Optional Lab: Multiple Variable Linear Regression

In this lab, you will extend the data structures and previously developed routines to support multiple features. Several routines are updated making the lab appear lengthy, but it makes minor adjustments to previous routines making it quick to review.

Outline

- 1.1 Goals
- 1.2 Tools
- 1.3 Notation
- 2 Problem Statement
- 2.1 Matrix X containing our examples
- 2.2 Parameter vector w, b
- 3 Model Prediction With Multiple Variables
- 3.1 Single Prediction element by element
- 3.2 Single Prediction, vector
- · 4 Compute Cost With Multiple Variables
- 5 Gradient Descent With Multiple Variables
- 5.1 Compute Gradient with Multiple Variables
- 5.2 Gradient Descent With Multiple Variables
- 6 Congratulations

1.1 Goals

- · Extend our regression model routines to support multiple features
 - Extend data structures to support multiple features
 - Rewrite prediction, cost and gradient routines to support multiple features
 - Utilize NumPy np.dot to vectorize their implementations for speed and simplicity

1.2 Tools

In this lab, we will make use of:

- NumPy, a popular library for scientific computing
- · Matplotlib, a popular library for plotting data

```
In [1]: import copy, math
    import numpy as np
    import matplotlib.pyplot as plt
    plt.style.use('./deeplearning.mplstyle')
    np.set_printoptions(precision=2) # reduced display precision on nu
    mpy arrays
```

1.3 Notation

Here is a summary of some of the notation you will encounter, updated for multiple features.

General Notation	Description	Python (if applicable)
\overline{a}	scalar, non bold	
a	vector, bold	
\mathbf{A}	matrix, bold capital	
Regression		
X	training example matrix	X_train
\mathbf{y}	training example targets	y_train
$\mathbf{x}^{(i)}$, $y^{(i)}$	i_{th} Training Example	X[i], y[i]
m	number of training examples	m
n	number of features in each example	n
\mathbf{w}	parameter: weight,	W
b	parameter: bias	b
$f_{\mathbf{w},b}(\mathbf{x}^{(i)})$	The result of the model evaluation at ${f x^{(i)}}$ parameterized by ${f w},b$: $f_{{f w},b}({f x}^{(i)})={f w}\cdot{f x}^{(i)}+b$	f_wb

2 Problem Statement

You will use the motivating example of housing price prediction. The training dataset contains three examples with four features (size, bedrooms, floors and, age) shown in the table below. Note that, unlike the earlier labs, size is in sqft rather than 1000 sqft. This causes an issue, which you will solve in the next lab!

Size (sqft)	Number of Bedrooms	Number of floors	Age of Home	Price (1000s dollars)
2104	5	1	45	460
1416	3	2	40	232
852	2	1	35	178

You will build a linear regression model using these values so you can then predict the price for other houses. For example, a house with 1200 sqft, 3 bedrooms, 1 floor, 40 years old.

Please run the following code cell to create your X_train and y_train variables.

2.1 Matrix X containing our examples

Similar to the table above, examples are stored in a NumPy matrix X_train . Each row of the matrix represents one example. When you have m training examples (m is three in our example), and there are n features (four in our example), \mathbf{X} is a matrix with dimensions (m, n) (m rows, n columns).

$$\mathbf{X} = egin{pmatrix} x_0^{(0)} & x_1^{(0)} & \cdots & x_{n-1}^{(0)} \ x_0^{(1)} & x_1^{(1)} & \cdots & x_{n-1}^{(1)} \ \cdots & & & & \ x_0^{(m-1)} & x_1^{(m-1)} & \cdots & x_{n-1}^{(m-1)} \end{pmatrix}$$

notation:

- $\mathbf{x}^{(i)}$ is vector containing example i. $\mathbf{x}^{(i)}=(x_0^{(i)},x_1^{(i)},\cdots,x_{n-1}^{(i)})$
- $x_j^{(i)}$ is element j in example i. The superscript in parenthesis indicates the example number while the subscript represents an element.

Display the input data.

2.2 Parameter vector w, b

- **w** is a vector with *n* elements.
 - Each element contains the parameter associated with one feature.
 - in our dataset, n is 4.
 - notionally, we draw this as a column vector

$$\mathbf{w} = \left(egin{array}{c} w_0 \ w_1 \ \dots \ w_{n-1} \end{array}
ight)$$

b is a scalar parameter.

For demonstration, \mathbf{w} and b will be loaded with some initial selected values that are near the optimal. \mathbf{w} is a 1-D NumPy vector.

3 Model Prediction With Multiple Variables

The model's prediction with multiple variables is given by the linear model:

$$f_{\mathbf{w},b}(\mathbf{x}) = w_0 x_0 + w_1 x_1 + \ldots + w_{n-1} x_{n-1} + b \tag{1}$$

or in vector notation:

$$f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b \tag{2}$$

where \cdot is a vector dot product

To demonstrate the dot product, we will implement prediction using (1) and (2).

3.1 Single Prediction element by element

Our previous prediction multiplied one feature value by one parameter and added a bias parameter. A direct extension of our previous implementation of prediction to multiple features would be to implement (1) above using loop over each element, performing the multiply with its parameter and then adding the bias parameter at the end.

```
In [6]: # get a row from our training data
x_vec = X_train[0,:]
print(f"x_vec shape {x_vec.shape}, x_vec value: {x_vec}")

# make a prediction
f_wb = predict_single_loop(x_vec, w_init, b_init)
print(f"f_wb shape {f_wb.shape}, prediction: {f_wb}")

x_vec shape (4,), x_vec value: [2104 5 1 45]
f_wb shape (), prediction: 459.9999976194083
```

Note the shape of x vec . It is a 1-D NumPy vector with 4 elements, (4,). The result, f wb is a scalar.

3.2 Single Prediction, vector

Noting that equation (1) above can be implemented using the dot product as in (2) above. We can make use of vector operations to speed up predictions.

Recall from the Python/Numpy lab that NumPy np.dot() [link (https://numpy.org/doc/stable/reference/generated/numpy.dot.html)] can be used to perform a vector dot product.

The results and shapes are the same as the previous version which used looping. Going forward, np.dot will be used for these operations. The prediction is now a single statement. Most routines will implement it directly rather than calling a separate predict routine.

4 Compute Cost With Multiple Variables

The equation for the cost function with multiple variables $J(\mathbf{w},b)$ is:

$$J(\mathbf{w}, b) = \frac{1}{2m} \sum_{i=0}^{m-1} (f_{\mathbf{w}, b}(\mathbf{x}^{(i)}) - y^{(i)})^2$$
 (3)

where:

$$f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = \mathbf{w} \cdot \mathbf{x}^{(i)} + b$$
 (4)

In contrast to previous labs, \mathbf{w} and $\mathbf{x}^{(i)}$ are vectors rather than scalars supporting multiple features.

Below is an implementation of equations (3) and (4). Note that this uses a *standard pattern for this course* where a for loop over all m examples is used.

```
In [9]: def compute cost(X, y, w, b):
           compute cost
           Args:
            X (ndarray (m,n)): Data, m examples with n features
             y (ndarray (m,)) : target values
             w (ndarray (n,)) : model parameters
                          : model parameter
             b (scalar)
           Returns:
             cost (scalar): cost
           m = X.shape[0]
           cost = 0.0
           for i in range(m):
              f_wb_i = np.dot(X[i], w) + b
                                                \#(n,)(n,) = scalar
       (see np.dot)
             cost = cost / (2 * m)
                                                 #scalar
           return cost
```

```
In [10]: # Compute and display cost using our pre-chosen optimal parameters.
cost = compute_cost(X_train, y_train, w_init, b_init)
print(f'Cost at optimal w : {cost}')
```

Cost at optimal w : 1.5578904880036537e-12

Expected Result: Cost at optimal w : 1.5578904045996674e-12

5 Gradient Descent With Multiple Variables

Gradient descent for multiple variables:

repeat until convergence: {
$$w_{j} = w_{j} - \alpha \frac{\partial J(\mathbf{w}, b)}{\partial w_{j}} \qquad \text{for j = 0..n-1}$$

$$b = b - \alpha \frac{\partial J(\mathbf{w}, b)}{\partial b}$$
}

where, n is the number of features, parameters w_i , b, are updated simultaneously and where

$$\frac{\partial J(\mathbf{w}, b)}{\partial w_j} = \frac{1}{m} \sum_{i=0}^{m-1} (f_{\mathbf{w}, b}(\mathbf{x}^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$\tag{6}$$

$$\frac{\partial J(\mathbf{w}, b)}{\partial b} = \frac{1}{m} \sum_{i=0}^{m-1} (f_{\mathbf{w}, b}(\mathbf{x}^{(i)}) - y^{(i)})$$

$$(7)$$

- m is the number of training examples in the data set
- + $f_{\mathbf{w},b}(\mathbf{x}^{(i)})$ is the model's prediction, while $y^{(i)}$ is the target value

5.1 Compute Gradient with Multiple Variables

An implementation for calculating the equations (6) and (7) is below. There are many ways to implement this. In this version, there is an

- · outer loop over all m examples.
 - lacksquare $\frac{\partial J(\mathbf{w},b)}{\partial b}$ for the example can be computed directly and accumulated
 - in a second loop over all n features:
 - $\circ \ \ \frac{\partial J(\mathbf{w},b)}{\partial w_j} \ \text{is computed for each} \ w_j.$

```
In [11]: | def compute_gradient(X, y, w, b):
             Computes the gradient for linear regression
               X (ndarray (m,n)): Data, m examples with n features
               y (ndarray (m,)) : target values
               w (ndarray (n,)) : model parameters
                               : model parameter
               b (scalar)
             Returns:
               dj dw (ndarray (n,)): The gradient of the cost w.r.t. the par
         ameters w.
                                      The gradient of the cost w.r.t. the par
               dj_db (scalar):
         ameter b.
                                      #(number of examples, number of feature
             m,n = X.shape
         5)
             dj dw = np.zeros((n,))
             dj db = 0.
             for i in range(m):
                 err = (np.dot(X[i], w) + b) - y[i]
                 for j in range(n):
                     dj_dw[j] = dj_dw[j] + err * X[i, j]
                 dj_db = dj_db + err
             dj dw = dj dw / m
             dj_db = dj_db / m
             return dj db, dj dw
```

```
In [12]: #Compute and display gradient
    tmp_dj_db, tmp_dj_dw = compute_gradient(X_train, y_train, w_init,
    b_init)
    print(f'dj_db at initial w,b: {tmp_dj_db}')
    print(f'dj_dw at initial w,b: \n {tmp_dj_dw}')

dj_db at initial w,b: -1.673925169143331e-06
    dj_dw at initial w,b:
    [-2.73e-03 -6.27e-06 -2.22e-06 -6.92e-05]
```

Expected Result:

```
dj_db at initial w,b: -1.6739251122999121e-06
dj_dw at initial w,b:
[-2.73e-03 -6.27e-06 -2.22e-06 -6.92e-05]
```

5.2 Gradient Descent With Multiple Variables

The routine below implements equation (5) above.

```
def gradient_descent(X, y, w_in, b_in, cost_function, gradient_fun
In [13]:
         ction, alpha, num iters):
              Performs batch gradient descent to learn w and b. Updates w and
          b by taking
              num iters gradient steps with learning rate alpha
              Args:
                X (ndarray (m,n)) : Data, m examples with n features
                y (ndarray (m,)) : target values
               w in (ndarray (n,)) : initial model parameters
               b_in (scalar) : initial model parameter
cost_function : function to compute cost
                gradient function : function to compute the gradient
               alpha (float) : Learning rate
num_iters (int) : number of iterations to run gradient de
          scent
              Returns:
                w (ndarray (n,)) : Updated values of parameters
                b (scalar) : Updated value of parameter
              # An array to store cost J and w's at each iteration primarily
          for graphing later
              J history = []
              w = copy.deepcopy(w in) #avoid modifying global w within funct
          ion
             b = b in
              for i in range(num iters):
                  # Calculate the gradient and update the parameters
                  dj db,dj dw = gradient function(X, y, w, b)
                  # Update Parameters using w, b, alpha and gradient
                  w = w - alpha * dj dw
                                                       ##None
                  b = b - alpha * dj_db
                                                       ##None
                  # Save cost J at each iteration
                  if i<100000:
                                    # prevent resource exhaustion
                      J_history.append( cost_function(X, y, w, b))
                  # Print cost every at intervals 10 times or as many iterati
          ons if < 10
                  if i% math.ceil(num iters / 10) == 0:
                      print(f"Iteration {i:4d}: Cost {J history[-1]:8.2f}
          " )
              return w, b, J history #return final w,b and J history for grap
          hing
```

In the next cell you will test the implementation.

```
In [14]:
        # initialize parameters
        initial w = np.zeros like(w init)
        initial b = 0.
        # some gradient descent settings
        iterations = 1000
        alpha = 5.0e-7
        # run gradient descent
        w final, b final, J hist = gradient descent(X train, y train, init
        ial w, initial b,
                                                         compute cost, c
        ompute gradient,
                                                         alpha, iteratio
        ns)
        print(f"b,w found by gradient descent: {b final:0.2f},{w final} ")
        m,_ = X_train.shape
        for i in range(m):
            print(f"prediction: {np.dot(X train[i], w final) + b final:0.2
        f}, target value: {y train[i]}")
                    0: Cost 2529.46
        Iteration
        Iteration 100: Cost
                             695.99
        Iteration 200: Cost
                             694.92
        Iteration 300: Cost
                             693.86
        Iteration 400: Cost
                             692.81
        Iteration 500: Cost
                             691.77
        Iteration 600: Cost
                             690.73
        Iteration 700: Cost
                             689.71
        Iteration 800: Cost
                             688.70
        Iteration 900: Cost
                             687.69
        prediction: 426.19, target value: 460
        prediction: 286.17, target value: 232
        prediction: 171.47, target value: 178
```

Expected Result:

b,w found by gradient descent: -0.00,[0.2 0. -0.01 -0.07]

prediction: 426.19, target value: 460 prediction: 286.17, target value: 232 prediction: 171.47, target value: 178

These results are not inspiring! Cost is still declining and our predictions are not very accurate. The next lab will explore how to improve on this.

6 Congratulations!

In this lab you:

- Redeveloped the routines for linear regression, now with multiple variables.
- Utilized NumPy np.dot to vectorize the implementations