EXHIBIT C

DATE: August 28, 2012

TO: Mr. Chad Kramer

Sioux Steel Company 196 ½ E 6th Street Sioux Falls, SD 57101

RE: Engineering Analysis and Design Review of 18' Diameter and 30' Diameter Hopper Cone

Assemblies

Dear Mr. Kramer,

Per your request, KC Engineering has performed a structural engineering evaluation on the 18' Diameter and 30' Diameter Hopper Cone designs provided to us. Through the use of the structural analysis program RISA 3D and manual calculations, we have come to the conclusion that the 18' Diameter Hopper will sufficiently and efficiently support the expected loads however, the 30' Diameter Hopper is not sufficient as designed.

Hopper Description

The 18' Diameter Hopper Cone assembly consists of twelve W8x13 columns with the bin stiffeners sitting directly on these columns. This hopper has a ¼" Grade 50 ksi steel compression ring stiffener and the frame is braced by 2.5"x1.0"x12 Gage Channels in both the horizontal and diagonal directions. The hopper cone itself is 14 Gauge Grade 50 ksi galvanized steel.

A larger 30' Diameter Hopper Cone assembly consists of twelve W8x28 columns with the bin stiffeners also sitting directly on these columns. This hopper has 5/16"x 8" deep compression ring channels attached to 5/16" Plates for the compression ring weldment. The frame is braced by 12 Gage Channels with the horizontal bracing and diagonal cross-bracing both being 2½" deep. The hopper cone is 10 Gauge Grade 50 ksi galvanized steel.

<u>Analysis</u>

The analysis on the frames was done using ASCE 7-05 load combinations and bin eave heights provided in emails from Sioux Steel dated July 17, 2012 and August 2, 2012. The following loads were used in the analysis:

Frame Self-weight: Calculated by RISA

Bin Dead Load: 6 psf Snow Load: 10 psf

Wind Load: ≈ 19 psf (Varies by Height)
Grain Wall Load: 47 (As Stiffener Loads)

Grain Hopper Pressures: Varies per Depth

Exhibit No. 9
Date: 9-19-14
Audrey M. Bärbush, RPR

The grain loads were calculated and evaluated in accordance with Design of Steel Bins for Storage of Bulk Solids (Gaylord, 1984) and ANSI/ASAE EP433 – Loads Exerted by Free-Flowing Grain on Bins (1998). In the attached pages, the load cases and load combinations are shown in more detail for both hoppers. The attached pages also include detailed information for all of the members and plates.

Conclusions

After completing the RISA model and hand calculations, the controlling combination for the hopper and frame analysis is Load Combination #2 (DL+LL). This combination controls for both the column design and the hopper plates. All of the members and plates for the 18' Diameter Hopper fell within the acceptable material limits for each member. However, the columns for the 30' Diameter Hopper were found to be overstressed by a factor of 1.37 and should be replaced with larger columns. The calculations for these columns can be found on Pages 20-21 of the report for the 30' Diameter Hopper.

A maximum base reaction summary can be found on Pages 519 and 664-665 in the 18' and 30' Diameter Hopper Reports, respectively.

We appreciate the opportunity to provide our services to you on this project. If you have any questions, please contact me at (712) 252-2100.

Respectfully submitted,

Deuk Matter

Derek Matthies, El KC Engineering, P.C. Reviewed by:

المراجعين المسترث

Jason P.O'Mara Vice President KC Engineering, P.C.

Table of Contents

RISA 3D Hopper Model	
RISA 3D Full Model	
Load Calculations	
Grain Bin Pressures	
Wind Load Calculations	
Column Code Check	
Hopper Panel Connection.	22-24
Hopper Results	
Compression Ring Weldment Connection	
RISA 3D Member Labels	
RISA 3D Plate Labels	
RISA 3D Deflected Shape - Elevation View	
RISA 3D Deflected Shape - Plan View	
RISA 3D Deflected Shape – Isotropic View	
RISA 3D Hopper Stresses - Elevation View	
RISA 3D Hopper Stresses - Plan View	
RISA 3D Hopper Stresses – Isotropic View	
RISA 3D Global Parameters	
RISA 3D Hot Rolled Steel Properties	
RISA 3D Cold Formed Steel Properties	
RISA 3D General Material Properties	
RISA 3D Hot Rolled Steel Section Sets	
RISA 3D Cold Formed Steel Section Sets	
RISA 3D General Section Sets	
RISA 3D Joint Coordinates	
RISA 3D Boundary Conditions	
RISA 3D Member Primary Data	
RISA 3D Member Advanced Data	
RISA 3D Hot Rolled Steel Design Parameters	
RISA 3D Cold Formed Steel Design Parameters	
RISA 3D Plate Primary Data	
RISA 3D Plate Advanced Data	
RISA 3D Joint Loads (Basic Load Case #2: Bin Dead Load)	384
RISA 3D Joint Loads (Basic Load Case #3: Snow Load)	384
RISA 3D Joint Loads (Basic Load Case #4; Wind Load on Bin)	384-385
RISA 3D Joint Loads (Basic Load Case #5: Wind Load on Hopper)	385-385
RISA 3D Joint Loads (Basic Load Case #6: Grain Wall Load)	386
RISA 3D Surface Loads (Basic Load Case #7: Full Bin — Hopper Load)	386-429
RISA 3D Surface Loads (Basic Load Case #8: Full Bin – Bin Load)	429-492
RISA 3D Surface Loads (Basic Load Case #9: Full Bin – Parallel Load)	492-555
RISA 3D Surface Loads (Basic Load Case #10: Empty Bin – Hopper Load)	
RISA 3D Surface Loads (Basic Load Case #11: Empty Bin – Bin Load)	
RISA 3D Surface Loads (Basic Load Case #12: Empty Bin – Parallel Load)	
RISA 3D Basic Load Cases	
RISA 3D Load Combinations	ხხა-ხხ4

Sioux Steel

30' Diameter Hopper Analysis

Page i

RISA 3D Load Combination Design	.,,,,,,,,, 664
RISA 3D Joint Reactions	
RISA 3D Joint Displacements	
RISA 3D Member Section Forces	
RISA 3D Member Section Stresses	
RISA 3D Member Section Deflections	
RISA 3D AISC ASD Steel Code Checks	
RISA 3D AISI NAS-07: ASD Code Formed Steel Code Checks	
RISA 3D Plate Principal Stresses	12111174 TILL
RISA 3D Plate Principal Forces	1445-1446
PISA 3D Material Takeoff	1445-1440

Sloux Steel 18' Diameter Hopper Analysis

KC ENGINEERING CO. 4300 So. Lakeport, Suite 205 Sigux City, IA 51108 (712) 252-2100 Fax 252-2046
--

PROJECT NAME: 30 & HODDER Analysis	PAGE OF 6 DATE: 8/8/12
LOCATION: Sioux Step!	PROJECT #: 61165
LOB MS	DESIGNER: DM

1. Bin Dead Load Ps 26 psf

A. Roof:

$$5A = \pi/d + \pi/2 = \pi(15')(17.32') + \pi(15')^2 = 1523 \text{ G}^2$$

Where $d = \frac{15}{\cos 30} \approx 17.32'$

B. Bin =

$$SA = \pi DH = \pi (30)(51.33') = 4837.74 \text{ ft}^2$$

 $P = 6psf(4837.74 \text{ ft}^2) = 29,026.4 \text{ lb.s}$

PLF9 Page 3

2. Snow Load

$$P_{s} = C_{s} [0.7 \text{CeC}_{6} I_{pg}]$$
 $C_{s} = 0.5$
 $C_{e} = 1.0$
 $C_{g} = 30 psf$
 $C_{e} = 1.7$

,		
<i>1</i> / <i>8</i> ₩	(C ENGINEE	RING CO.
	300 So. Lakeport,	
	ioux City, IA 551	06
1/20	712) 252-2100 ax 252-0346	

PROJECT NAME: 30' of Hopper Analysis.	PAGE 20F 6 DATE: 8/8/12
LOCATION: Sioux Sice	PROJECT #: 61165
SUBJECT: Loads	DESIGNER: DIM

$$P_s = 0.5[0.7(1.0)(1.2)(0.8)(30psf)] = 10.08 psf$$

$$P = 10.08 psf (1523ft^2) - 15352 lbs$$

$$Total \rightarrow \frac{15352}{20 \text{ Stiffeners}} = 0.77 \frac{\text{Kiffener}}{\text{Stiffener}}$$

3. Wind Load

$$FZ = 0.002.56 K_z K_{zt} K_{8} V^{2} I$$
 $K_z = 1.12$ (For hmean = 55.7')

 $K_z = Varies$ Per Bin Height

 $K_{zt} = 1.0$
 $K_{d} = 0.95$ (tanks)

 $V = 90$ mph

 $I = 0.87$

PLF 10 Page 4

	KC ENGINEERING CO.
∢ (((4300 So. Lakeport, Suite 205 Signy City, IA 51106
THE STATE OF THE S	(712) 252-2100
B √⊗	Fax 252-0346

PROJECT NAME: 30' A HODREY ANALYSIS	PAGE 3 OF 6	DATE: 8/8/12
LOCATION: STOUX Steel	PROJECT #: 611	l65
SUBJECT: LOGIS	DESIGNER: DM	

- A. Max Overturning Moment of Bin = 714'-K

 Max Wind Shear of Bin = 18.7 Kips
- B. Max Overturning Moment of Hopper + Frame = 40.64" Max Wind Shear of Hopper + Frame = 4.51 kips

Wind Loads

Wind

* Frame/Hopper Loads in Parentheses

PLF11 Page 5

	.,
1	KC ENGINEERING CO.
~/illi	4300 So. Lakeport, Suite 205
	Sioux City, IA 51105
A8/A	(712) 252-2100 Fax 252-0348
B /4	Fax 252 - 0348
1	

PROJECT NAME: 30' & Hopper Analysis	PAGE 4 OF 6	DATE: 8/8/12
LOCATION: Sioux Steel	PROJECT #: 6	65
SUBJECT: A. A.	DESIGNER: D	`

4. Grain Pressures (Full Bin)

A. Pressures from material in hopper (Figure a)
$$P' = \frac{0.68 \, \text{KD} \cos^2 \theta}{\sqrt{u'}} = \frac{0.6 \left(55.3 \, \frac{1}{4}\right) \left(0.5\right) \left(30^{\circ}\right) \cos^2 \left(45\right)}{\sqrt{27}}$$

$$q' = \frac{p'}{2} = \frac{409}{2} = \frac{205 psf}{2}$$

B. Pressures from the material above the hopper (Figure b)
$$P_i' = \frac{P_b \sin^2 \theta + R_{HF} \cos^2 \theta}{\sqrt{u'}}$$

KC ENGINEERING CO. 4300 So. Lakeport, Suita 205 Stoux City, IA 51106 (712) 252-2100 Faz 252-9348	•
--	---

PROJECT NAME: 30' & HODOEY Analysis	PAGE 5 OF 6 DATE: 8/8/12
LOCATION: Sioux Steel	PROJECT #: 61165
SUBJECT: LOADS	DESIGNER: DM

where
$$P_b = V_{max} = 1650 psf$$

$$P_{hf} = V_{smax} = 825 psf$$

$$P_{i}^{1} = \frac{(1650 \text{psf}) \sin^{2}(45) + (825 \text{psf}) \cos^{2}(45)}{\sqrt{.37}} = \frac{2034 \text{psf}}{\sqrt{.37}}$$

$$9' = \frac{1631}{2} = \frac{815}{5} \text{ psf}$$

5. Grain Pressures (Empty Bin/Full Hopper)

Hapex =
$$\frac{\Delta}{2}$$
 tand where: repose angle $\alpha = 23^{\circ}$

PLF 13 Page 7

PROJECT NAME 30' & Hooper Analysis	PAGE 6 OF 6 DATE: 8/8/12
LOCATION: Sioux Steel	PROJECT #: 61165
SUBJECT: Louds	DESIGNER: DM

B. Pressures from the material above the hopper (Figure c)

$$P_{0} = \left[\frac{1}{3} Pr^{2} A\right] \frac{1}{11 P^{2}} = \left[\frac{1}{3} (6.37)\right] 55.3 \frac{1}{10} = 117.4 pc$$
 $P_{1} = \left(\frac{1}{17.4 psf}\right) \sin^{2}(45) + \left(58.7 psf\right) \cos^{2}(45) = \frac{144.8 psf}{\sqrt{.37}}$

$$P_{2}^{\prime} = \frac{117.4 \sin^{2} 45}{58.7} = \frac{58.7 \text{ psf}}{58.7}$$

$$P_{3}^{\prime} = \frac{116.1}{2} = \frac{58.1 \text{ psf}}{3(144.8 - 58.7) + 58.7} = \frac{2}{3}(144.8 - 58.7) + \frac{58.7}{58.7} = \frac{116.1 \text{ psf}}{116.1 \text{ psf}}$$

$$P = P_{rmax}(D')$$
 where $D' = distance$ blown stiffeners
$$P = 10,020 plf (4.75') = 47.6 Kips$$

Page 1 of 4

KC Engineering, P.C.

Project Name: 30' Diameter Hopper Analysis	Date:	8/8/2012
Location: Sloux Steel	Project#:	61165
Subject: Grain Pressures and Wall Loads - 30' Diameter Hopper	Designer:	DIM

Calculate Grain Pressures and Wall Loads on a Circular Steel Bin using ANSI/ASAE EP433:

Note: This spreadsheet and ASAE EP433 shall to be used only for the design of foundations for steel bins. Concrete silos Shall be designed using ACI 313 with conservative madifications in accordance with the Midwest Plan Service handbook and shall not be designed using this spreadsheet.

Input Variables for use in Janssen's Formula:

bulk density of grain, $W =$ emptying angle of internal friction, $\phi =$	55.3 pcf use 48 for corn or beans, < or = 52 for any grain 27 degrees use 27 for shelled corn, 29 for soybeans
filling angle of repose, $\alpha =$	23 degrees use 23 for shelled corn, 25 for soybeans
coefficient of friction of grain on wall, $\mu =$	0.37 use 0.3 for smooth steel, 0.37 for corrugated steel
· k =	0.50 always use 0.5 when using ASAE EP433
Diameter of Tank, D =	30 ft
Hydraulic Radius of Tank, R =	7.5 ft
height of grain at wall, Hs =	51.3 ft

Calculate grain heights, determine whether bin is deep or shallow, and calculate Overpressure Factor, F:

he	eight to top of grain at apex, Ht =	57.7 ft	
height of grai	n to 1/3 height of surcharge, H =	53.5 ft	
height at	which rupture plane intersects =	24.5 ft	< than Hs, therefore use eq. for Deep Bins
•	Overpressure Factor, F =	1.4	1.0 for shallow bins, 1.4 for deep bins

Use the spreadsheet on the following pages to calculate Grain Pressures and Wall Loads:

for deep bins	<== eq. used
for deep bins for shallow bins	<==eq. used
	for shallow bins

Maximum Results from the spreadsheet on the following pages:

Maximum Static Vertical Pressure; V _{max} =	<u>1650</u> psf
Maximum Vertical Wall Load, P _{v max} =	<u>10020</u> plf
Maximum Static Lateral Pressure. Vs =	825 psf

Page 2 of 4

Project Name: 30' Diameter Hopper Analysis Location: Sioux Steel Subject: Grain Pressures and Wall Loads - 30' Diameter Hopper			Date: Project #: Designer:	8/8/2012 61165 DJM		
Depth Y	V(Y) (psf)	Ls (Y) (psf)	Ld (Y) (psf)	Sv (psf)	Pv (plf)	
. 0	0	0	0	O	0	
1	55	27	38	14	5	
2	108	54	7Ġ	28	2 0	
3	160	80	112	41	45	
4	211	105	147	55	79	
5	260	130	3.82	67	123	
6	308	154	216	. 80	175	
7	356	178	249	92	237	
8	401	201	281	104	307	
9	446	223	312	116	385	
10	490	245	343	127	472	
11	533	266	373	138	567	
12	574	287	402	149	669	
13	615	308	431	159	7 79	
14	655	327	458	170	896	
15	693	347	485	180	1021	-
16	731	366	512	189	1153	
17	768	384	538	199	1292	
18	804	402	563	208	1437	
19	839	419	587	217	1589	
20	873	437	611	226	1747	
21	906	453	634	235	1912	
22	939	469	657	243	2083	
23	971	485	67 9	251	2259	
24	1002	501	701	259	2442	
25	1032	516	722	267-	2630	
26	1061	. 531	743	275	2823	
27	1090	545	763	282	3023	
28	1118	559	783	290	3227	
29	1146	573	802	297	3436	
30	11.72	586	821	304	3651	
31	1198	599	839	310	3870	
32	1224	612	. 857	317	4094	•
33	1249	624	874	323	4323	
34	1273	636	891 —	330	4556	
35	1296	648	907	336	4794	
35 36	1319	660	924	342	5035	
37	1342	671	939	348	5282	
38	1364	682	955	353	5532	

Page 3 of 4

Project Name: 30' Diameter Hopper Analysis Location: Sioux Steel Subject: Grain Pressures and Wall Loads - 30' Diameter Hopper			Date: Project #: Designer:	8/8/2012 61165 DJM		
Depth Y	V(Y) (psf)	Ls (Y) (psf)	Ld (Y) (psf)	Sv (psf)	Pv (plf)	
39	1385	693	970	359	5786	
40	1406	703	984	364	6044	
41	1426	713	999	369	6306	
42	1446	· 723 ·	1012	375	6572	
43	1466	733	1026	380	6842	
44	1485	742	1039	385	7114	
45	1503	752	1052	389	7391	,
46	1521	761	1065	394	7671	
47	1539	769	1077	399	7954	
48	1556	778	1089	403	8240	
49	1572	786	1101	407	8529	
50	1589	794	1112	411	8822	
51	1605	802	1123	416	9117	
52	1620	810	1134	420	9415	
53	1635	818	1145	424	9716	
54	1650	825	1155	427	10020	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	o	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	. 0	0	0	0	0	
0	٥	.0	0	0	0	
0	D	. 0	0	0	0	
O .	D	0	0	0	0	
0	0	0	ō	. 0	0	
0	0	0	0	. 0	0	
0	0	٥	0	0	0	
0	. 0	0	0	. О	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0 -	0	ο .	0	0	0	
0	0	0	0	. 0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	ō	0	0	. 0	0	
0	0	0	0	0	0	
0	o	ō	0	0	0	

Project Name: 30' Diameter Hopper Analysis	Date:	8/8/2012
Location: Sloux Steel	Project #:	61165
Subject: Wind Loads	Designer:	DM

Velocity Pressure on Wall:

 $qz = 0.00256*Kz*Kzt*Kd*V^2*$

Velocity Pressure coefficient, Ka: Varies per height Wind directionality factor, Kd:

ASCE Table 6-3

0.95 ASCE Table 6-4

Design Force on Wall:

F=1.6*qz*G*Cf*Cg*Af

Velocity pressure, qz: Found above See Table Below for calulations

Force coefficient, Cf: 0.712 Linear interpolation of Figure 6-21 with h/D < 7

30 ft² Projected Area normal to wind, Af: For 1' increments

Velocity Pressure on Roof Middle:

 $qh = 0.00256*Kz*Kzl*Kd*V^2*I$

19.2 psf qh:

Mean Roof Height, h: S5.7 ft $h = Hs + (r*tan\theta)/2$ Velocity Pressure coefficient, K2: 1.12 ASCE Table 6-3 for mean roof height, \hbar

Wind directionality factor, Kd: 0.95 ASCE Table 6-4

Velocity Pressure on Roof Edges:

 $q_b = 0.00256 * Kz * Kzt * Kd * V^2 * I$

Qh: 19.0 psf

h = Hs + (r*tanB)/2where $\theta = 10^{\circ}$ 52.7 ft Mean Roof Height, h: ASCE Table 6-3 for mean roof height, h 1.11 Velocity Pressure coefficient, K2:

Wind directionality factor, Kd: 0.95 ASCE Table 6-4 where 8 = 30°

Project Name: 30' Diameter Hopper Analysis Location: Sioux Steel		Date: 8/8/2012 Project #: 61165
Subject: Wind Loads		Designer: DM
Design Force on Roof:	Positive sign corresponds to a binwhile a negative sign is a fo	
Windward Middle		
Length of Section, Lwm:	17 ft	Lwm = r/cosB where 9 = 30°
Velocity pressure, qh:	_	Found above
Gust effect factor, G:	·	ASCE Section 6.5.8.1 - Rigid Structure
Force coefficient, Cp:		ASCE Figure 6-6
Projected Area normal to wind, Af :		Af = 1/2*D*Lwm
Force on windward middle roof, Fwm:	****	Fu = qz*G*Cp*Af
Horizontal Componet of Force, FHwm :	•	FH = 1/2*Fwm
Vertical Componet of Force, FVwm:	•	FV = (3)^.5/2*Fwm
Leeward Middle Length of Section, Lim:	17 ft	Llm = r/cos0 where 0 = 30°
· Velocity pressure, qz		Found above
Gust effect factor, G:		ASCE Section 6.5.8.1 - Rigid Structure
Force coefficient, Cp:		ASCE Figure 6-6
Projected Area normal to wind, Af:		Af = 1/2*D*Lwm
Force on leeward middle roof, Flm:	===	Fu = qz*G*Cp*Af
Horizontal Componet of Force, FHIm:		FH = 1/2*Fim
Vertical Componet of Force, FVIm :	. "	FV = (3)^.5/2*flm
vertical compensation to the control of the control	2.2 11.90	
Windward Edge		
Length of Section, Lwe:	8 ft	Lwe = $r/\cos\theta$ where $\theta = 10^{\circ}$
Velocity pressure, qz	: 19.0 psf	Found above
Gust effect factor, G:	: 0.85	ASCE Section 6.5.8.1 - Rigid Structure
Force coefficient, Cp	-0.18	ASCE Figure 6-6
Projected Area normal to wind, Af	: 179 ft²	Af = $((\pi^*r)/4$ *Liwe)*2 x2 for both edges
Force on windward middle roof, Fwe	: -0.5 kips	$Fu = qz^*G^*Cp^*Af$
Horizontal Componet of Force, FHwe:	: -0.3 kips	FH = 1/2*Fwe
Vertical Componet of Force, FVwe:	-0.5 kips	FV = {3}^.5/2*fwe
Leeward Edge		
Length of Section, Lie:	: 8 ft	Lie = r/cosθ where θ = 10°
Velocity pressure, qz		Found above
Gust effect factor, G	•	ASCE Section 6.5.8.1 - Rigid Structure
Force coefficient, Cp		ASCE Figure 6-6
Projected Area normal to wind, Ar		Af = $(\pi^*r)/4$ * Lie x2 for both edges
Force on windward middle roof, Fle		Fu = qz*G*Cp*Af
Horizontal Componet of Force, FHIe	•	FH = 1/2*Fle
Vertical Componet of Force, FVIe:		FV = (3)^.5/2*He

Project Name: 30' Diameter Hopper Analysis	Date:	8/8/2012
Location: Sioux Steel	Project#:	61165
Subject: Wind Loads	Designer:	DM

**Postive Moment means clockwise and Negative Moment mean counter-clockwise

Vertical Load from Bridge:

0.0 kips

Horizontal Load from Bridge:

0.0 kips

Total Edge Length corner sections, ELc:

11.8 ft

Etc = (n/4)*r

per section

Total Edge Length on middle sections, ELm:

23.6 ft

ELm =(n*0 - 4*ELc)/2

per section

Windward Middle

Vertical Componet of Force, $FV_{\mbox{wm}}$:

0.7 kips

Found Above

Resultant vertical roof force, Vwm:

0.7 kips

Vwm = Dlas + FVwrn

Distance from Centroid, Dvwm:

-7.5 ft -5.5 kip-ft Dvwrn = 0/4
M = Vwm*Dvwm

Horizontal Componet of Force, HVwm :

0.4 kips

Found Above

Distance from Centrold, Dhwm:

55.7 ft

h (mean roof heigh found above)

Moment:

Moment:

23.6 kip-ft

M = HVwm*Dhwm

Leeward Middle

Vertical Componet of Force, FVim:

-2.2 kips

Found Above

Resultant vertical Force, Vim:

-2.2 kips

Vim = DLss + FVim

Distance from Centroid, Dvim :

7.5 ft

Dvlm = D/4

Moment:

-16.5 kip-ft

M = Vwlm*Dvlm

Horizontal Componet of Force, HVIm:

-1.3 kips

Found Above

Distance from Centroid, Dvm:

-55.7 ft

h (mean roof heigh found above)

Moment:

70.7 kip-ft

M = HVlm*Dhlm

8/8/2012 Date: Project Name: 30' Diameter Hopper Analysis 61165 Project#: Location: Sioux Steel Designer: DM Subject: Wind Loads

Windward Edges

Vertical Componet of Force, FVwe: -0.5 kips Found Above Vwe = DLes + Frwe Resultant Vertical Force, Vwe: -0.5 kips Distance from Centroid, Dywe: -5 ft Dvwe = D/6

Moment: 2.3 kip-ft M = Vwe*Dvwe

Horizontal Componet of Force, HVwm: -0.3 kips Found Above

52.7 ft Distance from Centroid, Dvwm: h (mean roof heigh found above)

-13.7 klp-ft M = HVwe*Dhwa Moment:

Leeward Edges

Vertical Componet of Force, FVie: -1.8 kips Found Above -1.8 klps Vie = DLnz + Fvle Resultant Vertical Force, Vie: Distance from Centroid, Dvie: 5 ft Ovle = 0/6

-8.8 kip-ft M = Vle*Dvle Moment:

Horizontal Componet of Force, HVIe: -1.0 kips Found Above

Distance from Centroid, Dvie: -52.7 ft h (mean roof heigh found above) 53.3 klp-ft M = HVie*Ohie Moment:

Total Vertical Force, VT: -4 kips Sum Resultant on Roof and DLwails: + is Down If Positive Vertical Force, no uplift on bin Total Uplift Force, UT: 3.7 kips

Sum of moments

 $Tu = U_T/N$

714 kip-ft

Total overturning moment, MT:

Tension per Stiffener, Tu:

0.18 kips N = number of stiffeners

18.7 kips Sum Horizontal Forces Total Shear Force, Vu

Project Name: 30' Diameter Hopper Analysis Date:	8/8/2012
Location: Sioux Steel Project #:	61165
Subject: Wind Loads Designer:	DM

		WIND FORCE O			_,i 6.
Height Z (ft)	Kz	qz (psf)	F (lbs)	F (kips)	Moment: F*Z (k-ft
0	0.85	14.55	264	0.26	2.77
1	0.85	14.55	264	0.26	3.04
2	0.85	14.55	264	0.26	3.30
3	0.85	14.55	264	0.26	3.57
4	0.85	14.55	264	0.26	3,83
5	0.85	14.65	266	0.27	4.12
6	0.87	14.84	269	0.27	4.45
. 7	0.88	15.03	273	0.27	4.77
8	0.89	15.21	276	0.28	5.11
9	0.90	15.37	279	0.28	5.44
10	0.91	15.54	282	0.28	5.78
11	0.92	15.69	285	0.28	6.12
12	0.92	15.84	288	0.29	6.47
13	0.93	15.99	290	0.29	6.82
14	0.94	16.13	293	0.29	7.17
15	0.95	16.27	295	0.30	7.53
16	0.96	16.40	298	0.30	7.89
17	0.96	16.53	300	0.30	8.25
18	0.97	16.6 5	302	0.30	8.62
19	0.98	16.77	304	0.30	8.98
20	0.99	16.89	307	0.31	9.35
21	0.99	17.01	309	0.31	9.73
22	1.00	17.1 2	311	0.31	10.10
23	1.01	17.23	313	0.31	10.48
24	1.01	17.34	315	0.31	10.86
25	1.02	17.44	317	0.32	11.24
26	1.02	17.54	3 1 8	0.32	11.62
27	1.03	17.64	320	0.32	12.01
28	1.04	17.74	322	0.32	12.40
29	1.04	17.84	324	0.32	12.79
30	1.05	17.93	326	0.33	13.18
31	1.05	18.02	327	0.33	13.58
32	1.06	18.11	329	0.33	13.98
33	1.06	18.20	330	0.33	14.37
34	1.07	18.29	332	0.33	14.78
35	1.07	18.38	334	0.33	15.18
36	1.08	18.46	335	0.34	15.58
37	1.08	18.54	337	0.34	15.99

38	1.09	18.63	338	0.34	16.40
39	1.09	18.71	340	0.34	16.81
40	1.10	18.78	341	0.34	17.22
41	1. 1 0	18.86	342	0.34	17.63
42	1.11	18.94	344	0.34	18.05
43	1.11	19.01	345	0.35	18.47
44	1.11	19.09	347	0.35	18.88
45	1.12	19.16	348	0.35	19.30
46	1.12	19.23	349	0.35	19.73
47	1.13	19.31	350	0.35	20.15
48	1.13	19,38	352	0.35	20.57
49	1.13	19.44	353	0.35	21.00
50	1.14	19.51	354	0.35	21.43
51	1.14	19.58	355	0.36	21.86

Project Name: 30' Diameter Hopper Analysis	Date:	8/8/2012
Location: Sioux Steel	Project #:	61165
Subject: Wind Loads	Designer:	DM

Project Name: 30' Diameter Hopper Analysis	Date:	8/8/2012
Location: Sioux Steel	Project #:	61165
Subject: Wind Loads	Designer:	DM

External Pressure Coefficients, Cp

KC ENGINEERING CO. 4900 So. Lakeport, Suite 205 810UX City, IA 51106 (712) 252-2100 Fax 252-0346
rex 232-0040

	PROJECT NAME: 30' & Hopper Analysis	PAGE 1 OF 2 DATE: 8/13/17
	LOCATION: Slow Steel	PROJECT #: 61165
ě		DESIGNER: DPA

$$W8 \times 28$$
: $A = 8.25 \text{ in}^2$

$$r_x = 3.45 \text{ in}$$

$$r_y = 1.62 \text{ in}$$

* Compressive Strength

$$\frac{KLx}{\Gamma_x} = \frac{1.0(17 \times 12)}{3.45} = 59.13$$

$$\frac{KLy}{\Gamma_y} = \frac{1.0(8 \times 12)}{1.62} = 59.26 \leftarrow Controls$$

$$F_e = \frac{\pi^2 E}{(\frac{KL}{r})^2} = 81.50$$

$$\frac{P_n}{D_c} = 191.1 \text{ Kips}$$

· Moment Capacity

$$\frac{M_{\rm H}}{\Omega_0} = 49^{\circ - K}$$
 (Table 3-10) W/ Lox = 17ft

. 1/2	KC ENGINEERING CO.
₹ ((4300 So. Lakeport, Suite 205 Sioux City, IA 51106
	(712) 252-2100
8 1/4	Fax 252-0346

PROJECT NAME: 30' O Hopper Analysis	PAGE ZOF Z	DATE: 8/13/12
LOCATION: Sioux Steel	PROJECT #: 6	65
	DESIGNER: DY	

$$\frac{157.34}{191.1} + \frac{8}{7} \left(\frac{30.05}{49} \right) = 1.37$$

Not OK

KC ENGINEERING CO.	PROJECT NAME: 30 Q HOPPET
4300 So. Lakeport, Suite 205 Sioux City, IA 51106 (712) 252-2100	LOCATION: Sioux Steel
Fax 252-0340	SUBJECT: Hopper Panel C
4	2.8.656° 12.58 @ 2"
	A 9

PROJECT NAME: 30' & Hopper Analysis	PAGE OF 3 DATE: 8/13/12
LOCATION: Sioux Steel	PROJECT #: 61165
SUBJECT: Hopper Panel Connection	DESIGNER: DM

Panel: 10 Ga, 50 Ksi

$$\frac{P_n}{n_e} = \frac{F_3 A_9}{n_e} = \frac{50(28.656 \times .1345)}{1.67} = \frac{115.4 \text{ Kips}}{1}$$

* Net Section Fracture

Ae = UAn

$$U = 1.0$$
 (Table 03.1)
 $An = Ay \cdot \Sigma A_n + \Sigma \frac{S^2}{4g} \pm \frac{1}{2} = 3.854 \text{ in}^2 - 14(.438 + 1/6)(.1345)^2 = 2.912 \text{ in}^2$

1/2	KC ENGINEERING CO.
	4300 %o. Lakeport, Suits 205 Sioux City, IA 51106 (712) 252-2100 Fax 252-0346

PROJECT NAME: 30' & Hopper Analysis	PAGE 2 OF 3 DATE: 8/13/12	
	PROJECT #: 61/65	
k	DESIGNER: DM	

* Block Shear

1 Rows

$$A_{gV} = 14(1.0^{\circ})(.1345^{\circ}) = 1.883^{\circ}in^{2}$$
 $A_{DV} = 14[1.0^{\circ} - .5(.438 + 1/6)](.1345^{\circ}) = 1.412^{\circ}in^{2}$
 $A_{DV} = 14[1.0^{\circ} - 0.5(0.438 + 1/6)](.1345^{\circ}) = 1.412^{\circ}in^{2}$
 $A_{DV} = 14[1.0^{\circ} - 0.5(0.438 + 1/6)](.1345^{\circ}) = 1.412^{\circ}in^{2}$

$$R_n = 0.6(65)(1.412) + 1.0(65)(1.412) = 146.8 \times$$

 $\leq 0.6(50)(1.883) + 1.0(65)(1.412) = 148.3 \times$

* 2 Rows

$$A_{gv} = 14(3")(.1345") = 5.649 \text{ in}^{2}$$

$$A_{nv} = 14[3.0" - 1.5(.438 + 1/6)](.1345") = 4.235 \text{ in}^{2}$$

$$A_{nt} = 14[1.0" - 0.5(.438 + 1/6)](.1345") = 1.412 \text{ in}^{2}$$

$$A_{nt} = 0.6(65)(4.235) + 1.0(65)(1.412) = 256.94$$

$$= 0.6 (65)(4.235) + 1.0(65)(1.412) = 256.9K$$

$$= 0.6 (50)(5.649) + 1.0(65)(1.412) = 261.3K$$

	KC ENGINEERING CO.
4	4300 So. Lakeport, Suite 205 Sioux City, IA 51106 (712) 252-2100 Fax 252-0346

PROJECT NAME: 30' A Hopper Analysis	PAGE 3 OF 3 DATE: 8/13/12	
	PROJECT #: 61165	
SUBJECT: Hopper Panel Connection DESIGNER: DM		

· 3 Rows.

$$A_{9}v = 14(5^{\circ})(.1345^{\circ}) = 9.415 \text{ in}^{2}$$

$$A_{1}v = 14(5^{\circ} - 2.5(.438^{\circ} + 16)](.1345^{\circ}) = 7.059 \text{ in}^{2}$$

$$A_{1}v = 14[1.0^{\circ} - 0.5(0.438 + 16)](.1345^{\circ}) = 1.412 \text{ in}^{2}$$

$$A_{1}v = 14[1.0^{\circ} - 0.5(0.438 + 16)](.1345^{\circ}) = 1.412 \text{ in}^{2}$$

$$A_{1}v = 0.6(65)(7.059) + 1.0(65)(1.412) = 367.08 \text{ K}$$

$$\leq 0.6(50)(9.415) + 1.0(65)(1.412) = 374.23 \text{ K}$$

-> Compare Rows

1.
$$Z \times Q_{1} \leq \frac{Rn}{2}$$
 $Z = Z \times Q_{1} \otimes Q_{2} \leq \frac{Rn}{2}$
 $Z = Z \times Q_{1} \otimes Q_{2} \leq \frac{Rn}{2}$
 $Z = Z \times Q_{1} \otimes Q_{2} \leq \frac{Rn}{2}$
 $Z = Z \times Q_{1} \otimes Q_{2} \leq \frac{Rn}{2}$
 $Z = Z \times Q_{2} \otimes Q_{2} \otimes Q_{2} \otimes Q_{2}$
 $Z = Z \times Q_{2} \otimes Q_{2} \otimes Q_{2} \otimes Q_{2}$
 $Z = Z \times Q_{2} \otimes Q_{2} \otimes Q_{2} \otimes Q_{2}$
 $Z = Z \times Q_{2} \otimes Q_{2} \otimes Q_{2} \otimes Q_{2}$
 $Z = Z \times Q_{2} \otimes Q_{2} \otimes Q_{2} \otimes Q_{2}$
 $Z = Z \times Q_{2} \otimes Q_{2} \otimes Q_{2} \otimes Q_{2} \otimes Q_{2}$
 $Z = Z \times Q_{2} \otimes Q_{2} \otimes Q_{2} \otimes Q_{2} \otimes Q_{2}$
 $Z = Z \times Q_{2} \otimes Q_{2} \otimes Q_{2} \otimes Q_{2} \otimes Q_{2}$
 $Z \times Q_{2} \otimes Q_{2}$

.. NSF Controls

$$\frac{R_{1}}{2} = 94.6 \text{ kips} \approx T_{u} = 95.3 \text{ kips}$$

$$\frac{95.3}{94.6} = 1.007 \Rightarrow 0.7\% \qquad \text{Less than}$$

$$\frac{2\%}{2\%} \text{ therefore pkf} = 30 \text{ Page 24}$$

KC ENGINEERING CO.
4300 St. Lakeport, Suite 205 Shour City, IA 51106 (712) 252-2100 Fax 252-0346

PROJECT NAME: 30' & Hopper Analysis	PAGE OF DATE: 8/13/11
y .	PROJECT #: 6/165
	DESIGNER: DM

omax = 28.851 Ksi @ 1'-6" below top of hopper

OK

* Maximum Base Reactions

- · Max Reaction = 157.3 Kips (LC#2)
- · Max Upliff = -4.8 Kips (LC # 10)
- * Max Base Shear 2.17 (LC #7)

	PROJECT NAME: 30' Q Hopper Analysis	PAGE OF	DATE: 8/13/12
ļ	LOCATION: Sioux Steel	PROJECT #: 61165	
	SUBJECT: Cross Ring Weldment Convertion	DESIGNER: DM	

Mz of Column = 301-K

$$M = V_{1}(\frac{H}{2}) + V_{2}(\frac{H}{2}) \qquad \text{where} \quad V = V_{2}$$

$$30^{K-f+} = V(\frac{4.8^{+}}{24}) + V(\frac{4.8^{+}}{24})$$

$$V = 75^{K/p5} \qquad V_{1} = 37.5^{K}$$

Vu = 6.25 1/Bolt

TF A325 wy Threads Included Bolls (5/8 " 4)
$$\frac{C_{\Lambda}}{\Omega} = 8.29 \frac{K}{BoH} > V_{\Omega}$$
OK

PLF 32 Page 26