1. Введение

1.1. Множества и операции над множествами

1.1.1. Множества

~~Фрактальная математика? Появилась в 1980 г. ~~

Книга Ньютона - "Натуральная философия" (?)

- 1. Множества:
 - ullet Натуральные числа $\mathbb{N}\ (0
 ot\in\mathbb{N})$
 - ullet Целые числа ${\mathbb Z}$
 - Рациональные числа $\mathbb Q$
 - ullet Вещественные числа ${\mathbb R}$
 - ullet Действительные числа ${\mathbb C}$
- 2. Элемент множества:
 - ullet Примеры: $x\in\mathbb{N},\ x
 ot\in\mathbb{Z}$
- 3. Множество в множестве
 - ullet Примеры: $A\subset B;\;\; B\supset A$
 - $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$
 - $A \subset B, B \subset A \implies A = B$
 - ullet Пустое множество $\emptyset \subset A$

1.1.2. Операции над множествами

- 1. $A \cup B$ объединение ($x \in A \lor x \in B$)
- 2. $A\cap B$ пересечение ($x\in A\wedge x\in B$)
- 3. $A \setminus B$ разница ($x \in A \land x
 otin B$)

Иррациональное множество $\mathbb{J}=\mathbb{R}\setminus\mathbb{Q}$

$$\mathbb{J}\subset\mathbb{C}$$

 π - иррациональное число

- 4. A_B' дополнение В до А. **НЕ ТО ЖЕ САМОЕ ЧТО** $A\setminus B$!!!
- 5. Закон двойственности. $(A \cup B)' = A' \cap B'$ $(A \cap B)' = A' \cup B'$

Речь идёт о дополнении до универсума (U)

Дополнение объединения = пересечение дополнений (подобно закону Де-Моргана в логике)

Стр. 1 из 2

Обозначения

 $\emptyset, A, B, A', \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{J}, \mathbb{R}, \mathbb{C}, \mathbb{U}$ - обозначения множеств.

x - элемент множества.

 $\in, \notin, \subset, \supset, =, \setminus, \cup, \cap, '$ - операнды.

1.1.3. Эквивалентные и неэквивалентные множества.

Если между элементами двух множеств можно установить взаимнооднозначное соответствие, то такие множества называются эквивалентными.

1. Эквивалентные: $A \sim B$. Неэквивалентные: $A \nsim B$

$$A \nsim B$$
, $A \sim B_1 \subset B$

А имеет меньшую мощность чем В

- 1. Если $A
 eq \emptyset$, оно называется **конечным** *(WTF?!)*
- 2. $n \in \mathbb{N} \wedge A \sim \{1,2,3,\dots n\} \implies A$ имеет мощность n

Мощность \emptyset равна 0

- 3. Множество, не являющееся конечным называется бесконечным
- 4. Множество A называется **счётным**, если $A \sim \mathbb{N}$
- 5. Мощность множества $> \mathbb{N}$, оно называется **несчётным**.

 \mathbb{R} - счётное.

Стр. 2 из 2