Optické metódy

vyhodnocujú interakcie elektromagnetického žiarenia so vzorkou

• rozdelenie:

- spektrálne metódy
 - založené na meraní charakteristických vlastností svetla
 - výsledkom analýz je spektrum
- o metódy založené na meraní zmeny smeru a rýchlosti žiarenia
 - refraktometria, nefelometria, polarometria, turbidimetria

• metódy podľa druhu analyzovaného žiarenia:

- absorpčné (UV,VIS, IR)
- emisné (Ramanova spektroskopia)
- reflexné (UV,VIS)
- o rezonančné (EPR, NMR)
 - absorpcia vysokofrakvenčného žiarenia

• podľa druhu interakcie:

- o *atómová* spektroskopia
- o molekulová spektroskopia

• spektrum:

 súbor čiar (pásov) usporiadaných podľa vlnovej dĺžky (λ) resp. vlnočtu žiarenia rozloženého optickým zariadením

typy spektier:

- čiarové (u atómov)
- pásové (u molekúl)

• <u>elektromagnetické spektrum</u>

- vlnová dĺžka
 - vzdialenosť 2 najbližších bodov, ktoré kmitajú vo fáze
- o vlnočet
 - počet vĺn na jednotku dĺžky
 - $\tilde{v} = \frac{1}{\lambda}$

meracia technika

- o zdroj kiveta monochromátor (optický hranol al. mriežka) detektor spektrum
- o zdroj:
 - vysokoteplotný plameň (3000K)
 - elektrický oblúk
 - termické žiariče
 - UV výbojka
 - vodíková výbojka...

- o detektor:
 - meranie žiarivého toku čidlom na fotometrické veličiny
 - ľudské oko (400 700 nm)
 - UV, VIS
 - o fotografická detekcia
 - o fotoelektrická detekcia (použitím fotočlánkov)
 - termálna detekcia

Atómová spektroskopia

- patrí sem:
 - o atómová absorpčná spektroskopia (AAS)
 - emisná spektrálna analýza (spektrografia)
- využívajú sa na stanovenie jednotlivých atómov
- využívajú vlastnosti atómov, ktoré sú za určitých podmienok schopné emitovať alebo absorbovať pre prvok špecifické elektromagnetické žiarenie (určitá vlnová dĺžka)

Atómová absorpčná spektroskopia (AAS)

- meranie absorpcie monochromatického žiarenia voľnými atómami stanovovaného prvku (analytu)
- platí tu Kirchhoffov zákon
 - každá látka absorbuje žiarenie tej vlnovej dĺžky, ktorú sama dokáže vysielať
- analyty je potrebné previesť do stavu voľných atómov atomizácia:
 - o môže to byť:
 - v plameni (vysoká teplota 2000 -3000 K)
 - bezplameňová technika (elektrotermická pec)
- zdroj:
 - o výbojka s dutou katódou zo stanovovaného prvku
- rezonančná čiara
 - o prechod elektrónov medzi základnou a 1 excitovanou hladinou
- aplikácie:
 - stanovenie 60 prvkov
 - o čistota chemikálií, polovodičov

Emisná spektrálna analýza (spektrografia)

- optická metóda založená na žiarení atómov (iónov) sledovaného prvku
- atomizovanej vzorke sa dodáva energia, čím sa atómy dostávajú so excitovaného stavu
 - o pomocou plameňa, elektrického výboja, laserom
- monochromátor (hranol, mriežka)
 - dostávame emisné čiarové spektrum
- kvalitatívna analýza
 - určenie vlnových dĺžok podľa atlasu na základe spektra
- kvantitatívna analýza
 - o intenzita čiar
 - Lomakinov vzťah
 - $I = a.c^b$ (I intenzita čiary, c koncentrácia, a,b konštanty)
- aplikácie:
 - o stanovenie kovových materiálov, metalurgia, rudy

Molekulová spektroskopia

- je založená na interakcii EMN žiarenia s molekulami látok
- patrí sem
 - UV/VIS absorpčná spektroskopia
 - IR spektroskopia
 - o Ramanova spektroskopia
 - o jadrová magnetická rezonancia

UV/VIS absorpčná spektroskopia

- založená na meraní zoslabenia monochromatického žiarenia (200nm 800nm) v dôsledku absorpcie po prechode roztokom analytu
- prechody valenčných elektrónov spôsobujú vznik pásových spektier
- látky môžu byť:
 - bezfarebné
 - absorpcia v UV oblasti (200 400nm)
 - farebné
 - absorpcia v VIS oblsti spektra (400 800nm)
- celková energia molekuly
 - o $E=E_{rot}+E_{vib}+E_{p}$ (energia rotačných pohybov, vibračná energia, energia pohybu elektrónov
- Bohrov vzťah (prechod elektrónov medzi hladinami)
 - $\circ \quad E_2 E_1 = \Delta E = h. \nu$
- pri absorpcii žiarenia v UV/VIS oblasti dôjde k prechodom valenčných elektrónov a k zoslabeniu svetelného toku pri jeho prechode roztokom vzorky
- túto zmenu vyjadruje Lambert-Beerov zákon
 - ο $\phi = \phi_0.10^{-ε.c.l}$ (ϕ žiarivý tok, ε molárny absorpčný koeficient, l hrúbka vrstvy(kyvety)
- absorbancia
 - o relatívne množstvo pohlteného žiarenia po prechode vzorkou
 - $O \quad A = -\log \frac{\phi}{\phi_0} = -\log T = \varepsilon. \, c. \, l \quad \text{(T-transmitancia(priepustnosť)}$
- chromofory
 - funkčné skupiny, ktoré zapríčiňujú absorpciu elektromagnetického žiarenia
 v ultrafialovej a viditeľnej oblasti
 - o absorpcia je spôsobená prechodom $\pi \to \pi^*$
 - batochrómny posun (červený)
 - posun absorpcie k väčším vlnovým dĺžkam
 - hypsochrómny posun (modrý)
 - posun absorpcie k menším vlnovým dĺžkam
 - CT (charge transfer) komplexy
 - pás vzniká prechodom elektrónov z π donoru do π* akceptoru (sfarbenie bezfarebného roztoku)
- prístrojová technika
 - spektrometre
 - zariadenie s automatickým záznamom absorpčnej krivky $A = f(\lambda)$

- spektrofotometre
- o absorpčné fotometre
- o kalorimetre
 - porovnanie sfarbenia roztoku so štandardmi

• kvalitatívna analýza

o doplňujúca metóda identifikácie a štruktúry organických látok

• kvantitatívna analýza

využitie Lambert-Beerovho zákona na priame stanovenie koncentrácie analytov

• aplikácie:

- o identifikácia rôznych organických látok
- využite v organickej/anorganickej analýze, kinetike, stanovenie rovnovážnych konštánt
- o detekcia pre LC a elektroforézu

IR spektroskopia

- sleduje absorpciu IR žiarenia molekulami
 - o dochádza k zmene vibračných a rotačných stavov molekúl
- dochádza k prechodom:
 - vibračné
 - rotačné
 - o vibračno-rotačné

• IR pásové spektrum

 podáva obraz o spôsobe väzby atómov a skupín na základe absorpčných pásov definovaných vlnočtom, šírkou, intenzitou

• IR oblasti:

- blízka (800nm 2μm)
- stredná (2μm 15,4μm)
- vzdialená (15,4μm 50μm)

vibračné spektrá

- sú príčinou vzniku molekulových spektier
- o pre 2-atómové molekuly sa dajú vyjadriť pomocou rovnice pre harmonický oscilátor:

$$\bullet \quad E_v = \left(v + \frac{1}{2}\right)h.\,v_0$$

- v vibračné číslo (povolené sú len také pohyby, pri ktorých dochádza k jeho zmene o 1)
- v₀ základná frekvencia vibračného pohybu
- E_v vibračná energia
- vibračné pohyby (polyatómová molekula)
 - valenčné vibrácie dochádza k nim v oblasti vyšších vlnočtov
 - symetrické (IR inaktívne)
 - asymetrické (IR aktívne spojené so zmenou dipólového momentu (zmena symetrie)
 - mení sa dĺžka väzby, ale nie uhol
 - deformačné vibrácie dochádza k nim v oblasti nižších vlnočtov (oblasť odtlačku palca)
 - IR aktívne

- dochádza k zmene uhla (dĺžka väzby je konštantná)
- o pohyb molekuly popisujú vibračné stupne voľnosti
 - lineárne molekuly 3N 5
 - nelineárne molekuly 3N 6

• <u>využitie:</u>

- identifikácia organických zlúčenín, štruktúrna analýza
- o detekcia pri separačných metódach
- stanovenie na základe Lambert-Beerovho zákona
- štúdium reakčnej kinetiky, čistota

Ramanova spektroskopia

- založená na meraní rozptýleného žiarenia, ktoré vzniká interakciou fotónov monochromatického žiarenia so vzorkou
- pri interakcii molekuly s fotónom dochádza k zrážke
 - o zrážka môže byť
 - pružná
 - molekula vyžiari rovnakú kvantum energie ako zrážkou získala (Rayleighov rozptyl)
 - nepružná
 - molekula sa dostane do vyššieho energetického stavu, ale pri návrate sa nevráti do základného stavu (Stokesove čiary)
 - molekula bola vo vyššom stave a pri návrate sa dostane do nižšieho základného stavu (anti-Stokesove čiary)

aplikácia

- o doplnok IR spektroskopie
- o identifikácia nepolárnych zlúčenín
- analýza polymérov

Jadrová magnetická rezonancia

- metóda založená na absorpcii vysokofrkvenčného žiarenia jadrami (resp. elektrónmi pri EPR)
 meraných látok vo vonkajšom magnetickom poli
- základný predpoklad
 - o nenulový jadrový magnetický (resp. e⁻) moment
 - t.j. nepárny počet protónov (resp. nespárených elektrónov)
- pri absorpcii energie dôjde k prechodom nenulových magnetických momentov na vyššie hladiny
- NMR meria sa absorpcia žiarenia vzorkou uloženou v magnetickom poli
 - vznikajú rezonančné čiary, ktoré charakterizuje:
 - chemický posun čiar
 - určuje chemickú povahu atómu
 - spin-spinová interakčná konštanta
 - informuje o susedných jadrách
 - intenzita signálu
 - stanovenie počtu chemicky ekvivalentných jadier

• jadrá charakterizuje:

o magnetický moment (rotácia okolo osi)

- o spinové kvantové číslo (počet nukleónov v jadre)
 - v magnetickom poli zaujmú jadrá 2I + 1 orientácií (s rôznymi energetickými hladinami) – vykonávajú precesný pohyb (prechod z nižšej na vyššiu E úroveň)

kvalitatívna analýza

- o na základe chemického posunu
 - rozdiel medzi polohou signálu štandardu a vzorky

kvantitatívna analýza

o intenzita rezonančného signálu

• aplikácia:

- o najvýznamnejšia z metód molekulovej spektroskopie
- určenie štruktúry látok
- analýza organických látok

Hmotnostná spektrometria

- patrí aj medzi optické aj medzi separačné metódy
- slúži na presné meranie molekulovej hmotnosti látok (aj v zložitých zmesiach)

• princíp:

- separácia molekulových iónov a fragmentov analytu vzniknutých ionizáciou molekuly (odštiepením valenčných elektrónov) na základe rôznych efektívnych hmotností (m/z
 – hmotnosť/náboj)
- kvapalná vzorka sa v evakuovanom zásobníku odparí, po vstupe pár do ionizačnej komory dochádza k ionizácii a vzniku molekulových iónov a iných fragmentov, ktoré sú urýchlené elektrickým poľom a po vstupe do magnetického poľa sa separujú podľa efektívnych hmotností

hmotnostné spektrum

- o tvorené molekulovými iónmi a sekundárnymi iónmi (fragmentami)
- o zaznamenáva sa intenzita el. prúdu ako funkcia efektívnej hmotnosti
- intenzita signálu je priamo úmerná počtu dopadajúcich častíc

ionizácia

- o tvrdá
 - bombardovanie elektrónmi vznikajú ionizované molekuly a fragmenty
- o mäkká
 - s minimálnou fragmentáciou

spôsoby ionizácie

- chemická CI
- elektrónovým sprejom ESI
- pri atmosferickom tlaku API
- elektrickým poľom FI

aplikácia:

- o identifikácia látok, stanovenie molekulovej hmotnosti
- určenie štruktúry analytu
- stanovenie izotopického zloženia látok
- detektor pre separačné metódy

Refraktometria

- metóda založená na zmene rýchlosti žiarenia
- meria sa index lomu n využíva sa na identifikáciu látky
- Snellov zákon:

$$o \quad n = \frac{c_1}{c_2} = \frac{\sin \alpha}{\sin \beta}$$

• závislosť indexu lomu od hustoty prostredia vyjadruje Lorenz-Lorentzov vzťah:

$$\circ \quad r = \frac{n^2 - 1}{n^2 - 2} \cdot \frac{1}{\rho} \quad r - \text{merná refrakcia}$$

o mólová refrakcia: R = r. M

refraktometre

o slúžia na meranie indexu lomu

• aplikácie:

- čistota látok
- o zloženie binárnych sústav
- o určenie indexu lomu minerálov
- o štúdium fázových rovnováh
- o UPLC detektor

Polarimetria

- metóda založená na meraní uhla otočenia roviny polarizovaného svetla roztokom opticky aktívnej látky
- optické žiarenie kmitá vo všetkých smeroch kolmých na smer šírenia
 - ak kmitá len v jednej rovine polarizované svetlo

opticky aktívne látky

- o otáčajú rovinu polarizovaného svetla
- optická aktivita
 - trvalá (napr. cukry)
 - prechodná (napr. SiO₄)

• aplikácia:

- o stanovenie podielu sacharózy v cukre
- o stanovenie opticky aktívnych látok v roztokoch

Nefelometria, turbidimetria

 metódy založené na ohybe svetla v opticky nehomogénnych disperzných sústavách v dôsledku rozptylu

• turbidimetria

meranie intenzity zoslabeného žiarenia (pri vyššej koncentrácii)

nefelometria

o meranie rozptýleného žiarenia pod 90° uhlom (pri nižšej koncentrácii)