Spatial Attention Deep Net with Partial PSO for Hierarchical Hybrid Hand Pose Estimation

Qi Ye*, Shanxin Yuan*, Tae-Kyun Kim {q.ye14, s.yuan14, tk.kim}@imperial.ac.uk

Motivation

- Existing hierarchical methods mainly focus on the decomposition of the output space while the input space remains almost the same along the hierarchy.
- The spatial attention mechanism is proposed to integrate cascaded and hierarchical regression into a CNN framework by transforming both the input(and feature space) and the output space, which greatly reduces the viewpoint and articulation variations
- Between the levels in the hierarchy, the hierarchical PSO forces the kinematic constraints to the results of the CNNs.

Structure

- The Spatial Attention Mechanism integrates the cascaded and hierarchical hand pose estimation into one framework.
- The hand pose is estimated layer by layer in the order of the articulation complexity, with the spatial attention module to transform the input, feature and output space.
- Within each layer, the partial pose is iteratively refined both in viewpoint and location with the spatial attention module, which leads both the feature and output space to a canonical
- After the refinement, the partial PSO is applied to select estimations within the hand kinematic constraints among the results of the cascaded estimation.

Spatial Attention Mechanism S estimation results CNN CNN $\Phi_{ heta,\,S_j}$ estimation results viewpoint normalized ture maps of Spatial Attention Module translation, rotation, cropping $ar{\Phi}_{ heta,\,S_j}$

Spatial attention mechanism transforms the feature maps $\,\Lambda$ and joint locations $S\,$ from previous stages or layer to a new aligned space (first equation) and the transformed result is fed into the current CNN, whose estimation result is transformed back by the inverse transformation (second equation).

Kinematic Constraint

Energy function for each layer

$$Ep(\varphi_l^s) = P(\varphi_l^s)Q(\varphi_l^s)$$

$$P(\varphi_l^s) \propto N(\varphi_l^s; \varphi_l, \Sigma)$$

prior probability of the s_{th} sample belonging to the Gaussian distribution centred on the estimation results from CNN

$$Q(\varphi_l^s) \propto \sum_{S_{lj}^s \in L(\varphi_l)} [B(S_{lj}^s) + D(S_{lj}^s)]$$

force each joint to lie inside the hand silhouette and inside the depth range of a major point cloud.

Results

Errors for a joint of 4 cascaded stages;

Self comparison: demonstrate the impact of different strategies by topping them up to the baselines: Cascade, Spatial Attention, Hierarchy, Kinematic Constraint

Comparison with state-of-the-art methods

[3] Sharp, T., Keskin, C., Robertson, D., Taylor, J., Shotton, J., Leichter, D.K.C.R.L., Wei, A.Y.Y., Krupka, D.F.P.K.E., Fitzgibbon, A., Izadi, S.: Accurate, robust, and flexible real-time hand tracking. In: CHI (2015) [4] Oberweger, M., Wohlmart, P., Lepetit, V.: Training a feedback loop for hand pose estimation. In: ICCV (2015) [18] Oberweger, M., Wohlmart, P., Lepetit, V.: Hands deep in deep learning for hand pose settimation. arXiv preprint arXiv:1502.06807 (2015) [19] Tang, D., Taylor, J., Kohli, P., Keskin, C., Kim, T.K., Shotton, J.: Opening the black box: Hierarchical sampling optimization for estimating human hand pose. In: ICCV (2015) ** Indicates equal contribution.