The Quantum Harmonic Oscillator — Solving for Energies and Wavefunctions (Step-by-Step)

Goal. Starting from the Hamiltonian, derive (i) the allowed energies E_n and (ii) the normalized stationary wavefunctions $\psi_n(x)$ for a 1D harmonic oscillator. Every algebraic step is shown; nothing important is skipped.

0) Problem data and what we're solving

- Particle of mass m in potential $V(x)=rac{1}{2}kx^2$.
- Define the angular frequency $\omega=\sqrt{k/m}$ so that $V(x)=\frac{1}{2}m\omega^2x^2$.
- Hamiltonian operator (write this first):

$$\hat{H}=rac{\hat{p}^2}{2m}+rac{1}{2}m\omega^2\hat{x}^2, \qquad [\hat{x},\hat{p}]=i\hbar.$$

• What to solve: the time-independent Schrödinger equation (TISE)

$$\hat{H}\,\psi(x)=E\,\psi(x)\quad\Longleftrightarrow\quad -rac{\hbar^2}{2m}rac{\mathrm{d}^2\psi}{\mathrm{d}x^2}+rac{1}{2}m\omega^2x^2\,\psi=E\,\psi.$$

1) Non-dimensionalize (choose natural units to simplify)

Reason. Converting to a dimensionless coordinate makes the equation symmetric and easier to solve.

1. Define a natural length

$$x_0 \equiv \sqrt{\frac{\hbar}{m\omega}}$$
 (has dimensions of length).

2. Define the dimensionless coordinate ξ :

$$\xi \equiv rac{x}{x_0}. \qquad \Rightarrow \qquad rac{\mathrm{d}}{\mathrm{d}x} = rac{1}{x_0}rac{\mathrm{d}}{\mathrm{d}\xi}, \quad rac{\mathrm{d}^2}{\mathrm{d}x^2} = rac{1}{x_0^2}rac{\mathrm{d}^2}{\mathrm{d}\xi^2}.$$

3. Substitute into the TISE (do it term by term):

4. Kinetic term:
$$-\frac{\hbar^2}{2m}\,\frac{1}{x_o^2}\,\psi''(\xi)$$
 .

5. Potential term:
$$rac{1}{2}m\omega^2\,x^2\psi=rac{1}{2}m\omega^2\,x_0^2\,\xi^2\psi$$
 .

Using $x_0^2=\hbar/(m\omega)$:

$$-rac{\hbar^2}{2m}rac{1}{x_0^2}=-rac{\hbar^2}{2m}rac{m\omega}{\hbar}=-rac{\hbar\omega}{2}, \qquad rac{1}{2}m\omega^2x_0^2=rac{1}{2}m\omega^2rac{\hbar}{m\omega}=rac{\hbar\omega}{2}.$$

1

So the entire equation becomes

$$-rac{\hbar\omega}{2}\,\psi''(\xi)+rac{\hbar\omega}{2}\,\xi^2\psi(\xi)=E\,\psi(\xi).$$

4. **Divide both sides by** $\hbar\omega/2$ and define a dimensionless energy parameter

$$\lambda \equiv rac{2E}{\hbar\omega}.$$

We get the compact dimensionless Schrödinger equation

$$-\psi''(\xi) + \xi^2 \psi(\xi) = \lambda \,\psi(\xi). \tag{1}$$

Checkpoint (units). λ is dimensionless; good. The equation has no explicit m,\hbar,ω left—only λ remembers the energy scale.

2) Large- $|\xi|$ behavior suggests a Gaussian factor

Idea. For $|\xi|\gg 1$, the $\xi^2\psi$ term dominates. If we ignore ψ'' temporarily, a trial solution behaves like $\psi\sim e^{-\xi^2/2}$ (decays) or $e^{+\xi^2/2}$ (blows up). Normalizability forces the decaying Gaussian.

Therefore, set

$$\psi(\xi) = e^{-\xi^2/2} y(\xi).$$
 (Ansatz)

We'll solve for the polynomial-like part $y(\xi)$.

Compute derivatives carefully (showing every step):

$$\psi' = e^{-\xi^2/2} \, (y' - \xi y), \qquad \psi'' = e^{-\xi^2/2} \, (y'' - 2\xi y' + (\xi^2 - 1)y).$$

(Substitute these into Eq. (1).)

Left side of (1):

$$-\psi'' + \xi^2 \psi = -e^{-\xi^2/2} (y'' - 2\xi y' + (\xi^2 - 1)y) + \xi^2 e^{-\xi^2/2} y = e^{-\xi^2/2} (-y'' + 2\xi y' + y).$$

Thus Eq. (1) becomes

$$e^{-\xi^2/2}ig(-y''+2\xi y'+yig) = \lambda\,e^{-\xi^2/2}y.$$

Cancel the common factor $e^{-\xi^2/2}$:

$$-y'' + 2\xi y' + y = \lambda y \iff y'' - 2\xi y' + (\lambda - 1)y = 0.$$
 (2)

This is **Hermite's differential equation**.

3) Power-series solution and the recurrence relation

We now solve Eq. (2) by a power series. Assume

$$y(\xi) = \sum_{k=0}^\infty a_k \xi^k.$$

Then

$$y' = \sum_{k=1}^{\infty} k a_k \xi^{k-1}, \qquad y'' = \sum_{k=2}^{\infty} k (k-1) a_k \xi^{k-2}.$$

Substitute into Eq. (2):

$$\sum_{k=2}^{\infty} k(k-1) a_k \xi^{k-2} - 2 \xi \sum_{k=1}^{\infty} k a_k \xi^{k-1} + (\lambda-1) \sum_{k=0}^{\infty} a_k \xi^k = 0.$$

Re-index the first sum (let m=k-2 , so k=m+2) and rewrite all sums with power ξ^m :

$$\sum_{m=0}^{\infty} (m+2)(m+1)a_{m+2}\xi^m - 2\sum_{m=0}^{\infty} ma_m\xi^m + (\lambda-1)\sum_{m=0}^{\infty} a_m\xi^m = 0.$$

Group coefficients of ξ^m (each must vanish):

$$(m+2)(m+1)a_{m+2}+igl[-2m+(\lambda-1)igr]a_m=0.$$

Solve for a_{m+2} :

$$a_{m+2} = rac{2m+1-\lambda}{(m+2)(m+1)} \, a_m.$$
 (Recurrence)

This upward recursion generates all higher coefficients from a_0 and a_1 .

Parity note. Because the recurrence links $m \to m+2$, even and odd powers never mix. Choosing $a_0 \neq 0, a_{\overline{1}} = 0$ gives an **even** solution; choosing $a_0 = 0, a_1 \neq 0$ gives an **odd** solution. This matches the even potential V(x) = V(-x).

4) Why energies are quantized (polynomial termination)

For large m , the recurrence roughly gives $a_{m+2}\sim (2m/(m+2)(m+1))a_m$, which does **not** make the series terminate. If the series does not terminate, the resulting $y(\xi)$ grows like $e^{+\xi^2}$, and then $\psi(\xi)=e^{-\xi^2/2}y(\xi)$ diverges as $e^{+\xi^2/2}$: **not normalizable**.

Resolution: Demand the series terminate after some finite order n. Termination happens exactly when the numerator in the recurrence becomes zero:

$$2n+1-\lambda=0 \implies \boxed{\lambda=2n+1} \qquad (n=0,1,2,\ldots)$$

Using $\lambda=2E/(\hbar\omega)$, this gives the **quantized energies**

$$E_n=\hbar\omega\Big(n+rac{1}{2}\Big)\ , \quad n=0,1,2,\ldots igg|$$

With $\lambda=2n+1$, the series truncates and $y(\xi)$ is a degree-n polynomial. Those polynomials are (up to a constant factor) the **Hermite polynomials** $H_n(\xi)$.

5) Build the first few polynomials explicitly (see it work)

Take the recurrence with $\lambda=2n+1$ and compute:

(a) Even solutions (set $a_0 / 0, a_{\overline{+}} = 0$)

- For n=0 : $\lambda=1$. Recurrence gives $a_2=rac{1-1}{2\cdot 1}a_0=0\Rightarrow$ series stops immediately. $y_0(\xi)=a_0$, so up to normalization $H_0(\xi)=1$.
- For n=2 : $\lambda=5$. Starting with a_0 :

$$a_2 = rac{1-5}{2\cdot 1}a_0 = -2a_0$$

$$a_4 = \frac{5-5}{4.3} a_2 = 0 \Rightarrow \text{stop}$$

 $a_2=rac{1-5}{2\cdot 1}a_0=-2a_0$; $a_4=rac{5-5}{4\cdot 3}a_2=0\Rightarrow$ stop. Up to an overall factor, $H_2(\xi)=4\xi^2-2$.

(b) Odd solutions (set $a_0=0,a_1 \ / \ 0$) $\ =$

ullet For n=1 : $\lambda=3$.

$$a_3=\frac{3-3}{2}a_1=0\Rightarrow \mathsf{stop}.$$

 $a_3=rac{3-3}{3\cdot 2}a_1=0\Rightarrow$ stop. Up to an overall factor, $H_1(\xi)=2\xi$.

ullet For n=3 : $\lambda=7$.

$$a_3 = rac{3-7}{3\cdot 2} a_1 = -rac{2}{3} a_1$$
 , then $a_5 = 0$ etc.

 $a_3=rac{3-7}{3\cdot 2}a_1=-rac23a_1$, then $a_5=0$ etc. Up to an overall factor, $H_3(\xi)=8\xi^3-12\xi$.

(These match the standard Hermite polynomials.)

6) Assemble the (unnormalized) wavefunctions

Recall $\psi(\xi)=e^{-\xi^2/2}y(\xi)$. When the series terminates at order n , $y\propto H_n(\xi)$. Thus

$$\psi_n(\xi) \propto e^{-\xi^2/2}\, H_n(\xi), \qquad \xi = rac{x}{x_0}.$$

Restore x:

$$\psi_n(x) \propto e^{-x^2/(2x_0^2)} \, H_n\!\left(rac{x}{x_0}
ight), \qquad x_0 = \sqrt{rac{\hbar}{m\omega}}.$$

Parity is automatic: H_n is even (odd) for even (odd) n , so $\psi_n(-x)=(-1)^n\psi_n(x)$.

7) Normalize the wavefunctions (find the constant)

We want $\int_{-\infty}^\infty |\psi_n(x)|^2\,\mathrm{d}x=1$. Change to $\xi=x/x_0$, so $\mathrm{d}x=x_0\,\mathrm{d}\xi$:

$$1=|\mathcal{N}_n|^2\int_{-\infty}^\infty e^{-x^2/x_0^2}\Big|H_n\Big(rac{x}{x_0}\Big)\,\Big|^2\,\mathrm{d}x=|\mathcal{N}_n|^2\,x_0\int_{-\infty}^\infty e^{-\xi^2}H_n^2(\xi)\,\mathrm{d}\xi.$$

A standard (and provable) Hermite identity is

$$\int_{-\infty}^{\infty}e^{-\xi^2}H_n(\xi)H_m(\xi)\,\mathrm{d}\xi=\sqrt{\pi}\,2^nn!\,\delta_{nm}.$$

Setting m=n gives

$$1 = |\mathcal{N}_n|^2 \, x_0 \, (\sqrt{\pi} \, 2^n n!) \quad \Rightarrow \quad \boxed{\mathcal{N}_n = rac{1}{\sqrt{\sqrt{\pi} \, 2^n n! \, x_0}}} \ .$$

Therefore the normalized stationary states are

$$\psi_n(x) = rac{1}{\sqrt{2^n n!}} \, rac{1}{\pi^{1/4} \, \sqrt{x_0}} \, H_nigg(rac{x}{x_0}igg) \, \expigg(-rac{x^2}{2x_0^2}igg), \ \ n=0,1,2,\dots$$

with **energies** $oxed{E_n=\hbar\omega(n+rac{1}{2})}$.

Sanity checks.

- n=0 : $H_0=1$ gives a Gaussian ground state.
- $\langle x \rangle = 0$ (odd integrand) and $\langle x^2 \rangle = (n+\frac{1}{2})x_0^2$ (can be shown via ladder operators or direct integrals).

5

• Level spacing is constant: $E_{n+1}-E_n=\hbar\omega$.

8) Full method recap (as a recipe)

- 1. Write TISE with $V=rac{1}{2}m\omega^2x^2$.
- 2. **Define** $x_0=\sqrt{\hbar/(m\omega)}$ and $\xi=x/x_0$, reduce to $-\psi''+\xi^2\psi=\lambda\psi$.
- 3. Extract Gaussian: set $\psi=e^{-\xi^2/2}y$, obtain $y''-2\xi y'+(\lambda-1)y=0$. 4. Series solve: $a_{m+2}=\frac{2m+1-\lambda}{(m+2)(m+1)}a_m$.
- 5. Normalizability \Rightarrow termination: require $\lambda=2n+1\Rightarrow E_n=\hbar\omega(n+\frac{1}{2})$.
- 6. Identify $y \propto H_n$, so $\psi_n \propto e^{-\xi^2/2} H_n$.
- 7. **Normalize** using $\int e^{-\xi^2} H_n^2 \, \mathrm{d}\xi = \sqrt{\pi} 2^n n!$ to get the final prefactor.

9) Optional: Ground state derived by minimization (quick cross-check)

Using only uncertainties, estimate the ground-state energy $E(\Delta x)=rac{\hbar^2}{8m(\Delta x)^2}+rac{1}{2}m\omega^2(\Delta x)^2$. Minimize over Δx : set derivative to zero $\rightarrow (\Delta x)^2=\hbar/(2m\omega)=x_0^2/2$. Plug back: $E_{\min}=rac{1}{2}\hbar\omega$, which matches E_0 .

10) Worked examples (plug-and-play)

(i)
$$n=0$$
 $E_0=rac{1}{2}\hbar\omega$. $\psi_0(x)=rac{1}{\pi^{1/4}\sqrt{x_0}}\,e^{-x^2/(2x_0^2)}$.

$$\begin{array}{l} \text{(ii) } n=1 \\ E_1=\frac{3}{2}\hbar\omega \ . \\ \psi_1(x)=\frac{1}{\sqrt{2}\,\pi^{1/4}\sqrt{x_0}}\left(2\,\frac{x}{x_0}\right)e^{-x^2/(2x_0^2)}=\sqrt{\frac{2}{\pi^{1/2}\,x_0^3}}\,x\,e^{-x^2/(2x_0^2)} \ . \end{array}$$

(iii)
$$n=2$$
 $E_2=rac{5}{2}\hbar\omega$. $\psi_2(x)=rac{1}{\sqrt{8}\,\pi^{1/4}\sqrt{x_0}}\left(4\xi^2-2
ight)e^{-\xi^2/2}$ with $\xi=x/x_0$.

11) Frequently-made mistakes (and how to avoid them)

- ullet Forgetting the Gaussian factor. The polynomial alone is not normalizable; always include $e^{-\xi^2/2}$.
- ullet **Dropping the** $+rac{1}{2}$ in E_n . Remember the zero-point energy.
- **Confusing** x_0 with the ground-state width: $(\Delta x)_0 = x_0/\sqrt{2}$.
- Mixing parity. Start with either a_0 or a_1 , not both, to keep even/odd solutions clean.

Final boxed results

$$oxed{E_n=\hbar\omega\Big(n+rac{1}{2}\Big)},\quad n=0,1,2,\dots$$

$$\psi_n(x) = rac{1}{\sqrt{2^n n!}} \, rac{1}{\pi^{1/4} \, \sqrt{x_0}} \, H_nigg(rac{x}{x_0}igg) \, e^{-x^2/(2x_0^2)}, \quad x_0 = \sqrt{rac{\hbar}{m \omega}}$$

If you'd like, we can add a short appendix proving the Hermite orthogonality integral, or a second solution using **ladder operators** to cross-verify the spectrum and matrix elements.