WHAT IS CLAIMED IS:

1. A compound of Formula I:

I

wherein:

5

10

15

20

X is C, N, O, S or SO₂;

Y is N or C;

 R^1 is selected from: hydrogen, $-SO_2R^{14}$, $-C_{0.3}$ alkyl- $S(O)R^{14}$, $-SO_2NR^{12}R^{12}$, $-C_{1-6}$ alkyl, $-C_{0-6}$ alkyl- $-C_{1-6}$ alkyl, $-C_{0-6}$ alkyl- $-C_{0$

where said alkyl and said cycloalkyl are unsubstituted or substituted with 1-7 substituents independently selected from: halo, hydroxy, -O-C₁₋₃alkyl, trifluoromethyl, C₁₋₃alkyl, -O-C₁₋₃alkyl, -COR¹¹, -SO₂R¹⁴, -NHCOCH₃, -NHSO₂CH₃, -heterocycle, =O, and -CN, where said phenyl and said heterocycle are unsubstituted or substituted with 1-3 substituents independently selected from: halo, hydroxy, C₁₋₃alkyl, C₁₋₃alkoxy and trifluoromethyl;

R² is selected from: hydrogen, C₁₋₃alkyl unsubstituted or substituted with 1-3 fluoro, -O-C₁₋₃alkyl unsubstituted or substituted with 1-3 fluoro, hydroxy, chloro, fluoro, bromo, phenyl and heterocycle;

 R^3 is selected from: hydrogen, hydroxy, halo, C_{1-3} alkyl unsubstituted or substituted with 1-6 substituents independently selected from fluoro, hydroxy, and $-COR^{11}$, $-NR^{12}R^{12}$, $-COR^{11}$, $-COR^{11}$, $-COR^{12}R^{12}$, $-NR^{12}COR^{12}R^{12}$, $-NR^{12}COR^{12}R^{12}$, $-NR^{12}COR^{12}R^{12}$, $-NR^{12}COR^{12}R^{12}$, $-NR^{12}COR^{12}R^{12}$, $-NR^{12}COR^{12}R^{12}$, and nitro, when Y is C; or

5

 R^3 is oxygen or is absent, when Y is N;

R⁴ is selected from: hydrogen, C₁₋₆alkyl, trifluoromethyl, trifluoromethoxy, chloro, fluoro, bromo, and phenyl;

10

 R^5 is selected from: $C_{1\text{-}6}$ alkyl unsubstituted or substituted with one or more substituents selected from 1-6 fluoro and hydroxyl, -O- $C_{1\text{-}6}$ alkyl unsubstituted or substituted with 1-6 fluoro, -CO- $C_{1\text{-}6}$ alkyl unsubstituted or substituted with 1-6 fluoro, -pyridyl unsubstituted or substituted with one or more substitutents selected from halo, trifluoromethyl, $C_{1\text{-}4}$ alkyl and COR^{11} , fluoro, chloro, bromo, -C4-6cycloalkyl, -O-C4-6cycloalkyl, phenyl unsubstituted or substituted with one or more substituted from halo, trifluoromethyl, $C_{1\text{-}4}$ alkyl and COR^{11} , -O-phenyl unsubstituted or substituted with one or more substituted selected from halo, trifluoromethyl, $C_{1\text{-}4}$ alkyl and COR^{11} , -C3-6cycloalkyl unsubstituted or substituted with 1-6 fluoro, -O- $C_{3\text{-}6}$ cycloalkyl unsubstituted or substituted with 1-6 fluoro, -O- $C_{3\text{-}6}$ cycloalkyl unsubstituted or substituted with 1-6 fluoro, -heterocycle, -CN and - COR^{11} ;

20

15

R⁶ is selected from: hydrogen, C₁₋₆alkyl, trifluoromethyl, fluoro, chloro and bromo;

 R^7 is nothing when X is -O-, -S-, or -SO₂-;

25

 R^7 is selected from: hydrogen, (C0-6alkyl)-phenyl, (C0-6alkyl)-heterocycle, (C0-6alkyl)-C3-7cycloalkyl, (C0-6alkyl)-COR¹¹, (C0-6alkyl)-COR¹¹, (C0-6alkyl)-SO₃H, (C0-6alkyl)-W-C0-4alkyl, (C0-6alkyl)-CONR¹²-phenyl and (C0-6alkyl)-CONR¹⁵-V-COR¹¹, when X is C or N,

where V is selected from C₁₋₆alkyl and phenyl,

where W is selected from: a single bond, -O-, -S-, -SO-, -SO₂-, -CO-, -CO₂-, -CONR^{12}- and -NR 12 -,

where said C_{0-6} alkyl is unsubstituted or substituted with 1-5 substituents independently selected from: halo, hydroxy, - C_{0-6} alkyl, - $O-C_{1-3}$ alkyl, trifluoromethyl and - C_{0-2} alkyl-phenyl,

5

10

15

20

30

where said alkene is unsubstituted or substituted with 1-3 substituents independently selected from: halo, trifluoromethyl, C_{1-3} alkyl, phenyl and heterocycle;

where said phenyl, heterocycle, cycloalkyl and C_{0-4} alkyl are independently unsubstituted or substituted with 1-5 substituents independently selected from: halo, trifluoromethyl, hydroxy, C_{1-6} alkyl, -O- C_{1-3} alkyl, -C₀₋₃-COR¹¹, -CN, -NR¹²R¹², -CONR¹²R¹² and -C₀₋₃-heterocycle,

or where said phenyl and heterocycle are fused to another heterocycle, which itself may be unsubstituted or substituted with 1-2 substituents independently selected from hydroxy, halo, $-COR^{11}$, and $-C_{1-4}$ alkyl;

 R^8 is selected from: hydrogen, hydroxy, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyl-hydroxy, -O- $C_{1\text{-}3}$ alkyl, -COR 11 , -CONR 12 R 12 and -CN, when X is C, or;

 R^8 is nothing when X is O, S, SO₂ or N, or when a double bond joins the carbons to which R^7 and R^{10} are attached;

or R⁷ and R⁸ are joined together to form a ring which is selected from: 1H-indene, 2,3-dihydro-1Hindene, 2,3-dihydro-benzofuran, 1,3-dihydro-isobenzofuran, 2,3-dihydro-benzothiofuran, 1,3-dihydroisobenzothiofuran, 6*H*-cyclopenta[*d*]isoxazol-3-ol, cyclopentane and cyclohexane,

where said ring is unsubstituted or substituted with 1-5 substituents independently selected from: halo, trifluoromethyl, hydroxy, C_{1-3} alkyl, $-O-C_{1-3}$ alkyl, $-C_{0-3}-COR^{11}$, -CN, $-NR^{12}R^{12}$, $-CONR^{12}R^{12}$ and $-C_{0-3}$ -heterocycle;

 R^9 and R^{10} are independently selected from: hydrogen, hydroxy, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyl-COR¹¹, $C_{1\text{-}6}$ alkyl-hydroxy, -O-C₁₋₃alkyl, =O when R^9 or R^{10} is connected to the ring via a double bond and halo;

or R⁷ and R⁹, or R⁸ and R¹⁰, are joined together to form a ring which is phenyl or heterocycle,

5

15

where said ring is unsubstituted or substituted with 1-7 substituents independently selected from: halo, trifluoromethyl, hydroxy, C_{1-3} alkyl, $-O-C_{1-3}$ alkyl, $-COR^{11}$, -CN, $-NR^{12}R^{12}$ and $-CONR^{12}R^{12}$;

10 R¹¹ is independently selected from: hydroxy, hydrogen, C₁₋₆ alkyl, -O-C₁₋₆ alkyl, benzyl, phenyl, C₃₋₆ cycloalkyl,

where said alkyl, phenyl, benzyl or cycloalkyl group is unsubstituted or substituted with 1-3 substituents independently selected from: halo, hydroxy, C₁₋₃alkyl, C₁₋₃alkoxy, -CO₂H, -CO₂-C₁₋₆ alkyl, and trifluoromethyl;

R¹² is selected from: hydrogen, C₁₋₆ alkyl, benzyl, phenyl and C₃₋₆ cycloalkyl,

where said alkyl, phenyl, benzyl or cycloalkyl group is unsubstituted or substituted with 1-3 substituents independently selected from: halo, hydroxy, C₁₋₃alkyl, C₁₋₃alkoxy, -CO₂H, -CO₂-C₁₋₆ alkyl and trifluoromethyl;

 R^{13} is selected from: hydrogen, C_{1-6} alkyl, -O- C_{1-6} alkyl, benzyl, phenyl and C_{3-6} cycloalkyl,

where said alkyl, phenyl, benzyl or cycloalkyl group is unsubstituted or substituted with 1-3 substituents independently selected from: halo, hydroxy, C₁₋₃alkyl, C₁₋₃alkoxy, -CO₂H, -CO₂-C₁₋₆ alkyl, and trifluoromethyl;

 $R^{14} \ is \ selected \ from: \ hydroxy, \ C_{1-6} \ alkyl, \ -O-C_{1-6} alkyl, \ benzyl, \ phenyl \ and \ C_{3-6} \ cycloalkyl,$

30

where said alkyl, phenyl, benzyl or cycloalkyl group is unsubstituted or substituted with 1-3 substituents independently selected from: halo, hydroxy, C₁₋₃alkyl, C₁₋₃alkoxy, -CO₂H, -CO₂-C₁₋₆ alkyl and trifluoromethyl;

- R^{15} is hydrogen or C_{1-4} alkyl, or R^{15} is joined via a 1-5 carbon tether to one of the carbons of V to form a ring;
 - R^{17} , R^{19} , R^{20} and R^{21} are independently selected from: hydrogen, hydroxy, $C_{1\text{-}6}$ alkyl-hydroxy, -O- $C_{1\text{-}3}$ alkyl, trifluoromethyl and halo;
 - R¹⁶ and R¹⁸ are independently selected from: hydroxy, C₁-6alkyl, C₁-6alkyl-COR¹¹, C₁-6alkyl-hydroxy, -O-C₁-3alkyl and halo,

10

- where said alkyl is unsubstituted or substituted with 1-6 substituents independently selected from fluoro and hydroxyl;
 - or R^{16} and R^{18} together form a bridge consisting of - C_{1-4} alkyl-, - C_{0-2} alkyl-O- C_{1-3} alkyl- or - C_{1-3} alkyl-O- C_{0-2} alkyl-, where said alkyl is unsubstituted or substituted with 1-2 substituents independently selected from: oxy where the oxygen is joined to said bridge via a double bond, fluoro, hydroxy, methoxy, methyl and trifluoromethyl;
 - R^{22} selected from: hydrogen, phenyl, $C_{1\text{-}6}$ alkyl which is substituted or unsubstituted with 1-6 substituents selected from: -COR¹¹, hydroxy, fluoro, chloro and -O-C₁₋₃alkyl;
- or R² and R²² together are a linker, forming a heterocycle ring, said linker selected from (with the left side of the linker being bonded to the amide nitrogen at R²²): -CH₂(CR²³R²³)₁₋₃-, -CH₂-NR²⁴-, -NR¹²-CR²³R²³-, -CH₂O-, -CH₂SO₂-, -CH₂SO-, -CH₂S-, -CR²³R²³-;
- R²³ is independently selected from: hydrogen, C₁₋₃alkyl unsubstituted or substituted with 1-6 substituents independently selected from fluoro and hydroxy, COR¹³, SO₂R¹⁴, SO₂NR¹²R¹², hydroxy, halo, -NR¹²R¹², -COR¹¹, -CONR¹²R¹², -NR¹²COR¹³, -OCONR¹²R¹², -NR¹²CONR¹²R¹², heterocycle, -CN, -NR¹²-SO₂-NR¹²R¹², -NR¹²-SO₂-R¹⁴, and -SO₂-NR¹²R¹²;

WO 2005/070133

PCT/US2005/000770

or one R^{23} is =O and the other R^{23} is absent;

where R²⁴ is selected from: hydrogen, C₁₋₃alkyl where said alkyl is unsubstituted or substituted with 1-6 substituents independently selected from fluoro and hydroxy, COR¹³, SO₂R¹⁴ and SO₂NR¹²R¹²; n is selected from 0, 1 and 2;

the dashed line represents an optional bond;

and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

- 2. The compound of claim 1, wherein R¹⁶ and R¹⁸ together form a bridge consisting of -C₁₋₄alkyl-, -C₀₋₂alkyl-O-C₁₋₃alkyl- or -C₁₋₃alkyl-O-C₀₋₂alkyl-, where said alkyl is unsubstituted or substituted with 1-2 substituents independently selected from: oxy where the oxygen is joined to said bridge via a double bond, fluoro, hydroxy, methoxy, methyl and trifluoromethyl.
 - 3. The compound of claim 1 of the Formula Ia:

$$R^7$$
 R^{16}
 R^{16}
 R^{18}
 R^{18}
 R^{18}

Ia

and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

20

15

4. The compound of claim 1 of the Formula Ib:

$$R^7$$
 R^{16}
 R^{18}
 R^{18}
 R^{1}
 R^{1}
 R^{3}

- 5 and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
 - 5. The compound of claim 1 of the Formula Ic:

$$R^7$$
 N
 R^5
 R^3

10

Ic

and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

15

6. The compound of claim 1 of the Formula Id:

$$R^7$$
 O
 N
 R^5
 R^3
 Id

and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

5

The compound of claim 1, wherein R¹ is C₁₋₆alkyl, unsubstituted or substituted 7. with hydroxyl or 1-6 fluoro, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

10

The compound of claim 6, wherein R¹ is selected from: -CH(CH₃)₂, -8. CH(OH)CH₃ and -CH₂CF₃, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

The compound of claim 1, wherein R² is hydrogen, and pharmaceutically 9. acceptable salts thereof and individual diastereomers thereof.

15

The compound of claim 1, wherein R² is connected to R²² by -CH₂-CH₂-, and 10. pharmaceutically acceptable salts thereof and individual diastereomers thereof.

20

The compound of claim 1, wherein, when Y is N, R³ is absent, and 11. pharmaceutically acceptable salts thereof and individual diastereomers thereof.

The compound of claim 1, wherein, when Y is N, R³ is O, and pharmaceutically 12. acceptable salts thereof and individual diastereomers thereof.

13. The compound of claim 1, wherein, when Y is C, R³ is selected from: hydrogen, halo, hydroxyl, C₁₋₃alkyl where said alkyl is unsubstituted or substituted with 1-6 substituents independently selected from fluoro and hydroxy, -COR¹¹, -CONR¹²R¹², -heterocycle, -NR¹²-SO₂-NR¹²R¹², -nitro and -NR¹²R¹², and pharmaceutically acceptable salts thereof and individual diastereomers thereof

- 14. The compound of claim 12, wherein R³ is hydrogen, fluoro, or trifluoromethyl, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
- 15. The compound of claim 1, wherein R⁴ is hydrogen, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

5

15

- 16. The compound of claim 1, wherein R⁵ is selected from: C₁₋₆alkyl substituted with 1-6 fluoro, -O-C₁₋₆alkyl substituted with 1-6 fluoro, chloro, bromo and phenyl, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
- 17. The compound of claim 15, wherein R⁵ is trifluoromethyl, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
- 20 18. The compound of claim 1, wherein R⁶ is hydrogen, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
 - 19. The compound of claim 1, wherein R⁷ is phenyl, heterocycle, C₃₋₇cycloalkyl, C₁₋₆alkyl, -COR¹¹ or -CONH-V-COR¹¹, where V is C₁₋₆alkyl or phenyl, where said phenyl, heterocycle, C₃₋₇cycloalkyl and C₁₋₆alkyl are unsubstituted or substituted with 1-5 substituents independently selected from: halo, trifluoromethyl, hydroxy, C₁₋₃alkyl, -O-C₁₋₃alkyl, -COR¹¹, -CN, -heterocycle and -CONR¹²R¹², and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
- 20. The compound of claim 1, wherein R⁷ is phenyl, heterocycle, C₁₋₄alkyl, –
 30 COR¹¹, and -CONH-V-COR¹¹, where V is selected from C₁₋₆alkyl or phenyl, and where the phenyl, heterocycle, and C₁₋₄alkyl is unsubstituted or substituted with 1-3 substituents independently selected

from: halo, hydroxy, C_{1-3} alkyl, - $O-C_{1-3}$ alkyl, - COR^{11} and -heterocycle, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

5

21. The compound of claim 1, wherein, when X is C, R⁷ is selected from:

para-fluorophenyl, 3-carboxyphenyl, 3-carboxy-4-fluorophenyl, phenyl, -CO₂CH₂CH₃, -CO₂H, -CONHCH₃,

-hydroxy, and

15

25

and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

The compound of claim 1, wherein, when X is C, R⁸ is hydrogen, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

- 23. The compound of claim 1, wherein R^9 and R^{10} are hydrogen, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
- 10 24. The compound of claim 1, wherein R¹⁶ is selected from: methyl, fluoro and trifluoromethyl, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
 - 25. The compound of claim 1, wherein R¹⁷ is hydrogen, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
 - 26. The compound of claim 1, wherein R¹⁸ is selected from: methyl, fluoro and trifluoromethyl, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
- 27. The compound of claim 1, wherein R¹⁶ and R¹⁸ are joined by -CH₂-CH₂- to make a 5 membered heterocycle, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
 - 28. The compound of claim 1, wherein one or more of R^{19} , R^{20} , R^{21} and R^{22} is hydrogen, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
 - 29. The compound of claim 1, wherein R^{22} is connected to R^2 together form a $-CH_2$ - CH_2 bridge, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
- 30. The compound of claim 1, wherein n is 1, and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

31. A compound selected from:

- 5 and pharmaceutically acceptable salts thereof and individual diastereomers thereof.
 - 32. A pharmaceutical composition which comprises an inert carrier and a compound of Claim 1.
- 33. A method for modulations of chemokine receptor activity in a mammal which comprises the administration of an effective amount of a compound of Claim 1.

34. A method for treating, ameliorating, controlling or reducing the risk of an inflammatory and immunoregulatory disorder or disease which comprises the administration to a patient of an effective amount of a compound of Claim 1.

5 35. A method for treating, ameliorating, controlling or reducing the risk of rheumatoid arthritis which comprises the administration to a patient of an effective amount of a compound of Claim 1.