Statistical Learning [RN2 Sec 20.1-20.2] [RN3 Sec 20.1-20.2]

CS 486/686 University of Waterloo Lecture 15: Oct 30, 2012

Outline

- · Statistical learning
 - Bayesian learning
 - Maximum a posteriori
 - Maximum likelihood
- · Learning from complete Data

Statistical Learning

- View: we have uncertain knowledge of the world
- Idea: learning simply reduces this uncertainty

CS486/686 Lecture Slides (c) 2012 P. Poupart

3

Candy Example

- · Favorite candy sold in two flavors:
 - Lime (hugh)
 - Cherry (yum)
- · Same wrapper for both flavors
- Sold in bags with different ratios:
 - 100% cherry
 - 75% cherry + 25% lime
 - 50% cherry + 50% lime
 - 25% cherry + 75% lime
 - 100% lime

CS486/686 Lecture Slides (c) 2012 P. Poupart

Candy Example

- You bought a bag of candy but don't know its flavor ratio
- After eating k candies:
 - What's the flavor ratio of the bag?
 - What will be the flavor of the next candy?

CS486/686 Lecture Slides (c) 2012 P. Poupart

5

Statistical Learning

- Hypothesis H: probabilistic theory of the world
 - h₁: 100% cherry
 - h₂: 75% cherry + 25% lime
 - h_3 : 50% cherry + 50% lime
 - h_4 : 25% cherry + 75% lime
 - h₅: 100% lime
- Data D: evidence about the world
 - d₁: 1st candy is cherry
 - d₂: 2nd candy is lime
 - d₃: 3rd candy is lime

-

CS486/686 Lecture Slides (c) 2012 P. Poupart

Bayesian Learning

- Prior: Pr(H)
- Likelihood: Pr(d|H)
- Evidence: $\mathbf{d} = \langle d_1, d_2, ..., d_n \rangle$
- Bayesian Learning amounts to computing the posterior using Bayes' Theorem:

Pr(H|d) = k Pr(d|H)Pr(H)

CS486/686 Lecture Slides (c) 2012 P. Poupart

7

Bayesian Prediction

- Suppose we want to make a prediction about an unknown quantity X (i.e., the flavor of the next candy)
- $Pr(X|\mathbf{d}) = \Sigma_i Pr(X|\mathbf{d},h_i)P(h_i|\mathbf{d})$ = $\Sigma_i Pr(X|h_i)P(h_i|\mathbf{d})$
- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as "intermediaries" between raw data and prediction

CS486/686 Lecture Slides (c) 2012 P. Poupart

Candy Example

- Assume prior P(H) = <0.1, 0.2, 0.4, 0.2, 0.1>
- Assume candies are i.i.d. (identically and independently distributed)
 - $P(\mathbf{d}|\mathbf{h}) = \Pi_j P(\mathbf{d}_j|\mathbf{h})$
- Suppose first 10 candies all taste lime:
 - $-P(d|h_5) = 1^{10} = 1$
 - $-P(\mathbf{d}|\mathbf{h}_3) = 0.5^{10} = 0.00097$
 - $-P(d|h_1) = 0^{10} = 0$

CS486/686 Lecture Slides (c) 2012 P. Poupart

9

Posterior

CS486/686 Lecture Slides (c) 2012 P. Poupart

Bayesian Learning

- Bayesian learning properties:
 - Optimal (i.e. given prior, no other prediction is correct more often than the Bayesian one)
 - No overfitting (all hypotheses weighted and considered)
- There is a price to pay:
 - When hypothesis space is large Bayesian learning may be intractable
 - i.e. sum (or integral) over hypothesis often intractable
- Solution: approximate Bayesian learning

CS486/686 Lecture Slides (c) 2012 P. Poupart

Maximum a posteriori (MAP)

 Idea: make prediction based on most probable hypothesis h_{MAP}

```
- h_{MAP} = argmax_{h_i} P(h_i|d)
- P(X|d) \approx P(X|h_{MAP})
```

 In contrast, Bayesian learning makes prediction based on all hypotheses weighted by their probability

CS486/686 Lecture Slides (c) 2012 P. Poupart

13

Candy Example (MAP)

- Prediction after
 - 1 lime: $h_{MAP} = h_3$, $Pr(lime|h_{MAP}) = 0.5$
 - 2 limes: $h_{MAP} = h_4$, $Pr(lime|h_{MAP}) = 0.75$
 - 3 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$
 - 4 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$

- ...

• After only 3 limes, it correctly selects $\ensuremath{h_{5}}$

CS486/686 Lecture Slides (c) 2012 P. Poupart

Candy Example (MAP)

- But what if correct hypothesis is h₄?
 - h_4 : P(lime) = 0.75 and P(cherry) = 0.25
- After 3 limes
 - MAP incorrectly predicts h₅
 - MAP yields $P(lime|h_{MAP}) = 1$
 - Bayesian learning yields P(lime|d) = 0.8

CS486/686 Lecture Slides (c) 2012 P. Poupart

15

MAP properties

- MAP prediction less accurate than Bayesian prediction since it relies only on one hypothesis h_{MAP}
- But MAP and Bayesian predictions converge as data increases
- Controlled overfitting (prior can be used to penalize complex hypotheses)
- Finding h_{MAP} may be intractable:
 - h_{MAP} = argmax P(h|d)
 - Optimization may be difficult

CS486/686 Lecture Slides (c) 2012 P. Poupar

MAP computation

- · Optimization:
 - h_{MAP} = $argmax_h P(h|d)$ = $argmax_h P(h) P(d|h)$ = $argmax_h P(h) \Pi_i P(d_i|h)$
- Product induces non-linear optimization
- · Take the log to linearize optimization
 - h_{MAP} = $argmax_h log P(h) + \Sigma_i log P(d_i|h)$

CS486/686 Lecture Slides (c) 2012 P. Poupart

17

Maximum Likelihood (ML)

- Idea: simplify MAP by assuming uniform prior (i.e., $P(h_i) = P(h_j) \forall i,j$)
 - $-h_{MAP} = argmax_h P(h) P(d|h)$
 - $-h_{MI} = argmax_h P(d|h)$
- Make prediction based on h_{ML} only:
 - $P(X|d) \approx P(X|h_{ML})$

486/686 Lecture Slides (c) 2012 P. Poupart

Candy Example (ML)

- Prediction after
 - 1 lime: $h_{ML} = h_5$, $Pr(lime|h_{ML}) = 1$ - 2 limes: $h_{ML} = h_5$, $Pr(lime|h_{ML}) = 1$
- Frequentist: "objective" prediction since it relies only on the data (i.e., no prior)
- Bayesian: prediction based on data and uniform prior (since no prior = uniform prior)

CS486/686 Lecture Slides (c) 2012 P. Poupart

19

ML properties

- ML prediction less accurate than Bayesian and MAP predictions since it ignores prior info and relies only on one hypothesis h_{ML}
- But ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting (no prior to penalize complex hypothesis that could exploit statistically insignificant data patterns)
- Finding h_{ML} is often easier than h_{MAP} • h_{ML} = $argmax_h \Sigma_i log P(d_i|h)$

CS486/686 Lecture Slides (c) 2012 P. Poupar

Statistical Learning

- · Use Bayesian Learning, MAP or ML
- · Complete data:
 - When data has multiple attributes, all attributes are known
 - Easy
- Incomplete data:
 - When data has multiple attributes, some attributes are unknown
 - Harder

CS486/686 Lecture Slides (c) 2012 P. Poupart

21

Simple ML example

- Hypothesis h₀:
 - P(cherry)= θ & P(lime)= $1-\theta$
- · Data d:
 - c cherries and I limes

- · ML hypothesis:
 - θ is relative frequency of observed data
 - $-\theta = c/(c+1)$
 - P(cherry) = c/(c+1) and P(lime) = 1/(c+1)

CS486/686 Lecture Slides (c) 2012 P. Poupar

ML computation

- 1) Likelihood expression
 - $P(\mathbf{d}|\mathbf{h}_{\theta}) = \theta^{c} (1-\theta)^{l}$
- · 2) log likelihood
 - $\log P(\mathbf{d}|\mathbf{h}_{\theta}) = c \log \theta + l \log (1-\theta)$
- · 3) log likelihood derivative
 - $d(\log P(\mathbf{d}|h_{\theta}))/d\theta = c/\theta I/(1-\theta)$
- · 4) ML hypothesis
 - $-c/\theta 1/(1-\theta) = 0 \Rightarrow \theta = c/(c+1)$

CS486/686 Lecture Slides (c) 2012 P. Poupart

23

More complicated ML example

- Hypothesis: $h_{\theta,\theta_1,\theta_2}$
- Data:
 - c cherries
 - gc green wrappers
 - \cdot r_c red wrappers
 - I limes
 - \cdot g_1 green wrappers
 - \cdot $r_{\scriptscriptstyle \parallel}$ red wrappers

CS486/686 Lecture Slides (c) 2012 P. Poupart

ML computation

- 1) Likelihood expression
 - $\mathsf{P}(\mathbf{d} | \mathsf{h}_{\theta,\theta_1,\theta_2}) = \theta^\mathsf{c}(1 \theta)^\mathsf{l} \, \theta_1^\mathsf{r}_\mathsf{c}(1 \theta_1)^\mathsf{g}_\mathsf{c} \, \theta_2^\mathsf{r}_\mathsf{l}(1 \theta_2)^\mathsf{g}_\mathsf{l}$
- ..
- · 4) ML hypothesis
 - $-c/\theta 1/(1-\theta) = 0 \Rightarrow \theta = c/(c+1)$
 - $r_c/\theta_1 g_c/(1-\theta_1) = 0 \Rightarrow \theta_1 = r_c/(r_c+g_c)$
 - $-r_1/\theta_2 g_1/(1-\theta_2) = 0 \Rightarrow \theta_2 = r_1/(r_1+g_1)$

CS486/686 Lecture Slides (c) 2012 P. Poupart

25

Laplace Smoothing

- An important case of overfitting happens when there is no sample for a certain outcome
 - E.g. no cherries eaten so far
 - $P(cherry) = \theta = c/(c+1) = 0$
 - Zero prob. are dangerous: they rule out outcomes
- · Solution: Laplace (add-one) smoothing
 - Add 1 to all counts
 - P(cherry) = θ = (c+1)/(c+l+2) > 0
 - Much better results in practice

(c) 2012 P. Poupart

Naïve Bayes model

- Want to predict a class C based on attributes A_i
- · Parameters:
 - θ = P(C=true)
 - θ_{i1} = P(A_i =true|C=true)
 - θ_{i2} = P(A_i =true|C=false)
- · Assumption: Ai's are independent given C

CS486/686 Lecture Slides (c) 2012 P. Poupart

27

Naïve Bayes model for Restaurant Problem

Data:

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	T
X_4	T	F	T	Т	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	т	Т	т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т

- · ML sets
 - $\,\theta$ to relative frequencies of wait and ~wait
 - θ_{i1}, θ_{i2} to relative frequencies of each attribute value given *wait* and *~wait*

CS486/686 Lecture Slides (c) 2012 P. Poupart

Naïve Bayes model vs decision trees

Wait prediction for restaurant problem

Why is naïve Bayes less accurate than decision tree?

29

Bayesian network parameter learning (ML)

- Parameters $\theta_{V,pa(V)=v}$:
 - CPTs: $\theta_{V,pa(V)=v} = P(V|pa(V)=v)$
- Data **d**:
 - d_1 : $\langle V_1 = v_{1,1}, V_2 = v_{2,1}, ..., V_n = v_{n,1} \rangle$
 - d_2 : $\langle V_1 = v_{1,2}, V_2 = v_{2,2}, ..., V_n = v_{n,2} \rangle$
 - ...
- Maximum likelihood:
 - Set $\theta_{V,pa(V)=v}$ to the relative frequencies of the values of V given the values ${f v}$ of the parents of V

CS486/686 Lecture Slides (c) 2012 P. Poupart

Next Class

- · Next Class:
 - \cdot Continue statistical learning
 - ·Learning from incomplete data

CS486/686 Lecture Slides (c) 2012 P. Poupart