Quantum Computing Seminar 1

YongHyun "Aeren" An

Samsung Research

August 12, 2024 August 26, 2024

Definition (\mathbb{C})

- A **complex number** is a pair of real numbers (a, b)
- ullet The set of complex numbers is denoted by ${\mathbb C}$
- For $(a,b) \in \mathbb{C}$, $\operatorname{Re}((a,b)) := a$ and $\operatorname{Im}((a,b)) := b$
- $(a,b)+(c,d)\mapsto (a+c,b+d):\mathbb{C}\times\mathbb{C}\to\mathbb{C}$
- $(a,b)\cdot(c,d)\mapsto(a\cdot c-b\cdot d,a\cdot d+b\cdot c):\mathbb{C}\times\mathbb{C}\to\mathbb{C}$

Definition (\mathbb{C})

- A **complex number** is a pair of real numbers (a, b)
- ullet The set of complex numbers is denoted by ${\mathbb C}$
- For $(a, b) \in \mathbb{C}$, $\operatorname{Re}((a, b)) := a$ and $\operatorname{Im}((a, b)) := b$
- $(a,b)+(c,d)\mapsto (a+c,b+d): \mathbb{C}\times\mathbb{C}\to\mathbb{C}$
- $(a,b)\cdot(c,d)\mapsto(a\cdot c-b\cdot d,a\cdot d+b\cdot c):\mathbb{C}\times\mathbb{C}\to\mathbb{C}$

By convention, (0,1) is denoted by the symbol $\mathfrak i$ and (a,0) is identified with a. $(a,b)=(a,0)+(b,0)\cdot(0,1)=a+b\cdot\mathfrak i$

- $i \cdot i = -1$
- Field Axioms
 - Associativity

for all
$$a, b, c \in \mathbb{C}$$
, $(a + b) + c = a + (b + c)$ and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

Existence of identity

for all
$$a \in \mathbb{C}$$
, $0 + a = a + 0 = a$ and $1 \cdot a = a \cdot 1 = a$.

Existence of additive inverse

for all
$$a \in \mathbb{C}$$
, there exists $-a \in \mathbb{C}$ such that $a + -a = -a + a = 0$.

Existence of multiplicative inverse

for all
$$a(\neq 0) \in \mathbb{C}$$
, there exists $a^{-1} \in \mathbb{C}$ such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$.

Commutativity

for all
$$a, b \in \mathbb{C}$$
, $a + b = b + a$ and $a \cdot b = b \cdot a$.

Distributivity

for all
$$a, b, c \in \mathbb{C}$$
, $a \cdot (b + c) = a \cdot b + a \cdot c$.

Definition (conjugation)

The (complex) conjugation of $a \in \mathbb{C}$ is $\overline{a} := \operatorname{Re}(a) - \operatorname{Im}(a) \cdot i$.

Definition (conjugation)

The (complex) conjugation of $a \in \mathbb{C}$ is $\overline{a} := \operatorname{Re}(a) - \operatorname{Im}(a) \cdot i$.

Properties of conjugation

For all $a, b \in \mathbb{C}$,

- $\overline{\overline{a}} = a$
- $\overline{a+b} = \overline{a} + \overline{b}$
- $\overline{a \cdot b} = \overline{a} \cdot \overline{b}$
- For a real coefficient monovariate/multivariate polynomial P, $\overline{P(a,b,c,\cdots)} = P(\overline{a},\overline{b},\overline{c},\cdots)$

Definition (conjugate)

- $a,b\in\mathbb{C}$ are said to be **conjugate** to each other, if they can't be distinguished by a real polynomial.
- i.e. for all polynomial P with real coefficient, P(a) = 0 if and only if P(b) = 0

Theorem

 $(a,b),(c,d)\in\mathbb{C}$ are conjugate to each other if and only if (a,b)=(c,d) or $(a,b)=\overline{(c,d)}$.

Definition (size, argument)

Given $(a, b) \in \mathbb{C}$,

- size/absolute value/magnitude of (a,b) is $|(a,b)| := \sqrt{(a,b)} \cdot (a,b) = \sqrt{a^2 + b^2}$, and
- **argument** of $(a, b) (\neq 0) \in \mathbb{C}$ is and arg(a, b) := arctan b/a

Figure: Complex number $z = x + y \cdot i$ with size r and argument φ

Definition (exponentiation and polar form)

Given $\theta \in \mathbb{R}$, $e^{\theta \cdot i} := \cos \theta + \sin \theta \cdot i$

Definition (exponentiation and polar form)

Given $\theta \in \mathbb{R}$, $e^{\theta \cdot i} := \cos \theta + \sin \theta \cdot i$

This definition allows us to write $a = r \cdot e^{\theta \cdot i}$ where r = |a| and $\theta = \arg a$.

This is known as the **polar form**

Definition (exponentiation and polar form)

Given $\theta \in \mathbb{R}$, $e^{\theta \cdot i} := \cos \theta + \sin \theta \cdot i$

This definition allows us to write $a = r \cdot e^{\theta \cdot i}$ where r = |a| and $\theta = \arg a$.

This is known as the polar form

Theorem (multiplication in polar form)

$$r_0 \cdot e^{\theta_0 \cdot i} \cdot r_1 \cdot e^{\theta_1 \cdot i} = (r_0 \cdot r_1) \cdot e^{(\theta_0 + \theta_1) \cdot i}$$

Definition (exponentiation and polar form)

Given $\theta \in \mathbb{R}$, $e^{\theta \cdot i} := \cos \theta + \sin \theta \cdot i$

This definition allows us to write $a = r \cdot e^{\theta \cdot i}$ where r = |a| and $\theta = \arg a$.

This is known as the polar form

Theorem (multiplication in polar form)

$$r_0 \cdot e^{\theta_0 \cdot i} \cdot r_1 \cdot e^{\theta_1 \cdot i} = (r_0 \cdot r_1) \cdot e^{(\theta_0 + \theta_1) \cdot i}$$

Root of unity

- Given a positive integer n, equation $X^n = 1$ has exactly n complex roots: $e^{(2\pi k/n)\cdot i}$ for each integer $0 \le k < n$.
- Equivalently, $X^n 1 = \prod_{k=0}^{n-1} (X e^{(2\pi k/n) \cdot i})$.

Definition (finite dimensional complex vector space)

An *n*-dimensional complex vector space is the set \mathbb{C}^n together with the following operations.

- Vector addition $(a_1, \cdots, a_n) + (b_1, \cdots, b_n) \mapsto (a_1 + b_1, \cdots, a_n + b_n) : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}^n$
- Scalar multiplication $c \cdot (a_1, \dots, a_n) \mapsto (c \cdot a_1, \dots, c \cdot a_n) : \mathbb{C} \times \mathbb{C}^n \to \mathbb{C}^n$
- Inner product $\langle (a_1, \cdots, a_n), (b_1, \cdots, b_n) \rangle \mapsto \overline{a_1} \cdot b_1 + \cdots + \overline{a_n} \cdot b_n : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$

Definition

- Norm of a vector $a=(a_1,\cdots,a_n)\in\mathbb{C}^n$ is $|a|:=\sqrt{\langle a,a\rangle}=\sqrt{|a_1|^2+\cdots+|a_n|^2}$.
- Unit vector is a vector of norm 1.
- Vectors $u, v \in \mathbb{C}^n$ are **orthogonal** if $\langle u, v \rangle = 0$.

Definition (M)

Given a non-negative integer m and n, $\mathbb{M}_{m,n}$ is the set of functions

 $\{1,\cdots,m\}\times\{1,\cdots,n\}\to\mathbb{C}.$

An element A of $\mathbb{M}_{m,n}$, is called a **matrix** and we denote A(i,j) by $A_{i,j}$.

Definition (M)

Given a non-negative integer m and n, $\mathbb{M}_{m,n}$ is the set of functions

 $\{1,\cdots,m\}\times\{1,\cdots,n\}\to\mathbb{C}.$

An element A of $\mathbb{M}_{m,n}$, is called a **matrix** and we denote A(i,j) by $A_{i,j}$.

Special matrices

- $I \in \mathbb{M}_{n,n}$ is the matrix with $I_{i,j} = [i = j]$.
- $O \in \mathbb{M}_{n,n}$ is the matrix with $I_{i,j} = 0$.

Definition (M)

Given a non-negative integer m and n, $M_{m,n}$ is the set of functions

 $\{1,\cdots,m\}\times\{1,\cdots,n\}\to\mathbb{C}.$

An element A of $\mathbb{M}_{m,n}$, is called a **matrix** and we denote A(i,j) by $A_{i,j}$.

Special matrices

- $I \in \mathbb{M}_{n,n}$ is the matrix with $I_{i,j} = [i = j]$.
- $O \in \mathbb{M}_{n,n}$ is the matrix with $I_{i,j} = 0$.

Definition (inverse matrix)

A matrix $A \in \mathbb{M}_{n,n}$ is **invertible**, if there exists a matrix $B \in \mathbb{M}_{n,n}$ with $A \cdot B = I$. We write $B = A^{-1}$.

Operations on matrix

- Matrix-matrix multiplication: $\cdot: \mathbb{M}_{m,n} \times \mathbb{M}_{n,k} \to \mathbb{M}_{m,k}$ $(A \cdot B)_{i,k} = \sum_{i=1}^{n} A_{i,j} \cdot B_{j,k}$
- Matrix-scalar multiplication $\cdot: \mathbb{M}_{m,n} \times \mathbb{C}^n \to \mathbb{C}^m$ $(A \cdot v)_i = \sum_{j=1}^n A_{i,j} \cdot v_j$
- Conjugate transposition $\circ^H = \mathbb{M}_{m,n} \to \mathbb{M}_{n,m}$ $(A^H)_{i,j} = \overline{A_{j,i}}$

We identify $v \in \mathbb{C}^n$ with a matrix $A \in \mathbb{M}_{n,1}$ where $A_{i,1} = v_i$.

We identify $v \in \mathbb{C}^n$ with a matrix $A \in \mathbb{M}_{n,1}$ where $A_{i,1} = v_i$.

Definition (unitary matrix)

A matrix $A \in \mathbb{M}_{n,n}$ is **unitary** if $A^H \cdot A = I$.

We identify $v \in \mathbb{C}^n$ with a matrix $A \in \mathbb{M}_{n,1}$ where $A_{i,1} = v_i$.

Definition (unitary matrix)

A matrix $A \in \mathbb{M}_{n,n}$ is unitary if $A^H \cdot A = I$.

Theorem

- A matrix $A \in \mathbb{M}_{n,n}$ is unitary if and only if each column vector of A is a unit vector that is pairwise orthogonal.
- A matrix $A \in \mathbb{M}_{n,n}$ is unitary if and only if for all $u, v \in \mathbb{C}^n$, $\langle A \cdot u, A \cdot v \rangle = \langle u, v \rangle$.
- Given a unitary matrix $A \in \mathbb{M}_{n,n}$ and $v \in \mathbb{C}^n$, $|A \cdot v| = |v|$.
- The product of two unitary matrices is unitary.

Definition (Kronecker product)

$$\otimes : \mathbb{M}_{m,n} \times \mathbb{M}_{p,q} \to \mathbb{M}_{m \cdot p, n \cdot q}$$

$$(A \otimes B)_{p \cdot (i-1) + k, q \cdot (j-1) + l} = A_{i,j} \cdot B_{k,l}$$

$$A \otimes B = \begin{bmatrix} A_{1,1} \cdot B & \cdots & A_{1,n} \cdot B \\ \vdots & \ddots & \vdots \\ A_{m,1} \cdot B & \cdots & A_{m,n} \cdot B \end{bmatrix}$$

The followings hold for matrices A, B, C with suitable size, scalar $k \in \mathbb{C}$, and vectors u, v.

- 1. $A \otimes (B \otimes C) = (A \otimes B) \otimes C$
- 2. $A \otimes O = O \otimes A = O$
- 3. $A \otimes (B + C) = A \otimes B + A \otimes C$
- 4. $(A+B)\otimes C=A\otimes C+B\otimes C$
- 5. $(k \cdot A) \otimes B = A \otimes (k \cdot B) = k \cdot (A \otimes B)$
- 6. $(A \otimes B) \cdot (C \otimes D) = (A \cdot C) \otimes (B \cdot D)$
- 7. $(A \otimes B)^H = A^H \otimes B^H$
- 8. $A \otimes B$ is invertible if and only if A and B are both invertible, in which case $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$.
- 9. $|u \otimes v| = |u| \cdot |v|$
- 10. If A and B are unitary, so is $A \otimes B$.

Definition (Dirac notation / bra-ket notation)

Let *n* be a fixed integer, and let $v_i \in \mathbb{C}^n$ with $v_i = (0, \dots, 0, 1, 0, \dots, 0)$ (single 1 at the *i*-th entry).

- **Ket**: we identify v_i with $|i\rangle$.
- **Bra**: we identify v_i^H with $\langle i|$.
- $|i,j\rangle := |i\rangle \otimes |j\rangle$
- $\langle i,j| := \langle i| \otimes \langle j|$

The End