

Julia Klein, Tatjana Petrov, Alberto d'Onofrio University of Konstanz
Centre for the Advanced Study of Collective Behaviour

Swarms (collectives)

→ How do swarms agree on decisions?

Collective decision making

Ideally, consensus will be achieved with certain speed and accuracy

Collective decision making

What happens in presence of disruptive (asocial) individuals?

Collective decision making – disruptive individuals

Voter model with zealots

2 species, 2 reactions

- Permanent indecision with already 4% zealots
- Swarm gets quickly locked into indecision state

Cross-inhibition model with zealots

3 species, 4 reactions

- Stable dynamics for 20% zealots!
- Swarm demonstrates resilience against relatively high levels of asocial behaviour

Reina, A., Zakir, R., De Masi, G., Ferrante, E.: Cross-inhibition leads to group consensus despite the presence of strongly opinionated minorities and asocial behaviour. Communications Physics 6(1), 236 (2023)

Motivation – group dynamics

Stochastic **cross-inhibition model with 30% zealots** gives three qualitatively different scenarios!

Cross-inhibition model

$$(1) X + Y \stackrel{q_X}{\to} X + U$$

$$(2) X + Y \stackrel{q_y}{\to} U + Y$$

$$(3) X + U \stackrel{q_X}{\to} 2X$$

$$(4) Y + U \stackrel{q_y}{\to} 2Y$$

Swarm state evolves stochastically as a continuous-time Markov chain

Disruptive individuals

Stubborn individuals which never change their own opinion

Individuals which counter the opinion of the individual they interact with

Cross-inhibition model with disruptive individuals

Zealot dynamics

$$(5) X + ZY \stackrel{q_y}{\to} U + Zy$$

$$(6) U + ZY \stackrel{q_y}{\to} Y + ZY$$

$$(7) Y + ZX \stackrel{q_X}{\to} U + ZX$$

$$(8) U + Z_X \stackrel{q_X}{\to} X + ZX$$

Cross-inhibition model

$$(1) X + Y \stackrel{q_{\chi}}{\to} X + U$$

$$(2) X + Y \stackrel{q_y}{\to} U + Y$$

$$(3) X + U \stackrel{q_{\chi}}{\to} 2X$$

$$(4) Y + U \stackrel{q_y}{\to} 2Y$$

Contrarian dynamics

$$(5) X + C_Y \stackrel{q_y}{\to} U + C_y$$

$$(6) U + C_Y \stackrel{q_Y}{\to} Y + C_Y$$

$$(7) X + C_X \stackrel{q_X}{\to} X + C_Y$$

$$(8) Y + C_X \stackrel{q_X}{\to} U + C_X$$

$$(9) U + CX \stackrel{q_X}{\to} X + CX$$

$$(10) Y + CY \stackrel{q_y}{\to} Y + CX$$

$$(11) CX + CX \stackrel{q_X}{\to} CY + CY$$

$$(12) CY + CY \stackrel{q_y}{\to} CX + CX$$

Research Questions

1. Robustness analysis

How does the amount of disruptive individuals affect consensus reaching/switching?

2. Combined effect

How does the **combination** of zealots and contrarians affect consensus reaching/switching?

3. Group size effect

How does the **group size** affect consensus reaching/switching?

Statistical Model Checking of properties in Bounded Linear Temporal Logic (BLTL)

STEP 1: Formally describe stable consensus and switching consensus in BLTL

$$F_{\leq t}(G_{\leq h}(((x+Z_x+C_x\geq min_m) \land ((x+Z_x+C_x)-(y+Z_y+C_y)\geq d)) \lor ((y+Z_y+C_y\geq min_m) \land ((y+Z_y+C_y)-(x+Z_x+C_x)\geq d))))$$

Statistical Model Checking of properties in Bounded Linear Temporal Logic (BLTL)

STEP 1: Formally describe stable consensus and switching consensus in BLTL

$$F_{\leq t}(G_{\leq h}(((x + Z_x + C_x \geq min_m) \land ((x + Z_x + C_x) - (y + Z_y + C_y) \geq d)) \lor ((y + Z_y + C_y \geq min_m) \land ((y + Z_y + C_y) - (x + Z_x + C_x) \geq d)))))$$

Statistical Model Checking of properties in Bounded Linear Temporal Logic (BLTL)

STEP 1: Formally describe stable consensus and switching consensus in BLTL

$$F_{\leq t}(G_{\leq h}(((x + Z_x + C_x \geq min_m) \land ((x + Z_x + C_x) - (y + Z_y + C_y) \geq d)) \lor ((y + Z_y + C_y \geq min_m) \land ((y + Z_y + C_y) - (x + Z_x + C_x) \geq d)))))$$

Statistical Model Checking of properties in Bounded Linear Temporal Logic (BLTL)

STEP 1: Formally describe stable consensus and switching consensus in BLTL

$$F_{\leq t} G_{\leq h}(((x + Z_x + C_x \geq min_m) \land ((x + Z_x + C_x) - (y + Z_y + C_y) \geq d)) \lor ((y + Z_y + C_y \geq min_m) \land ((y + Z_y + C_y) - (x + Z_x + C_x) \geq d)))))$$

Statistical Model Checking of properties in Bounded Linear Temporal Logic (BLTL)

STEP 1: Formally describe stable consensus and switching consensus in BLTL

$$F_{\leq t}(G_{\leq h}((x + Z_x + C_x \geq min_m) \land ((x + Z_x + C_x) - (y + Z_y + C_y) \geq d)) \lor ((y + Z_y + C_y \geq min_m) \land ((y + Z_y + C_y) - (x + Z_x + C_x) \geq d)))))$$

Is this a stable consensus?

Statistical Model Checking of properties in Bounded Linear Temporal Logic (BLTL)

STEP 1: Formally describe stable consensus and switching consensus in BLTL

$$F_{\leq t}((((x + Z_x + C_x) - (y + Z_y + C_y) \geq d) \land (true \ U_{\leq s}((y + Z_y + C_y) - (x + Z_x + C_x) \geq d))) \lor (((y + Z_y + C_y) - (x + Z_x + C_x) \geq d) \land (true \ U_{\leq s}((x + Z_x + C_x) - (y + Z_y + C_y) \geq d))))$$

Statistical Model Checking of properties in Bounded Linear Temporal Logic (BLTL)

STEP 1: Formally describe stable consensus and switching consensus in BLTL

$$F_{\leq t}((((x + Z_x + C_x) - (y + Z_y + C_y) \geq d) \land (true \ U_{\leq s}((y + Z_y + C_y) - (x + Z_x + C_x) \geq d))) \lor (((y + Z_y + C_y) - (x + Z_x + C_x) \geq d) \land (true \ U_{\leq s}((x + Z_x + C_x) - (y + Z_y + C_y) \geq d))))$$

Statistical Model Checking of properties in Bounded Linear Temporal Logic (BLTL)

STEP 1: Formally describe stable consensus and switching consensus in BLTL

$$F_{\leq t}(((x + Z_x + C_x) - (y + Z_y + C_y) \geq d) \land (true \ U_{\leq s}((y + Z_y + C_y) - (x + Z_x + C_x) \geq d))) \lor (((y + Z_y + C_y) - (x + Z_x + C_x) \geq d) \land (true \ U_{\leq s}((x + Z_x + C_x) - (y + Z_y + C_y) \geq d))))$$

Statistical Model Checking of properties in Bounded Linear Temporal Logic (BLTL)

STEP 1: Formally describe stable consensus and switching consensus in BLTL

$$F_{\leq t}((((x + Z_x + C_x) - (y + Z_y + C_y) \geq d) \land (true \ U_{\leq s}((y + Z_y + C_y) - (x + Z_x + C_x) \geq d))) \lor (((y + Z_y + C_y) - (x + Z_x + C_x) \geq d) \land (true \ U_{\leq s}((x + Z_x + C_x) - (y + Z_y + C_y) \geq d))))$$

Is this a switching consensus?

Statistical Model Checking of properties in Bounded Linear Temporal Logic (BLTL)

STEP 1: Formally describe stable consensus and switching consensus in BLTL

- Five parameters: majority *m*, distance *d*, reaching time *t*, holding time *h*, switching time *s*

STEP 2: Apply model checking tools (*PRISM* and *PlasmaLab*) to explore the relevant scenarios:

- Varying number of zealots and contrarians to explore robustness
- Varying number of both to explore combined effect
- Varying total group size to explore group size effect
- Monte Carlo algorithm to estimate satisfaction probability
- Error margin ε=0.025, confidence bound Δ=0.01

Results – robustness of stable consensus

- Scenario: N = 100 robots, equivalent options X and Y ($q_x = q_y$), initially #X=#Y, #U=0, #Zx=#Zy, #Cx=#Cy
- Baseline: m=50, d=10, t=35, h=40

Results – robustness of stable consensus

- Scenario: N = 100 robots, equivalent options X and Y $(q_x=q_y)$, initially #X=#Y, #U=0, #Zx=#Zy, #Cx=#Cy
- Baseline: m=50, d=10, t=35, h=40

Results – robustness of switching consensus

• Scenario: N = 100 robots, equivalent options X and Y $(q_x = q_y)$, initially #X = #Y, #U = 0, #Zx = #Zy, #Cx = #Cy

• Baseline: d=10, t=35, s=10

Results – robustness of switching consensus

• Scenario: N = 100 robots, equivalent options X and Y $(q_x=q_y)$, initially #X=#Y, #U=0, #Zx=#Zy, #Cx=#Cy

• Baseline: d=10, t=35, s=10

Results – expected times

Expected times to <u>reach</u> consensus

#	2	16	30	50	70	80	82	84	86	88	90
Zealots	5.95	7.28	9.02	10.57	12.04	27.82	39.94	64.95	128.85	374.04	2975.68
Contrarians	6.07	7.81	6.89	1.95	0.63	0.52	0.51	0.51	0.49	0.49	0.46

Expected times to hold consensus

#	12	14	16	24	26	28	30	34	50	70	90
Zealots	20686.51	16368.28	13047.85	210.98	47.71	14.13	5.46	1.61	0.48	0.34	0.22
Contrarians	283.57	22.53	4.03	0.37	0.31	0.27	0.25	0.21	0.16	0.15	0.14

Results – group size effect

... robust to group size scaling!

... **sensitive** to group size scaling!

Conclusion and outlook

- > A small increase of disruptive individuals can drastically affect consensus dynamics
- > Our method with SMC allows to explore consensus beyond mean-field analysis or single simulation

> Stable consensus

- > Cross-inhibition model robust up to certain fraction of zealots/contrarians, then rapid phase transition
- Zealots are less harmful for reaching consensus than contrarians

Switching consensus

- > Range of zealots for which such trajectories occur with non-negligible probability, but very rare for high number of zealots
- Contrarians promote switching dynamics

> Future work

- > Group size effect: characterisation of a class of stochastic systems for which consensus reaching is robust to scaling
- Asymmetric model: what if only one decision is correct?
- Control theory: interventions over individuals for a global outcome

Universität Konstanz

Thank you very much!

Julia Klein
Centre for the Advanced Study of Collective Behaviour
University of Konstanz

julia.klein@uni-konstanz.de

Tatjana Petrov

Alberto d'Onofrio

$$(1) X + Y \stackrel{q_X}{\to} X + X$$

$$(2) X + Y \xrightarrow{q_y} Y + Y$$

Swarm state evolves as a continuous-time Markov chain

→ classical population model

$$(1) X + Y \stackrel{q_X}{\rightarrow} X + X$$

$$(2) X + Y \stackrel{q_y}{\to} Y + Y$$

Swarm state evolves as a continuous-time Markov chain
→ classical population model

$$(1) X + Y \stackrel{q_X}{\to} X + X$$

$$(2) X + Y \stackrel{q_y}{\rightarrow} Y + Y$$

Swarm state evolves as a continuous-time Markov chain
→ classical population model

$$(1) X + Y \stackrel{q_X}{\to} X + X$$

$$(2) X + Y \xrightarrow{q_y} Y + Y$$

Swarm state evolves as a continuous-time Markov chain

→ classical population model

$$(1) X + Y \stackrel{q_X}{\rightarrow} X + X$$

$$(2) X + Y \stackrel{q_y}{\to} Y + Y$$

Swarm state evolves as a continuous-time Markov chain

→ classical population model

$$(1) X + Y \stackrel{q_X}{\to} X + X$$

$$(2) X + Y \stackrel{q_y}{\rightarrow} Y + Y$$

Swarm state evolves as a continuous-time Markov chain
→ classical population model

Decision making: Voter model

$$(1) X + Y \stackrel{q_X}{\to} X + X$$

$$(2) X + Y \stackrel{q_y}{\to} Y + Y$$

Swarm state evolves as a continuous-time Markov chain

→ classical population model

Decision making: Voter model

$$(1) X + Y \stackrel{q_X}{\rightarrow} X + X$$

$$(2) X + Y \xrightarrow{q_y} Y + Y$$

Swarm state evolves as a continuous-time Markov chain
→ classical population model

Decision making: Voter model

$$(1) X + Y \stackrel{q_X}{\to} X + X$$

$$(2) X + Y \stackrel{q_y}{\rightarrow} Y + Y$$

Swarm state evolves as a continuous-time Markov chain
→ classical population model

Disruptive individuals

Zealots

Stubborn individuals which never change their own opinion

Contrarians

 Individuals which counter the opinion of the individual they interact with

Decision making: cross-inhibition model

$$(1) X + Y \stackrel{q_X}{\to} X + U$$

$$(2) X + Y \stackrel{q_y}{\to} U + Y$$

$$(3) X + U \stackrel{q_X}{\to} 2X$$

$$(4) Y + U \stackrel{q_y}{\to} 2Y$$

Decision making: cross-inhibition model

$$(1) X + Y \stackrel{q_X}{\rightarrow} X + U$$

$$(2) X + Y \stackrel{q_y}{\to} U + Y$$

$$(3) X + U \stackrel{q_X}{\to} 2X$$

$$(4) Y + U \stackrel{q_y}{\to} 2Y$$

Decision making: cross-inhibition model

$$(1) X + Y \stackrel{q_X}{\to} X + U$$

$$(2) X + Y \stackrel{q_y}{\to} U + Y$$

$$(3) X + U \stackrel{q_X}{\rightarrow} 2X$$

$$(4) Y + U \stackrel{q_y}{\to} 2Y$$

Approach

Statistical Model Checking of properties in Bounded Linear Temporal Logic (BLTL)

based on Linear Temporal Logic (LTL)

 BLTL: (F, G, X, U, W) are bounded by temporal bound

$$F_{\leq t} \phi$$

$$G_{\leq t} \phi$$

$$X_{\leq t} \phi$$

$$U_{\leq t} \phi$$

$$W_{\leq t} \phi$$

Textual	Symbolic	Explanation	Diagram				
Unary op	perators:						
Χφ	$\bigcirc \varphi$	ne X t: ϕ has to hold at the next state.	•—	φ	····>• —	→•	>
F φ	$\Diamond \varphi$	Finally: ϕ eventually has to hold (somewhere on the subsequent path).	•—	→•······	φ	→•	>
Gφ	$\Box \varphi$	G lobally: ϕ has to hold on the entire subsequent path.	φ	φ	φ	φ	φ
Binary o	perators:						
ψ U φ	$\psi\mathcal{U}arphi$	U ntil: ψ has to hold <i>at least</i> until ϕ becomes true, which must hold at the current or a future position.	Ψ	Ψ	Ψ	φ	>
ψ R φ	$\psi \mathcal{R} arphi$	Release: ϕ has to be true until and including the point where ψ first becomes true; if ψ never becomes true, ϕ must remain true forever.	φ •— φ	φ ••••••••••••••••••••••••••••••••••••	φ φ	φ,ψ ••••••••••••••••••••••••••••••••••••	φ>
ψ W φ	$\psi \mathcal{W} arphi$	W eak until: ψ has to hold <i>at least</i> until ϕ ; if ϕ never becomes true, ψ must remain true forever.	Ψ	Ψ ••••••••••••••••••••••••••••••••••••	Ψ Ψ •••••	φ ••••••••••••••••••••••••••••••••••••	Ψ>

Boyer, B., Corre, K., Legay, A., Sedwards, S.: Plasma-lab: A flexible, distributable statistical model checking library. In: International Conference on Quantitative Evaluation of Systems. pp. 160–164. Springer (2013)

Results – robustness of stable consensus

• Scenario: N = 100 robots, equivalent options X and Y $(q_x=q_y)$, initially #X=#Y, #U=0, #Zx=#Zy, #Cx=#Cy

• Baseline: m=50, d=10, t=35, h=40

Studied Model of Decision-Making

Voter Model

→ in presence of asocial individuals, the swarm gets quickly locked into an indecision state

No zealots

→ quick, stable consensus

2% zealots

→ permanent indecision

Reina, A., Zakir, R., De Masi, G., Ferrante, E.: Cross-inhibition leads to group consensus despite the presence of strongly opinionated minorities and asocial behaviour. Communications Physics 6(1), 236 (2023)

Studied Model with Disruptive Individuals

Cross-Inhibition model with Zealots

- Zealots: stubborn individuals which never change their own opinion
- Four additional reactions, where 'pure' agents interact with zealots & adjust their own states

Cross-Inhibition model with Contrarians

- Contrarians: individuals which counter the opinion of the individual they interact with
- Eight additional reactions, where contrarians influence 'pure' individuals & are influenced by others with the same opinion