Accelerating Joins with Filters: Keeping a Limited Memory is Robust

Nicholas Corrado Xiating Ouyang

University of Wisconsin-Madison

Star Schema

- If the query optimizer chooses a poor join order, intermediate join results may be unnecessarily large.
- Solution: try to filter out extraneous tuples before performing joins and

- ullet LIP uses statistics from all previous batches to compute σ
 - Slow response to local changes in key distributions
- LIP-k: Only use the previous k batches to compute σ

Implementation and benchmarking

SSB benchmark

Skewed SSB benchmark

Adversarial SSB benchmark

An Example Experiment

Skewed Key	
$\sigma = 1$]]
:	50 batches
$\sigma = 1$]
$\sigma = 0$])
:	50 batches
$\sigma = 0$] J
$\sigma = 1$])
:	50 batches
$\sigma = 1$] J
:	_

- LIP-k perform performs better than LIP on some queries...
- ...but LIP performs better on others...

LIP is solving an online problem

- Tuples arriving one at a time
- Upon arrival, decide a sequence of filters
- Minimize the total probes
- Deterministic!

LIP is solving an online problem

- Tuples arriving one at a time
- Upon arrival, decide a sequence of filters
- Minimize the total probes
- Deterministic!

Theorem

Let n be the number of filters in the LIP problem. There is no deterministic mechanism $\mathcal M$ achieving a competitive ratio less than n for the LIP problem.

LIP is solving an online problem

- Tuples arriving one at a time
- Upon arrival, decide a sequence of filters
- Minimize the total probes
- Deterministic!

Theorem

Let n be the number of filters in the LIP problem. There is no deterministic mechanism \mathcal{M} achieving a competitive ratio less than n for the LIP problem.

- Not observed in practice, but a theoretical lower bound
- Randomness?

Competitive Ratio vs. k on Uniform Data

Competitive Ratio vs. k on Adversarial Data

 Adversarial dataset constructed such that LIP-k has worst case performance for odd k

Conclusion

- Implemented LIP and its variant LIP-k
- LIP-k is better than LIP in the adversarial/skewed settings
- Randomness to achieve better robustness guarantee

Thank you!

Questions?