"MODELOS DE PROPAGACIÓN"

Trabajo Preparatorio N°3 Laboratorio de Comunicaciones Inalámbricas

> Melanny Cecibel Dávila Pazmiño Ingeniería en Telecomunicaciones Facultad de Eléctrica y Electrónica Quito, Ecuador melanny.davila@epn.edu.ec

Abstract—En el siguiente preparatorio se abordaran algunos de los modelos de propagación revisados en clase por medio del diferentes simulacione en MatLab para su posterior análisis y comparación entre modelos.

Index Terms-MatLab, modelo de propagación, FS, LN, HA.

I. Introducción

Con el fin de analizar las pérdidas multitrayecto tiene un canal inalámbrico es importante usar modelos de propagación siempre y cuando se hable de desvanecimiento a gran escala. Un modelo de propagación es un conjunto de expresiones matemáticas, diagramas y algoritmos usados para representar las características de un ambiente dado.

Generalmente los modelos de predicción se pueden clasificar en empíricos o estadísticos, teóricos o determinísticos o una combinación de estos dos, es decir semi-empíricos.

II. OBJETIVOS

- Familiarizar al estudiante con los modelos de propagación.
- Calcular en MATLAB las pérdidas por trayectoria en un canal inalámbrico haciendo uso de tres modelos de propagación.

III. CUESTIONARIO

A. Se solicita implementar tres funciones en MATLAB para calcular las pérdidas por trayecto (path loss-PL) correspondientes a cada uno de los modelos que se lista a continuación:

Como primer paso, se realizó un menú principal con el fin de que las funciones implementadas sean más amistosas con el usuario.

```
clc, clear all, close all
 disp('Seleccione el numero del modelo con el que desea trabajar:')
 disp('1. Free space path loss model')
 disp('2. Log-normal path loss model')
 disp('3. Hata model')
 disp('4. Salir\n');
 opcion = input('Opcion: ');
□ while opcion ~= 4
     switch opcion
         case 1
             d = input('Ingrese la distancia en [m]: ');
             f = input('Ingrese la frecuencia en [MHz]: ');
             perdidas = fs(d, f);
             fprintf("Las perdidas por trayecto son: %.2f [dB]\n", perdidas)
         case 2
            d = input('Ingrese la distancia en [m]: ');
             f = input('Ingrese la frecuencia en [MHz]: ');
             d O = input('Ingrese d O [m]: ');
             n = input('Ingrese el n: ');
             perdidas = ln(d, f, n, d_0);
             fprintf("Las perdidas por trayecto son: %.2f [dB]\n", perdidas)
         case 3
             d = input('Ingrese la distancia en [m]: ');
```

Fig. 1. Primera parte del menú

```
d = input('Ingrese la distancia en [m]: ');
       f = input('Ingrese la frecuencia en [MHz]: ');
       h tx = input('Ingrese la altura del transmisor [m]: ');
       h rx = input('Ingrese la altura del receptor [m]: ');
       disp('Seleccione el tamano de la cobertura')
       disp('1. Pequeno')
       disp('2. Mediano')
       disp('3. Grande')
       cobertura = input('Ingrese la opcion: ');
       disp('Seleccione el area de trabajo')
       disp('1. Urbana')
       disp('2. Suburbana')
       disp('3. Abierta')
        area = input('Ingrese la opcion: ');
       perdidas = ha(d, f, h tx, h rx, cobertura, area);
        fprintf("Las perdidas por trayecto son: %.2f [dB]\n", perdidas)
disp('Seleccione el numero del modelo con el que desea trabajar:')
disp('1. Free space path loss model')
disp('2. Log-normal path loss model')
disp('3. Hata model')
disp('4. Salir\n');
opcion = input('Opcion: ');
```

Fig. 2. Segunda parte del menú

Función 1: Free-space path loss model (FS).- Deberá devolver las pérdidas por trayecto en dB. La función debe recibir la distancia en metros y la frecuencia en MHz. Considerar que $G_t=G_r=1$.

Las siguientes líneas de código permiten implementar el modelo Free-space path loss en una función de MatLab, la misma que recibe dos parámetros: distancia y frecuencia.

```
function [loss] = fs(d,f)
%La funcion considera la frecuencia en
lambda = 3e8/(f*1e6);
loss = 20*log10(4*pi*d/lambda);
end
```

Fig. 3. Modelo FS

Función 2: Log-normal path loss model (LN).- Deberá devolver las pérdidas por trayecto en dB. La función debe recibir la distancia en metros y la frecuencia en MHz. Recuerde que puede hacer uso de la función 1 para calcular las pérdidas de una determinada distancia d_0 .

En la figura 4, se presenta una función que describe el modelo Log-normal; los parámetros que esta función debe recibir son: distancia, frecuencia, n, d_0 .

```
function [loss] = ln(d,f,n, d_0)

loss = fs(d_0,f) + 10*n*log10(d/d_0);

end
```

Fig. 4. Modelo LN

Función 3: Hata model (HA).- Deberá devolver las pérdidas por trayecto en dB dependiendo del área escogida (por ejemplo, urbana, suburbana y abierta) y de la cobertura. La función debe recibir la distancia en metros y la frecuencia en MHz.

Finalmente, para la implementación de este modelo, se realizó una función mucho más extensa en comparación a las anteriores, debido a que se debe analizar el tipo de área y la cobertura en la cual se esta trabajando.

```
function [Loss] = ha(d, f, h tx, h rx, cobertura, area)
while a == 0
     if cobertura == 1 || cobertura == 2 %pequeno o mediano
    c_rx = 0.8 + (1.1*log10(f*1e6) - 0.7 )*h_rx - 1.56*log10(f*1e6);
     elseif cobertura == 3 %grande
         if f >= 150 && f<=200
         c_rx = 8.29*(log10(1.54*h_rx))^2 - 1.1;
elseif f >= 200 && f<=1.5e3
         c_rx = 3.2*(log10(11.75*h_rx))^2 - 4.97;
             disp('Frecuencia incorrecta')
         end
         disp('Opcion incorrecta')
a = 0;
     disp(c_rx)
         elseif area == 2 %suburbano

Loss = ha(d, f, h_tx, h_rx, cobertura, 1) - 2*(log10(f/28))^2 - 54;
         Loss = ha(d, f, h_tx, h_rx, cobertura, 1) - 4.78*(log10(f))^2 + 18.33*log10(f) - 40.97;
         disp('Opcion incorrecta')
     end
```

Fig. 5. Modelo HA

B. Probar las funciones del literal A con los siguientes parámetros de entrada:

Función 1: distancia = 500 metros, frecuencia = 900 MHz

Resultado obtenido al utilizar la función mostrada en la figura 3:

```
Seleccione el numero del modelo con el que desea trabajar:

1. Free space path loss model

2. Log-normal path loss model

3. Hata model

4. Salir\n

Opcion: 1

Ingrese la distancia en [m]: 500

Ingrese la frecuencia en [MHz]: 900

Las perdidas por trayecto son: 85.51 [dB]
```

Fig. 6. Modelo FS resultado

Función 2: distancia = 500 metros, frecuencia = 900 MHz, $d_0 = 1$ metro, n = 3.

Por medio de la función 2, figura 4, se obtuvieron los siguientes resultados:

```
    Free space path loss model
    Log-normal path loss model
    Hata model
    Salir\n
    Opcion: 1
    Ingrese la distancia en [m]: 500
    Ingrese la frecuencia en [MHz]: 900
    Las perdidas por trayecto son: 85.51 [dB]
```

Seleccione el numero del modelo con el que desea trabajar:

Fig. 7. Modelo LN resultado

Función 3: distancia = 100 metros, frecuencia = 900 MHz, $h_{TX} = 50$ metros, $h_{RX} = 2$ metros, cobertura = grande, área= urbana.

En base a la función mostrada en la figura 5, se obtuvieron los sigueintes resultados con los parámetros solicitados.

```
Opcion: 3
Ingrese la distancia en [m]: 100
Ingrese la frecuencia en [MHz]: 900
Ingrese la altura del transmisor [m]: 50
Ingrese la altura del receptor [m]: 2
Seleccione el tamano de la cobertura
1. Pequeno
2. Mediano
3. Grande
Ingrese la opcion: 3
Seleccione el area de trabajo
1. Urbana
2. Suburbana
3. Abierta
Ingrese la opcion: 1
    1.0454
Las perdidas por trayecto son: 189.85 [dB]
```

Fig. 8. Modelo HA resultado

REFERENCES

- [1] Hata, M., (1980) 'Empirical formula for propagation loss in land mobile radio services', IEEE Trans. Veh. Technol., vol. 29, pp. 317–325.
- [2] T. Abbas, K. Sjöberg, J. Karedal, y F. Tufvesson, "A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations", International Journal of Antennas and Propagation, vol. 2015, pp. 1-12, 2015, doi: 10.1155/2015/190607.
- [3] Jazmín Ponce-Rojas, Sergio Vidal-Beltrán, Iván Zamudio-Castro, Federico Felipe Durán." Coverage Maps of 3G Cellular Networks using Geographic Information Systems". Research In Computing Science, Advances in Computer Science and Electronic Systems, Vol. 52, 2011, pp. 297-307
- [4] Levent Sevgi, "Simple Propagation Models and Ray Solutions," in Electromagnetic Modeling and Simulation, IEEE, 2014, pp.319-352, doi: 10.1002/9781118716410.ch12.