Chapter 7

Wireless and Mobile Networks

2

Wireless and Mobile Networks: context

- more wireless (mobile) phone subscribers than fixed (wired) phone subscribers.
- more mobile-broadband-connected devices than fixed-broadbandconnected devices devices.
 - 4G/5G cellular networks now embracing Internet protocol stack, including SDN

Wireless and Mobile Networks: context

- Advantages of Cell Phones
 - Anywhere
 - Anytime
 - Untethered access to global telephone network via portable lightweight device
- More recently, laptops, smartphones, tablets are wirelessly connected to Internet via cellular or WiFi network.
- Increasingly, devices such as gaming consoles, thermostats, home security systems, home appliances, watches, eye glasses, cars traffic control systems and more are being wirelessly connected to Internet

Wireless and Mobile Networks: 7-4

4

Wireless and Mobile Networks: context

- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

	1G	2G	3G	4G	5G
Period	1980 – 1990	1990 – 2000	2000 – 2010	2010 – (2020)	(2020 - 2030)
Bandwidth	150/900MHz	900MHz	100MHz	100MHz	1000x BW pr unit area
Frequency	Analog signal (30 KHz)	1.8GHz (digital)	1.6 – 2.0 GHz	2 – 8 GHz	3 – 300 GHz
Data rate	2kbps	64kbps	144kbps – 2Mbps	100Mbps – 1Gbps	1Gbps <
Characteristic	First wireless communicatio n	Digital	Digital broadband, increased speed	High speed, all IP	
Technology	Analog cellular	Digital cellular (GSM)	CDMA, UMTS, EDGE	LTE, WiFi	www

Wireless and Mobile Networks: 7-14

14

Elements of a wireless network

Wireless Network Architecture

- Infrastructure Mode
- Ad Hoc Mode

16

Elements of a wireless network Infrastructure Mode Base Station connects mobiles into wired network Handoff: mobile changes base station providing connection into wired network Wireless and Mobile Networks: 7-17

Elements of a wireless network

Ad Hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless and Mobile Networks: 7- 18

18

Wireless network taxonomy

	Single Hop	Multiple Hops				
Infrastructure (e.g., APs)	host connects to base station (WiFi, Cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: <i>mesh net</i>				
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET, VANET				

Wireless links and Network Characteristics

26

Wireless link characteristics (1)

important differences from wired link

- decreased signal strength
- interference from other sources
- multipath propagation:

.... make communication across (even a point to point) wireless link much more "difficult"

Wireless link characteristics (1) important differences from wired link decreased signal strength: radio signal attenuates as it propagates through matter (path loss)

Wireless and Mobile Networks: 7- 28

28

Wireless link characteristics (1)

important differences from wired link

 multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

30

Wireless link characteristics (2)

- SNR: Signal-to-Noise Ratio
 - larger SNR easier to extract signal from noise (a "good thing")

Wireless and Mobile Networks: 7-31

Wireless link characteristics (2)

- SNR versus BER tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest throughput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

Wireless and Mobile Networks: 7-32

32

Wireless link characteristics (3)

Multiple wireless senders, receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

Wireless and Mobile Networks: 7- 33

Basic Spread Spectrum Technique

- Frequency Hopping Spread Spectrum (FHSS)
- Direct Sequence Spread Spectrum (DSSS)

35

Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")

- encoding: inner product: (original data) X (chipping sequence)
- decoding: summed inner-product: (encoded data) X (chipping sequence)
 wireless and Mr.

WiFi: 802.11 Wireless LANs

41

IEEE 802.11 Wireless LAN

IEEE 802.11 standard	Year	Max data rate	Range	Frequency
802.11b	1999	11 Mbps	30 m	2.4 Ghz
802.11g	2003	54 Mbps	30m	2.4 Ghz
802.11n (WiFi 4)	2009	600	70m	2.4, 5 Ghz
802.11ac (WiFi 5)	2013	3.47Gpbs	70m	5 Ghz
802.11ax (WiFi 6)	2020 (exp.)	14 Gbps	70m	2.4, 5 Ghz
802.11af	2014	35 – 560 Mbps	1 Km	unused TV bands (54-790 MHz)
802.11ah	2017	347Mbps	1 Km	900 Mhz

 all use CSMA/CA for multiple access, and have base-station and ad-hoc network versions

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - · ad hoc mode: hosts only

Wireless and Mobile Networks: 7-43

43

802.11: Channels, association

- spectrum divided into channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!

Wireless and Mobile Networks: 7- 45

- scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
- selects AP to associate with
- then may perform authentication [Chapter 8]
- then typically run DHCP to get IP address in AP's subnet

Wireless and Mobile Networks: 7-46

46

802.11: passive/active scanning

passive scanning:

- (1) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent from selected AP to H1

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

Wireless and Mobile Networks: 7- 47

IEEE 802.11: Multiple Access

- avoid collisions: 2+ nodes transmitting at same time
- 802.11: Carrier Sense Multiple Access (CSMA) sense before transmitting
 - · don't collide with detected ongoing transmission by another node
- 802.11: *no* collision detection!
 - difficult to sense collisions: high transmitting signal, weak received signal due to fading
 - · can't sense all collisions in any case: hidden terminal, fading
 - Goal: avoid collisions: CSMA/CollisionAvoidance

48

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

2 if sense channel busy then start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2

802.11 receiver

if frame received OK return ACK after **SIFS** (ACK needed due to hidden terminal problem)

Distributed coordination function (DCF) is a mandatory technique used to prevent collisions in IEEE 802.11-based WLAN standard (Wi-Fi)

Avoiding collisions (more)

idea: sender "reserves" channel use for data frames using small reservation packets

- sender first transmits small request-to-send (RTS) packet to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

Wireless and Mobile Networks: 7-50

50

Collision Avoidance: RTS-CTS exchange RTS(A) RTS(A) RTS(A) CTS(A) CTS(A) CTS(A) ACK(A) Wireless and Mobile Networks: 7- 51

					_		_		_		
			Various 80)2.11 Fra	ime Type	es and Sub	types				
ype Value	Type	Subtype Value		01	Control	0000-0010	Reserved				
B3B2 Description	B7 B4	Subtype Description	01	Control	0011	TACK					
00	Management	0000	Association Request	01	Control	0100	Beamforming Report Pol				
00	Management	0001	Association Response	01	Control	0101	VHT/HE NDP Announceme	ent			
00	Management	0010	Reassociation Request	01	Control	0110	Control Frame Extension				
00	Management	0011	Reassociation Response	01	Control	0111	Control Wrapper				
00	Management	0100	Probe Request	01	Control	1000	Block Ack Request (BAR)			
00	Management	0101	Probe Response	01	Control	1001	Block Ack (BA)				
00	Management	0110	Timing Advertisement	01	Control	1010	PS-Poll				
00	Management	0111	Reserved	01	Control	1011	RTS	10	Data	0000	Data
00	Management	1000	Beacon	01	Control	1100	CTS	10	Data	0001	Reserved
00	Management	1001	ATIM	01	Control	1101	ACK	10	Data	0010	Reserved
00	Management	1010	Disassociation	01	Control	1110	CF-End	10	Data	0011	Reserved
00	Management	1011	Authentication	01	Control	1111	CF-End + CF-ACK	10	Data	0100	Null (no data)
00	Management	1100	Deauthentication	-	00.111.01		0. 2.0. 7.0.	10	Data	0101	Reserved
00	Management	1101	Action					10	Data	0110	Reserved
00	Management	1110	Action No Ack (NACK)					10	Data	0111	Reserved
00	Management	1111	Reserved				_	10	Data	1000	QoS Data
	1							10	Data	1001	QoS Data + CF-ACK
							_	10	Data Data	1010	QoS Data + CF-Poll QoS Data + CF-ACK + CF-Pol
							_	10	Data	1100	QoS Null (no data)
11	Extens	ion 0000	DMG Beacon					10	Data	1101	Reserved
11	Extens	ion 0001	S1G Beacon					10	Data	1110	QoS CF-Poll (no data)
11	Extens	ion 0010-11	I11 Reserved					10	Data	1111	QoS CF-ACK + CF-Poll (no da

802.11: mobility within same subnet

H1 remains in same IP subnet: IP address can remain same

switch: which AP is associated with H1?

 self-learning (Ch. 6): switch will see frame from H1 and "remember" which switch port can be used to reach H1

Wireless and Mobile Networks: 7- 57

802.11: advanced capabilities

Rate adaptation

- base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies
 - 1. SNR decreases, BER increase as node moves away from base station
 - 2. When BER becomes too high, switch to lower transmission rate but with lower BER

Wireless and Mobile Networks: 7-58