07 . Diagrammi di Sequenza di Sistema (SSD)

Sviluppo di Applicazioni Software

Ferruccio Damiani

a.a. 2023/24

Università degli Studi di Torino - Dipartimento di Informatica

Attenzione!

©2024 Copyright for this slides by Ferruccio Damiani. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/

Si noti che

questi lucidi sono basati sul libro di testo del corso "C. Larman, *Applicare UML e i Pattern*, Pearson, 2016" e sul materiale fornito da Matteo Baldoni, Viviana Bono, Claudia Picardi e Gianluca Torta dell'Università degli Studi di Torino.

Table of contents

- 1. Disciplina dei requisiti: Diagrammi di Sequenza di Sistema
- 2. Un po' di notazione

Disciplina dei requisiti: Diagrammi di Sequenza di Sistema

UP maps

Diagramma di sequenza di sistema

Il Diagramma di sequenza di sistema (SSD)

è un eleborato della disciplina dei requisiti che illustra **eventi** di input e di output relativi ai sistemi in discussione.

Nota: non è menzionato esplicitamente in UP.

- I diagrammi di sequenza di sistema sono espressi attraverso i diagrammi di sequenza di UML
- Il sistema è modellato come una "scatola nera"
- Usualmente si modella un SSD per ogni caso d'uso per lo scenario principale e per ogni scenario alternativo
- Lo SSD costituisce un input per i contratti delle operazioni e, soprattutto, per la progettazione degli oggetti

Relazioni tra elaborati di UP

Eventi

I casi d'uso descrivono il modo in cui gli attori esterni interagiscono con il sistema software che interessa creare.

Eventi

Durante un'interazione con il sistema software, un attore genera degli **eventi di sistema**, che costituiscono un input per il sistema, di solito per richiedere l'esecuzione di alcune **operazioni** di sistema.

- Le operazioni di sistema sono operazioni che il sistema deve definire proprio per gestire tali eventi
- Un evento è qualcosa di importante o degno di nota che avviene durante l'esecuzione di un sistema
- Un evento di sistema è un evento esterno al sistema, di input, di solito generato da un attore per interagire con il sistema

Diagrammi di sequenza di sistema

I diagrammi di sequenza sono utili per illustrare interazioni tra attori e le operazioni iniziate da essi.

Diagrammi di sequenza di sistema

È una figura che mostra, per un particolare scenario di un caso d'uso, gli **eventi** generati dagli attori esterni al sistema, il loro **ordine** e gli eventi inter-sistema.

<u>Nota</u>: la qualifica "di sistema" enfatizza l'applicazione dei diagrammi di sequenza UML ai sistemi, considerati a *scatola nera*.

Eventi di un sistema software

Un sistema reagisce a tre cose:

- eventi esterni da parte di attori umani o sistemi informatici
- eventi temporali
- guasti o eccezioni

Il software deve essere progettato proprio per gestire questi eventi e generare delle risposte.

Esempio di SSD

Eventi di sistema:

- makeNewSale: il cassiere inizia una nuova vendita
- enterItem: il cassiere inserisce il codice identificativo di un articolo
- endSale: il cassiere indica di aver terminato l'inserimento degli articoli acquistati
- makeCashPayment: il cassiere indica che il cliente sta pagando in contanti e inserisce l'importo offerto dal cliente

SSD e casi d'uso

Usualmente un SSD mostra gli eventi di sistema per un solo scenario di un caso d'uso, e può essere generato per ispezione da tale scenario.

Un SSD mostra:

- l'attore primario del caso d'uso
- il sistema in discussione
- i passi che rappresentano le interazioni tra il sistema e l'attore

Le interazioni iniziate dall'attore primario nei confronti del sistema sono mostrate come messaggi con parametri.

Gli SSD derivano dai casi d'uso

Scenario di base di Elabora Vendita, con pagamento in contanti:

- Il Cliente arriva alla cassa POS con gli articoli e/o i servizi da acquistare.
- 2. Il Cassiere inizia una nuova vendita.
- Il Cassiere inserisce il codice identificativo di un articolo.
- Il Sistema registra la riga di vendita per l'articolo e mostra una descrizione dell'articolo, il suo prezzo e il totale parziale.
- Il Cassiere ripete i passi 3-4 fino a che non indica che ha terminato.
- 5. Il Sistema mostra il totale.
- Il Cassiere riferisce il totale al Cliente, e richiede il pagamento.
- Il Cliente paga (in contanti) e il sistema gestisce il pagamento.
- Il Sistema registra la vendita completata.
 Il Sistema genera la ricevuta.
- Il Cliente va via con la ricevuta e gli articoli acquistati.

Gli SSD derivano dai casi d'uso

€C. Larman. Applicare UML e i Pattern. Pearson, 2016.

Un po' di notazione

Semplice diagramma di sequenza

C. Larman. Applicare UML e i Pattern. Pearson, 2016.

Due modi per mostrare un risultato di ritorno da un messaggio

C. Larman. Applicare UML e i Pattern. Pearson, 2016.

Esempio di frame di UML

C. Larman. Applicare UML e i Pattern. Pearson, 2016.

Operatori comuni per i frame di UML

Operatore frame	Significato
alt	Frammento alternativo per logica mutuamente espressa nella guardia (un'istruzione <i>if-else</i> di Java o del C).
opt	Frammento opzionale che viene eseguito se la guardia è vera (un'istruzione <i>if</i>).
loop	Frammento da eseguire ripetutamente finché la guardia è vera (un'istruzione <i>while</i> o <i>for</i>). Si può anche scrivere <i>loop(n)</i> per indicare un ciclo da ripetere n volte. Può rappresentare anche l'istruzione <i>for</i> "avanzata" di Java.
par	Frammenti che vengono eseguiti in parallelo.
region	Regione critica all'interno della quale può essere in esecuzione un solo thread.

[€]C. Larman. Applicare UML e i Pattern. Pearson, 2016.

Un messaggio condizionale

©C. Larman. Applicare UML e i Pattern. Pearson, 2016.

Messaggi condizionali mutuamente esclusivi

 \bigcirc C. Larman. Applicare UML e i Pattern. Pearson, 2016.

Annidamento di frame

 \bigcirc C. Larman. Applicare UML e i Pattern. Pearson, 2016.