Intro to Graph Theory

UoA CP Lecture 5

What's Graph

- Used to represent objects and their relationships
- Directed/Undirected
- Weighted/Unweighted
- Tree/Directed Acyclic Graph(DAG)/Bipartite

Example: Seven Bridges of Königsberg

• Each node must have an even degree so that a circuit uses each edge exactly once is possible

Graph Representation

- Adjacency List: O(m)
- Adjacency Matrix: O(n^2)

Directed Acyclic Graph(DAG) Longest Path

- Given a weighted DAG, how to find the longest path?
- DP[i] = max(DP[j] + w) given there is an edge from j to i of weight w.

Actually all the DP problem can be reduced to this model.

Directed Acyclic Graph(DAG) Topological Sort

- While there are nodes left, pick a node v of zero in-degree
- Update the DP values of all the successors of v
- Think: Why do we not need not do this for DP problems

Shortest Path I (Undirected Graph)

- Breadth First Search
- Divide nodes by the distance from the origin to it
- Key observation: dis[i] = min(dis[j] + 1) where j loops through all the predecessors of i.

Shortest Path II (Directed Graph) Dijkstra's Algorithm

- Idea is similar to BFS
- dis[i] = min(dis[j] + w(j,i))

Minimum Spanning Tree

How to connect an undirected graph with the lowest cost?

- Observation 1: For a node i, using the edge (i,j,w) from i with the lowest cost will never be non-optimal
 - Assume the MST doesn't use (i,j,w). If we add it to the tree, a cycle will appear.
 Now we can remove the other edge from i without making the sum of weights larger.
- Observation 2: Adding a self-loop is always unnecessary
- Algorithm:
 - Sort edges by weight and loop through the edges
 - If the endpoints are already connected, skip. Otherwise, add the edge to the tree.