TD 0 : Oscillateur Harmonique

Ex1: Oscillations d'un pendule simple

Un objet ponctuel A de masse m est suspendu à l'extrémité d'un fil de masse négligeable et de longueur L dont l'autre extrémité O est fixe. On ne considère pas les mouvements en dehors d'un plan vertical xOy perpendiculaire à un axe Oz horizontal. On repère A par l'angle θ entre le fil et la verticale. On suppose que le référentiel terrestre est galiléen. On néglige tous les frottements. On désigne par $\overrightarrow{g} = g\overrightarrow{u}_x$ l'accélération du champ de pesanteur.

- 1. Déterminer l'équation différentielle du mouvement de A en appliquant le théorème de l'énergie mécanique.
- 2. Retrouver le résultat par le principe fondamental de la dynamique.
- 3. Tracer la courbe d'énergie potentielle et déterminer les positions d'équilibre du système et leur stabilité.
- 4. On abandonne A sans vitesse initiale alors que le fil est écarté d'un angle θ_0 . On se place dans le cas où θ_0 est petit. Montrer que le système constitue un oscillateur harmonique dont on exprimera la pulsation propre ω_0 et la période propre T_0 en fonction de g et L.
- 5. Compte tenu des conditions initiales, déterminer l'évolution temporelle de l'angle θ .
- **6.** Quelle est la valeur maximale v_{max} de la vitesse de l'objet A au cours de son mouvement?

On l'exprimera en fonction de θ_0 , L et g.

7. Tracer la courbe donnant θ en fonction du temps.

$\operatorname{Ex2}$: Oscillations d'une masse suspendue à un ressort

On s'intéresse au mouvement d'un petit objet de masse m attaché à un ressort dont l'autre extrémité est accrochée à un bâti fixé au sol. Le ressort étant initialement dans sa situation de repos pour laquelle sa longueur est égale à sa longueur à vide, on lâche l'objet sans lui donner de vitesse initiale. Le mouvement qui suit est vertical et on veut l'étudier.

On idéalise le comportement du ressort en l'assimilant à un ressort parfaitement élastique, sans masse, de raideur k et de longueur à vide l_0 . On repère la position de l'objet sur un axe (Ox) vertical descendant par son abscisse x. L'origine O du repère est située à l'extrémité fixe du ressort. On néglige les frottements dus à l'air.

1. Montrer que l'équation du mouvement s'écrit :

$$\ddot{x} + \omega_0^2 x = \omega_0^2 x_{\rm eq}$$

où ω_0 et $x_{\rm eq}$ sont des constantes à déterminer en fonction de $l_0,\,g,\,m$ et k.

- **2.** Que représente la position M_{eq} d'abscisse $x = x_{eq}$?
- 3. Pour résoudre l'équation du mouvement, on déplace l'origine de repère en $M_{\rm eq}$
 - a. Montrer que cela revient à faire le changement de variable $X=x-x_{\rm eq}$
 - b. En déduire que l'on obtient alors une équation différentielle du mouvement connue.
 - c. Résoudre en tenant compte des conditions initiales.
 - **d.** Représenter l'évolution temporelle de l'abscisse x.

Ex3: Vibration d'un diapason

Un diapason vibre à la fréquence du La4 soit $f=440~{\rm Hz}$. On mesure sur une photo l'amplitude du mouvement de l'extrémité des branches $A=0,5~{\rm mm}$. Quelle est la vitesse maximale de l'extrémité du diapason? Quelle est l'accélération maximale de ce point?

Ex4: Energie de l'oscillateur harmonique

L'énergie mécanique d'un oscillateur harmonique s'écrit : $E_m(t) = \frac{1}{2}m\omega_0^2x^2 + \frac{1}{2}m\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2$. On suppose qu'il n'y a aucun phénomène dissipatif : l'énergie mécanique est donc constante.

- 1. En utilisant la conservation de l'énergie, retrouver l'équation différentielle de l'oscillateur harmonique.
- 2. On suppose que $x(t) = A\cos(\omega_0 t + \varphi)$. Exprimer l'énergie cinétique et l'énergie potentielle en fonction de m, ω_0 et $\cos(2\omega t + 2\varphi)$. Vérifier que l'énergie mécanique est bien constante.
- 3. Tracer sur un même graphe les courbes donnant l'énergie cinétique et l'énergie potentielle en fonction du temps. Quelle est la fréquence de variation de ces énergies?

Ex5 : Caractéristiques de signaux sinusoïdaux

- 1. Donner l'amplitude, la période, la fréquence et la phase initiale des signaux suivants :
 - **a.** $x(t) = 15\cos(100\pi t + 0, 5)$;
 - **b.** $x(t) = 5\sin(7,854.10^6t)$;
 - **c.** $x(t) = 2\sin(120\pi t \frac{\pi}{4});$
- 2. Quelle est la phase initiale d'un signal sinusoïdal qui vaut la moitié de sa valeur maximale et croît à l'instant $t=\frac{T}{4}$ où T est la période?

Ex6 : Détermination d'un déphasage

La figure représente un écran d'oscilloscope avec deux signaux sinusoïdaux de même fréquence $s_1(t)$ (foncé) et $s_2(t)$ (clair). La ligne en tireté représente le niveau zéro pour les deux signaux. Une division de l'axe des temps correspond à 20 ms.

- 1. Déterminer la fréquence des signaux.
- **2.** Calculer le déphasage de s_2 par rapport à s_1 .
- **3.** Quelle est la phase de s_1 au point le plus à gauche de l'écran?