de acordo com a relevância delas no processo.

Figura 3.22: Estudo de caso 3.4.3 – Quatro Tanques: Resposta e sinal de controle em malha fechada para seguimento de referências para a Sintonia 2.

Por fim, considere uma Sintonia 3, igual à Sintonia 1, exceto que $\delta_3 = \delta_4 = 0$, ou seja, desejamos que o controlador ignore o rastreamento de referência das saídas 3 e 4. O resultado de simulação é apresentado na Figura 3.23. Veja que agora o controlador consegue garantir erro nulo para as saídas 1 e 2 pois indicamos que as saídas 3 e 4 não tem relevância alguma no problema de controle. Assim, do ponto de vista do controlador, há apenas duas saídas e duas entradas, ou seja, o sistema se tornou quadrado, e agora ele é capaz de garantir erro nulo para as duas saídas independente dos valores das referências. Vale ressaltar que, neste caso, as saídas 3 e 4 ficam totalmente livres e isso, na prática, pode não ser desejável. No Capítulo ??, discutiremos uma abordagem mais avançada, chamada controle por bandas, que resolve este problema.

3.4.4 Reator Continuamente Agitado (CSTR)

Neste problema, consideramos um reator continuamente agitado (Continuous $Stirred\ Tank\ Reactor$ - CSTR) não-isotérmico descrito em [Gup98], onde uma reação química exotérmica $A \to B$ acontece, e cujo diagrama esquemático é apresentado na Figura 3.24. A dinâmica do processo é não linear, e são

Figura 3.23: Estudo de caso 3.4.3 — Quatro Tanques: Resposta e sinal de controle em malha fechada para seguimento de referências para a Sintonia 3.

Figura 3.24: Estudo de caso 3.4.4 – CSTR: diagrama esquemático.

dadas pelas equações abaixo, que dizem respeito ao balanço de massa, dos

componentes e de energia:

$$\begin{split} \frac{dh(t)}{dt} &= \frac{q_i(t) - q_o(t)}{A_c} \\ \frac{dC_a(t)}{dt} &= q_i(t) \frac{C_{af}(t) - C_a(t)}{V} - R(t)C_a(t) \\ \frac{dT(t)}{dt} &= q_i(t) \frac{T_i(t) - T(t)}{V} - \frac{\Delta H}{\rho c_p} R(t)C_a(t) - \frac{Q_h(t)}{\rho c_p V} \\ R(t) &= k_0 e^{-\frac{E}{RT(t)}} \end{split}$$

sendo que as variáveis controladas são o nível dentro do tanque h, a concentração de saída do produto A C_a , a temperatura dentro do reator T. As variáveis manipuladas são a vazão de saída q_o , a concentração do produto A na alimentação do tanque C_{af} , e a taxa de remoção de calor normalizada $\frac{Q_h}{\rho c_p}$. As constantes presentes na equação e o ponto de operação do processo são apresentados na Tabela 3.1.

Tabela 3.1: Parâmetros e ponto de operação do tanque reator

Nível dentro do reator	h^*	1 m
Concentração medida do produto A	C_a^*	$1\mathrm{kmolm^{-3}}$
Temperatura dentro do reator	T^*	$400\mathrm{K}$
Vazão de saída	q_o^*	$0.005\mathrm{m^3s^{-1}}$
Concentração de A na alimentação	C_{af}^*	$5\mathrm{kmol}\mathrm{m}^{-3}$
Taxa de remoção de calor	$\frac{C_{af}^*}{\frac{Q_h}{\rho c_p}}$	$0.75\mathrm{K}\mathrm{m}^3\mathrm{s}^{-1}$
Vazão de entrada	q_i^*	$0.005\mathrm{m^3s^{-1}}$
Temperatura de entrada do fluído	T_i^*	$350\mathrm{K}$
Termo de energia de ativação	E/R	$1000\mathrm{K}$
Área do reator	A_c	$0.05\mathrm{m}^2$
Volume do reator	V	$0.05\mathrm{m}^3$
Calor da reação	ΔH	-5000000 cal/kmol
Densidades dos líquidos	ρ	$1000000\mathrm{gm^{-3}}$
Calor específico	c_p	$1 \mathrm{cal/gK}$
Constante da taxa de reação	k_0	$4,972997584\mathrm{s}^{-1}$
Período de amostrage	T_s	3 s

Como a intenção é aplicar um algoritmo DMC, necessitamos dos modelos de resposta ao degrau do sistema. Para isso, foram aplicados degraus nas entradas do processo de 2% em torno do ponto de operação. Os resultados são apresentados na Figura 3.25, veja que todas as respostas são estáveis exceto a que relaciona q_o com h, que possui uma dinâmica integradora. Por

conta disto, não é possível aplicar o algoritmo DMC original, sendo necessário o GDMC para estabilizar o cálculo da resposta livre.

Figura 3.25: Estudo de caso 3.4.4 – CSTR: modelos de resposta ao degrau.

Então, um primeiro passo é definir os filtros dos erros de predição para a primeira saída de forma a estabilizar a resposta livre. Como a única raiz indesejada é a integradora, as condições do filtro são:

$$\left. \begin{array}{l} F_{e,1,j}(z)|_{z=1}=1 \to {\rm condição~de~ganho~unit\'ario} \\ \frac{d(z^j-F_{e,1,j}(z))}{dz} \right|_{z=1}=0 \to {\rm condição~de~estabilidade} \end{array} \right.$$

Para as outras saídas Fe,i,j=1, ou seja, não são necessário filtros. Pelo número de condições a serem satisfeitas, um filtro de primeira ordem seria suficiente. Mas, para minimizar o efeito de ruídos e ajudar na robustez, um filtro de segunda ordem será utilizado, e sua estrutura é da forma:

$$F_{e,1,j} = \frac{(a(j)z^2 + b(j)z)}{(z - z_f)^2}.$$

Com a estrutura do filtro definida, a derivada que aparece na condição

de estabilidade pode ser escrita como:

$$\begin{split} \frac{d(z^{j} - F_{e,j}(z))}{dz} &= jz^{j-1} - \frac{(2a(j)z + b(j))(z - z_{f})^{2} - 2(a(j)z^{2} + b(j)z)(z - z_{f})}{(z - z_{f})^{4}}, \\ &= jz^{j-1} - \frac{(2a(j)z + b(j))(z - z_{f}) - 2(a(j)z^{2} + b(j)z)}{(z - z_{f})^{3}}, \\ &= jz^{j-1} - \frac{a(j)(-2zz_{f}) + b(j)(-z - z_{f})}{(z - z_{f})^{3}}. \end{split}$$

Agora podemos calcular os coeficientes a(j) e b(j) de tal modo que as condições acima sejam satisfeitas para $j = N_1 \dots N_2$:

$$\frac{a(j) + b(j)}{(1 - z_f)^2} = 1 \longrightarrow a(j) + b(j) = (1 - z_f)^2$$
$$j - \frac{a(j)(-2z_f) + b(j)(-1 - z_f)}{(1 - z_f)^3} = 0 \longrightarrow (-2z_f)a(j) + (-1 - z_f)b(j) = j(1 - z_f)^3$$

e note que estas últimas equações podem ser rearranjadas como um conjunto de equações lineares que é de fácil solução:

$$\begin{bmatrix} 1 & 1 \\ -2z_f & -1 - z_f \end{bmatrix} \begin{bmatrix} a(j) \\ b(j) \end{bmatrix} = \begin{bmatrix} (1 - z_f)^2 \\ j(1 - z_f)^3 \end{bmatrix}.$$

Os demais parâmetros de sintonia são: $N_{1,i}=1$ e $N_{2,i}=30$, $\forall i;$ $N_{u,p}=5$, $\forall p;$ $N_{f,1}=N_{ss,2}=N_{ss,3}=30$, e as ponderações são todas iguais a um mas foram normalizadas pelos horizontes e pelo quadrado dos pontos de operação. Além disso, são consideradas restrições para as manipuladas: $q_0 \in [0; 0.01] \text{ m}^3 \text{ s}^{-1}$, $C_{af} \in [4.6; 5.4] \text{ kmol m}^{-3}$, $Q_h/(\rho c_p) \in [0.45; 1.05] \text{ K m}^3 \text{ s}^{-1}$.

Os resultados de simulação para diversas mudanças de referências são mostrados na Figura 3.26. Veja que o GDMC permanece estável e consegue garantir o seguimento de referências perfeitamente, exceto quando as manipuladas estão saturadas o que ocorre entre 200 e 300 s da simulação. A resposta para rejeição de perturbações pode ser vista na Figura 3.27, e está identificada como GDMC1. Foram aplicados degraus nas duas perturbações, q_i passa de 0,005 K para 0,005 25 K em $t=700\,\mathrm{s}$ e T_i passa de 350 K para 332,5 K em $t=800\,\mathrm{s}$. Neste caso, veja que o controlador consegue rejeitar o efeito das perturbações adequadamente.

Um segundo ajuste do GDMC foi feito para melhorar a resposta de rejeição de perturbações. Analisando as respostas ao degrau próximas do ponto de operação, apresentadas na Figura 3.28, é possível identificar que as dinâmicas das perturbações para C_a e T_i possuem constantes de tempo próximas

Figura 3.26: Estudo de caso 3.4.4 – CSTR: resposta em malha fechada com o GDMC para seguimento de referência.

Figura 3.27: Estudo de caso 3.4.4 – CSTR: resposta em malha fechada com o GDMC para rejeição de perturbações.

Figura 3.28: Estudo de caso 3.4.4 – CSTR: modelos de resposta ao degrau para perturbações.

de 15 s. Então, é possível utilizar esta informação para reprojetar os filtros do erro de predição para obtermos melhores resultados.

Considerando a constante de tempo encontrada, o polo indesejado discreto está localizado em $p_z = 0.8187$. Assim, para as saídas C_a e T_i , os filtros $F_{e,i,j}(z)$ devem satisfazer as seguintes condições:

$$F_{e,1,j}(z)|_{z=1}=1\to \text{condição de ganho unitário}$$

$$z^j-F_{e,1,j}(z)|_{z=0,8187}=0\to \text{condição para polo indesejado}$$

que podem ser escritas no seguinte formato matricial:

$$\begin{bmatrix} 1 & 1 \\ p_z^2 & p_z \end{bmatrix} \begin{bmatrix} a(j) \\ b(j) \end{bmatrix} = \begin{bmatrix} (1 - z_f)^2 \\ pz^j (p_z - z_f)^2 \end{bmatrix}.$$

Para esta segunda sintonia, consideramos $z_f=0.4$, ou seja, o tempo de assentamento do filtro é mais rápido, o que deve ajudar na rejeição de perturbações. Os resultados para este caso (GDMC2) podem ser vistos na Figura 3.27, e note que a rejeição de perturbações melhorou, como esperado. No entanto, vale lembrar que, em geral, acelerar a rejeição de perturbações piora a robustez do sistema em malha fechada, assim, é sempre necessário balancear a rejeição de perturbações com a robustez do sistema.