编译原理·hw5

计01 客逸朗 2020010869

A1

- 函数 p 访问 d[i] 的 Offset 为: 30 + 2*i;
- Offset = 27 的单元内容应保存数组 d 的起始位置,即 30;
- 若 c 也是动态数组,此时活动纪录如下所示:

Offset	0	3	4	6	7	8	9	10	12	12+2N _c
内容	控制	а	b	N _C	&c	N _d	&d	е	c[0]	d[0]

• 此时存放 "指向 d 的指针" 单元的 $\it Offset$ 值是 $\it 9$,内容是 $\it 12$ + $\it 2Nc$ 。

A2

1. 对应单元内容如下:

单元	18	19	21	22	23
内容	0	13	Х	0	18

注:单元 21 中的 x 是 q.x

2. 当前位置 Display 表内容:

D[0]	D[1]	D[2]
0	22	13

各活动纪录所保存的 Display 表内容:

单元	0	5	9	13	18	22
内容	-	-	5	-	9	18

3. 若采用动态作用域,则程序第二次执行至 q_{18} 时 a 的值为 r_{13} 所定义的 3 由于此时 b=2,不满足跳转条件 a < b,故程序不会执行(L)语句的跳转,也不会调用 P。

A3

1. 总大小为 412 + 4N

2. ① -412

2 408

3 404

3. 4 20

⑤ 44

4. L 取值大于等于 N+1 时会覆盖函数的返回值 s,

取值大于等于 N+103 时会覆盖函数的返回地址。

A4

1. 基本块 B4 的支配结点集合: {B1, B2, B4}

始于 B4 的回边有: B4→B2

基于此回边的自然循环包含: B2, B3, B4, B5, B6

2. 活跃变量信息如下所示:

	LiveUse	Def	LiveIn	LiveOut
B1	Ø	{a}	{e}	{a,e}
B2	{a}	{c}	{a,e}	{a,e}
В3	{e}	{a}	{e}	{a}
В4	{a}	{b,c,d,e}	{a}	{a,c,d,e}
В5	{a,d}	Ø	{a,c,d}	{a,c,d}
В6	{a,c}	{e}	{a,c}	{a}
В7	Ø	Ø	Ø	Ø

3. 到达-定值数据流分析表如下:

	Gen	Kill	In	Out
B1	{1}	Ø	Ø	{1}
B2	{2}	{9}	{1,4,5,7,8,9,14}	{1,2,4,5,7,8,14}
В3	{4}	{1,14}	{1,2,4,5,7,8,14}	{2,4,5,7,8}
В4	{5,7,8,9}	{2,11,13}	{1,2,4,5,7,8,9,11,13,14}	{1,4,5,7,8,9,14}
B5	{11}	{7}	{1,4,5,7,8,9,11,14}	{1,4,5,8,9,11,14}
В6	{13,14}	{1,4,6,8}	{1,4,5,8,9,11,14}	{5,9,11,13,14}
В7	Ø	Ø	{5,9,11,13,14}	{5,9,11,13,14}

4. 变量 a 在 (11) 的 UD 链: {(1), (4), (14)}

5. 变量 c 在 (2) 的 DU 链: {(3)}

A5

• 利用 DAG 化简合并得到:

```
1 | B := 3

2 | D := A + C

3 | H := D

4 | E := A * C

5 | I := E

6 | F := D + E

7 | J := F

8 | G := 3 * F

9 | K := 15

10 | L := F + 15

11 | M := L
```

1. 只有 G、L、M 在基本块后面还要被引用:

```
1 | D := A + C

2 | E := A * C

3 | F := D + E

4 | G := 3 * F

5 | L := F + 15

6 | M := L
```

2. 假设只有 L 在基本块后面还要被引用:

```
1 | D := A + C
2 | E := A * C
3 | F := D + E
4 | L := F + 15
```

A6

1. 函数定义如下:

$$f(a,b) = egin{array}{ll} max(a,b), & a
eq b \ a+1, & a=b \end{array}$$
 $g(a) = a$

2. 需要寄存器数目的最小值 n = 3;

生成目标代码如下:

```
1 LD R0, b
2 LD R1, c
```

```
3 AND R0, R0, R1 # b/c
                                   LD R1, a
                5
                                  OR R0, R0, R1 # av(b∧c)
                                  LD R1, b
                6
                7
                                   LD R2, c
                                   AND R1, R1, R2 # b/c
                8
              9
                                    LD R2, a
                                     NOT R2, R2
         10
                                                                                                                      # ¬а
                                     OR R1, R1, R2 # ¬av(b∧c)
         11
                                     OR R0, R0, R1 \# (av(b\c))\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac\
         12
         13
                                   LD R1, a
         14
                                  LD R2, b
                                  NOT R2, R2 # ¬b
         15
                                  AND R1, R1, R2 # (a∧¬b)
         17 OR RO, RO, R1 # (a \land \neg b) \lor ((a \lor (b \land c)) \lor (\neg a \lor (b \land c)))
```

A7

- 可分配物理寄存器最小数目为 4
- 对应寄存器相干图如下:

8A

- 1. (a) 前向
 - (b) $In(B_4) = \{Entry, B_1, B_2, B_3\}, Out(B_5) = \{Entry, B_1, B_2, B_3, B_5\}.$
 - (c) Out
- 2. (a) 后向
 - (b) $Gen(B_2) = \{a+b\}, Kill(B_3) = \{a-d, b*d\},$ $In(B_4) = \{a+b, e+1, a-d, c-a\}, Out(B_1) = \{a+b\}.$
 - (c) 是;否