

Future Trends in Cyber Defence

Toby Richer

Defence Science & Technology

About me

- Data Scientist in Countering Software Threats Team, Cyber & Electronic Warfare Division
- Postdoctoral researcher in swarm intelligence at Goldsmiths College, University of London
- PhD in robotics at University of South Australia
- Cyber Security Research Interests:
 - Application of machine learning to Cyber Defence & Forensics
 - log analysis
 - program analysis

Theme of Talk

- Technologies that will have a strong effect on Cyber Defence in the next five to ten years
 - Machine Learning
 - Cloud Security
 - Automated Program Analysis
- What each technology does
- Possible benefits and drawbacks
- Potential effect on Defence capability

Machine Learning

Machine Learning for Cyber Defence

Machine Learning – Classification

Supervised Learning

Unsupervised Learning

Machine Learning - Analysis

Benefits

- Summarising large bodies of data
- Capturing expert knowledge

Drawbacks

- False Positives
- Black Boxes
- Black Swans

Machine Learning - Counters

- Adversarial Machine Learning
 - Minor perturbations that foil ML systems without affecting human interpretation of the data
 - Some popular ML techniques are fragile; minor changes in underlying data ruin results

Machine Learning - Consequences

- Increased Automation
 - Wrangling large bodies of data
 - Frees up analyst time
 - Potentially paves way for autonomic approaches
- Vulnerabilities are still there
 - Attackers are adapting
 - ML not so good for unique events
 - Doesn't replace good configuration and baselining these are required to get the best out of ML

Cloud Security - Description

- Now, clients have direct & immediate connection to ML/analytics based on worldwide data, human analysts
- Response within milliseconds, minutes/hours in rare cases
- Cloud systems allow systems to be easily replicated & moved
 - Potential for fast & elaborate responses to probing or attack

Client with suspicious activity

Cloud Security - Analysis

Benefits

- Rapid Response
- Captures wide range of knowledge about file and world networks
- In some cases, can include human analysis

Drawbacks

- Most tools suited to enterprise systems
 less for unique, embedded systems
- Needs internet connection
- May require high degree of information sharing with commercial entities
- Rapid response techniques may not allow for nuance

Cloud Security - Consequences

- Potential for more secure flexible systems
 - Homogenous configuration
 - High level of automation
 - Ability to reconfigure automatically to respond to attack
- Significant limits on applicability
 - Not for embedded systems
 - Required connectivity
- Like Machine Learning, potential to significantly reduce the repetitive parts of workload
 - Allows analysts to switch focus to unique systems, unusual problems

Program Analysis

- Working out what programs do
 - Vulnerability Detection
 - Threat Intelligence and Triage
- Main existing approaches
 - Static Analysis
 - Dynamic Analysis
- Value of automation
 - Manual analysis requires well-trained analysts, large amounts of time
 - Arms race malicious software now uses anti-analysis techniques
 - Some malicious software uses anti-anti-anti-analysis
 - Potential for autonomous security computers that automatically detect and patch vulnerabilities

Automated Program Analysis

Automated Static Analysis

Symbolic Execution

Concolic Execution

Fuzzing

Automated Program Analysis - Analysis

Benefits

- Captures/substitutes for higher-level analyst knowledge
- Potentially effective on previouslyunseen threats
- Can apply static and dynamic approaches
- Drills down to concrete program behaviour
- Guarantees of thoroughness, correctness

Drawbacks

- Scales badly with program size
- Often designed around toy problems
- Current research focuses on vulnerability detection
- Vulnerable to attack through deliberate addition of complexity

Consequences – Automated Program Analysis

- Potential to provide detailed program analysis to analysts with less training in the area
- Developing practical techniques for fast triage of real-world binaries still an ongoing area of research
- To use the information from such tools correctly
 - Proper baselining and configuration helps
 - Analysts need overall knowledge of the system they are investigating, or other tools (such as ML) to help develop this knowledge

Summary – Machine Learning

- If well designed, can provide good summaries of system activity and point analysts to areas of interest
- It requires humans to interpret it's a force multiplier, not a replacement for analysts
- Requires preliminary work defining systems and interactions, otherwise high chance of false positives and potential of making the analyst's job *harder*
- Rising interest in exploiting machine learning systems

Summary – Cloud Security

- Strong, cloud-based protection for internet facing networks available commercially now
- The highly homogenous and flexible nature of cloud infrastructure allows for new techniques in managing secure networks and responding to attacks
- It requires full access to those networks, some loss of control over threat response
- It also requires trust in the cloud provider to keep the underlying infrastructure secure

Summary – Automated Program Analysis

- Strong potential for automated threat analysis
 - Like ML, automates a lot of manual work
 - Unlike most ML, produces concrete interpretable results
- That potential is still a long way from realization
 - Current systems run large servers for months dealing with small problems
 - Need for strong research effort in this area

Conclusion

- ML can automate repetitive aspects and assist in finding threats, but not a replacement for trained analysts
- Cloud security can lead to strong improvements in enterprise in cases where the sacrifice of autonomy is feasible
 - Use of secure clouds particularly of interest potential to improve security while reducing maintenance workload
- Automated Program Analysis has the potential to significantly improve capability in the longer term

Conclusion – Effect on Defence

- Simpler, more mundane aspects of cyber security can be automated
- Require management from people with higher levels of knowledge
- Analysts can now tackle more complex security issues:
 - Hunts and Cyber Threat Intelligence
 - Managing and configuring intelligent security tools
 - Developing security approaches for unique systems and platforms

What We Do

- Counter Cyber Threats STC
 - Counter Software Threats Team
 - Better frameworks for static and dynamic analysis
 - Techniques for binary comparison
 - Portable, practical automated program analysis tools
 -tailored to DCO Teams
 - Trustworthy Machine Learning Team
 - Prototyping methods of attacking Machine Learning
 - Developing robust Machine Learning algorithms
 - Methodologies, testbeds for testing Machine Learning robustness

Questions?

toby.richer@defence.gov.au