# Predicting service metrics for cluster-based services using real-time analytics

**Rerngvit Yanggratoke**<sup>(1)</sup>, Jawwad Ahmed<sup>(2)</sup>, John Ardelius<sup>(3)</sup>, Christofer Flinta<sup>(2)</sup>, Andreas Johnsson<sup>(2)</sup>, Daniel Gillblad<sup>(3)</sup>, Rolf Stadler<sup>(1)</sup>

(1) KTH Royal Institute of Technology, Sweden
(2) Ericsson Research, Sweden
(3) Swedish Institute of Computer Science (SICS), Sweden

CNSM 2015, Barcelona

November 10, 2015



#### Overview



----



Hardware

#### Real-time service metrics Y

- Video frame rate, read latency, ...



#### **Device statistics X**

- CPU load, memory load, #context switching, #processes, etc..
- We read raw data from /proc provided by Linux kernel







## Outline

- Real-time prediction problem
- Service-agnostic approach
- Device statistics and service metrics
- Testbed and traces
- Real-time analytics engine
- Evaluation: batch, online, real-time
- Conclusions

## Real-time prediction problem



Y: service-level metrics

X: device statistics

- Video frame rate, audio buffer rate, network read rate
- Video streaming (VLC)

CPU load, memory load,#context switching,#processes, ...

**Problem:**  $M: X \rightarrow \hat{Y}$  predicts Y in real-time

**Use case:** Building block for real-time service assurance for service operator or infrastructure provider

# Service-agnostic approach

#### **Existing works**

- 1. Apply formal models to model the system and the service
- 2. Statistical learning on few service-specific features (<10)



**Design goal** → "Service-agnostic prediction"

#### Our approach

- 1. Take "all" available statistics (>= 4000 features)
- 2. Learn using low-level (OS-level) metrics

#### Device statistics X

- Interface: System Activity Report (SAR) X
  - SAR computes metrics from /proc over time interval
  - CPU core utilization, memory and swap space utilization, disk I/O statistics, ...
  - About 840 features per machine
- SAR is based on /proc directory
  - Linux Kernel statistics
  - CPU core jiffies, current memory usage, virtual memory statistics, #processes, #blocked processes, ...
- Use numerical features only for model predictions

## Service-level metrics Y

- Video streaming service based on VLC software
- Measured metrics
  - Video frame rate (frames/sec)
  - Audio buffer rate (buffers/sec)
  - Network read rate (operations/sec)
- Instrumented VLC software







Dell PowerEdge R715 2U rack servers

CPU: two 12-core AMD Opteron processors

Memory: 64 GB RAM

Harddisk: 500 GB hard disk

NIC: 1 Gb network controller

#### X-Y traces

Load patterns: Periodic-load, flashcrowd, poisson, ....



Traces published at http://mldata.org

## Prediction methods



Increased difficulty and realism

# Batch learning on traces



### Reduce feature set

- Exhaustive search is infeasible
  - Requires  $O(2^p)$  training executions (p =  $\sim 5000$ )
- Forward stepwise feature selection
  - Heuristic method O(p²) training executions
  - Incrementally grows the feature sets
- Reduce feature set from 5000 => 12 features

## Effect of feature set reduction

| Trace             | Feature set | Video    |                 | Audio   |                 |
|-------------------|-------------|----------|-----------------|---------|-----------------|
|                   |             | NMAE (%) | Training (secs) | NMAE(%) | Training (secs) |
| Periodic-<br>load | Full        | 12       | > 59000         | 32      | > 70000         |
|                   | "Minimal"   | 6        | 862             | 22      | 1600            |
| Flash-load        | Full        | 8        | > 55000         | 21      | > 75000         |
|                   | "Minimal"   | 4        | 778             | 15      | 1750            |

=> Minimal feature set improves prediction accuracy reduces training time

# Real-time analytics engine



#### Real-time Predictions of Service Metrics from Device Statistics



# Real-time learning results

| Real-time load        | NMAE(%) |       |         |  |  |
|-----------------------|---------|-------|---------|--|--|
| pattern               | Video   | Audio | Network |  |  |
| Periodic-load pattern | 3.6     | 14    | 28.5    |  |  |
| Flash-load<br>pattern | 5.6     | 11    | 28      |  |  |

#### Discussion

- It is feasible to predict real-time service metrics from device statistics
- Feature set reduction is critical for real-time prediction
- Random forest on our testbed is the best performing method
- The key strength of this approach is that it is service agnostic