영상처리 실제 Image Processing Practice

신재혁

naezang@cbnu.ac.kr

2장 OpenCV 설치와 개요

- 현대의 프로그래밍 환경
 - 예전에는 알고리즘을 바닥부터 구현
 - 함수 호출로 영상 처리

- 대표적 컴퓨터 비전 라이브러리: OpenCV
- 현재는 이미지 입력→ 딥러닝이 영상 처리

- 인텔이 만들어 공개한 OpenCV
 - 바퀴를 다시 발명_{reinventing the wheel}하는 쓸데없는 노력을 방지할 목적
 - 인텔 칩의 성능을 평가할 목적

개요

- 클래스와 함수는 C와 C++로 개발. 전체 코드는 180만 라인 이상
- 인터페이스 언어는 C, C++, 자바, 자바스크립트, 파이썬
- OS 플랫폼은 윈도우, 리눅스, macOS, 안드로이드, iOS
- 교차 플랫폼 지원
- 교육과 상업 목적 모두 무료

- OpenCV Open Source Computer Vision Library
 - 영상 처리와 컴퓨터 비전 관련 오픈 소스 라이브러리
 - 2,500개가 넘는 알고리즘으로 구성
 - C, C++, 파이썬(Python), 매트랩 인터페이스 제공
 - 윈도우즈, 리눅스, 안드로이드, 맥 OS 등 다양한 운영체제 지원
 - CUDA와 OpenCL 인터페이스 개발
 - 인텔사에서 개발한 IPL (Image Processing Library) 기반
 - 2006년 V1.0 C 기반 API
 - 2009년 V2.0 C++ 기반 API
 - 2015년 V3.1 고급 영상처리 알고리즘 (Feature Extraction 등)
 - 2018년 V4.0 신경망/딥러닝 알고리즘

• OpenCV의 간략한 역사

연도	사건	
1998	• 인텔 직원인 개리 브라드스키(Gary Bradski)가 아이디어 제안	
1999	• 오픈 소스로 공개하기로 결정하고 이름을 OpenCV로 정함	
2000	• CVPR 컨퍼런스에서 알파 버전 발표	
2001-2005	• 5개의 베타 버전 발표	
2005	 스탠퍼드 대학교의 자율주행차인 스탠리의 개발 팀에 합류해 그랜드 챌린지 우승 OpenCV Korea 출범(https://cafe,naver.com/opencv) 	

OpenCV 1,0(C 인터페이스) 공개 ♣ 로고 완성
OpenCV 2.0(C++ 인터페이스) 공개 파이썬과 자바 인터페이스 지원
• 안드로이드와 iOS 지원 시작 • 깃허브로 마이그레이션
• OpenCV 3.0 공개
• 자바스크립트 인터페이스 지원 시작 • 딥러닝을 지원하는 DNN 모듈 추가
 OpenCV 4.0 공개 고속 처리를 지원하는 OpenVINO 공개
 Computer Vision and Deep Learning 코스 개설 전용 보드인 OpenCV AI Kit 출시
• OpenCV 4.6 공개

〈표 2.1.1〉OpneCV 버전별 특징

1.0 버전	2,0 버전	2,1 버전
C 언어 기반 APP 구조체 기반 데이터 구조 사용 비주얼 스튜디오에서 라이 브러리 캠파일 후 사용 highgui 모듈에서 8비트 PNG, JPEG2000 입출력 지원 샘플 예제 파일 추가(calibrate. cpp, inpaint.cpp, leter_recog. cpp 등)	C++ 언어 기반 API = 클래스 기반 데이터 구조 도입 CMake를 이용하여 라이브러리 컴파일 후 사용 가능 highGUI에서 스테레오 카메라 지원 소스 디렉터리 구조 구성	 에러 체킹 코드 대신에 C++ try-catch 문 사용 OpenMP에서 인텔 TBB(Threading Building Blocks)로 병렬처리 루프 변경 윈도우와 Mac OS X에서 64비트모드에서 OpenCV 빌드 가능 Mac OS에서 Cocoa와 QTKit 지원
2,2 버전	2,3 버전	2,4 버전
 템플릿 자료구조 추가 5개의 기존 라이브러리를 12개의 작은 모듈로 재구성 안드로이드 지원 가능 highgui 모듈에서 16비트 LZW 압축 지원(TIFF 영상) GPU 처리 지원 	내롭게 제공되는 바이너리 패키 지가 다양한 프리컴파일 라이브 러리 포함 stitching 모듈에서 파노라마 지원 gpu 모듈에서 CUDA 4.0 지원	 새 기본 클래스인 cv::Algorithm 도입 SIFT와 SURF를 유료 모듈로 변 경 및 SIFT 성능 대폭 개선 캐니 에지 컬러 영상에서 수행
2.4.3 버전	2.4.7 버전	3.0 버전
 TBB 설치 없이 기본적인 병렬처리 지원 OpenCL 컴퓨터 비전 알고리즘인 ocl 모듈 도입 OpenCV 매니저 개선 안드로이드 카메라 지원 개선 	 video super-resolution 모듈 도입 GPU 모듈이 CUDA 5.0까지 지원 안드로이드 NDK-r9 지원 안드로이드 4.3 지원 	 기존 C++ API 대폭 개선 cv::Algorithm 적극 사용 모바일 CUDA 지원 IPP, FastCV 같은 저수준 API 지원

OpenCV의 구성

OpenCV로 할 수 있는 작업

- 영상 파일의 읽기 및 쓰기
- 비디오 캡처 및 저장
- 영상 처리(필터, 변환)
- 영상이나 비디오에서 얼굴, 눈, 자동차와 같은 특정 물체를 감지
- 비디오를 분석하여 움직임을 추정하고, 배경을 없애고, 특정 물체를 추적할 수 있다.
- 기계 학습 알고리즘을 사용하여 물체를 인식할 수 있다.

OpenCV 라이브러리 모듈

파이썬과 OpenCV 설치

- 파이썬 설치
 - 파이썬 공식 홈페이지(http:/python.org)에 접속

- [Downloads] 메뉴를 클릭하고 [Windows]를 선택

- 파이썬 설치
 - 최근 버전의 [Download Windows Installer (64-bit)] 클릭
 - 설치 파일을 다운로드할 폴더를 선택하고 클릭

- 파이썬 설치
 - 다운로드한 폴더에 있는 설치 파일을 실행하고, 설치 시작 화면에서 [Add Python 3.9 to PATH] 항목을 반드시 클릭
 - 설치 과정이 끝난 후 설치 성공을 알리는 화면이 나타나면[Close] 클릭

- 파이썬 설치
 - 다운로드한 폴더에 있는 설치 파일을 실행하고, 설치 시작 화면에서 [Add Python 3.9 to PATH] 항목을 반드시 클릭
 - 설치 과정이 끝난 후 설치 성공을 알리는 화면이 나타나면[Close] 클릭

OpenCV 설치

- OpenCV 설치
 - 명령프롬프트 실행 (또는 Windows Power Shell)
 - 윈도우 키와 R을 함께 누르면 [실행] 창이 나타나는데, 열기 항목에 'cmd'라고 입력하고 [확인] 클릭

- > pip install opency-python 명령 실행하여 OpenCV 설치

```
PS C:\Users\naeza> pip install opencv-python
Collecting opencv-python
Using cached opencv_python-4.11.0.86-cp37-abi3-win_amd64.whl.metadata (20 kB)
Requirement already satisfied: numpy>=1.21.2 in c:\users\naeza\appdata\local\programs\python\python313\lib\site-packages (from opencv-python) (2.2.3)
Using cached opencv_python-4.11.0.86-cp37-abi3-win_amd64.whl (39.5 MB)
Installing collected packages: opencv-python
Successfully installed opencv-python-4.11.0.86
```

OpenCV 참고 사이트

OpenCV 참고 사이트

- OpenCV를 지원하는 사이트
 - 공식 홈페이지(https://opencv.org)
 - 메뉴얼 사이트: 프로그래밍할 때 가장 많은 도움 (https://docs.opencv.org)
- 깃허브
- 대한민국 OpenCV 사이트 (https://cafe.naver.com/opencv)

OpenCV 참고 사이트

- OpenCV메뉴얼 사이트
 - https://docs.opencv.org

OpenCV 매뉴얼 활용하기

• 유용한 OpenCV-Python 튜토리얼

OpenCV 매뉴얼 활용하기

• 함수를 잘 사용하려면 함수 선언을 잘 살펴야 한다

객체지향의 이해

객체 다루기

- 파이썬은 객체지향 언어
 - 객체지향은 컴퓨터 비전 프로그래밍에 매우 유리

```
프로그램 2-1
               numpy.ndarray 클래스 형의 객체를 만들고 멤버 함수 적용하기
    import numpy as np
02
    a=np.array([4,5,0,1,2,3,6,7,8,9,10,11])
04 print(a) ①
05 print(type(a)) ②
06 print(a.shape) ③
07 a.sort()
08 print(a) 4
09
    b=np.array([-4.3,-2.3,12.9,8.99,10.1,-1.2])
11 b.sort()
12 print(b) (5)
13
14 c=np.array(['one','two','three','four','five','six','seven'])
15 c.sort()
16 print(c) 6
```

객체 다루기

- 객체지향 특성과 강점
 - 객체는 능동적: 자신이 소유한 멤버 함수를 능동적으로 호출
 - 필요한 만큼 얼마든지 찍어낼 수 있음

(a) a 객체

(b) b 객체

(c) c 객체

객체지향 잘 활용하기

 객체의 클래스를 알려주는 type과 사용 가능한 멤버 함 수를 알려주는 dir

```
In [1]: type(a)
   numpy.ndarray
In [2]: dir(a)
   ['T', '__abs__', '__add__', __and__', ..., 'all', 'any', ..., 'max', ..., 'shape', ..., 'sort', .....]
```

• 함수가 하는 일을 알아내려면 help

```
In [3]: help(a.sort)
   Help on built-in function sort:

sort(...) method of numpy.ndarray instance
   a.sort(axis=-1, kind=None, order=None)

Sort an array in-place. Refer to `numpy.sort` for full documentation.

Parameters
----------
axis: int, optional
   Axis along which to sort. Default is -1, which means sort along the last axis.
```

객체 확인하기

 객체의 클래스를 알려주는 type과 사용 가능한 멤버 함 수를 알려주는 dir

```
In [1]: type(a)
   numpy.ndarray
In [2]: dir(a)
   ['T', '__abs__', '__add__', __and__', ..., 'all', 'any', ..., 'max', ..., 'shape', ..., 'sort', .....]
```

• 함수가 하는 일을 알아내려면 help

```
In [3]: help(a.sort)
  Help on built-in function sort:

sort(...) method of numpy.ndarray instance
  a.sort(axis=-1, kind=None, order=None)

Sort an array in-place. Refer to `numpy.sort` for full documentation.

Parameters
-----------
axis: int, optional
    Axis along which to sort. Default is -1, which means sort along the last axis.
```

OpenCV 사용하기

- Python 소스코드가 있는 디렉터리에 파일을 다운로드 (soccer.jpg)
 - 본인이 원하는 이미지를 인터넷에서 다운로드 해서 응용 가능

```
import cv2 as cv
01
02
    import sys
03
    img=cv.imread('soccer.jpg') # 영상 읽기
04
05
06
    if img is None:
       sys.exit('파일을 찾을 수 없습니다.')
07
08
09
    cv.imshow('Image Display',img) # 윈도우에 영상 표시
10
11
    cv.waitKey()
12
    cv.destroyAllWindows()
```


- OpenCV 영상은 numpy.ndarray 클래스 형의 객체
- numpy는 다차원 배열을 위한 사실상 표준 모듈
 - OpenCV는 영상을 numpy.ndarray로 표현
 - OpenCV는 numpy의 다양한 함수 사용 가능

```
In [1]: type(img)
   numpy.ndarray
In [2]: img.shape
   (948,1434,3)
```

- 영상의 표현
 - 화소의 위치 (r,c) 또는 (y,x)
 - 화솟값 조사

```
In [3]: print(img[0,0,0], img[0,0,1], img[0,0,2]) # (0,0) 화소 조사
162 104 98
In [4]: print(img[0,1,0], img[0,1,1], img[0,1,2]) # (0,1) 화소 조사
163 105 99
```


(a) 프로그램으로 조사

(b) 그림판으로 조사

OpenCV로 이미지 변환하기

• 영상 형태 변환하고 크기 축소하기

```
import cv2 as cv
01
02
    import sys
03
04
    img=cv.imread('soccer.jpg')
05
    if img is None:
06
07
       sys.exit('파일을 찾을 수 없습니다.')
08
09
    gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) # BGR 컬러 영상을 명암 영상으로 변환
10
    gray_small=cv.resize(gray,dsize=(0,0),fx=0.5,fy=0.5) # 반으로 축소
11
12
    cv.imwrite('soccer_gray.jpg',gray)
13
    cv.imwrite('soccer_gray_small.jpg',gray_small)
14
15
    cv.imshow('Color image',img)
    cv.imshow('Gray image',gray)
16
17
    cv.imshow('Gray image small',gray_small)
18
    cv.waitKey()
19
    cv.destroyAllWindows()
```

영상을 파일에 저장

• cvtColor 함수가 컬러 영상을 명암 영상으로 바꾸는 방법

$$I = \text{round}(0.299 \times R + 0.587 \times G + 0.114 \times B)$$
 (2.1)

(참조: https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html)

OpenCV로 웹캠 활용하기

• 웹 캠에서 비디오 읽기

```
01
    import cv2 as cv
02
    import sys
03
04
    cap=cv.VideoCapture(0,cv.CAP_DSHOW) # 카메라와 연결 시도
05
    if not cap.isOpened():
06
07
       sys.exit('카메라 연결 실패')
08
09
    while True:
       ret,frame=cap.read()
10
                                     # 비디오를 구성하는 프레임 획득
11
12
       if not ret:
13
          print('프레임 획득에 실패하여 루프를 나갑니다.')
14
          break
15
       cv.imshow('Video display',frame)
16
17
       key=cv.waitKey(1)
18
                                      # 1밀리초 동안 키보드 입력 기다림
19
       if key==ord('q'):
                                      # 'q' 키가 들어오면 루프를 빠져나감
          break
20
21
    cap.release()
22
                                      # 카메라와 연결을 끊음
23
    cv.destroyAllWindows()
```


• 비디오에서 영상 수집하기(numpy의 hstack 함수 사용)

```
import cv2 as cv
01
02
    import numpy as np
    import sys
03
04
05
    cap=cv.VideoCapture(0,cv.CAP_DSHOW) # 카메라와 연결 시도
06
07
    if not cap.isOpened():
80
       sys.exit('카메라 연결 실패')
09
10
    frames=[]
    while True:
11
12
       ret, frame=cap.read()
                                         # 비디오를 구성하는 프레임 획득
13
14
       if not ret:
15
          print('프레임 획득에 실패하여 루프를 나갑니다.')
16
          break
17
```

• 비디오에서 영상 수집하기(numpy의 hstack 함수 사용)

```
cv.imshow('Video display',frame)
18
19
20
       key=cv.waitKey(1)
                                          # 1밀리초 동안 키보드 입력 기다림
       if key==ord('c'):
                                           # 'c' 키가 들어오면 프레임을 리스트에 추가
21
22
          frames.append(frame)
       elif key==ord('q'):
23
                                           # 'a' 키가 들어오면 루프를 빠져나감
24
          break
25
26
    cap.release()
                                           # 카메라와 연결을 끊음
27
    cv.destroyAllWindows()
28
    if len(frames)>0:
29
                                          # 수집된 영상이 있으면
       imgs=frames[0]
30
       for i in range(1,min(3,len(frames))): # 최대 3개까지 이어 붙임
31
32
          imgs=np.hstack((imgs,frames[i]))
33
34
       cv.imshow('collected images',imgs)
35
       cv.waitKev()
36
       cv.destroyAllWindows()
37
```

• 비디오에서 영상 수집하기(numpy의 hstack 함수 사용)

- 웹캠 영상이 출력될 때 c키를 누름
- q키를 눌러서 종료하면 스택에 추 가되었던 frame이 표시됨

• 저장된 frame의 자료구조

(a) frames 리스트

(b) imgs 배열

- OpenCV의 그래픽 기능
 - 영상에 글씨나 도형을 넣는데 유용([그림 2-6]의 Gui features in OpenCV 참조)
 - line, rectangle, polylines, circle, ellipse, putText 함수

• 영상에 도형을 그리고 글씨 쓰기

```
import cv2 as cv
01
02
    import sys
03
    img=cv.imread('girl_laughing.jpg')
04
05
    if img is None:
06
07
        sys.exit('파일을 찾을 수 없습니다.')
80
    cv.rectangle(img,(830,30),(1000,200),(0,0,255),2) # 직사각형 그리기
09
    cv.putText(img,'laugh',(830,24),cv.FONT_HERS/TEY_SIMRLEX,1,(255,0,0),2) # 글씨 쓰기
10
11
                                           red
12
    cv.imshow('Draw',img)
                                                                blue
13
14
    cv.waitKey()
15
    cv.destroyAllWindows()
```

• 영상에 도형을 그리고 글씨 쓰기

- 함수 선언에 대한 이해
 - OpenCV 공식사이트의 reactangle() 함수의 선언

• 마우스를 통한 상호작용(콜백 함수에 대한 이해 필요)

```
import cv2 as cv
02
    import sys
03
    img=cv.imread('girl_laughing.jpg')
05
    if img is None:
06
       sys.exit('파일을 찾을 수 없습니다.')
07
08
    def draw(event,x,y,flags,param): # 콜백 함수
09
       if event==cv.EVENT LBUTTONDOWN: # 마우스 왼쪽 버튼 클릭했을 때
10
11
          cv.rectangle(img,(x,y),(x+200,y+200),(0,0,255),2)
       elif event==cv.EVENT_RBUTTONDOWN: # 마우스 오른쪽 버튼 클릭했을 때
12
          cv.rectangle(img,(x,y),(x+100,y+100),(255,0,0),2)
13
14
       cv.imshow('Drawing',img)
15
16
    cv.namedWindow('Drawing')
17
    cv.imshow('Drawing',img)
18
19
    cv.setMouseCallback('Drawing',draw) # Drawing 윈도우에 draw 콜백 함수 지정
20
21
    while(True):
22
                                        # 마우스 이벤트가 언제 발생할지 모르므로 무한 반복
       if cv.waitKey(1)==ord('q'):
23
          cv.destroyAllWindows()
24
25
          break
```

• 마우스를 통한 상호작용

• 마우스 드래그로 도형 크기 조절하기

```
import cv2 as cv
    import sys
02
03
    img=cv.imread('girl_laughing.jpg')
05
    if img is None:
06
       sys.exit('파일을 찾을 수 없습니다.')
07
08
    def draw(event,x,y,flags,param):
09
10
       global ix,iy
11
12
       if event==cv.EVENT LBUTTONDOWN: # 마우스 왼쪽 버튼 클릭했을 때 초기 위치 저장
13
          ix,iy=x,y
       elif event==cv.EVENT_LBUTTONUP: # 마우스 왼쪽 버튼 클릭했을 때 직사각형 그리기
14
15
          cv.rectangle(img,(ix,iy),(x,y),(0,0,255),2)
16
17
       cv.imshow('Drawing',img)
18
    cv.namedWindow('Drawing')
19
    cv.imshow('Drawing',img)
20
21
    cv.setMouseCallback('Drawing',draw)
23
    while(True):
24
25
       if cv.waitKey(1)==ord('q'):
          cv.destroyAllWindows()
26
27
          break
```

• 마우스를 통한 상호작용

페인팅 기능

• 페인팅 기능 사용하기

```
import cv2 as cv
01
    import sys
02
03
04
    img=cv.imread('soccer.jpg')
05
    if img is None:
06
07
       sys.exit('파일을 찾을 수 없습니다.')
80
    BrushSiz=5
09
                                                  # 붓의 크기
    LColor,RColor=(255,0,0),(0,0,255)
10
                                                  # 파란색과 빨간색
```

페인팅 기능

• 페인팅 기능 사용하기

```
11
12
    def painting(event,x,y,flags,param):
13
       if event==cv.EVENT_LBUTTONDOWN:
14
         cv.circle(img,(x,y),BrushSiz,LColor,-1) # 마우스 왼쪽 버튼 클릭하면 파란색
15
       elif event==cv.EVENT RBUTTONDOWN:
16
          cv.circle(img,(x,y),BrushSiz,RColor,-1) # 마우스 오른쪽 버튼 클릭하면 빨간색
       elif event==cv.EVENT MOUSEMOVE and flags==cv.EVENT FLAG LBUTTON:
17
18
          cv.circle(img,(x,y),BrushSiz,LColor,-1) # 왼쪽 버튼 클릭하고 이동하면 파란색
19
       elif event==cv.EVENT MOUSEMOVE and flags==cv.EVENT FLAG RBUTTON:
20
          cv.circle(img,(x,y),BrushSiz,RColor,-1) # 오른쪽 버튼 클릭하고 이동하면 빨간색
21
22
       cv.imshow('Painting',img)
                                                 # 수정된 영상을 다시 그림
23
    cv.namedWindow('Painting')
24
25
    cv.imshow('Painting',img)
26
    cv.setMouseCallback('Painting',painting)
27
28
    while(True):
29
       if cv.waitKey(1)==ord('q'):
30
31
          cv.destroyAllWindows()
32
          break
```

페인팅 기능

• 페인팅 기능 사용하기

