Rapport

August 22, 2025

Environnement:

Construction de la heatmap (récapitulatif mathématique)

1. Grilles de balayage

On balaye une grille rectangulaire $(\Delta U_i, \Delta t_j)$:

$$\Delta U_i \in [\Delta U_{\min}, \Delta U_{\max}], \quad \Delta t_j \in [\Delta t_{\min}, \Delta t_{\max}],$$

typiquement ΔU_i linéaire sur meV et Δt_i linéaire sur ns.

2. Fenêtre d'impulsion lissée et hamiltonien dépendant du temps

On déclenche une impulsion entre $t_0=t_{\rm imp}$ et $t_1=t_{\rm imp}+\Delta t$ via une fenêtre lissée

$$w(t) = \tfrac{1}{2} \Big[\tanh \Big(\tfrac{t-t_0}{\tau} \Big) - \tanh \Big(\tfrac{t-t_1}{\tau} \Big) \Big] \,, \qquad 0 \leq w(t) \leq 1,$$

avec τ une constante de lissage (dans le code, $\tau \approx (t_1 - t_0)/30$). L'Hamiltonien total est combiné comme

$$H(t) = (1 - w(t)) H_{\text{base}} + w(t) H_{\text{pulse}}(\Delta U, \Delta t).$$

3. Potentiel effectif et orbitales localisées

On construit un potentiel V(x,t) à partir des paramètres géométriques (profondeurs de puits, barrières, etc.) et de la modulation ΔU . Pour $\Delta U=0$ on prend $V(x,t_0^-)$ (hors impulsion); pour $\Delta U\neq 0$, on moyenne pendant l'impulsion:

$$\overline{V}(x;\Delta U,\Delta t) = \frac{1}{t_1 - t_0} \int_{t_0}^{t_1} V(x,t) \, dt.$$

À partir de \overline{V} , on calcule les états propres 1-particule $\{\varphi_k(x)\}$ puis on localise/quasi-diagonalise pour obtenir des orbitales de site $\{\phi_i(x)\}_{i=1..4}$.

4. Paramètres de Hubbard t_{ij} et U_i (2D effectif)

À partir des orbitales localisées $\phi_i(x,y) = \phi_i(x)\,g(y)$ (gaussienne en y), on évalue :

$$t_{ij} \simeq \langle \phi_i | \hat{H}_{\rm sp} | \phi_j \rangle, \qquad U_i = \frac{e^2}{4\pi\varepsilon_0\varepsilon_r} \iint \frac{|\phi_i(\mathbf{r})|^2 |\phi_i(\mathbf{r}')|^2}{\sqrt{|\mathbf{r} - \mathbf{r}'|^2 + a_{\rm coff}^2}} d^2\mathbf{r} d^2\mathbf{r}'.$$

Dans le code, ces intégrales sont réalisées par t_from_orbitals et U_vector_from_orbitals, avec adoucissement $a_{\text{soft}} > 0$.

5. Évolution temporelle (TDSE) et état final

On résout l'équation de Schrödinger dépendant du temps

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = H(t) |\psi(t)\rangle,$$

de t=0 à $T_{\rm final}$, pour l'état initial $|\psi(0)\rangle = |\psi_0\rangle$ (ex. singlet-triplet préparé). On ne conserve que l'état final $|\psi_{\rm fin}(\Delta U, \Delta t)\rangle$.

6. Qubit droit: projection, phase relative et baseline

On extrait le *spinor* du qubit droit dans la base logique $\{|S_R\rangle, |T0_R\rangle\}$:

$$a(\Delta U, \Delta t) = \langle S_R | \psi_{\text{fin}} \rangle, \qquad b(\Delta U, \Delta t) = \langle T 0_R | \psi_{\text{fin}} \rangle.$$

On définit la phase relative (enroulée dans $(-\pi, \pi]$)

$$\phi(\Delta U, \Delta t) = \text{wrap}(\arg a - \arg b).$$

La baseline (référence) est la phase à $\Delta U = 0$ pour chaque Δt :

$$\phi_0(\Delta t) = \phi(\Delta U = 0, \Delta t).$$

7. Deux heatmaps testées

Construction des heatmaps:

Figure 2: Carte de fidélité de la phase du qubit.

Figure 3: Carte de fidélité de la phase du qubit.

(a) Carte "fidelity de phase" (utilisée dans ton code). On mesure la non-modification de phase par

$$p(\Delta U, \Delta t) = \cos^2\left(\frac{\Delta\phi(\Delta U, \Delta t)}{2}\right), \qquad \Delta\phi(\Delta U, \Delta t) = \operatorname{wrap}\left(\phi(\Delta U, \Delta t) - \phi_0(\Delta t)\right).$$

2

C'est cette grandeur $p \in [0,1]$ qui est affichée en imshow (axe $x : \Delta t$ en ns, axe $y : \Delta U$ en meV).

(b) Carte "overlap de spinor de référence". On peut aussi comparer le spinor du qubit droit à celui de référence à $m\hat{e}me$ Δt (baseline en $\Delta U=0$):

$$p_{\rm ov}(\Delta U, \Delta t) = \left| \left\langle q_R^{(0)}(\Delta t) \middle| q_R(\Delta U, \Delta t) \right\rangle \right|^2, \quad \text{où } |q_R\rangle = \frac{1}{\sqrt{|a|^2 + |b|^2}} \begin{bmatrix} a \\ b \end{bmatrix}.$$

8. Rendu graphique

On trace p (ou p_{ov}) par interpolation bilinéaire minimale (ou spline si désiré), avec barre de couleur $\in [0, 1]$, et étendue

extent =
$$[\Delta t_{\min} \times 10^9, \ \Delta t_{\max} \times 10^9, \ \Delta U_{\min}, \ \Delta U_{\max}].$$

9. Résumé pipeline (pseudo-code)

$$\begin{aligned} \mathbf{pour} \ \Delta U_i \ \mathbf{et} \ \Delta t_j : & \ \overline{V} \Leftarrow \text{moyenne de } V(x,t) \ \text{pendant } [t_0,t_1] \\ & \{\phi_k\} \Leftarrow \text{orbitales localisées issues de } \overline{V} \\ & \{t_{ij},U_i\} \Leftarrow \text{intégrales sur } \{\phi_k\} \\ & \ H(t) \Leftarrow H_{\text{base}}, H_{\text{pulse}} + \text{fenêtre } w(t) \\ & |\psi_{\text{fin}}\rangle \Leftarrow \text{TDSE}(H(t),|\psi_0\rangle) \\ & \{a,b\} \Leftarrow \text{projection qubit droit} \\ & \phi \Leftarrow \text{wrap}(\text{arg } a - \text{arg } b), \quad \Delta \phi \Leftarrow \text{wrap}(\phi - \phi_0) \\ & p = \cos^2\left(\frac{\Delta \phi}{2}\right) \quad (\text{ou } p_{\text{ov}}) \end{aligned}$$

Remarques pratiques. (i) Pour $\Delta U = 0$, la baseline $\phi_0(\Delta t)$ peut être évaluée une seule fois puis réutilisée. (ii) Les cartes "coarse" (N_U, N_T) peuvent être interpolées sur une grille plus fine si besoin. (iii) Le poids dans le sous-espace logique du qubit droit est weight = $|a|^2 + |b|^2$; on renormalise $[a, b]^{\top}$ si nécessaire avant l'overlap.

1er essai avec une asymétrie:

Table 1: Paramètres de la simulation

Symbole / Nom	Unité	Valeur	Description
Profondeurs des puits			
Puit 0	meV	30	Énergie du puit gauche
Puit 1	meV	5	Énergie du 2 puit
Puit 2	meV	20	Énergie du 3 puit
Puit 3	meV	40	Énergie du puit droit
Hauteurs des barrières			
Barrière 0	meV	35	Hauteur gauche
Barrière 1	meV	80	Hauteur centrale
Barrière 2	meV	60	Hauteur droite
Largeur des puits	nm	23	Largeur typique
Largeurs barrières	nm		Largeurs respectives

Heatmap des variations de phase du qubit et du détecteur/ 1er essai en 15x15 :

0.1.1 Singlet-Triplet:

right Detector : reference state fidelity Configuration : singlet-triplet 57.5 9 9 of the Qubit | 52.5 (meV) 50.0 47.5 45.0 40.0 0.2 0.4 0.6 0.8 1.0 Δt (ns) 1.2 1.4 1.6 1.8

Figure 4: Carte de fidélité (détecteur A)

Figure 5: Carte de fidélité (détecteur B)

0.1.2 Triplet-Singlet:

Figure 6: Carte de fidélité (détecteur A)

Figure 7: Carte de fidélité (détecteur B)

0.1.3 Triplet-Triplet:

Figure 8: Carte de fidélité (détecteur A)

Figure 9: Carte de fidélité (détecteur B)

0.1.4 Singlet-Singlet:

Figure 10: Carte de fidélité (détecteur A)

Figure 11: Carte de fidélité (détecteur B)

2ieme essai avec une asymétrie:

Table 2: Paramètres de la simulation

Symbole / Nom	Unité	Valeur	Description
Profondeurs des puits			
Puit 0	meV	30	Énergie du puit gauche
Puit 1	meV	5	Énergie du 2 puit
Puit 2	meV	5	Énergie du 3 puit
Puit 3	meV	40	Énergie du puit droit
Hauteurs des barrières			
Barrière 0	meV	35	Hauteur gauche
Barrière 1	meV	90	Hauteur centrale
Barrière 2	meV	50	Hauteur droite
Largeur des puits	nm	23	Largeur typique
Largeurs barrières	nm		Largeurs respectives

Figure 12: Carte de fidélité (détecteur A)

Figure 13: Carte de fidélité (détecteur B)

essai avec DU=57meV et dt=1.2ns :

Figure 14: Affichage sur les sphères de bloch

1 The end:

Paramètres généraux :

 $\textbf{Table 3:} \ \ \text{Paramètres de la simulation (issus de param_simu.py)}$

Symbole / Nom	Unité	Valeur	Description
$\overline{N_{ m sites}}$	_	4	Nombre de puits (dots)
N_e	_	4	Nombre d'électrons
$m_{ m eff}$	m_e	0.067	Masse effective (GaAs)
$x_{ m dots}$	nm		Positions des 4 puits (x)
a	$ m meVnm^{-2}$	6.5	Courbure du potentiel en x
Profondeurs puits	meV		Énergies des 4 puits
Hauteurs barrières	meV		Hauteurs des 3 barrières
Largeur des puits	nm	23	Largeur typique des puits
Largeurs barrières	nm		Largeurs des barrières
σ_x	nm	15	Largeur gaussienne en x
σ_y	nm	15	Largeur gaussienne en y (eff.)
$y_{ m confinement}$	$ m meVnm^{-2}$	0.1	Confinement harmonique y
$t_{ m imp}$	ns	0.1	Instant de début de l'impulsion
$\Delta t^{}$	ns	1.6	Durée de l'impulsion
$T_{ m final}$	ns	2.0	Temps total de simulation
ΔU	meV	57	Variation de U due à l'impulsion
N_t	_	300	Nombre de pas de temps
N_x	_		Taille de la grille adaptative en x
N_y	_		Taille de la grille adaptative en y