

Interoperable opeN-source Tools to Enable hybRidisation, utiliSation, and moneTisation of stORage flExibility

INTRODUCING CUPID

Controllable Unit Protocol Interface for DER

Prof. Antonello Monti (RWTH)

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101096511. The output reflects the views only of the author(s), and the European Commission cannot be held responsible for any use which may be made of the information contained therein.

Interstore context

The goal of the Interstore project is to prepare the European market and inverter manufacturer for the adoption of the 2030.5 standard for interoperability

The EU Repower Plan aims to identify new financing tools to address energy independence due to of current issues such as war in Ukraine, climate change, lack of raw materials ...

Project information and partner

Project acronym: InterSTORE – Interoperable opeN-source Tools to Enable hybRidisation, utiliSation, and moneTisation of stORage flExibility

Type of Action: IA

GA N°: 101096511

Call & Topic: HORIZON-CL5-2022-D3-01-

10: 24 proposals submitted: 3 funded (us,

PARMENIDES (AIT), FlexCHESS

(UNIVERSITE D'AIX MARSEILLE)

> Starting date: 01.01.2023

▶ Duration: 36 M

Budget: 4,355,197.5 €

EU contribution: 3,498,630.75 €

Project Coordination: Prof. Antonello

Monti (R)WTH)

Project/Officer: Antonios Marinopoulos (CINEA)

Project manager/Technical coordinator: Francesco Guaraldi (ENEL X)

Objective: Project pillars

InterStore objective

Interoperable DES to enable the seamless utilization and monetization of storage flexibility within a reallife environment

Pillar	Pillar	Pillar	Pillar			
Open-Source Interoperability Software toolkit	New generation Energy & Flexibility Management systems	Open Data Space	Flexibility hybridization & monetization			
	Four pilots with	th various use cases				

Societal impact through SSH approach, demonstrating GDPR compliance, liability and security

Flexibility services

A Middleware allowing Interoperability data exchange

Agreement No. 101096511

This project has received funding from the European Commission Horizon Europe Programme under Grant

A Middleware allowing Interoperability data exchange

Storage Applications & Service

Flexibility Aggregations Services/Platforms

Distributed Energy Management Systems

Open APIs

Cross—Sector Storage Data Sharing & Governance

Data Management/Sharing

Data User Access Control Brokerage

Data Fusion & Integration

Cyber security

Privacy

Extended Interoperability/Data Integration and Homogenization

IEEE 2030.5 over NATS

GAIA-X/IDSA

Common Information model/ SGAM (IEC based) models

Connectors IoT protocols/ SAREF, web-APIs

Storage Data Assets/Platforms

BESS Inverters

Data Hub

1...N

Heat Pumps/BMS

Data Hub 1...N EV Charging & V2G

Data Hub 1...N RES & DG (CHP)

Data Hub 1…N Hybrid Storage Systems

> Data Set 1...N

ESCOs, Storage Providers

> Data Set 1...N

Open/
Third party Data
Hubs (Weather)

Data Set 1...N

TOOL 1: INTEROPERABLE CLIENT/SERVER FOR DISTRIBUTED ENERGY STORAGE

Client library

Client library

Client library

IEEE 2030.5 native messaging over NATS

Server library

TOOL 2: LEGACY SYSTEMS PROTOCOL CONVERTER

TOOL 2: LEGACY SYSTEMS PROTOCOL CONVERTER

```
{
  "datetime": "28-08-2023 12:00:35",
  "status": "active",
  "start": "28-08-2023",
  "duration": 900
}
```

```
transformations:
  - name: JSON IncomingEvent to XML IEEE2030.5 Event
    description: Example showing transformation of messages from JSON to XML
    connections:
     incoming-connection:
        - MQTT-connection
      incoming-topic: topic1
      incoming-format: JSON
      outgoing-connection:
        - NATS-connection
     outgoing-topic: event/myevent
     outgoing-format: XML
    to-outgoing:
      '<Event>
        <creationTime>$timestamp</creationTime>
        <EventStatus>
          <currentStatus>
            <lpc:mapping>
              <path type="integer">/status</path>
```

<values>["scheduled", "active", "cancelled", "cancelled_with_r", "superseded"]

TOOL 3: TESTING PROCEDURE AND SOFTWARE TOOL

- Testing Procedures Based on Sunspec's "Common Smart Inverter Profile (CSIP) Conformance Test Procedures"
- Automated Testing
- A Middleware facilitates the communication from client to server

TOOL 3: Overview of Testing Schematic

- The Client Test Library comprises
 Standard test cases
- Middleware is the part doing the communication using NATS
- Middleware initiates the test by accessing client test library
- Server Library is made of IEEE 2030.5 Resources
- Response of the test is transported through Middleware to client test olibrary

TOOL 3: Deployment and Use Case of Test Software

- For local machines and raspberry pi, docker compose will be used
- The software can also be deployed in Kubernetes
- Development based on Java
- The test software will test the partners IEEE 2030.5 Supported ODevices

Tools adopted and use cases

USE CASE	TOOLS	USE CASES	GE	AU	IT	POR	Sim
UC1	Client/Server, Protocol Converter	DES Flexibility Market Monetization		Х			Q
UC2	Client/Server, Protocol Converter	Energy community DES utilization		Х			
UC3	Client/Server, Protocol Converter	Grid supporting BESS	Х				
UC4	Client/Server, Protocol Converter	Innovative Frequency services					X
UC5	Testing procedures and software tools Legacy systems protocol converter Interoperable Data Spaces Framework	Hybrid floating storage flexibility monitoring				X	
UC6	Testing procedures and software tools Legacy systems protocol converter Interoperable Data Spaces Framework	Management of battery systems for Node capacity increase in REC				X	
UC7	Client/Server, Protocol Converter, aggregation platform	Adaptive BESS managment for autonomous grid operation					X
ucs \ \	Client/Server, Protocol Converter, aggregation platform	Home Management System	X				
UC9	Interoperable client/Server for distributed Energy Storage Interoperable data spaces framework.	Management of EV charging clusters as HESS			Х		9

Status of the development

- The 3 components have been developed and tested in the project
- InterStore is in the last year but there will be new release before the conclusion
- Partners have commercial interest in keeping the effort alive and to expand it

CUPID Community

- RWTH Aachen University
- ❖ INESC-TEC
- CyberGrid
- Synesis

This project has received funding from the European Commission Horizon Europe Programme under Grant Agreement No. 101096511

Why LFE

- Making sure the community goes beyond the duration of the project
- Creating the conditions to promote IEEE 2030.5 as key enabler
- Linking to other similar efforts beyond Europe thanks to the global presence of LFE

