unique integer associated with each component in each run

9
$$\underbrace{1 \dots n_C}_{\text{run } 1}$$

$$\underbrace{[n_C+1]\dots 2}_{\text{run }2}$$

$$\underbrace{[(K-1)n_C+1]\dots Kn_C}_{\text{run }K}$$

 H_0 : Null hypothesis is that none of the ICs are reproducible. Hence we can randomly label IC i from run l as IC d from run s. This random labelling produces one realization of ICs under H_0 .

random labelling

$$p(i) \neq p(j) \text{ if } i \neq j$$

 \longrightarrow permuted integers $p(1), p(2) \dots p(Kn_C)$ integers $1, 2 \dots Kn_C$ random permutation of integers

$$\underbrace{p(1)\dots p(n_C)}_{\text{run 1}\mid \boldsymbol{H_0}} \quad \underbrace{p(n_C+1)\dots p(2n_C)}_{\text{run 2}\mid \boldsymbol{H_0}} \quad \dots \quad \underbrace{p((K-1)n_C+1)\dots p(Kn_C)}_{\text{run }K\mid \boldsymbol{H_0}}$$

reproducibility calculation for 1 realization of ICs under H_0

- We repeat the reproducibility calculation for R realizations of ICs (e.g. R = 100) under $\mathbf{H_0}$ using the random labelling process described above.
- \bullet This gives us a distribution of "Reproducibility" values under H_0 . Each realization of H_0 produces n_C "null" reproducibility values.
- Hence for R realizations we get $R \times n_C$ values that define the null distribution for testing the observed reproducibility values Reproducibility (MC_i) .
- Denote the vector of this "null" reproducibility values by Reproducibility Null

K = number of ICA runs

 n_C = number of extracted ICs in each run

n = length of each IC

 $\boldsymbol{x}_{i}^{(m)} = n \times 1$ vector of the jth IC from mth ICA run

cross-realization cross-correlation matrix (CRCM) G
ightharpoonup G

diagonal $n_C \times n_C$ block matrices are ignored in component matching

Suppose matched component 1, MC_1 consists of the matched ICs $\boldsymbol{x}_{i_1}^{(1)}, \boldsymbol{x}_{i_2}^{(2)}, \dots \boldsymbol{x}_{i_K}^{(K)}$. Form the $K \times K$ cross-correlation matrix H_{MC_1} between the matched components in MC_1 . The (a,b)th element of this matrix is simply $H_{MC_1}(a,b) =$ $|\operatorname{corrcoef}\left(\boldsymbol{x}_{i_a}^{(a)}, \boldsymbol{x}_{i_b}^{(b)}\right)|$. The normalized reproducibility of MC_1 is then defined

Reproducibility
$$(MC_1) = \left(\frac{2}{(K-1)K}\right) \sum_{a=1}^{K} \sum_{b=a+1}^{K} H_{MC_1}(a,b)$$

 $\boldsymbol{G}_{lm}(i,j) = |\operatorname{corrcoef}(\boldsymbol{x}_i^{(l)}, \boldsymbol{x}_j^{(m)})|$

- maximal element of G occurs in G_{lm} at position (i,j)
 - Hence component i from run l matches component j from run m
- Denote this matched component by MC_1
- element (a_1, j) is the maximal element in the jth column of G_{1m}
- element (i, b_1) is the maximal element in the ith row of G_{l1}
 - In this case, $a_1 = b_1$.
 - Therefore we zero out the a_1 th row from $G_{1r}, r = 1, \ldots, K$
 - Similarly, we also zero out the b_1 th column from $G_{r1}, r = 1, \ldots, K$ (zeroed out rows and columns in this case are shown in Orange)

Add component a_1 from run 1 to MC_1

- element (a_2, j) is the maximal element in the jth column of G_{2m}
- element (i, b_2) is the maximal element in the ith row of G_{l2}
 - In this case, $a_2 \neq b_2$ and $G_{2m}(a_2, j) > G_{l2}(i, b_2)$
 - Therefore we zero out the a_2 th row from $G_{2r}, r = 1, \ldots, K$
- Similarly, we also zero out the a_2 th column from $G_{r2}, r = 1, \ldots, K$ (zeroed out rows and columns in this case are shown in Blue)

Add component a_2 from run 2 to MC_1

After processing G_{rm} , $r \neq l$, m and G_{lr} , $r \neq l$, m we also

- Zero out the *i*th row of G_{lr} and *i*th column of G_{rl} for r = 1, ..., K
- Zero out the jth column of G_{rm} and the jth row of G_{mr} for r = 1, ..., K

(zeroed out rows and columns in this case are shown in Green)

Calculate p-values for Reproducibility

Reproducibility p-value for $MC_i =$ Observed value of Reproducibility (MC_i) $\{[\text{number of Reproducibility}_{Null} \geq \text{Reproducibility}(MC_i)] + 1\}$ $(R n_C + 1)$ Reproducibility