1/18/2019 <string>

Python-based **H**ierarchical **EN**vironment for **I**ntegrated **X**tallography

<u>Tutorial: Cryo_fit2: Fit Biomolecules into Cryo-EM Maps using dynamics (commandline)</u>

Contents

- Tutorial: Cryo fit2: Fit Biomolecules into Cryo-EM Maps using dynamics (commandline)
- Overview
- Theory for Cryo fit2
- Install Cryo fit2
- <u>Input</u>
- Running the program
- Output
- Options
- List of most useful options

Overview

This tutorial will show you how to fit biomolecule atomic structures into cryo-EM maps using dynamics simulation with PHENIX commandline

Theory for Cryo fit2

See the theory notes for cryo fit2

Install Cryo fit2

See the installation notes for cryo fit2

Input

<initial_model> and <target_map>

The <initial_model> is a guide or template structure (.cif/mmCIF/.pdb) that is close to a <target_map> (.ccp4/.map) structurally.

You can use either map to model or UCSF chimera (Tools->Volume Data->Fit in Map).

Running the program

At command line:

% phenix.cryo_fit2 <initial_model> <target_map>

Tutorial command:

- % Go to <user phenix>/modules/cryo_fit2/tutorial
- % source run_me.sh
- % (run_me.sh is phenix.cryo_fit2 input/tutorial_cryo_fit2_model.pdb input/tutorial_cryo_fit2_map.ccp4)

Output

1/18/2019 <string>

Structures of intermediate steps that can be animated with pymol play button: output/all_states.pdb

In pymol commandline:

```
% load ./user_map.ccp4, map1, 1 , ccp4
% isomesh mesh1, map1, 1.5, (all), 0, 1, 3.0
% cmd.color("blue", "mesh1")
```

will show map contour as mesh.

Otherwise, use pymol GUI:

```
% A (action) -> Mesh -> @ Level 3.0
```

will show cryo-EM map contour as mesh.

Options

All options will be used as default if unspecified. e.g. secondary structure enabled =True

List of most useful options

Option	Default value	Description of inputs and uses
start_temperature	500	Start temperature (Kelvin) for molecular dynamics simulation
final_temperature	300	Final temperature (Kelvin) for molecular dynamics simulation
cool_rate	50	Rate of cooling temperature (Kelvin) for MD simulation
number_of_steps	10	Number of MD simulation steps at each temperature
wx	10	A weight toward cryo-EM map
secondary_structure.en abled	True	Most MD simulations tend to break secondary structure. Therefore, turning on this option is recommended. If HELIX/SHEET records are present in supplied .pdb file, automatic search of the existing secondary structures in the given input pdb file will not be executed.
secondary_structure.pr otein.remove_outliers	True	False may be useful for very poor low-resolution structures by ignoring some hydrogen "bond" if it exceed certain distance threshold
output_dir	output	Output folder name prefix
keep_origin	True	Keep origin of input pdb structure whether the cryo-EM map origin is 0,0,0 or not