Introduction to Quantum Computing

What is Quantum Computing?

- Functioning quantum computers exist in the world today
- Can provide increased algorithmic efficiency over classical computers
- Make use of quantum phenomena to perform computation
- Built from qubits instead of bits

Natural Qubits

https://discover.hubpages.com/education/W hy-Do-Quantum-Particles-Have-Spin

Stern-Gerlach Experiment

Qubits

$$|0
angle \,=\, egin{bmatrix} 1 \ 0 \end{bmatrix}$$

$$|1
angle = egin{bmatrix} 0 \ 1 \end{bmatrix}$$

Classical State Vector Example

$$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \frac{1}{2} |0\rangle + \frac{1}{2} |1\rangle$$
$$= \frac{1}{2} + \frac{1}{2}$$
$$= 1$$

Superposition

$$|\psi
angle \,=\, lpha |0
angle \,+\, eta |1
angle$$

Superposition

$$\ket{+}=egin{bmatrix} rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} \end{bmatrix} = rac{1}{\sqrt{2}} \ket{0} + rac{1}{\sqrt{2}} \ket{1}$$

Superposition

$$|+\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \equiv \left| \left(\frac{1}{\sqrt{2}} \right) \right|^2 |0\rangle + \left| \left(\frac{1}{\sqrt{2}} \right) \right|^2 |1\rangle$$

$$= \frac{1}{2} |0\rangle + \frac{1}{2} |1\rangle$$

$$\equiv \frac{2}{2}$$

$$= 1$$

State Space

The Bloch Sphere

$$lpha \ = \ \cos \left(rac{ heta}{2}
ight), \ eta \ = \ e^{i\phi} \sin \left(rac{ heta}{2}
ight), ext{ such that}$$

$$|\psi
angle \,=\, lpha |0
angle \,+\, eta |1
angle \,=\, \cos \left(rac{ heta}{2}
ight) |0
angle \,=\, e^{i\phi} \sin \left(rac{ heta}{2}
ight) |1
angle$$

Multi-Qubit Systems

$$|0
angle|0
angle=|0
angle\otimes|0
angle=egin{bmatrix}1\\0\end{bmatrix}\otimesegin{bmatrix}1\\0\end{bmatrix}=egin{bmatrix}1\\0\\0\end{bmatrix}=|00
angle$$

Multi-Qubit Systems

010 angle =	$\lceil 0 \rceil$	$,\ states=$	000
	0		001
	1		010
	0		011
	0		100
	0		101
	0		110
	$\begin{bmatrix} 0 \end{bmatrix}$		111

Quantum Operators

Quantum Operators

- To perform quantum computing, we need to perform operations on bits
- These operations are called 'operators' or 'gates'
- Quantum computers have a different set of operations compared to classical computers
- Mathematically, quantum operators are represented as matrices
- A series of operators can be represented by a circuit

Quantum Circuit

Pauli X Gate

$$X = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$$

$$|X|0
angle \ = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} egin{bmatrix} 1 \ 0 \end{bmatrix} \ = egin{bmatrix} 0 \ 1 \end{bmatrix} = |1
angle$$

Pauli X Gate

Pauli Gate Set

Pauli Y Gate

$$Y = egin{bmatrix} 0 & -i \ i & 0 \end{bmatrix}$$

$$|Y|0
angle \ = egin{bmatrix} 0 & -i \ i & 0 \end{bmatrix}egin{bmatrix} 1 \ 0 \end{bmatrix} \ = egin{bmatrix} 0 \ i \end{bmatrix} = i|1
angle$$

Pauli Y Gate

Pauli Z Gate

$$Z = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$$

$$|Z|0
angle \ = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} egin{bmatrix} 1 \ 0 \end{bmatrix} \ = egin{bmatrix} 1 \ 0 \end{bmatrix} = |0
angle$$

Pauli Z Gate

Hadamard Gate

$$H = rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix} = egin{bmatrix} rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} & rac{-1}{\sqrt{2}} \end{bmatrix}$$

Hadamard Gate

$$\left|H\left|0
ight
angle = rac{1}{\sqrt{2}} \left|egin{matrix} 1 & 1 \ 1 & -1 \end{matrix}
ight| \left|egin{matrix} 1 \ 0 \end{matrix}
ight| = rac{1}{\sqrt{2}} |0
angle + rac{1}{\sqrt{2}} |1
angle = |+
angle$$

$$\ket{H\ket{1}}=\left.rac{1}{\sqrt{2}}igg|_1^1 \quad 1 \ 1 \ =\left.rac{1}{\sqrt{2}}\ket{0} - rac{1}{\sqrt{2}}\ket{1} = \ket{-}
ight.$$

Hadamard Gate

CNOT Gate

$$CNOT = egin{bmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$$

Quantum Phenomena

Quantum Phenomena

There are two main quantum phenomena used in quantum computing:

- 1. Interference
- 2. Entanglement

Interference

$$H\ket{0}=rac{1}{\sqrt{2}}\ket{0}+rac{1}{\sqrt{2}}\ket{1}=egin{bmatrix}rac{1}{\sqrt{2}}\ rac{1}{\sqrt{2}}\end{bmatrix}=\ket{+}$$

Interference

$$|H|+
angle = rac{1}{\sqrt{2}}egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}egin{bmatrix} rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} \ \end{bmatrix} = rac{1}{\sqrt{2}}egin{bmatrix} rac{1}{\sqrt{2}} + rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} - rac{1}{\sqrt{2}} \ \end{bmatrix} = rac{1}{\sqrt{2}}egin{bmatrix} rac{2}{\sqrt{2}} \ 0 \ \end{bmatrix} = egin{bmatrix} 1 \ 0 \ \end{bmatrix} = |0
angle$$

Interference Example

Entanglement

$$\left|\phi^{+}
ight
angle \,=\,rac{1}{\sqrt{2}}\left|00
ight
angle \,+\,rac{1}{\sqrt{2}}\left|11
ight
angle$$

Entanglement

$$\left|\phi^{+}
ight
angle \,=\, rac{1}{\sqrt{2}}\left|00
ight
angle \,+\, 0\cdot\left|01
ight
angle + 0\cdot\left|10
ight
angle \,+\, rac{1}{\sqrt{2}}\left|11
ight
angle$$

$$\left|\phi^{+}
ight
angle \,=\,rac{1}{\sqrt{2}}\left|00
ight
angle \,+\,rac{1}{\sqrt{2}}\left|11
ight
angle$$

Entanglement

EINSTEIN ATTACKS QUANTUM THEORY

Scientist and Two Colleagues Find It Is Not 'Complete' Even Though 'Correct.'

SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

Entanglement

Bell States Example

Quantum Hardware

Artificial Qubits

Artificial Qubits

Quantum Computers

Quantum Computers

Development Roadmap

Executed by IBM
On target

IBM Quantum

Quantum Computers

Quantum Software

Quantum Software

- Many different frameworks exist for quantum programming
- Quantum assembly languages are used to interact directly with the hardware
- Higher-level languages / libraries are compiled to quantum assembly language

Quantum Assembly Language

OpenQASM

- Most popular quantum assembly language
- Open Source

Quil

- Alternative quantum assembly language

Quantum Programming Languages

Qiskit

- Supported by IBM
- Implemented as a Python Library

Cirq

- Developed by Google
- Implemented as a Python Library

Q#

- Developed by Microsoft
- Based on C family of languages

Quantum Algorithms

Quantum Supremacy

- Quantum computers can perform specific tasks more efficiently than classical computers
- This is known as Quantum Supremacy
- Quantum algorithms may be more efficient in terms of:
 - Computational Speed
 - Memory Required
- Since classical memory is abundant and cheap, we are more interested in speed

Deutsch's Problem

$$f:\,\{0,\,1\}\, o\,\{0,\,1\}$$

Deutsch's Problem

Input	Constant Functions		Balanced Functions	
x	$f_0(x)$	f ₁ (x)	f ₂ (x)	f ₃ (x)
0	0	1	0	1
1	0	1	1	0

Deutsch's Problem

Query Gate

$$|x
angle \ |0
angle \ -H \ - U_f \ |1
angle \ -H \ - U_f \ - H$$

$$|U_f|x
angle|y
angle \,=\, |x
angle|y\,\oplus\, f(x)
angle$$

$$|\mathrm{if}\ |y
angle = |-
angle \colon U_f|x
angle |-
angle \ = \ (-1)^{f(x)}|x
angle |-
angle$$

Phase Query Gate

$$|\mathrm{if}\,|y
angle = |-
angle:\, U_f|x
angle|-
angle$$

$$ext{if f}(ext{x}) = 0: |U_f|x
angle|-
angle = |x
angle|-
angle$$

$$ext{if f(x)} = 1: |U_f|x
angle|-
angle = |-|x
angle|-
angle$$

$$|U_f|x
angle|-
angle \,=\, (-1)^{f(x)}|x
angle|-
angle$$

$$|U_f|+
angle|-
angle \ = \ (-1)^{f(x)}|+
angle|-
angle$$

$$ig|x
angle
ightarrow ig|+
angle
ightarrow rac{1}{\sqrt{2}}ig((-1)^{f(0)}|0
angle + (-1)^{f(1)}|1
angleig)
ightarrow -H$$

$$|y
angle - |-
angle \hspace{0.5cm} |- \oplus f(x)
angle$$

$$\frac{1}{\sqrt{2}}\Big((-1)^{f(0)}|0\rangle \,+\, (-1)^{f(1)}|1\rangle\Big) \begin{cases} \text{if } f(0) = f(1): & \pm |+\rangle \\ \text{if } f(0) \neq f(1): & \pm |-\rangle \end{cases} \longrightarrow \begin{array}{c} H \\ \hline \\ 1 \text{ if } f \text{ is constant } \\ 1 \text{ if } f \text{ is balanced } \end{cases}$$

$$egin{cases} \operatorname{if} f(0) = f(1): & \pm |+
angle & \pm H|+
angle = |0
angle \ & = |1
angle \ & = |1
angle \end{cases}$$

Demonstration

Other Quantum Algorithms

- Deutsch-Jozsa Algorithm
- Grover's Algorithm
- Shor's Algorithm
- Quantum Fourier Transform
- Many other quantum algorithms

Conclusion

Conclusion

- We are rapidly moving towards the useful, error-corrected era of quantum computing
- Quantum computers work in tandem with classical devices, to solve some problems more efficiently than classical computers
- For the foreseeable future, quantum computers will likely exist as cloud-based, timesharing infrastructure
- Quantum computing is a rapidly evolving field, with the potential to solve problems that could not be realistically computed on a classical computer

Questions

Bonus Material

The perfluorobutadienyl iron complex molecule

https://www.ibm.com/quantum/blog/factor-15-shors-algorithm