Projekt \LaTeX

Michał Kocisz

$27~\mathrm{maja}~2018$

Spis treści

1	$\mathbf{W}\mathbf{p}$	rowadzenie 2
	1.1	Fizyka - definicja
	1.2	Działy fizyki
2	Gra	witacja 3
	2.1	Prawo powszechnego ciążenia
	2.2	Prawa Keplera ruchu planet
3	Ter	modynamika 5
	3.1	Przemiana izochoryczna
	3.2	Przemiana izobaryczna
	3.3	Przemiana izotermiczna
	3.4	Ciecze
\mathbf{S}	\mathbf{pis}	tabel
	1	Główne teorie
	2	Działy szczegółowe fizyki
	3	Tabela cieczy

1 Wprowadzenie

1.1 Fizyka - definicja

Fizyka ("natura") – nauka przyrodnicza zajmująca się badaniem najbardziej fundamentalnych i uniwersalnych właściwości oraz przemian materii i energii, a także oddziaływań między nimi. Do opisu zjawisk fizycznych fizycy używają wielkości fizycznych, wyrażonych za pomocą pojęć matematycznych, takich jak liczba, wektor, tensor. Tworząc hipotezy i teorie fizyki, budują relacje pomiędzy wielkościami fizycznymi.

Z fizyką ściśle wiążą się inne nauki przyrodnicze, szczególnie chemia. Chemicy przyjmują teorie fizyki dotyczące cząsteczek i związków chemicznych (mechanika kwantowa, termodynamika) i za ich pomocą tworzą teorie w ich własnych dziedzinach badań. Fizyka zajmuje szczególne miejsce w naukach przyrodniczych, ponieważ wyjaśnia podstawowe zależności obowiązujące w przyrodzie.

1.2 Działy fizyki

Tabela 1: Główne teorie

Teoria	Działy
mechanika klasyczna	zasady dynamiki Newtona, teoria chaosu,
	mechanika płynów
termodynamika i mechanika statystyczna	kinetyczno-molekularna teoria gazów
elektrodynamika klasyczna	elektrostatyka, elektryczność, magnetyzm,
	równania Maxwella
teoria względności	szczególna teoria względności,
	ogólna teoria względności
mechanika kwantowa	równanie Schrödingera, kwantowa teoria pola,
	elektrodynamika kwantowa,
	chromodynamika kwantowa

Tabela 2: Działy szczegółowe fizyki

Działy	Poddziały	Główne teorie
astrofizyka	kosmologia, nauki planetarne,	ogólna teoria względności,
	fizyka plazmy	Wielki Wybuch,
		inflacja kosmologiczna
fizyka atomów, cząsteczek	fizyka atomowa, optyka,	optyka kwantowa
i zjawisk optycznych	fotonika	
fizyka cząstek elementarnych	fizyka jądrowa	model standardowy, teorie wielkiej unifikacji, teoria superstrun, M-teoria
fizyka fazy skondensowanej	fizyka ciała stałego, fizyka polimerów, fizyka niskich temperatur	gaz Fermiego, teoria BCS

2 Grawitacja

2.1 Prawo powszechnego ciążenia

Prawo powszechnego ciążenia, zwane także prawem powszechnego ciążenia Newtona, głosi, że każdy obiekt we wszechświecie przyciąga każdy inny obiekt z siłą, która jest wprost proporcjonalna do iloczynu ich mas i odwrotnie proporcjonalna do kwadratu odległości między ich środkami. Jest to ogólne prawo fizyczne, bazujące na empirycznych obserwacjach Newtona, które nazwał on indukcją (wpływem). Wchodzi ono w skład podstaw mechaniki klasycznej i zostało sformułowane w pracy sir Isaaca Newtona pt.: *Philosophiae naturalis principia mathematica* [New87], opublikowanej po raz pierwszy 5 lipca 1687 r.

Zobacz mechanizm: 1.

Matematycznie związek ten wyraża się wzorem:

$$F^i = G \frac{m_1 m_2}{r^2} e^i \tag{1}$$

Stała grawitacji została uznana za jedną z podstawowych stałych fizycznych. Z pomiarów wynika, że jej wartość wynosi:

$$G \approx 6,6732(\pm 0,0031)10^{-11} \,\mathrm{m}^3 \,\mathrm{kg}^{-1} \,\mathrm{s}^{-2}$$
. (2)

Rysunek 1: Mechanizmy prawa powszechnego ciążenia Newtona.

2.2 Prawa Keplera ruchu planet

Johannes Kepler wnikliwie przeanalizował dane dotyczące ruchu planet uzyskane przez Tychona de Brahe. Na tej podstawie wykazał, że planety poruszają się według określonych praw zgodnych z teorią Kopernika; prawa te umożliwiły Newtonowi odkrycie prawa powszechnego ciążenia. Rezultaty tych prac opublikował w roku 1609 w dziele *Astronomia Nova* [Kep09].

Kepler stwierdził, że ruchem planet rządzą trzy proste prawa (prawa Keplera stosują się również do ruchu satelitów okrążających dowolną planetę).

Pierwsze prawo Keplera:

Każda planeta krąży po orbicie eliptycznej, a Słońce znajduje się w jednym z dwóch ognisk elipsy.

Drugie prawo Keplera:

Promień wodzący poprowadzony ze środka Słońca do środka planety zakreśla równe pola powierzchni w równych odstępach czasu.

Zobacz obrazek: 2.

Trzecie prawo Keplera:

Sześciany wielkich półosi orbit jakichkolwiek dwóch planet mają się tak do siebie, jak kwadraty ich okresów obiegu. W przypadku orbit kołowych (okrąg jest szczególnym przypadkiem elipsy):

$$\frac{r_1^3}{r_2^3} = \frac{T_1^2}{T_2^2} \tag{3}$$

Rysunek 2: Graficzna interpretacja II Prawa Keplera

3 Termodynamika

3.1 Przemiana izochoryczna

Przemiana izochoryczna – proces termodynamiczny zachodzący przy stałej objętości (V=const). Oprócz objętości wszystkie pozostałe parametry termodynamiczne mogą się zmieniać. Podczas przemiany izochorycznej nie jest wykonywana praca, układ może wymieniać energię z otoczeniem tylko w wyniku cieplnego przepływu energii. Z pierwszej zasady termodynamiki wynika, że całe ciepło doprowadzone lub odprowadzone z gazu w procesie izochorycznym jest zużywane na powiększenie lub pomniejszenie jego energii wewnętrznej: $\delta Q=\mathrm{d} U$.

Przekształcając wzór na ciepło właściwe otrzymujemy:

$$dU = c_V m dT, (4)$$

gdzie:

m – masa gazu.

W przypadku gazu doskonałego wzór ten jest słuszny dla dowolnego procesu, natomiast dla gazu rzeczywistego wzór ten jest słuszny tylko w zakresie niewielkich zmian temperatur. Przy większych zmianach ciepło właściwe cV gazu rzeczywistego nie może być traktowane jako stała. [LPVS05]

Zmianę energii wewnętrznej można obliczyć w następujący sposób:

$$\Delta U = \int_{T_1}^{T_2} c_V m dT = c_V m (T_2 - T_1) = c_V m \Delta T,$$
 (5)

gdzie:

 c_V – ciepło właściwe w procesie izochorycznym.

Proces izochoryczny można praktycznie zrealizować podczas ogrzewania lub oziębiania gazu w zbiorniku o stałej objętości, czyli wykonanego z materiału o zerowej rozszerzalności cieplnej.

Rysunek 3: Izochory wody i pary wodnej na wykresie h-s (entalpia-entropia), czarnym kolorem naniesiona jest linia nasycenia, czerwonym – linie stałego stopnia suchości pary

3.2 Przemiana izobaryczna

Przemiana izobaryczna – proces termodynamiczny, podczas którego ciśnienie układu nie ulega zmianie, natomiast pozostałe parametry termodynamiczne czynnika mogą się zmieniać. Procesy izobaryczne mogą zachodzić zarówno w sposób odwracalny, jak i nieodwracalny. Odwracalny proces izobaryczny przedstawia na wykresie krzywa zwana izobarą. Praca wykonana przez układ (lub nad układem) w odwracalnym procesie izobarycznym jest równa ubytkowi (lub przyrostowi) entalpii układu. W szczególności, gdy jedyny wkład do pracy stanowi praca objętościowa (polegająca na zmianie objętości układu), jest ona wyrażona wzorem:

$$W = p\Delta V, \tag{6}$$

gdzie:

W – praca wykonana przez układ,

p – ciśnienie,

 ΔV – wzrost objętości układu.

Dla gazu doskonałego przemiana izobaryczna spełnia zależność

$$\frac{V}{T} = \text{const},$$
 (7)

gdzie:

V – objętość,

T – temperatura.

Rysunek 4: Na poniższych rysunkach przedstawione są przemiany izobaryczne wody i pary wodnej w układzieh-s (entalpia właściwa – entropia właściwa) i T-s (temperatura – entropia właściwa) na tle linii nasycenia i stałego stopnia suchości pary.

3.3 Przemiana izotermiczna

Przemiana izotermiczna – w termodynamice przemiana, zachodząca przy określonej, stałej temperaturze. Krzywa opisująca przemianę izotermiczną nazywana jest izotermą.

Przemiana izotermiczna gazu doskonałego Dla gazu doskonałego, energia wewnętrzna jest funkcją temperatury. Dlatego w przemianie izotermicznej, ponieważ $\Delta T=0$, zachodzi zależność:

$$\Delta U = nR\Delta T = 0, (8)$$

co wyrażane jest też prawidłowościa:

$$\Delta(pV) = 0 \tag{9}$$

lub

$$p_i V_i = pV = p_f V_f \tag{10}$$

lub

$$pV = \text{const},$$
 (11)

gdzie:

 p_i i V_i – ciśnienie i objętość początkowa,

 p_f i V_f – ciśnienie i objętość końcowa,

pi
 V – zmienne opisujące zachowanie się gazu podczas przemi
any izotermicznej.

Powyższa zależność między ciśnieniem i objętością dla gazu doskonałego stanowi treść prawa **Boyle'a-Mariotte'a**.

Izoterma gazu doskonałego jest hiperbolą na wykresie p-V (ciśnienie-objętość) (T=constant)

$$p = \frac{nRT}{V}. (12)$$

Z pierwszej zasady termodynamiki wynika, że całe ciepło doprowadzone do gazu doskonałego w procesie izotermicznym jest zużywane na wykonanie pracy przeciwko siłom zewnętrznym.

$$Q = W. (13)$$

Załóżmy, że mamy gaz w zbiorniku, zamknięty ruchomym tłokiem o polu powierzchni S. Dla bardzo małego przesunięcia tłoka dx praca dW może być zapisana wzorem:

$$dW = F dx = pS dx = p dV. (14)$$

Praca, jaką wykonuje gaz, rozszerzając się od objętości V_A do V_B , wyraża wzór:

$$W_{A \to B} = \int_{V_A}^{V_B} dW = \int_{V_A}^{V_B} p \, dV \tag{15}$$

w procesie izotermicznym

$$W_{A \to B} = \int_{V_A}^{V_B} p \, dV = \int_{V_A}^{V_B} \frac{nRT}{V} dV = nRT \ln \frac{V_B}{V_A} = nRT \ln \frac{P_A}{P_B}.$$
 (16)

Proces izotermiczny jest jedną z przemian w cyklu Carnota, gdzie:

- $\bullet~W$ praca wykonana przez gaz,
- ullet Q ciepło doprowadzone,
- p ciśnienie,
- V objętość,
- n liczba moli gazu,
- $\bullet \ R$ uniwersalna stała gazowa.

3.4 Ciecze

Tabela 3: Ciecze

Wielkość	Wzór	Jednostka
ciepło parowania	$C_p = \frac{Q}{m}$	$1\frac{J}{kg}$
ciśnienie kapilarne	$p = \frac{2\delta}{r}$	
prawo wzniesienia kapilarnego	$h = \frac{2\delta}{r(D_1 - D_2)g}$	
napięcie powierzchniowe δ	$\delta = \frac{W}{\Delta S}$	$1\frac{J}{m^2}$
	$\delta = \frac{F}{I}$	$1\frac{N}{m}$
współczynnik lepkości η	$\eta = \frac{F}{US} \ i \ U = \frac{dv}{dz}$	$1\frac{kg}{ms}$

Skorowidz

```
grawitacja
    1 prawo Keplera, 4
    2 prawo Keplera, 4
    3 prawo Keplera, 4
    Newton, 3
    Stała grawitacji, 3
    Wzór powszechnego ciążenia, 3
Izobary
    Przemiany izobaryczne wody i pa-
         ry wodnej, 7
Izochory
    Izochory wody i pary wodnej na
         wykresie, 6
Planety
    Interpretacja drugiego prawa Ke-
        plera, 5
prawo Boyle'a-Mariotte'a, 8
tabele
    Ciecze, 10
    Działy szczegółowe fizyki, 3
    Główne teorie, 2
termodynamika
    gaz doskonały, 8
    Przemiana izobarycznan, 6
    przemiana izochoryczna, 5
    Przemiana izotermiczna, 8
wzory
    Wzór przemiany izotermicznej, 8
    zależność gazu doskonałego w przem.
         izobarycznej, 7
    3 prawo Keplera, 4
    praca objętościowa w przem. izo-
         barycznej, 7
    przemiana izochoryczna, 5
    zamiana energii wew. przemiany
         izochorycznej, 6
```

Literatura

[Kep09]	Johann Kepler. Astronomia nova, seu physica coele- stis, tradita commentariis de motibus stellae martis. 1609 doi:10.3931/e-rara-558.
[LPVS05	R. Lukac, K.N. Plataniotis, A.N. Venetsanopoulos, and B. Smolka. A statistically-switched adaptive vector median filter. J. Intelligent and Robotic Systems, 42(4):361–391, 2005 doi:10.1007/s10846-005-1730-2.
[New87]	Isaac Newton. Philosophiae naturalis principia mathematica. 1687. doi:10.3931/e-rara-440.
Spis 1	rysunków
2	Mechanizmy prawa powszechnego ciążenia Newtona