Introduction to the Theory of Computation

CSC236H

Deterministic Finite State Automata (DFA) – Review

Let $L=\{0s1:s\in\{0,1\}^*\}.$ Give a DFA which **only accepts** strings in L.

Let $L=\{0s1:s\in\{0,1\}^*\}.$ Give a DFA which **only accepts** strings in L.

• How can we formally prove that the DFA only accepts strings in L?

Deterministic Finite State Automata (DFA's)

A Deterministic Finite Automaton (DFA) $\mathcal D$ is a quintuple $\mathcal D=\langle Q,\Sigma,\delta,q_0,F\rangle$ where:

- Q is the **set of states** in \mathcal{D} ;
- Σ is the **alphabet** of symbols used by \mathcal{D} ;
- $\delta: Q \times \Sigma \to Q$ is the transition function;
- $q_0 \in Q$ is the initial state of \mathcal{D} ;
- $F \subseteq Q$ is the set of accepting states of \mathcal{D} .

DFA's - Extended Transition Function

Let Σ^* be the smallest set such that:

- $\epsilon \in \Sigma^*$.
- $\quad \text{If } x \in \Sigma^* \text{ and } a \in \Sigma \text{ then } xa \in \Sigma^*.$

Let $\delta: Q \times \Sigma \to Q$ be the transition function of a DFA $\mathcal D.$ The **extended transition function** of the DFA is the function $\delta^*: Q \times \Sigma^* \to Q$ defined by structural induction on x:

- $\delta^*(q, \epsilon) = q$.
- $\bullet \quad \text{For some } x \in \Sigma^* \text{ and } a \in \Sigma,$

$$\delta^*(q, xa) = \delta(\delta^*(q, x), a).$$

If $\delta^*(q,w)=q'$ we say that w takes the automaton $\mathcal D$ from q to q'.

DFA's - Extended Transition Function

• A string $w \in \Sigma^*$ is accepted by \mathcal{D} , if and only if w takes the automaton from the initial state to an accepting state.

$$\delta^*(q_0, w) \in F$$
.

 The language accepted (or recognised) by a DFA D, denoted L(D), is the set of all strings accepted by D.

$$\mathcal{L}(\mathcal{D}) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

Let $L = \{0s1 : s \in \{0, 1\}^*\}.$

Give a DFA which only accepts strings in ${\cal L}.$

$$\delta^*(q_0, w) = q_2 \text{ iff } w \in L.$$

Let $L=\{0s1:s\in\{0,1\}^*\}.$ Give a DFA which **only accepts** strings in L.

$$\delta^*(q_0, w) = q_2$$
$$\delta^*(q_0, w) = q_1$$
$$\delta^*(q_0, w) = q_0$$

if w starts by 0 and end by 1. if w starts by 0 and end by 0. if w is empty.

DFA's – State Invariants

- Invariant for a state q: a predicate P over domain Σ^* such that for every string $w \in \Sigma^*$, $\delta^*(q_0, w) = q$ if and only if P(w) is true.
- The state invariants for a DFA should be mutually exclusive.
 No string should satisfy two different state invariants.
- The state invariants for a DFA should be **exhaustive**. Every string in Σ^* , including ϵ , should satisfy one of the state invariants.

Let $L = \{w \in \{0,1\}^* : w \text{ has an odd number of 1's}\}.$

Let $L=\{w\in\{0,1\}^*: w \text{ has an odd number of 1's}\}.$

$$P(w): \begin{cases} \delta^*(q_0,w) = q_1 & \text{if } w \text{ has an odd number of 1's.} \\ \delta^*(q_0,w) = q_0 & \text{if } w \text{ has an even number of 1's.} \end{cases}$$

Regular Expressions (regex)

The set of $\operatorname{regular}$ languages over an alphabet Σ is defined recursively as follows:

- {} is a regular language.
- $\{\epsilon\}$ is a regular language.
- For any symbol $a \in \Sigma$, $\{a\}$ is a regular language.
- If L,M are regular languages, then so are $L\cup M,L\circ M$, and $L^\circledast.$

Let $\mathcal{L}(R)$ denote the language that a regular expression R represents:

- \varnothing is a regex, with $\mathcal{L}(\varnothing) = \{\}$ (matches no string)
- $\bullet \ \ \epsilon \ \text{is a regex, with} \ \mathcal{L}(\epsilon) = \{\epsilon\}$
- For all symbols $a \in \Sigma$, a is a regex with $\mathcal{L}(a) = \{a\}$
- Let S, T be regexes. Then S+T, ST, and S^{\ast} are regexes, with
 - $\mathcal{L}(S+T) = \mathcal{L}(S) \cup \mathcal{L}(T)$
 - $\mathcal{L}(ST) = \mathcal{L}(S) \circ \mathcal{L}(T)$
 - $\mathcal{L}(S^*) = (\mathcal{L}(S))^{\circledast}$

Regular Expressions (regex) – Example

Let $\Sigma=\{0,1\}.$ Consider the regex $01+1(0+1)^*.$

Regular Expressions (regex) – Example

Give a regular expression for the following regular language:

$$L = \{w \in \{0,1\}^* : w \text{ has length at most 2}\}.$$

Regular Expressions (regex) – Example

Give a regular expression for the following regular language:

$$L = \{w \in \{0,1\}^* : w \text{ has } 11 \text{ as a substring}\}.$$

Nondeterministic Finite State Automaton (NFA's)

Nondeterministic Finite State Automaton (NFA's)

Nondeterministic Finite State Automaton (NFA's)

A Nondeterministic Finite Automaton (NFA) \mathcal{N} is a quintuple $\mathcal{N} = \langle Q, \Sigma, \delta, q_0, F \rangle$ where:

- Q is the set of states in \mathcal{N} ;
- Σ is the **alphabet** of symbols used by \mathcal{N} ;
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q)$ is the transition function;
- $q_0 \in Q$ is the **initial state** of \mathcal{N} ;
- $F \subseteq Q$ is the set of accepting states of \mathcal{N} .

- A string $w \in \Sigma^*$ is accepted by \mathcal{N} , if and only if at least one of the possible states in which the automaton could be after processing input w is an accepting state.
- The language accepted (or recognised) by a NFA \mathcal{N} , denoted $\mathcal{L}(\mathcal{N})$, is the set of all strings accepted by \mathcal{N} .