NNDL Exercise set 6 – Mathematical exercises

1.

We have $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ and $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

a)

For step size μ the Langevin iteration is defined as

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mu \phi_{\mathbf{x}}(\mathbf{x}_t) + \sqrt{2\mu} \mathbf{n}_t, \tag{1}$$

where $\phi_{\mathbf{x}}(\mathbf{x}_t) = -\mathbf{\Sigma}^{-1}\mathbf{x}$ is the score function. Thus we can write the Langevin iteration as

$$\mathbf{x}_{t+1} = \mathbf{M}\mathbf{x}_t + \alpha \mathbf{n}_t, \tag{2}$$

where $\mathbf{M} = \mathbf{I} - \mu \mathbf{\Sigma}^{-1}$ and $\alpha = \sqrt{2\mu}$.

b)

$$\mathbf{x}_{1} = \mathbf{M}\mathbf{x}_{0} + \alpha\mathbf{n}_{0}$$

$$\mathbf{x}_{2} = \mathbf{M}\mathbf{x}_{1} + \alpha\mathbf{n}_{1} = \mathbf{M}^{2}\mathbf{x}_{0} + \alpha\mathbf{M}\mathbf{n}_{0} + \alpha\mathbf{n}_{1}$$

$$\mathbf{x}_{3} = \mathbf{M}\mathbf{x}_{2} + \alpha\mathbf{n}_{2} = \mathbf{M}^{3}\mathbf{x}_{0} + \alpha\mathbf{M}^{2}\mathbf{n}_{0} + \alpha\mathbf{M}\mathbf{n}_{1} + \alpha\mathbf{n}_{2}$$
(3)

c)

$$\mathbf{x}_T = \mathbf{M}^T \mathbf{x}_0 + \alpha \sum_{i=0}^{T-1} \mathbf{M}^{T-1-i} \mathbf{n}_i$$
 (4)

d)

We have $\Sigma = \mathbf{I} \implies \mathbf{M} = (1 - \mu)\mathbf{I}$ and thus $\mathbf{M}^T = (1 - \mu)^T \mathbf{I}$. Assuming $0 < \mu < 1$, the expression $(1 - \mu)^T \to 0$ as $T \to \infty$ and therefore $\mathbf{M}^T \mathbf{x}_0 \to 0$ as $T \to \infty$, so the influence of the initial point reduces to zero.

2.

We have

$$x = az + n, (5)$$

where $z \sim \mathcal{N}(0,1)$ and $n \sim \mathcal{N}(0,\sigma^2)$.

a)

Now

$$p(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right). \tag{6}$$

For p(x|z) we can use the affine transformation rule for Gaussians, since z is now fixed (a constant), i.e. if $X \sim \mathcal{N}(\mu, \sigma^2)$, then $aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$. Plugging in X = n, a = 1 and b = az, we obtain

$$p(x|z) = \mathcal{N}(az, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-az)^2}{2\sigma^2}\right). \tag{7}$$

The joint pdf p(x, z) is then

$$p(x,z) = p(x|z)p(z) = \frac{1}{2\pi\sigma} \exp\left(-\frac{(x-az)^2}{2\sigma^2} - \frac{z^2}{2}\right).$$
 (8)

b)

For $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ we have the general result

$$\sum_{i=1}^{n} a_i X_i \sim \mathcal{N}\left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2\right)$$
(9)

for some constant a_i and assuming X_i to be independent $\forall i$. Since x = az + n, where z and n are independent, we obtain

$$p(x) = \mathcal{N}(0, a^2 + \sigma^2) = \frac{1}{\sqrt{2\pi(a^2 + \sigma^2)}} \exp\left(-\frac{x^2}{2(a^2 + \sigma^2)}\right).$$
 (10)

c)

Given a sample $X = (x_1, \ldots, x_N)$ the log likelihood is

$$\mathcal{L}(a) = \log p(X)$$

$$= \sum_{i=1}^{N} \log p(x_i)$$

$$= \sum_{i=1}^{N} \left(-\frac{1}{2} \log(2\pi(a^2 + \sigma^2)) - \frac{x_i^2}{2(a^2 + \sigma^2)} \right)$$

$$= -\frac{N}{2} \log(2\pi(a^2 + \sigma^2)) - \frac{1}{2(a^2 + \sigma^2)} \sum_{i=1}^{N} x_i^2.$$
(11)

Proceed by setting the derivative w.r.t. a to zero and solving for a.

$$\frac{\partial \mathcal{L}}{\partial a} = -\frac{Na}{(a^2 + \sigma^2)} + \frac{a}{(a^2 + \sigma^2)^2} \sum_{i=1}^N x_i^2 = 0$$

$$\implies N(a^2 + \sigma^2) = \sum_{i=1}^N x_i^2$$

$$\implies a^2 = \frac{1}{N} \sum_{i=1}^N x_i^2 - \sigma^2$$

$$\implies \hat{a} = \pm \sqrt{\frac{1}{N} \sum_{i=1}^N x_i^2 - \sigma^2}.$$
(12)

3.

Starting from the right side and using the general properties $\min -f(x) = -\max f(x)$ and $\max -f(x) = -\min f(x)$ for some function f(x), we obtain

$$-\max_{a}\min_{b} -J(a,b) = -\max_{a} -\max_{b} J(a,b)$$

$$= \min_{a} \max_{b} J(a,b).$$
(13)

4.

We have $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and a matrix \mathbf{U} for which $\mathbf{U}\mathbf{U}^T = \mathbf{U}^T\mathbf{U} = \mathbf{I}$. To find the distribution of $\mathbf{y} = \mathbf{U}\mathbf{x}$, we first note that a linear transformation of a Gaussian is also a Gaussian, thus $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, for some $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. To find $\boldsymbol{\mu}$, we compute the expectation

$$\mathbb{E}[\mathbf{U}\mathbf{x}] = \mathbf{U}\underbrace{\mathbb{E}[\mathbf{x}]}_{=\mathbf{0}} = \mathbf{0}.\tag{14}$$

So y has a mean of $\mu = 0$. The covariance Σ of y is then

$$\Sigma = cov(\mathbf{y})$$

$$= cov(\mathbf{U}\mathbf{x})$$

$$= \mathbf{U}\underbrace{cov(\mathbf{x})}_{=\mathbf{I}} \mathbf{U}^{T}$$

$$= \mathbf{U}\mathbf{U}^{T}$$

$$= \mathbf{I}.$$
(15)

Therefore $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and hence is also white.