07-20-2021- shift-2

EE24BTECH11010 - Balaji B

1)	For the natural numbers m, n , if $(1 - y)^m (1 + y)^n = 1 + a_1 y + a_2 y^2 + + a_{m+n} y^{m+n}$	and
	$a_1 = a_2 = 10$, then the value of $(m + n)$ is equal to :	

- a) 88
- b) 64
- c) 100
- d) 80
- 2) The value of $\tan \left(2 \tan^{-1} \frac{3}{5} + \sin^{-1} \frac{5}{13}\right)$ is equal to :
 - a) $\frac{-181}{69}$
- b) $\frac{220}{21}$
- c) $\frac{-291}{76}$
- d) $\frac{151}{63}$

1

3) Let r_1 and r_2 be the radii of the largest and smallest circles, respectively, which pass through the point (-4,1) and having their centres on the circumference of the circle $x^2 + y^2 + 2x + 4y - 4 = 0$. If $\frac{r_1}{r_2} = a + b\sqrt{2}$, then a + b is equal to:

- a) 3
- b) 11
- c) 5
- d) 7

4) Consider the following three statements:

- (A) If 3 + 3 = 7 then 4 + 3 = 8.
- (B) If 5 + 3 = 8 then earth is flat.
- (C) If both (A) and (B) are true then 5 + 6 = 17.

Then, which of the following statements is correct?

- a) (A) is false, but (B) and (C) are true
- b) (A) and (C) are true while (B) is false
- c) (A) is true while (B) and (C) are false
- d) (A) and (B) are false while (C) is true

5) The lines x = ay - 1 = z - 2 and x = 3y - 2 = bz - 2, $(ab \ne 0)$ are coplanar, if:

- a) $b = 1, a \in \mathbf{R} \{0\}$
- b) $a = 1, b \in \mathbf{R} \{0\}$
- c) a = 2, b = 2
- d) a = 2, b = 3

6) If [x] denotes the greatest integer less than or equal to x, then the value of the integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [x] - \sin x dx$ is equal to :

- a) $-\pi$
- b) π
- c) 0
- d) 1

- 7) If the real part of the complex number $(1 \cos \theta + 2i \sin \theta)^{-1}$ is $\frac{1}{5}\theta \in (0, \pi)$, then the value of the integral $\int_0^{\theta} \sin x dx$ is equal to:
 - a) 1
 - b) 2
 - c) -1
 - d) 0
- 8) Let $f: \mathbf{R} \{\frac{\alpha}{6}\} \to \mathbf{R}$ be defined by $f(x) = \frac{5x+3}{6x-\alpha}$. Then the value of α for which $(f \circ f)(x) = x$, for all $x = \mathbf{R} - \{\frac{\alpha}{6}\}$, is:
 - a) No such α exists
 - b) 5
 - c) 8
 - d) 6
- 9) If $f: \mathbf{R} \to \mathbf{R}$ is given by f(x) = x + 1, then the value of

$$\lim_{n \to \infty} \frac{1}{n} \left[f(0) + f\left(\frac{5}{n}\right) + f\left(\frac{10}{n}\right) + \dots + f\left(\frac{5(n-1)}{n}\right) \right],$$
b) $\frac{5}{3}$ c) $\frac{1}{2}$ d) $\frac{7}{3}$

a) $\frac{3}{2}$

- 10) Let A, B and C be three events such that the probability that exactly one of A and B occurs is (1, -k), the probability that exactly one of B and C occurs is (1, -2k), the probability that exactly one of C and A occurs is (1, -k) and the probability of all A, B and C occur simultaneously is k^2 , where 0 < k < 1. Then the probability that at least one of A, B and C occur is:
 - a) greater than $\frac{1}{8}$ but less than $\frac{1}{4}$
 - b) greater than $\frac{1}{2}$
 - c) greater than $\frac{1}{4}$ but less than $\frac{1}{2}$
 - d) exactly equal to $\frac{1}{2}$
- 11) The sum of all the local minimum values of the twice differentiable function f: $R \to R$ defined by $f(x) = x^3 - 3x^2 - \frac{3f''(2)}{2}x + f''(1)$ is :
 - a) -22
 - b) 5
 - c) -27
 - d) 0
- 12) Let in a right angled triangle, the smallest angle be θ . If a triangle formed by taking the reciprocal of its sides is also a right angled, then $\sin \theta$ is equal to:
 - a) $\frac{\sqrt{5}+1}{4}$
- b) $\frac{\sqrt{5}-1}{2}$ c) $\frac{\sqrt{2}-1}{2}$
- d) $\frac{\sqrt{5}-1}{4}$
- 13) Let y = y(x) satisfies the equation $\frac{dy}{dx} |A| = 0$ for all x > 0, where $A = \begin{pmatrix} y & \sin x & 1 \\ 0 & -1 & 1 \\ 2 & 0 & \frac{1}{2} \end{pmatrix}$. If $y(\pi) = \pi + 2$, then the value of $y(\frac{\pi}{2})$ is:

- a) $\frac{\pi}{2} + \frac{4}{\pi}$ b) $\frac{\pi}{2} \frac{1}{\pi}$ c) $\frac{3\pi}{2} \frac{1}{\pi}$ d) $\frac{\pi}{2} \frac{4}{\pi}$
- 14) Consider the line L given by the equation $\frac{x-3}{2} = \frac{y-1}{1} = \frac{z-2}{1}$. Let Q be the mirror image of the point (2,3,-1) with respect to L. Let a plane P be such that it passes through Q, and the line L is perpendicular to P. Then which of the following points is on the plane P?
 - a) (-1, 1, 2)

c) (1, 1, 2)

b) (1, 1, 1)

- d) (1,2,2)
- 15) If the mean and variance of six observations 7, 10, 11, 15, a, b are 10 and $\frac{20}{3}$, respectively, then the value of |a - b| is equal to :
 - a) 9
 - b) 11
 - c) 7
 - d) 1