

Управление роботом с использованием нейронных сетей (практика)

Пелевин Владимир

к.пед.н., доцент, УрФУ инженер, ООО Микроэлектроника и Робототехника Клюев Данил

ассистент, УрФУ

План работ на 1 занятие

- 1. Собрать данные для модели
- 2. Разметить данные через Label Studio

Шаг 1 Сбор данных


```
def extract_frames(video_path, output_folder):
    if not os.path.exists(output_folder):
       os.makedirs(output_folder)
    video = cv2.VideoCapture(video_path)
    success, prev_image = video.read()
    count = 0
    while success:
       # Подготовка к сохранению кадра
       frame_filename = os.path.join(output_folder, f"frame_{count:04d}.jpg")
       cv2.imwrite(frame_filename, prev_image)
       # Считывание следующего кадра
       success, curr_image = video.read()
       # Проверяем, если удалось считать следующий кадр
       if not success:
           break
       # Преобразуем изображения в градации серого для сравнения
       prev_gray = cv2.cvtColor(prev_image, cv2.COLOR_BGR2GRAY)
       curr_gray = cv2.cvtColor(curr_image, cv2.COLOR_BGR2GRAY)
       # Вычисляем сходство
       similarity = ssim(prev_gray, curr_gray)
       # Если кадры не похожи, сохраняем текущий кадр
       if similarity < 0.9:
           prev_image = curr_image
           count += 1
    video.release()
   print(f"Extracted and saved {count} unique frames to '{output_folder}'.")
# Пример использования
video_file = 'C:/Users/UrFU/Desktop/projectY0L08/Left_1.avi' # Укажите путь к вашему видеофайлу
output_dir = 'unique_frames' # Название папки для уникальных кадров
extract_frames(video_file, output_dir)
```


Шаг 2 Разметка изображений

- Создаем папку, где разместим label-studio.
- Копируем путь до папки, который нам пригодится далее

УРФУ

Институт
радиоэлектроники
и информационных
технологий — РТФ

- 1. cd (путь до папки label-studio)
- 2. py -m venv env

- 1. env\Scripts\activate.bat
- 2. pip install -U label-studio
- 3. (start) label-studio

C:\Users\admin\Desktop\label-studio>env\Scripts\activate.bat
(env) C:\Users\admin\Desktop\label-studio>

C:\Users\admin\Desktop\label-studio>env\Scripts\activate.bat

(env) C:\Users\admin\Desktop\label-studio>pip install -U label-studio

Командная строка tlib-metadata, httpcore, googleapis-common-protos, google-resumable-media, Django, deprecated, click, cffi, bleach, anyio rq, requests-mock, pydantic, pandas, opentelemetry-api, nltk, httpx, grpcio-status, google-cloud-audit-log, google-auth, drf-generators, djangorestframework, django-user-agents, django-storages, django-model-utils, django-filter, django-debug toolbar, django-csp, django-cors-headers, django-annoying, cryptography, botocore, azure-core, s3transfer, openai, label tudio-sdk, humansignal-drf-yasg, grpc-google-iam-v1, google-api-core, django-rq, azure-storage-blob, google-cloud-core, b oto3, google-cloud-storage, google-cloud-appengine-logging, google-cloud-logging, label-studio uccessfully installed Django-3.2.25 Pillow-10.4.0 annotated-types-0.7.0 anyio-4.6.0 appdirs-1.4.4 asgiref-3.8.1 attr-0.3 attrs-24.2.0 azure-core-1.31.0 azure-storage-blob-12.23.1 bleach-5.0.1 boto-2.49.0 boto3-1.35.39 botocore-1.35.39 boxing 0.1.4 cachetools-5.5.0 certifi-2024.8.30 cffi-1.17.1 charset-normalizer-3.4.0 click-8.1.7 colorama-0.4.6 cryptography-43 .1 defusedxml-0.7.1 deprecated-1.2.14 distro-1.9.0 django-annoying-0.10.6 django-cors-headers-3.6.0 django-csp-3.7 django debug-toolbar-3.2.1 django-environ-0.10.0 django-extensions-3.1.0 django-filter-2.4.0 django-model-utils-4.1.1 django-rar ed-fileresponse-0.1.2 django-rq-2.5.1 django-storages-1.12.3 django-user-agents-0.4.0 djangorestframework-3.13.1 drf-dyna ic-fields-0.3.0 drf-flex-fields-0.9.5 drf-generators-0.3.0 expiringdict-1.2.2 google-api-core-2.21.0 google-auth-2.35.0 oogle-cloud-appengine-logging-1.4.5 google-cloud-audit-log-0.3.0 google-cloud-core-2.4.1 google-cloud-logging-3.11.2 googl -cloud-storage-2.18.2 google-crc32c-1.6.0 google-resumable-media-2.7.2 googleapis-common-protos-1.65.0 grpc-google-iam-v1 -0.13.1 grpcio-1.66.2 grpcio-status-1.66.2 h11-0.14.0 htmlmin-0.1.12 httpcore-1.0.6 httpx-0.27.2 humansignal-drf-yasg-1.21 9 idna-3.10 ijson-3.3.0 importlib-metadata-8.4.0 inflection-0.5.1 isodate-0.7.2 jiter-0.6.1 jmespath-1.0.1 joblib-1.4.2 onschema-3.2.0 label-studio-1.13.1 label-studio-sdk-1.0.5 launchdarkly-server-sdk-8.2.1 lockfile-0.12.2 lxml-5.3.0 nltk-9.1 numpy-1.26.4 openai-1.51.2 opentelemetry-api-1.27.0 ordered-set-4.0.2 packaging-24.1 pandas-2.2.3 proto-plus-1.24.0 rotobuf-5.28.2 psycopg2-binary-2.9.9 pyRFC3339-1.1 pyasn1-0.6.1 pyasn1-modules-0.4.1 pycparser-2.22 pydantic-2.9.2 pydanti -core-2.23.4 pyrsistent-0.20.0 python-dateutil-2.9.0.post0 python-json-logger-2.0.4 pytz-2022.7.1 pyyaml-6.0.2 redis-3.5 regex-2024.9.11 requests-2.32.3 requests-mock-1.12.1 rg-1.10.1 rsa-4.9 rules-2.2 s3transfer-0.10.3 semver-3.0.2 sentrydk-2.16.0 setuptools-75.1.0 six-1.16.0 sniffio-1.3.1 sqlparse-0.5.1 tqdm-4.66.5 typing_extensions-4.12.2 tzdata-2024.2 uaparser-0.18.0 ujson-5.10.0 uritemplate-4.1.1 urllib3-1.26.20 user-agents-2.2.0 webencodings-0.5.1 wheel-0.40.0 wrapt-1.16. 0 xmljson-0.2.1 zipp-3.20.2 otice] A new release of pip is available: 24.0 -> 24.2 otice] To update, run: python.exe -m pip install --upgrade pip (env) C:\Users\admin\Desktop\label-studio>label-studio_

Don't have an account? Sign up

Already have an account? Log in

Heidi doesn't see any projects here!

Create one and start labeling your data.

Create Project

Задание

1. Собрать данные, используя камеры или видеозаписи с этих камер

2. Разметить подготовленные данные

План работ на 2 занятие

- 1. Подготовить модель через Yolov8 на основе своего датасета
- 2. В консоли своего IDE вывести х и у центров bounting box

Шаг 1 Подготовка модели

train - 80%|test - 10%|valid - 10%


```
Classes.txt — Блокнот

Файл Правка Формат Вид Справка

Basket

Buttons (B/P)

Buttons (G/O)

Cubic

Robot

nc: 5

names: ['Basket', 'Buttons (B/P)', 'Buttons (G/O)', 'Cubic', 'Robot']
```


Наш датасет на наших данных готов!

Шаг 2 Получение центра Bounting Box

```
Получаем список названий классов из модели
class_names = model.names # Это словарь {id: "class_name"}
# Итерируемся по каждому обнаруженному объекту
for box in result.boxes:
   # Извлекаем координаты и конвертируем их в стандартные Python числа
   xywh_tensor = box.xywh[0]
   xywh = xywh_tensor.cpu().detach().tolist() # Преобразуем в список Python
   # Извлекаем ID класса и конвертируем в int
   class_id_tensor = box.cls[0]
   class_id = int(class_id_tensor.cpu().detach().item())
   # Получаем название класса по ID
   class_name = class_names.get(class_id, "Unknown")
   # Форматируем координаты для вывода
   x, y, w, h = xywh
   print(f"Box (x, y, w, h): ({x:.2f}, {y:.2f}, {w:.2f}, {h:.2f}), Class ID: {class_id}, Class Name: {class_name}")
# Помещаем обработанный кадр в очередь результатов
result_queue.put(plotted_image)
```



```
0: 384x640 2 Baskets, 1 Buttons (B/P), 1 Buttons (G/O), 1 Cubic, 1 Robot, 86.5ms

Speed: 2.0ms preprocess, 86.5ms inference, 1.0ms postprocess per image at shape (1, 3, 384, 640)

Box (x, y, w, h): (903.89, 124.07, 74.47, 67.13), Class ID: 4, Class Name: Robot

Box (x, y, w, h): (968.65, 370.76, 45.27, 53.47), Class ID: 1, Class Name: Buttons (B/P)

Box (x, y, w, h): (565.07, 52.67, 55.47, 44.03), Class ID: 0, Class Name: Basket

Box (x, y, w, h): (551.03, 686.83, 54.06, 42.80), Class ID: 0, Class Name: Basket

Box (x, y, w, h): (179.93, 362.80, 40.30, 55.98), Class ID: 2, Class Name: Buttons (G/O)

Box (x, y, w, h): (822.29, 107.58, 18.78, 18.93), Class ID: 3, Class Name: Cubic
```


Задание

- 1. Обучить свою модель на размеченном датасете через Yolov8
- 2. Вывести х и у центров bounting box для робота в консоли

Спасибо за внимание!

Клюев Данил

ассистент, УрФУ

Пелевин Владимир

к.пед.н., доцент, УрФУ инженер, ООО Микроэлектроника и Робототехника