Тема: Прогнозирование погоды с использованием методов машинного обучения

Команда: МФТИшные котики)

Состав:

Самаковский Вячеслав Ильиных Александр Гриднев Константин Зайцев Дмитрий Алиева Наталья

Бизнес-цель

Прогноз погодных условий на основании детекции изображений погоды

ML - задача

- Предметная область: CV
- Тип задачи: классификация погоды (по фото)
- Таргет: предсказание погоды (снег, дождь, солнечно и т.д.)
- Технология: Roboflow vs Yolo

Принцип работы

Наша модель

Roboflow

Датасет: Kaggle

Сравнение двух моделей

Модель для сравнения

Yolo

Датасет: **дефолтный**

Датасет для нашей модели

- Датасет: Weather Image Recognition*
- 6 862 фото 8 категорий: туман, мороз, молния, дождь, радуга, песчаная буря, снег, солнечно

Preprocessing

Preprocessing

Preprocessing Auto-Orient: Applied

Resize: Stretch to 640x640

Augmentations Outputs per training example: 3

Flip: Horizontal

Crop: 0% Minimum Zoom, 20% Maximum Zoom

Grayscale: Apply to 25% of images

Brightness: Between -25% and +25%

Noise: Up to 5% of pixels

13868 Total Images

View All Images →

Обучение модели

Dataset Split

wheather-classification/1

Model Type: Roboflow 2.0 Multi-label Classification

Validation Accuracy ② 98.7%

Производительность модели

Оценка модели

Матрица ошибок

	precision	recall	f1-score	support
fogsmog	0.93	0.97	0.95	71
frost	0.96	1.00	0.98	91
lightning	1.00	1.00	1.00	33
rain	0.97	0.85	0.91	34
rainbow	1.00	1.00	1.00	19
sandstorm	0.93	0.93	0.93	15
snow	1.00	0.33	0.50	3
sunrise		0.50	0.67	2
accuracy macro avg weighted avg	0.97 0.96	0.82 0.96	0.96 0.87 0.96	268 268 268

Сравнение моделей

Roboflow собственная модель vs дефолтная модель

```
from roboflow import Roboflow

# Hawa Modess

rf_cats = Roboflow(api_key="yAV8c8VxFzT7RXVpeS3a")
project_cats = rf_cats.workspace().project("wheather-classification")
model_cats = project_cats.version(1).model

# Modess us uhmephema

rf = Roboflow(api_key="yAV8c8VxFzT7RXVpeS3a")
project = rf.workspace().project("weather-classification-w5xug")
model = project.version(8).model
```

Сравнение моделей: предсказание

```
# Наша модель

print(model_cats.predict("test_data/11.jpg").json())

print(model_cats.predict("test_data/1688761400_kartin-papik-pro-p-kartinki-vechernii-dozhd-52.jpg").json())

print(model_cats.predict("test_data/1830.jpg").json())
```

```
# Модель из интернета

print(model.predict("test_data/11.jpg").json())

print(model.predict("test_data/1688761400_kartin-papik-pro-p-kartinki-vechernii-dozhd-52.jpg").json())

print(model.predict("test_data/1830.jpg").json())
```

Результаты: сравнение моделей по трем фото

Изображение/ признак	Дождь жевосонул стигуй		Дождь с радугой		Молния	
	Наша модель	Дефолт	Наша модель	Дефолт	Наша модель	Дефолт
Наличие признака в модели	+	+	+	+	+	-
Результат	rain: confidence 0.94	rain: confidence 0.99	rain: confidence 0.42 rainbow: confidence 0.47	rain: confidence 0.99 -	lightning: confidence 0.92	shine: confidence 0.98
Причина	много признаков, большой датасет		много признаков		модель содержит признак	модель не содержит признак

Вывод

• Наша модель, обученная на технологии Roboflow, демонстрирует меньшую уверенность в предсказании, но при этом делает более точный прогноз по предсказанию класса чем дефолтная модель из интернета, работающая на технологии Yolo

Перспективы развития модели

- В зависимости от детекции реальных погодных условий, записанных с камер видеонаблюдения города, определять вероятность аварий (на сколько опасно сегодня садиться за руль)
- Пользователь пишет город проживания, система находит онлайн камеры видеонаблюдения, считывает серию скринов погоды, и пользователь получает ответ какая погода

Для вас старалась команда МФТИшных котиков) Спасибо за внимание!

