Problem 1 Let
$$f(t) = \begin{cases} t, & 0 < t < \pi \\ \pi, & t \ge \pi \end{cases}$$
.

- a) Find the Laplace transform of f.
- **b)** Solve the initial value problem y'' + 4y = f(t), $t \ge 0$, y(0) = 1, y'(0) = 0.

Problem 2 Consider the boundary value problem for the Laplace equation:

$$u_{xx} + u_{yy} = 0, \ 0 < x < \pi, \ 0 < y < 2\pi, \quad u(0, y) = 0, u_x(\pi, y) = 0$$
 (*)

- a) Find all solutions of (*) on the form u(x,y) = F(x)G(y).
- b) Find a solution of (*) that also has the following values on the horizontal sides $u(x,0)=u(x,2\pi)=\sin\frac{3x}{2}+4\sin\frac{7x}{2}-5\sin\frac{11x}{2}.$

Problem 3 Find the inverse Fourier transform of the function

$$\frac{1}{(1+iw)^2}.$$

(Hint: you may use the formula $\mathcal{F}(e^{-x}u(x)) = \frac{1}{\sqrt{2\pi}(1+iw)}$ or you may apply the residue calculus.)

Problem 4 Let $u(x,y) = e^{2x} \cos by$.

- a) For which value(s) of b is u(x, y) harmonic?
- **b)** Find v(x,y) such that f(x+iy)=u(x,y)+iv(x,y) is an analytic function in the whole complex plane. Justify your answer.

Problem 5 Let $f(z) = (1 - z)^{-3}$.

- a) Use the Maclaurin series $(1-z)^{-1} = \sum_{n=0}^{\infty} z^n$ and term-wise differentiation to find the Maclaurin series of f(z). Find the radius of convergence of this series.
- **b)** Write down the Laurent series of the function f(z) with center $z_0 = 0$ that converges in $\{z : |z| > 1\}$.

Problem 6 Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + 4x + 5)^2}.$$

Miscellaneous

- Heaviside function $u(t)= \begin{cases} 1, & t\geq 0 \\ 0, & t<0 \end{cases}$, $u(t-a)= \begin{cases} 1, & t\geq a \\ 0, & t< a \end{cases}$
- Dirac Delta function $\delta(t-a)$ is zero everywhere except a and satisfies $\int_{-\infty}^{\infty} \delta(t-a) dt = 1$, moreover $\int_{-\infty}^{\infty} g(t) \delta(t-a) = g(a)$ for any continuous function g.
- Convolution For functions defined on the real line: $f * g(x) = \int_{-\infty}^{\infty} f(y)g(x-y)dy = \int_{-\infty}^{\infty} f(x-y)g(y)dy, -\infty < x < \infty;$ for functions defined only on the positive half-axis: $f * g(x) = \int_{0}^{x} f(y)g(x-y)dy.$

Laplace transform

- $\mathcal{L}\{f\}(s) = F(s) \int_0^\infty f(t)e^{-st}dt$
- $\mathcal{L}\lbrace e^{at}f(t)\rbrace(s) = F(s-a)$
- $\mathcal{L}{f'}(s) = s\mathcal{L}{f}(s) f(0)$
- $\mathcal{L}{f''}(s) = s^2 \mathcal{L}{f}(s) sf(0) f'(0)$
- $\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\}(s) = \frac{1}{s}\mathcal{L}\{f\}(s)$
- $\bullet \ \mathcal{L}\{f*g\} = \mathcal{L}\{f\}\mathcal{L}\{g\}$
- $\bullet \ \mathcal{L}\{f(t-c)u(t-c)\} = e^{-cs}F(s),$ c > 0
- $\mathcal{L}\{tf(t)\}(s) = -F'(s)$
- $\mathcal{L}\left\{\frac{f(t)}{t}\right\}(s) = \int_{s}^{\infty} F(\sigma)d\sigma$

f(t)	F(s)
1	$\frac{1}{s}$
$t^n, n = 1, 2, \dots$	$rac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{at}, n = 1, 2, \dots$	$\frac{n!}{(s-a)^{n+1}}$
$\cos bt$	$\frac{s}{s^2 + b^2}$
$\sin bt$	$\frac{b}{s^2 + b^2}$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}$
u(t-c), c > 0	$rac{e^{-cs}}{s}$
$\delta(t-c), c > 0$	e^{-cs}

Fourier series and Fourier transform

• Periodic functions with period 2L, real and complex form

$$f(x) \sim a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi}{L} x + b_n \sin \frac{n\pi}{L} x) \sim \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/L}$$

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx, \quad a_n = \frac{1}{L} \int_{-L}^{l} f(x) \cos \frac{n\pi}{L} x dx, \quad b_n = \frac{1}{L} \int_{-L}^{l} f(x) \sin \frac{n\pi}{L} x dx$$

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-in\pi x/L} dx$$

- Parseval's identities $\frac{1}{2L} \int_{-L}^{L} |f(x)|^2 dx = \sum_{n=-\infty}^{\infty} |c_n|^2$, $\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw$
- $\hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-iwx} dx$

•
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(w) e^{iwx} dw$$

•
$$\hat{f}'(w) = iw\hat{f}(w)$$

$$\bullet \ \widehat{f''}(w) = -w^2 \widehat{f}(w)$$

•
$$\widehat{f(x-a)}(w) = e^{-iaw}\widehat{f}(w)$$

•
$$\hat{f}(w-b) = e^{\widehat{ibx}} \widehat{f(x)}(w)$$

$$\bullet \ \widehat{f * g} = \sqrt{2\pi} \hat{f} \hat{g}$$

$\frac{f(x)}{\delta(x-a)}$	$\hat{f}(w)$
$\delta(x-a)$	$\frac{1}{\sqrt{2\pi}}e^{-iaw}$
$\begin{cases} 1, & -b \le x \le b \\ 0, & x > b \end{cases}$	$\sqrt{\frac{2}{\pi}} \frac{\sin bw}{w}$
$e^{-ax}u(x)$	$\frac{1}{\sqrt{2\pi}(a+iw)}$
$\frac{1}{x^2 + a^2}$	$\sqrt{\frac{\pi}{2}} \frac{e^{-a w }}{a}$
e^{-ax^2}	$\left[\frac{1}{\sqrt{2a}} e^{-w^2/(4a)} \right]$

Complex numbers and analytic functions

•
$$e^{x+iy} = e^x(\cos y + i\sin y)$$
,
 $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$, $\cosh z = \frac{e^z + e^{-z}}{2}$, $\sinh z = \frac{e^z - e^{-z}}{2}$

• Taylor and Laurant series of an analytic function

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \ a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}, \ b_n = \frac{1}{2\pi i} \oint_C f(z) (z - z_0)^{n-1} dz$$