1. (1%) 請說明你實作的 CNN model, 其模型架構、訓練過程和準確率為何?

Lavan (tuna)	Output Shana		pout_3 (Dropout)	(None,	4, 4,	512)	0
Layer (type)	Output Shape 	Param #	2d_4 (Conv2D)	(None,	2, 2,	512)	2359808
conv2d_1 (Conv2D)	(None, 44, 44, 64)	1664					
]] 1 /	(Name 44 44 54)		/_re_lu_4 (LeakyReLU)	(None,	2, 2,	512)	0
leaky_re_lu_1 (LeakyReLU)	(None, 44, 44, 64)	0	n normalization 4 (Batch	(None	2 2	512)	2048
batch_normalization_1 (Batch	(None, 44, 44, 64)	256		(Holle)	-, -,	312)	2010
may pooling2d 1 (MayPooling2	(None 22 22 64)	0	age_pooling2d_1 (Average	(None,	1, 1,	512)	0
max_pooling2d_1 (MaxPooling2	(None, 22, 22, 64)	V	aut 4 (Danneut)	/None	1 1	F12\	
dropout_1 (Dropout)	(None, 22, 22, 64)	0	out_4 (Dropout)	(None,	1, 1,	512)	0
conv2d_2 (Conv2D)	(None, 20, 20, 128)	73856	ten_1 (Flatten)	(None,	512)		0
leaky_re_lu_2 (LeakyReLU)	(None, 20, 20, 128)	0	e_1 (Dense)	(None,	512)		262656
batch_normalization_2 (Batch	(None, 20, 20, 128)	512	out_5 (Dropout)	(None,	512)		0
max_pooling2d_2 (MaxPooling2	(None, 10, 10, 128)	0	e_2 (Dense)	(None,	512)		262656
dropout_2 (Dropout)	(None, 10, 10, 128)	0	vation_1 (Activation)	(None,	512)		0
conv2d_3 (Conv2D)	(None, 8, 8, 512)	590336	out_6 (Dropout)	(None,	512)		0
leaky_re_lu_3 (LeakyReLU)	(None, 8, 8, 512)	0	e_3 (Dense)	(None,	7)		3591
batch_normalization_3 (Batch	(None, 8, 8, 512)	2048	vation 2 (Activation)	(None,	7)		0
max pooling2d 3 (MaxPooling2	(None. 4. 4. 512)	0		(,			
max_pooringra_s (naxi ooringr	(110112) 1) 1) 122/						

- Total params: 3,559,431 - Trainable params: 3,556,999

- Non-trainable params: 2,432

Final Valid ACC are around 65%

2. (1%) 承上題,請用與上述 CNN 接近的參數量,實做簡單的 DNN model。其模型架構、訓練過程和準確率為何?試與上題結果做比較,並說明你觀察到了什麼? (Collaborators:)

DNN sucks, it the model will be in local optimal 0.2483 even more often than CNN for image processing.

Layer (type)	Output	Shape	Param #	
dense_118 (Dense)	(None,		2360320	á
dropout_78 (Dropout)	(None,	1024)	0	•
dense_119 (Dense)	(None,	512)	524800	-
activation_78 (Activation)	(None,	512)	0	-
dropout_79 (Dropout)	(None,	512)	0	-
dense_120 (Dense)	(None,	512)	262656	
activation_79 (Activation)	(None,	512)	0	•
dropout_80 (Dropout)	(None,	512)	0	á
dense_121 (Dense)	(None,	128)	65664	-
activation_80 (Activation)	(None,	128)	0	-
dropout_81 (Dropout)	(None,	128)	0	-
dense_122 (Dense)	(None,	256)	33024	=

activation_81 (Activation)	(None, 256)	0
dropout_82 (Dropout)	(None, 256)	0
dense_123 (Dense)	(None, 256)	65792
activation_82 (Activation)	(None, 256)	0
dropout_83 (Dropout)	(None, 256)	0
dense_124 (Dense)	(None, 128)	32896
activation_83 (Activation)	(None, 128)	0
dropout_84 (Dropout)	(None, 128)	0
dense_125 (Dense)	(None, 7)	903
activation_84 (Activation)	(None, 7)	0

3. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析]

(Collaborators:)

It appears that class "Neutral" are a bit easy to be classified as incorrect; but are good Overall.

4. (1%) 從(1)(2)可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份?

(Collaborators: r05546003 r05546024 r05546026)

If mostly focus on the central facial area, or the nose area.

答:

5. (1%) 承(1)(2),利用上課所提到的 gradient ascent 方法,觀察特定層的 filter 最容易被哪種圖片 activate。

(Collaborators: r05546003 r05546024 r05546026)

答:It appears filter 9, 21, 29 are activated.

Input image and conv2d_2 filters

