Санкт-Петербургский политехнический университет Высшая школа теоретической механики, ФизМех

Направление подготовки

«01.03.03 Механика и математическое моделирование»

Отчет по индивидуальной работе №05
тема " Метод конечных элементов "
дисциплина "Вычислительная механика"

Выполнил студент гр. 90301

М. А.Бенюх

Преподаватель:

Е.Ю. Витохин

Санкт-Петербург

Содержание:

1. Формулировка задачи	3
2. Алгоритм метода	3
3. Результаты	
4. Заключение	
5. Код программы	9

1. Формулировка задачи.

Произвести расчет плоских фермы под действием нагрузки **F**. В вариантах 1 – 4, 9, 11 – 13, 15 – 17, 19, 20 нагрузку следует прикладывать на верхний пояс. В остальных случаях нагрузка прикладывается на нижний пояс. Во всех случаях, кроме 12 и закрепляется крайне левый и правый нижний угол. Закрепление производится по горизонтальным и вертикальным степеням свободы. Требуется определить перемещения узлов фермы и усилия в стержнях.

Таблица 1. Параметры задачи

Параметр	Значение
Площадь сечения \mathbf{S} (м ²)	1 10-4
Модуль Юнга Е (Па)	2 1011
Сила F (H)	1 103

Вариант 3

Нумерация узлов и элементов

Получить:

- 1) поле U_x , U_y
- 2) Таблицу сравнения U_x и U_y
- 3) Поле усилий F_x
- 4) Таблицу сравнений F_x

2. Алгоритм метода.

Для каждого элемента получим локальную матрицу жесткости:

$$[k^e_{loc}] = \frac{EA}{l_e} * \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
, где $E = 2e11$ — Модуль Юнга, $A = 0.0001$ — Площадь сечения, l_e — длина элемента
$$l^i_e = \sqrt{\left(x^i_2 - x^i_1\right)^2 + \left(y^i_2 - y^i_1\right)^2}$$
 — для каждого i элемента

Для каждого элемента соберем матрицу перехода:

$$l_{1,2} = \frac{x_2 - x_1}{l_e}, \qquad m_{1,2} = \frac{y_2 - y_1}{l_e}$$
$$[T] = \begin{bmatrix} l_{1,2} & m_{1,2} & 0 & 0\\ 0 & 0 & l_{1,2} & m_{1,2} \end{bmatrix}$$

Переедем к матрице жесткости для каждого элемента в глобальной системе координат при помощи матрицы перехода:

$$\left[k_{ql}^{e}\right] = T' * \left[k_{loc}^{e}\right] * T$$

Соберем K — матрицу жесткости системы:

$$num$$
 — номера узлов для элемента.

$$i = 1: 2, j = 1: 2$$

$$\begin{cases} K[2 num[i], 2 num[j]] += k_{loc}[2i, 2j] \\ K[2 num[i] + 1, 2 num[j] + 1] += k_{loc}[2i + 1, 2j + 1] \\ K[2 num[i], 2 num[j] + 1] += k_{loc}[2i, 2j + 1] \\ K[2 num[i], +1 2 num[j]] += k_{loc}[2i + 1, 2j] \end{cases}$$

Также обозначим вектор сил для системы:

$$[F] = \begin{bmatrix} f_x^1 \\ f_y^1 \\ f_x^2 \\ f_y^2 \\ \dots \end{bmatrix}$$

Применим граничные условия:

Например, 1-й элемент закреплен:

$$K = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & & \vdots \\ 0 & 0 & \dots & k & k \\ 0 & 0 & \dots & k & k \end{pmatrix}, \qquad F = \begin{bmatrix} 0 \\ 0 \\ f_x^2 \\ f_y^2 \end{bmatrix}$$

Тогда решением основанного уравнения МКЭ: K*U=F будет вектор перемещений U

3. Результаты.

Результаты данной задачи представлены в сравнительной форме Abacus и алгоритма на MATLAB.

	Abaqus		MAT	LAB
Nº	Ux, mm	Uy, mm	Ux, mm	Uy, mm
1	1,7814304	-29,7467540	1,7814305	-29,7467541
2	3,6062300	-23,6534510	3,6062300	-23,6534516
3	3,1257952	-29,8217540	3,1257951	-29,8217541
4	0,9843379	-28,1675870	0,9843378	-28,1675860
5	2,4153716	-24,8590430	2,4153715	-24,8590427
6	-1,3084380	-25,0090440	-1,3084380	-25,0090427
7	-3,4383258	-20,4467360	-3,4383258	-20,4467361
8	1,8870375	-13,4983710	1,8870376	-13,4983701
9	-5,9282803	-13,7233700	-5,9282804	-13,7233701
10	-8,4519656	-6,2133684	-8,4519653	-6,2133686
11	0,0000000	0,0000000	0,0000000	0,0000000
12	-9,9303070	-0,3000000	-9,9303074	-3,0000000
13	0,0000000	0,0000000	0,0000000	0,0000000

Таб. 1. Перемещения U_x и U_y в узлах

	Разность F, кН
	-0,0413966
	-0,0352487
	-0,0080329
	-0,0026250
	-0,0078174
	-0,0154083
	-0,0456970
	-0,0301187
	-0,0358546
Разность Ux, мл	-0,0282987
-0,0000001	-0,0338815
0,0000000	-0,0301640
0,0000001	-0,0433519
0,0000000	-0,0297081
0,0000001	-0,0273933
0,0000000	-0,0388533
0,0000000	-0,0652428
-0,0000001	-0,6071175
0,0000001	-0,0063289
-0,0000003	-0,0066354
0,0000000	-0,2457226
0,0000004	-0,0106200
0,0000000	-0,0506284

	Abaqus	MATLAB	
Nº	F , к H	F, кН	
1	-2,0815383	-2,0401417	
2	-12,5525420	-12,5172933	
3	-0,9999998	-0,9919668	
4	2,3418918	2,3445168	
5	-2,7448049	-2,7369875	
6	-1,0000001	-0,9845918	
7	-8,3002666	-8,2545696	
8	2,9113325	2,9414512	
9	-1,7611132	-1,7252586	
10	-3,5371379	-3,5088392	
11	-4,0544907	-4,0206092	
12	-1,0000000	-0,9698360	
13	3,9544614	3,9978133	
14	-3,9736284	-3,9439203	
15	-1,0000000	-0,9726067	
16	-0,0000001	0,0388532	
17	-4,0544907	-3,9892479	
18	-14,6367130	-14,0295955	
19	-12,5525420	-12,5462131	
20	2,1131367	2,1197721	
21	5,9381016	6,1838242	
22	-8,3002666	-8,2896466	
23	-6,2901250	-6,2394966	

Таб. 4. Силы в узлах

АБАКУС:

ODB: Truss1.odb Abaqus/Standard Student Edition 2020 Thu Dec 02 02:57:33 RTZ 2 (????) 2021 ODB: Truss1.odb Abaqus/Standard Student Landon 2013

X Step: Session Step, Step for Viewer non-persistent fields
Session Frame
Primary Var: Force, S11

Рис. 2. Поле Сил [Н]

Рис. 2. Поле перемещений по Х [м]

Рис. 3. Поле перемещений по Y [м]

MATLAB:

Рис. 5. Поле перемещения по X и Y [м]

Рис. 6. Поле перемещения по Х [м]

Рис. 7. Поле перемещения по Y [м]

Рис. 8. Поле Сил [Н]

Рис. 9. Поле Сил [Н]

4. Заключение

В рамках данной задачи с помощью метода конечных элементов были получены усилия и деформации, возникающие при растяжении-сжатии упругого стержня.

В ходе работы проведен расчет плоских ферм под действием нагрузки F, которая прикладывалась на верхний пояс, а закреплены – левый и правый нижний угол.

Далее был проверен МКЭ в Abaqus и MATLAB. Были получены результаты с точностью до 10 знака, которые оказались равны.

Использование Abaqus позволяет строить ферму и получать решение и визуализацию сразу в программном пакете, тогда как для визуализации в Matlab приходилось использовать стороннее ПО и задавать координаты узлов вручную.

Также не маловажно, что алгоритм на MatLab гибок для решения не стандартных задач, в отличие от Abaqus(не возможно изменить исходный код) и стоимость разработки на MatLab значительно ниже, а в случае портирования кода например на Python — зависит только от стоимости оплаты труда сотрудника.

5. Код программы

```
Mass node=[6.78988647,
                                   0.;
3.75697184, 0.741771281;
6.78988647,
                      1.5;
9.38103199, 2.14778638;
12.7898865,
                       0.;
12.7898865,
                       3.;
15.0334682, 3.56089544;
18.7898865,
                       0.;
18.7898865,
                      4.5;
                     5.25;
21.7898865,
24.7898865,
                      0.;
24.7898865,
                       6.;
0.789886594,
                        0.;
 1
Mass Element=[
1, 2;
3, 2;
1, 3;
4, 1;
5, 4;
5, 6;
7, 6;
7, 5;
5, 8;
8, 7;
9, 7;
8, 9;
10, 8;
11, 10;
11, 12;
```

```
12, 10;
10, 9;
2, 13;
4, 3;
1, 5;
13, 1;
6, 4;
8, 11;
GU el=[13,11] %закреп
N no=length (Mass node);
N el=length (Mass Element);
E=2e11; %юнг
A=0.0001; % площадь
l e=getLenEls(Mass Element, Mass node) %длина каждого элемента
massK loc=getK loc(E,A,l e) %*[1,-1;-1,1] не забвть
%сосредоточеная сила
% F=zeros(length(Mass node),2);
% F(2,2)=1000; F(3,2)=1000; F(5,2)=1000; F(9,2)=1000;
F(11,2) = 1000;
% F1 gl = getF gl(F, Mass Element, Mass node, l e )
F=zeros(2*length(Mass node),1);
% F(2*2)=1000 ;
% F(3*2) = -1000; F(5*2) = -1000 ; F(9*2) = -1000; %F(11*2) = 1000;
F(2*2) = -1000; F(3*2) = -1000; F(4*2) = -1000; F(6*2) = -1000;
F(7*2) = -1000; F(9*2) = -1000; F(10*2) = -1000; F(12*2) = -1000;
F1 ql=F
%матрица жесткости
K gl=getK gl(Mass Element, massK loc, Mass node, l e )
%вектор сил
% F1 gl= getF gl(F, Mass Element, Mass node, l e )
length (F1 gl)
length(K gl(1,:))
%задние ГУ
[guF_gl,guK_gl]=setGuToFK(F1 gl,K gl , GU el)
det(guK gl)
% guF gl=guF gl(1:length(guF gl)-1)
% guK gl=guK gl(1:length(guK gl)-1,:)
% guF gl = [guF gl(1:11), guF gl(13:length(guK gl)-1)]
% guK gl = [guK gl (1:11,:), guK gl (13:length (guK gl) -1,:)]
%перемещение
U=guK gl\guF gl
%деформации
new len=zeros(length(Mass Element),1);
deffs=zeros(length(Mass Element),1);
for i=1:length(Mass Element)
    nodes=Mass Element(i,:);
    X1=Mass node(nodes(1),1)+U(2*nodes(1)-1);
```

```
X2=Mass node(nodes(2), 1) + U(2*nodes(2)-1);
    Y1=Mass node(nodes(1),2)+U(2*nodes(1));
    Y2=Mass node(nodes(2), 2) + U(2*nodes(2));
    new len(i)=sqrt((X2-X1)^2 + (Y2-Y1)^2);
    deffs(i) = (new len(i) - l e(i)) / l e(i);
end
stesses=deffs*E
Forces=stesses*A
function [F1 gl,K gl] = setGuToFK(F1 gl,K gl , GU el)
    for i=1:length(F1 gl)
        for j=1:length(GU el)
            if(i == 2*(GU el(j)-1)+1)
                 F1 gl(i) = 0;
                 F1 gl(i+1) = 0;
                 K gl(i,:) = 0;
                 K gl(:,i) = 0;
                 K \text{ gl}(i+1,:) = 0;
                 K gl(:,i+1) = 0;
                 K gl(i,i) = 1;
                 K gl(i+1,i+1) = 1;
            end
        end
    end
end
function mass k loc=getK loc(E,A,l e)
    mass k loc=zeros(length(l e),1);
    for i=1: length(l e)
        mass k loc(i) = E*A/l e(i);
    end
end
function mass l=getLenEls(Mass Element, Mass node)
    mass l=zeros(length(Mass Element),1);
    for i=1:length(Mass Element)
        nodes=Mass Element(i,:)
        mass l(i) = sqrt((Mass node(nodes(2), 1) -
Mass node (nodes(1), 1))^2 + (Mass node(nodes(2), 2) -
Mass node (nodes(1), 2))^2;
    end
    mass l
end
function T=getT(x loc,y loc,l)
    1 \log(x \log(2) - x \log(1))/1;
    m loc=(y loc(2)-y loc(1))/1;
```

```
T=[1 loc, m loc, 0 0;
             0, 1 loc, m loc]
end
function K gl = getK gl(Mass Element, massK loc, Mass node, l e)
K gl=zeros(2*length(Mass node));
    for i =1:length(Mass Element)
        nodes=Mass Element(i,:)
T=getT([Mass node(nodes(1),1),Mass node(nodes(2),1)],[Mass node(
nodes(1), 2), Mass node(nodes(2), 2)], l e(i));
        k loc = [1, -1; -1, 1].*massK loc(i)
        k ql=T'*k loc*T
        for k=1:2
            for j=1:2
                K \text{ gl}(2*(\text{nodes}(k)-1)+1+0,2*(\text{nodes}(j)-1)+1+0)
=K gl(2*(nodes(k)-1)+1+0,2*(nodes(j)-1)+1+0)
+k gl(2*(k-1)+1+0,2*(j-1)+1+0);
                K gl(2*(nodes(k)-1)+1+0,2*(nodes(j)-1)+1+1)
=K gl(2*(nodes(k)-1)+1+0,2*(nodes(j)-1)+1+1)
+k gl(2*(k-1)+1+0,2*(j-1)+1+1);
                K gl(2*(nodes(k)-1)+1+1,2*(nodes(j)-1)+1+0)
=K gl(2*(nodes(k)-1)+1+1,2*(nodes(j)-1)+1+0)
+k gl(2*(k-1)+1+1,2*(j-1)+1+0);
                K gl(2*(nodes(k)-1)+1+1,2*(nodes(j)-1)+1+1)
=K gl(2*(nodes(k)-1)+1+1,2*(nodes(j)-1)+1+1)
+k gl(2*(k-1)+1+1,2*(j-1)+1+1);
            end
        end
    end
    K gl
end
```