Zadanie 0. Niektóre zera na poprzedniej liście oznaczają wektor zerowy. Znajdź je wszystkie i dorysuj nad nimi strzałki.

Zadanie 1. Wykaż, że w dowolnym ciele zachodzą tożsamości: (-1)x = -x, -(-x) = x, (-1)(-1) = 1, (-x)y = -xy, (x-y)z = xz - yz, $\frac{x-y}{z} = \frac{x}{z} - \frac{y}{z}$ (dla $z \neq 0$), $\frac{1}{x} \cdot \frac{1}{y} = \frac{1}{xy}$ (dla $x, y \neq 0$), $\frac{z}{x} + \frac{t}{y} = \frac{zy + tx}{xy}$ (dla $x, y \neq 0$), x - (y - z) = (x - y) - z.

Zadanie 2. Sprawdź starannie, że przestrzeń R^A wszystkich funkcji z A w R jest (z działaniami zadanymi przez $(f+g)(a) = f(a) + g(a), (\alpha f)(a) = \alpha \cdot f(a)$) przestrzenią liniową.

Zadanie 3. Pokaż że jeżeli $W_1, W_2 \le V$, to $W_1 \cap W_2 \le V$.

Zadanie 4. Podaj przykład trójki $V_1, V_2 < W$, takiej że ani $V_1 \cup V_2$, ani $V_1 \setminus V_2$ nie jest podprzestrzenią

Zadanie 5. Które z następujących zbiorów są podprzestrzeniami:

- a) $C(\mathbf{R}): \{f \in C(\mathbf{R}) \mid f(7) = 0\}, \{f \in C(\mathbf{R}) \mid f(12) \ge f(-12)\}, \{f \in C(\mathbf{R}) \mid (\forall x \in \mathbf{R})(f'(x) \ge 0)\}, \{f \in C(\mathbf{R}) \mid f(3) \ge f(-12)\}, \{f \in C(\mathbf{R}$ $\{f \in C^1(\mathbf{R}) \mid (\forall x \in \mathbf{R})(3f'(x) + x^2f(x) = 0)\};$
- b) przestrzeni $c=\{(a_n)_{n=0}^\infty\mid a_n\in {\bf R}\}$ wszystkich ciągów o wyrazach rzeczywistych: $\{(a_n)\mid (\forall n\geq 1)\}$ 0)($a_{n+3} = a_{n+1} - 3a_n$)}, {(a_n) | $a_{17} + a_{100}^3 = 0$ }, {(a_n) | $a_{17} = a_{100}^3 = 0$ }, {(a_n) | $a_5 + a_7 + a_{15} = 0$ }; c) \mathbf{R}^3 – podzbiory określone przez równania: $\mathbf{z}^2 = \mathbf{x}^2 + 2\mathbf{y}^2$, $\mathbf{x} + \mathbf{y} + 2\mathbf{z} = 0$, $\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 = 0$,
- 2x + 3y + z = 0;
- d) przestrzeni wielomianów R[X]: wielomiany stopnia 7, $\{P \in R[X] \mid P'(2) = 0\}, \{P \in R[X] \mid$ P''(-1) + P(4) = 0, $\{ P \in \mathbb{R}[X] \mid P''(2) + P(0)^2 = 0 \}$,

Zadanie 6. Uzasadnij lub obal (A, B to dowolne podzbiory dowolnej przestrzeni liniowej): $Lin(A \cup A, B)$ $(B) = \text{Lin}(A) + \text{Lin}(B), \text{Lin}(A \cap B) = \text{Lin}(A) \cap \text{Lin}(B), A \subseteq B \Rightarrow \text{Lin}(A) \subseteq \text{Lin}(B), \text{Lin}(\text{Lin}(A)) = \text{Lin}(A).$

Zadanie 7. Uzasadnij, że jeśli v_1, \ldots, v_n są lnz, a v_{n+1} nie jest ich kombinacją liniową, to $v_1, \ldots, v_n, v_{n+1}$ są lnz. Czy jest też odwrotnie?

Zadanie 8. Uzasadnij że jeżeli $A \subseteq V$ jest dowolnym zbiorem i $v \in \text{Lin}(A) \setminus A$, to $A \cup \{v\}$ jest liniowo zależny. Czy zachodzi odwrotna implikacja?

Zadanie 9. Wskaż możliwie duży liniowo niezależny podzbiór przestrzeni $V = \{P \in \mathbf{R}[X] \mid$ P'(-1) = 0 }.

Zadanie 10. W zbiorze $A = \{(0,0,0,0)^{\mathsf{T}}, (1,0,1,0)^{\mathsf{T}}, (1,2,1,3)^{\mathsf{T}}, (2,2,2,3)^{\mathsf{T}}, (0,0,0,1)^{\mathsf{T}}\}$ wskaż podzbiór, który jest bazą Lin(A) (rzecz dzieje się w \mathbb{R}^4).

Zadanie 11. Znajdź bazę podprzestrzeni \mathbb{R}^5 zadanej układem równań: $\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \\ x_1 - x_2 + x_3 - x_4 + x_5 = 0 \end{cases}$. (Uzasadnij, że jest to naprawdę baza.)

Zadanie 12. W każdej przestrzeni liniowej, której baza została wskazana na wykładzie, wskaż inną bazę (o ile się da). Czy istnieje przestrzeń liniowa (nad R), która ma jedyną bazę?

Zadanie 13. Uzasadnij, że jeśli 3-elementowy zbiór $\{u, v, w\}$ jest bazą V, to również $\{u + v, u + 2v + v\}$ w, w} jest bazą V.

Zadanie 14. Uzasadnij że jeżeli $(K, +, \cdot, 0, 1)$ spełnia wszystkie aksjomaty ciała, poza tym że 0 =1, to K ma dokładnie jeden element. Następnie zastanów się, czy naprawdę potrzeba do tego wszystkich aksjomatów ciała.

Algebra liniowa 2 R, Lista 1

Zadanie 15. Uzasadnij, że wielomian o współczynnikach rzeczywistych, który ma przynajmniej jeden niezerowy współczynnik, nie zadaje funkcji zerowej.

Zadanie 16. Dla $V = \mathbb{R}^2$ stwierdź, jak duży (jakiej mocy) jest zbiór P, o którym mowa w dowodzie istnienia bazy. Jak długi może być łańcuch w (P, \subseteq) w tym przypadku? Uzasadnij, że \mathbb{R}^2 ma bazę, w możliwie łatwy sposób.

Zadanie 17. Niech $V = \mathbf{R}_3[X]$, $A = \{1 + X - X^2 - X^3, 1 + 2X^2 - 3X^3, X - 2X^2 + X^3\}$. Spróbuj możliwie prosto opisać Lin(A): podaj warunek, pozwalający łatwo stwierdzić dla danych a, b, c, d, czy wielomian $aX^3 + bX^2 + cX + d$ należy do Lin(A). Przetestuj swój warunek na wielomianach $5X^3 + 4X - 8$, $X^2 + 2X - 3$.

Zadanie 18. Udowodnij, że *B* jest bazą przestrzeni liniowej *V* wtedy i tylko wtedy, gdy jest minimalnym podzbiorem *V* liniowo generującym *V*. [Bardziej symbolicznie, udowodnij że:*B* jest bazą $V \iff (B \subseteq V) \land ((\forall C \subseteq V)((\text{Lin}(C) = V \land C \subseteq B) \Rightarrow (C = B)))$.]