

Table Extraction

for Data Scientists

Visual NLP Team, John Snow Labs

Agenda

Main topic	Introduced Concepts
Introduction	Visual-NLP brief intro. What is Table Processing. Examples.
General Pipeline Architecture	Different architectures; table & cell detection, OCR. Examples.
Alternative Approach	Visual Question Answering. Problem definition. Extracting information from Tables. Examples.
Summary and next steps	JSL's roadmap on Table Extraction.
Questions & Answers	Questions to discuss the content.

Visual NLP

Visual Document Understanding

OCR

Image Preprocessing

Data Ingestion

Introduction

AOI Name	cell:0.9331012 Description cell:0.9607721	Fixation Count
Bike Bk	Bicyclist approaching from the behind	cell:0.8554\$
Ped	Conflicting pedestrian at	cell:0.90177 12
cell:0.92164:	Oncoming vehicle turning left at	cell:0.8667:
Signal mair	Overhead traffic signal	I _{sli-0.8741}
Signal side RV Mirror	Rear-view mirror	9 II: 0. 8749: 4 II: 0. 8698:
Outside	Right-side mirror Any other area	282

- Table Extraction -> recover the structure, hierarchies and relations of elements in a table.
- Involves multiple steps, OCR, table detection, cell detection.

Pipeline Architecture

5

Alternative DocVQA

- Many times extracting the entire table is not crucial.
- DocVQA can be used to process tables and extract specific information.

DocVQA

Examined 4 levels of service options ranging from \$1.1MM to \$6.1MM.

What is the issue at the top of the pyramid? Retailer calls/ other issues

Which is the least critical issue for live rep support? Retailer calls/other issues

Which is the most critical issue for live rep support? Product quality/liability issues

Not only extract and interpret the textual (handwritten, typewritten or printed) content of the document images, but also other visual cues including layout (page structure, forms, tables), non-textual elements (marks, tick boxes, separators, diagrams) and style (font, colours, highlighting).

Example #1

What is the Acceptable Haemoglobin level(g/100ml)?

14.0-14.9

What is the deficiency level for Haemoglobin in blood?

<12.0

What is the acceptable level of Serum Carotene in blood?

40-99

Example #2

COMPONENT

Sauce 101

SCHOOL LUNCH COOKED SAUSAGE PIZZA WEIGHT Shell 3.2" x 5" (thin formulal) 1,40 oz. 0.98 oz.

7/21/82

0.60 oz. Meat Cheese 564 1.52 oz. NET WEIGHT 4.50 oz.

CODE 617C

What is the number circled?

0.98 oz.

What is the net weight?

Retailer calls/other issues

What is the title of the table?

SCHOOL LAUNCH COOKED SAUSAGE PIZZA

Common Architectures

- 1. Roughly 2 types of architectures: OCR + decoder and encoder/decoder.
- 2. **OCR + decoder:** They use 3 types of features: layout, text, and image.
- 3. **Encoder-decoder:** they use a visual transformer + language model decoding.

- OCR-free VDU model
- Swin Transformer is used for the encoder.
- BART is used as the language decoder.

Best Practices

- Identify the documents/sections you care about.
- Apply a limited set of well defined questions covering the information you need.
- Rephrase the questions.
- Use confidence scores.

Examples

<u>TableExtractionBasics</u>

<u>TableProcessingVQA</u>

Summary and next steps

We've covered...

- Table Extraction Basics & Best Practices.
- Examples of different Table Extraction Pipelines.
- Practical problems & solutions.
- DocVQA as an alternative.
- Examples.

Summary and next steps

Next steps...

- We are adding new improved models all the time.
- New output formats for Tables.
- Trainable models.
- Want to try yourself? Ask for a trial!, enes@johnsnowlabs.com

Questions & Answers

