



# Fundamental Bands of $^{32}\text{S}^{16}\text{O}_2$

K. Fox

G.D.T. Tejwani

R.J. Corice, Jr.

September 1972

Earth Resources  
and  
Astrophysics Laboratory  
Department of  
Physics and Astronomy  
THE UNIVERSITY OF TENNESSEE  
Knoxville, Tennessee

N74-27250  
(NASA-CR-138668) FUNDAMENTAL BANDS OF  
 $^{32}\text{S}^{16}\text{O}_2$  (Tennessee Univ.) 38 p HC  
\$5.00  
39 CSCL 20L  
Unclass  
G3/26 16032

Addenda and Errata

to

UTPA-ERAL-01

| Page | Line            | Addenda or Errata                                                             |
|------|-----------------|-------------------------------------------------------------------------------|
| 30   | footnote f, add | These values have been corrected<br>for hot band contributions in<br>Ref. 31. |
| 31   | 20              | found several relatively                                                      |
|      | 21 - 22         | for example, with observed<br>positions at 543.60, 1132.03                    |
|      | 22              | (see Tables III - V)                                                          |
|      | 24              | for some other lines                                                          |
| 33   | Ref. 24         | J. Chem. Phys. <u>58</u> , 265 (1973).                                        |
| 34   | Ref. 31         | Chem. Phys. Letters, to be<br>published, 1973.                                |
|      | Ref. 34         | W. W. Kellogg                                                                 |
|      | Ref. 36         | J. Chem. Phys. <u>57</u> , 4676 (1972).                                       |

FUNDAMENTAL BANDS OF  $^{32}\text{S}^{16}\text{O}_2$

K. Fox

G. D. T. Tejwani

R. J. Corice, Jr.

Research Report No. UTPA-ERAL-01

September 1972

Earth Resources and Astrophysics Laboratory

Department of Physics and Astronomy

The University of Tennessee

Knoxville, Tennessee 37916

This work was supported in part by Multidisciplinary Research Grant NGL-43-001-021 from the National Aeronautics and Space Administration. A preliminary report of part of this work was presented at the Symposium on Molecular Structure and Spectroscopy, The Ohio State University, Columbus, 12-16 June 1972, Abstract W2.

## CONTENTS

| <u>Section</u>            | <u>Page</u> |
|---------------------------|-------------|
| Abstract                  | iv          |
| I. INTRODUCTION           | 1           |
| II. EXPERIMENTAL DETAILS  | 1           |
| III. THEORETICAL ANALYSIS | 3           |
| IV. RESULTS               | 7           |
| V. DISCUSSION             | 31          |
| Acknowledgments           | 32          |
| References                | 33          |

## ABSTRACT

The infrared-active vibration-rotation fundamentals of sulfur dioxide have been measured with moderately high spectral resolution. Quantum number assignments have been made for spectral lines from  $J = 0$  to 57, by comparison with theoretically computed spectra which include the effects of centrifugal distortion. The following values for the band centers have been determined:  $v_1^o = 1151.65 \pm 0.10 \text{ cm}^{-1}$ ,  $v_2^o = 517.75 \pm 0.10 \text{ cm}^{-1}$ , and  $v_3^o = 1362.00 \pm 0.10 \text{ cm}^{-1}$ . Intensities of the observed lines have also been computed. Dipole moment derivatives have been obtained.

## I. INTRODUCTION

Nearly twenty years have passed since the important systematic observation of 17 infrared-active vibration-rotation bands of sulfur dioxide by Shelton, Nielsen, and Fletcher.<sup>1</sup> In that work on  $^{32}\text{S}^{16}\text{O}_2$ , unfavorable energy and detector conditions in several spectral regions necessitated the use of slits ranging from 0.30 to 2.00  $\text{cm}^{-1}$ . Consequently, it was not possible to resolve individual transitions, and only sub-branches were assigned.

More recently, high-resolution microwave and far-infrared spectra of  $\text{SO}_2$  arising from pure rotational transitions in the ground and excited states have been obtained.<sup>2-7</sup> From analyses of these spectra, accurate values of rotational and centrifugal distortion constants are available. Hinkley *et al.*<sup>8</sup> have now observed some individual transitions of the  $v_1$  vibration-rotation bands of  $\text{SO}_2$  using tunable semiconductor lasers with very high resolution.<sup>9</sup> Prior to our knowledge of this most recent work,<sup>8,9</sup> we undertook moderately high-resolution studies of all three infrared-active fundamentals of  $^{32}\text{S}^{16}\text{O}_2$  in order to assign as many individual vibration-rotation transitions as possible.

The experimental details for our absorption spectra are discussed in the next Section. In Section III, asymmetric rotor theory is reviewed briefly. Then we present our results in the form of measured spectra, and tabulated experimental and theoretical positions for more than twelve hundred lines. In the last Section, we discuss future studies in which certain experimental and theoretical advances may be expected. Finally, we consider the potential application of our results to laser science and to air pollution problems.

## II. EXPERIMENTAL DETAILS

The anhydrous grade  $^{32}\text{S}^{16}\text{O}_2$  gas sample was obtained from Matheson Gas Products. The stated purity of the sample was 99.98% by weight; with 50, 10, and 30 p.p.m. maxima of  $\text{H}_2\text{O}$ ,  $\text{H}_2\text{SO}_4$ , and non-volatiles, resp. A Perkin-Elmer Model 225 Grating Infrared Spectrophotometer, equipped with an f/5 fore monochromator for pre-dispersion of the radiation, was

used to record the spectra. A 150 lines/mm grating was employed in the first order for the 1100 to 1400  $\text{cm}^{-1}$  region, and a 30 lines/mm grating in the second order for the 475 to 600  $\text{cm}^{-1}$  region. A servo-controlled slit program was utilized to provide constant energy to the thermopile detector. A filtered Sola transformer served as a power supply which minimized external electrical noise and provided a constant voltage to the spectrophotometer.

Before each run, the alignment of the Littrow mount in the fore monochromator, and the position of the thermopile relative to the emerging radiation source were precisely adjusted to maximize signal strength. All scans were recorded on a Model 225 Auxiliary Recorder at a speed of  $0.5 \text{ cm}^{-1}/\text{min}$  at suitable scale expansions. A minimum of five runs was taken for each vibration-rotation band. The best two runs with respect to reproducibility, resolution, and noise level were selected for the theoretical analysis of each band.

Two 10-cm absorption cells, one with NaCl and the other with KBr windows, were used. The cells were placed in the sample compartment for one hour prior to each run in order to stabilize (at approximately 315°K) the temperature increase caused by heating from the Globar radiation source.

The details of our experimental conditions are summarized in Table I. Several runs of  $v_2$  were also made using cells with KRS-5 windows. However, it was found that substantially higher energy was available with the KBr windows due to their lower refractive index; hence, narrower slits could be used. For calibration purposes, spectra with resolution comparable to that achieved in the present work were chosen. In spite of the larger slit width and lower dispersion in our measurements of  $v_2$ , the absolute accuracy in its line positions is the same as that for  $v_1$  and  $v_3$  because of a better intercomparison with the calibration lines.<sup>11</sup>

TABLE I  
EXPERIMENTAL CONDITIONS

|                                                        | $v_1$                               | $v_2$                                        | $v_3$                               |
|--------------------------------------------------------|-------------------------------------|----------------------------------------------|-------------------------------------|
| Pressure (torr)                                        | 30                                  | 40                                           | 1                                   |
| Temperature ( $^{\circ}$ K)                            | $315 \pm 5$                         | $315 \pm 5$                                  | $315 \pm 5$                         |
| Cell length (cm)                                       | 10                                  | 10                                           | 10                                  |
| Window material                                        | NaCl                                | KBr                                          | NaCl                                |
| Slit width ( $\text{cm}^{-1}$ ) <sup>a</sup>           | $0.16 \pm 0.02$                     | $0.32 \pm 0.09$                              | $0.17 \pm 0.02$                     |
| Dispersion ( $\text{cm}/\text{cm}^{-1}$ ) <sup>b</sup> | 2.5                                 | 1                                            | 2.5                                 |
| Calibration band                                       | $v_2$ of $\text{NH}_3$ <sup>c</sup> | $v_5$ of $\text{C}_2\text{D}_2$ <sup>d</sup> | $v_4$ of $\text{CH}_4$ <sup>c</sup> |
| Relative accuracy ( $\text{cm}^{-1}$ )                 | $\pm 0.05$                          | $\pm 0.05$                                   | $\pm 0.05$                          |
| Absolute accuracy ( $\text{cm}^{-1}$ )                 | $\pm 0.10$                          | $\pm 0.10$                                   | $\pm 0.10$                          |
| Grating (lines/mm)                                     | 150                                 | 30                                           | 150                                 |
| Grating (order)                                        | first                               | second                                       | first                               |

<sup>a</sup>Obtained directly from instrumental readings; errors represent maximum range of values.

<sup>b</sup>Determined from comparisons of  $\text{SO}_2$  and calibration lines recorded at identical instrumental settings; errors are less than 1%.

<sup>c</sup>From Ref. 10.

<sup>d</sup>From Ref. 11.

### III. THEORETICAL ANALYSIS

The sulfur dioxide molecule is an asymmetric rotor with  $\text{C}_{2v}$  symmetry,<sup>12</sup> whose bond length and bond angle are 1.4308 Å and  $119^{\circ}20'$ , resp.<sup>7</sup> As the theory of asymmetric top spectra is well known,<sup>12,13</sup> only a brief review pertinent to present work will be given. From Kivelson and Wilson's<sup>14</sup> theory for first-order centrifugal distortion, with the inclusion of second-order terms<sup>15</sup> up to  $\langle P_z^4 \rangle$ , the energy expression is

$$\begin{aligned}
E = E_r - [D_J + 2R_6]J^2(J+1)^2 - [D_{JK} - 4R_6]J(J+1)\langle P_z^2 \rangle \\
- [D_K + 2R_6]\langle P_z^4 \rangle + 2\sigma\delta_J[\langle P_z^2 \rangle - W]J(J+1) \\
+ 4R_5\sigma[\langle P_z^2 \rangle W - \langle P_z^4 \rangle] + 4R_6\sigma^2[\langle P_z^4 \rangle - 2\langle P_z^2 \rangle W + W^2] \\
+ H_{JK}J^2(J+1)^2\langle P_z^2 \rangle + H_{KJ}J(J+1)\langle P_z^4 \rangle,
\end{aligned} \tag{1}$$

where

$$E_r = \frac{1}{2}(B+C)J(J+1) + [A - \frac{1}{2}(B+C)]W(b_p), \tag{2}$$

$$\sigma = -1/b_p = (2A - B - C)/(B-C), \tag{3}$$

and A, B, and C are the rotational constants in order of decreasing magnitude.  $E_r$  is the rigid rotor energy and  $W \equiv W(b_p)$  is the Wang reduced energy. J is the quantum number corresponding to the total angular momentum operator with molecule-fixed z-component  $P_z$ . General formulas for the expectation values  $\langle P_z^2 \rangle$  and  $\langle P_z^4 \rangle$  have been given in Ref. 14. The D's, R's, and  $\sigma_J$  are linear combinations of the  $\tau$ 's, coefficients of centrifugal distortion.<sup>14</sup>

The absolute intensity of an absorption line corresponding to a transition between initial and final states with quantum numbers  $n''$  and  $n'$ , resp., is<sup>16</sup>

$$I_{n''n'} = \frac{8\pi^3 N g_{n''} v [1 - \exp(-hv/kT)] \exp(-E_{n''}/kT)}{3hcp \sum_{n''} g_{n''} \exp(-E_{n''}/kT)} \times |\mu_{n''n'}|^2, \tag{4}$$

where N is the number of molecules per  $\text{cm}^{-3}$ ,  $v \equiv (E_{n'} - E_{n''})/h$  is the central frequency of the line, and  $g_{n''}$  is the statistical weight factor. The quantity  $\mu_{n''n'}$  is the expectation value of the transition dipole moment, p and T are the gas pressure and temperature, resp., and k, h, and c are universal constants. Eq. (4) can be simplified by collecting into a single constant C all quantities which are essentially unchanged for all the lines of a particular vibration-rotation band. Also, expressing  $|\mu_{n''n'}|^2$  in terms of  $S_{R''R}^g$ , (the square of the direction cosine matrix element along the molecule-fixed g axis) and dipole-moment derivatives,<sup>17</sup> we obtain for the case of a rigid rotor

$$I_{n''n'}^o = C g_{n''} v_i [1 - \exp(-hv_i/kT)] [\exp(-E_{R''}/kT) \left( \frac{\pi}{4\pi c v_i} \right)^2 \sum_g S_{R''R'}^g \left( \frac{\partial \mu_g}{\partial Q_i} \right)^2], \quad (5)$$

where R represents the rotational quantum numbers, and  $Q_i$  is the normal coordinate for the fundamental vibration  $v_i$ . The band center is denoted by  $v_i^o$ .

For a given fundamental vibration, Eq.(5) reduces further to

$$I_{n''n'}^o = C' g_{n''} \left( \frac{v_i}{v_i^o} \right) [1 - \exp(-hv_i/kT)] [\exp(-E_{R''}/kT) \sum_g S_{R''R'}^g], \quad (6)$$

where

$$C' = \frac{\pi N}{3c^2 p \sum_{n''} g_{n''} \exp(-E_{n''}/kT)} \left[ \left( \frac{\partial \mu_a}{\partial Q_i} \right)^2 \text{ or } \left( \frac{\partial \mu_b}{\partial Q_i} \right)^2 \right]. \quad (7)$$

The factorization of Eq.(5) into Eqs.(6) and (7) is a consequence of the fact that the fundamental bands of planar asymmetric rotors such as  $\text{SO}_2$  are of only two types. These are denoted by A (as in  $v_3$ ) or B (as in  $v_1$  and  $v_2$ ) for which the dipole-moment derivative is along the axis of least (a-axis) or intermediate (b-axis) moment of inertia. Thus

$$\sum_g \left( \frac{\partial \mu_g}{\partial Q_i} \right)^2 = \left( \frac{\partial \mu_a}{\partial Q_i} \right)^2 \text{ or } \left( \frac{\partial \mu_b}{\partial Q_i} \right)^2. \quad (8)$$

For computing line intensities  $I_{n''n'}^o/C'$  and line positions  $(E_{n''} - E_{n'})/h$ , we have used the computer program originally written by Pierce and modified by Eggers.<sup>18</sup> This program is very compact and fast.<sup>19</sup> In it, the wave-number range of the entire band is divided into a large number of intervals, each of which may be taken as approximately half a resolution element. The intensity of each transition is assigned to the appropriate interval. When these assignments are completed, the intensity in each interval is distributed over adjacent intervals according to a Gaussian function which takes into account the finite width of the absorption lines. We have used, instead, a triangular distribution function with base equal to twice our experimental slit width. We found that this approach gave the best

TABLE II  
ROTATIONAL AND CENTRIFUGAL DISTORTION CONSTANTS FOR  $^{32}\text{S}^{16}\text{O}_2$

| <u>Ground State<sup>a</sup></u> |                                         | <u>Excited States<sup>c</sup></u> |                              |
|---------------------------------|-----------------------------------------|-----------------------------------|------------------------------|
| Constant                        | Value (in $\text{cm}^{-1}$ )            | Constant                          | Value (in $\text{cm}^{-1}$ ) |
| A                               | $2.0273555 \pm 0.0000006$               |                                   |                              |
| B                               | $0.3441702 \pm 0.0000002$               |                                   |                              |
| C                               | $0.2935302 \pm 0.0000001$               | A                                 | 2.0284336                    |
| $\tau_{zzzz}$                   | $(-3.3095 \pm 0.0010) \times 10^{-4}$   | B                                 | 0.3425071                    |
| $\tau_{xxzz}$                   | $(+0.1439 \pm 0.0002) \times 10^{-4}$   | C                                 | 0.2921169                    |
| $\tau_{xzxz}$                   | $(-0.01775 \pm 0.00018) \times 10^{-4}$ |                                   |                              |
| $\tau_{xxxx}$                   | $(-0.01331 \pm 0.00003) \times 10^{-4}$ |                                   |                              |
| $H_{KJ}$                        | $(-0.0311 \pm 0.0128) \times 10^{-8}$   |                                   |                              |
| $H_{JK}$                        | $(-0.0111 \pm 0.0029) \times 10^{-8}$   | A                                 | 2.0665828                    |
| $\tau_{yyyy}$                   | $- 0.004108 \times 10^{-4}$             | B                                 | 0.3442469                    |
| $\tau_{yyxx}$                   | $- 0.006665 \times 10^{-4}$             | C                                 | 0.2930009                    |
| $\tau_{yyzz}$                   | $+ 0.03529 \times 10^{-4}$              |                                   |                              |
| $D_J$                           | $+0.0020495 \times 10^{-4}$             |                                   |                              |
| $D_K$                           | $+0.865348 \times 10^{-4}$              | A                                 | 2.0066777                    |
| $D_{JK}$                        | $-0.0400224 \times 10^{-4}$             | B                                 | 0.3430118                    |
| $R_5$                           | $+0.0048567 \times 10^{-4}$             | C                                 | 0.2924378                    |
| $R_6$                           | $-0.0063875 \times 10^{-6}$             |                                   |                              |
| $\delta_J$                      | $+0.00575125 \times 10^{-5}$            |                                   |                              |
| $\sigma$                        | 67.47651 <sup>b</sup>                   |                                   |                              |

<sup>a</sup>The first nine values are taken from Ref. 4, the next three are calculated from Eqs. (9-11) of Ref. 15, and the remaining seven are calculated from relations (36) of Ref. 14.

<sup>b</sup>Dimensionless, see Eq. (3).

<sup>c</sup>The values for  $v_1$  are taken from Ref. 6, and those for  $v_2$  and  $v_3$  are taken from Ref. 2.

agreement between the calculated theoretical spectrum and the overall detailed appearance of our experimental spectrum.

Rotational and centrifugal distortion constants, in the ground and excited vibrational states of  $\text{SO}_2$ , used in the computer program have been taken from far-infrared<sup>4</sup> and microwave<sup>2,6</sup> spectra. These values and the remaining derived values, calculated from the relations in Refs. 14 and 15, are given in Table II. The computer program takes into account the fact that in the ground state of  $\text{SO}_2$  only symmetric levels occur because of  $C_{2v}$  symmetry and zero spin of the  $^{16}\text{O}$  nuclei. The initial values for the three band centers were taken from the work of Shelton *et al.*<sup>1</sup>. These values were later adjusted so that the experimental and theoretical spectra would match.

The dipole moment derivatives for the fundamentals were calculated in the following way. Equation (6) was summed over all transitions having  $J \leq 60$ . Previously measured experimental band intensities,<sup>20-23</sup> and a projected value,<sup>8</sup> were taken for  $\sum_{n''} I^o_{n''n''}$ . Our calculated line intensities were used for the sum on the right-hand side of Eq.(6), so that  $C'$  was determined. The sum over  $n''$  in Eq.(7) could be factored, to a good approximation, into a vibrational and a rotational partition function which were readily evaluated from Eqs.(V,17) and (V,29), resp., of Ref. 12. Finally, from the value of  $C'$  obtained using Eq.(6), the dipole moment derivatives were deduced from Eq.(7). As the derivatives occur squared in Eq.(7), only their absolute values could be determined by this method.

#### IV. RESULTS

The results of our experimental and theoretical studies of the fundamental infrared bands of  $^{32}\text{S}^{16}\text{O}_2$  are summarized in Figs. 1-3 and Tables III-VI. A representative portion of these results have also been presented in Ref. 24. The experimental conditions were given in Table I. Spectral resolution in the  $1100-1400 \text{ cm}^{-1}$  region for  $\nu_1$  and  $\nu_3$  was typically about  $0.12 \text{ cm}^{-1}$ , with isolated instances of  $0.10 \text{ cm}^{-1}$  or better. In the  $475-600 \text{ cm}^{-1}$  region for  $\nu_2$ , resolution was characteristically  $0.25 \text{ cm}^{-1}$ , and occasionally  $0.20 \text{ cm}^{-1}$  or better. In the Figures, the upper tracings are the measured experimental spectra, with percent absorption shown in the right-hand vertical scales. It should be noted that both the measured spectra and the right-hand scales are displaced upward by the same amount,

so that 0% absorption denotes the experimental base line.

Our calculated theoretical spectra are also represented in Figs. 1-3. These spectra are the lower tracings, with relative intensity on the left-hand vertical scales. The intensity plotted in the Figures is a normalized distribution of line intensities. This distribution into small intervals was discussed in Sec. III. The normalization, on a linear scale, is made with respect to that distribution of intensities (arbitrarily assigned the value 100 for  $v_1$  and  $v_3$ , and 90 for  $v_2$ ) which is the maximum for all the intervals in a given band. As can be seen in the Figures, there is good agreement between the theoretical and experimental spectra.

In Tables III-V, the observed and computed spectral line positions are compared. Only the stronger theoretical transitions corresponding to each experimental line peak have been listed in these Tables. (Where there is a blank space in the column of experimental line positions, the adjacent theoretical line position corresponds to the previously tabulated experimental line.) With very few minor exceptions, 97% of the tabulated computed lines fall within  $\pm 0.05 \text{ cm}^{-1}$  of the observed lines. Initial- and final-state quantum number assignments, as well as theoretical line intensities  $I_{n''n'}^{\circ}/C'$  defined by Eq.(6), are given for the computed lines in Tables III-V. The quantum numbers  $K_{-1}$  and  $K_1$  are associated with the projection of the total angular momentum (having quantum number J) on the symmetry axis in, resp., the prolate and oblate symmetric top limiting cases.<sup>12,13</sup>

Experimental and theoretical results for  $v_1$  in the spectral range from 1112.5 to  $1200.0 \text{ cm}^{-1}$  are represented in Fig. 1 and Table III. The selection rules<sup>25</sup> are  $\Delta J = 0, \pm 1$ ;  $J = 0 \leftrightarrow J = 0$ ; and  $\Delta K_{-1} = \pm 1, \pm 3, \dots$ . Approximately 450 observed lines have now been assigned. The band center for  $v_1$  has been determined in the present work to be  $1151.65 \pm 0.10 \text{ cm}^{-1}$ . Earlier infrared observations yielded the values 1152 (Ref. 26), 1151.38 (Refs. 27 and 1),  $1152 \pm 1$  (Ref. 28), and  $1151.2 \pm 0.2 \text{ cm}^{-1}$  (Ref. 29). Most recently, Hinkley et al.,<sup>8</sup> using very high resolution (line width less than  $10^{-5} \text{ cm}^{-1}$ ) techniques, have found a value of  $1151.71 \pm 0.01 \text{ cm}^{-1}$  in excellent agreement with our result, to within our experimental error. We have also compared our calculated line positions, taking into account the  $0.06 \text{ cm}^{-1}$  difference in band centers, to the several rather isolated

TABLE III

COMPARISON OF EXPERIMENTAL AND THEORETICAL SPECTRAL LINE POSITIONS, WITH QUANTUM NUMBER ASSIGNMENTS, FOR THE  $v_1$  BAND OF  $^{32}\text{S}^{16}\text{O}_2$  CENTERED AT  $1151.65 \pm 0.10 \text{ cm}^{-1}$ .  
LINE INTENSITIES [SEE SEC.III, ESPECIALLY EQ. (6)] ARE COMPUTED AT  $300^\circ\text{K}$ .

| Line Position<br>(in $\text{cm}^{-1}$ ) |         | Quantum Numbers |           |        |       |            |         |                  |         | Line Position<br>(in $\text{cm}^{-1}$ ) |      | Quantum Numbers |        |       |            |         |                  |  |  |
|-----------------------------------------|---------|-----------------|-----------|--------|-------|------------|---------|------------------|---------|-----------------------------------------|------|-----------------|--------|-------|------------|---------|------------------|--|--|
| Exptl.                                  | Theor.  | $J'$            | $K'_{-1}$ | $K'_1$ | $J''$ | $K''_{-1}$ | $K''_1$ | $\frac{I^o}{C'}$ | Exptl.  | Theor.                                  | $J'$ | $K'_{-1}$       | $K'_1$ | $J''$ | $K''_{-1}$ | $K''_1$ | $\frac{I^o}{C'}$ |  |  |
| 1112.68                                 | 1112.70 | 29              | 5         | 25     | 30    | 6          | 24      | 1.5189           |         | 1119.77                                 | 9    | 7               | 3      | 10    | 8          | 2       | 3.6800           |  |  |
| 1112.77                                 | 1112.80 | 24              | 6         | 18     | 25    | 7          | 19      | 2.1767           | 1120.06 | 1120.04                                 | 24   | 4               | 20     | 25    | 5          | 21      | 2.1291           |  |  |
| 1112.96                                 | 1112.94 | 19              | 7         | 13     | 20    | 8          | 12      | 2.7233           | 1120.34 | 1120.35                                 | 18   | 5               | 13     | 19    | 6          | 14      | 2.9815           |  |  |
| 1113.07                                 | 1113.07 | 14              | 8         | 6      | 15    | 9          | 7       | 3.1098           | 1120.44 | 1120.41                                 | 13   | 6               | 8      | 14    | 7          | 7       | 3.4418           |  |  |
| 1113.17                                 | 1113.17 | 9               | 9         | 1      | 10    | 10         | 0       | 3.3979           |         | 1120.44                                 | 8    | 7               | 1      | 9     | 8          | 2       | 3.7582           |  |  |
| 1113.48                                 | 1113.50 | 23              | 6         | 18     | 24    | 7          | 17      | 2.3113           | 1120.59 | 1120.56                                 | 25   | 3               | 23     | 26    | 4          | 22      | 1.3955           |  |  |
| 1113.66                                 | 1113.63 | 18              | 7         | 11     | 19    | 8          | 12      | 2.8427           | 1120.77 | 1120.73                                 | 46   | 0               | 46     | 47    | 1          | 47      | 1.6644           |  |  |
| 1113.79                                 | 1113.76 | 13              | 8         | 6      | 14    | 9          | 5       | 3.2075           | 1120.99 | 1120.94                                 | 38   | 8               | 30     | 38    | 9          | 29      | 1.0263           |  |  |
| 1113.87                                 | 1113.87 | 41              | 10        | 32     | 41    | 11         | 31      | 0.5309           |         | 1121.04                                 | 17   | 5               | 13     | 18    | 6          | 12      | 3.1023           |  |  |
| 1114.06                                 | 1114.11 | 27              | 5         | 23     | 28    | 6          | 22      | 1.7850           | 1121.09 | 1121.09                                 | 12   | 6               | 6      | 13    | 7          | 7       | 3.5155           |  |  |
| 1114.17                                 | 1114.20 | 22              | 6         | 16     | 23    | 7          | 17      | 2.4453           |         | 1121.10                                 | 7    | 7               | 1      | 8     | 8          | 0       | 3.8452           |  |  |
| 1114.28                                 | 1114.33 | 17              | 7         | 11     | 18    | 8          | 10      | 2.9578           | 1121.21 | 1121.23                                 | 22   | 4               | 18     | 23    | 5          | 19      | 2.4065           |  |  |
| 1114.40                                 | 1114.44 | 12              | 8         | 4      | 13    | 9          | 5       | 3.3020           | 1121.38 | 1121.37                                 | 33   | 8               | 26     | 33    | 9          | 25      | 1.5005           |  |  |
| 1114.58                                 | 1114.61 | 34              | 10        | 24     | 34    | 11         | 23      | 0.9517           | 1121.55 | 1121.51                                 | 44   | 1               | 43     | 45    | 2          | 44      | 1.5687           |  |  |
| 1114.77                                 | 1114.71 | 33              | 10        | 24     | 33    | 11         | 23      | 1.0171           | 1121.75 | 1121.72                                 | 16   | 5               | 11     | 17    | 6          | 12      | 3.1934           |  |  |
| 1114.85                                 | 1114.89 | 26              | 5         | 21     | 27    | 6          | 22      | 1.9247           |         | 1121.76                                 | 11   | 6               | 6      | 12    | 7          | 5       | 3.5817           |  |  |
| 1114.90                                 | 1114.90 | 21              | 6         | 16     | 22    | 7          | 15      | 2.5771           | 1121.94 | 1121.95                                 | 38   | 3               | 35     | 39    | 4          | 36      | 1.1678           |  |  |
| 1114.98                                 | 1115.02 | 16              | 7         | 9      | 17    | 8          | 10      | 3.0674           | 1122.11 | 1122.08                                 | 24   | 8               | 16     | 24    | 9          | 15      | 2.2396           |  |  |
| 1115.08                                 | 1115.11 | 11              | 8         | 4      | 12    | 9          | 3       | 3.3934           |         | 1122.15                                 | 23   | 8               | 16     | 23    | 9          | 15      | 2.2793           |  |  |
| 1115.28                                 | 1115.25 | 27              | 10        | 18     | 27    | 11         | 17      | 1.3696           | 1122.59 | 1122.56                                 | 16   | 8               | 8      | 16    | 9          | 7       | 2.0485           |  |  |
| 1115.50                                 | 1115.51 | 25              | 5         | 21     | 26    | 6          | 20      | 2.0607           |         | 1122.61                                 | 15   | 8               | 8      | 15    | 9          | 7       | 1.9208           |  |  |
| 1115.57                                 | 1115.59 | 20              | 6         | 14     | 21    | 7          | 15      | 2.7059           | 1122.83 | 1122.86                                 | 43   | 1               | 43     | 44    | 0          | 44      | 2.3009           |  |  |
| 1115.69                                 | 1115.71 | 15              | 7         | 9      | 16    | 8          | 8       | 3.1714           | 1123.08 | 1123.09                                 | 14   | 5               | 9      | 15    | 6          | 10      | 3.3624           |  |  |
| 1115.82                                 | 1115.79 | 10              | 8         | 2      | 11    | 9          | 3       | 3.4844           |         | 1123.10                                 | 9    | 6               | 4      | 10    | 7          | 3       | 3.6957           |  |  |
| 1115.91                                 | 1115.89 | 18              | 10        | 8      | 18    | 11         | 7       | 1.3601           | 1123.53 | 1123.48                                 | 40   | 2               | 38     | 41    | 3          | 39      | 1.6539           |  |  |
| 1115.95                                 | 1115.95 | 17              | 10        | 8      | 17    | 11         | 7       | 1.2821           |         | 1123.57                                 | 42   | 0               | 42     | 43    | 1          | 43      | 2.5460           |  |  |
| 1116.27                                 | 1116.24 | 24              | 5         | 19     | 25    | 6          | 20      | 2.2012           | 1123.80 | 1123.77                                 | 13   | 5               | 9      | 14    | 6          | 8       | 3.4379           |  |  |
|                                         | 1116.29 | 19              | 6         | 14     | 20    | 7          | 13      | 2.8305           |         | 1123.77                                 | 8    | 6               | 2      | 9     | 7          | 3       | 3.7491           |  |  |
| 1116.47                                 | 1116.46 | 9               | 8         | 2      | 10    | 9          | 1       | 3.5768           | 1124.13 | 1124.13                                 | 44   | 7               | 37     | 44    | 8          | 36      | 0.6816           |  |  |
| 1116.97                                 | 1116.98 | 18              | 6         | 12     | 19    | 7          | 13      | 2.9500           | 1124.31 | 1124.27                                 | 41   | 1               | 41     | 42    | 0          | 42      | 2.8072           |  |  |
| 1117.05                                 | 1117.07 | 13              | 7         | 7      | 14    | 8          | 6       | 3.3608           |         | 1124.32                                 | 40   | 1               | 39     | 41    | 2          | 40      | 2.3157           |  |  |
| 1117.16                                 | 1117.13 | 8               | 8         | 0      | 9     | 9          | 1       | 3.6753           | 1124.41 | 1124.44                                 | 7    | 6               | 2      | 8     | 7          | 1       | 3.8059           |  |  |
| 1117.59                                 | 1117.61 | 22              | 5         | 17     | 23    | 6          | 18      | 2.4758           |         | 1124.44                                 | 12   | 5               | 7      | 13    | 6          | 8       | 3.4980           |  |  |
| 1117.71                                 | 1117.67 | 17              | 6         | 12     | 18    | 7          | 11      | 3.0635           | 1124.57 | 1124.61                                 | 39   | 3               | 37     | 40    | 2          | 38      | 1.7928           |  |  |
|                                         | 1117.75 | 12              | 7         | 5      | 13    | 8          | 6       | 3.4463           | 1124.76 | 1124.77                                 | 38   | 2               | 36     | 39    | 3          | 37      | 1.9297           |  |  |
| 1118.01                                 | 1118.00 | 28              | 4         | 24     | 29    | 5          | 25      | 1.5874           | 1124.98 | 1124.97                                 | 40   | 0               | 40     | 41    | 1          | 41      | 3.0845           |  |  |
| 1118.12                                 | 1118.11 | 32              | 9         | 23     | 32    | 10         | 22      | 1.3260           | 1125.14 | 1125.10                                 | 6    | 6               | 0      | 7     | 7          | 1       | 3.8752           |  |  |
| 1118.34                                 | 1118.31 | 21              | 5         | 17     | 22    | 6          | 16      | 2.6091           |         | 1125.14                                 | 11   | 5               | 7      | 12    | 6          | 6       | 3.5581           |  |  |
|                                         | 1118.36 | 16              | 6         | 10     | 17    | 7          | 11      | 3.1700           | 1125.36 | 1125.35                                 | 25   | 7               | 19     | 25    | 8          | 18      | 2.6148           |  |  |
| 1118.48                                 | 1118.43 | 11              | 7         | 5      | 12    | 8          | 4       | 3.5272           | 1125.46 | 1125.42                                 | 24   | 7               | 17     | 24    | 8          | 16      | 2.6826           |  |  |
| 1118.65                                 | 1118.62 | 26              | 9         | 17     | 26    | 10         | 16      | 1.7482           |         | 1125.48                                 | 23   | 7               | 17     | 23    | 8          | 16      | 2.7364           |  |  |
|                                         | 1118.70 | 25              | 9         | 17     | 25    | 10         | 16      | 1.7966           | 1125.60 | 1125.55                                 | 22   | 7               | 15     | 22    | 8          | 14      | 2.7744           |  |  |
| 1119.02                                 | 1118.98 | 20              | 5         | 15     | 21    | 6          | 16      | 2.7392           |         | 1125.61                                 | 21   | 7               | 15     | 21    | 8          | 14      | 2.7944           |  |  |
|                                         | 1119.05 | 15              | 6         | 10     | 16    | 7          | 9       | 3.2690           | 1125.69 | 1125.67                                 | 39   | 1               | 39     | 40    | 0          | 40      | 3.3775           |  |  |
| 1119.30                                 | 1119.27 | 16              | 9         | 7      | 16    | 10         | 6       | 1.5863           | 1125.83 | 1125.79                                 | 10   | 5               | 5      | 11    | 6          | 6       | 3.5865           |  |  |
|                                         | 1119.32 | 15              | 9         | 7      | 15    | 10         | 6       | 1.4597           |         | 1125.88                                 | 16   | 7               | 9      | 16    | 8          | 8       | 2.5607           |  |  |
| 1119.38                                 | 1119.37 | 14              | 9         | 5      | 14    | 10         | 4       | 1.3056           | 1126.06 | 1126.02                                 | 13   | 7               | 7      | 13    | 8          | 6       | 2.0840           |  |  |
|                                         | 1119.41 | 13              | 9         | 5      | 13    | 10         | 4       | 1.1210           |         | 1126.06                                 | 12   | 7               | 5      | 12    | 8          | 4       | 1.8561           |  |  |
| 1119.62                                 | 1119.66 | 19              | 5         | 15     | 20    | 6          | 14      | 2.8635           | 1126.14 | 1126.13                                 | 19   | 3               | 17     | 20    | 4          | 16      | 2.4674           |  |  |
| 1119.73                                 | 1119.73 | 14              | 6         | 8      | 15    | 7          | 9       | 3.3595           | 1126.37 | 1126.37                                 | 38   | 0               | 38     | 39    | 1          | 39      | 3.6848           |  |  |

TABLE III (Continued)

| Line Position<br>(in cm <sup>-1</sup> ) |         | Quantum Numbers |                  |                 |     |                   |                  |                  |         | Line Positions<br>(in cm <sup>-1</sup> ) |    | Quantum Numbers  |                 |     |                   |                  |                  |  |  |
|-----------------------------------------|---------|-----------------|------------------|-----------------|-----|-------------------|------------------|------------------|---------|------------------------------------------|----|------------------|-----------------|-----|-------------------|------------------|------------------|--|--|
| Exptl.                                  | Theor.  | J'              | K' <sub>-1</sub> | K' <sub>1</sub> | J'' | K'' <sub>-1</sub> | K'' <sub>1</sub> | $\frac{I^o}{C'}$ | Exptl.  | Theor.                                   | J' | K' <sub>-1</sub> | K' <sub>1</sub> | J'' | K'' <sub>-1</sub> | K'' <sub>1</sub> | $\frac{I^o}{C'}$ |  |  |
| 1126.45                                 | 1126.46 | 9               | 5                | 5               | 10  | 6                 | 4                | 3.6173           | 1132.37 | 1132.32                                  | 28 | 1                | 27              | 29  | 2                 | 28               | 4.9822           |  |  |
| 1126.60                                 | 1126.61 | 44              | 1                | 43              | 44  | 2                 | 42               | 0.5291           |         | 1132.37                                  | 21 | 5                | 17              | 21  | 6                 | 16               | 3.8563           |  |  |
| 1126.72                                 | 1126.74 | 20              | 3                | 17              | 21  | 4                 | 18               | 2.5034           |         | 1132.42                                  | 20 | 5                | 15              | 20  | 6                 | 14               | 3.8760           |  |  |
| 1127.08                                 | 1127.06 | 37              | 1                | 37              | 38  | 0                 | 38               | 4.0059           | 1132.57 | 1132.55                                  | 17 | 5                | 13              | 17  | 6                 | 12               | 3.7769           |  |  |
|                                         | 1127.12 | 8               | 5                | 3               | 9   | 6                 | 4                | 3.6422           |         | 1132.60                                  | 16 | 5                | 11              | 16  | 6                 | 10               | 3.6857           |  |  |
| 1127.71                                 | 1127.75 | 36              | 0                | 36              | 37  | 1                 | 37               | 4.3388           | 1132.67 | 1132.64                                  | 15 | 5                | 11              | 15  | 6                 | 10               | 3.5412           |  |  |
| 1128.15                                 | 1128.14 | 32              | 2                | 30              | 33  | 3                 | 31               | 2.6734           |         | 1132.68                                  | 14 | 5                | 9               | 14  | 6                 | 8                | 3.4059           |  |  |
|                                         | 1128.15 | 35              | 6                | 30              | 35  | 7                 | 29               | 1.8199           |         | 1132.71                                  | 13 | 5                | 9               | 13  | 6                 | 8                | 3.2143           |  |  |
| 1128.25                                 | 1128.27 | 33              | 6                | 28              | 33  | 7                 | 27               | 2.0920           | 1132.91 | 1132.87                                  | 8  | 5                | 3               | 8   | 6                 | 2                | 1.7618           |  |  |
|                                         | 1128.29 | 34              | 6                | 28              | 34  | 7                 | 27               | 1.9569           |         | 1132.88                                  | 18 | 2                | 16              | 19  | 3                 | 17               | 2.8849           |  |  |
| 1128.41                                 | 1128.37 | 32              | 6                | 26              | 32  | 7                 | 25               | 2.2303           |         | 1132.89                                  | 7  | 5                | 3               | 7   | 6                 | 2                | 1.1855           |  |  |
|                                         | 1128.39 | 31              | 6                | 26              | 31  | 7                 | 25               | 2.3657           |         | 1132.96                                  | 29 | 3                | 27              | 30  | 2                 | 28               | 2.8422           |  |  |
|                                         | 1128.44 | 35              | 1                | 35              | 36  | 0                 | 36               | 4.6825           | 1133.09 | 1133.13                                  | 4  | 4                | 0               | 5   | 5                 | 1                | 3.4208           |  |  |
|                                         | 1128.45 | 6               | 5                | 1               | 7   | 6                 | 2                | 3.6888           | 1133.19 | 1133.17                                  | 28 | 0                | 28              | 29  | 1                 | 29               | 7.1542           |  |  |
| 1128.51                                 | 1128.49 | 11              | 4                | 8               | 12  | 5                 | 7                | 3.4145           |         | 1133.21                                  | 9  | 3                | 7               | 10  | 4                 | 6                | 3.1590           |  |  |
| 1128.67                                 | 1128.63 | 27              | 6                | 22              | 27  | 7                 | 21               | 2.8713           | 1133.34 | 1133.31                                  | 13 | 2                | 12              | 14  | 3                 | 11               | 2.4385           |  |  |
|                                         | 1128.69 | 26              | 6                | 20              | 26  | 7                 | 19               | 2.9794           | 1133.44 | 1133.48                                  | 27 | 2                | 26              | 28  | 1                 | 27               | 5.1379           |  |  |
| 1128.76                                 | 1128.74 | 25              | 6                | 20              | 25  | 7                 | 19               | 3.0759           | 1133.55 | 1133.53                                  | 26 | 1                | 25              | 27  | 2                 | 26               | 5.2657           |  |  |
|                                         | 1128.80 | 24              | 6                | 18              | 24  | 7                 | 17               | 3.1595           |         | 1133.57                                  | 16 | 2                | 14              | 17  | 3                 | 15               | 2.8738           |  |  |
| 1129.01                                 | 1128.97 | 21              | 6                | 16              | 21  | 7                 | 15               | 3.3104           | 1133.84 | 1133.85                                  | 27 | 1                | 27              | 28  | 0                 | 28               | 7.4758           |  |  |
|                                         | 1129.02 | 20              | 6                | 14              | 20  | 7                 | 13               | 3.3208           | 1134.01 | 1133.98                                  | 35 | 4                | 32              | 35  | 5                 | 31               | 2.2929           |  |  |
| 1129.09                                 | 1129.08 | 19              | 6                | 14              | 19  | 7                 | 13               | 3.3080           | 1134.32 | 1134.32                                  | 35 | 3                | 33              | 35  | 4                 | 32               | 2.1068           |  |  |
|                                         | 1129.10 | 5               | 5                | 1               | 6   | 6                 | 0                | 3.7091           |         | 1134.36                                  | 14 | 2                | 12              | 15  | 3                 | 13               | 2.8689           |  |  |
|                                         | 1129.12 | 34              | 0                | 34              | 35  | 1                 | 35               | 5.0338           | 1134.42 | 1134.47                                  | 33 | 4                | 30              | 33  | 5                 | 29               | 2.6879           |  |  |
| 1129.21                                 | 1129.16 | 10              | 4                | 6               | 11  | 5                 | 7                | 3.4337           | 1134.57 | 1134.54                                  | 7  | 3                | 5               | 8   | 4                 | 4                | 3.0191           |  |  |
|                                         | 1129.23 | 33              | 2                | 32              | 34  | 1                 | 33               | 3.9284           | 1134.67 | 1134.66                                  | 24 | 1                | 23              | 25  | 2                 | 24               | 5.4181           |  |  |
| 1129.32                                 | 1129.27 | 15              | 6                | 10              | 15  | 7                 | 9                | 2.9860           | 1134.82 | 1134.86                                  | 31 | 4                | 28              | 31  | 5                 | 27               | 3.0826           |  |  |
|                                         | 1129.31 | 14              | 6                | 8               | 14  | 7                 | 7                | 2.8287           | 1134.92 | 1134.95                                  | 25 | 2                | 24              | 26  | 1                 | 25               | 5.3532           |  |  |
|                                         | 1129.35 | 13              | 6                | 8               | 13  | 7                 | 7                | 2.6368           | 1135.14 | 1135.18                                  | 25 | 1                | 25              | 26  | 0                 | 26               | 8.0512           |  |  |
| 1129.40                                 | 1129.39 | 12              | 6                | 6               | 12  | 7                 | 5                | 2.4081           | 1135.23 | 1135.20                                  | 6  | 3                | 3               | 7   | 4                 | 4                | 3.0408           |  |  |
|                                         | 1129.43 | 11              | 6                | 6               | 11  | 7                 | 5                | 2.1399           |         | 1135.26                                  | 12 | 2                | 10              | 13  | 3                 | 11               | 2.8578           |  |  |
| 1129.48                                 | 1129.46 | 10              | 6                | 4               | 10  | 7                 | 3                | 1.8285           | 1135.34 | 1135.31                                  | 33 | 3                | 31              | 33  | 4                 | 30               | 2.5510           |  |  |
|                                         | 1129.49 | 9               | 6                | 4               | 9   | 7                 | 3                | 1.4691           |         | 1135.38                                  | 27 | 4                | 24              | 27  | 5                 | 23               | 3.8003           |  |  |
| 1129.60                                 | 1129.58 | 40              | 1                | 39              | 40  | 2                 | 38               | 0.8816           |         | 1135.39                                  | 31 | 2                | 30              | 31  | 3                 | 29               | 2.3144           |  |  |
| 1129.75                                 | 1129.77 | 32              | 1                | 31              | 33  | 2                 | 32               | 4.1613           | 1135.52 | 1135.56                                  | 25 | 4                | 22              | 25  | 5                 | 21               | 4.0872           |  |  |
| 1129.83                                 | 1129.81 | 33              | 1                | 33              | 34  | 0                 | 34               | 5.3914           | 1135.65 | 1135.69                                  | 23 | 4                | 20              | 23  | 5                 | 19               | 4.3029           |  |  |
|                                         | 1129.83 | 9               | 4                | 6               | 10  | 5                 | 5                | 3.4519           | 1135.80 | 1135.76                                  | 28 | 0                | 28              | 28  | 1                 | 27               | 1.6375           |  |  |
| 1130.01                                 | 1130.01 | 14              | 3                | 11              | 15  | 4                 | 12               | 3.0600           |         | 1135.80                                  | 24 | 0                | 24              | 25  | 1                 | 25               | 8.2956           |  |  |
| 1130.48                                 | 1130.48 | 32              | 0                | 32              | 33  | 1                 | 33               | 5.7515           | 1135.96 | 1135.95                                  | 20 | 4                | 16              | 20  | 5                 | 15               | 4.4697           |  |  |
|                                         | 1130.49 | 8               | 4                | 4               | 9   | 5                 | 5                | 3.4370           | 1136.17 | 1136.16                                  | 11 | 4                | 8               | 11  | 5                 | 7                | 3.3022           |  |  |
| 1130.61                                 | 1130.63 | 31              | 2                | 30              | 32  | 1                 | 31               | 4.3889           | 1136.44 | 1136.48                                  | 23 | 2                | 22              | 24  | 1                 | 23               | 5.4102           |  |  |
| 1130.69                                 | 1130.68 | 41              | 5                | 37              | 41  | 6                 | 36               | 1.2360           | 1136.51 | 1136.51                                  | 23 | 1                | 23              | 24  | 0                 | 24               | 8.5048           |  |  |
| 1131.12                                 | 1131.07 | 30              | 1                | 29              | 31  | 2                 | 30               | 4.6025           | 1136.60 | 1136.58                                  | 29 | 2                | 28              | 29  | 3                 | 27               | 2.7615           |  |  |
|                                         | 1131.12 | 24              | 2                | 22              | 25  | 3                 | 23               | 2.9581           | 1136.84 | 1136.87                                  | 30 | 4                | 26              | 30  | 5                 | 25               | 3.5014           |  |  |
|                                         | 1131.17 | 31              | 1                | 31              | 32  | 0                 | 32               | 6.1118           | 1136.94 | 1136.95                                  | 29 | 3                | 27              | 29  | 4                 | 26               | 3.5089           |  |  |
| 1131.25                                 | 1131.27 | 12              | 3                | 9               | 13  | 4                 | 10               | 3.1494           | 1137.05 | 1137.04                                  | 25 | 3                | 23              | 26  | 2                 | 24               | 2.7784           |  |  |
| 1131.48                                 | 1131.48 | 15              | 2                | 14              | 16  | 3                 | 13               | 2.1278           |         | 1137.09                                  | 22 | 0                | 22              | 23  | 1                 | 23               | 8.6727           |  |  |
| 1131.60                                 | 1131.55 | 35              | 5                | 31              | 36  | 6                 | 30               | 2.1061           | 1137.26 | 1137.31                                  | 32 | 4                | 28              | 32  | 5                 | 27               | 3.2221           |  |  |
| 1131.69                                 | 1131.69 | 22              | 2                | 20              | 23  | 3                 | 21               | 2.9339           | 1137.41 | 1137.42                                  | 8  | 2                | 6               | 9   | 3                 | 7                | 2.7337           |  |  |
| 1131.81                                 | 1131.83 | 30              | 0                | 30              | 31  | 1                 | 31               | 6.4680           |         | 1137.44                                  | 30 | 1                | 29              | 30  | 2                 | 28               | 2.6369           |  |  |
| 1131.90                                 | 1131.87 | 11              | 3                | 9               | 12  | 4                 | 8                | 3.1641           | 1137.51 | 1137.53                                  | 18 | 1                | 17              | 19  | 2                 | 18               | 4.9322           |  |  |
| 1132.03                                 | 1131.98 | 29              | 5                | 25              | 29  | 6                 | 24               | 3.0515           | 1137.66 | 1137.69                                  | 27 | 2                | 26              | 27  | 3                 | 25               | 3.2391           |  |  |
|                                         | 1132.03 | 39              | 3                | 37              | 39  | 4                 | 36               | 1.3610           | 1137.81 | 1137.83                                  | 21 | 1                | 21              | 22  | 0                 | 22               | 8.7953           |  |  |
|                                         | 1132.04 | 29              | 2                | 28              | 30  | 1                 | 29               | 4.8037           | 1137.92 | 1137.88                                  | 7  | 2                | 6               | 8   | 3                 | 5                | 2.6373           |  |  |
| 1132.24                                 | 1132.19 | 25              | 5                | 21              | 25  | 6                 | 20               | 3.5706           | 1138.12 | 1138.10                                  | 21 | 2                | 20              | 22  | 1                 | 21               | 5.2795           |  |  |
|                                         | 1132.21 | 26              | 5                | 21              | 26  | 6                 | 20               | 3.4612           |         | 1138.15                                  | 36 | 4                | 32              | 36  | 5                 | 31               | 2.6508           |  |  |
|                                         | 1132.27 | 24              | 5                | 19              | 24  | 6                 | 18               | 3.6708           | 1138.32 | 1138.33                                  | 16 | 1                | 15              | 17  | 2                 | 16               | 4.5275           |  |  |
|                                         | 1132.28 | 23              | 5                | 19              | 23  | 6                 | 18               | 3.7510           | 1138.35 | 20                                       | 0  | 20               | 21              | 1   | 21                | 8.8682           |                  |  |  |

TABLE III (Continued)

| Line Position<br>(in cm <sup>-1</sup> ) |         | Quantum Numbers |                  |                 |     |                   |                  |                     |         | Line Position<br>(in cm <sup>-1</sup> ) |         | Quantum Numbers  |                 |     |                   |                  |                     |        |  |
|-----------------------------------------|---------|-----------------|------------------|-----------------|-----|-------------------|------------------|---------------------|---------|-----------------------------------------|---------|------------------|-----------------|-----|-------------------|------------------|---------------------|--------|--|
| Exptl.                                  | Theor.  | J'              | K' <sub>-1</sub> | K' <sub>1</sub> | J'' | K'' <sub>-1</sub> | K'' <sub>1</sub> | $\frac{I^o}{n''n'}$ | Exptl.  | Theor.                                  | J'      | K' <sub>-1</sub> | K' <sub>1</sub> | J'' | K'' <sub>-1</sub> | K'' <sub>1</sub> | $\frac{I^o}{n''n'}$ |        |  |
| 1138.41                                 | 1138.42 | 34              | 2                | 32              | 34  | 3                 | 31               | 2.6986              | 1145.76 | 1145.72                                 | 7       | 1                | 7               | 7   | 2                 | 6                | 2.9065              |        |  |
| 1138.67                                 | 1138.64 | 6               | 2                | 4               | 7   | 3                 | 5                | 2.5886              | 1145.78 | 1145.78                                 | 18      | 1                | 17              | 18  | 2                 | 16               | 7.6320              |        |  |
|                                         | 1138.71 | 25              | 2                | 24              | 25  | 3                 | 23               | 3.7254              | 1146.07 | 1146.08                                 | 6       | 0                | 6               | 7   | 1                 | 7                | 4.0047              |        |  |
| 1138.84                                 | 1138.85 | 21              | 3                | 19              | 21  | 4                 | 18               | 4.9279              |         | 1146.10                                 | 1146.10 | 5                | 1               | 5   | 5                 | 2                | 4                   | 2.2487 |  |
| 1139.14                                 | 1139.09 | 19              | 3                | 17              | 19  | 4                 | 16               | 5.0126              | 1146.29 | 1146.25                                 | 16      | 4                | 12              | 15  | 5                 | 11               | 1.1381              |        |  |
|                                         | 1139.11 | 14              | 1                | 13              | 15  | 2                 | 14               | 4.0803              |         | 1146.29                                 | 1146.29 | 27               | 5               | 23  | 28                | 4                | 24                  | 1.1181 |  |
|                                         | 1139.15 | 19              | 1                | 19              | 20  | 0                 | 20               | 8.8828              | 1146.39 | 1146.36                                 | 3       | 1                | 3               | 3   | 2                 | 2                | 1.3572              |        |  |
| 1139.52                                 | 1139.48 | 13              | 3                | 11              | 13  | 4                 | 10               | 4.3838              |         | 1146.43                                 | 1146.43 | 22               | 5               | 17  | 21                | 6                | 16                  | 1.0973 |  |
|                                         | 1139.55 | 11              | 3                | 9               | 11  | 4                 | 8                | 3.8750              | 1146.62 | 1146.59                                 | 2       | 1                | 1               | 2   | 2                 | 0                | 0.8270              |        |  |
| 1139.61                                 | 1139.59 | 18              | 0                | 18              | 19  | 1                 | 19               | 8.8436              | 1146.81 | 1146.84                                 | 17      | 4                | 14              | 16  | 5                 | 11               | 1.1990              |        |  |
|                                         | 1139.65 | 7               | 3                | 5               | 7   | 4                 | 4                | 2.4019              | 1146.99 | 1147.02                                 | 21      | 4                | 18              | 22  | 3                 | 19               | 1.5497              |        |  |
| 1139.85                                 | 1139.85 | 18              | 3                | 15              | 18  | 4                 | 14               | 5.1505              | 1147.09 | 1147.05                                 | 12      | 0                | 12              | 12  | 1                 | 11               | 5.1220              |        |  |
| 1140.03                                 | 1140.03 | 32              | 2                | 30              | 32  | 3                 | 29               | 3.4571              |         | 1147.12                                 | 1147.12 | 12               | 1               | 11  | 12                | 2                | 10                  | 7.4668 |  |
|                                         | 1140.07 | 27              | 4                | 24              | 28  | 3                 | 25               | 1.4616              | 1147.16 | 1147.16                                 | 10      | 1                | 9               | 10  | 2                 | 8                | 6.3111              |        |  |
| 1140.42                                 | 1140.42 | 21              | 2                | 20              | 21  | 3                 | 19               | 4.5928              | 1147.46 | 1147.47                                 | 7       | 2                | 6               | 6   | 3                 | 3                | 0.6133              |        |  |
|                                         | 1140.44 | 22              | 3                | 19              | 22  | 4                 | 18               | 5.3365              |         | 1147.50                                 | 1147.50 | 18               | 4               | 14  | 17                | 5                | 13                  | 1.2488 |  |
| 1140.55                                 | 1140.55 | 3               | 2                | 2               | 4   | 3                 | 1                | 2.3031              | 1147.68 | 1147.67                                 | 7       | 7                | 1               | 8   | 0                 | 8                | 4.0908              |        |  |
| 1140.70                                 | 1140.73 | 26              | 1                | 25              | 26  | 2                 | 24               | 3.9157              | 1147.81 | 1147.83                                 | 15      | 3                | 13              | 16  | 2                 | 14               | 1.8796              |        |  |
| 1141.01                                 | 1141.03 | 19              | 1                | 19              | 19  | 2                 | 18               | 3.0150              | 1148.03 | 1148.01                                 | 10      | 0                | 10              | 10  | 1                 | 9                | 5.5528              |        |  |
| 1141.11                                 | 1141.10 | 19              | 2                | 18              | 19  | 3                 | 17               | 4.8900              |         | 1148.05                                 | 1148.05 | 19               | 4               | 16  | 18                | 5                | 13                  | 1.2823 |  |
| 1141.20                                 | 1141.18 | 26              | 3                | 23              | 26  | 4                 | 22               | 5.2910              | 1148.18 | 1148.17                                 | 2       | 0                | 2               | 3   | 1                 | 3                | 1.9475              |        |  |
|                                         | 1141.20 | 2               | 2                | 0               | 3   | 3                 | 1                | 2.2393              |         | 1148.21                                 | 1148.21 | 25               | 5               | 21  | 24                | 6                | 18                  | 1.0752 |  |
| 1141.38                                 | 1141.37 | 32              | 3                | 29              | 32  | 4                 | 28               | 4.3161              | 1148.28 | 1148.28                                 | 25      | 5                | 21              | 26  | 4                 | 22               | 1.2159              |        |  |
| 1141.48                                 | 1141.44 | 30              | 2                | 28              | 30  | 3                 | 27               | 4.3615              | 1148.49 | 1148.48                                 | 26      | 5                | 21              | 27  | 4                 | 24               | 1.1349              |        |  |
|                                         | 1141.44 | 28              | 3                | 25              | 28  | 4                 | 24               | 5.1249              | 1148.61 | 1148.58                                 | 14      | 3                | 11              | 13  | 4                 | 10               | 1.2668              |        |  |
| 1141.53                                 | 1141.53 | 30              | 3                | 27              | 30  | 4                 | 26               | 4.8040              | 1148.75 | 1148.75                                 | 8       | 0                | 8               | 8   | 1                 | 7                | 5.6104              |        |  |
| 1141.84                                 | 1141.85 | 15              | 1                | 15              | 16  | 0                 | 16               | 8.3027              |         | 1148.77                                 | 1148.77 | 20               | 4               | 16  | 19                | 5                | 15                  | 1.3084 |  |
| 1141.93                                 | 1141.94 | 14              | 0                | 14              | 15  | 1                 | 15               | 8.0252              | 1148.87 | 1148.88                                 | 26      | 5                | 21              | 25  | 6                 | 20               | 1.0533              |        |  |
| 1142.10                                 | 1142.08 | 17              | 1                | 17              | 17  | 2                 | 16               | 3.2916              | 1148.98 | 1148.97                                 | 9       | 2                | 8               | 10  | 1                 | 9                | 1.9883              |        |  |
|                                         | 1142.11 | 15              | 2                | 14              | 15  | 3                 | 13               | 5.0050              | 1149.18 | 1149.18                                 | 5       | 1                | 5               | 6   | 0                 | 6                | 2.8037              |        |  |
| 1142.33                                 | 1142.37 | 24              | 1                | 23              | 24  | 2                 | 22               | 4.7593              | 1149.27 | 1149.29                                 | 6       | 0                | 6               | 6   | 1                 | 5                | 5.1109              |        |  |
| 1142.43                                 | 1142.46 | 13              | 2                | 12              | 13  | 3                 | 11               | 4.7709              | 1149.41 | 1149.40                                 | 27      | 5                | 23              | 26  | 6                 | 20               | 1.0221              |        |  |
| 1142.52                                 | 1142.53 | 6               | 1                | 5               | 7   | 2                 | 6                | 2.3426              | 1149.72 | 1149.72                                 | 11      | 2                | 10              | 10  | 3                 | 7                | 1.1804              |        |  |
| 1142.72                                 | 1142.71 | 11              | 2                | 10              | 11  | 3                 | 9                | 4.3361              | 1149.83 | 1149.86                                 | 2       | 0                | 2               | 2   | 1                 | 1                | 2.4036              |        |  |
| 1143.00                                 | 1143.00 | 7               | 2                | 6               | 7   | 3                 | 5                | 2.9282              | 1150.16 | 1150.14                                 | 17      | 3                | 15              | 16  | 4                 | 12               | 1.4377              |        |  |
|                                         | 1143.03 | 15              | 1                | 15              | 15  | 2                 | 14               | 3.5021              | 1150.26 | 1150.28                                 | 16      | 3                | 13              | 17  | 2                 | 16               | 1.2610              |        |  |
|                                         | 1143.04 | 12              | 0                | 12              | 13  | 1                 | 13               | 7.2264              | 1150.72 | 1150.73                                 | 7       | 2                | 6               | 8   | 1                 | 7                | 1.4153              |        |  |
| 1143.12                                 | 1143.12 | 18              | 0                | 18              | 18  | 1                 | 17               | 3.4440              | 1150.88 | 1150.90                                 | 17      | 4                | 14              | 18  | 3                 | 15               | 1.5217              |        |  |
|                                         | 1143.17 | 8               | 2                | 6               | 8   | 3                 | 5                | 3.4007              | 1151.09 | 1151.11                                 | 14      | 3                | 11              | 15  | 2                 | 14               | 1.3597              |        |  |
| 1143.22                                 | 1143.24 | 13              | 1                | 13              | 14  | 0                 | 14               | 7.5874              | 1151.24 | 1151.22                                 | 19      | 3                | 17              | 18  | 4                 | 14               | 1.4650              |        |  |
| 1143.34                                 | 1143.30 | 10              | 2                | 8               | 10  | 3                 | 7                | 4.2219              |         | 1151.26                                 | 1151.26 | 12               | 2               | 10  | 11                | 3                | 9                   | 1.4125 |  |
| 1143.54                                 | 1143.50 | 12              | 2                | 10              | 12  | 3                 | 9                | 4.9900              | 1151.45 | 1151.45                                 | 18      | 3                | 15              | 17  | 4                 | 14               | 1.5178              |        |  |
|                                         | 1143.56 | 4               | 1                | 3               | 5   | 2                 | 4                | 1.9394              | 1151.55 | 1151.54                                 | 15      | 2                | 14              | 14  | 3                 | 11               | 1.3504              |        |  |
| 1143.76                                 | 1143.78 | 14              | 2                | 12              | 14  | 3                 | 11               | 5.7326              |         | 1151.57                                 | 1151.57 | 25               | 4               | 22  | 24                | 5                | 19                  | 1.2357 |  |
|                                         | 1143.79 | 3               | 1                | 3               | 4   | 2                 | 2                | 1.5901              | 1152.02 | 1152.06                                 | 1       | 1                | 1               | 2   | 0                 | 2                | 0.5152              |        |  |
| 1143.88                                 | 1143.88 | 13              | 1                | 13              | 13  | 2                 | 12               | 3.6079              | 1152.20 | 1152.16                                 | 17      | 2                | 16              | 16  | 3                 | 13               | 1.2543              |        |  |
| 1144.08                                 | 1144.03 | 24              | 2                | 22              | 24  | 3                 | 21               | 7.0346              |         | 1152.21                                 | 1152.21 | 21               | 3               | 19  | 20                | 4                | 16                  | 1.4165 |  |
|                                         | 1144.06 | 16              | 2                | 14              | 16  | 3                 | 13               | 6.4419              | 1152.40 | 1152.39                                 | 8       | 1                | 7               | 7   | 2                 | 6                | 1.4213              |        |  |
| 1144.27                                 | 1144.30 | 18              | 2                | 16              | 18  | 3                 | 15               | 7.0459              |         | 1152.40                                 | 1152.40 | 5                | 2               | 4   | 6                 | 1                | 5                   | 0.8794 |  |
| 1144.37                                 | 1144.34 | 22              | 2                | 20              | 22  | 3                 | 19               | 7.4290              | 1152.53 | 1152.52                                 | 19      | 2                | 18              | 18  | 3                 | 15               | 1.0645              |        |  |
|                                         | 1144.41 | 20              | 2                | 18              | 20  | 3                 | 17               | 7.4164              | 1152.62 | 1152.60                                 | 4       | 0                | 4               | 3   | 1                 | 3                | 1.6167              |        |  |
| 1144.64                                 | 1144.61 | 11              | 1                | 11              | 11  | 2                 | 10               | 3.5673              |         | 1152.66                                 | 1152.66 | 27               | 4               | 24  | 26                | 5                | 21                  | 1.1383 |  |
|                                         | 1144.68 | 11              | 1                | 11              | 12  | 0                 | 12               | 6.5969              | 1152.75 | 1152.79                                 | 20      | 5                | 15              | 21  | 4                 | 18               | 1.3376              |        |  |
| 1144.82                                 | 1144.84 | 20              | 1                | 19              | 20  | 2                 | 18               | 6.7459              | 1153.05 | 1153.01                                 | 26      | 4                | 22              | 25  | 5                 | 21               | 1.2263              |        |  |
| 1145.08                                 | 1145.08 | 8               | 0                | 8               | 9   | 1                 | 9                | 5.1188              |         | 1153.06                                 | 1153.06 | 20               | 3               | 17  | 19                | 4                | 16                  | 1.5669 |  |
| 1145.28                                 | 1145.27 | 9               | 1                | 9               | 9   | 2                 | 8                | 3.3423              | 1153.21 | 1153.24                                 | 10      | 3                | 7               | 11  | 2                 | 10               | 1.1990              |        |  |
|                                         | 1145.29 | 13              | 2                | 12              | 14  | 1                 | 13               | 3.2313              | 1153.32 | 1153.30                                 | 9       | 3                | 7               | 10  | 2                 | 8                | 1.1368              |        |  |
| 1145.63                                 | 1145.62 | 15              | 4                | 12              | 14  | 5                 | 9                | 1.0631              | 1153.46 | 1153.43                                 | 2       | 1                | 1               | 2   | 0                 | 2                | 2.4317              |        |  |

TABLE III (Continued)

| Line Position |         | Quantum Numbers        |         |         |     |          |          |                  |  | Line Position |         | Quantum Numbers        |         |         |      |          |          |                  |  |
|---------------|---------|------------------------|---------|---------|-----|----------|----------|------------------|--|---------------|---------|------------------------|---------|---------|------|----------|----------|------------------|--|
|               |         | (in cm <sup>-1</sup> ) |         |         |     |          |          |                  |  |               |         | (in cm <sup>-1</sup> ) |         |         |      |          |          |                  |  |
| Exptl.        | Theor.  | J'                     | K'_{-1} | K'_{+1} | J'' | K''_{-1} | K''_{+1} | $\frac{I^o}{C'}$ |  | Exptl.        | Theor.  | J'                     | K'_{-1} | K'_{+1} | J''  | K''_{-1} | K''_{+1} | $\frac{I^o}{C'}$ |  |
| 1153.57       | 1153.60 | 4                      | 1       | 3       | 4   | 0        | 4        | 4.0585           |  | 1161.46       | 1161.48 | 9                      | 2       | 8       | 8    | 1        | 7        | 2.9454           |  |
| 1153.68       | 1153.68 | 14                     | 4       | 10      | 15  | 3        | 13       | 1.3623           |  | 1161.65       | 1161.67 | 17                     | 1       | 17      | 16   | 0        | 16       | 9.1805           |  |
| 1153.87       | 1153.89 | 6                      | 1       | 5       | 6   | 0        | 6        | 5.1828           |  | 1161.79       | 1161.75 | 28                     | 2       | 26      | 28   | 1        | 27       | 3.4262           |  |
| 1153.99       | 1154.01 | 6                      | 0       | 6       | 5   | 1        | 5        | 2.8458           |  | 1161.96       | 1161.94 | 20                     | 4       | 16      | 20   | 3        | 17       | 5.6210           |  |
|               | 1154.03 | 10                     | 1       | 9       | 9   | 2        | 8        | 2.0182           |  | 1162.24       | 1162.23 | 11                     | 2       | 10      | 10   | 1        | 9        | 3.4213           |  |
| 1154.22       | 1154.18 | 13                     | 4       | 10      | 14  | 3        | 11       | 1.2948           |  | 1162.58       | 1162.55 | 36                     | 3       | 33      | 36   | 2        | 34       | 2.2427           |  |
|               | 1154.24 | 18                     | 5       | 13      | 19  | 4        | 16       | 1.3158           |  | 1162.71       | 1162.67 | 19                     | 1       | 19      | 18   | 0        | 18       | 9.5430           |  |
| 1154.32       | 1154.33 | 8                      | 1       | 7       | 8   | 0        | 8        | 5.7021           |  |               | 1162.73 | 4                      | 3       | 1       | 3    | 2        | 2        | 2.4772           |  |
| 1154.48       | 1154.45 | 8                      | 3       | 5       | 9   | 2        | 8        | 0.9528           |  |               | 1162.75 | 32                     | 5       | 27      | 32   | 4        | 28       | 3.4451           |  |
| 1154.81       | 1154.82 | 22                     | 3       | 19      | 21  | 4        | 18       | 1.5819           |  | 1162.97       | 1162.97 | 23                     | 2       | 22      | 23   | 1        | 23       | 2.5725           |  |
| 1154.92       | 1154.90 | 17                     | 5       | 13      | 18  | 4        | 14       | 1.2858           |  |               | 1162.99 | 20                     | 0       | 20      | 19   | 1        | 19       | 9.6043           |  |
|               | 1154.96 | 10                     | 1       | 9       | 10  | 0        | 10       | 5.6626           |  | 1163.08       | 1163.07 | 30                     | 2       | 28      | 30   | 1        | 29       | 2.8387           |  |
| 1155.10       | 1155.10 | 3                      | 1       | 3       | 2   | 0        | 2        | 1.9924           |  |               | 1163.10 | 19                     | 4       | 16      | 19   | 3        | 17       | 5.3980           |  |
| 1155.47       | 1155.44 | 8                      | 0       | 8       | 7   | 1        | 7        | 4.1914           |  | 1163.36       | 1163.32 | 13                     | 4       | 10      | 13   | 3        | 11       | 4.7295           |  |
| 1155.77       | 1155.75 | 14                     | 2       | 12      | 14  | 1        | 13       | 8.3110           |  |               | 1163.34 | 5                      | 3       | 3       | 4    | 2        | 2        | 2.5867           |  |
|               | 1155.81 | 10                     | 2       | 8       | 10  | 1        | 9        | 6.4671           |  |               | 1163.36 | 27                     | 3       | 25      | 27   | 2        | 26       | 3.5012           |  |
| 1155.96       | 1156.00 | 16                     | 2       | 14      | 16  | 1        | 15       | 8.3573           |  | 1163.48       | 1163.45 | 27                     | 4       | 24      | 27   | 3        | 25       | 4.2901           |  |
| 1156.25       | 1156.28 | 6                      | 2       | 4       | 6   | 1        | 5        | 3.5471           |  |               | 1163.51 | 15                     | 2       | 14      | 14   | 1        | 13       | 4.4284           |  |
| 1156.52       | 1156.52 | 4                      | 2       | 2       | 4   | 1        | 3        | 2.1798           |  | 1163.67       | 1163.68 | 21                     | 1       | 21      | 20   | 0        | 20       | 9.6395           |  |
|               | 1156.55 | 18                     | 2       | 16      | 17  | 3        | 15       | 2.1532           |  | 1164.12       | 1164.08 | 22                     | 0       | 22      | 21   | 1        | 21       | 9.5864           |  |
| 1156.78       | 1156.78 | 14                     | 1       | 13      | 14  | 0        | 14       | 4.6794           |  |               | 1164.09 | 17                     | 2       | 16      | 16   | 1        | 15       | 4.9375           |  |
| 1156.88       | 1156.85 | 10                     | 0       | 10      | 9   | 1        | 9        | 5.5801           |  | 1164.36       | 1164.35 | 28                     | 5       | 23      | 28   | 4        | 24       | 4.0897           |  |
|               | 1156.92 | 3                      | 2       | 2       | 3   | 1        | 3        | 1.4049           |  | 1164.52       | 1164.54 | 7                      | 3       | 5       | 6    | 2        | 4        | 2.8192           |  |
| 1157.09       | 1157.08 | 7                      | 1       | 7       | 6   | 0        | 6        | 4.1544           |  | 1164.71       | 1164.68 | 19                     | 2       | 18      | 18   | 1        | 17       | 5.4038           |  |
|               | 1157.12 | 5                      | 2       | 4       | 5   | 1        | 5        | 2.3308           |  |               | 1164.69 | 23                     | 1       | 23      | 22   | 0        | 22       | 9.4980           |  |
| 1157.38       | 1157.38 | 22                     | 3       | 19      | 22  | 2        | 20       | 7.6736           |  | 1164.98       | 1164.98 | 26                     | 5       | 21      | 26   | 4        | 22       | 4.3905           |  |
|               | 1157.39 | 24                     | 3       | 21      | 24  | 2        | 22       | 7.2681           |  | 1165.08       | 1165.10 | 24                     | 1       | 23      | 23   | 2        | 22       | 5.9336           |  |
|               | 1157.42 | 14                     | 1       | 13      | 13  | 2        | 12       | 3.3537           |  | 1165.18       | 1165.14 | 24                     | 0       | 24      | 23   | 1        | 23       | 9.3436           |  |
| 1157.56       | 1157.58 | 20                     | 3       | 17      | 20  | 2        | 18       | 7.6701           |  |               | 1165.20 | 35                     | 4       | 32      | 35   | 3        | 33       | 3.2080           |  |
| 1157.69       | 1157.66 | 26                     | 3       | 23      | 26  | 2        | 24       | 6.5140           |  | 1165.34       | 1165.32 | 21                     | 2       | 20      | 20   | 1        | 19       | 5.7718           |  |
| 1157.89       | 1157.93 | 16                     | 1       | 15      | 16  | 0        | 16       | 4.1120           |  |               | 1165.37 | 24                     | 5       | 19      | 24   | 4        | 20       | 4.6456           |  |
| 1158.05       | 1158.08 | 22                     | 2       | 20      | 22  | 1        | 21       | 5.9510           |  | 1165.50       | 1165.52 | 35                     | 5       | 31      | 35   | 4        | 32       | 2.5137           |  |
| 1158.20       | 1158.18 | 28                     | 3       | 25      | 28  | 2        | 26       | 5.5542           |  | 1165.73       | 1165.71 | 25                     | 1       | 25      | 24   | 0        | 24       | 9.1533           |  |
|               | 1158.20 | 12                     | 0       | 12      | 11  | 1        | 11       | 6.8886           |  | 1165.82       | 1165.83 | 25                     | 5       | 21      | 25   | 4        | 22       | 4.4831           |  |
| 1158.41       | 1158.41 | 16                     | 3       | 13      | 16  | 2        | 14       | 6.7027           |  |               | 1165.86 | 22                     | 5       | 17      | 22   | 4        | 18       | 4.8266           |  |
| 1158.63       | 1158.62 | 32                     | 4       | 28      | 32  | 3        | 29       | 4.4930           |  | 1165.93       | 1165.97 | 28                     | 2       | 26      | 27   | 3        | 25       | 3.1423           |  |
| 1158.89       | 1158.86 | 11                     | 1       | 11      | 10  | 0        | 10       | 6.5417           |  | 1166.20       | 1166.18 | 26                     | 0       | 26      | 25   | 1        | 25       | 8.9146           |  |
|               | 1158.89 | 14                     | 3       | 11      | 14  | 2        | 12       | 5.9887           |  | 1166.31       | 1166.35 | 26                     | 1       | 25      | 25   | 2        | 24       | 5.9280           |  |
| 1159.16       | 1159.16 | 18                     | 1       | 17      | 18  | 0        | 18       | 3.6090           |  | 1166.67       | 1166.64 | 15                     | 5       | 11      | 15   | 4        | 12       | 4.5809           |  |
| 1159.32       | 1159.33 | 28                     | 4       | 24      | 28  | 3        | 25       | 5.3551           |  |               | 1166.69 | 14                     | 5       | 9       | 14   | 4        | 10       | 4.4081           |  |
|               | 1159.34 | 12                     | 3       | 9       | 12  | 2        | 10       | 5.2332           |  |               | 1166.72 | 27                     | 1       | 27      | 26   | 0        | 26       | 8.6456           |  |
| 1159.48       | 1159.48 | 42                     | 5       | 37      | 42  | 4        | 38       | 1.7129           |  | 1167.00       | 1166.99 | 6                      | 5       | 1       | 6    | 4        | 2        | 1.4387           |  |
|               | 1159.49 | 14                     | 0       | 14      | 13  | 1        | 13       | 7.9961           |  | 1167.20       | 1167.18 | 34                     | 3       | 31      | 33   | 4        | 30       | 1.5014           |  |
| 1159.57       | 1159.57 | 15                     | 2       | 14      | 15  | 1        | 15       | 3.6894           |  |               | 1167.20 | 28                     | 0       | 28      | 27   | 1        | 27       | 8.3422           |  |
| 1159.68       | 1159.67 | 5                      | 2       | 4       | 4   | 1        | 3        | 2.0449           |  | 1167.33       | 1167.31 | 34                     | 6       | 28      | 34   | 5        | 29       | 2.5443           |  |
|               | 1159.69 | 10                     | 3       | 7       | 10  | 2        | 8        | 4.4423           |  | 1167.43       | 1167.40 | 6                      | 4       | 2       | 5    | 3        | 3        | 3.3127           |  |
| 1159.78       | 1159.77 | 13                     | 1       | 13      | 12  | 0        | 12       | 7.6408           |  | 1167.52       | 1167.51 | 28                     | 1       | 27      | 27   | 2        | 26       | 5.7414           |  |
| 1160.04       | 1160.01 | 32                     | 3       | 29      | 32  | 2        | 30       | 3.6337           |  |               | 1167.55 | 13                     | 3       | 11      | 12   | 2        | 10       | 3.1802           |  |
| 1160.30       | 1160.27 | 38                     | 5       | 33      | 38  | 4        | 34       | 2.4571           |  | 1167.72       | 1167.72 | 29                     | 1       | 29      | 28   | 0        | 28       | 8.0155           |  |
|               | 1160.32 | 13                     | 3       | 11      | 13  | 2        | 12       | 5.0457           |  |               | 1167.75 | 37                     | 6       | 32      | 37   | 5        | 33       | 1.9922           |  |
| 1160.46       | 1160.43 | 20                     | 1       | 19      | 20  | 0        | 20       | 3.1720           |  | 1167.95       | 1167.94 | 12                     | 3       | 9       | 11   | 2        | 10       | 2.9401           |  |
|               | 1160.48 | 15                     | 3       | 13      | 15  | 2        | 14       | 5.2988           |  |               | 1167.98 | 35                     | 6       | 30      | 35   | 5        | 31       | 2.3469           |  |
| 1160.71       | 1160.71 | 16                     | 0       | 16      | 15  | 1        | 15       | 8.8276           |  | 1168.20       | 1168.21 | 30                     | 0       | 30      | 29   | 1        | 29       | 7.6665           |  |
|               | 1160.75 | 18                     | 1       | 17      | 17  | 2        | 16       | 4.7414           |  | 1168.29       | 1168.27 | 15                     | 3       | 13      | 14   | 2        | 12       | 3.2105           |  |
| 1161.03       | 1161.00 | 36                     | 5       | 31      | 36  | 4        | 32       | 2.8004           |  | 1168.38       | 1168.37 | 30                     | 6       | 24      | 30   | 5        | 25       | 3.2499           |  |
|               | 1161.07 | 19                     | 3       | 17      | 19  | 2        | 18       | 5.1981           |  | 1168.52       | 1168.50 | 29                     | 2       | 28      | 28   | 1        | 27       | 5.6145           |  |
| 1161.18       | 1161.16 | 19                     | 2       | 18      | 19  | 1        | 19       | 3.2117           |  | 1168.61       | 1168.61 | 30                     | 1       | 29      | 29</ |          |          |                  |  |

TABLE III (Continued)

| Line Position<br>(in cm <sup>-1</sup> ) |         | Quantum Numbers |                  |                 |     |                   |                  |                  | Line Position<br>(in cm <sup>-1</sup> ) |         | Quantum Numbers |                  |                 |     |                   |                  |                  |        |        |
|-----------------------------------------|---------|-----------------|------------------|-----------------|-----|-------------------|------------------|------------------|-----------------------------------------|---------|-----------------|------------------|-----------------|-----|-------------------|------------------|------------------|--------|--------|
| Exptl.                                  | Theor.  | J'              | K' <sub>-1</sub> | K' <sub>1</sub> | J'' | K'' <sub>-1</sub> | K'' <sub>1</sub> | $\frac{I^o}{C'}$ | Exptl.                                  | Theor.  | J'              | K' <sub>-1</sub> | K' <sub>1</sub> | J'' | K'' <sub>-1</sub> | K'' <sub>1</sub> | $\frac{I^o}{C'}$ |        |        |
|                                         |         | 1168.76         | 28               | 6               | 22  | 28                | 5                | 23               | 3.5837                                  | 1176.76 | 1176.76         | 18               | 8               | 10  | 18                | 7                | 11               | 3.2214 |        |
|                                         |         | 1168.77         | 29               | 6               | 24  | 29                | 5                | 25               | 3.4167                                  | 1177.07 | 1177.06         | 12               | 8               | 4   | 12                | 7                | 5                | 2.1942 |        |
| 1168.98                                 | 1169.02 | 27              | 6                | 22              | 27  | 5                 | 23               | 3.7363           |                                         |         | 1177.10         | 1177.17          | 49              | 1   | 49                | 48               | 0                | 48     | 1.8783 |
| 1169.22                                 | 1169.21 | 32              | 0                | 32              | 31  | 1                 | 31               | 6.9266           | 1177.20                                 | 1177.17 | 49              | 1                | 49              | 48  | 0                 | 48               | 1.5961           |        |        |
|                                         |         | 1169.26         | 25               | 6               | 20  | 25                | 5                | 21               | 4.0100                                  | 1177.32 | 1177.30         | 11               | 6               | 6   | 10                | 5                | 5                | 4.2495 |        |
| 1169.32                                 | 1169.33 | 24              | 6                | 18              | 24  | 5                 | 19               | 4.1240           | 1177.41                                 | 1177.38 | 17              | 5                | 13              | 16  | 4                 | 12               | 3.7067           |        |        |
| 1169.54                                 | 1169.55 | 22              | 6                | 16              | 22  | 5                 | 17               | 4.2921           |                                         |         | 1177.40         | 22               | 4               | 18  | 21                | 3                | 19               | 2.5615 |        |
| 1169.63                                 | 1169.66 | 21              | 6                | 16              | 21  | 5                 | 17               | 4.3254           | 1177.90                                 | 1177.90 | 12              | 6                | 6               | 11  | 5                 | 7                | 4.2210           |        |        |
|                                         |         | 1169.67         | 32               | 1               | 31  | 31                | 2                | 30               | 4.9883                                  | 1178.25 | 1178.28         | 7                | 7               | 1   | 6                 | 6                | 0                | 4.6161 |        |
| 1169.80                                 | 1169.82 | 19              | 6                | 14              | 19  | 5                 | 15               | 4.3617           | 1178.43                                 | 1178.44 | 36              | 9                | 27              | 36  | 8                 | 28               | 1.4496           |        |        |
| 1169.94                                 | 1169.96 | 17              | 6                | 12              | 17  | 5                 | 13               | 4.2603           | 1178.60                                 | 1178.58 | 35              | 9                | 27              | 35  | 8                 | 28               | 1.5651           |        |        |
| 1170.10                                 | 1170.08 | 15              | 6                | 10              | 15  | 5                 | 11               | 4.0216           | 1178.90                                 | 1178.89 | 8               | 7                | 1               | 7   | 6                 | 2                | 4.5529           |        |        |
| 1170.20                                 | 1170.19 | 13              | 6                | 8               | 13  | 5                 | 9                | 3.6306           |                                         |         | 1178.94         | 24               | 4               | 20  | 23                | 3                | 21               | 2.1524 |        |
|                                         |         | 1170.19         | 34               | 0               | 34  | 33                | 1                | 33               | 6.1576                                  | 1178.99 | 1178.96         | 32               | 9               | 23  | 32                | 8                | 24               | 1.9216 |        |
|                                         |         | 1170.23         | 12               | 6               | 6   | 12                | 5                | 7                | 3.3512                                  | 1179.46 | 1179.49         | 27               | 9               | 19  | 27                | 8                | 20               | 2.4697 |        |
| 1170.31                                 | 1170.27 | 25              | 3                | 23              | 24  | 2                 | 22               | 3.3749           |                                         |         | 1179.50         | 9                | 7               | 3   | 8                 | 6                | 2                | 4.5036 |        |
|                                         |         | 1170.27         | 11               | 6               | 6   | 11                | 5                | 7                | 3.0034                                  | 1179.55 | 1179.54         | 21               | 5               | 17  | 20                | 4                | 16               | 3.2311 |        |
|                                         |         | 1170.31         | 10               | 6               | 4   | 10                | 5                | 5                | 2.7237                                  |         |                 | 1179.58          | 26              | 9   | 17                | 26               | 8                | 18     | 2.5204 |
|                                         |         | 1170.34         | 33               | 2               | 32  | 32                | 1                | 31               | 4.7563                                  | 1179.68 | 1179.67         | 25               | 9               | 17  | 25                | 8                | 18               | 2.6054 |        |
| 1170.65                                 | 1170.68 | 35              | 1                | 35              | 34  | 0                 | 34               | 5.7715           |                                         |         | 1179.68         | 15               | 6               | 10  | 14                | 5                | 9                | 4.0589 |        |
| 1171.03                                 | 1171.05 | 12              | 4                | 8               | 11  | 3                 | 9                | 3.6027           | 1179.81                                 | 1179.83 | 23              | 9                | 15              | 23  | 8                 | 16               | 2.7489           |        |        |
| 1171.19                                 | 1171.16 | 36              | 0                | 36              | 35  | 1                 | 35               | 5.3892           | 1180.05                                 | 1180.04 | 20              | 9                | 11              | 20  | 8                 | 12               | 2.7809           |        |        |
| 1171.29                                 | 1171.28 | 35              | 2                | 34              | 34  | 1                 | 33               | 4.2481           | 1180.29                                 | 1180.26 | 16              | 6                | 10              | 15  | 5                 | 11               | 3.9776           |        |        |
| 1171.40                                 | 1171.44 | 7               | 5                | 3               | 6   | 4                 | 2                | 3.8878           |                                         |         | 1180.28         | 16               | 9               | 7   | 16                | 8                | 8                | 2.4752 |        |
| 1171.50                                 | 1171.53 | 34              | 7                | 27              | 34  | 6                 | 28               | 2.2343           |                                         |         | 1180.33         | 15               | 9               | 7   | 15                | 8                | 8                | 2.3212 |        |
| 1171.60                                 | 1171.64 | 37              | 1                | 37              | 36  | 0                 | 36               | 5.0134           | 1180.69                                 | 1180.71 | 11              | 7                | 5               | 10  | 6                 | 4                | 4.4112           |        |        |
| 1171.76                                 | 1171.77 | 33              | 7                | 27              | 33  | 6                 | 28               | 2.3927           | 1181.34                                 | 1181.32 | 12              | 7                | 5               | 11  | 6                 | 6                | 4.3578           |        |        |
| 1171.86                                 | 1171.88 | 33              | 3                | 31              | 32  | 2                 | 30               | 3.0935           |                                         |         | 1181.37         | 24               | 5               | 19  | 23                | 4                | 20               | 2.7568 |        |
| 1172.09                                 | 1172.05 | 8               | 5                | 3               | 7   | 4                 | 4                | 3.9194           | 1181.89                                 | 1181.91 | 13              | 7                | 7               | 12  | 6                 | 6                | 4.2958           |        |        |
| 1172.12                                 | 1172.17 | 38              | 0                | 38              | 37  | 1                 | 37               | 4.6462           | 1181.99                                 | 1181.99 | 19              | 6                | 14              | 18  | 5                 | 13               | 3.6572           |        |        |
| 1172.22                                 | 1172.17 | 30              | 7                | 23              | 30  | 6                 | 24               | 2.8660           | 1182.26                                 | 1182.29 | 33              | 10               | 24              | 33  | 9                 | 25               | 1.5309           |        |        |
|                                         |         | 1172.22         | 37               | 2               | 36  | 36                | 1                | 35               | 3.7267                                  |         |                 | 1182.30          | 8               | 8   | 0                 | 7                | 7                | 1      | 4.7038 |
|                                         |         | 1172.25         | 14               | 4               | 10  | 13                | 3                | 11               | 3.5585                                  | 1182.40 | 1182.40         | 32               | 10              | 22  | 32                | 9                | 23               | 1.6311 |        |
| 1172.55                                 | 1172.51 | 35              | 3                | 33              | 34  | 2                 | 32               | 2.8587           | 1182.53                                 | 1182.51 | 14              | 7                | 7               | 13  | 6                 | 8                | 4.2237           |        |        |
|                                         |         | 1172.55         | 27               | 7               | 21  | 27                | 6                | 22               | 3.2991                                  |         |                 | 1182.51          | 31              | 10  | 22                | 31               | 9                | 23     | 1.7294 |
| 1172.59                                 | 1172.59 | 39              | 1                | 39              | 38  | 0                 | 38               | 4.2906           |                                         |         | 1182.56         | 20               | 6               | 14  | 19                | 5                | 15               | 3.5277 |        |
| 1173.04                                 | 1173.04 | 22              | 7                | 15              | 22  | 6                 | 16               | 3.7692           | 1182.63                                 | 1182.61 | 30              | 10               | 20              | 30  | 9                 | 21               | 1.8259           |        |        |
|                                         |         | 1173.06         | 40               | 0               | 40  | 39                | 1                | 39               | 3.9477                                  | 1182.77 | 1182.77         | 29               | 5               | 25  | 28                | 4                | 24               | 1.9713 |        |
| 1173.15                                 | 1173.12 | 21              | 7                | 15              | 21  | 6                 | 16               | 3.8155           |                                         |         | 1182.81         | 28               | 10              | 18  | 28                | 9                | 19               | 2.0047 |        |
|                                         |         | 1173.16         | 39               | 2               | 38  | 38                | 1                | 37               | 3.2142                                  | 1182.93 | 1182.90         | 27               | 10              | 18  | 27                | 9                | 19               | 2.0873 |        |
| 1173.33                                 | 1173.34 | 18              | 7                | 11              | 18  | 6                 | 12               | 3.7734           |                                         |         | 1182.91         | 9                | 8               | 2   | 8                 | 7                | 1                | 4.6166 |        |
| 1173.53                                 | 1173.51 | 15              | 7                | 9               | 15  | 6                 | 10               | 3.4216           | 1183.05                                 | 1183.07 | 25              | 10               | 16              | 25  | 9                 | 17               | 2.2155           |        |        |
|                                         |         | 1173.53         | 41               | 1               | 41  | 40                | 0                | 40               | 3.6193                                  | 1183.18 | 1183.15         | 24               | 10              | 14  | 24                | 9                | 15               | 2.2634 |        |
|                                         |         | 1173.56         | 14               | 7               | 7   | 14                | 6                | 8                | 3.2679                                  | 1183.50 | 1183.50         | 19               | 10              | 10  | 19                | 9                | 11               | 2.2419 |        |
| 1173.99                                 | 1174.00 | 42              | 0                | 42              | 41  | 1                 | 41               | 3.3067           |                                         |         | 1183.52         | 10               | 8               | 2   | 9                 | 7                | 3                | 4.5394 |        |
| 1174.18                                 | 1174.19 | 34              | 8                | 26              | 34  | 7                 | 27               | 1.9510           | 1183.70                                 | 1183.68 | 22              | 6                | 16              | 21  | 5                 | 17               | 3.2426           |        |        |
| 1174.49                                 | 1174.47 | 12              | 5                | 7               | 11  | 4                 | 8                | 3.9738           |                                         |         | 1183.69         | 16               | 7               | 9   | 15                | 6                | 10               | 4.0463 |        |
|                                         |         | 1174.52         | 19               | 4               | 16  | 18                | 3                | 15               | 3.1785                                  | 1184.23 | 1184.21         | 23               | 6               | 18  | 22                | 5                | 17               | 3.0900 |        |
| 1174.73                                 | 1174.70 | 18              | 4                | 14              | 17  | 3                 | 15               | 3.2146           |                                         |         | 1184.27         | 17               | 7               | 11  | 16                | 6                | 10               | 3.9408 |        |
| 1175.01                                 | 1175.01 | 43              | 2                | 42              | 42  | 1                 | 41               | 2.7294           | 1184.69                                 | 1184.72 | 12              | 8                | 4               | 11  | 7                 | 5                | 4.3880           |        |        |
| 1175.18                                 | 1175.19 | 34              | 8                | 26              | 34  | 7                 | 27               | 1.9510           | 1184.78                                 | 1184.77 | 24              | 6                | 18              | 23  | 5                 | 19               | 2.9318           |        |        |
| 1175.36                                 | 1175.33 | 33              | 8                | 26              | 33  | 7                 | 27               | 2.0896           | 1184.89                                 | 1184.85 | 18              | 7                | 11              | 17  | 6                 | 12               | 3.8250           |        |        |
|                                         |         | 1175.38         | 45               | 1               | 45  | 44                | 0                | 44               | 2.4696                                  | 1185.30 | 1185.32         | 13               | 8               | 6   | 12                | 7                | 5                | 4.3060 |        |
| 1175.72                                 | 1175.71 | 30              | 8                | 22              | 30  | 7                 | 23               | 2.5023           | 1185.40                                 | 1185.43 | 19              | 7                | 13              | 18  | 6                 | 12               | 3.6993           |        |        |
| 1175.90                                 | 1175.94 | 28              | 8                | 20              | 28  | 7                 | 21               | 2.7590           | 1185.87                                 | 1185.85 | 26              | 6                | 20              | 25  | 5                 | 21               | 2.6066           |        |        |
| 1175.99                                 | 1176.00 | 20              | 4                | 16              | 19  | 3                 | 17               | 2.9217           | 1186.01                                 | 1186.00 | 20              | 7                | 13              | 19  | 6                 | 14               | 3.5649           |        |        |
| 1176.40                                 | 1176.38 | 27              | 4                | 24              | 26  | 3                 | 23               | 2.2570           |                                         |         | 1186.01         | 30               | 11              | 19  | 30                | 10               | 20               | 1.5172 |        |
|                                         |         | 1176.41         | 23               | 8               | 16  | 23                | 7                | 17               | 3.2253                                  | 1186.14 | 1186.11         | 29               | 11              | 19  | 29                | 10               | 20               | 1.5953 |        |
| 1176.62                                 | 1176.63 | 20              | 8                | 12              | 20  | 7                 | 13               | 3.2975           | 1186.23                                 | 1186.20 | 28              | 11               | 17              | 28  | 10                | 18               | 1.6644           |        |        |

TABLE III (Continued)

| Line Position<br>(in $\text{cm}^{-1}$ ) |         | Quantum Numbers |           |           |       |            |            |                     |      | Line Position<br>(in $\text{cm}^{-1}$ ) |         | Quantum Numbers |           |           |       |            |            |                     |      |
|-----------------------------------------|---------|-----------------|-----------|-----------|-------|------------|------------|---------------------|------|-----------------------------------------|---------|-----------------|-----------|-----------|-------|------------|------------|---------------------|------|
| Exptl.                                  | Theor.  | $J'$            | $K'_{-1}$ | $K'_{+1}$ | $J''$ | $K''_{-1}$ | $K''_{+1}$ | $\frac{I^o}{n''h'}$ | $C'$ | Exptl.                                  | Theor.  | $J'$            | $K'_{-1}$ | $K'_{+1}$ | $J''$ | $K''_{-1}$ | $K''_{+1}$ | $\frac{I^o}{n''h'}$ | $C'$ |
| 1186.53                                 | 1186.51 | 15              | 8         | 8         | 14    | 7          | 7          | 4.1196              |      | 1193.35                                 | 1193.32 | 15              | 10        | 6         | 14    | 9          | 5          | 3.8143              |      |
|                                         | 1186.54 | 24              | 11        | 13        | 24    | 10         | 14         | 1.8513              |      |                                         | 1193.33 | 27              | 8         | 20        | 26    | 7          | 19         | 2.4321              |      |
|                                         | 1186.57 | 21              | 7         | 15        | 20    | 6          | 14         | 3.4270              |      |                                         | 1193.38 | 22              | 13        | 9         | 22    | 12         | 10         | 1.1629              |      |
| 1187.23                                 | 1187.27 | 29              | 6         | 24        | 28    | 5          | 23         | 2.1184              |      | 1193.61                                 | 1193.63 | 18              | 13        | 5         | 18    | 12         | 6          | 0.9632              |      |
| 1187.47                                 | 1187.52 | 11              | 9         | 3         | 10    | 8          | 2          | 4.4136              |      | 1193.71                                 | 1193.73 | 16              | 13        | 3         | 16    | 12         | 4          | 0.7488              |      |
| 1187.68                                 | 1187.69 | 17              | 8         | 10        | 16    | 7          | 9          | 3.8988              |      | 1193.87                                 | 1193.88 | 28              | 8         | 20        | 27    | 7          | 21         | 2.2700              |      |
| 1187.97                                 | 1187.96 | 30              | 6         | 24        | 29    | 5          | 25         | 1.9559              |      |                                         | 1193.89 | 16              | 10        | 6         | 15    | 9          | 7          | 3.6923              |      |
| 1188.12                                 | 1188.12 | 12              | 9         | 3         | 11    | 8          | 4          | 4.3169              |      | 1194.25                                 | 1194.27 | 11              | 11        | 1         | 10    | 10         | 0          | 4.0346              |      |
| 1188.24                                 | 1188.24 | 24              | 7         | 17        | 23    | 6          | 18         | 2.9621              |      | 1194.46                                 | 1194.41 | 29              | 8         | 22        | 28    | 7          | 21         | 2.1156              |      |
|                                         | 1188.27 | 18              | 8         | 10        | 17    | 7          | 11         | 3.7756              |      |                                         | 1194.48 | 17              | 10        | 8         | 16    | 9          | 7          | 3.5695              |      |
| 1188.70                                 | 1188.72 | 13              | 9         | 5         | 12    | 8          | 4          | 4.2182              |      | 1194.88                                 | 1194.88 | 12              | 11        | 1         | 11    | 10         | 2          | 3.9127              |      |
| 1188.95                                 | 1188.98 | 33              | 6         | 28        | 32    | 5          | 27         | 1.5117              |      | 1195.06                                 | 1195.06 | 18              | 10        | 8         | 17    | 9          | 9          | 3.4404              |      |
| 1189.26                                 | 1189.29 | 31              | 12        | 20        | 31    | 11         | 21         | 1.1782              |      |                                         | 1195.10 | 24              | 9         | 15        | 23    | 8          | 16         | 2.7745              |      |
| 1189.36                                 | 1189.32 | 14              | 9         | 5         | 13    | 8          | 6          | 4.1153              |      | 1195.43                                 | 1195.47 | 31              | 8         | 24        | 30    | 7          | 23         | 1.8284              |      |
|                                         | 1189.39 | 30              | 12        | 18        | 30    | 11         | 19         | 1.2443              |      |                                         | 1195.48 | 13              | 11        | 3         | 12    | 10         | 2          | 3.7940              |      |
| 1189.52                                 | 1189.48 | 29              | 12        | 18        | 29    | 11         | 19         | 1.3025              |      | 1195.64                                 | 1195.64 | 19              | 10        | 10        | 18    | 9          | 9          | 3.3070              |      |
|                                         | 1189.57 | 28              | 12        | 16        | 28    | 11         | 17         | 1.3560              |      |                                         | 1195.66 | 25              | 9         | 17        | 24    | 8          | 16         | 2.6211              |      |
| 1189.73                                 | 1189.74 | 26              | 12        | 14        | 26    | 11         | 15         | 1.4432              |      | 1195.99                                 | 1195.99 | 32              | 8         | 24        | 31    | 7          | 25         | 1.6755              |      |
| 1189.83                                 | 1189.82 | 25              | 12        | 14        | 25    | 11         | 15         | 1.4742              |      | 1196.22                                 | 1196.21 | 26              | 9         | 17        | 25    | 8          | 18         | 2.4751              |      |
|                                         | 1189.87 | 27              | 7         | 21        | 26    | 6          | 20         | 2.4777              |      |                                         | 1196.22 | 20              | 10        | 10        | 19    | 9          | 11         | 3.1695              |      |
| 1189.93                                 | 1189.90 | 24              | 12        | 12        | 24    | 11         | 13         | 1.4923              |      | 1196.47                                 | 1196.50 | 33              | 8         | 26        | 32    | 7          | 25         | 1.5390              |      |
|                                         | 1189.91 | 15              | 9         | 7         | 14    | 8          | 6          | 4.0068              |      | 1196.64                                 | 1196.67 | 15              | 11        | 5         | 14    | 10         | 4          | 3.5567              |      |
| 1190.02                                 | 1189.99 | 21              | 8         | 14        | 20    | 7          | 13         | 3.3620              |      | 1196.98                                 | 1197.01 | 34              | 8         | 26        | 33    | 7          | 27         | 1.4083              |      |
|                                         | 1190.04 | 22              | 12        | 10        | 22    | 11         | 11         | 1.4991              |      | 1197.24                                 | 1197.26 | 16              | 11        | 5         | 15    | 10         | 6          | 3.4352              |      |
| 1190.17                                 | 1190.17 | 20              | 12        | 8         | 20    | 11         | 9          | 1.4424              |      | 1197.34                                 | 1197.31 | 28              | 9         | 19        | 27    | 8          | 20         | 2.16'9              |      |
| 1190.44                                 | 1190.41 | 28              | 7         | 21        | 27    | 6          | 22         | 2.3167              |      |                                         | 1197.37 | 22              | 10        | 12        | 21    | 9          | 13         | 2.8856              |      |
| 1190.58                                 | 1190.56 | 22              | 8         | 14        | 21    | 7          | 15         | 3.2155              |      | 1197.81                                 | 1197.85 | 17              | 11        | 7         | 16    | 10         | 6          | 3.3110              |      |
| 1191.05                                 | 1191.09 | 17              | 9         | 9         | 16    | 8          | 8          | 3.7706              |      |                                         | 1197.85 | 29              | 9         | 21        | 28    | 8          | 20         | 2.0291              |      |
| 1192.07                                 | 1192.11 | 13              | 10        | 4         | 12    | 9          | 3          | 4.0434              |      | 1197.93                                 | 1197.93 | 23              | 10        | 14        | 22    | 9          | 13         | 2.7406              |      |
| 1192.26                                 | 1192.24 | 25              | 8         | 18        | 24    | 7          | 17         | 2.7441              |      | 1198.06                                 | 1198.02 | 36              | 8         | 28        | 35    | 7          | 29         | 1.1663              |      |
|                                         | 1192.25 | 19              | 9         | 11        | 18    | 8          | 10         | 3.5088              |      | 1198.26                                 | 1198.23 | 12              | 12        | 0         | 11    | 11         | 1          | 3.6096              |      |
| 1192.73                                 | 1192.70 | 14              | 10        | 4         | 13    | 9          | 5          | 3.9303              |      | 1198.42                                 | 1198.39 | 30              | 9         | 21        | 29    | 8          | 22         | 1.8731              |      |
| 1192.83                                 | 1192.79 | 26              | 8         | 18        | 25    | 7          | 19         | 2.5853              |      |                                         | 1198.44 | 18              | 11        | 7         | 17    | 10         | 8          | 3.1838              |      |
|                                         | 1192.83 | 20              | 9         | 11        | 19    | 8          | 12         | 3.3694              |      | 1198.90                                 | 1198.92 | 31              | 9         | 23        | 30    | 8          | 22         | 1.7333              |      |
| 1192.99                                 | 1193.01 | 27              | 13        | 15        | 27    | 12         | 16         | 1.1176              |      | 1199.45                                 | 1199.43 | 14              | 12        | 2         | 13    | 11         | 3          | 3.3690              |      |
| 1193.09                                 | 1193.09 | 26              | 13        | 13        | 26    | 12         | 14         | 1.1452              |      |                                         | 1199.45 | 32              | 9         | 23        | 31    | 8          | 24         | 1.5983              |      |
| 1193.20                                 | 1193.17 | 25              | 13        | 13        | 25    | 12         | 14         | 1.1649              |      | 1199.58                                 | 1199.60 | 20              | 11        | 9         | 19    | 10         | 10         | 2.9216              |      |
|                                         | 1193.24 | 24              | 13        | 11        | 24    | 12         | 12         | 1.1753              |      |                                         | 1199.63 | 26              | 10        | 16        | 25    | 9          | 17         | 2.2873              |      |



Fig. 1(a). Experimental and theoretical spectra of  $v_1$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range  $1112.5$  to  $1125.0 \text{ cm}^{-1}$ .



Fig. 1(b). Experimental and theoretical spectra of  $v_1$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range  $1125.0$  to  $1137.5 \text{ cm}^{-1}$ .



Fig. 1(c). Experimental and theoretical spectra of  $\nu_1$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range  $1137.5$  to  $1150.0 \text{ cm}^{-1}$ .



Fig. 1(d). Experimental and theoretical spectra of  $\nu_1$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range  $1150.0$  to  $1162.5 \text{ cm}^{-1}$ .



Fig. 1(e). Experimental and theoretical spectra of  $\nu_1$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range 1162.5 to 1175.0  $\text{cm}^{-1}$ .



Fig. 1(f). Experimental and theoretical spectra of  $\nu_1$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range 1175.0 to 1187.5  $\text{cm}^{-1}$ .



Fig. 1(g). Experimental and theoretical spectra of  $v_1$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range 1187.5 to 1200.0  $\text{cm}^{-1}$ .

lines in Table I of Ref. 8, and have determined that the two sets of values agree to  $0.01 \text{ cm}^{-1}$  except for a single line with  $J = 30$  for which the apparent discrepancy is only  $0.02 \text{ cm}^{-1}$ . Subsequently, from a more extensive tabulation provided by Hinkley [Appendix B of Ref. 30] we found that for all lines with  $J \leq 46$ , of which there are 78, the maximum difference in the calculated line positions was  $0.02 \text{ cm}^{-1}$ . These differences may be attributed to the small disparities in assumed excited-state centrifugal distortion constants.

In Fig. 2 and Table IV, we have compared our experimental and theoretical results for  $v_2$  in the spectral range from 470 to  $590 \text{ cm}^{-1}$ . The selection rules for this band<sup>25</sup> are the same as those for  $v_1$ , described above. Because of the lower resolution available in the  $v_2$  region, we have been able to assign only approximately 180 observed lines. Strong well-defined peaks in Fig. 2 correspond to Q sub-branches. A sub-branch, in the case of a nearly prolate symmetric top, is characterized by a constant value of  $K_{-1}$  and the parity of the initial state. Individual lines in these sub-branches are in most cases unresolved. In Table IV, the subscripts to Q denote the changes in  $K_{-1}$  and  $K_1$ . The initial state of the transitions is given in parentheses. For low values of  $K_{-1}$ , the even- and odd-parity



Fig. 2(a). Experimental and theoretical spectra of  $v_2$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range  $470$  to  $500\text{ cm}^{-1}$ .



Fig. 2(b). Experimental and theoretical spectra of  $v_2$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range  $500$  to  $530\text{ cm}^{-1}$ .



Fig. 2(c). Experimental and theoretical spectra of  $\nu_2$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range  $530$  to  $560\text{ cm}^{-1}$ .



Fig. 2(d). Experimental and theoretical spectra of  $\nu_2$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range  $560$  to  $590\text{ cm}^{-1}$ .

TABLE IV

COMPARISON OF EXPERIMENTAL AND THEORETICAL SPECTRAL LINE POSITIONS, WITH QUANTUM NUMBER ASSIGNMENTS, FOR THE  $v_2$  BAND OF  $^{32}\text{S}^{16}\text{O}_2$  CENTERED AT  $517.75 \pm 0.10 \text{ cm}^{-1}$ . LINE INTENSITIES [SEE SEC. III, ESPECIALLY EQ.(6)] ARE COMPUTED AT 300°K. SEE SEC. III FOR Q SUB-BRANCH NOTATION.

| Line Position |                                   | Quantum Numbers                   |           |        |     |            |         |                  |        | Line Position                     |        | Quantum Numbers |        |     |            |         |                  |        |  |
|---------------|-----------------------------------|-----------------------------------|-----------|--------|-----|------------|---------|------------------|--------|-----------------------------------|--------|-----------------|--------|-----|------------|---------|------------------|--------|--|
|               |                                   |                                   |           |        |     |            |         |                  |        |                                   |        |                 |        |     |            |         |                  |        |  |
| Exptl.        | Theor.                            | J'                                | $K'_{-1}$ | $K'_1$ | J'' | $K''_{-1}$ | $K''_1$ | $\frac{I^o}{C'}$ | Exptl. | Theor.                            | J'     | $K'_{-1}$       | $K'_1$ | J'' | $K''_{-1}$ | $K''_1$ | $\frac{I^o}{C'}$ |        |  |
| 477.85        | 477.87                            | 12                                | 10        | 2      | 13  | 11         | 3       | 2.4590           | 496.19 | 496.17                            | 5      | 5               | 1      | 6   | 6          | 0       | 3.3267           |        |  |
|               | 477.93                            | 20                                | 8         | 12     | 21  | 9          | 13      | 2.1097           | 497.14 | $Q_{11}^-(J, 7, K_1)$ sub-branch  |        |                 |        |     |            |         |                  |        |  |
| 478.56        | 478.51                            | 11                                | 10        | 2      | 12  | 11         | 1       | 2.5494           | 498.28 | 498.25                            | 24     | 2               | 22     | 25  | 3          | 23      | 2.6347           |        |  |
|               | 478.58                            | 19                                | 8         | 12     | 20  | 9          | 11      | 2.2158           |        | 498.31                            | 31     | 1               | 31     | 32  | 0          | 32      | 5.4562           |        |  |
| 480.48        | 480.44                            | 12                                | 9         | 3      | 13  | 10         | 4       | 2.6890           | 499.31 | 499.36                            | 29     | 2               | 28     | 30  | 1          | 29      | 4.2949           |        |  |
|               | 480.52                            | 16                                | 8         | 8      | 17  | 9          | 9       | 2.5200           | 499.98 | $Q_{11}^-(J, 6, K_1)$ sub-branch  |        |                 |        |     |            |         |                  |        |  |
| 480.85        | 480.86                            | 29                                | 5         | 25     | 30  | 6          | 24      | 1.3175           | 500.62 | 500.64                            | 26     | 1               | 25     | 27  | 2          | 26      | 4.7135           |        |  |
|               | 481.05                            | $Q_{11}^-(J, 13, K_1)$ sub-branch |           |        |     |            |         |                  |        | 500.66                            | 27     | 2               | 26     | 28  | 1          | 27      | 4.6028           |        |  |
| 481.60        | 481.66                            | 23                                | 6         | 18     | 24  | 7          | 17      | 2.0091           | 500.81 | 500.77                            | 27     | 1               | 27     | 28  | 0          | 28      | 6.6981           |        |  |
| 482.68        | 482.65                            | 56                                | 0         | 56     | 57  | 1          | 57      | 0.3980           |        | 500.82                            | 41     | 4               | 38     | 41  | 5          | 37      | 1.1296           |        |  |
| 482.93        | 482.85                            | 26                                | 5         | 21     | 27  | 6          | 22      | 1.6756           | 501.67 | 501.64                            | 24     | 1               | 23     | 25  | 2          | 24      | 4.8564           |        |  |
|               | 482.93                            | 21                                | 6         | 16     | 22  | 7          | 15      | 2.2448           |        | 501.72                            | 12     | 2               | 10     | 13  | 3          | 11      | 2.5632           |        |  |
| 483.38        | $Q_{11}^-(J, 12, K_1)$ sub-branch |                                   |           |        |     |            |         |                  | 501.87 | 501.88                            | 34     | 1               | 33     | 34  | 2          | 32      | 1.5773           |        |  |
| 484.16        | 484.21                            | 19                                | 6         | 14     | 20  | 7          | 13      | 2.4710           | 502.08 | 501.99                            | 25     | 1               | 25     | 26  | 0          | 26      | 7.2273           |        |  |
| 484.39        | 484.39                            | 10                                | 8         | 2      | 11  | 9          | 3       | 3.0456           |        | 502.08                            | 38     | 5               | 33     | 38  | 6          | 32      | 1.5618           |        |  |
| 484.90        | 484.86                            | 18                                | 6         | 12     | 19  | 7          | 13      | 2.5782           | 503.13 | $Q_{11}^-(J, 5, K_1)$ sub-branch  |        |                 |        |     |            |         |                  |        |  |
|               | 484.93                            | 27                                | 4         | 24     | 28  | 5          | 23      | 1.4360           |        | 505.32                            | 505.41 | 25              | 3      | 23  | 25         | 4       | 22               | 3.9681 |  |
| 485.25        | 485.22                            | 13                                | 7         | 7      | 14  | 8          | 6       | 2.9402           | 505.48 | 505.44                            | 32     | 4               | 28     | 32  | 5          | 27      | 2.9251           |        |  |
|               | 485.30                            | 22                                | 5         | 17     | 23  | 6          | 18      | 2.1642           |        | 505.52                            | 5      | 2               | 4      | 6   | 3          | 3       | 2.2454           |        |  |
| 485.67        | 485.68                            | 8                                 | 8         | 0      | 9   | 9          | 1       | 3.2192           |        | 505.56                            | 14     | 1               | 13     | 15  | 2          | 14      | 3.6774           |        |  |
| 485.96        | $Q_{11}^-(J, 11, K_1)$ sub-branch |                                   |           |        |     |            |         |                  | 505.85 | 505.89                            | 21     | 3               | 19     | 21  | 4          | 18      | 4.4600           |        |  |
| 487.65        | 487.68                            | 23                                | 4         | 20     | 24  | 5          | 19      | 1.9687           | 506.20 | $Q_{11}^-(J, 4, K_1)$ sub-branch  |        |                 |        |     |            |         |                  |        |  |
|               | 487.73                            | 48                                | 0         | 48     | 49  | 1          | 49      | 1.1589           | 506.53 | 506.48                            | 16     | 3               | 13     | 16  | 4          | 12      | 4.4691           |        |  |
| 488.04        | 488.07                            | 13                                | 6         | 8      | 14  | 7          | 7       | 3.0237           |        | 506.53                            | 19     | 2               | 18     | 20  | 1          | 19      | 4.4779           |        |  |
|               | 488.65                            | $Q_{11}^-(J, 10, K_1)$ sub-branch |           |        |     |            |         |                  |        | 506.57                            | 23     | 2               | 22     | 23  | 3          | 21      | 3.7980           |        |  |
| 490.03        | 490.01                            | 10                                | 6         | 4      | 11  | 7          | 5       | 3.2090           |        | 506.60                            | 7      | 1               | 7      | 8   | 2          | 6       | 1.4297           |        |  |
|               | 490.07                            | 44                                | 1         | 43     | 45  | 2          | 44      | 1.3835           | 506.99 | 506.95                            | 17     | 1               | 17     | 18  | 0          | 18      | 7.8932           |        |  |
| 490.32        | 490.25                            | 19                                | 4         | 16     | 20  | 5          | 15      | 2.4576           |        | 507.01                            | 10     | 1               | 9      | 11  | 2          | 10      | 2.8783           |        |  |
|               | 490.39                            | 14                                | 5         | 9      | 15  | 6          | 10      | 2.9680           | 507.17 | 507.21                            | 16     | 0               | 16     | 17  | 1          | 17      | 7.7478           |        |  |
| 490.90        | 490.87                            | 43                                | 1         | 43     | 44  | 0          | 44      | 2.0315           | 507.53 | 507.46                            | 2      | 2               | 0      | 3   | 3          | 1       | 2.0263           |        |  |
|               | 490.91                            | 42                                | 2         | 40     | 43  | 3          | 41      | 1.2273           |        | 507.57                            | 22     | 3               | 19     | 22  | 4          | 18      | 4.8466           |        |  |
|               | 490.95                            | 18                                | 4         | 14     | 19  | 5          | 15      | 2.5685           | 508.26 | $Q_{11}^-(J, 3, K_1)$ sub-branch  |        |                 |        |     |            |         |                  |        |  |
| 491.30        | $Q_{11}^-(J, 9, K_1)$ sub-branch  |                                   |           |        |     |            |         |                  | 508.45 | 508.45                            | 21     | 3               | 19     | 22  | 2          | 20      | 2.2442           |        |  |
| 492.02        | 492.04                            | 40                                | 2         | 38     | 41  | 3          | 39      | 1.4625           | 508.64 | 508.60                            | 26     | 3               | 23     | 26  | 4          | 22      | 4.8183           |        |  |
|               | 492.12                            | 41                                | 1         | 41     | 42  | 0          | 42      | 2.4830           |        | 508.67                            | 15     | 2               | 14     | 15  | 3          | 13      | 4.5439           |        |  |
| 492.46        | 492.51                            | 40                                | 1         | 39     | 41  | 2          | 40      | 2.0497           | 509.30 | $eQ_{11}^-(J, 3, K_1)$ sub-branch |        |                 |        |     |            |         |                  |        |  |
| 492.70        | 492.74                            | 40                                | 0         | 40     | 41  | 1          | 41      | 2.7311           |        | 510.03                            | 509.97 | 12              | 2      | 10  | 12         | 3       | 9                | 4.5384 |  |
| 492.92        | 492.95                            | 10                                | 5         | 5      | 11  | 6          | 6       | 3.1747           |        | 510.03                            | 28     | 2               | 26     | 28  | 3          | 25      | 4.8929           |        |  |
| 493.13        | 493.06                            | 19                                | 3         | 17     | 20  | 4          | 16      | 2.1821           |        | 510.06                            | 25     | 4               | 22     | 26  | 3          | 23      | 1.3605           |        |  |
|               | 493.12                            | 38                                | 2         | 36     | 39  | 3          | 37      | 1.7086           | 510.20 | 510.21                            | 13     | 1               | 13     | 13  | 2          | 12      | 3.2827           |        |  |
|               | 493.15                            | 39                                | 2         | 38     | 40  | 1          | 39      | 2.2403           |        | 510.52                            | 510.52 | 22              | 1      | 21  | 22         | 2       | 20               | 5.2404 |  |
| 494.15        | $Q_{11}^-(J, 8, K_1)$ sub-branch  |                                   |           |        |     |            |         |                  |        | 510.54                            | 19     | 3               | 17     | 20  | 2          | 18      | 2.0789           |        |  |
| 495.04        | 495.09                            | 34                                | 2         | 32     | 35  | 3          | 33      | 2.1816           |        | 510.72                            | 510.70 | 16              | 2      | 14  | 16         | 3       | 13               | 5.8705 |  |
| 495.24        | 495.23                            | 36                                | 0         | 36     | 37  | 1          | 37      | 3.8556           |        | 510.89                            | 510.89 | 11              | 1      | 11  | 11         | 2       | 10               | 3.2481 |  |
| 495.65        | 495.61                            | 35                                | 2         | 34     | 36  | 1          | 35      | 3.0684           |        | 510.96                            | 11     | 1               | 11     | 12  | 0          | 12      | 6.0013           |        |  |
| 495.95        | 495.85                            | 35                                | 1         | 35     | 36  | 0          | 36      | 4.1650           |        | 511.57                            | 511.59 | 20              | 1      | 19  | 20         | 2       | 18               | 6.1756 |  |
|               | 495.93                            | 32                                | 2         | 30     | 33  | 3          | 31      | 2.3743           |        | 511.75                            | 511.77 | 13              | 2      | 12  | 14         | 1       | 13               | 2.9435 |  |

TABLE IV (Continued)

| Line Position<br>(in cm <sup>-1</sup> ) |                | Quantum Numbers         |                         |            |     |          |         |                  |                | Line Position<br>(in cm <sup>-1</sup> ) |                         | Quantum Numbers |        |     |          |         |                  |        |  |
|-----------------------------------------|----------------|-------------------------|-------------------------|------------|-----|----------|---------|------------------|----------------|-----------------------------------------|-------------------------|-----------------|--------|-----|----------|---------|------------------|--------|--|
| Exptl.                                  | Theor.         | J'                      | K'_{-1}                 | K'_{1}     | J'' | K''_{-1} | K''_{1} | $\frac{I^o}{C'}$ | Exptl.         | Theor.                                  | J'                      | K'_{-1}         | K'_{1} | J'' | K''_{-1} | K''_{1} | $\frac{I^o}{C'}$ |        |  |
| 512.28                                  | 512.23         | 6                       | 0                       | 6          | 7   | 1        | 7       | 3.6483           | \$26.95        | ${}^0Q_{11}^-$                          | (J, 2, K <sub>1</sub> ) | sub-branch      |        |     |          |         |                  |        |  |
|                                         | 512.24         | 14                      | 0                       | 14         | 14  | 1        | 13      | 4.1510           | 527.71         | 527.72                                  | 26                      | 2               | 24     | 26  | 1        | 25      | 3.8469           |        |  |
| 512.47                                  |                | ${}^0Q_{11}^-$          | (J, 2, K <sub>1</sub> ) | sub-branch |     |          |         |                  | 527.92         | 527.85                                  | 9                       | 2               | 8      | 8   | 1        | 7       | 2.7471           |        |  |
| 512.62                                  | 512.60         | 17                      | 3                       | 15         | 18  | 2        | 16      | 1.9041           |                | 527.89                                  | 19                      | 2               | 18     | 19  | 1        | 19      | 2.9963           |        |  |
| 513.30                                  |                | ${}^eQ_{11}^-$          | (J, 2, K <sub>1</sub> ) | sub-branch |     |          |         |                  |                | 527.96                                  | 32                      | 3               | 29     | 32  | 2        | 30      | 3.3811           |        |  |
| 513.53                                  | 513.46         | 10                      | 1                       | 9          | 10  | 2        | 8       | 5.7682           | 528.16         | 528.13                                  | 17                      | 1               | 17     | 16  | 0        | 16      | 8.5646           |        |  |
|                                         | 513.49         | 12                      | 1                       | 11         | 12  | 2        | 10      | 6.8287           | 528.63         | 528.65                                  | 11                      | 2               | 10     | 10  | 1        | 9       | 3.1947           |        |  |
| 513.57                                  | 11             | 2                       | 10                      | 12         | 1   | 11       | 2.3714  |                  | 528.69         | 22                                      | 4                       | 18              | 22     | 3   | 19       | 5.2661  |                  |        |  |
| 513.93                                  | 513.87         | 7                       | 1                       | 7          | 8   | 0        | 8       | 3.7376           | 528.90         | 528.90                                  | 13                      | 6               | 8      | 14  | 5        | 9       | 0.7189           |        |  |
|                                         | 513.93         | 17                      | 4                       | 14         | 16  | 5        | 11      | 1.0946           | 529.12         | 529.05                                  | 20                      | 1               | 19     | 19  | 2        | 18      | 4.9613           |        |  |
| 514.13                                  | 514.12         | 22                      | 5                       | 17         | 21  | 6        | 16      | 1.0021           | 529.25         | ${}^eQ_{11}^-$                          | (J, 3, K <sub>1</sub> ) | sub-branch      |        |     |          |         |                  |        |  |
| 514.29                                  | 514.25         | 10                      | 0                       | 10         | 10  | 1        | 9       | 5.0873           | 529.65         | 529.59                                  | 18                      | 4               | 14     | 18  | 3        | 15      | 5.1451           |        |  |
|                                         | 514.32         | 21                      | 4                       | 18         | 22  | 3        | 19      | 1.4202           | 529.80         | 529.82                                  | 36                      | 5               | 31     | 36  | 4        | 32      | 2.6035           |        |  |
| 514.52                                  | 514.47         | 13                      | 3                       | 11         | 12  | 4        | 8       | 1.0624           | 530.07         | 530.07                                  | 14                      | 4               | 10     | 14  | 3        | 11      | 4.6422           |        |  |
|                                         | 514.58         | 15                      | 3                       | 13         | 16  | 2        | 14      | 1.7210           | 530.24         | ${}^oQ_{11}^-$                          | (J, 3, K <sub>1</sub> ) | sub-branch      |        |     |          |         |                  |        |  |
| 514.67                                  | 514.64         | 18                      | 4                       | 14         | 17  | 5        | 13      | 1.1410           | 530.70         | 530.73                                  | 17                      | 2               | 16     | 16  | 1        | 15      | 4.6239           |        |  |
| 514.90                                  | 514.94         | 8                       | 0                       | 8          | 8   | 1        | 7       | 5.1415           |                | 530.74                                  | 22                      | 0               | 22     | 21  | 1        | 21      | 8.9777           |        |  |
| 515.17                                  | 515.22         | 24                      | 4                       | 20         | 25  | 3        | 23      | 1.0300           | 530.90         | 530.86                                  | 42                      | 4               | 38     | 42  | 3        | 39      | 1.3252           |        |  |
|                                         | 515.24         | 19                      | 4                       | 16         | 18  | 5        | 13      | 1.1729           |                | 530.92                                  | 36                      | 3               | 33     | 36  | 2        | 34      | 2.0955           |        |  |
| 515.48                                  | 515.44         | 6                       | 0                       | 6          | 6   | 1        | 5       | 4.6843           | 533.31         | 533.28                                  | 11                      | 3               | 9      | 10  | 2        | 8       | 2.9320           |        |  |
| 515.68                                  | 515.67         | 29                      | 6                       | 24         | 28  | 7        | 21      | 0.7352           |                | 533.29                                  | 24                      | 5               | 19     | 24  | 4        | 20      | 4.3585           |        |  |
|                                         | 515.74         | 15                      | 3                       | 13         | 14  | 4        | 10      | 1.2221           | 533.64         | 533.63                                  | 27                      | 1               | 27     | 26  | 0        | 26      | 8.1316           |        |  |
| 516.03                                  | 516.02         | 20                      | 4                       | 16         | 19  | 5        | 15      | 1.1980           |                | 533.64                                  | 30                      | 1               | 29     | 30  | 0        | 30      | 1.4294           |        |  |
|                                         | 516.04         | 22                      | 4                       | 18         | 23  | 3        | 21      | 1.1940           | 533.93         | ${}^oQ_{11}^-$                          | (J, 4, K <sub>1</sub> ) | sub-branch      |        |     |          |         |                  |        |  |
| 516.26                                  | 516.24         | 19                      | 4                       | 16         | 20  | 3        | 17      | 1.4281           | 534.75         | 534.75                                  | 29                      | 1               | 29     | 28  | 0        | 28      | 7.5521           |        |  |
| 517.24                                  | 517.19         | 13                      | 2                       | 12         | 12  | 3        | 9       | 1.2161           |                | 534.81                                  | 27                      | 2               | 26     | 26  | 1        | 25      | 5.5536           |        |  |
| 518.12                                  | 518.09         | 15                      | 2                       | 14         | 14  | 3        | 11      | 1.2397           | 535.01         | 535.02                                  | 15                      | 3               | 13     | 14  | 2        | 12      | 3.0268           |        |  |
|                                         | 518.17         | 18                      | 4                       | 14         | 19  | 3        | 17      | 1.3614           |                | 535.06                                  | 39                      | 5               | 35     | 39  | 4        | 36      | 1.6190           |        |  |
| 518.27                                  | 518.23         | 11                      | 3                       | 9          | 12  | 2        | 10      | 1.3047           | 535.43         | 535.41                                  | 8                       | 4               | 4      | 7   | 3        | 5       | 3.2619           |        |  |
| 518.61                                  | 518.63         | 8                       | 1                       | 7          | 7   | 2        | 6       | 1.3067           | 536.00         | 536.00                                  | 30                      | 1               | 29     | 29  | 2        | 28      | 5.1082           |        |  |
| 518.75                                  | 518.72         | 4                       | 0                       | 4          | 3   | 1        | 3       | 1.4870           |                | 536.60                                  | 536.64                  | 35              | 2      | 34  | 35       | 1       | 35               | 0.8993 |  |
|                                         | 518.75         | 12                      | 3                       | 9          | 13  | 2        | 12      | 1.2369           | 537.20         | 537.16                                  | 23                      | 3               | 21     | 22  | 2        | 20      | 3.1552           |        |  |
| 518.80                                  | 518.80         | 17                      | 2                       | 16         | 16  | 3        | 13      | 1.1521           |                | 537.20                                  | 32                      | 1               | 31     | 31  | 2        | 30      | 4.7154           |        |  |
|                                         | 519.41         | 519.43                  | 21                      | 5          | 17  | 22       | 4       | 18               | 1.2345         |                                         | 537.26                  | 5               | 5      | 1   | 4        | 4       | 0                | 3.6540 |  |
| 520.05                                  | 520.09         | 6                       | 1                       | 5          | 6   | 0        | 6       | 4.7789           | ${}^oQ_{11}^-$ | (J, 5, K <sub>1</sub> )                 | sub-branch              |                 |        |     |          |         |                  |        |  |
| 520.30                                  | 520.33         | 10                      | 1                       | 9          | 9   | 2        | 8       | 1.8594           | 537.77         | ${}^oQ_{11}^-$                          | (J, 6, K <sub>1</sub> ) | sub-branch      |        |     |          |         |                  |        |  |
| 520.53                                  | 520.58         | 8                       | 1                       | 7          | 8   | 0        | 8       | 5.2617           | 538.35         | 538.37                                  | 34                      | 1               | 33     | 33  | 2        | 32      | 4.2627           |        |  |
| 520.85                                  | 520.91         | 19                      | 5                       | 15         | 20  | 4        | 16      | 1.2371           |                | 538.65                                  | 538.63                  | 36              | 0      | 36  | 35       | 1       | 35               | 5.1066 |  |
| 521.10                                  | 521.11         | 13                      | 4                       | 10         | 14  | 3        | 11      | 1.1980           | 539.89         | 539.80                                  | 9                       | 5               | 5      | 8   | 4        | 4       | 3.7478           |        |  |
| 521.27                                  | 521.26         | 10                      | 1                       | 9          | 10  | 0        | 10      | 5.2304           |                | 539.88                                  | 36                      | 2               | 34     | 35  | 3        | 33      | 5.5561           |        |  |
| 521.68                                  | 521.71         | 18                      | 5                       | 13         | 19  | 4        | 16      | 1.2200           | 540.74         | 540.75                                  | 17                      | 4               | 14     | 16  | 3        | 13      | 3.2149           |        |  |
| 522.25                                  | ${}^eQ_{11}^-$ | (J, 1, K <sub>1</sub> ) | sub-branch              |            |     |          |         |                  | 541.05         | 541.07                                  | 11                      | 5               | 7      | 10  | 4        | 6       | 3.7836           |        |  |
| 523.20                                  | 523.20         | 18                      | 2                       | 16         | 18  | 1        | 17      | 7.2577           |                | ${}^oQ_{11}^-$                          | (J, 6, K <sub>1</sub> ) | sub-branch      |        |     |          |         |                  |        |  |
| 523.37                                  |                | ${}^oQ_{11}^-$          | (J, 1, K <sub>1</sub> ) | sub-branch |     |          |         |                  |                | 542.60                                  | 542.54                  | 21              | 4      | 18  | 20       | 3       | 17               | 2.8059 |  |
| 524.12                                  | 524.18         | 9                       | 2                       | 8          | 9   | 1        | 9       | 3.2284           |                | 543.02                                  | 543.00                  | 8               | 6      | 2   | 7        | 5       | 3                | 4.0887 |  |
| 524.50                                  |                | ${}^eQ_{11}^-$          | (J, 2, K <sub>1</sub> ) | sub-branch |     |          |         |                  |                | 543.28                                  | 543.21                  | 23              | 4      | 20  | 22       | 3       | 19               | 2.5741 |  |
| 524.68                                  | 524.66         | 24                      | 3                       | 21         | 24  | 2        | 22      | 6.7275           |                | 543.25                                  | 20                      | 4               | 16     | 19  | 3        | 17      | 2.7931           |        |  |
|                                         | 524.73         | 11                      | 2                       | 10         | 11  | 1        | 11      | 3.4597           | 543.60         | 543.57                                  | 15                      | 5               | 11     | 14  | 4        | 10      | 3.6865           |        |  |
| 525.00                                  | 525.07         | 26                      | 3                       | 23         | 26  | 2        | 24      | 6.0346           |                | 543.63                                  | 9                       | 6               | 4      | 8   | 5        | 3       | 4.0833           |        |  |
| 525.28                                  | 525.33         | 20                      | 2                       | 18         | 19  | 3        | 17      | 2.2149           | 544.24         | 544.20                                  | 16                      | 5               | 11     | 15  | 4        | 12      | 3.6229           |        |  |
| 525.76                                  | 525.77         | 28                      | 3                       | 25         | 28  | 2        | 26      | 5.1517           |                | 544.26                                  | 10                      | 6               | 4      | 9   | 5        | 5       | 4.0765           |        |  |
| 525.90                                  | 525.84         | 14                      | 0                       | 14         | 13  | 1        | 13      | 7.4305           | ${}^oQ_{11}^-$ | (J, 7, K <sub>1</sub> )                 | sub-branch              |                 |        |     |          |         |                  |        |  |
| 526.32                                  | 526.32         | 24                      | 2                       | 22         | 24  | 1        | 23      | 4.6253           | 546.43         | 546.44                                  | 24                      | 4               | 20     | 23  | 3        | 21      | 2.0716           |        |  |
| 526.65                                  | 526.67         | 7                       | 3                       | 5          | 7   | 2        | 6       | 2.8812           |                | 546.91                                  | 546.89                  | 8               | 7      | 1   | 7        | 6       | 2                | 4.3657 |  |
|                                         | 526.72         | 9                       | 3                       | 7          | 9   | 2        | 8       | 3.6547           | 547.48         | 547.42                                  | 15                      | 6               | 10     | 14  | 5        | 9       | 3.8951           |        |  |

TABLE IV (Continued)

| Line Position<br>(in $\text{cm}^{-1}$ ) |                                        | Quantum Numbers |             |          |     |              |           |                  |        | Line Position<br>(in $\text{cm}^{-1}$ ) |        | Quantum Numbers |          |     |              |           |                  |        |  |
|-----------------------------------------|----------------------------------------|-----------------|-------------|----------|-----|--------------|-----------|------------------|--------|-----------------------------------------|--------|-----------------|----------|-----|--------------|-----------|------------------|--------|--|
| Exptl.                                  | Theor.                                 | J'              | K'\$_{-1}\$ | K'\$_1\$ | J'' | K''\$_{-1}\$ | K''\$_1\$ | $\frac{I^o}{C'}$ | Exptl. | Theor.                                  | J''    | K'\$_{-1}\$     | K'\$_1\$ | J'' | K''\$_{-1}\$ | K''\$_1\$ | $\frac{I^o}{C'}$ |        |  |
| 548.09                                  | 548.52                                 | 9               | 7           | 3        | 8   | 6            | 2         | 4.3220           | 564.25 | 564.35                                  | 23     | 9               | 15       | 22  | 8            | 14        | 2.8768           |        |  |
|                                         | 548.05                                 | 16              | 6           | 10       | 15  | 5            | 11        | 3.8209           | 564.97 | 564.97                                  | 24     | 9               | 15       | 23  | 8            | 16        | 2.7291           |        |  |
|                                         | 548.16                                 | 10              | 7           | 3        | 9   | 6            | 4         | 4.2826           | 565.00 | 565.00                                  | 11     | 11              | 1        | 10  | 10           | 0         | 3.9697           |        |  |
| 549.47                                  | $Q_{11}^-$ (J, 8, K\$_1\$) sub-branch  |                 |             |          |     |              |           |                  | 565.25 | 565.23                                  | 31     | 8               | 24       | 30  | 7            | 23        | 1.7898           |        |  |
| 550.23                                  | 550.20                                 | 27              | 5           | 23       | 26  | 4            | 22        | 2.2072           | 565.29 | 565.29                                  | 18     | 10              | 8        | 17  | 9            | 9         | 3.3855           |        |  |
| 550.64                                  | 550.69                                 | 14              | 7           | 7        | 13  | 6            | 8         | 4.0719           | 565.60 | 565.60                                  | 25     | 9               | 17       | 24  | 8            | 16        | 2.5807           |        |  |
| 551.27                                  | 551.32                                 | 15              | 7           | 9        | 14  | 6            | 8         | 3.9951           | 565.64 | 565.64                                  | 12     | 11              | 1        | 11  | 10           | 2         | 3.8531           |        |  |
| 551.52                                  | 551.48                                 | 9               | 8           | 2        | 8   | 7            | 1         | 4.4556           | 565.84 | 565.84                                  | 32     | 8               | 24       | 31  | 7            | 25        | 1.6517           |        |  |
|                                         | 551.52                                 | 31              | 5           | 27       | 30  | 4            | 26        | 1.6228           | 565.87 | 565.87                                  | 19     | 10              | 10       | 18  | 9            | 9         | 3.2567           |        |  |
| 551.79                                  | 551.77                                 | 22              | 6           | 16       | 21  | 5            | 17        | 3.1327           | 566.25 | $Q_{11}^-$ (J, 12, K\$_1\$) sub-branch  |        |                 |          |     |              |           |                  |        |  |
|                                         | 551.84                                 | 28              | 5           | 23       | 27  | 4            | 24        | 1.9979           | 567.15 | 567.19                                  | 21     | 10              | 12       | 20  | 9            | 11        | 2.9881           |        |  |
| 552.01                                  | 551.95                                 | 16              | 7           | 9        | 15  | 6            | 10        | 3.9079           | 567.67 | 567.64                                  | 35     | 8               | 28       | 34  | 7            | 27        | 1.2692           |        |  |
| 552.21                                  | 552.23                                 | 37              | 5           | 33       | 36  | 4            | 32        | 0.9895           | 567.82 | 567.81                                  | 22     | 10              | 12       | 21  | 9            | 13        | 2.8494           |        |  |
| 552.40                                  | 552.37                                 | 23              | 6           | 18       | 22  | 5            | 17        | 2.9881           | 568.40 | 568.44                                  | 23     | 10              | 14       | 22  | 9            | 13        | 2.7087           |        |  |
| 553.65                                  | $Q_{11}^-$ (J, 9, K\$_1\$) sub-branch  |                 |             |          |     |              |           |                  | 568.88 | 568.81                                  | 17     | 11              | 7        | 16  | 10           | 6         | 3.2741           |        |  |
| 554.66                                  | 554.65                                 | 14              | 8           | 6        | 13  | 7            | 7         | 4.0882           | 569.15 | 569.07                                  | 24     | 10              | 14       | 23  | 9            | 15        | 2.5665           |        |  |
|                                         | 554.73                                 | 27              | 6           | 22       | 26  | 5            | 21        | 2.3718           | 569.44 | 569.44                                  | 18     | 11              | 7        | 17  | 10           | 8         | 3.1512           |        |  |
| 554.97                                  | 554.91                                 | 32              | 5           | 27       | 31  | 4            | 28        | 1.3379           | 569.71 | 569.70                                  | 25     | 10              | 16       | 24  | 9            | 15        | 2.4242           |        |  |
| 555.25                                  | 555.29                                 | 15              | 8           | 8        | 14  | 7            | 7         | 3.9971           | 570.09 | 570.07                                  | 19     | 11              | 9        | 18  | 10           | 8         | 3.0250           |        |  |
| 555.55                                  | 555.51                                 | 9               | 9           | 1        | 8   | 8            | 0         | 4.4820           | 570.60 | $Q_{11}^-$ (J, 13, K\$_1\$) sub-branch  |        |                 |          |     |              |           |                  |        |  |
| 555.93                                  | 555.92                                 | 16              | 8           | 8        | 15  | 7            | 9         | 3.8979           | 571.06 | 571.11                                  | 14     | 12              | 2        | 13  | 11           | 3         | 3.3428           |        |  |
| 556.61                                  | 556.55                                 | 17              | 8           | 10       | 16  | 7            | 9         | 3.7900           | 571.29 | 571.34                                  | 21     | 11              | 11       | 20  | 10           | 10        | 2.7653           |        |  |
|                                         | 556.62                                 | 30              | 6           | 24       | 29  | 5            | 25        | 1.9049           | 571.52 | 571.57                                  | 28     | 10              | 18       | 27  | 9            | 19        | 2.0028           |        |  |
| 556.98                                  | 556.94                                 | 24              | 7           | 17       | 23  | 6            | 18        | 2.8826           | 571.95 | 571.97                                  | 22     | 11              | 11       | 21  | 10           | 12        | 2.6327           |        |  |
| 557.23                                  | 557.18                                 | 18              | 8           | 10       | 17  | 7            | 11        | 3.6733           | 572.40 | 572.38                                  | 16     | 12              | 4        | 15  | 11           | 5         | 3.1119           |        |  |
| 557.85                                  | $Q_{11}^-$ (J, 10, K\$_1\$) sub-branch |                 |             |          |     |              |           |                  | 572.62 | 572.60                                  | 23     | 11              | 13       | 22  | 10           | 12        | 2.4991           |        |  |
| 558.45                                  | 558.43                                 | 20              | 8           | 12       | 19  | 7            | 13        | 3.4175           | 573.08 | 573.01                                  | 17     | 12              | 6        | 16  | 11           | 5         | 2.9948           |        |  |
| 558.66                                  | 558.68                                 | 14              | 9           | 5        | 13  | 8            | 6         | 4.0122           | 573.45 | 573.43                                  | 31     | 10              | 22       | 30  | 9            | 21        | 1.6058           |        |  |
| 559.12                                  | 559.06                                 | 21              | 8           | 14       | 20  | 7            | 13        | 3.2799           | 573.70 | 573.65                                  | 18     | 12              | 6        | 17  | 11           | 7         | 2.8760           |        |  |
|                                         | 559.09                                 | 34              | 6           | 28       | 33  | 5            | 29        | 1.3324           | 574.01 | 574.05                                  | 32     | 10              | 22       | 31  | 9            | 23        | 1.4819           |        |  |
| 559.37                                  | 559.31                                 | 15              | 9           | 7        | 14  | 8            | 6         | 3.9049           | 574.48 | 574.48                                  | 26     | 11              | 15       | 25  | 10           | 16        | 2.0981           |        |  |
|                                         | 559.38                                 | 28              | 7           | 21       | 27  | 6            | 22        | 2.2628           | 574.95 | $Q_{11}^-$ (J, 14, K\$_1\$) sub-branch  |        |                 |          |     |              |           |                  |        |  |
| 560.20                                  | 560.23                                 | 10              | 10          | 0        | 9   | 9            | 1         | 4.2829           | 575.25 | 575.28                                  | 34     | 10              | 24       | 33  | 9            | 25        | 1.2490           |        |  |
| 560.43                                  | 560.40                                 | 36              | 6           | 30       | 35  | 5            | 31        | 1.0795           | 575.57 | 575.54                                  | 21     | 12              | 10       | 20  | 11           | 9         | 2.5098           |        |  |
| 560.65                                  | 560.57                                 | 17              | 9           | 9        | 16  | 8            | 8         | 3.6857           | 576.55 | 576.51                                  | 36     | 10              | 26       | 35  | 9            | 27        | 1.0385           |        |  |
|                                         | 560.59                                 | 30              | 7           | 23       | 29  | 6            | 24        | 1.9594           | 576.84 | 576.80                                  | 23     | 12              | 12       | 22  | 11           | 11        | 2.2611           |        |  |
| 560.87                                  | 560.86                                 | 11              | 10          | 2        | 10  | 9            | 1         | 4.1726           | 577.23 | 577.27                                  | 17     | 13              | 5        | 16  | 12           | 4         | 2.6866           |        |  |
|                                         | 560.93                                 | 24              | 8           | 16       | 23  | 7            | 17        | 2.8393           | 578.54 | 578.54                                  | 19     | 13              | 7        | 18  | 12           | 6         | 2.4617           |        |  |
| 561.15                                  | 561.17                                 | 31              | 7           | 25       | 30  | 6            | 24        | 1.8125           | 579.15 | $Q_{11}^-$ (J, 15, K\$_1\$) sub-branch  |        |                 |          |     |              |           |                  |        |  |
| 561.60                                  | 561.55                                 | 25              | 8           | 18       | 24  | 7            | 17        | 2.6872           | 580.34 | 580.31                                  | 15     | 14              | 2        | 14  | 13           | 1         | 2.5724           |        |  |
| 562.05                                  | $Q_{11}^-$ (J, 11, K\$_1\$) sub-branch |                 |             |          |     |              |           |                  |        | 580.43                                  | 580.43 | 22              | 13       | 9   | 21           | 12        | 10               | 2.1207 |  |
| 563.13                                  | 563.09                                 | 21              | 9           | 13       | 20  | 8            | 12        | 3.1644           | 581.05 | 581.07                                  | 23     | 13              | 11       | 22  | 12           | 10        | 2.0073           |        |  |
| 563.68                                  | 563.72                                 | 22              | 9           | 13       | 21  | 8            | 14        | 3.0219           | 581.55 | 581.58                                  | 17     | 14              | 4        | 16  | 13           | 3         | 2.3647           |        |  |

sub-branches (corresponding to even- and odd-J transitions, resp., for  $^{32}\text{S}^{16}\text{O}_2$ ) form two separate peaks in a Q sub-branch. As an example, the observed line positions in Table IV at 508.26 and 509.30  $\text{cm}^{-1}$  correspond to the  ${}^0\text{Q}_{\frac{1}{1}}(\text{J},3,\text{K}_1)$  sub-branch and its even-J analog, resp. The left superscripts denote odd and even parity, resp., of the initial states; and the selection rules are explicitly  $\Delta J = 0$ ,  $\Delta K_{-1} = -1$  ( $K_{-1} = 3 + 2$  in this example), and  $\Delta K_1 = +1$ . In the particular cases of  ${}^0\text{Q}_{\frac{1}{1}}(\text{J},1,\text{K}_1)$  and  ${}^0\text{Q}_{\frac{1}{1}}(\text{J},0,\text{K}_1)$ , both of which have only even sub-branches, it has been possible to resolve several individual transitions.

The observed positions of the Q sub-branches in the present work agree with those given previously by Shelton *et al.*<sup>1</sup> We have determined the band center of  $v_2$  to be at  $517.75 \pm 0.10 \text{ cm}^{-1}$ . This value may be compared with the earlier results: 524 (Ref. 26), 517.84 (Ref. 27), 517.69 (Ref. 1), and  $518.0 \pm 0.5 \text{ cm}^{-1}$  (Ref. 28).

The experimental and theoretical results for  $v_3$  in the spectral range from 1327.5 to 1390.0  $\text{cm}^{-1}$  are represented in Fig. 3 and Table V. The selection rules,<sup>25</sup> different from those for  $v_1$  and  $v_2$ , are  $\Delta J = 0, \pm 1$ ;  $J = 0 \leftrightarrow J = 0$ ; but  $\Delta K_{-1} = 0, \pm 2, \dots$ ; and  $\Delta K_1 = \pm 1, \pm 3, \dots$ . Because of the relatively large number of strong, closely spaced lines in  $v_3$ ,



Fig. 3(a). Experimental and theoretical spectra of  $v_3$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range 1327.5 to 1340.0  $\text{cm}^{-1}$ .



Fig. 3(b). Experimental and theoretical spectra of  $v_3$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range  $1340.0$  to  $1352.5 \text{ cm}^{-1}$ .



Fig. 3(c). Experimental and theoretical spectra of  $v_3$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range  $1352.5$  to  $1365.0 \text{ cm}^{-1}$ .



Fig. 3(d). Experimental and theoretical spectra of  $v_3$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range  $1365.0$  to  $1377.5 \text{ cm}^{-1}$ .



Fig. 3(e). Experimental and theoretical spectra of  $v_3$  band of  $^{32}\text{S}^{16}\text{O}_2$  in range  $1377.5$  to  $1390.0 \text{ cm}^{-1}$ .

TABLE V

COMPARISON OF EXPERIMENTAL AND THEORETICAL SPECTRAL LINE POSITIONS, WITH QUANTUM

NUMBER ASSIGNMENTS, FOR THE  $v_3$  BAND OF  $^{32}\text{S}^{16}\text{O}_2$  CENTERED AT  $1362.00 \pm 0.10 \text{ cm}^{-1}$ .

LINE INTENSITIES [SEE SEC. III, ESPECIALLY EQ. (6)] ARE COMPUTED AT 300°K.

| Line Position<br>(in $\text{cm}^{-1}$ ) |         | Quantum Numbers |           |        |     |            |         |                  |         | Line Position<br>(in $\text{cm}^{-1}$ ) |    | Quantum Numbers |        |     |            |         |                  |  |  |
|-----------------------------------------|---------|-----------------|-----------|--------|-----|------------|---------|------------------|---------|-----------------------------------------|----|-----------------|--------|-----|------------|---------|------------------|--|--|
| Exptl.                                  | Theor.  | J'              | $K'_{-1}$ | $K'_1$ | J'' | $K''_{-1}$ | $K''_1$ | $\frac{I^o}{C'}$ | Exptl.  | Theor.                                  | J' | $K'_{-1}$       | $K'_1$ | J'' | $K''_{-1}$ | $K''_1$ | $\frac{I^o}{C'}$ |  |  |
| 1327.57                                 | 1327.54 | 48              | 5         | 44     | 49  | 5          | 45      | 0.8793           | 1336.44 | 1336.43                                 | 38 | 2               | 37     | 39  | 2          | 38      | 3.6085           |  |  |
| 1327.73                                 | 1327.70 | 44              | 13        | 32     | 45  | 13         | 33      | 0.4210           | 1336.51 | 1336.52                                 | 35 | 7               | 28     | 36  | 7          | 29      | 2.9345           |  |  |
| 1327.87                                 | 1327.85 | 46              | 9         | 38     | 47  | 9          | 39      | 0.7091           | 1336.63 | 1336.63                                 | 33 | 11              | 22     | 34  | 11         | 23      | 1.7868           |  |  |
|                                         | 1327.88 | 45              | 11        | 34     | 46  | 11         | 35      | 0.5683           | 1336.73 | 1336.73                                 | 30 | 15              | 16     | 31  | 15         | 17      | 0.8060           |  |  |
| 1328.05                                 | 1328.08 | 42              | 15        | 28     | 43  | 15         | 29      | 0.3207           | 1337.00 | 1336.99                                 | 34 | 8               | 27     | 35  | 8          | 28      | 2.7830           |  |  |
| 1328.16                                 | 1328.13 | 46              | 8         | 39     | 47  | 8          | 40      | 0.8186           | 1337.08 | 1337.10                                 | 37 | 1               | 36     | 38  | 1          | 37      | 3.9428           |  |  |
|                                         | 1328.16 | 48              | 4         | 45     | 49  | 4          | 46      | 0.9741           | 1337.37 | 1337.35                                 | 32 | 11              | 22     | 33  | 11         | 23      | 1.9121           |  |  |
| 1328.18                                 | 1328.18 | 44              | 12        | 33     | 45  | 12         | 34      | 0.5234           | 1337.46 | 1337.46                                 | 34 | 6               | 29     | 35  | 6          | 30      | 3.5706           |  |  |
| 1328.55                                 | 1328.60 | 46              | 6         | 41     | 47  | 6          | 42      | 1.0321           | 1337.64 | 1337.65                                 | 34 | 5               | 30     | 35  | 5          | 31      | 3.9321           |  |  |
| 1328.97                                 | 1328.92 | 45              | 5         | 40     | 46  | 5          | 41      | 1.2401           | 1337.76 | 1337.75                                 | 32 | 10              | 23     | 33  | 10         | 24      | 2.3199           |  |  |
|                                         | 1328.99 | 46              | 5         | 42     | 47  | 5          | 43      | 1.1368           |         | 1337.77                                 | 36 | 2               | 35     | 37  | 2          | 36      | 4.2919           |  |  |
| 1329.01                                 | 1329.01 | 45              | 6         | 39     | 46  | 6          | 40      | 1.1571           | 1338.02 | 1338.01                                 | 29 | 14              | 15     | 30  | 14         | 16      | 1.1119           |  |  |
| 1329.31                                 | 1329.35 | 45              | 4         | 41     | 46  | 4          | 42      | 1.3131           | 1338.08 | 1338.06                                 | 33 | 4               | 29     | 34  | 4          | 30      | 4.5280           |  |  |
| 1329.73                                 | 1329.75 | 43              | 10        | 33     | 44  | 10         | 34      | 0.8590           | 1338.17 | 1338.16                                 | 33 | 6               | 27     | 34  | 6          | 28      | 3.8584           |  |  |
| 1329.88                                 | 1329.86 | 44              | 7         | 38     | 45  | 7          | 39      | 1.1832           |         | 1338.19                                 | 33 | 5               | 28     | 34  | 5          | 29      | 4.2371           |  |  |
| 1330.08                                 | 1330.09 | 44              | 6         | 39     | 45  | 6          | 40      | 1.3180           | 1338.47 | 1338.47                                 | 34 | 3               | 32     | 35  | 3          | 33      | 4.6191           |  |  |
|                                         | 1330.10 | 42              | 11        | 32     | 43  | 11         | 33      | 0.7988           | 1338.90 | 1338.91                                 | 32 | 6               | 27     | 33  | 6          | 28      | 4.1551           |  |  |
| 1330.65                                 | 1330.64 | 40              | 13        | 28     | 41  | 13         | 29      | 0.6436           | 1339.09 | 1339.09                                 | 32 | 5               | 28     | 33  | 5          | 29      | 4.5825           |  |  |
| 1330.93                                 | 1330.93 | 45              | 2         | 43     | 46  | 2          | 44      | 1.5717           |         | 1339.12                                 | 34 | 2               | 33     | 35  | 2          | 34      | 5.0326           |  |  |
|                                         | 1330.97 | 44              | 4         | 41     | 45  | 4          | 42      | 1.5919           | 1339.63 | 1339.62                                 | 31 | 6               | 25     | 32  | 6          | 26      | 4.4531           |  |  |
| 1331.10                                 | 1331.12 | 42              | 8         | 35     | 43  | 8          | 36      | 1.3094           | 1340.12 | 1340.11                                 | 26 | 14              | 13     | 27  | 14         | 14      | 1.2229           |  |  |
| 1331.25                                 | 1331.23 | 41              | 10        | 31     | 42  | 10         | 32      | 1.0671           |         | 1340.13                                 | 30 | 7               | 24     | 31  | 7          | 25      | 4.2197           |  |  |
| 1331.37                                 | 1331.36 | 42              | 7         | 36     | 43  | 7          | 37      | 1.4874           | 1340.25 | 1340.25                                 | 29 | 9               | 20     | 30  | 9          | 21      | 3.3197           |  |  |
| 1331.49                                 | 1331.53 | 43              | 3         | 40     | 44  | 3          | 41      | 1.7931           | 1340.34 | 1340.33                                 | 31 | 2               | 29     | 32  | 2          | 30      | 5.7889           |  |  |
| 1331.61                                 | 1331.63 | 44              | 3         | 42     | 45  | 3          | 43      | 1.7629           |         | 1340.35                                 | 30 | 6               | 25     | 31  | 6          | 26      | 4.7537           |  |  |
| 1331.73                                 | 1331.71 | 46              | 1         | 46     | 47  | 1          | 47      | 1.7901           | 1341.35 | 1341.34                                 | 25 | 13              | 12     | 26  | 13         | 13      | 1.6383           |  |  |
| 1331.93                                 | 1331.96 | 40              | 10        | 31     | 41  | 10         | 32      | 1.1824           | 1341.64 | 1341.63                                 | 29 | 2               | 27     | 30  | 2          | 28      | 6.5907           |  |  |
| 1332.35                                 | 1332.37 | 42              | 4         | 39     | 43  | 4          | 40      | 1.9947           |         | 1341.66                                 | 27 | 9               | 18     | 28  | 9          | 19      | 3.6629           |  |  |
| 1332.56                                 | 1332.58 | 38              | 12        | 27     | 39  | 12         | 28      | 0.9705           | 1341.78 | 1341.77                                 | 30 | 2               | 29     | 31  | 2          | 30      | 6.6203           |  |  |
| 1333.02                                 | 1333.01 | 42              | 3         | 40     | 43  | 3          | 41      | 2.1971           |         | 1341.79                                 | 31 | 0               | 31     | 32  | 0          | 32      | 6.7894           |  |  |
|                                         | 1333.03 | 43              | 1         | 42     | 44  | 1          | 43      | 2.2019           | 1342.29 | 1342.26                                 | 27 | 7               | 20     | 28  | 7          | 21      | 4.9739           |  |  |
| 1333.05                                 | 40      | 6               | 35        | 41     | 6   | 36         | 2.0564  |                  | 1342.28 | 25                                      | 11 | 14              | 26     | 11  | 15         | 2.6588  |                  |  |  |
| 1333.34                                 | 1333.32 | 40              | 5         | 36     | 41  | 5          | 37      | 2.2595           | 1342.48 | 1342.45                                 | 30 | 1               | 30     | 31  | 1          | 31      | 7.2104           |  |  |
|                                         | 1333.34 | 39              | 8         | 31     | 40  | 8          | 32      | 1.7895           |         | 1342.48                                 | 27 | 6               | 21     | 28  | 6          | 22      | 5.6251           |  |  |
| 1333.69                                 | 1333.67 | 41              | 2         | 39     | 42  | 2          | 40      | 2.4422           |         | 1342.51                                 | 27 | 3               | 24     | 28  | 3          | 25      | 7.1054           |  |  |
|                                         | 1333.72 | 42              | 2         | 41     | 43  | 2          | 42      | 2.4470           | 1342.75 | 1342.73                                 | 23 | 13              | 10     | 24  | 13         | 11      | 1.6674           |  |  |
| 1334.13                                 | 1334.15 | 37              | 10        | 27     | 38  | 10         | 28      | 1.5709           | 1342.99 | 1342.96                                 | 26 | 7               | 20     | 27  | 7          | 21      | 5.2037           |  |  |
| 1334.29                                 | 1334.32 | 38              | 7         | 32     | 39  | 7          | 33      | 2.2456           |         | 1342.98                                 | 24 | 11              | 14     | 25  | 11         | 15      | 2.7207           |  |  |
| 1334.40                                 | 1334.39 | 40              | 3         | 38     | 41  | 3          | 39      | 2.7015           | 1343.51 | 1343.56                                 | 26 | 4               | 23     | 27  | 4          | 24      | 7.1252           |  |  |
|                                         | 1334.40 | 41              | 1         | 40     | 42  | 1          | 41      | 2.7105           | 1344.05 | 1344.06                                 | 25 | 5               | 20     | 26  | 5          | 21      | 6.8310           |  |  |
| 1334.55                                 | 1334.53 | 38              | 6         | 33     | 39  | 6          | 34      | 2.5108           |         | 1344.07                                 | 25 | 4               | 21     | 26  | 4          | 22      | 7.4217           |  |  |
| 1334.83                                 | 1334.81 | 37              | 8         | 29     | 38  | 8          | 30      | 2.1613           | 1345.15 | 1345.15                                 | 22 | 9               | 14     | 23  | 9          | 15      | 4.2448           |  |  |
| 1335.05                                 | 1335.03 | 39              | 2         | 37     | 40  | 2          | 38      | 2.9837           | 1345.27 | 1345.23                                 | 24 | 3               | 22     | 25  | 3          | 23      | 8.3171           |  |  |
|                                         | 1335.05 | 37              | 7         | 30     | 38  | 7          | 31      | 2.4647           |         | 1345.29                                 | 20 | 12              | 9      | 21  | 12         | 10      | 2.1121           |  |  |
| 1335.08                                 | 37      | 4               | 33        | 38     | 4   | 34         | 3.1847  |                  | 1345.30 | 23                                      | 6  | 17              | 24     | 6   | 18         | 6.5790  |                  |  |  |
| 1335.56                                 | 1335.54 | 36              | 8         | 29     | 37  | 8          | 30      | 2.3610           | 1345.95 | 1345.97                                 | 19 | 12              | 7      | 20  | 12         | 8       | 2.0396           |  |  |
|                                         | 1335.57 | 37              | 3         | 34     | 38  | 3          | 35      | 3.3480           | 1346.19 | 1346.16                                 | 21 | 8               | 13     | 22  | 8          | 14      | 5.1343           |  |  |
| 1335.74                                 | 1335.76 | 39              | 1         | 38     | 40  | 1          | 39      | 3.2917           |         | 1346.19                                 | 22 | 5               | 18     | 23  | 5          | 19      | 7.5469           |  |  |
| 1335.84                                 | 1335.80 | 40              | 1         | 40     | 41  | 1          | 41      | 3.3496           | 1346.26 | 1346.25                                 | 23 | 1               | 22     | 24  | 1          | 23      | 9.2116           |  |  |
| 1336.28                                 | 1336.26 | 35              | 8         | 27     | 36  | 8          | 28      | 2.5686           | 1346.60 | 1346.58                                 | 22 | 3               | 20     | 23  | 3          | 21      | 8.8762           |  |  |
|                                         | 1336.32 | 34              | 10        | 25     | 35  | 10         | 26      | 2.0109           | 1346.99 | 1346.95                                 | 21 | 2               | 19     | 22  | 2          | 20      | 9.3946           |  |  |

TABLE V (Continued)

| Line Position<br>(in $\text{cm}^{-1}$ ) |         | Quantum Numbers |           |        |     |            |         |                  |         | Line Position<br>(in $\text{cm}^{-1}$ ) |         | Quantum Numbers |        |     |            |         |                  |        |  |
|-----------------------------------------|---------|-----------------|-----------|--------|-----|------------|---------|------------------|---------|-----------------------------------------|---------|-----------------|--------|-----|------------|---------|------------------|--------|--|
| Exptl.                                  | Theor.  | J'              | $K'_{-1}$ | $K'_1$ | J'' | $K''_{-1}$ | $K''_1$ | $\frac{I^o}{C'}$ | Exptl.  | Theor.                                  | J'      | $K'_{-1}$       | $K'_1$ | J'' | $K''_{-1}$ | $K''_1$ | $\frac{I^o}{C'}$ |        |  |
|                                         | 1346.97 | 23              | 0         | 23     | 24  | 0          | 24      | 9.8178           | 1354.50 | 1354.52                                 | 19      | 19              | 0      | 19  | 19         | 1       | 1.0675           |        |  |
|                                         | 1347.01 | 22              | 2         | 21     | 23  | 2          | 22      | 9.4455           | 1354.60 | 1354.55                                 | 10      | 4               | 7      | 11  | 4          | 8       | 6.7871           |        |  |
| 1347.18                                 | 1347.14 | 20              | 7         | 14     | 21  | 7          | 15      | 6.0759           | 1354.89 | 1354.92                                 | 8       | 8               | 1      | 9   | 8          | 2       | 2.8625           |        |  |
|                                         | 1347.21 | 19              | 9         | 10     | 20  | 9          | 11      | 4.2616           | 1355.25 | 1355.24                                 | 19      | 18              | 1      | 19  | 18         | 2       | 0.9670           |        |  |
| 1347.30                                 | 1347.34 | 17              | 12        | 5      | 18  | 12         | 6       | 1.7973           | 1355.34 | 1355.30                                 | 9       | 1               | 8      | 10  | 1          | 9       | 8.1799           |        |  |
| 1347.38                                 | 1347.38 | 20              | 6         | 15     | 21  | 6          | 16      | 6.9817           | 1355.75 | 1355.73                                 | 23      | 17              | 6      | 23  | 17         | 7       | 0.9836           |        |  |
| 1347.49                                 | 1347.52 | 18              | 10        | 9      | 19  | 10         | 10      | 3.3407           | 1355.99 | 1355.99                                 | 8       | 3               | 6      | 9   | 3          | 7       | 6.4307           |        |  |
|                                         | 1347.52 | 21              | 1         | 20     | 22  | 1          | 21      | 9.7377           | 1356.09 | 1356.12                                 | 8       | 2               | 7      | 9   | 2          | 8       | 7.1660           |        |  |
| 1347.59                                 | 1347.58 | 20              | 5         | 16     | 21  | 5          | 17      | 7.8440           | 1356.36 | 1356.34                                 | 7       | 5               | 2      | 8   | 5          | 3       | 3.5348           |        |  |
|                                         | 1347.62 | 22              | 1         | 22     | 23  | 1          | 23      | 10.0823          | 1356.42 | 1356.42                                 | 8       | 1               | 8      | 9   | 1          | 9       | 7.6733           |        |  |
| 1347.72                                 | 1347.74 | 20              | 4         | 17     | 21  | 4          | 18      | 8.6200           | 1356.62 | 1356.61                                 | 18      | 16              | 3      | 18  | 16         | 2       | 2.0022           |        |  |
| 1347.91                                 | 1347.89 | 18              | 9         | 10     | 19  | 9          | 11      | 4.1884           |         | 1356.64                                 | 7       | 1               | 6      | 8   | 1          | 7       | 6.9194           |        |  |
|                                         | 1347.93 | 20              | 3         | 18     | 21  | 3          | 19      | 9.2815           |         | 1356.64                                 | 7       | 3               | 4      | 8   | 3          | 5       | 5.6838           |        |  |
| 1348.09                                 | 1348.07 | 19              | 6         | 13     | 20  | 6          | 14      | 7.0311           |         | 1356.79                                 | 1356.78 | 6               | 6      | 1   | 7          | 6       | 2                | 1.2615 |  |
| 1348.31                                 | 1348.31 | 20              | 2         | 19     | 21  | 2          | 20      | 9.8640           |         | 1356.86                                 | 1356.87 | 25              | 15     | 10  | 25         | 15      | 11               | 1.0266 |  |
|                                         | 1348.32 | 19              | 2         | 17     | 20  | 2          | 18      | 9.7829           |         | 1357.02                                 | 1357.00 | 6               | 5      | 2   | 7          | 5       | 3                | 2.5490 |  |
| 1348.86                                 | 1348.89 | 20              | 1         | 20     | 21  | 1          | 21      | 10.4854          |         | 1357.23                                 | 1357.22 | 18              | 15     | 4   | 18         | 15      | 3                | 2.2695 |  |
| 1348.95                                 | 1348.96 | 18              | 5         | 14     | 19  | 5          | 15      | 7.9514           |         | 1357.26                                 | 1357.26 | 17              | 15     | 2   | 17         | 15      | 3                | 2.5354 |  |
| 1349.15                                 | 1349.12 | 18              | 4         | 15     | 19  | 4          | 16      | 8.7841           |         | 1357.35                                 | 1357.33 | 15              | 15     | 0   | 15         | 15      | 1                | 3.1678 |  |
|                                         | 1349.14 | 15              | 11        | 4      | 16  | 11         | 5       | 2.0407           |         | 1358.05                                 | 1358.03 | 5               | 2      | 3   | 6          | 2       | 4                | 4.8131 |  |
| 1349.35                                 | 1349.36 | 14              | 12        | 3      | 15  | 12         | 4       | 1.1363           |         | 1358.20                                 | 1358.18 | 5               | 0      | 5   | 6          | 0       | 6                | 5.5900 |  |
| 1349.50                                 | 1349.51 | 19              | 0         | 19     | 20  | 0          | 20      | 10.6170          |         | 1358.22                                 | 1358.22 | 20              | 13     | 8   | 20         | 13      | 7                | 2.1608 |  |
| 1349.69                                 | 1349.71 | 17              | 2         | 15     | 18  | 2          | 16      | 9.9530           |         | 1358.29                                 | 1358.27 | 19              | 13     | 6   | 19         | 13      | 7                | 2.4155 |  |
| 1349.81                                 | 1349.78 | 17              | 3         | 14     | 18  | 3          | 15      | 9.4805           |         | 1358.31                                 | 1358.31 | 18              | 13     | 6   | 18         | 13      | 5                | 2.6989 |  |
|                                         | 1349.81 | 14              | 11        | 4      | 15  | 11         | 5       | 1.7620           |         | 1358.50                                 | 1358.49 | 13              | 13     | 0   | 13         | 13      | 1                | 4.7290 |  |
| 1349.94                                 | 1349.92 | 15              | 9         | 6      | 16  | 9          | 7       | 3.6733           |         | 1358.83                                 | 1358.84 | 17              | 12     | 5   | 17         | 12      | 6                | 3.1241 |  |
| 1350.05                                 | 1350.06 | 17              | 1         | 16     | 18  | 1          | 17      | 10.2536          |         | 1358.85                                 | 1358.85 | 26              | 11     | 16  | 26         | 11      | 15               | 1.1498 |  |
| 1350.15                                 | 1350.12 | 16              | 6         | 11     | 17  | 6          | 12      | 6.8587           |         | 1358.94                                 | 1358.95 | 14              | 12     | 3   | 14         | 12      | 2                | 4.4117 |  |
|                                         | 1350.16 | 18              | 1         | 18     | 19  | 1          | 19      | 10.6817          |         | 1359.12                                 | 1359.12 | 21              | 11     | 10  | 21         | 11      | 11               | 2.0498 |  |
| 1350.26                                 | 1350.23 | 14              | 10        | 5      | 15  | 10         | 6       | 2.5161           |         | 1359.23                                 | 1359.21 | 19              | 11     | 8   | 19         | 11      | 9                | 2.5636 |  |
|                                         | 1350.26 | 15              | 8         | 7      | 16  | 8          | 8       | 4.6333           |         | 1359.43                                 | 1359.40 | 14              | 11     | 4   | 14         | 11      | 3                | 4.4770 |  |
| 1350.36                                 | 1350.33 | 16              | 5         | 12     | 17  | 5          | 13      | 7.8310           |         | 1359.43                                 | 1359.43 | 13              | 11     | 2   | 13         | 11      | 3                | 5.0204 |  |
| 1350.48                                 | 1350.49 | 16              | 4         | 13     | 17  | 4          | 14      | 8.7144           |         | 1359.92                                 | 1359.90 | 11              | 10     | 1   | 11         | 10      | 2                | 6.2507 |  |
| 1350.63                                 | 1350.60 | 14              | 9         | 6      | 15  | 9          | 7       | 3.3877           |         | 1359.92                                 | 1359.92 | 10              | 10     | 1   | 10         | 10      | 0                | 7.0834 |  |
|                                         | 1350.64 | 16              | 3         | 14     | 17  | 3          | 15      | 9.4630           |         | 1360.04                                 | 1360.03 | 18              | 9      | 12  | 20         | 9       | 11               | 2.1295 |  |
| 1351.00                                 | 1351.00 | 15              | 5         | 10     | 16  | 5          | 11      | 7.6742           |         | 1360.27                                 | 1360.27 | 11              | 9      | 2   | 11         | 9       | 3                | 5.9171 |  |
| 1351.11                                 | 1351.11 | 15              | 2         | 13     | 16  | 2          | 14      | 9.8638           |         | 1360.29                                 | 1360.29 | 10              | 9      | 2   | 10         | 9       | 1                | 6.7055 |  |
| 1351.21                                 | 1351.20 | 15              | 3         | 12     | 16  | 3          | 13      | 9.3354           |         | 1360.35                                 | 1360.36 | 18              | 8      | 11  | 18         | 8       | 10               | 2.4157 |  |
|                                         | 1351.22 | 14              | 7         | 8      | 15  | 7          | 9       | 5.3836           |         | 1360.84                                 | 1360.84 | 13              | 7      | 6   | 13         | 7       | 7                | 3.6683 |  |
| 1351.94                                 | 1351.94 | 12              | 9         | 4      | 13  | 9          | 5       | 2.6131           |         | 1361.06                                 | 1361.06 | 14              | 6      | 9   | 14         | 6       | 8                | 2.6706 |  |
| 1352.19                                 | 1352.15 | 13              | 6         | 7      | 14  | 6          | 8       | 6.1112           |         | 1361.45                                 | 1361.45 | 7               | 5      | 2   | 7          | 5       | 3                | 5.0069 |  |
|                                         | 1352.22 | 14              | 2         | 13     | 15  | 2          | 14      | 9.7916           |         | 1361.46                                 | 1361.46 | 6               | 5      | 2   | 6          | 5       | 1                | 5.8958 |  |
| 1352.37                                 | 1352.35 | 13              | 5         | 8      | 14  | 5          | 9       | 7.1475           |         | 1362.20                                 | 1362.18 | 9               | 2      | 7   | 9          | 2       | 8                | 0.6800 |  |
| 1352.53                                 | 1352.51 | 13              | 2         | 11     | 14  | 2          | 12      | 9.4830           |         | 1362.64                                 | 1362.64 | 1               | 0      | 1   | 0          | 0       | 0                | 0.9982 |  |
|                                         | 1352.56 | 12              | 7         | 6      | 13  | 7          | 7       | 4.6334           |         | 1363.89                                 | 1363.89 | 3               | 0      | 3   | 2          | 0       | 2                | 2.9686 |  |
| 1352.63                                 | 1352.60 | 13              | 3         | 10     | 14  | 3          | 11      | 8.9012           |         | 1363.99                                 | 1363.96 | 3               | 1      | 2   | 2          | 1       | 1                | 2.6174 |  |
|                                         | 1352.65 | 13              | 1         | 12     | 14  | 1          | 13      | 9.8033           |         | 1364.49                                 | 1364.45 | 4               | 2      | 3   | 3          | 2       | 2                | 2.8490 |  |
| 1352.96                                 | 1352.94 | 11              | 8         | 3      | 12  | 8          | 4       | 3.0805           |         | 1364.83                                 | 1364.85 | 5               | 4      | 1   | 4          | 4       | 0                | 1.5310 |  |
| 1353.17                                 | 1353.19 | 12              | 4         | 9      | 13  | 4          | 10      | 7.7425           |         | 1365.15                                 | 1365.13 | 5               | 0      | 5   | 4          | 0       | 4                | 4.8434 |  |
| 1353.25                                 | 1353.23 | 13              | 0         | 13     | 14  | 0          | 14      | 10.1011          |         | 1365.24                                 | 1365.26 | 5               | 1      | 4   | 4          | 1       | 3                | 4.6113 |  |
|                                         | 1353.27 | 10              | 9         | 2      | 11  | 9          | 3       | 1.5169           |         | 1365.60                                 | 1365.60 | 6               | 1      | 6   | 5          | 1       | 5                | 5.5369 |  |
| 1353.59                                 | 1353.60 | 10              | 8         | 3      | 11  | 8          | 4       | 2.4852           |         | 1365.69                                 | 1365.70 | 6               | 2      | 5   | 5          | 2       | 4                | 4.9313 |  |
| 1353.68                                 | 1353.69 | 11              | 5         | 6      | 12  | 5          | 7       | 6.3101           |         | 1366.27                                 | 1366.24 | 7               | 3      | 4   | 6          | 3       | 3                | 4.9816 |  |
| 1353.91                                 | 1353.89 | 10              | 7         | 4      | 11  | 7          | 5       | 3.5504           |         | 1366.36                                 | 1366.34 | 7               | 0      | 7   | 6          | 0       | 6                | 6.5562 |  |
|                                         | 1353.91 | 11              | 2         | 9      | 12  | 2          | 10      | 8.7906           |         | 1366.56                                 | 1366.54 | 7               | 1      | 6   | 6          | 1       | 5                | 6.3656 |  |
| 1353.93                                 | 1353.93 | 12              | 1         | 12     | 13  | 1          | 13      | 9.7348           |         | 1366.72                                 | 1366.72 | 8               | 4      | 5   | 7          | 4       | 4                | 4.8364 |  |
| 1353.98                                 | 1353.97 | 11              | 1         | 10     | 12  | 1          | 11      | 9.1436           |         | 1366.72                                 | 1366.72 | 8               | 4      | 5   | 7          | 4       | 4                |        |  |
| 1354.23                                 | 1354.26 | 9               | 8         | 1      | 10  | 8          | 2       | 1.7865           |         | 1366.72                                 | 1366.69 | 9               | 7      | 2   | 8          | 7       | 1                | 2.1342 |  |
| 1354.35                                 | 1354.36 | 10              | 5         | 6      | 11  | 5          | 7       | 5.7641           |         | 1366.72                                 | 1366.72 | 8               | 4      | 5   | 7          | 4       | 4                |        |  |

TABLE V (Continued)

| Line Position<br>(in $\text{cm}^{-1}$ ) |         | Quantum Numbers |           |        |       |            |         |                        |         | Line Position<br>(in $\text{cm}^{-1}$ ) |         | Quantum Numbers |        |       |            |         |                        |        |  |
|-----------------------------------------|---------|-----------------|-----------|--------|-------|------------|---------|------------------------|---------|-----------------------------------------|---------|-----------------|--------|-------|------------|---------|------------------------|--------|--|
| Exptl.                                  | Theor.  | $J'$            | $K'_{-1}$ | $K'_1$ | $J''$ | $K''_{-1}$ | $K''_1$ | $\frac{I^{\circ}}{C'}$ | Exptl.  | Theor.                                  | $J'$    | $K'_{-1}$       | $K'_1$ | $J''$ | $K''_{-1}$ | $K''_1$ | $\frac{I^{\circ}}{C'}$ |        |  |
| 1366.87                                 | 1366.86 | 8               | 3         | 6      | 7     | 3          | 5       | 5.8689                 |         |                                         | 1376.25 | 24              | 5      | 20    | 23         | 5       | 19                     | 8.0821 |  |
| 1367.36                                 | 1367.34 | 9               | 4         | 5      | 8     | 4          | 4       | 5.6831                 | 1376.81 | 1376.82                                 | 25      | 1               | 24     | 24    | 1          | 23      | 9.8080                 |        |  |
| 1367.64                                 | 1367.67 | 9               | 2         | 7      | 8     | 2          | 6       | 7.4212                 | 1377.19 | 1377.18                                 | 26      | 6               | 21     | 25    | 6          | 20      | 6.8219                 |        |  |
| 1367.85                                 | 1367.81 | 9               | 1         | 8      | 8     | 1          | 7       | 7.8726                 |         |                                         | 1377.20 | 25              | 4      | 21    | 24         | 4       | 20                     | 8.5470 |  |
| 1367.95                                 | 1367.94 | 10              | 1         | 10     | 9     | 1          | 9       | 8.6178                 |         |                                         | 1377.22 | 26              | 2      | 25    | 25         | 2       | 24                     | 9.4444 |  |
|                                         | 1367.96 | 10              | 4         | 7      | 9     | 4          | 6       | 6.4331                 | 1377.42 | 1377.42                                 | 28      | 9               | 20     | 27    | 9          | 19      | 4.0979                 |        |  |
| 1368.12                                 | 1368.15 | 10              | 2         | 9      | 9     | 2          | 8       | 8.1114                 |         |                                         | 1377.43 | 26              | 5      | 22    | 25         | 5       | 21                     | 7.5853 |  |
| 1368.21                                 | 1368.24 | 12              | 8         | 5      | 11    | 8          | 4       | 3.2321                 | 1377.63 | 1377.61                                 | 25      | 3               | 22     | 24    | 3          | 21      | 9.0766                 |        |  |
| 1368.65                                 | 1368.65 | 11              | 0         | 11     | 10    | 0          | 10      | 9.3010                 | 1377.83 | 1377.84                                 | 27      | 1               | 26     | 26    | 1          | 25      | 9.1025                 |        |  |
| 1368.81                                 | 1368.79 | 12              | 6         | 7      | 11    | 6          | 6       | 5.4902                 | 1378.31 | 1378.31                                 | 29      | 0               | 29     | 28    | 0          | 28      | 8.9600                 |        |  |
|                                         | 1368.85 | 13              | 8         | 5      | 12    | 8          | 4       | 3.7762                 |         |                                         | 1378.34 | 29              | 8      | 21    | 28         | 8       | 20                     | 4.6134 |  |
| 1369.29                                 | 1369.33 | 12              | 3         | 10     | 11    | 3          | 9       | 8.5616                 | 1378.44 | 1378.46                                 | 27      | 4               | 23     | 26    | 4          | 22      | 7.9100                 |        |  |
| 1369.37                                 | 1369.35 | 12              | 2         | 11     | 11    | 2          | 10      | 9.2530                 | 1378.60 | 1378.57                                 | 30      | 9               | 22     | 29    | 9          | 21      | 3.7439                 |        |  |
|                                         | 1369.40 | 13              | 6         | 7      | 12    | 6          | 6       | 6.0186                 |         |                                         | 1378.61 | 28              | 5      | 24    | 27         | 5       | 23                     | 6.9791 |  |
| 1369.73                                 | 1369.73 | 15              | 9         | 6      | 14    | 9          | 5       | 3.5974                 | 1378.79 | 1378.76                                 | 28      | 4               | 25     | 27    | 4          | 24      | 7.5913                 |        |  |
|                                         | 1369.76 | 13              | 0         | 13     | 12    | 0          | 12      | 10.2737                | 1379.03 | 1379.03                                 | 33      | 12              | 21     | 32    | 12         | 20      | 1.7647                 |        |  |
| 1369.84                                 | 1369.80 | 13              | 4         | 9      | 12    | 4          | 8       | 8.1565                 | 1379.20 | 1379.23                                 | 30      | 7               | 24     | 29    | 7          | 23      | 5.0511                 |        |  |
|                                         | 1369.82 | 18              | 13        | 6      | 17    | 13         | 5       | 1.3549                 | 1379.58 | 1379.58                                 | 29      | 2               | 27     | 28    | 2          | 26      | 7.8515                 |        |  |
| 1370.00                                 | 1369.99 | 13              | 3         | 10     | 12    | 3          | 9       | 9.0279                 | 1379.66 | 1379.66                                 | 35      | 13              | 22     | 34    | 13         | 21      | 1.2346                 |        |  |
|                                         | 1370.01 | 14              | 6         | 9      | 13    | 6          | 8       | 6.4635                 | 1379.77 | 1379.73                                 | 30      | 3               | 28     | 29    | 3          | 27      | 7.3461                 |        |  |
| 1370.22                                 | 1370.22 | 14              | 1         | 14     | 13    | 1          | 13      | 10.6174                |         |                                         | 1379.78 | 30              | 5      | 26    | 29         | 5       | 25                     | 6.3026 |  |
|                                         | 1370.26 | 13              | 1         | 12     | 12    | 1          | 11      | 10.0292                |         |                                         | 1379.81 | 31              | 7      | 24    | 30         | 7       | 23                     | 4.7786 |  |
| 1370.31                                 | 1370.31 | 18              | 12        | 7      | 17    | 12         | 6       | 1.9317                 | 1380.01 | 1380.01                                 | 29      | 3               | 26     | 28    | 3          | 25      | 7.5615                 |        |  |
|                                         | 1370.33 | 16              | 9         | 8      | 15    | 9          | 7       | 3.9163                 | 1380.14 | 1380.12                                 | 31      | 6               | 25     | 30    | 6          | 24      | 5.3833                 |        |  |
| 1370.43                                 | 1370.41 | 14              | 4         | 11     | 13    | 4          | 10      | 8.5657                 | 1380.37 | 1380.35                                 | 32      | 2               | 31     | 31    | 2          | 30      | 7.0310                 |        |  |
| 1370.57                                 | 1370.55 | 14              | 3         | 12     | 13    | 3          | 11      | 9.4218                 |         |                                         | 1380.37 | 33              | 0      | 33    | 32         | 0       | 32                     | 7.2039 |  |
| 1370.70                                 | 1370.67 | 16              | 8         | 9      | 15    | 8          | 8       | 4.9398                 | 1380.55 | 1380.57                                 | 31      | 2               | 29     | 30    | 2          | 28      | 6.9989                 |        |  |
| 1370.88                                 | 1370.85 | 15              | 0         | 15     | 14    | 0          | 14      | 10.9608                | 1381.16 | 1381.15                                 | 31      | 3               | 28     | 30    | 3          | 27      | 6.7141                 |        |  |
|                                         | 1370.90 | 19              | 12        | 7      | 18    | 12         | 6       | 2.0889                 | 1381.33 | 1381.36                                 | 34      | 2               | 33     | 33    | 2          | 32      | 6.1753                 |        |  |
| 1370.98                                 | 1370.96 | 16              | 7         | 10     | 15    | 7          | 9       | 6.0231                 | 1381.82 | 1381.83                                 | 34      | 3               | 32     | 33    | 3          | 31      | 5.7009                 |        |  |
| 1371.31                                 | 1371.34 | 16              | 1         | 16     | 15    | 1          | 15      | 11.1751                | 1382.31 | 1382.34                                 | 36      | 8               | 29     | 35    | 8          | 28      | 2.9679                 |        |  |
| 1371.44                                 | 1371.44 | 15              | 1         | 14     | 14    | 1          | 13      | 10.6475                | 1382.42 | 1382.40                                 | 37      | 0               | 37     | 36    | 0          | 36      | 5.4550                 |        |  |
|                                         | 1371.44 | 16              | 5         | 12     | 15    | 5          | 11      | 8.1824                 | 1382.58 | 1382.54                                 | 37      | 9               | 28     | 36    | 9          | 27      | 2.3546                 |        |  |
| 1371.55                                 | 1371.54 | 15              | 2         | 13     | 14    | 2          | 12      | 10.3274                | 1383.36 | 1383.39                                 | 39      | 0               | 39     | 38    | 0          | 38      | 4.6460                 |        |  |
| 1371.68                                 | 1371.67 | 22              | 14        | 9      | 21    | 14         | 8       | 1.3021                 | 1383.44 | 1383.44                                 | 35      | 4               | 31     | 34    | 4          | 30      | 4.8160                 |        |  |
|                                         | 1371.69 | 16              | 2         | 15     | 15    | 2          | 14      | 10.6161                | 1383.60 | 1383.63                                 | 37      | 6               | 31     | 36    | 6          | 30      | 3.4994                 |        |  |
| 1371.98                                 | 1371.94 | 17              | 0         | 17     | 16    | 0          | 16      | 11.3605                | 1383.94 | 1383.94                                 | 41      | 11              | 30     | 40    | 11         | 29      | 1.1589                 |        |  |
|                                         | 1371.95 | 20              | 11        | 10     | 19    | 11         | 9       | 2.9085                 | 1384.03 | 1384.03                                 | 39      | 8               | 31     | 38    | 8          | 30      | 2.3047                 |        |  |
| 1372.18                                 | 1372.16 | 18              | 7         | 12     | 17    | 7          | 11      | 6.4341                 | 1384.14 | 1384.13                                 | 38      | 6               | 33     | 37    | 6          | 32      | 3.2140                 |        |  |
| 1372.47                                 | 1372.44 | 18              | 1         | 18     | 17    | 1          | 17      | 11.4436                |         |                                         | 1384.17 | 37              | 5      | 32    | 36         | 5       | 31                     | 3.8266 |  |
|                                         | 1372.47 | 19              | 8         | 11     | 18    | 8          | 10      | 5.5112                 | 1384.24 | 1384.22                                 | 38      | 4               | 35     | 37    | 4          | 34      | 3.8372                 |        |  |
| 1372.78                                 | 1372.76 | 19              | 7         | 12     | 18    | 7          | 11      | 6.5472                 |         |                                         | 1384.25 | 37              | 3      | 34    | 36         | 3       | 33                     | 4.2622 |  |
| 1372.97                                 | 1372.96 | 18              | 3         | 16     | 17    | 3          | 15      | 10.2187                | 1384.49 | 1384.49                                 | 42      | 11              | 32     | 41    | 11         | 31      | 1.0509                 |        |  |
| 1373.28                                 | 1373.26 | 19              | 5         | 14     | 18    | 5          | 13      | 8.5806                 | 1384.61 | 1384.59                                 | 40      | 8               | 33     | 39    | 8          | 32      | 2.1014                 |        |  |
| 1373.70                                 | 1373.68 | 19              | 1         | 18     | 18    | 1          | 17      | 11.0036                |         |                                         | 1384.61 | 37              | 4      | 33    | 36         | 4       | 32                     | 4.0726 |  |
| 1373.85                                 | 1373.86 | 20              | 5         | 16     | 19    | 5          | 15      | 8.5855                 | 1384.78 | 1384.77                                 | 41      | 9               | 32     | 40    | 9          | 31      | 1.6462                 |        |  |
| 1373.96                                 | 1373.96 | 20              | 2         | 19     | 19    | 2          | 18      | 10.8171                |         |                                         | 1384.81 | 39              | 6      | 33    | 38         | 6       | 32                     | 2.9327 |  |
| 1374.34                                 | 1374.30 | 24              | 11        | 14     | 23    | 11         | 13      | 3.0426                 | 1385.86 | 1385.85                                 | 44      | 1               | 44     | 43    | 1          | 43      | 2.9281                 |        |  |
| 1374.49                                 | 1374.46 | 21              | 5         | 16     | 20    | 5          | 15      | 8.5330                 | 1385.99 | 1386.00                                 | 41      | 6               | 35     | 40    | 6          | 34      | 2.4187                 |        |  |
| 1375.17                                 | 1375.14 | 23              | 7         | 16     | 22    | 7          | 15      | 6.4815                 | 1386.27 | 1386.25                                 | 42      | 4               | 39     | 41    | 4          | 38      | 2.6238                 |        |  |
|                                         | 1375.16 | 23              | 0         | 23     | 22    | 0          | 22      | 10.9944                |         |                                         | 1386.30 | 44              | 2      | 43    | 43         | 2       | 42                     | 2.6030 |  |
| 1375.42                                 | 1375.41 | 23              | 6         | 17     | 22    | 6          | 16      | 7.4030                 | 1386.38 | 1386.37                                 | 42      | 6               | 37     | 41    | 6          | 36      | 2.1911                 |        |  |
|                                         | 1375.43 | 24              | 8         | 17     | 23    | 8          | 16      | 5.4631                 | 1386.64 | 1386.65                                 | 41      | 5               | 36     | 40    | 5          | 35      | 2.6254                 |        |  |
| 1375.66                                 | 1375.66 | 23              | 5         | 18     | 22    | 5          | 17      | 8.2759                 | 1386.74 | 1386.78                                 | 45      | 1               | 44     | 44    | 1          | 43      | 2.3430                 |        |  |
|                                         | 1375.68 | 24              | 1         | 24     | 23    | 1          | 23      | 10.7412                | 1387.02 | 1387.03                                 | 43      | 3               | 40     | 42    | 3          | 39      | 2.3802                 |        |  |
| 1376.03                                 | 1376.00 | 24              | 6         | 19     | 23    | 6          | 18      | 7.2437                 | 1387.70 | 1387.73                                 | 47      | 1               | 46     | 46    | 1          | 45      | 1.8796                 |        |  |
| 1376.14                                 | 1376.15 | 24              | 2         | 23     | 23    | 2          | 22      | 10.0732                | 1388.03 | 1388.06                                 | 47      | 9               | 38     | 46    | 9          | 37      | 0.8565                 |        |  |
|                                         | 1376.17 | 28              | 12        | 17     | 27    | 12         | 16      | 2.2261                 | 1388.17 | 1388.20                                 | 46      | 4               | 43     | 45    | 4          | 42      | 1.6966                 |        |  |
| 1376.24                                 | 1376.22 | 25              | 0         | 25     | 24    | 0          | 24      | 10.4499                | 1388.29 | 1388.29                                 | 46      | 7               | 40     | 45    | 7          | 39      | 1.2628                 |        |  |

we have assigned only the approximately 250 observed peaks which are either individual or consist of a small number of closely spaced transitions. The band center for  $\nu_3$  in the present work has been determined as  $1362.00 \pm 0.10$   $\text{cm}^{-1}$ . Previously obtained values were 1361 (Ref. 26), 1361.50 (Ref. 27), 1361.76 (Ref. 1),  $1360.5 \pm 0.5$  (Ref. 28), and  $1360.8 \text{ cm}^{-1}$  (Ref. 29).

Finally, we have estimated the absolute values of the dipole moment derivatives<sup>31</sup> for all three infrared-active fundamentals of  $^{32}\text{S}^{16}\text{O}_2$ . Our analysis, using Eqs.(6) and (7), was described in detail in Sec. III. The results are shown in Table VI. The  $\nu_1$  band intensity of Hinkley *et al.*<sup>8</sup> was an average of the projected values which were obtained by dividing the intensities of ten measured lines by their respective calculated fractional contributions to the band.

TABLE VI  
DIPOLE MOMENT DERIVATIVES FOR THE FUNDAMENTALS OF  $^{32}\text{S}^{16}\text{O}_2$

| Band    | Sum of Calculated Line Intensities (dimensionless) | Measured Band Intensity (in $10^{10} \text{ sec}^{-1} \text{ cm}^{-1}$ STP) | Dipole Moment Derivative <sup>f</sup> (in esu $\text{g}^{-1/2}$ ) |
|---------|----------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|
| $\nu_1$ | 5227.9                                             | $278 \pm 28^a$                                                              | $57.8 \pm 3.0$                                                    |
|         |                                                    | $317 \pm 8^b$                                                               | $61.7 \pm 0.8$                                                    |
|         |                                                    | $350 \pm 20^c$                                                              | $64.8 \pm 1.9$                                                    |
|         |                                                    | $288 \pm 16^d$                                                              | $58.9 \pm 1.7$                                                    |
|         |                                                    | $299 \pm 16^e$                                                              | $59.9 \pm 1.6$                                                    |
| $\nu_2$ | 5288.6                                             | $348 \pm 35^a$                                                              | $64.3 \pm 3.3$                                                    |
|         |                                                    | $376 \pm 20^b$                                                              | $66.8 \pm 1.8$                                                    |
|         |                                                    | $360 \pm 30^c$                                                              | $65.4 \pm 2.8$                                                    |
| $\nu_3$ | 5742.3                                             | $2520 \pm 252^a$                                                            | $166.0 \pm 9.0$                                                   |
|         |                                                    | $2560 \pm 70^b$                                                             | $167.3 \pm 2.3$                                                   |
|         |                                                    | $2640 \pm 80^c$                                                             | $169.9 \pm 2.6$                                                   |
|         |                                                    | $2437 \pm 161^e$                                                            | $163.1 \pm 5.5$                                                   |

<sup>a</sup>From Ref. 20.

<sup>b</sup>From Ref. 21.

<sup>c</sup>From Ref. 22.

<sup>d</sup>From Ref. 8.

<sup>e</sup>From Ref. 23.

<sup>f</sup>As discussed in Sec. III, only the absolute value can be determined here.

## V. DISCUSSION

There is considerable value, from a fundamental spectroscopic viewpoint, in making high-resolution studies of gases like  $\text{SO}_2$ . Such studies would permit a more complete determination of vibration-rotation line positions and intensities, as well as quantum-number assignments, in all three fundamentals. Further, it would be possible to measure line-shapes and line-broadening parameters as a function of vibration and/or rotation quantum numbers. Some of these experimental and theoretical studies are in progress, and some are anticipated in our laboratory in the near future.

We also plan to investigate overtone and combination bands of  $\text{SO}_2$ . A more precise determination of the band center of  $2\nu_2$  is important to an understanding of possible lasing mechanisms<sup>32</sup> in  $\text{SO}_2$ , associated with Fermi interactions between energy levels in  $\nu_1$  and  $2\nu_2$ . In another context, it is possible that the  $\nu_1 + \nu_3$  band of terrestrial  $\text{SO}_2$  may appear in solar spectra,<sup>33</sup> and be susceptible to analysis there.

Sulfur dioxide plays a serious role as a pollutant in the terrestrial atmosphere.<sup>34</sup> High-resolution infrared spectroscopy is a possible technique for the remote detection and monitoring of  $\text{SO}_2$  in situ. For example, monochromatic laser emissions may be useful for studying terrestrial  $\text{SO}_2$  in absorption. We have found three relatively isolated and moderately strong lines in our laboratory spectra, with observed positions at 561.67, 1347.33, and  $1365.60\text{ cm}^{-1}$  (see Tables IV and V) which fall close to observed laser oscillations<sup>35</sup> in pure neutral neon, Ne I. Although the spectral coincidences are not exact for the first two lines, nevertheless the spectral broadening by air will produce sufficient overlapping of the lines in question.<sup>36</sup>

## ACKNOWLEDGMENTS

We are grateful to Prof. W. H. Fletcher for several helpful discussions, and for a critical reading of this manuscript. Prof. D. F. Eggers, Jr. provided a computer program, developed by Dr. L. Pierce and modified by Prof. Eggers, which was of considerable value in our calculations. Dr. E. D. Hinkley kindly sent us preprints of Refs. 8 and 9. We thank Mr. Glen H. Cunningham of our Electronics Shop for his generous and skillful technical assistance. Mrs. Janice Hemsley typed the manuscript with accuracy and patience. We appreciate the time provided by The University of Tennessee Computing Center on the IBM/360-65 system.

## REFERENCES

1. R. D. Shelton, A. H. Nielsen, and W. H. Fletcher, *J. Chem. Phys.* 21, 2178 (1953). References to earlier microwave and infrared measurements are given in this work.
2. Y. Morino, Y. Kikuchi, S. Saito, and E. Hiroto, *J. Mol. Spectry.* 13, 95 (1964).
3. R. Van Riet, *Ann. Soc. Sci. Bruxelles* 78, 237 (1964).
4. H. A. Gebbie, N. W. B. Stone, G. Topping, E. K. Gora, S. A. Clough, and F. X. Kneizys, *J. Mol. Spectry.* 19, 7 (1966).
5. G. Steenbeckeliers, *Ann. Soc. Sci. Bruxelles* 82, 331 (1968).
6. S. Saito, *J. Mol. Spectry.* 30, 1 (1969).
7. Additional references, including work on various isotopic forms, are given by A. Barbe and P. Jouve, *J. Mol. Spectry.* 38, 273 (1971).
8. E. D. Hinkley, A. R. Calawa, P. L. Kelley, and S. A. Clough, *J. Appl. Phys.* 43, 3222 (1972).
9. P. L. Kelley and E. D. Hinkley, in Fundamental and Applied Laser Physics, edited by M. S. Feld, N. Kurmit, and A. Javan (John Wiley and Sons, New York, 1972).
10. IUPAC, Tables of Wavenumbers for the Calibration of Infrared Spectrometers (Butterworth, London, 1961).
11. J. Overend and R. W. Thompson, *Proc. Roy. Soc. (London)* A232, 291 (1955).
12. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, N. J., 1945).
13. H. C. Allen, Jr. and P. C. Cross, Molecular Vib-Rotors (John Wiley and Sons, New York, 1963).
14. D. Kivelson and E. Bright Wilson, Jr., *J. Chem. Phys.* 20, 1575 (1952).
15. L. Pierce, N. Di Cianni, and R. H. Jackson, *J. Chem. Phys.* 38, 730 (1963).
16. See, for example, S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley, Reading, Mass., 1959), p. 158.
17. M. T. Emerson and D. F. Eggers, Jr., *J. Chem. Phys.* 37, 251 (1962).
18. D. F. Eggers, Jr., private communication, 1971.
19. K. G. Kidd and G. W. King, *J. Mol. Spectry.* 40, 461 (1971).
20. D. F. Eggers, Jr. and E. D. Schmid, *J. Phys. Chem.* 64, 279 (1960).
21. J. E. Mayhood, *Can. J. Phys.* 35, 954 (1957).
22. J. Morcillo and J. Herranz, *Publs. Inst. Quim. Fis. "Rocasolano"* 10, 162 (1956).
23. D. E. Burch, J. D. Pembrook, and D. A. Gryvnak, Philco-Ford Publ. No. U-4947, July, 1971.
24. R. J. Corice, Jr., K. Fox, and G. D. T. Tejwani, *J. Chem. Phys.*, to be published January, 1973.

25. P. C. Cross, R. M. Hainer, and G. W. King, *J. Chem. Phys.* 12, 210 (1944).
26. C. R. Bailey and A. B. D. Cassie, *Proc. Roy. Soc. (London)* A140, 605 (1933).
27. E. F. Barker, *Rev. Mod. Phys.* 14, 198 (1942).
28. S. R. Polo and M. K. Wilson, *J. Chem. Phys.* 22, 900 (1954).
29. E. C. M. Grigg and G. R. Johnston, *Australian J. Chem.* 19, 1147 (1966).
30. E. D. Hinkley, *MIT-Lincoln Lab. Rept.*, March 31, 1972.
31. G. D. T. Tejwani, K. Fox, and R. J. Corice, Jr., to be published.
32. G. Hubner, J. C. Hassler, P. D. Coleman, and G. Steenbeckeliers, *Appl. Phys. Letters* 18, 511 (1971).
33. D. N. B. Hall, private communication, 1972.
34. W. W. Kellogg, R. D. Cadle, E. R. Allen, A. L. Lazarus, and E. A. Martell, *Science* 175, 587 (1972). An extensive bibliography on sulfur compounds in the atmosphere and oceans is given in this review article.
35. W. S. C. Chang, *Principles of Quantum Electronics* (Addison-Wesley, Reading, Mass., 1969).
36. G. D. T. Tejwani, *J. Chem. Phys.*, to be published December, 1972.