Lecture

- Last time:
 - Boolean Algebra ⇔ Digital Circuits
 - Point: We can do a lot with just Combinational logic -- all true functions can be evaluated
 - Point: Digital Circuits can be built to evaluate all of these functions.
 - All we need is And (*), Or (+) and Not (')
 - Truth Table → Boolean Algebra → Truth Tables
 - Boolean Algebra → Circuits → Boolean Algebra
 - Minimization of Circuits
 - Algebraic Transformations:
 - Karnaugh Maps
- Today: More Combinational Circuits

Combinational Logic

- Using just is tedious: AND (*), OR (+), NOT (')
- Solution: Build components and reuse!
 - O XOR:

Half-Adder: $S = A \oplus B, C = A * B$

- Bigger components and with more bits!
 - Binary Addition
 - Binary Subtraction
 - BCD Addition
 - Decoder
 - Multiplexer

А	В	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

4-bit Bitwise AND

• R = A & B

	1	0	1	1	Α
&	0	1	1	0	В
	0	0	1	0	R

- For a n-bit operation,
 - create n-duplicates of the base circuitry
 - layout duplicates in parallel
 - o package it up

1-bit Binary Addition

Recall:

 \circ

$$A + B \rightarrow S, C$$

Α	В	C _{ou}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

4-bit Binary Addition

Recall:

$$\bigcirc \quad C_{in} + A_x + B_x \rightarrow C_{out}, \ S_x$$

Half-Adder is not sufficient!
 We need a Full-Adder

C _{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

C _{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

•
$$C_{out} = AB + C_{in}(A \oplus B)$$

• S =
$$C_{in} \oplus A \oplus B$$

Note: Renamed Cinto be C

• $C_{out} = C'AB +$

Use Sum of Products

	$C^{\text{ont}} =$	C'AB	+ CA'B +	CAB'+	CAB
_	\sim ()[1]	0 / 10		0/10	0/10

C _{in}	Α	В	C _{out}	s	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	C'AB
1	0	0	0	1	
1	0	1	1	0	CA'B
1	1	0	1	0	CAB'
1	1	1	1	1	CAB

Use Sum of Products

•	$C_{out} = C'AB +$	CA'B + CAB' -	CAB
\triangleright	$C_{out} = C'AB +$	CAB + CA'B +	CAB'

C _{in}	А	В	C _{out}	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	C'AB
1	0	0	0	1	
1	0	1	1	0	CA'B
1	1	0	1	0	CAB'
1	1	1	1	1	CAB

Use Commutative Property

•
$$C_{out} = C'AB + CAB + CA'B + CAB'$$

> $C_{out} = (C' + C)AB + CA'B + CAB'$

C _{in}	Α	В	C _{out}	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	C'AB
1	0	0	0	1	
1	0	1	1	0	CA'B
1	1	0	1	0	CAB'
1	1	1	1	1	CAB

Use Distributive Property

•
$$C_{out} = (C' + C)AB + CA'B + CAB'$$

> $C_{out} = (true)AB + CA'B + CAB'$

C _{in}	А	В	C _{out}	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	C'AB
1	0	0	0	1	
1	0	1	1	0	CA'B
1	1	0	1	0	CAB'
1	1	1	1	1	CAB

Use Complement Property

•
$$C_{out} = (true)AB + CA'B + CAB'$$

> $C_{out} = AB + CA'B + CAB'$

C _{in}	Α	В	C _{out}	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	C'AB
1	0	0	0	1	
1	0	1	1	0	CA'B
1	1	0	1	0	CAB'
1	1	1	1	1	CAB

Use Identity Property

•
$$C_{out} = AB + CA'B + CAB'$$

> $C_{out} = AB + C(A'B + AB')$

C _{in}	Α	В	C _{out}	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	C'AB
1	0	0	0	1	
1	0	1	1	0	CA'B
1	1	0	1	0	CAB'
1	1	1	1	1	CAB

Use Distributive Property

•
$$C_{out} = AB + C(A'B + AB')$$

 $\checkmark C_{out} = AB + C(A \oplus B)$

C _{in}	Α	В	C _{out}	s	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	C'AB
1	0	0	0	1	
1	0	1	1	0	CA'B
1	1	0	1	0	CAB'
1	1	1	1	1	CAB

$$\mathsf{A} \oplus \mathsf{B} \Leftrightarrow \mathsf{A'B} + \mathsf{AB'}$$

С	Α	В	C _{out}	S	
0	0	0	0	0	
0	0	1	0	1	C'A'B
0	1	0	0	1	C'AB'
0	1	1	1	0	
1	0	0	0	1	CA'B'
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	CAB

\checkmark	C_{out}	=	AB	+	C(A⊕B)
--------------	-----------	---	----	---	--------

• S = C'A'B + C'AB' + CA'B' + CAB

Sum of Products:

▶ S

→ C_{out}

C'A'B + C'AB' + CA'B' + CAB

 $A \oplus B \Leftrightarrow A'B + AB'$

С	Α	В	C _{out}	S	
0	0	0	0	0	
0	0	1	0	1	C'A'B
0	1	0	0	1	C'AB'
0	1	1	1	0	
1	0	0	0	1	CA'B'
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	CAB

$$\checkmark$$
 C_{out} = AB + C(A \oplus B)

• S = C'A'B + C'AB' + CA'B' + CAB

 $\sqrt{S} = C \oplus A \oplus B$

 $\mathsf{A} \oplus \mathsf{B} \Leftrightarrow \mathsf{A'B} + \mathsf{AB'}$

▶ S

→ C_{out}

$$= C'(A'B + AB') + C(A'B' + AB)$$

$$= C'(A \oplus B) + C(A \oplus B)'$$

$$= C \oplus A \oplus B$$

$$\checkmark$$
 C_{out} = AB + C_{in}(A \oplus B)

$$\checkmark$$
 S = C_{in} \oplus A \oplus B

С	Α	В	C _{out}	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Note: Renamed C to be Cin

4-bit Binary Addition

(aka: 4-bit Full Adder)

Binary Subtractor

- Recall: A B
 - = A + (2's complement of B)
 - = A + (1's complement of B) + 1
- 4-bit Binary Subtractor

Α

Full

Adder

С

В

#	Encoding S ₃ S ₂ S ₁ S ₀		Encoding S ₃ S ₂ S ₁ S ₀
0	0000	8	1000
1	0001	9	1001
2	0010		1010
3	0011		1011
4	0100	a lid	1100
5	0101	- - - - - -	1101
6	0110		1110
7	0111		1111

- Perform Regular Binary Addition, but account for the invalid patterns
- Add six upon whenever you are in the deadzone or there is overflow

$$\circ \quad \text{Invalid} \quad = S_3 * (S_2 + S_1)$$

 \circ Overflow = C_{out}

