Trabajo de Fin de Máster- Máster Universitario en Economía –Universidad de Zaragoza

Demostración casos particulares del esquema de incentivos:

$$(\Pi_L - \beta_L * \Pi_H, \Pi_H - \beta_H * \Pi_L)$$

Este documento está dedicado a demostrar que los sistemas de incentivos $(\pi_L - \beta_L \pi_H, \pi_H)$, $(\pi_L - \beta_L \pi_H, \pi_H + \gamma_H q_H)$, $(\pi_L, \pi_H - \beta_H \pi_L)$, $(\pi_L + \gamma_L q_L, \pi_H - \beta_H \pi_L)$ presentan valores de equilibrio de precios, cantidades y beneficios equivalentes a los que presentan respectivamente los sistemas de remuneración de los gerentes (π_L, π_H) , $(\pi_L, \pi_H + \gamma_H q_H)$, (π_L, π_H) y $(\pi_L + \gamma_L q_L, \pi_H)$.

El procedimiento de demostración es equivalente al que se ha seguido para el caso de $(\Pi_L - \beta_L * \Pi_H, \Pi_H - \beta_H * \Pi_L)$, con la particularidad de que ahora solo una de las empresas fija una remuneración para sus gerentes basada en beneficios relativos. La demostración de $(\Pi_L - \beta_L * \Pi_H, \Pi_H - \beta_H * \Pi_L)$ se puede encontrar en el mismo repositorio de este documento.

Antes de plantear la demostración se recopilan una serie de ecuaciones del TFM claves para entender esta demostración.

Funciones de utilidad de los gerentes según su esquema de remuneración:

Remuneración en base a beneficios:
$$U_i = (p_i - c)q_i$$
 (1)

Remuneración basada en beneficios y ventas:
$$U_i = (p_i - c + \gamma_i)q_i$$
 (2)

Remuneración basada en beneficios relativos:
$$U_i = (p_i - c)q_i - \beta_i(p_i - c)q_i$$
 (3)

donde
$$\gamma_i \in [-1,1], \ \beta_i \in [0,1], \ i, j = L, H, i \neq j,$$

Función de beneficios de las empresas

$$\pi_L = (p_L - c)q_L$$

$$\pi_H = (p_H - c)q_H$$
(4)

Trabajo de Fin de Máster- Máster Universitario en Economía -Universidad de Zaragoza

Demanda capturada por cada una de las empresas

$$q_{H} = \frac{p_{L} - p_{H} + \delta}{\delta}$$

$$q_{L} = \frac{p_{H} - p_{L}}{\delta}$$
(5)

Demostración de que $\beta_L = 0$ en el caso de $(\pi_L - \beta_L \pi_H, \pi_H)$.

3^a Etapa:

$$\begin{aligned} \mathbf{\textit{MaxU}}_{L} &= U_{L}(p_{L}, p_{H}, \beta_{L}) = (p_{L} - c)q_{L} + \beta_{L}(p_{H} - c)q_{H} \\ \mathbf{\textit{MaxU}}_{H} &= U_{H}(p_{L}, p_{H}, \beta_{L}) = (p_{H} - c)q_{H} \end{aligned}$$

$$(6)$$

Introduciendo (5) en (6), la función objetivo resultante será:

$$\begin{aligned} & \textit{MaxU}_{L} = U_{L}(p_{L}, p_{H}, \beta_{L}) = (p_{L} - c)(\frac{p_{H} - p_{L}}{\delta}) + \beta_{L}(p_{H} - c)(\frac{\delta + p_{L} - p_{H}}{\delta}) \\ & \textit{MaxU}_{H} = U_{H}(p_{L}, p_{H}, \beta_{L}) = (p_{H} - c)(\frac{\delta + p_{L} - p_{H}}{\delta}) \end{aligned}$$
(7)

La condición de primer orden de () permite obtener las funciones de mejor respuesta para cada una de las empresas:

$$\begin{split} \frac{\partial U_L(p_L, p_H, \beta_L)}{\partial p_L} &= 0 \rightarrow p_L = R_L(p_H, \beta_L) = \frac{c + \beta_L c - \beta_L \delta + p_H}{2} \\ \frac{\partial U_H(p_L, p_H, \beta_L)}{\partial p_H} &= 0 \rightarrow p_H = R_H(p_L, \beta_L) = \frac{c + \delta + p_L}{2} \end{split} \tag{8}$$

$$\frac{\partial^{2}U_{L}(p_{L}, p_{H}, \beta_{L})}{\partial p_{L}^{2}} = -\frac{2}{\delta} < 0$$

$$\frac{\partial^{2}U_{H}(p_{L}, p_{H}, \beta_{L})}{\partial p_{H}^{2}} = -\frac{2}{\delta} < 0$$
(9)

Trabajo de Fin de Máster- Máster Universitario en Economía - Universidad de Zaragoza

La intersección de las FMR define el equilibrio de Nash del subjuego de la 3ª etapa.

$$p_L^*(\beta_L) = \frac{3c + \beta_L c + \delta + \beta_L \delta}{\beta_L + 3}$$

$$p_H^*(\beta_L) = \frac{3c + \beta_L c + 2\delta}{\beta_L + 3}$$
(10)

Seguidamente, se sustituye (10) en (5) y (4) y se obtienen unas nuevas funciones de demanda y beneficios que dependan exclusivamente de los parámetros β_L y β_H .

$$q_L = q_L(\beta_L) = \frac{1 + \beta_L}{\beta_H + 3}$$

$$q_H = q_H(\beta_L) = \frac{2}{\beta_H + 3}$$
(11)

$$\pi_{L} = \pi_{L}(\beta_{L}) = \frac{(1 - \beta_{L}^{2})\delta}{(\beta_{L} + 3)^{2}}$$

$$\pi_{H} = \pi_{H}(\beta_{L}) = \frac{4\delta}{(\beta_{L} + 3)^{2}}$$
(12)

2^a Etapa

$$\max_{\beta_{L}} \pi_{L} = \pi_{L}(\beta_{L}) = \frac{(1 - \beta_{L}^{2})\delta}{(\beta_{L} + 3)^{2}}$$

$$sa: \beta_{L} \in [0, 1]$$
(13)

Para demostrar que el resultado de optimizar este problema es equivalente al que proporciona el sistema de incentivos (π_L, π_H) , se necesita demostrar que $\beta_L^* = 0$. Esto sucederá siempre y cuando el beneficio de las empresas sea mayor cuanto menor sea el valor de β_i , que en su valor extremo será 0.

Esto se cumplirá siempre y cuando:

$$\frac{\partial \pi_L(\beta_L)}{\partial \beta_L} < 0 \forall \beta_L \in [0,1] \tag{14}$$

Derivando $\pi_L y \pi_H$ respecto a sus correspondientes β_i se obtiene:

Trabajo de Fin de Máster- Máster Universitario en Economía - Universidad de Zaragoza

$$\frac{\partial \pi_L(\beta_L, \beta_H)}{\partial \beta_L} = -\frac{8(1 - \beta_L)\delta}{(3 + \beta_L)^3} < 0$$

Por tanto, se cumple que $\beta_L^* = 0$ será el resultado óptimo y los valores resultantes de beneficios, demanda y precios serán equivalentes al sistema (π_L, π_H) .

Demostración de que $\beta_L = 0$ en el caso de $(\pi_L - \beta_L \pi_H, \pi_H + \gamma_H q_H)$.

3^a Etapa:

$$MaxU_{L} = U_{L}(p_{L}, p_{H}, \beta_{L}, \gamma_{H}) = (p_{L} - c)q_{L} + \beta_{L}(p_{H} - c)q_{H}$$

$$MaxU_{H} = U_{H}(p_{L}, p_{H}, \beta_{L}, \gamma_{H}) = p_{H}q_{H} - cq_{H} + \gamma_{H}q_{H}$$
(15)

Introduciendo (5) en (15), la función objetivo resultante será:

$$\begin{aligned} & \textit{MaxU}_{L} = U_{L}(p_{L}, p_{H}, \beta_{L}, \gamma_{H}) = (p_{L} - c)(\frac{p_{H} - p_{L}}{\delta}) + \beta_{L}(p_{H} - c)(\frac{\delta + p_{L} - p_{H}}{\delta}) \\ & \textit{MaxU}_{H} = U_{H}(p_{L}, p_{H}, \beta_{L}, \gamma_{H}) = (p_{H} - c + \gamma_{H})(\frac{\delta + p_{L} - p_{H}}{\delta}) \end{aligned}$$
(16)

La condición de primer orden de (16) permite obtener las funciones de mejor respuesta para cada una de las empresas:

$$\frac{\partial U_L(p_L, p_H, \beta_L, \gamma_H)}{\partial p_L} = 0 \rightarrow p_L = R_L(p_H, \beta_L, \gamma_H) = \frac{c + \beta_L c + p_H - \beta_L p_H}{2}$$

$$\frac{\partial U_H(p_L, p_H, \beta_L, \gamma_H)}{\partial p_H} = 0 \rightarrow p_H = R_H(p_L, \beta_L, \gamma_H) = \frac{c - \gamma_H + \delta + p_L}{2}$$
(17)

$$\frac{\partial^{2}U_{L}(p_{L}, p_{H}, \beta_{L}, \gamma_{H})}{\partial p_{L}^{2}} = -\frac{2}{\delta} < 0$$

$$\frac{\partial^{2}U_{H}(p_{L}, p_{H}, \beta_{L}, \gamma_{H})}{\partial p_{H}^{2}} = -\frac{2}{\delta} < 0$$
(18)

Trabajo de Fin de Máster- Máster Universitario en Economía - Universidad de Zaragoza

La intersección de las FMR define el equilibrio de Nash del subjuego de la 3ª etapa.

$$p_{L}^{*}(\beta_{L}, \gamma_{H}) = \frac{3c + \beta_{L}c - \gamma_{H} + \gamma_{H}\beta_{L} + \delta - \beta_{L}\delta}{3 + \beta_{L}}$$

$$p_{H}^{*}(\beta_{L}, \gamma_{H}) = \frac{3c + \beta_{L}c - 2\gamma_{H} + 2\delta}{3 + \beta_{L}}$$
(19)

Seguidamente, se sustituye (19) en (5) y (4) y se obtienen unas nuevas funciones de demanda y beneficios que dependan exclusivamente de los parámetros β_L y β_H .

$$q_{L} = q_{L}(\beta_{L}, \gamma_{H}) = -\frac{(1 + \beta_{L})(\gamma_{H} - \delta)}{(3 + \beta_{L})\delta}$$

$$q_{H} = q_{H}(\beta_{L}, \gamma_{H}) = \frac{\gamma_{H} + \gamma_{H}\beta_{L} + 2\delta}{(3 + \beta_{L})\delta}$$
(20)

$$\pi_{L} = \pi_{L}(\beta_{L}, \gamma_{H}) = \frac{(1 - \beta_{L}^{2})(\gamma_{H} - \delta)^{2}}{(3 + \beta_{L})^{2} \delta}$$

$$\pi_{H} = \pi_{H}(\beta_{L}, \gamma_{H}) = -\frac{2(\gamma_{H} - \delta)(\gamma_{H} + \gamma_{H}\beta_{L} + 2\delta)}{(3 + \beta_{L})^{2} \delta}$$
(21)

2^a Etapa

$$\max_{\beta_{L}} \pi_{L} = \pi_{L}(\beta_{L}, \gamma_{H}) = \frac{(1 - \beta_{L}^{2})(\gamma_{H} - \delta)^{2}}{(3 + \beta_{L})^{2} \delta}$$

$$sa: \beta_{L} \in [0, 1]$$
(22)

Para demostrar que el resultado de optimizar este problema es equivalente al que proporciona el sistema de incentivos $(\pi_L, \pi_H + \gamma_H q_H)$, se necesita demostrar que $\beta_L^* = 0$. Esto sucederá siempre y cuando el beneficio de las empresas sea mayor cuanto menor sea el valor de β_i , que en su valor extremo será 0.

Esto se cumplirá siempre y cuando:

$$\frac{\partial \pi_L(\beta_L, \gamma_H)}{\partial \beta_L} < 0 \forall \beta_L \in [0, 1]$$
(23)

Derivando $\pi_L y \pi_H$ respecto a sus correspondientes β_i se obtiene:

Trabajo de Fin de Máster- Máster Universitario en Economía –Universidad de Zaragoza

$$\frac{\partial \pi_L(\beta_L, \beta_H)}{\partial \beta_I} = -\frac{2(1+3\beta_L)(\gamma_H - \delta)^2}{(3+\beta_L)^3 \delta} < 0$$

Por tanto, se cumple que $\beta_L^* = 0$ será el resultado óptimo y los valores resultantes de beneficios, demanda y precios serán equivalentes al sistema $(\pi_L, \pi_H + \gamma_H q_H)$.

Demostración de que $\beta_H = 0$ en el caso de $(\pi_L, \pi_H - \beta_H \pi_L)$.

3^a Etapa:

$$MaxU_{L} = U_{L}(p_{L}, p_{H}, \beta_{H}) = (p_{L} - c)q_{L}$$

$$MaxU_{H} = U_{H}(p_{L}, p_{H}, \beta_{H}) = (p_{H} - c)q_{H} + \beta_{H}(p_{L} - c)q_{L}$$
(24)

Introduciendo (24) en (5), la función objetivo resultante será:

$$\begin{aligned}
Max U_{L} &= U_{L}(p_{L}, p_{H}, \beta_{H}) = (p_{L} - c)(\frac{p_{H} - p_{L}}{\delta}) \\
Max U_{H} &= U_{H}(p_{L}, p_{H}, \beta_{H}) = (p_{H} - c)(\frac{\delta + p_{L} - p_{H}}{\delta}) + \beta_{H}(p_{L} - c)(\frac{p_{H} - p_{L}}{\delta})
\end{aligned} (25)$$

La condición de primer orden de (25) permite obtener las funciones de mejor respuesta para cada una de las empresas:

$$\begin{split} \frac{\partial U_L(p_L,p_H,\beta_H)}{\partial p_L} &= 0 \rightarrow p_L = R_L(p_H,\beta_H) = \frac{c+p_H}{2} \\ \frac{\partial U_H(p_L,p_H,\beta_H)}{\partial p_H} &= 0 \rightarrow p_H = R_H(p_L,\beta_L,\beta_H) = \frac{1}{2} ((1-\beta_H)c + (1-\beta_H)p_L + \delta) \end{split} \tag{26}$$

$$\frac{\partial^{2}U_{L}(p_{L}, p_{H}, \beta_{H})}{\partial p_{L}^{2}} = -\frac{2}{\delta} < 0$$

$$\frac{\partial^{2}U_{H}(p_{L}, p_{H}, \beta_{H})}{\partial p_{H}^{2}} = -\frac{2}{\delta} < 0$$
(27)

Trabajo de Fin de Máster- Máster Universitario en Economía - Universidad de Zaragoza

La intersección de las FMR define el equilibrio de Nash del subjuego de la 3ª etapa.

$$p_{L}^{*}(\beta_{H}) = \frac{3c + \beta_{H}c + \delta}{3 + \beta_{H}}$$

$$p_{H}^{*}(\beta_{H}) = \frac{3c + \beta_{H}c + 2\delta}{3 + \beta_{H}}$$
(28)

Seguidamente, se sustituye (28) en (5) y (4) y se obtienen unas nuevas funciones de demanda y beneficios que dependan exclusivamente de los parámetros β_L y β_H .

$$q_{L} = q_{L}(\beta_{H}) = \frac{1}{3 + \beta_{H}}$$

$$q_{H} = q_{H}(\beta_{H}) = \frac{2 + \beta_{H}}{3 + \beta_{H}}$$
(29)

$$\pi_{L} = \pi_{L}(\beta_{H}) = \frac{\delta}{(3 + \beta_{H})^{2}}$$

$$\pi_{H} = \pi_{H}(\beta_{H}) = \frac{2(2 + \beta_{H})\delta}{(3 + \beta_{H})^{2}}$$
(30)

2^a Etapa

$$\max_{\beta_{H}} \pi_{H} = \pi_{H}(\beta_{H}) = \frac{2(2 + \beta_{H})\delta}{(3 + \beta_{H})^{2}}
sa: \beta_{H} \in [0,1]$$
(31)

Para demostrar que el resultado de optimizar este problema es equivalente al que proporciona el sistema de incentivos (π_L, π_H) , se necesita demostrar que $\beta_H^* = 0$. Esto sucederá siempre y cuando el beneficio de las empresas sea mayor cuanto menor sea el valor de β_i , que en su valor extremo será 0.

Esto se cumplirá siempre y cuando:

$$\frac{\partial \pi_H(\beta_H)}{\partial \beta_H} < 0 \forall \beta_L \in [0, 1] \tag{32}$$

Derivando $\pi_L \mathbf{y} \pi_H$ respecto a sus correspondientes $\boldsymbol{\beta}_i$ se obtiene:

Trabajo de Fin de Máster- Máster Universitario en Economía -Universidad de Zaragoza

$$\frac{\partial \pi_H(\beta_H)}{\partial \beta_H} = -\frac{2(1+\beta_H)\delta}{(3+\beta_H)^3} < 0$$

Por tanto, se cumple que $\beta_H^* = 0$ será el resultado óptimo y los valores resultantes de beneficios, demanda y precios serán equivalentes al sistema (π_L, π_H) .

Demostración de que $\beta_H = 0$ en el caso de $(\pi_L + \gamma_L q_L, \pi_H - \beta_H \pi_L)$.

3ª Etapa:

$$\begin{aligned}
Max U_{L} &= U_{L}(p_{L}, p_{H}, \gamma_{L}, \beta_{H}) = p_{L}q_{L} - cq_{L} + \gamma_{L}q_{L} \\
Max U_{H} &= U_{H}(p_{L}, p_{H}, \gamma_{L}, \beta_{H}) = (p_{H} - c)q_{H} + \beta_{H}(p_{L} - c)q_{L}
\end{aligned}$$
(33)

Introduciendo (5) en (33), la función objetivo resultante será:

$$\begin{aligned}
Max U_{L} &= U_{L}(p_{L}, p_{H}, \gamma_{L}, \beta_{H}) = (p_{L} - c + \gamma_{L})(\frac{p_{H} - p_{L}}{\delta}) \\
Max U_{H} &= U_{H}(p_{L}, p_{H}, \gamma_{L}, \beta_{H}) = (p_{H} - c)(\frac{\delta + p_{L} - p_{H}}{\delta}) + \beta_{H}(p_{L} - c)(\frac{p_{H} - p_{L}}{\delta})
\end{aligned} (34)$$

La condición de primer orden de (34) permite obtener las funciones de mejor respuesta para cada una de las empresas:

$$\frac{\partial U_L(p_L, p_H, \gamma_L, \beta_H)}{\partial p_L} = 0 \rightarrow p_L = R_L(p_H, \gamma_L, \beta_H) = \frac{1}{2} (-\gamma_L + c + p_H)$$

$$\frac{\partial U_H(p_L, p_H, \gamma_L, \beta_H)}{\partial p_H} = 0 \rightarrow p_H = R_H(p_L, \gamma_L, \beta_H) = \frac{1}{2} ((1 - \beta_H)c + (1 - \beta_H)p_L + \delta)$$
(35)

$$\frac{\partial^{2}U_{L}(p_{L}, p_{H}, \gamma_{L}, \beta_{H})}{\partial p_{L}^{2}} = -\frac{2}{\delta} < 0$$

$$\frac{\partial^{2}U_{H}(p_{L}, p_{H}, \gamma_{L}, \beta_{H})}{\partial p_{H}^{2}} = -\frac{2}{\delta} < 0$$
(36)

Trabajo de Fin de Máster- Máster Universitario en Economía - Universidad de Zaragoza

La intersección de las FMR define el equilibrio de Nash del subjuego de la 3ª etapa.

$$p_{L}^{*}(\gamma_{L}, \beta_{H}) = \frac{3c + \beta_{H}c - 2\gamma_{L} + \delta}{3 + \beta_{H}}$$

$$p_{H}^{*}(\gamma_{L}, \beta_{H}) = \frac{3c + \beta_{H}c - \gamma_{L} + \gamma_{L}\beta_{H} + 2\delta}{3 + \beta_{H}}$$
(37)

Seguidamente, se sustituye (37) en (5) y (4) y se obtienen unas nuevas funciones de demanda y beneficios que dependan exclusivamente de los parámetros γ_L y β_H .

$$q_{L} = q_{L}(\gamma_{L}, \beta_{H}) = \frac{\gamma_{L} + \gamma_{L}\beta_{H} + \delta}{(3 + \beta_{H})\delta}$$

$$q_{H} = q_{H}(\gamma_{L}, \beta_{H}) = \frac{-\gamma_{L}(1 + \beta_{H}) + (2 + \beta_{H})\delta}{(3 + \beta_{H})\delta}$$
(38)

$$\pi_{L} = \pi_{L}(\gamma_{L}, \beta_{H}) = -\frac{(2\gamma_{L} - \delta)(\gamma_{L} + \gamma_{L}\beta_{H} + \delta)}{(3 + \beta_{H})^{2} \delta}$$

$$\pi_{H} = \pi_{H}(\gamma_{L}, \beta_{H}) = -\frac{(\gamma_{L}(-1 + \beta_{H}) + 2\delta)(\gamma_{L}(1 + \beta_{H}) - (2 + \beta_{H})\delta)}{(3 + \beta_{H})^{2} \delta}$$
(39)

2^a Etapa

$$\max_{\beta_{H}} \pi_{H} = \pi_{L}(\gamma_{L}, \beta_{H}) = -\frac{(\gamma_{L}(-1 + \beta_{H}) + 2\delta)(\gamma_{L}(1 + \beta_{H}) - (2 + \beta_{H})\delta)}{(3 + \beta_{H})^{2}\delta}
sa: \beta_{H} \in [0, 1]$$
(40)

Para demostrar que el resultado de optimizar este problema es equivalente al que proporciona el sistema de incentivos $(\pi_L + \gamma_L q_L, \pi_H)$, se necesita demostrar que $\beta_H^* = 0$. Esto sucederá siempre y cuando el beneficio de las empresas sea mayor cuanto menor sea el valor de β_i , que en su valor extremo será 0.

Esto se cumplirá siempre y cuando:

$$\frac{\partial \pi_H(\gamma_L, \beta_H)}{\partial \beta_H} < 0 \forall \beta_H \in [0, 1] \tag{41}$$

Derivando π_H respecto a β_H se obtiene:

Trabajo de Fin de Máster- Máster Universitario en Economía –Universidad de Zaragoza

$$\frac{\partial \pi_{H}(\gamma_{L}, \beta_{H})}{\partial \beta_{H}} = -\frac{\left(2\gamma_{L} - \delta\right)(\gamma_{L} + 3\gamma_{L}\beta_{H} - 2(1 + \beta_{H})\delta)}{\left(3 + \beta_{H}\right)^{3}\delta} < 0$$

Por tanto, se cumple que $\beta_H^* = 0$ será el resultado óptimo y los valores resultantes de beneficios, demanda y precios serán equivalentes al sistema $(\pi_L + \gamma_L q_L, \pi_H)$.