

Lista de Exercícios 1

Nome:

RM:

Considere a matriz 3 x 3 composta pelos algarismos do seu RM, acrescidos dos números 9, 2, 7, denominada matriz A:

3	4	5
1	2	7
9	2	7

Onde r1 é o primeiro algarismo do seu RM, r2 é o segundo algarismo, e assim por diante.

1. Calcule o determinante da matriz A usando a técnica da expansão dos cofatores.

Det(A) = 144

2. Calcule o determinante da matriz A usando a técnica da eliminação de Gauss.

2 Calculat O dellaminate Usando a telpira de
A ₂
3 9 5 6-3 021 - 1- 1/3 320 9 2/2 16/2 022 - 2- 1/3 9 - 2/3 9 2 7 021 27 - 1/3 5 - 16/3
0 3/3 16/3 0 3/2 -12 -15 0 0 3/2 -12 + 2 = -10 0 3/2 - 15 + 7 = -8
$\begin{bmatrix} 3 & 4 & 5 \\ 0 & 3/1 & 16/5 \end{bmatrix} \times 15 \qquad 0.30 : (3/3 \times 15) + (-10) = 0$ $0 & 0 & 72 \end{bmatrix} \times 15 \qquad 0.33 : (16/3 \times 15) + (-9) = 72$
det(A)= 3.2/3.72 = 144 det(A)=144

Det(A) = 144

3. Elabore um código Python para calcular o determinante da matriz A (adapte do código disponibilizado pelo professor e inclua na resposta o código e o resultado).

In [6]: # matrix determinant from numpy import array from numpy.linalg import det import numpy as np # define matrix A = array([
[3, 4, 5],
[1, 2, 7],
[9, 2, 7]]) print(A) # calculate determinant B = det(A)print(int(B)) [[3 4 5] [1 2 7] [9 2 7]] 144

4. Some a matriz A com a matriz:

5

$$\begin{bmatrix} 2 & 1 & 3 \\ -1 & 0 & 4 \\ 4 & -2 & 0 \end{bmatrix}$$

	,	J	•	
	0	2	11	
	13	0	7	
4	1 Some	a motri	2 A Con	a matriz
		Charles III	0	
	1 3 4			2 1 3
A=		7 11/10	TE CANA	B= -1 0 9
-	192	7]	1 1 1 1 1	19-201
-			3 (4) 17	
1	0		7	Company of the state of
_/ - / - / - / - / - /-/-/-/-/-/-/-/-/-/-	- B = 5	5 8	100 100 100	Colorada de Studente
-		1 2 11		212111
	L/3	3 0 7		204
		0,	10010	312 = 4471 = 5
011	+ B11 =	3+2-3	10 7 B	3 - 5+3 = 8
0.12	+ 3/2 = 1	+(-1/= 0	013 101	3 073 - 0
013	+ 13 - 9		1000 10	22 = 2 +0 = 2
Wically.	D USBANE	1 1000	1422 + 5	22 5 4 - 11
			1003 + 62	3=7+4=11
			Jan 1 Ex	<i>a</i>
192344		8/1/2	1032 + B3	
			0334 B3	3=17
				P - P

5

8

5. Multiplique a matriz A pela matriz:

$$\begin{bmatrix} 1 & 4 \\ 0 & 3 \\ 2 & 5 \end{bmatrix}$$

5) multipliação de Matriz A pela:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
103 -7 3 3

13	49
15	45
23	77

6. Calcule o traço da matriz A.

tr(A) = 12

7. Apresente a transposta da matriz A.

AT =

3	1	9
4	2	2
5	7	7

8. Caso sua matriz seja invertível (determinante diferente de zero), elabore um código Python para calcular a inversa (adapte do código disponibilizado pelo professor e inclua na resposta o código e o resultado).

```
matrix
 rom numpy import array
rom numpy.linalg import
define matrix
                                  inv
    array([
     4,
         5],
     2,
          ] -
  invert matrix
  = inv(A)
print(B.round(3))
            -0.125
                      0.125]
   0.389
            -0.167
                     -0.111]
  -0.111 0.208
                     0.014]]
```

9. Multiplique a sua matriz pela inversa calculada no exercício 8.

1 1	•
	800
9- Multiplique a Sia M Colculado po ex. 8	nothing pela Invasion
3 9 5 0 -1/8 1 2 7 x 309/100 -1/12/100 9 2 7 - 1/11/100 26/125	0 -111/1000 -
1/1000 -3/1000 1 1/1000 997/100 1 1/1000 -3/1000 10	/1000 /poo 00 [/kao]
Colculo	134 17 4 5
3. 0 + 4. (389 / 1000) + 3 3. (-1/8) + 4. -167/1000 3. (1/8) + 4. (-111 / 1000)	1+5. (26/125)
1.0+2 (389/1000)+7. 1 (-1/8)+2 (-167/1000) 1.(1/8)+2 (-11/1000)	+7. (7/50)
9.0+2. (389/1000)+7. 9. (-1/8)+2. (-167/1 9. (1/8)+2. (-111/100)	000 It + 1 2 1/123/

1001 / 1000	-3/1000	1/1000
1/1000	997/1000	1/1000
1/1000	(-3/1000)	1001/1000

10. Considere dois vetores **x** e **y**, onde **x** corresponde à primeira linha da matriz A e **y** corresponde à segunda linha da matriz A. Calcule o produto escalar dos vetores **x** e **y**.

$$x * v = (3 * 9) + (4 * 2) + (5 * 7) = 70$$