MATH 101

Integral Calculus

Rajveer Sodhi, Sanjith Senthil

01 Riemann Sums

Left Reimann Sum

Overestimate

$$L_n = \sum_{k=0}^{n-1} f(x_k) \Delta x$$

Midpoint Reimann Sum

Best Estimate

$$M_n = \sum_{k=1}^n f(\bar{x}_k) \Delta x$$

$$\bar{x}_k = \frac{x_k + x_{k-1}}{2}$$

Right Reimann Sum

Underestimate

$$R_n = \sum_{k=1}^n f(x_k) \Delta x$$

$$\Delta x = \frac{b-a}{n}$$

Example

$$f(x) = 3x - 1$$
 on $[-1, 2]$; R_8

$$\int\limits_{a}^{b}f(x)\,dxpprox\Delta x\left(f(x_{1})+f(x_{2})+f(x_{3})+\cdots+f(x_{n-1})+f(x_{n})
ight)$$

where $\Delta x = rac{b-a}{n}$

We have that f(x)=3x-1, a=-1, b=2, and n=8.

Therefore, $\Delta x = rac{2-(-1)}{8} = rac{3}{8}$.

Divide the interval [-1,2] into n=8 subintervals of the length $\Delta x=\frac38$ with the following endpoints: $a=-1,-\frac58,-\frac14,\frac18,\frac12,\frac78,\frac54,\frac{13}8,2=b$.

Now, just evaluate the function at the right endpoints of the subintervals.

$$f(x_1) = f\left(-rac{5}{8}
ight) = -rac{23}{8} = -2.875$$

$$f(x_2) = f\left(-\frac{1}{4}\right) = -\frac{7}{4} = -1.75$$

$$f(x_3) = fig(rac{1}{8}ig) = -rac{5}{8} = -0.625$$

$$f(x_4)=fig(rac{1}{2}ig)=rac{1}{2}=0.5$$

$$f(x_5)=fig(rac{7}{8}ig)=rac{13}{8}=1.625$$

$$f(x_6)=fig(rac{5}{4}ig)=rac{11}{4}=2.75$$

$$f(x_7) = f\left(\frac{13}{8}\right) = \frac{31}{8} = 3.875$$

$$f(x_8) = f(2) = 5$$

Finally, just sum up the above values and multiply by $\Delta x=\frac{3}{8}$: $\frac{3}{8}\left(-2.875-1.75-0.625+0.5+1.625+2.75+3.875+5\right)=3.1875.$

ANSWER

$$\int\limits_{-1}^{2} \left(3x-1
ight)\,dx pprox 3.1875$$
 A

Definite Integrals

Definite Integrals as Limits of Riemann Sums

In the limit definition of definite integral, x_i is an arbitrary point in the *i*th subinterval. To simplify the computation, we often take the x_i 's to be the right endpoints. This simplifies the definition of a definite integral as follows.

Theorem 1.2.1. Let f be a function. Suppose that f is integrable on an interval [a,b]. Then

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x,$$

where $\Delta x = \frac{b-a}{n}$ and

$$x_i = a + i\Delta x, \qquad 1 \le i \le n \tag{1.2.1}$$

The exact area of the shaded region above is given by the definite integral $\int_0^1 x^2 dx$.

Express the following definite integral as limits of Riemann sums.

$$\int_{5}^{13} x^4 dx$$

$$\Delta x = \frac{b-a}{n} = \frac{13-5}{n} = \frac{8}{n}$$
 and $x_i = a + i\Delta x = 5 + \frac{8i}{n}$

Using Theorem 1.2.1, we have

$$\int_{5}^{13} x^{4} dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} (x_{i})^{4} \cdot \frac{8}{n} \qquad f(x_{i}) = (x_{i})^{4}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left(5 + \frac{8i}{n}\right)^{4} \cdot \frac{8}{n} \qquad x_{i} = 5 + \frac{8i}{n}$$

Express each limit as a definite integral on the given interval.

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\ln(x_i)}{x_i} \Delta x, \quad [1, 3]$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\ln(x_i)}{x_i} \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \qquad f(x_i) = \frac{\ln(x_i)}{x_i}$$

$$= \int_{1}^{3} f(x) dx \qquad f(x) = \frac{\ln x}{x}, \quad [a, b] = [1, 3]$$

$$= \int_{1}^{3} \frac{\ln x}{x} dx$$

Antiderivatives

Antiderivatives

Let f be a function. A function F is called an **antiderivative** of f on an interval I if the derivative of F(x) is equal to f(x); that is,

$$F'(x) = f(x)$$
 for all x in I

For example, the function $F(x) = x^2$ is an antiderivative of f(x) = 2x because $F'(x) = \frac{d}{dx}[x^2] = 2x$. So

antiderivative
$$f(x)$$
 derivative $f(x)$

Determine whether F(x) is an antiderivative of f(x).

$$f(x) = \frac{2x}{\sqrt{1+x^2}}, \qquad F(x) = \sqrt{1+x^2}$$

We need to find the derivative of $F(x)=\sqrt{1+x^2}$ and see if it is equal to $f(x)=\frac{2x}{\sqrt{1+x^2}}.$

$$F'(x) = \frac{d}{dx} \left[\sqrt{1 + x^2} \right] = \frac{d}{dx} \left[(1 + x^2)^{\frac{1}{2}} \right] \qquad \sqrt{x} = x^{\frac{1}{2}}$$

$$= \frac{1}{2} (1 + x^2)^{\frac{1}{2} - 1} \frac{d}{dx} [x^2] \qquad \qquad \frac{d}{dx} \left[(g(x))^n \right] = n(g(x))^{n - 1} \frac{d}{dx} [g(x)]$$

$$= \frac{1}{2} (1 + x^2)^{-\frac{1}{2}} (2x) \qquad \qquad \frac{a}{b} - c = \frac{a - bc}{b}, \frac{d}{dx} [x^n] = nx^{n - 1}$$

$$= \frac{1}{2} \frac{1}{(1 + x^2)^{\frac{1}{2}}} (2x) \qquad \qquad x^{-m} = \frac{1}{x^m}$$

$$= \frac{2x}{2\sqrt{1 + x^2}} = \frac{x}{\sqrt{1 + x^2}}$$

Since F'(x) is not equal to f(x), it follows that F(x) is not an antiderivative of f(x).

Fundamental Theorem of Calculus

FTC 1

Let f (x) be continuous on [a, b]. Then, the area function

$$g(x) = \int_{a}^{x} f(t) dt$$

is continuous for all $x \in [a, b]$ and g'(x) = f(x) for all $x \in (a, b)$.

FTC 2

Let f (x) be continuous on [a, b] and let F (x) be any antiderivative for f (x)

on [a, b]. Then,

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

Example

$$\int_{0}^{\pi} \sin(x) dx$$

$$=\left[-\cos(x)\right]_0^{\pi}$$

$$= -\cos(\pi) - (-\cos(0))$$

$$= 1 + 1$$

$$=2$$

Net Change Theorem

The Net Change Theorem

If y = F(x) is a function, the **net change** in y as x goes from a to b is F(b) - F(a). If the rate of change of y, F'(x), is given, then the total change in F(x) as x changes from a to b is given by the integral $\int_a^b F'(x) \, dx$; that is,

$$\int_a^b F'(x) \, dx = F(b) - F(a)$$

In words, this says that the integral of the rate of change is the net change.

find the net change in F(x) as x goes from a to b.

$$F'(x) = x^3, \quad a = 1, \quad b = 3$$

The net change in F(x) is

$$\int_{1}^{3} F'(x) dx = \int_{1}^{3} x^{3} dx$$

$$= \frac{x^{4}}{4} \Big|_{1}^{3} \qquad \int x^{n} dx = \frac{x^{n+1}}{n+1} + C$$

$$= \frac{3^{4}}{4} - \frac{1^{4}}{4} \qquad F(x) \Big|_{a}^{b} = F(b) - F(a)$$

$$= \frac{81}{4} - \frac{1}{4} = \frac{80}{4} = 20$$

Displacement, Velocity and Acceleration Relation

u-Substitution

- Used when you're trying to find the antiderivative of a function that involves a composition.
- u should ideally be the inner function of the composition. You would usually find u' somewhere in the question as well (which will get cancelled out).
- All x terms must cancel!

Here, take u = g(x)

Here, take $u = x^2$

Example:

$$\int 3x\sqrt{1-x^2} \ dx$$

Take the constant out: $\int a \cdot f(x) dx = a \cdot \int f(x) dx$

$$=3\cdot\int x\sqrt{1-x^2}\,dx$$

Apply u – substitution: $\int -u^2 du$

$$=3\cdot\int-u^2du$$

Take the constant out: $\int a \cdot f(x) dx = a \cdot \int f(x) dx$

$$=3\left(-\int u^2 du\right)$$

Apply the Power Rule: $\frac{u^3}{3}$

$$=3\left(-\frac{u^3}{3}\right)$$

Substitute back $u = \sqrt{1 - x^2}$

$$=3\left(-\frac{\left(\sqrt{1-x^2}\right)^3}{3}\right)$$

Simplify
$$3\left(-\frac{\left(\sqrt{1-x^2}\right)^3}{3}\right)$$
: $-\left(1-x^2\right)^{\frac{3}{2}}$

$$=-(1-x^2)^{\frac{3}{2}}$$

Add a constant to the solution

$$= -(1-x^2)^{\frac{3}{2}} + C$$

Areas Between Curves

Area Under a Curve

Let f be a continuous function such that $f(x) \ge 0$ for every x on the interval [a,b]. Let S be the region under the curve y=f(x) and above the interval [a,b] as illustrated in the following figure.

Then, the area of S is given by the following definite integral:

$$Area(S) = \int_{a}^{b} f(x) \, dx$$

The Area Between Two Curves

Let f and g be continuous functions such that $f(x) \ge g(x)$ for all x in the interval [a,b]. Then, the area between the curves y=f(x) and y=g(x) from a to b is given by

Area =
$$\int_{a}^{b} [f(x) - g(x)] dx$$

The condition $f(x) \ge g(x)$ on [a,b] means the graph of f is above the graph of g on the interval [a,b].

The area of the shaded region is equal to the area under the curve y=f(x) (given by $\int_a^b f(x) \, dx$) minus the area under the curve y=g(x) (given by $\int_a^b g(x) \, dx$). That is,

Area =
$$\int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

find the area of the region bounded by the given curves.

$$y = x^2 - 8$$
 and $y = -x^2 + 10$

Let
$$f(x) = x^2 - 8$$
 and $g(x) = -x^2 + 10$.

Finding the interval. Set f(x) = g(x). Then,

$$x^2 - 8 = -x^2 + 10$$

$$2x^2 - 8 = 10$$

$$2x^2 = 18$$

$$x^{2} = 9$$

$$x = \pm \sqrt{9}$$

$$x = \pm 3$$

so the x-coordinates of the intersection between f and g are -3 and 3. The interval is thus [-3,3].

We now need to determine whether f is above g. Let's choose an arbitrary number in the interval [-3,3], for example 0. Substituting this into the equations for f and g, we get

$$f(0) = 0^2 - 8 = -8$$
 and $g(0) = -(0)^2 + 10 = 10$

Since g(0) > f(0), the graph of y = g(x) is above the graph of y = f(x).

So, the area between the curves $y = x^2 - 8$ and $y = -x^2 + 10$ is

Area =
$$\int_{-3}^{3} [g(x) - f(x)] dx$$

= $\int_{-3}^{3} [(-x^2 + 10) - (x^2 - 8)] dx$
= $\int_{-3}^{3} (-2x^2 + 18) dx$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C,$$
= $\left(-2\frac{x^3}{3} + 18x\right)\Big|_{-3}^{3}$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C,$$

$$\int k dx = kx + C,$$

$$\int_a^b f(x) dx = F(x)\Big|_a^b$$
= $\left(-\frac{2}{3}(3)^3 + 18(3)\right) - \left(-\frac{2}{3}(-3)^3 + 18(-3)\right) F(x)\Big|_a^b = F(b) - F(a)$
= $\left(-\frac{54}{3} + 54\right) - \left(\frac{54}{3} - 54\right)$
= $(-18 + 54) - (18 - 54)$
= $(36) - (-36)$
= $36 + 36 = 72$

Rotating Volumes

Volumes of curves rotating around an axis can be found. If the area of a circle is πr^2 , and we consider f(x) to be the radius, then the overall volume of the rotating solid is:

$$\sum_{i=1}^n \pi f^2(x_i^*) \Delta x.$$

On Integration, we get:

$$\pi \int_{a}^{b} f^{2}(x) dx.$$

Example

Calculate the volume of the solid obtained by rotating the area bounded by $f(x) = x^2$ and the x-axis over the interval [0, 2] around the x-axis.

 $\pi \frac{32}{5} = \frac{32\pi}{5}$

$$\pi \cdot \int_0^2 x^4 dx$$

$$=\frac{32}{3}$$

$$\int_0^2 x^4 dx = \frac{32}{5}$$

$$=\pi \frac{32}{5}$$

Integration by Parts

Integration by Parts

Note. Suppose we want to take the integral $\int f(x)g(x) dx$ using integration parts. Then, there are two possibilities:

- Either we choose u = f(x) and dv = g(x)dx, or
- we choose u = g(x) and dv = f(x)dx.

$$\int u dv = uv - \int v du$$

Choose *u* in this order: **LIATE**

Logs Inverse Algebraic Trig Exponential

Evaluate the following integral

$$\int 2xe^x \, dx$$

Choose
$$u=2x$$
 and $dv=e^xdx$
Then, $du=2dx$ and $v=\int dv=\int e^x\,dx=e^x$

$$\int 2xe^x dx = \int u dv$$
Since $u = 2x$ and $dv = e^x dx$

$$= uv - \int v du$$

$$= (2x)e^x - \int e^x (2dx)$$
Substitute u and v

$$= 2xe^x - 2 \int e^x dx$$

$$= 2xe^x - 2e^x + C$$

$$= (2x - 2)e^x + C$$
Since $u = 2x$ and $dv = e^x dx$

$$\int u dv = uv - \int v du$$

$$\int kf(x) dx = k \int f(x) dx$$

$$\int e^x dx = e^x + C$$

5 Minute Break!

Trigonometric Integrals

Properties

$\int \cos(x) \ dx = \sin(x) + C$	$\int \sin(x) \ dx = -\cos(x) + C$
$\int \sec^2(x) \ dx = \tan(x) + C$	$\int \sec(x)\tan(x) \ dx = \sec(x) + C$
$\int \csc^2(x) \ dx = -\cot(x) + C$	$\int \csc(x)\cot(x)\ dx = -\csc(x) + C$
$\int \frac{1}{1+x^2} \ dx = \arctan(x) + C$	$\int \frac{1}{\sqrt{1-x^2}} \ dx = \arcsin(x) + C$

$\int \sin^n(x) \cos^m(x) dx$, one of m or n is odd

- Suppose the power on sin(x) is odd.
- Split off a single factor of sin(x). You'll be left with an integral of the form $\int sin(x) sin^{2k}(x) cos^m(x) dx \text{ where } 2k \text{ is some even number.}$
- Rewrite $\sin^{2k}(x)$ using the identity $\sin^{2}(x) = 1 \cos^{2}(x)$:

$$\sin^{2k}(x) = (\sin^2(x))^k = (1 - \cos^2(x))^k$$

Substitute into the integral:

$$\int \sin(x) \sin^{2k}(x) \cos^{m}(x) \ dx = \int \sin(x) (1 - \cos^{2}(x))^{k} \cos^{m}(x) \ dx$$

- You can not compute the integral by doing a substitution of u = cos(x) and integrating the resulting polynomial.
- The strategy for cos(x) having an odd power is essentially the same, except you use the identity $cos^2(x) = 1 sin^2(x)$ and you make the substitution u = sin(x).

$$\int \sin^n(x) \cos^m(x) \ dx, \text{ both } n \text{ and } m \text{ is even}$$

• If both of the exponents on sin(x) and cos(x) are even, then you proceed using the following identities:

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}, \quad \cos^2(x) = \frac{1 + \cos(2x)}{2}$$

 These ones can be tricky because, depending on the integral, you may need to use these identities multiple times.

$$\int \tan^m(x) \sec^{2k}(x) \ dx \text{ with } k \ge 1$$

• Start by splitting off a factor of $sec^2(x)$:

$$\int \tan^m(x) \sec^{2k}(x) \ dx = \int \sec^2(x) \tan^m(x) \sec^{2k-2}(x) \ dx$$

• Use the identity $sec^2(x) = tan^2(x) + 1$ to simplify,

$$\sec^{2k-2}(x) = \sec^{2(k-1)}(x) = (\sec^2(x))^{k-1} = (\tan^2(x) + 1)^{k-1}$$

Substitute into the integral,

$$\int \sec^2(x) \tan^m(x) \sec^{2k-2}(x) \ dx = \int \sec^2(x) \tan^m(x) (\tan^2(x) + 1)^{k-1} \ dx$$

• Now substitute u = tan(x) and integrate the resulting polynomial.

$$\int \tan^m(x) \sec^n(x) dx \text{ with } m \text{ odd, } n, m \ge 1$$

Start by splitting off a factor of sec(x) tan(x):

$$\int \tan^m(x) \sec^n(x) \ dx = \int \sec(x) \tan(x) \tan^{2k}(x) \sec^{n-1}(x) \ dx$$

where 2k = m - 1.

• Use the identity $tan^2(x) = sec^2(x) - 1$ to simplify,

$$\tan^{2k}(x) = (\tan^2(x))^k = (\sec^2(x) - 1)^k$$

Substitute into the integral,

$$\int \sec(x)\tan(x)\tan^{2k}(x)\sec^{n-1}(x)\ dx = \int \sec(x)\tan(x)\big(\sec^2(x)-1\big)^k(x)\sec^{n-1}(x)\ dx$$

• Now substitute $u = \sec(x)$ and integrate the resulting polynomial.

Example:

$$\int \sin^7(x) \cos^{184}(x) \ dx$$

- Separate one of the odd sin(x) terms to get $sin(x).sin^6(x).cos^{184}(x)$
- Rewrite $\sin^6(x)$ as $(\sin^2(x))^3$ to get $\sin(x).(\sin^2(x))^3.\cos^{184}(x)$
- Rewrite $\sin^2(x)$ as 1 $\cos^2(x)$ to get $\sin(x).(1 \cos^2(x))^3.\cos^{184}(x)$
- Take $u = \cos(x)$ to get $(1 u^2)^3 \cdot u^{184}$
- Expand to get integral of $-u^{184} + 3u^{186} 3u^{188} + u^{190}du$
- Replace u = cos(x) at the end to get:

$$-\frac{\cos^{185}(x)}{185} + \frac{3\cos^{187}(x)}{187} - \frac{\cos^{189}(x)}{63} + \frac{\cos^{191}(x)}{191} + C$$

Trigonometric Substitution

$$-\sqrt{a^2-x^2}$$
; substitute $x=a\sin(\theta)$

$$-\sqrt{a^2+x^2}$$
; substitute $x=a\tan(\theta)$

$$-\sqrt{x^2-a^2}$$
; substitute $x=a\sec(\theta)$

Example:
$$\int \frac{x^2}{\sqrt{1-x^2}} \ dx$$

- Let $x = \sin(u)$ to get $\int \sin^2(u).du$
- Rewrite with trig identities to get ½∫(1 cos(2u)).du
- Expand to get ½u ¼sin(2u) + C
- Put $u = \sin^{-1}(x)$ to get

$$= \frac{1}{2} \left(\arcsin(x) - \frac{1}{2} \sin(2\arcsin(x)) \right) + C$$

Improper Integrals

Improper Integrals of the Form $\int_a^\infty f(x) dx$

Let a be a real number, and let f be a function. The improper integral $\int_a^\infty f(x)dx$ is defined to be the limit of $\int_a^t f(x)dx$ as t approaches ∞ .

That is,

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx$$

If the limit exists (as a finite number), the improper integral $\int_a^\infty f(x)dx$ is said to be **convergent**. Otherwise, it is said to be **divergent**.

Improper Integrals of the Form $\int_{-\infty}^{o} f(x) dx$

Let b be a real number, and let f be a function. The improper integral $\int_{-\infty}^b f(x)dx$ is defined to be the limit of $\int_t^b f(x)dx$ as t approaches $-\infty$.

That is,

$$\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx$$

If the limit exists (that is, it is a finite number), the improper integral $\int_{-\infty}^{b} f(x)dx$ is said to be **convergent**. Otherwise, it is said to be **divergent**.

Improper Integrals of the Form $\int_{-\infty}^{\infty} f(x) dx$

Let f be a function. The improper integral $\int_{-\infty}^{\infty} f(x)dx$ is defined to be the sum of improper integrals $\int_{-\infty}^{a} f(x)dx$ and $\int_{a}^{\infty} f(x)dx$, where a is any real number. That is,

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx.$$

We say that $\int_{-\infty}^{\infty} f(x)dx$ converges if both $\int_{-\infty}^{a} f(x)dx$ and $\int_{a}^{\infty} f(x)dx$ are convergent, and diverges otherwise.

Improper Integrals of the form $\int_{a}^{b} f(x) dx$ with an Infinite Discontinuity at b

Let f be a function. Suppose that f is continuous on [a,b) and has an infinite discontinuity at b (this means that the line x=b is a vertical asymptote of f). Then the improper integral $\int_a^b f(x)dx$ is defined to be the limit of $\int_a^t f(x)dx$ as t approaches b from the left. That is,

$$\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx$$

This is *convergent* if the limit is finite, and *divergent* otherwise.

Improper Integrals of the form $\int_a^b f(x) dx$ with an Infinite Discontinuity at a

Let f be a function. Suppose that f is continuous on (a,b] and has an infinite discontinuity at a (that is, f has a vertical asymptote at x=a). Then, the improper integral $\int_a^b f(x)dx$ is defined to be the limit of $\int_t^b f(x)dx$ as t approaches a from the right. That is,

$$\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx$$

This is convergent if the limit is finite, and divergent otherwise.

Improper Integral of the form $\int_a^b f(x) dx$ with an Infinite Discontinuity in (a,b)

Let f be a function. Suppose that f has an infinite discontinuity at some point c between a and b (a < c < b). Then, the improper integral $\int_a^b f(x)dx$ is defined to be the sum of the improper integrals $\int_a^c f(x)dx$ and $\int_c^b f(x)dx$. That is,

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
 (3.6.13)

The integral $\int_a^b f(x)dx$ is *convergent* if both integrals on the righthand side of (3.6.13) are convergent, and divergent otherwise. In other words, if one of $\int_a^c f(x)dx$ or $\int_c^b f(x)$ diverges, then the integral $\int_a^b f(x)dx$ is divergent.

Determine whether improper integral is convergent. Find the value <code>if</code> converges.

$$\int_{-\infty}^{\infty} x^3 e^{-x^4} \, dx$$

It is convenient to choose a = 0. We can then write the integral as

$$\int_{-\infty}^{\infty} x^3 e^{-x^4} dx = \int_{-\infty}^{0} x^3 e^{-x^4} dx + \int_{0}^{\infty} x^3 e^{-x^4} dx$$

Determining whether $\int_{-\infty}^{0} x^3 e^{-x^4} dx$ converges or diverges, we find

$$\begin{split} &\int_{-\infty}^{0} x^3 e^{-x^4} \, dx \\ &= \lim_{t \to -\infty} \int_{t}^{0} x^3 e^{-x^4} dx \\ &= \lim_{t \to -\infty} \int_{-t^4}^{0} e^u \left(\frac{du}{-4}\right) & \text{Use substitution: Let } u = -x^4. \text{ Then} \\ &du = -4x^3 dx, \text{ so that } \frac{du}{-4} = x^3 dx. \\ &= \lim_{t \to -\infty} \left(-\frac{1}{4} \int_{-t^4}^{0} e^u \, du\right) & \int kf(x) \, dx = k \int f(x) \, dx \\ &= \lim_{t \to -\infty} \left(-\frac{1}{4} e^u \Big|_{-t^4}^{0}\right) & F(x) \Big|_a^b = F(b) - F(a) \\ &= \lim_{t \to -\infty} \left(-\frac{1}{4} e^0 + \frac{1}{4} e^{-t^4}\right) & F(x) \Big|_a^b = F(b) - F(a) \\ &= -\frac{1}{4} + \frac{1}{4}(0) & \text{Since } \lim_{t \to -\infty} \left(-t^4\right) = -\infty, \text{ it follows that } \lim_{t \to -\infty} e^{-t^4} = 0 \\ &= -\frac{1}{4} + 0 = -\frac{1}{4} \end{split}$$

Since the limit is a finite number, it follows that the improper integral $\int_{-\infty}^{0} x^3 e^{-x^4} dx$ converges.

Differential Equations

Separable Differential Equations:

Format: y' = f(x).g(y)

- Differential equations involve x, y(x), and derivatives of y.
- To solve, isolate the x and y terms and integrate both sides.
- Isolate y(x) to one side. You may be given an initial value to solve for C.

Example:
$$y' = \frac{\cos(x)}{\sin(y)}$$

$$=> \sin(y).dy = \cos(x).dx$$

Integrating both sides, we get:

$$=> -\cos(y) = \sin(x) + C$$

$$=> \sin(x) = -\cos(y) + C$$

Sequences, Geometric Series

Sequences: Convergence

Definition. A sequence is a list of numbers enumerated using the natural numbers: a_1, a_2, a_3, \ldots where a_1 is the first number in the sequence, a_2 is the second, and so on. We denote a sequence by $\{a_n\}_{n=1}^{\infty}$ and refer to a_n as the "general term" of the sequence.

If a sequence converges to a real number L as n goes to infinity, L is the limit of the sequence. If it doesn't have a limit, we say the sequence diverves.

If $\{a_n\}_{n=1}^{\infty}$ converges to L, $\lim_{n\to\infty} a_n = L$

Sequences: Divergence

• If a sequence keeps growing positively larger as n goes to infinity:

$$\lim_{n\to\infty}a_n=\infty$$

If a sequence keeps growing negatively larger:

$$\lim_{n\to\infty}a_n=-\infty$$

• If a sequence does not become either positive or negative, we simply say it diverges.

Sequences: Theorem

Theorem 7.1.1. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence and suppose that f(x) is a function such that $f(n) = a_n$ for all integers $n \ge 1$. Then,

- ② If $\lim_{x\to\infty} f(x) = \pm \infty$, then $\lim_{n\to\infty} a_n = \pm \infty$

Example: Determine divergence for $\{ne^{-n}\}_{n=1}^{\infty}$

 $\lim_{n\to\infty}$ ne⁻ⁿ

Use L'Hopital's rule to find limit value = $1/\infty = 0$. Since this converges, the sequence also converges.

Geometric Series

Let $a, r \in \mathbb{R}$ A geometric series is a series of the form,

$$\sum_{n=0}^{\infty} ar^k = a + ar + ar^2 + ar^3 + \ldots +$$

$$r=\frac{ar^n}{ar^{n-1}}$$

Theorem 7.2.1. $\sum_{n=0}^{\infty} ar^n$ converges for all values of $r \in (-1,1) \iff |r| < 1$ and diverges otherwise. In the case that it converges,

$$\sum_{n=0}^{\infty} ar^n = \frac{1}{1-r}, \quad |r| < 1$$

If the geometric series starts at n = 1, then the formula is slightly different:

$$\sum_{n=1}^{\infty} ar^n = \frac{a}{1-r} - a = \frac{ar}{1-r}, \quad |r| < 1$$

Example

Determine if the series is convergent or divergent: $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

r can be found to be 0.5, which is < 1. Hence, we can say that this series will converge.

Limit, Integral, p-Series, Comparison Test

Limit Test for Divergence

Theorem 7.2.2: Limit Test for Divergence. Let $\{a_n\}_{n=1}^{\infty}$ be a

sequence such that
$$\lim_{n\to\infty} a_n \neq 0$$
. Then, $\sum_{n=1}^{\infty} a_n$ diverges.

Example:

Determine whether or not the series $\sum_{n=1}^{\infty} \frac{8 \cdot 4^n - 7n(n+1)}{4^n n(n+1)}$ is convergent or divergent.

We need to find
$$\lim_{X\to\infty} \frac{8\cdot 4^n - 7n(n+1)}{4^n n(n+1)}$$

- Numerator can be broken down into two
- Both parts converge to 0, so total limit converges to 0
- This does not tell us anything about the divergence of the series.

Integral Test

Integral Test. Let f(x) be a continuous, positive, decreasing function on $[1, \infty)$. Suppose that $f(n) = a_n$ for all integers $n \ge 1$. Then,

1 If
$$\int_{1}^{\infty} f(x) dx$$
 converges, the series $\sum_{n=1}^{\infty} a_n$ also converges.

2 If
$$\int_{1}^{\infty} f(x) dx$$
 diverges, the series $\sum_{n=1}^{\infty} a_n$ also diverges.

Example: Determine if the series is convergent or divergent:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

Taking integral of $1/(n^2 + 1)$ we get $tan^{-1}(n) + C$. As n approaches infinity, this value converges to $\pi/2$. Hence, the series also converges.

p-Series Test

The series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges if $p > 1$ and diverges if $p \le 1$.

Series Comparison Test

The Series Comparison Test. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be two infinite series and suppose that $a_n, b_n \geq 0$ and that $a_n \leq b_n$ for all $n \geq 1$. Then,

- 1 If $\sum_{n=1}^{\infty} a_n$ diverges, then so too does $\sum_{n=1}^{\infty} b_n$: "If the smaller sum diverges, the bigger one does as well."
- 2 If $\sum_{n=1}^{\infty} b_n$ converges, then so too does $\sum_{n=1}^{\infty} a_n$: "If the bigger sum converges, the smaller one does as well."

Ratio, Root, Alternating Series Test

The Ratio Test

The following theorem is very useful to determine whether a series is absolutely convergent. It is also useful in testing series invloving factorials and/or a constant raised to the power of n.

Theorem 5.6.1. [The Ratio Test] Let $\sum a_n$ be a series.

- (a) If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1$, then the series $\sum a_n$ is absolutely convergent (and therefore convergent by Theorem 5.5.2)
- (b) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, the test is inconclusive.
- (c) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, the series $\sum a_n$ is divergent.

Determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{n^2}{8^n}$$

Let $a_n = \frac{n^2}{8^n}$. For every n, $a_n > 0$. So $|a_n| = a_n$ for all n and we have

$$\begin{split} \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| &= \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{\frac{(n+1)^2}{8^{n+1}}}{\frac{n^2}{n^2}} \\ &= \lim_{n\to\infty} \left(\frac{(n+1)^2}{8^{n+1}} \right) \left(\frac{8^n}{n^2} \right) \qquad \frac{\frac{a}{b}}{\frac{c}{d}} = \left(\frac{a}{b} \right) \left(\frac{d}{c} \right) \\ &= \lim_{n\to\infty} \left(\frac{(n+1)^2}{8^n(8)} \right) \left(\frac{8^n}{n^2} \right) \qquad a^{n+1} = a^n(a) \\ &= \lim_{n\to\infty} \frac{(n+1)^2}{n^2} \left(\frac{1}{8} \right) \qquad \text{Simplify} \\ &= \lim_{n\to\infty} \left(\frac{n+1}{n} \right)^2 \left(\frac{1}{8} \right) \qquad \frac{a^k}{b^k} = \left(\frac{a}{b} \right)^k \\ &= \left(\lim_{n\to\infty} \frac{n+1}{n} \right)^2 \left(\frac{1}{8} \right) \qquad \lim_{n\to\infty} \left[b_n \right]^k = \left[\lim_{n\to\infty} b_n \right]^k \\ &= (1)^2 \frac{1}{8} = \frac{1}{8} \qquad \lim_{n\to\infty} \left(\frac{n+1}{n} \right) = \lim_{n\to\infty} \left(1 + \frac{1}{n} \right) = 1 + 0 = 1 \end{split}$$

Since this limit is less than 1, it follows that the given series is absolutely convergent (by the Ratio Test), and therefore convergent.

The Root Test

The following test may be useful for series of the form $\sum (b_n)^{g(n)}$.

Theorem 5.6.2. [The Root Test] Let $\sum a_n$ be a series.

- (a) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$, then the series $\sum a_n$ is absolutely convergent (and hence convergent).
- **(b)** If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, then the test is inconclusive.
- (c) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1$ or $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, then the series $\sum a_n$ is divergent.

Determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \left(\frac{4n+3}{5n+1} \right)^n$$

Let $a_n = \left(\frac{4n+3}{5n+1}\right)^n$. Since a_n is of the form $(b_n)^{g(n)}$ we can try the Root Test:

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{4n+3}{5n+1}\right)^n} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{4n+3}{5n+1}\right)^n} = \lim_{n \to \infty} \frac{4n+3}{5n+1} = \frac{4}{5}$$

Since $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$, it follows that the given series is convergent by the Root Test.

Alternating Series Test

The following theorem is stated for alternating series of the form

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n$$
. Note that the statement also holds for alternating series of

the form
$$\sum_{n=1}^{\infty} (-1)^n b_n$$
.

Let
$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n$$
 be an

alternating series. Suppose that the following two conditions are satisfied.

(1)
$$b_{n+1} \leq b_n \text{ for all } n \geq 1.$$

(2)
$$\lim_{n\to\infty} b_n = 0$$

Then the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is convergent.

Determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

Since it is an alternating series, with $b_n = \frac{1}{n}$, we will use the Alternating Series Test.

- Checking condition (1). We have $b_n = \frac{1}{n}$ and $b_{n+1} = \frac{1}{n+1}$. Since $n+1 \ge n$, it follows that $\frac{1}{n+1} \le \frac{1}{n}$ for all n. So $b_{n+1} \le b_n$ for all n.
- Checking condition (2). Clearly, $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{1}{n} = 0$.

Since (1) and (2) are satisfied, by the Alternating Series Test, it follows that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is convergent.

Absolute Convergence

Absolutely Convergent Series

A series $\sum a_n$ is said to be **absolutely convergent** if the series of absolute values $\sum |a_n|$ is convergent.

So, to determine whether a series $\sum a_n$ is absolutely convergent,

- we first need to consider the series $\sum |a_n|$ whose nth term is the absolutely value of a_n , then
- determine whether it is convergent.

Useful fact: for every integer m, the absolute value of $(-1)^m$ equals 1; that is, $|(-1)^m| = 1$.

Determine whether the series is absolutely convergent.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\frac{3}{2}}}$$

• First, the series of absolute values is:

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^{\frac{3}{2}}} \right| = \sum_{n=1}^{\infty} \frac{|(-1)^n|}{\left| n^{\frac{3}{2}} \right|} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$

• This latter series is a p-series with $p = \frac{3}{2}$. Since p > 1, it converges.

Conclusion: because the series of absolute values is convergent, we can conclude that the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\frac{3}{2}}}$ is absolutely convergent.

Power Series

Basically, an infinite series with an x^n term in it.

 \rightarrow Centered on x

→ Centered on c

Convergence

Theorem 7.1.1. There are only three possibilities for the nature of convergence of a power series $\mathcal{P}(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$.

- ① $\mathcal{P}(x)$ converges only at $x = x_0$; in this case, we set R = 0.
- 2 $\mathcal{P}(x)$ converges for all real values $x \in \mathbb{R}$; in this case we set $R = +\infty$.
- 3 There exists some R > 0 such that $\mathcal{P}(x)$ converges for all x that satisfy $|x x_0| < R$ and diverges for all x such that $|x x_0| > R$.

Representation

- Sometimes it is possible to calculate a **power series representation** of a function f(x) on an interval on which the power series converges.
- That is, given some f(x), we are interested in finding a power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n \text{ with radius of convergence } I \text{ such that, } f(a) = \sum_{n=0}^{\infty} a_n (a-x_0)^n \text{ for all } a \in I.$
- For example,

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \qquad \underbrace{|x| < 1}_{\text{Interval of Convergence}}$$

Remember: sum of geometric series $ar^n = a/(1-r)$. In the above example, a = 1, r = x.

Taylor, MacLaurin Series

Taylor Series

Let y = f(x) be a function, and let a be a number.

• Let $n \ge 0$ be an integer. We write $f^{(n)}(a)$ for the nth derivative of f(x) evaluated at a.

- If
$$n = 0$$
, $f^{(0)}(a) = f(a)$. This is just $f(x)$ evaluated at a .

– If
$$n = 1$$
, $f^{(1)}(a) = f'(a)$. This is the first derivative of $f(x)$ at a .

– If
$$n=2$$
, $f^{(2)}(a)=f''(a)$. This is the second derivative of $f(x)$ evaluated at a .

- Etc.
- Let $n \ge 1$ be an integer. The factorial of n, denoted n!, is defined by

$$n! = n(n-1)(n-2)\cdots(3)(2)(1)$$

By convention, 0! = 1. For example, 4! = 4(3)(2)(1) = 24.

• If f(x) has the derivative of all orders at a, the **Taylor series** of f at a (or about a or centered at a) is the series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$$

If the Taylor series converges to f(x) for every x in an open interval (a-R,a+R), we write

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$
 for $|x - a| < R$

Maclaurin Series

The **Maclaurin series** of a function f is the Taylor series of f centered at a=0; that is, the series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots$$

Use the definition of the Taylor series to find the first four nonzero terms of the series of f(x) at a.

$$f(x) = e^{-4x}, \qquad a = 0$$

To find the first four nonzero terms of the Taylor series of $f(x) = e^{-4x}$ at a = 0, we first need to find the successive derivatives of f(x). Recall the chain rule for the natural exponential function.

$$\frac{d}{dx}\left[e^{g(x)}\right] = e^{g(x)}\frac{d}{dx}[g(x)]$$

$$f(x) = e^{-4x}$$
 $f(0) = 1$
 $f'(x) = -4e^{-4x}$ $f'(0) = -4$
 $f''(x) = 16e^{-4x}$ $f''(0) = 16$
 $f'''(x) = -64e^{-4x}$ $f'''(0) = -64$

So, the first four nonzero terms of the Taylor series of f(x) at a=0 are

$$f(0) + f'(0)(x - 0) + \frac{f''(0)}{2!}(x - 0)^2 + \frac{f'''(0)}{3!}(x - 0)^3$$

$$= 1 - 4(x - 0) + \frac{16}{2!}(x - 0)^2 + \frac{-64}{3!}(x - 0)^3$$

$$= 1 - 4x + \frac{16}{2(1)}(x)^2 + \frac{-64}{3(2)(1)}(x)^3$$

$$= 1 - 4x + 8x^2 - \frac{32}{3}x^3$$

Thank You! All the best for finals!

For Questions: rajveersodhi03@gmail.com sanjithsethilr@gmail.com

Note: this is not guaranteed to be an exhaustive list of topics or concepts. Use the textbook!

Some snippets in this slides are taken from Paul

Tsopmene Workbook