Algoritmos y Estructura de Datos Clase Práctica Lógica

Miércoles 16 de Agosto de 2023

¿Qué vamos a ver hoy?

- ► Equivalencias de fórmulas
- ► Relación de fuerza
- Lógica trivaluada
- Cuantificadores

REPASO: REGLAS DE EQUIVALENCIA

- Idempotencia $(p \land p) \leftrightarrow p$ $(p \lor p) \leftrightarrow p$
- Asociatividad $(p \land q) \land r \leftrightarrow p \land (q \land r)$ $(p \lor q) \lor r \leftrightarrow p \lor (q \lor r)$
- $\begin{array}{c} \blacktriangleright \quad \mathsf{Conmutatividad} \\ (p \land q) \leftrightarrow (q \land p) \\ (p \lor q) \leftrightarrow (q \lor p) \end{array}$
- ▶ Distributividad $p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$ $p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$
- Reglas de De Morgan $\neg (p \land q) \leftrightarrow \neg p \lor \neg q$ $\neg (p \lor q) \leftrightarrow \neg p \land \neg q$

De los siguientes pares de fórmulas, ¿cuáles son equivalentes?

- $((\neg p \vee \neg q) \vee (p \wedge q)) \rightarrow (p \wedge q)$
- $\triangleright (p \land q)$
- $ightharpoonup \neg (p \land (q \land s))$
- $ightharpoonup s
 ightharpoonup (\neg p \lor \neg q)$
- $\blacktriangleright \neg (\neg p) \rightarrow (\neg (\neg p \land \neg q))$
- **>** 9

- $\blacktriangleright \ ((\neg p \vee \neg q) \vee (p \wedge q)) \rightarrow (p \wedge q)$
- $\triangleright (p \land q)$

Veamos la primera fórmula

$$(\neg p \lor \neg q) \equiv \neg (p \land q)$$
 (por De Morgan)
 $((\neg p \lor \neg q) \lor (p \land q)) \to (p \land q) \equiv (\neg (p \land q) \lor (p \land q)) \to (p \land q)$
Usando que $r \to s \equiv \neg r \lor s$ podemos obtener lo siguiente:

$$(\neg(p \land q) \lor (p \land q)) \rightarrow (p \land q) \equiv \neg(\neg(p \land q) \lor (p \land q)) \lor (p \land q)$$

$$\neg(\neg(p \land q) \lor (p \land q)) \lor (p \land q) \equiv (\neg(p \land q)) \land \neg(p \land q)) \lor (p \land q)$$

$$\neg(\neg(p \land q) \lor (p \land q)) \lor (p \land q) \equiv (\neg(\neg(p \land q)) \land \neg(p \land q)) \lor (p \land q)$$
 (por De Morgan)

$$(\neg(\neg(p \land q)) \land \neg(p \land q)) \lor (p \land q) \equiv ((p \land q) \land \neg(p \land q)) \lor (p \land q)$$
pues $\neg(\neg r) \equiv r$

 $(p \wedge q) \wedge \neg (p \wedge q)$ es una contradicción, por lo que siempre es falsa. Entonces el valor de $((p \wedge q) \wedge \neg (p \wedge q)) \vee (p \wedge q)$ depende de $(p \wedge q)$.

Podemos concluir entonces que las fórmulas son equivalentes

- $ightharpoonup \neg (p \land (q \land s))$
- $ightharpoonup s
 ightharpoonup (\neg p \lor \neg q)$

Veamos la segunda fórmula

$$(\neg p \lor \neg q) \equiv \neg (p \land q)$$
 (por De Morgan)

$$s \to (\neg p \lor \neg q) \equiv s \to \neg (p \land q)$$

Usando que $r \to t \equiv \neg r \lor t$ tenemos:

$$s \to (\neg p \lor \neg q) \equiv \neg s \lor \neg (p \land q)$$

$$\neg s \lor \neg (p \land q) \equiv \neg (s \land (p \land q)) \text{ (por De Morgan)}$$

$$\neg(s \land (p \land q) \equiv \neg((p \land q) \land s) \text{ (conmutatividad)}$$

$$\neg((p \land q) \land s) \equiv \neg(p \land (q \land s))$$
 (asociatividad)

Podemos concluir entonces que las fórmulas son equivalentes

Veamos la primera fórmula

$$eg(\neg p) \equiv p$$
Además $(\neg p \land \neg q) \equiv \neg (p \lor q)$ (por De Morgan)
 $eg(\neg p) \to (\neg (\neg p \land \neg q)) \equiv p \to \neg (\neg (p \lor q))$

Usando que $r \to t \equiv \neg r \lor t$ tenemos:

$$p \to \neg(\neg(p \lor q)) \equiv \neg p \lor \neg(\neg(p \lor q))$$
Como
$$\neg(\neg(p \lor q)) \equiv (p \lor q) \text{ entonces}$$

$$eg p \lor
eg (
eg (p \lor q)) \equiv
eg p \lor (p \lor q)$$

$$\neg p \lor (p \lor q) \equiv (\neg p \lor p) \lor q \text{ (asociatividad)}$$

 $(\neg p \lor p)$ es una tautología lo cual implica que siempre es verdadera para cualquier valor que tomen las variables p y q. **Entonces...**

Esto podría darnos la idea de que quizás $\neg(\neg p) \rightarrow (\neg(\neg p \land \neg q))$ y q no son equivalentes, dado que

$$\neg(\neg p) \rightarrow (\neg(\neg p \land \neg q)) \equiv (\neg p \lor p) \lor q$$
 es una tautología y q puede que no lo sea.

Para ver que no son equivalentes, mostremos un contraejemplo, dando valores a p y q de manera que el valor de verdad de las fórmulas sea diferente. Supongamos que q tiene valor \mathbf{F} y p \mathbf{T} .

p	q	$\neg p$	$(\neg p \lor p) \lor q$	q
Т	F	F	T	F

Como podemos observar, el valor de verdad para q es falso, mientras que el de $(\neg p \lor p) \lor q$ es verdadero. Podemos concluir entonces que, $\neg(\neg p) \to (\neg(\neg p \land \neg q))$ y q no son equivalentes.

REPASO: RELACIÓN DE FUERZA

Distintas definiciones para relación de fuerza

▶ Una fórmula P es más fuerte que una fórmula Q si y solo si $P \rightarrow Q$ es una tautología

Р	Q	P o Q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- ► Siempre que se cumple *P* se tiene que cumplir *Q*
- ► Las valuaciones que hacen cumplir *Q* incluyen a las que hacen cumplir *P* (son más)

RELACIÓN DE FUERZA EN PROPOSICIONAL

Determinar la relación de fuerza de los siguientes pares de fórmulas

- False y False
- ► False y p
- ightharpoonup p y $(q \rightarrow p)$
- $\blacktriangleright (p \land (p \rightarrow q)) \lor (p \land q)$

RELACIÓN DE FUERZA EN PROPOSCIONAL

► False y False

Sabemos que los dos False tienen el mismo valor de verdad. Además, False \rightarrow False es siempre verdadero, a partir de la tabla de verdad de la implicación. Podemos concluir que los dos False son igual de fuertes y de débiles

► False y p

Para determinar la relación de fuerza en este caso, podemos construir la tabla de verdad para cada fórmula

False	р	False $ ightarrow$ p	$p o extit{False}$
F	Т	Т	F
F	F	Т	Т

Como $\mathit{False} \to \mathit{p}$ es tautología, entonces False es más fuerte que p

RELACIÓN DE FUERZA EN PROPOSICIONAL

ightharpoonup p y $(q \rightarrow p)$

p	q	q o p	p o (q o p)	(q o p) o p
Т	Т	Т	Т	Т
T	F	Т	Т	Т
F	Т	F	Т	Т
F	F	Т	Т	F

Como $p \to (q \to p)$ es una tautología (y $(q \to p) \to p$ no), entonces p es más fuerte que $(q \to p)$

Relación de fuerza en proposicional

$$\blacktriangleright (p \land (p \rightarrow q)) \lor (p \land q)$$

p	q	p o q	$p \wedge (p ightarrow q)$	$(p \wedge q)$
Т	Т	Т	Т	Т
T	F	F	F	F
F	Т	Т	F	F
F	F	Т	F	F

$\mid (p \land (p \rightarrow q) \rightarrow (p \land q))$	$\mid (p \wedge q) ightarrow (p \wedge (p ightarrow q))$
Т	Т
Т	Т
Т	Т
Т	Т

Como ambas implicaciones son tautologías, entonces ambas fórmulas son igual de fuertes (e igual de débiles). Observar que las fórmulas son equivalentes

LÓGICA TRIVALUADA

Determinar los valores de verdad de las siguientes fórmulas sabiendo que el valor de verdad de b y c es verdadero, el de a es falso y el de x e y es indefinido

- $(a \wedge b) \rightarrow (\neg a \vee \neg x)$
- $((c \vee_L y) \wedge_L (a \vee_L b)) \leftrightarrow (c \vee_L (y \wedge_L a) \vee_L b)$

LÓGICA TRIVALUADA

$$(a \wedge b) \rightarrow (\neg a \vee \neg x)$$

Como primera observación no tenemos ningún operador lógico condicional, por lo que debemos evaluar todos los términos. $(a \wedge b)$ evalua a **falso**. $(\neg a \vee \neg x)$ es **indefinido**. Luego, la implicación da **indefinido**.

¿Qué operador/es podríamos modificar para que la fórmula no se indefina?

Tenemos dos opciones: podemos modificar o por o_L o \lor por \lor_L

LÓGICA TRIVALUADA

$$((c \vee_L y) \wedge_L (a \vee_L b)) \leftrightarrow (c \vee_L (y \wedge_L a) \vee_L b)$$

En este caso todo operador lógico es condicional. $(c \lor_L y)$ evalúa a **verdadero**. $(a \lor_L b)$ evalúa a **verdadero**. Luego,

 $((c \lor_L y) \land_L (a \lor_L b))$ evalúa a **verdadero**. Como c es **verdadero**, entonces $(c \lor_L (y \land_L a) \lor_L b)$ es **verdadero** y toda la expresión resulta **verdadera**.

¿ Qué operador/es podríamos modificar para que la fórmula continúe definida?

El primer \land_L por \land , el segundo \lor_L por \lor y los últimos dos operadores \land_L y \lor_L por sus respectivos operadores no condicionales

Cuantificadores

Sean P(x:Z) y Q(x:Z) dos predicados cualquiera, indicar si los enunciados se corresponden con los predicados. Si no se corresponden, corregir el predicado.

Existe un entero menor a 0 que cumple P y Q simultáneamente.

$$(\exists x: Z)(x<0\rightarrow (P(x)\land Q(x)))$$

➤ Si existe algún entero que cumple P, entonces todos los enteros positivos cumplen Q.

$$((\exists x: Z)P(x)) \to (\forall x: Z)(0 < x \land Q(x))$$

Cuantificadores

Existe un entero menor a 0 que cumpla P y Q simultáneamente.

$$(\exists x: Z)(x < 0 \rightarrow (P(x) \land Q(x)))$$

Supongamos que no existe ningún entero negativo que cumpla P y Q. Luego, el predicado debería ser falso. Pero si tomamos un entero x positivo, entonces la implicación $(x < 0 \rightarrow (P(x) \land Q(x)))$ será verdadera, lo que hará que el existencial sea **verdadero** cuando queríamos que fuera falso. Lo correcto sería $(\exists x: Z)(x < 0 \land (P(x) \land Q(x)))$. De esta forma, el predicado solo será verdadero para los enteros positivos que cumplan P y Q.

CUANTIFICADORES

► Si existe algún entero que cumple P, entonces todos los enteros positivos cumplen Q.

$$((\exists x : Z)P(x)) \to (\forall x : Z)(0 < x \land Q(x))$$

Sea y un entero que cumple P. Entonces todos los enteros positivos cumplen Q. Para que el cuantificador $(\forall x:Z)$ sea verdadero, todos los enteros (tanto positivos como negativos), deben satisfacer $(0 < x \land Q(x))$. Entonces, cuando x represente un número negativo, $(0 < x \land Q(x))$ será **falso**, lo cual provoca que $(\forall x:Z)(0 < x \land Q(x))$ también lo sea, obteniendo una implicación falsa.

Lo correcto sería $((\exists x: Z)P(x)) \to (\forall x: Z)(0 < x \to Q(x))$. De esta forma, la segunda implicación es verdadera si el antecedente es falso, solucionando el problema anterior.

Relación de fuerza en primer orden

Sean P(x:Z) y Q(x:Z) dos predicados cualquiera, escribir en LPO los siguientes enunciados e indicar su relación de fuerza

- Existe un entero positivo menor que 5 que cumple P y no cumple Q.
- Todos los enteros positivos cumplen P y no cumplen Q.

Relación de fuerza en primer orden

Existe un entero positivo menor que 5 que cumple P y no cumple Q.

$$(\exists x : Z)(0 < x < 5 \land P(x) \land \neg Q(x))$$

► Todos los enteros positivos cumplen P y no cumplen Q. $(\forall x: Z)(0 < x \rightarrow (P(x) \land \neg Q(x)))$

Relación de fuerza en primer orden

- $(\exists x : Z)(0 < x < 5 \land P(x) \land \neg Q(x))$
- $(\forall x: Z)(0 < x \to (P(x) \land \neg Q(x)))$

Si el primer predicado es **verdadero**, entonces significa que existe un entero positivo menor a 5 que satisface P y no satisface Q. Pero esto no implica que todos los enteros positivos satisfacen P y no satisfacen Q.

Por otro lado, si el segundo predicado es **verdadero**, todo entero positivo satisface P y no satisface Q. En particular hay alguno que es menor a 5, lo cual hace verdadero al primer predicado.

Concluimos entonces que $(\forall x : Z)(0 < x \rightarrow (P(x) \land \neg Q(x)))$ es **más fuerte** que $(\exists x : Z)(0 < x < 5 \land P(x) \land \neg Q(x))$.

¡Manos a la obra!

¡Con esto ya pueden resolver toda la práctica 1!