

DATE: 13 August 2009

I.T.L. (PRODUCT TESTING) LTD. FCC Radio Test Report for Fourier Systems Ltd.

Equipment under test:
MINI DataNet Sensor

DNL804

Written by:

D. Shidlowsky, Documentation

Approved by: _

A. Sharabi, Test Engineer

Approved by:

I. Raz, EMC Laboratory Manager

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.

Measurement/Technical Report for Fourier Systems Ltd.

MINI DataNet Sensor

DNL804

FCC ID: XGO-DNL8XX

This report concerns: Original Grant: X

Class I Change: Class II Change:

Equipment type: Digital Transmission System

Limits used:

47CFR15 Section 15.247

Measurement procedure used is ANSI C63.4-2003.

Application for Certification Applicant for this device:

prepared by: (different from "prepared by")

Ishaishou Raz Haim Bila

ITL (Product Testing) Ltd. Fourier Systems Ltd.

Kfar Bin Nun 9611 West 165th St. Suite 11b

D.N. Shimshon 99780 Orland Park, IL 60467

Israel USA

e-mail Sraz@itl.co.il Tel: +708 - 364 - 9500

Fax: +708 - 364 - 9555 e-mail: haimb@fourier-sys.us

TABLE OF CONTENTS

1.	GENERA	L INFORMATION	
	1.1	Administrative Information	
	1.2	List of Accreditations	
	1.3	Product Description	
	1.4	Test Methodology	
	1.5	Test Facility	
	1.6	Measurement Uncertainty	
2.		TEST CONFIGURATION	
	2.1	Justification	_
	2.2	EUT Exercise Software	
	2.3	Special Accessories	
	2.4 2.5	Equipment Modifications Configuration of Tested System	
3.		F-UP PHOTOS	
		INUM BANDWIDTH	_
4.	6 DB MIN 4.1	Test procedure	
	4.1	Results table	
	4.3	Test Equipment Used	
5.		# TRANSMITTED PEAK POWER OUTPUT	
Э.	5.1	Test procedure	
	5.2	Results table	
	5.3	Test Equipment Used	
6.	ΡΕΔΚ ΡΩ	WER OUTPUT OUT OF 2400-2483.5 MHZ BAND	17
٥.	6.1	Test procedure	17
	6.2	Results table	
	6.3	Test Equipment Used	
7.	BAND ED	GE SPECTRUM	32
	7.1	Test procedure	_
	7.2	Results table	
	7.3	Test Equipment Used	33
8.	RADIATE	D EMISSION IN THE RESTRICTED BAND BELOW 1 GHZ	34
-	8.1	Test Specification	
	8.2	Test Procedure	
	8.3	Test Data	35
	8.4	Test Instrumentation Used, Radiated Measurements	
	8.5	Field Strength Calculation	36
9.	RADIATE	D EMISSION IN THE RESTRICTED BAND, ABOVE 1 GHZ	37
	9.1	Radiated Emission Above 1 GHz	
	9.2	Test Data	
	9.3	Test Instrumentation Used, Radiated Measurements Above 1 GHz	45
10.	_	TTED POWER DENSITY	
	10.1	Test procedure	
	10.2		_
	10.3	1-1	
11.		A GAIN	
12.	R.F EXPO	SURE/SAFETY CALCULATION	50

13.	APPENDI	X A - CORRECTION FACTORS	51
	13.1	Correction factors for CABLE	51
	13.2	Correction factors for CABLE	52
	13.3	Correction factors for CABLE	53
	12.6	Correction factors for LOG PERIODIC ANTENNA	54
	13.4	Correction factors for LOG PERIODIC ANTENNA	55
	13.5	Correction factors for BICONICAL ANTENNA	56
	13.6	Correction factors for Double-Ridged Waveguide Horn	57
		Correction factors for Horn Antenna	
	13.8	Correction factors for Horn Antenna	59
	13.9	Correction factors for ACTIVE LOOP ANTENNA	60

1. General Information

1.1 Administrative Information

Manufacturer: Fourier Systems Ltd.

Manufacturer's Address: 9611 West 165th St., Suite 11b

Orland Park

IL 60467

USA

Tel: +708-364-9500

Fax: +708-364-9555

Manufacturer's Representative: Haim Bila

Equipment Under Test (E.U.T): MINI DataNet Sensor

Equipment Model No.: DNL804

Equipment Serial No.: Not designated

Date of Receipt of E.U.T: 19.05.09

Start of Test: 19.05.09

End of Test: 03.06.09

Test Laboratory Location: I.T.L (Product Testing) Ltd.

Kfar Bin Nun, ISRAEL 99780

Test Specifications: See Section 2

1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), Registration No. 90715.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) (Japan), Registration Numbers: C-1350, R-1285.
- 5. Industry Canada (Canada), File No. IC 4025.
- 6. TUV Product Services, England, ASLLAS No. 97201.
- 7. Nemko (Norway), Authorization No. ELA 207.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

The DNL804 Mini DataNet logger is a single and dual channel data monitoring unit, reducing potentially redundant costs of the four-channel monitoring system. The 804 measures 4-20mA.

Features include:

External antenna, increasing transmission distance

Runs up to 10 months on a single battery

1.4 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4: 2003. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The radiated emissions tests were performed at I.T.L.'s testing facility at Kfar Bin-Nun, Israel. This site is a FCC listed test laboratory (FCC Registration No. 90715, date of listing August 22, 2006).

I.T.L.'s EMC Laboratory is also accredited by A2LA, certificate No. 1152.01.

1.6 Measurement Uncertainty

Radiated Emission

The Open Site complies with the ± 4 dB Normalized Site Attenuation requirements of ANSI C63.4-2003. In accordance with Paragraph 5.4.6.1 of this standard, this tolerance includes instrumentation calibration errors, measurement technique errors, and errors due to site anomalies.

2. System Test Configuration

2.1 Justification

Exploratory radiated emission screening inside a shielded room was performed on the DNL810, DNL 804, and DNL808 models in the band of 9 kHz up to $10^{\rm th}$ harmonic to determine worst case situation.

The only emission that was found in the units were in 2nd harmonic at the same level.

The DNL804 model was chosen to represent the three models since it contains an output wired sensor, and the other the units contain an internal logger (808) or an on-board temperature sensor (810).

The layout, enclosure, RF output power, antenna gain and all other RF parameters and circuitry are identical in all three units.

2.2 EUT Exercise Software

The DataNet hardware was run via the DataNet PC Software.

The software was configured to run the E.U.T. with the following parameters:

Output Power: 3 dBm Internal Booster: ON Amplifier: OFF

Frequency range: 2410-2475 MHz

Continuous transmission at 2410, 2440 and 2475 MHz at ZigBee

modulation and data rate,

2.3 Special Accessories

No special accessories were needed to achieve compliance.

2.4 Equipment Modifications

No modifications were necessary in order to achieve compliance.

2.5 Configuration of Tested System

Figure 1. Configuration of Tested System

3. Test Set-up Photos

Figure 2. Radiated Emission Test

Figure 3. Conducted Emission From Antenna Port Tests

4. 6 dB Minimum Bandwidth

4.1 Test procedure

The E.U.T. was set to the applicable test frequency. The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (10 dB) and an appropriate coaxial cable (cable loss = 1.7 dB). The spectrum analyzer was set to 100 kHz resolution BW. The spectrum bandwidth of the E.U.T. at the point of 6 dB below maximum peak power was measured and recorded.

The E.U.T. was tested at 2410, 2440, and 2475MHz

Figure 4 —2410 MHz

Figure 5 —2440MHz

Figure 6 —2475 MHz

4.2 Results table

E.U.T Description: MINI DataNet Sensor

Model No.: DNL804

Serial Number: Not designated

Specification: F.C.C. Part 15, Subpart C: (15.247-a2)

Operation Frequency	Reading	Specification
(MHz)	(MHz)	(MHz)
2410	1.63	0.5
2440	1.63	0.5
2440	1.63	0.5

Figure 7 6 dB Minimum Bandwidth

JUDGEMENT: Passed

TEST PERSONNEL:

Tester Signature: Date: 20.08.09

Typed/Printed Name: A. Sharabi

4.3 Test Equipment Used.

6 dB Minimum Bandwidth

Instrument	Manufacturer	Model	Serial/Part Number	Calibration	
				Last Calibr.	Period
Spectrum Analyzer	НР	8592L	3826A01204	March 17, 2009	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G2W20	April 19, 2009	1 year
Cable	Rhophase	KPS-5000- KPS	A1674	April 19, 2009	1 year

Figure 8 Test Equipment Used

5. Maximum Transmitted Peak Power Output

5.1 Test procedure

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator (10dB) and an appropriate coaxial cable (cable loss = 1.7 dB). The Spectrum Analyzer was set to 1.0 MHz resolution BW. Peak power level was measured at selected operation frequencies.

The E.U.T. was tested at 2410, 2440, and 2475 MHz

Figure 9 2410

Figure 10 2440 MHz

Figure 11 2475 MHz

5.2 Results table

E.U.T Description: MINI DataNet Sensor

Model No.: DNL804

Serial Number: Not designated

Specification: F.C.C. Part 15, Subpart C Section 15.247(b)

Freq.	Power	Power Specification	
	(dBm)	(dBm)	(dB)
2410	2.46	30.0	-27.54
2440	1.81	30.0	-28.19
2475	4.18	30.0	-25.82

Figure 12 Maximum Peak Power Output

JUDGEMENT: Passed by 25.8 dB

TEST PERSONNEL:

Tester Signature: Date: 20.08.09

Typed/Printed Name: A. Sharabi

5.3 Test Equipment Used.

Peak Power Output

Instrument	Manufacturer	Model	Serial/Part Number	Calibration	
				Last Calibr.	Period
Spectrum Analyzer	НР	8592L	3826A01204	March 17, 2009	1 YEAR
Attenuator	Jyebao	1	FAT- AM5AF5G6G2W20	April 19, 2009	1 year
Cable	Rhophase	KPS-5000- KPS	A1674	April 19, 2009	1 year

Figure 13 Test Equipment Used

6. Peak Power Output Out of 2400-2483.5 MHz Band

6.1 Test procedure

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (10 dB) and an appropriate coaxial cable (cable loss = 1.7 dB). The spectrum analyzer was set to 100 kHz resolution BW except for the frequency range 9 kHz-150 kHz where the RBW was set to 1kHz and the frequency range 150 kHz-10 MHz where the RBW was set to 10kHz. The frequency range from 9 kHz to 25 GHz was scanned. Level of spectrum components out of the 2400-2483.5 MHz was measured at the selected operation frequencies.

The E.U.T. was tested at 2410, 2440, and 2475MHz with the following

Figure 14 —2410 MHz

Figure 15 —2410 MHz

Figure 16 —2410 MHz

Figure 17 —2410 MHz

Figure 18 —2410 MHz

Figure 19 —2410 MHz

Figure 20 —2410 MHz

Figure 21 —2410 MHz

Figure 22 —2410 MHz

Figure 23 —2440 MHz

Figure 24 —2440 MHz

Figure 25 —2440 MHz

Figure 26 —2440 MHz

Figure 27 —2440 MHz

Figure 28 —2440 MHz

Figure 29 —2440 MHz

Figure 30 —2440 MHz

Figure 31 —2440 MHz

Figure 32 —2475 MHz

Figure 33 —2475 MHz

Figure 34 —2475 MHz

Figure 35 —2475 MHz

Figure 36 —2475 MHz

Figure 37 —2475 MHz

Figure 38 —2475 MHz

Figure 39 —2475 MHz

Figure 40 —2475 MHz

6.2 Results table

E.U.T Description: MINI DataNet Sensor

Model No.: DNL804

Serial Number: Not designated

Specification: F.C.C. Part 15, Subpart C (15.247)

Operation	D 1'	Specification	Margin
Frequency (MHz)	Reading (dBc)	(dBc)	(dB)
2410	40.0	20.0	-20.0
2440	41.9	20.0	-21.9
2475	40.6	20.0	-20.6

Figure 41 Peak Power Output of 2400-2483.5 MHz Band

JUDGEMENT: Passed by 20.0 dB

TEST PERSONNEL:

Tester Signature: Date: 20.08.09

Typed/Printed Name: A. Sharabi

6.3 Test Equipment Used.

Peak Power Output of 2400-2438.5 MHz Band

Instrument	Manufacturer	Model	Serial/Part Number	Calibration	
				Last Calibr.	Period
Spectrum Analyzer	НР	8592L	3826A01204	March 17, 2009	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G2W20	April 19, 2009	1 year
Cable	Rhophase	KPS-5000- KPS	A1674	April 19, 2009	1 year

Figure 42 Test Equipment Used

7. Band Edge Spectrum

[In Accordance with section 15.247(c)]

7.1 Test procedure

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (10 dB) and an appropriate coaxial cable (cable loss = 1.7 dB). The spectrum analyzer was set to 100 kHz resolution BW. Maximum power level below 2400 MHz and above 2483.5 MHz was measured relative to power level at 2410 MHz, and 2475 MHz correspondingly.

Figure 43 —2410 MHz

Figure 44 —2475 MHz

7.2 Results table

E.U.T. Description: MINI DataNet Sensor

Model No.: DNL804

Serial Number: Not designated

Specification: F.C.C. Part 15, Subpart C (15.247)

Operation	Band Edge	Spectrum	Specification	Margin
Frequency	Frequency	Level		
(MHz)	(MHz)	(dBc)	(dBc)	(dB)
2410	2400.00	51.3	20.0	-31.3
2410	2486.65	42.5	20.0	-22.5

Figure 45 Band Edge Spectrum

JUDGEMENT: Passed by 22.5 dB

TEST PERSONNEL:

Tester Signature: Date: 20.08.09

Typed/Printed Name: A. Sharabi

7.3 Test Equipment Used.

Band edge Spectrum

Instrument	Manufacturer	Model	Serial/Part Number	Calibration	
				Last Calibr.	Period
Spectrum Analyzer	НР	8592L	3826A01204	March 17, 2009	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G2W20	April 19, 2009	1 year
Cable	Rhophase	KPS-5000- KPS	A1674	April 19, 2009	1 year

Figure 46 Test Equipment Used

8. Radiated Emission in the Restricted Band Below 1 GHz

8.1 Test Specification

9 kHz-1000 MHz, F.C.C., Part 15, Subpart C

8.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3.

See Section 3.1 Justification of the System Test Configuration concerning the E.U.T. orientation for this test.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 3.1.

The frequency range 9 kHz-1000 MHz was scanned, and the list of the highest emissions was verified and updated accordingly.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

The emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 9 kHz-30 MHz, the loop antenna was rotated on its vertical axis, The antenna height (center of loop) was 1 meter.

In the frequency range 30-1000 MHz, the readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

Verification of the E.U.T emissions was based on the following methods:

Turning the E.U.T on and off.

Using a frequency span less than 10 MHz.

Observation of the signal level during turntable rotation. Background noise is not affected by the rotation of the E.U.T.

The E.U.T. was tested at the operating frequencies of 2410, 2440, and 2475 MHz.

8.3	Test	Data
-----	------	------

JUDGEMENT: Passed

The results for all three operating frequencies and modulations were the same.

The signals in the band 9 kHz - 1000 MHz were below the spectrum analyzer noise level, at least 20 dB below the specification limit.

The EUT met the requirements of the F.C.C. Part 15, Subpart C, specification.

TEST PERSONNEL:

Tester Signature: ______ Date: 20.08.09

Typed/Printed Name: A. Sharabi

8.4 Test Instrumentation Used, Radiated Measurements

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	НР	85422E	3906A00276	November 17, 2008	1 year
RF Section	HP	85420E	3705A00248	November 16, 2008	1 year
Antenna Bioconical	ARA	BCD 235/B	1041	March 25, 2009	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	November 06, 2008	1 year
Active Loop Antenna	EMCO	6502	9506-2950	October 15, 2008	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	НР	LaserJet 2200	JPKGC19982	N/A	N/A

8.5 Field Strength Calculation

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors" data disk, using the following equation:

$$[dB\mu\nu/m] \ FS \ = \ RA \ + \ AF \ + \ CF$$

FS: Field Strength [dB\u00e4v/m]

RA: Receiver Amplitude [dBµv]

AF: Receiving Antenna Correction Factor [dB/m]

CF: Cable Attenuation Factor [dB]

No external pre-amplifiers are used.

9. Radiated Emission in the Restricted Band, Above 1 GHz

9.1 Radiated Emission Above 1 GHz

The E.U.T operation mode and test set-up are as described in Section 3. See Section 3.1 Justification of the System Test Configuration concerning the E.U.T. orientation for this test.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 3.1.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

<u>In the frequency range 1-2.9 GHz</u>, a computerized EMI receiver complying to CISPR 16 requirements was used.

In the frequency range 2.9-25.0 GHz, a spectrum analyzer including a low noise amplifier was used. During average measurements, the IF bandwidth was 1 MHz and the video bandwidth was 100Hz. During peak measurements, the IF bandwidth was 1 MHz and the video bandwidth was 3 MHz.

The test distance was 3 meters.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

Verification of the E.U.T emissions was based on the following methods: turning the E.U.T on and off; using a frequency span less than 10 MHz; observation of the signal level during turntable rotation. (Background noise is not affected by the rotation of the E.U.T.)

The E.U.T. was tested at the operating frequencies of 2410, 2440, and 2475 MHz.

9.2 Test Data

JUDGEMENT: Passed by 8.4 dB

For the operation frequency of 2410 MHz, the margin between the emission level and the specification limit is 9.0 dB in the worst case at the frequency of 2390.00 MHz, horizontal polarization.

For the operation frequency of 2440 MHz, the margin between the emission level and the specification limit is 12.8 dB in the worst case at the frequency of 4880.00 MHz, horizontal polarization.

For the operation frequency of 2475 MHz, the margin between the emission level and the specification limit is 8.4 dB in the worst case at the frequency of 2483.50 MHz, horizontal polarization.

The results for all modulations were the same.

The EUT met the requirements of the F.C.C. Part 15, Subpart C, specification.

TEST PERSONNEL:

Tester Signature: _____ Date: 20.08.09

Typed/Printed Name: A. Sharabi

E.U.T Description MINI DataNet Sensor

Type DNL804

Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 1.0 GHz to 25.0 GHz

Test Distance: 3 meters Detector: Peak

Operation Frequency: 2410 MHz

Freq.	Polarity	Peak Amp	Peak. Specification	Peak. Margin
(MHz)	(H/V)	$(dB\mu V/m)$	$(dB~\mu V/m)$	(dB)
2390.00	Н	58.5*	74.0	-15.5
2390.00	V	57.3*	74.0	-16.7
4820.00	Н	57.5**	74.0	-16.5
4820.00	V	54.6**	74.0	-19.4

Figure 47. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL. Detector: Peak

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

"Peak Amp" includes correction factor.

- * "Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain
- ** "Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain + Band Pass Filter

E.U.T Description MINI DataNet Sensor

Type DNL804
Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 1.0 GHz to 25.0 GHz

Test Distance: 3 meters Detector: Average

Operation Frequency: 2410 MHz

Freq.	Polarity	Average Amp	Average Specification	Peak. Margin
(MHz)	(H/V)	$(dB\mu V/m)$	$(dB\;\mu V/m)$	(dB)
2390.00	Н	45.0*	54.0	-9.0
2390.00	V	44.3*	54.0	-9.7
4820.00	Н	40.5**	54.0	-13.5
4820.00	V	38.7**	54.0	-12.6

Figure 48. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL.

Detector: Average

Notes:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

* "Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain + Band Pass Filter

[&]quot;Average Amp" includes correction factor.

E.U.T Description MINI DataNet Sensor

Type DNL804

Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 1.0 GHz to 25.0 GHz

Test Distance: 3 meters Detector: Peak

Operation Frequency: 2440 MHz

Freq.	Polarity	Peak Amp	Peak. Specification	Peak. Margin
(MHz)	(H/V)	$(dB\mu/m)$	(dB μ V/m)	(dB)
4880.00	Н	58.7*	74.0	-15.3
4880.00	V	55.3*	74.0	-18.7

Figure 49. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL.

Detector: Peak

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

"Peak Amp" includes correction factor.

* "Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain + Band Pass Filter

E.U.T Description MINI DataNet Sensor

Type DNL804

Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 1.0 GHz to 25.0 GHz

Test Distance: 3 meters Detector: Average

Operation Frequency: 2440 MHz

Freq.	Polarity	Average Amp	Average Specification	Peak. Margin
(MHz)	(H/V)	$(dB\mu V/m)$	$(dB\;\mu V/m)$	(dB)
4880.00	Н	41.2*	54.0	-12.8
4880.00	V	38.5*	54.0	-15.5

Figure 50. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL.

Detector: Average

Notes:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

"Average Amp" includes correction factor.

* "Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain + Band Pass Filter

E.U.T Description MINI DataNet Sensor

Type DNL804

Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 1.0 GHz to 25.0 GHz

Test Distance: 3 meters Detector: Peak

Operation Frequency: 2475 MHz

Freq.	Polarity	Peak Amp	Peak. Specification	Peak. Margin
(MHz)	(H/V)	$(dB\mu V/m)$	$(dB~\mu V/m)$	(dB)
2483.50	Н	57.5*	74.0	-16.5
2483.50	V	58.3*	74.0	-15.7
4950.00	Н	58.0**	74.0	-16.0
4950.00	V	51.7**	74.0	-22.3

Figure 51. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL. Detector: Peak

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

"Peak Amp" includes correction factor.

- * "Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain
- ** "Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain + Band Pass Filter

E.U.T Description MINI DataNet Sensor

Type DNL804
Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 1.0 GHz to 25.0 GHz

Test Distance: 3 meters Detector: Average

Operation Frequency: 2440 MHz

Freq.	Polarity	Average Amp	Average Specification	Peak. Margin
(MHz)	(H/V)	$(dB\mu V/m)$	$(dB\;\mu V/m)$	(dB)
2483.50	Н	45.6*	54.0	-8.4
2483.50	V	44.8*	54.0	-9.2
4950.00	Н	40.5**	54.0	-13.5
4950.00	V	39.3**	54.0	-14.7

Figure 52. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL. Detector: Average

Notes:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

- * Correction Factor = Antenna Factor + Cable Loss- Low Noise Amplifier Gain
- ** "Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier
 Gain + Band Pass Filter

[&]quot;Average Amp" includes correction factor.

9.3 Test Instrumentation Used, Radiated Measurements Above 1 GHz

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
Receiver	НР	85422E	3906A00276	November 17, 2008	1 year
RF Section	НР	85420E	3705A00248	November 16, 2008	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A
Antenna-Log Periodic	A.H.System	SAS-200/511	253	January 29, 2009	2 years
Double Ridged Waveguide Horn Antenna	EMCO	3115	29845	March 16, 2008	2 years
Horn Antenna	ARA	SWH-28	1008	December 23, 2008	2 year
Horn Antenna	Narda	V637	0410	December 23, 2008	2 year
Low Noise Amplifier	DBS MICROWAVE	LNA-DBS- 0411N313	013	November 3, 2008	1 year
Low Noise Amplifier	Sophia Wireless	LNA 28-B	232	January 8, 2009	1 year
Low Noise Amplifier	MK Milliwave	MKT6-3000 400-30-13P	A0399	January 15, 2009	1 year
Spectrum Analyzer	НР	8546E	3442A00275	December 15, 2008	1 year
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

10. Transmitted Power Density

[In accordance with section 15.247(d)]

10.1 Test procedure

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (10dB) and an appropriate coaxial cable (cable loss = 1.7 dB). The spectrum analyzer was set to 3 kHz resolution BW. and sweep time of 1 second for each 3 kHz "window". The spectrum peaks were located at each of the 3 operating frequencies.

Figure 53 —2410 MHz

Figure 54 —2440 MHz

Figure 55 —2475 MHz

10.2 Results table

E.U.T. Description: MINI DataNet Sensor

Model No.: DNL804

Serial Number: Not designated

Specification: F.C.C. Part 15, Subpart C (15.247)

Operation	Reading	Specification	Margin
Frequency	Spectrum		
	Analyzer		
(MHz)	(dBm)	(dBm)	(dB)
2410	-9.91	8.0	-17.91
2440	-14.05	8.0	-22.05
2475	-12.76	8.0	-20.76

Figure 56 Test Results

JUDGEMENT: Passed by 17.9 dB

TEST PERSONNEL:

Tester Signature: ______ Date: 20.08.09

Typed/Printed Name: A. Sharabi

10.3 Test Equipment Used.

Transmitted Power Density

Instrument	Manufacturer	Model	Serial/Part Number	Calibratio	n
				Last Calibr.	Period
Spectrum Analyzer	НР	8592L	3826A01204	March 17, 2009	1 year
Attenuator	Jyebao	1	FAT- AM5AF5G6G2W20	April 19, 2009	1 year
Cable	Rhophase	KPS-5000- KPS	A1674	April 19, 2009	1 year

Figure 57 Test Equipment Used

11. Antenna Gain

The antenna gain is 5 dBi.

12. R.F Exposure/Safety Calculation

The E.U.T. is a wall mounted data monitoring unit. The typical distance between the E.U.T. and the user, is >20 cm.

Calculation of Maximum Permissible Exposure (MPE)
Based on Section 1.1307(b)(1) Requirements

(a) FCC limits at 2437 MHz is: $1 \frac{mW}{cm^2}$

Using table 1 of Section 1.1310 limit for general population/uncontrolled exposures, the above level is an average over 30 minutes.

(b) The power density produced by the E.U.T. is

$$S = \frac{P_t G_t}{4\pi R^2}$$

Pt- Transmitted Power 2.63mw (Peak)

 G_{T} - Antenna Gain, 5 dBi = 3.16

R- Distance from Transmitter using 20cm worst case

(c) The peak power density is:

$$S_p = \frac{2.63 \times 3.16}{4\pi (20)^2} = 1.6 \times 10^{-3} \frac{mW}{cm^2}$$

(d) This is below the FCC limit.

13. APPENDIX A - CORRECTION FACTORS

13.1 Correction factors for

CABLE

from EMI receiver to test antenna at 3 meter range.

FREQUENCY	CORRECTION FACTOR
(MHz)	(dB)
10.0	0.3
20.0	0.6
30.0	0.8
40.0	0.9
50.0	1.1
60.0	1.2
70.0	1.3
80.0	1.4
90.0	1.6
100.0	1.7
150.0	2.0
200.0	2.3
250.0	2.7
300.0	3.1
350.0	3.4
400.0	3.7
450.0	4.0
500.0	4.3
600.0	4.7
700.0	5.3
800.0	5.9
900.0	6.3
1000.0	6.7

FREQUENCY	CORRECTION FACTOR
(MHz)	(dB)
1200.0	7.3
1400.0	7.8
1600.0	8.4
1800.0	9.1
2000.0	9.9
2300.0	11.2
2600.0	12.2
2900.0	13.0

- 1. The cable type is RG-214.
- 2. The overall length of the cable is 27 meters.
- 3. The above data is located in file 27MO3MO.CBL on the disk marked "Radiated Emission Tests EMI Receiver".

13.2 Correction factors for

from EMI receiver to test antenna

at 3 meter range.

FREQUENCY	CORRECTION FACTOR
(GHz)	(dB)
1.0	1.2
2.0	1.6
3.0	2.0
4.0	2.4
5.0	3.0
6.0	3.4
7.0	3.8
8.0	4.2
9.0	4.6
10.0	5.0
12.0	5.8

- 1. The cable type is RG-8.
- 2. The overall length of the cable is 10 meters.

13.3 Correction factors for

from spectrum analyzer to test antenna above 2.9 GHz

FREQUENCY	CORRECTION FACTOR	FREQUENCY	CORRECTION FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	1.9	14.0	9.1
2.0	2.7	15.0	9.5
3.0	3.5	16.0	9.9
4.0	4.2	17.0	10.2
5.0	4.9	18.0	10.4
6.0	5.5	19.0	10.7
7.0	6.0	20.0	10.9
8.0	6.5	21.0	11.2
9.0	7.0	22.0	11.6
10.0	7.5	23.0	11.9
11.0	7.9	24.0	12.3
12.0	8.3	25.0	12.6
13.0	8.7	26.0	13.0

- 1. The cable type is SUCOFLEX 104 E manufactured by SUHNER.
- 2. The cable is used for measurements above 2.9 GHz.
- 3. The overall length of the cable is 10 meters.

12.6 Correction factors for LOG PERIODIC ANTENNA Type LPD 2010/A at 3 and 10 meter ranges.

Distance of 3 meters

FREQUENCY	AFE
(MHz)	(dB/m)
200.0	9.1
250.0	10.2
300.0	12.5
400.0	15.4
500.0	16.1
600.0	19.2
700.0	19.4
800.0	19.9
900.0	21.2
1000.0	23.5

Distance of 10 meters

FREQUENCY	AFE
(MHz)	(dB/m)
200.0	9.0
250.0	10.1
300.0	11.8
400.0	15.3
500.0	15.6
600.0	18.7
700.0	19.1
800.0	20.2
900.0	21.1
1000.0	23.2

- 1. Antenna serial number is 1038.
- 2. The above lists are located in file number 38M3O.ANT for a 3 meter range, and file number 38M100.ANT for a 10 meter range.
- 3. The files mentioned above are located on the disk marked "Radiated Emission Test EMI Receiver".

13.4 Correction factors for

LOG PERIODIC ANTENNA Type SAS-200/511 at 3 meter range.

FREQUENCY	ANTENNA
	FACTOR
(GHz)	(dB)
1.0	24.9
1.5	27.8
2.0	29.9
2.5	31.2
3.0	32.8
3.5	33.6
4.0	34.3
4.5	35.2
5.0	36.2
5.5	36.7
6.0	37.2
6.5	38.1

FREQUENCY	ANTENNA
	FACTOR
(GHz)	(dB)
7.0	38.6
7.5	39.2
8.0	39.9
8.5	40.4
9.0	40.8
9.5	41.1
10.0	41.7
10.5	42.4
11.0	42.5
11.5	43.1
12.0	43.4
12.5	44.4
13.0	44.6

- 1. Antenna serial number is 253.
- 2. The above lists are located in file number SAS3M0.ANT for a 3 meter range.
- 3. The files mentioned above are located on the disk marked "Antenna Factors".

13.5 Correction factors for

BICONICAL ANTENNA Type BCD-235/B, at 3 meter range

	4.55
FREQUENCY	AFE
(MHz)	(dB/m)
20.0	19.4
30.0	14.8
40.0	11.9
50.0	10.2
60.0	9.1
70.0	8.5
80.0	8.9
90.0	9.6
100.0	10.3
110.0	11.0
120.0	11.5
130.0	11.7
140.0	12.1
150.0	12.6
160.0	12.8
170.0	13.0
180.0	13.5
190.0	14.0
200.0	14.8
210.0	15.3
220.0	15.8
230.0	16.2
240.0	16.6
250.0	17.6
260.0	18.2
270.0	18.4
280.0	18.7
290.0	19.2
300.0	19.9
310	20.7
320	21.9
330	23.4
340	25.1
350	27.0

- 1. Antenna serial number is 1041.
- 2. The above list is located in file 19BC10M1.ANT on the disk marked "Radiated Emissions Tests EMI Receiver".

13.6 Correction factors for Double-Ridged Waveguide Horn Model: 3115, S/N 29845 at 3 meter range.

FREQUENCY	ANTENNA	ANTENN	FREQUENCY	ANTENNA	ANTENNA
	FACTOR	A Gain		FACTOR	Gain
(GHz)	(dB 1/m)	(dBi)	(GHz)	(dB 1/m)	(dBi)
1.0	24.8	5.4	10.0	38.8	11.4
1.5	26.1	7.6	10.5	38.9	11.8
2.0	28.6	7.7	11.0	39.0	12.1
2.5	29.8	8.4	11.5	39.6	11.8
3.0	31.4	8.4	12.0	39.8	12.0
3.5	32.4	8.7	12.5	39.6	12.5
4.0	33.7	8.6	13.0	40.0	12.5
4.5	33.4	9.9	13.5	39.8	13.0
5.0	34.5	9.7	14.0	40.2	13.0
5.5	35.1	9.9	14.5	40.6	12.9
6.0	35.4	10.4	15.0	41.3	12.4
6.5	35.6	10.8	15.5	39.5	14.6
7.0	36.2	10.9	16.0	38.8	15.5
7.5	37.3	10.4	16.5	40.0	14.6
8.0	37.7	10.6	17.0	41.4	13.4
8.5	38.3	10.5	17.5	44.8	10.3
9.0	38.5	10.8	18.0	47.2	8.1
9.5	38.7	11.1			

13.7 Correction factors for

Horn Antenna Model: SWH-28 at 1 meter range.

FREQUENCY	AFE	Gain
(GHz)	(dB/m)	(dB1)
18.0	40.3	16.1
19.0	40.3	16.3
20.0	40.3	16.1
21.0	40.3	16.3
22.0	40.4	16.8
23.0	40.5	16.4
24.0	40.5	16.6
25.0	40.5	16.7
26.0	40.6	16.4

13.8 Correction factors for

Horn Antenna Model: V637

FREQUENCY	AFE	Gain
(GHz)	(dB/m)	(dB1)
26.0	43.6	14.9
27.0	43.7	15.1
28.0	43.8	15.3
29.0	43.9	15.5
30.0	43.9	15.8
31.0	44.0	16.0
32.0	44.1	16.2
33.0	44.1	16.4
34.0	44.1	16.7
35.0	44.2	16.9
36.0	44.2	17.1
37.0	44.2	17.4
38.0	44.2	17.6
39.0	44.2	17.8
40.0	44.2	18.0

13.9 Correction factors for ACTIVE LOOP ANTENNA Model 6502 S/N 9506-2950

	Magnetic	Electric
FREQUENCY	Antenna	Antenna
	Factor	Factor
(MHz)	(dB)	(dB)
.009	-35.1	16.4
.010	-35.7	15.8
.020	-38.5	13.0
.050	-39.6	11.9
.075	-39.8	11.8
.100	-40.0	11.6
.150	-40.0	11.5
.250	-40.0	11.6
.500	-40.0	11.5
.750	-40.1	11.5
1.000	-39.9	11.7
2.000	-39.5	12.0
3.000	-39.4	12.1
4.000	-39.7	11.9
5.000	-39.7	11.8
10.000	40.2	11.3
15.000	-40.7	10.8
20.000	-40.5	11.0
25.000	-41.3	10.2
30.000	42.3	9.2