Graphs

Graphs

 A Graph G = (V, E) consists of a set of vertices (nodes) V and a set of edges E

G= (V, E)
V= {
$$v_1$$
, v_2 , v_3 , v_4 , v_5 }
E= { e_1 , e_2 , e_3 , e_4 }
 e_1 = (v_1 , v_2)
 e_2 = (v_2 , v_3)
 e_3 = (v_2 , v_4)
 e_4 = (v_3 , v_5)

Uses of graphs

- Vertices are cities, edges are direct flights between cities
 - Want to find the best route between cities
- Vertices are classes, edges connect classes whose schedules overlap
 - Want to find feasible schedules for a student
- Vertices are objects in memory, edges connect objects that refer to each other
 - Want to know when an object can be freed

Directed graphs ("digraphs")

Edges have directions associated with them

G= (V, E)
V= {
$$v_1$$
, v_2 , v_3 , v_4 }
E= { e_1 , e_2 , e_3 , e_4 }
 e_1 = (v_2 , v_1)
 e_2 = (v_1 , v_3)
 e_3 = (v_1 , v_4)
 e_4 = (v_4 , v_3)
 e_5 = (v_3 , v_4)
ordered pair

(predecessor, successor)

Weighted graphs

There is a weight associated with each edge


```
G=(V, E)

V={v_1, v_2, v_3, v_4}

E={e_1, e_2, e_3, e_4, e_5}
```

Terminology (1)

- Vertex v_1 is *adjacent* to vertex v_2 if an edge connects v_1 and v_2
 - There exists an edge $e = (v_1, v_2) \in E$
- A path is a sequence of vertices in which each vertex is adjacent to the next one
 - $p = (v_1, ..., v_n)$ s.t. $(v_i, v_{i+1}) \in E$
 - The length of the path is the number of edges in it
- A cycle in a path is a sequence (v_1, \dots, v_n) s.t. $(v_i, v_{i+1}) \in E$ and $(v_n, v_1) \in E$
- A graph with no cycles is an acyclic graph
- A DAG is a directed acyclic graph

Terminology (2)

- A simple path is a path with no repetition of vertices
- A simple cycle is a cycle with no repetition of vertices
- Two vertices are connected is there is a path between them
- A subset of vertices is a connected component of G
 if each pair of vertices in the subset are connected.
- The degree of vertex v is the number of edges associated with v

Implementing the graph ADT

- Adjacency Matrix
 - An n x n matrix where M[i][j] =1 if there is an edge between v_i and v_i , and 0 otherwise
- Adjacency List
 - For n=|V| vertices, n linked lists. The i-th linked list is a list of vertices adjacent to v_i .

Adjacency Matrix

Adjacency Matrix

The matrix is symmetric for undirected graphs

Adjacency List

Adjacency List

Complexity of operations

- Operations:
 - Is there an edge between v_i and v_i ?
 - Adjacency Matrix: O(1)
 - Adjacency List: O(d)
 - d: the maximum degree in the graph
 - Find all vertices adjacent to v_i
 - Adjacency Matrix: O(|V|)
 - |V|: the number of vertices in the graph
 - Adjacency List: O(d)

Space requiements

- Adjacency Matrix: $O(|V|^2)$
 - Need to store $|V|^2$ matrix entries
- Adjacency list: O(|V| + |E|)
 - Need to store |V| linked lists. Collectively, the linked list contain |E| entries, so the space requirement is $a_1|V|+a_2|E|$, which is O(|V|+|E|)

Graph traversal

• Want to visit (e.g. in order to print) each vertex exactly once

	1	2	3	4	5	6	7	8	9
1			1			1			
2			1		1				
3	1	1		1	1				
4			1		1				
5		1	1	1		1			
6	1				1				
7								1	1
8							1		1
9							1	1	

Graph traversal algorithm

```
while (there are non-visited nodes)

Initialize data structure DS

Add a non-visited vertex v_i to DS

Mark v_i as visited

while (DS is not empty)

Remove v_j from DS

Mark v_j as visited

Add non-visited vertices adjacent to v_j to DS
```

Breadth-first traversal

• DS is a queue

```
while (there are non-visited nodes) Initialize data structure DS Add a non-visited vertex v_i to DS Mark v_i as visited while (DS is not empty) Remove v_j from DS Mark v_j as visited Add non-visited vertices adjacent to v_j to DS
```


Queue contents:	Traversal:			
1				
3 6	1			
6 2 4 5	1 3			
2 4 5	1 3 6			
4 5	1 3 6 2			
5	1 3 6 2 4			
	1 3 6 2 4 5			

Depth first traversal

• DS is a stack

while (there are non-visited nodes) Initialize data structure DS Add a non-visited vertex v_i to DS Mark v_i as visited while (DS is not empty) Remove v_j from DS Mark v_j as visited Add non-visited vertices adjacent to v_j to DS

Stack contents:

		7					
	6	5	2	2			
1	3	3	3	3	3		

1

Traversal:

1	1 6	1 6 5	1 6 5 4	1 6 5 4 2	1 6 5 4 2 3
					1

Recursive Depth-First Traversal

```
	extstyle 	ext
```

