

Q1. Linked link are not superior to STL vectors a) True b) False
Q2. Deleting a node in a linked list is a simple matter of using the delete operator to free the node's memory a) True b) False
Q3. The advantage of link list over array is
a) Link list can grow and shrink in size during the time
b) Less space is required for storing elements
c) Both 1 and 2 are correct
d) None of the above
Q4. Which one of the following algorithm is NOT an example of Divide and conquer technique a) Quick Sort b) Merge Sort c) Bubble Sort d) Binary Search Q5. The inorder traversal of some binary tree produces the sequence DBEAFC, and the postorder transversal of the same tree produced the sequence DEBFCA. Which of the following is correct preorder transversal sequence a) DBAECF b) ABEDFC c) ABDECF d) None of the above Q6. How many cycles should be contained in a tree?
a) 0 b) At least 1 c) Any number d) None of the above
Q7. If graph G has no edges then corresponding adjacency matrix is
a) Unit matrix b) Zero matrix c) Matrix with all 1's d) None of the above
Q8. What is not true for linear collision processing? a) It is easier to program b) It may include more collision c) It requires space for links d) All are true
Q9. Algorithms can be represented in various ways EXCEPT a) PROGRAMS b) FLOWCHARTS c) DECISION CHARTS d) SPREADSHEET
Q10. The element at the root of heap is
a) Largest b) Depending on type of heap it may be smallest or largest c) Smallest d) None of the above
Q11. The end at which a new element gets added to queue is called a) Front b) Rear c) Top d) Bottom

PG DAC Feb 20 Data Structure Question Bank

a) A	rrays	b) Arrays or linked list	c) Only linke	d list	d) None of the	above
	If it is not	said to be a tree, if it satisfies diand there are no cycles in the connected and there are cycles in the cycles in the above	the graph. vcles in the grap		a)	
a) A	record key	fers to the process of deriving from storage address int code from a record key		b) Storage ad d) None of th	l dress from a re e above	ecord key
trave trave		A 10 11 11 11 11 11 11	•	Which of the		•
		ne following is not an operato) deque(Q,X) c) enque(Q,X	W . A		<mark>queue ha</mark> s item	s `Q` and `X`?
	In an adjac milar colum	ency matrix parallel edges and some b) Similar	/	c) Not represe	entable	d) None of the above
	A dynamic neap	data structure where we car b) binary searc		ired records in the cords in th		e is d) array
-	We can eff near queue	iciently reverse a string using b) circular que	S	c) Stack	d) doubly linke	ed list
popp	ed four tim	ems: A, B, C, D and E are push les and each element is inser the stack. Now one item is p b) B	rted in a queue.	Then two ele	ments are dele	
	The memo or address	ry address of the first eleme b. foundation address	nt of an array is c. first addre		ldress	
Q22.	The memo	ry address of fifth element o	of an array can b	e calculated b	y the formula	

a. LOC(Array[5]=Base(Array)+w(5-lower bound), where w is the number of words per memory cell for the

array

b.	LOC(Array[5])=Base array	(Array[5])+(5-lower bound),	where w is the number	er of words per men	nory cell for the
c. arra		(Array[4])+(5-Upper bound)	where w is the numb	er of words per mer	mory cell for the
	None of above				
Q2:	3. Which of the follow	wing data structures are inde	exed structures?		
a)	linear arrays	b) linked lists	c) both of above	d) none of al	bove
	4. Which of the follow st be sorted	wing is not the required cond	dition for binary search	algorithm?a) The	list
b)	there should be	the direct access to the mide	lle element in any sub	list	
c)	There must be n	nechanism to delete and/or	insert elements in list	d) none of above	
	must use a sorted arr	MIVI VI VVIII	i Mant	rlA	
b)	requirement of s	sorted array is expensive who	en a lot of insertion an	<mark>d deletio</mark> ns are nee	ded
c)	there must be a	mechanism to access mid <mark>dle</mark>	element directly		
d)	binary search alg	gorithm is not efficient <mark>whe</mark>	n the data elements a	<mark>re mor</mark> e than 1000.	
	6. Two dimensional a		a) h a th a f a h a	d)	
a) 1	tables arrays	b) matrix arrays	c) both of above	d) none of abo	ve
Q2 ⁻	7. A variable P is calle	ed pointer if			
a)		ddress of an element in DAT	A		
b)		ddress of first element in DA			
c)	•	memory addresses			
d)	-	TA and the address of DATA			
•					
Q2	8. Which of the follow	wing data structure can't sto	re the non-homogene	ous data elements?	
a)	Arrays	b) Records	c) Pointers	d) No	one
Q2!	9. Before deleting an	element from list we make	sure that		
a) it	t is an list	b) it is not a invalid list	c) it is not an e	mpty list	d) it must be full.
ind	0. Each data item in a ecomposable are cal Elementary items	a record may be a group iten led b) atoms	n composed of sub-ite c) scalars	ms; those items whi	
uj I	Licincintally Itellis	טן מנטוווס	c _i scalais	aj ali di abd	V C

PG DAC Feb 20 Data Structure Question Bank

Q31. T	The difference b	etween linear array a	nd a record is						
a)	An array is suitable for homogeneous data but the data items in a record may have different data type								
b)	In a record, there may not be a natural ordering in opposed to linear array.								
c)	A record form	a hierarchical structui	re but a linear array o	loes not					
d)	All of above								
Q32. \	Which of the foll	owing statement is fa	lse?						
a)	Arrays are den	se lists and static data	structure						
b)	data elements	in linked list need not	t be stored in adjecer	nt space in memory					
c)	pointers store	the next data elemen	nt of a list						
d)	linked lists are	collection of the node	es that contain inforn	nation part and next	pointer				
a) sort Q34. \	ted linked list	Sititi	trees c) sorted lin		nter array e space; this situation is				
a) und	derflow k	o) overflow	c) housefull	d) saturate	d				
Q35. T	The situation wh	en in a linked list STA	RT=NULL is						
a) und	derflow	b) overflow	c) ho	<mark>ousef</mark> ull	d) saturated				
	Which of the foll O lists	lowing name does <mark>not</mark> b) LIFO list	relate to stacks? c) Piles	d) Push-down lists					
a) gro	unded header lis	lowing is two way list? st der and trailer nodes	b) cir	cular header list					
Q38. T a) arra	•	and "pop" is related to b) lists	to the c) stacks	d) all of above					
	A data structure ked lists b) St	where elements can lacks c) Queues c	be added or removed d) Deque	l at either end but no	ot in the middle				

Q40. When inorder traversing a tree resulted E A C K F H D B G; the preorder traversal would return

c) EAFKHDCBG

d) FEAKDCHBG

b) FAEKCDHGB

a) FAEKCDBHG

Q41. V	Vhich data stru	cture allows dele	eting data elemen	ts from fron	t and inserting at rear	? a)
Stacks		b) Queues	c) Deques	C	d) Binary search tree	
Q42. I	dentify the data	a structure which	n allows deletions	at both end	s of the list but inserti	on at only one end.
a) Inpu	ut-restricted de	eque	o) Output-restrict	ed deque	c) Priority queu	ies d) None of above
Q43. V	Vhich of the fol	lowing data stru	cture is non-linea	r type?		
a) Strii	ngs	b) Lists	c) Stacks	d) None	of above	
Q44. V	Vhich of the fol	lowing data stru	cture is linear typ	e?		
a) Strii	ngs	b) Lists	c) Queues	•	d) All of above	
Q45. T	o represent hie	erarchical relatio	nship between ele	ements, whi	ch data structure is su	itable?
a) Dec	ue	b) Priori	ty c) T	ree d	d) All of above	
		Shr	iram	Ma	ntri	
	omplete binary		has either zero or search tree			d) None of above
a) CC	inplete billary	tree by billary	/ Search tiee	C) LXter	ided billary tree	u) None of above
Q47. T	he depth of a c	complete binary	tree is given by			
a)	Dn = n log2n		n log2n+1	c) Dn =	log2n d) Dn =	log2n+1
Q48. V	Vhen represent	ting anv algebrai	c expression E wh	ich uses onl	y binary operations in	a 2-tree. a)
	· ·		nal nodes and ope			, , ,
b)	the operation	s in E will appear	as <mark>external</mark> node:	s and variab	les in internal nodes	
c)	the variables a	and operations in	n E <mark>will app</mark> ear onl	y in internal	nodes	
d)	the variables a	and operations in	n E will appear onl	y in externa	I nodes	
Q49. <i>A</i>	s binary tree ca	n easilv be conve	erted into q 2-tree	!		
a)	•	•	ree by a new inter			
b)	, ,	. ,	for non-empty no			
c)	,		for non-empty no			
d)	,		ree by a new exte			
<i></i> /	.,					
Q50. V	Vhen convertin	g binary tree int	o extended binary	tree, all the	e original nodes in bina	ary tree are
a) inte	rnal nodes on	extended tree	b) e	xternal nod	es on extended tree	
c) vani	shed on extend	led tree		d) None	of above	
O51. T	he post order t	raversal of a hin	arv tree is DFRFC4	A. Find out t	ne pre order traversal	
a) ABF	•	b) ADBF	•	ABDECF	d) ABDCEF	

PG DAC Feb 20 Data Structure Question Bank

Q52. Which of the follow a) Bubble sort	ving sorting algorithm is b) Insertion sort	s of divide-and-cond c) Quicl		l of above
Q53. An algorithm that c a) Sub algorithm	alls itself directly or ind b) Recursion	lirectly is known as c) Polish notati	on d) Tr	aversal algorithm
for efficiency. These spec	cial pointers are called	placed by special population bath d) threa		to nodes higher in the tree
Q55. The in order travers a) Binary trees	sal of tree will yield a so			d) None of above
				ght sub tree
Q57. In a graph if e=[u, value]			c) neighbors	d) all of above
Q58. A connected graph a) a tree graph	T without any c <mark>ycles is</mark> b) free tre		e d) Al	l of above
Q59. In a graph if e=(u, v a) u is adjacent to v but v c) u is processor and v is	is not adjacent to u		b) e begins at u and d) both b and c	ends at v
Q60. If every node u in G a) isolated	is adjacent to every ot b)complete	her node v in G, A g c) finite	graph is said to be d) strongly o	connected
Q61. Two main measure a) Processor and memore	·	n algorithm are exity and capacity	c) Time and space	e d) Data and space
Q62. The time factor who	_		is measured by e number of key op	perations

d) Counting the kilobytes of algorithm

c) Counting the number of statements

	•	or when determini iimum memory ne	•	of algorithm is mea	asured by	
b)	=	minimum memor	_			
c)	_	average memory	•	_		
d)	Counting the	maximum disk spa	ace needed by th	ne algorithm		
Q64. V	Vhich of the fo	ollowing case does	not exist in com	plexity theory		
a)	Best case	b) Worst	case c)	Average case	d) Null case	
Q65. T	he Worst case	occur in linear sea	arch algorithm w	vhen a)		
	Item is some	where in the midd	le of the array			
b)		the array at all				
c)		st element in the a	•		4	
d)	Item is the la	st element in the	array or is not th	nere at all Mant	riA	
Q66. T	he Average ca	se occur in linear s	search algori <mark>thm</mark>			
a)	When Item is	s somewhere in th	e middle o <mark>f the</mark>	array		
b)	When Item is	not in the array a	t all			
c)	When Item is	the last element i	n the arr <mark>ay</mark>			
d)	When Item is	the last element i	n the a <mark>rray or i</mark> s	not the <mark>re at all</mark>		
					1	
Q67. T	he complexity	of the average ca	se o <mark>f an algo</mark> rith	m is		
a)	Much more	complicated to an	aly <mark>ze than t</mark> hat o	of worst case		
b)	Much more s	impler to analyze	th <mark>an that</mark> of wor	st <mark>case</mark>		
c)	Sometimes m	nore complicated a	and some other t	imes simpler than t	that of worst case d)	None or above
Q68. T	he complexity	of linear search al	gorithm is			
a) O(n)		b) O(log n)	c) O(n2)		d) O(n log n)	
Q69. T	he complexity	of Binary search	algorithm is			
a) O(n)		b) O(log)	c) O(n2)	d) O(n log n)		
	•	y of Bubble sort al	•			
a) O(n)		b) O(log n)	c) O(n2)	d) O(n l	log n)	
	· ·	of merge sort alg				
a) O(n)		b) O(log n)	c) O(n2)	d) O(n l	log n)	

	he indirect cha rnal change	inge of the valu	es of a variable in on b) inter-module cha		another module is side effect	called d) side-module update
		_	ructure is not linear d			
a) Arra	ys	b) Linked lists	c) Both of ab	oove	d) None of ab	oove
Q74. \	Which of the fo	ollowing data st	ructure is linear data	structure?		
a) Tree	es	b) Graphs	c) Arrays	d)	None of above	
Q75. T	he operation o	of processing ea	ch element in the lis	t is known a	S	
a) Sc	orting b) N	lerging	c) Inserting	d) Trave	rsal	
Q76.F	inding the loca	tion of the eler	nent with a given val	ue is		
a) T	raversal	b) Sea	r ch c) So	rt	d) None of ab	ove
077.4		Shi	iram 1	Mai	ntri	
_		V.				
a)	-		lections of data	7/		
b)		the structure a th of above situ	ation	ructure are	constantly changing	g c)
d)	for none of ab	oove situation				
Q78. L	inked lists are l	oest suited				
a)	for relatively p	permanent coll	ection <mark>s of data</mark>			
b)	for the size of	the structure	and <mark>the data</mark> in the s	t <mark>ructure</mark> are	constantly changing	ng c)
	for bot	th of above situ	ation			
d)	for none of ab	ove situation				
Q80. E	ach array decla	aration need no	ot give, implicitly or e	xplicitly, the	information about	
a) the	name of array			b) the dat	a type of array	
c) the f	first data from	the set to be s	tored	d)	the index set of the	e array
Q81. T	he elements of	f an array are st	cored successively in	memory cel	ls because	
a)	by this way co	•	ep track only the add	lress of the f	irst element and th	e
eleme	nts can be calc	ulated				
b)	the architectu	ire of computer	memory does not a	llow arrays t	o store other than s	serially c)
	both o	f above				
d)	none of above	9				

Q82.	When is a linea	ar queue said to be	e empty?					
a) fro	ont > rear	b) front = = -	- 1 c)	front > r	ear + 1			d) rear = = front + 1
i) In s ii) mem	equential repre Linear queue ory is not allow		logically as	well as reuse o	physicall f	y full		
iii)	A Queue-full i & ii	condition for a circ b) i & iii	cular queue c) ii &		=front + : d) All.	1'a)		
Q84.	Queue-full con	dition for the circu	ılar queue r	epresen	ted sequ	entially is	?	
a) fro	ont = = rear	b) rear +	1 + front	c) (rea	ar+1)%ar	raysize = :	= front	d) None of the these
	In a linked repr ta, link, header	resentation a node b	consists of Only link f		f the foll	owing fie c) Only d	0 ///	d) Data and link fields.
a) Ar	In case of a link rays are used to ks have a array		next link.	. 7	· / -	d node ha bove Q87		the next node
	Which of the fo	ollowing is not true	e regar <mark>ding</mark>	a singly	linke <mark>d lis</mark>	t? a)		
b)	The last node	e is pointing to NUI	LL in <mark>dicatin</mark> չ	g the en	d of list			
c)	_	a node always sta				verses thr	ough every	subsequent nodes d)
Q89.	The header of r	main function whic	ch takes cor	mmand l	ine argu	ments loo	ks like	
•	nt main(int argont main(int argont main(int arg	c, char *argv) c, char *argv[])				•	•	gv, int argc) gv[],int argc)
Q90. a) va_		acro, we can displa b) va_list		nent fro show		ole numbe d) va_sta		ent function?
	ude <stdio.h> ain()</stdio.h>	e output of the fol 2.5,5.4,7.3,21.6,8.	0	gram?				

PG DAC Feb 20 Data Structure Question Bank

```
printf("%d\n",sizeof(arr)/sizeof(arr[0]));
       return 0;
}
   a) 4
                      b) 5
                                    c) 8
                                                           d) 20
Q92. What is the output of the following program?
Int main()
{
       Int j,sum;
       for( j=1, sum=0; j<5; j++)
       sum+=j;
sum=j;
              cout<<sum;
              return 0;
}
  a) 5
                                           c) Compilation error: undefined variable sum and j
                                                                                                       d) 6
Q93. A program P reads in 500 integers in the range [0 to 100] representing the score of 500 students. It then
prints the frequency of each score above 50. What would be the best way for P to store the frequencies?
                                                                                                           a)
An array of 50 numbers
                                                   b) An array of 100 numbers
c) An array of 500 numbers
                                                   d) A dynamically allocated array of 550 numbers
Q94. Which is true about reference variable?
a)
       A reference can never be null
       A reference once established cannot be changed
b)
       Reference doesn't need an explicit dereferencing mechanism.
c)
       All of the above.
d)
Q95. Dynamic objects are stored in
a) Code segment
                                     b) Data segment
                                                                  c) Heap
                                                                                  d) Run time stack
Q96. What is the output of the following code? const
int a=124;
void main()
{
     const int* Sample();
int *p; p=Sample();
       cout<<*p;
```

const int* Sample()

{	(0.5)			
}	return (&a);			
	Varning	b) compilation error	c) output : 124	d) garbage value
Q97. \	What is the size of po	ointer in C++ on 32 bit archit	ecture?	
a) 1	b) 2 c) 4	d) It depends on size of t	he datatype of a variab	le to which pointer is pointing to
Q98. \	Which are the main t	hree features of OOP langua	ige?	
a)	Data Encapsulation	, Inheritance and Exception	handling	
b)	Inheritance , polym	orphism and exception han	dling	
c)	Data encapsulation	n, inheritance and polymorp	hism	
d)	Overloading, inheri	tance and polymorphism		
•	0.	77	1/	• 🛕
Q99. \	Which out of the give	en function types cannot be	declared "virtual"?	
a) Nor	mal member functio	ns b) Constru	c) Destruct	or d) None of the above
0400	Decidalis and a conf			
class E	Read the code caref	rully		
{ (base			
privat	te: int I; protected:	int j;		
•	public: int k			
} ;				
class [Derived:public Base			
{		V		
priva	te: int x; protected:	•		
} ;	public: int	2 ;		
	(Base)= bytes	, sizeof(Derived) k	ovtes on a 32 bit archite	cture.
		c) 12, 24 d) 4, 16	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	otal ci
Q101.	Static_cast can be a	pplied at		
a) Cor	npile time	b) runtime	c) linking time	d) both a and b
		ype is used in the class giver	below? Class A:	
	B: public C			
{ }				
	lti-level	b) multiple	c) hybrid	d) hierarchical

PG DAC Feb 20 Data Structure Question Bank

Q103. Which	of the following o	perators canno	ot be overloaded?		
a) []	b) ->	c) 1	?:	d) *	
Q104. Which a) Vector	of the following S b) list		will store the eleme) set	ents in adjacent mem d) map	nory locations?
a) It speeds	of the following s s up execution ses the code size	tatement is inc	-	slows down execution	on e without inline specifier
Q106. Which a) Static fur	of the following is		r of class? I function	c) constructor	d) virtual function
	ment / decrement		b) Pre incr	a dummy integer as ement / decrement of the above	
a) Abstract	of the following is class object can't se to abstract class	be created	ment regarding abs		ract class can be created e
Q109. During a) Friend fu		n of the following of t	ing is not inherited r c) Overload		d) All of the above
Q110. What i {	s the output of th	e following pro	ogram? class mycla	SS	
public					
١.	static int counte	r;			
}; void main()					
{		cout< <m< td=""><td>/class::counter; }</td><td></td><td></td></m<>	/class::counter; }		
a) Output	0 b) Compil	ation error	c) Linking error	d) Output garba	ge value
Q111. What i	s the primary pur	oose of templa	te function?		
		·	with varying types	of arguments	
•	_			ting duplicate symbo	ols)

c)

To improve execution speed of the program

d)	To enable better of	debugging				
	Which of the follow	wing data structure may its size?	give overflow err	or, even though	the current nu	umber of
a) Sim	ple queue	b) Circular queue	c) Prim	ary queue	d) Stack	
Q113.	The most appropri	ate matching for the foll	owing pairs:			
a)	Bubble sort	1) O(nlog(n))				
b)	Insertion sort	2) O(n)				
c)	Quick sort	3) O(n^2)				
a) a=1	b=2 c=3	b) a=3 b=1 c=2	c) a=3	b=2 c=1	d) a=2	o=3 c=1
		ertain null entries are rep special pointers are calle		pointers which p	oint to nodes	higher in the
a) roo	t	b) node	c) branch	d) thread		
Q115.	a binary search tre	e whose left subtree a <mark>nd</mark>	d right subtree di	<mark>ffer in </mark> height by a	it most one ui	nit is called.
a) AV	L tree	b) Red-black tree	c) Lem	<mark>ma tr</mark> ee	d) None	of the above
Q116.	algo	orithm is not an example	of divide and co	<mark>nq</mark> uer rule.		
a) Qu	ick sort	b) bubble so <mark>rt</mark>	c) merg	ge sort d'	binary searcl	า
Q117. a) Pu		wing stack ope <mark>rations co</mark> b) pop	uld res <mark>ult in stac</mark> l c) is_full		of the above	
	Which of the followeap sort	wing sorting algorithm ha b) Insertion sort			og(n)? Bucket sort	
Q119. a) 3	The number of bin b) 5 c) 7	ary trees with 3 nodes w d) 9	hich when traver	rsed in post ordei	gives the sec	uence A, B , C is
Q120. a) n-1	A binary tree that I b) log(n)	has n leaf nodes, all at sa c) 2n d) 2n-1	ame level. The nu	mber of non-leaf	nodes in such	n tree is
Q121.	Queue can be used	d to implement				
a) R	ecursion	b) Breadth-	first search	c) Depth – first s	earch	d) None of these

a) C	hain of respons	ibility	b) Interpreter	pattern	
c) B	uilder pattern		d) Adapter pattern		
0422	NAVIaiala alaaiaa		lineta ale e de ce in care caricari		
		•	limit the class instantiatio	n to one object? a)	
	y method design	•	Builder design pattern		
C) PIO	totype design pa	attern	d) Singleton design patte	m	
	-	h outlives the program e	xecution time and exists b	etween executions of the program is	
knowr					
a) Glob	oal object	b) persistent object	c) transient object	d) delegate object	
Q125.		attern you would use to t	ranslate an existing class i	nterface into a compatible target	
a) Prox	ky design patteri		b) Adapter de	esign pattern	
c) Faça	ide design patte	^m Shrira	d) Bridge desi	gn pattern	
Q126.	The adapter, br	idge and composite desig	n patterns are examples o	of a)	
Creation	onal pattern	b) Structural pattern			
c) Beh	avioral pattern		d) Interaction	pattern	
		-		an all be categorized as	
a) Be	havior diagram	b) Structu	re diagram c) Acti	vity diagram d) Interaction diagra	
O120	Linked link are r	not cuporior to STI vector			
True		not superior to STL <mark>vector</mark> b) False	s a)		
iiue		b) I alse			
Q129.	Deleting a node	in a linked list is a simple	matter of using the delet	e operator to free the node's memo	
a) Tru	e	b) False			
Q130.	The advantage	of link list over array is			
a)	Link list can gro	ow and shrink in size dur	ing the time		
b)	Less space is re	equired for storing eleme	nts		
c)	Both 1 and 2 ar	re correct			
d)	None of the ab	ove			
O131	Which one of th	ne following algorithm is I	NOT an example of Divide	and conquer technique	
a) Quid		b) Merge Sort	c) Bubble Sort	d) Binary Search	
٠, ٩٠١٠		2,	-,	a,a., ocaron	

·	ses the sequence DBEAFC, and the postorder transversal of of the following is correct preorder transversal sequence?
a) DBAECF b) ABEDFC c) A	ABDECF d) None of the above
Q133. How many cycles should be contained in a tree? a) 0 b) at least 1 c) any number d)	None of the above
Q134. If graph G has no edges then corresponding adjact a) unit matrix b) zero matrix c) n	cency matrix is all 1's d) None of the above
Q135. What is not true for linear collision processing?	
a) It is easier to program b) It may include n	
	All are true
Q136. In an adjacency matrix parallel edges are given b	
a) Similar columns b) Similar rows	c) Not representable d) None of the above
Q137. The element at the root of heap is a) Largest	
b) Smallest	
c) Depending on type of heap it may be smallest of the above	or largest
Q138. The end at which a new element gets added to q a) Front b) Rear c) Top d) Bottom	ueue is called
Q139. If we traverse a following tree in Pre order then v	what will be traversal
a) ABDGCEHIF b) ABDGHEICF c) ABDGFCI	
Q140. A graph is said to be a tree, if it satisfies which of a) If it is connected and there are no cycles in the grap	·
b) If it is not connected and there are cycles in the	graph
c) If it connected and there are cycles in the graph	
d) None of the above	
Q141. Hashing refers to the process of deriving	
a) A record key from storage address	b) Storage address from a record key
c) A floating-point code from a record key	d) None of the above

the same tree p	oduced the sequence	DEBFCA. Which o	f the following is a cor	FC, and the postorder traversal of rect preorder traversal sequence?
a) DBAECF b) A	ABEDFC c) ABDECF d) N	one of the above	
Q143. What is n a) It is easier to p c) It requires spa	_	· -	nclude more collision rue	
Q144. In an adja	cency matrix parallel o	edges are given by		
a) Similar colum	ns b) Similar rows	c) Not representab	le d) None of the above
<pre>#include<iostrea a="32," b="" enum="" int="" main()="" pre="" std;="" test="" {="" {<="" };=""></iostrea></pre>	ne output of the follow nm> using namespace , C; <<","< <b<<","<<c;< td=""><td>iram</td><td>Mantra 2, 31, 30 d) N</td><td>Ione of the above</td></b<<","<<c;<>	iram	Mantra 2, 31, 30 d) N	Ione of the above
	c data structure where nary search tree c) ci		r desired records in O((log2n) time is d) array
Q147. We can e	ficiently reverse a stri	ng using a		
a) linear queue	b) circular queue	c) stack	d) doubly linked list
Q148. Deleting a a) True	node in a linked list is b) False	s a simple matter o	of using the delete ope	erator to free the node's memory.
		•	•	FC, and the postorder traversal of rect preorder traversal sequence? the above
Q150. What is n	ot true for linear collis program	ion processing?	b) It may include m	nore collision

c) It re	quires space for link	S.S.	d) All ar	e true			
	In an adjacency ma lar columns	trix parallel edges are giv b) Similar row	-	epresentable	d) None of the above		
Q152. The bii resulta Select	Suppose the number nary search tree use ant tree?		natural numbers.		empty binary search tree. traversal sequence of the		
Q153. Two main measures for the efficiency of an algorithm are a) Data and space. b) Processor and memory c) Complexity and capacity d) Time and space Q154. The complexity of the average case of an algorithm is							
a)		icated to analyze than th					
b)	•	r to analyze than that of					
c)	Sometimes more of	omplicated and some otl	<mark>ner ti</mark> mes simp <mark>le</mark> i	than that of worst	case d) None or above		
a) Cou	Q155. The time factor when determining the efficiency of algorithm is measured by a) Counting microseconds b) Counting the number of key operations, c) Counting the number of statements d) Counting the kilobytes of algorithm						
Q156.	The space factor wh	nen determini <mark>ng the ef</mark> fic	iency <mark>of algori</mark> th	m is measured by			
a) Cou	nting the maximun	n memory needed by the	algorithm				
b)	Counting the minir	num memory needed by	the algorithm				
c)	Counting the avera	ige memory needed by th	ne algorithm				
d)	Counting the maxi	mum disk space needed l	by the algorithm				
Q157.	Which of the follow	ing case does not exist in	complexity theo	ory			
a) Be	est case	b) Worst case	c) Average case	d) Null case			
Q158.	The running time of	insertion sort is					
a) (O(n log n)	b) O(log n)	c) O(n)	d) O(n^2)			
		ing sorting procedure is t					
a)	Quick sort	b) Merge sort	c) Bubble sort	d) Heap	sort		

Q160. The correct o time comparisons is	rder of the efficiency of the	e following	g sorting algorithms ac	cording	to their overall running	
a) bubble>selection		b) Insert	ion>selection>bubble			
c) Merge=Quick=He		d) none above				
	teratively passes through a		change the first eleme	nt with a	any element less than it	
·	th a new first element is ca					
a) quick sort	b) se	lection so	ort			
Q162. The way a car	d game player arranges his	cards as	he picks them one by o	ne can	be compared to	
a) Quick sort	b) Insertion sort	c) Se	lection sort d) Mo	erge sor	t	
Q163. Which among	g the following is the best w	hen the li	ist is already sorted			
a) Merge sort	b) Quick sort	mc) In	sertion sort	d) Se	lection sort	
Q164. Which of the	following sorting algorithm	is o <mark>f divid</mark>	de-and-conquer type?			
a) Bubble sort	b) Insertio	on sort	c) Quick sort	d) All	of above	
Q165. An algorithm	that calls itself directly or i	ndirectly i	s know <mark>n as</mark>			
a) Sub algorithm	b) Recur <mark>s</mark>	ion	c) P <mark>olish no</mark> tation	d) Tra	aversal algorithm	
Q166. Representation	on of data structure in men	nory is kno	own as:			
a) recursive	b) abstract data	type	c) storage structure	Α	d) file structure	
	ined to be a mathematical ations on that model.	model of	a user-defined type ald	ng with	the collection of all	
a) Cardinality	b) Assignr	ment	c) Primitive	d) Str	ructured	
Q168. An algorithm algorithm is in the o	is made up of two indepen rder of	dent time	complexities f (n) and	g (n). Tł	nen the complexities of th	ie
a) f(n) x g(n)	b) Max (f(n),g(n))	c) Mi	in (f(n),g(n))	d) f(n) + g(n)	
· · · · · · · · · · · · · · · · · · ·	maintenance work, you ar r, at the end of each day. T			arrangin	g the library books in a	
a) Bubble sort	b) Quick s	ort	c) Insertion sort	d) S	Selection sort	
=	me of merge sort can be re	-		/2) . 2	4) T/-) 2T/-/2) -	
a) T(n)=2T(n/4)+n	b) T(n)=2 ⁻	ı(n/∠)+n	c) T(n)=2T(n	/	d) T(n)=2T(n/3)+n	

Algorithm & Data Structure Question Bank eDAC Sept 21

Q171. You have a sorted array and n array is also sorted, the best sorting		•	n that array so	that the resulting	
a) Bubble sort	b) Selection sort	c) Insertion s	ort d) M	erge sort	
Q172. The input to a merge sort is 6 algorithm in this case	5,5,4,3,2,1 and the sam	e input is applied to q	uick sort then	which is the best	
a) Merge sort	b) Quick sort	c) Cannot be decided	d		
Q173. The memory available for sto approach amongst the following	orage is less, in this cas	e if you want to sort tl	ne data which	is the better	
a) Merge sort	b) Quick sort	c) Heap sort	d) All		
Q174. Arrange heap sort, merge sorta) heap>merge>quick Q175. One of the reason why quick	b) quick <heap<merg< td=""><td>ge c) merge>qu ed to other sorts is</td><td>ick>heap</td><td>d) none</td></heap<merg<>	ge c) merge>qu ed to other sorts is	ick>heap	d) none	
a) its running time is O(n)	b) its	space complexity is th	<mark>leta</mark> (log n),		
Q176. The running time of quick sor a) arrangement of elements		of pivot element	c) small list,	d) none	
Q177. The running time of heapify i					
a) T(n) = T(2n/3) + Omega(1)	b) T(n) = T(2n/2) , T(n) = T(2	n)	c) None	
Q178. Which of the following stater	ments are right about r	adix sort?			
a) LSD radix sort is a stable sort	b) MS	D radix sort is a stable	sort	c) None.	
Q179. LSD radix sort is applied on the following set of numbers: 21,86,124,33,29,163. What will be the order of numbers just before the MSD is considered? a) (21,29,86,33,124,163) b) (21,124,29,33,163,86) c) (21,29,124,163,33,86)					
Q180. The worst case time and wor O(k*lg (N)) b) O(N^2) c) O(k*N	•	ity of radix sort is: a)			
Q181. The Worst case occur in linea	ır search algorithm wh	en			
a) Item is somewhere in the mi	•				
b) Item is not in the array at all					
c) Item is the last element in th	ie array,				

Item is the last element in the array or is not there at all

d)

PG DAC Feb 20 Data Structure Question Bank

Q182. The Average case occur in linear search algorithm

When Item is not in the array at all.

a)

b)

When Item is somewhere in the middle of the array.

c)	When Item is	the last element	in the arra	ay.					
d)	When Item is the last element in the array or is not there at all.								
0183.	Arravs are bes	t data structures	•						
a)	-	permanent coll		data					
b)	-	-		in the structure a	are constantly				
•		of above situation			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
d) for i	none of above	situation							
a) The c) The	name of array first data fron	n the set to be st	If (I) ored	m Mo	b) The data type of array d) The index set of the arra	у			
		\ _		e indexed structu					
a) line	ar arrays	b) linked lists	c) both of	above d) none	of above				
0196	Which of the	following is not th	no roqui <mark>ro</mark> c	l condition for bir	nary coarch				
	hm? a)	_	7 /		e direct access to the				
_	e element in ar		z sortea, ti	iere snould be th	c direct decess to the				
			te and/or	insert elements i	n list c)				
-	e of above								
				_					
		ollowing statem							
a)	•	nse lists and stat							
b)				_	t space in memory				
c)	-	e the next data e							
d)	linked lists ar	e collection of th	e nodes th	at contain inform	ation part and next pointer				
Q188.	Binary search	algorithm canno	t be applie	d to					
	ed linked list	_	• •	inary trees	c) sorted linear array	d) pointer array			
0.4.00									
	-	inserted at the e		•	D) T				
a) End	кеу.	b) Stop	кеу.	c) Sentinel.	D) Transposition.				
Q190.	The goal of ha	shing is to produ	ce a search	n that takes					
-,,-	- 3-5. 1.0								

a) O(1) time	b) O(n2) time	c) O(log n) time	d) O(n l	og n) time
Q191. The largest elea) lower bound.	ement of an array index is ca b) range.	lled its c) upper b	oound. d) All o	f these.
Q192. When new da	ta are to be inserted into a c	lata structure, but th	ere is no available s	pace; this situation is
a) underflow	b) overflow	c) house full	d) saturated	
a) grounded header	following is two way list? list ader and trailer nodes	b) circular heade		
Q194. Which of the t	following name does not rela b) LIFO list	ate to stacks? c) Piles	d) Push-down	lists
Q195. A data structu a) Linked lists	re where elements can be a b) Stacks	dded or removed at o c) Queues	either end but not in d) Deque	n the middle
Q196. Identify the data a) Input-restricted data c) Priority queues	ata structure which allows de eque		-restricted deque	tion at only one end.
	following data structure is no o) Lists c) Stacks	on-linear type? d) None of above		
Q198. What is the a) ab+cd-*	postfix form of the following b) abc+*–	; prefix *+ab–cd c) ab+*cd–	d) ab+*cd–	
Q199. The situation	n when in a linked list START	=NULL is		
a) underflow	b) overflow	c) house full	d) saturated	
a) for the size ob) for both of all	e best suited for relatively perfective of the structure and the data bove situation bove situation			g
Q201. In list implemental the data	entation, a node carries info b) the link	-	and the data	d) non above

Q202. The link field in the last node of	f the linked list contains		
a) Zero value	b) link to the	first node	
c) Pointer to the next element location	n d) all above		
Q203. To delete a node at the beginni	ing of the list, the location of		
a) second element in the list		b) first element in the list	
c) last element in the list		d) no element	
Q204. A linked list in which the last no	•		
a) Doubly linked list k	o) Circular list c) Generalized	l list d) reveres	list
Q205. A doubly linked list facilitates list	st traversal in		
Shri	b) Circular direction	c) Either direction	d) no direction
Q206. In the linked list representation	of the stacks <mark>, the top</mark> o <mark>f the</mark>	stack is represented by	
a) the last node b) any o	f the nodes c) first	node d) non abo	ve
Q207. Polynodes consists of three field	ds repres <mark>enting</mark>		
a) Coefficient, exponential and li	ink b) Coefficient, dat <mark>a ite</mark>	<mark>em an</mark> d the link	
b) Previous item link, data item a	nd next item link d) onl	y exponential and link	
Q208. Linked list data structure usage	off <mark>ers cons</mark> iderable saving in		
a) Computational time		b) Space utilization	
c) Space utilization as well as comput	ational time.	d) all above	
Q209. Whether a list is full or empty is	s given by the		
a) The status operation	o) The length of the list	c) The size of the list	d) zero value
Q210. To represent hierarchical relation	onship between elements, w	hich data structure is suita	able?
a) Deque b) Priority c	t) Tree d) All o	f above	
Q211. The depth of a complete binary	tree is given by		
a) Dn = n log2n	b) Dn = n log2n+1	c) Dn = log2n	d) Dn = log2n+1
Q212. When inorder traversing a tree	resulted E A C K F H D B G; tl	ne preorder traversal wou	ld return
a) FAEKCDBHG	b) FAEKCDHGB	c) EAFKHDCBG d) F	EAKDCHBG
Q213. The post order traversal of a bi	nary tree is DEBFCA. Find ou	t the pre order traversal	

a) ABFCDE b) ADBFEC		c) ABDECF	d) A	BDCEF	
for efficiency. These sp	ecial pointers a	re called			h point to nodes higher in the tree
a) Leaf b) bra	ancn	c) path	α) τ	hread	
Q215. The in order trav	ersal of tree wi	ll yield a sorte	ed listing of ele	ments of tree	e in
a) Binary trees	b) Binary	search trees	;	c) Heaps	d) None of above
Q216. If every node u in a) isolated b) comp	=	to every othe) finite	r node v in G, A		to be
Q217. A binary tree of a) Each leaf in the tree	•	•	•	e if	
b) For any node "n leaves, are also at level None of the abo	"d" d) Both a		cendent at lev	el "d" all the l	eft descendents of "n" that are
Q218. The degree of a	node in a gener	al tree ca <mark>n be</mark>			
a) maximum two	b) two	c) <mark>more t</mark>	han two	d) zero	
Q219. In an ordered tre	ee the left most	son is the			
a) oldest son	b) youngest	son	c) left son	d) Noi	ne of the above
Q220. An element of a	tree is called a				
a) node b)	root	c) leaf			
Q221. The node which a) ancestor	_	e branch node) grandfather		c) root node	
Q222. Going from leave	es to the root is	called			
a) traversing	b) descending		c) climbing	
Q223. A binary tree in v	which every nor	n-leaf node h	as non-empty	right and left s	subtrees is said to be a
a) Strictly binary tree	b) complete bi	inary tree	c) aln	nost complete binary tree
Q224. In the inorder tro	ee traversal the	root is visited	d		
a) before left subt	ree visit	b) in be	etween subtree	visits	c) before right subtree visit

PG DAC Feb 20 Data Structure Question Bank

Q225. In the sequential representation of binary tree implementation each node of the tree will have a) no link field b) info, left, right and father fields three fields, data and the pointers to left and right subtrees. c) Q226. An adjacency matrix representation of a graph cannot contain information of: b) edges c) direction of edges d) parallel edges a) nodes Q227. In Breadth First Search of Graph, which of the following data structure is used? c) Linked List. d) None of the above. a) Stack. b) Queue. Q228. The binary tree in which the descendent points to the ancestor is called? a) linked tree b) threaded tree c) pointer tree Q229. A binary tree whose every node has either zero or two children is called: a) Complete Binary Tree b) Binary Search Tree c) None of the Above d) Extended Binary Tree Q230. What is the output of the following program? #include <iostream> int main() { char arr[20]; int I; for(i=0;i<10;i++) *(arr+i)=65+l; *(arr+i)='\0'; cout<<arr; return(0); } Select one: a) มมมมมม b) ABCDEFGHIJ c) None of these d) AAAAAAAAA Q231. What is the running time of the following code fragment? for (int i=0; i<10; i++) for (int j=0; j<N; J++) for (int k=N-2; k<N+2; K++) cout<<in<<" "<<j<<end a) O (log N) b) O (N) d) O (N log N) c) O (N²)

	. The initial configura s a minimum of?	tion of the queue is a, b, o	d (a is the front end).To get the confi	guration d, c, b, a one		
	2 deletions and 3 ad	ditions	b) 3 deletions and 4 add	b) 3 deletions and 4 additions		
	3 deletions and 2 ad		d) 3 deletions and 3 add			
Q233	. What is the infix ve	rsion of the following post	x expression? X12+z17Y +42*/+			
a) x+1	L2+z/ (17+y)*42		b) x+12+z ((17+y)*42	b) x+12+z ((17+y)*42		
c) x+1	.2+z/17+y*42		d) x+12+z)/ (17+Y*42)			
Q234	. Linked lists are not	used in:				
a) Linl	ker b) OS	c) None of thes	d) Compiler			
Q235	. The balance factor f	or an AVL tree are:				
a) 0, 1	l, or -1	b) All of these	1, 2 or 3 d) 0, 1 or 2			
Q236 List no	V	ne following class whose u	derlying data structure is a linked lis	t of of		
class l						
public						
	er public functions					
struct); private:					
	ode{ int					
item;	-					
	*next;	V				
} ;						
ListNo	ode*head;					
} ;						
		ving sequence of code cou ch ones are legal, even if	d be used in the destructor~List () to one of the destructor.	correctly delete all of		
l.	for(ListNode*n=he	ad;head!=NULL;head=n){	=head->next;			
delete	e head;					
}						
II. }	for (ListNode *n=h	ead;n!=NULL;n->next){ de	te n;			
J						
III.	ListNode*n;					

Q238. while(head)	!=NULL){			
n=head>next; dele	te head;			
head=n;				
}				
a) I and II only	b) III only	c) II an	d III only	d) and III only
Q239. Find the out	put of the following p	rogram?		
Main ()				
{				
int x=20, y=35; x=y	+++x;			
cout< <x<<y;< td=""><td></td><td></td><td></td><td></td></x<<y;<>				
}				
a) 56, 91	b) 55, 90	c) 57, 94	d) 57, 92	
Q240. The number	s of swapping needed	to sort the number	ers 25,23,21,22,24 i	n ascending order using bubble sort
is:	DILIL	MINU IN	A CUPUUT	
a) 12	b) 20 c) 6	d) 13		
Q241. What is the	expected time require	ed to sea <mark>rch for a</mark> v	alue in a binary sea	rch tree containing n nodes? (You
should make reaso	nable assumptions ab	oout th <mark>e structu</mark> re (of the tree.)	
a) O(log n)	b) O(n)	c) O(1)	d) <mark>O(n log n</mark>)	
Q242. The inorder	and preorder traversa	al <mark>of a bina</mark> ry tree a	i <mark>re a b c a</mark> f c e g and	dabdecfg, Respectively. The
postorder traversa	I of the binary tree is			
a) d e b f g c a	b) e d b g f	c) e d k	ofca d) d	e f b c a
Q243. Which one is	s not a type of a queu	e:		
a) Non-liner Queu	e b) Circulai	rqueue	c) Deque	d) Priority Queue
Q244. Consider the	e following C			
declaration struct{	_			
union{ float y;	long z; }u; }t	::		
O245. Assume the	objects of type short.	float and long occ	upy 2 byte. 4 byte a	nd 8 byte respectively. The
	ent for variable t igno	_		, , , , , , , , , , , , , , , , , , , ,
	_	c) 18byte	d) 10byte	
Q246. In a complet	e binary tree of 'n' le	vels .there are:		
a) 2n-1leaves and	•	. ,	b) 2 ⁿ leaves and	2^n-1 non-leaf nodes
•	n^2-1 non-leaf nodes		•	nd 2^n non-leaf nodes

Q247. Which is	s not a sorting technique	:		
a) Merge sort	b) Radix so	rt c) Quicl	csort d)	Poll sort
Q248. The way		_	e picks them up or election sort	ne by one, is an example of d) bubble sort
aj ilisertion	1301t b) IIIci	gc 3011 c/ 3	ciccion sort	a) bubble 301t
Q249. Which on	ne is the simplest data str	ucture:		
a) Strut	b) Tree	c) Linked List		d) Array
	mplate in C++ has the fo T> class TemplatedClass	_		
 }	Chui	ram N	Lante	.; 🛦
;	DILIT	rurre 1v	IUILLI	
Q251. What is t	he meaning of T in the ab	oove progr <mark>am?</mark>		
a) It must be an	integer constant		It is a string varia	
c) It is a placeho	lder for a type name	d)	It is a placeholde	er for a pointer value
	e order traversal :			
a) Every node is			b) Only root node	
c) Some node	are visited twice	d) Eve	e <mark>ry node</mark> is visited	twice
Q253. What is t	he output of the followin	g?		
#include <iostre< td=""><td>am></td><td></td><td></td><td></td></iostre<>	am>			
using namespac	ce std;			
int main ()				
{				
int i;				
char*art [] = {"	C","C++","JAVA","VBA"};			
char *(*ptr)[4] =	= &arr			
char<<++ (*ptr)	[2];			
return 0;				
}				
a) Java	b) C++	c) ava	d) compile	e time error
Q254. In recursi	on which data structure	is used:		
a) Tree	b) Linked List	c) Array	d) Stac	:k

Q256. Which of the	following operators of	cannot be overload	ed?		
a) =	b) ->	c) ::	d) ==		
•	quivalent of the infix				
a) 42\$3*3-8/411+/		•	*3-84/11+/+		
c) 42\$33*-84/11+/-	+	d) 42\$3	*3-84/11++/		
Q.258) Stack is also					
a) First in first out	b) First in last	out c) Last	in last out	d) Last in first out	
	the path from the ro				
a) Ancestor node of) Successor node	c) Internal node	d) Nor	ne of the above	
	e following is not the t		Lant	ri A	
a) Priority queue b) Circular queue	c) Single ended q	ueue a) Oro	inary queue	
Q.261) A graph is a nodes.	collection of nodes, ca	alled And line	segments called	d arcs or that connect pai	r of
a) vertices, paths	b) vertices, ed	lges c) grap	oh node, edges	d) edges, vertices	
Q.262) In, sea	arch start at the begin	ning of the list and	check every el	ement in the list.	
a) Binary search	b) Hash Search	/ /-		ary Tree search	
Q. 263) In the	traversal we process a	all of a vertex's des	<mark>cenda</mark> nts befor	e we move to an adjacent ver	rtex.
a) Depth Limited	b) With First	c) Breadth First	d) Depth F	irst	
Q. 267) To represer	nt hierarchical relation	nship between elen	nents, Which d	ata structure is suitable?	
a) Graph	b) Tree	c) Dequeue	С	l) Priority	
Q.268) Which of th	e following data struc	ture is linear type?	•		
a) Stack	b) Graph	c) rees d)	Binary tree		
Q.269) Herder nod	e is used as sentinel ir	١			
a) Queues	b) Stacks	c) Graph	ns d)		
Binary tree					
•	e following data struc		_		
a) Arrays	b) Stacks	c) Records	d) None of	the above	
Q.271) A binary sea	arch tree whose left si	ubtree and right su	btree differ in l	hight by at most 1 unit is calle	ed

a) Lemma tree	b) Redblack tree	c) AVL tree	d) None of the above	
Q.272) is a pile a) List d) Array	in which items are added a b) Queue	t one end and remo	oved from the other.	
•	e following is non-linear dat b) Stacks c) St		the above	
Q.274) The numbe a) (N/2)+1	r of comparisons done by se b) (N+1)/2	-	 d) (N-2)/2	
Q.275) is not to a) Traversal	he operation that can be pe b) Insertion	rformed on queue. c) Deletion	d) Retrieval	
a) Function calls	e the application(s) of stack	b) Large number Ar d) All of the a		
Q.277) Which of th	e following data structures ab) Linked lists		res? d) None of the above	
Q. 278) Which of that a) Lists	ne following data structu <mark>re s</mark> b) Pointers	tore the homogene	eous data elements? d) Arrays	
Q.279) Linear array a) One-dimensiona	vs are also called al array b) Vertica	l array c) F	Horizontal array d) All of th	ie above
·	s not keep track of address (Queue c) String		the list.	
•	xity of linear search algorith O(log n) c) O(n2)	m is d) O(n log n)		
•	exity of Binary search algorith O(log n) c) O(n2)	hm is d) O(n log n)		
	exity of Bubble sort algorithm O(log n) c) O(n2)	n is d) O(n log n)		
Q.284) The comple	xity of merge sort algorithm	ıis		

a) O(n)	b) O(log i	n) c) O(n2)	d) O(n log n)	
Q.285)	The space factor v	when determining the e	fficiency of algorithm i	is measured by
a)	Counting the max	imum memory needed	l by the algorithm	
b)	Counting the mini	mum memory needed	by the algorithm	
c)	Counting the aver	age memory needed by	the algorithm	
d)	Counting the maxi	mum disk space neede	d by the algorithm	
Q.286)	The operation of	processing each eleme	nt in the list is known a	ıs
a) Trav	ersal	b) Inserting	c) Merging	d) Sorting
a) Spec	ial trees In Binary trees no	threads are called as b) Pointer trees des with no successor a b) Final nodes	c) Threaded tree	s d) None of the above d) Terminal nodes

Q.289 The depth	n of a complete binary	tree is given by		
a) Dn = n log2n	b) Dn = n log2	n+1 c) Dn = lo	g2n d)) Dn = log2n+1
Q.290) Every node	N in a binary tree T e	except the root has a	unique parent	t called the of N.
a) Predecessor	b) Anteceden	ts c) Precur	rsor d)) None of the above
•	r traversal of tree will	-		
a) Merging	b) AVL Trees	c) Binary	trees d) Bina	ry search trees
Q.292) A binary tro	ee whose every node	has either zero or two	o children is c	alled
a) Extended binar	y tree b) Comp	ete binary tree		
c) Binary Search tr	ee d) [Disjoint tree		
O 202) The post or	der traversal of a bina	ary trop is DERECA Fir	nd out the pre	order traversal
a) ABFCDE	b) ADBFE		ABDECF	d) ABDCEF
a) ABFCDE	U) ADBE	.C () P	IBDECF	d) ABDCEF
a) Prefix, infix, pos		b) Pre-pro	oc <mark>ess, in-p</mark> roc	ess, post-process
c) Pre-traversal, in	-traversal, post-trave	rsal d) P	<mark>re-order</mark> , in-o	order, post-order
O 295) A techniqu	e for direct search is			
a) Hashing	b) Tree Search	c) Binary Search	d) Line	ar Search
Q.296) If a node h	aving two children is	deleted from a binary	tree, it is rep	laced by its
a) Preorder predeo	cessor b) I	norder predecessor		
c) Inorder success	or d) F	reorder successor		
0.207) A (
Q.297) A full binar	y tree with 2n+1 node	es contain		
a) n leaf nodes	b) n non-leaf node	c) n-1 leaf noc	des d	l) n-1 non-leaf nodes
Q.298) A full bina	ry tree with n leaves	contains		
a) n - 1 nodes	b) log2n nodes	c) 2n – 1 nodes	d) 2n r	nodes
Q.299) The small	est element of an arr	ay's index is called its		
a) extraction	b) range	c) lower bound	d) upp	er bound

Q.300) The data	structure required f	or Breadth First Trave	rsal on a graph is	
a) queue	b) stack	c) array	d) None of the	above
Q.301) One can	convert a binary tree	into its mirror image	by traversing it in	
a) inorder	b) preorder	c) postorde	er d) N	one of the above
Q.302) The data	structure required to	evaluate a postfix ex	pression is	
a) queue	b) stack	c) linked-list	d) All of th	ne above
Q.303) Which of	the following sorting	g methods would be m	nost suitable for so	ting a list which is almost sorted
a) Insertion Sort	t b) Selection Sor	t c) Quick Sor	t d) B	ubble Sort
			ess memory is simil None of the above	ar to manipulating data on a ve
Q.305) The post	tfix form of A*B+C/D			
a) ABCD+/*	b) AB*CD/+	c) *AB/CD+	d) A	*BC+/D
Q.306) A linear a) linked list	collection of data ele b) node list	ments where the linea c) primitive		means of pointer is called of these
Q.307) Represe	ntation of data struct	tur <mark>e in mem</mark> ory is k <mark>no</mark> v	wn as:	
a) storage struc	ture b) file	e structure c) abs	tract data type	d) None of the above
Q.308) The goal	of hashing is to prod	uce a search that take	s	
a) O(1) time	b) O(n2) ti	me c) O(lo	og n) time	d) O(n log n) time
Q.309) The con	nplexity of multiplyin	g two matrices of orde	er m*n and n*p is	
a) np	b) mn+p	c) mn d) mnp	
Q.310) For an u	ndirected graph with	n vertices and e edge	s, the sum of the d	egree of each vertex is equal to
a) 2n	b) 2e	c) (e2+1)/2	d) (2n-1)/2	
Q.311) Which da	ata structure allows d	eleting data elements	from and inserting	g at rear?
a) Stacks) Binary search tre	

Q.312) Which	data structure	e is used in brea	dth first sea	irch of a graph to hold r	nodes?
a) Array	b) Tree	c) Stack	d) queu	e	
Q.313) Identi a)	ify the data str	ucture which al	lows deletic	ons at both ends of the I	ist but insertion at only one end.
Stack b) Pri	ority queues				
c) Output res	tricted qeque	ue d) Input rest	ricted dequ	eue	
Q.314) Which	n of the followi	ing data structu	re is non lin	ear type?	
a) Graph	b) Stac	_		d) None of the above	е
	0	77 0		N. M.	• 🛦
	In a queue, the	initial values o	f front point	er f rare pointer r shoul	ld be and
respectively.			1/10	1) 4 10	
a) 0 and 1	b) 0 ar	id -1 (c)	-1 and 0	d) 1 and 0	
Q.316) There	e is an extra ele	ment at the he	ad of the list	t called a	
a) Sentinel	b) Antii			d) Li <mark>st heade</mark> r	
	operty of bina	1			
-	annot contain	The same of the sa	7	irst <mark>subset is</mark> called left s	
c) The second	subtree is call	ed right sub <mark>tree</mark>	e d)	T <mark>he right</mark> subtree can b	e empty
•	new data are t	to be inserted in	nto a data si	cructure, but there is no	t available space; this situation is
a) overflow	b) Und	erflow c)	housefull	d) memoryfull	
Q.319) A data 	structure whe	ere elements ca	n be added	or removed at either er	nd but not in the middle is called
a) stacks	b) que	ues c) deq	ueuer	d) linked lists	
Q.320) The us a) stack	se of pointers t b) queue	o refer element		structure in which elem	ents are logically adjacent is
	_	hm cannot be a			al) a a uta al libel a al libel
a) pointer arı	r ay b) sort	ed linear array	C)	sorted binary trees	d) sorted linked list

Q.322)	is the metho	d used by card so	rter?		
a) Quick	b) Heap	c) Insertion	d) Radi	x sort	
Q.323) Which	of the followi	ng conditions che	ecks available fr	ree space in	avail list?
a) Avail=Top	b) Null	=Avail c) A	Avail=Null	d) Avail=	-Max stack
Q.324) Which	of the followi	ng is not the type	e of queue?		
a) Priority que	ue b) Circula	queue	c) Ordinary o	queue	d) Single ended queue
Q.325) is	a directed tr	ee in which outde	egree of each n	ode is less t	han or equal to two.
a) Binary tree	b)	Dinary tree	c) Unar	y tree	d) None of the above
Q.326) The nui	mber of comp	arisons done by s	sequential sear	ch is	tri
a) (N/2)-1	b) (N+:	1)/2	c) (N-1)/2	d) (N+2)/	/2
Q.327) In,	search start	at the beginning o	of t <mark>he list a</mark> nd c	heck every	element in the list.
a) Hash Search	n b) Bina	ry search	c) Linear sea	rch	d) Binary Tree search

PG DAC Feb 20 Data Structure Question Bank

Q.328 The operation that combines the element is of A and B in a single sorted list C with n=r+s

element is called	•••				
a) Sharing	b) Merging	c) In	serting	d) N	lone of the above
Q.329) Which of the	e following is an inter	nal sorting	;?		
a) 2-way Merge Sort	b) Tape S	ort	c) Merge S	Sort	d) Tree Sort
Q.340) Which of the	following is an exter	nal sorting	?		
a) Merge Sort	b) Tree So	ort	c) Bubble	Sort	d) Insertion Sort
Q.341) is the te	erm used to insert an	element in	ito stack?		
a) Push	b) Pull	c) Pop		d) All of t	he above
O.342) is the	term used to delete	an elemen	t from the s	stack?	• 🛦
a) Push	b) Pull	JULY 100 AND AND	7 100 - 7 100 - 4	d) All of t	he above
O 242) Refere inser	ting into stack one m	ust shock t	the conditie	un.	
•	- N				/
a) Overflow	b) Underflow	c) N	1aximum el	ements	d) Existing elements
Q.344) Deletion in t	the linked stack takes	place by d	eleting	. /	
a) Beginning of the	list b) Er	nd of the li	st		
c) Middle of the list			ointed by t	he start p	process.
•	REAR is increased by				
a) An element is me	erged in a queue	b) A	n element i	s added ii	n a queue
c) An element is tra	versed in a queue	d) An ele	ment is dele	eted in a c	queue
Q.346) The operation	on of processing each	element i	n the list is	known as.	
a) merging	b) traversal	c) inserti	ng	d) sorting	5
Q.347) Sequential r	epresentation of bina	ary tree use	es		
a) Array with point	•	ngle linear			
c) Two dimensional	•	_	, dimensional	arrays	
O 240\ In a 2 tugo	a a da a suiteba O abilduana	مرا مما			
•	nodes with 0 children				
a) Outer node	b) Exterior nod	e	c) External	ı node	d) Outside node
Q.349) In a extende	ed-binary tree nodes v	with 2 child	dren are cal	led	
a) Inner node	b) Internal node	c) D	omestic no	de	d) Interior node

PG DAC Feb 20 Data Structure Question Bank

Q.350) The line drawn from a node N of tree T to a successor is called

a) Rou	ite	b) Arrow	c) Edge	d) F	Path	
Q.351	Which of the	following sort	ing algorithms	does not hav	ve a worst c	ase running time of O(n2)?
a) Inse	ertion sort	b) Quic	k sort	c) Bubble	e sort	d) Merge sort
Q.352	In a circular l	inked list				
a)		eginning and	no end.			
b)			hierarchically.	71.//		• 🛦
c)			versal within th	ne list is perm	nitted.	
d)		V.	together in soi			
•	•			7/		
Q.353	The quick so	rt algorithm ex	kploit	design ted	chnique	
a) Ove	rflow	b) Backtracki	ng c) <mark>Dyn</mark>	<mark>amic</mark> prograr	nming d) D i	ivide and Conquer
a) Stac	k b) Q What data st	ueue c)	Tree	d) Array		e implementation of a recursive
a) Tree	es b) Li	nked list	c) Stack	d) Queue	9	
Q.356) a) 2d	The number	of leaf nodes b) 2d–1+1	in a complete c) 2d+1+1	binary tree o d) 2d+1	of depth d is	
Q.357) maxim	-	er and post ord	der traversal o	f a Binary Tre	e generate:	s the same output. The tree can have
a) One	node	b) Two node	s c) Thre	ee nodes	d) Any nu	mber of nodes
0.358	A binary tree	of depth "d"	is an almost co	omplete hina	rv tree if	
a)	•	-	er at level "d"	•	•	
b)						all the left descendents of "n" that
~,	-	are also at lev	_			and the design defines of the filed

d) None of the	above			
Q.359) In a binary t a) Path	ree a sequence b) Rotate	of consecutive e	=	g lines
Q.360) An adjacend	cy matrix repres	sentation of a gra	aph cannot contain i	nformation of:
a) nodes b) e	edges c) r	parallel edges	d) direction o	f edges
Q.361) is not	-	•		
a) Traversal	b) Retrieval	c) Deletio	on d) Insert	cion
Q.362) A linear list	in which the las	st node points to	the first node is	
	Shi	iram	Man	tri
a) singly linked list	b) doubly linked	d list c) c	ircular linked list	d) none of the above
Q.363) A linear list a) singly linked list			oubly linked list	ode is d) none of the above
Q,364) A indic				
a) Guard b) S	Sentinel	c) E <mark>nd point</mark> er	d) Last pointe	er
Q.365) LLINK is the	pointer pointing	ng t <mark>o the</mark> .		
a) head node	b) last node	c) succes	ssor node d)	predecessor node
-			possible in linked list	
a) first	b) middle	c) last	d) All of	the above
Q.367) A doubly lin	ked list has	pointers with	each node.	
a) 0	b) 1	c) 2	d) 3	
Q.368 A linear list i a) singly linked list		ode has point to linked list	· ·	I successors nodes is called st d) None of the above
Q.369) RLINK is the	pointer pointir	ng to the		
a) last node	b) head	node c) s	uccessor node	d) predecessor node

PG DAC Feb 20 Data Structure Question Bank

Q370) In a linked l	list, insertion	can be d	one as
---------------------	-----------------	----------	--------

a)beginning b) middle c) end **d) all of the above**

Q.371 The link field of last node, in a singly link list representation is linked with

a) The data field of the first node

b) The link field of the first node

c) A null

d) The link field of the prior node

