```
import numpy as np
import pandas as pd
```

 $\label{lem:df-pd-read_csv} df=pd.read_csv("https://github.com/HamoyeHQ/HDSC-Introduction-to-Python-for-machine-learning/files/7768140/FoodBalanceSheets_E_Africa_NOFLAG.$

df

	Area Code	Area	Item Code	Item	Element Code	Element	Unit	
0	4	Algeria	2501	Population	511	Total Population - Both sexes	1000 persons	3
1	4	Algeria	2501	Population	5301	Domestic supply quantity	1000 tonnes	
2	4	Algeria	2901	Grand Total	664	Food supply (kcal/capita/day)	kcal/capita/day	
3	4	Algeria	2901	Grand Total	674	Protein supply quantity (g/capita/day)	g/capita/day	
4	4	Algeria	2901	Grand Total	684	Fat supply quantity (g/capita/day)	g/capita/day	
60938	181	Zimbabwe	2899	Miscellaneous	5142	Food	1000 tonnes	
4								•

```
df.groupby('Element')['Y2017'].sum()
```

Grouping by 'Element' and calculating the sum of 'Processing' in 2017
#result = df['Y2017'].groupby('Element')['Processing'].sum()

Printing the result
#print(result['Processing'])

Element Domestic supply quantity 2088198.10 Export Quantity 182338.80 Fat supply quantity (g/capita/day) 10253.84 223705.68 1258888.28 Food Food supply (kcal/capita/day) 454681.00 Food supply quantity (kg/capita/yr) 48690.04 Import Quantity 294559.09 Losses 160614.00 Other uses (non-food) 91645.97 292836.00 Processing 2030056.89 Production Protein supply quantity (g/capita/day) 11842.45 Residuals 35500.00 24870.14 Seed Stock Variation 54316.91 Total Population - Both sexes 1112641.00 Tourist consumption 91.00 Name: Y2017, dtype: float64

df_2017=df['Y2017']
df_2017.mean()

140.9177648602722

```
df_2017.std()
```

1671.8623590567995

selected_columns = df[['Y2017', 'Area']]
grouped_data= selected_columns.groupby('Area')['Y2017'].sum()
highest= grouped_data.idxmax()
highest

'Nigeria'

sorted_data = grouped_data.sort_values(ascending=True)
seventh= sorted_data.index[6]
seventh

Area

'Guinea-Bissau'

Grouping by 'Element' and calculating the sum of 'Stock Variation' for each year grouped_data = df.groupby('Element').sum()

Item Element

grouped_data

<ipython-input-73-f7249345c24f>:2: FutureWarning: The default value of numeric_onl
grouped_data = df.groupby('Element').sum()

V2014

V2015

V2016

	Code	Code	Code	Y2014	Y2015	Y2016	
Element							
Domestic supply quantity	708993	14197445	28068795	1996716.35	2021493.55	2044842.70	208
Export Quantity	599910	11840553	26026133	150020.64	157614.47	151920.46	18
Fat supply quantity (g/capita/day)	675050	13535000	3435732	10225.56	10235.74	10102.77	1
Feed	176272	3538507	7282199	216927.89	225050.22	228958.65	22
Food	663295	13285035	25406622	1212332.49	1232361.10	1247022.17	125
Food supply (kcal/capita/day)	674057	13511060	3329296	454257.00	453383.00	451810.00	45
Food supply quantity (kg/capita/yr)	658446	13185401	3163725	49650.63	49345.13	48985.28	4
Import Quantity	688174	13795966	28834929	274144.48	267018.46	286582.78	29
Losses	274353	5424803	10292107	153223.00	155439.00	157787.00	16
Other uses (non-food)	235554	4729749	8926728	78718.13	66254.41	69563.68	9
Processing	271940	5350416	10313310	282923.00	287929.00	280631.00	29
Production	526751	10450053	21388191	1931287.75	1947019.39	1943537.15	203
Protein supply quantity (g/capita/day)	675050	13535000	3385502	11836.46	11833.95	11779.69	1
4							•

grouped_data = df.groupby('Item').sum()

print(grouped_data)

	Area Code	Item Code	Element Code	Y2014	Y2015	\
Item						
Alcohol, Non-Food	38447	752497	1515090	2403.00	2180.00	
Alcoholic Beverages	75016	1649136	2171381	102410.11	98783.72	
Animal Products	18060	397035	90990	11935.65	11811.73	
Animal fats	85279	1882494	2567303	209460.54	200675.72	
Apples and products	69280	1352989	1920418	9499.23	10559.15	
•••						
Vegetables, Other	77779	1518715	2275409	155038.96	158104.08	
Vegetal Products	18060	391905	90990	107145.19	107064.17	
Wheat and products	87073	1639683	2654934	232670.13	234710.51	
Wine	66206	1319535	1818328	4497.36	4251.81	

```
50798
                                 970905
                                              1525745 200396.96 203151.78
Yams
                       Y2016
                                  Y2017
                                             Y2018
Ttem
Alcohol, Non-Food
                     2223.00
                               2348.00
                                          2293.00
Alcoholic Beverages
                    96958.75
                               95581.06
                                          97847.27
Animal Products
                     11661.69
                               11547.65
                                         11578.61
Animal fats
                    183314.22 269617.53 269648.27
Apples and products
                     9853.26 10198.90
                                           9640.51
                   156218.90 157752.59 163987.21
Vegetables, Other
Vegetal Products
                    106792.72 107655.20 107775.39
Wheat and products
                   239377.07 240047.62 242645.19
                     3872.09
                               4178.02
                                          4039.32
Wine
                    220626.20 229174.59 221272.09
Yams
```

[119 rows x 8 columns]

<ipython-input-74-061f83835ee2>:1: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future \
grouped_data = df.groupby('Item').sum()

filtered_data = df[(df['Area'] == 'Madagascar') & (df['Y2015'])]
filtered_data.groupby('Element').sum()

Extracting the Protein supply quantity for Madagascar in 2015
#protein_supply_madagascar_2015 = filtered_data['Protein Supply Quantity'].sum()

Printing the total Protein supply quantity in Madagascar in 2015
#print("Total Protein supply quantity in Madagascar in 2015:", protein_supply_madagascar_2015)

<ipython-input-75-0014ed6da114>:2: FutureWarning: The default value of numeric_onl filtered_data.groupby('Element').sum()

	Area Code	Item Code	Element Code	Y2014	Y2015	Y2016	Y2017	Υ
Element								
Domestic supply quantity	11481	240991	471789	31577.76	31214.98	31730.08	31926.87	3259
Export Quantity	6321	134352	289639	425.48	494.75	535.06	566.81	53
Fat supply quantity (g/capita/day)	8772	185508	46512	88.71	91.85	95.29	101.01	ξ
Feed	1806	37888	77294	2177.76	2070.22	2117.40	2056.60	213
Food	10449	220084	416502	21404.42	21120.65	21433.61	21675.21	2211
Food supply (kcal/capita/day)	9159	193424	47144	7942.00	7685.00	7666.00	7765.00	774
Food supply quantity (kg/capita/yr)	11223	235799	56115	907.58	871.59	861.17	847.75	84
Import Quantity	5160	109447	224440	2008.68	1721.80	1890.46	3132.79	320
Losses	5418	113563	215166	2252.00	2176.00	2215.00	2153.00	225
Other uses (non-food)	2322	49301	92772	4346.58	3957.12	4112.08	4170.06	422
Processing	1548	32155	61572	1262.00	1803.00	1770.00	1826.00	181
Production	10965	230006	468435	30337.51	29482.89	29889.65	29267.86	3021
Protein supply	0004	100220	46506	477 77	170 NE	470 07	47E 70	45 •

```
unique_countries = df['Area'].nunique()
unique_countries
```

49

correlation_data = df.groupby('Element Code').corr()

Finding the year with the least correlation with 'Element Code' correlation data

<ipython-input-77-0ca4a6042639>:1: FutureWarning: The default value of numeric_only in [correlation_data = df.groupby('Element Code').corr() Area Item Y2014 Y2015 Y2016 Y2017 Y2018 Code Code Element Code 511 Area 1.000000 NaN 0.149348 0.149792 0.150292 0.150840 0.151415 Code Item NaN NaN NaN NaN NaN NaN NaN Code Y2014 0.149348 NaN 1.000000 0.999988 0.999951 0.999885 0.999791 Y2015 0.149792 0.999988 1.000000 0.999987 0.999947 Y2016 0.150292 NaN 0.999951 0.999987 1.000000 0.999986 0.999944 5911 Y2014 0.005901 0.056301 1.000000 0.976942 0.992694 0.941934 0.942024 Y2015 0.007883 $0.050526 \quad 0.976942 \quad 1.000000 \quad 0.965195 \quad 0.863665$ Y2016 0.006203 0.062306 0.992694 0.965195 1.000000 0.963790 0.963378 Y2017 0.005156 0.063080 0.941934 0.863665 0.963790 1.000000 0.999409 4 $my_tuppy = (1,2,5,8)$ $my_tuppy[2] = 6$ TypeError Traceback (most recent call last) <ipython-input-78-ce1543b3be47> in <cell line: 3>() $1 \text{ my_tuppy} = (1,2,5,8)$ ----> 3 my_tuppy[2] = 6 TypeError: 'tuple' object does not support item assignment SEARCH STACK OVERFLOW lst = [[35, 'Portugal', 94], [33, 'Argentina', 93], [30 , 'Brazil', 92]] col = ['Age','Nationality','Overall'] pd.DataFrame(lst, columns=col, index=[i for i in range(1,4)]) Age Nationality Overall 35 Portugal 94 1 33 93 2 Argentina 3 30 Brazil 92

✓ 0s completed at 2:17 PM