Determine the force in members BC, BE, and EF from the truss shown below.

Cut through members BC, BE, EF
No need to find reaction at supports

$$\Sigma M_{\varepsilon} = 0$$
 $F_{CB}(4) - 5(4) = 0$ $F_{CB} = SKN(T)$
 $\Sigma M_{S} = 0$ $-10(4) - 5(8) - 5(4) - F_{\varepsilon +}(4) = 0$
 $F_{\varepsilon +} = \frac{-100}{4} = -2S$ $F_{\varepsilon +} = 2SKN(C)$
 $\Sigma F_{V} = 0$ $25 - S - F_{SE}SIN(4S = 0)$
 $F_{SE} = \frac{15}{SIN(4S)} = 21.21$ $F_{SE} = 21.2 KN(T)$

Note that, we could have used $\Sigma F_{X} = 0$ as well $\Sigma F_{X} = 0$ $\Sigma F_{X} = 0$

TBE = 15 = 21.24 KN (T)

Given:Loads as shown on the truss.

Find: The forces in members ED, EH, and GH.

$$-\frac{1}{4}$$
 (4) + 40(2) + 30(3) + 40(1.5) = 0