Preuve par récurrence

Principe général

Une preuve par récurrence s'utilise pour démontrer qu'une propriété \mathcal{P}_n dépendant de l'entier n est vraie pour tout entier n supérieur à un entier n_0 fixé

Exemples:

- 1. \mathcal{P}_n : $2^n > n+1$ est vraie pour tout entier $n \geqslant 2$ (ici $n_0 = 2$).
- 2. $\left[\mathcal{P}_n: 5^n > 4^n + 3^n\right]$ est vraie pour tout entier $n \geqslant 3$ (ici $n_0 = 3$).
- 3. $\mathcal{P}_n: \forall x \geqslant -1, (1+x)^n \geqslant 1+nx$ est vraie pour tout entier $n \geqslant 0$ (ici $n_0 = 0$).
- 4. $\left[\mathcal{P}_n: 1+2+\cdots+n=\frac{n(n+1)}{2}\right]$ est vraie pour tout entier $n\geqslant 1$ (ici $n_0=1$).

Ce type de preuve se déroule en 3 étapes :

- **O** Initialisation : Démontrer la propriété au rang n_0 initial, c'est-à-dire montrer que \mathcal{P}_{n_0} est vraie.
- **2 Hérédité** : Supposer que la propriété est vraie à un certain rang $n \ge n_0$ et montrer qu'alors la propriété est vraie au rang n+1. Autrement dit, montrer que

$$\forall n \geqslant n_0, \qquad \mathcal{P}_n \Rightarrow \mathcal{P}_{n+1}.$$

© Conclusion : Conclure que la propriété \mathcal{P}_n est vraie pour tout entier $n \ge n_0$.

Remarque : lors de l'étape de l'hérédité, on doit toujours utiliser notre hypothèse de récurrence, c'est-à-dire utiliser la propriété \mathcal{P}_n que l'on a supposé vraie (pour ce rang n fixé). Dans la suite, cet aspect sera mis en relief par des exemples de preuves par récurrence.

Exemple 1: Montrons par récurrence que \mathcal{P}_n : $2^n > n+1$ est vraie pour tout entier $n \geqslant 2$ (ici $n_0 = 2$).

- **Initialisation**: Montrons que \mathcal{P}_2 est vraie. Comme $2^2 = 4$ et que 2+1=3, on a bien $2^2 > 2+1$ donc la propriété est vraie au rang 2.
- **Q** Hérédité: Supposons que \mathcal{P}_n : $2^n > n+1$ est vraie à un certain rang $n \ge 2$ et montrons qu'alors \mathcal{P}_{n+1} : $2^{n+1} > n+2$ est vraie.

On a $2^{n+1} = 2 \times 2^n$ et par hypothèse de récurrence on sait que $2^n > n+1$, donc

$$2^{n+1} > 2 \times (n+1) = 2n + 2 > n + 2.$$

Ainsi \mathcal{P}_{n+1} est vraie.

8 Conclusion: La propriété \mathcal{P}_n est vraie pour tout entier $n \geqslant 2$.

Exemple 2: Montrons par récurrence que \mathcal{P}_n : $5^n > 4^n + 3^n$ est vraie pour tout entier $n \geqslant 3$ (ici $n_0 = 3$).

- **Initialisation**: Montrons que \mathcal{P}_3 est vraie. Comme $5^3 = 125$ et que $4^3 + 3^3 = 91$, on a bien $5^3 > 4^3 + 3^3$ donc \mathcal{P}_3 est vraie.
- **②** Hérédité: Supposons que \mathcal{P}_n : $5^n > 4^n + 3^n$ est vraie à un certain rang $n \geq 3$ et montrons qu'alors \mathcal{P}_{n+1} : $5^{n+1} > 4^{n+1} + 3^{n+1}$ est vraie.

On a $5^{n+1}=5\times 5^n$ et par hypothèse de récurrence on sait que $5^n>4^n+3^n$, donc

$$5^{n+1} > 5 \times (4^n + 3^n) = \underbrace{5}_{>4} \times 4^n + \underbrace{5}_{>3} \times 3^n > 4 \times 4^n + 3 \times 3^n.$$

Finalement, on obtient $5^{n+1} > 4^{n+1} + 3^{n+1}$ donc \mathcal{P}_{n+1} est vraie.

3 Conclusion: La propriété \mathcal{P}_n est vraie pour tout entier $n \geqslant 3$.

Exemple 3: Montrons par récurrence que \mathcal{P}_n : $\forall x \ge -1$, $(1+x)^n \ge 1+nx$ est vraie pour tout entier $n \ge 0$ (ici $n_0 = 0$).

- **①** Initialisation : Montrons que \mathcal{P}_0 est vraie.
- Soit $x \ge -1$ quelconque fixé, alors $(1+x)^0 = 1$ et $1+0 \times x = 1$ donc $(1+x)^0 \geqslant 1+0 \times x$. Ainsi, \mathcal{P}_0 est vraie.
- **2 Hérédité** : Supposons que \mathcal{P}_n : $\forall x \geq -1$, $(1+x)^n \geq 1+nx$ est vraie à un certain rang $n \geq 0$. Montrons qu'alors \mathcal{P}_{n+1} : $\forall x \ge -1$, $(1+x)^{n+1} \ge 1 + (n+1)x$ est

Soit $x \ge -1$ quelconque fixé. On a $(1+x)^{n+1} = (1+x) \times (1+x)^n$ et par hypothèse de récurrence on sait que $(1+x)^n \ge 1+nx$, donc comme $1+x\geqslant 0$ on en déduit que

$$(1+x)^{n+1} \ge (1+x)(1+nx) = 1 + (n+1)x + \underbrace{nx^2}_{\ge 0} \ge 1 + (n+1)x.$$

deux termes de l'inégalité $(1+x)^n \ge 1+nx$ par (1+x) qui est positif Attention, lorsqu'on utilise l'hypothèse de récurrence on multiplie les donc le sens de l'inégalité reste inchangé! L'argument $1+x\geqslant 0$ est donc indispensable!

Finalement, \mathcal{P}_{n+1} est vraie.

8 Conclusion: La propriété \mathcal{P}_n est vraie pour tout entier $n \geqslant 0$.

Remarque : dans l'exemple qui suit nous allons utiliser la notation contractée

$$\sum_{k=1}^{\infty} k := 1 + 2 + \dots + n.$$

Cette notation, si ce n'est pas déjà le cas, vous sera vite familière (voir **fiche 1** "Notations usuelles (somme, produit...) et identités remarquables").

Exemple 4: Montrons par récurrence que \mathcal{P}_n : $\sum_{k=1}^n k = \frac{n(n+1)}{2}$ est

vraie pour tout entier $n \ge 1$ (ici $n_0 = 1$).

① Initialisation: Montrons que \mathcal{P}_1 est vraie. Comme $\sum_{k=1}^{\infty} k = 1$ et que

 $\frac{1(1+1)}{2} = 1$, on en déduit que \mathcal{P}_1 est vraie.

Q Hérédité : Supposons que \mathcal{P}_n : $\sum_{k=1}^n k = \frac{n(n+1)}{2}$ est vraie à un cer-

tain rang $n \ge 1$ et montrons qu'alors \mathcal{P}_{n+1} : $\sum_{k=1}^{n+1} k = \frac{(n+1)(n+2)}{2}$ est vraie.

On a $\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1)$ et par hypothèse de récurrence on

sait que $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ donc

$$\sum_{k=1}^{n+1} k = \frac{n(n+1)}{2} + (n+1). \quad (\bigstar)$$

$$\frac{n(n+1)}{2} + (n+1) = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}.$$
 (**)

En réunissant (\bigstar) et $(\bigstar \bigstar)$ on en déduit finalement que \mathcal{P}_{n+1} est

8 Conclusion: La propriété \mathcal{P}_n est vraie pour tout entier $n \geqslant 1$.