LG 부트캠프 8기 프로젝트 C반 1팀

# 프로젝트 결과보고서 Signal EQ & Analyzer

RTOS, Sw2Pjt

최준하, 장다운, 이승종

# 목차구성 CONTENTS COMPOSITION

- 1. 프로젝트 목표 및 결과
- 2. 개발목표
- 3. 핵심기술
- 4. 결과 분석 및 기대 효과
- 5. 향후 연구 과제

### 1. 프로젝트 목표 및 결과

### 프로젝트 주제: Signal EQ & Analyzer



" Signal의 주파수를 분석하여 시각화"

" 주파수 밴드를 맞춤 제작하여 Signal Processing"



# 2. 개발 목표



 OS Components 목표

 커널을 가볍게 설계하여

 안정성을 유지하고,

 응용 프로그램에 필요한 메모리와 CPU 자원을

 최적화하여 여유 확보.



 APP Components 목표

 C++를 사용하여 OOP 기반으로 설계하고 구현함으로써 유지보수성과 확장성을 확보,

 FPU 없이 MCU만으로 DSP 기능을 구현하여 성능을 최적화.



Task Manager
Queue
Gate Keeper
Mutex
Interrupts Lock Manager
Signal



**DSP** 

FFT (Fast Fourier Transform) Filter (LPF, HPF, BPF) 머신러닝을 통한 필터 최적화



팀워크

현업에서부터 한 팀

#### **OS Kernel Components**

\*유지보수성: OOP, 책임분리, Self



\*안정성: RAII, Tail, Counter





### **OS Kernel Components**



### **Application Components - DSP**



Twiddle Factor LookUp Table

CMSIS-DSP 모방

Loop 최적화 (Unrolling)

#### **Application Components - DSP**



필터선별

IIR (ButterWorth 4th)

FIR (Hanning Window 32th)

\*복잡한 요구조건 대응



### Bayesian 최적화



#### **Application Components – GUI**



### Application - Filter 특성 (BPF)



**IIR Filter** 



**FIR Filter** 

### 4. 결과 분석 및 기대 효과

#### 결과 분석

#### 1. 구현성

- Analyzer, 3-band(LPF,HPF,BPF)

#### 2. OS 안정성

- SW인정시험 통과(자체)

### 3. Application 성능

- 실시간 Filtering Filtering 성능 준수 & GUI확인

#### 기대 효과

#### 1. 원가 개선

- FPU탑재 모델 Cortex-M33 대비 절반 가격인 Cortex-M3

#### 2. 맞춤 제작

- 고객에 최적화된 맞춤 커널로 만족도 상승

### 5. 향후 연구 과제



ADC/DAC를 확보한 후, 실시간 음악 데이터를 입력받아 Processing하고, 오디오 출력을 통해 결과물을 확인



Adaptive한 밴드 조절 기능을 적용하여 원 EQ의 기능 추가



Cortex-M0에서 구현 가능하도록 최적화 하여 원가개선

# Thank You

Q&A