Spatial Range Operation Example: Sum a Window

5	8	10	10	12
4	6	8	10	20
4	4	5	5	7
7	8	10	11	11
10	10	8	8	7

Spatial Range Operation Example: Sum a Window

5	8	10	10	12
4	6	8	10	20
4	4	5	5	7
7	8	10	11	11
10	10	8	8	7

Spatial Range Operation Example: Sum a Window

5	8	10	10	12	
4	6	8	10	20	23
4	4	5	5	7	
7	8	10	11	11	
10	10	8	8	7	

Haar Operator-based Features for Face Detection

Proposed by Viola and Jones CVPR 2001.

Superpixel Example – Arbitrarily-shaped Windows

Superpixel Map

A Human Segmentation

Reconstruction of Human Segmentation with Superpixels

Oversegmentation as a preprocessing step was codified by X. Ren and J. Malik. Learning a classification model for segmentation. JCCV 2003.

Generic Range Map Operator Pseudo-Code

procedure Generic Range Map Operator for each pixel $s \in \Lambda_J$ do let W_s be the window into Λ at centered at s 3: 4: end for 5. end procedure Wally about vatid Windows for each location

Single Pixel Range Map: Negative Image

Intensity Transformations openhan silyle process

Input Image

Negative Image

 $J(s) = -J(s) + s \in A$

Range Map of Binary Functions: Thresholding

Example

$$f_b(\mathbf{I}[W]; 128, 230) = \begin{cases} 1 & 128 \le \mathbf{I}[W] \le 230 \\ 0 & \text{otherwise} \end{cases}$$

Windowed Spatial Range Map: Smoothing an Image

Input Image

Smoothed Image 15×15

Discrete Image Derivative Example

Approximating an Image Laplacian

Approximating an Image Laplacian

