Context Free Languages and Pushdown Automata

Geoffrey Matthews

Department of Computer Science Western Washington University

February 27, 2018

Readings

- http://www.cs.rochester.edu/~nelson/courses/csc_173/ grammars/cfg.html
- http://en.wikipedia.org/wiki/Context-free_grammar
- http://en.wikipedia.org/wiki/Context-free_language
- http://en.wikipedia.org/wiki/Parsing
- http://en.wikipedia.org/wiki/Pushdown_automata
- http://en.wikipedia.org/wiki/LR_parser
- https://parasol.tamu.edu/~rwerger/Courses/434/lec12-sum.pdf

Top-down Parsing of CFGs

- We start with the input and attempt to build the parse tree.
- If we begin with the start symbol and attempt to build the tree below it, we are doing top-down parsing.
- Equivalently, we try to constuct a leftmost derivation from left to right.

$$S \overset{S \to AS}{\Longrightarrow} AS \overset{A \to AA}{\Longrightarrow} AAS \overset{A \to a}{\Longrightarrow} aAS \overset{A \to a}{\Longrightarrow} aaS \overset{S \to \epsilon}{\Longrightarrow} aa$$

PDA for any grammar

- Start with \$S on the stack, pad input on the right with \$
- ▶ Pop variables and replace them with a rule RHS
- Match terminals on the stack with terminals on the input
- When you find \$ on both stack and input, accept

$$S
ightarrow aSc \mid b$$

$$\begin{array}{ccc} S & \stackrel{S \to aSc}{\Longrightarrow} & aSc \\ & \stackrel{S \to aSc}{\Longrightarrow} & aaScc \\ & \stackrel{S \to b}{\Longrightarrow} & aabcc \end{array}$$

Stack	Input	Rule
\$S	aabcc\$	S o aSc
\$cSa	aabcc\$	match
\$cS	abcc\$	S o aSc
\$ccSa	abcc\$	match
\$ccS	bcc\$	$S \rightarrow b$
\$ccb	bcc\$	match
\$cc	cc\$	match
\$c	c\$	match
\$	\$	accept

PDA for any grammar

$$S
ightarrow aSc \mid b$$
 $qa\$
ightarrow qN\S
 $qb\$
ightarrow qRaSc$
 $qaS
ightarrow qRaSc$
 $qaS
ightarrow qRb$
 $qbS
ightarrow qRaSc$
 $qbS
ightarrow qRb$
 $qaa
ightarrow qR\varepsilon$
 $qbb
ightarrow qR\varepsilon$
 $q\$\$
ightarrow qR\varepsilon$

$$S \overset{S \to aSc}{\Longrightarrow} aSc \overset{S \to aSc}{\Longrightarrow} aaScc \overset{S \to b}{\Longrightarrow} aabcc$$

Stack	Input	Rule
\$	aabcc\$	push S
\$S	aabcc\$	$S \rightarrow aSc$
\$cSa	aabcc\$	match
\$cS	abcc\$	$S \rightarrow aSc$
\$ccSa	abcc\$	match
\$ccS	bcc\$	$S \rightarrow b$
\$ccb	bcc\$	match
\$cc	cc\$	match
\$c	c\$	match
\$	\$	match
		accept

LL(k) grammars: deterministic PDAs

- Start with S on the stack
- Pop variables and replace them with a rule RHS
- Match terminals on the stack with terminals on the input
- ▶ The trick is knowing which rule to use when we pop a variable
- ▶ If we can always determine this, the PDA will be deterministic
- LL(k) means we find a leftmost derivation by scanning the input left to right, and have to lookahead at most k symbols.
- With LL(1), we construct a chart showing, for any given (input,variable) pair, which rule to use.

An LL(1) grammar and chart for a^nbc^n

$$S o aSc \mid b$$

aabcc

$$S \stackrel{S \to aSc}{\Longrightarrow} aSc$$

$$\stackrel{S \to aSc}{\Longrightarrow} aaScc$$

$$\stackrel{S \to b}{\Longrightarrow} aabcc$$

	a	b	С	\$
S	S o aSc	$S \rightarrow b$		

Stack	Input	Rule
\$S	aabcc\$	S o aSc
\$cSa	aabcc\$	match
\$cS	abcc\$	S o aSc
\$ccSa	abcc\$	match
\$ccS	bcc\$	$S \rightarrow b$
\$ccb	bcc\$	match
\$cc	cc\$	match
\$c	c\$	match
\$	\$	accept

Another LL(1) grammar and chart

	а	b	С	\$
S	S o ASb		$S \rightarrow C$	$S \rightarrow C$
Α	A ightarrow a			
С		$C o \epsilon$	C o cC	$C o \epsilon$

Stack	Input	Rule
\$ S	aaccbb\$	S o ASb
\$bSA	aaccbb\$	A o a
\$bSa	aaccbb\$	match
\$bS	accbb\$	S o ASb
\$bbSA	accbb\$	A o a
\$bbSa	accbb\$	match
\$bbS	ccbb\$	$S \rightarrow C$
\$bbC	ccbb\$	C o cC
\$bbCc	ccbb\$	match
\$bbC	cbb\$	match
\$bbC	cbb\$	C o cC
\$bbCc	cbb\$	match
\$bbC	bb\$	$C ightarrow \epsilon$
\$bb	bb\$	match
\$b	b\$	match
\$	\$	accept

Some grammars are not LL(1)

$$S \rightarrow AB$$

$$A \rightarrow aA|a$$

$$B \rightarrow bB|c$$

$$S \stackrel{S \to AB}{\Longrightarrow} AB$$

$$\stackrel{A \to Aa}{\Longrightarrow} aAB$$

$$\stackrel{A \to a}{\Longrightarrow} aaB$$

$$\stackrel{B \to bB}{\Longrightarrow} aabB$$

$$\stackrel{B \to c}{\Longrightarrow} aabc$$

Input	Rule
aabc\$	$S \rightarrow AB$
aabc\$	A o aA
aabc\$	match
abc\$	A o a
abc\$	match
bc\$	B o bB
bc\$	match
c\$	B o c
с\$	match
\$	accept
	aabc\$ aabc\$ aabc\$ abc\$ abc\$ bc\$ c\$

	a	b	С	\$
S	S o AB			
Α	$A o Aa \mid a$			
В		B o Bb	$B \rightarrow c$	

LL(1) parsing by recursive descent

$$S \to aSc \mid b$$

$$aabcc$$

$$S \to aSc$$

$$\Longrightarrow aSc$$

$$S \to aSc$$

$$S \to aSc$$

$$S \to b$$

$$\Rightarrow aabcc$$

```
(define (S)
  (cond
    ((front? 'a)
     (displayln "S -> aSc")
     (match 'a)
     (S)
     (match 'c))
    ((front? 'b)
     (displayln "S -> b")
     (match 'b))
    (else
     (error))))
```

LL(1) parsing by recursive descent

S

Α

```
ASb \mid C
                                                          (define (S2)
                                                              (cond ((front? 'a)
                                                                          (A) (S2) (match 'b))
          \rightarrow cC | \epsilon
                                                                         ((front? 'c)
                       ASb
                                                                          (C))
            \xrightarrow{A \rightarrow a}
                       aSb
                                                                         ((front? '$)
          S \xrightarrow{ASb}
                       aASbb
                                                                          (C))
           \stackrel{A \rightarrow a}{\Longrightarrow}
                                                                         (else (error))))
                       aaSbb
                                                          (define (A)
           \stackrel{S \to C}{\Longrightarrow}
                       aaCbb
                                                              (cond ((front? 'a)
          \stackrel{C \to cC}{\Longrightarrow}
                       aacCbb
                                                                          (match 'a))
           \stackrel{C \to cC}{\Longrightarrow}
                                                                         (else (error))))
                       aaccCbb
                                                          (define (C)
            \stackrel{C \to \epsilon}{\Longrightarrow}
                       aaccbb
                                                              (cond ((front? 'b) )
                                                       $
                                                                         ((front? 'c)
                      b
                                      C
     а
                                                                          (match 'c) (C))
S \rightarrow ASb
                                  S \rightarrow C
                                                  S \rightarrow C
                                                                         ((front? '$) )
 A \rightarrow a
                                                   \overline{C} 
ightarrow \epsilon
                                                                         (else (error))))
                  C 	o \epsilon
                                 C \rightarrow cC
```

A non-LL(1) grammar for a^mb^nc , $m \ge 1$ and $n \ge 0$

▶ Need to see two letters to determine which production to use.

Sometimes we can find LL(1) to replace a non-LL(1)

- Same language, different grammars.
- ightharpoonup LL(1) is a property of **grammars**, not **languages**.

An LL(k) grammar whose language has no LL(k-1) grammar

$$S \rightarrow aSA \mid \epsilon$$

$$A \rightarrow a^{k-1}bS \mid c$$

$$S \stackrel{*}{\Rightarrow} aaaAAA$$

$$\stackrel{*}{\Rightarrow} aaa \underbrace{aa...abS}_{k-1} \stackrel{A}{\underbrace{aa...abS}} \stackrel{A}{\underbrace{c}}$$

A deterministic language with no LL(k) grammar

$${a^n \mid n \ge 0} \cup {a^n b^n \mid n \ge 0}$$

An LL(1) grammar without terminals on RHS

$$\begin{array}{ccc} S & \rightarrow & A \mid B \\ A & \rightarrow & aA \mid \epsilon \\ B & \rightarrow & bB \mid c \end{array}$$

	a	b	С	\$
S	$S \rightarrow A$	$S \rightarrow B$	$S \rightarrow B$	$S \rightarrow A$
Α	A o aA			$A o \epsilon$
В		B o bB	$B \rightarrow c$	

Transforming some LL(k) to LL(1) by Left-Factoring

Left recursion is not LL(k)

$$A \rightarrow Aa \mid b$$

The entire input must be read before we know how many times to apply the first rule, before we apply the second.

Immediate left recursion can be removed

$$A \rightarrow Aw \mid y$$

Immediate left recursion can be removed

$$A \rightarrow Aw \mid y$$

► Any string in the language must start with a *y* followed by 0 or more *w*'s

Immediate left recursion can be removed

$$A \rightarrow Aw \mid y$$

► Any string in the language must start with a *y* followed by 0 or more *w*'s

$$A \rightarrow yB$$
 $B \rightarrow wB \mid \epsilon$

More general immediate left recursion

$$A \rightarrow Aw_1 \mid Aw_2 \mid \ldots \mid Aw_n \mid x_1 \mid x_2 \mid \ldots \mid x_m$$

More general immediate left recursion

$$A \rightarrow Aw_1 \mid Aw_2 \mid \ldots \mid Aw_n \mid x_1 \mid x_2 \mid \ldots \mid x_m$$

$$A \rightarrow x_1B \mid x_2B \mid \dots \mid x_mB$$

$$B \rightarrow w_1B \mid w_2B \mid \dots \mid w_nB \mid \epsilon$$

Removing left recursion example

$$A \rightarrow Aa \mid b$$

$$\begin{array}{ccc} A & \rightarrow & bB \\ B & \rightarrow & aB \mid \epsilon \end{array}$$

Removing left recursion from arithmetic, (a + a) * a

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid a$$

- ► Note we get the phrase structure of the expression reflected in the tree.
- What kind of tree do we get from a + a + a?
- How could we make it right associative?

Remove the left recursion

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid a$$

$$E \rightarrow TR$$

$$R \rightarrow +TR \mid \epsilon$$

$$T \rightarrow FV$$

$$V \rightarrow *FV \mid \epsilon$$

$$F \rightarrow (E) \mid a$$

What happened to the tree?

Indirect left recursion

$$S \rightarrow Bb$$

$$B \rightarrow Sa \mid a$$

$$S \Rightarrow Bb \Rightarrow Sab$$

Removing indirect left recursion

$$S \rightarrow Bb$$

 $B \rightarrow Sa \mid a$

Replace B's RHS in S's RHS:

$$S \rightarrow Sab \mid ab$$

Now remove the immediate left recursion

$$S \rightarrow abT$$

 $T \rightarrow abT \mid \epsilon$

Removing indirect left recursion

$$\begin{array}{ccc} A & \rightarrow & Bb \mid e \\ B & \rightarrow & Cc \mid f \\ C & \rightarrow & Ad \mid g \end{array}$$

This method can be applied generally, but the rules multiply. 1. Replace B's RHS in A's RHS:

$$A \rightarrow \textit{Ccv} \mid \textit{fb} \mid \textit{e}$$

2. Now replace C's RHS

$$A \rightarrow Adcb \mid gcb \mid fb \mid e$$

3. Now remove the immediate left recursion

$$A \rightarrow gcbD \mid fbD \mid eD$$

 $D \rightarrow dcbD \mid \epsilon$

LL(k) problems

Find an LL(1) grammar and parse table for the following languages

- ▶ {*a*, *ba*, *bba*}
- ▶ a* b
- $ightharpoonup a^{n+1}bc^n$
- $\triangleright a^m b^n c^{m+n}$