

Departamento de Matemática, Universidade de Aveiro

Cálculo I — Época Normal

7 de Janeiro de 2008

Duração: 2h30m

Justifique todas as respostas e indique os cálculos efectuados.

65 Pontos

- $\text{1. Considere a função real de variável real } f \text{ definida por } f(x) = \left\{ \begin{array}{ll} \frac{x^2}{\arctan x} & \text{se} \quad x > 0 \\ 0 & \text{se} \quad x = 0 \\ xe^{\frac{1}{x}} & \text{se} \quad x < 0 \end{array} \right. .$
 - (a) Estude f quanto à continuidade em x = 0.
 - (b) Determine, caso existam, as assimptotas do gráfico de f.
 - (c) Considere a função g definida em $]-\infty,0[$ por $g(x)=\frac{f(x)}{x}$. Justifique que g é invertível e determine a função inversa de g indicando o domínio, o contradomínio e a expressão analítica que a define.

25 Pontos

- 2. Considere a função f definida em \mathbb{R}_0^+ por $f(x) = \sqrt{x}$.
 - (a) Determine o polinómio de Taylor, $p_3(x)$, de ordem 3 de f em torno de a=1.
 - (b) Mostre que o erro que se comete quando se aproxima $\sqrt{1,01}$ por $p_3(1,01)$ é inferior a 10^{-7} .

25 Pontos 3. Determine a função f definida em \mathbb{R} tal que $f(0) = \frac{1}{16}$ e f'(x) = x e^{4x}.

45 Pontos 4. Calcule os integrais indefinidos seguintes:

(a)
$$\int \frac{2x-1}{x(x-1)^2} \, dx$$

(b)
$$\int \frac{x^2}{\sqrt{1-x^2}} \, dx$$

20 Pontos 5. Mostre que a função F definida em $[1, +\infty[$ por $F(x) = \int_0^{\ln x} \frac{\mathrm{e}^t}{t+1} \, dt$ é estritamente crescente.

20 Pontos 6. Calcule a área da região do plano situada entre x=0 e $x=\frac{\pi}{3}$ e limitada pelo eixo das abcissas e pelo gráfico da função f definida por $f(x)=\frac{\sin x}{\cos^3 x}$.