

Python Toolbox for Heart Rate Variability

Report

General Information

Experiment Sample Report
Subject Jon Doe
Gender, Age male , 27

Date 2019/05/11, 00:22:43

Comment This is a sample comment in a sample report

Heart Rate Heat Plot (male, 27)

Time Domain Results

Parameter	Value	Unit	Parameter	Value	Unit	
NNI Parameters						
NNI	133	-	NNI	890.293	ms	
NNI_{min}	715.000	ms	NNI_{max}	1013.000	ms	
SDNN	53.571	ms	RMSSD	55.484	ms	
SDANN	nan	ms	$SDNN_{index}$	nan	ms	
NN20	94	-	pNN20	71.212	-	
NN50	47	-	pNN50	35.606	-	
NNI Differences Par	rameters					
$\overline{\Delta NNI}$	44.068	ms	ΔNNI_{min}	1	ms	
ΔNNI_{max}	146	ms	SDSD	33.840	ms	
HR Parameters						
\overline{HR}	67.649	bpm	HR_{min}	59.230	bpm	
HR_{max}	83.916	bpm	$\sigma(HR)$	4.295	bpm	
Geometrical Parameters						
Triangular Index	7.389	ms	TINN	n/a ¹	-	

 $^{^1}$ TINN function is not working properly in the current pyHRV version and computes incorrect results, reason for which it is not shown in this report

Figure 1: Histogram of the NNI series.

Frequency Domain Parameters

Welch's Method					
	Unit	ULF	VLF	LF	HF
Peak Frequencies	Hz	n/a	0.020	0.109	0.257
Absolute Powers	ms^2	n/a	424.130	1908.205	847.511
Relative Powers	%	n/a	13.338	60.009	26.653
Logarithmic Powers	_	n/a	6.050	7.554	6.742
Relative Powers	_	-	-	60.009	26.653
LF/HF Ratio	_	2.252			
Total Power	ms^2	3179.846			

Configuration:Resampling frequency:
Interpolation:4Hz
cubicWindow:
NFFT (over entire signal):hamming
4096

Autoregressive Method					
	Unit	ULF	VLF	LF	HF
Peak Frequencies	Hz	n/a	0.000	0.040	0.150
Absolute Powers	ms^2	n/a	2623.036	5480.309	10278.245
Relative Powers	%	n/a	14.270	29.814	55.916
Logarithmic Powers	_	n/a	7.872	8.609	9.238
Relative Powers	_	-	-	29.814	55.916
LF/HF Ratio	_	0.533			
Total Power	ms^2	18381.590			

Configuration: Model Order: 16 NFFT (over entire signal): 4096

Lomb-Scargle Method						
	Unit	ULF	VLF	LF	HF	
Peak Frequencies	Hz	n/a	0.003	0.080	0.351	
Absolute Powers	ms^2	n/a	432.338	2032.171	4068.332	
Relative Powers	%	n/a	6.618	31.107	62.275	
Logarithmic Powers	_	n/a	6.069	7.617	8.311	
Relative Powers	_	-	-	31.107	62.275	
LF/HF Ratio	_	0.500				
Total Power	ms^2	6532.842				

Configuration: Moving Average Window Size: n/a NFFT (over entire signal): 256

Selected Frequency Bands					
ULF Band	Hz	0 - 0			
VLF Band	Hz	0.000 - 0.040			
LF Band	Hz	0.040 - 0.150			
HF Band	Hz	0.150 - 0.400			

Figure 2: Welch's method with resampling frequency of 4 Hz, hamming window, cubic interpolation, and 4096 samples over the entire signal.

Figure 3: Autoregressive method with model order 16 and 4096 samples over the entire signal.

Figure 4: Lomb-Scargle method with moving average window size of n/a samples and 256 samples over the entire signal.

Nonlinear Parameters

Parameter	Value	Unit	Parameter	Value	Unit
Poincaré Plot Parai	meters				
SD1	n/a	ms	SD2	n/a	ms
SD1/SD2	n/a	ms	Ellipse Area S	n/a	ms

Glossary

AR Autoregressive BPM Beats per Minute

DFA Detrended Fluctuation Analysis

HF High Frequency Band

Hear Rate HR

LF Low Frequency Band

 ΔNNI Differences between successive NNI

Normal-to-Normal Intervals NNI # of ΔNNI \vdots x ms NNx / # of NNI NNx pNNx

. PSD Power Spectral Density **RMSSD**

Root Mean of Squared ΔNNI Standard Deviation of the Mean of NNI in all 5 minute Segments **SDANN**

SDNN Standard Deviation of NNI

Standard Deviation of the Mean of NN Intervals in all 5 minut Segments $SDNN_{index}$

SDSD Standard Deviation of ΔNNI

Triangular Interpolation of the NNI Histogram TINN

ULF Ultra Low Frequency Band VLF Very Low Frequency Band