МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. Ломоносова ЭКОНОМИЧЕСКИЙ ФАКУЛЬТЕТ

ПРОЕКТ ПО ДИСЦИПЛИНЕ «МОДЕЛИ ЭКОНОМИЧЕСКИХ СЕТЕЙ»:

«Авиарейсы и аэропорты США в модели экономических сетей»

Выполнили студенты:

Мирхалилов Дониёр Ибрагимов Мохамед

Преподаватель:

к.э.н. Тищенко Сергей Александрович

Москва

Оглавление

Введение	3
Обзор литературы	4
Реализации теории графов при анализе рейсов авиакомпаний США	11
Заключение	21
Список литературы	22

Введение

Воздушный транспорт США — один из видов транспорта в США, включающий как собственно воздушные суда, так и необходимую для их эксплуатации инфраструктуру — аэропорты, диспетчерские и технические службы.

Соединённые Штаты Америки имеют очень разветвленную сеть авиаперевозок. По данным базы Бюро транспортной статистики в 2015 году в стране насчитывалось 342 аэропорта гражданской авиации, в том числе и самый загруженный в мире аэропорт по пассажирскому трафику и по взлётам-посадкам — Международный аэропорт Хартсфилд-Джексон Атланта. В 2012 году 88% всех перевозок в США осуществлялось через 62 аэропорта страны. При этом используется как государственная, так и частная авиация. Как показала практика, авиаперевозки являются наиболее предпочтительными на расстояние, начиная с 300 миль (480 км).

Общественные аэропорты в США обычно строятся и эксплуатируются органами местного самоуправления. Исключением являются аэропорты военных баз. Как и железнодорожные пассажирские перевозки, федеральное правительство субсидирует авиаперевозки (до \$14 млрд федеральных средств в 2002 году).

В данной работе планируется анализ и выявление существующих принципов в перечне осуществленных авиарейсов в США на период от начала до конца 2015 года. В том числе, визуализация различных авиарейсов и связь между аэропортами страны. Затем, нахождение кратчайшего пути, от одного пункта в другой по расстоянию, а также по времени в пути. Таким образом, этот анализ будет полезен при формировании пути для пассажиров и компаний, осуществляющих перевоз пассажиропотока. Также будет полезно, наблюдать за существующими связями, а также нахождение централизованного субъекта в данной системе связей.

В настоящей работе связи между узлами сети выстраивались на основе существующих данных по авиарейсам в США за 2015 год. Вершинами построенной сети являются аэропорты являющиеся отправными или конечными точками, а связями в сети являются рейсы между двумя пунктами назначения.

Обзор литературы

Теоретической основой для исследования являются научные работы в виде статей и книг по тематике моделей экономических сетей и авиаперевозок как в частности, так и по темам авиаперевозок и аэропортов в моделях экономических сетей.

Одну из первых работ, которую можно выделить, это работа за авторством Донга Бинга "Reliability Analysis for Aviation Airline Network Based on Complex Network", в которой автор ставит целью повышение надежности авиационной сети авиакомпаний. В данной работе представлен эмпирический анализ структуры сети авиакомпаний авиационной компании Китая с точки зрения сложной сети, а результат расчета статистических особенностей и степени распределения сети доказывает, что сеть представляет собой маломасштабную сеть и безмасштабную сеть. Для централизации авиационной сети используются четыре показателя: степень, близость, вершинность между ними и поток между ними, чтобы выделить наиболее подходящий метод. Влияние узлов в локальной сети измеряется с помощью индикаторов. Полученные результаты показывают, что взаимное расположение вершин позволяет достичь наилучшего эффекта централизации авиационной сети. В частности, степень централизации достигает 95,87%. На этой основе анализируется надежность сети, чтобы обнаружить, что при удалении двух узлов с максимальной степенью или максимальным расстоянием между ними производительность сети снижается вдвое. В конечном счете, контрмеры предлагаются для дальнейшего совершенствования в соответствии с полученными результатами. Другими словами, комплексный сетевой метод целесообразно использовать для анализа топологической структуры и статистических особенностей авиационной сети. На основе этого проводится исследование надежности сети и предлагаются предложения по оптимизации авиационной сети.

В качестве данных автор использовал внутренние и международные полетные данные из центра обработки данных CSAs в 2010 году. Обычно грузовые рейсы организуются ночью, и характеристики транспортных грузовых рейсов отличаются от пассажирских. В данной статье грузовые рейсы не рассматривались. Согласно модели, аэропорт является узлом сети, прямая авиакомпания-краем сети, а количество судоходных рейсов между аэропортами-весом края, который составляет взвешенную авиационную сеть CSA. Из-за ограничения данных, сеть в данной работе является неориентированной.

Согласно исследованию, образовалось 187 узлов и 1245 ребер. Таким образом, очевидно, что авиационная сеть сосредоточена и ее структура относительно сложна.

Чтобы показать иерархическую связь сети, была построена магистральная авиационная сеть CSA.

По итогу определения централизации становится очевидно, что степень централизации варьируется в зависимости от выбранных показателей централизации сети. Степень близости центральности относительно низка, что указывает на то, что близость не подходит для централизации авиационной сети. Вычисляя степень центральности каждого показателя и сравнивая совокупное распределение данных о центральности 10 лучших узлов, можно сделать вывод, что вершинная межузловая связь является наиболее подходящим показателем для централизации авиационной сети.

Таким образом, в данной работе применялась теория сложных сетей, строилась модель структуры авиационной сети для CSA и анализировалась ее структура. Установлено, что аэропорт Гуанчжоу Байюнь является узлом авиационной сети CSA, большинство авиакомпаний находятся в Южном и северном направлениях, авиакомпании Западного региона распределены вокруг Урумчи радиально. Кроме того, проведен анализ распределения статистических признаков и степени распределения сети, и доказано, что авиационная сеть CSA является сетью малого мира и сетью без масштаба. Исходя из этого, надежность сети анализируется в зависимости от степени и расстояния между узлами в сети. Общая надежность сети довольно таки не высока. Поэтому CSA должна приложить больше усилий в общем программировании авиационной сети, а также в строительстве и управлении авиационным узлом, стремиться развиваться как многоузловой аэропорт, запускать больше рейсов в Западном и восточном направлениях, разумно распределять ресурсы воздушного транспорта и повышать общую производительность сети, чтобы удовлетворить спрос на устойчивое и здоровое развитие воздушного транспорта CSA.

Комплексный сетевой метод используется для анализа топологической структуры и статистических особенностей авиационной сети. Исходя из этого, предлагаются предложения по оптимизации авиационной сети на основе анализа надежности сети применение методологии (планирование аэропортов, определение размеров парка, планирование маршрутов и т.д.) что в статье не упоминалось.

В работе Петра Невьядомски "Global production networks in the passenger aviation industry" отмечается, что хотя число направлений, по которым географические исследования транспорта проводятся в последнее время, увеличилось, степень, в которой транспортная география извлекает выгоду из теоретических достижений, сделанных в других субдисциплинах географии человека, все еще довольно ограничена. Особенно это

касается экономической географии, которая, в отличие от преимущественно позитивистской и количественной транспортной географии, за последние несколько десятилетий приобрела более постпозитивистский и качественный Сосредоточив внимание на пассажирском воздушном транспорте – одной из самых забытых отраслей экономической географии, - эта статья призвана помочь преодолеть этот разрыв. Выделяются три недостаточно исследованных аспекта воздушного транспорта, и предлагается сочетание двух экономико-географических подходов глобальных производственных сетей (ГПС) и эволюционной экономической географии (99Γ) – в качестве полезной концептуальной основы для дальнейших, более качественных и более критических исследований этого динамичного сектора. В статье утверждается, что ГПС и ЭЭГ помогут исследованиям в области воздушного транспорта: (1) использовать сетевое мышление за пределами инфраструктурного понимания сетей воздушных сообщений и, таким образом, лучше объяснить мультиакторный характер авиационного сектора; (2) дополнить исследования наднациональных и национальных нормативных рамок большим вниманием к множеству субнациональных сред, формирующих авиационную отрасль "снизу"; и (3) исследовать, как отношения между авиацией и экономическим развитием формируются различными институциональными факторами, специфичными для конкретного места. Чтобы заложить основу для дальнейших исследований, в статье концептуализируется авиационная промышленность как глобальная производственная сеть и на примере польского пассажирского воздушного транспорта освещаются ключевые эмпирические выводы статьи.

В работе "Knowledge networks in the Dutch aviation industry: the proximity paradox" за авторством Тома Брекеля и Рона Бошма упоминается то, что в последние годы широко обсуждается важность географической близости для взаимодействия и обмена знаниями. Все больше людей сходятся во мнении, что географическая близость - это лишь один из многих видов близости, которые могут иметь значение. Авторы утверждают, что близость может быть решающим фактором для агентов для связи и обмена знаниями, но слишком большая близость между агентами в любом из измерений может одновременно нанести ущерб их инновационной деятельности. В исследовании, посвященном сетям в голландской авиационной промышленности, авторы проверили этот так называемый парадокс близости эмпирически. Авторы находят доказательства того, что парадокс близости имеет влияние в значительной степени. Исследование ясно показало, что когнитивная, социальная, организационная и географическая близость имеют решающее значение для объяснения сети знаний голландской авиационной промышленности.

Однако авторы также нашли убедительные доказательства того, что слишком большая когнитивная близость снижает инновационную эффективность фирм, а организационная близость не оказывает влияния.

Авторы работы "Regulation, competition and network evolution in aviation" Дэвид Гиллен и Вильям Г. Моррисон в своей работе в центре внимания ставят эволюцию бизнес-стратегий и решений по сетевой структуре в сфере коммерческой пассажирской авиации. В статье рассматривается рост "веерных" сетей как доминирующей бизнес-модели после перерегулирования во второй половине 20-го века. В статье подчеркивается связь между бизнес-стратегиями авиакомпаний и сетевыми структурами, а также исследуется возникающая в результате конкуренция между дивергентными бизнес-моделями сетевых структур. В этом контексте обсуждаются вопросы стабильности рыночной структуры и роли конкурентной политики.

Также, что касается китайского рынка авиаперевозок, авторы Юн Жанг, Ксьян-Бин Чао, Вен-Бо Ду и Кай-Куан Кей в своей работе "Evolution of Chinese airport network" отмечают что, с быстрым развитием экономики и ускорением процесса глобализации авиационная промышленность играет все более важную роль в современном мире, как в развитых, так и в развивающихся странах. Как инфраструктура авиационной промышленности, сеть аэропортов является одним из важнейших показателей экономического роста. В этой статье авторы исследуют эволюцию китайской сети аэропортов (CAN) с помощью теории сложных сетей. Установлено, что, хотя топология САN оставалась стабильной в течение последних нескольких лет, внутри сети происходит множество динамических переключений, которые изменили относительную важность аэропортов и авиакомпаний. Кроме того, авторы исследуют эволюцию транспортного потока (пассажиров и грузов) на САN. Установлено, что трафик продолжает расти в экспоненциальной форме и имеет явные сезонные колебания. Также обнаружено, что грузопоток и пассажиропоток положительно связаны, но корреляции совершенно различны для разных типов городов.

В работе Филиппа Гёдекинга "Network in Aiation : Strategies and Structures", автор проделывает большую работу по теме экономических сетей в авиации.

Автор заявляет : авиационные сети претерпели фундаментальные изменения. Мало какая другая крупная мировая промышленность подвержена таким циклическим взлетам и падениям, как авиационная. Авиакомпании подвержены постоянным регулятивным изменениям - от прав на перевозки до ограничений национальной собственности и

экологических проблем. Они также сталкиваются с фундаментальными изменениями в технологии дистрибуции, такими как резкое увеличение прямых продаж через интернет или колл-центры и снижение барьеров входа для новых участников, таких как лоукостеры. Авиационные сети оказывают огромное влияние на капитал и операционную деятельность расходы на создание и ликвидацию рабочих мест, а также на экономические перспективы целых регионов. Все эти силы постоянно перестраивают факторы успеха авиационных сетей. К тому времени, когда авиакомпания разработала и внедрила новую сетевую стратегию и соответствующую структуру, рынок, возможно, уже отошел.

Все аспекты сетевой экономики находятся под постоянным давлением и рассматриваются как неиспользованные возможности для увеличения доходов и Сетевые стратегии и структуры являются результатом снижения издержек. противоречивых целей, таких как производительность по сравнению с подключением, что часто ставит под угрозу прибыльность и способность расти. То, что хорошо работает в бычьи годы, может оказаться неэффективным во время последующего спада. В ответ авиакомпании и операторы аэропортов научились гибко подходить к расходам в таких жизненно важных областях, как оплата труда экипажа, хеджирование топлива и финансирование воздушных судов. Управление доходами разработало такие технологии, как сложные механизмы ценообразования, которые выгодно реагируют на волатильность спроса, сохраняя при этом максимально сжатые мощности. Иногда кажется, что сопоставимый уровень концептуальной и методологической изощренности сетевой стратегии компенсируется довольно дорогостоящими экспериментами. Работа автора и его книга призвана помочь проложить путь к более структурированной методологии в этой области, инициировать более актуальную научную работу и дать представление о практической повседневной работе.

Автор отмечает, что аэропорты больше не воспринимают себя просто поставщиками инфраструктуры. Все большее число руководителей аэропортов считают себя сетевыми операторами, а авиакомпании выступают поставщиками таких сетей. В результате аэропорты значительно расширили свои возможности по привлечению и приобретению трафика, а также активно сформировали свой портфель направлений, частот и пассажиропотоков.

Чтобы избежать зависимости от совпадения котировок, аэропорты начали продавать межлинейные соединения. По мере того как аэропорты начинают выходить на арену, управление связью — хотя и в небольших масштабах до сих пор — больше не является единственной привилегией авиакомпаний.

Следовательно, работа автора написана для широкой аудитории: опытных специалистов по планированию сети авиакомпаний и аэропортов, которые, возможно, ищут новую стратегию или тактику; новичков в отделах сетевого планирования или маркетинговых исследований, которые хотят войти в курс дела; студенты авиационного менеджмента, которые должны понимать широкий спектр предмета; руководители, которые готовятся к дискуссиям с руководством экспертного уровня; и регуляторы, которые признают сложную экономику авиационной отрасли и скрытые эффекты регулирования.

Целью автора является в том числе, стимулирование дальнейших целенаправленных и полезных исследований. Анализ произведенный в работе проводится на основе данных за сентябрь 2009 года.

В работе "Structure and evolution of global cluster networks: evidence from the aerospace industry" за авторством Екатерины Туркиной, Ари ван Ашше и Райей Кали авторы исследует сети между аэрокосмическими кластерами. Хоть это и не связано непосредственно с авиационным бизнесом, все же интересно изучить подход к исследованию, для возможного выявления интересных методов. Авторы используют новый панельный набор данных для изучения сети формальных связей фирм внутри и между 52 аэрокосмическими кластерами в Северной Америке и Европе. Теоретическая база, основана на литературе о кластерах на основе знаний и глобальных цепочках создания стоимости, предполагает, что снижение пространственных трансакционных издержек побудило кластеры специализироваться на все более тонких стадиях цепочки ценообразования. Это должно привести к тому, что общая сеть эволюционирует от географически локализованной структуры к транс-локальной иерархической структуре, которая стратифицирована по этапам цепочки создания стоимости. Применяя методы обнаружения структуры сообщества и организуя подсети по типу связей, авторы находят эмпирические доказательства в поддержку этого предположения.

Для этого авторы вручную собрали панельный набор данных, который отображает сеть формальных внутрифирменных и межфирменных связей в аэрокосмической промышленности как внутри, так и между 52 промышленными кластерами. Хотя в литературе подчеркивается важность как формальных, так и неформальных связей между фирмами для распространения знаний (Giuliani, 2007; Glückler, 2013), авторы включают в набор данных только формальные связи, поскольку практически невозможно проследить неформальные связи с использованием вторичных источников данных.

Одной из часто упоминаемых проблем при сборе сетевых данных является возможность построения набора данных, который надежно фиксирует полный набор связей между узлами и с течением времени (Wasserman and Faust, 1994). Чтобы решить эту проблему, авторы следовали строгой трехэтапной процедуре построения базы данных. В результате, используя собранный вручную набор данных о формальных связях фирм как внутри аэрокосмических кластеров, так и между ними, авторы обнаружили новый набор фактов об изменении природы промышленных кластеров в аэрокосмической промышленности. В период с 2002-2005 по 2010-2014 годы глобальная кластерная сеть перешла от географически локализованной структуры сообщества к транслокальной иерархической структуре сообщества, стратифицированной по этапам цепочки создания стоимости. Правдоподобное объяснение этой трансформации заключается в том, что промышленные кластеры в аэрокосмической промышленности постепенно переходят от отраслевой к функциональной специализации. В то время как промышленные кластеры раньше специализировались на больших частях аэрокосмических цепочек создания стоимости, теперь они все больше специализируются на более тонких этапах цепочки создания стоимости. Это привело к тому, что кластерные фирмы строят плотные вертикальные связи между покупателями и поставщиками с другими промышленными кластерами, которые специализируются на взаимодополняющих этапах цепочки создания стоимости. В текущих исследованиях эффективности кластерных инноваций с использованием данных кластеров IT телекоммуникационной биотехнологической/фармацевтической отраслях авторы замечают свидетельства сходных закономерностей (Turkina and Van Assche, 2016). Тем не менее общность выводов в других отраслях промышленности требует дальнейшего изучения в будущих исследованиях.

Реализации теории графов при анализе рейсов авиакомпаний США

Таблица 1. Авиакомпании, рейсы которых составляют базу данных

IATA_CODE	AIRLINE
UA	United Air Lines Inc.
AA	American Airlines Inc.
US	US Airways Inc.
F9	Frontier Airlines Inc.
B6	JetBlue Airways
00	Skywest Airlines Inc.
AS	Alaska Airlines Inc.
NK	Spirit Air Lines
WN	Southwest Airlines Co.
DL	Delta Air Lines Inc.
EV	Atlantic Southeast Airlines
НА	Hawaiian Airlines Inc.
MQ	American Eagle Airlines Inc.
VX	Virgin America

Данные которыми мы пользовались в нашей работы являются данные Бюро транспортной статистики Министерства транспорта США (DOT), которая отслеживает своевременную работу внутренних рейсов, выполняемых крупными авиаперевозчиками. Эта база данных является сводной информацией о количестве своевременных, задержанных, отмененных и перенаправленных рейсов, которая была опубликована в ежемесячном отчете DOT о потребителях авиаперевозок и в этом наборе данных о задержках и отменах рейсов за 2015 год. В базе данных учитывались рейсы следующих авиакомпаний представленных в таблице ниже:

Количество рейсов зарегистрированных в базе данных составляет более пяти миллионов. Но стоит учесть, что технической мощности нашей команды хватает для анализа одного миллиона рейсов.

При построении графов вершинами построенной сети являются аэропорты являющиеся отправными или конечными точками, а связями в сети являются рейсы между двумя пунктами назначения. Согласно данному исследованию, образовалось 315 узлов и 2153 ребра.

Целью анализа является работе планируется анализ и выявление существующих принципов в перечне осуществленных авиарейсов в США на период от начала до конца 2015 года. В том числе, визуализация различных авиарейсов и связь между аэропортами страны. Затем, нахождение кратчайшего пути, от одного пункта в другой по расстоянию, а также по времени в пути. Таким образом, этот анализ будет полезен при формировании и построении пути для пассажиров и компаний посредством код-шеринга, осуществляющих перевоз пассажиропотока. Также будет полезно, наблюдать за существующими связями, а также нахождение централизованного субъекта в данной системе связей.

Для этих целей, мы решили проанализировать, в том числе путем построения графов в которых узлами являлись аэропорты, а ребрами существующие рейсы в данных от начальной до конечной точки назначения.

Рисунок 1. Координаты существующих в базе данных аэропортов

На рисунке выше, мы можем наблюдать координаты существующих аэропортов, которые являются начальными или же конечными точками назначения. Этот рисунок может дать предварительную оценку положения аэропортов и возможных связей между ними.

Рисунок 2. Сеть аэропортов

На рисунке выше, мы можем наблюдать сеть аэропортов, которую мы получаем на основе базы данных взятой нами. Здесь мы примерно можем наблюдать какие аэропорты, являются отдаленными и не имеющими большого, а иногда лишь одну, количества связей с другими аэропортами. Таким образом, можно сделать вывод о том, из каких аэропортов путь до условной точки назначения (города) будет сложным, то есть включать два или более рейса. Далее, также можно отметить и наблюдать на рисунке выше, те узлы (аэропорты) которые имеют наибольшее количество связей, и таким образом сделать вывод о том, что данные аэропорты являются в большинстве своем связующими городами и иметь наибольшое экономическое значение в рамках транспортного бизнеса, а также товаро и грузооборота.

Таблица 2. Топ - 25 аэропортов по количеству связей

Аэропорт	Количество ребер
ATL (William B Hartsfield-Atlanta Intl)	164
ORD (Chicago O'Hare International)	155
DFW (Dallas-Fort Worth International)	147
DEN (Denver Inti)	138
	113
IAH (George Bush Intercontinental)	110
MSP (Minneapolis-St Paul Intl)	_
DTW (Detroit Metropolitan-Wayne County)	108
EWR (Newark Intl)	82
SLC (Salt Lake City Intl)	81
LAX (Los Angeles International)	78
PHX (Phoenix Sky Harbor International)	78
SFO (San Francisco International)	75
LAS (McCarran International)	74
MCO (Orlando International)	73
IAD (Washington Dulles International)	68
CLT (Charlotte Douglas International)	65
BWI (Baltimore-Washington International)	65
MDW (Chicago Midway)	65
LGA (LaGuardia)	62
SEA (Seattle-Tacoma Intl)	61
JFK (John F Kennedy Inti)	60
FLL (Fort Lauderdale-Hollywood Int'l)	58
TPA (Tampa International)	57
BOS (Gen Edw L Logan Intl)	53
MIA (Miami International)	51

На таблице выше, мы можем наблюдать аэропорты с наибольшим количеством связей с другими узлами. Таким образом количество связей обозначает количество рейсов осуществляющихся из данного аэропорта или же, когда пунктом назначения рейса является данный аэропорт. Таким образом можно отметить, что аэропорты с кодом ATL города Атланта являелся в 2015 году аэропортом с наибольшим количеством рейсов в которых он являлся начальной или конечной точкой. Тем самым, данный аэропорт можно обозначить как один из аэропортов имеющих наибольшее влияние на транспортную экономику (гражданская авиация, грузотранспорт и так далее). В том числе можно отметить следующие аэропорты : ORD - аэропорт Чикаго имеющий по данным исследования 155 ребер; DFW - аэропорт Далласа имеющий 147 ребер.

Degree centrality

Рисунок 3. Центральность вершин

Таблица 3. Узлы с наибольшим коэффициентом центральности

Код	Значение
'ATL'	0,5223
'ORD'	0,4936
'DFW'	0,4682
'DEN'	0,4395
'IAH'	0,3599
'MSP'	0,3503
'DTW'	0,3439
'EWR'	0,2611
'SLC'	0,2580
'LAX'	0,2484

На рисунке выше представлена центральность на базе данных взятых нами. Данный способ является самым простым способом нахождения централизированных узлов, которая определяет количество связей, падающих на узел. В случае направленной сети (где связи имеют направление) мы обычно определяем две отдельные меры степени центральности, а именно indegree и outdegree. Соответственно, indegree-это количество связей, направленных к узлу, а outdegree - количество связей, которые узел направляет к другим. В данном же случае, мы определяли центральность без определенного направления сети. Тем самым, можно выделить несколько узлов (аэропортов) которые являются центральными при таком способе оценки : ATL (William B Hartsfield-Atlanta Intl), ORD (Chicago O'Hare International), DFW (Dallas-Fort Worth International).

Рисунок 4. Центральность по собственному вектору

Таблица 4.Узлы с наибольшим коэффициентом степени влиятельности

Код	Значение
'ATL'	0,2093
'ORD'	0,2020
'DEN'	0,1932
'DFW'	0,1924
'IAH'	0,1769
'MSP'	0,1744
'DTW'	0,1740
'EWR'	0,1624
'LAS'	0,1592
'PHX'	0,1578
'LAX'	0,1556
'MCO'	0,1499
'CLT'	0,1496
'BWI'	0,1463

На рисунке выше представлена центральность по собственному вектору. Данный способ показывает степень важности узла, которая пропорциональна степени важности узлов, с которым он связан. Тем самым, можно выделить несколько узлов (аэропортов) которые являются центральными при таком способе оценки : ATL (William B Hartsfield-Atlanta Intl), ORD (Chicago O'Hare International), DEN (Denver Intl).

Betweenness centrality

Рисунок 5. Степень посредничества

Таблица 5. Узлы с наибольшим коэффициентом степени посредничества

Код	Значение
'ATL'	0.177
'DFW'	0.168
'ORD'	0.160
'DEN'	0.128
'MSP'	0.093

На рисунке выше отображена степень посредничества, которая отражает меру центральности в графе, основанная на кратчайших путях. Для любой пары вершин в связном графе существует по меньшей мере один путь между вершинами, для которого минимально либо число рёбер, по которым путь проходит, либо сумма весов этих рёбер.

Тем самым рисунок выше отражает количественно долю случаев, когда вершина является частью кратчайшего пути между любыми двумя другими. На основе этого рисунка можно утверждать, что при построении центральности вида "Betwennes centrality" центральными субъектами являются DFW (Dallas-Fort Worth International) и ATL (William B Hartsfield-Atlanta Intl). Таким образом данные два аэропорта являются частью кратчайшего пути между любыми двумя другими.

Дальнейшей целью нашего исследования было, формирование способа нахождение кратчайшего пути от одного города (аэропорта) в другой по дистанции пути, а также времени в пути.

Рисунок 6. Кратчайший путь между двумя аэропортами по времени в пути

Приведенная выше визуализация представляет различные маршруты полетов. Предположим, пассажир хочет воспользоваться кратчайшим маршрутом из аэропорта James C. Johnson Petersburg AK [PSG] до аэропорта Bush Augusto GA [AGS] или же в ином случае, авиакомпания намеревается реализовывать билеты по тому же маршруту, с

помощью системы продажи билетов с учетом соглашения код-шеринга с другими авиакомпаниями. С помощью теории графов мы имеем возможность это реализовать.

Условно мы попробуем рассчитать кратчайший путь на основе времени полета между аэропортами James C. Johnson Petersburg AK [PSG] и Bush Augusto GA [AGS]. Мы использовали алгоритм кратчайшего пути Дейкстры. Этот алгоритм находит кратчайший путь от исходной вершины ко всем вершинам данного графа (рисунок 6).

Рисунок 7. Кратчайший путь между двумя аэропортами по дистанции пути

На рисунке выше, мы уже можем наблюдать кратчайший путь построенный по дистанции пути. Таким образом, мы имеем вариативность в выборе при построении кратчайшего пути по времени и дистанции.

Заключение

В настоящей работе были построены различные варианты сетей для описания взаимосвязей между аэропортами и рейсами авиакомпаний США. С опором на литературу были выбраны наиболее интересные показатели, которые часто используются в моделях и исследованиях. Данными для данного исследования являлись данные отчетов Бюро транспортной статистики Министерства транспорта США (DOT), которая отслеживает своевременную работу внутренних рейсов, выполняемых крупными авиаперевозчиками. Эта база данных является сводной информацией о количестве своевременных, задержанных, отмененных и перенаправленных рейсов, которая была опубликована в ежемесячном отчете DOT о потребителях авиаперевозок и в этом наборе данных о задержках и отменах рейсов за 2015 год.

Таким образом, мы построили несколько различных сетей, где узлами выступали аэропорты США, а ребрами ялялись рейсы авиакомпаний, которые осуществлялись между этими узлами (аэропортами). Нами было обнаружено, что наиболее центральными аэропортами США на основе базы данных за 2015 год являются ATL (William B Hartsfield-Atlanta Intl), ORD (Chicago O'Hare International), DFW (Dallas-Fort Worth International).

В целом это соотносится с ранжированным списком самых загруженных аэропортов США. Таким образом, мы можем обозначить полученные нами центральные узлы как аэропорты, которые имеют наибольшее влияние в транспортной экономике относительно других аэропортов, тем самым возможно сделать вывод, о том, что они требует соответствующего внимания к обеспечению и развитию инфраструктуры и прочих факторов полезной деятельности. Кроме того, мы получили и другие интересные результаты. Так, мы смогли сформировать инструмент для нахождения кратчайшего пути между двумя условными узлами (аэропортами) по дистанции и времени полета. Что может быть полезно как для пассажиров, так и для авиакомпаний при работе с реализацией билетов с соглашений код-шеринга с другими авиакомпаниями для увеличения предложения и прибыли соответственно.

Список литературы

- 1. Dong Bing, 2014, "Reliability Analysis for Aviation Airline Network Based on Complex Network" Journal of Aerospace Technology and Management 6(2):193-201
- 2. Kai-Quan, C., Jun, Z., Wen-Bo, D. and Xian-Bin, C., 2012, "Analysis of the Chinese Air Route Network as a Complex Network", Chinese Physics B, Vol. 21, pp. 31-37.
- 3. Li, W. and Cai, X., 2012, "Statistical Analysis of Airport Network of China", Physical Review E, Vol. 69, 6106-6112.
- Hongguang, Y. and Liping, Z., 2012, "Research on Robustness of China's Aviation Network Based on Simulation Analysis", Journal of Wuhan University of (Technology Transportation Science & Engineering), Vol. 36, pp. 42-46
- 5. Piotr Niewiadomski, 2017, "Global production networks in the passenger aviation industry", Geoforum 87:1-14
- 6. Tom Broekel, Ron Boschma, 2012, "Knowledge Networks in the Dutch Aviation Industry: The Proximity Paradox", Journal of Economic Geography 12(2):409-433
- 7. David Gillen, 2006, "Airline Business Models and Networks: Regulation, Competition and Evolution in Aviation Markets", Review of Network Economics 5(4):366-385
- 8. Philipp Goedeking, 2010, "Networks in Aviation: Strategies and Structures"
- 9. E. Turkina, A. V. Assche, R. Kali, 2016, "Structure and evolution of global cluster networks: evidence from the aerospace industry", Journal of Economic Geography

Приложение

Код реализации основных задач в Python.

Таблица. Расшифровка кодов ІАТА.

IATA	AIRPORT	CITY	STATE	COUNTRY
ABQ	Albuquerque International	Albuquerque	NM	USA
	Ted Stevens Anchorage			
ANC	International	Anchorage	AK	USA
ATL	William B Hartsfield-Atlanta Intl	Atlanta	GA	USA
AUS	Austin-Bergstrom International	Austin	TX	USA
BDL	Bradley International	Windsor Locks	CT	USA
внм	Birmingham International	Birmingham	AL	USA
BNA	Nashville International	Nashville	TN	USA

IATA	AIRPORT	CITY	STATE	COUNTRY
BOS	Gen Edw L Logan Intl	Boston	MA	USA
BUF	Buffalo Niagara Intl	Buffalo	NY	USA
BUR	Burbank-Glendale-Pasadena	Burbank	CA	USA
BWI	Baltimore-Washington International	Baltimore	MD	USA
CHS	Charleston AFB International	Charleston	SC	USA
CLE	Cleveland-Hopkins Intl	Cleveland	ОН	USA
CLT	Charlotte Douglas International	Charlotte	NC	USA
СМН	Port Columbus Intl	Columbus	ОН	USA
CVG	Cincinnati Northern Kentucky Intl	Covington	KY	USA
DAL	Dallas Love	Dallas	TX	USA
	Ronald Reagan Washington			
DCA	National	Arlington	VA	USA
DEN	Denver Intl	Denver	СО	USA
DFW	Dallas-Fort Worth International	Dallas-Fort Worth	TX	USA
DTW	Detroit Metropolitan-Wayne County	Detroit	MI	USA
ELP	El Paso International	El Paso	TX	USA
EWR	Newark Intl	Newark	NJ	USA
FLL	Fort Lauderdale-Hollywood Int'l	Ft. Lauderdale	FL	USA
HNL	Honolulu International	Honolulu	HI	USA
HOU	William P X	Houston	TX	USA
IAD	Washington Dulles International	Chantilly	VA	USA
IAH	George Bush Intercontinental	Houston	TX	USA
IND	Indianapolis International	Indianapolis	IN	USA
JAX	Jacksonville International	Jacksonville	FL	USA
JFK	John F Kennedy Intl	New York	NY	USA
LAS	McCarran International	Las Vegas	NV	USA
LAX	Los Angeles International	Los Angeles	CA	USA
LGA	LaGuardia	New York	NY	USA
LIT	Adams	Little Rock	AR	USA
MCI	Kansas City International	Kansas City	МО	USA
MCO	Orlando International	Orlando	FL	USA
MDW	Chicago Midway	Chicago	IL	USA
MEM	Memphis International	Memphis	TN	USA
MIA	Miami International	Miami	FL	USA
MKE	General Mitchell International	Milwaukee	WI	USA
MSP	Minneapolis-St Paul Intl	Minneapolis	MN	USA
MSY	New Orleans International	New Orleans	LA	USA
OAK	Metropolitan Oakland International	Oakland	CA	USA
OGG	Kahului	Kahului	HI	USA
ОКС	Will Rogers World	Oklahoma City	OK	USA
OMA	Eppley Airfield	Omaha	NE	USA
ONT	Ontario International	Ontario	CA	USA
ORD	Chicago O'Hare International	Chicago	IL	USA
ORF	Norfolk International	Norfolk	VA	USA
PBI	Palm Beach International	West Palm Beach	FL	USA

IATA	AIRPORT	CITY	STATE	COUNTRY
PDX	Portland Intl	Portland	OR	USA
PHL	Philadelphia Intl	Philadelphia	PA	USA
PHX	Phoenix Sky Harbor International	Phoenix	AZ	USA
PIT	Pittsburgh International	Pittsburgh	PA	USA
PVD	Theodore F Green State	Providence	RI	USA
RDU	Raleigh-Durham International	Raleigh	NC	USA
RIC	Richmond International	Richmond	VA	USA
RNO	Reno Tahoe International	Reno	NV	USA
RSW	Southwest Florida International	Ft. Myers	FL	USA
SAN	San Diego International-Lindbergh	San Diego	CA	USA
SAT	San Antonio International	San Antonio	TX	USA
SDF	Louisville International-Standiford	Louisville	KY	USA
SEA	Seattle-Tacoma Intl	Seattle	WA	USA
SFO	San Francisco International	San Francisco	CA	USA
SJC	San Jose International	San Jose	CA	USA
SJU	Luis Munoz Marin International	San Juan	PR	USA
SLC	Salt Lake City Intl	Salt Lake City	UT	USA
SMF	Sacramento International	<u> </u>	CA	USA
		Sacramento		
SNA	John Wayne Orange Co	Santa Ana	CA	USA
STL	Lambert-St Louis International	St Louis	MO	USA
TPA	Tampa International	Tampa	FL	USA
TUL	Tulsa International	Tulsa _	OK	USA
TUS	Tucson International	Tucson	AZ	USA
ABE	Lehigh Valley International	Allentown	PA	USA
ABI	Abilene Regional	Abilene	TX	USA
ABR	Aberdeen Regional	Aberdeen	SD	USA
ABY	Southwest Georgia Regional	Albany	GA	USA
ACK	Nantucket Memorial	Nantucket	MA	USA
ACT	Waco Regional	Waco	TX	USA
ACV	Arcata	Arcata Eureka	CA	USA
ACY	Atlantic City International	Atlantic City	NJ	USA
ADK	Adak	Adak	AK	USA
ADQ	Kodiak	Kodiak	AK	USA
AEX	Alexandria International	Alexandria	LA	USA
AGS	Bush	Augusta	GA	USA
AKN	King Salmon	King Salmon	AK	USA
ALB	Albany Cty	Albany	NY	USA
ALO	Waterloo Municipal	Waterloo	IA	USA
AMA	Amarillo International	Amarillo	TX	USA
APN	Alpena County Regional	Alpena	MI	USA
ART	Watertown Intl	Watertown	NY	USA
ASE	Aspen-Pitkin Co Sardy	Aspen	СО	USA
ATW	Outagamie County Regional	Appleton	WI	USA
AVL	Asheville Regional	Asheville	NC	USA
AVP	Wilkes-Barre Scranton Intl	Wilkes-Barre Scranton	PA	USA

IATA	AIRPORT	CITY	STATE	COUNTRY
AZO	Kalamazoo County	Kalamazoo	MI	USA
BET	Bethel	Bethel	AK	USA
BFL	Meadows	Bakersfield	CA	USA
BGM	Binghamton Regional	Binghamton	NY	USA
BGR	Bangor International	Bangor	ME	USA
BIL	Billings Logan Intl	Billings	MT	USA
BIS	Bismarck Municipal	Bismarck	ND	USA
BJI	Bemidji-Beltrami County	Bemidji	MN	USA
BLI	Bellingham Intl	Bellingham	WA	USA
ВМІ	Central Illinois Regional	Bloomington	IL	USA
BOI	Boise Air Terminal	Boise	ID	USA
BPT	Southeast Texas Regional	Beaumont Port Arthur	TX	USA
BQK	Glynco Jetport	Brunswick	GA	USA
BQN	Rafael Hernandez	Aguadilla	PR	USA
-	Brainerd-Crow Wing County			
BRD	Regional	Brainerd	MN	USA
	Brownsville S.Padre Island			
BRO	International	Brownsville	TX	USA
BRW	Wiley Post Will Rogers Memorial	Barrow	AK	USA
BTM	Bert Mooney	Butte	MT	USA
BTR	Baton Rouge Metropolitan	Baton Rouge	LA	USA
BTV	Burlington International	Burlington	VT	USA
BZN	Gallatin	Bozeman	MT	USA
CAE	Columbia Metropolitan	Columbia	SC	USA
CAK	Akron-Canton Regional	Akron	ОН	USA
CDC	Cedar City Muni	Cedar City	UT	USA
CDV	Merle K (Mudhole) Smith	Cordova	AK	USA
CEC	Jack McNamara	Crescent City	CA	USA
CHA	Lovell	Chattanooga	TN	USA
СНО	Charlottesville-Albermarle	Charlottesville	VA	USA
CIC	Chico Municipal	Chico	CA	USA
CID	Eastern Iowa	Cedar Rapids	IA	USA
CIU	Chippewa County International	Sault Ste. Marie	MI	USA
CLD	MC Clellan-Palomar Airport	NA	NA	USA
CLL	Easterwood	College Station	TX	USA
СМІ	University of Illinois-Willard	Champaign Urbana	IL	USA
CMX	Houghton County Memorial	Hancock	MI	USA
CNY	Canyonlands	Moab	UT	USA
COD	Yellowstone Regional	Cody	WY	USA
cos	City of Colorado Springs Muni	Colorado Springs	СО	USA
COU	Columbia Regional	Columbia	MO	USA
CPR	Natrona County Intl	Casper	WY	USA
CRP	Corpus Christi International	Corpus Christi	TX	USA
CRW	Yeager	Charleston	WV	USA
CSG	Columbus Metropolitan	Columbus	GA	USA
CWA	Central Wisconsin	Mosinee	WI	USA

IATA	AIRPORT	CITY	STATE	COUNTRY
CYS	Cheyenne	Cheyenne	WY	USA
DAB	Daytona Beach International	Daytona Beach	FL	USA
DAY	James M Cox Dayton Intl	Dayton	ОН	USA
DBQ	Dubuque Municipal	Dubuque	IA	USA
DHN	Dothan	Dothan	AL	USA
DIK	Dickinson Municipal	Dickinson	ND	USA
DLG	Dillingham .	Dillingham	AK	USA
DLH	Duluth International	Duluth	MN	USA
DRO	Durango-La Plata County	Durango	СО	USA
DRT	Del Rio International	Del Rio	TX	USA
DSM	Des Moines International	Des Moines	IA	USA
DVL	Devils Lake Municipal-Knoke	Devils Lake	ND	USA
EAU	Chippewa Valley Regional	Eau Claire	WI	USA
EGE	Eagle County Regional	Eagle	СО	USA
EKO	Elko Regional	Elko	NV	USA
ELM	Elmira Corning Regional	Elmira	NY	USA
ERI	Erie Intl	Erie	PA	USA
ESC	Delta County	Escanaba	MI	USA
EUG	Mahlon Sweet	Eugene	OR	USA
EVV	Evansville Regional	Evansville	IN	USA
EWN	Craven County Regional	New Bern	NC	USA
EYW	Key West International	Key West	FL	USA
FAI	Fairbanks International	Fairbanks	AK	USA
FAR	Hector International	Fargo	ND	USA
FAT	Fresno Yosemite International	Fresno	CA	USA
FAY	Fayetteville Municipal	Fayetteville	NC	USA
FCA	Glacier Park Intl	Kalispell	MT	USA
FLG	Flagstaff Pulliam	Flagstaff	AZ	USA
FLO	Florence Regional	Florence	SC	USA
FNT	Bishop	Flint	MI	USA
FOE	Forbes	Topeka	KS	USA
FSD	Joe Foss	Sioux Falls	SD	USA
FSM	Fort Smith Regional	Fort Smith	AR	USA
FWA	Fort Wayne International	Fort Wayne	IN	USA
GCC	Gillette-Campbell County	Gillette	WY	USA
GCK	Garden City Regional	Garden City	KS	USA
GEG	Spokane Intl	Spokane	WA	USA
GFK	Grand Forks International	Grand Forks	ND	USA
GGG	Gregg County	Longview	TX	USA
GJT	Walker	Grand Junction	СО	USA
GNV	Gainesville Regional	Gainesville	FL	USA
GPT	Gulfport-Biloxi Regional	Gulfport-Biloxi	MS	USA
GRB	Austin Straubel International	Green Bay	WI	USA
GRI	Central Nebraska Regional	Grand Island	NE	USA
GRK	Robert Gray AAF	Killeen	TX	USA
•	•			

IATA	AIRPORT	CITY	STATE	COUNTRY
GRR	Kent County International	Grand Rapids	MI	USA
GSO	Piedmont Triad International	Greensboro	NC	USA
GSP	Greenville-Spartanburg	Greer	SC	USA
GST	Gustavus	Gustavus	AK	USA
GTF	Great Falls Intl	Great Falls	MT	USA
		Columbus-Starkville-West		
GTR	Golden Triangle Regional	Point	MS	USA
GUC	Gunnison County	Gunnison	СО	USA
GUM	Guam International	Agana	GU	USA
HDN	Yampa Valley	Hayden	СО	USA
HIB	Chisholm-Hibbing	Hibbing	MN	USA
HLN	Helena Regional	Helena	MT	USA
НОВ	Lea County Regional	Hobbs	NM	USA
HPN	Westchester Cty	White Plains	NY	USA
HRL	Valley International	Harlingen	TX	USA
HSV	Huntsville International	Huntsville	AL	USA
HTS	Tri-State Walker-Long	Huntington	WV	USA
HYA	Barnstable Mun Boardman Polando	Hyannis	MA	USA
HYS	Hays Municipal	Hays	KS	USA
ICT	Wichita Mid-Continent	Wichita	KS	USA
IDA	Idaho Falls Regional	Idaho Falls	ID	USA
ILG	New Castle County	Wilmington	DE	USA
ILM	Wilmington International	Wilmington	NC	USA
IMT	Ford	Iron Mountain Kingsford	MI	USA
INL	Falls International	International Falls	MN	USA
IPL	Imperial County	Imperial	CA	USA
ISN	Sloulin Field International	Williston	ND	USA
ISP	Long Island - MacArthur	Islip	NY	USA
ITH	Tompkins Cty	Ithaca	NY	USA
ITO	Hilo International	Hilo	HI	USA
IYK	Inyokern	Inyokern	CA	USA
JAC	Jackson Hole	Jackson	WY	USA
JAN	Jackson International	Jackson	MS	USA
JLN	Joplin Regional	Joplin	МО	USA
JMS	Jamestown Municipal	Jamestown	ND	USA
JNU	Juneau International	Juneau	AK	USA
KOA	Kona International At Keahole	Kailua Kona	НІ	USA
KTN	Ketchikan International	Ketchikan	AK	USA
LAN	Capital City	Lansing	MI	USA
LAR	Laramie Regional	Laramie	WY	USA
LAW	Lawton-Ft Sill Regional	Lawton	ОК	USA
LBB	Lubbock International	Lubbock	TX	USA
LCH	Lake Charles Regional	Lake Charles	LA	USA
LEX	Blue Grass	Lexington	KY	USA
LFT	Lafayette Regional	Lafayette	LA	USA
•		•		

IATA	AIRPORT	CITY	STATE	COUNTRY
LGB	Long Beach (Daugherty)	Long Beach	CA	USA
LIH	Lihue	Lihue	HI	USA
LMT	Klamath Falls International	Klamath Falls	OR	USA
LNK	Lincoln Municipal	Lincoln	NE	USA
LRD	Laredo International	Laredo	TX	USA
LSE	La Crosse Municipal	La Crosse	WI	USA
LWB	Greenbrier Valley	Lewisburg	WV	USA
LWS	Lewiston-Nez Perce County	Lewiston	ID	USA
LYH	Lynchburg Municipal-Preston Glenn	Lynchburg	VA	USA
MAF	Midland International	Midland	TX	USA
MBS	Mbs International	Saginaw	MI	USA
MCN	Middle Georgia Regional	Macon	GA	USA
MDT	Harrisburg Intl	Harrisburg	PA	USA
MEI	Key	Meridian	MS	USA
MFE	McAllen Miller International	McAllen	TX	USA
MFR	Rogue Valley International	Medford	OR	USA
MGM	Montgomery Regional Apt	Montgomery	AL	USA
МНК	Manhattan Regional	Manhattan	KS	USA
MHT	Manchester	Manchester	NH	USA
MKG	Muskegon County	Muskegon	MI	USA
MLB	Melbourne International	Melbourne	FL	USA
MLI	Quad City	Moline	IL	USA
MLU	Monroe Regional	Monroe	LA	USA
ММН	Mammoth Yosemite	Mammoth Lakes	CA	USA
МОВ	Mobile Regional	Mobile	AL	USA
MOD	Modesto City-County-Harry Sham	Modesto	CA	USA
МОТ	Minot International	Minot	ND	USA
MQT	Marquette County Airport	NA	NA	USA
MRY	Monterey Peninsula	Monterey	CA	USA
MSN	Dane County Regional	Madison	WI	USA
MSO	Missoula International	Missoula	MT	USA
MTJ	Montrose Regional	Montrose	СО	USA
MVY	Marthas Vineyard	Marthas Vineyard	MA	USA
MWH	Grant County	Moses Lake	WA	USA
MYR	Myrtle Beach International	Myrtle Beach	SC	USA
OAJ	Albert J Ellis	Jacksonville	NC	USA
OME	Nome	Nome	AK	USA
ORH	Worcester Regional	Worcester	MA	USA
ОТН	North Bend Muni	North Bend	OR	USA
OTZ	Ralph Wien Memorial	Kotzebue	AK	USA
OXR	Oxnard	Oxnard	CA	USA
PAH	Barkley Regional	Paducah	KY	USA
	Panama City-Bay County			
PFN	International	Panama City	FL	USA
	Newport News Williamsburg			
PHF	International	Newport News	VA	USA

IATA	AIRPORT	CITY	STATE	COUNTRY
PIA	Greater Peoria Regional	Peoria	IL	USA
PIB	Hattiesburg-Laurel Regional	Hattiesburg-Laurel	MS	USA
	St. Petersburg-Clearwater	- U - ··· ·	-	
PIE	International	St. Petersburg	FL	USA
PIH	Pocatello Regional	Pocatello	ID	USA
PIR	Pierre Regional	Pierre	SD	USA
PLN	Pellston Regional of Emmet County	Pellston	MI	USA
PNS	Pensacola Regional	Pensacola	FL	USA
PPG	Pago Pago International	Pago Pago	AS	USA
PSC	Tri-Cities	Pasco	WA	USA
PSE	Mercedita	Ponce	PR	USA
PSG	James C. Johnson Petersburg	Petersburg	AK	USA
PSP	Palm Springs International	Palm Springs	CA	USA
PUB	Pueblo Memorial	Pueblo	CO	USA
PWM	Portland International Jetport	Portland	ME	USA
RAP	Rapid City Regional	Rapid City	SD	USA
RDD	Redding Municipal	Redding	CA	USA
RDM	Roberts	Redmond	OR	USA
RFD	Greater Rockford	Rockford	IL	USA
RHI	Rhinelander-Oneida County	Rhinelander	WI	USA
RKS	Rock Springs-Sweetwater County	Rock Springs	WY	USA
ROA	Roanoke Regional Woodrum	Roanoke	VA	USA
ROC	Greater Rochester Int'l	Rochester	NY	USA
ROW	Roswell Industrial Air Center	Roswell	NM	USA
RST	Rochester International	Rochester	MN	USA
SAF	Santa Fe Municipal	Santa Fe	NM	USA
SAV	Savannah International	Savannah	GA	USA
		Savannan Santa Barbara		
SBA	Santa Barbara Municipal		CA	USA
SBN	South Bend Regional	South Bend	IN	USA
SBP	San Luis Obispo Co-McChesney	San Luis Obispo	CA	USA
SCC	Deadhorse Living and the Deadh	Deadhorse	AK	USA
SCE	University Park	NA Control of the last	NA NAC	USA
SGF	Springfield-Branson Regional	Springfield	MO	USA
SGU	St George Muni	St George	UT	USA
SHD	Shenandoah Valley Regional	Staunton Harrisonburg	VA	USA
SHV	Shreveport Regional	Shreveport	LA	USA
SIT	Sitka	Sitka	AK	USA
SJT	San Angelo Regional Mathis	San Angelo	TX	USA
CNAV	Santa Maria Pub Capt G Allan	Conto Mavio	CA	LICA
SMX	Hancock	Santa Maria	CA	USA
SPI	Capital	Springfield	IL	USA
SPN	Tinian International Airport	NA	NA	N Mariana Islands
JE IN	Sheppard AFB Wichita Falls	IVA	INA	เมตาเนง
SPS	Municipal	Wichita Falls	TX	USA
-				

IATA	AIRPORT	CITY	STATE	COUNTRY
STC	St Cloud Regional	St Cloud	MN	USA
STT	Cyril E. King	Charlotte Amalie	VI	USA
STX	Henry E. Rohlsen	Christiansted	VI	USA
SUN	Friedman Memorial	Hailey	ID	USA
SUX	Sioux Gateway	Sioux City	IA	USA
SWF	Stewart	Newburgh	NY	USA
SYR	Syracuse-Hancock Intl	Syracuse	NY	USA
TEX	Telluride Regional	Telluride	СО	USA
TLH	Tallahassee Regional	Tallahassee	FL	USA
TOL	Toledo Express	Toledo	ОН	USA
TRI	Tri-Cities Regional	Bristol	TN	USA
TTN	Trenton-Mercer County	Trenton	NJ	USA
TUP	Tupelo Municipal	Tupelo	MS	USA
TVC	Cherry Capital	Traverse City	MI	USA
TWF	Joslin Field - Magic Valley	Twin Falls	ID	USA
TXK	Texarkana Regional-Webb	Texarkana	AR	USA
TYR	Tyler Pounds	Tyler	TX	USA
TYS	McGhee-Tyson	Knoxville	TN	USA
VEL	Vernal	Vernal	UT	USA
VLD	Valdosta Regional	Valdosta	GA	USA
VPS	Eglin Air Force Base	Valparaiso	FL	USA
WRG	Wrangell	Wrangell	AK	USA
WYS	Yellowstone	West Yellowstone	MT	USA
		Fayetteville Springdale		
XNA	Northwest Arkansas Regional	Rogers	AR	USA
YAK	Yakutat	Yakutat	AK	USA
YUM	Yuma MCAS-Yuma International	Yuma	AZ	USA