Dr. Francesco Gallinaro Tutorat: Max Herwig

Modelltheorie

Blatt 10 Abgabe: 16.01.2024, 12 Uhr

Aufgabe 1 (2 Punkte).

Sei T eine abzählbare vollständige \mathcal{L} -Theorie ohne endliche Modelle, welche keine Vaught'schen Paare besitzt. Gegeben ein Modell \mathcal{M} von T sowie eine M-Instanz $\varphi[x, \bar{m}]$ einer \mathcal{L} -Formel mit unendlicher Erfüllermenge $\varphi[M, \bar{m}]$, zeige, dass M und $\varphi[M, \bar{m}]$ gleichmächtig sind.

Aufgabe 2 (6 Punkte).

Sei \mathcal{M} eine \mathcal{L} -Struktur mit Elementen a und b_1, \ldots, b_n sowie einer endliche Teilmenge C von M. Wir nehmen an, dass a über C, b_1, \ldots, b_n algebraisch in M ist und dass jedes b_i (für $i = 1, \ldots, n$) über C algebraisch in M ist. Zeige, dass a in $\operatorname{acl}^{\mathcal{M}}(C)$ liegt.

Wenn das unendliche Modell \mathcal{M} saturiert ist, gib nun einen syntaxfreien Beweis der obigen Behauptung mit Hilfe von Automorphismen an.

Aufgabe 3 (8 Punkte).

Betrachte die Theorie T aus Aufgabe 1 von Blatt 2 in der erweiterten Sprache $\mathcal{L} = \{E\} \cup \{c_n\}_{1 \leq n \in \mathbb{N}}$, in deren Modellen \mathcal{M} die Relation $E^{\mathcal{M}}$ eine Äquivalenzrelation so ist, dass es für jedes $n \geq 1$ genau eine Klasse mit n Elementen gibt, nämlich die Äquivalenzklasse von $c_n^{\mathcal{M}}$.

- a) Zeige, dass T nicht den Quantor \exists^{∞} eliminiert.
- b) Gib explizit ein Vaught'sches Paar für diese Theorie an.

Nun betrachte in der Sprache $\mathcal{L} = \{E\}$ die Theorie T einer Äquivalenzrelation mit genau zwei unendlich großen Klassen (siehe Blatt 4 Nummer 2). Sei \mathcal{M} ein Modell von T

- c) Ist die Formel x = x minimal in \mathcal{M} ? Oder für a aus M die Formel E(x, a)?
- d) Besitzt T ein Vaught'sches Paar?
- e) Eliminiert T den Quantor \exists^{∞} ?

Aufgabe 4 (4 Punkte).

In der Sprache $\mathcal{L} = \{0, s, <\}$ mit einem einstelligen Funktionszeichen s betrachte die \mathcal{L} -Struktur $\mathcal{N}_0 = (\mathbb{N}, 0^{\mathcal{N}_0}, s^{\mathcal{N}_0}, <^{\mathcal{N}_0})$, wobei s als die Nachfolgerfunktion und < als die übliche Ordnung interpretiert werden. Beachte, dass $T := \text{Th}(\mathcal{N}_0)$ Quantorenelimination hat (vgl. mit Aufgabe 2 von Blatt 3).

a) Beschreibe informell die \aleph_0 -saturierten Modelle von T.

Hinweis: In \mathcal{N}_0 besitzt jedes Element $x \neq 0$ einen Vorgänger.

- b) Begründe, dass die Formel x = x minimal in \mathcal{N}_0 ist.
- c) Zeige, dass es eine elementare Erweiterung \mathcal{N} von \mathcal{N}_0 so gibt, dass $x \doteq x$ nicht minimal in \mathcal{N} ist.

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.33 IM KELLER DES MATHEMATISCHEN INSTITUTS.