

Science 7–10 (2023) Data Book

Contents

Decimal fractions and multiples	3
SI base units for base quantities	3
SI units for other common quantities	4
Some common formulas	5
Periodic table of the elements	6
Ground state electron configurations of elements with atomic numbers 1 to 18	7
Electromagnetic spectrum	8
Bohr model for hydrogen atom	8
Properties of some common elements	9
Names and formulas of some common compounds	10
Names and formulas of some common acids	10
Some common polyatomic ions	11
Subatomic particles and radiation	11
Electrical circuit diagram symbols	12
Alkane nomenclature (with state at 25 °C)	13
General formulas and names of some organic compounds	13
Guidelines for predicting the products of selected types of chemical reactions	14
Solubility table	15
Activity series of metals	15
Acid to base indicators	16
pH scale	16
Nuclear decay curve	16
Pedigree chart	17
DNA nitrogen bases	17
Alleles	17
Punnett square	18
Energy pyramid	18
Geological timescale	19
References	20

Decimal fractions and multiples

Fraction	Prefix	Symbol		
10 ⁹	giga	G		
10 ⁶	mega	М		
10 ³	kilo	k		
10 ²	hecto	h		
10	deca da			
1	common base unit			
10 ⁻¹	deci	d		
10 ⁻²	centi	С		
10 ⁻³	milli	m		
10 ⁻⁶	micro	μ		
10 ⁻⁹	nano	n		

SI base units for base quantities

Physical	quantity	SI	ınit
Quantity name	Quantity symbol	Unit name	Unit symbol
length	1	metre	m
mass	т	kilogram	kg
time	t	second	s
electric current	I	ampere	А
temperature	Т	kelvin	К

SI units for other common quantities

Physical	quantity	5	SI unit
Quantity name	Quantity symbol	Unit name	Unit symbol
volume	V	cubic metre	m³
pressure	Р	pascal	Pa
force	F	newton	N
resistance	R	ohm	Ω
voltage	V	volt	V
wavelength	λ	metre	m
displacement	s	metre	m
frequency	f	hertz	Hz (s ⁻¹)
density	ρ	kilograms per cubic metre	kg m⁻³
velocity	ν	metres per second	m s ⁻¹
acceleration	а	metres per second per second	m s ⁻²

Some common formulas

Name	Formula
temperature conversion	$T(K) = T(^{\circ}C) + 273.15$
density	$ \rho = \frac{m}{V} $
weight force	F=mg
Newton's second law of motion	F = ma
Ohm's law	V = IR
wave equation	$\lambda = \frac{v}{f}$
average velocity	$v_{av} = \frac{\Delta s}{\Delta t}$
acceleration	$a = \frac{\Delta v}{\Delta t}$
microscopic magnification	(power of ocular lens) × (power of objective lens)
experimental error	% error = $\left(\frac{theoretical\ value -\ experimental\ value}{theoretical\ value}\right) \times 100\%$

Periodic table of the elements

1 H 1.008 Hydrogen								KEY									2 He 4.003 Helium
3	4]				Ator	nic Number	79				5	6	7	8	9	10
Li	Be					Standard Ato	Symbol Weight	Au 197.0				B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
6.941 Lithium	9.012 Beryllium					Standard Ato	Name	197.0 Gold				Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
11	12]										13	14	15	16	17	18
Na	Mg											A1 26.98	Si 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
22.99 Sodium	24.31 Magnesium											20.98 Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni 59.60	Cu	Zn 65.38	Ga 69.72	Ge 72.64	As 74.92	Se 78.96	Br 79.90	Kr 83.80
39.10 Potassium	40.08 Calcium	44.96 Scandium	47.87 Titanium	50.94 Vanadium	52.00 Chromium	54.94 Manganese	55.85 Iron	58.93 Cobalt	58.69 Nickel	63.55 Copper	Zinc	Gallium	72.04 Germanium	Arsenic	Selenium	Bromine	Krypton
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47 Rubidium	87.61 Strontium	88.91 Yttrium	91.22 Zirconium	92.91 Niobium	95.96 Molybdenum	Technetium	101.1 Ruthenium	102.9 Rhodium	106.4	107.9 Silver	112.4 Cadmium	114.8 Indium	118.7	121.8 Antimony	127.6 Tellurium	126.9 Iodine	131.3 Xenon
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9 Caesium	137.3 Barium	Lanthanoids	178.5	180.9	183.9 Tungsten	186.2 Rhenium	190.2 Osmium	192.2 Iridium	195.1 Platinum	197.0 Gold	200.6 Mercury	204.4	207.2 Lead	209.0 Bismuth	Polonium	Astatine	Radon
87	88	89–103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	05 105	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
Francium	Radium	Actinoids	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson
Trancium	Radium	Actinoids	Rutherfordium	Dubinum	Beatorgiani	Domian	1140014111	11101111111111			1						
		Lanthano	oids														,
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		La	Ce	Pr	Nd	Pm	Sm	Eu 152.0	Gd 157.3	Tb 158.9	Dy 162.5	Ho 164.9	Er 167.3	Tm 168.9	Yb 173.1	Lu 175.0	
		138.9 Lanthanum	140.1 Cerium	140.9 Praseodymium	144.2 Neodymium	Promethium	150.4 Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
		Actinoids											100	101	100	100	1
		89	90 Th	91 Po	92 U	93 No	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
		Ac	Th 232.0	Pa 231.0	238.0	Np	Pu	AIII	CIII	DK	CI	ES	1.111	IVIU	INU	Li	
		Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium]

Standard atomic weights are abridged to four significant figures.

Elements with no reported values in the table have no stable nuclides.

Information on elements with atomic numbers 113 and above is sourced from the International Union of Pure and Applied Chemistry Periodic Table of the Elements (November 2016 version). The International Union of Pure and Applied Chemistry Periodic Table of the Elements (February 2010 version) is the principal source of all other data. Some data may have been modified.

Science 7–10 (2023) Data Book Page **6** of **20**

Ground state electron configurations of elements with atomic numbers 1 to 18

n = shell number

Z = atomic number

		n =	1	2	3
z	Element name	Element symbol	Electrons in shell 1	Electrons in shell 2	Electrons in shell 3
1	Hydrogen	Н	1		
2	Helium	Не	2		
3	Lithium	Li	2	1	
4	Beryllium	Ве	2	2	
5	Boron	В	2	3	
6	Carbon	С	2	4	
7	Nitrogen	N	2	5	
8	Oxygen	0	2	6	
9	Fluorine	F	2	7	
10	Neon	Ne	2	8	
11	Sodium	Na	2	8	1
12	Magnesium	Mg	2	8	2
13	Aluminium	Al	2	8	3
14	Silicon	Si	2	8	4
15	Phosphorus	Р	2	8	5
16	Sulfur	S	2	8	6
17	Chlorine	Cl	2	8	7
18	Argon	Ar	2	8	8

Electromagnetic spectrum

Bohr model for hydrogen atom

n represents shell number

Wavelength in nanometres (nm)

Properties of some common elements

* = melts under pressure

s = sublimes

Element name	Element symbol	Density (g cm⁻³) at 25 °C and 100 kPa	Melting point t _m (°C)	Boiling point t _b (°C)
Aluminium	Al	2.70	660	2467
Argon	Ar	0.00161	-189	-186
Boron	В	2.34	2300	3660
Calcium	Ca	1.55	842	1484
Carbon (graphite, diamond)	С	2.26 3.51	*3974 >3550	s3930
Chlorine	CI	0.00285	-101	-34
Copper	Cu	8.96	1085	2572
Fluorine	F	0.00153	-220	-188
Gold	Au	19.3	1064	2856
Helium	He	0.000161	*-272	-269
Hydrogen	Н	0.0000813	-259	-253
Iron	Fe	7.86	1535	2750
Lead	Pb	11.3	327	1740
Magnesium	Mg	1.74	650	1110
Mercury	Hg	13.53	-39	357
Neon	Ne	0.000814	-249	-256
Nitrogen	N	0.00113	-210	-196
Oxygen	0	0.00129	-219	-183
(ozone)	O ₃	0.00194	-193	-111
Phosphorus (white)	Р	1.82	44	280
Potassium	K	0.86	63	760
Silicon	Si	2.33	1410	3267
Silver	Ag	10.5	962	2212
Sodium	Na	0.97	98	883
Sulfur (rhombic)	S	2.07	113	445
Zinc	Zn	7.14	420	907

Names and formulas of some common compounds

Name	Formula (with state at 25 °C)
ammonia	NH₃(g)
carbon dioxide	$CO_2(g)$
ethanol	C ₂ H ₅ OH(<i>I</i>)
glucose	C ₆ H ₁₂ O ₆ (s)
methane	CH₄(g)
water	H ₂ O(<i>I</i>)

Names and formulas of some common acids

Name	Formula
carbonic acid	H ₂ CO ₃
ethanoic acid	CH₃COOH
hydrochloric acid	HCI
nitric acid	HNO₃
phosphoric acid	H ₃ PO ₄
sulfuric acid	H ₂ SO ₄

Some common polyatomic ions

Name	Formula
ethanoate	CH₃COO⁻
ammonium	NH ₄ +
carbonate	CO ₃ 2-
hydroxide	OH ⁻
hydrogen carbonate	HCO₃ ⁻
nitrate	NO ₃ ⁻
nitrite	NO ₂ -
phosphate	PO ₄ 3-
sulfate	SO ₄ 2-

Subatomic particles and radiation

Name	Formula
alpha particle (helium nucleus)	4_2 He or α
beta particle (electron)	$_{-1}^{0}$ e or eta
positron	0 +1 ^e
gamma radiation	$_{0}^{0}\gamma$
neutron	$\frac{1}{0}$ n
proton	1 1

Electrical circuit diagram symbols

Name	Symbol	Name	Symbol
electrochemical cell		conductor wire	
battery	\dashv \vdash \vdash	light globe	
open switch		resistor	
closed switch		variable resistor	
ammeter		voltmeter	< >

This diagram shows a complete circuit with an electrochemical cell, an open switch and a light globe connected by a conductor wire.

Note: Electrical drawings use symbols which align with Australian and New Zealand Standards (AS 1102.101-1989 to AS/NZS 1102.110:1997 *Graphical symbols for electrotechnology documentation*). Variation in symbols is to be expected, since not all countries use the International Standards, and standards are likely to have changed over time. (RMIT 2023)

Alkane nomenclature (with state at 25 °C)

Name	Formula	Name	Formula	
<i>meth</i> ane	CH₄(g)	<i>pent</i> ane	C ₅ H ₁₂ (<i>I</i>)	
<i>eth</i> ane	C ₂ H ₆ (<i>g</i>)	<i>hex</i> ane	C ₆ H ₁₄ (<i>I</i>)	
<i>prop</i> ane	C₃H ₈ (<i>g</i>)	<i>hept</i> ane	C7H16(<i>I</i>)	
<i>but</i> ane	C ₄ H ₁₀ (<i>g</i>)	C ₄ H ₁₀ (<i>g</i>) octane		

Note: italics indicate organic nomenclature root name

General formulas and names of some organic compounds

General formula	Homologous series	Example formula	Example name	
C_nH_{2n+2}	alkane	H H I I H - C - C - H I I H H	ethane	
$C_nH_{2n+1}OH$	alcohol	H H H-C-C-O-H I H	ethanol	
C _n H _{2n+1} COOH	carboxylic acid	H - C - C O - H	ethanoic acid	

Guidelines for predicting the products of selected types of chemical reactions

Combustion of hydrocarbons

- i. Complete combustion hydrocarbon + oxygen → carbon dioxide + water
- ii. Incomplete combustion (insufficient oxygen)
 hydrocarbon + oxygen → carbon monoxide + water (carbon may also be formed)

Synthesis

i. Simpler reactants combine to form more complex products.

$$A + B \rightarrow AB$$

For example, direct synthesis

Decomposition

One reactant breaks down into 2 or more products.

i. Binary compound decomposition

$$AB \rightarrow A + B$$

- ii. Thermal decomposition of a metal carbonate metal carbonate → metal oxide + carbon dioxide
- iii. Thermal decomposition of a metal hydroxide metal hydroxide → metal oxide + water
- iv. Thermal decomposition of a metal hydrogen carbonate metal hydrogen carbonate → metal oxide + carbon dioxide + water

Single displacement

One element is substituted for another element in a compound.

$$A + BC \rightarrow AC + B$$

- i. Very active metal with water very active metal + water → metal hydroxide solution + hydrogen gas
- ii. Active metal with acidactive metal + acid → salt solution + hydrogen gas
- iii. Metal substitutionMore active metal replaces a less active metal in a salt solution.

Double displacement

i. Components of 2 compounds are substituted, producing 2 new compounds.

$$AB + CD \rightarrow AD + CB$$

ii. For example, precipitationTwo soluble ionic solutions react to produce an insoluble precipitate or precipitates.

Neutralisation

i. Acid + metal hydroxide → salt + water

Solubility table

	Key : s	= soluble	i = inso	luble *	= slightly s	soluble -=	solubility d	ata unavail	able
	F ⁻	Cl ⁻	Br ⁻	-	NO ₃ ⁻	CH₃COO [−]	OH⁻	SO ₄ 2 ⁻	CO ₃ 2 ⁻
NH ₄ ⁺	s	s	s	s	s	s	s	s	s
Na⁺	s	s	s	s	s	s	s	s	s
K ⁺	s	s	s	s	s	s	s	s	s
Mg ²⁺	i	s	s	s	s	s	i	s	i
Ca ²⁺	i	s	s	s	s	s	*	*	i
Ba ²⁺	*	S	s	s	S	S	S	i	i
Fe ²⁺	*	S	s	s	S	S	i	*	i
Fe ³⁺	*	S	S	-	S	i	i	*	-
Cu ²⁺	s	s	S	-	s	S	i	S	i
Ag⁺	s	i	i	i	s	S	i	*	i
Zn ²⁺	s	s	S	s	s	S	i	S	i
Al ³⁺	*	s	S	s	s	-	i	S	-
Db2+	:	*	*	:			:	:	:

Activity series of metals

Acid to base indicators

Name of indicator	Colour at lower pH	pH range for colour change	Colour at higher pH
thymol blue	red	1.2–2.8	yellow
methyl orange	red	3.2–4.4	yellow
bromocresol green	yellow	3.8–5.4	blue
methyl red	red	4.2–6.3	yellow
bromothymol blue	yellow	6.0–7.6	blue
phenolphthalein	colourless	8.2–10.0	pink/violet

pH scale

Nuclear decay curve

Pedigree chart

DNA nitrogen bases

Nitrogen base	Abbreviation		
adenine	А		
cytosine	O		
guanine	G		
thymine	Т		

Alleles

Upper case - dominant (B)

Lower case - recessive (b)

Punnett square

This Punnett square shows the possible genotype combinations for a dominant/recessive pattern of inheritance, this would mean all offspring would display the dominant phenotype.

Energy pyramid

Energy pyramids illustrate how energy flows through ecosystems, with producers at the bottom harnessing sunlight to convert into biomass, and each successive trophic level receiving only about 10% of the energy from the level below, resulting in a pyramid shape that represents the decreasing energy transfer as it ascends to the top with tertiary consumers.

Geological timescale

Ma BP = million years before present

References

Blackman AG and Gahan LR (2014) *Aylward and Findlay's SI chemical data*, 7th edn, John Wiley & Sons Australia, Milton.

Coghill AM and Garson LR (2006) *The ACS style guide: effective communication of scientific information*, 3rd edn, American Chemical Society, Washington.

Perelman LC, Paradis J and Barrett (n.d.) E *Line graphs*, The Mayfield Handbook of Technical & Scientific Writing, accessed 22 June 2023. https://web.mit.edu/course/21/21.guide/grf-line.htm#:~:text=Line%20graphs%20visualize%20trends%20among,axis%20showing%20the%20independent%20variable

Rumble JR (2019) CRC handbook of chemistry and physics, 100th edn, CRC Press, Boca Raton.

RMIT (Royal Melbourne Institute of Technology) (2023) Electrical drawings, RMIT, accessed 3 October 2023. https://learninglab.rmit.edu.au/dlsweb/Toolbox/electrotech/toolbox1204/resources/04diagrams/03electrical/06symbols.htm