kNN-LWPLSR

matthieu.lesnoff@cirad.fr

Cirad, UMR Selmet

kNN : k Nearest Neighbors

LWPLSR: Locally Weighted Partial Least Squares

Regression

(LWPLSDA ⇒ Discrimination)

Algorithm useful when non-linearity between X and Y (data heterogeneity, etc.)

- Globally non linear
- Locally linear

kNN-LWPLSR

Very performant for NIR data

Available pipelines

RESEARCH ARTICLE

Comparison of locally weighted PLS strategies for regression and discrimination on agronomic NIR data

Matthieu Lesnoff ⋈, Maxime Metz, Jean-Michel Roger

First published: 16 January 2020 | https://doi.org/10.1002/cem.3209 | Citations: 30

Chemometrics and Intelligent Laboratory Systems

Averaging a local PLSR pipeline to predict chemical compositions and nutritive values of forages and feed from spectral near infrared data

• Usual PLSR
$$\max_{t} \text{Cov}(t, y)^2 = \sum_{i=1}^{n} \left(\frac{1}{n} t_i y_i\right)^2$$

• Weighted PLSR $\max_{t} Cov_{W}(t, y)^{2} = \sum_{i=1}^{n} (w_{i}t_{i}y_{i})^{2}$

Weight function used by Jchemo.lwplsr

Adaptation from

Kim S, Kano M, Nakagawa H, Hasebe S. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection. Int J Pharm. 2011;421(2):269-274. https://doi.org/10.1016/j.ijpharm.2011.10.007

$$w_j = exp \frac{-d_j}{h \times mad\{d_1, \dots, d_k\}}$$

$$w_i = w_i / \text{maximum}\{w_1, ..., w_k\}$$

https://mlesnoff.github.io/Jchemo.jl/dev/domains

Pipeline of function lwplsr

X_{new}

Compute distances between x_{new} and

- rows of X
- or of T to find the k nearest neighbors of x_{new}
 - Euclidean
 - Mahalanobis
 - Correlation
 - (2) argument metric

(3) argument **k**

- Set of k nearest neighbors = X[x_{new}]
- Distances $d = \{d_1, ..., d_k\}$
 - Weight function
 - Compute the weights from *d*

Weights $w = \{w_1, ..., w_k\}$

(4) argument h

Predictive model fitting on $X[x_{new}]$, $y[x_{new}]$, w

Prediction y_{new}

LWPLSR on the neighborhood

(5) argument nlv

function lwplsr

```
nlvdis = 20 ; metric = :mah

h = 1 ; k = 500 ; nlv = 15
```

5 main arguments

```
res = predict(mod, Xnew)
```

Keyword arguments:

- nlvdis: Number of latent variables (LVs) to consider in the global PLS used for the dimension reduction before computing the dissimilarities. If nlvdis = 0, there is no dimension reduction.
- metric : Type of dissimilarity used to select the neighbors and to compute the weights. Possible values are: :eucl (Euclidean distance), :mah (Mahalanobis distance).
- h : A scalar defining the shape of the weight function computed by function wdist. Lower is h, sharper is the function. See function
 wdist for details (keyword arguments criw and squared of wdist can also be specified here).
- k : The number of nearest neighbors to select for each observation to predict.
- tolw : For stabilization when very close neighbors.
- nlv : Nb. latent variables (LVs) for the local (i.e. inside each neighborhood) models.
- scal: Boolean. If true, each column of X and Y is scaled by its uncorrected standard deviation for the global dimension reduction and the local models.