Problem 1: Describe and sketch the surface in \mathbb{R}^3 represented by the following equations:-

1.
$$x + y = 2$$

2.
$$x^2 + z^2 = 9$$

3.
$$x^2 + y^2 + z^2 - 2x - 2z - 2 = 0$$

Problem 2: Find the equation of a sphere centered at (0,0,1) and passing through the origin.

Problem 3: Let $\vec{a} = 4\hat{i} + 3\hat{j} - \hat{k}$ and \vec{b} be the vector from A(0,3,1) to B(2,3,-1).

- 1. Find the components of \vec{b} and write it in the form $x\hat{i} + y\hat{j} + z\hat{k}$.
- 2. Find $4\vec{a} 3\vec{b}$ and $|\vec{a} \vec{b}|$.
- 3. Find the vector that has the same direction as \vec{b} but has length 4.
- 4. Find the unit vector in the direction of $\vec{b} \vec{a}$.

Problem 4: Let $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{k} - \hat{j}$.

- 1. Compute $\vec{a}.\vec{b}$ and find the angle between \vec{a} and \vec{b} .
- 2. Find the direction cosines and direction angles of the vector $\vec{a} \vec{b}$.
- 3. Find the scalar and vector projections of $\vec{a} + \vec{b}$ onto \vec{b} .
- 4. Find the unit vector orthogonal to \vec{a} and parallel to \vec{b} .

Problem 5: Find the following vectors, without using determinant, but by using the properties of cross products.

1.
$$(\hat{i} \times \hat{j}) \times \hat{k}$$

2.
$$(\hat{i} + 2\hat{j}) \times (\hat{i} - \hat{j} + 2\hat{k})$$

Problem 6: Let P(0, -2, 0), Q(4, 1, -2), R(5, 3, 1) be points in the 3-D space.

- 1. Find the area of the triangle PQR.
- 2. Find a nonzero vector orthogonal to the plane passing through points P, Q and R.

Problem 7: Find the volume of the parallelepiped determined by the vectors

$$\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$$

$$\vec{b} = -\hat{i} + \hat{j} + 2\hat{k}$$

$$\vec{c} = 2\hat{i} + \hat{j} + 4\hat{k}$$