Lecture 4

Series A series is an infinite sum of complex numbers.

$$\sum_{n=k}^{\infty} Z_n = Z_k + Z_{k+1} + \cdots$$

$$\underbrace{\text{Ex}: \ 0}_{\text{n=0}} |+2+2^{2}+2^{3}+\cdots = \sum_{n=0}^{\infty} 2^{n}$$

$$\underbrace{\text{ex}: \ 0}_{\text{n=0}} |+2+2^{2}+2^{3}+\cdots = \sum_{n=0}^{\infty} 2^{n}$$

$$\underbrace{\text{ex}: \ 0}_{\text{n=0}} |+2+2^{2}+2^{3}+\cdots = \sum_{n=0}^{\infty} 2^{n}$$

Given a series $\sum_{n=0}^{\infty} Z_n$ we define the kth partial to be: $S_k = Z_0 + Z_1 + \dots + Z_k$

The series converges (cvgs) to L if flim St = L

If we write
$$Z_n = \chi_n + iy_n & \sum Z_n \longrightarrow L = x + iy$$

then $\sum \chi_n \longrightarrow \chi$
 $\sum y_n \longrightarrow y$

Moreover: If $\Sigma x_n \rightarrow x & \Sigma y_n \rightarrow y$, then $\Sigma z_n \rightarrow L = \alpha + iy$

Why does this help?

- We already know convergence tests for real series.

since $\sum \frac{1}{n}$ diverges (harmonic), so the original series diverges.

Triangle Inequality:

If
$$Zw \in \mathbb{C}$$
 then $|z+w| \leq |z|+|w|$
 $\Rightarrow |\Sigma Z_n| \leq \Sigma |Z_n|$

So we get that if 2/2n/ converges then 22n converges.

Ex: Does
$$\sum_{n=0}^{\infty} \frac{(2+3i)^n}{n!}$$
 converge?

write as
$$\sum Z_n$$

Ratio Test: $\lim_{n\to\infty} \frac{|Z_{n+1}|}{|Z_n|} = \lim_{n\to\infty} \frac{(2+3i)}{|N_n|} = 0 < 1$ so converges.

Exponential Functions

Defin: For any $z \in \mathbb{C}$, (z=x+iy), define $e^z=e^{x+iy}=e^x.e^{iy}$ $=e^x.(cosy+isiny)$

This defines a function $f(z) = e^z$ whose domain is \mathbb{C} .

Properties:

(1) extw = ez . ew

1 (osy+isinyl= cosy+siny = 1

(2) $|e^{\mathbf{z}}| = |e^{\mathbf{x}} \cdot e^{i\mathbf{y}}| = |e^{\mathbf{x}}| \cdot |e^{i\mathbf{y}}| = |e^{\mathbf{x}}| \cdot 1$ so $|e^{\mathbf{z}}| = e^{\mathbf{Rez}} = e^{\mathbf{x}}$

3 $e^{\mathbf{Z}}$ is continuous (because $u = e^{\mathbf{X}}\cos y$, $V = e^{\mathbf{X}}\sin y$ are cts functions of x, y.) 9 If $w = e^{\mathbf{Z}}$, then $w = e^{\mathbf{Z} + 2\pi i n} = e^{\mathbf{X} + i y + 2\pi i n}$

NEW THING: $= e^{x} e^{iy+2\pi in}$ $= e^{x} e^{i(y+2\pi in)}$ $= e^{x} e^{i(y+2\pi in)}$ $= e^{x} e^{iy}$

The function is not 1-1, there are infinitely many complex #s that can be mapped to the same number by the function.

i.e. $w=e^{\frac{\pi}{2}}$ has ∞ many solutions. $(w\neq 0)$

 $e^{z} \neq 0$ for any $z \in \mathbb{C}$. $e^{z} = e^{x} \cdot e^{iy}$ a point on the unit circle, also never 0.

Visualize exponential function:

The function $f(z)=e^{z}$ takes a horizontal line to a ray extending from 0.

The same is true for any strip (Z=x+iy | C≤y<C+2π) (as Ima as the width is 2π)