Practice final 1

I Carefully define or restate each statement

a) A rational number $q \in \mathbb{Q}$

I don't know the actual answer lmao

Solution: $q \in \mathbb{Q}$ if there exists co-prime $a,b \in \mathbb{Z}$ where $b \neq =$ such that $q = \frac{a}{b}$

b) Bezouts lemma

For some $a,b\in\mathbb{Z},\quad \exists x,y\in\mathbb{Z} ext{ s.t. } ax+by=\gcd(a,b)$

c) The Fundamental Theorem of Arithmetic

IDK

Solution: Let $n\in\mathbb{N}$. Then n can be uniquely factorized into a product of prime powers $p_1^{e_1}p_2^{e_2}\dots p_ne^{e_n}$ up to order where p_i are distinct primes and $e_i\in\mathbb{Z}$

d) A convergent sequence $(x_n)_{n\in\mathbb{N}}:\mathbb{N}\mapsto\mathbb{R}$

IDK!!!!! confusing ass questions

Solution: $(x_n)_{n\in\mathbb{N}}:\mathbb{N}\mapsto\mathbb{R}$ converges to $L\in\mathbb{R}$ if for all $\varepsilon>0\in\mathbb{R}$, there exists $n\in\mathbb{N}$ such that for all $n>N, |x_n-L|<\varepsilon$.

e)The principle of mathematical induction

Given a base case, assume that the statement holds for some value k, show that that implies that it also holds for k+1

Solution: Let $l \in \mathbb{Z}$ and let $S = \{k \in \mathbb{Z} | n \geq l\}$. If P(l) is true and P(k) being true implies P(k+1) being true for some $k \in S$, then P(n) is true for all $n \in S$

2 Write the negation of each the following and prove or disprove the original

statement

a) For all $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ such that for all $z \in \mathbb{R}$, if x + y < z, then x - y > z

Take the negation $\exists x \in \mathbb{R}$ s.t. $\forall y \in \mathbb{R}$, $\exists z \in \mathbb{R}$ s.t. $(x+y < z) \land (x-y \le z)$ Let x=0, then let z=|y|+1, then x+y=y<|y|+1 and $x-y=-y\le |y|<|y|+1$ showing that the negation is true, thus the original statement is false.

b)
$$\exists x \in \mathbb{R}$$
 s.t. $\forall y \in \mathbb{R}$, for all $z \in \mathbb{R}, xy > z$

Take the negation, $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ s.t. } \exists z \in \mathbb{R} \text{ s.t. } xy \leq z$ Let y=0 and let z=1, then xy=0<1=z so $xy\leq z$ holds and the original statement is false

3 Let $f:A\mapsto B$ and $g:B\mapsto C$ be functions. Prove or disprove each of the following:

a)
$$orall U\subseteq C, (g\circ f)^{-1}(U)=f^{-1}(g^{-1}(U))$$

Solution: Assume the original statement, we show each inclusion in turn

- Assume $x \notin f^{-1}(g^{-1}(U))$, so $f(x) \notin g^{-1}(U)$ and $g(f(x)) \notin U$. It follows that $x \notin (g \circ f)^{-1}(U)$, so by contrapositive, $(g \circ f)^{-1}(U) \subseteq f^{-1}(g^{-1}(U))$
- Assume $x\in f^{-1}(g^{-1}(U)).$ Then $f(x)\in g^{-1}(U)$ and $g(f(x))\in U$ so $g\circ f)^{-1}(U)\subseteq f^{-1}(g^{-1}(U))$