

ЭТИКЕТКА

СЛКН.431232.067 ЭТ

Микросхема интегральная 564 ИЕ15Т2ЭП Функциональное назначение – Программируемый счетчик

Климатическое исполнение УХЛ Схема расположения выводов Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода		Назначение вывода	№ вывода	Назначение вывода	
1	С Вход тактовый	9	J14	Вход установки	17	J10	Вход установки
2	L Bход «защелка»	10	J13	Вход установки	18	J9	Вход установки
3	J1 Вход установки	11	K _C	Вход формирования режима	19	Ј8	Вход установки
4	J2 Вход установки	12	0V	Общий	20	J7	Вход установки
5	J3 Вход установки	13	K _b	Вход формирования режима	21	J6	Вход установки
6	J4 Вход установки	14	Ka	Вход формирования режима	22	J5	Вход установки
7	J16 Вход установки	15	J12	Вход установки	23	Y	Выход счетчика
8	J15 Вход установки	16	J11	Вход установки	24	V _{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

Hawaayanaya Hanayama ayyuuya yayanayya nayyu yayanayya	Буквенное	Норма		
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
$egin{align*} 1.\ B$ ыходное напряжение низкого уровня, B, при:	U_{OL}	-	0,05 0,05	
2. Выходное напряжение высокого уровня, B, при: $U_{CC}=5~B,~U_{IL}=5~B,~U_{IL}=0B$ $U_{CC}=10~B,~U_{IH}=10~B,~U_{IL}=0B$	U _{ОН}	4,95 9,95	-	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B, $U_{IL} = 1,5$ B, $U_{IH} = 3,5$ B $U_{CC} = 10$ B, $U_{IL} = 3,0$ B, $U_{IH} = 7,0$ B	U _{OL max}	- -	0,8 1,0	
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B	U _{OH min}	4,2 9,0		
5. Ток потребления, мкА, при: $U_{CC}=10~B,U_{IL}=0~B,U_{IH}=10~B$ $U_{CC}=15~B,U_{IL}=0~B,U_{IH}=15~B$	I_{CC}	- -	20 500	
6. Входной ток низкого уровня, мкА, при: $U_{CC} = 10 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 10 \; B$ $U_{CC} = 15 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 15 \; B$	I_{IL}	- -	/-0,05/ /-1,00/	
7. Входной ток высокого уровня, мкА, при: $U_{CC}=10~B,U_{IL}=0~B,U_{IH}=10~B$ $U_{CC}=15~B,U_{IL}=0~B,U_{IH}=15~B$	I _{IH}	-	0,05 1,00	

Продолжение таблицы 1				
1	2	3	4	
8. Выходной ток низкого уровня, мА, при:				
$U_{CC} = 5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}, U_{O} = 0.4 \text{ B}$	I_{OL}	2,0	-	
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}, U_{O} = 0.5 \text{ B}$		4,0	-	
9. Выходной ток высокого уровня, мА, при:				
$U_{CC} = 5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}, U_{O} = 2,5 \text{ B}$	I _{OH}	/-1,60/	-	
$U_{CC} = 5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}, U_{O} = 4,6 \text{ B}$	IOH	/-0,40/	-	
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}, U_{O} = 9,5 \text{ B}$		/-0,90/	-	
10. Максимальная тактовая частота, МГц, при:				
$U_{CC} = 5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}, C_{L} = 50 \text{ m}$	f _{c max}	1,50	-	
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}, C_L = 50 \text{ m}$	o mar	3,00	=	
11. Время задержки распространения при включении и выключении, нс,	t_{PHL}			
при:	$t_{\rm PLH}$			
$U_{CC} = 5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}, C_{L} = 50 \text{ m}$		-	360	
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}, C_L = 50 \text{ m}$		ı	180	
12. Входная ёмкость , пФ, при:	C_1		10	
$U_{\rm CC} = 10 \text{ B}$	CI	=	10	

1.3	2.	Солержание	драгоценных	метаппов	в 1000	шт	излепий

золото Γ , серебро Γ , в том числе: золото Γ /мм на 16 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5)°C не менее 100000 ч, а в облегченном режиме (U_{CC} от 5 до 10В)- не менее 120000 ч.
- 2.2 Гамма процентный срок сохраняемости (T_{Cγ}) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИЙ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.610-17ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИЕ15Т2ЭП соответствуют техническим условиям АЕЯР.431200.610-17ТУ и признаны годными для эксплуатации.

Приняты по		ОТ		
	(извещение, акт и др.)		(дата)	
Место для шт	ампа ОТК			Место для штампа ВП
Место для шт	ампа «Перепроверка п	произведена		
Приняты по _	(извещение, акт и др.)	от	(дата)	
Место для шт	ампа ОТК			Место для штампа ВП
Цена договоря	ная_			

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка, вход – выход, питание-общая точка.

Остальные указания по применению и эксплуатации – в соответствии с АЕЯР.431200.610ТУ