Tópicos de Matemática

Licenciatura em Ciências da Computação

Exame (Época de recurso)

_____ duração: 2 horas _____

1. (a) Considere as fórmulas proposicionais $\varphi:q\to ((p\vee \neg q)\to \neg q)$ e $\psi:\neg(q\leftrightarrow p)$. Diga, justificando, se a fórmula ψ é uma consequência lógica da fórmula φ .

A fómula ψ é uma consequência lógica de φ se a fórmula $\varphi \to \psi$ é uma tautologia.

Da tabela de verdade seguinte conclui-se que $\varphi \to \psi$ não é uma tautologia, pois o seu valor lógico não é sempre verdadeiro, dependendo do valor lógico das variáveis proposicionais que nela ocorrem; se p e q tiverem, respetivamente, valor lógico falso, a fórmula $\varphi \to \psi$ tem valor lógico falso. Logo a fórmula ψ não é uma consequência lógica de φ .

p	q	$\neg q$	$p \vee \neg q$	$(p \vee \neg q) \to \neg q$	9	$p \leftrightarrow q$	ψ	$\varphi \to \psi$
1	1	0	1	0	0	1	0	1
1	0	1	1	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	0	1	1	1	1	1	0	0

(b) Considere que p representa a proposição $\exists_{x \in D} \ (\forall_{y \in D} \ (y > x \to y + x \ \text{\'e} \ \text{impar}))$. Diga, justificando, se p 'e verdadeira para $D = \{3,4,5,6,8\}$. Indique, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg p$.

A proposição p é verdadeira para $D=\{3,4,5,6,8\}$, uma vez que existe $a=5\in D$ tal que, para todo $b\in D$, a proposição

$$b > a \rightarrow b + a$$
 é ímpar

é verdadeira. De facto, se $b \le a$, a implicação anterior é verdadeira, pois o antecedente da implicação é falso; se b > a, tem-se b = 6 ou b = 8 e em qualquer destes casos b + a é ímpar.

2. Considere os conjuntos $A = \{1, 3, 7, 8, \{5, 8\}, \{4, 7\}\}$, $B = \{x + 4 \mid x \in \mathbb{Z} \land 2x + 1 \in A\}$ e $C = \{1, 7, 8\}$. Justificando, determine $((A \setminus \mathcal{P}(B)) \setminus C) \times C$.

Para qualquer $x \in \mathbb{Z}$, tem-se

$$2x + 1 \in A \Leftrightarrow (2x + 1 = 1 \lor 2x + 1 = 3 \lor 2x + 1 = 7) \Leftrightarrow x \in \{0, 1, 3\}.$$

Logo

$$\begin{split} B &= \{x+4 \mid x \in \{0,1,3\}\} = \{4,5,7\}, \\ \mathcal{P}(B) &= \{\emptyset, \{4\}, \{5\}, \{7\}, \{4,5\}, \{4,7\}, \{5,7\}, \{4,5,7\}\}, \\ A \setminus \mathcal{P}(B) &= \{1,3,7,8, \{5,8\}\}, \\ (A \setminus \mathcal{P}(B)) \setminus C &= \{3, \{5,8\}\}, \\ ((A \setminus \mathcal{P}(B)) \setminus C) \times C &= \{(3,1), (3,7), (3,8), (\{5,8\},1), (\{5,8\},7), (\{5,8\},8)\}. \end{split}$$

3. Diga, justificando, se cada uma das afirmações seguintes é verdadeira para quaisquer conjuntos A, B e C.

(a)
$$(A \times B) \cap (C \times D) = \emptyset \Rightarrow (A \cap C = \emptyset) \vee (B \cap D = \emptyset).$$

A afirmação é verdadeira.

No sentido de fazer a prova por redução ao absurdo, admitamos que $(A \times B) \cap (C \times D) = \emptyset$, $A \cap C \neq \emptyset$ e $B \cap D \neq \emptyset$. Então, existem objetos x, y tais que $x \in A \cap C$ e $y \in B \cap D$, ou seja, tais que $x \in A \wedge x \in C$ e $y \in B \wedge y \in D$. Dado que $x \in A$ e $y \in B$, então $(x,y) \in A \times B$; por outro lado, como $x \in C$ e $y \in D$, tem-se $(x,y) \in C \times D$. Logo $(x,y) \in (A \times B) \cap (C \times D)$ (contradição). Assim, se $(A \times B) \cap (C \times D) = \emptyset$, tem-se $(A \cap C = \emptyset)$ ou $(B \cap D = \emptyset)$.

4. Prove, por indução nos naturais, que

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = 1 - \frac{1}{n+1},$$

para qualquer $n \in \mathbb{N}$.

Para $n \in \mathbb{N}$, representemos por p(n) o predicado

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = 1 - \frac{1}{n+1}.$$

(i) Base de indução (n=1): Para n=1, tem-se

$$\sum_{i=1}^{1} \frac{1}{i(i+1)} = \frac{1}{1 \times 2} = \frac{1}{2} = 1 - \frac{1}{1+1}.$$

Logo p(1) é verdadeiro.

(ii) Passo de indução: Seja $k\in\mathbb{N}$. Admitamos, por hipótese de indução, que p(k) é verdadeiro, ou seja, que

$$\sum_{i=1}^{k} \frac{1}{i(i+1)} = 1 - \frac{1}{k+1}.$$

Pretendemos mostrar que p(k+1) é verdadeiro, ou seja, que

$$\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = 1 - \frac{1}{k+2}.$$

Da hipótese de indução segue que

$$\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = \sum_{i=1}^{k} \frac{1}{i(i+1)} + \frac{1}{(k+1)(k+2)}$$

$$= 1 - \frac{1}{k+1} + \frac{1}{(k+1)(k+2)}$$

$$= 1 + \frac{-k-2+1}{(k+1)(k+2)}$$

$$= 1 + \frac{-k-1}{(k+1)(k+2)}$$

$$= 1 - \frac{1}{k+2} .$$

Logo, para todo $k \in \mathbb{N}$,

$$p(k) \Rightarrow p(k+1)$$
.

De (i), (ii) e do Princípio de Indução em $\mathbb N$, conclui-se que, para todo $n\in\mathbb N$, p(n) é verdadeiro.

5. Considere a função $f:\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ definida da seguinte forma

$$f(n) = \left\{ \begin{array}{ll} (n,n+1) & \text{se } n \text{ \'e par} \\ (n+1,n+2) & \text{se } n \text{ \'e \'impar} \end{array} \right..$$

(a) Justificando, defina por extensão, $f(\{0,1\}) \cap f(\{2,3\})$ e $f^{\leftarrow}(\{(0,1),(1,2)\})$.

Tem-se

$$f({0,1}) = {f(0), f(1)} = {(0,1), (2,3)}$$

e

$$f({2,3}) = {f(2), f(3)} = {(2,3), (4,5)},$$

logo

$$f({0,1}) \cap f({2,3}) = {(2,3)}.$$

- (b) Diga, justificando, se f é injetiva e se é sobrejetiva. Justifique que não existe qualquer função $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ tal que $g \circ f = id_{\mathbb{Z}}$.
- 6. Sejam R e S relações binárias num conjunto A. Mostre que se R, S e $R \circ S$ são relações simétricas, então $R \circ S = S \circ R$.
- 7. Seja $A = \mathbb{R} \setminus \{0\}$.
 - (a) Diga, justificando, se são verdadeiras ou falsas as afirmações seguintes:

i. Para toda a relação de equivalência ρ em A

$$(\exists_{k \in A} [2]_{\rho} \cap [k]_{\rho} \neq \emptyset e [3]_{\rho} \cap [k]_{\rho} \neq \emptyset) \Rightarrow [2]_{\rho} = [3]_{\rho}.$$

- ii. Existe uma relação de equivalência ρ em A tal que $A/\rho=\{A,A\setminus\{1\}\}.$
- (b) Seja ${\cal R}$ a relação de equivalência definida em ${\cal A}$ por

$$x R y$$
 se só se $xy^{-1} \in \{-1, 1\}.$

Determine $[2]_R$ e A/R.

8. Considere o c.p.o. (A, \leq) , onde $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ e \leq é a relação de ordem parcial definida pelo diagrama de Hasse

Indique, caso exista(m):

- (a) os elementos maximais e os elementos minimais de ${\cal A}.$
- (b) o supremo de $\{3,5\}$ e o ínfimo de $\{4,6\}$.
- (c) um subconjunto B de A tal que B tenha elemento máximo e elemento mínimo e $(B,\leq_{|B})$ não seja um reticulado.
- 9. Sejam A e B conjuntos. Mostre que se B não é contável e existe uma função sobrejetiva $f:A\to B$, então A não é contável.

Cotações	1.	2.	3.	4.	5	6.	7.	8.	9.	10.
	1.0 + 1.0	1,0	1,0	1.0 + 1.5	1,75	1.25 + 1.0 + 1.0	1.25 + 1.0	0.75 + 0.75 + 1.25	0.75 + 0.75 + 0.75	1,25