- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:
 - 1. Data type of all columns in the "customers" table.
 - 2. Get the time range between which the orders were placed.
 - 3. Count the Cities & States of customers who ordered during the given period.

Ques.no-1.1 Ans.

select *

from `BCTS.customers`

Field name	Туре	Mode	Key	Collation	Default value	Policy tags 🔞	Descr
customer_id	STRING	NULLABLE					
customer_unique_id	STRING	NULLABLE					
customer_zip_code_prefix	INTEGER	NULLABLE					
customer_city	STRING	NULLABLE					
customer_state	STRING	NULLABLE					

Insights:-

There are total of five columns in which 4 columns having string data type and one col having integer data type.

Ques.no-1.2 Ans.

```
select
    min(order_purchase_timestamp) as start_time,
    max(order_purchase_timestamp) as end_time
from `BCTS.orders`
```


Insights:-

Earliest and Latest Order Timestamps: The min(order_purchase_timestamp) retrieves the earliest timestamp when an order was placed. It indicates the first order placed in the data set.

Conversely max(order_purchase_timestamp) provides the latest timestamp.

Ques.no-1.3 Ans.

select

```
count(distinct geolocation_city) as no_of_cities,
    count(distinct geolocation_state) as no_of_states
from `BCTS.geolocation`
```


select

```
count(distinct customer_city) as city_count,
    count(distinct customer_state) as state_count
from `BCTS.customers`
```


Insights:-

This query provides a breakdown of the number of orders placed by customers in different cities and states during the specified period.

2. In-depth Exploration:

- 1. Is there a growing trend in the no. of orders placed over the past years?
- 2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?
- 3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

■ 0-6 hrs: Dawn

■ 7-12 hrs : Mornings

■ 13-18 hrs : Afternoon

■ 19-23 hrs: Night

Ques.no-2.1 Ans.

```
select
    extract(year from order_purchase_timestamp) as year,
    count(order_id) as order_count
from `BCTS.orders`
group by year
order by year asc;
```

Row year ▼	1.	order_count ▼
1	2016	329
2	2017	45101
3	2018	54011

Business Growth Analysis Year Wise: As per above past year order trend, order is continuously improving year by year. This trend is indicative of business expansion and increasing customer demand.

A growing trend in orders is typically a positive sign for a business. It suggests that the products or services are in demand, and the business is effectively reaching and engaging its target audience.

Ques.no-2.2 Ans.

```
select
    format_date('%B %Y',order_purchase_timestamp) as Month,
```

```
count(order_id) as order_count
from `BCTS.orders`
group by month
order by order_count asc;
```

Row	Month ▼	order_count ▼
1	December 2016	1
2	September 2016	4
3	October 2018	4
4	September 2018	16
5 ′′	October 2016	324 ~
6	January 2017	800
7	February 2017	1780
8	April 2017	2404
9	March 2017	2682
10 June 2017		3245

Business Growth Analysis Month Wise: As per above past months order trend, order is continuously improving month by month. This trend is indicative of business expansion and increasing customer demand.

There is growth in sell month of Nov'2017-7544, Dec'2017-5673Jan'2018-7269 So we should keep inventory high in these months to fulfil the customer demand.

Ques.no-2.3 Ans.

```
select
    case
    when extract(hour from order_purchase_timestamp) between 0 and 6 then
'0-6hrs: Down'
    when extract(hour from order_purchase_timestamp) between 7 and 12 then
'7-12hrs: Mornings'
    when extract(hour from order_purchase_timestamp) between 13 and 18 then
'13-18hrs: Afternoon'
    when extract(hour from order_purchase_timestamp) between 19 and 23 then
'19-23hrs: Night'
    end as time_interval,
    count(order_id) as order_count
from 'BCTS.orders'
group by time_interval
order by order_count asc;
```

Row	time_interval ▼	order_count ▼
1	0-6hrs: Down	5242
2	7-12hrs: Mornings	27733
3	19-23hrs: Night	28331
4	13-18hrs: Afternoon	38135

Order Placing Analysis Time Wise: As per above data Brazilian customers were placing most orders in 13-18hrs:Afternoon-38135 and then night hrs 19-23hrs-28331. So during this time period we need to ensure inventory ,staff availability and network for better processing.

3. Evolution of E-commerce orders in the Brazil region:

- 1. Get the month on month no. of orders placed in each state.
- 2. How are the customers distributed across all the states?

Ques.no-3.1 Ans.

Row	month ▼	customer_state ▼	order_count ▼
1	Aug 2018	SP	3253
2	May 2018	SP	3207
3	Apr 2018	SP	3059
4	Jan 2018	SP	3052
5	Mar 2018	SP	3037
6	Nov 2017	SP	3012
7	Jul 2018	SP	2777
8	Jun 2018	SP	2773
9	Feb 2018	SP	2703
10	Dec 2017	SP	2357

State Wise Order Analysis: There states SP, RJ and MG having consistently higher order numbers compared to others states so need to focus on these states.

Ques.no-3.2 Ans.

Row	customer_state ▼	custo	mer_count 🔻
1	SP		41746
2	RJ		12852
3	MG		11635
4	RS		5466

5	PR	5045
6	SC	3637
7	BA	3380
8	DF	2140
9	ES	2033
10	GO	2020

State Wise Customer Analysis: There states SP, RJ and MG having consistently higher customers compared to others states so need to focus on these states. For getting more orders from these states we can start promotions in those areas.

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).
 You can use the "payment_value" column in the payments table to get the cost of orders.
 - 2. Calculate the Total & Average value of order price for each state.
 - 3. Calculate the Total & Average value of order freight for each state.

Ques.no-4.1 Ans.

```
lag(cost_of_orders) over(order by year, month) as increase_percentage
from final
order by 1;
```

Row	year ▼	month ▼	cost_of_orders ▼	increase_percentage
1	2017	May	592918.8200000	31.79968772756
2	2017	Jul	592382.9200000	327.7502374934
3	2017	Feb	291908.0099999	-56.7156579383
4	2017	Jun	511276.3800000	-13.6915730115
5	2017	Aug	674396.3200000	61.42068981727
6	2017	Mar	449863.6000000	-12.0116599166
7	2017	Jan	138488.0399999	-52.5576430739
8	2017	Apr	417788.0300000	nuli
9	2018	May	1153982.149999	-0.48893714780
10	2018	Mar	1159652.119999	13.26049475500

Ques.no-4.2 Ans.

Row	customer_state ▼	total_order_price 🔻	avg_order_price ▼
1	SP	5202955.050001	109.6536291597
2	RJ	1824092.669999	125.1178180945
3″	MG	1585308.029999"	120.7485741488 ″
4	RS	750304.0200000	120.3374530874
5	PR	683083.7600000	119.0041393728
6	SC	520553.3400000	124.6535775862

7	BA	511349.9900000	134.6012082126
8	DF	302603.9399999	125.7705486284
9	GO	294591.9499999	126.2717316759
10	ES	275037.3099999	121.9137012411
		•	

State wise total order price and avg. price analysis: As per above data, states having lower avg_order_ price those having higher selling so we need to focus on inventory of lower_avg_price material to complete customer demands.

Ques.no-4.3 Ans.

Row	customer_state ▼	total_order_freight_value	avg_order_freight_value
1	SP	718723.06999999518	15.147275390419265
2	RJ	305589.31000000093	20.960923931682579
3	MG	270853.46000000188	20.63016680630664
4	RS	135522.74000000229	21.735804330392845
5	PR	117851.68000000092	20.531651567944319
6	BA	100156.67999999858	26.363958936562188
7	SC	89660.260000000446	21.470368773946355
8	PE	59449.659999999873	32.917862679955654
9	GO	53114.979999999829	22.766815259322811
10	DF	50625.49999999984	21.041354945968457

State wise total order freight value and avg. order freight value analysis: As per above data, states having lower avg_order_ freight_value those having higher selling so we need to focus on inventory of lower_avg_freight_value material to complete customer demands.

5. Analysis based on sales, freight and delivery time.

1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- time_to_deliver = order_delivered_customer_date order_purchase_timestamp
- diff_estimated_delivery = order_estimated_delivery_date order_delivered_customer_date
- 2. Find out the top 5 states with the highest & lowest average freight value.
- 3. Find out the top 5 states with the highest & lowest average delivery time.
- 4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

Ques.no- 5.1 Ans.

```
select
    order_purchase_timestamp - order_delivered_customer_date as
    time_to_deliver,
    order_estimated_delivery_date - order_delivered_customer_date as
    diff_estimated_delivery
from `BCTS.orders`
```

Row	time_to_deliver ▼	diff_estimated_delivery ▼
1	null	null
2	null	null
3	null	null
4	null	null •
5	null	null
6	null	null
7	null	null
8	null	null
9	null	null
10	null	null

Ques.no- 5.2 Ans.

```
Max_avg_freight_value
select c.customer_state,
            avg(oi.freight_value) as avg_freight_value,
from`BCTS.customers` c
left join `BCTS.orders` o
on c.customer_id = o.customer_id
left join `BCTS.order_items` oi
on o.order_id = oi.order_id
group by c.customer_state
order by avg_freight_value desc;
```

	•	
Row	customer_state ▼	avg_freight_value
1	RR	42.98442307692
2	РВ	42.72380398671
3	RO	41.06971223021
4	AC	40.07336956521
5	PI	39.14797047970

Row	customer_state ▼	avg_freight_value 🔻
1	SP	15.14727539041
2	PR	20.53165156794
3	MG	20.63016680630
4	RJ	20.96092393168
5	DF	21.04135494596

Highest freight value state wise: as per above data highest freight value states are RR,PB, RO, AC, PI and lowest freight value states are SP, PR, MG, RJ,DF.

Ques.no- 5.3 Ans.

```
Max_avg_delivery_time
select c.customer_state,
            avg(o.order_purchase_timestamp - o.order_delivered_customer_date) as
            delivery_time
from`BCTS.customers` c
left join `BCTS.orders` o
on c.customer_id = o.customer_id
group by c.customer_state
order by delivery_time desc;
```

Row	customer_state ▼	delivery_time ▼
1	SP	0-0 0 -210:16:21.207111989
2	PR	0-0 0 -287:47:52.704448507
3	MG	0-0 0 -288:14:46.320827829
4	DF	0-0 0 -311:13:17.884615384
5	SC	0-0 0 -359:1:23.299971807

```
Max_avg_delivery_time
select c.customer_state,
            avg(o.order_purchase_timestamp - o.order_delivered_customer_date) as
            delivery_time
from`BCTS.customers` c
left join `BCTS.orders` o
on c.customer_id = o.customer_id
group by c.customer_state
order by delivery_time asc;
```

Row	customer_state ▼	delivery_time ▼
1	RR	0-0 0 -705:18:3.975609756
2	AP	0-0 0 -652:26:29.850746268
3	AM	0-0 0 -634:13:25.613793103
4	AL	0-0 0 -589:3:9.103274559
5	PA	0-0 0 -570:33:0.021141649

Stage wise highest and lowest average delivery time analysis: as per above data highest delivery time states are SP, PR, MG, DF,SC and lowest delivery time states are RR, AP, AM, AL, PA.

Ques.no- 5.4 Ans.

```
select c.customer_state,
          avg(o.order_delivered_customer_date - o.order_estimated_delivery_date) as
delivery_time
from `BCTS.orders` o
left join `BCTS.customers` c
```

```
on o.customer_id = c.customer_id
group by c.customer_state
order by delivery_time asc;
```

Row	customer_state ▼	delivery_time ▼
1	AL	0-0 0 -192:46:9.886649
2	MA	0-0 0 -213:18:29.762900
3	SE	0-0 0 -223:53:14.623880
4	ES	0-0 0 -235:7:50.208521
5	BA	0-0 0 -242:22:39.872542
6	CE	0-0 0 -242:38:24.583268
7	MS	0-0 0 -248:32:0.203994
8	SP	0-0 0 -249:8:54.776565
9	PI	0-0 0 -255:6:32.098739
10	SC	0-0 0 -259:21:38.171976

State wise delivery time analysis: The fastest delivery states are AL,MA,SC, ES and BA.

6. Analysis based on the payments:

- 1. Find the month on month no. of orders placed using different payment types.
- 2. Find the no. of orders placed on the basis of the payment instalments that have been paid.

Ques.no- 6.1 Ans.

Row	payment_type ▼	month ▼	order_count ▼
1	UPI	1	1715
2	UPI	2	1723
3	UPI	3	1942
4	UPI	4	1783
5	UPI	5	2035
6	UPI	6	1807
7	UPI	7	2074
8	UPI	8	2077
9	UPI	9	903
10	UPI	10	1056

<u>Payments type analysis:</u> There are total 4 types of payment method i.e UPI, Credit_Card, Debit_Card and Voucher.

Ques.no- 6.2 Ans.

Row	payment_installment	no_of_order ▼
1	1	52546
2	2	12413
3	3	10461
4	4	7098

5	5	5239
6	6	3920
7	7	1626
8	8	4268
9	9	644
10	10	5328

Payment installments analysis: There are a total 13 types of payment installment in which major payment installment types are 1, 2 and 3.