Taller aplicación modelos de datos pobres: Raya volantín

María Cristina Pérez Cuesta

Departamento Evaluación de Recursos Instituto de Fomento Pesquero Enero, 2020

Distribución

- ➤ Cono Sur de América
- Uruguay
- Argentina, Islas Falkland
- Chile

Unidad de Pesquería

- Divisiones administrativas
- Norte Unidad de Pesquería: IV-VII Regiones
- Unidad de Pesquería: VIII-41°28'S
- Sur Unidad de Pesquería: 41°28'S-XII

Desembarques

Figura 1.- Desembarques pesquería raya volantín período 1979-2018.

Características datos

Cantidad de ejemplares muestreados para la confección de las estructuras de longitudes por zona (UP, SUP)

Numero de registros de rendimiento de enmalle, espinel, por zona (UP, SUP)

	UP		SUP	
	Machos	Hembras	Machos	Hembras
1999	-	-	293	205
2000	1640	1915	8381	15551
2001	9195	13236	9713	15825
2002	5559	10925	7547	15094
2003	662	1016	4322	7214
2004	25	53	2664	3051
2005	13	42	696	688
2006	925	544	942	810
2007	459	116	1108	1066
2008	210	70	2987	2474
2009	74	25	1986	1528
2010	159	47	1818	2178
2011	67	52	1498	1133
2012	40	57	1166	997
2013	23	23	347	396
2014	7	6	18	8
2015	-	-	54	5
2016	23	1	1507	1733
2017	-	-	-	-

Año	Botes espinel		Lanchas espinel		Enmalle
	UP	SUP	UP	SUP	UP
1999	64	-	-		-
2000	272	-	2	-	-
2001	297	-	14	-	-
2002	192	-	13	-	-
2003	77	-	2	-	-
2004	163	10	7	4	-
2005	36	46	2	4	4
2006	115	56	1	5	33
2007	64	58	1	-	110
2008	16	106	0	10	237
2009	2	87	0	17	221
2010	20	64	0	2	195
2011	9	72	0	3	190
2012	6	98	3	23	67
2013	1	39	3	10	79
2014	-	-	-	-	-
2015	-	-	-	-	-
2016	7	29	-	5	5
2017	-	-	-	-	

- > Se utilizó una metodología alternativa al modelo estructurado actualmente implementado para la zona al Sur de la Unidad de Pesquería, que proporciona una evaluación independiente de tres sub-zonas.
- ➤ 1) Desde el paralelo 41°28´al límite sur de la X región de Los Lagos,
- ➤ 2) XI región de Aysén y,
- ➤ 3) XII región de Magallanes.

- Método de datos pobres basado en capturas y resiliencia (Catch-MSY) desarrollado por Martell & Froese.
- \triangleright Datos de desembarques, parámetros poblacionales r y k y niveles de reducción iniciales y finales de biomasa.
- ► Basado en el modelo de producción de Schaefer los puntos biológicos de referencia son $B_{RMS} = k/2$, $F_{RMS} = r/2$, $B_{LIM} = B_{RMS}/2$ y $F_{LIM} = 1.5F_{RMS}$.
- Supuesto: rango estrecho de combinaciones de r (tasa de crecimiento de la población) y k (capacidad de carga) conocido el modelo es capaz de mantener la población a tal nivel que no colapse o exceda la capacidad de carga asumida.

- ➤ Para la selección de los pares viables de *r-k*, se selecciona un par aleatorio dentro de los rangos establecidos a priori.
- > Se selecciona una biomasa de partida desde el rango a priori para el primer año y se utiliza la ecuación 1 para calcular la biomasa en años posteriores.

$$B_{t+1} = B_t + r\left(1 - \frac{B_t}{k}\right)B_t - C_t$$

➤ Para tener en cuenta la reducción del reclutamiento en stocks severamente agotados, se incorpora una disminución lineal de excedente, si la biomasa cae por debajo de ¼ k.

El término 4 $\frac{B_t}{k}$ asume una disminución lineal del reclutamiento por debajo de la mitad de la biomasa que es capaz de producir el RMS.

$$B_{t+1} = B_t + 4\frac{B_t}{k}r\left(1 - \frac{B_t}{k}\right)B_t - C_t \left|\frac{B_t}{k}\right| < 0.25$$

> Se descartan valores de *r-k* si se aplica alguna de las siguientes condiciones:

Si la biomasa predicha es menor a 0.05 *k* (el stock colapsa).

La biomasa predicha queda fuera del rango de biomasa establecido a priori para el año intermedio.

La biomasa predicha queda fuera del rango de biomasa establecido a priori para el año final.

- Los parámetros iniciales corresponden a la tasa de crecimiento poblacional *r*, utilizando un rango a priori de 0.015-0.1 año-1 para especies con resiliencia muy baja (Martell & Froese, 2013).
- La captura máxima sostenible expresada como una fracción de la biomasa disponible (F_{RMS}), depende de la productividad del stock.
- Esta relación se explicó dividiendo la captura máxima por el límite superior e inferior de *k* y utilizando estos valores como puntos de referencia.

	Captura/captura max	B/K
Primer año	<0.5	0.5-0.9
i illilei allo	≥0.5	0.3-0.6
Año final	>0.5	0.3-0.7
Allo IIIIai	≤0.5	0.01-0.4

Datos de entrada SUP

Desembarque SERNAPESCA por sub-zona para el Sur de la Unidad de Pesquería.

Parámetros estimados SUP

Parámetros estimados para las tres sub-zonas. r=tasa de crecimiento poblacional; k= capacidad de carga; F_{RMS} = mortalidad por pesca en RMS; B_{RMS} = Biomasa en el rendimiento máximo sostenido; B_{LAST} = biomasa 2016; B/B_{RMS} =reducción 2016; F= mortalidad por pesca 2016 y F/F_{RMS} = mortalidad por pesca relativa a la mortalidad por pesca en el RMS.

Parámetro	X
MaxCatch	3167
LastCatch	434
r	0.062 (0.04-0.09)
k	36701 (18348-736412)
F_{RMS}	0.03 (0.02-0.05)
RMS	569 (351-923)
B _{RMS}	18350 (9174-36706)
B _{LAST}	9312 (685-14521)
B/B _{RMS}	0.5 (0.04-0.79)
F	0.046 (0.03-0.63)
F/F _{RMS}	1.5 (0.96-20.5)

Salidas modelo SUP

Salidas modelo basado en capturas, sub-zona X período 1979-2016.

Variables modelo SUP

Variables estimadas por el modelo basado en capturas, sub-zona X.

FOP (IFOP) (IFOP) (IFOP) (IFOP) (IFOP) (IFOP) (IFOP) (IFOP)

INSTITUTO DE FOMENTO PESQUERO

DIVISIÓN DE INVESTIGACIÓN PESQUERA