Data Management and Artificial Intelligence Lab Class 9

Task 1 Functional Dependencies (50 minutes)

Please recall the notion of functional dependencies from the lecture. One way to formalize the entailment of a set of dependencies were the use of Armstrong's axioms:

- 1. Reflexivity: If $Y \subseteq X$, then $F = X \to Y$.
- 2. Augmentation: If $F = X \to Y$, then $F = X, W \to Y, W$.
- 3. Transitivity: If $F|=X\to Y$ and $F|=Y\to Z$, then $F|=X\to Z$.

Note that the variables X, Y, Z above are possible sets of attributes, while W is a single attribute. For this task, please implement the above three axioms and finally compute the closure of an input set F_input , i.e., F_plus . In addition, print the overall procedure to obtain F_plus , which is essentially a sequence of axiom applications.

For an input set $F_input = \{A \to B, B \to C, C \to D, GD \to H\}$, the desired closure F_plus has a size of 1,815. A possible procedure to obtain F_plus can be Ref - Aug - Tran - Aug - Tran - Aug - Aug.

Hint: You may follow the steps below to solve this task:

- 1. Determine the datatypes used to represent FD and set of FD. You may consider a possible combination of list, tuple, set or dicionary.
- 2. Implement a recursive function *get_subsets* to generate all the subsets of an input set S. This function will be utilized in *Reflexity*.
- 3. Implement the function $get_attribute_set$ which receives the input set F_input and returns the universe set of attributes.
- 4. Implement the function Reflexity which receives an FD set F and the attribute set obtained in subtask 3. Utilize the subset function in subtask 2 to perform reflexity, and add the generated FDs to F to form an expanded set.
- 5. Implement the function Augmentation which receives an FD set F and the attribute set. Perform the augmentation operation to F and add the generated FDs to F. If there are new FDs added to F, update the boolean variable change to True. Finally, return F and change.
- 6. Implement the function Transitivity which receives an FD set F and the attribute set. Perform the transitivity operation to F and add the generated FDs to F. If there are new FDs added to F, update the boolean variable change to True. Finally, return F and change.

7. Finally, implement the main function computeClosure which receives the input FD set F_input and returns the desired closure F_plus . Think about how to organize the three axiom functions and how to implement the terminate condition of loop. In addition, print the procedure to obtain F_plus , which is essentially a sequence of axiom applications.

```
def get_subsets(S):
    #TODO
    return all_subsets
def get_attribute_set(F_input):
    #TODO
    return att_set
def Reflexity(F,att_set):
    #TODO
    return F
def Augmentation(F,att_set):
    change=False
    #TODO
    return F, change
def Transitivity(F):
    change=False
    #TODO
    return F, change
def computeClosure(F_input):
    #TODO
    return F_plus
F_plus=computeClosure(F_input)
print(len(F_plus))
```

Task 2 Translate XML files to csv files (25 minutes)

- 1. Download the xml file with the name 'books collection.xml'. Some information of 12 books (including their ids, authors, titles ...) are saved in the file.
- 2. Use Python to translate the data in this XML file to a csv file, i.e., a table. The final results are shown as Table 3.

Task 3 Seaborn on bike stations (20 minutes)

Perform some statistical analysis on the bike stations in homework. For instance, check whether there is a correlation between the distance of a station's location from the city center of London and the number of bikes available. Visualize the results of your analysis using seaborn.

Table 3: Book collections

	author	title	genre	price	publish_date	description
bk101	Gambardella, Matthew	XML Developer's Guide	Computer	44.95	2000-10-01	An in-depth look
bk102	Ralls, Kim	Midnight Rain	Fantasy	5.95	2000-12-16	A former architect battles
bk103	Corets, Eva	Maeve Ascendant	Fantasy	5.95	2000-11-17	After the collapse of a
bk104	Corets, Eva	Oberon's Legacy	Fantasy	5.95	2001-03-10	In post-apocalypse
bk105	Corets, Eva	The Sundered Grail	Fantasy	5.95	2001-09-10	The two daughters
bk106	Randall, Cynthia	Lover Birds	Romance	4.95	2000-09-02	When Carla meets
bk107	Thurman, Paula	Splish Splash	Romance	4.95	2000-11-02	A deep sea
bk108	Knorr, Stefan	Creepy Crawlies	Horror	4.95	2000-12-06	An anthology of
bk109	Kress, Peter	Paradox Lost	Science Fiction	6.95	2000-11-02	After an inadvertant
bk110	O'Brien, Tim	Microsoft .NET: The Programming Bible	Computer	36.95	2000-12-09	Microsoft's .NET
bk111	O'Brien, Tim	MSXML3: A Comprehensive Guide	Computer	36.95	2000-12-01	The Microsoft MSXML3
bk112	Galos, Mike	Visual Studio 7: A Comprehensive Guide	Computer	49.95	2001-04-16	Microsoft Visual Studio 7