Representação de imagens

Aplicação C++/Assembly para manipulação de imagens

João Canas Ferreira

Março 2014

Imagens

Como são representadas imagens de cor?

Matriz de pixels

- Uma imagem é uma matriz bidimensional de pontos
 - cada ponto é um pixel (picture element)

Representação de pixel

- Componente R (vermelho): 1 byte (0-255)
- Componente G (verde): 1 byte (0-255)
- Componente B (azul): 1 byte (0-255)
- Opacidade (alfa): 1 byte (0: transparente, 255: opaco)
- Cada pixel ocupa 1 DWORD (4 bytes)

João Canas Ferreira (FEUP)

Representação de imagens

Março 2014

3 / 10

Organização da imagem em memória

Linhas sucessivas ficam sequidas em memória

0 4 8 12 16 20 24 28 32 36 40 44 48 em memória 76

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

Ordem das componentes

Cálculo de posições em memória

Caraterísticas da imagem

- b: posição (endereço) do início da imagem em memória
- p: n° de bytes de um pixel (=4, no formato usado)
- L: largura da imagem (número de pixels na horizontal)
- A: altura da imagem (número de pixels na vertical)
- pixel na linha i, coluna j com $0 \le i < A$ e $0 \le j < L$

Fórmulas para o cálculo de posições em memória

• início da linha *i*:

$$b + i \times L \times p$$

pixel na linha i, coluna j:

$$b + (i \times L + j) \times p$$

- Endereço do vizinho superior do pixel P: subtrair $L \times p$ ao endereço de P
- Endereço do vizinho inferior de P: somar $L \times p$ ao endereço de P

João Canas Ferreira (FEUP)

Representação de imagens

Março 2014

5 / 10

Programa Viewer

Funções

Declaração em C++:

void cfunc1(unsigned char *pixels, long largura, long altura);

Declaração em assembly language:

afunc1 PROTO pixels:ptr byte, largura:dword, altura:dword

João Canas Ferreira (FEUP)

Representação de imagens

Março 2014

7 / 10

Exemplo: Conversão de cor para níveis de cinzento

Conversão de cor para cinzento

Substituir os componentes R, G e B pela sua média.

para todos os pixels da imagem:

$$media = (R + G + B) / 3$$

R = media

G = media

B = media

Exemplo em C++

```
typedef unsigned int media_t;
void cfunc1(unsigned char *pixels, long largura, long altura)
  unsigned char *linha;
  for (int j = 0; j < altura; <math>j++) {
     linha = pixels + (j*largura*BYTES_PER_PIXEL);
     for (int i = 0; i < largura * BYTES_PER_PIXEL;</pre>
                      i += BYTES PER PIXEL) {
       media_t media;
       media = (media_t) linha[i] + (media_t) linha[i+1]
                                   + (media_t) linha[i+2];
       media = media / 3;
       linha[i] = (unsigned char) media;
                                                // Azul (B)
       linha[i+1] = (unsigned char) media;
                                               // Verde (G)
       linha[i+2] = (unsigned char) media; // Vermelho (R)
       linha[i+3] = 255; // irrelevante neste caso
    }
  }
  return;
}
```

João Canas Ferreira (FEUP)

Representação de imagens

Março 2014

9 / 10

Exemplo em assembly

```
afunc1 PROC USES edi ebx pixels: ptr byte, largura: dword, altura:dword
   mov eax, larqura
   mul
        altura
                          ; EAX = número de pixels
   mov ecx, eax
   mov edi, pixels
   .WHILE (ecx > 0)
                 eax , byte ptr [edi] ;; componente B
ebx , byte ptr [edi+1] ;; componente G
        movzx
        movzx
        add
                 eax, ebx
        movzx
                 ebx , byte ptr [edi+2] ;; componente R
        add
                 eax, ebx
         xor
                 edx, edx
                 val3
                                            ;; divisão por 3
         div
        mov
                 [edi], al
                 [edi+1], al
        mov
                 [edi+2], al
        mov
                                         ;; BYTES per PIXEL
        add
                 edi, 4
        dec
                 ecx
   .ENDW
   ret
afunc1 ENDP
```