Machine Learning Final Project

By: Brett Beaulieu

Classification of Fradulent Charges.

Classification Dataset

Exploration and Preprocessing

```
In [25]: df = pd.read_csv('creditcard.csv')
    df
```

Out[25]:		Time	V1	V2	V3	V4	V5	V6	
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.2395
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.0788
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.7914
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.2376
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.5929
	•••								
	284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.9182
	284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.0243
	284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.2968
	284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.6861
	284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.5770

284807 rows × 31 columns

Gather infomation about the variables in the dataset.

```
In [26]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):
    Column Non-Null Count
                            Dtype
    -----
           -----
 0
    Time
            284807 non-null float64
 1
    V1
            284807 non-null float64
 2
    V2
            284807 non-null float64
            284807 non-null float64
 3
    V3
 4
   V4
            284807 non-null float64
 5
   V5
            284807 non-null float64
 6
    V6
            284807 non-null float64
            284807 non-null float64
 7
    V7
 8
   V8
            284807 non-null float64
 9
            284807 non-null float64
    V9
            284807 non-null float64
 10 V10
 11 V11
            284807 non-null float64
 12 V12
            284807 non-null float64
 13 V13
            284807 non-null float64
 14 V14
            284807 non-null float64
 15 V15
           284807 non-null float64
 16 V16
          284807 non-null float64
            284807 non-null float64
 17 V17
            284807 non-null float64
 18 V18
 19 V19
            284807 non-null float64
 20 V20
            284807 non-null float64
            284807 non-null float64
 21 V21
 22 V22
            284807 non-null float64
 23 V23
          284807 non-null float64
 24 V24
            284807 non-null float64
            284807 non-null float64
 25 V25
 26 V26
            284807 non-null float64
 27 V27
            284807 non-null float64
            284807 non-null float64
 28 V28
 29 Amount 284807 non-null float64
 30 Class
            284807 non-null int64
dtypes: float64(30), int64(1)
memory usage: 67.4 MB
```

Visualize the data through histograms looking for common frequencies amongst the data.

```
In [27]: df.hist(figsize=(15,15))
   plt.show()
```


Search for null values in the dataset.

```
In [28]: df.isnull().sum()
```

```
Out[28]: Time
                      0
                      0
          V1
          V2
                      0
          V3
                      0
          V4
                      0
          V5
                      0
          V6
                      0
          V7
                      0
          V8
                      0
          V9
                      0
          V10
                      0
          V11
                      0
                      0
          V12
          V13
                      0
                      0
          V14
          V15
                      0
          V16
                      0
                      0
          V17
          V18
                      0
          V19
                      0
          V20
                      0
          V21
                      0
          V22
                      0
          V23
                      0
          V24
                      0
                      0
          V25
          V26
                      0
          V27
                      0
                      0
          V28
                      0
          Amount
          Class
          dtype: int64
```

There are no null values requiring data manipulation.

```
View the dispersion of the binary Class column.

In [29]: count=df.Class.value_counts()
    print(count)

0     284315
1     492
Name: Class, dtype: int64
Histogram of the Class column.

In [30]: df.Class.hist()
    plt.xticks([0,1])
```

View piechart of the data to properly show the significant skew imbalance.

0

Separate the features and target variables.

•		Time	V1	V2	V3	V4	V5	V6	
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.2395
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.0788
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.7914
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.2376
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.5929
	•••								
	284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.9182
	284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.0243
	284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.2968
	284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.6861
	284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.5770

284807 rows × 30 columns

Out[32]:

Split the training and testing data.

```
In [33]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.4, rain)
```

Alter the imbalanced data with the SMOTE function from imblearn.

```
In [34]:
    smo = SMOTE(random_state=42)
    X_smo, y_smo = smo.fit_resample(X_train,y_train)
    count[0]=len(X_smo)
    count[1]=len(y_smo)
```

Show the updated pie chart after imbalance of the dataset was altered by the SMOTE function.

```
In [35]: plt.pie(count,labels=1)
   plt.show()
```


Split our balanced data in a training and testing set.

```
scaler = StandardScaler()
X_train_scale = scaler.fit_transform(X_smo)
X_test_scale = scaler.transform(X_test)
```

Logistic Regression

Use GridsearchCV to determine the best parameters for the Logistic Regression model.

```
In [37]:
    parameters = {
        'C': [0.01, 0.1, 1, 10, 10],
        'solver': ["lbfgs", "liblinear"]
}
    lr = LogisticRegression(max_iter=1000, random_state=42)
    glr = GridSearchCV(lr, parameters, cv=3, verbose=5, n_jobs=3)
    gd=glr.fit(X_train_scale, y_smo)
    gd

Fitting 2 folds for each of 10 condidates to totalling 20 fits
```

Print the best parameters for the GridSearchCV.

```
In [38]: print("Best parameters : %s" % gd.best_params_)

Best parameters : {'C': 10, 'solver': 'lbfgs'}
```

Train the GridSearch best parameters on the Logistic Regression model.

```
In [39]: log_reg = LogisticRegression(solver='lbfgs', random_state = 42, max_iter = 10
log_reg.fit(X_train_scale, y_smo)
```

```
Out[39]: LogisticRegression(C=10, max_iter=1000, random_state=42)
```

Make predictions for the Logistic Regression model.

```
In [40]: y_pred = log_reg.predict(X_test_scale)
    y_pred
```

```
Out[40]: array([1, 0, 0, ..., 0, 0, 0])
```

Show the confusion matrix.

```
In [41]: print(confusion_matrix(y_test, y_pred))

[[112744 988]
[ 23 168]]
```

Print the accuracy score.

```
In [42]: print(accuracy_score(y_test,y_pred))
```

0.9911255848248378

Print the classification report for the Logisitic Regression model.

```
In [43]: target_names = ['class=0', 'class=1']
    print(classification_report(y_test,y_pred,target_names=target_names))
```

	precision	recall	f1-score	support
class=0	1.00	0.99	1.00	113732
class=1	0.15	0.88	0.25	191
accuracy			0.99	113923
macro avg	0.57	0.94	0.62	113923
weighted avg	1.00	0.99	0.99	113923

Decision Tree Classifier

Use GridsearchCV to determine the best parameters for the Decision Tree Classifer model.

```
In [44]:
    parameters = {
        'criterion' : ["gini", "entropy"],
        'max_depth' : [10,12,15,20]
}
    dtc = DecisionTreeClassifier(random_state=42)
    glr = GridSearchCV(dtc, parameters, cv=3, verbose=5, n_jobs=3)
    gd=glr.fit(X_train_scale, y_smo)
    gd
```

```
Fitting 3 folds for each of 8 candidates, totalling 24 fits
         GridSearchCV(cv=3, estimator=DecisionTreeClassifier(random state=42), n jobs=3
Out[44]:
                        param_grid={'criterion': ['gini', 'entropy'],
                                     'max_depth': [10, 12, 15, 20]},
                        verbose=5)
         Print the best parameters for the GridSearchCV of the Decision Tree Classifier.
In [45]:
           print("Best parameters : %s" % gd.best params )
          Best parameters : {'criterion': 'entropy', 'max depth': 20}
         Train the GridsearchCV parameters on the Decision Tree Clasifier model.
In [46]:
           dtc=DecisionTreeClassifier(criterion='entropy', max depth=20, random state=42)
           dtc.fit(X train scale, y smo)
Out[46]: DecisionTreeClassifier(criterion='entropy', max_depth=20, random state=42)
         Make predicitons with the Decision Tree Classifier model.
In [47]:
           y pred2 = dtc.predict(X test scale)
           y_pred2
Out[47]: array([1, 0, 0, ..., 0, 0, 0])
         Print out the Decision Tree Classifier confusion matrix.
In [48]:
           cm = confusion_matrix(y_test, y_pred2)
           cm
Out[48]: array([[113521,
                              211],
                              156]])
                       35,
         Print out the Decision Tree Classifier accuracy score.
In [49]:
           print(accuracy_score(y_test,y_pred2))
          0.9978406467526312
         Print out the Decision Tree Classifier classification report.
In [50]:
           target_names = ['class=0', 'class=1']
           print(classification_report(y_test,y_pred2,target_names=target_names))
```

	precision	recall	f1-score	support
class=0	1.00	1.00	1.00	113732
class=1	0.43	0.82	0.56	191
accuracy			1.00	113923
macro avg	0.71	0.91	0.78	113923
weighted avg	1.00	1.00	1.00	113923

Random Forest Classifier

Use GridsearchCV to determine the best parameters for the Ranfom Forest Classifer model.

```
In [51]:
          parameters = {
               'max depth' : [9,10,11],
               'max features': list(range(1,4))
          rfc = RandomForestClassifier(random state=42)
          glr = GridSearchCV(rfc, parameters, cv=3, verbose=5, n jobs=3)
          gd=glr.fit(X_train, y_train)
          qd
         Fitting 3 folds for each of 9 candidates, totalling 27 fits
Out[51]: GridSearchCV(cv=3, estimator=RandomForestClassifier(random state=42), n jobs=3
                       param grid={'max depth': [9, 10, 11], 'max features': [1, 2, 3]},
                       verbose=5)
         Find the best parameters from the GridSearchCV function
In [52]:
          print("Best parameters : %s" % gd.best_params_)
         Best parameters : {'max depth': 11, 'max features': 3}
         Apply the best parameters to the Random Forest Classifer Model.
In [53]:
          rfc=RandomForestClassifier(random_state=42,max_depth=11, max_features= 3)
          rfc.fit(X_train, y_train)
Out[53]: RandomForestClassifier(max_depth=11, max_features=3, random_state=42)
         Predict data using the Random Forest Classifier Model.
In [54]:
          y_pred3 = rfc.predict(X_test)
          y pred3
```

```
Out[54]: array([1, 0, 0, ..., 0, 0, 0])
```

Show the confusion matrix for the model.

```
In [55]: cm = confusion_matrix(y_test, y_pred3)
    cm
```

```
Out[55]: array([[113724, 8], 50, 141]])
```

Show the accuracy score for the model.

```
In [56]: print(accuracy_score(y_test,y_pred3))
```

0.9994908841937098

Show the classification report for the Random Forest Classifier.

```
In [57]: target_names = ['class=0', 'class=1']
    print(classification_report(y_test,y_pred3,target_names=target_names))
```

	precision	recall	il-score	support
class=0 class=1	1.00 0.95	1.00 0.74	1.00 0.83	113732 191
accuracy macro avg weighted avg	0.97	0.87	1.00 0.91 1.00	113923 113923 113923

Show the ROC cruve graph for all three classification models.

