Knaster-Tarski theorem

문순원

November 30, 2023

Definition (Bottom and top element)

A bottom (top) element of a poset is an element less (greater) than or equal to any elements in the poset. We write \bot and \top for a bottom element and a top element, respectively.

$$\forall x \in L, \bot \sqsubseteq x$$
$$\forall x \in L, x \sqsubseteq \top$$

Definition (Infimum and supremum)

Let (L,\sqsubseteq) be a poset and A be a subset of L. Then α is an infimum (meet) of A if α is a lower bound of A and $l\sqsubseteq\alpha$ for every lower bound l of A. Similary, β is a supremum (join) of A if β is an upper bound of A and $\beta\sqsubseteq u$ for every upperbound u of A.

Bottom and top elements, as well as infimum and supremum, are unique if they exists.

Definition (Complete lattice)

A poset (L, \sqsubseteq) is a complete lattice if every subset of L has an infimum and a supremum. We write $\bigwedge A$ and $\bigvee A$ for the infimum and the supremum of A

Lemma

Complete lattice has the bottom and the top element, and they can be represented as follows.

$$\bot = \bigwedge L = \bigvee \emptyset$$
$$\top = \bigwedge \emptyset = \bigvee L$$

Remark

Existence of supremum is enough for a poset to be a complete lattice. Let (L,\sqsubseteq) be a poset whose subsets has a supremum, and A be a subset of L. Define $D=\{l\mid l \text{ is a lower bound of }A\}$ and $\alpha=\bigvee D$. Then α is the infimum of A.

Definition (Fixed point)

Let (L, \sqsubseteq) be a complete lattice, and $f: L \to L$. Then $x \in L$ is said to be a fixed point, prefixed point, or postfixed point when it satisfies x = f(x), $f(x) \sqsubseteq x$, $x \sqsubseteq f(x)$, respectively.

Lemma

Let (L, \sqsubseteq) be a complete lattice, and $f: L \to L$ be an order-preserving function. Then f has the least fixpoint $\mu = \bigwedge \{x \in L \mid f(x) \sqsubseteq x\}$ and the greatest fixpoint $\nu = \bigvee \{x \in L \mid x \sqsubseteq f(x)\}$.

Proof.

Let $D=\{x\in L\mid x\sqsubseteq f(x)\}$ and $\nu=\bigvee D.$ Let $x\in D.$ Then $x\sqsubseteq f(x)$ and $x\sqsubseteq \nu,$ from which we know $x\sqsubseteq f(x)\sqsubseteq f(\nu)$ by monotonicity of f. Since x is arbitrary, $f(\nu)$ is an upper bound of D., and thus $\nu\sqsubseteq f(\nu).$ Again, by monotonicity of f. $f(\nu)\sqsubseteq f(f(\nu)).$ But then $f(\nu)\in D$ and thus $f(\nu)\sqsubseteq \nu.$ Then $\nu=f(\nu)$ by the antisymmetry of $\sqsubseteq.$ The same argument can be used to show that μ is the least fixpoint.

Theorem (Knaster-Tarski)

Let (L,\sqsubseteq) be a complete lattice, and $f:L\to L$ be an order-preserving function. Let $P\subseteq L$ be the set of fixpoints of f. Then (P,\sqsubseteq) forms a complete lattice.

Proof.

Let W be a subset of P. Define D as the set of upper bounds of W, and suppose $x \in D$, $w \in W$. Then $w \sqsubseteq x$ and $w = f(w) \sqsubseteq f(x)$, by monotonicity of f. Since w is arbitrary, $f(x) \in D$, and thus $f(D) \subseteq D$. Consider a restriction of f from D to D. Then f has the least fixpoint in D. Call it α . Then it is evident that α is the supremum of W in P.