========

1. Title:

2. Introduction:

- Background and context:
 - Neuropixel probes are state-of-the-art electrode arrays that can simultaneously record large neuronal populations from deep within the brain. Traditional methods of mapping neuropixel recordings to intended movements or stimuli use classical machine-learning methods, particularly linear discriminant analysis (LDA) or support vector machines.
- Statement of the problem
 - o Lorem ipsum

3. Research objectives:

 We aim to build a novel, graph-based decoder that may outperform such methods. Intuitively, graphical inputs appear to better represent neural data as they can encapsulate both spatial and temporal relationships for individual neuron spiking.

4. Relevant literature/research

- Previous literature and research studies utilize classical machine learning methods to decode neural activity. We hope to represent neural connectivity as a graph neural network, where neurons can be represented as nodes and their interaction
- Converting medical neuroimaging data into grpahical formats achieves SOTA performance when classifying diseases.
- https://www.eneuro.org/content/5/4/ENEURO.0414-17.2018 << classical models, less neurons, try sampling from multiple brain regions instead of just one
- GNNs have been used as a transformative tool for decoding brain connectivity. A
 recent study, focusing on brain graphs, showcases the efficiency of GNNs over
 classical machine learning methods in learning the intricate graph structure of
 non-Euclidean data types. The study specifically highlights GNN applications in
 tasks such as missing brain graph synthesis and disease classification.
 - This highlights the relevance of GNNs in our project, as they offer a promising option for decoding neural data

5. Research Methodology

Research Design:

- Our study adopts a data-driven approach, by first filtering, cleaning, and transforming spiking data into high-resolution graphs where each node will represent a single unit (a single neuron or small cluster of neurons). Next, we will experiment with various graph-based architectures, including Graphical Attention Layers and Graphical Convolutional Networks. To compare performance across different architectures, we will evaluate various metrics including cross entropy loss.
- Participants
 - o N/A
- Data collection
 - We will use data published by the Allen Institute, where 10-mm probes were inserted into wild mice, allowing them to record from subcortical visual areas. The mice were later shown a series of various stimuli, including photos of moving dots, natural images (such as other animals), etc.

6. Expected Results

- 7. Significance and Contribution to Knowledge
 - Lorem ipsum
- 8. Limitations:
 - Lorem ipsum
- 9. Conclusion
 - Lorem ipsum

Graph nns outperform the traditional methods of using classical models, particularly LDA. (linear discimriniatntn analysis)