Magnetismo

Método e recomendacións

♦ PROBLEMAS

• Campo magnético

Partículas

- 1. Un protón cunha enerxía cinética de 20 eV móvese nunha órbita circular perpendicular a un campo magnético de 1 T. Calcula:
 - a) O raio da órbita.
 - b) A frecuencia do movemento.
 - c) Xustifica por que non se consome enerxía neste movemento.

Datos:
$$m_p = 1,67 \cdot 10^{-27} \text{ kg}$$
; $q_p = 1,6 \cdot 10^{-19} \text{ C}$; 1 eV = 1,6 · 10⁻¹⁹ J. (*P.A.U. xuño 14*) **Rta.:** a) $R = 6,46 \cdot 10^{-4} \text{ m}$; b) $f = 1,52 \cdot 10^7 \text{ voltas/s}$.

- 2. Acelérase unha partícula alfa mediante unha diferenza de potencial de 1 kV, penetrando a continuación, perpendicularmente ás liñas de indución, nun campo magnético de 0,2 T. Acha:
 - a) O raio da traxectoria descrita pola partícula.
 - b) O traballo realizado pola forza magnética.
 - c) O módulo, dirección e sentido dun campo eléctrico necesario para que a partícula alfa non experimente desviación algunha ao seu paso pola rexión na que existen os campos eléctrico e magnético.

Datos:
$$m_{\alpha} = 6,68 \cdot 10^{-27} \text{ kg}$$
; $q_{\alpha} = 3,2 \cdot 10^{-19} \text{ C}$. (P.A.U. set. 13)
Rta.: a) $R = 3,2 \text{ cm}$; b) $W_{\text{B}} = 0$; c) $|\overline{E}| = 6,2 \cdot 10^4 \text{ V/m}$.

- 3. Un protón con velocidade $\vec{v} = 5.10^6 \, \vec{i} \, \text{m/s}$ penetra nunha zona onde hai un campo magnético $\vec{B} = 1 \, \vec{j} \, \text{T}$.
 - a) Debuxa a forza que actúa sobre o protón e deduce a ecuación para calcular o raio da órbita.
 - b) Calcula o número de voltas nun segundo.
 - c) Varía a enerxía cinética do protón ao entrar nesa zona?

Datos:
$$m_p = 1,67 \cdot 10^{-27} \text{ kg}$$
; $q_p = 1,6 \cdot 10^{-19} \text{ C}$. (P.A.U. xuño 13)
Rta.: a) $R = \frac{m \cdot v}{|q| \cdot B \cdot \text{sen } \varphi}$; b) $N = \text{Media volta en } 3,28 \cdot 10^{-8} \text{ s.}$

- 4. Un electrón é acelerado por unha diferenza de potencial de 1000 V, entra nun campo magnético $\overline{\boldsymbol{B}}$ perpendicular á súa traxectoria, e describe unha órbita circular en $T = 2 \cdot 10^{-11}$ s. Calcula:
 - a) A velocidade do electrón.
 - b) O campo magnético.
 - c) Que dirección debe ter un campo eléctrico \overline{E} que aplicado xunto con \overline{B} permita que a traxectoria sexa rectilínea?

Datos:
$$q_e = -1,6 \cdot 10^{-19} \text{ C}$$
; $m_e = 9,1 \cdot 10^{-31} \text{ kg}$. (P.A.U. xuño 08)
Rta.: a) $v = 1,88 \cdot 10^7 \text{ m/s}$; b) $B = 1,79 \text{ T}$.

- 5. Unha partícula con carga $0.5 \cdot 10^{-9}$ C móvese con $\bar{v} = 4 \cdot 10^6 \, \bar{j}$ m/s e entra nunha zona onde existe un campo magnético $\bar{B} = 0.5 \, \bar{i} \, T$:
 - a) Que campo eléctrico \overline{E} hai que aplicar para que a carga non sufra ningunha desviación?
 - b) En ausencia de campo eléctrico calcula a masa se o raio da órbita é 10⁻⁷ m.
 - c) Razoa se a forza magnética realiza algún traballo sobre a carga cando esta describe unha órbita circular.

Rta.: a)
$$\overline{E} = 2,00.10^6 \overline{k} \text{ N/C}$$
; b) $m = 6,25.10^{-24} \text{ kg.}$

- 6. Un protón acelerado por unha diferenza de potencial de 5000 V penetra perpendicularmente nun campo magnético uniforme de 0,32 T. Calcula:
 - a) A velocidade do protón.
 - b) O raio da órbita que describe e o número de voltas que dá en 1 segundo.

Datos: $m_p = 1,67 \cdot 10^{-27}$ kg, $q_p = 1,60 \cdot 10^{-19}$ C (Fai un debuxo do problema).

(P.A.U. xuño 05)

Rta.: a) $v = 9.79 \cdot 10^5$ m/s; b) R = 3.2 cm; $N = 4.9 \cdot 10^6$ voltas/s.

Correntes

- a) Indica cal é o módulo, dirección e sentido do campo magnético creado por un fío condutor recto percorrido por unha corrente e realiza un esquema que ilustre as características de devandito campo. Considérese agora que dous fíos condutores rectos e paralelos de gran lonxitude transportan a súa respectiva corrente eléctrica.
 - b) Sabendo que a intensidade dunha das correntes é o dobre que a da outra corrente e que, estando separados 10 cm, atráense cunha forza por unidade de lonxitude de $4,8\cdot10^{-5}~\rm N\cdot m^{-1}$, calcula as intensidades que circulan polos fíos.
 - c) Canto vale o campo magnético nun punto situado entre os dous fíos, a 3 cm do que transporta menos corrente?

Dato: $\mu_0 = 4 \pi 10^{-7} \text{ N} \cdot \text{A}^{-2}$.

(P.A.U. xuño 15)

Rta.: b) $I_1 = 3,46$ A; $I_2 = 6,93$ A; c) B = 3,3 μ T.

- 2. Dous condutores rectos, paralelos e longos están situados no plano XY e paralelos ao eixe Y. Un pasa polo punto (10, 0) cm e o outro polo (20, 0) cm. Ambos conducen correntes eléctricas de 5 A no sentido positivo do eixe Y.
 - a) Explica a expresión utilizada para o cálculo do vector campo magnético creado por un longo condutor rectilíneo con corrente *I*.
 - b) Calcula o campo magnético no punto (30, 0) cm
 - c) Calcula o campo magnético no punto (15, 0) cm.

Dato: $\mu_0 = 4 \pi \ 10^{-7}$ (S.I.).

(P.A.U. xuño 09)

Rta.: b) $\overline{\mathbf{B}}_{b} = -15 \cdot 10^{-6} \ \overline{\mathbf{k}} \ \mathrm{T}; \ c) \ \overline{\mathbf{B}}_{c} = \overline{\mathbf{0}}.$

- 3. Dous fíos condutores rectos moi longos e paralelos (A e B) con correntes $I_A = 5$ A e $I_B = 3$ A no mesmo sentido están separados 0,2 m. Calcula:
 - a) O campo magnético no punto medio entre os dous condutores (D)
 - b) A forza exercida sobre un terceiro condutor C paralelo os anteriores, de 0,5 m e con I_C = 2 A e que pasa por D.

Dato: $\mu_0 = 4 \pi 10^{-7} \text{ S.l.}$

(P.A.U. set. 06)

Rta.: a) $\overline{B} = 4.0 \cdot 10^{-6}$ T perpendicular aos fíos; b) $\overline{F} = 4.0 \cdot 10^{-6}$ N cara a A.

• Indución electromagnética

- 1. Unha bobina cadrada e plana ($S = 25 \text{ cm}^2$) construída con 5 espiras está no plano XY:
 - a) Enuncia a lei de Faraday-Lenz.
 - b) Calcula a f.e.m. media inducida se aplícase un campo magnético en dirección do eixe *Z*, que varía de 0,5 T a 0,2 T en 0,1 s.
 - c) Calcula a f.e.m. media inducida se o campo permanece constante (0.5 T) e a bobina xira ata colocarse no plano XZ en 0.1 s.

(P.A.U. xuño 07)

Rta.: b) $\varepsilon_b = 0.038 \text{ V; c}$ $\varepsilon_c = 0.063 \text{ V.}$

CUESTIÓNS

• Campo magnético

Partículas

- I. Nunha rexión do espazo hai un campo eléctrico e un campo magnético ambos os uniformes da mesma dirección pero de sentidos contrarios. Na devandita rexión abandónase un protón con velocidade inicial nula. O movemento de protón é:
 - A) Rectilíneo uniforme.
 - B) Rectilíneo uniformemente acelerado.
 - C) Circular uniforme.

(P.A.U. set. 16)

- 2. Cando unha partícula cargada móvese dentro dun campo magnético, a forza magnética que actúa sobre ela realiza un traballo que sempre é:
 - A) Positivo, se a carga é positiva.
 - B) Positivo, sexa como sexa a carga.
 - C) Cero.

(P.A.U. xuño 16)

- 3. Unha partícula de masa *m* e carga *q* penetra nunha rexión onde existe un campo magnético uniforme de módulo *B* perpendicular á velocidade, *v*, da partícula. O raio da órbita descrita:
 - A) Aumenta se aumenta a intensidade do campo magnético.
 - B) Aumenta se aumenta a enerxía cinética da partícula.
 - C) Non depende da enerxía cinética da partícula.

(P.A.U. xuño 15)

- 4. Un protón e unha partícula α ($q_{\alpha} = 2$ q_p ; $m_{\alpha} = 4$ m_p) penetran, coa mesma velocidade, nun campo magnético uniforme perpendicularmente ás liñas de indución. Estas partículas:
 - A) Atravesan o campo sen desviarse.
 - B) O protón describe unha órbita circular de maior raio.
 - C) A partícula alfa describe unha órbita circular de maior raio.

(P.A.U. set. 14)

- 5. Un campo magnético constante $\overline{\textbf{\textit{B}}}$ exerce unha forza sobre unha carga eléctrica:
 - A) Se a carga está en repouso.
 - B) Se a carga móvese perpendicularmente a \overline{B} .
 - C) Se a carga móvese paralelamente a $\overline{\bf B}$.

(P.A.U. set. 12)

- Analiza cal das seguintes afirmacións referentes a unha partícula cargada é verdadeira e xustifica por que:
 - A) Se se move nun campo magnético uniforme, aumenta a súa velocidade cando se despraza na dirección das liñas do campo.
 - B) Pode moverse nunha rexión na que existe un campo magnético e un campo eléctrico sen experimentar ningunha forza.
 - C) O traballo que realiza o campo eléctrico para desprazar esa partícula depende do camiño seguido. (P.A.U. set. 11)
- 7. Unha partícula cargada atravesa un campo magnético \overline{B} con velocidade \overline{v} . A continuación, fai o mesmo outra partícula coa mesma \overline{v} , dobre masa e tripla carga, e en ambos os casos a traxectoria é idéntica. Xustifica cal é a resposta correcta:
 - A) Non é posible.
 - B) Só é posible se a partícula inicial é un electrón.
 - C) É posible nunha orientación determinada.

(P.A.U. xuño 11)

- 8. Unha partícula cargada e con velocidade \overline{u} , introdúcese nunha rexión do espazo onde hai un campo eléctrico e un campo magnético constantes. Se a partícula móvese con movemento rectilíneo uniforme débese a que os dous campos:
 - A) Son da mesma dirección e sentido.
 - B) Son da mesma dirección e sentido contrario.
 - C) Son perpendiculares entre si.

(P.A.U. set. 09)

Correntes

- 1. Por dous condutores paralelos e indefinidos, separados unha distancia *r*, circulan correntes en sentido contrario de diferente valor, unha o dobre da outra. A indución magnética anúlase nun punto do plano dos condutores situado:
 - A) Entre ambos os condutores.
 - B) Fóra dos condutores e do lado do condutor que transporta máis corrente.
 - C) Fóra dos condutores e do lado do condutor que transporta menos corrente.

(P.A.U. set. 14)

- 2. Cal das seguintes afirmacións é correcta?:
 - A) A lei de Faraday Lenz di que a f.e.m. inducida nunha espira é igual ao fluxo magnético Φ_B que a atravesa.
 - B) As liñas do campo magnético \overline{B} para un condutor longo e recto son circulares arredor do mesmo.
 - C) O campo magnético $\overline{\boldsymbol{B}}$ é conservativo.

(P.A.U. xuño 14)

- 3. Un fío recto e condutor de lonxitude ℓ e corrente I, situado nun campo magnético \overline{B} , sofre unha forza de módulo $I \cdot \ell \cdot B$:
 - A) Se $I \in \overline{B}$ son paralelos e do mesmo sentido.
 - B) Se $I \in \overline{B}$ son paralelos e de sentido contrario.
 - C) Se $I \in \overline{B}$ son perpendiculares.

(P.A.U. set. 08)

- 4. Dous fíos paralelos moi longos con correntes eléctricas I e I' estacionarias e do mesmo sentido:
 - A) Atráense entre si.
 - B) Repélense entre si.
 - C) Non interactúan.

(P.A.U. xuño 06)

- 5. Un cable recto de lonxitude ℓ e corrente i está colocado nun campo magnético uniforme \overline{B} formando con el un ángulo θ . O módulo da forza exercida sobre devandito cable é:
 - A) $i \ell B \operatorname{tg} \theta$
 - B) $i \ell B \operatorname{sen} \theta$
 - C) $i \ell B \cos \theta$

(P.A.U. set. 05)

- 6. Disponse dun fío infinito recto e con corrente eléctrica *I*. Unha carga eléctrica + *q* próxima ao fío movéndose paralelamente a el e no mesmo sentido que a corrente:
 - A) Será atraída.
 - B) Será repelida.
 - C) Non experimentará ningunha forza.

(P.A.U. xuño 04)

• Campo e potencial

- 1. Indica, xustificando a resposta, cal das seguintes afirmacións é correcta:
 - A) A unidade de indución magnética é o weber (Wb).
 - B) O campo magnético non é conservativo.
 - C) Dous condutores rectos paralelos e indefinidos, polos que circulan correntes I_1 e I_2 en sentido contrario, atráense.

(P.A.U. set. 15)

- 2. As liñas de forza do campo magnético son:
 - A) Sempre pechadas.
 - B) Abertas ou pechadas dependendo do imán ou bobina.
 - C) Abertas como as do campo eléctrico.

(P.A.U. set. 13)

- 3. As liñas do campo magnético $\overline{\boldsymbol{B}}$ creado por unha bobina ideal:
 - A) Nacen na cara norte e morren na cara sur da bobina.
 - B) Son liñas pechadas sobre se mesmas que atravesan a sección da bobina.
 - C) Son liñas pechadas arredor da bobina e que nunca a atravesan.

(P.A.U. xuño 06)

• Indución electromagnética

- 1. Indúcese corrente en sentido horario nunha espira en repouso se:
 - A) Achegamos o polo norte ou afastamos o polo sur dun imán rectangular.
 - B) Afastamos o polo norte ou achegamos o polo sur.
 - C) Mantemos en repouso o imán e a espira.

(P.A.U. set. 15)

- 2. Se se achega o polo norte dun imán recto ao plano dunha espira plana e circular:
 - A) Prodúcese en a espira unha corrente inducida que circula en sentido antihorario.
 - B) Xérase un par de forzas que fai rotar a espira.
 - C) a espira é atraída polo imán.

(P.A.U. set. 06)

- 3. Unha espira rectangular está situada nun campo magnético uniforme, representado polas frechas da figura. Razoa se o amperímetro indicará paso de corrente:
 - A) Se a espira xira arredor do eixe *Y*.
 - B) Se xira arredor do eixe X.
 - C) Se desprázase ao longo de calquera dos eixos X ou Y.

(P.A.U. set. 04)

4. Unha espira está situada no plano XY e é atravesada por un campo magnético constante \overline{B} en dirección do eixe Z. Indúcese unha forza electromotriz:

- B) Se a espira xira arredor dun eixe perpendicular á espira.
- C) Se se anula gradualmente o campo \overline{B} .

(P.A.U. set. 12)

- 5. Segundo a lei de Faraday-Lenz, un campo magnético $\overline{\boldsymbol{B}}$ induce forza electromotriz nunha espira plana:
 - A) Se un $\overline{\boldsymbol{B}}$ constante atravesa ao plano da espira en repouso.
 - B) Se un \overline{B} variable é paralelo ao plano da espira.
 - C) Se un $\overline{\boldsymbol{B}}$ variable atravesa o plano da espira en repouso.

(P.A.U. xuño 10)

- 6. Para construír un xerador elemental de corrente alterna cunha bobina e un imán (fai un esbozo):
 - A) A bobina xira con respecto ao campo magnético $\overline{\textbf{\textit{B}}}$.
 - B) A sección da bobina desprázase paralelamente a $\overline{\textbf{\textit{B}}}$.
 - C) A bobina está fixa e é atravesada por un campo $\overline{\boldsymbol{B}}$ constante.

(P.A.U. set. 10)

- 7. Unha espira móvese no plano XY, onde tamén hai unha zona cun campo magnético \overline{B} constante en dirección +Z. Aparece en a espira unha corrente en sentido antihorario:
 - A) Se a espira entra na zona de \overline{B} .
 - B) Cando sae desa zona.
 - C) Cando se despraza por esa zona.

(P.A.U. set. 16, xuño 11)

Actualizado: 21/02/24

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.