Medguide Project

Overview

MedGuide is an AI-powered mobile application designed to simplify the medication selection process and support users through their recovery journey. It eliminates the confusion of pharmacy aisles and replaces uncertainty with data-driven confidence. The app acts as a personal health assistant — allowing users to log symptoms, receive tailored over-the-counter medication recommendations, and manage reminders through an integrated calendar system.

Our goal was to build a platform that blends artificial intelligence, usability, and accessibility to empower users to make informed healthcare decisions without the frustration of manual research.

Problem Statement

Many individuals experience uncertainty when choosing appropriate medications for mild illnesses. Over-the-counter options often vary in dosage, ingredients, and efficacy, creating confusion and the potential for misuse. MedGuide addresses this challenge by providing a **personalized, Al-driven solution** that guides users to suitable medicines, dosage schedules, and nearby pharmacy availability — all within a single, user-friendly interface.

Proposed Solution

The **MedGuide app** follows a streamlined, research-backed workflow:

1. Symptom Survey:

Users complete a brief, step-by-step survey describing their symptoms (e.g., cough, headache, fever, congestion).

2. Al Recommendation Engine:

A deep learning model processes survey inputs, cross-referencing symptom clusters, severity, user demographics, and medical data to suggest the most effective over-the-counter medication.

3. Personalized Calendar & Tracking:

The app automatically generates a daily medication calendar and sends **push notifications** to remind users of each dose. Users can log when they've taken a medication, enabling adherence tracking and historical review.

4. Pharmacy Inventory & Pricing:

Using the **Google Maps API** and web scraping, the system identifies nearby pharmacies, checks stock availability, and provides real-time price comparisons for recommended medications.

5. Safety Layer:

A **Drug Interaction Checker** verifies whether the suggested medication conflicts with existing prescriptions or allergies. A disclaimer ensures users understand that MedGuide is an informational tool — not a substitute for professional medical care.

Model Training and Data Collection

At the heart of MedGuide is a deep neural network that maps user symptoms to optimal medication recommendations.

Data Sources & Training Approach:

React Native

- Publicly available healthcare datasets, medical journals, and de-identified clinical data.
- Symptom clusters, severity levels, demographics (age, weight, etc.), contraindications, and side effects.
- The model evaluates both drug effectiveness and user safety, providing a reliable medication match.

Model Framework:

Tech Stack

Frontend

- Developed as a Python-based microservice using TensorFlow/PyTorch, hosted separately for modularity and speed.
- Connected via Express.js REST APIs to deliver real-time medication recommendations.

Cross-platform mobile app (iOS & Android)

Layer	Technology	Purpose
Backend	Node.js + Express.js	API routing, data storage, and authentication
Database	MongoDB	Storing user profiles, survey data, and medication logs
AI Microservice	Python (TensorFlow/PyTorch)	Deep learning model for medication recommendations
Mapping & Data	Google Maps API, Web Scraping	Locating nearby pharmacies and price comparisons

Core Features

- User Authentication Secure login system for storing health data safely.
- **Symptom Survey** Intuitive, step-by-step interface for symptom entry.
- Al Model Prediction Generates personalized medication and dosage schedule.
- Interactive Calendar Auto-schedules reminders with push notifications.
- Medication Tracking Users can log medication intake and monitor adherence.
- **Data Visualization** Charts show symptom trends and medication history.
- **Drug Interaction Checker** Prevents harmful medication combinations.
- Pharmacy Finder Lists nearby pharmacies with real-time pricing.

Roles and Responsibilities

• Frontend Developers (Aditi, Ira, Sreyasri):

Designed and built the React Native interface, implemented form components, and integrated calendar and notifications features.

Backend Developers (Vaishnavi, Ira, Nida):

Developed the Express.js API, managed MongoDB schema, and handled authentication and data flow.

• AI/ML Engineers (Vaishnavi, Pranay):

Trained and deployed the deep learning model, ensuring accurate medication matching and safe interaction filtering.

Outcomes

- Created a fully functional prototype demonstrating **end-to-end Al-driven medication recommendations**.
- Improved user experience by eliminating confusion during self-medication decisions.
- Integrated advanced safety checks and adherence tracking for higher trust and engagement.
- Delivered a 7-minute live demo featuring a working survey, Al output, and notification flow.

Tools & Frameworks

React Native, Express.js, Node.js, MongoDB, TensorFlow/PyTorch, Google Maps API, Figma, Canva, Postman