Sem7Synopsis

Александр Мишин, Б01-008а

Интерполяция функции

Лаба по этой теме - coming soon.

Что мы подразумеваем под задачей интерполяции? У нас есть какая-то табличная функция. Например, из 4х точек. А что по точке х*? Можно провести прямую через 4 точки, можно параболу по 3ём. От разной интерполяции будет зависить ответ. Можно построить полином. Приближать можно с помощью доп условий. Например, зная производную в точке. Это будет влиять на интерполяцию.

На что надо опираться при построении полиномов? Существует две формы записи. Форма Ньютона и Лагранжа.

Лагранж:
$$L_n(x) = f_0 \frac{(x-x_1)...(x-x_n)}{(x_0-x_1)...(x_0-x_n)} + f_1 \frac{(x-x_0)...(x-x_n)}{(x_1-x_0)(x_1-x_2)...(x_1-x_n)} + f_2 \frac{(x-x_0)...(x-x_n)}{(x_2-x_1)...(x_2-x_n)}$$

Ньютон: $N_n(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + b_n(x - x_0)(x - x_1)...(x - x_n)$

Таблица разделённых разностей

Точка	b_0	b_1	b_2
x_0	f_0		
x ₁	f_1	$\frac{f_1 - f_0}{x_1 - x_0}$	
X_2	f_2	$\frac{f_2-f_1}{x_2-x_1}$	
X3	f_3	$f(x_2, x_3)$	
X ₄	f_4	$f(x_4, x_3)$	
X5	f_5	$f(x_5, x_3)$	

С точки зрения программирования, легче кодить через Ньютона. С точки зрения ошибки интерполяции, $f(x) = P_n(x) + R_n(x)$. $R_n(x)$ - ошибка интерполяции. Она отвечает за точность.

$$R_n(x) = \frac{f_x^{n+1}(\xi)}{(n+1)!}(x - x_0)...(x - x_n)$$
$$\xi \in (x_1, x_n)$$
$$|R_n(x)| \le \left| \frac{M_{(n+1)}}{(n+1)!}(x - x_0)...(x - x_n) \right|$$
$$M_{n+1} = \max_{x \in [x_0, x_n]} |f_x^{(n+1)}(x)|$$

Приближённая строгая оценка для b_n :

$$b_n \approx \frac{f_x^n(x)}{n!}$$

Но, исходя из этого приближения, метод Ньютона очень похож на ряд Тейлора. Тогда ошибка интерполяции для ф-лы Ньютона - следующий член разложения $b_{n+1}(...)$.

Примеры

Пример 1

X		0	0,01	0,02	0,03	0,04	0,05	0,06
f		1	1,0101	0,0102	1,0305	1,0402	1,0513	1,008
σ	\overline{f}	10^-4	10^-4	10^-4	2 * 10^-4	2 * 10^-4	3 * 10^-4	8 * 10^-4

Строим табличку

X	b_0	b_1		
0,01	1,0101			
0,02	0,0102	1,01		
0,03	1,0305	1,03	1	
0,04	1,0402	1,02	0,5	(-0.5 - 1) / (0.04 - 0.01) = -50

$$N_2 = ?$$

$$x_2 + 0.48x + 1.0002 = N_2(x) = 1.0101 + 1.01(x - 0.01) + 1(x - 0.01)(x - 0.02)$$

$$R_2(0,015) = ?$$

$$1 - 50 \cdot (0,015 - 0,01)(0,015 - 0,02)(0,015 - 0,03) = 18 \cdot 10^{-6}$$

$$Error(0, 015) = ?$$

$$\Delta f_0 = 10^{-4}$$

$$\Delta L_3(0,015) = 10^{-4} \frac{(0,015-0,002)(0,015-0,003)}{(0,01-0,02)(0,01-0,03)} + 10^{-4} \frac{(0,015-0,001)(0,015-0,003)}{(0,02-0,01)(0,02-0,03)} + 2 \cdot 10^{-4} \frac{(0,015-0,001)(0,015-0,002)}{(0,03-0,01)(0,03-0,02)}$$

$$Error(0,015) = \Delta L_3(0,015) = 125 \cdot 10^{-6}$$

Пример 2

$$f(x) = x \ln x - 1$$

Надо найти решение x^* , чтобы $f(x^*) = 0$. Изначально нужно локализовать. Отрезок локализации: $x^* \in [1.6, 1.9]$. Строим таблицу значений.

X	1,6	1,7	1,8	1,9
f	-0,24799	-0,09793	0,05801	0,21952

Строим полином вида $x_3(f)$. Далее рассматриваем $x_3(0)$. Это и будет $\mathbf{x}^*=1.76322$. Линейная интерполяция.

$$x_1(f) = 1.7 \cdot \frac{-0.05801}{-0.09793 - 0.05801} + 1.8 \cdot \frac{0.09793}{0.05801 + 0.09793} = 1.76739$$

С точностью до третьего знака после запятой ответ верный.