CPU 스케줄링

Effective java 미니 세미나

CPU 스케줄링?

- 프로세스들 사이에서 CPU 할당을 위한 우선순위를 관리하는 일
- 역할, 선점 방식에 의해 스케줄러와 스케줄링 방식을 구분할 수 있다

CPU 스케줄러

CPU, I/O Burst Cycle

- 스케줄링의 단위
 - 프로세스 실행이란 CPU실행 과 I/O 대기의 싸이클로 구성
 - CPU Burst CPU를 사용 하는 단절된 구간

선점, 비선점 스케줄링

- 선점 스케줄링
 - <u>우선순위가 높은 다른 프로세스</u>가 CPU 점유 가능한 기법
 - 빠른 응답속도, 우선순위 높은 프로세스를 빨리 처리해야 할 때 유용
 - but, 선점이 일어 날 경우 Overhead 발생하며 처리시간 예측이 힘듦
 - ex) 라운드 로빈, 다단계 큐, 다단계 피드백 큐

선점, 비선점 스케줄링

- 비선점 스케줄링
 - 이미 할당된 CPU를 다른 프로세스가 <u>빼앗아 사용할 수 없는 기법</u>
 - 응답 속도 예측, 일괄 처리 방식에 적합
 - but, 짧은 작업에도 장기간 대기하는 경우 발생
 - ex) FCFS, SJF, 우선순위

스케줄링이 일어나는 시점?

FCFS

- First Come, First Serve
 - P1, P2, P3 순으로 요청

프로세스	버스트 시간	대기 시간	턴어라운드 시간
P1	24	0	24
P2	3	24	27
Р3	3	27	30
평균	-	17	27

Convoy effect!

모두 차례로 수행 - No Starvation

• 평균 대기 시간 = (0 + 24 + 27)/3 = 17

SJF

Shortest Job First

프로세스	도착 시간	버스트 시간	턴어라운드 시간	대기 시간
P1	0	8	8	0
P2	1	4	11	7
Р3	2	9	24	15
P4	3	5	14	9
평균	-	-	14.25	7.75

우선순위 스케줄링

• 우선순위에 따라 스케줄링

프로세스	버스트 시간	우선순위 ¹	턴어라운드 시간	대기 시간
P1	10	3	16	6
P2	1	1	1	0
P3	2	4	18	16
P4	1	5	19	18
P5	5	2	6	1
평균	-	-	12	8.2

P2	P5	P1	Р3	P4
1	6	16	18	19

우선순위 스케줄링

• 선점형

프로세스	도착 시간	실행 시간	우선순위
P1	0	10	3
P2	1	28	2
P3	2	6	4
P4	3	14	1
P5	4	14	2

선점 무선순위

라운드 로빈

• 할당량만큼 프로세스를 할당하고 작업이 끝나면 준비 큐의 마지막에 가서 재할당을 기다리는 방식

• 시간할당	·량 = 3ms]		
프로세스	노작 시간	버스트 시간	턴어라운드 시간	대기 시간
P1	0	5	14	9
P2	1	3	5	2
P3	2	8	20	12
P4	3	6	17	11
평균	-	-	14	8.5

시간할당량 ↓ ↓ ??

Context Switching -> Overhead...

• 평균 대기 시간 = (9+2+12+11)/4=8.5

다단계 큐 스케줄링

• 준비 큐를 <u>여러 개의 큐로 분류</u>하여 각 큐가 <u>각각 다른 스케줄링 알고리즘</u>을 가지는 방식

우선순위 높은 큐가 모두 비어있기 전에는 낮은 우선 순위 큐의 프로세스를 실행 할 수 없다

다단계 피드백 큐 스케줄링

• 프로세스가 큐와 큐 사이를 이동하는 것을 허용

알고리즘 평가기준

- 프로세서 이용률: CPU가 작업을 처리하는 시간의 비율
- 처리율: CPU가 단위 시간당 처리하는 프로세스 개수
- 반환시간 또는 소요 시간: 프로세스가 시작해서 끝날 때까지 걸린 시간
- 대기 시간: 프로세스가 준비완료 큐에서 대기하는 시간의 총 합
- 반응시간 또는 응답시간: 요청 후 첫 응답이 오기까지 걸린 시간

Reference

- https://jihyeong-ji99hy99.tistory.com/26
- https://www.crocus.co.kr/1375
- https://velog.io/@ss-won/OS-CPU-Scheduling-Algorithm