Indian Institute of Technology Indore

MA203 Complex Analysis and Differential Equations-II

(Autumn Semester 2023)

Tutorial Sheet 3

1. Find the residues of the following functions at their isolated singular points.

(a)
$$\frac{1}{z^3 - z^5}$$

(a)
$$\frac{1}{z^3 - z^5}$$
 (b) $\frac{z^{2n}}{(1+z)^n}$, $n \in \mathbb{N}$ (c) $\frac{z^2 + z - 1}{z^2(z-1)}$ (d) $\frac{e^z}{z^2(z^2 + 9)}$

(c)
$$\frac{z^2+z-1}{z^2(z-1)}$$

(d)
$$\frac{e^z}{z^2(z^2+9)}$$

2. Let $f(z) = \frac{g(z)}{z - z_0}$, where g is analytic on $|z - z_0| < r$, and $g(z_0) \neq 0$. Then show that

Res
$$(f; z_0) = \lim_{z \to z_0} g(z) = g(z_0).$$

3. Let $f(z) = \frac{p(z)}{q(z)}$, where p(z) and q(z) are both analytic at z_0 . Further, $p(z_0) \neq 0$, $q(z_0) = 0$, and $q'(z_0) \neq 0$. Then show that

Res
$$(f; z_0) = \frac{p(z_0)}{q'(z_0)}$$
.

- 4. Find Res $\left(\frac{f'(z)}{f(z)}; z_0\right)$ if
 - (a) z_0 is a zero of n-th order of the function f,
 - (b) z_0 is a pole of n-th order of the function f.

5. Let f be analytic in a simply connected domain D and C be a simple closed curve in the counterclockwise sense. Suppose z_0 is the only zero of f in the region enclosed by C. Show that

$$\oint_C \frac{f'(z)}{f(z)} \, \mathrm{d}z = 2\pi i m$$

where m is the order of zero of f at z_0

6. Prove that

$$\binom{n}{k} = \frac{1}{2\pi i} \oint_C \frac{(1+z)^n}{z^{k+1}} \, \mathrm{d}z,$$

where $n, k \in \mathbb{N}$, and $n \ge k$.

- 7. Find the integral $\frac{1}{2\pi i} \oint_C \sin \frac{1}{z} dz$, where C is the circle |z| = r.
- 8. Find the residue for $\cot z$ at the point z = 0.
- 9. Find the integral $\frac{1}{2\pi i} \oint_C \sin \frac{1}{z} dz$, where C is the circle |z| = 2 with anticlockwise orientation.
- 10. Evaluate the following real integrals.

(a)
$$\int_0^{2\pi} \frac{1}{3 + 2\cos x} dx$$
 (b) $\int_0^{2\pi} \frac{\sin^2 x}{2 + \cos x} dx$ (c) $\int_0^{2\pi} \frac{\cos 2x}{5 + 4\cos x} dx$

(b)
$$\int_{0}^{2\pi} \frac{\sin^2 x}{2 + \cos x} dx$$

(c)
$$\int_0^{2\pi} \frac{\cos 2x}{5 + 4\cos x} \, dx$$

$$(d) \int_0^\pi \frac{2}{4 + \sin^2 x} \, dx$$

(d)
$$\int_0^{\pi} \frac{2}{4 + \sin^2 x} dx$$
 (e)
$$\int_0^{2\pi} \cos^{2n} x dx, \quad n \in \mathbb{N}.$$

1

- 11. Evaluate the following improper integrals by the residue method.
- (a) $\int_0^\infty \frac{1}{1+x^2} dx$ (b) $\int_{-\infty}^\infty \frac{1}{(1+x^2)^3} dx$ (c) $\int_0^\infty \frac{x^2}{(1+x^2)^2} dx$ (d) $\int_0^\infty \frac{\cos sx}{1+x^2} dx$