goal: understand "solution" of differential/difference equations (DE) $\dot{x}/x^{+} = f(x,u)$ ref: Strogatz Ch 2 - geometric perspective 3º linearzation ogner DE $\dot{x}/x^{+} = f(x,u)$, let $\dot{\phi}: [0,t] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be flow and y: [o,t] x Rd > 1Rd be sim flow * we'll study how \$1, \$1 vary wrt. both arguments;
in particular, we'll use linearization to determine first-order variation \rightarrow in CT case $\dot{x} = f(x, u)$, what is $D_1 \phi(s, \varepsilon) = \frac{\partial}{\partial c} \phi(s, \varepsilon)$? - since $\phi(s, \Xi) = \chi_{\Xi}(s)$, $D_s \phi(s, \Xi) = D_s \chi_s(s)$ $= f(x_{\varepsilon}(s), u(s)) = f(\phi(s, \varepsilon), u(s))$ o now consider how DT flow varies with respect to &

- recall $\phi(s+1, z) = f(\phi(s,z)) \leftarrow consider autonomous case (no u)$

-> compute $D_2 \phi(s+1, \Xi)$ in terms of $Df \notin D_2 \phi(s, \Xi)$

- applying the chain rule, $D_2 \phi(s+1, \xi) = D_{\xi} \left[f(\phi(s, \xi)) \right]$ $= Df(\phi(s, \epsilon)) \cdot D, \phi(s, \epsilon)$ \rightarrow compute $D_2\phi(s+1,\Xi)$ in terms of Df

- recursively substituting $D_2\phi$: $D_2\phi(st,\xi) = TDf(\phi(l,\xi))$ (note that $\phi(0,\xi) = \xi$, so $D_2\phi(0,\xi) = T$)

o save computation yields $D_2 \psi(sti, \xi) = \frac{s}{100} Df(\psi(l, \xi))$

· continuous-time case isn't as straightforward; stort with simulation flow, which satisfies

 $\psi(s+\Delta, E) = \psi(s, E) + \Delta \cdot f(\psi(s, E))$

 \rightarrow compute D_2 \forall (s+A, Ξ) in terms of D_f & D_2 ψ (s, Ξ)

 $-D_{2}\Psi(s+\Delta,\Xi) = D_{2}[\Psi(s,\Xi) + \Delta \cdot f(\Psi(s,\Xi))]$ $= D_{2}\Psi(s,\Xi) + \Delta \cdot Df(\Psi(s,\Xi) \cdot D_{2}\Psi(s,\Xi)$ $= (I + \Delta \cdot Df(\Psi(s,\Xi)) \cdot D_{2}\Psi(s,\Xi)$

 $- \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \sum_$

 \rightarrow apply forward Euler simulation algo to matrix differential egyn: $\forall s \in [0,t]: \dot{X}(s) = Df(\phi(s,E)) \cdot X(s), X(o) = I$

-
$$X(s+\Delta) = X(s) + \Delta \cdot Df(\phi(s,s)) \cdot X(s)$$

= $[I + \Delta \cdot Df(\phi(s,s))] \cdot X(s)$

= $[I + \Delta \cdot Df(\phi(k\Delta,s))]$

fact: linearization of CT flow is obtained by solving

so that $D_{\xi} \phi(s,s) = X(s)$, where $X : [0,t] \rightarrow \mathbb{R}^{dxd}$ solves

 \Rightarrow how does this simplify at an equilibrium? ($f(x) = 0$)

- $f(x) = 0 \Rightarrow \phi(s,x) = X_s$
 $\Rightarrow \hat{X}(s) = Df(\phi(s,x)) \cdot X(s)$
 $= X_s$
 $= Df(x) \cdot X(s) = A \cdot X(s)$