# Smart Farmer-IOT Enabled Smart Farming Application

## **SPRINT DELIVERY – 4**

| TITLE            | Smart Farmer-IOT Enabled Smart Farming |
|------------------|----------------------------------------|
|                  | Application                            |
| DOMAIN NAME      | INTERNET OF THINGS                     |
| TEAM ID          | PNT2022TMID22828                       |
| LEADER NAME      | KOWSALYA D                             |
| TEAM MEMBER NAME | KAMALAKANNAN R                         |
|                  | KARTHICK S                             |
|                  | NITHEEN V P                            |

## 5.5 Receiving commands from IBM cloud using Python program

import time import sys
import ibmiotf.application import
ibmiotf.device import random

## **#Provide your IBM Watson Device Credentials**

```
organization = "157uf3" deviceType = "abcd" deviceId = "7654321" authMethod = "token" authToken = "87654321"
```

```
# Initialize GPIO def myCommandCallback(cmd):
```

```
print("Command received: %s" % cmd.data['command'])
status=cmd.data['command'] if status=="motoron":
print ("motor is on") elif status == "motoroff":
print ("motor is off") else :
    print ("please send proper command")
    try:
```

deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken} deviceCli

= ibmiotf.device.Client(deviceOptions)

```
#.....
```

except Exception as e:

```
print("Caught exception connecting device: %s" % str(e))
sys.exit()
```

# Connect and send a datapoint "hello" with value "world" into the cloud as an event of type "greeting" 10 times deviceCli.connect()

```
while True:
    #Get Sensor Data from DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
                                data =
{ 'temp' : temp, 'Humid': Humid , 'Mois':
Mois}
    #print data
                   def
myOnPublishCallback():
      print ("Published Temperature = %s C" % temp, "Humidity =
%s %%" % Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on publish=myOnPublishCallback)
                                      if not success:
print("Not connected to IoTF")
                                  time.sleep(10)
    deviceCli.commandCallback = myCommandCallback #
Disconnect the device and application from the cloud
deviceCli.disconnect()
```

```
A Be modely C-Clern/kanalyschakucan/hogomen/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/Pytron/
```



#### 6.Flow Chart



#### 7. Observations & Results







### 8. Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

## **Disadvantages:**

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

#### 9. Conclusion

Thus the objective of the project to implement an IoT system in order to help farmers to control and monitor their farms has been implemented successfully.

#### 10.Bibliography

IBM cloud reference: <a href="https://cloud.ibm.com/">https://cloud.ibm.com/</a>

IoT simulator: https://watson-iot-sensor-simulator.mybluemix.net/

OpenWeather: https://openweathermap.org/