14.

(a) Proposition: |a| = -|a|

Proof.

$$|-a| = |(-1)a| = |-1| * |a| = |a|.$$

(b) **Proposition:** $-b \le a \le b$ if and only if $|a| \le b$.

Proof.

- 1) First we let $-b \le a \le b$ and show that $|a| \le b$. Note that $-b \le b$ implies $0 \le b$. Consider two cases for a. If $0 \le a \le b$, then |a| = a, so $|a| \le b$. If $-b \le a < 0$, then -|a| = a. Then $-b \le -|a|$, so $b \ge |a|$. Thus $-b \le a \le b$ implies $|a| \le b$.
- 2) Now we let $|a| \le b$ and show that $-b \le a \le b$. Consider two cases for a. If $0 \le a$, then |a| = a, so $a \le b$. If 0 > a, then |a| = -a. Then $-a \le b$, so $a \ge -b$. Combining the results, we get $-b \le a \le b$. Therefore $-b \le a \le b$ if and only if $|a| \le b$.

(c) **Proposition:** $|a + b| \le |a| + |b|$

Proof. By Proposition (b), $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$. Adding the two inequalities,

$$-|a| - |b| \le a + b \le |a| + |b|$$

$$-(|a| + |b|) \le a + b \le (|a| + |b|)$$

$$-(|a| + |b|) \le |a + b| \le (|a| + |b|)$$
 By Proposition (b)

Therefore $|a+b| \le |a| + |b|$.