N-Heterocyclic Carbene-Catalyzed (4 + 2) Cycloaddition/ Decarboxylation of Silyl Dienol Ethers with a,β-Unsaturated Acid Fluorides

Sarah J. Ryan, Lisa Candish, and David W. Lupton*

School of Chemistry, Monash University, Clayton 3800, Victoria, Australia

dx.doi.org/10.1021/ja111067j

David W. Lupton Lecture? School of Chemistry Monash University

Australia

Education:

Sep. 2005 - Jan. 2007 Postdoctoral Research Fellow, Department of Chemistry Stanford University, CA, USA. Supervisor: Professor Barry M. Trots

June 2001 – Jan. 2005 **Doctorate of Philosophy** Research School of Chemistry, Australian National University, ACT, Australia. Supervisor: Professor **Martin G. Banwell**

Mar. 2000 – Nov. 2000 **Bachelor of Science (Honours 1**st) University of Adelaide, SA, Australia. Supervisor: Professor **Dennis K. Taylor**

Research Interest:

Catalytic Methodologies and Total synthesis

N-Heterocyclic Carbene-Catalyzed Generation of a,b-Unsaturated Acyl Imidazoliums: Synthesis of Dihydropyranones by their Reaction with Enolates Sarah J. Ryan, Lisa Candish, David W. Lupton J. Am. Chem. Soc., 2009, 131, 14176

Pyrone Diels-Alder/Decarboxylation

Proposed Transformation in the Paper

Optimization of reaction conditions

Entry	cat. (mol%) base/solvent		a:b	yield of a (%)		
1	A ₁ (20)	KO ^t Bu/Toluene	3:1	13		
2	A ₁ (10)	KO ^t Bu/THF	>95:5	70		
3	A ₁ (10)	THF	77:23	44		
4	A₂ (10)	KO ^t Bu/THF	3:1	48		
5	B (10)	KHMDS/THF	-	10		
6	C (10)	KHMDS/THF	-	trace		
7	D ₁ (10)	KHMDS/THF	-	-		
8	D ₂ (10)	THF	>95:5	76		

 $\begin{array}{ll} \textbf{A_1:} \ Ar=2,4,6\cdot (CH_3)_3C_6H_2 & \textbf{B:} \ Ar=2,4,6\cdot (CH_3)_3C_6H_2 \\ \textbf{A_2:} \ Ar=2,6\cdot (i-Pr)_2C_6H_3 & \end{array}$

D₁: R₁=CH₃, R₂=-(CH)₄-**D**₂: R₁=i-Pr, R₂=CH₃

Substrate scope in regard to silyl dienol ether:

Substrate scope in regard to acyl fluoride:

Mechanistic rationale: endo selective 4+2 cycloaddition

KIE analysis indicates a concerted reaction mechanism

Crossover Studies: an intermolecular proton transfer process or retro-aldol/aldol sequence?

Answer: no scrambling of the deuterium----> retro-aldol/aldol sequence

Nickel-Catalyzed Selective Conversion of Two Different Aldehydes to Cross-Coupled Esters

Yoichi Hoshimoto,† Masato Ohashi,†,‡ and Sensuke Ogoshi*,†

Department of Applied Chemistry, Faculty of Engineering, and ‡Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka 565-0871, Japan

dx.doi.org/10.1021/ja109908x

Tishchenko reaction

Lewis acid catalyzed reaction via oxygen-metal interaction

Transition metal catalyzed hydroacylation of aldehyde via carbon-hydrogen bond activation

Nickel catalyzed reaction vis η2 coordination of two aldehydes at the same time

Homocoupling of aliphatic aldehydes is faster than that of aryl aldehydes-----> Selective crossed Tishchenko reation ???

Optimization of reaction conditions

Entry NHC		Solv.	Solv. Temp. (°C)		A ¹ B ¹ B ¹ A ¹ A (%) (%) (B ¹ B ¹ (%)	Selectivity	
1	IPrCI	Benzene	60	58	4	12	18	0.63	
2	SIPr	Benzene	60	87	< 1	6	7	0.87	
3	IPr	Toluene	60	86	< 1	6	7	0.86	
4	IMes	Benzene	60	79	2	9	9	0.79	
5 ^a	ICy	Benzene	60	cor	nplicat	-			
6	SIPr	Toluene	23 (28 h)	80	< 1	6	8	0.85	
7	SIPr	Toluene	40 (4 h)	94	< 1	2	4	0.94	
8	SIPr	Toluene	50	90	< 1	3	7	0.90	
9	SIPr	Toluene	80	78	< 1	6	11	0.82	
10	SIPr	THF	50	88	< 1	6	6	0.88	
11 ^b	SIPr	1,4-Dioxan	e 50	37	< 1	1	4	0.88	
12 ^b	SIPr	EtOAc	50	8	-	< 1	2	0.80	
13 ^b	SIPr	Hexane	50	23		1	3	0.85	
14 ^b	SIPr	o-Xylene	50	13	-	< 1	2	0.87	

IPrCl; R = 2,6-diisopropylphenyl, R' = Cl SIPr; R = 2,6-diisopropylphenyl, R' = H_2 (saturated) IPr; R = 2,6-diisopropylphenyl, R' = H IMes; R = 2,4,6-trimethylphenyl, R' = H ICy; R = cyclohexyl, R' = H

Exploration of substrate scope

Entry	АВ	Condition ^b	Conv. of B°	Yield ^u (%)	Selectivity ^c	Entry	АВ	Condition ^b	Conv. of B ^c	Yield ^a (%)	Selectivity ^c
1	A ¹ B ¹	2/40/4	> 99	94(84)	0.94	8 (2/50/2	66	64(47)	0.98
2	A ¹ B ²	4/40/4	> 99	92(88)	0.92	9 🛧	A ¹ B ⁸	4/50/2	61	61(66)	> 0.99
3	A ¹ B ³	2/40/4	> 99	94(85)	0.94	10 ^e	A ² B ⁸	10/23/12	81	75(65)	0.93
4	A ¹ B ⁴	4/40/4	89	57	0.64	11'	A3B8 H H	10/23/12	83	73(65)	0.94
5	A ¹ B ⁵	^t Bu 2/40/4 u	> 99	89(81)	0.89	12	A ⁴ B ⁸	4/40/4	90	82(66)	0.94
6	A ¹ B ⁶	2/40/4 OMe	> 99	87(82)	0.87	13	A ² B ²	4/40/4	> 99	88(83)	0.88
7	A ¹ B ⁷	4/50/2	98	92(83)	0.94		A ³ B ⁴ ¹ Bu				

Trend: Aliphatic aldehyde be the carboxylic acid part, and the aryl aldehyde be the alcohol part No crosscoupling were observed with p-Cl and p-NO2 substituted benzaldehydes.

^aUnidentified products were detected by GC.

 $[^]b$ Benzoin condensation of B¹ proceeded.

Plausible mechanisms for the nickel-catalyzed crossed Tishchenko reaction

C1_{AB}

Electron-poor component coordinate to nickel(0) more efficiently due to backbonding

Supported by measurement of rate constant and KIE analysis

Oxidative Cyclization

C2_{AB}

No decarbonylation was observed