Inter-charity competition under spatial differentiation: sorting, crowding, and spillovers

Carlo Galliera,b

joint work with Timo Goeschl^{b,c}, Martin Kesternich^{b,d}, Johannes Lohse^e, Christiane Reif^f, and Daniel Römer^g

- ^a Free University of Bozen-Bolzano
- ^b ZEW Leibniz Centre for European Economic Research
- ^c Heidelberg University
- ^d Kassel University
- ^e University of Birmingham
- ^f Frauenhofer Society for the Promotion of Applied Sciences
- g Kreditanstalt für Wiederaufbau (KfW)

Motivation | Science of Philanthropy I

```
The 'Perfect Ask' (Bekkers & Wiepking 2011 ...) How to mobilize private giving to charitable causes?
```

- ▶ Many Answers . . .
 - ▶ Social information (List & Lucking-Reiley 2002 . . .)
 - ▶ Seed money (Bracha et al. 2011 . . .)
 - ▶ Small gifts (Eckel at al. 2015 . . .)
- ► Most Common Answer: 'Match your Donations!' (Huck & Rasul 2011 . . .)
 - ▶ Increases both the propensity to give &
 - ▶ The size of donations to the charity applying the match

Motivation | Science of Philanthropy II

The Market for Charitable Giving (List 2011)

How does competition between charities affect aggregate giving?

- ▶ No Clear Answer (so far ...)
 - ► Theoretical (Rose-Ackerman 1982 . . .)
 'Excessive' fundraising
 - ▶ Observable data (Scharf et al. 2022 ...)
 Mixed evidence
 - Experimental data (Schmitz 2021 ...)
 Mixed evidence, depending on whether charities are complements or substitutes

Motivation | Matching & Inter-Charity Competition I

Spatially Differentiated Market for Charitable Giving

Charities often spatially differentiate to appeal to local donor

- ▶ Highly substitutable: Different charities providing the same service (e.g., food banks, animal shelters)
- Spatially designated: Charities' location as distinguishing factor

Example: UK Food Bank Network (London)

Motivation | Matching & Inter-Charity Competition II

Research Questions

Giving & Social Distance (... stepping stone ...)

Do donors prefer to give to socially closer ('home') charity over a socially more distant ('away') charity?

Giving & Social Distance & Matching

What are the effects of a classic linear ('dollar-for-dollar') match?

- Intra-charity perspective: Crowding effect on the matched home or away charity
- Inter-charity perspective: Spillover effect on the unmatched home or away charity

Spoiler

Field Setting

- ▶ Two substitutable food banks in two neighboring cities
- ▶ Competing for donations from residents in both cities

Experimental Variation

- Social distance between potential donors and charities
- ▶ 1:1-Match to one of the competing charities

Main Result

▶ Matching the home charity increases aggregate giving

Experimental Design | Charities

Two Food Banks: Located in the same metro region (\sim 25km)

- ► Charity A: Caritas Tafel, located in Mannheim
- ► Charity B: German Red Cross Tafel, located in Heidelberg

Experimental Design | (Potential) Donors

Background: Heidelberg / Mannheim - Citizen Panel

- ▶ Initialized & maintained by University of Heidelberg / ZEW
- ▶ Started with > 10,000 invitation letters distributed to random household in both cities
- ▶ Regularly invited to surveys and online experiments
- ▶ Individual payments via shopping card (usable at gas stations, retail, online shops ...)
- ightharpoonup \sim 1,000 active members

Experimental Design | Procedure

Recruitment

- ▶ Email invitation to > 700 registered panel members
 - Donor A, in Mannheim
 - Donor B, in Heidelberg
- ▶ Survey (... speed limits ...) with fixed rewards of 15 Euro
- ▶ > 400 participants completed the survey

Programming

Via LimeSurvey

Experimental Design | Procedure

End of the Survey aka Start of the Experiments

- ▶ Upon completion: 'If you wish, you can donate a share or all of your compensation to a charitable cause'
- ▶ Unknown to participants we randomly assign five treatments

Balance Table (... between subject randomization ...)

	T1	T2	Т3	Т4	Т5
Participants	76	73	53	78	67
Age (in years)	37	40	40	41	41
Female (in %)	41	40	45	38	45
Income (in €)	2,960	2,730	2,500	2,600	2,670
Education (in years)	16	15	15	15	14

w/o Spatial Differentiation w/o Match

Baseline to mimic inter-charity competition

- Potential donors could choose between two charities or leave without making a decision
- ▶ German Red Cross Tafel (DRK) and Caritas Tafel (CT)

Location is not revealed

- Donor A: Charity A or Charity B
- ▶ Donor B: Charity A or Charity B

w/ Spatial Differentiation w/o Match

Manipulate social distance between donors and charities

- Potential donors could choose between two charities or leave without making a decision
- Replaced DRK and CT by local chapter's name:
 Tafel Mannheim and Tafel Heidelberg

Location is revealed

- ▶ Donor A: Charity A (home) or Charity B (away)
- ▶ Donor B: Charity A (away) or Charity B (home)

w/ Spatial Differentiation w/ Home Match

Introduce common fundraising instrument

- For each 1 € that is given to the socially close home charity an additional 1 € is given to the same charity by a third party
- ▶ In a competitive environment this lowers the relative costs of giving to the socially close home charity

Location is revealed w/ home match

- ▶ Matched: Close home charity
- ▶ Unmatched: Distant away charity

w/ Spatial Differentiation w/ Away Match

Introduce common fundraising instrument

- For each 1 € that is given to the socially distant away charity an additional 1 € is given to the same charity by a third party
- ▶ In a competitive environment this lowers the relative costs of giving to the socially more distant away charity

Location is revealed w/ away match

- ▶ Matched: Distant away charity
- ▶ Unmatched: Close home charity

Overview

Treatment	Spatial	Match	
	Differentiation		
T1: Neutral	×	×	76
T2: City Label	+	×	73
T3: Match	×	+ (both)	53
T4 : Home Match	+	+ home	78
T5: Away Match	+	+ away	67

Results | Sorting

Undifferentiated w/o Match vs. Differentiated w/o Match

▶ **Obs. 0**. In a spatially (un-)differentiated charitable sector, donations are (not) sorted (p-value = 0.748, p-value < 0.000)

Results | Sorting

Cumulative Distribution

Results | Intra-Charity Perspective: Crowding

Differentiated w/o Match vs. Differentiated w/ Match

▶ **Obs. 1**. In a spatially differentiated sector, matches crowd in giving to the home and away charity (*p*-value = 0.017, *p*-value < 0.000)

Results | Sorting & Crowding

Cumulative Distribution

Results | Inter-Charity Perspective: Spillover

Differentiated w/o Match vs. Differentiated w/ Match

▶ Obs. 2. In a spatially differentiated sector, no evidence that matches used by one charity result in negative spillovers on giving to the unmatched charity (p-value = 0.536, p-value = 0.037)

Results | Sorting & Crowding & Spillover

Cumulative Distribution

Results | Sorting & Crowding & Spillover

Propensity to Give to Both Charities

Panel A. Home Match					
	$Home \cap Away$	Home	Away Home		
T2: City Label	10.96	36.97	29.63		
	(3.66)	(5.65)	(8.79)		
T4: Home Match	21.79*	60.26***	36.17		
	(4.67)	(5.54)	(7.01)		
Panel B. Away Match					
	$Home \cap Away$	Away	Home Away		
T2: City Label	10.96	10.96	100.00		
	(3.66)	(3.66)	(0.00)		
T5: Away Match	22.39*	37.31**	60.00**		
	(5.09)	(5.91)	(9.80)		

Results | Aggregate Perspective

▶ **Obs. 3**. In a spatially differentiated sector, aggregate giving is significantly higher in the presence of a **Home Match** (p-value = 0.007).

Results | Discussion

Initial Priors & Added Value aka Post-Study Probability

(Maniadis et al. 2014 ...) ... more formally ...

Probability that positive spillovers are true – made upon reaching statistical significance

Depends on:

- Initial prior
- ▶ # of succ. rep.
- Level of stat. sig.
- Level of power

- ▶ Initial Study: Increases priors from 1% to 14%; 10% to 64% ...
- ▶ **Replications** 2 (3) out of 5: Increase priors from 1% to 28% (1% to 96%) ...

Conclusion

Main Question

How does fundraising in a spatially differentiated charitable market affects crowding to and spillovers between two competing charities?

Main Results

- ▶ 'Home Bias': Donations sort spatially
- ▶ Home Match: Crowds-in donations to home charity & positive spillover to away charity
- ▶ Away Match: Crowds-in donations to away charity & no spillover to home charity

Bottom Line

Home Match increases aggregate giving

Thank you!

Appendix

Appendix

Post-Study Probability, more formally . . .

We need ...

- Prior: π
- Significance: α
- ▶ Power: $1-\beta$

- ▶ Replications: *n*
- ▶ Successful replications: *r*

→ w/o Replications

$$PSP(\pi) = \frac{(1-\beta)\pi}{(1-\beta)\pi + \alpha(1-\pi)}$$

→ w Replications

$$PSP^{r}(\pi) = \frac{\binom{n}{r}(1-\beta)^{r}\beta^{n-r}PSP(\pi)}{\binom{n}{r}(1-\beta)^{r}\beta^{n-r}PSP(\pi) + \binom{n}{r}(\alpha)^{r}(1-\alpha)^{n-r}(1-PSP(\pi))}$$

