# Update ¡date start¿ - ¡date end¿

Mason Smith

January 8, 2023

# Agenda

- 1 Introduction
- 2 Game Design Update
- 3 Training Policies
- 4 Simulation
- **6** Upcoming Work

#### Introduction

#### Current Work:

- Improving game design to allow for consistent training
- Training stable CPT value functions that represent biased policies
- Redesigning world and retraining to ensure non-trivial differences
  - Do not complete opposite or identical realization of strategy
  - Want to achieve the objective (catch the target) with semi-similar success rate in different ways (trajectories)
- Testing effects of assuming different biases for H in simulation

### Challenges:

- Was struggling with getting stuck in local optima due to sparse gains (catch at end of game) and frequent penalties (throughout the game)
- There is a sensitive and fine balance for the following hyper-parameters that induce interesting policies to contrast:
  - Admissible bounds for risk-sensitivity
  - World design and initial conditions
  - Learning hyper-parameters



# Agenda

- 1 Introduction
- ② Game Design Update Issues with Current Game Update Goals List of Updates Final Worlds
- 3 Training Policies
- 4 Simulation
- **5** Upcoming Work

### Issues with Current Game

- Algorithm gets stuck in local optima due to sparse gains (catch at end of game) and frequent penalties (throughout the game)
- Strong encouragement to wait out the rest of the game once a penalty is received (do not chase target anymore)
- Different worlds induced differences in bias policies that were either
  - too strong
    - $\bullet\,$  risk-averse had 0% catch rate while risk-seeking had 100% catch rate
    - impossible to evaluate coordination since strategies were incompatible  $\rightarrow 0\%$  catch
    - produced trivial result since both of the incorrect assumptions had same outcome
  - too weak
    - both policies either had near 100% or both had 0% performance
    - solution is so obvious that CPT does not change it
    - again produced trivial result due similarity between strategies

# Update Goals

- Produce two policies (averse and seeking) that
  - produce compatible strategies that achieve the objective  $p(success) \epsilon > 0$  when paired
  - produce sufficiently unique joint-behavior when mis-matching policies compared to matching policies
  - produce sufficiently similar performance between matched-averse and matched-seeking policies s.t. comparison between is valid
- Modify
  - world configurations (initial positions and penalty positions)
  - global game rules and game hyper-parameters

## List of Updates

- Redesigned world initial states and penalty locations
  - remove low-effect and difficult to train worlds
- Reward for catching target  $r(catch) = 20 \rightarrow 25$ 
  - increasing window to receive positive reward  $\sum r_t > 0$  after penalties and -1 turn reward are added
- Reward is now delivered as a single cumulative reward  $r_{\zeta}$  at the end of the game
  - previously provided reward at every time-step  $r_t$
  - helps avoid getting stuck local optima since intermediate rewards were only penalties
  - evaluates reward on a trajectory-scope  $r_{\zeta}(\mathbf{s}_T, \mathbf{a}_T)$
  - instead of action-scope  $r_t(s_t, a_t)$  where  $r_{\zeta} = \sum_{t \in T} r_t$
  - apply eligibility traces  $(TD(\lambda))$  to account for increased sparsity
- Reward is now non-negative
  - the cumulative reward at the end of the game is  $r_{\zeta} = max(r_{\zeta}, 0)$
  - new objective is to maximize your reward upon catching the target
  - doing really bad and not catching the stag are now equivalent
  - eliminates trivial policy of avoiding rewards by never moving

### Final Worlds



Figure 1: Updated World Designs

## Agenda

- Introduction
- 2 Game Design Update
- 3 Training Policies
  - Training Setup
  - Algorithm
  - Creating Biased Policies
  - Results
  - Discussion
- Simulation
- **5** Upcoming Work

# Training Setup

- Implemented a independent joint-Q learning algorithm with directed exploration and Theory of Mind (ToM)
- Quantal Response Equilibrium (QRE) used as the equilibrium condition to solve games at every stage (ToM)
- Trained 3x policies  $\pi$  trained during self-play:
  - baseline/optimal  $(\pi_0)$
  - risk-averse  $(\pi_A)$
  - risk-seeking  $(\pi_S)$
- Baseline policy  $\pi_0$  was used as prior for biased policies  $\pi_A$  and  $\pi_S$  trained with cumulative prospect theory (CPT) agents
- Sophistication (level of recursion) was set to 3 in the QRE

### Notation

- ego agent denoted by subscript  $(\cdot)_k$  where  $(\cdot)_{-k}$  represents the partner
- joint state  $s \in S$  where  $S = S_k \times S_{-k}$  given  $\times$  denotes the Cartesian product
- joint action  $a \in A$  where  $A = A_k \times A_{-k}$  and a may be written as  $\{a_k, a_{-k}\}$  for clarity
- ego stage reward  $r_t$
- a policy  $\pi_k$ 
  - always denotes choosing ego action  $a_k$  in s
  - samples  $a_k$  from joint state-joint action values  $Q_k(s,a)$  given an est. -k policy  $\hat{\pi}_{-k}$
  - $Q_k(s,a)$  is reduced to joint state-ego action values  $Q_k(s,a_k)$  by conditioning on  $\hat{\pi}_{-k}$ 
    - s.t.  $Q_k(s, a_k) = \mathbb{E}[Q_k(s, a|a = \{a_k, a_{-k} = \hat{\pi}_{-k}(s)\})] \forall a_k \in A_k$
  - $a_k$  is then drawn from  $Q_k(s, a_k)$  according to a nominal Boltzmann distribution.
  - for brevity this reduction will be implied and we will write  $Q_k(s, \{a_k, \hat{\pi}_{-k}(s)\})$  to denote the full expression

Mason Smith Update idate start; - idate end; January 8, 2023

11 / 35

# Algorithm

#### **Joint-** $TD(\lambda)$

```
Initialize Q_k(s, a) arbitrarily for all s, a
foreach episode do
     Initialize s and e_k(s, a) = \mathbf{0}
     foreach step of episode do
          a_k \leftarrow \text{ego action given by } \pi_k(s|\hat{\pi}_{-k}(s))
          Take action a_k, observe joint action a, ego reward r_k, and next
            state s'
          \delta \leftarrow r_k + \gamma \max_{a'_k} Q_k(s', \{a'_k, \hat{\pi}_{-k}(s')\}) - Q_k(s, a)
          e_k(s,a) \leftarrow e_k(s,a) + 1
          foreach s \times a do
               Q_k(s,a) \leftarrow Q_k(s,a) + \alpha \delta e_k(s,a)
               e_k(s,a) \leftarrow \gamma \lambda e_k(s,a)
          end foreach
          s, a \leftarrow s', a'
          Until\ s\ is\ terminal;
      end foreach
```

## Area Under the Indifference Curve (AUIC)

- area under the indifference curve (AUIC) is an expression of preference for accepting or rejecting a gamble over actions with certain outcomes in terms of probabilities p(accept)
- ullet AUIC is evaluated over the space of feasible rewards  ${f R}$  found in the game
- We define binomial-choices  $(a_1, a_2)$  with outcomes sampling from  $\mathbf{R}$  s.t.  $\mathbf{R}_1, \mathbf{R}_2 = \mathbf{R}$
- The outcomes of each choice are then:
  - $a_1$  containing one certain outcome
    - with possible rewards  $\mathbf{R}_1 = \{r_1 0.5 * r_\rho \ \forall \ r_1 \in \mathbf{R}_1\}$
  - $a_2$  containing two uncertain outcomes (with and without a penalty  $r_{\rho}$ )
    - with possible rewards  $\mathbf{R}_2 = \{ [r_2, (r_2 r_\rho)] \ \forall \ r_2 \in \mathbf{R}_2 \}$
    - with probabilities  $p = [(1 p_{\rho}), p_{\rho}]$  for each outcome occurring
- Indifference Curve:
  - a continuous curve through the 2D reward space  $(\mathbf{R}_1 \times \mathbf{R}_2)$
  - occurs when no preference is expressed s.t. p(accept) = 1 p(accept)

# Area Under the Indifference Curve (AUIC)

- $p(accept) = p(a_2)$  then implies risk-sensitivity where
  - An optimal agent expresses no preference (indifferent) given  $r_1 = r_2 \ \forall \ r_1, r_2 \in \mathbf{R}$
  - Preferences become more complex as we apply CPT transformation  $\mathbb{C}[\cdot]$
- AUIC will be calculated as follows:
  - Expresses the cumulative (mean) probability of p(accept) across a symmetrical space of rewards transformed by CPT
  - Centered around 0 for legibility s.t. AUIC  $\in (-0.5, 0.5)$
  - AUIC =  $\frac{1}{|\mathbf{R}_1 \times \mathbf{R}_2|} \sum_{r_1, r_2 \in \mathbf{R}_1, \mathbf{R}_2} p(accept | \mathbb{C}[r_1, r_2]) 0.5$
- The value for AUIC can then be interpreted as follows:
  - AUIC +  $p_{\epsilon}$  < 0: the agent cumulatively prefers rejecting the gamble and is risk-averse
  - AUIC  $-p_{\epsilon} > 0$ : the agent cumulatively prefers accepting the gamble and is risk-seeking
  - $|\text{AUIC}| < p_{\epsilon}$ : the agent agent has week cumulative preferences and is risk-insensitive
  - AUIC = 0: the agent has no cumulative preferences and is optimal
  - where  $p_{\epsilon}=0.1$  is a threshold defining what we consider = =  $\sim$

# Area Under the Indifference Curve (AUIC)



Figure 2: AUIC Samples

## Creating Biased Policies

- CPT parameters  $\mathcal{P}_{CPT}$  were stochastically perturbed while training biased policies
  - $\mathcal{P}_{CPT}$  were sampled in batches every 200 episodes
  - $\mathcal{P}_{CPT}$  were sampled from feasible bounds based on behavioral research [CITE]
  - \mathcal{P}\_{CPT} were attributed to averse or seeking behavior based on the AUIC
- $\mathcal{P}_{CPT}$  is continuously sampled until intended risk-sensitivity (AUIC) is met

## Convergence Expectations

- "Optimal strategy" is arbitrary between different bias conditions
- Different bias conditions induce different environment and therefore different policy
- Convergence conditions and final policy performance is not shared between bias conditions.
- Seeking and baseline strategies may be similar due to world conditions
- It is somewhat hard to tell if a policy has converged for the averse condition  $\pi_A$ 
  - Obvious convergence is not present.
  - averse induces higher penalties and less value in entering penalty states to chase target
  - Convergence often not evident from rewards, episode length, or probability of catching the target + MARL environments can be non-stationary

• instead, relies on several iterations with varying learning parameters

- converging to similar results
- had to update worlds<sup>1</sup> to balance between the risk of entering

# Training Results (World 1)



Figure 3: World 1 Training Results

# Training Results (World 2)



Figure 4: World 2 Training Results

# Training Results (World 3)



Figure 5: World 3 Training Results

# Training Results (World 4)



Figure 6: World 4 Training Results

# Training Results (World 5)



Figure 7: World 5 Training Results

# Training Results (World 6)



Figure 8: World 6 Training Results

### Discussion

- Policies are generally noisy due not non-stationary and rationality constant = 1
- Equilibrium would be less stochastic with higher rationalities
- Noise in final result pseudo-required to avoid the previously mentioned all or nothing problem (e.i. there exists dis-coordination and vulnerability to partner uncertainty)
- Baseline (Optimal) policies are often similar to Risk-Seeking policies since the game is designed for the agents to succeed
  - Rushing through penalties is often a good strategy
  - Susceptible to partner and target stochasticity
- May make minor attempts to improve policies in future but this is good for now

# Agenda

- Introduction
- 2 Game Design Update
- 3 Training Policies
- 4 Simulation

Formulation

Hypothesis

Analysis

Results

Discussion

**6** Upcoming Work

# Setup

#### Goal:

- Evaluate how assumptions of H's risk-sensitivity effect team performance
- Provide validation that there are differing or conflicting optimal policies based on risk-sensitivity

#### Experimental Conditions:

- We manipulate
  - what R assumes H's policy to be  $(\hat{\pi}_H)$
  - what H's policy actually is  $(\pi_H)$
- The experimental condition is then written as  $\mathcal{C} = \{\hat{\pi}_H, \pi_H\}$
- Substituting in our bias policies that we trained we get four conditions:
  - Assume-Averse + Is-Averse:  $\{\hat{\pi}_A, \pi_A\}$  (Correct Assumption)
  - Assume-Seeking + Is-Averse:  $\{\hat{\pi}_S, \pi_A\}$  (Incorrect Assumption)
  - Assume-Averse + Is-Seeking:  $\{\hat{\pi}_A, \pi_S\}$  (Incorrect Assumption)
  - Assume-Seeking + Is-Seeking:  $\{\hat{\pi}_S, \pi_S\}$  (Correct Assumption)

## Analysis

#### Approach:

- We only compare between R's assumption and within H's actually policy
- H's actually policy directly effects game performance and invalidates some evaluation metrics
- R's policy will be  $\pi_R = \pi_0$  conditioned on  $\hat{\pi}_H$  using QRE
- H will assume R uses H's true policy  $\hat{\pi}_R = \pi_H$
- Run simulated game 1000x for each of the 4 conditions composed

#### Metrics:

- Each agent's reward and the team (mean) reward between assumptions
- Episode length and probability of catching the target between assumptions
- Number of penalty states each agent during an average game between assumptions
- Mean probability of partner's action in ego's mental model

## Hypothesis

- When R assumes wrong  $(\hat{\pi}_H \neq \pi_H)$  for both  $\pi_H \in (\pi_A, \pi_S)$ :
- **H1.1**: Each agent's and team reward will decrease
- **H1.2**: Episode length will increase
- H1.3: Probability of catching target will decrease
- H1.3: Number of penalty states entered will increase
- **H1.4**: Both agents will not be able to predict each other's actions well (small  $p(a_{-k}|\hat{\pi}_{-k})$ )
- When H is averse  $(\pi_H = \pi_A)$  instead of seeking:
- **H2.1**: Magnitude of performance losses will be less significant
- **H2.2**: Performance will be worse than if  $\pi_H = \pi_S$
- Misc. Hypothesises
  - **H3**: Only minor changes in terminal state location will occur when agents succeed (e.i. objective remains the same but joint-trajectory changes).

## Analysis

#### Metrics:

- •
- \* on top of bars and in key indicate correct assumption made

### Results



Figure 9: Evaluation of simulated conditions per world

### Results



Figure 10: Evaluation of simulated conditions summary

## Discussion

• ADD DISCUSSION

# Agenda

- 1 Introduction
- 2 Game Design Update
- 3 Training Policies
- Simulation
- **6** Upcoming Work

# 2-Week Sprint Goals

### Goal:

• Description

## Long-Term Goals

#### Goal:

• Description