $x_o =: \max M$. Entsprechend definiert man das $Minimum \min M$.

Bem. a) Wenn max M existiert, so ist M nach oben beschränkt, und max $M = \sup M$.

b) Wenn M nach oben beschränkt ist und sup $M \in M$ gilt, so ist sup M das Maximum von M.

Bez. Seien $a, b \in \mathbb{R}$ mit a < b.

$$[a,b] := \{x \in \mathbb{R} \mid a \le x \le b\}$$
 (abgeschlossenes Intervall)
$$[a,b[:= \{x \in \mathbb{R} \mid a < x < b\}$$
 (offenes Intervall)
$$[a,b[:= \{x \in \mathbb{R} \mid a \le x < b\}$$
 (halboffenes Intervall)
$$[a,b] := \{x \in \mathbb{R} \mid a < x \le b\}$$
 (halboffenes Intervall)

Bem. Wir werden in §5 sehen: Ist $a \in \mathbb{R}$, $a \ge 0$ und $n \in \mathbb{N}$, so gibt es genau ein $b \ge 0$ mit $b^n = a$. Wir schreiben

$$b =: \sqrt[n]{a} := a^{\frac{1}{n}} .$$

Nach (4) gilt: Ist a < 0 und ist n gerade, so gibt es kein $b \in \mathbb{R}$ mit $b^n = a$. Ist a > 0 und ist n ungerade, so ist

$$(-\sqrt[n]{a})^n = -a .$$