事実

 $\triangle OAB$ において,辺 OA の長さを a,辺 OB の長さを b, $\angle AOB = \theta$ とする.このとき, $\triangle OAB$ の面積は $\frac{1}{2}ab\sin\theta$ に等しい.

問題 **2.1.** 上の事実を用いて、ベクトル \vec{a} , \vec{b} を 2 辺とする三角形の面積が

$$\frac{1}{2}\sqrt{|\vec{a}|^2\,|\vec{b}|^2-(\vec{a}\cdot\vec{b})^2}\tag{2.1}$$

に等しいことを示しなさい*1.

問題 **2.2.** 空間ベクトル $\vec{a}=(a_1,a_2,a_3), \vec{b}=(b_1,b_2,b_3)$ に対し,(2.1) 式の右辺を a_i,b_j を用いて表しなさい.

問題 2.3. 空間ベクトル $\vec{a}=(a_1,a_2,a_3), \vec{b}=(b_1,b_2,b_3)$ に対し、次の間に答えなさい。

- (1) 外積 $\vec{a} \times \vec{b}$ の成分を a_i, b_j を用いて表しなさい. *2.
- (2) 外積 $\vec{a} \times \vec{b}$ の長さ $|\vec{a} \times \vec{b}|$ を a_i, b_j を用いて表しなさい.

1 2.1

^{*1} ヒント:内積の定義を思い出しなさい(成分で定義する方でない方).

^{*2} 定義の確認