Introduction to Artificial Intelligence

COMP307/AIML420 Evolutionary Computation 1: Evolutionary Computation and Learning

Dr Andrew Lensen

Andrew.Lensen@vuw.ac.nz

Outline

- Why evolutionary computation (EC) and learning?
- What is EC?
- EC Techniques
- Key characteristics and design questions
- Genetic algorithms: representation, selection and genetic operators
- Overview of other evolutionary algorithms

Why Do We Need Evolutionary Computation?

- We have discussed several methods and algorithms in ML
- But they have limitations:
 - Local optima
 - Unreasonable assumptions
 - Needs to predefine/fix the structure/model of the solution, and only learns the parameters/coefficients
 - Many parameters to learn (high-dimensional optimisation)
- Evolutionary Computation (EC) is one technique that can avoid some of the problems

Evolutionary Computation and Learning

- In computer science, evolutionary computation is a family of "nature inspired" Al algorithms for global optimisation.
- In technical terminology, they are a family of populationbased trial-and-error problem solvers with a metaheuristic or stochastic optimisation character.
- Evolutionary Learning is the use of evolutionary computation methods for tackling machine learning tasks
- (Shameless) Source: https://en.wikipedia.org/wiki/Evolutionary_computation

What is Optimisation?

- In an optimization problem, we are trying to find the best values of the variables that gives the optimal value of the function that we are optimising.
- E.g. minimise fuel use of courier deliveries.
- Decision variable(s)
- Objective function(s)
- Constraint(s)
- . . .

Examples

In machine learning

- Optimise the weights of a neural network
- Optimise the architecture (#layers, #nodes) of a neural network
- Optimise the distance measure for k-NN classifier
- Optimise the distance measure for clustering methods
- Feature selection (select a subset of important features to use)

Other domains

- Design the shape of a racing car/plane wings
- Schedule lecture rooms (timetabling)
- Schedule jobs in cloud network
- Schedule trucks for delivery

Evolutionary Computation: Origin Story

- In the 1950s, long before computers were widely used, the idea to use *Darwinian* principles for automatic problem solving was first suggested.
- Three different interpretations of this idea were developed independently:
 - Evolutionary programming: Lawrence Fogel (USA)
 - Evolutionary strategies: Ingo Rechenberg (Germany)
 - Genetic algorithms: John Holland (USA)
- These areas developed separately for over 15 or 20 years
- Since the early 1990s, they have been seen as different representatives of one technology: evolutionary computation

EC Techniques

- Evolutionary algorithms (EAs)
 - Genetic algorithms (the biggest branch)
 - Evolutionary programming
 - Evolutionary strategies
 - Genetic Programming (Koza, 1990s, fast growing area)
- Swarm intelligence (SI)
 - Ant colony optimisation
 - Particle swarm optimisation (PSO)
 - Artificial immune systems
- Other techniques
 - Differential evolution
 - Estimation of distribution algorithms
 - **–** ...

Evolutionary Algorithms

 Search for the best individual by evolving a population with reproduction (e.g. crossover, mutation)

Key Characteristics

- One (or more) populations of individuals
- Dynamically changing populations due to the birth and death of individuals (through crossover, mutation, ...)
- A fitness function which reflects the ability of an individual to survive and reproduce ("survival of the fittest")
- Variational inheritance: offspring closely resemble their parents, but are not identical
- Final solution (individual): the one with the best fitness
- Fitness could be accuracy, cost, error, ...

Evolutionary Search

- Search space of candidate solutions
 - Not space of partial solutions
 - Modify whole solutions rather than extending partial solutions
- Genetic beam search
 - Keep track of a set of good solutions
 - Not all candidate solutions, unlike best first or A*
 - Not only the best candidates, unlike in hill climbing or gradient descent
- Combine good candidates to construct new candidates
 - Can modify candidates in isolation (mutation)
 - Or different candidates can interact in evolution (crossover)

Key Design Questions

Representation

– How can we represent individuals (solutions)?

Evaluation

- How can we evaluate individuals (fitness function)?
- A fitter individual should have a better objective value (e.g. smaller error)

Selection

- How to select individuals into the mating pool (selection scheme)?
- Fitter individuals should be more likely to survive/reproduce
- Selection pressure

Genetic Operators

- How to generate new individuals (crossover, mutation operators)?
- Children inherit strong parts of parents
- Maintain diversity (jump out of local optima)

Other parameters

population size, mating pool size, stopping criteria, ...

Individual Representation

Problem dependent

Binary string (e.g. feature selection)

Continuous vector (e.g. ANN weight optimisation)

Permutation (e.g. traveling salesman problem)

Variable length (e.g. symbolic regression)

Fitness Evaluation

- Fitness function: reflect the quality of individuals
 - Must correspond to optimality property
 - Must be computable
 - Smoothness:
 - Small changes to candidate -> small changes to quality/fitness
 - Large changes to candidate -> large changes?
- Depending on the problem, the fitness function could be:
 - the larger, the better --- maximisation
 - the smaller, the better --- minimisation

Selection

- Uniform selection
 - Each individual has the same chance to be selected
- Roulette wheel selection
 - The probability of being selected is proportional to the fitness
 - Assume fitness is maximised
- K-tournament selection
- Truncate selection
 - Select the best k individuals

Genetic Operators

- Depends on the problem individual representation
 - Swap a bit of a binary vector
 - Resample an element of a continuous vector
 - Shuffle a part of a sequence
 - ...
- A representative: Genetic Algorithms

Genetic Algorithm

- Representation: binary string
- An individual is also called a chromosome

Other representations as well: continuous vector, permutation, ...

A Basic Genetic Algorithm

- Randomly initialise a population of chromosomes
- Repeat until stopping criteria are met:
 - Construct an empty new population
 - Repeat until the new population is full:
 - Select two parents from the population by roulette wheel selection
 - Apply crossover to the two parents to generate two children
 - Each child has a probability (mutation rate) to undergo mutation
 - Put the two children into the new population
 - End Repeat
 - Move to the new population (new generation)
- End Repeat
- Output the best individual from the final population

A Simple GA Example

OneMax Problem

- Target to (11111...1)
- More zeros means worse: far away from the target
- Simple "benchmark" problem!
- Representation: bit string
- Fitness function: $1 + \sum_{i} x_{i}$ (the larger the better)
- Crossover: single-point crossover
- Mutation: point mutation
- Assume our algorithm does not know the problem or fitness function!

A Simple GA Example

- 10 bits (Optimal fitness = 11)
- population size = 20
- mutation rate = 0.25 (25%)
- Run for 10 generations

```
At generation 0 average fitness is 6.0, best fitness is 9
At generation 1 average fitness is 6.65, best fitness is 10
At generation 2 average fitness is 6.8, best fitness is 11
At generation 3 average fitness is 6.9, best fitness is 9
At generation 4 average fitness is 6.45, best fitness is 9
At generation 5 average fitness is 6.95, best fitness is 9
At generation 6 average fitness is 7.3, best fitness is 11
At generation 7 average fitness is 6.65, best fitness is 10
At generation 8 average fitness is 6.25, best fitness is 8
At generation 9 average fitness is 6.6, best fitness is 8
```

Other Techniques

- Particle swarm optimization (PSO):
 - http://en.wikipedia.org/wiki/Particle swarm optimization
- Learning Classifier Systems:
 - http://en.wikipedia.org/wiki/Learning classifier system
- Ant colony optimization:
 - http://en.wikipedia.org/wiki/Ant colony optimization
- Differential evolution:
 - http://en.wikipedia.org/wiki/Differential evolution
- Other useful links:
 - http://en.wikipedia.org/wiki/Genetic Algorithm
 - http://en.wikipedia.org/wiki/Evolution strategies
 - http://en.wikipedia.org/wiki/Evolutionary programming
- (Wikipedia comes from a CS background!!)

Summary

- Evolutionary computing overview
- Main idea and process
- Representations of candidate solutions
- Selection and genetic operators
- Genetic algorithms
- Other EC algorithms and techniques

Next lecture: Genetic programming (GP)