Zadanie implementacyjne, symulator stacji bazowej:

Parametry:

- Liczba kanałów,
- λ parametr natężenia ruchu w rozkładzie Poissona \in (0, + ∞),
- N średnia długość rozmowy, wartość oczekiwana w rozkładzie Gaussa ∈ (0, +∞),
- σ odchylenie standardowe w rozkładzie Gaussa \in (0, + ∞),
- Min minimalna długość rozmowy ∈ (1, +∞),
- Maks maksymalna długość rozmowy ∈ (1, +∞),
- Długość kolejki,
- · Czas symulacji.

Kontrolki:

- Graficzne przedstawienie połączeń kanałach + liczba obsłużonych + czas obsługi bieżącego połączenia,
- Czas symulacji.

Wyniki:

- Wykresy:
 - ρ Intensywność ruchu,
 - o Q średnia długość kolejki,
 - o W średni czas oczekiwania.
- Plik:
 - Parametry symulacji,
 - o ρ, Q, W poniżej w kolumnach.

Kroki Implementacyjne:

- 1. Wygenerować listę stóp przybycia (λ_i), gdzie $\sum \lambda_i > czas$ symulacji, zgodnie z rozkładem Poissona i parametrem λ_i
- 2. Dla każdej wartości λ_i wygenerować długość rozmowy μ_i (utworzyć pary λ_i , μ_i) zgodnie z rozkładem Gaussa i parametrami N, σ , Min, Maks.
- 3. W kolejnych krokach symulacji (1 krok = 1sekunda, zadać opóźnienie):
 - a. pobrać k elementów z listy λ , takich że: $\sum_{i=1}^{k-1} \lambda_i < 1$, oraz $1 \le \sum_{i=1}^k \lambda_i$,
 - b. umieścić k elementów z listy λ w symulatorze (kanałach),
 - c. policzyć ρ , Q, W (zgodnie z parametrami λ_i , μ_i), wysłać do pliku i umieścić na wykresach,
 - d. usunąć z listy λ , μ , k początkowych elementów,
 - e. wykonać pozostałe czynności, tj. obsługa kontrolek, itd ...