Parâmetros (tempos):

T_{P-FF}: tempo de propagação do FF

T_{H-FF}: tempo de hold do FF

T_{P-G}: tempo de propagação da porta (gate)

Tempo de ciclo (Taxa de clock): tempo mínimo entre transições de estado

Tempo de latência: tempo de propagação mínima das saídas a partir da transição do clock.

Análise: tempo de ciclo (caminho crítico)

 $T_{H-FF}=0$ (maioria dos casos)

 T_{S-FF} : tempo de setup do FF T_{R-AMB} : tempo de resposta do ambiente

Sistema digital:

Parâmetros (sistema):

T_{S-Ent}: tempo de setup dos sinais de entrada → entradas devem se estabilizar.

T_{H-Ent}: tempo de hold dos sinais de entrada (maioria dos casos T_{H-ENT}=0).

T_c: tempo de ciclo:

$$f_{MAX}=1/T_{C}$$

T_L: tempo de latência

Exemplo:

Parâmetros (manual)

CHIP	TPLH (ns)			TPHL (ns)		
	MIN	TIP	MAX	MIN	TIP	MAX
7400		11	22		11	15
74LS02		12	20		10	20
7474	10	14	25	10	20	40

FF-D (7474): Tsetup= 20ns - Thold=5ns

Dados adicionais: a) largura mínima do pulso para Preset e Clear; b) TMIN do clock

Exemplo:

Pede-se:

- a) Taxa de clock
- b) Tempo de setup de X,W e Z.
- c) Tempo de latência de Ls e LG

Condições:

Pessimismo nos componentes e otimismo nas linhas (zero atraso)

Exemplo:

a) Taxa de clock:

Caminho crítico: E→B

FF: 0→1

 $T_{CLH} = T_{PLH-E} + T_{PHL-A} + T_{PLH-B} + T_{S-D}$ $T_{CLH} = 25 + 15 + 20 + 20 = 80$ ns

FF: 1→0

 $T_{CHL} = T_{PHL-E} + T_{PLH-A} + T_{PHL-B} + T_{S-D}$ $T_{CHI} = 40 + 22 + 20 + 20 = 102$ ns

 $F_{MAX}=1/T_{MIN}(max(T_{CLH},T_{CLH}))$

Exemplo:

b) Tempo de setup:

b1) variável x

 $X: 0 \rightarrow 1$

$$T_{S-LH-X} = T_{PHL-A} + T_{PLH-B} + T_{S-D}$$

$$T_{S-LH-X}=20 + 15 + 20=55$$
ns

$$T_{S-HL-X} = T_{PLH-A} + T_{PHL-B} + T_{S-D}$$

$$T_{S-HI-X}=20 + 22 + 20 = 62ns$$

$$T_{S-X}=T_{MAX}(T_{S-LH-X}, T_{S-HL-X})=62ns$$

Exemplo:

b) Tempo de setup:

b2) variável w

 $W: 0 \rightarrow 1$

$$T_{S-LH-W} = T_{PHL-B} + T_{S-D}$$

$$T_{S-LH-W} = 20 + 20 = 40 \text{ns}$$

$$T_{S-HL-W} = T_{PLH-B} + T_{S-D}$$

$$T_{S-HI-W} = 20 + 20 = 40$$
ns

$$T_{S-W}=T_{MAX}(T_{S-LH-W},T_{S-HL-W})=40$$
ns

Exemplo:

b) Tempo de setup:

b3) variável Z

Z: 0→1

$$T_{S-LH-Z} = T_{PHL-C} + T_{S-E}$$

$$T_{S-LH-Z}=15 + 20=35ns$$

$$T_{S-HL-Z} = T_{PLH-C} + T_{S-E}$$

$$T_{S-HI-7}=22 + 20 = 42ns$$

$$T_{S-Z}=T_{MAX}(T_{S-LH-Z},T_{S-HL-Z})=42ns$$

Exemplo:

c) Tempo de latência:

c1) variável LS

LS: 0→1

$$T_{S-LH-LS} = 40 + 22 = 62 \text{ns}$$

LS: 1→0

$$T_{S-HL-LS} = T_{PLH-D} + T_{PHL-C}$$

$$T_{S-HI-IS} = 25 + 20 = 45$$
ns

$$T_{S-LS}=T_{MAX}(T_{S-LH-LS},T_{S-HL-LS})=62ns$$

Exemplo:

c) Tempo de latência:

c2) variável LG

LG: 0→1

$$T_{S-LH-LG}=40ns$$

$$T_{S-HL-LG}=25ns$$

$$T_{S-LG} = T_{MAX}(T_{S-LH-LG}, T_{S-HL-LG}) = 40$$
ns