Analiza matematyczna (Informatyka) Lista nr 2.

Ciągi. Granica ciągu. Szeregi liczbowe. Kryteria zbieżności szeregów.

- 1. Zbadać monotoniczność ciągu o wyrazie ogólnym:
- a. $a_n = n^3$; b. $b_n = \frac{3n+1}{n(n+1)}$; c. $c_n = \frac{n^n}{n!}$; d. $d_n = \cos \frac{\pi}{2n}$.
- 2. Korzystając z definicji granicy ciągu wykazać, że:
- a. $\lim_{n\to\infty} \frac{n+1}{2n+1} = \frac{1}{2}$; b. $\lim_{n\to\infty} 2 + \frac{(-1)^n}{n} = 2$; c. $\lim_{n\to\infty} \frac{n^2}{2n^2-1} = \frac{1}{2}$;
- 3. Obliczyć granicę ciągu o wyrazie ogólnym:
- a. $a_n = \frac{4n^3 n + 6}{2n^3 n^2 + 2n + 1}$; b. $a_n = \frac{1 + 2 + 3 + \dots + n}{n^2}$; c. $a_n = \frac{1}{\sqrt{n^2 + n + 1} \sqrt{n^2 + 5}}$;
- d. $a_n = \sqrt[3]{n^3 + 4n^2} n$; e. $a_n = \frac{n^2 + 3n 1}{-2n^2 + n} \left(\sqrt{n + \sqrt{n}} \sqrt{n \sqrt{n}} \right)$; f. $a_n = \frac{4 \cdot 3^{n+1} + 2 \cdot 4^n}{5 \cdot 2^n + 4^{n+2}}$;
- g. $a_n = \sqrt[n]{5n^3 + 6n^2 + 3n + 1}$; h. $a_n = \sqrt[n]{3^n + 5^n + 7^n}$; i. $a_n = \sqrt[n]{3n + \sin n}$;
- j. $a_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}};$ k. $a_n = \left(\frac{n^2+2}{2n^2+1}\right)^{n^2};$ l. $a_n = \left(1 \frac{1}{2n+5}\right)^{\frac{n-1}{2}};$
- $i. \ a_n = \left(\frac{3n-1}{3n+1}\right)^{n+4}; \quad \text{m. } a_n = \left(\frac{n^2+3}{n^2+1}\right)^{2n^2+5}.$
- 4. Jeśli $\{a_n\}$ jest ciągiem ograniczonym, zaś $\{b_n\}$ ciągiem zbieżnym do zera, to $\lim_{n\to\infty}a_nb_n=0$.

Obliczyć granice ciagów o wyrazie ogólnym:

- a. $a_n = \frac{n}{n^2 + 1} \sin(3n + 1)$, b. $a_n = \frac{1 + 2 + \dots + n}{n^3 + 1} \cos(n!)$, c. $a_n = \frac{n \sin(n!)}{n^2 + 1}$.
- 5. Przy założeniu, że ciąg (a_n) określony poniższym wzorem rekurencyjnym

$$a_1 = 1,$$
 $a_{n+1} = \frac{1}{2} \left(a_n + \frac{b}{a_n} \right), \quad b > 0,$

jest zbieżny, wyznaczyć jego granicę.

- 6. Niech $\{a_n\}$ będzie zadanym ciągiem takim, że $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = q = const.$ Jeżeli q < 1, to $\lim_{n\to\infty} a_n = 0$.
- Wykazać, że ciągi $a_n = \frac{2^n n!}{n^n}$ i $b_n = \frac{(n!)^2}{(2n)!}$ są zbieżne do zera.

7. Wykorzystując warunek konieczny zbieżności szeregu, wykazać, że następujące szeregi są rozbieżne:

a.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n}};$$

b.
$$\sum_{n=2}^{\infty} \frac{(n+1)^2 - n^3}{(n-1)^3}$$

a.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n}}$$
; b. $\sum_{n=2}^{\infty} \frac{(n+1)^2 - n^3}{(n-1)^3}$; c. $\sum_{n=1}^{\infty} n(\sqrt{n^2 + 1} - \sqrt{n^2 - 1})$.

8. Stosując kryterium d'Alamberta zbadać zbieżność następujących szeregów:

a.
$$\sum_{n=1}^{\infty} \frac{n^n}{(2n)!}$$
; b. $\sum_{n=1}^{\infty} \frac{2^n}{n^4}$; c. $\sum_{n=1}^{\infty} \frac{2n-1}{3^n}$; d. $\sum_{n=1}^{\infty} \frac{10^n}{n!}$;

b.
$$\sum_{n=1}^{\infty} \frac{2^n}{n^4}$$
;

c.
$$\sum_{n=1}^{\infty} \frac{2n-1}{3n}$$

d.
$$\sum_{n=1}^{\infty} \frac{10^n}{n!}$$

e.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
;

e.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
; f. $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2 e^n}$.

9. Korzystając z kryterium Cauchy'ego rozstrzygnąć, które z podanych niżej szeregów są zbieżne:

a.
$$\sum_{n=1}^{\infty} \frac{2^n}{n^4}$$
:

b.
$$\sum_{n=1}^{\infty} \frac{n^2}{(2+1)n}$$
;

c.
$$\sum_{n=1}^{\infty} \left(\frac{n}{2n+1} \right)^n;$$

a.
$$\sum_{n=1}^{\infty} \frac{2^n}{n^4}$$
; b. $\sum_{n=1}^{\infty} \frac{n^2}{(2+\frac{1}{n})^n}$; c. $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^n$; d. $\sum_{n=1}^{\infty} \frac{\left(\frac{n+1}{n}\right)^{n^2}}{3^n}$;

e.
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2} 2^n.$$

10. Zbadać zbieżność szeregów:

a.
$$\sum_{n=1}^{\infty} \frac{n^2 + 4n}{n^4 + 2n^2 + 1}$$

b.
$$\sum_{n=1}^{\infty} \frac{n^2 + 4n}{n^3 + 3n^2 + 1}$$

a.
$$\sum_{n=1}^{\infty} \frac{n^2 + 4n}{n^4 + 2n^2 + 1}$$
; b. $\sum_{n=1}^{\infty} \frac{n^2 + 4n}{n^3 + 3n^2 + 1}$; c. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)(n+2)}}$;

d.
$$\sum_{n=1}^{\infty} \frac{\sqrt{2n+1}}{\sqrt{n(n+1)(n+2)}};$$
 e. $\sum_{n=1}^{\infty} \frac{\sin 2^n}{3^n};$ f. $\sum_{n=1}^{\infty} \frac{\sin 4^n}{4^n};$ g. $\sum_{n=1}^{\infty} \frac{\ln(n+1)}{n^3}.$

e.
$$\sum_{n=1}^{\infty} \frac{\sin 2^n}{3^n}$$

f.
$$\sum_{n=1}^{\infty} \frac{\sin 4^n}{4^n}$$

g.
$$\sum_{n=1}^{\infty} \frac{\ln(n+1)}{n^3}$$

11. Zbadać zbieżność bewzględną szeregów:

a.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{10^n}{n!}$$
;

a.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{10^n}{n!}$$
; b. $\sum_{n=1}^{\infty} (-1)^{n+1} n \left(\frac{3}{4}\right)^{n-1}$.

12. Wykazać, że:

a.
$$\lim_{n\to\infty} \frac{2^n}{n!} = 0$$
; b. $\lim_{n\to\infty} \frac{n^{10}}{2^n} = 0$; c. $\lim_{n\to\infty} \frac{n!}{n^n} = 0$;

b.
$$\lim_{n\to\infty} \frac{n^{10}}{2n} = 0;$$

c.
$$\lim_{n\to\infty} \frac{n!}{n^n} = 0$$

d.
$$\lim_{n\to\infty} \frac{n^5}{2^n + 3^n} = 0$$
.