學號: B07902143 系級: 資訊三 姓名: 陳正康

1. (1%) 請使用不同的Autoencoder model,以及不同的降維方式(降到不同維度),討論其reconstruction loss & public / private accuracy。(因此模型需要兩種,降維方法也需要兩種,但clustrering不用兩種。)

i. Model 1:

Encoder用了(Conv-BatchNorm-ReLU-MaxPool)疊了4次,輸出2x2x256=1024維latent code,decoder則是(ConvTranspose-BatchNorm-ReLU)疊了4次。詳細dimension在最後。

Reconstruction loss: 0.02259

Model 1以不同降維方法降至2維後做K-Means的正確率: PCA+TSNE: 0.80904 / Spectral Embedding: 0.707333 / LLE: 0.69811

ii. Model 2:

Encoder用了(Conv-BatchNorm-ReLU-MaxPool)疊了5次,再接一層線性,輸出256維latent code,decoder則是一層線性再用(ConvTranspose-BatchNorm-ReLU)疊了5次。詳細dimension在最後。

Reconstruction loss: 0.04115

Model 2以不同降維方法降至2維後做K-Means的正確率: TSNE: 0.80011 / Spectral Embedding: 0.69311 / LLE: 0.73567

有一個直觀的想法是, autoencoder並不知道要做clustering, 因此並沒有特別要讓資料之間的距離拉開, 因此latent code的維度太少時, 有可能資料擠在一起, 造成後續降維的困難, 也可以說某些資訊會被autoencoder篩掉, 進而使結果變差。

Model1(

```
(encoder): Sequential(
 (0): Conv2d(3, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
 (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (2): LeakyReLU(negative slope=0.01, inplace)
 (3): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
 (4): Conv2d(32, 64, kernel size=(5, 5), stride=(1, 1), padding=(2, 2))
 (5): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (6): LeakyReLU(negative slope=0.01, inplace)
 (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (8): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (9): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (10): LeakyReLU(negative_slope=0.01, inplace)
 (11): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (12): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (13): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (14): LeakyReLU(negative_slope=0.01, inplace)
 (15): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(decoder): Sequential(
 (0): ConvTranspose2d(256, 128, kernel size=(3, 3), stride=(1, 1))
 (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (2): LeakyReLU(negative slope=0.01, inplace)
 (3): ConvTranspose2d(128, 64, kernel size=(5, 5), stride=(1, 1))
 (4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (5): LeakyReLU(negative slope=0.01, inplace)
 (6): ConvTranspose2d(64, 32, kernel size=(9, 9), stride=(1, 1))
```

```
(7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (8): LeakyReLU(negative slope=0.01, inplace)
  (9): ConvTranspose2d(32, 3, kernel size=(17, 17), stride=(1, 1))
  (10): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (11): Tanh()
)
Model2(
 (encoder): Sequential(
  (0): Conv2d(3, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (2): LeakyReLU(negative_slope=0.01, inplace)
  (3): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
  (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (5): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (6): LeakyReLU(negative_slope=0.01, inplace)
  (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (8): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (9): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (10): LeakyReLU(negative_slope=0.01, inplace)
  (11): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (12): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (13): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (14): LeakyReLU(negative_slope=0.01, inplace)
  (15): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (16): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (17): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (18): LeakyReLU(negative_slope=0.01, inplace)
  (19): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(linear1): Sequential(
  (0): Linear(in features=512, out features=256, bias=True)
  (1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (2): LeakyReLU(negative slope=0.01, inplace)
 (linear2): Sequential(
  (0): Linear(in features=256, out features=512, bias=True)
  (1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (2): LeakyReLU(negative slope=0.01, inplace)
 (decoder): Sequential(
  (0): ConvTranspose2d(512, 256, kernel size=(2, 2), stride=(1, 1))
  (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (2): LeakyReLU(negative slope=0.01, inplace)
  (3): ConvTranspose2d(256, 128, kernel size=(3, 3), stride=(1, 1))
  (4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (5): LeakyReLU(negative slope=0.01, inplace)
  (6): ConvTranspose2d(128, 64, kernel size=(5, 5), stride=(1, 1))
  (7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (8): LeakyReLU(negative slope=0.01, inplace)
  (9): ConvTranspose2d(64, 32, kernel_size=(9, 9), stride=(1, 1))
  (10): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (11): LeakyReLU(negative slope=0.01, inplace)
  (12): ConvTranspose2d(32, 3, kernel_size=(17, 17), stride=(1, 1))
  (13): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (14): Tanh()
)
```

2. (1%) 從dataset選出2張圖,並貼上原圖以及經過autoencoder後reconstruct的圖片。

此為model 1的輸出

3. (1%) 我們會給你dataset的label。請在二維平面上視覺化label的分佈。 以下使用Model 1

PCA+TSNE:

Spectral Embedding:

LLE:

以下使用Model 2

TSNE:

Spectral Embedding:

LLE:

4. (3%) Refer to math problem https://drive.google.com/file/d/1-rmlFaIj_6hEfJGOHLKUxInoKMsKLHLf/view?usp=sharing

-1	スプニスクニスクニ	= w x f.(zo) h(bf +bo	$h(z) = z$ $\binom{f(z_i)}{f(z_i)} = z$	(30x -) { 1, v / 2 1, x 3	1/2 e 1/5 /	1 zi Si		25 - 16 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18
ŧ	D	2	3	1(24)=	X1 N X2 >> b (1 @ X2 -> o((5) 	6	7	X1 72 73 X4	1
%t	0 3	0 -2	4	0.	0 2	0 1 -4	1	1 2	
g(z) = Z	3	-2	4	0	2	-4	1	2	
$y = f(z_i)$	10)	1	1 ==	0	1	1	
C.	0	3	-2+30(10)	4	40(13)	2+402(10)	2+452(10)	. 1	
1	0(10)		D	0(10)	0(10)	1	o	b(10)	
h(c')=c'	3	-2+3o(10)	4	40(10)	2+402(10)	2+402(10)	1	2+0(10)	
f(zo)			G 3 (50)		0(10)	1	retinit.	1	
~	o. 000136 A	-2+35(10) =0.999864		4 v(10) ≈ 3.999818	≈ 0.00.2/12 ×	2+40°(10) =5.999637	E part	7+ o(1.) ≈ 2.999955	
h	There	o(x) =	1+e-x						

$$\begin{split} h &= W^{T} \times e R^{N} \quad (UeR^{NN}) \\ u &= W^{T} h e R^{V} \quad (WeR^{NN}) \\ y &= Situncx(u) e R^{V} \\ Loss &= L = -Ly \prod_{c \in C} P(W_{out,c}, W_{in}) = -Ly \prod_{c \in C} \frac{e^{d_{c}}}{\sum_{c \in C} e^{d_{c}}} = \sum_{c \in C} -Ly \frac{1}{\sqrt{c}} \\ C &= context \quad of \quad inplu \\ \Rightarrow \frac{\partial L}{\partial W_{ij}} &= \sum_{c \in C} -\frac{1}{\sqrt{2c}} (Ye + Ye^{2}) \frac{\partial U_{c}}{\partial W_{ij}^{T}} = \sum_{c \in C} -(1+Ye) \frac{\partial}{\partial W_{ij}^{T}} \left[W^{T} W^{T} X \right]_{e} \\ &= \sum_{c \in C} -(1+Ye) \frac{\partial}{\partial W_{ij}^{T}} \left(W_{ci}^{T} W_{ij}^{T} X_{j} \right) = \sum_{c \in C} -(1+Ye) \frac{\partial}{\partial W_{ij}^{T}} \left[W^{T} W^{T} X \right]_{e} \\ &= \sum_{c \in C} -(1+Ye) \frac{\partial}{\partial W_{ij}^{T}} \left[W^{T} W^{T} X \right]_{e} = \sum_{c \in C} -(1+Ye) \frac{\partial}{\partial W_{ij}^{T}} \left(W_{cj}^{T} \left(W_{j1}^{T} X_{1} + W_{j2}^{T} X_{2} + \cdots + L_{jV}^{T} X_{V} \right) \right) \\ &= \begin{cases} 0 & \text{if } i \notin C \end{cases} \\ &= \begin{cases} -(1+Yi) \left(W_{j1}^{T} X_{1} + \cdots + W_{jV}^{T} X_{V} \right) & \text{if } i \in C \\ 0 & \text{if } i \notin C \end{cases} \end{cases}$$