The Global Climate Game

Roweno J.R.K. Heijmans

Tilburg University

January 23, 2021

Me

- Applied microeconomist: environmental/resource economics and public policy
- Expertise: theoretical modeling, applied game theory
 - Also interested in numerical calibrations; hoping to run experiments as well

•

2/28

Introduction

Technology 1: Cheap and dirty

Technology 2: Green but expensive. "Breakthrough technology"

The Global Climate Game

5/28

General Structure

- N players
- Two technologies: green and dirty
- Player i must invest in the dirty $(x_i = 0)$ or the clean $(x_i = 1)$ technology.
- Marginal environmental benefit of green investment: b
- Total green investment/green network size: $m = \sum_{i \neq i} x_i$.
- ullet Cost of dirty investment: c^L
- Cost of green investment: $c^H(m+1)$

General Structure

- N players
- Two technologies: green and dirty
- Player i must invest in the dirty $(x_i = 0)$ or the clean $(x_i = 1)$ technology.
- Marginal environmental benefit of green investment: b
- Total green investment/green network size: $m = \sum_{i \neq i} x_i$.
- ullet Cost of dirty investment: c^L
- Cost of green investment: $c^H(m+1)$
- Green (and dirty) investments are strategic complements

$$\pi_i(x_i \mid m, b) = \begin{cases} b \cdot m - c^L & \text{if } x_i = 0\\ b \cdot (m+1) - c^H(m+1) & \text{if } x_i = 1 \end{cases}$$

Observe:

- ullet Gain from investing green, rather than dirty, is increasing in b
- ullet Gain from investing green, rather than dirty, is increasing in m
- \bullet If $b>c^H(1)-c^L$, players are strictly better off adopting the green technology
- If $b < c^H(N) c^L$, players are strictly better off adopting the dirty technology

- Network effects (Katz & Shapiro, 1985; Li et al., 2017)
- Technological/knowledge spillovers (Fischer & Newell, 2008; Hoel & De Zeeuw, 2010; Aghion & Jaravel, 2015; Harstad, 2016)
- Tipping points (Barrett & Dannenberg, 2012)
- Breakthrough technologies (Barrett, 2006; Hoel & De Zeeuw, 2010)
- Climate clubs (Nordhaus, 2015)
- (Social) norms (Allcott, 2011; Kuhn et al., 2011; Nyborg, 2018; Kverndokk et al., 2020)
- Cost sharing (De Coninck et al., 2008)
- Reciprocity

Problem

- ullet Strategic complementarities o multiple strict equilibria
 - Barrett (2006), Hoel & De Zeeuw (2010), Harstad (2012, 2016),
 Barrett & Dannenberg (2012, 2017); Mielke & Steudle (2018)
 - Proposition in paper
- Solutions // complications
 - Equilibrium refinements // cannot eliminate strict equilibria
 - Hand-pick particular equilibrium // ad hoc
 - Run experiments // how to generalize?
- My proposal: consider uncertainty

Uncertainty and Signals

- Assume that b is not observed.
- $b \sim \mathcal{U}(\underline{B}, \overline{B})$, where $\underline{B} < c^H(N) c^L$ and $\overline{B} > c^H(1) c^L$.
- Player i: private noisy signal s_i of b

$$s_i = b + \varepsilon_i$$
.

- $\varepsilon_i \sim \mathcal{U}(-\varepsilon, \varepsilon)$, i.i.d.
- Information structure is common knowledge.
- Global game (Carlsson & Van Damme, 1993; Morris & Shin, 1998; Frankel et al., 2007).

Dominant Strategies

- For very high s_i , player i adopts the green technology even if m=0.
- Let \overline{s}^0 be the lower bound on signals for which $x_i = 1$ is dominant
- When $s_i > \overline{s}^0$, adopting the green technology is a dominant strategy.

Heijmans (TiU)

Induction and Convergence

adopt the green technology

Proposition 1

The global climate game has a unique equilibrium. There exists a unique threshold b^* such that each player i invests in the green technology for all $s_i > b^*$, while s/he invest in the dirty technology for all $s_i < b^*$. When $\varepsilon \to 0$, the threshold b^* is given by:

$$b^* = \sum_{n=0}^{N-1} {N-1 \choose n} \cdot \frac{c^H(n+1)}{2^{N-1}} - c^L.$$
 (1)

Inefficiency

Corollary 1

For all $b \in \left(\frac{c^H(N)-c^L}{N}, b^*\right)$, the equilibrium of the global climate game is inefficient. Players adopt the dirty technology even though payoffs are higher were all to adopt the green technology instead.

Network Subsidies

Taxes and Subsidies

- Policymakers can use taxes or subsidies to stimulate selection of the efficient equilibrium
- Complications:
 - May need to be very high (Sartzetakis and Tsigaris, 2005; Greaker and Midttømme, 2016; Mielke and Steudle, 2018)
 - 2 Taxes not always feasible (e.g. in EU).
 - Subsidies are expensive.
 - Returns multiple equilibria (Angeletos et al., 2006).
- My solution: network subsidies

Network Subsidies

• Let a policymaker offer the following network subsidy:

$$t^*(m) = c^H(m+1) - c^H(N)$$

- Decreasing in m: "Insurance against small green network"
- \bullet Green technology universally adopted iff $b>\frac{c^H(N)-c^L}{N}$ (and ε small)
- Implies that m = N 1 for all $b > \frac{c^H(N) c^L}{N}$.
- Hence, $t^*(m) = t^*(N-1) = c^H(N) c^H(N) = 0$.
- Well-designed network subsidy is effective and cheap.
- Does not induce multiple equilibria

Free Lunch

Proposition 2

Let $\varepsilon \to 0$. A network subsidy equal to t^* implements the efficient equilibrium of the underlying game but does not cost the policymaker anything.

Institutional Choice

A Game of Games

- "In some important multiplayer situations, such as efforts to supply a global public good, players can choose the game they want to play (Barrett & Dannenberg, 2017)."
- Two-stage game:
 - **Stage 1**: vote on game to be played in stage 2. Criterion: minimum participation, simple majority, qualified majority, unanimity,...
 - Stage 2: play the game voted upon in stage 1.
- Literature: Barrett & Dannenberg (2017); Dal Bó, Dal Bó, & Eyster (2018); Dannenberg & Gaulier, (2019).
- Strategic complementarities endogenous?

Timing

- Players vote on the game played in stage 2. They must choose between (i) a prisoners' dilemma in which adopting the dirty technology is a dominant strategy, or (ii) a coordination game. If the latter is chosen, all incur a cost d.
- ② Players receive their signals of b and play the game decided upon in stage 1.

IEAs: An Example

- Countries choose to sign an IEA targeting technologies
- But before that, they can forge an international R&D platform
- Cost sharing, technological spillovers, dissemination of information and knowledge, etc.
- Turns ratification stage in a coordination game (Barrett, 2006; Hoel
 De Zeeuw, 2010; Hong & Karp, 2012; Battaglini & Harstad, 2016)

Proposition 3

The two-stage game has a unique perfect Bayesian equilibrium. In the first stage, players choose to play a coordination game in stage 2 if and only if $d \leq d^*$. In the second stage, players adopt the green technology if and only if $b > b^*$.

$$d^* = \frac{\overline{B} - b^*}{\overline{B} - B} \left[N \cdot \frac{b^* + \overline{B}}{2} + c^L - c^H(N) \right]$$

Climate Clubs

Proposition 4

In the two-stage game, policies increasing c^L provide a twofold stimulus toward adopting the green technology.

- They make the voting on a coordination game more likely in stage 1.
- 2 Conditional on the coordination game being chosen, they make adoption of the green technology more likely in stage 2.

Conclusions

Future work

- 1 Theoretical: two-sided green markets
- Experimental: test network subsidies in the lab
- Experimental: test (comparative statics of) two-stage game in the lab
- Numerical/empirical: estimate potential cost-saving from using network subsidies instead in green markets, e.g. electric vehicles, photovoltaics, ...
 - U.S. Federal Tax Credit for Solar Photovoltaics, California's Clean Vehicle Rebate Project, or the U.S. National Plug-In Electric Drive Vehicle Credit, Dutch tax discount on electric vehicles for business drivers

r.j.r.k.heijmans@uvt.nl

www.roweno.nl

