Distributed Trust and Blockchains Date: 14-November-2019

Instructor: Sujit Prakash Gujar Scribes: Bhavi Dhingra

Shaily Mishra

Lecture 18: Differential Privary (contd.)

Contents

L	ecap	1
	1 Random Mechanism - 1	
	2 Random Mechanism - 2	2
2	eneral Mechanism	2
	1 Calculating privacy loss when $x = (n-k, k)$ and $y = (n-k+1, k)$	3
	2 Risk (Error)	3
3	uery output is not a real no.	3
4	ensitivity	4
5	δ) differential privacy	5

1 Recap

What is the likelihood that if x gives O output, y gives O output

$$\ln\left(\frac{Pr(M(x)=O)}{Pr(M(y)=O)}\right) \le \epsilon$$

The LHS of the above inequality is termed as $Privacy\ Loss$. The above condition holds for ϵ differential privacy.

1.1 Random Mechanism - 1

Toss a coin

- If H: respond x_i
- If T: toss coin again
 - If H: respond 1
 - If T: respond 0

$$x = (x_1, ..., x_i, ..., x_n)$$

 $y = (\tilde{x}_1, ..., \tilde{x}_i, ..., \tilde{x}_n)$

where, $x_i, \tilde{x}_i \in \{0, 1\}$

$$\ln\left(\frac{Pr(\tilde{x}_i=1\mid x_i=1)}{Pr(\tilde{x}_i=1\mid x_i=0)}\right) = \ln\left(\frac{3/4}{1/4}\right) = \ln 3 \quad \leftarrow \text{(High Privacy Loss)}$$

Random Mechanism - 2 1.2

$$\tilde{x}_i = \begin{cases} x_i & \text{with probability } \left(\frac{e^{\epsilon}}{e^{\epsilon}+1}\right) \\ \bar{x}_i & \text{with probability } \left(\frac{1}{e^{\epsilon}+1}\right) \end{cases}$$

Privacy Loss =
$$\ln \left(\frac{Pr(\tilde{x}_i=1 \mid x_i=1)}{Pr(\tilde{x}_i=1 \mid x_i=0)} \right)$$

= $\ln \left(\left(\frac{e^{\epsilon}}{e^{\epsilon}+1} \right) / \left(\frac{1}{e^{\epsilon}+1} \right) \right)$
= $\ln \left(e^{\epsilon} \right)$
= $\epsilon \leftarrow (\mathbf{Better\ Mechanism})$

 $\epsilon = 0$ implies complete randomness

2 General Mechanism

- Add noise to the answer such that,
 - Each answer doesn't leak too much info about the database
 - Noisy answer is close to the original answer
- Noise is added through the Laplace distribution which is similar to normal distribution. Primary difference is that Laplace distribution has a sharper peak.
- Laplacian mechanism works for any function with a real number as an output

$$x = (x_1, \dots, x_n)$$

$$y = (x_1, \dots, x_n, x_{n+1})$$

where, $x_i \in \{0, 1\}$

Query is mean query i.e. $\mu_x = \frac{1}{n} \sum_{i=1}^{n} x_i$

Output will be $\mu_x + noise$ $noise = Lap\left(\frac{1}{\epsilon n}\right)$, with mean = 0, and, $variance = \frac{1}{\epsilon n}$

Figure 1: Laplace and Gaussian Distributions

$$f(x|\mu, b) = \frac{1}{2b}e^{\frac{-|x-\mu|}{b}}$$
 where,

 $\mu: mean$ b:variance x y have different dimensions So, we will use a new representation

$$\begin{aligned} & \mathbf{x} = (1\text{'s}, 0\text{'s}) \\ & \mathbf{y} = (1\text{'s}, 0\text{'s}) \\ & \mathbf{x} = (\text{n-k}, \, \mathbf{k}) - k \in [0, n] \end{aligned}$$

There are four possibilities for y

$$y = (n - k - 1, k)$$

$$= (n - k + 1, k)$$

$$= (n - k, k - 1)$$

$$= (n - k, k + 1)$$

2.1 Calculating privacy loss when x = (n-k, k) and y = (n-k+1, k)

$$\begin{aligned} PrivacyLoss &= \ln \left(\frac{Pr(M(x)=z \mid x=(n-k,k))}{Pr(M(y)=z \mid y=(n-k+1,k))} \right) \\ \text{Output}, \ M(x) &= z = \mu_x + noise \\ &\implies noise = z - \mu_x \end{aligned}$$

Noise is Lap
$$\left(\frac{1}{\epsilon n}\right)$$
, thus, $f\left(x|\mu,b\right) = \frac{\epsilon n}{2}e^{-|x-\mu|\epsilon n}$
 \Longrightarrow Privacy Loss = $\ln\left(\frac{\frac{\epsilon n}{2}e^{-|z-\mu_x|\epsilon n}}{\frac{\epsilon n}{2}e^{-|z-\mu_y|\epsilon n}}\right)$
= $\ln e^{\epsilon n(|z-\mu_y|-|z-\mu_x|)}$
 $\leq \ln e^{\epsilon n|\mu_x-\mu_y|}$
 $\leq \epsilon n|\mu_x-\mu_y|$
 $\leq \epsilon$

Since, $\mu_y = \frac{n\mu_x + 1}{n+1} \leftarrow$ (this will change according to which y we are selecting) $\implies |\mu_x - \mu_y| \leq \frac{1}{n+1}$

Thus,

 $\epsilon \to 0$: high privacy, low utility $\epsilon \to \infty$: low privacy, high utility

2.2 Risk (Error)

$$Risk = \mathbb{E} \text{ (true answer - noisy answer)}^2$$

We know that, noisy answer = true answer + noise
 $\implies Risk = \mathbb{E} \text{ (noise)}^2$
 $= Var \left(Lap\left(\frac{1}{\epsilon n}\right)\right)$
 $= \frac{1}{\epsilon^2 n^2} \qquad \left(\epsilon < \frac{1}{n}\right)$

3 Query output is not a real no.

When query output is a real no., we use *Laplace Mechanism*. What if it's not a real no.?

$$f: Z_+^{|X|} \to \mathbb{R}^k \qquad \qquad (\text{k dimensional output})$$

$$M(x) = f(x) + (y_1, y_2, ..., y_k)$$

We add Laplace noise for each dimension.

$$\begin{aligned} y_i &= Lap\left(\frac{\alpha}{\epsilon}\right) & \text{(What will } \alpha \text{ be?)} \\ PrivacyLoss &= \ln\left(\frac{Pr(M(x) = z \mid x)}{Pr(M(y) = z \mid y)}\right) \\ &= \ln\left(\prod_{i=1}^k Pr(y_i = z_i - (f(x))_i)\right) \\ &= \ln\left(\prod_{i=1}^k \frac{e}{2\alpha}e^{\left(\frac{-|z_i - f(x)_i| + \epsilon}{\alpha}\right)}\right) \\ &= \ln\left(\prod_{i=1}^k \frac{\epsilon}{2\alpha}e^{\left(\frac{-|z_i - f(y)_i| + \epsilon}{\alpha}\right)}\right) \\ &\leq \ln\prod_{i=1}^k e^{\frac{\epsilon|f(x)_i - f(y)_i|}{\alpha}} \\ &= \ln e^{\frac{\epsilon||f(x) - f(y)||_1}{\alpha}} \end{aligned}$$

For this to be ϵ - differential private:

$$\alpha = ||f(x) - f(y)||_1$$

Since, we don't know $||f(x) - f(y)||_1$, we take the maximum possible:

$$\Delta f = \sup ||f(x) - f(y)||_1$$
 (L₁ sensitivity of f)

thus, $\alpha = \Delta f$

$$\begin{aligned} PrivacyLoss &= \ln e^{\frac{\epsilon \; || f(x) \; - \; f(y) ||}{\Delta f}} \\ &\leq \epsilon \end{aligned}$$

4 Sensitivity

For $f: D- > R^k$, the sensitivity of f is

$$\Delta f = \max_{D_1 D_2} \| (f(D_1) - f(D_2)) \|_1 \tag{1}$$

For all D_1 , D_2 differing in atmost one element.

The sensitivity is represented as Δf and the query is represented as function f

The sensitivity of query helps us understand how much an individual's data influences the calculations and consequently the amount of noise that needs to be added

The sensitivty of f is normally small and consequently in most scenarios, the DP alogirthm doesn't need to add much noise.

Large Sensitivity when the value of ϵ is fixed serves as a warning that more noise needs to be added to mask the data

5 $(\epsilon \ \delta)$ differential privacy

• When $\epsilon << 1$

$$P_r(M(x) \in E) \le e^{\epsilon} P_r(M(y) \in E) \tag{2}$$

is similar to

$$P_r(M(x) \in E) \le (1 + \epsilon)P_r(M(y) \in E) \tag{3}$$

For very small x i.e. x << 1

$$e^x \equiv 1 + x$$

• $\forall E \subset S$, $\forall x, y$ s.t.

 $||(x-y)||_1$

$$P_r(M(x) \in E) \le e^{\epsilon} P_r(M(y) \in E) + \delta \tag{4}$$

- we don't use δ unless we can guarantee that $\delta < \frac{1}{n}$
- $(\epsilon,0)$ we always achieve ϵ differential privacy
- $-(\epsilon,\delta)$, we can achieve ϵ -differential privacy with probability $\frac{1}{1-\delta}$
- Instead of Laplace noise, we add guassian noise $(0,\sigma^2)$, where $\sigma = \frac{\Delta_2 f \sqrt{c \ln(\frac{1}{\delta})}}{\epsilon}$, where $\Delta_2 f$ is L_2 sensitivity

$$\delta_2 = \sup_{\|(x-y)\|_1} \|(f(x) - f(y))\|_2$$

and

$$c^2 \ge 2\ln(\frac{1.25}{\delta})$$

then it is (ϵ, δ) differential private

• Risk (in 2013) : $\mathcal{O}(\frac{d}{\epsilon n})$ where d is the no. of bits in each row.

On average : $\mathcal{O}(\frac{d}{\epsilon n})$

Currently the risk is $(2016): \mathcal{O}(\frac{\sqrt{d \ln \frac{1}{\delta}}}{\epsilon n})$

References

- [1] https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
- [2] https://medium.com/georgian-impact-blog/a-brief-introduction-to-differential-privace
- [3] http://sigmod2017.org/wp-content/uploads/2017/03/04-Differential-Privacy-in-the-wild-1.pdf