Ejercicios de Robótica

Alumno: ELVI MIHAI SABAU SABAU

Ejercicio 1.	2
Ejercicio 2.	3
Ejercicio 3.	5
Ejercicio 4.	7
Ejercicio 5.	9
Ejercicio 6.	11
Ejercicio 7.	11

Ejercicio 1.

Ejercicio práctico 1: Mediante las funciones de las herramientas matemáticas, obtener la matriz de transformación y graficar el resultado que representa las siguientes transformaciones sobre un sistema OXYZ fijo de referencia: traslación de (-3,10,10); giro de -90° sobre el eje O'U del sistema trasladado y giro de 90° sobre el eje O'V' del sistema girado.

ans :	=			
	0	0	1	-3
	-1	0	0	10
	0	-1	0	10
	0	0	0	1

Ejercicio 2.

Ejercicio práctico 2: modelado del robot PA10 de 6GDL a partir de la siguiente tabla de sus parámetros DH estándar y los límites articulares. Para introducir los límites articulares y el offset de la articulación, mira en la web siguiente o teclea el comando "help SerialLink" http://www.petercorke.com/RTB/rg/html/Link.html.

Transformación	Θ	d	a	α	Límite q(°)	Offset
0 → 1 °A₁	\mathbf{q}_1	0.317	O	-pi/2	[-177,177]	0
1 → 2 ¹A₂	\mathbf{q}_2	0	0.45	0	[-64,124]	-pi/2
2 → 3 ² A ₃	\mathbf{q}_3	0	O	pi/2	[-107,158]	pi/2
3 → 4 ³A ₄	\mathbf{q}_4	0.48	O	-pi/2	[-255,255]	0
4 → 5 ⁴ A ₅	\mathbf{q}_5	0	O	pi/2	[-165,165]	0
5 → 6 5A ₆	q ₆	0.07	0	0	[-255,255]	0

Nota: para poder visualizar el funcionamiento los parámetros DH, podéis ir creando objetos robot con 1, 2, 3,...hasta 6 eslabones e ir visualizando el cambio en los sistemas de referencia.

PA10-6GDL::	6	axis,	RRRRRR,	stdDH,	slowRNE

+	+				++
ij	theta	d	a	alpha	offset
1	q1	0.317	0	-1.5708	0
2	q2	0	0.45	0	-1.5708
3	q3	0	0	1.5708	1.5708
4	q4	0.48	0	-1.5708	0
5	q5	0	0	1.5708	0
6	[q6	0.07	0	0	0 [
4					

ans =

r =

6

ans =					
Revolute(std):	theta=ql	d=0.317	a= 0	alpha=-1.571	offset=0
Revolute(std):	theta=q2	d=0	a=0.45	alpha=0	offset=-1.571
Revolute(std):	theta=q3	d=0	a=0	alpha=1.571	offset=1.571
Revolute(std):	theta=q4	d=0.48	a=0	alpha=-1.571	offset=0
Revolute(std):	theta=q5	d=0	a=0	alpha=1.571	offset=0
Revolute(std):	theta=q6	d=0.07	a=0	alpha=0	offset=0

Ejercicio 3.

Ejercicio práctico 3: definir las siguientes posiciones articulares para el PA10 (las posiciones se indican en grados, pero en Matlab hay que introducirlas en radianes), calcular la cinemática directa (matriz **T**) para cada uno de ellos y realizar un *plot* en esa posición.

Posición de home: $q_h = [0, 0, 0, 0, 0, 0]$. Posición de escape: $q_e = [0, 30, 90, 0, 60, 0]$. Posición de seguridad: $q_s = [0, 45, 90, 0, -45, 0]$.

Posición $q_1 = [0, 45, 45, 0, 90, 0]$. Posición $q_2 = [20, 90, 45, -22.5, 60, 0]$.

qhQ =				qeQ =			
1.0000	0	0	0.0000	-1.0000	0.0000	-0.0000	0.6407
0	1.0000	0	-0.0000	-0.0000	1.0000	0.0000	0.0000
0	0	1.0000	1.3170	0.0000	0.0000	-1.0000	0.3967
0	0	0	1.0000	0	0	0	1.0000
qsQ =				q1Q =			
-0.0000	-0.0000	1.0000	0.7276	-1.0000	0.0000	-0.0000	0.7982
0.0000	1.0000	0.0000	0.0000	-0.0000	1.0000	0.0000	0.0000
-1.0000	0.0000	-0.0000	0.2958	0.0000	0.0000	-1.0000	0.5652
0	0	0	1.0000	0	0	0	1.0000
q2Q =							
		-0.8169	-0.5703	-0.0861	0.7358		
		-0.5010	0.7756	-0.3840	0.2431		
		0.2857	-0.2706	-0.9193	-0.0868		
		0	0	0	1.0000		

Ejercicio 4.

Ejercicio práctico 4: realizar la resolución de la cinemática inversa para el resto de posiciones del PA10 (q_e, q_s, q_1, q_2) siguiendo el mismo procedimiento que en el ejemplo mostrado utilizando las funciones *ikine6s* e *ikunc*. Para más información de los métodos, se puede acceder mediante el comando *"help ikine6s"* y *"help ikunc"* en Matlab.

T =											
						T1 =					
1.0000	0	0	0.0000								
0	1.0000	0	-0.0000			-1.0000	0.0000	-0.0000	0.6407		
0	0	1.0000	1.3170			-0.0000	1.0000	0.0000	0.0000		
0	0	0	1.0000			0.0000	0.0000	-1.0000	0.3967		
						0	0	0	1.0000		
qinversa =											
						qinversa1 =					
2.3562	0	-0.0000	-3.1416	-0.0000	0.7854						
						-3.1416	-1.4470	-0.0000	0.0000	-1.6946	-3.1416
Tinversa =											
						Tinversa1 =					
1.0000	0	-0.0000	0.0000			1 0000	0 0000	0.0000	0 0000		
0	1.0000	-0.0000	-0.0000			-1.0000	-0.0000	-0.0000	0.9229		
0.0000	0.0000	1.0000	1.3170			-0.0000	1.0000	0.0000	0.0000		
0						0.0000	0.0000	-1.0000	0.3618		
U	0	0	1.0000			0	0	0	1.0000		

T2 =					Т3	=					
-0.0000 0.0000 -1.0000 0	-0.0000 1.0000 0.0000	1.0000 0.0000 -0.0000	0.7276 0.0000 0.2958 1.0000			-1.0000 -0.0000 0.0000	0.0000 1.0000 0.0000 0	-1.0000	0.7982 0.0000 0.5652 1.0000		
qinversa2 =					qi	nversa3 =					
-3.1416	-1.5999	0	-3.1416	-0.0291	0.0000	-3.1416	-1.2693	-0.0000	0.0000 -	1.8723	-3.1416
Tinversa2 =					Ti	nversa3 =					
-0.0000 0.0000 -1.0000	-0.0000 1.0000 0.0000	1.0000 0.0000 -0.0000 0	0.9996 0.0000 0.2899 1.0000			-1.0000 -0.0000 0.0000	-0.0000 1.0000 0.0000	-1.0000	0.8881 0.0000 0.5231 1.0000		
T4 =											
		-0.50		.7756	-0.0861 -0.3840 -0.9193	0.2	2431 0868				
	(qin v ersa	4 =								
		-2.82	224 -2	2.0511	-0.0000	-0.3	3557	-1.3228	2.997	13	
		Tinversa	4 =								
		-0.81 -0.50 0.28	10 (0.5703 0.7756 0.2706 0	-0.0861 -0.3840 -0.9193	0.2 -0.1	2319				

Ejercicio 5.

Ejercicio práctico 5: evalúa al robot PA10 y al robot planar en otras posiciones al límite de su espacio de trabajo o donde existan alineaciones de ejes (puedes emplear la función *rand* para probar diferentes posiciones). Para el robot planar, sólo ten en cuenta las dos primeras filas y la última de la matriz Jacobiana, ya que el resultado no es una matriz cuadrada, y sólo es necesario evaluar el espacio cartesiano plano y uno de los vectores de orientación del robot en el plano (el robot planar sólo puede posicionarse y orientarse en el plano).

					2
0	0.0000	0	0.0000	0.4500	-0.0000
0	-0.0000	0	-0.0000	-0.0000	-0.5500
0	0.0700	0	0.5500	0.5500	0
-1.0000	0	-1.0000	0	0	0.0000
0.0000	1.0000	0.0000	1.0000	1.0000	0
0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
					0
					3
0	0.0000	0	0.5500	1.0000	0.0000
0	0.0700	0	0	0	0.0000
0	0	0	0	-0.0000	
0	-1.0000		0		-0.0000
0				1.0000	
1.0000	0.0000	1.0000	0.0000	0.0000	1.0000
				66	2.8735e-
1.570	0	0	0	0	0
(0.0700	0	0.5500	1.0000	0.0000
(0	0	0	0	0.0000
(0	0	0	-0.0000	0
(0	0	0	0	-0.0000
(1.0000	0	1.0000	1.0000	0.0000
1.000	0.0000	1.0000	0.0000	0.0000	1.0000

Ejercicio 6.

Ejercicio práctico 6: calcula los pares articulares del resto de posiciones del robot PA10 $(q_s, q_1 y q_2)$ utilizando el comando robot.rne (q_0, v_0, a_0) .

<u>Nota</u>: por defecto, la RT calcula la dinámica inversa de un robot empleando un método rápido llamado *fastRNE*. Si el comando <u>robot.rne</u> no funcionara correctamente (da un error que cierra Matlab), será necesario cambiarlo mediante la opción <u>robot.fast</u> al método *slowRNE*. Para ello se pone el valor de <u>robot.fast</u> a O (<u>robot.fast=0</u>).

ans =						
0.1	068	-0.0000	-0.0000	ans =		
-0.0	000	0.0528	-0.0000			
-0.0	000	-0.0000	0.1308		0.0000	
					0.0109	
				0.0000	-0.0000	0.0199
ans =						
				ans =		
0.3	783	-0.0201	0.0003			
		0.0641		0.0074	0	-0.0000
		0.0009		0	0.0070	0
0.0	003	0.0009	0.5750	-0.0000	0	0.0030
ans =						
ans -				ans =		
0.0	599	0.0000	0.0000	0.0014	0	0
		0.0577			0.0014	
		-0.0018		0	0	0.0006
0.0	000	0.0010	0.0004			
tau =						
cau –						
0.0	000	60 2155	10 0550	0.0000	0 (0(2	0
-0.0	000	-62.3155	-19.2553	0.0000	0.6263	0
tau =						
-0.0	000	-71.1769	-28.1168	0.0000	0.0000	0
tou -						
tau =						
						_
-0.0	000	-84.5689	-20.0145	0.1468 -	0.1789	0

Ejercicio 7.

Ejercicio práctico 7: Calcula los resultados dinámicos (par articular, par de gravedad, par de coriolis, par de inercia) para distintas posiciones con el valor de la gravedad en la Luna (g=1,62 m/s²). Justifica los resultados.

r =

PA10 (6 axis, RRRRRR, stdDH, fastRNE)

+-	+	+	+	+-	+-	+
1	jΙ	theta	d	a	alpha	offset
+-	+	+	+	+-	+-	+
1	1	q1	0.317	0 [-1.571	0
1	2	q2	0 [0.45	0	-1.571
	3	d3	0	0	1.571	1.571
1	4	q4	0.48	0 [-1.571	0
	5	q5	0	0 [1.571	0
	6	q6	0.07	0 [0 [0
+-	+	+	+	+-	+-	+

G0 =

G1 =

G2 =

$$M0_0 =$$

3.3207 0.0009 0.0013 0.0129 -0.0000 0.0000

M0 1 =

3.3216 3.9875 1.1747 0.0129 -0.0295 0.0000

M0 2 =

3.3229 5.1610 2.3685 0.0129 -0.0387 0.0000

M1 0 =

4.5375 -0.0004 -0.0000 -0.0510 0.0000 -0.0006

M1 1 =

4.5371 5.9348 2.1694 -0.0510 0.0328 -0.0006

M1 2 =

4.5371 8.1042 3.4065 -0.0510 0.0453 -0.0006

					13
C0 1 =					
_					
1.4263	0.0014	0.0040	-0.0258	-0.0000	-0.0009
0.0000	-0.0000	-3.9881	0.0000	-0.0043	0.0000
0.0000	3.9881	0.0000	0.0000	-0.0681	0
-0.0094	-0.0000	0.0000	-0.0000	-0.0000	0.0006
-0.0000	0.0043	0.0681	-0.0000	0	0
-0.0009	0	0	-0.0006	0	0
C0_2 =					
1.4263	1.4277	-3.8636			
-1.4263	0.0000		0.0094	-0.0043	
3.8677	3.9881	0.0000	0.0545	-0.0681	0.0009
-0.0094				-0.0035	0.0006
0.0001	0.0043	0.0681	0.0035		0.0009
-0.0009	-0.0009	-0.0009	-0.0006	-0.0009	0
C1 1 =					
6.3571	0.0031	0.0057	-0.0365	0.0000	-0.0000
0.0000	0.0000	-2.8013	-0.0000	0.1601	-0.0000
0.0000	2.8013	0	0	0.0963	0
-0.1021	-0.0000	-0.0000	0.0000	0.0000	-0.0009
0.0000	-0.1601	-0.0963	0.0000	0	0
-0.0000	0	0	0.0009	0	0
$C1_2 =$					
6.3571	6.3602	0.1658	-0.0365	0.1601	
-6.3571	0.0000		0.1021	0.1601	
-0.1601	2.8013	0.0000	0.0383		0
-0.1021			0.0000		
-0.1601	-0.1601	-0.0963	0.0343	0	0

-0.0000 -0.0000 -0.0000 0.0009 -0.0000 0

Ejercicio 8.

Ejercicio práctico 8: ¿Cómo afecta añadir una carga de este tipo a la componente gravitacional e inercial? ¿Y si la separamos también 0.3 m en el eje X? ¿Añadir una carga afectará sólo a la componente gravitacional? Justifica las respuestas haciendo uso del robot PA10.

Como podemos observar a continuación, al agregar peso al robot, cambian los parámetros de gravedad.

Res0 =						
0.0000	-75.6123	-28.0259	0.0000	-3.3164	0.0000	
Res1 =						
0.0000	-70.2684	-22.6820	0.0000	12.2625	0.0000	
Res2 =						
-0.0000	-83.4466	-12.4911	-2.4363	12.2207	-3.3182	
Vqs_1 =						
4.5481	0.0009	0.0013	0.5067	0.0000	1.0345	
Vq1_1 =						
4.0908	-0.0004	-0.0000	0.0573	-0.0000	0.3722	
Vq2_1 =						
4.6529	-0.1244	-0.1235	0.1522	0.0840	0.2758	

0 0 0

0

0

0

0

0

Ejercicio 9.

Ejercicio práctico 9: Realiza 3 trayectorias articulares con el robot PA10 entre diferentes puntos probando el perfil trapezoidal y polinomial. Para visualizar los valores de velocidad y aceleración puedes emplear el comando plot (qd). Realiza 3 trayectorias cartesianas con el robot PA10 cambiando los valores de la posición cartesiana del robot. Para todas las trayectorias, representa gráficamente los valores de las posiciones en los tres ejes del espacio cartesiano X Y Z a lo largo de la trayectoria y los valores de su jacobiano (determinante matriz **J**).

0	0	0	0	0	0	0	0.4377	0.4377	0	0.8753
0	0.0001	0.0001	0	0.0001	0	0	0.4673	0.4673	0	0.9346
0	0.0005	0.0005	0	0.0010	0	0	0.4965	0.4965	0	0.9929
0	0.0016	0.0016	0	0.0033	0	0	0.5249	0.5249	0	1.0499
0	0.0038	0.0038	0	0.0075	0	0	0.5525	0.5525	0	1.1051
0	0.0071	0.0071	0	0.0142	0	0	0.5791	0.5791	0	1.1582
0	0.0119	0.0119	0	0.0238	0	0	0.6044	0.6044	0	1.2088
0	0.0183	0.0183	0	0.0365	0	0	0.6284	0.6284	0	1.2568
0	0.0264	0.0264	0	0.0527	0	0	0.6509	0.6509	0	1.3018
0	0.0362	0.0362	0	0.0725	0	0	0.6309	0.6718	0	1.3435
0	0.0480	0.0480	0	0.0960	U				-	
0	0.0616	0.0616	0	0.1232	0	0	0.6909	0.6909	0	1.3818
0	0.0771	0.0771	0	0.1543		0	0.7083	0.7083	0	1.4165
0	0.0945	0.0945	0	0.1890		0	0.7238	0.7238	0	1.4476
0	0.1136	0.1136	0	0.2273		0	0.7374	0.7374	0	1.4748
0	0.1345	0.1345	0	0.2690		0	0.7492	0.7492	0	1.4983
0	0.1570	0.1570	0	0.3140		0	0.7590	0.7590	0	1.5181
0	0.1810	0.1810	0	0.3620		0	0.7671	0.7671	0	1.5343
0	0.2063	0.2063	0	0.4126		0	0.7735	0.7735	0	1.5470
0	0.2329	0.2329	0	0.4657	0	0	0.7783	0.7783	0	1.5566
0	0.2605	0.2605	0	0.5209	0	0	0.7816	0.7816	0	1.5633
0	0.2889	0.2889	0	0.5779	0	0	0.7838	0.7838	0	1.5675
0	0.3181	0.3181	0	0.6362	0	0	0.7849	0.7849	0	1.5698
0	0.3477 0.3777	0.3477	0	0.6955 0.7554	0	0	0.7853	0.7853	0	1.5707
0		0.3777	0			0	0.7854	0.7854	0	1.5708
0	0.4077	0.4077	U	0.8154	0	U	0.7034	0.7034	U	1.3700

V1 =

0	0	0	0	0	0	0.1945	0.8753	0.4377	-0.2188	0.5836	0
0.0000	0.0001	0.0001	-0.0000	0.0001	0	0.2077	0.9346	0.4673	-0.2337	0.6231	0
0.0002	0.0010	0.0005	-0.0003	0.0007	0	0.2207	0.9929	0.4965	-0.2482	0.6620	0
0.0007	0.0033	0.0016	-0.0008	0.0022	0	0.2333	1.0499		-0.2625	0.6999	0
0.0017	0.0075	0.0038	-0.0019	0.0050	0			0.5249			_
0.0032	0.0142	0.0071	-0.0036	0.0095	0	0.2456	1.1051	0.5525	-0.2763	0.7367	0
0.0053	0.0238	0.0119	-0.0060	0.0159	0	0.2574	1.1582	0.5791	-0.2895	0.7721	0
0.0081	0.0365	0.0183	-0.0091	0.0244	0	0.2687	1.2088	0.6044	-0.3022	0.8059	0
0.0117	0.0527	0.0264	-0.0132	0.0351	0	0.2793	1.2568	0.6284	-0.3142	0.8379	0
0.0161	0.0725	0.0362	-0.0181	0.0483	0	0.2893	1.3018	0.6509	-0.3254	0.8678	0
0.0213	0.0960	0.0480	-0.0240	0.0640	0	0.2986	1.3435	0.6718	-0.3359	0.8957	0
0.0274	0.1232	0.0616	-0.0308	0.0822	0	0.3071	1.3818	0.6909	-0.3455	0.9212	0
0.0343	0.1543	0.0771	-0.0386	0.1028	0	0.3148	1.4165	0.7083	-0.3541	0.9444	0
0.0420	0.1890	0.0945	-0.0472	0.1260	0	0.3217	1.4476	0.7238	-0.3619	0.9650	0
0.0505	0.2273	0.1136	-0.0568	0.1515	0	0.3278	1.4748	0.7374	-0.3687	0.9832	0
0.0598	0.2690	0.1345	-0.0673	0.1794	0	0.3330	1.4983	0.7492	-0.3746	0.9989	0
0.0698	0.3140	0.1570	-0.0785	0.2093	0	0.3374	1.5181	0.7590	-0.3795	1.0121	0
0.0804	0.3620	0.1810	-0.0905	0.2413	0	0.3410	1.5343	0.7671	-0.3836	1.0228	0
0.0917	0.4126	0.2063	-0.1032	0.2751	0	0.3438	1.5470	0.7735	-0.3867	1.0313	0
0.1035	0.4657	0.2329	-0.1164	0.3105	0	0.3459	1.5566	0.7783	-0.3891	1.0377	0
0.1158	0.5209	0.2605	-0.1302	0.3473	0	0.3474	1.5633	0.7816	-0.3991	1.0422	0
0.1284	0.5779	0.2889	-0.1445	0.3852	0						
0.1414	0.6362	0.3181	-0.1590	0.4241	0	0.3484	1.5675	0.7838	-0.3919	1.0450	0
0.1546	0.6955	0.3477	-0.1739	0.4636	0	0.3489	1.5698	0.7849	-0.3924	1.0465	0
0.1679	0.7554	0.3777	-0.1888	0.5036	0	0.3491	1.5707	0.7853	-0.3927	1.0471	0
0.1812	0.8154	0.4077	-0.2039	0.5436	0	0.3491	1.5708	0.7854	-0.3927	1.0472	0

V3 =

0	0	0	0	0	0	0	0.4673	0.9346	0	-0.4673	0
0	0.0001	0.0001	0	-0.0001	0	0	0.4965	0.9929	0	-0.4965	0
0	0.0005	0.0010	0	-0.0005	0	0	0.5249	1.0499	0	-0.5249	0
0	0.0016	0.0033	0	-0.0016	0	0	0.5525	1.1051	0	-0.5525	0
0	0.0038	0.0075	0	-0.0038	0	0	0.5791	1.1582	0	-0.5791	0
0	0.0071	0.0142	0	-0.0071	0	0	0.6044	1.2088	0	-0.6044	0
0	0.0119	0.0238	0	-0.0119	0						-
0	0.0183	0.0365	0	-0.0183	0	0	0.6284	1.2568	0	-0.6284	0
0	0.0264	0.0527	0	-0.0264	0	0	0.6509	1.3018	0	-0.6509	0
0	0.0362	0.0725	0	-0.0362	0	0	0.6718	1.3435	0	-0.6718	0
0	0.0480	0.0960	0	-0.0480	0	0	0.6909	1.3818	0	-0.6909	0
0	0.0616	0.1232	0	-0.0616	0	0	0.7083	1.4165	0	-0.7083	0
0	0.0771	0.1543	0	-0.0771	0	0	0.7238	1.4476	0	-0.7238	0
0	0.0945	0.1890	0	-0.0945	0	0	0.7374	1.4748	0	-0.7374	0
0	0.1136	0.2273	0	-0.1136	0				-	-0.7492	-
0	0.1345	0.2690	0	-0.1345	0	0	0.7492	1.4983	0		0
0	0.1570	0.3140	0	-0.1570	0	0	0.7590	1.5181	0	-0.7590	0
0	0.1810	0.3620	0	-0.1810	0	0	0.7671	1.5343	0	-0.7671	0
0	0.2063	0.4126	0	-0.2063	0	0	0.7735	1.5470	0	-0.7735	0
0	0.2329	0.4657	0	-0.2329	0	0	0.7783	1.5566	0	-0.7783	0
0	0.2605	0.5209	0	-0.2605	0	0	0.7816	1.5633	0	-0.7816	0
0	0.2889	0.5779	0	-0.2889	0	0	0.7838	1.5675	0	-0.7838	0
0	0.3181	0.6362	0	-0.3181	0			1.5698	0	-0.7849	0
0	0.3477	0.6955	0	-0.3477	0	0	0.7849		-		-
0	0.3777	0.7554	0	-0.3777	0	0	0.7853	1.5707	0	-0.7853	0
0	0.4077	0.8154	0	-0.4077	0	0	0.7854	1.5708	0	-0.7854	0

Ejercicio 10.

Ejercicio práctico 10: Inserta el comando $sl_lanechange$ en la línea de comandos de Matlab para abrir el archivo Simulink. Ejecuta dicho archivo y visualiza la entrada de dirección ($Steering\ angle$), así como el valor del ángulo ϑ (theta). Cambia los valores máximos/mínimos de la dicha entrada y visualiza los cambios en el visor XY. ¿Qué es lo que representa esta gráfica XY? Cambia los parámetros del bloque Bicycle y visualiza los cambios en la posición del vehículo.

Sin cambiar los valores:

Cambiando los Valores max / min y de Steering Angle:

Resultado:

Ejercicio 11.

Ejercicio práctico 11: Sobre el archivo *Simulink* introduce otras entradas en la dirección del vehículo y visualiza los cambios en la trayectoria. ¿Qué tipo de entrada y qué valor se debe introducir al vehículo para que la trayectoria XY sea una circunferencia en un tiempo de 10 seg?

