Top-Down Parsing

CS143 Lecture 7

Instructor: Fredrik Kjolstad Slide design by Prof. Alex Aiken, with modifications

Predictive Top-Down Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
 - In practice, LL(1) is used

Recursive Descent vs. LL(1)

- In recursive-descent,
 - At each step, many choices of production to use
 - Backtracking used to undo bad choices
- In LL(1),
 - At each step, only one choice of production
 - That is
 - When a non-terminal A is leftmost in a derivation
 - And the next input symbol is t
 - There is a unique production $A \rightarrow \alpha$ to use
 - Or no production to use (an error state)
- LL(1) is a recursive descent variant without backtracking

Predictive Parsing and Left Factoring

```
E \rightarrow T + E \mid T
T \rightarrow int \left| int * T \right| (E)
```

- Hard to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- We need to <u>left-factor</u> the grammar

Left-Factoring Example

Recall the grammar

$$E \rightarrow T + E \mid T$$

T \rightarrow int * T \rightarrow int \((E) \)

Factor out common prefixes of productions

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow int Y \mid (E)$ $Y \rightarrow * T \mid \varepsilon$

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow int Y \mid (E)$ $Y \rightarrow * T \mid \varepsilon$

The LL(1) parsing table: next input token

	int	*	+	()	\$
Е	ΤX			ΤX		
X			+ E		3	3
Т	int Y			(E)		
Y		* T	3		3	3

$$E \rightarrow T X$$
 $X \rightarrow + E I \epsilon$
 $T \rightarrow int Y I (E)$ $Y \rightarrow * T I \epsilon$

LL(1) Parsing Table Example

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production E → T X"
 - This can generate an int in the first position

	int	*	+	()	\$
Е	TX			ΤX		
Х			+ E		3	3
Т	int Y			(E)		
Υ		* T	3		3	3

$$E \rightarrow T X$$
 $X \rightarrow + E I \epsilon$
 $T \rightarrow int Y I (E)$ $Y \rightarrow * T I \epsilon$

LL(1) Parsing Tables. Errors

- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - Y can be followed by + only if Y $\rightarrow \epsilon$

	int	*	+	()	\$
Е	ΤX			ΤX		
Х			+ E		3	3
Т	int Y			(E)		
Υ		* T	3		3	3

$$E \rightarrow T X$$
 $X \rightarrow + E I \epsilon$
 $T \rightarrow int Y I (E)$ $Y \rightarrow * T I \epsilon$

LL(1) Parsing Tables. Errors

- Consider the [Y,(] entry
 - "There is no way to derive a string starting with (from non-terminal Y"
 - Blank entries indicate error situations

	int	*	+	()	\$
Е	ΤX			ΤX		
Х			+ E		3	3
Т	int Y			(E)		
Υ		* T	3	4	3	3

Using Parsing Tables

- Method similar to recursive descent, except
 - For the leftmost non-terminal S
 - We look at the next input token a
 - And choose the production shown at [S,a]
- A stack records frontier of parse tree
 - Non-terminals that have yet to be expanded
 - Terminals that have yet to matched against the input
 - Top of stack = leftmost pending terminal or non-terminal
- Reject on reaching error state
- Accept on end of input & empty stack

LL(1) Parsing Algorithm (using the table)

```
initialize stack = <S $> and next
repeat
  case stack of
      \langle X, \text{ rest} \rangle : if T[X, *\text{next}] = Y_1...Y_n
                           then stack \leftarrow <Y<sub>1</sub>...Y<sub>n</sub>, rest>;
                           else error ();
      \langle t, rest \rangle : if t == *next ++
                           then stack \leftarrow <rest>;
                           else error ();
until stack == < >
```

LL(1) Parsing Algorithm

\$ marks bottom of stack

```
initialize stack = <S $> and next
                                               For non-terminal X on top of stack,
    repeat
                                               lookup production
       case stack of
          \langle X, \text{ rest} \rangle : if T[X, *\text{next}] = Y_1...Y_n
                              then stack \leftarrow \langle Y_1...Y_n, \text{ rest} \rangle;
                              else error ();
                                                                  Pop X, push
                                                                  production rhs
          <t, rest>: if t == *next ++
                                                                  on stack.
For terminal t on top of stack, then stack ← <rest>;
                                                                  Note leftmost
                              else error ();
check t matches next input
                                                                  symbol of rhs
token.
                                                                  is on top of
    until stack == < >
                                                                 the stack.
```


LL(1) Parsing Example

<u>Stack</u>	Input	Action
E \$	int * int \$	ΤX
T X \$	int * int \$	int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	* T
* T X \$	* int \$	terminal
T X \$	int \$	int Y
int Y X \$	int \$	terminal
Y X \$	\$	ε
X \$	\$	3
\$	\$	ACCEPT

Constructing Parsing Tables: The Intuition

• Consider non-terminal A, production $A \rightarrow \alpha$, and token t

- 1. Add T[A,t] = α if $A \rightarrow \alpha \rightarrow^* t \beta$
 - $-\alpha$ can derive a t in the first position
 - We say that $t \in First(\alpha)$

Greek letters denote strings of non-terminals and terminals

- 2. Add $T[A,t] = \varepsilon$ if $A \rightarrow \alpha \rightarrow^* \varepsilon$ and $S \rightarrow^* \gamma A t \delta$
 - Useful if stack has A, input is t, and A cannot derive t
 - In this case only option is to get rid of A (by deriving ε)
 - Can work only if t can follow A in at least one derivation
 - We say t ∈ Follow(A)

Computing First Sets

Definition

$$First(X) = \{ t \mid X \rightarrow^* t\alpha \} \cup \{ \epsilon \mid X \rightarrow^* \epsilon \}$$

Algorithm sketch:

- 1. First(t) = $\{t\}$
- 2. $\varepsilon \in First(X)$
 - if $X \rightarrow \varepsilon$ or
 - if $X \to A_1 \dots A_n$ and $\varepsilon \in First(A_i)$ for all $1 \le i \le n$
- 3. $First(\alpha) \subseteq First(X)$
 - if $X \rightarrow \alpha$ or
 - if $X \to A_1 \dots A_n \alpha$ and $\epsilon \in First(A_i)$ for all $1 \le i \le n$

First Sets: Example

```
1. First(t) = { t }
2. \varepsilon \in First(X)
     - if X \rightarrow \varepsilon or
     - if X → A_1...A_n and ε ∈ First(A_i) for all 1 ≤ i ≤ n
3. First(\alpha) \subseteq First(X)
     - if X \rightarrow \alpha or
     - if X → A<sub>1</sub>...A<sub>n</sub> α and ε ∈ First(A<sub>i</sub>) for all 1 ≤ i ≤ n
E \rightarrow T X
                       X \rightarrow + E I \epsilon
T \rightarrow int Y \mid (E) \quad Y \rightarrow *T \mid \varepsilon
First(E) =
                                        First(X) =
First(T) =
                                        First(Y) =
```

First Sets: Example

Recall the grammar

$$E \rightarrow T X$$

 $T \rightarrow int Y I (E)$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

First sets

```
First(() = {()} First(T) = {int, ()}

First()) = {()} First(E) = {int, ()}

First(int) = {(int)} First(X) = {+, \epsilon}

First(+) = {+} First(Y) = {*, \epsilon}

First(*) = {*}
```

Computing Follow Sets

Definition:

Follow(X) = { t | S
$$\rightarrow$$
* β X t δ }

- Intuition
 - If X → A B then First(B) ⊆ Follow(A) and Follow(X) ⊆ Follow(B)
 if B → * s then Follow(X) ⊆ Follow(A)
 - if $B \rightarrow^* \epsilon$ then $Follow(X) \subseteq Follow(A)$
 - If S is the start symbol then \$ ∈ Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch:

- 1. $\$ \in Follow(S)$
- 2. For each production $A \rightarrow \alpha X \beta$
 - First(β) {ε} ⊆ Follow(X)
- 3. For each production $A \rightarrow \alpha X \beta$ where $\epsilon \in First(\beta)$
 - Follow(A) ⊆ Follow(X)

Recall the grammar

$$E \rightarrow T X$$

 $T \rightarrow (E) I int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

\$ ∈ Follow(E)

$$E \rightarrow T X$$

 $T \rightarrow (E) I int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

- \$ ∈ Follow(E)
- First(X) ⊆ Follow(T)
- Follow(E) ⊆ Follow(X)
- Follow(E) ⊆ Follow(T) because ε ∈ First(X)

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$

- \$ ∈ Follow(E)
- First(X) ⊆ Follow(T)
- Follow(E) ⊆ Follow(X)
- Follow(E) \subseteq Follow(T) because $\epsilon \in$ First(X)
-) ∈ Follow(E)

$$E \rightarrow T X$$

 $T \rightarrow (E) I int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

- \$ ∈ Follow(E)
- First(X) ⊆ Follow(T)
- Follow(E) ⊆ Follow(X)
- Follow(E) \subseteq Follow(T) because $\epsilon \in$ First(X)
-) ∈ Follow(E)
- Follow(T) ⊆ Follow(Y)

$$E \rightarrow T X$$

 $T \rightarrow (E) I int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

- \$ ∈ Follow(E)
- First(X) ⊆ Follow(T)
- Follow(E) ⊆ Follow(X)
- Follow(E) ⊆ Follow(T) because ε ∈ First(X)
-) ∈ Follow(E)
- Follow(T) ⊆ Follow(Y)
- Follow(X) ⊆ Follow(E)

$$E \rightarrow T X$$

 $T \rightarrow (E) I int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

- \$ ∈ Follow(E)
- First(X) ⊆ Follow(T)
- Follow(E) ⊆ Follow(X)
- Follow(E) ⊆ Follow(T) because ε ∈ First(X)
-) ∈ Follow(E)
- Follow(T) ⊆ Follow(Y)
- Follow(X) ⊆ Follow(E)
- Follow(Y) ⊆ Follow(T)

$$E \rightarrow T X$$

 $T \rightarrow (E) I int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

- \$ ∈ Follow(E)
- First(X) ⊆ Follow(T)
- Follow(E) ⊆ Follow(X)
- Follow(E) ⊆ Follow(T)
-) ∈ Follow(E)
- Follow(T) ⊆ Follow(Y)
- Follow(X) ⊆ Follow(E)
- Follow(Y) ⊆ Follow(T)

Computing the Follow Sets (for all symbols)

Follow Sets: Example

Recall the grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$

Follow sets

```
Follow(+) = { int, ( } Follow(*) = {int, ( } Follow(()) = { int, ( } Follow(()) = { int, ( } Follow(()) = { $, ) } Follow(()) = { $, ) } Follow(()) = { $, +, ) } Follow(()) = { $, +, ) } Follow(()) = { *, +, ) } Follow(()) = { *, +, ) }
```

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in First(\alpha)$ do
 - T[A, t] = α
 - If $\varepsilon \in First(\alpha)$, then for each $t \in Follow(A)$ do
 - $T[A, t] = \varepsilon$
 - If $\varepsilon \in First(\alpha)$ and $\$ \in Follow(A)$ do
 - T[A, \$] = ε

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language CFGs are not LL(1)