ETL Process in Python: Data Extraction to Database Design

By: Sarah Brittle, Harriet Orleans, Rebecca Skinner

What is ETL?

Definition: Extract, Transform, Load

Importance in Data Management and Analytics

Theme of the Project

Databases

National Neighborhood Data Archive (NaNDA): Crimes by County, United States, 2002 - 2014

National Center for Education Statistics

Institute of Museum and Library Services

These databases were selected as they can be helpful for analyzing the social, educational, and safety dynamics of different counties within the United States.

Data Ethics

All sources from government agencies
All allow open use for statistical purposes

Coding Approach

Tools Used

Python Libraries: Pandas, Glob

Transformation: Jupyter Notebook

Database: PostgreS

Data Extraction

From FBI

	State Code (FIPS)	County Code (FIPS)	year	county_population	murder	rape	robbery	$aggravated_assaults$	burglary	larceny	auto_theft	arson
0	1	1	2002	44959	0	18	35	48	172	1023	48	13
1	1	1	2003	46808	3	29	34	95	326	1235	107	3
2	1	1	2004	47929	0	11	38	103	358	1162	86	3
3	1	1	2005	48917	0	15	28	67	356	1149	112	1
4	1	1	2006	50316	1	16	49	85	343	1226	94	3

Already turned into a csv

Had to merge with code sheet to get locations

Data Extraction: National Neighborhood Data Archive (NaNDA): Crimes by County, United States, 2002 - 2014

```
[1]: import pandas as pd
[2]: #load files
     file_path_1 = "C:\\Users\\LabUser\\Project_3\\School_Data\\ELSI_csv_export_1.csv"
                                                                                                             #merge first and second data sets
     file path 2 = "C:\\Users\\LabUser\\Project 3\\School Data\\ELSI csv export 2.csv"
                                                                                                              merged_data_1_2 = pd.merge(data_1, data_2, on=['School Name', 'State Name [Public School] Latest available year'],
     file_path_3 = "C:\\Users\\LabUser\\Project_3\\School_Data\\ELSI_csv_export_3.csv"
                                                                                                                             how='left', suffixes=(None, '_overlapping'))
[3]: #read files
                                                                                                             merged_data_1_2
     data_1 = pd.read_csv(file_path_1, skiprows=6)
     data 2 = pd.read csv(file path 2, skiprows=6)
                                                                                                              #remove overlapping columns
     data 3 = pd.read csv(file path 3, skiprows=6)
                                                                                                              merged_data_1_2 = merged_data_1_2.loc[:, ~merged_data_1_2.columns.str.endswith('_overlapping')]
                                                                                                              #drop columns with NaN
[4]: #drop ANSI/FIPS column
                                                                                                              merged_data_1_2 = merged_data_1_2.dropna()
     data_1 = data_1.drop(columns=['ANSI/FIPS State Code [Public School] Latest available year'])
     data_2 = data_2.drop(columns=['ANSI/FIPS State Code [Public School] Latest available year'])
                                                                                                              #merge 1&2 merged data with third data sets, remove overlapping columns
     data_3 = data_3.drop(columns=['ANSI/FIPS State Code [Public School] Latest available year'])
                                                                                                              merged_data = pd.merge(merged_data_1_2, data_3,on=['School Name', 'State Name [Public School] Latest available year'],
                                                                                                                         how='left', suffixes=(None, '_overlapping'))
[5]: #drop duplicates from each of the three files
     data 1 = data 1.drop duplicates()
                                                                                                             #remove overlapping after final merge
     data_2 = data_2.drop_duplicates()
                                                                                                              merged_data = merged_data.loc[:, ~merged_data.columns.str.endswith('_overlapping')]
     data 3 = data 3.drop duplicates()
                                                                                                              #remove rowns that have special characters in County Name row
                                                                                                              merged_data = merged_data[~merged_data['County Name [Public School] 2013-14'].str.contains('†', na=False)]
[6]: data_1.drop_duplicates()
                                                                                                              #drop rows that have NaN in the final merged data set
                                                                                                              merged_data = merged_data.dropna()
                                                                                                             #drop duplicates based on school name
                                                                                                              merged_data = merged_data.drop_duplicates(subset=['School Name'])
                                                                                                             merged data
                                                                                                             # replace special characters with NA
                                                                                                              data_cleaned = merged_data.replace({"+": pd.NA, "-": pd.NA, "#": pd.NA})
                                                                                                              data cleaned
```

Data Extraction: National Center for Education Statistics

I used chardet to encode the csv files to utf-8.

I then read in the csv files using glob.

Then I concatenated the csv files.

```
from pathlib import Path
  import pandas as pd
 #checking the encoding
  with open('C:\\Users\\LabUser\\Project_3\\Library_Data\\pupld11b.csv', 'rb') as file:
     result = chardet.detect(file.read())
     print(result)
{'encoding': 'Windows-1252', 'confidence': 0.73, 'language': ''}
 #reading in the csv file with the original encoding
  df = pd.read_csv('C:\\Users\\LabUser\\Project_3\\Library_Data\\pupld11b.csv', encoding='Windows-1252')
C:\Users\LabUser\AppData\Local\Temp\ipykernel_15688\2153928935.py:1: DtypeWarning: Columns (14,149,152) have mixed types. Spe
cify dtype option on import or set low memory=False.
 df = pd.read csv('C:\\Users\\LabUser\\Project 3\\Library Data\\pupld11b.csv', encoding='Windows-1252')
 #saving csv file with encoding utf-8
  df.to_csv('C:\\Users\\LabUser\\Project_3\\Library_Data\\pupld11b_utf8.csv', encoding='utf-8', index=False)
 with open('C:\\Users\\LabUser\\Project_3\\Library_Data\\pupld11b.csv', 'rb') as file:
     result = chardet.detect(file.read())
     print(result)
{'encoding': 'Windows-1252', 'confidence': 0.73, 'language': ''}
 with open('C:\\Users\\LabUser\\Project_3\\Library_Data\\pupld08a.csv', 'rb') as file:
     result = chardet.detect(file.read())
     print(result)
{'encoding': 'ISO-8859-1', 'confidence': 0.73, 'language': ''}
```

Data Extraction: Institute of Museum and Library Services

Data Transformation

	Summary Level_x	State Code (FIPS)_x	County Code (FIPS)	County Subdivision Code (FIPS)_x	Place Code (FIPS)_x	Consolidtated City Code (FIPS)_x	Area Name (including legal/statistical area description)_x	Summary Level_y	State Code (FIPS)_y			year	county_population	murder	rape	robber
0	50	1	1	0	0	0	Autauga County	40	1	0	***	2002	44959	0	18	3
1	50	1	1	0	0	0	Autauga County	40	1	0		2003	46808	3	29	3
2	50	1	1	0	0	0	Autauga County	40	1	0	444	2004	47929	0	11	3
3	50	1	1	0	0	0	Autauga County	40	1	0	5 119)	2005	48917	0	15	2
1	50 ows × 24 col	1	1	0	0	0	Autauga County	40	1	0	-	2006	50316	1	16	4

Data Transformation: National Neighborhood Data Archive (NaNDA): Crimes by County, United States, 2002 - 2014

Data Transformation: National Center for Education Statistics

```
data_cleaned = pd.melt(data_cleaned, id_vars=['School Name', 'State Name [Public School] Latest available year'], var_name='Harri
data_cleaned
data_cleaned[['header', 'year']]=data_cleaned['Harriet'].str.split('] ', expand=True)
data_cleaned
data_cleaned[['Year', 'delete']]=data_cleaned['year'].str.split('-', expand=True)
data cleaned
data_cleaned = data_cleaned.drop(columns=['year', 'delete', 'Harriet',])
data_cleaned
data_cleaned=data_cleaned[['School Name', 'State Name [Public School] Latest available year', 'Year', 'header', 'Rebecca']]
data cleaned
data_final = data_cleaned.pivot(index=['School Name', 'State Name [Public School] Latest available year', 'Year'],
                                columns='header', values='Rebecca')
data_final
data_final = data_final.dropna(subset=['County Name [Public School'])
data_final
#print to CSV
data_final.to_csv('Schools_Merged_Data_2.csv')
```

Data Transformation: National Center for Education Statistics

[26]: data_final = data_final.dropna(subset=['County Name [Public School']) data_final t[26]: American Asian or Black or Full-Time Free Indian/Alaska Asian/Pacific African Charter County Female Equivalent Hispanic Lunch Native Islander American School Name Students (FTE) Students **Location City** header Eligible Students Students Students [Public [Public [Public Teachers [Public [Public School [Public [Public [Public [Public School School School [Public School School School School School School State Name [Public School Name Year School] Latest available year 1 LT Massachusetts 2013 CHARLES W. MIDDLESEX 39 671 1 29 2-No 554 106.33 506 MARLBOROUGH WHITCOMB COUNTY SCHOOL 100 ACADEMY Nevada 2013 **ENGINEERING** CLARK NORTH LAS 5 0 402 1-Yes 293 435 19.00 119 COUNTY VEGAS AND **TECHNOLOGY** ES 100 ACADEMY Nevada 2013 NORTH LAS **ENGINEERING** CLARK 0 71 0 102 1-Yes 98 8.00 30 AND COUNTY **VEGAS** TECHNOLOGY 100 BLACK California 2013 MEN OF THE ALAMEDA 0 0 99 2-No 0 41 7.00 2 OAKLAND **BAY AREA** COUNTY COMMUNITY

Data Transformation: Institute of Museum and Library Services

t[19]:	LIBID	LIBNAME	вкмов	LONGITUD	LATITUDE	FIPSST	CNTYPOP	ADDRESS	CITY	ZIP	CNTY	LOCGVT	STGV
	AK0001- 002	ANCHOR POINT PUBLIC LIBRARY	0	NaN	NaN	NaN	NaN	73405 MILO FRITZ AVENUE	ANCHOR POINT	99556	KENAI PENINSULA	0	640
	4K0002- 011	ANCHORAGE MUNICIPAL LIBRARIES	0	NaN	NaN	NaN	NaN	3600 DENALI STREET	ANCHORAGE	99503	ANCHORAGE	8083056	14219
	4K0003- 002	ANDERSON VILLAGE LIBRARY	0	NaN	NaN	NaN	NaN	FIRST	ANDERSON	99744	DENALI	4000	640
	4K0006- 002	KUSKOKWIM CONSORTIUM LIBRARY	0	NaN	NaN	NaN	NaN	420 STATE HIGHWAY	BETHEL	99559	BETHEL	65000	640
	4K0007- 002	BIG LAKE PUBLIC LIBRARY	0	NaN	NaN	NaN	NaN	3140 SOUTH BIG LAKE ROAD	BIG LAKE	99652	MATANUSKA- SUSITNA	136495	640

•											-4
ZIF	CITY	ADDRESS	COUNTY_POP	FIPSST	LATITUDE	LONGITUDE	MOBILE_BOOKS	LIBRARY_NAME	LIBRARY_ID	STATE	
99556	ANCHOR POINT	73405 MILO FRITZ AVENUE	NaN	NaN	NaN	NaN	o	ANCHOR POINT PUBLIC LIBRARY	AK0001-002	AK	0
99503	ANCHORAGE	3600 DENALI STREET	NaN	NaN	NaN	NaN	0	ANCHORAGE MUNICIPAL LIBRARIES	AK0002-011	AK	1
99744	ANDERSON	FIRST	NaN	NaN	NaN	NaN	0	ANDERSON VILLAGE LIBRARY	AK0003-002	AK	2
99559	BETHEL	420 STATE HIGHWAY	NaN	NaN	NaN	NaN	0	KUSKOKWIM CONSORTIUM LIBRARY	AK0006-002	AK	3
99652	BIG LAKE	3140 SOUTH BIG LAKE ROAD	NaN	NaN	NaN	NaN	0	BIG LAKE PUBLIC LIBRARY	AK0007-002	AK	4
•											4

fi	nal_li	o_df.he	ad()									
	STATE	YEAR	COUNTY	LIBRARY_ID	LIBRARY_NAME	CITY	ZIP	ADDRESS	FIPSST	LONGITUDE	LATITUDE	COUNTY
0	AK	2002	KENAI PENINSULA COUNTY	AK0001-002	ANCHOR POINT PUBLIC LIBRARY	ANCHOR POINT	99556	73405 MILO FRITZ AVENUE	NaN	NaN	NaN	
	AK	2002	ANCHORAGE COUNTY	AK0002-011	ANCHORAGE MUNICIPAL LIBRARIES	ANCHORAGE	99503	3600 DENALI STREET	NaN	NaN	NaN	
2	AK	2002	DENALI	AK0003-002	ANDERSON VILLAGE LIBRARY	ANDERSON	99744	FIRST STREET	NaN	NaN	NaN	
3	AK	2002	BETHEL COUNTY	AK0006-002	KUSKOKWIM CONSORTIUM LIBRARY	BETHEL	99559	420 STATE HIGHWAY	NaN	NaN	NaN	
4	AK	2002	MATANUSKA- SUSITNA COUNTY	AK0007-002	BIG LAKE PUBLIC LIBRARY	BIG LAKE	99652	3140 SOUTH BIG LAKE ROAD	NaN	NaN	NaN	

4												
	STATE	YEAR	COUNTY	LIBRARY_ID	LIBRARY_NAME	CITY	ZIP	ADDRESS	FIPSST	LONGITUDE	LATITUDE	COUNTY
0	AK	2002	KENAI PENINSULA	AK0001-002	ANCHOR POINT PUBLIC LIBRARY	ANCHOR POINT	99556	73405 MILO FRITZ AVENUE	NaN	NaN	NaN	
1	AK	2002	ANCHORAGE	AK0002-011	ANCHORAGE MUNICIPAL LIBRARIES	ANCHORAGE	99503	3600 DENALI STREET	NaN	NaN	NaN	
2	AK	2002	DENALI	AK0003-002	ANDERSON VILLAGE LIBRARY	ANDERSON	99744	FIRST STREET	NaN	NaN	NaN	
3	AK	2002	BETHEL	AK0006-002	KUSKOKWIM CONSORTIUM LIBRARY	BETHEL	99559	420 STATE HIGHWAY	NaN	NaN	NaN	
4	AK	2002	MATANUSKA- SUSITNA	AK0007-002	BIG LAKE PUBLIC LIBRARY	BIG LAKE	99652	3140 SOUTH BIG LAKE ROAD	NaN	NaN	NaN	

fi	nal_li	o_df.he	ad()									
	STATE	YEAR	COUNTY	LIBRARY_ID	LIBRARY_NAME	CITY	ZIP	ADDRESS	FIPSST	LONGITUDE	LATITUDE	COUNTY_
o	AK	2002	KENAI PENINSULA COUNTY	AK0001-002	ANCHOR POINT PUBLIC LIBRARY	ANCHOR POINT	99556	73405 MILO FRITZ AVENUE	NaN	NaN	NaN	ľ
1	AK	2002	ANCHORAGE COUNTY	AK0002-011	ANCHORAGE MUNICIPAL LIBRARIES	ANCHORAGE	99503	3600 DENALI STREET	NaN	NaN	NaN	1
2	AK	2002	DENALI COUNTY	AK0003-002	ANDERSON VILLAGE LIBRARY	ANDERSON	99744	FIRST STREET	NaN	NaN	NaN	ı.
3	AK	2002	BETHEL COUNTY	AK0006-002	KUSKOKWIM CONSORTIUM LIBRARY	BETHEL	99559	420 STATE HIGHWAY	NaN	NaN	NaN	.1.
ı	AK	2002	MATANUSKA- SUSITNA COUNTY	AK0007-002	BIG LAKE PUBLIC LIBRARY	BIG LAKE	99652	3140 SOUTH BIG LAKE ROAD	NaN	NaN	NaN	t

#naming index
final_lib_df.index.names = ['ID']

#printing final df final_lib_df.head()

	STATE	YEAR	COUNTY	LIBRARY_ID	LIBRARY_NAME	CITY	ZIP	ADDRESS	FIPSST	LONGITUDE	LATITUDE	COUNTY
ID												
0	AK	2002	KENAI PENINSULA COUNTY	AK0001-002	ANCHOR POINT PUBLIC LIBRARY	ANCHOR POINT	99556	73405 MILO FRITZ AVENUE	NaN	NaN	NaN	
1	AK	2002	ANCHORAGE COUNTY	AK0002-011	ANCHORAGE MUNICIPAL LIBRARIES	ANCHORAGE	99503	3600 DENALI STREET	NaN	NaN	NaN	
2	AK	2002	DENALI COUNTY	AK0003-002	ANDERSON VILLAGE LIBRARY	ANDERSON	99744	FIRST	NaN	NaN	NaN	
3	AK	2002	BETHEL COUNTY	AK0006-002	KUSKOKWIM CONSORTIUM LIBRARY	BETHEL	99559	420 STATE HIGHWAY	NaN	NaN	NaN	
4	AK	2002	MATANUSKA- SUSITNA COUNTY	AK0007-002	BIG LAKE PUBLIC LIBRARY	BIG LAKE	99652	3140 SOUTH BIG LAKE ROAD	NaN	NaN	NaN	

		final _df.hea										
ID	STATE	YEAR	COUNTY	LIBRARY_ID	LIBRARY_NAME	CITY	ZIP	ADDRESS	FIPSST	LONGITUDE	LATITUDE	COUNT
0	AK	2002	KENAI PENINSULA COUNTY	AK0001-002	ANCHOR POINT PUBLIC LIBRARY	ANCHOR POINT	99556	73405 MILO FRITZ AVENUE	NaN	NaN	NaN	
1	AK	2002	ANCHORAGE COUNTY	AK0002-011	ANCHORAGE MUNICIPAL LIBRARIES	ANCHORAGE	99503	3600 DENALI STREET	NaN	NaN	NaN	
2	AK	2002	DENALI COUNTY	AK0003-002	ANDERSON VILLAGE LIBRARY	ANDERSON	99744	FIRST STREET	NaN	NaN	NaN	
3	AK	2002	BETHEL COUNTY	AK0006-002	KUSKOKWIM CONSORTIUM LIBRARY	BETHEL	99559	420 STATE HIGHWAY	NaN	NaN	NaN	
4	AK	2002	MATANUSKA- SUSITNA COUNTY	AK0007-002	BIG LAKE PUBLIC LIBRARY	BIG LAKE	99652	3140 SOUTH BIG LAKE ROAD	NaN	NaN	NaN	

```
COUNTY
LIBRARY_ID
LIBRARY_NAME
                        object
object
object
object
int64
ZIP
                        object
float64
float64
ADDRESS
FIPSST
LONGITUDE
LATITUDE
COUNTY_POP
VISITS
                        float64
                       float64
int64
HRS_OPEN
MOBILE_BOOKS
KIDCIRCL
                          int64
                           int64
KIDATTEN
AUDIO
                        int64
float64
VIDEO
SUBSCRIP
                        float64
int64
LOCGVT
                           int64
                          int64
STGVT
FEDGVT
OTHER_INCOME
TOTAL_INCOME
dtype: object
                           int64
#creating a parquet document
 final_lib_df.to_parquet("Library_data_2002_2014.parquet")
 final_lib_df.to_csv("Library_data_2002_2014.csv")
```

```
In [29]: #checking dtypes
         print(final_lib_df.dtypes)
       STATE
                       object
       YEAR
                       object
       COUNTY
                       object
       LIBRARY_ID
                       object
       LIBRARY_NAME
                       object
       CITY
                       object
       ZIP
                       int64
       ADDRESS
                       object
       FIPSST
                      float64
       LONGITUDE
                      float64
       LATITUDE
                      float64
       COUNTY_POP
                      float64
       VISITS
                       int64
       HRS_OPEN
                       int64
       MOBILE_BOOKS
                       int64
       KIDCIRCL
                       int64
       KIDATTEN
                       int64
       AUDIO
                      float64
       VIDEO
                      float64
       SUBSCRIP
                       int64
       LOCGVT
                       int64
       STGVT
                       int64
       FEDGVT
                       int64
       OTHER_INCOME
                       int64
       TOTAL_INCOME
                       int64
       dtype: object
In [34]: #changing dtypes
```

final_lib_df.astype({'YEAR': 'int64','KIDATTEN':'int64'}).dtypes

Loading Data into PostgreSQL

```
create table crime(
    ID int primary key not null,
    County varchar(100) not null,
    State varchar(50) not null,
    year integer not null,
    county_population integer not null,
    murder integer not null,
    rape integer not null,
    robbery integer not null,
    aggravated_assaults integer not null,
    burglary integer not null,
    larceny integer not null,
    auto_theft integer not null,
    arson integer not null
);
```

Postgres Table Schema Creation: National Neighborhood Data Archive (NaNDA): Crimes by County, United States, 2002 - 2014

```
Create table "school"(
   School Name_ varchar(150),
   State Name [Public School] Latest available year varchar(50),
   American Indian/Alaska Native Students [Public School int,
   Asian or Asian/Pacific Islander Students [Public School int,
   Black or African American Students [Public School int,
   Charter School [Public School varchar(10),
   County Name [Public School varchar(150)
   Female Students [Public School int,
   Free Lunch Eligible [Public School int,
   Full-Time Equivalent (FTE) Teachers [Public School int,
   Hispanic Students [Public School int,
   Location City [Public School varchar(150),
   Location ZIP [Public School int,
   Magnet School [Public School varchar(10),
   Male Students [Public School int,
   Pupil/Teacher Ratio [Public School int,
   Reduced-price Lunch Eligible Students [Public School int,
   School ID - NCES Assigned [Public School int,
   School Type [Public School varchar(50),
   Total Students All Grades (Excludes AE) [Public School int,
   White Students [Public School int
);
```

Postgres Table Schema Creation: National Center for Education Statistics

Postgres Table Schema Creation: Institute of Museum and Library Services

```
CREATE TABLE "library"(
    ID INT PRIMARY KEY NOT NULL,
    STATE VARCHAR(50) NOT NULL,
    YEAR INT NOT NULL,
    COUNTY VARCHAR (100) NOT NULL,
    LIBRARY_ID VARCHAR(50),
    LIBRARY_NAME VARCHAR(100) NOT NULL,
    CITY VARCHAR (100) NOT NULL,
    ZIP INT NOT NULL,
    ADDRESS VARCHAR(200),
    FIPSST DOUBLE PRECISION,
    LONGITUDE DOUBLE PRECISION,
    LATITUDE DOUBLE PRECISION,
    COUNTY_POP DOUBLE PRECISION,
    VISITS INT,
    HRS_OPEN INT,
    MOBILE_BOOKS INT,
    KIDCIRCL INT,
    KIDATTEN DOUBLE PRECISION,
    AUDIO DOUBLE PRECISION,
    VIDEO DOUBLE PRECISION,
    SUBSCRIP INT,
    LOCGVT INT,
    STGVT INT,
    FEDGVT INT,
    OTHER_INCOME INT,
    TOTAL_INCOME INT
);
```

Final Database Design

Entity Relationship Diagram

Key Takeaways