5. LÖSUNGEN 89

LÖSUNG 35. Auf der Menge $M = \{1, 2, 3, 4\}$ sei die Relation

$$R = \{ (1,1), (1,3), (1,4), (1,2), (2,2), (3,3), (3,4), (3,2), (4,4) \}$$

gegeben. Ist R eine Ordnung, und was für eine? Gibt es minimale, maximale, kleinste oder größte Elemente?

Prüfung der Eigenschaften:

Reflexivität: Für alle $x \in M$ soll $(x,x) \in R$ sein: Es ist $\{ (1,1), (2,2), (3,3), (4,4) \} \subseteq R$, ist also erfüllt

Transitivität: Sei $x,y,z\in M$ mit $(x,y)\in R$ und $(y,z)\in R$. Ist x=y oder y=z oder x=z, so ist (x,z) erfüllt. Für $x\neq y,\ y\neq z,\ x\neq z$ gibt es folgende Möglichkeiten:

$$(1,3), (3,2) \in R \Rightarrow (1,2) \in R \checkmark$$

 $(1,3), (3,4) \in R \Rightarrow (1,4) \in R \checkmark$

Damit ist R eine Quasiordnung.

Antisymmetrie: Seien $x,y\in M$ mit $(x,y),(y,x)\in R$, dann soll x=y sein. Es gibt in R keine Elemente $x\neq y$, wo (x,y) und (y,x) in R ist, also ist die Bedingung erfüllt.

Damit ist R eine Halbordnung.

Linearität: Für alle $x,y\in M$ soll $(x,y)\in R$ \vee $(y,x)\in R$ sein. Es ist aber $(2,4)\not\in R$ und $(4,2)\not\in R$, die Bedingung ist nicht erfüllt.

Daher ist R keine Vollordnung.

- Das Element 1 ist kleinstes und damit einziges minimales Element, da für alle $x \in M$ gilt: $(1,x) \in R$: $\{ (1,1), (1,2), (1,3), (1,4) \} \subseteq R$.
- Das Element 2 ist maximales Element, da es kein $y \in M$ mit $y \neq 2$ gibt mit $(2, y) \in R$.
- Das Element 4 ist maximales Element, da es kein $y \in M$ mit $y \neq 4$ gibt mit $(4, y) \in R$.
- Damit gibt es kein größtes Element, da es zwei maximale Elemente gibt.

LÖSUNG 36. Auf der Menge $M = \{1, 2, 3, 4\}$ sei die Relation

$$R = \{ (1,1), (2,1), (2,2), (2,3), (2,4), (3,1), (3,3), (3,4), (4,1), (4,3), (4,4) \}$$

gegeben. Ist R eine Ordnung, und was für eine? Gibt es minimale, maximale, kleinste oder größte Elemente?

Prüfung der Eigenschaften:

Reflexivität: Für alle $x \in M$ soll $(x,x) \in R$ sein: Es ist $\{(1,1),(2,2),(3,3),(4,4)\} \subseteq R$, ist also erfüllt.

90 5. LÖSUNGEN

Transitivität: Sei $x, y, z \in M$ mit $(x, y) \in R$ und $(y, z) \in R$. Ist x = y oder y = z oder x = z, so ist (x, z) erfüllt. Für $x \neq y$, $y \neq z$, $x \neq z$ gibt es folgende Möglichkeiten:

$$(2,3), (3,4) \in R \Rightarrow (2,4) \in R \checkmark$$

$$(2,3), (3,1) \in R \Rightarrow (2,1) \in R \checkmark$$

$$(2,4), (4,3) \in R \Rightarrow (2,3) \in R \checkmark$$

$$(2,4), (4,1) \in R \Rightarrow (2,1) \in R \checkmark$$

$$(3,4), (4,1) \in R \Rightarrow (3,1) \in R \checkmark$$

$$(4,3), (3,1) \in R \Rightarrow (4,1) \in R \checkmark$$

Damit ist R eine Quasiordnung.

Antisymmetrie: Seien $x, y \in M$ mit $(x, y), (y, x) \in R$, dann soll x = y sein. Da $(3, 4) \in R$ und $(4, 3) \in R$ und $3 \neq 4$ ist die Bedingung nicht erfüllt.

Damit ist R keine Halbordnung.

- Das Element 2 ist kleinstes und damit einziges minimales Element, da für alle $x \in M$ gilt: $(2,x) \in R$: $\{ (2,1), (2,2), (2,3), (2,4) \} \subseteq R$.
- Das Element 1 ist größtes und damit einziges maximales Element, da für alle $x \in M$ gilt: $(x,1) \in R$: $\{ (1,1), (2,1), (3,1), (4,1) \} \subseteq R$.

LÖSUNG 37. Gegeben seien die Relationen $U, V, W \subseteq \{1, 2, 3, 4\} \times \{1, 2, 3\}$:

$$U = \{ (1,4), (2,3), (3,3), (3,2), (4,1) \}$$

$$V = \{ (1,2), (2,3), (3,1), (4,2) \}$$

$$W = \{ (2,1), (3,1), (1,2), (4,2) \}$$

- (1) Welche der Relationen sind Funktionen?
- (2) Untersuchen Sie die Funktionen auf Injektivität und Surjektivität.

Relation U: Es ist $(3,2) \in U$ und $(3,3) \in U$, damit kann U keine Funktion sein. Relation V:

- ullet Von jedem Element aus $\{1,2,3,4\}$ besteht eine Relation auf genau ein Element in $\{1,2,3\}$, also ist V eine Funktion.
- Zu jedem Element in $\{1, 2, 3\}$ gibt es eine Relation, also ist V surjektiv.
- Es ist $(1,2) \in V$ und $(4,2) \in V$, also ist V nicht injektiv.

Relation W:

- ullet Von jedem Element aus $\{1,2,3,4\}$ besteht eine Relation auf genau ein Element in $\{1,2,3\}$, also ist W eine Funktion.
- Zum Element 3 aus $\{1, 2, 3\}$ gibt es keine Relation, also ist W nicht surjektiv.
- Es ist $(2,1) \in W$ und $(3,1) \in W$, also ist W nicht injektiv.

LÖSUNG 38. Gegeben seien die Relationen $U, V, W \subseteq \{1, 2, 3\} \times \{1, 2, 3, 4\}$:

$$U = \{ (1,4), (2,3), (3,1), (2,3) \}$$

$$V = \{ (1,2), (2,3), (1,2), (2,3) \}$$

$$W = \{ (2,1), (3,4), (1,2) \}$$

5. LÖSUNGEN 91

- (1) Welche der Relationen sind Funktionen?
- (2) Untersuchen Sie die Funktionen auf Injektivität und Surjektivität.

Relation U:

- Von jedem Element aus $\{1,2,3\}$ besteht eine Relation auf genau ein Element in $\{1,2,3,4\}$. Damit ist U eine Funktion.
- Zum Element 2 aus $\{1, 2, 3, 4\}$ gibt es keine Relation, also ist U nicht surjektiv.
- Jedes erreichte Element aus $\{1,2,3,4\}$ wird von nur einem Element aus $\{1,2,3\}$ erreicht, damit ist U injektiv.

Relation V: Vom Element $3 \in \{1, 2, 3\}$ gibt es keine Relation, also kann V keine Funktion sein. Relation W:

- Von jedem Element aus $\{1,2,3\}$ besteht eine Relation auf genau ein Element in $\{1,2,3,4\}$, also ist W eine Funktion.
- Zum Element 3 aus $\{1, 2, 3, 4\}$ gibt es keine Relation, also ist W nicht surjektiv.
- Jedes erreichte Element aus $\{1,2,3,4\}$ wird von nur einem Element aus $\{1,2,3\}$ erreicht, damit ist W injektiv.

$L\ddot{o}sung$ 39. In S_5 sind diese beiden Permutationen gegeben:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}, \ \tau = (14)(23)$$

- (1) Schreiben Sie σ in Zyklenschreibweise und τ in ausführlicher Matrixform.
- (2) Bestimmen Sie σ^{-1} und $\tau \circ \sigma$.
- (3) Bestimmen Sie das Urbild von $\{1, 2, 5\}$ unter τ .

(1) Es ist
$$\sigma=(13)(45)$$
 und $\tau=\begin{pmatrix}1&2&3&4&5\\4&3&2&1&5\end{pmatrix}$.
(2) Es ist $\sigma^{-1}=\begin{pmatrix}1&2&3&4&5\\3&2&1&5&4\end{pmatrix}=\sigma$ und $\tau\circ\sigma=\begin{pmatrix}1&2&3&4&5\\2&3&4&5&1\end{pmatrix}=(12345)$.

 $L\ddot{o}sung$ 40. In S_5 sind diese beiden Permutationen gegeben:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 2 & 5 \end{pmatrix}, \ \tau = (142)(35)$$

- (1) Schreiben Sie σ in Zyklenschreibweise und τ in ausführlicher Matrixform.
- (2) Bestimmen Sie τ^{-1} und $\sigma \circ \tau$.

(3) Es ist $\tau^{-1}(\{1,2,5\}) = \{4,3,4\}$

(3) Bestimmen Sie das Bild von $\{2, 3, 4\}$ unter σ .

(1) Es ist
$$\sigma=(1342)$$
 und $\tau=\left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ & 4 & 1 & 5 & 2 & 3 \end{array}\right)$.

92 5. LÖSUNGEN

$$(2) \text{ Es ist } \tau^{-1} = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{array}\right) = (124)(35) \text{ , } \sigma \circ \tau = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 1 & 4 \end{array}\right) = (12354).$$

$$(3) \text{ Es ist } \sigma(\{2,3,4\}) = \{1,4,2\}.$$