UNIVERSIDADE FEDERAL DE SANTA CATARINA

EMC5412 - Transferência de Calor e Mecânica dos Fluídos Computacional Professor: Antônio Fábio Carvalho da Silva

Thales Carl Lavoratti

Volumes finitos aplicados a solução de escoamento: a cavidade com tampa deslizante

Florianópolis 2018

Conteúdo

1	Intr	rodução	2
2	Fun	damentação teórica	3
	2.1	Malhas desencontradas	3
	2.2	Convenção dos índices dos volumes de controle	3
	2.3	Discretização da equação do momento linear em x	
	2.4	Discretização da equação do momento linear em y	
	2.5	Discretização da equação da conservação da massa	
	2.6	Condições de contorno	
3	Met	todologia	9
4	Res	ultados	10
	4.1	Empregando CDS	10
	4.2	Empregando UDS	
	4.3	Empregando malhas maiores	
	4.4	Comparativo com resultados da literatura	
	4.5	Comparativo UDS e CDS no número de iterações	
5	Cor	nclusão	17
6	Ref	erências	18

1 Introdução

O último passo no percurso da aplicação dos volumes finitos para solucionar problemas de mecânicas dos fluídos é aplicar o método para encontrar o campo de velocidades de um fluído sujeito a específicas condições.

Foi proposto solucionar o escoamento de um fluído incompressível, newtoniano e com viscosidade constante no interior de uma cavidade quadrada bidimensional conforme a Figura 1.

 $\begin{bmatrix}
 u = U, \\
 v = 0, \\
 T = 1
 \end{bmatrix}$ $\begin{bmatrix}
 u = 0, \\
 v = 0, \\
 T = 0
 \end{bmatrix}$ $\begin{bmatrix}
 u = 0, \\
 v = 0, \\
 T = 0
 \end{bmatrix}$ $\begin{bmatrix}
 u = 0, \\
 v = 0, \\
 T = 0
 \end{bmatrix}$ $\begin{bmatrix}
 u = 0, \\
 v = 0, \\
 T = 0
 \end{bmatrix}$

Figura 1: O problema da cavidade

Fonte: o autor

Inicialmente, o fluído encontra-se em repouso. Em t=0 a superfície do topo da cavidade passa instantaneamente a velocidade $V_{placa}=1.0m/s$. Deve-se calcular o escoamento no interior da cavidade até que o regime permanente seja alcançado, usando a formulação simultânea e em seguida comparar os resultados com os presentes na literatura.

Foram considerados os seguintes valores numéricos ao longo da solução do trabalho: $\rho = 1.0 kg/m^3$, L = 1.0, $\mu = 0.001 Pa \cdot s$, e finalmente, foi arbitrado que o passo no tempo padrão será de 30s.

2 Fundamentação teórica

A equações que modelam o problema bidimensional proposto e que retornam o campo de pressão e de velocidade da cavidade são as equações de conservação da massa e da conservação do momento linear em x e y, respectivamente:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\rho u) + \frac{\partial}{\partial x}(\rho u u) + \frac{\partial}{\partial y}(\rho v u) = -\frac{\partial P}{\partial x} + \frac{\partial}{\partial x}\left(\mu \frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y}\left(\mu \frac{\partial u}{\partial y}\right) \tag{2}$$

$$\frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial x}(\rho u v) + \frac{\partial}{\partial y}(\rho v v) = -\frac{\partial P}{\partial y} + \frac{\partial}{\partial x}\left(\mu \frac{\partial v}{\partial x}\right) + \frac{\partial}{\partial y}\left(\mu \frac{\partial v}{\partial y}\right) \tag{3}$$

Para obter estas equações foi considerado que o domínio de solução se caracteriza como um fluído newtoniano, incompressível, com viscosidade constante e sem força de campo aplicada.

2.1 Malhas desencontradas

Devido à problemas inerentes a se usar uma malha única para resolver as três equações, como por exemplo quando é possível adicionar um campo de pressão não condizente com o problema físico e que mesmo assim é solução para o problema, é necessário empregar um arranjo com malhas desencontradas, conforme mostrado na Figura 2.

Momento em y

Momento em x

Massa

Figura 2: Malhas desencontradas

Fonte: o autor

2.2 Convenção dos índices dos volumes de controle

Um problema decorrente do fato de haver mais velocidades do que pressões a se determinar no problema da cavidade gera a necessidade de se adotar uma convenção na hora de nomear tais variáveis na malha. Será adotada a convenção onde os índices das velocidades superior e direita coincidem com o índice da pressão no centro do volume de controle usado para a conservação da massa, conforme mostrada na Figura 3, que mostra uma sub-malha dentro do domínio de solução.

Figura 3: Convenção de índices

Fonte: o autor

2.3 Discretização da equação do momento linear em x

A equação 2 será discretizada conforme o já visto método dos volumes finitos com advecção e difusão para um volume de controle segundo a Figura 4.

Figura 4: Malha para o momento linear em x

Integrando a Equação 2 no volume e no tempo têm-se que o primeiro termo ficará

$$\int_{x_P}^{x_E} \int_{y_s}^{y_n} \int_{t}^{t+\Delta t} \frac{\partial}{\partial t} (\rho u) dt dy dx = \rho \Delta x \Delta y \int_{t}^{t+\Delta t} \frac{\partial u}{\partial t} dt = \rho \Delta x \Delta y [u_P - u_P^0]$$

onde u_P é a velocidade no centro do volume de controle no instante de tempo atual e u_P^0 é a velocidade no centro do volume no instante de tempo passado.

O segundo termo ficará

$$\int_{x_P}^{x_E} \int_{y_s}^{y_n} \int_{t}^{t+\Delta t} \frac{\partial}{\partial x} (\rho u u) dt dy dx$$
$$\rho \Delta x \Delta t \int_{x_P}^{x_E} \frac{\partial}{\partial x} (\rho u u) dx$$
$$\Delta t (\rho u \Delta y \cdot u) \Big|_{x_P}^{x_E}$$

Neste ponto é necessário cuidado, pois embora a variável u apareça duas vezes ela será tratada de forma independente. O primeiro u será avaliado como uma média aritmética dos u's adjacentes na iteração anterior. O o segundo u será a avaliada segundo um método de aproximação da interface visto anteriormente, isto é, os métodos CDS ou UDS, e será portanto uma incógnita do sistema de equações que soluciona o problema.

Definindo os termos

$$M_e = \rho \Delta y \left(\frac{u_E^* + u_P^*}{2}\right) \qquad M_w = \rho \Delta y \left(\frac{u_P^* + u_W^*}{2}\right) \tag{4}$$

é possível substitui-los na expressão anterior e obter que o segundo termo discretizado será $M_e \cdot u_E - Mw \cdot u_P$, onde novamente, u_E e U_P serão as velocidades avaliadas nas fronteiras do volume de controle para o momento linear em x e serão obtidas pelos métodos CDS ou UDS posteriormente.

O terceiro temo ficará

$$\int_{x_P}^{x_E} \int_{y_s}^{y_n} \int_{t}^{t+\Delta t} \frac{\partial}{\partial y} (\rho v u) dt dy dx$$

$$\rho \Delta x \Delta t \int_{y_s}^{y_n} \frac{\partial}{\partial y} (\rho v u) dy$$

$$\Delta t (\rho v \Delta x \cdot u) \Big|_{y_s}^{y_n}$$

Analogamente, será necessário encontrar valores de velocidade na interface. Neste caso será utilizada uma média arimética das velocidades verticais adjacentes aos pontos de integração na iteração anterior. Desta forma, pode-se definir os termos

$$M_n = \rho \Delta x \left(\frac{v_N^* + v_P^*}{2}\right) \qquad M_s = \rho \Delta x \left(\frac{u_S^* + u_{SE}^*}{2}\right) \tag{5}$$

De posse destas aproximações é possível discretizar o quarto termo da seguinte forma $M_n \cdot u_n - Mw \cdot u_s$ onde a ressalva anterior é valida.

O quarto termo ficará

$$\int_{x_P}^{x_E} \int_{y_s}^{y_n} \int_{t}^{t+\Delta t} -\frac{\partial P}{\partial x} dt dy dx = \Delta t \Delta y \int_{x_P}^{x_E} -\frac{\partial P}{\partial x} dx = \Delta t \Delta y (P_P - P_E)$$
 (6)

O quinto e o sexto termo serão obtidos pelo já conhecido método dos termos difusivos e portanto a discretização será obliterada.

Se obtém portanto que o quinto e o sexto termo serão respectivamente,

$$\Delta t[D_e(u_E - u_P) - D_w(u_P - u_W)]$$

 $\Delta t[D_n(u_N - u_P) - D_s(u_P - u_S)]$

onde

$$D_{e} = \left(\frac{\mu \Delta y}{\delta x}\right)_{e} \qquad D_{w} = \left(\frac{\mu \Delta y}{\delta x}\right)_{w}$$

$$D_{n} = \left(\frac{\mu \Delta x}{\delta y}\right)_{n} \qquad D_{s} = \left(\frac{\mu \Delta x}{\delta y}\right)_{s}$$

Uma vez integrados todos os termos da Equação 2 é interessante dividi-los por Δt e agrupá-los para se poder identificar as variáveis do sistema linear. Ao fazer tudo isso e já aplicando os métodos de aproximação na interface, se obtém que a Equação 2 discretizada será

$$a_p u_P = a_e u_E + a_w u_W + a_s u_S + a_n u_N + (P_P - P_E) \Delta y + a_n^0 u_P^0$$
 (7)

onde

$$a_{p}^{0} = \frac{\rho \Delta x \Delta y}{\Delta t}$$

$$a_{p} = a_{e} + a_{w} + a_{n} + a_{s} + a_{n} + a_{p}^{0} + (M_{e} - M_{w}) + (M_{n} - M_{s})$$

que por sua vez, terá seus coeficientes definidos de acordo com o método de avaliação da velocidade na interface cujos valores estão na Tabela 1

Tabela 1: Coeficientes da equação do momento linear em x

Coeficiente	CDS	UDS
a_e	$D_e - M_e/2$	$De + max(-M_e, 0)$
a_w	$D_w + M_w/2$	$Dw + max(M_w, 0)$
a_n	$D_n - M_n/2$	$Dn + max(-M_n, 0)$
a_s	$D_s + M_s/2$	$Ds + max(M_s, 0)$

2.4 Discretização da equação do momento linear em y

A discretização da equação 3 será feita no volume de controle esboçado na Figura 5. Tal operação é análoga a feita para a conservação do momento linear em x, logo as integrações dos termos da equação serão obliteradas e somente os coeficientes utilizados no decorrer do trabalho serão definidos.

Figura 5: Malha para o momento linear em x

Os termos advectivos irão depender dos seguintes coeficientes

$$M_e = \rho \Delta y \left(\frac{u_N^* + u_P^*}{2}\right) \qquad M_w = \rho \Delta y \left(\frac{u_{NW}^* + u_W^*}{2}\right)$$
$$M_n = \rho \Delta x \left(\frac{v_N^* + v_P^*}{2}\right) \qquad M_s = \rho \Delta x \left(\frac{v_P^* + v_S^*}{2}\right)$$

Por sua vez os termos difusivos irão depender dos seguintes coeficientes:

$$D_{e} = \left(\frac{\mu \Delta y}{\delta x}\right)_{e} \qquad D_{w} = \left(\frac{\mu \Delta y}{\delta x}\right)_{w}$$

$$D_{n} = \left(\frac{\mu \Delta x}{\delta y}\right)_{n} \qquad D_{s} = \left(\frac{\mu \Delta x}{\delta y}\right)_{s}$$

A equação discretizada do momento em y será portanto

$$a_p v_P = a_e v_E + a_w v_W + a_s v_S + a_n v_N + (P_P - P_N) \Delta n + a_p^0 v_P^0$$
 (8) onde novamente,

$$a_p^0 = \frac{\rho \Delta x \Delta y}{\Delta t}$$

$$a_p = a_e + a_w + a_n + a_s + a_n + a_p^0 + (M_e - M_w) + (M_n - M_s)$$

e os coeficientes a's estão definidos de acordo com o método de aproximação da velocidade na interface e estão dispostos na já vista Tabela 1.

2.5 Discretização da equação da conservação da massa

A equação 1 será discretizada em um volume de controle como o mostrado na Figura 6.

Figura 6: Malha para a conservação da massa

Integrando tal equação no volume e no tempo obtém-se

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$\int_{x_P}^{x_E} \int_{y_s}^{y_n} \int_t^{t+\Delta t} \frac{\partial u}{\partial x} dt dy dx + \int_{x_P}^{x_E} \int_{y_s}^{y_n} \int_t^{t+\Delta t} \frac{\partial v}{\partial y} dt dy dx$$

$$\Delta y \Delta t u \Big|_{x_w}^{x_e} + \Delta x \Delta t u \Big|_{y_n}^{y_s}$$

$$(u_P - u_W) \Delta y + (v_P - v_S) \Delta y = 0$$

2.6 Condições de contorno

O problema da cavidade se caracteriza por ter como condições de contorno uma tampa deslizante na fronteira superior da cavidade e paredes com velocidade nula nas demais fronteiras. Torna-se necessário um zelo com relação a como tratar de tais condições na hora de resolver o escoamento.

Considere a fronteira superior da cavidade exposta na Figura 7. Quando é feito o balanço de momento linear na direção x no volume de controle adjacente a fronteira, o coeficiente difusivo norte será dado por

$$D_n = \mu \frac{\Delta x}{\Delta y/2} \tag{9}$$

e a equação do momento linear em x será

$$a_p u_P - a_s u_S - a_e u_E - a_w u_W = +a_P^0 u_P^0 + D_n V_{placa}$$
(10)

onde os demais coeficientes são calculados conforme já visto anteriormente.

Nas fronteiras sul, leste e oeste o processo é análogo. Todavia, como a velocidade é nula em tais fronteiras, não é somado nenhum termo no vetor independente.

Figura 7: Condição de contorno

Lembrando que nas fronteiras verticais, tal estratégia é empregada na conservação do momento linear em y.

3 Metodologia

Um programa em *Python* foi elaborado para solucionar o problema da cavidade com tampa deslizante que segue em anexo. Neste programa foi implementado o algoritmo que conforme o fluxograma da Figura 8.

Figura 8: Algoritmo de solução

Foi necessário dois processos de satisfação de convergência, um relacionado a iteração em um determinado instante no tempo e outro para verificar se o problema chegou em regime permanente. Em ambos os casos foi empregada uma **tolerância** de 10^{-6} . Igualmente, foi considerado que o problema convergiu quando a diferença em módulo de todas as posições do campo de velocidades é menor que a tolerância, em ambos os processos de convergência.

A matriz de coeficientes e o vetor de termos independentes inerentes ao sistema linear gerado ao se aplicar o método dos volumes finitos para resolver o problema proposto pode ser divididos em problemas menores na hora de fazer o algoritmo, conforme a Figura 9. Note que a matriz foi dividida em nove quadrantes e o vetor em 3 sub-vetores.

Figura 9: Matriz de coeficientes e vetor de termos independentes

A00	A01	A02		b0
A10	A11	A12	=	b1
A20	A21	A22		b2

Fonte: o autor

Finalmente, foi necessário atribuir uma pressão nula a algum ponto do escoamento para que este fosse uma referência para o campo de pressão, uma vez que são infinitas as soluções para o sistema linear que se tinha até então. Foi escolhido o volume de controle adjacente ao canto inferior direito para ter pressão nula e é com relação a este ponto que as demais pressões de distribuem

4 Resultados

4.1 Empregando CDS

Para uma malha com 4 volumes de controle nas direções horizontal e vertical, os campos de velocidades u e v em regime permanente usando CDS são expostos nas Tabelas 2 e 3. O campo de pressões para a mesma condição é exposto na Tabela 4.

Tabela 2: Campo u em regime permanente para malha 4x4 usando CDS

		X					
		0.0	0.25	0.5	0.75	1.0	
	0.125	0.00000000	-0.12175105	-0.16729533	-0.14559063	0.00000000	
1,7	0.375	0.00000000	-0.02277089	-0.05223334	-0.05084500	0.00000000	
У	0.625	0.00000000	0.02531592	0.04202798	0.03232387	0.00000000	
	0.875	0.00000000	0.11920602	0.17750070	0.16411177	0.00000000	

Tabela 3: Campo v em regime permanente para malha 4x4 usando CDS

		0.125	0.375	0.625	0.875
	0.0	0.00000000	0.00000000	0.00000000	0.00000000
	0.25	0.12175105	0.04554429	-0.02170470	-0.14559063
у	0.5	0.14452194	0.07500674	-0.02309304	-0.19643564
	0.75	0.11920602	0.05829467	-0.01338892	-0.16411177
	1.0	0.00000000	0.00000000	0.00000000	0.00000000

Tabela 4: Campo de pressão em regime permanente para malha 4x4 usando CDS

		X				
		0.125	0.375	0.625	0.875	
	0.125	0.00000000	-0.00946186	-0.00967333	0.00332545	
1,77	0.375	-0.00964976	-0.01734098	-0.01972656	-0.01036589	
l y	0.625	-0.01107881	-0.01817707	-0.02096311	-0.01000498	
	0.875	-0.00522930	-0.01084512	-0.00979527	0.00948648	

Fonte: o autor

4.2 Empregando UDS

Para uma malha com 4 volumes de controle nas direções horizontal e vertical, os campos de velocidades u e v em regime permanente usando UDS são expostos nas Tabelas 5 e 6. O campo de pressões para a mesma condição é exposto na Tabela 2.

Tabela 5: Campo u em regime permanente para malha 4x4 usando UDS

	X					
		0.0	0.25	0.5	0.75	1.0
	0.125	0.00000000	-0.02953154	-0.04792867	-0.04416749	0.00000000
37	0.375	0.00000000	-0.02280530	-0.03735324	-0.03305083	0.00000000
У	0.625	0.00000000	-0.01045875	-0.01402203	-0.00306334	0.00000000
	0.875	0.00000000	0.06279559	0.09930394	0.08028166	0.00000000

Fonte: o autor

Tabela 6: Campo v em regime permanente para malha 4x4 usando UDS

		X					
		0.125	0.375	0.625	0.875		
	0.0	0.00000000	0.00000000	0.00000000	0.00000000		
	0.25	0.02953154	0.01839713	-0.00376118	-0.04416749		
у	0.5	0.05233684	0.03294507	-0.00806359	-0.07721832		
	0.75	0.06279559	0.03650835	-0.01902228	-0.08028166		
	1.0	0.00000000	0.00000000	0.00000000	0.00000000		

Tabela 7: Campo de pressão em regime permanente para malha 4x4 usando CDS

			X	-	
		0.125	0.375	0.625	0.875
	0.125	0.00000000	-0.00040482	0.00028275	0.00208396
37	0.375	-0.00103511	-0.00157838	-0.00137789	0.00063745
У	0.625	-0.00283680	-0.00313567	-0.00291425	0.00141053
	0.875	-0.00433940	-0.00284878	-0.00026845	0.00821894

4.3 Empregando malhas maiores

Nas Figuras 10 e 11 são traçados os campos de velocidades em regime permanente para uma malha 10x10 usando UDS e CDS, respectivamente.

Figura 10: Campo de velocidades 10x10 usando UDS

Figura 11: Campo de velocidades 10x10 usando CDS

Por sua vez, nas Figuras 12 e 13
são traçados os campos de velocidades em regime permanente para uma malha 20x
20 usando UDS e CDS, respectivamente.

Figura 12: Campo de velocidades 20x20 usando UDS

Figura 13: Campo de velocidades 20x20 usando CDS

Finalmente, na Figura 14 é traçado o campo de velocidades para uma malha 70x70 empregando UDS. Não foi feito um campo utilizando CDS pois para rodar o caso em UDS com tal malha consumiu muito tempo, como será visto posteriormente.

Figura 14: Campo de velocidades 70x70 usando UDS

Fonte: o autor

O campo de pressão para uma malha $20\mathrm{x}20$ em regime permanente e empregando UDS é exibido na Figura 15.

Figura 15: Campo de pressões 70x70 usando UDS

4.4 Comparativo com resultados da literatura

Nas Figuras 16 e 17 é traçado um comparativo dos resultados para o campo de velocidades u no centro da cavidade com os presentes em Ghia, Ghia e Shin (1985), para UDS e CDS, respectivamente. Para UDS foram empregadas malhas 10x10, 20x20 e 70x70 e para CDS foram empregadas malhas 10x10 e 20x20. Por questão de tempo de processamento, não foi empregada uma malha 70x70 para CDS.

Figura 16: Velocidade u no centro da cavidade por UDS

Figura 17: Velocidade u no centro da cavidade por CDS

O mesmo foi feito para a velocidade v no centro horizontal da cavidade. Tais resultados são mostrados nas Figuras 18 e 19.

Figura 18: Velocidade v no centro da cavidade por UDS

Figura 19: Velocidade v no centro da cavidade por CDS

0.0

0.2

0.4

4.5 Comparativo UDS e CDS no número de iterações

-0.2

-0.4

Na Tabela 8 foi contabilizado o número de iterações necessário para que o algoritmo convergisse em um determinado passo no tempo, até que se atingisse o regime permanente.

Tabela 8: Número de iterações por passo no tempo

Passo no tempo					
(instante t)		UDS	CDS		
(mstante t)	10x10	20x20	70x70	10x10	20x20
1 (30)	17	17	21	16	21
2 (60)	13	13	17	14	17
3 (90)	11	10	14	12	14
4 (120)	9	8	9	11	12
5 (150)	7	6	6	9	11
6 (180)	5	4	4	8	9
7 (210)	3	3	3	6	8
8 (240)	1	1	1	5	5
9 (270)				4	4
10 (300)				3	3
11 (330)				2	2
12 (360)				1	1

Fonte: o autor

5 Conclusão

A obtenção de campos de velocidades é uma tarefa pertinente na solução de muitos problemas de mecânica dos fluídos, portanto empregar o método dos volumes finitos com tal propósito é uma ferramenta vantajosa em tais situações, uma vez que

este possibilita chegar a aproximações razoáveis de escoamentos que podem não possuir solução analítica.

Neste trabalho foi proposto obter o escoamento em regime permanente no interior de uma cavidade que encontra-se inicialmente em repouso e que em t=0 passa a ter sua placa superior a se movimentar a uma velocidade constante. Nas seções anteriores foi apresentado o resultado de tal problema e é possível esboçar algumas considerações acerca dos mesmos.

O tempo de processamento e a memória RAM demandada são fatores significativos, uma vez que as matrizes geradas para a solução do problema serem muito extensas, devido ao grande número de variáveis envolvidos. Tanto que foi rodado um caso com uma malha 70x70 em UDS e este caso consumiu 13.6 *Gigabits* de memória RAM do computador e levou cerca de 14 horas para chegar ao regime permanente.

A solução para este problema é o emprego de matrizes esparsas para diminuir a quantidade de memória requerida e computação paralela para distribuir a solução do sistema linear nos diversos processadores das máquinas atuais. Isto não foi empregado no decorrer deste trabalho e isso acarretou na demora dos cálculos supracitados.

Fica evidente que para uma mesma malha e mesmas propriedades, o esquema CDS converge em um passo de tempo posterior ao UDS, pelo que pode ser visto na Tabela 8. Isto deve-se ao fato de neste esquema a variável na interface é calculada como uma média aritmética das velocidades adjacentes, o que não é satisfatório para este problema.

Ao se analisar os gráficos do escoamento com mesma malha na seção 4.3, notá-se que para CDS os vórtices começam a se formar na malha 10x10 e estão bem desenvolvidos na malha 20x20, enquanto que para UDS na malha 10x10 o escoamento não apresenta vórtice e na 20x20 estes começam a se formar timidamente no canto inferior esquerdo. Isto é uma evidência que o método CDS neste caso acaba sendo mais preciso, embora como visto demore mais chegar ao regime permanente.

Outra evidêcia que o método CDS é mais preciso neste caso é ao comparar os resultados com a literatura nas Figuras 16, 17, 18 e 19. Uma vez que tanto em u quanto em v os resultados em CDS se aproximaram mais da referência.

Finalmente, ao se analisar o campo de pressões resultante do escoamento na Figura 15 é possível notar que há uma maior pressão próxima ao canto superior direito da cavidade. Isto é natural devido a presença da barreira física da fronteira leste da cavidade. De mesmo modo, se percebe uma camada de baixa pressão no interior do vórtice, isto deve-se a falta de restrição presente em tal região do escoamento

6 Referências

GHIA, U; Ghia; K. N. SHIN, C. T. **High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method**. *Journal of Computational Physics*, Cincinnati, v. 48, n. 3, p. 387-411, 1982