MATH 315 Assignment 3

Instructor: Dr. Thomas Bitoun Name: Yifeng Pan UCID: 30063828

Winter 2020

1 Let G be a group.

1.1 Show that $g \cdot x = xg^{-1}$ for $g, x \in G$ defines an action of G on itself.

Let
$$x \in G$$
. Now, $1 \cdot x = x1^{-1} = x$.

Let
$$g,h,x\in G$$
. Now $(gh)\cdot x=x(gh)^{-1}=xh^{-1}g^{-1}=g\cdot (h\cdot x)$.

1.2 The natural action of $GL_2(\mathbb{R})$ on \mathbb{R}^2 is given by $A \cdot v = Av$, for $A \in GL_2(\mathbb{R})$ and $v \in \mathbb{R}^2$. Compute the stabilizers and the orbits of $\binom{1}{0}$ and $\binom{1}{1}$.

For
$$v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
:

The stabilizer subgroup is $\left\{\begin{bmatrix}1&a\\0&b\end{bmatrix}\middle|a,b\in\mathbb{R},b\neq0\right\}$.

Since
$$\begin{bmatrix} a & 0 \\ b & a \end{bmatrix} v = \begin{bmatrix} a & b \\ b & 0 \end{bmatrix} v = \begin{bmatrix} a \\ b \end{bmatrix} \text{, orbit} = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} | a, b \in \mathbb{R}, a \neq 0 \text{ or } b \neq 0 \right\}.$$

For
$$v = \binom{1}{1}$$
.

The stabilizer subgroup is $\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a,b,c,d \in \mathbb{R}, a+b=1,c+d=1,ad-bc \neq 0, \right\}$.

Since $\binom{1}{1}$ is in the orbit of $\binom{1}{0}$, it has the same orbit as $\binom{1}{0}$.

1.3 Show that a group homomorphism for the alternating group A_5 to G is injective if its image contains an element different from the identity 1 of G.

Idea for the proof: 1

Lemma: A_5 is a simple group. $^{\mathrm{2}}$

Let $\phi: A_5 \to G$, such that $\exists a \in A_5, \phi(a) \neq 1_G$.

We know the kernel of ϕ is a normal subgroup of A_5 ,and that the $\ker(\phi) \neq A_5$ from construction of ϕ .

Since A_5 is a simple group, and $\ker(\phi) \neq A_5$, we know $\ker(\phi) = \{1\}$.

Since $\ker(\phi) = \{1\}$, therefore ϕ is injective. ³

¹From a since deleted question on StackExchange (probably from a student of this class): https://web.archive.org/web/20200314122820/https://math.stackexchange.com/questions/3580662/prove-that-fa-5-to-g-is-injective

²It's listed here: https://groupprops.subwiki.org/wiki/Alternating_group#Group_properties

³Second "Symbol-free definition" of: https://groupprops.subwiki.org/wiki/Injective_homomorphism

2

2.1 What is the class equation of the dihedral group D_4 ? Justify your answer.

Let $y, x \in D_4$, where x is basic rotation, y is basic reflection.

The identity forms a conjugacy class $\{x^0\}$.

Let $x' = x^s$ be any rotation element.

We have $yx^n \cdot x' = yx^n x' (yx^n)^{-1} = yx^{n+s} x^{-n} y^{-1} = x'^{-1}, \forall n \in \mathbb{N}.$

And $x^n \cdot x' = x', \forall n \in \mathbb{N}$.

Therefore $\{x, x^3\}$ and $\{x^2\}$ are conjugacy classes.

Let $y' = x^s y$ be any reflection element.

We have $x^n \cdot y' = x^n x^s y x^{-n} = x^{2n+s} y$.

And $x^n y \cdot y' = x^n y x^s y y x^{-n} = x^{2n-s} y$.

Therefore $\{x^0y, x^2y\}$ and $\{x^1y, x^3y\}$ are conjugacy clasess.

Therefore $|D_4| = 1 + 1 + 2 + 2 + 2$.

2.2 The class equation of a group H is 1+4+5+5+5. Does H have a subgroup of order 4? Could it be a normal subgroup? Justify your answers.

Let H be a group of order 20, with the class equation $1+4+5+5+5=|C_1|+\ldots+|C_5|$.

H has a subgroup of order 4. Example:

The stabilizer/centralizer Z_5 is a subgroup with the order $|H|/|C_5|=20/5=4$.

H does not have a normal subgroup of order 4. Proof:

Let I be a normal subgroup of order 4 of H.

Let $i \in I$, such that $i \neq 1$.

Since I is normal, the orbit of i is a subset of I.

But $i \neq 1$, so its orbit is at least 4.

Therefore $|I| \ge 4 + 1 = 5$. Therefore there exists no such I.

2.3 Let G be a group of order 12. Show that if G contains a conjugacy class of order 4, then the center of G is $\{1\}$.

Let G be a group with order 12 such that G have a conjugacy class of order 4.

So $\exists x$ such that |C(x)| = 4.

Now, |Z(x)| = |G| / |C(x)| = 12/4 = 3.

We know $|Z(G)| \le |Z(x)| = 3$, where $Z(G) \subseteq Z(x)$.

If $x \in Z(G)$ then |C(x)| = 1, which would be a contradiction. Therefore $x \notin Z(G)$.

Since $x \in Z(x)$, we know |Z(G)| < 2.

Since Z(x) and Z(G) are both subgroups of G, and $Z(G) \subseteq Z(x)$, we know Z(G) is a subgroup of Z(x).

So |Z(G)| divides |Z(x)| Therefore $|Z(G)| \neq 2$.

Therefore $|Z(G)| \leq 1$.

Therefore $Z(G) = \{1\}.$

3

3.1 Let R, R' be rings. Show that the product of groups $R \times R'$ is a ring for the multiplication given by $(r_1, r_1') \cdot (r_2, r_2') = (r_1 r_2, r_1' r_2')$. It is called the (direct) product of the rings R and R'.

It's easy to verify that $(R \times R', +)$ is an abelian group with the identity (0, 0).

It's also easy to verify that \times is commutative and associative on $R \times R'$, with the identity being (1,1).

Let $(a, a'), (b, b'), (c, c') \in R \times R'$. Now,

$$((a, a') + (b, b'))(c, c') = (a + b, a' + b')(c, c')$$

$$= ((a + b)c, (a' + b')c')$$

$$= (ac + bc, a'c' + b'c')$$

$$= (a, a')(c, c') + (b, b')(c, c')$$

Therefore the distributive law holds, and $R \times R'$ is a ring.

3.2 Prove that a surjective map $f:R\to R'$ such that $f(r_1r_2)=f(r_1)f(r_2)$ for all $r_1,r_2\in R$ satisfies f(1)=1. Let $b\in R'$.

Since f is surjective, $\exists a \in R, f(a) = b$.

Now,
$$f(1)b = f(1)f(a) = f(1a) = f(a) = b$$
, and $bf(1) = b$.

Therefore f(1) is the identity in R'.

3.3 An element r of a ring R is nilpotent if $r^n=0$ for some $n\geq 0$. Does the ring $F(\mathbb{R},\mathbb{R})$ of functions from \mathbb{R} to \mathbb{R} have non-zero nilpotent elements? Does it have non-zero divisors? Prove or give an example.

Lemma: $F(\mathbb{R}, \mathbb{R})$ of all function from \mathbb{R} to \mathbb{R} , is a ring.

There are no non-zero nilpotent elements. Proof:

Let $f \in F(\mathbb{R}, \mathbb{R})$, such that $f(x) \neq 0$.

So $\exists x \in \mathbb{R}$, such that $f(x) = c \neq 0$, for some $c \in \mathbb{R}$.

So
$$(f(x))^n = c^n \neq 0$$
 for all $n \in \mathbb{N}$.

There are non-zero zero divisors. Proof:

Let
$$f(x) = \begin{cases} 0 & \text{if } x = 1 \\ 1 & \text{if } x \neq 1 \end{cases}$$
.

$$\operatorname{Let} g(x) = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{if } x \neq 1 \end{cases}.$$

Where $f(x) \neq 0, g(x) \neq 0, f(x)g(x) = 0.$

4

4.1 Let R be a ring. Show that if $a^2=a$ for all $a\in R$ and $R\neq \{0\}$, then the characteristic of R is 2.

Choose $r \in R$ such that $r \neq 0$.

Now,
$$r + r = (r + r)^2 = r^2 + r^2 + r^2 + r^2 = r + r + r + r$$
. So $0 = r + r$.

4.2 Show that in $\mathbb{Z}/6\mathbb{Z}$, we have $a^3=a$ for all elements of a but the characteristic of $\mathbb{Z}/6\mathbb{Z}$ is not 3.

 $\mathbb{Z}/6\mathbb{Z}$ has ring with 6 elements. Now,

$$0^{3} = 0 \equiv 0 \pmod{6}$$

$$1^{3} = 1 \equiv 1 \pmod{6}$$

$$2^{3} = 8 \equiv 2 \pmod{6}$$

$$3^{3} = 27 \equiv 3 \pmod{6}$$

$$4^{3} = 64 \equiv 4 \pmod{6}$$

$$5^{3} = 125 \equiv 5 \pmod{6}$$

. However, $1 + 1 + 1 = 3 \not\equiv 0 \pmod{6}$.

4.3 Show that if the characteristic of a commutative ring R' is 2, then the map $a\mapsto a^2$ is a ring homomorphism $R'\to R'$.

Let $\phi: a \to a^2$, for $a \in R'$.

Let $a, b \in R'$.

Now,
$$f(a+b) = (a+b)^2 = (a+b)(a+b) = a(a+b) + b(a+b) = aa + ab + ab + bb = f(a) + f(b) + ab + ab = f(a) + f(b)$$
. And, $f(ab) = (ab)^2 = a^2b^2 = f(a)f(b)$.

Lastly,
$$f(1) = 1^2 = 1$$
.

Citations

"Algebra" by Michael Artin (ISBN 13: 9780132413770).

Proofread by Devin Kwok (UCID: 10016484).