Scalarity and additivity in natural language: (II) comparatives

Linmin Zhang (NYU Shanghai) zhanglinmin@gmail.com

ESSLLI 2024 Day 2, July 30th, 2024

Slides are available on lingbuzz:

https://lingbuzz.net/lingbuzz/oo8301

Recapitulation

- Measurement means mapping an entity (or an event) to a value along a scale according to rules (see Stevens 1946).
- A scale is a set that includes all potential values resulting from a certain way of taking measurement.
- There are 4 levels of scales: nominal scales, ordinal scales, interval scales, and ratio scales.
- Comparatives assume interval scales (i.e., with an ordering and a unit that supports the measurement of differences).

Today

- Day 1: Basics of scales and degrees; how they are relevant to natural language
 - What are scales? What are their formal properties? What operators do they support?
- Day 2 and Day 3: Comparatives and -er/more
 - How an additivity-based perspective improve our understanding of scalarity-related phenomena?
 - What is additivity?
- Day 4 and Day 5: Even and its cross-linguistic siblings
 - How a scalarity-based perspective improve our understanding of additivity-related phenomena?

Today: English Comparatives and the use of -er/more

Mephisto is talking about poor farmer Faustus:

'He always wanted more ...
more free time and more wealth ...
fewer struggles, better health ...
work less and eat all day ...'

(From Sapiens: A Graphic History, Vol.2, by David Vandermeulen, David Casanave, Yuval Noah Harari, 2021)

Outline

- English clausal comparatives and the classical analysis (to be revisited)
- Empirical and conceptual challenges to the classical analysis
- A new perspective on -er/more
- Omparatives: from an inequality-based view to a difference-based view

Ontological assumptions in analyzing comparatives

- From now on, we focus on comparatives and use 'scales' to mean interval scales (scales with ordering and units, supporting the measurement of differences).
- Measurement means mapping an entity / event to a degree along a relevant (interval) scale (e.g., height, time line, time length).
- Degrees are like real numbers (see also Fox and Hackl 2006: the universal density of measurement)
- $\{d \mid -\infty < d < +\infty\}$ (1) \rightarrow a scale including all potential degree values
- $\{d \mid 0 < d \le 7'\}$ (2) \rightarrow a part of a scale of height / length, including degrees between o and 7 feet (the upper bound is included; the lower bound is not included)
 - Most works on comparatives are explicitly or implicitly based on these assumptions: e.g., Seuren (1973), von Stechow (1984), Heim (1985), Kennedy (1999), Schwarzchild and Wilkinson (2002), Zhang and Ling (2021) (cf. Cresswell 1976 does not consider 'degree' a primitive type; the delineation approach adopted by e.g., Klein 1980, Burnett 2017) Linmin Zhang July 30th, 2024

Illustrations: scales and parts of scales

The meaning of gradable adjectives

[tall]: a relation between an individual and a degree

- (3) $[tall]_{(d,et)} \stackrel{\text{def}}{=} \lambda d_d . \lambda x_e . \text{Height}_{(e,d)}(x) \ge d$ (i.e., x is d-tall) On the scale of height, the position of x meets or reaches degree d.
 - There are two pieces in this lexical entry
 - A measure function of type $\langle ed \rangle$: $\text{HEIGHT}_{\langle e,d \rangle}(x)$
 - ► Indicating the direction (of comparison): $\geq d$ (cf. Kennedy 1999)

(See e.g., Cresswell 1976, Hellan 1981, von Stechow 1984, Heim 1985, Schwarzschild 2008, Beck 2011)

Major uses of gradable adjectives: Positive use

[tall]: a relation between an individual and a degree

- (3) $[tall]_{\langle d,et \rangle} \stackrel{\text{def}}{=} \lambda d_d . \lambda x_e . \text{Height}_{\langle e,d \rangle}(x) \geq d$ (i.e., x is d-tall) On the scale of height, the position of x meets or reaches degree d.
- (4) [Mary is POS tall] \Leftrightarrow HEIGHT(Mary) $\geq d^{c}_{POS}$ Positive use (Pos: the context-dependent threshold for tallness)

(See e.g., Cresswell 1976, Hellan 1981, von Stechow 1984, Heim 1985, Kennedy 1999, Schwarzschild 2008, Beck 2011)

Major uses of gradable adjectives: Measurement sentence

[tall]: a relation between an individual and a degree

- (3) $[tall]_{(d,et)} \stackrel{\text{def}}{=} \lambda d_d . \lambda x_e . \text{Height}_{(e,d)}(x) \ge d$ (i.e., x is d-tall) On the scale of height, the position of x meets or reaches degree d.
- (5) [Mary is 6 feet tall] ⇔ HEIGHT(Mary)≥ 6' Measurement

(See e.g., Cresswell 1976, Hellan 1981, von Stechow 1984, Heim 1985, Kennedy 1999, Schwarzschild 2008, Beck 2011)

Major uses of gradable adjectives: Degree question

[tall]: a relation between an individual and a degree

- (3) $[tall]_{(d,et)} \stackrel{\text{def}}{=} \lambda d_d . \lambda x_e . \text{Height}_{(e,d)}(x) \ge d$ (i.e., x is d-tall) On the scale of height, the position of x meets or reaches degree d.
- (6) [how tall is Mary] $\Leftrightarrow \lambda d$. Mary is d-tall $\Leftrightarrow \lambda d$. Height(Mary) $\geq d$ Degree

Degree question

(See the categorial approach to questions represented by Hausser and Zaefferer 1978.)

Major uses of gradable adjectives: Clausal comparative

[Lucy is taller than Mary is tall]

(7) The bathtub is wider than the door is tall.

- subcomparative
- [8] [Lucy is tall er than Mary is tall]

 how tall Lucy is how tall Mary is

 LF: [-er [λd .Mary is d-tall]][$\lambda d'$.Lucy is d'-tall]

(See e.g., von Stechow 1984, Kennedy 1999, Schwarzschild 2008, Beck 2011 for a review)

The role of *-er/more* in the canonical analysis

[Lucy is taller than Mary is tall]

(8)
[Lucy is tall er than Mary is tall]

how tall Lucy is how tall Mary is

LF: [-er [λd .Mary is d-tall]] [$\lambda d'$.Lucy is d'-tall]

[-er/more] performs comparison by encoding an inequality

- (9) $[-\text{er/more}]_{\langle\langle dt \rangle, \langle dt, t \rangle\rangle} \stackrel{\text{def}}{=} \lambda \frac{D_{\text{than}}}{D_{\text{than}}} . \lambda D_{\text{matrix}} . \exists d[d \in D_{\text{matrix}} \land \neg[d \in D_{\text{than}}]]$
- (10) $[-er/more]_{\langle\langle dt\rangle,\langle dt,t\rangle\rangle} \stackrel{\text{def}}{=} \lambda D_{\text{than}} \cdot \lambda D_{\text{matrix}} \cdot \text{MAX}(D_{\text{matrix}}) > \text{MAX}(D_{\text{than}})$

Numerical differentials in the canonical analysis

[Lucy is 2 inches taller than Mary is tall]

- (11)Lucy is 2 inches taller than Mary is tall LF: $[-\text{er } 2''] [\lambda d.\text{Mary is } d\text{-tall }] [\lambda d'.\text{Lucy is } d'\text{-tall }]$
 - Without a numerical differential: [-er/more] is of type $\langle \langle dt \rangle, \langle dt, t \rangle \rangle$
- $[-er/more] \stackrel{\text{def}}{=} \lambda D_{\text{than}} \cdot \lambda D_{\text{matrix}} \cdot \text{MAX}(D_{\text{matrix}}) > \text{MAX}(D_{\text{than}})$ (10)
 - With a numerical differential: [-er/more] is of type $\langle d, \langle dt \rangle, \langle dt, t \rangle \rangle$
- $[-er/more] \stackrel{\text{def}}{=} \lambda d_{\text{diff}} \cdot \lambda D_{\text{than}} \cdot \lambda D_{\text{matrix}} \cdot \text{MAX}(D_{\text{matrix}}) \ge \text{MAX}(D_{\text{than}}) + d_{\text{diff}}$ (12)(See e.g., von Stechow 1984, Kennedy 1999, Schwarzschild 2008, Beck 2011 for a review)

14/44

Interim summary of the canonical view

	Without a numerical differential	With a numerical differential
Assumption	(Ordinal/interval) scales	Interval scales
Comparison	Inequality:	Inequality:
	$measurement_1 > measurement_2$	$measurement_1 \ge measurement_2 + d$
Representations of	Degree points	Degree points
& operations on	ở ordering between	♂ a combination of ordering
scalar values	degree points	and addition
The semantics	Ordering:	A combination of ordering and addition:
of -er/more	$\lambda m_2.\lambda m_1.m_1 > m_2$	$\lambda d.\lambda m_1.\lambda m_2.m_2 \ge m_1 + d$

Outline

- English clausal comparatives and the classical analysis (to be revisited)
- Empirical and conceptual challenges to the classical analysis
- 3 A new perspective on -er/more
- Omparatives: from an inequality-based view to a difference-based view

When the than-clause has a universal quantifier

The dress is more expensive than every shirt is expensive

(13) Scenario: the price of the shirts ranges from \$20 to \$100 and the dress costs \$150. [the dress is more expensive than every shirt is expensive]

```
how expensive the dress is how expensive every shirt is LF: [ more [ \lambda d.every shirt is d-expensive ] ][ \lambda d'.the dress is d'-expensive ] ={d' \mid 0 \le d' \le \text{MEIGHT}(\text{the-dress})}
```

- Our intuition: the dress is more expensive than the most expensive shirt is.
- The analysis under the canonical view: the dress is more expensive than the least expensive shirt is.

Schwarzchild and Wilkinson (2002)'s solution: intervals

- (14) $[expensive] \stackrel{\text{def}}{=} \lambda I.\lambda x.PRICE(x, I)$ (i.e., Interval I covers individual x.)
- (15) The dress is more expensive than every shirt is.
 - a. *than-clause*: $\lambda K. \forall x [\mathsf{shirt}(x) \to \mathsf{PRICE}(x, K)]$
 - b. **matrix clause**: λI .HEIGHT(the-dress, I)

The semantics of comparison

(16) MATRIX-CLAUSE($\mu I[{\tt THAN-CLAUSE}(\mu K[{\tt DIFF}(I-K)])])$ The differential predicate DIFF holds for each gap between any subpart of the interval $I_{\tt main-clause}$ and any subpart of the $K_{\tt than-clause}$.

Beck (2010)'s comment

- MATRIX-CLAUSE(μI [THAN-CLAUSE(μK [DIFF(I-K)])]) Schwarzchild and Wilkinson (2002): embedding 'DIFF(I-K)' within the scope of two maximality operators μ
 - ► The standard of comparison *K* is no longer a scalar value independent of comparison.
 - lacktriangleright K is eventually yielded as the largest interval that makes DIFF hold for all the gaps involved in the numerous sub-interval-level comparisons.

Beck (2010)

'I want to come out of the calculation of the semantics of the *than*-clause holding in my hand *the* degree we will be comparing things to.'

Beck (2010)'s solution

[The dress is (up to \$60) more expensive than every shirt is expensive]

- ullet Beck (2010): using the largest value in the interval K for comparison.
- (15) The dress is more expensive than every shirt is.
- (17) The dress is up to \$60 more expensive than every shirt is.
 - \sim False under our scenario that the dress costs \$150 and shirts vary between \$20 and \$100, but true under the analysis of Beck (2010)

Issues to be solved

- (17) The dress is up to \$60 more expensive than every shirt is.
 - The standard of comparison, i.e., the meaning of the *than*-clause, should be able to represent a range of values.
 - Beck (2010): 'I want to come out of the calculation of the semantics of the than-clause holding in my hand the degree we will be comparing things to.' (cf. Schwarzchild and Wilkinson 2002)
 - This range of values should not be reduced to a single degree point.

(cf. Beck 2010)

Conceptual challenge: what does -er/more do?

Mephisto is talking about poor farmer Faustus:

'He always wanted more ...
more free time and more wealth ...
fewer struggles, better health ...
work less and eat all day ...'

(From Sapiens: A Graphic History, Vol.2, by David Vandermeulen, David Casanave, Yuval Noah Harari, 2021)

Conceptual challenge: what does -er/more do?

- *-er/more* can be preceded by definite determiner *the*:
- (18) a. The more you read, the more you learn.
 - b. The taller you are, the less mobile and quick you are.
 - -er/more can be used repeatedly:
- (19) a. Lucy is tall er and tall er and taller.
 - b. We will have more and more money.
 - These data are unexpected if -er/more essentially encodes an inequality, meaning ' $\lambda m_2 . \lambda m_1 . m_1 > m_2$ ' or ' $\lambda d . \lambda m_1 . \lambda m_2 . m_2 \geq m_1 + d$ '.

Outline

- English clausal comparatives and the classical analysis (to be revisited)
- Empirical and conceptual challenges to the classical analysis
- 3 A new perspective on -er/more
- 4 Comparatives: from an inequality-based view to a difference-based view

Parallelism between *-er/more* and *another*

• -er/more has an additive use similar to *another* (see also Greenberg 2010 and Thomas 2010):

(20) Increase in the domain of entities: Additive use

a. I at an^x apple. Then I at $another^y$ (apple).

b. A^x girl, Sue, met another girl, Mary.

base item increase

c. I ate two^x bars of chocolate. Then I ate (a bit) $more^y$.

base item increase

From the additive use to the comparative use of *-er/more*

- Additive use of *more*: in the domain of entities
- Comparative use of -er/more: in the domain of scalar values (i.e., degrees)
- (20c) Increase in the domain of entities: Additive use I ate $\underbrace{\text{two}^x \text{ bars of chocolate}}_{\text{base item}}$. Then I ate $\underbrace{\text{(a bit) more}^y}_{\text{increase}}$.
- (21) Increase in the domain of scalar values: Comparative use
 - a. Mary is tall. Sue is tall er. Across sentences

 base item: HEIGHT(Mary)
 b. Sue is tall er than Mary is tall.

 Within the same sentence

 base item:

HEIGHT(Mary)

More uses of *-er/more* and *another*

- -*er*/*more* and *another*
 - denotes an increase in the domain of entities or scalar values
 - presuppose there is a salient base that the increase is anaphoric to
- (22) Repetitive use of -er/more and another
 - a. Lucy is becoming taller and taller and taller.
 - b. Janice had a little lamb and another and another and another.
- (23) Accumulating increases along with a universal quantifier
 - a. Every year Mary wrote a more interesting book.
 - b. Everyday there is another story to write.
- (24) They can all be preceded by definite determiner *the*:
 - a. The more you read, the more you learn.
 - b. The taller you are, the less mobile and quick you are.
 - c. I've brought two books: one is *Le Petit Prince*, and the other is *Exhalation*.

What gets 'increased'? What does additivity mean?

- Additivity should be considered a phenomenon of QUD-based anaphoricity, indicating an extension of a previous salient answer in addressing the QUD
 - For the additive use in the domain of entities, *more / another* indicates an increase from a part to a whole.

(25) Additive use of *more*

Current question (CQ): What did you eat?

a. I ate two bars of chocolate. Then I ate (a bit) more.

base item: a partial answer to the CQ

increase

b. #I didn't eat a bar of chocolate. Then I ate more. (see Li 2023)

(e.g., Roberts 1996/2012, Zeevat 2004, Zeevat and Jasinskaja 2007, Beaver and Clark 2009, Thomas 2011, Zhang and Ling 2021)

The anaphoricity of -er/more

- Additivity should be considered a phenomenon of QUD-based anaphoricity, indicating an extension of a previous salient answer in addressing the QUD
 - For the comparative use in the domain of scalar values, -er/more indicates an increase from a lower to a higher scalar value.

Comparative use of -er/more Current question (CQ): How tall is Sue? Mary is not tall. Sue is tall er base item - a partial answer to the CQ: HEIGHT(Mary)

(e.g., Roberts 1996/2012, Zeevat 2004, Zeevat and Jasinskaja 2007, Beaver and Clark 2009, Thomas 2011, Zhang and Ling 2021)

The semantics of English -er/more

The canonical view:

	Without a numerical differential	With a numerical differential
Comparison	Inequality:	Inequality:
	$measurement_1 > measurement_2$	$measurement_1 \ge measurement_2 + d$
The semantics	Ordering:	A combination of ordering and addition:
of -er/more	$\lambda m_2.\lambda m_1.m_1 > m_2$	$\lambda d.\lambda m_1.\lambda m_2.m_2 \ge m_1 + d$

• In contrast to this canonical view, English -er/more works like another in being an additive particle, denoting an increase on a discourse-salient base, extending this existing base in addressing the Current Question.

Outline

- English clausal comparatives and the classical analysis (to be revisited)
- Empirical and conceptual challenges to the classical analysis
- 3 A new perspective on -er/more
- Omparatives: from an inequality-based view to a difference-based view

[Lucy is taller than Mary is tall]

• [-er] denotes an increase, i.e., a positive value.

[Lucy is 2 inches taller than Mary is tall]

(28)
[Lucy is 2 inches tall er than Mary is tall]

how tall Lucy is how tall Mary is

HEIGHT(Lucy) - HEIGHT(Mary) = [2 inches ...-er]

• [2 inches ...-er] denotes an increase with a specified size, i.e., 2 inches.

[The dress is more expensive than every shirt is expensive]

how expensive the dress is how expensive every shirt is

how expensive the dress is

how expensive every shirt is

PRICE(the dress) – the interval that ranges from

PRICE(the-cheapest-shirt) to PRICE(the-most-expensive shirt) = [more]

• [more] denotes an increase, i.e., a positive value.

[The dress is up to \$60 more expensive than every shirt is expensive] (false under this scenario)

(30)

[The dress is **up to \$60 more** expensive than every shirt is expensive]

```
how expensive the dress is how expensive every shirt is \sim PRICE(the dress) – the interval that ranges from PRICE(the-cheapest-shirt) to PRICE(the-most-expensive shirt) = [up to $60 more]
```

• [up to \$60 more] denotes an increase with a specific size, i.e., $(-\infty, \$60]$ \rightarrow the upper bound of the increase is \$60

From degrees to intervals

- Degrees: points on a scale (an interval scale à la Stevens 1946)
- Intervals: convex sets of degrees
 - Convex set: A totally ordered set P is convex iff for any elements a and b in the set (suppose $a \le b$), any element x such that $a \le x \le b$ is also in the set P.
 - E.g., $\{x \mid x > 0\}$, $\{x \mid x \le 4\}$, and $\{x \mid 4 \le x \le 8\}$ are all convex sets.
 - Sets like $\{x \mid x > 10 \lor x \le 3\}$ are not convex.
- Notation of intervals:
 - $\begin{cases} x \mid x > 0 \} = (0, +\infty) \\ \{x \mid x \le 4 \} = (-\infty, 4] \\ \{x \mid 4 \le x \le 8 \} = [4, 8] \end{cases}$

Intervals

Subtraction between intervals

(31)
$$[y_1, y_2] - [x_1, x_2] = [y_1 - x_2, y_2 - x_1]$$

difference: differential minuend: matrix subtrahend: comparative standard

- Example 1: [5,8] [1,3] = [2,7]
- Example 2: $(4, +\infty) [2, 3] = (1, +\infty)$ b.
- We are now ready to use intervals and interval subtraction to provide a systematic, generalized formal analysis for all kinds of comparatives.
 - With than-internal quantifiers and/or various numerical differentials
 - Crucially based on an additivity/increase-based view of -er/more

(See Moore 1979) July 30th, 2024

Today's take-home messages

- Day 2 and Day 3: Comparatives and -er/more
 - How an additivity-based perspective improve our understanding of scalarity-related phenomena?
 - ▶ What is additivity?
- Additivity is a phenomenon of QUD-based anaphoricity, indicating an extension of a previous salient answer in addressing the QUD.

	The canonical view	The new difference-based view
Assumption	(Ordinal/interval) scales	Interval scales
Comparison	Inequality:	Subtraction:
	$M_1 > M_2$	$M_1 - M_2 = D$
Representations of	Degree points	Intervals
& operations on	& ordering between	(i.e., set of degrees)
scalar values	degree points	♂ interval subtraction
The semantics	Ordering:	Additivity
of -er/more	>	a default positive difference: $(0, +\infty)$

Tomorrow

- Day 2 and Day 3: Comparatives and -er/more
 - How an additivity-based perspective improve our understanding of scalarity-related phenomena?
 - ▶ What is additivity?
- Tomorrow
 - Formal implementation (see Zhang and Ling 2021 and Zhang and Zhang 2024)
 - Antonyms
 - Cross-linguistic phenomena
 - etc.

Selected references I

- Beaver, David I., and Brady Z. Clark. 2009. Sense and sensitivity: How focus determines meaning. John Wiley & Sons. https://doi.org/10.1002/97814443041760pen_in_new.
- Beck, Sigrid. 2010. Quantifiers in than-clauses. Semantics and Pragmatics 3 (1):1-72. https://doi.org/10.3765/sp.3.1.
- Beck, Sigrid. 2011. Comparative constructions. In *Semantics*, ed. Claudia Maienborn, Klaus von Heusinger, and Paul Portner, volume 2, 1341–1390. Berlin, Boston: de Gruyter. https://doi.org/10.1515/9783110255072.1341.
- Burnett, Heather. 2017. Gradability in Natural Language. Oxford, UK: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198724797.001.0001.
- Cresswell, Max J. 1976. The semantics of degree. In *Montague grammar*, ed. Barbara Partee, 261–292. New York: Academy Press. https://doi.org/10.1016/B978-0-12-545850-4.50015-7.
- Fleisher, Nicholas. 2016. Comparing theories of quantifiers in *than* clauses: lessons from downward-entailing differentials. *Semantics and Pragmatics* 9 (4):1–23. https://doi.org/10.3765/sp.9.4.
- Fox, Danny, and Martin Hackl. 2006. The universal density of measurement. *Linguistics and Philosophy* 29:537–586. https://doi.org/10.1007/s10988-006-9004-4.
- Greenberg, Yael. 2010. Additivity in the domain of eventualities (or: Oliver twist's *more*). In *Sinn und Bedeutung*, volume 14, 151-167. https://ojs.ub.uni-konstanz.de/sub/index.php/sub/article/view/465.
 - Linmin Zhang

Selected references II

- Hausser, Roland, and Dietmar Zaefferer. 1978. Questions and answers in a context-dependent Montague grammar. In *Formal semantics and pragmatics for natural languages*, 339–358. Springer. https://doi.org/10.1007/978-94-009-9775-2_12.
- Heim, Irene. 1985. Notes on comparatives and related matters. https://semanticsarchive.net/Archive/zc0ZjYOM/Comparatives%2085.pdf, unpublished ms., University of Texas, Austin.
- Hellan, Lars. 1981. Towards an integrated analysis of comparatives. Tübingen: Narr.
- Kennedy, Christopher. 1999. Projecting the adjective. New York: Routledge. https://doi.org/10.4324/9780203055458.
- Klein, Ewan. 1980. A semantics for positive and comparative adjectives. Linguistics and philosophy 4:1-45. https://link.springer.com/content/pdf/10.1007/BF00351812.pdf.
- Li, Ang. 2023. Comparing alternatives. Doctoral Dissertation, Rutgers University. https://doi.org/10.7282/t3-gkqz-6152.
- Moore, Ramon E. 1979. Methods and applications of interval analysis. SIAM. https://epubs.siam.org/doi/10.1137/1.9781611970906.
- Roberts, Craige. 1996/2012. Information structure: Towards an integrated formal theory of pragmatics. Semantics and pragmatics 5:6:1-69. https://doi.org/10.3765/sp.5.6.
- Schwarzchild, Roger, and Karina Wilkinson. 2002. Quantifiers in comparatives: A semantics of degree based on intervals. *Natural language semantics* 10:1-41. https://doi.org/10.1023/A:1015545424775.

Selected references III

- Schwarzschild, Roger. 2008. The semantics of comparatives and other degree constructions. *Language and Linguistics Compass* 2:308–331. https://doi.org/10.1111/j.1749-818X.2007.00049.x.
- Seuren, Pieter A. M. 1973. The comparative. In *Generative grammar in Europe*, ed. F. Kiefer and N. Ruwet, 528-564. Springer. https://doi.org/10.1007/978-94-010-2503-4_22.
- von Stechow, Arnim. 1984. Comparing semantic theories of comparison. *Journal of semantics* 3:1-77. https://doi.org/10.1093/jos/3.1-2.1.
- Stevens, Stanley Smith. 1946. On the theory of scales of measurement. *Science* 103:677-680. https://www.science.org/doi/pdf/10.1126/science.103.2684.677.
- Thomas, Guillaume. 2010. Incremental more. In Semantics and Linguistic Theory, volume 20, 233–250. https://doi.org/10.3765/salt.v20i0.2558.
- Thomas, Guillaume. 2011. Another additive particle. In Semantics and Linguistic Theory, volume 21, 634–651. https://doi.org/10.3765/salt.v21i0.2589.
- Zeevat, Henk. 2004. Particles: Presupposition triggers, context markers or speech act markers. In *Optimality theory and pragmatics*, 91–111. Springer. https://doi.org/10.1057/9780230501409_5.
- Zeevat, Henk, and Katja Jasinskaja. 2007. And as an additive particle. In Language, representation and reasoning. Memorial volume to Isabel Gómez Txurruka, 315-340. University of the Basque Country Press. https://idsl1.phil-fak.uni-koeln.de/sites/IDSLI/dozentenseiten/ Jasinskaja/zeevat_jasinskaja_2007.pdf.
- Zhang, Linmin, and Jia Ling. 2021. The semantics of comparatives: A difference-based approach. *Journal of Semantics* 38:249-303. https://doi.org/10.1093/jos/ffab003.

Selected references IV

Zhang, Linmin, and Florence Zhang. 2024. Comparative morphemes are additive particles: English -er/more vs. Chinese gèng. https://ling.auf.net/lingbuzz/008122, manuscript.