

SEC. POSGRADO Y EDUCACIÓN CONTINUA

Métodos de búsqueda

algoritmos de búsqueda

- Búsqueda lineal
- Búsqueda binaria

Pos

Búsqueda lineal

Se basa en recorrer la estructura de forma secuencial, elemento por elemento, comparando cada dato con el elemento buscado. Se termina al encontrar el elemento o recorrer toda la lista

Elementos ordenados

11	22	34	40	55	80	101
0	1	2	3	4	5	6

		55	80	101
1		4	5	6

		55	80	101
1		4	5	6

Hay que volver a repetir el proceso sobre la mitad derecha

Hay que volver a repetir el proceso sobre la mitad derecha

Búsqueda binaria VS búsqueda lineal

Tendríamos 6 pasos para lograr encontrar el elemento, mientras que con solo dos pasos se resuelve con la binaria

Búsqueda lineal VS Búsqueda binaria

Ejercicios

- Escribir el algoritmo de la búsqueda lineal
- Escribir la búsqueda binaria
- Armar el algoritmo de búsqueda binaria recursiva

Métodos de Ordenamiento

sorting

- Ordenamiento y eficiencia
- Métodos de ordenamiento sencillos
 - Orden por intercambio (método de la burbuja)
- Otros métodos de orden
 - Orden por mezcla (merge sort)
 - Ordenamiento rápido (quicksort)

Ordenamiento y eficiencia

Ordenamiento y eficiencia

Ordenamiento y eficiencia

Medir la eficiencia

COMPARACIONES

Cuando dos elementos del array son ordenados se comparan entre sí para saber su posición relativa

INTERCAMBIO

Cuando dos elementos del array son ordenados se cambian sus posiciones

Algoritmo por intercambio

Iterar

Visitar cada ítem en el array desde el comienzo hasta el final

Iterar

Visitar cada ítem en el array desde el comienzo hasta el final

Intercambiar

Si dos vecinos están fuera de orden, entonces se intercambian

Iterar

Visitar cada ítem en el array desde el comienzo hasta el final

Intercambiar

Si dos vecinos están fuera de orden, entonces se intercambian

Repetir

Repetir este proceso hasta que el array está ordenado

Por cada ítem

Vamos comparando

Vamos comparando

Intercambiamos si es mayor

5

Por cada ítem

Vamos comparando

Intercambiamos si es mayor

Vamos comparando

Intercambiamos si es mayor

Continuamos hasta el final

Vamos comparando

Intercambiamos si es mayor

Continuamos hasta el final

Paso 1	1	3	4	5	4	7	8
Paso 2	1	3	4	5	4	7	8
	1	1					
	1 <	< 3					

Vamos comparando

Intercambiamos si es mayor

Continuamos hasta el final

Paso 1	1	3	4	5	4	7	8
Paso 2	1	3	4	5	4	7	8
		1	1				
		3 <	< 4				

Vamos comparando

Intercambiamos si es mayor

Continuamos hasta el final

Paso 1	1	3	4	5	4	7	8
Paso 2	1	3	4	5	4	7	8
			1	1			
			4 <	< 5			

Vamos comparando

Intercambiamos si es mayor

Continuamos hasta el final

Paso 1	1	3	4	5	4	7	8
Paso 2	1	3	4	5	4	7	8
				1	1		
				5 <	< 4		

Vamos comparando

Intercambiamos si es mayor

Continuamos hasta el final

Paso 1	1	3	4	5	4	7	8
Paso 2	1	3	4	4	5	7	8
				1	1		
				4 <	< 5		

Vamos comparando

Intercambiamos si es mayor

Continuamos hasta el final

Paso 1	1	3	4	5	4	7	8
Paso 2	1	3	4	4	5	7	8
					1	1	
					5 <	< 7	

Vamos comparando

Intercambiamos si es mayor

Continuamos hasta el final

Repetir hasta que esté todo el array ordenado

Paso 1	1	3	4	5	4	7	8
Paso 2	1	3	4	4	5	7	8

7 < 8

Vamos comparando

Intercambiamos si es mayor

Continuamos hasta el final

Paso 1	1	3	4	5	4	7	8
Paso 2	1	3	4	4	5	7	8
Paso 3	1	3	4	4	5	7	8
		1					

Vamos comparando

Intercambiamos si es mayor

Continuamos hasta el final

Paso 1	1	3	4	5	4	7	8
Paso 2	1	3	4	4	5	7	8
Paso 3	1	3	4	4	5	7	8
		1	1				

Vamos comparando

Intercambiamos si es mayor

Continuamos hasta el final

Paso 1	1	3	4	5	4	7	8
Paso 2	1	3	4	4	5	7	8
Paso 3	1	3	4	4	5	7	8

Método de la burbuja y su análisis asintótico

Mejor

O(n) comparaciones e intercambio

Promedio

O(n²) comparaciones e intercambio

Peor

O(n²) comparaciones e intercambio

Ordenamiento por mezcla

Orden por mezcla

Cortar

Cortar el arreglo en subarreglos hasta llegar a un ítem único

Comparar

Comparar los ítems individualmente

Mezclar

Unir los ítems en un arreglo ordenado

6 4 3	7 5	4	8	2
-------	-----	---	---	---

6	4 3	7	5	4	8	2
---	-----	---	---	---	---	---

6 4 3 7 5 4 8 2

6 4 3 7 5 4 8 2

Al llegar a este paso se supone que cada elemento está ordenado consigo mismo

6 4 3 7 5 4 8 2

Comparamos subarrays y los ordenamos en un nuevo array

6 4 3 7 5 4 8 2

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

 6
 3
 7
 5
 4
 8
 2

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

5

4	6		3	7	4	8	2
		ш					_

Comparamos subarrays y los ordenamos en un nuevo array

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

4 6 3 7 4 5 8

Comparamos subarrays y los ordenamos en un nuevo array

Comparamos subarrays y los ordenamos en un nuevo array

А	6	3	7	А	5	2	8
-	U	J	- 1		_		U

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

7 4 5 2 8

3 4 6

Comparamos subarrays y los ordenamos en un nuevo array

4	5	2	8

Comparamos subarrays y los ordenamos en un nuevo array

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

5

4

8

3 4 6 7 2

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

3	4	6	7		2	4	
---	---	---	---	--	---	---	--

Comparamos subarrays y los ordenamos en un nuevo array

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

2

3 4 6 7

4 5 8

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

2 3

4 6 7

4 5 8

Comparamos subarrays y los ordenamos en un nuevo array

Comparamos subarrays y los ordenamos en un nuevo array

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

2	3	4	4	5	6

7

Comparamos subarrays y los ordenamos en un nuevo array

Unimos (merge)

2	3	4	4	5	6	7

Comparamos subarrays y los ordenamos en un nuevo array

2 3 4 4 5 6 7 8

Cortes

Comparar y Unir

Quicksort

Quicksort

Pivot

Tomar un valor como pivote dentro del array

Partition

Reordenar los elementos tomando al pivote como referencia

Repetir

Repetir el método por cada partición del array

¿Qué es el pivote?

Pivote

Es un valor de un elemento del array donde todos los valores a la izquierda son menores que él y todos los elementos de la derecha son mayores.

Seleccionando un pivote

Seleccionar cualquier elemento dentro del array

Seleccionando un pivote

Seleccionar cualquier elemento dentro del array

Seleccionar el primer o último elemento

Seleccionando un pivote

Seleccionar cualquier elemento dentro del array

Seleccionar el primer o último elemento

Seleccionar el valor medio del primero, último y el medio

Primer ítem

9	6	4	3	8	5	4	1	2	6

Primer ítem

9 6 4 3 8 5 4 1	2 6
-----------------	-----

Primer último

9	6	4	3	8	5	4	1	2	6
---	---	---	---	---	---	---	---	---	---

Problemas al seleccionar primero o último

Requiere O(n^2) operaciones en un caso donde esté pre ordenado

Valor Random

9	6	4	3	8	5	4	1	2	6
		-							

El valor del medio de los tres

El valor del medio de los tres

9	6	4	3	8	5	4	1	2	6	
---	---	---	---	---	---	---	---	---	---	--

9	6	3	7	2	12	5	1

Propiedades del algoritmo Quicksort

Divide y Conquista

Reduce el problema al caso más particular

Ajustado

Solo requiere de O(log n) de utilización de la memoria

Optimizable

Existen muchas optimizaciones para mejorar la performance

