The Making of a Real-World Moneyball Finding Undervalued Players with H₂O, LIME and Shiny

Jo-fai (Joe) Chow
Data Science Evangelist /
Community Manager
joe@h2o.ai
@matlabulous

More Info → https://bit.ly/ h2o_meetups

About Me

CrimeMap - Keep It Simple, Stupid

Update Graphs and Tables

Last Week – Paris

Before H₂O

- Water Engineer / EngD Researcher / Matlab Fan Boy (wonder why) @matlabulous?)
- Discovered R, Python, H₂O ...
 never look back again
- Data Scientist at Virgin Media (UK), Domino Data Lab (US)
- At H₂O ...
 - Data Scientist / Evangelist /
 - Sales Engineer / Solution Architect /
 - Community Manager

... The harsh reality of startup life ...

H2O.ai Overview

Company	Founded in Silicon Valley in 2012 Funded: \$75M Investors: Wells Fargo, NVIDIA, Nexus Ventures, Paxion Ventures
Products	 H2O Open Source Machine Learning (14,000 organizations) H2O Driverless AI – Automatic Machine Learning
Leadership	Leader in Gartner MQ Machine Learning and Data Science Platform
Team	120 AI experts (Kaggle Grandmasters, Distributed Computing, Visualization)
Global	Mountain View, London, Prague, India

Worldwide Recognition in the **H20.ai** Community

Open source community

BLACKS DECKER

ebay

Booking.com

DIRECT

 G_5

CONFIDENTIAL

COMCAST

altalta

CISCO.

H2O.ai is a **Leader** in the 2018 Gartner Data Science and Machine Learning Platforms Magic Quadrant

- Technology leader with most completeness of vision
- Recognized for the mindshare, partner network and status as a quasi-industry standard for machine learning and AI
- H2O.ai customers gave the highest overall score among all the vendors for sales relationship and account management, customer support (onboarding, troubleshooting, etc.) and overall service and support

Figure 1. Magic Quadrant for Data Science and Machine-Learning Platforms

CHALLENGERS

LEADE

Get the
Gartner
Magic
Quadrant
here

Moneyball: The Multimillion-Dollar Business Problem

The quest to find the most undervalued players (before other teams notice them)

Source: Moneyball, 2011 Columbia Pictures

The Real Business Problem in Major League Baseball (MLB)

- Existing Forecasts (e.g. ESPN) are usually projections for the next year only.
- MLB players usually consider terms for 3 to 5 years when they sign a new contract.
- MLB teams need to consider players' long-term performance (i.e. > 1 year).

2018 SEASON BATTING PROJECTIONS

The Moneyball Team

Baseball Player Performance Data

- Open data Lahman Database.
- Proprietary data (AriDB) from Ari
 Kaplan our real Moneyball guy.
- Enriched Lahman data with Ari's
 Data Final dataset for predictive modelling

Lahman Database

http://www.seanlahman.com/baseball-archive/statistics/

Attribute	Description
playerID	Player ID code
yearID	Year player was born
G	Games
АВ	At Bats
R	Runs
Н	Hits
2B	Doubles
3B	Tripples
HR	Homeruns
SO	Strike Outs
IBB	Intentional Walks
SF	Sacrifice flies

Ari's Database

- Private database containing 5 years of data
- Pitch-by-pitch play for each MLB game:
 - Pitch type, top speed, end speed, spin rate,
 x, y, z coordinates, batter result etc.

Attribute	Description
Pitch_Type	Two - character code of type of pitch. FF=fastball, CU=curveball, SL=slider, etc.
Spin_rate	Spin of the pitch in rotations per minute. One of the top fields for a featurethe theory is the more spin the harder it is to hit.
Start_speed	The velocity of the pitch in mph (when it leaves the hand, which is the measure used for tv).
End_speed	The velocity of the pitch when it arrives at the plate
Z0	Feet off the ground when the pitch is released.
Spray_x	When ball is hit into play, this is the x - coordinate of where it is hit/picked up by a fielder
Spray_y	When ball is hit into play, this is the y - coordinate of where it is hit/picked up by a fielder
Spray_des	Classification of type of hit: pop out, flyout, groundout, hit, error

- Framed data as regression problems for performance prediction.
- Historical player performance as features.
- Used H₂O AutoML to build ensembles (linear model, random forests, gradient boosting, and deep neural networks).

One of Many Targets (e.g. Home Runs, Batting Average)

Explaining the Predictions LIME – Local Interpretable Model-agnostic Explanations

- Approximate reasoning of complex ML models (ensembles).
- Most important attributes and their contributions to the predictions.
- Ari validated the models with his 30+ years of baseball domain knowledge.

Install 'lime' from CRAN install.packages('lime')

He trusted the models.

Putting Everything Together – Moneyball Shiny App

In case you're wondering ... final project result

led to the signing of a Major League Baseball (MLB) player

\$201\frac{1}{1}\$
multi-year contract

finalised two weeks before the regular season

If you want to hear the Moneyball story from Ari and David ...

Session Speakers

Learning Scientist

Co-Founder and

Businesses Macnica Americas

More realworld use cases

All H₂O Kaggle **Grandmasters**

Hands-on **Training**

29th & 30th Oct, London

Jo-Fai Chow Data Science Manager, H2O.a

Data Scientist

Lead Architect of

Security Scientist

Thanks!

- More Info, Code, and Slides
 - bit.ly/ h2o_meetups
- Contact
 - joe@h2o.ai
 - @matlabulous
 - github.com/woobe

Appendix

Approach One: Learning from Lahman only

Learn the Pattern Lahman: Age, Height, Weight ...
Historical Performance Stats Sliding Windows (Stats from previous n years) **Home Runs Predictions** About 300 Lahman Features **Batting Average**

H₂O AutoML:

H₂O.ai

Approach Two: Learning from Lahman & AriDB

Lahman: Age, Height, Weight ...
Historical Performance Stats

 ${f X}$

AriDB: Fastball, curveball, slider, velocity ...

Sliding Windows (Stats from previous n years)

About 300 Lahman Features + 200 AriDB Features

H₂O AutoML:

Predictions

••

Home Runs

Batting Average

Lahman Data

Player's information

birthYear [‡]	birthMonth [‡]	birthDay [‡]	birthCountry	birthSta	irthState $\stackrel{\hat{=}}{=}$ birthCity $\stackrel{\hat{=}}{=}$						
1991	8	7	USA	NJ		Vin	eland				
ameFirst ‡	nameLast [‡]	nameGiven	weight ‡ h	neight [‡]	bats	÷	throws	\$	† debut ‡	† debut † finalGame †	† debut † finalGame † retroID †
Mike	Trout	Michael Nelson	235	74	R		R		2011-07-08	2011-07-08 2017-10-01	2011-07-08 2017-10-01 troum001

Player's past performance (batting in this case)

Lahman Data Framed as a ML problem

Player Attributes

	,											
yearID 🗦	teamID [‡]	lgID [‡]	weight [‡]	height [‡]	bats [‡]	throws	birthYear [‡]	birthCountry [‡]	birthState [‡]	birthCity [‡]	age [‡]	career_year
2011	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	20	
2012	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	21	
2013	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	22	
2014	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	23	
2015	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	24	
2016	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	25	
2017	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	26	
2018	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	27	
2019	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	28	
2020	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	29	1

Past
Performance
Sliding
Windows
+
Other
Stats

last1_HR [‡]	last2_HR [‡]	last3_HR [‡]	last4_HR [‡]	last5_HR [‡]	avg_last2_HR	avg_last3_HR [‡]	avg_last4_HR [‡]	avg_last5_HR [‡]
NA	NA	NA	NA	NA	NaN	NaN	NaN	NaN
5	NA	NA	NA	NA	5.0	5.00000	5.00000	5.00000
30	5	NA	NA	NA	17.5	17.50000	17.50000	17.50000
27	30	5	NA	NA	28.5	20.66667	20.66667	20.66667
36	27	30	5	NA	31.5	31.00000	24.50000	24.50000
41	36	27	30	5	38.5	34.66667	33.50000	27.80000
29	41	36	27	30	35.0	35.33333	33.25000	32.60000
33	29	41	36	27	31.0	34.33333	34.75000	33.20000
33	33	29	41	36	33.0	31.66667	34.00000	34.40000
33	33	33	29	41	33.0	33.00000	32.00000	33.80000

One of the Targets

1416013	٠	∙.	0110
	\$	HR	yearID ³
7	5		2011
	30		2012
Training	27		2013
	36		2014
J	41		2015
Validation	29		2016
Vallaction	33		2017
7 _	NA		2018
Forecast	16 29 Vali	2019	
	NA		2020

H₂O AutoML Code

H₂O AutoML Results

GBM grid 0 AutoML 20180615 040834 model 1

```
H2ORegressionMetrics: stackedensemble
** Reported on cross-validation data. **
** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
MSE: 0.00246453
RMSE: 0.04964404
MAE: 0.03335875
RMSLE: 0.04124294
Mean Residual Deviance: 0.00246453
Slot "leaderboard":
                                               model id mean residual deviance
                                                                                                    rmsle
                                                                                   rmse
                                                                                             mae
1 StackedEnsemble BestOfFamily 0 AutoML 20180615 040834
                                                                     0.002465 0.049644 0.033359 0.041243
    StackedEnsemble_AllModels_0_AutoML_20180615_040834
                                                                      0.002467 0.049669 0.033367 0.041265
             GLM grid 0 AutoML 20180615 040834 model 0
                                                                      0.002480 0.049802 0.033560 0.041401
             GBM grid 0 AutoML 20180615 040834 model 4
                                                                      0.002486 0.049856 0.033707 0.041373
             GBM_grid_0_AutoML_20180615_040834_model_2
                                                                      0.002564 0.050638 0.034346 0.042008
```

[12 rows x 5 columns]

0.002569 0.050684 0.034261 0.042022