SSMBA: Self-Supervised Manifold Based Data Augmentation for Improving Out-of-Domain Robustness

Nathan Ng, Kyunghyun Cho, Marzyeh Ghassemi
University of Toronto
New York University
EMNLP 2020

Motivation

- Out-of-domain problem
 - Bias in data collection
 - Distribution shift over time
- Data augmentation
 - Synthetically generate training examples by pertubing the input
 - In NLP, it is difficult because of shifting in semantic after the perturbation

This paper

- Propose a data augmentation method
- Using a Denoising Auto-Encoder as generative model
- Using a reconstruction function to project back on

Framework

Algorithm

Algorithm 1 SSMBA

```
1: Require: perturbation function q
                   reconstruction function r
 2: Input: Dataset \mathcal{D} = \{(x_1, y_1) \dots (x_n, y_n)\}
               number of augmented examples m
 3: function SSMBA(\mathcal{D}, m)
         train a model f on \mathcal{D}
         for (x_i, y_i) \in \mathcal{D} do
             for j \in 1 \dots m do
 6:
                  sample perturbed x'_{ij} \sim q(x'|x_i)
                  sample reconstructed \hat{x}_{ij} \sim r(\hat{x}|x'_{ij})
 8:
 9:
                  generate \hat{y}_{ij} \leftarrow f(\hat{x}_{ij}) or preserve
                  the original y_i
             end for
10:
         end for
11:
         let \mathcal{D}^{aug} = \{(\hat{x}_{ij}, \hat{y}_{ij})\}_{i=1...n, j=1...m}
         augment \mathcal{D}' \leftarrow \mathcal{D} \cup \mathcal{D}^{aug}
13:
         return \mathcal{D}'
14:
15: end function
```

Baseline

- Easy Data Augmentation (EDA): randomly replaces words by synonyms, insert, swaps, deletes words
- Conditional Bert Contextual Augmentation (CBERT): finetune a class-condition BERT model and use it to generate sentences
- 3. Unsupervised Data Augmentation (UDA): translate and back translate
- 4. Reward Augmented Maximum Likelihood (RAML): sample noisy target sentences based on Hamming distance(MT only)
- 5. Word Dropout: randomly set embedding of words to zeros
- 6. SwitchOut: apply RAML on both source and target sentences (MT only)

Result (Sentiment Analysis)

		AR-l	Full	AR-Cl	othing	Mo	vies	Ye	elp	Aver	age
Model	Augmentation	ID	OOD	ID	OOD	ID	OOD	ID	OOD	ID	OOD
RNN	None	69.46	66.32	69.25	67.80	90.74	71.94	62.51	61.28	70.16	66.17
	EDA	67.32	64.47	66.87	65.21	88.43	68.3	58.39	57.19	67.56	63.55
	CBERT	69.94	66.77	69.56	68.10	91.01	72.11	63.17	61.75	70.17	66.57
	UDA	69.92	66.97	69.98	68.24	90.05	69.73	63.40	62.13	70.64	66.53
	SSMBA	70.38 *†	67.41* [†]	70.19	68.60* [†]	89.61	73.20	63.85	62.83* [†]	70.96	67.31
	None	70.67	67.64	70.14	68.52	92.92	72.11	65.13	64.46	71.68	67.63
CNN	EDA	68.52	66.03	67.76	66.17	91.22	74.20	60.99	59.88	69.13	65.65
	CBERT	70.62	67.70	70.13	68.23	92.92	71.56	65.09	64.19	71.65	67.49
	UDA	70.80	68.06	70.29	68.70	92.63	72.55	65.22	64.32	71.77	67.89
	SSMBA	71.10*	68.18*	70.74	69.04*	92.93	74.67	65.59	64.81* [†]	72.11	68.33

Table 2: Average in-domain (ID) and out-of-domain (OOD) accuracy (%) for models trained on sentiment analysis datasets. Average performance across datasets is weighted by number of domains contained in each dataset. Accuracies marked with a * and \dagger are statistically significantly higher than unaugmented models and the next best model respectively, both with p < 0.01.

MNLI and MT

	MN	NLI	ANLI		
Augmentation	ID	OOD	ID	OOD	
None	84.29	80.61	42.54	43.80	
EDA	83.44	80.34	45.59	42.77	
CBERT	84.24	80.34	46.68	43.53	
UDA	84.24	80.99	45.85	42.89	
SSMBA	85.71	82.44*†	48.46* [†]	43.80	

Table 3: Average in-domain and out-of-domain accu-
racy (%) for RoBERTa models trained on NLI tasks.
Accuracies marked with a * and † are statistically sig-
nificantly higher than unaugmented models and the
next best model respectively, both with $p < 0.01$.

	OP	PUS	$\mathbf{de}{\rightarrow}\mathbf{rm}$		
Augmentation	ID	OOD	ID	OOD	
None	56.99	10.24	51.53	12.23	
Word Dropout	56.26	10.15	50.23	12.23	
RAML	56.76	10.10	51.52	12.49	
SwitchOut	55.50	9.27	51.34	13.59	
SSMBA	54.88	10.65	51.97	14.67*	

Table 5: Average in-domain and out-of-domain BLEU for models trained on OPUS (de \rightarrow en) and de \rightarrow rm data. Scores marked with a * and † are statistically significantly higher than baseline transformers and the next best model, both with p < 0.01.

Discussion: Label generation

Label preservation: keep the original label

Generate **soft-label** using a poor classifier

Generate hard-label using a poor classifier

Figure 8: Boost in OOD accuracy (%) of models trained with augmented data labelled with different supervision models and label generation methods.

Discussion: Amount of Augmentation

Figure 7: OOD accuracy (%) of models trained with different amounts of SSMBA augmentation. 0 augmentation corresponds to a baseline model. Error bars show standard deviation in OOD accuracy across models.