	Escola Tècnica Superior de Telecomunicació de B
-	HMUSERCITAT CONTRACTOR

	EXAMEN DE	TRANSMISION DE BATOS	
Cognoms	RESOLUCIÓN	New	
Sentre	(T)	1	

Termutación D

$$R_{3}(\kappa) = \sum_{k=1}^{\infty} A_{2} \left(-\sum_{k=1}^{\infty} A_{2} \right) \cdot C_{n}$$

$$R_{3}(\kappa) = \sum_{k=1}^{\infty} A_{2} \left(-\sum_{k=1}^{\infty} A_{2} \right) \cdot C_{n}$$

$$R_{3}(\kappa) = \sum_{k=1}^{\infty} A_{2} \left(-\sum_{k=1}^{\infty} A_{2} \right) \cdot C_{n}$$

$$\begin{pmatrix} c_{-1}^{\text{hel}} \\ c_{0}^{\text{hel}} \\ c_{1}^{\text{nel}} \end{pmatrix} = \begin{pmatrix} c_{-1}^{\text{o}} \\ c_{0}^{\text{o}} \\ c_{1}^{\text{o}} \end{pmatrix} = \begin{pmatrix} -0'0019371 \\ -0'0030957 \\ -0'013537 \end{pmatrix}$$

$$\begin{pmatrix} c_{-1}^{N+2} \\ c_{0}^{N+2} \\ c_{1}^{N+2} \end{pmatrix} = \begin{pmatrix} \hat{c}_{-1} \\ \hat{c}_{-1} \\ \hat{c}_{-1} \end{pmatrix} = \begin{pmatrix} 0^{1} 00078653 \\ 0^{1} 0001487 \\ 0^{1} 00084584 \end{pmatrix}$$

$$\begin{pmatrix} c_{-1}^{h+1} \\ c_{-1}^{h+1} \\ c_{+}^{h+1} \end{pmatrix} = \Delta \cdot \begin{pmatrix} s \cdot o' \cdot s \\ 5 \cdot d \\ s \cdot o \end{pmatrix} + \begin{pmatrix} d \cdot o \cdot o \\ 0 \cdot d \cdot o \\ 0 \cdot o \cdot d \end{pmatrix} - \Delta \cdot \begin{pmatrix} 5 \cdot d' ozzs + \sigma_{k}^{2} & 5 \cdot o' is \\ s \cdot o' is & s \cdot d' ozs + \sigma_{k}^{2} & s \cdot o' is \\ 0 & s \cdot o' is & s \cdot d' ozs + \sigma_{k}^{2} & s \cdot o' is \end{pmatrix}$$

$$\begin{pmatrix} c_{-1}^{1+2} \\ c_{0}^{n+2} \\ c_{1}^{n+2} \end{pmatrix} = \Delta \cdot \begin{pmatrix} o'75 \\ 5 \\ 0 \end{pmatrix} + \left\{ \begin{pmatrix} 100 \\ 010 \\ 001 \end{pmatrix} - \Delta \cdot \begin{pmatrix} 5'1125 + T_{1}^{2} & 0'75 \\ 0'75 & 5'1125 + T_{1}^{2} \end{pmatrix} \right\} \cdot \begin{pmatrix} c_{-1}^{111} \\ c_{0}^{111} \\ c_{0}^{111} \\ c_{1}^{111} \end{pmatrix}$$

por ali no oa ... Me molesta sto...

Eutroim	1 bis Qualticació
Nambre total de futs	8

Coquens			km	
Centre				
Assignatura / especialitat				
DNI	Nám. metrica o	Gues	Grop	Data

$$\frac{d^{n+1} = \Delta \cdot Ray + (I - \Delta \cdot Ry) \cdot d^n}{d} = \Delta \cdot Ray + (I - \Delta \cdot Ry) \cdot d^n}$$

$$\frac{d^{n+1} - d^n}{d} = (I - \Delta \cdot Ry) \cdot (d^n - d^n)$$
error en la itenzión(n+1)
error en la itenzión

$$= D \quad e^{n+2} - \hat{e} = (\Sigma - \triangle \cdot R_{3}) \cdot (e^{n+4} - \hat{e})$$

$$= \begin{pmatrix} 0' \cos 3 \cos 3 \\ 0' \cos 1 \cos 3 \end{pmatrix} = \begin{pmatrix} 1 \cos 3 \\ 0 \cos 3 \cos 3 \end{pmatrix} = \begin{pmatrix} 1 \cos 3 \cos 3 \\ 0 \cos 3 \cos 3 \end{pmatrix} \cdot \begin{pmatrix} -d \cos 3 \cos 3 \cos 3 \\ 0 \cos 3 \cos 3 \end{pmatrix} \cdot \begin{pmatrix} -d \cos 3 \cos 3 \cos 3 \\ 0 \cos 3 \cos 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 - \Delta \cdot (\underline{\mathcal{G}}' uzs + \overline{\eta_1}^2) & -o'7s \cdot \Delta & \odot \\ -o'7s \cdot \Delta & 1 - \Delta \cdot \underline{\mathcal{G}}' uzs + \overline{\eta_1}^2) & -o'7s \cdot \Delta \\ -o'7s \cdot \Delta & 1 - \Delta \cdot \underline{\mathcal{G}}' uzs + \overline{\eta_1}^2) \end{pmatrix} \cdot \begin{pmatrix} -dool9371 \\ -doo30957 \\ -o'023537 \end{pmatrix}$$

-0'0019371 + 0.0'0019371. ($\frac{1}{3}$ '1125+ $\frac{1}{3}$ 2) + 0'75. $\frac{1}{3}$. do030957 = 0'00078653 c) $\frac{1}{6}$ Δ = 0'22 $\frac{1}{3}$ 2 = d08? 0'00078653 Yeon los otros Z n° también se cumple.

	Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona	Full nam	Z Gualificació
	UNIVERSITAL POLITÉCNICA DE CATALUNYA	Nombre total de fulls 1.	
	Cognoms	Non	
	Cantre		
	Assignativa / aspeciality		
	CMI Scott instricuta d	turs Simp	Data
(2) <u>~</u>	De necesita un códio e=1 ⇒ dmin = 2e+1 =	go 1-perfecto. Así 3 lo mismo	pasa siempre
	e=1 => dmin = 2e+1 =	3 formismo	¬` (*)

Codigo (15, 11)

n=2°-1

~=3 -0 n=7 -0 k=4 => (odigo (7,4)

M24106115 -0K=11 => (6digo(12,11)

Hay 211 pullbras código.

Hemos de codificas 2¹⁵ pulabras, 2¹⁵ vesultados por blos. Queiro exintocarme sólo en un resultado.

palebra códiso
15 bits
Todo: son acier fin
15 bits
15 bits
1 gallo
15 acier fin

Entre 2 palabras código sieucope hay distaucia 3.

Hay 211 pakbras co'digo.

3) $C = W \cdot log_2(1 + \frac{5}{N}) = 1500 \cdot log_2(1 + 10^{0/28}) = 2308'150424 bps$ $C = V_{t} \text{ md x ma}$

Información máxima transmitida = a.t = a. 1213 = 28390' 25022 bits

H= Entropia moixima = Inform. unix. Media = $\frac{28390'25022}{10^6} = 0'02839025022$ H= Pi loge $\frac{1}{Pe}$ + (1-Pe). loge $\frac{1}{1-Pe}$ = 0'02839025022

a) ¿Pc = 0'818 ? = 0 0' 2370786924 + 0 4473541154 = 0'6844328078

b) 2 pc = 0'673? = 0'5844994301 + 0'5273324491 = 0'9 118318792

c) : Pc = 0'997? => 0'004321586376 + do7514246535 = 0'02946405175 d) Pazece ser enta...

(4) Ø \(\xi\) \(\text{H(A)} \) \(\text{leg}_2 A \(\text{ > La entropía es maixima so los símbolos} \) \(\text{son equi probables} \).

 $H(x) = \begin{cases} \frac{1}{2} & \frac{1}{2} & \log_2 \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \log_2 \frac{1}{2} \end{cases}$ $\rho = \frac{1}{2}$ $A = 3 \implies H(A) \le \log_2 3$

H(A) > H(A)B) = "La Jufamación de A decrece si conozco más diformación, la relacionada con B"

S: H(A)B) = logz 3 = > H(A) = logz 3

H(B) = log_3 =0 [H(B) = H(A)]

 $\widehat{\mathbb{S}}$

Dretouatio

10) (4) (3)(2) -0 4 poutros

Neasito 3 bits para codificar cada ecitrada al discoverage. =13 3 bib/puriters =3 12 bifs/

6

W = 4000 HZ A = 16 = 0 q = 4 bite sambolo

CAH+ Om = W = 4000 - 3200 baudios

Ut [bits] = 9 [bits symbols]. om [simbols]

Ut = 4.3200 = 12.800 bps

1-perfecto =0 n = 25-1

r=3 =0 n=7 =0 k=4 => (digo (7,4)

Información = I = 8.106. 7 bits = 14.000.000 bits

trempo (seg) = = = 14.106 = 1093/75 seg/

b) c) Al ser no liveal, no puedo usar que:

domin = min W(yx)
yx

Sino que debo aplicar domin = MIN d(y; yk) = HIN d(y; & yk)

Capacidad detectora (de errores, claro): 5 = dmin-1 = 1/1

$$H(N \setminus I = A) = O'4 \cdot \log_2 \frac{1}{O'4} + O'3 \cdot \log_2 \frac{1}{O'3} + O'3 \cdot \log_2 \frac{1}{O'3} =$$

$$= O'528774 + O'521089 + 2 = 1'570949$$

$$H(V | I=X) = 0'S \cdot log_2 \frac{1}{o'S} + o'3 \cdot log_2 \frac{1}{o'3} + o'2 \cdot log_2 \frac{1}{o'2} =$$

= o'5 + o'571089 + o'464385 = 1'48547

$$H(V \setminus J=2) = 0'3 \cdot log_2 \frac{1}{0'3} + 0'4 + log_2 \frac{1}{0'4} + 0'3 \cdot log_2 \frac{1}{0'3} =$$

$$= 2 \cdot 0'521089 + 0'528771 = 1'570949$$

Euthoám	4	Qualificacio	
Nambre total de full	8		

Centre

NI Num. 1

(9) b) El código no es lineal, pues mo incluyo a 00000000.
No forma subespació vectorial.

Además, la suma de Z palabras cidigo no da otra

pulabra código: 00001111 ⊕ 11110000 = 111111111

€ CI € CI € CI

a) Como el código vo es lineal, no puedo esser que:

dmin = min Weyk) = min 4 = 4
yk

todas las palabres yesan 4.

He de war: dmin = MIN d(yi, yk) = MIN W(yi@yk) =
- Menor nº de bits en que diferen Z palabras código.

d (00001111, 00011110) = 2 W (00001111 (+) 00011110) = W (00010001) = 2

c) Permutaciones con repetición, de 8 elementes con 4 unos y 4 ceros:

ZP Problema típico do combinatoria.

Con codificador

Percer (bloque) =
$$\sum_{j=e+1}^{6} {n \choose j} \cdot p^{j} \cdot (1-p)^{n-j} = {100 \choose 6} \cdot (10^{-3})^{6} \cdot (1-10^{-3})^{94}$$

$$= {100 \cdot 99 - 98 \cdot 93 \cdot 96 \cdot 95 \choose 720} \cdot 10^{-15} = 1^{1} \cdot 192 \cdot 10^{-9}$$

$$H = 0.25 \cdot \log_2 \frac{1}{0.25} + 0.45 \cdot \log_2 \frac{1}{0.45} + 0.15 \cdot \log_2 \frac{1}{0.15} + 0.1 \cdot \log_2 \frac{1}{0.1} + \cos \log_2 \frac{1}{0.05} = 0.15 + 0.15 \cdot \log_2 \frac{1}{0.05} = 0.1$$

Fut rân.	5	Qualificació
Nombre total de falls	8	

Cognors		Nam			
Centre					
Assignatura / especial tal					
DNI	Numi, matricula	Curs	Grup	Date	

(12) D = 0100 (H.P.D)

a)
$$0 \cdot p^{(m)}(D) = c(D) + p^{n+1}(D)$$
 $0 \cdot p^{n}(D) = p^{(m+n)}(D)$
 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la etra funcionam.

 $1 - c$ la ema, o la ema, o la etra funcionam.

 $1 - c$ la ema, o l

$$\frac{p_{a} + p_{3} + 1}{p_{a} + p_{3} + 1} = b_{(e)}(p)$$

$$\frac{p_{a} + p_{3} + 1}{p_{2} + p_{3} + p_{3}}$$

$$\frac{p_{2} + p_{3} + p_{5}}{p_{2} + p_{3} + p_{5}}$$

$$\frac{p_{6} + p_{2} + p_{5}}{p_{3} + p_{5} + p_{5}}$$

$$\frac{p_{6} + p_{3} + p_{5}}{p_{4} + p_{3} + 1}$$

$$\frac{p_{5} + p_{6} + p_{3}}{p_{5} + p_{5} + p_{5}}$$

$$\frac{p_{7} + p_{7} + p_{5}}{p_{7} + p_{7}}$$

$$\frac{p_{7} + p_{7} + p_{7}}{p_{7} + p_{7}}$$

$$\frac{p_{8} + p_{8} + p_{7}}{p_{8} + p_{7}}$$

$$\frac{p_{8} + p_{8} + p_{7}}{p_{8} + p_{7}}$$

$$\frac{p_{8} + p_{8} + p_{8}}{p_{8} + p_{8}}$$

$$\frac{p_{8} + p_{8}}{p_{8}}$$

$$H(c \times n) = (-P^{T}|I_{c}) = \begin{pmatrix} x & x & x & 1000 \\ x & x & x & 000 \end{pmatrix} = H(3,7)$$
from columnas

Ademán, este en sistemático.

- c) g(D) tiene grador r=n-k=3 . No purche ser.
- b) No as pelebracidigo.

D2+ D+1

$$\mathcal{D}_{c} \times (D) = D_{3} \cdot D = D_{4}$$

$$\times (D) = \underset{p_{5}p_{1}}{0 \cdot 0} \subseteq D$$

$$\otimes (D) = \underset{p_{5}p_{1}}{0 \cdot 0} \supseteq D$$

Full num.	6	Gualificació
Nombre total de fulls	8	

	No. of the control of			P
Assignatora / especial/tat				
Centre				
		N	iom	

(15) $H = \underset{1=0}{\overset{q}{\stackrel{}}} \frac{1}{p} \cdot \log_2 \frac{1}{p} = \log_2 10$ $\frac{1}{p} = \frac{1}{10}$

Fronte que a dasa = 4000-log, 10 digits

ci > Uz (frente) > 1000 · log. 10

 $d = W \cdot \log_2 (1 + 5/N)$ $10^3 \cdot \log_2 10 \le 10^3 \cdot \log_2 (1 + 5/N)$ $10 \le 1 + 5/N$ $9 \le 5/N - b (5/N) = 9$

(16) c(0) & completo, m=15.

a) Falso, so solo ocurre para ces) primitivo, y L=Lmax=24-1.

b), c) => (argando con un stado un el que sólo hay un 1, estoy en el subgrupo de período máximo.

Y para C(D) completo, Lmax = m+1=16

Full núm. ¹⁰	+	Qualificació	
	-		
Nombre total de fulls	28		

Gente Assig	natura : especializat
ONI	Problem 17
cierta cierta falsa!	a) Cierta b) to tome AM velores (ciato) c) Gi tome AMH velores (ciato) d) · No aplice Ci (aci), aci+1) a(i+11)
	9 mblem 18
	210 = [] × 810 = Co] ×
	4 [of = 0/6 7 [1) = 1/2 4[2] =0
	(21 L & F[j]
	Call a guil
	0 1 1 0148
	Cilch & Fo
	ak(0) to = ak (0) Dalo) - 5 ak (0) 2 (0)
	$\frac{\alpha_{K}(0)}{1} = \frac{\alpha_{K}(0)}{2} + \frac{\beta_{K}(0)}{2} + \beta_$

a(c(o)	ak(x)	00 = 20/1 (1) ak(0) Px(1) + Px(0) -
Л	J	6'04
Y	-1	1/96
- 1	,l	= X'88
- 1	_ \	3,88

Sewones mis renosimit (1,1)

Lego
$$\hat{Y} = (1, 1) * (d8, 06) = (08, 14, 06)$$

(19)

a) Ry depende de Oy (ne.tz)

b) los values de la diesgoral sempre son recles ppositions

Ry es alphide position (vierte)

c) les autorbres son regores que à médical

(d) Falsa, las enteriores sur vientas

(20) a) $\Delta_{cont} = \frac{\Delta_{cont} \, condito$ Le

b) Dund downerd se obden a town of Ryylo)

Es la redición de D. Por ello

se optica el combio de varche

Por la tento, $\Delta l = 0$ $\Delta E(H) l$ lungo el la efirmecia es felsa del que

la relación es contrava.

d) No optice.

