

Bernhard Schöllopf - (Cansal Leurig)
· Mobiverhier: Cour at beach misclassified 20 Mars Correlatives!
- TID acception = Uioletel in admission examples!
- coursel relativolip (agureby) vs. Herbrack info (Egurebry)
REICHENBACH'S COMMON CAUSE PRINCIPLE
(1) (2) - D Z gerrens X, y from each off
(a) (3) -o Z gerrum X, y from each off
-> all leed to seem observation PCK, 4)!
- believes paradox = Introducty mable & leads to arelih
. Strowal Coural Hockes - feer 27 Do - Calculus
to fledowskie to V
• Set of observables X_1, \dots, X_n on a DAG G
• arrows represent direct causal links • $X_i := f_i(\operatorname{PA}_i, U_i)$ with independent $\operatorname{RVs} U_1, \ldots, U_n$.
• entails observational distribution $p(X_1, \ldots, X_n)$ satisfying the
Conditioned on its parents, X_j is independent of its non-descendants Note: (G, p) are a "graphical model" (Pearl, Lauritzen, et al.)
• interventions are modelled by changing functions; this entails an interventional distribution (analogous for other changes)
grot!
Le Facterizabier of joint distributies TP (X-1Pt:)
· How to lun about graphs without inharables?
- slerrage parisy - her alut graph shocks

A Modeling Taxonomy			
	statistical model	causal model	differential equation model
i.i.d. prediction, pattern recognition, "generalization"	У	У	у
Predict under shift & intervention, "horizontal generalization"	n	У	У
Provide physical insight, understand predictions	n	(y)	У
Think/Reason, "act in an imagined space" (K. Lorenz)	n	?	2
Learn from data	У	(y)	n

 $F = D[Q(s_{\tau}) || P(s_{\tau})] - E_{Q(s_{\tau})}[\ln P(o_{\tau} | s_{\tau})] \ge - \ln P(o_{\tau} | m)$

complexity

accuracy

evidence

Infomax, minimum redundancy and the free-energy principle

 $E_{\epsilon}[-\ln p(o_{\epsilon} \mid m)] = \text{Entropy}$

 $ln p(o, |m) = Value \longrightarrow$

 $F \ge -\ln p(o, |m) =$ Surprisal \longrightarrow

Self-organisation, synergetics and homoeostasis

p(o, m) = Model evidence Bayesian brain, evidence accumulation and predictive coding MOZNXA

\$ARZOW

HELM HOLTZ

. betwe informe Lo apparation

- Bayardy Sofrike

- Muhal lingo

- KL/ Rish guartie and

- Exp. Whilely Theory

THAKATUE: Hin. Free Elyg

- Varzynshi equality of landoner's principle

- · FEP as carept vs. Herry of comitive coupertile
- 3 Differe RL vs believe Aferce FEP

Equivalence of Reward and Default Policy

- In the absence of control you move randomly according to some prior distribution $p(s_{i+1}|s_i)$

 $C_{i = 1}^{\text{total}} = \log \frac{p(s_{i = 1} \mid s_i, u_i)}{p(s_{i = 1} \mid s_i)} + C(s_{i = 1}) = \log \frac{p(s_{i = 1} \mid s_i, u_i)}{p(s_{i = 1} \mid s_i) \exp(-C(s_{i = 1}))}$

To maximize reward you adopt a default policy

 $\chi(s_{i+1} \mid s_i) \propto p(s_{i+1} \mid s_i) \exp(-C(s_{i+1}))$

Re-defining an organism

- Standard Decision making formulation
 - An organism is defined by
 - Inference engine: q(s|D
 - Reward function: R(a.
 - Actions maximize expected Reward by identifying a policy
- - All organism is defined by
 Inference engine: q(s,a|D) applied to generative model p_m(D|s,a)p_m(s)
 Policy p_m(a|s)
 Beliefs and actions are both selected by minimizing Free Energy

Invacion ring => Cross-Colleberation -o Renden lots Couzin (2009) - Hodels Review! Timberger - Forder ethology discipline No trial arrais 1 -+ One continuous process of believes! has there to define opiscolo · Fruit fires variety believe - Soft wale to signal ploest! latent state of movement Adu Callour Pereira 2018, Berman 2014 Also Wiltschko 2015 * Pay ablic to cope food dynnics a visquirical alictorie of actives of of relativestrips to ways of Social Redde · taraption of open winels - Rich-accession - FP - thrus want to be pooled - Tim feet too every · How to represent actus & Thorough & Tomir, 19