List of Figures

191

192	3.1	Aerial view of Geneva with an overlaid drawing of the LHC and associated experiments .	4
193	3.2	The LHC accelerator complex. Before reaching the LHC, protons are accelerated at Linac	
194		2, the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS), and the Super	
195		Proton Synchrotron (SPS)	5
196	3.3	Cross sections for pp and $p\bar{p}$ processes in the center-of-mass energy regime relevant to the	
197		Tevatron and LHC, courtesy of W.J. Stirling	6
198	3.4	Scale rendering of the ATLAS detector with the various sub-detectors highlighted	7
199	3.5	Transverse schematic view of a wedge of the ATLAS detector. Charged particles leave	
200		tracks in the tracker, electrons and photons typically stop in the electromagnetic calorime-	
201		ter, hadrons like charged pions typically stop in the hadronic calorimeter, and muons are	
202		tagged by the muon system as they exit. Neutrinos escape undetected	8
203	3.6	The peak ATLAS online luminosity as measured in different data-taking periods . The	
204		peak Run-I luminosity is $0.8 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$	8
205	3.7	Distributions of the recorded luminosity in bins of $\langle \mu \rangle$ (left) and the total integrated	
206		luminosity as a function of time (right) . In 2011 (2012), the average $\langle \mu \rangle$ is 9.1 (20.7) and	
207		the total integrated luminosity for physics analysis is 4.6 fb^{-1} . (20.3 fb^{-1})	9
208	3.8	Summary of cross sections measured at ATLAS in 7 and 8 TeV data-taking	9
209	3.9	Schematic view of the calorimeter granularity available at the L1 trigger	10
210	4.1	Pie chart of tau lepton decay branching fractions, grouped by hadronic decays (65%) and	
211		leptonic decays (35%)	12
212	4.2	True $p_{\rm T}$ and reconstructed d_0 for muons from simulated W, Z , and tau lepton decays.	
213		Muons from tau lepton decays are shown for $Z \to \tau \tau$, $H^{ggF} \to \tau \tau$, and $H^{VBF} \to \tau \tau$	
214		processes	12
215	4.3	Track selection efficiency for $\tau_{\rm had}$ candidates with the default vertex selection (highest	
216		Σp_{T}^2) versus the dedicated TJVA algorithm, for true 1-track (left) and 3-track (right) τ_{had} ,	
217		as a function of $\langle \mu \rangle$	14
218	4.4	$\tau_{\rm had}$ energy response curves measured in simulation, for 1-track (left) and 2,3-track (right)	
219		$ au_{\rm had}$, as a function of the reconstructed energy	15
220	4.5	$\tau_{\rm had}$ energy resolution measured, for 1-track (left) and 2,3-track (right) $\tau_{\rm had}$, as a function	
221		of the true visible energy	15

List of Figures xi

222	4.6	Event display of a $tt \to (b\mu\nu_\mu)(b\tau_{\rm had}\nu_\tau)$ candidate during 2011 data-taking . The $\tau_{\rm had}$	
223		candidate has 3 tracks, the b-jet candidates each have more than 10 tracks, and the muon	
224		· · · · · · · · · · · · · · · · · · ·	17
225	4.7	Fit of the predicted $\tau_{\rm had}$ track multiplicity to data in a $Z \to \tau_{\mu} \tau_{\rm had}$ event selection be-	
226		for e applying tau identification algorithms . The $\tau_{\rm had}$ candidates have much lower track	
227		multiplicity relative to the large jet background	18
228	4.8	Signal and background distributions for two of the discriminating variables in the 1-track	
229		$ au_{ m had}$ jet discrimination algorithm: $f_{ m cent}$ (left) and $N_{ m track}^{ m iso}$ (right) . The remaining distribu-	
230			19
231	4.9	Signal and background distributions for two of the discriminating variables in the 3-track	
232		$\tau_{\rm had}$ jet discrimination algorithm: $R_{\rm track}$ (left) and $m_{\pi^0+{\rm track}}$ (right). The remaining	
233			20
234	4.10	Signal efficiency versus inverse background efficiency for 1-track and 3-track $\tau_{\rm had}$ jet dis-	
235		crimination algorithms in a lower- $p_{\rm T}$ regime (left) and higher- $p_{\rm T}$ regime (right). The	
236			20
237	4.11	Signal and background distribution for one of the discriminating variables in the $\tau_{\rm had}$ elec-	
238		tron discrimination algorithm: the TRT high threshold fraction (left), and signal efficiency	
239			20
240	4 12	The visible mass $m_{e\tau_{\rm had}}$ in a $Z \to ee$ selection in data after requiring the $\tau_{\rm had}$ candidate	
241	1.12	pass the medium jet discrimination algorithm and not overlap spatially with a tight iden-	
242		tified electron (left) and after additionally requiring the $\tau_{\rm had}$ pass the loose $\tau_{\rm had}$ electron	
			21
243	1 12	True $m_{\mu\mu}$ (left) and $\eta(\mu)$ (right) in $Z \to \mu\mu$ events where a muon is mis-identified as	41
244	4.10	a $\tau_{\rm had}$. The muons are split into combined muons (black), muons which pass tracking	
245		requirements but fail combined requirements (green), are reconstructed but fail tracking	
246			
247		requirements (blue), and are not reconstructed (red). A large fraction of non-reconstructed	91
248	111		21
249	4.14	True $m_{\mu\mu\gamma}$ (left) and $\Delta R(\mu, \gamma)$ (right) in $Z \to \mu\mu$ events where a muon is mis-identified as	
250		a $\tau_{\rm had}$ and a true ISR photon is associated to the muon. The muons are split into combined	
251		muons (black), muons which pass tracking requirements but fail combined requirements	
252		(green), are reconstructed but fail tracking requirements (blue), and are not reconstructed	00
253		(red)	22
254	5.1	Pie chart of di-tau lepton decay branching fractions	24
255	5.1	Measurement of the efficiency of the muon reconstructions algorithms in data and in sim-	27
	0.2		24
256	5.3	Validation of the muon energy scale corrections in J/Ψ events (left), Υ events (center),	27
257	0.0		25
258	5.4		20
259	5.4	Data and predictions of m_{ee} before the electron identification algorithm is applied (top,	
260		left) and after (top, right), and the measured efficiency of the algorithm as a function of	or
261			25
262	5.5	Resolution of various $E_{\rm T}^{\rm miss}$ reconstruction algorithms as a function of the number of recon-	
263		structed primary vertices in $Z \to \mu\mu$ events in data (left) and $W \to e\nu$ events in simulation	00
264	F 0		26
265	5.6	Bias of various $E_{\rm T}^{\rm miss}$ reconstruction algorithms as a function of $p_{\rm T}^Z$ measured in data events	~ ~
266			26
267	5.7	Efficiency of b-jet identification algorithms measured in simulation as a function of light	٥-
268	. .	v v () v 1- (U)	27
269	5.8	Cartoon depiction of the relevant categories in the $H \to \tau_{\ell} \tau_{\rm had}$ analysis: pre-selection,	۵.
270		boosted, and VBF	28

List of Figures xii

271	5.9	Kinematic distributions in the pre-selection category of the 8 TeV $H \to \tau_\ell \tau_{\rm had}$ analysis.	29
272		Kinematic distributions in the pre-selection category of the 8 TeV $H \to \tau_\ell \tau_{\rm had}$ analysis	30
273	5.11	Cartoon of the $m_{\tau\tau}^{\rm MMC}$ reconstruction algorithm. Black, filled lines indicate items measured	
274		directly (ℓ, τ_{had}) . Red, dotted lines indicate items which cannot be measured (neutrinos).	
275		The black, dashed line indicates the $E_{\rm T}^{\rm miss}$, which is measured indirectly. Blue indicates	
276		items which the $m_{\tau\tau}^{\rm MMC}$ scans to find an optimal solution $(\Delta\phi, E_{\rm T}^{\rm miss})$	31
277	5.12	Input assumptions of the three-dimensional angle between the visible and invisible tau	
278		lepton decay products, for leptonic decays (left), 1-track hadronic decays (center), and	
279		3-track hadronic decays (right)	31
280	5.13	Efficiency for $H \to \tau_\ell \tau_{\rm had}$ versus the efficiency for $Z \to \tau_\ell \tau_{\rm had}$ for various $m_{\tau\tau}$ reconstruc-	
281		tion algorithms in the boosted category (left) and VBF category (right)	32
282	5.14	Cartoons of lepton η -centrality (left) and $E_{\mathrm{T}}^{\mathrm{miss}}$ ϕ -centrality (right), courtesy of Tae Min	
283		Hong	33
284	5.15	Predicted signal and background distributions in the boosted category normalized to unit	
285	0.20	area and overlaid.	35
286	5.16	Predicted signal and background distributions in the boosted category normalized to unit	-
287	0.10	area and overlaid.	36
288	5.17	Predicted signal and background distributions in the VBF category normalized to unit	-
289	0.1.	area and overlaid.	37
290	5 18	Predicted signal and background distributions in the VBF category normalized to unit	0.
291	0.10	area and overlaid.	38
292	5 19	Predicted signal and background distributions in the VBF category normalized to unit	00
293	0.10	area and overlaid.	39
294	5.20	Contours of kinematic correlations in the VBF category for VBF $H \to \tau\tau$ (left), $Z \to \tau\tau$	00
295	0.20	(center), and fakes (right)	40
296	5 21	Contours of kinematic correlations in the VBF category for VBF $H \to \tau\tau$ (left), $Z \to \tau\tau$	10
297	0.21	(center), and fakes (right)	41
298	5 22	Contours of kinematic correlations in the VBF category for VBF $H \to \tau\tau$ (left), $Z \to \tau\tau$	-11
299	0.22	(center), and fakes (right)	42
300	5 23	Contours of kinematic correlations in the VBF category for VBF $H \to \tau\tau$ (left), $Z \to \tau\tau$	72
301	0.20	(center), and fakes (right)	43
302	5 24	Overlaid shapes of BDT outputs for signal and background processes in the VBF $H \to \gamma \gamma$,	40
303	0.24	VBF $H \to ZZ^*$, and VBF $H \to WW^*$ analyses	44
303		$VDF H \rightarrow ZZ$, and $VDF H \rightarrow WW$ analyses	44
304	6.1	Comparison of data and various predictions in $Z \to \ell\ell$ events of the charged particle	
305		scalar momentum density (left) and multiplicity density (right) as a function of $p_{\rm T}^{\rm Z}$ in 2011	
306		* ()	46
307	6.2	Comparison of data and various predictions in $Z \to \ell\ell$ events of $\Delta Y(jj)$ (left) and $m_{\rm jj}$	
308	·-	(right) in 2011 data-taking. Mis-modeling is observed for all predictions	46
309	6.3	Comparison of data and various predictions of p_T^Z for $Z \to ee$ (left) and $Z \to \mu\mu$ (right)	
310	0.0	in 2011 data-taking. Mis-modeling is observed for all predictions	47
311	6.4	Validation of the embedding technique for simulated tau lepton decays in simulated $Z \rightarrow$	
312	U. I	$\mu\mu$ events (left) and simulated muons in data $Z \to \mu\mu$ events (right). Good agreement is	
313		observed in both	47
314	6.5	The fractional uncertainty on the embedded $Z \to \tau_\ell \tau_{\rm had}$ prediction in each bin of the VBF	±1
	0.0	category for uncertainties pertaining to the embedding procedure and $\tau_{\rm had}$ performance.	48
315	6.6	Data events in the VBF category which fail τ_{had} identification but fulfill all other require-	-10
316 317	0.0	ments. The contamination of $Z \to \tau_{\ell} \tau_{\text{had}}$ and other processes without $j \to \tau_{\text{had}}$ is less than	
318		10%	50
510		- 20/0	50

List of Figures xiii

319 320	6.7	Data events in the VBF category which fail τ_{had} identification but fulfill all other requirements. The contamination of $Z \to \tau_{\ell} \tau_{\text{had}}$ and other processes without $j \to \tau_{\text{had}}$ is less than 10%	51
321 322	6.8	Correlations between the $\tau_{\rm had}$ BDT identification score and event kinematics in data events	51
323	0.0	in the VBF same-sign region which fail τ_{had} identification but fulfill all other requirements.	
324		No strong correlations are observed	52
325	6.9	Requirements on the τ_{had} jet discriminant, which are defined to have constant signal ef-	
326		ficiency as a function of $p_{\rm T}(\tau_{\rm had})$, of various operating points for 1-track $\tau_{\rm had}$ (left) and	
327		3-track $\tau_{\rm had}$ (right)	53
328 329	6.10	Fake factors in the VBF category measured in the various control regions in data for 1-track τ_{had} (left) and 3-track τ_{had} (right)	53
30	6 11	A pie chart of the composition of $j \to \tau_{\rm had}$ processes in the anti-identified CR as predicted	00
331	0.11	by simulation and data (left) and the systematic variations on the composition (right)	54
332	6.12	The composition of $j \to \tau_{\text{had}}$ processes in the anti-identified CR as predicted by simulation	_
333		and data as a function of event kinematics.	55
34	6.13	The composition of $j \to \tau_{\text{had}}$ processes in the anti-identified CR as predicted by simulation	
35		and data as a function of event kinematics.	56
36	6.14	Fake factors in the VBF category mixed from the various control regions in data for 1-track	
337		$\tau_{\rm had}$ (left) and 3-track $\tau_{\rm had}$ (right). Statistical and systematic uncertainties are shown	57
38	6.15	Cartoon of the signal, control, and validation regions used which are used in the $j \rightarrow \tau_{\rm had}$	
39		estimate	58
340	6.16	Comparison of data and $j \rightarrow \tau_{had}$ prediction in the same-sign validation region for various	
341		event kinematics. The purity of $j \to \tau_{\text{had}}$ is $\approx 97\%$. Only statistical uncertainties are	
342		shown, and no sign of systematic bias is observed.	59
343	6.17	Comparison of data and $j \rightarrow \tau_{\rm had}$ prediction in the same-sign validation region for various	
344		event kinematics. The purity of $j \to \tau_{\text{had}}$ is $\approx 97\%$. Only statistical uncertainties are	
345		shown, and no sign of systematic bias is observed.	60
346	6.18	Comparison of the prediction of identified taus and the $j \rightarrow \tau_{\rm had}$ prediction, both in simu-	
347		lation, in the signal region for various event kinematics. Only statistical uncertainties are	0.4
348	0.10	shown, and no sign of systematic bias is observed.	61
349 350	6.19	Comparison of the prediction of identified taus and the $j \to \tau_{\text{had}}$ prediction, both in simulation, in the signal region for various event kinematics. Only statistical uncertainties are	
851		shown, and no sign of systematic bias is observed.	62
352		The fractional uncertainty on the $j \rightarrow \tau_{\rm had}$ prediction in each bin of the VBF category	63
353	6.21	The fractional uncertainty on the VBF $H \to \tau_{\ell} \tau_{\rm had}$ prediction in each bin of the VBF	
354		category for uncertainties pertaining to the jet energy scale	64
355	6.22	The fractional uncertainty on the VBF $H \to \tau_{\ell} \tau_{\rm had}$ prediction in each bin of the VBF	
356		category for uncertainties per taining to $ au_{\rm had}$ performance, theory, and the luminosity	65
357	7.1	Data and prediction for input variables to the BDT in the $H \to \tau_\ell \tau_{\rm had}$ VBF signal region .	67
858	7.2	Display of one of the most signal-like events in the $H \to \tau_\ell \tau_{\rm had}$ VBF category in data . The	•
359		blue track matched to the green cluster indicates an electron, the green track matched to	
360		the yellow cluster indicates a τ_{had} , the pink dotted line indicates the $E_{\text{T}}^{\text{miss}}$ in the transverse	
861		plane, and the turquoise cones indicates the VBF jets. The reconstructed $m_{\tau\tau}^{\rm MMC}=127$	
362		GeV and $m_{ii} = 1.53$ TeV	68
363	7.3	Distributions of the 8 TeV BDT discriminants in all six analysis categories after the global	
864		fit	69
865	7.4	Plots of data and prediction which emphasize the most sensitive regions . The individual	
866		BDT bins from all six categories are ordered by S/B and plotted on a shared axis (left)	
867		and entries in the $m_{\tau\tau}^{\rm MMC}$ distribution are weighted by $\log(1+S/B)$ (right)	70

List of Figures xiv

368	7.5	Two-dimensional contours of the fitted signal strength μ comparing VBF and ggF produc-
369		tion mechanisms (left) and the local p_0 for the MVA and cuts-based analyses as a function
370		of the Higgs mass hypothesis (right)
371	7.6	Comparison of the impact of the statistical and systematic uncertainties on the absolute
372		uncertainty on μ
373	7.7	Comparison of the impact and pull of the dominant individual systematic uncertainties on
374		the absolute uncertainty on μ
375	7.8	The fitted signal strength μ split by category, final state, and data-taking period 73
376	8.1	Tau trigger rates in 2012 data-taking as a function of instantaneous luminosity for L1 (left) and HLT (right)
377	8.2	and HLT (right)
378	0.2	Fighthcance (p_0) of the $H \to TT$ VBF category in 2012 for the $H \to T_{had}$ had (left) and $H \to \tau_\ell \tau_{had}$ (right) analyses as a function of offline or L1 threshold for various objects 77
379	8.3	
380	0.5	Topological distributions at L1 for $H \to \tau_e \tau_{had}$ MC versus high-pileup ($\langle \mu \rangle = 81$) minimum bias MC
381 382	8.4	L1 angular resolution for $\tau_{\rm had}$ in simulation and data
383	8.5	Momentum resolution for τ_{had} in simulation and data at L1 (left) and HLT (right). The
384	0.0	resolution is significantly improved at HLT
385	8.6	Kinematic distributions in the $\ell + \tau_{\text{had}}$ category of the 8 TeV VBF $H \to \tau_{\ell} \tau_{\text{had}}$ analysis 82
386	8.7	Kinematic distributions in the $\ell + \tau_{\rm had}$ category of the 8 TeV VBF $H \to \tau_{\ell} \tau_{\rm had}$ analysis 83
387	8.8	Efficiency for firing the 20 GeV L1 τ_{had} trigger as a function of offline $p_{\text{T}}(\tau_{\text{had}})$ for no
388	0.0	isolation requirement (left) and the 2012 isolation requirement (right) for various definitions
389		of the L1 $\tau_{\rm had}$ item. The current definition (2×1 EM, 2×2 had.) has the slowest efficiency
390		turn-on. Fits are performed with a Fermi-Dirac distribution
391	8.9	L1 rate for the di- $\tau_{\rm had}$ trigger in 14 TeV minimum bias MC for various $p_{\rm T}^{\rm L1}$ -dependent
392	0.0	isolation definitions relative to the 2012 definition: $p_{\rm T}^{\rm L1,iso} \leq 4$ GeV. Many options give
393		the same rate (white color). The rate is calculated irrespective of the lowest unprescaled
394		single $\tau_{\rm had}$ trigger (left) and with a logical OR of it (right)
395	8.10	Efficiency for firing the L1 $\tau_{\rm had}$ trigger for various $p_{\rm L}^{\rm T1}$ -dependent isolation definitions which
396	00	have similar rates, as derived from Fig. 8.9. The 2012 definition is the black line. The
397		efficiency is calculated irrespective of the lowest unprescaled single $\tau_{\rm had}$ trigger (left) and
398		with a logical OR of it (right)
399	8.11	Degradation of $E_{\rm T}^{\rm miss}$ -related observables at HL-LHC conditions for VBF $H \to \tau_\ell \tau_{\rm had}$: the
400		$E_{\mathrm{T}}^{\mathrm{miss}}$ resolution (left) and reconstructed $m_{ au au}^{\mathrm{MMC}}$ (right). The underflow of the $m_{ au au}^{\mathrm{MMC}}$
401		shows the fraction of events which fail the mass reconstruction
402	8.12	Signal efficiency versus background efficiency for scenarios of generic forward tracker cov-
403		erage and rejection power (left) and zoomed in to lower signal efficiency (right) . A BDT
404		is trained in the VBF category for each scenario
405	8.13	Signal and background HL-LHC predictions of (a) leading jet $p_{\rm T}$, (b) sub-leading jet $p_{\rm T}$,
406		(c) leading jet η , (d) sub-leading jet η , (e) $\Delta \eta_{jj}$, (f) m_{jj} , (g) $\eta_{leadjet} \times \eta_{sub-leadjet}$ and (h)
407		$E_{ m T}^{ m miss}$. The last bin contains the overflow events
408	8.14	Signal and background HL-LHC predictions of (a) $p_{\rm T}(\tau_{\rm had})$, (b) $p_{\rm T}({\rm lepton})$, (c) $\eta(\tau_{\rm had})$,
409		(d) $\eta(\text{lepton})$, (e) $\Delta R(\tau_{\text{had}}, \text{lepton})$, (f) MMC (g) $m_{\tau\tau}^{\text{vis.}}$ and (h) $m_{\text{T}}(\ell, E_{\text{T}}^{\text{miss}})$. The last bin
410		contains the overflow events
411	8.15	Signal and background HL-LHC predictions of (a) $E_{\mathrm{T}}^{\mathrm{miss}}\phi$ -centrality, (b) lepton η -centrality
412		and (c) $p_{\mathrm{T}}^{\mathrm{Total}}$. The last bin contains the overflow events
413	8.16	Signal and background HL-LHC predictions of the BDT spectrum in the (a) full range and
414		(b) highest bins range . Signal and background are overlaid in (a) and stacked in (b). \cdot . 97

List of Figures xv

415	A.1	Comparison of data and $j \to \tau_{\text{had}}$ prediction in the $W \to \ell \nu_{\ell}$ CR for various event kine-
416		matics. Only statistical uncertainties are shown, and no sign of systematic bias is observed. 101
417	A.2	Comparison of data and $j \to \tau_{\text{had}}$ prediction in the $W \to \ell \nu_{\ell}$ CR for various event kine-
418		matics. Only statistical uncertainties are shown, and no sign of systematic bias is observed. 102
419	A.3	Comparison of data and $j \to \tau_{\text{had}}$ prediction in the QCD CR for various event kinematics.
420		Only statistical uncertainties are shown, and no sign of systematic bias is observed 103
421	A.4	Comparison of data and $j \rightarrow \tau_{\text{had}}$ prediction in the QCD CR for various event kinematics.
422		Only statistical uncertainties are shown, and no sign of systematic bias is observed 104
423	A.5	Comparison of data and $j \to \tau_{\text{had}}$ prediction in the $Z \to \ell\ell$ CR for various event kinematics.
424		Only statistical uncertainties are shown, and no sign of systematic bias is observed 105
425	A.6	Comparison of data and $j \to \tau_{\text{had}}$ prediction in the $Z \to \ell\ell$ CR for various event kinematics.
426		Only statistical uncertainties are shown, and no sign of systematic bias is observed 106
427	A.7	Comparison of data and $j \to \tau_{had}$ prediction in the top CR for various event kinematics.
428		Only statistical uncertainties are shown, and no sign of systematic bias is observed 107
429	A.8	Comparison of data and $j \to \tau_{had}$ prediction in the top CR for various event kinematics.
430		Only statistical uncertainties are shown, and no sign of systematic bias is observed 108
431	B.1	Signal and background distributions for the full set of the discriminating variables in the
432		1-track $\tau_{\rm had}$ jet discrimination algorithm
433	B.2	Signal and background distributions for the full set of the discriminating variables in the
434		3-track $\tau_{\rm had}$ jet discrimination algorithm
435	C.1	Simulated predictions of $m_{Z \to \tau_{\ell} \tau_{\text{had}}}$ and $m_{H \to \tau_{\ell} \tau_{\text{had}}}$ in the boosted category for various
436	0.1	$m_{\tau\tau}$ reconstruction algorithms
437	C.2	Simulated predictions of $m_{Z \to \tau_{\ell} \tau_{\text{had}}}$ and $m_{H \to \tau_{\ell} \tau_{\text{had}}}$ in the VBF category for various $m_{\tau\tau}$
438	O.2	reconstruction algorithms
.00		