Docket No.:

P-0615

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of

Kyoung-Ho WOO

Serial No.: New U.S. Patent Application

Filed:

December 15, 2003

Customer No.: 34610

For:

METHOD AND APPARATUS FOR CONTROLLING POWER OF RADIO

LINKS

TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENT

U.S. Patent and Trademark Office 2011 South Clark Place Customer Window Crystal Plaza Two, Lobby, Room 1B03 Arlington, Virginia 22202

Sir:

At the time the above application was filed, priority was claimed based on the following application:

Korean Patent Application No. 86823-2002 filed December 30, 2002.

A copy of each priority application listed above is enclosed.

Respectfully submitted,

HLESHNER & KIM, LLP

Y.J. Kim

Registration No. 36,186

David C. Oren

Registration No. 38,694

P.O. Box 221200

Chantilly, Virginia 20153-1200

703 776-3701 DYK:DCO/kam

December 15, 2003

Please direct all correspondence to Customer Number 34610

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호

10-2002-0086823

Application Number

2002년 12월 30일

Date of Application

DEC 30, 2002

출 원 Applicant(s)

엘지전자 주식회사

LG Electronics Inc.

2003 년 10 월 29 일

투 허

청

COMMISSIONER REMEDIES

【서지사항】

【서류명】 특허출원서

. 【권리구분】 특허

【수신처】 특허청장

· 【제출일자】 2002.12.30

【발명의 명칭】 무선링크의 전력제어방법

《발명의 영문명칭》 method for controlling a power of the radio links

【출원인】

【명칭】 엘지전자 주식회사

【출원인코드】 1-2002-012840-3

【대리인】

【성명】 홍성철

【대리인코드】 9-1998-000611-7

【포괄위임등록번호】 2002-026912-1

【발명자】

【성명의 국문표기】 우경호

【성명의 영문표기】 WOO,KYOUNG-HO

【주민등록번호】 731201-1568111

【우편번호】 431-060

【주소】 경기도 안양시 동안구 관양동 공작럭키아파트 501-1204

【국적】 KR

【취지】 특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대리인

홍성철 (인)

【수수료】

【기본출원료】 16 면 29,000 원

【가산출원료】 0 면 0 원

 【우선권주장료】
 0
 건
 0
 원

【심사청구료】 0 항 0 원

【합계】 29,000 원

【요약서】

【요약】

본 발명은 무선링크에 대한 신호대 잡음비와 임계치를 비교하여 무선링크의 TPC 명령값을 설정하는 제1 단계와, 상기 설정된 TPC 명령값이 모든 링크에 대해 동일한 지 판별하여 결합된 TPC 명령값을 설정하는 제2 단계를 포함하는 무선링크의 전력제어방법을 구성함으로써, 소프트 핸드오버시 단말 송신 파워를 제어하기 위해 각 무선 링크로부터 오는 TPC 명령을 신뢰성 있게 결정하고 결합할 수 있게 되는 것이다.

【대표도】

도 2

【명세서】

【발명의 명칭】

무선링크의 전력제어방법{method for controlling a power of the radio links}

【도면의 간단한 설명】

도 1은 일반적인 이동통신 시스템의 블록구성도이고.

도 2는 본 발명에 적용되는 이동통신 시스템에서 무선링크로부터의 TPC 명령 결합장치의 를록구성도이며,

도 3은 본 발명에 의한 이동통신 시스템에서 무선링크로부터의 TPC 명령 결합방법을 보 인 흐름도이고,

도 4는 본 발명에 적용되는 다운링크 DPCH 프레임의 구조를 보인 프레임 구조도이다.

* 도면의 주요 부분에 대한 부호의 설명 *

1 : 교환기

, 2 : 기지국 제어기

3 : 기지국

4 : 단말기

10 : SRRC 필터

20, 21 ~ 24 : 핑거

30 : 시간 보상 버퍼

40 : 결합부

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<10> 본 발명은 무선링크의 전력제어방법에 관한 것으로, 특히 소프트 핸드오버(Soft Handover)시 단말 송신 파워를 제어하기 위해 각 무선 링크로부터 오는 TPC 명령을 신뢰성 있

게 결정하고 결합하기에 적당하도록 한 이동통신시스템의 무선링크의 전력제어방법에 관한 것이다.

- 일반적으로 이동통신 시스템은 사람, 자동차, 선박, 열차, 항공기 등 이동체를 대상으로 ...
 하는 통신 시스템으로, 이에는 키폰 시스템, 이동전화(휴대전화, 차량전화), 항만전화, 항공
 ...
 ...
 기전화, 이동공중전화(열차, 유람선, 고속버스 등에 설치), 무선호출, 무선전화, 위성이동통신, 아마추어무선, 어업무선 등이 포함된다.
- 이러한 이동통신 시스템에는 아날로그 방식을 사용하는 AMPS(Advanced Mobile Phone Service) 시스템, 디지털 방식을 사용하는 CDMA(Code Division Multiple Access, 부호 분할 다원 접속) 시스템 및 TDMA(Time Division Multiple Access, 시분할 다원 접속) 시스템, FDMA(Frequency Division Multiple Access, 주파수 분할 다원접속) 시스템, WLL(Wireless Local Loop, 무선 가입자 망), CDMA2000-1x, IMT-2000(International Mobile Telecommunication in the year 2000, 범세계 이동통신) 시스템 등이 있다.
- <13> 도 1은 일반적인 이동통신 시스템의 블록구성도이다.
- 이에 도시된 바와 같이, 이동통신 시스템의 교환기능을 수행하는 교환기(Mobile Station Controller, MSC)(1)와; 상기 교환기(1)와 연결되어 무선링크 및 유선링크를 제어하고 가입자가 이동 중에도 통화의 지속성을 유지시키기 위한 핸드오프 기능을 수행하는 기지국 제어기 (Base Station Controller, BSC)(2)와; 상기 기지국 제어기(2)와 연결되고, 단말기와 함께 무선구간에서 프로토콜을 이용하여 통신을 수행하는 기지국(Base Transceiver Station, BTS)(3)과; 상기 기지국(3)과 연결되어 이동통신 서비스를 이용하는 이동통신 시스템에 가입한 가입자의 단말기(4)를 포함하여 구성된다.

<15> 이러한 이동통신 시스템에서 3GPP(3rd Generation Partnership Project) TS 25.214
V3.7.0(2001-6) 5.1.2.2.2, 5.1.2.2.3에서 단말기(4)의 송신기 파워(Transmitter Power)를 조절해주는 업링크 전력 제어(Uplink Power Control)는 알고리즘1과 알고리즘2로 나누어진다.

- 이때 다른 무선 링크 셋(Different radio link sets), 즉 소프트 핸드오버 시 업링크 전
 · 력 제어를 수행하는 과정에서 각각의 무선 링크에서 오는 TPC 명령을 결합하는 방법은 이를 만 족시켜야 하는 조건만이 스펙(Spec)에 제시되어 있다.
- <17> 여기서 업링크 전력 제어 알고리즘1 중 다른 무선 링크 셋의 무선 링크들로부터 TPC 명 령들을 결합하는 것에 관해 3GPP TS 25.214 V3.7.0(2001-6)에서 제시한 내용은 다음과 같다.
- <19> 결국 단말기(4)는 결합된 TPC 명령인 TPC_cmd를 결정해야 하는데, 이는 다음의 수학식 1 과 같은 ?? 함수에 의해 결정되어 진다.
- <20> 【수학식 1】 TPC_cmd = ?? (W₁, W₂, ..., W_N)
- <21> 여기서 TPC_cmd는 1 또는 -1의 값을 가질 수 있다.
- <22> 이때 ?? 함수는 다음과 같은 조건을 만족하도록 구현해야 한다.
- <23> 즉, 모든 무선 링크 셋의 TPC 명령이 신뢰성 있는 1 이라면 ?? 함수의 출력은 1이 될 것이고, 무선 링크 셋 중 어떤 무선 링크라도 신뢰성 있는 0 이라면 ?? 함수의 출력은 -1 이 될 것이다.

<24> 그러나 종래에는 스펙에 ?? 함수에 대해서 조건만 제시되어 있었을 뿐이고, 실제 구현 방법에 대해서는 제시되어 있지 않았다.

<25> 따라서 스펙에 제시된 조건에 맞추어 TPC 명령을 신뢰성 있게 결정하고 결합하는 기술이 요구되고 있다.

【발명이 이루고자 하는 기술적 과제】

- <26> 이에 본 발명은 상기와 같은 종래의 제반 문제점을 해소하기 위해 제안된 것으로, 본 발명의 목적은 소프트 핸드오프시 단말 송신파워를 제어하기 위해 각 무선 링크로부터 오는 TPC 명령을 신뢰성 있게 결정하고 결합하는 무선링크의 전력제어방법을 제공하는 데 있다.
- 상기와 같은 목적을 달성하기 위하여 본 발명은 무선링크에 대한 신호대 잡음비와 임계
 치를 비교하여 무선링크의 TPC 명령값을 설정하는 제1 단계와, 상기 설정된 TPC 명령값이 모든
 링크에 대해 동일한 지 판별하여 결합된 TPC 명령값을 설정하는 제2 단계를 포함하는 무선링
 크의 전력제어방법을 제공한다.

【발명의 구성 및 작용】

- <28> 이하, 상기와 같이 구성된 본 발명, 이동통신 시스템에서 무선링크로부터의 TPC 명령 결합장치 및 그 방법의 기술적 사상에 따른 일실시예를 도면을 참조하여 상세히 설명하면 다음과 같다.
- <29> 도 2는 본 발명에 의한 이동통신 시스템에서 무선링크로부터의 TPC 명령 결합장치의 블록구성도이다.
- <30> 이에 도시된 바와 같이, 아날로그/디지털 변환기에서 출력된 디지털 신호를 입력받아 SRRC(Square Root Raised Cosine) 필터링을 수행하는 SRRC 필터(10)와; 상기 SRRC 필터(10)의

출력에 대해 다중 경로 수신 신호를 복조하는 핑거(20)와; 상기 핑거(20)의 출력에 대해 시간 차를 조절하는 시간 보상 버퍼(30)와; 상기 시간 보상 버퍼(30)의 출력을 결합하여 채널 디코 더로 출력하는 결합부(40)를 포함하여 구성된다.

- <31> 도 3은 본 발명에 의한 이동통신 시스템에서 무선링크로부터의 TPC 명령 결합방법을 보 인 흐름도이다.
- 이에 도시된 바와 같이, 핑거에서 각 무선링크(rl_idx)의 품질(Eb/No)을 체크하여[예컨대, CPICH(common pilot channel)의 QUALITY를 체크하여] 그 체킹된 품질(Eb/No)값과 기준값(설정된 THRESHOLD VALUE)를 비교한 다음 각 무선링크의 TPC 명령값을 결정하는 제 1 단계(ST11~ST16)와; 상기 각 무선링크의 TPC 명령값이 모두 1인지 판별하여 결합된 TPC 명령값 (TPC_cmd)을 결정하는 제 2 단계(ST17~ST21)를 포함하여 수행한다.
- <34> 그러나, 상기 제 1 단계는, 무선링크의 품질(Eb/No)이 기준값보다 크지 않으면 무선링크의 신뢰성(reliable[rl_idx])을 0 으로 설정한다. 다시말해서, 단말기로 수신되는 라디오링크의 CPICH quality의 값이 기준값보다 작아서 수신상태가 좋치않은 것으로 판단한다.
- <35> 상기 제 2 단계는, 상기 1 단계에 의해서 산출된 각 무선링크의 신뢰성이 모두 1인 경우, 모든 무선링크의 rl_tpc_cmd가 1 이면 결합된 TPC 명령값(TPC_cmd)을 1 로 설정한다.

<36> 그러나, 상기에서 제 2 단계에서는 상기 제1 단계에 의해서 산출된 각 무선링크의 신뢰성이 모두 1인 경우라도, 각 무선링크의 rl_tpc_cmd가 하나라도 1 이 아니면 결합된 TPC 명령 값(TPC_cmd)을 -1로 설정한다.

- 또한, 상기에서 제2 단계에서는 상기 제1 단계에 의해서 산출된 각 무선링크의 신뢰성이하나라도 1이 아니면 결합된 TPC 명령값(TPC_cmd)을 1로 설정한다.
- 이와 같이 구성된 본 발명에 의한 이동통신 시스템에서 무선링크로부터의 TPC 명령 결합 장치 및 그 방법의 동작을 첨부한 도면에 의거 상세히 설명하면 다음과 같다.
- <39> 먼저 본 발명은 소프트 핸드오버시 단말 송신 파워를 제어하기 위해 각 무선 링크로부터 오는 TPC 명령을 신뢰성 있게 결정하고 결합하고자 한 것이다.
- 그래서 본 발명은 소프트 핸드오버시 단말기의 송신 파워를 제어하기 위해 다른 무선링
 크 셋으로부터 오는 TPC 명령을 결정하는 과정에서 각 무선링크 셋으로부터 오는 TPC 명령의
 신뢰성을 결정할 수 있게 해주고, TPC 명령도 결합할 수 있는 기술을 제시한다.
- 도 2에서 SRRC 필터(10)는 아날로그/디지털 변환기에서 출력된 디지털 신호를 입력받아 SRRC(Square Root Raised Cosine) 필터링을 수행한다. 그래서 수신된 신호의 심볼간의 간섭없 이 신호를 검출하게 된다.
- 스라고 핑거(20)는 복수개(21 ~ 24)로 구성되는데, SRRC 필터(10)의 출력에 대해 다중 경로 수신 신호를 복조하게 된다. 그래서 각각의 핑커별로 추적 루프, 데이터 복조기, 주파수 에러 추적 회로, 신호 크기 조정 회로 및 관련 제어 회로가 포함되어 있다. 또한 핑거(20)들은 각 무선링크의 CPICH(Common Pilot Channel)를 트래킹하고 있다.

시간 보상 버퍼(deskewer)(30)는 핑거(20)의 출력에 대해 시간차를 조절한다. 각 핑거들에 의한 추적결과의 출력 사이에는 시간차가 존재하므로 이러한 문제를 해결하기 위하여 출력마다 따로 시간 보상 버퍼(30)를 두어 시간차를 조절할 수 있게 한 것이다.

- ·44> 결합부(40)는 시간 보상 버퍼(30)의 출력을 결합하여 채널 디코더로 출력한다.
- 이러한 SRRC 필터(10), 핑거(20), 시간 보상 버퍼(30), 결합부(40)를 합쳐 레이크 수신 기(Rake Receiver)라 한다. 신호가 다중 경로 페이딩 채널을 통과하여 수신된 신호는 진폭과 위상이 서로 다른 각 경로의 성분을 합친 형태로 볼 수 있다. 레이크 수신기는 이러한 다중 경로 전력 성분을 가능한 한 잃어버리지 않고, 통합적으로 복조에 참여시켜 도 2에서와 같이 병렬 형태로 된 복수의 핑거를 구현하고, 수신기의 출력을 결합기를 통하여 전달하게 된다.
- <46> 도 4는 본 발명에 적용되는 다운링크 DPCH 프레임의 구조를 보인 프레임 구조도이다.
- 그래서 TPC 명령은 DPCCH(Dedicated Physical Control Channel)의 필드로서, CPICH의 품질이 떨어지면 동일한 다운링크 채널을 경험하기 때문에 그만큼 DPCCH의 품질도 떨어져서 디코딩되어진 TPC 명령의 신뢰도가 떨어진다.
- 신뢰도가 떨어진 TPC 명령을 그대로 사용한다면 잘못된 업링크 전력 제어로 인해 통화에 악영향을 미칠 가능성이 높아진다.
- 본 발명에서는 TPC 명령을 결합하기 전에 먼저 각 무선링크들의 품질을 조사하여 각 무선링크들의 신뢰성을 조사한다.
- <50> 이때 품질은 현재 각 무선링크의 CPICH를 트래킹하고 있는 핑거(20)에서 나오는 Eb/No(Signal power to Interface power Ratio, SIR)를 측정하여 판단한다.

- <51> 만약 한 무선링크의 CPICH 품질이 좋지 않아 신뢰성이 없다라고 판단되면 TPC 명령은 '1'로 대체한다.
- 모든 무선 링크가 신뢰성이 있다고 판단되고 각 무선링크의 TPC 명령들 중 모두가 1일
 .
 때만 결합된 TPC명령, 즉 TPC_cmd는 1로 결정하고, 하나라도 0이 있다면 즉, TPC_cmd는 -1로
 .
 결정한다.
- <53> 여기서 TPC_cmd를 1 로 결정한다는 것은 현재 단말기의 송신전력을 전력스텝크기만큼 올 리라는 의미이고.
- <54> 그 값이 -1 로 결정한다는 것은 현재 송신전력을 전력스텝크기만큼 내리라는 의미이다.
- <55> 그래서 단말기의 송신 전력은 다음의 수학식 2와 같이 구한다.
- <56>【수학식 2】 출력 전력 = TPC_cmd * power step size
- -57> 그래서 step size(예를 들어, 1dBm) 만큼 출력 전력을 결정하게 되어, TPC_cmd가 1 값을 가지면 출력 전력이 step size 만큼 올라가게 되고, -1 값을 가지면 출력 전력이 step size 만큼 내려가게 된다.
- <58> 이처럼 본 발명은 소프트 핸드오버시 단말 송신 파워를 제어하기 위해 각 무선 링크로부터 오는 TPC 명령을 신뢰성 있게 결정하고 결합하게 되는 것이다.
- 이상에서 본 발명의 바람직한 실시예를 설명하였으나, 본 발명은 다양한 변화와 변경 및 균등물을 사용할 수 있다. 본 발명은 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 따라서 상기 기재 내용은 하기 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다.

【발명의 효과】

이상에서 살펴본 바와 같이, 본 발명에 의한 이동통신 시스템에서 무선링크로부터의 TPC
 명령 결합장치 및 그 방법은 소프트 핸드오버시 단말 송신 파워를 제어하기 위해 각 무선 링크
 로부터 오는 TPC 명령을 신뢰성 있게 결정하고 결합할 수 있는 효과가 있게 된다.

【특허청구범위】

【청구항 1】

무선링크에 대한 신호대 잡음비와 임계치를 비교하여 무선링크의 TPC 명령값을 설정하는 제1 단계와,

상기 설정된 TPC 명령값이 모든 링크에 대해 동일한 지 판별하여 결합된 TPC 명령값을 설정하는 제2 단계를 포함하는 것을 특징으로 하는 무선링크의 전력제어방법.

【청구항 2】

제 1 항에 있어서, 상기 제 1 단계는,

무선링크의 품질이 설정된 기준값보다 크면 무선링크의 신뢰성을 1 로 설정하는 것을 특징으로 하는 무선링크의 전력제어방법.

【청구항 3】

제 1 항에 있어서, 상기 제 1 단계는..

무선링크의 품질이 설정된 기준값보다 크지 않으면 무선링크의 신뢰성을 0 으로 설정하는 것을 특징으로 하는 무선링크의 전력제어방법.

【청구항 4】

제 1 항에 있어서, 상기 제 2 단계는,

모든 무선링크의 신뢰성이 1이고, 각 무선링크의 TPC 명령값이 모두 1이면 결합된 TPC명 령값을 1 로 설정하는 것을 특징으로 하는 무선링크의 전력제어방법.

【청구항 5】

제 1 항에 있어서, 상기 제 2 단계는,

모든 무선링크의 신뢰성이 1이고, 각 무선링크의 TPC 명령값이 하나라도 0이면 결합된 TPC 명령값을 -1 로 설정하는 것을 특징으로 하는 무선링크의 전력제어방법.

【청구항 6】

제1항에 있어서, 상기 제2 단계는,

모든 무선링크가 신뢰성이 1이 아니면, 결합된 TPC 명령값을 1로 설정하는 것을 특징으로 하는 무선링크의 전력제어방법.

【도면】

[도 2]

· 1020020086823 출력 일자: 2003/11/4

【도 4】

