Universidad de Granada

Análisis Matemático I

Doble Grado de Informática y Matemáticas ${\rm Curso}~2016/17$

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Topología de un espacio métrico. 1.1. Concepto de espacio métrico. El espacio métrico \mathbb{R}^N 1.2. Conceptos topológicos	
2.	Sucesiones en \mathbb{R}^N .	7
3.	Funciones continuas en \mathbb{R}^N . 3.1. Clasificación de conjuntos en \mathbb{R}^N	1
4.	Límite funcional en \mathbb{R}^N .	13
5.	Funciones derivables en \mathbb{R}^N . 5.1. Concepto de función derivable	13 13
6.	Matriz asociada a $Df(x_0)$.	1.5

Introducción.

El objetivo de este curso es el estudio de las funciones de varias variables, es decir, de funciones $f: \mathbb{R}^N \longrightarrow \mathbb{R}^M$. Para ello, empezaremos caracterizando el espacio \mathbb{R}^N , y proseguiremos intentando traspasar los resultados principales sobre funciones reales de variable real a nuestro campo de estudio, así como enunciando otros nuevos.

Es por esto que es fundamental haber cursado con aprovechamiento las asignaturas de C'alculo~I~y~II, que tratan exclusivamente sobre funciones reales de variable real.

Aunque nos centraremos en funciones en el espacio \mathbb{R}^N , muchos de los resultados que obtendremos son igual de válidos en un espacio métrico en general, e incluso en espacios topológicos.

1. Topología de un espacio métrico.

1.1. Concepto de espacio métrico. El espacio métrico \mathbb{R}^N .

Definición (Espacio métrico). Consideremos un conjunto X cualquiera, y una aplicación $d: X \times X \longrightarrow \mathbb{R}$ que cumple las siguientes propiedades:

(i)
$$d(x,y) \ge 0 \quad \forall x, y \in X$$
.

(ii)
$$d(x,y) = 0 \iff x = y \ \forall x, y \in X$$
.

(iii)
$$d(x,y) = d(y,x) \ \forall x,y \in X$$
.

(iv)
$$d(x,y) \le d(x,z) + d(z,y) \ \forall x,y,z \in X.$$
 (designal dad triangular)

Entonces, se dice que el par (X, d) es un espacio métrico.

Nota. En adelante, entenderemos \mathbb{R}^N como el espacio métrico (\mathbb{R}^N, d) , siendo d la distancia usual (distancia euclídea) dada por:

$$d(x,y) = \sqrt{\sum_{i=1}^{N} (y_i - x_i)^2} \quad \forall x, y \in \mathbb{R}^N.$$

Existen otras distancias en \mathbb{R}^N . Las más destacadas son las siguientes:

(i)
$$d_1(x,y) = \sum_{i=1}^{N} |x_i - y_i| \ \forall x, y \in \mathbb{R}^N.$$

(ii)
$$d_{\infty}(x,y) = m \acute{a} x\{|x_i - y_i| : i = 1,...,N\} \ \forall x,y \in \mathbb{R}^N.$$

(iii)
$$d_p(x,y) = \left(\sum_{i=1}^N |x_i - y_i|^p\right)^{1/p} \quad \forall x, y \in \mathbb{R}^N.$$

Definición. Sean (X, d) y (X, d') dos espacios métricos sobre un mismo conjunto X. Se dice que las distancias d y d' son equivalentes si, y solo si,

$$\exists k_1, k_2 > 0: k_1 d(x, y) \le d'(x, y) \le k_2 d(x, y) \ \forall x, y \in X.$$

Proposición. En \mathbb{R}^N , todas las distancias mencionadas anteriormente son equivalentes entre sí. En particular, la distancia euclídea es equivalente a todas ellas.

1.2. Conceptos topológicos.

Definición (Bola abierta). Sea (X, d) un espacio métrico, y fijemos un $x \in X$ y un $\varepsilon > 0$. Se llama bola abierta de centro x y radio ε al conjunto $B(x, \varepsilon) = \{y \in X \mid d(x, y) < \varepsilon\}$.

Definición (Bola cerrada). De forma análoga, se define la bola cerrada de centro x y radio ε como el conjunto $\bar{B}(x, \varepsilon) = \{y \in X \mid d(x, y) \leq \varepsilon\}.$

Definición (Conjunto abierto). Sea (X, d) un espacio métrico, y sea $A \subseteq X$. Decimos que A es abierto $\iff \forall a \in A \ \exists \varepsilon > 0 : B(x, \varepsilon) \subseteq A$.

Proposición. Sea (X, d) un espacio métrico. Entonces, $\forall x \in X \ \forall \varepsilon > 0$ se tiene que $B(x, \varepsilon)$ es un conjunto abierto.

Demostración. Sea $x \in B(x_0, \varepsilon_0)$ arbitrario. Para demostrar que $B(x_0, \varepsilon_0)$ es un abierto, tenemos que encontrar un $\varepsilon > 0$ tal que $B(x, \varepsilon) \subseteq B(x_0, \varepsilon_0)$, y por lo tanto comprobar que se verifica que $\forall y \in B(x, \varepsilon) \Rightarrow y \in B(x_0, \varepsilon_0)$.

Sea $y \in B(x, \varepsilon)$ cualquiera. Consideremos $r = d(x, x_0)$, y tomemos $\varepsilon = \varepsilon_0 - r$. Queremos demostrar que $y \in B(x_0, \varepsilon_0)$. Para ello, veamos que $d(x_0, y) < \varepsilon_0$. En efecto, por la desigualdad triangular se cumple que:

$$d(x_0, y) \le d(x, x_0) + d(x, y) < r + \varepsilon = r + \varepsilon_0 - r = \varepsilon_0$$

Luego queda demostrado que $y \in B(x_0, \varepsilon_0)$, y por tanto podemos afirmar que para todo punto $x \in B(x_0, \varepsilon_0)$ se puede encontrar una bola abierta centrada en él, tal que todos sus puntos están en el conjunto de origen.

Proposición. Sea (X, d) un espacio métrico. Entonces, se verifican las siguientes propiedades:

- (i) Si $\{A_{\lambda} \mid \lambda \in \Lambda\}$ es una familia de subconjuntos abiertos de X, entonces $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ es abierto.
- (ii) Si $\{A_1, \ldots, A_n\}$ es una familia finita de abiertos de X, entonces $\bigcap_{i=1}^n A_i$ es abierto.
- (iii) X, \emptyset son abiertos.

Definición (Punto interior). Sea (X,d) un espacio métrico, y consideremos $A \subseteq X$, $a \in A$. Se dice que a es un punto interior de A si, y solo si, $\exists \varepsilon_0 > 0 : B(a, \varepsilon_0) \subseteq A$. Definimos $int(A) = \mathring{A} = \{a \in A \mid a \text{ es punto interior de } A\}$.

Proposición. Sea (X, d) un espacio métrico, y $A \subseteq X$. Entonces, se verifican las siguientes propiedades:

- (i) $\mathring{A} \subseteq A$.
- (ii) Å es abierto.
- (iii) Si $B \subseteq A$ es un subconjunto abierto de A, entonces $B \subseteq \mathring{A}$. Es decir, \mathring{A} es el abierto más grande contenido en A.
- (iv) $\mathring{A} = \bigcup \{B \subseteq A \mid B \text{ es abierto}\}.$
- (v) A es abierto $\iff \mathring{A} = A$.
- (vi) int(int(A)) = int(A).
- (vii) $Si \ A \subseteq B$, entonces $\mathring{A} \subseteq \mathring{B}$.

Definición (Conjunto cerrado). Sea (X, d) un espacio métrico, y $F \subseteq X$. Se dice que el conjunto F es cerrado $\iff X - F$ es abierto.

Proposición. Sea (X,d) un espacio métrico. Entonces, $\forall x \in X \ \forall \varepsilon > 0$ se tiene que $\bar{B}(x,\varepsilon)$ es un conjunto cerrado.

Proposición. Sea (X, d) un espacio métrico. Entonces, se verifican las siguientes propiedades:

- (i) Si $\{F_{\lambda} \mid \lambda \in \Lambda\}$ es una familia de cerrados de X, entonces $\bigcap_{\lambda \in \Lambda} F_{\lambda}$ es cerrado.
- (ii) Si $\{F_1, \ldots, F_n\}$ es una familia finita de cerrados de X, entonces $\bigcup_{i=1}^n F_i$ es cerrado.
- (iii) X, \emptyset son cerrados.

Definición (Clausura). Sea (X, d) un espacio métrico. Se llama *clausura o cierre de A* al conjunto $\bar{A} = X - int(X - A)$.

Proposición. Sea (X, d) un espacio métrico, y $A \subseteq X$. Entonces, se verifican las siguientes propiedades:

- (i) $A \subseteq \bar{A}$.
- (ii) \bar{A} es cerrado.
- (iii) Si $B \subseteq X$ es un subconjunto cerrado de X tal que $A \subseteq B$, entonces $\bar{A} \subseteq B$. Es decir, \bar{A} es el cerrado más pequeño que contiene a A.
- (iv) $\bar{A} = \bigcap \{ F \subseteq X \mid F \text{ es cerrado } y \text{ } A \subseteq F \}.$
- (v) A es cerrado $\iff \bar{A} = A$.
- (vi) $\bar{A} = \bar{A}$.
- (vii) $Si \ A \subseteq B$, entonces $\bar{A} \subseteq \bar{B}$.

Definición (Frontera). Sea (X, d) un espacio métrico, y $A \subseteq X$. Llamamos frontera de A al conjunto $\partial A = \bar{A} - \mathring{A}$.

Proposición. Sea (X, d) un espacio métrico, y $A \subseteq X$. Entonces, se verifica lo siguiente: $x \in \partial A \iff \forall \varepsilon > 0 \ B(x, \varepsilon) \cap A \neq \emptyset \ y \ B(x, \varepsilon) \cap (X - A) \neq \emptyset$.

Definición (Punto de acumulación). Sea (X,d) un espacio métrico, y $A \subseteq X$. Dado $x \in X$, decimos que x es punto de acumulación de $A \iff \forall \varepsilon > 0$ $B(x,\varepsilon) \cap (A - \{x\}) \neq \emptyset$. Definimos $A' = \{x \in X \mid x \text{ es punto de acumulación de } A\}$.

Proposición. Sea (X,d) un espacio métrico. Entonces, se verifican las siguientes afirmaciones:

- (i) $\mathring{A} = X \overline{X A}$
- (ii) $\bar{A} = A \cup \partial A$.

- (iii) $\bar{A} = A \cup A'$
- (iv) $X = int(A) \cup \partial A \cup int(X A)$. Además, la unión es disjunta dos a dos.

2. Sucesiones en \mathbb{R}^N .

Definición (Sucesión en \mathbb{R}^N). Una sucesión en \mathbb{R}^N es una aplicación $x : \mathbb{N} \longrightarrow \mathbb{R}^N$ que a cada $n \in \mathbb{N}$ le hace corresponder un $x(n) \in \mathbb{R}^N$. Por simplicidad, al elemento imagen de n se le denomina x_n , y la aplicación x se denota $\{x_n\}$.

Definición (Convergencia de sucesiones). Sea (X, d) un espacio métrico, $A \subseteq X$ y $x \in X$. Decimos que una sucesión $\{x_n\}$ de puntos de A converge a x si, y solo si:

$$\forall \varepsilon > 0 \ \exists n_o \in \mathbb{N} : \ n \ge n_o \Rightarrow d(x_n, x) < \varepsilon.$$

Nota. Este concepto no depende de la distancia equivalente elegida.

Proposición. Sea $A \subseteq \mathbb{R}^N$, $x \in \mathbb{R}^N$, $y \{x_n\}$ una sucesión de puntos de A. Adoptemos la notación $x_n = (x_n^1, x_n^2, \dots, x_n^N)$, $y = (x^1, x^2, \dots, x^N)$. Entonces, se verifica que:

$$\{x_n\} \to x \iff \{x_n^j\} \to x^j.$$

Definición. Sea (X, d) un espacio métrico, y $x \in X$. Consideremos, para cada $n \in \mathbb{N}$, un punto $a_n \in X$. Entonces, decimos que $d(a_n, x) \to 0 \iff \{a_n\} \to x$.

Definición (Conjunto acotado). Sea $A \subseteq \mathbb{R}^N$. Decimos que A está acotado si, y solo si, $\exists R > 0 : A \subseteq B(0, R)$.

Definición (Sucesión acotada). Sea $\{x_n\}$ una sucesión de puntos de \mathbb{R}^N . Entonces, decimos que $\{x_n\}$ está acotada sí, y solo sí, $\{x_n \mid n \in \mathbb{N}\}$ está acotado.

Proposición. Si una sucesión $\{x_n\} \subseteq \mathbb{R}^N$ es acotada, entonces $\forall i = 1, ..., n$ la sucesión $\{x_n^i\}$ es acotada (en \mathbb{R}).

Nota. Si un conjunto $A\subseteq\mathbb{R}^N$ es acotado, entonces cualquier sucesión de puntos de A es acotada.

Teorema (Bolzano-Weierstrass). Sea $\{x_n\} \subseteq \mathbb{R}^N$ acotada. Entonces, existe una sucesión parcial suya $\{x_{\sigma_{(n)}}\}$ convergente.

Definición (Sucesión de Cauchy). Sea $\{x_n\} \subseteq \mathbb{R}^N$. Decimos que $\{x_n\}$ es una sucesión de Cauchy $\iff \forall \varepsilon > 0 \ \exists n_o \in \mathbb{N} : \ n, m \geq n_o \Rightarrow d(x_n, x_m) < \varepsilon$.

Teorema (\mathbb{R}^N es completo). Sea $\{x_n\} \subseteq \mathbb{R}^N$. Entonces:

 $\{x_n\}$ es de Cacuchy $\iff \{x_n\}$ es convergente.

Proposición. Sea $\{x_n\} \subseteq \mathbb{R}^N$ con $\{x_n\} \to x \in \mathbb{R}^N$. Entonces, toda sucesión parcial de $\{x_n\}$ es convergente a x.

3. Funciones continuas en \mathbb{R}^N .

Definición (Función continua). Sea $\emptyset \neq A \subseteq \mathbb{R}^N$, $f: A \longrightarrow \mathbb{R}^M$ y $a \in A$. Decimos que f es continua en a si, y solo si:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ x \in A, \ d(x,a) < \delta \Rightarrow d(f(x),f(a)) < \varepsilon.$$

Además, se dice que f es continua si lo es en todos sus puntos.

Proposición (Caracterización de continuidad). Sea $\emptyset \neq A \subseteq \mathbb{R}^N$, $y \ f : A \longrightarrow \mathbb{R}^M$. Entonces:

$$f$$
 es continua en $a \iff \forall \{x_n\} \subseteq A$ con $\{x_n\} \to a \Rightarrow \{f(x_n)\} \to f(a)$.

Definición (Continuidad uniforme). Sea $\emptyset \neq A \subseteq \mathbb{R}^N$, $f: A \longrightarrow \mathbb{R}^M$. Se dice que f es uniformemente continua si, y solo si:

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ x, y \in A, \ d(x, y) < \delta \Rightarrow d(f(x), f(a)) < \varepsilon.$$

Definición (Conjunto compacto). Sea (X, d) un espacio métrico, y sea $\emptyset \neq A \subseteq X$.

$$A \ es \ compacto \iff \forall \{x_n\} \subseteq A \ \exists \{x_{\sigma(n)}\} \to x \in A.$$

Definición (Recubrimiento abierto). Sea $A \subseteq \mathbb{R}^N$. Se dice que una familia $\{O_i, i \in I\}$ de abiertos es un recubrimiento abierto de A si

$$A \subseteq \bigcup_{i \in I} O_i$$

También, si R_1 y R_2 son recubrimientos abiertos de A y $R_1 \subseteq R_2$, se dice que R_1 es un subrecubrimiento abierto de R_2 .

Proposición. Sea $A \subseteq \mathbb{R}^N$ compacto. Entonces existe un subrecubrimiento finito de A.

Proposición (Caracterización de cerrados). Sea (X, d) un espacio métrico, $y A \subseteq X$. Entonces, son equivalentes:

- (i) A es cerrado.
- (ii) $\forall \{x_n\} \subseteq A \text{ convergente a un } x \in X, \text{ se verifica que } x \in A.$

Demostración. Veamos las dos implicaciones:

 \implies Supongamos $A \subseteq X$ un conjunto cerrado. Entonces, X - A es abierto. Sea $\{x_n\}$ una sucesión de puntos de A que converge a un $x \in X$. Para comprobar que, de hecho, $x \in A$, argumentamos por reducción al absurdo:

Supongamos $x \notin A$. Entonces, $x \in X - A$, y por ser este último conjunto abierto, encontramos un $\varepsilon > 0$ tal que $B(x, \varepsilon) \subseteq (X - A)$. Pero por ser x el límite de la sucesión $\{x_n\}$, se tiene que $\exists n_o \in \mathbb{N} : n \geq n_o \Rightarrow d(x_n, x) < \varepsilon$. Es decir, a partir de cierto índice en adelante, $x_n \in B(x, \varepsilon)$ con $x_n \in A \ \forall n \in \mathbb{N}$. Esto se contradice con el hecho de que $B(x, \varepsilon) \subseteq (X - A)$, pues encontramos en dicha bola puntos x_n que no pertenecen a X - A.

Por tanto, concluimos que $x \in A$.

 \sqsubseteq Sea $A \subseteq X$, y supongamos que se verifica que $\forall \{x_n\} \subseteq A \ tal \ que \ \{x_n\} \to x \in X$, se tiene que $x \in A$. Para ver que A es cerrado, utilizaremos la siguiente caracterización de conjuntos cerrados:

$$A \ es \ cerrado \iff \bar{A} = A$$

Si recordamos, se define la frontera de A como $\partial A = \bar{A} - \mathring{A}$. Por tanto, la equivalencia anterior quedaría así: A es $cerrado \iff \partial A \cup \mathring{A} = A$. Para comprobar esta última igualdad, veamos las dos inclusiones:

Sabemos por la definición del conjunto de puntos interiores de A, que $\mathring{A} \subseteq A$. Comprobemos entonces que $\partial A \subseteq A$:

Sea $x \in \partial A$ cualquiera. Por una caracterización de la frontera de A, sabemos que $\forall \varepsilon > 0$ $B(x,\varepsilon) \cap A \neq \emptyset$. Si tomamos $\varepsilon = \frac{1}{n} > 0$ con $n \in \mathbb{N}$, tenemos que $B(x,\frac{1}{n}) \cap A \neq \emptyset$, es decir, $\exists a_n \in B(x,\frac{1}{n}) \cap A$ tal que $d(x,a_n) < \varepsilon = \frac{1}{n}$. Podemos construir entonces, para cada $n \in \mathbb{N}$, la sucesión $\{a_n\}$.

Así, se tiene que $0 < d(x, a_n) < \frac{1}{n} \ \forall n \in \mathbb{N}$, de donde concluimos que $d(x, a_n) \to 0$. Por definición, esto significa que $\{a_n\} \to x$, lo que por hipótesis implica, al ser $\{a_n\}$ una sucesión convergente de puntos de A, que $x \in A$. Por tanto, se verifica que $\partial A \subseteq A$.

 \supseteq Esta inclusión es trivial, pues sabemos que $A \subseteq \bar{A}$, y por tanto $A \subseteq \partial A \cup \mathring{A} = \bar{A}$.

De esta forma, queda probada la equivalencia.

Proposición (Caracterización de compactos). Sea (X,d) un espacio métrico, y sea $A \subseteq X$. Entonces:

 $A \ es \ compacto \iff A \ es \ cerrado \ y \ acotado.$

Proposición. Sea $\{x_n\} \subseteq \mathbb{R}^N$ convergente a un $x_o \in \mathbb{R}^N$. Entonces, el conjunto $A = \{x_n : n = 0, 1, 2, ...\}$ es compacto.

3.1. Clasificación de conjuntos en \mathbb{R}^N

Definición (Conjunto convexo). Un conjunto $A \subseteq \mathbb{R}^N$ se dice *convexo* si $\forall x, y \in A$ se tiene que el segmento de extremos x e y está incluido en A. En otras palabras:

$$A \ convexo \iff [x,y] = \{tx + (1-t)y : \ t \in [0,1]\} \subseteq A.$$

Definición (Poligonalmente convexo). Un conjunto $A \subseteq \mathbb{R}^N$ se dice *poligonalmente convexo* si $\forall x, y \in A$ existe una poligonal que los une y no se sale de A. En otras palabras: $A \ poligonalmente \ convexo \iff \exists \{x = a_0, a_1, \dots, a_k = y\} \subseteq A \ \text{tal que:}$

$$\bigcup_{i=1}^{k} [a_{i-1}, a_i] \subseteq A.$$

Definición (Conjunto arco-conexo). Un conjunto $A \subseteq \mathbb{R}^N$ se dice arco-conexo(conexo por arcos) si $\forall x, y \in A$ existe un camino incluido en A que los une. En otras palabras, A es conexo $por arcos \iff \exists \varphi : [a,b] \longrightarrow \mathbb{R}^N$ verificando:

$$\varphi(a) = x; \quad \varphi(b) = y; \quad \varphi([a, b]) \subseteq A.$$

Definición (Conjunto no conexo). Decimos que un conjunto $A \in \mathbb{R}^N$ es NO conexo si existen U, V abiertos en \mathbb{R}^N tales que:

$$U \cap A \neq \emptyset$$
: $V \cap A \neq \emptyset$: $A \subset U \cup V$: $A \cap U \cap V = \emptyset$.

Nota. La misma definición se aplica para un espacio topológico (X, τ) .

Definición (Conjunto conexo). Un conjunto $A \subseteq \mathbb{R}^N$ se dice conexo si no es no conexo. Equivalentemente, $\forall U, V$ abiertos en \mathbb{R}^N tales que $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$, $A \subseteq U \cup V$, se tiene que forzosamente $A \cap U \cap V \neq \emptyset$.

Proposición. Sea $A \subseteq \mathbb{R}$ un conjunto arco-conexo. Entonces, A es convexo.

Demostración. Sean $x, y \in A$, y supongamos sin pérdida de generalidad que $x \leq y$. Sabemos que por ser A arco-conexo, $\exists \varphi : [a, b] \longrightarrow \mathbb{R}$ función continua verificando:

$$\varphi(a) = x; \quad \varphi(b) = y; \quad \varphi([a, b]) \subseteq A.$$

Como φ es una función continua definida en un intervalo cerrado y acotado, aplicamos el **teorema del valor intermedio** en \mathbb{R} , y obtenemos que $\varphi([a,b])$ es un intervalo. Por ser un intervalo, verificará que $\forall \alpha, \beta \in \varphi([a,b])$ con $\alpha \leq \beta$, $[\alpha, \beta] \subseteq \varphi([a,b])$.

Por tanto, como $\varphi(a), \varphi(b) \in \varphi([a, b])$, concluimos que:

$$[\varphi(a), \varphi(b)] = [x, y] \subseteq \varphi([a, b]) \subseteq A.$$

Así, hemos demostrado que $\forall x, y \in A \ [x, y] \subseteq A$, y por tanto, A es convexo.

Proposición. Sea $A \subseteq \mathbb{R}^N$ convexo. Entonces, A es arco-conexo.

Demostración.

Fijemos $x,y\in A$ arbitrarios, y construyamos la aplicación $\varphi:[0,1]\longrightarrow \mathbb{R}^N$ dada por:

$$\varphi(t) = (1 - t)x + ty \quad \forall t \in [0, 1]$$

Una primera observación es que $\varphi([0,1]) = \{(1-t)x + ty : t \in [0,1]\} = [x,y] \subseteq A$ por ser A convexo. También se desprende de la definición de φ que $\varphi(0) = x$ y $\varphi(1) = y$.

Para comprobar que φ es continua, utilicemos la caracterización de la continuidad por sucesiones:

Sea $\{x_n\} \subseteq [0,1]$ con $\{x_n\} \to a \in [0,1]$. Entonces, $\{\varphi(x_n)\} = \{(1-x_n)x + x_ny\}$. Apliquemos ahora propiedades de las sucesiones convergentes, y obtenemos que:

$$\{\varphi(x_n)\} \to (1-a)x + ay = \varphi(a).$$

Entonces, $\forall \{x_n\} \subseteq [0,1] \ con \ \{x_n\} \to a \Rightarrow \{\varphi(x_n)\} \to \varphi(a)$, por lo que φ es continua.

Así, queda probado que A es conexo por arcos.

Proposición. Sea $A \in \mathbb{R}^N$ arco-conexo. Entonces, A es conexo.

Proposición. Sea $A \subseteq \mathbb{R}^N$ abierto y conexo por arcos. Entonces, A es poligonalmente convexo.

3.2. Continuidad en espacios topológicos. Topología inducida.

Definición (Continuidad en espacios topológicos). Sean (X, τ_x) , (Y, τ_y) dos espacios topológicos, y sea $f: X \longrightarrow Y$. Entonces:

$$f \ es \ continua \iff f^{-1}(B) \in \tau_x \ \forall B \in \tau_y.$$

Definición (Topología inducida). Sea (X, τ) un espacio topológico, y $A \subseteq X$. Entonces, $\tau_A = \{B \cap A : B \in \tau\}$ es la topología inducida en A.

Proposición (Caracterización de abiertos en topología inducida). Sea (X, τ) un espacio topológico, y $A \subseteq X$. Si (A, τ_A) es el espacio topológico inducido en A, entonces:

$$B' \in \tau_A \iff \exists B \in \tau : B' = B \cap A.$$

Proposición. Sea (X, τ) un espacio topológico, $y \in X$. Entonces, A es no conexo si, y solo si, existen U, V abiertos en (A, τ_A) tales que:

$$U \neq \emptyset \neq V; \quad A \subseteq U \cup V; \quad U \cap V = \emptyset.$$

Definición (Continuidad en topología inducida). Sean (X, τ_x) , (Y, τ_y) dos espacios topológicos, $A \subseteq X$, y $f: A \longrightarrow Y$. Entonces:

f es continua \iff f es continua en (A, τ_A) .

3.3. Teoremas sobre funciones continuas en \mathbb{R}^N

Teorema (Weierstrass). Sea (X,d) un espacio métrico, $\emptyset \neq A \subseteq X$ compacto, $y f : A \longrightarrow \mathbb{R}$ continua en A. Entonces, $\exists x_1, x_2 \in A : f(x_1) \leq f(x) \leq f(x_2) \ \forall x \in A$. En otras palabras, la función f alcanza su mínimo y su máximo.

Teorema (Weierstrass generalizado). Sean (X,d), (Y,d) espacios métricos, $\emptyset \neq A \subseteq X$ compacto, $y \in A \longrightarrow Y$ continua. Entonces, f(A) es compacto.

Teorema (Valor Intermedio). Sea $\emptyset \neq A \subseteq \mathbb{R}^N$ arco conexo, $y \ f : A \longrightarrow \mathbb{R}^M$ continua. Entonces, f(A) es arco-conexo en \mathbb{R}^M .

Demostración. Sean $X, Y \in f(A)$. Entonces, $\exists x, y \in A : X = f(x), Y = f(y)$. Como A es arco-conexo, $\exists \varphi : [a, b] \longrightarrow \mathbb{R}^N$ continua tal que $\varphi(a) = x$, $\varphi(b) = y$, $\varphi([a, b]) \subseteq A$.

Ahora, definimos $\psi := f \circ \varphi : [a,b] \longrightarrow \mathbb{R}^M$, que es continua por ser composición de funciones continuas. Entonces, se verifica que:

$$\psi(a) = f(\varphi(a)) = f(x) = X; \quad \psi(b) = f(\varphi(b)) = f(y) = Y; \quad \psi([a, b]) = f(\varphi([a, b])) \subseteq f(A).$$

Por tanto, queda probado que f(A) es arco-conexo en \mathbb{R}^M .

Página 11 de 15

Teorema (Valor Intermedio revisitado). Sea $\emptyset \neq A \subseteq \mathbb{R}^N$ conexo, $y \ f : A \longrightarrow \mathbb{R}^M$ continua. Entonces, f(A) es conexo en \mathbb{R}^M .

Teorema (Heine-Cantor). Sea $\emptyset \neq A \subseteq \mathbb{R}^N$ compacto, $y \ f : A \longrightarrow \mathbb{R}^N$ continua. Entonces f es uniformemente continua en A.

Demostración. f es continua en $A \implies f$ es continua en $a \ \forall a \in A$. Ahora, sea $\varepsilon > 0$ fijo.

$$\forall a \in A \quad \exists \delta = \delta_a > 0 \quad \forall x \in A \quad d(x, a) < \delta_a \implies d(f(x), f(a)) < \varepsilon$$

Tomamos un recubrimiento abierto de A, y como A es compacto, encontramos un subrecubrimiento finito.

$$A \subseteq \bigcup_{a \in A} B(a, \frac{\delta_a}{2}) \implies \exists a_1, \dots, a_n \in A : A \subseteq \bigcup_{i=1}^n B\left(a_i, \frac{\delta_{a_i}}{2}\right)$$

Por esta última inclusión:

$$\forall x \in A \quad \exists i \in \{1, \dots, n\} : x \in B\left(a_i, \frac{\delta_{a_i}}{2}\right) \cap A \implies f(x) \in B(f(a_i), \varepsilon)$$

Sean $\delta = \min \left\{ \frac{\delta_{a_i}}{2} : i \in \{1, \dots, n\} \right\} > 0$ y $y \in A : d(x, y) < \delta < \delta_{a_i}$ para un $x \in A$ fijo. Tomamos el a_i proporcionado por la proposición anterior para x.

$$d(y, a_i) \le d(y, x) + d(x, a_i) < \delta_{a_i} \implies y \in B(a_i, \delta_{a_i}) \implies f(y) \in B(f(a_i), \varepsilon)$$

Finalmente,

$$d(f(x), f(y)) \le d(f(x), f(a_i)) + d(f(a_i), f(y)) < \varepsilon$$

Para cualquier ε para el que se desee que se verifique la condición de la continuidad uniforme, basta tomar $\frac{\varepsilon}{2}$ en la continuidad.

Demostración alternativa. La condición para la continuidad uniforme es la siguiente:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in A : d(x, y) < \delta \implies d(f(x), f(y)) < \varepsilon$$

Vamos a proceder por reducción al absurdo, para lo cual negamos esta condición:

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0 \ \exists x, y \in A : d(x, y) < \delta \land d(f(x), f(y)) \ge \varepsilon_0$$

Tomamos este ε_0 , lo que nos da, para cada $\delta > 0$, un par de puntos x e y que cumplen la propiedad expresada arriba. Tomamos $\delta = \frac{1}{n} \ \forall n \in \mathbb{N}$. Esto nos da dos sucesiones $\{x_n\}$ e $\{y_n\}$ tales que

$$d(x_n, y_n) < \frac{1}{n} \wedge d(f(x_n), f(y_n)) \ge \varepsilon_0$$

Por ser A compacto, el teorema de Bolzano-Weierstrass nos da dos sucesiones parciales $\{x_{n_k}\}$ a x_0 e $\{y_{n_k}\}$ a y_0 . Por tanto:

$$d(x_{n_k}, y_{n_k}) < \frac{1}{n_k} \wedge d(f(x_{n_k}), f(y_{n_k})) \ge \varepsilon_0$$

Sin embargo, $\{x_{n_k}\}$ e $\{y_{n_k}\}$ convergen al mismo punto (por converger su distancia a cero), y como f es continua, esta proposición no puede ser verdadera. Hemos llegado por tanto a una contradicción, luego f debe ser uniformemente continua.

4. Límite funcional en \mathbb{R}^N .

Definición (Límite funcional). Sean $\emptyset \neq A \subseteq \mathbb{R}^N$, $a \in A'$ y $f : A \longrightarrow \mathbb{R}^M$. Entonces f tiene límite l en x = a, y se denota $\lim_{x \to a} f(x)$ si:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 : \begin{cases} 0 < d(x, a) < \delta \\ x \in A \end{cases} \implies d(f(x), l) < \varepsilon$$

Proposición (Caracterización punto de acumulación). Sea (X, d) un espacio métrico, y $A \subseteq X$. Consideremos un punto $x \in X$. Son equivalentes:

- (i) x es punto de acumulación de A.
- (ii) $\exists \{a_n\} \subseteq A \{x\} \ tal \ que \ \{a_n\} \to x$.
- (iii) $\forall \varepsilon > 0 \ B(x, \varepsilon) \cap (A \{x\})$ es un conjunto infinito.

5. Funciones derivables en \mathbb{R}^N .

5.1. Concepto de función derivable.

Sea A un abierto de \mathbb{R}^N . Partimos de la siguiente observación:

$$\forall x_0 \in A \quad \exists \delta > 0 : B(x_0, \delta) \subset A \implies \forall v \in \mathbb{R}^N \quad \exists \varepsilon > 0 : [\ t \in (-\varepsilon, \varepsilon) \implies x_0 + tv \in B(x_0, \delta)\]$$

En particular, si $|v| = 1 \implies \varepsilon = \delta$.

Definición (Función derivable). Sean $f:A \longrightarrow \mathbb{R}^M$, y $x_0 \in A$. Se dice que f es derivable en x_0 , según Fréchet, si

$$\exists L \in Lin(\mathbb{R}^N, \mathbb{R}^M) : \lim_{x \to x_0} \frac{|f(x) - f(x_0) - L(x - x_0)|}{|x - x_0|} = 0$$

Notamos $Df(x_0) = L$.

Nota (1).

(i) El límite tiene sentido porque $x_0 \in A'$.

(ii) El límite anterior es equivalente a lím $_{y\to 0}$ $\frac{|f(x_0+y)-f(x_0)-L(y)|}{|y|}$.

Nota (2). A es abierto $\implies L$ (si existe) es única. De aquí se exige que A sea un abierto. Demostración (Nota 2). Suponemos que $\exists L_1, L_2 \in Lin(\mathbb{R}^N, \mathbb{R}^M)$ tales que

$$\lim_{x \to x_0} \frac{|f(x) - f(x_0) - L_1(x - x_0)|}{|x - x_0|} = 0 = \frac{|f(x) - f(x_0) - L_2(x - x_0)|}{|x - x_0|}$$

Entonces, dado un $x \in A$:

$$\frac{|L_1(x-x_0)-L_2(x-x_0)|}{|x-x_0|} \le \frac{|f(x)-f(x_0)-L_1(x-x_0)|}{|x-x_0|} + \frac{|f(x)-f(x_0)-L_2(x-x_0)|}{|x-x_0|}$$

$$\implies \lim_{x \to x_0} \frac{|(L_1 - L_2)(x - x_0)|}{|x - x_0|} = 0$$

 \Box

Proposición. En los mismos términos: si f es derivable en $x_0 \implies f$ es continua en x_0 . Demostración. Para probar esta proposición, hay que probar que $\lim_{x\to x_0} (f(x)-f(x_0))=0$

$$\lim_{x \to x_0} (f(x) - f(x_0)) = \underbrace{\lim_{x \to x_0} (f(x) - f(x_0) - L(x - x_0))}_{= 0 \text{ (f derivable)}} + \underbrace{\lim_{x \to x_0} L(x - x_0)}_{= 0 \text{ (L lineal}} \Longrightarrow \text{ continua)} = 0$$

Definición (Derivada direccional). Sea $v \in \mathbb{R}^N$, con |v| = 1. f es derivable en x_0 en la dirección v si:

$$\exists \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t} = D_v f(x_0) \iff$$

 $\iff f_1, f_2, \cdots f_m$ derivable direccionalmente en x_0 en la dirección v. \iff

$$\iff D_v f(x_0) = (D_v f_1(x_0), \cdots, D_v f_m(x_0))$$

Proposición. Sea f derivable en $x_0 \implies f$ derivable a lo largo de la dirección v y $D_v f(x_0) = D f(x_0)(v)$

Demostración. f derivable en x_0 . Tomo y = tv. Podemos ver entonces:

$$\lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0) - Df(x_0)(tv)}{t} = 0 \implies \lim_{t \to 0} \left| \frac{f(x_0 + tv) - f(x_0)}{t} - Df(x_0)(\frac{tv}{t}) \right| \implies \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t} - Df(x_0)(v)$$

$$\implies \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t} = Df(x_0)(v)$$

Hemos probado que $\exists D_v f(x_0)$

6. Matriz asociada a $Df(x_0)$.

Si $f: B \longrightarrow \mathbb{R}^M$, con $\emptyset \neq B \in \mathbb{R}^N$, la matriz asociada a $Df(x_0)$ es una matriz de orden $M \times N$, (que notaremos A en lo sucesivo), como ya sabemos, por ser una aplicación lineal. Ahora, nuestro siguiente objetivo es encontrar esa matriz. Observemos cómo podemos obtenerla por filas, aplicándole los vectores de la base canónica:

$$e_i = (0, \dots, 1, \dots, 0) \implies Df(x_0)(e_i) = D_{e_i}f(x_0) = Ae_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{Mi} \end{pmatrix}$$

Tras esta observación, vamos a caracterizar cada elemento a_{ii} :

$$D_{e_{i}}f(x_{0}) = \lim_{t \to 0} \frac{f(x_{0} + te_{i}) - f(x_{0})}{t} = \lim_{t \to 0} \left(\frac{f_{1}(x_{0} + (0, \dots, t, \dots, 0) - f_{1}(x_{0})}{t}, \dots, \frac{f_{M}(x_{0} + (0, \dots, t, \dots, 0) - f_{M}(x_{0})}{t} \right) = \lim_{t \to 0} \left(\lim_{t \to 0} \frac{f_{1}(x_{0} + (0, \dots, t, \dots, 0) - f_{1}(x_{0})}{t}, \dots, \lim_{t \to 0} \frac{f_{M}(x_{0} + (0, \dots, t, \dots, 0) - f_{M}(x_{0})}{t} \right) = (D_{e_{i}}f_{1}(x_{0}, \dots, D_{e_{i}}f_{M}(x_{0}))) = \left(\frac{\partial f_{1}(x_{0})}{\partial x_{i}}, \dots, \frac{\partial f_{M}(x_{0})}{\partial x_{i}} \right) \implies a_{ji} = \frac{\partial f_{j}}{\partial x_{i}}(x_{0})$$

Por tanto, A queda de la siguiente forma:

$$A = \begin{pmatrix} \frac{\partial f_1(x_0)}{\partial x_1}(x_0) & \cdots & \frac{\partial f_1(x_0)}{\partial x_N}(x_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_M(x_0)}{\partial x_1}(x_0) & \cdots & \frac{\partial f_M(x_0)}{\partial x_N}(x_0) \end{pmatrix}$$

Deducimos que:

$$\exists \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t} := D_v f(x_0) \iff f_1, \dots, f_M \text{ son derivables direc. en } x_0 \text{ en la dir. } v.$$

Además, $D_v f(x_0) = (D_v f_1(x_0), \dots, D_v f_M(x_0)).$