Unveiling the Kondo cloud: unitary RG study of the Kondo model

ANIRBAN MUKHERJEE ¹, ABHIRUP MUKHERJEE ¹, N. S. VIDHYADHIRAJA ², A. TARAPHDER ³ SIDDHARTHA LAL ¹

¹DEPARTMENT OF PHYSICAL SCIENCES, IISER KOLKATA

²Theoretical Sciences Unit, JNCASR

³DEPARTMENT OF PHYSICS, IIT KHARAGPUR

JANUARY 28, 2022

$$\mathcal{H} = \sum_{k\sigma} \epsilon_k \hat{\mathbf{n}}_{k\sigma} + J \vec{S}_d \cdot \vec{s}, \quad \vec{s} \equiv \sum_{kk',\alpha,\beta} \vec{\sigma}_{\alpha\beta} c_{k\alpha}^{\dagger} c_{k'\beta}$$

■ Kondo coupling J renormalises to infinity

- Kondo coupling J renormalises to infinity
- low energy phase of metal is local Fermi liquid

- Kondo coupling J renormalises to infinity
- low energy phase of metal is local Fermi liquid
- \blacksquare χ constant at low temperatures, C_{V} linear

- Kondo coupling J renormalises to infinity
- low energy phase of metal is local Fermi liquid
- \blacksquare χ constant at low temperatures, C_v linear
- thermal quantities functions of single scale T/T_K

■ Finite J effective Hamiltonian at fixed point

■ Finite J effective Hamiltonian at fixed point

■ Effective Hamiltonian for the itinerant electrons forming the Kondo cloud

- Finite J effective Hamiltonian at fixed point
- Effective Hamiltonian for the itinerant electrons forming the Kondo cloud
- Nature of correlations inside the Kondo cloud: Fermi liquid vs off-diagonal

- Finite J effective Hamiltonian at fixed point
- Effective Hamiltonian for the itinerant electrons forming the Kondo cloud
- Nature of correlations inside the Kondo cloud: Fermi liquid vs off-diagonal
- Behaviour of many-particle entanglement and many-particle correlations under RG flow

THE UNITARY RENORMALIZATION GROUP

METHOD

THE UNITARY RENORMALIZATION GROUP: OVERVIEW

The General Idea

■ Apply unitary many-body transformations to the Hamiltonian

THE UNITARY RENORMALIZATION GROUP: OVERVIEW

The General Idea

- Apply unitary many-body transformations to the Hamiltonian
- Successively decouple high energy states

THE UNITARY RENORMALIZATION GROUP: OVERVIEW

The General Idea

- Apply unitary many-body transformations to the Hamiltonian
- Successively decouple high energy states
- Obtain sequence of Hamiltonians and hence scaling equations

Step 1: Select a UV-IR Scheme

Step 1: Select a UV-IR Scheme

Start with the electrons farthest from the Fermi surface. Write the Hamiltonian as diagonal and off-diagonal terms in this basis.

Step 2: Rotate the Hamiltonian to kill the off-diagonal blocks.

Step 3: Repeat the process with the new blocks.

lacktriangle Presence of the quantum fluctuation energy scale ω

- lacktriangle Presence of the quantum fluctuation energy scale ω
- Presence of finite-valued fixed points

- lacktriangle Presence of the quantum fluctuation energy scale ω
- Presence of finite-valued fixed points
- Spectrum-preserving transformations

- lacktriangle Presence of the quantum fluctuation energy scale ω
- Presence of finite-valued fixed points
- Spectrum-preserving transformations
- Tractable low-energy effective Hamiltonians