

Flight Delay Prediction & Insights Open Projects 2025 Analytics

Dataset Overview

Dataset: Airline_Delay_Cause.csv

Key Features:

Flight Info, Delay Categories, Total delay and arrival delay columns

Target Variables: Classification: Will the flight be delayed? (Yes/No) Regression: Delay duration (in minutes)

Preprocessing Steps:

- -Cleaned missing/null values
- -Feature scaling using StandardScaler
- -Label encoding for categorical variables
- -Separation of controllable vs uncontrollable delays (for OAI)

EDA Insights (Exploratory Data Analysis)

• What I Explored: Class Distribution of delayed vs. non-delayed flights (is_delayed), Feature Importance for classification, Feature Importance for classification, Arrival Delay Duration distribution, Proportion of 15+ minute delays, Correlation Matrix for numeric features

- Proportion of 15+ minute delays
- Correlation Matrix for numeric features
- Delay Imbalance
- -95% of flights are delayed by 15+ minutes
- -Only ~5% are on-time or under the threshold
- Highly Influential Features

carrier_ct, arr_flights, carrier_delay, and arr_delay scored highest in importance

Most influential factors are controllable

- Delay Duration is Skewed
- -A few extreme delay values inflate the distribution
- -Majority of delays are within 0–100 minutes

Some more insights from the Analysis

Model Performance (Both)

Classification Models (Predicting Delay: Yes/No) Models Trained:

Logistic Regression,Random Forest Classifier, Support Vector Machine (SVM)

Model	CV Accuracy Mean	Std Dev
Logistic Regression	0.9885	±0.0012
Random Forest	1.0000	±0.0000
SVM	0.9529	±0.0012

Regression Model (in min)

Model Used: Random Forest Regressor

Metric	Value
RMSE	665.10 min
MAE	86.02 min
R ² Score	1.00
Mean CV RMSE	795.09 min

Classification Model Evaluation - Metrics &

SHAP Insights - Classification & Regression

Models

Classification (Will the flight be delayed?)
Top feature: arr_delay
High impact: carrier_ct, carrier_delay, nas_ct
SHAP shows controllable delays strongly influence
"Delayed" prediction

Regression (How long will the delay be?)
Top features: late_aircraft_delay, carrier_delay Impact: Higher delay values consistently increase predicted delay duration
SHAP confirms operational delays (carrier, aircraft) are key drivers of delay minutes

Operational Focus - OAI & Recommendations

OAI was used to:

Prioritize controllable delays (e.g., carrier_delay, late_aircraft_delay)
Weight features in training and SHAP to highlight actionable drivers
Guide airlines to focus on delays they can fix, not weather or NAS-related issues
*About this more clearly it is mentioned in notebook

Recommendations:

Use Random Forest for deployment due to its robust performance.
Focus on reducing carrier_ct and late_aircraft_ct delays.
Reduce late aircraft delays with better turnaround scheduling
Optimize carrier operations (crew, gate, dispatch)
Avoid peak hours by retiming high-risk flights
Focus on high-delay airports for resource planning
Use model predictions to trigger early operational action

THANK YOU