Deures 10/02/2020

Joan Pau Condal Marco

23 de febrer de 2020

Enunciat:

Considerem en \mathbb{R}^n les operacions definides com:

$$(a_1, \ldots, a_n) + (b_1, \ldots, b_n) := (a_1 +_{\mathbb{R}} b_1 - 1, \ldots, a_n +_{\mathbb{R}} b_n - 1)$$

 $\alpha \cdot (a_1, \ldots, a_n) := (\alpha \cdot (a_1 - 1) + 1, \ldots, \alpha \cdot (a_n - 1) + 1)$

Prova que $(\mathbb{R}^n, +^*, \cdot^*)$ és un espai vectorial. Caracteritza al vector nul de \mathbb{R}^n , i al vector oposat de (a, b).

Demostració:

Per demostrar que $(\mathbb{R}^n, +^*, \cdot^*)$ és un espai vectorial haurem de demostrar que es compleixen les vuit condicions de les dues operacions $(+^*, \cdot^*)$.

Per les demostracions següents considerarem:

$$a = (a_1, \dots, a_n)$$

$$b = (b_1, \dots, b_n)$$

$$c = (c_1, \dots, c_n)$$

$$\alpha, \beta \in \mathbb{R}$$

1. $+^*$ és associativa:

Hem de demostrar que $(a + b) + c = a + (b + c), \forall a, b, c \in \mathbb{R}^n$. Per definició de + tenim que:

$$(a + b) + c = ((a_1 + b_1 - 1) + c1 - 1, ..., (a_n + b_n - 1) + c_n - 1) =$$

$$= (a_1 + b_1 - 1 + c_1 - 1, ..., a_n + b_n - 1 + c_n - 1) =$$

$$= (a_1 + (b_1 + c_1 - 1) - 1, ..., a_n + (b_n + c_n - 1) - 1) =$$

$$= a + (b + c).$$

D'on queda demostrada la propietat associativa.

2. +* és commutativa

Hem de demostrar que $a + b = b + a, \forall a, b \in \mathbb{R}^n$. Utilitzant la definició de a + b = b + a trobem que:

$$a + b = (a_1 + b_1 - 1, \dots, a_n + b_n - 1) =$$

= $(b_1 + a_1 - 1, \dots, b_n + a_n - 1) = b + a$.

D'on trobem que $+^*$ és commutativa.

3. Vector nul

Per demostrar que existeix un vector nul, hem de trobar $\mathbf{0} \in \mathbb{R}^n$ tal que $a + \mathbf{0} = a, \forall a \in \mathbb{R}^n$. Sigui $\mathbf{0} = (b_1, \dots, b_n)$ aplicant la definició de $+^*$ tenim:

$$a + \mathbf{0} = (a_1 + b_1 - 1, \dots, a_n + b_n - 1) = (a_1, \dots, a_n) = a$$

 $\implies a_1 + b_1 - 1 = a_1, \dots, a_n + b_n - 1 = a_n$
 $\implies b_1 = 1, \dots, b_n = 1$
 $\implies \mathbf{0} = (1, \dots, 1)$

Del procediment podem veure que es compleix la propietat del vector nul i aquest és $\mathbf{0} = (1, \dots, 1)$

4. Suma de l'invers

La quarta propietat que hem de demostrar és que $\forall a \in \mathbb{R}^n$, es compleix $a + (-1) \cdot a = 0$. Per demostrar-ho aplicarem la deficició de + i de \cdot :

$$a + (-1) \cdot a = a + (-1 \cdot (a_1 - 1) + 1, \dots, -1 \cdot (a_n - 1) + 1) =$$

$$= a + (-a_1 + 1 + 1, \dots, a_n + 1 + 1) =$$

$$= a + (2 - a_1, \dots, 2 - a_n) =$$

$$= (a_1 + (2 - a_1) - 1, \dots, a_n + (2 - a_n) - 1) =$$

$$= (1, \dots, 1) = \mathbf{0}$$

De la demostració observem també que el vector invers de un $a \in \mathbb{R}^n$ qualsevol és $-a = (2 - a_1, \dots, 2 - a_n)$.

5. Propietat distributiva de ·*:

La següent propietat a demostrar és la distributiva del producte: $\alpha \cdot *(a + *b) = \alpha \cdot *a + \alpha \cdot *b$. Per demostrar-ho, començarem desenvolupant les dues equacions per separat.

Primer de tot, desenvoluparem l'equació $\alpha \cdot (a + b)$. Aplicant la definició de + obtenim:

$$\alpha \cdot (a_1 + b_1 - 1, \dots, a_n + b_n - 1)$$

I aplicant la definició de \cdot^* i desenvolupant arribem a

$$(\alpha \cdot (a_1 + b_1 - 1 - 1) + 1, \dots, \alpha \cdot (a_n + b_n - 1 - 1) + 1) =$$

$$= (\alpha \cdot (a_1 + b_1 - 2) + 1, \dots, \alpha \cdot (a_n + b_n - 2) + 1)$$
(1)

Tot seguit, desenvoluparem l'equació $\alpha \cdot a + \alpha \cdot b$:

$$\alpha \cdot^* a +^* \alpha \cdot^* b = (\alpha(a_1 - 1) + 1, \dots, \alpha(a_n - 1) + 1) + (\alpha(b_1 - 1) + 1, \dots, \alpha(b_n - 1) + 1) =$$

$$= ((\alpha(a_1 - 1) + 1) + (\alpha(b_1 - 1) + 1) - 1, \dots, (\alpha(a_n - 1) + 1) + (\alpha(b_n - 1) + 1) - 1) =$$

$$= (\alpha(a_1 + b_1 - 1) + 1 + 1 - 1, \dots, \alpha(a_n + b_n - 1 - 1) + 1 + 1 - 1) =$$

$$= (\alpha(a_1 + b_1 - 2) + 1, \dots, \alpha(a_n + b_n - 2) + 1)$$
(2)

De l'equació (1) i (2) obtenim que $\alpha \cdot (a + b) = \alpha \cdot a + \alpha \cdot b$, demostrant la cinquena propietat.

6.
$$(\alpha + \beta) \cdot u = \alpha u + \beta u, \forall u \in E, \forall \alpha, \beta \in \mathbb{R}^n$$
:

La sisena propietat que hem de demostrar és: $(\alpha + \beta) \cdot u = \alpha u + \beta u, \forall \alpha, \beta \in \mathbb{R}, u \in E$. La demostració la farem similar a la secció anterior, desenvolupant per separat la igualtat.

Primer de tot desenvoluparem $(\alpha +_{\mathbb{R}} \beta) \cdot^* u, u = (a_1, \ldots, a_n)$:

$$(\alpha +_{\mathbb{R}} \beta) \cdot^* u = ((\alpha +_{\mathbb{R}} \beta) \cdot (a_1 - 1) + 1, \dots, (\alpha +_{\mathbb{R}} \beta) \cdot (a_n - 1) + 1) =$$

$$= ((\alpha a_1 - \alpha + \beta a_1 - \beta) + 1, \dots, (\alpha a_n - \alpha + \beta a_n - \beta) + 1) =$$
(3)

I tot seguit desenvoluparem la segona part de l'equació:

$$(\alpha \cdot^* u) +^* (\beta \cdot^* u) = (\alpha(a_1 - 1) + 1, \dots, \alpha(a_n - 1) + 1) +^* (\beta(a_1 - 1) + 1, \dots, \beta(a_n - 1) + 1) =$$

$$= ((\alpha(a_1 - 1) + 1) + (\beta(a_1 - 1) + 1) - 1, \dots, (\alpha(a_n - 1) + 1) + (\beta(a_n - 1) + 1) - 1) = (4)$$

$$= (\alpha a_1 - \alpha + \beta a_1 - \beta + 1, \dots, \alpha a_n - \alpha + \beta a_n - \beta + 1).$$

Finament, comparant les equacions (3) i (4), veiem que la igualtat es compleix.

7. Ttol 7

$$(\alpha \cdot_{\mathbb{R}} \beta) \cdot^* u = \alpha \cdot^* (\beta \cdot^* u)$$

Demostració:

$$\alpha(\beta \cdot^* u) = \alpha \cdot^* (\beta(a_1 - 1) + 1, \dots, \beta(a_n - 1) + 1) =$$

$$= (\alpha(\beta(a_1 - 1) + 1 - 1) + 1, \dots, \alpha(\beta(a_1 - 1) + 1 - 1) + 1) =$$

$$= (\alpha\beta(a_1 - 1) + 1, \dots, \alpha\beta(a_n - 1) + 1) =$$

$$= (\alpha\beta) \cdot^* u.$$
(5)

8. Element neutre del producte

 $1\cdot^* u=u, \forall u\in\mathbb{R}^n.$

Demostració:

$$1 \cdot^* u = (1 \cdot (a_1 - 1) + 1, \dots, 1 \cdot (a_n - 1) + 1) =$$

= $(a_1, \dots, a_n) = u$