NeSy Learning Day 2: Learnability

Efthymia Tsamoura Huawei Labs Emile van Krieken VU, Amsterdam

About this Course

- **✓ Day 1: Introduction to NeSy**
- **✓ Day 2: Learnability**
- **✓ Day 3: Learning Imbalances in NeSy**
- **✓ Day 4: Reasoning Shortcuts**
- **✓ Day 5: Probabilistic Reasoning**

Outline of Today's Lecture

- **√Introduction to ML**
 - ✓ Learning Paradigms
- **✓Introduction to NeSY**
- **√Learnability**
 - ✓ Definition
 - √ Learnability vs Training Deep Networks
 - ✓ Known and Deterministic σ
 - **√***M*-Unambiguity
 - ✓ Unknown and Deterministic σ
 - $\checkmark \mathcal{G}$ -Unambiguity
- **√**Relationship with Other Weakly-Supervised Learning Settings
 - ✓ Partial Label Learning
 - ✓ Learning via Transition Matrices

Key Takeaways

- ✓ We can learn neural classifiers under formal guarantees
- √ Problems in NeSY cannot be trivially reduced to problems in standard ML

Quick Recap of Day 1

Example

Typical when there are multiple annotators or the classes are difficult to differentiate

Goal: Train the DNN knowing that the input shows a raven or crow or blackbird

Reduces to: Train the DNN subject to the Boolean constraint $X_{raven} \lor X_{crow} \lor X_{blackbird}$

Logic in Computer Vision

Integrity constraints

¬feeding(bucket, man)

¬feeding(man, bucket)

Boolean constraints

$$\phi_1 = \neg (X_{\text{feeding}} \land X_{\text{bucket}} \land X_{\text{man}})$$

$$\phi_2 = \neg (X_{\text{feeding}} \land X_{\text{man}} \land X_{\text{bucket}})$$

Probability computation

$$P(\phi_1 \wedge \phi_2)$$

Loss computation

$$-\log P(\phi_1 \wedge \phi_2)$$

Introduction to Machine Leaning & Neural Networks

Neural networks are functions of (unknown) parameters from an input space $\mathcal X$ to an output one $\mathcal Y$

✓ Examples of inputs: images, video, text

We will use heta to represent the parameters of those networks

Depending on their outputs, we have two types of networks:

- ✓ Classifiers: They output the class the input belongs to
- ✓ Generative models: They output new content, e.g., images, text, videos

In today's and tomorrow's talk, we will focus on classifiers.

How to learn the parameters θ of a network?

- ✓ We present examples. Three options:
 - ✓ Present the gold output of each input (supervised learning)
 - ✓ Do not present the gold output of each input (unsupervised learning)
 - ✓ Present a constraint the **gold** output of each input should adhere to (constrained learning)

Learning depends on a differentiable function, called a **loss.** The aim is to modify the parameters θ so that the outputs of the network minimize the **loss function on the examples.**

Supervised Learning

The loss measures how "far" are the current predictions from the target class

Example: An image and its target class, e.g., raven

Unsupervised Learning

The loss measures how "far" are different inputs from each other

Example: An image

Constrained Learning

The loss measures how "far" are current predictions from satisfying the constraint

Our NeSy learning setting falls under this category

Example: An image and the constraint the image adheres to, e.g., the image shows a **raven or crow or blackbird**

NeSy Learning -Introduction

Learning Setting

Kaifu Wang, Efthymia Tsamoura, and Dan Roth. On Learning Latent Models with Multi-Instance Weak Supervision. In NeurIPS, 2023.

e.g., learning under indirect supervision.

Types of Integration

- ✓DeepProbLog [NeurlPS 2018]
- ✓ABL [NeurIPS 2019]
- ✓ NeurASP [IJCAI 2020]
- ✓ NeuroLog [AAAI 2021]
- ✓Scallop [NeurlPS 2021]
- **✓**ENT [ICLR 2023]
- ✓ DeepSoftLog [NeurIPS 2023]
- ✓ISED [NeurlPS 2023]
- ✓Dolphin [arXiv 2024]

- √T-S, ACL [EMNLP 2016]
- **✓**DPL [EMNLP 2018]
- ✓ Concordia [ICML 2023]

- ✓MIPaaL [AAAI 2020]
- ✓BB-backprop [ICLR 2020]
- √CombOptNet [ICML 2021]
- ✓SurCo [ICML 2023]
- √GenCO [ICML 2024]

Example

 $\checkmark \sigma$ may be non-invertible

- $\checkmark \sigma$ may be non-invertible
- $\checkmark \sigma$ may be unknown

Question: Is this learning setting any interesting?

(Some) Relevant Neurosymbolic Frameworks

- ✓ DeepProbLog [NeurIPS 2018]
- ✓ABL [NeurIPS 2019]
- ✓ NeurASP [IJCAI 2020]
- ✓ NeuroLog [AAAI 2021]
- ✓ Scallop [NeurlPS 2021]
- **✓**ENT [ICLR 2023]
- ✓ DeepSoftLog [NeurIPS 2023]
- ✓ISED [NeurIPS 2023]
- ✓ Dolphin [arXiv 2024]

The NLP community was using such architectures before the NeSy community

Some Applications

- √ Fine-tuning LLMs (Li et al, 2023)
- ✓ Visual question answering (Li et al, 2023, Tsamoura et al, 2023)
- ✓ Spatio-temporal scene graph generation using VLMs (Huang et al., 2025)
- ✓ Learning knowledge graph embeddings (Maene & Tsamoura, 2025)

On the Power of σ

Our formulation is general enough to represent different languages, e.g.,

- ✓ non-linear functions
- √ systems of Boolean equations
- ✓ Datalog programs

Our formulation can express logical theories via backward reasoning, aka abduction.

Efthymia Tsamoura and Loizos Michael. Neural-Symbolic Integration: A Compositional Perspective In AAAI, 2023.

Benefits of NeSy Learning

- ✓ Re-usability
- √ Higher accuracy
- ✓ Reduced model size

Example: VQA

Task: Answer questions over an image

```
\begin{split} & \mathsf{Q}(O) \leftarrow \mathsf{NAME}(herbivore, O) \\ & \mathsf{NAME}(N,O) \wedge \mathsf{NAME}(N',O) \rightarrow \mathsf{ISA}(N',N) \\ & \rightarrow \mathsf{ISA}(giraffe, herbivore) \\ & \rightarrow \mathsf{ISA}(dear, herbivore) \end{split}
```

Table. R@5 for answering visual queries over VQAR (NeurIPS 2021). C5 & C6 denote the number of reasoning steps to answer the query.

	836 MB	100 MB	42 MB
C6	56.51%	72.04%	85.45%
C5	64.05%	74.62%	87.01%
Testset	LXMERT (EMNLP 2019)	RVC (PAMI 2023)	TG-Guided VQA
Tacteat	LYMERT (EMNILP 2019)	BVC (PAMI 2023)	TG-Guided VOA

Efthymia Tsamoura, Jaehun Lee, and Jacopo Urbani. Probabilistic Reasoning as Scale: Trigger Graphs to the Rescue. In SIGMOD, 2023.

NeSy Learning -Learnability

Learnability

Objective: Develop necessary (and sufficient) conditions that must be satisfied to ensure classifier PAC learnability

Cases:

- ✓ Known and Deterministic σ
 - **√***M*-Unambiguity
- ✓ Unknown and Deterministic σ
 - $\checkmark \mathscr{G}$ -Unambiguity

Learnability vs Training Neural Networks

Disclaimer: We will not discuss techniques to train deep networks subject to symbolic components – to be fair, we will present one such technique at the very end

Practical Options:

- **√Losses based on probabilistic logic semantics**
 - ✓ We discussed this yesterday More will be covered in the next days
- **√Losses based on fuzzy logic semantics**
 - ✓ We discussed this yesterday
- **√Learning based on integer linear programming**
 - ✓ We will discuss this tomorrow
- **√Learning based on expectation maximization**
- **√Learning via differentiation through argmax**

PAC-Learnability: Known and deterministic σ

Notation

Supervised learning

x (given) y (given)

 \mathcal{D}

$$\begin{split} [f](x) & \quad [f](x) \\ \ell^{01}(y,y') &\coloneqq 1\{y \neq y'\} & \quad \ell^{01}_{\sigma}(\boldsymbol{y},s) \coloneqq 1\{\sigma(\boldsymbol{y}) \neq s\} \\ \mathcal{R}^{01}(f) &\coloneqq & \quad \mathcal{R}^{01}_{\mathsf{P}}(f;\sigma) \coloneqq \\ E_{(X,Y) \sim \mathcal{D}}[\ell^{01}([f](X),Y)] & \quad E_{(\mathbf{X},S) \sim \mathcal{D}_{\mathsf{P}}}[\ell^{01}_{\sigma}([f](\mathbf{X}),S)] \end{split}$$

NeSy

 $\boldsymbol{x} = x_1, \dots, x_M$ (given) $\boldsymbol{y}=y_1,\ldots,y_M$ (unknown) $s = \sigma(y)$ (given) σ (given) \mathcal{D}_{P}

$$egin{aligned} &[f](x)\ \ell^{01}_{\sigma}(oldsymbol{y},s) \coloneqq 1\{\sigma(oldsymbol{y})
eq s\}\ \mathcal{R}^{01}_{\mathsf{P}}(f;\sigma) \coloneqq \ &E_{(\mathbf{X},S) \sim \mathcal{D}_{\mathsf{P}}}[\ell^{01}_{\sigma}([f](\mathbf{X}),S)] \end{aligned}$$

Meaning

input(s) gold label(s) partial label transition function training distribution (drawing Mindependent samples from \mathcal{D}) prediction zero-one (partial) loss

zero-one (partial) risk

Example

$$\sqrt[4]{\sigma(y_1, y_2)} = y_1 + y_2$$
 $\sqrt[4]{\ell_{\sigma}^{01}(y_1)} = 0, y_2 = 2, s = 2 = 0$
 $\sqrt[4]{\ell_{\sigma}^{01}(y_1)} = 2, y_2 = 0, s = 2 = 0$
 $\sqrt[4]{\ell_{\sigma}^{01}(y_1)} = 2, y_2 = 1, s = 2 = 1$

PAC-Learnability

A problem instance is PAC-learnable if there exists an algorithm $\mathscr A$ such that for any two user parameters ϵ and δ the following holds under any input distribution:

- ✓ with probability at least 1- δ
- ✓ the learned classifier f misclassifies an input with probability $\leq \epsilon$
- ✓ when given at least $m_{\epsilon,\delta}$ samples

Polynomial in ϵ and δ

Empirical Risk Minimizer (ERM) Learning

Algorithm \mathscr{A} will work by minimizing the empirical risk $R^{01}_{\mathsf{P}}(f;\sigma)$ given a set of partial samples

A will minimize the error at the overall output

Question: Do you find this a reasonable decision?

To prove learnability of such a NeSY problem instance, we must **bound** $R^{01}(f)$ (**zero-one risk**) with $R^{01}_P(f;\sigma)$ (**zero-one partial risk**), under **any** training distribution

In other words, **mistakes in the overall output**, should be informative of the **classification errors** made by f, under **any** training distribution

Assumption: The space of classifiers \mathscr{F} includes a classifier f^* that minimises $R^{01}_{\mathsf{P}}(f;\sigma)$

If an instance is learnable under any distribution, then it should be learnable under the spike

Suppose the following:

- ✓ All mass is concentrated in 2 with gold label 2
- \sqrt{f} misclassifies $\frac{2}{2}$ as 9. Hence, the gold labels are (2,2), but f outputs (9,9)

Question: Are f's classification errors concealed or not?

Suppose the following:

- ✓ All mass is concentrated in 2 with gold label 2
- \sqrt{f} misclassifies $\frac{2}{2}$ as 9. Hence, the gold labels are (2,2), but f outputs (9,9)

Question: Are f's classification errors concealed or not?

Answer: No, since $2 + 2 \neq 9+9$

Suppose the following:

✓ All mass is concentrated in 2 with gold label 2

Question: Can you generalise this reasoning to a condition σ should abide by to ensure that the errors are not concealed?

 \sqrt{f} misclassifies $\frac{2}{2}$ as 9. Hence, the gold labels are (2,2), but f outputs (9,9)

Question: Are f's classification errors concealed or not?

Answer: No, since $2 + 2 \neq 9+9$

Suppose the following:

✓ All mass is concentrated in 2 with gold label 2

Reasoning: if for any (y,...,y) and (y',...,y'), we have $\sigma(y,...,y) \neq \sigma$ (y',...,y'), then the classification errors are **not concealed**.

 \sqrt{f} misclassifies $\frac{2}{2}$ as 9. Hence, the gold labels are (2,2), but f outputs (9,9)

Question: Are f's classification errors concealed or not?

Answer: No, since $2 + 2 \neq 9+9$

Reasoning: if for any (y,...,y) and (y',...,y'), we have $\sigma(y,...,y) \neq \sigma(y',...,y')$, then the classification errors are **not concealed**.

Definition (*M*-unambiguity). Component σ is *M*-unambiguous if for any (y,...,y) and (y',...,y') with $y \neq y'$, we have $\sigma(y,...,y) \neq \sigma(y',...,y')$.

M-Unambiguity: Example

Question: is $\sigma(y_1, y_2) = y_1 + y_2 M$ -unambiguous?

M-Unambiguity: Example

Question: is $\sigma(y_1, y_2) = y_1 \times y_2 M$ -unambiguous?

M-Unambiguity: Example

Question: is $\sigma(y_1, y_2) = y_1 \oplus y_2 M$ -unambiguous?

M-Unambiguity: Is It a Good Condition?

Definition (*M*-unambiguity). Component σ is *M*-unambiguous if for any (y,...,y) and (y',...,y') with $y \neq y'$, we have $\sigma(y,...,y) \neq \sigma(y',...,y')$.

- ✓M-unambiguous requires **invertibility only on inputs of the same class**✓This result essentially is more powerful than the results in **reasoning shortcuts** (Marconato et al., NeurIPS 2023) that suggest that **we cannot learn unless** σ **is invertible**
- ✓ Looser conditions can be obtained when the input data distribution is not a spike

M-Unambiguity: Proving Learnability

Recall: To prove learnability of such a NeSY problem instance, we must **bound** $R^{01}(f)$ (**zero-one risk**) with $R^{01}_{P}(f;\sigma)$ (**zero-one partial risk**), under **any** training distribution

Theorem. If σ is M-unambiguous, then $R^{01}(f) \leq O(R_{\mathsf{P}}^{01}(f;\sigma)^{1/M})$.

M-Unambiguity: Proving Learnability

Theorem. If σ is M-unambiguous, then $R^{01}(f) \leq O(R_{\mathsf{P}}^{01}(f;\sigma)^{1/M})$.

Proof. Let $E_{i,j}(f)$ be the probability f misclassifies label i as j subject to samples from D. Then:

$$R^{01}(f) = \sum_{i \neq j} E_{i,j}(f)$$
 (*)

Recall: Component σ is M-unambiguous if for any (y,...,y) and (y',...,y') with $y \neq y'$, we have $\sigma(y,...,y) \neq \sigma(y',...,y')$.

- ightharpoonup If all the M input instances have label i and are wrongly classified having label j, then the predicted partial label will be wrong.
- $ightharpoonup R_{\mathsf{P}}^{01}(f;\sigma)$ is lower bounded by the sum of the same type of classification mistake being repeated M times:

$$R_{\mathsf{P}}^{01}(f;\sigma) \geq \sum_{i \neq j} E_{i,j}(f)^{M}$$

The final result follows by combining the two equations and applying the power mean inequality.

M-Unambiguity: Proving Learnability

Theorem. If σ is M-unambiguous, then $R^{01}(f) \leq O(R_{\mathsf{P}}^{01}(f;\sigma)^{1/M})$.

To prove learnability, additionally, we need to bound the VC dimension and constructing counter-examples to show M-unambiguity is necessary

M-Unambiguity: Learnability Statement

Theorem (informal).

0-1 classification error

For any $\epsilon, \delta \in (0,1)$, with probability at least $1 - \delta$, the empirical partial risk minimizer with $\widehat{\mathcal{R}}^{01}_{\mathsf{P}}(f;\sigma;\mathcal{T}_{\mathsf{P}}) = 0$ has a classification risk $\mathcal{R}^{01}(f) < \epsilon$, if

Empirical error in getting a wrong overall output

$$m_{ extsf{P}} \ge C_0 rac{c^{2M-2}}{\epsilon^M} \left(d_{[\mathcal{F}]} \log(6cMd_{[\mathcal{F}]}) \log\left(rac{c^{2M-2}}{\epsilon^M}
ight) + \log\left(rac{1}{\delta}
ight)
ight)$$

Number of training samples

Finite Natarajan dimension

Learnability vs Training Neural Networks

Recall: To prove learnability we considered minimizing the empirical risk $R_{\rm P}^{01}(f;\sigma)$ given a set of partial samples

Minimizing $R_{\mathsf{P}}^{01}(f;\sigma)$ would be inefficient in practice

Practical Options (recap):

- **√Losses based on probabilistic logic semantics**
 - √ We discussed this yesterday More will be covered in the next days
- **√Losses based on fuzzy logic semantics**
 - ✓ We discussed this yesterday
- **√Learning based on integer linear programming**
 - √ We will discuss this tomorrow
- **√Learning based on expectation maximization**
- **√Learning via differentiation through argmax**

Example

Question: Is this learning setting any interesting?

Learnability

Objective: Develop necessary (and sufficient) conditions that must be satisfied to ensure classifier PAC learnability. σ belongs to a family of parameterized functions \mathcal{G} .

Cases:

- ✓ Known and deterministic σ
 - **√***M*-unambiguity
- ✓ Unknown and deterministic σ
 - $\checkmark \mathscr{G}$ -unambiguity

Notation

Supervised learning

```
x (given)
y (given)
\mathcal{D}
[f](x)
\ell^{01}(y, y') := 1\{y \neq y'\}
\mathcal{R}^{01}(f) :=
E_{(X,Y)\sim\mathcal{D}}[\ell^{01}([f](X),Y)] \quad E_{(\mathbf{X},S)\sim\mathcal{D}_{P}}[\ell^{01}_{\sigma}([f](\mathbf{X}),S)]
```

NeSy

```
\boldsymbol{x} = x_1, \dots, x_m (given)
\boldsymbol{y}=y_1,\ldots,y_m (unknown)
s = \sigma(y) (given)
\sigma (unknown)
\mathcal{G} (given)
\mathcal{D}_{\mathsf{P}}
[f](x)
\ell_{\sigma}^{01}(y,s) := 1\{\sigma(y) \neq s\}
\mathcal{R}^{01}_{\mathsf{P}}(f;\sigma) :=
```

Meaning

input(s) gold label(s) partial label transition function transition space training distribution prediction zero-one (partial) loss

zero-one (partial) risk

Recap: PAC-Learnability

A problem instance is PAC-learnable if there exists an algorithm $\mathscr A$ such that for any two user parameters ϵ and δ the following holds under any input distribution:

- ✓ with probability at least 1- δ
- ✓ the learned classifier misclassifies an input with probability $\leq \epsilon$
- ✓ when given at least $m_{\epsilon,\delta}$ samples

Polynomial in ϵ and δ

Empirical Risk Minimizer (ERM) Learning

Known and deterministic σ

We will focus on an algorithm \mathscr{A} that finds the classifier that minimizes the empirical risk $R_P^{01}(f;\sigma)$ given a set of partial samples

Unknown and deterministic σ

We will focus on an algorithm $\mathscr A$ that finds the classifier that minimizes

$$R_{\mathsf{P}}^{01}(f;\mathscr{G}) := \inf_{\sigma^* \in \mathscr{G}} R_{\mathsf{P}}^{01}(f;\sigma^*)$$

Proving PAC-Learnability: Unknown and Deterministic σ

Known and deterministic σ

To prove learnability of a NeSY problem instance, we must **bound** $R^{01}(f)$ (**zero-one risk**) with $R^{01}_{P}(f;\sigma)$ (**zero-one partial risk**), under **any** training distribution

In other words, **mistakes in the overall output**, should be informative of the **classification errors** made by f, under **any** training distribution

Unknown and deterministic σ

Similarly, to prove learnability of such a NeSY problem instance, we must **bound** $R^{01}(f)$ (**zeroone risk**) with $R^{01}_P(f;\mathcal{G}) := \inf_{\sigma^* \in \mathcal{G}} R^{01}_P(f;\sigma^*)$ under **any** training distribution

Assumption: The space of classifiers \mathscr{F} includes a classifier f^* that minimises $R_{\mathsf{P}}^{01}(f;\sigma)$

Unknown and deterministic σ

Challenge. When σ is unknown, then if we replace σ with another σ' in the same family, we might get the same overall output.

Known and deterministic σ

If an instance is learnable under any distribution, then it should be learnable under the spike

Unknown and deterministic σ

Additional condition. Bounded classification risk: There exists r > 0, such that the probability each classifier predicts the correct label is > r

Challenges

Suppose the following:

✓ All mass is concentrated in gold label 2

 $\checkmark f$ misclassifies 2 as 9 with some probability. Hence, the gold labels are (2,2), but f outputs (9,2),

(2,9), (9,9)

√Gold σ = 10 y_1 + 10 y_2 , non-gold σ = 20 y_1 + 20 y_2

Question: are f's classification errors concealed or not for σ ?

Challenges

Question: Can we generalize this reasoning to a condition \mathcal{G} should satisfy so that the errors are not concealed?

Suppose the following:

✓ All mass is concentrated in gold label 2

 \sqrt{f} misclassifies 2 as 9 with some probability. Hence, the gold labels are (2,2), but f outputs (9,2),

(2,9), (9,9)

√Gold $\sigma = 10y_1 + 10y_2$, non-gold $\sigma = 20y_1 + 20y_2$

Question: are f's classification errors concealed or not for σ ?

Answer: no, since $10 * 2 + 10 * 2 \neq 20 * 9 + 20 * 2$

Challenges

Reasoning: Given gold σ , if for any

label vector (y,...,y), any non-gold

 σ' and any y', $\sigma(y,...,y) \neq \sigma'$

Suppose the following:

✓ All mass is concentrated in gold label 2

 \sqrt{f} misclassifies 2 as 9 with some probability. Hence, the gold labels are (2,2), but f outputs (9,2),

(2,9), (9,9)

√Gold σ = 10 y_1 + 10 y_2 , non-gold σ' = 20 y_1 + 20 y_2

Question: are f's classification errors concealed or not for σ ?

Answer: no, since $10 * 2 + 10 * 2 \neq 20 * 9 + 20 * 2$

Reasoning: Given gold σ , if for any label vector (y,...,y), any non-gold σ' and any y', σ (y,...,y) $\neq \sigma'$ (y,...,y',...y), for some (y,...,y',...y), then the errors are not concealed

Definition (\mathscr{G} -unambiguity). Space \mathscr{G} is unambiguous if for a given σ , we following hold: for any label vector (\mathbf{y} ,..., \mathbf{y}), any non-gold σ' and any \mathbf{y}' , σ (\mathbf{y} ,..., \mathbf{y}) $\neq \sigma'$ (\mathbf{y} ,..., \mathbf{y}' ,..., \mathbf{y}), for some (\mathbf{y} ,..., \mathbf{y}' ,..., \mathbf{y}).

3-Unambiguity: Example

Question: is $\mathcal{G} = \{(y_1, y_2) \mapsto \alpha y_1 + \beta y_2 | (\alpha, \beta) \in \mathbb{R}^2 - \{(0,0)\}\}$ unambiguous?

Recall. Space \mathcal{G} is unambiguous if for a given σ , we following hold: for **any label vector** (y,...,y), any non-gold σ' and any y', $\sigma(y,...,y) \neq \sigma'(y,...,y',...y)$, for some (y,...,y',...y).

3-Unambiguity: Example

Question: is $\mathcal{G} = \{(y_1, y_2) \mapsto \alpha y_1 + \beta y_2 \mid (\alpha, \beta) \in \mathbb{R}^2 - \{(0,0)\}\}$ unambiguous?

Recall. Space \mathcal{G} is unambiguous if for a given σ , we following hold: for **any label vector** (y,...,y), any non-gold σ' and any y', $\sigma(y,...,y) \neq \sigma'(y,...,y',...y)$, for some (y,...,y',...y).

Answer. No

$$\checkmark \sigma = (y_1, y_2) \mapsto y_1 - y_1^2 + y_2 - y_2^2$$
 $\checkmark \sigma' : (y_1, y_2) \mapsto y_1 - y_1^2 - y_2 + y_2^2$
 $\checkmark y = 0$
 $\checkmark y' = 1$
 $\checkmark \sigma (0,0) = \sigma' (1,0) = \sigma' (1,1) = \sigma' (1,1)$

\mathscr{G} -Unambiguity: Proving Learnability

Recall: To prove learnability of such a NeSY problem instance, we must **bound** $R^{01}(f)$ (**zero-one risk**) with $R^{01}_P(f;\mathcal{G}) := \inf_{\sigma^* \in \mathcal{G}} R^{01}_P(f;\sigma^*)$ under **any** training distribution

Theorem. If σ is \mathscr{G} -unambiguous, then $R^{01}(f) \leq O(R_{\mathsf{P}}^{01}(f;\mathscr{G})^{1/M})$.

G-Unambiguity: Learnability Statement

Theorem (informal).

0-1 classification error

For any $\epsilon, \delta \in (0,1)$, with probability at least $1-\delta$, the empirical partial risk minimizer with $\widehat{\mathcal{R}}^{01}_{\mathsf{P}}(f;\sigma;\mathcal{T}_{\mathsf{P}})=0$ has a classification risk $\mathcal{R}^{01}(f)<\epsilon$, if

$$\boxed{m_{\mathbb{P}} \geq C_4 \frac{c^{2M-2}}{r^M \epsilon^M} \left(\left((d_{[\mathcal{F}]} + d_{\mathcal{G}}) \log(6M(d_{[\mathcal{F}]} + d_{\mathcal{G}}) \right) + d_{[\mathcal{F}]} \log c \right) \log \left(\frac{c^{2M-2}}{r^M \epsilon^M} \right) + \log \left(\frac{1}{\delta} \right) \right)}$$

Empirical

Number of training samples

Finite Natarajan dimension

error in getting a wrong overall output

Relationship With Other Weakly-Supervised Learning Settings

Outline of Today's Lecture

- **√Introduction to ML**
 - ✓ Learning Paradigms
- **✓Introduction to NeSY**
- **√Learnability**
 - ✓ Definition
 - √ Learnability vs Training Deep Networks
 - ✓ Known and Deterministic σ
 - **√***M*-Unambiguity
 - ✓ Unknown and Deterministic σ
 - $\checkmark \mathcal{G}$ -Unambiguity
- **√**Relationship with Other Weakly-Supervised Learning Settings
 - ✓ Partial Label Learning
 - ✓ Learning via Transition Matrices

Relevant Settings

- ✓ Partial label learning
- ✓ Learning via transition matrices

Partial Label Learning: Example

$$\begin{array}{c|c}
 & \sigma(y) = \begin{cases} 1 & y \text{ is even} \\ 0 & y \text{ is odd} \end{cases} \longrightarrow 1$$

Training sample: (**1**, {0,2,4,6,8})

NeSy Learning

Training sample: ((2 , 2), {(0,2), (2,0), (1,1)})

Partial Label Learning vs NeSy Learning

- ✓ Multiple vs single input
- ✓ Deterministic vs non-deterministic σ , i.e.,
 - ✓ Prior learnability results rely on **small ambiguity**, i.e., that exists γ < 1, where

Gold label

$$\gamma := \sup_{D(x,y) > 0 \land y' \neq y} \mathbb{P}_{(x,y) \sim D}(y' \in \sigma(y))$$

Density

Probability y' cooccurs with gold y in a training sample

Learnability under non-deterministic σ – proper extension of **small ambiguity** (Wang, Tsamoura, Roth, NeurlPS 2023).

Relevant Settings

- ✓ Partial label learning
- ✓ Learning via transition matrices

A transition matrix ${f T}$ for a learning problem with hidden label Y and observed label S is a stochastic matrix, where the element in its i-th column and j-th row is the conditional probability $\mathbb{P}(S = j | Y = i)$

hidden labels

$$y=1$$
 $y=i$ $y=|\mathcal{Y}|$ $S=1$ $S=1$ $S=1$ $S=1$ $S=1$ $S=1$ $\mathbb{P}(S=1|Y=1)$ $\mathbb{P}(S=j|Y=i)$ $\mathbb{P}(S=|\mathcal{S}||Y=|\mathcal{Y}|)$

observed labels

A **transition matrix** ${f T}$ encodes the probability of getting the **observed label** ${f S}$ given then hidden label Y.

$$y = 1 \qquad y = i$$

$$s = 1 \quad |\mathbb{P}(S = 1|Y = 1)|$$

$$\vdots$$

$$S = |\mathcal{S}|$$

$$|\mathbb{P}(S = j|Y = 1)|$$

$$|\mathbb{P}(S = j|Y = 1)|$$

hidden labels

$$y=|\mathcal{Y}|$$

$$\mathbb{P}(S=j|Y=i)$$

$$\mathbb{P}(S = |\mathcal{S}||Y = |\mathcal{Y}|)$$

observed labels

If transition matrix T is invertible, then we can compute the hidden data distribution. In other words, we can estimate the classification loss.

$$o(\mathbf{x}) = \mathbf{T}(\mathbf{x}) h(\mathbf{x})$$

$$[\mathbb{P}(S=1 \mid \mathbf{x}), ..., \mathbb{P}(S=\mid \mathcal{S} \mid \mid \mathbf{x})]^{\mathbf{T}=\begin{bmatrix} y=1 & y=i & y=|\mathcal{Y}| \\ \vdots & & & \\ s=j & & \\ \vdots & & \\ s=|\mathcal{S}| \end{bmatrix} } \mathbb{P}(S=1 \mid \mathbf{Y}), ..., \mathbb{P}(Y=\mid \mathcal{Y} \mid \mid \mathbf{X})]$$

$$[\mathbb{P}(Y=1 \mid \mathbf{X}), ..., \mathbb{P}(Y=\mid \mathcal{Y} \mid \mid \mathbf{X})]$$

$$h(\mathbf{x}) = \mathbf{T}^+(\mathbf{x}) o(\mathbf{x})$$

- ✓ Supervised/semi-supervided learning
- √ Noisy label learning
- ✓ Partial label learning

Transition Matrix Formulation of 2SUM

hidden labels

observed labels
$$S = 1 \\ \vdots \\ T = \begin{cases} s = j \\ \vdots \\ s = |\mathcal{S}| \end{cases} \mathbb{P}(S = 1|Y = 1)$$

$$\mathbb{P}(S = j|Y = i)$$

$$\mathbb{P}(S = |\mathcal{S}||Y = |\mathcal{Y}|)$$

Transition Matrix Formulation of 2SUM

hidden labels

$$egin{aligned} m{y} &= (0,0) & m{y} &= (0,1) & m{y} &= (1,0) \ s &= 0 & 0 & 0 \ s &= 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ \vdots & \vdots & \vdots & \vdots \ s &= 18 & 0 & 0 & 0 \ \end{bmatrix}$$

observed labels

Question: Is this reduction any good?

Transition Matrix Formulation of 2SUM

hidden labels

$$egin{aligned} m{y} &= (0,0) & m{y} &= (0,1) & m{y} &= (1,0) \ s &= 0 & 0 & 0 \ s &= 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ \vdots & \vdots & \vdots & \vdots \ s &= 18 & 0 & 0 & 0 \ \end{bmatrix}$$

observed labels

Question: Is this reduction any good? No

Answer: The reduction works only when σ is 1-1

Learning via Transition Matrices (Better Formulation)

- √The previous reduction suggests that we need randomness
- √ Randomness can come from the distribution of input instances

Learning via Transition Matrices (Better Formulation)

This is a possible training technique

Consider a label y = 0. The probability that the sum is 1 (s = 1), equals the probability that other label is 1 ($\mathbb{P}(Y = 1)$)

Learning via Transition Matrices vs NeSy

 $\checkmark M$ -unambiguity \Rightarrow T invertibility

 $\checkmark T$ invertibility $\Rightarrow M$ -unambiguity

T invertibility $\Rightarrow M$ -unambiguity

Encoding 2SUM

$$s = 0$$
 $\begin{bmatrix} \mathbb{P}(Y = 0) & 0 & \cdots & 0 \\ \mathbb{P}(Y = 1) & \mathbb{P}(Y = 0) & \cdots & 0 \\ \mathbb{P}(Y = 1) & \mathbb{P}(Y = 0) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{P}(Y = 9) & \mathbb{P}(Y = 8) & \cdots & \mathbb{P}(Y = 0) \\ s = 11 & 0 & 0 & \cdots & \mathbb{P}(Y = 2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ s = 18 & 0 & 0 & \cdots & \mathbb{P}(Y = 9) \end{bmatrix}$

Consider the following:

✓ Two hidden labels {1,2}

$$\sqrt{\sigma(1,2)} = \sigma(2,1) = 0$$

$$✓$$
 $P(Y = 1) = 0.1$

$$✓$$
 $P(Y = 2) = 0.9$

Question: Does M-unambiguity hold?

Question: Is matrix T invertible?

More Results

- ✓ Better convergence rates via forcing additional conditions
- ✓ Learnability under multiple classifiers
- ✓ Learnability under non-deterministic σ
- ✓ Rademacher error bounds under approximate probabilistic losses

Kaifu Wang, Efthymia Tsamoura, and Dan Roth. On Learning Latent Models with Multi-Instance Weak Supervision. In NeurIPS, 2023.

Recap of Today's Lecture

- **√Introduction to ML**
 - ✓ Learning Paradigms
- **✓Introduction to NeSY**
- **√Learnability**
 - ✓ Definition
 - √ Learnability vs Training Deep Networks
 - ✓ Known and Deterministic σ
 - **√***M*-Unambiguity
 - ✓ Unknown and Deterministic σ
 - $\checkmark \mathcal{G}$ -Unambiguity
- **√**Relationship with Other Weakly-Supervised Learning Settings
 - ✓ Partial Label Learning
 - ✓ Learning via Transition Matrices