H2O Deep Learning

Arno Candel, PhD Chief Architect, H2O.ai

Need a handy conference guide?

Download our app, "H2O World 2015"

What do these stickers mean?

I have H2O Installed

I have R installed

I have Python installed

I have the H2O World data sets

Pick up stickers or get install help at the information booth

Why Deep Learning?

Deep Learning is trending (so it must be useful)

What is Deep Learning?

- Deep Learning learns a hierarchy of non-linear transformations
- Black-box, brute-force method, really good at pattern recognition
- Deep Learning got a boost in the last decade due to faster hardware and algorithmic advances
- Results are generally not 100% reproducible, but within a small tolerance

model = set of connecting weights + type of non-linearity in each layer

What is H2O Deep Learning?

Multi-layer Artificial Neural Network trained with back-propagation (stochastic gradient descent)

- + distributed processing for big data
- + multi-threaded speedup

+ smart algorithms for fast & accurate results

(early stopping with convergence checking, adaptive learning rate, automatic standardization, automatic one-hot encoding of categoricals, missing value imputation, automatic model initialization, momentum, dropout/L1/L2 regularization, non-Gaussian distributions and advanced loss functions, offsets, observation weights, grid search, N-fold cross-validation, checkpointing, load balancing, auto-tuning, model averaging, elastic averaging, etc.)

= powerful tool for (un)supervised machine learning on real-world data

H2O DL Map/Reduce Iterations

Map: training

Reduce: averaging

H2O Deep Learning Features

- Regularization techniques: Dropout, L1/L2
- Efficient handling of categorical, missing and sparse data
- Advanced math: Gaussian/Laplace/Poisson/Gamma/Tweedie regression, offsets, observation weights, loss functions
- Unsupervised mode for non-linear dimensionality reduction, anomaly detection, etc.
- H2O Eco-System Benefits:
 - Scalable to massive datasets on large clusters
 - Early convergence-based stopping, N-fold cross-validation, Grid search
 - Low-latency Java ("POJO") scoring code is auto-generated
 - Easy deployment: One .jar for Laptop, Server, Hadoop, Spark
 - APIs include R, Python, Flow UI, Scala, Java, JavaScript, REST
 - Easy to use: like GBM, DRF, GLM, can mix & match, compare

More Tomorrow!

Tuesday 11:00 AM Erdos Stage
Top 10 Deep Learning Tips & Tricks

Hands-On Tutorial

- Introduction
 - Installation and Startup
 - Decision Boundaries
- Cover Type Dataset
 - Exploratory Data Analysis
 - Deep Learning Model
 - Hyper-Parameter Search
 - Checkpointing
 - Cross-Validation
 - Model Save & Load
- Regression and Binary Classification
- Deep Learning Tips & Tricks (more tomorrow!)

