Universidad Industrial de Santander

Introducción a la Física (2013)

Unidad: 03

• Clase: 02

Fecha: 20130926J

Contenido: Energía y Movimiento (II), choques

Web: http://halley.uis.edu.co/fisica_para_todos/

Archivo: 20130926J-HA-choques.pdf

Cantidad de movimiento

- La energía es un escalar
- ¿Hacia dónde va la energía?
- Cantidad de movimiento

$$\vec{p} = m \vec{v}$$

• Es aditivo:

 $\vec{p}_i = \vec{p}_f$

Se conserva:

$$\vec{p}_i = \vec{p}_f$$

Relación con E_k:

$$E_k = \frac{p^2}{2m}$$

¿Qué pasa durante un choque?

Convenciones

- Velocidades iniciales: u₁, u₂, ..., u_n
- Velocidades finales: v₁, v₂, ..., v_n
- Colisiones unidimensionales: misma dirección
- Signos: Igual al eje "x": positivo hacia la derecha

Choques inelasticos

$$\vec{v}_1 = \vec{v}_2 \equiv \vec{v}$$

$$m_1 \qquad m_2$$

¡La cantidad de movimiento se conserva siempre!

$$\vec{p}_f = \vec{p}_i$$
 $m_1 \vec{u}_1 + m_2 \vec{u}_2 = (m_1 + m_2) v$

$$\vec{v} = \left(\frac{m_1}{m_1 + m_2}\right) \vec{u_1} + \left(\frac{m_2}{m_1 + m_2}\right) \vec{u_2}$$

La energía cinética NO se conserva

$$E_{k,i} = \frac{1}{2} m_1 u_1^2 + \frac{1}{2} m_2 \vec{u}_2^2 > \frac{1}{2} (m_1 + m_2) v^2 = E_{k,f}$$

Atención:

¿Qué pasa en este caso con la conservación de la energía?

Casos límites

Choque inelástico, m₁=m₂=m

$$\vec{\mathbf{v}} = \left(\frac{m}{m+m}\right)\vec{u_1} + \left(\frac{m}{m+m}\right)\vec{u_2} \rightarrow \vec{\mathbf{v}} = \frac{\vec{u_1} + \vec{u_2}}{2}$$

Choque inelástico, m₁=m₂=m y u₁=-u₂

$$\vec{v} = \frac{\vec{u}_1 + \vec{u}_2}{2} \rightarrow \vec{v} = 0$$

Choque inelástico, m₁>>m₂:

$$\vec{v} = \left(\frac{m_1}{m_1 + m_2}\right) \vec{u_1} + \left(\frac{m_2}{m_1 + m_2}\right) \vec{u_2} \rightarrow \vec{v} \simeq \vec{u_1}$$

Choque elástico

Magnitudes conservadas

- ▶ Energía total: $E_i = E_f$
- ► Cantidad de movimiento: $\mathbf{p}_i = \mathbf{p}_f$

Magnitudes constantes

Energía cinética:

$$E_{k,i} = E_{k,f}$$

Entonces, sean dos cuerpos de masas m_1 y m_2 moviéndose con velocidades iniciales \mathbf{u}_1 y \mathbf{u}_2 . Luego del choque, sus velocidades finales serán \mathbf{v}_1 y \mathbf{v}_2 :

Conservación de la cantidad de movimiento:

$$\mathbf{p}_i = \mathbf{p}_f \to m_1 \mathbf{u}_1 + m_2 \mathbf{u}_2 = m_1 \mathbf{v}_1 + m_2 \mathbf{v}_2 \tag{1}$$

Constancia de la energía cinética:

$$E_{k,i} = E_{k,f} \rightarrow \frac{1}{2} m_1 \mathbf{u}_1^2 + \frac{1}{2} m_2 \mathbf{u}_2^2 = \frac{1}{2} m_1 \mathbf{v}_1^2 + \frac{1}{2} m_2 \mathbf{v}_2^2$$
 (2)

y entonces
$$m_1 u_1^2 + m_2 u_2^2 = m_1 v_1^2 + m_2 v_2^2$$
 (3)

Estado Final: 2 ecuaciones con 2 incognitas

A partir de las condiciones iniciales, y sabiendo que es un choque elástico, ¿podemos determinar las condiciones finales (\mathbf{v}_1 y \mathbf{v}_2)?

Álgebra

- 1. Estamos en 1D, trabajamos con los módulos de las velocidades
- 2. Reordenamos (1), juntando las velocidades iniciales y finales de cada cuerpo: $-m_1(u_1-v_1)=m_2(u_2-v_2) \tag{4}$
- 3. y lo mismo para la energía cinética (3):

$$m_2(u_2^2 - v_2^2) = -m_1(u_1^2 - v_1^2)$$

4. usando diferencia de cuadrados, $a^2 - b^2 = (a - b)(a + b)$,

$$m_2(u_2-v_2)(u_2+v_2)=-m_1(u_1-v_1)(u_1+v_1)$$
 (5)

5. mirando fijamente y comparando (4) con (5), vemos que:

$$u_2 + b_2 = u_1 + v_1 \rightarrow (u_2 - u_1) = -(v_2 - v_1) \rightarrow \Delta u = -\Delta v$$
 (6)

6. con lo cual, podemos despejar, por ejemplo, v_2 :

$$v_2 = u_1 + v_1 - u_2 \tag{7}$$

Más álgebra, ya casi

7. Podemos utilizar (7), para poner todo en función de v_1 , y despejar v_1 . Partimos de (4):

$$m_2(u_2 - u_1 + u_2 - v_1) = -m_1(u_1 - v_1)$$
 (8)

8. y tratamos de juntar las velocidades v_1 :

$$m_2(2u_2-u_1)-m_2v_1=-m_1u_1+m_1v_1 \tag{9}$$

9. insistimos,

$$m_2(2u_2 - u_1) + m_1u_1 = (m_1 + m_2)v_1$$

 $2m_2u_2 - m_2u_1 + m_1u_1 = (m_1 + m_2)v_1$
 $2m_2u_2 - (m_1 - m_2)u_1 = (m_1 + m_2)v_1$

10. y finalmente,

$$v_1 = \frac{m_1 - m_2}{m_1 + m_2} u_1 + \frac{2m_2}{m_1 + m_2} u_2 \tag{10}$$

11. Cambiando los índices $1 \leftrightarrow 2$, obtenemos v_2 :

$$v_2 = \frac{2m_1}{m_1 + m_2} u_1 - \frac{m_1 - m_2}{m_1 + m_2} u_2 \tag{11}$$

Casos límites

ightharpoonup autos chocadores, $m_1 = m_2$: ¡Las velocidades se intercambian!

$$v_1 = \frac{m_1 - m_2}{m_1 + m_2} u_1 + \frac{2m_2}{m_1 + m_2} u_2 \rightarrow v_1 = u_2$$
 $v_2 = \frac{2m_1}{m_1 + m_2} u_1 - \frac{m_1 - m_2}{m_1 + m_2} u_2 \rightarrow v_2 = u_1$

▶ Billar, $m_1 = m_2$, $u_2 = 0$: ¡La primera bola se queda quieta!

$$v_1 = \frac{m_1 - m_2}{m_1 + m_2} u_1 + \frac{2m_2}{m_1 + m_2} u_2 \rightarrow v_1 = 0$$

$$v_2 = \frac{2m_1}{m_1 + m_2} u_1 - \frac{m_1 - m_2}{m_1 + m_2} u_2 \rightarrow v_2 = u_1$$

▶ Camión vs taxi, elástico, $m_1 \gg m_2$: Pobre taxista...

$$u_1 = \frac{m_1 - m_2}{m_1 + m_2} u_1 + \frac{2m_2}{m_1 + m_2} u_2 \quad o \quad v_1 \approx u_1$$
 $v_2 = \frac{2m_1}{m_1 + m_2} u_1 - \frac{m_1 - m_2}{m_1 + m_2} u_2 \quad o \quad v_2 \approx 2u_1$

Casos límites

▶ Choque contra una pared, $u_2 = 0, m_2 \to \infty$: ¡Rebote!

(el viejo truco, saco m2 como factor común, y hago tender al límite)

$$v_1 = \frac{m_1 - m_2}{m_1 + m_2} u_1 + \frac{2m_2}{m_1 + m_2} u_2 \rightarrow v_1 \simeq -u_1$$
 $v_2 = \frac{2m_1}{m_1 + m_2} u_1 - \frac{m_1 - m_2}{m_1 + m_2} u_2 \rightarrow v_2 \simeq 0$

- Vectorialmente, cambia sólo la coordenada donde está la pared.
- ▶ Imaginemos una pelota de masa m con velocidad $\mathbf{u} = (u_x, u_y, u_z)$, que choca una pared en x = 1. Al llegar a x = 1, entonces

$$v_x = -u_x$$
 $v_y = u_y$
 $v_z = u_z$

Pensar una pelota chocando contra una pared

▶ La velocidad final es entonces $\mathbf{v} = (-u_x, u_y, u_z)$.

Pelota contra pared, v=(0.7,0,0) m/s

Pelota contra pared, v=(1.0,0,0) m/s

Pelota contra pared, v=(2.0,0,0) m/s

Pelota contra pared, v=(3.0,0,0) m/s

Pelota contra pared, v=(0.7,0,0) m/s $\rightarrow v=(3.0,0,0)$ m/s

Partícula en una caja

Partícula en una caja

Partícula en una caja

Partícula en una caja (sin gravedad)

¿Qué pasaría si el rebote de la pelotita no fuera perfectamente elástico?

Choque parcialmente elástico

 En cada rebote pierde energía cinética (si no es elástico, Ε_κ no es constante)

Choque parcialmente elástico

 En cada rebote pierde energía cinética (si no es elástico, E_k no es constante)

- Si la energía se conserva....
- ... y la energía cinética disminuye en cada rebote...
- ¿dónde está la energía faltante?
- Debemos ampliar el concepto de energía total para incluir una nueva forma de energía

$$E_{\text{total}} = E_g + E_k + E_e + \dots + U$$

- U es un tipo de energía
- Por razones que quedarán claro pronto,
 Ilamaremos a U → Energía interna

- Es el contenido total de energía, excluyendo:
 - La energía debida a interacciones con campos externos (p. ej, campo gravitatorio terrestre E_g, campo eléctrico debido a una carga externa, etc)
 - La energía necesaria para mover al cuerpo de estudio como un todo
- P. ej., choque inelástico horizontal (E_g=cte)

$$\begin{split} E_{\text{total},i} &= E_{g,i} + E_{k,i} + U_i \\ E_{\text{total},i} &= E_{\text{total},f} \Rightarrow E_{g,i} + E_{k,i} + U_i = E_{g,f} + E_{k,f} + U_f \\ U_f &= U_i + E_{k,i} - E_{k,f} \\ U_f - U_i &= - \left(E_{k,f} - E_{k,i} \right) \\ \Delta U &= - \Delta E_k \text{ si } \Delta E_k < 0 \Rightarrow \Delta U > 0 \end{split}$$

 En un choque inelástico, la energía interna aumenta para compensar la disminución de energía cinética

$$\Delta U = -\Delta E_k$$
 si $\Delta E_k < 0 \Rightarrow \Delta U > 0$