Лабораторная работа 4.1.2: Моделирование оптических приборов и определение их увеличения

М.Шлапак

Изучены модели астрономической трубы Кеплера, земной трубы Галилея, микроскопа; определены их увеличения

Ключевые слова: зрительная труба, микроскоп, оптические приборы, линзы, юстировка, оптические системы

1. Введение

Одним из важных начальных навыков работы с оптическими приборами является умение правильно их юстировать и центрировать на оптической скамье. В данной работе, помимо этого, также были измерены фокусные расстояния набора линз и смоделированы трубы Кеплера и Галилея, а также микроскоп и измерено их увеличение различными способами.

2. Экспериментальная установка

Экспериментальная установка

состоит из набора линз, осветителя, оптической скамьи, экрана, зрительной трубы и миллиметровой сетки в качестве рассматриваемого предмета

3. Результаты эксперимента

В данной работе экспериментально определялись фокусные расстояния набора линз, а также увеличения зрительных труб и микроскопов различными способами. Один из важнейших этапов, от которых зависела точность измерений - центрировка элементов оптической системы.

(a) Центрировка элементов оптической системы

1) Отберём из всего набора линз собирающие. Для этого, держа линзу в одной руке, получим

на ладони другой руки изображение лампочки и оценим на глаз фокусные расстояния. Те из линз, которые не дадут действительного изображения, будут рассеивающими.

В результате получаем 4 собирающих и 1 рассеивающую линзы.

Запишем номера линз и их примерное фокусное расстояние, измеренное на глаз:

номер линзы	1	2	3	4	5
f, cm	7,5	12	23	40,5	11,5

Соберём и отцентрируем установку таким образом, чтобы главная оптическая ось проходила через центры всех оптических элементов.

(b) Определение фокусных расстояний тонких линз с помощью зрительной трубы

2)Для определения фокусных расстояний линз настроим зрительную трубу на бесконечность. Соберем установку для определения фокусных расстояний собирающих линз с помощью зрительной трубы:

Передвигая линзу вдоль скамьи, получим в окуляре зрительной трубы изображение предмета - миллиметровой сетки.

Измерим таким образом фокусные расстояния 4 собирающих линз:

номер линзы	1	2	3	4
f, см	7,5	10,7	19	27,6

3) Для определения фокусного расстояния тонкой рассеивающей линзы сначала получим на экране увеличенное изображение сетки при помощи одной короткофокусной собирающей

линзы. Измерим расстояние a_0 между линзой и экраном: $a_0 = 29, 0 \pm 0, 1$ см.

Разместим сразу за экраном трубу, настроенную на бесконечность. Далее вместо экрана поставим рассеивающую линзу. После центрировки, перемещая рассеивающую линзу, найдём в окуляре зрительной трубы резкое изображение сетки. Измерив расстояние между линзами l, рассчитаем фокусное расстояние рассеивающей линзы:

$$f = l - a_0$$

В нашем случае:

a_0 , cm	$29,0 \pm 0,1$
l, cm	$20,6 \pm 0,1$
f, cm	$-8,4 \pm 0,2$

(с) Телескоп Кеплера

4) Отберём из имеющегося набора две собирающие линзы для создания модели зрительной трубы Кеплера с увеличением 2 - 3.

В качестве коллиматора возьмем линзу 3 с фокусным расстоянием 19 см. Соберём модель телескопа:

В качестве объектива и окуляра возьмём, соответственно, линзы 4 и 1. Сравним расстояние между объективом и окуляром с суммой фокусных расстояний:

$$a, \text{ cm} \qquad 36, 9 \pm 0, 1$$

 $f_1 + f_2, \text{ cm} \qquad 35, 1 \pm 0, 2$

Для последующих расчётов увеличения телескопа определим размер изображения h_1 одного миллиметра шкалы осветителя в делениях окулярной шкалы зрительной трубы:

$$h_1 = k \operatorname{tg} \alpha_1 \approx k \alpha_1$$

,где k - некоторый коэффициент, характеризующий увеличение зрительной трубы, α_1 - угловой размер изображения миллиметрового деления шкалы осветителя, наблюдаемого через коллиматор.

$$h_1 = 1$$
 деление

- толщина линии миллиметровки

5) Рассчитаем увеличение исследуемой модели телескопа через отношение передних фокусных расстояний линз f_1 и f_2

$$N_{T1} = -\frac{f_1}{f_2}$$

$$N_{T1} \approx -(3,68 \pm 0,05)$$

6) Определим увеличение телескопа через отношение углов, под которыми объект виден через телескоп и без него.

$$N_{T2} = -\frac{\alpha_2}{\alpha_1} = -\frac{h_2}{h_1}$$

, где учтено различие знаков углов лучей на входе и выходе из трубы Кеплера.

В нашем эксперименте $h_2 = 3,5$ деления

$$N_{T2} \approx -(3, 5 \pm 0, 5)$$

7) Определим увеличение телескопа, сравнив диаметр оправы его объектива и диаметр изображения этой оправы в окуляре.

$$N_{T3} = -\frac{D_1}{D_2}$$

, где D_1 - диаметр объектива, D_2 - диаметр его изображения.

В нашем случае $D_1=3,7\pm0,1$ см, $D_2=1,0\pm0,1$ см.

$$N_{T3} \approx -(3,7 \pm 0,4)$$

(d) **Труба Галилея**

8) Соберем модель трубы Галилея, поставив в модели трубы Кеплера вместо собирающей окулярной линзы рассеивающую линзу на расстоянии от объектива, равном разности модулей фокусных расстояний объектива и окуляра. Проведем измерения, аналогичные тем, которые были проделаны для телескопа Кеплера.

9) Рассчитаем увеличение исследуемой модели телескопа через отношение передних фокусных расстояний линз f_1 и f_2

$$N_{T1} = -\frac{f_1}{f_2}$$

В нашем случае $f_2 = -8,4$ см - фокусное расстояние рассеивающей линзы.

$$N_{T1} \approx 3,29 \pm 0,05$$

10) Определим увеличение телескопа через отношение углов, под которыми объект виден через телескоп и без него.

$$N_{T2} = \frac{\alpha_2}{\alpha_1} = \frac{h_2}{h_1}$$

В нашем эксперименте $h_2 = 3,0$ деления

$$N_{T2} \approx 3,0 \pm 0,5$$

Определение размера изображения

(е) Микроскоп

11) Для создания микроскопа с увеличением $N_M=5$ отберем самые короткофокусные собирающие линзы из набора - линзы 1 и 2.

Рассчитаем необходимый оптический интервал Δ и длину тубуса l_{12} по формулам:

$$M_M = N_1 N_2$$

$$N_1 = -\frac{\Delta}{f_1}$$

$$N_2 = -\frac{L}{f_2}$$

$$\Delta = l_{12} - f_1 - f_2$$

, где N_1 и N_2 - увеличения объектива и окуляра, f_1 и f_2 - фокусные расстояния линз, L=25 см - расстояние наилучшего зрения.

$$l_{12} = 34,25 \pm 0,04$$

12) Расположим объектив и окуляр на соответствующем расстоянии l_{12} друг от друга и закрепим рейтеры. Соберём модель микроскопа.

15) Для экспериментального определения увеличения микроскопа измерим величину изображения h_2 клетки на миллиметровке, зараннее измерив эту же величину без оптической системы h_1 :

 $h_1=9$ делений, $h_2=35$ делений

13) Используя результат измерений h_1 с коллиматорной линзой, фокус которой мы знаем, расчитаем увеличение микроскопа по формуле

$$N_M = -\frac{h_2 L}{h_1 f}$$

$$N_M \approx 5, 1 \pm 0, 3$$

Экспериментальное значение неплохо сходится с теоретическим расчётом.

4. Заключение В данной работе были экспериментально определены фокусные расстояния набора линз двумя способами - грубо и точнее, а также найдено увеличение труб Кеплера (3 способами), Галилея (2 способами) и микроскопа (1 способом). Результаты эксперимента приведены в графиках ниже.

- 1. Общий курс физики. Оптика, Д.В.Сивухин
- 2. Лабораторный практикум по общей физике. Оптика, А.В. Максимычев