Math 608 - Real Variables II Definitions, Theorems and Propositions

Kari Eifler

May 1, 2017

Contents

1	Topology	3
2	Nets	6
3	Compactness	7
4	Normed Spaces	9
5	Quotient Spaces	9
6	Topological Vector Spaces	11
7	L^p spaces	13
8	Abstract Interpolation Theory	15
9	Baire σ -algebra	17
10	Regularity Properties of Measures	18

The propositions and theorems marked with a \star indicate that the proof was important and relatively short, and thus should be learned for exams. Definitions are shown in **blue** while theorems are shown in **purple**.

1 Topology

- 1 (topology, open sets) Given a set $X, \tau \subseteq \mathcal{P}(X)$ is a topology if
 - 1. $\emptyset, X \in \mathcal{T}$
 - 2. $U, V \in \mathcal{T} \Rightarrow U \cap V \in \mathcal{T}$
 - 3. $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}\in\mathcal{T}\Rightarrow \cup_{{\alpha}\in\mathcal{A}}U_{\alpha}\in\mathcal{T}$

The elements of the topology are called the open sets. A set C is called closed if C^C is open.

ex. If (X, d) is a metric space, then $U \subseteq X$ is open $\Leftrightarrow \forall x \in U, \exists r > 0$ such that $B(x, r) \subseteq U$.

We call $\mathcal{T} = \{\emptyset, X\}$ the indiscrete (or trivial) topology.

We call $\mathcal{T} = \mathcal{P}(X)$ the discrete topology.

If $Y \subseteq X$, the relative topology is $\mathcal{T}_Y = \{O \cap Y \mid O \in \mathcal{T}\}.$

2 (closure, interior, boundary) For an arbitrary $A \subseteq X$, let \overline{A} denote the smallest closed set containing A, called the closure

$$\overline{A} = \bigcap \{C \subseteq X \mid A \subseteq C \text{ and } C \text{ is closed } \}.$$

We let the interior of A, A° , be the largest open set contained in A:

$$A^{\circ} = \bigcup \{ O \subseteq X \mid O \subseteq A \text{ and } O \text{ is open } \}.$$

The boundary of A, δA is $\delta A = \overline{A} \backslash A^{\circ}$.

3 (limit point) We say p is a limit point (or accumulation point) of A provided for every open set $O \ni p$, $(O \cap A) \setminus \{p\} \neq \emptyset$. We let $A' = \operatorname{acc}(A) = \{\text{limit points of } A\}$.

Proposition: $\overline{A} = A \cup \operatorname{acc}(A)$. Thus, A is closed $\Leftrightarrow \operatorname{acc}(A) \subseteq A \Leftrightarrow A = \overline{A}$.

- **4** (local base, base) For $x \in X$, a family $\mathcal{B}_x \subseteq \mathcal{T}$ is called a base for \mathcal{T} at x (or a local base at x) provided
 - 1. $\forall U \in \mathcal{B}_x, x \in U$

2. $\forall O \in \mathcal{T}$ such that $x \in O$, $\exists U \in \mathcal{B}_x$ such that $U \subseteq O$.

A base for \mathcal{T} is a family $\mathcal{B} \subseteq \mathcal{T}$ such that for all $x \in X$, $\mathcal{B}_x = \{O \in \mathcal{B} \mid x \in O\}$ is a base for \mathcal{T} at x.

 $S \subseteq T$ is a subbase for the topology provided the set of all finite intersections of elements is a base.

Theorem: TFAE:

- 1. \mathcal{B} is a base
- 2. every open set is the union of sets in \mathcal{B}
- 3. each $x \in X$ is contained in some $V \in \mathcal{B}$ and if $U, V \in \mathcal{B}$ and $x \in U \cap V$ then there exists some $W \in \mathcal{B}$ such that $x \in W \subseteq U \cap V$

Theorem: The topology generated by $\mathcal{E} \subseteq \mathcal{P}(X)$ contains \emptyset, X and all unions of finite intersections of elements in \mathcal{E} .

5 (product topology) Suppose $(X_{\alpha}, \mathcal{T}_{\alpha})_{\alpha \in \mathcal{A}}$ are topological spaces and let $X = \prod_{\alpha \in \mathcal{A}} X_{\alpha}$. For $\alpha \in \mathcal{A}$, let π_{α} be the projection from X onto X_{α} , and set

$$\mathcal{S} = \{ \pi_{\alpha}^{-1}(O) \mid O \in \mathcal{T}_{\alpha}, \alpha \in \mathcal{A} \}.$$

Then S is a subbase for the product topology.

Proposition: For $X = \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ and $x_n \in X$, then $x_n \to x$ in $X \Leftrightarrow \pi_{\alpha}(x_n) = x_n(\alpha) \to x(\alpha) = \pi_{\alpha}(x)$ for all $\alpha \in \mathcal{A}$.

6 (first/second countable) (X, \mathcal{T}) is first countable provided $\forall x \in X$, there exists a countable base at x.

 (X, \mathcal{T}) is second countable provided there is a countable base for \mathcal{T} .

Proposition: If X is second countable, then X is separable. The converse is true in metric spaces.

7 (convergence in a topological space) For a topological space (X, \mathcal{T}) and a sequence $\{x_n\} \subseteq X, p \in X \text{ we say } \{x_n\} \text{ converges to } p \ (x_n \to p) \text{ provided for every open } O \in \mathcal{T} \text{ with } p \in O, \exists N \text{ such that } \forall n \geq N, x_n \in O.$

Note: limits need not be unique.

Proposition: Suppose X is first countable, $A \subseteq X$, $p \in X$. Then $p \in \overline{A} \Leftrightarrow \exists$ sequence $\{x_n\}$ in A such that $x_n \to p$.

8 (cofinite and cocountable topologies) The cofinite topology is

$$\mathcal{T} = \{ O \subseteq X \mid O^c \text{ is finite} \}.$$

The cocountable topology is

$$\mathcal{T} = \{ O \subseteq X \mid O^c \text{ is countable} \}.$$

9 (T1/T2/T3/T4)

- T1 $\forall x \in X$, $\{x\}$ is closed
- T2 (Hausdorff) $\forall x \neq y$ in X, there exists $O_x, O_y \in \mathcal{T}$ such that $x \in O_x, y \in O_y$ and $O_x \cap O_y = \emptyset$
- T3 (regular) (X, \mathcal{T}) is T1 and for all $x \in X$, closed C with $x \notin C$, there exists open $U, V \in \mathcal{T}$ such that $x \in U, C \subseteq V$, and $U \cap V = \emptyset$
- T4 (normal) (X, \mathcal{T}) is T1 and for all disjoint closed sets A, B there exists open U, V with $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$

Fact: $T4 \Rightarrow T3 \Rightarrow T2 \Rightarrow T1$.

10 (continuous (at x)) Let $(X, \mathcal{T}), (Y, \sigma)$ be topological spaces. We say the function $f: X \to Y$ is continuous at $x \in X$ if for every open $O \in \sigma$ with $f(x) \in O$, there exists an open $U \in \mathcal{T}$ with $x \in U$ such that $f(U) \subseteq O$.

f is continuous if for every $x \in X$, f is continuous at x.

Proposition: TFAE for $f: X \to Y$

- 1. f is continuous
- 2. for every open O in Y, $f^{-1}(O)$ is open in X
- 3. for every closed C in Y, $f^{-1}(C)$ is closed in X
- 4. there is a subbase S for Y such that for every $O \in S$, $f^{-1}(O)$ is open in X

11 (weak topology) For topological spaces $(X_{\alpha}, \mathcal{T}_{\alpha})_{\alpha \in \mathcal{A}}$ and functions $f : X \to X_{\alpha}$ from a set X. Then $W((f_{\alpha})_{\alpha \in \mathcal{A}})$ is the weakest (smallest) topology on X making each f continuous.

This topology is generated by sets of the form $f_{\alpha}^{-1}(U_{\alpha})$ where $\alpha \in \mathcal{A}$ and U_{α} is open in X_{α} .x

12 (product space theorems) Theorem 1: If X_{α} is Hausdorff for each $\alpha \in \mathcal{A}$, then $X = \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ is Hausdorff.

Theorem 2: If X_{α} and Y are topological spaces and $X = \Pi X_{\alpha}$ then $f: Y \to X$ is continuous IFF $\pi_{\alpha} \circ f$ is continuous for each α .

Theorem 3: If X is a topological space, A is a nonempty set, and $\{f_n\}$ is a sequence in X^A then $f_n \to f$ in the product topology IFF $f_n \to f$ pointwise.

13 (C(X)) For a topological space (X, \mathcal{T}) , let C(X) be the set of all \mathbb{R} -valued continuous functions $f: X \to \mathbb{R}$.

Let $C_b(X) = BC(X)$ be all \mathbb{R} -valued bounded, continuous functions $f: X \to \mathbb{R}$. We equip $C_b(X)$ with the norm $||f||_{\infty} = \sup_{x \in X} |f(x)|$.

Let $\ell_{\infty}(X)$ be the set of all \mathbb{R} -valued bounded functions.

Theorem: If X is normal then the topology on X is $W(C_b(X))$.

14 (Urysohn's Lemma) Let (X, \mathcal{T}) be normal. If A, B are disjoint closed sets and $a \neq b$ in \mathbb{R} . Then there exists some $f \in C(X, [a, b])$ such that $f|_A \equiv a$ and $f|_B \equiv b$.

proof uses nastay lemma

15 (Tiktze Theorem) Version 1: Let (X, \mathcal{T}) be normal. If $A \subseteq X$ is closed and $f \in C(A, (a, b))$ then there exists some $F \in C(X, [a, b])$ such that $F|_A = f$.

Version 2: Let (X, \mathcal{T}) be normal. If $A \subseteq X$ is closed and $f \in C(A, (a, b))$ then there exists some $F \in C(X, \mathbb{R})$ such that $F|_A = f$.

X is called completely regular (or a $T_{3\frac{1}{2}}$ space) if X is T_1 and for each closed $A \subseteq X$, $x \notin A$ there exists some $f \in C(X, [0, 1])$ such that f(x) = 1, f = 0 on A.

2 Nets

16 (net) (D, \leq) is called a directed set if

- a ≤ a
- if $a \leq b$ and $b \leq c$ then $a \leq c$
- $\forall \alpha, \beta \in D, \exists \gamma \in D \text{ such that } \alpha \leq \gamma, \beta \leq \gamma$

A net in X is a function from a directed set into X.

For $\{x_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ a net and $\alpha_0\in\mathcal{A}$, the tail of the net is $T_{\alpha_0}=\{x_{\alpha}\mid \alpha\in\mathcal{A}, \alpha\geq\alpha_0\}$.

17 (further net definitions) We say a net $\{x_{\alpha}\}$ is frequently in a set C if $T_{\alpha} \cap C \neq \emptyset$ for all $\alpha \in \mathcal{A}$.

We say a net $\{x_{\alpha}\}$ is eventually in a set C if there exists some $\alpha_0 \in \mathcal{A}$ such that $T_{\alpha_0} \subseteq C$. (Note: eventually in $C \Rightarrow$ frequently in C) Suppose $\{x_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ is a net in the topological space X, and $p\in X$. Then $x_{\alpha}\to p$ means for every open set O with $p\in O$, $\{x_{\alpha}\}$ is eventually in O.

We say p is a cluster point of the net if for every open set $O \ni p$ the net $\{x_{\alpha}\}$ is frequently in O.

We say $\{y_{\beta}\}_{{\beta}\in\mathcal{B}}$ is a subnet of $\{x_{\alpha}\}$ provided there exists some $h:\mathcal{B}\to\mathcal{A}$ such that

- $\forall \alpha_0 \in \mathcal{A}, \exists \beta_0 \in \mathcal{B} \text{ such that for all } \beta \geq \beta_0, h(\beta) \geq \alpha_0$
- $x_{h(\beta)} = y_{\beta}$ for all $\beta \in \mathcal{B}$

ex. For $1, 2, 3, 4, \ldots$ then $2, 1, 3, 2, 4, 3, 5, 4, \ldots$ is a subnet but not a subsequence

Theorem: For a net $\{x_{\alpha}\}$ in (X, \mathcal{T}) TFAE:

- 1. x is a cluster point of $\{x_{\alpha}\}$
- 2. there exists a subnet $\{y_{\beta}\}$ of $\{x_{\alpha}\}$ such that $y_{\beta} \to x$

Theorem: f is continuous at $x \Leftrightarrow$ for all nets $x_{\alpha} \to x$, $f(x_{\alpha}) \to f(x)$

Theorem: For $D \subseteq X$, $p \in \overline{D} \Leftrightarrow$ there exists a net x_{α} in D s.t. $x_{\alpha} \to x$.

3 Compactness

18 (notions of compactness)

- 1. A is compact i.e. every open cover has a finite subcover
 - 1'. every family of closed sets with the finite intersection property has a non-empty intersection
- 2. X is sequentially compact if every sequence has a convergent subsequence.
- 3. X is countable compact if every countable open cover has a finite subcover.
 - 3'. If $C_1 \supseteq C_2 \supseteq \ldots$ are closed and non-empty then $\cap C_n \neq \emptyset$
- 4. every infinite subset of X has a limit point
- $1. \Leftrightarrow 1'. \Rightarrow 3. \text{ and } 2. \Rightarrow 3. \Leftrightarrow 3'. \Rightarrow 4.$

Theorem: If X is compact and $C \subseteq X$ is closed, then C is compact.

Theorem: If X is Hausdorff, then compact sets are also closed.

Theorem: If $f: X \to Y$ is continuous and $C \subseteq X$ is compact then f(C) is compact.

19 (net compactness) We call a net $\{x_{\alpha}\}$ universal if for all $Y \subseteq X$, if the net is frequently in Y then the net is eventually in Y.

Lemma: every net has a universal subnet.

Theorem: For a topological space (X, \mathcal{T}) , TFAE:

- 1. X is compact
- 2. every net in X has a cluster point
- 3. every net in X has a convergent subnet
- 4. every universal net in X converges
- **20** (locally compact) A topological space is called locally compact if every point has a compact neighborhood. Locally compact Hausdorff spaces are abbreviated LCH.

Equivalently, every point has an open neighborhood U with closure \overline{U} compact.

21 (Tychonoff Theorem) If (X_{α}) are compact topological spaces, then $X = \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ (with the product topology) is compact.

Theorem: Axiom of Choice ⇔ Tychonoff

22 (equicontinuous) Let (X, \mathcal{T}) be a topological space, $\mathcal{J} \subseteq C(X, (Z, \|\cdot\|))$. For $x \in X$ we say \mathcal{J} is equicontinuous at x provided for all $\epsilon > 0$ there exists some neighborhood U_x of x such that

$$\sup_{f \in \mathcal{J}} \sup_{y \in U_x} \|f(x) - f(y)\| \le \epsilon.$$

We say \mathcal{J} is equicontinuous if it is equicontinuous at x for all $x \in X$.

We say \mathcal{J} is pointwise bounded if for all $x \in X$, $\sup_{f \in \mathcal{J}} ||f(x)|| < \infty$.

23 (Arzela-Ascoli) We say a metric space X is totally bounded if for any r > 0, X can be covered by a finite number of balls of radius r.

Arzela-Ascoli Let X be a compact Hausdorff space. If \mathcal{F} is an equicontinuous, pointwise bounded subset of $\mathcal{C}(X)$ then \mathcal{F} is totally bounded in the uniform metric and the closure of \mathcal{F} in $\mathcal{C}(X)$ is compact.

Alternative version 1: Let X be a σ -compact LCH space. If $\{f_n\}$ is an equicontinuous, pointwise bounded sequence in $\mathcal{C}(X)$, then there exists a $f \in \mathcal{C}(X)$ and a subsequence of $\{f_n\}$ that converges to f uniformly on compact sets.

Alternative version 2: Let X be compact and $\mathcal{F} \subseteq \mathcal{C}(X)$. Then $\overline{\mathcal{F}}$ is compact in $\mathcal{C}(X)$ IFF

- 1. \mathcal{F} is equicontinuous
- 2. \mathcal{F} is pointwise bounded
- 24 (Stone-Weierstrass) A is called an algebra if it is a real vector subspace of C(X)

such that $fg \in \mathcal{A}$ whenever $f, g \in \mathcal{A}$.

Let X be a compact, Hausdorff space and $\mathcal{B} \subseteq \mathcal{C}(X,\mathbb{R})$ a subalgebra such that \mathcal{B} separates points (that is, for $x \neq y, \exists f \in \mathcal{B}$ with $f(x) \neq f(y)$). Then if there exists some $x_0 \in X$ such that $f(x_0) = 0$ for all $f \in \mathcal{B}$, then $\overline{\mathcal{B}} = \{f \in \mathcal{C}(X,\mathbb{R}) \mid f(x_0) = 0\}$. Otherwise, $\overline{B} = \mathcal{C}(X)$.

4 Normed Spaces

25 (complete) A Banach space is a complete normed vector space. It is called complete if every Cauchy sequence converges in X.

Theorem: X is complete \Leftrightarrow when $\sum_{n\in\mathbb{N}} ||x_n|| < \infty$ then $(\sum_{n=1}^N x_n)_N$ converges in X

26 (linear equivalences) If X, Y are normed spaces and $T: X \to Y$ is linear, then TFAE:

- 1. T is continuous
- 2. T is continuous at 0
- 3. T is bounded

that is, there exists some c > 0 such that $||Tx|| \le c||x||$.

Equivalently, $\sup_{\|x\|<1} \|Tx\| < \infty$

4. T is Lipschitz

that is, there exists some c such that $||Tx - Ty|| \le c||x - y||$

We denote $L(X,Y) = \{T: X \to Y \mid T \text{ is continuous and linear}\}$ with norm $||T|| = \sup_{||x|| \le 1} ||Tx||$. Let $X^* = L(X,\mathbb{R})$ be the dual of X.

27 (invertibility) Suppose X is a Banach algebra with identity, ||I|| = 1. Then

if ||I - a|| < 1 then a is invertible and $||a^{-1}|| \le \frac{1}{1 - ||I - a||}$

if y is invertible and $||y-x|| < \frac{1}{||y^{-1}||}$ then x is invertible (so invertible elements are open)

5 Quotient Spaces

28 (algebra quotient) If X is a normed space and $M \subseteq X$ is a closed subspace, then $X/M = \{x + M \mid x \in X\}$ is the algebra quotient with (x + M) + (y + M) = (x + y) + M. We have the linear surjection

$$\pi_M: X \to X/M$$
$$x \mapsto x + M$$

where $\ker(\pi_M) = M$. Put the norm on X/M to be

$$||x + M|| = \inf\{||y|| \mid y \in x + M\} = \inf\{||x - m|| \mid m \in M\} = \operatorname{dist}(x, M)$$

If M is not closed, this is merely a seminorm. Then $\pi_M(B_X(1,0)) = B_{X/M}(0,1)$ so π_M is continuous and $\|\pi_M\| = 1$.

29 (Hahn-Banach) For a real vector space X, we say $p: X \to \mathbb{R}$ is a sublinear mapping if $p(x+y) \le p(x) + p(y)$ and $p(\lambda x) = \lambda p(x)$ when $\lambda \ge 0$.

Hahn-Banach: Let X be a real vector space, p a sublinear functional on X, M a subspace of X, and f a linear functional on M such that $f|_M \leq p|_M$. Then there exists a linear functional F on X such that $F \leq p$ on X and $F|_M = f$.

For the complex case, we require $|f(x)| \le p(x)$ and we get $|F(x)| \le p(x)$.

30 (Applications of Hahn-Banach)

- 1. If M is a closed subspace of X and $x \in X$ M then there exists $f \in X^*$ such that $f(x) \neq 0$ and $f|_M = 0$. In fact, if $\delta = \inf_{y \in M} ||x y||$, f can be taken to satisfy ||f|| = 1 and $f(x) = \delta$.
- 2. If $x \neq 0 \in X$, there exists $f \in X^*$ such that ||f|| = 1 and f(x) = ||x||
- 3. The bounded linear functionals on X separate points

31 (reflexive) Theorem: If $x \in X$, define $\hat{x}: X^* \to \mathbb{C}$ by $\hat{x}(f) = f(x)$. Then the map $x \mapsto \hat{x}$ is a linear isometry from X into X^{**} .

We call X reflexive if $X^{**} = X$. Equivalently, X is reflexive if is surjective.

Theorem: Suppose X is a Banach space and M is a closed subspace. Then

- 1. X is reflexive $\Rightarrow M$ is reflexive
- 2. X reflexive $\Leftrightarrow X^*$ reflexive
- 3. X reflexive $\Rightarrow X/M$ reflexive
- 4. X reflexive $\Leftrightarrow B_X(0,1)$ is weakly compact
- **32** (Baire Category) We say C is nowhere dense if $(\overline{C})^{\circ} = \emptyset$.

Theorem: Let X be a complete metric space. Then if $\{U_n\}$ is a sequence of open dense sets, $\cap U_n$ is dense. Thus, X is not a countable union of nowhere dense sets.

A set that is a countable union of nowhere dense sets is said to be of first category (and it's complement is called residual). A set which is not a countable union of nowhere dense sets is called second category.

33 (uniform boundedness principle) Let X be a Banach space and Y a normed space, $S \subseteq L(X,Y)$ where S is pointwise bounded (i.e. $\forall x \in X, \sup\{\|Tx\| \mid T \in S\} < \infty$).

Then S is uniformly bounded (i.e. $\sup_{T \in S} ||T|| < \infty$.

- **34** (Banach-Steinhaus) Suppose X is a Banach space and Y is a normed space, and $\{T_n\} \subseteq L(X,Y)$ and for all $x \in X$, $T_n x \to T x$ in Y. Then $T \in L(X,Y)$.
- **35** (open mapping theorem) little open mapping theorem: Suppose X is a Banach space and Y is a normed space, $T \in L(X,Y)$ and r > 0. Then if $\overline{T(B(0,1))} \supseteq B(0,r)$ then $T(B(0,1)) \supseteq B(0,r)$.

open mapping theorem: Suppose X, Y are Banach spaces and $T \in L(X, Y)$ is surjective. Then T is an open mapping.

Remark: For a linear map T, T is open $\Leftrightarrow \exists r > 0$ such that $T(B(0,1)) \supseteq B(0,r)$.

36 (closed graph) For Banach spaces X, Y and $T: X \to Y$ linear, then $T \subseteq X \times Y$ is closed $\Leftrightarrow T$ is a bounded linear operator.

6 Topological Vector Spaces

- 37 (TVS) Let X be a vector space, \mathcal{T} a topology on X. Then (X, \mathcal{T}) is a TVS provided
 - $+: X \times X \to X$ is continuous
 - $\cdot : \mathbb{R} \times X \to X$ is continuous

ex. normed spaces under the weak topology $w(X^*)$.

We say the TVS (X, \mathcal{T}) is locally convex there exists a local base for \mathcal{T} consisting of convex sets.

Theorem: If (X, \mathcal{T}) is a locally convex TVS, then there exists seminorms $\{p_{\alpha} \mid \alpha \in \mathcal{A}\}$ such that $\mathcal{T} = w(p_{\alpha})$.

38 (gauge function) Define the gauge function (or Minkowski) of a convex set U in the vector space X to be

$$P_U(x) = \inf\{\lambda > 0 \mid \frac{x}{\lambda} \in U\}$$

We say p is an internal point of U (that is, $\forall y \in X, \exists \epsilon > 0$ such that $p + [|z| \leq \epsilon]y \subseteq U$). If 0 is an interval point, then the gauge function is defined since the set is non-empty. Then

- 1. $P_U(\lambda x) = \lambda P_U(x)$ if $\lambda \ge 0$
- 2. $P_U(x+y) \le P_U(x) + P_U(y)$
- 3. If U is balanced, then $P_U(\lambda x) = |\lambda| P_U(x)$
- 39 (Separation Theorem / Geometric Hahn-Banach) Say X is a LCTVS over \mathbb{R} and $U, C \subseteq X$ are convex sets such that $U \cap C = \emptyset$ and $U^{\circ} \neq \emptyset$. Then there exists some non-zero $f \in X^*$ and some $\alpha \in \mathbb{R}$ such that $U \subseteq [f < \alpha]$ and $C \subseteq [f \ge \alpha]$

Corollary 1: If (X, \mathcal{T}) is Hausdorff LCTVS, then X^* separates points of X

Corollary 2: If (X, \mathcal{T}) is a LCTVS, $C \subseteq X$ is convex, then $\overline{C}^{\text{weak}} = \overline{C}^{\mathcal{T}}$.

Corollary 3: If X is a normed space and $A \subseteq X$, then A is norm bounded $\Leftrightarrow A$ is weakly bounded (where A is weakly bounded if for all $x^* \in X^*$, $\sup_{x \in X} |\langle x^*, x \rangle| < \infty$

40 (topologies on X^*) On X^* we have three topologies:

 $\operatorname{weak}^*(w(\hat{X})) \subseteq \operatorname{weak}(w(X^{**})) \subseteq \operatorname{norm topology}$

Where the first is the topology of pointwise convergence on X and the first \subseteq is equality if X is reflexive.

41 (Banach-Alaoglu) If X is a normed space, then $\overline{B_{X^*}} = \{x^* \in X^* \mid ||x^*|| \le 1\}$ is weak*-compact.

Corollary: If X is reflexive, then $\overline{B_{X^*}}$ is weakly compact.

X is reflexive if and only if $\overline{B_X}$ is weakly compact.

- **42** (Goldstine) Suppose X is normed. Then $\widehat{B_X}$ is weak*-dense in $B_{X^{**}}$, $\widehat{B_X} \subseteq B_{X^{**}}$ where we have equality IFF X is reflexive.
- 43 (random theorems) Theorem 1: Suppose X is a normed space.
 - 1. There exists a compact Hausdorff space K such that X is isometrically isomorphic to a subspace of C(X).
 - 2. If X is separable, K can be taken to be a compact metric space Moreover, if X is separable, K can be taken to be the Cantor set $\{0,1\}^{\mathbb{N}}$ or [0,1].

Theorem 2: If X is a normed space, (B_{X^*}, weak^*) is metrizable $\Leftrightarrow X$ is separable.

44 (completely regular) $\mathcal{F} \subseteq C(X)$ is said to separate points from closed sets proved for all $x \in X$ and closed set $C \subseteq X$ with $x \notin C$, then there exists some $f \in \mathcal{F}$ such that $f(x) \notin \overline{f(C)}$.

If C(X) separates points from closed sets, X is said to be completely regular.

Proposition If (X, \mathcal{T}) is completely regular, then $\mathcal{T} = w(C(X)) = w(C(X, [0, 1]))$.

7 L^p spaces

45 $(L^p(\mu))$ For $0 , let <math>L^p = \{$ real-valued measurable functions $f \mid \int |f|^p d\mu < \infty \}$ with $||f||_p = (\int |f|^p d\mu)^{1/p}$. This is a norm for $1 \le p < \infty$.

Let $L^{\infty} = \{$ all bounded measurable functions $\}$ with supremum norm defined by

$$||f||_{\infty} := \inf \left\{ \sup_{x \in E^C} |f(x)| \mid \mu(E) = 0 \right\} = \inf_{h \in L^{\infty}, h = 0 \text{a.e.}} ||f - h||_{\sup}$$

46 (Riesz-Fisher) For $1 \le p < \infty$, L^p is complete

47 (Hölder's inequality) Let q be the conjugate exponent of p so $\frac{1}{p} + \frac{1}{q} = 1$ (i.e. $q = \frac{p}{p-1}$) For measurable f, g and $1 then <math>||fg||_1 \le ||f||_p ||g||_q$.

If $f \in L^p$ and $g \in L^q$ if and only if f = 0 a.e. OR g = 0 a.e. OR $|f|^p$ is a scalar multiple of $|g|^q$.

If $f \in L^p$ then $||f||_p = \max \{ \int fg d\mu \mid ||g||_q \le 1 \}$ (maximum is achieved! by $g = \operatorname{sgn}(f)$).

Alternate Hölder's inequality: For $0 < \lambda < 1$, then $\int |f|^{\lambda} |g|^{1-\lambda} \le (\int |f|)^{\lambda} (\int |g|)^{1-\lambda}$.

- 48 (Minkowski) For $1 \le p < \infty$, $||f + g||_p \le ||f||_p + ||g||_p$.
- 49 (simple functions in L^p) Let Σ be all measurable simple functions supported on sets of finite measure. Then Σ is dense in L^p for 0 .

Continuation of Hölder: Assume μ is σ -finite, $1 < q < \infty$ and g is measurable. Then $\|g\|_q = \sup\{\int fg \mid \|f\|_p \le 1, f \in \Sigma\}.$

If μ is semifinite (i.e. if $\mu(A) = \infty$ then $\exists B \subseteq A$ such that $0 < \mu(B) < \infty$) then $\|g\|_{\infty} = \sup\{\int fg \mid \|f\|_1 \le 1, f \in \Sigma\}.$

50 (dual of L^p) For $1 \le p < \infty$ and q the conjugate exponent of p, then there is a mapping $J_p: L^q \to (\mathbb{R})^{L^p}$ defined via $J_p(g)(f) = \int fg \le ||g||_q ||f||_p$.

So $J_p(g)$ is linear and $||J_p(g)||_{(L^p)^*} \le ||g||_q$.

Moreover, J_p is linear, so J_p is a linear operator which maps L^q onto $(L^p)^*$ and $||J_p|| \leq 1$.

Theorem: J_p is surjective if $1 and <math>J_1$ is surjective if μ is σ -finite.

Corollary: For $1 , then <math>L^p$ is reflexive.

51 (relations between L^p as p varies) Theorem 1: If $\mu(X) < \infty$ and 0 then if <math>f is measurable, $||f||_p \le \mu(X)^{\frac{1}{p} - \frac{1}{r}} ||f||_r$

Theorem 2: If μ is the counting measure, then for $0 , <math>||f||_p \ge ||f||_r$. Therefore, $\ell^p \subseteq \ell^r$.

Theorem 3: If $0 and <math>\frac{1}{q} = \lambda \frac{1}{p} + (1 - \lambda) \frac{1}{r}$ then

$$||f||_q \le ||f||_p^{\lambda} ||f||_r^{1-\lambda}$$

52 (inequalities) Chebychev's inequality: For $f \in L^p$ for $0 and any <math>\alpha > 0$,

$$\alpha^p \mu[|f| > \alpha] \le ||f||_p^p$$

Theorem: For σ -finite measure spaces (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) and $K: X \times Y \to \mathbb{R}$ define

$$(T_K f)(y) = \int_X K(x, y) f(x) d\mu(x)$$

Suppose there exists c such that $\int_X |K(x,y)| d\mu(x) \leq c$ and $\int_Y |K(x,y)| d\nu(y) \leq c$ and K is $\mu \times \nu$ measurable. Then T_K maps $L^p(\mu)$ into $L^q(\nu)$ for all $1 \leq p \leq \infty$, and $\|T_K\|_{L^p(\mu) \to L^q(\nu)} \leq c$.

53 (Distribution functions) Define the total distribution function of $f \in L^0$ via

$$\lambda_f : [0, \infty) \to [0, \infty]$$

 $t \mapsto \mu[|f| > t]$

Proposition:

- 1. λ_f is decreasing and right continuous
- 2. $|f| \leq |g|$ implies $\lambda_f \leq \lambda_g$
- 3. If $|f_n| \uparrow |f|$ a.e. then $\lambda_{f_n} \uparrow \lambda_f$
- 4. $\lambda_{g+h}(t) \le \lambda_g(t/2) + \lambda_h(t/2)$

Theorem: Take $\phi:(0,\infty)\to\mathbb{R}^+$ Borel measurable and $\lambda_f(t)<\infty$ for all t>0. Then

 $\int_X \phi \circ |f| d\mu = -\int_0^\infty \phi(t) d\lambda_f(t).$

$$||f||_p^p = -\int_0^\infty t^p d\lambda_f(t) = p \int_0^\infty t^{p-1} \mu[|f| > t] dt$$

54 (weak $L^p = L^{p,\infty}$) Define $[f]_p^p = \sup_{t>0} t^p \lambda_f(t)$. Let $L^{p,\infty} = \{f \in L^0 \mid [f]_p^p < \infty\}$, called the weak L^p .

$$[cf]_p = |c|[f]_p$$

 $[f+g]_p^p \le 2^p([f]_p^p + [g]_p^p).$

8 Abstract Interpolation Theory

55 (compatible couple / intermediate space) We call a pair on Banach spaces $\widetilde{X} = (X_0, X_1)$ a compatible couple (or interpolation pair) if there exists a TVS Z such that $X_0 \cup X_1 \subseteq Z$ and the inclusion mappings $X_0 \to Z$, $X_1 \to Z$ are both continuous linear operators. WLOG: $X_0 + X_1 = Z$, where

$$||z|| := \inf\{||x_0||_{X_0} + ||x_1||_{X_1} \mid x_0 \in X_0, x_1 \in X_1 \text{ such that } z = x_0 + x_1\}$$

Denote $Z = \Sigma(\widetilde{X})$, define $\Delta(\widetilde{X}) = X_0 \cap X_1 \subseteq \Sigma(\widetilde{X})$ with norm $||z|| = \max\{||z||_{X_0}, ||z||_{X_1}\}$. If $\Delta(\widetilde{X}) \subseteq X \subseteq \Sigma(\widetilde{X})$ we say X is an intermediate space to X_0 and X_1 .

56 (interpolation pair) Suppose $T: \Sigma(\widetilde{X}) \to \Sigma(\widetilde{Y})$ is a bounded linear operator. We write $T \in L(\widetilde{X}, \widetilde{Y})$ provided $T(X_0) \subseteq Y_0$ and $T(X_1) \subseteq Y_1$ and

$$||T|_{X_0}||_{X_0\to Y_0}\vee ||T|_{X_1}||_{X_1\to Y_1}<\infty.$$

We say that (X,Y) is an interpolation pair for $\widetilde{X},\widetilde{Y}$ if

- 1. X is an intermediate space for X_0 and X_1
- 2. Y is an intermediate space for Y_0 and Y_1
- 3. whenever $T \in L(X, Y)$ then $T|_X \in L(X, Y)$

We say (X,Y) is an exact interpolation pair for $\widetilde{X},\widetilde{Y}$ if

$$||T|_X||_{X\to Y} \le ||T|_{X_0}||_{X_0\to Y_0} \lor ||T|_{X_1}||_{X_1\to Y_1}$$

If 0 < t < 1 then we say (X, Y) is an interpolation pair for \widetilde{X} , \widetilde{Y} of exponent t provided there exists some $C < \infty$ such that for all $T \in L(\widetilde{X}, \widetilde{Y})$,

$$||T|_X||_{X\to Y} \le C ||T|_{X_0}||_{X_0\to Y_0}^{1-t} ||T|_{X_1}||_{X_1\to Y_1}^t$$

Then we can say (X,Y) is an exact interpolation pair for $\widetilde{X},\widetilde{Y}$ provided C=1.

57 $(\mathcal{H}(\widetilde{X}))$ For complex Banach space $\widetilde{X} = (X_0, X_1)$ let

$$\mathcal{H}(\widetilde{X}) = \left\{ f: S \to \Sigma(\widetilde{X}) \mid \underset{\sup_{s \in \mathbb{R}} \|f(is)\|_0 < \infty, \ \sup_{s \in \mathbb{R}} \|f(1+is)\|_1 < \infty}{f(is) \in X_0, \ f(1+is) \in X_1} \right\}$$

where $S = \{z \in \mathbb{C} \mid 0 \le \Re(z) \le 1\}$. Define

$$||f||_{\mathcal{H}(\widetilde{X})} := \sup_{s \in S} ||f(is)||_0 \lor ||f(1+is)||_1$$

Then for any $z \in S$,

$$\|f(z)\|_{\Sigma(\widetilde{X})} \leq \sup_{s \in S} \|f(is)\|_{\Sigma(\widetilde{X})} \vee \|f(1+is)\|_{\Sigma(\widetilde{X})} \leq \|f\|_{\mathcal{H}(\widetilde{X})}$$

For 0 < t < 1, define

$$X_t = \{ x \in \Sigma(\widetilde{X}) \mid \exists f \in \mathcal{H}(\widetilde{X}) \text{ with } f(t) = x \}$$

$$||x||_t = \inf\{ ||f||_{\mathcal{H}(\widetilde{X})} \mid f(t) = x \}$$

So
$$X_t = \mathcal{H}(\widetilde{X})/N_t(\widetilde{X})$$
 where $N_t(\widetilde{X}) = \{ f \in \mathcal{H}(\widetilde{X}) \mid f(t) = 0 \}.$

Theroem: $\widetilde{X} = (X_0, X_1)$ and $\widetilde{Y} = (Y_0, Y_1)$ compatible, then for 0 < t < 1, (X_t, Y_t) is an exact interpolation space of exponent t between \widetilde{X} and \widetilde{Y} .

Theorem: Let $X_0 = L^{p_0}(\mu)$, $X_1 = L^{p_1}(\mu)$ for $1 \le p_0, p_1 \le \infty$ be complex spaces. Let $\frac{1}{p_t} = \frac{1-t}{p_0} + \frac{t}{p_1}$. Then $L^{p_t}(\mu) = X_t$ with equality of norms.

Note: For real L^p we get the same theorem, except exactness must be removed.

58 (Riesz-Thorin) If $1 \le p_0, p_1 \le \infty, 1 \le q_0, q_1 \le \infty$ and 0 < t < 1 with

$$\frac{1}{p_t} := \frac{t}{p_0} + \frac{1-t}{p_1} \qquad \frac{1}{q_t} := \frac{t}{q_0} + \frac{1-t}{q_1}$$

Suppose $X_0 = L^{p_0}(\mu)$, $X_0 = L^{p_1}(\mu)$ and $Y_0 = L^{q_0}(\nu)$, $Y_1 = L^{q_1}(\nu)$ (compatible couple).

Then for 0 < t < 1, $L^{p_t}(\mu) + L^{q_t}(\nu)$ is an exact interpolation pair for $\widetilde{X} = (X_0, X_1), \widetilde{Y} = (Y_0, Y_1)$.

59 (Marcinkiewicz Interpolation) Let (X, \mathcal{M}, μ) be a measure space and D a subspace of $L^0(\mu)$. We say $T: D \to L^0(\nu)$ is sublinear if

- 1. $|T(f+g)| \le |Tf| + |Tg|$
- 2. |T(cf)| = c|Tf| if $c \ge 0$

T is said to be of strong type (p,q) if $T(L^p(\mu)) \subseteq L^q(\nu)$ and $||T|_{L^p(\mu)}||_{L^p(\mu)\to L^q(\nu)} < \infty$.

T is said to be of weak type (p,q) if $T(L^p(\mu)) \subseteq L^{q,\infty}(\nu)$ and $||T|_{L^p(\mu)}||_{L^p(\mu)\to L^{q,\infty}(\nu)} =: \sup_{||x||_{L^p(\mu)} \le 1} [Tx]_{q,\infty} < \infty$ where for $q < \infty$, $L^{q,\infty}(\nu) = \{f \in L^0(\nu) \mid \sup_t t^{1/q} \nu[|f| > t] =: [f]_{q,\infty} < \infty\}.$

Weak type (p, ∞) is the same as strong type (p, ∞) .

Marcinkiewicz Interpolation Theorem: $1 \le p_0 \le q_0 \le \infty$ and $1 \le p_1 \le q_1 \le \infty$, $q_0 \ne q_1$ and 0 < t < 1,

$$\frac{1}{p_t} := \frac{1-t}{p_0} + \frac{t}{p_1}$$
 $\frac{1}{q_t} := \frac{1-t}{q_0} + \frac{t}{q_1}$

If $T: L^{p_0}(\mu) + L^{p_1}(\mu) \to L^0(\nu)$ is sublinear, and is of weak type (p_0, q_0) and weak type (p_1, q_1) then T is of strong type (p_t, q_t) for all 0 < t < 1 and

$$||T||_{L^{p_t} \to L^{q_t}} \le \frac{C(||T||_{L^{p_0} \to L^{p_0,\infty}} \lor ||T||_{L^{p_1} \to L^{p_1,\infty}})}{t(1-t)}$$

where $C = C(p_0, p_1, q_0, q_1)$ is some constant $< \infty$.

9 Baire σ -algebra

60 (Baire σ -algebra) Define $\mathcal{B}a(X) = \sigma\{[f > a] \mid a \in \mathbb{R}, f \in C(x)\} = \sigma\{[f > 0] \mid f \in C(X)\}$. If X is metrizable, then the Baire set is equal to the Borel set.

Lemma: If X is normal, then

$$\mathcal{B}a(X) = \sigma\{ \text{ open } F_{\sigma} \text{ set } \} = \sigma\{ \text{ closed } G_{\delta} \text{ sets } \} = \sigma\{E \mid E \text{ is both } F_{\sigma} \text{ and } G_{\delta} \}$$

Let $\mathcal{M}(X)$ be all finite Baire signed measures on X. We have a norm $\|\mu\|_{var} = |\mu|(X) = \mu^+(X) + \mu^-(X)$.

Define $J: \mathcal{M}(X) \to C(X)^*$ by $J(\mu)(f) = \int_X f(x)d\mu(x)$. Then J is a linear mapping into $C(X)^*$. In fact, J is an isometric isomorphism and is surjective.

- **61** (Boolean) Suppose (X, τ) is compact Hausdorff. TFAE:
 - 1. X is Boolean (i.e. X has a base of clopen sets
 - 2. The continuous simple functions are dense in C(X)

$$Cl(X) = \{ E \subseteq X \mid E \text{ is clopen } \}$$

 $S(X) = \text{continuous simple functions} = \text{span}\{\chi_E \mid E \in Cl(X)\}.$

- 3. $\forall x \neq y$, there exists a clopen U such that $x \in U, y \in U^C$
- 4. X is homeomorphic to a closed subset of $\{0,1\}^B$ for some B
- 5. X is totally disconnected

10 Regularity Properties of Measures

62 (regular) A measure μ on X is innerregular if $\forall E \in \mathcal{M}$,

$$\mu(E) = \sup \{ \mu(K) \mid K \subseteq E \text{ compact } K \in \mathcal{M} \}$$

A measure μ on X is outerregular if $\forall E \in \mathcal{M}$,

$$\mu(E) = \inf \{ \mu(U) \mid E \subseteq U \text{ open } U \in \mathcal{M} \}$$

We say μ is regular if it is both inner and outer regular.

If μ is a finite signed measure, we say μ is regular if both μ^+ and μ^- are regular ($\Leftrightarrow |\mu|$ is regular).

Theorem: If X is compact and Hausdorff, then if μ is a finite Baire measure, μ is regular.

Corollary: Suppose (X, \mathcal{T}) is a LCTVS and $K \subseteq X$ is weakly compact, $x_0 \in \overline{\text{conv}(K)}$. Then x_0 is the Baray center of a Baire probability measure on K. That is, $\forall x^* \in X^*$, $\langle x^*x_0 \rangle = \int_K \langle x^*, x \rangle d\mu(x)$.

63 (dual of C(X)) If X is compact and Hausdorff, then

$$C(X)^* = \{ \text{ finite signed regular Borel measures } \}$$

64 (Krein-Milman) If C is a convex set in a real vector space, then $x \in C$ is said to

be an extreme point provided whenever $y, z \in C$ and $0 < \lambda < 1$, $x = \lambda y + (1 - \lambda)z$ then x = y = z.

Krein-Milman Lemma: If X is a Hausdorff LCTVS, and $C \subseteq X$ is a non-empty, compact, convex set then $\text{ext}(C) \neq \emptyset$.

Krein-Milman Theorem: If X is a Hausdorff LCTVS, $C \subseteq X$ is a non-empty, compact, convex set, then $C = \overline{\text{conv}(\text{ext}(C))}$, where $\text{ext}(C) = \{ \text{ all extreme points of } C \}$.

 $\frac{Remark\ 1:\ \text{If}\ X\ \text{is}\ \text{a reflexive Banach spac, then}\ B_X\ \text{is weakly compact, hence}\ B_X=\overline{\text{conv}(\text{ext}(B_X))}^{\text{norm}}=\overline{\text{conv}(\text{ext}(B_X))}^{\text{norm}}.$

Remark 2: Suppose X is a normed space. B_{X^*} is weak*-compact so Krein-Milman implies $B_{X^*} = \overline{\text{conv}(\text{ext}(B_{X^*}))}^{\text{weak}^*}$.

65 (examples of extreme points) ex. If K is compact and Hausdorff, then $f \in \text{ext}(B_{C(K)}) \Leftrightarrow ||f|| = 1$ and $|f| \equiv 1$.

ex. see examples from HW

66 (extreme points of C(K)) Proposition: $\overline{\operatorname{conv}(\operatorname{ext}(B_{C_{\mathbb{C}}(K)}))} = B_{C_{\mathbb{C}}(K)} \Leftrightarrow K$ is Boolean.

Theorem: If K is compact and Hausdorff, then $B_{C_{\mathbb{C}}(K)} = \overline{\text{conv}(\text{ext}(B_{C_{\mathbb{C}}(K)}))}$.

Proposition: If K is compact and Hausdorff, then $ext(B_{C(K)^*}) = \{\alpha \delta_k \mid k \in K, |\alpha| = 1\}.$

67 (Banach-Stone) Suppose K_1, K_2 are compact Hausdorff. Then $C(K_1)$ is isometrically isomorphic to $C(K_2)$ if and only if K_1 is homeomorphic to K_2 .

68 (Milman) If X is Hausdorff LCTVS and $M \subseteq X$ is compact with C = conv(M) compact. Then $\text{ext}(C) \subseteq M$.

69 (Kakatani fixed point theorem) We say T is an affine transformation if $T(\alpha x + (1 - \alpha)y) = \alpha Tx + (1 - \alpha)Ty$ for $0 \le \alpha \le 1$, $x, y \in K$.

G is equicontinuous if for all neighborhoods U of 0, there exists a neighborhood V of 0 such that for $x, y \in K$, if $x - y \in V$ then for all $T \in G$, $Tx - Ty \in U$.

We call p a fixed point of G if $G(p) = \{Tp \mid T \in G\} = \{p\}$.

Theorem: Suppose X is a LCTVS and $K \subseteq X$ is convex compact, and G is an equicontinuous group (under composition) of affine transformations on K. Then G has a fixed point.

70 (Haar measure) If G is a group and \mathcal{T} is a topology, then (G, \mathcal{T}) is a topological group if $G \times G \to G$, $(g_1, g_2) \mapsto g_1 g_2^{-1}$ is continuous.

Note that this implies that $(g_1, g_2) \mapsto g_1 g_2$ and $g \mapsto g^{-1}$ are continuous.

Theorem: If (G, \mathcal{T}) is locally compact, then there exists a Biare measure μ on G such that

- 1. $\mu(K) < \infty$ for all $K \in \mathcal{B}a(G)$
- 2. $\mu(O) > 0$ is O is non-empty and open
- 3. $\mu(xE) = \mu(E)$ for every $E \in \mathcal{B}a(G)$ and $x \in G$ (that is, μ is left-invariant)

Moreover, this μ is unique and is also right invariant (i.e. $\mu(Ex) = \mu(E)$)

If (G, \mathcal{T}) is compact, then we can also get $\mu(G) = 1$.

71 (convex hull of compact dudes) Theorem: If X is a Banach space and $C \subseteq X$ is weakly compact, then $\overline{\text{conv}(C)}$ is weakly compact.

Theorem: If X is a Banach space and $C \subseteq X$ is closed, TFAE:

- 1. C is compact
- 2. there exists (x_n) in X such that $||x_n|| \to 0$ and $C \subseteq \overline{\operatorname{conv}(x_n)}$