Lemma 23

Die (paarweise verschiedenen) Ereignisse A_1, \ldots, A_n sind genau dann unabhängig, wenn für alle $(s_1, \ldots, s_n) \in \{0, 1\}^n$ gilt, dass

$$\Pr[A_1^{s_1} \cap \ldots \cap A_n^{s_n}] = \Pr[A_1^{s_1}] \cdot \ldots \cdot \Pr[A_n^{s_n}], \tag{3}$$

wobei $A_i^0 = \bar{A}_i$ und $A_i^1 = A_i$.

Beweis:

Zunächst zeigen wir, dass aus (2) die Bedingung (3) folgt. Wir beweisen dies durch Induktion über die Anzahl der Nullen in s_1, \ldots, s_n . Wenn $s_1 = \ldots = s_n = 1$ gilt, so ist nichts zu zeigen. Andernfalls gelte ohne Einschränkung $s_1 = 0$. Aus dem Additionssatz folgt dann

$$\Pr[\bar{A}_1 \cap A_2^{s_2} \cap ... \cap A_n^{s_n}] = \Pr[A_2^{s_2} \cap ... \cap A_n^{s_n}] - \Pr[A_1 \cap A_2^{s_2} \cap ... \cap A_n^{s_n}].$$

Darauf können wir die Induktionsannahme anwenden und erhalten

$$\Pr[\bar{A}_1 \cap A_2^{s_2} \cap \ldots \cap A_n^{s_n}]
= \Pr[A_2^{s_2}] \cdot \ldots \cdot \Pr[A_n^{s_n}] - \Pr[A_1] \cdot \Pr[A_2^{s_2}] \cdot \ldots \cdot \Pr[A_n^{s_n}]
= (1 - \Pr[A_1]) \cdot \Pr[A_2^{s_2}] \cdot \ldots \cdot \Pr[A_n^{s_n}],$$

woraus die Behauptung wegen $1 - \Pr[A_1] = \Pr[\bar{A}_1]$ folgt.

Beweis (Forts.):

Für die Gegenrichtung zeigen wir nur, dass aus (3) $\Pr[A_1 \cap A_2] = \Pr[A_1] \cdot \Pr[A_2]$ folgt. Es gilt wegen des Satzes von der totalen Wahrscheinlichkeit, dass

$$\begin{aligned} \Pr[A_1 \cap A_2] &= \sum_{s_3, \dots, s_n \in \{0, 1\}} \Pr[A_1 \cap A_2 \cap A_3^{s_3} \cap \dots \cap A_n^{s_n}] \\ &= \sum_{s_3, \dots, s_n \in \{0, 1\}} \Pr[A_1] \cdot \Pr[A_2] \cdot \Pr[A_3^{s_3}] \cdot \dots \cdot \Pr[A_n^{s_n}] \\ &= \Pr[A_1] \cdot \Pr[A_2] \cdot \sum_{s_3 = 0, 1} \Pr[A_3^{s_3}] \cdot \dots \cdot \sum_{s_n = 0, 1} \Pr[A_n^{s_n}] \\ &= \Pr[A_1] \cdot \Pr[A_2], \end{aligned}$$

und es folgt die Behauptung.

Aus der Darstellung in Lemma 23 folgt die wichtige Beobachtung, dass für zwei unabhängige Ereignisse A und B auch die Ereignisse \bar{A} und B (und analog auch A und \bar{B} bzw. \bar{A} und \bar{B}) unabhängig sind! Ebenso folgt:

Lemma 24

Seien A, B und C unabhängige Ereignisse. Dann sind auch $A \cap B$ und C bzw. $A \cup B$ und C unabhängig.

Beweis:

Zur Unabhängigkeit von $A\cap B$ und C siehe das vorangehende Beispiel. Aus

$$\begin{aligned} \Pr[(A \cup B) \cap C] &= \Pr[(A \cap C) \cup (B \cap C)] \\ &= \Pr[A \cap C] + \Pr[B \cap C] - \Pr[A \cap B \cap C] \\ &= \Pr[C] \cdot (\Pr[A] + \Pr[B] - \Pr[A \cap B]) \\ &= \Pr[A \cup B] \cdot \Pr[C] \end{aligned}$$

folgt die Unabhängigkeit von $A \cup B$ und C.

4. Zufallsvariablen

4.1 Grundlagen

Anstatt der Ereignisse selbst sind wir oft an "Auswirkungen" oder "Merkmalen" der (Elementar)Ereignisse interessiert.

Definition 25

Sei ein Wahrscheinlichkeitsraum auf der Ergebnismenge Ω gegeben. Eine Abbildung

$$X:\Omega\to\mathbb{R}$$

heißt (numerische) Zufallsvariable.

Eine Zufallsvariable X über einer endlichen oder abzählbar unendlichen Ergebnismenge Ω heißt diskret.

Bei diskreten Zufallsvariablen ist der Wertebereich

$$W_X := X(\Omega) = \{ x \in \mathbb{R}; \exists \omega \in \Omega \text{ mit } X(\omega) = x \}$$

ebenfalls wieder endlich (bzw. abzählbar unendlich).

Beispiel 26

Wir werfen eine ideale Münze drei Mal. Als Ergebnismenge erhalten wir $\Omega := \{H, T\}^3$. Die Zufallsvariable Y bezeichne die Gesamtanzahl der Würfe mit Ergebnis "Head".

Beispielsweise gilt also Y(HTH)=2 und Y(HHH)=3. Y hat den Wertebereich $W_Y=\{0,1,2,3\}$.

Für $W_X=\{x_1,\ldots,x_n\}$ bzw. $W_X=\{x_1,x_2,\ldots\}$ betrachten wir (für ein beliebiges $1\leq i\leq n$ bzw. $x_i\in\mathbb{N}$) das Ereignis

$$A_i := \{ \omega \in \Omega; X(\omega) = x_i \} = X^{-1}(x_i).$$

Bemerkung: Anstelle von $\Pr[X^{-1}(x_i)]$ verwendet man häufig auch die Schreibweise $\Pr[X = x_i$. Analog setzt man

$$\begin{split} \Pr[\mathsf{,'}X \leq x_i "] &= \sum_{x \in W_X : x \leq x_i} \Pr[\mathsf{,'}X = x "] \\ &= \Pr[\{\omega \in \Omega; \, X(\omega) \leq x_i\}] \;. \end{split}$$

Oft lässt man auch die Anführungszeichen weg.

Definition 27

Die Funktion

$$f_X : \mathbb{R} \ni x \mapsto \Pr[X = x] \in [0, 1]$$
 (4)

nennt man (diskrete) Dichte(funktion) der Zufallsvariablen X.

Die Funktion

$$F_X: \mathbb{R} \ni x \mapsto \Pr[X \le x] = \sum_{x' \in W_X: x' \le x} \Pr[X = x'] \in [0, 1]$$
 (5)

heißt Verteilung(sfunktion) der Zufallsvariablen X.

Beispiel 28

Für die Zufallsvariable Y erhalten wir

$$\Pr[Y = 0] = \Pr[TTT] = \frac{1}{8},$$

$$\Pr[Y = 1] = \Pr[HTT] + \Pr[THT] + \Pr[TTH] = \frac{3}{8},$$

$$\Pr[Y = 2] = \Pr[HHT] + \Pr[HTH] + \Pr[THH] = \frac{3}{8},$$

$$\Pr[Y = 3] = \Pr[HHH] = \frac{1}{8}.$$

Bemerkung: Man kann statt Ω auch den zugrunde liegenden Wahrscheinlichkeitsraum über W_X betrachten.

4.2 Erwartungswert und Varianz

Definition 29

Zu einer Zufallsvariablen X definieren wir den Erwartungswert $\mathbb{E}[X]$ durch

$$\mathbb{E}[X] := \sum_{x \in W_X} x \cdot \Pr[X = x] = \sum_{x \in W_X} x \cdot f_X(x) ,$$

sofern $\sum_{x \in W_Y} |x| \cdot \Pr[X = x]$ konvergiert.

Beispiel 30

$$\mathbb{E}[Y] = \sum_{i=0}^{3} i \cdot \Pr[Y = i]$$

$$= 1 \cdot \Pr[Y = 1] + 2 \cdot \Pr[Y = 2] + 3 \cdot \Pr[Y = 3]$$

$$= 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = \frac{3}{2}.$$

Beispiel 31

Eine Münze wird so lange geworfen, bis sie zum ersten Mal "Head" zeigt. Sei k die Anzahl der durchgeführten Würfe. Wenn k ungerade ist, zahlt der Spieler an die Bank k Euro. Andernfalls (k gerade) zahlt die Bank k Euro an den Spieler.

$$G := \begin{cases} k & \text{falls } k \text{ ungerade,} \\ -k & \text{falls } k \text{ gerade.} \end{cases}$$

Wie schon gesehen, gilt dann

$$\Pr[\text{,,Anzahl Würfe} = k"] = (1/2)^k$$
.

Damit erhalten wir

$$\mathbb{E}[G] = \sum_{k=1}^{\infty} (-1)^{k-1} \cdot k \cdot \left(\frac{1}{2}\right)^k.$$

Da

$$\sum_{k=1}^{\infty} |(-1)^{k-1} \cdot k| \cdot \left(\frac{1}{2}\right)^k \le \sum_{k=1}^{\infty} k \cdot \left(\frac{1}{2}\right)^k ,$$

existiert der Erwartungswert $\mathbb{E}[G]$.

Es gilt

$$\mathbb{E}[G] = \sum_{j=1}^{\infty} \left[(2j-1) \cdot \left(\frac{1}{2}\right)^{2j-1} - 2j \cdot \left(\frac{1}{2}\right)^{2j} \right]$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{2j-1} \cdot \left[(2j-1) - j \right]$$

$$= \frac{1}{2} \cdot \sum_{j=1}^{\infty} (j-1) \cdot \left(\frac{1}{4}\right)^{j-1} = \frac{1}{2} \cdot \frac{\frac{1}{4}}{\left(1 - \frac{1}{2}\right)^2} = \frac{2}{9}.$$

Wird jedoch, um das Risiko zu steigern, der zu zahlende Betrag von k Euro jeweils auf 2^k Euro erhöht, also

$$G' := \begin{cases} 2^k & \text{falls } k \text{ ungerade,} \\ -2^k & \text{falls } k \text{ gerade,} \end{cases}$$

dann existiert $\mathbb{E}[G']$ nicht, da

$$\mathbb{E}[G'] = \sum_{k=1}^{\infty} (-1)^{k-1} \cdot 2^k \cdot \left(\frac{1}{2}\right)^k$$
$$= \sum_{k=1}^{\infty} (-1)^{k-1} = +1 - 1 + 1 - 1 + \dots$$

Berechnung des Erwartungswerts:

$$\mathbb{E}[X] = \sum_{x \in W_X} x \cdot \Pr[X = x] = \sum_{x \in W_X} x \cdot f_X(x)$$
$$= \sum_{x \in W_X} x \sum_{\omega \in \Omega: X(\omega) = x} \Pr[\omega]$$
$$= \sum_{\omega \in \Omega} X(\omega) \cdot \Pr[\omega] .$$

Bei unendlichen Wahrscheinlichkeitsräumen ist dabei analog zur Definition des Erwartungswerts erforderlich, dass $\sum_{\omega \in \Omega} |X(\omega)| \cdot \Pr[\omega]$ konvergiert (absolute Konvergenz).

Satz 32 (Monotonie des Erwartungswerts)

Seien X und Y Zufallsvariablen über dem Wahrscheinlichkeitsraum Ω mit $X(\omega) \leq Y(\omega)$ für alle $\omega \in \Omega$. Dann gilt $\mathbb{E}[X] \leq \mathbb{E}[Y]$.

Beweis:

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr[\omega] \le \sum_{\omega \in \Omega} Y(\omega) \cdot \Pr[\omega] = \mathbb{E}[Y].$$

Aus Satz 32 folgt insbesondere, dass $a \leq \mathbb{E}[X] \leq b$ gilt, wenn für die Zufallsvariable Xdie Eigenschaft $a \leq X(\omega) \leq b$ für alle $\omega \in \Omega$ erfüllt ist.

4.2.1 Rechenregeln für den Erwartungswert

Oft betrachtet man eine Zufallsvariable X nicht direkt, sondern wendet noch eine Funktion darauf an:

$$Y := f(X) = f \circ X \,,$$

wobei $f: \mathcal{D} \to \mathbb{R}$ eine beliebige Funktion sei mit $W_X \subseteq \mathcal{D} \subseteq \mathbb{R}$.

Beobachtung: f(X) ist wieder eine Zufallsvariable.

Aus

$$\Pr[Y = y] = \Pr[\{\omega \mid f(X(\omega)) = y\}] = \sum_{x: f(x) = y} \Pr[X = x]$$

folgt

$$\mathbb{E}[f(X)] = \mathbb{E}[Y] = \sum_{y \in W_Y} y \cdot \Pr[Y = y]$$

$$= \sum_{y \in W_Y} y \cdot \sum_{x : f(x) = y} \Pr[X = x] = \sum_{x \in W_X} f(x) \cdot \Pr[X = x]$$

$$= \sum_{\omega \in \Omega} f(X(\omega)) \cdot \Pr[\omega].$$

Satz 33 (Linearität des Erwartungswerts, einfache Version)

Für eine beliebige Zufallsvariable X und $a,b \in \mathbb{R}$ gilt

$$\mathbb{E}[a \cdot X + b] = a \cdot \mathbb{E}[X] + b.$$

Beweis:

$$\mathbb{E}[a \cdot X + b] = \sum_{x \in W_X} (a \cdot x + b) \cdot \Pr[X = x]$$

$$= a \cdot \sum_{x \in W_X} x \cdot \Pr[X = x] + b \cdot \sum_{x \in W_X} \Pr[X = x]$$

$$= a \cdot \mathbb{E}[X] + b.$$

Satz 34

Sei X eine Zufallsvariable mit $W_X \subseteq \mathbb{N}_0$. Dann gilt

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} \Pr[X \ge i].$$

Beweis:

$$\mathbb{E}[X] = \sum_{i=0}^{\infty} i \cdot \Pr[X = i] = \sum_{i=0}^{\infty} \sum_{j=1}^{i} \Pr[X = i]$$
$$= \sum_{j=1}^{\infty} \sum_{i=j}^{\infty} \Pr[X = i] = \sum_{j=1}^{\infty} \Pr[X \ge j].$$

Definition 35

Sei X eine Zufallsvariable und A ein Ereignis mit $\Pr[A]>0$. Die bedingte Zufallsvariable X|A besitzt die Dichte

$$f_{X|A}(x) := \Pr[X = x \mid A] = \frac{\Pr[X = x' \cap A]}{\Pr[A]}.$$

Die Definition von $f_{X|A}$ ist zulässig, da

$$\sum_{x\in W_X} f_{X|A}(x) = \sum_{x\in W_X} \frac{\Pr[\square X = x``\cap A]}{\Pr[A]} = \frac{\Pr[A]}{\Pr[A]} = 1 \,.$$

Der Erwartungswert $\mathbb{E}[X|A]$ der Zufallsvariablen X|A berechnet sich entsprechend:

$$\mathbb{E}[X|A] = \sum_{x \in W_X} x \cdot f_{X|A}(x).$$

Satz 36

Sei X eine Zufallsvariable. Für paarweise disjunkte Ereignisse A_1,\ldots,A_n mit $A_1\cup\ldots\cup A_n=\Omega$ und $\Pr[A_1],\ldots,\Pr[A_n]>0$ gilt

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X|A_i] \cdot \Pr[A_i].$$

Für paarweise disjunkte Ereignisse A_1, A_2, \ldots mit $\bigcup_{i=1}^{\infty} A_k = \Omega$ und $\Pr[A_1]$, $\Pr[A_2], \ldots > 0$ gilt analog

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} \mathbb{E}[X|A_i] \cdot \Pr[A_i],$$

sofern die Erwartungswerte auf der rechten Seite alle existieren und die Summe $\sum_{i=1}^{\infty} |\mathbb{E}[X|A_i]| \cdot \Pr[A_i]$ konvergiert.

Beweis:

$$\mathbb{E}[X] = \sum_{x \in W_X} x \cdot \Pr[X = x] = \sum_{x \in W_X} x \cdot \sum_{i=1}^n \Pr[X = x | A_i] \cdot \Pr[A_i]$$
$$= \sum_{i=1}^n \Pr[A_i] \sum_{x \in W_X} x \cdot \Pr[X = x | A_i] = \sum_{i=1}^n \Pr[A_i] \cdot \mathbb{E}[X | A_i].$$

Der Beweis für den unendlichen Fall verläuft analog.

