Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
13/01/2016	Accélérations – Lois entrée/sortie	TD7 - Sujet

Mécanismes Vitesses et accélération - Lois entrée/sortie

TD7

Fermeture cinématique 3D Portail Sinusmatic

Programme - Compétences		
B211	MODELISER	Torseur cinématique
		Dérivée temporelle d'un vecteur par rapport à un référentiel Relation entre les dérivées temporelles d'un vecteur par rapport à deux référentiels distincts
C26 RESOUDRE	Loi entrée-sortie Cinématique Composition des vitesses angulaires	
		Composition des vitesses

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
13/01/2016	Accélérations – Lois entrée/sortie	TD7 - Sujet

Fermeture cinématique 3D

L'ouvre barrière Sinusmatic est un système qui permet d'ouvrir et fermer une barrière (péage, parking...).

Voici une vue 3D du mécanisme d'ouverture et fermeture de la barrière sur un tour pour 4 positions de l'entrée :

Le schéma cinématique 3D suivant permet de mieux comprendre le fonctionnement du système :

Page 2 sur 5

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
13/01/2016	Accélérations – Lois entrée/sortie	TD7 - Sujet

On propose le modèle suivant et son paramétrage en vue d'étudier la relation cinématique entrée/sortie entre la vitesse de rotation de l'arbre d'entrée et celle de la lisse de la barrière :

Compte tenu de la géométrie tridimensionnelle du système, on paramètre la rotation dans la rotule à

l'aide des angles d'Euler:

Page 3 sur 5

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
13/01/2016	Accélérations – Lois entrée/sortie	TD7 - Sujet

Question 1: Etablir le graphe des liaisons du système

Question 2: Faire le bilan du nombre d'inconnues, d'équations et de la mobilité du système et conclure sur sa résolution

On donne la matrice de passage de la base 1 vers la base 2 :

$$\begin{aligned} R_{21} \\ &= \begin{bmatrix} \cos \psi_{21} \cos \varphi_{21} - \sin \psi_{21} \cos \theta_{21} \sin \varphi_{21} & -\cos \psi_{21} \sin \varphi_{21} - \sin \psi_{21} \cos \theta_{21} \cos \varphi_{21} & \sin \psi_{21} \sin \theta_{21} \\ \sin \psi_{21} \cos \varphi_{21} + \cos \psi_{21} \cos \theta_{21} \sin \varphi_{21} & -\sin \psi_{21} \sin \varphi_{21} + \cos \psi_{21} \cos \theta_{21} \cos \varphi_{21} & -\cos \psi_{21} \sin \theta_{21} \\ \sin \theta_{21} \sin \varphi_{21} & & \sin \theta_{21} \cos \varphi_{21} & \cos \theta_{21} \end{bmatrix} \\ &= \begin{bmatrix} R_{xx} & R_{yx} & R_{zx} \\ R_{xy} & R_{yy} & R_{zy} \\ R_{xz} & R_{yz} & R_{zz} \end{bmatrix} \end{aligned}$$

On note:

$$\overrightarrow{x_3} = \begin{bmatrix} x_x(t) \\ x_y(t) \\ x_z(t) \end{bmatrix}^{\mathfrak{B}_0} \quad ; \quad \overrightarrow{y_3} = \begin{bmatrix} y_x(t) \\ y_y(t) \\ y_z(t) \end{bmatrix}^{\mathfrak{B}_0} \quad ; \quad \overrightarrow{z_3} = \begin{bmatrix} z_x(t) \\ z_y(t) \\ z_z(t) \end{bmatrix}^{\mathfrak{B}_0}$$

On a donc:

$$R_{30} = \begin{bmatrix} x_x(t) & y_x(t) & z_x(t) \\ x_y(t) & y_y(t) & z_y(t) \\ x_z(t) & y_z(t) & z_z(t) \end{bmatrix}$$

Question 3: Après avoir exprimé les matrices de passage R_{32} , R_{21} et R_{10} , donner l'expression de R_{30} en fonction de celles-ci sans détailler le calcul

Soit R_{03} la matrice de passage de la base 3 à la base 0. Cette matrice permet d'exprimer les vecteurs de la base 0 dans la base 3. On note :

$$R_{03} = R_{30}^{-1} = {}^{t}R_{30} = \begin{bmatrix} R'_{xx} & R'_{xy} & R'_{xz} \\ R'_{yx} & R'_{yy} & R'_{yz} \\ R'_{zx} & R'_{zy} & R'_{zz} \end{bmatrix}$$

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
13/01/2016	Accélérations – Lois entrée/sortie	TD7 - Sujet

Question 4: Justifier le fait que l'on choisisse le point D malgré le fait qu'il y a plus d'inconnues en rotation dans la liaison en B

Question 5: Donner les torseurs cinématiques associés à chacune des liaisons en leurs points caractéristiques. Vous exprimerez le torseur de la rotule dans la base 3 en justifiant ce choix

Question 6: Exprimer tous les torseurs au point choisi précédemment

Question 7: Etablir les deux équations vectorielles issues de la fermeture de chaîne cinématique

Question 8: Choisir la/les bases de projection de ces deux équations vectorielles

Question 9: Déterminer les 6 équations scalaires du problème dans la base choisie précédemment

Question 10: En déduire la relation cinématique liant la vitesse d'entrée Ω_{10} et la vitesse de sortie Ω_{40} en fonction de R'_{zx} et R'_{xx}

Question 11: Quelle est la seule rotation non nulle dans la rotule en B

Question 12: Que se passerait-il cinématiquement si l'on remplaçait la liaison 3/2 par une liaison pivot ?

Question 13: Comment bloquer la mobilité interne de la pièce 2 ?