

UNIVERSIDAD DE BUENOS AIRES FACULTAD DE INGENIERÍA Año 2015 - 1^{er} Cuatrimestre

ÁLGEBRA II A (61.08)

Resumen de Álgebra II

INTEGRANTE:

Maria Inés Parnisari - 92235 ⟨maineparnisari@gmail.com⟩

Menéndez, Martín Nicolás - 92830 ⟨menendez91@live.com.ar⟩

Índice

1.	Matrices	3
	1.1. Propiedades generales	3 4
	1.4. Subespacios fila, columna y null	4
2.	Espacios vectoriales	6
	2.1. Propiedades de los subespacios	6
	2.2. Independencia lineal	6
	2.3. Operaciones con subespacios	6
	2.4. Bases	7
	2.5. Coordenadas de un vector en una base	7
	2.6. Matriz de cambio de variable	7
	2.7. Teorema de la dimensión	7
3.	Producto interno	8
	3.1. Axiomas	8
	3.2. Producto interno canónico	8
	3.3. Definiciones	8
	3.4. Matriz asociada al producto interno	10
4.	Proyecciones y matrices de proyección	11
	4.1. Propiedades de la proyección	11
	4.2. Proyección y reflexión	11
	4.2.1. Proyección y transformaciones lineales	12
	4.2.2. Reflexión y transformaciones lineales	12
	4.3. Matriz de Householder	13
	4.4. Rotaciones en R^3	13
	4.5. Proceso de Gram-Schmidt	13
	4.6. Matrices de proyección	14 14
	4.7. Inversas y pseudoinversas	15
	4.8.1. Norma mínima	15
	4.9. Regresión lineal	16
	+.9. Regresion inical	10
5.	Transformaciones lineales	16
	5.1. Condiciones para las Transformaciones lineales	16
	5.2. Núcleo e Imágen	17
		17
	5.3.1. Monomorfismo(Inyectividad)	17
	5.3.3. Isomorfismo(Biyectividad)	17
	5.4. Matriz asociada a una Transformación lineal	17
	5.5. Teorema fundamental de las Transformaciones lineales	18
	5.6. Composición de Transformaciones lineales	18
	5.7. Operadores lineales	18
6.	Autovalores y Autovectores	18
7.	Matrices hermíticas y simétricas	18
8.	Formas cuadráticas	18
9	Descomnosición en Valores Singulares (DVS)	18

Álgebra II (61.08) Página 1 de 18

	INDICE
10. Ecuaciones diferenciales	18
11. Sistemas de Ecuaciones diferenciales lineales	18

Álgebra II (61.08) Página 2 de 18

Matrices 1.

Propiedades generales

Propiedades de matrices

Dadas las matrices A, B, C se tiene que:

$$A + B = B + A$$

$$A \perp (B \perp C) - (A \perp B) \perp C$$

$$\alpha(A+B) = \alpha A + \alpha B$$

$$(\alpha + \beta)A = \alpha A + \beta A$$

$$\alpha (\beta A) = (\alpha \beta) A$$

$$A + 0_n = A$$

$$A + (-A) = 0_n$$

■
$$A + (B + C) = (A + B) + C$$
 ■ $A(B + C) = AB + AC$

$$(A+B)C = AC + BC$$

$$\bullet$$
 $A(BC) = (AB)C$

$$a(AB) = (\alpha A)B = A(\alpha B)$$

$$\bullet \ A0_n = 0_n$$

Ж

Propiedades de la inversa, la traza y la traspuesta

Propiedades de matrices

Dadas las matrices A, B, C se tiene que:

Propiedades de la inversa:

$$(A^{-1})^{-1}$$

Propiedades de la traza:

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$\bullet (\alpha A)^{-1} = \frac{A^{-1}}{\alpha}, \alpha \neq 0 \qquad \bullet \operatorname{tr}(AB) = \operatorname{tr}(BA)$$

$$A^{-1} = \frac{\operatorname{adj}(A)}{|A|}$$

$$tr(A+B) = tr(A) + tr(B)$$

$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$

•
$$\operatorname{tr}(\alpha A) = \alpha \operatorname{tr}(A)$$

$$\quad \blacksquare \ \operatorname{tr}(A^T) = \operatorname{tr}(A)$$

Propiedades de la traspuesta:

$$(A+B)^T = A^T + B^T$$

$$(AB)^T = B^T A^T$$

$$(\alpha A)^T = \alpha A^T$$

$$(A^T)^{-1} = (A^{-1})^T$$

Propiedades de los determinantes 1.3.

Propiedades de determinantes

Sean $A, B \in \mathbb{R}^{n \times m}$

$$|A^T| = |A| \tag{1.1}$$

$$|A^{T}| = |A|$$
 (1.1)
 $|AB| = |A||B|$ (1.2)

Si B la obtengo de sumar k veces una fila de A sobre otra:

$$|B| = |A| \tag{1.3}$$

Si B la obtengo de intercambiar k veces las fila de A:

$$|B| = (-1)^k |A| \tag{1.4}$$

Si B la obtengo de multiplicar por k, n veces las filas de A:

$$|B| = k^n |A| \tag{1.5}$$

Si A es una matriz triangular:

$$|A| = \prod_{i=1}^{n} aii \tag{1.6}$$

Subespacios fila, columna y null

Espacio fila, columna y nulo de matrices

Sean $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{r \times n}$, se define:

- **Espacio Fila:** Fif $(A) = \{x \in R^m | x \text{ es combinación lineal de las filas de } A\}$
- **Espacio Columna:** $Col(A) = \{b \in R^n | Ax = b \text{ para alguna x} \}$
- Espacio nulo: $\operatorname{Nul}(A) = \{x \in R^m | Ax = 0\}$

Propiedades de los espacios definidos

Propiedades:

$$Nul(A) = Nul(A^T A) = Fil(A)^{\perp}$$
(1.7)

$$Nul(A^T) = Nul(AA^T) = Col(A)^{\perp}$$
(1.8)

$$\operatorname{rango}(A) = \operatorname{rango}(A^T A) \Rightarrow A^T A \tag{1.9}$$

$$Dim(Col(A)) = Dim(Fil(A))$$
(1.10)

$$\operatorname{Col}(A) \bigotimes \operatorname{Col}(A)^{\perp} = R^{n} \tag{1.11}$$

$$\operatorname{Fil}(A) \bigotimes \operatorname{Fil}(A)^{\perp} = R^{m} \tag{1.12}$$

$$\operatorname{rango}(A) + \dim \operatorname{Nul}(A) = m \tag{1.13}$$

$$Col(BA) \subseteq Col(B)$$
, Iguales si $rango(A) = n$ (1.14)

$$Nul(A) \subseteq Nul(BA)$$
, Iguales si rango $(B) = n$ (1.15)

Si
$$\operatorname{rango}(A) = n \Rightarrow \operatorname{rango}(BA) = \operatorname{rango}(B)$$
 (1.16)

$$Si \operatorname{rango}(B) = n \Rightarrow \operatorname{rango}(BA) = \operatorname{rango}(A) \tag{1.17}$$

$$Col(A) \perp Col(B) \Leftrightarrow A^T B = 0 \tag{1.18}$$

De (1.15) se ve que $A^T A$ invertible $\longleftrightarrow A$ invertible

X

Matrices equivalentes

Dos matrices A y B son equivalentes si existen otras dos matrices E y F regulares tal que:

$$A = EBF (1.19)$$

Dos matrices equivalentes pueden pensarse como dos descripciones de una misma Transformación Lineal, pero con respecto a bases distintas.

Matrices semejantes

Dos matrices cuadradas A y B son semejantes (notamos $A \sim B$) si y solo si existe una matriz P inversible tal que:

$$B = P^{-1}AP, 6 \tag{1.20}$$

$$A = PBP^{-1} \tag{1.21}$$

ম

Propiedades de matrices semejantes

Dos matrices semejantes pueden pensarse como dos descripciones de un mismo operador lineal, pero con respecto a bases distintas. Estas dos matrices cumplen que:

$$|A| = |B| \tag{1.22}$$

$$tr(A) = tr(B) (1.23)$$

$$rango(A) = rango(B) \tag{1.24}$$

$$p_A(\lambda) = p_B(\lambda) \Rightarrow \sigma(A) = \sigma(B)$$
 (1.25)

X

Álgebra II (61.08) Página 5 de 18

2. Espacios vectoriales

2.1. Propiedades de los subespacios

Propiedades de los subespacios

S es un subespacio vectorial del espacio V_K si y solo si:

$$0_V \in S \tag{2.1}$$

$$(\alpha X + Y) \in S, \forall X, Y \in V \text{ y } \forall \alpha \in K$$
 (2.2)

ĸ

2.2. Independencia lineal

Combinación lineal

El vector $\overline{\mathbf{x}}$ es una combinación lineal de $\overline{\mathbf{v}}_1, \overline{\mathbf{v}}_2, \dots, \overline{\mathbf{v}}_n$ si:

$$\bar{\mathbf{x}} = \sum_{i=1}^{n} \alpha_i v_i \tag{2.3}$$

Y si a_1, \ldots, a_n no son todos nulos.

X

Independencia lineal

 $\bar{\mathbf{x}}$ es linealmente independiente si:

$$\sum_{i=1}^{n} \alpha_i v_i = 0,$$
 (2.4)

$$a_i = 0 \forall i \tag{2.5}$$

Dos vectores son **linealmente dependientes** si son proporcionales. Un subconjunto de un conjunto linealmente dependiente sigue siendo linealmente dependiente

X

2.3. Operaciones con subespacios

Operaciones con subespacios

- Intersección: $S = \bigcap_{i=1}^n S_i = \{\overline{\mathbf{x}} \in V | \overline{\mathbf{x}} \in S_i , \forall i=1,\dots,n \}$
- Suma: $S = \sum_{i=1}^{n} S_i = \text{gen}\left\{\bigcup_{i=1}^{m} B_i\right\}$, donde B_i es una base de S_i
- Unión: $S = S_1 \cup S_2$ es un subespacio cuando $S_1 \subseteq S_2$ ó $S_2 \subseteq S_1$
- Suma directa: S_1, \ldots, S_k están en suma directa \iff la unión de sus bases es base de V

Dos subespacios son suplementarios cuando están en suma directa y su suma es todo el espacio.

X

Álgebra II (61.08) Página 6 de 18

2.4. Bases

Bases

Si $Dim(V) = n, \{\overline{\mathbf{v}}_1, \dots, \overline{\mathbf{v}}_n\}$ es base de V si y solo si:

$$\{v_1, \dots, v_n\}$$
 genera V (2.6)

$$\{v_1, \dots, v_n\}$$
 son linealmente independientes (2.7)

×

2.5. Coordenadas de un vector en una base

Coordenadas de un vector en una base

Si $\{\overline{\mathbf{v}}_1,\ldots,\overline{\mathbf{v}}_n\}$ es base de un espacio vectorial B y $\overline{\mathbf{x}}=\sum_{i=1}^n\alpha_i\overline{\mathbf{v}}_i$, entonces $C_B(\overline{\mathbf{x}})=(\alpha_1,\ldots,\alpha_n)$

Dado un vector y una base, las coordenadas de ese vector en esa base son únicas.

 $\forall \overline{\mathbf{v}}, \overline{\mathbf{w}} \in V \text{ y } \forall k \in K$:

$$C_B(v+w) = C_B(v) + C_B(w)$$
 (2.8)

$$C_B(k \times v) = k \times C_B(v) \tag{2.9}$$

Finalmente $\{\overline{\mathbf{v}}_1,\ldots,\overline{\mathbf{v}}_n\}$ son linealmente independientes $\iff \{C_B(\overline{\mathbf{v}}_1),\ldots,C_B(\overline{\mathbf{v}}_n)\}$ lo son para cualquier base de B.

×

2.6. Matriz de cambio de variable

Matriz de cambio de variable

Sean $B = {\overline{\mathbf{v}}_1, \dots, \overline{\mathbf{v}}_n}$ y $C = {\overline{\mathbf{w}}_1, \dots, \overline{\mathbf{w}}_n}$ bases del espacio V. Las matrices de cambio de base son:

$$C_{BC} = \begin{bmatrix} & & & & & & \\ C_C(v_1) & C_C(v_2) & \dots & C_C(v_n) \\ & & & & & \end{bmatrix}$$
 (2.10)

$$C_{CB} = \begin{bmatrix} | & | & | \\ C_B(w_1) & C_B(w_2) & \dots & C_B(w_n) \end{bmatrix} = C_{BC}^{-1}$$
(2.11)

Si B y C son bases ortonormales, entonces C_{BC} es una matriz ortogonal.

×

2.7. Teorema de la dimensión

Teorema de la dimensión

Dados los subespacios S, H y T:

$$Dim(S+H) = Dim(S) + Dim(H) - Dim(S \cap H)$$
 (2.12)

$$Dim(S + H + T) = Dim(S) + Dim(H) + Dim(T) - Dim(S \cap (H + T)) - Dim(H \cap T)$$
 (2.13)

×

Álgebra II (61.08) Página 7 de 18

3. Producto interno

3.1. Axiomas

Axiomas del producto interno

Sea $<,>: V_K \times V_K \to R$ un producto interno:

- 1. $(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \in K \ \mathbf{y} \ \forall \overline{\mathbf{x}}, \overline{\mathbf{y}} \in V$
- 2. $(\overline{\mathbf{x}}, \overline{\mathbf{y}}) = (\overline{\overline{\mathbf{y}}, \overline{\mathbf{x}}})$, $\forall \overline{\mathbf{x}}, \overline{\mathbf{y}} \in V$
- 3. $(\lambda \overline{\mathbf{x}}, \overline{\mathbf{y}}) = \overline{\lambda}(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, $\forall \overline{\mathbf{x}}, \overline{\mathbf{y}} \in V$ y $\forall \lambda \in K$
- 4. $(\overline{\mathbf{x}}, \lambda \overline{\mathbf{y}}) = \lambda(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, $\forall \overline{\mathbf{x}}, \overline{\mathbf{y}} \in V$ y $\forall \lambda \in K$
- 5. $(\overline{\mathbf{x}}, \overline{\mathbf{y}} + \overline{\mathbf{z}}) = (\overline{\mathbf{x}}, \overline{\mathbf{y}}) + (\overline{\mathbf{x}}, \overline{\mathbf{z}})$, $\forall \overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}} \in V$
- 6. $(\overline{\mathbf{x}}, \overline{\mathbf{x}}) \ge 0, (\overline{\mathbf{x}}, \overline{\mathbf{y}}) = 0 \longleftrightarrow \overline{\mathbf{x}} = \overline{\mathbf{0}}$

X

3.2. Producto interno canónico

Producto interno canónico

Se definen los siguientes productos internos para los siguientes espacios vectoriales:

- Vectores reales: $R^n: (\overline{\mathbf{x}}, \overline{\mathbf{y}}) = \overline{\mathbf{x}}^T \overline{\mathbf{y}}$
- Vectores complejos: $C^n: (\overline{\mathbf{x}}, \overline{\mathbf{y}}) = \overline{\mathbf{x}}^H \overline{\mathbf{y}}$
- Matrices reales: $R^{n \times m} : (A, B) = \operatorname{tr}(A^T B)$
- Matrices complejas: $C^{n \times m} : (A, B) = \operatorname{tr}(A^H B)$
- Funciones reales: $P_R[a,b]:(p,q)=\int_a^b p(t)q(t)dt$
- Funciones complejas: $P_C[a,b]:(p,q)=\int_a^b \overline{p(t)}q(t)dt$

X

3.3. Definiciones

Ortogonalidad

Dados $\overline{\mathbf{x}}$, $\overline{\mathbf{y}}$:

$$(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = 0 \Longleftrightarrow \bar{\mathbf{x}} \perp \bar{\mathbf{y}} \tag{3.1}$$

Los elementos pueden ser de cualquier espacio vectorial, se utilizaron vectores por comodidad.

X

norma de un vector

Se define la norma de un vector como:

$$|\overline{\mathbf{x}}|^2 = (\overline{\mathbf{x}}, \overline{\mathbf{x}}) \tag{3.2}$$

La norma de un vector depende del producto interno, pero cumple las siguientes propiedades:

- $|\overline{\mathbf{x}}| \in R \forall \overline{\mathbf{x}} \in V$
- $|\overline{\mathbf{x}}| \ge 0 (|\overline{\mathbf{x}}| = 0 \Longleftrightarrow \overline{\mathbf{x}} = 0)$
- $|k \cdot \overline{\mathbf{x}}| = |k| \cdot |\overline{\mathbf{x}}|$
- Desigualdad de Cauchy-Schwarz:

$$|(\overline{\mathbf{x}}, \overline{\mathbf{y}})| \le |\overline{\mathbf{x}}| \cdot |\overline{\mathbf{y}}|, x, y \in V_K \tag{3.3}$$

La igualdad se cumple si $\bar{\mathbf{x}} \parallel \bar{\mathbf{y}}$

Desigualdad triangular:

$$|\overline{\mathbf{x}} + \overline{\mathbf{y}}| \le |\overline{\mathbf{x}}| + |\overline{\mathbf{y}}| \tag{3.4}$$

■ Teorema de pitágoras: Si $\overline{x} \perp \overline{y}$ entonces:

$$|\overline{\mathbf{x}} + \overline{\mathbf{y}}|^2 = |\overline{\mathbf{x}}|^2 + |\overline{\mathbf{y}}|^2 \tag{3.5}$$

La recíproca solo vale para R

Identidad del paralelogramo:

$$|\overline{\mathbf{x}} + \overline{\mathbf{y}}|^2 + |\overline{\mathbf{x}} - \overline{\mathbf{y}}|^2 = 2(|\overline{\mathbf{x}}|^2 + |\overline{\mathbf{y}}|^2), \forall \overline{\mathbf{x}}, \overline{\mathbf{y}} \in V$$
(3.6)

Los elementos pueden ser de cualquier espacio vectorial, se utilizaron vectores por comodidad.

Ángulo entre dos vectores

Dado $\overline{\mathbf{x}}$, $\overline{\mathbf{y}}$:

$$\cos(\theta) = \frac{(\overline{\mathbf{x}}, \overline{\mathbf{y}})}{|\overline{\mathbf{x}}| \cdot |\overline{\mathbf{y}}|}$$
(3.7)

Con $\theta \in [0, \pi], \forall \overline{\mathbf{x}}, \overline{\mathbf{y}} \neq 0$ para espacios vectoriales reales con producto interno.

Los elementos pueden ser de cualquier espacio vectorial, se utilizaron vectores por comodidad.

Complemento ortogonal

Sea
$$A \subset V_K \cdot A^{\perp} = \{ \overline{\mathbf{x}} \in V_K | (\overline{\mathbf{x}}, \overline{\mathbf{y}}) = 0, \forall \overline{\mathbf{y}} \in A \}$$

Para el cálculo del complemento ortogonal a un subespacio de dimensión finita, alcanza con exigir la ortogonalidad a un sistema de generadores

Los elementos pueden ser de cualquier espacio vectorial, se utilizaron vectores por comodidad.

Álgebra II (61.08) Página 9 de 18

Distancia entre vectores

Dados $\overline{\mathbf{x}}, \overline{\mathbf{y}}$, se define la función distancia como:

$$d: V_R \times V_R \to R^+: d(\overline{\mathbf{x}}, \overline{\mathbf{y}}) = |\overline{\mathbf{x}} - \overline{\mathbf{y}}| = |\overline{\mathbf{y}} - \overline{\mathbf{x}}|$$
(3.8)

Los elementos pueden ser de cualquier espacio vectorial, se utilizaron vectores por comodidad.

×

3.4. Matriz asociada al producto interno

Matriz de producto interno

Sea $B=\{\overline{\mathbf{v}}_1,\ldots,\overline{\mathbf{v}}_k\}$ base de V_K . Entonces $G\in K^{k\times k}$, $g_{ij}=(\overline{\mathbf{v}}_i,\overline{\mathbf{v}}_j)$ es la matriz de producto interno:

$$G = \begin{bmatrix} |\overline{\mathbf{v}}_1|^2 & \dots & (\overline{\mathbf{v}}_1, \overline{\mathbf{v}}_k) \\ \vdots & \ddots & \vdots \\ (\overline{\mathbf{v}}_k, \overline{\mathbf{v}}_1) & \dots & |\overline{\mathbf{v}}_k|^2 \end{bmatrix}$$
(3.9)

Si B es base de V_K y G es la matriz del producto interno en esa base, entonces $\forall \overline{\mathbf{x}}, \overline{\mathbf{y}} \in V$:

$$(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = C_B^H(\bar{\mathbf{x}}) \cdot G \cdot C_B(\bar{\mathbf{y}})$$
(3.10)

Y

Propiedades de la matriz de producto interno

Dada la matriz G de producto interno se tiene que:

$$g_{ii} \ge 0, \forall i = 1, \dots, k \tag{3.11}$$

$$G^H = H (3.12)$$

$$G$$
 es definida positiva (3.13)

$$\exists G^{-1} \tag{3.14}$$

$$G$$
 de una Base Ortogonal (BOG) es una matriz diagonal (3.15)

G de una Base Ortonornal (BON) es una matriz identidad (3.16)

X

4. Proyecciones y matrices de proyección

4.1. Propiedades de la proyección

Propiedades de la proyección

Sea $S \subset VyS^{\perp}$ su complemento ortogonal, entonces $\forall \overline{\mathbf{x}} \in V$:

$$\overline{\mathbf{x}} = \underbrace{\overline{\mathbf{u}}}_{\in S} + \underbrace{\overline{\mathbf{v}}}_{\in S^{\perp}} = P_S(\overline{\mathbf{x}}) + P_S^{\perp}(\overline{\mathbf{x}}) \tag{4.1}$$

Se definen las siguientes propiedades:

- $P_S(\overline{\mathbf{x}})$ es el vector de S mas próximo a $\overline{\mathbf{x}}$
- $P_S(\overline{\mathbf{v}}) = \overline{\mathbf{v}} \Longleftrightarrow \overline{\mathbf{v}} \in S \text{ y además } P_S(\overline{\mathbf{w}}) = 0 \Longleftrightarrow \overline{\mathbf{w}} \in S^{\perp}$
- Por pitágoras: $|\overline{\mathbf{x}}|^2 = |P_S(\overline{\mathbf{x}})|^2 + |P_S^{\perp}(\overline{\mathbf{x}})|^2, \forall x \in V$
- $|P_S(\overline{\mathbf{x}})| \leq |\overline{\mathbf{x}}|$. Si $|P_S(\overline{\mathbf{x}})| = |\overline{\mathbf{x}}|$ entonces $\overline{\mathbf{x}} \in S$
- $d(\overline{\mathbf{x}}, S) = |P_S^{\perp}(\overline{\mathbf{x}})|$
- $d(\overline{\mathbf{x}}, S^{\perp}) = |P_S(\overline{\mathbf{x}})|$

X

4.2. Proyección y reflexión

Proyección y reflexión

Sea S un subespacio de V, y $B = \{\overline{\mathbf{v}}_1, \dots, \overline{\mathbf{v}}_k\}$ una base ortogonal (BOG) de S. Entonces $\forall \overline{\mathbf{x}} \in V$:

$$P_S(\overline{\mathbf{x}}) = \sum_{i=1}^k \frac{(\overline{\mathbf{v}}_i, \overline{\mathbf{x}})}{(\overline{\mathbf{v}}_i, \overline{\mathbf{v}}_i)} \overline{\mathbf{v}}_i$$
(4.2)

$$R_S(\overline{\mathbf{x}}) = 2P_S(\overline{\mathbf{x}}) - \overline{\mathbf{x}} = 2P_S(\overline{\mathbf{x}}) - \left(P_S(\overline{\mathbf{x}}) + P_S^{\perp}(\overline{\mathbf{x}})\right) = P_S(\overline{\mathbf{x}}) - P_S^{\perp}(\overline{\mathbf{x}}) = \overline{\mathbf{x}} - 2P_S^{\perp}(\overline{\mathbf{x}})$$
(4.3)

N

4.2.1. Proyección y transformaciones lineales

Proyecciones y Transformaciones lineales

Sea $T:V_K\to V_K$ una transformación lineal tal que:

$$Im(P_S) = S (4.4)$$

$$Nul(P_S) = S^{\perp} \tag{4.5}$$

 $Y \text{ sea } B = \{ \underbrace{\overline{\mathbf{v}}_1, \dots, \overline{\mathbf{v}}_q}_{\in S}, \underbrace{\overline{\mathbf{v}}_{q+1}, \dots, \overline{\mathbf{v}}_n}_{\in S^\perp} \} \text{ una base de V, entonces la matriz de la transformación lineal es: }$

$$[P_S]_B = \begin{bmatrix} 1 & & \dots & 0 \\ & \ddots & & & \vdots \\ & & 1 & & \\ & & & 0 & & \\ \vdots & & & \ddots & \\ 0 & \dots & & & 0 \end{bmatrix}$$
(4.6)

Tantos 1 como la dimensión del espacio sobre el cual proyecto, y tantos 0 como la dimensión del complemento ortogonal.

Nota: La matriz de un operador proyección en una Base Ortonormal (BON) es una matriz de proyección. En cualquiera otra base, no lo es.

4.2.2. Reflexión y transformaciones lineales

Proyecciones y Transformaciones lineales

Sea $T:V_K\to V_K$ una transformación lineal tal que:

$$T(\overline{\mathbf{v}}) = \overline{\mathbf{v}}, \forall \overline{\mathbf{v}} \in S \tag{4.7}$$

$$T(\overline{\mathbf{v}}) = -\overline{\mathbf{v}}, \forall \overline{\mathbf{v}} \in S^{\perp} \tag{4.8}$$

 $\text{Y sea } B = \{ \underbrace{\overline{\mathbf{v}}_1, \dots, \overline{\mathbf{v}}_q}_{\in S}, \underbrace{\overline{\mathbf{v}}_{q+1}, \dots, \overline{\mathbf{v}}_n}_{\in S^\perp} \} \text{ una base de V, entonces la matriz}$

de la transformación lineal es:

$$[T]_{B} = \begin{bmatrix} 1 & & \dots & 0 \\ & \ddots & & & \vdots \\ & & 1 & & \\ & & & -1 & & \\ \vdots & & & \ddots & \\ 0 & \dots & & & -1 \end{bmatrix}$$
(4.9)

Tantos 1 como la dimensión del espacio sobre el cual proyecto, y tantos -1 como la dimensión del complemento ortogonal.

Nota: La matriz de un operador proyección en una Base Ortonormal (BON) es una matriz de proyección. En cualquiera otra base, no lo es.

Figura 4.1: Proyección y reflexión

X

Álgebra II (61.08) Página 12 de 18

4.3. Matriz de Householder

Propiedades de la proyección

La matriz de reflexión sobre un subespacio de dimensión n-1 que es ortogonal a un vector $\overline{\mathbf{w}}$ en un espacio de dimensión n se puede obtener mediante la expresión:

$$H = I_d - 2\frac{\overline{\mathbf{w}} \cdot \overline{\mathbf{w}}^T}{\overline{\mathbf{w}}^T \cdot \overline{\mathbf{w}}}$$

$$\tag{4.10}$$

Dicha matriz tiene las siguientes propiedades:

- Es involutiva: $H \circ H = I_d$
- Es simétrica: $H^T = H$
- Es inversible: $\exists H^{-1} \ y \ \exists H^{-1} = H$
- Es ortogonal: $H^TH = HH^T = I_d$

Rotaciones en \mathbb{R}^3

Rotaciones en R^3

Sea $B = {\bar{\mathbf{v}}_1, \bar{\mathbf{v}}_2, \bar{\mathbf{v}}_3}$ una Base Ortonormal (BON) de R^3 y sea T la rotación θ grados alrededor del eje v_i :

Rotación sobre
$$\overline{\mathbf{v}}_2 : [T]_B = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$
 (4.12)

Rotación sobre
$$\overline{\mathbf{v}}_3 : [T]_B = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (4.13)

(4.14)

4.5. Proceso de Gram-Schmidt

Proceso de Gram-Schmidt

Dada una base $\{\overline{\mathbf{x}}_1,\overline{\mathbf{x}}_2,\ldots,\overline{\mathbf{x}}_p\}$ para un subespacio $W\in R^n$ defina:

1.
$$\overline{\mathbf{v}}_1 = \overline{\mathbf{x}}_1$$

2.
$$\overline{\mathbf{v}}_2 = \overline{\mathbf{x}}_2 - \frac{\overline{\mathbf{x}}_2 \cdot \overline{\mathbf{v}}_1}{\overline{\mathbf{v}}_1 \cdot \overline{\mathbf{v}}_1} \overline{\mathbf{v}}_1$$

3.
$$\overline{\mathbf{v}}_p = \overline{\mathbf{x}}_p - \sum_{i=1}^{p-1} \frac{\overline{\mathbf{x}}_p \cdot \overline{\mathbf{v}}_i}{\overline{\mathbf{v}}_i \cdot \overline{\mathbf{v}}_i} \overline{\mathbf{v}}_i$$

Entonces $\{\overline{\mathbf{v}}_1, \overline{\mathbf{v}}_2, \dots, \overline{\mathbf{v}}_p\}$ es una Base Ortogonal (BOG) de W.

Si luego se divde a cada componente por la norma de la base se obtiene una Base Ortogonal (BON) de W.

4.6. Matrices de proyección

Matriz de proyección

Utilizando el producto interno canónico de sobre K^n , con K = R o K = C.

 $P \in K^{n \times n}$ es una matriz de proyección si y solo si:

$$P^2 = P \tag{4.15}$$

$$P^H = P (4.16)$$

Dicha matriz tiene las siguientes propiedades:

- $\operatorname{Col}(P) = \operatorname{Nul}(P)^{\perp}$
- $P \cdot y = y \Longleftrightarrow y \in \operatorname{Col}(P)$
- Si P_S es matriz de proyección sobre S y P_S^{\perp} es matriz de proyección sobre S^{\perp} entonces $P_S + P_S^{\perp} = I_d$
- Las columnas de P son una base del espacio sobre el cual proyectan
- rango $(P) = \operatorname{tr}(P)$
- $\det P \neq 0$ si $P \neq I_d$
- Si P_1 y P_2 son matrices de proyección y $P_1 \cdot P_2 = P_2 \cdot P_1 = 0$, entonces $P_1 + P_2$ es matriz de proyección y rango $(P_1 + P_2) = \text{rango}(P_1) + \text{rango}(P_2)$

Obtención de la matriz de proyección:

- 1. Sea Q una matriz cuyas columnas son una Base Ortonormal (BON) de $S \subset V$. Entonces la única matriz de proyección sobre S es $[P_S] = Q \cdot Q^T$. La matriz de proyección sobre S^{\perp} es $[P_S^{\perp}] = I_d [P_S]$
- 2. Sea $B=\{\overline{\mathbf{v}}_1,\ldots,\overline{\mathbf{v}}_q\}$ una base de S, y A la matriz que tiene por columnas a $\overline{\mathbf{v}}_1,\ldots,\overline{\mathbf{v}}_q$. Entonces la única matriz de proyección sobre S se obtiene mediante $[P_S]=A\left(A^HA\right)^{-1}A^H=AA^\#$

4.7. Inversas y pseudoinversas

Propiedades de la pseudoinversa

Sea $A \in K^{n \times q} | \operatorname{rango}(A) = q$. La matriz pseudoinversa de A es $A^{\#} = (A^H A)^{-1} A^H$:

- Si A es cuadrada invertible, $A^{-1} = A^{\#}$
- $A^\# \in R^{q \times n}$
- $A^{\#}A = I_{d_{(q)}}$
- $AA^{\#} = [P]_{Col(A)}$
- $\operatorname{Nul}(AA^{\#}) = [\operatorname{Col}(A)]^{\perp}$

×

4.8. Cuadrados mínimos

Cuadrados mínimos

Sea $A \in K^{n \times q}, \overline{\mathbf{x}} \in K^q, \overline{\mathbf{b}} \in R^n$. Si Ax = b tiene una solución extra, entonces $\overline{\mathbf{b}} \in \operatorname{Col}(A)$. Si $b \notin \operatorname{Col}(A)$, intentamos hallar una solución $\hat{\overline{\mathbf{x}}} \in K^q$ (la solución por **cuadrados mínimos**) tal que:

- $|A\hat{\overline{\mathbf{x}}} \overline{\mathbf{b}}| < |A\overline{\mathbf{u}} \overline{\mathbf{b}}|, \forall \overline{\mathbf{u}} \in K^q$
- $d(A\hat{\overline{\mathbf{x}}}, \overline{\mathbf{b}}) \leq d(A\overline{\mathbf{u}}, \overline{\mathbf{b}}), \forall \overline{\mathbf{u}} \in K^q$
- $|A\hat{\overline{\mathbf{x}}}| \leq |\overline{\mathbf{b}}|$ (Son iguales si $\overline{\mathbf{b}} \in \operatorname{Col}(A)$)
- Ecuaciones normales de cuadrados mínimos: $A^T A \hat{\overline{\mathbf{x}}} = A^T \overline{\mathbf{b}} = \hat{\overline{\mathbf{b}}}$

• $A\hat{\bar{\mathbf{x}}} = \hat{\bar{\mathbf{b}}} = P_{\operatorname{Col}(A)}(\bar{\mathbf{b}})$ si y solo si:

Figura 4.2: Cuadrados mínimos

$$A\hat{\overline{\mathbf{x}}} \in \operatorname{Col}(A) \tag{4.17}$$

$$\overline{\mathbf{b}} - A\hat{\overline{\mathbf{x}}} \in \operatorname{Col}(A)^{\perp} \tag{4.18}$$

X

Propiedades de Cuadrados mínimos

- 1. Si $\hat{\bar{\mathbf{x}}} = 0$ entonces $\bar{\mathbf{b}} \in [\operatorname{Col}(A)]^{\perp}$. La recíproca solo es cierta si A es invertible.
- 2. Si las columnas de A son linealmente independientes, la solución por cuadrados mínimos es única y se obtiene mediante:

$$\hat{\overline{\mathbf{x}}} = (A^T A)^{-1} A^T \overline{\mathbf{b}} = A^\# \overline{\mathbf{b}}$$
(4.19)

Si las columnas de A son linealmente dependientes, el sistema $A^T A \hat{\overline{\mathbf{x}}} = A^T b$ tiene infinitas soluciones, y éstas son de la forma $\hat{\overline{\mathbf{x}}} = \hat{\overline{\mathbf{x}}}_p + \hat{\underline{\mathbf{x}}}_n$

- 3. Si $\overline{\mathbf{b}} \in \operatorname{Col}(A)$, entonces toda solución de $A\overline{\mathbf{x}} = \overline{\mathbf{b}}$ es una solución exacta y por cuadrados mínimos
- 4. El error de aproximación ϵ es igual a $|\overline{\mathbf{b}} \hat{\overline{\mathbf{b}}}|$

4.8.1. Norma mínima

Pseudoinversa de Moore-Pensore

La solución por cuadrados mínimos de norma mínima pertenece al espacio Fil(A)y se obtiene como:

$$\tilde{\overline{\mathbf{x}}} = A^{+} \overline{\mathbf{b}} \tag{4.20}$$

Siendo A^+ la pseudoinversa de Moore-Penrose de A.

Álgebra II (61.08)

4.9. Regresión lineal

Regresión lineal

Sean los puntos $\overline{\mathbf{P}}_i = (x_i, y_i)$ con $i = 1, 2, \dots, n$. La recta que mejor aproxima a los puntos es:

$$\overline{\mathbf{y}} = \alpha_0 \overline{\mathbf{1}} + \alpha_1 \overline{\mathbf{x}} \tag{4.21}$$

Y los coeficientes α_i se obtienen resolviendo el sistema:

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$(4.22)$$

Si se aproxima por una parábola se agrega otro nivel de complejidad, con $y=\alpha_2 x^2+\alpha_1 x+\alpha_0$, lo que implica una columna adicional a la matriz para los términos cuadráticos, una fila adicional para la constante α_2 en la variable.

Se siguen agregando columnas a la matriz y filas al vector tantas veces como grados de complejidad se necesiten.

5. Transformaciones lineales

Sea $T \in \ell(V_K, W_K)$ y $A = [T]_{BC}$ con B base de V y C base de W la matriz de T.

5.1. Condiciones para las Transformaciones lineales

Condiciones para ser Transformación lineal

Para que una transformación se considere lineal debe cumplir:

- 1. $T(\overline{\mathbf{u}} + \overline{\mathbf{v}}) = T(\overline{\mathbf{u}}) + T(\overline{\mathbf{v}}), \operatorname{con} \overline{\mathbf{u}}, \overline{\mathbf{v}} \in V$
- 2. $T(\alpha \overline{\mathbf{u}} + \beta \overline{\mathbf{v}}) = \alpha \cdot T(\overline{\mathbf{u}}) + \beta \cdot T(\overline{\mathbf{v}}), \operatorname{con} \overline{\mathbf{u}}, \overline{\mathbf{v}} \in V_K \text{ y } \alpha, \beta \in K$
- 3. $T(0_{V_K}) = 0_{V_K}$

5.2. Núcleo e Imágen

Núcleo e Imágen

Núcleo: $\operatorname{Nul}(T) = \{ \overline{\mathbf{v}} \in V_K \mid T(\overline{\mathbf{v}}) = 0_W \} = C_B^{-1}(\operatorname{Nul}(A)).$ Imágen: $\operatorname{Im}(T) = \{ \overline{\mathbf{w}} \in W_K \mid T(\overline{\mathbf{v}}) = \overline{\mathbf{w}} \operatorname{con} \overline{\mathbf{v}} \in V_K \} = C_C^{-1}(\operatorname{Col}(A)).$

Ambos son subespacios vectoriales.

La imágen de una Transformación Lineal puede obtenerse como lo que generan los transformados de una base del espacio de partida.

G,

Álgebra II (61.08) Página 16 de 18

Teorema de la dimensión

Sea $T \in \ell(V, W)$ y sea $\operatorname{Dim}(V) = n$ (finita). Entonces:

$$Dim(V) = Dim(Nul(T)) + Dim(Im(T))$$
(5.1)

×

5.3. Clasificación de las Transformaciones lineales

5.3.1. Monomorfismo(Inyectividad)

Monomorfismo

Una Transformación lineal es inyectiva si verifica:

$$\overline{\mathbf{v}}_1 \neq \overline{\mathbf{v}}_2 \Rightarrow T(\overline{\mathbf{v}}_1) \neq T(\overline{\mathbf{v}}_2), \forall \overline{\mathbf{v}}_1, \overline{\mathbf{v}}_2 \in V$$
 (5.2)

$$Nul(T) = \{0_v\} \iff Dim(Im(T)) = Dim(V)$$
(5.3)

Una Transformación Lineal Inyectiva transforma conjuntos Linealmente Independientes a conjuntos Linealmente Independientes.

La recíproca también es cierta: si A es un conjunto Linealmente Independiente y es transformado en otro conjunto Linealmente Independiente, la Transformación Lineal es inyectiva. Es decir: Si T es inyectiva y A es Linealmente Independiente, T(A) es Linealmente Independiente.

Las matrices asociadas a Transformaciones Lineales inyectivas tienen sus columnas Linealmente Independientes.

Si Dim(V) > Dim(W), T no puede ser inyectiva.

×

5.3.2. Epimorfismo(Sobreyectividad)

Epimorfismo

Una Transformación lineal es sobreyectiva si y solo si:

$$Im(T) = W (5.4)$$

Las matrices asociadas a Transformaciones lineales sobreyectivas tienen sus filas Linealmente Independientes.

Si Dim(W) > Dim(V), T <u>no</u> puede ser sobreyectiva.

X

5.3.3. Isomorfismo(Biyectividad)

Álgebra II (61.08) Página 17 de 18

5.4. Matriz asociada a una Transformación lineal

5.5. Teorema fundamental de las Transformaciones lineales

5.6. Composición de Transformaciones lineales

5.7. Operadores lineales

- 6. Autovalores y Autovectores
- 7. Matrices hermíticas y simétricas
- 8. Formas cuadráticas
- 9. Descomposición en Valores Singulares (DVS)
- 10. Ecuaciones diferenciales
- 11. Sistemas de Ecuaciones diferenciales lineales

Álgebra II (61.08) Página 18 de 18