
Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2009; month=7; day=2; hr=8; min=17; sec=5; ms=90;]

```
Reviewer Comments:
1.
```

E249 Order Sequence Error <211> -> <213>; Expected Mandatory

Tag: $\langle 212 \rangle$ in SEQID (9)

E249 Order Sequence Error <211> -> <213>; Expected Mandatory

Tag: <212> in SEQID (10)

E249 Order Sequence Error <211> -> <213>; Expected Mandatory

Tag: <212> in SEQID (11)

E249 Order Sequence Error <211> -> <213>; Expected Mandatory

Tag: <212> in SEQID (12)

E249 Order Sequence Error <211> -> <213>; Expected Mandatory

Tag: <212> in SEQID (13)

E249 Order Sequence Error <211> -> <213>; Expected Mandatory

Tag: <212> in SEQID (14)

E249 Order Sequence Error <211> -> <213>; Expected Mandatory

Tag: <212> in SEQID (15)

E250 Structural Validation Error; Sequence listing may not be

indexable

<210> 9

<211> 527

<213> unknown

<220>

<223> protein p12 of T2 phage

* * * * * * * * *

For SEQ ID # 9 through 15, numeric identifier "<212> Type" is mandatory. Please insert numeric identifier <212>, with the appropriate response, between numeric identifiers <211> and <213> for each SEQ ID # 9 through

2.										
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)

Validated By CRFValidator v 1.0.3

Application No: 10583415 Version No: 2.0

Input Set:

Output Set:

Started: 2009-06-24 14:16:41.386

Finished: 2009-06-24 14:16:43.604

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 218 ms

Total Warnings: 15

Total Errors: 8

No. of SeqIDs Defined: 15

Actual SeqID Count: 15

Error code		Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (1)
W	213	Artificial or Unknown found in <213> in SEQ ID (2)
W	213	Artificial or Unknown found in <213> in SEQ ID (3)
W	213	Artificial or Unknown found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
E	249	Order Sequence Error <211> -> <213>; Expected Mandatory Tag: <212> in SEQID (9)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
E	249	Order Sequence Error <211> -> <213>; Expected Mandatory Tag: <212> in SEQID (10)
W	213	Artificial or Unknown found in <213> in SEQ ID (10)
E	249	Order Sequence Error <211> -> <213>; Expected Mandatory Tag: <212> in SEQID (11)
W	213	Artificial or Unknown found in <213> in SEQ ID (11)
E	249	Order Sequence Error <211> -> <213>; Expected Mandatory Tag: <212> in SEQID (12)
W	213	Artificial or Unknown found in <213> in SEQ ID (12)
E	249	Order Sequence Error <211> \rightarrow <213>; Expected Mandatory Tag: <212> in SEQID (13)

Input Set:

Output Set:

Started: 2009-06-24 14:16:41.386 **Finished:** 2009-06-24 14:16:43.604

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 218 ms

Total Warnings: 15

Total Errors: 8

No. of SeqIDs Defined: 15

Actual SeqID Count: 15

Error code		Error Description										
W 2	213	Artificial or Unknown found in <213> in SEQ ID (13)										
E 2	249	Order Sequence Error <211> -> <213>; Expected Mandatory Tag: <212> in SEQID (14)										
W 2	213	Artificial or Unknown found in <213> in SEQ ID (14)										
E 2	249	Order Sequence Error <211> -> <213>; Expected Mandatory Tag: <212> in SEQID (15)										
W 2	213	Artificial or Unknown found in <213> in SEQ ID (15)										
E 2	250	Structural Validation Error; Sequence listing may not be indexable										

SEQUENCE LISTING

<110>	MEYER, ROMAN SCHUTZ, MICHAEL GRALLERT, HOLGER GRASSL, RENATE MILLER, STEFAN	
<120>	ENDOTOXIN DETECTION METHOD	
<130>	DEBE:067US	
	10/583,415 2006-06-15	
	PCT/DE2004/002778 2004-12-20	
<150>	DE 103 60 844.3	
	2003-12-20	
<160>	15	
<170>	PatentIn version 3.3	
<210>	1	
<211>	78	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Synthetic primer	
<400>	1	
gaaggaa	acta gtcatatggc tagctggagc cacccgcagt tcgaaaaagg cgccagtaat 6	50
aatacat	tatc aacacgtt 7	7 8
<210>	2	
<211>	54	
<212>	DNA	
<213>	artificial sequence	
<220>		
	Synthetic primer	
1223	Syneneero primer	
<400>	2	
acgcgca	aaag cttgtcgacg gatcctatca ttcttttacc ttaattatgt agtt 5	5 4
<210>	3	
	78	
<212>	DNA	
<213>	artificial sequence	

```
<223> Synthetic primer
<400> 3
gaaggaacta gtcatatggc ttgttggagc cacccgcagt tcgaaaaagg cgccagtaat
                                                                    78
aatacatatc aacacgtt
<210> 4
<211> 78
<212> DNA
<213> artificial sequence
<220>
<223> Synthetic primer
<400> 4
gaaggaacta gtcatatggc tagctggagc cacccgcagt tcgaaaaaagg cgcctgtaat
aatacatatc aacacgtt
                                                                    78
<210> 5
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> strep tag
<400> 5
Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn
              5
                                  10
Thr Tyr Gln
<210> 6
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> strep tag
<400> 6
Met Ala Cys Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn
               5
                                   10
```

Thr Tyr Gln

```
<210> 7
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> strep tag
<400> 7
Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Cys Asn Asn
               10 15
Thr Tyr Gln
<210> 8
<211> 539
<212> PRT
<213> artificial sequence
<220>
<223> T4p12 with strep tag
<400> 8
Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn
1 5 10 15
Thr Tyr Gln His Val Ser Asn Glu Ser Arg Tyr Val Lys Phe Asp Pro
      20 25
Thr Asp Thr Asn Phe Pro Pro Glu Ile Thr Asp Val Gln Ala Ala Ile
   35 40 45
Ala Ala Ile Ser Pro Ala Gly Val Asn Gly Val Pro Asp Ala Ser Ser
  50 55 60
Thr Thr Lys Gly Ile Leu Phe Leu Ala Thr Glu Gln Glu Val Ile Asp
            70
                         75
65
Gly Thr Asn Asn Thr Lys Ala Val Thr Pro Ala Thr Leu Ala Thr Arg
      Leu Ser Tyr Pro Asn Ala Thr Glu Ala Val Tyr Gly Leu Thr Arg Tyr
```

100 105

110

Ser	Thr	Asp 115	Asp	Glu	Ala	Ile	Ala 120	Gly	Val	Asn	Asn	Glu 125	Ser	Ser	Ile
Thr	Pro 130	Ala	Lys	Phe	Thr	Val 135	Ala	Leu	Asn	Asn	Val 140	Phe	Glu	Thr	Arg
Val 145	Ser	Thr	Glu	Ser	Ser 150	Asn	Gly	Val	Ile	Lys 155	Ile	Ser	Ser	Leu	Pro 160
Gln	Ala	Leu	Ala	Gly 165	Ala	Asp	Asp	Thr	Thr 170	Ala	Met	Thr	Pro	Leu 175	Lys
Thr	Gln	Gln	Leu 180	Ala	Val	Lys	Leu	Ile 185	Ala	Gln	Ile	Ala	Pro 190	Ser	Lys
Asn	Ala	Ala 195	Thr	Glu	Ser	Glu	Gln 200	Gly	Val	Ile	Gln	Leu 205	Ala	Thr	Val
Ala	Gln 210	Ala	Arg	Gln	Gly	Thr 215	Leu	Arg	Glu	Gly	Tyr 220	Ala	Ile	Ser	Pro
Tyr 225	Thr	Phe	Met	Asn	Ser 230	Thr	Ala	Thr	Glu	Glu 235	Tyr	Lys	Gly	Val	Ile 240
Lys	Leu	Gly	Thr	Gln 245	Ser	Glu	Val	Asn	Ser 250	Asn	Asn	Ala	Ser	Val 255	Ala
Val	Thr	Gly	Ala 260	Thr	Leu	Asn	Gly	Arg 265	Gly	Ser	Thr	Thr	Ser 270	Met	Arg
Gly	Val	Val 275	Lys	Leu	Thr	Thr	Thr 280	Ala	Gly	Ser	Gln	Ser 285	Gly	Gly	Asp
Ala	Ser 290	Ser	Ala	Leu	Ala	Trp 295	Asn	Ala	Asp	Val	Ile 300	His	Gln	Arg	Gly
Gly 305	Gln	Thr	Ile	Asn	Gly 310	Thr	Leu	Arg	Ile	Asn 315	Asn	Thr	Leu	Thr	Ile 320
Ala	Ser	Gly	Gly	Ala 325	Asn	Ile	Thr	Gly	Thr 330	Val	Asn	Met	Thr	Gly 335	Gly

Tyr Ile Gl
n Gly Lys Arg Val Val Thr Gl
n Asn Glu Ile Asp Arg Thr $\,$

340 345 350

Ile Pro Val Gly Ala Ile Met Met Trp Ala Ala Asp Ser Leu Pro Ser 355 360 365

Asp Ala Trp Arg Phe Cys His Gly Gly Thr Val Ser Ala Ser Asp Cys 370 375 380

Pro Leu Tyr Ala Ser Arg Ile Gly Thr Arg Tyr Gly Gly Ser Ser Ser 385 390 395 400

Asn Pro Gly Leu Pro Asp Met Arg Gly Leu Phe Val Arg Gly Ser Gly 405 410 415

Arg Gly Ser His Leu Thr Asn Pro Asn Val Asn Gly Asn Asp Gln Phe 420 425 430

Gly Lys Pro Arg Leu Gly Val Gly Cys Thr Gly Gly Tyr Val Gly Glu 435 440 445

Val Gln Lys Gln Gln Met Ser Tyr His Lys His Ala Gly Gly Phe Gly 450 455 460

Glu Tyr Asp Asp Ser Gly Ala Phe Gly Asn Thr Arg Arg Ser Asn Phe 465 470 475 480

Val Gly Thr Arg Lys Gly Leu Asp Trp Asp Asn Arg Ser Tyr Phe Thr 485 490 495

Asn Asp Gly Tyr Glu Ile Asp Pro Ala Ser Gln Arg Asn Ser Arg Tyr 500 505 510

Thr Leu Asn Arg Pro Glu Leu Ile Gly Asn Glu Thr Arg Pro Trp Asn 515 520 525

<210> 9

<211> 527

<213> unknown

<220>

<223> protein pl2 of T2 phage

Met Ser Asn Asn Thr Tyr Gln His Val Ser Asn Glu Ser Arg Tyr Val 1 5 10 15

Lys Phe Asp Pro Thr Asp Thr Asn Phe Pro Pro Glu Ile Thr Asp Val 20 25 30

Gln Ala Ile Ala Ile Ser Pro Ala Gly Val Asn Gly Val Pro $35 \hspace{1cm} 40 \hspace{1cm} 45$

Asp Ala Ser Ser Thr Thr Lys Gly Ile Leu Phe Leu Ala Thr Glu Gln 50 55 60

Glu Val Ile Asp Gly Thr Asn Asn Thr Lys Ala Val Thr Pro Ala Thr 65 70 75 80

Leu Ala Thr Arg Leu Ser Tyr Pro Asn Ala Thr Glu Ala Val Tyr Gly
85 90 95

Leu Thr Arg Tyr Ser Thr Asp Asp Glu Ala Ile Ala Gly Val Asn Asn 100 105 110

Glu Ser Ser Ile Thr Pro Ala Lys Phe Thr Val Ala Leu Asn Asn Val 115 120 125

Phe Glu Thr Arg Val Ser Thr Glu Ser Ser Asn Gly Val Ile Lys Ile 130 135 140

Thr Pro Leu Lys Thr Gln Gln Leu Ala Val Lys Leu Ile Ala Gln Ile $165 \hspace{1.5cm} 170 \hspace{1.5cm} 175$

Ala Pro Ser Lys Asn Ala Ala Thr Glu Ser Glu Gln Gly Val Ile Gln 180 185 190

Leu Ala Thr Val Ala Gln Ala Arg Gln Gly Thr Leu Arg Glu Gly Tyr 195 200 205

Ala Ile Ser Pro Tyr Thr Phe Met Asn Ser Thr Ala Thr Glu Glu Tyr 210 215 220

Lys 225	Gly	Val	Ile	Lys	Leu 230	Gly	Thr	Gln	Ser	Glu 235	Val	Asn	Ser	Asn	Asn 240
Ala	Ser	Val	Ala	Val 245	Thr	Gly	Ala	Thr	Leu 250	Asn	Gly	Arg	Gly	Ser 255	Thr
Thr	Ser	Met	Arg 260	Gly	Val	Val	Lys	Leu 265	Thr	Thr	Thr	Ala	Gly 270	Ser	Gln
Ser	Gly	Gly 275	Asp	Ala	Ser	Ser	Ala 280	Leu	Ala	Trp	Asn	Ala 285	Asp	Val	Ile
His	Gln 290	Arg	Gly	Gly	Gln	Thr 295	Ile	Asn	Gly	Thr	Leu 300	Arg	Ile	Asn	Asn
Thr 305	Leu	Thr	Ile	Ala	Ser 310	Gly	Gly	Ala	Asn	Ile 315	Thr	Gly	Thr	Val	Asn 320
Met	Thr	Gly	Gly	Tyr 325	Ile	Gln	Gly	Lys	Arg 330	Val	Val	Thr	Gln	Asn 335	Glu
Ile	Asp	Arg	Thr 340	Ile	Pro	Val	Gly	Ala 345	Ile	Met	Met	Trp	Ala 350	Ala	Asp
Ser	Leu	Pro 355	Ser	Asp	Ala	Trp	Arg 360	Phe	Cys	His	Gly	Gly 365	Thr	Val	Ser
Ala	Ser 370	Asp	Cys	Pro	Leu	Tyr 375	Ala	Ser	Arg	Ile	Gly 380	Thr	Arg	Tyr	Gly
Gly 385	Thr	Ser	Ser	Asn	Pro 390	Gly	Leu	Pro	Asp	Met 395	Arg	Gly	Leu	Phe	Val 400
Arg	Gly	Ser	Gly	Arg 405	Gly	Ser	His	Leu	Thr 410	Asn	Pro	Asn	Val	Asn 415	Gly
Asn	Asp	Gln	Phe 420	Gly	Lys	Pro	Arg	Leu 425	Gly	Val	Gly	Cys	Thr 430	Gly	Gly
Tyr	Val	Gly	Glu	Val	Gln	Lys	Gln	Gln	Met	Ser	Tyr	His	Lys	His	Ala

Gly Gly Phe Gly Glu Tyr Asp Asp Ser Gly Ala Phe Gly Asn Thr Arg 450 Arg Ser Asn Phe Val Gly Thr Arg Lys Gly Leu Asp Trp Asp Asn Arg 465 470 475 480 Ser Tyr Phe Thr Asn Asp Gly Tyr Glu Ile Asp Pro Ala Ser Gln Arg 485 490 495 Asn Ser Arg Tyr Thr Leu Asn Arg Pro Glu Leu Ile Gly Asn Glu Thr 500 505 510 Arg Pro Trp Asn Ile Ser Leu Asn Tyr Ile Ile Lys Val Lys Glu 515 520 <210> 10 <211> 527 <213> unknown <220> <223> protein pl2 of T4 phage <400> 10 Met Ser Asn Asn Thr Tyr Gln His Val Ser Asn Glu Ser Arg Tyr Val 1 5 10 Lys Phe Asp Pro Thr Asp Thr Asn Phe Pro Pro Glu Ile Thr Asp Val 20 25 30 His Ala Ala Ile Ala Ala Ile Ser Pro Ala Gly Val Asn Gly Val Pro 40 35 Asp Ala Ser Ser Thr Thr Lys Gly Ile Leu Phe Ile Pro Thr Glu Gln 50 55 60 Glu Val Ile Asp Gly Thr Asn Asn Thr Lys Ala Val Thr Pro Ala Thr 75 70 65 Leu Ala Thr Arg Leu Ser Tyr Pro Asn Ala Thr Glu Thr Val Tyr Gly 85 90

Leu Thr Arg Tyr Ser Thr Asn Asp Glu Ala Ile Ala Gly Val Asn Asn
100 105 110

Glu	Ser	Ser 115	Ile	Thr	Pro	Ala	Lys 120	Phe	Thr	Val	Ala	Leu 125	Asn	Asn	Ala
Phe	Glu 130	Thr	Arg	Val	Ser	Thr 135	Glu	Ser	Ser	Asn	Gly 140	Val	Ile	Lys	Ile
Ser 145	Ser	Leu	Pro	Gln	Ala 150	Leu	Ala	Gly	Ala	Asp 155	Asp	Thr	Thr	Ala	Met 160
Thr	Pro	Leu	Lys	Thr 165	Gln	Gln	Leu	Ala	Ile 170	Lys	Leu	Ile	Ala	Gln 175	Ile
Ala	Pro	Ser	Glu 180	Thr	Thr	Ala	Thr	Glu 185	Ser	Asp	Gln	Gly	Val 190	Val	Gln
Leu	Ala	Thr 195	Val	Ala	Gln	Val	Arg 200	Gln	Gly	Thr	Leu	Arg 205	Glu	Gly	Tyr
Ala	Ile 210	Ser	Pro	Tyr	Thr	Phe 215	Met	Asn	Ser	Ser	Ser 220	Thr	Glu	Glu	Tyr
Lys 225	Gly	Val	Ile	Lys	Leu 230	Gly	Thr	Gln	Ser	Glu 235	Val	Asn	Ser	Asn	Asn 240
Ala	Ser	Val	Ala	Val 245	Thr	Gly	Ala	Thr	Leu 250	Asn	Gly	Arg	Gly	Ser 255	Thr
Thr	Ser	Met	Arg 260	Gly	Val	Val	Lys	Leu 265	Thr	Thr	Thr	Ala	Gly 270	Ser	Gln
Ser	Gly	Gly 275	Asp	Ala	Ser	Ser	Ala 280	Leu	Ala	Trp	Asn	Ala 285	Asp	Val	Ile
Gln	Gln 290	Arg	Gly	Gly	Gln	Ile 295	Ile	Tyr	Gly	Thr	Leu 300	Arg	Ile	Glu	Asp
Thr 305	Phe	Thr	Ile	Ala	Asn 310	Gly	Gly	Ala	Asn	Ile 315	Thr	Gly	Thr	Val	Arg 320
Met	Thr	Gly	Gly	Tyr 325	Ile	Gln	Gly	Asn	Arg 330	Ile	Val	Thr	Gln	Asn 335	Glu

Ile Asp Arg Thr Ile Pro Val Gly Ala Ile Met Met Trp Ala Ala Asp 340 345 350 Ser Leu Pro Ser Asp Ala Trp Arg Phe Cys His Gly Gly Thr Val Ser 355 360 365 Ala Ser Asp Cys Pro Leu Tyr Ala Ser Arg Ile Gly Thr Arg Tyr Gly 370 375 380 Gly Asn Pro Ser Asn Pro Gly Leu Pro Asp Met Arg Gly Leu Phe Val 385 390 395 400 Arg Gly Ser Gly Arg Gly Ser His Leu Thr Asn Pro Asn Val Asn Gly 405 410 415 Asn Asp Gln Phe Gly Lys Pro Arg Leu Gly Val Gly Cys Thr Gly Gly 420 425 Tyr Val Gly Glu Val Gln Ile Gln Gln Met Ser Tyr His Lys His Ala 435 440 445 Gly Gly Phe Gly Glu His Asp Asp Leu Gly Ala Phe Gly Asn Thr Arg 450 455 460 Arg Ser Asn Phe Val Gly Thr Arg Lys Gly Leu Asp Trp Asp Asn Arg 465 470 475 480 Ser Tyr Phe Thr Asn Asp Gly Tyr Glu Ile Asp Pro Glu Ser Gln Arg 485 490 495 Asn Ser Lys Tyr Thr Leu Asn Arg Pro Glu Leu Ile Gly Asn Glu Thr 505 500 510 Arg Pro Trp Asn Ile Ser Leu Asn Tyr Ile Ile Lys Val Lys Glu 515 520 525 <210> 11 <211> 518 <213> unknown <220> <223> protein pl2 of PP01 phage

<400> 11

Met 1	Ser	Asn	Asn	Thr 5	Tyr	Gln	His	Val	Ser 10	Asn	Glu	Ser	Lys	Tyr 15	Val
Lys	Phe	Asp	Pro 20	Val	Gly	Ser	Asn	Phe 25	Pro	Asp	Thr	Val	Thr 30	Thr	Val
Gln	Ser	Ala 35	Leu	Ser	Lys	Ile	Ser 40	Asn	Ile	Gly	Val	Asn 45	Gly	Ile	Pro
Asp	Ala 50	Ser	Met	Glu	Val	Lys 55	Gly	Ile	Ala	Met	Ile 60	Ala	Ser	Glu	Gln
Glu 65	Val	Leu	Asp	Gly	Thr 70	Asn	Asn	Ser	Lys	Ile 75	Val	Thr	Pro	Ala	Thr 80
			Arg	85					90					95	
			Tyr 100					105					110		
Asn		115					120					125			
	130		Arg	_		135					140			_	
145			Pro		150					155					160
Ala			-	165		-			170	-				175	
			180					185					190		
		195	Val				200		_			205			
Ala	210	ser	rro	ıyr	ınr	215	met	ASN	ser	val	Ala 220	ınr	GIN	ч	ıyr

Lys Gly Val Ile Arg Leu Gly Thr Gln Ser Glu Ile Asn Ser Asn Leu

225 230 235 240

Gly Asp Val Ala Val Thr Gly Glu Thr Leu Asn Gly Arg Gly Ala Thr 245 250 255

Gly Ser Met Arg Gly Val Val Lys Leu Thr Thr Gln Ala Gly Ile Ala 260 265 270