Introduction

- What is Linear Programming (LP)?
 - Programming, a series of actions that are planned to be done.
 - · dates back to WWI
 - · also known as Linear Optimization.
 - An example

Munimize/maximize

e g min
$$2x_1 - x_2 + 4x_3$$
 — objective (function)

St $x_1 + x_2 + x_4 \le 2$

Subject to $x_5 + x_4 \ge -3$
 $x_1 = x_0$
 $x_4 \le 0$

Constraints \ inequality.

X1, X2, X4, X4 - (decision) variables

All related functions are linear.

- · LP terms
 - Solution. A solution is a point in the underlying space 12th.
 - feasibility: A solution is <u>feasible</u> of it satisfies all constraints. The set of all feasible solutions is called the <u>feasible region</u>. Any solution that does not satisfy all constraints is infeasible.

A problem is <u>feasible</u> if its feasible region is nonempty. A problem is <u>infeasible</u> if its feasible region is empty.

- optimality. A solution x^* is optimal to a maximization (resp. minimization) problem if and only if 1. x^* is feasible.
 - 2. $f(x^*) \ge f(x)$ (resp. $f(x^*) \le f(x)$) for all feasible x, where f is the objective function.
 - x*: optimal solution, optimum (maximum/minimum)
 - f(x*): optimal value, maximum/minimum value
- boundedness. A maximization (resp. minimization) problem is bounded if there exists $M \in \mathbb{R}$ such that $f(x) \leq M$ (resp. $f(x) \geq M$) for all feasible 7, where f is the objective function. (Note that this is obificient from the boundedness of the feasible region.)

Remark: All of the inequality constraints in LP one defined with "=" instead of "<".

- · Beyond LP
 - Based on function type: Quadratic programming, Nonlinear programming, Convex programming
 - Based on variable type: Integer programming. Mixed integer programming
 - Based on data type: Stuckastic programming
 - Based on objective quantity. Multi-objective programming
 - Based on problem scale: Large-scale optimization.