B. Statistik

- Qualitative Merkmale:
- Variieren nach Beschaffenheit
- Bspw. Geschlecht
- Quantitative Merkmale:
 - Variieren nach Wert/Zahlen
 - Bspw. Alter, Einkommen
- Diskrete Merkmale:
- abgestufte Werte
- Bspw. Einkommensklasse
- Stetige Merkmale:
- können im Intervall jeden reellen Wert annehmen
- Bspw. Körpergröße

Skalenniveaus

- Nominal
- nur Gleichheit oder Andersartigkeit feststellbar (keine Bewertung)
- stets qualitativ (Religion, Beruf etc.)
- Ordinal
- natürliche oder festzulegende Rangfolge
- IQ, Schulnoten
- Kardinal
- numerischer Art
- Ausprägung und Unterschied sind messbar
- verhältnisskaliert (Absoluter Nullpunkt vorhanden; Gewicht, Preis (Doppelt so viel.))
- intervallskaliert (Kein Nullpunkt, nur Differenzen; Temperatur (10 Grad wärmer als gestern))

Werte

- Arithmetisches Mittel \overline{x}
- $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{a_1 + a_2 + \dots + a_n}{n}$ Summe aller Abweichungen vom Mittel =
- Verschiebung um kostanten Wert a $a + \overline{x}$
- Multiplikation mit konstantem Wert $a \cdot \overline{x}$
- Median \tilde{x}
- Mittleres Element der geordneten Liste
- Bei gerader Anzahl, Durchschnitt der mittleren Elemente

- Ouartile
 - Unteres Quartil $\tilde{x}_{0.25}$ (sortieren & ablesen)
 - Oberes Quartil $\tilde{x}_{0.75}$
- Varianz σ^2

$$\sum_{i=1}^{N} (x_i - \mu)^2$$

$$\sum_{i=1}^{\infty} (x_i - \overline{x})$$

- Populations Varianz $\sigma^2 = \frac{\sum_{i=1}^{N} (x_i \mu)^2}{N}$ Sample Varianz $S_{n-1}^2 = \frac{\sum_{i=1}^{n} (x_i \overline{x})^2}{N}$
- Altn. Formel $\sigma^2 = \overline{x^2} \overline{x}^2$
- Eigenschaften:
 - * Immer ≥ 0
 - * Addition mit a. Varianz unverändert
 - * Multiplikation mit b, $Varianz * b^2$
- Standardabweichung σ
- $-\sigma = \sqrt{\sigma^2}$
- StichprobenSDA $S = \sqrt{S_{n-1}^2}$ Quartilsabstand $\tilde{x}_{0,75} \tilde{x}_{0,25}$

Zweidimensionale Häuffigkeitstabellen

- Statistische Variablen X und Y mit versch.Auspräungen
- Spaltensummen sowie Zeilensummen = n
- Relative Häufigkeit $h_{ij} = \frac{n_{ij}}{n}$
- Randverteilung = Betrachtung einer einzigen Variable
- Z = X + Y; $\overline{z} = \overline{x} + \overline{y}$;

Kovarianz

- Arithmetisches Mittel des Produkts der Abweichung der einzelnen Beobachtungen von ihrem Mittel
- $C_{XY} := \frac{1}{n} \sum_{j=1}^{n} (x_j \overline{x})(y_j \overline{y}) = \overline{xy} \overline{x} * \overline{y}$ $C_{XY} > 0$ "große X-Werte zu großen Y-
- $C_{XY} < 0$ "große Werte zu kleine Werten"
- · Sind zwei Variablen statistisch unabhängig ist die Kovarianz = 0

Korrelation

- Normal (Pearson) $r_{XY} = \frac{C_{XY}}{\sigma_x * \sigma_y}$
 - normiertes Maß für Strenge des linearen statistischen Zusammenhangs
- r_{XY} hat das gleiche Vorzeichen wie C_{XY}

- Bleibt unverändert bei linearer Transformation
- $-r_{XY}=r_{YX}$
- $-1 \le r_{XY} \le +1$
- (Spearman) Rangkorrelation
 - $r_{rg(X),rg(Y)}$
 - für ordinale Variablen
- misst monotonen Anteil des stat. Zusammenhangs
- Ränge müssen vorher berechnet werden
- $-1 \le r_{VV}^{Sp} \le +1$
- Kovarianz und Korrelation bedeuten nicht zwangsweise eine kausale Beziehung!

Kontingenzkoeffizient

- beschreibt die Stärke des Zusammenhangs zweier Merkmale, nicht deren Richtung
- Chi-Quadrat $QK = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{ji} E_{ij})^2}{E_{ij}}$
- $-E_{ij} = \frac{1}{n} * n_i * n_j = \frac{1}{n} n(x_i) * n(y_j)$
- Siehe Erweiterte Kontingeztabelle
- X und Y unabhängig: QK = 0
- Sonst QK > 0
- Für 2x2 Matrix: $QK = \frac{n(ad-bc)^2}{(a+b)(a+c)(b+d)(c+d)}$ a bis d sind Inhalte der Tabelle, Summen
- sind Randhäufigkeiten
- Kontingenzkoeffizient $K := \sqrt{\frac{QK}{QK+n}}$
 - normiertes Maß
- X und Y unabhängig: K = 0
- $-0 \le K \le K_{max} = \sqrt{\frac{m-1}{m}} < 1$
- m = Minimum von Zeilenzahl und Spaltenzahl
- Korrigierter K.-koeffizient $K^* := \frac{K}{K_{max}} =$ $\sqrt{\frac{QK*m}{(QK+n)(m-1)}}$
- $-0 \le K^* \le 1$
- Vergleichbar mit anderen K-Tabellen

2 Regression

- Lineare Regression y(x) = a + bx
- $-b = \frac{c_{XY}}{s^2} \text{ und } a = \overline{y} b\overline{x}$
- Interpret: b*x erhöht und Achsenabschnitt(meist nicht anwendbar)
- Regressionswerte = $\hat{v}_i = v(x_i)$

- Residuen (Fehler) $e_i = v_i \hat{v}_i$
- Andere Regressionen:
- $-\hat{y} = a + bx + cx^2$ Quadr. Regr.
- $-\hat{y} = a + x^b$ Potenzfunkt.
- $\hat{y} = ab^x$ Expo-funkt.
- · Meth. kleinste Quadrate
- Varianzzerlegung $SSQ_{Total} = SSQ_{Reg} +$ SSQ_{Resi}
- $SSQ_{Reg} = \sum_{i=1}^{n} (\hat{y}_i \overline{y})^2$ (Abweichung von Vorhersage und Mittelwert)
- $-SSQ_{Total} = \sum_{i=1}^{n} (y_i \overline{y})^2$ (Gesamtabwe-
- $-SSQ_{Resi} = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$ (Abweichung von Vorhersage und y)
- Bestimmtheitsmaß $R^2 = \frac{SSQ_{Reg}}{SSQ_{Total}} = \frac{S_{\hat{Y}}^2}{S_{-}^2} = r^2$
 - r² gilt nicht für Quadr. Reg. !!!
 - Schlecht $0 \le R^2 \le 1$ Gut - R^2 ≥ 0.8 akzeptabel
- Multiple Regr.
 - Y wird durch mehrere Variablen erklärt
 - $-\hat{y} = a + b_1 x_3 + b_2 x_3 + b_3 x_3$
- Adjustiertes Bestimmtheitsmaß $R_a^2 = R^2 \frac{k}{n-k-1} * (1-R^2)$
 - Hinzunahme von Params, erhöht den R² automatisch, auch wenn es nicht besser wird
- n = Anzahlder Messwerte
- k = AnzahlderReg.Params
- R_a^2 kann auch kleiner/negativ werden > Variable nicht aufnehmen
- Anmerkungen:
 - Residualplot: Gutes Modell, wenn kein Muster erkennbar!
 - Optimum finden: 1.Ableitung = 0 setzen
 - "Faktor Größe" hat nichts mit Einfluss zutun, nur bei standardisierten Daten

3 Wahrsch. Rech.

- Zufallsvariable $X: \Omega > R mit X(\omega) = x$
 - Funktion, die jedem Möglichen Ergenis eine reelle Zahl zuordnet
 - Wahrscheinlichkeits-/ Dichtefunktion f: P(X = x)
 - Verteiteilungsfunktion $F: P(X \le t)$

- F ist Stammfunktion für f aber muss mit +C angepasst werden
- Diskrete
- f: R > [0,1] mit f(x) = P(X = x)
- -P(X = X) Wahrscheinlichkeit mit der X die Realisation x annimmt
- $F(t) = P(X \le t) = \sum_{x_i \le t} P(X = x_i)$
- Stetige
- Zufallsvariable ist stetig, Wahrscheinlichkeit durch Dichtefunktion abbilden lässt
- Dichtefunktion, wenn $\int_{-\infty}^{+\infty} f(x) dx = 1$ und $f(x) \ge 0$
- $-F(t) = P(X \le t) = \int_{-\infty}^{t} f(x) dx$
- Erwartungswert
- Diskret: $E(X) = \sum_{i=1}^{n} x_i * f(x_i)$ Stetig: $E(X) = \int_{x_{min}}^{x_{max}} x * f(x) dx$
- Varianz $(Var(X) = \sigma^2)$ & SDA $(\sigma = \sqrt{\sigma^2})$
- Es gilt: $\sigma^2 = E((X E(X))^2) = E(X^2)$ -
- Diskret: $Var(X) = \sum_{i=1}^{n} (x_i E(X))^2 * f(x_i)$ Stetig: $Var(X) = \int_{x_{min}}^{x_{max}} (x E(X))^2 *$ f(x)dx
- Rechenregeln
- E(a + b * X) = a + b * E(X)
- $-Var(a+b*X) = b^2*Var(X)$
- E(X+Y) = E(X) + E(Y)
- Stichprobe:
- Stichprobenmittel von unabhängigen Variablen $\overline{X} := \frac{1}{n}(X_1 + ... + X_n)$
- $E(\overline{X} = \mu)$ und $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$
- Normalverteilung
- SD-normalverteilung mit $\mu = 0$ und $\sigma = 1$
- z-Transformation $z = \frac{x-\mu}{\sigma}$
- Zentr.Grenz.Satz: Für hinreichend großes

n jeder Vertilung gilt $\overline{X}_n \tilde{N}(\mu, \frac{\sigma^2}{n})$ "normalverteilt"

4 Schl. Statistik

Anmerkungen

• α meist 5% oder 1%

Mittelwerttest

- GG ist norm. verteilt oder n > 30
- Stichprobenmittel \overline{x} und ggf. Stichprobenvarianz *s*² bekannt
- σ der GG bekannt
- $-z = \sqrt{n} \frac{\overline{x} \mu_0}{\sigma}$
- -> Tabelle Norm.Verteilung
- σ der GG unbekannt
- $t = \sqrt{n-1} \frac{\overline{x} \mu_0}{s_n}$ > t Tabelle!
- Zweiseitig: $|z| \le z[1-\alpha/2] H_0$ behalten; |z| > $z[1-\alpha/2]$ H_0 verwerfen
- Ober/Rechts: $z \le z[1 \alpha] H_0$ behalten; z > $z[1-\alpha]$ H_0 verwerfen
- Unten/Links: $z \ge z[1-\alpha] H_0$ behalten: z < $z[1-\alpha]$ H_0 verwerfen
- Gleiches für t-1

Varianztest

- GG ist normalverteilt, α und σ_0 bekannt
- μ von GG. bekannt
- $-t_n = \frac{1}{\sigma_0^2} \sum_{i=1}^n (x_i \mu)^2$
 - Siehe (I)
- μ von GG. unbekannt
- $-t_n = n * \frac{s_n^2}{\sigma^2}$
- Siehe (II)

H_0	H_1	Krit.
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$t_n < \chi_n^2 [\alpha/2]$ $t_n > \chi_n^2 [1 - \alpha/2]$
$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$t_n < \chi_n^2[\alpha]$
$\sigma^2 \leq \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$t_n > \chi_n^2 [1 - \alpha]$

П

H_0	H_1	Krit.
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$t_n < \chi^2_{n-1}[\alpha/2]$ $t_n > \chi^2_{n-1}[1 - \alpha/2]$
$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$t_n < \chi^2_{n-1}[\alpha]$
$\sigma^2 \leq \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$t_n > \chi_{n-1}^2 [1 - \alpha]$

Differenztest

- · GG ist normalverteilt
- σ_X^2 und σ_Y^2 gleich aber unbekannt
- δ_0 vorgegeben oder $\delta = \mu_X \mu_Y$

H_0	H_1	Krit.
$\delta = \delta_0$	$\delta \neq \delta_0$	$ t_n > t_{n+m-2}[1-\alpha/2]$
$\delta \ge \delta_0$	$\delta < \delta_0$	$t_n < t_{n+m-2}[\alpha]$
$\delta \leq \delta_0$	$\delta > \delta_0$	$t_n > t_{n+m-2}[1-\alpha]$

χ^2 Test

- $E_{ii}immer \geq 5$
- $H_0 = X$, Y sind unabhängig; $H_1 = X$, Y sind abhängig
- Prüfgröße χ^2 (wie oben, mit erw. Kont.-
- Krit.Wert: $c = \chi^2_{(k-1)(l-1)}[1-\alpha]$
- $\chi^2 \le c$ H0 behalten
- $\chi^2 > c$ H0 verwerfen

P-Test

Excel Tests

- Koeffizienten für jede X_i > Formel lässt sich daraus ableiten
- · Parameter wird nur im Modell behalten wenn $t > |\frac{\beta_j}{\hat{\sigma}_i}| > 2$
- Signifikanzniveau von ca. 5%
- Alternativ: p-Werte $< \alpha$ werden behalten, p-Werte > α werden verworfen
- F-Test des Bestimmtheitsmaßes:
- Testet ob, nicht auch alle Parameter = 0 sein könnten (Sinnhaftigkeit der Regression)
- Prüfgröße F aus Excel
- FWert: aus F-Verteilung oder gegeben
- $-F \ge FWert H_0$ verwerfen, Regressionsansatz sinnvoll
- $-F < FWert H_0$ behalten, Regressionsansatz schlecht
- Einfacher: Über F.Krit
- pWert < F.Krit H₀ behalten, Regressionsansatz sinnvoll
- $pWert > F.Krit H_0$ verwerfen, Regressionsansatz schlecht

Other

$$\begin{array}{c|c} n_{ij} & (n_{ij} - E_{ij})^2 \\ \hline n_{ij} - E_{ij} & E_{ij} \end{array}$$

Test\Realität	H_0 richtig	H_1 richtig
H_0 behalten	ok (Spezifität)	β Fehler (FP)
<i>H</i> ₀ verwerfen	α Fehler (FN)	ok (Sensitivität)