USTHB, FEI, Département d'Informatique

LMD Master 2 "Systèmes Informatiques Intelligents" 2019/2020

Module "Programmation Par Contraintes"

Travaux Dirigés

Série numéro 4 : Consistance de chemin

Exercice 1:

On considère le CSP discret binaire P=(X,D,C) suivant :

- $X = \{X_1, X_2, X_3\}$
- $D(X_1)=D(X_2)=D(X_3)=\{(0,1),(2,1),(0,4),(2,4)\}$
- $C = \{c_1, c_2, c_3\}$ avec
 - \circ c_1 : oblique(X_1, X_2)
 - \circ c₂: oblique(X₁,X₃)
 - \circ c₃: oblique(X_2,X_3)

Pour tous points A et B du plan, donnés par leurs coordonnées (a₁,b₁) et (a₂,b₂), respectivement :

oblique(A,B) si et seulement si $(a_1 \neq a_2 \text{ et } b_1 \neq b_2)$

- 1) Donnez une représentation matricielle de P.
- 2) Le CSP est-il consistant ? s'il ne l'est pas, un algorithme de consistance de chemin tel que PC2 peut-il en détecter l'inconsistance ? si oui, montrez comment ?

Exercice 2:

Soit P un CSP binaire discret donné par sa représentation matricielle M_P . Vous supposerez que P a n variables $X_1,...,X_n$ et que toutes les variables ont le même domaine $D=D(X_1)=...=D(X_n)$, de taille m. On notera par $M_P[i,j]$ l'élément (i,j) de la matrice M_P . Le but de l'exercice est de donner un algorithme implémentant l'opération de consistance de chemin $M_P[i,j]=M_P[i,j]\cap M_P[i,k]\circ MP[k,k]\circ M_P[k,j]$. Pour ce faire, il vous est demandé de procéder comme suit :

- 1) Donnez une fonction inters calculant l'intersection de deux contraintes représentées sous forme de matrices
- Donnez une fonction comp calculant la composition de deux contraintes représentées sous forme de matrices
- 3) Utilisez les deux fonctions **inters** et **comp** pour donner une fonction **pc** implémentant l'opération de consistance de chemin