FACTEURS γ DU CARRÉ EXTÉRIEUR

Soit F un corps local de caractéristique 0, ψ un caractère non trivial de F et π une représentation tempérée irréductible de $GL_{2n}(F)$. Jacquet et Shalika ont défini une fonction L du carré extérieur $L_{JS}(s,\pi,\Lambda^2)$ par des intégrales notées $J(s,W,\phi)$, où $W \in \mathcal{W}(\pi,\psi)$ est un élément du modèle de Whittaker de π et $\phi \in \mathcal{S}(F^n)$ est une fonction de Schwartz. Matringe a prouvé que, lorsque F est non archimédien, ces intégrales $J(s,W,\phi)$ vérifient une équation fonctionnelle, ce qui permet de définir des facteurs γ , que l'on note $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$.

On montre que l'on a encore une équation fonctionnelle lorsque F est archimédien et que les facteurs γ sont égaux à une constante de module 1 prés à ceux définis par Shahidi, que l'on note $\gamma^{Sh}(s,\pi,\Lambda^2,\psi)$. Plus exactement, il existe une constante $c(\pi)$ de module 1, telle que

(1)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c(\pi)\gamma^{Sh}(s, \pi, \Lambda^2, \psi),$$

pour tout $s \in \mathbb{C}$. La preuve se fait par une méthode de globalisation, on considère π comme une composante locale d'une représentation automorphe cuspidale.

1. Préliminaires

1.1. **Théorie locale.** Les intégrales $J(s, W, \phi)$ sont définies par

 $\int_{N_n\setminus G_n}\int_{Lie(B_n)\setminus M_n}W\left(\sigma\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}g&0\\0&g\end{pmatrix}\right)\psi(-Tr(X))dX\varphi(e_ng)|\det g|^sdg$

pour tous $W \in \mathcal{W}(\pi, \psi)$, $\phi \in \mathcal{S}(F^n)$ et $s \in \mathbb{C}$. On a noté G_n le groupe $GL_n(F)$, B_n le sous groupe des matrices triangulaires supérieures, N_n le sous-groupe de B_n des matrices dont les éléments diagonaux sont 1 et M_n l'ensemble des matrices de taille $n \times n$ à coefficients dans F. L'élément σ est la matrice associée à la permutation $\begin{pmatrix} 1 & 2 & \cdots & 2n \\ 1 & 3 & \cdots & 2n-1 & 2 & \cdots & 2n \end{pmatrix}$.

Jacquet et Shalika ont démontré que ces intégrales convergent pour Re(s) suffisamment grand, plus exactement, on dispose de la

Proposition 1.1 (Jacquet-Shalika). Il existe $\eta > 0$ tel que les intégrales $J(s, W, \varphi)$ convergent absolument pour $Re(s) > 1 - \eta$.

Kewat montre, lorsque F est p-adique, que ce sont des fractions rationnelles en q^s où q est le cardinal du corps résiduel de F. On aura aussi besoin d'avoir le prolongement méromorphe de ces intégrales lorsque F est archimédien et d'un résultat de non annulation.

Proposition 1.2 (Belt). Fixons $s_0 \in \mathbb{C}$. Il existe $W \in \mathcal{W}(\pi, \psi)$ et $\varphi \in \mathcal{S}(\mathsf{F}^n)$ tels que $\mathsf{J}(s,W,\varphi)$ admet un prolongement méromorphe à tout le plan complexe et ne s'annule pas en s_0 . Si $\mathsf{F} = \mathbb{R}$ ou \mathbb{C} , le point s_0 peut éventuellement être un pôle. Si F est p -adique, on peut choisir W et φ tels que $\mathsf{J}(s,W,\varphi)$ soit entière.

Date: 26 octobre 2018.

Lorsque la représentation non ramifiée, ont peut représenter la fonction L du carré extérieur obtenue par la correspondance de Langlands locale, que l'on note $L(s, \pi, \Lambda^2)$, (qui est égale à celle obtenue par la méthode de Langlands-Shahidi d'après un résultat d'Henniart) par ces intégrales.

Proposition 1.3 (Jacquet-Shalika). Supposons que F est p-adique, le conducteur de ψ est l'anneau des entiers $\mathcal O$ de F. Soit π une représentation non ramifiée de $\mathsf{GL}_{2n}(\mathsf F)$. On note φ_0 la fonction caractéristique de $\mathcal O^n$ et W_0 l'unique fonction de Whittaker invariante par $\mathsf{GL}_{2n}(\mathcal O)$ et qui vérifie W(1)=1. Alors

(3)
$$J(s, W_0, \phi_0) = L(s, \pi, \Lambda^2).$$

Pour finir cette section, on énonce l'équation fonctionnelle démontrée par Matringe lorsque F est un corps p-adique. Plus précisément, on a la

Proposition 1.4 (Matringe). Supposons que F est un corps \mathfrak{p} -adique et π générique. Il existe un monôme $\varepsilon(s,\pi,\Lambda^2,\psi)$ en \mathfrak{q}^s , tel que pour tous $W \in \mathcal{W}(\pi,\psi)$ et $\phi \in \mathcal{S}(F^n)$, ont ait

(4)
$$\epsilon(s, \pi, \Lambda^2, \psi) \frac{J(s, W, \phi)}{L(s, \pi, \Lambda^2)} = \frac{J(1 - s, \rho(w_{n,n})\tilde{W}, \hat{\phi})}{L(1 - s, \tilde{\pi}, \Lambda^2)},$$

où $\hat{\varphi} = \mathcal{F}_{\psi}(\varphi)$ est la transformée de Fourier de φ par rapport au caractère ψ et $\tilde{W} \in \mathcal{W}(\tilde{\pi}, \bar{\psi})$ est la fonction de Whittaker définie par $\tilde{W}(g) = W(w_n(g^t)^{-1})$, avec w_n la matrice associée à la permutation $\begin{pmatrix} 1 & \cdots & 2n \\ 2n & \cdots & 1 \end{pmatrix}$ et $w_{n,n} = \begin{pmatrix} 0 & 1_n \\ 1_n & 0 \end{pmatrix}$. On définit alors le facteur γ de Jacquet-Shalika par la relation

$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = \varepsilon(s,\pi,\Lambda^2,\psi) \frac{L(1-s,\tilde{\pi},\Lambda^2)}{L(s,\pi,\Lambda^2)}.$$

1.2. **Théorie globale.** La méthode que l'on utilise est une méthode de globalisation. Essentiellement, on verra π comme une composante locale d'une représentation automorphe cuspidale. Pour se faire, on aura besoin de l'équivalent global des intégrales $J(s, W, \phi)$.

Soit K un corps de nombres et $\psi_{\mathbb{A}}$ un caractère non trivial de \mathbb{A}_K/K . Soit Π une représentation automorphe cuspidale irréductible sur $GL_{2n}(\mathbb{A}_K)$. Pour $\phi \in \Pi$, on considère

$$(6) \hspace{1cm} W_{\varphi}(g) = \int_{N_{\pi}(K) \backslash N_{\pi}(\mathbb{A}_{K})} \varphi(ug) \psi_{\mathbb{A}}(u) du$$

la fonction de Whittaker associée. On considère $\psi_{\mathbb{A}}$ comme un caractère de $N_n(\mathbb{A}_K)$ en posant $\psi_{\mathbb{A}}(u) = \psi_{\mathbb{A}}(\sum_{i=1}^{n-1} u_{i,i+1})$. Pour $\Phi \in \mathcal{S}(\mathbb{A}_K^n)$ une fonction de Swchartz, on note $J(s,W_\phi,\Phi)$ l'intégrale

$$\int_{\mathsf{N}_{\mathfrak{n}}\backslash\mathsf{G}_{\mathfrak{n}}}\int_{\mathsf{Lie}(\mathsf{B}_{\mathfrak{n}})\backslash\mathsf{M}_{\mathfrak{n}}}W_{\varphi}\left(\sigma\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}g&0\\0&g\end{pmatrix}\right)\psi_{\mathbb{A}}(\mathsf{Tr}(\mathsf{X}))\mathsf{d}\mathsf{X}\Phi(e_{\mathfrak{n}}g)|\det g|^{s}\mathsf{d}g$$

où l'on note G_n le groupe $GL_n(\mathbb{A}_K)$, B_n le sous groupe des matrices triangulaires supérieures, N_n le sous-groupe de B_n des matrices dont les éléments diagonaux sont 1 et M_n l'ensemble des matrices de taille $n \times n$ à coefficients dans \mathbb{A}_K .

Finissons cette section par l'équation fonctionnelle globale démontrée par Jacquet et Shalika.

Proposition 1.5 (Jacquet-Shalika). Les intégrales $J(s, W_{\phi}, \Phi)$ convergent absolument pour Re(s) suffisamment grand. De plus, $J(s, W_{\phi}, \Phi)$ admet un prolongement méromorphe à tout le plan complexe et vérifie l'équation fonctionnelle suivante

(8)
$$J(s, W_{\varphi}, \Phi) = J(1 - s, \rho(w_{n,n})\tilde{W}_{\varphi}, \hat{\Phi}),$$

où $\tilde{W}_{\phi}(g) = W_{\phi}(w_n(g^t)^{-1})$ et $\hat{\Phi}$ est la transformée de Fourier de φ par rapport au caractère $\psi_{\mathbb{A}}$.

Comme on peut s'y attendre, les intégrales globales sont reliées aux intégrales locales. Plus exactement, si $W=\prod_{\nu}W_{\nu}$ et $\Phi=\prod_{\nu}\Phi_{\nu}$, où ν décrit les places de K, ont a

$$J(s,W_{\phi},\Phi) = \prod_{\nu} J(s,W_{\nu},\Phi_{\nu}).$$

1.3. **Globalisation.** Comme la preuve se fait par globalisation, la première chose à faire est de trouver un corps de nombres dont F est une localisation. On dispose du

Lemme 1.1. Supposons que F est un corps p-adique. Il existe un corps de nombres k et une place v_0 telle que $k_{v_0} = F$, où v_0 est l'unique place de k au dessus de p.

On note $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F})$ l'ensemble des classes d'isomorphismes de représentations tempérées irréductibles. On va définir une topologie sur $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$. On note $\mathsf{Temp}_{ind}(\mathsf{GL}_{2n}(\mathsf{F}))$ l'ensemble des classes d'isomorphismes de représentations de la forme $i_p^\mathsf{G}(\sigma)$ où $\mathsf{P} = \mathsf{MU}$ est un sous-groupe parabolique de $\mathsf{GL}_{2n}(\mathsf{F})$, σ est une représentation irréductible de carré intégrable de M et i_p^G est l'induction normalisée. Chaque représentation de $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$ est une composante d'une unique représentation de $\mathsf{Temp}_{ind}(\mathsf{GL}_{2n}(\mathsf{F}))$.

On définira alors la topologie sur $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$ comme l'image réciproque de la topologie sur $\mathsf{Temp}_{\mathsf{ind}}(\mathsf{GL}_{2n}(\mathsf{F}))$ que l'on définit dans la suite. Soit M un sousgroupe de Levi de $\mathsf{GL}_{2n}(\mathsf{F})$ et σ une représentation irréductible de carré intégrable de M, on note $X^*(M)$ le groupe des caractères algébriques de M, on dispose alors d'une application $\chi \in X^*(M)/D \mapsto \mathfrak{i}_M^G(\sigma \otimes \chi) \in \mathsf{Temp}_{\mathsf{ind}}(\mathsf{GL}_{2n}(\mathsf{F}))$ où D est le sous-groupe de $X^*(M)$ des éléments χ tels que $\sigma \otimes \chi \simeq \sigma$. On définit alors une base de voisinage de $\mathfrak{i}_M^G(\sigma)$ dans $\mathsf{Temp}_{\mathsf{ind}}(\mathsf{GL}_{2n}(\mathsf{F}))$ comme l'image d'une base de voisinage de $\mathfrak{o}_M^G(\sigma)$ dans $\mathsf{Temp}_{\mathsf{ind}}(\mathsf{GL}_{2n}(\mathsf{F}))$ comme l'image d'une base de voisinage de $\mathfrak{o}_M^G(\sigma)$ dans $\mathsf{Temp}_{\mathsf{ind}}(\mathsf{GL}_{2n}(\mathsf{F}))$

Cette topologie sur $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$ nous permet d'énoncer le résultat principal dont on aura besoin pour la méthode de globalisation.

Proposition 1.6 (Beuzart-Plessis). Soit k un corps de nombres, ν_0, ν_1 deux places distinctes de k avec ν_1 non archimédienne. Soit U un ouvert de $\mathsf{Temp}(\mathsf{GL}_{2n}(k_{\nu_0}))$. Alors il existe une représentation automorphe cuspidale irréductible Π de $\mathsf{GL}_{2n}(\mathbb{A}_k)$ telle que $\Pi_{\nu_0} \in U$ et Π_{ν} est non ramifiée pour toute place non archimédienne $\nu \notin \{\nu_0, \nu_1\}$.

1.4. Fonctions tempérées. On aura besoin dans la suite de connaître la dépendance que $J(s, W, \phi)$ lorsque l'on fait varier la représentation π . Pour ce faire, on introduit la notion fonction tempérée et on étend la définition de $J(s, W, \phi)$ pour ces fonctions tempérées.

L'espace des fonctions tempérées $C^w(N_n(F)\backslash GL_{2n}(F),\psi)$ est l'espace des fonctions $f:GL_{2n}(F)\to\mathbb{C}$ telles que $f(ng)=\psi(n)f(g)$ pour tous $n\in N(F)$ et $g\in GL_{2n}(F)$, on impose les conditions suivantes :

- Si F est p-adique, f est localement constante et il existe d>0 et C>0 tels que $|f(g)|\leqslant C\Xi(g)\log(\|g\|_\infty)^d$ pour tout $g\in GL_{2n}(F)$,
- Si F est archimédien, f est C^{∞} et il existe d>0 et C>0 tels que $|(R(u)f)(g)| \leq C\Xi(g)\log(\|g\|_{\infty})^d$ pour tous $g\in GL_{2n}(F)$ et $u\in \mathcal{U}(\mathfrak{gl}_{2n}(F))$,

où Ξ est la fonction définie par $\Xi(\mathfrak{nak}) = \delta_{B_n}(\mathfrak{a})^{\frac{1}{2}}$.

La proposition suivante est une extension d'un résultat qui sert de base pour la convergence des intégrales $J(s, W, \phi)$.

Proposition 1.7. *Soit* $W \in C^{w}(N_{n}(F)\backslash GL_{2n}(F), \psi)$,

$$W(\alpha k) = \delta^{\frac{1}{2}}(\alpha) \sum_{\xi \in X} \varphi_{\xi}(\alpha, k) \xi(\alpha).$$

Démonstration. ???

2. Facteurs γ

Dans cette partie, on prouve l'égalité entre les facteurs $\gamma^{JS}(., \pi, \Lambda^2, \psi)$ et $\gamma^{Sh}(., \pi, \Lambda^2, \psi)$ à une constante (dépendant de π) de module 1 près.

On commence à montrer cette égalité pour les facteurs γ archimédiens. Pour le moment, les résultats connus ne nous donnent même pas l'existence du facteur γ^{JS} dans le cas archimédien, ce sera une conséquence de la méthode de globalisation.

On aura besoin d'un résultat sur la continuité du quotient $\frac{J(1-s,\rho(w_{n,n})\bar{W},\hat{\varphi})}{J(s,W,\varphi)}$ par rapport à π , on dispose du

Lemme 2.1. Supposons que $J(s,W,\varphi) \neq 0$. Alors il existe une section $\pi' \mapsto W_{\pi'}$ et un voisinage $V \subset \text{Temp}(GL_{2n}(F))$ de π tel que la fonction $\pi' \in V \mapsto \frac{J(1-s,\rho(w_{n,n})\bar{W}_{\pi'},\varphi)}{J(s,W_{\pi'},\varphi)}$ soit continue.

Démonstration. On utilise l'existence de bonnes sections $\pi' \mapsto W_{\pi'}$ (Beuzart-Plessis). La fonction $W \mapsto J(s, W, \varphi)$ est continue, il existe donc un voisinage V de π tel que $J(s, W_{\pi'}, \varphi) \neq 0$. Le quotient $\frac{J(1-s, \rho(w_{n,n})\bar{W}_{\pi'}, \mathring{\varphi})}{J(s, W_{\pi'}, \varphi)}$ est alors bien une fonction continue de π' sur V.

Proposition 2.1. Soit $F = \mathbb{R}$ ou \mathbb{C} . Soit π une représentation tempérée irréductible de $GL_{2n}(F)$.

Il existe une fonction méromorphe $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$ telle que pour tous $s\in\mathbb{C}$, $W\in\mathcal{W}(\pi,\psi)$ et $\varphi\in\mathcal{S}(F^n)$, on ait

$$(11) \hspace{1cm} \gamma^{JS}(s,\pi,\Lambda^2,\varphi)J(s,W,\varphi) = J(1-s,\rho(w_{n,n})\tilde{W},\mathcal{F}_{\psi}(\varphi)).$$

De plus, il existe une constante $c(\pi)$ de module 1 telle que pour tout $s \in \mathbb{C}$,

(12)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c(\pi)\gamma^{Sh}(s, \pi, \Lambda^2, \psi).$$

Démonstration. Soit k un corps de nombres, on suppose que k a une seule place archimédienne, elle est réelle (respectivement complexe) lorsque $F=\mathbb{R}$ (respectivement $F=\mathbb{C}$); par exemple, $k=\mathbb{Q}$ si $F=\mathbb{R}$ et $k=\mathbb{Q}(i)$ si $F=\mathbb{C}$. Soit $\nu\neq\nu'$ deux places non archimédiennes distinctes, soit $U\subset Temp(GL_{2n}(F))$ un ouvert contenant π . On choisit un caractère $\psi_{\mathbb{A}}$ de \mathbb{A}_K/K tel que $(\psi_{\mathbb{A}})_{\infty}=\psi$.

D'après la proposition 1.6, il existe une représentation automorphe cuspidale irréductible Π telle que $\Pi_{\infty} \in \mathbb{U}$ et Π_w soit non ramifiée pour toute place non archimédienne $w \neq v$.

On choisit maintenant des fonctions de Whittaker W_w et des fonctions de Schwartz ϕ_w dans le but d'appliquer l'équation fonctionnelle globale. Pour $w \notin \{\infty, \nu\}$, on prend les fonctions "non ramifiées" qui apparaissent dans la proposition 1.3. Pour $w = \infty$ ou ν , on fait un choix, d'après la proposition 1.2, tel que $J(s, W_w, \phi_w) \neq 0$. On pose alors

$$W = \prod_{w} W_{w}$$
 et $\Phi = \prod_{w} \phi_{w}$.

D'après la proposition 1.5, on a

(13)

$$J(s, W_{\infty}, \phi_{\infty})J(s, W_{\nu}, \phi_{\nu})L^{S}(s, \Pi, \Lambda^{2})$$

$$=J(1-s,\rho(w_{n,n})\tilde{W}_{\infty},\mathcal{F}_{\psi}(\varphi_{\infty}))J(1-s,\rho(w_{n,n})\tilde{W}_{\nu},\mathcal{F}_{(\psi_{A})_{\nu}}(\varphi_{\nu}))L^{S}(1-s,\tilde{\Pi},\Lambda^{2}),$$

où $S=\{\infty,\nu\}$ et $L^S(s,\Pi,\Lambda^2)=\prod_{w\neq\infty,\nu}L(s,\Pi_w,\Lambda^2)$ est la fonction L partielle. D'autre part, les facteurs γ de Shahidi vérifient une relation similaire,

$$(14) \qquad \mathsf{L}^{\mathsf{S}}(\mathsf{s},\Pi,\Lambda^2) = \gamma^{\mathsf{Sh}}(\mathsf{s},\Pi_{\infty},\Lambda^2,\psi)\gamma^{\mathsf{Sh}}(\mathsf{s},\Pi_{\nu},\Lambda^2,(\psi_{\mathbb{A}})_{\nu})\mathsf{L}^{\mathsf{S}}(1-\mathsf{s},\tilde{\Pi},\Lambda^2).$$

Le quotient de (13) et (14), en utilisant la proposition 1.4 sur le facteur en Π_{ν} , donne

(15)
$$\frac{J(1-s,\rho(w_{n,n})\tilde{W}_{\infty},\mathcal{F}_{\psi}(\varphi_{\infty}))}{J(s,W_{\infty},\varphi_{\infty})\gamma^{Sh}(s,\Pi_{\infty},\Lambda^{2},\psi)} \frac{\gamma^{JS}(s,\Pi_{\nu},\Lambda^{2},(\psi_{\mathbb{A}})_{\nu})}{\gamma^{Sh}(s,\Pi_{\nu},\Lambda^{2},(\psi_{\mathbb{A}})_{\nu})} = 1.$$

Ce qui prouve la première partie de la proposition pour Π_{∞} , l'existence du facteur $\gamma^{JS}(s,\Pi_{\infty},\Lambda^2,\psi)$.

On choisit maintenant pour U une base de voisinage contenant π , en utilisant le lemme 2.1 et la continuité des facteurs γ de Shahidi, on en déduit que $\frac{J(1-s,\rho(w_{\pi,n})\bar{W},\mathcal{F}_{\psi}(\varphi))}{J(s,W,\varphi)}$ est une fonction méromorphe indépendante de W et de φ , que l'on note $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$, qui est le produit de $\gamma^{Sh}(s,\pi,\Lambda^2,\psi)$ et d'une fonction, que l'on note R(s), qui est limite de fractions rationnelles en q_{ν}^{s} ; donc R est une fonction périodique de période $\frac{2i\pi}{\log q_{\nu}}$.

On réutilisant notre raisonnement en la place ν' , on voit que R est aussi périodique de période $\frac{2i\pi}{\log q_{\nu'}}$; donc est constante. Ce qui nous permet de voir qu'il existe une constante $c(\pi) = R$ telle que

(16)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c(\pi)\gamma^{Sh}(s, \pi, \Lambda^2, \psi).$$

Il ne nous reste plus qu'à montrer que la constante $c(\pi)$ est de module 1. Reprenons l'équation fonctionnelle locale archimédienne,

$$(17) \hspace{1cm} \gamma^{JS}(s,\pi,\Lambda^2,\psi)J(s,W,\varphi) = J(1-s,\rho(w_{n,n})\tilde{W},\mathcal{F}_{\psi}(\varphi)).$$

On utilise maintenant l'équation fonctionnelle sur la représentation $\tilde{\pi}$ pour transformer le facteur $J(1-s,\rho(w_{n,n})\tilde{W},\mathcal{F}_{\psi}(\varphi))$, ce qui nous donne

$$\gamma^{JS}(s,\pi,\Lambda^2,\psi)J(s,W,\varphi) = \frac{J(s,W,\mathcal{F}_{\bar{\psi}}(\mathcal{F}_{\psi}(\varphi)))}{\gamma^{JS}(1-s,\tilde{\pi},\Lambda^2,\bar{\varphi})}.$$

Puisque $\mathcal{F}_{\bar{lb}}(\mathcal{F}_{\psi}(\varphi)) = \varphi$, on obtient donc la relation

$$\gamma^{JS}(s,\pi,\Lambda^2,\psi)\gamma^{JS}(1-s,\tilde{\pi},\Lambda^2,\bar{\varphi})=1.$$

D'autre part, en conjuguant l'équation 17, on obtient

(20)
$$\overline{\gamma^{JS}(s,\pi,\Lambda^2,\psi)} = \gamma^{JS}(\bar{s},\bar{\pi},\Lambda^2,\bar{\psi}).$$

Comme π est tempérée, π est unitaire, donc $\tilde{\pi} \simeq \bar{\pi}$. On en déduit, pour $s = \frac{1}{2}$,

(21)
$$|\gamma^{JS}(\frac{1}{2}, \pi, \Lambda^2, \psi)|^2 = 1.$$

D'autre part, le facteur γ de Shahidi vérifie aussi $|\gamma^{JS}(\frac{1}{2},\pi,\Lambda^2,\psi)|^2=1$; on en déduit donc que $c(\pi)$ est bien de module 1.

Proposition 2.2. Supposons que F est un corps \mathfrak{p} -adique. Soit π une représentation tempérée irréductible de $\mathsf{GL}_{2n}(F)$.

Le facteur $\gamma^{JS}(s, \pi, \Lambda^2, \psi)$ est défini par la proposition 1.4. Alors il existe une constante $c(\pi)$ de module 1 telle que pour tout $s \in \mathbb{C}$,

(22)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c(\pi)\gamma^{Sh}(s, \pi, \Lambda^2, \psi).$$

Démonstration. D'après le lemme 1.1, il existe un corps de nombres k et une place ν_0 telle que $k_{\nu_0} = F$, où ν_0 est l'unique place de k au dessus de \mathfrak{p} . Soit ν, ν' deux places distinctes non archimédiennes et différentes de ν_0 . Soit $U \subset \mathsf{Temp}(\mathsf{GL}_{2n}(F))$ un ouvert contenant π . On choisit un caractère $\psi_{\mathbb{A}}$ de \mathbb{A}_k/k tel que $(\psi_{\mathbb{A}})_{\nu_0} = \psi$.

D'après la proposition 1.6, il existe une représentation automorphe cuspidale irréductible Π telle que $\Pi_{\nu_0} \in U$ et Π_w soit non ramifiée pour toute place non archimédienne $w \neq \nu$.

Pour $w = v_0, v$ ou une place archimédienne, on choisit d'après la proposition 1.2, des fonctions de Whittaker W_w et des fonctions de Schwartz ϕ_w telles que $J(s, W_w, \phi_w) \neq 0$. Pour les places non ramifiées, on choisit les fonctions "non ramifiées" de la proposition 1.3. On pose alors

$$W = \prod_{w} W_{w}$$
 et $\Phi = \prod_{w} \Phi_{w}$.

D'après l'équation fonctionnelle globale (proposition 1.5), on a

(23)
$$\prod_{w \in \{v, v_0, v_\infty\}} J(s, W_w, \phi_w) L^S(s, \Pi, \Lambda^2)$$

$$= \prod_{w \in \{v, v_0, v_\infty\}} J(1 - s, \rho(w_{n,n}) \tilde{W}_w, \mathcal{F}_{(\psi_A)_w}(\phi_w)) L^S(1 - s, \tilde{\Pi}, \Lambda^2),$$

où ν_{∞} décrit les places archimédiennes, $S=\{\nu_{\infty}\}\cup\{\nu,\nu_0\}$ et $L^S(s,\Pi,\Lambda^2)$ est la fonction L partielle. Les facteurs γ de Shahidi vérifient

$$(24) \hspace{1cm} \mathsf{L}^{\mathsf{S}}(\mathsf{s},\Pi,\Lambda^{2}) = \prod_{w \in \mathsf{S}} \gamma^{\mathsf{Sh}}(\mathsf{s},\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w}) \mathsf{L}^{\mathsf{S}}(1-\mathsf{s},\tilde{\Pi},\Lambda^{2}).$$

En utilisant les propositions 1.4 et 2.1, on obtient donc la relation

$$(25) \hspace{1cm} \prod_{\nu_{\infty}} c(\Pi_{\nu_{\infty}}) \frac{\gamma^{JS}(s,\Pi_{\nu},\Lambda^{2},(\psi_{\mathbb{A}})_{\nu})}{\gamma^{Sh}(s,\Pi_{\nu},\Lambda^{2},(\psi_{\mathbb{A}})_{\nu})} \frac{\gamma^{JS}(s,\Pi_{\nu_{0}},\Lambda^{2},\psi)}{\gamma^{Sh}(s,\Pi_{\nu_{0}},\Lambda^{2},\psi)} = 1.$$

Le reste du raisonnement est maintenant identique à la fin de la preuve de la proposition 2.1. Par continuité, le quotient $|\frac{\gamma^{JS}(s,\pi,\Lambda^2,\psi)}{\gamma^{Sh}(s,\pi,\Lambda^2,\psi)}|$ est une fonction périodique de période $\frac{2i\pi}{\log q_{\nu}}$. En appliquant le même raisonnement en la place ν' , on obtient que c'est une constante. En évaluant $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$ en $s=\frac{1}{2}$, on montre que cette constante est 1.