ADATSZERKEZETEK ÉS ALGORITMUSOK

Szekvenciális adatszerkezetek

- Definíció: A szekvenciális adatszerkezet olyan $\langle A, R \rangle$ rendezett pár amelynél az $R \subseteq (A \times A)$ reláció tranzitív lezártja teljes rendezési reláció
- Az $R \subseteq (A \times A)$ reláció tranzitív lezártja az a reláció, mely tranzitív, tartalmazza R-et, és a lehető legkevesebb elemet tartalmazza
- Megadása:
 - $1. R' = R \cup (R \circ R)$
 - 2. Ha $R \neq R'$, akkor folyt. 1.-nél, különben $R' = R_T$, a tranzitív lezárt

Szekvenciális adatszerkezetek

- Szekvenciális adatszerkezetben az egyes adatelemek egymás után helyezkednek el
 - Van egy logikai sorrendjük
- Az adatok között egy-egy jellegű a kapcsolat
 - Minden adatelem csak egy helyről érhető el és az adott elemtől csak egy másik látható
- Két kitüntetett elem
 - az első
 - az utolsó

Szekvenciális adatszerkezetek

- Ez egy homogén adatszerkezet, azaz azonos típusú véges adatelemek sorozata
 - Jelölése : $L = (a_1, a_2, ... a_n)$
 - Ha n = 0, akkor L = () az üres lista.
- A láncolt lista olyan adatszerkezet, amelynek minden eleme tartalmaz egy (vagy több) mutatót (hivatkozást) egy másik, ugyanolyan típusú adatelemre
 - Ez a "következő" elem logikailag
- A lánc első elemének a címét a lista feje tartalmazza A listafej nem tartalmaz információs részt
- A lánc végét az jelzi, hogy az utolsó elemben a rákövetkező elem mutatója üres

Reprezentációs szint

- Fix kapacitású ábrázolás
 - tömbben, a logikai sorrendet indexek mutatják, a szabad helyek is listában:
- L: 2 SZH: 5

Dinamikus, láncolt ábrázolás

- Az adatok száma nem ismert előre
 - Nem tudunk, vagy nem akarunk feleslegesen helyet foglalni az adatoknak
 - A feladat dinamikusan változik

Láncolt ábrázolás

- Egyirányú láncolt lista
 - Fejelem nélkül

• Fejelemmel: fejelem mindig létezik, ha üres a lista, akkor is

• Mindig van egy aktuális elemre mutató is, ez része a megvalósításnak

Láncolt ábrázolás

Kétirányú láncolt lista

Láncolt ábrázolás

A lista eleme

Egyszerű lista – műveletek

- A Lista típus komponensei:
 - L
- A lista első elemének mutatója,
- Akt
 - A lista aktuális elemének mutatója

Létrehozás

Üres listát ad vissza

Üres lista lekérdezése

Logikai értéket ad vissza

12

Első elemre áll

Első elemre áll

Üres lista lekérdezése

• Üres lista esetén hiba

Következő elemre áll

Következő elemre áll

Következő elemre áll

A lista utolsó elemére kiadott Next hatása Akt=NIL lesz

Lista végének lekérdezése

Logikai értéket ad vissza

Az aktuális az utolsó elem-e

Logikai értéket ad vissza

Aktuális elem értéke

Az aktuális elem értékével tér vissza

Aktuális elem módosítása

Az aktuális elem megváltoztatása e -re

- Új listaelem létrehozás és beállítása
 - Deklarálás p változó, Node típussal

- Új listaelem létrehozás és beállítása
 - Deklarálás p változó, Node típussal
 - Létrehozás new(p)
 - Értékének megadása

- Új listaelem létrehozás és beállítása
 - Deklarálás p változó, Node típussal
 - Létrehozás new(p)
 - Értékének megadása
 - Új elem befűzése a láncolatba

- Új listaelem létrehozás és beállítása
 - Deklarálás p változó, Node típussal
 - Létrehozás new(p)
 - Értékének megadása
 - Új elem befűzése a láncolatba

- Beszúrás első elemként
 - Üres és nem üres listára is működik
 - Az Akt mutatót (aktuális elem) az újonnan beszúrtra állítja, ami az első

- "e" adatelem beszúrása első elemként
 - Üres és nem üres listára is működik
 - Az Akt mutatót (aktuális elem) az újonnan beszúrtra állítja, ami az első

- Beszúrás utolsó elemként
 - Üres és nem üres listára is működik
 - Az Akt mutatót (aktuális elem) az újonnan beszúrtra állítja, ami az utolsó

- "e" adatelem beszúrása utolsó elemként
 - Üres és nem üres listára is működik
 - Az Akt mutatót (aktuális elem) az újonnan beszúrtra állítja, ami az utolsó

30

- Ha a lista üres
 - Ami egyezik az InsertFirst(e) algoritmusával
 - Azonban itt nem lehet behelyettesíteni, mert az új csomópont már létrejött előbb

- Ha a lista nem üres
 - Meg kell keresni az eredeti lista utolsó elemét
 - Amögé kell beszúrni az új elemet

Beszúrás az aktuális elem után

- Beszúrás az aktuális elem után
 - Ha nincsen aktuális elem, az hiba
 - Az újonnan beszúrt lesz az aktuális elem

Beszúrás az aktuális elem elé

- Beszúrás az aktuális elem elé
 - Ha nincsen aktuális elem, az hiba
 - Az újonnan beszúrt lesz az aktuális elem

- Aktuális elem törlése
 - Törlendő elem megelőzőjének megkeresése
 - Láncolás megváltoztatása (átláncolás)

- Aktuális elem törlése
 - Törlendő elem megelőzőjének megkeresése
 - Láncolás megváltoztatása (átláncolás)

- Aktuális elem törlése
 - Törlendő elem megelőzőjének megkeresése
 - Láncolás megváltoztatása (átláncolás)
 - Memóriából eltávolítás (törlés)
 - Akt beállítása

- Aktuális elem törlése
 - Ha az aktuális az első

- Aktuális elem törlése
 - Ha az aktuális nem az első

Egyszerű lista – Műveletek

- Megjegyzések lehetőségek
 - Az Akt nem változik a módosítás során
 - További műveletekre példa
 - Teljes lista törlése
 - Listák összefűzése,
 - Elemszám lekérdezése
 - Ebben az implementációban nem hatékony a megvalósítás
 - Last, Remove, InsertBefore, InsertLast
 - Hatékonnyá tehető
 - Kétirányú láncolással

Példa

- Elemek sorbarendezése lista használatával
 - Adott az A[1..n] egészeket tartalmazó tömb
 - Helyezzük el a pozitív elemeit rendezett módon egy listába

Hierarchikus adatszerkezetek

Következő téma De előtte még egy animáció az egyszeresen láncolt listához

- Vegyük észre, hogy a beszúrás algoritmusa üres és nem üres listára is azonos
- L jelenti a lista első elemére a mutatót
- Az iniciális állapotban a lista üres

new(p)	
(p→Adat)←e	
(p→Mutató)←L	
L←p	
Akt←L	

- Vegyük észre, hogy a beszúrás algoritmusa üres és nem üres listára is azonos
- L jelenti a lista első elemére a mutatót
- Az iniciális állapotban a lista üres

new(p)
(p→Adat)←e
(p→Mutató)←L
L←p
Akt←L

Elem beszúrása az első helyre

- Vegyük észre, hogy a beszúrás algoritmusa üres és nem üres listára is azonos
- L jelenti a lista első elemére a mutatót
- Az iniciális állapotban a lista üres

new(p)
(p→Adat)←e
(p→Mutató)←L
L←p
Akt←L

- Vegyük észre, hogy a beszúrás algoritmusa üres és nem üres listára is azonos
- L jelenti a lista első elemére a mutatót
- Az iniciális állapotban a lista üres

new(p)
(p→Adat)←e
(p→Mutató)←L
L←p
Akt←L

- Vegyük észre, hogy a beszúrás algoritmusa üres és nem üres listára is azonos
- L jelenti a lista első elemére a mutatót
- Az iniciális állapotban a lista üres

- Vegyük észre, hogy a beszúrás algoritmusa üres és nem üres listára is azonos
- L jelenti a lista első elemére a mutatót
- Az iniciális állapotban a lista üres

- Vegyük észre, hogy a beszúrás algoritmusa üres és nem üres listára is azonos
- Szúrjunk be még egy elemet, az első helyre

new(p)
(p→Adat)←e
(p→Mutató)←L
L←p
Akt←L

- Vegyük észre, hogy a beszúrás algoritmusa üres és nem üres listára is azonos
- Szúrjunk be még egy elemet, az első helyre

new(p)
(p→Adat)←e
(p→Mutató)←L
L←p
Akt←L

- Vegyük észre, hogy a beszúrás algoritmusa üres és nem üres listára is azonos
- Szúrjunk be még egy elemet, az első helyre

- Vegyük észre, hogy a beszúrás algoritmusa üres és nem üres listára is azonos
- Szúrjunk be még egy elemet, az első helyre

new(p)
(p→Adat)←e
(p→Mutató)←L
L←p
Akt←L

Elem beszúrása az első helyre

- Vegyük észre, hogy a beszúrás algoritmusa üres és nem üres listára is azonos
- Szúrjunk be még egy elemet, az első helyre

new(p)
(p→Adat)←e
(p→Mutató)←L

L←p

Akt←L

- Vegyük észre, hogy a beszúrás algoritmusa üres és nem üres listára is azonos
- Szúrjunk be még egy elemet, az első helyre

Elem beszúrása az aktuális után

Elem beszúrása az aktuális után

Akt≠NIL	
new(p)	
(p→Adat)←e	
(p→Mutató)←(Akt→Mutató)	HIB _A
(Akt→Mutató)←p	
Akt←p	

Elem beszúrása az aktuális után

Akt≠NIL	
new(p)	
(p→Adat)←e	
(p→Mutató)←(Akt→Mutató)	HIB A
(Akt→Mutató)←p	
Akt←p	

Elem beszúrása az aktuális után

Elem beszúrása az aktuális elé

- Ha az Akt nem érvényes, akkor nem történik semmi
- A nehézséget az jelenti, hogy a megelőző elemet meg kell találni először
- A példában az Akt most az utolsó elemre mutat, hogy legyen előtte két elem is

Elem beszúrása az aktuális elé

- Ha az Akt nem érvényes, akkor nem történik semmi
- A nehézséget az jelenti, hogy a megelőző elemet meg kell találni először
- A példában az Akt most az utolsó elemre mutat, hogy legyen előtte két elem is

- Ha az Akt nem érvényes, akkor nem történik semmi
- A nehézséget az jelenti, hogy a megelőző elemet meg kell találni először
- A példában az Akt most az utolsó elemre mutat, hogy legyen előtte két elem is

- Ha az Akt nem érvényes, akkor nem történik semmi
- A nehézséget az jelenti, hogy a megelőző elemet meg kell találni először
- A példában az Akt most az utolsó elemre mutat, hogy legyen előtte két elem is

- Ha az Akt nem érvényes, akkor nem történik semmi
- A nehézséget az jelenti, hogy a megelőző elemet meg kell találni először
- A példában az Akt most az utolsó elemre mutat, hogy legyen előtte két elem is

- Ha az Akt nem érvényes, akkor nem történik semmi
- A nehézséget az jelenti, hogy a megelőző elemet meg kell találni először
- A példában az Akt most az utolsó elemre mutat, hogy legyen előtte két elem is

Elem beszúrása utolsónak

A nehézséget az jelenti, hogy az eddigi utolsó elemet meg kell találni

Elem beszúrása utolsónak

A nehézséget az jelenti, hogy az eddigi utolsó elemet meg kell találni

- A nehézséget az jelenti, hogy az eddigi utolsó elemet meg kell találni
- Ha üres a lista, akkor az első helyre kell betenni, ami egyszerű

- A nehézséget az jelenti, hogy az eddigi utolsó elemet meg kell találni
- Ha nem üres, akkor az algoritmus szerint járunk el

- A nehézséget az jelenti, hogy az eddigi utolsó elemet meg kell találni
- Ha nem üres, akkor az algoritmus szerint járunk el

- A nehézséget az jelenti, hogy az eddigi utolsó elemet meg kell találni
- Ha nem üres, akkor az algoritmus szerint járunk el

- A nehézséget az jelenti, hogy az eddigi utolsó elemet meg kell találni
- Ha nem üres, akkor az algoritmus szerint járunk el

Elem beszúrása utolsónak

- A nehézséget az jelenti, hogy az eddigi utolsó elemet meg kell találni
- Ha nem üres, akkor az algoritmus szerint járunk el

84

- A nehézséget az jelenti, hogy az eddigi utolsó elemet meg kell találni
- Ha nem üres, akkor az algoritmus szerint járunk el

- A nehézséget az jelenti, hogy az eddigi utolsó elemet meg kell találni
- Ha nem üres, akkor az algoritmus szerint járunk el

- A nehézséget az jelenti, hogy az eddigi utolsó elemet meg kell találni
- Ha nem üres, akkor az algoritmus szerint járunk el

- A törlés után az elemet megelőző és az elemet követő elemet kötjük össze
 - Vegyük észre, hogy csak az első elem törlését kell külön kezelni!

- A törlés után az elemet megelőző és az elemet követő elemet kötjük össze
 - Vegyük észre, hogy csak az első elem törlését kell külön kezelni!

- A törlés után az elemet megelőző és az elemet követő elemet kötjük össze
 - Vegyük észre, hogy csak az első elem törlését kell külön kezelni!

- A törlés után az elemet megelőző és az elemet követő elemet kötjük össze
 - Vegyük észre, hogy csak az első elem törlését kell külön kezelni!

- A törlés után az elemet megelőző és az elemet követő elemet kötjük össze
 - Vegyük észre, hogy csak az első elem törlését kell külön kezelni!

- A törlés után az elemet megelőző és az elemet követő elemet kötjük össze
 - Vegyük észre, hogy csak az első elem törlését kell külön kezelni!

- A törlés után az elemet megelőző és az elemet követő elemet kötjük össze
 - Vegyük észre, hogy csak az első elem törlését kell külön kezelni!

- A törlés után az elemet megelőző és az elemet követő elemet kötjük össze
 - Vegyük észre, hogy csak az első elem törlését kell külön kezelni!

- A törlés után az elemet megelőző és az elemet követő elemet kötjük össze
 - Vegyük észre, hogy csak az első elem törlését kell külön kezelni!

- A törlés után az elemet megelőző és az elemet követő elemet kötjük össze
 - Vegyük észre, hogy csak az első elem törlését kell külön kezelni!

- A törlés után az elemet megelőző és az elemet követő elemet kötjük össze
 - Vegyük észre, hogy csak az első elem törlését kell külön kezelni!

- A törlés után az elemet megelőző és az elemet követő elemet kötjük össze
 - Vegyük észre, hogy csak az első elem törlését kell külön kezelni!

Aktuális elem törlése (feltételezzük, hogy létezik)

Hierarchikus adatszerkezetek

Következő téma