المستقيم في المستوى

القدرات المنتظرة

- *- ترجمة مفاهيم و خاصيات الهندسة التالفية و الهندسة المتجهية بواسطة الاحداثيات
 - *- استعمال الأداة التحليلية في حل مسائل هندسية.

<u> - معلم مستوی – احداثیتا نقطة – تساوی متحهتین – شرط استقامیة متحهتین</u>

1- معلم - احداثيتا نقطة

نشاط لتكن I و J و G ثلاث نقط غير مستقيمية و M نقطة من المستوى و G مسقطها على O(OI) بتواز مع O(OI) و O(OI) مسقطها على O(OI)

1- أنشئ الشكل

1- الشكل

(O;J) و Q أفصول Q بالنسبة للمعلم (O;I) و Q أفصول Q بالنسبة للمعلم P

 \overrightarrow{OJ} و \overrightarrow{OI} و y و x أكتب \overrightarrow{OM} بدلالة

(OI) على (OI) بتواز مع (OI) و (OI) على (OI) بتواز مع (OI) و (OI) حصقط (OI) على -2 ومنه (OPMQ) متوازي الأضلاع و بالتالي (OPMQ)

(O;J) و حيث أن Q بالنسبة للمعلم (O;I) و Q أفصول النسبة للمعلم Q بالنسبة للمعلم

$$\overrightarrow{OQ} = y\overrightarrow{OJ}$$
 و $\overrightarrow{OP} = x\overrightarrow{OI}$ فان $\overrightarrow{OM} = x\overrightarrow{OI} + y\overrightarrow{OJ}$ ومنه

M و بما أن I و J و J و مستقيمية فاننا نقول ان الزوج O و J و احداثيثي و بما أن O و بما أن O و بما أن O و أو المعلم O أو المعلم أو ا

تعریف1

ترمیز و مصطلحات

- المستقيم (OI) يسمى محور الأفاصيل -
- المستقيم (OJ) يسمى محور الأراتيب -
- این $(OI) \pm (OJ)$ فان $(OI) \pm (OJ)$ یسمی معلما متعامدا -
- إذا كان $(OI) \pm (OJ) \pm (OJ)$ و OI = OJ فان OI = OJ يسمى معلما متعامدا ممنظما.

تعریف2

نقول ان الزوج $\left(O;\overrightarrow{OI};\overrightarrow{OJ} \right)$ زوج إحداثيتي النقط M في المعلم $\left(x;y \right)$ إذا وفقط إذا كان

$$M(x;y)$$
 نکتب $\overrightarrow{OM} = x\overrightarrow{OI} + y\overrightarrow{OJ}$

M العدد x يسمى أفصول M العدد y يسمى أرتوب

2- إحداثيتا متحهة – تساوي متحهتين

أ- احداثيتا متجهة

نشاط

. نعتبر المستوى (P) منسوب إلى معلم $O;\overrightarrow{OI};\overrightarrow{OJ}$ و \vec{u} متجهة معلومة

 $\vec{u} = \overrightarrow{OM}$ خيث M أنشئ

y و x باعتبار \vec{u} بالنسبة للمعلم $(O; \overrightarrow{OI}; \overrightarrow{OJ})$ أكتب النسبة للمعلم M(x;y)

 $\vec{u} = x\overrightarrow{OI} + y\overrightarrow{OJ}$ ومنه $\overrightarrow{OM} = x\overrightarrow{OI} + y\overrightarrow{OJ}$ لدينا $\vec{u}(x;y)$ زوج احداثيثي \vec{u} نكتب (x;y)

تعريف

 $\left(O;\overrightarrow{OI};\overrightarrow{OJ}
ight)$ هو زوج إحداثيتي النقط M في المعلم $\left(O;\overrightarrow{OI};\overrightarrow{OJ}
ight)$ هو زوج إحداثيتي النقط $\vec{u}\left(x;y
ight)$ خيث $\overrightarrow{OM}=\vec{u}$ نكتب $\vec{OM}=\vec{u}$

 $\vec{u}(x;y)$ نكتب (x;y) فان زوج احداثيثي هو $\vec{u}(x;y)$ في المعلم $(O;\overrightarrow{OI};\overrightarrow{OJ})$ فان زوج احداثيثي

خاصية

 $.\left(O;\overrightarrow{OI};\overrightarrow{OJ}
ight)$ المستوى منسوب إلى معلم

و عددان حقیقیان و eta و متجهتان و $ec{u}'(x';y')$ و $ec{u}(x;y)$

 $(\alpha x + \beta x'; \alpha y + \beta y')$ هو $\alpha \vec{u} + \beta \vec{v}$ المتجهة روح إحداثيتي المتجهة

ب- تساوي متجهتين

خاصية

في مستوى منسوب إلى معلم $(O; \overrightarrow{OI}; \overrightarrow{OJ})$ ،نعتبر (x'; y') و $\vec{u}(x; y)$ متجهتين

y = y' و x = x' و اذا وفقط اذا کان $\vec{u} = \vec{u}'$

د- احداثیتا AB

خاصية

 $\overrightarrow{AB}ig(x'-x;y'-yig)$ فان Big(x';y'ig) و Aig(x;yig) فان $Aig(x;\overrightarrow{OI};\overrightarrow{OI}ig)$ ،إذا كان

تمرين

 $(O;\vec{i}\;;\vec{j}\;)$ في مستوى منسوب إلى معلم متعامد ممنظم

 $.\vec{v}\left(2;4
ight)$ و $\vec{u}\left(-2;3
ight)$ و متجهتین $C\left(3;-2
ight)$ و $B\left(-3;-1
ight)$ و $A\left(1;2
ight)$

 \vec{v} و \vec{u} و المتجهتين \vec{u} و \vec{u} و المتجهتين \vec{u}

 $2\vec{u} - \frac{1}{2}\vec{v}$ و \overrightarrow{AC} و \overrightarrow{AB} حدد زوج إحداثيتي كل من

 $\overrightarrow{AB} = \overrightarrow{BD}$ حدد زوج إحداثيتي D حيث -3

 $\begin{bmatrix} AB \end{bmatrix}$ حدد زوج إحداثيتي I منتصف -4

نمرين

$$\vec{u}=3\vec{i}-2\vec{j}$$
 لتکن \vec{v} و \vec{v} متجهتین غیر مستقمیتین و \vec{i} و \vec{i} متجهتین غیر مستقمیتین و $\vec{v}=-4i+3\vec{j}$ و

$$(ec{i};ec{j})$$
 حدد إحداثيتي $ec{u}$ و $ec{v}$ في الأساس

$$(ec{u}; ec{v})$$
 حدد إحداثيتي $ec{i}$ و $ec{j}$ في الأساس

<u>3- شرط استقامية متحهتين</u>

<u>أ- محددة متحهتين</u>

<u>تعریف</u>

لتكن
$$\vec{v}(x;y')$$
 و $\vec{u}(x;y)$ متجهتين

$$\begin{vmatrix} x & x \\ y & y \end{vmatrix}$$
 وأ $\det(\vec{u}; \vec{v})$ نرمز له بـ $(\vec{u}; \vec{v})$ العدد $(\vec{u}; \vec{v})$ يسمى محددة المتجهين \vec{v} و \vec{v} (في هذا الترتيب) نرمز له بـ $(\vec{u}; \vec{v})$

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} x & x \\ y & y \end{vmatrix} = xy' - x'y$$
 نکتب

$$\vec{w}$$
 (-5;0) و \vec{v} (2;4) و \vec{u} (-2;3) مثاك نعتبر

$$\det(\vec{u};\vec{w})$$
 و $\det(\vec{u};\vec{v})$

ب- لتكن
$$\vec{v}(x;y')$$
 و $\vec{v}(x;y')$ غير منعدمتين

$$\vec{u} = k\vec{v}$$
 و \vec{v} مستقیمیتان تکافی \vec{v} *

$$y = ky$$
 ' و $x = kx$ ' تكافئ

$$xy'-x'y=kx'y'-kx'y'=0$$
 ومنه

$$x' \neq 0$$
 و $xy' - x'y = 0$ نفترض

$$x = kx$$
 ' فضع $\frac{x}{x} = k$ فضع *

$$y = ky$$
 ' تكافئ $xy' - x'y = 0$ و بالتالي

$$\vec{u} = k\vec{v}$$
 إذن

$$xy'-x'y=0$$
 إذا كَان \vec{v} أو \vec{v} منعدما

<u>خاصىة</u>

$$\det(\vec{u};\vec{v}) = 0$$
 تکون \vec{v} و مستقیمیتین إذا وفقط إذا کان

$$\det(\vec{u}; \vec{v}) \neq 0$$
 تکون \vec{v} و فقط إذا کان غیر مستقیمیتین إذا وفقط إذا کان

<u>مثال</u>

$$\vec{w}\left(-1;\sqrt{2}\right)$$
 و $\vec{v}\left(1;\sqrt{2}-1\right)$ و $\vec{u}\left(\sqrt{2}+1;1\right)$ لتكن

$$\vec{w}$$
 و \vec{u} ثم أدرس استقامية أ

<u>تمرىن</u>

$$(O;\vec{i}\;;\vec{j}\;)$$
 في مستوى منسوب إلى معلم متعامد ممنظم

$$\vec{u}\left(1;3
ight)$$
 و $B\left(-2;-2
ight)$ و $A\left(rac{1}{2};3
ight)$ و نعتبر النقط

$$ec{u}$$
 و المتجهة R و B و المتجهة -1

حدد
$$x$$
 حیث \vec{v} و $(x-2;5)$ و \vec{u} مستقیمیتان -2

عبين أن النقط
$$A$$
 و B و A مستقيمية -3

4- منظم متجهة

$$\|\vec{u}\| = \sqrt{x^2 + y^2}$$
 فان $\vec{u}(x;y)$ خان -

$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$ فان $B(x_B; y_B)$ و $A(x_A; y_A)$

II- المستقيم في المستوي

1- <u>مستقيم معرف ينقطة ومتحهة</u>

لتكن A نقطة و $ec{u}$ متجهة غير منعدمة

 $t \in \mathbb{R}$; $\overrightarrow{AM} = t\overrightarrow{u}$ حيث M مجموعة النقط

$$\overrightarrow{AB} = \overrightarrow{u}$$
 لنضع

$$B \in (D)$$
 لان $(D) \neq \emptyset$ *

$$M \in (AB)$$
 تكافئ $t \in \mathbb{R}$; $\overrightarrow{AM} = t \overrightarrow{AB}$ * نعلم أن * $(D) = (AB)$

 \vec{u} يسمى المستقيم المار من A و الموجه بـ (D)

تعريف

لتكن A نقطة و $ec{u}$ متجهة غير منعدمة

مجموعة النقط M حيث \vec{u} عند المستقيم المار من $t\in\mathbb{R}$; $\overrightarrow{AM}=t\vec{u}$ عند نرمز له ب $D(A;\vec{u})$

ملاحظة

لتکن \vec{v} و \vec{v} غیر منعدمتین

$$D\left(A;\vec{u}\right) = D\left(A;\vec{v}\right)$$
 اذا کان \vec{v} و \vec{v} مستقیمیتین فان *

$$D(A;\vec{u}) = D(B;\vec{u})$$
فان $B \in D(A;\vec{u})$ * إذا كان *

(AB) موجهة للمستقيم \overrightarrow{AB} *

<u>2- تمثيل بارامترې لمستقيم</u>

في مستوى منسوب إلى معلم $(D;\vec{i}\;;\vec{j}\;)$ ، نعتبر في مستقيم

مار من النقطة $A\left(x_{_{0}};y_{_{0}}
ight)$ موجهة له

$$\overrightarrow{AM} = t\overrightarrow{u}$$
 تكافئ توجد t من \mathbb{R} حيث $M \in (D)$
$$\begin{cases} x = x_0 + t\alpha \\ y = y_0 + t\beta \end{cases}$$
 $t \in \mathbb{R}$ تكافئ

النظمة $x = x_0 + t\alpha$ تسمى تمتيل بارامتري $x = x_0 + t\alpha$

 $ec{u}\left(lpha;eta
ight)$ للمستقيم $I\left(lpha;eta
ight)$ المار من $I\left(lpha;eta
ight)$ والموجه بـ

مبرهنة وتعريف

المستوى منسوب الى معلم $\left(O;\vec{i}\;;\vec{j}\;
ight)$ و $\left(O;\vec{i}\;;\vec{j}\;
ight)$ متجهة غير منعدمة و

$$\begin{cases} x = x_0 + t\alpha \\ y = y_0 + t\beta \end{cases}$$
 $t \in \mathbb{R}$ کل مستقیم (D) مار من $(x_0; y_0)$ وموجه بـ $(\alpha; \beta)$ له نظمة على شكل

النظمة
$$x = x_0 + t\alpha$$
 تسمى تمتيل بارامتري للمستقيم $x = x_0 + t\alpha$ تسمى تمتيل بارامتري للمستقيم $x = x_0 + t\alpha$ النظمة $x = x_0 + t\alpha$ النظمة $x = x_0 + t\alpha$

 $(O;\vec{i}\;;\vec{j}\;)$ في مستوى منسوب إلى معلم متعامد ممنظم

 $.\vec{v}\left(4;-6
ight)$ و $\vec{u}\left(-2;3
ight)$ و متجهتین $C\left(1;4
ight)$ و $B\left(0;-2
ight)$ و $A\left(-2;1
ight)$

$$\left(\Delta\right)$$
 لتكن $\begin{cases} x=2-t \\ y=1+t \end{cases}$ تمثيلا بارامتريا لمستقيم $t\in\mathbb{R}$

 (Δ) المار من A و الموجه بـ $ec{u}$ و المستقيم (D) المار من A

(D) أ- حدد تمثيلا بارامتريا للمستقيم -2

(D)ب- أعط ثلاث نقط تنتمى إلى المستقيم

(D)ج- هل النقطتين B و C تنتميان الى المستقيم

3- أ- بين أن \vec{v} و \vec{v} مستقيميتان

ب- حدد تمثيلا بارامتريا لـ $D(C; \vec{v})$. ماذا تلاحظ

(AC) حدد تمثيلا بارامتريا للمستقيم -4

كل مستقيم يقبل ما لا نهاية من التمثيلات البارامترية

حم المستقيم عادلة ديكارتية لمستقيم أ- مستقيم معرف ينقطة و متحهة

 $(O;\vec{i};\vec{j})$ في مستوى (P) منسوب إلى معلم

نعتبر(D) مستقيم مار من النقطة $A(x_0;y_0)$ موجهة له.

(P) نقطة من M(x;y) لتكن

تكافئ \overrightarrow{AM} و $\overrightarrow{u} \in (D)$

$$\begin{vmatrix} x - x_0 & \alpha \\ y - y_0 & \beta \end{vmatrix} = 0$$
 تکافئ

$$\beta x - \alpha y + \alpha y_0 - \beta x_0 = 0$$
 تکافئ

$$c = \alpha y_0 - \beta x_0$$
 ; $\beta = a$; $-\alpha = b$ نضع

$$(a;b) \neq (0;0)$$
 حیث $ax + by + c = 0$ تکافئ $M \in (D)$

في مستوى منسوب إلى معلم

ax + by + c = 0 کل مستقیم (D) له معادلة علی شکل $(a;b) \neq (0;0)$ حيث

 $(a;b) \neq (0;0)$ لتكن a و b و a اعداد حقيقية حيث

ax + by + c = 0لنحدد (D) مجموعة النقط

 $a \neq 0$ لنفرض أن

$$C\left(\frac{-c}{a};0\right) \in (D)$$
 غير فارغة لأن (D)

 $ax_0 + by_0 + c = 0$ ومنه $A(x_0; y_0)$ لتكن $A(x_0; y_0)$

 $c = -ax_0 - by_0$ وبالتالي

$$ax + by + c = 0$$
 تکافئ $M(x; y) \in (D)$

$$ax + by - ax_0 - by_0 = 0$$
 تکافئ

$$a(x - x_0) + b(y - y_0) = 0$$
 تکافئ

$$\begin{vmatrix} x - x_0 & -b \\ y - y_0 & a \end{vmatrix} = 0$$
 تکافئ

تكافئ
$$\overrightarrow{AM}$$
 و $(-b;a)$ مستقيميتان $M\in D\left(A;\overrightarrow{u}
ight)$ تكافئ

مبرهنة

ax+by+c=0 في مستوى منسوب إلى معلم مجموعة النقط $M\left(x\,;y\right)$ حيث $M\left(x\,;y\right)$ و $u\left(-b\,;a\right)$ هي المستقيم $u\left(a;b\right)$ الموجه بـ $u\left(a;b\right)$ تسمى معادلة ديكارتية للمستقيم $u\left(a;b\right)$ الموجه بـ $u\left(a;b\right)$ تسمى معادلة ديكارتية للمستقيم $u\left(a;b\right)$ الموجه بـ $u\left(a;b\right)$

<u>تمرین</u>

. $\vec{u}\left(1;2
ight)$ و $A\left(-2;1
ight)$ ، نعتبر النقطة $\left(O;\vec{i}\;;\vec{j}\;
ight)$ و في مستوى منسوب إلى معلم متعامد ممنظم

لتكن
$$x=1+5t$$
 تمثيل بارامتري $x=1+5t$ تمثيل بارامتري $x=1+5t$ تمثيل بارامتري $x=1+5t$ تمثيل بارامتري

لمستقيم

(D')

- $ec{u}$ جدد معادلة ديكارتية لمستقيم (Δ) مار من A و موجه بـ -1
 - 2- أعط ثلاث نقط من المستقيم (D) و متجهة موجهة له.
 - 3- حدد معادلة ديكارتية للمستقيم (D'). أنشئ الشكل.

ملاحظة

لكل عدد حقيقي غير منعدم k ، المعادلتان akx+bky+kc=0 و akx+bky+kc=0 متكافئين، فهما *

لنفس المستقيم

* للمستقيم مالا نهاية من المعادلات المتكافئة.

ب- <u>حالات خاصة</u>

* المستقيم القاطع لمحوري المعلم

يقطع مستقيم $\left(D
ight)$ محوري معلم في نقطتين مختلفتين $A\left(a;0
ight)$ و $B\left(0;b
ight)$ إذا و فقط إذا كان

 $b \neq 0$ و $a \neq 0$ حيث $\frac{x}{a} + \frac{y}{b} = 1$ للمستقيم (D) معادلة ديكارتية على شكل

<u>* المستقيم الموازي لمحور الأراتيب</u>

<u>خاصىة</u>

x=c يكون مستقيم مواز لمحور الأراتيب اذا و فقط كان له معادلة من نوع

$$(a;b) \neq (0;0)$$
 ملاحظة ليكن

تكون cx + by + c = 0 معادلة مستقيم مواز لمحور

b=0 الأراتيب إذا و فقط إذا كان

* <u>المستقيم الموازي لمحور الأفاصيل</u>

<u>خاصىە</u>

y=c يكون مستقيم مواز لمحور الأراتيب اذا و فقط كان له معادلة من نوع

لا <u>المستقيم غير الموازي لمحور الأراتيب</u>

$$\left(O;ec{i}\;;ec{j}\;
ight)$$
 مستوی منسوب إلى معلم $\left(P
ight)$

$$(D)$$
: $ax + by + c = 0$

 $b \neq 0$ غير مواز لمحور الأراتيب تكافئ (D)

$$y = \frac{-b}{a}x - \frac{c}{a}$$
 إذن معادلة (D) تصبح

$$y = mx + p$$
 نضع $\left(D\right)$ تکتب $p = \frac{-c}{h}$; $m = \frac{-a}{h}$ نضع

$$(D)$$
بالعكس نعتبر $y = mx + p$ معادلة

$$\det(\vec{u}; \vec{j}) \neq 0$$
 ومنه $\vec{u}(1; m)$ موجهة لـ $\vec{u}(1; m)$

إذن (D) لا يوازي محور الأراتيب.

خاصىة

مستوى منسوب إلى معلم (P)

يكون المستقيم (D) غير مواز لمحور الأراتيب إذا وفقط إذا كانت معادلة y=mx+p

(D) العدد m يسمى المعامل الموجه للمستقيم

ig(Dig) المتجهة $ar{u}\left(1;m
ight)$ موجهة للمستقيم

(D) المعادلة y = mx + p تسمى المعادلة المختزلة للمستقيم

<u>ملاحظة</u>

 $rac{eta}{lpha}$ اذا كان $ec{u}(lpha;eta)$ موجهة لمستقيم غير مواز لمحور الأراتيب فان المعامل الموجه له هو العدد

<u>تمرين</u>

 $\cdot \left(O; \vec{i}\;; \vec{j}\;\right)$ في مستوى منسوب إلى معلم متعامد ممنظم

.
$$(\Delta)$$
: $\begin{cases} x = 1 + 3t \\ y = -2 + t \end{cases}$ $t \in \mathbb{R}$ و $A(-2;1)$ نعتبر النقطة

 $rac{-1}{2}$ حدد المعادلة المختزلة للمستقيم D المار من A و معامله الموجه -1

2- حدد المعامل الموجه للمستقيم (Δ) ثم معادلته المختزلة.

<u> III - الأوضاع النسبية لمستقيم </u>

1- <u>التوازي</u>

$$(D_1): ax + by + c = 0$$
; $(D_2): a'x + b'y + c' = 0$

$$\left(D_{2}
ight)$$
موجهة لـ $\left(D_{1}
ight)$ موجهة لـ $\left(D_{1}
ight)$ موجهة لـ $\left(b;a
ight)$

$$\det(\vec{u}; \vec{u}') = 0$$
 تكافئ $(D_1)/(D_2)$

<u>مىرھنة1</u>

.
$$(a';b') \neq (0;0)$$
 و $(a;b) \neq (0;0)$ و $(O;\vec{i};\vec{j})$ مستوی منسوب إلى معلم

$$(D_1)$$
: $ax + by + c = 0$; (D_2) : $a'x + b'y + c' = 0$

$$ab$$
 '- a ' $b=0$ اذا و فقط اذا کان $(D_1)//(D_2)$

مىرھنة2

$$(D_1)$$
: $y = mx + p$; (D_2) : $y = m'x + p'$ و $(O; \vec{i}; \vec{j})$ مستوی منسوب إلى معلم (P) و $m = m$ 'اذا و فقط اذا كان $(D_1)//(D_2)$

مثال

$$(D_1): 2x - 3y + 4 = 0$$
; $(D_2): -4x + 6y + 1 = 0$

هل (D_1) و (D_2) منفصلا أم منطبقان

2- <u>التقاطع</u>

<u>مىرھنة1</u>

.
$$(a';b') \neq (0;0)$$
 و $(a;b) \neq (0;0)$ و $(O;\vec{i};\vec{j})$ مستوى منسوب إلى معلم

$$(D_1): ax + by + c = 0$$
 ; $(D_2): a'x + b'y + c' = 0$

$$ab'-a'b \neq 0$$
 و (D_1) و (D_2) متقاطعان اذا و فقط اذا کان

$$\left\{ egin{array}{ll} ax + by + c = 0 \ a'x + b'y + c' = 0 \end{array}
ight.$$
 و زوج إحداثيتي تقاطعهما هو حل النظمة

مىرھنة2

$$(D_1)$$
: $y=mx+p$; (D_2) : $y=m'x+p'$ و $(O;\vec{i};\vec{j})$ مستوى منسوب إلى معلم (P)

$$m \neq m$$
 'و (D_2) و D_1

$$\begin{cases} y = mx + p \\ y = m 'x + p \end{cases}$$
 و زوج إحداثيتي تقاطعهما هو حل النظمة

$$(D_1): x + 3y - 5 = 0$$
 ; $(D_2): 2x + y - 1 = 0$

تأكد أن (D_1) و (D_2) متقاطعان وحدد تقاطعهما

3- التعامد

نشاط

.
$$(a';b')\neq (0;0)$$
 و $(a;b)\neq (0;0)$ و $(0;\vec{i};\vec{j})$ مستوی منسوب إلى معلم

$$(D_1): ax + by + c = 0$$
 ; $(D_2): a'x + b'y + c' = 0$

$$O$$
 ليكن (D_2) الموازي لـ (D_1) و المار من (D_1) و المار من (D_1) ليكن الموازي لـ (D_1)

$$A'(-b';a')\in (\Delta_2)$$
 و $A(-b;a)\in (\Delta_1)$ ثم تأكد أن $A(-b;a)\in (\Delta_1)$ و $A(-b;a)\in (\Delta_1)$ عادلة ديكارتية لكل من

$$\mathit{OAA}$$
' ما طبیعة المثلث -2 - اذا کان $(D_1) \perp (D_2)$

$$aa'+bb'=0$$
 بين أن $(D_1)\pm(D_2)$ إذا وفقط إذا كان -3

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} *$$
 تذکیر

$$BC^2 = AB^2 + AC^2$$
 قائم الزاوية في A اذا وفقط اذا كان ABC

خاصية

$$(a;b) \neq (0;0)$$
 ; $(a';b') \neq (0;0)$ $(a;b') \neq (0;0)$ $(a';b') \neq (0;0)$ $(a';b') \neq (0;0)$ $(a';b') \neq (0;0)$

$$aa'+bb'=0$$
 إذا و فقط إذا كان $(D) \perp (D')$

<u>نتىحة</u>

$$(D): y = mx + p$$
 $(D'): y = m'x + p'mm' = -1$

إذا و فقط إذا كان
$$(D) \perp (D')$$

$$(D)$$
: $-2x + 3y - 1 = 0$ (D') : $3x + 2y + 5 = 0$

$$(D) \perp (D')$$
 بين أن

تمرين

 $B\left(-1;3\right)$ و $A\left(2;1\right)$ مستوى منسوب إلى معلم متعامد ممنظم نعتبر

$$ec{u}\left(2;3
ight)$$
و مستقیم مار من A و موجه بـ $D\left(D\right)$ بین أن $D\left(AB\right)$

<u>تمرين</u>

$$\overrightarrow{CK} = -\frac{1}{4}\overrightarrow{AC}$$
 ; $\overrightarrow{AJ} = \frac{3}{2}\overrightarrow{AB}$ و BC] و BC مثلثا و I و I نقط حيث I مثلثا و I مثلثا و I نقط حيث I مثلثا و I نقط حيث I مثلثا و I مثلثا

 $\left(A;\overrightarrow{AB};\overrightarrow{AC}\right)$ ننسب المستوى إلى معلم

K و J و النقط I حدد إحداثيات النقط

مستقيمية I مI مستقيمية -2

3- حدد تمثيلا بارامتريا للمستقيم (IJ) ثم حدد معادلة ديكارتية له.

تمرين

وي مستوى منسوب إلى معلم متعامد ممنظم $\left(O;\vec{i}\;;\vec{j}\;\right)$ ، نعتبر النقطتين $A\left(-2;1\right)$ و $\vec{u}\left(5;2\right)$

$$(D_m):(m-1)x-2my+3=0$$
 $(D):2x-3y+1=0$

 $ec{u}$ المار من A و الموجه بالمتجهة -1

عان و حدد تقاطعهما. (Δ) عأكد أن (D) و (D)

$$(D)//(D_m)$$
 حدد m حيث -3

$$(D) \perp (D_m)$$
ب- حدد m حيث

$$\left(D_{2}
ight)$$
 ; $\left(D_{1}
ight)$; $\left(D_{0}
ight)$ تأشئ المستقيمات (D_{0}

$$C\left(3;\frac{3}{2}\right)$$
 ب – بين أن جميع المستقيمات تمر من النقطة

تمرين

$$C\left(0;2
ight)$$
 ; $B\left(6.7
ight)$; $A\left(10;3
ight)$ نعتبر

حدد معادلة ديكارتية لكل متوسط للمثلث ABC

ABC مركز ثقل G

<u>تمرين</u>

 $G\in igl(ADigr)$ و EFGH متوازيي الأضلاع حيث $E\in igl(ABigr)$ و

أثبت أن المستقيمات (BG) و (ED) و (CF) اما متوازية (BG) اما متقاطعة المكن اعتبار المعلم

 $((A; \overrightarrow{AB}; \overrightarrow{AD}))$