The Hong Kong Polytechnic University Department of Applied Mathematics AMA1120 Tutorial Set #05

Question 1. (Standard Level)

(a)

Note that $e^x > x^2 - 1$ for all $x \in [-1, 1]$

$$\therefore \text{ Area} = \int_{-1}^{1} (e^x - x^2 + 1) dx = \left[e^x - \frac{x^3}{3} + x \right]_{-1}^{1} = e - \frac{1}{e} + \frac{4}{3}$$

(b)
$$(x-2)^2 = x \iff x^2 - 5x + 4 = 0 \iff x = 1, 4.$$
 Note that $(x-2)^2 < x$ for all $x \in (1, 4)$

$$\therefore \text{ Area} = \int_{-1}^{4} |(x-2)^2 - x| dx = -\left[\frac{(x-2)^3}{3} - \frac{x^2}{2}\right]_{1}^{4} = \frac{16}{3} - \frac{5}{6} = \frac{9}{2}$$

(c)
$$\frac{1}{x} = \frac{1}{x^2}$$
 \iff $x = 1$, and is undefined at $x = 0$. Note that $\frac{1}{x} > \frac{1}{x^2}$ for all $x \in (1, 2)$

$$\therefore \text{ Area} = \int_{1}^{2} \left| \frac{1}{x} - \frac{1}{x^{2}} \right| dx = \int_{1}^{2} \left(\frac{1}{x} - \frac{1}{x^{2}} \right) dx = \left[\ln x + \frac{1}{x} \right]_{1}^{2} = \ln 2 - \frac{1}{2}$$

(d)
$$\sqrt{x} = \frac{x}{2} \iff 4x = x^2 \iff x = 0, 4.$$

$$\therefore \text{ Area} = \int_0^9 |\sqrt{x} - \frac{x}{2}| \, dx = \int_0^4 (\sqrt{x} - \frac{x}{2}) \, dx + \int_4^9 (\frac{x}{2} - \sqrt{x}) \, dx$$
$$= \left[\frac{2}{3} x^{3/2} - \frac{x^2}{4} \right]_0^4 + \left[\frac{x^2}{4} - \frac{2}{3} x^{3/2} \right]_4^9 = \frac{59}{12}$$

(e)
$$x = \frac{1}{x} \iff x = \pm 1$$

$$\therefore \text{ Area} = \int_0^1 x \, dx + \int_1^2 \frac{1}{x} \, dx = \left[\frac{x^2}{2} \right]_0^1 + \left[\ln x \right]_1^2 = \frac{1}{2} + \ln 2$$

(f)
$$2\sqrt{x} = 12 - 2x \iff x = (6 - x)^2 \iff x^2 - 13x + 36 = 0 \iff x = 4, 9 \text{ (rejected)}$$

$$\therefore \text{ Area} = \int_{1}^{4} (12 - 2x - 2\sqrt{x}) \, dx = \left[12x - x^2 - \frac{4}{3}x^{3/2} \right]_{1}^{4}$$

$$= \frac{64}{3} - \frac{29}{3} = \frac{35}{3}$$

Question 2. (Intermediate Level)

$$y = x^2 \iff x = \sqrt{y} \text{ if } x \ge 0$$

 $\frac{1}{2}$ (Area of upper region)

$$= \int_{b}^{4} x \, dy = \int_{b}^{4} \sqrt{y} \, dy = \frac{2}{3} y^{3/2} \Big|_{b}^{4} = \frac{16}{3} - \frac{2}{3} b^{3/2}$$

 $\frac{1}{2}$ (Area of lower region)

$$= \int_0^b x \, dy = \int_0^b \sqrt{y} \, dy = \frac{2}{3} y^{3/2} \Big|_0^b = \frac{2}{3} b^{3/2}$$

$$\therefore \quad \frac{16}{3} - \frac{2}{3} b^{3/2} = \frac{2}{3} b^{3/2} \iff 4 = b^{3/2} \iff b = 4^{2/3}$$

Question 3. (Intermediate Level)

$$x^2 - c^2 = c^2 - x^2 \Leftrightarrow x = \pm c$$

Note that $x^2 - c^2 < c^2 - x^2$ for all $x \in (-c, c)$

$$\int_{-c}^{c} \left[(c^2 - x^2) - (x^2 - c^2) \right] dx = 2 \int_{-c}^{c} (c^2 - x^2) dx = 2 \left[c^2 x - \frac{x^3}{3} \right]_{-c}^{c} = \frac{8}{3} c^3 = 576 \iff c = 6$$

Question 4. (Intermediate Level)

(a) Volume =
$$\int_{1}^{2} \pi y^{2} dx = \int_{1}^{2} \pi (x^{2} - x)^{2} dx = \pi \int_{1}^{2} (x^{4} - 2x^{3} + x^{2}) dx$$

= $\pi \left[\frac{x^{5}}{5} - \frac{2x^{4}}{4} + \frac{x^{3}}{3} \right]_{1}^{2} = \pi \left(\frac{16}{15} - \frac{1}{30} \right) = \frac{31}{30} \pi$

(b) Volume =
$$\int_0^1 2\pi xy \, dx = \int_0^1 2\pi xy \, dx = \int_0^1 2\pi x e^{-x} \, dx = -2\pi \int_0^1 x \, d(e^{-x})$$

= $-2\pi x e^{-x} \Big|_0^1 + 2\pi \int_0^1 e^{-x} \, dx = -\frac{2\pi}{e} - \frac{2\pi}{e} + 2\pi = 2\pi \left(1 - \frac{2}{e}\right)$

(c) (i)
$$\frac{1}{2}x^2 + 3 = 12 - \frac{1}{2}x^2 \iff x^2 = 9 \iff x = \pm 3$$

Volume = $\int_{-3}^{3} \pi \left[(12 - \frac{1}{2}x^2)^2 - (\frac{1}{2}x^2 + 3)^2 \right] dx$
= $\int_{-3}^{3} \pi \left(135 - 15x^2 \right) dx = \pi \left[135x - \frac{15x^3}{3} \right]_{-3}^{3} = 540\pi$

(ii)
$$\sec^2 x = \tan^2 x + 1$$

Volume = $\int_0^1 \pi [\sec^2 x - \tan^2 x] dx = \pi \int_0^1 dx = \pi$

Question 5. (Intermediate Level)

(a) Note that
$$0 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
, $\tan^3 x = 1 \iff \tan x = 1 \iff x = \frac{\pi}{4}$ if $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Volume $= \int_0^{\pi/4} \pi (y - 1)^2 dx = \int_0^{\pi/4} \pi (\tan^3 x - 1)^2 dx$

(b) Volume =
$$\pi (1)^2 (\pi - 0) - \pi \int_0^{\pi} (\sin x - 1)^2 dx = \pi^2 - \pi \int_0^{\pi} (\sin x - 1)^2 dx$$

Question 6. (Intermediate Level)

(a)
$$\int \ln y \, dy = y \ln y - \int dy = y \ln y - y + C$$

(b)
$$y = 2^{x^2} \Leftrightarrow x^2 = \frac{\ln y}{\ln 2}$$

Volume $= \pi \int_{-1}^{2} x^2 dy = \pi \int_{-1}^{2} \frac{\ln y}{\ln 2} dy = \frac{\pi}{\ln 2} \left[y \ln y - y \right]_{-1}^{2} = \frac{\pi}{\ln 2} (2 \ln 2 - 2) + \frac{\pi}{\ln 2}$
 $= \left(2 - \frac{1}{\ln 2} \right) \pi$

Question 7. (Intermediate Level)

(a)
$$\frac{dy}{dx} = -\sin x$$
. Arc-length $= \int_0^{2\pi} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_0^{2\pi} \sqrt{1 + \sin^2 x} dx$

(b)
$$\frac{dx}{dy} = 1 + 3y^2$$
. Arc-length = $\int_1^4 \sqrt{\left(\frac{dx}{dy}\right)^2 + 1} dy = \int_1^4 \sqrt{9y^4 + 6y^2 + 2} dy$

Question 8. (Standard Level)

(a)
$$\frac{dy}{dx} = \frac{3}{2}x^{1/2} \implies \left(\frac{dy}{dx}\right)^2 = \frac{9}{4}x$$

Arc-length $= \int_0^1 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_0^1 \sqrt{1 + \frac{9}{4}x} dx = \frac{4}{9} \int_0^1 \sqrt{1 + \frac{9}{4}x} d\left(1 + \frac{9}{4}x\right)$

$$= \frac{4}{9} \left[\frac{2}{3} \left(1 + \frac{9}{4}x\right)^{3/2}\right]_0^1 = \frac{13\sqrt{13} - 8}{27}$$

(b)
$$\frac{dy}{dx} = \frac{-\sin x}{\cos x} = -\tan x \implies \left(\frac{dy}{dx}\right)^2 = \tan^2 x = \sec^2 x - 1$$

$$\text{Arc-length} = \int_0^{\pi/4} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_0^{\pi/4} \sec x \, dx = \ln|\sec x + \tan x| \Big|_0^{\pi/4} = \ln(\sqrt{2} + 1)$$

(c)
$$\frac{dx}{dy} = \frac{1}{2}y - \frac{1}{2y} \implies \left(\frac{dx}{dy}\right)^2 = \frac{1}{4}\left(y^2 - 2 + \frac{1}{y^2}\right) \implies \left(\frac{dx}{dy}\right)^2 + 1 = \frac{1}{4}\left(y + \frac{1}{y}\right)^2$$

$$\text{Arc-length} = \int_{1}^{e} \sqrt{\left(\frac{dx}{dy}\right)^2 + 1} \, dy = \frac{1}{2}\int_{1}^{e} \left(y + \frac{1}{y}\right) \, dy = \frac{1}{2}\left[\frac{y^2}{2} + \ln y\right]_{1}^{e} = \frac{e^2 + 1}{4}$$

(d)
$$\frac{dy}{dx} = \sqrt{x^3 - 1} \implies \left(\frac{dy}{dx}\right)^2 = x^3 - 1$$

Arc-length $= \int_1^4 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_1^4 x^{3/2} dx = \frac{2}{5} x^{5/2} \Big|_1^4 = \frac{62}{5}$

Question 9. (Intermediate Level)

(a) (i)
$$\int x \ln x \, dx = \frac{1}{2}x^2 \ln x - \frac{1}{2} \int x \, dx = \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C$$

(ii)
$$\int \frac{\ln x}{x} dx = \int (\ln x) d (\ln x) = \frac{1}{2} (\ln x)^2 + C$$

(b)
$$\frac{dy}{dx} = x - \frac{1}{4x} \implies \left(\frac{dy}{dx}\right)^2 = x^2 - \frac{1}{2} + \frac{1}{16x^2} \implies \left(\frac{dy}{dx}\right)^2 + 1 = \left(x + \frac{1}{4x}\right)^2$$

Surface area $= 2\pi \int_{-1}^{e} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = 2\pi \int_{-1}^{e} \left(\frac{x^2}{2} - \frac{\ln x}{4}\right) \left(x + \frac{1}{4x}\right) dx$
 $= 2\pi \int_{-1}^{e} \left(\frac{1}{2}x^3 + \frac{1}{8}x - \frac{1}{4}x\ln x - \frac{1}{16}\frac{\ln x}{x}\right) dx$
 $= 2\pi \left[\frac{x^4}{8} + \frac{x^2}{16} - \frac{1}{8}x^2\ln x + \frac{x^2}{16} - \frac{1}{32}(\ln x)^2\right]_{-1}^{e} = \left(\frac{e^4}{4} - \frac{9}{16}\right)\pi$

Question 10. (Standard Level)

$$\frac{dy}{dx} = \frac{1}{2} (2x)^{-1/2} \cdot 2 = \frac{1}{\sqrt{2x}} \implies \left(\frac{dy}{dx}\right)^2 = \frac{1}{2x} \implies \left(\frac{dy}{dx}\right)^2 + 1 = \frac{1}{2x} + 1$$
Surface area = $2\pi \int_0^{9/4} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = 2\pi \int_0^{9/4} \sqrt{2x} \sqrt{\frac{1}{2x} + 1} dx$

$$= 2\pi \int_0^{9/4} \sqrt{2x + 1} dx = \pi \left[\frac{2}{3} (2x + 1)^{3/2}\right]_0^{9/4} = \left(\frac{11\sqrt{11}}{3\sqrt{2}} - \frac{2}{3}\right) \pi$$

Question 11. (*Revision*)

$$I_{n} = \int_{0}^{\infty} \frac{dx}{(x^{2}+1)^{n+1}} = \lim_{k \to \infty} \int_{0}^{k} \frac{(x^{2}+1) dx}{(x^{2}+1)^{n+1}} - \lim_{k \to \infty} \int_{0}^{k} \frac{x^{2} dx}{(x^{2}+1)^{n+1}}$$

$$= I_{n-1} + \lim_{k \to \infty} \frac{1}{2n} x (x^{2}+1)^{-n} \Big|_{0}^{k} - \frac{1}{2n} \int_{0}^{\infty} \frac{dx}{(x^{2}+1)^{n}} = \frac{2n-1}{2n} I_{n-1}$$

$$\therefore I_{n} = \frac{2n-1}{2n} I_{n-1} = \cdots = \frac{(2n-1)(2n-3)\cdots 1}{(2n)(2n-2)\cdots 2} I_{0} = \frac{(2n-1)(2n-3)\cdots 1}{(2n)(2n-2)\cdots 2} \int_{0}^{\infty} \frac{dx}{x^{2}+1}$$

$$= \frac{(2n-1)(2n-3)\cdots 1}{(2n)(2n-2)\cdots 2} \lim_{k \to \infty} \left[\tan^{-1} x \right]_{0}^{k} = \frac{(2n-1)(2n-3)\cdots 1}{(2n)(2n-2)\cdots 2} \frac{\pi}{2}$$