An Overview of

Resonance Frequency Deviation in the FDM Readout LT-Spice

Amin Aminaei, 31 January 2022 REF: Presentation:

Analysis of currents open loop, closed loop, NWA via AC bias, NWA via FB, By: G. de Lange, 2019

Possible causes of frequency deviation

Crosstalk (Carrier Leakage) $I(Lin)@f1 \neq I(L1)$ $I(Lin)@f2 \neq I(L2)$ $I(Lin)@f40 \neq I(L40)$

Possible Causes of Crosstalk [1,2]

Mechansim	Dependence	Mitigation
Thermal Leakage	Interpixel distance on sensor array	Thermalization layer De-focussing
Carrier Leakage	In TES bias circuit, depends on L_{flt} , R_{n} , Δf	Increase ∆f
Common Impedance	In readout circuit, depends on ∆f, L _{com} , f , L _{flt}	Increase ∆f Lower L _{com}
Non linear amplification	Mostly in SQUID depends on Gain- BW, Dynamic Range (DR)	Higher GBW More DR
Coupling between wires and circuits	Mutual L' _s and leakage C' _s	Shielding the circuits
Else?		
SRON		

REMINDER

I $_{rms-leakage} = \sqrt{(\Sigma(I_n)^2)}$ Career Leakage CT@TES $_{169}$ = 11.92% To be seen at TES $_{169}$

SRON

Career Leakage at a fixed resonance frequency

– Nearby channels:

- 5 LCs
- L's 3uH
- R_{TES} 40mOhm
- 1-1.064 MHz
- 16kHz spacing
- 22dB above 1st nearby channels
- 29dB above 2nd nearby channels
- Total current leakage/I_TES

- 1-1.048 MHz
- 12kHz spacing
- 20dB above 1st nearby channels
- 26 dB above 2nd nearby channels
- Total current leakage/I_TES

- 1-1.10 MHz, Same RLC's
- 25kHz spacing
- 27dB above 1st nearby channels
- 33dB above 2nd nearby channels
- Total current leakage/I_TES

Career Leakage at a fixed TES – Nearby Channels:

- 5 LCs
- L's 3uH
- R__{TES} 40mOhm
- 1-1.064 MHz
- **16kHz** spacing
- Total current leakage/I_TES

- Same RLC's
- 1-1.048 MHz
- 12kHz spacing Total current leakage/I_TES

- Same RLC's
- 25kHz spacing
- 1-1.10 MHz
- Total current leakage/I_TES

Total current leakage/I_TES changes linearly by inverse of frequency spacing

