프로젝트 #2 [1조] 발표평가

2차전지 VENT 결함 검출을 위한 실시간 광선 추적 기반 Photometric Stereo 오차보정 시스템

[1조] 배인호(팀장), 공민표, 정수연 deltah2000@cbnu.ac.kr, casash0123@gmail.com, syj@mmilr.com 충북대학교 산업인공지능연구센터

CONTENTS

프로젝트 #2 개요

프로젝트 개요 및 선정 논문 소개, 팀 구성원 소개 및 업무분장

서론 (Introduction)

연구 배경, 연구 필요성, 문제 정의

방법 및 구현 (Methodology & Implementation)

문제 해결을 위한 방법론

실험 구성 및 평가 방법 (Experiment Settings)

데이터셋, 하이퍼파라미터, 컴퓨팅 환경, 평가지표

결과 및 분석 (Results & Analysis)

학습 결과, 정확도, 혼동행렬, 비교 평가, 결과 분석

CONTENTS

한계점 및 토론 (Limitations & Discussions)

본 연구의 한계점 및 개선점 등 논의

결론 및 향후 연구

본 연구의 결론 및 향후 연구 등 논의

프로젝트 #1 개요

■ 프로젝트 목표

2차전지 VENT 결함 검출을 위한 실시간 광선 추적 기반 Photometric Stereo 오차보정 시스템 구현

• 타겟 제품 - 2차전지 VENT부, 목적 – 결함 검출, 시스템 구현 방법 – 광선추적 + PS

■ 프로젝트 배경 및 필요성

1) 프로젝트 배경

- Photometric Stereo(PS)는 3방향 이상의 조명을 활용하여 표면 법선 벡터를 추정하는 기술[1]로 상대적으로 느린 3D 스캐닝을 대체하여 2차 전지 검사 공정에서 주로 활용됨.
- 기존의 포토메트릭 스테레오(Photometric Stereo) 기술은 표면에서 램버시안 반사를 한다는 이상적인 가정을 전제[8]로 동작하지만, 실제 금속 표면은 다양한 정반사 및 난반사 특성을 보이기에 이러한 가정이 깨지고, 그로 인해 법선 벡터 추정에 오차가 발생하게 됨.

2) 프로젝트 필요성

- PS 금속 표면의 난반사로 인해 각 방향별 이미지에 대해 하이라이트 제거 및 노이즈 억제의 이미지 후처리 연산이 필요하며, 이는 전체 공정 시간의 20~40%를 차지해 시간 단축이 필요함[4][9].
- 2차전지 VENT 부위의 결함은 폭발 위험성과 직결되므로, 오차를 최소화하는 고정밀 검사 기술이 필수 적임.

서론 (Introduction)

■ 문제 정의

Photometric Stereo는 실제 적용에는 여러 가지 현실적인 한계와 오차 요인이 존재합니다. 본 연구에서는 특히 조명 자체에서 발생하는 오차와 보정 과정의 실용성문제에 주목하여 다음과 같은 문제를 정의합니다

- 1. 조명 오차로 인한 법선 벡터 추정 부정확성
 - 실제 조명은 이상적인 점광원이 아니며, LED 위치 편차, 입사각 변화, 광량 불균형 등으로 인해 정확한 입사광 방향과 세기 산출이 어려움.
 - 이로 인해 금속 표면에서 광선이 예측 경로와 다르게 반사되어 Photometric Stereo 기반 법선 추정 정확도가 크게 저하됨[2][3].

서론 (Introduction)

■ 문제 정의

- 2. 기존 보정 기법의 실용성 한계
- 켈리브레이션과 후처리 알고리즘은 복잡하며[4][5],
 높은 연산량과 긴 처리시간으로 인해 실제 생산 라인
 등 실시간 환경에 적용이 어려움.
- 특히 2차전지 VENT 검사와 같은 고속 생산 공정에서는 보정 기법의 실효성이 떨어짐

서론 (Introduction)

- 주요 기여점 (문제정의와 1:1로 대응 매칭)
- 1. 광선 추적 기반 조명 오차 예측 및 법선 추정 정확도 향상
 - 평면 시편을 이용한 조도 측정과 광선 추적 시뮬레이션[6]을 통해 조명 편차를 정량화하고 보정 계수 산출
 - 이를 통해 Photometric Stereo의 조명 모델 오차를 정량화하고, 보다 정확한 법선 벡터 추정 가능
- 2. 실시간 적용 가능한 경량 보정[3][5] 시스템 구현
 - 복잡한 후처리 없이, 사전 시뮬레이션 기반 보정 파라미터를 이용해 계산 속도를 단축
 - 기존의 고비용 보정 방식 대비 낮은 연산량으로 유사한 성능 확보

■ OVERVIEW - FLOW CHART

■ OVERVIEW – FLOW CHART(With Reference)

■ 방법 및 구현

- 1) 평면 시편 기반 조명 광량 측정
 - VENT 표면의 조명 환경과 동일한 조건에서, 굴곡이 없는 평평한 시편을 촬영
 - 각 조명을 개별로 점등하여, 조명 방향에 따라 센서에 도달하는 실제 밝기값(irradiance) 을 측정
 - 이 시편은 광선의 반사 왜곡 없이, 조명 자체의 영향만을 정확히 측정하기 위한 기준 표면으로 사용됨
 - → 이를 통해 각 조명 방향의 실제 조도 분포를 계측하고, Photometric Stereo에서 사용하는 조명 벡터에 대응하는 보정 계수(correction factor)를 산출함
- 2) 조명 방향별 보정 계수 적용
 - 각 조명 벡터에 대해, 시편에서 측정된 밝기값을 기준으로 보정 계수 계산
 - 이 보정값은 곡면(Vent 표면)에서 Photometric Stereo를 수행할 때, 조명 강도 오차를 보정하기 위한 용도로 사용

■ FLOW

- 1. 실제 공정과 유사한 조명 조건 하에서 VENT 시편을 다양한 방향에서 촬영 고정된 카메라와 변하는 광원 위치를 활용하여 다중 이미지를 확보
- 2. 평면 시편을 활용해 조명 강도 편차를 측정하고, 각 조명 벡터에 대한 보정 계수를 산출

- 3. 보정된 다중 이미지를 통해 Photometric Stereo 방식으로 법선벡터, 곡률, 높이맵 등의 2.5D[1][4] 정보를 생성
- 4. 생성된 다양한 시각 특성을 R(G)B 채널에 각각 대응시켜 단일 합성 이미지를 생성
- 5. 합성 이미지를 딥러닝 기반 모델(Supervised Learning)로 학습시켜 결함 분류 및 위치 예측을 수행

■ 영상 취득 방법

[Photometric Stereo]

5개 채널의 조명을 BF → DF상 → DF하 → DF좌 → DF우 순으로 이미지를 촬상하여 2.5D의 영상을 생성

BF 영상취득

DF 영상취득(상, 하, 좌, 우 4개의 영상 순차적 진행)

■ 영상 합성 방법

0. Calibration : 미리 정의된 각도에서 설정을 보정 (초기 세팅 단계에서만 설정)

1. 이미지 촬영 및 이미지에 대한 밝기 값 계산

2. 계산된 밝기 값을 통한 2.5D 이미지 변환

3. 결과처리 : 변환된 이미지를 통한 결함 검출

Calibration

실제 촬영 환경과 동일한 조건에서 촬영된 구(또는 반구) 이미지를 통해 교정각도 계산 (구의 광택이 적을 수록 높은 성능)

이미지 촬영 및 이미지에 대한 밝기 값 계산

- 카메라와 물체를 고정하고 조명을 여러 번 변화시키며 촬영
 - 조명의 방위각과 고도를 통해 밝기 값 계산
- 방위각: 조명이 수직선에서 떨어져 있는 각도 (동서남북)
 - 고도 : 조명이 수평평면에서 떨어져 있는 각도 (Z축)

예) 이미지 1: 방위각 90° / 고도 45°

이미지 2: 방위각 180° / 고도 45°

이미지 3: 방위각 270° / 고도 45°

이미지 4: 방위각 360° / 고도 45°

결과처리 : 결함 검출

ROI 설정

계산된 밝기 값을 통한 2.5D 이미지 변환

Albedo

Mean Curvature Height map

실험 구성 및 평가 방법 (Experiment Settings)

■ 검사 시료

[Vent부 상면]

[Vent부 하면]

■ 불량 시료 생성

- 현재 보유한 시료는 실제 어떠한 불량이 있는지 확인이 어려움
- 실제 양산라인에서 발현될 수 있는 불량을 강제로 제작하여, 취득한 영상과 실물과의 비교를 통해 검출 가능성이 어느정도인지 육안 매칭을 하고자 함

■ 생성한 불량의 종류

- 스크래치(다양한 방향성)
- 찍힘
- 눌림

※ 좌측 이미지는 핸드폰 영상임

[Vent 용접부]

실험 구성 및 평가 방법 (Experiment Settings)

■ AI 검출을 위한 RGB IAMGE 합성

실험 구성 및 평가 방법 (Experiment Settings)

■ AI 검사 방식 : 지도학습

- 불량 종류 및 라벨(Label, 불량정보(크기, 위치 등))이 주어진 상태에서 학습하는 방식
- 다량의 학습데이터가 확보되어야 모델의 예측 정확성이 높아짐 : 다수의 레이블 데이터 필요
- 합성 Image (Train Image)를 학습 데이터로 사용하여 AI 학습 일정 기간/수량 검출 데이터 확보 후 딥러닝 학습데이터로 활용 : 학습 후 모델 업데이트

결과 및 분석 (Results & Analysis)

■ 합성 결과

결과 및 분석 (Results & Analysis)

■ 모델 생성 및 환경

Training Loss 이력

IADTEST(RESIZE18)(best)

소요 시간	0h 43m 9s
모델 상태	Best
네트워크 유형	Standard
반복 횟수	9,000
Image Resize	1/8 (640 * 147)
GPU	NVIDIA GeForce RTX 4090

결과 및 분석 (Results & Analysis)

■ ANORMAL SCORE

■ CONFUSION MATRIX

한계점 및 토론 (Limitations & Discussions)

■ 연구의 한계점

1) 보정 파라미터의 일반화 한계

- 본 연구에서 적용한 보정 계수는 특정 조명 환경과 시편 형상에 최적화되어 있음
- 다양한 조명 조건이나 재질 변화에 대한 일반화 성능은 아직 충분히 입증되지 않음.
- 실제 공정 환경이 변화할 경우, **광선 추적 기반 파라미터 재측정이 필요할 수 있음**.

2) 합성 이미지 기반 AI 학습의 제약

- RGB 채널을 기반으로 합성한 2.5D 이미지에서 불량 정보는 제한적 수량의 시뮬레이션된 시편에서 생성됨.
- AI 모델 학습 데이터가 실제 생산 환경의 불량 다양성을 완전히 반영하지 못할 가능성이 있음.
- 초기 실험에서는 지도학습 기반 모델의 일반화 성능 검증에 한계가 있었음.

3) 검출 성능 지표의 미완성

- 양산 테스트 이전이라 제한된 수량으로 지표에 한계가 있음
- 다양한 조명 세트 변화, 결함 종류 별 성능 평가가 누락
- 추가 시나리오 기반 실험 및 지표 확장 분석이 필요

향후 연구 방향

■ 프로젝트 추가 연구 방향

1) 조명 환경 다양화에 따른 보정 모델 확장

 다양한 조명 세트에 대한 사전 시뮬레이션 기반 보정 파라미터 셋을 구축하여자동 전환 가능한 보정 모델로 확장할 계획

2) AI 모델의 불량 검출 성능 고도화

- 지도학습(Supervised Learning)을 기반으로 초기 모델을 구현
- 향후 불량 유형이 불명확하거나 소량일 때를 위한 반지도학습 / 자가학습 기법 적용을 검토
- 다양한 실제 VENT 불량 사례를 수집하여 **정밀 분류(Classification) + 위치** 검출(Localization) 복합 AI 모델로 발전

3) 실시간 처리 검증 및 임베디드 시스템 적용

- 향후 연구에서는 제안한 시스템의 프레임당 처리 속도를 측정
- GPU 최적화 또는 경량 모델 적용을 통해 실시간 처리 성능을 정량적으로 검증할 계획
- 현장 라인에 탑재 가능한 임베디드 비전 시스템 구현

참고 문헌

- [1] Euijeong Song, SRPS: Deep Learning Based Photometric Stereo Using Super Resolution Images, Ph.D. Dissertation, Korea University, 2021.
- [2] B. Haefner, S. Peng, A. Verma, Y. Quéau, and D. Cremers, "Photometric Depth Super-Resolution," in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.
- [3] H. Santo et al., "Deep Photometric Stereo Network," in Proc. ICCV Workshops, 2017.
- [4] S. Ikehata, "CNN-PS: CNN-based photometric stereo for general non-convex surfaces," in ECCV, 2018.
- [5] Q. Zheng et al., "SPLINE-Net: Sparse photometric stereo through lighting interpolation and normal estimation networks," in ICCV, 2019.
- [6] G. Chen, K. Han, and K.Y.K. Wong, "PS-FCN: A flexible learning framework for photometric stereo," in ECCV, 2018.
- [7] Y. Zhang et al., "Image Super-Resolution Using Very Deep Residual Channel Attention Networks," in ECCV, 2018.
- [8] Woodham, R. J. (1980). "Photometric Method for Determining Surface Orientation from Multiple Images," Optical Engineering, 19(1), 139-144.
- [9] Mallick, S., et al. (2014). "Photometric Stereo with a Non-Lambertian Reflectance Model," Computer Vision and Image Understanding, 120, 52–66.
- [10] Ramamoorthi, R., & Hanrahan, P. (2001). "An Efficient Representation for Irradiance Environment Maps," ACM SIGGRAPH 2001, 497–500.

