ИТМО

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Отчёт по лабораторной работе №2

Тема: Синтез помехоустойчивого кода

Вариант 71

Выполнил: Разыграев Кирилл Сергеевич

группа Р3115

Проверил: Белокон Юлия Алексеевна

Содержание

Задание	. 3
Основные этапы вычисления	. 4
Задание 1 - Схема декодирования классического кода Хэмминга (7;4)	. 4
Задание 2 - 53	. 4
Задание 3-90	. 5
Задание 4-15	. 5
Задание 5-30	. 6
Задание 7 - схема декодирования классического кода Хэмминга (15;11)	. 6
Задание 8-70	. 7
Задание 9 - $(53 + 90 + 15 + 30 + 70) * 4 = 1032$. 7
Дополнительное задание	. 8
Заключение	. 8
Список использованных источников	. 9

Задание

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии).

Основные этапы вычисления

Задание 1 - Схема декодирования классического кода Хэмминга (7;4)

Рисунок 1

Задание 2 - 53

\mathbf{R}_1	R ₂	I1	R ₃	I2	I ₃	I ₄
1	1	0	0	0	1	1

N	1	2	3	4	5	6	7	
Сообщение	1	1	0	0	0	1	1	
2 ^x	\mathbf{R}_{1}	R ₂	I_1	R ₃	I_2	I ₃	I_4	S
1	X		X		X		X	S_1
2		X	X			X	X	S ₂
4				X	X	X	X	S ₃

$$S_1 = R_1 \bigoplus I_1 \bigoplus I_2 \bigoplus I_4 = 1 \bigoplus 0 \bigoplus 0 \bigoplus 1 = 0$$

$$S_2 = R_2 \oplus I_1 \oplus I_3 \oplus I_4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$$

$$S_3 = R_3 \bigoplus I_2 \bigoplus I_3 \bigoplus I_4 = 0 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 0$$

$$S = (0, 1, 0) = 010 =>$$
 ошибка в бите R_2

Правильное сообщение: 1000011

Задание 3-90

R ₁	R ₂	I ₁	R ₃	I ₂	I ₃	I ₄
0	1	1	0	1	1	0

N	1	2	3	4	5	6	7	
Сообщение	0	1	1	0	1	1	0	
2 ^x	R ₁	R ₂	I_1	R ₃	I ₂	I ₃	I ₄	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2
4				X	X	X	X	S ₃

$$S_1 = R_1 \bigoplus I_1 \bigoplus I_2 \bigoplus I_4 = 0 \bigoplus 1 \bigoplus 1 \bigoplus 0 = 0$$

$$S_2 = R_2 \oplus I_1 \oplus I_3 \oplus I_4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$$

$$S_3 = R_3 \oplus I_2 \oplus I_3 \oplus I_4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$S = (0, 1, 0) = 010 \Longrightarrow$$
 ошибка в бите R_2

Правильное сообщение: 0010110

Задание 4-15

R1	R2	I1	R3	I2	I3	I4
0	0	0	0	0	0	1

N	1	2	3	4	5	6	7	
Сообщение	0	0	0	0	0	0	1	
2 ^x	\mathbf{R}_1	R ₂	I ₁	R ₃	I_2	I ₃	I ₄	S
1	X		X		X		X	S ₁
2		X	X			X	X	S_2
4				X	X	X	X	S ₃

$$S_1 = R_1 \bigoplus I_1 \bigoplus I_2 \bigoplus I_4 = 0 \bigoplus 0 \bigoplus 0 \bigoplus 1 = 1$$

$$S_2 = R_2 \oplus I_1 \oplus I_3 \oplus I_4 = 0 \oplus 0 \oplus 0 \oplus 1 = 1$$

$$S_3 = R_3 \oplus I_2 \oplus I_3 \oplus I_4 = 0 \oplus 0 \oplus 0 \oplus 1 = 1$$

$$S = (1, 1, 1) = 111 \Longrightarrow$$
 ошибка в бите I_4

Правильное сообщение: 0000000

Задание 5-30

R1	R2	I1	R3	I2	I3	I4
0	0	0	1	0	1	0

N	1	2	3	4	5	6	7	
Сообщение	0	0	0	1	0	1	0	
2 ^x	R ₁	R ₂	I_1	R ₃	I ₂	I ₃	I ₄	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2
4				X	X	X	X	S_3

$$S_1 = R_1 \bigoplus I_1 \bigoplus I_2 \bigoplus I_4 = 0 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 0$$

$$S_2 = R_2 \oplus I_1 \oplus I_3 \oplus I_4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$$

$$S_3 = R_3 \oplus I_2 \oplus I_3 \oplus I_4 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

$$S = (0, 1, 0) = 010 =>$$
 ошибка в бите R_2

Правильное сообщение: 0101010

Задание 7 - схема декодирования классического кода Хэмминга (15;11)

Рисунок 2

Задание 8-70

R1	R2	I1	R3	I2	I3	I4	R4	I5	I6	I7	18	I9	I10	I11
0	0	1	1	1	0	0	0	1	1	0	0	1	0	0

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Сообщение	0	0	1	1	1	0	0	0	1	1	0	0	1	0	0	
2 ^x	\mathbf{R}_1	R ₂	I ₁	R ₃	I ₂	I ₃	I ₄	R ₄	I ₅	I 6	I ₇	I ₈	I ₉	I ₁₀	I ₁₁	S
1	X		X		X		X		X		X		X		X	S ₁
2		X	X			X	X			X	X			X	X	S ₂
4				X	X	X	X					X	X	X	X	S ₃
8								X	X	X	X	X	X	X	X	S ₄

$$\begin{array}{l} S_3 = R_3 \oplus I_2 \oplus I_3 \oplus I_4 \oplus I_8 \oplus I_9 \oplus I_{10} \oplus I_{11} \oplus I_{12} = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \\ \oplus 0 \oplus 0 = 1 \end{array}$$

$$S = (0, 0, 1, 1) =>$$
 ошибка в I_8

Правильное сообщение: 001110001101100

Задание 9 - (53 + 90 + 15 + 30 + 70) * 4 = 1032

Число информационных разрядов в передаваемом сообщении – 1032

R – число проверочных разрядов

Найдём минимальное R, чтобы было верно равенство $-2^R >= R + I + 1$

$$2^{R} >= R + 1032 + 1 => R = 11$$

Коэффициент избыточности — R / (I + R) = 11 / (1032 + 11) = 0,0105465005

Дополнительное задание

```
SYMBOLS = ("r1", "r2", "i1", "r3", "i2", "i3", "i4")
def validate input(cipher: str) -> bool:
    if len(cipher) != 7:
        return False
    if set(cipher) - {"1", "0"}:
        return False
    return True
def main() -> None:
    cipher = input ("Введите код Хэмминга из 7 символов: ")
    if not validate input(cipher):
        print("[Ошибка]. Шифр должен состоять из 0 и 1 и быть длиной 7
символов")
        return
   bits = list(map(int, cipher))
    s1 = (bits[0] + bits[2] + bits[4] + bits[6]) % 2
    s2 = (bits[1] + bits[2] + bits[5] + bits[6]) % 2
    s3 = (bits[3] + bits[4] + bits[5] + bits[6]) % 2
    syndrome = (s1, s2, s3)
    if syndrome !=(0, 0, 0):
        num = int("".join(map(str, syndrome[::-1])), 2)
        print(f"Найдена ошибка в символе: {SYMBOLS[bits[num - 1]]}")
        bits[num - 1] = 1 - bits[num - 1]
        res = "".join(map(str, bits))
       print(f"Правильное сообщение: {res[2]}{res[4]}{res[5]}{res[6]}")
    else:
        res = "".join(map(str, bits))
        print(f"Сообщение корректно: {res[2]}{res[4]}{res[5]}{res[6]}")
if __name__ == "__main ":
   main()
```

Заключение

В процессе выполнения работы я научился работать с кодом Хэмминга, обнаруживать и исправлять ошибки в полученных сообщениях.

Список использованных источников

- Основы цифровой радиосвязи. Помехоустойчивое кодирование: метод. Указания / сост. Д. В. Пьянзин. Саранск: Изд-во Мордов. ун-та, 2009 16с.
- Коды и устройства помехоустойчивого кодирования информации / сост. Королев А.И. Мн.: 2002. с.286
- Теория кодирования и теория информации: Пер. с англ. М.: Радио и связь, 1983. –176 с., ил.