FLOODS 4

Final Presentation

CEGM2003 U3: Project

By: Kevin de Bruijn Patrick de Bruijn Mats Kerver Han-Yu Wu

Content

- Introduction
- Data
- Description of models
 - Inductive bias
 - Overview
 - Performances
- U-NET
 - Performance
 - Description
 - Dropout

Final model

- Decisions
- Architecture
- o Demo
- Accuracy
- Advantages
- Limitations
- Possible improvements

Introduction

- "Your model should take topographical and hydraulic inputs to produce the evolution at different time steps of the hydraulic variables."
 - ⇒ Predict water level
- Faster than numerical modelling
 - o Important for time-sensitive predictions
- Application:
 - Evacuation strategies
 - Mitigation measures
 - Probabilistic flood interpretation

Data

- Numerical 'reference' solutions/simulations, with fixed discharge
- Used variables:
 - water depth
 - topography
- 80 training/validation simulations, and 3 test sets
- Data augmentation applied (mirroring and rotation)
 ⇒ 400 training/validation simulations
- Normalization:
 - MinMax for water depth
 - Standard Gaussian for topography

Description of models: inductive bias

- Previously, we wanted to build an RNN
 - Temporal inductive bias
 - Requires time series to generate forecast
 - We might not have data available in this time sensitive application!
- But we need spatial inductive bias
 - Grid cells within close proximity should be highly correlated
 - Does not require time series, only an initial condition
- ⇒ Move towards CNN architecture in order to introduce spatial bias

Description of models: overview

Model	Туре	Number of trainable parameters	Number of models
MLP with(out) data augmentation	MLP	264,193	2
CNN, CNN PIL, CNN PID, CNN PIDPID	CNN	112,577	4
TempCNN	CNN	1984	1
U-NET (original)	CNN, all time-steps and autoregressive	31,037,057	4
U-NET	CNN, all time-steps and autoregressive	101,505 — 466,881	9
U-Net mask	CNN, autoregressive	101,506 (1 extra for the distance)	3
U-Net dropout	CNN, autoregressive	101,505 — 466,881	4

U-NET: description (1)

- Custom implementation with flexible hidden size
- Skip-connections (needs image to explain)
- Trained with time-skips

U-NET: description (2)

1. Custom layer amount

- 2. Mask (based on distance from wet pixel)
 - a. output = x * distance_matrix(input) ** -p, where p is a trainable parameter
 - b. output = $x * mask \rightarrow booleans$, non trainable

3. Dropout

U-NET: dropout

Final model: decisions

- No augmented data
- Timeskip = 5
- Encoder [2, 32, 64, 128] → Decoder [128, 64, 32, 1]
- Hard mask of 5 pixels
- Dropout rate 0.50

Final model: architecture

Final model: demo

• Let's do a demo of the model!

Final model: advantages

- Much faster than numerical model
- Includes uncertainty through dropout

Standard Deviation over Time

Final model: accuracy

$$accuracy = 1 - \frac{|target - prediction|}{target}$$

Final model: limitations

- Temporal resolution of 5+1 steps, i.e. one prediction every 3 hours
- Weaker prediction shortly after the breach (in comparison to other U-NET models)
- Not trained on augmented data, so not very generalizable to other flood orientations
- Predictions as fast as possible, since the masking method is not optimized

Possible improvements

- Train the model on augmented data to make it applicable for different locations of breach
- Improve temporal resolution
- Optimize the number of parameters
- Improve masking method (optimized and more flexible mask)
- Make the network physics-informed:
 - Implement a graph neural network to force the model to adhere to mass balance (Finite Volume Method)
 - Train with flow velocities, and use SWE in loss function

THANK YOU

By: Kevin de Bruijn Patrick de Bruijn Mats Kerver Han-Yu Wu

EXTRA SLIDES

- Data
 - Description
 - Augmentation
 - Normalization
- Different models
 - o MLP
 - o CNN
 - **TempCNN**
- Comparison models
- Confusion matrix
- Reflection

Data: description, augmentation, and normalization

Data: description

- Numerical 'reference' solutions/simulations
- Grid:
 - Resolution: 100m x 100m
 - Size: 64 x 64 (and some 128 x 128)
- Temporal resolution:
 - Resolution: 0.5h
 - Total simulation length: 48h (and some 120h)
- Available variables:
 - water depth
 - \circ horizontal flow velocities (x- and y-direction) \rightarrow not used
 - topography
- Constant discharge at fixed location into the domain

Data: augmentation

- 80 simulations (70% training, 30% validation)
- Used to increase number of available datasets for training, validation and testing.
- Grid is square, so rotation by [0°, 90°, 180°, 270°] is possible.
- Additionally, horizontal and vertical mirroring is available.
- In total 4*2*2 = 16
 - 1 dataset → 16 datasets (some of which overlap) →
 - Randomly choose 5 from these
- 400 simulations for training/validation!

Data: normalization

- Each simulation normalized separately
- Topography:
 - Calculate mean and standard deviation to fit standard Gaussian
- Water depth:
 - Should be positive definite
 ⇒ MinMax normalization
 - Minimum and Maximum calculated from final time step of each simulation
- Ensures consistent scaling of input data

$$z = \frac{x - \mu}{\sigma}$$

$$\mu=$$
 Mean $\sigma=$ Standard Deviation

$$x' = rac{x - \min(x)}{\max(x) - \min(x)}$$

Different models: MLP, CNN, TempCNN

Description of models: MLP

Let's see if a basic MLP is suitable:

- Augmented data?
- 4 fully connected hidden layers, ReLU
- Predicts final timestep from the initial conditions only
 - Instead of needing one corner pixel with a huge weight, a channel was added that indexed which corner was the origin of the flood.

Description of models: CNN (1)

- Architecture:
 - Inputs 2 channels: topography and water depth (timestep t)
 - \circ Outputs 1 channel: water depth (timestep t+1) \to 1D convolution to transform final hidden layer to output
 - 4 hidden layers with size 64
 - ... trainable parameters
- Don't include data augmentation
- All predict the entire time series recursively!

Description of models: CNN (2)

- Basic CNN
- Custom loss function:
 - Physics-Informed Loss (PIL)
 - Includes current timestep in order to punish the model for having too much or not enough water in the domain
- Custom forward method:
 - Physics-Informed Difference (PID)
 - Uses additional parameter dV denoting maximum volume difference to punish the model for adding or removing too much water between time steps
- Custom loss function and forward method:
 - Physics-Informed Difference with Penalty in loss function for Incorrect Dry prediction (PIDPID)
 - Uses same parameter dV as PID and includes penalty in the loss function when the model false predicts a cell te be dry
 - False dry prediction more catastrophic than false wet prediction

Description of models: TempCNN

- Spectro-temporal U-net Based CNN
 - Regard time as the another axis of image (4096 x 97)
 - o 97 timestep used one-time
 - Study the temporal evolution of each pixel
- Model architecture
 - Rectangle shape -> kernel size and striding should be chosen
 - 2 channels inputs: topography and water depth
 - 1 channel outputs: water level
 - Encoder-Decoder with hidden layers (2, 4, 8), (8, 4, 1) channels
- Defect
 - No spatial bias, every pixel is considered separately
 - Large training error at the early training stage
 - o Error decreases slowly
- Extension to 3D

modified from Pelletier et al. 2019

Comparison models

Performance of models: average MSE

Performance of models: average MSE scaled with time

 Scales the MSE linearly with time, in order to make predictions further away more 'important'

Confusion matrix

Performance of models: confusion matrix (1)

Example for a single run:

Accuracy: 0.63

• Recall: 0.89

Precision: 0.40

• F1 Score: 0.55

Reflection

Reflection

- We spent a long time working on RNNs, which didn't end up working out
 - Maybe widen the scope? There were 4 of us, so maybe some of us could have worked on CNNs from the start.
- Make the MAIN branch a protected branch
- Data handling through GitHub is not the most optimal
- The python module worked well!
- There was clear communication within the group