CIS 3223 MQ 7

Dr Anthony Hughes

Name: Solutions

Temple ID (last 4 digits:

1 (9 pts) For the following graph use Kruskal's algorithm to find a minimum-cost spanning tree, and then determine the minimum cost. Use alphabetical ordering.

Construct a hash table using the lengths of the edges to store the edges.

Edge List (Hash Table)

Sorted Edge List

1	AB	DG	FG	GH	 -		ı	(AB)	DG
2_	BC_	CG	 	 	I L	د	2	(BC)	(C G)
3	CD	 !	 	 <u> </u>	 <u> </u>		3	CD	!
4	AE	DH	 	 	l <u>l</u>		4	AB	DH
5	EF	 	 	 	 		5	戸に	
6	BG	BF	 	 	 		6	BF	BG
8	AF	 					3	AF	1 — — — 1

Minimum cost spanning tree

12 Cost

2 (2 pts) If an undirected graph G has n nodes, what is the runtime for the function find?

O(n)

 $O(n \log n)$

 $O(n^2)$

 $O(2^n)$

3 (9 pts) The current state S of the union by rank representation of disjoint subsets of the set of vertices {A, B, C, D, E, F, G, H} is given by

pi										
	A	В	C	D	\mathbf{E}	\mathbf{F}	G	Н	I	

ank

					1			
0	1	0	1	0	Q :	0	0	8
A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	Н	ğ

(a) Draw the corresponding trees representing the sets.

- (b) Consider the following **SEQUENCE** of operations. Draw the corresponding trees representing the sets after each of the operations (use alphabetical order):

union(A, E)

union(C, D)

find (A) = B find(F) = D rout (B)=1 rank(D)=2 join B to D union(A, F)

