Numerical Analysis Mathematics of Scientific Computing

主讲人 邱欣欣 幻灯片制作 邱欣欣

中国海洋大学 信息科学与工程学院

2013年10月18日

Solving Systems of Linear Equations

- Pivoting and Constructing an algorithm
 - Basic Gaussian Elimination
 - Pivoting
 - Gaussian Elimination with Scaled Row Pivoting
 - Factorizations PA = LU
 - Operation Counts
 - Diagonally Dominant Matrices
 - Tridiagonal System

Contents

- Pivoting and Constructing an algorithm
 - Basic Gaussian Elimination
 - Pivoting
 - Gaussian Elimination with Scaled Row Pivoting
 - Factorizations PA = LU
 - Operation Counts
 - Diagonally Dominant Matrices
 - Tridiagonal System

Contents

- Pivoting and Constructing an algorithm
 - Basic Gaussian Elimination
 - Pivoting
 - Gaussian Elimination with Scaled Row Pivoting
 - Factorizations PA = LU
 - Operation Counts
 - Diagonally Dominant Matrices
 - Tridiagonal System

•

Basic Gaussian Elimination

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$$

$$Ax = b$$

• For the process, there are n-1 principal steps. In the first step, we refer to the first equation as the first pivot equation and to a_{11} as the first pivot element. For the remaining equations $(2 \le i \le n)$,

$$\begin{cases} a_{ij} \leftarrow a_{ij} - \left(\frac{a_{i1}}{a_{11}}\right) a_{1j} & (1 \leq j \leq n) \\ b_i \leftarrow b_i - \left(\frac{a_{i1}}{a_{11}}\right) b_1 \end{cases}$$

Note that the quantities (a_{i1}/a_{11}) are the multipliers.

• Just prior to the kth step in the forward elimination, the system will appear as follows:

qiu (中国海洋大学)

• We compute for each remaining equation $(k+1 \le i \le n)$

$$\begin{cases} a_{ij} \leftarrow a_{ij} - \left(\frac{a_{ik}}{a_{kk}}\right) a_{kj} & (k \leq j \leq n) \\ b_i \leftarrow b_i - \left(\frac{a_{ik}}{a_{kk}}\right) b_k \end{cases}$$

• Obviously, we must assume that all the divisors in this algorithm are nonzero.

Pseudocode

```
input n, (a_{ij}), (b_i)
for k = 1 to n-1 do
for i = k + 1 to n do
z \leftarrow a_{ik}/a_{kk}
a_{ik} \leftarrow 0
for j = k + 1 to n do
a_{ij} \leftarrow a_{ij} - z a_{kj}
end do
b_i \leftarrow b_i - zb_k
end do
end do
output (a_{ij}), (b_i)
```

```
function a=Gaussian(a)
   n=length(a);
   for k=1:n-1
       for i=k+1:n
            z=a(i,k)/a(k,k);
5
            a(i,k)=0;
6
            for j=k+1:n
                a(i,j)=a(i,j)-z*a(k,j);
8
            end
9
       end
10
   end
11
```

```
function x=GaussianBacksub(a,b)
   n=length(a);
   for k=1:n-1
       for i=k+1:n
4
            z=a(i,k)/a(k,k);a(i,k)=0;
5
            for j=k+1:n
6
                 a(i,j)=a(i,j)-z*a(k,j);
            end
8
            b(i)=b(i)-z*b(k);
9
       end
10
   end
11
   for i=n:-1:1
12
       s=b(i);
13
       for j=i+1:1:n
14
            s=s-a(i,j)*x(j);
15
       end
16
       x(i)=s/a(i,i);
17
   end
18
```

•
$$A = A^{(1)} \to A^{(2)} \to \dots \to A^{(n)}$$

$$\begin{bmatrix} a_{11}^{(k)} & \dots & a_{1,k-1}^{(k)} & a_{1k}^{(k)} & \dots & a_{1j}^{(k)} & \dots & a_{1n}^{(k)} \\ \vdots & \ddots & & \vdots & & \vdots & & \vdots \\ 0 & \dots & a_{k-1,k-1}^{(k)} & a_{k-1,k}^{(k)} & \dots & a_{k-1,j}^{(k)} & \dots & a_{k-1,n}^{(k)} \\ 0 & \dots & 0 & a_{kk}^{(k)} & \dots & a_{kj}^{(k)} & \dots & a_{kn}^{(k)} \\ 0 & \dots & 0 & a_{k+1,k}^{(k)} & \dots & a_{k+1,j}^{(k)} & \dots & a_{k+1,n}^{(k)} \\ \vdots & & \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & a_{ik}^{(k)} & \dots & a_{ij}^{(k)} & \dots & a_{in}^{(k)} \\ \vdots & & \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & a_{nk}^{(k)} & \dots & a_{nj}^{(k)} & \dots & a_{nn}^{(k)} \end{bmatrix}$$

• Our task is to describe how $A^{(k+1)}$ is obtained from $A^{(k)}$. The formula is

$$a_{ij}^{(k+1)} = \begin{cases} a_{ij}^{(k)} & \text{if } i \leqslant k \\ a_{ij}^{(k)} - (a_{ik}^{(k)}/a_{kk}^{(k)})a_{kj}^{(k)} & \text{if } i \geqslant k+1 \\ 0 & \text{if } i \geqslant k+1 \\ 0 & \text{if } i \geqslant k+1 \\ \end{cases}$$

Then we set $U = A^{(n)}$ and define L by

$$l_{ik} = \begin{cases} a_{ik}^{(k)} / a_{kk}^{(k)} & \text{if } i \geqslant k+1\\ 1 & \text{if } i = k\\ 0 & \text{if } i \leqslant k-1 \end{cases}$$

Basic Gaussian Elimination

THEOREM 1 (Theorem on Nonzero Privots)

If all the pivot elements $a_{kk}^{(k)}$ are nonzero in the process just described, then A = LU.

Proof.

Observe that $a_{ij}^{(k+1)} = a_{ij}^{(k)}$ if $i \le k$ or $j \le k-1$. Note $u_{kj} = a_{kj}^{(n)} = a_{kj}^{(k)}$, $l_{ik} = 0$ if k > i, and $u_{kj} = 0$ if k > j. Now let $i \le j$. We have

$$(LU)_{ij} = \sum_{k=1}^{n} l_{ik} u_{kj} = \sum_{k=1}^{i} l_{ik} u_{kj}^{(k)} = \sum_{k=1}^{i} l_{ik} a_{kj}^{(k)}$$
$$= \sum_{k=1}^{i-1} l_{ik} a_{kj}^{(k)} + l_{ii} a_{ij}^{(i)}$$

Proof.

$$= \sum_{k=1}^{i-1} (a_{ik}^{(k)}/a_{kk}^{(k)}) a_{kj}^{(k)} + a_{ij}^{(i)}$$

$$= \sum_{k=1}^{i-1} (a_{ij}^{(k)} - a_{ij}^{(k+1)}) + a_{ij}^{(i)}$$

$$= a_{ij}^{(1)} = a_{ij}$$

Proof.

If i > j, then

$$(LU)_{ij} = \sum_{k=1}^{n} l_{ik} u_{kj} = \sum_{k=1}^{j} l_{ik} a_{kj}^{(k)}$$

$$= \sum_{k=1}^{j} (a_{ij}^{(k)} - a_{ij}^{(k+1)})$$

$$= a_{ij}^{(1)} - a_{ij}^{j+1}$$

$$= a_{ij}^{(1)} = a_{ij}$$

Since $a_{ii}^{(k)} = 0$ if $i \ge j + 1$ and $k \ge j + 1$.

Contents

- Pivoting and Constructing an algorithm
 - Basic Gaussian Elimination
 - Pivoting
 - Gaussian Elimination with Scaled Row Pivoting
 - Factorizations PA = LU
 - Operation Counts
 - Diagonally Dominant Matrices
 - Tridiagonal System

Pivoting

• The first example

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

The algorithm fails because $a_{11} = 0$.

Pivoting

• Another example, which ε is a small number different from 0.

$$\begin{bmatrix} \varepsilon & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

The solution is

$$\begin{cases} x_2 = (2 - \varepsilon^{-1})/(1 - \varepsilon^{-1}) \approx 1 \\ x_1 = (1 - x_2)\varepsilon^{-1} \approx 0 \end{cases}$$

But the correct solution is

$$\left\{ \begin{array}{l} x_1 = 1/(1-\varepsilon) \approx 1 \\ x_2 = (1-2\varepsilon)/(1-\varepsilon) \approx 1 \end{array} \right.$$

• Interchanging the two equaions in example 1

$$\begin{bmatrix} 1 & 1 \\ \varepsilon & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

The solution is

$$\begin{cases} x_2 = (1 - 2\varepsilon)/(1 - \varepsilon) \approx 1 \\ x_1 = (2 - x_1) \approx 1 \end{cases}$$

Contents

- Pivoting and Constructing an algorithm
 - Basic Gaussian Elimination
 - Pivoting
 - Gaussian Elimination with Scaled Row Pivoting
 - Factorizations PA = LU
 - Operation Counts
 - Diagonally Dominant Matrices
 - Tridiagonal System

$$Ax = b$$

The algorithm has two parts: a factorization phase and a solution phase.

- The factorization phase is designed to produce the LU-decomposition of PA, the permuted linear system is PAx = Pb. P is a permutation matrix.
 - The factorization is obtained from a modified Gaussian elimination algorithm to be explained below.
- In the solution phase, we consider two equations Lz = Pb and Ux = z.
 - b is rearranged according to P and $b \leftarrow Pb$.
 - Lz = b is solved for z and $b \leftarrow L^{-1}b$.
 - Then back substitution is used to solve Ux = b for $x_n, x_{n-1}, \ldots, x_1$.

• Computing the scale of each row. We put

$$s_i = \max_{1 \le j \le n} |a_{ij}| = \max\{|a_{i1}|, |a_{i2}|, \dots, |a_{in}|\} \qquad (1 \le i \le n)$$

These *n* numbers are recorded in the scale vector $s = [s_1, s_2, \dots, s_n]$.

- Firstly, define the index vector p to be $[p_1, p_2, \ldots, p_n] = [1, 2, \ldots, n]$. Selecting an index j for which $|a_{i1}|/s_i$ is largest. Interchanging p_j with p_1 in the index vector. Next, use multipliers (a_{p_i1}/a_{p_11}) times row 1, and subtract from equations p_i for $2 \le i \le n$.
- At step k, select j to be the first index corresponding to the largest of the ratios, $\{|a_{p_ik}|/s_{p_i} \mid k \leq i \leq n\}$, interchanging p_j with p_k in p.

Pseudocode for Factorization phase

```
• input n, (a_{ij})

for i=1 to n do

p_i \leftarrow i

smax \leftarrow 0

for j=1 to n do

smax \leftarrow max(smax, |a_{ij}|)

end do

s_i \leftarrow smax

end do
```

• for k=1 to n-1 do $rmax \leftarrow 0$ for i = k to n do $r \leftarrow |a_{p_i k}/s_{p_i}|$ if (r > rmax) then $rmax \leftarrow r \quad j \leftarrow i$ end if end do $p_i \leftrightarrow p_k$ for i = k + 1 to n do $z \leftarrow a_{p,k}/a_{p,k}; a_{p,k} \leftarrow z$ for j = k + 1 to n do $a_{p_ij} \leftarrow a_{p_ij} - z a_{p_kj}$ end do end do end do output $(a_{ij}), (p_i)$

Pseudocode for Solution phase

• for k=1 to n-1 do for i=k+1 to n do $b_{p_i} \leftarrow b_{p_i} - a_{p_i k} b_{p_k}$ end do end do for i=n to 1 step -1 do $x_i \leftarrow (b_{p_i} - \sum_{j=i+1}^n a_{p_i j} x_j)/a_{p_i i}$ end do output (x_i)

```
function x=ScaleGaussian(a,b)
   n=length(a);
   for i=1:n
       p(i)=i;
4
       smax=0;
5
6
       for j=1:n
        smax=max(smax, abs(a(i,j)));
       end
8
       s(i)=smax;
9
   end
10
   for k=1:n-1
11
       format rat rmax=0;
12
       for i=k:n
13
            r=abs(a(p(i),k))/s(p(i))
14
            if r>rmax
15
                 rmax=r; j=i;
16
            end
17
        end
18
```

```
c=p(k);p(k)=p(j);p(j)=c;
1
        for i=k+1 \cdot n
2
            z=a(p(i),k)/a(p(k),k);a(p(i),k)=z;
3
            for j=k+1:n
4
                 a(p(i),j)=a(p(i),j)-z*a(p(k),j);
5
            end
6
        end
        for i=k+1:n
8
            b(p(i))=b(p(i))-a(p(i),k)*b(p(k));
9
        end
10
   end
11
   for i=n:-1:1
12
        q=b(p(i));
13
        for j=i+1:1:n
14
            q=q-a(p(i),j)*x(j);
15
        end
16
        x(i)=q/a(p(i),i);
17
   end
18
```

Contents

- Pivoting and Constructing an algorithm
 - Basic Gaussian Elimination
 - Pivoting
 - Gaussian Elimination with Scaled Row Pivoting
 - Factorizations PA = LU
 - Operation Counts
 - Diagonally Dominant Matrices
 - Tridiagonal System

• Let p_1, p_2, \ldots, p_n be the indices of the rows in the order in which they become pivoting rows. Let $A^{(1)} = A$, and define $A^{(2)}, A^{(3)}, \ldots, A^{(n)}$ recursively by the formula

$$a_{p_{i}j}^{(k+1)} = \begin{cases} a_{p_{i}j}^{(k)} & \text{if } i \leq k \text{ or } i > k > j \\ a_{p_{i}j}^{(k)} - (a_{p_{i}k}^{(k)}/a_{p_{k}k}^{(k)}) a_{p_{k}j}^{(k)} & \text{if } i > k \text{ and } j > k \\ a_{p_{i}k}^{(k)}/a_{p_{k}k}^{(k)} & \text{if } i > k \text{ and } j = k \end{cases}$$

THEOREM 2 (Theorem on LU Factorization of PA)

Define a permutation matrix P whose elements are $P_{ij} = \delta_{p,j}$. Define an upper triangular matrix U whose elements are $u_{ij} = a_{p,j}^{(n)}$ if $j \ge i$. Define a unit lower triangular matrix L whose elements are $l_{ij} = a_{p,j}^{(n)}$ if j < i. Then PA = LU.

Proof.

From the recursive formula, we have

$$u_{kj} = a_{p_k j}^{(n)} = a_{p_k j}^{(k)} (j \ge k)$$

$$l_{ik} = a_{p_i k}^{(n)} = a_{p_i k}^{(k+1)} = a_{p_i k}^{(k)} / a_{p_k k}^{(k)} (i \ge k)$$

Because the row p_k in $A^{(n)}$ became fixed in step k, and column k in $A^{(n)}$ became fixed in step k+1. Thus

$$a_{p_k j}^{(n)} = a_{p_k j}^{(k)}$$
 $a_{p_i k}^{(n)} = a_{p_i k}^{(k+1)}$

Factorizations PA = LU

Proof.

Suppose that $i \leq j$.

$$(LU)_{ij} = \sum_{k=1}^{i} l_{ik} u_{kj}$$

$$= \sum_{k=1}^{i-1} (a_{p_i k}^{(k)} / a_{p_k k}^{(k)}) a_{p_k j}^{(k)} + l_{ii} a_{p_i j}^{(i)}$$

$$= \sum_{k=1}^{i-1} (a_{p_i j}^{(k)} - a_{p_i j}^{(k+1)}) + a_{p_i j}^{(i)}$$

$$= a_{p_i j}^{(1)} = a_{p_i j}$$

Factorizations PA = LU

Proof.

If i > j, then

$$(LU)_{ij} = \sum_{k=1}^{j} l_{ik} u_{kj}$$

$$= \sum_{k=1}^{j-1} (a_{p_i k}^{(k)} / a_{p_k k}^{(k)}) a_{p_k j}^{(k)}) + (a_{p_i j}^{(j)} / a_{p_j j}^{(j)})$$

$$= \sum_{k=1}^{j-1} (a_{p_i j}^{(k)} - a_{p_i j}^{(k+1)}) + a_{p_i j}^{(j)}$$

$$= a_{p_i j}^{(1)} = a_{p_i j}$$

Factorizations PA = LU

Proof.

And,

$$(PA)_{ij} = \sum_{k=1}^{n} P_{ik} a_{kj} = \sum_{k=1}^{n} \delta_{p_{ik}} a_{kj} = a_{p_{ij}}$$

So for all pairs (i, j), that

$$(PA)_{ij} = (LU)_{ij}$$

Factorizations PA = LU

THEOREM 3 (Theorem on Solving PA = LU)

If the factorization PA = LU is produced from the Gaussian algorithm with scaled row pivoting, then the solution of Ax = b is obtained by first solving Lz = Pb and then solving Ux = z. Similarly, the solution of $y^TA = c^T$ is obtained by solving $U^Tz = c$ and then $L^TPy = z$.

Pseudocode in terms of L and U

• input $n, (l_{ij}), (u_{ij}), (b_i), (p_i)$ for i=1 to n do $z_i \leftarrow b_{p_i} - \sum_{j=1}^{i-1} l_{ij} z_j$ end do for i=n to 1 step -1 do $x_i \leftarrow (z_i - \sum_{j=i+1}^n u_{ij} x_j) / u_{ii}$ end do output (x_i)

Pseudocode in terms of L and U

• input $n, (a_{ij}), (b_i), (p_i)$ for i=1 to n do $z_i \leftarrow b_{p_i} - \sum_{j=1}^{i-1} a_{p_i j} z_j$ end do for i=n to 1 step -1 do $x_i \leftarrow (z_i - \sum_{j=i+1}^n a_{p_i j} x_j) / a_{p_i i}$ end do output (x_i) Factorizations PA = LU

Pseudocode for $y^T A = c^T$

• input $n, (a_{ij}), (c_i), (p_i)$ for j=1 to n do $z_j \leftarrow (c_i - \sum_{i=1}^{j-1} a_{p_i j} z_i) / a_{p_j j}$ end do for j=n to 1 step -1 do $y_{p_j} \leftarrow z_j - \sum_{i=j+1}^n a_{p_i j} y_{p_i}$ end do output (x_i) Operation Counts

Contents

- Pivoting and Constructing an algorithm
 - Basic Gaussian Elimination
 - Pivoting
 - Gaussian Elimination with Scaled Row Pivoting
 - Factorizations PA = LU
 - Operation Counts
 - Diagonally Dominant Matrices
 - Tridiagonal System

Operation Counts

THEOREM 4 (Theorem on Long Operations)

If Gaussian elimination is used with scaled row pivoting, then the solution of the system Ax = b, with fixed A, and m different vectors b, involves approximately

$$\frac{1}{3}n^3 + (\frac{1}{2} + m)n^2$$

long operations (multiplications or divisions).

Factorizations PA = LU

Proof.

Consider the first major step.

- Define p_1 involves n divisions (n ops).
- For each of the n-1 rows, a multiplier is computed (1 op), then a multiple of row p_1 is subtracted from p_i for $2 \le i \le n$. So the multiplier and the elimination process consume n ops per row.
- Since n-1 rows are processed, we have n(n-1) ops. So the total is n^2 ops.

For the entire calculation, the factorization requires

$$n^{2} + (n-1)^{2} + \ldots + 2^{2} = \frac{1}{3}n^{3} + \frac{1}{2}n^{2} + \frac{1}{6}n - 1 \approx \frac{1}{3}n^{3} + \frac{1}{2}n^{2}$$

long operations.

Operation Counts

Proof.

• In updating the b, there are n-1 steps. In the first, there are n-1 long operations. In the second, there are n-2, and so on. The total is

$$(n-1) + (n-2) + \ldots + 1 = \frac{1}{2}n^2 - \frac{1}{2}n$$

• In the back substitution, there is one long operation in the first step (computing x_n). Then there are successively 2, 3,..., n long operations. The total is

$$1 + 2 + \ldots + n = \frac{1}{2}n^2 + \frac{1}{2}n$$

The grand total is n^2 .

Contents

- Pivoting and Constructing an algorithm
 - Basic Gaussian Elimination
 - Pivoting
 - Gaussian Elimination with Scaled Row Pivoting
 - Factorizations PA = LU
 - Operation Counts
 - Diagonally Dominant Matrices
 - Tridiagonal System

Diagonally Dominant Matrices

The property of **diagonally dominant matrices** is expressed by the inequality $|a_{ii}| > \sum_{\substack{j=2\\ i\neq i}}^{n} |a_{ij}|$ $(1 \le i \le n)$.

It has the property that Gaussian elimination without pivoting can be safely used.

THEOREM 5 (Theorem on Preserving Diagonal Dominance)

Gaussian elimination without pivoting preserves the diagonal dominance of a matrix.

Proof.

It suffices to consider the first step in Gaussian elimination, so we have to prove that for i = 2, 3, ..., n,

$$|a_{ii}^{(2)}| > \sum_{\substack{j=2\\j\neq i}}^{n} |a_{ij}^{(2)}|$$

In terms of A, this means $|a_{ii} - (a_{i1}/a_{11})a_{1i}| > \sum_{\substack{j=2 \ j \neq i}}^{n} |a_{ij} - (a_{i1}/a_{11})a_{1j}|$

It suffices to prove the stronger inequality

$$|a_{ii}| - |(a_{i1}/a_{11})a_{1i}| > \sum_{\substack{j=2\\j\neq i}}^{n} \{|a_{ij}| + |(a_{i1}/a_{11})a_{1j}|\}$$

An equivalent inequality is $|a_{ii}| - \sum_{\substack{j=2 \ j \neq i}}^{n} |a_{ij}| > \sum_{\substack{j=2 \ j \neq i}}^{n} |(a_{i1}/a_{11})a_{1j}|$

Form the diagonal dominance in the *i*th row, we know that

$$|a_{ii}| - \sum_{\substack{j=2\\i\neq i}}^{n} |a_{ij}| > |a_{i1}|$$

Hence, it suffices to prove that $|a_{i1}| \ge \sum_{j=2}^{n} |(a_{i1}/a_{11})a_{1j}|$

This is true because of the diagonal dominance in row 1:

$$|a_{11}| > \sum_{i=2}^{n} |a_{1i}| \Longrightarrow 1 > \sum_{i=2}^{n} |a_{1i}/a_{11}|$$

Diagonally Dominant Matrices

COROLLARY 1 (First Corollary on Diagonally Dominant Matrix)

Every diagonally dominant matrix is nonsingular and has an LU-factorization.

COROLLARY 2 (Second Corollary on Diagonally Dominant Matrix)

If the scaled row pivoting version of Gaussian elimination recomputes the scale array after each major step and is applied to a diagonally dominant matrix, then the pivots will be the natural ones: 1, 2, ..., n. Hence, the work of choosing the pivots can be omitted in this case.

Diagonally Dominant Matrices

Proof.

By Theorem 5, we only need to prove that the first pivot chosen in the algorithm is 1. So we should prove $|a_{11}|/s_1 > |a_{i1}|/s_i$ $(2 \le i \le n)$.

By the diagonal dominance, $|a_{ii}| = max_j |a_{ij}| = s_i$ for all i.

Hence, $|a_{11}|/s_1 = 1$.

For
$$i \ge 2$$
, We have $|a_{i1}| \le \sum_{\substack{j=1 \ j \ne i}}^n |a_{ij}| < |a_{ii}| = s_i$

Thus, $|a_{i1}|/s_i < 1$.

Contents

- Pivoting and Constructing an algorithm
 - Basic Gaussian Elimination
 - Pivoting
 - Gaussian Elimination with Scaled Row Pivoting
 - Factorizations PA = LU
 - Operation Counts
 - Diagonally Dominant Matrices
 - Tridiagonal System

• A square matrix $A = (a_{ij})$ is said to be tridiagonal if $a_{ij} = 0$ for all pairs (i, j) that satisfy |i - j| > 1.

• Step 1 consists of these replacements:

$$d_2 \leftarrow d_2 - (a_1/d_1)c_1$$

 $b_2 \leftarrow b_2 - (a_1/d_1)b_1$

In the back substitution phase, the first step is

$$x_n \leftarrow b_n/d_n$$

The next step is

$$x_{n-1} \leftarrow (b_{n-1} - c_{n-1}x_n)/d_{n-1}$$

```
input n, (a_i), (b_i), (c_i), (d_i)

for i = 2 to n do

d_i \leftarrow d_i - (a_{i-1}/d_{i-1})c_{i-1}

b_i \leftarrow b_i - (a_{i-1}/d_{i-1})b_{i-1}

end do

x_n \leftarrow b_n/d_n

for i = n - 1 to 1 step -1 do

x_i \leftarrow (b_i - c_i x_{i+1})/d_i

end do

output(x_i)
```

Tridiagonal System

```
1 function x=tri(a,b,c,d)
2 n=length(d);
3 for i=2:n
4     d(i)=d(i)-(a(i-1)/d(i-1))*c(i-1);
5     b(i)=b(i)-(a(i-1)/d(i-1))*b(i-1);
6 end
7 x(n)=b(n)/d(n);
8 for i=n-1:-1:1
9     x(i)=(b(i)-c(i)*x(i+1))/d(i);
10 end
```