Higher Order Computability

John Longley & Dag Normann March 21, 2022

Contents

1	Theory of Computability Models			1
	1.1	Computational Structure in Higher-Order Models		1
		1.1.1	Combinatory Completeness	1
			Pairing	
		1.1.3	Booleans	6
		1.1.4	Numerals	7
		1.1.5	Recursion and Minimization	9
		1.1.6	The Category of Assemblies	10

1 Theory of Computability Models

1.1 Computational Structure in Higher-Order Models

1.1.1 Combinatory Completeness

Combinatory completeness can be seen as a syntactic counterpart to the notion of weakly cartesian closed model. In essence, combinatory completeness asserts that any operation definable by means of a formal expression over A (constructed using application) is representable by an element of A itself.

Definition 1.1. 1. A partial applicative structure A consists of

- an inhabited family $|\mathbf{A}|$ of datatypes A,B,... (indexed by some set T)
- a (right-associative) binary operation \Rightarrow on |A|
- for each $A,B\in |\mathbf{A}|$, a partial function $\cdot_{AB}:(A\Rightarrow B)\times A \rightharpoonup B$

- 2. A **typed partial combinatory algebra** (TPCA) is a partial applicative structure **A** satisfying the following conditions
 - (a) For any $A, B \in |\mathbf{A}|$, there exists $k_{AB} \in A \Rightarrow B \Rightarrow A$ s.t.

$$\forall a.k \cdot a \downarrow, \quad \forall a, b.k \cdot a \cdot b = a$$

(b) For any $A,B,C\in |\mathbf{A}|$, there exists $s_{ABC}\in (A\Rightarrow B\Rightarrow C)\Rightarrow (A\Rightarrow B)\Rightarrow (A\Rightarrow C)$ s.t.

$$\forall f, g.s \cdot f \cdot g \downarrow, \quad \forall f, g, a.s \cdot f \cdot g \cdot a \simeq (f \cdot a) \cdot (g \cdot a)$$

A lax TPCA is obtained from a TPCA change $'\simeq'$ to $'\succeq'$ in the axiom s

- 3. If \mathbf{A}° denotes a partial applicative structure, a **partial applicative substructure** \mathbf{A}^{\sharp} of \mathbf{A}° consists of a subset $A^{\sharp} \subseteq A$ for each $A \in |\mathbf{A}^{\circ}|$ s.t.
 - if $f \in (A \Rightarrow B)^{\sharp}$, $a \in A^{\sharp}$ and $f \cdot a \downarrow$ in \mathbf{A}° , then $f \cdot a \in B^{\sharp}$

such a pair $(\mathbf{A}^{\circ}; \mathbf{A}^{\sharp})$ is called a **relative partial applicative structure**

4. A **relative TPCA** is a relative partial applicative structure $(\mathbf{A}^{\circ}, \mathbf{A}^{\sharp})$ s.t. there exist elements k_{AB}, s_{ABC} in \mathbf{A}^{\sharp} witnessing that \mathbf{A}° is a TPCA

Definition 1.2. Suppose **A** is a relative partial applicative structure over T

- 1. The set of well-typed **applicative expressions** $e:\sigma$ over **A** is defined inductively as follows
 - for each $\sigma \in T$, we have an unlimited supply of variables $x^{\sigma} : \sigma$
 - for each $\sigma \in \mathsf{T}$ and $a \in \mathbf{A}^\sharp(\sigma)$, we have a **constant** symbol $c_a : \sigma$ (we shall often write c_a simply as a)
 - If $e: \sigma \to \tau$ and $e': \sigma$ are applicative expressions, then ee' is an applicative expression of type τ .

We write V(e) for the set of variables appearing in e

2. A **valuation** in **A** is a function v assigning to certain variables x^{σ} an element $v(x^{\sigma}) \in \mathbf{A}^{\circ}(\sigma)$. Given an applicative expression e and a valuation v covering V(e), the value $[\![e]\!]_v$, when defined, is given inductively by

$$[\![x^\sigma]\!]_v = v(x), \quad [\![c_a]\!]_v = a, \quad [\![ee']\!]_\nu \simeq [\![e]\!]_v \cdot [\![e']\!]_v$$

Note that if $e: \tau$ and $[\![e]\!]_v$ is defined then $[\![e]\!]_v \in \mathbf{A}^{\circ}(\tau)$.

Note that for any v with $\mathrm{ran}(v) \in \mathbf{A}^\sharp$, we can prove $[\![e:\tau]\!]_v \in \mathbf{A}^\sharp(\tau)$ by induction:

- 1. If e is of the form x^{τ}
- 2. If *e* is of the form c_a where $a \in \mathbf{A}^{\sharp}(\tau)$
- 3. If e is of the form e'e'' where $e':\sigma\to\tau$ and $e'':\sigma$. $\llbracket e\rrbracket_v=\llbracket e'\rrbracket_v\cdot\llbracket e''\rrbracket_v\text{ where }\llbracket e'\rrbracket_v\in\mathbf{A}^\sharp(\sigma\to\tau)\text{ and }\llbracket e''\rrbracket_v\in\mathbf{A}^\sharp(\sigma).\text{ Since }\mathbf{A}^\sharp\text{ is a substructure of }\mathbf{A}^\circ,\text{ if }\llbracket e'\rrbracket_v\cdot\llbracket e''\rrbracket_v\downarrow,\text{ then }\llbracket e\rrbracket\in\mathbf{A}^\sharp(\tau)$

Definition 1.3. Let **A** be a relative partial applicative structure. We say **A** is **lax combinatory complete** if for every applicative expression $e:\tau$ over **A** and every variable x^{σ} , there is an applicative expression $\lambda^* x^{\sigma}.e$ with $V(\lambda^* x^{\sigma}.e) = V(e) - \{x^{\sigma}\}$ s.t. for any valuation v covering $V(\lambda^* x^{\sigma}.e)$ and any $a \in \mathbf{A}^{\circ}(\sigma)$ we have

$$[\![\lambda^*x^\sigma.e]\!]_v\downarrow,\quad [\![\lambda^*x^\sigma.e]\!]_v\cdot a\succeq [\![e]\!]_{v.x\mapsto a}$$

We say **A** is **strictly combinatory complete** if this holds with $'\simeq'$ in place of $'\succeq'$

Theorem 1.4. A (relative) partial applicative structure A is a lax (relative) TPCA iff it is lax combinatory complete

Proof. If **A** is lax combinatory complete, then for any ρ , σ , τ we may define

$$\begin{split} k_{\sigma\tau} &= [\![\lambda^* x^\sigma.(\lambda^* y^\tau.x)]\!]_{\emptyset} \\ s_{\rho\sigma\tau} &= [\![\lambda^* x^{\rho \to \sigma \to \tau}.(\lambda^* y^{\rho \to \sigma}.(\lambda^* z^\rho.xz(yz)))]\!]_{\emptyset} \end{split}$$

Conversely, if **A** is a lax TPCA, then given any suitable choice of elements k and s for **A**, we may define $\lambda^* x^{\sigma} . e$ by induction on the structure of e:

$$\begin{split} \lambda^*x^\sigma.x &= s_{\sigma(\sigma\to\sigma)}k_{\sigma(\sigma\to\sigma)}k_{\sigma\sigma}\\ \lambda^*x^\sigma.a &= k_{\tau\sigma}a & \text{for each } a\in \mathbf{A}^\sharp(\tau)\\ \lambda^*x^\sigma.ee' &= s_{\sigma\tau\tau'}(\lambda^*x^\sigma.e)(\lambda^*x^\sigma.e') & \text{if } e:\tau\to\tau',e':\tau \text{ and } ee' \text{ contains } x \end{split}$$

The same argument shows that ${\bf A}$ is a strict TPCA iff it is strictly combinatory complete

we often tacitly suppose that a TPCA **A** comes equipped with some choice of k and s drawn from $A\sharp$, and in this case we shall use the notation $\lambda^*x.e$ for the applicative expression given by the above proof. Since all the constants appearing in e are drawn from A^\sharp , the same will be true for $\lambda^*x.e$.

In TPCAs constructed as syntactic models for untyped or typed λ -calculi (as in Example 3.1.6 or Section 3.2.3), the value of $\lambda^* x.e$ coincides with $\lambda x.e$. However, the notational distinction is worth retaining, since the term $\lambda^* x.e$ as defined above is not syntactically identical to $\lambda x.e$.

More generally, we may consider terms of the λ -calculus as **meta-expressions** for applicative expressions. Specifically any such λ -term M can be regarded as denoting an applicative expression M^{\dagger} as follows:

$$x^\dagger = x, \quad c_a^\dagger = c_a, \quad (MN)^\dagger = M^\dagger N^\dagger, \quad (\lambda x. M)^\dagger = \lambda^* x. (M^\dagger)$$

Some caution is needed here, however, because β -equivalent meta-expressions do not always have the same meaning

Example 1.1. Consider the two meta-expressions $(\lambda x.(\lambda y.y)x)$ and $\lambda x.x$. Although these are β -equivalent, the first expands to s(ki)i and the second to i, where $i \equiv skk$.

The moral here is that β -reductions are not valid underneath λ^* -abstractions: in this case, the reduction $(\lambda^*y.y)x \rightsquigarrow x$ is not valid underneath λ^* . However at least for the definition of λ^* given above, β -reductions at top level are valid.

Proposition 1.5. 1. If M is a meta-expression, x is a variable and a is a constant or variable, then $[((\lambda x.M)a)^{\dagger}]_v \succeq [M[x \mapsto a]^{\dagger}]$

2. If M, N are meta-expressions, $x \notin FV(N)$, no free occurrence of x in M occurs under a λ , and $[\![N^\dagger]\!]_v \downarrow$, then $[\![((\lambda x.M)N)^\dagger]\!]_v \succeq [\![M[x \mapsto N]^\dagger]\!]_v$

Proof. Longley's PhD thesis

From now on, we will not need to distinguish formally between meta-expressions and the applicative expressions they denote. For the remainder of this chapter we shall use the λ^* notation for such (meta-)expressions, retaining the asterisk as a reminder that the usual rules of λ -calculus are not always valid.

1.1.2 Pairing

- **Definition 1.6.** 1. A **type world** is simply a set T of **type names** σ , optionally endowed with any or all of the following:
 - (a) a **fixing map**, assigning a set $T[\sigma]$ to certain type names $\sigma \in T$
 - (b) a **product structure**, consisting of a total binary operation $(\sigma, \tau) \mapsto \sigma \times \tau$
 - (c) an **arrow structure**, consisting of a total binary operation $(\sigma, \tau) \mapsto \sigma \to \tau$
 - 2. A **computability model over** a type world T is a computability model C with index set T (so that $|C| = \{C(\sigma) \mid \sigma \in T\}$) subject to the following conventions
 - (a) If T has a fixing map, then $C(\sigma) = T[\sigma]$ whenever $T(\sigma)$ is defined
 - (b) If T has a product structure, then C has weak products and for any $\sigma, \tau \in T$ we have $\mathbf{C}(\sigma \times \tau) = \mathbf{C}(\sigma) \bowtie \mathbf{C}(\tau)$
 - (c) If T has an arrow structure, then C is a higher-order model and for any $\sigma, \tau \in T$ we have $\mathbf{C}(\sigma \to \tau) = \mathbf{C}(\sigma) \Rightarrow \mathbf{C}(\tau)$
 - (d) If T has both a product and an arrow structure, then **C** is weakly cartesian closed

Theorem 1.7. *There is a canonical bijection between higher-order models and relative TPCAs*

Let **A** be a relative TPCA (which is combinatory complete) over a type world T with arrow structure, and suppose that **A** (considered as a higher-order model) has weak products, inducing a product structure \times on T. This means that for any $\sigma, \tau \in \mathsf{T}$ there are elements

$$fst \in \mathbf{A}^{\sharp}((\sigma \times \tau) \to \sigma), \quad snd \in \mathbf{A}^{\sharp}((\sigma \times \tau) \to \tau)$$

And for each $\sigma, \tau \in T$ a **paring** operation

$$pair \in \mathbf{A}^{\sharp}(\sigma \to \tau \to (\sigma \times \tau))$$

s.t.

$$\forall a \in \mathbf{A}^{\circ}(\sigma), b \in \mathbf{A}^{\circ}(\tau). \ fst \cdot (pair \cdot a \cdot b) = a \wedge snd \cdot (pair \cdot a \cdot b) = b$$

Proposition 1.8. A higher-order model with weak products has pairing iff it is weakly cartesian closed

Lemma 1.9 (??). *Suppose* m, n > 0. *Given*

$$\begin{split} f_j \in (A_0 \Rightarrow \cdots \Rightarrow A_{m-1} \Rightarrow B_j)^{\sharp}, \quad (j = 0, \dots, n-1), \\ g \in (B_0 \Rightarrow \cdots \Rightarrow B_{n-1} \Rightarrow C)^{\sharp} \end{split}$$

there exists $h \in (A_0 \Rightarrow \cdots \Rightarrow A_{m-1} \Rightarrow C)^{\sharp}$ s.t.

$$\forall a_0,\dots,a_{m-1}.h\cdot a_0\cdot\dots\cdot a_{m-1}\simeq g\cdot (f_0\cdot a_0\cdot\dots\cdot a_{m-1})\cdot\dots\cdot (f_{n-1}\cdot a_0\cdot\dots\cdot a_{m-1})$$

Proof. The binary partial functions representable in $\mathbf{A}^{\sharp}((\rho \times \sigma) \to \tau)$ are exactly those representable in $\mathbf{A}^{\sharp}(\rho \to \sigma \to \tau)$

Given $f \in \mathbf{A}^\sharp((\rho \times \sigma) \to \tau)$, by Proposition ??, we have $h \in \mathbf{A}^\sharp(\rho \to \sigma \to \tau)$ where

$$\forall a, b. \ h \cdot a \cdot b \simeq f \cdot (pair \cdot a \cdot b)$$

Given $f \in \mathbf{A}^{\sharp}(\rho \to \sigma \to \tau)$, by the same Proposition, we have $h \in \mathbf{A}^{\sharp}((\rho \times \sigma) \to \tau)$ where

$$\forall a,b.\ h\cdot c \simeq f\cdot (fst\cdot c)\cdot (snd\cdot c)$$

Henceforth we shall generally work with pair in preference to the 'external' pairing of operations, and will write $pair \cdot a \cdot b$ when there is no danger of confusion.

In untyped models, pairing is automatic

$$pair = \lambda^* xyz.zxy$$
, $fst = \lambda^* p.p(\lambda^* xy.x)$, $snd = \lambda^* p.p(\lambda^* xy.y)$

1.1.3 Booleans

Definition 1.10. A model **A** has **booleans** if for some type B there exist elements

$$tt, f\!\!f \in \mathbf{A}^\sharp(\mathtt{B})$$
 $i\!\!f_\sigma \in \mathbf{A}(\mathtt{B}, \sigma, \sigma o \sigma) ext{ for each } \sigma$

s.t. for all $x, y \in \mathbf{A}^{\circ}(\sigma)$ we have

$$if_{\sigma} \cdot tt \cdot x \cdot y = x, \quad if_{\sigma} \cdot ft \cdot x \cdot y = y$$

Note that t, f need not be the sole element of $\mathbf{A}^{\sharp}(\mathbf{B})$

Alternatively, we may define a notion of having booleans in the setting of computability model \mathbf{C} with weak products: replace if_{σ} with $if'_{\sigma} \in \mathbf{C}[\mathbb{B} \times \sigma \times \sigma, \sigma]$. In a TPCA with products and pairing the two definitions coincide

In untyped models, the existence of booleans is automatic: $t = \lambda^* xy.x$, $t = \lambda^* xy.y$ and $t = \lambda^* zxy.zxy$

Obviously, the value of an expression $if_{\sigma} \cdot b \cdot e \cdot e'$ cannot be defined unless the values of both e and e' are defined. However, there is a useful trick that allows us to build conditional expressions whose definedness requires only that the chosen branch of the conditional is defined. This trick is specific to the higher-order setting, and is known as **strong definition by cases**:

Proposition 1.11. Suppose A has booleans as above. Given applicative expressions $e, e' : \sigma$ there is an applicative expression $(e \mid e') : B \to \sigma$ s.t. for any valuation v covering V(e) and V(e') we have

$$\llbracket (e \mid e') \rrbracket_v \downarrow, \quad \llbracket (e \mid e') \cdot t t \rrbracket_v \succeq \llbracket e \rrbracket_v, \quad \llbracket (e \mid e') \cdot f t \rrbracket_v \succeq \llbracket e' \rrbracket_v$$

Proof. Let ρ be any type s.t. $\mathbf{A}^{\circ}(\rho)$ is inhabited by some element a, and define

$$(e \mid e') = \lambda^* z^{\mathsf{B}} \cdot (if_{\sigma} z(\lambda^* r^{\rho}.e)(\lambda^* r^{\rho}.e')c_a)$$

where z, r are fresh variables

$$[(e \mid e')]_v \downarrow$$
 since by lax combinatory completeness $[(e \mid e') \cdot t]_v \geq [e]_v$ by 1.5

The expressions $\lambda^*r.e$, $\lambda^*r.e'$ in the above proof are known as **suspensions** or **thunks**: the idea is that $[\![\lambda^*r.e]\!]_v$ is guaranteed to be defined, but the actual evaluation of e_v (which may be undefined) is 'suspended' until the argument e_a is supplied.

1.1.4 Numerals

Definition 1.12. A model **A** has **numerals** if for some type N there exist

$$\hat{0}, \hat{1}, \hat{2}, \dots \in \mathbf{A}^{\sharp}(\mathtt{N})$$

$$suc \in \mathbf{A}^{\sharp}(\mathtt{N} \to \mathtt{N})$$

and for any $x \in \mathbf{A}^\sharp(\sigma)$ and $f \in \mathbf{A}^\sharp(\mathbb{N} \to \sigma \to \sigma)$ an element

$$Rec_{\sigma}(x,f)\in \mathbf{A}^{\sharp}(\mathbf{N}\to\sigma)$$

s.t. for all $x \in \mathbf{A}^{\sharp}(\sigma)$, $f \in \mathbf{A}^{\sharp}(\mathbb{N} \to \sigma \to \sigma)$ and $n \in \mathbb{N}$ we have

$$\begin{aligned} suc \cdot \hat{n} &= \widehat{n+1} \\ Rec_{\sigma}(x,f) \cdot \hat{0} &= x \\ Rec_{\sigma}(x,f) \cdot \widehat{n+1} \succeq f \cdot \hat{n} \cdot (Rec_{\sigma}(x,f) \cdot \hat{n}) \end{aligned}$$

The above definition has the advantage that it naturally adapts to the setting of a computability model C with products: just replace the types of f and $Rec_{\sigma}(x, f)$ above with $\mathbb{C}[\mathbb{N} \times \sigma, \sigma]$ and $\mathbb{C}[\mathbb{N}, \sigma]$ respectively.

Proposition 1.13. A model A has numerals iff it has elements \hat{n} , suc as above and

$$rec_{\sigma} \in A^{\sharp}(\sigma \to (N \to \sigma \to \sigma) \to N \to \sigma)$$
 for each σ

s.t. for all $x \in A^{\circ}(\sigma)$, $f \in A^{\circ}(N \to \sigma \to \sigma)$ and $n \in \mathbb{N}$ we have

$$\begin{aligned} suc \cdot \hat{n} &= \widehat{n+1} \\ rec_{\sigma} \cdot x \cdot f \cdot \hat{0} &= x \\ rec_{\sigma} \cdot x \cdot \widehat{f \cdot n+1} \succeq \widehat{f \cdot \hat{n}} \cdot (rec_{\sigma} \cdot x \cdot f \cdot \hat{n}) \end{aligned}$$

 $\begin{array}{l} \textit{Proof.} \; \Leftarrow : \mathop{\mathsf{Let}} Rec_\sigma(x,f) = rec_\sigma \cdot x \cdot f \\ \Rightarrow : \mathop{\mathsf{define}} \end{array}$

$$rec_{\sigma} = Rec_{\sigma \rightarrow (\mathbb{N} \rightarrow \sigma \rightarrow \sigma) \rightarrow \sigma}(\lambda^*xf.x, \lambda^*nr.\lambda^*xf.fn(rxf))$$

?

Exercise 1.1.1. Show that A has numerals, then A has booleans

Proposition 1.14. Every untyped model has numerals

Proof. Using the encodings for pairings and booleans given above, we may define the **Curry numerals** \hat{n} in any untyped models as follows:

$$\hat{0} = \langle t, t \rangle, \quad \widehat{n+1} = \langle f f, \hat{n} \rangle$$

and $suc = \lambda^* x. \langle ff, x \rangle$. We also have elements for the zero testing and predecessor operations: take iszero = fst and $pre = \lambda^* x. if(iszero \ x) \hat{0}(snd \ x)$

In any model with numerals, a rich class of functions $\mathbb{N}^r \to \mathbb{N}$ is representable. For example, the (first-order) primitive recursive functions on \mathbb{N}

Proposition 1.15. For any primitive recursive $f: \mathbb{N}^r \to \mathbb{N}$ there is an applicative expression $e_f: \mathbb{N}^{(r)} \to \mathbb{N}$ (involving constants 0, suc, rec_N) s.t. in any model $(\mathbf{A}^\circ; \mathbf{A}^\sharp)$ with numerals we have $[\![e_f]\!]_v \in \mathbf{A}^\sharp$ (where v is the obvious valuation of the constants) and

$$\forall n_0,\dots,n_{r-1},m.f(n_0,\dots,n_{r-1})=m\Rightarrow [\![e_f]\!]_v\cdot \hat{n}_0\cdot \hat{n}_{r-1}=\hat{m}$$

1.1.5 Recursion and Minimization

- **Definition 1.16.** 1. A total model **A** has general recursion, or has fixed **points**, if for every element $f \in \mathbf{A}^{\sharp}(\rho \to \rho)$ there is an element $Fix_{\rho}(f) \in \mathbf{A}^{\sharp}(\rho)$ s.t. $Fix_{\rho}(f) = f \cdot Fix_{\rho}(f)$
 - 2. An arbitrary model **A has guarded recursion**, or **guarded fixed points**, if for every element $f \in \mathbf{A}^\sharp(\rho \to \rho)$ where $\rho = \sigma \to \tau$ there is an element $GFix_\rho(f) \in \mathbf{A}^\sharp(\rho)$ s.t. $GFix_\rho(f) \cdot x \succeq f \cdot GFix_\rho(f) \cdot x$ for all $x \in \mathbf{A}^\circ(\sigma)$
- **Proposition 1.17.** 1. A total model A has general recursion iff for every type ρ there is an element $Y_{\rho} \in A^{\sharp}((\rho \to \rho) \to \rho)$ s.t. for all $f \in A^{\circ}(\rho \to \rho)$ we have

$$Y_{\rho} \cdot f = f \cdot (Y_{\rho} \cdot f)$$

2. A has guarded recursion iff for every type $\rho = \sigma \to \tau$ there is an element $Z_{\rho} \in A^{\sharp}((\rho \to \rho) \to \rho)$ s.t. for all $f \in A^{\circ}(\rho \to \rho)$ and $x \in A^{\circ}(\sigma)$ we have

$$Z_{\rho}\cdot f\downarrow,\quad Z_{\rho}\cdot f\cdot x\succeq f\cdot (Z_{\rho}\cdot f)\cdot x$$

Proof. Define

Proof.

$$Y_{\rho} = Fix_{(\rho \to \rho) \to \rho}(\lambda^*y.\lambda^*f.f(yf)), \quad Z_{\rho} = GFix_{(\rho \to \rho) \to \rho}(\lambda^*z.\lambda^*fx.f(zf)x)$$

Not all models of interest possess such recursion operators. Clearly, if \mathbf{A} is a **total** model with $\mathbf{A}(\mathbb{N}) = \mathbb{N}$ a type of numerals as above, then \mathbf{A} cannot have general or even guarded recursion: if $\rho = \mathbb{N} \to \mathbb{N}$ and $f = \lambda^* gx.suc(gx)$ then we would have $Z \cdot f \cdot \hat{n} = suc \cdot Z \cdot f \cdot \hat{n}$, which is impossible. However, many models with $\mathbf{A}(\mathbb{N}) = \mathbb{N}_{\perp}$ will have general recursion

Any untyped total model has general recursion, since we may take

$$W = \lambda^* w f. f(wwf), \quad Y = WW$$

(This element *Y* is known as the **Turing fixed point combinator**). Likewise, every untyped model, total or not, has guarded recursion, since we may take

$$V = \lambda^* v f x. f(v v f) x, \quad Z = V V$$

Note in passing that Kleene's **second recursion theorem** from classical computability theory is tantamount to the existence of a guarded recursion operator in ${\cal K}_1$

We can now prove 1.14. In any untyped model, let ${\cal Z}$ be a guarded recursion operator, define

$$R = \lambda^* rxfm.if(iszero\ m)(kx)(\lambda^* y.f(pre\ m))(rxf(pre\ m)\hat{0})$$

and take $rec = \lambda^* x fm.(ZR) x fmi.$

Definition 1.18. A model **A** with numerals **has minimization** if it contains an element $min \in \mathbf{A}^\sharp((\mathbb{N} \to \mathbb{N}) \to \mathbb{N})$ s.t. whenever $\hat{g} \in \mathbf{A}^\circ(\mathbb{N} \to \mathbb{N})$ represents some total $g: \mathbb{N} \to \mathbb{N}$ and m is the least number s.t. g(m) = 0, we have $min \cdot \hat{g} = \hat{m}$

Proposition 1.19. There is an applicative expression Min involving constants $\hat{0}$, suc, iszero, if and Z s.t. in any model with numerals and guarded recursion, $[\![Min]\!]_v$ is a minimization operator

Proof. Take
$$Min = Z(\lambda^*M.\lambda^*g.if(iszero(g\ \hat{0}))\hat{0}(M(\lambda^*n.g(suc\ n))))$$

Proposition 1.20. For any partial computable $f: \mathbb{N}^r \to \mathbb{N}$ there is an applicative expression $e_f: \mathbb{N}^{(r)} \to \mathbb{N}$ (involving constants 0, suc, $rec_{\mathbb{N}}$, min) s.t. in any model A with numerals and minimization we have $[\![e_f]\!]_v \in A^{\sharp}$ (with the obvious valuation v) and

$$\forall n_0,\dots,n_{r-1},m.f(n_0,\dots,n_{r-1})=m\Rightarrow [\![e_f]\!]_v\cdot \hat{n}_0\cdot\dots\cdot \hat{n}_{r-1}=\hat{m}$$

Proof. Since our definition of minimization refers only to total functions $g: \mathbb{N} \to \mathbb{N}$, we appeal to the *Kleene normal form* theorem: there are primitive recursive functions $T: \mathbb{N}^{r+2} \to \mathbb{N}$ and $U: \mathbb{N} \to \mathbb{N}$ such that any partial computable f has an 'index' $e \in \mathbb{N}$ such that $f(\bar{n}) \simeq U(\mu y.T(e,\bar{n},y)=0)$ for all \bar{n} . Using this, the result follows easily from Propositions 1.15 and 1.19.

1.1.6 The Category of Assemblies

Definition 1.21. Let **C** be a lax computability model over T. The **category of assemblies over C**, written Asm(**C**) is defined as follows:

- Objects X are triples $(|X|, \rho_X, \Vdash_X)$ where |X| is a set, $\rho_X \in T$ names some type, and $\Vdash_X \subseteq \mathbf{C}(\rho_X) \times |X|$ is a relation s.t. $\forall x \in |X|. \exists a \in \mathbf{C}(\rho_X).a \Vdash_X x$ (The formula $a \Vdash_X x$ may be read as 'a **realizes** x')
- A morphism $f: X \to Y$ is a function $f: |X| \to |Y|$ that is **tracked** by some $\bar{f} \in \mathbf{C}[\rho_X, \rho_Y]$, in the sense that for any $x \in |X|$ and $a \in \mathbf{C}(\rho_X)$ we have

$$a \Vdash_X x \Rightarrow \overline{f}(a) \Vdash_Y f(x)$$

An assembly X is called **modest** if $a \Vdash_X x \land a \Vdash_X x'$ implies x = x'. We write $\mathcal{M}\mathrm{od}(\mathbf{C})$ for the full subcategory of $\mathcal{A}\mathrm{sm}(\mathbf{C})$ consisting of modest assemblies

Intuitively, we regard an assembly X as an "abstract datatype" for which we have a concrete implementation on the "machine" ${\bf C}$. The underlying set |X| is the set of values of the abstract type, and for each $x\in |X|$, the elements $a\Vdash_X x$ are the possible machine representations of this abstract value. (Note that an abstract value x may have many possible machine representations a.) The morphisms $f:X\to Y$ may then be regarded as the "computable mappings" between such datatypes

In the case that \mathbf{C} is a lax TPCA \mathbf{A} , we may also denote the above categories $\mathcal{A}\mathrm{sm}(\mathbf{A})$, $\mathcal{M}\mathrm{od}(\mathbf{A})$, or by $\mathcal{A}\mathrm{sm}(\mathbf{A}^\circ;\mathbf{A}^\sharp)$, $\mathcal{M}\mathrm{od}(\mathbf{A}^\circ;\mathbf{A}^\sharp)$. Note that realizers for elements $x \in |X|$ may be arbitrary elements of $\mathbf{A}^\circ(\rho_X)$, whereas a morphism $f: X \to Y$ must be tracked by an element of $\mathbf{A}^\sharp(\rho_X \to \rho_Y)$

Viewed in this way, all the datatypes we shall typically wish to consider in fact live in the subcategory $\mathcal{M}\mathrm{od}(\mathbf{C})$: an abstract data value is uniquely determined by any of its machine representations. Note also that if Y is modest, a morphism $f:X\to Y$ is completely determined by any \overline{f} that tracks it.

Definition 1.22. Let the category ${\bf C}$ have binary products. An **exponential** of objects B and C consists of an object C^B and an arrow $\epsilon:C^B\times B\to C$ s.t. for any object A and arrow $f:A\times B\to C$ there is a unique arrow $\tilde f:A\to C^B$ s.t. $\epsilon\circ(\tilde f\times 1_B)=f$

$$\begin{array}{ccc}
C^B & C^B \times B \xrightarrow{\epsilon} C \\
\uparrow \tilde{f} & \tilde{f} \times 1_B \uparrow & f \\
A & A \times B
\end{array}$$

Theorem 1.23. *Let C be a lax computability model*

- 1. If C has a weak terminal, then Asm(C) has a terminal object 1
- 2. If C has weak products, then Asm(C) has binary cartesian products
- 3. If C weakly cartesian closed, then Asm(C) is cartesian closed
- 4. If C has a weak terminal and booleans, Asm(C) has the coproduct 1+1
- 5. If C has a weak terminal and numerals, Asm(C) has a natural number object
- *Proof.* 1. If (I,i) is a weak terminal, define $1=(\{i\},I,\Vdash_1=\{(i,i)\})$. Then for any $X\in \mathcal{A}\mathrm{sm}(\mathbf{C})$, $f=\Lambda x.i$ is the unique morphism where $\bar{f}=\Lambda x.i$.
 - 2. If *X* and *Y* are assemblies and ρ is a weak product of ρ_X and ρ_Y , define the assembly $X \times Y$ by

$$|X\times Y|=|X|\times |Y|,\quad \rho_{X\times Y}=\rho,\quad a\Vdash_{X\times Y}(x,y) \text{ iff } \pi_X(a)\Vdash_X x\wedge \pi_Y(a)\Vdash_Y y$$

3. If X and Y are assemblies, let us say an element $t \in \mathbf{C}(\rho_X \to \rho_Y)$ tracks a function $f: |X| \to |Y|$ if

$$\forall x \in |X|, a \in \mathbf{C}(\rho_X). \ a \Vdash_X x \Rightarrow t \cdot_{XY} a \Vdash_Y f(x)$$

Now define the assembly ${\cal Y}^{\cal X}$ as follows:

$$\begin{split} \left| Y^X \right| &= \{ f: |X| \to |Y| \mid f \text{ is tracked by some } t \in \mathbf{C}(\rho_X \to \rho_Y) \} \\ \rho_{Y^X} &= \rho_X \to \rho_Y \\ t \Vdash_{Y^X} f \Leftrightarrow t \text{ tracks } f \end{split}$$

Theorem **??** also holds with $\mathcal{M}od(\mathbf{C})$, and the inclusion $\mathcal{M}od(\mathbf{C}) \hookrightarrow \mathcal{A}sm(\mathbf{C})$ preserves all the relevant structure