Cal State Fullerton

Analyzing Supermarket Sales Trends: Leveraging AWS EMR, Spark, and QuickSight for Insightful Visualizations

CPSC - 531 ADVANCED DATABASE MANAGEMENT SYSTEMS PROF: TSENG-CHING JAMES SHEN,PhD

Team members:
Ajaykumar Burigari
Dinesh Daki

CONTENTS

- Problem Statement
- Dataset Overview
- Architecture
- Implementation Approach
- Analysis & Results
- Tools and Technologies

Project Statement:

This project aims to predict weekly sales for supermarkets while analyzing the factors influencing sales. This analysis will inform strategies for optimizing inventory management and resource allocation.

Dataset Overview:

- The dataset provided comprises historical sales data for 45 Walmart stores situated across various regions.
- The dataset includes the following files:
- **stores.csv**: This file contains anonymized information about the 45 stores, specifying their type and size.
- **train.csv**: Historical training data covering the period from 2010-02-05 to 2012-11-01. Fields in this file include:

Store: Store number

Dept: Department number

O Date: Week

- Weekly Sales: Sales for the given department in the specified store
- IsHoliday: Indicates whether the week is a special holiday week

Dataset Overview:

- **test.csv**: Similar to train.csv, but with sales data withheld.
- **features.csv**: Contains additional data related to the store, department, and regional activity for the given dates.

Fields include:

Store: Store number

Date: Week

• Temperature: Average temperature in the region

• Fuel_Price: Cost of fuel in the region

• CPI: Consumer Price Index

• Unemployment: Unemployment rate

• IsHoliday: Indicates whether the week is a special holiday week

Architecture:

Implementation Approach:

- Creating an EMR cluster
- Creating S3 bucket
- Creating EMR studio within EMR cluster
- Fetching data from S3 Bucket
- Creating Quicksight and connecting it to S3 bucket.

Creating EMR Cluster:

- created an EMR cluster with cluster size of min 3 instances and max 10 instances and 8 core nodes.
- Installed applications like Spark, Hadoop, JupyterEnterpriseGateway which helps in processing and analyzing large datasets.

Creating S3 Bucket:

- Create an S3 bucket, This S3 bucket acts as a Storage location for EMR studio.
- Upload the Dataset into the S3 Bucket
- •Use S3 URI to read dataset files in EMR Studio

Creating EMR Studio within EMR Cluster:

- Create EMR Studio
- Connect EMR Studio to S3 Bucket for dataset Storage access

- Create Spark Session with name SuperMarketSalesForecast
- Creating spark dataframes from csv files containing train, store, feature and test data

```
[57]: import pyspark
from pyspark.sql import SparkSession

# Create a SparkSession
spark = SparkSession.builder.appName("SuperMarketSalesForecast").getOrCreate()

# Read the CSV files and create Spark DataFrames
train_df = spark.read.csv('s3://sm-studio-bucket/SuperMarketSalesDataInput/train.csv', header=True, inferSchema=True)
store_df = spark.read.csv('s3://sm-studio-bucket/SuperMarketSalesDataInput/stores.csv', header=True, inferSchema=True)
feature_df = spark.read.csv('s3://sm-studio-bucket/SuperMarketSalesDataInput/features.csv', header=True, inferSchema=True)
test_df = spark.read.csv('s3://sm-studio-bucket/SuperMarketSalesDataInput/test.csv', header=True, inferSchema=True)
Last executed at 2024-05-06 20:41:14 in 11.29s
```

• Joining train and test data dataframes with the store and feature dataframes based on columns 'store', 'date', 'isHoliday' to create train and test data.

trai test # Sh trai	n = trai = test_	n_df.jo: df.jo: irst j)	join(store in(store_d	_df, o f, on=		ow='lef ='left'	t').joi	oin(feature_d n(feature_df,			, 'IsHoliday'], 'IsHoliday'], ho	
+ Sto	+ re	Date	 IsHoliday	++ Dept	Weekly_Sales	++- Type	Size	 Temperature	Fuel_Price	CPI	++ Unemployment	
† 	+ 1 2010-	02-05	false	1	24924.5	++- A 1	51315	42.31	2.572	+ 211.0963582	* 8.106	
	1 2010-	02-12	true	1 1	46039.49	A A I	51315	38.51	2.548	211.2421698	8.106	
	1 2010-	02-19	false	1	41595.55	A 1	51315	39.93	2.514	211.2891429	8.106	
	1 2010-	02-26	false	1 1	19403.54	A 1	51315	46.63	2.561	211.3196429	8.106	
	1 2010-	03-05	false	1 1	21827.9	A 1	51315	46.5	2.625	211.3501429	8.106	
+	showing + re									Unemployment		
	+ 1 2012-	11-02	false	++ 1	++ A 151315	 5	5.32		23.4627793	6.573	+ 	
	1 2012-						1.24		3.4813073			
	1 2012-						2.92		3.5129105			
	1 2012-				A 151315		6.23		3.5619474			
	1 2012-						2.34		3.6109842			

- Created 3 regression models RandomForest, Gradient Booster Trees, Linear Regression.
- Predictions are made on the training data with each model and RMSE is computed.
- Each model is trained on the training data and predictions are made.
- Based on the RMSE values obtained, the code selects the model with lowest RMSE as the best model.

```
# Step: Model Evaluation
evaluator = RegressionEvaluator(labelCol="Weekly_Sales", predictionCol="prediction", metricName="rmse")

# Evaluate Random Forest
rf1_predictions = rf1_model.transform(train_data)
rf1_rmse = evaluator.evaluate(rf1_predictions)
print("Random Forest RMSE on training data:", rf1_rmse)

# Evaluate Gradient Boosted Trees (GBT)
gbt_predictions = gbt_model.transform(train_data)
gbt_rmse = evaluator.evaluate(gbt_predictions)|
print("GBT RMSE on training data:", gbt_rmse)

# Evaluate Linear Regression
lr_predictions = lr_model.transform(train_data)
lr_rmse = evaluator.evaluate(lr_predictions)
print("Linear Regression RMSE on training data:", lr_rmse)
```

• Predictions are made on the test data using best model.

```
# Predict on test data using the best model
best model predictions = best model.transform(test data)
best model predictions.show(5)
Last executed at 2024-05-06 20:43:22 in 751ms
  Spark Job Progress
Date | IsHoliday | Dept | Type | Size | Temperature | Fuel Price |
Store
                                                  CPI Unemployment week month year
                                                                                   featur
       prediction
es
1 2012-11-02
               false 1
                       1 151315
                                   55.32
                                          3.386 223.4627793
                                                                     11 2012 [1.0,0.0,1.0,1.
0,... | 33993.018829402834 |
                                                            6.573 45
   1 2012-11-09
               false
                        1 151315
                                   61.24
                                          3.314 223.4813073
                                                                     11 2012 [1.0,0.0,1.0,1.
0,...|33993.018829402834|
   1 2012-11-16
               false
                        1 | 151315 |
                                   52.92
                                          3.252 223.5129105
                                                            6.573 46
                                                                     11 2012 [1.0,0.0,1.0,1.
0,... 34453.29276501201
   1 2012-11-23
                        1 | 151315 |
                                   56.23
                                          3.211 223.5619474
                                                            6.573 47
                                                                     11 2012 [1.0,1.0,1.0,1.
               true
0,... 34831.95169389938
   1 2012-11-30
               false 1
                        1 151315
                                   52.34
                                          3.207 223.6109842
                                                            6.573 48
                                                                     11 2012 [1.0,0.0,1.0,1.
0,... | 35501.71924763424
--+----+
only showing top 5 rows
```

• Saving the predictions made by the best regression model into a folder located at the specified amazon S3 bucket path.

DataFrame saved as CSV to S3: s3://sm-studio-bucket/SuperMarketSalesAnalysisOutput/Weekly_Sales_Prediction

Connecting S3 Bucket to Quicksight:

Results:

Sales Predicted

Results:

Sales Obtained from the trained data

Results:

Feature importance

Analysis:

As the size of the store increases, so do its weekly sales.

Analysis:

Fuel prices and weekly sales share a correlation, with sales demonstrating a decline during periods of

higher fuel costs.

Analysis:

Temperature and weekly sales exhibit a correlation, with sales showing lower figures during both the highest and lowest temperatures, while demonstrating higher sales during moderate temperatures.

Tools and Technologies used:

AWS Ecosystem:

AWS EMR
Amazon S3
EMR Studio
AWS QuickSight

• Big Data Technologies:

Apache Spark and PySpark

Notebook:

Jupyter Notebook

THANK YOU