

MIPS32 Processor on DE0-Nano with Peripheral Shields

Team Members: Treyven Chin, Renqing Li, Daniel Luncasu-Rolea, Joshua Yang

Sponsor Advisor: Eric Lindberg Faculty Advisor: Nicole Hamilton

Abstract

A Field-Programmable Gate Array (FPGA) is a prototyping device used to implement logical functions. It can be reprogrammed using Verilog or VHDL.

It can do many things a microcontroller like the Arduino can.

Table 1: Features of MIPS 32 on DEO-Nano vs. Arduino Uno

Criteria	MIPS on DE0-Nano	Arduino Uno
Clock Speed	50 MHz	16 MHz
Architecture Type	32-bit, pipelined	8-bit, single-instruction
Instruction Memory	16-32 Mb, volatile	32 kb, non-volatile flash
Dynamic Memory	16-32 Mb SDRAM	2 kb DRAM
EEPROM	2kb	1kb
# of digital pins	81 bidirectional + 7 input	14 digital pins, ICSP header
# of analog pins	8 analog inputs	6 analog inputs
I/O voltage	3.3V TTL, non-5V tolerant	5V TTL
Price	\$79 (\$61 academic)	\$46
Power draw	~180 mA (measured)	~17 mA, can enter sleep

\$79 (\$59 for students)
DEO-Nano
50 MHz 32-bit soft processor
32MB SDRAM

\$25 Arduino Uno 16 MHz 8-bit processor 32KB static RAM

Our Objective

To create an educational platform for microprocessor design, useful for students, hobbyists, and enthusiasts

Features:

- 32 MB SDRAM chip w/ controller
- 32-bit 50 MHz RISC processor
- GCC Compiler Toolchain
- Top Debug Shield with I/O Devices:
 - Buttons
 - 7-segment Displays
 - MicroSD Socket
- Female Pin Headers
- Bottom Arduino Adapter Shield

Acknowledgements

The team would like to thank:

- Previous Group Members:
 - Kevin Chao
 - Derek Blankenburg
 - Toan Nguyen
 - Ramiro Garcia
- Nicole Hamilton Invaluable help and advising
- Eric Lindberg For the opportunity

PCB Layouts

Top Board: All-purpose debug shield

Bottom Board: Arduino adapter

7-Segment Display Driver

- Features hardware multiplexing which can be set to any pin
- GPIO pins drive cathodes to GND to light up one number at a time
- Anodes determine the number displayed

I/O Memory Map

- The processor treats I/O devices such as buttons and switches as memory
- Processor gives a 32-bit address which is more than the RAM
- Therefore, we fill in empty parts of the memory space with I/O devices

Example Programs

- Hello World/Key test
 - Prints 'PRESS.KEY' on the 7-segments
- Prints 'FABULOUS' when the user complies

- Countdown
 - Displays a number in the 7-segment display.
 - Key 1 adds 1 to the number, Key 2 adds 10, and so on.
 - Pulling a switch makes the number count down. More switches = faster

- Console
 - Receives bits written to a console in PuTTY and displays them on the 7segs
 - Sends the word "Ping" to PuTTY when a button is pressed

Block Diagram

A diagram of the internal architecture:

