CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Plan

- Function concepts
- One-on-one functions
- Onto functions

Functions

Functions

Definition

A function f from a set X to a set Y, denoted $f: X \to Y$, is a relation from X, the domain, to Y, the co-domain, that satisfies two properties: (1) every element in X is related to some element in Y, and (2) no element in X is related to more than one element in Y. Thus, given any element x in X, there is a unique element in Y that is related to x by f. If we call this element y, then we say that "f sends x to y" or "f maps x to y" and write $x \xrightarrow{f} y$ or $f: x \to y$. The unique element to which f sends x is denoted

f(x) and is called f of x, or the output of f for the input x, or the value of f at x, or the image of x under f.

Functions (cont.)

The set of all values of f taken together is called the *range of f* or the *image of X under f*. Symbolically,

range of $f = \text{image of } X \text{ under } f = \{y \in Y \mid y = f(x), \text{ for some } x \text{ in } X\}.$

Given an element y in Y, there may exist elements in X with y as their image. If f(x) = y, then x is called **a preimage of y** or **an inverse image of y**. The set of all inverse images of y is called *the inverse image of y*. Symbolically,

the inverse image of $y = \{x \in X \mid f(x) = y\}.$

Quiz: Functions or non-functions

Quiz: Functions or non-functions

Consider the set $f = \{(x^2, x) : x \in \mathbb{R}\}$. Is this a function from \mathbb{R} to \mathbb{R} ?

Consider the set $f = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : 3x + y = 4\}$. Is this a function from \mathbb{Z} to \mathbb{Z} ?

Quiz: Other definitions

Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3, 4\}$. Define a function f from X to Y by the arrow diagram in Figure 7.1.3.

- a. Write the domain and co-domain of f.
- b. Find f(a), f(b), and f(c).
- c. What is the range of f?
- d. Is c an inverse image of 2? Is b an inverse image of 3?
- e. Find the inverse images of 2, 4, and 1.
- f. Represent f as a set of ordered pairs.

Figure 7.1.1

One-to-one functions

Definition

• A function $F: X \to Y$ is one-to-one (or injective) if and only if for all elements x_1 and x_2 in X,

if
$$F(x_1) = F(x_2)$$
, then $x_1 = x_2$, or if $x_1 \neq x_2$, then $F(x_1) \neq F(x_2)$.

• A function $F: X \to Y$ is one-to-one \Leftrightarrow $\forall x_1, x_2 \in X$, if $F(x_1) = F(x_2)$ then $x_1 = x_2$. A function $F: X \to Y$ is not one-to-one \Leftrightarrow $\exists x_1, x_2 \in X$, $F(x_1) = F(x_2)$ and $x_1 \neq x_2$.

Quiz: one-to-one functions

. Let $X = \{a, b, c, d\}$ and $Y = \{e, f, g\}$. Define functions Fand G by the arrow diagrams below.

Co-domain of G

Domain of G

- $c \bullet$
- **a.** Is F one-to-one? Why or why not? Is it onto? Why or why not?
- b. Is G one-to-one? Why or why not? Is it onto? Why or why not?

One-to-one functions: Proof technique

Problem

Prove that a function f is one-to-one.

Proof

Direct proof.

- Suppose x_1 and x_2 are elements of X such that $f(x_1) = f(x_2)$.
- Show that $x_1 = x_2$.

Problem

Prove that a function f is not one-to-one.

Proof

Counterexample.

• Find elements x_1 and x_2 in X so that $f(x_1) = f(x_2)$ but $x_1 \neq x_2$.

One-to-one functions: Example 1

Problem

• Define $f: \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Is f one-to-one? Prove or give a counterexample.

Proof

Direct proof.

• Suppose x_1 and x_2 are elements of X such that $f(x_1) = f(x_2)$.

```
\implies 4x_1 - 1 = 4x_2 - 1 (: Defn. of f)
```

 $\implies 4x_1 = 4x_2$ (: Add 1 on both sides)

 $\implies x_1 = x_2$ (: Divide by 4 on both sides)

Hence, f is one-to-one.

One-to-one functions: Example 2

Problem

• Define $g: \mathbb{Z} \to \mathbb{Z}$ by the rule $g(n) = n^2$ for all $n \in \mathbb{Z}$. Is g one-to-one? Prove or give a counterexample.

Proof

Counterexample.

- Let $n_1=-1$ and $n_2=1$. $\implies g(n_1)=(-1)^2=1$ and $g(n_2)=1^2=1$ $\implies g(n_1)=g(n_2)$ but, $n_1\neq n_2$
- Hence, g is not one-to-one.

Onto functions

Definition

- A function $F: X \to Y$ is onto (or surjective) if and only if given any element y in Y, it is possible to find an element x in X with the property that y = F(x).
- A function $F: X \to Y$ is onto \Leftrightarrow $\forall y \in Y, \exists x \in X \text{ such that } F(x) = y.$ A function $F: X \to Y$ is not onto \Leftrightarrow $\exists y \in Y, \forall x \in X \text{ such that } F(x) \neq y.$

Quiz: Onto functions

Let
$$X = \{1, 5, 9\}$$
 and $Y = \{3, 4, 7\}$.

a. Define $f: X \to Y$ by specifying that

$$f(1) = 4$$
, $f(5) = 7$, $f(9) = 4$.

Is f one-to-one? Is f onto? Explain your answers.

b. Define $g: X \to Y$ by specifying that

$$g(1) = 7$$
, $g(5) = 3$, $g(9) = 4$.

Is g one-to-one? Is g onto? Explain your answers.

Quiz: Onto functions

Let $X = \{a, b, c\}$ and $Y = \{w, x, y, z\}$. Define functions H and K by the arrow diagrams below.

Domain of H Co-domain of H

Domain of K Co-domain of K

- a. Is *H* one-to-one? Why or why not? Is it onto? Why or why not?
- b. Is *K* one-to-one? Why or why not? Is it onto? Why or why not?

Onto functions: Proof technique

Problem

Prove that a function f is onto.

Proof

Direct proof.

- Suppose that y is any element of Y
- Show that there is an element x of X with F(x) = y

Problem

Prove that a function f is not onto.

Proof

Counterexample.

• Find an element y of Y such that $y \neq F(x)$ for any x in X.

Onto functions: Example 1

Problem

• Define $f: \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Is f onto? Prove or give a counterexample.

Proof

Direct proof.

• Let $y \in \mathbb{R}$. We need to show that $\exists x$ such that f(x) = y. Let $x = \frac{y+1}{4}$. Then $f\left(\frac{y+1}{4}\right) = 4\left(\frac{y+1}{4}\right) - 1 \qquad (\because \text{ Defn. of } f)$ $= y \qquad (\because \text{ Simplify})$

Hence, f is onto.

Onto functions: Example 2

Problem

• Define $g: \mathbb{Z} \to \mathbb{Z}$ by the rule g(n) = 4n - 1 for all $n \in \mathbb{Z}$. Is g onto? Prove or give a counterexample.

Proof

Counterexample.

- We know that $0 \in \mathbb{Z}$.
- Let g(n) = 0 for some integer n.

$$\implies 4n - 1 = 0$$
 (: Defn. of g)

$$\implies n = \frac{1}{4}$$
 (:: Simplify)

But
$$\frac{1}{4} \notin \mathbb{Z}$$
.

So, $g(n) \neq 0$ for any integer n.

Hence, g is not onto.

Important note

- Proof on function's infectivity/surjectivity will not be in the exam
- But we need to be able to check if a function is injective or surjective

Consider the cosine function $\cos : \mathbb{R} \to \mathbb{R}$. Decide whether this function is injective and whether it is surjective. What if it had been defined as $\cos : \mathbb{R} \to [-1, 1]$?

- a. Define $f: \mathbb{Z} \to \mathbb{Z}$ by the rule f(n) = 2n, for all integers n.
 - (i) Is f one-to-one? Prove or give a counterexample.
 - (ii) Is f onto? Prove or give a counterexample.

A function $f : \mathbb{Z} \to \mathbb{Z}$ is defined as f(n) = 2n + 1. Verify whether this function is injective and whether it is surjective.

A function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is defined as f((m,n)) = 2n - 4m. Verify whether this function is injective and whether it is surjective.

Solution

This is **not injective** because $(0,2) \neq (-1,0)$, yet f((0,2)) = f((-1,0)) = 4. This is **not surjective** because f((m,n)) = 2n - 4m = 2(n-2m) is always even. If $b \in \mathbb{Z}$ is odd, then $f((m,n)) \neq b$, for all $(m,n) \in \mathbb{Z} \times \mathbb{Z}$.