Programmieranleitung digitales Theremin

Nicht flüchtiges Programmieren des Theremins:

- 1. USB-Blaster an den Computer und das FPGA anschliessen.
- 2. Über Quartus Prime die Projektdatei digital_theremin.qpf öffnen
- 3. Tools -> Programmer öffnen
- 4. Unter Hardware Setup die Hardware DE-SoC auswählen
- 5. Auto Detect wählen
- 6. Device 5CSEMA5 wählen
- 7. In der Zeile mit Device 5CSEMA5 auf <none> doppelklicken
- 8. Im Ordner non_volatile die Datei digital_theremin.jic auswählen
- 9. In der neuen Zeile Program/Configure anwählen
- 10. Start drücken

Ändern der Referenzoszillatorfrequenzen nach ändern der Oszillatorfrequenzen des PCB:

- 1. Über Quartus Prime die die Projektdatei digital_theremin.qpf öffnen
- 2. Tools -> Platform Designer öffnen
- 3. In neuem Fenster digital_theremin.qsys auswählen
- 4. Im Fenster System Contents die Komponente pitch_generation_0 auswählen
- 5. Unter Parameter den Parameter cordic_def_freq auf die Frequenz des Tonhöhenoszillators anpassen.
- 6. Im Fenster System Contents die Komponente volume_generation_0 auswählen
- 7. Unter Parameter den Parameter cordic_def_freq auf die Frequenz des Lautstärkenoszillators anpassen.
- 8. Generate klicken und warten bis beendet dann schliessen
- 9. Processing -> Start Compilation auswählen und auf Abschluss warten
- 10. nios II Command Shell (Quartus Prime 17.1) öffnen
- 11. Folgendes eingeben: nios2-bsp hal /cygdrive/(Pfad bis zum Ordner)/quartus_theremin/software/digital_theremin_bsp/ /cygdrive/(Pfad bis zum Ordner)/quartus_theremin/digital_theremin.sopcinfo
- 12. In Quartus Tools -> Nios II Software Build Tools for Eclipse auswählen
- 13. Einen Workspace Ordner erstellen
- 14. In Eclipse File -> Import auswählen
- 15. General -> Existing Projects into Workspace wählen dann Next
- 16. Browse auswählen
- 17. quartus_theremin/software/digital_theremin auswählen
- 18. Finish klicken
- 19. Punkte 14 bis 18 mit dem Ordner quartus_theremin/software/digital_theremin_bsp wiederholen
- 20. Rechtsklick auf Projekt digital_Theremin und Build Project wählen

- 21. Rechtsklick auf Projekt digital_Theremin und Make Targets -> Build wählen
- 22. mem_init_generate auswählen und Build klicken
- 23. Im Softwareprojekt sollte im Ordner mem_init das File epcs_cntl.hex generiert worden sein
- 24. In Quartus Prime File -> Convert Programming Files auswählen
- 25. Open Conversion Setup Data auswählen und die Datei quartus_theremin/output_files/conversion_setup.cof auswählen
- 26. Generate klicken
- 27. Nun kann mit der Anleitung zum nicht flüchtigen Programmieren weitergefahren werden