日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年11月14日

出 願 番 号 Application Number:

特願2003-385686

[ST. 10/C]:

[JP2003-385686]

出 願 人
Applicant(s):

株式会社デンソー

2003年12月 5日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

ND031024

【あて先】

特許庁長官 殿

【国際特許分類】

F02M 51/00

【発明者】

【住所又は居所】

愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】 谷 泰臣

【発明者】

【住所又は居所】

愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】 斎藤 公孝

【発明者】

【住所又は居所】

愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【発明者】

【住所又は居所】

愛知県豊橋市天伯町雲雀ヶ丘1-1豊橋技術科学大学内

【氏名】 鈴木 孝司

【特許出願人】

【識別番号】

000004260

『氏名又は名称』

株式会社デンソー

【代理人】

【識別番号】

100093779

【弁理士】

【氏名又は名称】

服部 雅紀

【先の出願に基づく優先権主張】

【出願番号】

特願2002-364907

【出願日】

平成14年12月17日

『手数料の表示』

【予納台帳番号】

007744

【納付金額】

21,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

《包括委任状番号》

要約書 1 9004765

【書類名】特許請求の範囲

【請求項1】

燃料通路を形成する内壁面に弁座を有する弁ボディと、

前記弁座に着座可能な当接部を有し、前記当接部が前記弁座から離座または前記弁座に 着座することにより前記燃料通路を開閉する弁部材と、

前記弁座よりも燃料出口側の前記弁ボディに取り付けられ、前記燃料通路から燃料が流入する噴孔、ならびに前記噴孔の入口側において燃料の流れを所定方向へ強めつつ前記噴孔へ案内する段差部を有する噴孔プレートと、

を備えることを特徴とする燃料噴射装置。

【請求項2】

前記噴孔プレートは、

前記噴孔の燃料入口が開口している第一面部と、

前記第一面部よりも前記弁ボディ側に位置し、前記第一面部との間に前記段差部を形成する第二面部とを有し、

前記段差部は、前記第二面部から前記噴孔への燃料の流れよりも前記第一面部から前記 噴孔への燃料の流れを促進することを特徴とする請求項1記載の燃料噴射装置。

【請求項3】

前記第一面部へ流入した燃料は、前記段差部に衝突した後、前記噴孔へ流入することを 特徴とする請求項2記載の燃料噴射装置。

【請求項4】

前記第一面部へ流入した燃料は、前記段差部に沿って流れ、他方からの燃料の流れと衝突して前記噴孔へ流入することを特徴とする請求項2記載の燃料噴射装置。

【請求項5】

前記噴孔プレートは二つの噴孔を有し、前記二つの噴孔の中間に位置する仮想直線に沿って前記第一面部に流入した燃料は、前記段差部に衝突した後、前記噴孔へ流入することを特徴とする請求項3記載の燃料噴射装置。

【請求項6】

前記噴孔から前記仮想直線までの距離は、前記噴孔から前記段差部までの距離よりも大きいことを特徴とする請求項5記載の燃料噴射装置。

【請求項7】

前記噴孔プレートは二つの噴孔を有し、前記段差部に沿って前記噴孔プレートの径方向の一方の端部側から前記第一面部に流入した燃料は、他方の端部側から流入した燃料と衝突し、前記噴孔へ流入することを特徴とする請求項4記載の燃料噴射装置。

【請求項8】

前記二つの噴孔間の距離は、各噴孔から前記段差部までの距離よりも小さいことを特徴 とする請求項7記載の燃料噴射装置。

【請求項9】

前記仮想直線と前記段差部とは、概ね直交することを特徴とする請求項5または6記載の燃料噴射装置。

【請求項10】

前記第一面部は、前記噴孔プレートの周方向へ複数か所形成されていることを特徴とする請求項5から8のいずれか一項記載の燃料噴射装置。

【請求項11】

四つの噴孔を有する前記第一面部は、第一軸方向の長さが前記第一軸に垂直な第二軸方向の長さよりも短かく形成され、

前記第二面部は前記第一面部の第一軸方向の両端部に形成されていることを特徴とする 請求項4記載の燃料噴射装置。

【請求項12】

隣接する噴孔間の距離は各噴孔から前記段差部までの距離よりも大きいことを特徴とする請求項11記載の燃料噴射装置。

【請求項13】

前記噴孔プレートはそれぞれ噴孔が形成されている複数の第一面部を有し、前記複数の第一面部は前記噴孔プレートの概ね中心で交差し、隣接する前記第一面部の間に前記第二面部が形成されていることを特徴とする請求項4記載の燃料噴射装置。

【請求項14】

前記第一面部に形成されている噴孔から前記第一面部に隣接する一方の段差部までの距離と他方の段差部までの距離とは、異なることを特徴とする請求項13記載の燃料噴射装置。

【請求項15】

前記噴孔プレートと前記燃料通路との間に、前記噴孔プレートの前記第一面部への燃料 の流入を許容する流入制御手段を備えることを特徴とする請求項2から14のいずれか一 項記載の燃料噴射装置。

【請求項16】

燃料通路を形成する内壁面に弁座を有する弁ボディと、

前記弁座に着座可能な当接部を有し、前記当接部が前記弁座から離座または前記弁座に 着座することにより前記燃料通路を開閉する弁部材と、

前記弁座よりも燃料出口側に設置され、前記燃料通路から燃料が流入する噴孔、ならびに外周側から前記噴孔の入口側が開口している中心部に向けて燃料の流れを案内する案内通路を形成する段差部を有する噴孔部と、

を備えることを特徴とする燃料噴射装置。

【請求項17】

前記案内通路は、前記噴孔の入口側が開口している中心部に向けて縮小している縮小部と、前記縮小部の径方向内側の端部に接続し前記噴孔までの距離が徐々に拡大する拡大部とを有することを特徴とする請求項16記載の燃料噴射装置。

【請求項18】

前記噴孔部は、積層されている複数のプレート部材を有することを特徴とする請求項16または17記載の燃料噴射装置。

【請求項19】

前記弁ボディと前記噴孔部との間に設置され、前記燃料通路から前記案内通路の長手方向へ燃料の流れを案内する案内部をさらに備えることを特徴とする請求項16、17または18記載の燃料噴射装置。

【請求項20】

前記弁ボディと前記案内部とが形成する空間部をさらに備え、

前記空間部は、周縁が前記噴孔部材の径方向において前記噴孔よりも外側に位置することを特徴とする請求項19記載の燃料噴射装置。

【請求項21】

燃料通路を形成する内壁面に弁座を有する弁ボディと、

前記弁座に着座可能な当接部を有し、前記当接部が前記弁座から離座または前記弁座に 着座することにより前記燃料通路を開閉する弁部材と、

前記弁座よりも燃料出口側に設置され、前記燃料通路から燃料が流入する噴孔、前記噴孔の入口側が開口している第一面部、前記第一面部よりも前記弁ボディ側に位置し前記弁部材の端面と接触可能な第二面部、ならびに前記第一面部と前記第二面部との間に形成されている段差部を有し、前記第二面部に前記弁部材の端面が接触しているとき前記第一面部と前記弁部材の端面と前記段差部との間に前記燃料通路から前記噴孔への燃料の流れを案内する案内通路を形成する制御部材と、

を備えることを特徴とする燃料噴射装置。

【請求項22】

略弓形状に形成されている二つの第二面部を有し、前記二つの第二面部は前記第一面部を挟んで概ね平行な二つの段差部を形成していることを特徴とする請求項21記載の燃料噴射装置。

【請求項23】

1/2

前記噴孔は、燃料入口から燃料出口まで概ね同一内径に形成されていることを特徴とする請求項1から22のいずれか一項記載の燃料噴射装置。

【書類名】明細書

【発明の名称】燃料噴射装置

【技術分野】

[0001]

本発明は、内燃機関(以下、内燃機関を「エンジン」という。)の燃料噴射装置に関する。

【背景技術】

[00002]

エンジンに燃料を噴射する燃料噴射装置においては、例えば排気中の有害物質の低減ならびに燃費の向上などの観点から噴射される燃料の微粒化は重要な要素である。このような燃料噴射装置の場合、弁ボディと弁部材とから構成される燃料通路を通過した燃料は、噴孔プレートに形成されている噴孔を経由して噴射される(特許文献1参照)。

噴孔プレートに形成されている複数の噴孔は、噴孔プレートの板厚方向に対し傾斜して 形成され、かつ噴孔の燃料入口から燃料出口にかけて内径が拡大するテーパ状に形成され ている。これにより、噴孔の内部で形成される燃料の液膜の成長を促進し、噴射される燃料の微粒化を図っている。

[0003]

【特許文献1】特開2001-317431号公報

【発明の開示】

【発明が解決しようとする課題】

[0004]

本発明者等は、更なる微粒化実現のために、噴孔へ流入する燃料流れを旋回流とすることを検討している。しかしながら、旋回流形成のために新たな部材を別途設ける場合、構造の複雑化を招き、コストが増加してしまうという問題点が発生する。

そこで、本発明の目的は、上記問題点に鑑み、簡単な構造で燃料の微粒化を促進する燃料噴射装置を提供することにある。

【課題を解決するための手段】

[0005]

請求項1記載の発明では、噴孔プレートは段差部を有している。段差部は、噴孔の入口側において噴孔に流入する燃料の流れを所定方向へ強めつつ案内する。噴孔へ流入する燃料は、強い流れが形成されることにより旋回流の形成が促進される。したがって、簡単な構造で噴孔から噴射される燃料の微粒化を促進することができる。

[0006]

請求項2記載の発明では、噴孔プレートは第一面部および第二面部を有している。第一面部と第二面部との間に段差部が形成されている。段差部は、第二面部から前記噴孔への燃料の流れよりも前記第一面部から前記噴孔への流れを促進する。これにより、第一面部を流れる燃料は、所定の方向への流れが強めらる。そのため、噴孔に流入する燃料には強い旋回流が形成される。また、段差部により、第二面部から噴孔への燃料の流入は制限される。そのため、強められた燃料の流れが第二面部からの燃料の流入によって弱められることはない。したがって、噴孔の数を増加させなくても、噴孔から噴射される燃料の微粒化を促進することができる。

[0007]

請求項3記載の発明では、第一面部に流入した燃料は段差部に衝突した後、噴孔へ流入する。噴孔へ流入する燃料は、第一面部から段差部へ向けて流れることにより、一方向への流れが強められる。そして、強められた燃料の流れが段差部に衝突した後、噴孔に流入することにより、噴孔へ流入する燃料には旋回力が付与される。また、段差部により、燃料の流れが弱められることはない。したがって、噴孔から噴射される燃料の微粒化を促進することができる。

[00008]

請求項4記載の発明では、第一面部に流入した燃料は段差部に沿って流れ、他方からの

燃料の流れと衝突して噴孔へ流入する。噴孔へ流入する燃料は、第一面部から段差部に沿って流れることにより、一方向への流れが強められる。そして、流れが強められた燃料は他方から流入する燃料と衝突した後、噴孔へ流入することにより、噴孔へ流入する燃料には旋回力が付与される。また、段差部により、燃料の流れが弱められることはない。したがって、噴孔から噴射される燃料の微粒化を促進することができる。

[0009]

請求項5記載の発明では、噴孔プレートは二つの噴孔を有している。燃料は二つの噴孔の中間に位置する仮想直線に沿って第一面部に流入する。そのため、仮想直線に沿って段差部へ向かう燃料の流れは強められる。そして、流れが強められた燃料は段差部に衝突した後、噴孔に流入する。また、段差部により、燃料の流れが弱められることはない。したがって、噴孔から噴射される燃料の微粒化を促進することができる。

[0010]

請求項6記載の発明では、二つの噴孔の中心と仮想直線との距離は、噴孔から段差部までの距離よりも大きい。そのため、燃料はより流路が大きな噴孔間を仮想直線に沿って流れる。そのため、仮想直線に沿って段差部へ向かう燃料の流れは強められる。そして、流れが強められた燃料は段差部に衝突した後、噴孔に流入する。また、段差部により、燃料の流れが弱められることはない。したがって、噴孔から噴射される燃料の微粒化を促進することができる。

$[0\ 0\ 1\ 1]$

請求項7記載の発明では、噴孔プレートは二つの噴孔を有している。燃料は段差部に沿って第一面部に流入する。このとき、燃料は、噴孔プレートの径方向の両端部から段差部に沿って第一面部に流入する。そのため、噴孔プレートの径方向の両端部から流入した燃料は、衝突した後、噴孔へ流入する。その結果、噴孔へ流入する燃料の流れは強められる。そして、流れが強められた燃料は旋回しながら噴孔へ流入する。また、段差部により、燃料の流れが弱められることはない。したがって、噴孔から噴射される燃料の微粒化を促進することができる。

$[0\ 0\ 1\ 2]$

請求項8記載の発明では、二つの噴孔間の距離は、噴孔から段差部までの距離よりも小さい。燃料はより流路が大きな噴孔と段差部との間を流れる。そのため、噴孔プレートの径方向の両端部から段差部に沿った燃料の流れは衝突することによって噴孔方向へ強められる。そして、流れが強められた燃料は噴孔へ流入する。また、段差部により、燃料の流れが弱められることはない。したがって、噴孔から噴射される燃料の微粒化を促進することができる。

請求項9記載の発明では、仮想直線と段差部とは概ね直交している。そのため、仮想直線に沿って流れる燃料のエネルギーは段差部に衝突することによって旋回力を形成するエネルギーへ効率よく変換される。

請求項10記載の発明では、第一面部は噴孔プレートの周方向へ複数か所形成してもよい。

$[0\ 0\ 1\ 3]$

請求項11記載の発明では、第一面部は第一軸方向の長さが第二軸方向の長さよりも短く形成されている。第二面部は、第一面部の第一軸方向の両端部に形成されている。そのため、段差部も第一面部の第一軸方向の両端部に形成される。これにより、燃料は、第二軸方向の両端部から段差部に沿った流れが強められる。そして、第一面部に流入した燃料は第二軸の他方側の端部から流入した燃料と衝突した後、噴孔へ流入する。また、段差部により、燃料の流れが弱められることはない。したがって、噴孔から噴射される燃料の微粒化を促進することができる。

請求項12記載の発明では、隣接する噴孔間の距離は噴孔から段差部までの距離よりも大きい。そのため、燃料はより流路の大きな噴孔と段差部との間を流れる。そのため、第二軸方向の両端部から段差部に沿った燃料の流れは衝突することによって噴孔方向へ強められる。そして、流れが強められた燃料は噴孔へ流入する。また、段差部により、燃料の

3/

[0014]

請求項13記載の発明では、それぞれ噴孔が形成されている第一面部は噴孔プレートの概ね中心で交差している。また、隣接する第一面部間に第二面部が形成されている。そのため、第一面部に流入する燃料は、第一面部と第二面部との間に形成される段差部に沿って流れ、噴孔プレートの中心付近で交差する他の第一面部に流入した燃料と衝突する。そして、燃料は衝突した後、噴孔へ流入する。その結果、噴孔方向へ流入する燃料の流れは強められる。そして、流れが強められた燃料は旋回しながら噴孔へ流入する。また、段差部により、燃料の流れが弱められることはない。したがって、噴孔から噴射される燃料の微粒化を促進することができる。

[0015]

請求項14記載の発明では、噴孔から一方の段差部までの距離と他方の段差部までの距離とは異なっている。そのため、燃料はより流路が大きな噴孔と段差部との間の距離が大きな部分を流れる。これにより、一方の段差部に沿った燃料の流れは他の第一面部を流れる燃料と衝突することによって噴孔方向へ強められる。そして、流れが強められた燃料は噴孔へ流入する。また、段差部により、燃料の流れが弱められることはない。したがって、噴孔から噴射される燃料の微粒化を促進することができる。

請求項15記載の発明では、噴孔プレートと燃料通路との間に流入制御手段を備えている。流入制御手段は、噴孔プレートの第一面部への燃料の流入を許容する。そのため、燃料の流れを噴孔プレートの第一面部へ案内することができる。

$[0\ 0\ 1\ 6\]$

請求項16記載の発明では、噴孔部は案内通路を形成する段差部を有している。案内通路は噴孔部の外周側から噴孔の入口側が開口している中心部に向けて燃料の流れを案内する。そのため、噴孔へ流入する燃料には噴孔部の外周側から中心部へ強い流れが形成され、燃料の旋回流の形成は促進される。したがって、簡単な構造で噴孔から噴射される燃料の微粒化を促進することができる。

請求項17記載の発明では、案内通路は中心部に向けて縮小している縮小部と、縮小部の端部に接続し噴孔までの距離が徐々に拡大する拡大部を有している。噴孔部の径方向外側から流入した燃料は縮小部により流速が高められる。そして、縮小部を通過した燃料は拡大部において噴孔から離れる方向へ流れることにより、噴孔の周囲を旋回しつつ噴孔へ流入する。また、拡大部は、燃料が噴孔の周囲を旋回するために必要な空間を提供する。したがって、簡単な構造で噴孔から噴射される燃料の微粒化を促進することができる。

$[0\ 0\ 1\ 7]$

請求項18記載の発明では、噴孔部は積層されている複数のプレート部材を有している。これにより、例えば噴孔あるいは段差部を異なるプレート部材に形成することができる。したがって、噴孔部の加工を容易にすることができる。

請求項19記載の発明では、弁ボディと噴孔部との間に設置されている案内部を備えている。案内部は、燃料通路を流れる燃料を案内通路の長手方向へ案内する。これにより、案内通路には、径方向外側から噴孔の入口側が開口する中心部への燃料の強い流れが形成される。したがって、燃料の流れを確実に強めることができ、噴孔から噴射される燃料の微粒化を促進することができる。

[0018]

請求項20記載の発明では、弁ボディと案内部とは空間部を形成している。空間部の周縁は、噴孔の径方向外側に位置している。燃料通路の弁座と当接部との間を通過した燃料は、空間部へ流入することにより、径方向外側へ流れが拡大する。そして、案内部により噴孔部の径方向外側から噴孔へ向けて燃料の流れが形成される。これにより、例えば弁座が円錐台状の内周面に設置される場合でも、燃料の流れは一旦径方向外側へ拡大する。そのため、燃料通路を流れる燃料は案内通路の長手方向に沿った方向へ案内される。これにより、案内通路には、径方向外側から噴孔の入口側が開口する中心部への燃料の強い流れ

$[0\ 0\ 1\ 9\]$

請求項21記載の発明では、弁部材の端面は第二面部に接触する。弁部材の端面が第二面部に接触しているとき、第一面部と弁部材の端面と段差部との間に案内通路が形成される。これにより、燃料通路の弁座と当接部との間を通過した燃料は、弁部材の外側を経由して案内通路に流入する。そのため、弁座と当接部との間を通過した燃料は、第一面部に開口する噴孔に直接流入せず、案内通路を経由して噴孔へ流入する。その結果、噴孔へ流入する燃料には案内通路の外周側から噴孔へ強い流れが形成され、燃料の旋回流の形成は促進される。したがって、簡単な構造で噴孔から噴射される燃料の微粒化を促進することができる。

[0020]

請求項22記載の発明では、二つの弓形状の第二面部は第一面部を挟んで概ね平行な二つの段差部を形成している。これにより、燃料には段差部に沿って径方向外側から噴孔へ向けた流れが形成される。そのため、噴孔へ流入する燃料には案内通路の外周側から噴孔へ強い流れが形成され、燃料の旋回流の形成は促進される。したがって、簡単な構造で噴孔から噴射される燃料の微粒化を促進することができる。

請求項23記載の発明では、噴孔は燃料入口から燃料出口まで概ね同一の内径に形成されている。そのため、噴孔の内径が変化する場合と比較して噴孔を容易に形成することができる。したがって、生産能率を高めることができる。

【発明を実施するための最良の形態】

[0021]

以下、本発明の複数の実施形態を図面に基づいて説明する。

(第1実施形態)

本発明の第1実施形態による燃料噴射装置(以下、燃料噴射装置を「インジェクタ」という。)を図2に示す。第1実施形態によるインジェクタ10は、例えば直噴式のガソリンエンジンに適用してもよく、予混合式のガソリンエンジンに適用してもよい。直噴式のガソリンエンジンに適用する場合、インジェクタ10は図示しないエンジンへッドに搭載される。また、予混合式のガソリンエンジンに適用される場合、インジェクタ10は図示しない吸気管に搭載される。

[0022]

インジェクタ10のハウジング11は筒状に形成されている。ハウジング11は、同軸上に第一磁性部12、非磁性部13および第二磁性部14を有している。非磁性部13は、第一磁性部12と第二磁性部14との磁気的な短絡を防止している。固定コア15は、磁性材料により筒状に形成されている。固定コア15は、ハウジング11の内周側に同軸に固定されている。可動コア16は、磁性材料で筒状に形成され、ハウジング11の内周側に収容されている。可動コア16は、ハウジング11の内周側を軸方向へ往復移動可能である。

[0023]

ハウジング11の外周側にはスプール21が装着されている。スプール21には、コイル22が巻回されている。スプール21およびコイル22の外周側は樹脂モールド20により覆われている。コイル22は、樹脂モールド20により形成されているコネクタ23に埋設されているターミナル24と接続されている。ターミナル24を経由してコイル22に通電されると、固定コア15と可動コア16との間に磁気吸引力が発生する。

アジャスティングパイプ17は、固定コア15の内周側に圧入されている。アジャスティングパイプ17の内周側は、燃料通路31を形成している。アジャスティングパイプ17は、可動コア16側の端部がスプリング18に当接している。スプリング18は、一方の端部がアジャスティングパイプ17に当接し、他方の端部が可動コア16に当接している。これにより、スプリング18は可動コア16を反固定コア方向に付勢する。アジャスティングパイプ17の圧入量を調整することにより、可動コア16を付勢するスプリング

[0024]

ハウジング11は、図示しない燃料タンクから燃料が供給される燃料入口19を有している。燃料入口19から流入した燃料は、フィルタ32を経由してハウジング11の内周側に流入する。フィルタ32は、燃料に含まれる異物を除去する。

ノズルホルダ40は、筒状に形成され、ハウジング11の端部に接続されている。ノズルホルダ40の内周側には、弁ボディ50が固定されている。弁ボディ50は、筒状に形成され、例えば圧入あるいは溶接などによりノズルホルダ40に固定されている。弁ボディ50は、内周壁に先端に近づくにつれて内径が小さくなる円錐状の弁座51を有している。弁ボディ50の反ハウジング側の端部とノズルホルダ40との間には、流入制御手段としての制御プレート60および噴孔プレート70が設置されている。噴孔プレート70には、複数の噴孔71が形成されている。

[0025]

弁部材としてのノズルニードル41はハウジング11、ノズルホルダ40および弁ボディ50の内周側に軸方向へ往復移動可能に収容されている。ノズルニードル41は、一方の端部が可動コア16に接続されている。これにより、ノズルニードル41は、可動コア16と一体に軸方向へ往復移動可能である。ノズルニードル41の反可動コア側の端部には、弁ボディ50の弁座51に着座可能な当接部42が形成されている。ノズルニードル41と弁ボディ50との間には、燃料が流れる燃料通路53が形成される。

[0026]

燃料入口19からハウジング11の内周側に流入した燃料は、フィルタ32、アジャスティングパイプ17の内周側に形成されている燃料通路31、ならびに固定コア15の内周側に形成されている燃料通路33を経由して、可動コア16の内周側に形成されている燃料通路34へ流れる。燃料通路34の燃料は、可動コア16の内周と外周とを連通する燃料孔35を経由してハウジング11とノズルニードル41との間に形成される燃料通路36へ流れる。そして、燃料通路36の燃料は、ノズルホルダ40とノズルニードル41との間に形成される燃料通路37を経由して、弁ボディ50とノズルニードル41との間に形成されている燃料通路53へ流入する。

[0027]

コイル22に通電されていないとき、ノズルニードル41はスプリング18の付勢力により可動コア16とともに図2の下方へ移動している。そのため、当接部42は弁座51に着座し、燃料通路53から噴孔71への燃料の流れは遮断され、燃料は噴射されない。

コイル22に通電されると、固定コア15と可動コア16との間には磁気吸引力が発生する。これにより、可動コア16ならびに可動コア16と一体のノズルニードル41は、スプリング18の付勢力に抗して図2の上方すなわち固定コア15方向へ移動する。そのため、当接部42は弁座51から離座し、燃料通路53から噴孔71への燃料の流れは許容される。当接部42と弁座51との間を通過した燃料は、噴孔プレート70に形成された噴孔71から噴射される。

コイル22への通電が停止されると、固定コア15と可動コア16との間の磁気吸引力が消滅する。これにより、可動コア16ならびに可動コア16と一体のノズルニードル41は、スプリング18の付勢力により図2の下方へ移動する。そのため、当接部42は再び弁座51に着座し、燃料通路53から噴孔71への燃料の流れは遮断される。その結果、燃料の噴射は終了する。

[0028]

次に、噴孔プレート70の近傍について詳細に説明する。

噴孔プレート70は、弁ボディ50の先端側すなわち反ハウジング側に取り付けられている。噴孔プレート70と弁ボディ50との間には、噴孔プレート70へ流入する燃料の向きを規定する制御プレート60が設置されている。噴孔プレート70は、筒部72および底部73を有する円筒状に形成されている。噴孔プレート70は、筒部72が弁ボディ50の外周壁とノズルホルダ40の内周壁との間に挟まれており、底部73が弁ボディ5

0の外底壁とノズルホルダ40の内底壁との間に挟まれている。

[0029]

制御プレート60と噴孔プレート70とは、図3および図4に示すように積層されて設置されている。なお、図3では、噴孔プレート70の筒部72は省略している。制御プレート60には、弁ボディ50側から流入した燃料が噴孔プレート70側へ通過する制御孔61が形成されている。

噴孔プレート70は、図1、図3および図4に示すように底部73に第一面部81および第二面部82を有している。第一面部81には、噴孔71の燃料入口が開口している。第二面部82は、第一面部81よりも弁ボディ50側に位置している。すなわち、第一面部81および第二面部82は階段状に形成されており、第一面部81と第二面部82とは段差部83を形成している。

[0030]

段差部83を形成することにより、図4に示すように第一面部81は制御プレート60の噴孔プレート70側の面70aとの間に隙間を形成し、第二面部82は制御プレート60の噴孔プレート70側の面70aと接触する。そのため、制御プレート60の制御孔61を通過した燃料は、第一面部81側へ流入し、第二面部82側には流入しない。すなわち、段差部83を形成することにより、噴孔71には第一面部81からの燃料の流れが許容され、第二面部82からの燃料の流れが制限される。

[0031]

第一面部 8 1 には、図 1 に示すように二つの噴孔 7 1 が形成されている。噴孔 7 1 は、それぞれ燃料入口から燃料出口までの内径が概ね同一の円柱形状に形成されている。噴孔 7 1 は、噴孔プレート 7 0 の軸と平行に形成してもよく、軸に対し傾斜して形成してもよい。図 5 に示すように、二つの噴孔 7 1 の中心からの距離が等しい位置すなわち二つの噴孔 7 1 の中間に仮想直線 L 1 を伸ばしたとき、仮想直線 L 1 は段差部 8 3 と概ね垂直に交差する。また、噴孔 7 1 の燃料入口側すなわち第一面部 8 1 において、二つの噴孔 7 1 の中心から仮想直線 L 1 までの距離をそれぞれ D 1 とし、各噴孔 7 1 の中心から段差部 8 3 までの距離を D 2 とすると、D 1 > D 2 である。

[0032]

図3および図4に示すように、制御プレート60に形成されている制御孔61は、第一面部81への燃料の流れを許容する。すなわち、噴孔プレート70に段差部83を形成することにより、上述のように第一面部81は制御プレート60との間に隙間を形成し、第二面部82は制御プレート60と接触する。一方、制御プレート60の制御孔61は、図4に示すように噴孔プレート70の第一面部81に対応する位置に開口している。これにより、制御プレート60の制御孔61を通過した燃料は、第二面部82へ流入することなく第一面部81へ流入する。さらに、図3に示すように制御プレート60の制御孔61は、第一面部81に流入する燃料が仮想直線L1に沿って流れる位置、すなわち底部73の外周側に対応して開口している。

[0033]

噴孔プレート70の第一面部81へ流入した燃料は、噴孔71と段差部83との位置関係がD1>D2であるため、図5の矢印下に示すようにより流路の大きな二つの噴孔71の間を仮想直線L1に沿って流れる。仮想直線L1を挟んで双方から二つの噴孔71の間に流入した燃料は、互いに同一方向すなわち段差部83に向けて流れるため、流れが強められる。そして、流れが強められた燃料は、段差部83に衝突することによって噴孔71方向へ折り返され、噴孔71へ流入する。その結果、噴孔71へ流入する燃料は、流れが強められるとともに、旋回力が付与される。

[0034]

また、このとき、噴孔プレート70に段差部83を形成することにより、第二面部82から噴孔71側への燃料の流入は制限される。そのため、第一面部81において流れが強められた燃料は、噴孔71の燃料入口側において第二面部82側からの燃料の流れによって流れが弱められることはない。

したがって、流れが強められ、かつ旋回力が付与された状態で噴孔71へ流入した燃料は、噴孔71の内部において強力な旋回流を形成し、噴孔71の燃料出口から噴射される

[0035]

本発明の第1実施形態によると、噴孔プレート70に段差部83を形成することにより、第一面部81から噴孔71への燃料の流れは促進される。また、段差部83を形成することにより、第二面部82から第一面部81に開口する噴孔71への燃料の流れは制限される。そのため、互いに流れを強め合った燃料は、弱められることなく段差部83と衝突し、噴孔71方向へ折り返される。その結果、噴孔71へ流入する燃料は、流れが強められるとともに、旋回力が付与される。したがって、噴孔71の内部における旋回流の形成が促進され、燃料の微粒化を促進することができる。また、噴孔71の燃料入口側において燃料の流れは強められるため、燃料の圧力が低くても強い旋回流が形成される。したがって、燃料の微粒化を促進することができる。さらに、噴孔プレート70に段差部83を形成することにより燃料の微粒化が促進されるため、旋回流を形成するための他の部材などを必要としない。したがって、構造を簡単にすることができ、かつ部品点数の増加を招くことがなく、製造コストの上昇を抑制することができる。

[0036]

第1実施形態では、噴孔71の中心から仮想直線L1までの距離D1は、噴孔71の中心から段差部83までの距離D2よりも大きく設定している。そのため、第一面部81に流入した燃料は、より流路の大きな二つの噴孔71の間を仮想直線L1に沿って流れる。そして、燃料は仮想直線L1と概ね垂直な段差部83と衝突する。これにより、仮想直線L1を挟んで双方から流入した燃料は、同一方向へ流れることにより互いに流れを強め合う。また、燃料が段差部83へ概ね垂直に衝突することにより、燃料の有している運動エネルギーは旋回エネルギーへ効率よく変換される。したがって、噴孔71の内部における旋回流の形成が促進され、燃料の微粒化を促進することができる。

[0037]

第1実施形態では、噴孔71から噴射される燃料の微粒化が促進されるため、噴孔71の数を増大することなく所望の燃料の噴霧を形成することができる。微粒化を促進するためには、噴孔71の数を増加することが効果的である。しかし、噴孔71の数を増加すると、加工工程の複雑化ならびに加工工数の増大を招く。一方、第1実施形態では、噴孔71一つあたりの微粒化が促進されるため、噴孔71の数を増やすことなく燃料の微粒化を達成することができる。また、噴孔71が円筒形状であるため、噴孔71の形成が容易である。したがって、噴孔プレート70の加工工程の簡略化ならびに加工工数を低減することができ、製造効率を高めることができる。

[0038]

(第2実施形態)

本発明の第2実施形態によるインジェクタの噴孔プレートを図6に示す。なお、第1実施形態と実質的に同一の構成部位には同一の符号を付し、説明を省略する。

第2実施形態では、図6に示すように噴孔71と段差部83との位置関係が第1実施形態と異なる。二つの噴孔71の中心間の距離をD3とし、各噴孔71から段差部83までの距離をD4とすると、第2実施形態ではD3<D4となる。すなわち、二つの噴孔71の間の距離よりも、噴孔71と段差部83との間の距離の方が大きく設定されている。また、制御プレート60は、図7に示すように噴孔プレート70の径方向の両端部側から噴孔プレート70への燃料の流れを許容する位置に制御孔61を有している。

[0039]

D3<D4と設定することにより、図6の矢印Fに示すように燃料はより流路の大きな噴孔71と段差部83との間を流れる。第一面部81に流入した燃料は、噴孔プレート70の径方向の両端部から段差部83に沿って噴孔プレート70の中央部へ流れる。噴孔プレート70の径方向の両端部から流入した燃料は、噴孔プレート70の概ね中央部において、他方から流入した燃料と衝突する。噴孔プレート70の両端部から流入した燃料は、

衝突することにより折り返される。このとき、噴孔プレート70の両端部から流入し折り返された燃料の流れは、いずれも流入方向とは概ね垂直な方向へ曲げられる。これにより、噴孔プレート70の両端部から流入した燃料の流れは、二つの噴孔71の間において概ね同一の方向への流れを形成する。その結果、噴孔プレート70の両端部から流入した燃料は、流れが強められる。そして、噴孔プレート70の径方向において一方の端部から流入した燃料は、他方の端部から流入した燃料と衝突し流れの方向が曲げられ、噴孔71へ流入する。その結果、噴孔71へ流入する燃料は、流れが強められるとともに、旋回力が付与される。

[0040]

\ 1

また、このとき、段差部83は第二面部82から第一面部81への燃料の流れを制限している。そのため、第一面部81において流れが強められた燃料は、噴孔71の燃料入口側において流れが弱められることはない。

したがって、流れが強められ、かつ旋回力が付与された状態で噴孔71へ流入した燃料は、噴孔71の内部において強力な旋回流を形成し、噴孔71の燃料出口から噴射される

[0041]

本発明の第2実施形態によると、噴孔71と段差部83との位置関係を調整することにより、燃料は段差部83に沿ってすなわち段差部83と概ね平行に第一面部81へ流入する。この場合でも、燃料の流れは強められ、かつ旋回力が付与される。したがって、第1実施形態と同様に微粒化を促進することができる。

第2実施形態では、噴孔プレート70の径方向の両端部から流入した燃料は、噴孔プレート70の中央付近で衝突し、流れが曲げられる。これにより、噴孔プレート70の両端部から流入した燃料は、同一方向へ流れることにより互いに流れを強め合う。また、噴孔プレート70の一方の端部から流入した燃料が他方の端部から流入した燃料と衝突することにより、燃料の有している運動エネルギーは旋回エネルギーへ効率よく変換される。したがって、噴孔71の内部における旋回流の形成が促進され、燃料の微粒化を促進することができる。

$[0 \ 0 \ 4 \ 2]$

(第3実施形態)

本発明の第3実施形態によるインジェクタの噴孔プレートを図8に示す。なお、第1実施形態と実質的に同一の構成部位には同一の符号を付し、説明を省略する。

第3実施形態では、図8に示すように第二面部82が第一面部81を包囲して形成されている。また、噴孔71と段差部83との位置関係は、第1実施形態と同様に二つの噴孔71間の距離が各噴孔71から段差部83までの距離よりも大きい。さらに、制御プレート60による燃料の流入方向も第1実施形態と同様である。以上の構成により、第3実施形態では、矢印Fに示すように第1実施形態と同様に燃料の流れは強められ、かつ旋回力が付与される。したがって、燃料の微粒化を促進することができる。

[0043]

また、第3実施形態において、図9に示すように二つの噴孔71間の距離よりも、各噴孔71と段差部83との間の距離を大きくしてもよい。この場合、第2実施形態と同様に段差部83に沿って第一面部81に流入した燃料は、矢印Fに示すように噴孔プレート70の中心部付近で相互に衝突した後、噴孔71へ流入する。これにより、第2実施形態と同様に燃料の流れは強められ、かつ旋回力が付与される。したがって、燃料の微粒化を促進することができる。

[0044]

(第4実施形態)

本発明の第4実施形態によるインジェクタの噴孔プレートを図10に示す。なお、第1 実施形態と実質的に同一の構成部位には同一の符号を付し、説明を省略する。

第4実施形態では、図10に示すように噴孔71の燃料入口が開口している第一面部8 1は噴孔プレート70の周方向へ二か所形成されている。また、二か所の第一面部81の 間に二か所の第二面部82が形成されている。第4実施形態では、噴孔プレート70に形成される噴孔71の総数が四つとなる。また、噴孔71と段差部83との位置関係は、第1実施形態と同様に二つの噴孔71間の距離が各噴孔71から段差部83までの距離よりも大きい。このとき、図11に示すように制御プレート60の制御孔61は、噴孔プレート70の第一面部81に対応して形成されている。制御プレート60を通過した燃料は、矢印Fに示すように第一面部81にそれぞれ形成されている二つの噴孔71の間に流入する。以上の構成により、第4実施形態では、燃料の流れは強められ、かつ旋回力が付与される。したがって、第1実施形態と同様に燃料の微粒化を促進することができる。

[0045]

また、第4実施形態において、図12に示すように二つの噴孔71間の距離よりも各噴孔71と段差部83との間の距離を大きくしてもよい。この場合、第2実施形態と同様に段差部83に沿って第一面部81に流入した燃料は、矢印Fに示すように噴孔プレート70の中心部付近で衝突した後、噴孔71へ流入する。これにより、第2実施形態と同様に燃料の流れは強められ、かつ旋回力が付与される。したがって、燃料の微粒化を促進することができる。

また、第4実施形態では、噴孔プレート70には四つの噴孔71が形成されるため、噴孔71の数の増加による微粒化の効果が得られる。したがって、さらなる燃料の微粒化の促進を図ることができる。

[0046]

(第5実施形態)

本発明の第5実施形態によるインジェクタの噴孔プレートを図13に示す。なお、第1 実施形態と実質的に同一の構成部位には同一の符号を付し、説明を省略する。

第5実施形態では、図13に示すように第一面部81は概ね長円形状に形成されている。第一面部81は、第一軸P1方向と第一軸P1に垂直な第二軸P2方向に伸びる長円形状に形成されており、第一軸P1方向の長さが第二軸P2方向の長さよりも短く形成されている。一方、第二面部82は、第一面部81の第一軸P1方向の両端部に形成されている。そのため、段差部83も、第一面部81の第一軸P1方向の両端部に形成される。

[0047]

噴孔プレート70には、噴孔プレート70と概ね同心円上に四つの噴孔71が形成されている。四つの噴孔71の燃料入口は第一面部81に開口している。隣接する噴孔71間の距離は、噴孔71から段差部83までの距離よりも大きく形成されている。すなわち、四つの噴孔71の中心を一辺がD5の正方形の各頂点に配置した場合、各噴孔71から段差部83までの距離D6は、D5より小さい。このとき、図14に示すように制御プレート60は、第一面部81の第二軸P2方向の両端部から第一面部81への燃料の流れを許容する位置に制御孔61を有する。なお、四つの噴孔71は正方形の各頂点に限らず長方形の各頂点に配置してもよい。

[0048]

制御プレート60を通過した燃料は、第二軸 P2方向の両端部から、矢印Fに示すようにより流路の大きな各噴孔71間へ流入する。各噴孔71間へ流入した燃料は、噴孔プレート70の中心部付近において、第二軸 P2に沿って他方から流入した燃料と衝突する。燃料は衝突することにより、流入方向とは反対方向へ折り返される。このとき、燃料の流れはいずれも流入方向とは概ね垂直な方向へ曲げられる。これにより、第二軸 P2方向の両端部から流入した燃料の流れは、隣り合う各噴孔71間において概ね同一の方向へ流れる。その結果、噴孔プレート70の両端部から流入した燃料は、噴孔71の入口側において流れが強められる。そして、噴孔プレート70の径方向において一方の端部から流入した燃料は、他方の端部から流入した燃料と衝突し流れの方向が曲げられ、噴孔71へ流入する。その結果、噴孔71へ流入する燃料は、流れが強められるとともに、旋回力が付与される。

[0049]

また、このとき、段差部83は第二面部82から第一面部81への燃料の流れを制限し

ている。そのため、第一面部 8 1 において流れが強められた燃料は、噴孔 7 1 の燃料入口側において第二面部 8 2 からの燃料の流れによって流れが弱められることはない。

第5実施形態では、第2実施形態と同様に段差部83に沿って第一面部81に流入した 燃料は、噴孔プレート70の中心部付近で衝突した後、噴孔71へ流入する。これにより 、第2実施形態と同様に燃料の流れは強められ、かつ旋回力が付与される。したがって、 燃料の微粒化を促進することができる。

また、第5実施形態では、噴孔プレート70には四つの噴孔71が形成されるため、噴孔71の数の増加による微粒化の効果が得られる。したがって、さらなる燃料の微粒化の促進を図ることができる。

[0050]

(第6実施形態)

本発明の第6実施形態によるインジェクタの噴孔プレートを図15に示す。なお、第1 実施形態と実質的に同一の構成部位には同一の符号を付し、説明を省略する。

第6実施形態では、図15に示すように噴孔プレート70はそれぞれ噴孔71が形成されている四つの第一面部81を有している。四つの第一面部81は、噴孔プレート70の概ね中心で交差している。第二面部82は、隣接する各第一面部81の間に形成されている。そのため、段差部83は各第一面部81の両側部に形成されている。噴孔71は、噴孔プレート70と同心円上に四つ配置され、それぞれ燃料入口が第一面部81に開口している。各第一面部81の中心軸は、噴孔プレート70の中心を含んで対向する噴孔71間を結ぶ仮想直線L3、L4とずれて配置されている。そのため、各第一面部81に形成されている噴孔71は、一方の段差部83までの距離と他方の段差部83までの距離とが異なる。このとき、図16に示すように制御プレート60は、各第一面部81への燃料の流れを許容する位置に制御孔61を有する。

$\{0\ 0\ 5\ 1\}$

制御プレート60を通過した燃料は、第一面部81に流入し、矢印下に示すように噴孔71と段差部83との距離が大きな流路を段差部83に沿って噴孔プレート70の中心へ向けて流れる。第一面部81から噴孔プレート70の中心へ向けて流れる燃料は、隣接する第一面部81を流れる燃料と衝突する。燃料は衝突することにより、流入方向とは反対方向へ折り返される。また、燃料は、衝突の前後において隣接する第一面部81を流れる燃料と概ね同一の方向へ流れる。その結果、第一面部81から段差部83に沿って流れた燃料は、隣接する第一面部81を流れる燃料と衝突し流れの方向が曲げられ、噴孔71へ燃料は、隣接する第一面部81を流れる燃料と衝突し流れの方向が曲げられ、噴孔71へ流入する。その結果、噴孔71へ流入する燃料は、流れが強められるとともに、旋回力が付与される。

[0052]

また、このとき、段差部83は第二面部82から第一面部81への燃料の流れを制限している。そのため、第一面部81において流れが強められた燃料は、噴孔71の燃料入口側において第二面部82からの燃料の流れによって流れが弱められることはない。

第6実施形態では、段差部83に沿って第一面部81に流入した燃料は、噴孔プレート70の中心部付近で隣接する第一面部81を流れる燃料と衝突した後、噴孔71へ流入する。これにより、燃料の流れは強められ、かつ旋回力が付与される。したがって、燃料の微粒化を促進することができる。

[0053]

また、第6実施形態では、噴孔プレート70には四つの噴孔71が形成されるため、噴孔71の数の増加による微粒化の効果が得られる。したがって、さらなる燃料の微粒化の促進を図ることができる。

第6実施形態では、噴孔71を噴孔プレート70と同心円上に配置するとともに、仮想直線L3、L4と各第一面部81の中心軸とをずらしている。これにより、各噴孔71から一方の段差部83までの距離と他方の段差部83までの距離とが異なる構成としている

[0054]

これに対し、図17に示すように、噴孔プレート70の中心を挟んで対向する第一面部81の中心軸を同一直線上に配置し、各第一面部81における噴孔71の位置を各第一面部81の中心軸からずらしてもよい。これにより、各第一面部81に形成される噴孔71から一方の段差部83までの距離と他方の段差部83までの距離とが異なる構成とすることができる。この場合も、第6実施形態と同様に燃料は矢印下に示すように噴孔プレート70の中心付近で隣接する第一面部81を流れる燃料と衝突する。そのため、燃料の流れは強められ、かつ旋回力が付与される。したがって、燃料の微粒化を促進することができる。

[0055]

(第7実施形態)

本発明の第7実施形態によるインジェクタの要部を図18に示す。なお、第1実施形態と実質的に同一の構成部位には同一の符号を付し、説明を省略する。

第7実施形態では、図18に示すようにインジェクタ110は弁ボディ50の先端に旋回流形成部160を備えている。旋回流形成部160は、噴孔部および案内部から構成され、燃料に旋回力を付与する。旋回流形成部160は、積層されている複数のプレート部材を有している。旋回流形成部160は、弁ボディ50側から第一プレート161、第二プレート162、第三プレート163および噴孔プレート164を有している。第一プレート161および第二プレート162は案内部を構成しており、第三プレート163および噴孔プレート164は噴孔部を構成している。

[0056]

第一プレート161は、図19に示すように円環状に形成されている。第一プレート161の内径は、図18に示す弁ボディ50の出口側すなわち第一プレート161側の端部の内径よりも大きい。なお、図19では、図示を簡単にするため第一プレート161、第二プレート162、第三プレート163および噴孔プレート164、ならびに弁ボディ50を円板状に示しており、実際の形状を示すものではない。以下の図面においても同様である。

第二プレート162は、図19に示すように円弧形状の二つの開口部165および開口部166を有している。開口部165および開口部166は、同一の円周上に配置され、第二プレート162を板厚方向に貫いている。開口部165および開口部166の外径は、第一プレート161の内径と概ね同一である。

第三プレート163は、板厚方向に貫く制御開口部167を有している。制御開口部167は、径方向の両端部にそれぞれ形成されている略扇形状の部分と、略扇形状の部分に挟まれた略八角形状の部分とから構成されている。

[0057]

噴孔プレート164は、中心付近に複数の噴孔168を有している。本実施例の場合、噴孔プレート164は四つの噴孔168を有している。噴孔168は、噴孔プレート164を板厚方向に貫いており、噴孔プレート164の第三プレート163側の端面と反弁ボディ側の端面とを連通している。噴孔プレート164に第三プレート163を積層することにより、制御開口部167を形成する第三プレート163の周壁は段差部170を形成する。すなわち、段差部170の高さは第三プレート163の板厚に対応する。

[0058]

積層された第一プレート161、第二プレート162、第三プレート163および噴孔プレート164は弁ボディ50の先端部に取り付けられる。これにより、図20に示すように弁ボディ50の第一プレート161側の端面50aと、第二プレート162の第一プレート161側の端面162aと、第一プレート161の内周面161aとは空間部180を形成する。すなわち、案内部と弁ボディ50とが空間部180を形成している。第一プレート161は円環状であるため、空間部180は略円柱状となる。第一プレート161の内径は弁ボディ50の出口側端部の内径よりも大きいため、空間部180を形成する第一プボディ50の出口側端部の内径よりも大きくなる。また、空間部180を形成する第一プ

レート161の内周面161aは、噴孔プレート164に形成されている噴孔168よりも径方向外側に位置している。すなわち、空間部180は、周縁が噴孔プレート164の径方向において噴孔168よりも外側に位置している。空間部180は、径方向の両端部において第二プレート162の開口部165および開口部166に接続している。

[0059]

第三プレート163は第二プレート162と噴孔プレート164との間に挟まれている。第二プレート162の第三プレート163側の端面162bと、噴孔プレート164の第三プレート163側の端面164aと、段差部170を形成する第三プレート163の周壁とは、案内通路171を形成している。第三プレート163の制御開口部167は径方向に伸びて形成されているため、案内通路171も径方向に伸びている。案内通路171は、一方が径方向外側の両端部において第二プレート162の開口部165および開口部166に接続し、他方が噴孔プレート164の中心付近に開口する噴孔168に接続している。

[0060]

第三プレート163は図21に示すように略扇形状の部分と略八角形の部分とを有している。そのため、案内通路171の断面積は径方向内側へ向かうにしたがって徐々に縮小した後、徐々に拡大する。すなわち、案内通路171は、径方向内側に向かうにしたがって徐々に断面積が縮小する縮小部172と、徐々に断面積が拡大する拡大部173と、断面積が変化しない定形部174とから構成されている。噴孔168の燃料入口側は定形部174に開口している。縮小部172では、段差部170が略扇形状の案内通路171を形成しているため、中心に向かうにしたがって案内通路171の断面積は徐々に縮小する。拡大部173は、縮小部172の径方向内側の端部に接続している。拡大部173では、段差部170と噴孔168との間の距離が徐々に大きくなっている。すなわち、拡大部173では、中心に向かうにしたがって段差部170が噴孔168から遠ざかっている。これにより、案内通路171の断面積は徐々に拡大する。

$[0\ 0\ 6\ 1\]$

次に、燃料の流れについて説明する。

ノズルニードル41が図18の上方へ移動し弁座51から当接部42が離座すると、燃料通路53の燃料は弁ボディ50の内壁面に沿って空間部180へ流入する。空間部180は上述のように弁ボディ50の出口側の端部よりも内径が大きいため、空間部180へ流入した燃料は空間部180を形成する第二プレート162の端面162aおよび弁ボディ50の端面150aに案内されて径方向外側へ流れる。空間部180の径方向の両端部には第二プレート162の開口部165、166が接続している。そのため、燃料は、空間部180により径方向外側へ拡大した後、開口部165、166へ流入する。

[0062]

空間部180により径方向外側へ拡大した燃料の流れは、開口部165、166を経由して案内通路171へ流入する。開口部165、166は空間部180の径方向両端部と案内通路171の径方向両端部とを接続している。そのため、燃料は案内通路171の径方向の両端部から案内通路171の長手方向に沿って流入する。案内通路171へ流入した燃料は、縮小部172における段差部170に案内されながら径方向内側へ向けて流れる。縮小部172は略扇形状であるため、燃料は噴孔プレート164の中心に向けて集束した流れを形成する。そのため、燃料の流れは中央部ほど流速が大きくなる。すなわち、燃料は、案内通路171の縮小部172を流れることにより、噴孔プレート164の中心に向けた流れが強められる。

[0063]

燃料は、縮小部172を通過すると拡大部173における段差部170に案内されながら径方向内側へ向けてさらに流れる。燃料が噴射されるとき、燃料は噴孔168へ向けて吸い込まれる。そのため、案内通路171の拡大部173に流入した燃料は、噴孔168へ向けて流入する。このとき、拡大部173では、段差部170と噴孔168との距離が徐々に拡大し、断面積が拡大している。そのため、案内通路171の縮小部172から拡

大部173へ流入した燃料は、図21の矢印に示すように噴孔168の入口側の周囲を周回しながら噴孔168へ流入する。燃料は、縮小部172において噴孔プレート164の中心へ向けた流れが強められるとともに、噴孔168に吸引された状態となり、かつ拡大部173において案内通路171が急激に拡大することにより、噴孔168の周囲を旋回する流れを形成する。その結果、燃料は旋回流を形成しつつ噴孔168へ流入する。

[0064]

以上説明したように、第7実施形態では、案内通路171を流れる燃料は段差部170に沿って流れることにより、縮小部172において中心へ向けた流れが強められる。そして、拡大部173において案内通路171が急激に拡大するとともに、燃料が噴孔168へ吸引された状態となることにより、燃料は噴孔168の入口側の周囲において旋回流を形成する。これにより、燃料の旋回流の形成は促進される。したがって、簡単な構造で噴孔168から噴射される燃料の微粒化を促進することができる。

[0065]

第7実施形態では、案内通路171は拡大部173および定形部174を有している。そのため、縮小部172により噴孔プレート164の中心への流れが強められた燃料は、拡大部173により流れが拡大するともに段差部170と噴孔168との間に十分な距離がある定形部174において噴孔168へ向けて旋回する。すなわち、拡大部173および定形部174により、燃料の旋回流の形成に必要な空間が確保される。これにより、燃料の旋回流の形成は促進される。したがって、簡単な構造で噴孔168から噴射される燃料の微粒化を促進することができる。

[0066]

第7実施形態では、燃料は空間部180および開口部165、166を経由して案内通路171に流入する。空間部180および開口部165、166は噴孔168よりも径方向外側に位置している。そのため、燃料は噴孔168の径方向外側から案内通路171へ流入する。そして、燃料は案内通路171の長手方向に沿って案内通路171を流れる。これにより、燃料は、縮小部172および拡大部173を経由して噴孔へ流入し、旋回流を形成する。したがって、簡単な構造で噴孔168から噴射される燃料の微粒化を促進することができる。

[0067]

第7実施形態では、旋回流形成部160を構成する第一プレート161、第二プレート162、第三プレート163および噴孔プレート164をいずれも別体に形成し、積層する例について説明した。しかし、例えば案内部を構成する第一プレート161と第二プレート162とを一体に形成し、噴孔部を構成する第三プレート163と噴孔プレート164とを一体に形成した後、これらを積層する構成としてもよい。また、第一プレート161、第二プレート162、第三プレート163および噴孔プレート164をすべて一体に形成してもよい。すなわち、第一プレート161、第二プレート162、第三プレート163および噴孔プレート164は、任意に組み合わせて一体に形成することができる。複数のプレートを一体に形成することにより、軸合わせなどが不要となり、加工が容易になる。

[0068]

(第8実施形態)

本発明の第8実施形態によるインジェクタ200の要部を図22に示す。

インジェクタ200は、弁ボディ210、ノズルニードル220および制御部材230を備えている。弁ボディ210は、ハウジング201の先端に例えば溶接などにより固定されている。弁ボディ210は、内壁面に弁座211を有している。ノズルニードル220は、一体に形成されている軸部221および台部222を有している。台部222には、弁座211に着座可能な当接部223が形成されている。ノズルニードル220は、軸部221の反台部側に係止部材224を有している。係止部材224はノズルニードル220に固定されている。係止部材224と弁ボディ210との間には付勢手段としてのコイルスプリング225が設置されている。なお、付勢手段としては、コイルスプリング2

25に限らず、例えば板ばねなど押し付け力を提供するものであればよい。コイルスプリング225は、伸長方向の力を有しており、一方の端部が係止部材224に接し、他方の端部が弁ボディ210に接している。これにより、コイルスプリング225は係止部材224を介してノズルニードル220を図22の上方へ押し付ける。そのため、ノズルニードル220にコイルスプリング225の押し付け力以外の力が加わっていないとき、ノズルニードル220の当接部223は弁ボディ210の弁座211に着座している。台部220反軸部側の端部は、平坦な平坦面226を形成している。

[0069]

制御部材230は、カップ部材231および流路形成部材232から構成されている。カップ部材231と流路形成部材232とは、例えば溶接などにより接続されている。なお、制御部材230は、カップ部材231および流路形成部材232を制御部材230として一体成形してもよい。カップ部材231は、カップ状に形成され、弁ボディ210との間に流路形成部材232を挟み込んでいる。カップ部材231は、中心付近に複数の噴孔233を有している。噴孔233は、カップ部材231の弁ボディ210側の端面と反弁ボディ側の端面とを接続している。噴孔233の入口側が開口しているカップ部材231の弁ボディ210側の端面は、第一面部241である。

[0070]

流路形成部材232は、カップ部材231の弁ボディ210側に設置されている。流路形成部材232は、図23に示すように略弓形の板状に形成されている。流路形成部材232の弁ボディ210側の端面は、カップ部材231の弁ボディ210側の端面すなわち第一面部241よりも弁ボディ210側に位置している。この流路形成部材232の弁ボディ210側の端面は、第二面部242である。第二面部242は第一面部241よりも弁ボディ210側に位置しているため、第一面部241と第二面部242との間には段差部243が形成される。二つの流路形成部材232は第一面部241を挟んで段差部243が概ね平行となるように配置されている。これにより、二つの流路形成部材232の間には、略長円形状の第一面部241が形成される。第二面部242には、ノズルニードル220の台部222の端部に位置する平坦面226が着座可能である。第二面部242に平坦面226が着座したとき、第一面部241、二つの段差部243および平坦面226により囲まれた案内通路250が形成される。

[0071]

図22に示すように弁ボディ210とノズルニードル220の台部222とは燃料通路202を形成している。燃料通路202に燃料が供給されると、燃料の圧力によりノズルニードル220の台部222には図22の下方向へ力が加わる。コイルスプリング225がノズルニードル220を図22の上方へを押し付ける力よりも、燃料がノズルニードル220を図22の下方へ押し付ける力が大きくなると、ノズルニードル220の移動量が大きくなると、ノズルニードル220の移動量が大きくなると、ノズルニードル220の移動量が大きくなると、ノズルニードル220の移動は規制される。

[0072]

次に、燃料の流れについて説明する。

インジェクタ200に設置されている図示しない弁部が開弁し燃料通路202に燃料が供給されると、ノズルニードル220は燃料から受ける力により図22の下方へ移動する。これにより、当接部223は弁座211から離座し、燃料通路202の燃料は噴孔233側へ流れる。このとき、ノズルニードル220の平坦面226は第二面部242に着座する。そのため、噴孔233の弁ボディ210側は段差部243の高さに対応する空間を挟んでノズルニードル220により覆われる。その結果、弁座211と当接部223との間を通過した燃料は、カップ部材231の中央付近に開口する噴孔233に直接流入するのではなく、図24に示すようにノズルニードル220の台部222の外周側へ案内される。

[0073]

ノズルニードル220の外径は流路形成部材232の外径よりも小さいため、ノズルニードル220が第二面部242に着座したとき、案内通路250の径方向の両端部は台部22の外周側に開口している。そのため、ノズルニードル220の外周側に案内された燃料は、案内通路250の径方向の両端部から案内通路250へ流入する。これにより、燃料は、段差部243に案内されてカップ部材231の中心へ案内される。その結果、図25に示すように径方向の両端部から案内通路250へ流入した燃料は旋回流を形成しながら噴孔233へ流入する。

[0074]

以上説明したように、第8実施形態ではノズルニードル220が制御部材230と接することにより、燃料通路202から噴孔233への直接の燃料の流入を規制するとともに、燃料を案内通路250の径方向両端部へ案内している。これにより、案内通路250には径方向の両端部から噴孔233が開口する中心付近へ向けて燃料の流れが形成される。その結果、燃料の流れは強められ、かつ燃料には旋回力が付与される。したがって、燃料の微粒化を促進することができる。

なお、第8実施形態では、ノズルニードル220は燃料から受ける力により駆動される 例について説明した。しかし、例えば電磁気的にノズルニードル220を直接駆動する構 成としてもよく、ノズルニードル220の駆動方式は上述の方式に限るものではない。

[0075]

以上説明した複数の実施形態では、本発明のインジェクタをガソリンエンジンに適用する例について説明した。しかし、例えばディーゼルエンジンなどに本発明のインジェクタを適用してもよい。また、本発明の複数の実施形態では、噴孔を概ね円筒状に形成する場合について説明した。しかし、噴孔は、円筒状に限らず燃料入口側から燃料出口側にかけて内径が変化するテーパ状に形成してもよい。

[0076]

また、本発明の複数の実施形態では、噴孔プレートに噴孔を二つまたは四つ形成する場合、ならびに第一面部に一つ、二つまたは四つの噴孔を形成する場合について説明した。しかし、噴孔プレートに形成する噴孔は二つまたは四つに限らずそれ以外でもよく、また第一面部に形成する噴孔の数も一つまたは四つに限定するものではない。噴孔の数は、インジェクタを適用するエンジンに応じて適宜選択可能である。

【図面の簡単な説明】

[0077]

【図1】本発明の第1実施形態によるインジェクタの噴孔プレートの底部を示す概略 斜視図である。

【図2】本発明の第1実施形態によるインジェクタを示す断面図である。

【図3】本発明の第1実施形態によるインジェクタの制御プレートおよび噴孔プレートの底部を示す概略斜視図である。

【図4】本発明の第1実施形態によるインジェクタの噴孔近傍における制御プレートおよび噴孔プレートを示す模式的な断面図である。

【図 5 】本発明の第 1 実施形態によるインジェクタの噴孔プレートの底部を制御プレート側から見た概略図である。

【図6】本発明の第2実施形態によるインジェクタの噴孔プレートの底部を制御プレ ート側から見た概略図である。

【図7】本発明の第2実施形態によるインジェクタの制御プレートおよび噴孔プレートの底部を示す概略斜視図である。

【図8】本発明の第3実施形態によるインジェクタの噴孔プレートの底部を制御プレート側から見た概略図である。

【図9】本発明の第3実施形態によるインジェクタの噴孔プレートの変形例を示す図 であって、噴孔プレートの底部を制御プレート側から見た概略図である。

【図10】本発明の第4実施形態によるインジェクタの噴孔プレートの底部を制御プ

ページ: 16/E

レート側から見た概略図である。

- 【図11】本発明の第4実施形態によるインジェクタの制御プレートおよび噴孔プレートの底部を示す概略斜視図である。
- 【図12】本発明の第4実施形態によるインジェクタの噴孔プレートの変形例を示す 図であって、噴孔プレートの底部を制御プレート側から見た概略図である。
- 【図13】本発明の第5実施形態によるインジェクタの噴孔プレートの底部を制御プレート側から見た概略図である。
- 【図14】本発明の第5実施形態によるインジェクタの制御プレートおよび噴孔プレートの底部を示す概略斜視図である。
- 【図15】本発明の第6実施形態によるインジェクタの噴孔プレートの底部を制御プレート側から見た概略図である。
- 【図16】本発明の第6実施形態によるインジェクタの制御プレートおよび噴孔プレ ートの底部を示す概略斜視図である。
- 【図17】本発明の第6実施形態によるインジェクタの噴孔プレートの変形例を示す 図であって、噴孔プレートの底部を制御プレート側から見た概略図である。
- 【図18】本発明の第7実施形態によるインジェクタの要部を示す断面図である。
- 【図19】本発明の第7実施形態によるインジェクタにおいて、噴孔部の要部の構成を示す概略斜視図である。
- 【図20】本発明の第7実施例によるインジェクタにおいて要部の構成を示す模式図であり、(A) は弁ボディ側から見た図であり、(B) は(A) のB-B線で切断した断面図であり、(C) は(A) のC-C線で切断した断面図である。
- 【図21】本発明の第7実施形態によるインジェクタの案内通路を示す概略図である
- 【図22】本発明の第8実施形態によるインジェクタの要部を示す断面図である。
- 【図23】本発明の第8実施形態によるインジェクタのニードルと制御部材との関係を示す概略斜視図であって、ニードルと制御部材とが離間している状態を示す図である。
- 【図24】本発明の第8実施形態によるインジェクタのニードルと制御部材との関係を示す概略斜視図であって、ニードルと制御部材とが接している状態を示す図である
- 【図25】本発明の第8実施形態によるインジェクタの案内通路を示す概略図である

【符号の説明】

[0078]

10、110、200 インジェクタ(燃料噴射装置)、41、220 ノズルニードル(弁部材)、42、223 当接部、50、210 弁ボディ、51、211 弁座、53、202 燃料通路、60 制御プレート(流入制御手段)、61 制御孔、70噴孔プレート、71、168、233 噴孔、81、241 第一面部、82、242 第二面部、83、170、243 段差部、161 第一プレート(案内部、プレート部材)、162 第二プレート(案内部、プレート部材)、163 第三プレート(噴孔部、プレート部材)、164 噴孔プレート(噴孔部、プレート部材)、171、250案内通路、172 縮小部、173 拡大部、180 空間部、226 平坦面(端面)、230 制御部材

【書類名】図面 【図1】

(第1実施形態)

【図2】

【図3】

【図4】

【図5】

【図6】

(第2実施形態)

【図7】

【図8】

(第3実施形態)

【図9】

【図10】

(第4実施形態)

【図11】

図12]

【図13】

(第5実施形態)

【図14】

【図15】

(第6実施形態)

【図16】

【図17】

【図18】

(第7実施形態)

【図19】

【図20】

【図21】

【図22】

(第8実施形態)

【図23】

【図24】

【図25】

【書類名】要約書

【要約】

【課題】 噴孔の数の増加を招くことなく、燃料の微粒化が促進され、生産能率の高い燃料噴射装置を提供する。

【解決手段】 噴孔プレート70は噴孔71の燃料入口が開口する第一面部81ならびに第一面部81よりも弁ボディ側に位置する第二面部82を有しており、第一面部81と第二面部82との間には段差部83が形成されている。段差部83は第一面部81から噴孔71への燃料の流れを促進するとともに、第二面部82から噴孔への燃料の流れを制限する。第一面部81に流入した燃料は、同一の方向へ流れることにより流れを強め合うとともに、段差部83に衝突することにより旋回流を形成する。また、段差部83は第二面部82からの燃料の流入を制限するため、第一面部81における燃料の流れが弱められることがない。したがって、噴孔71を単純な円筒形状に形成しても、噴孔71の数の増加を招くことなく燃料の微粒化が促進される。

【選択図】 図1

ページ: 1/E

認定・付加情報

特許出願の番号 特願2003-385686

受付番号 50301890200

書類名 特許願

担当官 第三担当上席 0092

作成日 平成15年11月19日

<認定情報・付加情報>

【提出日】 平成15年11月14日

特願2003-385686

出願人履歴情報

識別番号

[000004260]

1996年10月 8日

1. 変更年月日

[変更理由] 名称変更

住 所

愛知県刈谷市昭和町1丁目1番地

氏 名

株式会社デンソー