Michał Gawlik, IO

Podstawy Sztucznej Inteligencji Sprawozdanie z projektu 2

Celem projektu było zapoznanie się z budową i działaniem jednowarstwowych sieci neuronowych.

Sieć neutonowa to matematyczny model inspirowany działaniem ludzkiego mózgu. Składa się on ze sztucznych neuronów, które dysponują wagami i wykonując działania matematyczne oraz stosując funkcję aktywacji, podają wynik.

Sieci neuronowe wykorzystywane są w dziedzinach, w których standardowy komputer nie daje sobie rady. Za pomocą danych wejściowych zagadnienie jest uogólniane, przez to nauczona sieć może być używana nie tylko do rozwiązywania jednego problemu.

Wynik perceptronu

Dla błędu 0.01

Dla błędu 0.0001

Dla 0.00799

Pomiary dla różnych współczynników uczenia i tej samej wartości błędu średniokwadratowego. Wartość >0.5 to wielka litera, <0.5 mała litera

Lp.	Litera	Wsp. Uczenia=0.1		Wsp. Uczenia=0.01		Wsp. Uczenia=0.001	
		newlin	newp	newlin	newp	newlin	newp
1	Α	0.028	1	0.028	1	0.028	1
2	а	0.004	0	0.004	0	0.004	0
3	K	0.2144	1	0.2144	1	0.2144	1
4	k	0.77	0	0.77	0	0.77	0
5	F	1.0014	1	1.0014	1	1.0014	1
6	f	0.00354	0	0.00354	0	0.00354	0
7	В	1.022	1	1.022	1	1.022	1
8	b	0.039	0	0.039	0	0.039	0
9	С	0.950	1	0.950	1	0.950	1
10	С	0.020	0	0.020	0	0.020	0

Wnioski:

Funkcja newp() jest dużo szybsza niż newlin(). Potrzebowała zaledwie 5 iteracji, aby nauczyć się danych wejściowych, gdzie potrzeby drugiej dochodziły do kilku tysięcy powtórzeń.

Na funkcję newlin() nie wpływa zmiana współczynnika wag. W tym zakresie jest ona powtarzalna. Co na nią wpływa, to błąd średniokwadratowy, który ze zwiększaniem się zwiększa wykładniczo liczbę potrzebnych iteracji.