```
In [1]: import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input/diwali-sales-dataset'):
    for filename in filenames:
        print(os.path.join(dirname, filename))

/kaggle/input/diwali-sales-dataset/Diwali Sales Data.csv
```

```
In [2]: import matplotlib.pyplot as plt
import seaborn as sns
import missingno as mso
import matplotlib.ticker as ticker

# Stats
from statsmodels.graphics.gofplots import qqplot
from scipy.stats import shapiro, norm
```

Data Cleaning

Out[4]:

```
In [4]: df.head()
```

Occupati	Zone	State	Marital_Status	Age	Age Group	Gender	Product_ID	Cust_name	User_ID	
Healthca	Western	Maharashtra	0	28	26-35	F	P00125942	Sanskriti	1002903	0
G	Southern	Andhra Pradesh	1	35	26-35	F	P00110942	Kartik	1000732	1
Automok	Central	Uttar Pradesh	1	35	26-35	F	P00118542	Bindu	1001990	2
Constructi	Southern	Karnataka	0	16	0-17	М	P00237842	Sudevi	1001425	3
Fo Processi	Western	Gujarat	1	28	26-35	М	P00057942	Joni	1000588	4

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 11251 entries, 0 to 11250
        Data columns (total 15 columns):
             Column
                               Non-Null Count
                                               Dtype
        - - -
             -----
                               -----
                                               ----
         0
             User_ID
                               11251 non-null
                                               int64
         1
             Cust_name
                               11251 non-null object
         2
             Product_ID
                               11251 non-null object
                               11251 non-null object
         3
             Gender
         4
                               11251 non-null object
             Age Group
         5
                               11251 non-null int64
             Age
         6
             Marital_Status
                               11251 non-null int64
         7
             State
                               11251 non-null object
         8
             Zone
                               11251 non-null object
                               11251 non-null object
         9
             Occupation
         10 Product_Category 11251 non-null object
         11 Orders
                               11251 non-null
                                               int64
         12 Amount
                               11239 non-null float64
         13 Status
                               0 non-null
                                               float64
         14 unnamed1
                               0 non-null
                                               float64
        dtypes: float64(3), int64(4), object(8)
        memory usage: 1.3+ MB
In [6]: df.isna().sum()
Out[6]: User_ID
                                0
                                0
        Cust_name
        Product_ID
                                0
        Gender
                                0
                                0
        Age Group
        Age
                                0
        Marital_Status
                                0
        State
                                0
        Zone
                                0
                                0
        Occupation
        Product_Category
                                0
        Orders
                                0
        Amount
                               12
        Status
                            11251
        unnamed1
                            11251
        dtype: int64
In [7]: | df.drop(columns=['User_ID', 'Product_ID', 'Status', 'unnamed1'], inplace=True)
```

df.info()

In [5]:

```
In [8]: df.isna().sum()
Out[8]: Cust_name
        Gender
                               0
        Age Group
                               0
        Age
                               0
        Marital_Status
                               0
        State
                               0
                               0
        Zone
        Occupation
                               0
        Product_Category
                               0
        Orders
                               0
        Amount
                              12
        dtype: int64
```

Statistics

```
In [9]: df.describe()
```

Out[9]:

	Age	Marital_Status	Orders	Amount
count	11251.000000	11251.000000	11251.000000	11239.000000
mean	35.421207	0.420318	2.489290	9453.610858
std	12.754122	0.493632	1.115047	5222.355869
min	12.000000	0.000000	1.000000	188.000000
25%	27.000000	0.000000	1.500000	5443.000000
50%	33.000000	0.000000	2.000000	8109.000000
75%	43.000000	1.000000	3.000000	12675.000000
max	92.000000	1.000000	4.000000	23952.000000

```
In [10]: df.head()
```

Out[10]:

	Cust_name	Gender	Age Group	Age	Marital_Status	State	Zone	Occupation	Product_Category
0	Sanskriti	F	26-35	28	0	Maharashtra	Western	Healthcare	Auto
1	Kartik	F	26-35	35	1	Andhra Pradesh	Southern	Govt	Auto
2	Bindu	F	26-35	35	1	Uttar Pradesh	Central	Automobile	Auto
3	Sudevi	М	0-17	16	0	Karnataka	Southern	Construction	Auto
4	Joni	М	26-35	28	1	Gujarat	Western	Food Processing	Auto

```
In [12]: | # Now let's look at the kurtosis and skewness of each variable.
     for col in cols_num:
       print('==' * 30)
       print(f'Variable: {col}\n')
       print(f'Skew = {df[col].skew()}')
       print(f'Kurtosis = {df[col].kurt()}')
       print('==' * 30)
       print('\n')
     Variable: Age
     Skew = 1.183203633076307
     Kurtosis = 2.4642790073598126
     ______
     ______
     Variable: Marital_Status
     Skew = 0.3228963546847678
     Kurtosis = -1.896075025783324
     ______
     ______
     Variable: Orders
     Skew = 0.0195789723936794
     Kurtosis = -1.3527130581443787
     ______
     ______
     Variable: Amount
```

Skew = 0.5580257366658404

Kurtosis = -0.5402092965421805

1.Age: Skewness (a measure of asymmetry) is 1.183, indicating that the age distribution is right-skewed (positively skewed), with a tail extending to the right. This suggests that there might be relatively fewer older customers. Kurtosis (a measure of the peakedness of the distribution) is 2.464, indicating a leptokurtic distribution. The distribution has heavier tails and a sharper peak compared to a normal distribution.

- **2.Marital_Status:** Skewness is 0.323, indicating a slight right skew, but the skew is less pronounced than in the Age variable. Kurtosis is -1.896, indicating a platykurtic distribution. The distribution is flatter and has lighter tails compared to a normal distribution.
- **3.Orders:** Skewness is 0.020, indicating a nearly symmetrical distribution with a very slight right skew. The distribution is close to being symmetric. Kurtosis is -1.353, indicating a platykurtic distribution, similar to Marital Status.
- **4.Amount:** Skewness is 0.558, indicating a right skew, but the skewness is relatively moderate. Kurtosis is -0.540, indicating a platykurtic distribution similar to Marital Status.

EDA

```
In [13]: # Set a custom color palette
    custom_palette = sns.color_palette("viridis")

# Set a larger chart size
    plt.figure(figsize=(12, 6))

# Gender (Categorical data) - Countplot
    sns.countplot(data=df, x="Gender", palette=custom_palette)
    plt.title("Gender Distribution", fontsize=16)
    plt.xlabel("Gender", fontsize=14)
    plt.ylabel("Count", fontsize=14)
    plt.show()
```


In [14]: # Age Group (Categorical data) - Countplot
 plt.figure(figsize=(12, 6))
 sns.countplot(data=df, x="Age Group", palette=custom_palette)
 plt.title("Age Group Distribution", fontsize=16)
 plt.xlabel("Age Group", fontsize=14)
 plt.ylabel("Count", fontsize=14)
 plt.show()


```
In [15]: # Age (Numerical data) - Histogram
    plt.figure(figsize=(12, 6))
    sns.histplot(data=df, x="Age", bins=20, kde=True, color='skyblue')
    plt.title("Age Distribution", fontsize=16)
    plt.xlabel("Age", fontsize=14)
    plt.ylabel("Count", fontsize=14)
    plt.show()
```


In [16]: # Marital_Status (Categorical data) - Countplot
 plt.figure(figsize=(12, 6))
 sns.countplot(data=df, x="Marital_Status", palette=custom_palette)
 plt.title("Marital Status Distribution", fontsize=16)
 plt.xlabel("Marital Status", fontsize=14)
 plt.ylabel("Count", fontsize=14)
 plt.show()

In [17]: # State (Categorical data) - Countplot
 plt.figure(figsize=(12, 6))
 sns.countplot(data=df, x="State", palette=custom_palette)
 plt.title("State Distribution", fontsize=16)
 plt.xlabel("State", fontsize=14)
 plt.ylabel("Count", fontsize=14)
 plt.xticks(rotation=90)
 plt.show()

In [18]: # Zone (Categorical data) - Countplot
 plt.figure(figsize=(12, 6))
 sns.countplot(data=df, x="Zone", palette=custom_palette)
 plt.title("Zone Distribution", fontsize=16)
 plt.xlabel("Zone", fontsize=14)
 plt.ylabel("Count", fontsize=14)
 plt.show()

In [19]: # Occupation (Categorical data) - Countplot
plt.figure(figsize=(12, 6))
sns.countplot(data=df, x="Occupation", palette=custom_palette)
plt.title("Occupation Distribution", fontsize=16)
plt.xlabel("Occupation", fontsize=14)
plt.ylabel("Count", fontsize=14)
plt.xticks(rotation=90)
plt.show()


```
In [20]: plt.figure(figsize=(12, 6))
    sns.countplot(data=df, x="Product_Category", palette=custom_palette)
    plt.title("Product Distribution", fontsize=16)
    plt.xlabel("Product Category", fontsize=14)
    plt.ylabel("Count", fontsize=14)
    plt.xticks(rotation=90)
    plt.show()
```



```
In [21]: # Orders (Numerical data) - Histogram
    plt.figure(figsize=(12, 6))
    sns.histplot(data=df, x="Orders", bins=20, kde=True, color='green')
    plt.title("Number of Orders Distribution", fontsize=16)
    plt.xlabel("Number of Orders", fontsize=14)
    plt.ylabel("Count", fontsize=14)
    plt.show()
```



```
In [22]: # Amount (Numerical data) - Histogram
    plt.figure(figsize=(12, 6))
    sns.histplot(data=df.dropna(), x="Amount", bins=20, kde=True, color='purple')
    plt.title("Amount Distribution", fontsize=16)
    plt.xlabel("Amount", fontsize=14)
    plt.ylabel("Count", fontsize=14)
    plt.show()
```



```
In [23]: markers = {"Male": "o", "Female": "s"}

plt.figure(figsize=(10, 6))
    sns.scatterplot(data=df, x="Age", y="Amount", hue="Gender", palette="Set1", s=3
    0, markers=markers)
    plt.title("Age vs. Amount", fontsize=16)
    plt.xlabel("Age", fontsize=14)
    plt.ylabel("Amount", fontsize=14)
    plt.legend(title="Gender", loc="best")
    plt.show()
```



```
In [24]: plt.figure(figsize=(10, 6))
    sns.scatterplot(data=df, x="Age", y="Orders", hue="Marital_Status", palette="vi
    ridis", s=60)
    plt.title("Age vs. Orders", fontsize=16)
    plt.xlabel("Age", fontsize=14)
    plt.ylabel("Orders", fontsize=14)
    plt.show()
```



```
In [25]: plt.figure(figsize=(10, 6))
    sns.scatterplot(data=df, x="State", y="Amount", hue="Zone", palette="Set1", s=6
    0)
    plt.title("Amount vs. State", fontsize=16)
    plt.xlabel("State", fontsize=14)
    plt.ylabel("Amount", fontsize=14)
    plt.xticks(rotation=90)
    plt.show()
```



```
In [26]: df.columns
Out[26]: Index(['Cust_name', 'Gender', 'Age Group', 'Age', 'Marital_Status', 'State',
```

```
In [27]: plt.figure(figsize=(10, 6))
    sns.scatterplot(data=df, x="Zone", y="Amount", hue="State", palette="Set1", s=6
    0)
    plt.title("Amount vs. State", fontsize=16)
    plt.xlabel("State", fontsize=14)
    plt.ylabel("Amount", fontsize=14)
    plt.xticks(rotation=90)
    plt.show()
```


Correlation Matrix

