Lecture Notes for

Neural Networks and Machine Learning

Transformers and Vision Transformers

Logistics and Agenda

- Logistics
 - Paper presentations (Thurs)
- Agenda
 - Transformers
- Next Time:
 - Vision Transformers
 - Paper Presentation
 - Consistency losses

Transformers

Dr Simone Stumpf @DrSimoneS... · 13h ··· God grant me the confidence of an average machine learning expert.

Transformers Intuition

- Recurrent networks track state using an "updatable" state vector, but this takes lots of processing to across sequence
- Attention mechanism (in RNNs) already takes a weighted sum of state vectors to generate new token in a decoder
- ... so why not just use attention on a transformation of the embedding vectors? Do away with the recurrent state vector all together?

Attention is All You Need

Continued Motivation:

- RNNs are not inherently parallelized or efficient at remembering based on state vector
- CNNs are not resilient to long-term word relationships, limited by filter size

Transformer Solution:

- Build attention into model from the beginning
- Compare all words to each other through self-headed attention
- Define a notion of "**position**" in the sequence
- Should be resilient to long term relationships and be highly parallelized for GPU computing!!

Transformer Overview

Scaled Dot-Product Attention

for each word

Professor Eric C. Larson

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$egin{aligned} ext{MultiHead}(Q, K, V) &= ext{Concat}(ext{head}_1, ..., ext{head}_{ ext{h}})W^O \ & ext{where head}_{ ext{i}} &= ext{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$

Self Attention Overview

What parameters are trained in diagram?

• \mathbf{W}^{v} , \mathbf{W}^{q} , \mathbf{W}^{k}

Other Parameters:

- L: length of sequence
- Query/Key dimension, d_k
- Value dimension, $d_{\scriptscriptstyle \mathcal{V}}$
- How many times to apply attention (i.e., number of heads)
 - Type of positional encoding (more later)

Transformer: in more detail

1

36

Transformer: in more detail

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ($\sqrt{d_k}$) in visual, $d_k = 3$ Softmax

Softmax X Value

Sum

Excellent Blog on Transformers: http://jalammar.github.io/illustrated-transformer/

Professor Eric

Size of Q,K,V: $|\text{Seq Len}| \times d_v \text{ or } d_k$

WQ,K: |Embed Size| $\times d_k$

Transformer: Multi-headed Attention

Excellent Blog on Transformers: http://jalammar.github.io/illustrated-transformer/

Putting It Together

W۵

Transformer: Positional Encoding

- Objective: add notion of position to embedding
- Attempt in paper: add sin/cos to embedding

p: in sequence d m: 1/2 dim of embed i = index in vector

$$PE_{(p,i\in 0...d_m-1)} = \sin(p/10000^{i/d_m})$$

$$PE_{(p,i\in 0...d_m-1)} = \cos(p/10000^{(i-d_m)/d_m})$$

Hypothesis: Now the word proximity is encoded in the embedding matrix, with other pertinent information. Well, it does help... so it could be true that this is a good way to do it.

Excellent Blog on Transformers: http://jalammar.github.io/illustrated-transformer/

Positional Intuition, Geometrically

Transformer: Positional Encoding

- Objective: add notion of position to embedding
- Attempt in original paper: add sin/cos to embedding
- But could be anything that encodes position, like:

Lecture Notes for

Neural Networks and Machine Learning

Transformers

Next Time:

SSL, Vision Transformers

Reading: None

