

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Geometría II Examen IX

Los Del DGIIM, losdeldgiim.github.io

Jesús Muñoz Velasco

Granada, 2024

Asignatura Geometría II.

Curso Académico 2023-24.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Antonio Ros Mulero.

Descripción Convocatoria Ordinaria¹.

Fecha 14 de junio de 2024.

¹El examen lo pone el departamento.

Ejercicio 1 (3 puntos). Sea f un endomorfismo de un espacio vectorial euclídeo (V,g) que verifica

$$f \circ f = I_V$$

- 1. Estudiar si f es diagonalizable.
- 2. Determinar las condiciones para que f sea una isometría de (V, g).

Ejercicio 2 (3.5 puntos). Sea g_a la métrica en \mathbb{R}^3 cuya forma cuadrática está dada por

$$F_a(x_1, x_2, x_3) = x_2^2 + ax_3^2 + 2x_1x_2 + 2ax_1x_3$$

- 1. Clasificar g_a según los valores de $a \in \mathbb{R}$.
- 2. Calcular el radical de g_a .
- 3. Resolver $F_0(x_1, x_2, x_3) = 0$.

Ejercicio 3 (3.5 puntos). Sea (V, g) un espacio vectorial euclídeo con $\dim_{\mathbb{R}} V = 3$ y s_i la isometría respecto de una recta vectorial $L_i \subset V$ para i = 1, 2.

- 1. Demostrar que si L_1 y L_2 son ortogonales, entonces $s_1 \circ s_2$ es la simetría respecto de la recta vectorial ortogonal a L_1 y L_2 .
- 2. Calcular los elementos notables y la matriz de $s_1 \circ s_2$ respecto de una base ortonormal $\mathcal{B} = \{e_1, e_2, e_3\}$ para $L_1 = \mathcal{L}\{e_1\}$ y $L_2 = \mathcal{L}\{e_2\}$.
- 3. Demostrar que si L_1 y L_2 son distintas y si $s_1 \circ s_2$ es una simetría respecto de una recta, entonces L_1 y L_2 son ortogonales.