



## $\begin{array}{c} {\bf Type 977 \ fitting \ for \ heat \ pump} \\ {\bf SINH-20TE} \end{array}$

## Parametric Heat Pump calculation

Dani Carbonell

dani. carbonell@spf.ch

2018/11/07 at: 12:00:01 h





Table 1: Fitted coefficients for the heat pump.

| Coefficient                            | Description                                      |               |
|----------------------------------------|--------------------------------------------------|---------------|
|                                        |                                                  | [kW]          |
| $P_{Q_1}$                              | 1 <sup>st</sup> condenser polynomial coefficient | 2.1471e+01    |
| $P_{Q_2}$                              | $2^{st}$ condenser polynomial coefficient        | 1.8546e + 02  |
| $P_{Q_3}$                              | $3^{st}$ condenser polynomial coefficient        | 3.1189e+01    |
| $P_{Q_4}$                              | 4 <sup>st</sup> condenser polynomial coefficient | 5.4061e + 01  |
| $P_{Q_5}$                              | $5^{st}$ condenser polynomial coefficient        | 3.7373e + 02  |
| $P_{Q_6}$                              | 6 <sup>st</sup> condenser polynomial coefficient | -1.5306e+02   |
| $P_{COP_1}$                            | 1 <sup>st</sup> COP polynomial coefficient       | 6.3285e+00    |
| $P_{COP_2}$                            | 2 <sup>st</sup> COP polynomial coefficient       | 6.8230e+01    |
| $P_{COP_3}$                            | 3 <sup>st</sup> COP polynomial coefficient       | -4.8325e+00   |
| $P_{COP_4}$                            | 4 <sup>st</sup> COP polynomial coefficient       | -2.1511e+02   |
| $P_{COP_5}$                            | 5 <sup>st</sup> COP polynomial coefficient       | 5.8348e+01    |
| $P_{COP_6}$                            | 6 <sup>st</sup> COP polynomial coefficient       | -6.7859e + 01 |
| $\dot{m}_{cond}$                       | $3700.00 \ [kg/h]$                               |               |
| $\dot{m}_{evap}$                       | 3700.00 [kg/h]                                   |               |
| $\overline{COP_{nom} \text{ (A0W35)}}$ | 4.41                                             |               |
| $Q_{cond,nom}$ (A0W35)                 | $21.29 \ [kW]$                                   |               |
| $Q_{evap,nom}$ (A0W35)                 | $16.46 \ [kW]$                                   |               |
| $W_{comp,nom}$ (A0W35)                 | $4.83 \ [kW]$                                    |               |
| $RMS_{COP}$                            | 4.71e - 02                                       |               |
| $RMS_{Q_{cond}}$                       | 1.10e - 01                                       |               |
| $RMS_{W_{comp}}$                       | 8.08e - 02                                       |               |
| Fit model                              | Average Temperature                              |               |





Table 2: Differences between experiments and fitted data for the heat pump.  $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$  and  $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$  where  $n_p$  is the number of data points.

| T.                       | Tr.           | COD  | COR         |       | 0          |                |       | TI7        | TII7           |       |
|--------------------------|---------------|------|-------------|-------|------------|----------------|-------|------------|----------------|-------|
| $T_{cond,out}$           | $T_{evap,in}$ | COP  | $COP_{exp}$ | error | $Q_{cond}$ | $Q_{cond,exp}$ | error | $W_{comp}$ | $W_{comp,exp}$ | error |
| °C                       | $^{o}C$       | [-]  | [-]         | [%]   | [kW]       | [kW]           | [%]   | [kW]       | [kW]           | [%]   |
| 35.00                    | -5.00         | 3.76 | 3.81        | 1.3   | 18.50      | 18.50          | 0.0   | 4.92       | 4.86           | 1.33  |
| 35.00                    | 0.00          | 4.46 | 4.40        | 1.3   | 21.54      | 21.40          | 0.7   | 4.83       | 4.86           | 0.66  |
| 35.00                    | 5.00          | 5.21 | 5.19        | 0.5   | 24.77      | 24.85          | 0.3   | 4.75       | 4.79           | 0.79  |
| 50.00                    | -5.00         | 2.71 | 2.66        | 1.9   | 17.85      | 18.03          | 1.0   | 6.59       | 6.78           | 2.83  |
| 50.00                    | 0.00          | 3.22 | 3.16        | 1.9   | 20.96      | 20.76          | 1.0   | 6.51       | 6.57           | 0.96  |
| 50.00                    | 5.00          | 3.79 | 3.74        | 1.2   | 24.27      | 24.30          | 0.1   | 6.41       | 6.50           | 1.31  |
| 45.00                    | -5.00         | 3.10 | 3.14        | 1.1   | 18.15      | 18.27          | 0.7   | 5.85       | 5.82           | 0.46  |
| 45.00                    | 0.00          | 3.68 | 3.69        | 0.2   | 21.23      | 21.08          | 0.7   | 5.77       | 5.72           | 0.94  |
| 45.00                    | 5.00          | 4.31 | 4.35        | 1.1   | 24.52      | 24.57          | 0.2   | 5.69       | 5.64           | 0.88  |
| 55.00                    | 0.00          | 2.72 | 2.75        | 1.3   | 20.62      | 20.44          | 0.9   | 7.59       | 7.43           | 2.19  |
| 55.00                    | 5.00          | 3.22 | 3.27        | 1.5   | 23.96      | 24.02          | 0.3   | 7.44       | 7.35           | 1.22  |
| 35.00                    | 10.00         | 6.00 | 6.00        | 0.1   | 28.19      | 28.30          | 0.4   | 4.70       | 4.72           | 0.48  |
| 35.00                    | 15.00         | 6.83 | 6.83        | 0.0   | 31.80      | 31.75          | 0.2   | 4.66       | 4.65           | 0.17  |
| 50.00                    | 10.00         | 4.39 | 4.34        | 1.2   | 27.77      | 27.83          | 0.2   | 6.33       | 6.42           | 1.46  |
| 50.00                    | 15.00         | 5.03 | 4.95        | 1.7   | 31.45      | 31.37          | 0.3   | 6.25       | 6.34           | 1.43  |
| 45.00                    | 10.00         | 4.97 | 5.04        | 1.3   | 27.99      | 28.07          | 0.3   | 5.63       | 5.57           | 1.07  |
| 45.00                    | 15.00         | 5.67 | 5.74        | 1.2   | 31.65      | 31.56          | 0.3   | 5.58       | 5.50           | 1.46  |
| 55.00                    | 10.00         | 3.76 | 3.80        | 0.9   | 27.48      | 27.60          | 0.4   | 7.30       | 7.27           | 0.44  |
| 55.00                    | 15.00         | 4.34 | 4.34        | 0.2   | 31.19      | 31.18          | 0.0   | 7.18       | 7.19           | 0.14  |
| Sum                      |               |      |             | 19.9  |            |                | 7.8   |            |                | 20.24 |
| $RMS_{COP}$              | 4.71e - 02    |      |             |       |            |                |       |            |                |       |
| $RMS_O$ .                | 1.10e - 01    |      |             |       |            |                |       |            |                |       |
| $RMS_{W_{comp}}^{Qcona}$ | 8.08e - 02    |      |             |       |            |                |       |            |                |       |







Figure 1:  $Q_{cond}$  differences between experiments and fitted data







Figure 2:  $W_{comp}$  differences between experiments and fitted data





Figure 3: COP differences between experiments and fitted data