19. Der Riemannsche Abbildungssatz

Definition

Zwei Gebiete $G_1, G_2 \subseteq \mathbb{C}$ heissen konform äquivalent $(G_1 \sim G_2) : \iff \exists f \in H(G_1): f(G_1) = G_2, f \text{ ist auf } G_1 \text{ injektiv.}$

"~" ist eine Äquivalenzrelation auf der Menge der Gebiete in \mathbb{C} .

Satz 19.1 (Riemannscher Abbildungssatz)

Sei $G \subseteq \mathbb{C}$ ein Gebiet.

Dann: $G \sim \mathbb{D} \iff G \neq \mathbb{C}$ und G ist ein Elementargebiet.

Beweis

 $,,\Longrightarrow$ ":

10.2 (Satz von Liouville) $\implies G \neq \mathbb{C}$

 $11.13 \implies G$ ist ein Elemenetargebiet.

" \Leftarrow ": nach 19.5.

Definition

Sei $G \subseteq \mathbb{C}$ ein Gebiet. G hat die Eigenschaft (W) : $\iff \forall f \in H(G) \text{ mit } Z(f) = \emptyset \ \exists g \in H(G) : g^2 = f \text{ auf G}.$

Beachte: Elementargebiete haben die Eigenschaft (W) (siehe 11.4)

Lemma 19.2

 $G_1, G_2 \subseteq \mathbb{C}$ seien Gebiete, es gelte $G_1 \sim G_2$ und G_1 habe die Eigenschaft (W). Dann: G_2 hat die Eigenschaft (W).

Beweis

Übung.

Lemma 19.3

 $G\subseteq \mathbb{C}$ sei ein Gebiet mit der Eigenschaft (W) und es sei $G\neq \mathbb{C}$. Dann existiert ein Gebiet G^* :

 $0 \in G^* \subseteq \mathbb{D}$ und $G \sim G^*$ (G^* hat also die Eigenschaft (W))

Beweis

 $G \neq \mathbb{C} \implies \exists c \in \mathbb{C} : c \notin G$. Dann: f(z) = z - c hat keine Nullstelle in G. $(f \in H(G))$ (W) $\implies \exists g \in H(G): g^2 = f$ auf G. Für $z_1, z_2 \in G$: (+) aus $g(z_1) = \pm g(z_2)$ folgt $f(z_1) = f(z_2)$, also $z_1 = z_2$. Insbesondere: g ist injektiv auf G. $G_1 := g(G)$. Also $G_1 \sim G$. Sei $a \in G_1$. $\exists r > 0 : U_r(a) \in G_1$.

Sei $\omega \in G_1$.

Annahme: $-\omega \in G_1$.

 $\exists z_1,\ z_2\in G: g(z_1)=\omega=-g(z_2).\ (+)\implies z_1=z_2\implies \omega=0\implies g(z_1)^2=0\implies f(z_1)=0.$ Widerspruch.

Also: $-\omega \notin G_1$

Insbesondere: $0 \notin G_1, -a \notin G_1$.

Definiere $\varphi \in H(G_1)$ durch $\varphi(w) = \frac{1}{w+a}$. (Wohl definiert und holomorph)

Übung: φ injektiv.

 $G_2 := \varphi(G_1) \implies G_2 \sim G_1$, also: $G \sim G_2$. Soi $y \in G_2 \implies \exists y \in G_1: y = \varphi(y) = \frac{1}{2}$

Sei $\nu \in G_2 \implies \exists \omega \in G_1 : \nu = \varphi(\omega) = \frac{1}{\omega + a}$.

Annahme: $|\omega + a| < r$. Dann: $|-\omega - a| < r \implies -\omega \in U_r(a) \subseteq G_1$. Widerspruch. Also: $|\omega + a| \ge r$.

 $\Longrightarrow |r| \leq \frac{1}{r}$. G_2 also beschränkt.

Mit einer Abbildung $z \mapsto z + \alpha$: (Translation)

 \exists Gebiet G_3 : $G_2 \sim G_3$, $0 \in G_3$, G_3 beschränkt. Somit: $G \sim G_3$.

Mit einer geeigneten Abbildung $z \mapsto \delta z$ $(\delta > 0)$: \exists Gebiet G^* : $G^* \sim G_3, 0 \in G^*, G^* \subseteq \mathbb{D}$. Somit $G \sim G^*$.

Lemma 19.4

Sei $G \subseteq \mathbb{C}$ ein Gebiet mit der Eigenschaft (W). Es gelte $0 \in G \subseteq \mathbb{D}$ und es sei $G \neq \mathbb{D}$. Dann existiert $\varphi \in H(G)$: $\varphi(0) = 0$, φ ist auf G injektiv. $\varphi(G) \subseteq \mathbb{D}^1$ und $|\varphi'(0)| > 1$.

Beweis

 $G \neq \mathbb{D} \implies \exists a \in \mathbb{D} : a \notin G. \ f(z) := \frac{z-a}{\overline{a}z-1}.$

 $f\in H(G),\ 12.4\implies f\in Aut(\mathbb{D}).\ a\not\in G.\ f(a)=0$ (einzige Nullstelle). f hat in G keine Nullstelle.

(W) $\Longrightarrow \exists g \in H(G): g^2 = f \text{ auf } G.|g|^2 = |f| \stackrel{12.4}{<} 1, \text{ also } |g| < 1 \text{ auf } G. \text{ D.h.: } g(G) \subseteq \mathbb{D}. \text{ Dann: } c = g(0) \in \mathbb{D}. \ h(z) := \frac{z-c}{\overline{c}z-1}, \ \varphi := h \circ g. \text{ Klar: } \varphi \in H(G), \ \varphi(0) = h(g(0)) = h(c) = 0, \ \varphi \text{ ist injektiv auf } G, \ \varphi(G) = h(\underline{g(G)}) \subseteq h(\mathbb{D}) \stackrel{=}{12.4} \mathbb{D}. \text{ Nachrechnen: } |\varphi'(0)| = \frac{|a|+1}{2\sqrt{|a|}} > 1.$

Lemma 19.5

Sei $G \subseteq \mathbb{C}$ ein Gebiet mit der Eigenschft (W). Es gelte $0 \in G \subseteq \mathbb{D}$ und $\mathcal{F} := \{ \varphi \in H(G) : \varphi \in G \subseteq \mathbb{D} \}$

 $\varphi(0) = 0$, φ ist injektiv auf G und $\varphi(G) \subseteq \mathbb{D}$. Weiter sei $\Psi \in \mathcal{F}$ und es gelte (*) $|\varphi'(0)| \leq |\Psi'(0)| \ \forall \varphi \in \mathcal{F}$. Dann: $\varphi(G) = \mathbb{D}$. Insbesondere $G \sim \mathbb{D}$.

Beweis

 $\widetilde{G}:=\Psi(G)$. 19.2 \Longrightarrow \widetilde{G} hat die Eigenschaft (W). Weiter: $0=\Psi(0)\in\widetilde{G}\subseteq\mathbb{D}$.

Annahme: $Gs \neq \mathbb{D}$. Wende 19.4 auf Gs an: $\exists \widetilde{\varphi} \in H(\widetilde{G})$: $\widetilde{\varphi}(0) = 0$, $\widetilde{\varphi}$ ist injektiv, $\widetilde{\varphi}(\widetilde{G}) \subseteq \mathbb{D}$ und $|\widetilde{\varphi}'(0)| > 1$. $\varphi := \widetilde{\varphi} \circ \Psi$. Dann: $\varphi \in H(G)$, $\varphi(0) = \widetilde{\varphi}(\Psi(0)) = \widetilde{\varphi}(0) = 0$. φ ist auf G injektiv, $\varphi(G) = \widetilde{\varphi}(\Psi(G)) = \widetilde{\varphi}(\widetilde{G}) \subseteq \mathbb{D}$. Also $\varphi \in \mathcal{F}$. Aber: $|\varphi'(0)| = |\widetilde{\varphi}'(\Psi(0)\Psi'(0))| = |\widetilde{\varphi}'(0)| \underbrace{|\Psi'(0)|}_{>1} > |\Psi'(0)|$, Widerspruch zu (*).

Beweis

Beweis " \Leftarrow " von 19.1:

Sei G ein Elementargebiet und $G \neq \mathbb{C}$. 11.4 $\Longrightarrow G$ hat die Eigenschaft (W).

ObdA: $0 \in G \subseteq \mathbb{D}$ (wg 19.3). Sei \mathcal{F} wie in 19.5. $\phi_0(z) := z$. Dann: $\phi_0 \in \mathcal{F}$. Wegen 19.5 genügt es zu zeigen:

$$\exists \Psi \in \mathcal{F} : |\varphi(0)| \le |\Psi(0)| \ \forall \varphi \in \mathcal{F}$$

 $s := \exists \text{ Folge } (\varphi_n) \text{ in } \mathcal{F} \colon |\varphi'_n(0)| \to s. \ \varphi_n(G) \subseteq \mathbb{D} \ \forall n \in \mathbb{N}$

 $\implies |\varphi_n(z)| \le 1 \ \forall n \in \mathbb{N} \ \forall z \in G$. Satz von Montel $\implies (\varphi_n)$ enthält eine auf G lokal gleichmäßig konvergierende Teilfolge.

ObdA: (φ_n) konvergiert auf G lokal gleichmäßig. $\Psi(z) := \lim_{n \to \infty} \varphi_n(z) \ (z \in G)$. 10.5 $\Longrightarrow \Psi \in H(G)$ und $\varphi'_n(0) \to \Psi'(0)$. Also: $|\Psi'(0)| = s$. $\Psi(0) = \lim \varphi_n(0) = 0$. Es ist $|\varphi'(0)| = 1 \le |\Psi'(0)|$. Insbesondere ist Ψ auf G nicht konstant. φ_n injektiv $\forall n \in \mathbb{N} \stackrel{17.6}{\Longrightarrow} \Psi$ it injektiv. $\varphi_n(G) \subseteq \mathbb{D} \forall n \in \mathbb{N} \Longrightarrow |\Psi(z)| \le 1 \forall z \in G$ Annahme: $\exists z_0 \in G$: $|\Psi(z0)| = 1$. 11.6 $\Longrightarrow \Psi$ konstant. Widerspruch! Also $\Psi(G) \subseteq \mathbb{D}$

Fazit: $\Psi \in \mathcal{F}$ und $|\varphi'(0)| \leq |\Psi'(0)| \forall \varphi \in \mathcal{F}$.

Satz 19.6 (Charakterisierung von Elementargebieten, I)

Sei $G \subseteq \mathbb{C}$ ein Gebiet.

G ist Elementargebiet $\iff G$ hat die Eigenschaft (W)

Beweis

 $,,\Longrightarrow$ ": 11.4.

,,⇐='':

Fall 1: $G = \mathbb{C}$. $\sqrt{\ }$

Fall 2: $G \neq \mathbb{C}$. Im Beweisteil " —" von 19.1 wurde nur die Eigenschaft (W) benutzt. Also $G \sim \mathbb{D}$. \mathbb{D} ist ein Elementargebiet $\stackrel{11.13}{\Longrightarrow} G$ ist ein Elementargebiet.