Online Algorithms

Performance-based Advertising

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Online Algorithms

Classic model of algorithms

- You get to see the entire input, then compute some function of it
- In this context, "offline algorithm"

Online Algorithms

- You get to see the input one piece at a time, and need to make irrevocable decisions along the way
- Similar to the data stream model

Online Algorithms

Bipartite Matching

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Example: Bipartite Matching

Nodes: Boys and Girls; Edges: Compatible Pairs

Goal: Match as many compatible pairs as possible

Example: Bipartite Matching

M = {(1,a),(2,b),(3,d)} is a matching Cardinality of matching = |M| = 3

Example: Bipartite Matching

Perfect matching ... all vertices of the graph are matched **Maximum matching** ... a matching that contains the largest possible number of matches

Matching Algorithm

- Problem: Find a maximum matching for a given bipartite graph
 - A perfect one if it exists
- There is a polynomial-time offline algorithm based on augmenting paths (Hopcroft & Karp 1973, see http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm)
- But what if we do not know the entire graph upfront?

Online Graph Matching Problem

- Initially, we are given the set boys
- In each round, one girl's choices are revealed
 - That is, girl's edges are revealed
- At that time, we have to decide to either:
 - Pair the girl with a boy
 - Do not pair the girl with any boy
- Example of application:
 Assigning tasks to servers

Online Graph Matching: Example

(1,a)

(2,b)

(3,d)

Greedy Algorithm

- Greedy algorithm for the online graph matching problem:
 - Pair the new girl with any eligible boy
 - If there is none, do not pair girl
- How good is the algorithm?

Competitive Ratio

For input I, suppose greedy produces matching M_{greedy} while an optimal matching is M_{opt}

Competitive ratio = $min_{all\ possible\ inputs\ l} (|M_{greedy}|/|M_{opt}|)$

(what is greedy's worst performance over all possible inputs I)

Analyzing the Greedy Algorithm

- Suppose M_{greedy}≠ M_{opt}
- Consider the set G of girls matched in M_{opt} but not in M_{greedy}
- $(1) |\mathbf{M}_{opt}| \le |\mathbf{M}_{greedy}| + |\mathbf{G}|$

- Every boy B <u>adjacent</u> to girls in G is already matched in M_{greedy}
- (2) $|M_{greedy}|$ ≥ |B|

Analyzing the Greedy Algorithm

So far:

- G matched in M_{opt} but not in M_{greedy}
- Boys B adjacent to girls G
- $(1) |\mathbf{M}_{\mathsf{opt}}| \le |\mathbf{M}_{\mathsf{greedy}}| + |\mathbf{G}|$
- (2) $|M_{qreedy}| \ge |B|$

- Optimal matches all the girls in G to boys in B
 - $(3) |G| \leq |B|$
- Combining (2) and (3):
 - $(4) |G| \le |B| \le |M_{qreedy}|$

Analyzing the Greedy Algorithm

- So we have:
 - $(1) |\mathbf{M}_{\mathsf{opt}}| \le |\mathbf{M}_{\mathsf{greedy}}| + |\mathbf{G}|$
 - $(4) |G| \le |B| \le |M_{greedy}|$
- Combining (1) and (4):
 - $|\mathbf{M}_{opt}| \le |\mathbf{M}_{greedy}| + |\mathbf{M}_{greedy}|$
 - $|\mathbf{M}_{opt}| \le 2|\mathbf{M}_{greedy}|$
 - $|M_{greedy}|/|M_{opt}| \ge 1/2$

Worst-case Scenario

