Calc III: Workshop 2, Fall 2017

Problem 1. Find the point at which the line x = 3 - t, y = 2 + t, z = 5t intersects the plane x - y + 2z = 9.

Problem 2. Find the line of intersection of the planes

$$x + 3y + 2z - 6 = 0$$
, $2x - y + z + 2 = 0$.

Problem 3. Find the point of intersection (if any) of the line $\frac{x-6}{4} = y + 3 = z$ with the plane x + 3y + 2z - 6 = 0.

Problem 4. In general, any four non-coplanar points determine a unique sphere. Find the equation for the sphere determined by the points (0,0,0), (0,0,2), (1,-4,3), and (0,-1,3).

Problem 5. Let S be the sphere with radius 1 centered at (0,0,1), and let S^* be S without the "north pole" at the point (0,0,2). Let (a,b,c) be an arbitrary point on S^* . Then the line passing through (0,0,2) and (a,b,c) intersects the xy-plane at a unique point (x,y,0). Find the equation for this point (x,y,0) in terms of (a,b,c). See Figure 1.6.10 in the book.

Remark. This sets up a one-to-one correspondence between points in the plane and points on the sphere with the north pole removed. This is known as *stereographic projection*.