

Jun 01, 2020

Roey Angel¹, Eva Petrova¹

primers

¹Soil and Water Research Infrastructure

Works for me dx.doi.org/10.17504/protocols.io.qcudsww

SoWa RI Anaerobic and Molecular Microbiology (public) Tech. support email: eva.petrova@bc.cas.cz

Eva Petrova Soil and Water Research Infrastructure

ABSTRACT

General mcrA primers for quantifying methanogens using a SYBR Green-based assay.

Name	Direction	Sequence	Citation
mlas_mod	Fwd	GGY GGT GTM GGD TTC ACM CAR TA	Angel et al., 2011
mcrA_rev	Rev	CGT TCA TBG CGT AGT TVG GRT AGT	Steinberg and Regan, 2008

• qPCR quantification of methanogens using general mcrA

Steinberg L M, Regen J M (2008). Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Applied and Environmental Microbiology. http://10.1128/AEM.00553-08

Angel R, Matthies D, Conrad R (2011). Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen.. PloS one. https://doi.org/10.1371/journal.pone.0020453

THIS PROTOCOL ACCOMPANIES THE FOLLOWING PUBLICATION

Angel, R., Matthies, D., and Conrad, R. (2011). Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS ONE 6, e20453. doi:10.1371/journal.pone.0020453.

ATTACHMENTS

Introduction_QPCR_Strata AB_rt-QPCRguide.pdf

mprotocols.io 06/01/2020

Citation: Roey Angel, Eva Petrova (06/01/2020). qPCR quantification of methanogens using general mcrA primers. https://dx.doi.org/10.17504/protocols.io.qcudsww

PCR H ₂ O		2.85	285
qPCR master mix	1x	12.5	1250
MgCl ₂ (25mM)*	3.5 mM	3.5	350
BSA (50 μg μl ⁻¹)	0.8 μg μl ⁻¹	0.4	40
mlas-mod (25 µM)	0.25 μΜ	0.25	25
mrcA-rev (25 μM)	0.25 μΜ	0.25	25
Template		5	5 x 100

^{*} Different master mixes vary in concentration of MgCl₂ and the amount should be adjusted accordingly

```
Programme 2h

2 1. 94°C - 5'
2. x 40 {
    a. 95°C - 30"
    b. 57°C - 45"
    c. 72°C - 30"
    d. 84°C - 10" take a snapshot
    }
3. Melt curve: 75°C - 94.8°C -6". Increase by 0.2°C
```