CSCI/MATH 2113 Discrete Structures

5.6 Function Composition and Inverse Functions

Alyssa Motas

March 2, 2021

Contents

1	Bijective functions		3
2	Ide	y function 3	
3	Equality of functions		
	3.1	Example	3
4	Cor	mposite functions	3
	4.1	Theorem	3
	4.2	Collection of functions	4
	4.3	Theorem	4
	4.4	Powers of functions	5
5	Invertible functions		
	5.1	Converse of a relation	5
	5.2	Invertible function	5
	5.3	Uniqueness	5
	5.4	Theorem	6
	5.5	Theorem	6
6	Inv	erse image	6
	6.1	Examples	6
7	7 Theorem		7
8	Fin	ite sets	7

1 Bijective functions

If $f: A \to B$, then f is said to be *bijective*, or to be a *one-to-one corespondence*, if f is both one-to-one and onto.

2 Identity function

The function $1_A: A \to A$, defined by $1_A(a) = a$ for all $a \in A$, is called the *identity function*.

3 Equality of functions

If $f, g: A \to B$, we say that f and g are equal and write f = g, if f(a) = g(a) for all $a \in A$.

A common pitfall in dealing with the equality of functions occurs when f and g are functions with a common domain A and f(a) = g(a) for all $a \in A$. It may *not* be the case that f = g. The pitfall results from not paying attention to the codomains of the functions.

3.1 Example

Let $f: \mathbb{Z} \to \mathbb{Z}, g: \mathbb{Z} \to \mathbb{Q}$ where f(x) = x = g(x), for all $x \in \mathbb{Z}$. Then, f, g share the common domain \mathbb{Z} , have the same range \mathbb{Z} , and act the same on every element of \mathbb{Z} . Yet $f \neq g$ because f is injective and g is injective but surjective; so the codomains do not make a difference.

4 Composite functions

If $f: A \to B$ and $g: B \to C$, we define the *composite function*, which is denoted $g \circ f: A \to C$, by $(g \circ f)(a) = g(f(a))$, for each $a \in A$. f and g are composable. However, if $C \neq A$ then $f \circ g$ is not defined.

The definition and examples for composite functions required that the codomain of f = domain of g. If range of $f \subseteq g$, this will actually be enough to yield the composite function $g \circ f : A \to C$. Also, for any $f : A \to B$, we observe that $f \circ 1_A = f = 1_B \circ f$.

4.1 Theorem

Let $f: A \to B$ and $g: B \to C$.

- (a) If f and g are one-to-one, then $g \circ f$ is one-to-one.
- (b) If f and g are onto, then $g \circ f$ is onto.

Proof. Let us prove the following theorem above.

(a) Let $a_1, a_2 \in A$ with $(g \circ f)(a_1) = (g \circ f)(a_2)$. Then

$$(g \circ f)(a_1) = (g \circ f)(a_2) \Rightarrow g(f(a_1)) = g(f(a_2)) \Rightarrow f(a_1) = f(a_2)$$

since g is one-to-one. Also, $a_1 = a_2$ because f is one-to-one. Consequently, $g \circ f$ is one-to-one.

(b) Let $z \in C$. Since g is onto, there exists $y \in B$ with g(y) = z. With f onto and $y \in B$, there exists $x \in A$ with f(x) = y. Hence, $z = g(y) = g(f(x)) = (g \circ f)(x)$, so the range of $g \circ f = C =$ the codomain of $g \circ f$, and $g \circ f$ is onto.

Function composition is not commutative, but it is associative.

4.2 Collection of functions

If A is a set then

$$A^A = \{f \mid f: A \to A\}$$

is the collection of functions $A \to A$. So the function composition is a binary operation on A^A .

4.3 Theorem

If $f: A \to B, g: B \to C$, and $h: C \to D$, then

$$(h \circ g) \circ f = h \circ (g \circ f).$$

Proof. We have

$$(h \circ g) \circ f(x) = h(g(f(x)))$$

and

$$h \circ (g \circ f)(x) = h(g(f(x))).$$

Therefore, we have $(h \circ g) \circ f = h \circ (g \circ f)$.

4.4 Powers of functions

If $f: A \to A$, we define $f^1 = 1$, and for $n \in \mathbb{Z}^+$, $f^{n+1} = f \circ f(n)$.

This definition is another example wherein the result is defined *recursively*. With $f^{n+1} = f \circ (f^n)$, we see the dependence of f^{n+1} on a previous power, namely, f^n .

5 Invertible functions

5.1 Converse of a relation

For sets A, B, if R is a relation from A to B, then the *converse* of R, denoted R^c , is the relation from B to A defined by

$$R^c = \{(b, a) \mid (a, b) \in R\}.$$

We simply interchange the components of each ordered pair in R.

5.2 Invertible function

If $f: A \to B$, then f is said to be *invertible* if there is a function $g: B \to A$ such that $g \circ f = 1_A$ and $f \circ g = 1_B$.

5.3 Uniqueness

If a function $f: A \to B$ is invertible and a function $g: B \to A$ satisfies $g \circ f = 1_A$ and $f \circ g = 1_B$, then this function g is unique.

Proof. If g is not unique, then there is another function $h: B \to A$ with $h \circ f = 1_A$ and $f \circ h = 1_B$. Consequently,

$$h = h \circ 1_B = h \circ (f \circ g) = (h \circ f) \circ g = 1_A \circ g = g.$$

As a result of this theorem, we shall call the function g the inverse of f and shall adopt the notation $g = f^{-1}$. Note that $f^{-1} = f^c$ and $(f^{-1})^{-1} = f$.

5.4 Theorem

 $f: A \to B$ is invertible if and only if f is bijective.

Proof. Assuming that f is invertible, we have a unique function $g: B \to A$ with $g \circ f = 1_A, f \circ g = 1_B$. If $a_1, a_2 \in A$ with $f(a_1) = f(a_2)$, then $g(f(a_1)) = g(f(a_2))$. It follows that $a_1 = a_2$, so f is one-to-one. For the onto property, let $b \in B$, then $g(b) \in A$. We have $b = 1_B(b) = (f \circ g)(b) = f(g(b))$, so f is onto.

For the other direction, suppose $f: A \to B$ is bijective. Since f is onto, for each $b \in B$, there is an $a \in A$ with f(a) = b. Consequently, we define the function $g: B \to A$ by g(b) = a, where f(a) = b. Our definition of g such that $g \circ f = 1_A$ and $f \circ g = 1_B$, so we find that f is invertible, with $g = f^{-1}$.

5.5 Theorem

If $f:A\to B, g:B\to C$ are invertible functions, then $g\circ f:A\to C$ is invertible and

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

6 Inverse image

If $f: A \to B$ and $B_1 \subseteq B$, then $f^{-1}(B_1) = \{x \in A \mid f(x) \in B_1\}$. The set $f^{-1}(B_1)$ is called the *preimage or inverse image* of B_1 under f.

Note. $f^{-1}(B_1)$ is defined even if f is not invertible.

6.1 Examples

• For $f: \mathbb{Z} \to \mathbb{Z}$, we have

$$f^{-1}[\{2\}] = \{2\}.$$

• For $f: \mathbb{Z} \to \mathbb{Z}$, we have

$$f^{-1}[\{0\}] = \{x \in \mathbb{Z} \mid f(x) \in \{0\}\} = \{x \in \mathbb{Z} \mid f(x) = 0\}$$

and

$$f^{-1}[\{1,2\}] = \varnothing.$$

• For $f: \mathbb{Z} \to \mathbb{Z}_2$, we have

$$f^{-1}[\{0\}] = 2\mathbb{Z}$$
 even integers

and

$$f^{-1}[\{1\}] = 2\mathbb{Z} + 1$$
 odd integers

7 Theorem

If $f: A \to B$ and $B_1, B_2 \subseteq B$, then

(a)
$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2);$$

(b)
$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2);$$

(c)
$$f^{-1}(\overline{B_1}) = \overline{f^{-1}(B_1)}$$
.

8 Finite sets

Let $f: A \to B$ for finite sets A and B, where |A| = |B|. Then the following statements are equivalence: (a) f is one-to-one; (b) f is onto; and (c) f is invertible.