# Introduction to Information Retrieval

Hinrich Schütze and Christina Lioma Feature Selection (from Ch. 13 of IIR Book)

stroduction to Information Retrieva

### Feature selection

- In text classification, we usually represent documents in a high-dimensional space, with each dimension corresponding to a term.
- In this lecture: axis = dimension = word = term = feature
- Many dimensions correspond to rare words.
- Rare words can mislead the classifier.
- Rare misleading features are called noise features.
- Eliminating noise features from the representation increases efficiency and effectiveness of text classification.
- Eliminating features is called feature selection.

2

#### ntroduction to Information Retrieval

# Example for a noise feature

- Let's say we're doing text classification for the class China.
- Suppose a rare term, say ARACHNOCENTRIC, has no information about China . . .
- . . . but all instances of ARACHNOCENTRIC happen to occur in
- China documents in our training set.
- Then we may learn a classifier that incorrectly interprets ARACHNOCENTRIC as evidence for the class China.
- Such an incorrect generalization from an accidental property of the training set is called overfitting.
- Feature selection reduces overfitting and improves the
- accuracy of the classifier.

3

#### troduction to Information Retrieva

# Basic feature selection algorithm

```
SelectFeatures(\mathbb{D}, c, k)

1 V \leftarrow \text{ExtractVocabulary}(\mathbb{D})

2 L \leftarrow \mathbb{I}

3 for each t \in V

4 do A(t, c) \leftarrow \text{ComputeFeatureUtility}(\mathbb{D}, t, c)

5 Append(L, \langle A(t, c), t \rangle)

6 return FeaturesWithLargestValues(L, k)

How do we compute A, the feature utility?
```

4

#### Introduction to Information Retrieval

# Different feature selection methods

- A feature selection method is mainly defined by the feature utility measure it employs
- · Feature utility measures:
  - Frequency select the most frequent terms
  - Mutual information select the terms with the highest mutual information
  - Mutual information is also called information gain in this context.
  - Chi-square (see book)

troduction to Information Retrieva

# Mutual information

- Compute the feature utility A(t, c) as the expected mutual information (MI) of term t and class c.
- MI tells us "how much information" the term contains about the class and vice versa.
- For example, if a term's occurrence is independent of the class (same proportion of docs within/without class contain the term), then MI is 0.
- Definition:

$$I(U; C) = \sum_{e_t \in \{1,0\}} \sum_{e_c \in \{1,0\}} P(U = e_t, C = e_c) \log_2 \frac{P(U = e_t, C = e_c)}{P(U = e_t)P(C = e_c)}$$

Pointwise mutual information (PMI)

just for a fixed e<sub>t</sub>, e<sub>c</sub>

6

ntroduction to Information Retrieva

# How to compute MI values

 Based on maximum likelihood estimates, the formula we actually use is:

$$\begin{split} I(U;C) &= \frac{N_{11}}{N} \log_2 \frac{NN_{11}}{N_1.N_1} + \frac{N_{01}}{N} \log_2 \frac{NN_{01}}{N_0.N_1} \\ &+ \frac{N_{10}}{N} \log_2 \frac{NN_{10}}{N_1.N_0} + \frac{N_{00}}{N} \log_2 \frac{NN_{00}}{N_0.N_0} \end{split}$$

■  $N_{10}$ : number of documents that contain t ( $e_t$  = 1) and are not in c ( $e_c$  = 0);  $N_{11}$ : number of documents that contain t ( $e_t$  = 1) and are in c ( $e_c$  = 1);  $N_{01}$ : number of documents that do not contain t ( $e_t$  = 1) and are in c ( $e_c$  = 1);  $N_{00}$ : number of documents that do not contain t ( $e_t$  = 1) and are not in t ( $e_t$  = 1); t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t = t

ntroduction to Information Retrieva

# MI example for poultry/EXPORT in Reuters

$$\begin{split} I(U;C) &= \frac{49}{801,948}\log_2\frac{801,948\cdot 49}{(49+27,652)(49+141)} \\ &+ \frac{141}{801,948}\log_2\frac{801,948\cdot 141}{(141+774,106)(49+141)} \\ &+ \frac{27,652}{801,948}\log_2\frac{801,948\cdot 27,652}{(49+27,652)(27,652+774,106)} \\ &+ \frac{774,106}{801,948}\log_2\frac{801,948\cdot 774,106}{(141+774,106)(27,652+774,106)} \\ &\approx 0.000105 \end{split}$$

ntroduction to Information Retrieva

# MI feature selection on Reuters

| Class: coffee |        |  | Class: sports |        |  |
|---------------|--------|--|---------------|--------|--|
| term          | MI     |  | term          | MI     |  |
| COFFEE        | 0.0111 |  | SOCCER        | 0.0681 |  |
| BAGS          | 0.0042 |  | CUP           | 0.0515 |  |
| GROWERS       | 0.0025 |  | MATCH         | 0.0441 |  |
| KG            | 0.0019 |  | MATCHES       | 0.0408 |  |
| COLOMBIA      | 0.0018 |  | PLAYED        | 0.0388 |  |
| BRAZIL        | 0.0016 |  | LEAGUE        | 0.0386 |  |
| EXPORT        | 0.0014 |  | BEAT          | 0.0301 |  |
| EXPORTERS     | 0.0013 |  | GAME          | 0.0299 |  |
| EXPORTS       | 0.0013 |  | GAMES         | 0.0284 |  |
| CROP          | 0.0012 |  | TEAM          | 0.0264 |  |

Naive Bayes: Effect of feature selection



ntroduction to Information Retrieva

# Feature selection for Naive Bayes

- In general, feature selection is necessary for Naive Bayes to get decent performance.
- Also true for most other learning methods in text classification: you need feature selection for optimal performance.

troduction to Information Retrievo

### Exercise

(i) Compute the "export"/POULTRY contingency table for the "Kyoto"/JAPAN in the collection given below. (ii) Make up a contingency table for which MI is 0 – that is, term and class are independent of each other. "export"/POULTRY table:

|              | docID | words in document     | in $c = Japan$ ? |
|--------------|-------|-----------------------|------------------|
| training set | 1     | Kyoto Osaka Taiwan    | yes              |
|              | 2     | Japan Kyoto           | yes              |
|              | 3     | Taipei Taiwan         | no               |
|              | 4     | Macao Taiwan Shanghai | no               |
|              | 5     | London                | no               |