ΦΥΣ 133 - 9^o ΦΡΟΝΤΙΣΤΗΡΙΟ

	Εβέταση της περίπτωσης ενός διπλού εκκρεφούς το οποίο αποτελείτακ από
	2 απλά εκκρεμή, το καθένα μάζος το και μήνους l. Το πρώτο εβαροάται
	από ακλόνητο ενδείο και το δεύτερο εβαρτάτοι από τη Γιάβα του πρώτου.
	Ynoditores ou za exupefuj enzeloù firepes ralarziseus se iva
-	επίπεδο, να βρεθούν οι κανονικοί πρόποι ταθάντωσης και οι αντίσωιχες
	δυχνότη τες.
	THE COM OT , MATAGERAGY CON GU GET PROGRAPHETAL AND ELS SUD YOUVIES O KOLD. H KIMTERLIS ENÈPSELOR
	ano as Suo yuvier O kar o. A umaris evèppera
	The state of the
	T-1.33 1.33
	$T = \frac{1}{2}m\vec{V_1} \cdot \vec{V_1} + \frac{1}{2}m\vec{V_2} \cdot \vec{V_2}$
	De rominures . Te like it was it have
	Oι εσχύεις εν νώθε hába v, και v, μπορούν να χραφούν ευναρεή εει των Θ και φ: V ₁ = Eglθ και V ₂ = V ₃ + Eplφ
	V = & lo ka V = V + & lo
	1
	O 2° opos ens Vy eivou n caxicyta ens gridas us noos zor 1º Liafa Enopierus n myanin enipyena poidetan:
	Εποφένων η κιιμανώς ενέρχεια χράφεται:
	$T = \frac{1}{2}ml^2\dot{\Theta}^2 + \frac{1}{2}m(\hat{e}_{\varphi}l\dot{\Theta} + \hat{e}_{\varphi}l\dot{\phi}) \cdot (\hat{e}_{\varphi}l\phi \cdot \hat{e}_{\varphi}l\dot{\Theta}) \simeq$
	1 12 2 2 1 2 (2 2 2 2 2 2 2 2 2 2 2 2 2
	$\simeq \frac{1}{9} m l^2 \mathring{O}^2 + \frac{1}{9} m l^2 (\mathring{O} + \mathring{\Phi})^2 = \frac{1}{9} m l^2 (2\mathring{O}^2 + \mathring{\Phi}^2 + 2\mathring{O}\mathring{\Phi})$
	(a υποθέσουμε ότι για fuxpès anoidieus anó en dien reopportion ε ξεξο παραγιèvour παράθληθα οπότε ερ εξο ~1)
	Trapatiesons Trapassissa onote 80 et = 1)
	Unapolité va una Joyi coupe a nivara M
	$\mu_{\perp} = \frac{1}{2} \frac{\partial T}{\partial x} = 2ml^2 $ (9.1)
	$\frac{1}{1-i} \int_{0}^{i} \frac{\partial \dot{x}_{i} \dot{x}_{j}}{\partial \dot{x}_{i} \dot{x}_{j}} = \frac{1}{2} \left(\frac{\partial \dot{x}_{i}}{\partial \dot{x}_{i}} \right) = \frac{1}{2} \left(\frac{\partial \dot{x}_{i}}{\partial \dot{x}_{i}} \right)$
	$ \underline{H}_{ij} = \frac{1}{9} \frac{\partial T}{\partial \dot{x}_i \dot{x}_j} \Rightarrow \underline{H}_{11} = \frac{1}{9} \frac{\partial^2 T}{\partial \dot{\phi}^2} = 2ml^2 $ $ \underline{H}_{49} = \frac{1}{9} \frac{\partial^2 T}{\partial \dot{\phi}^2} = ml^2 $ $\Rightarrow \underline{M} = ml^2 \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$
	$M_{12} = M_{21} = \frac{20^{2}T}{2000} = ml^{2}$
	~ \0 ⊕ <i>0</i> ψ

 Mospositie va unologisatie to loga aj/az tur 2 e Sussanchèrem escà jovers es 2 e sucception en fue freta en ailly con essenti
 erecijoner er 2 i Suscerpioners en pro herà en alla ceru eficuen
vivy643 Tou nipalie npayorhims 60 hopdy nivanos
Tea en Troisey Eficusey Da Exorte:
$\begin{pmatrix} -2\omega_1^2 + 2\omega_0^2 - \omega_1^2 \\ -\omega_1^2 - \omega_1^2 + \omega_0^2 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} -2\omega_1^2 + 2\alpha_1 - \omega_1^2 \\ \alpha_2 \end{pmatrix} = 0 \Rightarrow$
$\Rightarrow \left(-2\omega^2 + 2\psi^2\right)\alpha_1 = \omega^2\alpha_2 \Rightarrow$
$\Rightarrow \frac{\alpha_1}{\alpha_2} = \frac{\omega^2}{-2\omega^2 + 2\omega^2} = \frac{1}{2} \frac{\omega^2}{(\omega^2 - \mathbf{y}^2)^2}$
Avaradicaireas w=w, èxate:
$\frac{\alpha_1}{\alpha_2} = \frac{2 - \sqrt{2}}{-2(2 - \sqrt{2}) + 9} = \frac{2 - \sqrt{2}}{2 + \sqrt{2}} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$
Evin you $\omega = \omega_2$ ixonly: $\frac{\alpha_{\perp}}{\alpha_2} = \frac{2+\sqrt{2}}{-2(2+\sqrt{2})+2} = \frac{2+\sqrt{2}}{-2+\sqrt{2}} = \frac{2+\sqrt{2}}{-(2+\sqrt{2})} = -\frac{\sqrt{2}}{2} = -\frac{1}{\sqrt{2}}$
Oè covean avolaipera $a_1 = 1$ (hnopositée va co na voutre apois èxatée fiève $\frac{a_1}{a_2}$)
Exorpre: $\Theta = \cos \omega_1 t$ $\phi = \sqrt{2} \cos \omega_1 t$ $\alpha_1 = \left(\frac{1}{\sqrt{2}}\right) \cosh \omega_2 t$
$\Theta = -\cos \omega_0 t$ $\phi = +\sqrt{2}\cos \omega_0 t$ $a_2 = \left(-\frac{1}{\sqrt{2}}\right)$ average $\phi = -\cos \omega_0 t$
Tien Tien
Gulfredoring?
arusque qu'in

Eva europhis trajas m un timors V eva esapontivo ano èva zoilido eniers hajas m co onoio finopei va viveice se Jeia opisoria zpoxia Era edacipa, cradepas k, cursies to coublo he car audomo toizo. Oc copis The fields my the Gradepas k was con figures or con Elampion Eines Titoles wett, Ing = Kr. H exico auti entraire da au co claripos cupaçoise as fiafes con coi blon non con empetoris, la enteguiroran Mara fun anocracy icy he co figures con empetionis. Na bordair or 12 in auxuo in ces Ynologifoupe en uvy any na Swapeni, exippes con wanten X toublow => 2 Touch = X Touch XENUE = XTOURS + rSIND = X= X+rOWD YEND = - rose > > = rosuc $T = \frac{m}{2} \dot{x}^2 + \frac{m}{2} \left[(\dot{x} + r\dot{\theta} \cos \theta)^2 + (r\dot{\theta})^2 \sin^2 \theta \right] \Rightarrow$ $\Rightarrow T = \frac{m}{2} \dot{x}^2 + \frac{m}{2} \left(\dot{x}^2 + r^2 \dot{\theta} \cos \theta + 2r \dot{x} \dot{\theta} \cos \theta + r \dot{\theta} \sin \theta \right)$ => T= (\frac{m}{2} + \frac{m}{2}) \docum^2 + \frac{m}{2} \cdot^2 \docum^2 + mr \docum^2 \docum \omega \omega \docum^2 T= mx2 + mr202 + mrx00000 (1) $V = mgr(1-000) + \frac{1}{9}Kx^{9}$ (2) Tra frikpa 0 kar 0 finopoitre va parportre cos0 = 1 - 9 (d) > V = may = + 1/2 kx2 n roccienta OO H (1) > T= mx2 + mr202 + mrx0 Eine roli bupy ator o só trupa Kou Eiva 3º cifos GE O

Andousteinoutie - représente po co republique Direvers $q_1 = X$ y $q_2 = rO$ evic χ_{q_1} entennainters c_1 environne tour rou republique c_1 de c_2 de c_3 de c_4 de $c_$

Kimen evis euccipacos 3 emparem Trov opienovas ce luia eneia. Τίτοιο παράδειχεια αποτεθεί ένα τριατομικό μόριο όπως το CO2 (0-c-0) Θεωρούμε κίνηση σε μια διάσταση (x-άβουα). Τα δύο άτομα του Ο έχουν piaja m eni co nerquio acopo ixu piaja M. Indiorea peraji tors fiéca Surafueri éporer pe enlatispion, cradepas K. Or curetagnères THOU Explaison as anoulieus and and lien reopportion size X1, X2, X3 $L = T - V = \left(\frac{m}{2} \times_{1}^{2} + \frac{m}{2} \times_{3}^{2} + \frac{\mu}{9} \times_{3}^{2} \right) - \left[\frac{k}{2} (x_{2} - x_{1})^{2} + \frac{k}{9} (x_{3} - x_{9})^{2} \right]$ Errohèves 2n lièves dien uns hoppis q= (a, az ent da exorpre: va licoupe en eficuer: (K-Mw²) q = 0 $K = \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \frac{\partial V}{\partial x_{1}^{2}} & \frac{1}{2} \frac{\partial V}{\partial x_{1} x_{2}} & \frac{1}{2} \frac{\partial^{2} V}{\partial x_{1} x_{3}} \\ \frac{1}{2} \frac{\partial^{2} V}{\partial x_{1}^{2} x_{2}} & \frac{1}{2} \frac{\partial^{2} V}{\partial x_{2}^{2} x_{3}} & \frac{1}{2} \frac{\partial^{2} V}{\partial x_{3}^{2} x_{3}} \end{pmatrix} = \frac{1}{2}$ Onote égale: Two lon tecpologies ligus Troines: | K-mw²-k 0 - k 9k-Nw²-k = 0 >

$$\Rightarrow \omega^2 \left(-m\omega^2 + k \right) \left(-mM\omega^2 + kM + 2km \right) = 0$$

Or dieus eivau:

$$\omega_1 = 0$$
, $\omega_2 = \sqrt{\frac{k}{m}}$ Ka $\omega_3 = \left(\frac{k}{m} + \frac{9k}{M}\right)^{1/2}$

- Η πρώτη ευχότητα αντιστοιχεί σε μη ταθάντειώς, αθλά σε απλί μεταφοριικί κίνηση. Αν <math>ω=ω, =0 τότε $α_1=a_2=a_3$
- Αν ω=ωρ τότε βρίωνουμε αρ=0 ενώ α1=-α3 Οπότε το Γιεραίο ρώμα είναι ακίνητο ενώ τα αίθθε θ ταθαντώνονται με αυτίθετη φάρη
- Ar $w=w_3$ còte $\alpha_1=\alpha_3$ neu $\alpha_2=-2\alpha_1\left(\frac{m}{\mu}\right)=-2\alpha_3\left(\frac{m}{\mu}\right)$ Ta l'ampair Gibrare televairorras se dà sy evi to

 [resaio simple collaraireras availeta fre 12 ditos proportes and to ille Sio.
- ο Ο θόχος $\frac{\omega_3}{\omega_2}$ είναι ανεβάρτητας της σταθερώς k μαι ισύται $\frac{\omega_3}{\omega_2} = \left(1 + 2\frac{m}{\mu}\right)^{1/2}$

$$(4) \quad \overset{m}{@} \longrightarrow \quad \overset{M}{@} \longrightarrow \qquad \overset{M}{@} \longrightarrow \qquad \omega_{1} = 0$$

(3)
$$\omega_3 = \sqrt{\frac{k}{m} + \frac{qk}{m}}$$

$$-k\alpha_{1} + k\alpha_{2} - m\omega^{2}\alpha_{1} = 0 \Rightarrow (k - m\omega^{2})\alpha_{1} = k\alpha_{2} \Rightarrow (\alpha_{2} = \frac{k - m\omega^{2}}{k}\alpha_{1})$$

$$-k\alpha_{1} + 2k\alpha_{2} - M\omega^{2}\alpha_{1} - k\alpha_{3} = 0 \Rightarrow -k\alpha_{1} + (2k - M\omega^{2})\frac{k - m\omega^{2}}{k}\alpha_{1} - k\alpha_{3} = 0$$

$$\Rightarrow |\alpha_{3} = -\alpha_{1} + (2k - M\omega^{2})\frac{k - m\omega^{2}}{k^{2}}\alpha_{1}$$

Avanadisciveas $\omega = \omega_2$ exortie and en 19 eficuer:

$$a_2 = \frac{k - m \frac{k}{m}}{k} a_1 \Rightarrow a_2 = 0$$

$$a_3 = -a_1 + \left(2k - M \frac{k}{m}\right) \frac{k - m \frac{k}{m}}{k^2} a_1 \Rightarrow a_3 = -a_1.$$

Για την συχνότητα ω = ως δα έχουμε:

$$a_2 = \frac{k - m\left(\frac{k}{m} + \frac{9k}{M}\right)}{k} a_1 = \frac{k - k + \frac{9km}{M}}{k} a_1 \Rightarrow a_2 = 2 \frac{m}{M} a_1$$

$$\alpha_3 = -\alpha_1 + \left(2k - M\omega^2\right) \frac{k - m\left(\frac{k}{m} + \frac{2k}{M}\right)\alpha_1}{k^2} = -\alpha_1 + \left(2k - M\left(\frac{\mu}{m} + \frac{2k}{M}\right)\right) \frac{\left(-2m\alpha_1\right)}{\mu k}$$

$$\Rightarrow a_3 = -a_1 + (2k - \frac{kM}{m} - \frac{2k}{m}) \frac{(-2ma_1)}{m} \Rightarrow$$

$$\Rightarrow a_3 = -a_1 + \frac{2a_1}{a_1} \Rightarrow a_3 = a_1.$$