

3- جدول ابتدایی و نهایی یک مسئله ماکزیممسازی را به صورت زیر در نظر بگیرید که در آن S_2 و S_3 متغیرهای کمکی قیود S_3 هستند.

کل متغیرها / BV	z	<i>x</i> ₁	x ₂	<i>x</i> ₃	s_1	s ₂	S ₃	RHS
Z	1	-3	-2	-5	0	0	0	0
s_1	0	1	2	1	1	0	0	430
	0	3	0	2	0	1	0	460
S ₃	0	1	4	0	0	0	1	420

کل متغیرها / BV	z	x ₁	x ₂	<i>x</i> ₃	<i>s</i> ₁	<i>s</i> ₂	S ₃	RHS
Z	1	4	0	0	1	2	0	1350
<i>x</i> ₂	0	$-\frac{1}{4}$	1	0	$\frac{1}{2}$	$-\frac{1}{4}$	0	100
<i>x</i> ₃	0	$\frac{3}{2}$	0	1	ō	$\frac{1}{2}$	0	230
S ₃	0	2	0	0	-2	1	1	20

فرض کنید ضریب x_1 در محدودیت دوم از 3 به $\Delta - 3$ تغییر کند. تعیین کنید Δ چقدر بایستی باشد تا x_1 یک متغیر واردشونده گردد؟ (جواب: $\Delta \geq 2$)

سوال ماب شوالات

سوال ۲:

لهین آن را در نظر بگیرید و با استفاده از تحلیل حساسیت، LP زیر و جدول بهین آن را در تابع هدف را طوری بیابید که پایه فعلی بهین بماند.

$$\max z = 3x_1 + 4x_2 + x_3$$
s.t. $x_1 + x_2 + x_3 \le 50$
 $2x_1 - x_2 + x_3 \ge 15$
 $x_1 + x_2 = 10$
 $x_1, x_2, x_3 \ge 0$

BV	x_1	x_2	x_3	s_1	e_2	RHS
Z	1	0	0	1	0	80
e_2	-3	0	0	1	1	15
x_3	0	0	1	1	0	40
x_2	1	1	0	0	0	10

سوال ۳: در سوال قبل اگر ضریب X3 در تابع هدف از ۱ به ۱۰ افزایش یابد جواب بهین چه تغییری می کند؟

سوال ۴: در همین مسئله دامنه تغییرات سمت راست قید اول را به گونه ای بیابید که پایه فعلی شدنی و بهین باقی بماند.

 $C_{B}r_{B} = \alpha_{N_{1}} - r = 1 \qquad : (D_{J}ologo)$ $C_{N_{1}} = C_{B}r_{B} = \alpha_{N_{1}} - r = 0$ = 1 = 1 = 1 $C_{N_{1}} = 1 - D \qquad \max \sum_{i=1}^{N_{2}} 1 - D_{N_{1}} \Rightarrow 0$ = 1 $C_{N_{1}} = 1 - D \qquad \max \sum_{i=1}^{N_{2}} 1 - D_{N_{1}} \Rightarrow 0$

$$* C_{\chi_{i}} = \frac{C_{B}rB}{\alpha_{\chi_{i}}} - C_{\chi_{i}}$$

$$= \frac{C_{B}rB}{\alpha_{\chi_{i}}}$$

$$= \frac{C_{B}r\alpha_{\chi_{i}}}{C_{B}r\alpha_{\chi_{i}}}$$

$$= \frac{C_{B}r\alpha_{\chi_{i}}}{C_{\chi_{i}}}$$

$$= \frac{C_{B}r\alpha_{\chi_{i}}}{C_{\chi_{i}}}$$

$$= \frac{C_{\chi_{i}}}{C_{\chi_{i}}} + \frac{C_{\chi_{i}}}{C_{\chi_{i}}} = \frac{C_{\chi_{i}}}{C_{\chi_{i}}} + \frac{C_{\chi_{i}}}{C_{\chi_{i}}} = \frac{C_{\chi_{i}}}{C_{\chi_{i}}}$$

*
$$\overline{C}_{SI} = C_{BV}B^{-1}a_{SI} - C_{SI}$$

$$= \overline{a}_{SI}$$

$$= \left(\circ, \circ, \circ \right) \left[\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right] - \circ = \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right]$$

$$\overline{Z} = CBVBb = CBVB$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00) + (00)$$

$$= (00)$$

$$\begin{array}{lll}
\overline{b} = \overline{B} b = \begin{bmatrix} 1 & -1 & -r \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & + \Delta \\ 1 & 0 \end{bmatrix} \\
- \begin{bmatrix} 1\omega + \Delta \\ 1 & 0 \end{bmatrix} & 1\omega + \Delta \lambda b \\
+ (1 + \Delta \lambda b) & \Rightarrow \Delta \lambda b - 1\omega
\end{array}$$

$$\begin{array}{lll}
B & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega
\end{array}$$

$$\begin{array}{lll}
B & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega
\end{array}$$

$$\begin{array}{lll}
B & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega
\end{array}$$

$$\begin{array}{lll}
C & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega
\end{array}$$

$$\begin{array}{lll}
C & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega
\end{array}$$

$$\begin{array}{lll}
C & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega
\end{array}$$

$$\begin{array}{lll}
C & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega
\end{array}$$

$$\begin{array}{lll}
C & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega
\end{array}$$

$$\begin{array}{lll}
C & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega
\end{array}$$

$$\begin{array}{lll}
C & | \omega + \Delta \lambda b | & \Rightarrow \Delta \lambda b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega
\end{array}$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega
\end{array}$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega
\end{array}$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega
\end{array}$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b | & \Rightarrow \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b - 1\omega$$

$$\begin{array}{lll}
C & | \omega + \Delta b - 1\omega$$

max2 = $\forall \alpha_1 + \alpha_r$ s.t. $\alpha_1 + r\alpha_r = \forall$ $\alpha_1 - \alpha_r \neq 0$ $\alpha_1 + \alpha_r \leq 0$

Br	2	γ,	X 4	Cr	5 ~	a,	ar	RHS
						M-1/4		W.Z.
λτ	•	۰	1	0	-1/4	~	o	7,
N	0	ľ	ð	•	K			16
Cr	0	o	o	1	1	-1	-1	μ 1

الن) درمان وحوار مسل الما بد ب) الماندى رَسَوات على حيت 8 ار ١١ = ٢ ما حوار المسن موحوا هدرتد ك

$$J'_{r} = \overline{C} \alpha_{r} = -\frac{r}{r}$$

$$J'_{r} = \overline{C} c_{r} = 0$$

$$J'_{r} = \overline{C} S_{r} = \frac{V}{r}$$

Changing Objective Function Coefficient of Nonbasic Variable

max
$$z = 60x_1 + 30x_2 + 20x_3$$

s.t. $8x_1 + 6x_2 + x_3 \le 48$
 $4x_1 + 2x_2 + 1.5x_3 \le 20$
 $2x_1 + 1.5x_2 + 0.5x_3 \le 8$
 $x_1, x_2, x_3 \ge 0$
 $z = 280, BV = \{s_1 = 24, x_3 = 8, x_1 = 2\}$

min
$$w = 48y_1 + 20y_2 + 8y_3$$

s.t. $8y_1 + 4y_2 + 2y_3 \ge 60$
 $6y_1 + 2y_2 + 1.5y_3 \ge 30$
 $y_1 + 1.5y_2 + 0.5y_3 \ge 20$
 $y_1, y_2, y_3 \ge 0$

 x_2 is a non-basic variable, for what values of c_2 the current basis remain optimal?

$$S_{1}=Y_{2} \Rightarrow J_{1}=0$$

$$Y_{1}=Y_{2} \Rightarrow J_{1}=0$$

$$Y_{2}=Y_{3} \Rightarrow J_{2}=0$$

$$Y_{3}=Y_{3} \Rightarrow J_{4}=Y_{5}$$

$$Y_{4}=Y_{5} \Rightarrow J_{5}=0$$

$$Y_{5}=Y_{5} \Rightarrow J_{5}=0$$

$$Y_{5}=Y_{5} \Rightarrow J_{5}=0$$

$$Y_{5}=Y_{5}=0$$

Changing the column of non-basic variable

$$\max z = 60x_1 + 30x_2 + 20x_3$$
s.t.
$$8x_1 + 6x_2 + x_3 \le 48$$

$$4x_1 + 2x_2 + 1.5x_3 \le 20$$

$$2x_1 + 1.5x_2 + 0.5x_3 \le 8$$

$$x_1, x_2, x_3 \ge 0$$

$$z = 280, BV = \{s_1 = 24, x_3 = 8, x_1 = 2\}$$

$$\min w = 48y_1 + 20y_2 + 8y_3$$
s.t.
$$8y_1 + 4y_2 + 2y_3 \ge 60$$

$$6y_1 + 2y_2 + 1.5y_3 \ge 30$$

$$y_1 + 1.5y_2 + 0.5y_3 \ge 20$$

$$y_1, y_2, y_3 \ge 0$$

 x_2 is a non-basic variable,

$$c_2 = 30 \rightarrow 43$$
, $a_2 = \begin{bmatrix} 6 \\ 2 \\ 1.5 \end{bmatrix} \rightarrow \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix}$

does the current basis remain optimal?

$$C_{r} = r_{0} \longrightarrow r$$

$$C_{r} = \begin{bmatrix} 7 \\ r \\ 1 \omega \end{bmatrix} \rightarrow \begin{bmatrix} \omega \\ r \\ r \end{bmatrix}$$

Adding a New Activity

max
$$z = 60x_1 + 30x_2 + 20x_3$$

s.t. $8x_1 + 6x_2 + x_3 \le 48$
 $4x_1 + 2x_2 + 1.5x_3 \le 20$
 $2x_1 + 1.5x_2 + 0.5x_3 \le 8$
 $x_1, x_2, x_3 \ge 0$
 $z = 280, BV = \{s_1 = 24, x_3 = 8, x_1 = 2\}$
min $w = 48y_1 + 20y_2 + 8y_3$
s.t. $8y_1 + 4y_2 + 2y_3 \ge 60$
 $6y_1 + 2y_2 + 1.5y_3 \ge 30$
 $y_1 + 1.5y_2 + 0.5y_3 \ge 20$
 x_4 is a new variable,
 $c_4 = 15, a_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

does the current basis remain optimal?

5.t.

ا درمان

5.Ł.

ہے بار سنی کس مامی ممالد