High-Throughput Sequencing Course Welcome

Biostatistics and Bioinformatics

Summer 2018

Welcome from HTS Course Faculty and Staff

- ► Biology and Computational Biology
 - ► David Corcoran
 - ► Holly Dressman
 - ► Raluca Gordân
 - ightharpoonup Josh Granek
 - ► Kathleen Miglia
- ightharpoonup Computing
 - ► Cliburn Chan
 - ► Janice McCarthy
- ► Statistics
 - ► Andrew Allen
 - ► Yi-Ju Li
 - ► Kouros Owzar
 - ▶ Jichun Xie
- ► Program Evaluation
 - ► Ed Neal

- ► Translational Bioinformatics
 - ► Anna-Maria Masci
 - ► Jessica Tenenbaum
- ► Teaching Assistants
 - ► Jeremy Gresham
 - ► Kuei (Clint) Yueh Ko
 - ► Calla Telzrow
 - ► Benji Wagner
 - ► Paul Zweck
- ► Resource specialist
 - ► Sharon Updike
- ► Administration
 - ► Tasha Allison
 - ► Tim Durning
 - ► Dawn Hails
 - ► James Thomas
 - Special Thanks: Liz Delong, Tim Reddy

RNA-SEQ OVERVIEW

RAW UNALIGNED READS

	001@cox: ~/CURRENT/hts-course-stat/CURRENT/Slides
	001@cox: ~/CURRENT/hts-course-stat/CURRENT/Slides 85x24
@SRR546799.1 HWI-1KL120:92:C0	OF56ACXX:1:1101:1203:2232 length=50
CATGGCTCAGATTGAACGCTGGCGGCAG	GCCTAACACATGCAAGTCGAAC
+SRR546799.1 HWI-1KL120:92:C0	OF56ACXX:1:1101:1203:2232 length=50
B@CFFFEFHHHHHFGHIGHHIJIHIIIJ	JIHBFHG=FFCEIIEAACECDE
@SRR546799.2 HWI-1KL120:92:C0	OF56ACXX:1:1101:1152:2242 length=50
CTCGTGAACTCATCTCCGGGGGTAGAGC/	CACTGTTTCGGCAAGGGGGTCAT
+SRR546799.2 HWI-1KL120:92:C0	OF56ACXX:1:1101:1152:2242 length=50
@=?DBDBDFHHDDGHGHGIGGG77BFHI	FIHIIIIGHGHHFF=?ADDB <a< th=""></a<>
@SRR546799.3 HWI-1KL120:92:C0	OF56ACXX:1:1101:1429:2119 length=50
ACCACGTGTCCCGCCCTACTCATCGAGC	TCACAGCATGTGCATTTTTGTG
+SRR546799.3 HWI-1KL120:92:C0	OF56ACXX:1:1101:1429:2119 length=50
@@@FFFDFHHHH:EGIHGIEHEGHHHEHI	FHCFGCGGFHGHHIIHIIIII
@SRR546799.4 HWI-1KL120:92:C0	OF56ACXX:1:1101:1376:2136 length=50
GTTAATCGGGGCAGGGTGAGTCGACCCC	CTAAGGCGAGGCCGAAAGGCGTA
+SRR546799.4 HWI-1KL120:92:C0	OF56ACXX:1:1101:1376:2136 length=50
@?@FFFFFHGHHHHJJ9CBGGHIIIJJJI	FGIGIIIBGHHFFDDDDDDD;?
@SRR546799.5 HWI-1KL120:92:C0	OF56ACXX:1:1101:1417:2140 length=50
CTGGGTTGTTTCCCTCTTCACGACGGAC	
+SRR546799.5 HWI-1KL120:92:C0	
B?BFFFFDFHHHGJFHHGIGJFGHJGBG	
@SRR546799.6 HWI-1KL120:92:C0	
CCCAGAGCCTGAATCAGTGTGTGTTAG	
+SRR546799.6 HWI-1KL120:92:C0	OF56ACXX:1:1101:1320:2224 length=50

ALIGNED READS

		2010	(SUBBELIE)		(6) (8) (8)	T/01/ I			
8			ox: ~/CURRENT/I						
SRR546799.93807	46	0	AE005174-		130	1	50M *	0	
0	ACTTTAACC	CAATATAGO	GCATAGCGCA	CAGACAG	GATAAAAA	TTACAGAG	TA CC	CFFFFFHHO	GHH.
ננננננננננננננננננננ	UIIJJJJJJ	JJJJJJJI:	JJJFG	AS:i:0	XS:i:	0 XN:i:	0 XM:i:0	X0:i:0	XG
i:0 NM:i:0 MC):Z:50 YT:	Z:UU							
SRR546799.82107	755	0	AE005174-	1	164	1	50M *	0	
0	TAAAAATTA	GAGAGTAC	CACAACATCC	ATGAAA	CGCATTAG	CACCACCA	TT BB	CFFFFFH?D	DHH.
EGIJJJJJJJJJJII	IJIJIJIJ	ננננוננו	JJIJI	AS:i:	-5 XS:i:	-5 XN:i:	0 XM:i:1	X0:i:0	XG
i:0 NM:i:1 MD):Z:9C40	YT:	Z:UU						
SRR546799.60238	888	0	AE005174-	1	165	1	50M *	0	
0	AAAAATTAG	AGAGTAC A	ACAACATCCA	TGAAAC	GCATTAGC	ACCACCAT	TA CC	CFFFFFHH	НН
IJJJJJJJJJJJJJJ	ננננננננננ	ננננננננו	13333	AS:i:0	XS:i:	0 XN:i:	0 XM:i:0	X0:i:0	XG
i:0 NM:i:0 MD):Z:50 YT:	Z:UU							
SRR546799.62996		0	AE005174-		165	1	50M *	0	
0			ACAACATCCA					CFFFFFHHH	
HIJJJJJJJJJJJJJJ	נכנכנכנכנו	JJIIGIJ	IJIJG	AS:i:0	XS:i:	0 XN:i:	0 XM:i:0	X0:i:0	XG
i:0 NM:i:0 MC):Z:50 YT:	Z:UU							
SRR546799.44231		0	AE005174-			1	50M *	0	
0			ACGCATTAGO					@DDFFFHHH	
JJJ@GHIJJFIIJJJ			JJJIF	AS:i:0	XS:i:	0 XN:i:	0 XM:i:0	X0:i:0	XG
):Z:50 YT:								
SRR546799.15153		0	AE005174-		182	0	50M *	0	
0			CATTAGCACC					CFFFFFHH	
; ■	13333333333	133333333	JJJJI	AS:i:	-12	XS:i:	- 12	XN:1:0	XM

Counts

owzar001@cox: ~/CURRENT/hts-course-stat/CURRENT/Slides owzar001@cox: ~/CURRENT/hts-course-stat/CURRENT/Slides owzar001@cox: ~/CURRENT/hts-course-stat/CURRENT/Slides															
owzar001@cox: ~/CURRENT/hts-course-stat/CURRENT/Slides 85x23															
> head(counts(htseq),20)[,1:15]															
	7A_E		7A_K		7A_P	7B_E	7B_G		7B_N	7B_P	7C_E	7C_G	7C_K	7C_N	7C_P
gene0	9	17	11	17	11	12	22	20	6	9	19	20	17	5	20
gene1	108	170	97	88	173	119	241	103	51	162	155	149	124	88	128
gene10	3	0	7	3	3	2	1	1	2	2	2	2	2	7	5
gene100	24	27	15	16	23	11	24	28	5	30	24	20	22	15	25
gene1000	11	5	8	2	13	10	8	7	2	13	8	2	5	13	9
gene1001	1	3	2	5	2	3	1	1	3	5	3	4	4	1	2
gene1002	32	11	19	12	23	31	29	19	11	34	22	20	19	12	27
gene1003	80	60	109	58	68	100	57	74	36	74	76	75	85	55	58
gene1004	1	2	1	1	3	0	5	0	0	1	1	3	1	2	0
gene1005	873	499	713	356	662	1259	575	585	236	820	937	521	486	317	809
gene1006	24	14	33	17	28	25	20	20	10	21	21	15	17	27	12
gene1007	64	29	86	46	49	79	52	57	28	65	67	22	75	38	54
gene1008	16	6	23	14	11	21	21	26	10	15	25	12	23	14	20
gene1009	9	8	17	5	14	17	13	9	2	12	18	6	5	9	7
gene101	29	39	29	42	47	46	68	40	16	41	48	80	46	28	41
gene1010	0	1	2	0	1	4	0	0	0	2	0	0	1	0	1
gene1011	0	1	0	0	0	0	0	1	0	0	2	0	0	0	1
gene1012	2	0	1	0	1	2	1	0	1	0	0	1	0	1	0
gene1013	0	0	2	0	2	0	0	0	1	1	0	0	0	0	1
gene1014 > 	2	0	1	0	1	2	0	0	0	0	1	1	0	0	0

DOWNSTREAM STATISTICAL ANALYSIS

```
owzar001@cox: ~/CURRENT/hts-course-stat/CURRENT/Slides
    owzar001@cox: ~/CURRENT/hts-course-stat/CURRENT/Slides
                                                  owzar001@cox: ~/CURRENT/hts-course-stat/CURRENT/Slides
fitting model and testing

    replacing outliers and refitting for 46 genes

 - DESeq argument 'minReplicatesForReplace' = 7
 - original counts are preserved in counts(dds)
estimating dispersions
fitting model and testing
log2 fold change (MAP): trt 8 vs 7
Wald test p-value: trt 8 vs 7
DataFrame with 4444 rows and 6 columns
           baseMean log2FoldChange
                                          1 fcSE
                                                      stat
                                                                  pvalue
                                                                                 padi
          <numeric>
                          <numeric> <numeric> <numeric>
                                                               <numeric>
                                                                            <numeric>
aene0
          15.274431
                         0.28920009 0.2167382 1.3343292 0.1820959756 0.334270077
gene1
         145.603062
                         0.43095114 0.1292386
                                                 3.3345378 0.0008544128 0.004147663
aene10
           2.605083
                        -0.28595073 0.3674671 -0.7781668 0.4364706803 0.614286779
gene100
          20.323396
                         0.08658647 0.1486582
                                                 0.5824532 0.5602614320 0.723906417
gene1000
           6.582580
                        -0.43057986 0.2612653 -1.6480558 0.0993412243 0.214598998
                          0.6238433 0.4006699
                                                 1.5570009
                                                               0.1194703
gene995
          1.6041044
                                                                            0.2450365
gene996
         10.3271263
                          -0.2176632 0.1992665 -1.0923221
                                                               0.2746915
                                                                            0.4504187
aene997
          6.8183976
                          -0.2618863 0.2651733 -0.9876041
                                                               0.3233466
                                                                            0.5039471
         29.3582205
                          -0.2004418 0.1752968 -1.1434424
                                                                            0.4264820
gene998
                                                               0.2528549
gene999
          0.6089341
                          -0.1343551 0.5377144 -0.2498632
                                                               0.8026931
                                                                            0.8962573
```

WHAT WILL YOU LEARN?

- ► How do I prepare an RNA library for sequencing?
- ► How do I align raw sequencing reads to the transcriptome?
- ► How do I convert aligned reads to gene counts?
- ► How do I find differentially expressed genes?
- ► How do I find differentially enriched pathways?
- ► How do I interpret my data?

WHAT COMPUTING SKILLS WILL YOU LEARN?

- ► Use Jupyter notebooks for literate programming
- ► Use the Unix command line
- ► Use shell scripts to automate analysis
- ▶ Use idiomatic modern R to manipulate and visualize data
- ▶ Use BioConductor genomics packages to analyze data
- ▶ Use online data resources to interpret data
- ► Tools and practices for reproducible analysis

BEYOND THE MECHANICS OF DATA ANALYSIS

- ► Proper lab practices for building sequencing libraries
- ► Computational Biology concepts and algorithms
- ▶ Pre-processing and QC of raw sequencing data
- ► Statistics: Concepts, limitations, abuse
- ► Simulation and noise discovery
- ► Distributions for counts
- ► Reproducible analysis and "tidy" programming
- ► Virtual computing
- ► Translational bioinformatics

The tidyverse approach (Data analysis task)

Task: Summarize the mean expression levels for genes 1 and 2 by mutation status (WT vs MT)

```
## # A tibble: 20 x 3
     mutation
               gene1
                      gene2
     <fct>
               <dbl>
                       <dbl>
  1 MT
             -0.381 -0.722
   2 MT
            0.202 -1.37
         -0.124 -0.773
   3 MT
          -0.0492 -1.06
  4 WT
  5 WT
            -0.227 -0.192
  6 WT
            -0.0440 0.00387
## 7 MT
             1.72 -0.108
  8 MT
             -1.10 -0.288
## 9 WT
              0.696 1.81
## 10 WT
              2.22
                   0.103
## 11 MT
              1.95 -0.226
             -1.18 -1.18
## 12 MT
## 13 WT
             -1.18
                   -0.281
## 14 WT
             -0.874
                    1.12
## 15 WT
            0.865
                    0.0713
## 16 MT
             -0.268
                    0.277
## 17 WT
            0.341 -0.00142
## 18 MT
             -0.452 -0.430
## 19 MT
              0.102
                    0.0960
## 20 WT
              1.11
                     0.975
```

The Tidyverse approach (Messy Programming)

```
x0 <- mydat[mydat$mutation == "WT", ]
x1 <- mydat[mydat$mutation == "MT", ]
# Mean expression of gene 1 in WT
mean(x0$gene1)
## [1] 0.2865462
# Mean expression of gene 1 in MT
mean(x1$gene1)
## [1] 0.04775764
# Mean expression of gene 2 in WT
mean(x0$gene2)
## [1] 0.2550259
# Mean expression of gene 2 in MT
mean(x1$gene1)
## [1] 0.04775764
```

Find the error!

The Tidyverse approach (Tidy Programming)

```
mydat %>% group_by(mutation) %>% summarize_at(vars(gene1, gene2), mean)

## # A tibble: 2 x 3

## mutation gene1 gene2

## <fct> <dbl> <dbl> +#
## 1 MT 0.0478 -0.472

## 2 WT 0.287 0.255
```

2018 PILOT DATA

- ► Cryptococcus neoformans
- ► Experimental Design
 - ► Two by two factorial design
 - ► Factor 1: Treatment (YPD versus TC)
 - ► Factor 2: Strain (WT versus mutant)
- ► The experimental design will enable us to address a number of scientific questions
- ► The experimental design will also enable us consider methods for assessment of batch effects

2018 PILOT DATA: SEQUENCING DEPTH

2018 PILOT DATA: PROPORTION OF UNIQUE MAPPED READS

2018 PILOT DATA: DENDROGRAM

2018 PILOT DATA: DE WITH RESPECT TO MEDIA 1

2018 PILOT DATA: DE WITH RESPECT TO MEDIA 2

2018 PILOT DATA: DE WITH RESPECT TO MEDIA 3

2018 PILOT DATA: DE WITH RESPECT TO STRAIN 1

2018 PILOT DATA: DE WITH RESPECT TO STRAIN 2

2018 PILOT DATA: DE WITH RESPECT TO STRAIN 3

2018 PILOT DATA: STRAIN BY TREATMENT INTERACTION

OVERVIEW: FORMAT

- ► Weeks 1, 3-5: Lectures and Workshops (Statistics, Computing, Bioinformatics, Translational Biomedical Informatics)
- ► Week 2: Wet lab work (build RNA-Seq library)
- ► Week 6: Group work/poster: data analysis, preparation and presentation
- ► Most statistical lectures (taught in the morning) are followed by a computing workshop (in the afternoon)
- ► Weekly assessments (Weeks 1-5)

LOCATIONS

- 1. CRTP Classroom (Hock 2nd floor; present location)
- 2. B&B Classroom (Hock 11025; 11th floor)
- 3. B&B Breakroom
- 4. BioSci Lab 0032/0066 (Directions have been provided)

B&B: Department of Biostatistics and Bioinformatics

Overview: Schedule

- ► Week 1: Thu-Fri (two days)
- ► Week 2: Mon-Fri (five days)
- ► Weeks 3-6: Mon-Thu (four days per week)
- ► Four sessions per day (0900-1015; 1030-1145; 1315-1430; 1445-1600)
- ► Lunch 1145-1315
- ► Locations:
 - ► Lectures and computing workshops: Hock CRTP Classroom
 - ► Wet lab work: 0032/0066 Biosci Lab
- ► Exception: 07/06 (this Friday) will be moved to Hock 11025

Weekly Assessment

- 1. Format: 10 multiple choice or True/False questions
- 2. Administered during last 35 minutes of the last day of the week
- 3. 20 minutes for completion + 15 minutes for group feedback
- 4. Purpose: To help instructors and students identify topics and issues that need clarification
- 5. Improve course content and delivery for this and next year
- 6. A formal assessment is a requirement of the grant funding this course

Changes from 2017

- ► The course structure has been substantially revised in response to comments from student evaluations
- ► A two session workshop on microbiome sequencing studies has been added to the curriculum
- ► The data analysis practicum has been substantially expanded and revised:
 - ► The data analysis component will start earlier (in Week 2)
 - ► A workshop on pathway analysis (in addition to lectures on the topic) will be held
 - A four session guided analysis worskhop of the 2018 pilot data
 - ► An advanced bioinformatics workshop will be held (using packages from the Bioconductor project)

- ► Virtual computing environment setup
- ► Introduction to the R statistical environment, Jupyter (iPython) notebooks and UNIX (the main computing framework for the course)
- ► Introduction to statistical consideration of Design of Experiments (DOE)
- ► Introduction to sequencing technologies
- ► Wet lab reproducibility
- ► Location: CRTP classroom

- ► Day 1
 - ► Morning: Computing Lab (CRTP classroom)
 - ► Afternoon: Lab basics (0032/0066)
- ▶ Days 2 through 4
 - ► Lab work (RNA-Seq library prep)
 - ► Libraries sent to sequencing core
- ► Day 5
 - ► Introduction to bioinformatics computing

- ▶ Elements of statistical inference
- ► Unsupervised learning
- ► Supervised learning (aka machine learning)
- ► R graphics

- ► Models for counts
- ► Generalized linear model for RNA-Seq
- ► Multiple testing
- ► Gene expression networks
- ► Reproducible analysis
- ► Bioinformatics computing/Computational biology

- ► Translational bioinformatics
- ► Introduction to sequencing of the microbiome sequencing
- ► HTS pre-processing
- ► HTS pipeline
- ► Tidyverse for HTS
- ► Analysis of 2018 Pilot Data
- \blacktriangleright Downstream analysis using the DESeq2 package

- ► Analysis of team data
- ▶ If time allows: Analysis of course data and pilot data
- ► Poster preparation
- ► Final presentation

Course Certificate

- ► Full attendance is required
- ► Completion of all weekly assessments
- ► Active participation in team data preparation and presentation

DINNER

- ▶ Optional group dinner on Thursday (08/09)
- ► Hors d'oeuvre : 1800
- ▶ Dinner Service: 1830
- ► Location Parizade: (parizadedurham.com/)

Additional Resources (Hock 11th floor)

- ► Coffee and filtered water
- ► Kitchen sink
- ► Refigerator, microwave, toaster oven

QUESTIONS

- ► Ask us (don't be shy)
- ► Email: htscourse@duke.edu

PLAN FOR TODAY

- ► Quick Introduction (all)
- ► Questions
- ► Review of 2018 Pilot Data (Calla Telzrow)
- ► Introduction to the course computing environment (Cliburn Chan and Janice McCarthy)
- ► Introduction to Jupyter and UNIX (Cliburn Chan and Janice McCarthy)
- ► Introduction to Design of Experiments (DOE; Yi-Ju Li)
- ▶ Pizza lunch 1145-1315 (in CRTP classroom)

ACKNOWLEDGEMENT

- ► A hands-on, integrative next-generation sequencing course: design, experiment, and analysis
- ► National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- ► Education Projects (R25)
- ► 1R25EB023928-01

