Merge Sort

SMITA SANKHE

Assistant Professor

Department of Computer Engineering

Divide-and-Conquer

- **Divide** the problem into a number of sub-problems
 - Similar sub-problems of smaller size
- Conquer the sub-problems
 - Solve the sub-problems <u>recursively</u>
 - Sub-problem size small enough ⇒ solve the problems in straightforward manner
- Combine the solutions of the sub-problems
 - Obtain the solution for the original problem

Merge Sort Approach

To sort an array A[p . . r]:

Divide

 Divide the n-element sequence to be sorted into two subsequences of n/2 elements each

Conquer

- Sort the subsequences recursively using merge sort
- When the size of the sequences is 1 there is nothing more to do

Combine

Merge the two sorted subsequences

Merge Sort

```
Algorithm MergeSort(low, high)
    // a[low:high] is a global array to be sorted.
    // Small(P) is true if there is only one element
\frac{4}{5}
    // to sort. In this case the list is already sorted.
6
         if (low < high) then // If there are more than one of
8
              // Divide P into subproblems.
9
                  // Find where to split the set.
                       mid := \lfloor (low + high)/2 \rfloor;
10
              // Solve the subproblems.
11
12
                  MergeSort(low, mid);
                  MergeSort(mid + 1, high);
13
              // Combine the solutions.
14
15
                  Merge(low, mid, high);
16
17
```


Merging two sorted sub-arrays

```
Algorithm Merge(low, mid, high)
    // a[low:high] is a global array containing two sorted
    // subsets in a[low:mid] and in a[mid+1:high]. The goal
    // is to merge these two sets into a single set residing
    // in a[low:high]. b[] is an auxiliary global array.
6
         h := low; i := low; j := mid + 1;
8
         while ((h \leq mid) \text{ and } (j \leq high)) do
9
10
             if (a[h] \leq a[j]) then
1 L
                  b[i] := a[h]; h := h + 1;
12
13
             else
14
15
                  b[i] := a[j]; j := j + 1;
16
17
             i := i + 1;
18
19
20
         if (h > mid) then
21
             for k := j to high do
22
23
                  b[i] := a[k]; i := i + 1;
24
25
         else
26
             for k := h to mid do
27
                  b[i] := a[k]; i := i + 1;
28
29
         for k := low to high do a[k] := b[k];
30
31
```


Example – **n** Power of 2

Divide

6

q = 4

Example – **n** Power of 2

Conquer and Merge

Example – **n** Not a Power of 2

8

Example – **n** Not a Power of 2

Merging

- Input: Array A and indices p, q, r such that p≤
 q < r
 - \circ Subarrays A[p..q] and A[q+1..r] are sorted
- Output: One single sorted subarray A[p..r]

Merging

Idea for merging:

- Two piles of sorted cards
 - -Choose the smaller of the two top cards
 - -Remove it and place it in the output pile
- Repeat the process until one pile is empty
- Take the remaining input pile and place it face-down onto the output pile

Example: MERGE(A, 9, 12, 16)

Example: MERGE(A, 9, 12, 16)

Example (cont.)

Example (cont.)

Done!

Merge - Pseudocode

Alg.: MERGE(A, p, q, r)

- 1. Compute n_1 and n_2
- 2. Copy the first n_1 elements into n_1 n_2 n_3 n_4 n_4 n_5 n_6 $n_$
- 3. $L[n_1 + 1] \leftarrow \infty$; $R[n_2 + 1] \leftarrow \infty$
- 4. $i \leftarrow 1$; $j \leftarrow 1$
- 5. for $k \leftarrow p$ to r
- 6. do if $L[i] \leq R[j]$
- 7. then $A[k] \leftarrow L[i]$
- 8. $i \leftarrow i + 1$
- 9. else $A[k] \leftarrow R[j]$

Running Time of Merge (assume last **for** loop)

Initialization (copying into temporary arrays):

$$\Theta(n_1 + n_2) = \Theta(n)$$

- Adding the elements to the final array:
 - n iterations, each taking constant time $\Rightarrow \Theta(n)$
- Total time for Merge:

MERGE-SORT Running Time

Divide:

 \circ compute **q** as the average of **p** and **r**: $D(n) = \Theta(1)$

Conquer:

o recursively solve 2 subproblems, each of size $n/2 \Rightarrow 2T(n/2)$

Combine:

○ MERGE on an **n**-element subarray takes $\Theta(n)$ time \Rightarrow $C(n) = \Theta(n)$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + (n) & \text{if } n > 1 \end{cases}$$

Solve the Recurrence

T(n) =
$$\begin{cases} c & \text{if } n = 1 \\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

Use Master's Theorem:

Compare n with f(n) = cnCase 2: $T(n) = \Theta(n|qn)$

