$\Lambda(1800) \ 1/2^-$

$$I(J^P) = O(\frac{1}{2})$$
 Status: ***

This is the second resonance in the S_{01} wave, the first being the $\Lambda(1670)$.

<i>Λ</i> (18	00) POLE PO	SITI	ON			
REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •		
1729	ZHANG	13A	DPWA	Multichannel		
-2×IMAGINARY PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
• • • We do not use the following	data for average	s, fits,	limits, e	limits, etc. • • •		
198	ZHANG	13A	DPWA	Multichannel		
	Λ(1800) MA	SS				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
1720 to 1850 (≈ 1800) OUR ESTI	MATE					
1783 ± 19	ZHANG	13A	DPWA	Multichannel		
1845 ± 10	MANLEY	02		$\overline{K}N$ multichannel		
1841 ± 10	GOPAL	80		$\overline{K}N \rightarrow \overline{K}N$		
1725 ± 20	ALSTON	78		$\overline{K}N \rightarrow \overline{K}N$		
1825 ± 20	GOPAL	77		$\overline{K}N$ multichannel		
1830 ± 20	LANGBEIN	72		$\overline{K}N$ multichannel		
• • • We do not use the following		s, fits,	limits, e	etc. • • •		
1767 or 1842	¹ MARTIN	77	DPWA	$\overline{K}N$ multichannel		
1780	KIM	71	DPWA	K-matrix analysis		
1872±10	BRICMAN	70 B	DPWA	$\overline{K}N \rightarrow \overline{K}N$		
	∧(1800) WID	ТН				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
200 to 400 (≈ 300) OUR ESTIMAT	ΓE					
256 ± 35	ZHANG	13A		Multichannel		
518 ± 84	MANLEY	02		$\overline{K}N$ multichannel		
228 ± 20	GOPAL	80		$\overline{\underline{K}} N \to \overline{\underline{K}} N$		
185 ± 20	ALSTON	78		$\overline{K}N \rightarrow \overline{K}N$		
230 ± 20	GOPAL	77		$\overline{K}N$ multichannel		
70 ± 15	LANGBEIN	72		K N multichannel		
• • • We do not use the following		s, fits,	limits, e	etc. • • •		
435 or 473	¹ MARTIN	77	DPWA	$\overline{K}N$ multichannel		
40	KIM	71	DPWA	K-matrix analysis		
100 00	DDICMAN	705		77 N 77 N		

 100 ± 20

BRICMAN

70B DPWA $\overline{K}N \rightarrow \overline{K}N$

Created: 5/30/2017 17:20

∧(1800) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	NK	25–40 %
Γ_2	$\Sigma\pi$	seen
Γ_3	$\Sigma(1385)\pi$	seen
Γ_4	$\Lambda\eta$	(6±5) %
Γ_5	$N\overline{K}^{*}(892)$	seen
Γ ₆	$N\overline{K}^*(892)$, $S=1/2$, S -wave	
Γ ₇	$N\overline{K}^*(892)$, $S=3/2$, D -wave	

Λ(1800) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on \varLambda and \varSigma Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ	
VALUE	DOCUMENT ID		TECN	COMMENT	
0.25 to 0.40 OUR ESTIMATE					
0.13 ± 0.06	ZHANG	13A	DPWA	Multichannel	
0.24 ± 0.10	MANLEY	02	DPWA	$\overline{K}N$ multichannel	
0.36 ± 0.04	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
0.28 ± 0.05	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
0.35 ± 0.15	LANGBEIN	72	IPWA	$\overline{K}N$ multichannel	
ullet $ullet$ We do not use the following d	lata for averages	, fits,	limits, e	tc. • • •	
0.37 ± 0.05	GOPAL	77	DPWA	See GOPAL 80	
1.21 or 0.70	- MARTIN	77	DPWA	$\overline{K}N$ multichannel	
0.80	KIM	71	DPWA	K-matrix analysis	
0.18 ± 0.02	BRICMAN	70 B	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Lambda (180)$	$00) \rightarrow \Sigma \pi$ DOCUMENT ID		TECN	$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$	
-0.07 + 0.02	ZHANG			Multichannel	
-0.08 ± 0.05	GOPAL	77		$\overline{K}N$ multichannel	
• • • We do not use the following data for averages, fits, limits, etc. • • •					
-0.74 or -0.43	- MARTIN	77	DPWA	$\overline{K}N$ multichannel	
0.24	KIM	71	DPWA	K-matrix analysis	
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Lambda (180)$	00) → Σ(138! DOCUMENT ID	•	<u>TECN</u>	$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$	
-0.09 ± 0.05	ZHANG	13A	DPWA	Multichannel	
$+0.056\pm0.028$					
0.000 ± 0.0±0	CAMERON	78	DPWA	$K^- p \rightarrow \Sigma(1385) \pi$	
$\Gamma(\Lambda\eta)/\Gamma_{\text{total}}$ $VALUE$ 0.06±0.05	CAMERON DOCUMENT ID ZHANG		<u>TECN</u>	$\mathcal{K}^- ho ightarrow \Sigma(1385) \pi$ $ \qquad \qquad$	

Λ(1800) FOOTNOTES

Λ(1800) REFERENCES

ZHANG	13A	PR C88 035205	H. Zhang <i>et al.</i>	(KSU)	
MANLEY	02	PRL 88 012002	D.M. Manley et al.	(BNL Crystal Ball Collab.)	
GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL) IJP	
ALSTON	78	PR D18 182	M. Alston-Garnjost <i>et al.</i>	(LBL, MTHO+) IJP	
Also		PRL 38 1007	M. Alston-Garnjost et al.	(LBL, MTHO+) IJP	
CAMERON	78	NP B143 189	W. Cameron et al.	` (RHEL, LOIC) IJP	
CAMERON	78B	NP B146 327	W. Cameron et al.	(RHEL, LOIC) IJP	
GOPAL	77	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL) IJP	
MARTIN	77	NP B127 349	B.R. Martin, M.K. Pidcock,	R.G. Moorhouse (LOUC+) IJP	
Also		NP B126 266	B.R. Martin, M.K. Pidcock	(LOUC)	
Also		NP B126 285	B.R. Martin, M.K. Pidcock	(LOUC) IJP	
LANGBEIN	72	NP B47 477	W. Langbein, F. Wagner	(MPIM) IJP	
KIM	71	PRL 27 356	J.K. Kim	(HARV) IJP	
Also		Duke Conf. 161	J.K. Kim	(HARV) IJP	
<i>J</i> 1		ces, 1970			
BRICMAN	70B	PL 33B 511	C. Bricman, M. Ferro-Luzzi,	J.P. Lagnaux (CERN) IJP	

Created: 5/30/2017 17:20

¹ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

 $^{^2\}mathrm{The}$ published sign has been changed to be in accord with the baryon-first convention.