MSiA 400 Lab Introduction to Markov Chain

Nov 17, 2014

Young Woong Park

Example from Web Analytics

Navigational trails as Markov Chain

Definitions

- X_t : value of the system characteristic at time n
- Discrete time stochastic process $\{X_t : t = 0,1,2,3,...\}$
 - A sequence of random variables over time
 - \circ A description of the relation between random variables $X_0, X_1, X_2, ...$

Example

A page view history of user:
$$A - D - B - C$$

 $X_0 = start, X_1 = A, X_2 = D, X_3 = B, X_4 = C, X_5 = final$

- Markov property
 - \circ The state at time n+1 only depends on the state at time t

$$P[X_{t+1} = i_{t+1} | X_t = i_t, X_{t-1} = i_{t-1}, \dots, X_1 = i_1] = P[X_{t+1} = i_{t+1} | X_t = i_t]$$

Example

$$P[X_5 = F | X_4 = C, X_3 = B, X_2 = D, X_1 = A] = P[X_5 = F | X_4 = C]$$

Markov chain is a stochastic process with Markov property

Definitions (Cont.)

- Stationary assumption
 - \circ The transition probabilities are independent of time t

$$P[X_{t+1} = j | X_t = i] = p_{ij}$$
 for any t

Example

A page view history of user:
$$A - D - B - D - B - C - F$$

 $P[X_3 = B | X_2 = D] = P[X_5 = B | X_3 = D] = p_{BD}$

Markov chain with Stationary assumption is stationary Markov chain

Transition Matrix

- Transition
 - \circ The system moves from state i to state j
- Transition probabilities
 - o Probability of transition from state i to j: $P[X_{n+1} = j | X_n = i] = p_{ij}$
- Transition matrix

P =	p_{SS}	p_{Sa}	p_{Sb}	p_{Sc}	p_{Sd}	p_{Se}	p_{Sf}	p_{SF}
	p_{as}	p_{aa}	p_{ab}	p_{ac}	p_{ad}	p_{ae}	p_{af}	p_{aF}
	p_{bs}	p_{ba}	p_{bb}	p_{bc}	p_{bd}	p_{be}	p_{bf}	p_{bF}
	p_{cs}	p_{ca} p_{da} p_{ea} p_{fa}	p_{cb}	p_{cc}	p_{cd}	p_{ce}	p_{cf}	p_{cF}
	p_{ds}	p_{da}	p_{db}	p_{dc}	p_{dd}	p_{de}	p_{df}	p_{dF}
	p_{es}	p_{ea}	p_{eb}	p_{ec}	p_{ed}	p_{ee}	p_{ef}	p_{eF}
	p_{fs}	p_{fa}	p_{fb}	p_{fc}	p_{fd}	p_{fe}	p_{ff}	p_{fF}
	p_{Fs}	p_{Fa}	p_{Fb}	p_{Fc}	p_{Fd}	p_{Fe}	p_{Ff}	p_{FF}

Transition Matrix

- Transition
 - The system moves from state i to state j
- Transition probabilities
 - o Probability of transition from state i to j: $P[X_{n+1} = j | X_n = i] = p_{ij}$
- Transition matrix

	0	28/50	22/50	0	0	0	0	0
P =	0	0	16/28	0	12/28	0	0	0
	0	0	0	14/62	12/62	24/62	0	12/62
	0	0	0	0	0	10/14	0	4/14
	0	0	1	0	0	0	0	0
	0	0	0	0	0	0	6/34	28/34
	0	0	0	0	0	0	0	1
	1	0	0	0	0	0	0	0

n-step Transition Probabilities

- We are interested in
 - Suppose we are at time k. If a Markov chain is in state i now,
 what is the probability that the Markov chain is in state j after n periods?

$$P[X_{k+n} = j | X_k = i] = P[X_n = j | X_0 = i] = p_{ij}(n)$$

- $p_{ij}(n)$ is called n-step probability of a transition from state i to state j
- n-step transition probability $p_{ij}(n) = ij^{th}$ element of P^n
- Initial distribution a: probability distribution of initial state at time 0
- What is the probability of being in state j after n steps, given a?

Example

We are given α =(1,0,0,0,0,0,0,0).

The probability of being in state B after three steps?

n-step Transition Probabilities with R

Import web.txt from Blackboard (folder "Lab Nov 2" under Documents)

```
> web = read.table("../web.txt", header=T);
> P = as.matrix(web);
```

• Calculate prob distribution after 3 steps given initial vector a=(1,0,0,0,0,0,0,0)

```
> a = c(1,0,0,0,0,0,0);
> a %*% P %*% P %*% P
```

Note

- For matrix multiplication, use %*% instead of *
- BTW, then what does * do?
- Or, there exists an alternative!

```
> library(expm);
> a = c(1,0,0,0,0,0,0);
> a %*% (P %^%3)
```

Example: *n*-step Transition Probabilities

Q: What do we observe?

Steady-state Probabilities

Let P be the transition matrix for an s-state ergodic Markov chain. Then, there exists a vector $\pi = [\pi_1 \ \pi_2 \ ... \pi_s]^T$ such that

$$\lim_{n \to \infty} P^n = \begin{bmatrix} \pi_1 & \pi_2 & & \pi_{s-1} & \pi_s \\ \pi_1 & \pi_2 & \cdots & \pi_{s-1} & \pi_s \\ \vdots & \ddots & \vdots & \\ \pi_1 & \pi_2 & \cdots & \pi_{s-1} & \pi_s \\ \pi_1 & \pi_2 & \cdots & \pi_{s-1} & \pi_s \end{bmatrix}$$

Steady-state probabilities (Equilibrium)

$$\pi_j = \sum_{i=1}^s \pi_i p_{ij}$$
 for all j

Calculation of π_j 's

Steady-state probabilities

$$\pi_j = \sum_{i=1}^{S} \pi_i p_{ij} \text{ for all } j$$
 (1)

$$\sum_{j=1}^{S} \pi_j = 1 \tag{2}$$

• Calculation π_j 's : Replace one row in (1) by (2), and solve for π_j 's.

■ Let Q be the matrix obtained by replacing the last row of $(P^T - I)$ by a vector of 1's. Then,

$$Q\pi = [0,0,...,0,1]^T$$

Calculation of π_j 's with R

- Consider the example from Web Analytics
- Let Q be the matrix obtained by replacing the last row of (P^T-I) by a vector of 1's. Then,

$$Q\pi = [0,0,...,0,1]^T$$

 $\pi = Q^{-1}[0,0,...,0,1]^T$

Calculation of π_j using R
 hint1 diag(n) creates identity matrix with size n
 hint2 solve(M) returns inverse of matrix M

Calculation of π_j 's with R

- Consider the example from Web Analytics
- Let Q be the matrix obtained by replacing the last row of (P^T-I) by a vector of 1's. Then,

$$Q\pi = [0,0,...,0,1]^T$$

 $\pi = Q^{-1}[0,0,...,0,1]^T$

• Calculation of π_j using R hint1 diag(n) creates identity matrix with size n hint2 solve(M) returns inverse of matrix M

```
> Q = t(P) - diag(8);

> Q[8,] = c(1,1,1,1,1,1,1);

> rhs = c(0,0,0,0,0,0,0,1);

> Pi = solve(Q) %*% rhs;
```

First Passage Time

- Consider a path: Start A B C E
- How many steps to get to state E? What is the probability that this path happens?

$$P_{S-a-b-c-e} = P_{S,a}P_{a,b}P_{b,c}P_{c,e} = (\frac{28}{50})(\frac{16}{28})(\frac{14}{62})(\frac{10}{14})$$

What is the expected number of steps to get to state E?

E[# steps to state E] = $\sum_{all\ path\ to\ E} length(path) Prob(path)$??

Mean First Passage Time

- Mean first passage time Mean first passage time m_{ij} is the expected number of transitions before we first reach state j, given we are currently in state i.
- Derivation

Mean First Passage Time in Matrix Form

- Consider the example from Web Analytics
- Mean first passage time to state j

$$m_{ij} = 1 + \sum_{k \neq j} p_{ik} m_{kj}$$
 for each i

- Matrix form: first passage time to state Start
 - Let us define
 - B: sub matrix of P obtained by deleting the row and column corresponding to the state Start
 - m: vector of m_{ij} 's, $i, \neq Start, j = Start$
 - e: vector of 1's
 - \circ Then, we obtain m = e + Bm in matrix form
 - Hence, the mean first passage time can be calculated by

$$m = (I - B)^{-1}e$$

Mean First Passage Time with R

Mean first passage time

$$m = (I - B)^{-1}e$$

• Calculation of $m_{i,Start}$ using R

```
> B =P[2:8,2:8];

> Q = diag(7) - B;

> e = c(1,1,1,1,1,1);

> m = solve(Q) %*% e;
```

Note

- m is a vector containing the mean first passage time to Start from i=A,B,...
- Hence, the output right contains the mean first passage time to Start from all other pages
- What if we want to calculate $m_{i,A}$ or to other states?

```
[,1]
A 4.988571
B 3.560000
C 2.840336
D 4.560000
E 2.176471
F 2.000000
Final 1.000000
```

Output

```
> B =P[-2,-2]; // deleting second row and column of P
```