ĐẠI SỐ TUYẾN TÍNH

Chương 2

ĐỊNH THỰC

Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh

Nội dung

Chương 2. ĐỊNH THỨC

- Định nghĩa và tính chất
- Định thức và ma trận khả nghịch
- Úng dụng định thức để giải hệ PTTT

2.1. Định nghĩa và tính chất

- Dịnh nghĩa
- Quy tắc Sarrus
- Khai triển định thức theo dòng, theo cột
- Định thức và các phép biến đổi sơ cấp

2.1.1. Định nghĩa

Định nghĩa. Cho A là ma trận vuông cấp n. Ta gọi ma trận A(i|j) là ma trận có được từ A bằng cách $x\acute{o}a$ đi dòng i và $c\^{o}t$ j của A. Rõ ràng ma trận A(i|j) có cấp là n-1.

Ví dụ. Cho
$$A = \begin{pmatrix} 1 & 2 & 2 & 2 \\ 3 & 2 & 2 & 5 \\ 6 & 7 & 1 & 3 \\ 9 & 2 & 10 & 4 \end{pmatrix}$$
. Khi đó

$$A(1|2) = \begin{pmatrix} 3 & 2 & 5 \\ 6 & 1 & 3 \\ 9 & 10 & 4 \end{pmatrix}; \qquad A(2|3) = \begin{pmatrix} 1 & 2 & 2 \\ 6 & 7 & 3 \\ 9 & 2 & 4 \end{pmatrix}.$$

Định nghĩa. Cho $A = (a_{ij}) \in M_n(\mathbb{R})$. **Định thức** của ma trận A, được ký hiệu là |A| (hay $\det A$) là một số thực được xác định bằng quy nạp theo n như sau:

- \bullet Nếu n=1,nghĩa là A=(a), thì |A|=a.
- Nếu n = 2, nghĩa là $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, thì |A| = ad cb.
- Nếu n > 2, nghĩa là $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$, thì

$$|A| \xrightarrow{\underline{\text{dong 1}}} \sum_{j=1}^{n} a_{1j} (-1)^{1+j} |A(\mathbf{1}|j)|$$

$$= a_{11} |A(\mathbf{1}|1)| - a_{12} |A(\mathbf{1}|2)| + \dots + a_{1n} (-1)^{1+n} |A(\mathbf{1}|n)|.$$

Ví dụ. Cho
$$A = \begin{pmatrix} 4 & -2 \\ 3 & 5 \end{pmatrix}$$
. Khi đó $|A| = 4 \times 5 - 3 \times (-2) = 26$.

Ví dụ. Tính định thức của ma trận

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 3 & 0 \\ 3 & 2 & 4 \end{pmatrix}.$$

Giải.

$$|A| \xrightarrow{\underline{\text{dòng 1}}} 1(-1)^{1+1} \begin{vmatrix} 3 & 0 \\ 2 & 4 \end{vmatrix} + 2(-1)^{1+2} \begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix} + (-3)(-1)^{1+3} \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix}$$

$$= 12 - 16 + 15 = 11.$$

2.1.2. Quy tắc Sarrus (n=3)

Cho
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
. Theo định nghĩa của định thức, ta có
$$|A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$
$$- a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}.$$

Từ đây ta suy ra công thức Sarrus dựa vào sơ đồ sau

$$|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - (a_{13}a_{22}a_{31} + a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33}).$$

(Tổng ba đường chéo \red{do} - tổng ba đường chéo $ed{xanh}$)

Ví dụ.

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 2 & 1 \\ 3 & 1 & 5 \end{vmatrix} = (1.2.5 + 2.1.3 + 3.4.1) - (3.2.3 + 1.1.1 + 2.4.5) = -31.$$

2.1.3. Khai triển định thức theo dòng và cột

Định nghĩa. Cho $A=(a_{ij})\in M_n(\mathbb{R})$. Với mỗi $i,j\in\overline{1,n}$, ta gọi

$$c_{ij} = (-1)^{i+j} |A(i|j)|$$

là $ph\hat{a}n b\hat{u} dai s\hat{o}$ của hệ số a_{ij} .

Ví dụ. Cho
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 0 \end{pmatrix}$$
. Tìm phần bù đại số của a_{12} và a_{31} .

Giải.

$$c_{12} = (-1)^{1+2} \begin{vmatrix} 2 & 1 \\ 3 & 0 \end{vmatrix} = 3; \quad c_{31} = (-1)^{3+1} \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} = -2.$$

Định lý. Cho $A = (a_{ij}) \in M_n(\mathbb{R})$. Với mỗi $i, j \in \overline{1, n}$, gọi c_{ij} là **phần** bù đại số của a_{ij} . Ta có công thức khai triển |A|

- theo dòng $i: |A| = \sum_{k=1}^{n} a_{ik} c_{ik}$.
- theo $c\hat{\rho}t$ \mathbf{j} : $|A| = \sum_{k=1}^{n} a_{k\mathbf{j}} c_{k\mathbf{j}}$.

Nhận xét.

$$|A| \xrightarrow{\underline{dong \, \boldsymbol{i}}} \sum_{k=1}^{n} a_{ik} (-1)^{\boldsymbol{i}+k} |A(\boldsymbol{i}|k)|$$

$$\xrightarrow{\underline{c\hat{\rho}t \, \boldsymbol{j}}} \sum_{k=1}^{n} a_{k\boldsymbol{j}} (-1)^{k+\boldsymbol{j}} |A(k|\boldsymbol{j})|$$

Ví dụ. Tính định thức của $A = \begin{pmatrix} 3 & -1 & 3 \\ 5 & 2 & 2 \\ 4 & 1 & 0 \end{pmatrix}$ theo dòng 2 và cột 3.

$$A = \begin{pmatrix} 3 & -1 & 3 \\ 5 & 2 & 2 \\ 4 & 1 & 0 \end{pmatrix}$$

Giải.

•
$$|A| \stackrel{\text{doing 2}}{=\!=\!=} 5(-1)^{2+1} \begin{vmatrix} -1 & 3 \\ 1 & 0 \end{vmatrix} + 2(-1)^{2+2} \begin{vmatrix} 3 & 3 \\ 4 & 0 \end{vmatrix} + 2(-1)^{2+3} \begin{vmatrix} 3 & -1 \\ 4 & 1 \end{vmatrix}$$

==== 15 - 24 - 14 = -23.

•
$$|A| = \frac{\hat{\cot} 3}{3} (-1)^{1+3} \begin{vmatrix} 5 & 2 \\ 4 & 1 \end{vmatrix} + 2(-1)^{2+3} \begin{vmatrix} 3 & -1 \\ 4 & 1 \end{vmatrix} + 0(-1)^{3+3} \begin{vmatrix} 3 & -1 \\ 5 & 2 \end{vmatrix}$$

=== $-9 - 14 + 0 = -23$.

Lưu ý. Khi tính định thức của ma trận ta nên chọn dòng hay cột có nhiều số 0 để khai triển.

Ví dụ. Tính định thức của ma trận
$$A = \begin{pmatrix} 2 & -3 & 3 & 2 \\ 3 & 0 & 1 & 4 \\ -2 & 0 & 0 & 2 \\ 4 & 0 & -1 & 5 \end{pmatrix}$$
.

Giải.
$$|A| = \frac{\text{cột } 2}{4} - 3(-1)^{1+2} \begin{vmatrix} 3 & 1 & 4 \\ -2 & 0 & 2 \\ 4 & -1 & 5 \end{vmatrix} = 3 \times 32 = 96.$$

Ví dụ. (tự làm) Tính định thức của ma trận

$$B = \begin{pmatrix} 1 & 2 & -1 & 10 & 9 \\ 0 & 2 & 3 & -8 & 4 \\ 0 & 0 & -3 & 5 & 4 \\ 0 & 0 & 0 & 2 & 7 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}.$$

Đáp án.
$$|B| = -48$$

Mệnh đề. Cho $A \in M_n(\mathbb{R})$. Khi đó:

- $|A^{\top}| = |A|.$
- \bullet Nếu A là ma trận tam giác thì |A| được tính bằng tích các phần tử trên đường chéo, nghĩa là

$$|A| = a_{11} \times a_{22} \times \ldots \times a_{nn}.$$

Ví dụ. Tính định thức các ma trận sau:

$$a)\begin{pmatrix} -1 & 0 & 4 \\ 3 & 0 & 4 \\ 4 & 0 & -2 \end{pmatrix}; \quad b)\begin{pmatrix} 2 & 3 & 4 \\ 0 & -3 & 9 \\ 0 & 0 & 4 \end{pmatrix}; \quad c)\begin{pmatrix} -2 & 0 & 0 \\ 3 & 3 & 0 \\ 9 & 8 & -5 \end{pmatrix}.$$

Đáp án.

$$|A| = 0;$$
 $|B| = 2 \times (-3) \times 4 = -24;$ $|C| = (-2) \times 3 \times (-5) = 30.$

Định lý. Nếu $A, B \in M_n(\mathbb{R})$ thì |AB| = |A||B|.

Hệ quả. Cho $A, A_1, A_2, \ldots, A_m \in M_n(\mathbb{R})$ và $k \in \mathbb{N}^*$. Khi đó

- $|A^k| = |A|^k$.

Giải.
$$|A| = (1 \times 2 \times 3) \times (4 \times 1 \times 2) = 6 \times 8 = 48.$$

 $\mathbf{D\acute{a}p}\ \mathbf{\acute{a}n.}\ |B|=0.$

2.1.4. Định thức và các phép biến đổi sơ cấp

Dịnh lý. Cho $A, A' \in M_n(\mathbb{R})$. Khi đó

$$\bullet \quad N\acute{e}u \ A \xrightarrow{\alpha d_i} A' \ thi \ |A'| = \alpha |A| \ hay \ |A| = \frac{1}{\alpha} |A'|;$$

Hệ quả. Cho $A \in M_n(\mathbb{R})$. Khi đó, với mọi $\alpha \in \mathbb{R}$, ta có

$$|\alpha A| = \alpha^n |A|.$$

Lưu ý. Vì $|A^{\top}| = |A|$ nên trong quá trình tính định thức ta có thể sử dụng các phép biến đổi sơ cấp trên cột.

Ví dụ. Tính định thức của ma trận
$$A = \begin{pmatrix} 1 & 3 & 3 \\ 2 & 6 & 2 \\ 5 & -6 & 4 \end{pmatrix}$$
.

Giải.
$$\begin{vmatrix} 1 & 3 & 3 \\ 2 & 6 & 2 \\ 5 & -6 & 4 \end{vmatrix} = \frac{\frac{1}{2}d_2}{2} = 2 \begin{vmatrix} 1 & 3 & 3 \\ 1 & 3 & 1 \\ 5 & -6 & 4 \end{vmatrix}$$
$$= \frac{\frac{1}{3}c_2}{2} = 2 \times 3 \begin{vmatrix} 1 & 1 & 3 \\ 1 & 1 & 1 \\ 5 & -2 & 4 \end{vmatrix}$$
$$= \frac{d_2 - d_1}{2} = 6 \begin{vmatrix} 1 & 1 & 3 \\ 0 & 0 & -2 \\ 5 & -2 & 4 \end{vmatrix}$$
$$= \frac{d_2 - d_1}{2} = 6(-2)(-1)^{2+3} \begin{vmatrix} 1 & 1 \\ 5 & -2 \end{vmatrix} = -84.$$

Ví du.

$$\begin{vmatrix} 2 & 3 & 2 & 5 \\ 3 & 2 & 3 & 2 \\ 4 & 3 & 2 & 3 \\ 3 & 3 & 2 & 2 \end{vmatrix} = \begin{vmatrix} d_2 - d_1 \\ d_1 - 2d_2 \\ \hline d_3 - 4d_2 \\ d_4 - 3d_2 \end{vmatrix} \begin{vmatrix} 0 & 5 & 0 & 11 \\ 1 & -1 & 1 & -3 \\ 0 & 7 & -2 & 15 \\ 0 & 6 & -1 & 11 \end{vmatrix}$$

$$\frac{\cot 2}{-(-1)(-1)^{3+2}} \begin{vmatrix} 5 & 11 \\ -5 & -7 \end{vmatrix} = -20.$$

Ví dụ.

$$\begin{vmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{vmatrix} = \underbrace{\begin{vmatrix} \frac{6d_1}{12d_2} \\ \frac{12d_2}{60d_3} \end{vmatrix}}_{\begin{array}{c} \frac{1}{6} \cdot \frac{1}{12} \cdot \frac{1}{60} \end{vmatrix} \begin{vmatrix} \frac{6}{6} & \frac{3}{3} & \frac{2}{6} \\ \frac{6}{6} & \frac{4}{3} & \frac{3}{20} \\ \frac{20}{15} & \frac{15}{12} \end{vmatrix}}_{\begin{array}{c} \frac{c_2 - c_3}{c_3 - 2c_2} \\ \frac{c_1 - 6c_2}{c_3 - 2c_2} \end{vmatrix}}_{\begin{array}{c} \frac{1}{4320} \end{vmatrix} \begin{vmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 3 & 6 \end{vmatrix}}_{\begin{array}{c} \frac{1}{2160} \\ 0 & \frac{1}{2160} \\ 0 & \frac{1}{2160} \end{vmatrix}}_{\begin{array}{c} \frac{1}{2160} \\ 0 & \frac{1$$

Lưu ý. Trong quá trình tính định thức, phép biến đổi sơ cấp loại 3 được khuyến khích dùng bởi vì nó không làm thay đổi giá trị định thức.

Ví dụ.(tự làm) Tính định thức các ma trận sau

$$A = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 2 & 3 & 5 & 0 \\ 3 & 2 & 6 & -2 \\ -2 & 1 & 3 & 1 \end{pmatrix}; \quad B = \begin{pmatrix} 3 & 2 & -1 & 1 \\ 2 & 3 & -2 & 0 \\ -3 & 1 & 4 & -2 \\ 4 & 1 & 3 & 1 \end{pmatrix}.$$

Đáp án.
$$|A| = -19; \quad |B| = -30.$$

Ví dụ.(tự làm) Tính định thức các ma trận sau

$$C = \begin{pmatrix} 13 & 18 & 6 & -1 & 7 \\ 4 & 7 & 3 & 4 & 1 \\ 7 & 9 & 3 & -1 & 4 \\ 6 & 9 & 3 & -2 & 3 \\ 6 & 3 & 1 & -2 & 3 \end{pmatrix}; \quad D = \begin{pmatrix} 3 & 4 & 2 & 1 & 3 \\ 2 & -3 & 5 & 1 & 8 \\ -4 & -7 & 2 & -2 & 4 \\ 3 & -5 & 4 & 3 & 5 \\ 8 & 6 & -4 & 1 & 2 \end{pmatrix}$$

Đáp án.
$$|C| = 24$$
; $|D| = -174$.

Ví dụ.(tự làm) Tính định thức các ma trận sau

a)
$$A = \begin{pmatrix} 2 & 5 \\ 3 & -6 \end{pmatrix}$$
;

b)
$$B = \begin{pmatrix} 2 & 3 & 2 \\ 3 & 2 & 5 \\ 2 & -1 & 2 \end{pmatrix};$$

c)
$$C = \begin{pmatrix} 3 & 2 & 3 & 4 \\ 2 & 1 & 3 & 2 \\ 1 & 2 & 1 & 2 \\ -3 & 4 & 2 & 1 \end{pmatrix}; D = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 2 & 3 & 5 & 0 \\ 3 & 2 & 6 & -2 \\ -2 & 1 & 3 & 1 \end{pmatrix}.$$

d) C^2D^{\top}

Đáp án.
$$|A| = -27$$
; $|B| = 16$; $|C| = -18$; $|D| = -19$;

$$|C^2D^{\top}| = |C^2||D^{\top}| = |C|^2|D| = -6156.$$

2.2. Định thức và ma trận khả nghịch

- Ma trận phụ hợp
- Nhận diện ma trận khả nghịch

2.2.1. Ma trận phụ hợp

Định nghĩa. Cho
$$A=(a_{ij})\in M_n(\mathbb{R})$$
. Đặt $C=(c_{ij})$ với

$$c_{ij} = (-1)^{i+j} |A(i|j)|$$

là phần bù đại số của a_{ij} . Ta gọi ma trận chuyển vị C^{\top} của C là ma trận phụ hợp (hay ma trận phó) của A, ký hiệu là adj(A).

Ví dụ. Cho
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 0 \end{pmatrix}$$
. Tìm ma trận phụ hợp của A .

Giải.
$$c_{11} = (-1)^{1+1} \begin{vmatrix} 3 & 1 \\ 4 & 0 \end{vmatrix} = -4;$$
 $c_{12} = (-1)^{1+2} \begin{vmatrix} 2 & 1 \\ 3 & 0 \end{vmatrix} = 3;$ $c_{13} = (-1)^{1+3} \begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix} = -1;$ $c_{21} = (-1)^{2+1} \begin{vmatrix} 1 & 1 \\ 4 & 0 \end{vmatrix} = 4;$

Tương tự ta có $c_{22} = -3$; $c_{23} = -1$; $c_{31} = -2$; $c_{32} = 1$; $c_{33} = 1$.

Suy ra
$$C = \begin{pmatrix} -4 & 3 & -1 \\ 4 & -3 & -1 \\ -2 & 1 & 1 \end{pmatrix}$$
. Do đó $\operatorname{adj}(A) = C^{\top} = \begin{pmatrix} -4 & 4 & -2 \\ 3 & -3 & 1 \\ -1 & -1 & 1 \end{pmatrix}$.

Ví dụ.(tự làm) Tìm ma trận phụ hợp của
$$B = \begin{pmatrix} 2 & 3 & -4 \\ 5 & 3 & 2 \\ -3 & 1 & -5 \end{pmatrix}$$
.

Dáp án.
$$adj(B) = \begin{pmatrix} -17 & 11 & 18 \\ 19 & -22 & -24 \\ 14 & -11 & -9 \end{pmatrix}$$

2.2.2. Nhận diện ma trận khả nghịch

Định lý. Ma trận vuông A khả nghịch khi và chỉ khi $|A| \neq 0$. Hơn nữa,

$$A^{-1} = \frac{1}{|A|} \operatorname{adj}(A).$$

Ví dụ. Cho $A = \begin{pmatrix} 5 & -4 \\ 2 & 3 \end{pmatrix}$. Hỏi A có khả nghịch không? Nếu có, hãy tìm ma trận nghịch đảo của A.

Giải. Ta có $|A| = 23 \neq 0$. Suy ra A khả nghịch. Ta tính được

$$\operatorname{adj}(A) = \begin{pmatrix} 3 & 4 \\ -2 & 5 \end{pmatrix}.$$

Suy ra

$$A^{-1} = \frac{1}{23} \begin{pmatrix} 3 & 4 \\ -2 & 5 \end{pmatrix}.$$

Hệ quả. Ma trận $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ khả nghịch khi và chỉ khi ad $-bc \neq 0$. Khi đó

0. Khi ao
$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Ví dụ. Cho
$$A = \begin{pmatrix} 2 & 4 \\ 3 & 5 \end{pmatrix}$$
. Suy ra $A^{-1} = \frac{1}{-2} \begin{pmatrix} 5 & -4 \\ -3 & 2 \end{pmatrix}$.

Ví dụ. Cho
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 0 \end{pmatrix}$$
. Hỏi A có khả nghịch không? Nếu có, hãy

tìm ma trận nghịch đảo của A.

Giải. Ta có $|A| = -2 \neq 0$. Suy ra A khả nghịch. Ta tính được

$$\mathrm{adj}(A) = \begin{pmatrix} -4 & 4 & -2 \\ 3 & -3 & 1 \\ -1 & -1 & 1 \end{pmatrix}.$$

Như vậy

$$A^{-1} = \frac{1}{|A|} \operatorname{adj}(A) = \frac{1}{-2} \begin{pmatrix} -4 & 4 & -2 \\ 3 & -3 & 1 \\ -1 & -1 & 1 \end{pmatrix}.$$

Ví dụ.(tự làm) Những ma trận sau có khả nghịch không? Nếu có, hãy tìm ma trận nghịch đảo của chúng.

a)
$$A = \begin{pmatrix} 3 & 5 \\ 2 & 7 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 3 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 3 \end{pmatrix}$ c) $C = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 4 & 3 \\ 4 & 3 & 2 \end{pmatrix}$

Đáp án.
$$A^{-1} = \frac{1}{11} \begin{pmatrix} 7 & -5 \\ -2 & 3 \end{pmatrix}$$
; *B* không khả nghịch;

$$C^{-1} = \begin{pmatrix} -1 & -1 & 2\\ 6 & 4 & -9\\ -7 & -4 & 10 \end{pmatrix}$$

 \mathbf{V} í dụ. Tìm tất cả các giá trị của m để ma trận sau khả nghịch

a)
$$A = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 2 & 1 & 5 & 3 \\ 5 & 0 & 7 & m \\ -1 & 2 & 3 & -3 \end{pmatrix};$$
 b) $B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & m \\ 3 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 5 & 7 & 5 \end{pmatrix}.$

Hướng dẫn. a) Ta có |A| = 8m - 72. Do đó A khả nghịch khi

$$8m - 72 \neq 0 \Leftrightarrow m \neq 9.$$

b) Ta có |B|=(4m-4)(0)=0. Do đó B không khả nghịch với mọi m.

Ví dụ. (tự làm) Cho
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 3 & 3 & 5 \end{pmatrix}$$
. Tính $|A|$; $|A^{-1}|$; $|3A|$; $|adj(A)|$.

Đáp án.
$$|A|=2; \quad |A^{-1}|=\frac{1}{2}; \quad |3A|=54; \quad |\mathrm{adj}(A)|=4.$$

Mệnh đề. Cho $A \in M_n(\mathbb{R})$ và A khả nghịch. Khi đó

$$|A^{-1}| = \frac{1}{|A|};$$

 $|adj(A)| = |A|^{n-1}.$

Ví dụ. Cho $A, B \in M_3(\mathbb{R})$ và |A| = 3, |B| = -2. Tính $|(2AB)^{-1}| \text{ và } |\operatorname{adj}(AB)|.$

Giải.

•
$$|(2AB)^{-1}| = \frac{1}{|2AB|} = \frac{1}{2^3|AB|} = \frac{1}{8|A||B|} = \frac{1}{8.(3).(-2)} = -\frac{1}{48};$$

•
$$|\operatorname{adj}(AB)| = |AB|^{3-1} = (|A||B|)^2 = (3.(-2))^2 = 36.$$

2.3. Ứng dụng định thức để giải hệ PTTT

- Quy tắc Cramer
- 2 Biện luận và giải hệ PTTT bằng Cramer

2.3.1. Quy tắc Cramer

Định lý. Cho hệ phương trình tuyến tính AX = B (*) gồm n ẩn và n phương trình. Đặt

$$\Delta = \det A; \qquad \Delta_i = \det(A_i), \ \forall i \in \overline{1, n},$$

trong đó A_i là ma trận có từ A bằng cách thay cột i bằng cột B. Khi đó:

① $N\acute{e}u \Delta \neq 0$ thì (\star) có một nghiệm duy nhất là:

$$x_i = \frac{\Delta_i}{\Delta}, i \in \overline{1, n}.$$

- Nếu ∆ = 0 và ∆_i = 0 ∀i ∈ 1,n thì hệ vô nghiệm hoặc vô số nghiệm. Trong trường hợp này ta phải dùng phương pháp Gauss hoặc Gauss-Jordan để giải (★).

Ví dụ. Giải phương trình sau bằng quy tắc Cramer

$$\begin{cases} x - y - 2z = -3; \\ 2x - y + z = 1; \\ x + y + z = 4. \end{cases}$$
 (1)

Giải. Ta có

$$\Delta = |A| = \begin{vmatrix} 1 & -1 & -2 \\ 2 & -1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -7; \ \Delta_1 = |A_1| = \begin{vmatrix} -3 & -1 & -2 \\ 1 & -1 & 1 \\ 4 & 1 & 1 \end{vmatrix} = -7;$$

$$\Delta_2 = |A_2| = \begin{vmatrix} 1 & -\mathbf{3} & -2 \\ 2 & \mathbf{1} & 1 \\ 1 & \mathbf{4} & 1 \end{vmatrix} = -14; \Delta_3 = |A_3| = \begin{vmatrix} 1 & -1 & -\mathbf{3} \\ 2 & -1 & \mathbf{1} \\ 1 & 1 & \mathbf{4} \end{vmatrix} = -7.$$

Vì $\Delta \neq 0$ nên hệ (1) có nghiệm duy nhất là

$$x = \frac{\Delta_1}{\Lambda} = 1; \ y = \frac{\Delta_2}{\Lambda} = 2; \ z = \frac{\Delta_3}{\Lambda} = 1.$$

Ví dụ. Giải hệ phương trình sau bằng quy tắc Cramer

$$\begin{cases} x + y - 2z = 4; \\ 2x + 3y + 3z = 3; \\ 5x + 7y + 4z = 5. \end{cases}$$
 (2)

Giải. Ta có

$$\Delta = |A| = \begin{vmatrix} 1 & 1 & -2 \\ 2 & 3 & 3 \\ 5 & 7 & 4 \end{vmatrix} = 0; \quad \Delta_1 = |A_1| = \begin{vmatrix} \mathbf{4} & 1 & -2 \\ \mathbf{3} & 3 & 3 \\ \mathbf{5} & 7 & 4 \end{vmatrix} = -45.$$

Vì $\Delta = 0$ và có $\Delta_1 \neq 0$ nên hệ phương trình vô nghiệm.

Ví dụ. Giải hệ phương trình sau bằng quy tắc Cramer

$$\begin{cases} x + y - 2z = 4; \\ 2x + 3y + 3z = 3; \\ 5x + 7y + 4z = 10. \end{cases}$$
 (3)

Giải. Ta có

$$\Delta = |A| = \begin{vmatrix} 1 & 1 & -2 \\ 2 & 3 & 3 \\ 5 & 7 & 4 \end{vmatrix} = 0; \quad \Delta_1 = |A_1| = \begin{vmatrix} \mathbf{4} & 1 & -2 \\ \mathbf{3} & 3 & 3 \\ \mathbf{10} & 7 & 4 \end{vmatrix} = 0;$$

$$\Delta_2 = |A_2| = \begin{vmatrix} 1 & \mathbf{4} & -2 \\ 2 & \mathbf{3} & 3 \\ 5 & \mathbf{10} & 4 \end{vmatrix} = 0; \quad \Delta_3 = |A_3| = \begin{vmatrix} 1 & 1 & \mathbf{4} \\ 2 & 3 & \mathbf{3} \\ 5 & 7 & \mathbf{10} \end{vmatrix} = 0.$$

Vì $\Delta=\Delta_1=\Delta_2=\Delta_3=0$ nên không kết luận được nghiệm của hệ. Do đó ta phải dùng Gauss hoặc Gauss-Jordan để giải.

Ma trận hóa hệ phương trình tuyến tính, ta có

$$\tilde{A} = \begin{pmatrix} 1 & 1 & -2 & | & 4 \\ 2 & 3 & & 3 & | & 3 \\ 5 & 7 & & 4 & | & 10 \end{pmatrix}$$

$$\tilde{A} \xrightarrow[d_3-5d_1]{} \begin{pmatrix} 1 & 1 & -2 & | & 4 \\ 0 & 1 & 7 & | & -5 \\ 0 & 2 & 14 & | & -10 \end{pmatrix} \xrightarrow[d_3-2d_2]{} \begin{pmatrix} 1 & 0 & -9 & | & 9 \\ 0 & 1 & 7 & | & -5 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Ta có z là ẩn tự do. Như vậy nghiệm của hệ (3) là

$$\begin{cases} x = 9 + 9t; \\ y = -5 - 7t; \\ z = t \in \mathbb{R}. \end{cases}$$

2.3.2. Giải và biện luận hệ PTTT bằng Cramer

Ví dụ. Giải và biện luận hệ phương trình sau theo tham số $m \in \mathbb{R}$:

$$\begin{cases} x_1 + 2x_2 + 2x_3 = 0; \\ -2x_1 + (m-2)x_2 + (m-5)x_3 = 2; \\ mx_1 + x_2 + (m+1)x_3 = -2. \end{cases}$$

Giải. Ta có

$$\Delta = |A| = \begin{vmatrix} 1 & 2 & 2 \\ -2 & m-2 & m-5 \\ m & 1 & m+1 \end{vmatrix} = m^2 - 4m + 3 = (m-1)(m-3);$$

$$\Delta_1 = |A_1| = \begin{vmatrix} \mathbf{0} & 2 & 2 \\ \mathbf{2} & m-2 & m-5 \\ -\mathbf{2} & 1 & m+1 \end{vmatrix} = -4m+12;$$

$$\Delta_2 = |A_2| = \begin{vmatrix} 1 & \mathbf{0} & 2 \\ -2 & \mathbf{2} & m - 5 \\ m & -\mathbf{2} & m + 1 \end{vmatrix} = 0;$$

$$\Delta_3 = |A_3| = \begin{vmatrix} 1 & 2 & \mathbf{0} \\ -2 & m - 2 & \mathbf{2} \\ m & 1 & -\mathbf{2} \end{vmatrix} = 2m - 6 = 2(m - 3).$$

Biện luận:

ightharpoonup Nếu $\Delta \neq 0 \Leftrightarrow \left\{ egin{array}{l} m \neq 1; \\ m \neq 3. \end{array}
ight.$ Khi đó hệ có nghiệm duy nhất là

$$(x_1, x_2, x_3) = \left(\frac{-4}{m-1}, 0, \frac{2}{m-1}\right).$$

$$ightharpoonup N \hat{\text{eu}} \ \Delta = 0 \Leftrightarrow \left[egin{array}{l} m = 1 \\ m = 3 \end{array} \right]$$

• Với m=1, ta có $\Delta_1=8\neq 0$ nên hệ vô nghiệm.

Đại Số Tuyến Tính

• Với m=3, ta có $\Delta_1=\Delta_2=\Delta_3=0$. Khi đó hệ phương trình là:

$$\tilde{A} = \begin{pmatrix} 1 & 2 & 2 & 0 \\ -2 & 1 & -2 & 2 \\ 3 & 1 & 4 & -2 \end{pmatrix} \xrightarrow{d_2 + 2d_1} \begin{pmatrix} 1 & 2 & 2 & 0 \\ 0 & 5 & 2 & 2 \\ 0 & -5 & -2 & -2 \end{pmatrix}$$

$$\xrightarrow{d_3 + d_2} \begin{pmatrix} 1 & 0 & 6/5 & -4/5 \\ -\frac{1}{5}d_2 & 0 & 0 & 0 \end{pmatrix}$$

Ta có x_3 là ẩn tự do. Suy ra nghiệm của hệ là

$$(x_1,x_2,x_3) = \left(-\frac{6}{5}t - \frac{4}{5}, -\frac{2}{5}t + \frac{2}{5}, t\right)$$
 với $t \in \mathbb{R}$.

Ví du. Giải và biện luận hệ phương trình sau theo tham số $m \in \mathbb{R}$:

$$\begin{cases} (m-7)x + 12y - 6z = m; \\ -10x + (m+19)y - 10z = 2m; \\ -12x + 24y + (m-13)z = 0. \end{cases}$$

Giải.
$$\Delta = \begin{vmatrix} m-7 & 12 & -6 \\ -10 & m+19 & -10 \\ -12 & 24 & m-13 \end{vmatrix} = (m-1)^2(m+1);$$

$$\Delta_1 = \begin{vmatrix} m & 12 & -6 \\ 2m & m+19 & -10 \\ 0 & 24 & m-13 \end{vmatrix} = m(m-1)(m-17);$$

$$\Delta_2 = 2m(m-1)(m-14); \quad \Delta_3 = -36m(m-1).$$

Biện luận:

 \triangleright Nếu $\Delta \neq 0 \Leftrightarrow m \neq -1$ và $m \neq 1.$ Khi đó hệ có nghiệm duy nhất là

$$\begin{cases} x = \frac{\Delta_1}{\Delta} = \frac{m(m-1)(m-17)}{(m-1)(m^2-1)} = \frac{m(m-17)}{m^2-1}; \\ y = \frac{\Delta_2}{\Delta} = \frac{2m(m-1)(m-14)}{(m-1)(m^2-1)} = \frac{m(m-14)}{m^2-1}; \\ z = \frac{\Delta_3}{\Delta} = \frac{-36m(m-1)}{(m-1)(m^2-1)} = \frac{-36m}{m^2-1}. \end{cases}$$

$$ightharpoonup N \hat{\text{eu}} \ \Delta = 0 \Leftrightarrow \left[\begin{array}{c} m = -1; \\ m = 1. \end{array} \right]$$

- Với m=-1, ta có $\Delta_1=-36\neq 0$ nên hệ vô nghiệm.
- \bullet Với m=1, ta có $\Delta_1=\Delta_2=\Delta_3=0.$ Hệ trở thành

$$\begin{cases}
-6x + 12y - 6z = 1; \\
-10x + 20y - 10z = 2; \\
-12x + 24y - 12z = 0.
\end{cases}$$

Ma trận hóa hệ phương trình ta có

$$\tilde{A} = \begin{pmatrix} -6 & 12 & -6 & 1 \\ -10 & 20 & -10 & 2 \\ -12 & 24 & -12 & 0 \end{pmatrix} \xrightarrow{d_3 - 2d_1} \begin{pmatrix} -6 & 12 & -6 & 1 \\ -10 & 20 & -10 & 2 \\ 0 & 0 & 0 & -2 \end{pmatrix}.$$

Suy ra hê vô nghiêm.

Ví dụ.(tự làm) Cho hệ phương trình tuyến tính

$$\begin{cases} mx_1 + x_2 + x_3 = 1; \\ x_1 + mx_2 + x_3 = 1; \\ x_1 + x_2 + mx_3 = 1. \end{cases}$$

Xác định giá trị của tham số $m \in \mathbb{R}$ sao cho:

- hệ có một nghiệm duy nhất;
- hệ vô nghiệm;
- hệ có vô số nghiệm.

Hướng dẫn.

$$\Delta = m^3 - 3m + 2 = (m-1)^2(m+2);$$

$$\Delta_1 = \Delta_2 = \Delta_3 = m^2 - 2m + 1 = (m-1)^2.$$

Biện luận:

$$ightharpoonup$$
 Nếu $\Delta \neq 0 \Leftrightarrow \left\{ egin{array}{l} m \neq 1 \\ m \neq -2. \end{array}
ight.$ Khi đó hệ có nghiệm duy nhất là

$$(x_1, x_2, x_3) = \left(\frac{1}{m+2}, \frac{1}{m+2}, \frac{1}{m+2}\right).$$

$$ightharpoonup$$
 Nếu $\Delta = 0 \Leftrightarrow \begin{bmatrix} m = 1; \\ m = -2. \end{bmatrix}$

lacktrule Với m=1, ta có $\Delta_1=\Delta_2=\Delta_3=0.$ Hệ trở thành

$$\begin{cases} x + y + z = 1; \\ x + y + z = 1; \\ x + y + z = 1. \end{cases}$$

Giải hệ bằng Gauss hoặc Gauss-Jordan, ta có hệ vô số nghiệm

$$(x_1, x_2, x_3) = (1 - t - s, t, s)$$
 với $t, s \in \mathbb{R}$

• m = -2, ta có $\Delta_1 = 9 \neq 0$. Suy ra hệ vô nghiệm.