AI1103 Assignment-1

SRIVATSAN T - CS20BTECH11062

Download all python codes from

https://github.com/CS20BTECH11062/AI1103/tree/ main/Assignment-1/codes

and latex-tikz codes from

https://github.com/CS20BTECH11062/AI1103/tree/ main/Assignment-1/Assignment-1.tex

QUESTION(Prob 1.4)

Suppose that 90 % of people are right handed. What is the probability that at most 6 of a random sample of 10 people are right handed?

SOLUTION

One can either be 'right' handed or 'left' handed. Given that 90 % of the population is 'right' handed and since being 'right' handed and being 'left' handed are mutually exclusive,

- Probability of 'right' handed = $Pr(R) = \frac{9}{10}$ Probability of 'left' handed = $Pr(L) = \frac{1}{10}$

One can use binomial distribution to find out the probability that more that 6 people are 'right' handed.

Let M be a variable representing number of people who are 'right' handed in a given sample. Picking different number of people is an example of a Bernoulli trial.

So M has a binomial distribution:

$$\Pr\left(M=k\right) = \binom{n}{k} \times (l)^{n-k} \times (r)^{k} \tag{0.0.1}$$

Where

- n = Total number of people = 10
- 1 = Probability that a person is 'left' handed =
- r = Probability that a person is 'right' handed

So,

$$\Pr\left(M = k\right) = \binom{n}{k} \times \left(\frac{1}{10}\right)^{n-k} \times \left(\frac{9}{10}\right)^{k} \qquad (0.0.2)$$

1

Pr(at most 6 are right handed) = Pr(M = 0)

$$+ \Pr(M = 1) + \Pr(M = 2) + \Pr(M = 3)$$

$$+ \Pr(M = 4) + \Pr(M = 5) + \Pr(M = 6)$$

$$\implies \Pr(0 \le M \le 6) = 1 - \Pr(7 \le M \le 10)$$
(0.0.3)

Since

$$\sum_{k=0}^{10} \Pr(M = k) = 1 \tag{0.0.4}$$

Thus, we can write:

$$1 - \Pr(7 \le M \le 10) = 1 - \sum_{k=7}^{10} \Pr(M = k) \quad (0.0.5)$$

From (0.0.2) we get,

$$\implies 1 - \sum_{k=7}^{10} {10 \choose k} \times \left(\frac{1}{10}\right)^{10-k} \times \left(\frac{9}{10}\right)^k \qquad (0.0.6)$$

$$\implies 1 - {10 \choose 7} \times \left(\frac{1}{10}\right)^3 \times \left(\frac{9}{10}\right)^7 - {10 \choose 8} \times \left(\frac{1}{10}\right)^2 \times \left(\frac{9}{10}\right)^8$$
$$- {10 \choose 9} \times \left(\frac{1}{10}\right)^1 \times \left(\frac{9}{10}\right)^9 - {10 \choose 10} \times \left(\frac{1}{10}\right)^0 \times \left(\frac{9}{10}\right)^{10}$$
$$(0.0.7)$$

$$(0.0.1) \implies \Pr(0 \le M \le 6) = \frac{7996999}{625000000} = 0.012795198$$

Thus probability the that most 6 'right' handed people are out of a random sample 10 0.012795198 of is

