Lab 7 - NMOS Based Source Follower

Ty Davis

ECE 3110

November 6, 2024

1 Introduction and Theory

Similar to the last lab, we are going to select resistors to design an amplifier. This time, however, we are designing a *Source Follower* configuration of a MOSFET amplifier. It is also known as the common drain, because the drain lead of the transistor is the common reference for the other leads.

Fig. 1 shows the entire circuit. We are going to design the circuit such that $I_D = 1$ mA and $A_v = 0.8$ V/V. Also, we are given that $R_{\rm sig} = 50~\Omega$ and $R_G = 10~\rm k\Omega$.

Figure 1: The circuit that we are analyzing in this lab.

2 DC Analysis

To start off, we need to find the correct value of R_S to bias the transistor properly. For DC analysis, we can assume that the capacitors act as open circuits, and the remaining circuit is shown in Fig. 2.

Knowing that $I_D = 1$ mA, and using this equation:

$$V_{GS} = \sqrt{\frac{2I_D}{k_n}} + V_{th}$$

we can obtain a value for V_{GS} . Remember from the previous labs that $k_n = 70.3 \text{ mA/V}^2$, and $V_{th} = 2.1 \text{ V}$. This yields $V_{GS} = 2.269 \text{ V}$.

Without out any current flowing through the gate of the transistor, the voltage $V_G = 0$ V, and thus $R_S = 12.731$ k Ω . It's good to note right now as well that $V_{ov} = 0.169$ V.

Figure 2: The circuit after removing the capacitors.

3 AC Analysis

Fig. 3 shows the circuit as it can be used for the AC analysis. The transistor has been replaced by the T Model, and the capacitors have all been swapped for short circuits.

Seeing the circuit this way can help for small signal analysis. We are designing the circuit such that $A_v = 0.8 \text{ V/V}$, and we know that $A_v = \frac{v_o}{v_i}$. Looking at the circuit with the T Model we can see derive the following voltage divider:

$$v_o = v_i \frac{R_L \| R_S}{1/g_m + R_L \| R_S}$$

Using $g_m = k_n V_{ov}$, we find $g_m = 11.8$ mS, which allows us to find $R_L || R_S = 336.68$ Ω .

With the calculated R_S from the DC analysis, R_L is then equal to $R_L = 345.8 \Omega$.

The output R_o looking into the amplifier is clearly shown with the T Model, and is simply just $R_o = 1/g_m$.

It's good to note as well, that the ratio of R_G to R_{sig} is so large that you can essentially approximate $v_i = v_{\text{sig}}$.

Figure 3: The T Model equivalent circuit with capacitors replaced by shorts.

4 Simulation

Simulating the circuit with Multisim was straightforward, and the results are shown in Fig. 4. The gain was simulated at $A_v = 0.82 \text{ V/V}$.

The DC operating points were: $V_G=450$ nV, $V_{GS}=2.13$ V, $V_{DS}=17.14$ V, and $I_D=0.997$ mA.

Figure 4: Simulation Results.

5 Results

Building and Measuring the circuit showed that our calculations and simulation were accurate.

The DC operating points were found at $V_G = 0$ V, $V_{GS} = -1.89$ V, $V_{DS} = 16.89$ V, and $I_D = 1.04$ mA was calculated from the corresponding values and the measured resistance. All the measured resistors are shown in Table 1.

Fig. 5 shows the input vs output waveform, and the measured gain was $A_v = 0.748 \text{ V/V}$.

Figure 5: Measurement Results.

Calculated Resistor	Equivalent Resistor	Measured Resistor	
$12.731~\mathrm{k}\Omega$	$12.691~\mathrm{k}\Omega$	$12.517~\mathrm{k}\Omega$	R_S
	$100~\mathrm{k}\Omega$	$98.8~\mathrm{k}\Omega$	
	$15~\mathrm{k}\Omega$	$14.79~\mathrm{k}\Omega$	
	$470~\mathrm{k}\Omega$	$464.1~\mathrm{k}\Omega$	
345Ω	340 Ω	334 Ω	R_D
	10Ω	$9.84~\Omega$	
	330Ω	324Ω	
10 kΩ	10 kΩ	9.86 kΩ	R_G

Table 1: Measured resistors.

6 Post-Measurement Exercise

Some of the answers were included in the **Results** section, but the remaining questions are answered here.

- Q. What would happen if you used the function generator with 50Ω output resistance to directly drive your load resistor?
- A. Without the buffer amplifier, the output signal would be attenuated to according to the voltage divider with the signal resistance and the 340 Ω load resistance. The corresponding gain would be about $A_v = 0.87$. That's comparable to our circuit.
- Q. What would happen if the output resistance of the function generation was changed from 50 Ω to 5 k Ω ?
- A. With a much larger input resistance, the signal is significantly attenuated according to a much more extreme voltage divider. The resulting gain would be $A_v = 0.064$, which is very poor. Using the buffer circuit prevents this.