Lista 1 de Arquitetura e Organização de Computadores

Respostas

 Modelo de Von Neumann tem um conceito de programa armazenado e separação da unidade aritmética e unidade de controle, dividida entre os seguintes títulos:

Memória:

- A unidade de memória central serve para guardar programas e dados, sob a forma de uma representação binária;
- Cada instrução de maquina é codificada como uma sequencia de bits;
- Cada valor de certo tipo é codificado por uma determinada sequencia de bits.

Unidade Central de Processamento (UCP):

- Trata do controle global das operações e da execução das instruções;
- Contem as seguintes unidades internas;
- Unidade lógica e aritmética (ULA): executa as principais operações lógicas e aritméticas do computador;
- Unidade de Controle (UC): busca, decodifica e executa.

Entrada e Saída:

- As unidades periféricas destinam-se a suportar as ações de comunicação da CPU e memória com o exterior;
- Também há unidades pacificas destinadas ao armazenamento de dados, que são depois apresentados ao usuário, sob a forma de arquivos, gerados pelos programas do Sistema Operacional.

Processadores:

- Seu funcionamento é coordenados pelos programas
- Executa cálculos muitos simples de forma bastante rápida;
- Trabalha diretamente com a memória principal;
- Utiliza o ciclo busca, execução regulados pelo clock.
- A diferença é que a arquitetura de Harvard separa o armazenamento e o comportamento das instruções do CPU e os dados, enquanto a outra utiliza o mesmo espaço de memória para ambos.
 - Na arquitetura de Von Neumann (Pricenton) é processada uma única informação por vez, visto que, nessa tecnologia, execução e dados percorrem o mesmo barramento, o que torna o processo lento em relação a arquitetura de Harvard. A arquitetura de Harvard é mais utilizada nos microcontroladores, pois proporcionam maior velocidade de processamento, pois, enquanto a CPU

processa uma informação outra nova informação esta sendo buscado, de forma sucessiva.

3)

3 WA ER = 20 . 11 1 -
THE a mais desils 0,5
1 00 pm WATER 100 pm WATER 0 0 0 0 0 0
B 4 an 2
0 2
A_{w}^{-3} , 14 x 20 ² = 1256.
chips no Weger = A = 1256 - 1256 diges
chips you Weger = A = 1256 - 1256 digs
B = 1356 - 319 Edigo
B = 1356 - 314 Chiggs
6 = 1256 = 133,5 chipps
A= 1 = 0,69 (1+(0,5 × 0,5)) ² 1,56
Mendinento
A I
A : 1 - 2 ::
7,64
[1+(0,5 × 0 5)) 1 1 51
$\frac{D=1}{(1+(2,5\times 2))^{\frac{1}{2}}} = \frac{1}{2,25}$
- 0,44
11+(05 x a-1) = -
0,25
-61
141
(1+(0,5 x 3))2 - 10,56
2)/
Counts por chip
100 - 100 - 0,12
7 700 - 0,12
1256 x 9,64 803,84
043,14
3/41-11-11-11-11-11-11-11-11-11-11-11-11-1
314 x 0, 44 138,16
100 - 100 - 720
7,36
133,5 x 0,03 12,55
14,35
Compiledor 1

4) Compilador 1

7 instrucoes

$$(5 \times 1) + (1 \times 2) + (1 \times 3) = 10 \times 10^9$$
 ciclos

Tempo = N de instruções/frequência => Tempo = $10 \times 10^9 / 500 \times 10^6 = 20s$

Mips = N de instruções/Tempo x 10^9 = Mips = 7 x 10^9 / 20x 10^6 => Mips = 350

Compilador 2

12 instruções

$$(10 \times 1) + (1 \times 2) + (1 \times 3) = 15 \times 10^9 \text{ ciclos}$$

Tempo = N de instruções/frequência => Tempo = = $15 \times 10^9 / 500 \times 10^6 = 30$ s

Mips = N de instruções/Tempo x 10^9 = Mips = $12 \times 10^9/30 \times 10^6 = Mips = 400$

Logo para o cálculo do mips podemos concluir que o Compilador 2 pode processar um número maior de instruções

- 5) A maquina 2 executa o programa 1 com o dobro de velocidade da maquina 1, enquanto a maquina 1 executa o programa 2 1,33 vezes mais rápido que a maquina 2.
- 6) RISC (Reduced Instruction Set Computer):
 - Parte do pressuposto de que um conjunto simples de instruções vai resultar numa unidade de controle simples, barata e rápida.
 - Numero reduzido de instruções
 - Instruções de mesmo tamanho
 - Muitos registradores
 - Operações somente entre registradores
 - Instruções executadas diretamente em Hardware.

CISC (Complex Instruction Set Computer):

- Visa facilitar a construção dos compiladores, assim, programas complexos são compilados em programas de maquina mais curtos;
- Grande variedade de instruções;
- Instruções de tamanho variado;
- Poucos registradores;
- Operações em memória;
- Utiliza microcódigo.

```
7)
    switch # a partir da posição 1000 de memoria
     beq $s0,$t1,c1 #k=0
     beq $s0,$t2,c2 #k=1
     beq $s0,$t3,c3 #k=2
     beq $s0,$t4,c4 #k=4
            add $t0,$s3,$s4
            j EXIT
     c2:
            add $t0,$s1,$s2
            j EXIT
     c3:
            sub $t0,$s1,$s2
            j EXIT
     c4:
            sub $t0,$s3,$s4
            j EXIT
```

EXIT

Memória	OP=6	RS=5	RT=5	RD=5	SHAMT=5	FUNC=6	Tipo
1000	4	16	9 1016				I
1004	4	16	10	1024			I
1008	4	16	11	1032			I
1012	4	16	12	1040			I
1016	0	19	20	8	0	32	R
1020	2	1048					J
1024	0	17	18	8	0	32	R
1028	2	1048					J
1032	0	17	18	8	0	34	R
1036	2	1048					J
1040	0	19	20	8	0	34	
1044							

.data

arr: .word 5,9,3,6,7,10,8,2,4,1

.text

.globl main

insertion_sort: #i:\$s0 j:\$s1 temp:\$s2

addi \$sp, \$sp, -8 #ajusta a pilha para receber 3 ítens

add \$s0,\$0,\$0 #i=0

for:

slt \$t0,\$s0,\$a1 #i<lenght? \$t0=1:\$t0=0

beg \$t0,\$0, exit

add \$s1,\$s0,\$0 #j=i

while:

beq \$s1,\$0,exit_while #j == 0? addi \$t1,\$s1,-1 #\$t1 = j-1sll \$t2,\$s1,2 #\$t2=j*4 sll \$t3,\$t1,2 #\$t5=(j-1)*4 add \$t2,\$t2,\$a0 #\$t2=&a[j] add \$t3,\$t3,\$a0 #t3=&a[j-1] lw \$t4,0(\$t2) #t4=a[j] lw \$t5,0(\$t3) #t5=a[j-1]slt \$t6,\$t4,\$t5 #a[j]<a[j-1]?

beq \$t6,\$0,exit_while

add \$s2,\$t4,\$0 #temp =arr[j] sw \$t5,0(\$t2) #arr[j]=arr[j-1]

```
lw $t5,0($t3)
                             #t5=a[j-1]
slt $t6,$t4,$t5
                              #a[j]<a[j-1]?
beq $t6,$0,exit_while
add $s2,$t4,$0
                              #temp =arr[j]
sw $t5,0($t2)
                              #arr[j]=arr[j-1]
                              #arr[j-1]=arr[j]
sw $t4,0($t3)
addi $s1,$s1,-1
                              #j--
j while
exit_while:
addi $s0,$s0,1
                              #i++
j for
exit:
lw $s0, 0($sp)
                              #restaura o registrador $s0
lw $s1, 4($sp)
                              #restaura o registrador $s1
addi $sp, $sp, 8
                              #restaura a pilha
jr $ra
main:
la $a0, arr
                              # coloca o endereço de arr em $a0
addi $a1, $0,10
                              # lenght= 10
jal insertion_sort
li $v0,11
                              #código de retorno 11 para terminar o programa
syscall
```

9)

