Cálculo Estocástico Tarea 5

Iván Irving Rosas Domínguez

17 de octubre de 2023

1. Resolver la EDE dX(t) = X(t)dt + B(t)dB(t), X(0) = 1. Comentar si es una EDE de difusión.

Solución: notamos que la ecuación anterior tiene la forma

$$dX(t) = (\alpha(t) + \beta(t)X(t)) dt + (\gamma(t) + \delta(t)X(t)) dB(t),$$

donde $\alpha(t) = \delta(t) = 0$, $\beta(t) = 1$ y $\gamma(t) = B(t)$, para cualquier $t \ge 0$. Notamos también que los coeficientes anteriores son procesos adaptados y continuos como función de t. Por lo tanto, por la solución general para ecuaciones lineales,

$$\begin{split} X(t) &= U(t) \left(X(0) + \int_0^t \frac{\alpha(s) - \delta(s)\gamma(s)}{U(s)} ds + \int_0^t \frac{\gamma(s)}{U(s)} dB(s) \right) \\ &= U(t) \left(1 + \int_0^t \frac{0}{U(s)} ds + \int_0^t \frac{B(s)}{U(s)} dB(s) \right) \\ &= U(t) \left(1 + \int_0^t \frac{B(s)}{U(s)} dB(s) \right), \end{split}$$

donde U(t) está dada por

$$U(t) = 1 \cdot \exp\left\{ \int_0^t (\beta(s) - \frac{1}{2}\delta^2(s))ds + \int_0^t \delta(s)dB(s) \right\}$$
$$= \exp\left\{ \int_0^t ds + \int_0^t 0dB(s) \right\}$$
$$= e^t.$$

De lo anterior, deducimos que

$$X(t) = e^{t} \left(1 + \int_{0}^{t} \frac{B(s)}{e^{s}} dB(s) \right) = e^{t} \left(1 + \int_{0}^{t} e^{-s} B(s) dB(s) \right)$$

es solución (fuerte) de la ecuación diferencial anterior, y esta es única. Finalmente, recordamos que una ecuación de la forma

$$dX(t) = \mu(X(t), t)dt + \sigma(X(t), t)dB(t)$$

es una ecuación diferencial estocástica de difusión. En este caso,

$$\mu(t) = X(t) = \mu(X(t), t)$$
 y $\sigma(t) = B(t) = \sigma(X(t), t),$

por lo que al ser un proceso que no depende de toda la trayectoria de B ni de la de X, entonces la ecuación anterior sí es de difusión.

2. Hallar $d\left(\mathcal{E}(B)(t)\right)^2$.

Solución: Primero hallamos la exponencial del movimiento browniano. Notamos que

$$U(t) := \mathcal{E}(B)(t) \implies dU(t) = U(t)dB(t)$$

por definición de la exponencial estocástica. Y la solución única a la ecuación anterior está dada en este caso por

$$U(t) = e^{B(t) - B(0) - \frac{1}{2}[B,B](t)} = e^{B(t) - t/2}.$$

Luego, si queremos hallar $d(\mathcal{E}(B)(t))^2$, entonces buscamos simplemente

$$d(U^{2}(t)) = d(e^{2B(t)-t}) = df(B(t), t),$$

donde $f(x,t) = e^{2x-t}$, que claramente es una función de clase $C^{2,1}$. Luego, utilizando fórmula de Itô:

$$\begin{split} dU^2(t) &= df(B(t),t) = \partial_x f\left(B(t),t\right) dB(t) + \partial_t f\left(B(t),t\right) dt + \frac{1}{2} \cdot \sigma_B^2(B(t),t) \cdot \partial_{xx} f(B(t),t) dt \\ &= \left(2e^{2x}e^{-t}\Big|_{(B(t),t)}\right) dB(t) + \left(-e^{2x}e^{-t}\Big|_{(B(t),t)}\right) dt + \frac{1}{2} \cdot \sigma_B^2(B(t),t) \cdot \left(4e^{2x}e^{-t}\Big|_{(B(t),t)}\right) dt \\ &= \left(2e^{2B(t)}e^{-t}\right) dB(t) + \left(-e^{2B(t)}e^{-t}\right) dt + \frac{1}{2} \cdot 1^2 \cdot \left(4e^{2B(t)}e^{-t}\right) dt \\ &= \left(2e^{2B(t)-t}\right) dB(t) - \left(e^{2B(t)-t}\right) dt + 2\left(e^{2B(t)-t}\right) dt \\ &= \left(2e^{2B(t)-t}\right) dB(t) + \left(e^{2B(t)-t}\right) dt, \end{split}$$

lo que se traduce en que:

$$\mathcal{E}^{2}(B)(t) = U^{2}(t) = \int_{0}^{t} 2e^{2B(s)-s}dB(s) + \int_{0}^{t} e^{2B(s)-s}ds.$$

3. Supongamos que X(t) satisface $dX(t) = X^2(t)dt + X(t)dB(t), X(0) = 1$. Mostrar que X(t) satisface $X(t) = e^{\int_0^t (X(s) - 1/2)ds + B(t)}$.

Solución: supongamos que X(t) cumple la ecuación estocástica anterior. Entonces X(t) cumple con la ecuación lineal general dada por

$$dX(t) = (\alpha(t) + \beta(t)X(t)) dt + (\gamma(t) + \delta(t)X(t)) dB(t),$$

donde ahora $\alpha(t) = 0$, $\beta(t) = X(t)$, $\gamma(t) = 0$ y $\delta(t) = 1$. Obsérvese que los cuatro procesos anteriores son adaptados. Luego, suponiendo continuidad de X(t), de la solución general para las ecuaciones lineales, se tiene que

$$\begin{split} X(t) &= U(t) \left(X(0) + \int_0^t \frac{\alpha(s) - \delta(s)\gamma(s)}{U(s)} ds + \int_0^t \frac{\gamma(s)}{U(s)} dB(s) \right) \\ &= U(t) \left(1 + \int_0^t \frac{0}{U(s)} ds + \int_0^t \frac{0}{U(s)} dB(s) \right) \\ &= U(t), \end{split}$$

donde U(t) está dada por

$$U(t) = 1 \cdot \exp\left\{ \int_0^t (\beta(s) - \frac{1}{2}\delta^2(s))ds + \int_0^t \delta(s)dB(s) \right\}$$
$$= \exp\left\{ \int_0^t \left(X(s) - \frac{1}{2} \right)ds + \int_0^t dB(s) \right\}$$
$$= \exp\left\{ \int_0^t \left(X(s) - \frac{1}{2} \right)ds + B(t) \right\}.$$

Se sigue de lo anterior que

$$X(t) = \exp\left\{ \int_0^t \left(X(s) - \frac{1}{2} \right) ds + B(t) \right\},\,$$

tal como se buscaba.

4. Por definición, el logaritmo estocástico satisface $\mathcal{L}(\mathcal{E}(X)) = X$. Mostrar que, suponiendo que $U(t) \neq 0$ para cualquier t, $\mathcal{E}(\mathcal{L}(U)) = U$.

Demostración. $U \neq 0$ para cualquier $t \geq 0$, el logaritmo estocástico de u está bien definido y $\mathcal{L}(U)(0) = 0$ por lo que por la fórmula para la exponencial estocástica y el logaritmo estocástico,

$$\begin{split} \mathcal{E}\left(\mathcal{L}(U)\right)(t) &= \exp\left(\mathcal{L}(U)(t) - \mathcal{L}(U)(0) - \frac{1}{2}\left[\mathcal{L}(U), \mathcal{L}(U)\right]\right) \\ &= \exp\left(\mathcal{L}(U)(t) - \frac{1}{2}\left[\mathcal{L}(U), \mathcal{L}(U)\right]\right) \\ &= \exp\left(\log\left(\frac{U(t)}{1}\right) + \int_0^t \frac{d[U, U](s)}{2U^2(s)} - \frac{1}{2}\left[\mathcal{L}(U), \mathcal{L}(U)\right]\right) \\ &= U(t) \exp\left(\int_0^t \frac{d[U, U](s)}{2U^2(s)} - \frac{1}{2}\left[\mathcal{L}(U), \mathcal{L}(U)\right]\right) \end{split}$$

Por lo que si probamos que

$$\int_0^t \frac{d[U,U](s)}{2U^2(s)} - \frac{1}{2} \left[\mathcal{L}(U), \mathcal{L}(U) \right],$$

acabamos. Calculamos la variación cuadrática de $\mathcal{L}(U)$. Primero, dado que $\mathcal{L}(U)$ es justo el logaritmo estocástico de U, cumple

$$d(\mathcal{L}(U)(t)) = \frac{1}{U(t)}dU(t),$$

Por otro lado, si U es un proceso de Itô, entonces

$$dU(t) = \mu(t)dt + \sigma(t)dB(t),$$

para μ , σ procesos adaptados. Luego, $d[U,U](t) = \sigma^2(t)$. así que

$$d(\mathcal{L}(U)(t)) = \frac{1}{U(t)}dU(t) = \frac{\mu(t)}{U(t)}dt + \frac{\sigma(t)}{U(t)}dB(t),$$

por lo que la covariación de $\mathcal{L}(U)$ está dada por

$$d\left[\mathcal{L}(U), \mathcal{L}(U)\right] = \frac{\sigma^2(t)}{U^2(t)}dt = \frac{\left[U, U\right](t)}{U^2(t)},$$

de modo que

$$\int_0^t \frac{d[U,U](s)}{2U^2(s)} - \frac{1}{2} \left[\mathcal{L}(U),\mathcal{L}(U)\right] = \int_0^t \frac{d[U,U](s)}{2U^2(s)} - \frac{1}{2} \int_0^t \frac{\left[U,U\right](s)}{U^2(s)} = 0,$$

y con ello,

$$\mathcal{E}(\mathcal{L}(U))(t) = U(t),$$

tal y como queríamos.

5. Hallar el logaritmo estocástico de $B^2(t) + 1$.

Solución: Denotamos por $U(t) := B^2(t) + 1$. Tenemos que U(0) = 1, y con ello, utilizando la fórmula para el logaritmo estocástico,

$$\mathcal{L}(U)(t) = \log\left(\frac{U(t)}{U(0)}\right) + \int_0^t \frac{d\left[U,U\right]\left(s\right)}{2U^2(s)} = \log(U(t)) + \int_0^t \frac{d\left[U,U\right]\left(s\right)}{2U^2(s)}.$$

Hallamos ahora d[U, U]. Notamos que $U(t) = B^2(t) + 1 = f(B(t))$, donde $f(x) = x^2 + 1$ es claramente una función C^2 , por lo que usando fórmula de Itô,

$$dU(t) = df(B(t)) = 2B(t)dB(t) + \frac{1}{2}2dt = 2B(t)dB(t) + dt.$$

Por lo que $[U,U](t)=\int_0^t 4B^2(s)ds$. Luego, en notación diferencial $d[U,U](t)=4B^2(t)dt$ y con ello,

$$\log(U(t)) + \int_0^t \frac{d\left[U,U\right](s)}{2U^2(s)} = \log(1+B^2(t)) + \int_0^t \frac{4B^2(s)}{2(B^2(s)+1)^2} ds.$$

es el logaritmo estocástico de $B^2(t) + 1$.