3.ANÁLISIS Y DISEÑO DE CONTROLADORES EN EL TIEMPO

Control

Ing. Mecatrónica

D.C. Johan Walter González Murueta

3. Análisis y diseño de controladores en el tiempo

3.1 DEFINICIÓN DE CARACTERÍSTICAS DE UN CONTROLADOR

3.2 TIPOS DE CONTROLADORES

RECORDANDO LA ESTRUCTURA DE UN SISTEMA EN LAZO CERRADO

SISTEMA CONTROLADO EN LAZO CERRADO

Tomando el actuador y proceso juntos tenemos lo que hemos considerado

CONTROLADOR PROPORCIONAL P

Un controlador proporcional es aquel en el que:

$$G_c = K_p$$

$$v(t) = K_p \, e(t)$$

$$V(s) = K_p E(s)$$

$$G_c(s) = \frac{V(s)}{E(s)} = K_p$$

Multiplica por una constate

CONTROLADOR INTEGRAL (I)

Un controlador integral es aquel en el que:

$$v(t) = K_i \int e(t) dt$$

$$K_i = \frac{K_p}{T_i}$$

$$V(s) = \frac{K_i}{s} E(s) \quad \therefore \quad G_c(s) = \frac{V(s)}{E(s)} = \frac{K_i}{s} = \frac{K_p}{T_i s}$$

Multiplica por una constate y tiene un polo en el origen

CONTROLADOR DERIVATIVO (D)

Un controlador derivativo es aquel en el que:

$$v(t) = K_d \frac{d e(t)}{d t}$$

$$K_d = K_p T_d$$

$$V(s) = K_d s E(s)$$
 :: $G_c(s) = \frac{V(s)}{E(s)} = K_d s = K_p T_d s$

Multiplica por una constate y tiene un cero en el origen

CONTROLADOR PROPOCIONAL-INTEGRAL (PI)

Se define en el tiempo como:

$$v(t) = K_p e(t) + K_i \int e(t) dt = K_p e(t) + \frac{Kp}{Ti} \int e(t) dt$$

▶ Obtener Gc(s) en forma:

$$G_c = \frac{\prod_i^m (s - z_i)}{\prod_i^n (s - p_i)}$$

Multiplica por una constate, tiene un cero real movible y un polo en

origen

$$G_c(s) = \frac{V(s)}{E(s)} = K_p \left[\frac{s + 1/T_i}{s} \right] = K_p \left[\frac{s + (K_i/K_p)}{s} \right]$$

RESUMEN CONTROLADORES

Sistema	Polos	Ceros
Propircional	-	-
Integral	Origen	-
Derivativo	-	Origen
Proporcional Integral	Origen	Real movible
Proporcional Derivativo	-	Real movible
Proporcional Integral Derivativo	Origen	2 movibles

DISEÑO DE CONTROLADORES

- Muchas veces se requiere cambiar los parámetros de respuesta de un sistema.
- El diseño de un controlador se basa en las especificaciones deseadas del comportamiento de un sistema.
- Tener especificaciones demasiado detalladas puede hacer costosa la situación o complicar el diseño
- Hay que buscar un equilibrio costo-beneficio en el diseño de controladores

DISEÑO DE CONTROLADORES DISEÑO EN TIEMPO

Cuando las especificaciones de diseño se enfocan en:

- ► Factor de amortiguamiento
- Frecuencia natural del sistema
- Sobretiro máximo
- Tiempo de crecimiento (T)
- Tiempo de decaimiento (T)

Se considera que es un diseño en el tiempo y el método del Lugar Geométrico de las Raíces es muy útil.