Intelligent Agents

Chapter 2

Outline

- Agents and environments
- Rationality
- Task environment:

PEAS:

- Performance measure
- Environment
- Actuators
- Sensors
- Environment types
- Agent types

Agents and Environments

 An agent is anything that can be viewed as perceiving its environment through sensors and acting in that environment through actuators.

Agents and Environments

 An agent is anything that can be viewed as perceiving its environment through sensors and acting in that environment through actuators.

- Agents include humans, robots, softbots, thermostats, etc.
- The agent function maps from percept histories to actions:

$$f: \mathcal{P}^* \to \mathcal{A}$$

• The agent program runs on a physical architecture to give f

Vacuum-cleaner world

Percepts: location and contents, e.g., [A, Dirty]

Actions: Left, Right, Suck, NoOp

A vacuum-cleaner agent

Agent function:

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
•••	

Note: This says how the agent should function.

• It says nothing about how this should be implemented.

A vacuum-cleaner agent

Agent program:

```
Function Reflex-Vacuum-Agent([location,status])returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left
```

Ask:

- What is the right function for implementing a specification?
- Can it be implemented in a small agent program?

Informally a rational agent is one that does the "right thing".

Informally a rational agent is one that does the "right thing".

• How well an agent does is given by a performance measure.

Informally a rational agent is one that does the "right thing".

- How well an agent does is given by a performance measure.
- A fixed performance measure evaluates a sequence of environment states
- Examples:
 - one point per square cleaned up in time T?
 - one point per clean square per time step, minus one per move?
 - penalize for > k dirty squares?

Informally a rational agent is one that does the "right thing".

- How well an agent does is given by a performance measure.
- A fixed performance measure evaluates a sequence of environment states
- Examples:
 - one point per square cleaned up in time T?
 - one point per clean square per time step, minus one per move?
 - penalize for > k dirty squares?
- A rational agent selects an action which maximizes the expected value of the performance measure given the percept sequence to date and its own knowledge.
- The action selection may range from being hardwired (e.g. in an insect or reflexive agent) to involving substantial reasoning.

Notes:

- Rational \neq omniscient
 - percepts may not supply all the relevant information

Notes:

- Rational \neq omniscient
 - percepts may not supply all the relevant information
- Rational ≠ clairvoyant
 - · action outcomes may not be as expected

Notes:

- Rational ≠ omniscient
 - percepts may not supply all the relevant information
- Rational ≠ clairvoyant
 - · action outcomes may not be as expected
- Hence, rational ≠ successful
- Full, general rationality requires exploration, learning, autonomy

The Task Environment

- To design a rational agent, we must specify the task environment
- The task environment has the following components:
 - Performance measure
 - Environment
 - Actuators
 - Sensors
- Acronym: PEAS

PEAS

Consider, e.g., the task of designing an automated taxi:

Performance measure: safety, destination, profits, legality, comfort, . . .

Environment: streets/freeways, traffic, pedestrians, weather, ...

Actuators: steering, accelerator, brake, horn, speaker, ...

Sensors: video, accelerometers, gauges, engine sensors,

keyboard, GPS, ...

Performance measure: ??

Environment: ??

Actuators: ??

Performance measure: price, quality, appropriateness, efficiency

Environment: ??

Actuators: ??

Performance measure: price, quality, appropriateness, efficiency

Environment: current and future WWW sites, vendors, shippers

Actuators: ??

Performance measure: price, quality, appropriateness, efficiency

Environment: current and future WWW sites, vendors, shippers

Actuators: display to user, follow URL, fill in form

Performance measure: price, quality, appropriateness, efficiency

Environment: current and future WWW sites, vendors, shippers

Actuators: display to user, follow URL, fill in form

Sensors: HTML pages (text, graphics, scripts)

- Fully observable vs. partially observable
 - If the agent has access to full state of the environment or not

- Fully observable vs. partially observable
 - If the agent has access to full state of the environment or not
- Deterministic vs. stochastic
 - Deterministic: Next state is completely determined by the agent's actions. (Or the set of agents in a multiagent env.)

- Fully observable vs. partially observable
 - If the agent has access to full state of the environment or not
- Deterministic vs. stochastic
 - Deterministic: Next state is completely determined by the agent's actions. (Or the set of agents in a multiagent env.)
- Uncertain: not fully observable or not deterministic

- Fully observable vs. partially observable
 - If the agent has access to full state of the environment or not
- Deterministic vs. stochastic
 - Deterministic: Next state is completely determined by the agent's actions. (Or the set of agents in a multiagent env.)
- Uncertain: not fully observable or not deterministic
 - Episodic vs. sequential
 - Episodic: Agent's experience is divided into independent episodes (e.g. classification)

- Fully observable vs. partially observable
 - If the agent has access to full state of the environment or not
- Deterministic vs. stochastic
 - Deterministic: Next state is completely determined by the agent's actions. (Or the set of agents in a multiagent env.)
- Uncertain: not fully observable or not deterministic
 - Episodic vs. sequential
 - Episodic: Agent's experience is divided into independent episodes (e.g. classification)
 - Static vs. dynamic
 - Dynamic: Environment may change while agent is deliberating.

- Fully observable vs. partially observable
 - If the agent has access to full state of the environment or not
- Deterministic vs. stochastic
 - Deterministic: Next state is completely determined by the agent's actions. (Or the set of agents in a multiagent env.)
- Uncertain: not fully observable or not deterministic
 - Episodic vs. sequential
 - Episodic: Agent's experience is divided into independent episodes (e.g. classification)
 - Static vs. dynamic
 - Dynamic: Environment may change while agent is deliberating.
 - Discrete vs. continuous

- Fully observable vs. partially observable
 - If the agent has access to full state of the environment or not
- Deterministic vs. stochastic
 - Deterministic: Next state is completely determined by the agent's actions. (Or the set of agents in a multiagent env.)
- Uncertain: not fully observable or not deterministic
 - Episodic vs. sequential
 - Episodic: Agent's experience is divided into independent episodes (e.g. classification)
 - Static vs. dynamic
 - Dynamic: Environment may change while agent is deliberating.
 - Discrete vs. continuous
 - Single-agent vs. multiagent

	Crossword	Backgammon	Internet shopping	Taxi
Observable				
Deterministic				
Episodic				
Static				
Discrete				
Single-agent				

	Crossword	Backgammon	Internet shopping	Taxi
Observable	Yes	Yes	No	No
Deterministic				
Episodic				
Static				
Discrete				
Single-agent				

			• •	
	Crossword	Backgammon	Internet shopping	Taxi
Observable	Yes	Yes	No	No
Deterministic	Yes	No	Partly	No
Episodic				
Static				
Discrete				
Single-agent				

	Crossword	Backgammon	Internet shopping	Taxi
Observable	Yes	Yes	No	No
Deterministic	Yes	No	Partly	No
Episodic	No	No	No	No
Static				
Discrete				
Single-agent				

	Crossword	Backgammon	Internet shopping	Taxi
Observable	Yes	Yes	No	No
Deterministic	Yes	No	Partly	No
Episodic	No	No	No	No
Static	Yes	Yes	Semi	No
Discrete				
Single-agent				

	Crossword	Backgammon	Internet shopping	Taxi
Observable	Yes	Yes	No	No
Deterministic	Yes	No	Partly	No
Episodic	No	No	No	No
Static	Yes	Yes	Semi	No
Discrete	Yes	Yes	Yes	No
Single-agent				

	Crossword	Backgammon	Internet shopping	Taxi
Observable	Yes	Yes	No	No
Deterministic	Yes	No	Partly	No
Episodic	No	No	No	No
Static	Yes	Yes	Semi	No
Discrete	Yes	Yes	Yes	No
Single-agent	Yes	No	Yes	No

	Crossword	Backgammon	Internet shopping	Taxi
Observable	Yes	Yes	No	No
Deterministic	Yes	No	Partly	No
Episodic	No	No	No	No
Static	Yes	Yes	Semi	No
Discrete	Yes	Yes	Yes	No
Single-agent	Yes	No	Yes	No

The environment type largely determines the agent design

The real world is:

	Crossword	Backgammon	Internet shopping	Taxi
Observable	Yes	Yes	No	No
Deterministic	Yes	No	Partly	No
Episodic	No	No	No	No
Static	Yes	Yes	Semi	No
Discrete	Yes	Yes	Yes	No
Single-agent	Yes	No	Yes	No

- The environment type largely determines the agent design
 - The real world is:
 - partially observable, stochastic, sequential, dynamic, continuous, and multi-agent

Agent types

There are four basic types in order of increasing generality:

- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents

All these can have a learning component added

Simple reflex agents

- Action is selected according to the current percept
- No knowledge of percept history.

A simple reflex agent algorithm

```
Function Simple-Reflex-Agent(percept) returns an action persistent: rules a set of condition-action rules  state \leftarrow Interpret-Input(percept) \\ rule \leftarrow Rule-Match(state,rules) \\ action \leftarrow rule.Action \\ return action
```

Example

```
Function Reflex-Vacuum-Agent([location,status]) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left
```

Reflex agents with state

- Also called a "model-based reflex agent"
- Agent keeps track of what it knows about the world.
- Useful for partial observability

A simple reflex agent algorithm

```
Function Reflex-Agent-With-State(percept) returns an action
 persistent: state: the agent's conception of the world state
      model: The transition model - how the next state
           depends on the present state and action
      rules: a set of condition-action rules
      action: the most recent action (initially none)
 state ← Update-State(state,action,percept,model)
 rule ← Rule-Match(state,rules)
 action \leftarrow rule.Action
 return action
```

Goal-based agents

- Agent's actions are determined in part by its goals.
- Example: Classical planning.

Utility-based agents

- In addition to goals, use a notion of how "good" an action sequence is.
 - E.g.: Taxi to airport should be safe, efficient, etc.

Learning agents

Summary

- Agents interact with environments through actuators and sensors
- The agent function describes what the agent does in all circumstances
- The performance measure evaluates the environment sequence
- A rational agent maximizes expected performance
- Agent programs implement agent functions
- PEAS descriptions define task environments
- Environments are categorized along several dimensions: observable? deterministic? episodic? static? discrete? single-agent?
- Several basic agent architectures exist:
 reflex, reflex with state, goal-based, utility-based

