Data Compression Lecture 4

Dr. Mona M.Soliman

Faculty of Computers and Artificial Intelligence
Cairo University
Feb 2020

Adaptive Huffman Coding Algorithm (Unknown Symbols Probabilities)

Why adaptive Huffman

Adaptive coding technique based on Huffman coding. It permits building the code as the symbols are being transmitted, having no initial knowledge of source distribution (e.g. Compressing Real data over internet)

If a file (or block) has different letter frequencies in different regions, then adaptive huffman can use shorter codes for frequent letters in each of those regions, whereas static huffman can only use the average for the whole file

The key idea The key idea is to build a Huffman tree that is optimal for the part of the message already seen, and to reorganize it when needed, to maintain its optimality

Adaptive Huffman

a	d	V	d	d	d	а
00	10	10	0	001	001	01

We create a binary tree with two nodes for each parent

(aardvark) - swap 43, 46

Single Node Structure

Node Symbol: Each Node is associated with ONE Symbol. Also, Max ONE Node for each symbol

Node Count: is the Number of Occurrence of Node Symbol (e.g. Number of Occurrence of "A")

Node Code: Code Nodes as Binary Tree. Use same Enumeration for

Compression and Decompression (e.g. Always "0" for Right branch and "1" for left branch)

Node Number: Enumerate Nodes in descending order (starting from Root,

1st level Right branch, 1st level Left branch, then for 2nd level Right branch,...etc)

Adaptive Huffman Algorithm

"Update Tree" Algorithm

Swap Conditions

If you are a Node of symbol "X"

You can Swap Node of Symbol "X" with Node of Symbol "Y" if

- 1- **Node Number** of Symbol "Y" is higher than Node Number of Symbol "X"
- 2- **Node counter** of Node "X" is higher than or equal to Node Counter of Node "Y"
- 3- No Swap with Parent Node
- 4- if "X" can Swap with more than one Node, Swap with Node with higher Node Number

Swap Conditions

Example of Allowed Swaps:

Swap Node 95 with Node 98 Swap Node 95 with Node 97 (if both are applicable, swap with 98)

Example of NOT Allowed Swaps:

Node 95 with Node 96 **{Parent}**Node 98 with Node 99 **{Counter}**

"A"							
00							

Symbol	Short Code
Α	00
В	01
С	10

ABCCCAAAA

Code

Symbol Occurs for first time: Code ="A" Short Code [00]

Update Tree

Go To Node: Root

Split: Yes

Inc Counter: Node 99, Root

Goto Parent: Root

Update Tree

Go To Node: NYT [98]

Split: Yes

Inc Counter: Node 97, 98

Goto Parent: Root,

Inc {1+}

"A"	NYT	"B"	NYT	"C"	"C"					
00	0	01	00	10	101					

Symbol	Short Code
Α	00
В	01
С	10

ABCCCAAAA

Code

Symbol Occurred before:

Node: [95]

Code = [101]

Update Tree

Go To Node: 95

Need Swap: YES [95], [98]

"A"	NYT	"B"	NYT	"C"	"C"	"C"				
00	0	01	00	10	101	0				

Symbol	Short Code
Α	00
В	01
С	10

ABCCCAAAA

Code

Symbol Occurred before:

Node: [98]

Code = [0]

Update Tree

Go To Node: 98

Need Swap: YES [98], [99]

I	"A"	NYT	"B"	NYT	"C"	"C"	"C"	"A"	"A"	"A"			
	00	0	01	00	10	101	0	001	01	11			

Symbol	Short Code
Α	00
В	01
С	10

ABCCCAAAA

Code

Symbol Occurred before:

Node: [97]

Code =[11]

Update Tree

Go To Node: 97

Need Swap: YES [97], [98]

"A"	NYT	"B"	NYT	"C"	"C"	"C"	"A"	"A"	"A"	"A"			
00	0	01	00	10	101	0	001	01	11	0			

Symbol	Short Code	
Α	00	
В	01	
С	10	

ABCCCAAAA

Code

Symbol Occurred before:

Node: [98]

Code = [0]

Update Tree

Go To Node: 98

Need Swap: YES [98], [99]

Compressed Code

0 0 0 0 1	0 0 1 0	1010	0 0 1	0 1	1 1 0
A nyt B	nyt C	C	A	A	AA

First Occurrence

Symbol	NTY	Short	Huffman	ıffman Number	
	Code	Code	Code	of Bits	
Α		00		2	
В	0	01		3	
С	00	10		4	
С			101	3	
С			0	1	
Α			001	3	
Α			01	2	
Α			11	2	
Α			0	1	