```
import os, glob
In [5]:
        import pandas as pd, numpy as np
        import torch, torch.nn as nn, torch.optim as optim
        from torch.utils.data import Dataset, DataLoader
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import LabelEncoder, StandardScaler
        import matplotlib.pyplot as plt
        from sklearn.metrics import confusion_matrix, classification_report
        import seaborn as sns
        # --- DATA LOADER & PREPROCESSING ---
        def load_and_merge_datasets(roots):
            merged = []
            for act_folder in sorted(os.listdir(roots[0])):
                if not act folder.startswith('.'):
                     sub_files = glob.glob(os.path.join(roots[0], act_folder, '*.csv'))
                    for sub_file in sub_files:
                         sub_name = os.path.basename(sub_file)
                        triplet = []
                         ok = True
                         for r in roots:
                             path = os.path.join(r, act_folder, sub_name)
                             if os.path.exists(path):
                                 triplet.append(pd.read csv(path))
                             else:
                                 ok = False
                                 break
                         if ok:
                             dfA, dfB, dfC = triplet
                             dfA = dfA.add_prefix('devicemotion_')
                             dfB = dfB.add_prefix('accelerometer_')
                             dfC = dfC.add_prefix('gyroscope_')
                             df = pd.concat([dfA, dfB, dfC], axis=1)
                             df['act'] = act_folder
                             merged.append(df)
            if not merged:
                raise FileNotFoundError("No data found. Check folder structure!")
            return pd.concat(merged, ignore_index=True)
        def windows(df, window size=100, stride=50):
            Xs, ys = [], []
            cols = [c for c in df.columns if c not in ['act']]
            arr = df[cols].values
            acts = df['act'].values
            for i in range(0, len(df) - window_size, stride):
                Xs.append(arr[i:i+window_size].T)
                ys.append(acts[i+window size//2])
            return np.array(Xs), np.array(ys)
        class MotionSense(Dataset):
            def __init__(self, X, y):
                self.X = torch.tensor(X, dtype=torch.float32)
                self.y = torch.tensor(y, dtype=torch.long)
            def __len__(self):
                return len(self.X)
            def __getitem__(self, i):
                return self.X[i], self.y[i]
        class CNN LSTM(nn.Module):
            def __init__(self, n_features, n_timesteps, n_classes):
                super().__init__()
                self.conv1 = nn.Conv1d(n features, 64, 3, padding=1)
```

```
self.bn1 = nn.BatchNorm1d(64)
        self.relu1 = nn.ReLU()
        self.conv2 = nn.Conv1d(64, 128, 3, padding=1)
        self.bn2 = nn.BatchNorm1d(128)
        self.relu2 = nn.ReLU()
        self.lstm = nn.LSTM(128, 64, batch_first=True, num_layers=2, dropout=0.3)
        self.fc1 = nn.Linear(64, n_classes)
        self.dropout = nn.Dropout(0.5)
    def forward(self, x):
        x = self.relu1(self.bn1(self.conv1(x)))
        x = self.relu2(self.bn2(self.conv2(x)))
        x = x.permute(0,2,1) # (batch, seq, feature)
        _{,} (h, _{)} = self.lstm(x)
        h = h[-1]
        h = self.dropout(h)
        return self.fc1(h)
def train_epoch(model, loader, criterion, optimizer, device):
    model.train()
    total_loss, correct, total = 0.0, 0, 0
    for Xb, yb in loader:
        Xb, yb = Xb.to(device), yb.to(device)
        optimizer.zero_grad()
        out = model(Xb)
        loss = criterion(out, yb)
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
        optimizer.step()
        total_loss += loss.item() * Xb.size(0)
        pred = out.argmax(dim=1)
        correct += (pred == yb).sum().item()
        total += Xb.size(0)
    return total_loss / total, correct / total
def eval_loss(model, loader, criterion, device):
    model.eval()
   total_loss, correct, total = 0.0, 0, 0
    with torch.no_grad():
        for Xb, yb in loader:
            Xb, yb = Xb.to(device), yb.to(device)
            out = model(Xb)
            loss = criterion(out, yb)
            total loss += loss.item() * Xb.size(0)
            pred = out.argmax(dim=1)
            correct += (pred == yb).sum().item()
            total += Xb.size(0)
    return total_loss / total, correct / total
def plot history pt(train accuracies, test accuracies, train losses, test losses, a
    fig, axs = plt.subplots(1, 2, figsize=(16, 6))
   axs[0].plot(train_accuracies, 'r', label='Train')
axs[0].plot(test_accuracies, 'b', label='Test')
    axs[0].set_ylabel('Accuracy')
    axs[0].set_xlabel('Epochs')
    axs[0].set_title(add_title + f'Best Test Acc: {np.max(test_accuracies):.4f} @
    axs[0].legend(); axs[0].grid()
    axs[1].plot(train_losses, 'r', label='Train')
   axs[1].plot(test_losses, 'b', label='Test')
    axs[1].set_ylabel('Crossentropy Loss')
    axs[1].set_xlabel('Epochs')
    axs[1].legend(); axs[1].grid()
   plt.tight_layout()
    plt.show()
```

```
if __name__ == "__main__":
      print("Loading and merging data from all sensor folders...")
       roots = ['A_DeviceMotion_data', 'B_Accelerometer_data', 'C_Gyroscope_data']
      df = load_and_merge_datasets(roots)
      df = df.fillna(0)
      print(f"Loaded dataset shape: {df.shape}")
      print("\nSegmenting into windowed samples for deep learning...")
      X, y_str = windows(df, window_size=100, stride=50)
      print(f"Feature array shape: {X.shape}, Label array shape: {y_str.shape}")
      print("\nNormalizing and encoding the data...")
      nsamples, nfeat, nsteps = X.shape
      X_reshaped = X.transpose(0,2,1).reshape(-1, nfeat)
      X_reshaped = np.nan_to_num(X_reshaped, nan=0.0, posinf=0.0, neginf=0.0)
      scaler = StandardScaler()
      X_scaled = scaler.fit_transform(X_reshaped)
      X = X_scaled.reshape(nsamples, nsteps, nfeat).transpose(0,2,1)
      X = np.nan_to_num(X, nan=0.0, posinf=0.0, neginf=0.0)
      le = LabelEncoder()
      y_enc = le.fit_transform(y_str)
      print(f"Classes found: {list(le.classes_)}")
      X_tr, X_te, y_tr, y_te = train_test_split(X, y_enc, test_size=0.2, random_state
      train_loader = DataLoader(MotionSense(X_tr, y_tr), batch_size=128, shuffle=True
      test_loader = DataLoader(MotionSense(X_te, y_te), batch_size=128, shuffle=False
      device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
      n_features = X_tr.shape[1]
      n_timesteps = X_tr.shape[2]
      n classes = len(le.classes )
      print("\nBuilding CNN-LSTM model...")
      model = CNN_LSTM(n_features, n_timesteps, n_classes).to(device)
      criterion = nn.CrossEntropyLoss()
      optimizer = optim.Adam(model.parameters(), lr=1e-4)
      print("\nTraining model. For each epoch, loss and accuracy are reported for and
      epochs = 20
      train losses, train accuracies, test accuracies, test losses = [], [], [],
      for ep in range(1, epochs+1):
              loss, train_acc = train_epoch(model, train_loader, criterion, optimizer, d€
             test loss, test acc = eval loss(model, test loader, criterion, device)
             train_losses.append(loss)
             train_accuracies.append(train_acc)
             test_accuracies.append(test_acc)
             test_losses.append(test_loss)
             print(f"Epoch {ep:02d} - Train Loss: {loss:.4f} - Train Acc: {train_acc:.4f
      print("\nPlotting training/validation accuracy and loss for each epoch. Use thi
      plot_history_pt(train_accuracies, test_accuracies, train_losses, test_losses, test_accuracies, train_losses, 
      print("\nEvaluating model on the test set for detailed classification performar
      model.eval()
      all_labels, all_preds = [], []
      with torch.no_grad():
              for Xb, yb in test_loader:
                    Xb = Xb.to(device)
                    out = model(Xb)
                     preds = out.argmax(dim=1).cpu().numpy()
                     all preds.extend(preds)
                     all_labels.extend(yb.numpy())
       all_labels = np.array(all_labels)
       all_preds = np.array(all_preds)
```

```
print("\nClassification report below shows precision, recall, and F1-score for
print("These metrics help you understand per-activity performance, not just ove
print(classification_report(all_labels, all_preds, target_names=le.classes_))
print("The following confusion matrix heatmap visualizes where the model is mos
cm = confusion_matrix(all_labels, all_preds)
plt.figure(figsize=(12, 8))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=le.classes_, yti
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix')
plt.tight_layout()
plt.show()
print("Below are a few sample predictions from the test set (True Label vs Pred
print("This qualitative check lets you see actual predictions and errors.")
for i in range(10):
   true_label = le.classes_[all_labels[i]]
    pred_label = le.classes_[all_preds[i]]
    print(f"True: {true_label}, Pred: {pred_label}")
```

Loaded dataset shape: (1433825, 22) Segmenting into windowed samples for deep learning... Feature array shape: (28675, 21, 100), Label array shape: (28675,) Normalizing and encoding the data... Classes found: ['dws_1', 'dws_11', 'dws_2', 'jog_16', 'jog_9', 'sit_13', 'sit_5', 'std_14', 'std_6', 'ups_12', 'ups_3', 'ups_4', 'wlk_15', 'wlk_7', 'wlk_8'] Building CNN-LSTM model... Training model. For each epoch, loss and accuracy are reported for analysis. Epoch 01 - Train Loss: 2.3337 - Train Acc: 0.3349 - Test Loss: 1.7526 - Test Acc: 0.4600 Epoch 02 - Train Loss: 1.5619 - Train Acc: 0.4883 - Test Loss: 1.3019 - Test Acc: 0.5262 Epoch 03 - Train Loss: 1.2852 - Train Acc: 0.5476 - Test Loss: 1.1258 - Test Acc: 0.6115 Epoch 04 - Train Loss: 1.1561 - Train Acc: 0.5966 - Test Loss: 1.0093 - Test Acc: 0.6677 Epoch 05 - Train Loss: 1.0575 - Train Acc: 0.6434 - Test Loss: 0.9250 - Test Acc: Epoch 06 - Train Loss: 0.9871 - Train Acc: 0.6716 - Test Loss: 0.8631 - Test Acc: 0.7247 Epoch 07 - Train Loss: 0.9154 - Train Acc: 0.6997 - Test Loss: 0.8007 - Test Acc: 0.7388 Epoch 08 - Train Loss: 0.8585 - Train Acc: 0.7177 - Test Loss: 0.7278 - Test Acc: 0.7658 Epoch 09 - Train Loss: 0.8248 - Train Acc: 0.7322 - Test Loss: 0.6812 - Test Acc: 0.7801 Epoch 10 - Train Loss: 0.7861 - Train Acc: 0.7442 - Test Loss: 0.6595 - Test Acc: 0.7833 Epoch 11 - Train Loss: 0.7497 - Train Acc: 0.7533 - Test Loss: 0.6312 - Test Acc: Epoch 12 - Train Loss: 0.7194 - Train Acc: 0.7586 - Test Loss: 0.6161 - Test Acc: 0.7934 Epoch 13 - Train Loss: 0.7000 - Train Acc: 0.7665 - Test Loss: 0.5727 - Test Acc: 0.8023 Epoch 14 - Train Loss: 0.6705 - Train Acc: 0.7743 - Test Loss: 0.5552 - Test Acc: 0.8000 Epoch 15 - Train Loss: 0.6559 - Train Acc: 0.7747 - Test Loss: 0.5322 - Test Acc: Epoch 16 - Train Loss: 0.6353 - Train Acc: 0.7798 - Test Loss: 0.5189 - Test Acc: 0.8120 Epoch 17 - Train Loss: 0.6116 - Train Acc: 0.7856 - Test Loss: 0.5208 - Test Acc: 0.8087 Epoch 18 - Train Loss: 0.6118 - Train Acc: 0.7818 - Test Loss: 0.5154 - Test Acc: 0.8061 Epoch 19 - Train Loss: 0.5904 - Train Acc: 0.7877 - Test Loss: 0.4927 - Test Acc: 0.8176 Epoch 20 - Train Loss: 0.5755 - Train Acc: 0.7977 - Test Loss: 0.4734 - Test Acc: 0.8185

Loading and merging data from all sensor folders...

Plotting training/validation accuracy and loss for each epoch. Use this to visuall y assess overfitting or convergence.

Evaluating model on the test set for detailed classification performance...

Classification report below shows precision, recall, and F1-score for each class. These metrics help you understand per-activity performance, not just overall accuracy.

	precision	recall	f1-score	support
dws_1	0.41	0.49	0.45	204
dws_11	0.00	0.00	0.00	92
dws_2	0.53	0.64	0.58	241
jog_16	0.66	0.17	0.27	122
jog_9	0.81	0.96	0.88	423
sit_13	0.90	0.93	0.92	422
sit_5	0.97	0.95	0.96	951
std_14	0.82	0.84	0.83	331
std_6	0.94	0.93	0.94	911
ups_12	0.00	0.00	0.00	115
ups_3	0.64	0.03	0.06	237
ups_4	0.44	0.95	0.60	289
wlk_15	0.96	0.95	0.95	266
wlk_7	0.98	0.89	0.93	643
wlk_8	0.85	0.98	0.91	488
accuracy			0.82	5735
macro avg	0.66	0.65	0.62	5735
weighted avg	0.81	0.82	0.79	5735

The following confusion matrix heatmap visualizes where the model is most accurate and which classes are being confused with others.

C:\Users\Sachin\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:134
4: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to
0.0 in labels with no predicted samples. Use `zero_division` parameter to control
this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\Sachin\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:134
4: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to
0.0 in labels with no predicted samples. Use `zero_division` parameter to control
this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\Sachin\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:134
4: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to
0.0 in labels with no predicted samples. Use `zero_division` parameter to control
this behavior.

_warn_prf(average, modifier, msg_start, len(result))

Below are a few sample predictions from the test set (True Label vs Predicted Labe 1).

This qualitative check lets you see actual predictions and errors.

True: ups_4, Pred: ups_4
True: wlk_8, Pred: wlk_8
True: jog_16, Pred: jog_9
True: sit_5, Pred: sit_5
True: std_6, Pred: std_6
True: wlk_15, Pred: wlk_15
True: ups_3, Pred: ups_4
True: sit_5, Pred: sit_5
True: wlk_8, Pred: wlk_8

In []:

In []: