

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- 1 Find this session in the Cisco Events Mobile App
- 2 Click "Join the Discussion"
- 3 Install Webex Teams or go directly to the team space
- 4 Enter messages/questions in the team space

Network Service Fabric Architecture

Powered by EVPN

Thierry Couture dax@cisco.com

BRKSPG-2322

Network Service Fabric Architecture

Powered by EVPN

Thierry Couture (Powered by Patrice Brissette :) dax@cisco.com

BRKSPG-2322

Agenda

- Welcome to Planet EVPN!
- Network Service Fabric
- Stitched vs Integrated Fabric
- EVPN Multi-Homing
- Eco-System / Toolkit
- Access Use Cases
- Legacy Network Migration
- Conclusion

Fabric Decision Matrix Typical Cisco Problem: Too many choices; what to pick?

	Item	Description	Possibility
	Services Primitives	Use Cases with: L3, L3VPN	I, L2P2P, L2MP, L2VPWS, multicast, IPv4, IPv6, etc.
	Features	Forwarding Plane	IPv4, MPLS , IPv6, VXLAN, ACI, PBB, LISP, GRE, MPLSoGRE, PPP, Geneve, etc.
Т		Control Plane	OSPF, ISIS, BGP, SR, LDP, T-LDP, RSVP-TE, etc.
	ODAY	Service Plane	L2VPN, L3VPN, BGP-VPLS, LDP-VPLS, EVPN , L2TPv3, GRE, PPP, OTV, LISP, NSH, etc.
		Management Plane	CLI, SNMP, SSH, Telnet, Syslog, NetFlow, BMP, RCMD, Netconf, YANG, OpenConfig, gRPC, GPB, etc.
	Software	Products	XR, IOS, NxOS, NSO, SR-PCE, ODL, WAE, VTS, APIC, etc.
	Hardware	Products	8000, ASR 9000, ASR 9900, NCS 5500, NCS 5000, Nexus 9000, Nexus 7000, XRv9000, CSR1Kv, VPP, UCS Servers, etc.
	Others		White Box, Gray Box, Black Box, Rainbow box Open Source, Closed Source, HGPOC, 3 rd Party
			DDVCDC 2022 @ 2020 Ciaca and/as its offlictor All rights recovered Ciaca Dublic

Welcome to Planet EVPN!

EVPN Historical Perspective

EVPN: Value Proposition

Create New Revenue Streams Stateless SFC and NFV E-LAN, E-LINE, E-TREE, L3, IRB Services Deploy with Ease Seamless Brownfield Integration Same principles and operational experience as IP VPNs Increase Availability Workload Mobility

Unified Networks on single overlay

Simplify protocols and operationsIndustry adoption and standardization

• All-Active Redundancy with Fast

Optimal forwarding

Convergence

SP Routing Use Case Representation EVPN Applicability

Why EVPN for Access?

= RAS, DSLAM, OLT, Switch, Radio, etc.

Access Challenges	EVPN Benefits
Low Cost / Low Features / Low Resources	Keep "intelligence" on aggregation devices
Often "in the field" and hard to upgrade	Keep "intelligence" on aggregation devices
1,000's of them, little uniformity	Scale
L1, L2, if you are lucky, L3, you're pushing it, MPLS, don't even think about it	It's not you, it's me!
Varous Topologies (star, hub/spoke, ring, stack, whatever)	Yes
Single / Multi-Homed	Yess
Optimized for both N/S and E/W	Yesss

Network Service Fabric (Why EVPN for the Access)

SP Fabric Demystification

- Fabric > DC "Thing"
- Fabric != "NEW"
- Fabric (DC) = Constrained (Centralized), Mostly Symmetrical (multi-homing, distance, oversubscription, cost)
- Fabric (SP) <> Fabric (DC)

SP Fabric Demystification

Network Service Fabric Design Options

Service Provider Network

Network Service Fabric

Classic SP Architecture

cisco life!

Classic SP Architecture

cisco life!

NFV SP Architecture

NFV SP Architecture

Corollary

- The Network and the Donut?
- What and Where is the Edge?

Stitched vs Integrated

Stitched Fabric - Regional / Edge

- ➤ Discrete IGP domain
- > Packet rebuild / regenerated at BL
- ➤ Host routing within fabric
- > Summarization at BL
- > Services are always terminated at BL
- Separate orchestration
- ➤ Optimal Forwarding E-W, N-S

Integrated Fabric - Regional / Edge

- > Underlay IP visible outside fabric
- Packets are untouched
- ➤ No protocol translation
- ➤ Host routing leaked to WAN (small fabric)
- > Full WAN feature set at the leaf
- > Ease of End to end OAM
- ➤ End-to-end service

EVPN Eco-System / Toolkit

Network Service Fabric Requirements

EVPN - Load-Balancing Modes

All-Active (per flow)

Single LAG at the CE VLAN goes to both PE Traffic hashed per flow Benefits: Bandwidth, Convergence Single-Active (per VLAN)

Multiple LAGs at the CE VLAN active on single PE Traffic hashed per VLAN Benefits: Billing, Policing Port-Active (per port)

Single/Multiple LAGs at the CE Port active on single PE Traffic hashed per port Benefits: Protocol Simplification

EVPN - Load-Balancing Modes

Single-Flow-Active (L2 access GW)

Single LAG at the CE VLAN goes to both PE Access takes care of L2 loop Benefits: Legacy support for STP, REP, G.8032

EVPN – Bridging

L2 E-LAN E2E Service

East-West In Fabric

MAC advertisement

Multi-homing

Legacy access protocols

VPLS seamless interop

MAC mobility

On-Demand Nexthop

Convergence

EVPN – Bridging An Example

EVI = EVPN instance

cisco Live!

EVPN - IRB

Virtualization and Compute

L2 Legacy to L3VPN

Distributed Anycast Gateway

Symmetric IRB

Multi-homing

Host Routing & Mobility

Optimal Forwarding

Summarization

L2 / L3 integration

EVPN – IRB An Example

EVPN – Routing

All-Active L3VPN Service

VSS/vPC Equivalent

Scalability

v4 / v6

VRF2VRF leaking

IPVPN seamless interop

RPL

RT constraint

IGMP/MLD sync

L3 Interface

EVPN - IP Gateway Multi-Homing

EVPN - Gateway Multi-Homing

EVPN - VPWS

L2 E-LINE E2E Service

Access Services to Fabric

VLAN-unaware

MPLS / SRv6 dataplane

Multi-homing

On-Demand Nexthop

EVPN – VPWS An example

EVPN - ETREE

Residential Services

BNG applications

Access Aggregator

Root/Leaf per router

Root/Leaf per Bridge Domain

IRB (as root)

Multi-homing

VLAN segmentation

EVPN – ETREE An Example

- ✓ Root to leaf
- ✓ Leaf to leaf prohibited

cisco Live!

EVPN – ETREE Another Example

- ✓ Root to leaf
- ✓ Leaf to leaf inter-subnet
- ✓ Leaf to leaf intra-subnet prohibited

EVPN - Head End

Hierarchical L3VPN Service

Residential Service

BNG application

All-Active CoreToAccess

Single-Active AccessToCore

Service decoupling

VLAN aware

FXC as access service

VPWS as access service

EVPN-Head End An Example

ESI support VLAN-aware GARP on-demand Geo-Redundancy

> VPNv4/v6 EVPN

EVPN - Flexible XC Service

L2 E-LINE E2E Service

Access Services to Fabric

Stateless SFC / NFV

VLAN-aware

Local Switching

Multi-homing

VLAN-unaware

cisco Life!

EVPN - Flexible Cross-Connect Service

Challenge:

How to bring multiple access services from different sources using a single EVPN E-LINE tunnel?

EVPN - Flexible Cross-Connect Service

Request:

Can local switching preferred over ELINE tunnel?

Flexible Cross-Connect Service: Head-End

Purpose:

Bring multiple ELINE services into Pseudo-Wire Head-End termination

Flexible Cross-Connect Service: Local Switching Purpose:

Bring access services (e.g OLT) into BNG with redundancy

EVPN - ELBOW

Purpose:

Provide transparent QOS, Policy and Shaping with aggregation (MUX) capability

EVPN – ELBOW An Example

EVPN

ELINE

EVPN - DCI

Different data plane stitching

Inter-DC communication

L2/L3 to L2/L3 Interconnect

EVPN enable Fabric

Inter-Fabric Layer2

Layer3

Flood & Learn (VxLAN)

Pre-Agg

Access

Aggregation

Core

MPLS Layer2 PE

EVPN - Multicast

Radio / Streaming Service

Multicast Redundancy

Multi-homing

v4 / v6

IGMP/MLD snooping sync

IGMP/MLD sync

Extranet

"Intent-based" MVPN 26 profiles

cisco Life!

EVPN - Multicast An Example

L3

L2

Join/Leave Sync

PIM / MVPN **EVPN**

Source

Access Use Cases

EVPN - L3 Multi-Homing using EVLAG

EVPN

EVPN - Anycast-PW

EVPN - Access VPWS

EVPN - IRB with Access VPWS

EVPN - HE with Access VPWS

EVPN - Overlay Gateway

Legacy Network Migration

EVPN - VPLS Seamless Integration

VPLS pseudowire - - -

EVPN - VPWS seamless integration

VPWS pseudowire- - - -

MPLS

EVPN - Access Legacy L2 to EVPN

EVPN - Big Bang!

We believe in...

Architecture Change - Drastic Network Protocols Reduction @ Bell

Centralized vs. Distributed Routing

L2

Distributed Routing

- Optimized forwarding of east-west traffic
- ARP/MAC state localized to Leafs
- Helps with horizontal scaling of DC

Centralized Routing

- All east<->west routed traffic traverses to centralized gateways
- Centralized gateways have full ARP/MAC state in the DC
- Scale challenge

How to reach us?

dax@cisco.com pbrisset@cisco.com http://e-vpn.io

Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events Mobile App or by logging in to the Content Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at ciscolive.com.

Continue your education

illiilli CISCO

Thank you

cisco live!

You make possible

EXTRA

More Information (http://e-vpn.io)

- RFC 7209: Requirements for Ethernet VPN
- RFC 7432: BGP MPLS-based Ethernet VPN
- RFC 8214: VPWS support in EVPN
- RFC 7623: PBB-EVPN
- RFC 8317: EVPN E-TREE
- draft-ietf-bess-evpn-overlay: NVO solutions for EVPN
- draft-ietf-bess-evpn-inter-subnet-forwarding: IRB in EVPN
- draft-ietf-bess-evpn-ip-prefix-advertisement: IP prefixes in EVPN

DCI and Network Fabric principles

Principles

DCI/BL provides Layer3 Interconnect

DCI/BL participates in L3 Routing, but not in L2 Bridging DCI/BL summarization is required/recommended X.X.X.H2/24 H2 DCI2 Z.Z.Z.CE1/24 **CORE** CE₁ **IRB** DCI1 SP1 H1 X.X.X.H1/24

DCI/BL Summarization

Control Plane Options Highlight

- Option #3 VPNv4/6 & VPNv4/6
 - + VPNv4/6 Industry proofed solution for Layer3 VPN
 - + DCI doesn't need to understand BGP EVPN AF
 - Leaf has to peer with Route-Reflector via both BGP EVPN and VPNv4/6 AF
 EVPN AF to support L2 stretch (MAC advertisement) across DC/CO between Leaves
 EVPN AF to sync ARP/ND for Multi-Homed All-Active
 - DC/CO Route-Reflector has to support both BGP EVPN and VPNv4/6 AF
 - Leaf has to advertise VM Host-Routes via VPNv4/6
- Option #2 EVPN & EVPN
 - + Single BGP Address Family End-To-End in Network
 - Existing L3 VPNv4/6 services has to to migrated to L3 EVPN
 No technical benefit to migrate existing L3 VPNv4/6 to L3 EVPN
- Option #1 VPNv4/6 & EVPN
 - + Recommended solution which benefits from both Options #2 and #3
 - + New DC/CO Leaf, Route-Reflector use single BGP AF EVPN
 - + Existing L3 VPNv4/6 services stay untouched

BGP Layer3 Interconnect DCI1/2 VRF FIB: CO - EVPN VXLAN Data Plane X.X.X.H1 -> L1, L2 X.X.X.H2 -> L3, L4 PE/DCI3 VRF FIB: X.X.X.0/24 -> L1, L2, L3, L4 +1 -> DC1, DCI2 Z.Z.Z.0/24 -> PE3 IRB (.X.X.H2 -> DCI1, DCI2 X.X.X.H2/24 X.X.X.0/24 -> DC1, DCI2 Z.Z.Z.0/24 -> CE1 H2 DCI2 SP2 L3 Z.Z.Z.CE1/24 **CORE** CE1 PE/DCI3 CO **IRB** L2 SP1 DCI1 H1 X.X.X.H1/24 IRB DCI: VRF IP Lookup! X.X.X.H1 X.X.X.H1 Transport Label DCI1/2 PHP Leaf 1/2 - IP VRF VXLAN VNI Service Label VRF X.X.X.H1 Inner ETH Header X.X.X.H1 **RFC7348 X.X.X.H1**

Data Plane Highlight

BGP L3 EVPN or VPNv4/6 MPLS Packet

- MPLS Data Plane
 - + Independent on BGP VPNv4/6 or EVPN Control Plane => Packet is identical Less Complexity, Simple Troubleshooting
 - + MPLS Load-Balancing (ECMP) by Inner IP Header Lookup

- VXLAN Data Plane RFC7348
 - RFC7348 requires Inner Ethernet encapsulation => Unnecessary overhead for L3 Forwarding

- Inner Ethernet Header encapsulation/decapsulation typically done by Integrated Routing and Bridging (IRB) Interface IRB requires Bridge-Domain
 - DCI doesn't participate in L2 Forwarding => Bridge-Domain (BD) requires unnecessary HW resources

You make possible