Абелева группа V называется векторным пространством над полем F, если определено произведение $\cdot: F \times V \to V$ и выполнены следующие условия¹:

- для любого $\vec{a} \in V$ верно равенство $1 \cdot \vec{a} = \vec{a}$;
- для любых $x,y \in F$ и $\vec{a} \in V$ верно равенство $x \cdot (y \cdot \vec{a}) = xy \cdot \vec{a}$.
- для всех $x,y \in F$ и $\vec{a} \in V$ верно равенство $(x+y) \cdot \vec{a} = x \cdot \vec{a} + y \cdot \vec{a}$.
- для всех $x \in F$ и $\vec{a}, \vec{b} \in V$ верно равенство $x \cdot (\vec{a} + \vec{b}) = x \cdot \vec{a} + x \cdot \vec{b}$.

Примеры

- 1. Рассмотрим обычные векторы на координатной плоскости: $V = \mathbb{R} \times \mathbb{R}$ с поэлементной суммой векторов и обычным умножением на число. Убедитесь, что это векторное пространство² над \mathbb{R} .
- 2. Убедитесь, что $\mathbb{Q}[x]$ и $\mathbb{R}[x]$ векторные пространства над \mathbb{Q} и \mathbb{R} , соответственно.
- 3. Что будет векторным пространством (умножение обычное): $\mathbb Q$ над $\mathbb R$ или $\mathbb R$ над $\mathbb Q$?

Размерность

Пусть $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\} \in V$ — множество векторов в векторном пространстве³ V. Их πu - $\pi u \in \mathcal{U}$ π

Примеры

- 4. Убедитесь, что любое поле является одномерным векторным пространством над самим собой (относительно произведения в этом поле).
- 5. Докажите, что в векторном пространстве \mathbb{R}^2 любой базис имеет размерность 2, т.е. \mathbb{R}^2 двумерно.
- 6. Найдите размерность векторного пространства $\mathbb{R}[x]$ над \mathbb{R} .
- 7. Докажите, что линейная оболочка любого набора векторов сама является векторным (под)пространством.
- 8. Докажите, что, если $\langle \vec{u}_1, \vec{u}_2, \dots, \vec{u}_k \rangle = V$, то у V есть базис, состоящий из \vec{u}_i .
- 9. В конечномерном пространстве V дан набор $U = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\}$ линейно независимых векторов. Докажите, что добавив к U несколько векторов можно получить базис пространства V.

Уравнения прямой в \mathbb{R}^2

Условие того, что точка M(x,y) лежит на прямой, проходящей через точки $P(x_1,y_1)$ и $Q(x_2,y_2)$ равносильно параллельности векторов $\overrightarrow{QM}(x-x_2,y-y_2)$ и $\overrightarrow{QP}(x_1-x_2,y_1-y_2)$. В зависимости от того, как это записать, получатся разные виды уравнения прямой:

- Уравнение $\frac{x-x_2}{x_1-x_2} = \frac{y-y_2}{y_1-y_2}$ удобно для запоминания и вывода остальных уравнений. Равенство отношений в нём понимается в широком смысле (допускаются нулевые знаменатели).
- Уравнение $y=\frac{y_1-y_2}{x_1-x_2}x+\frac{x_1y_2-x_2y_1}{x_1-x_2}$ при $x_1\neq x_2$ имеет вид y=kx+b, где коэффициент k называется угловым коэффициентом, он равен тангенсу угла наклона между прямой и

 $^{^{1}\}mathrm{C}$ трелка над буквой ставится, чтобы подчеркнуть, что она обозначает вектор, т.е. элемент V.

 $^{^{2}}$ В дальнейшем, мы будем обозначать это пространство как \mathbb{R}^{2} .

 $^{^3}$ В дальнейшем мы для простоты будем рассматривать пространства над \mathbb{R} . Постарайтесь следить за тем, какие из полученных свойств верны в случае произвольного поля, а какие — нет.

⁴Требование конечномерности можно опустить, если использовать аксиому выбора.

- осью Ox и показывает скорость изменения функции $\frac{\Delta y}{\Delta x}$. Уравнение $(y_1-y_2)x+(x_2-x_1)y+(x_1y_2-x_2y_1)=0$ имеет вид Ax+By+C=0 и называется общим (или каноническим) уравнением прямой. Нетрудно видеть, что вектор
- $\overrightarrow{AB}(y_1-y_2,x_2-x_1)$ перпендикулярен вектору $\overrightarrow{QP}(x_1-x_2,y_1-y_2).$ Система уравнений $\begin{cases} x=x_2+(x_1-x_2)t; \\ y=y_2+(y_1-y_2)t; \end{cases}$, $t\in\mathbb{R}$, называется napamempuческим уравне-

нием прямой. При этом точка Q называется начальной, а вектор $\overrightarrow{QP}-$ направляющим.

Вообще говоря, любую точку прямой можно выбрать в качестве начальной, а любой вектор, параллельный прямой, является её направляющим вектором. Кроме того, любой вектор, перпендикулярный прямой, называется её вектором нормали.

- 10. Выведите все перечисленные выше виды уравнения прямой.
- 11. Докажите, что параллельность прямых с уравнениями $y = k_1 x + b_1$ и $y = k_2 x + b_2$ равносильна равенству $k_1 = k_2$, а их перпендикулярность — равенству $k_1 k_2 = -1$.
- 12. Выясните, что задаёт параметрическое уравнение прямой, если в нём добавить ограничение $t \in [0, 1]$ на параметр.

Парабола

Пусть на плоскости заданы точка F и прямая ℓ , не проходящая через F. ГМТ точек, равноудалённых от F и ℓ , называется параболой c фокусом F и директрисой ℓ .

- 13. Проверьте, что график функции $y = x^2$ является параболой с данным выше определением. Для этого найдите координаты фокуса и уравнение директрисы.
- 14. На параболе $y=x^2$ отметили четыре точки: $A,\ B,\ C$ и D так, что $AB\parallel CD$. Докажите, что прямая, проходящая через середины отрезков AB и CD параллельна Oy.
- 15. Покажите, что все параболы гомотетичны друг другу и все геометрические свойства, инвариантные относительно движений и подобия, у всех парабол одинаковы.
- 16. Докажите, что график любой квадратичной функции $ax^2 + bx + c, a \neq 0$, гомотетичен параболе $y = x^2$, т.е. все они — тоже параболы.

Упражнения

- 17. Докажите, что отношение $\frac{|C|}{\sqrt{A^2+B^2}}$ в общем уравнении прямой равно расстоянию до этой прямой от начала координат.
- 18. Выведите формулу, выражающую расстояние между заданными точкой и прямой.
- 19. Покажите, что коэффициент C в общем уравнении прямой равен по модулю площади параллелограмма, построенного на векторах (x_1, y_1) и (x_2, y_2) .

Задачи

- 20. Окружность с центром в точке O касается стороны AC треугольника ABC в точке D и проходит через середины сторон AB и BC. Известно, что $AD=9,\ DC=4,\ a$ угол $\angle AOC$ прямой. Найдите длину отрезка OB.
- 21. Докажите, что определение размерности корректно, а именно: в конечномерном пространстве все базисы состоят из одинакового количества векторов.
- 22. Пусть F конечное поле, а p его характеристика. Докажите, что F состоит из p^k элементов, где k — некоторое натуральное число.