Angelo Medeiros Nóbrega

Git, uma abordagem pragmática

João Pessoa - PB

2017 - V0.2.0

Angelo Medeiros Nóbrega

Git, uma abordagem pragmática

Introdução ao controle de versão e boas práticas com o Git e o Git-flow, usando como repositório remoto o Gitlab.

João Pessoa - PB 2017 - V0.2.0

Lista de ilustrações

Figura 1 -	Estratégia de ramificação
Figura 2 -	O branch develop
Figura 3 -	O branch feature
Figura 4 -	Tipos de merges
Figura 5 -	O branch hotfix
Figura 6 –	Uma alternativa para o MS-DOS, o <i>Cmder</i>
Figura 7 -	Verificando a instalação do git
Figura 8 -	Configuração inicial do git
Figura 9 –	Criando repositório git
Figura 10 -	O primeiro estágio
Figura 11 –	O segundo estágio
Figura 12 –	O terceiro estágio
Figura 13 –	Outra maneira de realizar um commit

Lista de abreviaturas e siglas

CV Controle de versão

Sumário

1	ANTES DE TUDO, O QUE É CONTROLE DE VERSÃO?
1.1	O Git
1.2	O GitLab
1.3	O Git-flow
2	A ESTRATÉGIA DE RAMIFICAÇÃO
2.1	Os branches
2.1.1	O branch master
2.1.2	O branch develop
2.1.3	O branch feature
2.1.4	O branch release
2.1.5	Os branches hotfixes e bugfixes
3	PRIMEIROS PASSOS COM O GIT
3.1	Configuração inicial
4	OS 3 ESTÁGIOS
4.1	Criando um repositório
4.2	O primeiro estágio
4.3	O segundo estágio
4.4	O terceiro estágio
5	COMANDOS MAIS USADOS NO GIT

Antes de tudo, o que é controle de versão?

Antes de começar a utilizar o git para versionar seus trabalhos (códigos, imagens, layouts...) você deve entender o que é controle de versão. Após entender esse conceito você estará apto a usar todo o poder que o git proporciona.

O controle de versão(CV) é um sistema usado para ter controle sobre todas (isso se for usada corretamente) as mudanças feitas em um determinado arquivo. O CV permite você reverter sua aplicação que se encontra em um estado que está apresentando um bug, para um estado anterior onde o bug não havia se manifestado. Permite você também descobrir quem introduziu um problema, quando foi introduzido e onde foi introduzido. Se estiver usando um repositório remoto, você não correrá o risco de perder seu arquivos e melhor ainda, você também não perderá o controle sobre as mudanças feitas localmente.

O controle de versão ajudará na organização, facilitará na hora de trabalhar em equipe, sem aquela história de dois desenvolvedores alterarem um mesmo arquivo, ao mesmo tempo, por estarem desenvolvendo um mesmo projeto. Segurança, vocês desenvolverão, todos os projetos, sem medo de perder código ou acabar errando alguma atualização, sem ter como voltar. E você verá que existem muitas outras razões para usar um sistema para controle de versão.

Muitas vezes o controle de versão é confundido com backup, lembre-se que no controle de versão você terá acesso ao arquivo atual e todas alterações ligadas ao arquivo, e no backup você terá acesso apenas a última versão do arquivo.

Lembre-se também que todas essas *features* que o controle de versão oferece só existirão se forem usadas corretamente.

1.1 O Git

O Git é a ferramenta que você utilizará para fazer todo o controle de versão. O Git surgiu quando Linus Torvalds, o criador do Linux, começou a enfrentar problemas quando desenvolvia o kernel do linux (projeto open source, ou seja, o Linus trabalhava com apoio de uma comunidade para seu desenvolvimento) com as ferramentas de versionamento da época havendo a necessidade da criação de uma nova ferramenta. A proposta para o Git era aprensentar algumas features que o sistema antigo não oferecia:

- 1. Velocidade;
- 2. Projeto simples;
- 3. Forte suporte para desenvolvimento não-linear (milhares de ramos paralelos);
- 4. Completamente distribuído;
- 5. Capaz de lidar com projetos grandes como o núcleo o Linux com eficiência (velocidade e tamanho dos dados).

Desde 2005 quando o Git foi criado, ele passou por um longo período de evolução e ainda continua. Hoje ele está em uma versão estável oferecendo todas as *features* citadas acima.

1.2 O GitLab

O Git Lab nada mais é que um gerenciador de repositório git remoto. O Gitlab apresenta algumas vantagens em relação ao Github:

- 1. Numero de Repositórios ilimitados;
- 2. Espaço ilimitado (futuramente será cobrado por projetos maiores que 5Gb), atualmente o *GitHub* limita em 1GB por projeto;
- 3. Integração continua integrada (GitLab CI);
- 4. Importação projetos do GitHub, BitBucket e Gitorious;
- 5. Armazenamento de repositórios em servidores privados.

A integração continua integrada funciona apenas para sistemas operacionais baseados no Linux.

1.3 O Git-flow

O git-flow é uma extensão do git para auxiliar o controle de versão usando comandos pré-definidos como boas práticas nesse quesito. Na minha opinião o git-flow é muito mais do que uma simples extensão, é uma filosofia, é uma nova maneira de pensar sobre o controle de versão.

Você pode aplicar a metodologia do git-flow sem a necessidade de ter ele instalado, usando apenas comandos nativos do git.

A estratégia de ramificação

A estratégia de ramificação assemelha-se muito a estruta de uma árvore, por isso alguns comandos do git usam opções como branch(que significa ramo ou galho), ferramentas como o Source Tree que serve para visualizar toda a ramificação do projeto em forma de grafos (a título de informação, tree significa árvore).

A estratégia que está representada na figura 1, já é algo que grandes e pequenas empresas usam a bastante tempo. Explicarei como ela é construída, como iremos trabalhar em cima dessa estratégia usando o git, e como usar a poderosa extensão do git, o git-flow, para facilitar ainda mais nosso trabalho.

2.1 Os branches

Na estratégia que iremos adotar vamos trabalhar com seis tipos de ramos, são eles, dois ramos principais e quatro tipos de ramos de apoio.

Os ramos principais são os ramos master e o develop. E os ramos de apoio serão os ramos, feature, release, hotfix e buxfix. A seguir irei descrever cada um desses ramos.

2.1.1 O branch master

O ramo *master* é o ramo que irá abrigar os códigos em suas versões mais estáveis, esse é o branch de produção. É o ramo que dará origem a aplicação final. Em algum momento do desenvolvimento todos os códigos produzidos em outros ramos farão um *merge* (ato de mesclar os ramos, colocar os arquivos de um *branch* em outro) com o *branch master*, de forma direta ou indireta.

2.1.2 O branch develop

Este ramo será responsável por conter os códigos em nível de desenvolvimento para o próximo deploy(significa implementar, mas pode mudar de significado de acordo com o contexto). Lembre-se que os códigos não serão criados nesse branch, esse é responsável apenas em abrigar os códigos que estão em desenvolvimento. Após os códigos serem devidamente testados, o branch develop fará um merge com o branch master, isso se nem

Figura 1 – Estratégia de ramificação

Fonte: (http://nvie.com/posts/a-successful-git-branching-model/)

um *bug* for encontrado no processo de testes, esse processo está representado na figura 2. Se o código aprensentar *bug* será criado outro branch a partir do *branch develop* para a correção dos *bugs* e posteriormente mesclado com o *branch master*.

Os branches *master* e *develop*, possuem vida infinita, ou seja, eles sempre estarão presentes durante o desenvolvimento, e serão criados sempre que o git for inicializado. Os

Figura 2 – O branch develop

Fonte: (http://nvie.com/posts/a-successful-git-branching-model/)

branches a seguir terão vida curta, eles serão criados e após suas utlizações eles serão finalizados e excluídos, esse processo firará mais claro na prática.

2.1.3 O branch feature

O branch feature representado na figura 3, será utlizado sempre que uma nova funcionalidade precisar ser criada. Ele sempre será criado a partir do branch develop e finalizado no branch develop, independente em qual ramo você esteja, isso se você estiver utlizando o git-flow.

Ao contrário do ramo *master* e *develop*, o ramo *feature* pode ser criado múltiplas vezes, uma para cada nova funcionalidade. Esse branch possui como prefixo *feature*/*,

onde o asterisco(*) será substituido pelo nome do "sub-ramo" digamos assim, por exemplo, feature/cadastrodeclientes, feature/teladelogin.

Figura 3 – O branch feature

Fonte: (http://nvie.com/posts/a-successful-git-branching-model/)

São duas as principais maneiras de mesclar branches, figura 4. A primeira é fazendo a mesclagem criando um novo *commit* com as alterações dentro do ramo *develop*, sem adicionar os *commits* criados durante o desenvolvimento do ramo feature e, a outra é adicionando os *commits* criados no ramo *feature* dentro do ramo *develop* e, mais um novo *commit* indicando a mesclagem, o git-flow usa como padrão esse último. Novamente, esse proceso ficará mais claro durante a prática.

2.1.4 O branch release

Esse branch é o ramo intermediário entre o develop e o master. O objetivo desse branch é a criação de tags(são os números que indicam a versão da aplicação, 1.0.0, por exemplo). Ele inicia no branch develop e termina no branch master e no develop. Você deve está se perguntando porquê um branch que inicia-se no develop tem que terminar no develop. Isso acontece porquê o branch develop tem que ter a mesma tag do branch master.

Figura 4 – Tipos de merges

Fonte: (http://nvie.com/posts/a-successful-git-branching-model/)

O prefixo usado pelo branch release é release/*, onde o asterisco(*) deve ser substituido pela tag da realese, por exemplo, release/0.1.0. Mais na frente iremos aprender um conjunto de regras para a criação dessas tags, conhecido como versionamento semântico.

Sempre quando falo que um branch "termina" ou "finaliza", me refiro a mesclagem de um branch em outro, usado por padrão pelo git-flow.

2.1.5 Os branches hotfixes e bugfixes

O branch hotfix e bugfix, tem o objetivo de correção de erros. A diferença entre eles é onde cada um é inicializado.

Se o bug for encotrado no ramo de produção (branch master), um branch hotfix, ver figura 5, deve ser criado para tratar o erro a partir do ramo master. Após a correção do erro, uma nova tag será criada automaticamente e, o branch hotfix será mesclado com o ramo master e também ao ramo develop para que esse não apresente o erro em futuras versões.

Análogo ao branch release, o prefixo do branch hotfix é hotfix/*, onde o asterisco(*)

deve ser substituido pela nova tag, por exemplo, hotfix/0.1.1.

Figura 5 – O branch hotfix

Fonte: (http://nvie.com/posts/a-successful-git-branching-model/)

Já o $branch\ bugfix$, ele deve ser criado quando um bug é encontrado durante o desenvolvimento. Ele é iniciado e finalizado no $branch\ develop$. Seu prefixo é semelhante ao do $branch\ feature$, por exemplo, bugfix/erro-cadastramento.

Primeiros passos com o Git

Nessa etapa vamos supor que todos estejam com o Git e o Git-flow instalados, caso haja a necessidade de um guia para as instalações, esse será adicionado como apêncide no final livro em futuras versões.

3.1 Configuração inicial

O primeiro passo é abrir seu console preferido, se estiverem no Linux ou macOS, abram o terminal. Se estiverem utilizando o Windows, podem utilizar o Git Bash, que é instaldo com o Git. Ainda para usuários Windows, uma dica que eu dou é usar o Cmder, é um console free e muito mais agradável de se trabalhar, e não prescisa ser instaldo, ver figura 6. Sugiro também não utilizar o MS-DOS, nem o PowerShell.

Conder is a software package created out of pure frustration over the absence of nice console emulators on Windows. It is based on amazing software, and spiced up with the Monokali color scheme and a custom prompt layout, looking sexy from the start.

Figura 6 – Uma alternativa para o MS-DOS, o Cmder

Fonte: (http://cmder.net/)

Com o seu console aberto digite git, e aperte enter, isso irá verificar se o git foi

instaldo corretamente. Se ele tiver sido instalado corretamente, irá aparecer algo semelhante a figura 7.

Figura 7 – Verificando a instalação do git

Fonte: (Do autor)

Com o git devidamente instalado, vamos começar a configuração. Para isso insira os seguintes comandos, o primeiro será para o git identificar seu nome, e o segundo seu email(figura 8):

```
git config --global user.name "Angelo Medeiros"
git config --global user.email "angelo@email.com"
```

Caso queira visualizar suas configuração globais, digite o comando:

```
git config --global --list
```

O próximo comando serve para facilitar o entendimento visual:

```
git config --global color.ui true
```

Figura 8 – Configuração inicial do git

```
u-angelo@AngeloUbuntu:~$ git config --global user.name "Angelo Medeiros"
u-angelo@AngeloUbuntu:~$ git config --global user.email "angelo@email.com"
u-angelo@AngeloUbuntu:~$ git config --global --list
user.name=Angelo Medeiros
user.email=angelo@email.com
color.ui=true
```

Fonte: (Do autor)

Os 3 estágios

Nesse capítulo ensinarei a criar seu primeiro repositório git. E quais são os três principais estágios do processo para o versionamento usado pelo git.

4.1 Criando um repositório

O primeiro passo é acessar a pasta que você quer iniciar o repositório git. Para exemplificar eu criei uma pasta chamada gitLegal, e usei os seguintes comandos(ver figura 9):

```
Criando a pasta gitLegal: mkdir gitLegal
Acessando a pasta criada: cd gitLegal
Verificando o conteudo da pasta: ls
Iniciando o repositório git: git init
Verificando novamente a pasta: ls
Verificando a existência de arquivos ocultos: ls -a
```

Figura 9 – Criando repositório git

Fonte: (Do autor)

O processo de verificação da pasta foi feito apenas para mostrar que quando o repositório é inicializado o git cria uma pasta oculta. Nessa pasta oculta estão todos os arquivos necessário para o git gerenciar seu repositório. Na prática você usará apenas o comando git init.

4.2 O primeiro estágio

O primeiro estágio é chamado de "untracked files". Assim que você faz alguma aleteração no repositório, cria uma pasta ou arquivo, ou altera um arquivo, isso faz com que o elemento que você alterou entre no primeiro estágio.

Para verificar em que estágio seus elementos estão, basta digitar o comando git status.

Se for dado um *git status* na pasta git Legal, não irá aparecer nada, pois o repositório não teve nemnhuma alteração.

Para demonstrar o primeiro estágio irei criar um arquivo em branco chamado hello World e, em seguida, executarei o comando para verificar o estágio (ver figura 10).

Figura 10 – O primeiro estágio

```
u-angelo@AngeloUbuntu:~/gitLegal (master)$ git status
No ramo master

Submissão inicial.

nada para enviar (crie/copie arquivos e use "git add" para registrar)
u-angelo@AngeloUbuntu:~/gitLegal (master)$ touch helloWorld
u-angelo@AngeloUbuntu:~/gitLegal (master)$ git status
No ramo master

Submissão inicial.

Arquivos não monitorados:
   (utilize "git add <arquivo>..." para incluir o que será submetido)
    helloWorld

nada adicionado ao envio mas arquivos não registrados estão presentes (use "git add" to registrar)
u-angelo@AngeloUbuntu:~/gitLegal (master)$
```

Fonte: (Do autor)

O comando touch foi usado para a criação do arquivo hello World.

4.3 O segundo estágio

O segundo estágio é chamado de "Changes to be committed". Nessa etapa você irá adicionar os elementos do primeiro estágio para serem "commitados" na próxima etapa. Irei criar outro arquivo em branco, chamado helloWorld2, apenas para ficar mais claro a importância dessa etapa(ver figura 11).

Agora vamos entender o que foi feito. Com a adição do arquivo helloWorld2, o primeiro estágio agora tem dois elementos. Vamos supor que você queira adicionar apenas o primeiro helloWorld world para o último estágio. Para fazer isso, foi necessário apenas usar o comando qit add helloWorld.

Figura 11 – O segundo estágio

```
u-angelo@AngeloUbuntu:~/gitLegal (master)$ touch helloWorld2
u-angelo@AngeloUbuntu:~/gitLegal (master)$ git status
No ramo master
Submissão inicial.
Arquivos não monitorados:
  (utilize "git add <arquivo>..." para incluir o que será submetido)
nada adicionado ao envio mas arquivos não registrados estão presentes (use
u-angelo@AngeloUbuntu:~/gitLegal (master)$ git add helloWorld
u-angelo@AngeloUbuntu:~/gitLegal (m
                                           r)$ git status
No ramo master
Submissão inicial.
Mudanças a serem submetidas:
  (utilize "git rm --cached <arquivo>..." para não apresentar)
        new file:
                     helloWorld
Arquivos não monitorados:
  (utilize "git add <arquivo>..." para incluir o que será submetido)
u-angelo@AngeloUbuntu:~/gitLegal (master)$
```

Fonte: (Do autor)

Como mostra a figura 11, no segundo estágio encontra-se apenas o primeiro *hel-lo World*. Peço desculpas pela falta de criatividade ao nomear os elementos.

4.4 O terceiro estágio

Nesse estágio é onde acontece o famoso commit. Para quem não sabe o que é um commit, ele nada mais é que um snapshot do estado de sua aplicação. Na figura 12 mostra o arquivo hello World sendo "commitado". Observe que após o commit, o arquivo hello World não aparece mais quando é usado o comando git status. O arquivo só voltará a aparecer quando sofrer alguma alteração novamente.

Existem duas principais maneiras de realizar um *commit*, na figura 12 mostra uma delas. Na figura 13 mostrarei a outra maneira realizando um *commit* do *hello World2*.

A primeira maneira deve ser usada quando você fez poucas alterações, e você

Figura 12 – O terceiro estágio

```
u-angelo@AngeloUbuntu:~/gitLegal (master)$ git commit -m "Commitando o arquivo helloWorld"
[master (root-commit) d3fbdd7] Commitando o arquivo helloWorld
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 helloWorld
u-angelo@AngeloUbuntu:~/gitLegal (master)$ git status
No ramo master
Arquivos não monitorados:
  (utilize "git add <arquivo>..." para incluir o que será submetido)
    helloWorld2

nada adicionado ao envio mas arquivos não registrados estão presentes (use "git add" to reguangelo@AngeloUbuntu:~/gitLegal (master)$
```

Fonte: (Do autor)

Figura 13 – Outra maneira de realizar um commit

```
u-angelo@AngeloUbuntu:~/gitLegal (master)$ git add helloWorld2
u-angelo@AngeloUbuntu:~/gitLegal (master)$ git commit

1 - Adcionando o arquivo helloWorld2;
2 - Esse e um exemplo mostrando outra maneira de fazer um commit.
3
4 # Please enter the commit message for your changes. Lines starting
5 # with '#' will be ignored, and an empty message aborts the commit.
6 # No ramo master
7 # Mudanças a serem submetidas:
8 # new file: helloWorld2
9 ##
```

Fonte: (Do autor)

consegue descrever todas esses mudanças em apenas uma linha usado o commando git commit -m "comentario". A segunda maneira deve ser usada quando for preciso descrever diversas alterações e, apenas uma linha não basta. Uma dica é, evite usar acentuação dentro dos comentários, quando a acentuação é usada, algumas vezes quando você for visualizar os commits, a acentuação poderá não ser reconhecida pelo console.

Capítulo **5**

Comandos mais usados no git

Nesse capítulo irei apresentar os principais comandos usados pelo git, e darei algumas dicas.