Berapa lama sebaiknya pemberlakuan PSBB dan dapatkah dinamika mudik disimulasikan?

Update 160420, SimcovID Team

Pendahuluan

 Informasi mengenai intensitas penyebaran covid-19 bisa digunakan oleh pengambil keputusan untuk menentukan berapa lama PSBB sebaiknya diberlakukan?

Adakah alternatif pemberlakukan PSBB?

 Mensimulasikan mudik dan akibatnya pada 2 wilayah melalui beberapa skenario.

Metode

• Intensitas penyebaran covid-19 bisa dikuantifikasikan dengan mengukur nilai angka reproduksi harian (Rt).

Rt=2 artinya secara rata-rata satu orang yg terinfeksi bisa menularkan ke 2 orang

Rt>1 artinya pandemik akan berlanjut

Rt<1 artinya pandemik akan berhenti

- Membuat nilai Rt<1 sangat penting untuk melindungi sistem kesehatan, mengurangi angka kematian, dan pada akhirnya melenyapkan pandemik ini.
- Metode yang digunakan untuk mengestimasi nilai Rt adalah Extended Kalman Filter (EKF) digabung dengan low-pass filter.
- Metode ini menggunakan input data jumlah kasus aktif, jumlah kumulatif orang yang sembuh, dan jumlah kumulatif orang yang meninggal.
- Simulasi mudik menggunakan model SEIR dengan faktor mobilitas untuk dua wilayah.

Terlebih dahulu dihitung Rt (reproduksi harian) untuk negara lain

Estimasi Rt Korea Selatan

Estimasi Rt Italia

Estimasi Rt Amerika Serikat

Estimasi Rt Indonesia

Hanya melihat kasus aktif

Penambahan asumsi PDP positip

Estimasi Rt Jakarta

Hanya melihat kasus aktif

Penambahan asumsi PDP positip

Tabulasi efek intervensi

Negara	Intervensi	Persentase rapid test	Waktu mencapai R<1 semenjak mitigasi
Korea Selatan	4T	1%	2 minggu
Italia	Lockdown	1.67%	3 minggu
Amerika Serikat	Lockdown	0.85%	4 minggu
Indonesia	Himbauan Phy. distancing	0.01%	>= 4 minggu
Jakarta	PSBB**	0.4%	>= 3 minggu*

^{*}PSBB bisa mulai dibuka jika Rt<1 selama 7 hari berturut-turut (1 minggu). Sebagai contoh untuk Jakarta, jika PSBB berjalan dengan baik (Rt=1 dalam 3 minggu), maka minimal pelaksanaan PSBB adalah selama 4 minggu. **Efek pemberlakuan lockdown/PSBB akan baru terlihat minimal setelah 2 minggu.

Bagaimana simulasi mudik dan tidak mudik dalam dua wilayah dengan tiga skenario

Wilayah pertama epicentrum (Ro >1), wilayah kedua sudah ditemukan kasus, namun Ro < 1

Skenario pertama

Tidak mudik (sudah ada kasus)

Mudik

Dengan asumsi laju mobilitas dari daerah episentrum sebesar 3% S dan E dan 1% I ke daerah virgin (Ro<1) serta 1.5% S dan E dan 0.5% I ke arah sebaliknya maka akan dapat meningkatkan jumlah kasus di daerah virgin dan memungkinkan menjadi daerah episentrum baru

Wilayah pertama epicentrum (Ro >1), wilayah kedua belum ditemukan kasus

Skenario kedua

Tidak mudik (tanpa kasus)

Mudik

Dengan asumsi laju mobilitas dari daerah episentrum sebesar 1% ke daerah virgin serta 0.5% ke arah sebaliknya maka akan berdampak pada peningkatkan jumlah kasus di daerah virgin dan memungkinkan menjadi daerah episentrum baru

Wilayah pertama dan kedua epicentrum dengan nilai Ro₁ > Ro₂ > 1

Skenario ketiga

Tanpa mudik

Mudik

Tabulasi hasil

Skenario	Mudik	Tidak mudik	Kesimpulan
Skenario 1 Wilayah pertama epicentrum (Ro >1), wilayah kedua sudah ditemukan kasus, namun masih sedikit dan Ro < 1	Wilayah pertama mudik sebesar total 4% ke wilayah kedua, wilayah kedua ke wilayah pertama 2%	Masing-masing wilayah tetap pada kasus semula	Wilayah kedua menjadi epicentrum baru
Skenario 2 Wilayah pertama epicentrum (Ro >1), wilayah kedua belum ditemukan kasus sama sekali	Wilayah pertama mudik sebesar 1% ke wilayah kedua, wilayah kedua ke wilayah pertama 0.5%	Masing-masing wilayah tetap pada kasus semula	Wilayah kedua menjadi epicentrum baru
Skenario 3 Wilayah pertama dan kedua epicentrum dengan nilai Ro ₁ > Ro ₂ > 1 (lebih banyak kasus di wilayah pertama)	Wilayah pertama mudik sebesar 1% ke wilayah kedua, wilayah kedua ke wilayah pertama 0.5%	Masing-masing wilayah tetap pada kasus semula	Memperbanyak jumlah kasus wilayah kedua yang dapat berakibat membludaknya jumlah kasus dan membuat fasilitas kesehatan jadi collapse

Kesimpulan dan Saran

- Angka reproduksi harian sudah mulai mengalami penurunan karena perubahan prilaku masyarakat dan kebijakan pemerintah (physical distancing) namun masih belum efektif menekan penyebaran (R<1).
- Estimasi R bisa dipakai oleh pengambil keputusan untuk menentukan berapa lama PSBB sebaiknya diberlakukan. Negara seperti Italia memerlukan waktu sekitar 3 minggu untuk membuat nilai R<1, sedangkan Amerika Serikat butuh 5 minggu.
- Rapid testing harus diperbanyak, sampai 12 April rapid testing baru dilakukan ke 0.01% populasi. Setidaknya rapid testing harus dilakukan ke 1% populasi, supaya gambaran penularan bisa terlihat lebih jelas.

Anggota tim:

ITB:

Dr. Nuning Nuraini
Prof. Edy Soewono
Muhammad Fakhruddin M.Si
Dr. Rudy Kusdiantara
Kamal Khairudin S
Dila Puspita M.Si
Dr. M. Apri

UNPAD:

Dr. dr. Panji Hadisoemarto

UGM:

Dr Nanang Susyanto

LN:

Prof Hadi Susanto (Essex & Khalifa Uni)
Asst Prof Agus Hasan (Uni of Southern Denmark)
Dr M. Firmansyah Kasim (Oxford Uni)

ITS:

Dr Endah Rokhmati Venansius Ryan SSi Hengky Kurniawan Amirul Hakam

UB:

Prof Agus Suryanto

Undana:

Dr. Meksianis Ndii