Kristy Buzard and Ben Horne kbuzard@syr.edu

June 15, 2017

In conflict scenarios, concessions are sometimes inefficient

▶ We show inefficient concessions may be preferable if efficient concessions have potential future cost

- ▶ We show inefficient concessions may be preferable if efficient concessions have potential future cost
- ► Cost: concessions used against you by negotiating partner who violates agreement

- ▶ We show inefficient concessions may be preferable if efficient concessions have potential future cost
- ► Cost: concessions used against you by negotiating partner who violates agreement
- ► Can you trust that partner will make peace?

- ▶ We show inefficient concessions may be preferable if efficient concessions have potential future cost
- ► Cost: concessions used against you by negotiating partner who violates agreement
- ► Can you trust that partner will make peace?

In conflict scenarios, concessions are sometimes inefficient

- ▶ We show inefficient concessions may be preferable if efficient concessions have potential future cost
- ► Cost: concessions used against you by negotiating partner who violates agreement
- ► Can you trust that partner will make peace?

New explanation for mediation

In conflict scenarios, concessions are sometimes inefficient

- ▶ We show inefficient concessions may be preferable if efficient concessions have potential future cost
- ► Cost: concessions used against you by negotiating partner who violates agreement
- ► Can you trust that partner will make peace?

New explanation for mediation

► Can remove uncertainty about ability of negotiating partner to commit to peace

In conflict scenarios, concessions are sometimes inefficient

- ▶ We show inefficient concessions may be preferable if efficient concessions have potential future cost
- ► Cost: concessions used against you by negotiating partner who violates agreement
- ► Can you trust that partner will make peace?

New explanation for mediation

- ► Can remove uncertainty about ability of negotiating partner to commit to peace
- ▶ Removes need for inefficient concessions

Start with simple, two-player repeated Prisoners' Dilemma

Start with simple, two-player repeated Prisoners' Dilemma

▶ Asymmetric information about δ_i : can partner commit to peace?

Start with simple, two-player repeated Prisoners' Dilemma

▶ Asymmetric information about δ_i : can partner commit to peace?

Start with simple, two-player repeated Prisoners' Dilemma

 \blacktriangleright Asymmetric information about δ_i : can partner commit to peace?

Add time zero: let partners give concessions with both signaling and material value

Start with simple, two-player repeated Prisoners' Dilemma

 \blacktriangleright Asymmetric information about δ_i : can partner commit to peace?

Add time zero: let partners give concessions with both signaling and material value

► Let material value provide help/harm to the giver

Start with simple, two-player repeated Prisoners' Dilemma

▶ Asymmetric information about δ_i : can partner commit to peace?

Add time zero: let partners give concessions with both signaling and material value

- ▶ Let material value provide help/harm to the giver
- ► Let partners destroy some/all of the material value

Start with simple, two-player repeated Prisoners' Dilemma

▶ Asymmetric information about δ_i : can partner commit to peace?

Add time zero: let partners give concessions with both signaling and material value

- ▶ Let material value provide help/harm to the giver
- ► Let partners destroy some/all of the material value

Start with simple, two-player repeated Prisoners' Dilemma

▶ Asymmetric information about δ_i : can partner commit to peace?

Add time zero: let partners give concessions with both signaling and material value

- ► Let material value provide help/harm to the giver
- ▶ Let partners destroy some/all of the material value

Mediator removes uncertainty about partner's δ

Signaling: Spence (1973), but signal has material value

Signaling: Spence (1973), but signal has material value

▶ cost/benefit tradeoff differs b/c of δ_i , $C_i(g)$

Signaling: Spence (1973), but signal has material value

▶ cost/benefit tradeoff differs b/c of δ_i , $C_i(g)$

Signaling: Spence (1973), but signal has material value

 \triangleright cost/benefit tradeoff differs b/c of δ_i , $C_i(q)$

Gift-Giving: Camerer (1988), Prendergast & Stole (2001)

▶ Source of inefficiency differs: gifts can be used against giver

Signaling: Spence (1973), but signal has material value

▶ cost/benefit tradeoff differs b/c of δ_i , $C_i(g)$

Gift-Giving: Camerer (1988), Prendergast & Stole (2001)

► Source of inefficiency differs: gifts can be used against giver Conflict: Slantchev (2011), Arena (2013)

◆ロト ◆御ト ◆ヨト ◆ヨト ヨ|= めなべ

Signaling: Spence (1973), but signal has material value

ightharpoonup cost/benefit tradeoff differs b/c of δ_i , $C_i(g)$

- ► Source of inefficiency differs: gifts can be used against giver Conflict: Slantchev (2011), Arena (2013)
 - ► Concessions are costly signals instead of bargaining chip

Signaling: Spence (1973), but signal has material value

 \triangleright cost/benefit tradeoff differs b/c of δ_i , $C_i(q)$

- ▶ Source of inefficiency differs: gifts can be used against giver Conflict: Slantchev (2011), Arena (2013)
 - ► Concessions are costly signals instead of bargaining chip
 - ► Commitment to peace, not resolve to fight

Signaling: Spence (1973), but signal has material value

 \triangleright cost/benefit tradeoff differs b/c of δ_i , $C_i(q)$

- ▶ Source of inefficiency differs: gifts can be used against giver Conflict: Slantchev (2011), Arena (2013)
 - ► Concessions are costly signals instead of bargaining chip
 - ► Commitment to peace, not resolve to fight
 - ► Costly signals are concessions instead of proof of resolve

Signaling: Spence (1973), but signal has material value

 \triangleright cost/benefit tradeoff differs b/c of δ_i , $C_i(q)$

- ▶ Source of inefficiency differs: gifts can be used against giver Conflict: Slantchev (2011), Arena (2013)
 - ► Concessions are costly signals instead of bargaining chip
 - ► Commitment to peace, not resolve to fight
 - ► Costly signals are concessions instead of proof of resolve

Signaling: Spence (1973), but signal has material value

 \triangleright cost/benefit tradeoff differs b/c of δ_i , $C_i(q)$

Gift-Giving: Camerer (1988), Prendergast & Stole (2001)

- ▶ Source of inefficiency differs: gifts can be used against giver Conflict: Slantchev (2011), Arena (2013)
 - ► Concessions are costly signals instead of bargaining chip
 - ► Commitment to peace, not resolve to fight
 - ► Costly signals are concessions instead of proof of resolve

Mediation: Fey and Ramsay (2008, 2011), Horner et al. (2010)

Signaling: Spence (1973), but signal has material value

▶ cost/benefit tradeoff differs b/c of δ_i , $C_i(g)$

Gift-Giving: Camerer (1988), Prendergast & Stole (2001)

- ► Source of inefficiency differs: gifts can be used against giver Conflict: Slantchev (2011), Arena (2013)
 - ► Concessions are costly signals instead of bargaining chip
 - ► Commitment to peace, not resolve to fight
 - ► Costly signals are concessions instead of proof of resolve

Mediation: Fey and Ramsay (2008, 2011), Horner et al. (2010)

▶ Information is about ability to commit, not resolve

Timeline

-1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in \{\delta_h, \delta_l\}$

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in {\delta_h, \delta_l}$
 - 0. Countries simultaneously give costly concessions: $q_i \in \mathbb{R}_+$

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in {\delta_h, \delta_l}$
- 0. Countries simultaneously give costly concessions: $q_i \in \mathbb{R}_+$
- 1-∞. Countries engage in a simultaneous Prisoners' Dilemma interaction

	Trust	Fight
Trust	Т, Т	-D, T+W
Fight	T+W,-D	W-D, W-D

where

- ▶ $T \ge 0$: Benefit from the other country playing Trust
- ▶ $W \ge 0$: Additional benefit from playing Fight
- $ightharpoonup D \geqslant 0$: Damages due to the other country playing Fight

	Trust	Fight
Trust	Т, Т	-D, T+W
Fight	T+W,-D	W-D, W-D

where

- $ightharpoonup T \geqslant 0$: Benefit from the other country playing Trust
- \blacktriangleright W \geqslant 0: Additional benefit from playing Fight
- ▶ $D \ge 0$: Damages due to the other country playing Fight

Assume T > W - D

► Payoffs: sum the discounted stage game payoffs plus any concessions given or received

- ▶ Payoffs: sum the discounted stage game payoffs plus any concessions given or received
 - ▶ e.g. player's i's payoff if both parties give no concession and play "Fight" in every period:

$$\sum_{t=1}^{\infty} \delta_i^{t-1}(W-D) = \frac{W-D}{1-\delta_i}$$

• e.g. player's i's payoff if both parties give no concession and play "Fight" in every period:

$$\sum_{t=1}^\infty \delta_i^{t-1}(W-D) = \frac{W-D}{1-\delta_i}$$

▶ Parameters are common knowledge with the exception of δ_i , which is country i's private information

• e.g. player's i's payoff if both parties give no concession and play "Fight" in every period:

$$\sum_{t=1}^\infty \delta_i^{t-1}(W-D) = \frac{W-D}{1-\delta_i}$$

- ▶ Parameters are common knowledge with the exception of δ_i , which is country i's private information
- ► Social welfare measured as sum of high types' expected utilities

Assume two types: δ_h and δ_l

 \blacktriangleright $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust, Trust) eqm

Assume two types: δ_h and δ_l

- lacktriangledown $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust, Trust) eqm
- ▶ p: probability of high type

Assume two types: δ_h and δ_l

- $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust,Trust) eqm
- ▶ p: probability of high type
- ▶ Cost of giving concessions g: $g = c_l(g) \geqslant c_h(g) = g$

Assume two types: δ_h and δ_l

- $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust,Trust) eqm
- ▶ p: probability of high type
- ▶ Cost of giving concessions g: $g = c_l(g) \geqslant c_h(g) = g$

Assume two types: δ_h and δ_l

- $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust,Trust) eqm
- ▶ p: probability of high type
- ▶ Cost of giving concessions g: $g = c_l(g) \geqslant c_h(g) = g$

Some equilibria of interest

Assume two types: δ_h and δ_l

- lacktriangleright $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust, Trust) eqm
- \triangleright p: probability of high type
- ▶ Cost of giving concessions q: $q = c_l(q) \ge c_h(q) = q$

Some equilibria of interest

► Separating without concessions

Assume two types: δ_h and δ_l

- $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust,Trust) eqm
- ▶ p: probability of high type
- ▶ Cost of giving concessions g: $g = c_l(g) \geqslant c_h(g) = g$

Some equilibria of interest

- ► Separating without concessions
- ► Separating through concessions

Assume two types: δ_h and δ_l

- $\delta_h > \delta^* > \delta_l$ where $\delta^* = \frac{W}{T+D}$ is the cutoff for sustaining (Trust,Trust) eqm
- ▶ p: probability of high type
- ▶ Cost of giving concessions g: $g = c_l(g) \geqslant c_h(g) = g$

Some equilibria of interest

- ► Separating without concessions
- Separating through concessions
- ► Pool on 'Fight'

No Money Burning

Separating through concessions

Theorem 2

In the best concessions separating equilibrium, high types give the smallest concession necessary to separate. Low types do not give a concession.

Theorem 2

In the best concessions separating equilibrium, high types give the smallest concession necessary to separate. Low types do not give a concession.

$$U_h = pg - c_h(g) + \frac{\delta_h}{(1 - \delta_h)} [pT + (1 - p)(W - D)]$$

Theorem 2

In the best concessions separating equilibrium, high types give the smallest concession necessary to separate. Low types do not give a concession.

$$U_h = pg - c_h(g) + \frac{\delta_h}{(1 - \delta_h)} [pT + (1 - p)(W - D)]$$

▶ The smallest concession is p(T+D)

Theorem 2

In the best concessions separating equilibrium, high types give the smallest concession necessary to separate. Low types do not give a concession.

$$U_h = pg - c_h(g) + rac{\delta_h}{(1-\delta_h)}\left[pT + (1-p)(W-D)
ight]$$

- ▶ The smallest concession is p(T+D)
- \triangleright If p is low, high types are better off in the 'fight' pooling equilibrium

•0000

-1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in \{\delta_h, \delta_l\}$

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in \{\delta_h, \delta_l\}$
 - 0. Concessions

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in {\delta_h, \delta_l}$
 - 0. Concessions
 - 0a. Countries simultaneously give costly concessions and decide on the efficiency of the concessions: $(g_i, e_i) \in \mathbb{R}_+ \times [0, 1]$

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in \{\delta_h, \delta_l\}$
 - 0. Concessions
 - 0a. Countries simultaneously give costly concessions and decide on the efficiency of the concessions: $(g_i, e_i) \in \mathbb{R}_+ \times [0, 1]$
 - 0b. Countries decide what proportion of a received concession to invest in civil society (vs. military capabilities): $\alpha_i \in [0, 1]$

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in \{\delta_h, \delta_l\}$
 - 0 Concessions
 - 0a. Countries simultaneously give costly concessions and decide on the efficiency of the concessions: $(g_i, e_i) \in \mathbb{R}_+ \times [0, 1]$
 - 0b. Countries decide what proportion of a received concession to invest in civil society (vs. military capabilities): $\alpha_i \in [0, 1]$
- $1-\infty$. Countries engage in a simultaneous Prisoners' Dilemma interaction

Add Money Burning

Burning money is unattractive

Add Money Burning

Burning money is unattractive

Now benefit of concession is eg

Inefficient Concessions

Add Money Burning

Burning money is unattractive

Now benefit of concession is eq

Theorem 3

When concessions confer no material help or harm on the giver, it is optimal to give efficient gifts (e = 1) in a separating eqm.

Burning money is unattractive

Now benefit of concession is eq

Theorem 3

When concessions confer no material help or harm on the giver, it is optimal to give efficient gifts (e = 1) in a separating eqm.

▶ The benefit of the gift appears on both sides of the incentive constraint for both individuals, so cancels out

Add Money Burning

Burning money is unattractive

Now benefit of concession is eq

Theorem 3

When concessions confer no material help or harm on the giver, it is optimal to give efficient gifts (e = 1) in a separating eqm.

- ► The benefit of the gift appears on both sides of the incentive constraint for both individuals, so cancels out
- ► Costs of giving a concession don't change

Burning money is unattractive

Now benefit of concession is eg

Theorem 3

When concessions confer no material help or harm on the giver, it is optimal to give efficient gifts (e = 1) in a separating eqm.

- ► The benefit of the gift appears on both sides of the incentive constraint for both individuals, so cancels out
- ► Costs of giving a concession don't change
- ▶ The benefit appears in the high type's expected utility

-1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in \{\delta_h, \delta_l\}$

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in {\{\delta_h, \delta_l\}}$
 - 0. Concessions

Add Money Burning

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in {\delta_h, \delta_l}$
 - 0. Concessions
 - 0a. Countries simultaneously give costly concessions and decide on the efficiency of the concessions: $(g_i, e_i) \in \mathbb{R}_+ \times [0, 1]$

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in \{\delta_h, \delta_l\}$
 - 0. Concessions
 - 0a. Countries simultaneously give costly concessions and decide on the efficiency of the concessions: $(g_i, e_i) \in \mathbb{R}_+ \times [0, 1]$
 - 0b. Countries decide what proportion of a received concession to invest in civil society (vs. military capabilities): $\alpha_i \in [0, 1]$

Timeline

- -1. Nature independently determines types of Country 1 and Country 2: $\delta_i \in \{\delta_h, \delta_l\}$
 - 0 Concessions
 - 0a. Countries simultaneously give costly concessions and decide on the efficiency of the concessions: $(g_i, e_i) \in \mathbb{R}_+ \times [0, 1]$
 - 0b. Countries decide what proportion of a received concession to invest in civil society (vs. military capabilities): $\alpha_i \in [0, 1]$
- 1-∞. Countries engage in a simultaneous Prisoners' Dilemma interaction

Add Money Burning

Concessions can hurt the giver

Concessions can hurt the giver

Theorem 4

When the low type country can use concessions to reduce the payoffs of its negotiating partner during a 'fight' stage (i.e. $\alpha_L < 1$), there are parameters under which the separating-through-concessions equilibrium features inefficient concessions.

Modified Pavoffs

Concessions can hurt the giver

Theorem 4

When the low type country can use concessions to reduce the payoffs of its negotiating partner during a 'fight' stage (i.e. $\alpha_L < 1$), there are parameters under which the separating-through-concessions equilibrium features inefficient concessions.

Modified Payoffs

$$U_h = peg - c_h(g) + rac{\delta_h}{1 - \delta_h} \left[p \, T (1 + eg) + (1 - p) (W - D (1 + eg))
ight]$$

Concessions can hurt the giver

Theorem 4

When the low type country can use concessions to reduce the payoffs of its negotiating partner during a 'fight' stage (i.e. $\alpha_L < 1$), there are parameters under which the separating-through-concessions equilibrium features inefficient concessions.

Modified Payoffs

$$U_h = peg - c_h(g) + \frac{\delta_h}{1 - \delta_h} \left[p T (1 + eg) + (1 - p) (W - D(1 + eg)) \right]$$

► If p is low, concessions likely to be used against you, so remove material value

Peace not possible in some scenarios

Add Money Burning

Peace not possible in some scenarios

Theorem 5

When $\alpha_L < 1$ is allowed, peace becomes unachievable for some parameters under which it is achievable when concessions do not have material value.

Peace not possible in some scenarios

Theorem 5

When $\alpha_L < 1$ is allowed, peace becomes unachievable for some parameters under which it is achievable when concessions do not have material value.

▶ If peace is achievable, concessions may be either efficient or inefficient

Peace not possible in some scenarios

Theorem 5

When $\alpha_L < 1$ is allowed, peace becomes unachievable for some parameters under which it is achievable when concessions do not have material value.

Inefficient Concessions

- ▶ If peace is achievable, concessions may be either efficient or inefficient
- ► High-type utility may increase or decrease from no-material-value case

'Manipulative' mediator: parties report their types, must deliver the stipulated concessions

► Mechanism: if two high types, give concession and play 'Trust'; Otherwise, no concession and 'Fight'

- ▶ Mechanism: if two high types, give concession and play 'Trust'; Otherwise, no concession and 'Fight'
- ► Concession is necessary to get truthful revelation, but only to high type

- ▶ Mechanism: if two high types, give concession and play 'Trust'; Otherwise, no concession and 'Fight'
- ► Concession is necessary to get truthful revelation, but only to high type
- ▶ Need cost of concession for low type to be not to large relative to cost for high type

- ▶ Mechanism: if two high types, give concession and play 'Trust'; Otherwise, no concession and 'Fight'
- ► Concession is necessary to get truthful revelation, but only to high type
- ▶ Need cost of concession for low type to be not to large relative to cost for high type

'Manipulative' mediator: parties report their types, must deliver the stipulated concessions

- ► Mechanism: if two high types, give concession and play 'Trust'; Otherwise, no concession and 'Fight'
- ► Concession is necessary to get truthful revelation, but only to high type
- ► Need cost of concession for low type to be not to large relative to cost for high type

Theorem 6

A mediator restores peace where $\alpha_i < 1$ destroys it, eliminates inefficient concessions, and reduces the threshold δ_h for high types.

Modified Stage Game Payoffs

Wodined Stage Came I dy one		
	Trust	Fight
Trust	$T(s_2+lpha_2g_1),$	$-D(m_2+(1-\alpha_2)g_1),$
	$T(s_1+lpha_1g_2)$	$T(s_1+lpha_1g_2)$
		$+W(m_2+(1-\alpha_2)g_1)$
Fight	$T(s_2+lpha_2g_1)$	$W(m_1+(1-\alpha_1)g_2)$
	$+W(m_1+(1-\alpha_1)g_2),$	$-D(m_2+(1-\alpha_2)g_1),$
	$-D(m_1+(1-\alpha_1)g_2)$	$W(m_2+(1-\alpha_2)g_1)$
		$-D(m_1+(1-\alpha_1)g_2)$

Back to Concessions can hurt the giver .

