

Analyse des compagnies de production cinématographique en Europe

Mise en pratique de l'ETL pour la visualisation de données provenant des données relationnelles

Veerasingam Abilash Lontchi Taboua Freddy Hajjare Moutaki

I. Table des matières

II. Objectifs et présentation du projet	3
A. A propos de la base de données	3
B. Objectifs du projet	3
C. Technologies utilisées	3
1. PostgreSQL	
2. Talend	4
3. Tableau	4
D. Schéma de la Base de Données	4
III. ETL	7
E. Conception	7
F. Extraction	8
G. Transformation des données	9
H. Load	10
4. Définition des flux ETL et charger les données dans le Data Warehouse	10
I. Construction du Data Warehouse	12
IV. Visualisation avec Tableau	14
J. Connexion à la Base de Données	14
K. Création des visuels	14
5. Vue d'ensemble de l'organisation :	
6. Indicateurs KPI :	16
V. Conclusion	19

II. Objectifs et présentation du projet

A. A propos de la base de données

L'ensemble de données analysé contient des enregistrements fictifs d'employés de sociétés de production cinématographique à travers l'Europe. L'ensemble de données est structuré en dix 20 fichiers, fournissant des informations détaillées sur les individus, notamment leur nom complet, leur sexe, leur date de naissance, leurs affiliations à l'entreprise, leurs rôles et leurs dates de début d'emploi. Ces données sont inestimables pour explorer la structure organisationnelle, la démographie de la main-d'œuvre et les rôles au sein de l'industrie européenne de la production cinématographique. Ces enregistrements aident les utilisateurs à naviguer et comprendre les capacités et la structure de la base de données dans un contexte théorique.

Source des données : kaggle

B. Objectifs du projet

Notre objectif est d'utiliser les techniques ETL sur Talend pour agréger les données afin de créer un nouveau schéma de données qui palliera le problème de lenteur crée par les jointures profondes des modelés relationnels lors de la visualisation. Notre data Warehouse sera basé sur ce nouveau schéma. Nous détaillerons les indicateurs visualisés plus bas.

C. Technologies utilisées

PostgreSQL

pgAdmin est un outil de gestion de base de données open source pour PostgreSQL, utilisé dans ce projet pour gérer la base de données des compagnies de production cinématographique en Europe. Il a permis de créer notre Datawarehouse et de stocker aussi une partie de nos données avant l'ETL.

2. Talend

Talend est une plateforme d'intégration de données qui a été utilisée pour les processus ETL (Extract, Transform, Load) du dataset. Grâce à Talend, les données des compagnies de production cinématographique ont été collectées, une partie venant de PostgreSQL et une autre partie venant des fichiers plats csv. Puis, ces données ont été transformées et chargées dans le Data Warehouse sur PostgreSQL.

3. Tableau

Tableau est un outil de visualisation de données utilisé pour créer des rapports interactifs à

partir du dataset sur les compagnies de production cinématographique en Europe. Il a permis de visualiser les tendances et d'explorer les relations entre les différentes entités, offrant des insights précieux sur l'industrie cinématographique et facilitant la prise de décision stratégique.

D. Schéma de la Base de Données

city.csv

company.csv

country.csv

crew_info.csv

department.csv

• department_address.csv

• employee.csv

film.csv

• grant_request.csv

• kind_of_organization.csv

• phone_number.csv

registration_body.csv

role.csv

shareholder.csv

staff_salary.csv

III. ETL

A. Conception

Nous avons regroupé les tables excentrées à plus d'un pas de la table company pour les reprocher le plus de celle-ci. Nous pouvons voir le résultat sur la figure ci-dessous.

B. Extraction

Les données proviennent de deux sources :

• A partir des fichiers CSV

Voici la liste des fichiers qui ont été importés.

- → File delimited
 - > 🗈 compagny 0.1
 - > 1 company_film 0.1
 - > 1 company_grant 0.1
 - b company_shareholder 0.1
 - > 1 crew info 0.1
 - > 1 crew 0.1
 - b department_address 0.1
 - > 1 department 0.1
 - → film 0.1
 - grant_request 0.1
 - > 🗓 role 0.1
 - > 1 shareholder 0.1
 - > 1 staff_salary 0.1
 - > 1 staff 0.1

A partir de PostgreSQL

Une connexion a été établie vers le **schéma ODS** de notre base de données afin de récupérer le reste des fichiers.

- ∨ No Db Connections
 - > N DWH 0.1
 - √ N ODS 0.1
 - → □ Queries
 - □ Synonym schemas
 - Table schemas
 - > III city
 - > III country
 - > = employee
 - > III kind_of_organization
 - > = phone_number
 - > III registration body
 - ☐ View schemas

C. Transformation des données

Concernant la transformation des données, il s'agit principalement de l'agrégation des données grâce au composant **tmap** afin d'obtenir un model en étoile.

Nous avons aussi appliqué un formatage sur certaines dates qui n'avaient pas le bon format ou qui n'étaient pas reconnues comme des dates.

D. Load

Une deuxième connexion vers le a été faite vers le schéma **DWH** pour avoir accès au data Warehouse.

- 1. Définition des flux ETL et charger les données dans le Data Warehouse.
- Agrégation des tables (staff, staff_salary, departement et department adress) pour obtenir department_staff_salary

 Agrégation des tables (crew, role, crew_info, film, compagny) pour obtenir la table compagny_film_crew

 Agrégation des tables (compagny_sha et shareholder) pour obtenir la table shareholder

 Agrégation des tables (compagny_grant et grant_request) pour obtenir la table grant_request

E. Construction du Data Warehouse

Nous avons le schéma final de notre data Warehouse qui est une réplique à l'identique de notre schéma de conception. En annexe vous trouverez le script SQL pour créer le même schéma.

IV. Visualisation avec Tableau

A. Connexion à la Base de Données

Instructions pour connecter Tableau à PostgreSQL : Installation de pilote PostgreSQL, puis connecter ODBC au fichier programmes de TABLEAU.

B. Création des visuels

Objectif de visualisation : créer un tableau de bord interactif qui offre une vue d'ensemble des relations et des détails au sein d'une organisation cinématographique.

- 1. Vue d'ensemble de l'organisation :
- Afficher le nombre total d'employés, de départements, de sociétés affiliées, de pays où l'organisation opère.

Repartition des Socièté par Pays

Carte basée sur les Longitude (générée) et Latitude (générée). La couleur met en avant le/la total distinct de ld. Les détails affichés sont associés au/à la Country Code.

Nombre des employées par Pays

Carte basée sur les Longitude (générée) et Latitude (générée). La couleur met en avant le/la total distinct de ld (Employee). Les détails affichés sont associés au/à la Country Code.

2. Indicateurs KPI:

• KPI1: Ratio hommes-femmes

• KPI2 : Répartition des revenus par région

KPI 2

Country Code et somme de Salary. La couleur affiche des détails associés au/à la Country Code. La taille correspond au/à la somme de Salary. Les repères sont étiquetés par Country Code et somme de Salary.

KPI3 : Nombre de prix remportés par Film

KPI3

Somme de Price pour chaque Name. La couleur affiche des détails associés au/à la Name. La vue est filtrée sur Name, qui conserve 10 membres sur 506.

• KPI 4 : Nombre de prix remportées par Pays

KPI 4

Albania 45.00	Serbia 42.00	Poland 35.00		ustria Ukra 4.00 34.0		raine 00	Belgium 32.00		Moldova 32.00	
Latvia 45.00	Romania 41.00	Lithuania 31.00		Slovakia 29.00	North		Norway 28.00		Denn 26.00	
Belarus 43.00	Kosovo 39.00	Hungary 30.00								
Czechia 43.00	Sweden	Slovenia		Finland 25.00		20.00	i	Spain 18.00		
	37.00	30.00		France 21.00						
Bulgaria 42.00	Bosnia and Herzegovina 35.00	Greece 29.00		Portugal 21.00		Italy 18.00			Russia 16.00	

Name (Country) et somme de Price. La couleur met en avant le/la somme de Price. La taille correspond au/à la somme de Price. Les repères sont étiquetés par Name (Country) et somme de Price. La vue est filtrée sur Name (Country), qui exclut NULL.

KPI 5 : Evolution financier par film

KPI5

Desired Amount et Maximum Monetary Value pour chaque Name. La vue est filtrée sur Name, qui conserve 10 membres sur 505.

V. Conclusion

Ce projet de Business Intelligence a permis de mettre en place une solution complète pour l'analyse des données des compagnies de production cinématographique en Europe. En utilisant une combinaison de technologies avancées telles que PostgreSQL pour la gestion des bases de données, Talend pour les processus ETL, et Tableau pour la visualisation des données, nous avons pu créer un Data Warehouse robuste et performant.

Le processus a commencé par l'extraction des données provenant de différentes sources, notamment des fichiers CSV et des bases de données PostgreSQL. Ces données ont ensuite été transformées pour obtenir un modèle en étoile, facilitant ainsi les analyses rapides et efficaces. La phase de chargement a intégré ces données transformées dans notre Data Warehouse, prêt à être utilisé pour des visualisations interactives.

Les tableaux de bord créés offrent une vue d'ensemble détaillée des structures organisationnelles, des démographies et des performances financières des compagnies de production cinématographique. Les indicateurs clés de performance (KPI) tels que le ratio hommes-femmes, la répartition des revenus par région, et le nombre de prix remportés par film et par pays, ont permis d'obtenir des insights précieux pour la prise de décision stratégique.

En conclusion, ce projet démontre l'importance et l'efficacité d'une solution BI bien conçue pour le secteur cinématographique. Il fournit aux utilisateurs les outils nécessaires pour explorer et comprendre en profondeur les dynamiques internes et les performances de l'industrie, facilitant ainsi une prise de décision informée et stratégique. Les technologies utilisées ont prouvé leur capacité à gérer de grandes quantités de données et à offrir des visualisations claires et utiles, soulignant l'importance d'une intégration harmonieuse des différentes étapes de l'ETL et de la visualisation pour le succès d'un projet BI.