Stvarni čas in komunikacije

KOMUNIKACIJSKI PROTOKOLI IN OMREŽNA VARNOST

VSEBINA

- primeri rabe in zajem podatkov
- × omrežni čas
- × osnovni protokol za promet v stvarnem času
- protokol za upravljanje s tokom podatkov
- × varna inačica protokola

PRIMERI RABE

- * kaj je stvarni čas (realni čas, real-time)
 - + (čas dospetja, čas začetka izvajanja, potreben čas za izvajanje, rok zaključka izvajanja)
 - + sistemi strogo in mehko v stvarnem času (hard in soft real time)
 - + izziv: ali običajni operacijski sistemi FreeBSD, Linux in MS Windows omogočajo delo v stvarnem času? Utemeljite odgovor.

PRIMERI RABE

- mi se ne bomo ukvarjali s takšno definicijo stvarnega časa
- scenarij:
 - + imamo stran A in stran B in med njima omrežje
 - + na strani A se dogajajo različni dogodki, ki se zajemajo in o tem poroča strani B preko omrežja
 - + opazovalec, ki opazuje dogodke na strani B, mora imeti čim bolj veren občutek opazovanja dogodkov
- x vsebino dogodkov lahko nekako prenesemo, težava je prenos učinka časa med dogodkoma

SCENARIJ

PRIMERI RABE

- Enosmerna komunikacija:
 - + prikazovanje prosojnic, diapozitivov, ...
 - + predvajanje zvoka (oddaljeni CD) in predvajanje filma (oddaljeni VCR)
 - + združevanje slike in zvoka ob prenosu
 - + predvajanje radijskega ali TV programa
- » Dvosmerna komunikacija:
 - + pogovor preko spleta (VoIP)
 - + video telefonija

ZAJEM PODATKOV – ZVOK

- zvok je analogen pojav spreminjanja zračnega pritiska, ki ga zaznava (človeško) uho
- preddigitalno:
 - zajem zvoka smo preko mikrofona analogni signal spremenil v analogni električni signal
 - + električni signal smo uporabili za proizvajanje zvoka preko zvočnika

ZAJEM PODATKOV - ZVOK

digitalno:

- + še vedno zajamemo zvok, a le v diskretnih trenutkih – zajamemo odmik (amplitudo, jakost, energijo)
- amplitudi pretvorimo v n-bitno številko
- + izziv: poiščite program audacity, ga namestite in v njem zajemite ter obdelajte zvok.

ZAJEM PODATKOV – ZVOK

- zvok seveda ni
 preprost sinusen
 pojav, ampak je
 linearna kombinacija
 večih sinusnih
 signalov: vsota
 a_k sin(kω)
- digitalni zajem ne sme izgubiti (preveč) informacije o signalih

ZAJEM PODATKOV – ZVOK

- problem vzorčenja (Nyquist-ova frekvenca)
 - izziv: zakaj se vrtijo v filmih kolesa včasih nazaj, avto ali voz pa se premika naprej?
- * človeško uho zaznava frekvence približno od 20Hz do 22kHz
 - izziv: kakšna je frekvenca vzorčenja za wav datoteke?
- × človeško uho ne zazna določene kombinacije signalov
 - + mp3 stiskanje
 - + izziv: poiščite program z vmesnikom z ukazne vrstice za mp3 stiskanje za Unix in ga namestite?

ZAJEM PODATKOV - SLIKA

- problem digitalizacije ene slike in nato filma
- digitalizacija slike:
 - + vsaka točka na zaslonu ima svojo vrednost, ki je tri razsežnostni vektor
 - + izziv: katere so lahko tri razsežnosti vektorja (več možnosti)? Kaj pomenijo?
 - + izziv: preverite različne standarde kot so jpg, gif, pgn, bmp in jih komentirajte. Kako je s pretvorbo med njimi?
- * tako digitalizirana slika predstavlja primer ene amplitude pri zvoku
- problem časovne digitalizacije je podoben / enak kot pri zvoku
 - + človeško oko zazna neprekinjeno premikanje, če mu posredujemo vsaj med 23 do 25 slikic na sekundo
 - + izziv: kakšne so standardne hitrosti vzorčenja? Jih je več in kje se uporabljajo? Zakaj so različne?
 - + izziv: preverite različne standarde zapisov filma in jih komentirajte. Kako je s pretvorbo med njimi?

OMREŽNI ČAS

- včasih moramo uskladiti čas med večimi oddaljenimi sistemi
- problem zakasnitve prenosa podatka
- uporabimo lahko več sistemov hkrati

PROTOKOL NTP

- definiran v RFC 5905, Network Time Protocol Version 4: Protocol and Algorithms Specification
 - * obvezno: poiščite ga na spletu ter ga preberite literatura!
 - * izziv: poiščite še ostale RFC dokumente, ki se ukvarjajo z ntp ter preverite, kaj piše v njih. Poiščite opis Marzullovega algoritma.

PROGRAMSKA OPREMA

- na FreeBSD: ntpd
- konfiguracija v /etc/ ntp.conf
 - izziv: poiščite priročnik ter poženite odjemalca. Ročno premaknite čas in opazujte, kaj se dogaja.
 - izziv: kako uporabljati ntp na OS Windows?

```
server ntplocal.example.com prefer
server timeserver.example.org
server ntp2a.example.net
driftfile /var/db/ntp.drift
```

• izziv: poiščite ntp strežnike v Sloveniji?

PRENOS OD A DO B

- * možne rešitve:
 - + A posname dogodke in časovne značke in pošlje datoteko B
 - + A, ko posname dogodek, ga opremi s časovno značko in ga takoj pošlje B
 - + nekaj vmes
- osnovni vir težav je omrežje

VPLIV OMREŽJA

- naše omrežje je paketno
 - + vsak paket lahko potuje po drugi poti
 - + vsak paket lahko potuje različno dolgo
 - × problem latence ni tako velik pri enosmernem prometu
 - + nekateri paketi se lahko izgube
- x dva problema:
 - + kaj narediti z izgubljenimi paketi
 - x povezavna prenosna plast ali aplikacija skrbi za izgubljeno
 - + kaj narediti z neenakomerno prihajajočim paketi
 - × nekateri paketi preprosto zamudijo

VPLIV OMREŽJA

dva problema:

- + kaj narediti z izgubljenimi paketi
- kaj narediti z neenakomerno prihajajočim paketi

rešitev:

- zamujene pakete obravnavati kot izgubljene
- protokol naj poskrbi za časovno izravnavo
- + aplikacija naj poskrbi za izgubljene pakete

PROTOKOL RTP

- definiran v RFC 3550, RTP: A Transport Protocol for Real-Time Applications
 - * obvezno: poiščite ga na spletu ter ga preberite literatura!
 - * izziv: poiščite še ostale RFC dokumente, ki se ukvarjajo s tftp ter preverite, kaj piše v njih.
- osnovne funkcionalnosti:
 - + skrbi za pravo zaporedje paketov
 - + skrbi za časovne značke dogodkov

PROTOKOL RTP

- * dodatne funkcionalnosti:
 - + ena povezava lahko prenaša več podatkovnih tokov (virov dogodkov): zvok levi, zvok desni, ...; slika desnega očesa, slika levega očesa; podnapisi, ...
 - + identifikator vira / seje in njegov sinhronizacijski vir
 - + poseben element mešalec (*mixer*), ki lahko združuje več sej v eno sejo
 - + v združeni seji, komu v resnici pripada poslani paket

RTP - NEKAJ PODROBNOSTI

- rtp protokol je prenosni protokol, ki služi prenosu podatkov
 - + ne vključuje ukazov za začetek povezave in vzdrževanje povezave
- rtp protokol omogoča aplikacijam prenos posebnih podatkov (za predvajanje zvoka, filma, ...) – profil
- za nadzor delovanja rtp protokola uporablja protokol rtcp (RTP Control Protocol) – isti RFC
- rtp na prenosni plasti uporablja nepovezavni načinUDP protokol

RTP - OBLIKA PAKETA

Osnova:

- V verzija; 2
- P zapolnitev (padding)
- sequence number –
 številčenje paketov poslanih
 v toku
- timestamp časovna značka dogodka

RTP - OBLIKA PAKETA

dodatne funkcionalnosti:

- SSRC identifikator vira (Synchronization source)
- CC število mešanih virov
- CSRC identifikatorji mešanih virov (Contributing source)

RTP - OBLIKA PAKETA

višji protokol/aplikacija:

- PT identifikacija protokola
- M poseben bit za potrebe protokola
- X ali je prisotna razširitev glave
- zadnji del je razširitev glave
- izziv: poiščite RFCje za opis posameznih protokolov (vrst prometa), ki uporabljajo RTP in jih primerjajte (npr. zvok, film, besedilo!, ...)

NADZORNI PROTOKOL RTCP

- × primerjaj analogijo med IP in IPCP
- × opravlja štiri funkcije:
 - sporoča o kakovosti prenašanega prometa (RR: receiver report in SR: sender report
 - 2. dodaten opis vira toka dogodkov (SDES: Source description items)
 - skrbi za pravilno gostoto pošiljanja sporočil o kakovosti prenosa
 - 4. prenaša lahko še dodatne podatke za potrebe aplikacije (APP: Application-specific functions)

NADZORNI PROTOKOL RTCP

- za potrebe RTCP je uprabljena stalna pasovna širina
- če je veliko sodelujočih strank (multicast), potem je gostota poročanja manjša
- izziv: kakšne vse podatke lahko prenaša RTCP o viru dogodkov? Kaj je to CNAME?
- izziv: kako izgleda poročilo o kakovosti prometa? Kakšne podatke vključuje?

RTCP - OBLIKA PAKETA

- V verzija; 2
- P zapolnitev (padding)
- izziv: kakšna je vrednost var pri SR ukazu in kaj pomeni?
- * izziv: Peter Zmeda je med branjem spletnih strani opazil, da obstaja nekakšna povezava med besedami RTP, freebsd in mplayer? Kakšna? Namestite mplayer in preizkusite njegovo delovanje.
- PT ukaz: SR, RR, SDES, BYE, APP
- var različne vrednosti v odvisnosti od ukaza

VARNI RTP

- RTP protokol uporablja UDP prenos, ki nima ssl plasti
- × zato moramo varnost za RTP dograditi sami
- nekako izmenjamo ključe, toda paketi se izgubljajo
- x drugačen način kriptiranja: kriptiranje s tokom šifer

KRIPTIRANJE S TOKOM ŠIFER

- × začetna vrednost (IV) je poznana obema stranema
- obema stranema je poznan tudi ključ
- vsak paket se ločeno zakriptira
- + je preprosti xor ali kakšen podoben algoritem
- × če se paket izgubi, samo v prazno zavrtimo E

PROTOKOL SRTP

- * definiran v RFC 3711, The Secure Real-time Transport Protocol (SRTP)
 - * obvezno: poiščite ga na spletu ter ga preberite literatura!
 - * izziv: poiščite še ostale RFC dokumente, ki se ukvarjajo s srtp ter preverite, kaj piše v njih.
- zasnovan na RTP
- × varnost dodana z kriptiranjem s tokom šifer
- izziv: kako si obe strani izmenjata ključe?
- izziv: v RFC je omenjena HMAC funkcija (tudi RFC 2104); kako deluje in kako se uporablja? Kaj je to f8, ki je omenjena v standardu?

UPORABNIKI PROTOKOLA RTP

beleženje dogodkov v (oddaljenih) laboratorijih (gridcc)

- × IP telefonija SIP
- × oddaljeni VCR ali VoD
 - + uporablja protokol RTSP

PROTOKOL RTSP

- definiran v RFC 2326, Real Time Streaming Protocol (RTSP)
 - * obvezno: poiščite ga na spletu ter ga preberite literatura!
 - * izziv: poiščite še ostale RFC dokumente, ki se ukvarjajo s RTSP ter preverite, kaj piše v njih.
- osnovni ukazi: nastavi (SETUP), igraj in/ali snemaj (PLAY, RECORD), počakaj (PAUSE) in zaključi (TEARDOWN)
- * še dodatni ukazi za nastavljanje in branje parametrov
- primer uporabe na spletnih straneh:

prelep slovenski film

- ,,sorodnik'' protokola http: podobna struktura ukazov (MIME)
 - x izziv: eno od polj, ki jih odjemalec nastavi v zahtevi strežniku je transport. Kako izgleda, kaj pomeni in čemu služi?
 - izziv: kje se vidi povezava med RTSP in RTP na primer pri RTP smo imeli v glavi SSRC polje; ali obstaja tudi pri RTSP in če da, kje ter kako izgleda?

PROGRAMSKA OPREMA

- × eden prvih odprtokodnih strežnikov je Darwin
- kaj pa odjemalec?
 - izziv: poiščite strežnik in si ga namestite na vašem FreeBSD/Linux sistemu. Dodajte spletno stran za ponudbo filmov iz vaše filmoteke.

ZAKLJUČEK

- øgledali smo si, kaj to pravzaprav pomeni "stvarni čas" in kako nastavljamo čas na svojem računalniku
- kaj je to dogodek in kaj praktično pomeni prenos podatkov o dogodkih v stvarnem času
- spoznali smo RTP/RTCP protokol ter njegovo varno inačico SRTP
- ogledali smo si še uporabo RTP protokola za primer VoD, ki uporablja protokol RTSP
- Naslednjič: razpošiljanje (multicasting)
- W Uh, kako pa aplikacija rokuje z izgubljenimi paketi (glej naloge prepuščene aplikaciji)?