#### Kanato Nakakuni

University of Tokyo

October 2023 (preliminary version) Click here for the latest version

## 1. Introduction

Introduction

- 6. Appendix

## Low Fertility, Demographic Aging, and Policy Interventions

- Low fertility and demographic aging drive the pro-natal policies in many countries.
  - Typical measures: cash benefits, childcare services, tax deduction, etc.
- In Japan, increasing grants for college students has garnered much attention.
  - Expected to increase fertility as education costs are a key obstacle (e.g., Gauthier, 2016).
  - To enhance the workers' productivity to deal with labor force shortage.

Introduction

Does it work as expected? What are the consequences? — Unclear as:

- Education (Macro) literature abstracts fertility choices.
- Macro models with fertility choices abstract college enrollment and IVT choices.
- $\Rightarrow$  Need for a macro model with fertility, college enrollment, and IVT choices.

## This Paper

Introduction

- Constructs an incomplete market GE-OLG model incorporating:
  - College enrollment choices,
  - Inter-vivo transfers (IVT),
  - Fertility choices.
- Calibrates the model to the Japanese economy using panel data.
  - The Japanese Panel Survey of Consumers (JPSC).
- Validates if the model implies reasonable fertility behavior.
  - The benefit elasticity of fertility (comparison with empirical works).
  - Fertility differential across education groups.
- Examines the macroeconomic effects of education subsidies for college students.
  - Existing program and its expansion.
  - Several types of the subsidies.



## Literature and Contribution

Introduction

## (1) Education subsidies for college students in macro models:

Benabou (2002, Ecta), Krueger and Ludwig (2016, JME), Abbott et al. (2019, JPE), Matsuda and Mazur (2022, JME), etc.

- This paper: + Fertility choices
- Fertility margins amplify the effects on other macro variables.

## Literature and Contribution

Introduction

#### (1) Education subsidies for college students in macro models:

Benabou (2002, Ecta), Krueger and Ludwig (2016, JME), Abbott et al. (2019, JPE), Matsuda and Mazur (2022, JME), etc.

- This paper: + Fertility choices
- Fertility margins amplify the effects on other macro variables.

### (2) Macro effects of pro-natal policies:

Erosa et al. (2010, RED), Hagiwara (2021), Zhou (2022), Kim et al. (2023), Nakakuni (2023), etc.

- This paper: + Education choice (its discreteness matters to fertility choices),
- and investigates effects of education subsidies for college students on fertility.

8 / 82

## Literature and Contribution

#### (1) Education subsidies for college students in macro models:

Benabou (2002, Ecta), Krueger and Ludwig (2016, JME), Abbott et al. (2019, JPE), Matsuda and Mazur (2022, JME), etc.

- This paper: + Fertility choices
- Fertility margins amplify the effects on other macro variables.

#### (2) Macro effects of pro-natal policies:

Erosa et al. (2010, RED), Hagiwara (2021), Zhou (2022), Kim et al. (2023), Nakakuni (2023), etc.

- This paper: + Education choice (its discreteness matters to fertility choices),
- and investigates effects of education subsidies for college students on fertility.

#### (3) Macro models with fertility choices:

De la Croix and Doepke (2003, AER), De la Croix and Doepke (2004, JPubE), Daruich and Kozlowski (2020, RED), etc.

- This paper: + Full lifecycle + GE + uninsurable shocks + intergenerational linkages,
- all crucial to study the effects of education subsidies for college students.

- 2. Model
- 3. Calibration
- 4. Numerical Analysis
- 5. Concluding Remark
- 6. Appendix

Model

## Model

Model with fertility choices otherwise standard in Macro literature on education subsidies. Krueger and Ludwig (2016, JME), Abbott et al. (2019, JPE), Matsuda and Mazur (2022, JME), etc.

- Incomplete market GE-OLG framework.
- Standard lifecycle + Education + IVT + Fertility

  Literature standard



- Technology
- Demographics
- Preferences
- Labor income
- Financial markets
- Government

#### A representative firm operates with the Cobb-Douglus production function:

$$Y = ZK^{\alpha}L^{1-\alpha},$$

where

$$L = [\omega_{HS} \cdot (L_{HS})^{\chi} + \omega_{CL} \cdot (L_{CL})^{\chi}]^{1/\chi}.$$

•  $L_e$ : total efficiency labor with skill  $e \in \{HS, CL\}$ .

## Demographics

Model

- The size of new cohort grows at rate  $g_n$ .
  - $q_n$  is determined enodgenously.
- Mortality risks after retirement.
  - $\zeta_{i,j+1}$ : Survival probability at age j+1 conditional on surviving until age j.
- $g_n$  and  $\{\zeta_{i,i+1}\}_{i>J_R}$  pin down the age distribution  $\mu_i$ .

- Households draw utility from consumption c and leisure l according to u(c, l).
- If they have children under 18 (before completing HS), they further draw utility from the "quantity and quality" of children according to  $b(n) \cdot v(q)$ :
  - n: the number of children.
  - b(n): increasing in  $n \in \{0, 1, ..., N\}$  and concave. i.e., marginal utility gains from having additional child diminishes as n increases.
  - q: investments on children's quality.
    - Caveat: the investment does not affect children's human capital.

Utility from the IVT for households with n children is given as follows:

$$\underbrace{b(n) \cdot \lambda_a}_{\text{Discounting}} \cdot \underbrace{V_{g0}(a_{CL}, \phi_k, h_k, I)}_{\text{Value function for children}}.$$

## Labor income

- Gross labor income is determined by:
  - 1. equilibrium wage rates  $w_e$  varying with skill (education levels) e,
  - 2. productivity  $\eta_{j,z,e,h}$ ,
  - 3. hours worked.
- The productivity  $\eta_{j,z,e,h}$  depends on:
  - 1. age j,
  - 2. skill e,
  - 3. human capital h,
  - 4. a stochastic component  $z \sim \pi(z' \mid z)$ .

- Incomplete market: households can trade only claims for risk-free bonds.
- Households face debt limits that vary over the life-cycle:
  - young households  $(j < J_F)$  and retired ones  $(j > J_R)$  cannot borrow,
  - (1) college students and (2) households aged  $j \in \{J_F, ..., J_R 1\}$  may borrow.
    - Interest rates for (eligible) students:  $r^s = r + \iota_s$ .
    - Interest rates for households aged  $j \in \{J_F, ..., J_R 1\}$ :  $r^- = (r + \iota) > r^s$ .

- Consumption tax:  $\tau_c$
- Capital income tax:  $\tau_a$
- Labor income tax:  $\tau_w$
- Accidental bequests: Q

- Public pension: p per household
- ullet Cash benefits for households with children under 18: B per child
- Lump-sum transfers  $\psi$  to generate the progressivity for  $\tau_w$ .
- Education subsidies/loans for college students.
- The other expenditures: G

#### Grants g(h, I):

- Eligibility and payments can depend on:
  - 1. student' human capital (a proxy of "ability"),
  - 2. household income (I).
- No grants in the benchmark.

#### Loans:

- Eligible students can access to the subsidized loans with interest rate  $r^s \leq r^-$ .
- Eligibility is determined by (h, I).
- Government incurs the costs implied by the wedge b/w  $r^-$  and  $r^s$ .

$$\tau_c \cdot C + \tau_w \cdot (L_l + L_h) + \tau_a \cdot K + Q = p \cdot \mu_{old} + (\iota - \iota_s) \cdot K_s + q(h, I) \cdot \mu_{es} + \psi + B \cdot \mu_{i \le 18} + G, \quad (1)$$

- C: total consumption,
- Q: total accidental bequests,
- $\mu_{old}$ : population mass of retired households,
- $\mu_{j \le 18}$ : population mass of children under age 18,
- $K_s$ : total amount of borrowing by college students,
- $\mu_{es}$ : mass of students eligible for the grants.

# Born Grad.HS $j=0 \qquad j=18$ Enroll Fertility IVT Retirement Death $j=30 \quad j=48 \quad j=66 \qquad j=104$ Grad.CL j=22

- When an individual graduates high school, he/she chooses whether to go to college.
  - If they proceed to college education, it takes 4 years to complete.
  - If they do not, they enter the labor market as high school graduates.
- Three factors influence their college enrollment decisions:
  - 1. IVTs made by their parents  $(a_{CL})$ .
  - 2. Psychic costs of education  $(\phi \sim g_{h,e_p}^{\phi})$ .
  - 3. Their human capital  $(h \sim g_{h_p}^h)$ .

## Budget constraints: college students

#### Expenditures:

- Tuition fees  $p_{CL}$  (exogenous)
- Living expenses c (endogenous/choice)

#### Revenue:

- Transfers from their parents  $a_{CL}$  (parent's choice).
- Labor earnings by themselves (endogenous/choice).
  - Can supply at most  $1 \bar{t}$  fraction of time,  $\bar{t}$  is the fraction to be spent on studying.
- Loans/Grants provided by the government (depending on h and I):

Concluding Remarks

$$V_{g0}(a_{CL}, \phi, h, I) = \max_{e \in \{0,1\}} \left\{ (1 - e) \cdot \mathbb{E}_{z_0}[V^w(a_{CL}, j = 18, z_0; e = 0, h)] + e \cdot [V_{g1}(a_{CL}; h, I) - \phi] \right\},$$
(2)

where e = 1 represents enrolling in college.

$$V_{g1}(a_{CL}; h, I) = \max_{c,l,a'} \{ u(c,l) + \beta V_{g2}(a'; h, I) \},$$
  
$$V_{g2}(a; h, I) = \max_{c,l,a'} \{ u(c,l) + \beta \mathbb{E}_{z_0} [V^w(a^s(a'), j = 22, z_0; e = 1, h)] \}.$$

# Budget constraints for college students

$$a^{s}(a') = a' \times \frac{r^{s}}{1 - (1 + r^{s})^{-10}} \times \frac{1 - (1 + r^{-})^{-10}}{r^{-}}.$$

Eligible to loans:

 $a' > -A_c$ 

$$(1 + \tau_c)c + p_{CL} + a'$$

$$- (1 - \tau_w)w_{HS}(1 - \bar{t} - l) - \psi - g(h, I) = \begin{cases} (1 + (1 - \tau_a)r)a & \text{if } a \ge 0, \\ (1 + r^s)a & \text{otherwise.} \end{cases}$$

$$(3)$$

The rest:

$$(1 + \tau_c)c + p_{CL} + a' = (1 + (1 - \tau_a)r)a + (1 - \tau_w)w_{HS}(1 - \bar{t} - l) + \psi,$$
  
$$a' \ge 0.$$

$$\begin{split} V^w(a,j,z;e,h) &= \max_{c,l,a'} \{u(c,l) + \beta \mathbb{E}[V^w(a',j+1,z';e,h)]\} \\ \text{s.t.} \\ &(1+\tau_c)c + a' = (1-\tau_w)w_e\eta_{j,z,e,h}(1-l) + \psi + (1+(1-\tau_a)r)a, \\ &z' \sim \pi(z',z), \ a' \geq 0. \end{split}$$

#### 

## Fertility choices and working stage with children I

The value function at age  $j = J_f$ :

$$V^{f}(a, z, e, h) = \max_{n \in \{0, 1, \dots, N\}} \left\{ V^{wf}(a, j = J_F, z; e, h, n) \right\}$$

where

$$V^{fw}(a, j, z; e, h, n) = \max_{c, l, q, a'} \{ u(c/\Lambda(n), l) + \frac{b(n) \cdot v(q)}{b(n) \cdot v(q)} + \left\{ \beta \mathbb{E}_{z'|z} [V^{wf}(a', j+1, z'; e, h, n)] & \text{if } j \in \{J_f + 1, ..., J_{IVT} - 2\} \\ \beta \mathbb{E}_{z'|z, \phi_k|e, h_k|h} [V^{IVT}] & \text{if } j = J_{IVT} - 1 \end{cases} \right\},$$

$$(1+\tau_c)c + a' = \begin{cases} Y_{fw} - (1+\tau_c)nq & \text{if } j \in \{J_f + 1, ..., J_{IVT} - 1\}, \\ Y_{IVT} - na_{CL} & \text{if } j = J_{IVT}, \end{cases}$$

$$(5)$$

## Fertility choices and working stage with children II

where

$$Y_{wf} = (1 - \tau_w) w_e \eta_{j,z,e,h} (1 - l - \kappa) + n \cdot B + \psi + \begin{cases} (1 + (1 - \tau_a)r)a & \text{if } a \ge 0, \\ (1 + r^-)a & \text{otherwise.} \end{cases}$$

$$a' \ge -A,$$

and

$$Y_{IVT} = (1 - \tau_w) w_e \eta_{j,z,e,h} (1 - l) + \psi + (1 + (1 - \tau_a)r) a,$$
  
  $a' > 0.$ 

$$V^{IVT}(a, z; \phi_k, h_k, e, h, n) = \max_{c, l, a', a_{CL}} \left\{ V^w(a - \tilde{a}_{CL}, J_{IVT}, z; e, h) + b(n) \cdot \lambda_a \cdot V_{g0}(a_{CL}, \phi_k, h_k, I) \right\},$$

where 
$$\tilde{a}_{CL} = \frac{n \cdot a_{CL}}{1 + (1 - \tau_a)r}$$
 and  $I = I(J_{IVT}, z, e, h)$ .

• Children's policy function for education and parents' one for IVT determined simultaneously.

# Retirement stage

$$V^{r}(a, j; e) = \max_{c, a'} u(c, 1) + \beta \xi_{j, j+1} V^{r}(a', j+1; e)$$
s.t.
$$(1 + \tau_{c})c + a' = p + (1 + (1 - \tau_{a})r)a + \psi,$$

$$a' \ge 0 \ (a' = 0 \text{ when } j = J).$$

Calibration 

- 3. Calibration

- 6. Appendix

## Data

The Japanese Panel Survey of Consumers (JPSC)

- Panel survey of women and their household members.
- Starts in 1993 with 1,500 women aged 24-34.

#### Sample selection:

- Birth cohort: 1959-69
- Married (1993-2020)

#### rreferences

Instantaneous utility for students and adults:

$$u(c,l) = \frac{(c^{\mu}l^{1-\mu})^{1-\gamma}}{1-\gamma}$$

Instantaneous utility from quantity and quality of children:

$$v(q) = \lambda_q \frac{q^{1-\gamma_q}}{1-\gamma_q}$$

The discount function takes a non-parametric form (i.e.,  $b(n) = b_n$  and b(0) = 0).

#### Financial markets

#### Targets for

- $\iota$ : share of negative net worth,
- $\iota_s$ : share of students borrowing

#### Borrowing limits are set outside the model:

- $\underline{A}_s$ : 2.88 million yen.
- $\underline{A}$ : 20 million yen.

- Psychic costs  $\phi$  are given as  $\phi = \psi_{CL} \cdot \exp(-h) \cdot \tilde{\phi}$ .
  - $\psi_{CL}$  governs the college enrollment rate at the initial steady state.
  - $\tilde{\phi}$  is distributed on [0, 1].
- As in Daruich and Kozlowski (2020), the CDF for  $\tilde{\phi}$  is given as

$$G_{e^p}^{\tilde{\phi}} = \begin{cases} \tilde{\phi}^{\omega} & \text{if } e^p = 0\\ 1 - (1 - \tilde{\phi})^{\omega} & \text{if } e^p = 1 \end{cases}$$

- Target for  $\psi_{CL}$ : the college enrollment rate (37.7%).
- Target for  $\omega$ : intergenerational transition matrix of education.

| Parents/Children    | HS            | CL            |
|---------------------|---------------|---------------|
| HS                  | 0.725 (0.798) | 0.275 (0.202) |
| $\operatorname{CL}$ | 0.412 (0.423) | 0.588(0.577)  |

Table: Intergenerational transition matrix of education.

• The initial draw of human capital:

$$\log(h) = \rho_h \log(h_p) + \varepsilon_h,$$
  
$$\varepsilon_h \sim N(0, \sigma_h).$$

- $\rho_h = 0.19$  following Daruich and Kozlowski (2020).
- Target for  $\sigma_h$ : Variance of log(income) at age 28-29.

#### • Labor productivity $\eta_{i,z,e,h}$ :

$$\log \eta_{j,z,e,h} = \log f^{e}(h) + \gamma_{j,e} + z$$
$$z' = \rho_{z}z + \zeta, \quad \zeta \sim N(0, \sigma_{z}).$$

•  $\gamma_{j,e}$ : estimate the second-order polynomial of hourly wages on age.

#### • Consider the following human-capital production function of the non-linear form:

$$f^e(h) = h + e \cdot (\alpha_{CL} h^{\beta_{CL}})$$

- Target for  $\alpha_{CL}$ : Log(wage) ratio (CL- $\leq$ CL) at age 28-29 (0.34).
- Target for  $\beta_{CL}$ : Variance of log(wage) for college grad. workers (0.14).

- $\chi = 0.39$  following Matsuda and Mazur (2022).
- $\omega_h = 0.52$ : to replicate the wage ratio between CL and the rest.
- Z = 1.99: s.t. low skill wage = 1.
- $\alpha = 0.33$ .
- $\delta = 0.07$  (annual).

## Externally determined

| Parameter         | Value                              | Description                  |
|-------------------|------------------------------------|------------------------------|
| $\underline{A}_s$ | 2.88 million yen                   | Borrowing limit for students |
| $\underline{A}$   | 20 million yen                     | Borrowing limit              |
| $p_{CL}$          | 1.05 million yen/year              | Tuition fees                 |
| $\kappa$          | 0.044                              | Time costs                   |
| $\xi_{j,j+1}$     | _                                  | survival prob.               |
| $	au_c$           | 0.10                               | Consumption tax              |
| $	au_a$           | 0.35                               | Capital income tax           |
| $	au_w$           | 0.35                               | Labor income tax             |
| p                 | $\mathbf{¥}160,000/\mathrm{month}$ | Pension benefits             |
| b                 | $\mathbf{¥}10,000/\mathrm{month}$  | Cash transfers               |
| $\alpha$          | 0.33                               | Capital share                |
| $\delta$          | 0.07                               | Depreciation rate            |
| χ                 | 0.39                               | Elasticity of substitution   |
| $\rho_z$          | 0.95                               | Persistence                  |
| $\sigma_z$        | 0.02                               | Transitory                   |
| $\gamma$          | 0.5                                | Curvature                    |
| $\beta$           | 0.98                               | Discount factor              |
| $ ho_h$           | 0.19                               | Transmission of $h$          |
|                   |                                    |                              |

## Internally determined

T 7 1

| Parameter          | Value | Moment                                           | Data  | Model |
|--------------------|-------|--------------------------------------------------|-------|-------|
| $\mu$              | 0.23  | Work hours                                       | 0.33  | 0.30  |
| $rac{\mu}{ar{t}}$ | 0.8   | Income share of labor earnings                   | 0.20  | 0.17  |
| $\iota_s$          | 0.055 | Share of students using loans                    | 0.44  | 0.34  |
| ι                  | 0.054 | Household share with negative net worth          | 0.54  | 0.45  |
| $\omega_h$         | 0.52  | CL-HS wage ratio                                 | 1.36  | 1.48  |
| $\psi$             | 0.01  | Var(log disposable income)/Var(log gross income) | 0.60  | 0.68  |
| $\lambda_q$        | 0.62  | Average transfer / Average income at age 28      | 0.07  | 0.07  |
| $\lambda_a$        | 1.03  | Average transfer / Average income at age 28      | 0.27  | 0.27  |
| $\omega$           | 1.71  | Intergenerational mobility of education          | _     | _     |
| $\sigma_h$         | 0.65  | Variance of log(income) at age 28                | 0.27  | 0.24  |
| $\psi_{CL}$        | 20.8  | College enrollment rate                          | 0.377 | 0.376 |
| $lpha_{CL}$        | 0.1   | Log wage ratio (CL-HS) at age 28                 | 0.34  | 0.38  |
| $\beta_{CL}$       | 0.1   | Var log wage for CL at age 28                    | 0.14  | 0.24  |
| $b_1$              | 0.49  | Share of one child                               | 0.16  | 0.15  |
| $b_2$              | 0.53  | Share of two children                            | 0.55  | 0.61  |
| $b_3$              | 0.55  | Share of three children                          | 0.22  | 0.24  |
| $b_4$              | 0.56  | Share of four or more children                   | 0.02  | 0.00  |
| Z                  | 1.99  | Low skill wage                                   | 1.0   | 1.0   |
|                    |       |                                                  |       |       |

|                       | College graduates | The rest |
|-----------------------|-------------------|----------|
| Age                   | 0.048             | 0.041    |
| $Age^2 \times 10,000$ | -5.364            | -4.551   |

Table: Wage age-profile

- Fertility differential across education.
- The benefit elasticity of fertility.

More (less) educated parents have fewer (more) children, robust to cohorts/data.

|                          | Data |  |
|--------------------------|------|--|
| $\overline{\mathrm{HS}}$ | 2.12 |  |
| $\operatorname{CL}$      | 1.92 |  |

Table: Fertility differential across education in the benchmark.

More (less) educated parents have fewer (more) children, robust to cohorts/data.

|                     | Data | Model |
|---------------------|------|-------|
| HS                  | 2.12 | 2.28  |
| $\operatorname{CL}$ | 1.92 | 1.79  |

Table: Fertility differential across education in the benchmark.

- The most relevant moment: the subsidy elasticity of fertility (non-targeted).
  - Few empirical evidence.
- Second best: validation based on the benefit elasticity of fertility.
  - 1% of cash benefits for children increases fertility rates by 0.1-0.2%. e.g.) Milligan (2005), Cohen et al. (2013), etc.
- The benchmark model implies the elasticity of  $0.13 \in [0.1, 0.2]$ .

→ Procedure

- 2. Mode
- 3. Calibration
- 4. Numerical Analysis
- 5. Concluding Remarks
- 6. Appendix

- 1. Examining the effects of introducing grants.
- 2. Inspecting the mechanism:
  - Behavioral and distributional effects
  - Roles of endogenous fertility
- 3. Expanding the income threshold for eligibility.

Introduce subsidies for college students in low-income households.

- Threshold  $\simeq$  the bottom 15% of income dist. over HHs with college students.
- (Tuition fee exemption + Grants)  $\simeq 2/3$  of the students' average expenses.
- Budget balance by adjusting the labor income tax rate.

#### **Education:**

- College enrollment rate: 4 p.p. ↑
- Educational mobility (HS→CL): 2.5 p.p. ↑
- Skill premium  $(w_{CL}/w_{HS})$ : 0.02 points  $\downarrow$

#### Fertility:

- TFR: 3% ↑
- Largely driven by fertility increases among college graduates.

- Efficiency labor (per-capita): 1.3% ↑
  - Higher CL share  $\Rightarrow$  Larger share of skilled workers.
  - Higher TFR  $\Rightarrow$  Larger working-age population share.
- Capital (per-capita):  $1.8\% \downarrow$ 
  - Reduce saving incentives/Crowd out IVTs.
  - $\bullet$  Higher TFR  $\Rightarrow$  Larger share of younger generations, who hold fewer assets.
- Output (per-capita):  $0.7\% \uparrow$ 
  - Positive effects (on labor force/productivity) > Negative ones (on physical capital).

Changes in the TFR and college enrollment can be driven by changes in several factors:

- 1. Grant function g(h, I)
- 2. Prices (in particular,  $w_{CL}/w_{HS}$ )
- 3. Tax rate  $\tau_l$
- 4. Distribution:
  - Skill distribution (i.e., college graduates share)

Decompose the long-run effects into the following four effects:

- 1. **Direct effects** driven by changes only in g(h, I)
- 2. **GE** (Price) effects driven by changes only in prices.
- 3. **Taxation effects** driven by changes only in the tax rate  $\tau_l$ .
- 4. **Distributional effects** driven by changes only in the distributions.

|          | Bench. | Direct | Prices | Tax  | Dist. | All  |
|----------|--------|--------|--------|------|-------|------|
| CL share | 37.6   | 40.2   | 37.6   | 37.6 | 39.5  | 41.5 |

Table: Decomposing the effects on education.

|          | Bench. | Direct | Prices | Tax  | Dist. | All  |
|----------|--------|--------|--------|------|-------|------|
| CL share | 37.6   | 40.2   | 37.6   | 37.6 | 39.5  | 41.5 |

Table: Decomposing the effects on education.

• Direct  $\Rightarrow$  The subsidy relaxes the financial constraint (short/long run).

# Bench. Direct Prices Tax Dist. All CL share 37.6 40.2 37.6 37.6 39.5 41.5

Table: Decomposing the effects on education.

- Direct  $\Rightarrow$  The subsidy relaxes the financial constraint (short/long run).
- Dist. ⇒ The effects are amplified in the long run via IG linkages.
   CL share among parents ↑ ⇒ share of children favoring college ↑ ⇒ CL share ↑

|          | Bench. | Direct | Prices | Tax  | Dist. | All  |
|----------|--------|--------|--------|------|-------|------|
| CL share | 37.6   | 40.2   | 37.6   | 37.6 | 39.5  | 41.5 |

Table: Decomposing the effects on education.

- Direct  $\Rightarrow$  The subsidy relaxes the financial constraint (short/long run).
- Dist. ⇒ The effects are amplified in the long run via IG linkages.
   CL share among parents ↑ ⇒ share of children favoring college ↑ ⇒ CL share ↑
- Fertility margins also play roles: College graduates have more children, who are likely to be college graduates.

► Exogenous Fertility

#### Bench. Direct Prices Tax Dist. All TFR. 2.096 2.160 2.128 2.113 2.0962.088HS2.282 2.304 2.283 2.283 2.280 2.290 CL1.7861.867 1.787 1.7941.978 1.830

Table: Decomposing the effects on fertility.

#### Bench. Direct **Prices** Tax Dist. All TFR. 2.096 2.128 2.113 2.096 2.088 2.160HS2.2822.304 2.2832.2832.2802.290 CL1.7861.8671.830 1.7871.7941.978

Table: Decomposing the effects on fertility.

- Note: HHs do not know whether they will be eligible when making fertility choices.
  - Source of uncertainty: productivity shocks and children's characteristics ( $\phi_k$  and  $h_k$ ).
- Direct: Reduce the expected costs of children or provide insurance expenditure risks.
  - Some HHs who are (ex-post) not eligible increase fertility.

Numerical Analysis

#### Bench. Direct **Prices** Tax Dist. All TFR. 2.096 2.128 2.113 2.0962.0882.160HS2.2822.3042.2832.2832.2802.290 CL1.7861.8671.830 1.7871.7941.978

Table: Decomposing the effects on fertility.

- Note: HHs do not know whether they will be eligible when making fertility choices.
  - Source of uncertainty: productivity shocks and children's characteristics ( $\phi_k$  and  $h_k$ ).
- Direct: Reduce the expected costs of children or provide insurance expenditure risks.
  - Some HHs who are (ex-post) not eligible increase fertility.
- Prices: CL share  $\uparrow \Rightarrow w_{CL} \downarrow \Rightarrow$  Opportunity costs  $\downarrow \Rightarrow$  Fertility  $\uparrow$

#### Tricenamoni. Tucap

The income-tested grants increase the fertility of college graduates by:

- reducing the expected costs of children or providing insurance (Direct effects)
- reducing the opportunity costs of skilled parents (GE effects)

The subsidy promote enrolling in college and the effects are strengthened by:

- increasing the share of skilled parents (Distributional effects)
- Fertility margins also play roles.

  College graduates have more children, who are likely to be college graduates.

## Expansion: What I Do

Raise the income threshold for grants eligibility to cover students in middle income HHs.

• Threshold  $\simeq$  the bottom x% of income dist. over HHs with college students.

## Expansion: Results

|                            | $\underline{	ext{Threshold}}$ |                  |               |               |               |  |
|----------------------------|-------------------------------|------------------|---------------|---------------|---------------|--|
|                            | Bench.                        | 15%              | 40%           | 50%           | 60%           |  |
| CL share                   | 37.6                          | 41.5             | 42.3          | 43.2          | 43.8          |  |
| TFR                        | 2.096                         | 2.160            | 2.158         | 2.151         | 2.157         |  |
| Output $(\Delta\%)$<br>Tax | 35.00                         | $+0.70 \\ 35.04$ | +0.15 $35.17$ | +1.07 $35.23$ | +1.53 $35.30$ |  |

Table: Main results of higher income thresholds.

- CL share increases with the expansion.
- TFR would stagnate.



|                     | $\underline{	ext{Threshold}}$ |       |       |       |       |  |
|---------------------|-------------------------------|-------|-------|-------|-------|--|
|                     | Bench.                        | 15%   | 40%   | 50%   | 60%   |  |
| TFR                 | 2.096                         | 2.160 | 2.158 | 2.151 | 2.157 |  |
| $_{ m HS}$          | 2.282                         | 2.290 | 2.277 | 2.267 | 2.263 |  |
| $\operatorname{CL}$ | 1.786                         | 1.978 | 1.996 | 1.998 | 2.021 |  |

Table: Fertility by different educational background.

- College graduates' fertility rates continue to increase.
- High school graduates' fertility rates rather decrease.

### Fertility Decomposition: Case of Threshold = 60%

|                     | Bench. | Direct | Prices | Tax   | Dist. | All   |
|---------------------|--------|--------|--------|-------|-------|-------|
| HS                  | 2.282  | 2.265  | 2.250  | 2.283 | 2.279 | 2.263 |
| $\operatorname{CL}$ | 1.786  | 1.948  | 1.863  | 1.829 | 1.797 | 2.021 |

Table: Decomposing the effects on fertility when income threshold = 60%.

### Fertility Decomposition: Case of Threshold = 60%

|                     | Bench. | Direct | Prices | Tax   | Dist. | All   |
|---------------------|--------|--------|--------|-------|-------|-------|
| HS                  | 2.282  | 2.265  | 2.250  | 2.283 | 2.279 | 2.263 |
| $\operatorname{CL}$ | 1.786  | 1.948  | 1.863  | 1.829 | 1.797 | 2.021 |

Table: Decomposing the effects on fertility when income threshold = 60%.

• Higher education mobility  $\Rightarrow$  Higher expected costs of children  $\Rightarrow$  Fertility  $\downarrow$ 

### Fertility Decomposition: Case of Threshold = 60%

|                     | Bench. | Direct | Prices | Tax   | Dist. | All   |
|---------------------|--------|--------|--------|-------|-------|-------|
| HS                  | 2.282  | 2.265  | 2.250  | 2.283 | 2.279 | 2.263 |
| $\operatorname{CL}$ | 1.786  | 1.948  | 1.863  | 1.829 | 1.797 | 2.021 |

Table: Decomposing the effects on fertility when income threshold = 60%.

- Higher education mobility  $\Rightarrow$  Higher expected costs of children  $\Rightarrow$  Fertility  $\downarrow$
- CL share  $\uparrow \Rightarrow w_{HS} \uparrow \Rightarrow$  Opportunity costs  $\uparrow \Rightarrow$  Fertility  $\downarrow$

- The existing (need-base) grants  $\Rightarrow$  CL share 4 p.p.  $\uparrow$ , TFR 3%  $\uparrow$ , output 0.7%  $\uparrow$ .
  - $\bullet$  Fertility of skilled parents  $\uparrow$  via insurance and GE effects.
  - Fertility margins amplify the effects on CL share and output in the long run.
- Marginal effects of its expansion on the TFR are limited:
  - Expected costs of children  $\uparrow$  due to higher enrollment rates & education mobility.
    - $\Rightarrow$  downward pressure on the low skill parents' fertility.

- 2. Mode
- 3. Calibration
- 4. Numerical Analysis
- 5. Concluding Remarks
- 6. Appendix



Figure: Reasons why the planned number of children is lower than the ideal one. The sample consists of wives aged 30-34, whose planned number of children is lower than the ideal number. They can choose more than one reason.



#### Education expenditures and subsidization rates

#### (a) Subsidization rate

#### (b) Private expenditure



Figure





### College attainment rates and parental preferences



#### (b) Desired education attainment



Figure

## Fertility-income



Figure: Completed fertility by income quintile. (JPSC)





## Education spending-income



Figure: Education spending by income quintile. (JPSC)





- Set the per-child payment  $B = B_0 \cdot X$  where  $X \in \{1.1, 1.2, ..., 3.0\}$ .
- Solve the household decisions with particular X and compute the TFR.
- Compute the implied elasticity for each X, denoted by  $\xi_X$ .
- After having  $\{\xi_X\}_X$ , compute the average elasticity  $\bar{\xi}_X$ .

→ Go Back

## Roles of endogenous fertility

- Solve the equilibrium with each program under exogenous fertility.
- Policy functions for fertility are fixed as in the benchmark.

## Exogenous fertility

| Moments/Threshold            | 15%                        | 40%                        | 50%                        | 60%                        |
|------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| CL share Output $(\Delta\%)$ | 41.0 (41.5)<br>0.65 (0.70) | 41.5 (42.3)<br>0.55 (0.15) | 42.3 (43.2)<br>0.85 (1.07) | 42.8 (43.8)<br>1.23 (1.53) |
| Tax                          | 35.14 (35.04)              | 35.36 (35.17)              | 35.37 (35.23)              | $35.40 \ (35.30)$          |

Table: Main results of higher income thresholds. Note: The values in parenthesis in the first column indicate the benchmark results. Rows where the first column has  $(\Delta\%)$  indicate the %-changes compared to the benchmark. Values in parentheses in each cell represent the result under endogenous fertility



Appendix