

Propriedades das linguagens recursivas Teoria da Computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

18 de maio de 2023

^oSlides baseados no livro LEWIS, Harry R.; PAPADIMITRIOU, Christos H. Elements of the Theory of Computation. ACM SIGACT News, v. 29, n. 3, p. 62-78, 1998.

Definição

Dizemos que uma Máquina de Turing enumera a linguagem L se e somente se, para algum estado fixo q de M

$$L = \{w : (s, \rhd \underline{\sqcup}) \vdash_{M}^{*} (q, \rhd \underline{\sqcup}w)\}$$

Uma linguagem é Turing enumerável se e somente se existe uma máquina de Turing que a enumera

Teorema

Uma linguagem é recursivamente enumerável se e somente se ela é Turing enumerável

Definição

Seja M uma máquina de Turing que enumera uma linguagem L. Dizemos que M enumera lexicograficamente L se o seguinte é verdade: sempre que $(q, \rhd_{\sqsubseteq} w) \vdash_{M}^{+} (q, \rhd_{\sqsubseteq} w')$, temos que w' vem lexicograficamente depois de w onde q é um estado especial.

Uma linguagem é Turing-enumerável lexicograficamente se e somente se existe uma máquina de Turing que a enumera lexicograficamente.

Teorema

Uma linguagem é recursiva se e somente se ela é Turing-enumerável lexicograficamente.

Teorema de Rice

Suponha que \mathcal{C} é um subconjunto próprio e não vazio da classe de todas as linguagens recursivamente enumeráveis. Então o seguinte problema é indecidível: dada uma máquina de Turing M, $L(M) \in \mathcal{C}$?

Ideia da demonstração

- ullet Podemos assumir que $\emptyset
 ot\in \mathcal{C}$
- ullet Como ${\cal C}$ é não vazia, podemos assumir que existe uma linguagem $L\in {\cal C}$ semidecidida por uma máquina M_L
- ullet Devemos reduzir o problema da parada para o problema de decidir se uma linguagem semidecidida por uma dada máquina de Turing está em ${\cal C}$

•

$$T_{M,w}(x)$$
: se $U("M"'w") \neq \nearrow$ então $M_L(x)$, caso contrário \nearrow

Afirmação

A linguagem semidecidida por $T_{M,w}$ está na classe $\mathcal C$ se e somente se M para para a entrada w

Ideia da prova

- ullet Suponha que M para para a entrada w
 - Então $T_{M,w}$ para a entrada x determina isso, e então sempre aceita x se e somente se $x \in L$
 - ullet Portanto, nesse caso, a linguagem semidecidida por $T_{M,w}$ é L que está em ${\mathcal C}$
- Suponha então que $M(w) = \nearrow$
 - Nesse caso, a linguagem semidecidida por $T_{M,w}$ nunca para e então M_x semidecide a linguagem \emptyset que não está em $\mathcal C$

A indecidibilidade de muitos problemas são obtidas a partir do Teorema de Rice. Dada uma máquina de Turing M, a linguagem L(M) semidecidida por ela é regular? É livre de contexto? Finita? Vazia? Recursiva? E assim por diante.

Próxima aula

O que vem por aí?

Tira dúvidas

Propriedades das linguagens recursivas Teoria da Computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

18 de maio de 2023

^oSlides baseados no livro LEWIS, Harry R.; PAPADIMITRIOU, Christos H. Elements of the Theory of Computation. ACM SIGACT News, v. 29, n. 3, p. 62-78, 1998.