Математический анализ

Игорь Энгель

10 июня 2020 г.

Содержание

1. Интегральное исчесление одной переменной				1
	1.1	.1 Интегральные суммы	ральные суммы	1
		1.1.1	Модуль непрерывности (с первого семестра)	1
		1.1.2	Собственно, интегральные суммы	2

1. Интегральное исчесление одной переменной

1.1. Интегральные суммы

1.1.1. Модуль непрерывности (с первого семестра)

Определение 1.1.

 $f: E \mapsto \mathbb{R}$ равномерно непрерынва, если

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x, y \in E \quad |x - y| < \delta \implies |f(x) - f(y)|.$$

(Если функция непрерывна всюду, то δ зависит от ε и y, а если равномерно - только от ε).

Замечание.

Липшицева функция всегда равномерно нерпревна.

$$\forall x, y \in E \quad |f(x) - f(y)| \le M|x - y|.$$

Теорема 1.1 (Теорема Кантора).

 $f \in C[a,b]$, f равномерно непрерынва на [a,b].

Доказательство.

Предположим что равномерной непрерывности нет. Значит,

$$\exists \varepsilon > 0 \quad \forall \delta > 0 \quad \exists x, y \in [a, b] \quad \begin{cases} |x - y| < \delta \\ |f(x) - f(y)| \geqslant \varepsilon \end{cases}$$

Рассмотрим $\delta = \frac{1}{n}$. Пусть оно не подходит. Т. е.

$$\forall n \quad \exists x_n, y_n \quad \begin{cases} |x_n - y_n| < \frac{1}{n} \\ |f(x_n) - f(y_n)| \geqslant \varepsilon \end{cases}$$

Возьмём подпоследовательность x_{n_k} имеющюю предел, $\lim_{k\to\infty} x_{n_k} = c, c \in [a,b]$.

Заметим, что $y_{n_k} \in \left[x_{n_k} - \frac{1}{n}; x_{n_k} + \frac{1}{n}\right]$, значит $\lim_{k \to \infty} y_{n_k} = c$.

Так-как f непрерывна в c, выберем подоходящее δ' по $\frac{\varepsilon}{2}$.

$$\forall x \in [a; b] \quad |x - c| < \delta' \implies |f(x) - f(c)| < \frac{\varepsilon}{2}.$$

Так-как $\exists K \quad \forall k>K \quad x_{n_k}, y_{n_k} \in [c-\delta',c+\delta'],$ возьмём такую пару, тогда

$$\begin{cases} |x_{n_k} - c| < \delta' \\ |y_{n_k} - c| < \delta' \end{cases} \implies \begin{cases} |f(x_{n_k}) - f(c)| < \frac{\varepsilon}{2} \\ |f(c) - f(y_{n_k})| < \frac{\varepsilon}{2} \end{cases} \implies |f(x_{n_k}) - f(y_{n_k})| < \varepsilon.$$

Значит, $\delta = \frac{1}{n}$ подходит, и функция равномерно непрерынва.

$$\delta(\varepsilon) = \inf_{y \in E} \delta(\varepsilon, y). \qquad \Box$$

Определение 1.2 (Модуль непрерывности).

$$f:E\mapsto \mathbb{R},$$
 тогда модуль непрерывности $\omega_f(\delta)=\sup_{|x-y|\leqslant \delta}|f(x)-f(y)|$

Свойства.

$$\omega_f(0) = 0.$$

$$\omega_f(\delta) \geqslant 0.$$

 ω_f - нестрого монотонно возрастает.

$$|f(x) - f(y)| \le \omega_f(|x - y|).$$

f равномерно непрерывна на E тогда и только тогда, когда $\omega_f(\delta)$ непрерывна в нуле.

Доказательство.

Необходиомть:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x, y \in E \quad |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

$$\forall x, y \in E \quad |x - y| < \frac{\delta}{2} \implies |f(x) - f(y)| < \varepsilon.$$

$$\omega_f \left(\frac{\delta}{2}\right) < \varepsilon.$$

$$\forall \varepsilon > 0 \quad \exists \beta > 0 \quad \forall 0 < \gamma < \beta \quad \omega_f(\gamma) < \varepsilon.$$

Значит, $\lim_{\delta \to 0} \omega_f(\delta) = 0$.

Достаточность:

$$|f(x) - f(y)| \le \omega_f(|x - y|) \le \omega_f(\delta).$$

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \omega_f(\delta) < \varepsilon \implies \forall x, y \quad |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

1.1.2. Собственно, интегральные суммы

Определение 1.3.

Дроблением (разбиением, пунктиром) отрезка [a,b] называется набор точек $a=x_0 < x_1 < \ldots < x_{n-1} < x_n = b$

$$\tau = \{a = x_0, x_1, \dots, x_n = b\}.$$

Такой, что $\forall k \quad x_{k-1} < x_k$

Определение 1.4.

Мелкотью дробления τ называется $|\tau| = \max_{k=1,\dots,n} \{x_k - x_{k-1}\}$

Определение 1.5.

Оснащённым дроблением называется пара $\langle \tau, \xi \rangle$, где τ - дробление, $\xi = \{ \xi_k \in [x_{k-1}, x_k] \}$

Определение 1.6 (Интегральная сумма (сумма Римана)).

Пусть есть функция $f:[a,b]\mapsto \mathbb{R}$, и оснащённое дробление $\langle \tau,\xi\rangle$

Тогда сумма Римана этой функции:

$$S(f, \tau, \xi) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}).$$

Теорема 1.2 (Теормеа об интегральных суммах).

Пусть $f \in C[a,b], \langle \tau, \xi \rangle$ - оснащённое дробление [a,b]. Тогда

$$\left| S(f, \tau, \xi) - \int_{a}^{b} f \right| \leq (b - a)\omega_{f}(|\tau|).$$

Доказательство.

$$\Delta = S(f, \tau, \xi) - \int_{a}^{b} f$$

$$= \sum_{k=1}^{n} f(\xi_{k})(x_{k} - s_{k-1}) - \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f$$

$$= \sum_{k=1}^{n} \left(f(\xi_{k})(x_{k} - x_{k-1}) - \int_{x_{k-1}}^{x_{k}} f \right)$$

$$= \sum_{k=1}^{n} \left(\int_{x_{k-1}}^{x_{k}} f(\xi_{k}) dt - \int_{x_{k-1}}^{x_{k}} f(t) dt \right)$$

$$= \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} ((f(\xi_{k}) - f(t)) dt)$$

$$|\Delta| = \left| \sum_{k=1}^{n} \left(\int_{x_{k-1}}^{x_{k}} f(\xi_{k}) - f(t) \right) dt \right|$$

$$\leqslant \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_{k}} (f(\xi_{k}) - f(t)) dt \right|$$

$$\leqslant \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} \omega_{f}(x_{k} - x_{k-1}) dt$$

$$\leqslant \sum_{k=1}^{n} \omega_{f}(|\tau|)(x_{k} - x_{k-1}) = \omega_{f}(|\tau|)(b - a)$$

Следствие.

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall \langle \tau, \xi \rangle \quad |\tau| < \delta \implies \left| S\left(f, \tau, \xi\right) - \int^b f \right| < \varepsilon.$$

Доказательство.

$$f \in C[a, b] \implies \lim_{\alpha \to 0} \omega_f(\alpha) = 0.$$

По $\varepsilon>0$ можем выбрать $\delta>0$, такое, что $0<|\tau|<\delta\implies \omega_f(|\tau|)<\frac{\varepsilon}{b-a}$. Тогда

$$\left| S(f, \tau, \xi) - \int_{a}^{b} f \right| < (b - a) \frac{\varepsilon}{(b - a)} = \varepsilon.$$

 $\pmb{Cnedcmeue}.$ Пусть $\langle \tau_n, \xi_n \rangle$ - последовательность дроблений, такая, что $\lim |\tau_n| = 0$, тогда

$$\lim S(f, \tau_n, \xi_n) = \int_a^b f.$$

Доказательство. Фиксируем $\varepsilon > 0$, выбираем δ по предыдущему следствию, так-как $|\tau_n| \to 0$, то $\exists N > 0 \quad \forall n > N \quad |\tau_n| < \delta$, тогда $|S(f, \tau, \xi) - \int\limits_a^b f| < \varepsilon$.

Пример.

$$S_n(p) = 1^p + 2^p + \ldots + n^p.$$

Хотим что-то узнать про эту сумму (p > 0).

Можем легко оценить сверху: $S_n(p) < nn^p = n^{p+1}$

Оценим снизу через середину:

$$\frac{n}{2} \cdot \left(\frac{n}{2}\right)^p = \left(\frac{n}{2}\right)^{p+1} < S_n(p).$$

Попробуем посчитать предел:

$$\lim_{n \to \infty} \frac{S_n(p)}{n^{p+1}} = \lim_{n \to \infty} \sum_{k=1}^n \frac{k^p}{n^p} \cdot \frac{1}{n}.$$

Представим как интегральную сумму: возьмём отрезок $[0,1], x_k = x_{k-1} + \frac{1}{n}. \xi_k = x_k, f(t) = t^p$ Тогда

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^{p}}{n^{p}} \cdot \frac{1}{n} = \lim_{n \to \infty} \sum_{k=1}^{n} f(\xi_{k})(x_{k} - x_{k-1}) = \int_{0}^{1} f(t)dt = \left. \frac{t^{p+1}}{p+1} \right|_{0}^{1} = \frac{1}{p+1}.$$

Тогда $S_n(p) \sim_{n \to +\infty} \frac{n^{p+1}}{p+1}$.

Лемма. Пусть есть $f \in C^2[\alpha, \beta]$, тогда

$$\Delta = \int_{\alpha}^{\beta} f(t)dt - \frac{f(\alpha) + f(\beta)}{2}(\beta - \alpha) = -\frac{1}{2} \int_{\alpha}^{\beta} f''(t)(t - \alpha)(\beta - t)dt.$$

Доказательство. Пусть $\gamma = \frac{\alpha + \beta}{2}$.

$$\int_{\alpha}^{\beta} f(t)dt = \int_{\alpha}^{\beta} f(t)(t - \gamma)'dt$$

$$= f(t)(t - \gamma)|_{\alpha}^{\beta} - \int_{\alpha}^{\beta} f'(t)(t - \gamma)dt$$

$$= f(\beta)\frac{\beta - \alpha}{2} - \left(f(\alpha)\frac{\alpha - \beta}{2}\right) - \int_{\alpha}^{\beta} f'(t)(t - \gamma)dt$$

$$= \frac{f(\alpha) + f(\beta)}{2} (\beta - \alpha) - \int_{\alpha}^{\beta} f'(t)(t - \gamma)dt$$

Заметим, что

$$((t - \alpha)(\beta - t))' = (-t^2 + (\alpha + \beta)t - \alpha\beta)' = -2t + (\alpha + \beta) = -2(t - \gamma).$$

Тогда

$$\Delta = -\int_{\alpha}^{\beta} f'(t)(t - \gamma)$$

$$= \frac{1}{2} \int_{\alpha}^{\beta} f'(t)((t - \alpha)(\beta - t))'$$

$$= \frac{1}{2} \left(f'(t)(t - \alpha)(\beta - t)|_{\alpha}^{\beta} - \int_{\alpha}^{\beta} f''(t)(t - \alpha)(t - \beta) \right)$$

$$= -\frac{1}{2} \int_{\alpha}^{\beta} f''(t)(t - \alpha)(\beta - t)$$

Теорема 1.3 (оценка погрешностей в формуле трапеции). $f \in C^2[a,b], \tau$ - дробление. Тогда

$$\left| \Delta := \int_{a}^{b} f - \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \right| \leqslant \frac{|\tau|^2}{8} \int_{a}^{b} |f''|.$$

Доказательство.

$$\Delta = \sum_{k=1}^{n} \left(\int_{x_{k-1}}^{x_k} f - \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \right) = -\frac{1}{2} \sum_{k=1}^{n} \left(\int_{x_{k-1}}^{x_k} f''(t) (t - x_{k-1}) (x_k - t) dt \right).$$

$$|\Delta| \leqslant \frac{1}{2} \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f''(t)| |t - x_{k-1}| |x_k - t| \leqslant \frac{1}{2} \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f''(t)| \left(\frac{|\tau|}{2} \right)^2 = \frac{|\tau|^2}{8} \int_{a}^{b} |f''(t)| dt.$$

Замечание. Если в $au \; x_k = (b-a) \frac{k}{n}, \; | au| = \frac{b-a}{n}.$

$$\sum_{k=1}^{n} f(x_k)(x_k - x_{k-1}) = \frac{b-a}{n} \sum_{k=1}^{n} f(x_k).$$

$$\sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) = \frac{b-a}{n} \left(\frac{f(x_0) + f(x_n)}{2} + \sum_{k=1}^{n} f(x_k) \right).$$

Теорема 1.4 (Формула Эйлера-Маклорена для второй производной). $f \in C^2[m,n], m,n \in \mathbb{Z}$.

$$\sum_{k=m}^{n} f(k) = \int_{m}^{n} f(t)dt + \frac{f(m) + f(n)}{2} + \frac{1}{2} \int_{m}^{n} f''(t)\{t\}(1 - \{t\})dt.$$

Доказательство.

$$f(k) = \int_{k}^{k+1} f(t)dt + \frac{f(k) - f(k+1)}{2} + \frac{1}{2} \int_{k}^{k+1} f''(t)\{t\}dt.$$

$$\sum_{k=m}^{n-1} f(k) = \int_{m}^{n} f(t)dt + \frac{f(m) - f(n)}{2} + \frac{1}{2} \int_{m}^{n} f''(t)\{t\}(1 - \{t\})dt.$$

Если прибавить f(n), то получим нужную формулу.

Теперь докажем первую формулу. Можем считать что k=0, так-как можно заменить функцию.

$$f(0) = \int_{0}^{1} f(t)dt + \frac{f(0) - f(1)}{2} + \frac{1}{2} \int_{0}^{1} f''(t)t(1-t) \iff \int_{0}^{1} f(t)dt - \frac{f(0) - f(1)}{2} = -\frac{1}{2} \int_{0}^{1} f''(t)t(1-t).$$

А последнее выражение верно по лемме.