ECON 711 - PS 4

Alex von Hafften*

10/5/2020

Question 1. Choice rules from preferences

Let X be a choice set and \succeq a complete and transitive preference relation on X. Show that the choice rule induced by \succeq , $C(A,\succeq) = \{x \in A : x \succeq y \ \forall y \in A\}$, must satisfy the Weak Axiom of Revealed Preference (WARP).

Proof: $C(\cdot)$ satisfies WARP if for any sets $A, B \subset X$ and any $x, y \in A \cap B$, if $x \in C(A)$ and $y \in C(B)$, then $x \in C(B)$ and $y \in C(A)$. Since $x \in C(A)$ and $y \in C(B)$, $x \succeq y$ and $y \succeq x$. For any $w \in B$, $y \succeq w$ because $y \in C(B)$. By transitivity, $x \succeq w$, so $x \in C(B)$. For any $z \in A$, $x \succeq z$ because $x \in C(A)$. By transitivity, $y \succeq z$, so $y \in C(A)$. \square

Question 2. Preferences from choice rules

Let X be a choice set and $C: \mathcal{P}(X) \to \mathcal{P}(X)$ a nonempty choice rule. Show that if C satisfies WARP, then the preference relation \succeq_C defined on X by " $x \succeq_C y$ iff there exists a set $A \subseteq X$ such that $x, y \in A$ and $x \in C(A)$ " is complete and transitive, and that the choice rule it induces, $C(\cdot, \succeq_C)$, is equal to C.

Question 3. Choice over finite sets

Let X be a finite set, and \succeq a complete and transitive preference relation on X. (Hint: for (a), fix X finite, and prove by induction. For (b) use induction on |X| to prove the stronger result that when X is finite, a utility representation exists with range $\{1, 2, ..., |X|\}$

- (a) Show that the induced choice rule $C(\cdot, \succsim_C)$ is nonempty that $C(A, \succsim_C) \neq \emptyset$ if $A = \emptyset$.
- (b) Show that a utility representation exists.

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, Tyler Welch, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.