Decision Tree

Decision Tree

- each internal node denotes a test on an attribute
- each branch represents an outcome of the test
- each leaf node holds a class label

Prediction

• given a new (unseen) tuple: the associated class is unknown

- test the attribute values of the tuple against the decision tree
 - start from the root and trace a path to a leaf node (top-down), based on the attribute values of the tuple
- the class value included in this leaf is assigned to the tuple

Building a Decision Tree

- there are several popular decision tree algorithms, including ID3, C4.5 and CART
- we will describe a general greedy framework followed by the majority of the algorithms
- next, we will discuss some components of this framework (which essentially differentiate the various algorithms) in more detail, as well as some other additional issues on decision tree induction

General Algorithm Decision_Tree_Induction

top-down and recursive

Input

- ullet node N
 - ullet the first time the algorithm is called, N is the root of the tree
- dataset D of training tuples
 - initially the entire training set
- attribute list: holds the set of attributes
 - initially the attributes that remained after data preprocessing
- attribute_selection_method: a heuristic process for selecting the attribute that "best" discriminates the given tuples according to class

output

decision tree

Example

RID	age	income	student	credit_rating	class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Steps

Step 1

- ullet associate node N with dataset D
- trivial; meant to emphasize that each decision tree node represents a subset of the original (entire) training set

Step 2

 end this process if one of the terminating conditions is satisfied (will be discussed soon)

Step 1

The algorithm is called with the initial single root node N, the entire training set as D, {age, income, student, credit_rating} as the attribute_list, and a certain attribute_selection_method

Step 2

No terminating condition is satisfied yet

Step 3

Call attribute_selection_method

- • use a splitting criterion to select an attribute to $\underline{\text{test}}$ at node N
 - try to "best" $\underline{\text{partition}}\ D$ into subsets, such that each subset is as "pure" as $\underline{\text{possible}}$
 - a subset of D is pure, if it contains tuples belonging to the same class
- this test will result in creating new nodes (as children of N), each of which representing a subset of D

Step 4

- a branch for each of the outcomes of the splitting criterion
- ullet a new node N_i is created for each branch i
- if the number of new nodes is m, D is partitioned accordingly into m subsets D_1, D_2, \ldots, D_m
 - ullet each D_i contains the tuples that satisfy the splitting criterion outcome of branch i

Example...

Step 3

Suppose that the age is selected as the splitting attribute by the attribute_selection_method

Step 4

Three branches and children are created for N

Also D is partitioned into three datasets D_1, D_2 and D_3 according to the age attribute values of the tuples

Step 5

The algorithm is recursively called for $(N_1, D_1), (N_2, D_2)$ and (N_3, D_3) , after removing age from attribute list

The tuples in D_1 , D_2 and D_3 are of the form <income, student, credit_rating, class>

Step 5

- remove the splitting attribute A from attribute_list
- call $Decision_Tree_Induction(N_i, D_i, attribute_list, attribute_selection_method)$ recursively for every newly created (N_i, D_i) pair

Terminating Conditions

- $oldsymbol{0}$ all of the tuples in partition D belong to the same class
 - ullet in this case, N becomes a leaf and is labeled with that class

- ② there are no remaining attributes in $attribute_list$ to help partitioning the tuples of D further
 - ullet N becomes a leaf and is labeled with the majority class in D
- \odot D is empty
 - $\bullet \ N$ becomes a leaf and is labeled with the majority class of its parent's dataset

Attribute Selection Measures

- ideally, the best splitting criterion is the one that decomposes D into subsets having only tuples of a single class (these subsets are called pure)
- since it may not be always possible to select a splitting criterion that derives only pure subsets, the attribute selection measure provides a ranking for each attribute
- the attribute with the best score is selected as the splitting attribute
- we will study three attribute selection measures
 - Information Gain (used in ID3)
 - Gain Ratio (used in C4.5)
 - Gini Index (used in CART)

Which Attribute is Best?

Example

I am thinking of an integer between 1 and 1,000 – what is it? What is the first question you would ask?

- "Is it 752?", or
- "Is it a prime number between 123 and 239?", or
- "Is it between 1 and 500?"

Which answer provides the most information?

Idea

Want attributes that split examples into sets that are relatively pure in one label

How close is a set of instances to having just one label?

Entropy: Intuitive Notion

- measures the impurity, uncertainty, irregularity, surprise
- suppose we have two discrete classes (in general, can have > 2)
 - D: a sample of training examples
 - ullet p_{\oplus} : proportion of positive examples in D
 - p_{\ominus} : proportion of negative examples in D
- optimal purity (impurity/uncertainty= 0): either
 - $p_{\oplus} = 1, p_{\ominus} = 0$
 - $p_{\oplus} = 0, p_{\ominus} = 1$
- least pure (maximum impurity/uncertainty):
 - $p_{\oplus} = 0.5, p_{\ominus} = 0.5$

Entropy: Definition

$$Entropy(D) \equiv -p_{\oplus} \log_b p_{\oplus} - p_{\ominus} \log_b p_{\ominus}$$

• if $p_{\oplus}=0$, take $p_{\oplus}\log_b p_{\oplus}=0$

What units is entropy measured in?

Depends on the base b of the log

- b = e: nats
- b = 2: bits (adopted here)

Example

Entropy of a fair coin = 1 bit

Example

D is a collection of 14 examples, 9 positive and 5 negative

Entropy([9+,5-]) = $-\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14} = 0.94$

Properties

All members of D belong to the same class

ullet \rightarrow entropy= 0

D has an equal number of + ve and -ve examples

ullet ightarrow entropy= 1

Otherwise, entropy is between 0 and 1

In general, if the target attribute can take on m different values

$$Entropy(D) = \sum_{i=1}^{m} -p_i \log_2 p_i$$

• entropy is between 0 and $\log_2 m$

Information Gain

What is the uncertainty removed by splitting on the value of A?

Definition

The information gain of D relative to attribute A is the expected reduction in entropy caused by knowing the value of A

ullet D_v : the set of examples in D where attribute A has value v

$$Gain(D, A) \equiv Entropy(D) - \sum_{v \in Values(A)} \frac{|D_v|}{|D|} Entropy(D_v)$$

Example

RID	age	income	student	credit_rating	class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

• entropy(D) = 0.940

we have to compute Gain(A) for every attribute A

Example

• let us first focus on A = age

$$\begin{array}{rcl} entropy(D_{\mathsf{youth}}) & = & -\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5} \\ entropy(D_{\mathsf{middle_aged}}) & = & -\frac{4}{4}\log_2\frac{4}{4} \\ entropy(D_{\mathsf{senior}}) & = & -\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5} \end{array}$$

weighted average
$$= \frac{5}{14} \times entropy(D_{\text{youth}}) + \frac{4}{14} \times entropy(D_{\text{middle_aged}})$$

$$+ \frac{5}{14} \times entropy(D_{\text{senior}})$$

$$= 0.694 \text{ bits}$$

- information gain for age: Gain(D, age) = 0.940 0.694 = 0.246 bits
- Similarly, Gain(D,income)=0.029, $Gain(D,student)=0.151, \ {\rm and}$ $Gain(D,credit_rating)=0.048$

Continuous-Valued Attributes

Example

Temperature:404860728090PlayTennis:NoNoYesYesNo

Discretize the continuous-valued attributes

ullet Create a boolean attribute A_c that is true if A < c and false otherwise

How to pick the threshold c?

Continuous-Valued Attributes

Example

Temperature: 40 48 60 72 80 90 PlayTennis: No No Yes Yes Yes No

- sort the attribute values in the training set $(\{v_1, v_2, \dots, v_m\})$
- generate a set of candidate thresholds midway between these values
 - cut at 44, 54, 66, 76, 85
 - there are thus m-1 candidate thresholds
- evaluate these candidate thresholds by the information gain

Example

Example

Temperature: 40 48 60 72 80 90 PlayTennis: No No Yes Yes Yes No

```
6 items, total weight 6.0
Att A1

Cut at 44.000 (gain 0.191):
Cut at 54.000 (gain 0.459):
Cut at 66.000 (gain 0.082):
Cut at 76.000 (gain 0.000):
Cut at 85.000 (gain 0.191):
```

Best cut: 54.000

Attribute Selection Measures: Gain Ratio

Example

 if we try to split according to a unique identifier (e.g., product_id)

- there will be as many partitions as the number of tuples, and each partition will have a single tuple
- entropy after splitting = 0, which means that the gain is maximized, and product_id is chosen as the splitting criterion
- obviously, such a partitioning is useless for classification

Information gain is biased towards tests with many outcomes 26/39

Gain Ratio

- gain ratio is an extension of information gain, where a large number of partitions is penalized
- penalty should be
 - large when data is evenly spread
 - small when all data belong to one branch
- first compute $SplitInfo_A(D)$, which measures the entropy of the partitioning according to the v distinct values of A:

$$SplitInfo_A(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \log_2 \frac{|D_j|}{|D|}$$

gain ratio is:

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo_A(D)}$$

• we select as the splitting criterion the A that leads to the highest GainRatio(A) value

Example

RID	age	income	student	credit-rating	class:buy_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle-aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle-aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle-aged	medium	no	excellent	yes
13	middle-aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Using attribute income

1st partition (low) D1 has 4 tuples 2nd partition (medium) D2 has 6 tuples 3rd partition (high) D3 has 4 tuples

$$Gain(income) = 0.029$$

$$GainRatio(income) = \frac{0.029}{0.926} = 0.031$$

SplitInfo
$$_{income}$$
 $(D) = -\frac{4}{14} \log_{2}(\frac{4}{14}) - \frac{6}{14} \log_{2}(\frac{6}{14}) - \frac{4}{14} \log_{2}(\frac{4}{14})$
= 0.926

Attribute Selection Measures: Gini Index

- suppose that the class attribute of D has m distinct class values C_1, C_2, \ldots, C_m
- |D|: cardinality of D, $|C_i|$: number of tuples in D having class label C_i
- ullet probability p_i that a tuple of D belongs to class $C_i:|C_i|/|D|$
- Gini index

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$

ullet Gini(D) is small if most of the tuples belong to a few classes

Gini Index...

• if data set D is split on A into two subsets D_1 and D_2 , the gini index is defined as

$$gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$$

reduction in impurity

$$\Delta gini(A) = gini(D) - gini_A(D)$$

 \bullet select as the splitting criterion the A that leads to the highest $\Delta gini(A)$ value

Example: PlayTennis

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Over-fitting in Decision Trees

Tree output

```
A1 = overcast: + (4.0)

A1 = sunny:

| A3 = high: - (3.0)

| A3 = normal: + (2.0)

A1 = rain:

| A4 = weak: + (3.0)

| A4 = strong: - (2.0)
```

Over-fitting in Decision Trees

Example

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

```
A1 = overcast: + (4.0)
                               A1 = sunny:
A1 = overcast: + (4.0)
                                   A2 = hot: -(3.0)
A1 = sunny:
                                   A2 = cold: + (1.0)
   A3 = high: -(3.0)
                                 A2 = mild:
   A3 = normal: + (2.0)
                                 | A3 = high: -(1.0)
A1 = rain:
                                      A3 = normal: + (1.0)
  A4 = weak: + (3.0)
                               A1 = rain:
  A4 = strong: -(2.0)
                                   A4 = weak: + (3.0)
                                   A4 = strong: -(2.0)
```

- more complex than the original tree
- fits the noisy data better than the old tree

Overfitting

 special anomalies of the training set may have been incorporated in the tree

- may further affect the accuracy of the tree on the <u>test set</u> (i.e., during prediction)
- sometimes smaller trees are preferable because of their interpretability

Tackling Overfitting

- early-stopping
- pruning

Early-Stopping

- add extra terminating conditions at <u>Step 2</u> of the decision tree induction algorithm
 - stop if the number of tuples is fewer than some user-specified threshold
- may be difficult to choose an appropriate threshold

Pruning

• grow the whole tree, then prune

How to prune a decision node?

- remove the subtree rooted at that node
- make it a leaf node

The leaves that are left may not necessarily be pure

 assign it the most common classification of the training examples affiliated with that node

Pruning...

The pruned tree usually misclassifies more training examples than the unpruned tree

When to stop pruning?

- uses a validation set
- stop if the pruned tree performs worse than the original on the validation set

Which node to prune?

- remove the one that most improves validation set accuracy
- greedy approach

Pruning Algorithm

Reduced-error pruning

Do until further pruning is harmful:

- Evaluate impact on validation set of pruning each possible node
- ② Greedily remove the one that most improves validation set accuracy