Возраст и физическая активность

Корреляция экспрессии двух генов

Стоимость и площадь квартир

$$\Gamma_{xy} = \frac{cov}{2x \cdot \delta y} \qquad \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$

Коэффициент корреляции

Г_{ху} — показатель силы и направления взаимосвязи двух количественных переменных

Знак коэффициента корреляции показывает направление взаимосвязи

Коэффициент детерминации

R² — показывает, в какой степени дисперсия одной переменной обусловлена влиянием другой переменной

Равен квадрату коэффициента корреляции

Принимает значения [0, 1]

$$H_0$$
 $r_{xy} = 0$
 H_1 $r_{xy} \neq 0$

Опасность выбросов!!!

Коэффициент корреляции Спирмена

- 1	$6\sum_{i}d_{i}^{2}$
$r_s = 1 - \frac{1}{2}$	$\overline{N(N^2-1)}$

	X	_Y		X	Y	d^2
1	3,7	-0,3		1	1	0
	5,8	4,1		2	4 (-2) ² 4
1	7,1	4,3		3	5	4
	9,1	8,3 🗸		4	7	9
	10,5	12,9		5	10	25
1	11,4	8,1		6	6	0
	11,6	9,5		7	9	4
	12,5	9,5		8	8	0
	14,3	18,2		9	12	9
	17,5	17,5		10	11	1
	30,0	1,0		11	2	81
	32,0	2,0	(12	3	81
						2

Линия регрессии

Statistic	N	Mean	St. Dev.
X	51	36.7	17.3
У	51	35.9	16.9

$$y = g_0 + g_1 \times g_1$$
intercept slope

Метод наименьших квадратов

80 B1

МНК – метод нахождения оптимальных параметров линейной регресии, таких, что сумма квадратов ошибок (остатков) была минимальна $\hat{g} = 5,4+0,83-\times$

$$e_1 = y_1 - \hat{y}_1 \qquad \leq e_1^2$$

$$e_2 = y_2 - \hat{y}_2$$

$$\beta_1 = \frac{\text{Sdy}}{\text{Sdx}} \cdot \text{rxy} \qquad \beta_1 = 0.83$$

$$\beta_0 = \overline{Y} - \beta_1 \cdot \overline{X} \qquad \beta_0 = 5.4$$

Коэффициенты линейной регрессии

Коэффициент детерминации

R² – доля дисперсии зависимой переменной (Y), объясняемая регресионной моделью.

Условия применения

• Линейная взаиомсвязь Х и Ү

• Нормальное распределение остатков

 Гомоскедастичность - постоянная изменчивость остактков на всех уровнях независимой переменной

hhtp://bitly.com/slr_diag

Регрессионный анализ с одной независимой переменной

Связь бедности и уровня образования

Descriptive statistics

Statistic	N	Mean	St. Dev.	Min	Max
poverty	51	11.3	3.1	5.6	18.0
hs_grad	51	86.0	3.7	77.2	92.1

Связь бедности и уровня образования

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	64.7810	<u>6.802</u> 6	9.52	0.0000	p20,05
hs_grad	-0.6212	<u>0.079</u> 0	- <u>7.8</u> 6	0.0000	P20,05

Multiple R-squared: 0.5578, F-statistic (1, 49) = 61.81, p-value < 0.01

Анализ остатков

Предсказание значений

Связь бедности и уровня образования

Множественная регрессия Multiple regression

Множественная регрессия позволяет исследовать влияние сразу нескольких независимых переменных на одну зависимую переменную.

$$\hat{y} = 80 + 81 \times 1$$

$$\hat{y} = 80 + 81 \times 1 + 82 \times 2$$

$$\hat{y} = 80 + 81 \times 1 + 82 \times 2$$

$$\hat{y} = 80 + 81 \times 1 + + 8n \times n$$

Множественная регрессия Multiple regression

Множественная регрессия позволяет исследовать влияние сразу нескольких независимых переменных на одну зависимую переменную.

Требования к данным

Линейная зависимость переменных

Нормальное распределение остатков

Гетероскедастичность

Проверка на мультиколлинеарность

(желательно) 3 7

Нормальное распределение

переменных

Множественная регрессия

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	66.47	12.5	5.28	0.0000
metro_res	/-0.06/	0.02	-2.88	0.0060
white	/-0.05/	0.03	-1.46	0.1522
hs_grad	-0.55	0.1	-5.29	0.0000
female_house	0.05	0.24	0.21	0.8363

Multiple R-squared: 0.6416, Adjusted R-squared: 0.6104

F-statistic (4, 46) = 20.58, p-value < 0,01

Исправленный R - квадрат (adjusted R-squared) - скорректированный коэффициент детерминации. Рассчитывается при включении в модель дополнительных независимых переменных.

Выбор модели

Удаляем	Модель	Adj R- squared
	Poverty ~ hs_grad + white + metro_res + female_house	0,61
female_h ouse	Poverty ~ hs_grad + white + metro_res	0,62
metro_res	Poverty ~ hs_grad + white + female_house	0,54
white	Poverty ~ hs_grad + metro_res + female_house	0,60
hs_grad	Poverty ~ white + metro_res + female_house	0,38

Удаляем	Модель	Adj R- squared
	Poverty ~ hs_grad + white + metro_res	0,62
metro_res	Poverty ~ hs_grad + white	0,55
white	Poverty ~ hs_grad + metro_res	0,57
hs_grad	Poverty ~ white + metro_res	/ 0,17 /

Итоговая модель

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	68.7	6.39	10.76	0.0000
white	-0.05	0.02	-2.48	0.0167
metro_res	-0.05	0.02	-2.93	0.0053
hs_grad	-0.57	0.08	-7.57	0.0000

Multiple R-squared: 0.6412, Adjusted R-squared: 0.62

F-statistic (3,47) = 28, p-value < 0,01

Итоговая модель

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	68.7	6.39	10.76	0.0000
white	-0.06	0.02	-2.48	0.0167
metro_res	-0.05	0.02	-2.93	0.0053
hs_grad	-0.57	0.08	-7.57	0.0000

Multiple R-squared: 0.6412, Adjusted R-squared: 0.62

F-statistic (3,47) = 28, p-value < 0,01

Cluster Dendrogram

Логистическая регрессия

	admit	mark
1	0	3.61
2	1	3.67
3	1	4.00
4	1	3.19
5	0	2.93
6	1	3.00
7	1	2.98
8	0	3.08
9	1	3.39
10	0	3.92
11	0	4.00
12	0	3.22
13	1	4.00

	Estimate	Std. Error	z value	Pr(> z)
Intercept	-4.3576	1.0353	-4.21	0.0000
mark	1.0511	0.2989	3.52	0.0004