计算物理 A——Homework 15

何金铭 PB21020660

1 题目描述

设体系的能量为 $H(x,y)=-2(x^2+y^2)+\frac{1}{2}(x^4+y^4)+\frac{1}{2}(x-y)^4$,取 $\beta=0.2,1,5$,采用 Metropolis 抽样法计算 $\left\langle x^2\right\rangle$, $\left\langle y^2\right\rangle$, $\left\langle x^2+y^2\right\rangle$ 。抽样时在 2 维平面上依次标出 Markov 链点分布,从而形象地 理解 Markov 链。

1.1 大致思路

- 1. 先于二维平面上随机生成一个起始点 (x_0, y_0)
- 2. 再令点于二维平面上随机运动 $(x_t, y_t) = (x + \delta \cos \theta, y + \delta \sin \theta)$
- 3. 若其交换后能量 E_t 小于前一点的能量 E_0 ,则选 (x_t, y_t) 做为链的下一点;若其交换后能量 E_t 大于前一点,则依据概率选择 (x_t, y_t) 或 (x_0, y_0) 做为链的下一点。
- 4. 重复 n 次,获得一个链长为 n 的 Markov Chain,并将其标于二维平面上。

2 理论分析

2.1 H 分析与系综的选择

2.1.1 H 分析

由 Mathematica 计算得: H(x,y) 有极大值点 (0,0),有极小值点 (-1.414,-1.414),(1.414,1.414), (0.471,-0.471),(-0.471,0.471)

其大致的模样如图所示:

 $H(x, y) x, y \in [-10, 10]^2$

图 1: $H(x,y),(x,y) \in [-10,10]^2$ 图像

可以发现,函数在 y = -x 方向函数值变化非常明显,而在 y = x 方向函数值变化相对缓慢。整体呈现一个山谷的形状,预期 Markov Chain 最终会位于山谷的位置。

2.1.2 系综的选择

对于一个给定的 Hamilton 量 H(x,y),其对应的体系可能有多种不同的概率分布,这里我们选择一种来讨论,所以在以下的讨论中,我们选择最常见的正则系综来讨论,即满足 Boltzmann 分布。系综平均值为:

$$\langle A \rangle = Z_{NVT}^{-1} \int A(q, p) e^{-\beta H(q, p)} d\Omega$$
 (1)

式中 β 为一个表征系统温度的常数, Z_{NVF} 为正则配分函数

$$Z_{NVT} = \int \exp\{-\beta H(q, p)\} d\Omega$$
 (2)

2.2 Metropolis-Rosenbluth 抽样方法

采用对称的分布矩阵 T 和接受矩阵 A

设 $T((x,y) \to (x',y')) = T(x',y') = N((x'-x,y'-y)|0,0,\sigma^2,\sigma^2,0)$ 为点 (x,y) 运动到 (x',y') 的概率

取
$$A_{ij} = \min \left\{ 1, \frac{p_j}{p_i} \right\}$$
根据细致平衡条件: $\frac{p_j}{p_i} = \frac{W_{ij}}{W_{ji}}$, 有

$$W_{ij} = \begin{cases} T_{ij} & ,if \ p_j T_{ji} > p_i T_{ij} \\ \frac{p_j}{p_i} T_{ji} & ,if \ p_j T_{ji} < p_i T_{ij} \end{cases}$$
 (3)

$$W_{ii} = 1 - \sum_{j \neq i} W_{ij} \tag{4}$$

记:

$$R = \frac{p_j}{p_i} = \exp\{-\beta(H' - H)\}\tag{5}$$

2.3 Metropolis-Hasting 抽样方法

采用不对称的分布矩阵 T 和接受矩阵 A

其中T为一个任意形状的方阵(最好与分布有着类似的形式) $T_{ij} = T(x \to x'), A_{ij} = \min \left\{ 1, \frac{p_j T_{ji}}{p_i T_{ij}} \right\}$ 根据细致平衡条件: $\frac{p_j}{n_i} = \frac{W_{ij}}{W_{ij}}$, 有

$$W_{ij} = \begin{cases} T_{ij} & ,if \ p_j T_{ji} > p_i T_{ij} \\ \frac{p_j}{p_i} T_{ji} & ,if \ p_j T_{ji} < p_i T_{ij} \end{cases}$$
 (6)

$$W_{ii} = 1 - \sum_{j \neq i} W_{ij} \tag{7}$$

这里取 $T((x,y)\to (x',y'))=T(x',y')=\exp\{-\gamma H\}$ 为点 (x,y) 运动到 (x',y') 的概率,并取一个合适的 γ

记:

$$R = \frac{p_j T_{ji}}{p_i T_{ij}} = \exp\{-\beta (H' - H)\} \exp\{\gamma (H' - H)\}$$
 (8)

2.4 结果的计算

于 Monte Carlo 模拟的过程中记录总步数 N 与热化步数 m,对于力学量 A 的平均值 $\langle A \rangle = \frac{1}{N-m} \sum_{i=1}^{N} A_i$

只需代入表达式 $A = x^2, y^2, x^2 + y^2$ 即可。

3 算法过程

3.1 一些说明

在以下讨论的情况中, 取 $(x,y) \in [-10,10]^2$,且取 Markov Chain 的长度为 $N=10^5$

3.2 Metropolis-Rosenbluth 抽样方法

记 $r = \exp\{-\beta(H'-H)\}$, 随机生成一个初始点 (x_0, y_0)

- 1. 生成均匀分布的随机数 $\xi \in [0,1]$
- 2. 定义 $\eta = 10 20\xi$, $\theta = 2\pi\xi$, 于是生成了一个新随机数 $\eta \in [-10, 10]$, 可得初始点 (x_0, y_0)
- 3. 从前一点 (x,y) 开始,每次运动的步长记为 $\delta=(\xi-0.5)\Delta r, (\Delta r=0.2)$,可得试探位置 $(x_t,y_t)=(x+\delta\cos\theta,y+\delta\sin\theta)$
- 4. 定义 r 如上式,若 r > 1,则 $(x_{n+1}, y_{n+1}) = (x_t, y_t)$;否则,生成均匀随机数 $\xi \in [0, 1]$,若 $r > \xi$,则 $(x_{n+1}, y_{n+1}) = (x_t, y_t)$,否则 $(x_{n+1}, y_{n+1}) = (x, y)$
- 5. 记录下所有的点 (x,y),并计数,其总数为 N,则其积分值 $I\cong\sum_{i=m}^N\frac{1}{N-m}(x_i-\alpha\beta)^2$ 。其中 m 代表热化所需要的步数。这里取 $m=k\times N$,也可设置一个阈值 λ ,令 $\frac{|H'-H|}{H}<\lambda$ 时,记此处的步数为 m。

3.3 Metropolis-Hasting 抽样方法

记 $r = \exp\{-(\beta - \gamma)(H' - H)\}$

其他的步骤与上一种方法一致。

由于之前的一次作业中已经尝试过了 Metropolis-Hasting 方法,两种方法的本质差不多,并且 此次作业讨论的是形象的画出 Markov Chain,所以在之后的讨论中不采用此种方法。

4 程序说明

4.1 主要程序

MCMC.c Markov Chain 主程序。把所有功能写进了一个文件中的多个函数内

rn() 一个产生随机数的函数,每次调用一次即可获得一个随机数。

hamilton(double x,double y) 系统哈密顿量的表达式

R_rosenbluth(double x_1,double y_1,double x_2,double y_2,double beta) 判别式 r 的表达式。

abs_d(double a) 一个 double 型绝对值函数

m_rosenbluth() 一个用于 Metropolis-Rosenbluth 抽样的函数, $\beta = 0.2, 1, 5$, 链长 $N = 10^5$, 把每一条链的结果储存于文件中。

markov_visual.py 对结果进行可视化操作,该文件为纯作图文件,助教可以不用检查,故此文件不加注释。

4.2 程序结果

MCMC.exe Metropolis-Hasting 方法主程序。把所有功能写进了一个文件中的多个函数内,编译时需要手动修改!

./data 文件夹路径, 里面存放了各种导出的数据(下面文件中:后缀只为数字的为起始点随机点情况,后缀为 temp 的为另一个不同点的情况,后缀为 lambda 的为 $\lambda=0.01$ 的情况,后缀为 delta_r 的为固定步长 $\Delta r=1$ 的情况)

out.txt 初始点随机的答案注:由于 txt 文件是"a" 格式写人的, 助教在检查时可以先删去其中的内容

out_temp.txt 指定初始点的测试结果同

out_lambda.txt $\lambda = 0.01$ 时的测试结果同

out_delta_r.txt 固定步长 $\Delta r = 1$ 时测试结果同

 \mathbf{m} _rosenbluth_1.csv $\beta = 0.2, \lambda = 0.001, \Delta r = 0.2$ random fist point 原始数据

m_rosenbluth_2.csv $\beta = 1, \lambda = 0.001, \Delta r = 0.2$ random fist point 原始数据

 $\mathbf{m}_{\mathbf{rosenbluth}}$ **1.csv** $\beta = 5, \lambda = 0.001, \Delta r = 0.2$ random fist point 原始数据

 $\mathbf{m}_{\mathbf{rosenbluth}}$ 1_temp.csv $\beta = 0.2, \lambda = 0.001, \Delta r = 0.2$ fist point = (8, -8) 原始数据

 $\mathbf{m}_{\mathbf{r}}$ rosenbluth_2_temp.csv $\beta = 1, \lambda = 0.001, \Delta r = 0.2$ fist point = (8, -8) 原始数据

 \mathbf{m} _rosenbluth_3_temp.csv $\beta = 5, \lambda = 0.001, \Delta r = 0.2$ fist point = (8, -8) 原始数据

m_rosenbluth_1 lambda.csv $\beta = 0.2, \lambda = 0.01, \Delta r = 0.2$ random fist point 原始数据

m_rosenbluth_2_lambda.csv $\beta = 1, \lambda = 0.01, \Delta r = 0.2$ random fist point 原始数据

 $\mathbf{m}_{\mathbf{rosenbluth}}$ _3_lambda.csv $\beta = 5, \lambda = 0.01, \Delta r = 0.2$ random fist point 原始数据

 $\mathbf{m}_{\mathbf{r}}$ rosenbluth_1_delta_ \mathbf{r} .csv $\beta = 0.2, \lambda = 0.001, \Delta r = 1$ random fist point 原始数据

 $\mathbf{m}_{\mathbf{r}}$ rosenbluth_2_delta_ \mathbf{r} .csv $\beta = 1, \lambda = 0.001, \Delta r = 1$ random fist point 原始数据

 $m_rosenbluth_3_delta_r.csv$ $\beta = 5, \lambda = 0.001, \Delta r = 1$ random fist point 原始数据

·/pic 文件夹路径, 里面存放了各种由数据转来的图片, 其具体含义请参见报告中的内容。

4.3 其他说明

- 1. 数据都写于 CSV 文件中
- 2. 其中 Python 程序用到的库有:
- matplotlib.pyplot:用于作图
- numpy:用于数据处理
- csv: 用于读写 CSV 文件

5 结果分析

注:于以下的结果展示中,紫色点代表初始位置,红色点代表最终位置。

5.1 不同的 β 时的结果

以下的结果给出时的条件为阈值 $\lambda=0.001$, 固定步长 $\Delta r=0.2$

5.1.1 $\beta = 0.2$

图 2: $\beta = 0.2$ 时 Markov Chain 的 2D 展示 图 3: $\beta = 0.2$ 时 Markov Chain 的 3D 展示

5.1.2 $\beta = 1$

图 4: $\beta = 1$ 时 Markov Chain 的 2D 展示 图 5: $\beta = 1$ 时 Markov Chain 的 3D 展示

5.1.3 $\beta = 5$

图 6: $\beta = 5$ 时 Markov Chain 的 2D 展示 图 7: $\beta = 5$ 时 Markov Chain 的 3D 展示

5.1.4 分析

β	$\langle x^2 \rangle$	$\langle y^2 \rangle$	$\langle x^2 + y^2 \rangle$
0.2	1.9521	1.6397	3.5918
1	1.9357	1.6494	3.5851
5	2.1533	1.9742	4.1275

表 1: 各种均值与 β 的关系表

- 1. 可以十分形象的观察到 Markov Chain 的过程,链起始时颜色为绿色,终结时颜色为黄色,发 现最终大量的黄色聚集在山谷的位置。
- 2. 另外从 3D 图可以更加容易理解这个过程, 一开始链长位于小山坡上, 最终运动到了谷的位置。
- 3. 于图中发现到 β 上升的时候,Markov Chain 表现的更为密集;于表中发现,当 β 上升时, $\langle x^2 \rangle, \langle y^2 \rangle, \langle x^2 + y^2 \rangle$ 的值均在变大。从物理的角度分析,当 β 越大的时候,系统的温度越 低,系统就自然更加稳定,其能量的取值更可能取到能量更低的位置。在这里结果呈现这样的 原因可能是: 体系于原点附近具有 4 个低谷, 温度较高的时候比较容易遍历所有的低谷, 故 $\langle x^2+y^2 \rangle$ 更加接近原点,而温度较低的时候,更加容易局限于一个低谷中,则导致 $\langle x^2+y^2 \rangle$ 较大。

5.2 不同的阈值 λ 时的结果

不同的阈值可能会带来不一样的均值计算的结果,以下再讨论阈值为 0.01 时的情况。

β	$\langle x^2 \rangle$	$\langle y^2 \rangle$	$\langle x^2 + y^2 \rangle$
0.2	1.9521	1.6397	3.5918
1	1.9357	1.6494	3.5851
5	2.1533	1.9742	4.1275

表 2: 各种均值与 β 的关系表 ($\lambda = 0.01$)

发现结果和 $\lambda = 0.001$ 时一模一样,得出的结论是,在这种情况下,Markov Chain 可能在一步 之内就完成了剧烈的热化过程。

5.3 不同的初始位置 (x_0, y_0) 时的结果

根据理论,Markov Chain 的计算结果与起始点 (x_0, y_0) 的位置无关,下面来加以验证。不妨设起始点为 (8, -8)

5.3.1 $\beta = 0.2$

图 8: $\beta=0.2$ 时 Markov Chain 的 2D 展示 图 9: $\beta=0.2$ 时 Markov Chain 的 3D 展示

5.3.2 $\beta = 1$

图 10: $\beta=1$ 时 Markov Chain 的 2D 展示 图 11: $\beta=1$ 时 Markov Chain 的 3D 展示

5.3.3 $\beta = 5$

图 12: $\beta=5$ 时 Markov Chain 的 2D 展示 图 13: $\beta=5$ 时 Markov Chain 的 3D 展示

5.3.4 分析

	β	$\langle x^2 \rangle$	$\langle y^2 \rangle$	$\langle x^2 + y^2 \rangle$
	0.2	1.8042	1.8827	3.6869
	1	1.7898	1.7361	3.5259
ĺ	5	2.0747	2.0707	4.1454

表 3: 各种均值与 β 的关系表 (不同的起始点)

- 1. 发现虽然于不同起始点的数据 $\langle x^2 \rangle$, $\langle y^2 \rangle$ 有大约 5% 左右的误差,但 $\langle x^2 + y^2 \rangle$,只有差不多 1.5% 的误差。
- 2. 上一条中的出入可能是由于 Markov Chain 的链长不够长导致的。

5.4 不同的固定步长 Δr 对结果的影响

以下再讨论步长为 $\Delta r = 1$ 的情况。

5.4.1 $\beta = 0.2$

图 14: $\beta = 0.2$ 时 Markov Chain 的 2D 展示 图 15: $\beta = 0.2$ 时 Markov Chain 的 3D 展示

5.4.2 $\beta = 1$

图 16: $\beta=1$ 时 Markov Chain 的 2D 展示 图 17: $\beta=1$ 时 Markov Chain 的 3D 展示

5.4.3 $\beta = 5$

图 18: $\beta = 5$ 时 Markov Chain 的 2D 展示 图 19: $\beta = 5$ 时 Markov Chain 的 3D 展示

5.4.4 分析

β	$\langle x^2 \rangle$	$\langle y^2 \rangle$	$\langle x^2 + y^2 \rangle$
0.2	1.6390	1.6007	3.2396
1	1.7308	1.6914	3.4223
5	1.9898	1.9583	3.9481

表 4: 各种均值与 β 的关系表($\Delta r = 1$)

- 1. 发现其均值与之前的计算都相差较大,特别是温度较高 $(\beta$ 较小)的时候。
- 2. 产生的原因是不同的步长会导致 Markov Chain 可能会越过势垒达到别的小谷值中。
- 3. 得出的结论是:每次的步长不能选的太小,否则长时间可能会陷入小低谷中;也不能太大,否则长时间可能会在一个大范围内运动。

6 总结

- 1. 通过本次的作业对 Markov Chain 有了更深的认识,以及不同条件下对应了 Markov Chain 不同的结果。
- 2. Markov Chain 热化的阈值有时候可能会不敏感,换一句话说,就是 Markov Chain 的热化过程可能会仅仅在一步完成,即整个系统瞬间达到平衡态。
- 3. 于不同的温度下 (不同的 β 下),结果会不同,这是由体系的 Hamilton 函数决定的。对于有很多极小值的 H(x,y) 来说,当温度越低的时候,Markov Chain 更加容易陷入一个低谷当中;当温度较高的时候,平衡态时能遍历的状态可以更多。
- 4. 不同的起始位置对 Markov Chain 的结果对但极值函数影响不大,只要运动时间足够长就可以得到相同的结果;而对于多极值的函数来说,则结果还会受温度,步长等其他值选取的影响。
- 5. Markov Chain 每次的固定步长不能选的太小,否则长时间可能会陷入小低谷中;也不能太大,否则长时间可能会在一个大范围内运动。