

Pós Graduação Lato Sensu

DIRETORIA DE EDUCAÇÃO CONTINUADA

Inteligência Artificial e Aprendizado de Máquina

Técnicas Estatísticas de Predição

Programa

Calendário	Conteúdo	Referencial Teórico
07/02/2019	Regressão Linear (Simples e Multipla)	An Introduction to Statistical Learning with Applications in R, 2013
14/02/2019	Regressão Logística (Simples e Multipla)	
21/02/2019	Modelo Multinomial	Categorical Data Analysis, 2013
28/02/2019	Aula cancelada	
07/03/2019	Árvores de decisão e Florestas Aleatórias	An Introduction to Statistical Learning with Applications in R, 2013
14/03/2019	KNN, PCA e K Means Clustering	
21/03/2019	Avaliação	-

KNN, PCA e K Means Clustering

Livro texto: An Introduction to Statistical Learning

Cap. 4 - Classification

4.6.5 K-Nearest Neighbors

Cap. 10 - Unsupervised Learning

10.2 Principal Components Analysis

10.3 Clustering Methods

K- Nearest Neighbors (KNN)

- Algoritmo de treino
 - 1. Guarda os dados
- Algoritmo de teste/preditor
 - 1. Calcula as distâncias de X até os demais pontos
 - 2. Organiza os dados em ordem crescente de distância
 - 3. Classifica a classe de acordo com a maioria dos "k" primeiros valores

O parâmetro "k" do modelo pode afetar as classificações do mesmo

Vantagens

- Simplicidade de aplicação;
- Processo de treino é trivial;
- Funciona muito bem com grande número de classes;
- Fácil de se adicionar mais dados;
- Poucos parâmetros (K e Métrica de distância)

Desvantagens

- Elevado custo computacional para predição (piora para grandes conjuntos de dados);
- Não performa bem em dados com múltiplos níveis;
- Não performa bem para features categóricas.

K- Means Clustering

K- Means Clustering é um método de ML baseado em aprendizado não supervisionado que tentará agrupar seus dados em grupos de características similares.

Exemplo de utilização:

- Agrupamento automático de documentos;
- Agrupamento de clientes;
- Segmentação de mercado;
- Geoestatística

O objetivo do k-Means Clustering é dividir os dados em "k" grupos distintos fora do grupo e similar dentro do grupo.

O algoritmo

- Escolher um número K de grupos (Cluster)
 - a. Aleatoriamente definir um centroide para cada grupo
 - b. Até os clusters pararem de mudar, faça:
 - Para cada cluster obter centroide de acordo com a média dos vetores de pontos dos clusters
 - ii. Defina cada ponto ao cluster no qual o centroide é o mais próximo.

Como escolher o "k" mais adequado ou o "k"correto?

Não existe uma resposta fácil para a escolha do "k" mais adequado.

Uma forma sugerida é o método do cotovelo.

- Primeiro, calcula-se a soma dos erros quadráticos (SEQ) para alguns valores de K (Ex.: 2,4,6,...)
- A soma dos quadrados dos erros é definida como o quadrado das distâncias entre cada membro e o seu centroide.

Se plotado K versus SEQ, você verá que o erro diminui à medida em que K aumenta.

A ideia do método é escolher um valor de K no qual a SEQ caia bruscamente. Isso produz um efeito cotovelo no gráfico.

META

- Participação em uma competição de *Machine Learning* no *Kaggle*
- Aplicar uma das técnicas de predição utilizadas no curso
- Escrever um artigo sobre modelagem preditiva no Linkedin
 - Causalidade
 - Risco
 - Identificação
 - etc

Exercício

Jupyter Notebook