A. AMENDMENTS TO CLAIMS

Please cancel Claims 7, 22, 36, 51 and 54 and amend the claims as indicated hereinafter.

1	l.	(CURRENTLY AMENDED) A method for automatically routing an integrated circuit, the
2		method comprising the computer-implemented steps of:
3		receiving integrated circuit layout data that defines a set of two or more integrated circuit
4		devices to be included in the integrated circuit;
5		receiving integrated circuit connection data that specifies one or more electrical
.6		connections to be made between the integrated circuit devices;
. 7		determining, based upon the integrated circuit layout data and the integrated circuit
8		connection data, a set of one or more routing indicators that specify a set of one or
9		more preferable intermediate routing locations through which a routing path is to
10		be located to connect first and second integrated circuit devices from the set of
11		two or more integrated circuit devices;
12		identifying one or more obstacles that block the routing path;
13		determining one or more portions of the routing path to be ripped up and rerouted;
14		determining, based upon the integrated circuit layout data, the integrated circuit
15		connection data, the set of one or more routing indicators and the one or more
16		portions of the routing path to be ripped up and rerouted, the routing path between
17		the first and second integrated circuit devices, wherein the routing path satisfies
18		specified design criteria; and
19		determining, based upon the integrated circuit layout data, the integrated circuit
20		connection data and the set of one or more routing indicators, the routing path
21		between the first and second integrated circuit devices, wherein the routing path
22		satisfies specified design criteria; and

updating the integrated circuit layout data to generate updated integrated circuit layout data that reflects the routing path between the first and second integrated circuit devices.

- (CURRENTLY AMENDED) The method as recited in Claim 1, wherein determining the routing path includes determining, based upon the integrated circuit layout data, the integrated circuit connection data, the set of one or more routing indicators, the one or more portions of the routing path to be ripped up and rerouted, bias direction criteria and straying limit criteria, the routing path between the first and second integrated circuit devices, wherein the bias direction criteria specifies a preferred routing direction for a routing path between first and second integrated circuit devices from the set of two or more integrated circuit devices and the straying limit criteria defines a routing region in which the routing path between the first and second integrated circuit devices may be placed.
- 3. (CURRENTLY AMENDED) The method as recited in Claim 1, wherein determining the routing path between the first and second integrated circuit devices includes identifying one or more obstacles that block the routing path. determining, based upon the integrated circuit layout data, the integrated circuit connection data and the one or more obstacles, one or more additional routing indicators that specify one or more preferable routing locations through which the routing path is to be located to avoid the one or more obstacles, and determining, based upon the integrated circuit layout data, the integrated circuit connection data, the set of one or more routing indicators and indicators, the one or more additional routing indicators, indicators and the one or more portions of the routing path to be ripped up and rerouted, the routing path between the first and second integrated circuit devices.

2.

1 4. (CURRENTLY AMENDED) The method as recited in Claim 1, wherein determining the 2 routing path between the first and second integrated circuit devices includes 3 identifying one or more obstacles that block the routing path, 4 changing specified straying limit criteria that defines a routing region in which the 5 routing path between the first and second integrated circuit devices may be placed 6 to generate changed specified straying limit criteria that defines a modified 7 routing region, and 8 determining, based upon the integrated circuit layout data, the integrated circuit 9 connection data, the set of one or more routing indicators indicators, the one or 10 more portions of the routing path to be ripped up and rerouted and the changed 11 specified straying limit criteria, the routing path between the first and second 12 integrated circuit devices. 1 5. (CURRENTLY AMENDED) The method as recited in Claim 1, wherein determining the 2 routing path between the first and second integrated circuit devices includes 3 identifying one or more obstacles that block the routing path, 4 determining a set of one or more layer changes to allow the routing path to avoid the one 5 more obstacles, and 6 determining, based upon the integrated circuit layout data, the integrated circuit 7 connection data, the set of one or more routing indicators indicators, the one or 8 more portions of the routing path to be ripped up and rerouted and the set of one 9 or more layer changes, the routing path between the first and second integrated 10 circuit devices.

6. (CURRENTLY AMENDED) The method as recited in Claim 1, wherein determining the routing path between the first and second integrated circuit devices includes identifying one or more obstacles that block the routing path,

1

2

3

ı î

determining a set of one or more bends to be included in the routing path to avoid the one
more obstacles, and
determining, based upon the integrated circuit layout data, the integrated circuit
connection data, the set of one or more routing indicators indicators, the one or
more portions of the routing path to be ripped up and rerouted and the set of one
or more bends, the routing path between the first and second integrated circuit
devices.

7. (CANCELED)

1

1

2

3

4

- 1 8. (CURRENTLY AMENDED) The method as recited in Claim 7, Claim 1, wherein 2 determining the routing path between the first and second integrated circuit devices 3 further includes 4 determining one or more portions of one or more other routing paths to be ripped up and 5 rerouted, and 6 determining, based upon the integrated circuit layout data, the integrated circuit 7 connection data, the set of one or more routing indicators, the one or more 8 portions of the routing path to be ripped up and rerouted and the one or more 9 portions of the one or more other routing paths to be ripped up and rerouted, the 10 routing path between the first and second integrated circuit devices.
 - 9. (CURRENTLY AMENDED) The method as recited in Claim 1, wherein determining the routing path between the first and second integrated circuit devices further includes identifying one or more obstacles that block the routing path, determining one or more portions of one or more other routing paths to be ripped up and rerouted, and

6		determining, based upon the integrated circuit layout data, the integrated circuit
7		connection data, the set of one or more routing indicators indicators, the one or
8		more portions of the routing path to be ripped up and rerouted and the one or
9		more portions of the one or more other routing paths to be ripped up and rerouted,
10		the routing path between the first and second integrated circuit devices.
1	10.	(CURRENTLY AMENDED) The method as recited in Claim 1, wherein determining the
2		routing path between the first and second integrated circuit devices includes <u>determining</u>
3		the routing path from the second integrated circuit device to the first integrated circuit
4		device.
5		identifying one or more obstacles that block the routing path, and
6		determining, based upon the integrated circuit layout data, the integrated circuit
7		connection data and the set of one or more routing indicators, the routing path
8		between the first and second integrated circuit devices, wherein the routing path is
9		routed from the second integrated circuit device to the first integrated circuit
10		device.
1	11.	(CURRENTLY AMENDER) The method or resited in Claim 1 subspace determining the
	11.	(CURRENTLY AMENDED) The method as recited in Claim 1, wherein determining the
2		routing path between the first and second integrated circuit devices includes
3		identifying one or more obstacles that block the routing path,
4		determining one or more locations to employ corner clipping to provide additional space
5		for the routing path, and
6		determining, based upon the integrated circuit layout data, the integrated circuit
7		connection data, the set of one or more routing indicators indicators, the one or
8		more portions of the routing path to be ripped up and rerouted and the one or
9		more locations to employ corner clipping, the routing path between the first and

second integrated circuit devices.

1	12.	(CURRENTLY AMENDED) The method as recited in Claim 1, wherein determining the
2		routing path between the first and second integrated circuit devices includes
3		identifying one or more obstacles that block the routing path,
4		determining one or more integrated circuit layout objects to be moved to provide
5		additional space for the routing path, and
6		determining, based upon the integrated circuit layout data, the integrated circuit
7		connection data, the set of one or more routing indicators indicators, the one or
8		more portions of the routing path to be ripped up and rerouted and moving the one
9		or more integrated circuit layout objects, the routing path between the first and
10		second integrated circuit devices.
1	13.	(CURRENTLY AMENDED) The method as recited in Claim 1, wherein determining the
2		routing path between the first and second integrated circuit devices includes
3		examining data that indicates whether changes can be made to one or more layout objects
4		defined by the integrated circuit layout data to accommodate the routing of the
5		routing path, and
6		if the data indicates that changes can be made to the one or more layout objects defined
7		by the integrated circuit layout data to accommodate the routing of the routing
8		path, then
9		making one or more changes to the one or more layout objects defined by the

integrated circuit layout data, and

determining, based upon the integrated circuit layout data, the integrated circuit
connection data, the set of one or more routing indicators indicators, the
one or more portions of the routing path to be ripped up and rerouted and
the one or more changes made to the one or more layout objects, the
routing path between the first and second integrated circuit devices.

1	14.	(ORIGINAL) The method as recited in Claim 13, further comprising generating data that
2		specifies the one or more changes made to the one or more layout objects.
_		specifies the one of more changes made to the one of more layout cojects.
1	15.	(CURRENTLY AMENDED) The method as recited in Claim 1, wherein determining the
2		routing path between the first and second integrated circuit devices includes
3		determining a set of one or more routing targets to which the routing path is to be routed,
4		and
5		determining, based upon the integrated circuit layout data, the integrated circuit
6		connection data, the set of one or more routing indicators indicators, the one or
7		more portions of the routing path to be ripped up and rerouted and the set of one
8		or more routing targets, the routing path between the first and second integrated
9		circuit devices.
1	16.	(CURRENTLY AMENDED) A method for automatically routing an integrated circuit, the
2		method comprising the computer-implemented steps of:
3		receiving integrated circuit layout data that defines a set of two or more integrated circuit
4		devices to be included in the integrated circuit;
5		receiving integrated circuit connection data that specifies one or more electrical
6		connections to be made between the integrated circuit devices;
7		determining, based upon the integrated circuit layout data and the integrated circuit
8		connection data, a set of one or more routing indicators that specify a set of one or
9		more preferable intermediate routing locations through which a routing path is to
10		be located to connect first and second integrated circuit devices from the set of
11		two or more integrated circuit devices; and
12		determining, based upon the integrated circuit layout data, the integrated circuit

connection data and the set of one or more routing indicators, the routing path

14		between the first and second integrated circuit devices, wherein the routing path
15		satisfies specified design criteria, and The method as recited in Claim 1, wherein
16		determining the routing path between the first and second integrated circuit
17		devices includes performing one or more design rule checks on one or more
18		portions of the routing path as the routing path is being determined.
1	17.	(ORIGINAL) The method as recited in Claim 16, further comprising performing a design
2		rule check on the updated integrated circuit layout data, wherein the design rule check
3		does not check one or more layout objects previously checked during determination of
4		the routing path.
1	18.	(CURRENTLY AMENDED) A method for automatically routing an integrated circuit, the
2		method comprising the computer-implemented steps of:
3		receiving integrated circuit layout data that defines a set of two or more integrated circuit
4		devices to be included in the integrated circuit;
5		receiving integrated circuit connection data that specifies one or more electrical
6		connections to be made between the integrated circuit devices;
7		determining, based upon the integrated circuit layout data and the integrated circuit
8		connection data, a set of one or more routing indicators that specify a set of one or
9		more preferable intermediate routing locations through which a routing path is to
10		be located to connect first and second integrated circuit devices from the set of
11		two or more integrated circuit devices; and
12		determining, based upon the integrated circuit layout data, the integrated circuit
13		connection data and the set of one or more routing indicators, the routing path
14		between the first and second integrated circuit devices, wherein the routing path
15		satisfies specified design criteria, and The method as recited in Claim 1, wherein

16		determining the routing path between the first and second integrated circuit
17		devices includes
18		extending the routing path a specified amount to generate an extended portion of
19		the routing path, and
20		selectively performing a design rule check on only the extended portion of the
21		routing path.
1	19.	(ORIGINAL) The method as recited in Claim 1, wherein all attachment and bend angles
2		defined by the updated integrated circuit layout data are multiples of ninety degrees.
1	20.	(ORIGINAL) The method as recited in Claim 1, wherein one or more attachment or bend
2		angles defined by the updated integrated circuit layout data are multiples of other than
3		ninety degrees.
1	21.	(PREVIOUSLY PRESENTED) A method for automatically verifying an integrated
2		circuit layout, the method comprising the computer-implemented steps of:
3		receiving integrated circuit layout data that defines a set of two or more layout objects
4		contained in the integrated circuit layout;
5		performing a first design rule check on a layout object from the set of two or more layout
6		objects by evaluating the layout object against specified design criteria;
7		changing one or more values defined by the specified design criteria to generate updated
8		specified design criteria, wherein the changing of the one or more values is
9		performed after a specified amount of time has elapsed and is made with respect
10		to either the layout object or one or more other layout objects from the set of two
11		or more layout objects; and
12		performing a second design rule check on the layout object by evaluating the layout
13		object against the updated specified design criteria.

1	22.	(CANCELED)
1	23.	(ORIGINAL) A method for automatically routing an integrated circuit, the method
2		comprising the computer-implemented steps of:
3		receiving integrated circuit layout data that defines a set of two or more integrated circuit
4		devices to be included in the integrated circuit;
5		receiving integrated circuit connection data that specifies one or more electrical
6		connections to be made between the integrated circuit devices;
7		determining, based upon the integrated circuit layout data and the integrated circuit
8		connection data, a routing path between first and second integrated circuit devices
9		that satisfies specified design criteria, wherein determining the routing path
10		between the first and second integrated circuit devices includes
11		determining whether the distance to be routed for a portion of the routing path
12		exceeds a specified distance, and
13		if the distance to be routed for the portion of the routing path does not exceed the
14		specified distance, then routing the portion of the routing path in a single
15		step; and
16		updating the integrated circuit layout data to generate updated integrated circuit layout
17		data that reflects the routing path between the first and second integrated circuit
18		devices.
1	24.	(CURRENTLY AMENDED) A computer-readable medium carrying one or more
2		sequences of one or more instructions for automatically routing an integrated circuit, the one
3		or more sequences of one or more instructions including instructions which, when executed

by one or more processors, cause the one or more processors to perform the steps of:

5		receiving integrated circuit layout data that defines a set of two or more integrated circuit
6		devices to be included in the integrated circuit;
7		receiving integrated circuit connection data that specifies one or more electrical
8		connections to be made between the integrated circuit devices;
9		determining, based upon the integrated circuit layout data and the integrated circuit
10		connection data, a set of one or more routing indicators that specify a set of one or
11		more preferable intermediate routing locations through which a routing path is to
12		be located to connect first and second integrated circuit devices from the set of
13		two or more integrated circuit devices;
14		identifying one or more obstacles that block the routing path;
15		determining one or more portions of the routing path to be ripped up and rerouted;
16		determining, based upon the integrated circuit layout data, the integrated circuit
17		connection data, the set of one or more routing indicators and the one or more
18		portions of the routing path to be ripped up and rerouted, the routing path between
19		the first and second integrated circuit devices, wherein the routing path satisfies
20		specified design criteria; and
21		determining, based upon the integrated circuit layout data, the integrated circuit
22		connection data and the set of one or more routing indicators, the routing path
23		between the first and second integrated circuit devices, wherein the routing path
24		satisfies specified design criteria; and
25		updating the integrated circuit layout data to generate updated integrated circuit layout
26		data that reflects the routing path between the first and second integrated circuit
27		devices.
1	25.	(CURRENTLY AMENDED) The computer-readable medium as recited in Claim 24,
2		wherein determining the routing path includes determining, based upon the integrated
3		circuit layout data, the integrated circuit connection data, the set of one or more routing

indicators, the one or more portions of the routing path to be ripped up and rerouted, bias direction criteria and straying limit criteria, the routing path between the first and second integrated circuit devices, wherein the bias direction criteria specifies a preferred routing direction for a routing path between first and second integrated circuit devices from the set of two or more integrated circuit devices and the straying limit criteria defines a routing region in which the routing path between the first and second integrated circuit devices may be placed.

26. (CURRENTLY AMENDED) The computer-readable medium as recited in Claim 24, wherein determining the routing path between the first and second integrated circuit devices includes identifying one or more obstacles that block the routing path, determining, based upon the integrated circuit layout data, the integrated circuit connection data and the one or more obstacles, one or more additional routing indicators that specify one or more preferable routing locations through which the routing path is to be located to avoid the one or more obstacles, and determining, based upon the integrated circuit layout data, the integrated circuit connection data, the set of one or more routing indicators and indicators, the one or more additional routing indicators, indicators and the one or more portions of the routing path to be ripped up and rerouted, the routing path between the first

27. (CURRENTLY AMENDED) The computer-readable medium as recited in Claim 24, wherein determining the routing path between the first and second integrated circuit devices includes

identifying one or more obstacles that block the routing path,

and second integrated circuit devices.

5		changing specified straying limit criteria that defines a routing region in which the
6		routing path between the first and second integrated circuit devices may be placed
7		to generate changed specified straying limit criteria that defines a modified
8		routing region, and
9		determining, based upon the integrated circuit layout data, the integrated circuit
10		connection data, the set of one or more routing indicators indicators, the one or
11		more portions of the routing path to be ripped up and rerouted and the changed
12		specified straying limit criteria, the routing path between the first and second
13		integrated circuit devices.
1	28.	(CURRENTLY AMENDED) The computer-readable medium as recited in Claim 24,
2		wherein determining the routing path between the first and second integrated circuit
3		devices includes
4		identifying one or more obstacles that block the routing path,
5		determining a set of one or more layer changes to allow the routing path to avoid the one
6		more obstacles, and
7		determining, based upon the integrated circuit layout data, the integrated circuit
8		connection data, the set of one or more routing indicators indicators, the one or
9		more portions of the routing path to be ripped up and rerouted and the set of one
10		or more layer changes, the routing path between the first and second integrated
11		circuit devices.
1	29.	(CURRENTLY AMENDED) A system for automatically routing an integrated circuit, the
2		system comprising:
3		a data storage mechanism having stored therein

4	integrated circuit layout data that defines a set of two or more integrated circuit
5	devices to be included in the integrated circuit, and
6	integrated circuit connection data that specifies one or more electrical connections
7	to be made between the integrated circuit devices; and
8	a routing mechanism communicatively coupled to the data storage mechanism, the
9	routing mechanism being configured to
10	determine, based upon the integrated circuit layout data and the integrated circuit
11	connection data, a set of one or more routing indicators that specify a set
12	of one or more preferable intermediate routing locations through which a
13	routing path is to be located to connect first and second integrated circuit
14	devices from the set of two or more integrated circuit devices,
15	identify one or more obstacles that block the routing path;
16	determine one or more portions of the routing path to be ripped up and rerouted;
17	determine, based upon the integrated circuit layout data, the integrated circuit
18	connection data, the set of one or more routing indicators and the one or
19	more portions of the routing path to be ripped up and rerouted, the routing
20	path between the first and second integrated circuit devices, wherein the
21	routing path satisfies specified design criteria; and
22	determine, based upon the integrated circuit layout data, the integrated circuit
23	connection data and the set of one or more routing indicators, the routing
24	path between the first and second integrated circuit devices, wherein the
25	routing path satisfies specified design criteria, and
26	update the integrated circuit layout data to generate updated integrated circuit
27	layout data that reflects the routing path between the first and second
28	integrated circuit devices.

30. (CURRENTLY AMENDED) The system as recited in Claim 29, wherein the routing mechanism is further configured to determine the routing path by determining, based upon the integrated circuit layout data, the integrated circuit connection data, the set of one or more routing indicators, the one or more portions of the routing path to be ripped up and rerouted, bias direction criteria and straying limit criteria, the routing path between the first and second integrated circuit devices, wherein the bias direction criteria specifies a preferred routing direction for a routing path between first and second integrated circuit devices from the set of two or more integrated circuit devices and the straying limit criteria defines a routing region in which the routing path between the first and second integrated circuit devices may be placed.

31. (CURRENTLY AMENDED) The system as recited in Claim 29, wherein the routing mechanism is further configured to determine the routing path between the first and second integrated circuit devices by identifying one or more obstacles that block the routing path, determining, based upon the integrated circuit layout data, the integrated circuit connection data and the one or more obstacles, one or more additional routing indicators that specify one or more preferable routing locations through which the routing path is to be located to avoid the one or more obstacles, and determining, based upon the integrated circuit layout data, the integrated circuit connection data, the set of one or more routing indicators and indicators, the one or more additional routing indicators, indicators and the one or more portions of the routing path to be ripped up and rerouted, the routing path between the first and second integrated circuit devices.

6.

1	32.	(CORRENTE) AMENDED) The system as recited in Claim 29, wherein the routing
2		mechanism is further configured to determine the routing path between the first and
3		second integrated circuit devices by
4		identifying one or more obstacles that block the routing path,
5		changing specified straying limit criteria that defines a routing region in which the
6		routing path between the first and second integrated circuit devices may be placed
7		to generate changed specified straying limit criteria that defines a modified
8		routing region, and
9		determining, based upon the integrated circuit layout data, the integrated circuit
10		connection data, the set of one or more routing indicators indicators, the one or
11		more portions of the routing path to be ripped up and rerouted and the changed
12		specified straying limit criteria, the routing path between the first and second
13		integrated circuit devices.
1	33.	(CURRENTLY AMENDED) The system as recited in Claim 29, wherein routing
2		mechanism is further configured to determine the routing path between the first and
3		second integrated circuit devices by
4		identifying one or more obstacles that block the routing path,
5		determining a set of one or more layer changes to allow the routing path to avoid the one
6		more obstacles, and
7		determining, based upon the integrated circuit layout data, the integrated circuit
8		connection data, the set of one or more routing indicators indicators, the one or
9		more portions of the routing path to be ripped up and rerouted and the set of one
10		or more layer changes, the routing path between the first and second integrated
11		circuit devices.

ı	34.	(PREVIOUSLY PRESENTED) The method as recited in Claim 1, wherein each routing
2		indicator from the set of one or more routing indicators further specifies a routing
3		direction for the routing path.
1	35.	(CURRENTLY AMENDED) The computer-readable medium as recited in Claim 24,
2		wherein determining the routing path between the first and second integrated circuit
3		devices includes
4		identifying one or more obstacles that block the routing path,
5		determining a set of one or more bends to be included in the routing path to avoid the one
6		more obstacles, and
7		determining, based upon the integrated circuit layout data, the integrated circuit
8		connection data, the set of one or more routing indicators indicators, the one or
9		more portions of the routing path to be ripped up and rerouted and the set of one
10		or more bends, the routing path between the first and second integrated circuit
11		devices.
1	36.	(CANCELED)
1	37.	(CURRENTLY AMENDED) The computer-readable medium as recited in Claim 36,
2		Claim 24, wherein determining the routing path between the first and second integrated
3		circuit devices further includes
4		determining one or more portions of one or more other routing paths to be ripped up and
5		rerouted, and
6		determining, based upon the integrated circuit layout data, the integrated circuit
7		connection data, the set of one or more routing indicators, the one or more
8		portions of the routing path to be ripped up and resouted and the one or more

9		portions of the one or more other routing paths to be ripped up and rerouted, the
10		routing path between the first and second integrated circuit devices.
1	38.	(CURRENTLY AMENDED) The computer-readable medium as recited in Claim 24,
2		wherein determining the routing path between the first and second integrated circuit
3		devices further includes
4		identifying one or more obstacles that block the routing path,
5		determining one or more portions of one or more other routing paths to be ripped up and
6		rerouted, and
7		determining, based upon the integrated circuit layout data, the integrated circuit
8		connection data, the set of one or more routing indicators indicators, the one or
9		more portions of the routing path to be ripped up and rerouted and the one or
10		more portions of the one or more other routing paths to be ripped up and rerouted,
11		the routing path between the first and second integrated circuit devices.
1	39.	(CURRENTLY AMENDED) The computer-readable medium as recited in Claim 24,
2		wherein determining the routing path between the first and second integrated circuit
3		devices includes determining the routing path from the second integrated circuit device to
4		the first integrated circuit device.
5		identifying one or more obstacles that block the routing path, and
6		determining, based upon the integrated circuit layout data, the integrated circuit
7		connection data and the set of one or more routing indicators, the routing path
8		between the first and second integrated circuit devices, wherein the routing path is
9		routed from the second integrated circuit device to the first integrated circuit
10		device.

I	40.	(CURRENTLY AMENDED) The computer-readable medium as recited in Claim 24,
2		wherein determining the routing path between the first and second integrated circuit
3		devices includes
4		identifying one or more obstacles that block the routing path,
5		determining one or more locations to employ corner clipping to provide additional space
6		for the routing path, and
7		determining, based upon the integrated circuit layout data, the integrated circuit
8		connection data, the set of one or more routing indicators indicators, the one or
9		more portions of the routing path to be ripped up and rerouted and the one or
10		more locations to employ corner clipping, the routing path between the first and
11		second integrated circuit devices.
1	41.	(CURRENTLY AMENDED) The computer-readable medium as recited in Claim 24,
2		wherein determining the routing path between the first and second integrated circuit
3		devices includes
4		identifying one or more obstacles that block the routing path,
5		determining one or more integrated circuit layout objects to be moved to provide
6		additional space for the routing path, and
7		determining, based upon the integrated circuit layout data, the integrated circuit
8		connection data, the set of one or more routing indicators indicators, the one or
9		more portions of the routing path to be ripped up and rerouted and moving the one
10		or more integrated circuit layout objects, the routing path between the first and
11		second integrated circuit devices.
1	42.	(CURRENTLY AMENDED) The computer-readable medium as recited in Claim 24,
2		wherein determining the routing path between the first and second integrated circuit
3		devices includes

4		examining data that indicates whether changes can be made to one or more layout objects
5		defined by the integrated circuit layout data to accommodate the routing of the
6		routing path, and
7		if the data indicates that changes can be made to the one or more layout objects defined
8		by the integrated circuit layout data to accommodate the routing of the routing
9		path, then
10		making one or more changes to the one or more layout objects defined by the
11		integrated circuit layout data, and
12		determining, based upon the integrated circuit layout data, the integrated circuit
13		connection data, the set of one or more routing indicators indicators, the
14		one or more portions of the routing path to be ripped up and rerouted and
15		the one or more changes made to the one or more layout objects, the
16		routing path between the first and second integrated circuit devices.
1	43.	(PREVIOUSLY PRESENTED) The computer-readable medium as recited in Claim 42,
2		further comprising one or more additional instructions which, when executed by the one
3		or more processors, cause the one or more processors to generate data that specifies the
4		one or more changes made to the one or more layout objects.
1	44.	(CURRENTLY AMENDED) The computer-readable medium as recited in Claim 24,
2		wherein determining the routing path between the first and second integrated circuit
3		devices includes
4		determining a set of one or more routing targets to which the routing path is to be routed,
5		and
6		determining, based upon the integrated circuit layout data, the integrated circuit
7		connection data, the set of one or more routing indicators indicators, the one or

more portions of the routing path to be ripped up and rerouted and the set of one

9		or more routing targets, the routing path between the first and second integrated
10		circuit devices.
1	45.	(CURRENTLY AMENDED) A computer-readable medium carrying one or more
2		sequences of one or more instructions for automatically routing an integrated circuit, the one
3		or more sequences of one or more instructions including instructions which, when executed
4		by one or more processors, cause the one or more processors to perform the steps of:
5		receiving integrated circuit layout data that defines a set of two or more integrated circuit
6		devices to be included in the integrated circuit;
7		receiving integrated circuit connection data that specifies one or more electrical
8		connections to be made between the integrated circuit devices;
9		determining, based upon the integrated circuit layout data and the integrated circuit
10		connection data, a set of one or more routing indicators that specify a set of one or
11		more preferable intermediate routing locations through which a routing path is to
12		be located to connect first and second integrated circuit devices from the set of
13		two or more integrated circuit devices; and
14		determining, based upon the integrated circuit layout data, the integrated circuit
15		connection data and the set of one or more routing indicators, the routing path
16		between the first and second integrated circuit devices, wherein the routing path
17		satisfies specified design criteria, and The computer-readable medium as recited
18		in Claim 24, wherein determining the routing path between the first and second
19		integrated circuit devices includes performing one or more design rule checks on
20		one or more portions of the routing path as the routing path is being determined.
1	46.	(PREVIOUSLY PRESENTED) The computer-readable medium as recited in Claim 45,
2		further comprising one or more additional instructions which, when executed by the one

3		or more processors, cause the one or more processors to perform a design rule check on
4		the updated integrated circuit layout data, wherein the design rule check does not check
5		one or more layout objects previously checked during determination of the routing path.
1	47.	(CURRENTLY AMENDED) A computer-readable medium carrying one or more
2		sequences of one or more instructions for automatically routing an integrated circuit, the one
3		or more sequences of one or more instructions including instructions which, when executed
4		by one or more processors, cause the one or more processors to perform the steps of:
5		receiving integrated circuit layout data that defines a set of two or more integrated circuit
6		devices to be included in the integrated circuit;
7		receiving integrated circuit connection data that specifies one or more electrical
8		connections to be made between the integrated circuit devices;
9		determining, based upon the integrated circuit layout data and the integrated circuit
10		connection data, a set of one or more routing indicators that specify a set of one or
11		more preferable intermediate routing locations through which a routing path is to
12		be located to connect first and second integrated circuit devices from the set of
13		two or more integrated circuit devices; and
14		determining, based upon the integrated circuit layout data, the integrated circuit
15		connection data and the set of one or more routing indicators, the routing path
16		between the first and second integrated circuit devices, wherein the routing path
17		satisfies specified design criteria, and The computer-readable medium as recited
18		in Claim 24, wherein determining the routing path between the first and second
19		integrated circuit devices includes
20		extending the routing path a specified amount to generate an extended portion of
21		the routing path, and

22		selectively performing a design rule check on only the extended portion of the
23		routing path.
1	48.	(PREVIOUSLY PRESENTED) The computer-readable medium as recited in Claim 24,
2		wherein all attachment and bend angles defined by the updated integrated circuit layout
3		data are multiples of ninety degrees.
1	4 9.	(PREVIOUSLY PRESENTED) The computer-readable medium as recited in Claim 24,
2		wherein one or more attachment or bend angles defined by the updated integrated circuit
3		layout data are multiples of other than ninety degrees.
1	50.	(PREVIOUSLY PRESENTED) A computer-readable medium carrying one or more
2		sequences of one or more instructions for automatically verifying an integrated circuit
3		layout, the one or more sequences of one or more instructions including instructions
4		which, when executed by one or more processors, cause the one or more processors to
5		perform the steps of:
6		receiving integrated circuit layout data that defines a set of two or more layout objects
7		contained in the integrated circuit layout;
8		performing a first design rule check on a layout object from the set of two or more layou
9		objects by evaluating the layout object against specified design criteria;
10		changing one or more values defined by the specified design criteria to generate updated
11		specified design criteria, wherein the changing of the one or more values is
12		performed after a specified amount of time has elapsed and is made with respect
13		to either the layout object or one or more other layout objects from the set of two
14		or more layout objects; and
15		performing a second design rule check on the layout object by evaluating the layout
16		object against the updated specified design criteria.

51.	(CANCELED)
	O. H. O. L

1	52.	(PREVIOUSLY PRESENTED) A computer-readable medium carrying one or more
2		sequences of one or more instructions for automatically routing an integrated circuit, the one
3		or more sequences of one or more instructions including instructions which, when executed
4		by one or more processors, cause the one or more processors to perform the steps of:
5		receiving integrated circuit layout data that defines a set of two or more integrated circuit
6		devices to be included in the integrated circuit;
7		receiving integrated circuit connection data that specifies one or more electrical
8		connections to be made between the integrated circuit devices;
9		determining, based upon the integrated circuit layout data and the integrated circuit
10		connection data, a routing path between first and second integrated circuit devices
11		that satisfies specified design criteria, wherein determining the routing path
12		between the first and second integrated circuit devices includes
13		determining whether the distance to be routed for a portion of the routing path
14		exceeds a specified distance, and
15		if the distance to be routed for the portion of the routing path does not exceed the
16		specified distance, then routing the portion of the routing path in a single
17		step; and
18		updating the integrated circuit layout data to generate updated integrated circuit layout
19		data that reflects the routing path between the first and second integrated circuit
20		devices.

53. (CURRENTLY AMENDED) The system as recited in Claim 29, wherein determining the routing path between the first and second integrated circuit devices includes

3		identifying one or more obstacles that block the routing path,
4		determining a set of one or more bends to be included in the routing path to avoid the one
5		more obstacles, and
6		determining, based upon the integrated circuit layout data, the integrated circuit
7		connection data, the set of one or more routing indicators indicators, the one or
8		more portions of the routing path to be ripped up and rerouted and the set of one
9		or more bends, the routing path between the first and second integrated circuit
10		devices.
1	54.	(CANCELED)
1	55.	(CURRENTLY AMENDED) The system as recited in Claim 54, Claim 29, wherein
2	50.	determining the routing path between the first and second integrated circuit devices
3		further includes
4		determining one or more portions of one or more other routing paths to be ripped up and
5		rerouted, and
6		determining, based upon the integrated circuit layout data, the integrated circuit
7		connection data, the set of one or more routing indicators, the one or more
8		portions of the routing path to be ripped up and rerouted and the one or more
9		portions of the one or more other routing paths to be ripped up and rerouted, the
10		routing path between the first and second integrated circuit devices.
1	56.	(CURRENTLY AMENDED) The system as recited in Claim 29, wherein determining
2		the routing path between the first and second integrated circuit devices further includes
3		identifying one or more obstacles that block the routing path,
4		determining one or more portions of one or more other routing paths to be ripped up and
5		rerouted, and

O		determining, based upon the integrated circuit layout data, the integrated circuit
7		connection data, the set of one or more routing indicators indicators, the one or
8		more portions of the routing path to be ripped up and rerouted and the one or
9		more portions of the one or more other routing paths to be ripped up and rerouted,
10		the routing path between the first and second integrated circuit devices.
1	57.	(CURRENTLY AMENDED) The system as recited in Claim 29, wherein determining
2		the routing path between the first and second integrated circuit devices includes
3		determining the routing path from the second integrated circuit device to the first
4		integrated circuit device.
5		identifying one or more obstacles that block the routing path, and
6		determining, based upon the integrated circuit layout data, the integrated circuit
7		connection data and the set of one or more routing indicators, the routing path
8		between the first and second integrated circuit devices, wherein the routing path is
9		routed from the second integrated circuit device to the first integrated circuit
10		device.
1	58.	(CURRENTLY AMENDED) The system as recited in Claim 29, wherein determining
2		the routing path between the first and second integrated circuit devices includes
3		identifying one or more obstacles that block the routing path,
4		determining one or more locations to employ corner clipping to provide additional space
5		for the routing path, and
6		determining, based upon the integrated circuit layout data, the integrated circuit
7		connection data, the set of one or more routing indicators-indicators, the one or

9

10

second integrated circuit devices.

more portions of the routing path to be ripped up and rerouted and the one or

more locations to employ corner clipping, the routing path between the first and

1	39.	(CURRENTLY AMENDED) The system as recited in Claim 29, wherein determining
2		the routing path between the first and second integrated circuit devices includes
3		identifying one or more obstacles that block the routing path,
4		determining one or more integrated circuit layout objects to be moved to provide
5		additional space for the routing path, and
6		determining, based upon the integrated circuit layout data, the integrated circuit
7		connection data, the set of one or more routing indicators indicators, the one or
8		more portions of the routing path to be ripped up and rerouted and moving the one
9		or more integrated circuit layout objects, the routing path between the first and
10		second integrated circuit devices.
1	60.	(CURRENTLY AMENDED) The system as recited in Claim 29, wherein determining
2		the routing path between the first and second integrated circuit devices includes
3		examining data that indicates whether changes can be made to one or more layout objects
4		defined by the integrated circuit layout data to accommodate the routing of the
5		routing path, and
6		if the data indicates that changes can be made to the one or more layout objects defined
7		by the integrated circuit layout data to accommodate the routing of the routing
8		path, then
9		making one or more changes to the one or more layout objects defined by the
10		integrated circuit layout data, and
11		determining, based upon the integrated circuit layout data, the integrated circuit
12		connection data, the set of one or more routing indicators indicators, the
13		one or more portions of the routing path to be ripped up and rerouted nd

15

the one or more changes made to the one or more layout objects, the

routing path between the first and second integrated circuit devices.

1	61.	(PREVIOUSLY PRESENTED) The system as recited in Claim 60, wherein the routing
2		mechanism is further configured to generate data that specifies the one or more changes
3		made to the one or more layout objects.
1	62.	(CURRENTLY AMENDED) The system as recited in Claim 29, wherein determining
2		the routing path between the first and second integrated circuit devices includes
3		determining a set of one or more routing targets to which the routing path is to be routed,
4		and
5		determining, based upon the integrated circuit layout data, the integrated circuit
6		connection data, the set of one or more routing indicators indicators, the one or
7		more portions of the routing path to be ripped up and rerouted and the set of one
8		or more routing targets, the routing path between the first and second integrated
9		circuit devices.
1	63.	(CURRENTLY AMENDED) A system for automatically routing an integrated circuit, the
2		system comprising:
3		a data storage mechanism having stored therein
4		integrated circuit layout data that defines a set of two or more integrated circuit
5		devices to be included in the integrated circuit, and
6		integrated circuit connection data that specifies one or more electrical connections
7		to be made between the integrated circuit devices; and
8		a routing mechanism communicatively coupled to the data storage mechanism, the
9		routing mechanism being configured to
10		determine, based upon the integrated circuit layout data and the integrated circuit
11		connection data, a set of one or more routing indicators that specify a set
12		of one or more preferable intermediate routing locations through which a

13		routing path is to be located to connect first and second integrated circuit
14		devices from the set of two or more integrated circuit devices,
15		determine, based upon the integrated circuit layout data, the integrated circuit
16		connection data and the set of one or more routing indicators, the routing
17		path between the first and second integrated circuit devices, wherein the
18		routing path satisfies specified design criteria, and The system as recited in
19		Claim 29, wherein determining the routing path between the first and
20		second integrated circuit devices includes performing one or more design
21		rule checks on one or more portions of the routing path as the routing path
22		is being determined. determined; and
23		update the integrated circuit layout data to generate updated integrated circuit
24		layout data that reflects the routing path between the first and second
25		integrated circuit devices.
1	64.	(PREVIOUSLY PRESENTED) The system as recited in Claim 63, wherein the routing
2		mechanism is further configured to perform a design rule check on the updated integrated
3		circuit layout data, wherein the design rule check does not check one or more layout
4		objects previously checked during determination of the routing path.
1	65.	(CURRENTLY AMENDED) A system for automatically routing an integrated circuit, the
2		system comprising:
3		a data storage mechanism having stored therein
4		integrated circuit layout data that defines a set of two or more integrated circuit
5		devices to be included in the integrated circuit, and
6		integrated circuit connection data that specifies one or more electrical connections
7		to be made between the integrated circuit devices: and

8		a routing mechanism communicatively coupled to the data storage mechanism, the
9		routing mechanism being configured to
10		determine, based upon the integrated circuit layout data and the integrated circuit
11		connection data, a set of one or more routing indicators that specify a set
12		of one or more preferable intermediate routing locations through which a
13		routing path is to be located to connect first and second integrated circuit
14		devices from the set of two or more integrated circuit devices,
15		determine, based upon the integrated circuit layout data, the integrated circuit
16		connection data and the set of one or more routing indicators, the routing
17		path between the first and second integrated circuit devices, wherein the
18		routing path satisfies specified design criteria, and The system as recited in
19	,	Claim 29, wherein determining the routing path between the first and
20		second integrated circuit devices includes
21		extending the routing path a specified amount to generate an extended
22		portion of the routing path, and
23		selectively performing a design rule check on only the extended portion of
24		the routing path. path; and
25		update the integrated circuit layout data to generate updated integrated circuit
26		layout data that reflects the routing path between the first and second
27		integrated circuit devices.
1	66.	(PREVIOUSLY PRESENTED) The system as recited in Claim 29, wherein all
2		attachment and bend angles defined by the updated integrated circuit layout data are
3		multiples of ninety degrees.

- 1 67. (PREVIOUSLY PRESENTED) The system as recited in Claim 29, wherein one or more
- 2 attachment or bend angles defined by the updated integrated circuit layout data are
- 3 multiples of other than ninety degrees.