Projet numérique : Soutenance finale Modèle de Vicsek

Antoine Royer & Alexis Peyroutet

L3 PCAME - Tarbes

- Présentation et explication
 - Présentation du modèle
 - Explications sur le modèle
- Méthode utilisée
 - Classes et méthodes
 - Créations et manipulations sur les agents
- Résultats et interprétations physiques
 - Premiers résultats et paramètres importants
 - Résultats historiques de Vicsek
 - Au-delà du modèle de Vicsek

Tamás Vicsek (74 ans);

Présentation du modèle

Essaim d'oiseaux

- Tamás Vicsek (74 ans) ;
- Etude des mouvements collectifs (systèmes auto-organisés);

Présentation du modèle

Migration des grues

- Tamás Vicsek (74 ans);
- Etude des mouvements collectifs (systèmes auto-organisés);
- Auncun agent leader dans le modèle ;

Présentation du modèle

- Tamás Vicsek (74 ans);
- Etude des mouvements collectifs (systèmes auto-organisés);
- Auncun agent leader dans le modèle ;
- Création du modèle en 1995.

Les bases du modèle

Le modèle de Vicsek permet d'étudier un groupe d'agents qui se déplace dans un espace.

Les bases du modèle

Chacun des agents a une vitesse donnée (en norme et en direction) et va interagir avec ses voisins.

Les bases du modèle

Création d'un mouvement de groupe suite aux interactions entre les agents.

Les équations du modèle

$$\begin{cases} r_i(t+dt) &= r_i(t) + v_i \Delta t \\ \Theta_i(t+dt) &= \Theta_{j|r_i-r_j| < r} + \eta_i(t) \end{cases}$$

• r_i la position de chaque individu ;

Les équations du modèle

$$\begin{cases} r_i(t+dt) = r_i(t) + v_i \Delta t \\ \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \end{cases}$$

- r_i la position de chaque individu ;
- i est l'indice de l'agent en question et t le temps ;

Les équations du modèle

$$\begin{cases} r_i(t+dt) = r_i(t) + v_i \Delta t \\ \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \end{cases}$$

- r_i la position de chaque individu ;
- i est l'indice de l'agent en question et t le temps ;
- η le bruit et Θ l'angle définissant la direction de sa vitesse.

Les équations du modèle

$$\begin{cases} r_i(t+dt) = r_i(t) + v_i \Delta t \\ \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \end{cases}$$

• $\Theta_{i|r_i-r_i|< r}$ est la direction moyenne des vitesses des agents dans un cercle de rayon r;

Les équations du modèle

$$\begin{cases} r_i(t+dt) = r_i(t) + v_i \Delta t \\ \Theta_i(t+dt) = \Theta_{j|r_i-r_j| < r} + \eta_i(t) \end{cases}$$

- $\Theta_{i|r_i-r_i|< r}$ est la direction moyenne des vitesses des agents dans un cercle de rayon r;
- j représentera alors l'ensemble des voisins de i compris dans ce cercle.

Autres intérêts du modèle

Comportement des foules et construction de bâtiments

Autres intérêts du modèle

Domaine de la robotique

- Présentation et explication
 - Présentation du modèle
 - Explications sur le modèle
- Méthode utilisée
 - Classes et méthodes
 - Créations et manipulations sur les agents
- Résultats et interprétations physiques
 - Premiers résultats et paramètres importants
 - Résultats historiques de Vicsek
 - Au-delà du modèle de Vicsek

Classes et méthodes

Programmation orientée objet \Rightarrow Deux classes composées de plusieurs méthodes

```
class Group:
    """
    Simule un groupe d'agents, permet de le faire évoluer et de l'afficher.

    my_group = Group()
    my_group.run()
```


Créations d'agents ;

Présentation et explication

- Choix des paramètres (bruit, vitesse, cône de vision . . .);
- Evolution dans le temps grâce aux équations.

$$r_i(t+dt)=r_i(t)+v_i\Delta t$$

Création et manipulation de groupe

- Création de groupes ;
- Evolution dans le temps en fonction des voisins ;
- Calcul du paramètre d'alignement.

$$\Theta_i(t+dt) = \Theta_{i|r_i-r_i| < r} + \eta_i(t)$$

- - Présentation du modèle
 - Explications sur le modèle
- - Classes et méthodes
 - Créations et manipulations sur les agents
- Résultats et interprétations physiques
 - Premiers résultats et paramètres importants
 - Résultats historiques de Vicsek
 - Au-delà du modèle de Vicsek

Mouvements de groupe

Images avec agents colorés pour indiquer leur direction

Mouvements de groupe

ĕ00

Mouvements de groupe

ĕ00

Mouvements de groupe

ĕ00

Mouvements de groupe

600

Mouvements de groupe

ĕ00

Mouvements de groupe

600

Cône de vision

Présentation et explication

 Meilleure visualisation des voisins visibles par l'agent ;

Cône de vision

Présentation et explication

- Meilleure visualisation des voisins visibles par l'agent ;
- Images trop chargées pour observer correctement les mouvements de groupe.

Présentation et explication

Présentation et explication

Présentation et explication

Paramètre de bruit

Présentation et explication

Présentation et explication

- Ce paramètre perturbe la communication entre les agents ;
- La cohésion du groupe est significativement réduite lorsque le bruit augmente.

Paramètre d'alignement en fonction du bruit

40 agents

Densité fixe \rightarrow 4,15 agents par unité d'espace au carré

Paramètre d'alignement en fonction du bruit

Agents plus nombreux

Meilleur alignement

Paramètre d'alignement en fonction de la densité

Bruit fixé à 1

ĕ0000

Présentation et explication

Un agent leader en noir

 Nouveau paramètre pour le type d'agent ;

ĕ0000

Un agent leader en noir

- Nouveau paramètre pour le type d'agent;
- Influence plus importante sur les agents normaux;

ĕ0000

Un agent leader en noir

- Nouveau paramètre pour le type d'agent;
- Influence plus importante sur les agents normaux;
- Organisation en
 « triangle ou en arc de
 cercle » ;

Migration des grues

- Nouveau paramètre pour le type d'agent;
- Influence plus importante sur les agents normaux;
- Organisation en
 « triangle ou en arc de
 cercle »;
- Autre type de mouvement collectif.

Mise en place d'une prédation

0**0**00

Présentation et explication

 Nouveau paramètre pour simuler la « peur des agents »;

Trois prédateurs en noir

റ്റ്റെ

Mise en place d'une prédation

Trois prédateurs en noir

- Nouveau paramètre pour simuler la « peur des agents »;
- Agents prennent la fuite dans le sens inverse de leur direction ;

Mise en place d'une prédation

Trois prédateurs en noir

- Nouveau paramètre pour simuler la « peur des agents »;
- Agents prennent la fuite dans le sens inverse de leur direction ;
- Mouvements de groupes moins observés avec plusieurs prédateurs;

Mise en place d'une prédation

Un seul prédateur en noir

- Nouveau paramètre pour simuler la « peur des agents »;
- Agents prennent la fuite dans le sens inverse de leur direction ;
- Mouvements de groupes moins observés avec plusieurs prédateurs;
- Mouvements de groupes conservés avec un prédateur.

Système évolutif

Nous avons 4 groupes tests avec des paramètres différents.

bruit	sensibilité	pourcentage de survivants
0	0	39
0	1	79
1	0	30
1	1	86

Bruit et sensibilité au maximum \rightarrow Meilleure chance de survie.

0000

Ajout d'obstacles

Nouveau type d'agent « mur »

Ajout d'obstacles

0000

La majorité des agents fait demi-tour Importance de la taille de l'obstacle

Ajout d'obstacles

000**•**

Simulation de petits obstacles en noir

Présentation et explication

Ajout d'obstacles

000**•**

Les agents contournent les obstacles

Présentation et explication

Conclusion

 Nous avons réussi à simuler le modèle de Vicsek numériquement;

Conclusion

- Nous avons réussi à simuler le modèle de Vicsek numériquement;
- Nous avons joué sur le fait que chaque agent est unique ;

Présentation et explication

- Nous avons réussi à simuler le modèle de Vicsek numériquement;
- Nous avons joué sur le fait que chaque agent est unique ;
- Nous sommes allés au-delà du modèle avec la mise en place d'une prédation, la création d'agents leaders et de murs.

Présentation et explication

Merci pour votre écoute! Avez-vous des questions ?