U.S. Application Serial No. 10/608,906

Attorney Docket: 46107-0037

Response to Final Office Action of April 12, 2006

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (CANCELED)
- 2. (CURRENTLY AMENDED) The yaw stability system of claim [[1]] 6 wherein said control unit determines the control yaw moment using a sliding mode control law based on a lumped mass vehicle model.
- 3. (ORIGINAL) The yaw stability system of claim 2 wherein said control unit determines the control yaw moment (Mz) based on the following equation

$$\begin{split} M_{z} &= I_{z}\dot{r}_{des} - \left[a[(C_{FL} + C_{FR})\alpha_{F}\cos\delta + (\eta_{FL} + \eta_{FR})F_{zF}\sin\delta] - b(C_{RR} + C_{RL})\alpha_{R} + \\ &(c * C_{FL} - d * C_{FR})\alpha_{F}\sin\delta - c(\eta_{FL}F_{zF}\cos\delta + \eta_{RL}F_{zR}) + d(\eta_{FR}F_{zF}\cos\delta + \eta_{RR}F_{zR})] + I_{zz}\eta SAT(\frac{r_{des} - r}{\phi}) \end{split}$$

Claims 4-5 (CANCELED)

- 6. (PREVIOUSLY PRESENTED) A yaw stability system for a vehicle having a plurality of wheels each with a torque control element, said yaw stability system comprising:
 - a yaw rate sensor measuring a vehicle yaw rate;
- a plurality of braking devices each operably associated with one of the torque control elements and configured to exert a braking torque on the control element in response to a control command, wherein said braking devices are eddy current machines and wherein said control command is a current command; and

U.S. Application Serial No. 10/608,906

Attorney Docket: 46107-0037

Response to Final Office Action of April 12, 2006

a control unit communicating with said yaw rate sensor and configured to:

identify a desired yaw rate,

determine a yaw rate tracking error based on the difference between the desired yaw rate and the vehicle yaw rate,

determine a yaw condition of the vehicle based on the vehicle yaw rate,

determine a control yaw moment to minimize the yaw rate tracking error,

select one or more of said plurality of braking devices based on the yaw condition,

and

communicate a control command to the one or more selected braking devices to induce said control yaw moment,

wherein the control unit estimates braking device saturation torque (Test) based on a quadratic function of rotor speed and excitation current.

7. (ORIGINAL) The yaw stability system of claim 6 wherein the quadratic function is:

$$T_{ext} = f_0(\omega) + f_1(\omega) * i + f_2(\omega) * i^2$$

- 8. (ORIGINAL) The yaw stability system of claim 7 wherein the coefficient functions $f_0(\omega)$, $f_1(\omega)$, and $f_2(\omega)$ are estimated from steady state test data performed for various rotor speeds.
- 9. (ORIGINAL) The yaw stability system of claim 8 wherein the coefficient functions $f_0(\omega)$, $f_1(\omega)$, and $f_2(\omega)$ are defined by

$$f_t(\omega) = a_{t0} + a_{t1}\omega + a_{t2}\omega^2$$

JUN 12 2006 11:20 AM FR DICKINSON WRIGHT PLLC33 7274 TO 2#477#9157127383 P.07

U.S. Application Serial No. 10/608,906

Attorney Docket: 46107-0037

Response to Final Office Action of April 12, 2006

and wherein the parameters on are estimated through a least square fit based on the steady state test

data.

10. (ORIGINAL) The yaw stability system of claim 9 wherein the coefficient functions

 $f_0(\omega)$, $f_1(\omega)$, and $f_2(\omega)$ are estimated by recalculating the coefficient functions $f_0(\omega)$, $f_1(\omega)$, and

 $f_2(\omega)$ for each rotor speed based on the estimates of parameters α_{ij} and the parameters α_{ij} are then

estimated based on the recalculated coefficient functions $f_0(\omega)$, $f_1(\omega)$, and $f_2(\omega)$ through a least

square fit based on the steady state test data.

11. (CURRENTLY AMENDED) The yaw stability system of claim [[4]] 6 wherein said

control unit is an open loop controller providing a current optimal torque without a current feedback

signal from the electromagnetic retarder eddy current machines.

12. (CURRENTLY AMENDED) The yaw stability system of claim [[4]] 6 wherein the

control unit is a parametric model control unit.

Claims 13-15 (CANCELED)

16. (CURRENTLY AMENDED) The method of claim [[15]] 19 wherein the step of

determining the current command further includes comparing the saturation torque for the selected

braking device to the required torque.

Page 4 of 10

JUN 12 2006 11:20 AM FR DICKINSON WRIGHT PLLC33 7274 TO 2#477#9157127383 P.08

U.S. Application Serial No. 10/608,906

Attorney Docket: 46107-0037

Response to Final Office Action of April 12, 2006

17. (ORIGINAL) The method of claim 16 wherein the step of determining the current

command further includes determining a command current for the selected braking device if the

required torque is less than the saturation torque.

18. (ORIGINAL) The method of claim 16 wherein, if the required torque is greater than

the saturation torque, the step of communicating the current command further includes sending a

saturation current command to the selected braking device, selecting a second braking device, and

sending a second current command to the second braking device to cause the second braking device

to exert a torque equal to the difference between the control yaw moment and the saturation torque,

and wherein the first and second selected braking devices are on the same lateral side of the vehicle.

19. (PREVIOUSLY PRESENTED) A method for controlling yaw in a vehicle having

front left, front right, rear left, and rear right wheels and a plurality of braking devices each

associated with one of the wheels, said method comprising:

determining a vehicle yaw rate;

determining a desired yaw rate;

calculating a yaw rate error based on the difference between the desired yaw rate and the

vehicle yaw rate;

determining a control yaw moment using a sliding mode control law based on a lumped mass

vehicle model;

selecting one of the braking devices based on a vehicle yaw condition;

determining a control command for the selected braking device based on the control yaw

moment, wherein the step of determining a control command further includes determining a required

Page 5 of 10

JUN 12 2006 11:20 AM FR DICKINSON WRIGHT PLLC33 7274 TO 2#477#9157127383 P.09

U.S. Application Serial No. 10/608,906

Attorney Docket: 46107-0037

Response to Final Office Action of April 12, 2006

torque for the selected braking device, said required torque being the torque required from the

selected braking device to induce the control yaw moment; and

communicating the control command to the one or more selected braking devices,

wherein the plurality of braking devices are eddy current machines, wherein the control command is

a current command, wherein the step of determining the current command further includes

determining a saturation torque for the selected braking device based on a quadratic function of

control element speed and excitation current, and wherein the step of determining the saturation

torque (Test) is based on the following equation:

$$T_{est} = f_0(\omega) + f_1(\omega) * i + f_2(\omega) * i^2$$

and wherein the method further includes estimating the coefficient functions $f_0(\omega)$, $f_1(\omega)$, and $f_2(\omega)$ from steady state test data performed for various rotor speeds.

20. (ORIGINAL) The method of claim 19 wherein the coefficient functions $f_0(\omega)$. $f_1(\omega)$, and $f_2(\omega)$ are defined by

$$f_i(\omega) = a_{i0} + a_{i1}\omega + a_{i2}\omega^2$$

and wherein the step of estimating the coefficient functions $f_0(\omega)$, $f_1(\omega)$, and $f_2(\omega)$ includes estimating parameters of through a least square fit based on the steady state test data, includes recalculating the coefficient functions $f_0(\omega)$, $f_1(\omega)$, and $f_2(\omega)$ for each rotor speed and based on the estimates of parameters oij, and re-estimating the parameters oij based on the recalculated coefficient functions $f_0(\omega)$, $f_1(\omega)$, and $f_2(\omega)$ through a least square fit based on the steady state test data.

U.S. Application Serial No. 10/608,906

Attorney Docket: 46107-0037

Response to Final Office Action of April 12, 2006

- 21. (CURRENTLY AMENDED) The method of claim [[13]] 19 wherein the step of determining the control yaw moment includes calculating the control yaw moment based on a derivative of the desired yaw rate.
- 22. (CURRENTLY AMENDED) The method of claim [[13]] 19 wherein the step of determining the control yaw moment includes calculating the control yaw moment based on a saturation function.
- 23. (CURRENTLY AMENDED) The method of claim [[13]] 19 wherein the step of determining the control yaw moment includes calculating the control yaw moment (Mz) based on the following equation:

$$\begin{split} M_{z} &= I_{z} \dot{r}_{des} - [a[(C_{FL} + C_{FR})\alpha_{F} \cos \delta + (\eta_{FL} + \eta_{FR})F_{zF} \sin \delta] - b(C_{RR} + C_{RL})\alpha_{R} + \\ (c * C_{FL} - d * C_{FR})\alpha_{F} \sin \delta - c(\eta_{FL}F_{zF} \cos \delta + \eta_{RL}F_{zR}) + d(\eta_{FR}F_{zF} \cos \delta + \eta_{RR}F_{zR})] + I_{z}\eta SAT(\frac{r_{des} - r}{\phi}) \end{split}$$

Claims 24-35 (CANCELED)