I created the unit plan with AI assisting me with idea generation.

Introduction

The Sustainable Product Design unit I have created is aimed at Year 11 students who attend Chatswood High School, which is in Chatswood, NSW. I have designed this unit to span over a period of 10 weeks, which will provide students an in-depth understanding of sustainable design principles. This unit has been designed to highly develop students' critical thinking, creative design, and collaborative problem-solving skills. By the end of the unit, students will have gained knowledge and practical experience in the design process, which will have a focus on sustainability, material selection, prototyping, and refining designs which will be based on user feedback.

The unit that I have created is aligned with the NSW Design and Technology Stage 6 Syllabus and includes key outcomes such as the evaluation of design solutions, the use of creative problem-solving techniques, and the application of knowledge on sustainable practices. This unit has been developed to not only meet the HSC requirements but to also help students prepare and adapt for real-world challenges in relation to design. Students will be exploring how a variety of design decisions can impact the environment, economy, and society. This approach that has been taken, holds an emphasis on higher-order thinking by implementing Bloom's Taxonomy into all tasks, which ensures that students will engage in tasks that require remembering, understanding, evaluating, and creating.

An important part of this unit is the implementation of the use of AI tools such as ChatGPT. AI has grown significantly in the last few years, so it was integral to include activities that students will connect with and understand how these tools can be used in appropriate ways. Chat GPT has been utilised in activities in this unit to assist with researching sustainable materials and for generating ideas. The tools will ultimately help students think innovatively and use technology responsibly. The unit has been developed to scaffold students' learning, which involves a focus on sequencing lessons to gradually build students' knowledge and skills. This also includes the differentiation provided to support students with a range of diverse learning needs. This will ensure that every student can engage with each part of the unit content at their own level.

Reflection

The development process for the Sustainable Product Design unit for year 11 students studying at Chatswood High School has incorporated purposeful decisions in relation to the pedagogy, curriculum alignment, and student differentiation. The choices that were made were ultimately chosen by the need to foster higher-order thinking skills, ensuring that student engagement was effective, and the unit aligns with best-practice pedagogy as well as the NSW Design and Technology Stage 6 Syllabus. In this reflection I will be critically examining the various pedagogical strategies that I have incorporated into the unit, as well as learning theories, educational frameworks, and curriculum standard that will explain and justify my decisions.

The scaffolding and sequencing used with in this unit were critical regarding building students' knowledge in a progressive manner. It also ensured that the learning that was taking place in this unit was both comprehensive and engaging. According to Bruner's Theory of Scaffolding, effective learning requires a structure where students are able to build on existing knowledge, then advancing to more complex ideas with appropriate support (Bruner, 1960). In relation to the designed unit, the first few weeks have been created to provide students with a foundational understanding of sustainable design principles, which includes the environmental, social, and economical impacts of design. Once students have built upon their understanding on these topics, the unit will then move into more practical learning, which includes material research, prototyping, and user feedback integration.

I have incorporated Bloom's Taxonomy (Wilson, 2016) within this unit as it was central in structuring a gradual progression of learning. The early weeks of the unit held a focus on remembering and understanding key concepts of sustainability. Later weeks included students moving to more hand-on tasks, which had a shift towards analysing, evaluating, and creating design solutions. This structure was essential to ensure that students were continuously building on their cognitive skills and progressed towards higher-order thinking. An example is when students were researching sustainable materials in week 2, they initially remembered the types of materials that they could use, they then understood the environmental impacts before they moved to creating their prototypes that incorporated sustainable materials.

The teaching and learning strategies that were used within this unit weer chosen to align with the NSW Design and Technology Stage 6 Syllabus, which ensured that students were able to develop key skills, which include creativity, collaboration, and problem-solving,

which are all essential components around design (NSW Education Standards Authority, 2017). To allow for active learning in this unit, I have incorporated a mix of direct instruction, inquiry-based learning, and collaborative learning. The use of all these methods is supported by the constructivist pedagogy, which mentions that learning is most effective when students have the ability to actively engage with content through hands-on activities and real-world problem-solving (Piaget, 1976; Vygotsky, 1978).

An example of this is in week 3 when students used user-centred design principles to create user personas and gain feedback on their product ideas. This activity in the unit required all students to participate in collaborative learning with their class peers which allowed students t to apply theoretical knowledge to practical scenarios. The technique of peer collaboration is in line with Vygotsky's theory of social learning, which has a large emphasis on the role of interaction and feedback in cognitive development (Vygotsky, 1978). Inquiry-based learning has also been incorporated into the unit, when students are required to research sustainable materials and generate product ideas with the assistance of Chat GPT, which fosters a problem-solving mindset (Bransford et al. 2000).

The unit incorporates both formative and summative assessments. Formative assessments, which include peer review and self-assessments, were designed for students to obtain on ging feedback and ultimately help students in the process of monitoring their progress. The summative assessment comes at the end of the unit, which includes students presenting their final prototypes, the evaluation of their designs, and reflecting on how they incorporated sustainability into their designs and process. This approach fits into (Wiggins & McTighe, 2005) framework of Understanding by Design, which holds an emphasis on the importance of backward design, by starting with the end goal such as the final presentation and aligning assessments with those outcomes.

An integral part of this unit was to develop students' literacy, numeracy, and digital capabilities, due to these areas being essential for the success both in the HSC and in future careers. In connection with Bandura's Social Cognitive Theory (1986), students' learning was scaffolded by explicitly teaching students the necessary vocabulary and literacy skills for discussing various design concepts, that include material properties and sustainability. It is these concepts that were reinforced through the means of written reflections and project documentation, which requires students to justify and unpack their design decisions in both verbal and written forms.

Numeracy has been developed in this unit through the analysis of material costs, environmental impact assessments, and the quantitative aspects in the prototyping phase. The method of calculating cost-benefit analysis and evaluating material properties, enables students to apply numerical reasonings to their design choices. This method also aligns with (Fisher & Frey, 2014) emphasis on

the integration of numeracy in the curriculum that ultimately ensures that students are prepared to participate in problem solving tasks and activities.

Digital capabilities were exposed to students with the use of various CAD tools and AI resources as well as their presentation preparation and research programs and tools. The digital tools that were used allowed students to model their designs in a digital format, research sustainable materials, and create and document resources for their presentation. The integration of these digital tools was essential to prepare students for real-world application, especially in the digital workforce, which aligns with Bennett and Maton's (Bennett & Maton, 2010) research that investigates the importance of digital literacy in modern education. By incorporating the use of AI and other modern tools into the classroom, this helps students generate design ideas, research sustainable materials, and ultimately allows students to develop their critical thinking and problem-solving skills.

The use of differentiation was an essential focus in the development of the unit, which ensured that all students, regardless of ability or background, could access the content and succeed in an equitable way. The unit that was developed utilises a universal design for learning (ULD) approach, which has an emphasis on providing multiple means of engagement, representation, and expression to ultimately cater towards students with diverse learning needs (CAST, 2011). An example of this in the unit is that EAL/D students were provided with visual aids, simplified language, and additional time and support for tasks and activities. Peer collaboration was implemented and played a key role in supporting EAL/D students, as it allowed for mutual support and created a space of understanding through social interaction.

Students that have learning challenges, were provided with scaffolding which included a step-by-step guide for Fusion360 (CAD tool) and a simplifies rubric for help with assessing their prototypes. The approach mentioned aligns with (Tomlinson, 2001) principles of differentiated instruction, where ethe use of content, process, and product are adjusted to ultimately meet students' diverse needs. This was also seen with advanced students, who were encouraged to complete additional work or conduct more research to help develop their skills in the variety of areas that were covered in this unit.

The pedagogical decisions that were made in this unit were integrated to align with well-established educational theories and practices that promote active learning, higher-order thinking, and critical problem-solving. The incorporation of constructivist principles, Bloom's Taxonomy, and the universal design for learning, have all contributed to a unit that covers a wide range of student diverse needs while

also making sure that all students are taking part in meaningful and challenging activities and tasks. This unit has a focus on sustainability, which not only supports the curriculum requirements but also provides students with a deeper awareness of the impacts of design decisions on the environment, society, and economy. It is through these pedagogical strategies that I hope to provide students with the required skills to succeed tin the HSC and in their futures, for the vast areas in design, technology, and sustainability.

Unit Plan

Subject: Design and Technology

Summary

This unit explores the principles of sustainable product design, which will have a focus on environmental responsibility, resource management, and user-centred design. In this unit students will research sustainable materials, create prototypes of a product, and finally present their research and findings, which will demonstrate the students understanding of sustainable practices within design. The unit has a summative assignment which includes a final project where students' will be presenting to the class their designs and prototypes, which will demonstrate the students' understanding of sustainable practices.

Unit background information

This unit has been created in line with the **NSW Design and Technology Stage 6 Preliminary Syllabus** and has been designed to help students develop a vast understanding of sustainable practices in design. This unit covers fundamental processes within design, user centred approaches, research in sustainable materials, and techniques of prototyping. This unit will allow students to explore the social, environmental, and economic impacts that design decisions can make. This unit has been

School

Chatswood High School

Location

Chatswood, NSW

Duration

10 Weeks (Term 1)

Year Level

Year 11

Resources overview

Classroom resources:

- Students: BYOD (Bring Your Own Device), stationary, workbooks, prototyping tools and materials, sketchbook.
- Teacher: Laptop/Computer, projector/smart board, Google classroom, internet, prototyping tools and materials.

Digital resources:

- Google Classroom, Padlet, ClickView, YouTube, Google Forms, Google Slides, Kahoot.

developed for students to understand future challenge	es they may
face, in an environmentally conscious world by incorp	orating
technology, creativity and sustainability.	

- Al design tools (ChatGPT), research databases, Adobe Illustrator, Fusion360 (CAD software for designing), lifecycle assessment tools.

Physical Resources:

- Sustainable materials (recyclable materials, prototyping supplies).
- Safety equipment (PPE Safety glasses, aprons).
- Prototyping tools (cutters, saws, hot glue guns).

Outcomes

- P1.1 examines design theory and practice and considers the factors affecting designing and producing in design projects.
- P2.1 identifies design and production processes in domestic, community, industrial and commercial settings.
- P2.2 explains the impact of a range of design and technology activities on the individual, society and the environment through the development of projects.
- P4.1 uses design processes in the development and production of design solutions to meet identified needs and opportunities.
- P4.3 evaluates the processes and outcomes of designing and producing.
- P5.1 uses a variety of management techniques and tools to develop design projects.
- P5.2 communicates ideas and solutions using a range of techniques.
- P5.3 uses a variety of research methods to inform the development and modification of design ideas.
- P6.2 evaluates and uses computer-based technologies in designing and producing

Vocabulary

- Sustainability
- User-Centred Design
- Prototyping
- CAD (Computer-Aided Design)
- Functionality
- Lifecycle Assessment

Assessment Task

The assessment task for this unit involves students designing, creating and presentation a sustainable prototype. The assessment task for this unit will be split into two components:

- Prototype development:
 - Students will be creating a functional prototype of a product of their choice, that will include sustainable design principles. Students will need to choose materials that are appropriate, apply various user-centred design concepts, and adapt CAD software and sketching to help with the design process. It is essential that students must include sustainability efforts, which can include using recycled or biodegradable products, and then needing to address the environmental, social, and economic impacts of their product.
- Final presentation:
 - Students will then present their prototype and findings to the class, which will include students explaining the design process, the variety of sustainability principles they used. Students' presentation should include a variety of visuals, such as photos, sketches and diagrams, include a demonstration of the functionality of the product, and have an explanation of where they used user feedback to adjust their design. After the student's presentation there will be a class discussion and Q&A which will question the student about their design choices and sustainability considerations.

Assessment Criteria:

- Functionality and usability of the prototype.
- The extent of sustainability practices is integrated in the design process.
- Clarity and coherence of the presentation.
- The reflection on design decisions and to ability to integrate user feedback into the product.

Formative assessments are carried out weekly through feedback from both peers and the teacher and reflections. Formative assessments throughout the unit, assist with the summative assessment with the prototype and presentation.

Weekly content organisation

Week	Learning Outcomes	Topic Focus and Brief Description
1	P1.1, P2.2	Introduction to Sustainable Design
		Week 1 will include an introduction to sustainability, and it will be connected to its
		relevance in design. Students in week 1 will discuss a variety of key principles and will

		explore and identify different examples of sustainable design, through research and
		physical products.
2	P2.1, P4.1	Research and Ideation
		Week 2 will involve students researching a variety of sustainable materials which include biodegradable plastics and recycled materials etc., and the materials application in
		product design. Students will be thinking of ideas for their sustainable products. Students
		will also be considering different materials choices and they feasibility aspects. This
		week's theme will be the starting blocks for the ideation and conceptualisation for the
		product that the students will be designing.
3	P1.1, P4.1, P5.3	User-Centred Design
		Week 3 will have a focus on understanding the needs of the user in regard to sustainable
		design. Students will be creating user personas that will represent a variety of
		demographics and will be conducting interviews to gain feedback on initial design
		products. By students following this approach, this will ensure that the product design will
		meet the users' needs while also considering and aligning with sustainable practices.
4	P4.1, P6.1, P5,2	Concept Development
		In week 4 students will start the process of transforming their own ideas into tangible
		design concepts. Students will then create virtual models using CAD software (SketchUp)
		and draw out sketches. This week will also include peer feedback from classmates.
		Students will need to present their initial concepts to the class and receive constructive
		criticism for ways that they can improve and refine their designs.
5	P2.1, P4.3, P5.3	Material Selection and Feasibility
		In week 5 students will be assessing a variety of materials based on factors such as
		sustainability, cost, and feasibility which will be used in their prototypes. Students will
		finalise their material choices for the product, by following the lifecycle assessment which
		will help them evaluate their product including environmental impacts. Week 5 will ensure
		that students choose materials that are sustainable, cost-effective, and appropriate for
		their design goals.
6	P4.1, P4.3, P5.1	Prototyping

		In week 6, students will be starting the construction of their prototypes with the materials that they have previously chosen. They will be utilising their CAD designs and peer
		feedback to construct a functioning prototype. Week 6 will include a range of hands-on
		learning and activities, safety in the workshops, and the incorporation of sustainable
		materials and design principles.
7	P4.3, P5.2, P6.2	Testing and Evaluation
-		In week 7, students will be having a focus on user testing and gather feedback on a variety
		of factors that include functionality, usability, and sustainability of their prototype. The
		students will then analyse the data that they have been provided with and adjust their
		product for improvements. This week will focus on students ensuring that their prototype
		and product is meeting both the users' needs and sustainability goals.
8	P4.3, P5.2, P5.1	Refinement and Finalisation
		In week 8, students will be making their final adjustments to their prototypes, which will
		include the integration of feedback from the testing phase and peer review. Students this
		week will begin their design documentation that will include them reflecting on the
		iterative design process, which will include the changes that were made to improve
		functionality and sustainability. Students will also be preparing their final presentations
		which will be worked on in the following week.
9	P5.2, P5.3, P4.1	Presentation Preparation
		In week 9, students will be working on their presentation which will be due in the following
		week. Students will be focusing on how to clearly communicate their design journey which
		will include applied sustainability principles, and the final product. Towards the end of the
		week, students will be working on refining their presentation sides to ensure they cover all
		relevant content and to practice their public speaking skills. Peer review and feedback will
		be required from students to help with critical feedback for improvement on their
		presentation.
10	P4.1, P5.2, P6.2	Summative Assessment Presentation
		In week 10, students will be presenting their finalised prototypes and will be explaining the
		design process and decisions they took that guided their project. At the end of the
		student's presentation there will be a Q&A session, which will allow for students to reflect

	on their work and how their design meets environmental, social and economic needs. The
s	summative assessment for this unit will be evaluating the final product, presentation, and
r	reflection on the design process.

Week	Students Learn	Students Learn to:	Teaching, Learning and Assessment	Student Diversity
	about:			
1	Sustainable Design	 Identify various 	Summary:	Bloom's Taxonomy:
	Principles	key	During week 1 students will be	Remembering: Ss will recall key
	 Key concepts 	sustainability	introduced to the core principles of	concepts and terminology in
	about	principles and	sustainable design. Students will	relation to sustainable design.
	sustainability	will apply them	learn about its impact on the	Understanding: Ss will explain the
	in design.	to real-world	environment, economy, and society.	impacts of design choices.
	- Environmental	design	Teaching and Learning Activities:	Applying: Ss will apply key
	, economic,	scenarios.	Teacher will provide a PowerPoint	principles of sustainability to real
	and social	- Evaluate	presentation which will outline the	world scenarios.
	impacts in	elements of the	key principles of sustainable design.	Analysing: Ss will analyse the
	choices of	environment,	Students will engage in group	impacts of non-sustainable
	design.	social, and	discussions about current	practices in relation to the
	- Sustainable	economic	sustainable products and will talk	environment and society.
	design and the	impacts of	about their impact on the	
	role we play in	product design.	environment.	High-order thinking:
	addressing	- Build an	Students will watch "The Story of	Students will evaluate case studies
	global	understanding	Stuff" and TED Talk "What is	of sustainable design. Students will
	challenges	of how design	sustainable design" and take notes	discuss its implications for the
	such as	decisions	during the videos.	future.
	climate	affect the	Students will upload a "take-away"	Low-order thinking:
	change.	world we live	from the videos they just watched	Students will define sustainability.
		in.	and will upload to a Padlet.	Students will list examples of eco-
			Formative Assessment	friendly products.

		- Develop a	Teacher will observe the class	
		mindset that	participation and collect	Differentiation:
		will put eco-	brainstorming ideas. By the end of	EAL/D students:
		friendly	the week, students will submit a	Provide visual aids to EAL/D
		solutions first.	short reflection on their	students to help build content
			understanding of sustainable design	understanding and provide
			which will need to be uploaded to	students will simple definitions of
			Google Classroom.	key terms.
			Resources:	Extension students:
			PowerPoint, "The Story of Stuff"	Advanced students should be
			video, Ted Talk "What is sustainable	encouraged to explore innovative
			design" video, Padlet, Google	sustainable designs from a variety
			Classroom, Laptops/Devices.	of industries.
2	Researching	 Research and 	Summary:	Bloom's Taxonomy:
	Sustainable Materials	evaluate a	Students will be learning about a	Remembering: Ss will recall a
	- Important	variety of	variety of sustainable materials	variety of sustainable materials.
	factors of	sustainable	which include biodegradable	<u>Understanding:</u> Ss will explain how
	material	materials.	plastics, bamboo, and recycled	the materials used lead to the
	selection in	 Apply the 	products.	overall sustainability of the
	sustainable	research to	Teaching and Learning Activities:	product.
	design.	make informed	Teacher will introduce students to	Applying: Ss will utilise AI tools (e.g.
	- Types of	choices about	ChatGPT. Teacher will guide	ChatGPT) to conduct research on
	sustainable	material for	students on how to use this tool to	materials for their designs.
	materials	product design.	generate ideas and evaluate	Evaluating: Ss will assess the
	(biodegradabl	 Understand 	materials for the factors of	materials based on cost,
	e plastics,	how properties	sustainability, cost, and	sustainability, and feasibility.
	recycled	of materials	performance.	
	materials,	have an impact	Students will be working in pairs or	High-order thinking:
	natural fibres).	on the	small groups to use ChatGPT to	

	T			T T T T T T T T T T T T T T T T T T T
	- How to	product's	research sustainable materials.	Students evaluate the trade-offs of
	evaluate the	functionality	Students will need to research	different sustainable materials and
	cost,	and	materials such as biodegradable	relate them to their real-world
	availability,	sustainability.	plastic, bamboo, or recycled	application.
	and	 Create material 	product of their choice and evaluate	Low-order thinking:
	sustainability	selection chart	the cost, feasibility, and	Students list material properties
	of materials.	that will be	sustainability.	and can categorise them in relation
		based on	Students will then present their	to sustainability.
		sustainability	research on the material properties	
		criteria.	for the class using Google slides.	Differentiation:
			Students will need to upload their	EAL/D Students:
			research on their chosen material	EAL/D students will be provided
			onto a Padlet, which will be used to	with scaffolding with templates
			collaboratively brainstorm product	which will help guide students for
			ideas, which will integrate	their research and presentations.
			sustainable practices.	Extension students:
			Assessment:	Advanced students will be
			Formative Assessment:	encouraged to explore cutting-edge
			Research presentation, the	sustainability technologies or
			submission of their research on the	materials for design.
			Padlet which should include	
			material evaluations.	
			Resources:	
			ChatGPT, Padlet, Google slides,	
			Google docs, Laptops/Devices.	
3	User-Centred Design	- Create user	Summary:	Bloom's Taxonomy:
	Principles	personas	Week 3 will have a focus on user-	Remembering: Ss will recall key
	- The role of	which will be	centred design, where students will	components of user-centred
	users' needs in	based on		design.

relation to
sustainable
product
design.
Collecting ar

 Collecting and analysing user feedback which will be used to improve designs. demographic groups such as elderly, children and eco-conscious consumer.

- Conduct research through user interviews and gain feedback which will be used to inform design decisions.
- Refine and adapt ideas and designs based on realworld user needs and provided feedback.

be focusing on the needs of the user.

Teaching and Learning Activities:

Teacher will explain the principles of user-centred design along with the importance of user personas within the design process.

Teacher will show TED Talk of "User-centered Design: Aga Sxostek."
Students will create user personas for a variety of different demographics such as elderly and children etc.

Students will then conduct interviews to gather user feedback on their own initial ideas.

Assessment:

Formative:

Students submit user personas and a summary of user interviews. Resources:

User persona templates, Google Forms for the surveys, Interview guides, TED talk "User-centered Design: Aga Sxostek", Laptops/Devices. <u>Understanding:</u> Ss will explain how user feedback has an influence on product design.

<u>Applying:</u> Ss will apply ser-centred design factors when creating user personas.

<u>Analysing:</u> Ss will analyse the user feedback to make changes and refine their design for improvement.

High-order thinking:

Understand and adapt user feedback and refine individual design based on real-world user needs.

Low-order thinking:

Collect and organise user feedback into key ideas and themes.

Differentiation:

EAL/D Students:

EAL/D students will be paired with a classmate for the interview process and will be provided with advanced visuals which will help explain user-centred design. Extension students:

Advanced students will be encouraged to create additional

					personas and to conduct advanced
		<u> </u>			user testing and surveys.
4	Concept	-	Using	Summary:	Bloom's Taxonomy:
	Development using		Fusion360 to	This week will be focusing on the	Remembering: Ss will recall both
	CAD		create a variety	development of product concepts	concepts and key principles of CAD
	 The process of 		of detailed,	using both CAD and sketching tools.	design.
	moving from		digital	Teaching and Learning Activities:	Understanding: Ss will explain the
	initial ideas to		prototypes	Teacher will provide students with a	prototyping process and relate it to
	digital		which are	step-by-step process on how to use	their designs.
	concepts with		based on initial	Fusion360, which will include basic	Applying: Ss will use CAD software
	the use of		design ideas.	tools which will help students with	(Fusion360) to create digital
	Fusion360	-	The	the creation of their digital	prototypes.
	(CAD		combination of	prototypes.	<u>Creating:</u> Ss will develop functional
	software) and		traditional	Students will start to begin	physical prototypes which are
	sketching.		sketching with	designing their product concepts	based on CAD designs.
	- Understanding		digital design	using Fusion360 and by sketching.	
	how CAD tools		to demonstrate	Students will be putting together a	High-order thinking:
	such as		ideas.	Google slides presentation which	Critique and incorporate peer
	Fusion360 can	-	Apply the use	will be presenting their concepts to	feedback into individual design
	improve		of peer	peers for feedback and any	processes.
	factors such		feedback to	constructive suggestions.	Low-order thinking:
	as precision		help with the	Assessment:	Using CAD tools such as Fusion360
	and		refinement and	Formative:	to create basic product design and
	functionality in		improvement	Submit their Fusion360 files, hand	then presenting them to the class.
	design.		of individual	in any sketches, write out a	
	- Incorporation		designs.	explanation of design decision and	Differentiation:
	of feedback	l		peer feedback which influences and	EAL/D Students:
	from peers in			changes.	EAL/D students will be provided
	individual	l		Resources:	more in-depth tutorials in the use
	design	<u> </u>			of Fusion 360 with the addition of a

	changes and		Fusion360 (CAD software), Sketch	step-by-step guide for the use and
	revisions.		book, pencils, Google slides,	relevant tools of Fusion360.
			Laptops/Devices.	Extension students:
				Advanced students will be
				encouraged to create more in-
				depth and advanced 3D models.
				They will also be asked to explore
				more advanced CAD features such
				as rendering.
5	Material Selection for	- Evaluation of a	Summary:	Bloom's Taxonomy:
	Prototyping	variety of	Students will be exploring a variety	Remembering: Ss will recall
	- The	materials	of material properties and then	material properties as well as
	importance of	which will be	evaluating them for factors that	lifecycle impacts.
	the	based on	include sustainability, cost, and	<u>Understanding:</u> Ss will explain how
	appropriate	sustainability,	functionality.	to select the appropriate materials
	selection of	cost, and	Teaching and Learning Activities:	for sustainability.
	materials	performance	Teacher will introduce students to	Evaluating: Ss will evaluate
	based on	for prototyping.	the lifecycle assessment diagram	materials regarding their
	factors such	 The application 	and the material selection criteria.	environmental impact and cost.
	as	to knowledge	Teacher will pass around material	
	functionality	of material	samples for students to physically	High-order thinking:
	and	properties to	identify different features and to	Students to analyse and evaluate
	sustainability.	select the most	conduct research.	the environmental impacts and
	- Build an	appropriate	Students will then select their	feasibility that materials hold.
	understanding	and suitable	chosen materials for their	Low-order thinking:
	of the lifecycle	materials for	prototypes which will be based on	Students to categorise and identify
	of materials	their	sustainability and performance.	a range of basic material properties
	and how they	prototypes.	Students will create a materials	such as cost, sustainability and
	ultimately		selection chart and write an	durability.

	impact the		explanation for their material	Differentiation:
	environment.		choices.	EAL/D students:
			Resources:	EAL/D students will be offered
			Lifecycle assessment diagram/tool,	simplifies templates and guides
			material samples for students to	which will assist them with material
			physically touch and research,	selection for their prototype.
			Google docs for material chart	Extension students:
			creation, sustainability criteria	Advanced students will be
			sheets.	encouraged to research emerging
				materials and technologies that
				can lead to the improvement of
				sustainability and effects on the
				environment.
6	Prototyping and	- Build a	Summary:	Bloom's Taxonomy:
	Assembly	functional	In this week students will be	Remembering: Ss will recall a
	- The process of	prototype with	focusing on the Construction of the	variety of testing methods.
	creating a	the use of	physical prototype which will be	<u>Understanding:</u> Ss will explain how
	functional	selected	based on the design concepts that	testing will inform their design
	prototype	material and	were created in the previous weeks.	choices.
	which is based	design	Teaching and Learning Activities:	Applying: Ss will apply testing
	on design	concepts.	Teacher will be demonstrating the	methods to their own prototypes.
	ideas.	- The	safe handling of prototyping tools	Analysing: Ss will analyse the
	- How to use a	documentation	and materials. Teacher will be	results from user testing and adjust
	variety of	of the	emphasising the best practices	their design.
	prototyping	prototyping	relating to the product assembly.	
	tools safely	process with	Students will begin the construction	High-order thinking:
	and	photos, notes	of their prototypes, using their	Evaluate and modify the prototype
	effectively.	and reflections.	selected materials.	which will be based on real-world
			Students will be documenting the	testing and provided feedback.
			prototyping process with photos,	

			notes and changes in relation to	Low-order thinking:
			their designs.	Follow instructions provided by the
			Assessment:	teacher to assemble the students
			Formative:	prototype and make necessary
			Students will submit their up-to-	adjustments where appropriate
			date documentation of the	and documenting these changes.
			prototyping process, which will	
			need to include any challenges they	Differentiation:
			faced and solutions.	EAL/D students:
			Resources:	EAL/D students will be provided
			Cutters, saws, glue guns,	with visuals to help with the
			sustainable materials, PPE (safety	understanding of safety and what is
			glasses).	expected of them. Students will be
				provided with a step-by-step
				instruction for the prototyping
				phase.
				Extension students:
				Advanced students will be provided
				advanced tasks which include
				refining heir prototypes and
				integrating more complex features.
7	Testing and	 Conducting 	Summary:	Bloom's Taxonomy Weeks 7 - 10:
	Evaluation	user testing	Students this week will be testing	Applying: Implementing feedback
	 The process of 	with the use of	their prototypes, where they will be	to refine designs.
	testing	prototypes and	provided feedback from peers and	Evaluating: Evaluating final
	prototypes,	analyse the	teacher. Students will use this data	prototypes for functionality and
	which will	provided	to analyse where their needs to be	sustainability.
	include user	feedback to	refinements to their design.	<u>Creating:</u> Developing final product
	feedback and	help with the	Teaching and Learning Activities:	designs and a presentation which

	the analysis of functionality. - How to properly analyse testing data and the refinement of prototypes.	refinement of the designs. - Use the testing data to ultimately make improvements to the design and to increase the products functionality.	Teacher will introduce a variety of testing methods to students that include stress tests and user feedback. Students will conduct user testing on their prototypes. Students will be focusing on the usability and sustainability of their prototype. Students will analyse the results provided form the user testing to modify their designs. Assessment: Formative: Students will submit their testing report with their feedback analysis along with design changes. Resources: Feedback forms, testing equipment (weights, measuring tools), Google Forms which will be used for the survey collection.	communicates their design process. High-order thinking: Analyse the user feedback to make critical design changes and improvements. Low-order thinking: Collection and documentation of feedback from peers, along with the organisation of results for analysis. Differentiation: EAL/D students: EAL/D students will be provided with simplified feedback templates and additional time for the collection of data for their prototypes. Extension students: Advanced students will be offered to create a more in0depth and detailed testing scenario and to explore areas they can improve functionality.
8	Refinement and Finalisation - Refining their prototypes	 Refine individual prototypes, and the 	Summary: Students this week will be refining their prototypes, using the feedback they were produced with last week,	Bloom's Taxonomy: In Week 7 for Weeks 7 – 10. High-order thinking:

	which will be	integration of	and focusing on adjusting any final	Reflect critically on various design
		_		_
	based on the	feedback from	elements of their prototypes before	decisions and then justify all
	user feedback	the previous	their presentation.	improvements and changes made
	and the testing	testing phase.	Teaching and Learning Activities:	during the iterative process.
	results.	 Start preparing 	Teacher will be providing students	Low-order thinking:
	- Preparing	final	with guidance on their	The completion of the final
	design	presentation	documentation of any design	prototype adjustments and the
	documentatio	materials such	changes and with the preparation of	documenting of any changes that
	n which will be	as slides,	their final presentations.	were made.
	for the	reports and	Students will be finalising their	
	presentation.	prototypes.	prototypes and writing their	Differentiation:
			reflections on their design changes.	EAL/D students:
			After students will be working on the	EAL/D students will be provided
			final presentation slides.	with written scaffolds for their
			Assessment:	reflections and will be provided
			Formative:	with addition time to prepare their
			Students to submit their final	presentations.
			prototype and their presentation	Extension students:
			slides by the end of this week.	Advanced students will be
			Resources:	encouraged to improve the
			Prototyping tools (listed in last	aesthetics of the presentation or
			week's resources), Google slides for	the functionality of their prototypes
			presentations, Laptops/Devices,	further. They will also be
			Example presentation.	encouraged to discuss the long-
				term impact of their design.
9	Presentation	- Students will	Summary:	Bloom's Taxonomy: In Week 7 for
	Preparation	develop a clear	In this week students will be	Weeks 7 – 10.
	- How to	narrative and	focusing on preparing their final	
	structure a	overall	presentation. This week will be	High-order thinking:
	presentation	structure for	helping students to organise and	
<u> </u>	<u> </u>		<u> </u>	<u> </u>

	effectively that		their	present their design journey,	Develop a compelling narrative
	will		assignment	sustainability efforts and their	what will link to the design
	demonstrate		presentation.	overall final prototype.	decisions about sustainability
	and	-	Students will	Teaching and Learning Activities:	efforts.
	communicate		use digital	Teacher will be guiding the students	Low-order thinking:
	design ideas,		tools such as	with the structuring of an	Organising the presentation so it is
	sustainability		canvas to	informative presentation that will	clear and has been rehearsed.
	effort, and		create	highlight the key ideas and	
	prototype		engaging	sustainability efforts.	Differentiation:
	functionality.		presentation	Students will develop their Google	EAL/D students:
			slides for the	Slides document and practice	EAL/D students will be provided
			viewers.	delivering their presentation with a	with additional time to complete
				peer.	their presentations. Students will
				Assessment:	also be provided with structuring
				Formative:	for their presentations.
				Peer feedback will be provided with	Extension students:
				the practicing of presentations.	Advanced students will be
				Questioning and class discussions	challenged to explore more
				will also be used to identify further	advanced presentation techniques
				explanation in areas.	that can better explain and
				Resources:	represent what they are trying to
				Google slides, presentation rubric,	express such as animation, AI tools
				Kahoot for review.	or videos.
10	Summative	_	Students will	Summary:	Bloom's Taxonomy: In Week 7 for
	Assessment		present the	In this final week, students will be	Weeks 7 – 10.
	Presentation		final prototype,	presenting their presentations along	
	- Final		design process	with their finished prototypes. They	High-order thinking:
	presentation		and how	will be explaining their design	
	of student's		sustainability	process, the testing phases, and	

product,	was integrated	how they implemented	Answer questions about their own
which will	into their	sustainability throughout their	design choices, sustainability, and
discuss des	gn product.	project.	user-centred design.
process, use	r	Teaching and Learning Activities:	Low-order thinking:
feedback, a	nd	Teacher will be facilitating individual	Present their final product and its
sustainabilit	y	students' final presentations and	main features to the class and
decisions.		will be providing students with	teacher.
		feedback immediately and post	
		assignment period.	Differentiation:
		Students will be presenting their	EAL/D students:
		projects, and presentation.	EAL/D students will be provided
		Students will be asked questions	with additional time and offered a
		and will be responding to these	separate time to present their
		questions by peers.	presentation that will be one-on-
		Students will be asked question son	one with the teacher if wanted.
		sustainability, design, and user	Students will also be offered
		feedback by the teacher.	additional support before their
		Assessment:	presentations by the teacher.
		Summative:	Extension students:
		Final presentation of the prototype,	Advanced students can talk about
		which will include the design	more broad implications that are
		process, sustainability efforts, and	related to their design choices and
		user feedback integration	for future sustainability.
		throughout the project.	
		Resources:	
		Smartboard, Laptop/Device,	
		evaluation rubric, feedback forms,	
		Google Slides.	

References

- Bennett, S., & Maton, K. (2010). Beyond the "digital natives" debate: Towards a more nuanced understanding of students' technology experiences. *Journal of Computer Assisted Learning*, 26(5), 321–331. https://doi.org/10.1111/j.1365-2729.2010.00360.x
- Biggs, J., Brown, A. L., & Cocking, R. R. (2003, January). (PDF) Teaching for Quality Learning at University. ResearchGate. https://www.researchgate.net/publication/215915395_Teaching_for_Quality_Learning_at_University
- Bransford, J. D. (2000). *How People Learn: Brain, Mind, Experience, and School: Expanded Edition*. National Academies Press. https://doi.org/10.17226/9853
- Bruner, J. S. (1960). *The Process of Education*. Harvard University Press. http://edci770.pbworks.com/w/file/fetch/45494576/bruner_processes_of_education.pdf
- CAST. (2011). CAST (2011) Universal Design for Learning (UDL) Guidelines Version 2.0. Author, Wakefeild. References Scientific Research Publishing. Scirp.org. https://www.scirp.org/reference/referencespapers?referenceid=2035887
- Fisher, D., & Frey, N. (2014). FISHER FREY FORMATIVE ASSESSMENT TECHNIQUES FOR YOUR CLASSROOM 2nd Edition CHECKING
 FOR UNDERSTANDING. https://files.ascd.org/staticfiles/ascd/pdf/siteASCD/publications/books/checking-for-understanding-2ndsample-chapters.pdf
- NESA. (2013). *Design and Technology Stage 6 Syllabus (2013)*. NSW Education Standards Authority. https://educationstandards.nsw.edu.au/wps/portal/nesa/11-12/stage-6-learning-areas/tas/design-and-technology-syllabus

- OpenAI. (2025). ChatGPT. Chat.openai.com; OpenAI. https://chat.openai.com
- Piaget, J. (1976). *The Psychology of the Child*. Basicbooks.com. https://www.alohabdonline.com/wp-content/uploads/2020/05/The-Psychology-Of-The-Child.pdf
- Tomlinson, C. (2001). *Differentiate instruction in mixed-ability classrooms*. Association for Supervision and Curriculum Development. https://rutamaestra.santillana.com.co/wp-content/uploads/2020/01/Classrooms-2nd-Edition-By-Carol-Ann-Tomlinson.pdf
- Vygotsky, L. S. (1978). Mind in Society: Development of Higher Psychological Processes. In *JSTOR*. Harvard University Press. https://www.jstor.org/stable/j.ctvjf9vz4
- Wiggins, G., & McTighe, J. (2005). Understanding by design (2nd ed.). Alexandria, VA: Association for Supervision and Curriculum

 Development ASCD. ResearchGate.

 https://www.researchgate.net/publication/318021095_Wiggins_G_McTighe_J_2005_Understanding_by_design_2nd_ed_Alexandria_V

 A Association for Supervision and Curriculum Development ASCD
- Wilson, L. O. (2016). *Anderson and Krathwohl bloom's Taxonomy Revised*. https://quincycollege.edu/wp-content/uploads/Anderson-and-Krathwohl_Revised-Blooms-Taxonomy.pdf

Appendices (Al assisted with the appendices – to accompany the unit plan)

Appendix A: Prototype Evaluation Rubric

Criteria	Excellent (5)	Good (4)	Satisfactory (3)	Needs	Poor (1)
				Improvement (2)	
Sustainability	Uses 100%	Primarily uses	Uses some	Little to no	Does not use
	sustainable	sustainable materials	sustainable materials	sustainable	sustainable
	materials were	within the design with	within the design with	materials in the	materials or
	used, minimises	minor waste.	moderate waste.	design used.	processes in the
	waste.				design.
Functionality	Fully functional,	Mostly functional with	Functional but needs	Design does not	Design is not
	and a user-friendly	minor usability	significant	work as intended.	functional.
	design.	issues.	improvements.		
Creativity	Innovative and	Creative design with	Some creativity but	Very basic design	No creativity;
	original design	some unique aspects.	lacks originality.	with no creativity.	standard design.
	solutions.				
Aesthetics	Well-presented	Visually appealing	Some visual appeal	Lacks visual appeal	No attention to
	and aesthetically	with minor flaws.	but lacks polish.	and feels	aesthetics.
	pleasing.			unfinished.	
User-Centred	Design is	Design addresses	Design considers user	Limited or no user	No attention to user-
Design	thoroughly based	most user needs with	feedback but misses	feedback	centred design.
	on user needs and	some feedback.	key needs.	considered.	
	feedback.				
Environmental	Fully considers	Considers	Basic consideration of	Minimal attention	No consideration of
Impact	lifecycle and	environmental	environmental impact.	to environmental	environmental
	impact.	impact, with some		impact.	impact.
		areas for			
		improvement.			

Appendix B: User Persona Template

Persona Name:

Age:

Occupation/Role:

Demographic Info:

- Gender:
- Location:
- Family Status:

User Needs:

- Primary needs that the product must address (e.g., eco-friendliness, ease of use).
- Secondary needs (e.g., aesthetic appeal, affordability).

Goals:

- What is the user trying to achieve by using the product?
- How will the product help them solve a problem or improve their lifestyle?

Pain Points:

- What challenges or difficulties does the user face with current solutions?
- What would make the product more convenient or accessible for the user?

Feedback/Comments:

• Quotes or direct feedback from users if available (from surveys or interviews).

Appendix C: Sustainability Criteria Evaluation Sheet

Criteria	Excellent (5)	Good (4)	Satisfactory (3)	Needs	Poor (1)
				Improvement (2)	
Material Source	100% renewable,	Primarily	Some sustainable	Predominantly non-	No sustainable
	recycled, or	sustainable	materials with	renewable or non-	materials used.
	biodegradable.	sources with minor	noticeable non-	sustainable	
		non-sustainable	sustainable	materials.	
		materials.	components.		
Energy Consumption	Energy-efficient	Minor energy	Moderately energy-	High energy	No consideration
	processes and	inefficiency but	efficient with areas	consumption with	for energy
	minimal energy	overall low energy	for improvement.	inefficient	efficiency.
	usage.	consumption.		processes.	
Waste Production	Minimal waste	Some waste	Noticeable waste	Significant waste	High levels of
	production;	production, but	produced with few	production, most	waste with no
	everything is	most materials can	recyclable	materials cannot	recyclable
	recyclable or	be recycled.	components.	be recycled.	components.
	reusable.				
Longevity/Functionality	Product is highly	Product is durable,	Product may have	Product breaks	Product is
	durable and long-	with some	limited lifespan or	down or	disposable with
	lasting.	potential for	durability.	deteriorates	no long-term use.
	_	improvement in	-	quickly.	
		longevity.			
Carbon Footprint	Minimal to no	Low carbon	Moderate carbon	Significant carbon	No effort made to
	carbon footprint.	footprint with some	footprint that can	footprint.	minimize carbon
		improvement	be reduced.		footprint.
		areas.			