Literature Report: A Facile C=O Bond Splitting of CO_2 Catalyzed by Phosphinine Iron(0) Complex

Shirong Wang Kuang Yaming Honors School

Contents

Background

Reaction Details

Discussion and Expectations

Background

 $C{=}O$ Bond Splitting of CO_2 has become established for early 3d metals and f-block metals.

In comparison, the use of earth-abundant late 3d metals remains surprisingly under-explored, particularly given the role that such metals play in biological CO_2 reduction to CO , mediated by Ni , Fe CO dehydrogenase.

Background

Previous examples of CO_2 cleavage based on 3d metals

Laitar, D. S. et al. Journal of the American Chemical Society 2005, 127, 17196–17197 Sadique, A. R. et al. Inorganic chemistry 2008, 47, 784–786 Oren, D. et al. Organometallics 2018, 37, 2217–2221

This work is the first reported example of C=O cleavage of a CO_2 molecule mediated by a single Fe centre.

Figure 1: Leitl, J. et al. Angew. Chem. Int. Ed. 2019, 58, 15407-15411

Inspiration

Figure 2: $[Cp*Fe(\eta^4-TPP)]$ and derived compounds Hoidn, C. M. et al. *Eur. J. Inorg. Chem.* **2019**, *2019*, 1567–1574

Figure 3: New ligand 2-(2'-pyridyl)-4,6-diphenylphosphinine

Preparation

Figure 4: i) L, DME, -35°Cto RT, -naphthalene; ii) 1 equiv. [K([18]crown-6)][Cp*Fe-($C_{10}H_8$)], 2 equiv. L, toluene/THF, -35°Cto RT; iii) 1 equiv. [K-([18]crown-6)][Cp*Fe($C_{10}H_8$)], THF.

Solution-phase ^{31}P NMR spectrum shows 1- σ and 1- π , while XRD and ^{31}P CP MAS show only 1- σ . Selective crystallization failed.

Calculation for $1-\sigma/1-\pi$

Conversion of $1-\pi$ to $1-\sigma$ is calculated to proceed with a barrier of 27.0 kcal/mol, consistent with an equilibrium at room temperature. NMR indicates an approximately 2:1 ratio of $1-\sigma:1-\pi$.

Figure S33 - Optimised structures for the isomerisation of $1-\pi$ to $1-\sigma$. Energies are given in kcal-mol⁻¹ relative to the optimised structure of $1-\pi$. Energies in brackets correspond to electronic energies with solvent correction (TPSSh-D3BJ/def2-TZVP CPCM(THF)).

Splitting Reaction

Figure 5: Reaction of 1- σ and 1- π with CO_2 (1 atm) in THF at room temperature.

Solid state structures of 3- σ and 3- π

Calculation for $1 \rightarrow 3$ Reaction

Very small energy barriers:

► $1-\sigma -> 3-\sigma$: 3.5 kcal/mol

► $1-\pi -> 3-\pi$: 5.5 kcal/mol

Figure S37 - Optimised key structures for the activation of CO₂ by 1-π (top) and 1-σ (bottom). Energies are given in kcal·mol⁻¹ relative to the sum of the electronic energies of CO₂ and the relevant isomer of 1.

Discussion and Expectations

- ► Full catalysation cycle
- ightharpoonup Diversification of 1- σ
- Orbital analysis