EXERCISE - 01

CHECK YOUR GRASP

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

1	The number of solutions of the equation	sec x	1	Ol ai	2πlic	ogual	to
1.	The number of solutions of the equation	$1 - \cos x$	$1-\cos x$	m [O,	Z/I, IS	equai	10 -

(A) 3

(B) 2

(C) 1

(D) 0

2. The number of solutions of equation $2 + 7\tan^2\theta = 3.25 \sec^2\theta (0 < \theta < 360)$ is -

The number of solutions of the equation $\tan^2 x - \sec^{10} x + 1 = 0$ in (0, 10) is -3.

(D) 11

If $(\cos\theta + \cos 2\theta)^3 = \cos^3\theta + \cos^3 2\theta$, then the least positive value of θ is equal to -4.

(A) $\frac{\pi}{6}$

(C) $\frac{\pi}{2}$

(D)

5. The number of solution(s) of $\sin 2x + \cos 4x = 2$ in the interval $(0, 2\pi)$ is -

(B) 2

(D) 4

The complete solution of the equation $7\cos^2 x + \sin x \cos x - 3 = 0$ is given by -6.

(A) $n\pi + \frac{\pi}{2}$; $(n \in I)$

(B) $n\pi - \frac{\pi}{4}$; $(n \in I)$

(C) $n\pi + \tan^{-1} \frac{4}{3}$; $(n \in I)$

(D) $n\pi + \frac{3\pi}{4}, k\pi + \tan^{-1}\frac{4}{3}$; $(n, k \in I)$

If cos(sinx) = 0, then x lies in -

(A) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right)$ (B) $\left(-\frac{\pi}{4}, 0\right)$

(C) $\left(\pi, \frac{3\pi}{2}\right)$

(D) null set

If $0 \le \alpha, \ \beta \le 90$ and $tan(\alpha + \beta) = 3$ and $tan(\alpha - \beta) = 2$ then value of $sin2\alpha$ is -

(A) $-\frac{1}{\sqrt{2}}$

(D) none of these

If tanA and tanB are the roots of $x^2 - 2x - 1 = 0$, then $sin^2(A+B)$ is -

(A) 1

(B) $\frac{1}{\sqrt{2}}$

(D) 0

10. If $\cos 2x - 3\cos x + 1 = \frac{\csc x}{\cot x - \cot 2x}$, then which of the following is true?

(A) $x = (2n+1)\frac{\pi}{2}, n \in I$

(B) $x = 2n\pi, n \in I$

(C) $x = 2n\pi \pm \cos^{-1}\left(\frac{2}{5}\right), n \in I$

(D) no real x

The solutions of the equation $\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x$ in the interval $0 \le x \le 2\pi$, are ;

(B) $\frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}, \frac{13\pi}{8}$ (C) $\frac{4\pi}{3}, \frac{9\pi}{3}, \frac{2\pi}{3}, \frac{13\pi}{8}$ (D) $\frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{3}, \frac{4\pi}{3}$

12. If $x \in \left[-\frac{5\pi}{2}, \frac{5\pi}{2}\right]$, then the greatest positive solution of $1 + \sin^4 x = \cos^2 3x$ is -

(A) π

(B) 2π

(C) $\frac{5\pi}{2}$

(D) none of these

- Number of values of 'x' in $(-2\pi, 2\pi)$ satisfying the equation $2^{\sin^2 x} + 4.2^{\cos^2 x} = 6$ is -

(C) 4

- 14. General solution for $|\sin x| = \cos x$ is

 - (A) $2n\pi + \frac{\pi}{4}$, $n \in I$ (B) $2n\pi \pm \frac{\pi}{4}$, $n \in I$ (C) $n\pi + \frac{\pi}{4}$, $n \in I$
- (D) none of these

- The most general solution of $\tan \theta = -1$, $\cos \theta = \frac{1}{\sqrt{2}}$ is -

 - (A) $n\pi + \frac{7\pi}{4}, n \in I$ (B) $n\pi + (-1)^n \frac{7\pi}{4}, n \in I$ (C) $2n\pi + \frac{7\pi}{4}, n \in I$ (D) none of these

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

- **16.** The solution(s) of the equation $\cos 2x \sin 6x = \cos 3x \sin 5x$ in the interval $[0, \pi]$ is/are -

(B) $\frac{\pi}{2}$

(C) $\frac{2\pi}{2}$

(D) $\frac{5\pi}{6}$

- 17. The equation $4\sin^2 x 2(\sqrt{3} + 1)\sin x + \sqrt{3} = 0$ has -

 - (A) 2 solutions in (0, π) (B) 4 solutions in (0, 2π) (C) 2 solutions in ($-\pi$, π)
- (D) 4 solutions in $(-\pi, \pi)$
- 18. If $\cos^2 2x + 2\cos^2 x = 1$, $x \in (-\pi, \pi)$, then x can take the values -
 - (A) $\pm \frac{\pi}{2}$

(B) $\pm \frac{\pi}{4}$

- (D) none of these

- The solution(s) of the equation $\sin 7x + \cos 2x = -2$ is/are -
 - (A) $x = \frac{2k\pi}{7} + \frac{3\pi}{14}, k \in I$ (B) $x = n\pi + \frac{\pi}{4}, n \in I$ (C) $x = 2n\pi + \frac{\pi}{2}, n \in I$
- (D) none of these
- **20.** Set of values of x in $(-\pi, \pi)$ for which $|4\sin x 1| \le \sqrt{5}$ is given by -

- (A) $\left(\frac{\pi}{10}, \frac{3\pi}{10}\right)$ (B) $\left(-\frac{\pi}{10}, \frac{3\pi}{10}\right)$ (C) $\left(\frac{\pi}{10}, -\frac{3\pi}{10}\right)$ (D) $\left(-\frac{\pi}{10}, -\frac{3\pi}{10}\right)$

CHECK YOUR GRASP					ANSWER KEY					ERCISE-1
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	В	Α	В	Α	D	D	В	С	D
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	В	В	С	В	С	A,B,D	B,D	A,B,C	С	В

(A) $2n\pi$, $n \in Z$

EXERCISE - 02 BRAIN TEASERS

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

1. If $\cos^2 x + \cos^2 2x + \cos^2 3x = 1$ then -

(A)
$$x = (2n + 1)\frac{\pi}{4}$$
, $n \in I$ (B) $x = (2n + 1)\frac{\pi}{2}$, $n \in I$ (C) $x = n\pi \pm \frac{\pi}{6}$, $n \in I$ (D) none of these

2. If $4\cos^2\theta + \sqrt{3} = 2(\sqrt{3} + 1)\cos\theta$, then θ is -

(A)
$$2n\pi \pm \frac{\pi}{3}$$
, $n \in I$ (B) $2n\pi \pm \frac{\pi}{4}$, $n \in I$ (C) $2n\pi \pm \frac{\pi}{6}$, $n \in I$ (D) none of these

3. Set of values of '\alpha' in $[0, 2\pi]$ for which $m = \log_{\left(x + \frac{1}{x}\right)} (2\sin \alpha - 1) \le 0$, is -

(A)
$$\left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$$
 (B) $\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$ (C) $\left(0, \frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6}, \pi\right)$ (D) $\left(\frac{5\pi}{6}, \frac{7\pi}{6}\right)$

4. If $(a + 2)\sin\alpha + (2a - 1)\cos\alpha = (2a + 1)$, then $\tan\alpha =$

(A)
$$3/4$$
 (B) $4/3$ (C) $\frac{2a}{a^2+1}$ (D) $\frac{2a}{a^2-1}$

5. If θ_1 , θ_2 , θ_3 , θ_4 are the roots of the equation $\sin(\theta + \alpha) = k \sin 2\theta$, no two of which differ by a multiple of 2π , then $\theta_1 + \theta_2 + \theta_3 + \theta_4$ is equal to -

(C) $n\pi$, $n \in Z$

(D) none of these

The number of solution(s) of the equation
$$\cos 2\theta = \left(\sqrt{2} + 1\right)\left(\cos\theta - \frac{1}{\sqrt{2}}\right)$$
, in the interval $\left(-\frac{\pi}{4}, \frac{3\pi}{4}\right)$, is -

(A) 4 (B) 1 (C) 2 (D) 3

7. The value(s) of θ lying between $0 \& 2\pi$ satisfying the equation : $r\sin\theta = \sqrt{3} \& r + 4\sin\theta = 2(\sqrt{3} + 1)$ is/are -

(A)
$$\frac{\pi}{6}$$
 (B) $\frac{\pi}{3}$ (C) $\frac{2\pi}{3}$ (D) $\frac{5\pi}{6}$

8. The value(s) of θ , which satisfy $3 - 2\cos\theta - 4\sin\theta - \cos 2\theta + \sin 2\theta = 0$ is/are -

(B) $(2n + 1)\pi$, $n \in Z$

(A)
$$\theta = 2n\pi \; ; \; n \in I$$
 (B) $2n\pi + \frac{\pi}{2} \; ; \; n \in I$ (C) $2n\pi - \frac{\pi}{2} \; ; \; n \in I$ (D) $n\pi \; ; \; n \in I$

9. Given that A, B are positive acute angles and $\sqrt{3} \sin 2A = \sin 2B \& \sqrt{3} \sin^2 A + \sin^2 B = \frac{\sqrt{3} - 1}{2}$, then A or B may take the value(s) -

10. The solution(s) of $4\cos^2 x \sin x - 2\sin^2 x = 3\sin x$ is/are -

(A)
$$n\pi$$
; $n \in I$ (B) $n\pi + (-1)^n \frac{\pi}{10}$; $n \in I$

(C)
$$n\pi + (-1)^n \left(-\frac{3\pi}{10}\right)$$
; $n \in I$ (D) none of these

11. If $\left(\frac{1-a\sin x}{1+a\sin x}\right)\sqrt{\frac{1+2a\sin x}{1-2a\sin x}}=1$, where $a\in R$ then -

$$(A) x \in \emptyset \qquad (B) x \in R \ \forall \ a$$

(C)
$$a = 0, x \in R$$
 (D) $a \in R, x \in n\pi$, where $n \in I$

The general solution of the following equation: $2(\sin x - \cos 2x) - \sin 2x(1 + 2\sin x) + 2\cos x = 0$ is/are-

(A)
$$x = 2n\pi$$
; $n \in I$

(B)
$$n\pi + (-1)^n \left(-\frac{\pi}{2}\right); n \in I$$

(C)
$$x = n\pi + (-1)^n \frac{\pi}{6}$$
; $n \in I$

(D)
$$x = n\pi + (-1)^n \frac{\pi}{4}$$
; $n \in I$

13. The value(s) of θ , which satisfy the equation : $2\cos^3 3\theta + 3\cos 3\theta + 4 = 3\sin^2 3\theta$ is/are -

(A)
$$\frac{2n\pi}{3} + \frac{2\pi}{9}$$
, $n \in I$

(B)
$$\frac{2n\pi}{3} - \frac{2\pi}{9}$$
, $n \in I$

$$\text{(A)} \ \ \frac{2n\pi}{3} + \frac{2\pi}{9}, \ n \in I \\ \text{(B)} \ \ \frac{2n\pi}{3} - \frac{2\pi}{9}, \ n \in I \\ \text{(C)} \ \ \frac{2n\pi}{5} + \frac{2\pi}{5}, \ n \in I \\ \text{(D)} \ \ \frac{2n\pi}{5} - \frac{2\pi}{5}, n \in I \\ \text{(D)} \ \ \frac{2n\pi}{5} - \frac{2\pi}{$$

(D)
$$\frac{2n\pi}{5} - \frac{2\pi}{5}, n \in$$

14. If $x \neq \frac{k\pi}{2}$, $k \in I$ and $(\cos x)^{\sin^2 x - 4\sin x + 3} = 1$, then all solutions of x are given by -

(A)
$$n\pi + (-1)^n \frac{\pi}{2}$$
; $n \in \mathbb{R}$

(B)
$$2n\pi \pm \frac{\pi}{2}$$
; $n \in I$

$$\text{(A)} \ \ n\pi + \left(-1\right)^{n} \frac{\pi}{2} \, ; \ n \, \in \, I \qquad \text{(B)} \ \ 2n\pi \pm \frac{\pi}{2} \, ; \ n \, \in \, I \qquad \text{(C)} \ \ (2n+1)\pi - \frac{\pi}{2} \, ; \ n \, \in \, I \qquad \text{(D)} \ \ \text{none of these}$$

- Using four values of θ satisfying the equation $8\cos^4\theta + 15\cos^2\theta 2 = 0$ in the interval $(0,4\pi)$, an arithmetic 15. progression is formed, then:
 - (A) The common difference of A.P. may be π .
- (B) The common difference of A.P. may be 2π .
- (C) Two such different A.P. can be formed.
- (D) Four such different A.P. can be formed.

BRAIN TEASERS ANSWER KEY						KEY			EXE	ERCISE-2
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	A,B,C	A,C	В	B,D	В	С	A,B,C,D	A,B	A,B	A,B,C
Que.	11	12	13	14	15					
Ans.	C,D	A,B,C	A,B	D	A,D					

EXERCISE - 03

MISCELLANEOUS TYPE QUESTIONS

TRUE / FALSE

- 1. For all θ in $\left[0, \frac{\pi}{2}\right]$, $\cos(\sin \theta) > \sin(\cos \theta)$.
- 2. Number of solutions of the equation $cos(x^2) = 2^{|x|}$ is two.

FILL IN THE BLANKS

- 1. Number of values of θ in $[0, 2\pi]$ for which vectors $\vec{v}_1 = (2\cos\theta)\vec{i} (\cos\theta)\vec{j} + \vec{k}$ and $\vec{v}_2 = (\cos\theta)\vec{i} + 5\vec{j} + 2\vec{k}$ are perpendicular is
- 2. The solution set of the system of equations, $x + y = \frac{2\pi}{3}$, $\cos x + \cos y = \frac{3}{2}$, where x & y are real, is
- 3. If $\cos ec\theta + \cot \theta = \frac{1}{2}$, then θ lies in quadrant.
- **4.** Number of solutions of the equation $\sin 5\theta \cos 3\theta = \sin 9\theta \cos 7\theta$ in $\left[0, \frac{\pi}{4}\right]$ is

MATCH THE COLUMN

Following question contains statements given in two columns, which have to be matched. The statements in Column-II are labelled as A, B, C and D while the statements in Column-II are labelled as p, q, r and s. Any given statement in Column-II can have correct matching with ONE statement in Column-II.

1. On the left, equation with interval is given and on the right number of solutions are given, match the column.

	Column-I	Column-II				
(A)	$n \sin x = m \cos x \text{ in } [0, 2\pi]$	(p)	2			
	where $n > m$ and are positive integers					
(B)	$\sum_{r=1}^{5} \cos rx = 5 \text{ in } [0,2\pi]$	(q)	4			
(C)	$2^{1+ \cos x + \cos x ^2\infty} = 4$ in $(-\pi, \pi)$	(r)	3			
(D)	$\tan\theta + \tan 2\theta + \tan 3\theta = \tan\theta \tan 2\theta \tan 3\theta$ in $(0, \pi)$	(s)	1			

ASSERTION & REASON

These questions contains, Statement-I (assertion) and Statement-II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for Statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.
- 1. Statement-I : For any real value of $\theta \neq (2n+1)\pi$ or $(2n+1)\pi/2$, $n \in I$, the value of the expression $y = \frac{\cos^2 \theta 1}{\cos^2 \theta + \cos \theta}$

is $y \le 0$ or $y \ge 2$ (either less than or equal to zero or greater than or equal to two)

Because

Statement-II: sec $\theta \in (-\infty, -1] \cup [1, \infty)$ for all real values of θ .

(A)

(B) B

(C) C

- (D) D
- 2. Statement-I: The equation $\sqrt{3}\cos x \sin x = 2$ has exactly one solution in $[0, 2\pi]$. Because

Statement-II: For equations of type $a\cos\theta + b\sin\theta = c$ to have real solutions in $[0, 2\pi], |c| \le \sqrt{a^2 + b^2}$ should hold true.

(A) A

(B) B

(C) C

(D) D

COMPREHENSION BASED QUESTIONS

Comprehension # 1:

Let S_1 be the set of all those solutions of the equation $(1 + a)\cos\theta\cos(2\theta - b) = (1 + a\cos2\theta)\cos(\theta - b)$ which are independent of a and b and S_2 be the set of all such solutions which are dependent on a and b.

On the basis of above information, answer the following questions :

- 1. The sets S_1 and S_2 are given by -
 - (A) $\{n\pi, n \in Z\}$ and $\{m\pi + (-1)^m \sin^{-1}(a \sinh), m \in Z\}$
 - (B) $\left\{ \frac{n\pi}{2}, n \in Z \right\}$ and $\{m\pi + (-1)^m \sin^{-1}(a \sin b), m \in Z \}$
 - $\text{(C) } \left\{ \frac{n\pi}{2}, n \in Z \right\} \ \text{and} \ \left\{ m\pi \ + \ (-1)^m \ \sin^{-1}((a/2) \text{sinb}), \ m \ \in \ Z \right\}$
 - (D) none of these
- ${\bf 2}_{\, \cdot}$. Condition that should be imposed on a and b such that ${\bf S}_2$ is non-empty -
 - (A) $\left| \frac{a}{2} \sin b \right| < 1$
- (B) $\left| \frac{a}{2} \sin b \right| \le 1$
- (C) $\mid a \sin b \mid \leq 1$
- (D) none of these
- **3.** All the permissible values of b, if a = 0 and S_2 is a subset of (0, π) is -
 - (A) b \in (-n π , 2n π); n \in Z

(B) $b \in (-n\pi, 2\pi - n\pi)$; $n \in Z$

(C) $b \in (-n\pi, n\pi)$; $n \in Z$

(D) none of these

MISCELLANEOUS TYPE QUESTION

ANSWER KEY

EXERCISE -3

- <u>True / False</u>
 - **1**. T
- **2**. F
- <u>Fill in the Blanks</u>
 - **1**. 2
- **2**. \$\phi\$
- 3. II quadrant
- **4**. 5

- <u>Match the Column</u>
 - 1. (A) \rightarrow (q), (B) \rightarrow (p), (C) \rightarrow (q), (D) \rightarrow (p)
- <u>Assertion & Reason</u>
 - **1**. D **2**. B
- <u>Comprehension Based Quesions</u>
 - Comprehension #1 : 1. D
- **2**. C
- **3**. B

EXERCISE - 04 [A]

CONCEPTUAL SUBJECTIVE EXERCISE

1. If sinA = sinB & cosA = cosB, find the values of A in terms of B.

2. Solve the equation :
$$1 + 2 \csc x = -\frac{\sec^2 \frac{x}{2}}{2}$$
.

- 3. Solve the equation : $\frac{\sqrt{3}}{2} \sin x \cos x = \cos^2 x$.
- **4.** Solve the equation : $\cot x 2\sin 2x = 1$.
- 5. If α & β satisfy the equation, $a\cos 2\theta + b\sin 2\theta = c$ then prove that $: \cos^2\alpha + \cos^2\beta = \frac{a^2 + ac + b^2}{a^2 + b^2}$.
- 6. Solve for x, $\sqrt{13-18 \tan x} = 6 \tan x 3$, where $-2\pi \le x \le 2\pi$.
- 7. Find all the values of θ satisfying the equation : $\sin\theta + \sin \theta = \sin \theta$ such that $0 \le \theta \le \pi$.
- 8. Solve: $\cot \theta + \csc \theta = \sqrt{3}$ for values of θ between 0 & 360.
- 9. Solve: $\sin 5x = \cos 2x$ for all values of x between 0 & 180.
- **10.** Solve the equation : $(1 \tan\theta) (1 + \sin 2\theta) = 1 + \tan\theta$.
- 11. Find the general solution of $sec 4\theta sec 2\theta = 2$.
- 12. Solve the equation : $\cos 3x \cdot \cos^3 x + \sin 3x \cdot \sin^3 x = 0$.
- **13.** Solve for $x : \sin 3\alpha = 4\sin \alpha \sin(x + \alpha) \sin(x \alpha)$ where α is a constant $\neq n\pi$, $n \in I$.
- **14.** Solve the inequality : $\sin 3x < \sin x$.
- **15.** Solve the inequality: $\tan^2 x (\sqrt{3} + 1) \tan x + \sqrt{3} < 0$.
- **16.** Find the smallest positive value of x and y satisfying the equations : $x y = \frac{\pi}{4}$ & cotx + coty = 2.
- 17. Find the value(s) of k for which the equation $\sin x + \cos(k + x) + \cos(k x) = 2$ has real solutions.
- **18.** Solve : $\tan\theta + \tan\left(\theta + \frac{\pi}{3}\right) + \tan\left(\theta + \frac{2\pi}{3}\right) = 3$.
- **19.** Solve : $\sin 2\theta = \cos 3\theta$, $0 \le \theta \le 360$.
- **20.** Find all values of θ satisfying the equation $\sin 7\theta = \sin \theta + \sin 3\theta$, where $0 \le \theta \le \pi$.

CONCEPTUAL SUBJECTIVE EXERCISE ANSWER KEY EXERCISE-4(A)

1.
$$A = 2n\pi + B, n \in I$$
 2. $x = 2n\pi - \frac{\pi}{2}, n \in I$ **3.** $x = 2n\pi \pm \pi \text{ or } 2n\pi + \frac{\pi}{3}, n \in I$

4.
$$x = \frac{\pi}{8} + \frac{K\pi}{2}$$
 or $x = \frac{3\pi}{4} + K\pi$, $K \in I$ **6.** $\alpha - 2\pi$; $\alpha - \pi$, α , $\alpha + \pi$, where $\alpha = \tan^{-1}\frac{2}{3}$

7.
$$0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{6} \& \pi$$
 8. $\theta = 60$ 9. $\frac{90^{\circ}}{7}, 30, \frac{450^{\circ}}{7}, \frac{810^{\circ}}{7}, 150, \frac{1170^{\circ}}{7}$

10.
$$n\pi$$
 or $\left(n\pi - \frac{\pi}{4}\right)$, $n \in I$ **11.** $\theta = \frac{2n\pi}{5} \pm \frac{\pi}{10}$ or $2n\pi \pm \frac{\pi}{2}$, $n \in I$ **12.** $(2n+1)\frac{\pi}{4}$, $n \in I$ **13.** $n\pi \pm \frac{\pi}{3}$, $n \in I$

$$\boxed{ \textbf{14.} \ \ x \in \left(2n\pi + \frac{\pi}{4}, 2n\pi + \frac{3\pi}{4}\right) \cup \left(2n\pi - \frac{\pi}{4}, 2n\pi\right) \cup \left(2n\pi + \pi, 2n\pi + \frac{5\pi}{4}\right), \ n \in I \quad \textbf{15.} \quad n\pi + \frac{\pi}{4} < x < n\pi + \frac{\pi}{3}, \ n \in I \right) }$$

16.
$$x = \frac{5\pi}{12}, y = \frac{\pi}{6}$$
 17. $n\pi - \frac{\pi}{6} \le k \le n\pi + \frac{\pi}{6}, n \in I$ **18.** $\theta = (4n+1)\frac{\pi}{12}; n \in I$

19.
$$\theta = 18$$
, 90, 162, 234, 270, 306 **20.** $0, \frac{\pi}{12}, \frac{\pi}{3}, \frac{5\pi}{12}, \frac{7\pi}{12}, \frac{2\pi}{3}, \frac{11\pi}{12}, \pi$

EXERCISE - 04 [B]

BRAIN STORMING SUBJECTIVE EXERCISE

- 1. Find all values of θ , between $0 \& \pi$, which satisfy the equation $\cos\theta\cos2\theta\cos3\theta = 1/4$.
- 2. Find the general solution of the trigonometric equation :

$$\sqrt{16\cos^4 x - 8\cos^2 x + 1} + \sqrt{16\cos^4 x - 24\cos^2 x + 9} = 2.$$

3. Find the principal solution of the trigonometric equation :

$$\sqrt{\cot 3x + \sin^2 x - \frac{1}{4}} + \sqrt{\sqrt{3}\cos x + \sin x - 2} = \sin \frac{3x}{2} - \frac{\sqrt{2}}{2}.$$

- **4.** Solve: $2\sin\left(3x + \frac{\pi}{4}\right) = \sqrt{1 + 8\sin 2x \cdot \cos^2 2x}$.
- **5.** Solve for x, $(-\pi \le x \le \pi)$ the equation : $2(\cos x + \cos 2x) + \sin 2x(1 + 2 \cos x) = 2\sin x$.
- **6.** Solve: $\log_{\frac{-x^2-6x}{10}} (\sin 3x + \sin x) = \log_{\frac{-x^2-6x}{10}} (\sin 2x)$.
- 7. Find the set of values of 'a' for which the equation, $\sin^4 x + \cos^4 x + \sin^2 2x + a = 0$ possesses solutions. Also find the general solution for these values of 'a'.
- 8. Solve: $\cos(\pi \cdot 3^x) 2\cos^2(\pi \cdot 3^x) + 2\cos(4\pi \cdot 3^x) \cos(7\pi \cdot 3^x)$ = $\sin(\pi \cdot 3^x) + 2\sin^2(\pi \cdot 3^x) - 2\sin(4\pi \cdot 3^x) + 2\sin(\pi \cdot 3^{x+1}) - \sin(7\pi \cdot 3^x)$
- 9. Find the least positive angle measured in degrees satisfying the equation : $\sin^3 x + \sin^3 2x + \sin^3 3x = (\sin x + \sin 2x + \sin 3x)^3$
- 10. Solve for x, y: $\begin{cases} \sin x \cos y = \frac{1}{4} \\ 3 \tan x = \tan y \end{cases}$

BRAIN STORMING SUBJECTIVE EXERCISE

ANSWER KEY

EXERCISE-4(B)

$$\textbf{1.} \quad \frac{\pi}{8}\,,\; \frac{\pi}{3}\,,\; \frac{3\pi}{8}\,,\; \frac{5\pi}{8}\,,\; \frac{2\pi}{3}\,,\; \frac{7\pi}{8} \qquad \textbf{2.} \quad \quad x \in \left[n\pi + \frac{\pi}{6}, n\pi + \frac{\pi}{3}\right] \, \cup \, \left[n\pi + \frac{2\pi}{3}, n\pi + \frac{5\pi}{6}\right],\; n \in I$$

3.
$$x = \pi/6$$
 only 4. $x = 2n\pi + \frac{\pi}{12}$ or $2n\pi + \frac{17\pi}{12}$; $n \in I$ 5. $\left\{-\pi, -\frac{\pi}{2}, -\frac{\pi}{3}, \frac{\pi}{3}, \pi\right\}$

6.
$$x = -\frac{5\pi}{3}$$
 7. $\frac{1}{2} \left[n\pi + (-1)^n \sin^{-1} \left(1 - \sqrt{2a + 3} \right) \right]$ where $n \in I$ and $a \in \left[-\frac{3}{2}, \frac{1}{2} \right]$

8.
$$x = \log_3\left(\frac{2k}{3} - \frac{1}{6}\right), k \in N ; x = \log_3\left(\frac{n}{2}\right), n \in N ; x = \log_3\left(\frac{1}{8} + \frac{m}{2}\right), m \in N \cup \{0\}$$

EXERCISE - 05 [A]

JEE-[MAIN] : PREVIOUS YEAR QUESTIONS

- 1. Find the no. of roots of the equation $\tan x + \sec x = 2 \cos x$ in the interval $[0,2\pi]$ -[AIEEE 2002, IIT 1993] (4) 4
- 2. General solution of $\tan 5\theta = \cot 2\theta$ is-

[AIEEE 2002]

- (1) $\theta = \frac{n\pi}{7} + \frac{\pi}{14}$
- (2) $\theta = \frac{n\pi}{7} + \frac{\pi}{5}$ (3) $\theta = \frac{n\pi}{7} + \frac{\pi}{2}$
- (4) $\theta = \frac{n\pi}{7} + \frac{\pi}{3}, n \in \mathbb{Z}$
- The number of values of x in the interval $[0,3\pi]$ satisfying the equation $2 \sin^2 x + 5 \sin x 3 = 0$ is-3.

[AIEEE 2006]

(1) 6

(3) 2

(4) 4

If $0 \le x \le \pi$, and $\cos x + \sin x = \frac{1}{2}$, then $\tan x$ is -

[AIEEE 2006]

- (1) $(4 \sqrt{7})/3$
- (2) $-(4+\sqrt{7})/3$ (3) $(1+\sqrt{7})/4$
- (4) $(1-\sqrt{7})/4$

5. Let A and B denote the statements

A: $\cos \alpha + \cos \beta + \cos \gamma = 0$

B: $\sin \alpha + \sin \beta + \sin \gamma = 0$

If
$$\cos (\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = -\frac{3}{2}$$
, then :-

[AIEEE 2009]

(1) Both A and B are true

(2) Both A and B are false

(3) \mathbf{A} is true and \mathbf{B} is false

- (4) **A** is false and **B** is true
- The possible values of $\theta \in (0, \pi)$ such that $\sin(\theta) + \sin(4\theta) + \sin(7\theta) = 0$ are: 6.

[AIEEE 2011]

(1)
$$\frac{2\pi}{9}, \frac{\pi}{4}, \frac{4\pi}{9}, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{8\pi}{9}$$

(2)
$$\frac{\pi}{4}, \frac{5\pi}{12}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{8\pi}{9}$$

(3)
$$\frac{2\pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{35\pi}{36}$$

(4)
$$\frac{2\pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{8\pi}{9}$$

PREVIOUS YEARS QUESTIONS			Α	NSWER	KEY		EXERC	ISE-5 [A]	
Que.	1	2	3	4	5	6			
Ans.	2	1	4	2	1	1			

[JEE 2002 (Screening), 3]

EXERCISE - 05 [B]

1.

2.

(A) 4

equations is

JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS

(D) 12

	(A) 0	(B) 1	(C) 2	(D) 4	
				[JEE 20	005 (Screening)]
3.	If $0 < \theta < 2\pi$, then the int	ervals of values of θ for w	which $2\sin^2\theta - 5\sin\theta + 2 >$	0, is	
	$(A)\bigg(0,\frac{\pi}{6}\bigg) \cup \bigg(\frac{5\pi}{6},2\pi\bigg)$	(B) $\left(\frac{\pi}{8}, \frac{5\pi}{6}\right)$	(C) $\left(0, \frac{\pi}{8}\right) \cup \left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$	(D) $\left(\frac{41\pi}{48}, \pi\right)$	
					[JEE 2006, 3]
4.	The number of solutions o	f the pair of equations			
	$2 \sin^2\!\theta - \cos 2\theta = 0$				
	$2\cos^2\theta - 3\sin\theta = 0$				
	in the interval $[0,\;2\pi]$ is				[JEE 2007, 3]
	(A) zero	(B) one	(C) two	(D) four	
5.	The number of values of $\boldsymbol{\theta}$	in the interval $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ s	such that $\theta \neq \frac{n\pi}{5}$ for $n =$	$0, \pm 1, \pm 2$ and $\tan \theta$	$\theta = \cot 5\theta$ as well
	as $\sin 2\theta = \cos 4\theta$, is				[JEE 2010, 3]
6.	The positive integer valu	e of n > 3 satisfying th	e equation		
	$\frac{1}{\sin\left(\frac{\pi}{n}\right)} = \frac{1}{\sin\left(\frac{2\pi}{n}\right)} + \frac{1}{\sin\left(\frac{2\pi}{n}\right)}$	$\frac{3\pi}{n}$ is			[JEE 2011, 4]
7.	Let $\theta,\ \phi\in[0,2\pi]$ be such	h that			
	$2\cos\theta(1-\sin\phi)=\sin^2\theta\Bigg(t$	$ \tan\frac{\theta}{2} + \cot\frac{\theta}{2} \right) \cos\varphi - 1, t $	$\tan(2\pi - \theta) > 0$ and $-1 < 0$	$<\sin\theta<-\frac{\sqrt{3}}{2}$.	
	Then ϕ cannot satisfy-				[JEE 2012, 4]
	(A) $0 < \varphi < \frac{\pi}{2}$	(B) $\frac{\pi}{2} < \phi < \frac{4\pi}{3}$	$(C) \frac{4\pi}{3} < \phi < \frac{3\pi}{2}$	(D) $\frac{3\pi}{2} < 6$	$\phi < 2\pi$

The number of integral values of k for which the equation $7\cos x + 5\sin x = 2k + 1$ has a solution is

(C) 10

 $\cos(\alpha-\beta)=1$ and $\cos(\alpha+\beta)=1/e$, where $\alpha,\ \beta\in[-\pi,\ \pi]$, numbers of pairs of $\alpha,\ \beta$ which satisfy both the

(B) 8