The Traveling Salesman Problem

Aparajithan Venkateswaran

APPM 5120

University of Colorado Boulder

The Problem

Given a list of different cities and the distance between pairs of cities, what is the shortest route that visits all cities exactly once and returns to the origin city?

Graphs are awesome!

Think dots and lines connecting them

$$G = (V, E)$$

 $V = \text{set of vertices}$
 $E = \text{set of edges}$
 $E \subseteq V \times V$

$$G = (V, E)$$

V = set of vertices

E = set of edges

$$G = (V, E)$$

$$V = \{A, B, C, D\}$$

$$E = \{(A, B), (A, C), (A, D), (B, C), (B, D), (C, D)\}$$

We can also have a weight function associated with edges

- Could represent interactions between different species
- Correlations between genes
- The cost of travelling between cities

$$w: e \to \mathbb{R}_0^+$$
$$e \in E$$

$$w(A, B) =$$
 $w(D, C) =$

$$w(A, B) = 4$$
$$w(D, C) = 5$$

Important takeaways:

- Graphs are an amazing way to represent correlated data
- We can represent our network of cities as a graph

Formulating the Problem

Formulating the Problem

Let us define a new variable

$$x_{ij} = \begin{cases} 1 & \text{if the shortest path goes from city } i \text{ to city } j \\ 0 & \text{otherwise} \end{cases}$$

So, we have...

$$\min \sum_{i \in V} \sum_{\substack{j \in V \\ j \neq i}} w(i, j) x_{ij}$$

So, we have...

$$\min \sum_{i \in V} \sum_{\substack{j \in V \\ j \neq i}} w(i, j) x_{ij}$$

$$\sum_{\substack{i \in V \\ i \neq j}} x_{ij} = 1, \qquad j \in V$$

$$\sum_{\substack{j \in V \\ j \neq i}} x_{ij} = 1, \qquad i \in V$$

$$x_{ij} \in \{0, 1\} \qquad i, j \in V, i \neq j$$

But what if...

Solution...

Define a new "dummy" variable

$$u_i = t$$

city i is visited in the t-th step

Fixed!

$$\min \sum_{i \in V} \sum_{\substack{j \in V \\ j \neq i}} w(i, j) x_{ij}$$

$$\sum_{\substack{i \in V \\ i \neq j}} x_{ij} = 1, \qquad j \in V$$

$$\sum_{\substack{j \in V \\ j \neq i}} x_{ij} = 1, \qquad i \in V$$

$$u_i - u_j + n x_{ij} \le n - 1, \qquad i, j \in V, \ j \ne i, \ i, j \ne o$$

$$x_{ij} \in \{0, 1\} \qquad i, j \in V, i \ne j$$

$$u_i \in \mathbb{Z} \qquad i \in V$$

the floor is proofs

Take my word for it, please...

$$\min \sum_{i \in V} \sum_{\substack{j \in V \\ j \neq i}} w(i, j) x_{ij}$$

$$\sum_{\substack{i \in V \\ i \neq j}} x_{ij} = 1, \qquad j \in V$$

$$\sum_{\substack{j \in V \\ j \neq i}} x_{ij} = 1, \qquad i \in V$$

$$u_i - u_j + n x_{ij} \le n - 1, \qquad i, j \in V, \ j \ne i, \ i, j \ne o$$

$$x_{ij} \in \{0, 1\} \qquad i, j \in V, i \ne j$$

$$u_i \in \mathbb{Z} \qquad i \in V$$

How do you solve it?

Computational Complexity

Enumerate all solutions and pick the one with the shortest tour?

Computational Complexity

- OR techniques like Simplex Method or Interior Point Method?
- We have too many variables and constraints!
- Number of constraints grow of the order of n^2

Computational Complexity

Turns out that the problem is NP-hard!

Why bother trying to solve it?

Why bother trying to solve it?

Finds applications in various other fields

- Job scheduling
- Network routing
- Quadratic Assignment Problem
- Circuit Design
- DNA Sequencing

Heuristics

Heuristics

- A greedy approach
- Christofides' Algorithm think Minimum Spanning Trees
- Match Twice and Stitch
- Lin-Kernighan heuristics

Ants are smart

Ants are smart

- Ants walk randomly until they find food
- They go back home leaving a pheromone trail
- Another ant is more likely to follow this trail upon discovering it
- Time evaporates the pheromones
- Longer paths have lower pheromone content
- Shorter paths are preferred

Iteration 0 (Initial State)

Iteration I

Iteration 2

Iteration 3

Iteration 4

Iteration 5 (Finally)

Ant Colony Optimization Algorithm

- Probabilistic algorithm
- We keep track of a colony of ants
- We also keep track of the pheromone contents along the edges

Completing Tours

• Choice of edge depends on the amount of pheromones present

au(i,j): Amount of pheromone present along edge (i,j) $\eta(i,j) = \frac{1}{w(i,j)}$: "visibility" α,β : Parameters

$$p(i,j) = \frac{(\tau(i,j))^{\alpha} \cdot (\eta(i,j))^{\beta}}{\sum_{k \in allowed} (\tau(i,k))^{\alpha} \cdot (\eta(i,k))^{\beta}}$$

Updating Pheromone Map

 ρ : Evaporation Constant

 $\Delta \tau_{i,j}$: Density of pheromone laid along edge (i,j)

Q: Total amount of pheromone an ant can deposit

 L_k : Length of k-th ant's tour

$$\tau(i,j) \leftarrow \rho \cdot \tau(i,j) + \Delta \tau_{i,j}$$

$$\Delta \tau_{i,j} = \sum_{k=1}^{m} \Delta \tau_{i,j}^{k}$$

$$\Delta \tau_{i,j}^k = \begin{cases} \frac{Q}{L_k} , & \text{if } k\text{-th ant uses edge }(i,j) \\ 0 , & \text{otherwise} \end{cases}$$

How good can we model ants?

Vary the number of ants in the colony

$$\alpha = 1$$

$$\beta = 2$$

number of iterations = 500

ants = 10distance = 32,244

ants = 20distance = 31,088

ants = 30distance = 30,990

ants = 50distance = 29,174

ants = 100distance = 28,762

- Optimal tour is of length 27,603
- We found a tour of length 28,762

That's pretty good...

Tests on Djibouti

Vary the number of iterations

$$\alpha = 1$$

$$\beta = 2$$

number of ants = 30

Tests on Djibouti

Tests on Djibouti

- Optimal tour is of length 6,656
- We found a tour of length 6,769

That is also pretty good...

But, can we do better?

Varying parameters (Djibouti)

$$\alpha = 1$$

$$\beta = 1$$

$$\text{distance} = 6,955$$

Varying parameters (Western Sahara)

$$\alpha = 0.5$$
 $\beta = 4$
 $distance = 28,503$

What's going wrong?

Drawbacks

- Too many parameters to tune
- No direct way to estimate the rate of convergence
- Due to its probabilistic nature, the algorithm may converge to the local optimum

The Future

Questions?