# Tutorial on Kernels (IML Tutorial V)

Max B. Paulus

March 23, 2019

#### Table of contents

- Maths & Intuition
  - What is a kernel?
  - How can we construct a kernel?
  - Positive Definiteness
- Applications
  - Why care?
  - Highlight: Kernel Ridge Regression
  - Digression: Feature Selection

## Definition (Inner Product)

Let  $\mathcal H$  be a vector space over  $\mathbb R$ . A function  $\langle \cdot, \cdot \rangle_{\mathcal H}: \mathcal H \times \mathcal H \to \mathbb R$  is said to be an **inner product** on  $\mathcal H$  if

#### Definition (Inner Product)

Let  $\mathcal H$  be a vector space over  $\mathbb R$ . A function  $\langle \cdot, \cdot \rangle_{\mathcal H}: \mathcal H \times \mathcal H \to \mathbb R$  is said to be an **inner product** on  $\mathcal H$  if

#### Definition (Inner Product)

Let  $\mathcal{H}$  be a vector space over  $\mathbb{R}$ . A function  $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$  is said to be an **inner product** on  $\mathcal{H}$  if

### Definition (Inner Product)

Let  $\mathcal{H}$  be a vector space over  $\mathbb{R}$ . A function  $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$  is said to be an **inner product** on  $\mathcal{H}$  if

## Definition (Kernel)



## Definition (Inner Product)

Let  $\mathcal{H}$  be a vector space over  $\mathbb{R}$ . A function  $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$  is said to be an **inner product** on  $\mathcal{H}$  if

## Definition (Kernel)

Let  $\mathcal{X}$  be a non-empty set. A function  $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is called a **kernel** if there exists an  $\mathbb{R}$ -Hilbert space and a map  $\phi: \mathcal{X} \to \mathcal{H}$ , such that  $\forall x. x' \in \mathcal{X}$ .

### Definition (Inner Product)

Let  $\mathcal{H}$  be a vector space over  $\mathbb{R}$ . A function  $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$  is said to be an **inner product** on  $\mathcal{H}$  if

## Definition (Kernel)

Let  $\mathcal{X}$  be a non-empty set. A function  $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is called a **kernel** if there exists an  $\mathbb{R}$ -Hilbert space and a map  $\phi: \mathcal{X} \to \mathcal{H}$ , such that  $\forall x. x' \in \mathcal{X}$ .

$$k(x, x') := \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$$

## Some Examples of Kernels

- Linear Kernel:  $k(x, x') = x^{\top} x' \ (\mathcal{X} = \mathbb{R}^n, \ \mathcal{H} = \mathbb{R}^n, \ \phi(x) = x)$
- Polynomial kernel  $k_d(x,x') = (x^\top x' + 1)^d \ (\mathcal{X} = \mathbb{R}^n, \ \mathcal{H} = \mathbb{R}^{\binom{n+d}{d}})$
- Gaussian kernel  $k_h(x,x')=\exp(-\frac{\|x-x'\|^2}{2h^2})$   $(\mathcal{X}=\mathbb{R}^n,\ \mathcal{H}=\mathbb{R}^\infty)$
- String kernels, let  $x \in \mathcal{A}$ , and  $x' \in \mathcal{A}^n$ , now define  $\phi_s(x) := \#\{s \text{ appears in } x\}, \ k(x,x') = \sum_{s \in \mathcal{A}^*} w_s \phi_s(x) \phi_s(x')$



#### Exercise

Find the feature map  $\phi$  associated with the Gaussian kernel on  $\mathbb R$  with h=1, i.e.  $k(x,y)=e^{-(x-y)^2}$  for  $x,y\in\mathbb R$ .

#### Exercise

Find the feature map  $\phi$  associated with the Gaussian kernel on  $\mathbb R$  with h=1, i.e.  $k(x,y)=e^{-(x-y)^2}$  for  $x,y\in\mathbb R$ .

$$k(x,y) = e^{-(x-y)^2}$$

$$= e^{-x^2+2xy-y^2}$$

$$= e^{-x^2}e^{-y^2}[e^{2xy}]$$

$$= e^{-x^2}e^{-y^2}[1+2xy+\frac{(2xy)^2}{2!}+\frac{(2xy)^3}{3!}+\ldots]$$

$$= e^{-x^2}e^{-y^2}[1+\sqrt{2}x\sqrt{2}y+\sqrt{\frac{2^2}{2!}}x^2\sqrt{\frac{2^2}{2!}}y^2+\ldots]$$

$$= \phi(x)^{\top}\phi(y)$$

with 
$$\phi(x) = e^{-x^2} [1, \sqrt{2}x, \sqrt{\frac{2^2}{2!}}x^2, \ldots]^{\top}$$



### How can we construct a kernel?

#### Lemma (Positive Scaling Rule)

Given  $\alpha > 0$  and k, a kernel on  $\mathcal{X}$ , then  $\alpha k$  is a kernel on  $\mathcal{X}$ .

#### Lemma (Sum Rule)

Given  $k_1$  and  $k_2$ , kernels on  $\mathcal{X}$ , then  $k_1 + k_2$  is a kernel on  $\mathcal{X}$ .

#### Lemma (Product Rule)

Given  $k_1$  and  $k_2$ , kernels on  $\mathcal{X}$ , then  $k_1k_2$  is a kernel on  $\mathcal{X}$ . If  $k_1$  on  $\mathcal{X}_1$ , and  $k_2$  on  $\mathcal{X}_2$ , then  $k_1k_2$  on  $\mathcal{X}_1 \times \mathcal{X}_2$ .

#### Lemma (Mapping Rule)

Given sets  $\mathcal{X}$  and  $\tilde{\mathcal{X}}$  and a map  $A: \mathcal{X} \to \tilde{\mathcal{X}}$ . Let k be a kernel on  $\tilde{\mathcal{X}}$ , then k(A(x), A(x')) is a kernel on  $\mathcal{X}$ .

#### Exercise

Let  $\mathcal{H}_1$  corresponding to  $k_1$  be  $R^m$  and  $\mathcal{H}_2$  corresponding to  $k_2$  be  $R^n$ . Let  $k_1(x_1,y_1)=x_1^{\top}y_1$  and  $k_1(x_2,y_2)=x_2^{\top}y_2$ . Show that  $k_1k_2$  is a kernel on  $\mathbb{R}^m \times \mathbb{R}^n$  using the inner product between two matrices A,B of same dimensions is  $\langle A,B \rangle = \operatorname{trace}(A^{\top}B)$ .

#### Exercise

Let  $\mathcal{H}_1$  corresponding to  $k_1$  be  $R^m$  and  $\mathcal{H}_2$  corresponding to  $k_2$  be  $R^n$ . Let  $k_1(x_1,y_1)=x_1^{\top}y_1$  and  $k_1(x_2,y_2)=x_2^{\top}y_2$ . Show that  $k_1k_2$  is a kernel on  $\mathbb{R}^m\times\mathbb{R}^n$  using the inner product between two matrices A,B of same dimensions is  $\langle A,B\rangle=\operatorname{trace}(A^{\top}B)$ .

 $k_1(x_1, y_1)k_2(x_2, y_2) = (x_1^{\top}y_1)(x_2^{\top}y_2)$ 

$$= (x_1^{\top} y_1)(y_2^{\top} x_2)$$

$$= (x_1^{\top} y_1) \operatorname{trace}(y_2^{\top} x_2)$$

$$= (x_1^{\top} y_1) \operatorname{trace}(x_2 y_2^{\top})$$

$$= \operatorname{trace}(x_2 (x_1^{\top} y_1) y_2^{\top})$$

$$= \operatorname{trace}((x_2 x_1^{\top})(y_1 y_2^{\top}))$$

$$= \operatorname{trace}((x_2 x_1^{\top})(y_1 y_2^{\top}))$$

$$= \langle x_1 x_2^{\top}, y_1 y_2^{\top} \rangle$$

## Postive Definiteness & Kernels

#### Definition (Positive Definiteness)

A symmetric function  $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is positve definite if  $\forall n \geq 1, \forall (a_1, \dots, a_n) \in \mathbb{R}^n, \forall (x_1, \dots, x_n) \in \mathcal{X}^n$ ,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i, x_j) \ge 0$$

## Postive Definiteness & Kernels

### Definition (Positive Definiteness)

A symmetric function  $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is positve definite if  $\forall n \geq 1, \forall (a_1, \dots, a_n) \in \mathbb{R}^n, \forall (x_1, \dots, x_n) \in \mathcal{X}^n$ ,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i, x_j) \ge 0$$

#### Lemma (Every kernel is positive definite)

Let  $\mathcal{H}$  be a Hilbert space,  $\mathcal{X}$  a non-empty set and  $\phi: \mathcal{X} \to \mathcal{H}$ . Then  $k(x,x') := \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$  is a positive definite function.

## Postive Definiteness & Kernels

#### Definition (Positive Definiteness)

A symmetric function  $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is positve definite if  $\forall n \geq 1, \forall (a_1, \dots, a_n) \in \mathbb{R}^n, \forall (x_1, \dots, x_n) \in \mathcal{X}^n$ ,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i, x_j) \geq 0$$

#### Lemma (Every kernel is positive definite)

Let  $\mathcal{H}$  be a Hilbert space,  $\mathcal{X}$  a non-empty set and  $\phi: \mathcal{X} \to \mathcal{H}$ . Then  $k(x,x') := \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$  is a positive definite function.

## Lemma (Every symmetric positive definite function is a kernel.)

Let  $\mathcal{X}$  be a non-empty set and  $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  be a symmetric, positive definite function. Then k is a kernel. [See also Mercer's Theorem for a characterisation of k.]

# Examples & Exercises

Proof the Sum Rule.

## **Examples & Exercises**

Proof the Sum Rule.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} [k_{1}(x_{i}, x_{j}) + k_{1}(x_{i}, x_{j})]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{1}(x_{i}, x_{j}) + \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{2}(x_{i}, x_{j})$$

$$> 0$$

## Some reasons why we care about kernels?

- Kernel Machines: Define feature vectors in terms of kernels, e.g. .
- Kernelize linear algorithms, i.e. a computationally efficient way to handle data that may be linearly separable in a higher-dimensional space
- Deal with structured data, e.g. natural language, amino acid sequencing, etc.

# Highlight: Kernel Ridge Regression

#### **Primal Formulation**

- feature vector  $x \in \mathbb{R}^D$ , design matrix X is  $N \times D$
- $L(w) = (y Xw)^{\top}(y Xw) + \lambda ||w||^2$
- $w^* = (X^T X + \lambda I)^{-1} X^T y$

#### **Dual Formulation**

- $w^* = X^{\top} (XX^{\top} + \lambda I)^{-1} y$
- Define  $\alpha := (XX^{\top} + \lambda I)^{-1}y$
- $w^* = X^{\top} \alpha = \sum_{i=1}^{N} \alpha_i x_i$
- $\hat{f}(x_{\text{test}}) = w^{*\top} x = \sum_{i=1}^{N} \alpha_i x_i^{\top} x_{\text{test}}$

In the dual formulation,  $\hat{f}(x_{\text{test}})$  only depends on **inner products**: To kernelise ridge regression, for  $XX^{\top}$  substitute K, a matrix of inner products between data points, and for  $x_i^{\top}x_{\text{test}}$  substitute  $k(x_i, x_{\text{test}})$ .

## Digression: Feature Selection

See blackboard or Bishop (144-146)

