De Morgan's theorem

Logic Design – section 3

Boolean algebra laws and rules:

$$A \cdot 0 = 0$$

$$A \cdot A = A$$

$$\overline{\overline{A}} = A$$

$$A \cdot 1 = A$$

$$A + A = A$$

$$A + \overline{A}B = A + B$$
$$\overline{A} + AB = \overline{A} + B$$

$$A + 0 = A$$

$$A \cdot A' = 0$$

(a)
$$\overline{B} + AB = ?$$

$$A+1=1$$

$$A + A' = 1$$

(b)
$$B + \overline{B}C = ?$$

Q1:

Write the Boolean equation for each of the logic circuits shown in the following figures:

Boolean equation x = AB + BC

Write the Boolean equation for each of the logic circuits shown in the following figures:

Answer ??

Write the Boolean equation for each of the logic circuits shown in the following figures:

Boolean equation x = B.D

Q3:

Draw the logic circuit that would be used to implement the following Boolean equations. Also, construct a truth table for each of the equations. Simplify the equation for this problem and then draw the simplification circuit:

$$a. P = (AC + BC)(A + C)$$

Answer ??

Q3:

Answer:

$$a. P = (AC + BC)(A + C)$$

Simplified equation x = AC + BC

A	В	С	P
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Q4:

Write the equation of the circuit in the following figure, then simplify the equation, and draw the logic circuit of the simplified equation:

Simplified equation x = ???

Q4:

Answer:

Simplified equation x = BC + A

The first De Morgan's theorem:

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

For three variables:

$$\overline{A.B.C} = \overline{A} + \overline{B} + \overline{C}$$

The second De Morgan's theorem:

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

For three variables:

$$\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$

Implementation of De Morgan's theorem:

De Morgan's first theorem

De Morgan's second theorem

Q1:

Write the Boolean equation for the credit show in the following figure. Then, use De Morgan's theorem and then Boolean algebra rules to simplify the equation. Draw the simplified circuit

$$x = ??$$

Q1:

Answer:

$$x = \overline{\overline{A} \, B} + (B + C)$$

Simplified equation x = 0

Write the Boolean equation for the credit show in the following figure. Then, use De Morgan's theorem and then Boolean algebra rules to simplify the equation. Draw the simplified circuit

Answer:

$$x = (\overline{\overline{A}B}) + \overline{\overline{A}BC.(\overline{B} + \overline{C})}$$

Simplified equation x = 1

Logisim

Logisim 1. NAND gate

a	b	x
0	0	1
0	1	1
1	0	1
1	1	0
	'	•

Logisim 2. NOR gate

a	b	x
0	0	1
0	1	0
1	0	0
1	1	0

