0.1 H11 数学選択

「7 Galois 群が推移的なとき. f(x) が可約であると仮定する. $f(x) = g_1(x)g_2(x) \dots g_n(x)$ と K[x] 上で既約分解される. g_1 の根 α と g_2 の根 β を任意にとって固定する. f(x) の最小分解体を F で表す. 推移的であるから $\sigma \in \operatorname{Gal}(F/K)$ で $\sigma(\alpha) = \beta$ となるものが存在する. このとき $\sigma(g_1)(\beta) = \sigma(g_1(\alpha)) = 0$ であるから $\sigma(g_1)$ は β を根にもつ. よって $\sigma(g_1)$ と g_2 は共に β の最小多項式と同伴である. $g_1 \in K[x]$ より $\sigma(g_1) = g_1$ であるから g_1 と g_2 は同伴である. このとき α は g_1, g_2 のどちらの根でもあるがこれは f の分離性に矛盾.

f(x) が K[x] 上で既約であるとき。 f(x) の 2 根 α,β をとって固定する。 $Gal(F/K)\alpha=\{\alpha_1,\ldots,\alpha_n\}$ とする。 $g(x)=\prod_{i=1}^n(x-\alpha_i)$ とする。 このとき Gal(F/K)g(x)=g(x) より $g(x)\in K[x]$ である。 g(x) の根は α の共役であるから $g(x)\mid f(x)$ である。 既約性から cg(x)=f(x) ($c\in K$)とできる。 これは Gal(F/K) が推移的であることを意味する。

 $\boxed{8} \ (1) f(x,y) = \sum a_{ij} x^i y^j$ とできる. $f(tx,ty) = \sum a_{ij} t^{i+j} x^i y^j = t^n f(x,y) = \sum a_{ij} t^n x^i y^j$ である. K(x,y)[t] における等式とみれば $\sum_{i+j=k} a_{ij} t^k x^i y^j = 0$, $(k \neq n)$ である. したがって $a_{ij} = 0$ $(i+j \neq n)$ である. よって $f(x) = \sum_{i+j=n} a_{ij} x^i y^j$ である.

 $x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}=x\sum_{i+j=n}^{n}a_{ij}ix^{i-1}y^j+y\sum_{i+j=n}a_{ij}jx^iy^{j-1}=\sum_{i+j=n}a_{ij}(i+j)x^iy^j=nf(x,y)$ である.

 $(2)f(tx,ty)=(tx)^2+(tx)(ty)+(ty)^2=t^2(x^2+xy+y^2)=t^2f(x,y)$ である. したがって (1) より $2f=x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}$ である.

よって $J_f = (f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$ である.

 $\frac{\partial f}{\partial x} = 2ax + 2by, \frac{\partial f}{\partial y} = 2bx + 2cy$ であるから $J_f = (2ax + 2by, 2bx + 2cy)$ である.

a=b=0 のとき. $J_f=(y)$ より $\mathbb{C}[x,y]/J_f\cong\mathbb{C}[x]$ である. これは無限次元. b=c=0 のときも同様.

 $a=c=0, b\neq 0$ のとき. $J_f=(x,y)$ である. $\mathbb{C}[x,y]/J_f\cong \mathbb{C}$ である. これは有限次元.

 $a=0, b\neq 0\neq c$ のとき. $J_f=(2by,2bx+2cy)=(x,y)$ である. $\mathbb{C}[x,y]/J_f\cong\mathbb{C}$ である. これは有限次元. $c=0, a\neq 0\neq b$ のときも同様.

 $b=0, a \neq 0 \neq c$ のとき. $J_f=(2ax, 2cy)=(x,y)$ である. よって有限次元.

 $a \neq 0, b \neq 0, c \neq 0$ のとき. $J_f = (\frac{a}{b}x + y, x + \frac{c}{b}y)$ である. $(\frac{a}{b}x + y) - \frac{a}{b}(x + \frac{c}{b}y) = (1 - \frac{ac}{b^2})y$ より $J_f = (ax + by, (1 - \frac{ac}{b^2})y)$ である.

ここで $1-\frac{ac}{b^2}=0$ ならば $J_f=(ax+by)$ より $\mathbb{C}[x,y]/J_f\cong\mathbb{C}[y]$ である. これは無限次元.

 $1 - \frac{ac}{h^2} \neq 0$ ならば $J_f = (x, y)$ より有限次元.

以上より f が有限次元である条件は $ac \neq b^2$ である.