Introduction to Programming

N.R.Aravind

I.I.T. Hyderabad

Topics for review

- while loop examples
- Binary numbers, bitwise operators and hexadecimal
- Taylor series

Syntax

```
while (condition)
{
// Some statements
}
```

Useful basic block

```
 i{=}1; \\  \text{while}(i{<}{=}100) \\ \{ \\  // \text{ Some statements} \\  i{=}i{+}1; \\ \}
```

Binary Arithmetic

Decimal

- $4716 = 4 \times 10^3 + 7 \times 10^2 + 1 \times 10^1 + 6 \times 10^0$.
- 4716=6+10+700+4000
- 583=3+80+500
- Decimal: Multiply by 1, 10, 100, 1000 etc. (right-to-left)
- In binary, we multiply by 1, 2, 4, 8 etc. (right-to-left)

Binary

- Multiply by 1, 2, 4, 8 etc. (right-to-left)
- $(1101)_2 = 1 + 4 + 8 = 13.$

Binary

- Multiply by 1, 2, 4, 8 etc. (right-to-left)
- $(1101)_2 = 1 + 4 + 8 = 13.$
- $(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$.
- In binary, $(100)_2 = 4$ and $(111)_2 = 7$.

•
$$101_2 =$$

•
$$101_2 = 5$$
.

- $101_2 = 5$.
- $1000_2 =$

- $101_2 = 5$.
- $1000_2 = 8$.

- $101_2 = 5$.
- $1000_2 = 8$.
- 1110₂=

- $101_2 = 5$.
- $1000_2 = 8$.
- $1110_2 = 14$.

- $101_2 = 5$.
- $1000_2 = 8$.
- $1110_2 = 14$.
- \bullet 10101₂=

- $101_2 = 5$.
- $1000_2 = 8$.
- 1110₂= **14**.
- 10101₂=21.

Digits: right-to-left

•
$$4716 = 10 \times 471 + 6$$

- $471 = 10 \times 47 + 1$
- $47 = 10 \times 4 + 7$
- $4 = 10 \times 0 + 4$.

Digits: right-to-left

•
$$4716 = 10 \times 471 + 6$$

•
$$471 = 10 \times 47 + 1$$

$$\bullet$$
 47 = 10 × 4 + 7

$$4 = 10 \times 0 + 4.$$

 $14 = (1110)_2.$

•
$$14 = 2 \times 7 + 0$$

•
$$7 = 2 \times 3 + 1$$

$$\bullet$$
 3 = 2 × 1 + 1

$$1 = 2 \times 0 + 1.$$

•
$$15 = (1111)_2$$
, $20 = (10100)_2$, $127 = 1111111$

- $15 = (1111)_2$, $20 = (10100)_2$, 127 = 11111111
- AND: $1\&1 = 1\ 0\&0 = 0\&1 = 1\&0 = 0$.
- $15\&20 = (00100)_2 = 4.$

- $15 = (1111)_2$, $20 = (10100)_2$, 127 = 1111111
- AND: $1\&1 = 1\ 0\&0 = 0\&1 = 1\&0 = 0$.
- $15\&20 = (00100)_2 = 4.$
- OR: 1|0=0|1=1|1=1, 0|0=0.
- $15|20 = (111111)_2 = 31.$

- $15 = (1111)_2$, $20 = (10100)_2$, 127 = 1111111
- AND: $1\&1 = 1\ 0\&0 = 0\&1 = 1\&0 = 0$.
- $15\&20 = (00100)_2 = 4$.
- OR: 1|0 = 0|1 = 1|1 = 1, 0|0 = 0.
- $15|20 = (111111)_2 = 31$.
- Shift operators
- $(15 << 2) = (111100)_2 = 60.$

- $15 = (1111)_2$, $20 = (10100)_2$, 127 = 1111111
- AND: $1\&1 = 1\ 0\&0 = 0\&1 = 1\&0 = 0$.
- $15\&20 = (00100)_2 = 4$.
- OR: 1|0=0|1=1|1=1, 0|0=0.
- $15|20 = (111111)_2 = 31.$
- Shift operators
- $(15 << 2) = (111100)_2 = 60.$
- \bullet (15 >> 2) = (11)₂ = 3.

- $21 = (10101)_2$
- 21&1 = 1
- 21&2 = 0
- 21&4 = 4
- 21&8 = 0
- 21&16 = 16

- 0,1,2,...,9,a,b,c,d,e,f
- $(2a3)_{16} = 2 \times 256 + 10 \times 16 + 3 = 675$.

- 0,1,2,...,9,a,b,c,d,e,f
- $(2a3)_{16} = 2 \times 256 + 10 \times 16 + 3 = 675$.
- int a=0x2a3;

- 0,1,2,...,9,a,b,c,d,e,f
- $(2a3)_{16} = 2 \times 256 + 10 \times 16 + 3 = 675$.
- int a=0x2a3;
- printf("%d",a);
- 675 is printed.

- 0,1,2,...,9,a,b,c,d,e,f
- $(2a3)_{16} = 2 \times 256 + 10 \times 16 + 3 = 675$.
- int a=0x2a3;
- printf("%d",a);
- 675 is printed.
- int a=31;
- printf("%x",a);
- 1f is printed.

•
$$\frac{1}{1-r} = 1 + r + r^2 + r^3 + \dots$$

• $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$

$$\bullet$$
 $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$

• Let
$$f(x) = \frac{1}{1-x}$$
.

$$\bullet$$
 $\frac{1}{1-r} = 1 + r + r^2 + r^3 + \dots$

•
$$\frac{1}{1-r} = 1 + r + r^2 + r^3 + \dots$$

• $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$

• Let
$$f(x) = \frac{1}{1-x}$$
.

•
$$f(0.1) = 1.1111111...$$

$$\frac{1}{1-r} = 1 + r + r^2 + r^3 + \dots$$

•
$$\frac{1}{1-r} = 1 + r + r^2 + r^3 + \dots$$

• $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$

• Let
$$f(x) = \frac{1}{1-x}$$
.

•
$$f(0.1) = 1.1111111...$$

$$1 + 0.1 + 0.01 + 0.001 = 1.111.$$

•
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

•
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

• $\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$

$$f(x) = \sum_{i=0}^{\infty} a_i x^i,$$

where
$$a_i = \frac{f^{(i)}(0)}{i!}$$
.

- Calculate the *i*th term in the *i*th iteration.
- Calculate each term from the previous one.
- Maintain the running total.