ECOSYSTEM SERVICES IN THE CAT PLANNING PROCESS IN HIMACHAL PRADESH

NATURAL CAPITAL PROJECT WORKSHOP ON ECOSYSTEM SERVICE BENEFITS OF TARGETED WATERSHED INVESTMENTS 21st MAY 2014 SHIMLA

Policy Context

- World moving from Independent management of "Natural Resources" and "Development" to middle ground
 - Conservation and development goals are being integrated.
 - Forests can no longer be managed only as a conservation entity
 - State of HP also moving towards Agenda of Green Growth (DPL Goals)
 - Hydropower seen as a Green Growth option (DPL goal)

Policy Context

- Background
 - Importance of hydropower to HP
 - 23000 MW Potential
 - Important source of Revenue (8% share in GSDP)
 - Challenges for sustainable Hydro Power Development
 - Sustainability depends on good health of forests- provides important Ecosystem Service
 - Optimize Hydro Power by managing catchment
 - Siltation (shutdowns)
 - Water flow regulation (Quantity/Quality/seasonal flow/daily variability)
- Policy What is the flow & value of forest ecosystem services to Hydropower sector and how can we maximize?
 - IMPORTANCE of CATCHMENT MANAGEMENT

Present Scenario of Catchment Management

- Project Specific CAT Plans
 - -2.5 % of total cost of the HEP
 - Interventions targeted only to catchment of specific project
 - Islands of prosperity/ deprivity
 - Focus on SWC at site scale rather than landscape approach
 - Lacks understanding of how impacts of site level activities can scale up to changes in services delivered to a point of interest (HEP)
 - No effort to maximise return on investment

Present Scenario of Catchment Management

- Comprehensive CAT Plans (CCP)
 - –Basin wide approach
 - -Based on unconstrained resource scenario
 - –Gaps in available funds
 - Need for prioritization to optimize
 Ecosystem services (w.r.t. HEP facility to sustain green growth)
 - Prioritization of Area
 - Prioritization of Activities

Susceptibility of Run of the river Projects

q Climate change

- Amount and timing of precipitation
- Form of precipitation
- q Change in LULC and Land Management practices
 - Quality of water
 - Quantity of water
 - Time taken to reach HEP
 - ØHydro Power Eco systems services can be increased by changing land use, land cover and land management

Issues needing resolution

- Which activity to be prioritized to get max benefit from investment
- Which area to be prioritized to have max benefit for HEP
- Which Ecosystem service has what value on the basis of Biophysical as well as economic considerations
- Which Ecosystem service needs to be incentivised by way of PES (design of PES)

Issues needing resolution (contd)

- Economic valuation and analysis of Ecosystem services in monetary terms
- To build forest flow accounts
- To capture true contribution of forests to other sectors of economy (intangible regulatory services)
- To demonstrate dependence of other sectors on healthy forests
- To sensitize policy makers for taking informed policy decisions
- Move towards Building Natural Resource accounts
- Leading towards GREEN GROWTH

Scope of the study

- Pilot Study on Ecosystem Accounts through modeling initiated by Stanford University Team
- Study done in 5 pilot locations
- Which ecosystem services to measure?
 - Water regulation
 - Sediment retention
- Site Selection Criteria:
 - Importance for hydropower production
 - Range of biophysical and land use conditions
 - Data availability
 - Land uses
 - Flow and sediment data for calibration/validation
 - Proxies values

Biophysical Flow

- InVEST Water Yield and sediment retention model coupled with RIOS model applied to
- Gives a portfolio of activities which can be undertaken under given biophysical conditions
- Input Data
 - -Land cover (vegetative cover, erosion potential, sediment retention)
 - -Soils (depth, texture, erodibility)
 - -Topography (elevation, slope)
 - -Climate (rainfall)
- CCP data of Satluj basin made use of

LIMITATIONS

- Does not take into account glacial and snow melt
- InVEST model produces long term annual average outputs hence calibration of model outputs to a time series is not possible
- Landscape based:- Point Activities undertaken at finer scale not captured

Integrating RIOS and CAT Planning

Integrating RIOS and CAT Planning

Landscape level targeting

potentially reducing overall costs

 Reducing time to define optimal investment plans.

Where are we?

Two Phases

- ☐ Phase one
 - Defining Policy context
 - Sensitization of technical staff
 - Data collection (challenging)
 - -Biophysical modeling
 - Training
 - Calibration
 - Developing framework for economic valuation of services for Hydro sector

☐ Phase two

- Economic valuation of Ecosystem services
- -Scaling up to district, and state level

How are we going to use this information?

- Prioritizing activities on the basis of maximum return on Investment (RIOS model)
- Using Ecosystem services information to improve targeting of watershed protection activities
- Generate Investment portfolio for study area at multiple budget levels
- The RIOS results demonstrate how a landscape-level approach could be added to the watershed management and prioritization process, potentially reducing the amount of time spent up-front in costly field assessments by narrowing the range of potential sites considerably.

Next Steps

- Work with team to calibrate model consultation in HP in May
- Capacity building in state for Ecosystem valuation
- Use this model in one district to do comprehensive
 Forest Accounts
- Next phase
 - Economic valuation (link watershed management to flow and sediment)
 - SWAT modeling ?????
 - Scaling up
 - Design appropriate PES schemes once value of different ecosystem services is assessed
 - Integration with Natural Capital Accounting

Questions??

THANK YOU