

8192×8-BIT UV ERASABLE PROM

The MCM68766 is a 65,536-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically, or for replacing 64K ROMs for fast turnaround time. The transparent window on the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply that has an output enable control and is pin-for-pin compatible with the MCM68366 mask programmable ROMs, which are available for large volume production runs of systems initially using the MCM68766.

- Single +5 V Power Supply
- Organized as 8192 Bytes of 8 Bits
- Fully TTL Compatible
- Maximum Access Time = 450 ns MCM68766

400 ns MCM68766-40

350 ns MCM68766-35

300 ns MCM68766-30

- Standard 24-Pin DIP for EPROM Upgradability
- Pin Compatible to MCM68366 Mask Programmable ROM
- Low Power Dissipation 85 mA Active Maximum
- Fast Programming Algorithm Possible

BLOCK DIAGRAM VCC VSS Data Input/Output DQ0-DQ7 G/VPP Control Logic Input/Output Buffers A0-A4 Decoder X Decoder Memory Matrix

MOS

(N-CHANNEL, SILICON-GATE)
8192 × 8-BIT
UV ERASABLE
PROGRAMMABLE READ
ONLY MEMORY

PIN ASSIGNMENT

		_	_	
A7 🕻	1 🖷		4	Vcc
A6 [2	2	3	8A [
A5 🕻	3	2	2	A9
A4 [4	2	1	A12
ΑЗ[5	2	٥ŧ	G/V _{PP}
A2[6	1	9	A10
A10	7	1:	в	A11
A0 [8	1	7	DQ7
DOOL	9	1	6	DQ6
DQ1[10	1	5	DQ5
DQ2	11	1	4 þ	DQ4
vss	12	1:	<u></u>	DQ3
_			_	

A Address	Pin Names	
Data Input/Output	DQ Data Inpu G/Vpp Output Enable/ VCC +5 V Power	t/Output Program er Supply

ABSOLUTE MAXIMUM RATINGS

Rating	Value	Unit
Temperature Under Bias	- 10 to +80	°C
Operating Temperature Range	0 to +70	°C
Storage Temperature	- 65 to + 125	°C
All Input or Output Voltages with Respect to VSS	+6 to -0.3	Vdc
Vpp Supply Voltage with Respect to VSS	+ 28 to - 0.3	Vdc

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

MODE SELECTION

		Pin Number							
Mode	9-11, 13-17, DQ	12 VSS	20 G/Vpp	24 VCC					
Read	Data Out	Vss	VIL	Vcc					
Output Disable	High-Z	Vss	ViH	Vcc					
Program	Data in	VSS	Pulsed V ₁ LP to V ₁ HP	VCC					

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (Vin = 0 V) Except G/VPP	Cin	4.0	6.0	DΕ
Input Capacitance (G/Vpp)	Cin	60	100	DF
Output Capacitance (Vout=0 V)	Cout	8.0	12	DF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta_1/\Delta V$.

RECOMMENDED DC OPERATING CONDITIONS

Param	neter	Symbol	Min	Nom	Max	Unit
Supply Voltage	MCM68766C, C35, C40		4.75	5.0	5.25	V
Input High Voltage	MCM68766C30-10, C35-10	VIH	4.50 2.0	5.0	5.50	
Input Low Voltage		VIL	-0.1		V _{CC} +1.0	V

DC OPERATING CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Тур	Max	Units
Address Input Sink Current	V _{in} = 5.25 V	lin		- ', Р	10	μA
Output Leakage Current	V _{out} = 5.25 V	ILO		<u> </u>	10	μА
G/Vpp Input Sink Current	G/VPP = 0.4 V		_		100	μA
	G/Vpp = 2.4 V		_		100	μА
VCC Supply Current (Outputs Open)	$\overline{G}/V_{PP} = V_{II}$	^I CC	_		85	mA
Output Low Voltage	I _{OL} = 2.1 mA	VOL	_	_	0.45	V
Output High Voltage	I _{OH} = -400 μA	VOH	2.4	_	-	V

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

Input Pulse Levels	20 ns	Output Timing Levels. Output Load	
Input Timing Levels	1.0 Volt and 2.0 Volts		=

	Syn	Symbol				MCM68766C MCM68766C 35 40		MCM68766C			
Characteristic	Standard	Alternate	Min	Max	Min	Max	Min	Max	Min	Max	Units
Address Valid to Output Valid $(\overline{G} = V_{ L})$	tAVQV	†ACC	T -	300		350		400	-	450	ns
Output Enable to Output Valid	t _{GLQV}	1OE	<u> </u>	120	-	150	_	150	_	150	ns
Output Disable to Output High Z	tGHQZ	t _{DF}	0	100	0	100	0	100	0	100	ns
Data Hold from Address (G = V _{IL})	tAXDX	tон	0	-	0	-	0		0		ns

READ MODE TIMING DIAGRAM

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS $\{T_A=25\pm 5\,^{\circ}\text{C}\}$

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	Vcc_	4.75	5.0	5.25	V
Input High Voltage for All Addresses and Data	V _{IH}	2.2		VCC + 1	V
Input Low Voltage for All Addresses and Data	VIL	- 0.1		0.8	V
Program Pulse Input High Voltage	VIHP	24	25	26	٧
Program Pulse Input Low Voltage	V _{ILP}	2.0	Vcc	6.0	V

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Address Input Sink Current	V _{in} = 5.25 V	ال	_	-	10	μΑ
Vpp Program Pulse Supply Current (Vpp = 25 V ± 1 V)	-	^I PH	_	-	30	mΑ
Vpp Supply Current (Vpp = 2.4 V)		IPL = IGH	-		100	μΑ
V _{CC} Supply Current (V _{PP} =5 V)		lcc		-	85	mA

AC PROGRAMMING CONDITIONS AND CHARACTERISTICS

	Syr				
Characteristic	Standard	Alternate	Min	Max	Unit
Address Setup Time	†AVPH	†AS	2.0	-	μS
Data Setup Time	t _{DVPH}	tDS	2.0		μS
Output Enable to Valid Data	†GLQV	[†] OE	150		ns
Output Disable to Data In	†GHDV	todd	2.0	-	μS
Program Pulse Width	1PHPL	tPW	1.9	2.1	ms
Program Pulse Rise Time	t _{PR}	tpR	0.5	2.0	μS
Program Pulse Fall Time	tpF	tpr	0.5	2.0	μS
Cumulative Programming Time Per Word*	tCP	tCP	12	50	ms

^{*}If less than 25, two-millisecond pulses are required to verify programming then 5 additional two-millisecond pulses are required to ensure proper operating margins (i.e., 2 ms+5×2 ms=12 ms minimum top).

PROGRAMMING OPERATION TIMING DIAGRAM

PROGRAMMING INSTRUCTIONS

Before programming, the memory should be submitted to a full erase operation to ensure that every bit is in the "1" state (represented by Output High). Data is entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for Program Mode, the \overline{G}/Vpp input (Pin 20) should be between +2.0 and +6.0 V, which will three-state the outputs and allow data to be set up on the DQ terminals. The V_{CC} voltage is the same as for the Read operation. Only "0's" will be programmed when "0's" and "1's" are entered in the 8-bit data word.

After address and data setup, 25-volt programming pulse (V)H to V)HP is applied to the \overline{G} /Vpp input. The program pulse width is 2 ms and the maximum program pulse amplitude is 26 V.

Multiple MCM68766s may be programmed in parallel by connecting like inputs and applying the program pulse to the \overline{G}/Vpp inputs. Different data may be programmed into multiple MCM68766s connected in parallel by selectively applying the programming pulse only to the MCM68766s to be programmed.

READ OPERATION

After access time, data is valid at the outputs in the flead mode. With \overline{G}/Vpp ="0" the outputs are enabled; with \overline{G}/Vpp ="1" the outputs are three-stated.

Multiple MCM68766s may share a common data bus with like outputs OR-tied together. In this configuration only one \overline{G}/Vpp input should be low and no other device outputs should be active on the same bus. This will prevent data contention on the bus.

ERASING INSRUCTIONS

The MCM68766 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UV-intensity X exposure time) is 15 Ws/cm². As an example, using the "Model 30-000" UV Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM68766 should be positioned about one inch away from the UV-tubes.

RECOMMENDED OPERATING PROCEDURES

After erasure and reprogramming of the EPROM, it is recommended that the quartz window be covered with an opaque self-adhesive cover. It is important that the self-adhesive cover not leave any residue on the quartz if it is removed to allow another erasure.

FAST PROGRAMMING ALGORITHM

This device is capable of the fast programming algorithm as shown by the following flow chart. This algorithm allows for faster programming time with increased operating margins and improved reliability of data storage.

FAST PROGRAMMING ALGORITHM FLOW CHART

