Graphical Models

Mark van der Wilk

Department of Computing Imperial College London

>@markvanderwilk
m.vdwilk@imperial.ac.uk

January 16, 2022

Probabilistic Models

Previously we saw:

- ▶ Probabilistic model is a **joint distribution** p(x, z).
- ► We make factorisation assumptions to specify the model.
- Factorisation assumptions help simplify the posterior.

Graphical models help us to:

- visualise (conditional) independence,
- specify models with the right structure,
- find (conditional) independence when conditioning,
- do inference automatically and efficiently.

Probabilistic Graphical Models

Three types of probabilistic graphical models:

- Bayesian networks (directed graphical models)
- Markov random fields (undirected graphical models)
- Factor graphs
- ► **Nodes:** (Sets of) random variables
- ► Edges: Probabilistic/functional relations between variables
- ➤ Graph captures the way in which the joint distribution over all random variables can be decomposed into a product of factors depending only on a subset of these variables

Importance of Visualization

$$\begin{split} Pr(\{y_g, \gamma_g, t_{gk}, \beta_{gk}, l_d, f_g, z_n, i_{ng}\} | \{w_{nd}\}) &= \prod_g p(y_g | \rho) p(\gamma_g | \sigma) p(f_g | \alpha) \cdot \\ & [\prod_k^K p(t_{gk} | \gamma_g) p(\beta_{gk} | t_{gk}, y_g)] p(\kappa | \alpha) \prod_d^D p(l_d | \kappa) p(\pi | \alpha) \prod_n^N p(z_n | \pi) \\ & \prod_n^N \prod_g p(i_{ng} | \beta, z_n) \prod_n^N \prod_d^D p(w_{nd} | i_{ng}, f, l_d)] \end{split}$$

From Kim et al. (NIPS, 2015)

From Kim et al. (NIPS, 2015)

Expressing Factorisations as Graphs

Directed Graphical Models

- Nodes: Random variables
- Shaded nodes: Observed random variables
- Unshaded nodes: Unobserved (latent) random variables
- ▶ Directed arrow from a to b: Conditional distribution p(b|a).

Skill: From Joints to Graphs

Consider the joint distribution

$$p(a,b,c) = p(c|a,b)p(b|a)p(a)$$

Building the corresponding graphical model:

- 1. Create a node for all random variables
- 2. For each conditional distribution, we add a directed link (arrow) to the graph from the nodes corresponding to the variables on which the distribution is conditioned on

Graph layout depends on the choice of factorization

Skill: From Graphs to Joints

- Joint distribution is the product of a set of conditionals, one for each node in the graph
- Each conditional depends only on the parents of the corresponding node in the graph

$$p(x_1, x_2, x_3, x_4, x_5) = p(x_1)p(x_5)p(x_2|x_5)p(x_3|x_1, x_2)p(x_4|x_2)$$

In general:

$$p(\mathbf{x}) = p(x_1, \dots, x_K) = \prod_{k=1}^K p(x_k | \text{parents}(x_k))$$

What is **the** graphical model?

Remember, a model is defined simply by its joint distribution, which often is just between data and a latent variable:

$$p(\mathbf{x}, \mathbf{z}) \tag{1}$$

We can factorise this in two distinct, but equally valid ways:

$$p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{z}) = p(\mathbf{x})p(\mathbf{z}|\mathbf{x})$$
(2)

Which one is correct? Depends on which conditional you specified!

$$p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) = p(\mathbf{x}) p(\mathbf{z}|\mathbf{x})$$
(3)

Graphical Model for (Bayesian) Linear Regression

We are given a data set $(x_1, y_1), \dots, (x_N, y_N)$ where

$$y_i = f(x_i) + \varepsilon$$
, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

with *f* unknown.

➤ Find a (regression) model that explains the data

- Consider polynomials $f(x) = \sum_{j=0}^{M} w_j x^j$ with parameters $\mathbf{w} = [w_0, \dots, w_M]^{\top}$.
- ► Bayesian linear regression: Place a conjugate Gaussian prior on the parameters: $p(w) = \mathcal{N}(\mathbf{0}, \alpha^2 \mathbf{I})$

Graphical Model for Linear Regression

$$p(y_i|\boldsymbol{w}, x_i) = \mathcal{N}(y_i | f_{\boldsymbol{w}}(x_i), \sigma^2)$$
$$f(x) = \sum_{j=0}^{M} w_j x^j$$
$$p(\boldsymbol{w}) = \mathcal{N}(\mathbf{0}, \alpha^2 \mathbf{I})$$

Finding Conditional Independence

Conditional Independence

$$a \perp b|c \iff p(a,b|c) = p(a|c)p(b|c)$$

 $\iff p(a|b,c) = p(a|c)$

► (Conditional) independence allows for a factorization of the joint distribution ➤ More efficient inference

$$\mathbb{E}_{p(a,b|c)}[f(a)g(b)] = \mathbb{E}_{p(a|c)}[f(a)] \cdot \mathbb{E}_{p(b|c)}[g(b)] \tag{4}$$

 Conditional independence properties of the joint distribution can be read directly from the graph without analytical manipulations!
 d-separation (Pearl, 1988)

D-Separation (Directed Graphs)

Directed, acyclic graph in which A, B, C are arbitrary, non-intersecting sets of nodes. Does $A \perp \!\!\! \perp B \mid C$ hold? Note: C is observed if we condition on it (and the nodes in the GM are shaded)

14

Consider all possible paths from any node in *A* to any node in *B*.

Any such path is blocked if it includes a node such that either

- ► Arrows on the path meet either head-to-tail or tail-to-tail at the node, <u>and</u> the node is in the set *C* or
- Arrows meet head-to-head at the node and neither the node nor any of its descendants is in the set C

If all paths are blocked, then A is d-separated (conditionally indep.) from B by C, and the joint distribution satisfies $A \perp \!\!\! \perp B \mid C$.

Exam skill: Find conditional independencies

A path is **blocked** if it includes a node such that either

- The arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set *C* (observed) or
- The arrows meet head-to-head at the node, and neither the node nor any of its descendants is in the set *C* (observed)

Markov Chains

$$p(\lbrace x_t \rbrace_{t=1}^5, \lbrace y_t \rbrace_{t=1}^5) = p(x_1) \left[\prod_{t=2}^5 p(x_t | x_{t-1}) \right] \left[\prod_{t=1}^5 p(y_t | x_t) \right]$$
 (5)

16

How do we compute the posterior on x_5 (so we can predict y_5)?

- ► We note that $x_4 \perp \{x_t\}_{t=1}^2$, $\{y_t\}_{t=1}^3 | x_3$ (blocked path, tail-to-tail) $p(x_4 | \{y_t\}_{t=1}^4) = \int p(x_4 | x_3, y_4) p(x_3 | \{y_t\}_{t=1}^3) dx_3$
- ► This can be applied recursively!
- ► Finding the posterior can be done in linear time!

Recommended Reading

Bishop: Pattern Recognition and Machine Learning, Chapter 8
Directed graphical models

References I

Not examinable from here

Factor Graphs

A different graphical representation

Good references:

Kschischang et al.: Factor Graphs and the Sum-Product Algorithm. IEEE Transactions on Information Theory (2001)

Loeliger: An Introduction to Factor Graphs. IEEE Signal Processing Magazine, (2004)

Factor Graphs

- (Un)directed graphical models express a global function of several variables as a product of factors over subsets of those variables
- Factor graphs make this decomposition explicit by introducing additional nodes for the factors themselves

Factorizing the Joint

The joint distribution is a product of factors:

$$p(\mathbf{x}) = \prod_{s} f_{s}(\mathbf{x}_{s})$$

- \bullet $x = (x_1, \ldots, x_n)$
- x_s : Subset of variables
- f_s : Factor; non-negative function of the variables x_s
- ► Building a factor graph as a bipartite graph:
 - Nodes for all random variables (same as in (un)directed graphical models)
 - Additional nodes for factors (black squares) in the joint distribution
- Undirected links connecting each factor node to all of the variable nodes the factor depends on

Example

$$p(\mathbf{x}) = f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)$$

➤ Efficient inference algorithms for factor graphs (e.g., sum-product algorithm)

Directed Graphical Model → Factor Graph

- 1. Take variable nodes from Bayesian network
- 2. Create additional factor nodes corresponding to the conditional distributions
- 3. Add appropriate links

Example: Directed Graph → Factor Graph

- ▶ Directed graph with factorization $p(x_1)p(x_2)p(x_3|x_1,x_2)$
- Factor graph with factor $f(x_1, x_2, x_3) = p(x_1)p(x_2)p(x_3|x_1, x_2)$
- ► Factor graph with factors $f_a = p(x_1)$, $f_b = p(x_2)$, $f_c = p(x_3|x_1,x_2)$

Removing Cycles

$$p(x_3|x_2,x_1)p(x_2|x_1)p(x_1) = f_a(x_1,x_2,x_3)f_b(x_1,x_2)f_c(x_2) = f(x_1,x_2,x_3)$$
(6)

► Local cycles in an (un)directed graph (due to links connecting parents of a node) can be removed on conversion to a factor graph

Exact Inference in Factor Graphs

Sum-Product Algorithm for Factor Graphs

- Factor graphs give a uniform treatment to message passing, which is used for inference in graphs
- ► Inference: Find (marginal) posterior distributions
- ► Idea: Local message passing between nodes and factors
- ► Two different types of messages:
 - Messages $\mu_{x \to f}(x)$ from variable nodes to factors
 - Messages $\mu_{f \to x}(x)$ from factors to variable nodes
- Repeated sending of these messages through the graph converges
- ► Factors transform messages into evidence for the receiving node

Variable-to-Factor Message

- ► Take the product of all incoming messages along all other links
- A variable node can send a message to a factor node once it has received messages from all other neighboring factors
- ► The message that a node sends to a factor is made up of the messages that it receives from all other factors.

Graphical Models Mark van der Wilk @Imperial College London, January 16, 2022

Factor-to-Variable Message

$$\mu_{f_s \to x}(x) = \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in ne(f_s) \setminus x} \mu_{x_m \to f_s}(x_m)$$

- ► Take the product of the incoming messages along all other links coming into the factor node
- Multiply by the factor associated with that node
- Marginalize over all variables associated with the <u>incoming</u> messages

Initialization

► If the leaf node is a variable node, initialize the corresponding messages to 1:

$$\mu_{x \to f}(x) = 1$$

▶ If the leaf node is a factor node, the message should be

$$\mu_{f \to x}(x) = f(x)$$

Example (1)

$$\mu_{x_1 \to f_a}(x_1) = 1$$

$$\mu_{f_a \to x_2}(x_2) = \sum_{x_1} f_a(x_1, x_2) \cdot 1$$

$$\mu_{x_4 \to f_c}(x_4) = 1$$

$$\mu_{f_c \to x_2}(x_2) = \sum_{x_4} f_c(x_2, x_4) \cdot 1$$

$$\mu_{x_2 \to f_b}(x_2) = \mu_{f_a \to x_2}(x_2) \mu_{f_c \to x_2}(x_2)$$

$$\mu_{f_b \to x_3}(x_3) = \sum_{x_2} f_b(x_2, x_3) \mu_{x_2 \to f_b}(x_2)$$

Example (2)

$$\begin{split} \mu_{x_3 \to f_b}(x_3) &= 1 \\ \mu_{f_b \to x_2}(x_2) &= \sum_{x_3} f_b(x_2, x_3) \cdot 1 \\ \mu_{x_2 \to f_a}(x_2) &= \mu_{f_b \to x_2}(x_2) \mu_{f_c \to x_2}(x_2) \\ \mu_{f_a \to x_1}(x_1) &= \sum_{x_2} f_a(x_1, x_2) \mu_{x_2 \to f_a}(x_2) \\ \mu_{x_2 \to f_c}(x_2) &= \mu_{f_a \to x_2}(x_2) \mu_{f_b \to x_2}(x_2) \\ \mu_{f_c \to x_4}(x_4) &= \sum_{x_2} f_c(x_2, x_4) \mu_{x_2 \to f_c}(x_2) \end{split}$$

Marginals

For a single variable node the marginal is given as the product of all incoming messages:

$$p(x) = \prod_{f_i \in ne(x)} \mu_{f_i \to x}(x)$$

Observed Variables **▶** Posterior

- Thus far, we have focused on the case where all variables are unobserved.
- Posterior is always conditioned on observations
- ▶ Partition $x = h \cup v$, h: hidden variables, v: visible variables with observations \hat{v}
- $p(v = \hat{v}) = \prod_i I(v_i = \hat{v}_i)$
- $p(x)p(v=\hat{v}) = p(h,v=\hat{v}) \propto p(h|v=\hat{v})$
- ▶ Marginal posteriors $p(h_i|v=\hat{v})$ can be obtained via sum-product algorithm and some local computations
 - ▶ (Koller & Friedman, 2009)

Exact Inference in (Un)Directed Graphical Models

- ► Loops are possible ➤ Junction Tree Algorithm (Lauritzen & Spiegelhalter, 1988)
- ► Alternative: **Loopy Belief Propagation** (Frey & MacKay 1998)

Applications of Inference in Graphical Models

- ► Ranking: TrueSkill (Herbrich et al., 2007)
- ► Computer vision: de-noising, segmentation, semantic labeling, ... (e.g., Sucar & Gillies, 1994; Shotton et al., 2006; Szeliski et al., 2008)
- ► Coding theory: Low-density parity-check codes, turbo codes, ... (e.g., McEliece et al., 1998)
- ► Linear algebra: Solve linear equation systems (Shental et al., 2008)
- Signal processing: Iterative state estimation (e.g., Bickson et al., 2007; Deisenroth & Mohamed, 2012)