Cálculo Numérico com Aplicações em Física Execício Programa II

Ícaro Vaz Freire N°USP 11224779

September 30, 2020

1 Item b

Devemos resolver o seguinte sistema:

$$\begin{cases} 5I_2 - I_3 = 4\\ 13I_1 + I_3 = 15\\ I_1 - I_2 - I_3 = 0 \end{cases}$$

onde, podemos escrever na forma vetorial:

$$\begin{bmatrix} 0 & 5 & -1 \\ 13 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 15 \\ 4 \\ 0 \end{bmatrix}$$
$$A\vec{x} = B$$

onde A é a matriz do sistema.

Para resolver o sistema podemos aplicar o método da Eliminação de Gauss. Então a matriz A não deve possuir pivôs nulos (zeros na diagonal principal). Fazemos o pivotamento parcial da matriz A. As matrizes abaixos são as saídas do programa:

$$A_{1} = \begin{bmatrix} 0 & 5 & -1 \\ 13 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 13 & 0 & 1 \\ 0 & 5 & -1 \\ 1 & -1 & -1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 5 & -1 \\ 13 & 0 & 1 \end{bmatrix}$$

A partir de A_3 , encontramos a matriz superior:

$$\begin{bmatrix} 1 & -1 & -1 \\ 0 & 5 & -1 \\ 13 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & -1 \\ 0 & 5 & -1 \\ 0 & 13 & 14 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & -1 \\ 0 & 5 & -1 \\ 0 & 0 & 16.6 \end{bmatrix}$$

Portanto, aplicando as mesmas transformações de ${\cal A}$ ao segundo membro do sistema, temos:

$$\begin{bmatrix} 1 & -1 & -1 \\ 0 & 5 & -1 \\ 0 & 0 & 16.6 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ 4.6 \end{bmatrix}$$

E então, resolvemos o sistema por eliminação e substituição e temos:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 1.1325301204819276 \\ 0.8554216867469879 \\ 0.2771084337349397 \end{bmatrix}$$

2 Item c

Vamos resolver o sistema linear abaixo pelo método iterativo de Jacobi:

$$\begin{cases} 13I_1 + I_3 = 15 \\ 5I_2 - I_3 = 4 \\ I_1 - I_2 - I_3 = 0 \end{cases}$$

Isolamos as variáveis do sistema acima:

$$\begin{cases} I_1 = \frac{1}{13} (15 - I_3) \\ I_2 = \frac{1}{5} (4 + I_3) \\ I_3 = I_1 - I_2 \end{cases}$$

Escolhemos um vetor qualquer de \vec{I} para começar as iterações:

$$\vec{I} = [1, 1, 1]$$

Agora, faremos iterações até que o maior erro das correntes seja menor que 10^-4 :

Table 1: Valores da corrente para cada iteração k pelo método iterativo de Jacobi.

k	I_1	I_2	I_3
0	1.0769230769230769	1.0	-0.0
1	1.1538461538461537	0.8	0.07692307692307687
2	1.1479289940828403	0.8153846153846154	0.3538461538461537
3	1.1266272189349111	0.8707692307692307	0.33254437869822495
4	1.1282658170232134	0.8665088757396451	0.2558579881656804
5	1.1341647701411015	0.8511715976331361	0.2617569412835683
6	1.1337110045166485	0.8523513882567137	0.2829931725079654
7	1.132077448268618	0.8565986345015931	0.2813596162599348
8	1.1322031064415436	0.856271923251987	0.2754788137670249
9	1.132655475864075	0.855095762753405	0.2759311831895567
10	1.132620678216188	0.8551862366379114	0.27755971311066996
11	1.1324954066837947	0.855511942622134	0.2774344415782767
12	1.132505042955517	0.8554868883156553	0.27698346406166063
13	1.1325397335337184	0.8553966928123321	0.2770181546398617

Table 2: Erros estimados para as correntes encontradas em cada iteração do método iterativo de Jacobi.

k	ϵ_1	ϵ_2	ϵ_3
0	0.07692307692307687	0.0	1.0
1	0.07692307692307687	0.1999999999999996	0.07692307692307687
2	0.005917159763313418	0.01538461538461533	0.2769230769230768
3	0.02130177514792919	0.055384615384615365	0.021301775147928748
4	0.0016385980883022455	0.004260355029585661	0.07668639053254456
5	0.005898953117888128	0.015337278106508978	0.005898953117887906
6	0.0004537656244529842	0.0011797906235776479	0.021236231224397106
7	0.001633556248030521	0.004247246244879377	0.001633556248030632
8	0.00012565817292564674	0.0003267112496061486	0.005880802492909898
9	0.00045236942253135126	0.0011761604985819352	0.00045236942253179535
10	3.479764788694162e-05	9.047388450633687e-05	0.0016285299211132864
11	0.0001252715323933895	0.0003257059842226573	0.00012527153239327848
12	9.636271722346379e-06	2.5054306478700106e-05	0.0004509775166160468
13	3.469057820137955e-05	$9.019550332323156\mathrm{e}\text{-}05$	3.4690578201046485e-05

3 Item d

Vamos resolver o mesmo sistema linear do item anterior, porém, desta vez, usaremos o método iterativo de Gauss-Seidel, onde atualizamos constantemente os valores das correntes já encontrados:

Table 3: Valores estimados das correntes a cada iteração k do método de Gauss-Seidel.

k	I_1	I_2	I_3
0	1.0769230769230769	1.0	0.07692307692307687
1	1.1479289940828403	0.8153846153846154	0.33254437869822495
2	1.1282658170232134	0.8665088757396451	0.2617569412835683
3	1.1337110045166485	0.8523513882567137	0.2813596162599348
4	1.1322031064415436	0.856271923251987	0.2759311831895567
5	1.132620678216188	0.8551862366379114	0.2774344415782767
6	1.132505042955517	0.8554868883156553	0.2770181546398617
7	1.132537065027703	0.8554036309279723	0.27713343409973057
8	1.1325281973769437	0.855426686819946	0.2771015105569976

Table 4: Erros estimados das correntes encontradas a cada iteração ${\bf k}$ do método Gauss-Seidel.

	2 4 - 4 4 - 1					
k	ϵ_1	ϵ_2	ϵ_3			
0	0.07692307692307687	0.0	0.9230769230769231			
1	0.07100591715976345	0.18461538461538463	0.2556213017751481			
2	0.019663177059626946	0.051124260355029705	0.07078743741465665			
3	0.005445187493435144	0.01415748748293133	0.019602674976366474			
4	0.0015078980751048743	0.003920534995273228	0.0054284330703781025			
5	0.00041757177464440964	0.0010856866140755983	0.001503258388720008			
6	0.00011563526067104313	0.0003006516777439572	0.0004162869384150003			
7	3.202207218588882e-05	8.325738768300006e-05	0.00011527945986888888			
8	8.86765075924778e-06	2.3055891973711162e-05	3.192354273295894e-05			