

# **Leveraging AI for Enhanced Image Clarity**

Name: Ankit Kumar Name: Aman Kumar

Program: BCA-CT Program: BCA-CT

URN No.:2022-B-09092004A URN No.:2022-B-09092004B

**Guide Name: Prof. Indu Kumari Singh** 



# **Table of Content**

- Introduction
- Problem Statement
- Literature Review
- Research Methodology
- Flow Chart
- Implementation
- Result & Discussion
- Conclusion
- Future Scope
- References



### Introduction

- The project implements an image dehazing tool using the Dark Channel Prior (DCP) method, enhanced with contrast and transmission map refinement.
- It uses PyQt5 for GUI development to provide an interactive experience for users.
- The main aim is to restore visibility and enhance clarity in hazy or foggy images.
- Real-time performance and usability improvements are integrated through threaded processing.

# Problem Statement

- Hazy images suffer from reduced contrast and poor visibility due to atmospheric particles.
- Traditional image enhancement techniques fail to recover lost details effectively in these conditions.
- There's a need for a reliable and interactive system to remove haze and restore image quality.
- The challenge lies in implementing an efficient algorithm within a user-friendly GUI framework.



# Single Image Dehazing Process



**Dark Channel Prior** 

Identify haze in image



Transmission Map Refinement

Enhance haze estimation



**Contrast Enhancement** 

Improve image clarity



### **Literature Review**

- The Dark Channel Prior (DCP) is a widely used approach for single image dehazing proposed by Kaiming He.
- Techniques like Guided Filtering are employed to refine transmission maps for more realistic dehazing.
- Adaptive Histogram Equalization is used in prior studies to enhance contrast in dehazed images.
- Existing dehazing tools often lack interactivity or require high computational resources.

### 1. Dark Channel Computation

Formula:

$$D(x) = \min_{y \in \Omega(x)} \left( \min_{c \in \{r,g,b\}} I^c(y) 
ight)$$

### **Explanation:**

- D(x) is the dark channel value at pixel x
- ullet  $I^c(y)$  is the pixel intensity of channel c in a local patch  $\Omega(x)$
- Implemented using erosion (cv2.erode) on the minimum channel of the image

### 4. Image Recovery (Dehazing)

Formula:

$$J(x) = rac{I(x) - A}{\max(t(x), t_0)} + A$$

### **Explanation:**

- J(x): recovered scene radiance (dehazed image)
- I(x): observed hazy image
- $t_0$ : lower bound on transmission (e.g., 0.1 to avoid division by zero)

### 2. Transmission Map Estimation

Formula:

$$t(x) = 1 - \omega \cdot D\left(rac{I(x)}{A}
ight)$$

#### **Explanation:**

- t(x) is the transmission map at pixel x
- $\omega$  is a constant (typically 0.95)
- ullet A is the atmospheric light
- ullet D is the dark channel of the normalized image  $rac{I(x)}{A}$

### 3. Guided Filter (Refinement of Transmission Map)

#### **Key Equations:**

Linear model:

$$q = a \cdot I + b$$

· Coefficients:

$$a = rac{\mathrm{Cov}_{I,p}}{\mathrm{Var}_I + \epsilon}$$

$$b=\mu_p-a\cdot\mu_I$$

#### Explanation:

- q: output image (refined transmission)
- I: guidance image (grayscale)
- p: initial transmission map
- $\mu$ : local mean, Cov and Var: local statistics over a window
- ε: regularization parameter

This is implemented in the <code>guided\_filter()</code> function.

# Research Methodology

- Implement the DCP-based dehazing pipeline involving dark channel computation, atmospheric light estimation, and transmission map calculation.
- Refine the transmission map using a guided filter for more accurate haze estimation.
- Enhance image quality using adaptive contrast enhancement (CLAHE).
- Integrate these processing steps into a PyQt5based GUI, utilizing multithreading for efficient execution.



# **Flow Chart**





# **Implementation**

- The GUI is created using PyQt5 with components like QLabel, QPushButton, and QProgressBar.
- The core dehazing logic includes functions for dark channel extraction, transmission estimation, and image reconstruction.
- A QThread (DehazingThread) is used to process images without freezing the UI.
- The ImageViewer class provides interactive zoom and pan features for image visualization.



# Time to go Live...!





### **Result & Discussion**

- The dehazed images show significant improvement in visibility and contrast compared to the original.
- The adaptive patch size and guided filter contribute to preserving image details.
- Users can visually compare the original and processed images within the GUI.
- The real-time performance is improved via background threading, enhancing usability.



### **Enhancing Images with Dehazing Tool**



## Conclusion

- The tool effectively removes haze and enhances images using the Dark Channel Prior method.
- GUI integration ensures userfriendliness and real-time feedback.
- The project demonstrates the practical applicability of academic algorithms in software tools.
- It can serve as a foundation for future enhancements like batch processing or video dehazing.

# Future Scope

- Extend the tool to support video dehazing.
- Introduce deep learning-based dehazing algorithms for further accuracy.
- Add features like automatic haze detection and comparison mode.
- Optimize performance for highresolution images and mobile platforms.

### How to enhance the dehazing tool?



### Video Dehazing

Extends the tool to support video processing, enhancing versatility.





### Deep Learning Algorithms

Improves accuracy by integrating advanced algorithms.





### Automatic Haze Detection

Adds convenience by automatically identifying haze levels.





### Performance Optimization

Enhances usability on high-resolution images and mobile devices.



# References

Berman, D., Treibitz, T., & Avidan, S. (2016). Non-local image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1674-1682).

Cai, B., Xu, X., Jia, K., Qing, C., & Tao, D. (2016). DehazeNet: An end-to-end system for single image haze removal. IEEE Transactions on Image Processing, 25(11), 5187 5198.

Engin, D., Genç, A., & Kemal Ekenel, H. (2018). Cycle-dehaze: Enhanced cyclegan for single image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 825-833).

He, K., Sun, J., & Tang, X. (2009). Single image haze removal using dark channel prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1956-1963).



Thank You