Tugas Besar Manajemen Basis Data Tunning Database

Dosen Pengampu:

Ahmad Luky Ramdani, S.Komp., M.Kom.

Disusun oleh:

Yosi Mardianti

(14117096)

PROGRAM STUDI TEKNIK INFORMATIKA INSTITUT TEKNOLOGI SUMATERA 2019

DAFTAR ISI

DAFTAR ISI	11
DAFTAR GAMBAR	iii
DAFTAR TABEL	iv
BAB I	1
Studi Literatur	1
1.1 Tunning: Indexing	1
1.2 Tunning: Setting Configuration DBMS	2
BAB II	3
Deskripsi Percobaan	3
2.1 Tunning: Indexing	3
BAB III	4
Hasil dan Pembahasan	4
3.1 Hasil Pengujian dan Pembahasan	4
3.2 Kesimpulan	5
DAFTAR PUSTAKA	6
LAMPIRAN	7

DAFTAR GAMBAR

Gambar 1 Syntax Tunning database	3
Gambar 2 hasil Q1 pada data 1	
Gambar 3 hasil Q4 pada data 1	7
Gambar 4 hasil Q5 pada data 3	8
Gambar 5 my.ini sebelum di ubah	8
Gambar 6 my.ini setelah di ubah	9
Gambar 7 melakukan javac dan java pada tableGen.java	9

DAFTAR TABEL

Table 1 setting configuration DBMS	2
Table 2 data yang diujikan	
Table 3 hasil pengujian pada data 1	
Table 4 hasil pengujian pada data 2	
Table 5hasil pengujian pada data 3	

BAB I Studi Literatur

1.1 Tunning: Indexing

Tuning pada database adalah untuk meningkatkan performance dari database tersebut, sehingga respon dari database server bisa lebih cepat. misal untuk mempercepat query saat memproses suatu data. pada dasarnya tuning tidak akan terasa jika pada aplikasi database yang kecil, namun pada database dengan data yang banyak dan aktivitas pengambilan data yang cukup padat akan sangat terasa. Parameter yang bisa di rubah pada tuning database antara lain config start up database, mempercepat query, index, struktur tabel, dll.

Tuning bisa berarti mengganti atau menambah, contohnya *tuning* perangkat keras bisa diartikan mengganti dengan perangkat keras yang lebih baik atau menambah perangkat keras yang diperlukan untuk menambah suatu kinerja yang lebih baik. Dalam sebuah manajemen basis data, *tuning* sebaiknya tidak dilakukan hanya pada basis datanya saja, tetapi juga pada sistem operasi yang dipakai, proses / operasi bisnis, aplikasi dan perangkat keras.

Lima hal yang memperngaruhi performance database:

- 1. Workload (beban kerja)
- 2. Throughput (kapasitas komputer dalam mengolah data)
- 3. Resource (hardware)
- 4. Optimazation (optimalisasi yang berhubungan dengan query)
- 5. Contention (isi database)

Index digunakan untuk Menemukan baris untuk nilai tertentu pada sebuah atau banyak kolom, Mempermudah operasi JOIN, Menghubungkan data antara tabel, Agregasi data, Mengurutkan data sesuai perintah query. Dengan index mempermudah proses pengolahan data

Indeks dapat dibentuk secara manula maupun secara otomatis. Secara manual index terbentuk melalui printah Create Index dan secara otomatis, Index terbentuk saat menentukan primary key dan unique terhadap field tententu.

Indeks dapat dibayangkan sebagai indeks buku, sehingga lelalui indeks buku tersebut dapat dicari letak item tertentu dalam buku dengan mudah. Keberadaan indkes dalam basis data antara lain adalah untuk mempercepat pencarian data berdasarkan kolom tertentu,

1.2 Tunning: Setting Configuration DBMS

Pada kasus kali ini, kita melakukan setting pada file my.ini yang terletak di xampp/mysql/bin. Lakukan perubahan pada nilai-nilai yang ada, kali ini hanya 3 yang diubah yaitu seperti dibawah ini.

Sebelum diubah	Sesudah diubah
innodb_buffer_pool_size=16M	innodb_buffer_pool_size=2500M
innodb_log_file_size=5M	innodb_log_file_size=25M
innodb_log_buffer_size =8M	innodb_log_buffer_size=32M

Table 1 setting configuration DBMS

BAB II Deskripsi Percobaan

2.1 Tunning: Indexing

Pada database yang telah dibuat, run dengan menggunakan Q1 sampai Q5. Catat waktu nya, lalu lakukan tunning dan run kembali dengan menggunakan Q1 sampai Q5. Untuk syntax tunning, seperti gambar dibawah ini:

```
MariaDB [dbms1_096]> create index index_student_id on student(id);
Query OK, 0 rows affected (0.490 sec)
Records: 0 Duplicates: 0 Warnings: 0
MariaDB [dbms1 096]> create index index student tot cred on student(tot cred);
Query OK, 0 rows affected (0.542 sec)
Records: 0 Duplicates: 0 Warnings: 0
MariaDB [dbms1_096]> create index index_takes_course_id on takes(course_id);
Query OK, 0 rows affected (0.448 sec)
Records: 0 Duplicates: 0 Warnings: 0
MariaDB [dbms1_096]> create index index_takes_id on takes(id);
Query OK, 0 rows affected (0.569 sec)
Records: 0 Duplicates: 0 Warnings: 0
MariaDB [dbms1_096]> create index index_section_course_id on section(course_id);
Query OK, 0 rows affected (0.361 sec)
Records: 0 Duplicates: 0 Warnings: 0
MariaDB [dbms1 096]> create index index course dept name on course(dept_name);
Query OK, 0 rows affected (0.412 sec)
Records: 0 Duplicates: 0 Warnings: 0
MariaDB [dbms1_096]> create index index_course_id on course(course_id);
Query OK, 0 rows affected (0.307 sec)
Records: 0 Duplicates: 0 Warnings: 0
```

Gambar 1 Syntax Tunning database

Keterangan Query:

- a. Q1 = SELECT * FROM student
- b. Q2 = SELECT * FROM student WHERE tot_cred > 30;
- c. Q3 = SELECT `name`, dept_name FROM student WHERE tot_cred > 30;
- d. Q4 = SELECT * FROM takes JOIN student ON takes.ID = student.ID JOIN section ON takes.course_id = section.course_id
- e. Q5 = SELECT student.`name`,student.dept_name,takes.sec_id AS

 pengambilan,takes.semester,section.room_number,section.building,course.course_id,cour

 se.dept_name from takes JOIN student ON takes.id=student.id JOIN section ON

 takes.course_id=section.course_id JOIN course ON section.course_id=course.course_id;

BAB III Hasil dan Pembahasan

3.1 Hasil Pengujian dan Pembahasan

Ada 7 data yang akan diujikan. Dengan membuat database baru untuk setiap data. Pengubahan nilai yang sesuai pada data dilakukan pada tableGEN.java pada bagian void main nya. Dari ke 7 data ini, hanya 3 data yang saya ujikan. Dari data tersebut dilakukan pengujian Q1 sampai Q5, lalu tunning indexing dan Q1 sampai Q5 lagi. Hal tersebut dilakukan kepada setiap data.

Data
advisor = 100, student = 100, section = 200,takes = 200
advisor = 200, student = 200, section = 400,takes = 400
advisor = 500, student = 500, section = 1000,takes = 1000
advisor = 700, student = 700, section = 20000,takes = 20000
advisor = 1000, student = 1000, section = 100000,takes = 1000000
advisor = 1800, student = 1800, section = 180000,takes = 1800000
advisor = 10000, student = 10000, section = 30000000,takes = 30000000

Table 2 data yang diujikan

Berikut hasil dari Q1 sampai Q5 dan tunning indexing.

1. advisor = 200, student = 200, section = 400, takes = 400

Query	Waktu Sebelum Tuning (second)	Waktu Setelah Tuning (second)
Q1	0.001	0.001
Q2	0.001	0.001
Q3	0.001	0.000
Q4	0.002	0.001
Q5	0.002	0.002

Table 3 hasil pengujian pada data 1

Dapat dilihat data pada tabel diatas ini, diperoleh data dengan perbedaan sebelum dan setelah tunning yang tidak signifikan. Hal ini disebabkan karena masih dikitnya data pada database. Jadi proses pencarian yang dilakukan hampir sama kecepatannya.

2. advisor = 200, student = 200, section = 400, takes = 400

Query	Waktu Sebelum Tuning (second)	Waktu Setelah Tuning (second)
-------	-------------------------------	-------------------------------

Q1	0.001	0.001
Q2	0.001	0.001
Q3	0.001	0.000
Q4	0.003	0.003
Q5	0.004	0.002

Table 4 hasil pengujian pada data 2

Pada table diatas ini, data yang diperoleh sebelum dan sesudah tunning juga tidak terlalu signifikan perbedaannya. Hal ini dikarenakan data nya masih sedikit.

3. advisor = 500, student = 500, section = 1000, takes = 1000

Query	Waktu Sebelum Tuning (second)	Waktu Setelah Tuning (second)
Q1	0.001	0.001
Q2	0.001	0.001
Q3	0.001	0.001
Q4	0.056	0.022
Q5	0.568	0.009

Table 5hasil pengujian pada data 3

Untuk table diatas ini, dapat dilihat pada pencarian menggunakan Q4 dan Q5. Perubahan kecepatan atau waktu pencarian cukup signifikan setelah dilakukan tunning indexing. Hal ini dapat disebabkan dari banyak nya data. Karena dengan melakukan tunning indexing data tersebut dibuat menjadi seperti pohon, oleh karena itu proses pencarian yang terjadi semakin cepat.

3.2 Kesimpulan

Dari percobaan yang telah dilakukan dengan menggunakan 3 data, dapat disimpulkan penggunaan tunning database sangat penting ketika data pada database sangat banyak karena dapat mempermudah dan mempercepat proses pencarian. Pada data 3 ketika dilakukan Q4 dan Q5, sebelum dilakukannya tunning proses pencarian terbilang lebih lambat dibanding setelah dilakukannya tunning. Meskipun operasi Q4 dan Q5 sangat membebani karena terdapat banyak join.

DAFTAR PUSTAKA

https://catatanrahman.wordpress.com/2012/01/19/tuning-database/

https://www.academia.edu/8772073/Database_SQL_Performance_Tuning

https://tutorial-bor.blogspot.com/2011/07/pengertian-index-bagian-1.html

https://jurnalmanajemen.com/basis-data/

LAMPIRAN

68707	Kiki	55	13
68853	Adri -	DF	48
69340	Ahmad	DE	112
6978	Ande	55	65
70180	Ahmad	TF	126
70901	Josu	IF	95
71367	Budi	DE	5
72124	3ohan	DE	114
73980	Ahmad	HI	39
7623	rahmat	IF	11
76425	Ahmad	RQ	6
76757	Kiki	ED	55
77283	Yohan	HI	59
82626	Adri	DE	128
83075	Johan	ED	110
83255	Budi	BN	65
83442	Kiki	FR	101
83480	Ande	IF	54
84974	rahmat	BN	110
84991	Budi	DE	109
86772	Ande	55	128
87152	rahmat	FR	94
87718	yuyun	FR	121
88432	Kiki	IF	101
89493	Ahmad	ED	113
99998	Yohan	DK	20
91034	Kiki	ED	41
91055	Yohan	RQ	125
91286	Johan	DK	33
92263	rahmat	BN	43
93530	rahmat	DE	12
9370	Adri	DE	18
94362	Adri	ED	185
96869	yuyun	ED	9
96181	yuyun	ED	84
96277	yuyun	HI	110
96653	Ahmad	55	38

MariaOB [dbms1 096]>

Gambar 2 hasil Q1 pada data 1

3530	794	13	Fall	2000	0	93530	rahnat	DE	12	794	1.2	Fall	2006	1	363	1.86
378	191	1.1	Fall	3000	£+	9376	Astri.	DE	18	193	1.	Fall	1996	1.0	1	0
79.	191	1	Fall	3000	6-	9378	Adri	100	10 1	191	3	Fall	1004	1	044	1.0
70	191	Y	Fall	2000	C-	9378	Admi	DE	10	391	2.	Full:	2001	1.1	526	1.6
162	584	1	Fe11	2002	C.	04162	Adril	100	185	564	1.	Fall	2002	1.0	463	1.6
62	564	1.1	Fall	2002		1 94362	Adri	60	185	564	1.2	Fall	1 2886	1.6	658	1.1
62	746	1.1	Sorting	2006	C	94362	Adril .	1.60	185	746	1	Spring	1886	11	526	i t
62	948	1/2	Fall	2988	C-	94362	April .	60	105	948	1.1	Spring	2006	13	947	1.11
62	948	1.2	Fall	3969	6-	94362	April:	60	185	948	1.2	Fall	1008	+	461	1.0
69	326	1.	Fall	2910	8-	96969	ysysn	60		328	1	Fall	2838	1.3		1.1
69	555	1.9	Fall	2903	0	96669	yuyun	60		555	1.1	Spring	1601	11	520	T.A.
60	151	1.2	Fall	3001	0	96669	yuyun	60		555	2	Spring	2000	1	460	1
80	553	1.3	Fall	2003	H	96069	yuyun	80	9.1	555	1.3	Fall	2003	1.0	461	1
81	100	3	F911	2005	8-	90181	ysyun	60	84	300	1.1	Fall	2002	1.1	526	D
181	300	1.3	Fall	2005	B-	96181	yuyun	E0:	84	300	1.2	Fall	1000	1.4	151	1.6
81	380	1.3	Fall	2005	8-	96181	yuyun	ED	84	388	3.	Fall:	2885	1.0	437	8
77	659	1.1	Spring	2005	A-	96277	ysiyvin	HI	310	659	1.0	Spring	2001	i i	437	1.6
77	659	1.1	Serling	2001	A-	96277	yayan	147	210	659	1.5	Spring	1994	1.	437	D
277	659	1	Sorting	2001	Α-	96277	yeyen	HT	110	659	1.3	Spring	2002	12		1
277	879	1	Fell	2996	A-	96277	yuyun	HI	110	829	1.1	Fall	2006	1.4	481	1.0
277	879	1	Fell	2006	A-	96277	yeyen	HT	116	879	1	Fall	2000	1	526	1.0
553	171	1.1	Spring	2007	Be.	96653	Almad	55	38	171	1.1	Spring	1007	111	850	1.0
153	171	1.1	Spring	2097	Be.	96653	Ahnad	55	38	171	1.2	Fall	2666	3.92	461	1.6
53	303	1.1	Serling	2009	An	10653	atmad	55	38	363	1.1	inring	2889	1.0	659	17
53	383	1.1	Spring	2909	As	96653	Atmad	55	38	363	1.0	Fall	1006	1.0	858	1.4
63	520	1.2	Fall	2902	8+	96653	ühnad	55	38	529	1.0	Fall	200¢	1.6	650	- H
153	528	- 3	Fe13	2002	Be	96653	Shead	SS	38	528	1.2	Fall	3897	T.	437	1.3
553	718	1 1	Spring	2083	Be	96593	Ahmad	55	38	718	1.2	Spring	2003		461	p
553	718	1	Spring	2083	B+	96053	Ahmad	55	38	738	1.2	Fall	1002	1.1	528	1.6
555	794	1.1	Sering	1004	A	96653	Ahmad	55	38	794	1	Spring	1004	1 1	947	
553	794	1.1	I Sering	1084	A	06653	Ahmad	55	- 11	794	1.1	toring	1.2002	i iii	850	1.0
653	294	1.1	1 Saring	2004	W.	96653	Almad	1 55	38	794	1.3	Fall	2006		353	1.4
75.5	0000	10.00	1 Section				1	1000		1000		1.075	1 -000	515		

Gambar 3 hasil Q4 pada data 1

9312	164	1.4	Litali	2003	0.0	39511	Arele	1-01	37	344	1.3	Spring	2001	100	326	11.8
2512	344	1.4	T PAIL	2001	1 6	100533	Ande	1.64	-17	366	1.4	Fall.	1001	6	1.834	1.1.90
312	344	1.4	I full	2003	10	99512	Arola	1.05	57	344	1.7	Spring	2004	6	32	1.0
683	355	1.4	Spring	2005	1.6-	99965	Johan	1.70	59	155	1.4	Spectors	3800	G	77%	10.4
603	355	1.0	Spring	2000	10	99883	Dohan	1.00	58	355	1.3	Fall	1003	100	100	1.0
041	155	1.4	Spring	3000	6	1 99663	I Inhan	1.48	59	155	1.1	Spring	1007	1	550	1.1
400	155	1.0	Sering	2005	16	95683	Delian	1.00	58	155	1.4	Spring	1 1005		274	11.7
601	355	1.2	Spring	2985	16	95683	John	111	56	155	1.3	Spring	1607	G.	685	3.2
601	155	1.0	Spring	2005	16-	99663	Tohan	111	56	195	1 6	Fall	3896	6	916	1.7
003	485	1.7	fell	2010	1.5	99100	Johan	118	58	405	1.0	Sorting	1660	100	112	117
641	465	1.5	Fall	2030	i B	99663	Johan	144	54	465	10	Fall	3610	7	1.167	1.
683	485	1.2	full	2016	1.0	23002	Tohur	1.00	34	465	1.1	Fall	1001		1.774	10.7
1983	465	1.5	Fall	2010		39683	Zohan	23	58	405	1.0	Fall	1000	6	312	14
		11														1.2
1003	485	1.3	Fall	5819	1.8	99683	Tohan	110	58	485	1 1	Pall	2862	5	306	
663	475	1.5	Fall	3603	D	99603	3ohay	1000	59	475		Fall	1001		334	1.0
od)	475	1.5	Fell	1 3981	1.0	25083	Tohun	1.44	36	429	2.8	1 tell	1993	1.5	387	1.5
693	425	1	Fall	3901	D-	399660	3ohan	1.00	58	475	1.3	Spring	1005	6	836	1.1
1981	475	1.5	Fell	2001	1.9	79960	Zohan	- 68	59	43%	- 4	Species	2003	100	1.55	1 1
789	783	1.3	Fall	2862	D	99789	Budi	1.48	36	765	1.3	Fall	3664	E .	32	0.00
785	390	1.2.	Falk	3903	1.8	1.99789	Dutt	198	36.1	703	2.4	Spring	2000	60	311	1.1
1789	.783	1.3	1.600	3992	1.0	39789	Budl	1.48	361	703	1.3	Fall	3663	6	312	1.6
1789	283	1.7	Fall	3007	1-9	3.0280	Pauli	1.79	36	760	E4	Fall	1006	1.0	SHE	14.4
1789	263	1.7	Fell	3862	1.5	1,39789	Budt	TA .	36	293	1.3	Spring	2004	6	938	1.8
789.	790	4:3	fall.	3663	1 R	99789	Buti	1.59	36	780	1.6	Fall	2663	6	634	1.2
9789	765	1. 3	I Vali	2002	1 15	99789	Busti	1000	36.1	783	1.7	I full	2860	3	556	1.4
789	292	1.2	Fall	3862	10	99789	theti	133	96	300-	1.0	Spring	2863	6	776	11.9
789	783	1.3	I rell	2007	1 10	39789	Budi	1.00	39.	763	- 3	I Full:	1003	100	834	1.0
1010	318	1.4	J. Spiriting	2000	1.45	1 WHEER	Bull	1 10	53	120	F-3	Spring	1001	6	1 E34	10.0
5538	358	1.1	Servine	2001	10-	99856	Budi	1.10	53	158	1.3	Fall	2003	2.	1.566	1.6
2058	358	1.2	Spring	2003	1.6	99858	Budi	1.00	53	\$58	1.3	Fall	3860	· e	32	COL.
9858	356	1.1	Spring	2003	10-	1 99856	Dunit.	100	33	158	- 4	1 Spring	3005		274	11.0
1058	358	1.1	Spring	3000	16	31056	Budt	1 10	14	118	1.3	Spring	1003	100	1.774	1.0
1058	118	1.1	Spring	2005	10	99858	Budi	1.10	5.5	158		Spring	1 3000	6	1.004	1.0
3855	485	1.2	Fall	2000	- B-	99858	Budt	50	51	401	1.3	Spring	1005	6	93E	1.0
1255	499	1.3	Fail	2000	1.0	99858	Budi	60	64	490		Fall	3660	6	32	1.4
9858	426	1.3	I Fall	2996	1.4	23856	Bodt.	100	33	470	15	Fall	7005	160	834	1.0
1414	430	1.5	Fall	3006	1.6	T BARRE	Butt	1.40	55	620	idi	Spring	1005	4	1.276	1.0
9858	428	1.2	1 tall	2000		25656	Budi	100	33	426	1.1	Spring	Tree	6	834	1.9
9858	420	1.2	Fall	2006	4	99858	Butt	60	55	420	1.4	Spring	1000	2	598	1.5
5858	428	400	Fell	2000	4	33838	Budi	10	51	418	3	Fall	2000	E.	32	1.2
9858	420	1 2	Fall	3000	-	79850	Bodi	60	51	430	4	Sporting	3010	4	576	112
	756	1.5			1 6			10		756				6	938	2.2
9858		1.2	Spring	3980		39855	- Book		51	756		Pall	2660			1.0
1859	756	1.5	Spring	3000	1.0	33856	(bud).	100	31		13.	Fall	1006	6	605	1.7
418	256	145	Spring	2005	1.6	99858	Buth	100	51	756	1.5	Spring	3010	50	500	1.5
058	758	1.0	Spring	2965	i B	99858	Budi	10	53	756	1.4	Fall	2006	55	936	1.5
HHA.	256	1.5	Spring	3905	1.8	99858	Date	40	31	356	1.2	Fall	2000	5	367	1.5
1858	756	1.5	Spring	2000	1.0	21956	Budl	1.00	51	756	0.0	Spring	1006	1	367	1.0
1858	756	1.5%	1 Spring	3066	1.0	1 9985E	Bull	1.40	14	796	1.0	Spiriting	1005	4	586	1.5
9958	756	1.7	Spring	3865	1.0	39856	Budt	60	. 33	756	1.9	Pell	2008	A:	559	1.8
9358	756	1.3	1 Spring	3665	1.0	1.9985E	Bull	1 10	58	356	1.4	Spring	2667	4.	1.685	1.1

Gambar 4 hasil Q5 pada data 3

Gambar 5 my.ini sebelum di ubah

```
| Proper increase | Property | Pr
```

Gambar 6 my.ini setelah di ubah

```
### CONTROLOGY CONTROL
```

Gambar 7 melakukan javac dan java pada tableGen.java