STRUCTURAL BIOINFORMATICS LAB

Task II 2021

Task Overview

In this task, you will implement the Nussinov algorithm for RNA secondary structure prediction.

Background

Nussinov Algorithm (Dynamic Programming Algorithm)

<u>Idea (biological):</u> Stacked base pairs of helical regions are considered to stabilize an RNA molecule.

→ maximize the number of base pairs.

IN: RNA sequence S

OUT: a non-crossing RNA structure P of S that maximizes

| P | (i.e. the number of base pairs in P).

► Nussinov considering (1) ij pair, (2) i being unpaired, (3) j being unpaired, and even (4) bifurcation:

$$S(i,j) = \max \begin{cases} S(i+1,j-1) + 1 & \text{[if } i,j \text{ base pair]} \\ S(i+1,j) \\ S(i,j-1) \\ \max_{i < k < j} S(i,k) + S(k+1,j) \end{cases}$$

- ▶ Init: $\forall i = 1..|S|$: $S_{i,i} = 0$; $\forall i = 1..(|S| 1)$: $S_{i,i+1} = 0$
- ► Termination: $S_{1,|S|} = \max$. number of base pairs

Note that the matrix is filled diagonally.

As for the <u>traceback</u>, we start with the upper right cell, we travel through the optimal path and we record every diagonal (i,j) as a (), the "(" on the lower index, ")" on the higher index, so if the cell is (3,5):

Г				
		1	1	
		(,	
		-	-	

The rest of the empty cells would be dots.

Note that in case of bifurcation, you'd go to the 2 cells and record the diagonals as mentioned before.

We finish by reaching the diagonal of the matrix.

Example:

which is the same as : .(((..)))

Pseudocode for filling the matrix:

Another test case:

Initialization

	G													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

С	1
G	2
G	3
Α	4
С	5
С	6
С	7
Α	8
G	9
Α	10
С	11
U	12
U	13
U	14
U	15

0														
0	0													
	0	0												
		0	0											
			0	0										
				0	0									
					0	0								
						0	0							
							0	0						
								0	0					
									0	0				
										0	0			
											0	0		
												0	0	
													0	0

TKYD TECH

С	G	G	Α	С	С	С	Α	G	Α	С	U	U	U	С
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	1	1	2	2	2	2	3	3	3	4	4	5	5
0	0	P	0	1	2	2	2	3	3	3	4	4	(5)	5
	0	0	0	1	1	1	1	2	2	2	3	3	4	4
		0	0	0	0	0	0	1	1	1	2	3	3	3
			0	0	0	0	0	1	1	1	2	2	3	3
				0	0	10	0	1	1	1	2	2	3	3

Matrix Fill stage

Finished length=15

C 1 **G** 2 **G** 3 4 5 С С 6 С 7 8 Α G 9 10 **C** 11 **U** 12 **U** 13 **U** 14 **C** 15

U	1	1	1	(2)	2	2	2	3	3	3	4	4	5	5
0	0	P	0	1	2	2	2	3	3	3	4	4	(5)	5
	0	0	0	1	1	1	1	2	2	2	3	3	4	4
		0	0	0	0	0	0	1	1	1	2	3	3	3
			0	0	0	0	0	1	1	1	2	2	3	3
				0	0	10	0	1	1	1	2	2	3	3
					0	0	0	1	1	1	2	2	3	3
						0	0	0	0	1	2	2	3	3
							0	0	0	1	1	2	2	2
								0	0	0	1	1	1	1
									0	0	0	0	0	0
										0	0	0	0	0
											0	0	0	0
												0	0	0
													0	0

bifurcation occurred.

You may ask any additional questions by email

Or on the assigned support time.

Good Luck [©]