

ĐẠI HỌC ĐÀ NẮNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN Vietnam - Korea University of Information and Communication Technology

SYSTEMS ANALYSIS AND DESIGN

Lecturers: Nguyen Thanh Binh – Nguyen Quang Vu – Le Viet Truong – Le Thi Bich Tra – Vo Van Luong – Nguyen Thi Hanh

Faculty of Computer Science

Vietnam - Korea University of Information and Communication Technology (VKU)

- Problem
 - A very simple problem to show the use of UML in analysis and design
 - It is taken from the "Applying UML and Patterns" book of Claig Larman

- A dice game
 - The player rolls 10 times 2 dice. If the total of two dice is 7, he gains 10 points. At the end of the game, the score is saved to the scoreboard

Main Activities of Software Development

Requirements Gathering

Define requirement specification

Implementation

Code the system based on the design

Analysis

Define the conceptual model

Integration and Test

Prove that the system meets the requirements

Maintenance

Post-install review Support docs Active support Design

Design the solution / software plan

Deployment

Installation and training

- Requirement analysis
 - Use-case diagram

- Use-case: Play
 - Description: The player rolls 2 dice 10 times. If each time the total is 7, he receives 10 points.
- Use-case: View High Score
 - Description: They player consults the scores

- Requirement analysis
 - Activity diagram
 - Some activities are linked to the graphical user interface

Use-case

- Requirement analysis
 - Activity diagram
 - The relationship between the use-case diagram and activity diagram

Main Activities of Software Development

Requirements Gathering

Define requirement specification

Implementation

Code the system based on the design

Analysis

Define the conceptual model

Integration and Test

Prove that the system meets the requirements

Maintenance

Post-install review Support docs Active support Design

Design the solution / software plan

Deployment

Installation and training

• Modeling of conceptual class diagram

• A first collaboration diagram

• A first class diagram

• Collaboration diagram and class diagram

• Sequence diagram

• The creation of objects at the beginning of the game (DiceGame) for a player

• State diagram: modelling the states of the DiceGame

• Detection of inconsistency between the activity diagram and the state diagram

• Modification of the activity diagram as well as the envisaged graphical user interface

• The treatment of the scoreboard must be taken into account: the update and the creation

• Sequence diagram: manage high score, create new player

• Sequence diagram: add high score to score board

• Class diagram

Main Activities of Software Development

Requirements Gathering

Define requirement specification

Implementation

Code the system based on the design

Analysis

Define the conceptual model

Integration and Test

Prove that the system meets the requirements

Maintenance

Post-install review Support docs Active support Design

Design the solution / software plan

Deployment

Installation and training

- Design
 - Take into account the implementation
 - Manage the graphical user interface part
 - Manage the persistence of scoreboard
 - Define the logical architecture
 - Define the physical architecture
 - Introduce the technical class permitting to implement the architecture

- General architecture
 - Classical three layer architecture

• A package diagram corresponds to the architecture

UI : presentation layerCore : Business logic layerDB : Persistence layer

Util : utility services/classes/functionalities

http://vku.udn.vn/

25

• Use design patterns to improve the classes of "Core" package

Class DiceGame has only one object Class HighScore has only one object

Design pattern : Singleton

• Singleton design pattern

Singleton static uniqueSingleton other attributs ...

return uniqueSingleton;

Application to DiceGame and HighScore.

static instance()

other operations ...

• Modified class diagram

• Observer design pattern

- Application of **Observer** design pattern to improve the class diagram
 - Decouple the graphical views and objects for the dice and players
 - Application of Observer pattern
 - **Die** and **Player** classes are **ConcreteSubject** class
 - Introduce DieView et PlayerView as ConcreteObserver classes

• User view are instances of *javax.swing.JPanel.java*

• Sequence diagram describes the interactions between **Die** object the its view

• The design of "UI" package

• The design of "Util" package

- The design of "DB" package
 - How to ensure the independence between "Core" and "DB" package
 - In order to be able to use several persistence types
 - File (serialisation)
 - Relation Database Management System (via JDBC)

• Use **FactoryMethod** design pattern

• The design of "DB" package

Note: HighScore class is a Singleton

The design of the "DB" package

• Deployment diagram

Main Activities of Software Development

Requirements Gathering

Define requirement specification

Implementation

Code the system based on the design

Analysis

Define the conceptual model

Integration and Test

Prove that the system meets the requirements

Maintenance

Post-install review Support docs Active support Design

Design the solution / software plan

Deployment

Installation and training

- Complete the interaction diagrams
- Generate the code

Conclusions

Conclusions

42

- Distinction between functional approach and object-oriented approach
- Master the basic object-oriented concepts
- UML: a modelling language
 - Need a development process
 - Different views
 - Different models
 - Use of the models in different development activities
- Master the main diagrams
 - Use-case diagram
 - Class diagram
 - Interaction diagram

Conclusions

- The UML concepts can be extended
 - The extensions
- Transformation of models to code
 - Models independent of programming language
- The automatic code generation is only a supplement
 - The models guide the coding process
- Master design principles
 - GRAPS principles/patterns
 - Some design patterns

Chapter 10. Case Study

