浙江大学实验报告

班级: <u>自动化 1703</u> 姓名: 边玥心

李优含(同组)

学号: __3170103500___

实验日期: 19.9.28

课程名称:	电机与拖动	指导老师:	上 史婷娜	成绩:	

实验名称: 直流电机认识实验及并励直流电动机

一、 实验目的和要求(必填)

- 1、 掌握并励直流电动机的起动
- 2、 掌握并励直流电动机转向方式
- 3、 熟练掌握基于并励直流电动机的工作特性和机械特性, 能够调节电动机的速度
- 4、 了解并励直流电动机的能耗制动

二、 实验内容和原理(必填)

实验内容:

- (1) 并励直流电动机的起动实验
- (2) 改变并励直流电动机的转向实验
- (3) 测取并励直流电动机的工作特性和机械特性
- (4) 并励直流电动机的调速方法 a.改变电枢端电压 b.改变励磁电流
- (5) 并励直流电动机的能耗制动

实验原理:

直流电动机是将直流电能转换为机械能的电动机。因其良好的调速性能而在电力拖动中得到广泛应用。直流电动机按励磁方式分为永磁、他励和自励 3 类,其中自励又分为并励、串励和复励 3 种。 并励直流电机的励磁绕组与电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。直流电动机有 3 种调速方法:调节励磁电流、调节电枢端电压和调节串入电枢回路的电阻。调节电枢回路串联电阻的办法比较简便,但能耗较大

直流电动机的起动:由于电机电枢回路电阻和电感都较小,而转动体具有一定的机械惯性,因此当电机接通电源后,起动的开始阶段电枢转速以及相应的反电动势很小,起动电流很大。最大可达额定电流的 15~20 倍。这一电流会使电网受到扰动、机组受到机械冲击、换向器发生火花。因此直接合闸起动只适用于功率不大于 4 千瓦的电动机(起动电流为额定电流的 6~8 倍)。

为了限制起动电流,常在电枢回路内串入专门设计的可变电阻。

三、 主要仪器设备(必填)

- 1. 直流电源
- 2. 并励直流电动机(电枢绕组电阻 $R_a=20\Omega$)
- 3. 负载-测功机
- 4. 调节电阻: 电枢调节电阻 R₁ 磁场调节电阻 R_f
- 5. 直流电表 DT10: 300V 直流电压表, 5A 直流安培表, 200mA 直流毫安表
- 6. 能耗制动电阻 DT21:90-540 Ω
- 7. 能耗用手动开关

四、操作方法和实验步骤

- 1. 起动实验
 - (1) 通电实验前,加载调零,电枢调节电阻调至最大,磁场调节电阻最小
 - (2) 直流电源开关打开后,复位,如果转向正确,减小电枢电阻至零
- 2. 改变励磁电阻转向
 - 同 1, 如果转向反, 对调电枢绕组或励磁绕组, 重新起动, 观察转向。
- 3. 测取并励直流电动机的工作特性和机械特性
 - (1) 起动,检查转向
 - (2) 调节转矩调零旋钮,使转矩显示为零;同时调节直流电源、测功机加载旋钮、磁场调节电阻,使电动机的运行在额定负载上运行,得到额定励磁电流 I_{IN}
 - (3) 保持其他调节不变的情况下,调测功机加载旋钮,逐渐减小电动机负载,测取输入电流 I、转速 n、转矩 T_2
 - (4) 进行结果数据的记录和分析
- 4. 测取调速特性
 - (1) 改变电枢端电压调速
 - (2) 改变励磁电流调速
- 5、并励直流电动机的能耗制动:按照接线图连接电动机,起动电机,调节制动电阻 R_L 的大小,观察制动时间

五、 实验接线图

1-4 接线图

5 能耗制动接线图

六、 实验结果与分析(必填)

6.1 测取并励直流电动机的工作特性和机械特性

在额定工作状况下运行, $I_{IN}=86.2$ mA(在 200mA 量程下测得)

下表为保持电枢调节 R1=0,端电压 U=220V,励磁电流 $I_{f=I_{fN}}$ 不变的条件下,改变负载,测量的电流 I(2A=1),转速 n,转矩 T 值。

根据式子: $I_{\rm a} = I - I_{\rm f}, I_{\rm f} = 86.2 \text{mA}$ $P_{\rm 2} = I_{\rm a} \times U_{\rm a}, p_{\rm 1} = I \times U, \eta = \frac{P_{\rm 2}}{P_{\rm 1}}$

序号	I (A)	T (N*m)	n(r/min)	Ia(A)	P2	P1	额定效率
1 (满载)	1.1	1.06	1599	1.0138	223.04	245.30	0.91
2	0.853	0.8	1619	0.7668	168.70	190. 22	0.89
3	0.71	0.64	1628	0.6238	137. 24	158. 33	0.87
4	0.565	0.48	1636	0.4788	105.34	126.00	0.84
5	0.471	0.36	1645	0.3848	84.66	105.03	0.81
6	0.369	0.24	1658	0. 2828	62.22	82. 29	0. 76
7	0. 275	0.12	1673	0.1888	41.54	61.33	0.68
8 (空载)	0. 171	0	1692	0.0848	18.66	38. 13	0.49

从图中可以看出,直流电动机的机械特性拟合接近于一条直线,n=1681.9-82.393T,与书中陈述,电动机的固有机械特性,n=n0-bT一致(n0 是理想空载转速,b 常数为固有机械特性的斜率),可以因而算出其他数据量。

I (A)	If(A)	Ia(A)
1.1	0.0862	1.0138
0.853	0.0862	0.7668
0.71	0.0862	0.6238
0.565	0.0862	0.4788
0.471	0.0862	0.3848
0.369	0.0862	0. 2828
0.275	0.0862	0.1888
0.171	0.0862	0.0848

经过计算, $Ia=I-I_{IN}$,从图中可以看出,T 与 Ia 呈线性关系,理论有 $T=C_eI_a\varphi$,理论与实验也在误差范围内一致。其图像未经过原点的可能性此时的实际 T 比测得值大,所以理论 T 与 Ia 应成正比例关系。

因为 $T=C_M \varphi I_a$. 随着 Ia 的增大,负载也随之增大,从电动机的机械特性曲线上可观察到,当负载增大,转速降低,与实验观测结果一致。

6.2 并励直流电动机调速特性

(1) 改变电枢电压

在保持 T=0.5N m, $I_f=I_{IN}$,逐次增加调节电阻 R1 的阻值,从而降低电机电枢两端的电压,分别测得电动机的端电压 Ua,n 和输入电流 I(SA 量程)

Ua(V)	n(r/min)	I (A)
221	1614	0.54
207	1501	0.54
193	1391	0.54
183	1307	0.54
170	1205	0.54
154	1078	0.55

由理论知,降压调速, $Ua=C_e\varphi n$ 对于同一个负载 T_{Z} 端电压越低,稳定的速度也越低,并且是向低于额定转速的方向是调节的。从表格中的数据也可以分析得,端电压降低,其转速降低,两者呈线性关系,因为有其他损耗考虑在内,此线在理论上应该经过原点。并且有

T=C_MφI_a, I=I_a+I_f, I_f保持恒定

故I输入电流也应该保持恒定。

降压调速的优点在于,

- (1) 降压人为特性和固有特性平行,满载或轻载都能明显调速
- (2) 硬度不变,静态稳定性好,调速范围大
- (3) 可以实现无级调速,连续平滑改变端电压 U即可
- (4) 调节过程能量损耗小

但降压调速有时精度较低,造假较高,很难达到电机的最高转速。

(2) 改变励磁电流调速

保持 $U=U_N,T2=0.5N/m$ 不变得条件下,逐次增加磁场调节电阻 R_f 的阻值,直到电机转速 $n=1.1n_N$ 为止,测量电动机的转速 n,励磁电流 I_n 输入电流 I_n

•			
n(r/min)	I (A)	If (mA)	Ia(A)
1462	0.568	112.8	0.455
1515	0.557	99.1	0.458
1570	0.55	87.2	0.463
1620	0. 547	80.1	0.467
1687	0. 545	72	0.473
1707	0. 544	69.7	0.474
1760	0.544	64.8	0.479

从图中数据可以看出,随着励磁电流的减小,电枢电流逐渐增大,这与理论符合一致。有 $T=C_M \varphi I_a$,随着励磁电流减小,磁通减小,因为 T 保持恒定,所以电枢电流逐渐增大。

由图表数据也可以看出,n与励磁电流呈反比关系,当 If 增大,n 逐渐减小。这是因为 $U=^{\mathbf{C}_{\mathbf{c}}\boldsymbol{\varphi}n}$,当励磁电流增大,磁通增加,因为两端电压保持相同,所以转速应当下降。

可以从实验得到,改变磁通电流可以改变电动机转速,并且增大磁通电流可减小转速,反之增大转速。 减弱电动机主磁通调速可以在功率较小的励磁回路中调节励磁电流,控制方便,能量损耗小,可以实现无 级调速,但是电机的最高转速受到机械强度与换向能力的限制,调速范围不大。

6.3 并励直流电动机的能耗制动

该实验按能耗制动的接线图进行接线,起动后检查转向,在电机稳定后改变开关位置,实现能耗制动,在 不同的电阻下记录停机时间。

R(Ω)	t (s)
无穷大	4. 72
540	1.65
90	<0.5

从数据可知,在电阻不同,电机停机时间不同。随着制动电阻的增大,停机时间也增长。

理论上解释,能耗制动的机械特性为 $n=-\frac{R_{\rm a}+R_{\rm Z}}{C_{\rm e}C_{\rm M}\phi_{\rm N}^2}T=-\beta_{\rm z}T$,随着电阻的减小,斜率减小,所对应的

曲线经过的 T 增大,有更大的 T 能够更快制动 Tz 因此停机时间变短。借助书上图像能够更好理解。

由此可知,能耗制动可以通过将电源开关倒向 R 端使电枢从电网脱离而经制动电阻 R 闭合而得,这可以让电机快速停机。并且可以设定 Rz 以改变停机时间的快慢,电阻减小,停机时间增快。

该制动的优点是,对于反抗性负载采用能耗制动可以可靠停机,不会重新反向起动。缺点在于随着转速的 降低,对应的 T 也很小,制动效果很差。

七、思考题

1. 并励电动机的速率特性 $n=f(I_a)$ 为什么是略微下降?是否出现上翘现象?为什么?上翘的速率特性对电动机运行有何影响?

并励电动机的速率特性 n=f(Ia)略微下降,是由于电动机的空载损耗的存在,所以电动机的转矩增大时,转速稍有下降。

当电动机作为发电机运行时,其随着负载的增加,同时必须要增加励磁电流。使主磁场增强以克服电枢反应产生的去磁作用和电枢压降。因此特性曲线 ILO 开始上升,为了保持电压不变,所以负载越大,励磁电流越大。以保持端电压不变(不下降)。但当 Ifz=0 时特性曲线开始出现上翘。

- 3. 当电动机的负载转矩和励磁电流不变时,减小电枢端电压,为什么会引起电动机转速降低? 因为 Ua=Ceqn, 其余保持不变,减小电枢端电压转速降低。
- 3. 当电动机的负载转矩和电枢端电压不变时,减小励磁电流会引起转速的升高,为什么? $_{\text{因为}}$ $_{\text{Ua=Ce}}$ $_{\text{ce}}$ $_{\text{ce}$
- 4. 并励电动机在负载运行中, 当磁场回路断线时是否一定会出现"飞速"?为什么?

不一定会出现飞速状态:因为他励直流电机励磁回路断线时,定子的剩磁很小,相当弱磁的人为特性,理想的空载转速很高,进行空载启动时,容易使电机的转速上升很高,造成飞车。如果轴上有重的负载,电动机将转矩不够而转速低甚至转不起来。因为 $T=C_M \omega I_a$,结果是建不起足够的反电势而过电流跳闸。