Lead Soring Case Study

Part: 1

Importing And Analysing Raw Data

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

import statsmodels.api as sm
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
```

In [2]:

```
df = pd.read_csv('Leads.csv')
pd.set_option('display.max_columns', 500)
```

In [3]:

```
df.head()
```

Out[3]:

	Prospect ID	Lead Number	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	F Vi
0	7927b2df- 8bba-4d29- b9a2- b6e0beafe620	660737	API	Olark Chat	No	No	0	0.0	0	
1	2a272436- 5132-4136- 86fa- dcc88c88f482	660728	API	Organic Search	No	No	0	5.0	674	
2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	660727	Landing Page Submission	Direct Traffic	No	No	1	2.0	1532	
3	0cc2df48-7cf4- 4e39-9de9- 19797f9b38cc	660719	Landing Page Submission	Direct Traffic	No	No	0	1.0	305	
4	3256f628- e534-4826- 9d63- 4a8b88782852	660681	Landing Page Submission	Google	No	No	1	2.0	1428	
4										•

In [46]:

df.shape

Out[46]:

(9074, 22)

In [45]:

```
df['Converted'].value_counts()
```

Out[45]:

0 56391 3435

Name: Converted, dtype: int64

As we can see the data we have contains approx 62% 0's and 38% 1's

Part 2: Cleaning

Missing value Treatment

Total number of missing values in the Dataframe are as follows

In [4]:

```
(df.isna().sum()/len(df))*100
```

Out[4]:

Prospect ID	0.000000
Lead Number	0.000000
Lead Origin	0.000000
Lead Source	0.389610
Do Not Email	0.000000
Do Not Call	0.000000
Converted	0.000000
TotalVisits	1.482684
Total Time Spent on Website	0.000000
Page Views Per Visit	1.482684
Last Activity	1.114719
Country	26.634199
Specialization	15.562771
How did you hear about X Education	23.885281
What is your current occupation	29.112554
What matters most to you in choosing a course	29.318182
Search	0.000000
Magazine	0.000000
Newspaper Article	0.000000
X Education Forums	0.000000
Newspaper	0.000000
Digital Advertisement	0.000000
Through Recommendations	0.000000
Receive More Updates About Our Courses	0.000000
Tags	36.287879
Lead Quality	51.590909
Update me on Supply Chain Content	0.000000
Get updates on DM Content	0.000000
Lead Profile	29.318182
City	15.367965
Asymmetrique Activity Index	45.649351
Asymmetrique Profile Index	45.649351
Asymmetrique Activity Score	45.649351
Asymmetrique Profile Score	45.649351
I agree to pay the amount through cheque	0.000000
A free copy of Mastering The Interview	0.000000
Last Notable Activity	0.000000
dtype: float64	

We have taken a decision to remove columns having high percentage of missing values. we could have treated maximum 10% of missing values. Taking more into account will result in the creation of fake data.

Our thought process was that if don't get a better model by removing these many columns, then we will try to use techniques like Mean, Median, Mode or random to fill the values

The above is a percentage of missing values. it is either very high or very low

Removing columns with high missing percentage

In [5]:

Out[5]:

Prospect ID	0.000000
Lead Number	0.000000
Lead Origin	0.000000
Lead Source	0.389610
Do Not Email	0.000000
Do Not Call	0.000000
Converted	0.000000
TotalVisits	1.482684
Total Time Spent on Website	0.000000
Page Views Per Visit	1.482684
Last Activity	1.114719
Search	0.000000
Magazine	0.000000
Newspaper Article	0.000000
X Education Forums	0.000000
Newspaper	0.000000
Digital Advertisement	0.000000
Through Recommendations	0.000000
Receive More Updates About Our Courses	0.000000
Update me on Supply Chain Content	0.000000
Get updates on DM Content	0.000000
I agree to pay the amount through cheque	0.000000
A free copy of Mastering The Interview	0.000000
Last Notable Activity dtype: float64	0.000000

Since the missing values are not very high and are approx 1.5% we will simply remove the rows

Removing rows with missing values

In [6]:

```
df.dropna(inplace=True)
len(df)
```

Out[6]:

9074

In [7]:

```
(df.isna().sum()/len(df))*100
```

Out[7]:

Prospect ID	0.0
Lead Number	0.0
Lead Origin	0.0
Lead Source	0.0
Do Not Email	0.0
Do Not Call	0.0
Converted	0.0
TotalVisits	0.0
Total Time Spent on Website	0.0
Page Views Per Visit	0.0
Last Activity	0.0
Search	0.0
Magazine	0.0
Newspaper Article	0.0
X Education Forums	0.0
Newspaper	0.0
Digital Advertisement	0.0
Through Recommendations	0.0
Receive More Updates About Our Courses	0.0
Update me on Supply Chain Content	0.0
Get updates on DM Content	0.0
I agree to pay the amount through cheque	0.0
A free copy of Mastering The Interview	0.0
Last Notable Activity	0.0
dtype: float64	

Now the data is cleaned and we can proceed with dummy variables

In [8]:

```
plt.figure(figsize=(16,12))
sns.heatmap(df.corr(),annot=True)
```

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x2a930b37f98>

Converting categorical variables to numerical variables

Initially taking Yes and No

Mapping 'Yes' and 'No' with 0 and 1

In [9]:

In [10]:

```
df.head()
```

Out[10]:

	Prospect ID	Lead Number	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	F Vi ,
0	7927b2df- 8bba-4d29- b9a2- b6e0beafe620	660737	API	Olark Chat	0	0	0	0.0	0	_
1	2a272436- 5132-4136- 86fa- dcc88c88f482	660728	API	Organic Search	0	0	0	5.0	674	
2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	660727	Landing Page Submission	Direct Traffic	0	0	1	2.0	1532	
3	0cc2df48-7cf4- 4e39-9de9- 19797f9b38cc	660719	Landing Page Submission	Direct Traffic	0	0	0	1.0	305	
4	3256f628- e534-4826- 9d63- 4a8b88782852	660681	Landing Page Submission	Google	0	0	1	2.0	1428	
4										•

The first 2 columns 'Prospect ID', 'Lead Number' are just reference columns and have no use in classification. Therefore removing them

In [11]:

```
list_drop_2 = [ 'Prospect ID', 'Lead Number']
df.drop(list_drop_2,axis=1,inplace=True)
df.head()
```

Out[11]:

	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Last Activity	Searc
0	API	Olark Chat	0	0	0	0.0	0	0.0	Page Visited on Website	
1	API	Organic Search	0	0	0	5.0	674	2.5	Email Opened	
2	Landing Page Submission	Direct Traffic	0	0	1	2.0	1532	2.0	Email Opened	
3	Landing Page Submission	Direct Traffic	0	0	0	1.0	305	1.0	Unreachable	
4	Landing Page Submission	Google	0	0	1	2.0	1428	1.0	Converted to Lead	
4										•

Now converting categorical columns to dummy variables

In [12]:

```
df2 =df
list_convert_dummies =['Lead Origin','Lead Source','Last Activity','Last Notable Activity']
#pd.get_dummies(s1, dummy_na=True,drop_first=False)

for li in list_convert_dummies:
    dum = pd.get_dummies(df[li], drop_first=True)
    df2 = pd.concat([df2,dum],axis=1)

df2.drop(list_convert_dummies,axis=1, inplace=True)
df2.head()
```

Out[12]:

	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Search	Magazine	Newspaper Article	Educatic Forun
0	0	0	0	0.0	0	0.0	0	0	0	
1	0	0	0	5.0	674	2.5	0	0	0	
2	0	0	1	2.0	1532	2.0	0	0	0	
3	0	0	0	1.0	305	1.0	0	0	0	
4	0	0	1	2.0	1428	1.0	0	0	0	
4										•

Converting data into Train, Test split

In [13]:

```
df_train, df_test = train_test_split(df2,test_size=0.2, random_state=0)
```

Applying standard scaller

In [14]:

```
#reindex df_train
```

In [15]:

```
list to scale = ['TotalVisits','Total Time Spent on Website','Page Views Per Visit']
scaler = StandardScaler()
df_train[list_to_scale] = scaler.fit_transform(df_train[list_to_scale])
df train.head()
```

c:\users\ankit\appdata\local\programs\python\python37\lib\site-packages\ipyk ernel_launcher.py:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pand as-docs/stable/indexing.html#indexing-view-versus-copy)

This is separate from the ipykernel package so we can avoid doing imports

c:\users\ankit\appdata\local\programs\python\python37\lib\site-packages\pand as\core\indexing.py:543: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pand as-docs/stable/indexing.html#indexing-view-versus-copy) self.obj[item] = s

Out[15]:

	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Search	Magazine	Newspaper Article
5509	0	0	1	1.112155	1.654146	0.992572	0	0	0
7746	0	0	0	0.510027	-0.568321	0.295664	0	0	0
8263	0	0	0	-0.292811	-0.636169	-0.168941	0	0	0
4559	0	0	1	0.108608	0.707947	0.760270	0	0	0
7959	0	0	1	0.510027	0.500737	0.295664	0	0	0
4									>

In []:

In []:

Taking a look at Outliers

In [16]:

```
sns.boxplot(df_train['Total Time Spent on Website'])
```

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x2a930e2ff98>

In [17]:

sns.boxplot(df_train['TotalVisits'])

Out[17]:

<matplotlib.axes._subplots.AxesSubplot at 0x2a930e66e80>

In [18]:

```
sns.boxplot(df_train['Page Views Per Visit'])
```

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0x2a930e0e6d8>

There is no much data spread except a few points which are lying outside the scope, therefore we are deciding not to remove outliers

In [47]:

```
df_train.shape
```

Out[47]:

(7259, 71)

Since we have 71 columns to analyse the best possible solution is to use PCA

Part-3

Applying PCA

In [19]:

```
y_train = df_train.pop('Converted')
X_train = df_train
pca = PCA(svd_solver='randomized', random_state=0)
pca.fit(X_train)
```

Out[19]:

```
PCA(copy=True, iterated_power='auto', n_components=None, random_state=0, svd_solver='randomized', tol=0.0, whiten=False)
```

In [20]:

```
pca.components_
```

Out[20]:

```
array([[ 4.28037048e-03, -2.77442779e-05, 5.40870447e-01, ...,
         4.78266069e-04, 7.27362671e-04,
                                          1.98886698e-05],
       [ 2.28097920e-02, -8.49950693e-05,
                                         5.11383459e-01, ...,
        7.64680313e-05, 1.18968224e-03, 1.73758522e-04],
                                          1.53419396e-01, ...,
       [ 6.14426735e-02, 3.35842619e-05,
        5.96394887e-04, 1.29383204e-03,
                                          6.69439589e-05],
       [ 0.00000000e+00, 2.34538946e-17, 5.92899009e-18, ...,
       -6.93889390e-17, -1.58293517e-16,
                                          7.54604712e-17],
       [ 0.00000000e+00, -1.97843942e-18, 3.27611576e-19, ...,
        2.77555756e-17, 1.63064007e-16, 6.85215773e-17],
       [ 0.00000000e+00, -1.03845528e-16, 3.13174895e-17, ...,
       -7.21991911e-15, -1.01307851e-15, -4.71844785e-16]])
```

In [21]:

```
pcs_df = pd.DataFrame({'PC1':pca.components_[0],'PC2':pca.components_[1], 'Feature':X_trair
pcs_df.head()
```

Out[21]:

	PC1	PC2	Feature
0	0.004280	0.022810	Do Not Email
1	-0.000028	-0.000085	Do Not Call
2	0.540870	0.511383	TotalVisits
3	0.456636	-0.806056	Total Time Spent on Website
4	0.612774	0.192360	Page Views Per Visit

In [44]:

pcs_df

Out[44]:

	PC1	PC2	Feature
0	4.280370e-03	2.280979e-02	Do Not Email
1	-2.774428e-05	-8.499507e-05	Do Not Call
2	5.408704e-01	5.113835e-01	TotalVisits
3	4.566364e-01	-8.060558e-01	Total Time Spent on Website
4	6.127737e-01	1.923597e-01	Page Views Per Visit
5	1.056834e-03	1.116755e-03	Search
6	4.336809e-19	-2.775558e-17	Magazine
7	3.850938e-04	3.064003e-04	Newspaper Article
8	1.685618e-04	2.171913e-04	X Education Forums
9	0.000000e+00	4.336809e-19	Newspaper

The above table shows all the principal components. For better Reference we will take a look at first 2 principal components for the columns

In [22]:

```
%matplotlib inline
fig = plt.figure(figsize = (8,8))
plt.scatter(pcs_df.PC1, pcs_df.PC2)
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
for i, txt in enumerate(pcs_df.Feature):
    plt.annotate(txt, (pcs_df.PC1[i],pcs_df.PC2[i]))
plt.tight_layout()
plt.show()
```


As we can see columns (Total visits), (page views per visit) and (Total time spent on website) are having more influence

Looking at the screeplot to assess the number of needed principal components

In [23]:

```
pca.explained_variance_ratio_
```

Out[23]:

```
array([3.25356877e-01, 1.42982023e-01, 1.00125142e-01, 8.98960896e-02,
       7.50241027e-02, 6.61540120e-02, 3.87738658e-02, 2.42097862e-02,
      1.97696898e-02, 1.88726097e-02, 1.53029479e-02, 1.27471532e-02,
      1.19237434e-02, 1.05480559e-02, 9.12379886e-03, 6.70694794e-03,
      5.20732478e-03, 3.75724023e-03, 3.42038534e-03, 3.18336655e-03,
      2.80736028e-03, 2.52712799e-03, 2.35673222e-03, 1.93528522e-03,
      1.53373608e-03, 1.16609479e-03, 1.02790651e-03, 7.89992375e-04,
      6.51981648e-04, 3.51887830e-04, 2.45472060e-04, 1.64564403e-04,
      1.50876976e-04, 1.33266795e-04, 1.03522314e-04, 1.02646684e-04,
      8.96354162e-05, 8.49989190e-05, 7.39603818e-05, 6.70647668e-05,
      5.84554914e-05, 5.50315193e-05, 5.00844850e-05, 4.70727724e-05,
      3.73277949e-05, 3.27258491e-05, 2.59209466e-05, 2.36292274e-05,
      2.36268798e-05, 2.36249936e-05, 2.36175047e-05, 2.35381890e-05,
      2.34444770e-05, 2.29659314e-05, 2.08501364e-05, 1.99363151e-05,
      1.18993809e-05, 1.00380214e-05, 7.42812769e-06, 6.84889062e-06,
      1.39220634e-06, 1.26546998e-06, 1.61181159e-33, 1.61181159e-33,
      1.61181159e-33, 1.61181159e-33, 1.61181159e-33, 1.61181159e-33,
      1.61181159e-33, 1.61181159e-33, 2.07941641e-34])
```

In [24]:

```
np.cumsum(pca.explained_variance_ratio_)
```

Out[24]:

```
array([0.32535688, 0.4683389, 0.56846404, 0.65836013, 0.73338423,
       0.79953825, 0.83831211, 0.8625219, 0.88229159, 0.9011642,
       0.91646715, 0.9292143 , 0.94113804, 0.9516861 , 0.9608099
       0.96751684, 0.97272417, 0.97648141, 0.9799018, 0.98308516,
       0.98589252, 0.98841965, 0.99077638, 0.99271167, 0.9942454,
       0.9954115 , 0.9964394 , 0.9972294 , 0.99788138, 0.99823327,
       0.99847874, 0.9986433, 0.99879418, 0.99892745, 0.99903097,
       0.99913362, 0.99922325, 0.99930825, 0.99938221, 0.99944928,
       0.99950773, 0.99956276, 0.99961285, 0.99965992, 0.99969725,
       0.99972997, 0.99975589, 0.99977952, 0.99980315, 0.99982678,
       0.99985039, 0.99987393, 0.99989738, 0.99992034, 0.99994119,
       0.99996113, 0.99997303, 0.99998307, 0.99999049, 0.99999734,
                                         , 1.
       0.99999873, 1.
                             , 1.
                                                     , 1.
                 , 1.
       1.
                             , 1.
                                         , 1.
                                                     , 1.
       1.
                 1)
```

In [25]:

```
#Making the screeplot - plotting the cumulative variance against the number of components
%matplotlib inline
fig = plt.figure(figsize = (12,8))
plt.plot(range(1,72),np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance')
plt.show()
```


As we can see from the scree plot above , at around 10 variables we are able to explain 90 % variance of the data

Therefore we will take 10 components to create the model

In [26]:

```
#Using incremental PCA for efficiency - saves a lot of time on larger datasets
from sklearn.decomposition import IncrementalPCA
pca_final = IncrementalPCA(n_components=10)
```

In [27]:

```
X_train_pca = pca_final.fit_transform(X_train)
X_train_pca.shape
```

Out[27]:

(7259, 10)

So lets see the correlation heatmap of the components

In [28]:

```
#creating correlation matrix for the principal components
corrmat = np.corrcoef(X_train_pca.transpose())
#plotting the correlation matrix
%matplotlib inline
plt.figure(figsize = (16,12))
sns.heatmap(corrmat,annot = True)
```

Out[28]:

<matplotlib.axes._subplots.AxesSubplot at 0x2a93330bb00>

Let us also see the maximum and minimum correlation in the above table as follows

In [29]:

```
# 1s -> 0s in diagonals
corrmat_nodiag = corrmat - np.diagflat(corrmat.diagonal())
print("max corr:",corrmat_nodiag.max(), ", min corr: ", corrmat_nodiag.min(),)
# we see that correlations are indeed very close to 0
```

max corr: 0.0018093610194398447 , min corr: -0.00044504733137256476

Let see how our data is spread using principal components

In [30]:

```
%matplotlib inline
fig = plt.figure(figsize = (8,8))
plt.scatter(X_train_pca[:,0], X_train_pca[:,1])
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.tight_layout()
plt.show()
```


As we can see most our data is clustered together, but a few are lying outside

Part 4: Logistic regression

Now we will create our logistic regression model from the data

In [32]:

```
lrmodel = LogisticRegression()
lrmodel.fit(X_train_pca,y_train)
```

c:\users\ankit\appdata\local\programs\python\python37\lib\site-packages\skle
arn\linear_model\logistic.py:432: FutureWarning: Default solver will be chan
ged to 'lbfgs' in 0.22. Specify a solver to silence this warning.
FutureWarning)

Out[32]:

```
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='warn', tol=0.0001, verbose=0, warm_start=False)
```

lets predict how model perform on train dataset

In [33]:

```
train_pred = lrmodel.predict(X_train_pca)
```

Now our model has predicted values of train dataset

In [34]:

```
accuracy_score = metrics.accuracy_score(y_train, train_pred)
precision_score = metrics.precision_score(y_train, train_pred)
recall_score = metrics.recall_score(y_train, train_pred)
f1_score = metrics.f1_score(y_train, train_pred)

# print(accuracy_score, precision_score, recall_score, f1_score)

# write the scores into the output file as a dictionary
# this code is already written for you
d = {'recall_score': recall_score,
    'f1_score': f1_score,
    'accuracy_score': accuracy_score,
    'precision_score': precision_score}
for key,val in d.items():
    print(key,' : ',val)
```

recall_score : 0.67296045600285 f1_score : 0.7072257581430177 accuracy_score : 0.7845433255269321 precision_score : 0.7451676528599606

Now lets see how model perform on Test dataset

Applying standardisation and PCA on test dataset

In [35]:

```
df_test[list_to_scale] = scaler.transform(df_test[list_to_scale])
df_test.head()
```

c:\users\ankit\appdata\local\programs\python\python37\lib\site-packages\ipyk
ernel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pand as-docs/stable/indexing.html#indexing-view-versus-copy)

"""Entry point for launching an IPython kernel.

c:\users\ankit\appdata\local\programs\python\python37\lib\site-packages\pand
as\core\indexing.py:543: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s
table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pand
as-docs/stable/indexing.html#indexing-view-versus-copy)
self.obj[item] = s

Out[35]:

	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Search	Magazine	Newspaper Article
3374	0	0	0	0.510027	-0.779199	0.295664	0	0	0
4262	0	0	0	-0.694229	-0.894723	-1.098152	0	0	0
7855	0	0	0	-0.092101	-0.742525	0.295664	0	0	0
3017	0	0	1	0.108608	1.256229	0.760270	0	0	0
560	0	0	1	0.309318	1.648645	-0.322261	0	0	0
4									•

Now all our data is transformed

Now we will apply PCA

In [36]:

```
y_test = df_test.pop('Converted')
X_test = df_test
```

```
In [37]:
```

```
X_test_pca = pca_final.transform(X_test)
X_test_pca.shape
```

Out[37]:

(1815, 10)

Now Predicting Test data set

```
In [38]:
```

```
test_pred = lrmodel.predict(X_test_pca)
```

Now lets measure the performance of the model with respect to y_test

In [39]:

```
accuracy_score = metrics.accuracy_score(y_test, test_pred)
precision_score = metrics.precision_score(y_test, test_pred)
recall_score = metrics.recall_score(y_test, test_pred)
f1_score = metrics.f1_score(y_test, test_pred)

# print(accuracy_score, precision_score, recall_score, f1_score)

# write the scores into the output file as a dictionary
# this code is already written for you
d = {'recall_score': recall_score,
    'f1_score': f1_score,
    'accuracy_score': accuracy_score,
    'precision_score': precision_score}
for key,val in d.items():
    print(key,' : ',val)
```

recall_score : 0.6926751592356688 f1_score : 0.7131147540983607 accuracy_score : 0.8071625344352618 precision score : 0.7347972972972973

Let's see the confusion matrix

In [40]:

```
cm = metrics.confusion_matrix(y_test, test_pred)
```

In [41]:

```
ax= plt.subplot()
akws = {"ha": 'center', "va": 'center'}
sns.heatmap(cm, annot=True, ax = ax,fmt="d",annot_kws=akws); #annot=True to annotate cells
# labels, title and ticks
ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels');
ax.set_title('Confusion Matrix');
```


In [42]:

cm

Out[42]:

We are now able to predict the hot leads with approx 80% accuracy.

In []: