### 1 THE TEAM

Sensor Network

Team Name:

Background

#### 2 GOAL

- Create a system to collect, transport, analyze, store, and visualize sensor data
- Control external systems manually or automatically according to sensor inputs
- Access user interface anywhere with an internet connection

#### 3 OBJECTIVES

- Build sensor modules built around existing sensors that interface and draw power from the wireless node
- Build wireless nodes that connect to the sensor module over a unified hardware interface. The nodes will form a mesh network to establish communication with the base station
- The base station will interface with the nodes and sensors, both reading sensor values and controlling modules. It will also host the database to store historic data and a server to interface with mobile apps
- The mobile app will allow the user to interface with our system; reading sensors, configuring nodes, and controlling nodes.

#### 4 BACKGROUND

- Microcontroller Programming and Interfacing
- Wireless Communication and Networking
- Data Storage, Processing, and Serving
- Mobile App Development

#### 5 FEASIBILITY

- ESP8266 Microcontroller
  - Economical (\$15 Development Kit)
  - Integrated WiFi with 400+ m range
  - Interface with multiple sensors
- WiFi Communication
  - Commonly available
  - Use mobile app to configure nodes via WiFi
  - Connect to existing network to access internet
  - Connect mobile device to local network to interface with sensors
- Data Storage, Processing, & Serving
  - Use Raspberry Pi or router running Linux
  - Store sensor data on USB Drive using SQL server
  - Perform analytics on data
    - \* Energy Usage
    - \* Run time
    - \* Temperature Variations
  - Configure controllers

- Send data to mobile device for viewing via websockets
- Mobile App Development
  - Do initial setup of sensor
  - View sensor data
  - Configure controllers
  - Connect locally or over the internet through online account

## 6 INPUTS/OUTPUTS

The logical datapath for the project is diagramed in Figure 6.1. The network diagram for connecting different physical modules are presented in Figure 7.1. The inputs/outputs are summarized below.

- Sensor Data
  - Temperature
  - Humidity
  - Wind Speed
  - Rainfall
  - Barametric Pressure
  - Voltage / Current
  - Brightness
  - Sound
- Control Data
  - AC / Heater
  - LEDs
  - Outlet
  - Light
- Node Configuration
  - Sampling Rate
  - Precision
  - Control Conditions
  - Network
  - Link to Account
- Plotted Sensor Data
  - Organize sensor data graphically for user
- Sensor Data Analytics
  - Averages
  - Cummulative Totals
- Network Status
  - Nodes online
  - Last sensor readings



Figure 6.1: The Logical Datapath



Figure 6.2: The Physicial Datapath

# 7 PROJECT TIMELINE



Figure 7.1: Gant Chart for Project Timeline