Outline
Program verification
Dijkstra's Language
Developing correct programs from specification
Static analysis
Next lecture
Ouestions

Software Systems Verification and Validation Lecture 08 - Correctness - Dijkstra

Lect. dr. Andreea Vescan

Babeș-Bolyai University Cluj-Napoca

2015-2016

- Program verification
 - Floyd Method Inductive assertions
 - Hoare Logic
- Dijkstra's Language
 - Guarded commands, Nondeterminacy and Formal Derivation of Prog
 - Guarded commands, Nondeterminacy
 - Formal Derivation of Programs
- Oeveloping correct programs from specification
 - Refinement
 - Rules of Refinement
 - Examples
- Static analysis
 - JML- Java Modeling Language
 - ESC/Java2- Extended Static Checker for Java
- Next lecture
 - Next lecture

Program verification

- Program verification
 - proof-based, computer-assisted, program-verification approach, mainly used for programs which we expect to terminate and produce a result
 - model-based, automatic, property-verification approach, mainly used for concurrent, reactive systems (originally used in a post-development stage) - model checking

Floyd Method - Inductive assertions

Figure: Robert W Floyd (June 8, 1936 - September 25, 2001)

Hoare triples

Figure: Charles Antony Richard Hoare (11 January 1934, Colombo, Sri Lanka)

Edsger Wybe Dijkstra

Figure: Edsger Wybe Dijkstra (May 11, 1930 - August 6, 2002)

Guarded command

- "guarded command" a statement list prefixed by a boolean expression: only when this boolean expression is initially true, is the statement list eligible for execution
- ullet < guarded command >::=< guard >o< guarded list >
- < guard >::=< boolean expression >
- $\bullet < \textit{guarded list} > ::= < \textit{statement} > \{; < \textit{statement} > \}$
- < guarded command set >::=
 - < guarded command > { \square < guarded command >}
- ullet < alternative construct >::= \mathbf{if} < $\mathbf{guarded}$ command \mathbf{set} > \mathbf{fi}
- ullet < repetitive construct >::= do < guarded command set > do
- < statement >::=< alternative construct > |
 < repetitive construct > | "other statements"

Nondeterminacy

• Example 1

$$\mathbf{if} x \ge y \to m := x$$
$$\Box y \ge x \to m := y$$
$$\mathbf{fi}$$

• Example 2 - compute k s.t. for fixed value n and fixed function f(i) (defined for $0 \le i < n$), k will eventually satisfy $0 \le k < n$ and $(\forall i : 0 \le i < n : f(k) \ge f(i))$.

$$k := 0; \ j := 1;$$

 $\operatorname{do} j \neq n \rightarrow \operatorname{if} f(j) \leq f(k) \rightarrow j := j + 1$
 $\Box f(j) \geq f(k) \rightarrow k := j; \ j := j + 1$
 fi

od

Weakest pre-conditions

- Hoare introduced sufficient pre-conditions such that the mechanism will no produce the wrong result but may fail to terminate.
- Dijkstra introduced necessary and sufficient pre-conditions such that the mechanism are guaranteed to produce the right result.
 - = weakest pre-conditions
- wp(S, R), where S denotes a statement list, R some condition on the state of the system.
- wp called a "predicate transformer" because it associates a pre-condition to any post-condition R.

Properties of wp

- **1** Law of the Excluded Miracle For any S, for all states: wp(S, F) = F
- **②** For any S and any two post-conditions, such that for all states $P \Rightarrow Q$, for all states:

$$wp(S, P) \Rightarrow wp(S, Q)$$

- To rany S and any two post-conditions P and Q, for all states: wp(S, P) and wp(S, Q) = wp(S, P) and wp(S, Q)
- For any deterministic S and any post-conditions P and Q, for all states:

$$(wp(S, P) \text{ or } wp(S, Q)) \Rightarrow wp(S, P \text{ or } Q)$$

Assignment and concatenation operator

Assignment

The semantics of x := E are given by: $wp("x := E", R) = R_E^x$, R_E^x -denotes a copy of the predicate defining R in which each occurrence of the variable x is replaced by E.

Concatenation operator - ;

The semantics of the ; operator are given by:

$$wp("S1; S2", R) = wp(S1, wp(S2, R)).$$

The Alternative Construct

- Let IF denote: if $B_1 o SL_1 \square ... \square B_n o SL_n$ ii Let BB denote: $(\exists i : 1 \le i \le n : B_i)$, then, by definition $wp(IF, R) = (BB \text{ and } (\forall i : 1 \le i \le n : B_i \Rightarrow wp(SL_i, R)))$.
- Theorem 1 From $(\forall i: 1 \leq i \leq n: (Q \text{ and } B_i) \Rightarrow wp(SL_i, R)$ for all states we can conclude that $(Q \text{ and } BB) \Rightarrow wp(JF, R)$ holds for all states.)
- Let t denote some integer function, and wdec(S, t)
- Theorem 2 From $(\forall i: 1 \leq i \leq n: (Q \text{ and } B_i) \Rightarrow wdec(SL_i, t))$ for all states we can conclude that $(Q \text{ and } BB) \Rightarrow wdec(IF, t)$ hold for all states.
- By definition, $wdec(S, t) = (tmin(X) \le t(X) 1) = (tmin(X) < t(X)).$

The Alternative Construct - example

- The formal requirements for performing m := max(x, y) is: R : (m = x or m = y) and m > x and m > y.
- Assignment m := x for m = x? $wp("m := x", R) = (x = x \text{ or } x = y) \text{ and } x \ge x \text{ and } x \ge y = x \ge y$
- Theorem 1: **if** $x \ge y \to m := x$ **fi**
- But B ≠ T, so we weakening BB means looking for alternatives which might introduce new guards.
- Alternative: "m := y" that introduces the new guard $wp("m" := y, R) = y \ge x$ if $x \ge y \to m := x$ $\Box y \ge x \to m := y$ fi

The Repetitive Construct

- Let DO denote: $\mathbf{do}B_1 \to SL_1 \square ... \square B_n \to SL_n \mathbf{do}$ Let $H_0 = (R \text{ and non } BB)$ and for k > 0, $H_k(R) = (wp(IF, H_{k-1}(R)))$ or $H_0(R)$ then, by definition: $wp(DO, R) = (\exists k : k \ge 0 : H_k(R))$.
- Theorem 3 If we have all the states $(P \text{ and } BB) \Rightarrow (wp(IF, P) \text{ and } wdec(IF, t) \text{ and } t \ge 0)$ we can conclude that we have for all states $P \Rightarrow wp(DO, P \text{ and non } BB)$
- T is the condition satisfied by all states, and wp(S, T) is the weakest pre-condition guaranteeing proper termination of S.
- Theorem 4 From $(P \text{ and } BB) \Rightarrow wp(IF, P)$ for all states, we can conclude that we have for all states $(P \text{ and } wp(DO, T) \Rightarrow wp(DO, P \text{ and non } BB))$

The Repetitive Construct - example

- The greatest common divisor: x = gcd(X, Y)
- Choose an invariant relation and variant function.
 establish the relation P to be kept invariant
 do "decrease t as long as possible under variance of P" od
- invariant relation (established by x := X; y := Y):

$$P : gcd(X, Y) = gcd(x, y) \text{ and } x > 0 \text{ and } y > 0$$

- $(P \text{ and } B) \Rightarrow wp("x, y : E1, E2", P))$ = (gcd(X, Y) = gcd(E1, E2) and E1 > 0 and E2 > 0).
 - gcd(X, Y) = gcd(E1, E2) is implied by P
 - invariant for (x, y): wp("x := x y, P) = (gcd(X, Y) = gcd(x y, y)and x y > 0 and y > 0), and guard x > y
 - decrease of the variant function t = x + y $wp("x := x - y", t \le t_0) = (x \le t_0)$ tmin = x, wdec("x := x - y", t) = (x < x + y) = y > 0

The Repetitive Construct - example

- x:=X; y:=Y**do** $x > y \to x := x - y$ **od**
- But P and BB are not allowed to conclude $x = \gcd(X, Y)$ the alternative y := y x requires a guard y > x
- x:=X; y:=Y do $x > y \rightarrow$ x:=x-y $\Box y > x \rightarrow y := y - x$ od

Refinement

• Input data: X $\varphi(X)$ Output data: Z $\psi(X,Z)$

Abstract program

$$Z: [\varphi, \psi]$$

Refinement

$$P_1 \prec P_2 \prec ... \prec P_{n-1} \prec P_n$$

- Rules of refinement
 - Assignment rule
 - Sequential composition rule
 - Alternation rule
 - Iteration rule

Refinement

- Assignment rule: $[\varphi(v/e), \psi] \prec v := e$
- Sequential composition rule $(\gamma middlepredicate)$

$$[\eta_1, \eta_2] \prec [\eta_1, \gamma]$$
$$[\gamma, \eta_2]$$

• Alternation rule, $G = g_1 \vee g_2 \vee ... \vee g_n$

$$[\eta_1,\eta_2] \prec$$

if
$$g_1 \rightarrow [\eta_1 \wedge g_1, \eta_2]$$

$$\Box g_2 \to [\eta_1 \wedge g_2, \eta_2]$$

$$\square g_n \rightarrow [\eta_1 \wedge g_n, \eta_2]$$

fi

Refinement

• Iteration rule $G = g_1 \vee g_2 \vee ... \vee g_n$ $[\eta, \eta \wedge \neg G] \prec$ $\mathbf{do} \ g_1 \to [\eta \wedge g_1, \eta \wedge TC]$ $\Box g_2 \to [\eta \wedge g_2, \eta \wedge TC]$ \vdots $\Box g_n \to [\eta \wedge g_n, \eta \wedge TC]$ \mathbf{do}

Refinement Rules of Refinement Examples

Examples

• See the file with the examples

JML- Java Modeling Language ESC/Java2- Extended Static Checker for Java

JML

- Tutorial JML
- Demo JML

ESC/Java2

- Tutorial ESCJava2
- Demo ESCJava2

Next lecture

•

- Lecture 09 Compulsory Attendance
- Date:22 April 2016 FRIDAY
- Hours: 12:00-14:00
- Room: A2, FSEGA Building
- ISDC presentation
- Quality