CS229 Assignment 0

A Khan

May 2025

This document contains my solutions to the homework problems from the Stanford Machine Learning course CS229 (2018 set).

1 Solution to Problem 1: Gradients and Hessians

(a) Let $f(x) = \frac{1}{2}x^TAx + b^Tx$, where A is a symmetric matrix and b is a vector.

The gradient is:

$$\nabla f(x) = Ax + b$$

(since $x^T = x$ for vectors, and $b^T = b$ for column vectors).

(b) Let f(x) = g(h(x)), where $g : \mathbb{R} \to \mathbb{R}$ is differentiable and $h : \mathbb{R}^n \to \mathbb{R}$ is differentiable.

The gradient is:

$$\nabla f(x) = g'(h(x)) \cdot \nabla h(x)$$

(c) Let $f(x) = \frac{1}{2}x^T A x + b^T x$, as before.

The gradient is:

$$\nabla f(x) = Ax + b$$

The Hessian is:

$$\nabla^2 f(x) = A$$

(d) Let $f(x) = g(a^T x)$, where $g : \mathbb{R} \to \mathbb{R}$ is continuously differentiable and a is a vector.

The gradient is:

$$\nabla f(x) = g'(a^T x) \cdot a$$

The Hessian is:

$$\nabla^2 f(x) = g'' \left(a^T x \right) \cdot a a^T$$

2 Solution to Problem 2: Positive Definite Matrices

(a) Let $z \in \mathbb{R}^n$ be an n-vector. Show that $A = zz^T$ is positive semi-definite.

Solution:

 $A = zz^T$ is an $n \times n$ matrix. For any $x \in \mathbb{R}^n$, consider:

$$x^T A x = x^T (z z^T) x = (x^T z)(z^T x) = (z^T x)^2 \ge 0$$

Since $z^T x$ is a real number, its square is always non-negative. Therefore, A is positive semi-definite.

(b) Let $z \in \mathbb{R}^n$ be a non-zero n-vector. Let $A = zz^T$. What is the null-space of A? What is the rank of A?

Solution:

The null-space of A consists of all $x \in \mathbb{R}^n$ such that Ax = 0:

$$zz^Tx = 0 \implies z^Tx = 0$$

So, the null-space is the set of all vectors orthogonal (perpendicular) to z

The rank of A is 1, because A can be written as the outer product of z with itself, and thus all columns of A are linearly dependent (multiples of z).

(c) Let $A \in \mathbb{R}^{n \times n}$ be positive semi-definite and $B \in \mathbb{R}^{m \times n}$ be arbitrary, where $m, n \in \mathbb{N}$. Is BAB^T PSD? If so, prove it. If not, give a counterexample with explicit A, B.

Let $x \in \mathbb{R}^m$ be any vector. We consider:

$$x^T B A B^T x = (B^T x)^T A (B^T x)$$

Let $y = B^T x \in \mathbb{R}^n$. Then,

$$x^T B A B^T x = y^T A y$$

Since A is positive semi-definite, we know $y^TAy \geq 0$ for any $y \in \mathbb{R}^n$. Therefore,

$$x^T B A B^T x \ge 0 \quad \forall x \in \mathbb{R}^m$$

So BAB^T is always positive semi-definite if A is positive semi-definite.

Expanded Calculation (element-wise): Suppose B and A are given as:

$$B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}, \quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$B^{T} = \begin{bmatrix} b_{11} & b_{21} & \cdots & b_{m1} \\ b_{12} & b_{22} & \cdots & b_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ b_{1n} & b_{2n} & \cdots & b_{mn} \end{bmatrix}$$

Multiplying out BAB^T gives an $m \times m$ matrix, where the (i, j)-th entry is:

$$[BAB^{T}]_{ij} = \sum_{k=1}^{n} \sum_{l=1}^{n} b_{ik} a_{kl} b_{jl}$$

If A is positive semi-definite, and b_{ik} , b_{jl} are real numbers, the sum above consists of positive or zero values (if A is diagonal with nonnegative elements, each term is a squared element times a non-negative value).

Conclusion: Each element is a sum of such products, so BAB^T is positive semi-definite.

3 Problem 3: Eigenvectors, Eigenvalues, and the Spectral Theorem

(a) Suppose that the matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable, that is, $A = T\Lambda T^{-1}$ for some invertible matrix $T \in \mathbb{R}^{n \times n}$, where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ is diagonal. Let $t^{(i)}$ denote the *i*-th column of T. Show that $At^{(i)} = \lambda_i t^{(i)}$, so that the eigenvalue/eigenvector pairs of A are $(t^{(i)}, \lambda_i)$.

Solution:

Given $A = T\Lambda T^{-1}$ and $T = [t^{(1)} \ t^{(2)} \ \cdots \ t^{(n)}]$, consider $t^{(i)}$ (the *i*-th column of T):

$$At^{(i)} = T\Lambda T^{-1}t^{(i)}$$

But $T^{-1}t^{(i)} = e^{(i)}$, the *i*-th standard basis vector:

$$At^{(i)} = T\Lambda e^{(i)}$$

Since Λ is diagonal,

$$\Lambda e^{(i)} = \lambda_i e^{(i)}$$

So,

$$At^{(i)} = T(\lambda_i e^{(i)}) = \lambda_i Te^{(i)} = \lambda_i t^{(i)}$$

Conclusion: $t^{(i)}$ is an eigenvector of A with eigenvalue λ_i .

(b) Let A be symmetric, so $A = U\Lambda U^T$ for an orthogonal matrix U, where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Show that if $U = [u^{(1)} \cdots u^{(n)}]$ is orthogonal, then $u^{(i)}$ is an eigenvector of A and $Au^{(i)} = \lambda_i u^{(i)}$, where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.

Solution:

Since U is orthogonal, $U^T = U^{-1}$. Let $u^{(i)}$ be the i-th column of U.

$$Au^{(i)} = U\Lambda U^T u^{(i)}$$

But $U^T u^{(i)} = e^{(i)}$, so

$$Au^{(i)} = U\Lambda e^{(i)}$$

Since $\Lambda e^{(i)} = \lambda_i e^{(i)}$,

$$Au^{(i)} = U(\lambda_i e^{(i)}) = \lambda_i U e^{(i)} = \lambda_i u^{(i)}$$

Conclusion: $u^{(i)}$ is an eigenvector of A with eigenvalue λ_i .

(c) Show that if A is PSD, then $\lambda_i(A) \geq 0$ for each i.

Solution:

Recall that A is positive semi-definite (PSD) if $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$.

Let $u^{(i)}$ be an eigenvector of A with eigenvalue λ_i , and assume $u^{(i)}$ is normalized ($||u^{(i)}|| = 1$).

Set $x = u^{(i)}$ in the PSD condition:

$$(u^{(i)})^T A u^{(i)} \ge 0$$

By the eigenvalue equation,

$$(u^{(i)})^T A u^{(i)} = (u^{(i)})^T (\lambda_i u^{(i)}) = \lambda_i (u^{(i)})^T u^{(i)} = \lambda_i ||u^{(i)}||^2 = \lambda_i \cdot 1 = \lambda_i$$

Therefore,

$$\lambda_i > 0$$

This shows that all eigenvalues of a PSD matrix are non-negative.

Revision Notes

- Quadratic forms and gradients: For $f(x) = \frac{1}{2}x^T A x + b^T x$, the gradient is $\nabla f(x) = Ax + b$, and the Hessian is $\nabla^2 f(x) = A$ (when A is symmetric).
- Chain rule for gradients: For f(x) = g(h(x)) with $g : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R}^n \to \mathbb{R}$,

$$\nabla f(x) = g'(h(x))\nabla h(x)$$

• Positive semi-definite (PSD) matrices:

- $-A = zz^T$ is always PSD for any vector z.
- The null space of $A = zz^T$ (with $z \neq 0$) is all vectors orthogonal to z, i.e., $\{x: z^T x = 0\}$.
- The rank of $A = zz^T$ is 1 if $z \neq 0$.
- If A is PSD and B is any matrix, BAB^T is also PSD.

• Eigenvectors and Eigenvalues:

- If A is diagonalizable, $A = T\Lambda T^{-1}$, then the columns of T are eigenvectors and the entries of diagonal Λ are the eigenvalues.
- If A is symmetric, $A=U\Lambda U^T$ (spectral theorem), where U is orthogonal and the columns are orthonormal eigenvectors.
- For any PSD matrix A, all eigenvalues $\lambda_i \geq 0$.

• Key Properties:

- For any symmetric matrix, all eigenvalues are real and eigenvectors can be chosen orthogonal.
- The null space of a rank-one matrix zz^T is the set of all vectors perpendicular to z.
- Quadratic forms x^TAx reveal definiteness: always ≥ 0 for PSD A.