

<u>کسانہ تحج</u> 5⁶⁶ = 1 (67) 5° = 1 (64) op divise 66 c) $.5^3 = 125 = 58(67)$ 58 $5^6 = (5^3)^2 = 58^2 (14)$ 58 = -9 (14) $=(-9)^2(67)$ **=81** (64) = 14 (67) : 5³ x 5⁶ x 5² = 58 × 14 × 25 (67) - 66 (64) $= (-1)^2 \qquad ((7)$

= 1 (67)

p let le p. p. entin (notant)
$$S^{p} = 1$$
 (sp)

p divise 65 pe D_{66}
 $D_{60} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{3} \cdot \frac{6}{3}$
 $S^{1} \neq 1$ (sp) $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

 $S^{2} \neq 1$ (sp)

$$= \left(S^{22} \right)^{9} = 1 \left(67 \right)$$

$$d' = 1 (67)$$

$$(5^{22})^9.5^2 = 1 (67).$$

$$= 5^{2} \ge 1 (64)$$

$$r < 22$$
 et Veifie $5^2 \equiv 1 (64)$

$$H = 67^2 + 5^3 = 1 (335)$$

$$Sin = 0$$
 $67^{\circ} + 5^{\circ} = 1$ (335)

$$=$$
 1 +5 $\frac{1}{2}$ = 1 (335)

$$=) S^{3} \equiv 0 \quad (335)$$

Si a divise b -) tont divisem de a

5 y 5 y fois

 $\mathcal{L} \left[x \neq 0 \right]$

$$|Siy=0| = 67^{n} + 5^{0} = 1$$
 (335)

⇒ 67° +1 = 1 (335)

$$= 67^{\times} = o(337)$$

D.F. previer $\Rightarrow 67^{\times} = 0 (5)$

Conclusion n to ety to.

b)
$$67^{2} + 5^{3} = 1 (335)$$

$$= 167^{2} + 5^{4} = 1 (5)$$

$$\int S^{2} = 0 (5) \qquad 3^{2} = 0$$

$$=) 6 + = 1 (5)$$

$$6 + = 2^{4} (5)$$

$$6 + = 2^{4} (5)$$

$$\times$$
 67 \times +5 4 = 1 (335) $\binom{67}{335}$

$$=$$
 64 2 +5 4 = 1 (67)

$$x \neq 0 \rightarrow 6 \uparrow^{\chi} \equiv 0 (67)$$

$$d'$$
 or $5^{4} = 1 (67)$

$$=) x = 4k \text{ et } y = 22q$$

c)
$$67 + 5 = 1(5)$$

$$67^{44} \pm 5^{229} = 1 (67)$$

$$.5^{229} \equiv O(S) \qquad 9 \neq 0$$

$$67^{4} = 2^{4} (5)$$

$$= (67^{\alpha})^{k} = 1 (5)$$

$$67^{4k} + 5^{229} \equiv 5^{229} (67)$$

$$825^{22} = 1(67)$$

$$= \int_{-\infty}^{229} = 1 \left(\zeta + \right)$$

Exercia 2	F F	
1)	1 BE =	<u> 12</u>
	A D BD=	ν ₂
E	B C	. [2
	DE =	
BE - BB - 1	DE= TE (In	diag de 3) aces du Cube
2 B(1,0,0)		
BE (-1)	$ \begin{array}{c c} \hline & BD \\ \hline & O \end{array} $	·
est m Véct pr	omal à (BI	DE)
(BED): -n -y	-3 + 2 =	0
B (1000) E (BE[)) =) d = 1	
(BED):	x -y -3 + 1:	= 0
(BED): x	+ 4 + 3 - 1=	: O `

C= uncle Circonscuit à un Triangle EBD

ME=MB=MD =) MC Axe de C

1 pp

$$AI = d(A; (BED)) = \frac{|0+0+0,-1|}{\sqrt{1^2+1^2+1^2}} = \frac{1}{\sqrt{3}}$$

$$A(0,0,0)$$

$$(EBD): x + y + 3 - 1 = 0$$

$$\int_{1}^{1} A G = \int_{1}^{1} A G$$

$$\int_{1}^{1} A G = \int_{1}^{1} A$$

$$\Rightarrow \overrightarrow{AI} = \frac{1}{3} \overrightarrow{A6}.$$

I des 2: Cor données de I	
	E(0,0,1)
N ET - 2 ED	
3	
$B = \begin{pmatrix} x - y \\ y \\ 3 - 1 \end{pmatrix} = \frac{2}{3} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$	
9 0 3-1/3/2/	سس
AIII	
I Léi Vecteur.	

(1)
$$k = \frac{1}{3}$$
 $h = h_{(A, \frac{1}{3})}$

$$\frac{AH_{\frac{1}{3}}}{3} = \frac{1}{3} \overrightarrow{AG} = \overrightarrow{AI}$$

$$\begin{pmatrix} M_{\Lambda} = I \\ 3 \end{pmatrix}$$

$$P_{\frac{1}{3}} = (BDE)$$

$$N_{\frac{1}{3}} = (BDE) \cap (BC) = B$$

$$M_{\frac{1}{3}} = I$$
 , $P_{\frac{1}{3}} = (BDE)$ $M_{\frac{1}{3}} = B^{-1}$

$$2 \mid a \rangle$$
 $A \mid A \mid k = k AG$

$$\begin{array}{ccc}
A(0,0,0) & \begin{pmatrix} x \\ y \end{pmatrix} = k \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} k \\ k \end{pmatrix}$$

$$G(1,1,1) & \begin{pmatrix} 3 \\ 2 \end{pmatrix} = k \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} k \\ k \end{pmatrix}$$

. Mk (k, k, k)

$$\begin{array}{c} b \\ \end{pmatrix} \begin{array}{c} P_{k} & || & (BDE) \\ \end{array} = \begin{array}{c} \overrightarrow{n} \\ (BDE) \end{array} = \begin{array}{c} (1) = \overrightarrow{n} \\ 1 \end{array} P_{k}$$

$$M_{k}(k,k,k) \in P_{k} \implies d = -3k$$

$$N_{k}(N_{k})$$
 (BC)= N_{k} (BC)= $D(B,BC)$

$$\begin{cases} x = 1 + o \alpha \\ y = 0 + \alpha \end{cases}$$

$$x + y + 3 - 3k = 3$$

$$= \pi \int_{X^{2}}^{1} \frac{1}{x^{2}} dx = \frac{1}{x^{2}} \ln x dx$$

$$= \pi \int_{X^{2}}^{1} \frac{1}{x^{2}} dx = \frac{1}{x^{2}} \ln (x) dx + \int h dx dx$$

$$I = \int \ln^{2}(x) dx = \int \ln(x) \cdot \ln x dx$$

$$= \int \ln^{2}(x) dx = \int \ln(x) \cdot \ln x dx$$

$$= \int \ln^{2}(x) dx = \int \ln(x) \cdot \ln x dx$$

$$= \int \ln^{2}(x) dx = \int \ln(x) \cdot \ln x dx$$

$$= \int \ln^{2}(x) dx = \int \ln(x) \cdot \ln x dx$$

$$= \int \ln^{2}(x) dx = \int \ln(x) \cdot \ln x dx$$

$$= \int \ln^{2}(x) dx = \int \ln(x) \cdot \ln x dx$$

$$= \int \ln^{2}(x) dx = \int \ln(x) \cdot \ln x dx$$

$$= \int \ln^{2}(x) dx = \int \ln(x) \cdot \ln x dx$$

$$= \int \ln^{2}(x) dx = \int \ln(x) \cdot \ln x dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx = \int \ln^{2}(x) dx$$

$$= \int \ln^{2}(x) dx = \int \ln^{2$$