Classifying whole slide images based on Tumor Infiltrating Lymphocytes using deep learning

Rashindrie Perera^{1,2}, Dr. Roberto Salgado^{2,3}, Dr. Peter Savas², Franco Caramia², Dr. Jason Li², Prof. Sherene Loi^{1,2}, Prof. Saman Halgamuge¹

¹ University of Melbourne, Australia ² Peter MacCallum Cancer Centre, Australia ³ GZA-ZNA Hospitals, Belgium

INTRODUCTION

- Whole slide images (WSI) are digital representations of tissue sections.
- Tumor infiltrating Lymphocytes (TILs) are useful in treating breast cancer patients.
- TILs have prognostic and predictive importance^{1, 2}.
- TIL score quantifies the # TILs in the tissue.
- Manual TIL scoring is ambiguous.
- Has led to an increasing interest on computational TIL scoring.

Example of a WSI (Scaled down by 32 times)

Lymphocyte cells ³

OBJECTIVES

- Develop a model for computational TIL scoring in WSIs.
- We break down our problem of computational TIL scoring into two steps:

- In step 1, we look at our task from the classification domain
 - We do so by defining a threshold to break the WSIs into two classes as high vs low TIL infiltration.
- In step 2, we achieve our final goal, and move from the classification to the regression domain to predict the numerical TIL score.

METHOD

A pipeline for **step 1** to distinguish WSIs with High TIL Infiltration vs WSIs with Low TIL Infiltration.

STAGE 1: Compress information in WSI in two ways^{4,5}.

STAGE 2: Use the outputs from stage 1 to train final classifier.

MATERIALS

- We train and validate our pipeline on 3 in-house datasets (CLEOPATRA, MARIANNE, FINHER) and 1 public dataset (TCGA -The Cancer Genome Atlas).
- TCGA, contains only frozen tissues sections whereas all other datasets contain only Formalin-Fixed Paraffin-Embedded(FFPE) tissues.
 - Usually, frozen tissues are more challenging to process in neural networks.
 - So, we test our pipeline on both these formats.
- TIL threshold is defined based on disease stage to divide the slides into the two classes of interest.
- Experiments carried out on:
 - Multi-centre combined dataset
 - Each Independent centre specific dataset

RESULTS

- Evaluated our pipeline against an existing method in literature known as CLAM⁶.
- We also proposed and implemented an extension of CLAM, termed as CLAM extended.

 We achieved highest performance in all five metrics comparing favorably to existing methods and extensions of them.

Results on Independent centre specific dataset

AUC – Area under the Receiver Operating Curve

- In each dataset, we were able to obtain highest performance in sensitivity.
- In terms of balanced accuracy, we obtained highest performance in all datasets except in TCGA.
- However, our model was still able to maintain a more balanced performance for sensitivity and specificity in TCGA.

Visualizing model attention maps

Human annotation of tumor (yellow) (regions) on original **CLEOPATRA** test dataset.

Attention map generated by our final model.

Heatmap overlay of the generated attention map on top of the original WSI.

CONCLUSIONS

- Low-cost, segmentation information can assist in the binary TIL classification task.
- Segmentation model is not fine-tuned on our dataset which introduces an inevitable error gap.
- For frozen tissue datasets, CLAM extended method is a better choice.

FUTURE WORK

- Moving from binary classification task (step 1) to regression task (step 2).
- Experimenting clinical applicability.

REFERENCES

"Type, density, and location of immune cells clinical outcome." Science 313.5795 (2006): 1960-1964.

[2] Loi, S., et al. "Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial." Annals of oncology 25.8 (2014): 1544-1550.

https://lymphoma-action.org.uk/types-lymphoma-non-hodgkinlymphoma/lymphoplasmacytic-lymphoma-and-waldenstromsmacroglobulinaemia

[4] Mohamed Amgad et al. "Joint Region and Nucleus Segmentation for Characterization of Tumor Infiltrating Lymphocytes in Breast Cancer". In:Physiology & behavior176.3 (2020),pp. 139-148.

[5] Tellez, David, et al. "Neural image compression for gigapixel histopathology image analysis." IEEE Transactions on Pattern Analysis and Machine Intelligence (2019).

[6] Lu, Ming Y., et al. "Data-efficient and weakly supervised computational pathology on whole-slide images." Nature Biomedical Engineering 5.6 (2021): 555-570.

CONTACT

