Práctica Clustering

Introducción al análisis de datos con RA2B2C

Clustering

Está práctica tiene como objetivo trabajar distintos métodos de clustering en distintos tipos de datos.

Iris

El dataset Iris viene precargado en R en un objeto llamado iris (simplemente con poner iris R lo reconoce como cualquier otro dataframe). (Recordar escalar y centrar los datos)

- a) Observar el dataset iris y notar qué variables posee, cuántas observaciones, contar cantidad de observaciones de cada especie, etc.
- b) Realizar un PCA únicamente con las variables numéricas, sin incluir la especie. ¿Se observan grupos a simple vista? ¿Cuántos?
 - Pintar los puntos de acuerdo a la variable 'species'. ¿Coinciden las especies con los grupos?
- c) Usando kmeans, clusterizar los datos para distintos k. Usar tanto el criterio del codo como el criterio de silhouette para elegir un k adecuado.
 - ¿Los clusters encontrados son compactos?
 - ¿Todos los puntos de un cluster pertenecen a una misma especie siempre? ¿Qué caracteristica tienen los puntos que quedaron con otras especies?
- d) Usando clustering jerárquico, agrupar nuevamente los datos de iris. Decidir una medida de distancia, una de linkage y una altura para cortar. Graficar el dendrograma.
 - ¿Cómo son los clusters que quedan respecto a las especies?
 - Probar con distintos métodos de linkage y de altura y compararlos entre si.
- e) ¿Qué método de cluster funcionó mejor para estos datos?

Mamíferos

El dataset mamiferos.csv contiene la información de nutricional de la leche de distintos mamíferos. (Recordar escalar y centrar los datos)

- a) Cargar el dataset.
- b) Observar el dataset y notar qué variables posee, cuántas observaciones, etc.

- c) Realizar un PCA únicamente con las variables numéricas, sin incluir el nombre. ¿Se observan grupos a simple vista?
 - Graficar los nombres de los animales junto con los puntos. ¿Se encuentra ahora algún patrón?
- d) Usando kmeans, clusterizar los datos para distintos k. Usar tanto el criterio del codo como el criterio de silhouette para elegir un k adecuado.
 - ¿Los clusters encontrados son compactos?
 - ¿Los animales que aparecen en un mismo cluster poseen características similares? Interpretar los clusters obtenidos.
- e) Usando clustering jerárquico, agrupar nuevamente los datos. Decidir una medida de distancia, una de linkage y una altura para cortar. Graficar el dendrograma. ¿Los animales que aparecen en un mismo cluster poseen características similares? Interpretar los clusters obtenidos. Probar con distintos métodos de linkage y de altura y compararlos entre si.
- f) ¿Qué método de cluster funcionó mejor para estos datos?