MIPS Instruction Reference List Connor Baker, January 20^{th} 2017

Core Instruction Set

Name	Mnemonic	Format	Operation (in Verilog)	OPCODE/Funct (Hex)
Add	add	R	R[rd]=R[rs]+R[rt]	$(1) \ 0/20_{16}$
Add Immediate	addi	I	R[rt] = R[rs] + SigExtImm	$(1,2)$ 8_{16}
Add Imm. Unsigned	addiu	I	R[rt] = R[rs] + SigExtImm	$(2) 9_{16}$
Add Unsigned	addu	R	$R[rd]{=}R[rs]{+}R[rt]$	$0/21_{16}$
And	and	R	$R[rd]{=}R[rs]\&R[rt]$	$(1) \ 0/24_{16}$
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3) C_{16}
Branch On Equal	beq	I	$ \begin{array}{c} if(R[rs] = = R[rt]) \\ PC = PC + 4 + BranchAddr \end{array} $	$(4) \ 4_{16}$
Branch On Not Equal	bne	I	$\begin{array}{c} if(R[rs]!{=}R[rt]) \\ PC{=}PC{+}4{+}BranchAddr \end{array}$	$(4) \ 5_{16}$
m Jump	j	J	PC=JumpAddr	$(5) \ 2_{16}$
Jump And Link	jal	J	R[31]=PC+8; PC=JumpAddr	$(5) \ 3_{16}$
Jump Register	jr	R	PC=R[rs]	$0/08_{16}$
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs]] +SignExtImm](7:0)}	$(2) 24_{16}$

Name	Mnemonic	 Format	Operation (in Verilog)	OPCODE/Funct (Hex)
Load Halfword	lhu	I	R[rt]={16'b0,M[R[rs]]	(2) 25 ₁₆
Unsigned	Inu	1	+ SignExtImm](15:0)	(2) 2016
Load Linked	11	I	R[rt]=M[R[rs]] + SignExtImm]	$(2,7) \ 30_{16}$
Load Upper Imm.	lui	I	R[rt]={imm, 16'b0}	F_{16}
Load Word	lw	I	R[rt]=M[R[rs] +SignExtImm]	$(2) 23_{16}$
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$	$0/27_{16}$
Or	or	R	$R[rd] = (R[rs] \mid R[rt])$	$0/25_{16}$
Or Immediate	ori	I	$R[rt]=R[rs] \mid ZeroExtImm$	(3) D_{16}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt])? 1:0	$0/2\mathrm{A}_{16}$
Set Less Than Imm.	slti	I	R[rt]=(R[rs] < SignExtImm) ? $1: 0$	(2) A_{16}
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? $1: 0$	$(2,6) \; \mathrm{B}_{16}$
Set Less Than Unsigned	sltu	R	R[rd]=(R[rs]< R[rt]) ? 1 : 0	$(6) \ 0/2B_{16}$
Shift Left Logical	sll	R	$R[rd]{=}R[rt]{<}{<}shamt$	$0/00_{16}$
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt	$0/02_{16}$