Statistics of boundary, luminance, and pattern information predict occluding target detection in natural backgrounds

R. Calen Walshe, Stephen Sebastian & Wilson Geisler

Center for Perceptual Systems, The University of Texas at Austin

Background and Motivation

- 1. Masking laws are well characterized for additive targets.
- 2. Luminance, contrast and similarity identified as fundamental stimulus dimensions.
- 3. Well developed ideal observer models for additive targets in artificial and natural backgrounds.
- 4. Currently very little known about occluding target detection.

Goals

- 1. Measure masking laws for human detection of occluding targets.
- 2. Develop an ideal observer and compare with human thresholds.

Masking Experiment

Constrained Scene Sampling

- 1. 1200 images of the Austin area.
- 2. Extract millions of 21 pixel patches.
- 3. Measure luminance, contrast and similarity of each patch. Place in bins.
- 4. Select a bin and measure performance across the visual field.

Approximately Ideal Observer

Stimulus Encoding

Ganglion Cell Sampling

The retinal stimulus (I_R) is filtered by midget retinal ganglion cell array.

$$I_R(\mathbf{x}) = sample_e \left[I(\mathbf{x}) * g(\mathbf{x}) * f_e(\mathbf{x}) \right],$$

- I(x) is the monitor stimulus.
- g(x) is the optical point spread function of the eye (4mm pupil).
- f(x) is a Gaussian kernel with σ_e matched to the average radius of midget receptive fields at eccentricity e:

Target Template

Target template is the sum of the mean and pattern target signal.

$$\mathbf{T} = \mathbf{T}_m + \mathbf{T}_p$$

Note. Target is blurred and downsampled to match the eccentricity condition.

Apply Pattern Template

$$R_p = \mathbf{T}_p \cdot \mathbf{I}_R$$

Apply Mean Template

$$R_m = \mathbf{T}_m \cdot \mathbf{I}_R$$

Edge Response to stimulus

$$R_e = \sum_{x \in boundary} \left| \frac{\nabla I(x)}{\nabla ||I(x)||} \cdot \frac{N(x)}{||N(x)||} \right|$$

N(x) is the boundary normal vector.

Noisy stimulus encoding

The ideal stimulus responses are degraded with Gaussian noise.

$$R_{p'} = R_p + \mathcal{N} (0, k(e; \theta) R_p)$$

$$R_{l'} = R_l + \mathcal{N} (0, k(e; \theta) R_m)$$

$$R_{e'} = R_p + \mathcal{N} (0, k(e; \theta) R_e)$$

The noise is dependent on eccentricity.

 (μ_e, μ_l, μ_p)

Optimal Response Decoding

Measure the mean and covariance between cues for all stimulus conditions including present/absent.

Respond with stimulus category that is most likely given the observed responses.

Maximum Likelihood

1. Measure mean and covariance matrix for edge, luminance and pattern responses in all experimental conditions:

$$\Sigma = \begin{pmatrix} \operatorname{Var}(R_{e'}) & \operatorname{cov}(R_{e'}, R_{l'}) & \operatorname{cov}(R_{e'}, R_{p'}) \\ \operatorname{cov}(R_{e'}, R_{l'}) & \operatorname{Var}(R_{l'}) & \operatorname{cov}(R_{l'}, R_{p'}) \end{pmatrix}$$

2. Minimum error rate classification rule:

Multivariate normal likelihood function.

$$X = ln \frac{f\left(\mathbf{R}|\mu_{present}; \mathbf{\Sigma}_{present}\right)}{f\left(\mathbf{R}|\mu_{absent}; \mathbf{\Sigma}_{absent}\right)}$$

If $X \ge 0$ then respond present else respond absent.

Model Fitting

Select $\hat{\theta}$ that maximizes the likelihood of the ideal observer given the measured human data.

$$\hat{\theta} = \arg\max_{\theta} \hat{\ell}(\theta; x_1, \dots, x_n) \tag{1}$$

Results

Fits of the model to human psychometric functions for the middle L,C,S bin:

Eccentricity Threshold Functions:

The ideal observer does a reasonable job to tracking human thresholds.

Early sensory limitations and the statistics of natural scenes can partially explain occluding target detection.