Human-Computer Interaction Bearbeitung zu Interaktive Computergrafik

Hinweis: Das Abaabedatum für das Übungsblatt finden Sie in Stine

Aufgabe 1 (Einzelaufgabe, 4 Punkte)

Gegeben ist ein Dreieck mit den in Abbildung la dargestellten Texturkoordinaten pro Vertex. Leiten Sie aus diesen zunächst die Texturekoordinaten für das Fragment F ab. Sie können hierzu die Vorgehensweise zur <mark>Interpolation</mark> von <mark>Intensitäten</mark>, welche Sie im Kontext von <mark>Gouraud Shading kennengelernt haben,</mark> auf Texturkoordinaten anwenden. Leiten Sie anschließend mithilfe der korrekten Texturkoordinaten für F sowie der in Abbildung 1b dargestellten Textur einen entsprechenden Farbwert für F ab.

Nave coo Nutzen Sie hierzu ...

Interpolieren

(a) ... Nächster-Nachbar-Filterung.

(b) ... Bilineare Filterung.

I reune interpolarisierry

Die normalisierten RGB-Farbwerte der Pixel in Abbildung 1b sind wie folgt: $Rot = [1.0, 0.0, 0.0]^T$, $Grau = [0.33, 0.37, 0.4]^T$, $Schwarz = [0.0, 0.0, 0.0]^T$ und $Wei\beta = [1.0, 1.0, 1.0]$

(b) Texturraum

Abbildung 1: (a) Darstellung eines Polygons im Bildraum und (b) Textur, welche auf das Polygon abgebildet werden soll

Die jeweiligen Ergebnisse müssen in den entsprechenden Moodle-Test eingetragen werden, um Bonuspunkte zu erhalten.

Aufgabe 2 (Gruppenaufgabe, 6 Punkte)

Im aktuellen und nächsten Übungszettel werden Sie sich mit der Erstellung und visuellen Gestaltung eines Meeres, welches die bisherige Insel umgibt, beschäftigen. Hierzu werden Sie in der Übung am $28.01.21\,U$ anhand einer diffusen Map lernen, wie in WebGL Texturen auf Objekte angewendet werden können, Übertragen Sie das gezeigte Prinzip auf eine zweite Textur, um zusätzlich Normal Mapping auf Ihr Meer anzuwenden. Achten Sie darauf, dass die Beleuchtung korrekt implementiert sein muss, damit Normal Mapping richtig funktioniert. Sie können sich hierzu an der Musterlösung orientieren. Außerdem wird 1, 0,0,25 in der Übung ein Projekt zur Verfügung gestellt, in dem die einzelnen Schritte des Normal Mappings IO=(0,0,1,0)) aufgeführt sind.

0 75 X3

0,8

Abbildung 1: (a) Darstellung eines Polygons im Bildraum und (b) Textur, welche auf das Polygon

A= oc. I

 0.75×1 0.75 = 0 0.75 = 0 0.25×1 0.25 = 00.25-(1.0,0.5) =(0.25,0)C D, 75, D, 7-6, D, 7 (1.00.750.75 (1.00.750.75)

 $A = \alpha \cdot \int_{0}^{\infty} -1 \cdot \int_{0}^{\infty} -1 \cdot \int_{0}^{\infty} \frac{1}{1-\alpha} \cdot \int_{0$ B=B:12+(7-B) 10 I= 0.B+(1-5).A A=0.5.0.0,0.0 A=0.5.0.0,0.0 A=0.5.0.0,0.0 A=0.5.0.0,0.0 A=0.5.0.0,0.0 A=0.5.0.0,0.0=(0.5,0.5)+(0.0,0.5)70.5, 1.9 [-0.5](0.5,1.0)(0.5)(0.5)10-25,0,5 + 0,0,0,25 (0.25,0.75)