DBMS – ENTITY -RELATIONSHIP MODEL

Entity-Relationship Model

- Design Process
- Modeling
- Constraints
- E-R Diagram

Modeling

- A database can be modeled as:
 - a collection of entities,
 - relationship among entities.
- An entity is an object that exists and is distinguishable from other objects.
 - Example: specific person, company, event, plant
- Entities have attributes
 - Example: people have names and addresses
- An entity set is a set of entities of the same type that share the same properties.
 - Example: set of all persons, companies, trees, holidays

Entity Sets customer and loan

customer_id customer customer customer name street city

loan_ amount number

13					
321-12-3123	Jones	Main	Harrison		L-17 1000
019-28-3746	Smith	North	Rye		L-23 2000
677-89-9011	Hayes	Main	Harrison		L-15 1500
555-55-5555	Jackson	Dupont	Woodside		L-14 1500
244-66-8800	Curry	North	Rye		L-19 500
963-96-3963	Williams	Nassau	Princeton		L-11 900
335-57-7991	Adams	Spring	Pittsfield		L-16 1300
]	
	customer				loan

Relationship Sets

- A relationship is an association among several entities
 - Example:
 - Hayes depositor A-102
 - customer entity relationship set account entity
- A relationship set is a mathematical relation among $n \ge 2$ entities, each taken from entity sets

$$\{(e_1, e_2, \dots e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n\}$$

where $(e_1, e_2, ..., e_n)$ is a relationship

Example: (Hayes, A-102) ∈ depositor

Relationship Set borrower

Degree of a Relationship Set

- Refers to number of entity sets that participate in a relationship set.
- Relationship sets that involve two entity sets are binary (or degree two). Generally, most relationship sets in a database system are binary.
- Relationship sets may involve more than two entity sets.
 - Example: Suppose employees of a bank may have jobs (responsibilities) at multiple branches, with different jobs at different branches. Then there is a ternary relationship set between entity sets employee, job, and branch

Attributes

- An entity is represented by a set of attributes, that is descriptive properties possessed by all members of an entity set.
- Example:
 - Student (Regno, Name, DoB, Address, Phone)
 - Employee (EmplD, Name, DoJ, Qualification)
- Domain the set of permitted values for each attribute
- Example:
 - Student (101, Ram, 12.06.2000, AbC Street, 123456789)
 - Employee (1257, Latha, 03.11.1999, PhD)
- Attribute types:
 - Single-valued and multi-valued attributes
 - Example: multivalued attribute: phone_numbers
 - Example: Single value attribute: Age, DoB
 - Derived attributes
 - Can be computed from other attributes
 - Example: Age, given date_of_birth
 - Composite attributes
 - Combination of tow or more attributes
 - Example: Name (First, Middle, Last), Address (Doorno, Street Name, Area name, City, Pin)

Composite Attributes

Terminologies – a visit

- Entity
- Entity Set
- Relationship
- Relationship set
- Attributes
 - Single valued
 - Multi valued
 - Composite
 - Derived

Mapping Cardinality Constraints

- Express the number of entities to which another entity can be associated via a relationship set.
- Most useful in describing binary relationship sets.
- For a binary relationship set the mapping cardinality must be one of the following types:
 - One to one
 - One to many
 - Many to one
 - Many to many

Mapping Cardinalities

One to one

One to many

Note: Some elements in A and B may not be mapped to any elements in the other set

Example: Set A – Department details Set B – Location

Mapping A to B is one to one (CSE – AB3)

Mapping B to A is many to one (AB3 has many departments)

Mapping Cardinalities

Many to one

Many to many

Note: Some elements in A and B may not be mapped to any elements in the other set

Set A –Students, Set B – Department

Many students belong to one Department - Many to one

Set A – Courses Set B – Students

Many Courses are taken by many students – Many to many

Keys

- Primary Key: Set of attributes that uniquely identifies a tuple in a entity – Should not allow duplicate values in that attribute
- Identify Primary keys in the following:
 - Student (RegNo, Name, Address, DoB)
 - Employee (EmplD, Name, Address, DoB, DoJ)
 - Department (DeptID, Name, Location)
 - Items (ProductID, Name, stock, price)
 - Account(AccNo, Name, Balance)
- Why Primary Key? -- To uniquely identify a particular tuple.
 - If no primary keys Data integrity is lost all students have same regno. – See the confusion.
- Aadhar No Primary key to uniquely identify a citizen in India.

Composite Primary Key

- One or more attribute is a primary key
- Example: One order has multiple products
 - Order(OrderNo, ProductCode, Quantity, price) Only with OrderNo and ProductCode we can identity single tuple
 - Only OrderNo will give multiple tuples
 - Only ProductCode will give multiple tuples
 - Exam(RegNo, CourseCode, Grade) Only with Regno and CourseCode we can get single tuple.
 - Only RegNo will give grade of all courses
 - Only CourseCode will give results of all students

Entity –Relationship Diagrams (ERD)

- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Lines link attributes to entity sets and entity sets to relationship sets.
- Ellipses represent attributes
 - Double ellipses represent multivalued attributes.
 - Dashed ellipses denote derived attributes.
- Underline indicates primary key attributes

E-R Diagram With Composite, Multivalued, and Derived Attributes

Relationship Sets with Attributes

Roles

- Entity sets of a relationship need not be distinct
- The labels "manager" and "worker" are called roles; they specify how employee entities interact via the works_for relationship set.
- Roles are indicated in E-R diagrams by labeling the lines that connect diamonds to rectangles.
- Role labels are optional, and are used to clarify semantics of the relationship

Cardinality Constraints

- We express cardinality constraints by drawing either a directed line (→), signifying "one," or an undirected line (—), signifying "many," between the relationship set and the entity set.
- One-to-one relationship:
 - A customer is associated with at most one loan via the relationship borrower
 - A loan is associated with at most one customer via borrower

One-To-Many Relationship

• In the one-to-many relationship a loan is associated with at most one customer via *borrower*, a customer is associated with several (including 0) loans via *borrower*

Many-To-One Relationships

 In a many-to-one relationship a loan is associated with several (including 0) customers via borrower, a customer is associated with at most one loan via borrower

Many-To-Many Relationship • A customer is associated with several (possibly

- A customer is associated with several (possibly 0) loans via borrower
- A loan is associated with several (possibly 0) customers via borrower

Alternative Notation for Cardinality Limits

• Cardinality limits can also express participation constraints

Case Study

 For the following Entities, Identify Primark Key, Identify relationship, cardinality and Draw ER Diagram

• Case 1:

- Department (DeptId, Name, YearOfStart, Location)
- Student (Regno, Name, DoB, Address, Branch, Batch)
- Courses(DeptId, CourseCode, Title, EvalPattern)

Case 2:

- City(CityId, CityName, Remarks)
- Product(ProdCode, ProdName, Stock, Price, CityId)
- Customer(CustomerId, CustName, Address, OrderId)
- Orders(OrderId, ProdCode, Quantity)
- Bills(OrderId, Cost, Tax, ShipCharges, Total, Remarks)

Reference Key or Foreign Key

- A Foreign key (or reference key) is a key borrowed from another related table (that's why its foreign) in order to make the relationship between two entities
- A key to connect two entities Allows duplicate values
- Parent Entity An entity that does not depend for its existence on other entities – Has a Primary Key (may or may not have foreign keys)
- Child Entity (referential entity) An entity that depends for its existence on other entities – Should have a reference (foreign) key

Identify all keys in the following, Draw ER Diagram

- Case 1:
 - Department (DeptId, Name, YearOfStart, Location) No Foreign Key
 - Student (Regno, Name, DoB, Address, Branch, Batch)
 - Courses(DeptId, CourseCode, Title, EvalPattern)
 - Grades(Regno, CourseCode, Grade)
- Case 2: -- Do this now.
 - City(CityId, CityName, Remarks)
 - Product(ProdCode, ProdName, Stock, Price, CityId)
 - Customer(CustomerId, CustName, Address, OrderId)
 - Orders(OrderId, ProdCode, Quantity)
 - Bills(OrderId, Cost, Tax, ShipCharges, Total, Remarks)