Table 1: The 32 Crystallographic Point Groups

Crystal		stallographic Point Groups Hermann-Mauguin Schoenflie		
System		Full	Short	
Triclinic	Ī	1	1	C_1
		$\overline{1}$	$\overline{1}$	$C_i = S_2$
Monoclinic	0	2	2	C_2
	$\frac{2}{m}$	m	m	$C_s = C_{1h}$
	m	$\frac{2}{}$	$\frac{2}{}$	C_{2h}
		m	m	
Orthorhombic		222	222	D_2
	mmm	$mm2 \ 2 \ 2 \ 2$	mm2	C_{2v}
			mmm	D_{2h}
		$\frac{m m m}{4}$	4	C_4
Tetragonal	4	$\frac{4}{4}$	$\frac{4}{4}$	S_4
	\overline{m}	4	4	
		\overline{m}	\overline{m}	C_{4h}
		422	422	D_4
	$\frac{4}{m}mm$	4mm	4mm	C_{4v}
		$\overline{4}2m$	$\overline{4}2m$	D_{2h}
		$\frac{4}{2} \frac{2}{2} \frac{2}{2}$	$\frac{4}{m}mm$	D_{4h}
		m m m	$\underline{\hspace{1cm}}^{m}$	
Trigonal	$\overline{3}$	3	3	C_3
		3	3	C_{3i}
	_	32	32	D_3
	$\overline{3}m$	$\frac{3m}{-}$	$\frac{3m}{-}$	C_{3v}
		$\overline{3}m$	$\overline{3}m$	D_{3d}
Hexagonal	6	6	6	C_6
	$\frac{\ddot{\sigma}}{m}$	$\overline{6}$	$\overline{6}$	C_{3h}
	•••	$\frac{6}{200}$	$\frac{6}{200}$	C_{6h}
		$\frac{m}{622}$	$\frac{m}{622}$	
	6	6mm	6mm	$D_6 \ C_{6v}$
	$\frac{6}{m}mm$	$\overline{6}m2$	$\overline{6}m2$	D_{3h}
		6 2 2	$\frac{6}{m}mm$	
		$\overline{m}\overline{m}\overline{m}$	$\frac{mm}{m}$	D_{6h}
Cubic	$m\overline{3}$	23	23	T
		$\frac{2}{m}\overline{3}$	$m\overline{3}$	T_h
		$\frac{m}{432}$	432	<i>O</i>
	$m\overline{3}m$	$\overline{4}3m$	$\overline{4}3m$	T_d
		$\frac{4}{3}$ $\frac{2}{3}$	$m\overline{3}m$	O_h
		\overline{m} \overline{m}	1100110	<i>∨</i> _n