Assignment 1&2 Take2 Report

Name: Abdelrahman Ashraf Adel

ID: 40-5927

This is a report on the first and the second assignments after applying techniques from lecture 5 and 6 to them, while changing the data set of the first one to the new house data set acquired.

The report is divided into 4 phases, starting with the data sets description, the techniques applied to the data, analysis of the results and finally the conclusion.

Data set description and observations:

We have two different data sets each used for different models. The first data set is the house price data-set which was utilized in the linear regression model in assignment one. The second one is the student exam scores data set used in the second assignment which applied logistic regression models.

- House price data-set is a large one composed of 18 thousand samples and 21 features. Of Course not all the data contribute have the same contribution to the prediction of the label as each other, so to make it simpler some features were dropped after a correlation matrix was conducted to measure the correlation between all the features and the label "Price". Then any feature with a correlation less then 0.4 was dropped.
- Student exam scores data set composed of 100 samples and 3 features. At which the last column was taken as the label.

There are two approaches for dividing the data sets, the first one is to divide it to 70% training set and 30% testing set and the other approach which was applied is to divide the data to 3 sets, data for training which takes 60%, data for cross validation 20% and the last 20% is for testing.

Techniques applied to the data:

Data normalization

The two data sets were normalized before applying any techniques to them to reduce their redundancy and improve the data integrity for better results.

Random sampling

For the first data set using the linear regression, six models were created differing in their degrees. Which varied from one to six. The learning rate and the number of iterations parameters were fixed for all models as the learning rate was standardized at 0.1 and the iterations for 400 same as the old assignments. In the first-degree model all the features are first degree. The second all the features are first except the sqft living feature which is second degree. The third same as the second but with the sqft above feature third degree. The fourth goes with the same rhythm and have the sqft living 15 with the 4th degree. The fifth have the grade feature with 5th degree. And the last with the bathroom feature in 6th degree.

The models trained and tested with two different approaches. The first-time using shuffling only and the other using random sampling and shuffling.

For the second data set using logistic regression, three models were created also differing in their degrees from one to three. The models were trained and tested twice with the same the data house price data set. The learning rate and the number of iterations parameters were fixed for all models as the learning rate was standardized at 0.1 and the iterations for 400 same as the old assignments. In the first-degree

model all the features were first degrees. In the second the exam 1 score feature was second degree and in the last the exam 2 score feature was 3rd degree where exam 1 score feature same as the second.

K-fold sampling

The K-fold sampling was applied on the house price data set from the first exercise with K equal 5. The data was divided accordingly into 5 sets each containing 3600 sample and was used for the last model which have the 6th degree.

• Regularization

Regularization technique was applied on both data sets utilizing the linear and logistic regression. A set of lambdas were created containing 0 0.01 0.05 0.1 0.5 1 5 10. For the linear regression different degree models were trained using each lambda and tested. The logistic regression models with different degrees were trained and tested for each different lambda from the previous set.

Analysing the results:

1. First Assignment results for different techniques

This is the results concluded from applying random sampling and shuffling techniques for each degree model.

Degree	First	Second	Third	Fourth	Fifth	Sixth
J (CV)	343391	300146	300053	299850	272608	269272
	53416.0	36120.3	88815.9	26013.9	67640.7	11279.5
	14427	7325	3281	78413	91466	92083

J (test)	240975	210499	210450	210361	179428	177777
	34927.2	39081.9	26694.7	56176.4	69579.0	34998.3
	9127	42837	35073	56947	33318	18657

And this is the results from testing the models without random sampling.

Degree	First	Second Third		Fourth	Fifth	Sixth
J (CV)	252441	220341	220087	219808	191544	189377
	60206.9	53443.1	55640.0	88955.4	99854.2	56243.5
	76276	12682	55515	98722	98722 37453	
J (test)	243695	212438	212463	212384	181956	180388
	72452.8	35443.1	99414.9	95286.1	76777.7	03725.8
	06427	1221	04533	5241	72175	8177

Although the J(CV) of the above table is slightly better than those of the first table but the J(test) in both are nearly the same.

This are the results of the K-fold technique where the metric used is the cost function applied on the test set. The five sets were named \$1,2,3,4 and 5. in each time one of the sets was taken as the test sample and the others were the train sets.

Degree	First	Second	Third	Fourth	Fifth
Test	S5	S4	S3	S2	S1
Sample					
J (CV)	170447	186241	226944	223501	2118449
	04401.9	64667.7	34694.1	26942.5	2467.77
	54456	58224	40636	694	9766

And those are the results from the regularization technique applied on different lambdas and different degrees using CV set.

Degree	0	0.01	0.05	0.1	0.5	1	5	10
/Lambd								
as								
1st	25244	584847	291411	582565	29115	58223	290888	5812246865
130	16020	170716	612029	265233	95886	87729	807800	343023.0
	8.9762	6.148	05.555	80.75	87438.	92865.	8638.5	343023.0
	76				1	5		
2nd	22034	610208	304220	608214	30399	60790	303709	6068281103
2110	15344	072482	304220	361817	54087	97033	894845	914253.0
	2.1126	1.959	11.633	03.68	64866.	96084.	3307.0	914233.0
	82	1.555	11.055	03.00	1	8	3307.0	
					_			
3rd	22008	609568	303901	607577	30367	60727	303389	6061821734
	75563	989365	761724	479151	68794	21965	264792	392028.0
	9.0555	3.899	10.902	52.914	37048.	51472.	5022.0	
	15				7	8		
4th	21980	610160	304198	608171	30397	60786	303683	6067653109
	88895	936748	826687	829261	39321	57455	721957	437821.0
	6.4987	5.173	69.473	52.24	06684.	46577.	0326.5	
	22				56	6		

5th	19154	606964	302713	605230	30251	60495	302240	6039070183
	49985	273941	663575	048735	54743	44725	453606	379429.0
	9.2374	1.186	79.156	09.945	58475.	01224.	1575.5	
	53				3	8		
6th	18937	607706	303093	605991	30289	60571	302622	6046710316
	75624	351895	372916	636398	71413	80384	381993	890518.0
	7.5158	9.113	46.06	35.836	23682.	52755.	2054.0	
	77				6	8		

2. Second Assignment results for different techniques

The table below shows the results of applying random sampling and shuffling on different degrees.

Degree	First	Second	Third
J (CV)	0.255875466422	0.141146503130	0.302652009371
	8678	7492	9782
J (test)	0.274209620903	0.092884700672	0.351267954883
	4244	52748	88396

And these are the results of applying the same technique without the random sampling on the same degrees.

Degree	First	Second	Third
J (CV)	0.167088457431	0.167088457431 0.157088457431	
	0742	0742	4731
J (test)	0.252445293885	0.202445293885	0.298893765009
	6521	6521	10814

The last results in this exercise are the ones conducted from the regularization with different lambda values for different degrees using CV set.

Degree /lambd a	0	0.01	0.05	0.1	0.5	1	5	10
1st	0.2824 06530 30885 154	0.3095 196628 337426	0.4179 721828 917552 5	0.5535 378242 054041	1.6380 62429 26902 27	2.9937 16976 14570 4	13.838 904863 962645	27.395267 770469196
2nd	0.3143 64724 90637 31	0.3143 839703 964817	0.3144 556507 223003 6	0.3145 495987 929592	0.3111 08740 90211 554	0.3176 14976 58318 516	0.3255 029980 462546 5	0.3446122 750768133 6
3rd	0.3097 33757 30038 58	0.3109 055290 958805	0.3134 124177 887873 7	0.3165 702374 749684 3	0.3132 98022 57101 497	0.3244 37265 81422 067	0.3283 905505 620721	0.3350141 27467089

Conclusion:

After applying the different techniques mentioned above to the two different sets of house prices and the student exam score sets using linear and logistic regression. The random sampling technique didn't improve the prediction accuracy, but in the logistic regression the random sampling did contribute and improved the results a little. Although the CV test results changed by changing between the sampling techniques using random and without the random sampling but the J test results didn't change. For the regularization technique the first lambda equal to zero resulted in the best accuracy for both regression models.