

Introducción al Modelo Rasch

Yuriko Kirilovna Sosa Paredes Br. Estadística e Informática - UNALM Especialista en Psicometría - UMC - MINEDU

Estructura

- Medición
- Variable latente
- Modelos con variables latentes
- Modelo Rasch
- Aplicación

¿Qué es medir?

Cuantificar

Unidades

Medición directa

Medición indirecta

Variables latentes

- No son observables (directamente).
- Se pueden inferir por medio de otras que si son observables: variables manifiestas 2.
- Psicología, economía, ciencias sociales, etc.

Modelos con variables latentes

Modelos con variables latentes

	Métricas	Categóricas
Métricas	Modelos factoriales	Modelos de trazo latente
Categóricas	Modelos de perfiles latentes	Modelos de clases latentes

Modelo Rasch

- Modelo probabilístico unidimensional el cual afirma:
 - A mayor rasgo latente habría mayor probabilidad de acertar.
 - A mayor dificultad del ítem menor probabilidad de acertar.
- Se centra en el análisis de cada ítem: interacción de este con el rasgo latente.
- · Un parámetro.
- · Misma escala interválica.

Unidimensionalidad

Un único rasgo o atributo latente dominante

Independencia Local

Controlado el rasgo latente, la respuesta a cualquier ítem es independiente

Modelo Rasch

$$Pij = P(Yij = 1 | \theta i, \beta j) = F(mij)$$

 $mij = \theta i - \beta j$

F(.): Función logística

$$P(Yij = 1 | \theta i, \beta j) = \frac{e^{\theta i - \beta_j}}{1 + e^{\theta i - \beta_j}}$$

Estimación de los parámetros

Métodos clásicos

- Máxima verosimilitud
- Algoritmo EM

Métodos bayesianos

- Muestreador de Gibbs
- Metropolis Hastings

Función de Información del Ítem (FII)

- La precisión no es uniforme en todo el rango de puntuaciones.
- Extremos con más error que las más cercanas al centro.
- Concepto de confiabilidad se extiende al de función de información.
- FII dependerá de los parámetros del modelo.

$$Ij(\theta i) = Pj(1 - Pj)$$

Aplicación

Se trabajará con una muestra aleatoria simple de 962 alumnos a nivel nacional que rindieron la prueba de matemática de la Evaluación Censal de Estudiantes (ECE) 2014 que proporciona cada año el Ministerio de Educación por medio de la UMC.

Se trabajará con la librería ltm en RStudio.

Datos:

• Correo electrónico:

yuriko.sosa.p@gmail.com

ysosa@minedu.gob.pe