Phone Data set

Phone data set based on prices, brands, specifications, and price distribution across different brands

Q DataSet

This dataset comprises phone features and prices of popular brands, with every phone. It includes attributes such as phone name, brand, operating system, screen size and resolution, battery capacity and type, RAM, announcement date, weight, storage capacity, and various camera features like 720p, 1080p, 4K, and 8K video capabilities at different frame rates. Finally, it also provides the price of each phone in USD.

PRICE

Adding a new column where we multiplied the amount of usd to the conversion of usd to php to have a column of ph prices

Create a new column Classification that display "price(PHP)" if the value of outcome is price(USD)

In []:	usd_to_php = 55 p_data['price(PHP)'] = p_data['price(USD)'] * usd_to_php p_data										
Out[]:		video_4K	video_8K	video_30fps	video_60fps	video_120fps	video_240fps	video_480fps	video_960fps	price(USD)	price(PHP)
)		False	False	True	False	False	False	False	False	120.000	6600.00
)		False	False	True	False	False	False	False	False	100.000	5500.00

Q Violin Graph

Used a violin plot graph, imported a matplotlib and also seaborn to make the violin plot work...


```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

phones = pd.read_csv('cleaned_all_phones.csv')

plt.figure(figsize=(12, 6))
sns.violinplot(x='brand', y='price(USD)', data=phones)
plt.xticks(rotation=60)
plt.title('Price Distribution Across Different Phone Brands')
plt.show()
```

Price distribution across different phone brands, we will able to analyze what brand have the most increase in its price

DataFrame

Q

Creating a HighRam DataFrame to be able to specify which phones have ram that exceeds or equal to 15

Create a new dataframe "HighRam" that gathers data with ram(GB) greater than or equal to 15

In []:	<pre>p_data = pd.DataFrame(p_data) HighRam = p_data[p_data['ram(GB)'] >= 15].copy()</pre>												
	HighRam												
Out[]:		phone_name	brand	os	inches	resolution	mAh	battery_type	ram(GB)	announcement_date	weight(g)		video_
	468	Galaxy S20 Ultra	Samsung	Android 10	6.90	1440x3200	5000	Li-lon	16	2020-02-11	220.0	***	Tr
	470	Galaxy S20 Ultra 5G	Samsung	Android 10	6.90	1440x3200	5000	Li-lon	16	2020-02-11	222.0	111	Tr
	212	rada p	1	Android	c c=	1000.0010	FAAA	(: n_	4.5	0.000.07.00	222.5		T

Display the total records of High ram phones

```
print("total records of High ram(GB)phone: ", len(HighRam))
total records of High ram(GB)phone: 35
```

Display all the mid range phones available in the data set in php

Displaying the total high ram and mid range phones prices.

Q

Use numpy to get the average of inch and prices of phones

```
m_usd = np.mean(p_data['price(USD)'])
m_php = np.mean(p_data['price(PHP)'])
m_inch = np.mean(p_data['inches'])

print("Average prices of phone in USD: ${:.2f}".format(m_usd))
print("Average prices of phone in PHP: P{:.2f}".format(m_php))
print("Average inch of phone in the dataset: {:.2f}".format(m_inch))
Average prices of phone in USD: $337.85
```

Average prices of phone in USD: \$337.85 Average prices of phone in PHP: \$18581.59 Average inch of phone in the dataset: 6.42 Q

Use numpy to get the Median inches and prices of phone.

```
m_usd = np.median(p_data['price(USD)'])
m_php = np.median(p_data['price(PHP)'])
m_inch = np.median(p_data['inches'])

print("Median prices of phone in USD: ${:.2f}".format(m_usd))
print("Median prices of phone in PHP: P{:.2f}".format(m_php))
print("Median inch of phone in the dataset: {:.2f}".format(m_inch))
Median prices of phone in USD: $260.00
Median prices of phone in PHP: P14300.00
Median inch of phone in the dataset: 6.50
```

STANDARD O DEVIATION

Use numpy to get the standard deviation of the phone prices.

```
std_usd = np.std(p_data['price(USD)'])
std_php = np.std(p_data['price(PHP)'])

print("standard deviation prices of phone in USD: ${:.2f}".format(std_usd))
print("standard deviation prices of phone in PHP: P{:.2f}".format(std_php))

standard deviation prices of phone in USD: $266.65
standard deviation prices of phone in PHP: P14665.89
```