

Estrutura desta apresentação

- Informações iniciais do plano
- A equação geral do plano
- Determinação de um plano
- Alternativa para o cálculo da equação geral do plano
- Casos particulares de planos
- Equações paramétricas do plano

Informações iniciais do plano

Por se tratar de um espaço unidimensional, viu-se que uma reta fica totalmente representada ao se obter dela um ponto (para fixá-la no espaço) e um vetor (que recebe o nome de vetor diretor, indicando a direção da reta).

Seguindo esta linha de raciocínio, quais dados são necessários para representação de um plano?

- 1. Como também é necessário fixá-lo no espaço, precisa-se de **um ponto**.
- 2. Por se tratar de um espaço bidimensional, que vetores utilizar?

Informações iniciais do plano

Há duas possibilidades:

- i. Por se tratar de um espaço bidimensional, é de se esperar que sejam necessários dois vetores não colineares do plano. Algumas formas de representação de plano se baseiam nestes vetores, que recebem o nome de **vetores base** do plano.
- ii. Como se encontra no espaço (que é tridimensional), resta somente uma direção normal ao plano. Pode-se optar assim por utilizar somente um vetor não nulo com essa direção. Este vetor recebe o nome de **vetor normal** ao plano.

Há como relacionar os vetores base com o vetor normal?

Informações iniciais do plano

A resposta é sim!

Se \vec{n} é normal ao plano, será ortogonal a qualquer vetor presente no plano. Assim, se não se conhece \vec{n} de imediato mas se têm dois vetores base $\overrightarrow{v_1}$ e $\overrightarrow{v_2}$, pode-se definir \vec{n} como

$$\vec{n} = \overrightarrow{v_1} \times \overrightarrow{v_2}$$

A equação geral do plano

Seja $A(x_0, y_0, z_0)$ pertencente a um plano π com vetor normal $\vec{n} = (a, b, c) \neq (0,0,0)$.

Todos pontos P(x, y, z) do plano vão obedecer a relação

$$\vec{n} \cdot \overrightarrow{AP} = 0$$

Como

$$\overrightarrow{AP} = P - A = (x, y, z) - (x_0, y_0, z_0)$$

= $(x - x_0, y - y_0, z - z_0)$

A equação geral do plano

$$\vec{n} \cdot \overrightarrow{AP} = 0$$

$$(a, b, c) \cdot (x - x_0, y - y_0, z - z_0) = 0$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$ax + by + cz - ax_0 - by_0 - cz_0 = 0$$

Propondo $-ax_0 - by_0 - cz_0 = d$, obtém-se a equação geral (ou cartesiana) do plano, dada por

$$ax + by + cz + d = 0$$

A equação geral do plano

Equações geral do plano

$$ax + by + cz + d = 0$$

Observações:

- a) Note que as constantes multiplicando x, y e z na equação geral do plano são as componentes do vetor normal;
- b) A constante d é obtida substituindo o ponto conhecido do plano na equação preestabelecida com o vetor normal;
- c) Se \vec{n} é um vetor normal ao plano, o vetor $\alpha \vec{n}$, com $\alpha \in \mathbb{R}$, também será vetor normal ao plano.

(Nos próximos slides, mostrar-se-ão diferentes situações em que será possível obter um ponto e um vetor normal ao plano, o que garantirá a criação da equação geral do plano.)

Existe somente um plano que:

- 1. Passa por um ponto A e tem vetor normal \vec{n}
- Neste caso, os dados foram fornecidos diretamente.

- 2. Passa por um ponto A e é paralelo a dois vetores $\overrightarrow{v_1}$ e $\overrightarrow{v_2}$ não colineares
- Ponto: ponto *A*.
- Vetor normal: pode ser obtido com

$$\vec{n} = \overrightarrow{v_1} \times \overrightarrow{v_2}$$

- 3. Passa por dois pontos $A \in B$ e é paralelo a um vetor \overrightarrow{v} (não colinear a \overrightarrow{AB})
- Ponto: qualquer um dos dois pontos dados;
- Vetor normal: pode ser obtido com

$$\vec{n} = \vec{v} \times \overrightarrow{AB}$$

- 4. Passa por três pontos A, B e C que não estão em linha reta
- Ponto: qualquer um dos três pontos dados;
- Vetor normal: pode ser obtido com

$$\vec{n} = \overrightarrow{AC} \times \overrightarrow{AB}$$

5. Contém duas retas r_1 e r_2 concorrentes

- Ponto: pode escolher um ponto qualquer de uma das duas retas;
- Vetor normal:

$$\vec{n} = \overrightarrow{v_1} \times \overrightarrow{v_2}$$
,

em que $\overrightarrow{v_1}$ é vetor diretor de r_1 e $\overrightarrow{v_2}$ é vetor diretor de r_2

6. Contém duas retas r_1 e r_2 paralelas

- Ponto: pode escolher um ponto qualquer de uma das duas retas;
- Vetor normal:

$$\vec{n} = \overrightarrow{A_1 A_2} \times \overrightarrow{v_1},$$

em que $\overrightarrow{v_1}$ é vetor diretor de r_1 (por extensão, de r_2 também), $A_1 \in r_1$ e $A_2 \in r_2$

7. Contém uma reta r e um ponto $B \notin r$

- Ponto: pode escolher qualquer ponto da reta r ou o próprio ponto B;
- Vetor normal:

$$\vec{n} = \overrightarrow{AB} \times \vec{v},$$

em que $A \in r$ e \vec{v} é vetor diretor de r

Observação:

Há uma alternativa para calcular a equação geral do plano a partir dos vetores base de um plano, sem ser necessário o cálculo explícito do vetor normal.

Sejam $\overrightarrow{v_1} = (a_1, b_1, c_1)$ e $\overrightarrow{v_2} = (a_2, b_2, c_2)$ dois vetores base do plano e $A(x_0, y_0, z_0)$ um ponto do plano.

Note que, para qualquer ponto P(x, y, z), o vetor \overrightarrow{AP} também pertencerá ao plano. Assim, $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ e \overrightarrow{AP} serão coplanares.

Aplicar a condição de coplanaridade fornecerá a equação geral do plano, ou seja,

$$(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{AP}) = 0$$

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ x - x_0 & y - y_0 & z - z_0 \end{vmatrix} = 0$$

Alternativa para o cálculo da equação geral do plano

Análogo ao que foi feito para a reta, apresentam-se casos particulares de planos. Assim como na sua contraparte, boa parte deles se deve a componentes nulas no vetor normal ao plano.

Considerando $\vec{n} = (a, b, c)$:

1. Plano que passa pela origem

Neste caso, P(0,0,0) faz parte do plano. Substituindo na equação geral do plano,

$$a \cdot 0 + b \cdot 0 + c \cdot 0 + d = 0 \Rightarrow d = 0$$

Ou seja, sua equação é

$$ax + by + cz = 0$$

2. Planos paralelos aos eixos coordenados

Neste caso, uma das componentes do vetor normal é nula.

i. Se
$$a = 0$$
, $\vec{n} = (0, b, c) \perp Ox \Rightarrow \pi // Ox$

$$by + cz + d = 0$$

ii. Se
$$b = 0$$
, $\vec{n} = (a, 0, c) \perp Oy \Rightarrow \pi // Oy$

$$ax + cz + d = 0$$

ii. Se
$$c = 0$$
, $\vec{n} = (a, b, 0) \perp Oz \Rightarrow \pi // Oz$

$$ax + by + d = 0$$

3. Planos paralelos aos planos coordenados

Neste caso, duas das componentes do vetor normal são nulas.

i. Se
$$a = b = 0$$
, $\vec{n} = (0,0,c) = c\vec{k} \Rightarrow \pi // x0y$

$$cz + d = 0$$
 ou $z = z_0$

ii. Se a = c = 0, $\vec{n} = (0, b, 0) = b\vec{j} \Rightarrow \pi // x0z$

$$by + d = 0$$
 ou $y = y_0$

ii. Se
$$b = c = 0$$
, $\vec{n} = (a, 0, 0) = a\vec{i} \Rightarrow \pi // y0z$

$$ax + d = 0$$
 ou $x = x_0$

Os planos coordenados são planos particulares deste caso e suas equações são:

- x = 0 (plano y0z)
- y = 0 (plano x0z)
- z = 0 (plano x0y)

Sejam $A(x_0, y_0, z_0)$, $\vec{u} = (a_1, b_1, c_1)$ e $\vec{v} = (a_2, b_2, c_2)$, respectivamente, um ponto e dois vetores base de plano um plano π .

Um ponto P(x, y, z) pertence a este plano se, e somente se, existem números reais h e t tais que

$$\overrightarrow{AP} = h\overrightarrow{u} + t\overrightarrow{v}$$

Em coordenadas,

$$(x - x_0, y - y_0, z - z_0) = h(a_1, b_1, c_1) + t(a_2, b_2, c_2),$$

o que fornece

$$\begin{cases} x = x_0 + ha_1 + ta_2 \\ y = y_0 + hb_1 + tb_2 \\ z = z_0 + hc_1 + tc_2 \end{cases}$$

Estas são as equações paramétricas do plano.

Equações paramétricas do plano