Digital Pathology Approaches in Melanoma Care

▶ Enrico Sarneri

UE PRAT, SORBONNE UNIVERSITÉ

enrico.sarneri@etu-sorbonne-universite.fr

A.Y. 2021-2022

Overview

- Summary of Bibliographic Report
- Introduction and Context
- Main Objectives
- Implemented Methods
- Metrics for Quality Checking

Summary of Bibliographic Report

Summary of Bibliographic Report

Traditional Pathology

Digital Pathology

Main Objectives

Main Objectives

Improve Image Quality

Remove Artifacts

Patch Selection

Image ready for
Training Data and
Learning Algorithm

Implemented Methods

Original Image

Basic Threshold

Otsu Threshold

Hysteresis Threshold

Original Image

Contrast Stretching

CLAHE

Histogram Equalization

Original Image

Green Channel Filter

Grays Filter

Original Image

Red Pen Filter

Red Pen Mask

Image with no Red Pen

Original Image

Green Pen Filter

Green Pen Mask

Image with no Green Pen

Original Image

Blue Pen Filter

Blue Pen Mask

Image with no Blue Pen

Implemented Methods - Morphology

Remove Small Objects

Implemented Methods - Entropy

Original Image

Entropy Filter

Entropy Mask

Inverse Entropy Mask

Implemented Methods – Combining Filter

Original Image

No Green Channel

No Grays

No Red Pen

No Green Pen

No Blue Pen

Remove Small Objects

Implemented Methods -Normalization

Implemented Methods – Normalization

Metrics for Quality Checking

Metrics for Quality Checking

$$ightharpoonup PSNR = 10 \cdot \log_{10} \left(rac{MAX_I^2}{MSE}
ight)$$

SSIM(
$$\mathbf{x}, \mathbf{y}$$
) = $\frac{(2\mu_x \mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$.

$$\longrightarrow MSE = rac{1}{m\,n} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i,j) - K(i,j)]^2$$

$$\longrightarrow \text{MDSI} = \left[\frac{1}{N} \sum_{i=1}^{N} \left| \widehat{\text{GCS}}_{i}^{1/4} - \left(\frac{1}{N} \sum_{i=1}^{N} \widehat{\text{GCS}}_{i}^{1/4} \right) \right| \right]^{1/4}$$

$$\Rightarrow \text{FSIM}_C = \frac{\sum_{\mathbf{x} \in \Omega} S_L(\mathbf{x}) \cdot [S_C(\mathbf{x})]^{\lambda} \cdot PC_m(\mathbf{x})}{\sum_{\mathbf{x} \in \Omega} PC_m(\mathbf{x})}$$

Thank you for your attention!

References

Roche Digital Pathology Open Environment [Online] / auth. Gasuad Kimberly. - https://diagnostics.roche.com/global/en/article-listing/roche-digital-pathology-open-environment.html.

The impact of pre- and post-image processing techniques on deep learning frameworks: A

comprehensive review for digital pathology image analysis [Journal] / auth. Massimo Salvi U. Rajendra

Acharya, Filippo Molinari, Kristen M.Meiburger // Computers in Biology and Medicine. - January 2021. - Vol. 128.

Whole Slide Imaging (WSI) in Pathology: Current Perspectives and Future Directions [Journal] / auth.

Neeta Kumar Ruchika Gupta, Sanjay Gupta // Journal of Digital Imaging. - [s.l.] : Springer Link, 2020. - Vol.

Whole Slide Imaging and Its Applications to Histopathological Studies of Liver Disorders [Journal] / auth.

Rossana C. N. Melo Maximilian W. D. Raas, Cinthia Palazzi, Vitor H. Neves, Kássia K. Malta and Thiago P. Silva. - January 8, 2020.

Whole slide imaging in pathology: advantages, limitations, and emerging perspectives [Journal] / auth.

Farahani N Parwani A, Pantanowitz L. - 2015. - Vol. 2015:7. - pp. 23—33.

Whole-slide image preprocessing in Python [Report] / auth. Deron Eriksson Fei Hu. - [s.l.] : IBM Developer, 2018.

