

ETR03084-009

Adjustable Voltage Output Multifunction 2A High Speed LDO Regulator

■GENERAL DESCRIPTION

The XC6230 series are low on-resistance / low dropout voltage, highly precise, low noise, high PSRR, and large current High Speed LDO regulator IC. A built-in 0.17Ω low ON-resistance Pch driver transistor which can output up to a maximum output current 2.0A are also enclosed in a small surface-mount PKG, even in applications that input, and output voltage difference is you use a very small state, it is possible to use in the space-saving.

Then, the output voltage is possible to set the output voltage value to $1.2V \sim 5.0V$ by connecting the external resistors to V_{OFB} terminal. The over current protection circuit will operate when the output current reaches its current limit. The thermal shutdown circuit will operate when the junction temperature reaches its limit temperature. The current limit is possible to arbitrarily set in a range of external resistor in $0.3A \sim 2.5A$ to I_{LIM} terminal. The inrush current prevention circuit perform the function of suppressing the variation of the V_{IN} line and it is possible to suppress the current (inrush current), which is charged in the output capacitor (C_L) during IC start rising (when the IC control in CE).

In addition, the CE function enables the output to be turned off and the IC becomes a stand-by mode resulting in greatly reduced power consumption. The IC has further built-in reverse current prevention circuit, to prevent backflow current when the voltage state of more than input terminal (V_{IN}) to the output terminal (V_{OUT}) .

■APPLICATIONS

- Industrial equipment
- Mobile modules
- Wireless modules

■FEATURES

Output current : 2.0A

Current Limit setting range : 0.3A ~ 2.5A

 Dropout Voltage (USP-6C)
 : 0.17V @ IouT = 1.0A / VouT_SET = 3.3V

 Dropout Voltage (SOP-8FD)
 : 0.23V@ IouT = 1.0A / VouT SET = 3.3V

Input voltage range : 1.7V ~ 6.0V

Adjustable Output Voltage Accuracy : 1.2V ±1.0% Output voltage setting range : 1.2V ~ 5.0V

Supply current : 45µA

Addition function : Reverse Current Protection

Inrush Current Protection
Output Voltage adjustable
C_L Discharge (A type)
Current Limit adjustable

Protection function : Thermal shutdown

(Detection Temp : 150°C Release Temp : 125°C)

Current limit

Output capacitor : Ceramic capacitor (4.7µF)

Operating Ambient Temperature : -40°C~ 105°C
Packages : USP-6C, SOP-8FD

Environment friendly features : EU RoHS Directive compliant, Pb free

■TYPICAL APPLICATION CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

Output Voltage vs. Output Current (Output current externally adjusted.)

■BLOCK DIAGRAMS

●Туре А

*Diodes inside the circuit are an ESD protection diodes.

●Type B

*Diodes inside the circuit are an ESD protection diodes.

■PRODUCT CLASSIFICATION

Ordering Information

XC6230123456-7(*1)

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
1	-	Α	Refer to Selection Guide
U	Туре	В	Refer to Selection Guide
23	(2)2) Output Voltage		Adjustable Output Voltage
	Output Voltage	00	(V _{OFB} =1.20V)
4	Adjustable Output Voltage Accuracy	1	±1%
\$6-7(*1)	Packages (Order Unit)	ER-G	USP-6C (3,000pcs/Reel)
		QR-G	SOP-8FD (1,000pcs/Reel)

^(*1) The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

Selection Guide

FUNCTION	A TYPE	В ТҮРЕ
ADJUSTABLE OUTPUT VOLTAGE	Yes	Yes
CE PULL-DOWN RESISTOR	Yes	Yes
C _L AUTO-DISCHARGE	Yes	-
INRUSH CURRENT PROTECTION	Yes	Yes
ADJUSTABLE CURRENT LIMITER	Yes	Yes
REVERSE CURRENT PROTECTION	Yes	Yes
THERMAL SHUTDOWN	Yes	Yes

■PIN CONFIGURATION

^{*} The dissipation pad for the USP-6C package and the SOP-8FD package should be solder-plate to enhance mounting strength and heat release. Please see the reference mount pattern and metal masking.

If the pad needs to be connected to other pins, it should be connected to the V_{SS} (USP-6C: No. 5, SOP-8FD: No. 6) pin.

■PIN ASSIGNMENT

PIN NUMBER		PIN NAME	FUNCTIONS	
USP-6C	SOP-8FD	PIN NAIVIE	FUNCTIONS	
1	1	Vouт	Output	
-	2, 7	NC	No Connection	
2	3	I _{LIM}	Current Limit Adjustment	
3	4	V _{OFB}	Output Voltage Adjustment	
4	5	CE	ON/OFF Control	
5	6	Vss	Ground	
6	8	V _{IN}	Power Input	

■PIN FUNCTIOS ASSIGNMENT

PIN NAME	SIGNAL	STATUS
	Н	Active
CE	L	Stand-by
	OPEN	Stand-by*

^{*} For CE pin voltage is fixed as L level because of internal pull-down resister.

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNITS
Input Voltage		VIN	-0.3 ~ 7.0	V
Output Vo	oltage	Vouт	-0.3 ~ 7.0	V
CE Input V	′oltage	V _{CE}	-0.3 ~ 7.0	V
V _{OFB} Pin Voltage		Vofb	-0.3 ~ 6.0	V
I _{LIM} Pin Voltage		VILIM	-0.3 ~ 6.0	V
I _{LIM} Pin Cu	I _{LIM} Pin Current		±1.0	mA
	USP-6C	Pd	1000 (40mm x 40mm Standard board) (*1)	
Power Dissipation	001-00		1250 (JESD51-7 board) ^(*1)	mW
(Ta=25°C)	SOP-8FD	Fu	1500 (40mm x 40mm Standard board) (*1)	IIIVV
			2500 (JESD51-7 board) ^(*1)	
Operating Ambient Temperature		Topr	-40 ~ 105	°C
Storage Temperature		Tstg	-55 ~ 125	°C

All voltage ratings are relative to V_{SS} .

^(*1) This power dissipation figure shown is PCB mounted and is for reference only. Please refer to PACKAGING INFORMATION for the mounting condition.

■ELECTRICAL CHARACTERISTICS

Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Adjustable Output Voltage	Vofb	-	1.188	1.200	1.212	V	1
Output Voltage Setting Range	V _{OUT_SET} ^(*1)	-	1.2	-	5.0	V	1)
Output Current	Г оитмах	R _{LIM} =0Ω	2000	-	-	mA	1
Input Voltage	V _{IN}	-	1.7	-	6.0	V	1
Load Regulation1	∠V _{OUT} 1	0.1mA≦I _{OUT} ≦500mA	-	1	8	mV	1
Load Regulation2(*3)	⊿Vouт2	0.1mA≦I _{OUT} ≦2000mA	-	1	14	mV	1
Dropout Voltage1 (Offset of Reverse Current Protection)	V _{dif} 1 ^(*2)	R_{21} =33kΩ, R_{22} =11kΩ I_{OUT} =0mA	-	60	110	mV	1
Draw aut Valtage 2	V 2(*2)	[USP-6C] R ₂₁ =33kΩ, R ₂₂ =11kΩ I _{OUT} =1000mA	-	170	200	mV	
Dropout Voltage2	Dropout Voltage2 V _{dif} 2 ^(*2)	【SOP-8FD】 R ₂₁ =33kΩ, R ₂₂ =11kΩ I _{OUT} =1000mA	-	230	260	mv	1
Draw aut Valtage 2	Dropout Voltage3 V _{dif} 3 ^(*2)	[USP-6C] R_{21} =33kΩ, R_{22} =11kΩ I_{OUT} =2000mA	-	350	410	\	①
Dropout Voltages		[SOP-8FD] R_{21} =33k Ω , R_{22} =11k Ω I_{OUT} =2000mA	-	460	520	mV	Θ
Supply Current	Iss	V _{IN} =6.0V, I _{OUT} =0mA	-	45	83	μA	2
Stand-by Current	I _{STBY}	V_{IN} =6.0V, V_{CE} = V_{SS}	-	0.01	0.10	μΑ	2
Line Regulation	∠Vout/ (∠Vin•Vout)	1.7V≦V _{IN} ≦6.0V, I _{OUT} =100mA		0.05	0.10	%/V	1
Output Voltage Temperature Characteristics	⊿V _{оит} / (⊿Topr∙V _{оит})	-40°C≦Topr≦105°C	-	±100	-	ppm/°C	1
Power Supply Rejection Ratio	PSRR	V _{IN} =V _{CE} =2.2V+0.5Vp ₋ p _{AC} I _{OUT} =30mA, f=1kHz	-	70	-	dB	3

Unless otherwise stated,

 $V_{\text{IN}} = V_{\text{CE}} = V_{\text{OUT}} + 1.0V, \ V_{\text{OUT}} = V_{\text{OFB}}, \ I_{\text{OUT}} = 10 \text{mA}, \ C_{\text{IN}} = 2.2 \mu \text{F}, \ C_{\text{L}} = 4.7 \mu \text{F}, \ R_{\text{LIM}} = 0 \Omega$

Parameter of electrical characteristics is applied when Tj≒25°C become load conditions (pulse applied).

Unless $\Delta V_{OUT} / (\Delta Topr \cdot V_{OUT})$, T_{TSD} and T_{TSR} conditions.

NOTE:

 $(^{**})V_{\text{OUT_SET}}: \text{Nominal output voltage. } V_{\text{OUT_SET}} \text{ is adjustable with external resistors } (R_{21},\,R_{22}). \quad V_{\text{OUT_SET}} \text{ is 1.2V, If } V_{\text{OUT}} = V_{\text{OFB}}.$

V_{IN}: Gradually lower the input voltage, the input voltage when 3.3V is output.

 $V_{\text{OUT.}} V_{\text{OUT.} \text{SET}}$ is set to more than 3.3V, it is confirmed that the 3.3V is output to $V_{\text{OUT.}}$

 $^(^{*2})$ $V_{dif} = \{V_{IN1} - V_{OUT1}\}$

^(*3) Design reference value. This parameter is provided only for reference.

■ELECTRICAL CHARACTERISTICS (Continued)

Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Limit Current	Limit Current ILIM	R _{LIM} =0Ω	2250	2500	2750	mA	1)
Limit Current	ILIM	I _{LIM} R _{ILIM} =200kΩ		300	370	mA	
Short –Circuit	I _{SHORT}	V _{OUT} =V _{SS}	-	320	-	mA	1
Current	ISHORT	V _{OUT} =V _{SS} , R _{ILIM} =200kΩ	-	180	-	IIIA	
Input Impedance V _{OFB}	R _{VOFB}	$V_{IN}=V_{CE}=6.0V$, $V_{OFB}=5.5V$	0.7	1.7	2.7	МΩ	1
CE "H" Level Voltage	Vсен	-	0.9	-	6.0	V	1
CE "L" Level Voltage	VCEL	-	Vss	-	0.4	V	1
CE "H" Level Current	I _{CEH}	V _{IN} =6.0V, V _{CE} =6.0V	-	6.0	10.4	μΑ	1
CE "L" Level Current	ICEL	V _{IN} =6.0V, V _{CE} =V _{SS}	-0.1	-	0.1	μΑ	1
Reverse Current	I _{REV} (*4)	V _{IN} =0V, V _{CE} =2.0V, V _{OUT} =6.0V	1	0.05	0.10	μΑ	1
V _{OUT} Sink Current at Reverse condition	I _{REVS} (*5)	V _{IN} =V _{CE} =5.0V, V _{OUT} =6.0V	1	0.9	1.6	μΑ	1
Inrush Current	I _{RUSH}	V _{IN} =6.0V, V _{CE} =0→6.0V	•	-	500	mA	1
Thermal Shutdown Detect Temperature	T_{TSD}	Junction Temperature	ı	150	ı	°C	1
Thermal Shutdown Release Temperature	T _{TSR}	Junction Temperature	-	125	-	့	1
C∟ Discharge Resistance (A Type)	RDCHG	V _{IN} =6.0V, V _{CE} =V _{SS} , V _{OUT} =1.2V	-	35	-	Ω	1

Unless otherwise stated,

 $V_{\text{IN}} = V_{\text{CE}} = V_{\text{OUT}} + 1.0V, \ V_{\text{OUT}} = V_{\text{OFB}}, \ I_{\text{OUT}} = 10 \text{mA}, \ C_{\text{IN}} = 2.2 \mu\text{F}, \ C_{\text{L}} = 4.7 \mu\text{F}, \ R_{\text{LIM}} = 0 \Omega$

Parameter of electrical characteristics is applied when Tj≒25°C become load conditions (pulse applied).

NOTE

 $^{^{(^{\}prime}4)}$ reverse current (I_REV) shows the current flowing from the V $_{\text{OUT}}$ terminal to V $_{\text{IN}}$ terminal.

 $^{^{(^{7}5)}}$ reverse flow during the V_{OUT} pin sink current (I_{REVS}) shows the current flowing from the V_{OUT} pin to the V_{SS} terminal.

■ TEST CIRCUITS

●Circuit①

●Circuit③

■OPERATIONAL EXPLANATION

The XC6230 series controls the output voltage, divided by resistors R_{11} & R_{12} which are connected to the V_{OFB} pin is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET connected to the V_{OUT} pin, is then driven by the subsequent output signal. The output voltage at the V_{OUT} pin is controlled & stabilized by negative feedback.

This IC the current limit circuit and short protect circuit operate in relation to the level of output current. The thermal protection operates in relation to the level of heat generation. The reverse current protection operates when V_{OUT} voltage is higher than V_{IN} voltage. Further, the IC's internal circuitry can be turned off via the CE pin's signal.

XC6230 Series, Type A.

<Output voltage outside the adjustable function>

XC6230 series are possible to adjust the output voltage in the range of up to $1.2V\sim5.0V$ by the value of the external resistor divider R_{21} and R_{22} . The output voltage can be set externally by the following equation:

$$I_{21} = I_{FB} + I_{22} \tag{1}$$

$$I_{22} = V_{OFB} / R_{22}$$
 (2)

Following (1), (2)
$$I_{21} = I_{FB} + V_{OFB} / R_{22}$$
 (3)

Setting output voltage "Vout_set" is the sum of the voltage which is determined

by the current flowing through the V_{OFB} voltage and resistance R₂₁.

$$V_{OUT_SET} = V_{OFB} + R_{21} \times I_{21}$$
 (4)

Substituting (3) in (4), $V_{OUT_SET} = V_{OFB} + R_{21} \times (I_{FB} + V_{OFB}] / R_{22}$

$$=V_{OFB} \times (R_{21}+R_{22})/R_{22}+R_{21}\times I_{FB}$$
 (5)

Following (5), can decide arbitrary setting voltage.

In this case, it becomes V_{OFB} =1.200V (TYP.) from the electrical characteristics.

The second term of the equation (5), R₂₁×I_{FB}, is the cause of the output voltage precision error.

The IFB can be calculated by the following equation;

$$I_{FB}=V_{OFB}/(R_{11}+R_{12})^{*1}$$
 (6)

(*1):
$$(R_{11} + R_{12}) = R_{VOFB} (TYP .1.7M\Omega)$$

The cause of the output precision error, R₂₁×I_{FB} can be calculated by the equation below;

$$R_{21} \times I_{FB} = R_{21} \times V_{OFB} / R_{VOFB}$$
$$= V_{OFB} \times R_{21} / R_{VOFB}$$
(7)

Accordingly, if R₂₁≪R_{VOFB}, Precision error of the output voltage setting, it can be made very small.

However, customers please would be selected on that was evaluated by your conditions of use. If the external resistance value is small, there is a trade-off between current consumption increases. The value of R_{22} is recommended $47k\Omega$.

Please use by connecting the V_{OUT} pin and V_{OFB} terminal, when used as 1.2V set up.

■ OPERATIONAL EXPLANATION (Continued)

<Setting resistor dependence of output voltage>

<Temperature characteristics of the output voltage>

Large external feedback resistor (R_{21} , R_{22}) can no longer be ignored I_{FB} flowing into the IC, they will affect the set output voltage and the output voltage temperature characteristics.

Therefore, the feedback resistor should be chosen to be the $R_{22} \leq 220 k\Omega$.

<Low ESR Capacitors>

The XC6230 series needs an output capacitor (C_L) for phase compensation. In order to ensure the stable phase compensation, please place an output capacitor (C_L) of 4.7 μ F or bigger at the V_{OUT} pin and V_{SS} pin as close as possible. For a stable power input, please connect an input capacitor (C_{IN}) of 2.2 μ F between the input pin (V_{IN}) and the ground pin (V_{SS}).

Since Input capacitor (C_{IN}) , the output capacitor (C_L) is bias dependence of the capacitor the influence of the missing capacity due to temperature characteristics, also there is a risk that cannot be stable phase compensation under the influence of the ESR. Please pay attention to the selection of the capacitor to be used.

■ OPERATIONAL EXPLANATION (Continued)

<Current Limit, Short Current>

The IC has a built-in drooping current limiting circuit for overcurrent protection. When load current reaches the current limit level, the output voltage drops. Furthermore, when the output voltage drops to a specified value, the output current is throttled down. The output current finally falls at the level of 320mA (TYP.) when the output pin (V_{OUT}) is short-circuited $(R_{ILIM}=0\Omega)$.

<Current limit external adjustment function>

By connecting a resistor to the current limit external adjustment pin (I_{LIM}), the current limit can be set to any value. By the following each equation, the current limit value can be set to any value within a range of 300mA to 2500mA (TYP.).

Initial value of the current limit is set to 2500mA (TYP.) on IC inside. Please be sure to use the current limit external control terminal (I_{LIM}) are connected by either 0Ω short to V_{SS} terminal on the substrate.

When the I_{LIM} pin is open, the switch transistor is forcibly turned off.

R_{ILIM}: The external resistance value, I_{LIM(T)}: The current limit value

Table 1. Current Limit Setting List

I _{LIM(T)} [mA]	R _{ILIM} [kΩ]	(E96) Resistor [kΩ]	Current Limit [mA] (TYP.)
300	199.5	200	299
400	137.6	137	401
500	100.4	100	501
600	78.7	78.7	600
700	63.1	63.4	698
800	51.5	51.1	804
900	42.4	42.2	903
1000	35.2	34.8	1006
1100	29.3	29.4	1098
1200	24.3	24.3	1201
1300	20.2	20	1304
1400	16.6	16.5	1402

I _{LIM(T)} [mA]	R _{ILIM} [kΩ]	(E96) Resistor [kΩ]	Current Limit [mA] (TYP.)
1500	13.5	13.3	1506
1600	11.2	11.3	1596
1700	9.4	9.31	1705
1800	7.8	7.87	1793
1900	6.3	6.34	1898
2000	5.0	4.99	2001
2100	3.8	3.83	2099
2200	2.7	2.67	2206
2300	1.8	1.78	2297
2400	0.9	0.909	2393
2500	I _{LIM} short	ed to V _{SS}	2500

■ OPERATIONAL EXPLANATION (Continued)

<Thermal Shutdown>

When the junction temperature of the built-in driver transistor reaches the temperature limit, the thermal shutdown circuit operates, and the driver transistor will be set to OFF. The IC resumes its operation when the thermal shutdown function is released, and the IC's operation is automatically restored because the junction temperature drops to the level of the thermal shutdown release voltage.

<CE Pin>

The IC's internal circuitry can be shutdown via the signal from the CE pin.

Since a pull-down resistor is connected to the CE pin, the "L" level is maintained even when the CE pin is open, but pull-down current to the CE pin is generated.

<Inrush Current Protection>

The inrush current protection circuit is built in the IC.

When the IC starts to operate, the protection circuit limits the inrush current within 500mA (MAX.) from input pin (V_{IN}) to output pin (V_{OUT}) to charge C_L capacitor. However, the control of the internal IC cannot be supply more than 500mA (MAX.) for about 300 μ s.

<Reverse Current Protection>

The XC6230 series includes reverse current protection to prevent the damage battery or the like which is connected to the V_{IN} pin to prevent the destruction as a result of backflow from V_{OUT} pin to the V_{IN} pin and V_{SS} pin when the power supply is connected to the V_{OUT} pin.

When V_{IN} is smaller than V_{OUT} , the reverse current protection works and suppress the reverse current to 0.1µA (MAX.). When V_{IN} is smaller than V_{OUT} , the V_{OUT} pin sink current I_{REVS} flowing from the V_{OUT} pin to the V_{SS} pin is 0.9µA (TYP.) as the IC operation current.

In addition, the reverse current protection function operates regardless of the CE pin voltage being "H" voltage or "L" voltage.

<C_L Auto-Discharge Function>

A type contains a C_L auto-discharge resistor and an N-channel transistor between the V_{OUT} pin and the V_{SS} pin. The device quickly discharges the electric charge in the output capacitor (C_L) when a low signal to the CE pin is input to turn off a whole IC circuit. The C_L auto-discharge resistance is set at 35Ω (V_{OUT} =1.2V TYP. @ V_{IN} =6.0).

Discharge time of the output capacitor (C_L) is determined by a C_L auto-discharge resistor value (R_{DCHG}) and an output capacitor value. Time constant τ is defined as (τ = C_L x R_{DCHG}). Output voltage after starting discharge can be calculated by the following formula.

■NOTES ON USE

- 1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to the noise and/or phase lag depending on output current. Please strengthen V_{IN} and V_{SS} wiring in particular.
- 3. The input capacitor (C_{IN}) and the output capacitor (C_L) should be placed to the as close as possible with a shorter wiring.
- 4. This IC has output stabilized by negative feedback control so as to follow the output fluctuation. The negative feedback control because the response delay exists, for a change of steep load current, to compensate for the supply of the load current by the discharge of charge from the output capacitor (C_L). However, since the electric charge discharge voltage temporarily drops, please use as large as possible a stabilization capacitance value of output capacitor (C_L) you have our check the electrical characteristics If that can occur sudden input change and load change on the application.
- 5. Torex recommend that the resistance tolerance and temperature coefficient of resistance (T.C.R) is selected the small parts in use, since the characteristics of the external resistor will affect the output voltage and current limit.
- 6. If you are setting the current limit with an external resistor, please set the maximum output current, which is to use it as equal to or less than about 80% of the current limit setting value (I_{LIM(T)}).
- 7. In the case that high resistors value of the R₂₁, R₂₂ are used for B type and a voltage close to the input voltage level is applied to the output voltage Pin in the condition of CE="L", the output voltage may be maintained near the input voltage level. If it is necessary to reduce the output voltage to 0V under these conditions, please adjust the resistance of R₂₁ and R₂₂ and connect a load resistance so that a load current of 30μA or more can flow to the output side.
- 8. Please use in the V_{IN}-V_{OUT} difference and load current, in the range of heat loss does not exceed the allowable loss. For a change in the heat dissipation properties also by the substrate conditions, please design or select a good substrate of the heat dissipation efficiency.
- When adding a large capacitance or an electric double layer capacitor to the output line, overcurrent can flow momentarily at
 the current limit changing point in the low output voltage range.
 To prevent overcurrent, please use an output capacitor of 120 μ F or less. In addition, when using this IC to charge an electric
 double layer capacitor and the like, please put a resistor between an output capacitor (C_L) and an electric double layer
 capacitor to prevent inrush current so that excessive overcurrent does not flow.

Electric Double Layer Capacitor Charger Circuit Example

10. Torex places an importance on improving our products and its reliability. However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.

■TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

(3) Output Voltage vs. Input Voltage

(4) Dropout Voltage vs. Output Current

(5) Supply Current vs. Input Voltage

$XC6230(V_{OUT_SET}=3.3V)$

XC6230(V_{OUT_SET}=5.0V)

(7) Output Voltage vs. Ambient Temperature

(6) Supply Current vs. Ambient Temperature

(7) Output Voltage vs. Ambient Temperature

(8) CE Threshold Voltage vs. Ambient Temperature

(9) Reverse Current vs. Output Voltage

(10) V_{OUT}Sink Current vs. Input Voltage

(11) Rising Response Time

(11) Rising Response Time

(12) Input Transient Response

(13) Load Transient Response

(14) CE Rising Response Time

XC6230(V_{OUT_SET}=5.0V)

(15) Inrush Current Response

XC6230(V_{OUT_SET}=3.3V)

XC6230(V_{OUT_SET}=5.0V)

(16) Power Supply Rejection Ratio

(17) Output Noise Density

■PACKAGING INFORMATION

For the latest package information go to, $\underline{\text{www.torexsemi.com/technical-support/packages}}$

PACKAGE	OUTLINE / LAND PATTERN	THERMAL CHARACTERISTICS
SOP-8FD	SOP-8FD PKG	SOP-8FD Power Dissipation
USP-6C	USP-6C PKG	USP-6C Power Dissipation

XC6230 Series

■MARKING RULE

●USP-6C

●SOP-8FD

①,②,③ represents product series

MARK	PRODUCT SERIES
0A2	XC6230A001**-G
0A3	XC6230B001**-G

4,5 represents production lot number 01 to 09, 0A to 0Z, 11 to 9Z, A1 to A9, AA to AZ, B1 to ZZ repeated (G, I, J, O, Q, W excluded)

*No character inversion used.

- 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
- Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
- 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.
- 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
- 6. Our products are not designed to be Radiation-resistant.
- 7. Please use the product listed in this datasheet within the specified ranges.
- 8. We assume no responsibility for damage or loss due to abnormal use.
- 9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

TOREX SEMICONDUCTOR LTD.