Numerik Cheat Sheeto

1 Basics

Sortieren

Bubblesort: $2n^2$

Mergesort: Eingangsvektor zerlegen, Teilprobleme sortieren,

vergleichend sortieren: $n\log_2 n$

FFT

Fourier-Transformation: n^2

FFT: Summe zerlegen in gerade/ungerade Indizes: $n \log_2 n$

2 Lineare Gleichungssysteme

2.1 Allgemeine Aufgabenstellung

Geg.: $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{b} \in \mathbb{R}^n$

Ges.: $\mathbf{x} \in \mathbb{R}^n$

Ax = b

2.2 Dreiecksmatrizen

Untere Dreiecksmatrix $\mathbf{L} \in \mathbb{R}^{n \times n}$ und obere Dreiecksmatrix $\mathbf{R} \in \mathbb{R}^{n \times n}.$

REGULÄRE/INVERTIERBARE/NICHT-SINGULÄRE MATRIX Matrix \mathbf{A} ist regulär, wenn det $\mathbf{A} \neq 0$. Determinante einer Δ Matrix ist das Produkt ihrer Diagonalelemente. \mathbf{L} und \mathbf{R} sind regulär, wenn alle Diagonalelemente $\neq 0$.

Vorwärtseinsetzen

$$Ly = b$$

Rechenaufwand: n^2 AO Um Speicher zu sparen $b_i \leftarrow y_i$.

forward_subst

for
$$j = 1 : n$$

 $x_j \leftarrow b_j/l_{jj}$
for $i = j + 1 : n$
 $b_i \leftarrow b_i - l_{ij}x_j$

RÜCKWÄRTSEINSETZEN

$$\mathbf{R}\mathbf{x} = \mathbf{y}$$

Rechenaufwand: n^2 AO Um Speicher zu sparen $b_i \leftarrow x_i$.

backward_subst

$$\begin{aligned} &\text{for } j = n:1 \\ &x_j \leftarrow b_j/r_{jj} \\ &\text{for } i = 1:j-1 \\ &b_i \leftarrow b_i - r_{ij}x_j \end{aligned}$$

2.3 LR-Zerlegung

Sei $\mathbf{A} \in \mathbb{R}^{n \times n}$ und $\mathbf{L}, \mathbf{R} \in \mathbb{R}^{n \times n}$

$$A = LR$$

Ansatz:

Matrizen A, L, R in Teilmatrizen A_{**} , A_{*1} , A_{1*} , L_{**} , L_{*1} , R_{**} , R_{1*} zerlegen.

Es folgen 4 Gleichungen aus A = LR:

$$\begin{aligned} a_{11} &= l_{11}r_{11} \\ \mathbf{A}_{*1} &= \mathbf{L}_{*1}r_{11} \\ \mathbf{A}_{1*} &= l_{11}\mathbf{R}_{1*} \\ \mathbf{A}_{**} &= \mathbf{L}_{*1}\mathbf{R}_{1*} + \mathbf{L}_{**}\mathbf{R}_{**} \end{aligned} \Leftrightarrow \mathbf{R}_{1*} = \mathbf{A}_{1*}$$

Per Def. $l_{11} = 1$ und damit $r_{11} = a_{11}$, sodass

$$A_{**} - L_{*1}R_{1*} = L_{**}R_{**}$$

PRAKTISCHE UMSETZUNG

Elemente von A überschreiben, sodass:

$$\begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ l_{21} & r_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & r_{n-1,n} \\ l_{n1} & \cdots & l_{n,n-1} & r_{nn} \end{pmatrix}$$

Kriterium

Sei ${\bf A}$ regulär, ${\bf A}$ besitzt eine LR-Zerlegung \Leftrightarrow Alle Hauptuntermatrizen regulär.

Modellproblem: Bandmatrix Irgendwas bzgl Effizienz.

LR-Decomp

Aufwand: kubisch

 \downarrow Aufwand: Nur 1x für jede Matrix betreiben. Sobald LR-Decomp vorliegt nur noch *quadratischer* Aufwand \downarrow Aufwand: Tridiagonalmatrix. Erster Schritt mit 3 AOPs. Restmatrix bleibt tridiagonal. Aufwand 3n+6n für R-und F-Einsetzen.

lr_decomp

$$\begin{aligned} &\text{for } k = 1:n \\ &\text{for } i = k+1:n \\ &a_{ik} \leftarrow a_{ik}/a_{kk} \\ &\text{for } j = k+1:n \\ &a_{ij} \leftarrow a_{ij} - a_{ik}a_{kj} \end{aligned}$$

PROBLEM DER EXISTENZ EINER LR-Z

Falls ${\bf A}$ oder ${\bf A}_{**}$ eine 0 auf der Diagonalen hat, existiert keine LR-Zerlegung. Lösung: Permutiere die Zeilen von ${\bf A}$ so, dass das Ergebnis eine LR-Z besitzt.

PERMUTATIONSMATRIX

Sei $\mathbf{P} \in \mathbb{R}^{n \times n}$. Falls in jeder Zeile und Spalte von \mathbf{P} genau ein Eintrag 1 und alle anderen 0, dann ist \mathbf{P} eine

Permutationsmatrix. \mathbf{P} ist orthogonal. Ein Produkt zweier Permutationsmatrizen \mathbf{PQ} ist auch eine Permutationsmatrix.

PERMUTATION

(1)

Bijektive Abbildung $\pi: \{1, \dots, n\} \to \{1, \dots, n\}$.

LR-Z MIT PIVOTSUCHE

 ${\bf A}$ regulär. Es existiert ${\bf P}\in\mathbb{R}^{n\times n}$ sodass ${\bf PA}={\bf LR}$ gilt. Pivotisierung: Finde betragsmaximalstes Element in der aktuellen Spalte, welches unter dem aktuellen Diagonalelement von ${\bf A}$ liegt und tausche die aktuelle Zeile mit der Zeile in der das betragsmaximalste Element ist, mit Hilfe von ${\bf P}.$ $a_{11}\neq 0,$ da betragsgrößtes Element.

LÖSEN EINES GLEICHUNGSSYSTEMS MIT PIVOTSUCHE

$$\mathbf{A}\mathbf{x} = \mathbf{b} \Leftrightarrow \mathbf{P}\mathbf{A}\mathbf{x} = \mathbf{P}\mathbf{b} \Leftrightarrow \mathbf{L}\mathbf{R}\mathbf{x} = \mathbf{P}\mathbf{b}.$$
1.) $\mathbf{L}\mathbf{y} = \tilde{\mathbf{b}}$ 2.) $\mathbf{R}\mathbf{x} = \mathbf{y}$
 $\mathbf{r}_{\mathbf{p}ivot}$

 $\begin{array}{ll} \text{for } k=1:n \\ i_* \leftarrow k & // \text{ Finde max. Element} \\ \text{for } i=k+1:n \\ \text{if } |a_{ik}| > |a_{i_*k}| \colon i_* \leftarrow i \\ p_k \leftarrow i_* \\ \text{for } j=1:n & // \text{ Tausche Zeilen} \\ \gamma \leftarrow a_{kj}, a_{kj} \leftarrow a_{i_*j}, a_{i_*j} \leftarrow \gamma \\ \text{for } i=k+1:n \\ a_{ik} \leftarrow a_{ik}/a_{kk} \\ \text{for } j=k+1:n \\ a_{ij} \leftarrow a_{ij}-a_{ik}a_{kj} \end{array}$

 ${\bf p}$ protokolliert, welche Vertauschungen durchgeführt wurden, um sie später auf ${\bf b}$ anwenden zu können. Aufwand: $\frac{2}{2}n^3.$

2.4 Fehlerverstärkung

NORM DES MATRIX-VEKTOR-PRODUKTS

Wie stark ändert sich die Länge eines Vektors wenn er mit \mathbf{A} multipliziert wird. Mapping von Einheitskreis auf Ellipse.. Für $\mathbf{A} \in \mathbb{R}^{n \times n}$ gilt:

$$\alpha_2(\mathbf{A}) = \min\{\|\mathbf{A}\mathbf{y}\|_2 : \mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 = 1\}$$

$$\beta_2(\mathbf{A}) = \max\{\|\mathbf{A}\mathbf{y}\|_2 : \mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 = 1\}$$

und

$$\alpha_2(\mathbf{A})\|\mathbf{z}\|_2 \leq \|\mathbf{A}\mathbf{z}\|_2 \leq \beta_2(\mathbf{A})\|\mathbf{z}\|_2$$

Eigenschaften der Norm:

$$\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = 0$$
$$\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$$
$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\| Q$$

Konditionszahl

$$\alpha_2(\mathbf{A}) = \frac{1}{\|\mathbf{A}^{-1}\|_2}, \qquad \beta_2(\mathbf{A}) = \|\mathbf{A}\|_2$$
$$\kappa_2(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 = \frac{\beta_2(\mathbf{A})}{\alpha_2(\mathbf{A})}$$

Matrixprodukt

Mit $\mathbf{A} \in \mathbb{R}^{n \times m}$ und $\mathbf{B} \in \mathbb{R}^m k$ gilt:

$$\alpha_2(\mathbf{AB}) \ge \alpha_2(\mathbf{A})\alpha_2(\mathbf{B}) \qquad \beta_2(\mathbf{AB}) \ge \beta_2(\mathbf{A})\beta_2(\mathbf{B})$$

STÖRUNG DER RECHTEN SEITE

Der relative Fehler der Lösung lässt sich abschätzen aus dem relativen Fehler der rechten Seite und der Konditionszahl $\kappa_2(\mathbf{A})$:

$$\frac{\|\mathbf{x} - \widetilde{\mathbf{x}}\|_2}{\|\mathbf{x}\|_2} \le \kappa_2(\mathbf{A}) \frac{\|\mathbf{b} - \widetilde{\mathbf{b}}\|_2}{\|\mathbf{b}\|_2}$$

STÖRUNG DER MATRIX

Der relative Fehler lässt sich beschränken. Beschränkt durch das Produkt der Konditionszahl und des relativen Fehlers der Matrix.

$$\frac{\|\mathbf{x} - \widetilde{\mathbf{x}}\|_2}{\|\mathbf{x}\|_2} \le \frac{\kappa_2(\mathbf{A})}{1 - \kappa_2(\mathbf{A}) \frac{\|\mathbf{A} - \widetilde{\mathbf{A}}\|_2}{\|\mathbf{A}\|_2}} \frac{\|\mathbf{A} - \widetilde{\mathbf{A}}\|_2}{\|\mathbf{A}\|_2}$$

2.5 QR-Zerlegung

Für jede Matrix gibt es eine QR-Z.

LR-Z: Schlecht konditioniertes Problem

 $\kappa_2(\mathbf{A}) \gg 1, \ \kappa_2(\mathbf{A}) \leq \kappa_2(\mathbf{L})\kappa_2(\mathbf{R})$

Kritisch falls $\kappa_2(\mathbf{L})\kappa_2(\mathbf{R}) \gg \kappa_2(\mathbf{A})$.

Ziel: Suche Transformationen $\mathbf{Q} \in \mathbb{R}^{n \times n}$, die die Norm unverändert lassen:

$$\|\mathbf{Q}\mathbf{y}\|_2 = \|y\|_2$$

Mit Hinzunahme des Skalarprodukts:

$$\langle \mathbf{y}, \mathbf{y} \rangle_2 = \|\mathbf{y}\|_2^2 = \|\mathbf{Q}\mathbf{y}\|_2^2 = \langle \mathbf{Q}\mathbf{y}, \mathbf{Q}\mathbf{y} \rangle_2 = \langle \mathbf{y}, \mathbf{Q}^*\mathbf{Q}\mathbf{y} \rangle_2$$

muss $\mathbf{Q}^*\mathbf{Q} = \mathbf{I}$ gelten.

Gesucht: $\mathbf{A} = \mathbf{Q}\mathbf{R}$.

Konditionszahl bzw. Fehlerverstärkung wird nicht verschlechtert: $\alpha_2(\mathbf{A}) = \alpha_2(\mathbf{R}), \, \beta_2(\mathbf{A}) = \beta_2(\mathbf{R})$

 $\kappa_2(\mathbf{A}) = \kappa_2(\mathbf{R}).$

GIVENS-ROTATION

Mit Hilfe von Givens-Rotationen können wir beliebige $\mathbf{A} \in \mathbb{R}^{m \times n}$ auf obere Δ gestalt bringen.

$$\mathbf{Q} = \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \text{ und } \mathbf{Q}\mathbf{y} = \begin{pmatrix} cy_1 + sy_2 \\ 0 \end{pmatrix}$$

Konsekutiv Givens-Rotationen \mathbf{Q}_{ij} i-te Zeile in j-te Spalte anwenden um Eintrag a_{ij} zu beseitigen. Bsp. $\mathbf{A} \in \mathbb{R}^{4 \times 3}$:

$$\begin{aligned} \mathbf{R} &= \mathbf{Q}_{43} \mathbf{Q}_{32} \mathbf{Q}_{42} \mathbf{Q}_{21} \mathbf{Q}_{31} \mathbf{Q}_{41} \mathbf{A} \\ \mathbf{Q}_{41}^* \mathbf{Q}_{31}^* \mathbf{Q}_{21}^* \mathbf{Q}_{42}^* \mathbf{Q}_{32}^* \mathbf{Q}_{43}^* \mathbf{R} &= \mathbf{A} \\ \mathbf{Q} \end{aligned}$$

Kompakte Darstellung

Verwende Nulleinträge von A
 bzw. R $um~\mathbf{Q}_{ij}$ zu beschreiben. Finde Givens-Rotation:

$$\rho = \begin{cases} s = \rho, c = \sqrt{1 - s^2} & \text{falls } |\rho| < 1 \\ c = 1/\rho, s = \sqrt{1 - c^2} & \text{falls } |\rho| > 1 \\ c = 1, s = 0 & \text{falls } \rho = 1 \end{cases}$$

Speichern der QR-Z in A:

$$\begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ \rho_{21} & r_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & r_{n-1,n} \\ \rho_{n1} & \cdots & \rho_{n,n-1} & r_{nn} \end{pmatrix}$$
(3)

Qr Decomp von $\mathbf{A} \in \mathbb{R}^{m imes n}$

$$\begin{array}{ll} \text{for } k=1: \min(m,n) & // \operatorname{Loop} \text{ über Diagonale} \\ \text{for } i=k+1:m & // \operatorname{Loop} \text{ über Elemente unter Diagonalen} \\ \text{if } a_{ik}=0 & \rho \leftarrow 1, \, c \leftarrow 1, \, s \leftarrow 0 \\ \text{else if } |a_{kk}| \geq |a_{ik}| & // \operatorname{Vgl.} \text{ mit Diag.element} \\ \tau \leftarrow a_{ik}/a_{kk}, \, \rho \leftarrow \tau/\sqrt{\tau^2+1}, \, s \leftarrow \rho, \, c \leftarrow \sqrt{1-s^2} \\ \text{else} & // \operatorname{Vgl.} \text{ mit Diag.element} \\ \tau \leftarrow a_{kk}/a_{ik}, \, \rho \leftarrow \sqrt{\tau^2+1}/\tau, \, c \leftarrow 1/\rho, \, s \leftarrow \sqrt{1-c^2} \\ // \operatorname{Diag.element} \text{ aktual., Giv.-Rot. in aktueller It. speichern} \\ a_{kk} \leftarrow ca_{kk} + sa_{ik}, \, a_{ik} \leftarrow \rho \\ \text{for } j=k+1: n \ // \operatorname{Loop} \text{ über Elemente in der k-ten Zeile} \\ // \operatorname{Giv-Rot} \text{ auf Zeile anwenden} \\ \alpha \leftarrow a_{kj}, \, a_{kj} \leftarrow c\alpha + sa_{ij}, \, a_{ij} \leftarrow -s\alpha + ca_{ij} \end{array}$$

Aufwand: $6n^2 + 2n^3$ (quadratische Matrix) 3x mehr als LR-Z.

LÖSEN GLEICHUNGSSYSTEM $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{b} = \mathbf{A}\mathbf{x} = \mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{Q}\mathbf{y} \quad \Leftrightarrow \quad 1.) \ \mathbf{y} = \mathbf{Q}^*\mathbf{b} \quad 2.) \ \mathbf{y} = \mathbf{R}\mathbf{x}.$$

1.) Qr_transform: Über einzelne G_{ij} (oben links angefangen) iterieren und auf b multiplizieren.

2.) Rückwärtseinsetzen.

Effizientere OR-Z

Householder-Spiegelungen: Aufwand 2x mehr als LR-Z. Mit Optimierungen bei Speicherzugriffen bei QR-Z ähnlich schnell wie LR-Z.

2.6 Ausgleichsprobleme

Wir suchen \mathbf{x} so, dass alle Gleichungen möglichst gleich gut erfüllt werden - oder - von unbekannten Parametern abhängige Kurve durch Messdaten in unterschiedlichen APs zu fitten. Grundlagen

Wir suchen die unbekannte Funktion y aus den Messwerten b, sodass $b_i = y(t_i) \quad \forall i \in \{1, ..., m\}$.

Annahme: y setzt sich zusammen aus Linearkombination bekannter Funktionen $y_1, ..., y_m$ mit n < m mit Faktoren $x_1, ..., x_m$ sodass: $y(t) = x_1y_1(t) + ... + x_ny_n(t)$ bzw. $b_i = y(t_i) = x_1y_1(t_i) + ... + x_ny_n(t_i)$. Als Gleichungssystem schreiben - überbestimmt m Gleichungen für n Unbekannte - mehr Messwerte als Unbekannte:

$$\begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} y_1(t_1) & \cdots & y_n(t_1) \\ \vdots & \ddots & \vdots \\ y_1(t_m) & \cdots & y_n(t_m) \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Aufgabe

Suche $\mathbf{x} \in \mathbb{R}^n$ mit $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \le \|\mathbf{A}\mathbf{z} - \mathbf{b}\|_2 \quad \forall \mathbf{z} \in \mathbb{R}^n$ - also optimale Näherung. Falls \mathbf{A} injektiv, dann ex. genau eine Lösung. Es gelte $\mathbf{A} = \mathbf{Q}\mathbf{R}$ mit $\mathbf{Q} \in \mathbb{R}^{m \times m}$ und $\mathbf{R} \in \mathbb{R}^{m \times n}$.

$$\begin{split} \|\mathbf{A}\mathbf{z} - \mathbf{b}\|_2 &= \|\mathbf{Q}\mathbf{R}\mathbf{z} - \mathbf{Q}\mathbf{Q}^*\mathbf{b}\|_2 = \|\mathbf{Q}(\mathbf{R}\mathbf{z} - \mathbf{Q}^*\mathbf{b}\|_2 \\ &= \|\mathbf{R}\mathbf{z} - \mathbf{Q}^*\mathbf{b}\|_2 \end{split}$$

Für \mathbf{R} gilt: $\mathbf{R} = \begin{pmatrix} \widehat{\mathbf{R}} \\ \mathbf{0} \end{pmatrix}$ $\widehat{\mathbf{R}} \in \mathbb{R}^{n \times n}$ und beide injektiv und $\widehat{\mathbf{R}}$

regulär. Außerdem $\mathbf{Q}^*\mathbf{b} = \begin{pmatrix} \widehat{\mathbf{b}} \\ \mathbf{b}_0 \end{pmatrix}$ $\widehat{\mathbf{b}} \in \mathbb{R}^n, \mathbf{b}_0 \in \mathbb{R}^{m-n}$. Norm ausnutzen ergibt: $\|\widehat{\mathbf{R}}\mathbf{z} - \widehat{\mathbf{b}}\|_2^2 + \|\mathbf{b}_0\|_2^2$. Es folgt:

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 = \|\mathbf{R}\mathbf{x} - \mathbf{Q}^*\mathbf{b}\|_2^2 = \underbrace{\|\widehat{\mathbf{R}}\mathbf{x} - \widehat{\mathbf{b}}\|_2^2}_{\text{löse }\widehat{\mathbf{R}}\mathbf{z} = \widehat{\mathbf{b}} \text{ oben}} + \|\mathbf{b}_0\|_2^2 = \|\mathbf{b}_0\|_2^2$$

$$\leq \|\widehat{\mathbf{R}}\mathbf{z} - \widehat{\mathbf{b}}\|_2^2 + \|\mathbf{b}_0\|_2^2 = \|\mathbf{R}\mathbf{z} - \mathbf{Q}^*\mathbf{b}\|_2^2 = \|\mathbf{A}\mathbf{z} - \mathbf{b}\|_2^2$$

Normalengleichung

Anstatt mit QR-Zerlegung zu lösen, Normalengleichung nutzen - bei Ausnutzung von ${\bf A^*A}$ symmetrisch schneller als QR Ansatz:

$$A^*Ax = A^*b$$

Nachteil, mögliche Fehlerverstärkung durch $\kappa_2(\mathbf{A}^*\mathbf{A}) = \kappa_2(\mathbf{A})^2$

3 Nichtlineare Gleichungssysteme

Wir untersuchen nichtlineare Gleichungssysteme der Form

Gegeben eine stetige Funktion $f: \mathbb{R}^n \to \mathbb{R}^n$, finde $\mathbf{x}^* \in \mathbb{R}^n$ mit $f(\mathbf{x}^*) = \mathbf{0}$

Transformieren in ein Nullstellenproblem.

3.1 Bisektionsverfahren

Einfache Technik, das in jedem Schritt den Fehler mindestens halbiert. Basierend auf dem Zwischenwertsatz für stetige Funktionen.

Funkioniert nur für 1D.

ZWISCHENWERTSATZ

Eine reele Funktion f, die in [a,b] stetig ist, nimmt jeden Wert zwischen f(a) und f(b) an. Haben f(a) und f(b) verschiedene Vorzeichen, so ist eine Existenz mindestens einer Nullstelle in [a,b] garantiert.

VERFAHREN IN MATHEMATISCHER NOTATION

$$(a^{(0)}, b^{(0)}) = (a, b)$$

$$x^{(m)} = \frac{a^{(m)} + b^{(m)}}{2}$$

$$(a^{(m+1)}, b^{(m+1)}) = \begin{cases} (a^{(m)}, x^{(m)}) & \text{if } f(a^{(m)}) f(x^{(m)}) < 0 \\ (x^{(m)}, b^{(m)}) & \text{sonst.} \end{cases}$$

Bisection

$$\begin{split} f_a \leftarrow f(a), \, f_b \leftarrow f(b) \\ \text{while } b-a > \epsilon \\ x \leftarrow (a+b)/2 \\ f_x \leftarrow f(x) \\ \text{if } f_a f_x < 0 \\ b \leftarrow x, \, f_b \leftarrow f_x \\ \text{else} \\ a \leftarrow x, \, f_a \leftarrow f_x \end{split}$$

Aufwand: m+2 Auswertungen von f und 2m Rechenoperationen, mit $m=\lceil \log_2((b-a)/\epsilon) \rceil$ Schritten. Hohe Stabilität und jedes konstruierte Intervall muss eine Nullstelle enthalten. Nur auf reelwertige Funktionen auf geeigneten Intervallen anwendbar.

3.2 Allgemeine Fixpunktiterationen

Iteration

 $U \subseteq \mathbb{R}^n$ eine abgeschlossene Teilmenge und $\Phi: U \to U$ eine (Selbst-)Abbildung. Dann ist Φ eine Iteration auf U. Folge der Iterierten $\mathbf{x}^{(m+1)} = \Phi(\mathbf{x}^{(m)})$. Kontruiere Iteration so, dass Φ gegen gesuchte Lösung \mathbf{x}^* konvergiert. Es soll $\Phi(\mathbf{x}^*) = \mathbf{x}^*$ gelten. Die Lösung muss ein Fixpunkt von Φ sein.

MITTELWERTSATZ DER DIFFERENTIALRECHNUNG Zwischen a und b von f gibt es mindestens einen Kurvenpunkt, für den die Tangente an η parallel zur Sekante durch a und b ist: $(b-a)f'(\eta)=f(b)-f(a)$.

FIXPUNKTSATZ VON BANACH

Sei Φ eine Iteration auf einer **abgeschlossenen** Menge $U \subseteq \mathbb{R}^n$, $\Phi: U \to U$ (Selbstabbildung: Kontraktion bleibt bei Iteration erhalten). Sei $L \in [0,1)$ so gegeben, dass: $\|\Phi(\mathbf{x}) - \Phi(\mathbf{y})\| \le L\|\mathbf{x} - \mathbf{y}\|$ für alle $\mathbf{x}, \mathbf{y} \in U$ (Kontraktion). Φ besitzt genau einen Fixpunkt und die Folge der Iterierten konvergiert für jeden Startwert $\mathbf{x}^{(0)} \in U$ gegen diesen Fixpunkt.

Fehlerabschätzung *a-priori* (Vorhersagen wieviele Schritte) und *a-posteriori* (Prüfen ob Näherung schon genau genug):

$$\|\mathbf{x}^{(m)} - \mathbf{x}^*\| \le \frac{L^m}{1 - L} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|$$
$$\|\mathbf{x}^{(m)} - \mathbf{x}^*\| \le \frac{1}{1 - L} \|\mathbf{x}^{(m)} - \mathbf{x}^{(m+1)}\| \quad \forall m \in \mathbb{N}_0$$

Nachteil: Φ konstruieren mit Fixpunkt, wo \mathbf{x} eine Nullstelle hat.

3.3 1D-Newton-Verfahren

 $U \subseteq \mathbb{R}^n$ offene Menge und $f: U \to \mathbb{R}^n$ zweimal stetig differenzierbar mit Nullstelle $\mathbf{x}^* \in U$, so dass $f(\mathbf{x}^*) = \mathbf{0}$. Ziel: Konstruiere Iteration Φ , die \mathbf{x}^* als Nullstelle besitzt.

Taylor

$$0 = f(x^*) = f(x) + f'(x)(x^* - x) + \underbrace{\frac{f''(\eta)}{2}(x^* - x)^2}$$

EINDIMENSIONALES NEWTON-VERFAHREN

$$\Phi: U \to \mathbb{R}$$
 $x \mapsto x - \frac{f(x)}{f'(x)} \to_{m \to \infty} x^*$

Indem der dritte Term der Taylorreihe wegfätt, approximieren wir die Funktion f durch ihre Tangente im Punkt x (lineare Näherung). Die Nullstelle der Tangente ist die nächste Iterierte $\Phi(x)$.

Konvergenz

Sei $r \in \mathbb{R}_{>0}$ und $U = (x^* - r, x^* + r)$ und gelte $f \in C^2(U)$, $|1/f'(x)| \le C_1 \forall x \in U$, $|f''(x)| \le C_2 \forall x \in U$ und $r \le \frac{2}{C_1 C_2}$, dann ist die Abbildung Φ für das Newton Verfahren eine Selbstabbildung auf U, sodass gilt:

$$|\Phi(x) - x^*| \le \frac{C_1 C_2}{2} |x - x^*|^2 \quad \forall x \in U$$

Newton-Verfahren konvergiert, falls $x^{(0)}$ in U liegt (lokale Konvergenz). Konvergenz ist umso schneller, je näher die Iterierten an der Lösung liegen. **Quadratische Konvergenz**.

3.4 ND-Newton-Verfahren

Herleitung über Hilfsfunktionen $\gamma(t)=\mathbf{x}+t(\mathbf{x}^*-\mathbf{x}),$ $g(t)=f(\gamma(t))$ in [0,1] und Hauptsatz der Integral- und Differentialrechnung $f(b)-f(a)=\int_a^b f'(t)dt$ um höhere Ableitungen (wie bei Taylor) zu vermeiden.

$$\begin{aligned} \mathbf{0} &= f(\mathbf{x}^*) = g(1) = g(0) + \int_0^1 g'(t) dt = \\ g(0) + g'(0) + \int_0^1 g'(t) - g'(0) dt = f(\mathbf{x}) + Df(\mathbf{x})(\mathbf{x}^* - \mathbf{x}) + \mathfrak{C} = \\ Df(\mathbf{x})^{-1}f(\mathbf{x}) + \mathbf{x}^* - \mathbf{x} + Df(\mathbf{x})^{-1}\mathfrak{C}. \text{ Umstellen nach } \mathbf{x}^* \text{ und} \\ \text{mit } Df(\mathbf{x})^{-1}\mathfrak{C} \text{ vernachlässigen ergibt Newton-Verfahren.} \end{aligned}$$

NEWTON-VERFAHREN

Sei $U \subseteq \mathbb{R}^n$ und $Df(\mathbf{x})$ für alle $\mathbf{x} \in U$ regulär (also invertierbar). Es gilt:

$$\Phi: U \to \mathbb{R}^d, \quad \mathbf{x} \mapsto \mathbf{x} - Df(\mathbf{x})^{-1}f(\mathbf{x})$$

Konvergenz

Sei $r \in \mathbb{R}_{>0}$ und $U = K(\mathbf{x}^*, r)$ und gelte $f \in C^1(U, \mathbb{R}^b)$, $\|Df(\mathbf{x})^{-1}\|_2 \leq C_1 \quad \forall \mathbf{x} \in U$, $\|Df(\mathbf{x}) - Df(\mathbf{y})\|_2 \leq C_2 |\mathbf{x} - \mathbf{y}\|_2 \quad \forall \mathbf{x}, \mathbf{y} \in U$ (Lipschitz stätig) $r < \frac{2}{C_2C_1}$.

Dann ist Φ eine Selbstabbildung auf der Kugel U und es gilt

$$\|\mathbf{x}^{(m+1)} - \mathbf{x}^*\|_2 \le \frac{C_1 C_2}{2} \|\mathbf{x}^{(m)} - \mathbf{x}^*\|_2^2 \quad \forall \mathbf{x} \in U$$

Quadratische Konvergenz unter schwächeren Voraussetzungen, denn f' muss nur Lipschitz-stetig sein. Geeigneter Anfangswert $<\frac{C_1C_2}{2}$

Umsetzung

Anstatt Inverse Jacobimatrix zu berechnen, lineares Gleichungssystem nach \mathbf{d} lösen (erhöhte numerische Stabilität):

$$\mathbf{x}^{(m+1)} = \mathbf{x}^{(m)} + \mathbf{d}^{(m)} \qquad \mathbf{d}^{(m)} = -Df(\mathbf{x}^{(m)})^{-1}f(\mathbf{x}^{(m)})$$
$$Df(\mathbf{x}^{(m)})\mathbf{d}^{(m)} = -f(\mathbf{x}^{(m)})$$

Gedämpftes Newton-Verfahren

Um Divergenz zu vermeiden Newton-Richtung mit Dämpfungsparameter $\sigma^{(m)}$ multiplizieren. Sorgt dafür, dass

der Fehler nicht größer als im vorangehenenden Schritt werden kann.

$$\mathbf{x}^{(m+1)} = \mathbf{x}^{(m)} + \sigma^{(m)} \mathbf{d}^{(m)}$$

4 Eigenwertprobleme

Im Allgemeinen werden Eigenwertprobleme in der Form $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, mit $\mathbf{A} \in \mathbb{R}^{n \times n}$ und $\mathbf{x} \neq 0 \in \mathbb{R}^n$ untersucht. Eigenwertproblem in die Form eines linearen Gleichungssystems bringen:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0} \quad \Leftrightarrow \quad \det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

Finden der Nullstellen des charpolys ist ein schlecht konditioniertes Problem (nur geeignet für kleine n). Deswegen andere Methode...

4.1 Vektoriteration

Eignet sich für die Berechnung des größten Eigenwerts. Annahmen: A diagonalisierbar, d.h. es existiert eine Basis aus EV von $\mathbf{A}: \mathbf{v}_1, ... \mathbf{v}_n$. Es gilt $\|\mathbf{v}_i\|_2 = 1$ und es existiert ein einfacher dominanter EW λ_1 . Beliebigen Startvektor $\mathbf{x}^{(0)} = c_1 \mathbf{v}_1 + ... + c_n \mathbf{v}_n$ wählen mit $c_1 \neq 0$ (!!). Oder anders: $\mathbf{A} = \mathbf{C} \widehat{\mathbf{A}} \mathbf{C}^{-1}$ mit $\widehat{\mathbf{A}} = \mathrm{diag}(\lambda_1, ..., \lambda_n)$. Außerdem gilt $\mathbf{A}^k = (\mathbf{C} \widehat{\mathbf{A}} \mathbf{C}^{-1})...(\mathbf{C} \widehat{\mathbf{A}} \mathbf{C}^{-1}) = \mathbf{C} \widehat{\mathbf{A}}^k \mathbf{C}^{-1}$, bzw. $\mathbf{A}^k \mathbf{C} = \mathbf{C} \widehat{\mathbf{A}}^k$. Wendet man die k-te Potenz von \mathbf{A} auf $\mathbf{x}^{(0)}$ an, ergibt sich:

$$\mathbf{A}^k \mathbf{x}^{(0)} = \mathbf{A}^k \mathbf{C} \mathbf{v}^{(0)} = \mathbf{C} \widehat{\mathbf{A}}^k \mathbf{v}^{(0)} = \sum_{j=1}^n c_j \widehat{\mathbf{A}}^k \mathbf{v}_j = \sum_{j=1}^n c_j \lambda_j^k \mathbf{v}_j$$

Also folgt:

$$\mathbf{x}^{(k)} = \mathbf{A}^k \mathbf{x}^{(0)} = \lambda_1^k \left\{ c_1 \mathbf{v}_1 + \sum_{j=2}^n \left(\frac{\lambda_j}{\lambda_1} \right)^k c_j \mathbf{v}_j \right\} = \lambda_1^k (c_1 \mathbf{v}_1 + \mathbf{r}^k)$$

wobei $\mathbf{r}^k \to 0$ für $k \to \infty$, da $\|\mathbf{r}^k\|_2 = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$. Also strebt

 $\mathbf{x}^{(k)} = \mathbf{A}^k \mathbf{x}^{(0)}$ gegen den ersten Eigenvektor \mathbf{v}_1 . Konvergenz

 \mathbf{e}_1 ist Eigenvektor zu Eigenwert λ_1 . Es gilt $\tan(\mathbf{x}^{(0)}, \mathbf{e}_1) < \infty$, also $\mathbf{x}^{(0)}$ soll nicht senkrecht auf \mathbf{e}_1 stehen. Dann gilt

$$\tan(\mathbf{x}^{(m)}, \mathbf{e}_1) \le \left(\frac{|\lambda_2|}{|\lambda_1|}\right)^m \tan(\mathbf{x}^{(0)}, \mathbf{e}_1) \qquad \forall m \in \mathbb{N}_0$$

Oder Argumentation über EW: $|\lambda^{(k)} - \lambda_1| = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$.

Sind $|\lambda_2|$ und $|\lambda_1|$ ähnlich groß, gibt es langsame Konvergenz. Falls **A** symmetrisch ist, sind die EV orthogonal und dann gilt $|\lambda^{(k)} - \lambda_1| = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)$.

Numerische Probleme: Iterationsfolge führt zu Vektoren mit sehr großen ($|\lambda_1| > 1$) oder sehr kleinen Einträgen ($|\lambda_1| < 1$).

Lösung: Normalisieren mit der Norm (also nur Skalierung):

$$\mathbf{y}^{(m)} = \mathbf{A}\mathbf{x}^{(m-1)} \quad \gamma^{(m)} = \|\mathbf{y}^{(m)}\|_2 \quad \mathbf{x}^{(m)} = \mathbf{y}^{(m)}/\gamma^{(m)}$$
$$\forall m \in \mathbb{N}$$

RAYLEIGH-QUOTIENT

Rayleigh-Quotient zu A ist gegeben durch

$$\Lambda_A: \mathbb{R}^n \backslash \{\mathbf{0}\} o \mathbb{R} \qquad \mathbf{x} \mapsto rac{\langle \mathbf{A}\mathbf{x}, \mathbf{x}
angle_2}{\langle \mathbf{x}, \mathbf{x}
angle_2}$$

Falls $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ ein Eigenvektor von \mathbf{A} zu $\lambda \in \mathbb{R}$ ist gilt $\Lambda_A = \lambda$. Mit der Cauchy-Schwarz-Ungleichung $|\langle \mathbf{x}, \mathbf{y} \rangle_2| \leq \|\mathbf{x}\|_2 \|\mathbf{y}\|_2 \qquad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ lässt sich die Genauigkeit der Näherung des Eigenwerts abschätzen über:

$$|\Lambda_A(\mathbf{x}) - \lambda| \le \|\mathbf{A} - \lambda\mathbf{I}\|_2 \sin(\mathbf{x}, \mathbf{e}) \le \|\mathbf{A} - \lambda\mathbf{I}\|_2 \tan(\mathbf{x}, \mathbf{e})$$

mit $\mathbf{x}\in\mathbb{R}^n\backslash\{\mathbf{0}\}$ als Näherung des Eigenvektors $\mathbf{e}\in\mathbb{R}^n$ von \mathbf{A} zu $\lambda\in\mathbb{R}.$

Quadratische Konvergenz: Falls $\mathbf{A} = \mathbf{A}^*,$ ergibt sich die Abschätzung

$$|\Lambda_A(\mathbf{x}) - \lambda| \le ||\mathbf{A} - \lambda \mathbf{I}||_2 \sin^2(\mathbf{x}, \mathbf{e})$$

Näherung des Eigenwerts kann wesentlich schneller als die des Eigenvektors konvergieren.

power_adaptive

$$\begin{split} & \gamma \leftarrow \|\mathbf{x}\|_2, \, \mathbf{x} \leftarrow \mathbf{x}/\gamma \\ & \mathbf{y} \leftarrow \mathbf{A}\mathbf{x} \\ & \lambda \leftarrow \langle \mathbf{y}, \mathbf{x} \rangle_2 \\ & \text{while } \|\lambda \mathbf{x} - \mathbf{y}\|_2 > \epsilon \|\mathbf{y}\|_2 \\ & \gamma \leftarrow \|\mathbf{y}\|_2, \, \mathbf{x} \leftarrow \mathbf{y}/\gamma \\ & \mathbf{y} \leftarrow \mathbf{A}\mathbf{x} \\ & \lambda \leftarrow \langle \mathbf{y}, \mathbf{x} \rangle_2 \end{split}$$

 ${\bf y}$ wird für die Berechnung von $\Lambda_A,$ die Prüfung auf Konvergenz und für die Bestimmung der nächsten Iterierten genutzt.

4.2 Inverse Iteration

Eigenet sich für die Berechnung des kleinsten Eigenwerts (geben die niedrigsten Frequenzen für Resonanzeffekte an). Wenn A regulär, gilt:

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \quad \Leftrightarrow \quad \mathbf{x} = \lambda \mathbf{A}^{-1}\mathbf{x} \quad \Leftrightarrow \quad \frac{1}{\lambda}\mathbf{x} = \mathbf{A}^{-1}\mathbf{x}$$

Also ist ein Eigenvektor von ${\bf A}$ zu λ auch ein Eigenvektor von ${\bf A}^{-1}$ zu $1/\lambda$. Damit ist der betragskleinste EW von ${\bf A}$ der Kehrwert des betragsgrößten EWs von ${\bf A}^{-1}$.

Inverse Iteration:

$$\mathbf{y}^{(m)} = \mathbf{A}^{-1}\mathbf{x}^{(m-1)} \quad \gamma^{(m)} = \|\mathbf{y}^{(m)}\|_2 \quad \mathbf{x}^{(m)} = \mathbf{y}^{(m)}/\gamma^{(m)}$$
$$\forall m \in \mathbb{N}$$

Inverse von \mathbf{A} umgehen mit Lösung von $\mathbf{A}\mathbf{y}^{(m)} = \mathbf{x}^{(m-1)}$. MIT SHIFT

Falls $\mu \in \mathbb{R}$ kein Eigenwert von **A**, dann ist $\mathbf{B} = (\mathbf{A} - \mu \mathbf{I})$ regulär. Mit EW $\lambda \in \mathbb{R}$ und EV $\mathbf{x} \in \mathbb{R}^n$. Dann ist $\frac{1}{\lambda - \mu}$ ein

EW von \mathbf{B}^{-1} . Der betragsgrößte EW von \mathbf{B}^{-1} korrespondiert mit dem EW von \mathbf{A} , der μ am nächsten liegt. **Inverse Iteration mit Shift**

$$\mathbf{y}^{(m)} = (\mathbf{A} - \mu \mathbf{I})^{-1} \mathbf{x}^{(m-1)} \quad \gamma^{(m)} = \|\mathbf{y}^{(m)}\|_{2}$$
$$\mathbf{x}^{(m)} = \mathbf{y}^{(m)} / \gamma^{(m)} \quad \forall m \in \mathbb{N}$$

invit_adaptive

Faktorisierung von **B** berechnen. $\gamma \leftarrow \|\mathbf{x}\|_2, \mathbf{x} \leftarrow \mathbf{x}/\gamma$ Löse $(\mathbf{A} - \mu \mathbf{I})\mathbf{y} = \mathbf{x}$ $\lambda \leftarrow \langle \mathbf{y}, \mathbf{x} \rangle_2$ while $\|\lambda \mathbf{x} - \mathbf{y}\|_2 > \epsilon \|\mathbf{y}\|_2$ $\gamma \leftarrow \|\mathbf{y}\|_2, \mathbf{x} \leftarrow \mathbf{y}/\gamma$ Löse $(\mathbf{A} - \mu \mathbf{I})\mathbf{y} = \mathbf{x}$ $\lambda \leftarrow \langle \mathbf{y}, \mathbf{x} \rangle_2$

QR/LR-Z muss nur einmal berechnet werden, danach relativ geringer Aufwand. Rayleigh-Quotient λ wird gegen EW von \mathbf{B}^{-1} konvergieren - rekonstruieren des originalen EW von \mathbf{A} über $1/\lambda + \mu$.

Konvergenz

$$\tan(\mathbf{x}^{(m)}, \mathbf{e}^{(1)}) \le \left(\frac{|\lambda_1 - \mu|}{|\lambda_2 - \mu|}\right)^m \tan(\mathbf{x}^{(0)}, \mathbf{e}^{(1)})$$

RAYLEIGH-ITERATION

Je näher μ an λ_1 , desto schnellere Konvergenz gegen den EV. Wenn $\mathbf{x}^{(m)}$ eine gute Näherung eines EVs ist, wird $\Lambda_A(\mathbf{x}^{(m)})$ eine gute Näherung des entsprechenden EWs sein (a.k.a **guter Shift-Parameter**).

Rayleigh-Iteration:

$$\mu^{(m)} = \Lambda_A(\mathbf{x}^{(m-1)})$$

$$\mathbf{y}^{(m)} = (\mathbf{A} - \mu^{(m)}\mathbf{I})^{-1}\mathbf{x}^{(m-1)}, \quad \mathbf{x}^{(m)} = \frac{\mathbf{y}^{(m)}}{\|\mathbf{y}^{(m)}\|_2}, \quad \forall m \in \mathbb{N}$$

invit_rayleigh

$$\begin{split} \gamma &\leftarrow \|\mathbf{x}\|_2, \ \mathbf{x} \leftarrow \mathbf{x}/\gamma \\ \text{L\"ose } (\mathbf{A} - \mu \mathbf{I})\mathbf{y} &= \mathbf{x} \\ \lambda &\leftarrow \langle \mathbf{y}, \mathbf{x} \rangle_2 \\ \mu &\leftarrow 1/\lambda + \mu \\ \text{while } \|\lambda \mathbf{x} - \mathbf{y}\|_2 > \epsilon \|\mathbf{y}\|_2 \\ \gamma &\leftarrow \|\mathbf{y}\|_2, \ \mathbf{x} \leftarrow \mathbf{y}/\gamma \\ \text{L\"ose } (\mathbf{A} - \mu \mathbf{I})\mathbf{y} &= \mathbf{x} \\ \lambda &\leftarrow \langle \mathbf{y}, \mathbf{x} \rangle_2 \\ \mu &\leftarrow 1/\lambda + \mu \end{split}$$

 μ abhängig von m,daher in jeder Schleife QR/LR-Z berechnen - wesentlich aufwendiger. Allerdings sehr schnelle (quadratische) Konvergenz bei guter Näherung - jeder Schritt verdoppelt Anzahl korrekt berechneter Stellen.

4.3 Orthogonale Iteration

Berücksichtigung k-facher Eigenwerte. Keine Probleme bei mehrfachen oder eng beieinanderliegenden Eigenwerten. Praktisch identisch zu Vektoriteration.

Konvergenz gegen von $\mathbf{e}^{(1)},...,\mathbf{e}^{(k)} \in \mathbb{R}^n$ (zu $\lambda_1,...,\lambda_k$) aufgespannten Teilraum. Zusammenfassen von k Iterierten in Matrix $\mathbf{X}^{(m)} \in \mathbb{R}^{n \times k}$

$$\mathbf{X}^{(m)} = \mathbf{A}^m \mathbf{X}^{(0)}$$
 bzw. $\mathbf{X}^{(m+1)} = \mathbf{A} \mathbf{X}^{(m)}$ $\forall m \in \mathbb{N}_0$

Spalten orthogonaler Matrix bilden orthonormale Basis und konvergieren nicht gegen denselben Raum (Einhaltung der LU). $\mathbf{X}^{(m)}$ durch $\mathbf{Q}^{(m)} \in \mathbb{R}^{n \times k}$ und $\mathbf{R}^{(m)} \in \mathbb{R}^{k \times k}$ ersetzen:

$$\mathbf{X}^{(m)} = \mathbf{Q}^m \mathbf{R}^{(m)} \qquad \forall m \in \mathbb{N}_0$$

Vermeiden der QR-Z von instabilen Matrizen $\mathbf{X}^{(m)}$. Daher

$$\mathbf{Y}^{(m+1)} = \mathbf{AQ}^{(m)}$$
 $\mathbf{Y}^{(m+1)} = \mathbf{Q}^{(m+1)} \widehat{\mathbf{R}}^{(m+1)}$

und

$$\mathbf{X}^{(m+1)} = \mathbf{Q}^{(m+1)} \mathbf{R}^{(m+1)} \qquad \mathbf{R}^{(m+1)} = \widehat{\mathbf{R}}^{(m+1)} \mathbf{R}^{(m)}$$

Die Folge $(\mathbf{Q}^{(m)})_{m=0}^{\infty}$ heißt orthogonale Iteration. orthoit_rayleigh

Berechne
$$\mathbf{Q}\hat{\mathbf{R}} = \mathbf{X}$$

 $\mathbf{Y} \leftarrow \mathbf{A}\mathbf{Q}$
 $\Lambda \leftarrow \mathbf{Q}^*\mathbf{Y}$
while $\|\mathbf{Q}\Lambda - \mathbf{Y}\|_2 > \epsilon$
Berechne $\mathbf{Q}\hat{\mathbf{R}} = \mathbf{Y}$
 $\mathbf{Y} \leftarrow \mathbf{A}\mathbf{Q}$
 $\Lambda \leftarrow \mathbf{Q}^*\mathbf{Y}$
 $\mathbf{X} \leftarrow \mathbf{Q}$

Verallgemeinerung der Vektoriteration. Statt einzelnem Vektor - k-spaltige Matrix. Statt Iterierte zu EV zu machen - Orthonormalbasen verwenden.

Aufwand: nk^2 AO/Schritt.

Verfeinerungen

Inverse Iteration, Inverse Iteration mit Shift, Rayleigh-Iteration

Deflation - entferne bereits konvergierte EV.

4.4 QR-Iteration

Alle EW und EV einer Matrix berechnen. Vorüberlegung: Multiplikation mit orthonormaler (orthog. $+ \| \cdot \|$ aller Vektoren = 1) Matrix Q heißt Ähnlichkeitstransformation - EW von A bleiben erhalten. $\mathbf{A}\mathbf{x} = \lambda\mathbf{x} \Leftrightarrow \mathbf{Q}^*\mathbf{A}\mathbf{Q}\mathbf{Q}^*\mathbf{x} = \lambda\mathbf{Q}^*\mathbf{x}$. Idee: Durch MP mit Q, z.B. A auf oberer Δ Matrix bringen, um einfacher die EW zu berechnen.

ZUSAMMENFASSUNG UNTERRAUMITERATION

 $(\mathbf{Q}^{(m)})^*\mathbf{A}\mathbf{Q}^{(m)}=\mathbf{A}^{(m)}\to\mathbf{R}$ für $m\to\infty$. Diagonaleinträge in $\mathbf{A}^{(m)}$ sind Approximationen für die EW von \mathbf{A} . Für $k\to\infty$ streben die Fehler der Approximationen gegen 0.

Konvergenzgeschwindigkeit durch $\left|\frac{\lambda_{l+1}}{\lambda_l}\right|, l=\{1,...,m\}$ gegeben. Die EWs stehen der Größe nach sortiert auf der Diagonalen von \mathbf{R} .

QR-Iteration

 $\mathbf{A}^{(m)}$ aus Unterraumiteration rekursiv (also $\mathbf{A}^{(m)}$ aus $\mathbf{A}^{(m-1)}$ berechnen

berechnen.
Sei
$$\tilde{\mathbf{A}}^{(m-1)} = \mathbf{Q}\mathbf{R}$$
 und $\tilde{\mathbf{A}}^{(m)} = \mathbf{R}\mathbf{Q}$, dann gilt

$$\tilde{\mathbf{A}} = \mathbf{A}^{(m)} \quad \forall m = 0, 1, 2, \dots,$$

Falls für irgendein $k \in \{1,...,n-1\}$ $|\lambda_{k+1}| < |\lambda_k|$ gilt, werden die unteren n-k Zeilen der ersten k Spalten gegen Null konvergieren.

Ziel: $\tilde{\mathbf{A}}^{(0)}$ tridiagonal, um schnell zu rechnen. (Aufwand $\approx n$ pro Schritt)

Aufwand: 1 QR-Z pro Schritt. Aufwand proportional zu n^3 . Bei sinnvollem Shift-Parameter kubische Konvergenz. Konvergierte Teilmatrizen werden nicht ausgenutzt und langsame Konvergenz bei nah beieinander liegenden EW.

5 Approximation von Funktionen

CAD, Bestimmung von Formeln zur nurmerischen Integration, numerische Differentiation, numerisches Lösen von DGL...

5.1 Polynominterpolation

Polynome höchstens m-ten Grades $\Pi_m = \text{span}\{1, x, x^2, ..., x^m\}$ INTERPOLATIONSAUFGABE

Für gegebene Werte $f_0, ..., f_m$ und paarweise verschiedene Stützstellen $x_0, ..., x_m$ finde ein Polynom $p \in \Pi_m$, das erfüllt:

$$p(x_i) = f_i \qquad \forall i \in \{0, ..., m\}$$

Lagrange-Polynome

Für jedes $i \in \{0, ..., m\}$ ist $l_i : \mathbb{R} \to \mathbb{R}$

$$x \mapsto \prod_{\substack{k=0\\j\neq i}}^m \frac{x - x_k}{x_i - x_k}$$

ein Polynom höchstens m-ten Grades.

$$l_i(x_j) = \begin{cases} 1 & \text{falls } i = j \\ 0 & \text{sonst} \end{cases} \qquad l_i(x_i) = \prod_{\substack{k=0 \\ k \neq i}}^m \frac{x_i - x_k}{x_i - x_k} = 1$$

Für beliebige $f_0, ..., f_m$ löst $p = \sum_{k=0}^m f_k l_k$ das Interpolationsproblem - eindeutig lösbar. Dieser Ansatz ist jedoch ineffizient. Stattdessen... N-A-Verf.

5.2 Neville-Aitken-Verfahren

Idee: Von konstanten Polynomen ausgehend Polynome höheren Grades zu konstruieren. Gut geeignet für Bestimmung an wenigen Stellen.

Für alle $i, j \in \{0, ...m\}$ mit $i \le j$ existiert genau ein Polynom $p_{i,j} \in \Pi_{j-i}$, das $p_{i,j}(x_k) = f_k \quad \forall k \in \{i,...,j\}$ erfüllt .

Idee: Interpolation höheren Grades lässt sich durch Konvexkombination von Polynomen niedrigeren Grades schreiben.

AITKEN-REKURRENZ

Sei $i, j \in \{0, ...m\}$ mit i < j:

$$p_{i,j}(x) = \frac{x - x_i}{x_j - x_i} p_{i+1,j}(x) + \frac{x_j - x}{x_j - x_i} p_{i,j-1}(x)$$
$$= p_{i+1,j}(x) + \frac{x_j - x}{x_j - x_i} (p_{i,j-1} - p_{i+1,j}(x))$$

- 1. Konstante Polynome $p_{i,i} = f_i$ bestimmen
- 2. Mit Aitken-Rekurrenz lineare, quadratische, etc., Polynome konstruieren

3. Bei Grad m ergibt sich $p_{0,m}(x) = p(x)$.

$$\begin{array}{lll} f_0 = p_{0,0}(x) \\ f_1 = p_{1,1}(x) & p_{0,1}(x) \\ f_2 = p_{2,2}(x) & p_{1,2}(x) & p_{0,2}(x) \\ f_3 = p_{3,3}(x) & p_{2,3}(x) & p_{1,3}(x) & p_{0,3}(x) = p(x) \end{array}$$

Algorithmus effizient: Spaltenweise von unten nach oben in-place.

neville

for
$$n=1:m$$
 // Loope über Grad der Polynome for $j=m:n$ // von unten nach oben in einer Spalte $i\leftarrow j-n$ // "Obere Ecke" des Δ $f_j\leftarrow ((x-x_i)f_j+(x_j-x)f_{j-1})/(x_j-x_i)$ return f_m

Aufwand: $\frac{7}{2}m(m+1)$ AO (quadratisch)

5.3 Newtons dividierte Differenzen

Auswertung in einigen Punkten ok bei quadratischem Aufwand. Bei Rendering bspw. jedoch zu aufwendig. Reduzierung des Aufwands durch Berechnung von Hilfsgrößen im Voraus.

Idee: Hat man $p_{i,j-1}$ bereits bestimmt, so sucht man nach einem Korrekturterm, durch dessen Ergänzung man $p_{i,j}$ erhält - Newton-Darstellung:

$$p_{i,j}(x) = p_{i,j-1}(x) + d_{i,j}(x - x_i)...(x - x_{j-1})$$

 $d_{i,j}$ ist abhängig von den Stützstellen x_i .

Per Induktion folgt als Networsche Interpolationsformel:

$$p_{i,j}(x) = \sum_{k=i}^{j} d_{i,k} n_{i,k}(x) \text{ mit } n_{i,j}(x) = \begin{cases} 1 & i=j\\ \prod_{k=1}^{j-1} (x - x_k) \end{cases}$$

Effiziente Gestaltung

- 1. $s_m(x) = d_{0,m}$ bestimmen
- 2. $s_{m-1}(x)$ berechnen mit $s_i(x) = d_{0,i} + (x x_i)s_{i+1}(x)$
- 3. Stoppe, wenn $s_0(x) = p(x)$ berechnet

eval_newton

$$s \leftarrow d_m$$
for $i = m - 1 : 0$

$$s \leftarrow d_i + (x - x_i)s$$
return s // returns $s_0(x)$

mit $\mathbf{d} = (d_{0,0}, ..., d_{0,m})$. Aufwand: 3m AO.

NEWTONS DIVIDIERTE DIFFERENZEN

Newtonsche Interpolationsformel in Aitken-Rekurrenz einsetzen ergibt mit Koeffizientenvergleich der führenden Koeffizienten:

$$d_{i,j} = \frac{d_{i+1,j} - d_{i,j-1}}{x_j - x_i} \left(= f_j = \frac{f_j - f_{j-1}}{x_j - x_i} \right)$$

newton_diff

for n = 1: mfor j = m: n // von unten nach oben in der Spalte $i \leftarrow j - n$ $f_j \leftarrow (f_j - f_{j-1})/(x_j - x_i)$

Überschreibt $f_0, ..., f_m$ mit $d_{0,0}, ..., d_{0,m}$. Aufwand: $\frac{3}{2}m(m+1)$ - also quadratisch. Allerdings nur einmalige Ausführung.

5.4 Approximation von Funktionen

Interpolationsfehler

Sei $f \in C^{m+1}[a, b]$, sei p die Lösung der Interpolationsaufgabe und sei $x \in [a, b]$. Dann ex. $\eta \in [a, b]$ mit

$$f(x) - p(x) = (x - x_0)...(x - x_m) \frac{f^{(m+1)}(\eta)}{(m+1)!}$$

Unabhängige Fehlerschranke

$$||f - p||_{\infty,[a,b]} \le ||\underbrace{(x - x_0)...(x - x_m)}_{\omega(x)}||_{\infty,[a,b]} \frac{||f^{(m+1)}||_{\infty,[a,b]}}{(m+1)!}$$

TSCHEBYSCHEFF-INTERPOLATION

$$\hat{x}_i = \frac{b+a}{2} + \frac{b-a}{2} \cos\left(\pi \frac{2i+1}{2m+2}\right)$$

Bestmögliche Wahl für Interpolationspunkte, sodass $\|\hat{\omega}\|_{\infty,[a,b]}.$

STABILITÄTSKONSTANTE / BESTAPPROXIMATION

$$||f - p||_{\infty, [a,b]} \le (\Lambda_m + 1)||f - q||_{\infty, [a,b]}$$

6 Numerische Integration

Anwendung in Berechnung von Integralen von Funktionen (Normalverteilung).

Aufgabe: Gegeben sind ein nicht-leeres Intervall [a,b] und eine stetige Funktion $f \in C[a,b]$, zu approximieren ist das Integral

$$\int_{a}^{b} f(x)dx$$

6.1 Quadraturformeln

QUADRATURFORMEL

Seien $m \in \mathbb{N}_0$, Punkte $x_0,...,x_m \in [a,b]$ und $w_0,...,w_m \in \mathbb{R}$ gegeben, dann definiert

$$\mathcal{Q}_{[a,b]}: C[a,b] \to \mathbb{R}, \quad \int_{c}^{d} f(x)dx = \sum_{i=0}^{m} w_{i}f(x_{i})$$

eine Quadraturformel, die jeder Funktion $f \in C[a,b]$ eine Approximation des Integrals durch Funktionswerte in den Quadraturpunkten $x_0,...,x_m$ und mit den Quadraturgewichten $w_0,...,w_m>0$ zuordnet.

Mittelpunktregel

Gute Näherung des Integrals, falls f'' und Intervall [a, b] klein.

$$f \mapsto \mathcal{M}_{[a,b]}(f) = (b-a)f\left(\frac{b+a}{2}\right) = \int_a^b f\left(\frac{b+a}{2}\right) dx$$
$$\mathcal{I}_{[a,b]}(f) - \mathcal{M}_{[a,b]}(f) = \frac{(b-a)^3}{24} f''(\eta)$$

Exakt für lineare Polynome.

Interpolatorische Quadratur

$$\mathcal{I}_{[a,b]}(f) \approx \int_a^b p(x) dx = \int_a^b \sum_{i=0}^m f(x_i) l_i(x) dx = \sum_{i=0}^m f(x_i) \underbrace{\int_a^b l_i(x) dx}_{w_i}$$

NEWTON-COTES-QUADRATUR / TRAPEZREGEL

$$x_i = \frac{m-i}{m} a + \frac{i}{m} b, \, \forall i \in \{0,...,m\}, \quad \mathcal{Q}_{[a,b]}(f) = \frac{b-a}{2} (f(a) + f(b))$$

SUMMIERTE QUADRATURFORMEL

$$\begin{split} h &= \frac{b-a}{l} \quad y_i = a+ih \quad \forall i \in \{0,...,l\} \\ \mathcal{I}_{[a,b]}(f) &= \int_a^b f(x) dx = \sum_{i=1}^l \int_{y_{i-1}}^{y_i} f(x) dx \\ &= \sum_{i=1}^l \mathcal{I}_{[y_{i-1},y_i]}(f) \approx \sum_{i=1}^l \mathcal{Q}_{[y_{i-1},y_i]}(f) = \mathcal{Q}_{[a,b],l}(f) \end{split}$$

Es kann jede beliebige Genauigkeit erreicht werden bei

hinreichend großem l.

Summierte Mittelpunktregel

Jede beliebige Genauigkeit, falls f'' beschränkt ist.

Verdoppelung der Anzahl der Teilintervalle viertelt den Fehler.

$$\mathcal{M}_{[a,b],l}(f) = \sum_{i=1}^{l} \mathcal{M}_{[y_{i-1},y_i]}(f) = h \sum_{i=1}^{l} f\left(\frac{y_i + y_{i-1}}{2}\right)$$

$$\mathcal{I}_{[a,b]}(f) - \mathcal{M}_{[a,b],l}(f) = \frac{(b-a)^3}{24l^2} f''(\eta)$$

Beste Qudraturformel: Gauß-Quadratur - exakt für n=2m+1.Q

6.2 Fehleranalyse

Definiere Quadraturformeln auf Referenzintervall:

$$\mathcal{I}: C[-1,1] \to \mathbb{R} \quad f \mapsto \mathcal{I}(f) = \int_{-1}^{1} f(x) dx$$
$$\mathcal{Q}: C[-1,1] \to \mathbb{R} \quad f \mapsto \mathcal{Q}(f) = \sum_{i=0}^{m} w_i f(x_i)$$

Die **Quadraturformel** ist **exakt** von Grad n, wenn $\mathcal{Q}(p) = \mathcal{I}(p) \quad \forall p \in \Pi_n$ - falls alle Polynome bis Grad n exakt integriert werden. Exaktheit ausnutzen: Approximiere den Integranden f durch p (p wird exakt integriert) - also nur Approximationsfehler beschränken über Maximumsnorm $\|g\|_{\infty,[a,b]}$. Stabilitätskonstante $C_O = \sum_{i=0}^m |w_i|$.

Copyright © 2014 Major Ring Ding Ding Dong feat. Jingjong Ba-Dingdong