Imperial College London

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

Peter Pietzuch

prp@doc.ic.ac.uk

Department of Computing

Imperial College London

http://lsds.doc.ic.ac.uk

Slides based on the RDD NSDI'12 talk

Autumn 2020

Spark Motivation

MapReduce greatly simplified "big data" analysis on large, unreliable clusters

But as soon as it got popular, users wanted more:

- More **complex**, multi-stage applications
 (e.g. iterative machine learning & graph processing)
- More **interactive** ad-hoc queries

Complex apps and interactive queries both need one thing that MapReduce lacks:

Efficient primitives for data sharing

In MapReduce, the only way to share data across jobs is stable storage → slow!

Disk-based Data Sharing

Goal: In-Memory Data Sharing

10-100× faster than network/disk, but how to get FT?

Challenge

How to design a distributed memory abstraction that is both **fault-tolerant** and **efficient**?

Existing storage abstractions have interfaces based on finegrained updates to mutable state

RAMCloud, databases, distributed mem, Piccolo

Requires replicating data or logs across nodes for fault tolerance

- Costly for data-intensive apps
- 10-100x slower than memory write

Resilient Distributed Datasets (RDDs)

Idea:

- Store data lineage instead of data
- Recompute data based on lineage

Resilient Distributed Datasets (RDD)

- Partitioned across nodes
- Immutable to simplify lineage tracking
- Can only be built through coarse-grained deterministic transformations (map, filter, join, ...)
- Checkpointing to disk to avoid unbounded lineage

Enables efficient in-memory processing

Order of magnitude faster iterative algorithms

RDD Recovery

Generality of RDDs

Despite their restrictions, RDDs can express surprisingly many parallel algorithms

These naturally apply the same operation to many items

Unify many current programming models

- Data flow models: MapReduce, Dryad, SQL, ...
- Specialized models for iterative apps: BSP (Pregel), iterative MapReduce (Haloop), bulk incremental, ...

Support new apps that these models don't

Tradeoff Space

Spark Programming Interface

DryadLINQ-like API in the Scala language

Usable interactively from Scala interpreter

Provides:

- Resilient distributed datasets (RDDs)
- Operations on RDDs: transformations (build new RDDs), actions (compute and output results)
- Control of each RDD's partitioning (layout across nodes) and persistence (storage in RAM, on disk, etc)

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```
Msgs. 1
                                             Bas Transformed RDD
lines = spark.textFile("hdfs://...")
                                                                   Worker
                                                         results
errors = lines.filter(_.startsWith("ERROR"))
                                                             tasks
messages = errors.map(_.split('\t')(2))
                                                                   Block 1
                                                    Master
messages.persist()
                                                  Action
messages.filter(_.contains("foo")).count
                                                                      Msgs. 2
messages.filter(_.contains("bar")).count
                                                                  Worker

✓ Msgs. 3

                                                                  Block 2
                                                 Worker
  Result: scaled to 1 TB data in 5-7 sec
       (vs 170 sec for on-disk data)
                                                  Block 3
```

Fault Recovery

RDDs track the graph of transformations that built them (their lineage) to rebuild lost data

E.g.:

Fault Recovery Results

Example: PageRank

Σi∈neighbors ranki / |neighborsi| On each iteration, update each age s rank to

Start each page with a rank of

```
links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
   ranks = links.join(ranks).flatMap {
      (url, (links, rank)) =>
         links.map(dest => (dest, rank/links.size))
   }.reduceByKey(_ + _)
}
```

Optimising Placement

links & ranks repeatedly joined

Can *co-partition* them (e.g. hash both on URL) to avoid shuffles

Can also use app knowledge, e.g., hash on DNS name

PageRank Performance

