ANIRUDDHA GANGULY

aniganguly@cs.stonybrook.edu \diamond 631-495-4875 \diamond LinkedIn \diamond GitHub \diamond Scholar Stony Brook, New York, USA

EDUCATION

Stony Brook University, NY, USA

Jan, 2023 - Jan, 2028 (Expected)

Ph.D. in Computer Science, Advised by Dr. Chao Chen

Research Area: Spatial Transcriptomics, Graph Neural Networks, Medical Image Analysis

CGPA: 3.87/4.00

Bangladesh University of Engineering & Technology, Dhaka, Bangladesh

Feb, 2017 - Feb, 2021

B.Sc. in Computer Science & Engineering

CGPA: 3.73/4.00

WORK EXPERIENCE

Stony Brook University (Research Assistant)

Jan, 2024 - Present

Graph Neural Networks and efficient graph construction for gene expression prediction from histopathology images in Spatial Transcriptomics (ST). Uncertainty guided gene expression smoothing.

Intelligent Machines (AI Engineer)

Jul, 2021 - Nov, 2022

Built, scaled, and maintained multi-class real-time object detectors achieving 95%+ detection accuracy and reducing client costs by over 350%.

Technohaven Company Ltd. (Blockchain Engineer)

Nov, 2020 - Jan, 2022

Built enterprise-scale private blockchain solutions for clients using Hyperledger Fabric and R3 Corda.

PUBLICATIONS

 MERGE: Multi-faceted Hierarchical Graph-based GNN for Gene Expression Prediction from Whole Slide Histopathology Images
 First author at CVPR 2025

[- 0.] [0.11.

- ullet We use a Graph Attention network to predict spatially resolved gene expressions in ST data.
- We propose a multi-faceted graph construction strategy to identify and utilize dependencies among morphologically identical tissue groups, regardless of spatial proximity.
- We outperform baselines and SOTA methods on three datasets using three metrics MSE, MAE, PCC.
- 2. 3D-FFS: Faster 3D object detection with Focused Frustum Search in sensor fusion based networks First author at IROS 2021 [Paper]
 - We aggregate intrinsic properties of 3D point clouds to constrain search space for 3D object detectors.
 - We propose a lightweight, modular heuristic for search space reduction in sensor fusion based detectors.
 - We reduce inference and training times of 3D object detectors by up to 58.96% and 62.80% respectively, while reducing memory usage by up to 58.53%.

3. Online Detection of Attentiveness of Students with Special Needs Co-author at ACII 2022

Paper

- We curate a dataset of 48 activity sessions of 9 students, spanning 11 activity types across 3 activity groups, extending 1:13:08 hours at 30 FPS. Annotations (low, mid, high) are done manually by the instructors.
- We design an ensemble of five feature extractors by ablating over various architectures for each feature:
 - Atypical movement recognizer (Temporal Segment Network)
 - Working status detector (2D CNN with Temporal Shift Module)
 - Gaze detector (Temporal Segment Network)
 - Activity recognizer (Two-stream Inflated 3D ConvNet)
 - Base attentiveness feature extractor (SlowFast module)
- We outperform all baselines significantly in real world settings to classify attentiveness as low, mid, and high.

1. RankByGene: Gene-Guided Histopathology Representation Learning Through Cross-Modal Ranking Consistency (Submitted, under review) [Pre-print]

- We propose a novel cross-modal ranking consistency mechanism to enhance image-gene alignment.
- We introduce knowledge distillation to improve robustness against sparsity and noise in ST data.
- We set up downstream experiments on gene expression prediction, slide classification, and survival analysis to demonstrate the improvements through our approach

2. Uncertainty Guided Smoothing of Gene Expressions in Spatial Transcriptomics Data

- We propose a new metric to compute surrogate uncertainty for gene expression prediction from images.
- We calibrate an image-to-uncertainty model to this surrogate uncertainty, enabling uncertainty estimation at inference time.
- We aggregate predicted gene expressions and SPCS-smoothed gene expressions using the predicted uncertainty, to enable morphology-aware gene expression smoothing.

3. TopoScope: A Visual Analysis Platform for Exploring Topological and Spatial Interactions

- TopoScope is the first comprehensive visual tool that integrates topological methods for spatial omics data, capturing higher-order cell-cell interactions.
- We design a fully integrated, end-to-end pipeline for survival and population-level analysis.
- Besides identifying statistically significant spatial patterns, TopoScope localizes and visualizes differentiable phenotypic patterns derived from topological and spatial analysis.

SKILLS

Programming Python, R, Java, C++, JavaScript

Libraries and Frameworks PyTorch, TensorFlow, PyTorch Geometric, Torchyision, Node.js, Vue.js

Tools Git, Docker, Databricks, GCP, QPath

ORGANIZATIONS AND LEADERSHIP ROLES

• Vice President, Bangladeshi Graduate Students' Association Aug, 2024 - Present

• Vice Chairperson, IEEE Computer Society BUET Student Branch Chapter Feb, 2020 - Feb, 2022

• President, Murchhona:BUET (Central Cultural Organization at BUET) Feb. 2020 - Feb. 2022

ACHIEVEMENTS & AWARDS

• IEEE CS Lance Stafford Larson Outstanding Student Paper Award - Second Place	2021
• International Blockchain Olympiad - Silver Medal	$\boldsymbol{2021}$
• Bangladesh Blockchain Olympiad - Category Champion (FinTech)	2021
• International Blockchain Olympiad - Award of Merit	2020
Bangladesh Blockchain Olympiad - National Champion	2020

REFERENCES

• Dr. Chao Chen

Associate Professor, Department of Biomedical Informatics

Stony Brook University, NY, USA Email: chao.chen.1@stonybrook.edu Website: https://chaochen.github.io