E	Xes	Cise		2											
P	O(O)):	u Cin	4) 20	\ .	af)		1	Cen	K	COX	ر ح	b .	
) So1	nec	1 un	2/10	4 (Jou	3	s a	nd	Sc	erla	.))	\cap	>	8
)						/			
		ZIC	Sh	ep											
				•											
	P	(8) .		1.		<u>S</u>	+ (3-	بر [
	P(a 1			3.	3									
	ĺ	5 10) ;	() .	S									
		,	,												
	A	1		Ο,											

Inductive Step

We arome P(j) tre, $8 \le j \le k$.

and we won't to show that P(k+1) is true.

,	We Cor	k mbi	nou on nal	i H	nal st	a	P(r	c – a	2)) Y	nolo	s. re	Q _X	Wes	19	
<u>C</u>	nd			_												
	6	~r		hal	ds	S	X	P((j)))	J 2	2	ن	4	K	

Exercise 2

Boons Step

$$\begin{cases} 30 = 0, \ 31 = 1, \ 32 = 1, \ 33 = 2 \end{cases}$$

$$\begin{cases} 31^{2} + 3^{2} = 2 = 1 - 2, \ 31 = 2 \end{cases}$$

Indudrie Step

We arrure P(j) is tre 15j6k

 $8^{2} + 8^{2} + \dots + 8^{n} + 8^{n+1} = 8^{n+1} + 1$

=> Infiner + Iner = for frez => Span (gn+gn+1) = gn+1 (gn+2) $\begin{cases}
 \int \mathbf{n} + \int \mathbf{n} + 1 = \int \mathbf{n} + 2
\end{cases}$ True by definition of the F. seq Conclusion P(1) is the and we showed that P(k) -> P(ke-1), Herefore P(n) is me VnEN. on a besoin de shong includion?

Exercise 3 does not work because. ITZL & IT) (equalif k = 0)

Exercise 5

- procedure compute (n, ∞) :
 - ign = 1: return = else:
 - - n = n 1return $\infty + compste(n, \infty)$

- Baois Step
 - if n = 0: compute $(0, \infty)$

Inductive Step

P(k): compute (k, x = kx. holds

P(ker): compute(ker, x) = (k+1).x?

= compute (k, ∞) $+\infty$ = $\infty(k+1)$.

Corchago

P(1) holds and P(k) -> P(K+1),

therefore $\forall n \in \mathbb{N}$, P(n) holds.

Exercice 6 (0101)R = 1010 · (1 1011)² = (11011)· (10000 1001 0111) R = (111010010001)procedure reversel (a, az., a). f (not a2) return as return an + reversal(a1,..., an-1) Recursive destribon of Q(w), the neversal of the shing w: - Boxos Shop: R(x) = 1

- Recursie Steps

· R (w, s) = s R (w)

(3) $(\omega_1\omega_2)^R = \omega_2^R \omega_1^R$ P(w, w2). (w, w)? = w2 w,?. Baois Step. P(w, x): (w, x)^R = (1^Rw, R)
P(1) is the = w, R
Inductive Step Suppose (w1w2)R = w2R w1R Is (w, wzwz) R = wz Rwz w, R? Wy Wz Wz = wy wz Wz Ser wzwz= wy

(1)
$$a_0 = 1$$
 $a_2 = 2$

$$\alpha_1 = 2$$
 $\alpha_3 = 4$

$$a_n = a_{n-1} \cdot a_{n-2}$$

$$a = (1, 2)$$

return a [n]

procedure gor-el (a_0, a_{1}, n_{1})

($\beta i = n = return a_{1}$ return $ger_{-el}(a_{1}, a_{0}, a_{1}, n_{1})$

 $3n = 3n - 1 \cdot 3n - 2$ 3c = 1 3c = 2

Exercise 8

$$L_n = L_{n-1} + L_{n-2}$$

2n-2

Exercise 325,1 43,2 1678 2345 266 4 (6 12345678

procedure quick_sort (a, az. an): small_list = []
greater_list = [] for (elevent in [a2..., an]). ig (element < az): 8 mall_list. add (element) else: grecher list add (elevert) Somall_list.odd(an) new small list = quick sert (small list)
new grater list = quick sert (greder lit) return concat (new_Small_list, new, greater_list)