General Considerations When Designing Observational Studies

Design Observational Studies to Approximate Randomized Trials

- 1. Hide outcome data until the design phase is complete
- 2. Think very carefully about decision makers and the key covariates that were used to make treatment decisions
- 3. If key covariates are not observed or very noisy, usually best to give up and seek better data source
- 4. Find subgroups (subclasses or matched pairs) in which the treatment and control groups have balance essentially the same distribution of observed covariates
 - Not always possible to achieve balance
 - Inferences are limited to subgroups where balance is achieved
- 5. Protocol specified analysis
- #1 #5 combine to create an objective design that approximates a randomized trial in each subclass that is balanced with respect to observed covariates

Illustrative Example with One Key Covariate (Cochran, 1968)

- Population: Male smokers in U.S.
- Treatment = cigar/pipe smoking
- Control = cigarette smoking
- Outcome = death rate/1000 person years
- Decision maker is the individual male smoker
- Reason for a smoking male to choose cigarettes versus cigar/pipe?
- Age is a key covariate for selection of smoking type for males

Subclassification to Balance Age

- To achieve balance on age, compare:
 - "young" cigar/pipe smokers with "young" cigarette smokers
 - "old" cigar/pipe smokers with "old" cigarette smokers
- Or better, compare:
 - Young, middle aged, old
 - Even more age subclasses
- Design phase, no outcome data, objective:
 - Approximates a randomized trial within subclasses
- Now look at outcome data

Reference: Rubin DB. The Design Versus the Analysis of Observational Studies for Causal Effects: Parallels With The Design of Randomized Trials. Statistics in Medicine 2007

Comparison of Mortality Rates for Two Smoking Groups in U.S.

Variable	Cigarette Smokers	Cigar/Pipe Smokers
Mortality Rates per 1000 person-years, %	13.5	17.4
Adjusted Mortality Rates using subclasses, %		
2 age subclasses	16.4	14.9
3 age subclasses	17.7	14.2
9-11 age subclasses	21.2	13.7

Source: Cochran WG. The effectiveness of adjustment of subclassification in removing bias in observational studies. Biometrics 1968; 24:295-313.

Note: 20 four-level covariates \Rightarrow over million million subclasses

Propensity Score Methods

- Rosenbaum and Rubin. "The Central Role of the Propensity Score in Observational Studies." Biometrika 1983.
- Observational study analogue of randomization
- The propensity score is the probability of treatment versus control as a function of observed covariates
 - Model the reasons for treatment versus control at the level of the decision makers
 - For example, logistic regression model to predict cigarette versus cigar/pipe smoking with age, education, income, etc. as predictors
- Then subclassify (or match) on the propensity score as if it were the only covariate, e.g., 5-10 subclasses
- If correctly done, this creates balance within each subclass on ALL covariates used in estimating the propensity score
- Using diagnostics to assess and to document balance is critical

Example: GAO Study of Breast Conservation versus Mastectomy

- Six large and expensive randomized clinical trials had been completed showing little difference for the type of women randomized in the trials and participating clinics
- Question: Same results in general practice?
- Observational data available
 - SEER Database: covariates, treatments, post-surgery outcomes
- Design phase
 - Hide outcomes
 - Balance covariates between treatment and control
- Reasons for mastectomy versus breast conservation
 - Age, marital status, region of country, urbanization, race, size of tumor, etc.

Reference: Rubin DB. Estimated Causal Effects from Large Datasets Using Propensity Scores. Annals of Internal Medicine 1997; 127, 8(II):757-763.

Estimated 5-year Survival Rates for Node-negative Patients in Six Randomized Clinical Trials

	Women		Estimated Survival Rate for Women		Estimated Causal Effect
	Breast Conservation (BC)	Mastectomy (Mas)	ВС	Mas	BC – Mas
Study	n	n	%	%	%
US-NCI†	74	67	93.9	94.7	-0.8
Milanese†	257	263	93.5	93.0	0.5
French†	59	62	94.9	96.2	-1.3
Danish‡	289	288	87.4	85.9	1.5
EORTC‡	238	237	89.0	90.0	-1.0
US-NSABP‡	330	309	89.0	88.0	1.0

†Single-center trial; ‡ Multicenter trial

Reference: Rubin DB. Estimated Causal Effects from Large Datasets Using Propensity Scores. Annals of Internal Medicine 1997; 127, 8(II):757-763.

Propensity Score Analysis Approach

- Estimate propensity scores
- Then subclassify (or match) on propensity score as if the only covariate, e.g., 5-10 subclasses
- Why does this work?
 - Creates balance in each subclass on ALL covariates used in estimating the propensity score
 - This balance will be achieved in <u>large</u> samples just like the balance that will be achieved in a large randomized clinical trial

Estimated 5-year Survival Rates for Node-Negative Patients in the SEER Database within Each of Five Propensity Score Subclasses

Women		Estimated Survival Rate for Women		Estimated Causal Effect	
Propensity Score	Breast Conservation (BC)	Mastectom y (Mas)	ВС	Mas	BC – Mas
Subclass	n	n	%	%	%
1	56	1008	85.6	86.7	-1.1
2	106	964	82.8	83.4	-0.6
3	193	866	85.2	88.8	-3.6
4	289	978	88.7	87.3	1.4
5	462	604	89.0	88.5	0.5
Averages Across Five Subclasses		86.3	86.9	-0.6	

Reference: Rubin DB. Estimated Causal Effects from Large Datasets Using Propensity Scores. Annals of Internal Medicine 1997; 127, 8(II):757-763.

Diagnostics for Accessing Balance

- Assessing balance simpler in large samples, just as with randomized experiments
- To illustrate diagnostics, use a marketing application that involved a weight loss drug
- Units = doctors
- Treatment = sales rep "visits" doctor to discuss
- Control = no visit
- Decision-makers = sales reps
- Key covariates = prior Rxs, medical specialty, years in practice, size of practice, etc.

Histograms for background variable: Prior Rx Score (0-100) at Baseline

Histograms for background variable: Specialty

Histograms for summarized background variables: Linear Propensity Score

Histograms for a variable in a subclass of propensity scores: Prior Rx Score

Histograms for a variable in a subclass of propensity scores: Specialty

Marketing Example: Achieved Balance

- Within each narrow subclass of propensity scores, the treatment and control groups will be as balanced as if randomly divided
- Claim: This holds for all subclasses in which there are both treated and control subjects, and holds for all covariates that were used to estimate the propensity score
- Works best when the propensity score subclasses have large sample sizes and are relatively narrow
- Five to ten propensity score subclasses often fully adequate to balance all covariates
- No outcome data used in the design stage

Matched Model-Duration 4+ hrs ExactMatch State/Term of Birth: Difference in Means, Binary Variables

Matched Model-Duration 4+ hrs ExactMatch State/Term of Birth: t-Statistics, Continuous Variables

Model Infant Sepsis (2056/2130 matches): Difference in Means, Binary Variables

Model Infant Sepsis (2056/2130 matches): t-Statistics, Continuous Variables

