Foundations of Mathematics Section 3.1

Section 5.1

Benji Altman

March 11, 2017

7 Let $R = \{(1,5), (2,2), (3,4), (5,2)\}, S = \{(2,4), (3,4), (3,1), (5,5)\}, \text{ and } T = (1,4), (3,5), (4,1).$ Find (a) $R \circ S$

$$R \circ S = \{(3,5), (5,2)\}$$

(b) $R \circ T$

$$R \circ T = \{(3,2), (4,5)\}$$

(f) $T \circ T$

$$T \circ T = \{(1,1)\}$$

(g) $R \circ (S \circ T)$

$$S \circ T = \{(3,5)\}$$

 $R \circ (S \circ T) = \{(3,2)\}$

- 11 Let R be a relation from A to B and S be a relation from B to C.
- (a) Prove that $Rng(R^{-1}) = Dom(R)$

$$R^{-1} = \{(y, x) : (x, y) \in R\}$$

$$Rng(R^{-1}) = \{x : \exists_y ((y, x) \in R^{-1})\}$$

$$Dom(R) = \{x : \exists_y ((x, y) \in R)\}$$

Let $v \in \mathbf{Rng}(R^{-1})$, thus there exists some y such that $(y,v) \in R^{-1}$, now let w be one possible value for y. Now we know that $(w,v) \in R^{-1}$ so we also know that $(v,w) \in R$. We now can say $v \in \mathbf{Dom}(R)$, and as that would be true for any $v \in \mathbf{Rng}(R^{-1})$, we then know $\mathbf{Rng}(R^{-1}) \subseteq \mathbf{Dom}(R)$.

Now let $v \in \mathbf{Dom}(R)$, there must now be some y such that $(v, y) \in R$ and we will now let w represent one such value of y. Now we can say $(v, w) \in R$ which also means that $(w, v) \in R^{-1}$ and that $v \in \mathbf{Rng}(R^{-1})$, and because this is true for any $v \in \mathbf{Dom}(R)$, then $\mathbf{Dom}(R) \subseteq \mathbf{Rng}(R^{-1})$

Now we can finally say $Dom(R) = Rng(R^{-1})$.

(b) Prove that $\mathbf{Dom}(S \circ R) \subseteq \mathbf{Dom}(R)$.

$$S \circ R = \{(a,c) : \exists_b ((a,b) \in R \text{ and } (b,c) \in S)\}$$

$$\mathbf{Dom}(S \circ R) = \{a : \exists_c ((a,c) \in S \circ R)\}$$

$$\mathbf{Dom}(R) = \{a : \exists_b ((a,b) \in R)\}$$

Show by example that $\mathbf{Dom}(S \circ R) = \mathbf{Dom}(R)$ may be false.

$$R = \{(0,0)\}$$

$$S = \varnothing$$

$$S \circ R = \varnothing$$

$$\mathbf{Dom}(R) = \{0\}$$

$$\mathbf{Dom}(S \circ R) = \varnothing$$

$$\mathbf{Dom}(S \circ R) = \varnothing \neq \{0\} = \mathbf{Dom}(R)$$

12

Complete the proof of Theorem 3.1.2 by proving that if R is a relation from A to B and S is a relation from B to C, then

(c)
$$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$$
.

$$S \circ R = \{(a,c) : \exists_b ((a,b) \in R \text{ and } (b,c) \in S)\}$$

$$(S \circ R)^{-1} = \{(c,a) : (a,c) \in S \circ R\}$$

$$R^{-1} = \{(b,a) : (a,b) \in R\}$$

$$S^{-1} = \{(c,b) : (b,c) \in S\}$$

$$R^{-1} \circ S^{-1} = \{(c,a) : \exists_b ((c,b) \in S^{-1} \text{ and } (b,a) \in R^{-1})\}$$

First we will start by showing $(S \circ R)^{-1} \subseteq R^{-1} \circ S^{-1}$ and then we will show $(S \circ R)^{-1} \supseteq R^{-1} \circ S^{-1}$.

For our first step we let $(x,y) \in (S \circ R)^{-1}$, which means that $(y,x) \in S \circ R$. Now we can say there is some b such that $(y,b) \in R$ and $(b,x) \in S$, we will let z be a possible value for b, which means $(y,z) \in R$ and $(z,x) \in S$. Now we can say that $(z,y) \in R^{-1}$ and that $(x,z) \in S^{-1}$. Now we can show that $(x,y) \in R^{-1} \circ S^{-1}$, which means that $(S \circ R)^{-1} \subseteq R^{-1} \circ S^{-1}$

For our second step we will start by letting $(x,y) \in R^{-1} \circ S^{-1}$, using this we can say that there exists a b such that $(x,b) \in S^{-1}$ and $(b,y) \in R^{-1}$, we will let z be one such possible value of b. Now we have $(x,z) \in S^{-1}$ and $(z,x) \in R^{-1}$

14

Prove that if A has m elements and B has n elements, then there are 2^{mn} different relations from A to B.

First let us notice that the maximal relation, one with every possible pair from A to B is $A \times B$. Now we want to find how many possible subsets of $A \times B$ there are, as any subset is a unique relation from A to B, there may be no other possible relations that are not subsets of $A \times B$ as $A \times B$ has all ordered pairs (a, b) where $a \in A$ and $b \in B$, and thus all relations must be subsets of $A \times B$. Now to count how many subsets

there are we simply must realize that any element may either be in a subset or not in a subset, then we are looking at two possibilities for each element in $A \times B$. This translates to $2^{\overline{A \times B}}$ different relations (this could also be looked at as $\overline{\overline{\mathcal{P}(A \times B)}}$.) We now simply need to find how many elements there are in $A \times B$ and here we use the multiplication rule and find $\overline{\overline{A \times B}} = \overline{\overline{A}} \times \overline{\overline{B}}$ which we know is $m \cdot n$. Thus the total number of possible relations from A to B is 2^{mn} .

15(a)

Let R be a relation from A to B. For $a \in A$, define the **vertical section of** R **at** a to be $V_a = \{y \in B : (a,y) \in R\}$. Prove that $\bigcup_{a \in A} (V_a) = \mathbf{Rng}(R)$.

Let

$$y \in \bigcup_{a \in A} (V_a)$$

then we can say

$$\exists_{x} (y \in V_{x}) \implies \exists_{x} ((x, y) \in R)$$

$$\implies y \in \mathbf{Rng}(R)$$

$$\implies \bigcup_{a \in A} (V_{a}) \subseteq \mathbf{Rng}(R)$$

Now let

$$y \in \mathbf{Rng}(R)$$

then we can say

$$\exists_{x} ((x,y)) \in R \implies \exists_{x} (y \in V_{x})$$

$$\implies y \in \bigcup_{a \in A} (V_{a})$$

$$\implies \mathbf{Rng}(R) \subseteq \bigcup_{a \in A} (V_{a})$$

Now we have shown

$$\operatorname{Rng}(R) = \bigcup_{a \in A} (V_a)$$

(b)

Let R be a relation from A to B. For $b \in B$, define the **horizontal section of** R **at** b to be $H_b = \{x \in A : (x,b) \in R\}$. Prove that $\bigcup_{b \in B} (H_b) = \mathbf{Dom}(R)$.