

IIC1253 — Matemáticas Discretas — 1' 2020

PAUTA TAREA 4

Pregunta 1

Pregunta 1.1

PD: La relación \sim es refleja y simétrica.

Demostrar que \sim es refleja significa demostrar que:

$$\forall v \in \Sigma^* : \exists i, j > 0 : v^i = v^j$$

Sabemos que $v^1=v$, por lo que, si tomamos i=j=1, es claro que $v^i=v^j=v$ por lo tanto la relación \sim es refleja.

Por otra parte, demostrar que la relación es simétrica es demostrar:

$$\forall (u, v) \in \sim \rightarrow (v, u) \in \sim$$

Por simetría de la igualdad, sabemos que:

$$u^{i} = v^{j} \to v^{j} = u^{i}$$

$$\Rightarrow (u, v) \in \sim \to (v, u) \in \sim$$

Por lo tanto la relación . . \sim es simétrica.

Otra manera de demostrar la simetría es suponer que:

$$(u, v) \in \sim$$

 $\Rightarrow \exists i, j > 0 \mid u^i = v^j$

Considerando $i_2 = j \wedge j_2 = i$

$$\Rightarrow \exists i_2, j_2 > 0 \mid v^{i_2} = u^{j_2}$$
$$\Rightarrow (v, u) \in \sim$$

Por lo tanto la relación \sim es simétrica.

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) Por realizar correctamente la demostración.
- (3 Puntos) Por demostración correcta, pero con errores menores.
- (0 Puntos) En otro caso.

Pregunta 1.2

PD: La relación \sim es transitiva.

$$\Leftrightarrow \forall u, v, w \in \Sigma^* : u \sim v \land v \sim w \rightarrow u \sim w$$

Tenemos que:

$$\exists i, j, k, m > 0 \mid u^i = v^j \wedge v^k = w^m$$

Luego,

$$u^{i} = v^{j} \rightarrow (u^{i})^{k} = (v^{j})^{k} = (v^{k})^{j}$$

Sin embargo, sabemos que $v^k = w^m$

$$\Rightarrow (u^i)^k = (v^k)^j = (w^m)^j$$

Por otra parte, podemos ver que concatenar i veces una palabra y luego concatenar la palabra resultantes k veces, será equivalente a concatenar la palabra inicial $i \cdot k$ veces; es decir: $(u^i)^k = u^{i \cdot k}$, por lo que si tomamos $l = i \cdot k \land s = m \cdot j$ tendremos:

$$u^{l} = w^{s}$$

$$\Rightarrow \exists l, s > 0 \mid u^{l} = w^{s}$$

$$\Rightarrow u \sim w$$

Por lo tanto, la relación \sim es transitiva.

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) Por realizar correctamente la demostración.
- (3 Puntos) Por demostración correcta, pero con errores menores.
- (0 Puntos) En otro caso.

Pregunta 2

Pregunta 2.1

A partir del enunciado tenemos el conjunto $\mathcal{R} = \{R \subseteq A \times A\}$ y la relación \preceq_1 se define como $R \preceq_1 S$ si, y solo si, $R \circ S = S$. La respuesta es SI, la relación \preceq_1 es transitiva. Para esto, debemos demostrar que para todo $R, S, T \in \mathcal{R}$ se cumple que, si $R \preceq_1 S$ y $S \preceq_1 T$, entonces $R \preceq_1 T$. Para esto, suponemos que $R \preceq_1 S$ y $S \preceq_1 T$. Por definición de \preceq_1 , tenemos que:

$$(1) R \circ S = S \qquad (2) S \circ T = T$$

Remplazando (1) en (2), obtenemos:

$$(3) (R \circ S) \circ T = T$$

Como la composición o es asociativa (no es necesario demostrarlo, pero al menos debe ser mencionado), entonces:

$$(4) R \circ (S \circ T) = T$$

Luego reemplazando (2) en (4):

$$R \circ T = T$$

tenemos lo que queremos demostrar, y \leq_1 es asociativa.

Dado lo anterior, el puntaje asignado es el siguiente:

- (4 Puntos) Si la demostración se hace de forma correcta y se menciona o demuestra que ∘ es asociativo.
- (3 Puntos) Si la demostración se hace de forma correcta y no se menciona que ∘ es asociativo.
- (**0 Puntos**) En otro caso.

Pregunta 2.2

Se define la relación \leq_2 como $R \leq_2 T$ si, solo si, $R \circ S \subseteq S$. En este caso, la respuesta a esta pregunta es que \leq_2 NO es transitiva. Para demostrar esto, basta dar un contra ejemplo de la transitividad. Por ejemplo, si tomamos A un conjunto no vacío con dos o más elementos, y definimos:

$$R = A \times A$$
 $S = \emptyset$ $T = \{(a, a) \mid a \in A\}$

Entonces podemos ver fácilmente que se tiene lo siguiente:

 $\begin{array}{lll} R \preceq_2 S & : & \text{ya que } R \circ \emptyset \subseteq \emptyset = S \\ S \preceq_2 T & : & \text{ya que } \emptyset \circ T \subseteq T \\ R \not \preceq_2 T & : & \text{ya que } R \circ T = A \times A \not\subseteq T \text{, dado que } A \text{ tiene dos o mas elementos.} \end{array}$

Por lo tanto, podemos ver que \leq_2 no es transitiva.

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) Si el ejemplo es correcto y fácilmente chequeable.
- (3 Puntos) Si el ejemplo es correcto, pero la aplicación no es tan clara o si el ejemplo es parcialmente correcto, pero la explicación es completa.
- (**0 Puntos**) En otro caso.