2. Consider the transitional system.

Which of the states are to be marked as starting state and fi nal state, respectively, so as to turn the above system into a DFA that accepts all strings having odd number of zeros and even number of 1's?

- $a)q_0, q_2$ $b)q_0, q_1$ $c)q_1, q_2$ d) None of these

3. Consider the following DFA in which S_0 is the start state and S_1 and S_3 are the fi nal states. Which one is true?

- a) All strings of x and y.
- b) All strings of x and y which have either an even number of x and even number of y or an odd number of x and odd number of y.
- c) All strings of x and y which have an equal number of x and y.
- d) All strings of x and y which have either an even number of x and odd number of y or an odd number of x and even number of y.

4. Let N be an NFA with n states and let M be the minimized DFA with m states recognizing the same language. Which of the following is NECESSARILY true?

- a) $m \le 2^n$ b) $n \le m$ c) M has one accept state d) $m = 2^n$

5. If the final state and non-final states in the following DFA are interchanged, then which of the following languages over the alphabet (a, b) will be accepted by the new DFA?

picture

 $122 \mid$ Introduction to Automata Theory, Formal Languages and Computation

- a) Set of all strings that do not end with ab
- b) Set of all strings that begin with either an a or a b.
- c) Set of all strings that do not contain the substring ab.
- d) The set described by the regular expression $b^*aa^*(ba)^*b^*$
- 6. A finite state machine with the following state table has a single input \boldsymbol{x} and a single output \boldsymbol{z} .

	Next State,z	
Present State	X=0	X=1
A	D, 0	B, 0
В	B, 1	C, 1
C	B, 0	D, 1
D	B, 1	C, 0

If the initial state is unknown, then the shortest input sequence to reach the final state C is:

- a)01 b)10 c) 101
- d)110
- 7. Which of the following sets can be recognized by a deterministic finite state automaton?
 - a) The numbers $1, 2, 4, 8, \dots 2^n$ written in binary.
 - b) The numbers $1, 2, 4, ...2^n$ written in unary.
- c) The set of binary string in which the number of zeros is the same as the number of ones.
 - d) The set {1, 101, 11011, 1110111, ...}
- 8. Consider the regular expression (0+1)(0+1)....N times. The minimum state FA that recognizes the language represented by this regular expression contains
- above
- a) n states b)(n+1)states c) (n+2)states
 - d) None of the

9. What can be said about a regular language L over $\{a\}$ whose minimal finite state automation has two states?

- a) L must be $\{an | nisodd\}$ b) L must be $\{an | niseven\}$
- be {an niseven}
- c) L must be $\{an|n > 0\}$ d) Either L must be $\{an|nisodd\}$ or L must
- 10. The smallest FA which accepts the language $\{x | length of x | sidivisible by 3\}$ has

 - a) 2 states b) 3 states c) 4 states d) 5 states
- 11. Consider the following deterministic fi nite state automaton M.

Let S denote the set of seven-bit binary strings in which the fi rst, fourth, and last bits are 1. The number of strings in S that are accepted by M is

- a) 1 b) 5 c) 7 d) 8

a) divisible by 3 and 2

b) odd and even

c) even and odd divisible by 2 and 3

12. The following finite state machine accepts all those binary strings in which

13. Consider the machine M.

The language recognized by M is:

- a) $\{w \in \{a, b\}^* | \text{everyainwis} \text{followed by exactly twob}' s \}$
- b) $\{w \in \{a, b\}^* | \text{everyainwis} \text{followed by at least twob'} s \}$
- c) $\{w \in \{a, b\}^* | w \text{containsthesubstring 'abb'} \}$
- d) $\{w \in \{a, b\}^* | w does not contain 'aa' as a substring\}$

respectively, has

a) 15 states b) 11 states c) 10 states d) 9 states

14. A minimum state deterministic FA accepting the language

Y:

	а	b
$\rightarrow 1$	1	2
2(F)	2	1

Z:

 $L = \{w | w \in \{0, 1\}^*\}$ where number of 0's and 1's in w are divisible by 3 and 5,

	а	b
$\rightarrow 1$	2	2
2(F)	1	1

Which of the following represents the product automaton $Z \times Y$?

picture

a)

 $\rightarrow P$

Q

R(F)

S

а

S R

R

Q Ρ

b

S

P

b)

S

b a $\rightarrow P$ S Q Z S R R(F) P

> Ρ Q

c)

	а	b
$\rightarrow P$	Q	S
Q	R	S
R(F)	Q	Р
S	Q	Р

d)

	а	b
$\rightarrow P$	S	Q
Q	S	R
R(F)	Q	Р
S	Q	Р

16.

The given DFA accepts the set of all strings over $\{0,1\}$ that

- a) begin either with 0 or 1. b) end with 0

c) end with 00.

d) contain the substring 00.

17. Let w be any string of length n in $\{0,1\}^*$. Let L be the set of all substrings of w. What is the minimum number of states in a non-deterministic FA that accepts L?

- a)n-1 b)n c)n+1 d) 2^{n-1}

18. Definition of a language L with alphabet $\{a\}$ is given as following $\{a^{nk}|k>0 \text{ and n is a positive integer constant}\}$

What is the minimum number of states needed in a DFA to recognize L?

- a) k+1 b) n+1 c) 2^{n+1} d) 2^{k+1}

Which of the following fi nite state machines is a valid minimal DFA which accepts the same language as D?

picture

nictu

pictu

Questi

picture