Introduction to Generalized Linear Models

Part 1: Linear Regression

Goal: Predict an Australian brushtail possum's head length

OpenIntro Statistics, Section 8.1.2

We'll be using the statsmodels library.

Fit a Generalized Linear Model (GLM).

This tells the model the target variable.

We are not going to use any other variables in our initial model. This looks strange now, but will make sense once we add a predictor.

We'll assume that the target follows a Gaussian (normal) distribution.

Go ahead and fit the model after specifying it.

linreg.summary()

Dep	o. Variable	:	head	_ No	. Observa	104	
	Model	:	GL	M	Df Res	103	
Mo	del Family	:	Gaussia	an	Df	0	
Link	K Function	:	ident	ity		12.769	
	Method	:	IRI	LS	Log-Likel	-279.51	
Date:		: Wed,	15 Sep 202	21	Dev	1315.2	
		:	17:09:	34	Pearso	1.32e+03	
No.	Iterations	:		3			
Covari	ance Type	:	nonrobu	ıst			
	coef	std err	Z	P> z	[0.025	0.975]	
const	92.6029	0.350	264.281	0.000	91.916	93.290	

linreg.summary()

Generalized Linear	Model R	egression	Results			
Dep. Variable		head	l_l No	. Observa	104	
Model	:	GL	.M	Df Resi	103	
Model Family	:	Gaussia	an	Df I	0	
Link Function	:	ident	ity		12.769	
Method		IRI	S	Log-Likel	-279.51	
Date	: Wed,	15 Sep 202	21	Dev	1315.2	
Time		17:09:	34	Pearso	1.32e+03	
No. Iterations	:		3			
Covariance Type	:	nonrobu	ıst			
coef	std err	z	P> z	[0.025	0.975]	
const 92.6029	0.350	264.281	0.000	91.916	93.290	

The estimated mean of the distribution of head lengths is 92.6029.

linreg.summary()

The estimated variance of the distribution of head lengths is 12.769.

The results from approach 1 look *okay*, but we are disregarding a lot of potentially useful information - the total length measurement.

This time, we'll use the total length column as a predictor.

linreg tl.summary()

For possums with a total length of t, the model estimates that the distribution of head lengths is normal with a mean of 42.7098 + 0.5729*t* and a variance of 6.7357.

We have estimated the distribution of head lengths, conditional on the total length.

We have estimated the distribution of head lengths, conditional on the total length.

If we let Y be the head length and x be the total length, we have estimated the distribution of Y/x.

We have estimated the distribution of head lengths, conditional on the total length.

If we let Y be the head length and x be the total length, we have estimated the distribution of Y/x.

Specifically, we have said that it follows a normal distribution with mean 42.7098 + 0.5729x

Linear Regression in General

Y|x follows a normal distribution with mean

$$\mu = \beta_0 + \beta_1 x$$

What if we have more predictors?

What if we have more predictors?

For example, along with total length x_1 , we could include skull width as x_2 .

What if we have more predictors?

For example, along with total length x_1 , we could include skull width as x_2 .

If we do, we'd estimate that $Y/(x_1, x_2)$ is normal with mean

$$\mu = 29.6127 + 0.3634x_1 + 0.551x_2$$

Linear Regression in General

 $Y|ec{x}$ follows a normal distribution with mean

$$\mu = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

Where $\vec{x} = \langle x_1, \dots, x_n \rangle$ are the values of the predictor variables.

To Be Continued