Příklad 1. Najděte rovnici tečny a normály dané funkce bodě T, je-li

Rovnice tečny $y = f(x_0) + f'(x_0)(x - x_0)$ Rovnice normály $y = f(x_0) - \frac{1}{f'(x_0)}(x - x_0)$

(a)
$$f(x) = \sqrt{x^2 + 16}, T = [3, ?];$$

(b)
$$f(x) = e^{-x} \cos 2x, T = [0, ?];$$

Řešení: Ad (a)

Nejdříve si doplníme y-ovou souřadnici dotykového bodu. Pro $x_0 = 3$ je $f(x_0) = y_0 = 5$, tedy T = [3, 5]. Dále

$$f'(x) = \frac{1}{2}(x^2 + 16)^{-\frac{1}{2}}2x = \frac{x}{\sqrt{x^2 + 16}}.$$

Rovnice tečny 3x - 5y + 16 = 0 a normály 5x + 3y - 30 = 0.

Ad(b)

Opět stanovíme y-ovou souřadnici dotykového bodu. Pro $x_0 = 0$ je $f(x_0) = y_0 = 1$, tedy T = [0, 1]. Dále

$$f'(x) = -e^{-x}(\cos 2x + 2\sin 2x).$$

Rovnice tečny x+y-1=0 a normály x-y+1=0.

Příklad 2. Určete intervaly monotónnosti funkce $f(x) = x^3 - 3x^2$.

Intervaly monotónnosti rozhodneme na základě tvrzení

Má-li funkce f v každém bodě intervalu (a,b) kladnou derivaci, tj. f'(x) > 0, je v tomto intervalu rostoucí. Má-li funkce f v každém bodě intervalu (a,b) zápornou derivaci, tj. f'(x) < 0, je v tomto intervalu klesající.

Řešení: Derivace funkce je

$$f'(x) = 3x^2 - 6x.$$

Nyní zjistíme intervaly, ve kterých je tato derivace kladná resp. záporná. Řešíme tedy dvě nerovnice

$$f'(x) > 0 \iff x(x-2) > 0 \iff (x > 0 \land x - 2 > 0) \lor (x < 0 \land x - 2 < 0)$$

Odtud dostaneme dva intervaly $(2, +\infty)$ a $(-\infty, 0)$. Užitím tvzení plyne, že funkce f(x) je na těchto intervalech rostoucí.

$$\frac{2)f'(x)<0}{f'(x)<0} \iff x(x-2)<0 \iff (x<0 \ \land \ x-2>0) \lor (x>0 \ \land \ x-2<0)$$

Vyřešením těchto nerovnic dostaneme jeden interval (0,2). Opětovným užitím tvzení plyne, že funkce f(x) je na tomto intervalu klesající.

Pozn.: lze též postupovat tak, že zjistíme v kterých bodech (tzv. nulové body) je derivace funkce rovna nule, tj. f'(x) = 0.

1

Řešením rovnice 3x(x-2)=0 jsou dva nulové body $x_1=0$ a $x_2=2$. Odtud dostaneme intervaly $(-\infty,0)$; (0,2); $(2,+\infty)$.

Nyní stačí ověřit předpoklady tvrzení. Zvolme tedy konkrétní body z jednotlivých intervalu třeba takto

$$(-\infty,0)\dots f'(-1) = 9 > 0 \Rightarrow f(x)$$
 je rostoucí $(0,2)\dots f'(1) = -3 < 0 \Rightarrow f(x)$ je klesající $(2,+\infty)\dots f'(3) = 9 > 0 \Rightarrow f(x)$ je rostoucí

Příklad 3. Určete intervaly monotónnosti funkce

$$f(x) = \frac{x-3}{\sqrt{1+x^2}}.$$

Řešení: Stejným postupem jako v minulém příkladě zjistíme, že derivace funkce je

$$f'(x) = \frac{3x+1}{(1+x^2)^{\frac{3}{2}}}.$$

$$f'(x) > 0 \iff x > -\frac{1}{3} \qquad \longrightarrow \qquad (-\frac{1}{3}, +\infty) \Rightarrow f(x) \text{ roste.}$$

$$f'(x) < 0 \iff x < -\frac{1}{3} \qquad \longrightarrow \qquad (-\infty, -\frac{1}{3}) \Rightarrow f(x) \text{ kles\'a}.$$

Příklad 4. Určete lokální extrémy funkce

$$f(x) = 2x + \sqrt[3]{(2-x)^2}.$$

Lokální extrémy funkce se určují pomocí nutných a postačujících podmínek:

Nutná podmínka existence lokálního extrému

Má-li funkce f(x) v bodě $x_0 \in (a,b)$ lokální extrém, potom buď $f'(x_0) = 0$ nebo $f'(x_0)$ neexistuje.

Postačující podmínka existence lokálního extrému

Nechť funkce f(x) je spojitá v bodě x_0 a jeho okolí $U(x_0) = (x_0 - \delta, x_0 + \delta)$.

- (a) Je-li f(x) ostře rostoucí v intervalu $(x_0 \delta, x_0)$ a ostře klesající v intervalu $(\delta, x_0 + \delta)$, potom $f(x_0)$ je ostré lokální maximum funkce f(x).
- (b) Je-li f(x) ostře kleasjící v intervalu $(x_0 \delta, x_0)$ a ostře rostoucí v intervalu $(\delta, x_0 + \delta)$, potom $f(x_0)$ je ostré lokální minimum funkce f(x).

Nebo-li, mění-li se znaménko 1.derivace ve stacionárním bodě z plus na mínus, má funkce v tomto bodě lokální maximum, mění-li se z mínus na plus, má funkce v tomto bodě minimum.

V některých případech lze rozhodnout o existenci extrému ve stacionárním bodě x_0 pomocí 2.derivace (podmínkou je snadný výpočet 2.derivace a existence nenulové 2.derivace v tomto bodě).

Je-li $f''(x_0) < 0$, má funkce f(x) v bodě x_0 ostré lokální maximum.

Je-li $f''(x_0) > 0$, má funkce f(x) v bodě x_0 ostré lokální minimum.

Je-li $f''(x_0) = 0$ nebo $(''x_0)$ neexistuje, nelze pomocí 2.derivace rozhodnout o existenci extrému.

Řešení: Derivace funkce f(x) je

$$f'(x) = 2 - \frac{2}{(2-x)^{\frac{1}{3}}}, \quad x \neq 2.$$

1)Nutná podmínka

Nejdříve stanovíme stacionární body, nebo-li "body podezřelé z extrémů". Tj. řešíme rovnici f'(x) = 0. Řešením

$$2 - \frac{2}{(2-x)^{\frac{1}{3}}} = 0.$$

je bod $x_1 = 1$. Tedy máme dva stacionární body a to $x_1 = 1$ a $x_2 = 2$. Tím dostáváme tři intervaly $(-\infty, 1); (1, 2); (2, +\infty)$.

2)Postačující podmínka

3)Závěr

Funkce f(x) má v bodě $x_1=1$ ostré lokální maximum f(1)=5 a v bodě $x_2=2$ ostré lokální minimum f(2)=4.

Pozn.: zkuste sami rozhodnout o maximu, minimu použitím druhé derivace.

Příklad 5. Určete lokální extrémy funkce

$$f(x) = \arctan x - \frac{1}{2} \ln (1 + x^2).$$

Řešení: Derivace funkce f(x) je

$$f'(x) = \frac{1-x}{1+x^2}$$

1)Nutná podmínka

Řešením

$$\frac{1-x}{1+x^2} = 0.$$

je bod $x_1=1$. Tedy máme jeden stacionární bod a to $x_1=1$. Tím dostáváme dva intervaly $(-\infty,1);(1,+\infty)$.

2)Postačující podmínka

$$(-\infty,1)\dots f'(0) = 1 > 0 \Rightarrow f(x) \text{ je rostoucí}$$

$$(1,+\infty)\dots f'(2) = -\frac{1}{5} < 0 \Rightarrow f(x) \text{ je klesající}$$

$$\Rightarrow \frac{x \quad (-\infty,1) \quad (1,+\infty)}{f'(x) \quad + \quad - \quad f(x) \quad \nearrow}$$

3)Závěr

Funkce f(x) má v bodě $x_1=1$ ostré lokální maximum $f(1)=\frac{\pi}{4}-\frac{1}{2}\ln 2$.

Pozn.: opět se můžete pokusit sami rozhodnout o maximu, minimu použitím druhé derivace.

Příklad 6. Určete lokální extrémy funkce

$$f(x) = \frac{x^2}{2} + \frac{8}{x^3}.$$

Řešení: Derivace funkce f(x) je

$$f'(x) = x - \frac{24}{x^4}, \quad x \neq 0.$$

1)Nutná podmínka

Řešením

$$x - \frac{24}{x^4} = 0.$$

je bod $x_1=\sqrt[5]{24}$. Tedy máme dva stacionární body a to $x_1=\sqrt[5]{24}$ a $x_2=0$. Tím dostáváme tři intervaly $(-\infty,0)$; $(0,\sqrt[5]{24})$; $(\sqrt[5]{24},+\infty)$.

2)Postačující podmínka

Funkce f(x) má v bodě $x_2=\sqrt[5]{24}$ ostré lokální minimum $f(\sqrt[5]{24})=\sqrt[5]{24^2}-\frac{8}{\sqrt[5]{24^3}}$. Pozn.: opět se můžete pokusit sami rozhodnout o maximu, minimu použitím druhé derivace.