

People Express Opinions

Epinions.co

People & Evaluations

User-User Evaluations

- Many on-line settings where one person expresses an opinion about another
 - (or about another's content)
 - □ I trust you [Kamvar-Schlosser-Garcia-Molina '03]
 - □ I agree with you [Adamic-Glance '04]
 - □ I vote in favor of admitting you into the community [Cosley et al. '05, Burke-Kraut '08]
 - □ I find your answer/opinion helpful
 [Danescu-Niculescu-Mizil et al. '09,
 Borgs-Chayes-Kalai-Malekian-Tennenholtz '10]

Evaluations: Some Issues

Some of the central issues:

Factors:

What factors drive one's evaluations?

□ Synthesis:

How do we create a composite description that accurately reflects cumulative opinion of the community?

Evaluations: the Setting

□ People evaluate each other:

- □ Direct: User to user [ICWSM '10]
- □ Indirect: User to content (created by another member of a community) [WSDM '12]
- □ Where online does this explicitly occur on a large scale?

Evaluations: the Data

□ Wikipedia adminship elections

- □ Support/Oppose (120k votes in English)
- 4 languages: EN, GER, FR, SP

□ Stack Overflow Q&A community

□ Upvote/Downvote (7.5M votes)

□ Epinions product reviews

- □ Ratings of others' product reviews (13M)
 - = 5 = positive, 1-4 = negative

The New Setting

□ Relation to the previous class:

We still talk about one person evaluating the other via a \pm /- evaluation

So far we focused on evaluations in the context of a network

Now we focus on a single evaluation (without the context of a network)

Human Evaluations

□ What drives human evaluations?

- □ How do properties of evaluator A and target B affect A's vote?
 - □ Status and Similarity are two fundamental drivers behind human evaluations

Definitions

10

□ Status:

(note status is now explicit, and not implicitly determined by the network!)

- Level of recognition, merit, achievement, reputation in the community
 - Wikipedia: # edits, # barnstars
- Stack Overflow: # answers

□ User-user Similarity:

- Overlapping topical interests of A and B
 - Wikipedia: Similarity of the articles edited
 - Stack Overflow: Similarity of users evaluated

Relative vs. Absolute Assessment

How do properties of evaluator A and target B affect A's vote?

- ☐ Two natural (but competing) hypotheses:
 - (1) Prob. that B receives a positive evaluation depends primarily on the characteristics of B
 - There is some objective criteria for user B to receive a positive evaluation

Relative vs. Absolute Assessment

How do properties of evaluator A and target B affect A's vote?

- □ Two natural (but competing) hypotheses:
 - (2) Prob. that B receives a positive evaluation depends on relationship between the characteristics of A and B
 - User A compares herself to user B and then makes the evaluation

Effects of Status

□ How does status of B affect A's evaluation? ■ Each curve is fixed status difference: $\Delta = S_{\Delta} - S_{R}$ □ Observations: □ Flat curves: Prob. of positive eval. P(+) doesn't Target B status depend on B's status Status difference □ Different levels: Different remains salient even as values of Δ result in different behavior A and B acquire more status

Effects of Similarity

How does prior interaction shape evaluations? 2
hypotheses:

(1) Evaluators are more supportive of targets in their area

"The more similar you are, the more I like you"

(2) More familiar evaluators know weaknesses and are more harsh

"The more similar you are, the better I can understand your weaknesses"

Effects of Similarity

Status & Similarity

Status & Similarity

 \square If $S_A > S_B$ then A and B are highly similar

A Puzzle

A Puzzle: The Mercy Bounce

• What is P(+) as a function of $\Delta = S_A$ -S_R? 0.86 Fraction of positive votes 0.84 0.82 0.8 0.78 Baseline 0.76 0.74 0.72 0.7 How can we explain this?

The Mercy Bounce

□ Why low evals. of users of same status?

- □ Not due to users being tough on each other
- But due to the effects of similarity

□ So: High-status evaluators tend to be more favorably disposed

Aggregating Evaluations

- So far: Properties of individual evaluations
 - But: Evaluations need to be "summarized"
 - □ Determining rankings of users or items
 - Multiple evaluations lead to a group decision
 - □ How to aggregate user evaluations to obtain the opinion of the community?
 - □ Can we guess community's opinion from a small fraction of the makeup of the community?

Ballot-blind Prediction

- □ Predict Wikipedia adminship election results without seeing the votes
 - Observe identities of the first k (=5) people voting (but not how they voted)
 - Want to predict the election outcome
 - Promotion vs. no promotion
 - □ Why is it hard?
 - Don't see the votes (just voters)
 - □ Only see first 5 voters (out of ~50)

Ballot-blind: The Model

- □ Want to model prob. user A votes + in election of user B

Our model:
$$P(A=+|B)=P_A+d(\Delta_B,S_B)^{\frac{3}{2000}-\frac{10000-3}{20000}-\frac{10000-3}{20000}}$$

- $\square P_{\Delta}$... empirical fraction of + votes of A
- \square $d(S,\Delta)$... avg. deviation in fraction of + votes
 - When As evaluate B from a particular (S,Δ) quadrant, how does this change their behavior
- $\sum_{i=1}^{k} P(A_i = +|B|) > w$ □ Predict 'elected' if:

Ballot-blind Prediction

Based on only who showed to vote predict the outcome of the election

Number of votes	E
5	71.4%
10	75.0%
all	75.6%

- Other methods:
 - Guessing gives 52% accuracy
 - Logistic Regression on status and similarity features: 67%
 - If we see the first k votes 85% (gold standard)

Theme: Learning from implicit feedback Audience composition tells us something about their reactio

Summary

- □ Social media sites are governed by (often implicit) user evaluations
 - □ Wikipedia voting process has an explicit, public and recorded process of evaluation
 - □ Main characteristics:
 - □ Importance of relative assessment: Status
 - □ Importance of prior interaction: Similarity
 - Diversity of individuals' response functions
 - □ **Application:** Ballot-blind prediction

Important Points

- Online social systems are globally organized based on status
- □ Similarity plays important role
- Audience composition helps predict audience's reaction
- □ What kinds of opinions do people find helpful?