Semidefinite Programming

Zhiwei Zhang

April 10, 2019

1 Semidefinite Programming

Definition 1. A symmetric $n \times n$ matrix A is PSD if $x^T A x \ge 0 \forall x$

Theorem 1.1. The following are equivalent:

- 1. $x^T A x \ge 0 \forall x$
- 2. $A = \sum_{i=0}^{n} \lambda_i v_i v_i^T$, where $\lambda_i \in \mathbb{R}^+$ and v_i are orthonormal.
- 3. $A = B^T B$ for some B

Proof. 1. 1) \implies 2):

- $2. \ 2) \implies 3)$:
- $3. \ 3) \implies 1)$:

3) implies that if A is SDP, $A_{ij} = \langle b_i, b_j \rangle$ SDP: $\min_{X \in \mathbb{R}^{n \times n}} \langle C, X \rangle = \sum C_{ij} X_{i,j} = Tr(CX)$