CS 5/7350 Quiz #4 Due Mar 8 for Completion Grade

Name & ID: Bingying Liang 48999397

CS5350? Yes / No $\sqrt{}$

- 1. [2.5 pt] Consider two different algorithms that each solve a different problem.
 - Implementation X, I_x , solves Problem P_x and Implementation X is $\Theta(n)$
 - Implementation Y, I_y , solves Problem P_y and Implementation Y is $\Theta(2^n)$
 - Implementation Z, I_z , solves Problem P_z and Implementation Z is $O(n^2)$

Determine if each of these "Yes it is true", "Maybe it is true but doesn't have to be", or "No it is not true"

a. M P _x is harder than P_y	f. N Problem X is $\omega(n)$
b. $\underline{\underline{M}} P_y$ is harder than P_x	g. Y Problem X is $O(n^3)$
c. $\underline{\underline{Y}} I_y$ is harder than I_x	h. Y Problem X is $o(n^2)$

d. M I_z is harder than I_x i. Y Implementation Y is $\Omega(n)$

e. __ M __ Problem X is $\Omega(n)$ __ j. __ N __ Implementation X is $\omega(n)$

Solution: a. It has an implementation is an upper bound on the problem, but is is not necessarily a tight upper bound.

- b. The same reason as a.
- c. It has a tight x the top bound for both of them, so that makes that really easy.
- d. I_z just an upper bound here, it can even have an upper bound of log(n), it is not a tight bound.
- e. Problem X could have a tight lower bound.
- f. Problem X has an upper bound of n, but this is the implementation is the $\Theta(n)$, not the problem. So $\omega(n)$ is required to be a loose bound. So an upper bound on the Implementation is an upper bound of the problem. It cannot be an asymptotically loose lower bound on the problem.
- g. Problem x has an upper bound of n, but also has an upper bound of n^3 .
- h. It has an upper bound at the n, so it's going to have non-tied upper bound of n^2
- i. It has a lower bound of 2^n , but it also has a lower bound of n^3 , n^2 , n
- 2. [2 pts] How many edges exist in:
 - i A complete graph of |V| vertices

Solution:

$$C_{|V|}^2 = \frac{(|V|)!}{2![(|V|-2]!} = \frac{(|V|)!}{2(|V|-2)!} = \frac{(|V|)(|V|-1)}{2}$$

ii A cycle of |V| vertices

Solution:

|V|

iii A Tree of |V| vertices

Solution:

$$|V - 1|$$

iv A complete bi-partite graph $B_{j,k}$ with j vertices on one part and k vertices on the other part.

Solution:

$$j \times k$$

3. [2 pts] Find an integer for n modulo 14635 that satisfies the following equation. Note that you may use the following: 1/2793 % 14635 is 2047:

$$(2793n + 91) \% 14635 = 1374$$

Solution:

$$(2793n + 91) \% 14635 = 1374$$

 $(2793n) \% 14635 + 91 \% 14635 = 1374$
 $2793n \% 14635 + 91 = 1374$
 $2793n \% 14635 = 1283$

$$\therefore \frac{1}{2793} \% \ 14635 = 2047$$

$$\therefore (\frac{1}{2793} \times 2793n) \% \ 14635 = (2047 \times 1283) \% \ 14635$$

$$\therefore n \% \ 14635 = (2626301) \% \ 14635 = 6636$$

$$\therefore n = 14635 \times i + 6636, i \ is \ integer$$