@razmag

Перемножение

$$B * A \quad \dim(B) = n \times m \qquad \dim(A) = m \times p$$

$$A \qquad B \qquad C$$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & \cdots & a_{mn} \end{pmatrix} \times \begin{pmatrix} b_{11} & \cdots & b_{1j} & \cdots & b_{1p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{i1} & \cdots & b_{ij} & \cdots & b_{ip} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{n1} & \cdots & a_{nj} & \cdots & b_{np} \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{ip} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{m1} & \cdots & c_{mj} & \cdots & c_{mp} \end{pmatrix}$$

$$\mathbf{c}_{ij} = \mathbf{a}_{i1}\mathbf{b}_{1j} + \mathbf{a}_{i2}\mathbf{b}_{2j} + \mathbf{a}_{i3}\mathbf{b}_{3j} + \cdots + \mathbf{a}_{in}\mathbf{b}_{nj} = \sum_{k=1}^{n} \mathbf{a}_{ik}\mathbf{b}_{kj}$$

Если A*B=B*A , то эти матрицы называются перестановочными

Единичная матрица *E* **является перестановочной** с любой квадратной матрицей того же порядка

$$A * E = E * A = A$$
 $\dim E = \dim A = n \times n$

Определитель

Определение. Минором любого элемента a_{ij} матрицы A n-го порядка называют определитель порядка n-1, соответствующей той матрице, которая получается из матрицы A в результате вычеркивания i-ой строки и j-го столбца.

$$\begin{vmatrix} + & + & + \\ a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13} - a_{31}a_{22}a_{13} - a_{21}a_{12}a_{33} - a_{32}a_{23}a_{11}$$

$$-a_{31}a_{22}a_{13} - a_{21}a_{12}a_{33} - a_{32}a_{23}a_{11}$$

Определение. Определителем (детерминантом) порядка n, соответствующего матрицы A порядка n называется **число**, равное

$$\Delta = \det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \overline{M}_{j}^{1}$$

Теорема 3 (Лапласа) При любом номере κ меньшем n (k < n) и при любых фиксированных номерах строк i_1, i_2, \cdots, i_k и номерах столбцов j_1, j_2, \cdots, j_k таких, что

 $1 \leq i_1 < i_2 < \dots < i_k$ и $1 \leq j_1 < j_2 < \dots < j_k$ для определителя n — порядка справедлива формула

$$\Delta = \det(A) = \sum_{\substack{j_1, j_2 \cdots j_k}} (-1)^{i_1 + i_2 + \cdots + i_k + j_1 + j_2 + \cdots j_k} M_{j_1, j_2, \cdots j_k}^{i_1, i_2 \cdots i_k} \overline{M}_{j_1, j_2, \cdots j_k}^{i_1, i_2 \cdots i_k}$$

Свойства определителя

- 1. Равноправность строк и столбцов. Определитель не изменится, если его строки заменить столбцами
 - **2. Антисимметрия при перестановке двух строк (столбцов).** При перестановке местами двух строк (или двух столбцов) определитель сохраняет свое абсолютное значение, но меняет знак на противоположный

Линейная комбинация столбцов (строк) определителя/матрицы

Столбец $(a_1, a_2, \cdots a_j, \cdots a_n)^T$ является линейной комбинацией столбцов

$$(b_1, b_2, \cdots b_i, \cdots b_n)^T$$
, $(c_1, c_2, \cdots c_j, \cdots c_n)^T$, \cdots $(d_1, d_2, \cdots d_j, \cdots d_n)^T$

с коэффициентами $\alpha, \beta, \cdots \gamma \neq 0$, если каждый элемент a_i столбца $(a_1, a_2, \cdots a_i, \cdots a_n)^T$ можно представить в виде суммы

$$a_i = \alpha \cdot b_i + \beta \cdot c_i + \dots + \gamma \cdot d_i \quad \forall i \in \overline{1, n}$$

Следствие 1. Определители с двумя одинаковыми строками (столбцами) равен нулю.

$$\Delta = -\Delta \implies 2\Delta = 0 \implies \Delta = 0$$

Следствие 2. Умножение всех элементов некоторой строки (столбца) определителя на число a равносильно умножению определителя на это число

Это следствие вытекает из свойства 3, в котором надо положить один из коэффициентов, например, $\beta=0$.

Следствие 3. Если все элементы некоторой строки (столбца) определителя равны нулю, то и сам определитель равен нулю.

Это следствие вытекает из свойства 3, когда один из коэффициентов, например, $\beta=0.$

Следствие 4. Если элементы двух строк (столбцов) пропорциональны, то определитель равен нулю

Следствие 5. Если к элементам некоторой строки (столбца) определителя прибавить соответствующие элементы другой строки (столбца) умноженные на произвольный множитель a, то величина определителя не изменится.

Алгебраическое дополнение

 $(-1)^{i+j} \overline{M}^i_j$ - алгебраическое дополнение элемента a_{ij} определителя n-ого порядка

$$(-1)^{i+j} \overline{M}_j^i = A_{ij}$$

$$\Delta = \sum_{j=1}^{n} a_{ij} A_{ij} \qquad \forall i \in \overline{i, n}$$

$$\Delta = \sum_{i=1}^{n} a_{ij} A_{ij} \qquad \forall j \in \overline{i, n}$$

Свойство алгебраического дополнения

Сумма произведений элементов какой-либо строки (или какого-либо столбца) определителя на соответствующие алгебраические дополнения элементов другой строки (столбца) равна нулю

Теорема (перемножение определителей). Для любых двух квадратных матриц одного порядка определитель произведения матриц равен произведению их определителей $\det(A*B) = \det(A) \cdot \det(B)$

Обратная матрица

Определение. Квадратную матрицу B называют обратной матрице A и обозначают A^{-1} , если A*B=B*A=E, где E — единичная матрица.

Теорема.
$$A * A^{-1} = E$$
 $\det(A) \neq 0$

Hеобходимость
$$A*A^{-1}=E$$
 \longrightarrow $\det(A)\neq 0$

$$1 * A^{-1} = E \longrightarrow \det(A * A^{-1}) = \det(A) \cdot \det(A^{-1}) = \det(E) = 1 \longrightarrow \det(A) \neq 0$$

Достаточность
$$\det(A) \neq 0$$
 \longrightarrow $A * A^{-1} = E$

Элементарные преобразования

- 1. Умножение строки (столбца) на число, отличное от нуля.
- 2. Прибавление одной строки (столбца) к другой строке (столбцу).

$A \sim A' \sim A$

Теорема. (Об обратимости элементарных преобразований) Если матрица A' получается из матрицы A при помощи конечного числа элементарных преобразований, то и наоборот, матрицу A можно получить из матрицы A' при помощи конечного числа элементарных преобразований.

Каждое элементарное преобразование $\underline{\text{строк}}$ матрицы A размером $\dim(A) = m \times n$ равносильно умножению матрицы A $\underline{\text{слева}}$ на некоторую **квадратную** матрицу S размером $\dim(S) = m$.

Определение. Матрица S, умножением на которую осуществляется элементарное преобразование называется элементарной матрицей.

Умножение строки с индексом *і* матрицы на число

Умножение слева матрицы A размерности $\dim(A) = m \times n$ на элементарную матрицу S, которая получена из единичной матрицы E порядка m заменой i-ой единицы на диагонали на число $\alpha \neq 0$, приводит к матрице S*A, отличающейся от матрицы A тем, что ее i-я строка умножена на α .

Прибавление к строке с индексом і строку с индексом ј

Умножение слева матрицы A размерности $\dim(A) = m \times n$ на элементарную матрицу S, которая получена из единичной матрицы E порядка m заменой нуля, который стоит на пересечении i-ой строки с j-м столбцом на единицу , приводит к матрице S * A, отличающейся от матрицы A тем, что к i-ой строке прибавляется строка j.

Определение. Квадратная матрица A , определитель которой $\det(A) \neq 0$, называется невырожденной матрицей, а у которой $\det(A) = 0$ называется вырожденной матрицей.

 $\underline{\text{Теорема.}}$ Матрица A невырождена тогда и только тогда, когда ее можно представить в виде произведения элементарных матриц.

Ранги

Минором κ -порядка матрицы A называется определитель $\frac{\kappa вадратной}{\kappa}$ матрицы порядка k (т.е. его размер $\dim(M) = k \times k$), составленный из элементов матрицы A, которые находятся на пересечении заранее выбранных k строчек и k столбцов. Причем расположение элементов матрицы сохраняется

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 12 & 11 & 10 & 9 \end{pmatrix} dim(A) = 3 \times 4 \qquad k = 2 < \min(3,4) = 3 \qquad M_{2,3}^{23} = \begin{vmatrix} 6 & 7 \\ 11 & 10 \end{vmatrix}$$

$$k = 3 = \min(3,4) \qquad M_{2,3,4}^{1,2,3} = \begin{vmatrix} 2 & 3 & 4 \\ 6 & 7 & 8 \\ 11 & 10 & 9 \end{vmatrix}$$

<u>Определение.</u> Рангом матрицы A называется наивысший порядок минора матрицы отличной от нуля.

Метод окаймляющих миноров

Определение. Минор $M_{\text{ок}}$ (k+1)порядка k+1 называется **окаймляющим минором** минора M(k) порядка k , если матрица соответствующая окаймляющему минору, $M_{\text{ок}}$ (k+1) содержит матрицу соответствующую минору M(k).

$$M_{ok}(4) = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \qquad A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \qquad B = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{31} & a_{32} & a_{33} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

<u>Теорема.</u> Если миноры, окаймляющие минор k-ого порядка матрицы A размерности $dim(A) = m \times n$ равны нулю, то все миноры (k+1) матрицы A равны нулю.

Основные свойства ранга матрицы

- 1. При транспонировании матрицы ее ранг не изменится.
- 2. Ранг матрицы не изменится, если из нее удалить строку, состоящую из нулей.
- 3. Ранг матрицы не изменится, если из нее удалить строку, являющуюся линейной комбинацией других строк.
- 4. Ранг матрицы не изменится, если из нее удалить строку, пропорциональную другой строке.

Метод Гаусса Привести к ступенчатому виду

 ${\it \underline{Teopema}}$. Если матрица ${\it A}$ невырожденная и определены произведения матриц

$$A * B$$
 и $B * A$, то $rank(A * B) = rank(B)$; $rank(B * A) = rank(B)$

Доказательство базируется на теоремах.

 $\underline{\text{Теорема.}}$ Матрица A является невырожденной тогда и только тогда, когда ее можно представить в виде произведения элементарных матриц.

<u>Теорема.</u> (об инвариантности ранга матрицы относительно элементарных преобразований). Ранг матрицы С полученной из матрицы В элементарными преобразованиями равен рангу матрицы В.

<u>Теорема.</u> Ранг **произведения двух матриц** не превосходит рангов сомножителей

$$rank(A * B) \le min(rank(A), rank(B))$$

Определение. Строки $A=(a_1,a_2\cdots a_n),\ B=(b_1,b_2\cdots b_n),\ C=(c_1,c_2\cdots c_n)$, $D=(d_1,d_2\cdots d_n)\cdots F=(f_1,f_2\cdots f_n)$ называются линейно зависимыми, если найдутся такие числа $\mu,\alpha,\beta,\gamma\cdots\delta$ не все равные нулю, что справедливы равенства

(*)
$$\mu a_j + \alpha b_j + \beta c_j + \delta d_j + \dots + \gamma f_j = 0 \qquad j = 1, 2, \dots n$$

$$(**) \qquad \mu A + \alpha B + \beta C + \delta D + \dots + \gamma F = 0$$

$$\mu^2 + \alpha^2 + \beta^2 + \delta^2 + \dots + \gamma^2 \neq 0$$

Определение. Строки $A,B,C,D,\cdots F$ называются линейно независимыми, если равенство (**)возможно лишь в случае, когда все числа $\alpha=\beta=\gamma=\delta=\cdots=\mu=0.$ (**) $\mu A+\alpha B+\beta C+\delta D+\cdots+\gamma F=0$

Теорема. Для того, чтобы строки $A, B, C, D, \cdots F$ были линейно зависимыми, необходимо и достаточно, чтобы одна из этих строк являлась линейной комбинацией остальных строк

Теорема. Если матрица B разложена по линейной независимой системе матриц $A_1,A_2,\cdots A_k$ (т. е. $B=\alpha_1A_1+\alpha_2A_2+\cdots+\alpha_kA_k$), то коэффициенты разложения определены однозначно.

Базисный минор

Базисный минор

<u>Определение.</u> Базисным минором матрицы A называется ее минор, отличный от нуля, порядок которого равен рангу матрицы A .

Теорема (о базисном миноре)

- 1. Любая строка (столбец) матрицы является линейной комбинацией базисных строк (столбцов).
- 2. Базисные строки (столбцы) матрицы линейно независимы.

СЛУ

Определение. Система уравнений (1) называется совместной, если она имеет <u>хотя бы одно</u> решение и несовместной, если у нее нет ни одного решения.

Определение. Совместная система уравнений (1) называется определенной, если она имеет <u>единственное</u> решение.

Определение. Совместная система уравнений (1) называется неопределенной, если она имеет <u>по крайней мере два решения</u>.

Определение. Два решения совместной системы (1) $c_1^{(1)}, c_2^{(1)}, \cdots c_n^{(1)}$ и $c_1^{(2)}, c_2^{(2)}, \cdots c_n^{(2)}$ называются различными, если нарушается хотя бы одно из равенств $c_1^{(1)}=c_1^{(2)}, c_2^{(1)}=c_2^{(2)}, \cdots c_n^{(1)}=c_n^{(2)}$.

Определение. Две системы линейных уравнений называются эквивалентными или равносильными, если всякое решение одной из них является решением другой и наоборот, т.е. если они имеют одно и тоже множество решений.

Элементарные преобразования системы линейных уравнений

- Умножение некоторого уравнения системы на число, отличное от нуля.
- 2. Прибавление к одному уравнению системы другого ее уравнения, умноженное на произвольное число.
- 3. Перестановку местами двух уравнений системы.

 \underline{T} еорема Кронекера-Капелли. Для совместимости системы m линейных уравнений с n неизвестными необходимо и достаточно, чтобы ранг матрицы системы был равен рангу ее расширенной матрицы.

Теорема. Если ранг матрицы совместной системы меньше числа неизвестных, то множество решений система бесконечно.

Теорема. Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение.

И ОБРАТНЫЕ ТЕОРЕМЫ ТАКИЕ ЖЕ

Схема решения системы линейных уравнений

- 1. Находят ранг матрицы A (rank(A)) и ранг расширенной матрицы \tilde{A} $(rank(\tilde{A}))$, Если $rank(A) \neq rank(\tilde{A})$, то система несовместна.
- 2. Если $rank(A) = rank(\tilde{A}) = r$, то выделяют базисный минор и базисные неизвестныє
- 3. Данную систему заменяют системой, состоящей из тех r уравнений, в которую вошли элементы базисного минора.
- 4. Если число базисных неизвестных равно числу неизвестных системы, то система имеет единственное решение. Решение можно найти по формуле Крамера.
- 5. Если число базисных неизвестных меньше числа неизвестных системы, то находят выражение базисных неизвестных через свободные неизвестные, например, по формуле Крамера.

СЛОУ

Система линейных однородных уравнений (СЛОУ) Фундаментальная система решений

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$
(2)

<u>Определение.</u> Система линейных уравнений называется однородной, если свободный член в каждом уравнении равен нулю

(3)
$$x_1 = x_2 = \dots = x_n = 0$$
 - решение (при любых a_{ij})

<u>Теорема.</u> Любая линейная комбинация конечного числа вектор-решений системы однородных линейных уравнений является вектор-решением этой системы.

<u>Теорема.</u> Пусть дана система линейных однородных уравнений с рангом матрицы меньше числа неизвестных, rank(A) = r < n. Тогда существует n-r линейно независимых вектор-решений $D_1, D_2, \cdots, D_{n-r}$ данной системы и любое вектор-решение системы является линейной комбинацией $D_1, D_2, \cdots, D_{n-r}$.

<u>Теорема.</u> Сумма любого решения неоднородной системы и любого решения соответствующей ей однородной системы является решением неоднородной системы.

<u>Теорема.</u> Разность двух произвольных решений неоднородной системы (9) является решением соответствующей ей однородной системы.