

## **CONSTITUTIONAL ISOMERISM**

## CONSTITUTIONAL ISOMERISM [STRUCTURAL]



## Pair of functional isomers:

- Alcohols and ethers (C<sub>2</sub>H<sub>2012</sub>O)
- Aldehydes and ketones (C<sub>n</sub>H<sub>2n</sub>O)
- Carboxylic acids and esters (C<sub>n</sub>H<sub>2n</sub>O<sub>2</sub>)
- 1°, 2° & 3° amines (C<sub>n</sub>H<sub>2n+3</sub> N)

DBE = 
$$\frac{\sum n (v - 2)}{2}$$
 + 1 = sum of no. of  $\pi$  bonds + rings

in the molecule

(n is no of atoms of particular element &  $\nu$  is corresponding valency in given molecule).



- **Q.** The number of structural isomers possible from the molecular formula is
  - (a) 4 (b) 5 (c) 2

- **Q.** Identify the compound that exhibits tautomerism
  - (a) 2-Pentanone
- (b) Phenol
- (c) 2-Butene
- (d) Lactic acid

(d) 3

- **Q.** The number of structural isomers for  $C_6H_{14}$  is
  - (a) 3
- (b) 4
- (c) 5

(d) 6

PROTOTROPIC TAUTOMERISM [PROTOTROPY]

$$H-X-Y=Z$$
,  $X=Y-Z-H$ 

$$H_3C-N$$
 $H_2C=N$ 

Nitroso form

oxime



- (1) Both bond angles and bond length remains same
- (2) Bond angle remains same but bond length changes
- (3) Bond angle changes but bond length remains
- (4) Both bond angle and bond length change