Synchronous FIFO test-plan

	CHECKS	STATUS	NO. BUGS FOUND
a)	Asserting reset and checking the output using reset_test	DONE	FAILED (3)
b)	Constraining data_in to reach MAX and MIN values if randomized data_in_c	DONE	PASSED
c)	Create a queue data_to_write_queue to mirror the FIFO's pointers movements which is used to compare the read values later on	DONE	N/A
d)	The mirrored pointers are used to determine the state of the FIFO's flags	DONE	N/A
e)	Testing out the limit of the FIFO by writing until its overflowed while monitoring The flags using write_all_test/reset_write_read_all_test	DONE	FAILED (2)
f)	Testing out the limit of the FIFO by reading until its underflowed while monitoring the flags reset_write_read_all_test	DONE	FAILED (2)
g)	Randomizing write and read operations/tests while monitoring the flags write_read_rand_test	DONE	ALL OF THE ABOVE

Coverage Groups

- FLAGS_covgrp: Covering the write and read and reset operations.
- OPERATION_covgrp: Covering all the flags' data frames and data transitions.

BUG REPORT

EXPECTED	DETECTED	
When the rst_n is asserted:	When the Rst_n is asserted	
data_out = 0	<pre>Data_out = x;</pre>	
♣ All the flags = 0	All the Flags = 0 except overflow &	
	wr_ack	
Almostfull not asserted when:	Almostfull asserted when:	
FIFO is written upto (FIFO_SIZE-2)	FIFO is written up to (FIFO_SIZE-2)	
Almostfull asserted when:	Almostfull not asserted when:	
FIFO is written upto (FIFO_SIZE-1)	FIFO is written up to (FIFO_SIZE-1)	
Underflow asserted when:	Underflow asserted when:	
READ operation done AFTER FIFO	On the same cycle that the FIFO just	
was EMPTY	became EMPTY	

Assertions REPORT

Feature	Assertion	
Whenever the full signal is high and wr_en	@(posedge clk_sva) full_sva && wr_en_sva	
is	=> overflow_sva;	
Whenever the empty signal is high and	@(posedge clk_sva) empty_sva &&	
rd_en is asserted underflow should be high	rd_en_sva => underflow_sva	
Whenever the full signal is low and wr_en is	@(posedge clk_sva) (!full_sva &&	
asserted wr_ack should be high	wr_en_sva => wr_ack_sva);	
Whenever the full signal is low wr_ack	@(posedge clk_sva) (full_sva =>	
should be always low	!wr_ack_sva);	
Whenever the almostfull signal is high and	@(posedge clk_sva) (almostfull_sva &&	
wr_en is asserted then FIFO is expected to	wr_en_sva => full_sva);	
be full next cycle		
Whenever the almostempty signal is high	@(posedge clk_sva) (almostempty_sva &&	
and rd_en is asserted then FIFO is	rd_en_sva => empty_sva);	
expected to be empty next cycle		

P.S. Check the coverage reports.