COGNOME:

NOME:

MATRICOLA:

DATA: 18 settembre 2023

Calculus 1 - Test

Scrivere nella tabella sottostante la lettera corrispondente alla risposta a ciascuna domanda. Tenere presente che le risposte esatte valgono 3 punti, quelle sbagliate -1punto, mentre le domande senza risposta valgono 0 punti. Ciascun quesito ha una e una sola risposta corretta.

1	2	3	4	5	6	7	8	9	10

- 1. Sia $E \subseteq \mathbb{R}$ un insieme limitato. Allora:
 - (a) l'insieme dei maggioranti di E ha un massimo.
 - (b) l'insieme dei maggioranti di E ha un minimo.
 - (c) l'insieme dei minoranti di E ha un minimo.
 - (d) nessuna delle precedenti.
- **2.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione invertibile. Quale fra i seguenti enunciati è vero?
 - (a) Il grafico di f⁻¹ è il simmetrico del grafico di f rispetto alla retta y = x.
 (b) Il grafico di f⁻¹ è il simmetrico del grafico di f rispetto all'origine.
 (c) Il grafico di f⁻¹ è il simmetrico del grafico di f rispetto all'asse x.

 - (d) Il grafico di f^{-1} è il simmetrico del grafico di f rispetto all'asse y.
- **3.** Siano f, g due funzioni tali che $Dom(f) = \mathbb{R}$ e $Dom(g) = (0, +\infty)$. Allora
 - (a) $Dom(f \circ g) = (0, +\infty).$
 - (b) $Dom(q \circ f) = (0, +\infty).$
 - (c) $Dom(f \circ g) = \mathbb{R}$.
 - (d) $Dom(g \circ f) = \mathbb{R}$.
- **4.** Sia $A \subseteq \mathbb{R}$ e $f: A \to \mathbb{R}$ una funzione iniettiva. Allora

 - (a) $\operatorname{Dom}(f^{-1}) = \mathbb{R}$. (b) $\operatorname{Dom}(f^{-1}) = f(A)$.
 - (c) $Dom(f^{-1}) = A$.
 - (d) $\text{Im}(f^{-1}) = f(A)$.
- **5.** Siano $f: \mathbb{R} \to \mathbb{R}$ e $x_0 \in \mathbb{R}$ tali che $\lim_{x \to x_0} f(x) = +\infty$. Allora
 - (a) per ogni M>0 esiste $\delta>0$ tale che per ogni $x\in\mathbb{R}$ con $|x-x_0|<\delta$ si ha f(x) > M.
 - (b) per ogni $\varepsilon>0$ esiste M>0tale che per ogni $x\in\mathbb{R}$ con $|x-x_0|<\varepsilon$ si ha f(x) > M.
 - (c) per ogni $\varepsilon > 0$ esiste M > 0 tale che per ogni $x \in \mathbb{R}$ con $0 < |x x_0| < \varepsilon$ si ha f(x) > M.
 - (d) per ogni M>0 esiste $\delta>0$ tale che per ogni $x\in\mathbb{R}$ con $0<|x-x_0|<\delta$ si ha f(x) > M.

- **6.** Sia $f: \mathbb{R} \to \mathbb{R}$ tale che $\lim_{x \to +\infty} f(x) = -\infty$. Allora
 - (a) per ogni M>0 esiste N>0 tale che per ogni $x\in\mathbb{R}$ con x>N si ha f(x) < -M.
 - (b) per ogni M>0 esiste N>0 tale che per ogni $x\in\mathbb{R}$ con x>M si ha f(x) < -N.
 - (c) per ogni M>0 esiste N>0 tale che per ogni $x\in\mathbb{R}$ con x>M si ha |f(x)| < -N.
 - (d) nessuna delle precedenti.
- 7. Sia $f:[a,b]\to\mathbb{R}$ una funzione continua tale che f(a)< f(b). Quale delle seguenti affermazioni è falsa?
 - (a) Se f(a) < 0, esiste $c \in (a, b)$ tale che f(c) < 0.
 - (b) Se f(b) > 0, esiste $c \in (a, b)$ tale che f(c) > 0.
 - (c) $[f(a), f(b)] \subseteq f([a, b])$.
 - (d) $f([a,b]) \subseteq [f(a), f(b)].$
- **8.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua, e sia $g: \mathbb{R} \to \mathbb{R}$ tale che $\lim_{x \to x_0} g(x) = \ell$ con $\ell \in \mathbb{R}$. Allora:
 - (a) $\lim_{x \to x_0} f(g(x)) = f(\ell)$.
 - (b) $\lim_{x \to x_0} g(f(x)) = g(\ell)$.
 - (c) $\lim_{x \to x_0} f(g(x)) = \ell$.
 - (d) nessuna delle precedenti.
- **9.** Siano $f: \mathbb{R} \to \mathbb{R}$ una funzione derivabile e $x_0 \in \mathbb{R}$. Quale delle seguenti affermazioni è falsa?
 - (a) f è continua in x_0 .

 - (a) f constitute in x_0 . (b) $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) f(x_0)}{h}$. (c) $f'(x_0) = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$. (d) $f(x) = f(x_0) + (x x_0)f'(x_0)$ per ogni x in un opportuno intorno di x_0 .
- **10.** Siano $f: \mathbb{R} \to \mathbb{R}$ una funzione continua, $x_0 \in \mathbb{R}$ e $F: \mathbb{R} \to \mathbb{R}$ data da

$$F(x) = \int_{x_0}^x f(t) \, dt.$$

Allora:

- (a) F è derivabile e $F'(x_0) = 0$.
- (b) F è derivabile e F'(x) = f(x) per ogni $x \in \mathbb{R}$.
- (c) $F(x_0) = f(x_0)$.
- (d) F(x) è l'area compresa tra il grafico di f e l'asse y nell'intervallo $[x_0, x]$.