Tutorial:

Deep Latent NLP (bit.do/lvnlp)

Introduction

Model

Variationa

Inferenc

Strategie

Advanced Topic

Case Studie

Deep Latent-Variable Models of Natural Language

Yoon Kim, Sam Wiseman, Alexander Rush

Tutorial 2018

https://github.com/harvardnlp/DeepLatentNLP

Tutorial: Deep Latent NLP (bit.do/lvnlp) Introduction Goals Background Models Variational

Advanced Topics

1 Introduction
Goals

Background

2 Models

4 Inference Strategies

3 Variational Objective

6 Advanced Topics

Advanced Topic.

6 Case Studies

Tutorial: Deep Latent NLP (bit.do/lvnlp)
Introduction
Goals
Background
Models
Variational
Objective
Inference Strategies
Advanced Topics

References

• Introduction Goals

2 Models

4 Inference Strategies

3/153

6 Advanced Topics

6 Case Studies

Introduction

Goals

Background

Model

Variation

Inference

Strategies

Advanced Topics

Case Stud

Conclusion

References

Goal of Latent-Variable Modeling

Probabilistic models provide a declarative language for specifying prior knowledge and structural relationships in the context of unknown variables.

Makes it easy to specify:

- Known interactions in the data
- Uncertainty about unknown factors
- Constraints on model properties

Introduction

Goals

Background

Models

Variation Objective

Inference Strategies

Advanced Topic

Case Studi

Conclusion

Reference

Goal of Latent-Variable Modeling

Probabilistic models provide a declarative language for specifying prior knowledge and structural relationships in the context of unknown variables.

Makes it easy to specify:

- Known interactions in the data
- Uncertainty about unknown factors
- Constraints on model properties

Introduction

Goals

Background

Modela

Objective

Inference Strategies

Advanced Topics

Case Studie

Conclusion

Reference

Latent-Variable Modeling in NLP

Long and rich history of latent-variable models of natural language.

Major successes include, among many others:

- Statistical alignment for translation
- Document clustering and topic modeling
- Unsupervised part-of-speech tagging and parsing

Introduction

Goals

Background

Model

Variation

Inference

Advanced Topics

case Studie

Canalusian

Reference

Goals of Deep Learning

Toolbox of methods for learning rich, non-linear data representations through numerical optimization.

Makes it easy to fit:

- Highly-flexible predictive models
- Transferable feature representations
- Structurally-aligned network architectures

Introduction

Goals

Background

Models

Variation

Objective

Strategies

Advanced Topic

Case Studi

Conclusion

Reference

Goals of Deep Learning

Toolbox of methods for learning rich, non-linear data representations through numerical optimization.

Makes it easy to fit:

- Highly-flexible predictive models
- Transferable feature representations
- Structurally-aligned network architectures

Introduction

Goals

Background

Dackgroui

Variation

Objective

Inference Strategies

Advanced Topics

Case Studie

Conclusion

Reference

Deep Learning in NLP

Current dominant paradigm for NLP.

Major successes include, among many others:

- Text classification
- Neural machine translation
- NLU Tasks (QA, NLI, etc)

Introduction

Goals

Background

Model

Variation

Inference Strategies

Advanced Topics

Case Studie

Conclusion

Reference

Tutorial: Deep Latent-Variable Models for NLP

- How should a contemporary ML/NLP researcher reason about latent-variables?
- What unique challenges come from modeling text with latent variables?
- What techniques have been explored and shown to be effective in recent papers?

We explore these through the lens of variational inference.

Introduction

Goals

Background

Model

Variation

Inference Strategies

Advanced Topics

Case Studie

Conclusion

Reference

Tutorial: Deep Latent-Variable Models for NLP

- How should a contemporary ML/NLP researcher reason about latent-variables?
- What unique challenges come from modeling text with latent variables?
- What techniques have been explored and shown to be effective in recent papers?

We explore these through the lens of *variational inference*.

Introduction

Goals

Background

Madal

Variation Objective

Inference

Strategies

Advanced Topic

Case Studi

C---!--

Reference

Tutorial Take-Aways

- 1 A collection of deep latent-variable models for NLP
- 2 An understanding of a variational objective
- **3** A toolkit of algorithms for optimization
- 4 A formal guide to advanced techniques
- **5** A survey of example applications
- 6 Code samples and techniques for practical use

Introduction

Goals

Background

Models

Variation

Objective

Inference Strategies

Advanced Topic

Case Studie

Conclusion

Reference

Tutorial Non-Objectives

Not covered (for time, not relevance):

- Many classical latent-variable approaches.
- Undirected graphical models such as MRFs
- Non-likelihood based models such as GANs
- Sampling-based inference such as MCMC.
- Details of deep learning architectures.

Tutorial: Deep Latent NLP (bit.do/lvnlp) Introduction Goals Background Models

Advanced Topics

1 Introduction Goals

Background

2 Models

3 Variational Objective

4 Inference Strategies

5 Advanced Topics

6 Case Studies

What are deep networks?

ntroduction

Goals

Background

Model:

Variation Objective

Inference Strategies

Advanced Topics

Case Studio

Conclusion

References

Deep networks are parameterized non-linear functions; They transform input z into features h using parameters π .

Important examples: The multilayer perceptron,

$$h = MLP(\mathbf{z}; \pi) = V\sigma(W\mathbf{z} + b) + a \quad \pi = \{V, W, a, b\},$$

The recurrent neural network, which maps a sequence of inputs $\mathbf{z}_{1:T}$ into a sequence of features $h_{1:T}$,

$$h_t = \text{RNN}(h_{t-1}, \mathbf{z}_t; \pi) = \sigma(U\mathbf{z}_t + Vh_{t-1} + b) \qquad \pi = \{V, U, b\}$$

What are deep networks?

Introduction

Goals

Background

Models

Variation

Objective

Inference Strategies

Advanced Topics

Case Studie

Conclusio

References

Deep networks are parameterized non-linear functions; They transform input z into features h using parameters π .

Important examples: The multilayer perceptron,

$$h = \text{MLP}(\mathbf{z}; \pi) = V\sigma(W\mathbf{z} + b) + a \quad \pi = \{V, W, a, b\},$$

The recurrent neural network, which maps a sequence of inputs $\mathbf{z}_{1:T}$ into a sequence of features $\boldsymbol{h}_{1:T}$,

$$h_t = \text{RNN}(h_{t-1}, \mathbf{z}_t; \pi) = \sigma(U\mathbf{z}_t + Vh_{t-1} + b) \qquad \pi = \{V, U, b\}$$

.

Deep Latent NLP (bit.do/lvnlp)	What are latent variable models?
Introduction	Latent variable models give us a joint distribution
Goals Background	p(x,z; heta).
Models	
Variational	ullet x is our observed data
Objective	ullet z is a collection of latent variables
Inference	

 θ are the deterministic parameters of the model, such as the neural network

• Data consists of N i.i.d samples,

 $p(x^{(1:N)}, z^{(1:N)}; \theta) = \prod^{N} p(x^{(n)} | z^{(n)}; \theta) p(z^{(n)}; \theta).$

Tutorial:

What are latent variable models?

roduction

Goals

Background

Mode

Variation

Inference

Advanced Topics

Case Studie

Conclusion

Reference

Latent variable models give us a joint distribution

$$p(x, z; \theta)$$
.

- x is our observed data
- z is a collection of latent variables
- $oldsymbol{ heta}$ are the deterministic parameters of the model, such as the neural network parameters
- Data consists of N i.i.d samples,

$$p(x^{(1:N)}, z^{(1:N)}; \theta) = \prod_{n=1}^{N} p(x^{(n)} | z^{(n)}; \theta) p(z^{(n)}; \theta).$$

What are latent variable models?

Background

Latent variable models give us a joint distribution

$$p(x, z; \theta)$$
.

- x is our observed data
- z is a collection of latent variables
- θ are the deterministic parameters of the model, such as the neural network parameters
 - Data consists of N i.i.d samples.

$$p(x^{(1:N)}, z^{(1:N)}; \theta) = \prod_{n=1}^{N} p(x^{(n)} | z^{(n)}; \theta) p(z^{(n)}; \theta).$$

Introduction

Goals

Background

Models

Variation

Interenc

Advanced Topi

Case Studi

Conclusion

References

Probabilistic Graphical Models

- A directed PGM shows the conditional independence structure.
- By chain rule, latent variable model over observations can be represented as,

$$p(x^{(1:N)}, z^{(1:N)}; \theta) = \prod_{n=1}^{N} p(x^{(n)} | z^{(n)}; \theta) p(z^{(n)}; \theta)$$

• Specific models may factor further.

(bit.do/lvnlp)
Introduction
Goals
Background

Tutorial: NLP

as a subroutine.
• Intuition: if I know likely
$$z^{(n)}$$
 for $x^{(n)}$, I can learn by maximizing

• Learning the parameters
$$\theta$$
 of the model often requires calculating posteriors as a subroutine.

hy?
$$\hspace{1cm}$$
 $\hspace{1cm}$ $\hspace{1cm}$

Posterior Inference

$$p(z \mid x; \theta) = \frac{p(x, z; \theta)}{p(x; \theta)}.$$

$$p(z \mid x; \theta) = \frac{p(x, z; \theta)}{p(x; \theta)}.$$

$$p(z \mid x; \theta) = p(x, z; \theta)$$

For models
$$p(x,z;\,\theta)$$
, we'll be interested in the *posterior* over latent variables z :

Background

Advanced Topics

Tutorial: Deep Latent NLP

(bit.do/lynlp)

For models $p(x, z; \theta)$, we'll be interested in the *posterior* over latent variables z:

Posterior Inference

 $p(z \mid x; \theta) = \frac{p(x, z; \theta)}{p(x; \theta)}.$

Why?

• z will often represent interesting information about our data (e.g., the

cluster $x^{(n)}$ lives in. how similar $x^{(n)}$ and $x^{(n+1)}$ are).

• Learning the parameters θ of the model often requires calculating posteriors

as a subroutine.

• Intuition: if I know likely $z^{(n)}$ for $x^{(n)}$, I can learn by maximizing $p(x^{(n)} | z^{(n)}; \theta).$

Introduction

Goals

Background

Models

Variation

Inference Strategies

Advanced Topic

Case Studio

Conclusion

Reference

Problem Statement: Two Views

Deep Models & LV Models are naturally complementary:

- Rich function approximators with modular parts.
- Declarative methods for specifying model constraints.

Deep Models & LV Models are frustratingly incompatible:

- Deep networks make posterior inference intractable.
- Latent variable objectives complicate backpropagation.

Introduction

Goals

Background

Models

Variation

Inference

Strategies Strategies

Advanced Topi

Case Studie

Conclusion

Reference

Problem Statement: Two Views

Deep Models & LV Models are naturally complementary:

- Rich function approximators with modular parts.
- Declarative methods for specifying model constraints.

Deep Models & LV Models are frustratingly incompatible:

- Deep networks make posterior inference intractable.
- Latent variable objectives complicate backpropagation.

Introduction

Introduct Models

2 Models

Discrete Models Continuous Models

Continuous Models Structured Models

Variational Objective

erence rategies

Advanced Topics

Case Studie

Conclusion

References

Discrete Models

Continuous Models

Structured Models

Variational Objective

4 Inference Strategies

6 Advanced Topics

6 Case Studies

A Language Model

Introduction

Models

Discrete Models
Continuous Models

Structured Models

Variationa

Objective

Strategie

Advanced Topics

Case Studie

Conclusion

References

Our goal is to model a sentence, $x_1 \dots x_T$.

Context: RNN language models are remarkable at this task,

$$x_{1:T} \sim \text{RNNLM}(x_{1:T}; \theta).$$

Defined as,

$$p(x_{1:T}) = \prod_{t=1}^{T} p(x_t \mid x_{< t}) = \prod_{t=1}^{T} \operatorname{softmax}(\boldsymbol{W} \boldsymbol{h}_t)_{x_t}$$

where
$$\boldsymbol{h}_t = \text{RNN}(\boldsymbol{h}_{t-1}, \mathbf{x}_{t-1}; \theta)$$

A Language Model

Introduction

Models

Discrete Models
Continuous Models

Structured Models

Variationa Objective

Inference Strategies

Advanced Topics

Case Studies

Conclusion

References

Our goal is to model a sentence, $x_1 \dots x_T$.

Context: RNN language models are remarkable at this task,

$$x_{1:T} \sim \text{RNNLM}(x_{1:T}; \theta).$$

Defined as,

$$p(x_{1:T}) = \prod_{t=1}^{T} p(x_t \mid x_{< t}) = \prod_{t=1}^{T} \operatorname{softmax}(\boldsymbol{W}\boldsymbol{h}_t)_{x_t}$$

where
$$\boldsymbol{h}_t = \text{RNN}(\boldsymbol{h}_{t-1}, \mathbf{x}_{t-1}; \theta)$$

Introductio

Models

Discrete Models
Continuous Models
Structured Models

Variationa Objective

Inference

Strategie

Advanced Topics

Case Studies

Conclusion

References

A Collection of Model Archetypes

Focus: semi-supervised or unsupervised learning, i.e. don't just learn the probabilities, but the process. Range of choices in selecting z

- Discrete LVs z (Clustering)
- 2 Continuous LVs z (Dimensionality reduction)
- 3 Structured LVs z (Structured learning)

Introduction

Models

Discrete Models
Continuous Models
Structured Models

Variationa Objective

Informe

Strategie

Advanced Topics

Case Studies

Conclusion

References

A Collection of Model Archetypes

Focus: semi-supervised or unsupervised learning, i.e. don't just learn the probabilities, but the process. Range of choices in selecting \boldsymbol{z}

- Discrete LVs z (Clustering)
- **2** Continuous LVs z (Dimensionality reduction)
- **3** Structured LVs z (Structured learning)

Tutorial: Deep Latent NLP (bit.do/lvnlp) Introduction Models Discrete Models Continuous Models Structured Models Variational Objective

Advanced Topics

3 Variational Objective

4 Inference Strategies

6 Advanced Topics

Model 1: Discrete Clustering

Introduction

Models

Discrete Models

Continuous Models
Structured Models

Variationa

Objective

Inference Strategies

Advanced Topics

Case Studie

Conclusion

References

Inference Process:

In an old house in Paris that was covered with vines lived twelve little girls in two straight lines.

Discrete latent variable models induce a clustering over sentences $x^{(n)}$.

Example uses:

- Document/sentence clustering [Willett 1988; Aggarwal and Zhai 2012].
- Mixture of expert text generation models [Jacobs et al. 1991; Garmash and Monz 2016: Lee et al. 2016]

Introductio

Models

Discrete Models

Continuous Models Structured Models

Objective **Objective**

Inference Strategie

Advanced Topics

Case Studies

Conclusion

References

Model 1: Discrete Clustering

Inference Process:

Discrete latent variable models induce a clustering over sentences $x^{(n)}$.

Example uses:

- Document/sentence clustering [Willett 1988; Aggarwal and Zhai 2012].
- Mixture of expert text generation models [Jacobs et al. 1991; Garmash and Monz 2016; Lee et al. 2016]

Discrete Models

Continuous Models Structured Models

Generative process:

- **1** Draw cluster $z \in \{1, \dots, K\}$ from a categorical with param μ .
- 2 Draw word T words x_t from a categorical with word distribution π_z .

Model 1: Discrete - Mixture of Categoricals

Parameters: $\theta = \{ \mu \in \Delta^{K-1}, K \times V \text{ stochastic matrix } \pi \}$

Gives rise to the "Naive Bayes" distribution:

$$p(x, z; \theta) = p(z; \mu) \times p(x \mid z; \pi) = \mu_z \times \prod_{t=1}^{T} \mathsf{Cat}(x_t; \pi)$$

$$= \mu_z \times \prod_{t=1}^{T} \pi_{z, x_t}$$

Tutorial:

Deep Latent NLP (bit.do/lvnlp)

Introductio

Models

Discrete Models

Continuous Models

Structured Models

Variationa

Objective

Inference

Advanced Tonics

Case Studies

Conclusion

References

Model 1: Graphical Model View

$$\begin{split} \prod_{n=1}^{N} p(x^{(n)}, z^{(n)}; \, \mu, \pi) &= \prod_{n=1}^{N} p(z^{(n)}; \, \mu) \times p(x^{(n)} \, | \, z^{(n)}; \, \pi) \\ &= \prod_{n=1}^{N} \mu_{z^{(n)}} \times \prod_{t=1}^{T} \pi_{z^{(n)}, x_{t}^{(n)}} \end{split}$$

Introduction

....

Discrete Models

Continuous Models
Structured Models

Variationa

Objective

Inference Strategie

Advanced Topic

Case Studie

Conclusion

Doforoncos

Deep Model 1: Discrete - Mixture of RNNs

Generative process:

- **1** Draw cluster $z \in \{1, \dots, K\}$ from a categorical.
- 2 Draw words $x_{1:T}$ from RNNLM with parameters π_z .

$$p(x, z; \theta) = \mu_z \times \text{RNNLM}(x_{1:T}; \pi_z)$$

Introductio

ivioueis

Discrete Models

Continuous Models
Structured Models

Variation

Objective

Strategie Strategie

Advanced Topics

Case Studie

Conclusion

References

Difference Between Models

- Dependence structure:
 - Mixture of Categoricals: x_t independent of other x_j given z.
 - Mixture of RNNs: x_t fully dependent.

Interesting question: how will this affect the learned latent space?

- Number of parameters:
 - Mixture of Categoricals: $K \times V$.
 - Mixture of RNNs: $K \times d^2 + V \times d$ with RNN with d hidden dims

Introductio

ivioueis

Discrete Models

Continuous Models
Structured Models

Variation

Objective

Inference Strategie

Advanced Topics

Case Studie

Conclusion

References

Difference Between Models

- Dependence structure:
 - Mixture of Categoricals: x_t independent of other x_j given z.
 - Mixture of RNNs: x_t fully dependent.

Interesting question: how will this affect the learned latent space?

- Number of parameters:
 - Mixture of Categoricals: $K \times V$.
 - Mixture of RNNs: $K \times d^2 + V \times d$ with RNN with d hidden dims.

Posterior Inference

Introduci

Models

Discrete Models

Continuous Models

Structured Models

Variational Objective

Objective

Strategies

Advanced Topics

Conclusion

Conclusion

References

For both discrete models, can apply Bayes' rule:

$$p(z \mid x; \theta) = \frac{p(z) \times p(x \mid z)}{p(x)}$$

$$= \frac{p(z) \times p(x \mid z)}{\sum_{k=1}^{K} p(z=k) \times p(x \mid z=k)}$$

- For mixture of categoricals, posterior uses word counts under each π_k .
- For mixture of RNNs, posterior requires running RNN over x for each k.

Tutorial: Deep Latent NLP

Deep Latent NLP (bit.do/lvnlp)

Posterior Inference

Introductio

Models

Discrete Models

Continuous Models

Structured Models

Variationa

Objective

Inference

Advanced Tonic

Case Studies

Conclusion

References

For both discrete models, can apply Bayes' rule:

$$p(z \mid x; \theta) = \frac{p(z) \times p(x \mid z)}{p(x)}$$

$$= \frac{p(z) \times p(x \mid z)}{\sum_{k=1}^{K} p(z=k) \times p(x \mid z=k)}$$

- For mixture of categoricals, posterior uses word counts under each π_k .
- For mixture of RNNs, posterior requires running RNN over x for each k.

Introduction

Models

Discrete Models

Continuous Models

Structured Models

Variation

Objective

Inference

Strategie

Advanced Topics

Case Studies

Conclusion

References

Posterior Inference

For both discrete models, can apply Bayes' rule:

$$p(z \mid x; \theta) = \frac{p(z) \times p(x \mid z)}{p(x)}$$

$$= \frac{p(z) \times p(x \mid z)}{\sum_{k=1}^{K} p(z=k) \times p(x \mid z=k)}$$

- For mixture of categoricals, posterior uses word counts under each π_k .
- For mixture of RNNs, posterior requires running RNN over x for each k.

Tutorial: Deep Latent NLP (bit.do/lvnlp)	1 Introduc
Introduction	2 Models
Models	Discr
Discrete Models Continuous Models	Conti

Structured Models Variational

Advanced Topics

ete Models

Continuous Models

Variational Objective

4 Inference Strategies

Advanced Topics

6 Case Studies

Model 2: Continuous / Dimensionality Reduction

Introducti

Models

Discrete Models

Continuous Models

Structured Models

Objective

Inference Strategies

Advanced Topics

_ . . .

References

Inference Process:

In an old house in Paris that was covered with vines lived twelve little girls in two straight lines.

Find a lower-dimensional, well-behaved continuous representation of a sentence latent variables in \mathbb{R}^d make distance/similarity easy. Examples:

- Recent work in text generation assumes a latent vector per sentence [Bowman et al. 2016; Yang et al. 2017; Hu et al. 2017].
- Certain sentence embeddings (e.g., Skip-Thought vectors [Kiros et al. 2015]) can be interpreted in this way.

Introduction

Models

Discrete Models

Continuous Models

Continuous mout

Structured Models

Variationa Objective

Inference

Advanced Topics

Case Studies

Conclusion

References

Inference Process:

Model 2: Continuous / Dimensionality Reduction

Find a lower-dimensional, well-behaved continuous representation of a sentence. Latent variables in \mathbb{R}^d make distance/similarity easy. Examples:

- Recent work in text generation assumes a latent vector per sentence [Bowman et al. 2016; Yang et al. 2017; Hu et al. 2017].
- Certain sentence embeddings (e.g., Skip-Thought vectors [Kiros et al. 2015]) can be interpreted in this way.

Introduction

Models

Discrete Models

Continuous Models

Structured Models

Structured Mode

Variation

Objective

Strategie:

Advanced Topics

Case Studies

Conclusion

References

Model 2: Continuous "Mixture"

Generative Process:

- **1** Draw continuous latent variable z from Normal with param μ .
- **2** For each t, draw word x_t from categorical with param $\operatorname{softmax}(\boldsymbol{W}\mathbf{z})$.

Parameters: $\theta = \{\mu \in \mathbb{R}^d, \pi\}, \pi = \{\boldsymbol{W} \in \mathbb{R}^{V \times d}\}$

Intuition: μ is a global distribution, ${\bf z}$ captures local word distribution of the sentence.

Deep Latent NLP (bit.do/lvnlp)

Introduction

Models

Discrete Models

Continuous Models

Structured Models

Variationa

Objective

Inference

Advanced Topic

Case Studie

Conclusion

References

Graphical Model View

Gives rise to the joint distribution:

$$\prod_{n=1}^{N} p(x^{(n)}, z^{(n)}; \theta) = \prod_{n=1}^{N} p(z^{(n)}; \mu) \times p(x^{(n)} | z^{(n)}; \pi)$$

Deep Model 2: Continuous "Mixture" of RNNs

Generative Process:

- **1** Draw latent variable $\mathbf{z} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{I})$.
- 2 Draw each token x_t from a conditional RNNLM.

$$p(x, \mathbf{z}; \pi, \boldsymbol{\mu}, \boldsymbol{I}) = p(\mathbf{z}; \boldsymbol{\mu}, \boldsymbol{I}) \times p(x \mid \mathbf{z}; \pi)$$
$$= \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}, \boldsymbol{I}) \times \text{CRNNLM}(x_{1:T}; \pi, \mathbf{z})$$

Discrete Models Continuous Models Structured Models

CRNNLM
$$(x_{1:T}; \pi, \mathbf{z}) = \prod_{t=1}^{T} \operatorname{softmax}(\boldsymbol{W}\boldsymbol{h}_t)_{x_t}$$

Deep Model 2: Continuous "Mixture" of RNNs

Models

Discrete Models

Continuous Models

Structured Models

Variation

Objective

Inference Strategie

Advanced Topics

Case Studies

Conclusion

References

Generative Process:

1 Draw latent variable $\mathbf{z} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{I})$.

2 Draw each token x_t from a conditional RNNLM.

RNN is also conditioned on latent z,

$$p(x, \mathbf{z}; \pi, \boldsymbol{\mu}, \boldsymbol{I}) = p(\mathbf{z}; \boldsymbol{\mu}, \boldsymbol{I}) \times p(x \mid \mathbf{z}; \pi)$$
$$= \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}, \boldsymbol{I}) \times \text{CRNNLM}(x_{1:T}; \pi, \mathbf{z})$$

where

CRNNLM
$$(x_{1:T}; \pi, \mathbf{z}) = \prod_{t=1}^{T} \operatorname{softmax}(\boldsymbol{W}\boldsymbol{h}_t)_{x_t}$$

$$\boldsymbol{h}_t = \text{RNN}(\boldsymbol{h}_{t-1}, [\mathbf{x}_{t-1}; \mathbf{z}]; \pi)$$

Deep Model 2: Continuous "Mixture" of RNNs

Generative Process:

- **1** Draw latent variable $\mathbf{z} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{I})$.
- 2 Draw each token x_t from a conditional RNNLM.

RNN is also conditioned on latent z,

$$p(x, \mathbf{z}; \pi, \boldsymbol{\mu}, \boldsymbol{I}) = p(\mathbf{z}; \boldsymbol{\mu}, \boldsymbol{I}) \times p(x \mid \mathbf{z}; \pi)$$
$$= \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}, \boldsymbol{I}) \times \text{CRNNLM}(x_{1:T}; \pi, \mathbf{z})$$

Discrete Models Continuous Models Structured Models

where

CRNNLM
$$(x_{1:T}; \pi, \mathbf{z}) = \prod_{t=1}^{T} \operatorname{softmax}(\boldsymbol{W}\boldsymbol{h}_t)_{x_t}$$

$$\boldsymbol{h}_t = \text{RNN}(\boldsymbol{h}_{t-1}, [\mathbf{x}_{t-1}; \mathbf{z}]; \pi)$$

Introductio

Models

Discrete Models

Continuous Models

Structured Models

Variational

Objective

Inference Strategies

Advanced Topics

Case Studies

Conclusion

References

Graphical Model View

Deep Latent NLP (bit.do/lvnlp)

Introduction

iviodeis

Discrete Models

Continuous Models

Structured Models

Variation

Objective

Inference Strategies

Advanced Topics

Case Studies

Conclusion

References

Posterior Inference

For continuous models, Bayes' rule is harder to compute,

$$p(z \mid x; \theta) = \frac{p(z; \mu) \times p(x \mid z; \pi)}{\int_{z} p(z; \mu) \times p(x \mid z; \pi) dz}$$

- Shallow and deep Model 2 variants mirror Model 1 variants exactly, but with continuous z.
- Integral intractable (in general) for both shallow and deep variants

Introduction

Model

Discrete Models

Continuous Models

Structured Models

Variationa

Objective

Inference Strategie

Advanced Topics

Case Studies

Conclusion

References

Posterior Inference

For continuous models, Bayes' rule is harder to compute,

$$p(z \mid x; \theta) = \frac{p(z; \mu) \times p(x \mid z; \pi)}{\int_{z} p(z; \mu) \times p(x \mid z; \pi) dz}$$

- Shallow and deep Model 2 variants mirror Model 1 variants exactly, but with continuous z.
- Integral intractable (in general) for both shallow and deep variants.

Tutorial: Deep Latent NLP (bit.do/lvnlp)	• Introduction
Introduction	2 Models
Models Discrete Models	Discrete Models
Continuous Models Structured Models	Continuous Models Structured Models
Variational Objective	Structured Wodels
Inference Strategies	3 Variational Objective
Advanced Topics	4 Inference Strategies
Case Studies	
Conclusion References	Advanced Topics
	a Case Studies

.....

Discrete Models

Continuous Models
Structured Models

Variationa

Objective

Strategies

Advanced Topics

Case Studie

Conclusion

References

Model 3: Structure Learning

Inference Process:

Structured latent variable models are used to infer unannotated structure:

- Unsupervised POS tagging [Brown et al. 1992; Merialdo 1994; Smith and Eisner 2005]
- Unsupervised dependency parsing [Klein and Manning 2004; Headden III et al. 2009]

Or when structure is useful for *interpreting* our data:

- Segmentation of documents into topical passages [Hearst 1997]
- Alignment [Vogel et al. 1996]

Introduction

N.4 - -I - I -

Discrete Models
Continuous Models

Structured Models

Variationa

Objective

Inference Strategie

Advanced Topics

Case Studie

Conclusion

References

Model 3: Structured - Hidden Markov Model

Generative Process:

- **1** For each t, draw $z_t \in \{1, \dots, K\}$ from a categorical with param $\mu_{z_{t-1}}$.
- 2 Draw observed token x_t from categorical with param π_{z_t} .

Parameters: $\theta = \{K \times K \text{ stochastic matrix } \mu, K \times V \text{ stochastic matrix } \pi\}$

Gives rise to the joint distribution

$$p(x, z; \theta) = \prod_{t=1}^{T} p(z_t | z_{t-1}; \mu_{z_{t-1}}) \times \prod_{t=1}^{T} p(x_t | z_t; \pi_{z_t})$$
$$= \prod_{t=1}^{T} \mu_{z_{t-1}, z_t} \times \prod_{t=1}^{T} \pi_{z_t, x_t}$$

Introduction

Model

Discrete Models
Continuous Models

Structured Models

Variationa

Objective

Inference Strategie

Advanced Topic

Case Studie

Conclusion

References

Model 3: Structured - Hidden Markov Model

Generative Process:

- **1** For each t, draw $z_t \in \{1, \dots, K\}$ from a categorical with param $\mu_{z_{t-1}}$.
- 2 Draw observed token x_t from categorical with param π_{z_t} .

Parameters: $\theta = \{K \times K \text{ stochastic matrix } \mu, K \times V \text{ stochastic matrix } \pi\}$

Gives rise to the joint distribution:

$$p(x, z; \theta) = \prod_{t=1}^{T} p(z_t | z_{t-1}; \mu_{z_{t-1}}) \times \prod_{t=1}^{T} p(x_t | z_t; \pi_{z_t})$$
$$= \prod_{t=1}^{T} \mu_{z_{t-1}, z_t} \times \prod_{t=1}^{T} \pi_{z_t, x_t}$$

Deep Latent NLP (bit.do/lvnlp)

Introduction

Models

Discrete Models

Continuous Models

Structured Models

Variationa

Objective

Inference

Advanced Topics

Case Studie

Conclusion

References

Graphical Model View

$$p(x, z; \theta) = \prod_{t=1}^{T} p(z_t | z_{t-1}; \mu_{z_{t-1}}) \times \prod_{t=1}^{T} p(x_t | z_t; \pi_{z_t})$$
$$= \prod_{t=1}^{T} \mu_{z_{t-1}, z_t} \times \prod_{t=1}^{T} \pi_{z_t, x_t}$$

Deep Latent NLP (bit.do/lvnlp)

Introduction

Models

Discrete Models

Continuous Models

Structured Models

Variationa

Objective

Inference

Strategie

Advanced Topic

Case Studie

Conclusion

References

Further Extension: Factorial HMM

$$p(x, z; \theta) = \prod_{l=1}^{L} \prod_{t=1}^{T} p(z_{l,t} | z_{l,t-1}) \times \prod_{t=1}^{T} p(x_t | z_{1:L,t})$$

Deep Model 3: Deep HMM

trouuci

Discrete Models

Continuous Models

Structured Models

Variationa

Objective

Strategie:

Advanced Topics

Case Studie

Conclusion

References

Parameterize transition and emission distributions with neural networks (c.f., Tran et al. [2016])

Model transition distribution as

$$p(z_t \mid z_{t-1}) = \operatorname{softmax}(\operatorname{MLP}(z_{t-1}; \mu))$$

Model emission distribution as

$$p(x_t | z_t) = \operatorname{softmax}(MLP(z_t; \pi))$$

Note: $K \times K$ transition parameters for standard HMM vs. $O(K \times d + d^2)$ for deep version.

Deep Latent NLP (bit.do/lynlp)

Tutorial:

Deep Model 3: Deep HMM

Parameterize transition and emission distributions with neural networks (c.f., Tran

Discrete Models

Continuous Models Structured Models

Advanced Topics

et al. [2016])

Model transition distribution as

 $p(z_t \mid z_{t-1}) = \operatorname{softmax}(\operatorname{MLP}(z_{t-1}; \mu))$

Model emission distribution as

 $p(x_t | z_t) = \operatorname{softmax}(\operatorname{MLP}(z_t; \pi))$

39/153

Note: $K \times K$ transition parameters for standard HMM vs. $O(K \times d + d^2)$ for deep version.

Deep Latent NLP (bit.do/lvnlp)

Introductio

Models

Discrete Models

Continuous Models

Structured Models

Variationa

Objective

Inference

Advanced Topics

Case Studies

Conclusion

References

Graphical Model View

$$p(x, z; \theta) = \prod_{t=1}^{T} p(z_t | z_{t-1}; \mu_{z_{t-1}}) \times \prod_{t=1}^{T} p(x_t | z_t; \pi_{z_t})$$
$$= \prod_{t=1}^{T} \mu_{z_{t-1}, z_t} \times \prod_{t=1}^{T} \pi_{z_t, x_t}$$

Posterior Inference

Introduction

ivioueis

Discrete Models
Continuous Models

Structured Models

Mantaglania

Objective

Inference Strategies

Advanced Topics

Case Studies

Conclusion

References

For structured models, Bayes' rule may tractable,

$$p(z \mid x; \theta) = \frac{p(z; \mu) \times p(x \mid z; \pi)}{\sum_{z'} p(z'; \mu) \times p(x \mid z'; \pi)}$$

- Unlike previous models, z contains interdependent "parts."
- For both shallow and deep Model 3 variants, it's possible to calculate $p(x;\,\theta)$ exactly, with a dynamic program.
- For some structured models, like Factorial HMM, the dynamic program may still be intractable.

Introductio

Model

Discrete Models

Continuous Models
Structured Models

Structured Mode

Objective **Objective**

Inference

Advanced Texts

Case Studies

Conclusion

References

Posterior Inference

For structured models, Bayes' rule may tractable,

$$p(z \mid x; \theta) = \frac{p(z; \mu) \times p(x \mid z; \pi)}{\sum_{z'} p(z'; \mu) \times p(x \mid z'; \pi)}$$

- Unlike previous models, z contains interdependent "parts."
- For both shallow and deep Model 3 variants, it's possible to calculate $p(x; \theta)$ exactly, with a dynamic program.
- For some structured models, like Factorial HMM, the dynamic program may still be intractable.

• Introduction

2 Models

Models

Variational

Objective

3 Variational Objective
Maximum Likelihood
ELBO

Maximum Likelihood ELBO

Inference Strategies

Advanced Topics 4 Inference Strategies

Case Studie

5 Advanced Topics

References

6 Case Studies

Tutorial: Deep Latent NLP (bit.do/lvnlp) Introduction Models Variational

2 Models

Introduction

Objective Maximum Likelihood

ELBO

nference Strategies

Advanced Topics

Case Studie

Conclusion

References

Maximum Likelihood

3 Variational Objective

4 Inference Strategies

5 Advanced Topics

6 Case Studies

Introduction

Models

Variational Objective

Maximum Likelihood

Inference

Advanced Topics

Case Studies

References

Learning with Maximum Likelihood

Objective: Find model parameters $\boldsymbol{\theta}$ that maximize the likelihood of the data,

$$\theta^* = \underset{\theta}{\operatorname{arg max}} \sum_{n=1}^{N} \log p(x^{(n)}; \theta)$$

troduction

Models

Variational Objective

Maximum Likelihood ELBO

Inference

Advanced Topic

Case Studie

Conclusio

References

Learning Deep Models

$$L(\theta) = \sum_{n=1}^{N} \log p(x^{(n)}; \theta)$$

• Dominant framework is gradient-based optimization:

$$\theta^{(i)} = \theta^{(i-1)} + \eta \nabla_{\theta} L(\theta)$$

- $\nabla_{\theta} L(\theta)$ calculated with backpropagation.
- Tactics: mini-batch based training, adaptive learning rates [Duchi et al. 2011;
 Kingma and Ba 2015].

Deep Latent NLP (bit.do/lynln)

Maximum Likelihood

Learning Deep Latent-Variable Models: Marginalization

Likelihood requires summing out the latent variables.

$$p(x; \theta) = \sum_{z \in \mathcal{Z}} p(x, z; \theta)$$
 (= $\int p(x, z; \theta) dz$ if continuous z)

$$L(\theta) = \sum_{n=1}^{N} \log \sum_{z \in \mathcal{Z}} p(x^{(n)}, z; \theta)$$

Model

Variationa Objective

Maximum Likelihood

ELBO

Strategies

Advanced Topic

Case Studi

Conclusion

References

Learning Deep Latent-Variable Models: Marginalization

Likelihood requires summing out the latent variables,

$$p(x; \theta) = \sum_{z \in \mathcal{Z}} p(x, z; \theta)$$
 (= $\int p(x, z; \theta) dz$ if continuous z)

In general, hard to optimize log-likelihood for the training set,

$$L(\theta) = \sum_{n=1}^{N} \log \sum_{z \in \mathcal{Z}} p(x^{(n)}, z; \theta)$$

Tutorial: Deep Latent NLP (bit.do/lvnlp)	1 Introduction
Introduction	2 Models
Models	
Variational Objective Maximum Likelihood ELBO Inference Strategies	3 Variational Objective Maximum Likelihood ELBO
Advanced Topics	4 Inference Strategies
Case Studies	
Conclusion	3 Advanced Topics

References

6 Case Studies

Introduction

Objective

Maximum Likelihood

ELBO

Inference

Strategies

Advanced Topic

Case Studi

Conclusion

Reference

Variational Inference

High-level: decompose objective into lower-bound and gap.

$$L(heta) \left\{ egin{array}{c} \mathsf{GAP}(heta,\lambda) \ & \mathsf{LB}(heta,\lambda) \end{array}
ight.$$

$$L(\theta) = \mathsf{LB}(\theta, \lambda) + \mathsf{GAP}(\theta, \lambda)$$
 for some λ

Provides framework for deriving a rich set of optimization algorithms.

Marginal Likelihood: Variational Decomposition

ntroducti

Models

ariational

Maximum Likelihood

ELBO

Inference Strategies

Advanced Topics

Conclusion

References

For any 1 distribution $q(z \mid x; \lambda)$ over z,

$$L(\theta) = \mathbb{E}_q \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right] + \text{KL}[q(z \mid x; \lambda) \parallel p(z \mid x; \theta)]$$

posterior gap

ELBO (evidence lower bound)

Since KL is always non-negative, $L(\theta) \geq \text{ELBO}(\theta, \lambda)$.

¹Technical condition: $supp(q(z)) \subset supp(p(z \mid x; \theta))$

Deep Latent NLP
(bit.do/lvnlp)

Evidence Lower Bound: Proof

Introductio

iviodeis

Variational Objective

Maximum Likelihood

ELBO

Strategies

Advanced Topic

Case Studi

Conclusion

References

$$\begin{split} \log p(x;\,\theta) &= \mathbb{E}_q \log p(x) \quad \textit{(Expectation over z)} \\ &= \mathbb{E}_q \log \frac{p(x,z)}{p(z\,|\,x)} \quad \textit{(Mult/div by } p(z|x) \textit{, combine numerator)} \\ &= \mathbb{E}_q \log \left(\frac{p(x,z)}{q(z\,|\,x)} \frac{q(z\,|\,x)}{p(z\,|\,x)} \right) \quad \textit{(Mult/div by } q(z|x) \textit{)} \\ &= \mathbb{E}_q \log \frac{p(x,z)}{q(z\,|\,x)} + \mathbb{E}_q \log \frac{q(z\,|\,x)}{p(z\,|\,x)} \quad \textit{(Split Log)} \\ &= \mathbb{E}_q \log \frac{p(x,z;\,\theta)}{q(z\,|\,x;\,\lambda)} + \mathrm{KL}[q(z\,|\,x;\,\lambda) \, \| \, p(z\,|\,x;\,\theta)] \end{split}$$

Deep Latent NLP (bit.do/lvnlp)

Introductio

Models

Variationa Objective

Maximum Likelihood

ELBO

Strategies 5

Advanced Topics

Case Studi

Conclusion

References

$$\begin{split} \log p(x;\,\theta) &= \mathbb{E}_q \log p(x) \quad \textit{(Expectation over z)} \\ &= \mathbb{E}_q \log \frac{p(x,z)}{p(z\,|\,x)} \quad \textit{(Mult/div by } p(z|x) \textit{, combine numerator)} \\ &= \mathbb{E}_q \log \left(\frac{p(x,z)}{q(z\,|\,x)} \frac{q(z\,|\,x)}{p(z\,|\,x)} \right) \quad \textit{(Mult/div by } q(z|x) \textit{)} \\ &= \mathbb{E}_q \log \frac{p(x,z)}{q(z\,|\,x)} + \mathbb{E}_q \log \frac{q(z\,|\,x)}{p(z\,|\,x)} \quad \textit{(Split Log)} \\ &= \mathbb{E}_q \log \frac{p(x,z;\,\theta)}{q(z\,|\,x;\,\lambda)} + \mathrm{KL}[q(z\,|\,x;\,\lambda) \, || \, p(z\,|\,x;\,\theta)] \end{split}$$

Deep Latent NLP (bit.do/lvnlp)

Introduction

Models

Variationa Objective

Maximum Likelihood

ELBO

Inference

Advanced Tonic

Case Studio

Conclusion

References

$$\begin{split} \log p(x;\,\theta) &= \mathbb{E}_q \log p(x) \quad \textit{(Expectation over z)} \\ &= \mathbb{E}_q \log \frac{p(x,z)}{p(z\,|\,x)} \quad \textit{(Mult/div by } p(z|x), \textit{ combine numerator)} \\ &= \mathbb{E}_q \log \left(\frac{p(x,z)}{q(z\,|\,x)} \frac{q(z\,|\,x)}{p(z\,|\,x)} \right) \quad \textit{(Mult/div by } q(z|x)) \\ &= \mathbb{E}_q \log \frac{p(x,z)}{q(z\,|\,x)} + \mathbb{E}_q \log \frac{q(z\,|\,x)}{p(z\,|\,x)} \quad \textit{(Split Log)} \\ &= \mathbb{E}_q \log \frac{p(x,z;\,\theta)}{q(z\,|\,x;\,\lambda)} + \mathrm{KL}[q(z\,|\,x;\,\lambda) \,||\, p(z\,|\,x;\,\theta)] \end{split}$$

Deep Latent NLP (bit.do/lvnlp)

Introduction

Models

Variationa

Maximum Likelihood

ELBO

ELBO

Strategies

Advanced Topic

Case Studi

Conclusion

References

$$\begin{split} \log p(x;\,\theta) &= \mathbb{E}_q \log p(x) \quad \textit{(Expectation over z)} \\ &= \mathbb{E}_q \log \frac{p(x,z)}{p(z\,|\,x)} \quad \textit{(Mult/div by } p(z|x) \textit{, combine numerator)} \\ &= \mathbb{E}_q \log \left(\frac{p(x,z)}{q(z\,|\,x)} \frac{q(z\,|\,x)}{p(z\,|\,x)} \right) \quad \textit{(Mult/div by } q(z|x) \textit{)} \\ &= \mathbb{E}_q \log \frac{p(x,z)}{q(z\,|\,x)} + \mathbb{E}_q \log \frac{q(z\,|\,x)}{p(z\,|\,x)} \quad \textit{(Split Log)} \\ &= \mathbb{E}_q \log \frac{p(x,z;\,\theta)}{q(z\,|\,x;\,\lambda)} + \mathrm{KL}[q(z\,|\,x;\,\lambda) \, || \, p(z\,|\,x;\,\theta)] \end{split}$$

Deep Latent NLP (bit.do/lvnlp)

Introduction

iviodeis

Variationa

Maximum Likelihood

ELBO

Inferenc

Strategie

Advanced Topic

Case Studi

Conclusion

References

$$\begin{split} \log p(x;\,\theta) &= \mathbb{E}_q \log p(x) \quad \textit{(Expectation over z)} \\ &= \mathbb{E}_q \log \frac{p(x,z)}{p(z\,|\,x)} \quad \textit{(Mult/div by } p(z|x) \textit{, combine numerator)} \\ &= \mathbb{E}_q \log \left(\frac{p(x,z)}{q(z\,|\,x)} \frac{q(z\,|\,x)}{p(z\,|\,x)} \right) \quad \textit{(Mult/div by } q(z|x) \textit{)} \\ &= \mathbb{E}_q \log \frac{p(x,z)}{q(z\,|\,x)} + \mathbb{E}_q \log \frac{q(z\,|\,x)}{p(z\,|\,x)} \quad \textit{(Split Log)} \\ &= \mathbb{E}_q \log \frac{p(x,z;\,\theta)}{q(z\,|\,x;\,\lambda)} + \mathrm{KL}[q(z\,|\,x;\lambda) \, \| \, p(z\,|\,x;\,\theta)] \end{split}$$

Deep Latent NLP (bit.do/lvnlp)

Introduction

Models

Variational Objective

Maximum Likelihood

ELBO

Inference

Strategies

Advanced Topic

Case Studio

Conclusio

References

Evidence Lower Bound over Observations

ELBO
$$(\theta, \lambda; x) = \mathbb{E}_{q(z)} \Big[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \Big]$$

• ELBO is a function of the generative model parameters, θ , and the variational parameters, λ .

$$\begin{split} \sum_{n=1}^{N} \log p(x^{(n)}; \, \theta) &\geq \sum_{n=1}^{N} \mathrm{ELBO}(\theta, \lambda; \, x^{(n)}) \\ &= \sum_{n=1}^{N} \mathbb{E}_{q(z \, | \, x^{(n)}; \, \lambda)} \Big[\log \frac{p(x^{(n)}, z; \, \theta)}{q(z \, | \, x^{(n)}; \, \lambda)} \Big] \\ &= \mathrm{ELBO}(\theta, \lambda; \, x^{(1:N)}) = \mathrm{ELBO}(\theta, \lambda) \end{split}$$

Introductio

Models

Variationa Objective

Maximum Likelihood

ELBO

Inference Strategies

Advanced Topic

Case Studi

Conclusion

Reference

Setup: Selecting Variational Family

- Just as with p and θ , we can select any form of q and λ that satisfies ELBO conditions.
- ullet Different choices of q will lead to different algorithms.
- We will explore several forms of *q*:
 - Posterior
 - Point Estimate / MAP
 - Amortized
 - Mean Field (later)

Deep Latent NLP (bit.do/lvnlp)

Introduction

Models

Variationa Objective

Maximum Likelihood

ELBO

Inferen

Strategies

Advanced Topic

Case Studie

Conclusion

References

Example Family: Full Posterior Form

$$\lambda = [\lambda^{(1)}, \dots, \lambda^{(N)}]$$
 is a concatenation of local variational parameters $\lambda^{(n)}$, e.g.

$$q(z^{(n)} | x^{(n)}; \lambda) = q(z^{(n)} | x^{(n)}; \lambda^{(n)}) = \mathcal{N}(\lambda^{(n)}, 1)$$

Deep Latent NLP (bit.do/lvnlp)

Introduction

Madala

Variationa

Maximum Likelihood

ELBO

Inferen

Strategies

Advanced Topic

Case Studi

Conclusion

Reference

Example Family: Amortized Parameterization [Kingma and Welling 2014]

 λ parameterizes a global network (encoder/inference network) that is run over $x^{(n)}$ to produce the local variational distribution, e.g.

$$q(z^{(n)} | x^{(n)}; \lambda) = \mathcal{N}(\mu^{(n)}, 1), \qquad \mu^{(n)} = \text{enc}(x^{(n)}; \lambda)$$

Tutorial: Deep Latent NLP (bit.do/lvnlp)	1 Introducti
Introduction Models	2 Models
Variational Objective	Variation:
Inference	

Strategies

Exact Gradient

Sampling Conjugacy

Advanced Topics

Inference Strategies
 Exact Gradient
 Sampling

Case Studies

Conclusion
References

6 Case Studies

Conjugacy

Ivanced Topics

Introduction

iviodeis

Variationa

Inference

Strategies

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Maximizing the Evidence Lower Bound

Central quantity of interest: almost all methods are maximizing the ELBO

$$\operatorname*{arg\,max}_{\theta,\lambda}\operatorname{ELBO}(\theta,\lambda)$$

Aggregate ELBO objective,

$$\underset{\theta,\lambda}{\operatorname{arg\,max}} \operatorname{ELBO}(\theta,\lambda) = \underset{\theta,\lambda}{\operatorname{arg\,max}} \sum_{n=1}^{N} \operatorname{ELBO}(\theta,\lambda; \, x^{(n)})$$
$$= \underset{\theta,\lambda}{\operatorname{arg\,max}} \sum_{n=1}^{N} \mathbb{E}_{q} \Big[\log \frac{p(x^{(n)}, z^{(n)}; \, \theta)}{q(z^{(n)} \mid x^{(n)}; \, \lambda)} \Big]$$

Introduction

Variationa Objective

Inference

Strategies

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studie

Conclusion

References

Maximizing the Evidence Lower Bound

Central quantity of interest: almost all methods are maximizing the ELBO

$$\underset{\theta,\lambda}{\operatorname{arg\,max}} \operatorname{ELBO}(\theta,\lambda)$$

Aggregate ELBO objective,

$$\underset{\theta,\lambda}{\operatorname{arg\,max}} \operatorname{ELBO}(\theta,\lambda) = \underset{\theta,\lambda}{\operatorname{arg\,max}} \sum_{n=1}^{N} \operatorname{ELBO}(\theta,\lambda; \, x^{(n)})$$
$$= \underset{\theta,\lambda}{\operatorname{arg\,max}} \sum_{n=1}^{N} \mathbb{E}_{q} \Big[\log \frac{p(x^{(n)}, z^{(n)}; \, \theta)}{q(z^{(n)} \mid x^{(n)}; \, \lambda)} \Big]$$

Deep Latent NLP (bit.do/lvnlp)

Introduction

Mode

Variationa

Inference

Strategies

Exact Gradient

Sampling

Conjugacy

Advanced Tonics

Case Studies

Conclusion

References

Maximizing ELBO: Model Parameters

$$\arg\max_{\theta} \mathbb{E}_{q} \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right] = \arg\max_{\theta} \mathbb{E}_{q} [\log p(x, z; \theta)]$$

Intuition: Maximum likelihood problem under variables drawn from $q(z \mid x; \lambda)$.

Introduction

Model

Variationa

Inference Strategies

Exact Gradient

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Model Estimation: Gradient Ascent on Model Parameters

Easy: Gradient respect to θ

$$\nabla_{\theta} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\theta} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big]$$
$$= \mathbb{E}_{q} \Big[\nabla_{\theta} \log p(x, z; \theta) \Big]$$

- Since q not dependent on θ , ∇ moves inside expectation.
- Estimate with samples from q. Term $\log p(x,z;\theta)$ is easy to evaluate. (In practice single sample is often sufficient).
- In special cases, can exactly evaluate expectation.

Inference

Strategies

Exact Gradient Sampling

Conjugacy

Advanced Topics

Model Estimation: Gradient Ascent on Model Parameters

Easy: Gradient respect to θ

$$\nabla_{\theta} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\theta} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big]$$
$$= \mathbb{E}_{q} \Big[\nabla_{\theta} \log p(x, z; \theta) \Big]$$

- Since q not dependent on θ . ∇ moves inside expectation.
- Estimate with samples from q. Term $\log p(x, z; \theta)$ is easy to evaluate. (In practice single sample is often sufficient).
- In special cases, can exactly evaluate expectation.

 $\arg \max ELBO(\theta, \lambda)$

Maximizing ELBO: Variational Distribution

Inference **Strategies**

Exact Gradient Sampling Conjugacy

Advanced Topics

 $= \arg \max \log p(x; \theta) - \mathrm{KL}[q(z \mid x; \lambda) \parallel p(z \mid x; \theta)]$ $= \arg\min \mathrm{KL}[q(z \mid x; \lambda) \parallel p(z \mid x; \theta)]$ posterior gap FI BO

Intuition: q should approximate the posterior p(z|x). However, may be difficult if q or p is a deep model. 59/153

Introduction

ivioueis

Variationa Objective

Inference Strategies

Evact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Model Inference: Gradient Ascent on λ ?

Hard: Gradient respect to λ

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big]$$

$$\neq \mathbb{E}_{q} \Big[\nabla_{\lambda} \log p(x, z; \theta) \Big]$$

- Cannot naively move ∇ inside the expectation, since q depends on λ .
- This section: Inference in practice
 - Exact gradient
 - 2 Sampling: score function, reparameterization
 - Conjugacy: closed-form, coordinate ascent

Inference

Strategies

Evact Gradient

Sampling Conjugacy

Model Inference: Gradient Ascent on λ ?

Hard: Gradient respect to λ

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big]$$

$$\neq \mathbb{E}_{q} \Big[\nabla_{\lambda} \log p(x, z; \theta) \Big]$$

- Cannot naively move ∇ inside the expectation, since q depends on λ .
- This section: Inference in practice:
 - Exact gradient
 - 2 Sampling: score function, reparameterization
 - 3 Conjugacy: closed-form, coordinate ascent

Tutorial: Deep Latent NLP (bit.do/lvnlp)	1 Introduction
Introduction	2 Models
Models	
Variational Objective	3 Variational Objective
Inference Strategies Exact Gradient Sampling Conjugacy Advanced Topics Case Studies Conclusion References	 Inference Strategies Exact Gradient Sampling Conjugacy Advanced Topics
	6 Case Studies

Introductio

Models

Variationa

Inference Strategies

Exact Gradient

Sampling Conjugacy

Case Studies

Conclusion

References

Strategy 1: Exact Gradient

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q(z \mid x; \lambda)} \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right]$$
$$= \nabla_{\lambda} \left(\sum_{z \in \mathcal{Z}} q(z \mid x; \lambda) \log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right)$$

- Naive enumeration: Linear in $|\mathcal{Z}|$.
- Depending on structure of q and p, potentially faster with dynamic programming.
- Applicable mainly to Model 1 and 3 (Discrete and Structured), or Model 2 with point estimate.

Introductio

Models

Variationa

Inference Strategies

Exact Gradient

Sampling

Advanced Tonic

Case Studies

Conclusion

References

Strategy 1: Exact Gradient

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q(z \mid x; \lambda)} \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right]$$
$$= \nabla_{\lambda} \left(\sum_{z \in \mathcal{Z}} q(z \mid x; \lambda) \log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right)$$

- Naive enumeration: Linear in $|\mathcal{Z}|$.
- Depending on structure of q and p, potentially faster with dynamic programming.
- Applicable mainly to Model 1 and 3 (Discrete and Structured), or Model 2 with point estimate.

Deep Latent NLP (bit.do/lvnlp)

Introduction

Model

Variationa Objective

Exact Gradient

Sampling Conjugacy

Casa Studios

Conclusion

References

Example: Model 1 - Naive Bayes

Let
$$q(z \,|\, x;\, \lambda) = \mathsf{Cat}(\nu)$$
 where $\nu = \mathrm{enc}(x;\lambda)$

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q(z \mid x; \lambda)} \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right]$$
$$= \nabla_{\lambda} \left(\sum_{z \in \mathcal{Z}} q(z \mid x; \lambda) \log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right)$$
$$= \nabla_{\lambda} \left(\sum_{z \in \mathcal{Z}} \nu_{z} \log \frac{p(x, z; \theta)}{\nu_{z}} \right)$$

Deep Latent NLP (bit.do/lvnlp)

Introduction

Model

Variationa Objective

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Example: Model 1 - Naive Bayes

Let
$$q(z\,|\,x;\,\lambda) = \mathsf{Cat}(\nu)$$
 where $\nu = \mathrm{enc}(x;\lambda)$

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q(z \mid x; \lambda)} \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right]$$
$$= \nabla_{\lambda} \left(\sum_{z \in \mathcal{Z}} q(z \mid x; \lambda) \log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right)$$
$$= \nabla_{\lambda} \left(\sum_{z \in \mathcal{Z}} \nu_{z} \log \frac{p(x, z; \theta)}{\nu_{z}} \right)$$

Tutorial: Deep Latent NLP (bit.do/lvnlp)	1 Introduction	
Introduction	2 Models	
Models		
Variational Objective	3 Variational Objective	
Inference Strategies Exact Gradient Sampling Conjugacy	4 Inference Strategies Exact Gradient	
Advanced Topics	Sampling	
Case Studies	Conjugacy	
Conclusion	Advanced Topics	
References	Advanced Topics	
	6 Case Studies	4/153

Strategy 2: Sampling

 $\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q} \left[\log \frac{\log p(x, z; \theta)}{\log q(z \mid x; \lambda)} \right]$

Exact Gradient Sampling

Conjugacy

 $= \nabla_{\lambda} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big] - \nabla_{\lambda} \mathbb{E}_{q} \Big[\log q(z \mid x; \theta) \Big]$

How can we approximate this gradient with sampling? Naive algorithm fails

 $\nabla_{\lambda} \frac{1}{J} \sum_{j=1}^{J} \left[\log p(x, z^{(j)}; \theta) \right] = 0$

65/153

Strategy 2: Sampling

itroduction

Models

Variational Objective

Strategies

Exact Gradient
Sampling
Conjugacy

Advanced Topic

Case Studie

Conclusion

References

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q} \Big[\log \frac{\log p(x, z; \theta)}{\log q(z \mid x; \lambda)} \Big]$$
$$= \nabla_{\lambda} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big] - \nabla_{\lambda} \mathbb{E}_{q} \Big[\log q(z \mid x; \theta) \Big]$$

 How can we approximate this gradient with sampling? Naive algorithm fails to provide non-zero gradient.

$$z^{(1)}, \dots, z^{(J)} \sim q(z \mid x; \lambda)$$

$$\nabla_{\lambda} \frac{1}{J} \sum_{i=1}^{J} \left[\log p(x, z^{(j)}; \theta) \right] = 0$$

• Manipulate expression so we can move ∇_{λ} inside \mathbb{E}_q before sampling.

Introductio

Models

Variationa Objective

Inference Strategies

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

First term. Use basic identity:

$$\nabla \log q = \frac{\nabla q}{q} \Rightarrow \nabla q = q \nabla \log q$$

$$\nabla_{\lambda} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big] = \sum_{z} \nabla_{\lambda} q(z \mid x; \lambda) \log p(x, z; \theta)$$

Introduction

Variationa Objective

Interence Strategies

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

First term. Use basic identity:

$$\nabla \log q = \frac{\nabla q}{q} \Rightarrow \nabla q = q \nabla \log q$$

$$\nabla_{\lambda} \mathbb{E}_{q} \left[\log p(x, z; \theta) \right] = \sum_{z} \underbrace{\nabla_{\lambda} q(z \mid x; \lambda)}_{q \nabla \log q} \log p(x, z; \theta)$$

Introduction

Variational Objective

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

First term. Use basic identity:

$$\nabla \log q = \frac{\nabla q}{q} \Rightarrow \nabla q = q \nabla \log q$$

$$\nabla_{\lambda} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big] = \sum_{z} \nabla_{\lambda} q(z \mid x; \lambda) \log p(x, z; \theta)$$
$$= \sum_{z} q(z \mid x; \lambda) \nabla_{\lambda} \log q(z \mid x; \lambda) \log p(x, z; \theta)$$

Introduction

ivioueis

Variation

Inference

Strategie

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studie

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

First term. Use basic identity:

$$\nabla \log q = \frac{\nabla q}{q} \Rightarrow \nabla q = q \nabla \log q$$

$$\nabla_{\lambda} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big] = \sum_{z} \nabla_{\lambda} q(z \mid x; \lambda) \log p(x, z; \theta)$$

$$= \sum_{z} q(z \mid x; \lambda) \nabla_{\lambda} \log q(z \mid x; \lambda) \log p(x, z; \theta)$$

$$= \mathbb{E}_{q} \Big[\log p(x, z; \theta) \nabla_{\lambda} \log q(z \mid x; \lambda) \Big]$$

Introduction

Models

Variationa

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

$$\sum \nabla q = \nabla \sum q = \nabla 1 = 0$$

$$\nabla_{\lambda} \mathbb{E}_{q} \Big[\log q(z \mid x; \lambda) \Big] = \sum_{z} \nabla_{\lambda} \Big(q(z \mid x; \lambda) \log q(z \mid x; \lambda) \Big)$$

Introduction

Variationa Objective

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

$$\sum \nabla q = \nabla \sum q = \nabla 1 = 0$$

$$\begin{split} & \nabla_{\lambda} \mathbb{E}_{q} \Big[\log q(z \mid x; \lambda) \Big] = \sum_{z} \nabla_{\lambda} \Big(q(z \mid x; \lambda) \log q(z \mid x; \lambda) \\ & = \sum_{z} \Big(\underbrace{\nabla_{\lambda} q(z \mid x; \lambda)}_{q \nabla \log q} \Big) \log q(z \mid x; \lambda) + q(z \mid x; \lambda) \Big(\underbrace{\nabla_{\lambda} \log q(z \mid x; \lambda)}_{\nabla q} \Big) \end{split}$$

Introduction

iviodeis

Variationa Objective

Inference

Strategies

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

$$\sum \nabla q = \nabla \sum q = \nabla 1 = 0$$

$$\nabla_{\lambda} \mathbb{E}_{q} \Big[\log q(z \mid x; \lambda) \Big] = \sum_{z} \nabla_{\lambda} \Big(q(z \mid x; \lambda) \log q(z \mid x; \lambda) \Big)$$

$$= \sum_{z} \log q(z \,|\, x;\, \lambda) \nabla_{\lambda} \log q(z \,|\, x;\, \lambda) + \sum_{z} \nabla_{\lambda} q(z \,|\, x;\, \lambda)$$

Introduction

Variational Objective

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

$$\sum \nabla q = \nabla \sum q = \nabla 1 = 0$$

$$\nabla_{\lambda} \mathbb{E}_{q} \Big[\log q(z \mid x; \lambda) \Big] = \sum_{z} \nabla_{\lambda} \Big(q(z \mid x; \lambda) \log q(z \mid x; \lambda) \Big)$$

$$= \sum_{z} \log q(z \mid x; \lambda) \nabla_{\lambda} \log q(z \mid x; \lambda) + \underbrace{\sum_{z} \nabla_{\lambda} q(z \mid x; \lambda)}_{\text{2.5}}$$

$$=\nabla \sum q = \nabla 1 = 0$$

Introduction

Variation Objective

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studie

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

$$\sum \nabla q = \nabla \sum q = \nabla 1 = 0$$

$$\nabla_{\lambda} \mathbb{E}_{q} \Big[\log q(z \mid x; \lambda) \Big] = \sum_{z} \nabla_{\lambda} \Big(q(z \mid x; \lambda) \log q(z \mid x; \lambda) \Big)$$

$$= \sum_{z} \log q(z \mid x; \lambda) \nabla_{\lambda} \log q(z \mid x; \lambda) + \sum_{z} \nabla_{\lambda} q(z \mid x; \lambda)$$

$$= \mathbb{E}_q[\log q(z \mid x; \lambda) \nabla_{\lambda} q(z \mid x; \lambda)]$$

Introduction

Models

Variationa

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

Putting these together,

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q} \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right]$$

$$= \mathbb{E}_{q} \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \nabla_{\lambda} \log q(z \mid x; \lambda) \right]$$

$$= \mathbb{E}_{q} \left[R_{\theta, \lambda}(z) \nabla_{\lambda} \log q(z \mid x; \lambda) \right]$$

Introduction

....

Variation Objective

Inference

Strategies

Exact Gradient

Sampling Conjugacy

Advanced Topic

Case Studie

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

Estimate with samples,

$$z^{(1)}, \dots, z^{(J)} \sim q(z \mid x; \lambda)$$

$$\mathbb{E}_{q} \left[R_{\theta,\lambda}(z) \nabla_{\lambda} \log q(z \mid x; \lambda) \right]$$

$$\approx \frac{1}{J} \sum_{j=1}^{J} R_{\theta,\lambda}(z^{(j)}) \nabla_{\lambda} \log q(z^{(j)} \mid x; \lambda)$$

Intuition: if a sample $z^{(j)}$ is has high reward $R_{\theta,\lambda}(z^{(j)})$, increase the probability of $z^{(j)}$ by moving along the gradient $\nabla_{\lambda} \log q(z^{(j)} \,|\, x;\, \lambda)$.

Introduction

iviodei

Variational Objective

Strategies

Exact Gradient

Sampling Conjugacy

Advanced Topics

Case Studies

Conclusion

Reference

Strategy 2a: Sampling — Score Function Gradient Estimator

- Essentially reinforcement learning with reward $R_{\theta,\lambda}(z)$
- Score function gradient is generally applicable regardless of what distribution q takes (only need to evaluate $\nabla_{\lambda} \log q$).
- This generality comes at a cost, since the reward is "black-box": unbiased estimator, but high variance.
- In practice, need variance-reducing **control variate** B. (More on this later).

Exact Gradient Sampling Conjugacy

Example: Model 1 - Naive Bayes

Let $q(z \mid x; \lambda) = \mathsf{Cat}(\nu)$ where $\nu = \mathrm{enc}(x; \lambda)$

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \mathbb{E}_q \Big[\log x \Big]$$

$$\approx \frac{1}{J} \sum_{j=1}^{J} \nu_{z^{(j)}} \log \frac{p(x, z^{(j)}; \theta)}{\nu_{z^{(j)}}} \nabla_{\lambda} \log \nu_{z^{(j)}}$$

Example: Model 1 - Naive Bayes

Exact Gradient Sampling

Conjugacy

Computational complexity: O(J) vs $O(|\mathcal{Z}|)$

Let $q(z \mid x; \lambda) = \mathsf{Cat}(\nu)$ where $\nu = \mathsf{enc}(x; \lambda)$

Sample $z^{(1)}, \ldots, z^{(J)} \sim q(z \mid x; \lambda)$

 $\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \mathbb{E}_q \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \nabla_{\lambda} \log q(z \mid x; \lambda) \right]$

 $\approx \frac{1}{J} \sum_{i=1}^{J} \nu_{z^{(j)}} \log \frac{p(x, z^{(j)}; \theta)}{\nu_{z^{(j)}}} \nabla_{\lambda} \log \nu_{z^{(j)}}$

78/153

Strategy 2b: Sampling — Reparameterization

Objective

Objective

Strategies

Exact Gradient
Sampling
Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Suppose we can sample from q by applying a deterministic, differentiable transformation g to a base noise density,

$$\epsilon \sim \mathcal{U}$$
 $z = g(\epsilon, \lambda)$

Gradient calculation (first term):

$$\nabla_{\lambda} \mathbb{E}_{z \sim q(z \mid x; \lambda)} \Big[\log p(x, z; \theta) \Big] = \nabla_{\lambda} \mathbb{E}_{\epsilon \sim \mathcal{U}} \Big[\log p(x, g(\epsilon, \lambda); \theta) \Big]$$
$$= \mathbb{E}_{\epsilon \sim \mathcal{U}} \Big[\nabla_{\lambda} \log p(x, g(\epsilon, \lambda); \theta) \Big]$$
$$\approx \frac{1}{J} \sum_{i=1}^{J} \nabla_{\lambda} \log p(x, g(\epsilon^{(j)}, \lambda); \theta)$$

where

Deep Latent NLP (bit.do/lvnlp)

Tutorial:

Strategy 2b: Sampling — Reparameterization

Suppose we can sample from q by applying a deterministic, differentiable transformation g to a base noise density,

$$\epsilon \sim \mathcal{U}$$
 $z = g(\epsilon, \lambda)$

1odels

Variationa Objective

Objective

Inference Strategies

Exact Gradient

Sampling Conjugacy

Advanced Top

Case Studi

Conclusion

References

whe

Gradient calculation (first term):

$$\nabla_{\lambda} \mathbb{E}_{z \sim q(z \mid x; \lambda)} \Big[\log p(x, z; \theta) \Big] = \nabla_{\lambda} \mathbb{E}_{\epsilon \sim \mathcal{U}} \Big[\log p(x, g(\epsilon, \lambda); \theta) \Big]$$
$$= \mathbb{E}_{\epsilon \sim \mathcal{U}} \Big[\nabla_{\lambda} \log p(x, g(\epsilon, \lambda); \theta) \Big]$$
$$\approx \frac{1}{J} \sum_{j=1}^{J} \nabla_{\lambda} \log p(x, g(\epsilon^{(j)}, \lambda); \theta)$$

where

Introduction

Models

Variation Objective

Inference Strategies

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studie

Conclusion

References

Strategy 2b: Sampling — Reparameterization

- Unbiased-like score function gradient estimator, but empirically lower variance.
- In practice, single sample is often sufficient.
- Cannot be used out-of-the-box for discrete z.

Introduction

Model

Variationa

Inferenc

Strategi

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Strategy 2: Continuous Latent Variable RNN

Choose variational family to be an amortized diagonal Gaussian

$$q(z \mid x; \lambda) = \mathcal{N}(\mu, \sigma^2)$$

$$\mu, \sigma^2 = \mathrm{enc}(x; \lambda)$$

Anna da casta

N.4 - -1 -1 -

Variationa Objective

Inference Strategies

Exact Gradient

Sampling Conjugacy

Advanced Topic

Case Studie

Conclusion

References

Strategy 2b: Sampling — Reparameterization

(Recall
$$R_{\theta,\lambda}(z) = \log \frac{p(x,z;\theta)}{q(z|x;\lambda)}$$
)

Score function:

$$\nabla_{\lambda} \text{ELBO}(\theta, \lambda; x) = \mathbb{E}_{z \sim q}[R_{\theta, \lambda}(z) \nabla_{\lambda} \log q(z \mid x; \lambda)]$$

Reparameterization:

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\nabla_{\lambda} R_{\theta, \lambda}(g(\epsilon, \lambda; x))]$$

where $g(\epsilon, \lambda; x) = \mu + \sigma \epsilon$.

Informally, reparameterization gradients differentiate through $R_{\theta,\lambda}(\cdot)$ and thus has "more knowledge" about the structure of the objective function.

Tutorial: Deep Latent NLP (bit.do/lvnlp)	1 Introduction	
Introduction	2 Models	
Models		
Variational Objective	3 Variational Objective	
Inference Strategies Exact Gradient Sampling Conjugacy Advanced Topics Case Studies Conclusion	Inference Strategies Exact Gradient Sampling Conjugacy	
References	Advanced Topics	
	6 Case Studies	33/153

Introduction

ivioueis

Variational Objective

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Strategy 3: Conjugacy

For certain choices for p and q, we can compute parts of

$$\underset{\lambda}{\operatorname{arg\,max}} \operatorname{ELBO}(\theta, \lambda; x)$$

exactly in closed-form.

Recall that

$$\underset{\lambda}{\operatorname{arg\,max}} \operatorname{ELBO}(\theta, \lambda; x) = \underset{\lambda}{\operatorname{arg\,min}} \operatorname{KL}[q(z \mid x; \lambda) || p(z \mid x; \theta)]$$

Introduction

iviodeis

Variationa Objective

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Strategy 3: Conjugacy

For certain choices for p and q, we can compute parts of

$$\underset{\lambda}{\operatorname{arg\,max}} \operatorname{ELBO}(\theta, \lambda; x)$$

exactly in closed-form.

Recall that

$$\mathop{\arg\max}_{\lambda} \mathrm{ELBO}(\theta, \lambda; x) = \mathop{\arg\min}_{\lambda} \mathrm{KL}[q(z \,|\, x; \, \lambda) \| p(z \,|\, x; \, \theta)]$$

Introduction

Model

Variationa Objective

Inference Strategies

Exact Gradient

Conjugacy

Advanced Toni

Case Studie

Conclusion

References

Strategy 3a: Conjugacy — Tractable Posterior Inference

Suppose we can tractably calculate $p(z \mid x; \theta)/$. Then $\mathrm{KL}[q(z \mid x; \lambda) || p(z \mid x; \theta)]$ is minimized when.

$$q(z \mid x; \lambda) = p(z \mid x; \theta)$$

• The E-step in Expectation Maximization algorithm [Dempster et al. 1977]

Deep Latent NLP (bit.do/lvnlp)

Introduction

Model

Variationa

Inference

Strategie

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Example: Model 1 - Naive Bayes

$$p(z \mid x; \theta) = \frac{p(x, z; \theta)}{\sum_{z'=1}^{K} p(x, z'; \theta)}$$

So λ is given by the parameters of the categorical distribution, i.e.

$$\lambda = [p(z = 1 \mid x; \theta), \dots, p(z = K \mid x; \theta)]$$

Introduction

Models

Variational

Inference

Strategie

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studie

Conclusion

References

Reminder: Model 3 — HMM

$$p(x, z; \theta) = p(z_0) \prod_{t=1}^{I} p(z_t | z_{t-1}; \mu) p(x_t | z_t; \pi)$$

Introduction

Models

Variational Objective

Inference Strategies

Exact Gradient

Conjugacy

Advanced Topics

Case Studie

Conclusion

References

Example: Model 3 — HMM

Run forward/backward dynamic programming to calculate posterior marginals,

$$p(z_t, z_{t+1} \mid x; \theta)$$

variational parameters $\lambda \in \mathbb{R}^{TK^2}$ store edge marginals. These are enough to calculate

$$q(z; \lambda) = p(z \mid x; \theta)$$

(i.e. the exact posterior) over any sequence a

Introductio

Models

Variationa

Inforonce

Strategies

Exact Gradient

Conjugacy

- - -

Advanced Topics

Case Studies

Conclusion

References

Example: Model 3 — HMM

Run forward/backward dynamic programming to calculate posterior marginals,

$$p(z_t, z_{t+1} \mid x; \theta)$$

variational parameters $\lambda \in \mathbb{R}^{TK^2}$ store edge marginals. These are enough to calculate

$$q(z; \lambda) = p(z \mid x; \theta)$$

(i.e. the exact posterior) over any sequence z.

Connection: Gradient Ascent on Log Marginal Likelihood

Introduction

IVIOGEIS

Variationa

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studie

Conclusion

References

Why not perform gradient ascent directly on log marginal likelihood?

$$\log p(x; \theta) = \log \sum_{z} p(x, z; \theta)$$

Same as optimizing ELBO with posterior inference (i.e EM). Gradients of model parameters given by (where $q(z \mid x; \lambda) = p(z \mid x; \theta)$):

$$\nabla_{\theta} \log p(x; \theta) = \mathbb{E}_{q(z \mid x; \lambda)} [\nabla_{\theta} \log p(x, z; \theta)]$$

Mode

Variationa

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studie

Conclusion

References

Connection: Gradient Ascent on Log Marginal Likelihood

Why not perform gradient ascent directly on log marginal likelihood?

$$\log p(x; \theta) = \log \sum_{z} p(x, z; \theta)$$

Same as optimizing ELBO with posterior inference (i.e EM). Gradients of model parameters given by (where $q(z \mid x; \lambda) = p(z \mid x; \theta)$):

$$\nabla_{\theta} \log p(x; \theta) = \mathbb{E}_{q(z \mid x; \lambda)} [\nabla_{\theta} \log p(x, z; \theta)]$$

Introduction

Models

Variational Objective

Strategies

Exact Gradient Sampling

Conjugacy

Advanced Topics

Case Studie

Conclusion

References

Connection: Gradient Ascent on Log Marginal Likelihood

- Practically, this means we don't have to manually perform posterior inference in the E-step. Can just calculate $\log p(x; \theta)$ and call backpropagation.
- Example: in deep HMM, just implement forward algorithm to calculate $\log p(x;\,\theta)$ and backpropagate using autodiff. No need to implement backward algorithm. (Or vice versa).

(See Eisner [2016]: "Inside-Outside and Forward-Backward Algorithms Are Just Backprop")

Introduction

Models

Variational Objective

Strategies Strategies

Exact Gradient Sampling

Conjugacy

Advanced Topics

Case Studie

Conclusion

References

Strategy 3b: Conditional Conjugacy

- Let $p(z \mid x; \theta)$ be intractable, but suppose $p(x, z; \theta)$ is conditionally conjugate, meaning $p(z_t \mid x, z_{-t}; \theta)$ is exponential family.
- Restrict the family of distributions q so that it factorizes over z_t , i.e.

$$q(z; \lambda) = \prod_{t=1}^{T} q(z_t; \lambda_t)$$

(mean field family)

• Further choose $q(z_t;\, x\lambda_t)$ so that it is in the same family as $p(z_t\,|\, x,z_{-t};\, \theta)$.

Deep Latent NLP (bit.do/lvnlp)

Introduction

Models

Variational

Inference

Strategie

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studie

Conclusion

References

Strategy 3b: Conditional Conjugacy

$$q(z; \lambda) = \prod_{t=1}^{T} q(z_t; \lambda_t)$$

Mean Field Family

Introduct

Models

Variationa Objective

Strategies

Exact Gradient Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

ullet Optimize ELBO via coordinate ascent, i.e. iterate for $\lambda_1,\dots,\lambda_T$

$$\underset{\lambda_t}{\operatorname{arg\,max}} \operatorname{KL}\left[\prod_{t=1}^{T} q(z_t; \, \lambda_t) \| p(z \, | \, x; \, \theta)\right]$$

Coordinate ascent updates will take the form

$$q(z_t; \lambda_t) \propto \exp\left(\mathbb{E}_{q(z_{-t}; \lambda_{-t})}[\log p(x, z; \theta)]\right)$$

where

$$\mathbb{E}_{q(z_{-t}; \lambda_{-t})}[\log p(x, z; \theta)] = \sum_{j \neq t} \prod_{j \neq t} q(z_j; \lambda_j) \log p(x, z; \theta)$$

• Since $p(z_t | x, z_{-t})$ was assumed to be in the exponential family, above updates can be derived in closed form.

Introductio

Models

Variational

Inferenc

Strategie

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studie

Conclusion

References

Example: Model 3 — Factorial HMM

$$p(x, z; \theta) = \prod_{l=1}^{L} \prod_{t=1}^{L} p(z_{l,t} | z_{l,t-1}; \theta) p(x_t | z_{l,t}; \theta)$$

Introducti

....

Variational Objective

Inferenc

Strategie

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studie

Conclusion

References

Example: Model 3 — Factorial HMM

$$q(z_{1,1}; \lambda_{1,1}) \propto \exp\left(\mathbb{E}_{q(z_{-(1,1)}; \lambda_{-(1,1)})}[\log p(x, z; \theta)]\right)$$

Introductio

N.4 - - I - I -

Variationa

Inferenc

Strategie

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studie

Conclusion

References

Example: Model 3 — Factorial HMM

$$q(z_{2,1}; \lambda_{2,1}) \propto \exp\left(\mathbb{E}_{q(z_{-(2,1)}; \lambda_{-(2,1)})}[\log p(x, z; \theta)]\right)$$

Introduction

Variationa Objective

Inference Strategies

Exact Gradient Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Example: Model 3 — Factorial HMM

Exact Inference:

ullet Naive: K states, L levels \Longrightarrow HMM with K^L states \Longrightarrow $O(TK^{2L})$

• Smarter: $O(TLK^{L+1})$

Mean Field

ullet Gaussian emissions: $O(TLK^2)$ [Ghahramani and Jordan 1996].

 • Categorical emission: need more variational approximations, but ultimately O(LKVT) [Nepal and Yates 2013].

Introductio

Objective

Inference Strategies

Strategies
Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Example: Model 3 — Factorial HMM

Exact Inference:

ullet Naive: K states, L levels \Longrightarrow HMM with K^L states \Longrightarrow $O(TK^{2L})$

• Smarter: $O(TLK^{L+1})$

Mean Field:

ullet Gaussian emissions: $O(TLK^2)$ [Ghahramani and Jordan 1996].

- Categorical emission: need more variational approximations, but ultimately O(LKVT) [Nepal and Yates 2013].

Tutorial: Deep Latent NLF (bit.do/lvnlp)
Introduction
Models
Variational Objective

Introduction

Models

Variational Objective

4 Inference Strategies

6 Advanced Topics

Flows

Gumbel-Softmax Flows IWAE

Advanced Topics

Gumbel-Softmax

IWAE

6 Case Studies

Introduction

Models

Variationa

Inference

Advanced Topics

Gumbel-Softmax Flows IWAE

Case Studies

Conclusion

References

Advanced Topics

- Gumbel-Softmax: Extend reparameterization to discrete variables.
- f 2 Flows: Optimize a tighter bound by making the variational family q more flexible.
- **3** Importance Weighting: Optimize a tighter bound through importance sampling.

Tutorial: Deep Latent NLP (bit.do/lvnlp)	1 Introduc
Introduction	2 Models
Models Variational Objective	3 Variation
Inference Strategies	4 Inference

Advanced Topics

Gumbel-Softmax **6** Advanced Topics Flows IWAE Gumbel-Softmax

Introduction

Models

Variationa Objective

Inference Strategies

Advanced Topic

Gumbel-Softmay

Flows

IWAE

Case Studie

Conclusion

References

Challenges of Discrete Variables

Review: we can always use score function estimator

$$\nabla_{\lambda} \operatorname{ELBO}(x, \theta, \lambda) = \mathbb{E}_{q} \Big[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \nabla_{\lambda} \log q(z \mid x; \lambda) \Big]$$
$$= \mathbb{E}_{q} \Big[\Big(\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} - B \Big) \nabla_{\lambda} \log q(z \mid x; \lambda) \Big]$$

- $\mathbb{E}_q[B\nabla_\lambda \log q(z \mid x; \lambda)] = 0$
- Control variate B (not dependendent on z, but can depend on x).
- Estimate this quantity with another neural net [Mnih and Gregor 2014]

$$\left(B(x; \psi) - \log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)}\right)^{\dagger}$$

Introductio

Mode

Variationa Objective

Inference Strategies

Advanced Topic

Gumbel-Softmay

Flows

IWAI

Case Studie

Conclusion

References

Challenges of Discrete Variables

Review: we can always use score function estimator

$$\nabla_{\lambda} \operatorname{ELBO}(x, \theta, \lambda) = \mathbb{E}_{q} \Big[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \nabla_{\lambda} \log q(z \mid x; \lambda) \Big]$$
$$= \mathbb{E}_{q} \Big[\Big(\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} - B \Big) \nabla_{\lambda} \log q(z \mid x; \lambda) \Big]$$

- $\mathbb{E}_q[B\nabla_\lambda \log q(z \mid x; \lambda)] = 0$
- Control variate B (not dependendent on z, but can depend on x).
- Estimate this quantity with another neural net [Mnih and Gregor 2014]

$$\left(B(x; \psi) - \log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)}\right)^{2}$$

Deep Latent NLP (bit.do/lvnlp)

Gumbel-Softmax: Discrete Reparameterization [Jang et al. 2017; Maddison et al. 2017]

Introductio

.....

Variationa

Inference Strategies

Strategies

Advanced ropi

Gumbel-Softmax

Flows

IVVAL

Case Studie

Conclusion

References

The "Gumbel-Max" trick [Papandreou and Yuille 2011]

$$p(z_k = 1; \alpha) = \frac{\alpha_k}{\sum_{j=1}^K \alpha_j}$$

where $z = [0, 0, \dots, 1, \dots, 0]$ is a one-hot vector.

Can sample from $p(z; \alpha)$ by

① Drawing independent Gumbel noise $\epsilon = \epsilon_1, \ldots, \epsilon_K$

$$\epsilon_k = -\log(-\log u_k)$$
 $u_k \sim \mathcal{U}(0,1)$

2 Adding ϵ_k to $\log \alpha_k$, finding argmax, i.e.

$$i = \underset{k}{\operatorname{arg\,max}} [\log \alpha_k + \epsilon_k]$$
 $z_i = 1$

Deep Latent NLP (bit.do/lynlp)

Gumbel-Softmax

Flows

The "Gumbel-Max" trick [Papandreou and Yuille 2011]

$$p(z_k = 1; \alpha) = \frac{\alpha_k}{\sum_{j=1}^K \alpha_j}$$

Gumbel-Softmax: Discrete Reparameterization [Jang et al. 2017; Maddison et al. 2017]

where $z = [0, 0, \dots, 1, \dots, 0]$ is a one-hot vector.

Can sample from $p(z; \alpha)$ by

1 Drawing independent Gumbel noise $\epsilon = \epsilon_1, \ldots, \epsilon_K$

$$\epsilon_k = -\log(-\log u_k)$$
 $u_k \sim \mathcal{U}(0,1)$

2 Adding ϵ_k to $\log \alpha_k$, finding argmax, i.e.

$$i = \underset{k}{\operatorname{arg\,max}} [\log \alpha_k + \epsilon_k]$$
 $z_i = 1$

Deep Latent NLP (bit.do/lynlp)

Gumbel-Softmax

Flows

The "Gumbel-Max" trick [Papandreou and Yuille 2011]

$$p(z_k = 1; \alpha) = \frac{\alpha_k}{\sum_{j=1}^K \alpha_j}$$

Gumbel-Softmax: Discrete Reparameterization [Jang et al. 2017; Maddison et al. 2017]

where $z = [0, 0, \dots, 1, \dots, 0]$ is a one-hot vector.

Can sample from $p(z; \alpha)$ by

1 Drawing independent Gumbel noise $\epsilon = \epsilon_1, \ldots, \epsilon_K$

$$\epsilon_k = -\log(-\log u_k)$$
 $u_k \sim \mathcal{U}(0,1)$

2 Adding ϵ_k to $\log \alpha_k$, finding argmax, i.e.

$$i = \underset{k}{\operatorname{arg\,max}} [\log \alpha_k + \epsilon_k]$$
 $z_i = 1$

Deep Latent NLP (bit.do/lvnlp)

Gumbel-Softmax: Discrete Reparameterization [Jang et al. 2017; Maddison et al. 2017]

ntroductio

Models

Variationa Objective

Inference Strategies

Advanced Topi

Gumbel-Softmax

Flows

. . .

Conclusion

o de la

Reparameterization:

$$z = \underset{s \in \Delta^{K-1}}{\operatorname{arg max}} (\log \alpha + \epsilon)^{\top} s = g(\epsilon, \alpha)$$

 $z=g(\epsilon,\alpha)$ is a deterministic function applied to stochastic noise. Let's try applying this:

$$q(z_k = 1 \mid x; \lambda) = \frac{\alpha_k}{\sum_{j=1}^K \alpha_j} \quad \alpha = \text{enc}(x; \lambda)$$

(Recalling
$$R_{\theta,\lambda}(z) = \log \frac{p(x,z;\theta)}{q(z|x;\lambda)}$$
)

$$\nabla_{\lambda} \mathbb{E}_{q(z \mid x; \lambda)}[R_{\theta, \lambda}(z)] = \nabla_{\lambda} \mathbb{E}_{\epsilon \sim \mathsf{Gumbel}}[R_{\theta, \lambda}(g(\epsilon, \alpha))]$$
$$= \mathbb{E}_{\epsilon \sim \mathsf{Gumbel}}[\nabla_{\lambda} R_{\theta, \lambda}(z)]$$

Gumbel-Softmax: Discrete Reparameterization [Jang et al. 2017; Maddison et al. 2017]

ntroductio

iviodeis

Objective

Inference Strategies

Advanced Topic

Gumbel-Softmax

Flows

Case Studie

Conclusion

References

Reparameterization:

$$z = \underset{s \in \Delta^{K-1}}{\operatorname{arg max}} (\log \alpha + \epsilon)^{\top} s = g(\epsilon, \alpha)$$

 $z=g(\epsilon,\alpha)$ is a deterministic function applied to stochastic noise. Let's try applying this:

$$q(z_k = 1 \mid x; \lambda) = \frac{\alpha_k}{\sum_{j=1}^K \alpha_j} \quad \alpha = \text{enc}(x; \lambda)$$

(Recalling $R_{\theta,\lambda}(z) = \log \frac{p(x,z;\theta)}{q(z|x;\lambda)}$),

$$\nabla_{\lambda} \mathbb{E}_{q(z \mid x; \lambda)}[R_{\theta, \lambda}(z)] = \nabla_{\lambda} \mathbb{E}_{\epsilon \sim \mathsf{Gumbel}}[R_{\theta, \lambda}(g(\epsilon, \alpha))]$$
$$= \mathbb{E}_{\epsilon \sim \mathsf{Gumbel}}[\nabla_{\lambda} R_{\theta, \lambda}(z)]$$

But this won't work, because zero gradients (almost everywhere)

Gumbel-Softmax: Discrete Reparameterization [Jang et al. 2017; Maddison et al. 2017]

 $z = g(\epsilon, \alpha) = \arg\max(\log \alpha + \epsilon)^{\top} s \implies \nabla_{\lambda} R_{\theta, \lambda}(z) = 0$

104/153

Gumbel-Softmay

Gumbel-Softmax: Discrete Reparameterization [Jang et al. 2017; Maddison et al. 2017]

Introduct

Models

Variationa Objective

Strategies Strategies

Advanced Topi

Gumbel-Softmax

Flows

IVVAE

Case Studie

Conclusion

References

But this won't work, because zero gradients (almost everywhere)

$$z = g(\epsilon, \alpha) = \underset{s \in \Delta^{K-1}}{\operatorname{arg\,max}} (\log \alpha + \epsilon)^{\top} s \implies \nabla_{\lambda} R_{\theta, \lambda}(z) = 0$$

Gumbel-Softmax trick: replace $rg \max$ with $\operatorname{softmax}$

$$z = \operatorname{softmax}\left(\frac{\log \alpha + \epsilon}{\tau}\right)$$
 $z_k = \frac{\exp((\log \alpha_k + \epsilon_k)/\tau)}{\sum_{j=1}^K \exp((\log \alpha_j + \epsilon_j)/\tau)}$

$$\nabla_{\lambda} \mathbb{E}_{q(z \mid x; \lambda)}[R_{\theta, \lambda}(z)] \approx \mathbb{E}_{\epsilon \sim \mathsf{Gumbel}} \left[\nabla_{\lambda} R_{\theta, \lambda} \left(\operatorname{softmax} \left(\frac{\log \alpha + \epsilon}{\tau} \right) \right) \right]$$

where au is a temperature term.

But this won't work, because zero gradients (almost everywhere)

Gumbel-Softmax: Discrete Reparameterization [Jang et al. 2017; Maddison et al. 2017]

 $z = q(\epsilon, \alpha) = \arg\max(\log \alpha + \epsilon)^{\top} s \implies \nabla_{\lambda} R_{\theta, \lambda}(z) = 0$

 $z = \operatorname{softmax}\left(\frac{\log \alpha + \epsilon}{\tau}\right)$ $z_k = \frac{\exp((\log \alpha_k + \epsilon_k)/\tau)}{\sum_{k=1}^K \exp((\log \alpha_k + \epsilon_k)/\tau)}$

 $\nabla_{\lambda} \mathbb{E}_{q(z \mid x; \lambda)}[R_{\theta, \lambda}(z)] \approx \mathbb{E}_{\epsilon \sim \mathsf{Gumbel}} \left[\nabla_{\lambda} R_{\theta, \lambda} \left(\operatorname{softmax} \left(\frac{\log \alpha + \epsilon}{z} \right) \right) \right]$

104/153

Gumbel-Softmax

Flows

where τ is a temperature term.

Gumbel-Softmax trick: replace arg max with softmax

Introduction

....

Variationa Objective

Inference Strategies

Advanced Top

Gumbel-Softmax

Flows

Case Studie

Conclusion

References

Gumbel-Softmax: Discrete Reparameterization [Jang et al. 2017; Maddison et al. 2017]

- Approaches a discrete distributution as $\tau \to 0$ (anneal τ during training).
- Reparameterizable by construction
- Differentiable and has non-zero gradients

(from Maddison et al. [2017])

Introduction

Mode

Variationa Objective

Inference Strategies

Advanced Topi

Gumbel-Softmay

Flows

Case Studies

Conclusion

Reference:

Gumbel-Softmax: Discrete Reparameterization [Jang et al. 2017; Maddison et al. 2017]

- See Maddison et al. [2017] on whether we can use the original categorical densities p(z), q(z), or need to use relaxed densities $p_{\mathsf{GS}}(z), q_{\mathsf{GS}}(z)$.
- Requires that $p(x \mid z; \theta)$ "makes sense" for non-discrete z (e.g. attention).
- Lower-variance, but biased gradient estimator. Variance $\to \infty$ as $\tau \to 0$.

Tutorial: Deep Latent NLP (bit.do/lvnlp)	1 Introduction
Introduction	2 Models
Models Variational Objective	3 Variational Objective
Inference Strategies	4 Inference Strategies
Advanced Topics Gumbel-Softmax Flows IWAE Case Studies Conclusion References	S Advanced Topics Gumbel-Softmax Flows IWAE
	6 Case Studies

Introduction

ivioueis

Variationa Objective

Inference

Advanced Topics

Gumbel-Softmax

Flows

Conclusion

References

Flows [Rezende and Mohamed 2015; Kingma et al. 2016]

Recall

$$\log p(x; \theta) = \text{ELBO}(\theta, \lambda; x) - \text{KL}[q(z \mid x; \lambda) || p(z \mid x; \theta)]$$

Bound is tight when variational posterior equals true posterior

$$q(z \mid x; \lambda) = p(z \mid x; \theta) \implies \log p(x; \theta) = \text{ELBO}(\theta, \lambda; x)$$

We want to make $q(z \mid x; \lambda)$ as flexible as possible: can we do better than just Gaussian?

Introduction

Objective **Objective**

Strategies

Advanced Topics

Gumbel-Softmax

Flows

Case Studio

Conclusion

References

Flows [Rezende and Mohamed 2015; Kingma et al. 2016]

Recall

$$\log p(x; \theta) = \text{ELBO}(\theta, \lambda; x) - \text{KL}[q(z \mid x; \lambda) || p(z \mid x; \theta)]$$

Bound is tight when variational posterior equals true posterior

$$q(z \mid x; \lambda) = p(z \mid x; \theta) \implies \log p(x; \theta) = \text{ELBO}(\theta, \lambda; x)$$

We want to make $q(z\,|\,x;\,\lambda)$ as flexible as possible: can we do better than just Gaussian?

Introduction

Model

Variationa Objective

Inference Strategies

Advanced Topics

Gumbel-Softmax

Flows

IWAE

Case Studie

Conclusion

References

Flows [Rezende and Mohamed 2015; Kingma et al. 2016]

Idea: transform a sample from a simple initial variational distribution,

$$z_0 \sim q(z \mid x; \lambda) = \mathcal{N}(\mu, \sigma^2)$$
 $\mu, \sigma^2 = \text{enc}(x; \lambda)$

into a more complex one

$$z_K = f_K \circ \cdots \circ f_2 \circ f_1(z_0; \lambda)$$

where $f_i(z_{i-1}; \lambda)$'s are **invertible** transformations (whose parameters are absorbed by λ).

Introduction

iviodeis

Variationa Objective

Inference Strategies

Advanced Topic

Gumbel-Softmax

Flows

100/12

Case Studie

Conclusion

References

Flows [Rezende and Mohamed 2015; Kingma et al. 2016]

Idea: transform a sample from a simple initial variational distribution,

$$z_0 \sim q(z \mid x; \lambda) = \mathcal{N}(\mu, \sigma^2)$$
 $\mu, \sigma^2 = \text{enc}(x; \lambda)$

into a more complex one

$$z_K = f_K \circ \cdots \circ f_2 \circ f_1(z_0; \lambda)$$

where $f_i(z_{i-1}; \lambda)$'s are **invertible** transformations (whose parameters are absorbed by λ).

Flows [Rezende and Mohamed 2015; Kingma et al. 2016]

ntroduction

Mode

Variation Objective

Inference Strategies

Advanced Topics

Gumbel-Softmax

Flows

IWAE

Case Studie

Conclusion

References

Sample from final variational posterior is given by z_K . Density is given by the change of variables formula:

$$\begin{split} \log q_K(z_K \,|\, x;\, \lambda) &= \log q(z_0 \,|\, x;\, \lambda) + \sum_{k=1}^K \log \left| \frac{\partial f_k^{-1}}{\partial z_k} \right| \\ &= \underbrace{\log q(z_0 \,|\, x;\, \lambda)}_{\text{log density of Gaussian}} - \sum_{k=1}^K \underbrace{\log \left| \frac{\partial f_k}{\partial z_{k-1}} \right|}_{\text{log determinant of Jacobian}} \end{split}$$

Determinant calculation is $O(N^3)$ in general, but can be made faster depending on parameterization of f_k

Introduction

Models

Variationa

Inference Strategies

Advanced Topi

Gumbel-Softmax

Flows

Conclusion

References

Flows [Rezende and Mohamed 2015; Kingma et al. 2016]

Can still use reparameterization to obtain gradients. Letting

$$F(z) = f_K \circ \cdots \circ f_1(z),$$

ELBO(
$$\theta, \lambda; x$$
) = $\nabla_{\lambda} \mathbb{E}_{q_{K}(z_{K} \mid x; \lambda)} \Big[\log \frac{p(x, z; \theta)}{q_{K}(z_{K} \mid x; \lambda)} \Big]$
= $\nabla_{\lambda} \mathbb{E}_{q(z_{0} \mid x; \lambda)} \Big[\log \frac{p(x, F(z_{0}); \theta)}{q(z_{0} \mid x; \lambda)} - \log \Big| \frac{\partial F}{\partial z_{0}} \Big| \Big]$
= $\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \Big[\nabla_{\lambda} \Big(\log \frac{p(x, F(z_{0}); \theta)}{q(z_{0} \mid x; \lambda)} - \log \Big| \frac{\partial F}{\partial z_{0}} \Big| \Big) \Big]$

Flows [Rezende and Mohamed 2015; Kingma et al. 2016]

ntroductio

IVIOGEI

Variationa Objective

Inference Strategies

Advanced Topic

Gumbel-Softmax

Flows

Conclusion

References

Examples of $f_k(z_{k-1}; \lambda)$

Normalizing Flows [Rezende and Mohamed 2015]

$$f_k(z_{k-1}) = z_{k-1} + u_k h(w_k^{\top} z_{k-1} + b_k)$$

Inverse Autoregressive Flows [Kingma et al. 2016]

$$f_k(z_{k-1}) = z_{k-1} \odot \sigma_k + \mu_k$$

$$\sigma_{k,d} = \operatorname{sigmoid}(\operatorname{NN}(z_{k-1,< d})) \qquad \mu_{k,d} = \operatorname{NN}(z_{k-1,< d})$$

(In this case the Jacobian is upper triangular, so determinant is just the product of diagonals)

Introducti

Madala

Variational Objective

Inference Strategies

Advanced Topics

Gumbel-Softmax

Flows

Conclusion

References

Flows [Rezende and Mohamed 2015; Kingma et al. 2016]

(from Rezende and Mohamed [2015])

Tutorial: Deep Latent NLP (bit.do/lvnlp)	1 Introduction
Introduction	2 Models
Models	
Variational Objective	3 Variational Objective
Inference Strategies	4 Inference Strategies
Advanced Topics Gumbel-Softmax Flows IWAE Case Studies Conclusion References	• Advanced Topics Gumbel-Softmax Flows IWAE
	6 Case Studies

Importance Weighted Autoencoder (IWAE) [Burda et al. 2015]

. . . .

Objective

Strategies Strategies

Advanced Topics

Gumbel-Softmax Flows

IWAE

Case Studies

Conclusio

References

 Flows are a way of tightening the ELBO by making the variational family more flexible.

• Not the only way: can obtain a tighter lower bound on $\log p(x;\,\theta)$ by using multiple importance samples.

Consider

$$I_K = \frac{1}{K} \sum_{k=1}^{K} \frac{p(x, z^{(k)}; \theta)}{q(z^{(k)} | x; \lambda)},$$

where each $z^{(k)} \sim q(z \mid x; \lambda)$.

Note that I_K is an unbiased estimator of $p(x; \theta)$

$$\Xi_{q(z^{(1:K)}|x;\lambda)}[I_K] = p(x;\theta).$$

Deep Latent NLP (bit.do/lvnlp)

Tutorial:

Gumbel-Softmax Flows

Importance Weighted Autoencoder (IWAE) [Burda et al. 2015]

 Flows are a way of tightening the ELBO by making the variational family more flexible.

• Not the only way: can obtain a tighter lower bound on $\log p(x;\,\theta)$ by using multiple importance samples.

Consider:

$$I_K = \frac{1}{K} \sum_{k=1}^K \frac{p(x, z^{(k)}; \theta)}{q(z^{(k)} | x; \lambda)},$$

where each $z^{(k)} \sim q(z \mid x; \lambda)$.

where each $z \mapsto q(z \mid x, x)$

Note that I_K is an unbiased estimator of $p(x; \theta)$:

Note that I_K is an unbiased estimator of $p(x;\theta)$: $\mathbb{E}_{q(z^{(1:K)}\mid x:\lambda)}\left[I_K\right] = p(x;\theta).$

References Note that I

15/15

Importance Weighted Autoencoder (IWAE) [Burda et al. 2015]

Introduction

Models

Variational Objective

Inference Strategies

Advanced Topics

Gumbel-Softmax

Flows

IWAE

Case Studies

Conclusion

References

Any unbiased estimator of $p(x;\,\theta)$ can be used to obtain a lower bound, using Jensen's inequality:

$$p(x; \theta) = \mathbb{E}_{q(z^{(1:K)} \mid x; \lambda)} [I_K]$$

$$\implies \log p(x; \theta) \ge \mathbb{E}_{q(z^{(1:K)} \mid x; \lambda)} [\log I_K]$$

$$= \mathbb{E}_{q(z^{(1:K)} \mid x; \lambda)} \left[\log \frac{1}{K} \sum_{k=1}^K \frac{p(x, z^{(k)}; \theta)}{q(z^{(k)} \mid x; \lambda)} \right]$$

However, can also show [Burda et al. 2015]:

- $\log p(x; \theta) \ge \mathbb{E} [\log I_K] \ge \mathbb{E} [\log I_{K-1}]$
- $\lim_{K\to\infty} \mathbb{E}\left[\log I_K\right] = \log p(x; \theta)$ under mild conditions

Introduction

iviodeis

Variationa Objective

Inference Strategies

Advanced Topic

Gumbel-Softmax

Flows

Case Studie

Conclusion

References

Importance Weighted Autoencoder (IWAE) [Burda et al. 2015]

$$\mathbb{E}_{q(z^{(1:K)} \mid x; \lambda)} \left[\log \frac{1}{K} \sum_{k=1}^{K} \frac{p(x, z^{(k)}; \theta)}{q(z^{(k)} \mid x; \lambda)} \right]$$

- Note that with K=1, we recover the ELBO.
- Can interpret $\frac{p(x,z^{(k)};\theta)}{q(z^{(k)}\,|\,x;\lambda)}$ as importance weights.
- If $q(z \mid x; \lambda)$ is reparameterizable, we can use the reparameterization trick to optimize $\mathbb{E}\left[\log I_K\right]$ directly.
- Otherwise, need score function gradient estimators [Mnih and Rezende 2016].

Tutorial: Deep Latent NLP (bit.do/lvnlp)	1 Introduction
Introduction	2 Models
Models	
Variational Objective	3 Variational Objective
Inference Strategies	4 Inference Strategies
Advanced Topics	
Case Studies Sentence VAE Encoder/Decoder with Latent Variables	Advanced Topics
Latent Summaries and Topics	6 Case Studies
Conclusion	Sentence VAE
References	Encoder/Decoder with Latent Variables
	Latent Summaries and Topics

Tutorial: Deep Latent NLP (bit.do/lvnlp)	1 Introduction	
Introduction	2 Models	
Models		
Variational Objective	3 Variational Objective	
Inference Strategies	4 Inference Strategies	
Advanced Topics		
Case Studies	5 Advanced Topics	
Sentence VAE Encoder/Decoder with Latent Variables Latent Summaries and Topics	6 Case Studies	
Conclusion	Sentence VAE	
References	Encoder/Decoder with Latent Variables	
	Latent Summaries and Topics	/153

Introductio

Mode

Variation Objective

Strategie:

Advanced Topics

Case Studio

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

References

Sentence VAE Example [Bowman et al. 2016]

Generative Model (Model 2):

- Draw $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Draw $x_t \mid \mathbf{z} \sim \text{CRNNLM}(\theta, \mathbf{z})$

Variational Model (Amortized): Deep Diagonal Gaussians,

$$q(\mathbf{z} \mid x; \lambda) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\sigma^2})$$

$$\tilde{\boldsymbol{h}}_T = \text{RNN}(x; \psi)$$

$$\mu = \mathbf{W}_1 \tilde{h}_T$$
 $\sigma^2 = \exp(\mathbf{W}_2 \tilde{h}_T)$ $\lambda = {\mathbf{W}_1, \mathbf{W}_2, \psi}$

Introduction

Model

Variational Objective

Strategie

Advanced Topic

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Canalusia

References

Sentence VAE Example [Bowman et al. 2016]

(from Bowman et al. [2016])

Issue 1: Posterior Collapse

Introduction

Models

Variational Objective

Inference Strategies

Advanced Topics

Case Studies

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

References

ELBO
$$(\theta, \lambda)$$
 = $\mathbb{E}_{q(z \mid x; \lambda)}[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)}]$

$$= \underbrace{\mathbb{E}_{q(z \,|\, x;\, \lambda)}[\log p(x \,|\, z;\, \theta)]}_{\text{Reconstruction likelihood}} - \underbrace{\text{KL}[q(z \,|\, x;\, \lambda) \| p(z)]}_{\text{Regularizer}}$$

Model	L/ELBO	Reconstruction	KL
RNN LM	-329.10	-	-
RNN VAE	-330.20	-330.19	0.01

(On Yahoo Corpus from Yang et al. [2017])

Introduction

Model

Variationa

Inference

Strategies

Advanced Topic

ase Studio

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

References

Issue 1: Posterior Collapse

- x and z become independent, and $p(x,z;\,\theta)$ reduces to a non-LV language model.
- Chen et al. [2017]: If it's possible to model $p_{\star}(x)$ without making use of z, then ELBO optimum is at:

$$p_{\star}(x) = p(x \mid z; \theta) = p(x; \theta) \quad q(z \mid x; \lambda) = p(z)$$

$$\mathrm{KL}[q(z \mid x; \, \lambda) || p(z)] = 0$$

Introduction

Mode

Variation Objective

Inference

Advanced ropic

ase Studio

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

References

Mitigating Posterior Collapse

Use less powerful likelihood models [Miao et al. 2016; Yang et al. 2017], or "word dropout" [Bowman et al. 2016].

Model	LL/ELBO	Reconstruction	KL
RNN LM	-329.1	-	-
RNN VAE	-330.2	-330.2	0.01
+ Word Drop	-334.2	-332.8	1.44
CNN VAE	-332.1	-322.1	10.0

(On Yahoo Corpus from Yang et al. [2017])

Mitigating Posterior Collapse

Introduction

Models

Variationa Objective

Inferenc

Strategies

Advanced Topics

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

References

Gradually anneal multiplier on KL term, i.e.

$$\mathbb{E}_{q(z \mid x; \lambda)}[\log p(x \mid z; \theta)] - \beta \operatorname{KL}[q(z \mid x; \lambda) || p(z)]$$

eta goes from 0 to 1 as training progresses

(from Bowman et al. [2016])

Introduction

Variational Objective

Strategies

Advanced Topic

ase Studio

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

Reference

Mitigating Posterior Collapse

Other approaches:

- Use auxiliary losses (e.g. train z as part of a topic model) [Dieng et al. 2017; Wang et al. 2018]
- Use von Mises-Fisher distribution with a fixed concentration parameter [Guu et al. 2017; Xu and Durrett 2018]
- Combine stochastic/amortized variational inference [Kim et al. 2018]
- Add skip connections [Dieng et al. 2018]

In practice, often necessary to combine various methods.

Introduction

Models

Variationa Objective

Interence

Advanced Topic

Case Studio

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

Reference

Issue 2: Evaluation

- ELBO always lower bounds $\log p(x; \theta)$, so can calculate an upper bound on PPL efficiently.
- When reporting ELBO, should also separately report,

$$\mathrm{KL}[q(z \mid x; \lambda) || p(z)]$$

to give an indication of how much the latent variable is being "used".

Tutorial:

Deep Latent NLP (bit.do/lvnlp)

Introduction

Variationa Objective

Stratogica

Strategie

Advanced Topic

ase Studie

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

References

Issue 2: Evaluation

Also can evaluate $\log p(x; \theta)$ with importance sampling

$$p(x; \theta) = \mathbb{E}_{q(z \mid x; \lambda)} \left[\frac{p(x \mid z; \theta)p(z)}{q(z \mid x; \lambda)} \right]$$
$$\approx \frac{1}{K} \sum_{k=1}^{K} \frac{p(x \mid z^{(k)}; \theta)p(z^{(k)})}{q(z^{(k)} \mid x; \lambda)}$$

So

$$\implies \log p(x; \theta) \approx \log \frac{1}{K} \sum_{k=1}^{K} \frac{p(x|z^{(k)}; \theta)p(z^{(k)})}{q(z^{(k)}|x; \lambda)}$$

Evaluation

Introduction

Models

Variationa

Inference Strategies

Advanced Topic

Case Studi

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

References

Qualitative evaluation

- Evaluate samples from prior/variational posterior.
- Interpolation in latent space.

i went to the store to buy some groceries .
i store to buy some groceries .
i were to buy any groceries .
horses are to buy any groceries .
horses are to buy any animal .
horses the favorite any animal .
horses the favorite favorite animal .
horses are my favorite animal .

(from Bowman et al. [2016])

Tutorial: Deep Latent NLP (bit.do/lvnlp)	1 Introduction
Introduction	2 Models
Models	
Variational Objective	3 Variational Objective
Inference Strategies	4 Inference Strategies
Advanced Topics	
Case Studies	Advanced Topics
Sentence VAE Encoder/Decoder with Latent Variables	
Latent Summaries and Topics	6 Case Studies
Conclusion	Sentence VAE
References	Encoder/Decoder with Latent Variables
	Latent Summaries and Topics
	130/153

Tutorial:

Deep Latent NLP (bit.do/lvnlp)

Introduction

Model

Variation

Inference

Strategie

Advanced Topic

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusion

References

Encoder | Sutskever et al. 2014; Cho et al. 2014]

Given: Source information $s = s_1, \ldots, s_M$.

Generative process:

• Draw $x_{1:T} \mid s \sim \text{CRNNLM}(\theta, \mathbf{enc}(s))$.

Latent, Per-token Experts [Yang et al. 2018]

oductio

Models

Objective **Objective**

Inference Strategies

Advanced Topics

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries

Conclusion

and Topics

References

Generative process: For t = 1, ..., T,

- Draw $z_t \mid x_{< t}, s \sim \operatorname{softmax}(\boldsymbol{U}\boldsymbol{h}_t)$.
- Draw $x_t \mid z_t, x_{< t}, s \sim \operatorname{softmax}(\boldsymbol{W} \tanh(\boldsymbol{Q}_{z_t} \boldsymbol{h}_t); \theta)$

If $m{U} \in \mathbb{R}^{K imes d}$, used K experts; increases the flexibility of per-token distribution $_{32/153}$

Introduction

ivioueis

Variationa Objective

Strategie

Advanced Topic

Case Studio

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusio

References

Case-Study: Latent Per-token Experts [Yang et al. 2018]

Learning: z_t are independent given $x_{< t}$, so we can marginalize at each time-step (Method 3: Conjugacy).

$$\underset{\theta}{\operatorname{arg \, max} \log p(x \mid s; \, \theta)} = \underset{\theta}{\operatorname{arg \, max} \log \prod_{t=1}^{T} \sum_{k=1}^{K} p(z_{t}=k \mid s, x_{< t}; \, \theta) \, p(x_{t} \mid z_{t}=k, x_{< t}, s; \, \theta)}.$$

Test-time:

$$\underset{x_{1:T}}{\operatorname{arg \, max}} \prod_{t=1}^{T} \sum_{k=1}^{K} p(z_{t} = k \mid s, x_{< t}; \, \theta) \, p(x_{t} \mid z_{t} = k, x_{< t}, s; \, \theta).$$

Case-Study: Latent, Per-token Experts [Yang et al. 2018]

PTB language modeling results (s is constant):

Model **PPL** 57.30 Merity et al. [2018] Softmax-mixture [Yang et al. 2018] 54.44

Sentence VAE

Encoder/Decoder

with Latent Variables Latent Summaries

and Topics

Dialogue generation results (s is context):

Model	BLEU	
	Prec	Rec
No mixture	14.1	11.1
Softmax-mixture [Yang et al. 2018]	15.7	12.3

Tutorial:

Deep Latent NLP
(bit.do/lvnlp)

Introduction

Models

Variationa

Interence

Advanced Topic

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusion

References

Attention [Bahdanau et al. 2015]

Decoding with an attention mechanism:

$$x_t \mid x_{< t}, s \sim \operatorname{softmax}(\boldsymbol{W}[\boldsymbol{h}_t, \sum_{m=1}^{M} \alpha_{t,m} \operatorname{enc}(s)_m]).$$

Introduction

Objective

Inference Strategies

Advanced Topic

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusio

References

Copy Attention [Gu et al. 2016; Gulcehre et al. 2016]

Copy attention models copying words directly from s.

Generative process: For t = 1, ..., T,

- Set α_t to be attention weights.
- Draw $z_t \mid x_{< t}, s \sim \text{Bern}(\text{MLP}([\boldsymbol{h}_t, \mathbf{enc}(s)])).$
- If $z_t = 0$
 - Draw $x_t | z_t, x_{\leq t}, s \sim \operatorname{softmax}(\boldsymbol{W}\boldsymbol{h}_t)$.
- Else
 - Draw $x_t \in \{s_1, \ldots, s_M\} \mid z_t, x_{< t}, s \sim \operatorname{Cat}(\boldsymbol{\alpha}_t)$.

Introduction

iviode

Variationa Objective

Strategies Strategies

Advanced Topic

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusion

References

Copy Attention

Learning: Can maximize the log per-token marginal [Gu et al. 2016], as with per-token experts:

$$\max_{\theta} \log p(x_1, \dots, x_T \mid s; \theta)$$

$$= \max_{\theta} \log \prod_{t=1}^{T} \sum_{z' \in \{0,1\}} p(z_t = z' \mid s, x_{< t}; \theta) p(x_t \mid z', x_{< t}, x; \theta).$$

Test-time:

$$\underset{x_{1:T}}{\operatorname{arg \, max}} \prod_{t=1}^{T} \sum_{z' \in \{0,1\}} p(z_t = z' \mid s, x_{< t}; \, \theta) \, p(x_t \mid z', x_{< t}, s; \, \theta).$$

Introduction

....

Variational Objective

Inference

Advanced Topics

Coop Churdin

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusion

Reference

Attention as a Latent Variable [Deng et al. 2018]

Generative process: For t = 1, ..., T,

- Set α_t to be attention weights.
- Draw $z_t \mid x_{\leq t}, s \sim \operatorname{Cat}(\boldsymbol{\alpha}_t)$.
- Draw $x_t | z_t, x_{< t}, s \sim \operatorname{softmax}(\boldsymbol{W}[\boldsymbol{h}_t, \mathbf{enc}(s_{z_t})]; \theta).$

Introduction

Objective **Objective**

Strategie:

Advanced Topic

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusion

References

Attention as a Latent Variable [Deng et al. 2018]

Marginal likelihood under latent attention model:

$$p(x_{1:T} \mid s; \theta) = \prod_{t=1}^{T} \sum_{m=1}^{M} \alpha_{t,m} \operatorname{softmax}(\boldsymbol{W}[\boldsymbol{h}_{t}, \mathbf{enc}(s_{m})]; \theta)_{x_{t}}.$$

Standard attention likelihood:

$$p(x_{1:T} \mid s; \theta) = \prod_{t=1}^{T} \operatorname{softmax}(\boldsymbol{W}[\boldsymbol{h}_t, \sum_{m=1}^{M} \alpha_{t,m} \operatorname{enc}(s_m)]; \theta)_{x_t}.$$

Introduction

ivioue

Variation Objective

Inference Strategies

Advanced Topic

Case Studio

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusion

References

Attention as a Latent Variable [Deng et al. 2018]

Learning Strategy #1: Maximize the log marginal via enumeration as above.

Learning Strategy #2: Maximize the ELBO with AVI:

$$\max_{\lambda, \theta} \mathbb{E}_{q(z_t; \lambda)} \left[\log p(x_t \, | \, x_{< t}, z_t, s) \right] - \text{KL}[q(z_t; \, \lambda) \| p(z_t \, | \, x_{< t}, s)].$$

- $q(z_t \mid x; \lambda)$ approximates $p(z_t \mid x_{1:T}, s; \theta)$; implemented with a BLSTM.
- ullet q isn't reparameterizable, so gradients obtained using REINFORCE + baseline.

Introduction

Variational Objective

Strategie:

Advanced Topics

Case Studio

Sentence VAE

Encoder/Decoder with Latent Variables

and Topics

Conclusion

Reference

Attention as a Latent Variable [Deng et al. 2018]

Test-time: Calculate $p(x_t | x_{< t}, s; \theta)$ by summing out z_t .

MT Results on IWSLT-2014:

Model	PPL	BLEU
Standard Attn	7.03	32.31
Latent Attn (marginal)	6.33	33.08
Latent Attn (ELBO)	6.13	33.09

Introduction

Models

Variationa Objective

Strategies Strategies

Advanced Topic

Case Studie

Sentence VAE
Encoder/Decoder

with Latent Variables
Latent Summaries
and Topics

Conclusion

Reference

Encoder/Decoder with Structured Latent Variables

At least two EMNLP 2018 papers augment encoder/decoder text generation models with *structured* latent variables:

- 1 Lee et al. [2018] generate $x_{1:T}$ by iteratively refining sequences of words $z_{1:T}$.
- 2 Wiseman et al. [2018] generate $x_{1:T}$ conditioned on a latent template or plan $z_{1:S}$.

Tutorial: Deep Latent NLP (bit.do/lvnlp)	1 Introduction	
Introduction	2 Models	
Models		
Variational Objective	3 Variational Objective	
Inference Strategies	4 Inference Strategies	
Advanced Topics		
Case Studies Sentence VAE Encoder/Decoder with Latent Variables	Advanced Topics	
Latent Summaries and Topics	6 Case Studies	
Conclusion	Sentence VAE	
References	Encoder/Decoder with Latent Variables	
	Latent Summaries and Topics	3/153

Introduction

Models

Variationa

Inference Strategies

Advanced Topics

Cose Studio

Sentence VAE
Encoder/Decoder
with Latent Variables
Latent Summaries

and Topics

References

Summary as a Latent Variable [Miao and Blunsom 2016]

Generative process for a document $x = x_1, \dots, x_T$:

- Draw a latent summary $z_1, \dots, z_M \sim \mathrm{RNNLM}(\theta)$
- Draw $x_1, \ldots, x_T \mid z_{1:M} \sim \text{CRNNLM}(\theta, z)$

Posterior Inference

 $p(z_{1:M} \mid x_{1:T}; \theta) = p(\mathsf{summary} \mid \mathsf{document}; \theta).$

Introduction

Models

Variationa

Inference Strategies

Advanced Topics

Case Studies

Sentence VAE
Encoder/Decoder
with Latent Variables
Latent Summaries

and Topics

Conclusion

References

Summary as a Latent Variable [Miao and Blunsom 2016]

Generative process for a document $x = x_1, \dots, x_T$:

- Draw a latent summary $z_1, \ldots, z_M \sim \mathrm{RNNLM}(\theta)$
- Draw $x_1, \ldots, x_T \mid z_{1:M} \sim \text{CRNNLM}(\theta, z)$

Posterior Inference:

$$p(z_{1:M} \mid x_{1:T}; \theta) = p(\text{summary} \mid \text{document}; \theta).$$

Introduction

Models

Variationa Objective

Inference Strategies

Advanced Topic

Case Studie

Sentence VAE
Encoder/Decoder
with Latent Variables

Latent Summaries and Topics

Conclusion

References

Summary as a Latent Variable [Miao and Blunsom 2016]

Learning: Maximize the ELBO with amortized family:

$$\max_{\lambda,\theta} \mathbb{E}_{q(z_{1:M};\,\lambda)} \left[\log p(x_{1:T} \,|\, z_{1:M};\,\theta) \right] - \text{KL}[q(z_{1:M};\,\lambda) \| p(z_{1:M};\,\theta) \right]$$

- $q(z_{1:M}; \lambda)$ approximates $p(z_{1:M} | x_{1:T}; \theta)$; also implemented with encoder/decoder RNNs.
- $q(z_{1:M}; \lambda)$ not reparameterizable, so gradients use REINFORCE + baselines.

Introduction

iviodeis

Variationa Objective

Inference Strategies

Advanced Topic

Case Studio

Sentence VAE
Encoder/Decoder
with Latent Variables

Latent Summaries and Topics

Conclusion

Deference

Summary as a Latent Variable [Miao and Blunsom 2016]

Semi-supervised Training: Can also use documents *without* corresponding summaries in training.

- Train $q(z_{1:M}; \lambda) \approx p(z_{1:M} | x_{1:T}; \theta)$ with labeled examples.
- Infer summary z for an unlabeled document with q.
- Use inferred z to improve model $p(x_{1:T} | z_{1:M}; \theta)$.
- Allows for outperforming strictly supervised models!

Tutorial:

Deep Latent NLP (bit.do/lvnlp)

Introduction

Models

Variation

Inference

Strategie

Advanced Topics

Case Studio

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusion

Reference

Topic Models [Blei et al. 2003]

Generative process: for each document $x^{(n)} = x_1^{(n)}, \dots, x_T^{(n)}$,

- Draw topic distribution $\mathbf{z}_{top}^{(n)} \sim Dir(oldsymbol{lpha})$
- For t = 1, ..., T:
 - Draw topic $z_t^{(n)} \sim Cat(\mathbf{z}_{top}^{(n)})$
 - Draw $x_t \sim Cat(\pmb{\beta}_{z_t^{(n)}})$

Introduction

ivioucis

Variationa Objective

Inference Strategies

Advanced Topics

Case Studie

Sentence VAE
Encoder/Decoder
with Latent Variables

Latent Summaries and Topics

Conclusion

References

Simple, Deep Topic Models [Miao et al. 2017]

Motivation: easy to learn deep topic models with VI if $q(\mathbf{z}_{top}^{(n)}; \lambda)$ is reparameterizable.

Idea: draw $\mathbf{z}_{top}^{(n)}$ from a transformation of a Gaussian.

- ullet Draw $\mathbf{z}_0^{(n)} \sim \mathcal{N}(oldsymbol{\mu}_0, oldsymbol{\sigma}_0^2)$
- Set $\mathbf{z}_{top}^{(n)} = \operatorname{softmax}(\boldsymbol{W}\mathbf{z}_0^{(n)}).$
- Use analogous transformation when drawing from $q(\mathbf{z}_{top}^{(n)}; \lambda)$.

Tutorial: Deep Latent NLP

(bit.do/lvnlp)

Introduction

IVIOGEI

Variationa Objective

Inference Strategies

Advanced Topics

Case Studie

Sentence VAE
Encoder/Decoder
with Latent Variables

Latent Summaries and Topics

Conclusion

References

Simple, Deep Topic Models [Miao et al. 2017]

Learning Step #1: Marginalize out per-word latents $z_t^{(n)}$.

$$p(\{x^{(n)}\}_{n=1}^{N}, \{\mathbf{z}_{top}^{(n)}\}_{n=1}^{N}; \theta) = \prod_{n=1}^{N} p(\mathbf{z}_{top}^{(n)} | \theta) \prod_{t=1}^{T} \sum_{k=1}^{K} z_{top,k}^{(n)} \beta_{k,x_{t}^{(n)}}$$

Learning Step #2: Use AVI to optimize resulting ELBO.

$$\max_{\lambda,\theta} \mathbb{E}_{q(\mathbf{z}_{top}^{(n)};\lambda)} \left[\log p(x^{(n)} \mid \mathbf{z}_{top}^{(n)};\theta) \right] - \text{KL}[\mathcal{N}(\mathbf{z}_0^{(n)};\lambda) || \mathcal{N}(\mathbf{z}_0^{(n)};\boldsymbol{\mu}_0,\boldsymbol{\sigma}_0^2)]$$

Introduction

Modele

Variational

Inference Strategies

Advanced Topics

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusion

Reference

Simple, Deep Topic Models [Miao et al. 2017]

Perplexities on held-out documents, for three datasets:

Model	MXM	20News	RCV1
OnlineLDA [Hoffman et al. 2010]	342	1015	1058
AVI-LDA [Miao et al. 2017]	272	830	602

Tutorial: Deep Latent NLP (bit.do/lvnlp) Variational Objective **Advanced Topics**

Conclusion

Introduction

Models

Variational Objective

4 Inference Strategies

6 Advanced Topics

6 Case Studies

Introduction

Mode

Variationa Objective

Inference Strategies

Advanced Topics

Case Studie

Conclusion

Reference

Deep Latent-Variable NLP: Two Views

Deep Models & LV Models are naturally complementary:

- Rich set of model choices: discrete, continuous, and structured.
- Real applications across NLP including some state-of-the-art models.

Deep Models & LV Models are frustratingly incompatible:

- Many interesting approaches to the problem: reparameterization, score-function, and more.
- Lots of area for research into improved approaches.

Introduction

Mode

Objective

Inference Strategies

Advanced Topics

Case Studies

Conclusion

References

Deep Latent-Variable NLP: Two Views

Deep Models & LV Models are naturally complementary:

- Rich set of model choices: discrete, continuous, and structured.
- Real applications across NLP including some state-of-the-art models.

Deep Models & LV Models are frustratingly incompatible:

- Many interesting approaches to the problem: reparameterization, score-function, and more.
- Lots of area for research into improved approaches.

Introduction

Models

Variationa Objective

Inference Strategies

Advanced Topics

Case Studie

Conclusion

References

Implementation

- Modern toolkits make it easy to implement these models.
- Combine the flexibility of auto-differentiation for optimization (PyTorch) with distribution and VI libraries (Pyro).

In fact, we have implemented this entire tutorial. See website link http://bit.do/lvnlp

Introduction

Models

Variationa Objective

Inference Strategies

Advanced Topics

Case Studies

Conclusion

References

Implementation

- Modern toolkits make it easy to implement these models.
- Combine the flexibility of auto-differentiation for optimization (PyTorch) with distribution and VI libraries (Pyro).

In fact, we have implemented this entire tutorial. See website link:

http://bit.do/lvnlp

Tutorial:	Charu C. Aggarwal and ChengXiang Zhai. 2012. A Survey of Text Clustering Algorithms. In
Deep Latent NLP	Mining Text Data, pages 77–128. Springer.
(bit.do/lvnlp)	Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine Translation by
	Jointly Learning to Align and Translate. In Proceedings of ICLR.
Introduction	David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. Journal of
Models	machine Learning research, 3(Jan):993–1022.
Variational Objective	Samuel R. Bowman, Luke Vilnis, Oriol Vinyal, Andrew M. Dai, Rafal Jozefowicz, and Samy
	Bengio. 2016. Generating Sentences from a Continuous Space. In Proceedings of CoNLL.
Inference Strategies	Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and Jenifer C Lai.
Advanced Topics	1992. Class-based N-gram Models of Natural Language. Computational linguistics,
Case Studies	18(4):467–479.
	Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. 2015. Importance Weighted
Conclusion	Autoencoders. In Proceedings of ICLR.
References	Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya
	Sutskever, and Pieter Abbeel. 2017. Variational Lossy Autoencoder. In Proceedings of ICLR.
	Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the
	Properties of Neural Machine Translation: Encoder-Decoder Approaches. In Proceedings of
	the Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation. 153/153

Tutorial: Deep Latent NLP (bit.do/lvnlp)	Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. 1977. Maximum Likelihood from Incomplete Data via the EM Algorithm. <i>Journal of the Royal Statistical Society, Series B</i> , 39(1):1–38.
Introduction Models	Yuntian Deng, Yoon Kim, Justin Chiu, Demi Guo, and Alexander M. Rush. 2018. Latent Alignment and Variational Attention. In <i>Proceedings of NIPS</i> .
Variational Objective Inference	Adji B. Dieng, Yoon Kim, Alexander M. Rush, and David M. Blei. 2018. Avoiding Latent Variable Collapse with Generative Skip Models. In <i>Proceedings of the ICML Workshop on Theoretical Foundations and Applications of Deep Generative Models</i> .
Strategies Advanced Topics	Adji B. Dieng, Chong Wang, Jianfeng Gao, and John Paisley. 2017. TopicRNN: A Recurrent Neural Network With Long-Range Semantic Dependency. In <i>Proceedings of ICLR</i> .
Case Studies Conclusion	John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. <i>Journal of Machine Learning Research</i> , 12.
References	Jason Eisner. 2016. Inside-Outside and Forward-Backward Algorithms Are Just Backprop (tutorial paper). In <i>Proceedings of the Workshop on Structured Prediction for NLP</i> .
	Ekaterina Garmash and Christof Monz. 2016. Ensemble learning for multi-source neural machine translation. In <i>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</i> , pages 1409–1418.

Tutorial:	Zoubin Ghahramani and Michael I. Jordan. 1996. Factorial Hidden Markov Models. In
Deep Latent NLP (bit.do/lvnlp)	Proceedings of NIPS.
	Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. 2016. Incorporating copying mechanism
Introduction	in sequence-to-sequence learning. In Proceedings of the 54th Annual Meeting of the
Models	Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 1631–1640.
Variational Objective	Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio. 2016.
Inference Strategies	Pointing the unknown words. In <i>Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , volume 1, pages 140–149.
Advanced Topics	Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren, and Percy Liang. 2017. Generating
Case Studies	Sentences by Editing Prototypes. arXiv:1709.08878.
Conclusion	William P Headden III, Mark Johnson, and David McClosky. 2009. Improving Unsupervised
References	Dependency Parsing with Richer Contexts and Smoothing. In Proceedings of NAACL.
	Marti A Hearst. 1997. Texttiling: Segmenting text into multi-paragraph subtopic passages.
	Computational linguistics, 23(1):33-64.
	Matthew Hoffman, Francis R Bach, and David M Blei. 2010. Online learning for latent dirichlet
	allocation. In advances in neural information processing systems, pages 856–864.

Tutorial:	Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. 2017. Toward
Deep Latent NLP	Controlled Generation of Text. In Proceedings of ICML.
(bit.do/lvnlp)	Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991. Adaptive
	mixtures of local experts. Neural computation, 3(1):79-87.
Introduction	Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization with
Models	Gumbel-Softmax. In Proceedings of ICLR.
Variational	Yoon Kim, Sam Wiseman, Andrew C. Miller, David Sontag, and Alexander M. Rush. 2018.
Objective	Semi-Amortized Variational Autoencoders. In Proceedings of ICML.
Inference Strategies	Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In
Advanced Topics	Proceedings of ICLR.
	Diederik P. Kingma, Tim Salimans, and Max Welling. 2016. Improving Variational Inference
Case Studies	with Autoregressive Flow. arXiv:1606.04934.
Conclusion	Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In Proceedings
References	of ICLR.
	Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio
	Torralba, and Sanja Fidler. 2015. Skip-thought Vectors. In Proceedings of NIPS.
	Dan Klein and Christopher D Manning. 2004. Corpus-based Induction of Syntactic Structure:
	Models of Dependency and Constituency. In <i>Proceedings of ACL</i> . 153/153

Tutorial: Deep Latent NLP	Jason Lee, Elman Mansimov, and Kyunghyun Cho. 2018. Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement. In <i>Proceedings of EMNLP</i> .
(bit.do/lvnlp)	Stefan Lee, Senthil Purushwalkam Shiva Prakash, Michael Cogswell, Viresh Ranjan, David Crandall, and Dhruv Batra. 2016. Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles. In <i>Proceedings of NIPS</i> .
Models Variational Objective	Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. 2017. The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. In <i>Proceedings of ICLR</i> .
Inference Strategies	Bernard Merialdo. 1994. Tagging english text with a probabilistic model. <i>Computational linguistics</i> , 20(2):155–171.
Advanced Topics Case Studies	Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2018. Regularizing and optimizing LSTM language models. In <i>International Conference on Learning Representations</i> .
Conclusion References	Yishu Miao and Phil Blunsom. 2016. Language as a Latent Variable: Discrete Generative Models for Sentence Compression. In <i>Proceedings of EMNLP</i> .
	Yishu Miao, Edward Grefenstette, and Phil Blunsom. 2017. Discovering Discrete Latent Topics with Neural Variational Inference. In <i>Proceedings of ICML</i> .
	Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural Variational Inference for Text Processing. In <i>Proceedings of ICML</i> . 153/153

Tutorial:	Andriy Mnih and Danilo J. Rezende. 2016. Variational Inference for Monte Carlo Objectives. In
Deep Latent NLP	Proceedings of ICML.
(bit.do/lvnlp)	Andryi Mnih and Karol Gregor. 2014. Neural Variational Inference and Learning in Belief
	Networks. In Proceedings of ICML.
Introduction	Anjan Nepal and Alexander Yates. 2013. Factorial Hidden Markov Models for Learning
Models	Representations of Natural Language. arXiv:arXiv:1312.6168.
Variational Objective	George Papandreou and Alan L. Yuille. 2011. Perturb-and-Map Random Fields: Using Discrete
	Optimization to Learn and Sample from Energy Models. In Proceedings of ICCV.
Inference Strategies	Danilo J. Rezende and Shakir Mohamed. 2015. Variational Inference with Normalizing Flows.
Advanced Topics	In Proceedings of ICML.
Case Studies	Noah A Smith and Jason Eisner. 2005. Contrastive Estimation: Training log-linear models on
	unlabeled data. In Proceedings of ACL, pages 354–362. Association for Computational
Conclusion	Linguistics.
References	Ilya Sutskever, Oriol Vinyals, and Quoc Le. 2014. Sequence to Sequence Learning with Neural
	Networks. In Proceedings of NIPS.
	Ke Tran, Yonatan Bisk, Ashish Vaswani, Daniel Marcu, and Kevin Knight. 2016. Unsupervised
	Neural Hidden Markov Models. In Proceedings of the Workshop on Structured Prediction for
	NLP. 153/153

(bit.do/lvnlp)	linguistics-Volume 2, pages 836–841. Association for Computational Linguistics.
ntroduction Models	Wenlin Wang, Zhe Gan, Wenqi Wang, Dinghan Shen, Jiaji Huang, Wei Ping, Sanjeev Satheesh, and Lawrence Carin. 2018. Topic Compositional Neural Language Model. In <i>Proceedings of AISTATS</i> .
/ariational Objective nference	Peter Willett. 1988. Recent Trends in Hierarchic Document Clustering: A Critical Review. Information Processing & Management, 24(5):577–597.
Advanced Topics	Ronald J. Williams. 1992. Simple Statistical Gradient-following Algorithms for Connectionist

Stephan Vogel, Hermann Ney, and Christoph Tillmann. 1996. Hmm-based word alignment in

statistical translation. In Proceedings of the 16th conference on Computational

Reinforcement Learning. Machine Learning, 8.

Tutorial: Deep Latent NLP

Sam Wiseman, Stuart M Shieber, and Alexander M Rush. 2018. Learning neural templates for text generation. In *Proceedings of EMNLP*.

References Jiacheng Xu and Greg Durrett. 2018. Spherical Latent Spaces for Stable Variational Autoencoders. In Proceedings of EMNLP. Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. 2018. Breaking the

Softmax Bottleneck: A High-Rank RNN Language Model. In Proceedings of ICLR.

Tutorial:

Deep Latent NLP (bit.do/lvnlp)

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. 2017. Improved Variational Autoencoders for Text Modeling using Dilated Convolutions. In *Proceedings of ICML*.

Introductio

Model

Variation

Strategie:

Advanced Topics

Case Studie

References