

# 4. SOPC Builder Components

QII54004-10.0.0

## 4. Компоненты SOPC Builder

Компоненты SOPC Builder – это блоки аппаратных проектов внутри SOPC Builder, которые могут быть обработаны в системе SOPC Builder. В этой главе определяются компоненты SOPC Builder с акцентом на структуру обычных компонентов.

Компонент состоит из:

- HDL описания аппаратной части компонента;
- Описания интерфейса с аппаратной частью компонента, например, имена и типы I/O сигналов;
- Описания параметров, которые определяют работу компонента;
- Графическую оболочку для параметризации элемента компонента в SOPC Builder;
- Скрипты и другую информацию, необходимую SOPC Builder для генерации HDL файлов для компонента и интеграции элемента компонента в систему SOPC Builder;
- Другую связанную с компонентом информацию, например, связь с программными драйверами, необходимую для пункта разработки нисходящего потока системы SOPC Builder.

В этой главе обсуждаются процессы проектирования новых и классических специально заданных компонентов SOPC Builder в следующих секциях:

- "Поставщики компонентов";
- "Аппаратная структура компонента" на странице 4-2;
- "Экспортируемые точки стыковки интерфейсы кабельных каналов" на странице 4-3;
- "Поиск пути компонента SOPC Builder" на странице 4-4;
- "Структура компонента" на странице 4-8;
- "Классические компоненты в SOPC Builder" на странице 4-10.

#### Поставщики компонентов

Компоненты SOPC Builder могут быть получены от нескольких поставщиков, включая следующих:

- Компоненты, автоматически устанавливаемые в программе Quartus® II.
- Сторонние IP разработчики могут поставлять IP блоки в качестве готовых компонентов SOPC Builder, включая программные драйверы и документацию. Список этих компонентов можно найти в SOPC Builder, кликнув на IP MegaStore в меню Tools.
- Отладочные платы Altera, например Nios® II Development Kit, могут предоставлять компоненты SOPC Builder как средства.

 Вы можете использовать редактор компонентов SOPC Builder, чтобы конвертировать свои HDL в собственные компоненты.

За дополнительной информацией о \_hw.tcl файле, обратитесь к главе "Редактор компонентов" в томе 4 Настольной книги Quartus II.

## Аппаратная структура компонента

Компоненты в системе SOPC Builder делятся по типу размещения ассоциированной логики:

- компоненты, содержащие ассоциированную логику внутри системы SOPC Builder;
- компоненты, обращающиеся к логике снаружи системы SOPC Builder.

На рисунке 4-1 показан пример компонентов обоих типов.

Figure 4-1. Component Logic Inside and Outside the SOPC Builder System



## Компоненты, размещённые внутри системы SOPC Builder

Для компонентов, размещённых внутри системы SOPC Builder, логика компонента задаётся в ассоциированном HDL файле. Во время генерации системы, SOPC Builder размещает компонент и подключает его к остальной системе. Компонент может экспортировать сигналы по интерфейсу кабельных каналов. Интерфейсы кабельных каналов (Conduit interfaces) имеют порты в системе, с помощью которых они подключаются к логике снаружи системы SOPC Builder на уровне разводки платы.

дополнительной информацией об интерфейсах кабельных каналов. обратитесь к главе "Интерфейсы кабельных каналов" в спецификации интерфейсов Avalon.

В основном, компоненты подключаются к системе внутренних соединений, используя интерфейс Avalon® с распределением памяти (Avalon-MM) или потоковый интерфейс Avalon (Avalon-ST). Один компонент может предусматривать более одного порта Avalon. Например, компонент предусматривает Avalon-ST исходных порт для высокой пропускной способности данных, и дополнительно Avalon-MM slave для контроля.

#### Статичные HDL компоненты

Вы можете определить компоненты SOPC Builder, которые допускают параметры Verilog HDL или VHDL наследственность. Примерами параметров, которые отображают параметры Verilog HDL или VHDL наследственность, являются ширина адреса и данных, и глубина FIFO. Эти компоненты имеют HDL файлы, которые не генерируются как параметрическая функция, и относятся к статичным HDL компонентам. SOPC Builder автоматически генерирует упаковочный файл верхнего уровня, чтобы применить значения параметров для статичных компонентов.

#### Генерируемые HDL компоненты

С другой стороны, вы можете также задать компонент, который генерируется, основываясь на значении декларируемых в нём параметров. Эти компоненты используют обратный вызов собственной генерации, для генерирования HDL при каждом использовании компонента, вместо того, чтобы SOPC Builder создавал упаковочный HDL файл, в котором определены эти значения. В качестве примера параметра, которому необходима генерация HDL – это параметр, контролирующий количество интерфейсов.

#### Составные HDL компоненты

Составные компоненты конструируются из комбинаций других компонентов. Вы можете использовать обратный вызов, чтобы сформировать подключение и параметризацию составных компонентов; однако специальный обратный вызов не требуется для очень простых составных компонентов.

За дополнительной информацией о задании своей собственной генерации или составной процедуры обратного вызова, обратитесь к секциям "Обратный вызов генерации" и "Обратный вызов составной" в главе "Tcl Справка об интерфейсах компонентов" в томе 4 Настольной книги Quartus II.

#### Компоненты, размещённые снаружи системы SOPC Builder

Для компонентов, которые обмениваются с внешней логикой или другими устройствами с помощью совместимых с Avalon сигналов в системе SOPC Builder, файлы компонентов описывают только интерфейс с внешней логикой. Во время генерации системы, SOPC Builder экспортирует интерфейс для компонентов в верхний уровень системы SOPC Builder. Вы должны вручную подключить сигналы в верхнем уровне системы SOPC Builder к выводам или к логике, заданной снаружи системы, но имеющей совместимые сигналы с Avalon.

Этот метод не приветствуется и будет исключён в следующих версиях программы Quartus II.

# Экспортируемые точки стыковки – интерфейсы кабельных каналов

Интерфейсы кабельных каналов (Conduit interfaces) преподносятся системе в качестве дополнительных портов. Экспортируемые сигналы – это обычно сигналы либо заданные приложением, либо интерфейсом Avalon.

Сигналы, заданные приложением, экспортируются в верхний уровень системы с помощью интерфейсов кабельных каналов, определённых в \_hw.tcl файле. Все эти I/O сигналы находятся в HDL логике компонентов, не являющихся частью любого из Avalon интерфейсов, и подключенных к внешним устройствам, например DDR SDRAM памяти, или логике, заданной снаружи системы SOPC Builder. Вы используете интерфейсы кабельных каналов для подключения сигналов, заданных приложением, от внешних устройств к системе SOPC Builder.

Вы можете также экспортировать Avalon интерфейсы для ручного подключения их к внешним устройствам или логике, заданной снаружи системы, с помощью совестимых с Avalon сигналов. Этот метод позволяет вам напрямую подключиться к интерфейсу Avalon из любого устройства, имеющего Avalon-совместимые сигналы. Вы можете также экспортировать Avalon интерфейс либо в HDL файл, использующий интерфейс кабельных каналов, либо в \_hw.tcl файл без HDL файла.

Вы экспортируете сигналы интерфейса Avalon — как HDL файл с простыми соединениями по шинам, описанными на HDL. Порты сигналов интерфейса Avalon прямо подключены к внешним I/O сигналам в HDL описании. Интерфейс кабельных каналов в \_hw.tcl файле экспортирует внешние I/O сигналы в верхний уровень системы.

В \_hw.tcl файле задаются не HDL файлы, а только сигналы Avalon и интерфейсные порты.

# Поиск пути компонента SOPC Builder

Каждый раз во время запуска, SOPC Builder ищет файлы компонентов. Компоненты, найденные SOPC Builder, отображаются в списке доступных компонентов SOPC Builder на вкладке **System Contents** (содержимое системы). Когда вы запускаете SOPC Builder, директории с найденными путями к IP, находят два типа файлов:

- файлы **hw.tcl**; каждый **hw.tcl** файл задаёт один компонент;
- файлы IP индекса (.ipx); каждый файл индексирует список доступных компонентов.

В основном, **.ipx** файлы способствуют быстрому запуску SOPC Builder и других инструментов, поскольку необходимо прочитать и проанализировать не много файлов.

Некоторые директории находятся рекурсивно; другие — только до заданной глубины. В следующем списке найденных расположений рекурсивный синтаксис анализа аннотирован \*\*. Одна \* относится только к файлам. Когда директория найдена рекурсивно, поиск останавливается на любой директории, содержащей \_hw.tcl или .ipx файл; поддиректории на обрабатываются.

- \$\$PROJECT\_DIR/\*
- \$\$PROJECT\_DIR/ip/\*\*/\*
- \$QUARTUS INSTALLDIR/../ip/\*\*/\*

В SOPC Builder, вы можете использовать путь поиска по умолчанию, включающий дополнительные директории, кликнув **Options**, затем **IP Search Path** и **Add**. Эти дополнительные пути применяются ко всем проектам; т.е. они являются

## **Volume 4: SOPC Builder**

4. Компоненты SOPC Builder

\_\_\_\_\_

Перевод: Егоров А.В., 2010 г.

Глобальными для текущей версии SOPC Builder. Путь поиска окончательно определяется в файле:

<\$QUARTUS\_INSTALLDIR>/sopc\_builder/bin/root\_components.ipx.