MINIMAL PERIODIC ORBITS AND TOPOLOGICAL ENTROPY OF INTERVAL MAPS

BAU-SEN DU

ABSTRACT. For any two integers $m \ge 0$ and $n \ge 1$, we construct continuous functions from [0,1] into itself which have exactly one minimal periodic orbit of least period $2^m(2n+1)$, but with topological entropy equal to ∞ .

Introduction. Let I denote the unit interval [0,1] and let $g \in C^0(I,I)$. If g has a periodic point of least period $2^m(2n+1)$, where $m \geq 0$ and $n \geq 1$ are integers, then it is well known [3] that the topological entropy of g is greater than or equal to $(\log \lambda_n)/2^m$, where λ_n is the (unique) positive zero of the polynomial $x^{2n+1}-2x^{2n-1}-1$. The converse is false, but known counterexamples are rather complicated [4, p. 407]. The purpose of this note is to indicate how to use an easy and well-known method to construct examples which are simpler but with stronger properties than those given in [4, p. 407] except that our examples are not piecewise monotone. As a consequence of our construction, we also obtain the well-known example g_{∞} as described in [8, p. 14] which has exactly one periodic orbit of least period 2^m for every $m \geq 0$ and no other periodic orbits. It is worth mentioning that the set of all periodic points of the example g_{∞} described in [8, p. 14] is not closed. This is in contrast to the fact [7] that if the set of all periodic points of a continuous function in $C^0(I,I)$ is closed, then this function can only have periodic points of periods some powers of 2.

The construction. For every continuous function g in $C^0(I,I)$, let $G\colon [0,3]\to [0,3]$ be the continuous function defined by (i) G(x)=g(x)+2 for $0\le x\le 1$; (ii) G(x)=x-2 for $2\le x\le 3$; and (iii) G is linear on [1,2]. Then it is clear that $G^2|I=g$. Now let \tilde{g} be the scaled-down copy of G on I. That is, $\tilde{g}(x)=[g(3x)+2]/3$ for $0\le x\le 1/3$; $\tilde{g}(x)=[2+g(1)](2/3-x)$ for $1/3\le x\le 2/3$; and $\tilde{g}(x)=x-2/3$ for $2/3\le x\le 1$. It follows from [1] that the topological entropy of \tilde{g} is greater than or equal to one half of that of g. This function \tilde{g} is called the renormalized square root of g on I. For every continuous function g_0 in $C^0(I,I)$, we define the sequence (g_m) $(m\ge 1)$ inductively by letting g_m be the renormalized square root of g_{m-1} on I. This sequence (g_m) $(m\ge 1)$ is called the sequence of successive renormalized square roots of g_0 on I.

For every positive integer k, choose 2k+2 real numbers $a_{k,i}$ with $0=a_{k,0}< a_{k,1}< a_{k,2}< \cdots < a_{k,2k+1}=1$. Let p_k be the continuous function in $C^0(I,I)$ defined by (i) $p_k(a_{k,i})=0$ for all even i; (ii) $p_k(a_{k,i})=1$ for all odd i; and (iii) p_k is linear on each interval $[a_{k,i},a_{k,i+1}], 0 \le i \le 2k$. Let q_k be the continuous function

©1987 American Mathematical Society 0002-9939/87 \$1.00 + \$.25 per page

Received by the editors April 20, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 26A18; Secondary 54C70, 58F20

Key words and phrases. Least period, periodic points, periodic orbits, minimal periodic orbits, topological entropy.

from the interval [1/(k+1), 1/k] onto itself which is the scaled-down copy of p_k on [1/(k+1), 1/k]. That is,

$$q_k(x) = 1/(k+1) + p_k(k(k+1)(x-1/(k+1)))/[k(k+1)].$$

Finally, let $f_0 \in C^0(I,I)$ be the continuous function defined by $f_0(0) = 0$ and $f_0(x) = q_k(x)$ on [1/(k+1), 1/k] for each positive integer k and let $\langle f_m \rangle$ $(m \ge 1)$ be the sequence of successive renormalized square roots of f_0 on I. Now we can state the following theorem whose proof is easy and omitted. (For the definition of minimal periodic orbits, see [2 or 5].)

THEOREM 1. Let the sequence $\langle f_m \rangle$ $(m \geq 0)$ be defined as above. Then $\langle f_m \rangle$ is a uniformly convergent sequence in $C^0(I,I)$ with the following two properties:

- (1) For every integer $m \geq 0$, f_m has infinitely many minimal periodic orbits of least period $2^m \cdot 3$ and the topological entropy of f_m is ∞ .
- (2) If f is the uniform limit of the sequence $\langle f_m \rangle$, then f is exactly the same as the function g_{∞} described in [8, p. 14] with zero topological entropy [6].

In the above theorem, every function f_k has minimal periodic orbits of least period $2^k \cdot 3$. In the following, we will use these functions f_k to construct, for any two integers $m \geq 0$ and $n \geq 1$, continuous functions $F_{m,n}$ in $C^0(I,I)$ which have exactly one minimal periodic orbit of least period $2^m(2n+1)$, but with topological entropy equal to ∞ .

For every positive integer n, let u_n be any continuous function from [2/3,1] into itself with exactly one minimal periodic orbit [9] (see [2,5] also) of least period 2n+1 and let $F_{0,n}$ be the continuous function in $C^0(I,I)$ defined by (i) $F_{0,n}(x) = f_k(3x)/3$ for $0 \le x \le 1/3$, where k is any positive integer and f_k is defined as in Theorem 1; (ii) $F_{0,n}(x) = u_n(x)$ for $2/3 \le x \le 1$; and (iii) $F_{0,n}$ is linear on [1/3,2/3]. It is clear that $F_{0,n}$ has exactly one minimal periodic orbit of least period 2n+1 and its topological entropy is ∞ . For any fixed integer n>0, let $\langle F_{m,n} \rangle$ $(m \ge 1)$ be the sequence of successive renormalized square roots of $F_{0,n}$ on I.

Now we can state the following theorem whose proof is again easy and omitted.

THEOREM 2. For every positive integer n, let the sequence $\langle F_{m,n} \rangle$ $(m \geq 0)$ be defined as above. Then for every fixed n > 0, $\langle F_{m,n} \rangle$ $(m \geq 0)$ is a uniformly convergent sequence in $C^0(I,I)$ with the following two properties:

- (1) For every integer $m \geq 0$, the function $F_{m,n}$ has exactly one minimal periodic orbit of least period $2^m(2n+1)$ and the topological entropy of $F_{m,n}$ is ∞ .
- (2) If F_n is the uniform limit of the sequence $\langle F_{m,n} \rangle$, then $F_n = f$, where f is defined as in Theorem 1.

REMARK. We can also construct functions $G_{m,n}$ in $C^0(I,I)$ with the properties as stated in part (1) of Theorem 2 as follows: For any two integers $m \geq 0$ and $n \geq 1$, let $v_{m,n}$ be any continuous function from [2/3,1] into itself which has exactly one minimal periodic orbit [2,5] of least period $2^m(2n+1)$. Let $G_{m,n}$ be the continuous function in $C^0(I,I)$ defined by (i) $G_{m,n}(x) = f_k(3x)/3$ for $0 \leq x \leq 1/3$, where k > m is any integer and f_k is defined as in Theorem 1; (ii) $G_{m,n}(x) = v_{m,n}(x)$ for $2/3 \leq x \leq 1$; and (iii) $G_{m,n}$ is linear on [1/3,2/3]. Then it is easy to see that $G_{m,n}$ has exactly one minimal periodic orbit of least period $2^m(2n+1)$ and the topological entropy of $G_{m,n}$ is ∞ .

484 BAU-SEN DU

REFERENCES

- R. Adler, A. Konheim, and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319.
- 2. L. Alseda, J. Llibre, and R. Serra, Minimal periodic orbits for continuous maps of the interval, Trans. Amer. Math. Soc. 286 (1984), 595-627.
- 3. L. Block, J. Guckenheimer, M. Misiurewicz, and L.-S. Young, *Periodic points and topological entropy of one dimensional maps*, Lecture Notes in Math., vol. 819, Springer-Verlag, Berlin and New York, 1980, pp. 18-34.
- W. A. Coppel, Šarkovskii-minimal orbits, Math. Proc. Cambridge Philos. Soc. 93 (1983), 397-408.
- 5. C.-W. Ho, On the structure of the minimum orbits of periodic points for maps of the real line (to appear).
- M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. 27 (1979), 167-169.
- Z. Nitecki, Maps of the interval with closed periodic set, Proc. Amer. Math. Soc. 85 (1982), 451-456.
- 8. _____, Topological dynamics on the interval, Progress in Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 1-73.
- 9. P. Stefan, A theorem of Sharkovsky on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), 237-248.

Institute of Mathematics, Academia Sinica, Taipei, Taiwan 115, Republic of China