Fonctions trigonométriques

Table des matières

1	Ang	gles orientés	2
	1.1	Le radian	2
	1.2	Angle défini sur l'ensemble des réels	2
	1.3	Angles remarquables sur le cercle	
2	Trig	gonométrie	3
	2.1	Dans le triangle rectangle	3
	2.2	Définition	4
	2.3		4
	2.4		5
		2.4.1 Relations de symétrie	5
		2.4.2 Relations de déphasage	5
	2.5	Équations trigonométriques	6
	2.6	Lignes trigonométrie dans le cercle	7
3	Fon	ctions sinus et cosinus	7
	3.1	Définition	7
	3.2	Propriétés	7
	3.3	Variations	8
	3.4	Courbes	8

1 Angles orientés

1.1 Le radian

<u>Définition</u> 1 : Le radian est une unité de mesure d'un angle comme le degré. Il est défini comme la longueur de l'arc entre 2 points du cercle unité.

Le demi cercle unité a un longueur de π et correspond à un angle de π radian.

On a alors la conversion : $180^{\circ} = \pi \text{ rd}$

La mesure en degré de 1 radian vaut :

$$1 \text{ rd} = \frac{180}{\pi} \approx 57^{\circ}$$

Degré	30°	45°	60°	90°
Radian	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$

Remarque: Le radian est une grande unité qui n'est pas intuitive contrairement au degré.

Le cercle unité est aussi appelé cercle trigonométrique.

1.2 Angle défini sur l'ensemble des réels

Définition 2 : On appelle d la droite tangente au cercle unité en I.

À un point M(1; x) de d, on associe un point M_1 par enroulement de d sur le cercle unité. Au réel x, on associe alors l'angle, en radian, formé par les points O, I et M_1 compté positivement ou négativement suivant le sens de la rotation.

Le sens positif ou trigonométrique est le sens inverse des aiguilles d'une montre.

- Si M_1 est un point du cercle d'angle x, il est alors associé à tous $x' \in \mathbb{R}$ tels que : $x' = x + k \times 2\pi$, $k \in \mathbb{Z}$.
- Réciproquement si $x, x' \in \mathbb{R}$ tels que $x' = x + k \times 2\pi$, $k \in \mathbb{Z}$ alors, x et x' sont associés au même point M_1 du cercle trigonométrique.
- On écrit alors : $x' = x [2\pi]$

Exemple:
$$-\frac{5\pi}{3} = \frac{\pi}{3}$$
 [2 π] en effet, $-\frac{5\pi}{3} + 2\pi = \frac{-5\pi + 6\pi}{3} = \frac{\pi}{3}$

1.3 Angles remarquables sur le cercle

Angles remarquables sur le cercle trigonométrique dans l'intervalle $]-\pi$; $\pi]$

2 Trigonométrie

2.1 Dans le triangle rectangle

<u>Définition</u> **3** : Dans un triangle ABC rectangle en A, on définit les rapports suivants (qui ne dépendent que de la mesure des angles) :

$$\sin \widehat{B} = \frac{\text{côt\'e oppos\'e}}{\text{hypot\'enuse}} = \frac{AC}{BC}$$

$$\cos \widehat{B} = \frac{\text{côt\'e adjacent}}{\text{hypot\'enuse}} = \frac{AB}{BC}$$

$$\tan \widehat{B} = \frac{\text{côt\'e oppos\'e}}{\text{côt\'e adjacent}} = \frac{AC}{AB}$$

Remarque: Lorsque l'on veut connaître l'angle d'un sinus, cosinus ou tangente donnés, on utilise les fonctions réciproques: arcsin, arccos ou arctan.

Exemple: Soit ABC rectangle en A tel

que :
$$\widehat{ABC} = 20^{\circ}$$
 et $AB = 6$

Calculer les longueurs BC et AC.

$$\cos 20^{\circ} = \frac{AB}{BC} \Rightarrow BC = \frac{AB}{\cos 20^{\circ}} = \frac{6}{\cos 20^{\circ}} \approx 6,39$$
$$\tan 20^{\circ} = \frac{AC}{AB} \Rightarrow AC = AB \tan 20^{\circ} = 6 \tan 20^{\circ} \approx 2,18$$

Soit ABC rectangle en A tel que :

$$BC = 7$$
 et $AC = 3$. Calculer l'angle \widehat{ABC} .

$$\sin \widehat{ABC} = \frac{AC}{BC} = \frac{3}{7} \implies$$

$$\widehat{ABC} = \arcsin \frac{3}{7} \approx 25,38^{\circ}$$

Définition 2.2

Définition 4 : M est le point du cercle trigonométrique associé au réel x

 $\cos x = \text{abscisse du point M}$

 $\sin x = \text{ordonn\'ee du point M}$

$$\tan x = \frac{\sin x}{\cos x}$$

On a alors:

- $-1 \le \sin x \le 1$ et $-1 \le \cos x \le 1$ $\sin^2 x + \cos^2 x = 1$

2.3 Tableau des angles remarquables

x	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan x	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞

Démonstration: On calcule $\sin \frac{\pi}{3}$ et $\cos \frac{\pi}{3}$ à l'aide d'un triangle équilatéral. Soient le triangle équilatéral ABC de côté 1 et H le pied de la hauteur issue de A.

D'après les propriétés de triangle équilatéral H = m[BC]

$$AH^2 = AB^2 - BH^2 = 1 - \frac{1}{4} = \frac{3}{4} \implies AH = \frac{\sqrt{3}}{2}$$

$$\sin\frac{\pi}{3} = \frac{AH}{AB} = \frac{\sqrt{3}}{2} \text{ et } \cos\frac{\pi}{3} = \frac{BH}{AB} = \frac{1}{2}$$

On calcule $\sin \frac{\pi}{4}$ à l'aide du carré ABCD de côté 1.

Dans le triangle isocèle rectangle ABC.

$$AC^{2} = AB^{2} + BC^{2} = 1 + 1 = 2 \implies BC = \sqrt{2}$$

 $\sin \frac{\pi}{4} = \frac{BC}{AC} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

À l'aide de l'angle complémentaire, on déduit les autres valeurs des lignes trigonométriques. Par exemple $\sin\frac{\pi}{6}=\cos\left(\frac{\pi}{2}-\frac{\pi}{6}\right)=\cos\frac{\pi}{3}=\frac{1}{2}.$

2.4 Relations trigonométriques

2.4.1 Relations de symétrie

Avec l'angle opposé:

$$\sin(-x) = -\sin x$$
$$\cos(-x) = +\cos x$$

Avec l'angle supplémentaire :

$$\sin(\pi - x) = +\sin x$$
$$\cos(\pi - x) = -\cos x$$

 $\cos(\pi - x) = -\cos x$ Avec l'angle diamétralement opposé :

$$\sin(\pi + x) = -\sin x$$
$$\cos(\pi + x) = -\cos x$$

Remarque: La fonction sinus est impaire et la fonction cosinus est paire.

2.4.2 Relations de déphasage

Avec le complémentaire

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

Avec un déphasage d'un quart de tour

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

Exemple: Simplifier: $A = \cos\left(x + \frac{\pi}{2}\right) - 3\cos\left(-\frac{\pi}{2} - x\right) - 4\sin(\pi - x)$

A l'aide des formules de symétrie et de déphasage, on a :

$$A = -\sin x - 3\cos\left(\frac{\pi}{2} + x\right) - 4\sin x = -\sin x + 3\sin x - 4\sin x = -2\sin x$$

2.5 Équations trigonométriques

Résolution des équations dans \mathbb{R} : $\cos x = a$ et $\sin x = a$ avec $|a| \leq 1$

1) $\cos x = a \Leftrightarrow \cos x = \cos \alpha$ avec

On détermine $\alpha \in [0; \pi]$ tel que $\alpha = \arccos a$ à l'aide du cercle unité.

D'après les règles de symétrie : $x = \alpha$ ou $x = -\alpha$

On trouve toutes les solutions réelles en ajoutant les multiples de 2π

$$\cos x = a \Leftrightarrow x = \alpha + 2k\pi \text{ ou } x = -\alpha + 2k\pi, k \in \mathbb{Z}$$

Remarque : l'expression $x = \alpha + 2k\pi$ peut s'écrire $x = \alpha$ $[2\pi]$

Exemple: Résoudre dans \mathbb{R} : $\sqrt{2}\cos x - 1 = 0$

$$\sqrt{2}\cos x - 1 = 0 \Leftrightarrow \cos x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \Leftrightarrow \cos x = \cos\frac{\pi}{4}$$

Les solutions dans $\mathbb R$ sont : $\begin{cases} x = -\frac{\pi}{4} + 2k\pi & \text{ou} \\ x = -\frac{\pi}{4} + 2k\pi \end{cases}, \ k \in \mathbb Z$

2) $\sin x = a \Leftrightarrow \sin x = \sin \alpha$

On détermine $\alpha \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ tel que $\alpha = \arcsin a$ à l'aide du cercle unité.

D'après les règles de symétrie : $x = \alpha$ ou $x = \pi - \alpha$

On trouve toutes les solutions réelles en ajoutant les multiples de 2π

$$\sin x = a \Leftrightarrow x = \alpha + 2k\pi \text{ ou } x = \pi - \alpha + 2k\pi, k \in \mathbb{Z}$$

Exemple: Résoudre dans \mathbb{R} : $2\sin x - \sqrt{3} = 0$

$$2\sin x - \sqrt{3} = 0 \iff \sin x = \frac{\sqrt{3}}{2} \iff \sin x = \sin \frac{\pi}{3}$$

Les solutions dans $\mathbb R$ sont : $\begin{cases} x = \frac{\pi}{3} + 2k\pi & \text{ou} \\ x = \pi - \frac{\pi}{3} + 2k\pi = \frac{2\pi}{3} + 2k\pi \end{cases}, \ k \in \mathbb Z$

Autre exemple

Résoudre dans \mathbb{R} l'équation : $\cos 2x = \frac{1}{2}$

$$\cos 2x = \frac{1}{2} \iff \cos 2x = \cos \frac{\pi}{3}$$

$$\begin{cases} 2x = \frac{\pi}{3} + 2k\pi & x = \frac{\pi}{6} + k\pi \\ 2x = -\frac{\pi}{3} + 2k\pi & \Rightarrow x = -\frac{\pi}{6} + k\pi \end{cases}, k \in \mathbb{Z}$$

2.6 Lignes trigonométrie dans le cercle

3 Fonctions sinus et cosinus

3.1 Définition

<u>Définition</u> S: Les fonctions sinus et cosinus, notées sin et cos, sont les fonctions définies sur \mathbb{R} par :

$$\sin: \mathbb{R} \longrightarrow [-1; 1]$$
 $\cos: \mathbb{R} \longrightarrow [-1; 1]$ $x \longmapsto \sin x$ $x \longmapsto \cos x$

Remarque: Comme à tout réel x on peut associer un angle, les fonctions sin et cos sont tout naturellement définies sur \mathbb{R} .

Notation : on devrait en toute rigueur écrire sin(x) et non sin x mais l'usage préfère la notation sin x sans parenthèse, plus simple.

3.2 Propriétés

Propriété 1 : Les fonctions sin et cos sont 2π -périodique :

$$\forall x \in \mathbb{R}$$
, $\sin(x+2\pi) = \sin x$ et $\cos(x+2\pi) = \cos x$

Les fonctions sin et cos sont respectivement impaire et paire :

$$\forall x \in \mathbb{R}, \quad \sin(-x) = -\sin x \quad \text{et} \quad \cos(-x) = \cos x$$

Leurs courbes représentatives sont donc symétriques respectivement par rapport à l'origine et à l'axe des ordonnées.

Remarque:

- Comme les fonctions sin et cos sont 2π -périodique : Les courbes \mathscr{C}_{\sin} et \mathscr{C}_{\cos} sur \mathbb{R} se déduisent des courbes \mathscr{C}_{\sin} et \mathscr{C}_{\cos} sur $[-\pi; \pi]$ par des translations de vecteurs $\vec{u} = (2k\pi)\vec{\imath}, \ k \in \mathbb{Z}$.
- De la parité des fonctions sin et cos, on restreint leur étude à l'intervalle $[0; \pi]$.

3.3 Variations

Théorème I: Les fonctions sin et cos sont dérivable sur $\mathbb R$:

$$\sin' = \cos$$
 et $\cos' = -\sin$

D'après le cercle trigonométrique :

• $\forall x \in [0; \pi]$, $\sin x \ge 0 \Leftrightarrow -\sin x \le 0 \Leftrightarrow \cos' x \le 0$ La fonction cos est décroissante.

•
$$\begin{cases} \forall x \in \left[0; \frac{\pi}{2}\right], & \cos x \geqslant 0 \iff \sin' x \geqslant 0 \\ \forall x \in \left[\frac{\pi}{2}; \pi\right], & \cos x \leqslant 0 \iff \sin' x \leqslant 0 \end{cases}$$

La fonction sin est croissante sur $\left[0; \frac{\pi}{2}\right]$ et décroissante sur $\left[\frac{\pi}{2}; \pi\right]$.

x	0		$\frac{\pi}{2}$		π
$\sin' x$		+	0	_	
sin x	0		, 1		0

х	0	$\frac{\pi}{2}$	π
$\cos' x$	0	_	
$\cos x$	1 -	0	→ -1

PREMIÈRE SPÉCIALITÉ

3.4 Courbes

- Pour tracer les courbes \mathscr{C}_{sin} et \mathscr{C}_{cos} sur $[-\pi; \pi]$, on utilise les propriétés de symétrie des fonctions sin et cos dues à leur parité.
- On déduit \mathscr{C}_{sin} et \mathscr{C}_{cos} sur \mathbb{R} par translations de vecteurs $\vec{u} = (2k\pi)\vec{\imath}, \ k \in \mathbb{Z}$.
- Les courbes \mathscr{C}_{sin} et \mathscr{C}_{cos} sont des sinusoïdes.

Remarque : De $\cos x = \sin \left(x + \frac{\pi}{2}\right)$, on déduit la sinusoïde de cos par une translation de vecteur $\vec{v} = -\frac{\pi}{2}\vec{\imath}$ de la sinusoïde de sin.