Αλγόριθμοι και πολυπλοκότητα 2020-2021

Χρωματισμός γράφων

Κωνσταντίνος Αηδόνης

15281

Τμήμα Πληροφορικής και Τηλεπικοινωνίων, Πανεπιστήμιο Ιωάννινων

Περιεχόμενα

- 1. Περίληψη
- 2. Περιγραφή προβλήματος
- 3. Διαδικασία επίλυσης προβλήματος
- 4. Αποτελέσματα
- 5. Βιβλιογραφία

1. Περίληψη

Στην παρούσα εργασία ακολουθεί η επίλυση στο πρόβλημα χρωματισμού γραφήματος που χαρακτηρίζεται ως NP-hard πρόβλημα συνδυαστικής βελτιστοποίησης . Με την βοήθεια τεσσάρων αλγορίθμων χρωματισμού γραφήματος και την εφαρμογή τους σε γνωστά προβλήματα θα γίνει η ανάθεση όσο λιγότερο χρωμάτων στις κορυφές ενός γραφήματος ώστε κάθε γειτονική κορυφή να χρωματίζεται με διαφορετικό χρώμα.

2. Περιγραφή του προβλήματος

Οι κλάσεις των υπολογιστικών προβλημάτων χωρίζονται στις εξής:

P -> Τάξεως P θεωρούνται τα προβλήματα που μπορούν να λυθούν σε πολυωνυμικό χρόνο (polynomial time). Για παράδειγμα εάν υπάρχει πολυωνυμικού χρόνου αλγόριθμος όπου παρέχει την βέλτιστη λύση σε ένα πρόβλημα τότε ισχύει ότι αυτό ανήκει στην τάξη P.

NP -> Μη ντετερμινιστικού πολυωνυμικού χρόνου (Nondeterministic Polynomial time) ονομάζονται όλα αυτά τα προβλήματα στα οποία, έχοντας μια προτεινόμενη λύση, ένας μπορεί να επιβεβαιώσει την ορθότητα αυτής της λύσης σε πολυωνυμικό χρόνο αλλά όχι απαραίτητα να την υπολογίσει.

Με βάση τις παραπάνω κλάσεις μπορούμε να πούμε το το P είναι υποσύνολο του NP λόγω του ότι η λύση ενός προβλήματος σε πολυωνυμικό χρόνο σίγουρα παρέχει την δυνατότητα επιβεβαίωσης μιας προτεινόμενης λύσης σε ένα πρόβλημα σε πολυωνυμικό χρόνο.

NP-Hard -> Μη ντετερμινιστικού πολυωνυμικού χρόνου Hard θεωρούνται τα προβλήματα που είναι τουλάχιστον δύσκολα όπως τα δυσκολότερα προβλήματα **NP.** Όταν για κάθε πρόβλημα L στην κλάση NP μπορεί να λυθεί σε πολυωνιμικό χρόνο.

NP-Complete -> Θεωρείται ένα πρόβλημα που αποδεικνύεται ότι ανήκει στην κλάση NP με πολυωνυμικό επαληθευτή και κάθε πρόβλημα στην κλάση NP ανάγεται σε ένα προβλημα Π.

Το πρόβλημα μας χαρακτηρίζεται ως **NP-Hard** πρόβλημα συνδυαστικής βελτιστοποίησης. Πραγματοποιείται η γνωστή διαδικασία **χρωματισμού κορυφών** γραφήματος *G = (V,E) με κύριο στόχο την ανάθεση του ελάχιστου αριθμού χρωμάτων στις κορυφές V.

Παρόμοια προβλήματα συναντάμε σε μεγάλο αριθμό πρακτικών εφαρμογών όπως ο χρονοπρογραμματισμός εκπαιδευτικών ιδρυμάτων (Educational timetabling), ο χρονοπρογραμματισμός αθλητικών γεγονότων (sports scheduling), η ανάθεση συχνοτήτων (frequency assignment), η ανάθεση καταχωρητών στους μεταγλωττιστές (compiler register allocation) και άλλα.

*G=Graph - Γράφημα V=Vertex - Κορυφή E=edge - Ακμή

3. Διαδικασία επίλυσης προβλήματος

Μας παρέχονται τα δεδομένα χρονοπρογραμματισμού εξετάσεων Toronto στα οποία θα εφαρμόσουμε τους παρακάτω αλγόριθμους:

First fit : Όπως βλέπουμε στην ονομασία είναι ένας άπληστος αλγόριθμος που χρωματίζει τις κορυφές με την σειρά και αναθέτει σε κάθε μια τον μικρότερο αριθμό που δεν χρησιμοποιείται από γειτονική κορυφή.

DSATUR : Είναι όμοιος με τον άπληστο (greedy) αλγόριθμο χρωματισμού , χρωματίζοντας τις κορυφές τη μια μετά την άλλη και ελέγχει ποια από της υπόλοιπες άχρωμες κορυφές έχει τον υψηλότερο αριθμό χρωμάτων στη γειτονιά και την χρωματίζει.

RLF: Ξεκινάει χρωματίζοντας την μεγαλύτερη σε μέγεθος κορυφή όπου οι γείτονες της δεν είναι χρωματισμένοι και συνεχίζει με τους αμέσως μικρότερους σε μέγεθος.

Backtracking DSATUR : Είναι παρόμοιος με τον DSATUR απλώς περιλαμβάνει έναν τελεστή για δυναμική αναδιάταξη των κορυφών όταν επανεξετάζεται ένας κόμβος.

4. Αποτελέσματα

Πρόβλημα	Εξετάσεις	Φοιτητές	Εγγραφές	Κορυφές	Πυκνότητα	Min	Median	Max	Mean	CV
Car-f-92	543	18419	55522	543	0.137	0	64	381	74,788	75.345
Ear-s-91	682	16925	56877	682	0.128	0	77	472	87,431	70.910
Ear-f-83	190	1125	8109	190	0.265	4	45	134	50,452	56.113
Hec-s-92	81	2823	10632	81	0.415	9	33	62	33,654	36.326
Kfu-s-93	461	5349	25113	461	0.055	0	18	247	25,566	119.986
Lse-f-91	381	2726	10918	381	0.062	0	16	134	23,784	93.155
Pur-s-93	2419	30032	120681	2419	0.029	0	47	857	71,319	129.479
Rye-s-93	486	11483	45051	486	0.075	0	24	274	36.510	111.760
Sta-f-83	139	611	5751	139	0.142	7	16	61	19.870	67.364
Tre-s-92	261	4360	14901	261	0.18	0	45	145	46.980	59.618
Uta-s-92	622	21266	58979	622	0.125	1	65	303	77.971	73.671
Ute-s-92	184	2750	11793	184	0.084	2	13	58	15.543	69.135
Yor-f-83	181	941	6034	181	0.287	7	51	117	52	35.226

Χρωματισμός με First Fit

Πρόβλημα	Χρώματα
Car-f-92	44
Ear-s-91	48
Ear-f-83	29
Hec-s-92	22
Kfu-s-93	25
Lse-f-91	22
Pur-s-93	54
Rye-s-93	28
Sta-f-83	13
Tre-s-92	29
Uta-s-92	43
Ute-s-92	13
Yor-f-83	27

5. Βιβλιογραφία

https://simple.wikipedia.org/wiki/Graph_coloring

http://ndl.ethernet.edu.et/handle/123456789/31548

https://en.wikipedia.org/wiki/Greedy_coloring

https://en.wikipedia.org/wiki/DSatur

https://www.gerad.ca/~alainh/RLFPaper.pdf

https://www.sciencedirect.com/science/article/pii/S03050

54811002425?casa_token=BV412xAmmC4AAAAA:Bl

WQWx9nMu4zeT-0kUI23qVmrRUHOf5598sBWfxSQ-

IgB58TypAgVnfmm-TAvMexs_0Hbt-J0w