Discrete Probability Distribution of Penguin Weights

I created a discrete probability distribution (Table 1) and density curve with superimposed normal distribution (Figure 1) for the weights of penguins in the PalmerPenguins dataset. The mean weight in the data is approximately equal to 4202 grams, with P(4202) approximately equal to 3.5%. The probabilities and weights are not normally distributed. The Q-Q plot confirms this in Figure 2.

A tibb	le: 94 × 2	3450	0.0175	-
weights	probabilities	3650	0.0175	
<dbl></dbl>	<dbl></dbl>	3675	0.0058	
2700	0.0029	3700	0.0322	
2850	0.0058	:	:	
2900		4775	0.0029	
	0.0117	4800	0.0088	
2925	0.0029	4850	0.0117	
2975	0.0029	4875	0.0088	
3000	0.0058	4900	0.0058	
3050	0.0117	4925	0.0058	
3075	0.0029	4950	0.0058	
3100	0.0029	4975	0.0029	
3150	0.0117	5000	0.0175	
3175	0.0058	5050	0.0088	
3200	0.0146	5100	0.0088	
3250	0.0146	5150	0.0058	
3275	0.0029	5200	0.0117	
3300	0.0175	5250	0.0088	
3325	0.0146	5300	0.0117	
3350	0.0146	5350	0.0088	
3400	0.0234	5400	0.0146	
3425	0.0058	5450	0.0029	
3450	0.0234	5500	0.0146	
3475	0.0088	5550	0.0175	
3500	0.0205	5600	0.0058	
3525	0.0058	5650	0.0088	
		5700	0.0146	5950
3550	0.0263	5750	0.0029	6000
3575	0.0029		0.0027	6050
3600	0.0205	5800		
3625	0.0029	5850	0.0088	6300

Table 1

Figure 1

Figure 2

Binomial Probability Distribution and Histogram

I made a binomial probability distribution (and histogram) for the species Adelie in the PalmerPenguins dataset. See Figure 3. This shows the probabilities of the first 1-30 penguins selected being the species Adelie. Increasing the number to 30 more closely approximates the normal distribution than 10 (Figure 4).

Figure 3

Figure 4

Visualization:

- The histogram visualizes the data from the table, with the x-axis representing the number of successes and the y-axis representing the probability of that number of successes.
- Each bar's height corresponds to the probability of that number of successes occurring. For instance, the tallest bar at x=13 corresponds to the highest probability (about 0.14) among the probabilities listed in the table, meaning that observing exactly 13 successes is the most probable outcome within this dataset.
- This visualization is particularly useful in showing the distribution of probabilities across different numbers of successes. It provides a quick way to see which outcomes are most and least likely and how the probabilities are distributed (e.g., if they are skewed towards lower or higher numbers of successes).

I made no changes to my dataset this week.