

AD-A283 593

Demonstration Erosion Control Project Monitoring Program

Fiscal Year 1993 Report

Volume V: Appendix D

Comparison of Distributive Versus Lumped Rainfall-Runoff Modeling

Techniques

by Billy E. Johnson

SELECTE DAUG 2 3, 1994 D

Approved For Public Release; Distribution Is Unlimited

94 8 22 160

Prepared for U.S. Army Engineer District, Vicksburg

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.

Demonstration **∟**rosion Control Project Monitoring Program

Fiscal Year 1993 Report

Volume V: Appendix D

Comparison of Distributive Versus Lumped Rainfall-Rusself shodeling

Techniques

by Billy E. Johnson

U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited

Prepared for U.S. Army Engineer District, Vicksburg

3550 I-20 Frontage Road Vicksburg, MS 39180-5191

Waterways Experiment Station Cataloging-in-Publication Data

Johnson, Billy E.

Demonstration Erosion Control Project Monitoring Program: fiscal year 1993 report. volume V appendix D, Comparison of distributive versus lumped rainfall-runoff modeling techniques / by Billy E. Johnson; prepared for U.S. Army Engineer District, Vicksburg.

205 p.: ill.; 28 cm. — (Technical report; HL-94-1 v.5) Includes bibliographic references.

1. Hydrology - Mississippi - Simulation methods. 2. Hydrologic cycle - Goodwin Creek Watershed (Miss.) -- Mathematical models. 3. HEC-1 (Computer program) 4. CASC2D (Computer program) 1. United States. Army. Corps of Engineers. Vicksburg District. II. U.S. Army Engineer Waterways Experiment Station. III. Hydraulics Laboratory (U.S.) IV. Title. V. Title: Comparison of distributive versus lumped rainfall-runoff modeling techniques. VI. Series: Technical report (U.S. Army Engineer Waterways Experiment Station); HL-94-1 v.5.

TA7 W34 no.HL-94-1 v.5

ACKNOWLEDGEMENTS

I wish to thank the Memphis State University Civil Engineering Department for its support. In particular, I wish to thank Dr. Jerry Anderson and Dr. Roger Smith for their help and guidance as my major professors. I would also like to thank Dr. Larry Moore and Mr. John Hargraves for serving on my thesis committee. Special thanks go to Mr. Nolan K. Raphelt and Ms. Brenda Martin for their help in developing the GIS database on Goodwin Creek and to Dr. Bahram Saghafian for his guidance in using the CASC2D computer model.

This thesis was submitted to Memphis State University, Memphis, TN, in partial fulfillment of the requirements for the degree of Master of Science.

Acces	sion For	
NTIS DTIC	GRA&I	G
Unana	ounc ed fleation	Ö
Ву		
Distr	fbution/;	
Avai	lability	
Dist	Avail and Special	-
A1		
!		

TABLE OF CONTENTS

I.	Introduction	. D
	Past History of Hydrologic Modeling Efforts in	
	North Mississippi	. D
	North Mississippi	. D
	Hickahala-Senatobia Watershed	. D1
	Purpose and Scope of Study	. D1
II.	Theoretical Aspects and Methodology Applied in the Computer Models HEC-1 and CASC2D	. D2
	General Description/Model Philosophy	. D2
•	HEC-1 Computer Model	. D2
	HEC-1 Computer Model	. D2
	CASC2D Methodology	. D2
	Overland flow routing	
	Rainfall distribution	. D2
	Precipitation loss	. D3
	Channel routing	
	Channel routing	
	HEC-1 Methodology	. 03
	Overland flow routing - SCS unit	D3
	hydrograph	. 03
	Overland flow routing - Snyder unit	
	hydrograph	. D3
	Rainfall distribution	. D4:
	Precipitation loss	. D4
	Channel routing	. D4
III.	Application of HEC-1 and CASC2D Models to	_
	Goodwin Creek Watershed	. D5
	Description of Watershed Data	. D5
	Application of Models and Methods	. D5
	Modeling Approach Used for Comparison Study	. D6
	Hydrograph Variance Parameters	
	Standard error	
	Objective function	. D6
	Average absolute error	. D6
	Average percent absolute error	
IV.	Discussion of Simulation Results	. D6
	Part I - Observed Rainfall-Runoff Events	. D6
	Storm event 1	. D6
	Storm event 2	. D6
	Storm event 3	
	Storm event 4	. D7
	Storm event 5	. D7

				ny	poi	ne	Cl	Cal	. R	aiı	nfa	al:	1-1	Rui	101	E£	E	vei	nt	S	•	•	
		Sto	rm	ev	ent	: 1					•	•	•	•	•	•	•		•	•	•	•	
		Sto	rm	ev	ent	: 3	}		•	•	•	•	•	•	•	•	•	•	•	•	•	•	
v.	Sum	mary	, (Con	clı	ısi	on.	s,	an	d 1	Red	cor	nme	enc	dat	tic	on	5	•	•	•	•	
	Sum	nary			•						•		•			•	•	•	•			•	
	Cond	clus	io	ດຣ															•				
		omme																					
Bibl:	iogra	aphy			•		•			•	•	•		•	¢	•	•	•	•	•	•	•	
Appe	ndix	A:	Ta	abl	es	an	d	Hyd	lro	gra	apl	hs	fo	or	S	imı	ula	at:	io	n			
				α	_		170	nt o	,				_						_	_	_		
0:	f Obs	serv	ea	St	OLI	ı E	V C	1163	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Appe	ndix	B:	Tá	abl	es	an	d :	Hyd	lro	gra	api	ns	fo	or	Si	imı	ıla	at:	ioı	n			
Appei		B:	Tá	abl	es	an	d :	Hyd	lro	gra	api	ns	fo	or	Si	imı	ıla	at:	ioı	n			
Apper o:	ndix f Hyp	B: poth	Ta eti	abl ica	es l S	an Sto	d : rm	Hyd Ev	lro en	gra ts	api	ns •	fo.	or •	s:	i.mi	ıla	at:	io:	n •	•	•	ľ
Apper o:	ndix f Hyp ndix	B: poth	Ta eti Sa	abl ica	es l S le	an Sto In	d : rm	Hyd Ev t F	lro en	gra ts es	api	ns •	fo.	or •	Si ·	imi	ıla •	at:	ioı •	n •		•	
Appe	ndix f Hyp ndix Snyc	B: poth C: der	Ta eti Sa	ablica	es l S le	an Sto In	d :	Hyd Ev t F	lro en	gra ts es	api	ns •	fo .	or •	S:	imi	ıla •	at:	io:	n •		•	
Apper o:	ndix f Hyp ndix Snyo SCS	B: poth C: ler	Ta eti Sa	ableica	es l S le	an Sto In	d rm	Hyd Ev t F	lro en	gra ts es	api	ns •	fo.	or •	S::	imi	11a	at:	io:	n •		•	I
Apper o:	ndix f Hyp ndix Snyc	B: pother C: der	Ta eti Sa	ableica	es l s le	an Sto In	d rm pu	Hyd Ev t F	lro en il	grats es	api	ns •	fo.	or •		imi	ala •	at:	io:	n •		•	
Apper o:	ndix f Hyp ndix Snyo SCS	B: c: der 22D DATA	Ta eti Sa 	ablaica	es le	an In	d rm	Hyd Ev t F	lroden'	grats es	api		fo.	or •		Lmu		at:	io:				
Apper o:	ndix f Hyp ndix Snyo SCS	B: pother C: der	Ta eti Sa 	ableica	es le	an In	d i	Hyd Ev t F	ilo ilo	grats	api		fo.	• • • • • • • • • • • • • • • • • • •	S::	imi		at:	io:			•	

,

·

.

.

•

LIST OF TABLES

TABL	E .			PAGE
1.1	Average Annual Precipitation at Stations in the Long Creek Watershed Vicinity	•		D6
1.2	Drainage Areas for the Streams Studied in the Long Creek Watershed	•	•	D6
1.3	Listing of Results from the Flood Frequency Analyses for Long Creek Watershed	•	•	D9
1.4	Peak Discharge Estimates within the Hickahala-Senatobia Creek Watershed	•	•	D15
2.1	Green-Ampt Parameters Based on Soil Texture .	•	•	D32
3.1	Goodwin Creek Watershed Sub-Basin Parameters .	•	•	D60
3.2	Goodwin Creek Channel Routing Reach Parameters	•		D61
A-1	Total Rainfall (Inches) - Part I	•	•	D86
A-2	Total Runoff (Inches) - Part I	•	•	D87
A-3	Peak Flow (CFS) - Part I	•	•	D88
A-4	Time to Peak (Minutes) - Part I	•	•	D89
A-5	Objective Function (CFS) - Part I	•	•	D90
A-6	Standard Error (CFS) - Part I	•	•	D91
A-7	Average Absolute Error (CFS) - Part I	•	•	D92
A-8	Average Percent Absolute Error (%) - Part I .	•	•	D93
B-1	Total Runoff (Inches) - Part II		•	D130
B-2	Peak Flow (CFS) - Part II		•	D131
B-3	Time to Peak (Minutes) - Part II	•		D132
B-4	Objective Function (CFS) - Part II	•	•	D133
B-5	Standard Error (CFS) - Part II	•	•	D134
B-6	Average Absolute Error (CFS) - Part II		•	D135
B-7	Average Percent Absolute Error (%) - Part II .			D136

LIST OF FIGURES

FIGURE		PAGE
1.1	Long Creek Watershed Map	D3
1.2	Hickahala-Senatobia Creek Watershed Map	D13
2.1	Dimensionless Unit Hydrograph and Mass Curve	D35
2.2	Discretization on x-t Plane of the Variable Parameters Muskingum-Cunge Model	D48
3.1	Goodwin Creek Watershed Map	D55
3.2	Main Channel Bottom Profile/Goodwin Creek	D57
A-1 thru A-30	Hydrograph Plots for Part I - Observed Storm Event	D94
A-31 thru A-35	Hyetographs for Rainfall Gage No. 54	D124
B-1 thru B-12	Hydrograph Plots for Part II - Hypothetical Storm Event	D137

CHAPTER I - INTRODUCTION

Past History of Hydrologic Modeling Efforts in North Mississippi

In the past, the Agricultural Research Service (ARS), the U.S. Army Corps of Engineers (COE), and the Soil Conservation Service (SCS) have worked to stabilize stream bank erosion in North Mississippi. In this effort, there have been many structures built which required the estimation of a design flow. In the design of these structures, various hydrologic models have been used. In some cases, different methods or models were used for the same watershed. In those cases, a significant difference in computed design flows usually resulted. The question then is "which method computes the flow that is closest to the correct flow?". Two examples of studies where different methods have been applied are presented below. The discussion focuses on a description of the watersheds, the procedures used on each watershed, and the results from each procedure. As noted above, the primary purpose of the methods employed was to generate a peak design flow for stream bank erosion and/or grade control structures.

Long Creek Watershed. The Long Creek watershed is located in the southwestern part of Panola County in north-central Mississippi (Figure 1.1). The watershed covers an area of approximately 86 sq. miles (55,074 acres) and is rectangular in shape, approximately 13 miles long and 8 miles wide. The

Figure 1.1 - Long Creek Watershed Map

Long Creek basin drains into the Yocona River downstream of Enid Reservoir and is a part of the Yazoo River Basin. The relief of the watershed is 314 feet with the lowest point at 170.5 feet NGVD and the highest point at 485 feet NGVD.

Long Creek watershed lies in a subtropical region characterized by mild, humid winters and long, hot, and humid summers. The weather in the region is controlled by its proximity to the Gulf of Mexico and prevailing southerly winds. The wet seasons are winter and spring with prolonged, low intensity rains. During the summer and fall, rain falls mostly as thunderstorms with intense rainfall, short duration, and limited aerial coverage. Hurricane force winds do not affect the region but heavy rainfall from tropical storms do occur occasionally in the summer and fall months. 1

There are three National Weather Service Stations in the vicinity of the Long Creek watershed: Batesville, Enid Dam, and Water Valley. Average annual precipitation for these three stations is given in Table 1.1. This study was conducted in 1987 and as such the data presented here is only accurate up to that point in time. The driest year of record was 1981 with the wettest year being 1973. In 1981, the rainfall amounts (in inches) at the three stations were: Batesville - 38.83, Enid Dam - 34.61, and Water Valley - 34.62. In 1973, the rainfall amounts (in inches) were: Batesville - 75.35, Enid Dam - 73.96, and Water Valley - 80.89.

Table 1.1 Average Annual Precipitation at Stations in the Long Creek Watershed Vicinity. 1

Station	Average Annual Precipitation (inches)	Period of Record
Batesville	53.53	1949 - 1986
Enid Dam	51.79	1949 - 1986
Water Valley	54.25	1949 - 1986

In the Long Creek watershed, there were twelve streams used in the hydrologic analysis. Table 1.2 lists the streams and the drainage area of each.

Table 1.2 Drainage Areas for the Streams Studied in the Long Creek Watershed.

	Drain	age Area
Stream Name	Acres	Sq. Miles
Peters Creek	55,074	86.05
Bobo Bayou	3,940	6.16
Pope Tributary	1,916	2.99
Long Creek	39,265	61.35
Johnson Creek	13,257	20.71
Hurt Creek	4,486	7.01
Goodwin Creek	5,489	8.58
Goodwin Creek Tributary No. 2	436	0.68
Goodwin Creek Tributary No. 3	878	1.37
Goodwin Creek Tributary No. 4	997	1.56
Goodwin Creek Tributary No. 4E	279	0.44
Caney Creek	9,221	14.41

For the above mentioned streams, there were three different hydrologic analyses performed. In 1966, taken from the Long Creek watershed report dated July 1987, the U.S. Army Corps of Engineers used the generalized peak flow frequency analysis procedure for Yazoo Hill area. This procedure was

developed by taking numerous observed discharge readings within the Yazoo Hill area and using least squares regression analysis to determine a relationship for peak flow as a function of the physiographic watershed parameters. By knowing the basin area, slope, and stream length, the peak flow for a specific frequency can be calculated.

In 1976, there was a Flood Frequency of Mississippi Streams analysis done by Colson and Hudson of the United States Geological Survey (USGS).² This method involved essentially the same regression analysis as the Yazoo Hill Area procedure except that data was taken over the whole state instead of just the Yazoo Hill area. Again, by knowing the basin area, slope, and stream length, the USGS equations can be used to calculate a peak flow for a given frequency.

In 1987, FTN Associates, Ltd. from Little Rock, Arkansas performed an HEC-1 study, for the Vicksburg District COE, using Snyder's Unit Hydrograph method for overland flow and the Muskingum channel routing routine. The Muskingum method requires three parameters for each channel reach. These parameters are the Muskingum K coefficient, the Muskingum X coefficient, and the number of routing subreaches within the channel reach. These parameters are best determined from recorded inflow and outflow data for the reach in question. However since streamflow data is limited for the watersheds being modeled, other methods were used to estimate the parameters.

The Muskingum K coefficient is known as the storage coefficient and is the ratio of storage to discharge. It has the dimensions of time and can be estimated as the travel time of the flood wave through the reach. The only data available for estimating travel time were the channel length and slope determined from topographic maps, and estimates of channel size and roughness based on site visit observations. These data were used to estimate the velocity and hence the travel time through each reach.³

The Muskingum coefficient x has theoretical limits between 0.0 and 0.5 with a mean value near 0.2. For this study (FTN Associates Flood Frequency Analysis for Long Creek), the coefficient was set equal to 0.10 for all channel reaches to reflect the expected storage effects characteristic of this type of watershed.

Results from the three peak flow frequency methods are presented in Table 1.3 where USGS corresponds to the USGS Flood Frequency of Mississippi Streams analysis, COE corresponds to the Generalized Peak Flow Frequency for Yazoo Hill Area analysis, and HEC-1 corresponds to the Calibrated HEC-1 study performed by FTN Associates LTD.

Table 1.3 - Listing of Results from the Flood Frequency Analyses for Long Creek Watershed. (FTN Associates, LTD.)

	Return Period	USGS	COE	HEC-1
Stream Location	(yr)	(cfs)	(cfs)	(cfs)
Peters Creek	2	6,266	9,200	22,300
at Yocona River	5	10,975	13,200	29,000
$D.A. = 86.05 \text{ mi}^2$	10	14,314	16,700	33,900
	25	20,137	23,500	39,400
	50	24,326	28,500	44,700
	100	31,759	35,000	49,900
Bobo Bayou	2	1,547	1,780	2,970
at Peters Creek	5	2,554	2,500	3,820
D.A. = 6.16 mi^2	10	3,273	3,200	4,390
	25	4,163	4,500	5,060
	50	4,983	5,500	5,700
	100	5,554	6,800	6,440
Pope Tributary	2	823	1,100	1,670
at Peters Creek	5	1,312	1,580	2,140
$D.A. = 2.99 \text{ mi}^2$	10	1,659	2,000	2,460
	25	2,090	2,800	2,840
	50	2,484	3,400	3,170
	100	2,758	4,250	3,580
Long Creek	2	7,393	7,400	14,000
at Peters Creek	5	13,334	10,500	18,100
$D.A. = 61.35 \text{ mi}^2$	10	17,828	13,500	21,100
	25	23,657	19,000	24,400
	50	29,157	23,000	27,600
	100	32,935	28,500	31,000
Johnson Creek	2	2,239	3,750	7,170
at Long Creek	5	3,761	5,300	9,270
$D.A. = 20.72 \text{ mi}^2$	10	4,892	6,800	10,700
	25	6,410	9,500	12,400
	50	7,828	11,500	14,000
	100	8,776	14,300	16,000
Hurt Creek	2	1,150	1,880	3,260
at Johnson Creek	5	1,872	2,580	4,180
$D.A. = 7.01 \text{ mi}^2$	10	2,393	3,400	4,840
	25	3,123	4,800	5,580
	50	3,743	5,800	6,250
	100	4,310	7,200	7,060

Table 1.3 - Continued

	Return			
	Period	USGS	COE	HEC-1
Stream Location	(AL)	(cfs)	(Cfs)	(cfs)
Goodwin Creek	2	1,356	2,150	3,510
at Long Creek	5	2,224	3,050	4,500
D.A. = 8.58 mi^2	10	2,851	3,900	5,140
	25	3,740	5,500	5,910
	50	4,484	6,000	6,630
	100	5,200	8,200	7,560
Goodwin Creek	2	244	430	558
Tributary No. 2	5	357	620	709
at Goodwin Creek	10	431	790	808
$D.A. = 0.68 \text{ mi}^2$	25	535	1,100	926
	50	617	1,350	1,030
	100	705	1,680	1,190
Goodwin Creek	2	346	670	916
Tributary No. 3	5	523	960	1,160
at Goodwin Creek	10	645	1,220	1,340
$D.A. = 1.37 \text{ mi}^2$	25	822	1,720	1,540
	50	961	2,100	1,710
	100	1,114	2,600	1,950
Goodwin Creek	2	457	740	1,320
Tributary No. 4	5	704	1,050	1,680
at Goodwin Creek	10	877	1,320	1,930
$D.A. = 2.00 \text{ mi}^2$	25	1,125	1,850	2,220
	50	1,323	2,250	2,460
	100	1,530	2,800	2,810
Goodwin Creek	2	218	320	373
Tributary No. 4E	. 5	315	440	474
at Goodwin Creek	10	379	580	538
Tributary No. 4	25	455	810	617
$D.A. = 0.44 \text{ mi}^2$	50	527	980	687
	100	571	1,220	800
Caney Creek	2	2,607	3,000	5,670
at Long Creek	5	4,457	4,200	7,290
$D.A. = 14.40 \text{ mi}^2$	10	5,826	5,400	8,470
	25	7,537	7,600	9,790
	50	9,159	9,200	10,980
	100	10,202	11,500	12,410

Mickahala-Senatobia Creek Watershed. The Hickahala-Senatobia watershed is located approximately 30 miles south of Memphis, TN. in northwestern Mississippi. A general location map for the watershed is shown in Figure 1.2. Hickahala Creek is a tributary to the Coldwater River just upstream of Arkabutla Reservoir. The Hickahala Creek watershed is located in portions of Tate, Panola, and Marshall Counties and encompasses approximately 230 square miles. The largest urban area of the watershed, the city of Senatobia, is located near the confluence of Senatobia and Hickahala Creeks, approximately 6 miles upstream of the confluence of Hickahala Creek and the Coldwater River.

As with the Long Creek watershed, there were three different hydrologic methods used to estimate design flows for the stream bank erosion and grade control structures in the watershed. These were a calibrated HEC-1 model using Synder's Unit Hydrograph method for overland flows and the Muskingum channel routing method, the USGS Flood Frequency method for Mississippi Streams, and the US COE Generalized Peak Flow Frequency method for Yazoo Hill Area.

The parameters used in the Muskingum routing, K and X, were obtained in a similar manner as in the Long Creek study. However for this watershed, X was estimated to be 0.15. Results are presented in Table 1.4.

HICLAHALA SENATORIA WATERSHED

Figure 1.2 - Hickahala-Senatobia Creek Watershed Map

Table 1.4 - Peak Discharge Estimates within the Hickahala-Senatobia Creek Watershed (Simons, LI, & Associates, Inc.)

·	Return Period	USGS	COE	HEC-1
Stream Location	(Ar)	(cfs)	(cfs)	(cfs)
Hickahala Creek	2	2,630	3,600	2,646
Upstream of	5	4,484	5,100	4,073
Cathey Creek	10	5,860	6,500	5,301
D.A. = 19.24 mi^2	25	7,685	9,100	6,725
	50	9,360	11,100	8,263
	100	10,577	13,800	9,988
Hickahala Creek	2	3,721	5,100	5,260
Downstream of Bea		6,420	7,200	7,835
Creek and Cathey	10	8,420	9,300	10,193
Creek	25 .	11,231	13,000	12,734
$D.A. = 36.82 \text{ mi}^2$	50	13,715	15,800	15,597
	100	15,803	19,400	18,789
Hickahala Creek	2	4,050	6,500	5,881
Downstream of	5	6,964	9,300	8,460
Whites Creek	10	9,121	11,900	10,850
$D.A. = 50.00 \text{ mi}^2$	25	12,156	16,500	13,564
	50	14,895	20,000	16,575
	100	17,015	25,000	19,928
Hickahala Creek	2	6,580	10,000	11,129
Downstream of	5	11,545	14,500	15,311
Lick Creek	10	15,222	18,000	19,359
$D.A. = 98.47 \text{ mi}^2$	25	20,400	25,800	23,849
	50	25,117	31,000	28,980
	100	28,679	38,500	34,687
Hickahala Creek	2	6,942	11,300	11,931
Downstream of	5	12,130	16,000	16,131
Basket Creek and	10	15,942	20,600	20,260
Thornton Creek	25	21,358	28,800	24,879
D.A. = 119.49 mi	50	26,286	35,000	30,169
	100	29,972	43,000	36,05
Hickahala Creek	2	6,672	11,500	11,99
Upstream of	5	11,573	16,600	16,20
Senatobia Creek	10	15,142	21,100	20,33
D.A. = 125.97 mi		20,274	29,800	24,95
J. 131	50	24,909	36,000	30,24
	100	28,418	44,500	36,13

Table 1.4 - Continued

	eturn	2200		1170 1
	eriod	USGS	COE (cfs)	HEC-1
Stream Location	(Ar)	(cfs)	(CIS)	(cfs)
Hickahala Creek	2	9,115	17,000	28,310
at Coldwater River	5	15,844	24,000	36,069
$D.A. = 229.51 \text{ mi}^2$	10	20,650	31,000	43,774
	25	27,741	43,000	51,992
	50	34,031	52,500	60,637
	100	39,989	64,000	70,405
Cathey Creek at	2	700	1,300	933
Hickahala Creek	5	1,108	1,900	1,352
$D.A. = 4.03 \text{ mi}^2$	10	1,397	2,400	1,741
	25	1,820	3,400	2,141
	50	2,163	4,050	2,582
	100	2,515	5,000	3,068
Beards Creek at	2	1,337	2,500	1,963
Hickahala Creek	5	2,176	3,500	2,935
$D.A. = 10.94 \text{ mi}^2$	10	2,775	4,000	3,815
	25	3,723	6,400	4,745
	50	4,440	7,700	ອັ,783
	100	5,366	9,300	6,934
Whites Creek	2	856	1,600	1,120
at Hickahala Creek	5	1,362	2,250	1,750
$D.A. = 5.38 \text{ mi}^2$	10	1,719	2,800	2,246
	25	2,270	4,000	2,792
	50	2,688	4,800	3,398
	100	3,210	6,000	4,070
James Wolf Creek	2	2,779	4,250	3,638
Downstream of	5	4,728	6,000	5,153
Martin Dale Creek	10	6,178	7,700	6,537
D.A. = 25.40 mi^2	25	8,137	10,800	8,049
	50	9,944	13,200	9,728
	100	11,229	16,200	11,589
James Wolf Creek	2	3,005	5,800	4,877
at Hickahala Creek	5	5,ü69	8,000	6,526
$D.A. = 38.90 \text{ mi}^2$	10	6,577	10,500	8,178
	25	8,808	14,500	9,968
	50	10,724	17,500	12,055
	100	12,458	21,500	14,385

Table 1.4 - Continued

	Return			
	Period	USGS	COE	HEC-1
Stream Location	(AL)	(cfs)	(cfs)	(cfs)
Martin Dale Creek	2	846	1,550	1,256
at James Wolf Cree	k 5	1,351	2,200	1,721
$D.A. = 4.94 \text{ mi}^2$	10	1,713	2,750	2,147
	25	2,233	3,800	2,584
	50	2,661	4,700	3,069
	100	3,085	5,400	3,535
Lick Creek at	2	594	1,100	912
Hickahala Creek	5	925	1,600	1,440
$D.A. = 3.11 \text{ mi}^2$	10	1,155	2,000	1,847
	25	1,509	2,750	2,301
	50	1,773	3,400	2,735
	100	2,112	4,300	3,210
Basket Creek at	2	1,182	2,350	1,503
Hickahala Creek	5	1,914	3,300	2,159
D.A. = 9.71 mi ²	10	2,439	4,300	2,763
	25	3,250	5,900	3,432
	50	3,887	7,200	4,185
	100	4,625	9,000	5,020
Thornton Creek at	2	964	1,400	1,200
Hickahala Creek	5	1,547	1,950	1,783
D.A. = 4.65 mi^2	10	1,957	2,500	2,268
	25	2,535	3,500	2,812
	50	3,006	4,300	3,393
	100	3,487	5,200	4,034
Steammill Branch	2	549	960	692
at Thornton Creek	_. 5	852	1,350	1,028
D.A. = 2.39 mi ²	10	1,062	1,750	1,341
•	25	1,365	2,400	1,675
	50	1,606	2,900	2,024
	100	1,865	3,700	2,409
Billys Creek at	2	594	1,051	759
Hickahala Creek	5	928	1,550	1,198
D.A. = 2.93 mi ²	10	1,163	1,950	1,591
	25	1,505	2,650	1,992
	50	1,777	3,300	2,394
	100	2,072	4,200	2,836

Table 1.4 - Continued

	Return Period	USGS	COE	HEC-1
Stream Location	(yr)	(cfs)	(cfs)	(cfs)
Senatobia Creek	2	4,622	7,900	16,961
Downstream of	5	8,023	9,900	19,264
Mattic Creek	10	10,545	12,700	22,750
D.A. = 55.14 mi ²	25	14,113	17,700	26,202
	50	17,297	21,500	27,894
	100	19,892	26,500	31,255
Senatobia Creek a	t 2	3,770	7,650	16,706
Hickahala Creek	5	6,365	10,900	19,305
D.A. = 64.68 mi^2	10	8,231	13,900	22,755
	25	11,170	19,800	26,274
	50	13,567	23,800	27,839
	100	16,100	29,000	31,159
Tolbert Jones Cre	ek 2	757	1,500	1,797
at Senatobia Cree	k 5	1,200	2,100	2,179
$D.A. = 4.64 \text{ mi}^2$	10	1,514	2,700	2,572
	25	1,987	3,700	3,044
	50	2,358	4,600	3,476
	100	2,779	5,300	4,012
Mattic Creek at	2	2,798	4,100	9,422
Senatobia Creek	5	4,741	5,900	11,148
D.A. = 27.88 mi^2	10	6,159	7,500	13,171
	25	8,288	10,500	15,103
	50	10,033	13,000	16,121
	100	11,875	15,500	18,080
Nelson Creek at	2	1,486	2,800	4,808
Mattic Creek	. 5	2,433	4,200	5,679
$D.A. = 14.23 \text{ mi}^2$	10	3,123	5,200	6,679
	25	4,136	7,600	7,860
	50	4,997	9,200	8,132
	100	5,786	11,500	9,158
Gravel Springs Cr	. 2	511	1,100	1,224
at Senatobia Cree		790	1,550	1,523
$D.A. = 2.84 \text{ mi}^2$	10	982	2,000	1,635
J	25	1,288	2,750	1,899
	50	1,512	3,600	2,060
	100	1,815	4,200	2,637

Table 1.4 - Continued

Stream Location	Return Period (yr)	USGS (cfs)	COE (cfs)	HEC-1 (cfs)
West Ditch at	2	1,515	3,250	5,083
Hickahala Creek	5	2,469	4,600	5,824
D.A. = 16.84 mi ²	10	3,150	6,950	6,801
	25	4,267	8,250	7,872
	50	5,111	10,000	8,412
	100	6,203	12,000	9,518

From an inspection of Tables 1.3 and 1.4, a significant difference in the design flows computed by each method is observed. From Table 1.3, the * variance (ie, 100 x (Maximum Q / Minimum Q) for the 2 year frequency storm had a minimum of 171.1, a maximum of 355.9, and an average of 247.8. The variance for the 100 year frequency storm had a minimum of 115.8, a maximum of 238.3, and an average of 170.6. From Table 1.4, the * variance for the 2 year frequency storm had a minimum of 136.9, a maximum of 443.1, and an average of 220.9. The variance for the 100 year frequency storm had a minimum of 122.8, a maximum of 231.4, and an average of 173.4.

Purpose and Scope of Study

Since design flows must often be computed for unyaged watersheds, the discrepancy in the peak flows observed above causes concern about the relative accuracy of hydrologic methods/models currently used to simulate rainfall events. This concern was the stimulus for conducting the research

reported herein. In particular, the commonly employed SCS and Snyder's Unit Hydrograph methods of the HEC-1 computer program (one dimensional lumped models) have been compared to a recently developed two-dimensional distributed model from Colorado State University, CASC2D, to determine if this model that contains more spatial data can produce more reliable results when applied to ungaged basins.

Traditionally, the Snyder and SCS Unit Hydrograph methods are used to estimate the peak discharge for the purpose of designing channels, structures, etc. In using these methods, it is necessary to calibrate the lag time and infiltration parameters for each of the methods. Typically in using the Snyder method, initial and uniform loss rates are calibrated for different storm events. When using the SCS method, an SCS Curve Number relating landuse and soil type to loss rates is estimated.

The watershed chosen for this study was the Goodwin Creek Watershed. As illustrated in Figure 1.1, this watershed is a sub-watershed of the Long Creek Watershed. The Agricultural Research Service has been active for a number of years in gaging Goodwin Creek. These data provide an excellent opportunity for applying the hydrologic models noted above and to assess their performance on gaged and ungaged watershed scenarios, and to gain insight in choosing infiltration and other loss parameters for their application to North Mississippi Streams.

CHAPTER II - THEORETICAL ASPECTS AND METHODOLOGY APPLIED IN THE COMPUTER MODELS HEC-1 AND CASC2D

General Description/Model Philosophy

Both the HEC-1 and CASC2D computer models are designed to simulate the surface runoff response of a watershed to precipitation by representing the river basin as an interconnected system of hydrologic and hydraulic components. Each component models an aspect of the rainfall~runoff process within a smaller portion of the total watershed, commonly referred to as a sub-basin. A component may represent an overland flow entity, stream channel reach, reservoir, and etc. Representation of a component requires a set of parameters which specify the particular characteristics of the component and mathematical relations which describe the physical processes. The result of the modeling process is the computation of streamflow hydrographs at desired locations in the river basin.

A review of the users manuals for HEC-1 and CASC2D models shows that both models have the following comparable stream network components available for simulation purposes:

- 1. Land Surface or Sub-Basin Component
- 2. Channel Routing Component
- 3. Analysis Point and Hydrograph Combination

A sub-basin land surface runoff component is used to represent the movement of water overland to the stream channels. The input to this component is a precipitation

hyetograph. Precipitation excess is determined by subtracting infiltration and detention losses based upon a soil infiltration rate function. The rainfall and infiltration are assumed to be uniform over a sub-basin area. The resulting rainfall excesses are then routed by unit hydrograph, kinematic wave, or diffusive wave techniques to the outlet of the sub-basin producing a runoff hydrograph.

A reach routing component is used to represent flood wave movement in the river channels. The input to the component is an upstream hydrograph resulting from individual or combined contributions of sub-basin runoff and upstream reach routings. The hydrograph is routed to the downstream end of the river reach based upon the conveyance and storage characteristics of the channel.

A suitable combination of the sub-basin runoff and channel routing components can be used to represent the intricancies of a watershed stream network. The connectivity of the stream network components is implied by the order in which the data components are arranged. Simulation must always begin at the upper most sub-basin in a branch of the stream network. The simulation (succeeding data components) proceeds downstream until a confluence or a junction is reached. Before simulating below the confluence, all flows from drainage areas above that confluence must be computed and routed to the confluence. The flows are combined at the confluence and the combined streamflow hydrograph is routed downstream, etc.

HBC-1 Computer Model

The HEC-1, Flood Hydrograph Package, computer program has been available for over 25 years. It has been expanded and revised several times since the first version was published in October 1968 (version 2 - January 1973, version 3 - September 1981, and version 4 September 1990). A well documented users describes the concepts, methodologies, manual requirements and output formats used in HEC-1. A variety of computational techniques or simulation options are available for most of the model components. For example, five different options of unit graph/kinematic wave techniques are available to transform rainfall excess into runoff. These include: (1) Input known unit graph; (2) Clark synthetic unit graph/timearea data; (3) Snyder synthetic unit graph/time-area data; (4) SCS dimensionless synthetic unit graph; and (5) Distributed runoff using kinematic wave or Muskingum-Cunge excess transformation. Precipitation data for an observed storm event can be supplied to the HEC-1 program by two methods: (1) Basin average precipitation; and (2) Weighted precipitation gages. There are three methods in HEC-1 for generating synthetic storm distributions: (1) Standard Project Storm; (2) Probable Maximum Precipitation; and (3) Synthetic Storms from Depth-Duration data. There are five methods available in HEC-1 for calculating the precipitation losses: (1) Initial and Uniform Loss Rate; (2) Exponential Loss Rate; (3) SCS Curve Number; (4) Holtan Loss Rate; and (5) Green and Ampt Infiltration Function. The channel routing methods available in HEC-1 are based upon the continuity equation and some relationship between flow and storage or stage. The methods are: (1) Muskingum; (2) Muskingum-Cunge; (3) Kinematic Wave; (4) Modified Puls; and (5) Working R and D. In addition, HEC-1 has a level pool reservoir routing option available. HEC-1 also provides a powerful optimization technique for the estimation of some of the parameters when gaged precipitation and runoff data are available. By using this technique and regionalizing the results, rainfall-runoff parameters for ungaged areas can be estimated.

CASC2D Computer Model

The CASC2D, a two-dimensional watershed rainfall-runoff model, computer program was recently (1991) developed at Colorado State University. A user's manual explains the basics of a two-dimensional distributed rainfall-runoff model for the simulation and analysis of spatially and temporally varied rainstorms and basin characteristics. Unlike the HEC-1 model which has several simulation options available, the primary features of the CASC2D model include a two-dimensional diffusive wave overland flow routing component, the Green and Ampt Infiltration Scheme for a precipitation loss component, and a one-dimensional diffusive wave channel routing component. The model uses square grid elements, each of which is assumed homogeneous in all aspects. However, spatial

variations are allowed from one grid cell to another. For each time step, the existing overland surface depth, including that of rainfall depth over the time step, may be first diminished by the amount controlled by the infiltration capacity of the soil at that time. Then the remaining overland surface depth, if any, is processed through overland flow routing followed by channel routing. The backwater effects through channel networks are considered, as well as the disturbances produced when channels spill over to the floodplains.

The CASC2D model was developed as a tool to carry out research on effects of spatially varied watershed characteristics, spatially varied rainfall, and temporally varied rainfall due to moving rainstorms. The model can be used to determine the watershed time to equilibrium. An important potential application for the model is real-time flood forecasting, especially when coupled with an accurate updated GIS database and with remote data acquisition systems.

A more detailed description of the computational techniques and methodology used in the two computer models is included in the following sections. Only the options of HEC-1 that are equivalent for comparison purposes with the CASC2D model components will be discussed.

CASC2D Methodology

The discussion found in this section will be taken from the CASC2D User's Guide⁶. Physically-based, distributed

computer modeling of rainfall-runoff processes in watershed hydrology has gained considerable attention in recent years. Analysis of the processes controlling the watershed response typically requires solution of fundamental partial differential equations for overland flow and channel flow. However, analytical solutions have not been found except for very simplified cases. These solutions are further complicated by the temporal variations introduced by the transient nature of rainfall events and infiltration processes. The inability to obtain general analytical solutions has resulted in the adoption of various numerical schemes to simulate rainfall-runoff events using high speed computers.

CASC2D has been developed to determine the runoff hydrograph generated from any temporally-spatially varied rainfall event. The main objective of this model has been to provide a research tool for further analysis of temporal and spatial variations. However, it can also be used for real-time forecasting of rainfall-runoff events. The dynamic graphics capability of the model provides additional insights into the physical processes and their distribution in time and space.

Overland Flow Routing. Overland flow is generally a twodimensional process which is controlled by spatial variations in slope, surface roughness, excess rainfall, and other parameters. Solutions for the full dynamic momentum equation for overland flow are complicated and generally unnecessary for most watershed conditions. Hence a diffusive wave approximation is preferred.

As the overland flow drains into stream channels, one dimensional flow prevails. The diffusive wave equation for channel flow can predict the possible backwater effects in main channels and tributaries. As in the other watershed processes, the spatial variations in channel parameters must be accounted for in the model.

The Saint-Venant equations for continuity and momentum describe the mechanics of overland flow. The two-dimensional continuity equation in partial differential form reads as:

$$\frac{\partial h}{\partial t} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} = e \tag{2.1}$$

where

h = surface flow depth

 $q_x = unit flow in x-direction$

q = unit flow in y-direction

e = excess rainfall equal to (i-f)

i = rainfall intensity

f = infiltration rate
x,y = cartesian spatial coordinates

t = time

The momentum equation in the x and y directions may be derived by equating the net forces per unit mass in each direction to the acceleration of flow in the same direction. The two-dimensional form of the equations of motion are:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = g \left[S_{ox} - S_{fx} - \frac{\partial h}{\partial x} \right]$$
 (2.2a)

where

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial v} = g \left[S_{oy} - S_{fy} - \frac{\partial h}{\partial v} \right]$$
 (2.2b)

u,v = average velocities in x and y direction
 respectively

 $S_{ox}, S_{oy} = \text{bed slopes in } x \text{ and } y \text{ direction respectively}$

 S_{fx}^{m} , S_{fy}^{y} = friction slopes in x and y direction

respectively

g = acceleration due to gravity

The right hand side of the momentum equations describes the net forces along the x and y directions while the left hand side represents the local and convective acceleration terms.

In simplifying the momentum equations, the kinematic wave approximation assumes that all terms, except the bed slope and the friction slope, are negligible. This assumption, which is particularly valid for steep bed slopes, has been the basis for many rainfall-runoff models. However, a kinematic wave can not predict backwater effects due to downstream disturbances that may be important when simulating floods. On the other hand, a diffusive wave model can simulate backwater effects and is considered to be applicable for overland flow over rough surfaces as well as for channel flows. The momentum equation based on the diffusive wave approximation reduces to:

$$S_{fx} = S_{ox} - \frac{\partial h}{\partial x} \tag{2.3}$$

From the three equations of continuity and momentum, five hydraulic variables need to be determined. Therefore a resistance law should be established to relate flow rate to depth and to other parameters. A general depth-discharge relationship may be written, in the x-direction for example,

as:

$$q_x = a_x h^b \tag{2.4}$$

where a_x and b are parameters which depend on flow regime; ie, laminar or turbulent. For laminar flow in the x-direction, the value for b is taken to be 3, and the following expression gives a_x :

$$a_x = \left(\frac{8g}{R_0}\right) S_{fx} \tag{2.5}$$

where

K = resistance coefficient

v = kinematic viscosity

Similarly, for turbulent flow over a rough boundary, the Manning empirical resistance equation is used. Thus, b is equal to 5/3 and a_x is computed from the following expression:

$$a_x = \frac{S_{fx}^{0.5}}{n} \tag{2.6}$$

where

n = Manning's roughness coefficient

Rainfall Distribution. In CASC2D, rainfall was analyzed using an interpolation scheme based on the inverse distances squared. This scheme approximates the distribution of rainfall intensity over the watershed:

$$i^{t}(j,k) = \frac{\sum_{m=1}^{NRG} \frac{t_{m}^{t}(j_{rg}, k_{rg})}{d_{m}^{2}}}{\frac{NRG}{m=1} \sum_{m=1}^{1} \frac{1}{d_{m}^{2}}}$$
(2.7)

where

 $i^{t}(j,k)$ = rainfall intensity in element (j,k) at time t. $i^{t}(j_{re},k_{re})$ = rainfall intensity recorded by rainfall gages located at (j_{re},k_{re}) at time t.

d = distance from element (j,k) to rainfall gage
located at (j_{re},k_{re}).

NRG = Total number of rainfall gages.

If no raingage data is available, rainfall is assumed to be uniform over the watershed.

Precipitation Loss. The first step in simulating a rainfall-runoff event on a watershed is to determine the excess rainfall. An infiltration scheme must accommodate both spatial variations due to soil texture changes, and temporal variations due to the time-variant nature of both rainfall and soil infiltration capacity. Additionally, the fact that rainfall history affects the infiltration rate at the present time has to be accounted for in the infiltration scheme. Ideally, the scheme should also rely on physically measurable soil infiltration parameters. The Green-Ampt infiltration equation adequately satisfies these requirements and is therefore well-suited for distributed watershed modeling.

The Green-Ampt infiltration scheme has gained considerable attention in the past decade, partially due to

the ever growing trend towards physically-based hydrologic modeling. The parameters of the Green-Ampt equation are based on the physical characteristics of the soil and therefore can be determined by field measurements or experiments. The Green-Ampt equation may be written as:

$$f = K_g \left[1 + \frac{H_f M_d}{R} \right] \tag{2.8}$$

where

f = infiltration rate

K_a = hydraulic conductivity at normal saturation

H, = capillary pressure head at the wetting front

 $M_d = soil moisture deficit equal to <math>(O_c-O_i)$ $O_r = effective porosity equal to <math>(P-O_r)$

P = total soil porosity

O_r = residual saturation

O, = initial soil moisture content

F = total infiltration depth

The head due to surface depth has been neglected as H, easily overpowers shallow overland depth. Rawls⁸ et al. (1983) provided sets of average values of total porosity, effective porosity, capillary pressure head, and hydraulic conductivity based on soil texture class (see Table 2.1).

Channel Routing. A one-dimensional channel routing technique, based on diffusive wave similar in principal to the overland flow routing, has been formulated in the model. For each time step, infiltration and overland flow routing are processed. This determines the net rate of overland flow pouring into the channel elements. Each individual channel, with constant properties, is routed towards junctions, if any, and ultimately towards the watershed outlet. Prior to the

Table 2.1 - Green-Ampt Parameters Based on Soil Texture

Soil Texture	Total Porosity	Effective Porosity	Wetted Pront Capillary Head (cm)	Hydraulic Conductivity (cm/h)
Sand	0.437	0.417	4.95	11.78
Loamy Sand	0.437	0.401	6.13	2.99
Sandy Loam	0.453	0.412	11.01	1.09
Loam	0.463	0.434	8.89	0.34
Silt Loam	0.501	0.486	16.68	0.65
Sandy Clay- Loam	- 0.398	0.330	21.85	0.15
Clay Loam	0.464	0.309	20.88	0.10
Silty Clay- Loam	- 0.471	0.432	27.30	0.10
Sandy Clay	0.430	0.321	23.90	0.06
Silty Clay	0.479	0.423	29.22	0.05
Clay	0.475 ⁻	0.385	31.63	0.03

Source : Green and Ampt parameters (CASC2D User's Manual)

model execution, all channels must be ordered with respect to variations in width, depth, and roughness. Any given channel path, identified by a series of elements through which it passes, must have a constant width, depth, and roughness.

The channel cross section is assumed to be rectangular, and, if straight, it lies in the middle of the square channel element. If the channel changes direction within a certain element, it runs from the middle of the entering side to the center of the element and then to the middle of the exiting

side.

In special cases, the channel may flow over into the floodplain, in which case the floodplain will be treated as part of the overland plain. Therefore, for each channel element, there can be channel flow restricted to the channel width and an overland flow when overflow from the channel occurs.

Backwater effects can be properly handled, even at the junctions of tributary channels. In the model formulation, the channel cross section is not subject to infiltration, which is likely to be negligible compared to the flow rate in the channel. However, any overland flow running toward the channel, channel overflow, and any specified detention storage all remain subject to infiltration.

A one-dimensional diffusive channel flow equation has been incorporated into the model. The governing equations are similar to those of overland flow except for a finite width. The one dimensional equation of continuity reads as follows:

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = Q_1 \tag{2.9}$$

where

A = channel flow cross section

Q = total discharge in the channel

q₁ = lateral inflow rate per unit length, into or out of the channel.

Most cases of channel flow occur in the turbulent flow regime. The following equation represents the application of

Manning's resistance equation to channel flow.

$$Q = \frac{1}{n} A R^{2/3} S_f^{1/2} \tag{2.10}$$

where

R = hydraulic radius S₄ = friction slope

HBC-1 Methodology

Overland Flow Routing - SCS Unit Hydrograph. A method developed by the Soil Conservation Service for constructing synthetic unit hydrographs is based on a dimensionless hydrograph (Figure 2.1). This dimensionless graph is the result of an analysis of a large number of natural unit hydrographs from a wide range in size and geographic locations. The method requires only the determination of the time to peak (Equation 2.11), the peak discharge (Equations 2.12a and 2.12b), and Figure 2.14. Parameters t_p and Q_p are computed as follows.

$$t_{p} = \frac{D}{2} + t_{1} \tag{2.11}$$

where

t_p = the time from the beginning of rainfall to peak
discharge (hours)

D = the duration of rainfall (hours). D=0.133*t_c where t_c is the time of concentration.

t_i = the lag time from the centroid of rainfall to peak discharge (hours).

and

Figure 2.1 - Dimensionless unit hydrograph and mass curve. (After V. Mockus, "Use of Storm and Watershed Characteristics in Synthetic Hydrograph Analysis and Application," U.S. Soil Conservation Service, 1957.)

$$Q_p = \frac{K\lambda}{t_p} \tag{2.12a}$$

$$K = \frac{1290.6}{1+H} \tag{2.12b}$$

where

Q = peak discharge (cfs) = drainage area (mi²)

= the time to peak (hours)

t = the time to peak (nours, H = ratio of hydrograph recession time (i.e., Falling Limb) to period of rise.

This constant (H) should be determined for a particular watershed. H may be computed for a particular stream by using recorded hydrographs. Analyses by SCS have resulted in their adoption of H=1.67 (i.e., K=484) as a general average value for ungaged watersheds.9 A K value of 484 reflects a unit hydrograph that has 3/8 of its area under the rising limb. For mountainous watersheds, the fraction could be expected to be greater than 3/8, and therefore the value of K may be 600 or higher (maximum K=1300). For flat, swampy areas, the value of K may be on the order of 300.

Overland Flow Routing - Snyder Unit Hydrograph. A common technique employed by the U.S. Army Corps of Engineers is based on methods developed by Snyder and expanded by Taylor and Schwarz. Unfortunately, it does not provide a simple method of constructing the entire time distribution of the discharge hydrograph but allows computation of lag time, unit hydrograph duration, peak discharge, and hydrograph time

widths at 50 and 75 percent of peak flow. Using these points, a sketch of the unit hydrograph is obtained and checked to see if it contains 1 inch of direct runoff.

Snyder's method of synthetic unit hydrographs relies upon correlation of the dependent variables of lag time and peak discharge with various physiographic watershed characteristics. A lag time relationship derived by Snyder for watersheds from 10 to 10,000 mi² located in the Appalachian Highlands is given as:

$$t_1 = C_r (LL_{co})^{0.3} (2.13)$$

where

t, = the lag time (hours)

C = the coefficient representing variations of watershed slopes and storage.

L = length of the main stream channel (miles) from the outlet to the divide.

 L_{ca} = length along the main channel to a point nearest the watershed centroid (miles).

It is assumed that lag time is a constant for a watershed that is uninfluenced by variations in rainfall intensities or similar factors. The use of $L_{\rm ce}$ accounts for the watershed shape, and $C_{\rm t}$ takes care of wide variations in topography, from plains to mountainous regions. Values of $C_{\rm t}$ for Snyder's original Appalachian study ranged from 1.8 to 2.2 with an average of about 2.0. The coefficient $C_{\rm t}$ accounts for variations in slope and storage and did not vary greatly for the Appalachian study areas. Steeper slopes tend to generate lower values of $C_{\rm t}$. Extremes of $C_{\rm t}$ values of 0.4 has been noted

in Southern California and 8.0 along the Gulf of Mexico. When snow pack accumulations influence peak discharge, values of C, will be between one-sixth to one-third of Snyder's original values. 4 The duration of rainfall for Snyder's synthetic unit hydrograph development is a function of lag time as shown by:

$$t_r = \frac{t_1}{5.5} \tag{2.14}$$

where

t_r = duration of the unit rainfall excess (hours). t = the lag time from the centroid of unit rainfall excess to the peak of the unit hydrograph.

This synthetic technique (i.e., use of equations 2.13 and 2.14) always results in an initial unit hydrograph duration equal to t,/5.5. However, since changes in lag time do occur with changes in duration of the excess rainfall, the following equation was developed to allow lag time and peak discharge adjustments for other unit hydrograph durations.4

$$t_{1R} = t_1 + 0.25 (t_R - t_r)$$
 (2.15)

where

t_{|R} = the adjusted lag time (hours)
t_| = the original lag time (hours)
t_| = the desired unit hydrograph duration (hours)
t_| = the original unit hydrograph duration = t_|/5.5

(hours)

If one assumes a given duration rainfall produces 1 inch of direct runoff, the outflow volume is some relatively constant percentage of inflow volume, and a simplified approximation of outflow volume is $t_i * Q_p$, then the equation for peak flow can be written as:4

$$Q_{p} = \frac{640C_{p}A}{t_{1}} \tag{2.16}$$

where

 Q_p = peak discharge (cfs) C_p = the coefficient = the coefficient accounting for flood wave and channel storage conditions. It is a function of lag time, duration of runoff producing rain, effective area contributing to peak flow and drainage area.

A = watershed size (square miles)

t, = the lag time (hours)

Both Snyder's coefficients, C, and C, should be calibrated. Values for C range from 0.4 to 0.8 and generally indicate retention or storage capacity of the watershed. Larger values of C are generally associated with smaller values of C..4

The time base of a synthetic unit hydrograph by Snyder's method is:

$$T=3+\frac{t_1}{8} \tag{2.17}$$

where

T = the base time of the synthetic unit hydrograph (days). $t_i = the lag time (hours).$

Equation 2.17 gives reasonable estimates for large watersheds, but will produce excessively large values for smaller areas. A general rule of thumb for small areas is to use three to five times the time to peak as a base value when sketching a unit hydrograph.4

The Snyder method does not produce the complete unit hydrograph required by HEC-1. Thus, HEC-1 uses the Clark method to affect a Snyder unit graph. The Clark method (1945) requires three parameters to calculate a unit hydrograph: TC, the time of concentration for the basin, R, a storage coefficient, and a time-area curve. A time-area curve defines the cumulative area of the watershed contributing runoff to the subbasin outlet as a function of time (expressed as a proportion of TC).

In the case that a time area curve is not supplied, HEC-1 utilizes a dimensionless time-area curve:5

for
$$0 <= T < 0.5$$

$$AI=1.414T^{1.5}$$
 (2.18)

for
$$0.5 < T < 1.0$$

$$1-AI=1.414(1-T)^{1.5} (2.19)$$

where AI is the cumulative area as a fraction of the total subbasin area and T is the fraction of time of concentration. The ordinates of the time-area curve are converted to volume of runoff per second for unit excess and interpolated to the given time interval. The resulting translation hydrograph is then routed through a linear reservoir to simulate the storage effects of the basin; and the resulting unit hydrograph for instantaneous excess is averaged to produce the hydrograph for unit excess occurring in the given time interval.⁵

The linear reservoir routing is accomplished using the general equation:⁵

$$Q(2) = CA \times I + CB \times Q(1)$$
 (2.20)

The routing coefficients are calculated from:5

$$CA = \frac{\Delta t}{R + 0.5\Delta t} \tag{2.21}$$

$$CB=1-CA (2.22)$$

$$QUNGR=0.5[Q(1)+Q(2)]$$
 (2.23)

where Q(2) is the instantaneous flow at the end of the period, Q(1) is the instantaneous flow at the beginning of the period, I is the ordinate of the translation hydrograph, (At) is the computation time interval in hours (also duration of unit excess), R is the basin storage factor in hours, and QUNGR is the unit hydrograph ordinates at the end of the computation interval. The computation of the unit hydrograph ordinates is terminated when its volume exceeds 0.995 inches or 150 ordinates, whichever comes first.

The initial Clark parameters are estimated from the given Snyder's parameters, T_p and C_p . A unit hydrograph is computed using Clark's method and Snyder parameters are computed from the resulting unit graph by the following equations:⁵

$$CPTMP = QMAX \left[\frac{T_{peak} - 0.5 (\Delta t)}{C \times A} \right]$$
 (2.24)

$$ALAG=1.048(T_{peak}-0.75(\Delta t))$$
 (2.25)

where CPTMP is Snyder's Cp for the computed unit hydrograph,

QMAX is the maximum ordinate of the unit hydrograph, T_{peak} is the time when QMAX occurs, in hours, (At) is the duration of excess, in hours, A is the subbasin area in square miles, C is a conversion factor, and ALAG is Snyder's standard Lag T_i for the computed unit hydrograph. Snyder's standard Lag is for a unit hydrograph which has a duration of excess equal to $T_i/5.5$. The coefficient, 1.048, in equation 2.25, results from converting the duration to the given time interval.

Clark's TC and R are adjusted to compensate for differences between values of T_l and C_p calculated by Equations 2.24 and 2.25 and the given values. A new unit hydrograph is computed using these adjusted values. This procedure continues through 20 iterations or until the differences between computed and given values of T_l and C_p are less than one percent of the given values.

Rainfall Distribution. The rainfall data was analyzed by using a weighted gage scheme. The temporal pattern for distribution of the storm-total precipitation is computed as a weighted average of temporal distributions from the recording station:

$$PRCP(I) = \frac{\sum PRCP(I, J) * WTR(J)}{\sum WTR(J)}$$
 (2.26)

where PRCP(I) is the basin-average precipitation for the I^{th} time interval, PRCPR(I,J) is the recording station precipitation for the I^{th} time interval, and WTR(J) is the

relative weight for gage J.

Precipitation Loss. The Green and Ampt infiltration function was implemented for both synthetic HEC-1 models (ie, Snyder's and SCS unit hydrograph techniques) in order to be comparable with CASC2D. The Green and Ampt infiltration function is combined with an initial abstraction to compute rainfall losses. The initial abstraction is satisfied prior to rainfall infiltration as follows:⁵

for $P(t) \ll IA T > 0$

$$r(t) = 0 \tag{2.27}$$

for P(t) > IA T > 0

$$r(t) = r_o(t) \tag{2.28}$$

where P(t) is the cumulative precipitation over the watershed, r(t) is the rainfall intensity adjusted for surface losses, t is the time since the start of rainfall, $r_o(t)$, and IA is the initial abstraction. The Green and Ampt infiltration is applied to the remaining rainfall by applying the following equation:⁵

for f(t) > XKSAT

$$F(t) = \frac{PSIF \times DTHETA}{f(t)}$$

$$\frac{f(t)}{XKSAT-1}$$
(2.29)

for f(t) <= XKSAT

$$f(t) = r(t) \tag{2.30}$$

where F(t) is the cumulative infiltration, $f(t) = \Delta F(t)/\Delta t$ is the infiltration rate, and the parameters of the Green and Ampt method are PSIF, the wetting front suction, DTHETA, the volumetric moisture deficit and XKSAT, the hydraulic conductivity at natural saturation. The application of this equation is complicated by the fact that it is only applicable to a uniform rainfall rate. The difficulty is overcome by calculating a time to ponding. Time to ponding (the time at which the ground surface is saturated) is calculated by applying equation 2.30 over the computation interval Δt :

for $r_i >= XKSAT$

$$\Delta F = F_j - F_{j-1} = \frac{PSIF \times DTHETA}{r_j} - (\frac{j-1}{i=1} \sum r_i vt)$$

$$\frac{r_j}{XKSAT} - 1$$
(2.31)

where its recognized that at ponding the infiltration and rainfall rates are equal (i(t) = r(t)), r_j is the average rainfall rate during period j, F_j and F_{j-1} are the cumulative infiltration rates at the end of periods j and j-1, ΔF is the incremental infiltration over period j. Ponding occurs if the following condition is satisfied:⁵

$$\Delta F \langle r_i \Delta t \rangle$$
 (2.32)

otherwise the rainfall over the period will be completely infiltrated. Once ponding has occurred, the infiltration and rainfall rates are independent and Equation 2.29 can be easily integrated to calculate the infiltration over the computation interval. The ponded surface condition might not be maintained

during the entire storm. This occurs when the rainfall rate falls below the post-ponding infiltration rate. In this case, a new ponding time is calculated and the infiltration calculation is applied as previously described.⁵

Channel Routing. In this analysis, the Muskingum-Cunge channel routing routine was chosen. This method most closely approximates the diffusive wave channel routing routine found in CASC2D. The Muskingum-Cunge routing technique can be used to route lateral inflow from either kinematic wave overland flow plane or lateral inflow from collector channels and/or upstream hydrograph through a main channel. 5 The channel routing technique is a non-linear coefficient method that accounts for hydrograph diffusion based on physical channel properties and the inflowing hydrograph. The advantages of this method over other hydrologic techniques are: (1) the parameters of the model are physically based; (2) the method has been shown to compare well against the full unsteady flow equations over a wide range of flow situations; and (3) the solution is independent of the user specified computation interval. The major limitations of the Muskingum-Cunge application in HEC-1 are that: (1) it can not account for backwater effects; and (2) the method begins to diverge from the full unsteady flow solution when very rapidly rising hydrographs are routed through very flat slopes (i.e., channel slopes less than 1 ft./mile). The basic formulation of the

equations is derived from the continuity equation:

$$\frac{\partial \lambda}{\partial t} + \frac{\partial Q}{\partial x} = Q_L \tag{2.33}$$

and the diffusion form of the momentum equation

$$S_{\ell} = S_{o} - \frac{\partial h}{\partial x} \tag{2.34}$$

By combining Equations 2.33 and 2.34 and linearizing, the following convective diffusion equation is formulated:5

$$\frac{\partial Q}{\partial t} + c \frac{\partial Q}{\partial X} = \mu_h \frac{\partial^2 Q}{\partial x^2} + cq_L \tag{2.35}$$

where

Q = Discharge in cfs

 $A = Flow area in ft^2$

t = Time in seconds

x = Distance along the channel in feet

h = Depth of flow in feet

q_l = Lateral inflow per unit of channel length
S_t = Friction slope
S₀ = Bed slope

c = The wave celerity in the x-direction as defined

$$C = \frac{\Delta Q}{\Delta A} \tag{2.36a}$$

The grid celerity (c_a) is expressed as follows:

$$c_g = \frac{\Delta x}{\Delta t} \tag{2.36b}$$

The hydraulic diffusivity (μ_h) is expressed as follows:

where B is the top width of the water surface.

$$\mu_h = \frac{Q}{2BS_o} \tag{2.37a}$$

The numerical diffusivity $(\mu_{\rm h})$ is expressed as follows:

$$\mu_n = c\Delta x \left(\frac{1}{2} - X\right) \tag{2.37b}$$

The grid diffusivity $(\mu_{\rm g})$ is expressed as follows (case where X=0 in Equation 2.37b):

$$\mu_g = \frac{c\Delta x}{2} \tag{2.37c}$$

Following a Muskingum-type formulation, with lateral inflow, the continuity equation, Equation 2.33, is discretized on the x-t plane (Figure 2.2) to yield:5

$$Q_{j+1}^{n+1} = C_1 Q_j^n + C_2 Q_j^{n+1} + C_3 Q_{j+1}^n + C_4 Q_L$$
 (2.38)

where

$$C_1 = \frac{\frac{\Delta t}{K} + 2X}{\frac{\Delta t}{K} + 2(1 - X)}$$

$$C_2 = \frac{\frac{\Delta t}{K} - 2X}{\frac{\Delta t}{K} + 2(1 - X)}$$

$$C_{3} = \frac{2(1-X) - \frac{\Delta t}{K}}{\frac{\Delta t}{K} + 2(1-X)}$$

Figure 2.2 - Discretization on x-t Plane of the Variable Parameter Muskingum-Cunge Model. (HEC-1 User's Manual)

$$C_4 = \frac{2\left(\frac{\Delta t}{K}\right)}{\frac{\Delta t}{K} + 2\left(1 - X\right)}$$

$$Q_L = Q_L \Delta x$$

It is assumed that the storage in the reach is expressed as the classical Muskingum storage:

$$S=K[XI+(1-X)O]$$
 (2.39)

where: S = channel storage

K = cell travel time (seconds)

X = Weighting factor

I = inflow
O = outflow

In the Muskingum equation, the amount of diffusion is based on the value of X, which varies between 0.0 and 0.5. The Muskingum X parameter is not directly related to physical channel properties. The diffusion obtained with the Muskingum technique is a function of how the equation is solved and is therefore considered numerical diffusion rather than physical. In the Muskingum-Cunge formulation, the amount of diffusion is controlled by forcing the numerical diffusion to match the hydraulic diffusion (μ_h) from Equation 2.35 and 2.37a. The Muskingum-Cunge equation is therefore considered an approximation of the convective diffusion equation, Equation 2.35. As a result, the parameters K and X are expressed as follows:

$$K = \frac{\Delta x}{C} \tag{2.40}$$

$$X = \frac{1}{2} \left(1 - \frac{Q}{BS_0 \Delta x} \right) \tag{2.41}$$

Then the Courant (C) and cell Reynolds (D) numbers can be defined as:⁵

$$C = c \frac{\Delta t}{\Delta x} \tag{2.42}$$

and

$$D = \frac{Q}{BS_0 c \Delta x} \tag{2.43}$$

The Courant number (C) is the ratio of the wave celerity to the grid celerity (Equations 2.36a and 2.36b). The Courant number is a fundamental concept in the numerical solution of hyperbolic partial differential equations. The cell Reynolds number (D) is the ratio of the hydraulic diffusivity to the grid diffusivity (Equations 2.37a and 2.37c). 10

The routing coefficients for the non-linear diffusion method (Muskingum-Cunge) are then expressed as follows:⁵

$$C_1 = \frac{1+C-D}{1+C+D}$$

$$C_2 = \frac{-1 + C + D}{1 + C + D}$$

$$C_3 = \frac{1 - C + D}{1 + C + D}$$

$$C_4 = \frac{2C}{1 + C + D}$$

in which the dimensionless numbers C and D are expressed in terms of physical quantities $(Q, B, S_0, \text{ and } c)$ and the grid dimensions $(\Delta x \text{ and } \Delta t)$. The method is non-linear in that the flow hydraulics (Q, B, c) and therefore the routing coefficients (C_1, C_2, C_3, C_4) are re-calculated for every Δx distance step and Δt time step. An iterative four-point averaging scheme is used to solve for c, B, and Q. This process has been described in detail by Ponce (1986).

Values for Δt and Δx are chosen internally by the model for accuracy and stability. First, Δt is evaluated by looking at the following three criteria and selecting the smallest value:⁵

- (1) The user defined computation interval, NMIN, from the field of the IT record.
- (2) The time of rise of the inflow hydrograph divided by $20 (T_{\star}/20)$.
- (3) The travel time of the channel reach.

Once Δt is chosen, Δx is evaluated as follows:

$$\Delta x = c\Delta t \tag{2.44}$$

but Δx must also meet the following criteria to preserve consistency in the method:

$$\Delta x < \frac{1}{2} \left(c \Delta t + \frac{Q_o}{B S_o c} \right) \tag{2.45}$$

where Q_0 is the reference flow and Q_8 is the baseflow taken from the inflow hydrograph as:⁵

Ax is chosen as the smaller value from the two criteria. The values chosen by the program for Ax and At are printed in the output, along with computed peak flow. Before the hydrograph ordinate is used in subsequent operations, or printed in the hydrograph tables, it is converted back to the user-specified computation interval. The user should always check to see if the interpolation back to the user-specified computation interval has reduced peak flow significantly. If the peak flow computed from the internal computation interval is markedly greater than the hydrograph interpolated back to the user-specified computation interval should be reduced and the model should be executed again.⁵

CHAPTER III - APPLICATION OF HEC-1 AND CASC2D MODELS TO GOODWIN CREEK WATERSHED

Description of Watershed Data

As shown in Figure 3.1, Goodwin Creek watershed contains approximately 8.4 square miles and is located within the Long Creek watershed. There are 17 rainfall gages and 14 discharge gages located within the boundary of the watershed. For this analysis, 5 mainstem discharge gages and 1 tributary gage were used. These 6 discharge gages are spread uniformly over the watershed. Since the main goal was to evaluate how the models performed in an ungaged watershed scenario, these gages provided enough information to draw conclusions and to make recommendations. Fifty seven channel cross sections on the main stem and the tributaries provide the necessary data for constructing the channel geometric database. Figure 3.2 shows the bottom elevation profile for the main stem channel. The period of record for the rainfall and flow data approximately 7 years, 1981 to 1988. As a part of the U.S. Army Corps of Engineers's Demonstration Erosion Control Project, a Geographic Information System (GIS) database has been created for Goodwin Creek watershed. The GIS contains such data as landuse grids, soil type grids, elevation grids, SCS curve number grids, slope grids, USGS digital line graphics, and aerial photography. The grid cell resolution for all the grids used in this study were 416 feet by 416 feet.

Figure 3.1 - Goodwin Creek Watershed Map

Elevation (Feet)

Figure 3.2 - Main Channel Bottom Profile/Goodwin Creek

Based upon personal conversations with Dr. Bahram Saghafian (Construction Engineering Research Laboratory, U.S. Army Corps of Engineers) and Dr. Fred Ogden (University of Iowa), this resolution was adequate for the Goodwin Creek Watershed.

The landuse for this watershed varies from forest, to crop land, to pasture, and to small ponds. Over the past 10 to 20 years, this area has experienced streambank instability and sedimentation problems due to changes in landuse. There are three primary soil types in the watershed; namely, Loam, Sandy Loam, and Silt Loam, with Silt Loam being the predominant soil type. The maximum elevation is 412.9 feet NGVD and the minimum elevation is 236.8 feet NGVD.

In setting up the models, the grid cell data (i.e., landuse, soil type, elevation) had to be extracted from the GIS and manipulated into the proper format for CASC2D. The lumped models used the GIS to compute average values (i.e., roughness coefficients, soil types) for each subarea. The channel cross sections were averaged for each routing reach by plotting the cross sections for each reach and estimating the average cross section for each reach.

For the past 12 years, the ARS has been extensively gaging the Goodwin Creek Watershed. The data currently being gathered is rainfall, discharge, suspended sediment, and bed load. The ARS is also generating landuse grids, from various time periods, for this watershed. The field sampling and measurement stations are located at grade control structures

built in the late 1970's. This effort was a joint project conducted by the ARS and the Army Corps of Engineers. All fourteen structures can be seen on Figure 3.1 labeled as either discharge gage used in models or discharge gage not used in models.

Application of Models and Methods

There were two parts to the Goodwin Creek Analysis. In the first part, 5 rainfall events were simulated using 17 rainfall gages and 6 discharge gages. Two HEC-1 models, SCS Unit Hydrograph and Snyder Unit Hydrograph, and CASC2D were used to simulate rainfall runoff for the purpose of comparing them to observed flow records. In this analysis, all models used the Green and Ampt infiltration routine. The HEC-1 models used the Muskingum-Cunge channel routing routine while CASC2D used a one-dimensional diffusive wave routine. Table 3.1 shows the final sub-basin parameters and Table 3.2 shows the final channel routing reach parameters. From the output, the peak flow, time to peak, volume of runoff, and hydrograph variance parameters were summarized for all three models.

In part two of this analysis, two hypothetical storm events were simulated using one rainfall gage (no. 54) data considered to be representative of the average observed storm conditions. This analysis was performed using only one lumped model (Snyder) and the distributive model (CASC2D). The reason for only comparing one lumped model (Snyder) instead of two

Table 3.1 - Goodwin Creek Watershed Sub-Basin Parameters

Sub-Basin I.D.	Area (Mi ²)	L (Mi)	Lca (Mi)	Lag Time (Hours)	Average Basin Slope (%)
1	1.44	2.62	1.22	1.28	3.20
2	.80	1.85	1.10	1.11	1.82
3	.90	1.57	.83	.97	3.22
4	.60	1.13	.61	.80	2.07
5	.78	1.33	.72	.89	3.70
6	1.29	1.50	.86	.97	3.23
7	. 63	1.50	.74	.93	3.63
8	.46	.76	.48	.67	3.60
9	.86	1.39	.80	.93	3.69
10	.15	.28	.17	.36	3.73
11	.17	.31	.21	.40	2.24
12	07	.27	.18	.36	4.71
13	.31	. 68	.42	.62	4.72
14	.14	.21	.15	.32	1.30

Table 3.2 - Goodwin Creek Channel Routing Reach Parameters

Rea I.I	nch		Length (Mi)	Bed Slope (Pt/Mi)	LOB	Manning's "n" Main Channel	ROB
18	to	17	.39	21.65	.080	.040	.080
17	to	15	.39	20.38	.080	.040	.080
16	to	15	.47	21.12	.080	.040	.080
15	to	14	.72	27.09	.080	.040	.080
13	to	12	1.04	41.76	.100	.040	.100
12	to	10	.66	23.39	.070	.038	.070
11	to	10	.54	28.62	.070	.038	.070
10	to	7	. 69	16.63	.070	.038	.070
9	to	8	.53	25.45	.080	.035	.080
8	to	7	.53	25.45	.080	.035	.080
7	to	5	.77	20.12	.070	.038	.070
6	to	5	. 64	39.60	.070	.038	.070
5	to	3	.78	10.19	.070	.038	.070
4	to	3	1.20	35.43	.070	.038	.070
3	to	2	1.09	15.47	.070	.037	.070
2	to	1	1.09	8.18	.070	.037	.070

lumped models (Snyder and SCS), as in the Part I of this study, is that there are only minor differences in the methodologies (i.e., peak flow equations). Based upon the results from Part I of this study, there were only minor differences noted between the two lumped models therefore little would have been gained by running both models for Part II. The reason for this simulation scenario was to compare the models assuming a temporally varied rainfall event uniformly distributed spatially over the entire watershed.

Modeling Approach used for Comparison Study

In part one of this study, each of the selected hydrologic models has been applied to five observed storm events, using 17 rainfall gages, with the predicted discharge hydrographs compared to observed hydrographs at six stream gage locations. Each HEC-1 model was calibrated (optimizing initial loss and soil moisture content) using data at Gage No.

1 (Mouth of Goodwin Creek). Storms 1 and 3 were also calibrated at Gages 5 and 8. This was done to evaluate the relative accuracy of the lumped models when sufficient subbasin gage data were available. Storms 2, 4, and 5 were only calibrated at the mouth of Goodwin Creek. This was done to assess the relative accuracy of the lumped models using limited gage information. CASC2D was only calibrated (optimizing initial soil moisture content) at the mouth for all five storm events. The reason for this was to evaluate the

response of a distributed model using limited gage information. Initial runs were made with no calibration at all, however, this proved unsuccessful due to a lack of knowledge about how the initial antecedent moisture and ground cover conditions changed from storm to storm.

The parameters considered in the calibration and simulation comparisons were peak flow, time to peak, total runoff volume, and four hydrograph variance values (i.e., standard error, objective function, average absolute error, and average percent absolute error). The results of final simulation computer runs can be seen in Tables A-2 to A-8. Plots of the computed hydrographs from the three models versus the observed hydrographs, for all five selected storm events, are shown in Appendix A.

In part two of this study, rainfall gage no. 54 was used to simulate the hypothetical uniform rainfall events over the watershed. All of the discharge gages were used to calibrate the HEC-1 lumped model, however only gage 1 was used to calibrate CASC2D. Storm Events 1 and 3 were chosen, because storm 1 is a slow rising and falling storm while storm 3 is a fast rising and falling storm. The same infiltration function, overland routing routine, and channel routing routine described in part one of this study were used in part two for both the Snyder HEC-1 and CASC2D models. The results of final computer runs can be seen in Tables B-1 to B-7. Plots of discharge hydrographs for storms 1 and 3 at Gages 1,2,3,4,5,

and 8 can be seen in Appendix B.

Hydrograph Variance Parameters

standard Error. Standard Error is defined as the root mean squared sum of the difference between observed and computed hydrograph ordinates.

$$S_{\bullet} = \left[\sum_{i=1}^{n} \sum \frac{(QOBS_i - QCOMP_i)^2}{n} \right]^{\frac{1}{2}}$$
 (3.1)

Objective Function. The best reconstruction, of a computed hydrograph, is considered to be that which minimizes an objective function, STDER. The objective function is the square root of the weighted square difference between the observed and computed hydrograph ordinates. Presumably, this difference will be a minimum for the optimal parameter estimates. STDER is computed as follows:⁵

$$STDER = \left[\sum_{i=1}^{n} \sum (QOBS_i - QCOMP_i)^2 \times \frac{WT_i}{n} \right]^{\frac{1}{2}}$$
 (3.2)

where QCOMP; is the computed runoff hydrograph ordinate and QOBS; is the observed runoff hydrograph ordinate i for the time period, n is the total number of hydrograph ordinates, and WT; is the weight for the hydrograph ordinate i computed from the following equation:⁵

$$WT_i = \frac{QOBS_i + QAVE}{2 \times QAVE} \tag{3.3a}$$

where

$$QAVE = \frac{\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}$$

QAVE is the average observed discharge.

Average Absolute Error. Average Absolute Error is defined as the average of the absolute value of the differences in flowrate between observed and computed hydrographs.

$$AAE = \frac{\sum_{i=1}^{n} \sum |QOBS_i - QCOMP_i|}{n}$$
 (3.4)

Average Percent Absolute Error. Average Percent Absolute Error is defined as the average of absolute value of percent difference between observed and computed hydrograph ordinates.

$$APAE = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{QOBS_i - QCOMP_i}{QOBS_i} \times 100|}{n}$$
 (3.5)

CHAPTER IV - DISCUSSION OF SIMULATION RESULTS

Part I - Observed Rainfall-Runoff Events

Each of the three selected hydrologic models were applied to five observed storm events. Simulated streamflow hydrographs were compared to observed hydrographs at five locations on the main stem channel and one major tributary. A total of 17 rainfall gages with observed data were used to calculate the sub-basin or overland flow runoff in the watershed. Plots of the simulated streamflows versus the observed data are shown in Appendix A, Figures A-1 to A-30.

Streamflow and rainfall gage data for Goodwin Creek Watershed were available from 1981 to 1988. From an inspection of the observed streamflow data, it was noted that there was no observed events which produced a peak flow greater than the estimated 2 year flood of 3500 cfs. Therefore, the five selected observed storm events used for simulation purposes in this study are all less than the 2 year frequency runoff event. Total rainfall in inches for the 5 selected storms are shown in Table A-1 for all 17 rainfall gages.

Streamflow hydrograph parameters considered for calibration and comparison purposes included total runoff in inches (Table A-2), peak flow in cfs (Table A-3), time to peak in minutes (Table A-4), the objective function in cfs (Table A-5), the standard error in cfs (Table A-6), the average absolute error in cfs (Table A-7), and the average absolute error in percent (Table A-8). A separate discussion of the

simulated results for each of the selected storms is included below. For illustration purposes, rainfall gage 54 located near the middle of the watershed was selected for plots of the storm rainfall hyetograph. This gage was considered to closely represent an average of the 17 gages within the watershed.

9:19 pm and had a total duration of 3.52 hours. Very little rainfall preceded this event. The actual rainfall hyetograph for rain gage 54 is shown in Figure A-31. Total rainfall for this event varied from 2.55 to 3.11 inches with an average value of 2.85 inches (Table A-1). Total runoff varied from 0.08 inches at the upper streamflow gage to 0.70 inches at the downstream gaging location (Table A-2). Therefore, infiltration and other losses amounted to about 97% at the upper gage to 75% at the lower gage.

A comparison of the hydrograph plots (Figures A-1 to A-6) and the hydrograph parameters (Tables A-2 to A-8) show that the three models had varying degrees of simulation success. The distributed CASC2D model simulated the overall shape and rate of rise consistently better than the two HEC-1 lumped models. Also, the total volume of runoff appears to be more accurate in the CASC2D model than the HEC-1 models. However, the time to peak and peak flow values for the upper four gages seemed to be closer to the observed with the HEC-1 models than the CASC2D model. The opposite was true for the lower two

gages. This same observation is reflected in the standard and absolute error tables (i.e., that CASC2D was better on lower part of watershed and HEC-1 models were better on the upper part of the watershed). These simulation results can be attributed mainly to the fact that the lumped HEC-1 models were calibrated for the upper two gages (5 and 8) as well as the lower gage (1) while CASC2D was only calibrated using the lower gage (1).

Based upon the above analysis of the simulation results for this storm, the following observations are noted:

- (1) A distributed model, such as CASC2D, containing more accurate spatial data representation of the watershed variability in soils and landuse will simulate more closely the true shape, rate of rise, and volume of the streamflow runoff hydrograph than the lumped methods of HEC-1.
- (2) Lumped unit hydrograph models such as HEC-1 can reproduce observed hydrographs reasonably well, especially when sufficient sub-basin gage data is available for calibration of the unit graph and loss rate parameters.

Storm Event 2. The storm of February 9, 1982 began at 7:00 pm and had a total duration of 6.0 hours. There was a significant amount of rainfall preceeding this event. The storm hyetograph for rain gage 54 is shown in Figure A-32. Total rainfall varied from 1.24 to 1.48 inches with an average of 1.35 inches (Table A-1). Total runoff varied from 0.08

inches at the upper streamflow gage (gage 8) to 0.98 inches at the lower streamflow gage (gage 1) location (Table λ -2). Therefore, infiltration and other losses amounted to 94% at gage 8 to only 27% at gage 1.

For the simulation of this storm event, all three hydrologic models were calibrated using only the flow data at gage 1. Therefore uniform flow loss parameters were estimated and used over the entire basin. Since the lower watershed rainfall gages indicated a significant amount of antecedent rainfall, the initial loss parameters were not used in HEC-1 for this simulation.

A comparison of the hydrograph plots (Figures A-7 to A-12) again shows that CASC2D model consistently simulated the overall shape and rate of rise of the hydrographs fairly accurate except for the initial 100 minutes. However, initial baseflow in the main channel was assumed to be zero for the CASC2D runs and therefore accounts for the large difference between observed values in this initial time period. Due to the large variability from one sub-basin to another in the antecedent moisture conditions, the assumptions of a uniform infiltration rate and no initial losses caused the lumped models of HEC-1 to do a poor job of simulation (either too high or too low). Simulation results of this storm also verify the two observations noted during the simulation of the first storm.

began at 12:00 am and had a duration of 22.2 hours. There were no significant amounts of rainfall preceeding this event and infiltration and other losses were expected to be high. The hyetograph of observed rainfall for rain gage 54 is shown in Figure A-33. Total rainfall varied from 1.91 to 2.69 inches with an average value of 2.18 inches (Table A-1). Total runoff was very small varying from 0.03 inches at the upper gage (gage 8) to 0.10 inches at gage 2 near the downstream end of the watershed (Table A-2). Therefore, infiltration and other losses amounted to approximately 99% at gage 8 to about 95% at gage 2. This rainfall event is typical of the small flashy (i.e., fast rising) storms that occur several times a year in North Mississippi.

A comparison or the hydrograph plots (Figures A-13 to A-18) and the hydrograph parameters show that all of the models were able to simulate this storm event with some degree of success. Overall, CASC2D simulated the shape and rate of rise consistently better than the two HEC-1 lumped models. Also, the total volume of runoff appears to be more accurate in the CASC2D model than the HEC-1 models. As in storm event 1, the time to peak and peak flow volumes for the upper four gages seemed to be closer to the observed with the HEC-1 models than the CASC2D model. The opposite was true for the lower two gages. This same observation is reflected in the standard and absolute error tables. This storm event was calibrated the

same as storm event 1 (ie, the lumped models were calibrated at gages 1, 5, and 8 while CASC2D was only calibrated at gage 1). Based upon the results from this statement, the observations noted in storm event 1 still hold true.

Storm Event 4. The storm of December 27, 1988 began at 8:31 pm and had a total duration of 8.6 hours. Again, there was a significant amount of rainfall preceeding this storm event. The storm hyetograph for rain gage 54 is shown in Figure A-34. Total rainfall varied from 2.12 inches to 2.52 inches with an average of 2.34 inches (Table A-1). Total runoff varied from 0.09 inches at gage 8 to 1.17 inches at gage 1 (Table A-2). Therefore, infiltration and other losses amounted to 96% at gage 8 to 50% at gage 1.

For the simulation of this storm event, all three hydrologic models were calibrated using only the flow data at gage 1. Therefore, as in storm event 2, uniform flow loss parameters were estimated and used over the entire basin. Because the lower watershed rainfall gages indicated a significant amount of antecedent rainfall, the initial loss parameters were not used in HEC-1 for this simulation.

A comparison of the hydrograph plots (Figures A-19 to A-24) and the hydrograph parameters (Tables A-2 to A-8) shows that CASC2D performed better overall than did the HEC-1 models. Due to the large variability from one sub-basin to another in the antecedent moisture conditions, the assumption

of uniform infiltration rate and no infiltration losses caused the lumped models of HEC-1 to do a poor job of simulating this event. The same conclusions can be drawn from this storm event as can be drawn from the previous storm events.

storm Event 5. The storm event of December 2, 1983 began at 12:00 am and had a duration of 31.1 hours. There was significant rainfall preceeding this event, therefore infiltration rates can be expected to be low. The hyetograph of observed rainfall for rain gage 54 is shown in Figure A-35. Total rainfall varied from 5.64 inches to 6.00 inches with an average of 5.79 inches (Table A-1). Total runoff varied from 0.37 inches at gage 8 to 4.19 inches at gage 1 (Table A-2). Therefore, infiltration and other losses amounted to 94% at gage 8 to only 28% at gage 1. Like storm events 2 and 4, all three hydrologic models were calibrated using only the flow data at gage 1. Therefore, uniform loss parameters were estimated over the entire watershed.

A comparison of the hydrograph plots (Figures A-25 to A-30) shows that CASC2D consistently simulated the overall shape and rate of rise better than the lumped models. From the hydrograph parameters, CASC2D performed better than the lumped models in simulating this event except in computing the time to peak. The lumped models were consistently better at estimating the time to peak than was the CASC2D model.

It should be stated that all three hydrologic models are single event models and therefore should not be expected to accurately simulate multiple event storms. With this in mind, all three models did a reasonably good job of estimating the runoff for this event. Finally, based on the results from this event, the observations made from storm event 1 still hold true (i.e., more spatial and sub-basin gage data results in a better simulation regardless as to whether the HEC-1 lumped models or the CASC2D distributed model is used).

Part II - Hypothetical Rainfall-Runoff Events

One HEC-1 lumped model (Snyder) and the distributed model (CASC2D) were applied to two storm events (1 and 3). For this analysis, the lumped model was calibrated using observed flow data at all six gages for both storm events. However, CASC2D was only calibrated using flow data at gage 1. Also, only one rainfall gage (gage 54) was used to calculate overland flow for the watershed. This was done to evaluate how accurate the models would simulate a storm event using an spatially uniform rainfall assumption over the entire watershed. Plots of the simulated streamflows versus the observed data can be seen in Appendix B, Figures B-1 to B-12.

Streamflow hydrograph parameters considered for calibration and comparison purposes included total runoff in inches (Table B-1), peak flow in cfs (Table B-2), time to peak in minutes (Table B-3), the objective function (Table B-4),

the standard error in cfs (Table B-5), the average absolute error in cfs (Table B-6), and the average absolute error in percent (Table B-7). A separate discussion of the simulated results for both storm events is included below.

Storm Event 1. This storm event is described in detail in Part I of the discussion of results. The total rainfall for this event was 2.84 inches (Table A-1). The total runoff varied from 0.08 at gage 8 to 0.70 at gages 1 and 2 (Table B-1). Therefore, infiltration and other losses amounted to about 97% at gage 8 to 75% at gages 1 and 2.

A comparison of the hydrograph plots (Figures B-1 to B-6) and the hydrograph parameters (Tables B-1 to B-7) show that the lumped model did significantly better than did the CASC2D model. Calibrating the lumped model sub-basin unit hydrograph parameters using the observed flows at all six stream gages seemed to negate the assumption of spatially uniform rainfall being used over the watershed. However, since CASC2D was only calibrated using observed data at gage 1, the spatially uniform rainfall assumption did seem to adversely affect the results.

Based upon the results of this simulation, the following observations can be made:

(1) The lumped model can be made to simulate relatively well with limited rainfall data as long as there is sufficient sub-basin stream flow data with which to calibrate and;

(2) For cases of limited rainfall data, CASC2D may also require more sub-basin flow data for calibration purposes. However, when there is detailed spatial rainfall data available, much less streamflow data is required compared to the lumped models. In the event that both sets of these data are absent, the simulation accuracy of CASC2D also may be questionable.

Storm Event 3. This storm is described in detail in Part I of the discussion of results. The total rainfall for this event was 2.14 inches (Table A-1). The total runoff varied from 0.03 inches at gage 8 to 0.10 inches at gage 2 (Table B-1). Therefore, infiltration and other losses amounted to about 99% at gage 8 to 95% at gage 2.

A comparison of the hydrograph plots (Figures B-7 to B-12) along with the hydrograph parameters (Tables B-1 to B-7) shows that the lumped model performed significantly better than did the CASC2D model. Again, using only the downstream gage for calibration and assuming average rainfall spread uniformly over the entire watershed, CASC2D was not able to accurately simulate this observed event. The lumped model faired much better because the calibration of parameters was based on flow data at all six gages. The results from this storm event seem to confirm the previous observations made in storm event 1.

SUBBALY

In setting up the models in this comparison study, the options in the HEC-1 model that most closely represented the components used in the CASC2D model were selected. However, the manner or solution techniques in which the equations or functions are applied in HEC-1 and CASC2D are slightly different. For example, in the Green-Ampt infiltration function component, the HEC-1 version allows for an initial loss parameter to be input for each sub-basin area. This is not available in the CASC2D version, but could be indirectly simulated by defining a depression storage value for each grid cell. Another example is the distribution of rainfall over the watershed. The CASC2D model uses an interpolation scheme based upon the inverse distance squared from the cell to the rain gages while the HEC-1 model uses a weighting factor for each rain gage based upon applying a Theissen-Polygon method to the sub-basin area. Also, the representation of cross sections for the channel routing component is different between the models. HEC-1 models the average cross section for a reach with a 8 point station-elevation scheme which includes both overbanks and the main channel and allows a different roughness value for each of the three sections of the total cross section. In the CASC2D model, the channel cross section is assumed to be rectangular and it lies in the middle of a square channel element. Any given channel path, identified by a series of

elements through which it passes, must have a constant width, depth, and roughness. For each channel element, there can be channel flow restricted to the channel width and an overland (i.e., overbank or floodplain) flow when overflow from the channel occurs.

Because of the inherent differences in the solution techniques used by the two models for solving the equations for the infiltration and channel routing components, slight differences in simulation results are to be expected. However, the totally different methodologies (i.e., lumped vs. distributed) used for solving the overland flow routing component was the principal reason for making this comparison study. Major differences in the results predicted using the two selected models are thought to be primarily due to the overland flow routing components.

The channel routing solution technique is thought to be the greatest limitation of the CASC2D model for two reasons. First, as noted previously in the discussion of the simulation results, the time to peak values predicted by the model were consistently too early as compared to observed data. The use of a rectangular cross-section shape equivalent to bank full channel size causes higher values of hydraulic radius for depths less than bank full stage thus giving higher velocities and quicker travel times. Second, the overland flows and channel routing diffusive wave equations are solved using an explicit numerical solution technique causing the time step to

be restricted to ensure stability. Generally speaking, the more intense the rainfall, the steeper the watershed, and the smaller the grid size, the shorter the time step. For too long a time step, negative depth and/or friction slopes may be computed resulting in an error message to be printed and simulation to stop. Smaller time steps are also required as the depth increases in the channel to ensure stability. This becomes a severe limitation for simulating high intensity, short duration storm events. The model could not be used for a third part of this study planned to simulate a synthetic design storm of 10 year frequency and 6 hour duration equivalent to 6 inches of total rainfall using a Huff First Quartile Rainfall Distribution. During simulation, flowrates quickly reached values greater than bankfull approximately 3500 cfs) and stability restrictions caused the model to quit even with a small time step of 5 seconds. Therefore, Part III - Simulation of Synthetic Design Storms, could not be completed for comparison purposes using the current version of the CASC2D model.

In the 1987 Long Creek report by Zitta & Hubbard, HEC-1 was used to calibrate Snyder's unit hydrograph coefficients for the Goodwin Creek Watershed. They used a total of 10 subbasins and 13 storms in their analysis. Five of the storms that had nearly uniform rainfall over the watershed were selected for calibration purposes and the other storms were used for verification. These values of Snyder's coefficients,

 $C_p=0.843$ and $C_t=0.90$, were also used in our study and appear to work reasonably well. Computed lag time values were adjusted to the selected time step (duration) of 2 minutes for simulation purposes and this value of lag time was used with the SCS unit hydrograph method in HEC-1.

Since the beginning of this study, new research and development of the CASC2D model is underway. One version of CASC2D contains a soil moisture accounting routing and is interfaced with the GRASS GIS to make it a continuous simulation model (Dr. Bahram Saghafian, personal communication). Another investigation (Dr. Fred Ogden, personal communication) is working on a version using a Holly-Priessman implicit numerical technique for the channel routing component. Coordination is on-going by WES to have these new versions tested and verified and then combined into a working comprehensive model that will handle a variety of hydrologic modeling problems.

Future development will also include the addition of upland sediment yield and overland and channel sediment transport routines. This will allow the user to estimate sediment loads from various upland landuse changes to assist in the design of sediment and erosion control structures. CASC2D has the ability to use rainfall data from a weather radar system. As better radar rainfall data becomes available, it will enhance the desirability and use of this model in the future.

Conclusions

Based upon the results of the observed and hypothetical storm events simulated for the Goodwin Creek Watershed, the following conclusions can be made:

- (1) In the case where there is accurate spatial data representation of the watershed variability in soils and landuse, a distributed model will simulate more closely the true shape, rate of rise, and volume of the streamflow runoff hydrograph than the lumped unit hydrograph methods;
- (2) In the case where there is sufficient sub-basin stream gage data available for calibration purposes, the lumped unit hydrograph models such as HEC-1 can reproduce the observed hydrograph reasonably well;
- (3) The lumped models rely heavily on sub-basin stream gage data in order to adequately simulate the observed hydrograph, however CASC2D can simulate adequately as long as accurate spatial data is available. If accurate spatial data and sub-basin stream gage data are both lacking, then both models (i.e., lumped or distributed) may produce questionable results;
- (4) Since the distributive model CASC2D consistently produced more realistic results in terms of hydrograph shape and volume of runoff, it offers more flexibility, when performing sediment studies, than the lumped unit hydrograph models. This will be especially true when evaluating the effects of specific landuse changes or agricultural best

management practices on erosion and sediment control within the watershed;

been developed. In the case where a GIS database had already been developed. In the case where a GIS database does not exist, a decision will have to be made as to whether an intensive stream gaging operation is more cost effective than developing data in a GIS. As time goes by, more GIS information will be available for a low cost. This should help to facilitate the development of a specific watershed GIS database and thus help to reduce the amount of stream gage data needed. Once a GIS database is developed, a distributed model will be no more difficult to setup than a lumped model. In the event that a lumped model is still desired, the GIS data will help estimate the unit hydrograph and infiltration parameters with more accuracy than traditional methods.

Recommendations

The principal objective of this study was to evaluate the watershed hydrology model, CASC2D, for purposes of application to ungaged watersheds. The simulation results from this study show that the CASC2D model will produce adequate results for design purposes with a limited amount of gage data. GIS databases are currently being developed for most of the watersheds located in North Mississippi that will be part of the Demonstration Erosion Control Project. Because less subbasin stream gage data needs to collected for use with a

distributive model than a lumped model, it is recommended that the CASC2D model be used as an aid in the design and evaluation of streambank erosion and grade control structures in the future.

It is recommended that the channel routing component of the CASC2D model be revised as soon as possible to more realistically represent the channel cross sections in order to improve the timing of the simulated runoff hydrographs. It is also recommended that the channel routing component be uncoupled or separated from the overbank routing component for modeling overbank flows. This would allow other numerical channel routing techniques to be evaluated and perhaps eliminate the stability problems caused by too long of time steps. For design purposes of the erosion control measures, the model must be able to handle high intensity, short duration storm events. It is also recommended in the near future, that the CASC2D model be enhanced by adding sediment yield and transport subroutines for both the overland flow and channel routing components. This will allow evaluation of planned watershed best management practices and erosion or sediment control structures.

For future use of the HEC-1 model with Snyder's unit hydrograph method on streams located in North Mississippi that have similar watershed characteristics of Goodwin Creek, it is recommended that the values used in this study will be good starting approximations for calibrations or simulations.

BIBLIOGRAPHY

BIBLIOGRAPHY

- 1. FTN Associates, Ltd. (July 1987). "Data Compilation and Preliminary Assessment of the Hydrologic and Hydraulic Characteristics of Long Creek Watershed", for the U.S. Army Corps of Engineers (Vicksburg District).
- 2. Colson, B.E. and Hudson J.W. (1976). "Flood Frequency of Mississippi Streams". Prepared by the United States Geological Survey for the Mississippi State Highway Department, Jackson, MS.
- 3. Simons, LI, & Associates, Inc. (February 1987). "Preliminary Data Collection, Hydrologic, Hydraulic, and Geomorphic Analysis for Hickahala/Senatobia Creek Watershed", for the U.S. Army Corps of Engineers (Vicksburg District).
- 4. Viessman, Warren Jr., Knapp, John W., Lewis, Gary L., and Harbaugh, Terence E. (2nd Edition 1977). "Introduction to Hydrology", Harper & Row Publishers, New York, Hagerstown, San Francisco, London.
- 5. Hydrologic Engineering Center (September 1990). "HEC-1 Flood Hydrograph User's Manual", U.S. Army Corps of Engineers.
- 6. Julien, Pierre Y. and Saghafian, Bahram, (March 1991). "CASC2D User's Manual", Colorado State University Center for Geosciences.
- 7. United States Geological Survey (1991). "Flood Characteristics of Mississippi Streams", U.S. Department of the Interior.
- 8. Rawls, W.J., Brakensiek, D.L., and N. Miller (1983), "Green-Ampt Infiltration Parameters from Soils Data". Journal of Hydraulic Engineering, American Society of Civil Engineers, Vol. 109, No. 1, pp. 62-70.
- 9. Bureau of Reclamation (1965), "Design of Small Dams", Water Resources Technical Publication, Washington D.C.
- 10. Ponce, Victor Miguel (1989), "Engineering Hydrology-Principles and Practices", Prentice-Hall Inc., Englewoods Cliffs, New Jersey 07632.
- 11. Ponce, Victor Miguel (1986), "Diffusion Wave Modeling of Catchment Dynamics", Journal of Hydraulics Division, ASCE, Vol. 112, No. 8, pp. 716-727.

APPENDIX A - Tables and Hydrographs for Simulation of Observed Storm Events

Table A-1 - Total Rainfall (Inches) - Part I

		St	orm Ever	nt	
Rainfall Gage	1	2	3	4	5
1	2.66	1.48	1.96	2.43	5.81
2	2.81	1.44	1.92	2.41	5.81
4	2.91	1.41	2.00	2.44	5.77
5	3.01	1.34	2.18	2.41	5.69
6	2.66	1.44	2.05	2.50	5.81
7	2.96	1.31	2.32	2.31	5.68
8	2.90	1.29	2.57	2.34	5.85
10	3.04	1.24	2.69	2.12	5.85
11	2.97	1.24	2.58	2.14	5.67
13	2.69	1.40	1.91	2.53	6.00
14	2.79	1.37	1.98	2.32	5.79
50	3.04	1.41	2.15	2.52	5.78
51	2.81	1.37	2.00	2.15	5.91
52	2.75	1.34	1.93	2.28	5.74
53	2.55	1.27	2.11	2.29	5.85
54	2.84	1.32	2.14	2.47	5.81
55	3.11	1.24	2.49	2.17	5.64
Total	48.50	22.91	36.98	39.83	98.46
Average	2.85	1.35	2.18	2.34	5.79

Table A-2 - Total Runoff (Inches) - Part I

Discharge	Computation		St	orm Eve	ent	
Gage No.	Method	1	2	3	4	5
1	Observed	.70	.98	.09	1.17	4.19
	CASC2D	. 65	. 94	.09	1.10	4.68
	SCS	.53	. 66	.09	.84	2.77
•	Snyder	.53	.66	.09	.82	2.76
2	Observed	.70	.95	.10	.92	3.99
	CASC2D	.57	.80	.10	1.35	3.87
	SCS	.34	.42	.06	.51	1.80
	Snyder	.34	.42	.06	.51	1.80
3	Observed	.39	.46	.06	. 52	1.95
	CASC2D	.31	.41	.07	. 68	1.94
	SCS	.45	.73	.07	.91	3.21
	Snyder	.45	.73	.07	.90	3.20
4	Observed	.13	.16	.02	.20	.79
	CASC2D	.10	.13	.02	.22	. 62
	SCS	.14	.21	.02	.26	.92
	Snyder	.14	.21	.02	.26	. 92
5	Observed	.22	.22	.06	.25	1.04
	CASC2D	.20	.23	.06	.38	1.11
	SCS	.17	.24	.05	.30	1.12
	Snyder	.17	.24	.05	.29	1.12
8	Observed	.08	.08	.03	.09	.37
	CASC2D	.06	.06	.02	.11	.33
	SCS	.07	.10	.02	.11	.45
	Snyder	.07	.10	.02	.11	.45

Table A-3 - Peak Flow (CFS) - Part I

Discharge	Computation		St	orm Eve	ent	
Gage No.	Method	1	2	3	4	5
1	Observed	1405	1000	158	1219	3383
	CASC2D	1396	1046	162	1218	3086
	SCS	1532	975	158	1046	1977
	Snyder	1785	1087	185	1198	2139
2	Observed	1541	998	181	1004	3256
•	CASC2D	1345	881	187	1393	2671
	SCS .	1131	687	132	733	1322
	Snyder	1308	766	156	835	1414
3	Observed	1051	505	152	569	1785
	CASC2D	868	449	177	727	1406
	SCS	1182	993	164	1060	2154
	Snyder	1377	1114	177	1145	2306
4	Observed	347	188	51	250	669
	CASC2D	327	148	36	227	446
	SCS	509	354	49	355	697
	Snyder	594	395	57	403	741
5	Observed	560	277	146	313	916
	CASC2D	702	290	186	431	841
	SCS	472	349	128	359	773
	Snyder	538	391	145	399	827
8	Observed	260	110	98	124	350
	CASC2D	237	94	97	121	255
	SCS	268	175	88	158	331
	Snyder	307	194	102	175	343

Table A-4 - Time to Peak (Minutes) - Part I

Discharge	Computation		St	orm Eve	nt	
Gage No.	Method	1	2	3	4	5
1	Observed	266	296	350	328	1354
	CASC2D	232	338	380	254	1324
	SCS	232	248	272	152	1332
	Snyder	226	238	258	142	1332
2	Observed	248	248	294	306	1344
	CASC2D	210	308	298	206	1310
	SCS	200	214	198	118	1308
	Snyder	194	208	194	110	1296
3	Observed	218	224	262	292	1332
	CASC2D	196	248	244	178	1316
	SCS	234	242	264	180	1344
	Snyder	224	232	252	158	1332
4	Observed	206	234	218	264	1322
	CASC2D	164	300	174	196	1312
	SCS	206	210	200	114	1320
	Snyder	202	206	196	104	1308
5	Observed	202	224	226	268	1324
	CASC2D	172	218	200	132	1308
	SCS	224	236	224	228	1356
	Snyder	218	228	216	152	1344
8	Observed	192	208	194	224	1320
	CASC2D	162	. 182	166	. 210	1310
	SCS	194	206	182	126	1332
•	Snyder	188	200	178	120	1320

Table A-5 - Objective Function (CFS) - Part I

Discharge	Computation		St	orm Eve	nt	
Gage No.	Method	1	2	3	4	5
1	Observed					
	CASC2D	364	56	29	213	356
	SCS	324	197	71	342	531
•	Snyder	498	249	86	414	534
2	Observed					
	CASC2D	405	101	9	389	283
	SCS	401	271	57	254	569
	Snyder	460	282	67	289	566
3	Observed					
	CASC2D	216	44	50	164	126
	SCS	153	332	23	441	373
	Snyder	188	374	29	511	412
4	Observed					
	CASC2D	116	29	14	57	88
	SCS	86	83	6	121	55
•	Snyder	151	105	9	150	71
5	Observed					
	CASC2D	204	24	48	146	65
	SCS	93	48	13	73	94
	Snyder	70	54	10	99	82
8	Observed					
	CASC2D	76	16	35	39	37
	· SCS	15	35	9	53	31
	Snyder	27	43	18	63	35

Table A-6 - Standard Error (CFS) - Part I

Discharge	Computation		St	orm Eve	nt	
Gage No.	Method	1	2	3	4	5
1	Observed					
	CASC2D	283	59	30	151	278
	SCS	267	200	43	256	450
	Snyder	391	250	52	299	479
2	Observed					
	CASC2D	331	97	7	209	217
	SCS	384	291	46	208	549
	Snyder	450	310	52	233	565
3	Observed					
	CASC2D	173	42	26	112	91
	SCS	98	213	16	249	247
	Snyder	106	232	20	283	264
4	Observed					
	CASC2D	87	27	9	36	68
	SCS	45	58	4	60	50
	Snyder	78	71	6	72	61
5	Observed					
	CASC2D	133	22	26	71	52
	SCS	89	40	10	38	71
	Snyder	64	42	8	50	64
8	Observed					
	CASC2D	58	15	22	21	27
	· SCS	14	25	6	26	25
	Snyder	20	30	11	30	28

Table A-7 - Average Absolute Error (CFS) - Part I

Discharge	Computation		St	orm Eve	nt	
Gage No.	Method	1	2	3	4	5
1	Observed					
	CASC2D	172	43	15	83	170
	SCS	180	179	25	139	281
	Snyder	259	220	31	163	305
2	Observed					
	CASC2D	203	72	5	91	119
	SCS	242	240	33	119	332
	Snyder	288	254	37	133	343
3	Observed					
	CASC2D	106	28	9	62	54
	SCS	57	144	11	145	179
	Snyder	57	158	13	165	184
· 4	Observed					
	CASC2D	52	20	5	16	38
	SCS	22	42	3	27	35
	Snyder	42	50	4	32	42
5	Observed					
	CASC2D	77	16	14	29	34
	SCS	38	34	8	15	41
	Snyder	31	33	6	22	42
8	Observed					
	CASC2D	36	. 11	12	. 7	15
	SCS	8	20	4	11	17
	Snyder	13	23	6	13	18

Table A-8 - Average Percent Absolute Error (%) - Part I

Discharge	Computation		S	torm Eve	ent	
Gage No.	Method	1	2	3	4	5
1	Observed				*	***
	CASC2D	88	24	47	109	544
	SCS	76	60	264	124	898
	Snyder	104	69	326	178	982
2	Observed					
	CASC2D	303	26	37	145	277
	SCS	99	69	200	114	397
	Snyder	134	72	236	146	438
3	Observed					~
	CASC2D	303	22	6344	442	408
	SCS	49	59	7936	271	1780
	Snyder	68	73	11449	561	2199
4	Observed					~
•	CASC2D	792	28	184	1134	1291
	SCS	68	60	78	431	3858
•	Snyder	97	75	103	692	5120
5	Observed					
	CASC2D	7318	24	1154	267	221
	SCS	52	41	74	33	286
	Snyder	71	43	74	84	348
8	Observed				~	
	CASC2D	2590	36	753	821	1484
_	· SCS	71	63	161	442	3909
-	Snyder	85	76	230	674	4864

Figure λ -1 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 1 at Gage 1 - Part I.

Discharge (CFS)

Figure A-2 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 1 at Gage 2 - Part I.

Figure λ -3 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 1 at Gage 3 - Part I.

Discharge (CFS)

Figure $\lambda-4$ - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 1 at Gage 4 - Part I.

Discharge (CFS)

Figure λ -5 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 1 at Gage 5 - Part I.

Discharge (CFS)

Figure A-6 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 1 at Gage 8 - Part I.

Figure λ -7 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 2 at Gage 1 - Part I.

Pigure A-8 - plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 2 at Gage 2 - part I.

Discharge (CFS)

Figure A-9 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 2 at Gage 3 - Part I.

Discharge (CFS)

Figure A-10 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 2 at Gage 4 - Part I.

Figure A-11 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 2 at Gage 5 - Part I.

Discharge (CFS)

Figure λ -12 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 2 at Gage 8 - Part I.

Discharge (CFS)

Figure A-13 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 3 at Gage 1 - Part I.

Discharge (CFS)

Figure λ -14 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 3 at Gage 2 - Part I.

Discharge (CFS)

Figure λ -15 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 3 at Gage 3 - Part I.

Discharge (CFS)

Figure A-16 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 3 at Gage 4 - Part I.

Discharge (CFS)

Figure λ -17 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 3 at Gage 5 - Part I.

Discharge (CF8)

Figure λ -18 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 3 at Gage 8 - Part I.

Discharge (CFS)

Figure λ -19 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 4 at Gage 1 - Part I.

Figure λ -20 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 4 at Gage 2 - Part I.

Discharge (CFS)

Figure λ -21 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 4 at Gage 3 - Part I.

Discharge (CFS)

Figure λ -22 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 4 at Gage 4 - Part I.

Discharge (CFS)

Figure A-23 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 4 at Gage 5 - Part I.

Discharge (CFS)

Figure A-24 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 4 at Gage 8 - Part I.

Discharge (CFS)

Figure A-25 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 5 at Gage 1 - Part I.

Figure A-26 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 5 at Gage 2 - Part I.

Figure A-27 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 5 at Gage 3 - Part I.

Discharge (CFS)

Figure A-28 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 5 at Gage 4 - Part I.

Discharge (CFS)

Figure λ -29 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 5 at Gage 5 - Part I.

Discharge (CFS)

Figure λ -30 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 5 at Gage 8 - Part I.

Intensity (inches/Hour)

Figure A-31 - Storm Event No. 1 - Rainfall Hyetograph at Rainfall Gage No. 54

intensity (inches/Hour)

Figure A-32 - Storm Event No. 2 - Rainfall Hyetograph at Rainfall Gage No. 54

Intensity (Inches/Hour)

Figure A-33 - Storm Event No. 3 - Rainfall Hyetograph at Rainfall Gage No. 54

Intensity (Inches/Hour)

Figure A-34 - Storm Event No. 4 - Rainfall Hyetograph at Rainfall Gage No. 54

8 **Storm Event** 27 Goodwin Creek Watershed Rainfall Gage No. 54 2 헏 9 4

Intensity (Inches/Hour)

Figure A-35 - Storm Event No. 5 - Rainfall Hyetograph at Rainfall Gage No. 54

APPENDIX B - Tables and Hydrographs for Simulation of Hypothetical Storm Events

Table B-1 - Total Runoff (Inches) - Part II

Discharge	Computation	Storm Event	
Gage No.	Method	1	3
1	Observed	.70	.09
	CASC2D	.70	.14
	Snyder	.79	.09
2	Observed	.07	.095
	CASC2D	.61	.12
	Snyder	. 63	.08
3	Observed	.39	.06
	CASC2D	.32	.07
	Snyder	.38	.08
4	Observed	.13	.02
	CASC2D	.11	.02
	Snyder	.11	.02
5	Observed	.22	.06
	CASC2D	.20	.05
	Snyder	.13	.05
8	Observed	.08	.03
	CASC2D	.06	.01
	Snyder	.05	.03

Table B-2 - Peak Flow (CFS) - Part II

Discharge Gage No.	Computation Method	Storm Event	
		1	3
1	Observed	1405	158
	CASC2D	1354	144
	Snyder	1936	176
2	Observed	1541	181
	CASC2D	1255	144
	Snyder	1604	205
3	Observed	1051	152
	CASC2D	726	108
	Snyder	1128	220
4	Observed	347	51
	CASC2D	244	53
	Snyder	447	72
5	Observed	560	146
	CASC2D	514	97
	Snyder	433	177
8	Observed	260	98
	CASC2D	151	43
	Snyder	. 249	116

Table B-3 - Time to Peak (Minutes) - Part II

Discharge Gage No.	Computation	Storm Event	
	Method	1	3
1	Observed	266	350
	CASC2D	218	346
	Snyder	244	358
2	Observed	248	294
	CASC2D	198	274
	Snyder	228	290
3	Observed	218	262
	CASC2D	172	250
	Snyder	220	244
4	Observe d	206	218
	CASC2D	150	164
	Snyder	192	202
5	Observed	202	226
	CASC2D	154	204
	Snyder	208	214
8	Observed	192	. 194
	CASC2D	150	162
	Snyder	. 176	176

Table B-4 - Objective Function (CFS) - Part II

Discharge Gage No.	Computation	Storm Event	
	Method	1	3 .
1	Observed		***
	CASC2D	479	53
	Snyder	397	19
2	Observed		
	CASC2D	491	59
	Snyder	221	11
3	Observed		
	CASC2D	284	41
	Snyder	67	54
4	Observed		
	CASC2D	119	22
	Snyder	97	13
5	Observed		
	CASC2D	201	29
	Snyder	84	21
8	Observed		
	CASC2D	79	25
	Snyder	41	26

Table B-5 - Standard Error (CFS) - Part II

Discharge Gage No.	Computation	Storm Event	
	Method	1	3
1	Observed		
	CASC2D	364	34
	Snyder	254	16
2	Observed		
	CASC2D	400	40
	Snyder	176	10
3	Observed		
	CASC2D	224	26
	Snyder	50	29.
4	Observed		
	CASC2D	95	13
	Snyder	65	8
5	Observed		
	CASC2D	146	21
	Snyder	71	13
8	Observed		
	CASC2D	65	21
	Snyder	31	14

Table B-6 - Average Absolute Error (CFS) - Part II

Discharge Gage No.	Computation	Storm Event	
	Method	1	3
1	Observed	49 -9 -9	
	CASC2D	227	17
٠.	Snyder	143	9
2	Observed		
	CASC2D	260	19
	Snyder	118	9
3	Observed		
	CASC2D	142	13
	Snyder	35	17
4	Observed		
	CASC2D	61	7
	Snyder	39	5
5	Observed		
	CASC2D	92	13
	Snyder	44	8
8	Observed		
	CASC2D	41	13
	Snyder	19	7

Table B-7 - Average Percent Absolute Error (%) - Part II

Discharge Gage No.	Computation	Storm Event	
	Method	. 1	3
1	Observed	200	
	CASC2D	224	212
	Snyder	71	52
2	Observed		
	CASC2D	2481	229
	Snyder	99	60
3	Observed		7
	CASC2D	1783	23446
	Snyder	71	14268
4	Observed		
	CASC2D	1776	357
	Snyder	110	120
5	Observed		
	CASC2D	36472	2048
·	Snyder	76	78
8	Observed		
	CASC2D	8042	1789
	Snyder	86	266

Discharge (CFS)

Figure B-1 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 1 at Gage 1 - Part II.

Figure B-2 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 1 at Gage 2 - Part II.

Discharge (CFS)

Figure B-3 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 1 at Gage 3 - Part II.

Discharge (CFS)

Figure B-4 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 1 at Gage 4 - Part II.

Discharge (CFS)

Figure B-5 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 1 at Gage 5 - Part II.

Discharge (CFS)

Figure B-6 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 1 at Gage 8 - Part II.

Discharge (CFS)

Figure B-7 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 3 at Gage 1 - Part II.

Discharge (CFS)

Figure B-8 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 3 at Gage 2 - Part II.

Discharge (CFS)

Figure B-9 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 3 at Gage 3 - Part II.

Discharge (CFS)

Figure B-10 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 3 at Gage 4 - Part II.

Discharge (CFS)

Figure B-11 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 3 at Gage 5 - Part II.

Discharge (CFS)

Figure B-12 - Plot of Computed Hydrographs versus Observed Hydrograph for Storm Event 3 at Gage 8 - Part II.

APPENDIX C - Sample Input Files

10	GOODW	IN CREEK	WATERSHED							
		NETHOD	6/22/93	12:24	PH					
IT	2	180CT81	2119	300						
10										
PG	4	180CT81	2119							
IN	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.020	0.020	0.020	0.020
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
PI	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.022	0.022	0.022
	0.022	0.022	0.022	0.022	0.022	0.022	0.003	0.003	0.003	0.003
	0.003	0.003	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
	0.013	0.013	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043
	0.043	0.043 0.016	0.043 0.000	0.043	0.016 0.000	0.016 0.000	0.016	0.016 0.019	0.016 0.019	0.016 0.019
	0.019	0.019	0.019	0.019		0.019	0.019	0.019	0.019	0.020
	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
	0.020	0.020	0.020	0.049		0.049	0.049	0.049	0.049	0.049
	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035
	0.035	0.000	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009
	0.009	0.009	0.009	0.009		0.009	0.009	0.009	0.005	0.005
	0.005	0.005	0.005	0.005		0.005	0.005	0.005	0.005	0.005
	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	0.005	0.005	0.020	0.020		0.020	0.020	0.020	0.012	0.012
	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.050	0.004
PG	5									
IN	1	1800781	2119						•	
	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.014	0.014	0.014	0.014	0.014	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.901	0.001	0.001	0.004	0.004	0.004	0.004
	0.004	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
	0.025	0.025	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
	0.013	0.013 0.030	0.013 0.030	0.013	0.013 0.030	0.030 0.030	0.030	0.030	0.030	0.030
	0.037	0.037	0.037	0.037	0.000	0.000	0.030 0.000	0.037 0.000	0.037 0.000	0.037 0.010
	0.010	0.010	0.010	0.016		0.016	0.016	0.016	0.016	0.016
	0.016	0.016	0.016	0.016		0.016	0.016	0.016	0.016	0.016
PI	0.016	0.016	0.040	0.040		0.040	0.040	0.040	0.040	0.040
PI	0.040	0.062	0.062	0.062	0.062	0.062	0.029	0.029	0.029	0.029
	0.029	0.029	0.029	0.010	0.010	0.010	0.010	0.010	0.010	0.010
	0.000	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.006	0.006	0.006		0.006	0.006	0.007	0.007	0.007
	0.007 0.007	0.007 0.007	0.007 0.007	0.007 0.007		0.007 0.020	0.007 0.020	0.007 0.020	0.007 0.020	0.007 0.020
	0.020	0.020	0.012	0.012		0.012	0.012	0.012	0.025	0.025
	0.025	0.025	0.003	0.003		0.003	0.003	0.003	0.003	0.003
	0.003	0.005	0.000	••••	0.000	0.005	0.005	0.005	0.000	******
PG	6		•							
· IN	1	180CT81	2119							
	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.008	0.008	0.008	0.008	0.008	0.008	800.0	0.008
	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000 0.000	0.000		0.000	0.000 0.027	0.000 0.027	0.000 0.027	0.000 0.027
	0.027	0.000 0.027	0.000	0.027		0.027 0.027	0.027	0.027	0.027	0.027
	0.027	0.027	0.027	0.027		0.027	0.018	0.018	0.018	0.018
	0.018	0.070	0.015	0.015		0.015	0.015	0.015	0.039	0.039
	0.039	0.039	0.039	0.039		0.039	0.039	0.039	0.005	0.005
	0.005	0.005	0.005	0.005		0.005	0.005	0.005	0.005	0.005

Sample Input for Snyder Lumped Model

	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031
PI	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031
PI	0.031	0.031	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
PI	0.040	0.040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PI	0.000	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
PI	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.010	0.010	0.010	0.010
	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.020	0.020
	0.020	0.005	0,005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	0.005	0.000	0,000	*****	••••	******				
PG	7									
IN	1	180CT81	2119							
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
				0.000	0.006	0.006	0.006	0.006	0.006	0.006
	0.000	0.000	0.000						0.003	0.003
	0.006	0.006	0.003	0.003	0.003	0.003	0.003	0.003		
	0.008	0.008	0.008	0.006	0.008	0.008	0.008	0.008	0.008	0.006
	0.006	0.008	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
	0.032	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.003	0.003
	0.003	0.003	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016
	0.016	0.016	0.016	0.016	0.016	0.011	0.011	0.011	0.011	0.011
	0.011	0.011	0.025	0.025	0.025	0.025	0.042	0.042	0.042	0.042
	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.045	0.045	0.045
PI	0.045	0.045	0.045	0.045	0.045	0.040	0.040	0.040	0.040	0.040
PI	0.060	0.080	0.006	0.006	0.006	0.006	0.006	0.006	0,006	0.006
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
PI	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
PI	0.006	0.006	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011
	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.035	0.035	0.035
	0.035	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.000
	0.000						• • • • •			
PG	8									
11	1	180CT81	2119				•			
	0.000	0.000	0.000	0.004	0.004	0.004	0.004	0.004	0.004	0.004
	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.007
	0.007	0.007	0.007	0.007	0.007	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.027	0.027	0.027	0.027	0.027
	0.027	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018
	0.018	0.018	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022
	0.022	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023
	0.023	0.023	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
	0.040	0.025	0.005	0.005	0.005	0.005	0.005	0.018	0.018	0.018
			-:					0.018	0.018	0.017
	0.018	0.018	0.018	0.018	0.018	0.018	0.018			
	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017
	0.017	0.017	0.017	0.069	0.069	0.069	0.069	0.069	0.069	0.069
	0.069	0.069	0.000	0.000	0.000	0.000	0.000	0.006	0.000	0.000
	0.000	0.025	0.025	0.020	0.020	0.005	0.005	0.005	0.005	0.005
	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
PI	0.023	0.023	0.023	0.023	0.006	0.006	0.006	0.006	0.006	0.006
ΡI	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.017	0.017
PI	0.017									
PG	10									
IN	1	180CT81	2119						_	
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.020	0.020	0.020	0.020	0.020	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	9.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Sample input for Snyder Lumped Model - Continued

PI	0.000	0.000	0.000	0.000	0.031	0.031	0.031	0.031	0.031	0.031
Pi	0.031	0.031	0.031	0.031	0.031	0.002	0.002	0.002	0.002	0.002
	0.035	0.035	0.035	0.035	0.010	0.010	0.010	0.010	0.010	0.010
	0.010	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033
	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033
	0.004	0.004	0.004	0.004	0.004	0.020	0.020	0.020	0.020	0.020
		0.020							0.030	-
	0.020		0.020	0.020	0.020	0.020	0.020	0.030		0.030
	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030
	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030
	0.030	0.030	0.030	0.016	0.016	0.016	0.016	0.016	0.016	0.016
Pi	0.016	0.000	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
PI	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
PI	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
PI	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
PI	0.006	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019
	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.050	0.050	0.003
	0.003									
PG										
IN		1800781	2119							
			. —	0.000						
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.005	0.005	0.030	0.030	0.030	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
PI	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
ΡI	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
PI	0.001	0.001	0.001	0.001	0.001	0.017	0.017	0.017	0.050	0.050
PI	0.050	0.050	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.006
PI	0.008	0.008	0.008	0.008	0.050	0.050	0.013	0.013	0.013	0.010
	0.010	0.010	0.025	0.025	0.025	0.025	0.025	0.025	0.064	0.064
	0.064	0.064	0.064	0.026	0.026	0.026	0.026	0.026	0.007	0.007
	0.007	0.002	0.002	0.002	0.002	0.002	0.007	0.007	0.007	0.007
	0.007	0.007	0.042	0.042	0.042	0.042				
	0.011	0.011	0.011				0.042	0.011	0.011	0.011
				0.011	0.011	0.011	0.028	0.028	0.028	0.028
	0.028	0.045	0.045	0.045	0.045	0.060	0.060	0.037	0.037	0.037
	0.040	0.050	0.020	0.020	0.020	0.020	0.020	0.011	0.011	0.011
	0.011	0.011	0.011	0.011	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.006	0.006	0.006	0.005	0.005	0.005	0.005	0.005	0.005
ΡI	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.006
PI	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.080	0.012
PI	0.012	0.012	0.012	0.012	0.012	0.009	0.009	0.009	0.009	0.009
PI	0.009									
PG	13									
IN	1	180CT81	2119							
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PI	0.000	0.023	0.023	0.023	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.012	0.012	0.012	0.012	0.012	0.012
	0.012	0.012	0.012	0.012	0.003	0.003	0.003	0.003	0.003	0.003
	0.003	0.018	0.018	1.018	0.018	0.006	0.006	0.006	0.006	0.006
	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034
	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.002	0.002	0.002
	0.002	0.002	0.015	0.015	0.018	0.018	0.018	0.018	0.018	0.018
	0.018	0.018	0.018	0.018	0.018	0.018	0.010	0.010	0.010	0.010
	0.010	0.010	0.010	0.010	0.041	0.041	0.041	0.041	0.041	0.041
	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041
	0.041	0.041	0.041	0.018	0.018	0.018	0.018	0.018	0.018	0.018
	0.018	0.020	0.020	0.007	0.007	0.007	0.007	0.007	0.007	0.007
	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.006	0.006	0.006
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.006	0.006	0.006	0.006	0.013	0.013	0.013	0.013	0.013
	0.013	0.013	0.013	0.013	0.013	0.013	0.011	0.011	0.011	0.011
	0.011	0.011	0.011	0.011	0.011	0.004	0.004	0.004	0.004	0.004
	0.004									•
PG	14									

Sample input for Snyder Lumped Model - Continued

IM	1	180CT81	2119							
PI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.020	0.020	0.020	0.020	0.020	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pl		0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000 0.013	0.000 0.013	0.000	0.000	0.000 0.013	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010
	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036
	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.003	0.003
	0.003	0.003	0.003	0.003	0.008	0.008	0.008	0.006	0.006	0.006
	0.026	0.026	0.028	0.026	0.026	0.028	0.032	0.032	0.032	0.032
	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
	0.032	0.032	0.032	0.032	0.032	0.037	0.037	0.037	0.037	0.037
	0.037	0.037	0.037	0.037	0.014	0.014	0.014	0.014	0.014	0.014
	0.014	0.010	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009
	0.009	0.009 0.005	0.009 0.005	0.009 0.005	0,009 0,005	0.009 0.005	0.005 0.005	0.005 0.005	0.005 0.005	0.005 0.005
	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.013	0.013	0.013
	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
	0.013	0.013	0.013	0.013	0.013	0.003	0.003	0.003	0.003	0.003
	0.003		******	******	***************************************	4.000	******	0.000		
	0.171									
PG	50									
IN		180CT81	2119							
	0.000	0.004	0.004	0.004	0.004	0.004	0.004	0.040	0.040	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0. 00 1 0. 00 1	0.001 0.020	0.001 0.020	0.001 0.020
	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.003	0.003	0.003
	0.003	0.003	0.003	0.003	0.020	0.020	0.020	0.020	0.027	0.027
	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027
	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027
PI	0.027	0.027	0.027	0.027	0.000	0.000	0.000	0.025	0.025	0.015
	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
	0.015	0.015	0.015	0.015	0.024	0.024	0.024	0.024	0.024	0.024
	0.024	0.024	0.024	0.024	0.051	0.051	0.051	0.051	0.051	0.051
	0.051	0.051	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.013
	0.013	0.013 0.002	0.013	0.013	0.013	0.013	0.013	0.013 0.002	0.013 0.002	0.013 0.002
	0.002	0.002	0.002 0.006	0.002 0.006	0.002	0.002 0.006	0.002 0.006	0.006	0.006	0.006
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.006	0.006	0.017	0.017	0.017	0.017	0.017	0.017	0.017
	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.020
PI	0.020	0.020	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
PI	0.005									
PG	51									
IN		180CT81	2119,							
	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.006	0.000	0.000 200.0	0.000
	0.006	0.000	0.018 0.000	0.018 0.000	0.018 0.000	0.018 0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.017	0.017	0.017
	0.008	0.008	0.006	0.006	0.008	0.006	0.002	0.002	0.002	0.0GZ
PI	0.002	0.002	0.030	0.030	0.007	0.007	0.007	0.011	0.011	0.011
PI	0.011	0.011	0.011	0.011	0.036	0.036	0.036	0.036	0.036	0.036
	0.036	0.057	0.057	0.057	0.035	0.035	0.033	0.033	0.033	0.003
	0.003	0.003	0.003	0.003	0.003	0.003	0.040	0.005	0.005	0.005
	0.005	0.024	0.024	0.024	0.024	0.024	0.023	0.023	0.023	0.010
	0.010	0.010	0.010	0.010	0.010	0.028	0.028 0.103	0.028 0.103	0.026 0.103	0.028 0.033
	0.033	0.033 0.033	0.033 0.033	0.033 0.030	0.033 0.030	0.033 0.030	0.103	0.103	0.030	0.030
	0.000	0.000	0.033	0.033	0.030	0.030	0.033	0.013	0.013	0.015
71	v. VV	v.vv	V.VIJ	7.713	4.413		T. 413			

Sample input for Snyder Lumped Model - Continued

PI	0.015	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
PI	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.010	0.010	0.010	0.025	0.025	0.006	0.008	0.008	0.008
				0.023	0.023	0.003	0.003	0.003	0.003	0.003
Pi	0.008	0.008	0.023	0.023	0.025	0.003	0.003	0.003	0.003	0.003
	0.003									
PG	52									
IN	1	180CT81	2119							
PI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.017	0.017	0.017	0.017	0.017	0.017	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
									0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.016	0.016	0.016	0.016
PI	0.016	0.013	0.013	0.013	0.004	0.004	0.004	0.004	0.004	0.004
PI	0.004	0.005	0.005	0.005	0.005	0.015	0.015	0.015	0.015	0.015
	0.015	0.015	0.015	0.048	0.048	0.048	0.048	0.048	0.048	0.048
	0.048	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
	0.000	0.000	0.000	0.017	0.017	0.017	0.003	0.003	0.003	0.003
	0.032	0.032	0.032	0.032	0.032	0.032	0.009	0.009	0.009	0.009
	0.009	0.009	0.009	0.009	0.025	0.025	0.025	0.025	0.025	0.025
PI	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054
PI	0.054	0.035	0.035	0.035	0.035	0.017	0.017	0.017	0.017	0.017
	0.017	0.000	0.012	0.012	0.012	0.012	0.012	0.012	0.006	0.006
	0.006		0.006							
		0.006		0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.011
PI	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.010
PI	0.010	0.020	0.020	0.020	0.020	0.002	0.002	0.002	0.002	0.002
	0.002							*****		
PG	53									
IN	~~~	180CT81	2119							
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.007	0.007	0.007	0.007	0.007
	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
	0.002	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.003	0.003
	0.003	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.018	0.018
	0.018	0.018	0.018	0.018	0.027	0.027	0.027	C.027	0.027	0.027
	0.027	0.045	0.045	0.033	0.033	0.033	0.033	0.035	0.035	0.035
ΡI	0.035	0.002	0.002	0.002	0.002	0.002	0.002	0.010	0.010	0.010
PI	0.003	0.003	0.003	0.012	0.012	0.012	0.012	0.012	0.120	0.011
PI	0.011	0.011	0.011	0.011	0.011	0.011	0.017	0.017	0.017	0.017
	0.017	0.017	0.050	0.050	0.010	0.010	0.067	0.067	0.067	0.050
	0.050	0.050	0.050	0.033	0.033	0.033	0.023	0.023	0.023	0.025
_	0.025	0.007		0.007	0.007					
			0.007			0.007	0.007	0.007	0.007	0.007
	0.007	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
PI	0.004	0.008	0.008	0.008	0.008	0.008	0.008	0.020	0.020	0.020
	0.006									
PI				0.005	0.005	0.005	0.018	0.018	0.018	0.018
	0.005	0.005	0.005	0.005	0.005	0.005	0.018	0.018	0.018	0.018
PI	0.005 0.003			0.005	0.005	0.005	0.018	0.018	0.018	0.018
PI PG	0.005 0.003 54	0.005	0.005	0.005	0.005	0.005	0.018	0.018	0.018	0.018
PI PG IN	0.005 0.003 54 1	0.005 180CT81	2119							
PI PG IN PI	0.005 0.003 54 1 0.000	0.005 180CT81 0.000	0.005 2119 0.016	0.016	0.016	0.016	0.016	0.016	0.001	0.001
PI PG IN PI PI	0.005 0.003 54 1 0.000 0.001	0.005 180CT81 0.000 0.001	0.005 2119 0.016 0.001	0.016 0.001	0.016 0.001	0.016 0.001	0.016 0.001	0.016 0.001		0.001 0.001
PI PG IN PI PI	0.005 0.003 54 1 0.000	0.005 180CT81 0.000 0.001	0.005 2119 0.016	0.016	0.016	0.016	0.016	0.016	0.001	0.001
PI PG IN PI PI PI	0.005 0.003 54 1 0.000 0.001 0.001	0.005 180CT81 0.000 0.001 0.001	0.005 2119 0.016 0.001 0.001	0.016 0.001 0.001	0.016 0.001 0.001	0.016 0.001 0.001	0.016 0.001 0.001	0.016 0.001 0.001	0.001 0.001 0.001	0.001 0.001 0.001
PI PG IN PI PI PI	0.005 0.003 54 1 0.000 0.001 0.001 0.001	0.005 180CT81 0.000 0.001 0.001 0.001	2119 0.016 0.001 0.001 0.001	0.016 0.001 0.001 0.001	0.016 0.001 0.001 0.001	0.016 0.001 0.001 0.001	0.016 0.001 0.001 0.001	0.016 0.001 0.001 0.001	0.001 0.001 0.001 0.001	0.001 0.001 0.001 0.001
PI PG IN PI PI PI PI	0.005 0.003 54 1 0.000 0.001 0.001 0.001	0.005 180CT81 0.000 0.001 0.001 0.001 0.001	2119 0.016 0.001 0.001 0.001 0.001	0.016 0.001 0.001 0.001 0.001	0.016 0.001 0.001 0.001 0.001	0.016 0.001 0.001 0.001 0.001	0.016 0.001 0.001 0.001 0.001	0.016 0.001 0.001 0.001 0.001	0.001 0.001 0.001 0.001 0.053	0.001 0.001 0.001 0.001 0.053
PI PG IN PI PI PI PI PI	0.005 0.003 54 1 0.000 0.001 0.001 0.001 0.001	0.005 180CT81 0.000 0.001 0.001 0.001 0.001 0.001	2119 0.016 0.001 0.001 0.001 0.001 0.001	0.016 0.001 0.001 0.001 0.001	0.016 0.001 0.001 0.001 0.001	0.016 0.001 0.001 0.001 0.001	0.016 0.001 0.001 0.001 0.001	0.016 0.001 0.001 0.001 0.001	0.001 0.001 0.001 0.001 0.053 0.006	0.001 0.001 0.001 0.001 0.053 0.006
PI PG IN PI PI PI PI PI	0.005 0.003 54 1 0.000 0.001 0.001 0.001 0.053 0.006	0.005 180CT81 0.000 0.001 0.001 0.001 0.001 0.014 0.006	2119 0.016 0.001 0.001 0.001 0.001 0.014 0.006	0.016 0.001 0.001 0.001 0.001 0.014	0.016 0.001 0.001 0.001 0.001 0.014	0.016 0.001 0.001 0.001 0.001 0.014	0.016 0.001 0.001 0.001 0.001 0.014	0.016 0.001 0.001 0.001 0.001 0.014	0.001 0.001 0.001 0.001 0.053 0.006	0.001 0.001 0.001 0.001 0.053 0.006
PI PG IN PI PI PI PI PI PI	0.005 0.003 54 1 0.000 0.001 0.001 0.001 0.053 0.006 0.028	0.005 180CT81 0.000 0.001 0.001 0.001 0.001 0.004 0.006 0.028	2119 0.016 0.001 0.001 0.001 0.001 0.014 0.006 0.028	0.016 0.001 0.001 0.001 0.001 0.014 0.027	0.016 0.001 0.001 0.001 0.001 0.014 0.027	0.016 0.001 0.001 0.001 0.001 0.014 0.027	0.016 0.001 0.001 0.001 0.001 0.014 0.028	0.016 0.001 0.001 0.001 0.001 0.014 0.028	0.001 0.001 0.001 0.001 0.053 0.006 0.028	0.001 0.001 0.001 0.001 0.053 0.006 0.028
PI PG IN PI PI PI PI PI PI	0.005 0.003 54 1 0.000 0.001 0.001 0.001 0.053 0.006	0.005 180CT81 0.000 0.001 0.001 0.001 0.001 0.014 0.006	2119 0.016 0.001 0.001 0.001 0.001 0.014 0.006	0.016 0.001 0.001 0.001 0.001 0.014	0.016 0.001 0.001 0.001 0.001 0.014	0.016 0.001 0.001 0.001 0.001 0.014	0.016 0.001 0.001 0.001 0.001 0.014	0.016 0.001 0.001 0.001 0.001 0.014	0.001 0.001 0.001 0.001 0.053 0.006	0.001 0.001 0.001 0.001 0.053 0.006
PI PG IN PI PI PI PI PI PI	0.005 0.003 54 1 0.000 0.001 0.001 0.001 0.053 0.006 0.028	0.005 180CT81 0.000 0.001 0.001 0.001 0.001 0.004 0.006 0.028	2119 0.016 0.001 0.001 0.001 0.001 0.014 0.006 0.028	0.016 0.001 0.001 0.001 0.001 0.014 0.027	0.016 0.001 0.001 0.001 0.001 0.014 0.027	0.016 0.001 0.001 0.001 0.001 0.014 0.027	0.016 0.001 0.001 0.001 0.001 0.014 0.028	0.016 0.001 0.001 0.001 0.001 0.014 0.028	0.001 0.001 0.001 0.001 0.053 0.006 0.028	0.001 0.001 0.001 0.001 0.053 0.006 0.028

Sample input for Snyder Lumped Model - Continued

```
PI 0.012
            0.018
                     0.018
                             0.018
                                      0.018
                                              0.018
                                                       0.018
                                                                0.016
                                                                         0.016
                                                                                 0.016
                                                                        0.016
                                                                                 C. 016
PI 0.016
            0.016
                     0.016
                             0.016
                                      0.016
                                              0.016
                                                       0.016
                                                                0.016
PI 0.016
            0.050
                     0.050
                             0.050
                                      0.050
                                              0.050
                                                       0.050
                                                                0.050
                                                                         0.050
                                                                                 1 345
            0.035
                                                       0.035
                     0.035
                             0.035
                                      0.035
                                              0.035
                                                                        0.011
                                                                                 0.011
PI 0.035
                                                                0.011
PI 0.011
            0.011
                     0.011
                             0.011
                                      0.011
                                              0.011
                                                       0.011
                                                                0.011
                                                                         0.011
                                                                                 0.617
            0.000
                     0.006
                             0.006
                                      0,006
                                              0.006
                                                       0.006
                                                                0.006
                                                                        0.006
PI 0.011
                                                                                 0.046
                     0.006
                             0.006
                                               0.006
PI 0.006
            0.006
                                      0.006
                                                       0.006
                                                                0.006
                                                                         0.006
                                                                                 0.006
PI 0.006
            0.006
                     0.006
                             0.006
                                      0.006
                                              0.006
                                                       0.006
                                                                0.006
                                                                        0.006
                                                                                 0.026
            0.026
                     0.026
                                      0.007
PI 0.026
                             0.026
                                              0.007
                                                       0.007
                                                                0.007
                                                                         0.007
                                                                                 0.007
            0.007
                     0.007
PI 0.007
                             0.007
                                      0.015
                                              0.015
                                                       0.015
                                                                0.015
                                                                        0.002
                                                                                 0.002
            0.002
                     0.002
PI 0.002
                             0.002
                                      0.002
                                              0.002
                                                       0.002
                                                                0.002
                                                                         0.002
                                                                                 0.002
PI 0.002
PG
      55
11
          180CT81
                     2119
PI 0.001
            0.001
                     0.001
                             0.001
                                      0.001
                                              0.001
                                                       0.001
                                                                0.001
                                                                        0.001
                                                                                 0.001
                                                                0.020
                                                                        0.020
                                                                                 0.001
PI 0.001
            0.001
                     0.001
                             0.001
                                      0.020
                                              0.020
                                                       0.020
PI 0.001
            0.001
                             0.001
                                      0.001
                                                       0.001
                     0.001
                                              0.001
                                                                0.001
                                                                         0.001
                                                                                 0.001
            0.001
                                              0.001
                                                                0.001
                                                       0.001
                                                                                 0.001
PI 0.001
                     0.001
                             0.001
                                      0.001
                                                                         0.001
            0.001
PI 0.001
                     0.001
                             0.001
                                      0.001
                                              0.001
                                                       0.001
                                                                0.001
                                                                        0.001
                                                                                 0.001
            0.001
                                                                0.024
                                                                                 0.024
PI 0.001
                     0.001
                                                       0.001
                             0.001
                                      0.001
                                              0.001
                                                                        0.024
            0.024
PI 0.024
                     0.024
                             0.024
                                      0.024
                                              0.024
                                                       0.024
                                                                0.024
                                                                         0.024
                                                                                 0.024
            0.003
                     0.003
                             0.003
                                                                0.032
                                                       0.032
                                                                        0.032
                                                                                 0.007
PI 0.003
                                      0.032
                                              0.032
            0.007
                     0.024
PI 0.007
                             0.024
                                      0.024
                                               0.024
                                                       0.024
                                                                0.024
                                                                         0.024
                                                                                 0.024
            0.024
                                      0.024
                                              0.024
                                                       0.036
                                                                                 0.036
PI 0.024
                     0.024
                             0.024
                                                                0.036
                                                                        0.036
PI 0.036
            0.036
                     0.036
                             0.036
                                      0.004
                                               0.004
                                                       0.004
                                                                0.004
                                                                         0.004
                                                                                 0.004
                             0.005
                                              0.021
PI 0.004
            0.015
                     0.015
                                                       0.021
                                      0.005
                                                                0.021
                                                                                 0.021
                                                                         0.021
PI 0.021
            0.021
                     0.021
                             0.021
                                      0.021
                                              0.021
                                                       0.021
                                                                                 0.021
                                                                0.021
                                                                        0.021
            0.021
                             0.021
PI 0.021
                     0.021
                                              0.021
                                      0.021
                                                       0.021
                                                                                 0.021
                                                                0.021
                                                                         0.021
            0.049
PI 0.021
                                      0.049
                                                                0.049
                     0.049
                             0.049
                                              0.049
                                                       0.049
                                                                        0.090
                                                                                 0.090
                             0.040
                     0.040
                                      0.040
                                              0.040
                                                       0.040
PI 0.090
                                                                0.040
                                                                         0.009
                                                                                 0.009
                                               0.009
                                                                0.009
PI 0.009
            0.009
                     0.009
                             0.009
                                      0.009
                                                       0.009
                                                                         0.009
                                                                                 0.009
            0.009
                             0.009
PI 0.009
                     0.009
                                      0.009
                                              0.009
                                                       0.009
                                                                0.007
                                                                         0.007
                                                                                 0.007
PI 0.007
            0.007
                     0.007
                             0.007
                                      0.007
                                               0.007
                                                       0.007
                                                                0.007
                                                                         0.007
                                                                                 0.007
PI 0.007
            0.007
                             0.007
                     0.007
                                      0.007
                                              0.009
                                                                0.009
                                                       0.009
                                                                         0.009
                                                                                 0.009
PI 0.009
            0.009
                     0.009
                             0.009
                                      0.002
                                              0.002
                                                       0.002
                                                                0.002
                                                                        0.002
                                                                                 0.001
PI 0.001
KK SA14
IOI Runoff for Sub-Area 14
   0.14
PR
      11
PU
   1.20
                      6,57
              .13
LE
                              . 1963
   0.51
            0.843
US
KK 18-17
ICH Routing from node 18 to node 17
   .08
4949
             .04
4950
                       .08
RC
                               2075
                                     .00410
                                       5004
                      4975
                               4996
                                                5025
                                                        5030
BX
                                                                 5050
RY 343.0
            342.0
                     337.0
                             327.0
                                      327.0
                                               337.0
                                                       342.0
                                                                342.0
KK
    SA13
BA
    0.31
               11
    .299
             .701
PV
LG
    1.20
              .13
                      6.57
                             .1963
    0.99
            0.843
UE
    C171
104 Combine Hydrographs at node 17
HC
KK 17-15
ICH Routing from node 17 to node 15
                       .06
                                     .00386
     .08
              .04
                               2075
PC
                                                5025
             4950
                                       5004
                                                        5030
                                                                 5050
    4949
                      4975
                               4996
EX
RY 343.0
                                      327.0
            342.0
                     337.0
                             327.0
                                               337.0
                                                       342.0
                                                                342.0
    SA11
KK
```

Sample input for Snyder Lumped Model - Continued

```
ICH Burnoff for Sub-Ares 11
    0.17
BA
       10
               11
PV
     .262
              .737
              .13
    1.20
LE
                      6.57
                              .1963
US
    0.63
            0.843
KK 16-15
IOI Routing from node 16 to node 15
RC
                       .08
                               2500
                                      .00400
    4949
             4950
                      4975
                               4996
                                       5004
                                                5025
                                                        5030
                                                                 5050
RX
RY
   343.0
            342.0
                     337.0
                             327.0
                                      327.0
                                                       342.0
                                               337.0
    SA12
KK
101
   Runoff for Sub-Area 12
BA
    0.07
PR
       8
PV
LG
    1.20
              .13
                      6.57
                              .1963
    0.58
US
            0.843
KK
    C151
101
   Combine Hydrographs at node 15
HC
KK GAGES
101
   Observed vs. Computed
       2 180CT81
IN
                      2119
80
     0.0
                       0.0
              0.0
                                0.0
                                        0.0
                                                 0.0
                                                         0.0
                                                                  0.0
                                                                           0.0
                                                                                    0.0
90
     0.0
              0.0
                       0.0
                                0.0
                                        0.0
                                                 0.0
                                                         0.0
                                                                  0.6
                                                                           0.0
                                                                                    0.0
              0.0
90
     0.0
                       0.0
                                0.0
                                        0.0
                                                 0.0
                                                         0.0
                                                                  0.0
                                                                                    0.0
                                                                           0.0
90
     0.0
              0.0
                       0.0
                                0.0
                                        0.0
                                                 0.0
                                                         0.0
                                                                  0.1
                                                                          0.1
                                                                                    0.1
00
     0.1
              0.1
                       0.1
                                0.1
                                        0.1
                                                 0.1
                                                                  0.1
                                                                           0.1
                                                         0.1
                                                                                    0.1
8
     0.1
              0.1
                       0.1
                                0.1
                                        0.2
                                                 0.2
                                                         0.2
                                                                  0.1
                                                                           0.1
                                                                                   0.1
90
     0.1
                       0.1
                               0.1
              0.1
                                        0.3
                                                                          20.3
                                                                                   27.7
                                                 1.8
                                                         6.2
                                                                 12.7
90
    33.1
             38.5
                      43.8
                               48.2
                                       53.4
                                                59.0
                                                         65.0
                                                                 72.0
                                                                          79.5
                                                                                   84.7
                                      132.7
                                                                                 205.7
90
    92.8
            100.4
                     106.5
                              120.4
                                               148.3
                                                        163.7
                                                                178.4
                                                                         192.5
            228.8
                     238.5
216.3
                             245.1
                                      251.7
                                               255.1
                                                        260.2
                                                                259.1
                                                                         258.1
                                                                                  257.1
90 256.1
                             245.0
                                                       221.7
            255.1
                     250.0
                                      236.8
                                               230.4
                                                                214.8
                                                                         205.7
                                                                                  199.7
90 191.0
                     177.0
            183.9
                              170.2
                                      164.9
                                               158.4
                                                        153.9
                                                                148.3
                                                                         143.4
                                                                                  139.8
                                      126.2
90 135.0
            132.7
                     129.2
                              127.7
                                               124.7
                                                                119.2
                                                       121.4
                                                                         117.0
                                                                                  114.9
                              105.4
                                                                          92.9
                                                                                   90.1
90 112.7
            110.6
                     108.5
                                      103.4
                                               100.4
                                                        98.5
                                                                 95.7
                                                74.1
90
   87.4
             84.3
                      81.6
                               79.5
                                       77.0
                                                        71.6
                                                                 69.3
                                                                          66.9
                                                                                   64.6
    62.7
                               54.1
                                                51.1
80
             60.5
                      57.6
                                       52.8
                                                         49.2
                                                                 47.3
                                                                          45.4
                                                                                   43.5
    41.7
                               37.4
                                                34.4
90
             40.0
                      38.5
                                       36.0
                                                         32.8
                                                                 31.6
30.3
          28.9
                              23.6
                                       22.8
                                                21.9
                                                        20.9
                                                                 19.9
90
    27.4
             26.3
                      24.9
                                                                          19.0
                                                                                   18.2
                               15.9
                                                14.6
                                                                          13.0
90
    17.7
             17.0
                      16.5
                                       15.2
                                                         14.1
                                                                 13.6
                                                                                   12.6
                                        10.5
             11.5
90
    12.1
                      11.1
                               10.8
                                                10.2
                                                         9.8
                                                                  9.5
                                                                           9.2
                                                                                    9.0
90
     8.7
              8.4
                       8.1
                                7.8
                                        7.6
                                                 7.4
                                                         7.1
                                                                  6.9
                                                                           6.7
                                                                                    6.5
90
              6.2
                                        5.8
     6.3
                       6.1
                                5.9
                                                 5.6
                                                         5.5
                                                                  5.3
                                                                           5.2
                                                                                    5.1
                                        4.4
3.5
90
     5.0
              4.8
                       4.7
                                4.5
                                                 4.3
                                                          4.2
                                                                           4.0
                                                                                   3.9
                                                                  4.1
90
     3.8
              3.8
                       3.7
                                3.6
                                                 3.3
                                                          3.2
                                                                  3.1
                                                                           3.1
                                                                                    3.0
90
                                        2.7
     2.9
              2.9
                       2.8
                                2.7
                                                 2.6
                                                          2.6
                                                                  2.5
                                                                           2.5
                                                                                    2.4
90
     2.4
              2.3
                       2.3
                                2.2
                                        2.2
                                                 2.1
                                                          2.1
                                                                  2.1
                                                                           2.0
                                                                                    2.0
90
     2.0
              1.9
                       1.9
                                1.9
                                        1.8
                                                 1.8
                                                          1.8
                                                                  1.7
                                                                           1.7
                                                                                    1.7
                       1.5
                                        1.5
80
     1.6
              1.6
                                1.5
                                                 1.4
                                                          1.4
                                                                  1.4
                                                                           1.4
                                                                                    1.3
                                        1.2
                                                                           1.2
80
              1.3
                       1.3
                                1.3
                                                          1.2
                                                                  1.2
     1.3
                                                 1.2
                                                                                    1.2
80
     1.1
                       1.1
                                1.1
                                        1.1
                                                 1.1
                                                          1.0
                                                                  1.0
                                                                           1.0
                                                                                    1.0
KK 15-14
   Routing from node 15 to node 14
KO
H
                       .08
                               3800
                                      .00513
RC
              .04
             4948
                      4954
                               4968
                                       5031
                                                5046
                                                         5008
                                                                 5148
    4848
BY
RY 338.5
            336.5
                     337.0
                              329.0
                                      320.5
                                               335.0
                                                        336.5
KK
     SA9
KH Runoff
           for Sub-Area 9
BA
    0.86
                        10
               55
                                  8
```

Sample input for Snyder Lumped Model - Continued

```
.258
                               .377
             .242
                      .123
              .13
    1.20
    1.47
            0.843
us
KK
    C141
tot Combine Mydrographs at node 14
KK 14-12
IDI Routing from node 14 to node 12
                                       .00342
                               3800
BC
               .04
                        .08
                      4954
                               4968
                                        5031
                                                 5046
                                                          5098
                                                                  5148
    4848
             4948
RX
                                                         336.5
                                                335.0
                                                                 336.5
RY 338.5
                                       320.5
            336.5
                     337.0
                              329.0
KK
    SA10
           for Sub-Area 10
IDI Runoff
BA
    0.15
PR
               11
       10
     .949
              .051
                      6.57
                              .1983
    1.20
LE
               .13
    0.57
            0.843
US
KK 13-12
101 Routing from node 13 to node 12
              .040
     .100
                       .100
                                5500
                                       .00791
RC
                        120
                                 127
                                          144
                                                   160
                                                           220
                                                                    270
                70
ex.
       20
RY 331.0
                              319.8
                                       314.0
                                                329.5
                                                         329.6
                                                                  330.5
            329.2
                     328.5
    C121
ISI Combine hydrographs at node 12
   DAGES
KK
IQ1
   Observed vs. Computed
                       2119
110
        2
          180CT81
                                                                                      0.0
                                                                    0.0
                                                                             0.0
      0.0
                        0.0
                                 0.0
                                          0.0
                                                  0.0
                                                           0.0
90
               0.0
                                                                             0.0
                                                                                      0.0
                                                           0.0
                                                                    0.0
                                 0.0
                                          0.0
                                                   0.0
8
      0.0
               0.0
                        0.0
                                          0.0
                                 0.0
                                                           0.0
                                                                    0.0
                                                                             0.0
                                                                                      0.0
90
               0.0
                        0.0
                                                   0.0
      0.0
                                                                             0.0
                                                                                      0.0
               0.0
                                                           0.0
                                                                    0.0
80
                        0.0
                                 0.0
                                          0.0
                                                   0.0
      0.0
                                          0.0
                                                   0.0
                                                           0.0
                                                                    0.0
                                                                             0.0
                                                                                      0.0
80
               0.0
                       0.0
                                 0.0
      0.0
                                                                    0.1
                                                                             0.1
                                                                                      3.9
                                 0.0
                                          0.1
                                                   0.1
                                                           0.1
90
      0.0
               0.0
                        0.0
                                                                   50.8
                                                                            57.1
                                                                                     61.6
                                                 32.9
                                                           42.8
              15.6
                       18.5
                                21.4
                                         25.4
90
     12.3
                                                                  108.4
                                                                           122.7
                                                                                    138.9
                                                  88.3
              68.8
                       71.3
                                75.5
                                         80.8
                                                          95.9
90
    64.8
                               220.1
                                                 270.6
                                                                  313.3
                                                                                    357.6
                                        244.8
                                                          292.7
                                                                           337.0
                      198.7
90 158.1
             176.9
                                                                                    547.0
544.3
465.8
             400.7
                                                 495.4
                                                         513.1
                                                                  527.3
                                                                           539.0
90 380.9
                      425.5
                               448.9
                                        473.0
             $60.3
                                                         556.1
                               558.6
                                                 557.0
                                                                  555.3
                                                                           550.9
                      559.5
                                        557.8
90 554.9
                                                 500.5
                                                                  485.3
                                        508.0
                                                         492.9
                                                                            475.5
             528.5
                      520.8
                               515.6
90 537.7
                      438.3
                                                                                    374.5
                                        421.0
                                                 409.7
                                                          400.9
                                                                  392.1
                                                                           383.3
             448.9
                               429.0
90 456.1
                                                                  307.5
                                                                                    290.7
00 363.9
                                        331.1
                                                 323.2
                                                         315.4
                                                                            298.1
             355.5
                      348.2
                               340.1
                               258.3
                                                                                    213.8
                                                 242.9
                                                                            220.1
                                        251.4
                                                                  228.1
                      267.0
90 283.3
             276.0
                                                                  160.5
                                                 172.8
                                                          167.2
                                                                            152.7
                                                                                     147.6
                                        178.3
                      191.2
                               185.4
90 204.6
             198.6
                                                                                     100.0
             136.6
                                                                   108.4
                               127.1
                                        122.4
                                                 116.8
                                                          112.6
                                                                            104.2
                      131.9
90 141.4
                                                                    74.7
                                                                            72.1
                                85.4
                                         82.6
                                                  79.9
                                                           76.4
              92.0
                       89.1
90
     95.9
                                60.5
42.5
                                                                                      49.3
                                                                    52.8
                       62.8
                                         58.3
                                                  56.4
                                                           54.6
                                                                             51.1
80
     66.8
              64.8
                                                  39.5
                                                           37.7
                                                                                      34.0
                                                                    36.2
                                                                             35.1
                                         41.0
     47.7
              45.7
                       44.1
90
                                                                                      23.1
                       30.0
                                                                    24.9
                                28.8
                                                  27.1
                                                           26.1
                                                                             24.0
              31.3
                                         27.8
90
     32.6
                                                                    17.8
                                                           18.5
                                                                             17.2
                                                                                      16.7
                                                  19.1
                       21.0
                                20.1
                                         19.6
90
     22.5
              21.8
                                                                             13.7
                                                                                      13.4
                                                           14.2
                                                                    13.9
                                15.2
                                         14.9
                                                  14.6
                        15.6
00
     16.3
              15.9
                                                  12.1
                                                           11.9
                                                                    11.8
                                                                             11.5
                                         12.3
90
              13.0
                       12.8
                                 12.5
     13.2
                                                                                       9.2
                                                                              9.3
                                          10.2
                                                  10.0
                                                            9.8
                                                                     9.5
                        10.5
                                 10.4
90
     10.9
               10.7
                                                                                       7.7
                                                            8.1
                                                                              7.8
                                                                     8.0
                        8.7
                                 8.6
                                          8.4
                                                   8.2
90
      9.0
               8.9
                                                                                       6.3
                                                                              6.5
                        7.3
                                          7.0
                                                   6.9
                                                            6.8
                                                                     6.6
               7.4
                                 7.1
90
      7.5
                                                            5.7
                                                                     5.6
                                                                              5.5
                                                                                       5.4
                                                   5.7
               6.1
5.2
                        6.0
                                 5.9
                                          5.8
80
      6.2
                                                                     4.8
                                                                              4.7
                                                                                       4.7
                                          5.0
                                                   4.9
                                                            4.8
                        5.1
                                 5.0
90
      5.3
                                                                              4.0
                                                                                       3.9
                         4.5
                4.6
90
      4.6
 KK 12-10
             from node 12 to node 10
    Routing
 KM
                                       .00443
                                 3500
      .070
                        .070
               .038
 RC
                                                             208
                                                                     248
                120
                         126
                                  139
                                           165
                                                    172
 RX
        20
```

Sample input for Snyder Lumped Model - Continued

```
RY 279.8 280.5 276.0 268.0 270.5 274.0 280.5 280.2
    SAS
101 Runoff from Sub-Area 8
BA
    0.46
PR
    .702
            .072
                     .226
LE
    1.20
             .13
                    6.57
                           .1963
   1.05
           0.843
US
KK 11-10
IDI Routing from node 11 to node 10
    .07
            .038
                                  .00542
RC
                     .07
                            2850
             120
                                              172
                     126
                             139
                                     165
                                                     208
RY 279.8
                   276.0
                                           274.0
           280.5
                           268.0
                                   270.5
                                                   280.5
                                                           280.2
KK
    246
101 Runoff from Sub-Area 6
    1.29
PR
                               7
                                      55
                      54
            .090
    .601
                     .128
                             .012
                                     .061
                                             .108
                           .1983
             .13
LG
    1.20
                    6.57
US
   1.54
           0.843
KK C101
ION Combine Hydrographs at node 10
MC
      3
KK 10-7
KM Routing from node 10 to node 7
            .038
                    .070
                            3650
    .070
                                   .00315
RC
             120
                     126
                             139
                                                     208
RX
     20
                                     165
                                              172
                                                             248
RY 279.8
           280.5
                   276.0
                                   270.5
                           268.0
                                           274.0
                                                   280.5
                                                           280.2
KK
    SA7
ICH Runoff from Sub-Area 7
    0.63
BA
               7
PR
     53
                      55
                               10
    .010
PW
            .574
                     .321
                             .095
             .13
                    6.57
LG
    1.20
                            .1963
US
           0.843
    0.93
KK
IDI Routing from node 9 to node 8
M
    .080
            .035
                    .080
4979
                                   .00482
RC
                            2800
    4876
            4926
                            4996
RX
                                    5003
                                             5021
                                                     5051
                                                             5126
           301.3
                                   291.3
RY 301.4
                   301.5
                           291.0
                                           300.5
                                                   299.7
                                                           299.6
    SA5
ICH Runoff from Sub-Area 5
    0.78
                               7
PR
    .051
            .220
                     .146
                             .375
             .13
                    6.57
                            .1963
LG
    1.20
US
    0.89
           0.843
KK
     C81
ICH Combine Hydrographs at node 8
HC
KK
    8-7
KH Routing from node 8 to node 7
            .035
                             2800
                                   .00482
RC
    4876
            4926
                    4979
                             4996
                                    5003
                                             5021
                                                     5051
                                                             5126
RX
RY 301.4
           301.3
                   301.5
                            291.0
                                   291.3
                                            300,5
                                                    299.7
                                                            299.6
KK GAGE4
101 Observed vs. Computed
       2 180CT81
IN
                    2119
                                                                      0.0
     0.0
             0.0
                     0.0
                              0.0
                                      0.0
                                              0.0
                                                      0.0
                                                              0.0
                                                                              0.0
80
90
     0.0
             0.0
                              0.0
                                      0.0
                                              0.0
                                                      0.0
                                                              0.0
                                                                      0.0
                                                                              0.0
                     0.0
                                      0.0
                                              0.0
                                                      0.0
                                                              0.0
                                                                      0.0
                                                                              0.0
8
     0.0
             0.0
                     0.0
                              0.0
                                              0.0
                                                      0.0
                                                              0.0
                                                                      0.0
                                                                              0.0
             0.0
                              0.0
                                      0.0
     0.0
                     0.0
```

Sample input for Snyder Lumped Model - Continued

```
0.0
                                                                   0.0
     0.0
              0.0
                                0.0
                                         0.0
                                                 0.0
                                                          0.0
                                                                            0.0
                                                                                    0.0
00
90
      0.0
              0.0
                       0.0
                                0.0
                                         0.0
                                                 0.0
                                                          0.0
                                                                   0.0
                                                                            0.0
                                                                                    0.0
                       0.0
                                0.0
                                         0.0
                                                 0.0
                                                          0.0
                                                                   0.0
                                                                            0.0
                                                                                    0.0
              0.0
80
      0.0
                                                                          35.6
      0.0
              0.0
                       0.0
                                0.0
                                         5.6
                                                 11.3
                                                         15.1
                                                                  20.9
                                                                                   53.5
90
                      90.2
                              102.9
                                                        142.9
                                                                 158.2
                                                                          171.9
                                                                                   183.8
             77.6
                                       115.7
80
                                               128.8
    66.5
                                               286.1
                                                        298.2
                                                                 309.6
90
   201.8
             225.9
                     245.2
                              259.8
                                       273.4
                                                                         319.2
                                                                                   327.2
                                               347.2
                                                        347.2
40 335.1
                     343.9
                              347.2
            340.7
                                       347.2
                                                                 346.5
                                                                         345.2
                                                                                  343.8
                     323.4
                                                                 300.0
                                       307.7
            331.3
                                               303.0
                                                        301.5
                                                                         298.4
   339.2
                              315.5
                                                                                   296.9
90
                                                                          258.1
   294.0
                                       276.6
                                                        267.9
                                                                 263.5
                                                                                   252.7
80
            289.7
                     285.3
                              280.9
                                               272.2
                              232.8
                     238.4
                                                                          197.9
   247.3
            242.5
                                                                 204.9
                                                                                   190.9
80
                                       225.8
                                               218.9
                                                        211.9
   184.0
                     170.6
                              163.9
                                               150.5
            177.3
                                                        143.8
                                                                          133.3
                                                                                  128.1
80
                                       157.2
                                                                 138.6
                                                                           88.3
   122.8
                              108.5
                                                99.2
                                                                  91.8
90
            117.8
                     113.2
                                       103.9
                                                         95.2
                                                                                   84.9
                                                66.3
42.6
                                                                          58.9
37.2
90
    81.5
                      74.7
                               71.3
                                        68.8
                                                         63.9
                                                                                   56.5
             78.1
                                                                  61.4
    54.0
             51.5
                                       44.4
80
                      49.1
                               46.6
                                                         40.8
                                                                  39.0
                                                                                   35.6
                               30.9
                                                29.1
00
    34.5
             33.3
                      32.1
                                                         28.4
                                                                           26.9
                                                                  27.6
                                                                                   26.1
80
    25.3
             24.6
                      23.8
                               23.1
                                        22.5
                                                         21.7
                                                                           20.9
                                                                                   20.5
                                                22.1
                                                                  21.3
                      19.3
90
             19.7
                               18.9
                                                 18.1
    20.1
                                        18.5
                                                         17.7
                                                                  17.3
                                                                           16.9
                                                                                    16.5
90
             15.7
                      15.3
                               14.9
                                                         13.7
     16.1
                                        14.5
                                                 14.1
                                                                  13.5
                                                                           13.2
                                                                                    12.9
00
                                                11.3
    12.6
             12.4
                      12.1
                               11.8
                                        11.5
                                                         11.0
                                                                  10.7
                                                                           10.4
                                                                                    10.2
90
     9.9
              9.6
                       9.3
                                9.1
                                         8.8
                                                 8.5
                                                          8.3
                                                                   8.1
                                                                            7.9
                                                                                    7.7
90
     7.5
              7.3
                                                                            6.0
                       7.1
                                7.0
                                         6.8
                                                 6.6
                                                          6.4
                                                                   6.2
                                                                                    5.8
90
                                         5.3
     5.7
              5.6
                       5.5
                                5.4
                                                 5.2
                                                          5.1
                                                                   5.0
                                                                            4.8
                                                                                     4.7
                                         4.2
3.7
80
              4.5
                                4.3
                                                          4.1
                                                                   4.1
                                                                            4.0
      4.6
                       4.4
                                                  4.2
                                                                                     4.0
80
              3.9
     3.9
                       3.8
                                3.8
                                                 3.7
                                                          3.7
                                                                   3.6
                                                                            3.6
                                                                                    3.6
90
     3.6
3.3
              3.5
3.3
                                         3.5
                       3.5
                                3.5
                                                 3.4
                                                          3.4
                                                                   3.4
                                                                            3.3
                                                                                    3.3
90
                       3.2
                                3.2
                                         3.2
                                                 3.2
                                                                   3.1
                                                                            3.1
                                                                                     3.0
KK
     C71
   Combine Hydrographs at node 7
KM
HC
       2
   CAGES
KK
101
   Observed vs. Computed
IN
       2 180CT81
                      2119
     0.0
90
              0.0
                       0.0
                                0.0
                                         0.0
                                                 0.0
                                                          0.0
                                                                                    0.0
                                                                   0.0
                                                                            0.0
00
     0.0
              0.0
                       0.0
                                0.0
                                         0.0
                                                 0.0
                                                          0.0
                                                                   0.0
                                                                            0.0
                                                                                     0.0
90
     0.0
              0.0
                       0.0
                                0.0
                                         0.0
                                                 0.0
                                                          0.0
                                                                                    0.0
                                                                   0.0
                                                                            0.0
90
                                                 0.0
                                                                   0.0
     0.0
              0.0
                       0.0
                                0.0
                                         0.0
                                                          0.0
                                                                            0.0
                                                                                     0.0
90
     0.0
              0.0
                       0.0
                                0.0
                                                                            0.0
                                         0.0
                                                 0.0
                                                          0.0
                                                                   0.0
                                                                                    0.0
90
     0.0
              0.0
                       0.0
                                                 0.0
                                                          0.0
                                                                   0.0
                                0.0
                                         0.0
                                                                            0.0
                                                                                     0.0
     0.0
90
              0.0
                       0.0
                                0.0
                                         0.0
                                                 0.0
                                                          0.0
                                                                   0.0
                                                                            0.0
                                                                                    2.8
                                        12.1
90
     7.2
              8.7
                       9.5
                               10.3
                                                 14.5
                                                                  20.7
                                                                           25.4
                                                                                   37.2
                                                         16.6
80
             92.9
   60.9
                     145.8
                              199.3
                                       253.4
                                               302.2
                                                        349.7
                                                                 394.5
                                                                          435.3
                                                                                   485.8
90 527.7
            567.5
                     617.4
                              669.7
                                       743.2
                                               781.8
                                                        841.1
                                                                 861.6
                                                                          898.0
                                                                                   866.7
                                                                                  1050.6
90 956.9
            995.5
                              956.9
                                       984.4
                                                       1005.6
                                                                 973.4
                                                                          988.5
                     984.4
                                              1012.2
           1033.9
                              956.9
                                       946.1
901042.2
                    1025.5
                                                                                   946.1
                                               935.2
                                                        913.9
                                                                 935.2
                                                                          978.9
                     841.1
90 929.9
            908.6
                              826.0
                                       806.1
                                               785.1
                                                        772.6
                                                                 760.2
                                                                          747.7
                                                                                   735.3
                     705.9
            718.6
                                                                                   592.3
90
   725.6
                              692.2
                                       678.6
                                               660.8
                                                        638.9
                                                                 621.8
                                                                          604.7
                                               502.7
                                                                          458.4
                                                                                   447.7
                                                                 474.7
90 579.9
            567.5
                     547.4
                              533.5
                                       516.0
                                                        485.8
                              401.3
                                       388.0
90 435.3
            424.9
                     414.6
                                               376.5
                                                        368.5
                                                                 362.2
                                                                          354.4
                                                                                   340.5
                                                                 266.5
                              305.3
                                       296.6
90 331.7
            322.9
                     314.1
                                               285.4
                                                        277.2
                                                                          261.2
                                                                                   250.9
90
   244.5
            235.8
                     228.4
                              218.9
                                       210.7
                                               203.9
                                                                 189.2
                                                        197.0
                                                                          184.9
                                                                                   177.4
                                                                          124.8
90
   168.1
            164.0
                     158.1
                              152.2
                                       144.6
                                                140.8
                                                        135.4
                                                                 131.8
                                                                                   121.4
                                       100.4
            113.1
                     108.2
                                                97.3
                                                                           88.1
90
   118.0
                              105.0
                                                         92.9
                                                                  90.0
                                                                                    85.8
                                                                           65.4
                                                                                    63.9
90
    83.0
             80.3
                      78.5
                               76.3
                                        73.8
                                                 71.2
                                                         69.0
                                                                  67.1
90
    62.3
             58.1
                               55.2
                                        53.7
                                                51.6
                                                         50.0
                                                                  49.0
                                                                           47.5
                                                                                    45.5
                      56.6
                                                         37.2
80
    44.2
             43.0
                      41.7
                               40.3
                                        38.9
                                                 38.1
                                                                  35.9
                                                                           34.6
                                                                                    33.8
                                        29.4
                               30.2
90
    33.0
             31.9
                      31.0
                                                 28.7
                                                         28.0
                                                                  27.4
                                                                           26.8
                                                                                    26.0
90
    25.1
             24.5
                      24.1
                               23.7
                                        23.3
                                                 22.5
                                                         21.8
                                                                  21.2
                                                                           20.8
                                                                                    20.5
             19.6
                      19.1
90
    20.1
                               18.8
                                        18.5
                                                 18.2
                                                         17.9
                                                                  17.6
                                                                           17.3
                                                                                    17.0
                                        15.5
90
                      16.1
                               15.8
                                                 15.2
                                                          14.9
                                                                  14.6
                                                                           14.4
                                                                                    14.1
    16.8
             16.4
                                                                  12.7
                                                                                    12.4
                                                         12.9
                                                                           12.6
90
             13.7
                                        13.2
                                                 13.1
    13.9
                      13.6
                               13.4
                                                                  10.8
                                                                           10.7
                                                                                    10.6
90
    12.2
             12.0
                      11.7
                               11.3
                                        11.1
                                                 11.0
                                                          10.9
                                                  9.9
                                                          9.7
                                                                                     9.2
                                                                   9.5
                                                                            9.4
80
    10.5
             10.4
                      10.3
                               10.2
                                        10.0
     7-5
KK
            from node 7 to node 5
KN
   Routing
10
              .038
                        .07
                               4070
                                      .00381
RC
      .07
```

Sample input for Snyder Lumped Model - Continued

```
502%
    4856
             4940
                      4972
                               4986
                                       5014
                                                        5040
                                                                 5156
BY
                                                       264.8
                              252.5
                                               256.5
                                      253.3
RY
   262.5
            264.0
                     257.5
                                                                263.7
     244
KK
   Runoff
           for Sub-Area 4
101
    0.60
52
               53
                        50
                                 14
PR
     .458
              .345
                       .035
                               .162
PV
                              .1983
LG
     0.6
              .13
                      6.57
US
    0.80
            0.843
KK
     6-5
101 Routing from node 6 to node 5
20
      .07
RC
              .038
                       .07
                               3400
                                      .00750
    4856
             4960
                               4986
                      4972
                                       5014
                                                5022
                                                        5040
EX
                                                                 5156
RY
   262.5
                     257.5
                              252.5
                                      23.3
                                               256.5
            264.0
                                                       264.8
                                                                263.7
PG
                                 10
11
                      2119
          180CT81
PI 0.002
                             0.002
                                      0.002
                                               0.002
                                                       0.002
            0.002
                     0.002
                                                                0.002
                                                                         0.002
                                                                                 0.002
                                                                0.002
PI 0.002
            0.002
                     0.002
                             0.002
                                                       0.002
                                                                                 0.002
                                      0.002
                                               0.002
                                                                         0.002
PI 0.002
                     0.002
            0.002
                             0.002
                                      0.002
                                               0.002
                                                       0.002
                                                                0.002
                                                                         0.002
                                                                                 0.002
                                               0.002
PI 0.002
            0.002
                     0.002
                             0.002
                                      0.002
                                                       0.002
                                                                0.002
                                                                                 0.002
                                                                         0.002
PI 0.002
            0.002
                     0.002
                             0.002
                                      0.002
                                               0.002
                                                       0.002
                                                                0.002
                                                                         0.002
                                                                                 0.002
PI 0.002
                                               0.005
                             0.002
            0.002
                     0.002
                                      0.005
                                                       0.005
                                                                0.005
                                                                         0.001
                                                                                 0.001
PI 0.001
            0.001
                     0.001
                             0.001
                                      0.001
                                               0.001
                                                       0.001
                                                                0.001
                                                                         0.001
                                                                                 0.001
                     0.001
                                               0.006
PI 0.001
            0.001
                             0.006
                                      0.006
                                                                0.006
                                                                                 0.006
                                                       0.006
                                                                         0.006
                             0.006
PI 0.006
            0.006
                     0.006
                                      0.039
                                               0.039
                                                       0.039
                                                                0.039
                                                                         0.039
                                                                                 0.039
                                               0.034
                                                                                 0.034
PI 0.039
            0.039
                     0.034
                             0.034
                                      0.034
                                                       0.034
                                                                0.034
                                                                         0.034
            0.000
PI 0.000
                     0.000
                             0.018
                                      0.018
                                               0.018
                                                       0.018
                                                                0.007
                                                                         0.007
                                                                                 0.007
PI 0.010
            0.010
                     0.010
                             0.028
                                      0.028
                                               0.028
                                                                0.028
                                                                                 0.008
                                                       0.028
                                                                         0.008
PI 0.008
            0.008
                     0.008
                             0.022
                                      0.022
                                               0.022
                                                       0.022
                                                                0.022
                                                                         0.022
                                                                                 0.051
            0.051
                     0.051
PI 0.051
                             0.051
                                      9.051
                                               0.051
                                                       0.051
                                                                0.051
                                                                         0.051
                                                                                 0.051
PI 0.051
            0.051
                     0.051
                             0.051
                                      0.047
                                               0.047
                                                       0.347
                                                                0.015
                                                                         0.015
                                                                                 0.015
PI 0.015
            0.000
                             0.007
                     0.000
                                      0.007
                                               0.007
                                                       0.007
                                                                0.007
                                                                         0.007
                                                                                 0.007
PI 0.007
            0.007
                     0.007
                             0.007
                                      0.007
                                               0.007
                                                                         0.005
                                                                                 0.005
                                                       0.007
                                                                0.007
                                      0.005
PI 0.005
            0.005
                     0.005
                             0.005
                                               0.005
                                                                0.012
                                                                         0.012
                                                                                 0.012
                                                       0.012
PI 0.012
            0.012
                     0.012
                             0.012
                                      0.012
                                               0.012
                                                       0.012
                                                                0.012
                                                                         0.012
                                                                                 0.011
PI 0.011
            0.011
                     0.011
                             0.011
                                      0.011
                                               0.011
                                                       0.011
                                                                0.011
                                                                         0.011
                                                                                 0.011
PI 0.050
            0.004
                     0.004
                              3.004
                                      0.004
                                               0.004
                                                       0.004
                                                                0.004
                                                                         0.004
                                                                                 0.004
PI 0.004
PG
                     2119
11
          180CT81
PI 0.003
            0.003
                     0.003
                             0.003
                                      0.003
                                               0.003
                                                       0.003
                                                                0.003
                                                                        0.003
                                                                                 0.003
                             0.003
PI 0.003
                     0.003
            0.003
                                      0.003
                                               0.003
                                                       0.003
                                                                0.003
                                                                         0.003
                                                                                 0.003
                                                       0.003
PI 0.003
            0.003
                     0.003
                             0.003
                                      0.003
                                               0.003
                                                                0.003
                                                                                 0.003
                                                                         0.003
PI 0.003
            0.003
                     0.003
                             0.003
                                      0.003
                                               0.003
                                                       0.003
                                                                0.003
                                                                         0.003
                                                                                 0.003
                                                                         0.003
PI 0.003
            0.003
                     0.003
                             0.003
                                      0.003
                                               0.003
                                                       0.003
                                                                0.003
                                                                                 0.003
                             0.003
                                      0.003
PI 0.003
            0.003
                     0.003
                                               0.003
                                                       0.003
                                                                0.003
                                                                         0.003
                                                                                 0.003
PI 0.003
            0.003
                     0.003
                             0.003
                                      0.027
                                               0.027
                                                       0.027
                                                                0.004
                                                                         0.004
                                                                                 0.004
PI 0.004
                                               0.027
            0.004
                     0.027
                             0.027
                                      0.027
                                                       0.027
                                                                0.027
                                                                         0.034
                                                                                 0.034
PI 0.034
            0.034
                                      0.034
                                               0.034
                                                                0.034
                     0.034
                             0.034
                                                       0.034
                                                                         0.034
                                                                                 0.034
                             0.000
                                      0.000
PI 0.034
            0.034
                     0.000
                                               0.008
                                                       0.006
                                                                0.006
                                                                         0.008
                                                                                 0.006
            0.021
                             0.021
                                      0.021
                                                       0.021
PI 0.008
                     0.021
                                               0.021
                                                                0.021
                                                                         0.021
                                                                                 0.921
            0.022
                             0.022
                                                                                 0.022
PI 0.022
                     0.022
                                      0.022
                                               0.022
                                                       0.022
                                                                0.022
                                                                         0.022
PI 0.022
            0.022
                     0.022
                             0.022
                                      0.054
                                               0.054
                                                       0.054
                                                                0.054
                                                                         0.054
                                                                                 0.054
PI 0.054
            0.054
                     0.054
                             0.033
                                      0.033
                                               0.033
                                                       0.033
                                                                0.033
                                                                         0.033
                                                                                 0.033
                     0.013
                             0.013
                                      0.013
                                               0.013
                                                       0.013
                                                                         0.013
                                                                                 0.013
PI 0.033
            0.013
                                                                0.013
PI 0.013
            0.000
                     0.009
                             0.009
                                      0.009
                                               0.009
                                                       0.009
                                                                0.009
                                                                         0.009
                                                                                 0.009
PI 0.009
            0.009
                     0.009
                             0.009
                                      0.009
                                               0.009
                                                       0.009
                                                                0.009
                                                                         0.009
                                                                                 0.009
PI 0.009
            0.009
                     0.009
                             0.009
                                      0.009
                                               0.009
                                                       0.009
                                                                0.009
                                                                         0.009
                                                                                  0.009
                                      0.009
                                               0.009
                                                       0.009
                                                                         0.009
                             0.009
                                                                                  0.009
PI 0.009
            0.009
                     0.009
                                                                0.009
            0.009
                     0.009
                             0.009
                                      0.009
                                               0.009
                                                       0.004
                                                                0.004
                                                                         0.004
                                                                                  0.004
PI 0.009
                                      0.004
                                                                0.004
                                                                         0.004
                     0.004
                             0.004
                                               0.004
                                                       0.004
                                                                                 0.004
            0.004
PI 0.004
PI 0.004
KK
     SA3
KH Runoff from Sub-Area 3
    0.90
```

Sample input for Snyder Lumped Model - Continued

```
13
                        14
                                50
                      .164
                               .071
                                       .114
                                                .018
     .389
              .244
PU
              .13
                              . 1983
LG
     0.6
                      6.57
    0.97
            0.843
US
KK
     C51
101 Combine Hydrographs at node 5
NC
       3
KK
     5-3
IDI Routing from node 5 to node 3
RD
              .038
                       .07
                                      .00193
RC
      .07
                              4144
    4856
RX
             4960
                      4972
                              4986
                                       5014
                                                5022
                                                        5040
                                                                 5156
   262.5
                                                                263.7
RY
            264.0
                     257.5
                              252.5
                                      253.3
                                               256.5
                                                       264.8
     SAZ
          from Sub-Area 2
104
   Runoff
BA
    0.40
PR
      51
               52
                                13
                        14
                                          2
     .485
             .288
                      .048
                               .157
                                       .022
     0.6
              .13
                      6.57
LG
                              . 1963
US
    1.11
            0.843
KX
     4-3
KH Routing from node 4 to node 3
100
RC
      .07
             .038
                       .07
                              6345
                                     .00750
   4856
                              4986
RX
             4960
                      4972
                                       5014
                                                5022
                                                        5040
                                                                 5156
RY 262.5
                                      253.3
                                                       264.8
            264.0
                    257.5
                             252.5
                                               256.5
                                                                263.7
KK
     C31
IOI Combine hydrographs at node 3
HC
       2
KK GAGE2
KM Observed vs. Computed
IN
       2 180CT81
                      2119
     0.6
80
              0.6
                       0.6
                                0.6
                                        0.6
                                                 0.6
                                                         0.6
                                                                  0.6
                                                                           0.6
                                                                                   0.6
90
     0.6
              0.6
                                                 0.6
                       0.6
                               0.6
                                        0.6
                                                                                   0.6
                                                         0.6
                                                                  0.6
                                                                           0.6
                       0.7
80
     0.7
              0.7
                                0.7
                                        0.7
                                                 0.7
                                                         0.7
                                                                  0.7
                                                                           0.7
                                                                                   0.7
00
     0,7
                       0.7
              0.7
                                        0.7
                               0.7
                                                 0.7
                                                         0.7
                                                                  0.7
                                                                           0.7
                                                                                   0.7
90
     0.7
              0.7
                       0.7
                               0.7
                                        0.7
                                                 0.7
                                                         0.7
                                                                  0.7
                                                                           0.7
                                                                                   0.8
90
     0.9
                       1.0
                                        1.0
              1.0
                                1.0
                                                 1.0
                                                                  1.0
                                                                           1.0
                                                         1.0
                                                                                   1.0
90
     1.0
              1.0
                                        1.0
                       1.0
                               1.0
                                                 1.0
                                                         1.0
                                                                  4.3
                                                                           4.6
                                                                                   6.1
90
     8.9
             13.2
                      18.1
                              22.4
                                       26.5
                                               30.2
                                                        34.2
                                                                         45.2
                                                                                  51.2
                                                                 40.3
                              95.1
                                               129.1
                                                                165.0
                                                                        190.3
90
   58,7
             69.3
                      81.3
                                      112.2
                                                       147.4
                                                                                 232.1
90 299,4
                     447.6
                                               699.2
                                                                        948.2
                                                                                1022.5
            375.9
                             531.1
                                      610.6
                                                                864.7
                                                       778.6
                    1188.3
                                              1304.1
001083.6
           1129.9
                            1231.7
                                                      1332.3
                                                               1372.5
                                                                       1407.4
                                                                                1423.1
                                     1270.4
001442.8
                            1484.7
           1460.7
                    1472.7
                                     1496.7
                                              1527.1
                                                      1527.1
                                                               1527.1
                                                                       1527.1
                                                                                1527.1
901527.1
           1527.1
                    1527.1
                                     1541.4
                            1527.1
                                              1533.2
                                                               1502.8
                                                                       1495.5
                                                                                1488.3
                                                      1521.0
                                     1433.9
                    1447.3
                                              1427.4
                                                                                1349.5
901472.7
           1456.2
                            1439.9
                                                      1420.4
                                                               1413.3
                                                                       1375.4
901332.3
           1301.2
                    1270.5
                            1220.8
                                     1213.5
                                              1201.8
                                                      1172.2
                                                               1140.4
                                                                                1093.5
                                                                       1116.0
                                      948.2
001073.0
           1037.5
                    1002.1
                             973.8
                                               918.7
                                                                861.1
                                                                         838.1
                                                                                 813.0
                                                       884.4
                                                                        620.5
90 788.4
                    749.8
                                                       658.3
                                                                631.9
            768.9
                             712.3
                                      694.3
                                                                                 604.3
                                               676.3
90 581.4
            565.0
                     545.0
                             521.4
                                      502.4
                                               487.3
                                                       468.8
                                                                461.6
                                                                         450.8
                                                                                 436.7
90 421,1
                    399.1
                             382.7
                                      369.9
                                               357.1
                                                                        326.7
            409.2
                                                       350.9
                                                                337.2
                                                                                 314.9
90 303.4
            294.9
                     286.5
                              277.0
                                      267.6
                                               258.4
                                                       249.3
                                                                244.3
                                                                         234.3
                                                                                 227.0
90 222.2
                    209.4
                              202.4
                                               191.2
                                                       185.7
                                                                180.4
                                                                         174.1
                                                                                 169.6
            216.3
                                      196.7
90 166.9
            160.8
                     157.0
                              153.3
                                      149.5
                                               145.7
                                                       141.9
                                                                138.2
                                                                         134.4
                                                                                 131.2
90 128.5
                                                                109.9
                                                                         107.2
                                                                                 104.1
                              122.1
                                      118.7
                                               115.4
            126.3
                     124.6
                                                       112.0
90 101.8
             99.5
                      97.5
                              95.5
                                       93.5
                                                90.6
                                                        88.4
                                                                 86.3
                                                                          84.9
                                                                                  83.5
                                                        70.4
                                                                 69.2
                                                                          67.9
                                                                                  66.4
00
   81.7
             79.9
                      78.1
                              75.5
                                       73.4
                                                71.9
             63.3
90
    64.8
                      61.7
                              60.2
                                       58.6
                                                57.1
                                                        55.5
                                                                 53.9
                                                                          52.6
                                                                                  51.8
                              48.0
                                                                                  42.1
                      49.0
                                       47.0
                                                                 44.0
                                                                          43.0
90
    50.9
             50.0
                                                        45.0
                                                46.0
             40.6
                              38.9
    41.3
                      39.8
                                       38.0
                                                37.1
                                                        36.3
                                                                 35.6
                                                                          35.0
                                                                                  34.5
80
                              32.6
                                       32.1
                                                                                  30.8
             33.6
                                                        31.5
80
    34.0
                      33.1
                                                31.7
                                                                 31.2
                                                                          31.0
    30.6
             30.3
                      30.1
                                       29.2
                                                28.7
                                                        28.3
                                                                          27.5
                                                                                  27.3
90
KK
     3-2
KM Routing from node 3 to node 2
    .070
             .037
                      .070
                              5743 .00293
RC.
```

Sample input for Snyder Lumped Model - Continued

```
5000
                                                5039
             4931
                      4961
                               4985
                                                         5070
                                                                 5100
   4900
                     234.0
                                      220.0
                                               234.0
                                                        236.0
                                                                240.0
RY
   240.0
            236.0
                              223.0
     241
KK
KN
   Runoff
BA
    1.44
                2
                        51
     .375
             .271
                      .354
PV
                      6.57
     0.6
              .13
                              .1963
US
    1.28
            0.843
KX
     C21
101
   Combine hydrographs at node 2
KK
     2-1
   Routing from node 2 to node 1
                               5743
                                     .00155
              .037
                      .070
RC
    .070
             4931
                               4985
RX
    4900
                      4961
                                       5000
                                                5039
                                                         5070
                                                                 5100
            236.0
RY 240.0
                     234.0
                              223.0
                                      220.0
                                               234.0
                                                        236.0
                                                                 240.0
KK CAGE1
   Observed vs. Computed
       2 180CT81
IĦ
                      2119
90
     1.0
              1.0
                       1.0
                                1.0
                                                 1.1
                                         1.0
                                                                   1.1
                                                                           1.1
                                                          1.1
90
     1.1
                                         1.1
              1.1
                       1.1
                                1.1
                                                 1.1
                                                          1.1
                                                                   1.1
                                                                           1.1
                                                                                    1.2
90
     1.2
              1.2
                       1.2
                                1.2
                                         1.2
                                                 1.2
                                                          1.2
                                                                   1.2
                                                                           1.2
90
     1.2
                       1.2
                                                 1.3
                                        1.3
                                                                           1.4
              1.2
                                1.3
                                                          1.3
                                                                   1.3
                                                                                    1.4
90
     1.4
              1.9
                       2.3
                                2.7
                                        3.2
                                                 3.6
                                                                   4.5
                                                                           4.7
                                                                                    4.7
                                                          4.1
00
              4.7
                                4.7
     4.7
                                                          7.5
                                                                  9.1
                       4.7
                                        5.1
                                                 5.9
                                                                           9.9
                                                                                   10.7
80
    11.5
             12.3
                      13.1
                               13.9
                                        14.7
                                                15.5
                                                         17.0
                                                                  18.4
                                                                           19.8
                                                                                   21.2
00
                               32.6
                                                40.8
    22.7
             8.85
                      29.0
                                       36.7
                                                         45.9
                                                                 50.9
                                                                          56.0
                                                                                   61.1
    66.2
             67.5
                      68.7
                               69.9
                                       71.2
                                                70.4
                                                         69.7
                                                                 69.0
                                                                          68.3
                                                                                   67.6
    66.9
90
                      66.2
             66.2
                                                                 101.9
                               66.2
                                       70.0
                                                73.7
                                                         87.8
                                                                          139.1
                                                                                  176.4
90 225.4
            274.5
                     354.9
                              435.3
                                      477.6
                                               519.9
                                                        577.7
                                                                 638.9
                                                                         693.4
                                                                                  747.9
                     906.4
90 807.3
                              946.0
                                              1045.6
            866.7
                                      995.8
                                                               1122.6
                                                                        1154.4
                                                                                 1186.2
                                                       1063.7
                                                                        1364.4
901210.6
           1235.0
                    1259.8
                             1284.9
                                      1301.8
                                              1318.7
                                                       1334.7
                                                                1350.7
                                                                                 1376.0
                             1405.1
901387.6
           1393.4
                    1399.3
                                              1405.1
                                                       1402.8
                                                                        1396.1
                                     1405.1
                                                               1400.4
                                                                                 1395.7
                                              1358.7
                                                                        1307.6
901393.4
           1386.5
                    1379.5
                             1372.6
                                     1365.6
                                                       1341.6
                                                                1324.6
                                                                                 1290.7
           1267.1
                             1314.3
                                              1341.4
901273.7
                                     1327.9
                                                                1234.5
                    1300.7
                                                       1287.4
                                                                        1182.7
                                                                                 1130.9
901081.1
           1065.1
                    1049.0
                             1032.9
                                     1016.8
                                              1000,7
                                                        962.2
                                                                963.8
                                                                         945.4
                                                                                  926.9
QU 908.5
            882.3
                     857.1
                              831.9
                                      806.7
                                               781.5
                                                        757.4
                                                                         711.3
                                      593.2
            646.9
                              610.9
                                                        560.3
                                                                                  515.3
90 665.2
                     628.5
                                               575.6
                                                                 545.0
                                                                         530.1
90 500.8
            487.5
                     474.2
                                                                         403.4
                              460.9
                                      448.1
                                               435.3
                                                        424.7
                                                                 414.1
                                                                                  393.1
                     363.4
                                               334.4
                                                                         311.9
W 383.0
            373.2
                              353.6
                                      343.8
                                                        326.9
                                                                319.4
                                                                                  304.3
                                      268.2
90 296.8
                     282.3
                                               261.2
                                                                         240.9
                                                                                  234.3
                              275.3
                                                        254.3
            289.3
                                                                 247.6
                                      201.9
                                               195.8
90 227.6
            221.0
                     214.3
                              206.0
                                                        191.2
                                                                         182.2
                                                                                  177.9
                                                                 186.6
                     164.8
                                       156.4
                                               152.2
60 173.5
            169.1
                              160.4
                                                        149.0
                                                                 145.7
                                                                         142.5
                                                                                  139.5
   136.4
            133.4
                     130.3
                              127.3
                                       124.2
                                                                 116.4
                                               121.3
                                                        118.9
                                                                         113.9
                                                                                  111.4
   109.0
80
                     104.3
                              102.0
                                       99.7
                                                97,3
                                                                 94.2
79.2
            106.6
                                                         95.8
                                                                          92.7
                                                                                   91.1
                                                82.1
                      86.5
                                       83.6
    89.6
             88.0
                               85.1
                                                         80.7
                                                                          77.8
                                                                                   76.4
                               71.0
             73.6
                      72.3
                                        69.7
                                                68.4
                                                         67.1
                                                                                   63.2
80
    75.0
                                                                  65.7
                                                                           64.4
90
                      59.5
                               58.3
                                       57.1
                                                55.9
                                                         54.9
                                                                  54.0
                                                                          53.0
                                                                                   52.0
    62.0
             60.8
                      49.3
                               48.3
                                                         45.7
                                                                  45.0
                                                                                   43.5
90
    51.1
             50.2
                                        47.4
                                                46.5
                                                                           44.2
                            C=FLOW
                                     F=CAL
ZW
     A=DEC
              B=GOODWIN
```

t D	GUUDH.	IN CREEK	MATERSHE	•						
iD	SCS M			0:15 AM						
11	2	180CT81	2119	300						
10										
PG	4	1800181	2119							
	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.020	0.020	0.020	0.020
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.022	0.001 0.022	0.001 0.022	0.001 0.022	0.001 0.022	0.001 0.022	0.001 0.003	0.022 0.003	0.022 0.003	0.022 0.003
	0.003	0.003	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
	0.013	0.013	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043
	0.043	0.043	0.043	0.043	0.016	0.016	0.016	0.016	0.016	0.016
	0.016	0.016	0.000	0.000	0.000	0.000	0.000	0.019	0.019	0.019
	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.020
	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
	0.020 0.035	0.020 0.035	0.020 0.035	0.049 0.035	0.049 0.035	0.049 0.035	0.049 0.035	0.049 0.035	0.04° 0.03	
	0.035	0.000	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009
	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.005	0.005
	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Pl	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	0.005	0.005	0.020	0.020	0.020	0.020	0.020	0.020	0.012	0.012
	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.050	0.004
-	0.004									
PG IN	1	1800181	2119							
	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.014	0.014	0.014	0.014	0.014	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.004	0.004	0.004	0.004
	0.004	0.025 0.025	0.025 0.013	0.025 0.013	0.025 0.013	0.025 0.013	0.025	0.025	0.025	0.025
	0.023	0.023	0.013	0.013	0.013	0.030	0.013 0.030	0.013 0.030	0.013 0.030	0.013 0.030
	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.037	0.037	0.037
	0.037	0.037	0.037	0.037	0.000	0.000	0.000	0.000	0.000	0.010
	0.010	0.010	0.010	0.016	0.016	0.016	0.016	0.016	0.016	0.016
	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016
	0.016	0.016	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
	0.040	0.062 0.029	0.062 0.029	0.062 0.010	0.062 0.010	0.062	0.029	0.029	0.029	0.029 0.010
	0.000	0.006	0.006	0.006	0.006	0.010 0.006	0.010 0.006	0.010 0.006	0.010 0.006	0.006
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.007	0.007	0.007
	0.007		0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
PI	0.007	0.007	0.007	0.007	0.007	0.020	0.020	0.020	0.020	0.020
	0.020	0.020	0.012	0.012	0.012	0.012	0.012	0.012	0.025	0.025
	0.025	0.025	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
_	0.003									
PG IN	6 1	180CT81	2119							
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	Ű. 00 0	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.027	0.027	0.027	0.027	0.027	0.027
	0.027	0.027	0.027	0.027 0.018	0.027 0.018	0.027 0.018	0.018 0.018	0.018 0.018	0.018 0.018	0.018 0.018
	0.018 0.018	0.018 0.070	0.018 0.015	0.015	0.015	0.015	0.015	0.015	0.039	0.039
	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.005	0.005
	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031

Sample input for SCS Lumped Model

PI	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031
	0.031	0.031	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
_	0.040	0.040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
_			0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
	0.003	0.003					0.001	0.001	0.001	0.001
PI	0.001	0.001	0.001	0.001	0.001	0.001				
	0.001	0.001	0.001	0.001	0.001	0.001	0.010	0.010	0.010	0.010
ΡĮ	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.020	0.020
PI	0.020	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
PI	0.005									
PG	7									
IN		180CT81	2119							
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.014	0.014	0.014	0.614	0.014	0.014	0.014	0.000	0.000	0.000
	0.000	0.000	0.000	0.300	0.000	0.000	0.000	0.000	0.000	0.000
									0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
_	0.000	0.000	0.000	0.000	0.006	0.006	0.006	0.006	0.006	0.006
PI	0.006	0.006	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
PI	0.008	0.008	0.008	0.008	0.008	0.008	0.006	0.008	0.008	0.008
PI	0.008	0.008	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
	0.032	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.003	0.003
_	0.003	0.003	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016
	0.016	0.016	0.016	0.016	0.016	0.011	0.011	0.011	0.011	0.011
	0.011	0.011	0.025	0.025	0.025	0.025	0.042	0.042	0.042	0.042
_										
	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.045	0.045	0.045
	0.045	0.045	0.045	0.045	0.045	0.040	0.040	0.040	0.040	0.040
	0.060	0.080	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
PI	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
PI	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
ΡI	0.006	0.006	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011
_	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.035	0.035	0.035
	0.035	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.000
	0.032	0.003	0.003	0.003	0.003	v. 003	v. 003	v.w.	0.003	0.000
81	0.000									
	0.000									
PG	8	400004	2440							
PG IN	8	180CT81	2119							
PG IN PI	8 1 0.000	0.000	0.000	0.004	0.004	0.004	0.004	0.004	0.004	0.004
PG IN PI PI	8 1 0.000 0.004	0.000 0.004	0.000 0.004	0.004	0.004	0.004	0.004 0.004	0.004	0.004	0.007
PG IN PI PI	8 1 0.000	0.000	0.000							0.007 0.001
PG IN PI PI PI	8 1 0.000 0.004	0.000 0.004	0.000 0.004 0.007	0.004	0.004	0.004	0.004	0.004	0.004	0.007
PG IN PI PI PI PI	8 0.000 0.004 0.007 0.001	0.000 0.004 0.007 0.001	0.000 0.004 0.007 0.001	0.004 0.007 0.001	0.004 0.007 0.001	0.004 0.001 0.001	0.004 0.001 0.001	0.004 0.001 0.001	0.004 0.001 0.001	0.007 0.001 0.001
PG IN PI PI PI PI	8 0.000 0.004 0.007 0.001	0.000 0.004 0.007 0.001 0.001	0.000 0.004 0.007 0.001 0.001	0.004 0.007 0.001 0.001	0.004 0.007 0.001 0.001	0.004 0.001 0.001 0.001	0.004 0.001 0.001 0.001	0.004 0.001 0.001 0.001	0.004 0.001 0.001 0.001	0.007 0.001 0.001 0.001
PG IN PI PI PI PI PI	8 0.000 0.004 0.007 0.001 0.001	0.000 0.004 0.007 0.001 0.001	0.000 0.004 0.007 0.001 0.001	0.004 0.007 0.001 0.001 0.001	0.004 0.007 0.001 0.001 0.001	0.004 0.001 0.001 0.001 0.027	0.004 0.001 0.001 0.001 0.027	0.004 0.001 0.001 0.001 0.027	0.004 0.001 0.001 0.001 0.027	0.007 0.001 0.001 0.001 0.027
PG IN PI PI PI PI PI	8 0.000 0.004 0.007 0.001 0.001 0.027	0.000 0.004 0.007 0.001 0.001 0.001 0.018	0.000 0.004 0.007 0.001 0.001 0.001	0.004 0.007 0.001 0.001 0.001 0.018	0.004 0.007 0.001 0.001 0.001 0.018	0.004 0.001 0.001 0.001 0.027 0.018	0.004 0.001 0.001 0.001 0.027 0.018	0.004 0.001 0.001 0.001 0.027 0.018	0.004 0.001 0.001 0.001 0.027 0.018	0.007 0.001 0.001 0.001 0.027 0.018
PG IN PI PI PI PI PI PI	8 0.000 0.004 0.007 0.001 0.001 0.027 0.018	0.000 0.004 0.007 0.001 0.001 0.001 0.018 0.018	0.000 0.004 0.007 0.001 0.001 0.001 0.018 0.022	0.004 0.007 0.001 0.001 0.001 0.018 0.022	0.004 0.007 0.001 0.001 0.001 0.018 0.022	0.004 0.001 0.001 0.001 0.027 0.018 0.022	0.004 0.001 0.001 0.001 0.027 0.018 0.022	0.004 0.001 0.001 0.001 0.027 0.018 0.022	0.004 0.001 0.001 0.001 0.027 0.018 0.022	0.007 0.001 0.001 0.001 0.027 0.018 0.022
PG IN PI PI PI PI PI PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.018 0.022	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023
PG IN PI PI PI PI PI PI PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.018 0.022 0.023	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.023	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023	0.004 0.001 0.001 0.027 0.018 0.022 0.023	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040
PG IN PI PI PI PI PI PI PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.018 0.022 0.023 0.040	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.023 0.023	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040 0.005	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018
PG IN PI PI PI PI PI PI PI PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.023 0.005 0.018	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040 0.005	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018
PG IN PI PI PI PI PI PI PI PI PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.022 0.023 0.040 0.018	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.023 0.005 0.018	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018	0.004 0.007 0.001 0.001 0.001 0.022 0.023 0.040 0.005 0.018	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018	0.004 0.001 0.001 0.007 0.027 0.018 0.022 0.023 0.040 0.005 0.018	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.018	0.004 0.001 0.001 0.007 0.027 0.018 0.023 0.040 0.018 0.018	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017
PG IN PI PI PI PI PI PI PI PI PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.023 0.005 0.018	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040 0.005	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.018 0.017 0.069	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017
PG IN PI PI PI PI PI PI PI PI PI PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.022 0.023 0.040 0.018	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.023 0.005 0.018	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018	0.004 0.007 0.001 0.001 0.001 0.022 0.023 0.040 0.005 0.018	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.005 0.018 0.017 0.069 0.000	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.018	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.018 0.017 0.069 0.000	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017
PG IN PI PI PI PI PI PI PI PI PI PI PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.023 0.005 0.018 0.017 0.017	0.000 0.004 0.007 0.001 0.001 0.001 0.022 0.023 0.040 0.005 0.018 0.017 0.017	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000	0.004 0.007 0.001 0.001 0.001 0.022 0.023 0.040 0.005 0.018 0.017	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.005 0.018 0.017 0.069 0.000	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.018 0.017	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.018 0.017 0.069	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017
PG PI PI PI PI PI PI PI PI PI PI PI PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.000	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.023 0.005 0.018 0.017 0.017 0.069 0.025	0.000 0.004 0.007 0.001 0.001 0.001 0.022 0.023 0.040 0.005 0.018 0.017 0.017 0.000 0.025	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.040 0.017 0.069 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.005 0.018 0.017 0.069 0.000	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.069 0.000	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.018 0.017 0.069 0.000	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.000
PG PI PI PI PI PI PI PI PI PI PI PI PI PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.017 0.017 0.017 0.069 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.023 0.005 0.017 0.017 0.069 0.025 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.017 0.000 0.025	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.020 0.005	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.020	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.069 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.018 0.017 0.069 0.005 0.005	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.000 0.005
PG IN PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.005 0.017 0.017 0.017 0.069 0.025 0.005	0.000 0.004 0.007 0.001 0.001 0.001 0.022 0.023 0.040 0.005 0.017 0.017 0.007 0.005 0.005	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.020 0.005	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.020 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.069 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.069 0.005 0.005	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.000 0.005 0.005
PG IN PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.028 0.023 0.040 0.018 0.017 0.017 0.069 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.005 0.018 0.017 0.017 0.017 0.069 0.025 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.017 0.017 0.000 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.020 0.005 0.005	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.018 0.017 0.069 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.018 0.017 0.069 0.005 0.005 0.005	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.005 0.005 0.005
PG IN PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.028 0.023 0.040 0.017 0.017 0.069 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.023 0.005 0.017 0.017 0.017 0.069 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.001 0.022 0.023 0.040 0.005 0.017 0.017 0.000 0.025 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.020 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.005 0.005 0.005
PG IN PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.017 0.017 0.069 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.005 0.018 0.017 0.017 0.017 0.069 0.025 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.017 0.017 0.000 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.020 0.005 0.005	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.018 0.017 0.069 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.018 0.017 0.069 0.005 0.005 0.005	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.005 0.005 0.005
PG IN PI	8 1 0.000 0.004 0.007 0.001 0.001 0.022 0.023 0.040 0.017 0.017 0.069 0.005 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.023 0.005 0.017 0.017 0.017 0.069 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.001 0.022 0.023 0.040 0.005 0.017 0.017 0.000 0.025 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.020 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.005 0.005 0.005
PG IN PI	8 1 0.000 0.004 0.007 0.001 0.001 0.022 0.023 0.040 0.017 0.017 0.017 0.005 0.005 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.023 0.005 0.017 0.017 0.017 0.025 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.017 0.017 0.000 0.025 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.020 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.005 0.005 0.005
PG IN PI	8 1 0.000 0.004 0.007 0.001 0.001 0.022 0.023 0.040 0.017 0.017 0.069 0.005 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.023 0.005 0.017 0.017 0.017 0.069 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.017 0.017 0.000 0.025 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.040 0.005 0.018 0.017 0.069 0.000 0.020 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.001 0.022 0.023 0.040 0.005 0.017 0.069 0.000 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.005 0.005 0.005 0.005 0.005
PG IN PI	8 1 0.000 0.004 0.007 0.001 0.001 0.022 0.023 0.040 0.017 0.017 0.017 0.005 0.005 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.023 0.005 0.017 0.017 0.017 0.025 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.017 0.017 0.000 0.025 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.020 0.005 0.005	0.004 0.007 0.001 0.001 0.001 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.000 0.020 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.005 0.005 0.005 0.005
PG IN PI	8 1 0.000 0.004 0.007 0.001 0.001 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.005 0.005 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.018 0.023 0.005 0.017 0.017 0.017 0.025 0.005 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.017 0.017 0.000 0.025 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.040 0.005 0.018 0.017 0.069 0.000 0.020 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.017 0.017 0.069 0.005 0.005 0.005 0.005 0.005
PG IN PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.005 0.005 0.005 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.023 0.023 0.005 0.017 0.017 0.017 0.069 0.025 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.017 0.017 0.000 0.025 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.005 0.005 0.005 0.005
PG IN PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.005 0.005 0.005 0.005 0.005 0.001 10 0.000 0.000 0.000	0.000 0.004 0.007 0.001 0.001 0.018 0.023 0.023 0.005 0.017 0.017 0.017 0.025 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.001 0.022 0.023 0.040 0.005 0.017 0.017 0.000 0.025 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.017 0.017 0.069 0.005 0.005 0.005 0.005 0.005
PG IN PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005 0.005 0.005 0.001 10 0.000 0.000 0.000	0.000 0.004 0.007 0.001 0.001 0.018 0.023 0.005 0.017 0.017 0.017 0.069 0.025 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.001 0.022 0.023 0.040 0.005 0.017 0.017 0.005 0.025 0.005 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005 0.005	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.017 0.017 0.069 0.005 0.005 0.005 0.005 0.005
PG IN PI I I PI I PI I PI I PI I PI I PI	8 1 0.000 0.004 0.007 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.018 0.017 0.017 0.069 0.005 0.005 0.005 0.005 0.005 0.001 10 0.000 0.000 0.000	0.000 0.004 0.007 0.001 0.001 0.018 0.023 0.023 0.005 0.017 0.017 0.017 0.025 0.005 0.005 0.005	0.000 0.004 0.007 0.001 0.001 0.001 0.022 0.023 0.040 0.005 0.017 0.017 0.000 0.025 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005 0.005	0.004 0.007 0.001 0.001 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.005 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005	0.004 0.001 0.001 0.001 0.027 0.018 0.023 0.040 0.018 0.017 0.069 0.005 0.005 0.005 0.005 0.005	0.007 0.001 0.001 0.001 0.027 0.018 0.022 0.023 0.040 0.017 0.017 0.005 0.005 0.005 0.005 0.005

Sample input for SCS Lumped Model - Continued

	0.031	0.031	0.031	0.031	0.031	0.002	0.002	0.002	0.002	0.002
PI	0.035	0.035	0.035	0.035	0.010	0.010	0.010	0.010	0.010	0.010
	0.010	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033
	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033
PI	0.004	0.004	0.004	0.004	0.004	0.020	0.020	0.020	0.020	0.020
	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.030	0.030	0.030
PI	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030
PI	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030
	0.030	0.030	0.030	0.016	0.016	0.016	0.016	0.016	0.016	0.016
	0.016	0.000	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019
	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.050	0.050	0.003
	0.003	3.3.3				******	0.0.0	0.050	0.050	0.000
PG	11									
IN		1800181	2119							
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.005	0.005	0.030	0.030	0.030	0.001	
										0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.017	0.017	0.017	0.050	0.050
	0.050	0.050	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.008
	0.008	0.006	0.006	0.008	0.050	0.050	0.013	0.013	0.013	0.010
	0.010	0.010	0.025	0.025	0.025	0.025	0.025	0.025	0.064	0.064
	0.064	0.064	0.064	0.026	0.026	0.026	0.026	0.026	0.007	0.007
PI	0.007	0.002	0.002	0.002	0.002	0.002	0.007	0.007	0.007	0.007
	0.007	0.007	0.042	0.042	0.042	0.042	0.042	0.011	0.011	0.011
ΡI	0.011	0.011	0.011	0.011	0.011	0.011	0.028	0.028	0.028	0.028
PI	0.028	0.045	0.045	0.045	0.045	0.060	0.060	0.037	0.037	0.037
ΡI	0.040	0.050	0.020	0.020	0.020	0.020	0.020	0.011	0.011	0.011
PI	0.011	0.011	0.011	0.011	0.006	0.006	0.006	0.006	0.006	0.006
PI	0.006	0.006	0.006	0.006	0.005	0.005	0.005	0.005	0.005	0.005
PI	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.006
PI	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.080	0.012
PI	0.012	0.012	0.012	0.012	0.012	0.009	0.009	0.009	0.009	0.009
PI	0.009									
PG	13									
IN		1800781	2119							
PI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.023	0.023	0.023	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.012	0.012	0.012	0.012	0.001	0.012
	0.012	0.012	0.012	0.012	0.003	0.003	0.003	0.003	0.003	0.003
	0.003	0.018	0.018	0.018	0.018	0.006	0.006	0.006	0.006	0.006
	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034
	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.002	0.002	0.002
	0.002	0.002	0.035	0.015	0.018	0.018	0.034	0.002	0.018	0.018
	0.018	0.018	0.018	0.018	0.018	0.018	0.010	0.010	0.010	0.010
	0.010									
	0.010	0.010 0.041	0.010 0.041	0.010 0.041	0.041 0.041	0.041 0.041	0.041 0.041	0.041	0.041 0.041	0.041 0.041
	0.041	0.041	0.041	0.018	0.018	0.018	0.018	0.018	0.018	0.018
	0.018	0.020	0.020	0.007	0.007	0.007	0.007	0.007	0.007	0.007
	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.006	0.006	0.006
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.006	0.006	0.006	0.006	0.013	0.013	0.013	0.013	0.013
	0.013	0.013	0.013	0.013	0.013	0.013	0.011	0.011	0.011	0.011
	0.011	0.011	0.011	0.011	0.011	0.004	0.004	0.004	0.004	0.004
	0.004									
PG	14									
IN	1	180CT81	2119							

Sample input for SCS Lumped Model - Continued

PI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PI	0.000	0.000	0.020	0.020	0.020	0.020	0.020	0.000	0.000	0.000
PI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.033	0.033	0.033	0.013
	0.013	0.013	0.013	0.013	0.013	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010
	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036
	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.003	0.003
	0.003	0.003	0.003	0.003	0.008	0.008	0.008	0.008	0.008	0.008
	0.028	0.028	0.028	0.028	0.028	0.028	0.032	0.032	0.032	0.032
	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
	0.032	0.032	0.032	0.032	0.032	0.037	0.037	0.037	0.037	0.037
	0.037	0.037	0.037	0.037	0.014	0.014	0.014	0.014	0.014	0.014
	0.014	0.010	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009
PI	0.009	0.009	0.009	0.009	0.009	0.009	0.005	0.005	0.005	0.005
PI	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
PI	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.013	0.013	0.013
PI	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
	0.013	0.013	0.013	0.013	0.013	0.003	0.003	0.003	0.003	0.003
	0.003		••••			33333	3.333		3.335	3.335
ΡI										
PG	50								•	
IN		180CT81	2119							
	0.000			0.00/	0.00/	0.004	0.00/	0.0/0	0.0/0	0.001
		0.004	0.004	0.004	0.004		0.004	0.040	0.040	
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.901	0.001	0.001	0.001	0.001	0.001	0.001	0.001
_	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.020	0.020	0.020
	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.003	0.003	0.003
ΡI	0.003	0.003	0.003	0.003	0.020	0.020	0.020	0.020	0.027	0.027
PI	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027
ΡI	0.027	0.027	0.027	0.627	0.027	0.027	0.027	0.027	0.027	0.027
	0.027	0.027	0.027	0.027	0.000	0.000	0.000	0.025	0.025	0.015
	0.015	0.015	.0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
	0.015	0.015	0.015	0.015	0.024	0.024	0.024	0.024	0.024	0.024
	0.024	0.024	0.024	0.024	0.051	0.051	0.051	0.051	0.051	0.051
	0.051	0.051	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.013
	0.013	0.013	0.013	0.013	0.013	9.013	0.013		0.013	0.013
								0.013		
	0.080	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
	0.002	0.002	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
_	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.006	0.006	0.017	0.017	0.017	0.017	0.017	0.017	0.017
	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.020
	0.020	0.020	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
ΡI	0.005									
PG	51									
IN	1	180CT81	2119							
ΡI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.018	0.018	0.018	0.018	0.006	0.006	0.006	0.006
	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.017	0.017	0.017
	0.008		0.008	0.008	0.008	0.008	0.002	0.017	0.002	0.002
	0.002	0.008							0.002	0.002
		0.002	0.030	0.030	0.007	0.007	0.007	0.011		
	0.011	0.011	0.011	0.011	0.036	0.036	0.036	0.036	0.036	0.036
	0.036	0.057	0.057	0.057	0.035	0.035	0.033	0.03	0.033	0.003
	0.003	0.003	0.003	0.003	0.003	0.003	0.040	0.005	0.005	0.005
	0.005	0.024	0.024	0.024	0.024	0.024	0.023	0.023	0.023	0.010
ΡI	0.010	0.010	0.010	0.010	0.010	0.028	0.028	0.028	0.028	0.028
	0.033	0.033	0.033	0.033	0.033	0.033	0.103	0.103	0.103	0.033
ΡI	0.033	0.033	0.033	0.030	0.030	0.030	0.030	0.030	0.030	0.030
	0.000	0.000	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.015
	0.015	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006

Sample input for SCS Lumped Model - Continued

	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.006	0.010	0.010	0.010	0.025	0.025	0.006	0.006	0.008	0.006
PI	0.008	0.006	0.023	0.023	0.023	0.003	0.003	0.003	0.003	0.003
P1	0.003									
PG	52									
IN	1		2119							
PI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.017	0.017	0.017	0.017	0.017	0.017	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.016	0.016	0.016	0.016
	0.016	0.013	0.013	0.013	0.004	0.004	0.004	0.004	0.004	0.004
	0.004	0.005	0.005	0.005	0.005	0.015	0.015	0.015	0.015	0.015
	0.015	0.015	0.015	0.048	0.048	0.048	0.048	0.048	0.048	0.048
	0.048	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
	0.000	0.000	0.000	0.017	0.017	0.017	0.003	0.003	0.003	0.003
	0.032	0.032	0.032	0.032	0.032	0.032	0.009	0.009	0.009	0.009
	0.009	0.009	0.009	0.009	0.025	0.025	0.025	0.025	0.025	0.025
PI	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054
	0.054	0.035	0.035	0.035	0.035	0.017	0.017	0.017	0.017	0.017
	0.017	0.000	0.012	0.012	0.012	0.012	0.012	0.012	0.006	0.006
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
PI	0.006	0.006	0.006	0.006	0.006	0.006	3.006	0.006	0.006	0.006
PI	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.011
PI	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.010
PI	0.010	0.020	0.020	0.020	0.020	0.002	0.002	0.002	0.002	0.002
PI	0.002									
PG	53									
IN		180CT81	2119							
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.007	0.007	0.007	0.007	0.007
	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
	0.002	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.003	0.003
	0.003	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.018	0.018
	0.018	0.018	0.018	0.018	0.027	0.027	0.027	0.027	0.027	0.027
	0.027	0.045	0.045	0.033	0.033	0.033	0.033	0.035	0.035	0.035
	0.035	0.002	0.002	0,002	0.002	0.002	0.002	0.010	0.010	0.010
	0.003	0.003	0.003	0.012	0.012	0.012	0.012	0.012	0.120	0.011
Ρl	0.011	0.011	0.011	0.011	0.011	0.011	0.017	0.017	0.017	0.017
	0.017	0.017	0.050	0.050	0.010	0.010	0.067	0.067	0.067	0.050
	0.050	0.050	0.050	0.033	0.033	0.033	0.023	0.023	0.023	0.025
	0.025	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
	0.007	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
ΡI	0.006	0.006	0.006	0.008	0.008	0.008	0.008	0.026	0.020	0.020
	0.005	0.005	0.005	0.005	0.005	0.005	0.018	0.018	0.018	0.018
	0.003									
PG	54									
IN	1	180CT81	2119							
PI	0.000	0.000	0.016	0.016	0.016	0.016	0.016	0.016	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
PI	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.053	0.053
	0.053	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.006	0.006
	0.006	0.006	0.006	0.027	0.027	0.027	0.028	0.028	0.028	0.028
	0.028	0.028	0.028	0.028	0.026	0.028	0.028	0.028	0.028	0.028
	0.028	0.028	0.030	0.030	0.030	0.030	0.030	0.030	0.007	0.007
	0.007	0.007	0.007	0.007	0.007	0.012	0.012	0.812	0.012	0.012
ΡI	0.012	0.018	0.018	0.018	0.018	0.018	0.018	0.016	0.016	0.016

Sample input for SCS Lumped Model - Continued

```
0.016
                                      0.016
                                               0.016
                                                       0.016
                                                                         0.016
                                                                                  0.016
                             0.016
                                                                0.016
PI 0.016
            0.016
            0.050
                     0.050
                              0.050
                                      0.050
                                               0.050
                                                       0.050
                                                                0.050
                                                                         0.050
                                                                                 0.035
PI 0.016
                                      0.035
                                                       0.035
                              0.035
                                               0.035
                                                                0.011
                                                                         0.011
                                                                                  0.011
            0.035
                     0.035
PI 0.035
                     0.011
                              0.011
                                      0.011
                                               0.011
                                                        0.011
                                                                0.011
                                                                         0.011
                                                                                  0.011
PI 0.011
            0.011
                                                       0.006
                                               0.006
                                      0.006
                                                                0.006
                                                                         0.006
                                                                                  0.006
PI 0.011
            0.000
                     0.006
                              0.006
            0.006
                              0.006
                                      0.006
                                               0.006
                                                        0.006
                                                                0.006
                                                                         0.006
                                                                                  0.006
PI 0.006
                     0.06
                                                       0.006
PI 0.006
            0.006
                     0.006
                              0.006
                                      0.006
                                               0.006
                                                                0.006
                                                                         0.006
                                                                                  0.026
PI 0.026
            0.026
                     0.026
                              0.026
                                      0.007
                                               0.007
                                                       0.007
                                                                0.007
                                                                         0.007
                                                                                  0.007
                                                       0.015
            0.007
                     0.007
                              0.007
                                      0.015
                                               0.015
                                                                         0.002
                                                                                  0.002
PI 0.007
                                                                0.015
PI 0.002
            0.002
                     0.002
                              0.002
                                      0.002
                                               0.002
                                                        0.002
                                                                0.002
                                                                         0.002
                                                                                  0.002
PI 0.002
PG
          180CT81
                      2119
IN
PI 0.001
                              0.001
                                      0.001
                                               0.001
                                                       0.001
                                                                0.001
                                                                         0.001
                                                                                  0.001
            0.001
                     0.001
PI 0.001
            0.001
                     0.001
                                      0.020
                                               0.020
                                                       0.020
                                                                0.020
                                                                         0.020
                             0.001
                                                                                  0.001
PI 0.001
            0.001
                              0.001
                                      0.001
                                               0.001
                                                       0.001
                                                                         0.001
                                                                                  0.001
                     0.001
                                                                0.001
PI 0.001
                     0.001
            0.001
                              0.001
                                      0.001
                                               0.001
                                                       0.001
                                                                0.001
                                                                         0.001
                                                                                  0.001
                     0.001
PI 0.001
            0.001
                              0.001
                                      0.001
                                               0.001
                                                       0.001
                                                                                  0.001
                                                                0.001
                                                                         0.001
PI 0.001
                             0.001
                                               0.001
                                                                0.024
                                                                         0.024
                                                                                 0.024
            0.001
                     0.001
                                      0.001
                                                       0.001
PI 0.024
                                               0.024
                                                       0.024
                                                                                  0.024
            0.024
                     0.024
                              0.024
                                      0.024
                                                                0.024
                                                                         0.024
PI 0.003
                                      0.032
                                               0.032
            0.003
                     0.003
                              0.003
                                                       0.032
                                                                0.032
                                                                         0.032
                                                                                  0.007
PI 0.007
                                      0.024
                                               0.024
                                                                0.024
                                                                         0.024
            0.007
                     0.024
                              0.024
                                                       0.024
                                                                                  0.024
PI 0.024
            0.024
                     0.024
                              0.024
                                      0.024
                                               0.024
                                                        0.036
                                                                0.036
                                                                         0.036
                                                                                  0.036
                                      0.004
            0.036
                     0.036
                                                       0.004
                                                                0.004
PI 0.036
                              0.036
                                               0.004
                                                                                  0.004
                                                                         0.004
PI 0.004
            0.015
                     0.015
                              0.005
                                      0.005
                                               0.021
                                                        0.021
                                                                0.021
                                                                         0.021
                                                                                  0.021
                     0.021
                                      0.021
                                                       0.021
                                                                0.021
                                                                         0.021
PI 0.021
            0.021
                              0.021
                                               0.021
                                                                                  0.021
PI 0.021
            0.021
                     0.021
                              0.021
                                      0.021
                                               0.021
                                                        0.021
                                                                0.021
                                                                         0.021
                                                                                  0.021
            0.049
                     0.049
                                      0.049
                                               0.049
PI 0.021
                                                                0.049
                                                                                  0.090
                              0.049
                                                       0.049
                                                                         0.090
PI 0.090
            0.000
                     0.040
                              0.040
                                      0.040
                                               0.040
                                                        0.040
                                                                0.040
                                                                         0.009
                                                                                  0.009
            0.009
                              0.009
                                      0.009
                                               0.009
                                                                0.009
PI 0.009
                                                                         0.009
                     0.009
                                                        0.009
                                                                                  0.009
PI 0.009
            0.009
                     0.009
                              0.009
                                      0.009
                                               0.009
                                                        0.009
                                                                0.007
                                                                         0.007
                                                                                  0.007
PI 0.007
                              0.007
                                               0.007
                                                                                  0.007
            0.007
                     0.007
                                      0.007
                                                                0.007
                                                        0.007
                                                                         0.007
PI 0.007
            0.007
                     0.007
                              0.007
                                      0.007
                                               0.009
                                                        0.009
                                                                0.009
                                                                         0.009
                                                                                  0.009
PI 0.009
            0.009
                     0.009
                              0.009
                                      0.002
                                                                0.002
                                                                                  0.001
                                               0.002
                                                        0.002
                                                                         0.002
PI 0.001
KK
   SA14
131
   Runoff for Sub-Area 14
RA
    0.14
PR
      11
PW
    1.20
LG
               .13
                      6.57
                              . 1983
    0.51
W
KK 18-17
KM Routing from node 18 to node 17
RD
RC
      .08
               .04
                       .08
                               2075
                                      .00410
    4949
                      4975
                                       5004
             4950
                               4996
                                                5025
                                                        5030
                                                                 5050
PY
RY 343.0
            342.0
                     337.0
                              327.0
                                      327.0
                                               337.0
                                                        342.0
                                                                342.0
KK
    SA13
BA
    0.31
               11
PR
             .701
PW
    .299
                              .1983
                      6.57
LG
    1.20
               .13
UD
    0.99
KK
    C171
KM Combine Hydrographs at node 17
KK 17-15
KM Routing from node 17 to node 15
PD
                                      .00386
               .04
                        .08
                               2075
BC
                                                                 5050
             4950
                      4975
                               4996
                                       5004
                                                5025
                                                        5030
    4949
BX
                     337.0
                              327.0
                                      327.0
                                               337.0
                                                        342.0
                                                                342.0
RY
   343.0
            342.0
KK
    SA11
KM Runoff for Sub-Area 11
    0.17
```

Sample input for SCS Lumped Model - Continued

```
11
       10
    .262
              .737
PV
                              . 1963
    1.20
               .13
                      4.57
W
    0.43
ICK 16-15
   Rout ins
            from node 16 to node 15
                               2500
4996
RC
                        .06
                                      .00400
             4950
    4949
                                        5004
                      4975
                                                 5025
                                                          5030
                                                                   5050
ex
RY
   343.0
            342.0
                     337.0
                              327.0
                                                337.0
                                                         342.0
                                                                  342.0
KK
    SA12
101
   Buroff
           for Sub-Area 12
BA
    0.07
PU
               .13
    1.20
                      6.57
                              .1963
    0.58
4
KK
    C151
101
   Combine Hydrographs at node 15
KK SAGES
101
   Observed vs. Computed
       2 180CT81
11
                      2119
80
     0.0
              0.0
                       0.0
                                 0.0
                                          0.0
                                                  0.0
                                                           0.0
                                                                    0.0
                                                                             0.0
                                                                                      0.0
     0.0
80
               0.0
                       0.0
                                0.0
                                          0.0
                                                  0.0
                                                           0.0
                                                                    0.0
                                                                             0.0
                                                                                      0.0
               0.0
80
     0.0
                                 0.0
                                          0.0
                                                           0.0
                                                                             0.0
                                                                                      0.0
                       0.0
                                                  0.0
                                                                    0.0
80
     0.0
               0.0
                       0.0
                                0.0
                                         0.0
                                                  0.0
                                                           0.0
                                                                    0.1
                                                                             0.1
                                                                                      0.1
80
               0.1
                                 0.1
                                         0.1
                                                  0.1
                                                                                      0.1
     0.1
                        0.1
                                                           0.1
                                                                    0.1
                                                                             0.1
80
     0.1
               0.1
                                                  0.2
                                                                                      0.1
                        0.1
                                 0.1
                                          0.2
                                                           0.2
                                                                    0.1
                                                                             0.1
90
     0.1
               0.1
                        0.1
                                0.1
                                         0.3
                                                  1.8
                                                           6.2
                                                                    12.7
                                                                            20.3
                                                                                     27.7
    33.1
90
             38.5
                                                                            79.5
                      43.8
                                48.2
                                         53.4
                                                 59.0
                                                          65.0
                                                                   72.0
                                                                                     84.7
                     108.5
238.5
250.0
                                                148.3
255.1
90
    92.8
             100.4
                               120.4
                                        132.7
                                                         163.7
                                                                   178.4
                                                                           192.5
                                                                                    205.7
                                                         260.2
QD 216.3
            228.8
                                                                  259.1
                                                                           258.1
                              245.1
                                        251.7
                                                                                    257.1
                                                                           205.7
                                                 230.4
                                                         221.7
                                                                  214.8
   256.1
            255.1
                              245.0
                                       236.8
                                                                                    199.7
                                       164.9
126.2
                                                 158.4
                                                                           143.4
90 191.0
             183.9
                      177.0
                              170.2
                                                          153.9
                                                                   148.3
                                                                                    139.8
80
   135.0
             132.7
                      129.2
                              127.7
                                                 124.7
                                                         121.4
                                                                   119.2
                                                                           117.0
                                                                                    114.9
            110.6
                                        103.4
eo 112.7
                      108.5
                                                 100.4
                               105.4
                                                          98.5
                                                                                     90.1
                                                                   95.7
                                                                            92.9
                                                                            66.9
45.4
                      81.6
                                                          71.6
   87.4
              84.3
                               79.5
                                         77.0
                                                  74.1
                                                                   69.3
                                                                                      64.6
    62.7
              60.5
                                                                                      43.5
90
                      57.6
                               54.1
37.4
                                                                   47.3
                                         52.8
                                                  51.1
                                                           49.2
              40.0
90
    41.7
                      38.5
                                         36.0
                                                           32.8
                                                                   31.6
                                                                            30.3
                                                                                      28.9
                                                  34.4
90
              26.3
                      24.9
    27.4
                                                  21.9
                                                                             19.0
                                                                                      18.2
                                23.6
                                         22.8
                                                           20.9
                                                                    19.9
              17.0
                       16.5
90
    17.7
                                15.9
                                                           14.1
                                                                                      12.6
                                         15.2
                                                  14.6
                                                                    13.6
                                                                             13.0
00
                                                                             9.2
                                                                                      9.0
    12.1
              11.5
                       11.1
                                10.8
                                         10.5
                                                  10.2
                                                            9.8
                                                                    9.5
                                                                              6.7
80
                       8.1
     8.7
               8,4
                                7.8
                                          7.6
                                                  7.4
                                                           7.1
                                                                     6.9
                                                                                       6.5
00
                                                                     5.3
               6.2
                                                                             5.2
                                                                                       5.1
     6.3
                        6.1
                                 5.9
                                          5.8
                                                   5.6
                                                            5.5
80
     5.0
                                                                              4.0
               4.8
                        4.7
                                 4.5
                                                   4.3
                                                            4.2
                                                                     4.1
                                                                                       3.9
                                          4.4
00
                        3.7
     3.8
               3.8
                                 3.6
                                          3.5
                                                   3.3
                                                           3.2
                                                                     3.1
                                                                              3.1
                                                                                      3.0
90
     2.9
               2.9
                        2.8
                                 2.7
                                          2.7
                                                   2.6
                                                            2.6
                                                                     2.5
                                                                              2.5
                                                                                       2.4
90
     2.4
               2.3
                        2.3
                                 2.2
                                          2.2
                                                   2.1
                                                            2.1
                                                                     2.1
                                                                              2.0
                                                                                       2.0
                        1.9
80
                                 1.9
     2.0
               1.9
                                          1.8
                                                   1.8
                                                            1.8
                                                                     1.7
                                                                              1.7
                                                                                       1.7
90
     1.6
               1.6
                        1.5
                                 1.5
                                          1.5
                                                   1.4
                                                            1.4
                                                                     1.4
                                                                              1.4
                                                                                       1.3
                                                   1.2
     1.3
               1.3
                        1.3
                                 1.3
                                                            1.2
                                                                     1.2
                                                                              1.2
90
                                          1.2
                                                                                       1.2
80
     1.1
               1.1
                       -1.1
                                 1.1
                                          1.1
                                                   1.1
                                                            1.0
                                                                     1.0
                                                                              1.0
                                                                                       1.0
KK 15-14
101
   Routing from node 15 to node 14
M
             .04
4948
BC.
    .08
                      .08
4954
                                       .00513
                              4968
329.0
                                         5031
                                                 5046
                                                           5098
                                                                    5148
RX
RY 338.5
            336.5
                     337.0
                                        320.5
                                                335.0
                                                         336.5
                                                                   336.5
KK
     SAS
101
   Bunoff
           for Sub-Area 9
BA
    0.86
              55
.242
PR
       5
                         10
                       .123
                                .377
    .258
    1.20
               .13
                      6.57
                               .1963
LG
```

Sample input for SCS Lumped Model - Continued

```
KK C141
IOI Combine Hydrographs at node 14
KK 14-12
ICH Routing from node 14 to node 12
                                     .00342
             .04
    .08
RC
                      4954
                               4948
                                       5031
                                               5046
                                                        5098
                                                                 5148
RX
RY 338.5
            336.5
                    337.0
                             329.0
                                              335.0
                                      320.5
                                                       336.5
                                                               334.5
    SA10
101 Runoff for Sub-Area 10
    0.15
PR
      10
               11
     .949
             .051
    1.20
              .13
                      6.57
                             . 1963
LE
W
   0.57
KK 13-12
IOI Routing from node 13 to node 12
80
                      .100
RC
    .100
             .040
                               5500
                                     .00791
               70
                                127
                                                 160
BX
      20
                       120
                                        144
                                                         220
                                                                  270
RY 331.0
            329.2
                     328.5
                             319.8
                                      314.0
                                              329.5
                                                       329.6
                                                                330.5
KK C121
131 Combine hydrographs at node 12
HC.
KK GAGES
101 Observed vs. Computed
IN
       2 180CT81
                      2119
     0.0
80
              0.0
                       0.0
                               0.0
                                        0.0
                                                0.0
                                                         0.0
                                                                  0.0
                                                                          0.0
                                                                                   0.0
80
     0.0
              0.0
                       0.0
                               0.0
                                        0.0
                                                0.0
                                                         0.0
                                                                  0.0
                                                                          0.0
                                                                                   0.0
90
     0.0
              0.0
                       0.0
                               0.0
                                        0.0
                                                0.0
                                                         0.0
                                                                  0.0
                                                                          0.0
                                                                                   0.0
80
     0.0
              0.0
                       0.0
                               0.0
                                        0.0
                                                0.0
                                                         0.0
                                                                  0.0
                                                                          0.0
                                                                                   0.0
90
              0.0
     0.0
                       0.0
                               0.0
                                        0.0
                                                0.0
                                                         0.0
                                                                  0.0
                                                                          0.0
                                                                                   0.0
90
     0.0
              0.0
                       0.0
                               0.0
                                                                  0.1
                                                                          0.1
                                        0.1
                                                0.1
                                                         0.1
                                                                                   3.9
90
    12.3
             15.6
                      18.5
                              21.4
                                       25.4
                                                32.9
                                                        42.8
                                                                 50.8
                                                                         57.1
                                                                                  61.6
                                                                108.4
90
    64.8
             68.8
                              75.5
                                                                                 138.9
                      71.3
                                       80.8
                                                88.3
                                                        95.9
                                                                        122.7
90 158.1
            176.9
                     198.7
                             220.1
                                      244.8
                                              270.6
                                                       292.7
                                                                313.3
                                                                        337.0
                                                                                 357.6
                             448.9
558.6
90 380.9
            400.7
                     425.5
                                                       513.1
                                      473.0
                                              495.4
                                                                527.3
                                                                        539.0
                                                                                 547.0
            560.3
528.5
90 554.9
                     559.5
                                      557.8
                                              557.0
                                                       556.1
                                                                555.3
                                                                        550.9
                                                                                 544.3
                             515.6
                                      508.0
                                              500.5
                                                                                 445.8
90 537.7
                     520.8
                                                       492.9
                                                                485.3
                                                                        475.5
90 456.1
            448.9
                     438.3
                                              409.7
                             429.0
                                      421.0
                                                       400.9
                                                                392.1
                                                                        383.3
                                                                                 374.5
                             340.1
90 363.9
            355.5
                                      331.1
                                              323.2
                                                       315.4
                     348.2
                                                                307.5
                                                                        298.1
                                                                                 290.7
90 283.3
                     267.0
            276.0
                             258.3
                                      251.4
                                              242.9
                                                       234.7
                                                                228.1
                                                                        220.1
                                                                                 213.8
90 204.6
            198.6
                     191.2
                             185.4
                                                       167.2
                                                                160.5
                                      178.3
                                                                        152.7
                                                                                 147.6
                                               172.8
90 141.4
            136.6
                     131.9
                             127.1
                                      122.4
                                                       112.6
                                                                106.4
                                                                        104.2
                                                                                 100.0
                                               116.8
90 95.9
             92.0
                                       82.6
                                                                 74.7
                                                                                  69.2
                      89.1
                              85.4
                                                79.9
                                                        76.4
                                                                         72.1
                                                        54.6
37.7
90
    66.8
             64.8
                      62.8
                               60.5
                                       58.3
                                               56.4
39.5
                                                                 52.8
                                                                         51.1
                                                                                  49.3
             45.7
                      44.1
                              42.5
                                                                36.2
80
    47.7
                                       41.0
                                                                         35.1
                                                                                  34.0
80
    32.6
             31.3
                      30.0
                               28.8
                                       27.8
                                                27.1
                                                        26.1
                                                                 24.9
                                                                         24.0
                                                                                  23.1
    22.5
                              20.1
                                                                 17.8
00
                                                        18.5
                                                                          17.2
                      21.0
                                       19.6
                                                19.1
                                                                                  16.7
             21.8
90
    16.3
             15.9
                      15.6
                               15.2
                                       14.9
                                                14.6
                                                        14.2
                                                                 13.9
                                                                          13.7
                                                                                  13.4
80
    13.2
             13.0
                      12.8
                               12.5
                                       12.3
                                                12.1
                                                        11.9
                                                                          11.5
                                                                                  11.2
                                                                 11.8
80
    10.9
             10.7
                      10.5
                               10.4
                                       10.2
                                                10.0
                                                         9.8
                                                                  9.5
                                                                          9.3
                                                                                   9.2
90
                               8.6
              8.9
                       8.7
                                        8.4
                                                8.2
                                                         8.1
                                                                  8.0
                                                                          7.8
     9.0
                       7.3
80
     7.5
              7.4
                               7.1
                                        7.0
                                                 6.9
                                                         6.8
                                                                  6.6
                                                                          6.5
                                                                                   6.3
                                                         5.7
                                                                          5.5
90
                                5.9
                                        5.8
                                                 5.7
                                                                  5.6
                                                                                   5.4
     6.2
              6.1
                       6.0
     5.3
90
              5.2
                       5.1
                                5.0
                                        5.0
                                                 4.9
                                                         4.8
                                                                  4.8
                                                                           4.7
                                                                                   4.7
                                                 4.3
                                                         4.2
                                                                  4.1
                                                                          4.0
                                                                                   3.9
80
     4.6
              4.6
                       4.5
                                        4.4
KK 12-10
KM Routing from node 12 to node 10
100
                               3500
RC
    .070
             .038
                      .070
                                     .00443
                                139
                                        165
                                                 172
                                                         208
                                                                  248
RX
      20
              120
                       126
                                      270.5
                                              274.0
                                                       280.5
                                                                280.2
RY 279.8
            280.5
                     276.0
                              268.0
     SAS
KK
KM Runoff from Sub-Area 8
```

Sample input for SCS Lumped Model - Continued

```
0.46
                5
    .702
             .072
                      .226
PV
                      6.57
    1.20
LG
    1.05
W
KK 11-10
   Routing from node 11 to node 10
101
.038
                       .07
126
                              2850
                                     .00542
RC
      20
              120
                               139
                                        165
                                                172
                                                         208
ex
                             268.0
                                      270.5
                                              274.0
                                                       280.5
                                                               280.2
RY 279.8
            280.5
                    276.0
     246
KK
           from Sub-Area 6
101
   Runoff
BA
    1.29
                      54
.128
                                 7
                                         55
                                                .108
                               -012
                                        .061
PU
    -601
                      6.57
                              . 1983
              .13
    1.20
LG
W
    1.54
    C101
KK
IOI.
   Combine Hydrographs at node 10
HC
KX
    10-7
   Routing from node 10 to node 7
KH
    .070
             .038
                      .070
                              3650
                                     .00315
RC
                                139
                                        165
                                                 172
                                                         208
                                                                  248
              120
                       126
RX
      20
                                      270.5
                                              274.0
                                                       280.5
            280.5
                     276.0
                             268.0
RY
   279.8
KK
     SA7
           from Sub-Area 7
IOI Runoff
BA
    0.63
                7
                        55
                                 10
PR
      53
             .574
                      .321
                               .095
    .010
              .13
                      6.57
                              .1983
LG
    1.20
W
    0.93
     9-8
KK
KM Routing from node ,9 to node 8
20
                                      .00482
RC
     .080
              .035
                      .080
                               2800
                                       5003
    4876
             4926
                      4979
                               4996
                                                5021
                                                        5051
                                                                 5126
RX
                                      291.3
RY
   301.4
            301.3
                     301.5
                              291.0
                                               300.5
                                                        299.7
                                                                299.6
KK
     SAS
K)1
   Runoff
           from Sub-Area 5
84
    0.78
                                         54
                        53
PR
               50
                              .375
.1983
              .220
                      .146
                                        .208
PW
     .051
                      6.57
LG
     1.20
               .13
UD
    0.89
KK
      C81
ICH Combine Hydrographs at node 8
HC
     8-7
KK
ICH Routing from node 8 to node 7
RD
                                      .00482
                       .080
                               2800
RC
              .035
                                        5003
              4926
                      4979
                               4996
                                                5021
                                                         5051
                                                                 5126
    4876
RX
                                                        299.7
                                                                299.6
                              291.0
                                       291.3
                                               300.5
RY 301.4
            301.3
                     301.5
KK CAGE4
    Observed vs. Computed
KO
                      2119
        2 180CT81
IN
                                                 0.0
                                                          0.0
                                                                  0.0
                                                                           0.0
                                                                                    0.0
                                         0.0
      0.0
               0.0
                       0.0
                                0.0
90
                        0.0
                                0.0
                                         0.0
                                                 0.0
                                                          0.0
                                                                  0.0
                                                                           0.0
                                                                                    0.0
               0.0
90
      0.0
                                                                           0.0
                                                                                    0.0
                                                                  0.0
                                                 0.0
                                                          0.0
               0.0
                        0.0
                                0.0
                                         0.0
80
      0.0
                                                                   0.0
                                                                           0.0
                                                                                    0.0
                                         0.0
                                                  0.0
                                                          0.0
                        0.0
                                0.0
00
      0.0
               0.0
                                                                   0.0
                                                                           0.0
                                                                                    0.0
                                                  0.0
                                0.0
                                         0.0
                                                          0.0
               0.0
                        0.0
00
      0.0
                                                 0.0
                                                                   0.0
                                                                           0.0
                                                                                    0.0
                                         0.0
                                                          0.0
                                0.0
      0.0
               0.0
                        0.0
80
                                                                           0.0
                                                                                    0.0
                                                 0.0
                                                          0.0
                                                                   0.0
                        0.0
                                0.0
                                         0.0
               0.0
00
      0.0
```

Sample input for SCS Lumped Model - Continued

```
0.0
 80
     0.0
                        0.0
                                0.0
                                         5.6
                                                 11.3
                                                         15.1
                                                                  20.9
                                                                           35.6
                                                                                    53.5
90
    66.5
              77.6
                       90.2
                               102.9
                                       115.7
                                                         142.9
                                                                 158.2
                                                                                   183.8
                                                128.8
                                                                          171.9
90 201.8
             225.9
                      245.2
                               259.8
                                       273.4
                                                286.1
                                                         298.2
                                                                 309.6
                                                                          319.2
                                                                                   327.2
                                                347.2
                                                         347.2
 90 335.1
             340.7
                      343.9
                              347.2
                                       347.2
                                                                 346.5
                                                                                   343.8
                                                                          345.2
 00 339.2
             331.3
                      323.4
                              315.5
                                       307.7
                                                303.0
                                                         301.5
                                                                 300.0
                                                                          298.4
                                                                                   296.9
                                                         267.9
                                                                 263,5
 80
    294.0
             289.7
                      285.3
                               280.9
                                       276.6
                                                272.2
                                                                          258.1
                                                                                   252.7
    247.3
                      238.4
             242.5
                               232.8
80
                                       225.8
                                                218.9
                                                         211.9
                                                                 204.9
                                                                          197.9
                                                                                   190.9
                                                                 138.6
                                                         143.8
90
    184.0
             177.3
                      170.6
                               163.9
                                       157.2
                                                150.5
                                                                          133.3
                                                                                   128.1
    122.8
80
             117.8
                               108.5
                                                                  91.8
                      113.2
                                       103.9
                                                 99.2
                                                         95.2
                                                                           88.3
                                                                                    84.9
90
     81.5
              78.1
                       74.7
                               71.3
                                                                  61.4
                                        68.8
                                                 66.3
                                                         63.9
                                                                           58.9
                                                                                    56.5
90
                       49.1
     54.0
              51.5
                               46.6
                                                                           37.2
                                        44.4
                                                 42.6
                                                         40.8
                                                                  39.0
                                                                                    35.6
     34.5
                                                 29.1
                                                                  27.6
90
              33.3
                       32.1
                               30.9
                                        29.9
                                                         28.4
                                                                           26.9
                                                                                    26.1
                               23.1
                       23.8
90
     25.3
              24.6
                                        22.5
                                                 22.1
                                                         21.7
                                                                  21.3
                                                                           20.9
                                                                                    20.5
00
              19.7
     20.1
                       19.3
                               18.9
                                        18.5
                                                 18.1
                                                          17.7
                                                                  17.3
                                                                           16.9
                                                                                    16.5
90
     16.1
              15.7
                       15.3
                               14.9
                                        14.5
                                                 14.1
                                                          13.7
                                                                  13.5
                                                                           13.2
                                                                                    12.9
80
     12.6
              12.4
                       12.1
                               11.8
                                        11.5
                                                 11.3
                                                          11.0
                                                                  10.7
                                                                           10.4
                                                                                    10.2
90
      9.9
               9.6
                       9.3
                                9.1
                                         8.8
                                                  8.5
                                                          8.3
                                                                   8.1
                                                                            7.9
                                                                                     7.7
               7.3
90
      7.5
                        7.1
                                7.0
                                         6.8
                                                  6.6
                                                           6.4
                                                                            6.0
                                                                                     5.8
                                                                   6.2
90
      5.7
               5.6
                       5.5
                                5.4
                                                  5.2
                                         5.3
                                                          5.1
                                                                   5.0
                                                                            4.8
                                                                                     4.7
90
      4.6
               4.5
                                 4.3
                        4.4
                                         4.2
                                                  4.2
                                                                   4.1
                                                           4.1
                                                                            4.0
                                                                                     4.0
                                         3.7
80
      3.9
               3.9
                       3.8
                                3.8
                                                  3.7
                                                          3.7
                                                                   3.6
                                                                            3.6
                                                                                     3.6
90
               3.5
      3.6
                       3.5
                                3.5
                                         3.5
                                                  3.4
                                                                            3.3
                                                           3.4
                                                                   3.4
                                                                                     3.3
      3.3
90
                        3.2
                                3.2
                                         3.2
                                                  3.2
                                                          3.1
                                                                   3.1
                                                                            3.1
                                                                                     3.0
KK
      C71
101
    Combine Hydrographs at node 7
NC
    GAGE3
KK
101
   Observed vs. Computed
IN
        2 180CT81
                      2119
      0.0
90
               0.0
                                0.0
                       0.0
                                         0.0
                                                  0.0
                                                          0.0
                                                                   0.0
                                                                            0.0
                                                                                     0.0
      0.0
90
               0.0
                       0.0
                                0.0
                                         0.0
                                                  0.0
                                                          0.0
                                                                   0.0
                                                                            0.0
                                                                                     0.0
00
      0.0
               0.0
                       0.0
                                0.0
                                         0.0
                                                  0.0
                                                          0.0
                                                                   0.0
                                                                            0.0
                                                                                     0.0
90
      0.0
               0.0
                       0.0
                                0.0
                                         0.0
                                                  0.0
                                                          0.0
                                                                   0.0
                                                                            0.0
                                                                                     0.0
90
     0.0
              0.0
                       0.0
                                0.0
                                         0.0
                                                  0.0
                                                          0.0
                                                                   0.0
                                                                            0.0
                                                                                     0.0
90
     0.0
              0.0
                       0.0
                                0.0
                                         0.0
                                                  0.0
                                                          0.0
                                                                   0.0
                                                                            0.0
                                                                                     0.0
90
     0.0
              0.0
                       0.0
                                0.0
                                         0.0
                                                  0.0
                                                          0.0
                                                                   0.0
                                                                            0.0
                                                                                    2.8
90
     7.2
                       9.5
              8.7
                               10.3
                                        12.1
                                                14.5
                                                         16.6
                                                                  20.7
                                                                           25.4
                                                                                   37.2
             92.9
                              199.3
90
    60.9
                     145.8
                                       253.4
                                               302.2
                                                        349.7
                                                                 394.5
                                                                          435.3
                                                                                   485.8
                                       743.2
                                                        841.1
90 527.7
            567.5
                     617.4
                              669.7
                                               781.8
                                                                 861.6
                                                                          898.0
                                                                                  866.7
90 956.9
            995.5
                              956.9
                                       984.4
                     964.4
                                              1012.2
                                                       1005.6
                                                                 973.4
                                                                          988.5
                                                                                 1050.6
                                       946.1
901042.2
           1033.9
                    1025.5
                              956.9
                                                                          978.9
                                               935.2
                                                        913.9
                                                                 935.2
                                                                                  946.1
90 929.9
            908.6
                     841.1
                              826.0
                                       806.1
                                               785.1
                                                        772.6
                                                                 760.2
                                                                                  735.3
                                                                          747.7
                     705.9
                                               660.8
90 725.6
            718.6
                              692.2
                                       678.6
                                                        638.9
                                                                 621.8
                                                                          604.7
                                                                                  592.3
90 579.9
            567.5
                     547.4
                              533.5
                                       516.0
                                               502.7
                                                        485.8
                                                                 474.7
                                                                          458.4
                                                                                  447.7
90
   435.3
            424.9
                     414.6
                              401.3
                                               376.5
                                                        368.5
                                                                 362.2
                                       388.0
                                                                          354.4
                                                                                  340.5
90 331.7
            322.9
                              305.3
                                       296.6
                     314.1
                                               285.4
                                                        277.2
                                                                 266.5
                                                                          261.2
                                                                                  250.9
90 244.5
            235.8
                     228.4
                              218.9
                                               203.9
                                                        197.0
                                                                 189.2
                                       210.7
                                                                          184.9
                                                                                   177.4
90 168.1
                     158.1
            164.0
                                               140.8
                              152.2
                                       144.6
                                                        135.4
                                                                 131.8
                                                                          124.8
                                                                                  121.4
   118.0
            113.1
                                                97.3
00
                     108.2
                              105.0
                                       100.4
                                                                  90.0
                                                         92.9
                                                                          88.1
                                                                                   85.8
80
    83.0
             80.3
                      78.5
                               76.3
                                        73.8
                                                71.2
                                                         69.0
                                                                  67.1
                                                                          65.4
                                                                                   63.9
             58.1
                      56.6
                                                         50.0
90
    62.3
                               55.2
                                        53.7
                                                51.6
                                                                  49.0
                                                                           47.5
                                                                                    45.5
    44.2
90
             43.0
                      41.7
                               40.3
                                        38.9
                                                38.1
                                                         37.2
                                                                  35.9
                                                                           34.6
                                                                                   33.8
                                        29.4
23.3
90
    33.0
             31.9
                      31.0
                               30.2
                                                28.7
                                                                  27.4
                                                         28.0
                                                                           26.8
                                                                                    26.0
    25.1
90
             24.5
                               23.7
                      24.1
                                                22.5
                                                         21.8
                                                                  21.2
                                                                           20.8
                                                                                    20.5
    20.1
             19.6
                      19.1
                               18.8
                                        18.5
                                                 18.2
                                                         17.9
                                                                  17.6
                                                                           17.3
                                                                                    17.0
90
    16.8
                               15.8
             16.4
                      16.1
                                        15.5
                                                 15.2
                                                         14.9
                                                                  14.6
                                                                           14.4
                                                                                    14.1
80
    13.9
             13.7
                      13.6
                               13.4
                                        13.2
                                                13.1
                                                         12.9
                                                                  12.7
                                                                           12.6
                                                                                   12.4
    12.2
             12.0
                               11.3
80
                      11.7
                                        11.1
                                                 11.0
                                                         10.9
                                                                  10.8
                                                                           10.7
                                                                                    10.6
90
    10.5
             10.4
                      10.3
                               10.2
                                        10.0
                                                 9.9
                                                          9.7
                                                                   9.5
                                                                            9.4
                                                                                    9.2
KK
     7-5
Ю
   Routing from node 7 to node 5
RD
              .038
                               4070
RC
      .07
                        -07
                                      .00381
                               4986
             4960
RX
    4856
                      4972
                                        5014
                                                5022
                                                         5040
                                                                  5156
RY 262.5
            264.0
                     257.5
                              252.5
                                       253.3
                                                        264.8
                                                                 263.7
                                               256.5
     SA4
```

Sample input for SCS Lumped Model - Continued

```
IDI Runoff for Sub-Area 4
BA
    0.60
PR
       52
               53
                        50
                               .162
                       .035
              .345
PV
     .458
LG
     0.6
               .13
                      6.57
                              .1963
W
    0.80
KK
     6-5
KN Routing from node 6 to node 5
      _07
              .038
                        .07
                               3400
                                      .00750
RC
                               4986
                                                         5040
             4960
RX
    4856
                      4972
                                       5014
                                                5022
                                                                  5156
RY
   262.5
            264.0
                     257.5
                              252.5
                                      253.3
                                               256.5
                                                        264.8
                                                                 263.7
                                 10
18
          180CT81
                      2119
PI 0.002
            0.002
                     0.002
                              0.002
                                      0.002
                                               0.002
                                                        0.002
                                                                 0.002
                                                                         0.002
                                                                                  0.002
                                                                0.002
PI 0.002
            0.002
                     0.002
                              0.002
                                      0.002
                                               0.002
                                                        0.002
                                                                         0.002
                                                                                  0.002
            0.002
                     0.002
PI 0.002
                              0.002
                                      0.002
                                               0.002
                                                                                  0.002
                                                        0.002
                                                                 0.002
                                                                         0.002
                                               0.002
PI 0.002
            0.002
                                                        0.002
                                                                         0.002
                                                                                  0.002
                     0.002
                              0.002
                                      0.002
                                                                0.002
            0.002
PI 0.002
                     0.002
                              0.002
                                      0.002
                                               0.002
                                                        0.002
                                                                0.002
                                                                         0.002
                                                                                  0.002
                     0.002
                                               0.005
PI 0.002
            0.002
                              0.002
                                                                         0.001
                                      0.005
                                                        0.005
                                                                0.005
                                                                                  0.001
PI 0.001
            0.001
                     0.001
                              0.001
                                      0.001
                                               0.001
                                                        0.001
                                                                 0.001
                                                                         0.001
                                                                                  0.001
                     0.001
PI 0.001
                              0.006
                                                                         0.006
            0.001
                                               0.006
                                                        0.006
                                                                                  0.006
                                      0.006
                                                                0.006
                                               0.039
PI 0.006
            0.006
                     0.006
                              0.006
                                      0.039
                                                        0.039
                                                                0.039
                                                                         0.039
                                                                                  0.039
PI 0.039
                     0.034
            0.039
                              0.034
                                               0.034
                                                                0.034
                                                                         0.034
                                      0.034
                                                        0.034
                                                                                  0.034
PI 0.000
            0.000
                     0.000
                              0.018
                                      0.018
                                               0.018
                                                        0.018
                                                                 0.007
                                                                         0.007
                                                                                  0.007
                     0.010
                                                                         0.008
PI 0.010
            0.010
                                                                                  0.008
                                      0.028
                                                                 0.028
                              0.028
                                               0.028
                                                        0.028
PI 0.008
            0.008
                     0.008
                              0.022
                                      0.022
                                               0.022
                                                        0.022
                                                                 0.022
                                                                         0.022
                                                                                  0.051
            0.051
PI 0.051
                     0.051
                              0.051
                                                        0.051
                                                                 0.051
                                      0.051
                                               0.051
                                                                         0.051
                                                                                  0.051
PI 0.051
            0.051
                     0.051
                              0.051
                                      0.047
                                               0.047
                                                        0.047
                                                                0.015
                                                                         0.015
                                                                                  0.015
                     0.000
PI 0.015
            0.000
                                                        0.007
                              0.007
                                      0.007
                                               0.007
                                                                0.007
                                                                         0.007
                                                                                  0.007
P1 0.007
            0.007
                     0.007
                              0.007
                                      0.007
                                               0.007
                                                        0.007
                                                                 0.007
                                                                         0.005
                                                                                  0.005
PI 0.005
            0.005
                     0.005
                                               0.005
                                                                         0.012
                                                                 0.012
                              0.005
                                      0.005
                                                        0.012
                                                                                  0.012
                                               0.012
PI 0.012
            0.012
                     0.012
                              0.012
                                      0.012
                                                        0.012
                                                                 0.012
                                                                         0.012
                                                                                  0.011
PI 0.011
            0.011
                     0.011
                              0.011
                                      0.011
                                                                                  0.011
                                               0.011
                                                        0.011
                                                                0.011
                                                                         0.011
PI 0.050
            0.004
                     0.004
                              0.004
                                      0.004
                                               0.004
                                                        0.004
                                                                0.004
                                                                         0.004
                                                                                  0.004
PI 0.004
                                 11
11
          180CT81
                      2119
PI 0.003
            0.003
                     0.003
                              0.003
                                      0.003
                                               0.003
                                                        0.003
                                                                0.003
                                                                         0.003
                                                                                  0.003
PI 0.003
            0.003
                     0.003
                                                                         0.003
                              0.003
                                      0.003
                                               0.003
                                                        0.003
                                                                 0.003
                                                                                  0.003
                     0.003
PI 0.003
            0.003
                              0.003
                                      0.003
                                               0.003
                                                        0.003
                                                                 0.003
                                                                         0.003
                                                                                  0.003
PI 0.003
            0.003
                              0.003
                                                        0.003
                                                                         0.003
                     0.003
                                      0.003
                                               0.003
                                                                 0.003
                                                                                  0.003
                                               0.003
PI 0.003
            0.003
                     0.003
                              0.003
                                      0.003
                                                        0.003
                                                                 0.003
                                                                                  0.003
                                                                         0.003
PI 0.003
            0.003
                     0.003
                              0.003
                                               0.003
                                                        0.003
                                                                         0.003
                                                                                  0.003
                                      0.003
                                                                 0.003
PI 0.003
                                                        0.027
            0.003
                     0.003
                              0.003
                                      0.027
                                               0.027
                                                                 0.004
                                                                         0.004
                                                                                  0.004
PI 0.004
            0.004
                     0.027
                                                                         0.034
                              0.027
                                      0.027
                                               0.027
                                                        0.027
                                                                 0.027
                                                                                  0.034
PI 0.034
            0.034
                              0.034
                     0.034
                                      0.034
                                               0.034
                                                        0.034
                                                                 0.034
                                                                         0.034
                                                                                  0.034
            0.034
                                               0.006
PI 0.034
                     0.000
                              0.000
                                                        0.008
                                                                 0.006
                                                                         0.008
                                                                                  0.006
                                      0.000
            0.021
                                      0.021
                                               0.021
                                                                         0.021
PI 0.008
                     0.021
                              0.021
                                                        0.021
                                                                 0.021
                                                                                  0.021
                                                                 0.022
PI 0.022
            0.022
                     0.022
                              0.022
                                      0.022
                                               0.022
                                                        0.022
                                                                         0.022
                                                                                  0.022
                     0.022
                                      0.054
                                               0.054
                                                        0.054
PI 0.022
            0.022
                              0.022
                                                                 0.054
                                                                         0.054
                                                                                  0.054
PI 0.054
            0.054
                     0.054
                              0.033
                                      0.033
                                               0.033
                                                        0.033
                                                                 0.033
                                                                         0.033
                                                                                  0.033
                                      0.013
                                                                 0.013
PI 0.033
            0.013
                     0.013
                              0.013
                                               0.013
                                                        0.013
                                                                         0.013
                                                                                  0.013
PI 0.013
            0.000
                     0.009
                              0.009
                                      0.009
                                               0.009
                                                        0.009
                                                                 0.009
                                                                         0.009
                                                                                  0.009
                                                                 0.009
                                       0.009
                                               0.009
                                                        0.009
                                                                                  0.009
            0.009
                     0.009
                              0.009
                                                                         0.009
PI 0.009
PI 0.009
            0.009
                     0.009
                              0.009
                                       0.009
                                               0.009
                                                        0.009
                                                                 0.009
                                                                         0.009
                                                                                  0.009
                                                        0.009
                                                                 0.009
                                       0.009
                                                                         0.009
                                                                                  0.009
PI 0.009
                     0.009
                              0.009
                                               0.009
            0.009
PI 0.009
            0.009
                     0.009
                              0.009
                                       0.009
                                               0.009
                                                        0.004
                                                                 0.004
                                                                          0.004
                                                                                  0.004
                     0.004
                                       0.004
                                                        0.004
                                                                 0.004
                                                                         0.004
                                                                                  0.004
PI 0.004
            0.004
                              0.004
                                               0.004
PI 0.004
KK
     $43
KOM
   Runoff
           from Sub-Area 3
BA
    0.90
PR
       2
                13
                        14
                                 50
                                        .114
                               .071
                                                 .018
PV
    .389
              .244
                      .164
               .13
                      6.57
                              . 1983
LG
     0.6
```

Sample input for SCS Lumped Model - Continued

```
0.97
LID.
     C51
KK
   Combine Hydrographs at node 5
HC
       3
KK
     5-3
   Routing from node 5 to node 3
101
10
             .038
     .07
                       .07
RC
                              4144
                                     .00193
EX
    4856
             4960
                     4972
                              4986
                                       5014
                                               5022
                                                        5040
                                                                5156
   262.5
            264.0
                             252.5
                                                       264.8
RY
                    257.5
                                      253.3
                                              256.5
                                                               263.7
KK
     842
   Runoff
101
           from Sub-Area 2
    0.60
PR
      51
               52
                        14
                                13
                                          2
             .286
                      .048
    .485
                               .157
                                       .022
              .13
                             .1963
LG
     0.6
                     6.57
W
    1.11
KK
     4-3
KN Routing from node 4 to node 3
80
RC
     .07
             .038
                       .07
                              6345
                                     .00750
                     4972
    4856
                              4986
             4960
                                               5022
                                                        5040
8X
                                       5014
                                                                 5156
RY 262.5
                    257.5
                             252.5
                                      253.3
            264.0
                                              256.5
                                                       264.8
                                                               263.7
KK
     C31
KH
   Combine hydrographs at node 3
HC.
KK
   CACE2
101
   Observed vs. Computed
IN
       2 180CT81
     0.6
                                        0.6
                                                0.6
80
              0.6
                       0.6
                               0.6
                                                         0.6
                                                                  0.6
                                                                          0.6
                                                                                   0.6
90
                                        0.6
                                                0.6
                                                                                   0.6
     0.6
              0.6
                       0.6
                               0.6
                                                         0.6
                                                                  0.6
                                                                          0.6
90
     0.7
                       0.7
              0.7
                               0.7
                                        0.7
                                                 0.7
                                                         0.7
                                                                  0.7
                                                                          0.7
                                                                                   0.7
90
                       0.7
                                        0.7
     0.7
              0.7
                               0.7
                                                0.7
                                                                          0.7
                                                         0.7
                                                                  0.7
                                                                                   0.7
90
     0.7
                       0.7
              0.7
                               0.7
                                        0.7
                                                 J.7
                                                         0.7
                                                                  0.7
                                                                          0.7
                                                                                   8.0
80
     0.9
              1.0
                       1.0
                               1.0
                                                1.0
                                        1.0
                                                         1.0
                                                                  1.0
                                                                          1.0
                                                                                   1.0
80
     1.0
              1.0
                       1.0
                               1.0
                                        1.0
                                                1.0
                                                         1.0
                                                                  4.3
                                                                          4.6
                                                                                   6.1
90
     8.9
             13.2
                     18.1
                              22.4
                                       26.5
                                               30.2
                                                        34.2
                                                                 40.3
                                                                         45.2
                                                                                  51.2
    58.7
             69.3
                     81.3
80
                              95.1
                                                       147.4
                                      112.2
                                               129.1
                                                                165.0
                                                                        190,3
                                                                                 232.1
                                                               864.7
90 299.4
            375.9
                     447.6
                             531.1
                                      610.6
                                              699.2
                                                       778.6
                                                                        948.2
                                                                                1022.5
                                                               1372.5
                   1188.3
901083.6
           1129.9
                            1231.7
                                     1270.4
                                             1304.1
                                                      1332.3
                                                                       1407.4
                                                                                1423.1
                            1484.7
                                             1527.1
901442.8
           1460.7
                   1472.7
                                     1496.7
                                                      1527.1
                                                               1527.1
                                                                       1527.1
                                                                                1527.1
           1527.1
901527.1
                   1527.1
                            1527.1
                                     1541.4
                                             1533.2
                                                      1521.0
                                                               1502.8
                                                                       1495.5
           1456.2
                                                      1420.4
901472.7
                   1447.3
                                     1433.9
                            1439.9
                                             1427.4
                                                               1413.3
                                                                       1375.4
                                                                                1349.5
           1301.2
                   1270.5
                                                               1140.4
001332.3
                            1220.8
                                     1213.5
                                             1201.8
                                                      1172.2
                                                                       1116.0
                                                                                1093.5
           1037.5
                   1002.1
                             973.8
                                                               861.1
901073.0
                                      948.2
                                              918.7
                                                       884.4
                                                                        838.1
                                                                                 813.0
                    749.8
                                      694.3
                                                       658.3
                                                                        620.5
90 788.4
            768.9
                             712.3
                                              676.3
                                                               631.9
                                                                                 604.3
           565.0
                                                       468.8
                                      502.4
                                                                        450.8
90 581.4
                             521.4
                                                                                 436.7
                    545.0
                                              487.3
                                                               461.6
90 421.1
            409.2
                    399.1
                                                       350.9
                                      369.9
                                              357.1
                             382.7
                                                               337.2
                                                                        326.7
                                                                                 314.9
90 303.4
           294.9
                                      267.6
                                              258.4
                                                                        234.3
                    286.5
                             277.0
                                                       249.3
                                                                                 227.0
                                                                244.3
                     209.4
90 222.2
            216.3
                             202.4
                                      196.7
                                               191.2
                                                       185.7
                                                                180.4
                                                                        174.1
                                                                                 169.6
90 166.9
            160.8
                                              145.7
                                                                138.2
                     157.0
                             153.3
                                      149.5
                                                       141.9
                                                                        134.4
                                                                                 131.2
                                                                109.9
90 128.5
            126.3
                     124.6
                             122.1
                                      118.7
                                               115.4
                                                       112.0
                                                                         107.2
                                                                                 104.1
90 101.8
                              95.5
             99.5
                     . 97.5
                                       93.5
                                               90.6
                                                                 86.3
                                                                                  83.5
                                                        88.4
                                                                         84.9
                     78.1
                                                                 69.2
90
    81.7
             79.9
                              75.5
                                       73.4
                                               71.9
                                                        70.4
                                                                         67.9
                                                                                  66.4
                     61.7
                              60.2
                                       58.6
                                               57.1
                                                        55.5
    64.8
                                                                 53.9
                                                                         52.6
                                                                                  51.8
00
             63.3
    50.9
             50.0
                      49.0
                               48.0
                                       47.0
                                                46.0
                                                        45.0
                                                                 44.0
                                                                         43.0
                                                                                  42.1
                              38.9
                                               37.1
             40.6
                     39.8
                                                        36.3
                                                                 35.6
                                                                         35.0
00
    41.3
                                       38.0
                                                                                  34.5
             33.6
                     33.1
                              32.6
                                       32.1
                                                        31.5
                                                                 31.2
                                                                                  30.8
90
    34.0
                                               31.7
                                                                         31.0
    30.6
             30.3
                     30.1
                              29.7
                                       29.2
                                               28.7
                                                                 27.8
                                                                                  27.3
80
                                                        28.3
                                                                         27.5
     3-2
KK
KM Routing from node 3 to node 2
.070
                              5743
                                      .00293
RC
    .070
             .037
    4900
             4931
                      4961
                               4965
                                       5000
                                                5039
                                                        5070
                                                                 5100
EX
RY 240.0
            236.0
                     234.0
                             223.0
                                      220.0
                                               234.0
                                                       236.0
                                                                240.0
     241
KK
```

Sample input for SCS Lumped Model - Continued

```
IOI Runoff from Sub-Area 1
BA
    1.44
                2
PR
    .375
             .271
                      .354
     0.6
              . 13
                     6.57
                             .1963
LG
W
    1.2C
     C21
KK
ISI Combine hydrographs at node 2
NC
       2
     2-1
KK
IOI Routing from node 2 to node 1
XD
RC
     .070
             .037
                      .070
                              5743
                                     .00155
                                                                5100
   4900
             4931
                      4961
                              4965
                                               5039
                                                        5070
                                       5000
RX
RY 240.0
            236.0
                     234.0
                             223.0
                                      220.0
                                              234.0
                                                       236.0
                                                                240.0
KK GAGE1
104 Observed vs. Computed
       2 180CT81
                     2119
IN
90
     1.0
              1.0
                       1.0
                               1.0
                                        1.0
                                                1.1
                                                         1.1
                                                                  1.1
                                                                          1.1
90
     1.1
              1.1
                                        1.1
                                                         1.1
                                                                                   1.2
                       1.1
                               1.1
                                                1.1
                                                                  1.1
                                                                          1.1
90
     1.2
              1.2
                       1.2
                               1.2
                                        1.2
                                                1.2
                                                         1.2
                                                                  1.2
                                                                          1.2
                                                                                   1.2
                                                                 1.3
80
     1.2
              1.2
                       1.2
                                        1.3
                                                         1.3
                                                                                   1.4
                               1.3
                                                1.3
                                                                          1.4
     1.4
4.7
80
              1.9
                       2.3
                               2.7
                                                                  4.5
                                                                                   4.7
                                        3.2
                                                3.6
                                                         4.1
                                                                          4.7
                                                         7.5
90
                                                                          9.9
                                                                                  10.7
              4.7
                       4.7
                               4.7
                                        5.1
                                                                 9.1
                                                5.9
90
    11.5
             12.3
                      13.1
                              13.9
                                       14.7
                                                        17.0
                                                                 18.4
                                                                         19.8
                                               15.5
                                                                                  21.2
   22.7
                     29.0
                              32.6
90
             25.8
                                               40.8
                                                                 50.9
                                       36.7
                                                        45.9
                                                                         56.0
                                                                                  61.1
   66.2
             67.5
                     68.7
                              69.9
                                       71.2
                                               70.4
                                                        69.7
                                                                 69.0
                                                                                  67.6
                                                                         68.3
   66.9
                     66.2
90
             66.2
                              66.2
                                                                101.9
                                                                        139.1
                                       70.0
                                               73.7
                                                        87.8
                                                                                 176.4
90 225.4
90 807.3
            274.5
                     354.9
                             435.3
                                                       577.7
                                      477.6
                                              519.9
                                                                638.9
                                                                        693.4
                                                                                 747.9
                     906.4
            866.7
                             946.0
                                                      1083.7
                                                               1122.6
                                                                       1154.4
                                                                                1186.2
                                      995.8
                                             1045.6
           1235.0
                            1284.9
901210.6
                   1259.8
                                     1301.8
                                             1318.7
                                                      1334.7
                                                               1350.7
                                                                       1364.4
                                                                                1376.0
901387.6
           1393.4
                   1399.3
                                                              1400.4
                                                                       1398.1
                                                      1402.8
                                                                                1395.7
                            1405.1
                                     1405.1
                                             1405.1
                                             1358.7
                                                                       1307.6
901393.4
           1386.5
                   1379.5
                            1372.6
                                     1365.6
                                                      1341.6
                                                               1324.6
                                                                                1290.7
           1287.1
                   1300.7
901273.7
                                     1327.9
                                                      1287.4
                                                               1234.5
                            1314.3
                                             1341.4
                                                                       1182.7
                                                                                1130.9
           1065.1
                                             1000.7
                                                                        945.4
                                                                                 926.9
901081.1
                   1049.0
                            1032.9
                                     1016.8
                                                       962.2
                                                               963.8
            882.3
                                                               734.4
90 908.5
                    857.1
                                                       757.4
                                                                        711.3
                                                                                 688.3
                             831.9
                                      806.7
                                              781.5
                                      593.2
90 665.2
           646.9
                                              575.6
                                                               545.0
                                                                        530.1
                                                                                 515.3
                     628.5
                             610.9
                                                       560.3
90 500.8
                                                       424.7
            487.5
                    474.2
                                                                        403.4
                                                                                 393.1
                             460.9
                                      448.1
                                               435.3
                                                                414.1
                    363.4
                                      343.8
                                              334.4
                                                       326.9
                                                                        311.9
                                                                                 304.3
90 383.0
                             353.6
                                                               319.4
            373.2
90 296.8
                     282.3
                                      268.2
                                              261.2
                                                       254.3
                                                                                 234.3
            289.3
                                                                        240.9
                             275.3
                                                                247.6
90 227.6
                                               195.8
                                                                186.6
            221.0
                    214.3
                             208.0
                                      201.9
                                                       191.2
                                                                        182.2
                                                                                 177.9
                                                                        142.5
20 173.5
            169.1
                     164.8
                             160.4
                                      156.4
                                               152.2
                                                       149.0
                                                                145.7
                                                                                 139.5
90 136.4
            133.4
                                                       118.9
                                                                116.4
                                                                        113.9
                     130.3
                             127.3
                                      124.2
                                                                                 111.4
                                               121.3
                     104.3
90 109.0
            106.6
                             102.0
                                       99.7
                                                97.3
                                                        95.3
                                                                 94.2
                                                                         92.7
                                                                                  91.1
                                                                 79.2
                                                                                  76.4
                                                        80.7
90
   89.6
             88.0
                      86.5
                              85.1
                                       83.6
                                                82.1
                                                                         77.8
90
    75.0
             73.6
                      72.3
                              71.0
                                       69.7
                                                68.4
                                                        67.1
                                                                 65.7
                                                                         64.4
                                                                                  63.2
                                                                 54.0
45.0
                                                        54.9
                                                                         53.0
             60.8
                      59.5
                                       57.1
                                                55.9
                                                                                  52.0
90
    62.0
                              58.3
                                                        45.7
90
    51.1
             50.2
                      49.3
                              48.3
                                       47.4
                                                46.5
                                                                         44.2
                                                                                  43.5
              B=GOODWIN
                           C=FLOW
ZW
     A=DEC
                                     F=CAL
```

Sample input for SCS Lumped Model - Continued

```
47
      75
            126.83
                         3
                                 0.
5.
      5760
              2532
                         12
                                 12
44
           0.01
      3
                      1500.
                               23.63
                                       6.05 0.037
1
      3
19
       16
1
1
17
            12
                  <--- change when you change the time step
4.5
      43.5
15.5
      26.5
33.5
      20.5
45.5
      16.5
41.5
      9.5
44.5
      25.5
58.5
      11.5
57.5
      16.5
62.5
      14.5
19.5
     26.5
28.5
     26.5
33.5
     23.5
22.5
      34.5
30.5
      33.5
37.5
     29.5
39.5
     18.5
52.5
     19.5
0.07
0.1
0.06
9.4444E-7 0.0889 0.25
1.4E-6 0.1668 0.25
2.6E-6 0.1101
                0.25
       5
1
28
    15
20 33
21
    34
16 45
11
    60
```

0.094 0.000	0.171 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.094	0.171			0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.094	0.171	0.000	0.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.240	0.000			0.000	0.046	0.240	0.000	0.000	0.000	0.000
0.240 0. 09 4	0.000			0.960	0.046	0.240	0.000	0.000	0.000	0.000
0.240	0.000		0.000	0.960	0.046	0.240	0.000	0.000	0.000	0.000
0.240	0.000 0.171		0.000 0.067	0.960	0.046	0.240	0.000	0.000	0.000	0.000
0.240 0.094	0.000 0.171	0.000	0.000 0.067	0.960	0.046	0.240	0.000	0.000	0.000	0.000
2.400 0.094	0.000	0.000	0.000	0.960	0.046	0.240	0.000	0.000	0.000	0.000
2.400 0.094	0.000	0.000	0.000	0.030	0.046	0.240	0.000	0.000	0.000	0.000
0.086	0.000	0.000	0.000	0.030	0.046					
0.066	0.000	1.000	0.000	0.030	0.857 0.046	0.240	0.000	0.000	0.000	0.000
0.094	0.171	0.050	0.067	0.000	0.857 0.046	0.240	0.000	0.000	1.400	0.000
0.094 0.086	0.171 1.050	0.050 1.000	0.840	0.450 0.030	0.857 0.046	0.240	1.200	0.000	1.400	1.200
0.094 0.0 8 6	0.171 1.050	0.050 1.000	0.840	0.450 0.030	0.857 0.046	0.240	1.200	0.000	1.400	1.200
0.094 0.086	0.171 1.050	0.050 1.000	0.840	0.450	0.857 1.200	0.240	1.200	0.000	0.060	1.200
0.094	0.171 1.050	0.050 1.000	0.840	0.450	0.857 1.200	0.240	1.200	0.000	0.060	1.200
0.094	0.171	1.200 0.015	0.840	0.450	0.857 1.200	0.240	1.200	0.000	0.060	1.200
0.094	0.171	1.200 0.015	0.041	0.450	0.016	0.240	0.016	0.000	0.060	0.015
0.094	0.171	1.200	0.041	0.450	0.016	0.240	0.016	0.000	0.060	0.015
0.094	0.171	1.200	0.400	0.030	1.200 0.016	0.400	0.016	0.000	0.060	0.015
0.094	0.360	0.015	0.041	0.030 0.018	0.032 0.016	0.400	0.016	0.000	0.060	0.015
0.094	0.360 0.171	0.015	0.400	0.030 0.018	0.032 0.016	0.400	0.016	0.000	0.060	0.015
0.039 0.094	0.017 0.171	0.015	0.019	0.030	0. 03 2 0.016	0.400	0.016	0.000	0.060	0.015
0.039 0.094	0.017	0.015	0.019	0.030	0.032	0.400	0.016	0.300	0.060	0.015
0.039	0.017	0.015	0.019	-	0.032	0.400	0.016	0.300	0.060	
		0.015	0.019	0.030	0.032					0.015
0.039	0.017		0.019		0.016 0.032	0.040	0.016	1.800	0.060	0.015
			0.019	0.030	0.016 0.032	0.040	0.016	1.800	0.060	0.015
			0.041		0.016 0.0 3 2	0.040	0.016	1.800	0.060	0.015
0.094 0.039	0.171 0.017	0.049 0.015	0.041	0.618 0.030	0.016 0.032	0.040	0.016	0.032	0.060	0.015
0.094	0.171	0.049	0.041	0.018	0.016 0.032	0.040	0.016	0.032	0.060	0.015
0.094	0.171	0.049	0.041	0.018	0.016 0.032	0.040	0.016	0.032	0.060	0.015
0.094	0.171	0.049	0.041	0.018	0.016	0.040	0.016	0.032	0.060	0.015
0.094	0.171	0.049	0.041	0.018	0.032	0.040	0.016	0.032	0.060	0.015
0.039	0.017	0.015	0.019	0.030	0.032					

Sample RAIN.DAT input file for CASC2D

0.094	0.171 0.017	0.049 0.015	0.041	0.018 0.030	0.016 0.032	9 040	0.016	0.032	0.060	0.015
0.094	0.171 0.017	0.049	0.041	0.018	0.016 0.032	0.040	0.016	0.032	0.060	0.015
0.094	0.171 0.017	0.049	0.041	0.018 0.030		0.040	0.016	0.032	0.060	0.015
0.039	0.171 0.017	0.049	0.041	0.018 0.030	0.016 0.032	0.040	0.016	0.032	0.060	0.015
0.039	0.171	0.049	0.041	0.018	0.016	0.040	0.016	0.032	0.060	0.015
0.039	0.017 0.171 0.017	0.015	0.019	0.030	0.032 0.016 0.032	0.040	0.016	0.032	0.060	0.015
0.039	0.171	0.015	0.019	0.030	0.016	0.040	0.016	0.032	0.060	0.015
0.039	0.017	0.015	0.019	0.030	0.032	0.040	0.016	0.032	0.060	0.015
0.039	0.017	0.015	0.019	0.030	0.032	0.040	0.016	0.032	0.060	0.015
0.039	0.017	0.015	0.019	0.030	0.032	0.040	0.016	0.032	0.060	0.015
0.039	0.017 0.171	0.015	0.019	0.030	0.032	0.040	0.016	0.032	0.060	0.015
0.039	0.017	0.015	0.019	0.030	0.032	0.040	0.016	0.032	0.060	0.015
0.039	0.017 0.171	0.015	0.019 0.041	0.030 0.018		0.040	0.016	0.032	0.060	0.015
0.039	0.017 0.171	0.015	0.019	0.030 0.018		0.040	0.016	0.032	0.060	0.015
0.039	0.017 0.171	0.015	0.019 0.240	0.030 0.018	0.032 0.016	0.040	0.016	0.032	0.060	0.015
1.200 0.094	0.017 0.171	0.015	0.019 0.240	0.030 0.018	0.032 0.016	0.040	0.016	0.032	0.060	0.015
1.200 0.094	0.017 0.171	0.015	0.019 0.240	3.200 0.018	0.032 0.016	0.040	0.016	0.032	0.060	0.015
1.200 0.094	0.017	0.015	0.019	3.200 0.018	0.032 0.016	0.040	0.016	0.032	0.060	0.015
1.200 0.094	0.017	0.015	0.019 1.527	3.200 0.018	0.032 0.016	0.040	0.016	0.032	0.060	0.015
1.200 0.094	0.017	0.015	0.019	0.857	0.032 0.016	0.040	0.016	0.032	0.060	0.015
1.200	0.017	0.015	0.133 1.527	0.857	0.032 0.016	0.040	0.016	0.032	0.060	0.015
1.200	0.017	0.015	0.133	0.857	0.032	0.040	1.855	0.032	0.720	0.015
1.200	0.017	0.015	0.133	0.857 1.600	0.032	1.600	1.855	0.032	0.720	0.015
1.200	0.017	0.015	0.133	0.857	0.032	1.600	1.855	0.032	0.720	2.000
1.200		0.960	0.133	0.857	0.032	1.600	1.855	0.032	0.720	2.000
0.171	1.000	0.960	0.133	0.857	1.431	1.600	1.855	0.032	0.720	2.000
0.171	1.000	0.960	0.133	0.360	1.431	1.600	1.855	0.032	0.720	0.800
0.040	1.000	0.960	1.527 0.133	0.360	0.375 1.431					
0.040 0.171	0.171	1.333	1.527 0.133	0.360	1.431	1.600	1.855	0.032	0.720	0.800
0.040 0.171	0.171	1.333 0.800	1.527 0.857	0.360	1.431	1.091	1.855	0.032	0.720	0.800
0.040 0.171	0.171	1.333	0.785 0.857	1.600 0.360	1.431	1.091	1.855	0.032	0.720	0.800
0.040 0.171	0.171 0.500	1.333	0.785 0.857	1.600 1.600	1.431	1.091	1.855	0.032	0.720	0.800
0.040 1.200	1.600 0.500	1.333 0.257	0.785 0.857	1.600 1.600	1.431	1.091	1.855	0.032	0.171	0.800
0.040 1.200	1.600 0.500	1.333 0.257	0.785 0.857	1.600 1.600	0.150 1.431	1.091	0.120	1.000	0.171	0.086
-										

Sample RAIN.DAT input file for CASC2D - Continued

0.040 1.6 1.200 0.100	i00 0.20 0.257	0 0.785 0. 8 57	1.000 1.650	0.150 1.431	1.091	0.120	1.000	0.171	0.066
0.040 0.2 1.200 0.100					1.091	0.120	1.000	0.171	0.066
0.040 0.2 1.638 0.100					1.091	0.120	3.000	0.171	0.066
0.040 0.2	40 0.20	0.785	1.080	0.150	1.091	0.120	3.000	0.171	0.086
0.040 0.2					1.091	2.100	3.000	0.171	0.086
1.638 0.100 0.040 0.2					1.091	2.100	3.000	1.050	0.086
1.638 0.100 0.040 1.6					1.333	2.100	1.371	1.050	0.600
1.638 1.800 0.382 1.6					1.333	2.100	1.371	1.050	0.600
1.638 1.800 0.382 1.6					1.333	0.600	1.371	1.050	0.600
1.638 0.400 0.382 1.6				1.920 0.450	1.333	0.600	1.371	0.360	0.600
1.638 0.400 0.382 1.6	0.900 00 0.78	1.029 0 1.800	1.650 1.080	1.920 0.450	1.333	0.600	1.371	0.360	0.600
1.638 0.400 0.382 1.6	0.900 00 0.78	1.029 0 1.800	1.650 1.080	1.920	1.333	0.600	1.371	0.360	0.600
1.638 0.686 0.382 2.0	0.900 57 0.78	1.029	1.650	1.920	1.333	0.600	1.371	0.360	0.600
1.638 0.686 0.382 2.0	0.900	1.100	1.650	1.920	1.333	0.600	0.480	0.360	0.600
1.638 0.686 0.382 2.0	0.900	1.100	1,650	0.400					
1.638 0.686	0.900	1.100	1.650	0.400	1.333	0.600	0.480	2.047	2.133
0.382 2.0 1.638 0.686	0.900	1.100	1.650	0.400	1.364	1.958	0.480	2.047	2.133
0.382 2.0 1.638 0.686	0.900	1.100	1.800	1.414	1.364	1.958	0.480	2.047	2.133
0.382 2.0 1.638 0.686	2.850	1.100	0.900 1.800	1.933 1.414	1.364	1.958	0.480	2.047	2.133
2.325 2.0 1.638 2.143	2.850	0 1. 60 0 1.629	0.900 1.800	1.414	1.364	1.958	3.000	2.047	2.133
2.325 2.0 1.638 2.143	57 2.550 2 .8 50	1. 80 0 1.629		1.933	1.364	1.958	3.000	2.047	2.133
2.325 2.0 1.638 2.143					1.364	1.958	0.800	2.047	2.133
2.325 2.0 1.638 2.143					1.364	1.958	0.800	2.047	2.133
2.325 2.0 1.638 2.143			2.340 0.429		1.364	1.958	0.800	2.047.	2.133
2.325 2.0 1.638 2.143	57 2.550	2.229	2.340	1.933	1.364	1.958	0.600	2.047	2.133
2.325 2.0 1.638 2.143	57 2.550 2. 8 50		2.340	1.933	1.364	1.958	0.600	2.047	2.133
2.325 2.0	57 2.550	2.229			1.364	1.958	0.600	2.047	2.133
1.638 3.400 2.025 0.0	1.200 00 2.550	2.700 2.229			2.400	1.958	1.500	2.047	2.133
1.638 3.400 2.025 0.0				1.414 2.743	2.400	1.958	1.500	2.047	2.133
1.638 3.400 2.025 0.0					2.400	1.958	1.500	2.047	2.133
0.000 2.100 2.025 0.5			0.429 2.340	1.414	2.400	1.958	1.500	2.047	2.133
0.000 2.100 2.025 0.5	1.200	1.950	0.700	1.414	2.400	1.958	1.500	2.047	2.133
0.000 2.000 2.025 0.5	1.200	1.950	0.700	2.175	2.400	1.958	1.500	0.120	2.133
1.500 2.000	1.200	2.100	0.700	2.175					
2.025 0.50 1.500 2.000	00 0.975 1.200	0.000 2.100	0.300 0.700	0.150 2.175	2.400	1.958	3.840	0.120	0.200

Sample RAIN.DAT input file for CASC2D - Continued

2.025 0.500 0.975 0.600 0.300 0.150 0.920 0.171 1.200 2.100 0.700 2.175	2.400	1.958	3.840	0.120	0.200
0.000 0.500 0.975 0.600 0.300 0.150 0.920 0.171 0.000 2.100 0.700 2.175	2.400	0.240	3.840	0.120	0.200
0.000 1.267 0.975 0.600 0.300 0.150 0.920 0.171 0.000 0.100 1.100 2.175	0.300	0.240	3.840	0.120	0.200
0.000 1.267 0.000 0.600 0.300 0.969 0.920 0.171 0.000 0.100 1.100 2.175	0.300	0.240	3.840	0.900	0.200
1.050 1.267 0.000 0.947 0.300 0.969 0.920 0.171 1.000 0.100 1.100 2.175	0.300	0.240	1.560	0.900	0.200
1.050 1.267 0.000 0.947 0.300 0.969	0.300	0.240	1.560	1.050	0.500
0.920 0.171 1.000 0.100 1.100 0.257 1.050 1.267 0.000 0.947 0.300 0.969 0.920 0.171 1.000 0.100 1.100 0.257	0.300	1.200	1.560	1.050	0.500
1.050 1.267 0.000 0.947 0.300 0.969	0.300	1.200	1.560	1.050	0.500
0.400 1.267 1.150 0.947 0.300 0.969	1.100	1.200	1.560	1.050	0.500
0.400 1.267 1.150 0.947 0.300 0.969	1.100	1.200	0.400	1.050	0.500
0.400 1.267 1.150 0.947 0.300 0.969	1.100	1.200	0.400	1.050	0.500
0.600 1.329 1.150 0.947 1.855 0.969	1.100	1.200	0.400	1.050	1.700
0.600 1.329 1.150 0.947 1.855 0.969	1.100	1.200	0.120	1.050	1.700
0.600 1.329 1.150 0.947 1.855 0.969	1.100	1.200	0.120	1.050	1.700
1.680 1.329 1.150 0.947 1.855 0.969	1.100	1.200	0.120	1.050	1.700
0.920 1.440 1.900 0.720 0.986 0.300 1.680 1.329 1.150 0.947 1.855 0.969	1.100	1.200	0.120	1.050	1.700
1.440 1.440 1.900 0.720 0.986 0.300 1.680 1.329 1.150 0.947 1.855 0.686	1.100	1.200	0.120	1.050	1.700
1.440 1.440 1.900 0.720 0.986 1.269 1.680 1.329 1.150 0.947 1.855 0.686	1.100	1.200	0.400	0.600	1.926
1.440 1.400 0.525 0.720 0.986 1.269 1.680 1.329 1.150 0.947 1.855 0.686	1.100	1.777	0.400	0.600	1.926
1.440 1.400 0.525 0.720 0.986 1.269 0.480 1.329 1.150 0.947 1.855 0.686	1.100	1.777	0.400	0.600	1.926
1.440 1.400 0.525 7.200 0.986 1.269 0.480 1.329 1.200 0.947 1.855 0.686	1.029	1.777	0.400	0.600	1.926
1.440 0.600 0.525 0.686 0.986 1.269 0.480 1.329 1.200 0.947 1.855 0.686	1.029	1.777	0.400	0.600	1.926
1.440 0.600 0.525 0.686 0.986 1.269 0.480 1.329 1.200 0.947 1.855 0.686	1.029	1.777	0.400	0.600	1.926
1.440 0.600 0.525 0.686 3.000 1.269 0.480 1.329 1.200 2.400 1.855 1.500	1.029	1.777	2.520	0.600	1.926
1.440 0.600 0.525 0.686 3.000 1.269 1.300 1.329 1.200 2.400 1.855 1.500	1.029	1.777	2.520	0.600	1.926
1.440 0.600 0.525 0.686 3.000 1.269 1.300 3.267 1.200 2.400 1.855 1.500	1.029	1.777	2.520	2.463	1.926
3.075 0.600 1.500 0.686 3.000 1.269 1.300 3.267 1.200 2.400 1.855 1.500	1.029	1.777	2.520	2.463	1.926
3.075 1.680 1.500 0.686 3.000 1.269 1.300 3.267 1.200 2.400 1.855 2.509	1.029	1.777	2.520	2.463	1.926
3.075 1.680 1.500 1.000 3.000 1.269 1.300 3.267 1.200 2.400 1.855 2.509	1.029	1.777	0.667	2.463	1.926
3.075 1.680 1.500 1.000 3.000 1.269	1.029	1.777	0.667	2.463	1.926
3.075 1.680 1.500 1.000 3.000 1.269 3.040 3.267 1.200 2.400 1.855 2.509	1.029	1.777	0.667	2.463	1.926
3.075 1.680 1.500 1.000 2.100 1.269 3.040 3.267 1.200 2.400 1.855 2.509	1.029	1.777	0.667	2.463	1.926
3.075 2.000 3.218 1.000 2.100 1.269 3.040 3.267 1.200 3.720 1.855 2.509	1.029	1.777	_	2.463	1.926
3.075 2.000 3.218 1.000 2.100 1.269					

Sample RAIN.DAT input file for CASC2D - Continued

				- //2	1.926
3.040 3.267 1.200 3.720 2.400 2.509 2.571 2.000 3.218 3.000 2.100 1.269	1.029	1.777	0.667	2.463	
3.040 1.950 2.914 3.720 2.400 2.509	4.133	1.777	0.6 #	2.463	1.926
2.571 2.000 3.218 3.000 2.100 1.269 3.040 1.950 2.914 3.720 2.400 2.509	4.133	1.777	0.667	2.463	1.926
2.571 2.000 3.218 0.600 2.100 1.269 3.040 1.950 2.914 3.720 2.400 2.509	4.133	1.777	0.667	2.463	2.200
2.571 2.000 3.218 0.600 2.100 1.269	4,133	1.777	1,680	2.463	2.200
2.571 6.200 3.218 4.000 2.100 1.269	4,133	1.777	1.680	2.463	2.200
3.040 1.950 2.914 1.714 2.400 2.700 2.571 6.200 3.218 4.000 0.643 1.269				2.463	2.200
3.040 1.950 2.914 1.714 2.400 2.700 2.571 6.200 3.218 4.000 0.643 1.269	4.133	1.777	1.680		
3.040 1.950 2.914 1.714 2.400 2.700 0.764 1.950 3.218 3.000 0.643 1.269	4.133	1.777	1.680	2.463	2.200
3.040 1.950 2.127 1.714 2.400 2.700	4.133	1.777	1.680	2.463	2.200
3.040 0.780 2.127 1.714 2.400 2.700	4.133	1.777	2.700	2.463	2.200
0.784 1.950 2.100 3.000 0.643 2.914 3.049 0.780 2.127 1.714 0.000 2.700	0.000	1.777	2.700	2.463	2.200
0.764 1.950 2.100 3.000 0.643 2.914 3.040 0.780 2.127 0.600 0.000 2.700	0.000	0.975	2.700	1.050	2.200
0.7%4 1.800 2.100 2.000 0.643 2.914 2.800 0.780 2.127 0.600 0.000 2.700	0.000	0.975	2.700	1.050	0.857
0.764 1.800 2.100 2.000 0.643 2.914	0.000	0.975	4.800	1.050	0.857
0.764 1.800 1.000 2.000 0.643 2.914			4.800	1.050	0.857
2,800 0.780 2,127 0.600 0.000 2.400 0.764 1.800 1.000 1.400 0.643 2.914	0.000	0.975			
0.900 0.780 2.127 0.600 0.000 2.400 0.764 1.800 1.000 1.400 0.643 2.914	0.000	0.975	2.200	1.050	0.857
0.900 0.780 2.127 0.600 0.000 2.400	0.000	0.975	2.200	1.050	0.857
0.900 0.780 2.127 0.600 0.000 2.400	0.000	0.975	2.200	1.050	0.857
0.764 1.800 1.000 1.500 0.643 5.400 0.900 0.780 2.127 0.000 0.000 3.600	0.000	0.975	2.400	1.050	0.857
4.800 0.000 1.000 1.500 0.643 5.400 0.000 0.000 0.000 0.338 0.189 4.800	1.500	0.000	3.000	1.200	0.600
0.109 0.000 0.000 0.420 0.000 0.000 0.000 0.545 0.525 0.338 0.189 0.360	1.500	0.369	1.200	1.200	0.514
0.109 0.771 0.700 0.420 0.356 2.400 0.400 0.545 0.525 0.338 0.189 0.360	1.200	0.369	1.200	0.429	0.514
0.109 0.771 0.700 0.420 0.356 2.400	1.200	0.369	1.200	0.429	0.514
0.400 0.545 0.525 0.338 0.189 0.360 0.109 0.771 0.700 0.420 0.356 2.400	-			0.429	0.514
0.400 0.545 0.525 0.338 0.189 0.360 0.109 0.771 0.700 0.420 0.356 2.400	0.309	0.369	1.200		
0.400 0.545 0.525 0.338 0.189 0.360 0.109 0.771 0.700 0.420 0.356 2.400	0.309	0.369	1.200	0.429	0.514
0.400 0.545 0.525 0.338 0.189 0.360	0.309	0.369	0.686	0.429	0.514
0.400 0.545 0.525 0.338 0.189 0.360	0.309	0.369	0.686	0.429	0.514
0.109 0.771 0.387 0.420 0.356 0.568 0.400 0.545 0.525 0.338 0.189 0.360	0.309	0.369	0.686	0.429	0.514
0.109 0.900 0.387 0.420 0.356 0.568 0.400 0.545 0.525 0.338 0.189 0.360	0.309	0.369	0.686	0.429	0.514
0.109 0.900 0.387 0.420 0.356 0.568 0,400 0.545 0.525 0.338 0.189 0.360	0.309	0.369	0.686	0.429	0.514
0.109 0.369 0.387 0.284 0.356 0.568	0.309	0.369	0.686	0.429	0.514
0.343 0.369 0.387 0.284 0.356 0.568			0.686	0.429	0.514
0.400 0.545 0.525 0.338 0.189 0.360 0.343 0.369 0.387 0.284 0.356 0.568		0.369			
0.400 0.545 0.525 0.338 0.189 0.360 0.343 0.369 0.387 0.284 0.356 0.568	0.309	0.369	0.360	0.429	0.514
U.373 V.247 V.441 V.341					

Sample RAIN.DAT input file for CASC2D - Continued

0.400 0.54 0.343 0.369	5 0.525 0. 38 7	0.336 0.284	0.189 0.356	0.360 0.568	0.309	0.369	0.360	0.429	0.514
0.400 0.549 0.343 0.369					0.309	0.369	0.360	0.429	0.314
0.400 0.549 0.343 0.369		0.400			0.309	0.369	0.360	0.333	0.314
0.300 0.54	0.300	0.400	0.189	0.360	0.309	0.369	0.360	0.333	0.314
0.343 0.369 0.300 0.549					0.309	0.369	0.360	0.333	0.314
0.343 0.369 0.300 0.549					0.309	0.369	0.360	0.333	0.314
0.343 0.369 0.300 0.54!					0.309	0.369	0.360	0.333	0.314
0.343 0.369 0.300 0.549				0.568 6 0.360	0.309	0.369	0.360	0.333	0.314
0.343 0.369 0.300 0.549	0.387 5 0.300	0.284	0.356 0.075	0.568 0.360	0.309	0.369	0.360	0.333	0.314
0.343 0.369 0.300 0.549	0.387 5 0.300	0.284	0.356	0.568	0.309	0.369	0.320	0.333	0.314
0.343 0.353 0.300 0.545	0.387	0.284	0.356	0.568	0.309	0.369	0.320	0.333	
0.343 0.353 0.738 0.545	0.387	0.284	0.356	0.568					0.314
0.343 0.353	0.387	0.284	0.356	0.568	0.309	0.369	0.320	0.333	0,314
0.343 0.353	0.387	0.284	0.356	0.400	0.309	0.369	0.320	0.333	0.314
0.738 0.545 0.343 0.353	0.387	0.284	0.075 0.356	0.360 0.400	0.309	0.369	0.320	0.333	0.314
0.738 0.545 0.343 0.353	0.300 0.387	0.400 0.284	0.075 1.560	0.360 0.400	0.309	0.369	0.320	0.333	0.314
0.738 0.545 0.343 0.353	0.300 0.387	0.400 0.382		0.360 0.400	0.309	0.369	0.320	0.333	0.314
0.738 0.545 0.343 0.353					0.309	0.369	0.320	0.333	0.314
0.738 0.545 0.343 0.353				•	0.309	0.369	0.320	0.333	0.314
0.738 0.545 1.029 0.353		0.400	0.075	0.640	0.309	0.369	0.320	0.333	0.314
0.738 0.54	5 0.30				0.309	0.369	0.320	0.333	0.314
1.029 0.353 0.738 0.545					0.309	0.369	0.320	0.764	0.314
1.029 0.353 0.738 0.545				0.400	0.309	0.369	0.320	0.764	0.314
1.029 0.353 0.738 0.545	0.387 0.300	0.382 1.200	0.420 0.600	0.400	0.309	0.369	0.320	0.764	0.760
1.029 0.353 0.738 0.545	0.387 0.300	0.382 1.200	0.420	0.400	0.309	0.369	0.320	0.764	0.760
	0.387	0.382	0.420	0.400	0.309	0.369			
1.029 0.353 0.655 0.545	0.660	0.382	0.420	0.400			0.333	0.764	0.760
0.600 0.353	0.660	0.382	0.420	0.400	1.350	0.369	0.333	0.764	0.760
0.600 0.600	0.660	0.500	0.420	0.400	1.350	1.133	0.333	0.764	0.760
0.655 0.545 0.600 0.600	0.660	0.700 0.500	0.600 0.420	0.640 0.400	1.350	1.133	0.333	0.764	0.760
0.655 0.545 0.600 0.600	1.200 0.660	0.700 0.500		0.640 0.400	1.350	1.135	0.333	0.764	0.760
0.655 0.545 0.600 1.500					0.386	1.133	0.333	0.764	0.760
0.655 0.545 0.600 1.500					0.386	1.133	0.333	0.764	0.760
0.655 0.240		0.700	0.600	0.640	0.386	1.133	0.333	0.667	0.760
0.655 0.240	1.200				0.386	1.133	0.333	0.667	0.760
0.600 0.500	0.660	1.200	0.900	0.533					

Sample RAIN.DAT input file for CASC2D - Continued

0.655	0.240	0.720	1.500	1.200	2.100	0.386	1.133	4.800	0.667	0.760
				0.094						
	0.240		1.500		2.100	0.386	1.133	0.700	0.667	0.760
0.655		0.400		0.094	0.533	0.555				
	0.500		1.500			0.386	0.600	0.700	0.667	0.760
3.000	0.240		0.300		0.533	0.555				
			1.500			0.386	0.600	0.700	0.667	0.760
0.221	0.240			0.094	0.533	7.333		*		
	0.500					0.386	0.600	0.700	0.667	0.800
0.221	0.240		0.300	0.094	0.533	0.000	••••			
	1.400					0.386	0.600	0.700	0.667	0.800
0.221	0.240		0.300	0.094	0.533	0.000	••••			
0.273	1.400		0.150			0.386	0.600	0.700	0.667	0.800
0.221	0.240		0.300		0.120	V	••••			
0.273	1.400		0.150			0.386	0.600	0.514	0.257	0.171
0.221	0.240		0.300	0.094	0.120	0.555				
	0.191		0.150			0.386	0.600	0.514	0.257	0.171
0.221	0.240			0.094	0.120	7.22	0.000			
		0.106				0.386	3.000	0.514	0.257	0.171
0.221	0.240			0.094	0.120	0.555	0.000			
		0.106				1.000	3.000	0.514	0.257	0.171
0.221	0.240		0.150 1.050	0.094	0.120	1.000	3.000	••••		
0.273	0.191	0.106				1.000	0.185	0.514	0.257	0.171
0.221	0.240		0.150	0.094	0.066	1.000	005	000.0		,
0.273	0.191	0.106	1.050			1.000	0.185	0.514	0.257	0.171
0.221	0.240				0.086	1.000	J. 105			
0.273	0.191	U. 106	0.160	0.094	V. VOD					

```
28.99 4.00 0.037
 32.71 4.20 0.037
 23.45 4.34 0.037
 18.35 4.34 0.037
 15.24
      4.50 0.037
       4.70 0.037
 17.70
 37.97
      4.97 0.037
 28.24
      5.32 0.037
      6.05 0.037
 23.63
 12.88 3.87 0.037
 22.42 3.98 0.037
      4.11 0.037
 14.48
 15.70
      3.40 0.037
 16.32
      3.55 0.037
 13.65 3.83 0.037
 8.58
      4.30 0.037
 7.42
       4.50 0.037
      3.00 0.037
 6.00
 7.00 3.50 0.037
13 13 13 13 13 13 12 12 12 11 11 11 11 11 11 -1 Channel 1
69 68 67 66 65 64 64 63 62 62 61 60 59 58 57 -1
11 11 12 12 12 12 12 13 14 14 15 15 16 16 16 -1
                                                Channel 2
57 56 56 55 54 53 52 52 52 51 51 50 50 49 48 -1
16 16 16 16 16 15 15 15 14 14 14 14 14 -1 0 0
                                                Channel 3
48 47 46 45 44 44 43 42 42 41 40 39 38 -1 0 0
14 15 15 15 16 16 17 18 19 19 20 20 21 -1 0 0
                                               Channel 4
38 38 37 36 36 35 35 35 35 34 34 33 33 -1 0 0
21 21 22 22 23 23 24 24 25 25 25 25 -1
                                                Channel 5
33 32 32 31 31 30 30 29 29 28 27 26 -1 0 0 0
25 25 25 25 25 25 25 26 26 -1 0 0 0 0
                                                Channel 6
26 25 24 23 22 21 20 19 19 18 -1 0 0 0
                                           0
26 26 27 27 28 29 30 30 31 31 32 -1 0 0
                                                Channel 7
18 17 17 16 15 15 15 15 14 14 13 13 -1 0 0 0
32 32 33 34 34 35 36 36 37 37 38 39 39 40 41 -1
                                                Channel 8
13 12 12 12 11 11 11 10 10 9 9 9 8
                                     8
                                       8 -1
41 41 42 43 43 44 44 44 44
                          0
                             0
                                0
                                  0
                                          0
                                                Channel 9
                                     0
  7 7 7 6 6 5 4 3
                             0
                                0
                                  0
                                       0 0
                          0
        9 9 9 9 9 9 10 -1 0 0 0 0
                                               Channel 10
49 48 48 47 46 45 44 43 42 41 41 -1 0 0 0 0
```

Sample CHM.DAT input file for CASC2D

			13 38				0			Channel	11
							0		0	Channel	12
								-1 -1	0	Channel	13
								-1 -1		Channel	14
							0		0	Channel	15
							0	0	0	Channel	16
							0	0	_	Channel	17
								30 23	-1 -1	Channel	18
								0		Channel	19

APPENDIX D - Computer Program Listing for CASC2D

```
WITH INFILTRATION
      WITH CHANNEL ROUTING #5
      WITH PLOTING ROUTINE
      PROGRAM DIFNACK
SHOLIST
      INCLUDE 'FGRAPH.FI'
      INCLUDE 'FGRAPH.FD'
SLIST
C
      INTEGER*1 ISNP(47,75), IMAN(47,75), ISOIL(47,75)
      COMMON /BLOK1/ E(47,75),N(47,75),RINT(47,75),VINF(47,75)
      COMMON /BLOK2/ DGOV(47,75),DGCH(47,75),HCH(47,75),
                      XRG(20), YRG(20), RRG(20), PMAH(10), PINF(10,3),
                      ICM(29,16,2),CMP(29,3),IQ(20,2),Q(20)
      RECORD /videoconfig/ screen
      COMMON screen
      CALL FONTS()
      CALL GETTIN(INR, IMIN, ISEC, 1100)
C
      OPENING FILES
      OPEN(UNIT=21, FILE='SHAP.DAT')
      OPEN(UNIT=22, FILE='ELAVG.DAT')
      OPEN(UNIT=23, FILE='RAIN.DAT')
      OPEN(UNIT=24, FILE='SOIL.DAT')
      OPEN(UNIT=25, FILE='DATA1')
      OPEN(UNIT=26, FILE='CHN.DAT')
      OPEN(UNIT=27, FILE='OUT.PRN')
      OPEN(UNIT=28, FILE='IMAN.DAT')
      OPEN(UNIT=29, FILE='DISCHARGE.OUT')
      OPEN(UNIT=36, FILE='DEPTH.OUT')
      WRITE(27, '('' Started at '', 12, '':'', 12, '':'', 12)') IMR, IMIN, ISEC
      WRITE(27,222)
C
      READ(25,*) M,N,V,MMAN,SDEP
      READ(25,*) DT, NITER, NITRN, NPRN, NPLT
      READ(25,*) JOUT, KOUT, SOUT, GMAX, MCHOUT, DCHOUT, RMANOUT
      READ(25,*) INDEXINF, NSOIL
      READ(25,*) NCHN, MAXCHN
READ(25,*) IDEPPLT
READ(25,*) IRAIN
C
      IF(IRAIN.EQ.O) READ(25,*) CRAIN
      IF(IRAIN.EQ.1) READ(25,*) MRG, MREAD
      IF(IRAIN.EQ.1) READ(25,*) (XRG(L),YRG(L),L=1,NRG)
C
      READ(25,*) (PMAN(J), J=1, NMAN)
      IF(INDEXINF.EQ.1) READ(25,*) ((PINF(J,K),K=1,3),J=1,NSOIL)
      READ(25,*) INDEXDIS, NDIS
      IF(INDEXDIS.EQ.1) READ(25,*) ((1Q(J,K),K=1,2),J=1,MDIS)
C
      IF(MCHN.NE.O) READ(26,*) ((CHP(L,K),K=1,3),L=1,MCHM)
      IF(MCHM.NE.O) READ(26,128) (((ICHM(L,J,K),J=1,MAXCHM),
                                      K=1,2),L=1,NCHN)
 128 FORMAT(/1613/1613)
      WRITE(29,229) ((19(J,K),K=1,2),J=1,MDIS)
      READING SHAP MATIX AND READING ELEVATIONS AND INITIALIZATIONS
¢
C
      DO 150 J=1,M
      DO 150 K=1,N
      READ(21,*) ISHP(J,K)
      READ(22,*) E(J,K)
```

Computer Listing for CASC2D MODEL

```
IF(MSDIL.EQ.1) THEM
      1801L(J,K)=1
      ELSE
      READ(24,*) 1801L(J,K)
      ENDIF
      IF(MAN.EQ.1) THEN
      IMAH(J,K)=1
      ELSE
      READ(28,*) !NAN(J,K)
      END I F
C
      H(J,K)=0.
      NCH(J.K)=0.
      DQDV(J,K)=0.
      DOCH(J,K)=0.
      VINF(J,K)=0.
           RTOT(j,k)=0.
  150 CONTINUE
     DO 160 IC=1,NCHH,1
DO 175 L=1,MAXCHH,1
      J=ICHM(IC,L,1)
      K=1CHM(IC,L,2)
      IF(J.LE.0) GO TO 160
      1SHP(J,K)=2
  175 CONTINUE
  160 CONTINUE
      VIN=0.
      VOUT=0.
      VSUR=0.
      VINFTOT=0.
      RINDEX=1.
C
C
      TIME LOOP
      DO 10 1=1, NITER
      IF(IDEPPLT.EQ.0) WRITE(*,*)I
      ICALL=0
      IF(I.GT.NITRN) RINDEX=0.
      IF(I.LE.NITRN.AND.IRAIN.EQ.1) THEN
      IF(((1-1)/NREAD)*NREAD.EQ.(1-1)) THEN
      ICALL=1
      READ(23,124) (RRG(L),L=1,NRG)
      change the format from 17 to the new number of raingages
C
  124 FORMAT(17F9.3)
      ENDIF
      END I F
C
         DO 1 J=1,M
      DO 1 K=1,N
      IF(ISHP(J,K).EQ.0) GO TO 1
      IF(IRAIN.EQ.O) THEN
      RINT(J,K)=CRAIN
      ELSE
      IF(ICALL.EQ.1) CALL RAIN(J,K,NRG,XRG,YRG,RRG,RINT)
      ENDIF
      IF(I.GT.NITRN) RINT(J,K)=0.
              RTOT(J,K)=RTOT(J,K)+RINT(J,K)*DT
      HOV=DQOV(J,K)*DT/(W*W)
      HOV=HOV+H(J,K)+RINDEX*RINT(J,K)*DT
      IF(MOV.LT.0) GO TO 170
      IF(INDEXINF.EQ.1)CALL INFILT(J,K,DT,ISOIL,VINF,PINF,NOV)
```

```
H(J,K)=HOV
      pqov(J,K)=0.
      VIN=VIN+RINDEX*RINT(J,K)*DT*V*V
      IF(I.EQ.NITER) VINFTOT=VINFTOT+VINF(J,K)*W*W
      IF(I_EQ_NITER.AND.ISNP(J,K).EQ.1) VSUR=VSUR+H(J,K)*V*V
    1 CONTINUE
C
      DO 2 IC=1,NCNN,1
      DO 3 L=1, MAXCHN, 1
      J=ICHM(IC,L,1)
      K=ICHN(IC,L,2)
      JJ=ICHN(IC,L+1,1)
      1F(J.LE.0) GO TO 2
      IF(JJ.LT.0) 80 TO 2
      WCH=CHP(IC,1)
      DCH=CHP(IC,2)
      DHCH=DQCH(J,K)*DT/(W*WCH)
      HCH(J,K)=HCH(J,K)+DHCH
      IF(H(J,K).GT.SDEP) THEN
      MCN(J,K)=MCH(J,K)+(N(J,K)-SDEP)*W/WCH
      H(J,K)=SDEP
      ENDIF
      NTOP=DCH+H(J,K)
      IF(NCH(J,K).GT.NTOP) THEN
      DH=(HCH(J,K)-HTOP)*WCH/W
      H(J,K)=H(J,K)+DH
      HCH(J,K)=HTOP+DH
      END!F
      IF(NCN(J,K).LT.0) GO TO 170
      DQCH(J,K)=0.
      IF(I.EQ.NITER) VSUR=VSUR+HCH(J,K)*W*WCH+H(J,K)*W*W
    3 CONTINUE
    2 CONTINUE
C
   11 DO 20 J=1,N
      DO 30 K=1,N
      IF(1SHP(J,K).EQ.0) GO TO 30
      DO 40 L=-1,0,1
      JJ=J+L+1
      KK=K-L
C
      IF(JJ.GT.M.OR.KK.GT.M.OR.ISHP(JJ,KK).EQ.0) GO TO 40
      CALL OVRL(W, IMAH, PMAH, SDEP, J, K, JJ, KK, E, H, DGOV)
   40 CONTINUE
   30 CONTINUE
   20 CONTINUE
C
      DO 50 IC=1,NCHN,1
      WCH=CHP(IC,1)
      DCH=CHP(IC,2)
      RMANCH=CHP(IC,3)
      DO 60 L=1,MAXCHH-1,1
      J=ICHM(IC,L,1)
      K=ICHM(IC,L,2)
      JJ=1CHM(IC,L+1,1)
KK=ICHM(IC,L+1,2)
      JJJ=ICHN(IC,L+2,1)
      IF(JJ.LE.0) 60 TO 50
      CALL CHNCHN(NCHN, W, WCH, DCH, RMANCH,
                      J,K,JJ,KK,JJJ,E,HCH,ICHM,CHP,DQCH,NDIS,IQ,Q)
   60 CONTINUE
   50 CONTINUE
C
         OUTFLOW DISCHARGE
C
C
      MOUT=H(JOUT,KOUT)
```

```
ALFA=SORT(SOUT)/PMAN(IMAN(JOUT, KOUT))
      QOUTOV-0.
      IF(NOUT.GT.SDEP) GOUTOV=WALFA*((NOUT-SDEP)**1.667)
      M(JOUT, KOUT)=MOUT-GOUTOV=DT/(V=V)
C
      HOUT=HCH(JOUT, KOUT)
      UPOUT=UCHOUT+2.*HOUT
      IF(NOUT.GT.DCHOUT) MPOUT=MCHOUT+2.*DCHOUT
      AREAGUT=WCHOUT*NOUT
      ALFA=SORT(SOUT)/MANOUT
GOUTCH=ALFA*(AREAGUT**1.6667)/(WPOUT**0.6667)
      MCH(JOUT, KOUT)=NOU?-QOUTCH*DT/(W*MCHOUT)
      QQUT=QQUTQV+QQUTCH
      VOUT=VOUT+QOUT*DT
C
      if(i.eq.1) then
      qpeek=0.
      tpeck=0.
      endif
      if(qout.gt.qpeak) then
      cpeek*qout
      tpeak=reel(1)*dt/60.
      endif
c
      if(i.eq.1) qold = 0.0
      IF((IDEPPLT.EQ.1).AMD.(((I-1)/WPLT)*MPLT).EQ.I-1)
              CALL DEPPLT(I, MPLT, ISMP, RIMT, MITRN, IRAIN, ICALL, VINF,
              INDEXINF, M, NCH, niter, dt, qout, qold, qmax, m, n)
      IF(((I-1)/WPLT)*WPLT.EQ.I-1) gold = gout
             UNIT CHANGE FROM m3/s TO cfs
      IF((I/MPRM)*MPRM.EQ.1) WRITE(27,111) 1*DT/60., QOUT*(3.28)**3
      IF((I/MPRH) "MPRH.EQ.I) WRITE(29,112) 1"DT/60.,
               (9(ILL)*(3.28)**3, ILL=1, MDIS)
   10 CONTINUE
C
      WRITE(36,898)
      DO 899 J=1,H
      DO 899 K=1.N
      IF(ISHP(J,K).EQ.0) GO TO 899
      WRITE(36,891) J,K,1000.*H(J,K),1000.*VINF(J,K)
  899 CONTINUE
      ------
    --->>
              UNIT CHANGE FROM m3 TO ft3
      WRITE(27,113) qpeek*(3.28**3), tpeek, VIN*(3.28**3),
     +
                      YOUT*(3.28**3), 100. *YOUT/VIN, VSUR*(3.28**3),
                      100.*VSUR/VIN,VINFTOT*(3.28**3),100.*VINFTOT/VIN
                      ,100.*(VOUT+VSUR+VINFTOT)/VIN
      GO TO 172
  170 WRITE(27,171) J,K,1*DT,HOV
  172 CONTINUE
      CALL GETTIM(IMR, IMIN, ISEC, 1100)
      WRITE(27, '('' Stopped at '', 12, '':'', 12, '':'', 12)') INR, IMIN, ISEC
  222 FORMAT(//' TIME(MIN) DISCHARGE(CFS)'/)
  229 FORMAT("DISCHARGE AT: ',20(213,"
  111 FORMAT(2X,F7.2,F14.3)
112 FORMAT(2X,F7.2,20F10.3)
  113 FORMAT(//' PEAK DISCHARGE in CFS=',F15.3/' TIME TO PEAK in MIN=',
+ F15.1/' VOLUME IN in FT3=',F20.1/' VOLUME OUT in FT3=',2F25.3
     + /' SURFACE VOLUME in FT3=',2F25.3/' VOLUME INFILTRATED IN FT3='
        ,2F25.3/'PERCENT MASS BALANCE=',F25.3/)
  171 FORMAT(/'PROGRAM STOPPED FOR MEGATIVE DEPTM',214,2F15.6)
 1054 FORMAT(110)
```

```
550 FORMAT(14)
  898 FORMAT( ROW COLUMN DEPTH(MM) INILTRATION(MM))
  891 FORMAT(216,2F10.0)
      IF(IDEPPLT.EQ.1) read(*,*)
      idummy=setvideomode( $DEFAULTHODE)
      STOP
      FIED
C
      SUBROUTINE RAIN(J,K,NRG,XRG,YRG,RRG,RINT)
C
         DIMENSION XRG(NRG), YRG(NRG), RINT(47,75), RRG(NRG)
C
      RINT(J,K)=0.
      TOTDIST-O.
      TOTRAIN-O.
      DO 1 L=1,MRG
      REALJ=J
      REALK-K
      DIST=SQRT((REALJ-YRG(L))**2+(REALK-XRG(L))**2)
      IF(DIST.LT.1E-5) THEN
      RINT(J,K)=RRG(L)
      60 TO 2
      ENDIF
      TOTDIST=TOTDIST+1./(DIST==2)
      TOTRAIN-TOTRAIN+RRG(L)/(DIST=2)
    1 CONTINUE
      RINT(J,K)=TOTRAIN/TOTDIST
C---->>>
              UNIT CHANGE FROM in/hr TO m/s
    2 RINT(J,K)=RINT(J,K)+0.0254/3600.
      RETURN
      C
C
      SUBROUTINE INFILT(J,K,DT,ISGIL,VINF,PINF,NOV)
C
      INTEGER*1 ISOIL(47,75)
      DIMENSION VINF(47,75), PINF(10,3)
C
      IINF=ISOIL(J,K)
      HYDCON=PINF(IINF,1)
      CS=PINF(IINF,2)
      SMD=PINF(IINF.3)
C
      P1=HYDCON*DT-2.*VINF(J,K)
      P2=HYDCON*(VINF(J,K)+CS*SND)
      RINF=(P1+SQRT(P1**2+8.*P2*DT))/(2.*DT)
      IF((NOV/DT).LE.RINF) THEN
      RINF=HOV/DT
      HOV=0
      ELSE
      NOV=NOV-RINF*DT
      ENDIF
      VINF(J,K)=VINF(J,K)+RINF*DT
      RETURN
      END
C
C
      SUBROUTINE OVRL(W, IMAN, PMAN, SDEP, J, K, JJ, KK, E, H, DGOV)
      DIMENSION E(47,75), N(47,75), DQOV(47,75), PMAN(10)
      INTEGER*1 IMAN(47,75)
      DATA
                 M1./
C
```

```
$0=(E(J,K)-E(JJ,KK))/W
       DNDX=(H(11'KK)-i, K))\A
       SF=SO-DNDX+1E-
       IF(ABS(SF).LT.
                            SF=1E-20
       M=H(J,K)
       RMAN-PHAN(INAN(J,K))
       IF(SF.LT.O) MM=H(JJ,KK)
IF(SF.LT.O) RMAM=PMAM(IMAM(JJ,KK))
       IF(MM.LT.SDEP) RETURN
       ALFA=(ABS(SF)++0.5)/RMAN
       DOG=SIGN(A,SF)*V*ALFA*((NH-SDEP)**1.667)
       DGOV(J,K)=DGOV(J,K)-DGQ
       DGOV(11,KK)=DGOV(11,KK)+DGQ
       RETURN
       C
      SUBROUTINE CHNCHN(HCHN,W,MCH,DCH,RMANCH,
                  J,K,JJ,KK,JJJ,E,NCH,10W SP,DQCH,NDIS,IQ,Q)
C
      DIMENSION E(47,75), NCH(47,75), 10,005(5), No. 31, CMP(29,3),
                DGCH(47,75),19(20,2),9(20)
      DATA
      SO=(E(J,K)-DCH-E(JJ,KK)+DCH)/V
      IF(JJJ.LT.O) THEN
      DO 5 IIC=1,NCHM,1
      IF(JJ.Eq.ICMM(IIC,1,1).AMD.KK.Eq.ICMM(IIC,1,2)) THEN
      $0=(E(J,K)-DCH-E(JJ,KK)+CMP(11C,2))/W
      IJUN-IIC
      60 TO 7
      ENDIF
    5 CONTINUE
      ENDIF
C
    7 DHDX=(NCN(JJ,KK)-NCN(J,K))/W
      8F=80-DMDX+1E-30
      IF(ABS(SF).LT.1E-20) SF=1E-20
      NH-NCH(J,K)
      IF(SF.LT.O) THEN
      UCH-CHP(IJUN,1)
      DCH=CHP(1JUN,2)
      RMANCH=CHP(IJUN,3)
      WH=MCH(JJ,KK)
      ENDIF
      UP=UCH+2.*IH
      IF(NH.GT.DCH) WP-UCH+2.*DCH
      AREA-UCH*IIN
      DQ=SIGN(A,SF)*(SQRT(ABS(SF))/RMANCH)*(AREA**1.6667)/(NP**0.6667)
      DOCH(J,K)=DOCH(J,K)-DQ
      DOCH(JJ,KK)=DOCH(JJ,KK)+DQ
C
      DO 367 ILL=1,MDIS
      IF(SF.GE.O) THEN
      IF(J.Eq.IQ(ILL,1).AMD.K.Eq.IQ(ILL,2)) Q(ILL)=00
      IF(JJ.EQ.IQ(ILL,1).AMD.KK.EQ.IQ(ILL,2)) Q(ILL)=-1.*DQ
      ENDIF
 367 CONTINUE
      RETURN
      END
C
      LOGICAL FUNCTION fourcolors()
SHOL137
```

```
INCLUDE 'FGRAPH.FD'
SLIST
      INTEGER*2 damy
      RECORD /videoconfig/ screen
      COMMON screen
C
      CALL setvideoconfig( screen )
      if ((screen.mode.ne.3).and.(screen.mode.ne.7)) then
      fourcolors = .true.
      return
      and if
      SELECT CASE( screen.adepter )
      CASE( SEGA, SOEGA)
dummy-motivideomode( SERESCOLOR)
      CASE( SVGA )
      dummy=setvideomode( $VRE$16COLOR)
      CASE DEFAULT
      0-رسيل
      END SELECT
      CALL getvideoconfig( screen )
      fourcolors=.TRUE.
      IF(dummy.EQ.0) fourcolors=.FALSE.
      SUBROUTINE DEPPLT(i,nplt,ishp,rint,nitrn,irain,icall,vinf,
                         indexinf,h,hch,niter,dt,qout,qold,qmex,m,n)
SHOLIST
      INCLUDE 'FGRAPH.FD'
SLIST
      CHARACTER*80 buffer
      INTEGER*1 ishp(47,75), idepcol(10), iinfcol(10), irancol(10)
      INTEGER*2 dummy, icolor
      DOUBLE PRECISION XX, YY
      LOGICAL fourcolors
      EXTERNAL fourcolors
      RECORD /wxycoord/ wxy
      RECORD /videoconfig/ screen
      CONTION screen
      DIMENSION rint(47,75), vinf(47,75), h(47,75), hch(47,75)
      DIMENSION rdep(10), rinfl(10), rrain(10), obser(1500,2)
                  ndiv/4/
      DATA
C
      OPEN(UNIT=31, FILE='coldyn.det')
      QPEN(UNIT=32, FILE='observ.det')
C
      IF(1.EQ.1) THEN
      IF(.not. fourcolors()) THEN
WRITE(*,*) 'THIS PROGRAM REQUIRES EGA OR VGA CARDS.'
      RETURN
      ENDIF
      READ(31,101) (idepcol(ic),rdep(ic),ic=1,10)
      READ(31,101) (iinfcol(ic),rinfl(ic),ic=1,10)
      READ(31,101) (irancol(ic), rrain(ic), ic=1,10)
  101 format (13,f15.0)
      CALL clearscreen( SGCLEARSCREEN)
      nx=screen.numxpixels
      ny-screen.numypixels
      dummy=setcolor(15)
      dummy=seturindow(.FALSE.,0.,0.,160.*2,115.*2)
      dummy=rectangle_w( $GBORDER, 0.*2, 4.*2,80.*2,75.*2)
      dummy=rectangle_u( $68000ER,80.*2,4.*2,160.*2,75.*2)
      dummy=rectangle_w( $680RDER,0.*2,75.*2,38.*2,115.*2)
```

```
damy=setcolor(15)
       dummy=rectangle_w( $68000ER,38.+2,75.+2,160.+2,115.+2)
       dummertcolor(15)
       dummy=rectangle_w( $6FILLINTERIOR, 125. +2,75. +2,160. +2,85. +2)
C
      dumy-setcolor(14)
      call moveto_u(2*42.,2*111.,uxy)
      damy=lineto_w(2.*156.,2.*111.)
      call moveto_w(2*42.,2*111.,wxy)
      dumy=lineto_u(2.*42.,2.*79.)
C
      dumy-setcolor(14)
      DO 81 kj=1,ndiv,1
      call setlinestyle(#ffff)
      call moveto_w(2.*41.5,2.*(111.-kj*(111.-79.)/ndiv),wxy)
dummy=lineto_w(2.*42.5,2.*(111.-kj*(111.-79.)/ndiv))
      call moveto_u(2.*(42.+kj*(156.-42.)/ndiv),2.*111.5,uny)
      damy=lineto_u(2.*(42.+kj*(156.-42.)/ndiv),2.*110.5)
      call setlinestyle(#8000)
      call moveto_w(2*42.,2.*(111.-kj*(111.-79.)/ndiv),wxy)
      damy=i ineto_w(2.*156.,2.*(111.-k]*(111.-79.)/ndiv))
      81 CONTINUE
      call setlinestyle(#ffff)
         OBSERVED DATA DISPLAY
      dumy-setcolor(13)
      READ(32,*) nobser
      DO 82 ic=1,nobser,1
      READ(32,*) (obser(ic,kl),kl=1,2)
      if(ic.eq.1) so to 82 if(obser(ic,1).6T.niter*dt/60.) so to 83
      xx = (obser(ic,1) *60./dt)*(156.-42.)/niter
yy= (obser(ic,2)*(111.-79.))/qmax
      call moveto_w(2*(42.+xx),2*(111.-yy),wxy)
      xx = (obser(ic-1,1) +60./dt) + (156.-42.)/niter
      yy= (obser(ic-1,2)*(111.-79.))/gmax
      dimy=lineto_w(2+(42.+xx),2+(111.-yy))
  82 CONTINUE
 103 format(2f6.0)
  83 dummy-setfont('t''modern''h8u6b')
      dumy=setcolor(14)
      call moveto_w(2441.5,24112.,wxy)
      write(buffer,201) 0
      call outstext(buffer)
      call moveto_u(2*40.,2*110.3,uxy)
      write(buffer,201) 0
 201 format(i1)
     call outgtext(buffer)
     call moveto_w(2*150.,2*112.5,wxy)
     write(buffer, 203) int(niter*dt/60.)
     call outgtext(buffer)
     call moveto_w(2*38.5,2*76.,wxy) write(buffer,200) int(qmax)
     call outgtext(buffer)
 200 format(16)
 203 format(15)
      dumy=ectfont("t"modern"h16w16b")
         mesetcolor(14)
     call moveto_w(2*33.,2*0.,wxy)
     call outgrext("Goodein Creek Watershed")
     cell moveto_w(2*32.8,2*0.,wxy)
     call outgrext("Goodein Creek Wetershed")
```

```
damy=setfont('t''modern''h13w13b')
      dampreetcolor(10)
      cell moveto_w(2*11.,2*5.,wxy)
      cell outgtext("Rainfall Rate (in/h)")
      call moveto_w(2*10.8,2*5.,wxy)
      call outgtext("Rainfall Rate (in/h)")
      damy=setcolor(10)
      call moveto_w(2*94.,2*5.,wxy)
      call outgrext("Surface Depth (m)")
      call moveto_w(2*93.7,2*5.,wxy)
      cell outstext("Surface Depth (m)")
      dummy-setfont('t''modern''h11u6b')
      dummy=setcolor(10)
      call moveto_w(2*2.3,2*76.,wxy)
      call outgrext("Infiltration Depth (m)")
C
      dummy=setfont('t'!modern'!h9w8b')
      dumy=setcolor(12)
      call moveto_w(2-90.,2-112.,wxy)
      call outgtext("Time (min)")
      call moveto_w(2*38.05,2*92.,wxy)
      call outgtext(" Q")
      dummy=setfont('t'!modern'!h7w6b')
      call moveto_w(2*38.1,2*95.,wxy)
      call outgtext("cfs")
C
      dumy=setcolor(0)
      damy=rectangle_u( $GFILLINTERIOR, 126.*2,76.*2,159.*2,84.*2)
      dummy=setcolor(11)
      dummy=setfont('t''modern''h12u6b')
      call moveto_w(2*127.,2*77.,wxy)
      call outgtext("Time = ")
      call moveto_u(2*127.,2*80.,uxy)
      call outgtext("Gout = ")
      create color bars for depth and rainfall
     DO 20 II=1,10
      dummy=setfont('t'!modern'!h8u6b')
      dummy=setcolor(irancol(II))
      dummy=rectangle_w( SGFILLIMTERIOR,2*4.,2*(41.-3.*II)
                              ,209.,20(43.-3.011))
      dummy=setcolor(idepcol(II))
      dummy=rectangle_w( $GFILLINTERIOR, 2*84., 2*(41.-3.*II)
                              ,2*89.,2*(43.-3.*11))
      dummy=setcolor(iinfcol(II))
      dummy=rectangle_w( $GFILLINTERIOR, 2.*2, 2*(95.-1.5*II)
                              ,2.4,2*(96.-1.5*11))
   20 CONTINUE
      dummy=setcolor(15)
C
      DO 22 11=1,9
      dummy=setfont('t'!modern'!h8u6b')
      call moveto_w(2*10.,2*(40.-3.*11),wxy)
      write(buffer, 102) rrain(II)
      call outgtext(buffer)
C
      call moveto_w(2*90.,2*(40.-3.*11),wxy)
      write(buffer, 105) rdep(II)
      call outgtext(buffer)
C
      dummy=setfont('t'!modern'!h6u4b')
      call moveto_w(2.*5,2.*(94.1-1.5*II), wxy)
      write(buffer, 105) rinfl(11)
      call outgtext(buffer)
   22 CONTINUE
```

```
102 format(f5.2)
105 formst(1pe6.0)
     ENDIF
                                                                                               DO 10 j=1,m
    DO 10 k=1,n
     IF(ishp(j,k).Eq.0) 60 TO 10
     IF(ishp(j,k).E0.1) hheh(j,k)
     IF(ishp(j,k).80.2) hh-hch(j,k)
     IF(hh.LT.rdep(1)) icolor=idepcol(1)
IF(hh.GE.rdep(1).AMD.hh.LT.rdep(2)) icolor=idepcol(2)
    IF(hh.E.rdep(1).AMD.hh.LT.rdep(2)) icolor=idepcol(2)
IF(hh.E.rdep(2).AMD.hh.LT.rdep(3)) icolor=idepcol(3)
IF(hh.E.rdep(3).AMD.hh.LT.rdep(4)) icolor=idepcol(5)
IF(hh.E.rdep(4).AMD.hh.LT.rdep(5)) icolor=idepcol(5)
IF(hh.E.rdep(5).AMD.hh.LT.rdep(6)) icolor=idepcol(6)
IF(hh.E.rdep(6).AMD.hh.LT.rdep(7)) icolor=idepcol(7)
IF(hh.E.rdep(7).AMD.hh.LT.rdep(8)) icolor=idepcol(8)
IF(hh.E.rdep(8).AMD.hh.LT.rdep(9)) icolor=idepcol(9)
IF(hh.E.rdep(8))
     IF(hh.GT.rdep(9))
                                                    icolor=idaccol(10)
     damy=setcolor(icolor)
          myerectangle_w( SQFILLINTERIOR, 2.*(k+3+80), 2.*(j+25)
                      ,2.*(k+4+80),2.*(j+26))
     IF(indexinf,Eq.0) 00 TO 11
     vv=vinf(j,k)
     IF(w.LT.rinfl(1))
                                                       icolor=iinfcol(1)
     IF(vv.QE.rinfl(1).AMD.vv.LT.rinfl(2)) icolor=iinfcol(2)
     IF(vv.@.rinfl(2).AMD.vv.LT.rinfl(3)) icolor=iinfcol(3)
     IF(vv.@.rinfl(3).AMD.vv.LT.rinfl(4)) icolor=infcol(4)
     IF(vv.QE.rinfl(4).AMD.vv.LT.rinfl(5)) icolor=iinfcol(5)
     IF(vv.GE.rinfl(5).AMD.vv.LT.rinfl(6)) icolor-iinfcol(6)
     IF(vv.@.rinfl(6).AND.vv.LT.rinfl(7)) icolor=iinfcol(7)
     IF(w. 蛭.rinfl(7).MD.w.LT.rinfl(8)) icolor=iinfcol(8)
     IF(vv.GE.rinfl(9).AMD.vv.LT.rinfl(9)) icolor=iinfcol(9)
                                                       icolor=iinfcol(10)
     IF(vv.GT.rinfl(9))
     dummy=setcolor(icolor)
    dumy=rectangle_w( $6FILLINTERIOR,k,
j+2.*75+27,k+1,j+2.*75+28)
 11 If(i.GT.nitrn+nplt+1) GD TO 10
     IF(irain.eq.0.AMD.i.ne.1.AMD.i.lt.nitrn) 60 TO 10
     IF(irmin.eq.1.AMD.icall.eq.0.AMD.i.lt.nitrn) GO TO 10
        change rain from te/s to in/hr
     rr=rint(j,k)*(100)*3600/2.54
     If(i.gt.nitrn+1) rr=0.
     IF(rr.LT.rrain(1))
                                                       icolor=irancol(1)
     IF(rr.QE.rrain(1).AMD.rr.LT.rrain(2)) icolor=irancol(2)
     IF(rr.GE.rrain(2).AMD.rr.LT.rrain(3)) icolor=irancol(3)
IF(rr.GE.rrain(3).AMD.rr.LT.rrain(4)) icolor=irancol(4)
     IF(rr.GE.rrain(4).AMD.rr.LT.rrain(5)) icolor=irancol(5)
     IF(rr.GE.rrain(5),AMD.rr.LT.rrain(6)) icolor=irancol(6)
     IF(rr.GE.rrain(6).AMD.rr.LT.rrain(7)) icolor=irancol(7)
IF(rr.GE.rrain(7).AMD.rr.LT.rrain(8)) icolor=irancol(8)
     IF(rr.GE.rrain(8).AMD.rr.LT.rrain(9)) icolor=irancol(9)
     IF(rr.GT.rrain(9))
                                                       icolor=irancol(10)
     dumy=setcolor(icolor)
     dumm/=rectangle_u( $6FILLINTER10R,2.*(k+3),2.*(j+25)
,2.*(k+4),2.*(j+26))
 10 CONTINUE
     dummeretcolor(0)
     dumy-rectangle_w( SGFILLINTERIOR, 138.*2, 76.*2, 159.*2,84.*2)
     dummy-eetfont('t'modern'h12a6b')
     dumy-setcolor(11)
     call moveto w(2.*148.,2.*77.,wxy) write(buffer,122) 1*dt/60.
```

```
call outgtext(buffer)
      cell moveto_M(2.*148.,2.*81.,MXY)
      write(buffer, 122) qout*3.28**3
      call outgtext(buffer)
  122 format(f6.1)
      xx = 1.*(i-nplt) / (1.*niter)
       if((i-nplt).lt.0) xx=0.
      xx = xx + (156.-42.)

xx = xx + 42.
      yy = qold^43.28^{44} / qmax
      yy = yy * (111.-79.)
yy = 111. - yy
      call moveto_w(2*xx,2*yy,wxy)
      xx = 1.*i / (1.*niter)
xx = xx * (156.-42)
      xx = xx + 42.
      yy = qout*3.28**3 / qmax
      yy = yy + (111.-79.)
yy = 111. - yy
      dumy=setcolor(12)
dumy=lineto_w(2*xx,2*yy)
      RETURN
      END
C
      SET UP FONTS FOR GRAPHICS MODE
      SUBROUTINE FONTS()
SHOLIST
      INCLUDE 'FGRAPH.FD'
SLIST
      INTEGER*2 IDUNZ,I,J
      CHARACTER*64 FPATH
      IDUM2=REGISTERFONTS( '*. FON')
      IF (IDUN2 .GE. 0) GO TO 1010
 1000 URITE(*,'('' Enter path to font files (drive:\dir1\dir2...) ''
     +,\))')
      READ(*,'(A64)') FPATH
      DO 1005 I=1,64
 1005 IF((FPATH(I:1).NE.' ').AND.(J.EQ.I-1)) J=I
      IF (FPATH(J:J).NE.'\') THEN
       J=J+1
      FPATH(J:J)='\'
      ENDIF
      FPATH = FPATH(1:J) // '*.FON'
       IDUNZ=REGISTERFONTS(FPATH)
      IF (IDUN2.LT.0) GO TO 1000
 1010 IDUM2=SETFONT('t''roman''h12w12b')
      RETURN
      END
```

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 rting burden for this collection of information is estimated to average 1 hour per response, inclu-nd maintaining the data needed, and completing and reviewing the collection of information. So I information, including suggestions for reducing this burden, to Washington Headquarters Serv-ray, Suite 1204, Arlington, VA. 22202-4302, and to the Office of Management and Budget, Papers ur per response, including the time for reviewing instructions, searching existing data sources, ion of information. Send comments reparding this burden estimate or any other aspect of this on Heedquarters Services, Directorate for information Operations and Reports, 1215 Jefferson int and Budget, Paperwork Reduction Project (8784-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED July 1994 Final report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Demonstration Erosion Control Project Monitoring Program, Fiscal Year 1993 Report; Volume V: Appendix D, Comparison of Distributive Versus Lumped Rainfall-Runoff Modeling Techniques 6. AUTHOR(S) Billy E. Johnson 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING ORGANIZATION REPORT NUMBER U.S. Army Engineer Waterways Experiment Station 3909 Halls Ferry Road **Technical Report** Vicksburg, MS 39180-6199 HL-94-1 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER U.S. Army Engineer District, Vicksburg 3550 I-20 Frontage Road Vicksburg, MS 39180-5191 11. SUPPLEMENTARY NOTES Available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release: distribution is unlimited. 13. ABSTRACT (Maximum 200 words) The purpose of monitoring the Demonstration Erosion Control (DEC) Project is to evaluate and document watershed response to the implemented DEC Project. Documentation of watershed responses to DEC Project features will allow the participating agencies a unique opportunity to determine the effectiveness of existing design guidance for erosion and flood control in small watersheds. The monitoring program includes 11 technical areas: stream gaging, data collection and data management, hydraulic performance of structures. channel response, hydrology, upland watersheds, reservoir sedimentation, environmental aspects, bank stability, design tools, and technology transfer. This appendix presents the results of three hydrologic modeling techniques that have been compared to observed data to assess the accuracy of the computed hydrographs. The principal objective of this study was to evaluate a new two-dimensional spatially distributed hydrologic model versus observed watershed rainfall and streamflow data. An additional objective was to compare the results to traditional methods for estimating rainfall-runoff used in the Corps of Engineers HEC-1 Flood Hydrograph Package computer model. This study was performed with the primary goal of determining whether a two-dimensional approach to hydrologic modeling using spatially varied data would perform at least as well as traditional unit hydrograph methods for estimating rainfall-runoff over an ungaged watershed. (Continued) 14. SUBJECT TERMS 15. NUMBER OF PAGES Hydrologic modeling Ungaged watershed 205 16. PRICE CODE Watershed modeling Hydrology 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF ABSTRACT

NSN 7540-01-280-5500

OF REPORT

UNCLASSIFIED

OF THIS PAGE

UNCLASSIFIED

Standard Form 298 (Rev. 2-89) Prescribed by AMSI 5td. 239-18 298-102

13. Concluded.

The watershed area to which the models have been applied is Goodwin Creek located in north Mississippi near Batesville. Goodwin Creek, with an area of approximately 8.4 square miles, has been extensively monitored by the Agricultural Research Service located in Oxford, MS. This watershed along with the extensive measured rainfall and streamflow data offers a unique opportunity to compare watershed hydrology models for the purpose of assessing their performance.

The rainfall-runoff techniques evaluated were Snyder's and Soil Conservation Service's (SCS's) unit hydrograph methods in the HEC-1 computer model, and a two-dimensional diffusive wave overland flow routing method (CASC2D) developed at Colorado State University. For comparison purposes, the Green-Ampt infiltration scheme used in the CASC2D model was also used in the HEC-1 computer model. Also, the Muskingum-Cunge channel routing option in HEC-1 was used in order to be comparable to the one-dimensional diffusive wave channel routing method of the CASC2D model.

Results from the study revealed that none of the approaches were able to accurately simulate all storm events. Both the SCS and Snyder lumped unit hydrograph techniques performed well as long as there were gage data for calibration of the sub-basin parameters. However, the distributed model, CASC2D, consistently performed better than or as well as the other techniques over the complete range of storm events tested with regard to peak flows, runoff volume, and hydrograph shape. When there was a lack of sub-basin gage data, CASC2D performed better than the lumped models. Based upon the observed and hypothetical storm events simulated in this study, it can be concluded that

- (a) When sufficient sub-basin gaged data are available for calibration purposes, all three watershed hydrologic modeling techniques will produce similar results for design of hydraulic structures.
- (b) For limited gage data and for ungaged watershed analysis, the distributed model will provide more realistically shaped hydrographs.
- (c) For predictions of sediment yield and transport from watersheds, the distributed rainfall-runoff model will have the advantage over a lumped sub-basin unit hydrograph approach.
- (d) The spatially distributed rainfall-runoff technique appears to have other advantages when compared to lumped unit hydrograph methods for purposes of developing a real-time flood forecasting model. This will be especially true when coupled with an accurate updated Geographic Information System (GIS) (rastor or vector) database and with remote data acquisition systems.