

MATERIAL SAFETY DATA SHEET

819705 MIDWAY BLUE GP22

Version Number 1.0 Page 1 of 8
Revision Date 02/10/2014 Print Date 2/10/2014

1. PRODUCT AND COMPANY IDENTIFICATION

POLYONE CORPORATION

33587 Walker Road, Avon Lake, OH 44012

Telephone : 1 (440) 930-1000 or 1 (866) POLYONE

Emergency telephone : CHEMTREC 1-800-424-9300 (24hrs for spill, leak, fire, exposure

number or accident).

Product name : 819705 MIDWAY BLUE GP22

Product code : CC10191994 Chemical Name : Mixture CAS-No. : Mixture

Product Use : Industrial Applications

2. COMPOSITION/INFORMATION ON INGREDIENTS

Components	CAS-No.	Weight percent
1,3,5-Triazine-2,4,6-triamine,N,N"'-1,2-ethanediylbis[N-[3-[[4,6-bis[butyl(1,2,2,6,6-pentamethyl-4-piperidinyl)amino]-1,3,5-	106990-43-6	1 - 5
triazin		
2-Benzotriazolyl-4-methylphenol	2440-22-4	5 - 10
Xylenes (o-, m-, p- isomers)	1330-20-7	1 - 5
Titanium dioxide	13463-67-7	10 - 30

3. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

This mixture has not been evaluated as a whole. Information provided on the health effects of this product is based on individual components. All ingredients are bound and potential for hazardous exposure as shipped is minimal. However, some vapors may be released upon heating and the enduser (fabricator) must take the necessary precautions (mechanical ventilation, respiratory protection, etc.) to protect employees from exposure.

POTENTIAL HEALTH EFFECTS

Routes of Exposure: : Inhalation, Ingestion, Skin contact

Acute exposure

Inhalation : Resin particles, like other inert materials, can be mechanically

irritating.

Ingestion : May be harmful if swallowed.

MATERIAL SAFETY DATA SHEET

819705 MIDWAY BLUE GP22

Version Number 1.0 Page 2 of 8
Revision Date 02/10/2014 Print Date 2/10/2014

Eyes : Resin particles, like other inert materials, are mechanically irritating to

eyes.

Skin : Experience shows no unusual dermatitis hazard from routine handling.

Chronic exposure : Refer to Section 11 for Toxicological Information.

Medical Conditions

Aggravated by Exposure:

: None known.

4. FIRST AID MEASURES

Inhalation : Move to fresh air in case of accidental inhalation of fumes from

overheating or combustion. When symptoms persist or in all cases of

doubt seek medical advice.

Ingestion : Do not induce vomiting without medical advice. When symptoms

persist or in all cases of doubt seek medical advice.

Eyes : Rinse immediately with plenty of water, also under the eyelids, for at

least 15 minutes. If eye irritation persists, seek medical attention.

Skin : Wash off with soap and plenty of water. If skin irritation persists

seek medical attention.

5. FIREFIGHTING MEASURES

Flash point : not applicable

Flammable Limits

Upper explosion limit : not applicable
Lower explosion limit : not applicable
Auto-ignition temperature : not applicable

Suitable extinguishing media : Carbon dioxide blanket, Water spray, Dry powder, Foam.

Special Fire Fighting

Procedures

Fullface self-contained breathing apparatus (SCBA) used in positive pressure mode should be worn to prevent inhalation of airborne

contaminants.

Unusual Fire/Explosion

Hazards

Carbon dioxide (CO2), carbon monoxide (CO), oxides of nitrogen (NOx), other hazardous materials, and smoke are all possible.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions : Wear appropriate personal protection during cleanup, such as

impervious gloves, boots and coveralls.

Environmental precautions : Should not be released into the environment. The product should not

be allowed to enter drains, water courses or the soil.

Methods for cleaning up : Clean up promptly by sweeping or vacuum. Package all material in

MATERIAL SAFETY DATA SHEET

819705 MIDWAY BLUE GP22

Version Number 1.0 Page 3 of 8 Print Date 2/10/2014 Revision Date 02/10/2014

plastic, cardboard or metal containers for disposal.

7. HANDLING AND STORAGE

Handling Take measures to prevent the build up of electrostatic charge. Heat

only in areas with appropriate exhaust ventilation.

Keep containers dry and tightly closed to avoid moisture absorption Storage

and contamination. Keep in a dry, cool place.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Respiratory protection : No personal respiratory protective equipment normally required.

Eye/Face Protection Safety glasses with side-shields

Hand protection Protective gloves

Skin and body protection Long sleeved clothing

Additional Protective

Measures

Safety shoes

General Hygiene

Considerations

: Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

Engineering measures : Heat only in areas with appropriate exhaust ventilation. Provide

appropriate exhaust ventilation at machinery.

Exposure limit(s)

MATERIAL SAFETY DATA SHEET

819705 MIDWAY BLUE GP22

 Version Number 1.0
 Page 4 of 8

 Revision Date 02/10/2014
 Print Date 2/10/2014

Components	Value	Exposure time	Exposure type	List:
Titanium dioxide	10 mg/m3	Time Weighted Average (TWA):		ACGIH
	15 mg/m3	PEL:	Total dust.	OSHA Z1
	10 mg/m3	Time Weighted Average (TWA):	Total dust.	OSHA Z1A
	10 mg/m3	Time Weighted Average (TWA):	as Ti	MX OEL
	20 mg/m3	Short Term Exposure Limit (STEL):	as Ti	MX OEL
Xylenes (o-, m-, p- isomers)	100 ppm	Time Weighted Average (TWA):		ACGIH
	150 ppm	Short Term Exposure Limit (STEL):		ACGIH
	100 ppm 435 mg/m3	PEL:		OSHA Z1
	100 ppm 435 mg/m3	Time Weighted Average (TWA):		OSHA Z1A
	150 ppm 655 mg/m3	Short Term Exposure Limit (STEL):		OSHA Z1A
	100 ppm 435 mg/m3	Time Weighted Average (TWA):		MX OEL
	150 ppm 655 mg/m3	Short Term Exposure Limit (STEL):		MX OEL

9. PHYSICAL AND CHEMICAL PROPERTIES

Form Not applicable : solid Evapouration rate Not determined Appearance : pellets Specific Gravity Colour : BLUE Bulk density Not established Vapour pressure not applicable Odour : very faint Melting point/range Not determined Vapour density not applicable Boiling Point: not applicable not applicable pН

Water solubility : insoluble

10. STABILITY AND REACTIVITY

Stability : The product is stable if stored and handled as prescribed.

Hazardous Polymerization : Will not occur.

Conditions to avoid : Keep away from oxidizing agents and open flame. To avoid thermal

decomposition, do not overheat.

Incompatible Materials : Incompatible with strong acids and oxidizing agents.

Hazardous decomposition

products

: Carbon dioxide (CO2), carbon monoxide (CO), oxides of nitrogen

(NOx), other hazardous materials, and smoke are all possible.

MATERIAL SAFETY DATA SHEET

819705 MIDWAY BLUE GP22

Version Number 1.0 Revision Date 02/10/2014 Page 5 of 8 Print Date 2/10/2014

11. TOXICOLOGICAL INFORMATION

This mixture has not been evaluated as a whole for health effects. Exposure effects listed are based on existing health data for the individual components which comprise the mixture.

Toxicity Overview

This product contains the following components which in their pure form have the following characteristics:

CAS-No.	Chemical Name	Effect	Target Organ
1330-20-7	Xylenes (o-, m-, p- isomers)	Irritant	Eyes, Respiratory system.
		Systemic effects	Eyes, Skin, Respiratory system, blood and blood forming system, Liver, Kidney, central nervous system (CNS), digestive system.
13463-67-7	Titanium dioxide	Systemic effects	Respiratory system.

LC50 / LD50

This product contains the following components which, in their pure form, have the following toxicity data:

CAS-No.	Chemical Name	Route	Value	Species
2440-22-4	2-Benzotriazolyl-4- methylphenol	Oral LD50	6,500 mg/kg	mouse
1330-20-7	Xylenes (o-, m-, p- isomers)	LC50 LC50 Oral LD50Oral LD50 Dermal LD50 Dermal LD50	5000 ppm/4H 4,300 mg/kg4,300 mg/kg > 1,700 mg/kg 43 g/kg	rat rat ratrat rabbit rabbit

Carcinogenicity

This product contains the following components which, in their pure form, have the following carcinogenicity data:

CAS-No.	Chemical Name	OSHA	IARC	NTP
13463-67-7	Titanium dioxide	no	2B	no

IARC Carcinogen Classifications:

- 1 The component is carcinogenic to humans.
- 2A The component is probably carcinogenic to humans.
- 2B The component is possibly carcinogenic to humans.

NTP Carcinogen Classifications:

- 1 The component is known to be a human carcinogen.
- 2 The component is reasonably anticipated to be a human carcinogen.

12. ECOLOGICAL INFORMATION

MATERIAL SAFETY DATA SHEET

819705 MIDWAY BLUE GP22

Version Number 1.0 Page 6 of 8
Revision Date 02/10/2014 Print Date 2/10/2014

Persistence and degradability : Not readily biodegradable.

Environmental Toxicity : Chemicals are not readily available as they are bound within the

polymer matrix.

Bioaccumulation Potential : Chemicals are not readily available as they are bound within the

polymer matrix.

Additional advice : no data available

13. DISPOSAL CONSIDERATIONS

Product : Like most thermoplastic plastics the product can be recycled. Where

possible recycling is preferred to disposal or incineration. The generator of waste material has the responsibility for proper waste classification, transportation and disposal in accordance with applicable federal, state/provincial and local regulations.

Contaminated packaging : Recycling is preferred when possible. The generator of waste

material has the responsibility for proper waste classification, transportation and disposal in accordance with applicable federal,

state/provincial and local regulations.

14. TRANSPORT INFORMATION

U.S. DOT Classification : Not regulated for transportation.

ICAO/IATA : Refer to specific regulation.

IMO/IMDG (maritime) : Refer to specific regulation.

15. REGULATORY INFORMATION

US Regulations:

OSHA Status : Classified as hazardous based on components.

TSCA Status : All components of this product are listed on or exempt from the

TSCA Inventory.

US. EPA CERCLA Hazardous Substances (40 CFR 302)

Chemical Name	CAS-No.	RQ for component	RQ for
			Mixture/Product
Xylenes (o-, m-, p-	1330-20-7	100 lbs	3,636 LB
isomers)			

MATERIAL SAFETY DATA SHEET

819705 MIDWAY BLUE GP22

 Version Number 1.0
 Page 7 of 8

 Revision Date 02/10/2014
 Print Date 2/10/2014

California Proposition :

: Not applicable

65

SARA Title III Section 302 Extremely Hazardous Substance

Unless specific chemicals are identified under this section, this product is Not Applicable under this regulation

SARA Title III Section 313 Toxic Chemicals:

Unless specific chemicals are identified under this section, this product is Not Applicable under this regulation

Chemical Name	CAS-No.	Weight percent
XYLENE (MIXED ISOMERS)	1330-20-7	1.00 - 5.00

Canadian Regulations:

National Pollutant Release Inventory (NPRI)

Chemical Name	CAS-No.	Weight	NPRI ID#
		percent	
Aluminum oxide	1344-28-1	0.10 - 1.00	
Phthalocyanine blue	147-14-8	0.10 - 1.00	
Phthalocyanine green	1328-53-6	0.10 - 1.00	
Xylenes (o-, m-, p- isomers)	1330-20-7	1.00 - 5.00	

WHMIS Classification : D2A

DSL : All components of this product are on the Canadian Domestic

Substances List (DSL) or are exempt.

National Inventories:

Australia AICS : Listed

China IECS : Listed

Europe EINECS : Listed

Japan ENCS : Not determined

Korea KECI : Listed

Philippines PICCS : Listed

16. OTHER INFORMATION

MATERIAL SAFETY DATA SHEET **819705 MIDWAY BLUE GP22**

Version Number 1.0	Page 8 of 8
Revision Date 02/10/2014	Print Date 2/10/2014
The information provided in this Safety Data Sheet is correct to the best of our knowledge the date of its publication. The information given is designed only as a guidance for safe h storage, transportation, disposal and release and is not to be considered a warranty or qualinformation relates only to the specific material designated and may not be valid for such combination with any other materials or in any process, unless specified in the text.	andling, use, processing, ity specification. The

8/8