

FIG. 2

			т-		_	-		_														-€		' -							
Other SEO ID NO	SEC ID NO		-	7	· ~	4	· •	9	7	∞	6	10	=======================================	12	13	14	15	16	11	18	19	70	21	22	23	24	25	79	27	28	29
Orber			×	×	×	! !			×					×	×	×	×	×	×												
Clade	E		×																×			×	×		×	٠	×				
Clade	Claur		×	×	×				×	×	×			×	×	×	×	×	×		×						×				
Clade	C		×		×									×	×	×		×			×			×							
Clade	B		×	×	×	×	×	×	×			×	×	×	×	×	×	×	×		×			×		×		×	×		×
Clade	A		×	×	×					×				×	×	×		×	×	×	×				×					×	
Approximate	Position in LAI		gp120 - 120	gag - 215	gag - 100	RT - 354	nef - 170	nef - 170	gp120 - 30	gp120 - 452	gp120 - 20	RT - 480	gag - 263	gp120 - 420	gp120 - 420	gp120 - 215	gp120 - 446	gp120 - 215	gp120 - 420	gp120 - 275	gp41 - 175	gp120 - 215	gp120 -330		gp41 - 90		gp120 - 275	gp120 - 420	gp120 - 320		gp41 - 270
Number of	Isolates with Exact	sednence	159	36	18	17	17	16	10	>10	>10	>10	79	185	150	109	101	101	75	42	19	15	15	13	12	12	11	<10	_	<10	<10
Protein			Env	Gag	Gag	RT	Nef	Nef	Env	Env	Env	RT	Gag	Env	Env	Env	Env	Env	Env	Tat	Env	Env	Env	Env	Env						
B27 Fold	Increase (less than	reported)											3.61		1.74													1.53	1.78		3.27
A2 Fold	Increase (less than	reported)	1.33	1.35				2.7	1.33		1.63	1.54				1.45															
B27 EBP			. %00'0	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	14.22%	%80.66	99.52%	55.61%	62.11%	98.22%	91.33%	82.77%	89.06%	67.49%	56.14%	75.36%	61.09%	67.49%	59.28%	76.92%	56.93%	78.95%	59.80%
A2 EBP B27 EBP			\$5.68%	66.42%	62.00%	57.03%	72.52%	87.51%	76.69%	25.68%	90.92%	97.47%	0.00%	0.00%	0.00%	0.20%	0.01%						%00.0	0.07%	0.00%		0.00%	%00.0	0.00%	0.10%	0.01%
Sequence			KLTPLCVTLN	AEWDRVHPV	SLFNTVATL	ELHPDKWTV	GMDDPEREVL	GMDDPEKEVL	HLWRWGTMLL	LLLTRDGGVN	HLWKWSTMLL	ILKEPVHGV	KRWIILGLNK	CRIKQIIN	CRIKQIINMW	VSFEPIPIHF	RCSSNITGL	VSFEPIPIHY	CRIKQIVNM	IRSENITINN	IRIFIMIV	ISFDPIPIHY	YRTGDIIG	IRIGPGQTFY	GCSGKIIC	RRRAPQDS	RSENITON	CRIKQFIN	KRISIGPGR	CCOOITEOL	GRRGWEILKY

FIG. 3

Project Outline

CTL assays

Binding assays (T2 stabilization)

Include CTL epitope in regional HIV-1 vaccine

Methods: HLA allele selection

HLA-A2 and -A11, -B7 and -B35 were selected for this pilot project due their prevalence of the HLA alleles in the Indian population..

FIG. 5

Methods: HLA allele selection

... and availability of cell lines for in vitro study.

FIG. 6

EpiMatrix Predictions and Binding Results: B 7 6 out of 7, and control peptide

		1	1						
	avg f Id incr. (20ug/								
	d incr	2.4	2.0	1.3	1.2	1.8	2.7	2.3	2.7
	7g f 1c								
	11 av	_	_						_
	l/gno(
	FI (20	335.6	281.9	181.5	160.5	248.5	373.8	314.7	378.4
	in start-stop % conserved CTL predicted EBH avg MFI (200ug/ml)								
	EBP								
	licted	8%	20%	17%	18%	46%	27%	27%	26%
	prec								
	CTL	Υ							
	erved						_		
	cons	75	09	8	59	71	100	100	티
	top %								-
	tart-s	183-192	61-70	181-490	375-384	182-191	51-60	25-34	278-287
	ain s	7		_				_	
	stra	ENV DID75	Solnds	DiD747	ENV DID760	ENV DID747	ENV DID747	Solnd	POL Solnd
	gene	ENV	POL	EN	EN	EN	EN	집	Pol
	seq. Used	KSI	-AL	Ή	31.	1	PLC C	GPKVKQWPLT	orc
	seq. U	RPNNNTRKSI	NPYNTPIFAL	RAIEAQQHLL	TCKSNITGLL	KPVVSTQLL	KPCVKLTPLC	⟨γκα ◊	YPGIKVRQLC
	-	RP	ΜÞ		<u>한</u>	<u>Ā</u>	X O		Y P
	peptide	TRKSI	IFAL	OHL OHL	TGLL	orr orr	TPL	WPL	Ral
	ded	RPNNNTRKSI	VPYNTPIFAL	RAIEAQQHLL	FCKSNITGLL	KPVVSTQLL	KPCVKLTPL	GPKVKQWPL	YPGIKVRQL
	*	R	Z	<u>~</u>	<u> </u>	¥	¥	<u>ပ</u>	<u>></u>
B7	p ptid #	-	က	4	ß				
	۵								

FIG. 7

EpiMatrix Predictions and Binding Results: B 35 7 out of 7 ... and control peptide

B 37										
peptide #	peptide	seq. Used	gene	strain	start-stop	% conserved	CTL	predicted EBP	gene strain start-stop % conserved CTL predicted EBP avg MFI (200ug/ml] avg fold incr. (20ug/	avg fold incr. (20ug/r
2	TVLDVGDAYF	TVLDVGDAYF TVLDVGDAYF	POL Solnd4	Solnd4	114-123	100	⋆	4%	47.9	1.6
8	EPPFLWMGY	EPPFLWMGYE	POL Solnd4		231-239	100		% 6	48.7	1.6
7	VPVKLKPGM	VPVKLKPGMD	Рог	Solnd4	15-24	100		%6	53.3	1.7
80	CPKVTFDPI	CPKVTFDPIP	EN	DiD760	144-153	53		7%	35.0	1.2
	KPVVSTQLL	KPVVSTQLL	EN	ENV DID747	182-191	7.1		%6	40.5	1.4
	KPCVKLTPL	KPCVKLTPLC	EN	DID747	51-60	100		11%	52.1	1.7
	GPKVKQWPL	GPKVKQWPLT	Pol	POL Solnd4	25-34	100		11%	41.2	1.4
	YPGIKVRQL	YPGIKVRQLC	POL Solnd4		278-287	100		7%	40.7	1.3

FIG. 8

EpiMatrix Predictions and Binding Results: A 2 3 out of 7 ... and control peptide

74											
peptide #	peptide	seq. Used	gene strai	strain	start-stop	% conserved	CTL	predicted EBP	In start-stop % conserved CTL predicted EBP avg MFI (200ug/ml] avg f Id incr. (20ug/ml	avg f lo	incr. (20ug/ml)
13	ILKEPVHGV	ILKEPVHGVY	POL	POL Solnd4	316-325	80	>	%96	1604.2		1.6
14	QLPEKDSWTV	QLPEKDSWTV QLPEKDSWTV	POL	POL Solnd4	252-261	100		%28	1368.1		1.4
15	NLWTVYYGV NLWTVYYGV	NLWTVYYGV	EN	GrD1024 32-41	32-41	29		84%	1716.9		1.8
16	QMHEDVISL	QMHEDVISLW	ENS	DiD747	37-46	91		78%	1413.1		1.4
17	KIEELREHLL	KIEELREHLL	Pol	Solnd5	208-217	09	_	79%	889.9		6.0
18	DMVNQMHEDV	DMVNQMHEDV DMVNQMHEDV		ENV DID747	33-42	64	_	77%	731.1		0.4
19	GLKKKKSVTV	GLKKKKSVTV GLKKKKSVTV	Pol	POL Solnd4	106-115	100	_	76%	1088.4		1.1
50	ELHPDKWTV	ELHPDKWTV ELHPDKWTVQ	POL Solnd4	Solud4	240-249	80		72%	1048.1		1.0

FIG. 9

EpiMatrix Predictions and Binding Results: A 11 4 out of 7 ... and control peptide

ATT										
p ptide #	peptide	seq. Used	gene stra	E	start-stop	% conserved	CTL	predicted EBP	start-stop % conserved CTL predicted EBP avg MFI (200ug/ml] avg f Id incr. (20ug/	ivg f 1d incr. (20ug/
21	IYQEPFKNLK IYQEPFKNLK	IYQEPFKNLK	POL	POL Solnd4	348-357	100	Υ	7%	677.5	3.1
22	VTFDPIPIHY	VTFDPIPIHY	ENV	ENV DID760	147-156	23		22%	190.0	6.0
23	TVQCTHGIK	TVQCTHGIKP	EN	ENV DiD747	174-183	59		44%	733.4	3.3
24	NTPIFALKKK	NTPIFALKKK	PQ	Solnd5	64-73	09		44%	187.8	6.0
25	LVDFRELNK	LVDFRELNKR	집	Solnd4	81-90	100		47%	755.2	3.4
56	PGMDGPKVK	PGMDGPKVKQ	집	Solnd4	21-30	100		52%	193.8	0.7
27	GIPHPAGLKK	GIPHPAGLKK	PoL	POL Solnd4	100-109	100		62%	309.6	1.4
28	FTTPDKKHQK	ЕТТРОККНОК ЕТТРОККНОК	POL	POL Solnd4	221-330	100		63%	920.6	4.1

FIG. 10

Methods: T2 Binding Assay

TAP deficient cells. The stabilized MHC-peptide complex is detected Allele matched peptides stabilize MHC molecules on the surface of using Ab to the MHC and fluorescence labeled secondary Ab.

Clustering of putative MHC ligands in env

The state of the s

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.