Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Akli Mohand Oulhadj – Bouira – Faculté des Sciences et des Sciences Appliquées

وزارة التعليم العالي والبحث العلمي جامعة أكلي محند الحاج - البويرة كلية العلوم والعلوم التطبيقية

Département d'Informatique

Module : probabilités et statistique
Chapitre O: Espace des probabilités
Dépintion: mappelle expérience aléatoire toute expérience
dont le résultat ne peut être déterminé apr
C'et a' dire qui dépent du hasard.
Exemples:
1) hencez Un dé.
1) hencez une pie'ce. 3) hencez une pie'ce. 3) hencez deux peis une pie'ce.
3) Ven Cer alux pers (me que C
Définition on appelle Universe de l'expérience
aléatoire l'ensemble 2 des issues ou résultats
possibles de l'expérience.
Les éléments de 9 se notent souvent Wi, i=1,2,
Clost aldre se = (very we)
Exemples. 1) On lance une pièle, ona: D= SP, F3, P= ple, F= face W1 = P, W1 = F
De lance deux pois une pièce: on as es={ (l, e), (P, F), (F, P), (F, F)}

Définition: On appelle un évérienent toute partie des. ensemble de résultate de l'expérience 1,2,3,4,5,64 évenement: le chiffre obtenir et un mombre pa d'où A={2,4,6} des élémements e) Un événement qui toujours réalisé stappelé Um évenement certain, il est donc rés 3) Un événement qui n'st jamais réalis et appelé un événement impossible, il répérenté par l'ensemble kide op 4) SW et applé un exerement élémentaire tribu): En di qui une famille lA de partie de S of une tribu, si:

Example: l'évériement destenir un nombre pair l'éverquent € obtenir un nombre multiple de 3"> 5-= [1,2,3,4,5,6] A={2,4,6} A1B= 169 $\frac{1}{2}$, $P(B) = \frac{1}{3} \Rightarrow P(A)P(B) = \frac{1}{6} = P(A \cap B)$ Énements Act B Sout in de pendants

Université de Bouira Faculté des sciences et des sciences appliquée

Année universitaire 2022/2023 a 3ène Année (SI)

Département Informatique

Module: Probabilités et statistique

Série d'éxercices n°1

Exercice 1: Une urne contient 6 boules rouges, 4 blanches et 8 noires. On tire, sans remise, trois de ces boules. Calculer la probabilité que :

- 1. Les trois boules tirées soient rouges.
- 2. Les trois boules tirées soient noires.
- 3. Deux boules soient rouges et une blanche.
- 4. Une boule soit rouge, une blanche et une noire.
- 5. Au moins une soit blanche.
- 6. Les boules soient tirées dans l'ordre : rouge, noir, blanche.

Exercice 2:

- 1. Montrer que $(\Omega, \mathcal{A}, P_A(\cdot))$ est un espace de probabilté où $A \in \mathcal{A}$. Sachant que (Ω, \mathcal{A}, P) est un espace de probabilté.
- 2. Soit A un événement tel que P(A)=1 (A n'est pas nécessairement Ω). Montrer que pour tout événiment $B\in \mathcal{A}$, on a $P(A\cup B)=1$.

Exercice 3: Un urne contient 12 boules, 5 boules vertes et 7 boules bleues. Nous avons tiré deux boules à la fois (sans remise et sans tenir compte de l'ordre). Quelle est la probabilité qu'ils soient bleus?

Exercice 4: Trois machines M_1 , M_2 , M_3 réalisent respectivement 40%, 35%, 25% de la production d'une usine. Supposons que 2%, 4% et 5% de ces machines soient malles produites. Nous avons pris un échantillon de cette production et nous l'avons trouvé médiocre. Quelle est la probabilité qu'il soit produit par la machine M_1 ?

Exercice 5: Soient A et B deux évènements d'un même espace de probabilité (Ω, A, P) tels que: $P(A) = \frac{1}{3}$, $P(B) = \frac{2}{3}$. Calculer $P(A \cup B)$ dans les deux éas suivants:

- 1. Les événements A et B sont indépendants.
- 2. $P(A \mid B) = \frac{1}{5}$.

Exercice 6: A l'Université, parmi les étudiants 40% suivent l'option A_1 , 30% suivent l'option A_2 et 30% suivent l'option A_3 . Chaque étudiant suive une scule option. La proportion d'étudiants qui n'ent pas la moyenne dans l'option A_1 est de 10%, dans l'option A_2 de 5% et dans l'option A_3 de 5%. On éhoisit un etudiant au hasard.

- 1. Calculer la probabilité qu'il n'ait pas la moyenne.
- 2. Sachant qu'il n'a pas la moyenne, calculer la probabilité a posteriori qu'il ait suivi l'option $A_1,\ A_2$ ou $A_3.$