NAME: M. Siri Chandana

HT.NO:2203A51492

BATCH:12

AIML ASSIGNMENT – 5

Question 1:

https://www.kaggle.com/datasets/camnugent/california-housing-prices Download the dataset from the above link.

a) Read the data with pandas and describe the data

import pandas as pd

from sklearn.model selection import train test split

from sklearn.preprocessing import MinMaxScaler

data = pd.read csv('housing.csv')

data_description = data.describe()

print("Data description:\n", data_description)

```
import pandas as pd
       from sklearn.model_selection import train_test_split
       from sklearn.preprocessing import MinMaxScaler
       # a) Read the data with pandas and describe the data
       data - pd.read_csv('housing.csv')
       data_description = data.describe()
       print("Data description:\n", data_description)

→ Data description:

                  longitude
                                 latitude housing_median_age
                                                                total_rooms \
       count 20640.000000 20640.000000 20640.000000 20640.000000
                            35.631861
               -119,569704
                                                               2635,763081
                                                  28,639486
       mean
                  2.003532
        std
                                2.135952
                                                   12.585558 2181.615252
       min
               -124.350000
                               32,540000
                                                    1,000000
                                                                  2,000000
               -121.808000 33.930000
-118.490000 34.260000
-118.010000 37.710000
                                                  18.000000 1447.750000
       25%
                                                   29.000000 2127.000000
37.000000 3148.000000
       50%
       75%
                                                   52.000000 39320.000000
               -114,310000
                               41,950000
              total bedrooms
                                population
                                              households median_income
                20433.000000 20640.000000 20640.000000 20640.000000
       count
                  537,870553 1425.476744 499.539680
421.385070 1132.462122 382.329753
       mean
                                                               3,870671
       std
                                                               1.899822
       min
                    1,000000
                                  3,000000
                                               1.000000
                                                              0.499900
                  296.000000
                                787.000000
                                              280,000000
                                                               2.563400
        25%
                                             409.000000
       50%
                  435.000000 1166.000000
                                                               3.534800
        75%
                  647.000000
                               1725.000000
                                              605,000000
                                                               4.743250
                 6445,000000 35682,000000 6082,000000
                                                             15.000100
       max
              median_house_value
       count
                    20640,000000
                    206855.816909
        mean
```

b) Find data type and shape of each column

```
import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

data_types = data.dtypes

print("\nhousing types:\n", data_types)

data_shape = data.shape

print("\nhousing shape:", data_shape)
```

```
import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import MinMaxScaler
    data types = data.dtypes
    print("\nhousing types:\n", data_types)
    data_shape = data.shape
    print("\nhousing shape:", data_shape)
⊟
    housing types:
    longitude
                         float64
    latitude
                        float64
    housing_median_age float64
    total_rooms
                        float64
    total_bedrooms
                        float64
    population
                        float64
    households
                        float64
    median_income
                       float64
    median house value float64
    ocean_proximity
                        object
    dtype: object
    housing shape: (20640, 10)
```

c) Find the null values (if yes fill the null values with '0' or mean of that column)

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
null_values = data.isnull().sum()
print("\nNull values:\n", null values)
```

```
null_values = data.isnull().sum()
print("\nNull values:\n", null_values)
data_filled = data.fillna(data.mean())
```

```
import pandas as pd
 from sklearn.model selection import train test split
 from sklearn.preprocessing import MinMaxScaler
 null_values = data.isnull().sum()
 print("\nNull values:\n", null_values)
 null_values = data.isnull().sum()
 print("\nNull values:\n", null_values)
 data filled = data.fillna(data.mean())
 Null values:
 longitude
 latitude
                         0
 housing_median_age
 total rooms
                        0
 total bedrooms
                     207
 population
 households
 median income
 median_house_value
                        0
 ocean_proximity
 dtype: int64
 Null values:
  longitude
 latitude
                         0
 housing_median_age
                        0
 total rooms
                        0
 total bedrooms
                       207
 population
 households
 median income
 median_house_value
```

✓ 0s completed at 8:13 PM

d) find features and target variables

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
Features are all columns except the target variable
features = data.drop(columns=["median house value"])

Target variable is "median_house_value"
target = data["median_house_value"]

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
# Features are all columns except the target variable
features = data.drop(columns=["median_house_value"])

# Target variable is "median_house_value"
target = data["median_house_value"]
```

e) Split the data into train and test.

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split

Split the data into 80% train and 20% test

X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)

```
[7] import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.model_selection import train_test_split

# Split the data into 80% train and 20% test
    X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)
```