Agenda: AIML

Introduction to ML Types of ML Linear Regression

Traditional Programming Paradigm! HDFC

De fendent Independent variables Varioble 1) Price of N Saftarea + Location + Gym + Pkg+ Audi + Chib+Pool House +#Bathrooms +#Ploor + Hospital+Ehoo (+ MKt+ Transport". N Brand + BatterynA + RAM + Rom + Canent Display + Faston. 4 @ Price of Phone + Screensize + Aracessan +x, + x9 3 Apple or Glar + Taste + Shapet Texter + Weight + Smell vs Orange 4 Iris ~ PL +PW + SL +SW S vs Ver rs Vir WL 1) Supervised ML - labeled data X ~ y Regressian Classification y-Continuous 4- Categorical

g! (3) & (4)

g! (1) &(2)

https://www.linkedin.com/posts/drdarshaningle-instructor_i-bet-u-still-dont-know-this-activity-7168450493587951616-866h?utm_source=share&utm_medium=member_desktop

https://www.linkedin.com/posts/drdarshaningle-instructor_want-to-know-choosing-the-right-regression-activity-7159395083413274624-8DN3?utm_source=share&utm_medium=member_desktop

MAE = (4(+(+/+)-+(+(4)) = 16 = 4

$$MSE = \sum_{i=1}^{n} (a_i - P_i)^2$$

(b)
$$MSE = \frac{4^2+4^2+(-4)^2+(-4)^2}{4} = \frac{64}{4} = 16$$

© MSE =
$$\frac{7^2+1^2+(-6)^2+(-2)^2}{4} = \frac{90}{4} = 22.5$$

It is called as Coefficient of Determination

Its value is in the range [0-1], higher the better.

Industry Accepted value: min 0.8

It quantifies the proportion of variance caused in the DV due to the IV.

If R2=0.8

It means that Temp is causing 80% variance in the sales of icecream i.e. it is 80% important for predicting the sales of icecream.

Good Model! 1 Test Acc = 80%.

Train Acc	Test Acc	Scenau'o
100	98	
60/	95	
100	93	Overtitling
85	80	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	79	Need to work (Close to good)
75	70	Underfitting
85	87	