Tutorial 12

Exercise 1: DNF-SAT is in P

A Boolean formula φ is in disjunctive normal form (DNF) if it is of the form $\varphi = \bigvee_{i=1}^n \bigwedge_{j=1}^{m_i} \ell_{i,j}$ such that each $\ell_{i,j}$ is a literal, i.e., either a variable x or a negated variable $\neg x$.

For example, $(x \land \neg y \land z) \lor (\neg x) \lor (\neg y \land \neg z)$ is in DNF.

Show that satisfiability of formulas in DNF is in P, i.e.,

DNF-SAT = $\{\varphi \mid \varphi \text{ is in DNF and has a satisfying assignment}\} \in P$.

Note that the example formula above is satisfiable and hence in DNF-SAT.

Solution:

Let $\varphi = \bigvee_{i=1}^{n} \bigwedge_{j=1}^{m_i} \ell_{i,j}$ be a fomula in DNF. Then, φ is satisfiable if and only if one of the disjuncts $\bigwedge_{j=1}^{m_i} \ell_{i,j}$ is satisfiable.

We say that a variable x is contradictory in $\bigwedge_{j=1}^{m_i} \ell_{i,j}$ if $\ell_{i,j} = x$ for some j and $\ell_{i,j'} = \neg x$ for some j'. A formula of the form $\psi = \bigwedge_{j=1}^{m_i} \ell_{i,j}$ is satisfiable if and only if there is no contradictory variable x in ψ . For example, $x \land \neg y \land z$ is satisfiable while $x \land \neg y \land z \land \neg x$ is not.

Thus, the following algorithm shows that DNF-SAT is in P. Given an input w:

- 1. If w does not encode a formula in DNF, reject (otherwise, let $\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m_i} \ell_{i,j}$ be the formula encoded by w).
- 2. i = 1.
- 3. If there is no contradictory variable in $\bigwedge_{i=1}^{m_i} \ell_{i,j}$, then accept.
- 4. Increment i.
- 5. If $i \leq n$, go to step 3.
- 6. Reject.

Exercise 2: 3-coloring is in NP

Show that 3-coloring is in NP.

Note that the input is a graph, which we assume is given as an adjacency matrix.

Solution:

We describe a halting NTM with polynomial time complexity:

On input w:

- 1. If w is not of the form \mathbb{B}^{n^2} for some n, then reject (if the machine does not reject, then w is interpreted as the adjacency matrix of a graph with n vertices).
- 2. Guess $c_1 \cdots c_n \in \{R, G, B\}^n$.
- 3. For each edge (i, j) encoded by w check whether $c_i = c_j$. If yes, reject.
- 4. Accept.

Each step is obviously polynomial in w.

Exercise 3: Vertex cover

Let G = (V, E) be an undirected graph. A *k*-vertex cover is a subset $C \subseteq V$ of k = |C| vertices such that $v \in C$ or $v' \in C$ for all $(v, v') \in E$.

The decision problem is: given an undirected graph and a value k, does G have a k-vertex cover? Formally:

$$VC = \{(\lceil G \rceil, k) \mid G \text{ is an undirected graph with a } k\text{-vertex cover}\}$$

- 1. Show that $VC \in NP$.
- 2. Show that SAT \leq_p VC (i.e., describe a polynomial-time reduction from SAT to VC).

You may assume that the formula is in 3-CNF (i.e., in conjunctive normal form with 3 literals per disjunction). (This is no restriction because one can bring any formula to this form – in a certain sense.)

Note that the input is a graph, which we assume is given as an adjacency matrix, and a number $k \in \mathbb{N}$ given in binary.

Solution:

- 1. Consider the following Turing machine. On input $\lceil G \rceil \in \mathbb{B}^*$ and $k \in \mathbb{N}$:
 - (a) Check whether $| \lceil G \rceil | = n^2$ for some $n \in \mathbb{N}$. If not, reject.
 - (b) If k > n, reject.
 - (c) Guess a bit vector $c_1 \cdots c_n$ of length n with exactly k 1's.
 - (d) For each edge (i, j) check whether $c_i = 1$ or $c_j = 1$.
 - (e) If yes, accept. Otherwise reject.

The Turing machine is a halting NTM with polynomial time complexity and accepts VC.

2. See the slides of the next lecture.

Exercise 4: Bonus (Implementation)

Implement the algorithm for Clique from Slide 16. Choose any way to make Step 3 deterministic (e.g., using backtracking together with random guessing or systematic enumeration of all bit vectors). Run the algorithm on some random graphs and measure the running time.