

Modern Optimization Techniques 1. Theory

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Syllabus

Mon.	1.11.	(1)	0. Overview
Mon.	8.11.	(2)	 Theory Convex Sets and Functions
Mon. Mon. Mon.	15.11. 22.11. 29.11. 6.12. 13.12. 20.12.	(3) (4) (5) (6) (7) (8)	 2. Unconstrained Optimization 2.1 Gradient Descent 2.2 Stochastic Gradient Descent 2.3 Newton's Method 2.4 Quasi-Newton Methods 2.5 Subgradient Methods 2.6 Coordinate Descent Christmas Break
Mon. Mon.	3.1. 10.1.	(9) (10)	3. Equality Constrained Optimization3.1 Duality3.2 Methods
Mon. Mon. Mon.	17.1. 24.1. 31.1.	(11) (12) (13)	4. Inequality Constrained Optimization4.1 Primal Methods4.2 Barrier and Penalty Methods4.3 Cutting Plane Methods
Mon.	7.2.	(14)	Q & A

1. Theory 1 / 33

Outline

1. Introduction

2. Convex Sets

3. Convex Functions

4. Recognizing Convex Functions

1. Theory 1 / 33

Outline

1. Introduction

2. Convex Sets

3. Convex Functions

4. Recognizing Convex Functions

A convex function

A non-convex function

1. Theory 1. Introduction 3 / 33

Convex Optimization Problem

An optimization problem

minimize
$$f(x)$$
 subject to $h_q(x) \leq 0, \quad q = 1, \dots, Q$ $Ax = b$

is said to be convex if $f, h_1 \dots h_Q$ are convex.

Note: The equality constraints also are convex, even linear.

1. Theory 1. Introduction

Convex Optimization Problem

An optimization problem

minimize
$$f(x)$$
 subject to $h_q(x) \leq 0, \quad q = 1, \dots, Q$ $Ax = b$

is said to be convex if $f, h_1 \dots h_Q$ are convex.

How do we know if a function is convex or not?

Note: The equality constraints also are convex, even linear.

1. Theory 1. Introduction

Outline

1. Introduction

2. Convex Sets

3. Convex Functions

4. Recognizing Convex Functions

For any two points x_1, x_2 we can define the line through them as:

For any two points x_1, x_2 we can define the line through them as:

$$x = \theta x_1 + (1 - \theta)x_2, \quad \theta \in \mathbb{R}$$

For any two points x_1, x_2 we can define the line through them as:

$$x = \theta x_1 + (1 - \theta)x_2, \quad \theta \in \mathbb{R}$$

Example:

 x_1 0

For any two points x_1, x_2 we can define the line through them as:

$$x = \theta x_1 + (1 - \theta)x_2, \quad \theta \in \mathbb{R}$$

For any two points x_1, x_2 we can define the line through them as:

$$x = \theta x_1 + (1 - \theta)x_2, \quad \theta \in \mathbb{R}$$

For any two points x_1, x_2 we can define the line through them as:

$$x = \theta x_1 + (1 - \theta)x_2, \quad \theta \in \mathbb{R}$$

Affine Sets - Definition

An **affine set** is a set containing the line through any two distinct points in it.

Affine Sets - Definition

An **affine set** is a set containing the line through any two distinct points in it.

- ightharpoons ho for $N \in \mathbb{N}^+$
- ▶ solution set of linear equations $X := \{x \in \mathbb{R}^N \mid Ax = b\}$

The **line segment** between any two points x_1, x_2 is the set of all points:

The **line segment** between any two points x_1, x_2 is the set of all points:

$$x = \theta x_1 + (1 - \theta)x_2, \quad 0 \le \theta \le 1$$

The **line segment** between any two points x_1, x_2 is the set of all points:

$$x = \theta x_1 + (1 - \theta)x_2, \quad 0 \le \theta \le 1$$

The **line segment** between any two points x_1, x_2 is the set of all points:

$$x = \theta x_1 + (1 - \theta)x_2, \quad 0 \le \theta \le 1$$

Example:

*x*₁ o

*X*₂

0

The **line segment** between any two points x_1, x_2 is the set of all points:

$$x = \theta x_1 + (1 - \theta)x_2, \quad 0 \le \theta \le 1$$

The **line segment** between any two points x_1, x_2 is the set of all points:

$$x = \theta x_1 + (1 - \theta)x_2, \quad 0 \le \theta \le 1$$

The **line segment** between any two points x_1, x_2 is the set of all points:

$$x = \theta x_1 + (1 - \theta)x_2, \quad 0 \le \theta \le 1$$

Example:

A **convex set** contains the line segment between any two points in the set.

Convex Sets - Examples: Which ones are Convex?

Convex Sets - Examples Convex Sets:

Non-convex Sets:

Convex Sets - Examples

All affine sets are also convex:

- ightharpoons ho for $N \in \mathbb{N}^+$
- ▶ solution set of linear equations $X := \{x \in \mathbb{R}^N \mid Ax = b\}$

Convex sets (but in general not affine sets):

- ▶ solution set of linear inequalities $X := \{x \in \mathbb{R}^N \mid Ax \leq b\}$
 - half spaces, e.g. $X := \{x \in \mathbb{R}^N \mid a^T x \le b\}$ e.g., $X := \{x \in \mathbb{R}^N \mid x_1 \ge 0\}$
 - ► convex polygons (2d) / polyhedrons (3d) / polytopes (nd)

Convex Combination and Convex Hull

(standard) simplex:

$$\Delta^{N} := \{ \theta \in \mathbb{R}^{N} \mid \theta_{n} \geq 0, n = 1, \dots, N; \sum_{n=1}^{N} \theta_{n} = 1 \}$$
$$= \{ \theta \in [0, 1]^{N} \mid \mathbb{1}^{T} \theta = 1 \}$$

convex combination of some points $x_1, \ldots x_N \in \mathbb{R}^M$: any point x with

$$x = \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_N x_N, \quad \theta \in \Delta^N$$

convex hull of a set $X \subseteq \mathbb{R}^M$ of points:

$$\mathsf{conv}(X) := \{\theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_N x_N \mid N \in \mathbb{N}, x_1, \ldots, x_N \in X, \theta \in \Delta^N\}$$

i.e., the set of all convex combinations of points in X.

Note: $\mathbb{1} := (1, 1, \dots, 1)^T$ vector of all ones. 1. Theory 2. Convex Sets

Outline

1. Introduction

2. Convex Sets

3. Convex Functions

4. Recognizing Convex Functions

A function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ is **convex** iff:

A function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ is **convex** iff:

ightharpoonup dom f:=X is a convex set

A function $f: X \to \mathbb{R}, X \subset \mathbb{R}^N$ is **convex** iff:

- ightharpoonup dom f:=X is a convex set
- ▶ for all $x_1, x_2 \in \text{dom } f$ and $0 \le \theta \le 1$ it satisffies

$$f(\theta x_1 + (1-\theta)x_2) \leq \theta f(x_1) + (1-\theta)f(x_2)$$

(the function is below of its secant segments/chords.)

A function $f: X \to \mathbb{R}, X \subset \mathbb{R}^N$ is **convex** iff:

- ightharpoonup dom f := X is a convex set
- ▶ for all $x_1, x_2 \in \text{dom } f$ and $0 \le \theta \le 1$ it satisffies

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2)$$

(the function is below of its secant segments/chords.)

$$b \theta x_1 + (1-\theta)x_2$$

$$ightharpoonup (\theta x_1 + (1-\theta)x_2, f(\theta x_1 + (1-\theta)x_2))$$

1. Theory 3. Convex Functions

Convex functions

$$\blacktriangleright \theta x_1 + (1-\theta)x_2$$

$$\blacktriangleright (\theta x_1 + (1 - \theta)x_2, f(\theta x_1 + (1 - \theta)x_2))$$

$$\blacktriangleright (\theta x_1 + (1-\theta)x_2, \theta f(x_1) + (1-\theta)f(x_2))$$

How are Convex Functions Related to Convex Sets?

epigraph of a function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$:

$$\operatorname{epi}(f) := \{(x, y) \in X \times \mathbb{R} \mid y \ge f(x)\}$$

How are Convex Functions Related to Convex Sets?

epigraph of a function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$:

$$\operatorname{epi}(f) := \{(x, y) \in X \times \mathbb{R} \mid y \ge f(x)\}$$

f is convex (as function) \iff epi(f) is convex (as set).

proof is straight-forward (try it!)

Concave Functions

A function f is called **concave** if -f is convex

Concave Functions

A function f is called **concave** if -f is convex

A Concave Function $f(x) \longrightarrow x$ $f(x) = -x^{2}$

Concave Functions

A function f is called **concave** if -f is convex

Strictly Convex Functions

A function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ is **strictly convex** if:

Strictly Convex Functions

A function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ is **strictly convex** if:

ightharpoonup dom f is a convex set

Strictly Convex Functions

A function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ is **strictly convex** if:

- ightharpoonup dom f is a convex set
- ▶ for all $x_1, x_2 \in \text{dom } f$, $x_1 \neq x_2$ and $0 < \theta < 1$ it satistfies

$$f(\theta x_1 + (1 - \theta)x_2) < \theta f(x_1) + (1 - \theta)f(x_2)$$

Examples Examples of Convex functions:

Examples of Convex functions:

▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- ▶ exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- ▶ exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$
- lacktriangle powers: $f(x)=x^a$, with dom $f=\mathbb{R}^+_0$ and $a\geq 1$ or $a\leq 0$

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- ▶ exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $a \ge 1$ or $a \le 0$
- **•** powers of absolute value: $f(x) = |x|^a$, with dom $f = \mathbb{R}$ and $a \ge 1$

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- ▶ exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $a \ge 1$ or $a \le 0$
- lacktriangle powers of absolute value: $f(x)=|x|^a$, with dom $f=\mathbb{R}$ and $a\geq 1$
- ▶ negative entropy: $f(x) = x \log x$, with dom $f = \mathbb{R}^+$

Examples of Convex functions:

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- ▶ exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $a \ge 1$ or $a \le 0$
- lacktriangle powers of absolute value: $f(x)=|x|^a$, with dom $f=\mathbb{R}$ and $a\geq 1$
- ▶ negative entropy: $f(x) = x \log x$, with dom $f = \mathbb{R}^+$

Examples of Convex functions:

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- ightharpoonup exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $a \ge 1$ or $a \le 0$
- lacktriangle powers of absolute value: $f(x)=|x|^a$, with dom $f=\mathbb{R}$ and $a\geq 1$
- ▶ negative entropy: $f(x) = x \log x$, with dom $f = \mathbb{R}^+$

Examples of Concave Functions:

▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$

Examples of Convex functions:

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- ightharpoonup exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $a \ge 1$ or $a \le 0$
- **ightharpoonup** powers of absolute value: $f(x) = |x|^a$, with dom $f = \mathbb{R}$ and $a \ge 1$
- ▶ negative entropy: $f(x) = x \log x$, with dom $f = \mathbb{R}^+$

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- ▶ powers/roots: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $0 \le a \le 1$

Examples of Convex functions:

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- ▶ exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $a \ge 1$ or $a \le 0$
- **•** powers of absolute value: $f(x) = |x|^a$, with dom $f = \mathbb{R}$ and $a \ge 1$
- ▶ negative entropy: $f(x) = x \log x$, with dom $f = \mathbb{R}^+$

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- ▶ powers/roots: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $0 \le a \le 1$
- ▶ logarithm: $f(x) = \log x$, with dom $f = \mathbb{R}^+$

Examples of Convex functions:

All norms are convex!

► Immediate consequence of the triangle inequality and absolute homogeneity.

$$||\theta x + (1 - \theta)y|| \le ||\theta x|| + ||(1 - \theta)y|| = \theta ||x|| + (1 - \theta)||y||$$

Examples of Convex functions:

All norms are convex!

► Immediate consequence of the triangle inequality and absolute homogeneity.

$$||\theta x + (1 - \theta)y|| \le ||\theta x|| + ||(1 - \theta)y|| = \theta||x|| + (1 - \theta)||y||$$

▶ For $\mathbf{x} \in \mathbb{R}^N$, $p \ge 1$:

p-norm:
$$||\mathbf{x}||_p := (\sum_{n=1}^N |x_n|^p)^{\frac{1}{p}}$$
,

Examples of Convex functions:

All norms are convex!

► Immediate consequence of the triangle inequality and absolute homogeneity.

$$||\theta x + (1 - \theta)y|| \le ||\theta x|| + ||(1 - \theta)y|| = \theta||x|| + (1 - \theta)||y||$$

- ► For $\mathbf{x} \in \mathbb{R}^N$, $p \ge 1$: **p-norm**: $||\mathbf{x}||_p := (\sum_{n=1}^N |x_n|^p)^{\frac{1}{p}}$,
- $|\mathbf{x}||_{\infty} := \max_{n=1:N} |x_n|$

Examples of Convex functions:

All norms are convex!

► Immediate consequence of the triangle inequality and absolute homogeneity.

$$||\theta x + (1 - \theta)y|| \le ||\theta x|| + ||(1 - \theta)y|| = \theta||x|| + (1 - \theta)||y||$$

- ► For $\mathbf{x} \in \mathbb{R}^N$, $p \ge 1$: **p-norm**: $||\mathbf{x}||_p := (\sum_{n=1}^N |x_n|^p)^{\frac{1}{p}}$,
- $|\mathbf{x}||_{\infty} := \max_{n=1:N} |x_n|$

Affine functions on vectors are also convex: $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + b$

Outline

1. Introduction

2. Convex Sets

3. Convex Functions

4. Recognizing Convex Functions

f is **differentiable** if dom f is open and the gradient

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right)^T$$

exists everywhere.

1st-order condition: a differentiable function f is convex iff

f is **differentiable** if dom f is open and the gradient

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right)^T$$

exists everywhere.

1st-order condition: a differentiable function f is convex iff

▶ dom f is a convex set

f is **differentiable** if dom f is open and the gradient

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right)^T$$

exists everywhere.

1st-order condition: a differentiable function f is convex iff

- ▶ dom f is a convex set
- ▶ for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

(the function is above any of its tangents.)

1st-order condition: a differentiable function f is convex iff

- ightharpoonup dom f is a convex set
- ▶ for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

$$f: X \to \mathbb{R} \text{ convex} \Leftrightarrow f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y}$$

$$f: X \to \mathbb{R} \text{ convex} \Leftrightarrow f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y}$$

"
$$\Rightarrow$$
 " : $f(x + t(y - x)) \le (1 - t)f(x) + tf(y)$ | : t

$$f: X \to \mathbb{R} \text{ convex} \Leftrightarrow f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y}$$

$$f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) \le (1 - t)f(\mathbf{x}) + tf(\mathbf{y}) \quad | : t$$

"
$$\Rightarrow$$
 " : $f(x + t(y - x)) \le (1 - t)f(x) + tf(y)$ | : t

$$f(y) \ge \frac{f(x + t(y - x)) - f(x)}{t} + f(x) \xrightarrow{t \to 0^+} \nabla f(x)^T (y - x) + f(x)$$

$$f: X \to \mathbb{R} \text{ convex} \Leftrightarrow f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y}$$

$$"\Rightarrow": f(x + t(y - x)) \le (1 - t)f(x) + tf(y) \quad |: t$$

$$f(y) \ge \frac{f(x + t(y - x)) - f(x)}{t} + f(x) \stackrel{t \to 0^+}{\longrightarrow} \nabla f(x)^T (y - x) + f(x)$$

"
$$\Leftarrow$$
 " : Apply twice to $z := \theta x + (1 - \theta)y$

$$f(x) \ge f(z) + \nabla f(z)^T (x - z)$$

$$f(y) \ge f(z) + \nabla f(z)^T (y - z)$$

$$f: X \to \mathbb{R} \text{ convex} \Leftrightarrow f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y}$$

$$"\Rightarrow": f(x + t(y - x)) \le (1 - t)f(x) + tf(y) \quad |: t$$

$$f(y) \ge \frac{f(x + t(y - x)) - f(x)}{t} + f(x) \xrightarrow{t \to 0^+} \nabla f(x)^T (y - x) + f(x)$$

$$"\Leftarrow": \text{Apply twice to } z := \theta x + (1 - \theta)y$$

$$f(x) \ge f(z) + \nabla f(z)^T (x - z)$$

$$f(y) \ge f(z) + \nabla f(z)^T (y - z)$$

$$\Rightarrow \theta f(x) + (1 - \theta)f(y) \quad \ge f(z) + \nabla f(z)^T (\theta x + (1 - \theta)y) - \nabla f(z)^T z$$

$$= f(z) + \nabla f(z)^T z - \nabla f(z)^T z$$

$$= f(z) = f(\theta x + (1 - \theta)y)$$

1st-Order Condition / Strict Variant

strict 1st-order condition: a differentiable function f is strictly convex iff

- ightharpoonup dom f is a convex set
- ▶ for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$

$$f(\mathbf{y}) > f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

Let dom f = X be convex.

$$f: X \to \mathbb{R} \text{ convex} \Leftrightarrow f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y}$$

Q: What does this imply for points \mathbf{x} with $\nabla f(\mathbf{x}) = 0$?

Global Minima

Let dom f = X be convex.

$$f: X \to \mathbb{R} \text{ convex} \Leftrightarrow f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y}$$

Consequence: Points x with $\nabla f(x) = 0$ are (equivalent) global minima.

- ▶ minima form a convex set
- ightharpoonup if f is strictly convex: there is exactly one global minimum x^* .

f is **twice differentiable** if dom f is open and the Hessian $\nabla^2 f(x)$

$$\nabla^2 f(\mathbf{x})_{n,m} = \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_m}$$

exists everywhere.

2nd-order condition: a twice differentiable function f is convex iff

f is **twice differentiable** if dom f is open and the Hessian $\nabla^2 f(x)$

$$\nabla^2 f(\mathbf{x})_{n,m} = \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_m}$$

exists everywhere.

2nd-order condition: a twice differentiable function f is convex iff

▶ dom f is a convex set

f is **twice differentiable** if dom f is open and the Hessian $\nabla^2 f(x)$

$$\nabla^2 f(\mathbf{x})_{n,m} = \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_m}$$

exists everywhere.

2nd-order condition: a twice differentiable function f is convex iff

- ightharpoonup dom f is a convex set
- ▶ for all $\mathbf{x} \in \text{dom } f$

$$\nabla^2 f(\mathbf{x}) \succeq 0$$
 for all $\mathbf{x} \in \text{dom } f$

f is **twice differentiable** if dom f is open and the Hessian $\nabla^2 f(x)$

$$\nabla^2 f(\mathbf{x})_{n,m} = \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_m}$$

exists everywhere.

2nd-order condition: a twice differentiable function f is convex iff

- ▶ dom f is a convex set
- ▶ for all $\mathbf{x} \in \text{dom } f$

$$\nabla^2 f(\mathbf{x}) \succeq 0$$
 for all $\mathbf{x} \in \text{dom } f$

Furthermore:

- ▶ for functions f on dom $f \subseteq \mathbb{R}$ simply $f''(x) \ge 0$ for all $x \in \text{dom } f$
- ▶ if $\nabla^2 f(\mathbf{x}) \succ 0$ for all $\mathbf{x} \in \text{dom } f$, then f is strictly convex
 - the converse is not true, e.g., $f(x) = x^4$ is strictly convex, but has 0 derivative at 0.

Positive Semidefinite Matrices (Review)

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **positive semidefinite** $(A \succeq 0)$:

$$x^T A x \ge 0, \quad \forall x \in \mathbb{R}^N$$

Equivalent:

- (i) all eigenvalues of A are ≥ 0 .
- (ii) $A = B^T B$ for some matrix B

Positive Semidefinite Matrices (Review)

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **positive semidefinite** $(A \succeq 0)$:

$$x^T A x \ge 0, \quad \forall x \in \mathbb{R}^N$$

Equivalent:

- (i) all eigenvalues of A are ≥ 0 .
- (ii) $A = B^T B$ for some matrix B

A symmetric matrix $A \in \mathbb{R}^{N \times N}$ is **positive definite** $(A \succ 0)$:

$$x^T A x > 0, \quad \forall x \in \mathbb{R}^N \setminus \{0\}$$

Equivalent:

- (i) all eigenvalues of A are > 0.
- (ii) $A = B^T B$ for some nonsingular matrix B

Quadratic Functions

$$f(x) := ax^2 + bx + c, \quad x, a, b, c \in \mathbb{R}$$

Quadratic Functions

univariate / onedimensional:

$$f(x) := ax^2 + bx + c, \quad x, a, b, c \in \mathbb{R}$$

multivariate / multidimensional:

$$f(x) := x^T A x + b^T x + c, \quad x, b, c \in \mathbb{R}^N, \quad A \in \mathbb{R}^{N \times N}$$

- ► There are a number of operations that preserve the convexity of a function.
- ▶ If *f* can be obtained by applying those operations to a convex function, *f* is also convex.

- ► There are a number of operations that preserve the convexity of a function.
- ▶ If *f* can be obtained by applying those operations to a convex function, *f* is also convex.

Nonnegative multiple:

- ightharpoonup if f is convex and $a \ge 0$ then af is convex.
- ► Example: $5x^2$ is convex since x^2 is convex

- ► There are a number of operations that preserve the convexity of a function.
- ▶ If f can be obtained by applying those operations to a convex function, f is also convex.

Nonnegative multiple:

- ▶ if f is convex and $a \ge 0$ then af is convex.
- ► Example: $5x^2$ is convex since x^2 is convex

Q: Is the sum of two conex functions g and h convex again?

- ► There are a number of operations that preserve the convexity of a function.
- ▶ If *f* can be obtained by applying those operations to a convex function, *f* is also convex.

Nonnegative multiple:

- ightharpoonup if f is convex and $a \ge 0$ then af is convex.
- ► Example: $5x^2$ is convex since x^2 is convex

Sum:

- \blacktriangleright if g and h are convex functions, then g+h is convex.
- ► Example: $f(x) = e^x + x \log x$ with dom $f = \mathbb{R}^+$ is convex since e^x and $x \log x$ are convex

Composition of two convex functions:

▶ let $g: \mathbb{R}^N \to \mathbb{R}$, $h: \mathbb{R} \to \mathbb{R}$ be both convex and

$$f(x) := h(g(x))$$

- ▶ in general *f* is **not** convex
- ► counter example N = 1, $g(x) = h(x) = e^{-x}$:

$$(e^{-e^{-x}})'' = (e^{-e^{-x}}(-e^{-x})(-1))'$$

$$= (e^{-e^{-x}}e^{-x})'$$

$$= e^{-e^{-x}}e^{-x}e^{-x} + e^{-e^{-x}}e^{-x}(-1)$$

$$= e^{-e^{-x}}e^{-x}(e^{-x} - 1) < 0 \text{ for } x > 0$$

Composition with affine functions:

▶ if f is convex then $f(A\mathbf{x} + \mathbf{b})$ is convex.

Composition with affine functions:

- ▶ if f is convex then $f(A\mathbf{x} + \mathbf{b})$ is convex.
- ► Example: norm of an affine function $||A\mathbf{x} + \mathbf{b}||$

Recognizing Convex Functions / Composition Composition with nondecreasing functions:

▶ if $g : \mathbb{R}^N \to \mathbb{R}$, $h : \mathbb{R} \to \mathbb{R}$ and

$$f(\mathbf{x}) = h(g(\mathbf{x}))$$

Recognizing Convex Functions / Composition Composition with nondecreasing functions:

▶ if $g: \mathbb{R}^N \to \mathbb{R}$, $h: \mathbb{R} \to \mathbb{R}$ and

$$f(\mathbf{x}) = h(g(\mathbf{x}))$$

- ► f is convex if:
 - ightharpoonup g is convex, h is convex and nondecreasing or
 - ightharpoonup g is concave, h is convex and nonincreasing

Composition with nondecreasing functions:

▶ if $g: \mathbb{R}^N \to \mathbb{R}$, $h: \mathbb{R} \to \mathbb{R}$ and

$$f(\mathbf{x}) = h(g(\mathbf{x}))$$

- ► *f* is convex if:
 - ightharpoonup g is convex, h is convex and nondecreasing or
 - ightharpoonup g is concave, h is convex and nonincreasing
- proof:

$$\nabla^{2} h(g(\mathbf{x})) = \nabla \left(h'(g(\mathbf{x})) \nabla g(\mathbf{x}) \right)$$

= $h''(g(\mathbf{x})) \nabla g(\mathbf{x}) \nabla g(\mathbf{x})^{T} + h'(g(\mathbf{x})) \nabla^{2} g(\mathbf{x})$

- ► Examples:
 - $ightharpoonup e^{g(x)}$ is convex if g is convex
 - $ightharpoonup \frac{1}{g(\mathbf{x})}$ is convex if g is concave and positive

Pointwise Maximum:

▶ if $f_1, ..., f_M$ are convex functions then $f(\mathbf{x}) := \max\{f_1(\mathbf{x}), ..., f_M(\mathbf{x})\}$ is convex.

Pointwise Maximum:

- ▶ if $f_1, ..., f_M$ are convex functions then $f(\mathbf{x}) := \max\{f_1(\mathbf{x}), ..., f_M(\mathbf{x})\}$ is convex.
- ► Example: $f(\mathbf{x}) := \max_{m=1,...,M} (a_m^T \mathbf{x} + b_m)$ is convex

There are many different ways to establish the convexity of a function:

1. Check the definition.

There are many different ways to establish the convexity of a function:

- 1. Check the definition.
- 2. Show that $\nabla^2 f(\mathbf{x}) \succeq 0$ for twice differentiable functions.

There are many different ways to establish the convexity of a function:

- 1. Check the definition.
- 2. Show that $\nabla^2 f(\mathbf{x}) \succeq 0$ for twice differentiable functions.
- 3. Show that *f* can be obtained from other convex functions by operations that preserve convexity.

Summary

- ► Convex sets are closed under line segments (convex combinations).
- ► Convex functions are defined on a convex domain and
 - ▶ are below any of their secant segments / chords (definition),
 - ▶ are globally above their tangents (1st-order condition),
 - ▶ have a positive semidefinite Hessian (2nd-order condition).
- ► For convex functions, points with vanishing gradients are (equivalent) **global minima**.
- Operations that preserve convexity:
 - scaling with a nonnegative constant
 - sums
 - ► pointwise maximum
 - composition with an affine function
 - composition with a nondecreasing convex scalar function
 - composition of a noninc. convex scalar function with a concave funct.
 - ightharpoonup esp. -g for a concave g

Further Readings

- Convex sets:
 - ▶ Boyd and Vandenberghe, 2004, chapter 2, esp. 2.1
 - ► see also ch. 2.2 and 2.3
- ► Convex functions:
 - ▶ Boyd and Vandenberghe, 2004, chapter 3, esp. 3.1.1–7, 3.2.1–5
- ► Convex optimization:
 - ▶ Boyd and Vandenberghe, 2004, chapter 4, esp. 4.1–3
 - ► see also ch. 4.4

1. Theory 34 / 33

References

Boyd, Stephen and Lieven Vandenberghe (2004). $\it Convex Optimization.$ Cambridge University Press.

1. Theory 35 / 33