Young population

Emergence in old

Star clusters after

Smashing with dense

nterstellar clouds leading to the

Regeneration of stars

YESSIR

Kostas Tsalapatas Erin Umuzigazuba Yiqi Wu

Globular cluster with multiple populations

- Populations with different metallicities
 - metal-poor, evolved stars
 - o metal-rich, main sequence stars
- Visible in color magnitude diagrams
 - o Broadening of a branch
 - Distinct branches

Broadening of the main sequence branch in 47 Tucanae *Milone et al. (2023)*

Three main sequence branches in NGC 2808

Piotto et al. (2007)

Our theory

Caused by collisions between molecular clouds (MCs) and globular clusters (GCs)

- MCs are located around the spiral arms in the Galactic plane
- Rejuvenation of stars due to mass accretion

Parameter Reduction

Initial parameter space

Cluster

Velocity
Size
IMF
Number of stars

Cloud

Size Density Number of particles

Cluster

Velocity [km/s]: 20, 30, 40, 50, 60

Number of stars(ALICE): 200, 1000

Cloud

Size [pc] (ALICE): 15, 25

Setup & Initial conditions

- Hydrodynamic cloud
 - o Fi
- Gravitational interaction
 - BHTree
- Stellar Evolution:
 - o SSE
- Sink particles for accretion

Molecular cloud

- \circ Age = 2 Myr
- Density = 10 amu/cm³
- SPH particle < 0.06 MSun

Globular cluster

- Kroupa IMF
- Core radius = 4 pc
- Metallicity = 0.002
- \circ Age = 10 Gyr

Implementation - Bridge and channels

- Hydrodynamics
 - Timestep = 0.1 Myr
- Bridge
 - Timestep = 0.10.2 Myr
- Evolution
 - Timestep = 0.1 Myr

Bridge and channels - Stellar evolution

Bridge and channels - Bridge

Bridge and channels - Accretion

Accretion implementation

Sink particles accretion criteria:

- ullet Bondi radius $R=rac{2GM}{c_s^2}$
- Gravitationally bound gas particles (hard binaries)
- Free-fall time t_{ff}

Results

Accreted mass [Msun] for each star, with respect to time. Only stars that accreted mass are shown.

Results

Accreted mass [Msun] for each star, with respect to time. Only stars that accreted mass are shown.

Histogram of the relative accreted mass. Only stars that accreted mass are shown.

Results

Total accreted mass in the GC after one passage, with respect to the impact velocity.

Discussion

- Molecular Cloud: Z = 0.02
- Globular Cluster : Z = 0.002
- Known accreted mass ⇒ known metallicity

Simulation run with 100 stars and collision velocity of 20 km/s

Expectation

Project proposal

Expectation vs Result

Project proposal

Simulation run with 1000 stars and cluster velocity of 20 km/s

Discussion

Future work

- Convergence test with temporal resolution
- Simulate for multiple collisions
- Other theories
 - Stripping stars from MC
 - Star formation triggering in MC

References

- Milone, A. P. and Marino, A. F., "Multiple Populations in Star Clusters", Universe vol. 8, no. 7, p. 359, 2022.
- Bastian, N. and Lardo, C., "Multiple Stellar Populations in Globular Clusters", Annual Review of Astronomy and Astrophysics, vol. 56, pp. 83–136, 2018.
- Piotto, Giampaolo, et al. "A triple main sequence in the globular cluster NGC 2808." The Astrophysical Journal 661.1 (2007): L53.
- Dame, Thomas M., Dap Hartmann, and P. Thaddeus. "The Milky Way in molecular clouds: a new complete CO survey." The Astrophysical Journal 547.2 (2001): 792.

Thank you for your attention

