ME 460/660 Formula Sheet for Exams

Please bring your own copy to exams and turn in your sheet with the exams. No additional information may be written on the formula sheet.

Euler Relations	$e^{j\beta} = \cos(\beta) + j\sin(\beta)$ $\sin(\beta) = \frac{e^{j\beta} - e^{-j\beta}}{2j}$ $\cos(\beta) = \frac{e^{j\beta} + e^{-j\beta}}{2}$
Expansion Envelope Slope	$\frac{f_0}{2\omega_n}$
Lagrange's Equation	$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} + \frac{\partial U}{\partial q_i} + \frac{\partial R}{\partial \dot{q}_i} = Q_i$
Fourier Series (Real Form)	$F(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(n\omega_T t) + b_n \sin(n\omega_T t) \right) \text{ where }$ $\omega_T = 2\pi/T, \text{ and }$ $T \text{ is the period of the function }$ $a_0 = \frac{2}{T} \int_0^T F(t) dt = 2f_0,$ $a_n = \frac{2}{T} \int_0^T F(t) \cos(n\omega_T t) dt = 2\Re(f_n), \Re \text{ means real part, and }$ $b_n = \frac{2}{T} \int_0^T F(t) \sin(n\omega_T t) dt = -2\Im(f_n), \Im \text{ means imaginary part}$
Fourier Series (Complex Form)	$F(t) = \sum_{n=-\infty}^{\infty} \left(f_n e^{j\omega_T nt} \right) \text{ where}$ $\omega_T = 2\pi/T, \text{ and}$ $T \text{ is the period of the function}$ $f_0 = \frac{1}{T} \int_0^T F(t) dt = \frac{a_0}{2}$ $f_n = \frac{1}{T} \int_0^T F(t) e^{-j\omega_T nt} dt = \frac{a_n}{2} - \frac{b_n}{2} j$
Convolution Integral	$x(t) = \frac{1}{m\omega_d} e^{-\zeta \omega_n t} \int_0^t \left[F(\tau) e^{\zeta \omega_n \tau} \sin(\omega_d(t - \tau)) \right] d\tau$ or $x(t) = \frac{1}{m\omega_d} \int_0^t \left[F(t - \tau) e^{-\zeta \omega_n \tau} \sin(\omega_d \tau) \right] d\tau$
Log Decrement	$\delta = \frac{1}{n} \ln \left(\frac{x(t)}{x(t+nT)} \right), \ \zeta = \frac{\delta}{\sqrt{4\pi^2 + \delta^2}}$