Artificial Intelligence

CS4365 --- Fall 2022

Bayes' Net: Variable Elimination

Instructor: Yunhui Guo

Inference by Enumeration

P(Antilock|observed|variables) = ?

Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

Factor I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1
- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)

• Number of capitals = dimensionality of the table

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(cold, W)

Т	W	P
cold	sun	0.2
cold	rain	0.3

Factor II

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

- Family of conditionals: P(X | Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

P(W|cold)

Τ	W	Р
cold	sun	0.4
cold	rain	0.6

Т	W	Р	
hot	sun	8.0	DUVIL
hot	rain	0.2	igg P(W hot
cold	sun	0.4	
cold	rain	0.6	ig P(W col

Factor III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

Т	W	Р	
hot	rain	0.2	$\bigcap P(rain hot)$
cold	rain	0.6	ig P(rain cold)

Summary

- In general, when we write $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are $P(y_1 \dots y_N \mid x_1 \dots x_M)$
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Tracffic Domain

Random Variables

• R: Raining

• T: Traffic

L: Late for class

P(R)
+r	0.1
-r	0.9

P ($I \mid I I$)
+r	+t	8.0
+r	-t	0.2
		0 1

D(T|D)

+r	-t	0.2
-r	+t	0.1
-r	-t	0.9
	<u> </u>	

D	/ T	T
$\boldsymbol{\varGamma}$	(L)	1

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node) P(R) P(T|R) P(L|T)

***		-
+r	+t	8.0
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

+t	+1	0.3
+t	-	0.7
-t	+1	0.1
-t	-	0.9

Any known values are selected

• E.g. if we know $L = +\ell$, the initial factors are

$$P(R)$$
+r 0.1
-r 0.9

$$P(T|R)$$

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

$$P(+\ell|T)$$
 $\begin{array}{c|ccc} +t & +l & 0.3 \\ -t & +l & 0.1 \end{array}$

• Procedure: Join all factors, then eliminate all hidden variables

Operation 1: Join Factors

- First basic operation: joining factors
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved
- Example: Join on R

• Computation for each entry: pointwise products $\forall r,t: \quad P(r,t) = P(r) \cdot P(t|r)$

Example: Multiple Joins

+r	0.1
-r	0.9

P(T|R)

Join R

+r	+t	80.0
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

Join T

R, T

R, T, L

+r	+t	8.0
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

DI	$T \mid$	$ T\rangle$	
I	$oldsymbol{L}$	1)	

+t	+1	0.3
+t	7	0.7
-t	7	0.1
-t	7	0.9

P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	7	0.9

P(R,T,L)

+r	+t	+1	0.024
+r	+t	-	0.056
+r	-t	+1	0.002
+r	-t	-	0.018
-r	+t	+1	0.027
-r	+t	-	0.063
-r	-t	+1	0.081
-r	-t	-	0.729

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:

Multiple Elimination

Summary

 Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)

Traffic Domain

Eliminate t

Variable Elimination

$$= \sum_{t} P(L|t) \sum_{r} P(r) P(t|r)$$
 Join on r Eliminate r

Eliminate t

Marginalizing Early! (aka VE) Join T Sum out T

1 (10)	
+r	0.1	

0.9

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

T	1	σ	7	1
\boldsymbol{P}	1	1)

+t	0.17
-t	0.83

-r +t 0.1 -r -t 0.9	+r	-t	0.2
-r -t 0.9	-r	+t	0.1
	-r	-t	0.9

\mathcal{D}	T	
$\boldsymbol{\varGamma}$	(L)	$ m{I} $

+t	: +I	0.3
+t	: - I	0.7
-t	+1	0.1
-t	-	0.9

\mathbf{D}	T		1
Γ	(L)	$ \boldsymbol{L} $)

+t	+	0.3
+t	7	0.7
-t		0.1
-t	7	0.9

P(L|T)

+t	7	0.3
+t	-	0.7
-t	+1	0.1
-t	-1	0.9

P(T,L)

+t	+1	0.051
+t	-	0.119
-t	+	0.083
-t	-	0.747

P(L)

+	0.134
-	0.866

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

$$P(R)$$
+r 0.1
-r 0.9

$$P(T|R)$$

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

$$P(L|T)$$
 $\begin{array}{c|cccc} +t & +l & 0.3 \\ +t & -l & 0.7 \\ -t & +l & 0.1 \\ -t & -l & 0.9 \end{array}$

• Computing P(L|+r), the initial factors become

$$P(+r)$$
 $P(T|+r)$ $P(L|T)$

$$\begin{array}{c|cccc} T & T & T \\ \hline +r & +t & 0.8 \\ \hline +r & -t & 0.2 \end{array}$$

+t	+1	0.3
+t	-	0.7
-t	+1	0.1
-t	-	0.9

• We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:

- To get our answer, just normalize this!
- That 's it!

General Variable Elimination

- Query: $P(Q|E_1 = e_1, ... E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

Example

$$P(B|j,m) \propto P(B,j,m)$$

P(E)

P(A|B,E)

P(j|A)

P(m|A)

Choose A

P(j, m, A|B, E) \sum P(j, m|B, E)

P(E)

P(j,m|B,E)

Example

P(B)

P(E)

P(j,m|B,E)

Choose E

P(E)

P(j,m|B,E)

P(j, m, E|B)

P(j,m|B)

Finish with B

P(B|j,m)

Example 2: P(B|a)

Start / Select

$$P(A|B) \rightarrow P(a|B)$$

В	Α	Р
+b	+a	8.0
		0
ט	¬a	0.2
Г Б	+a	0.1
2		0
	٦a	0.5

Join on B

P(a,B)

Α	В	Р
+a	+b	0.08
+a	¬b	0.09

Normalize

Α	В	Р
+a	+b	8/17
+a	¬b	9/17

Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B)$$
 $P(E)$ $P(A|B,E)$ $P(j|A)$ $P(m|A)$ $P(B|j,m) \propto P(B,j,m)$

$$P(B|j,m) \propto P(B,j,m)$$

$$= \sum_{e,a} P(B,j,m,e,a)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e)\sum_{a} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e)f_1(B,e,j,m)$$

$$= P(B)\sum_{e} P(e)f_1(B,e,j,m)$$

$$= P(B)f_2(B,j,m)$$

marginal can be obtained from joint by summing out

use Bayes' net joint distribution expression

use
$$x^*(y+z) = xy + xz$$

joining on a, and then summing out gives f₁

use
$$x^*(y+z) = xy + xz$$

joining on e, and then summing out gives f₂

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Another Variable Elimination Example

Query:
$$P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Start by inserting evidence, which gives the following initial factors:

$$p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_1 , this introduces the factor $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

$$p(Z)f_1(Z, y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_2 , this introduces the factor $f_2(Z, y_2) = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$, and we are left with:

$$p(Z)f_1(Z,y_1)f_2(Z,y_2)p(X_3|Z)p(y_3|X_3)$$

Eliminate Z, this introduces the factor $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$, and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$$

Normalizing over X_3 gives $P(X_3|y_1,y_2,y_3)$.

- Computational complexity critically depends on the largest factor being generated in this process.
- Size of factor = number of entries in table.
- In example above (assuming binary)
 all factors generated are of size 2 -- as they all only have one variable (Z, Z,
 and X₃ respectively).

Variable Elimination Ordering

• For the query $P(X_n|y_1,...,y_n)$ work through the following two different orderings as done in previous slide: $Z, X_1, ..., X_{n-1}$ and $X_1, ..., X_{n-1}, Z$. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ⁺¹ vs. 2²
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity?

• 3-SAT:

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \lor (x_4 \lor x_6)$$

If we can answer $P(X_1, X_2, ..., X_n|z=1)$, we answered whether the 3-SAT problem has a solution.

Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 - Try it!!
- Cut-set conditioning for Bayes' net inference
 - Choose set of variables such that if removed only a polytree remains
 - Exercise: Think about how the specifics would work out!

Summary: VE

- Time is exponential in size of largest factor
- Bad elimination order can generate huge factors
- NP Hard to find the best elimination order
- There are reasonable heuristics for picking an elimination order (such as choosing the variable that results in the smallest next factor)
- Inference in polytrees (nets with no cycles) is linear in size of the network (the largest CPT)

Probabilistic Reasoning

 Let p be a formula. We try to prove it from available information (evidence) that is known to be true.

• Let q₁, . . . , q_n be this evidence. Theorem proving can be used to determine if:

$$(q_1 \land q_2 \land ... \land q_n) \rightarrow p$$

When the evidence does not imply that p is true it may imply that p is false:

$$(q_1 \land q_2 \land ... \land q_n) \rightarrow \neg p$$

Probabilistic Reasoning

- But in many practical situations the evidence cannot be used to prove that p is either **true** or **false**. Still, it can always be used for probabilistic reasoning.
- The optimal Bayes decision rule is:

Take p as true if:

$$P(p \mid q_1 \land q_2 \land ... \land q_n) \ge P(\neg p \mid q_1 \land q_2 \land ... \land q_n)$$

This is the same condition as:

Take p as true if:

$$P(p \mid q_1 \land q_2 \land ... \land q_n) \ge 0.5$$

Probabilistic Reasoning: Generalization of Logical Reasoning

• Observe that if
$$(q_1 \land q_2 \land ... \land q_n) \rightarrow p$$
, then
$$P(p \mid q_1 \land q_2 \land ... \land q_n) = 1$$

So, probabilistic reasoning generalizes logic reasoning.

Probabilistic Reasoning

The optimal Bayes decision rule is:

Take p as true if:

$$P(p \mid q_1 \land q_2 \land ... \land q_n) \ge P(\neg p \mid q_1 \land q_2 \land ... \land q_n)$$

- Simplification using Bayes Rule
 - Take p as true if:

$$P(q_1 \land q_2 \land ... \land q_n \mid p) P(p) \ge P(q_1 \land q_2 \land ... \land q_n \mid \neg p) P(\neg p)$$

Naïve Bayes assumption

- Simplification using Naïve Bayes assumption
 - The presence of a particular evidence is unrelated to the presence of any other evidences.
 - Take p as true if:

$$P(q_1|p) P(q_2|p) ... P(q_n|p)P(p) \ge P(q_1|p) P(q_2|p) ... P(q_3|p) P(p)$$

Naïve Bayes assumption

- Classifying documents by their content, for example into spam and non-spam e-mails
 - The document D is drawn from a number of classes (topics)
 - Each class C is modeled as sets of words, the probability that the i-th word occurs is P(w_i | C)
 - The probability of the document D given the classes C is $P(D|C) = \prod_i p(w_i|C)$

Question: what is the probability that a given document D belongs to a given class C? P(C|D)

Naïve Bayes assumption

```
• P(D|C) = P(D \wedge C) / P(C)
                                        conditional distribution
• P(C|D) = P(D \wedge C) / P(D)
                                        conditional distribution
           = P(C)P(D|C) / P(D) product rule
Assume that there two classes: Spam (S) and not Spam (¬S)
P(D|S) = \prod_i p(w_i|S) Assumption
P(D|\neg S) = \prod_i p(w_i|\neg S) Assumption
P(S|D) = P(S) \prod_i p(w_i|S) / P(D)
                                               Bayes rule
P(\neg S|D) = P(\neg S) \prod_{i} p(w_{i}|\neg S) / P(D)
                                               Bayes rule
Assume P(S) = P(\neg S) = 0.5
      P(S|D) / P(\neg S|D) = \prod_i p(w_i|S) / p(w_i|\neg S)
```