Linear Regression - 04

Data leakage more Maruh: 7-4 Monda: 8.1 Train | Test Split

Assumption of Linearity

Assumption of Linearity

No Multi-Colinearity

Normality of Residuals (y-y)

No Heteroskadasticity

No Autocorrelation

No Multirolinearity

Colinearity?

of $f_2 = \alpha \cdot f_1 + \beta$ $f_1 \geq f_2 \quad q_3 \in Glinker.$

age year

age = -1.768 + 2025

Colineany multiple feature => Multi-colineanity

fi for his fy

f₂ = d₁.f₁ + d₃.f₅ + d₄.f₄ + d₀

f₂ is multicolineary

high + (an) | height (ft) $f_1 = d_2 \cdot f_2 \cdot 1/0$

No Mult (olinearity!!

Q, why MC is a Problem?

optimized
$$\rightarrow \omega^* = [\omega_1, \omega_2, \omega_3], \omega_0$$
 $\omega^* = [1, 2, 3], \omega_0 = 5$

$$u^{+} = [1, 2, 3], w_{0} = S$$

$$x_{0}, x_{0}, x_{0}, x_{0}]$$

$$y_{0}^{+} w_{0}^{T} x_{0} + w_{0}$$

$$1 - 1 \cdot x_{0}, + 2x_{0} + 3x_{0} + S$$

$$w = [1, 2, 3]$$

= 1.xn + 2 (1.5xn) +3x0s+5

$$(2)$$
 - $= 4x_{8}, + 3x_{8} + 5 \qquad \omega = [4,0,3]$

$$\hat{y} = 2 + 6 + 3 + 5$$

$$= 16$$

> No. feature importance
> interpretability

2
$$4.2 + 3.1 + 5$$

 $\hat{y} = 8 + 3 + 5$
 $\hat{y} = 16$

Messed up onstability of weights.

How does multicollinearity affect regression analysis?

84 users have participated

Variance Inflation factor [VIP] fich to Frift fy = W1. f1 + W2. f2 + W3 f5 + W3 f5 + W0. R2 Swre if R2 = 0.18 : M.C Not Crists if \$2 = 0.92 & M.c exist. ← input →

$$VIF_{j} = \frac{1}{1-R2_{j}}$$
if $R_{2} = 0$; $VIF \rightarrow 1$

if
$$R_{2-1}$$
; $v_1 F \Rightarrow \infty$

IF $e \left[1, \infty \right]$

VIF & [1,00)

VIF (f2) = -

vif (fa) =

No.W.C rivade W.C skiztz.

THUMB RULE: VIF > 10: v. high m.c VIF>5: M·C MESS: NO DOLL

A clothing store wants to predict sales based on factors like price, promotions, and store location.

Which assumption of linear regression is important for accurate sales predictions?

While building a risk prediction model for loan defaulters, it was observed that the erros were right skewed.

Does this imply anyway that the linear regression model is inaccurate?

A Yes, since the features are multi-collinear 15%

B Yes, since the errors aren't normaly distributed 57%

C Yes, by violation of assumption of linearity 9%

D No, the model may be accurate. 19%

End Quiz Now

Impact of outliers

I. identify outliers?

II. Deal outliers!

Residuel Analysis Error

No

Hekroskadasticity

Homoskadashicity

Transformation - lug transform

Time	Dak	Sales
	_	
_	_	
_	J	
_	-	
_	_	
	-	
	,	
	l	<u> </u>

-> every doute Point Should be independent

In linear regression, a high VIF value suggests:

38 users have participated

Α	Heteroskedasticity is present	11%
В	A strong linear relationship between the independent and dependent variables.	11%
С	The absence of outliers in the dataset.	0%
D	Strong multicollinearity between predictor variables.	79%

Woest 79 Pincode Loan Riject At > P(Appared) 0.75 B -> P(Appared) 0.61