

Dynamically Adaptable Component-based Data Link Systems (DACDLS)

Dwight E. Cass
DASADA Winter PI Meeting
January 31, 2001

NORTHROP GRUMMAN

Program Goals

- Demonstrate DASADA Technologies To Enable:
 - Adaptive In-flight Replanning And Retargeting
 - Dynamic In-Theater Sensor/Shooter Integration

Approach

Gauges to Control Dynamic Composition and

Reconfiguration of In-Flight Avionics

- Build On Successful B-2 JEFX99 Demonstration
 - Demonstrated B-2 Flexible Re-Targeting
 - Government Owned Flight Operational Hardware

Demonstration Scenario

- Rapid Launch With Minimum Mission Plan
- Adapt In-Theater To Prosecute A Collection of Time Critical Targets

Technical Approach

- Work With Resource Constrained Systems Group To Address Four Key Technology Areas:
 - Rapid Dynamic Component Assembly
 - Comprehensive System Analysis (i.e., timing, safety, reliability, security)
 - Real-time Resource Management (under constraints)
 - Heterogeneous Interacting Resource
 Allocation Policies
- Assess Impact Of Various Group Capabilities
 Within The Scope Of Several Demonstrations

PARPA ynamic Component Assembly

- Candidate Components Selected To Meet Mission Requirements
- Specification-based Model Testing Approach Measures Compliance To Architectural Model

System Analysis

- Gauges Quantify Divergence of Component's Predicted Behavior To Actual Performance
 - Divergence Beyond Setpoints Triggers Repair Strategies
- Components Must Be Configured To Continually Meet Constraints of Theater of Operation

Real-time Resource Management

 Three Candidate Methods To Determine Air Vehicle Navigation Data

- Access Navigation Data (Location, Heading, and Speed) from Flight Computer
- Augment GPS with Heading From Onboard INS
- Operational Constraints Restrict Resource Usage
 - e.x., Flight Computer Cannot Be Accessed
 If Transmitting via Link-16/Combat Track II
- System Must Adapt As Operational Constraints Change

Resource Allocation

Two Classes of Resource Allocation Problems

- Workload Allocation Between Processors
- Discovery/Allocation of Spare (Slack) Resources on Each Processor
- Take Advantage of Computational Resources
 - Image Enhancement / Sensor Fusion
- Reallocate Workload To Ensure Task Completion

Capabilities Being Produced

- We will Produce Gauges Based Upon:
 - T-VEC Use Specification-based Model Testing Approach To Measure A Component's Compliance To Architectural Model
 - CEP (Complex Event Processing) To Provide Rich Event-based Infrastructure for Creation and Management of Probes Required To Monitor the Operational System

DARPAC apabilities Being Consumed

- Will Explore The Use of Meta H As Basis For Consumption/Performance Gauges
 - Slack Scheduler / Reliability Model
- Interested In Time Wiz++ / Meta H Interaction in Terms of
 - Quality of Service Assessment
 - Addition of Time Wiz++ Real-Time
 Queue Theory Work to Meta H
- Will Evaluate Runtime Monitoring Approaches Using Both Meta H And CEP Event Triggers

Capabilities Being Consumed

- A Number of Modeling Languages (ADLs)
 Will Be Consumed
 - ACME/Armani To Model Component Composition Constraints
 - Meta H To Model Component Performance Characteristics
 - ArchRepair To Model Explicit Recovery Architectures
- A Major Issue Will Be ADL Interoperability
 - What Semantics Are Lost During Translation And What Is The Impact

Demo Days 01 Goals

- Focus of Demo is Component Composition
 - Combines Formal Testing Approach With Resource Allocation Prediction/Measurement
 - Evaluate Ability Of Various ADLs To Model Behavior And Resource Requirements
- Composition On A Heterogeneous Target Platform
 - Impact Of Varying Computation Resources On System Composition
 - Multiple CPUs vs. Inter-Processor Communications Costs
 - Modeling Redundancy Safety vs.
 Performance Considerations

Demo Days 01 Goals (Cont.)

- Assess Trade-off Between Various Real-Time Scheduling Approaches
 - Can One Determine Whether Rate-Monotonic Scheduling Is Required (Quality of Service)?
 - Impact Of Components Requiring Some Level
 Of Assured Asynchronous Scheduling?
 - How Does One Measure/Model Impact Of (And Recover From) Inadequate Schedule Slack?
- Impact Of Monitored System Probe Insertion
 - Evaluate Various Probe Approaches And Impact On Predicted Performance
 - How Much Useful Information Is Available From Slack Scheduled Probes?

DACDLS: Dynamically Adaptable Component-based Data Link

Impact

- New paradigm for the creation and operation of real-time mission critical avionics systems:
 - Black-box avionics replaced with tailorable component-based avionics that adapt to dynamic changes in mission requirements
 - Component libraries enable adaptations to be dynamically shared among mission assets
 - In-flight reconfiguration enables rapid response to highly dynamic theaters of operation

New Ideas

- Measure component's ability to function within a system through specification-based testing of its conformance to formal architectural model of system
- Combine this metric with measurement of component's resource consumption to select optimal candidate
- Automatically generate gauges to measure component's run-time compliance to architectural model
- Detect and respond to real-time resource
- Starvation through corrective system reconfiguration/tailoring

1/2001 6/2001 1/2002 6/2002

2 3 4 5

- 1. Baseline Architectural and Target Execution Platform Models
- 2. Configuration Strategy Engine Infrastructure
- 3. Assembly Gauges
- 4. Consumption Gauges
- 5. Diagnostic Gauges and Reconfiguration Engine NORTHROP GRUMMAN
- 6. Performance Gauges