

National University of Computer and Emerging Sciences, Karachi **FAST School of Computing**

Course Code: CS3005	Course Name: Theory of Automata
Student Roll No:	Section No:

Question # 1 (5 Points)

Prove or Diprove the following alphabet $\Sigma = \{CaC, C, Cb, CC\}$ is valid by any example string of your choice

CaC: If you make tokens of this word it would create ambiguity

Alphabets cant not have same prefixes.

$$c^{+}a^{*}b^{*}$$

Question #3 (5+5 Points)

Write down the RE for following languages.

a)
$$\{awaa: w \ge 3, w \in \{b\{a, b\}^*bb\}\}$$

$$ab(a + b)^*bbaa$$

b) Language of the words that start and end with different double letters and have bab as a substring.

$$aa(a + b)^*bab(a + b)^*bb + bb(a + b)^*bab(a + b)^*aa + bbab(a + b)^*aa$$

a.
$$L = \{aa, bb, aaaa, bbbb, \lambda\}$$

b.
$$L = \{vwz: |w| = 1, ve\{aa\}^+, ze\{bb\}^*, we\{a,b\}^*\}$$

$$(aa)^+(a+b)(bb)^*$$

Convert the following NFA to DFA

This is DFA already as I said every DFA is single ton NFA.

1

Prove or Diprove the following alphabet $\Sigma = \{D, F, Daa, DB\}$ is valid by any example string of your choice

DaaD, when we tokenize this word, we would go in ambiguity so the alphabet is ambigious.

Question #3 (5+5 Points)

Write down the RE for following languages.

c)
$$\{aawab: |w| \ge 4, w \in \{ba\{a, b\}^*ba\}\}$$

$$aaba(a + b)^*ba$$

d) Language of the words that start with aa and end bb and have aab as a substring.

$$aabb + aaabb + aa(a + b)^*aab(a + b)^*bb$$

If we take aabb the word would be aabb, which has substring aab. Same for aaab.

Question # 4 (5+5 Points)

c.
$$L = \{bbbb, a, \lambda, ba, baa\}$$

d. $L = \{zwv: |w| = 2, we\{a, b\}^+, ze\{a, b\}^+, ve\{aba\}^+\}$

$$(a+b)^+(a+b)(a+b)^+(aba)^+$$

OR

$$(a+b)(a+b)(a+b)^+(aba)^+$$

Convert the following NFA to DFA

In a precise way send 0 from q2 to dead state

Prove or Diprove the following alphabet $\Sigma = \{Da, bb, aa, CC\} is \ valid \ by \ any \ example \ string \ of \ your \ choice$ This is a valid alphabet there are no same prefixess

Question #3 (5+5 Points)

Write down the RE for following languages.

e)
$$\{abwba: |w| \le 3, w \in \{b\{a, b\}^*b\}\}$$

$$abb(a + b + \lambda)bba$$

f) Language of the words that **start with ba and end with ab** and have **bbb** as a substring.

$$ba(a + b)^*bbb(a + b)^*ab$$

Question #4 (5+5 Points)

Design the FA for following languages

e. $L = \{aaa, bab, aba, bbbb, \lambda\}$

f.
$$L = \{vwz: |w| = 1, v\epsilon\{ab\}^+, z\epsilon\{ba\}^*, w\epsilon\{a, b\}^*\}$$

$$(ab)^+(a+b)(ba)^*$$

Convert the following NFA to DFA

Draw outgoing transition of final state to a newly introduced dead state.

Question # 1 (5 Points)

Prove or Diprove the following alphabet $\Sigma = \{C, Ca, Cb, aaa\} \text{is valid by any example string of your choice}$ CCa, in this lexical analyser would get confused so this is not valid alphabet.

Question #3 (5+5 Points)

Write down the RE for following languages.

g) $\{abbwbba: |w| \le 3, w \in \{a\{a,b\}^+b\}\}$

$$abba(a + b + \lambda)bbba$$

h) Language of the words that **start with aaa and end with abbb** and have **bbb** as a substring.

$$aaa(a+b)^*abbb$$

Question #4 (5+5 Points)

g.
$$L = \{aba, baba, aab, \lambda\}$$

h. $L = \{vwz: |w| = 1, v\epsilon\{aba\}^+, z\epsilon\{aba\}^*, w\epsilon\{a,b\}^*\}$

 $(aba)^+(a+b)(aba)^*$

Type equation here.

Convert the following NFA to DFA. This is dfa already

Question # 1 (5 Points)

Prove or Diprove the following alphabet $\Sigma = \{CaA, CA, Cb, CC\}$ is valid by any example string of your choice

CACb would create ambiguity while parsing

Question #3 (5+5 Points)

Write down the RE for following languages.

Note: w is already >3

a)
$$\{aawaa: |w| \ge 3, w \in \{aa\{a,b\}^*bb\}\}$$

 $aaaa(a+b)^*bbbb$

b) Language of the words that **start and end with different double letters** and have **aaa** as a substring.

 $aa(a+b)^*aaa(a+b)^*bb + aaabb + aaaabb + bb(a+b)^*aaa(a+b)^*aa + bbaaaa + bbaaaa$

Design the FA for following languages

a. $L = \{aaa, bbb, aa, bbbb, \lambda\}$

b.
$$L = \{vwz: |w| = 1, v\epsilon\{aaa\}^+, z\epsilon\{bba\}^*, w\epsilon\{a,b\}^*\}$$

$$(aaa)^+(a+b)(bba)^*$$

Convert the following NFA to DFA.
Send the missing transition to the dead state it would become DFA

Prove or Diprove the following alphabet $\Sigma = \{B, Bcc, BC, ab\}$ is valid by any example string of your choice

BccB would create ambiguity for lexical analysser

Question #3 (5+5 Points)

Write down the RE for following languages.

c)
$$\{awa: |w| \le 2, w \in \{a\{a,b\}^*b\}\}$$

$$aa(a+b)^*ba$$

d) Language of the words that **start and end with same double letters** and have **abb** as a substring.

$$aabbaa + aa(a + b)^*abb(a + b)^*aa + bb(a + b)^*abb(a + b)^*bb$$

Question #4 (5+5 Points)

Design the FA for following languages

c.
$$L = \{abb, baa, \lambda, bba, bba\}$$

d.
$$L = \{vwz: |w| = 3, v\in\{a,b\}^+, z\in\{a,b\}^*, w\in\{a,b\}^+\}$$

$$(a + b)^{+}(a + b)(a + b)(a + b)(a + b)^{*}$$

Or

$$(a+b)(a+b)(a+b)(a+b)(a+b)^*$$

Convert the following NFA to DFA.

Send the missing outgoing transitions to dead state the NFA would be converted to DFA

Question # 1 (5 Points)

Prove or Diprove the following alphabet $\Sigma = \{D, Dbb, BC, abc\}$ is valid by any example string of your choice

Valid alphabet, no same prefixes

Question # 3 (5+5 Points)

Write down the RE for following languages.

e)
$$\{awa: |w| \le 4, w \in \{b\{a, b\}^*b\}\}$$

$$ab(a+b)^*ba$$

f) Language of the words that **start with ab and end aa** and have **baa** as a substring.

$$abaa + abaaa + ab(a + b)^*baa(a + b)^*aa$$

Question #4 (5+5 Points)

e.
$$L = \{bbb, aaa, \lambda, b, bb\}$$

f.
$$L = \{zwv: |w| = 1, v\in\{a, b\}^+, z\in\{a, b\}^*, w\in\{a, b\}^+\}$$

$$(a+b)(a+b)(a+b)^+$$

Convert the following NFA to DFA.

If alphabet is $\Sigma = \{a\}$ then this is DFA already, if you take alphabet $\Sigma \{a,b\}$ then send b from every state to dead state it It would converted to DFA

Prove or Diprove the following alphabet $\Sigma = \{A, ABC, BC, ab\}$ is valid by any example string of your choice

ABCA would create an ambiguity so its invalid

Question #3 (5+5 Points)

Write down the RE for following languages.

g)
$$\{awb: |w| \le 3, w \in \{a\{a,b\}^*a\}\}$$

 $aa(a+b+\lambda)ab$

h) Language of the words that **start and end with different double letters** and have **aba** as a substring.

$$aababb + aa(a+b)^*aba(a+b)^*bb + bb(a+b)^*aba(a+b)^*$$
aa

Question # 4 (5+5 Points)

g.
$$L = \{a, ba, \lambda, bbba\}$$

h.
$$L = \{vwz: |w| = 2, v\epsilon\{a, b\}^*, z \in \{a, b\}^+, w\epsilon\{a, b\}^+\}$$

$$(a+b)(a+b)(a+b)(a+b)^*$$

Convert the following NFA to DFA.

If alphabet is $\Sigma=\{a\}$ then this is DFA already, if you take alphabet $\Sigma\{a,b\}$ then send b from every state to dead state it It would converted to DFA

Prove or Diprove the following alphabet $\Sigma = \{Cd, C, Ca, cc\}$ is valid by any example string of your choice

Question #3 (5+5 Points)

Write down the RE for following languages.

i)
$$\{awb: |w| \le 4, w\epsilon\{bb\{a, b\}^*b\}\}$$

 $abb(a + b)^*bb$

j) Language of the words that **start with bb and end aa with** and have **baa** as a substring.

$$bbaa + bbaaa + bb(a + b)^*baa(a + b)^*aa$$

Question # 4 (5+5 Points)

i.
$$L = \{aba, bab, bbbb, aaa\}$$

j.
$$L = \{vwz: |v| = 4, v\in\{a, b\}^*, z\in\{a, b\}^+, w\in\{a, b\}^*\}$$

Convert the following NFA to DFA.

Draw the outgoing transition of **b** from c to dead state. This would become DFA

.

