How to use the psych package for regression and mediation analysis

William Revelle

September 23, 2023

Contents

1	Ove	rview of this and related documents	3
	1.1	Jump starting the <i>psych</i> package—a guide for the impatient	3
	1.2	For the not impatient	
2	Mul	tiple regression and mediation	4
3	Reg	ression using lmCor	5
	3.1	Comparison with 1m on complete data	5
		3.1.1 It is important to know your data by describing it first	5
		3.1.2 Now do the regressions	5
	3.2	From a correlation matrix	6
	3.3	The Hotelling example	8
	3.4	Graphic displays	12
	3.5	Moderated multiple regression	16
	3.6	Plotting the interactions	17
	3.7	Comparisons to lm	18
4	Med	liation using the mediate function	20
	4.1	Simple mediation	21
	4.2	-	25
	4.3		25
	4.4	Single mediators, multiple covariates	
	4.5	Single predictor, single criterion, multiple covariates	
	4.6	Multiple predictors, single criterion	30
5	Med	liation and moderation	30
		To center or not to center, that is the question	33

	5.2 Another example of moderated medation	
6	Partial Correlations 6.1 Partial some variables from the rest of the variables	
7	Related packages	
8	B Development version and a users guide	
9	Psychometric Theory	44
10	SessionInfo	4 4

1 Overview of this and related documents

To do basic and advanced personality and psychological research using R is not as complicated as some think. This is one of a set of "How To" to do various things using R (R Core Team, 2023), particularly using the *psych* (Revelle, 2023) package.

The current list of How To's includes:

- 1. An introduction (vignette) of the psych package
- 2. An overview (vignette) of the psych package
- 3. Installing R and some useful packages
- 4. Using R and the *psych* package to find *omega_h* and ω_t .
- 5. Using R and the *psych* for factor analysis and principal components analysis.
- 6. Using the scoreItems function to find scale scores and scale statistics.
- 7. Using mediate and lmCor to do mediation, moderation and regression analysis (this document)

1.1 Jump starting the psych package-a guide for the impatient

You have installed *psych* and you want to use it without reading much more. What should you do?

1. Activate the *psych* and *psychTools* packages.

```
> library(psych)
> library(psychTools)
```

2. Input your data. If your file name ends in .sav, .text, .txt, .csv, .xpt, .rds, .Rds, .rda, or .RDATA, then just read it in directly using read.file. Or you can go to your friendly text editor or data manipulation program (e.g., Excel) and copy the data to the clipboard. Include a first line that has the variable labels. Paste it into *psych* using the read.clipboard.tab command:

```
myData <- read.file() #this will open a search window on your machine
# and read or load the file.
#or
#first copy your file to your clipboard and then
myData <- read.clipboard.tab() #if you have an excel file
```

3. Make sure that what you just read is right. Describe it and perhaps look at the first and last few lines. If you want to "view" the first and last few lines using a spreadsheet like viewer, use quickView.

```
describe (myData)
headTail (myData)
#or
quickView (myData)
```

4. Look at the patterns in the data. If you have fewer than about 10 variables, look at the SPLOM (Scatter Plot Matrix) of the data using pairs.panels.

```
pairs.panels(myData)
```

5. Find the correlations of all of your data.

1.2 For the not impatient

The following pages are meant to lead you through the use of the lmCor and mediate functions. The assumption is that you have already made psych active and want some example code.

2 Multiple regression and mediation

Mediation and moderation are merely different uses of the linear model $\hat{Y} = \mu + \beta_{y,x}X + \varepsilon$ and are implemented in *psych* with two functions: lmCor and mediate.

Given a set of predictor variables, X and a set of criteria variables, Y, multiple regression solves the equation $\hat{Y} = \mu + \beta_{y.x}X$ by finding $\beta_{y.x} = C_{xx}^{-1}C_{yx}$ where C_{xx} is the covariances of the X variables and C_{yx} is the covariances of predictors and the criteria.

Although typically done using the raw data, clearly this can also be done by using the covariance or correlation matrices. lmCor was developed to handle the correlation matrix solution but has been generalized to the case of raw data. In the later case, it assumes a Missing Completely at Random (MCAR) structure, and thus uses all the data and finds pair.wise complete correlations. For complete data sets, the results are identical to using lm. By default, lmCor uses standardized variables, but to compare with lm, it can use unstandardized variables.

3 Regression using 1mCor

Although typically done from a raw data matrix (using the lm function), it is sometimes useful to do the regression from a correlation or covariance matrix. lmCor was developed for this purpose. From a correlation/covariance matrix, it will do normal regression as well as regression on partialled correlation matrices. With the raw data, it will also do moderated regression (centered or non-centered). In particular, for the raw data, it will work with missing data.

An interesting option, if using categorical or dichotomous data is first find the appropriate polychoric, tetrachoric, or poly-serial correlations using mixedCor and then use the resulting correlation matrix for analysis. The resulting correlations and multiple correlations will not match those of the lm analysis.

3.1 Comparison with 1m on complete data

We use the attitude data set for our first example.

3.1.1 It is important to know your data by describing it first

```
R code
> psych::describe(attitude)
          vars n mean
                           sd median trimmed
                                              mad min max range skew kurtosis
             1 30 64.63 12.17
                               65.5
                                     65.21 10.38 40 85
                                                            45 -0.36
                                                                        -0.77 2.22
rating
                                      67.08 14.83 37
                                                            53 -0.22
complaints
             2 30 66.60 13.31
                               65.0
                                                      90
                                                                        -0.68 2.43
privileges
            3 30 53.13 12.24
                               51.5
                                      52.75 10.38 30 83
                                                            53 0.38
                                                                        -0.41 2.23
learning
             4 30 56.37 11.74
                               56.5
                                    56.58 14.83 34 75
                                                            41 -0.05
                                                                        -1.22 2.14
raises
             5 30 64.63 10.40
                               63.5
                                     64.50 11.12 43 88
                                                            45 0.20
                                                                        -0.60 1.90
             6 30 74.77 9.89
critical
                               77.5
                                      75.83 7.41
                                                  49
                                                      92
                                                            43 -0.87
                                                                         0.17 1.81
                                     41.83 8.90 25
                                                            47 0.85
             7 30 42.93 10.29
                                                      72
                                                                         0.47 1.88
advance
                               41.0
```

3.1.2 Now do the regressions

```
> #do not standardize
> mod1 <- lmCor(rating ~ complaints + privileges, data=attitude,std=FALSE)
> mod1
```

```
Call: lmCor(y = rating ~ complaints + privileges, data = attitude,
    std = FALSE)
```

Multiple Regression from raw data

```
DV = rating slope se t p lower.ci upper.ci VIF Vy.x (Intercept) 15.33 7.16 2.14 4.1e-02 0.64 30.02 1.00 0.00 complaints 0.78 0.12 6.54 5.2e-07 0.54 1.03 1.45 0.70 privileges -0.05 0.13 -0.39 7.0e-01 -0.32 0.22 1.45 -0.02
```

Residual Standard Error = 7.1 with 27 degrees of freedom

Multiple Regression

```
Compare this solution with the results of the 1m function.
                                          R code
> summary(lm(rating ~ complaints + privileges, data=attitude))
lm(formula = rating ~ complaints + privileges, data = attitude)
Residuals:
     Min
               1Q Median
                                  30
                                          Max
-12.7887 -5.6893 -0.0284
                             6.2745
                                       9.9726
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.32762 7.16023 2.141 0.0415 * complaints 0.78034 0.11939 6.536 5.22e-07 ***
complaints 0.78034
                       0.12992 -0.386
privileges -0.05016
                                         0.7025
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.102 on 27 degrees of freedom
Multiple R-squared: 0.6831,
                                Adjusted R-squared:
F-statistic: 29.1 on 2 and 27 DF, p-value: 1.833e-07
The graphic for the standardized regression is shown in (Figure 1).
Call: lmCor(y = rating ~ complaints + privileges, data = attitude)
Multiple Regression from raw data
 DV = rating
                                   p lower.ci upper.ci VIF Vy.x
            slope
                    se
(Intercept) 0.00 0.11 0.00 1.0e+00 -0.22 0.22 1.00 0.00
complaints 0.85 0.13 6.54 5.2e-07 privileges -0.05 0.13 -0.39 7.0e-01
                                         0.59
                                                   1.12 1.45 0.70
                                         -0.32
                                                   0.22 1.45 -0.02
Residual Standard Error = 0.58 with 27 degrees of freedom
 Multiple Regression
          R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2
rating 0.83 0.68 0.71 0.5
                                 0.66
                                           0.08
                                                    29.1 2 27 1.83e-07
```

R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2

0.08

29.1 2 27 1.83e-07

0.66

3.2 From a correlation matrix

pdf 2

rating 0.83 0.68 0.62 0.38

Perhaps most usefully, lmCor will find the beta weights between a set of X variables, and a set of Y variables. Consider seven variables in the atttitude data set. We first find the correlation matrix (normally, this could just be supplied by the user). Then we find the regressions from the correlation matrix. Compare this regression to the (standardized) solution shown above. By specifying the number of observations (n.obs), we are able to apply various inferential tests.

A simple regression model

Figure 1: A simple multiple regression using the attitude data set (standardized solution is shown).

```
R code
> R <- lowerCor(attitude)
          ratng cmpln prvlg lrnng raiss crtcl advnc
rating
complaints 0.83
                1.00
privileges 0.43
                0.56
                      1.00
learning
         0.62 0.60 0.49 1.00
raises
          0.59 0.67 0.45 0.64 1.00
critical
          0.16 0.19 0.15 0.12 0.38
                                       1.00
advance
          0.16 0.22 0.34 0.53 0.57
                                       0.28
                                       R code
  lmCor(rating ~ complaints + privileges, data=R, n.obs =30)
Call: lmCor(y = rating ~ complaints + privileges, data = R, n.obs = 30)
Multiple Regression from matrix input
DV = rating
                                p lower.ci upper.ci VIF Vy.x
          slope
                         t
complaints 0.85 0.13 6.54 5.2e-07
                                     0.59
                                              1.12 1.45 0.70
privileges -0.05 0.13 -0.39 7.0e-01
                                     -0.32
                                               0.22 1.45 -0.02
Residual Standard Error = 0.58 with 27 degrees of freedom
Multiple Regression
            R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2
                                                         2 27 1.83e-07
rating 0.83 0.68 0.71 0.5
                                 0.66
                                         0.08
                                                   29.1
```

Compare this solution (from the correlation matrix) with the *standardized* solution for the raw data. lmCor does several things:

- Finds the regression weights (betas) between the predictor variables and each of the criterion variables.
- If the number of subjects is specified, or if the raw data are used, it also compares each of these betas to its standard error, finds a t statistic, and reports the probability of the t > 0.
- It reports the Multiple R and R^2 based upon these beta weights. In addition, following the tradition of the robust beauty of the improper linear models (Dawes, 1979) it also reports the unit weighted multiple correlations.
- The canonical correlations between the two sets (Hotelling, 1936) is reported.
- Cohen's set correlation (Cohen, 1982) as well as the unweighted correlation between the two sets of variables are reported.

3.3 The Hotelling example

```
R code

> #the second Kelley data from Hotelling
> kelley <- structure(list(speed = c(1, 0.4248, 0.042, 0.0215, 0.0573), power = c(0.4248, + 1, 0.1487, 0.2489, 0.2843), words = c(0.042, 0.1487, 1, 0.6693, + 0.4662), symbols = c(0.0215, 0.2489, 0.6693, 1, 0.6915), meaningless = c(0.0573,
```

```
+ 0.2843, 0.4662, 0.6915, 1)), .Names = c("speed", "power", "words",
+ "symbols", "meaningless"), class = "data.frame", row.names = c("speed",
+ "power", "words", "symbols", "meaningless"))
> #first show the correlations
> lowerMat(kelley)
            speed power words symbl mnngl
             1.00
speed
power
             0.42 1.00
words
             0.04 0.15 1.00
symbols
             0.02 0.25 0.67 1.00
meaningless 0.06 0.28 0.47 0.69
                                     1.00
                                         R code
> #now find and draw the regression
> sc <- lmCor(power + speed ~ words + symbols + meaningless, data=kelley) #formula mode
> sc #show it
Call: lmCor(y = power + speed ~ words + symbols + meaningless, data = kelley)
Multiple Regression from matrix input
 DV = power
            slope VIF Vy.x
            -0.03 1.81 -0.01
words
            0.12 2.72 0.03
symbols
meaningless 0.22 1.92 0.06
 Multiple Regression
         R R2 Ruw R2uw
power 0.29 0.09 0.26 0.07
 DV = speed
            slope VIF Vy.x
             0.05 1.81
words
                          0
            -0.07 2.72
                          0
symbols
meaningless 0.08 1.92
 Multiple Regression
        R R2 Ruw R2uw
speed 0.07 0.01 0.05
Various estimates of between set correlations
Squared Canonical Correlations
[1] 0.0946 0.0035
 Average squared canonical correlation = 0.05
 Cohen's Set Correlation R2 = 0.1
Unweighted correlation between the two sets = 0.18
A plot of the regression model is shown as well (Figure 2).
pdf
But, we can also do multiple predictors and multiple criteria in the same call:
pdf
  2
```

The Kelley data set

Figure 2: The relationship between three predictors and two criteria from lmCor. The data are from the Kelley data set reported by Hotelling (1936).

Regression Models

Figure 3: The relationship between three predictors and three criteria from lmCor. The data are from the sat.act data set.

3.4 Graphic displays

When considering the within group relationships for multiple groups, (e.g., gender or grade level) it is useful to draw separate regression lines for each group. Consider the case of the regression of age on paragraph comprehension as a function of class grade (6 or 7) in the holzinger.swineford data set in *psychTools*.

It would seem as if both age and grade account for 4% of the variance in paragraph comprehension. But combining these two in a multiple regression increases the variance explained from 8% (the sum of the two) to 18%, because age and grade suppress variance unrelated to cognitive performance.

We can show this finding in two different ways: as a plot of the separate regression lines Figure 5 or as a simple path model Figure ?? . Note that because grade goes from 7 to 8, to index the colors in the plot we subtract 6 from both grades to get a 1, 2 variable.

```
> png('hsp.png')
  lmCor(t07_sentcomp ~ agemo + grade, data=holzinger.swineford)
Call: lmCor(y = t07_sentcomp ~ agemo + grade, data = holzinger.swineford)
Multiple Regression from raw data
DV = t07_sentcomp
                                p lower.ci upper.ci VIF Vy.x
           slope
                         t
                  se
(Intercept) 0.00 0.05 0.00 1.0e+00
                                      -0.10
                                              0.10 1.00 0.00
           -0.46 0.06 -7.39 1.5e-12
                                       -0.58
                                                -0.34 1.39 0.11
agemo
            0.42 0.06 6.78 6.4e-11
grade
                                       0.30
                                                 0.54 1.39 0.07
Residual Standard Error = 0.91 with 298 degrees of freedom
Multiple Regression
                  R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2
               R
t07_sentcomp 0.43 0.18 0.42 0.18
                                                         32.97 2 298 1.16e-13
                                       0.18
                                                0.04
                                        R code
> dev.off()
pdf
                                        R code
> png('hs.png')
> plot(t07_sentcomp ~ agemo, col=c("red","blue")[holzinger.swineford$grade -6],
   pch=26-holzinger.swineford$grade,data=holzinger.swineford,
    ylab="Sentence Comprehension", xlab="Age in Months",
```

Regression Models

Figure 4: The regression of age and grade on paragraph comprehension. The data are from the holzinger: swineford data set. Although age and grade are highly correlated (.53) grade has a positive effect age a negative effect. Here we show the standardized regressions. In the subsequent figure we show the raw (understanderized) slopes.

```
main="Sentence Comprehension varies by age and grade")
> by(holzinger.swineford, holzinger.swineford$grade -6,function(x) abline(
       lmCor(t07_sentcomp ~ agemo,data=x, std=FALSE, plot=FALSE) ,lty=c("dashed","solid")[x$grade-6]))
holzinger.swineford$grade - 6: 1
NULL.
holzinger.swineford$grade - 6: 2
NULL
                                        R code
> text(190,3.3,"grade = 8")
> text(190,2,"grade = 7")
> dev.off()
pdf
  2
To show the coefficients of this model, we do the regressions without the plot.
                                        R code
> by (holzinger.swineford, holzinger.swineford$grade, function(x)
       lmCor(t07_sentcomp ~ agemo,data=x, std=FALSE, plot=FALSE) )
holzinger.swineford$grade: 7
Call: lmCor(y = t07_sentcomp ~ agemo, data = x, std = FALSE, plot = FALSE)
Multiple Regression from raw data
 DV = t07_sentcomp
                                 p lower.ci upper.ci VIF Vy.x
           slope se
                          t
(Intercept) 12.10 1.37 8.83 2.1e-15 9.39 14.81 1 0.00
           -0.05 0.01 -5.83 3.0e-08
                                       -0.07
                                                -0.03
                                                      1 0.18
Residual Standard Error = 1.15 with 155 degrees of freedom
 Multiple Regression
              R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2
t07_sentcomp 0.42 0.18 -0.3 0.09
                                 0.17 0.05 34.04 1 155 3.05e-08
holzinger.swineford$grade: 8
Call: lmCor(y = t07_sentcomp ~ agemo, data = x, std = FALSE, plot = FALSE)
Multiple Regression from raw data
 DV = t07\_sentcomp
                               p lower.ci upper.ci VIF Vy.x
           slope se
                         t
                                              15.33 1 0.00
-0.03 1 0.13
(Intercept) 12.09 1.64 7.38 1.2e-11 8.85
            -0.04 0.01 -4.59 9.5e-06
                                       -0.06
Residual Standard Error = 1.2 with 142 degrees of freedom
 Multiple Regression
```

R R2 Ruw R2uw t07_sentcomp 0.36 0.13 -0.25 0.06

Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2

0.12 0.05 21.11 1 142 9.5e-06

Sentence Comprehension varies by age and grade

Figure 5: Showing a multiple regression using lmCor with lines for each group. The data are from the holzinger: swineford data set. Although age and grade are highly correlated (.53) grade has a positive effect age a negative effect.

3.5 Moderated multiple regression

If we have the raw data, we can also find interactions (known as moderated multiple regression). This is done by zero centering the data (Cohen et al., 2003) and then multiplying the two terms of the interaction. As an option, we can not zero center the data (Hayes, 2013) which results in different "main effects" but the same interaction term. To show the equivalence of the interaction terms, we also must not standardize the results.

We use the globalWarm data set taken from (Hayes, 2013)

```
R code
> mod <-lmCor(govact ~ negemot * age + posemot +ideology+sex,data=globalWarm,
           std=FALSE, zero=FALSE, plot=FALSE)
> mod
Call: lmCor(y = govact ~ negemot * age + posemot + ideology + sex,
   data = globalWarm, std = FALSE, plot = FALSE, zero = FALSE)
Multiple Regression from raw data
DV = govact
                                 p lower.ci upper.ci
           slope
                  se
                                                      VIF Vy.x
(Intercept) 5.17 0.34 15.29 1.6e-46 4.51 5.84 1.00 0.00
            0.12 0.08 1.45 1.5e-01
                                      -0.04
                                                0.28 11.59 0.08
negemot
           -0.02 0.01 -3.99 7.1e-05
                                      -0.04
                                               -0.01 6.95 0.03
age
                                               0.03
           -0.02 0.03 -0.77 4.4e-01
                                      -0.08
posemot
                                                      1.03 0.00
           -0.21 0.03 -7.88 1.0e-14
ideology
                                      -0.26
                                               -0.16 1.20 0.10
           -0.01 0.08 -0.15 8.8e-01
                                      -0.16
                                               0.14 1.05 0.00
negemot*age 0.01 0.00 4.10 4.5e-05
                                     0.00
                                               0.01 16.46 0.20
Residual Standard Error = 1.06 with 808 degrees of freedom
Multiple Regression
         R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2
govact 0.63 0.4 0.14 0.02
                                        0.03
                                                 90.08 6 808 1.82e-86
                                0.4
                                       R code
> mod0 <- lmCor(govact ~ negemot * age + posemot +ideology+sex,data=globalWarm,std=FALSE, plot=FALSE)
> mod0
Call: lmCor(y = govact ~ negemot * age + posemot + ideology + sex,
   data = globalWarm, std = FALSE, plot = FALSE)
Multiple Regression from raw data
DV = govact
           slope
                  se
                          t
                                  p lower.ci upper.ci VIF Vy.x
                                              4.67 1.00 0.00
(Intercept) 4.60 0.04 123.92 0.0e+00 4.52
            0.43 0.03 16.51 5.8e-53
negemot
                                        0.38
                                                 0.48 1.17 0.28
            0.00 0.00 -0.58 5.6e-01
                                       -0.01
                                                 0.00 1.07 0.00
age
posemot
           -0.02 0.03 -0.77 4.4e-01
                                       -0.08
                                                 0.03 1.03 0.00
           -0.21 0.03 -7.88 1.0e-14
                                       -0.26
ideology
                                                -0.16 1.20 0.10
           -0.01 0.08 -0.15 8.8e-01
                                       -0.16
                                                 0.14 1.05 0.00
                       4.10 4.5e-05
                                                 0.01 1.01 0.02
negemot*age 0.01 0.00
                                        0.00
Residual Standard Error = 1.06 with 808 degrees of freedom
```

```
Multiple Regression
R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p
govact 0.63 0.4 0.36 0.13 0.4 0.03 90.08 6 808 1.82e-86
pdf
2
pdf
2
```

not zero centered

Figure 6: Showing a moderated multiple regression using lmCor. The data are from the globalWarm data set.

3.6 Plotting the interactions

To visualize the effect of zero (mean) centering, it is useful to plot the various elements that go into the linear model. lmCor returns the product terms as well as the original data. I combine the two datasets to make it clearer. Note that the correlations of the centered age, negemot with the

not zero centered zero centered

Figure 7: The difference between 0 and not 0 centering lmCor. The data are from the globalWarm data set. In both cases, the data are not standarized.

uncentered are 1.0, but that the correlations with the product terms depend upon centering versus not. I drop the some of the other variables from the figure for clarity (Figure 8).

pdf 2

3.7 Comparisons to 1m

The lmCor function duplicates the functionality of the lm function for complete data, although lm does not zero center and lmCor will (by default). In addition, lmCor finds correlations based upon pair.wise deletion of missing data, while lm does case.wise deletion. We compare the lm and lmCor results for complete data by setting the use = "complete" option. We use the sat.act data set which has some missing values.

```
R code
> summary(lm(SATQ ~ SATV*gender + ACT, data=sat.act))
lm(formula = SATQ ~ SATV * gender + ACT, data = sat.act)
Residuals:
    Min
              10
                   Median
                                 3Q
                                        Max
-296.210 -45.738
                     4.323
                             52.355
                                    252.306
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 138.52395 61.18770 2.264
                                         0.0239 *
SATV
             0.50280
                        0.10030
                                 5.013 6.84e-07 ***
```


Figure 8: The effect of not mean centering versus mean centering on the product terms. The first four variables were not zero centered, the second four were.

```
-22.24995 35.59228 -0.625 0.5321
gender
ACT
            7.71702 0.77707 9.931 < 2e-16 ***
SATV:gender -0.01984 0.05706 -0.348 0.7281
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 81.18 on 682 degrees of freedom
  (13 observations deleted due to missingness)
Multiple R-squared: 0.51,
                                Adjusted R-squared:
F-statistic: 177.5 on 4 and 682 DF, p-value: < 2.2e-16
                                     R code
> mod <- setCor(SATQ ~ SATV*gender + ACT, data=(sat.act), zero=FALSE, std=FALSE, use="complete")
> print (mod, digits=5)
Call: setCor(y = SATQ ~ SATV * gender + ACT, data = (sat.act), use = "complete",
    std = FALSE, zero = FALSE)
Multiple Regression from raw data
DV = SATQ
               slope
                          se
                                              p lower.ci upper.ci
(Intercept) 138.52395 61.18770 2.26392 2.3892e-02 18.38505 258.66284 1.00000 0.00000
SATV
            0.50280 0.10030 5.01295 6.8399e-07 0.30587 0.69973 13.43994 0.31739
           -22.24995 35.59228 -0.62513 5.3209e-01 -92.13355 47.63365 30.29663 0.01525
gender
             7.71702 0.77707 9.93090 8.4691e-22 6.19128 9.24276 1.46678 0.18928
SATV*gender -0.01984 0.05706 -0.34775 7.2814e-01 -0.13188 0.09219 41.25607 -0.01191
Residual Standard Error = 81.18474 with 682 degrees of freedom
Multiple Regression
          R R2
                    Ruw
                           R2uw Shrunken R2 SE of R2 overall F df1 df2
SATO 0.71414 0.51 0.41706 0.17394
                                 0.50712 0.02645 177.4575 4 682 3.98472e-104
```

4 Mediation using the mediate function

Mediation analysis is just linear regression reorganized slightly to show the direct effects of an X variable upon Y, partialling out the effect of a "mediator" (Figure 9). Although the statistical "significance" of the (c) path and the (c') path are both available from standard regression, the mediation effect (ab) is best found by boot strapping the regression model and displaying the empirical confidence intervals.

A number of papers discuss how to test for the effect of mediation and there are some very popular 'macros' for SPSS and SAS to do so (Hayes, 2013; Preacher and Hayes, 2004; Preacher et al., 2007; Preacher, 2015). A useful discussion of mediation and moderation with sample data sets is found in Hayes (2013). More recently, the *processR* package (Moon, 2020) has been released with these data sets. Although these data used to be be available from http://www.afhayes.com/public/hayes2018data.zip this now longer seems to be case. I use these for comparisons with the results in Hayes (2013). Four of these data sets are now included in the *psych* package with the kind permission of their

¹The Hayes data sets (2018) do not correspond exactly with those from the 2013 book. Those data files were at http://www.afhayes.com/public/hayes2013data.zip.

Figure 9: The classic mediation model. The Direct Path from $X \rightarrow Y$ (c) is said to be mediated by the indirect path (a) to the mediator $(X \rightarrow M)$ and (b) from the mediator to Y $(M \rightarrow Y)$. The mediation effect is (ab).

authors: Garcia is from Garcia et al. (2010), and Tal_Or is from Tal-Or et al. (2010), The Pollack correlation matrix is taken from an article by Pollack et al. (2012). The globalWarm data set is the glbwarm data set in the *processR* package and added to *psychTools* with the kind permission of the original author, Erik Nisbet.

To find the confidence intervals of the effect of mediation (the reduction between the c and c' paths, where c' = c - ab), I bootstrap the results by randomly sampling from the data with replacement (n.iter = 5000) times.

For these examples, the data files Garcia (Garcia et al., 2010) and Tal_Or (Tal-Or et al., 2010) are included in the psych package. The estrss data set and globalWarm were originally downloaded from the Hayes (2013) data set and stored in a local directory on my computer. They are now available from the *processR* package Moon (2020).

The syntax is that $y \sim x + (m)$ where m is the mediating variable. By default the output is to two decimals, as is the graphic output. This can be increased by returning the output to an object and then printing that object with the desired number of decimals.

4.1 Simple mediation

The first example (Hayes, 2013, mod.4.5) is taken from (Tal-Or et al., 2010) and examines the mediating effect of "Presumed Media Influence" (pmi) on the intention to act (reaction) based

upon the importance of a message (import). The data are in the Tal_Or data set in *psych* (with the kind permission of Nurit Tal-Or, Jonanathan Cohen, Yariv Tasfati, and Albert Gunther). In the Hayes (2013) book, this is the pmi data set.

```
R code
> data(Tal.Or)
> psych::describe(Tal_Or) #descriptive statistics
        vars
              n mean
                        sd median trimmed mad min max range skew kurtosis
           1 123 0.47 0.50
                            0.00
                                    0.46 0.00 0 1
                                                         1 0.11
                                                                    -2.00 0.05
cond
pmi
                 5.60 1.32
                             6.00
                                    5.78 1.48
                                                                     1.30 0.12
           2 123
                                                1
                                                    7
                                                         6 - 1.17
                                                  7
           3 123 4.20 1.74
                             4.00
                                    4.26 1.48
                                                         6 - 0.26
                                                                    -0.890.16
import
                                                1
reaction
           4 123 3.48 1.55
                            3.25
                                    3.44 1.85
                                               1
                                                         6 0.21
                                                                    -0.90 0.14
           5 123 1.65 0.48
                            2.00
                                    1.69 0.00
                                               1
                                                   2
                                                         1 -0.62
                                                                    -1.62 0.04
                                    23,76 1.48
           6 123 24.63 5.80 24.00
                                               18 61
                                                        43 4.71
                                                                    24.76 0.52
age
                                      R code
> mod4.4 <- mediate(reaction ~ cond + (pmi), data =Tal_Or)</pre>
> mod4.4
Mediation/Moderation Analysis
Call: mediate(y = reaction ~ cond + (pmi), data = Tal_Or)
The DV (Y) was reaction . The IV (X) was cond . The mediating variable(s) = pmi .
Total effect(c) of cond on reaction = 0.5 S.E. = 0.28 t = 1.79 df= 121
                                                                                with p = 0.077
Direct effect (c') of cond on reaction removing pmi = 0.25 S.E. = 0.26 t = 0.99 df= 120
Indirect effect (ab) of cond on reaction through pmi = 0.24
Mean bootstrapped indirect effect = 0.24 with standard error = 0.13 Lower CI = 0.01
                                                                                       Upper CI = 0.52
R = 0.45 R2 = 0.21 F = 15.56 on 2 and 120 DF
                                             p-value: 1.31e-08
 To see the longer output, specify short = FALSE in the print statement or ask for the summary
                                      R code
> #print(mod4.4, digits = 4) # in order to get the precision of the Hayes (2013) p 99 example
pdf
```

A second example from (Hayes, 2013) is an example of moderated mediated effect. The data are from (Garcia et al., 2010) and report on the effect of protest on reactions to a case of sexual discrimination.

```
R code
> data(GSBE) #alias to Garcia data set
> #compare two models (bootstrapping n.iter set to 50 for speed
> # 1) mean center the variables prior to taking product terms
> mod1 <- mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,n.iter=50</pre>
   , main="Moderated mediation (mean centered)")
> # 2) do not mean center
> mod2 <- mediate(respappr ~ prot2 * sexism +(sexism),data=Garcia,zero=FALSE, n.iter=50,</pre>
      main="Moderated mediation (not centered")
> summary (mod1)
Call: mediate(y = respappr ~ prot2 * sexism + (sexism), data = Garcia,
    n.iter = 50, main = "Moderated mediation (mean centered)")
Direct effect estimates (traditional regression)
                                                     (c') X + M on Y
             respappr
                               t df
                                          Prob
                       se
```

Mediation model

Figure 10: A simple mediation model (Hayes, 2013, p 99) with data derived from Tal-Or et al. (2010). The effect of a salience manipulation (cond) on the intention to buy a product (reaction) is mediated through the presumed media influence (pmi).

```
-0.01 0.10 -0.12 125 9.07e-01
Intercept
prot2
                1.46 0.22 6.73 125 5.52e-10
prot2*sexism
                0.81 0.28 2.87 125 4.78e-03
sexism
                0.02 0.13 0.18 125 8.56e-01
R = 0.54 R2 = 0.3 F = 17.53 on 3 and 125 DF p-value: 1.46e-09
 Total effect estimates (c) (X on Y)
            respappr se
                           t df
               -0.01 0.10 -0.12 126 9.06e-01
Intercept
prot2
                1.46 0.22 6.77 126 4.43e-10
                0.81 0.28 2.89 126 4.49e-03
prot2*sexism
 'a' effect estimates (X on M)
            sexism se t df Prob
Intercept
              0.00 0.07 -0.02 126 0.986
prot2
              0.07 0.15 0.47 126 0.642
             0.09 0.19 0.44 126 0.661
prot2*sexism
 'b' effect estimates (M on Y controlling for X)
      respappr se t df Prob
          0.02 0.13 0.18 125 0.856
sexism
 'ab' effect estimates (through all mediators)
            respappr boot sd lower upper
prot2
                   0 0.00 0.03 -0.05 0.04
prot2*sexism
                   0 -0.01 0.04 -0.05 0.04
                                       R code
> summary (mod2)
Call: mediate(y = respappr ~ prot2 * sexism + (sexism), data = Garcia,
   n.iter = 50, zero = FALSE, main = "Moderated mediation (not centered")
Direct effect estimates (traditional regression)
                                                  (c') X + M \text{ on } Y
            respappr se t df Prob
6.57 1.21 5.43 125 2.83e-07
Intercept
               -2.69 1.45 -1.85 125 6.65e-02
prot2
               0.81 0.28 2.87 125 4.78e-03
prot2*sexism
sexism
               -0.53 0.24 -2.24 125 2.67e-02
R = 0.54 R2 = 0.3 F = 17.53 on 3 and 125 DF p-value: 1.46e-09
Total effect estimates (c) (X on Y)
            respappr se t df
                                       Prob
                3.88 0.18 21.39 126 9.14e-44
Intercept
prot2
                0.00 0.84 0.00 126 9.96e-01
prot2*sexism
                0.28 0.16 1.79 126 7.56e-02
 'a' effect estimates (X on M)
            sexism se t df
             5.07 0.07 75.12 126 1.69e-106
Intercept
             -5.07 0.31 -16.33 126 6.81e-33
prot2*sexism 1.00 0.06 17.15 126 9.41e-35
 'b' effect estimates (M on Y controlling for X)
      respappr se t df Prob
```

sexism -0.53 0.24 -2.24 125 0.0267

```
'ab'
      effect estimates (through all mediators)
           respappr boot sd lower upper
prot2
               2.68 2.58 1.72 -0.3 5.27
               -0.53 -0.51 0.34 -0.3 5.27
prot2*sexism
```

Multiple mediators

It is trivial to show the effect of multiple mediators. I do this by adding the second (or third) mediator into our equation. I use the Tal Or data set (Tal-Or et al., 2010) again. I show the graphical representation in Figure 11.

```
R code
> mod5.4 <- mediate(reaction ~ cond + (import) + (pmi), data = Tal_Or)</pre>
> print(mod5.4, digits=4) #to compare with Hayes
Mediation/Moderation Analysis
Call: mediate(y = reaction ~ cond + (import) + (pmi), data = Tal_Or)
The DV (Y) was reaction . The IV (X) was cond . The mediating variable(s) = import pmi .
                                                                                        with p = 0.0766
Total effect(c) of cond on reaction = 0.4957
                                                S.E. = 0.2775 t = 1.786 df = 121
Direct effect (c') of cond on reaction removing import pmi = 0.1034
                                                                         S.E. = 0.2391 t = 0.4324 d
Indirect effect (ab) of cond on reaction through import pmi
                                                                = 0.3923
Mean bootstrapped indirect effect = 0.3941 with standard error = 0.1634 Lower CI = 0.0873
R = 0.5702 R2 = 0.3251
                      F = 19.1118 on 3 and 119 DF
                                                    p-value: 3.6636e-12
 To see the longer output, specify short = FALSE in the print statement or ask for the summary
                                       R code
pdf
```

Upper CI =

4.3 Serial mediators

cond

The example from Hayes (2013) for two mediators, where one effects the second, is a bit more complicated and currently can be done by combining two separate analyses. The first is just model 5.4, the second is the effect of cond on pmi mediated by import.

Combining the two results leads to the output found on (Hayes, 2013, page 153).

0.3536 0.2325 1.5207 120 1.3096e-01

```
pdf
  2
> #model 5.4 + mod5.7 is the two chained mediator model
> mod5.7 <- mediate(pmi ~ cond + (import) , data = Tal_Or)
> summary(mod5.7, digits=4)
Call: mediate(y = pmi ~ cond + (import), data = Tal_Or)
Direct effect estimates (traditional regression)
                                                     (c') X + M on Y
             pmi
                    se
                             t df
                                          Prob
Intercept 4.6104 0.3057 15.0836 120 1.7543e-29
```

Hayes example 5.3

Figure 11: A mediation model with two mediators (Hayes, 2013, p 131). The data are data derived from Tal-Or et al. (2010). The effect of a salience manipulation (cond) on the intention to buy a product (reaction) is mediated through the presumed media influence (pmi) and importance of the message (import).

```
0.1961 0.0671 2.9228 120 4.1467e-03
import
R = 0.3114 R2 = 0.097 F = 6.4428 on 2 and 120 DF p-value: 0.0021989
Total effect estimates (c) (X on Y)
                           t df
                                       Prob
           pmi se
Intercept 5.3769 0.1618 33.2222 121 1.1593e-62
         0.4765 0.2357 2.0218 121 4.5401e-02
cond
 'a' effect estimates (X on M)
        import se t df
Intercept 3.9077 0.2127 18.3704 121 8.3936e-37
         0.6268 0.3098 2.0234 121 4.5235e-02
cond
     effect estimates (M on Y controlling for X)
               se
                       t df
import 0.1961 0.0671 2.9228 120 0.0041467
      effect estimates (through all mediators)
       pmi boot
                  sd lower upper
cond 0.1229 0.1249 0.0838 0.002 0.3223
```

4.4 Single mediators, multiple covariates

The Pollack data set (Pollack et al., 2012) is used as an example of multiple covariates (included in *psychTools* as a correlation matrix). The raw data are available from the *processR* package as estress. Confidence in executive decision making ("Entrepeneurial self-efficacy), gender (sex), and length of time in business (tenure) are used as covariates. There are two ways of doing this: enter them as predictors of the criterion or to partial them out. The first approach estimates their effects, the second just removes them.

```
R code
> lowerMat(Pollack)
                           tenur slf.f cmptn scl.t ecnm. dprss wthdr
               sex
                     age
                1.00
sex
age
                0.07 1.00
               0.03 0.32 1.00
tenure
self.efficacy
               -0.02 -0.09 -0.06
                                 1.00
               0.08 0.01 0.02 0.22 1.00
competence
social.ties
               0.07 -0.06 0.01 0.19 0.13 1.00
                                                  1.00
economic.stress -0.15  0.09  0.07 -0.16 -0.09 -0.07
depression
               -0.05 -0.02 -0.07 -0.25  0.06 -0.05  0.34  1.00
withdrawal
               -0.03 -0.05 -0.04 -0.24 -0.09 0.01 0.06 0.42 1.00
                                       R code
> mod6.2 <- mediate(withdrawal ~ economic.stress + self.efficacy + sex + tenure + (depression),
       data=Pollack, n.obs=262)
> summary (mod6.2)
Call: mediate(y = withdrawal ~ economic.stress + self.efficacy + sex +
   tenure + (depression), data = Pollack, n.obs = 262)
Direct effect estimates (traditional regression)
                                                  (c') X + M on Y
               withdrawal se
                                t df
                                            Prob
Intercept
                     0.00 0.06 0.00 256 1.00e+00
```

```
-0.11 0.06 -1.82 256 6.99e-02
economic.stress
self.efficacy
                   -0.15 0.06 -2.67 256 8.01e-03
                    -0.03 0.06 -0.50 256 6.15e-01
sex
                    -0.01 0.06 -0.21 256 8.37e-01
tenure
depression
                    0.42 0.06 6.83 256 6.05e-11
R = 0.45 R2 = 0.21 F = 13.35 on 5 and 256 DF p-value: 1.45e-11
 Total effect estimates (c) (X on Y)
                                 t df
               withdrawal se
                                           Prob
Intercept
                   0.00 0.06 0.00 257 1.000000
economic.stress
                    0.02 0.06 0.34 257 0.737000
self.efficacy
                   -0.24 0.06 -3.92 257 0.000113
                    -0.03 0.06 -0.49 257 0.624000
                    -0.05 0.06 -0.91 257 0.366000
tenure
 'a' effect estimates (X on M)
              depression se
                                  t df
                                            Prob
Intercept
                    0.00 0.06 0.00 257 1.00e+00
                    0.31 0.06 5.36 257 1.88e-07
economic.stress
self.efficacy
                    -0.21 0.06 -3.56 257 4.36e-04
sex
                    0.00 0.06 -0.07 257 9.46e-01
tenure
                    -0.10 0.06 -1.82 257 6.98e-02
    effect estimates (M on Y controlling for X)
          withdrawal se t df
              0.42 0.06 6.83 256 6.05e-11
depression
 'ab' effect estimates (through all mediators)
             withdrawal boot sd lower upper
economic.stress
                   0.13 0.08 0.02 0.04 0.13
self.efficacy
                    -0.09 -0.09 0.02 0.04 0.13
                    0.00 0.01 0.02 0.04 0.13
sex
                    -0.04 -0.05 0.02 0.04 0.13
tenure
pdf
```

The graphical output (Figure 12) looks a bit more complicated than the figure in (Hayes, 2013, p 177) because I are showing the covariates as causal paths.

4.5 Single predictor, single criterion, multiple covariates

An alternative way to display the previous results is to remove the three covariates from the mediation model. I do this by partialling out the covariates. This is represented in the mediate code by a negative sign. (Figure 13)

Simple mediation, 3 covariates

Figure 12: A mediation model with three covariates (Hayes, 2013, p 177). Compare this to the solution in which they are partialled out. (Figure 13).

```
t df
               withdrawal* se
                0.00 0.06 0.00 256 1.00e+00
Intercept
economic.stress
                    -0.11 0.06 -1.80 256 7.23e-02
depression
                    0.42 0.06 6.78 256 8.50e-11
R = 0.39 R2 = 0.15 F = 23.41 on 2 and 256 DF p-value: 4.6e-10
Total effect estimates (c) (X on Y)
             withdrawal* se
                                 t df Prob
                     0.00 0.06 0.00 257 1.000
Intercept
economic.stress
                     0.02 0.06 0.34 257 0.737
 'a' effect estimates (X on M)
                                 t df
              depression
                          se
Intercept
                   0.00 0.06 0.00 257 1.00e+00
economic.stress
                    0.31 0.06 5.36 257 1.88e-07
     effect estimates (M on Y controlling for X)
          withdrawal*
                            t df
                      se
                0.42 0.06 6.83 256 6.05e-11
depression
 'ab' effect estimates (through all mediators)
              withdrawal* boot sd lower upper
                    0.13 0.15 0.03 0.09 0.22
economic.stress
pdf
 2
```

4.6 Multiple predictors, single criterion

It is straightforward to use multiple predictors see (Hayes, 2013, p196) and in fact I did so in the previous example where the predictors were treated as *covariates*. mediate also allows for multiple criteria.

5 Mediation and moderation

We already saw how to do moderation in the discussion of setCor. Combining the concepts of mediation with moderation is done in mediate. That is, I can find the linear model of product terms as they are associated with dependent variables and regressed on the mediating variables.

The Garcia data set (Garcia et al., 2010) can be used for an example of moderation. (This was taken from (Hayes, 2013) but is used with kind permission of Donna M. Garcia, Michael T. Schmitt, Nyla R. Branscombe, and Naomi Ellemers.) Just as setCor and lm will find the interaction term by forming a product, so will mediate. Notice that by default, setCor reports zero centered and standardized regressions, mediate reports zero centered but not standardized regressions, and some of the examples from Hayes (2013) do not zero center the data. Thus, I specify zero=FALSE to get the Hayes (2013) results.

It is important to note that the protest data set discussed here is from the 2013 examples and not

Simple mediation, 3 covariates (partialled out)

Figure 13: Show the mediation model from Figure 12 with the covariates (ese, sex, tenure) removed.

the more recent 2018 examples available from afhayes.com. The 2013 data have a dichotomous protest variable, while the 2018 data set has three levels for the protest variable. The Garcia data set is composed of the 2018 data set with the addition of a dichotomous variable (prot2) to match the 2013 examples.

We consider how the interaction of sexism with protest affects the mediation effect of sexism (Hayes, 2013, p 362), I contrast the lm, setCor and mediate approaches. For reasons to be discussed in the next section, I do not zero center the variables. The graphic output is in Figure 14 and the output is below. For comparison purposes, I show the results from the lm as well as setCor and mediate.

```
> summary(lm(respappr ~ prot2 * sexism,data = Garcia)) #show the lm results for comparison
lm(formula = respappr ~ prot2 * sexism, data = Garcia)
Residuals:
   Min
            1Q Median
                           3Q
                                  Max
-3.4984 -0.7540 0.0801 0.8301 3.1853
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                      1.2095 5.429 2.83e-07 ***
(Intercept)
             6.5667
                        1.4515 -1.851 0.06654 .
             -2.6866
prot2
sexism
            -0.5290
                        0.2359 -2.243 0.02668 *
prot2:sexism 0.8100
                         0.2819 2.873 0.00478 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.144 on 125 degrees of freedom
Multiple R-squared: 0.2962,
                                Adjusted R-squared:
                                                      0.2793
F-statistic: 17.53 on 3 and 125 DF, p-value: 1.456e-09
                                       R code
> #show the setCor analysis
> setCor(respappr ~ prot2* sexism ,data=Garcia,zero=FALSE,main="Moderation",std=FALSE)
Call: setCor(y = respappr ~ prot2 * sexism, data = Garcia, std = FALSE,
   main = "Moderation", zero = FALSE)
Multiple Regression from raw data
 DV = respappr
            slope
                   se
                          t
                                 p lower.ci upper.ci
                                                      VIF Vy.x
            6.57 1.21 5.43 2.8e-07 4.17
                                                8.96 1.00 0.00
(Intercept)
            -2.69 1.45 -1.85 6.7e-02
                                                 0.19 44.99 -0.47
prot2
                                       -5.56
            -0.53 0.24 -2.24 2.7e-02
                                       -1.00
                                                -0.06 3.34 -0.01
sexism
prot2*sexism 0.81 0.28 2.87 4.8e-03 0.25
                                               1.37 48.14 0.77
Residual Standard Error = 1.14 with 125 degrees of freedom
Multiple Regression
           R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2
respappr 0.54 0.3 0.41 0.17
                                 0.28
                                          0.06
                                                   17.53 3 125 1.46e-09
                                       R code
> #then show the mediate results
```

```
> modgarcia <-mediate(respappr ~ prot2 * sexism +(sexism), data=Garcia, zero=FALSE, main="Moderated mediation")
> summary (modgarcia)
Call: mediate(y = respappr ~ prot2 * sexism + (sexism), data = Garcia,
   zero = FALSE, main = "Moderated mediation")
                                                   (c') X + M on Y
Direct effect estimates (traditional regression)
            respappr se t df
               6.57 1.21 5.43 125 2.83e-07
Intercept
prot2
               -2.69 1.45 -1.85 125 6.65e-02
prot2*sexism
                0.81 0.28 2.87 125 4.78e-03
               -0.53 0.24 -2.24 125 2.67e-02
sexism
R = 0.54 R2 = 0.3 F = 17.53 on 3 and 125 DF
                                             p-value: 1.46e-09
 Total effect estimates (c) (X on Y)
            respappr se
                             t df
                3.88 0.18 21.39 126 9.14e-44
Intercept
                0.00 0.84 0.00 126 9.96e-01
prot2
prot2*sexism
                0.28 0.16 1.79 126 7.56e-02
    effect estimates (X on M)
                           t df
            sexism se
              5.07 0.07 75.12 126 1.69e-106
Intercept
prot2
             -5.07 0.31 -16.33 126 6.81e-33
prot2*sexism 1.00 0.06 17.15 126 9.41e-35
     effect estimates (M on Y controlling for X)
      respappr se t df Prob
         -0.53 0.24 -2.24 125 0.0267
sexism
      effect estimates (through all mediators)
            respappr boot sd lower upper
prot2
                2.68 2.63 1.64 -0.79
                                      5.61
prot2*sexism
               -0.53 -0.52 0.32 -0.79
                                       5.61
                                        R code
pdf
```

5.1 To center or not to center, that is the question

2

We have discussed the difference between zero centering and not zero centering. Although Hayes (2013) seems to prefer not centering, some of his examples are in fact centered. So, when we examine Table 8.2 and try to replicate the regression, we need to zero center the data.

With the global warming data from Hayes (2013), the default (uncentered) regression does not reproduce his Table, but zero centering does. To this in 1m requires two steps, but we can do this in setCor with the zero=TRUE or zero=FALSE option.

```
> lm(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm)
```

An example of moderated mediation

Figure 14: Moderated mediation from (Hayes, 2013, p 362). The data are from Garcia et al. (2010).

```
lm(formula = govact ~ age * negemot + posemot + ideology + sex,
   data = globalWarm)
Coefficients:
(Intercept)
                                           posemot
                                                        ideology
                                                                          sex age:negemot
                     age
                              negemot
  5.173849
               -0.023879
                             0.119583
                                          -0.021419
                                                       -0.211515
                                                                    -0.011191
                                                                                   0.006331
                                         R code
> # but zero center and try again
> glbwarmc <-data.frame(scale(globalWarm, scale=FALSE))
> lm(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm)
Call:
lm(formula = govact ~ age * negemot + posemot + ideology + sex,
    data = globalWarm)
Coefficients:
(Intercept)
                              negemot
                                           posemot
                                                        ideology
                                                                          sex age:negemot
                     age
  5.173849
               -0.023879
                             0.119583
                                          -0.021419
                                                       -0.211515
                                                                    -0.011191
                                                                                   0.006331
                                         R code | _
> mod.glb <- setCor(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm,zero=FALSE,std=FALSE)
> print(mod.glb,digits=6)
Call: setCor(y = govact ~ age * negemot + posemot + ideology + sex,
    data = globalWarm, std = FALSE, zero = FALSE)
Multiple Regression from raw data
DV = govact
slope se t p lower.ci upper.ci VIF Vy.x (Intercept) 5.173849 0.338451 15.286838 1.58157e-46 4.509502 5.838197 1.000000 0.0000000
            -0.023879 0.005980 -3.992944 7.12038e-05 -0.035618 -0.012140 6.949401 0.027844
            0.119583 0.082535 1.448881 1.47759e-01 -0.042425 0.281591 11.594520 0.077620
            -0.021419\ 0.027904\ -0.767597\ 4.42951e-01\ -0.076193\ 0.033354\ 1.028663\ -0.000912
posemot
            -0.211515 0.026833 -7.882678 1.03603e-14 -0.264185 -0.158845 1.198910 0.098323
            -0.011191 \ 0.076003 \ -0.147240 \ 8.82979 \\ e-01 \ -0.160378 \ 0.137997 \ 1.052907 \ 0.000406
age*negemot 0.006331 0.001543 4.103542 4.48155e-05 0.003302 0.009359 16.455422 0.197526
Residual Standard Error = 1.056984 with 808 degrees of freedom
Multiple Regression
                                     R2uw Shrunken R2 SE of R2 overall F df1 df2
                      R2
                             Ruw
govact 0.633093 0.400806 0.14033 0.019693 0.396357 0.026299 90.07983 6 808 1.824604e-86
                                         R code
> mod.glb0 <- setCor(govact ~ age * negemot + posemot + ideology + sex, data=globalWarm, std=FALSE)
> print (mod.glb0, digits=6)
Call: setCor(y = govact ~ age * negemot + posemot + ideology + sex,
    data = globalWarm, std = FALSE)
Multiple Regression from raw data
DV = govact
                slope
                                                    p lower.ci upper.ci
                            se
(Intercept) 4.595973 0.037089 123.916910 0.00000e+00 4.523171 4.668776 1.000000 0.0000000
```

age negemot -0.001354 0.002348 -0.576864 5.64192e-01 -0.005963 0.003254 1.071058 0.001579 0.433184 0.026243 16.506679 5.75775e-53 0.381671 0.484696 1.172207 0.281175

```
-0.021419 0.027904 -0.767597 4.42951e-01 -0.076193 0.033354 1.028663 -0.000912
posemot
ideology
            -0.211515 \ 0.026833 \ -7.882678 \ 1.03603 \\ e-14 \ -0.264185 \ -0.158845 \ 1.198910 \ 0.098323
            -0.011191 0.076003 -0.147240 8.82979e-01 -0.160378 0.137997 1.052907 0.000406 0.006331 0.001543 4.103542 4.48155e-05 0.003302 0.009359 1.014744 0.020236
sex
age*negemot 0.006331 0.001543
Residual Standard Error = 1.056984 with 808 degrees of freedom
 Multiple Regression
                       R2
                               Ruw
                                      R2uw Shrunken R2 SE of R2 overall F df1 df2
                                              0.396357 0.026299 90.07983 6 808 1.824604e-86
govact 0.633093 0.400806 0.355865 0.12664
So, when we do the mediated moderation model, we need to use the zero centered option to match
the Hayes (2013) results from Figure 8.5.
                                         R code
> #by default, mediate zero centers before finding the products
> mod.glb <- mediate(govact ~ age * negemot + posemot + ideology + sex + (age), data=glcbalWarm,zero=TRUE)
> summary(mod.glb,digits=4)
Call: mediate(y = govact ~ age * negemot + posemot + ideology + sex +
     (age), data = globalWarm, zero = TRUE)
Direct effect estimates (traditional regression)
                                                      (c') X + M \text{ on } Y
             govact se t df
                                            Prob
             0.0090 0.0371 0.2421 808 8.0876e-01
Intercept
             0.4332 0.0262 16.5067 808 5.7578e-53
negemot
posemot
            -0.0214 0.0279 -0.7676 808 4.4295e-01
ideology
            -0.2115 0.0268 -7.8827 808 1.0360e-14
            -0.0112 0.0760 -0.1472 808 8.8298e-01
age*negemot 0.0063 0.0015 4.1035 808 4.4816e-05
            -0.0014 0.0023 -0.5769 808 5.6419e-01
R = 0.6331 R2 = 0.4008 F = 90.0798 on 6 and 808 DF p-value: 1.8246e-86
 Total effect estimates (c) (X on Y)
                                 t df
             govact
                       se
Intercept
              0.0090 0.0371 0.2420 809 8.0881e-01
             0.4328 0.0262 16.5043 809 5.8181e-53
negemot
posemot
            -0.0220 0.0279 -0.7890 809 4.3036e-01
            -0.2145 0.0263 -8.1510 809 1.3690e-15
            -0.0173 0.0752 -0.2304 809 8.1783e-01
age*negemot 0.0063 0.0015 4.1025 809 4.4999e-05
 'a' effect estimates (X on M)
               aσe
                       se
                                t df
                                            Prob
            0.0044 0.5554 0.0079 809 9.9366e-01
Intercept
            0.2757 0.3929 0.7017 809 4.8305e-01
            0.4232 0.4176 1.0135 809 3.1112e-01
posemot
            2.2079 0.3943 5.6002 809 2.9334e-08
ideology
            4.5345 1.1269 4.0238 809 6.2643e-05
age*negemot 0.0031 0.0231 0.1346 809 8.9294e-01
 'b' effect estimates (M on Y controlling for X)
     govact
                         t df
                                 Prob
                se
age -0.0014 0.0023 -0.5769 808 0.56419
```

sd lower upper

'ab' effect estimates (through all mediators)

govact boot

Compare this output to that of Table 8.2 and Figure 8.5 (p 258 - 259).

5.2 Another example of moderated medation

Multiple Regression

The Garcia data set (protest in Hayes (2013)) is another example of a moderated analysis. We can use either setCor or mediate to examine this data set. The defaults for these two differ, in that setCor assumes we want to zero center *and* standardize, while mediate defaults to not standardizing but also defaults to zero (mean) centering. Note that in the next examples we specify we do not want to standardize nor to mean center.

```
> psych::describe(Garcia)
               n mean
                        sd median trimmed mad min max range
                                                               skew kurtosis
           1 129 1.03 0.82 1.00
                                     1.04 1.48 0.00 2 2.00 -0.06
                                                                      -1.52 0.07
protest
           2 129 5.12 0.78
                             5.12
                                     5.10 0.74 2.87
                                                        4.13 0.12
                                                                       -0.32 0.07
sexism
                            1.00
                                     1.84 0.00 1.00
                                                     7 6.00 1.29
                                                                        0.26 0.15
anger
           3 129 2.12 1.66
liking
           4 129 5.64 1.05
                             5.83
                                     5.73 0.99 1.00
                                                      7
                                                         6.00 -1.15
                                                                       2.48 0.09
respappr
           5 129 4.87 1.35
                             5.25
                                     4.98 1.11 1.50
                                                      7
                                                         5.50 -0.75
                                                                       -0.18 0.12
           6 129 0.68 0.47
                                     0.72 0.00 0.00
                                                      1 1.00 -0.77
                                                                       -1.41 0.04
prot2
                             1.00
                                        R code -
> lm(liking ~ prot2* sexism + respappr, data=Garcia)
lm(formula = liking ~ prot2 * sexism + respappr, data = Garcia)
Coefficients:
 (Intercept)
                    prot2
                                 sexism
                                             respappr prot2:sexism
     5.3471
                  -2.8075
                                -0.2824
                                                             0.5426
                                               0.3593
                                        R code
> setCor(liking ~ prot2* sexism + respappr, data = Garcia, zero=FALSE, std=FALSE)
Call: setCor(y = liking ~ prot2 * sexism + respappr, data = Garcia,
    std = FALSE, zero = FALSE)
Multiple Regression from raw data
DV = liking
                                   p lower.ci upper.ci
             slope
                    se
                           t
                                                       VIF Vy.x
            5.35 1.06 5.04 1.6e-06 3.25
                                                 7.45 1.00 0.00
(Intercept)
prot2
             -2.81 1.16 -2.42 1.7e-02
                                        -5.10
                                                 -0.51 46.22 -0.27
            -0.28 0.19 -1.49 1.4e-01
                                                  0.09 3.47 -0.02
                                        -0.66
sexism
             0.36 0.07 5.09 1.3e-06
respappr
                                         0.22
                                                  0.50 1.42 0.23
prot2*sexism 0.54 0.23 2.36 2.0e-02
                                         0.09
                                                  1.00 51.32 0.34
Residual Standard Error = 0.9 with 124 degrees of freedom
```

```
R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2
liking 0.53 0.28 0.34 0.12
                                 0.26
                                         0.06
                                                  12.26 4 124 1.99e-08
                                        R code
> mod7.4 <- mediate(liking ~ prot2 * sexism +respappr, data = Garcia, zero=FALSE)
> summary (mod7.4)
Call: mediate(y = liking ~ prot2 * sexism + respappr, data = Garcia,
    zero = FALSE)
No mediator specified leads to traditional regression
                            t df
            liking
                    se
              5.35 1.06 5.04 124 1.60e-06
Intercept
             -2.81 1.16 -2.42 124 1.70e-02
prot2
sexism
             -0.28 0.19 -1.49 124 1.39e-01
              0.36 0.07 5.09 124 1.28e-06
respappr
prot2*sexism
             0.54 0.23 2.36 124 1.97e-02
R = 0.53 R2 = 0.28 F = 12.26 on 4 and 124 DF p-value: 1.99e-08
pdf
  2
```

5.3 Graphic Displays of Interactions

In order to graphically display interactions, particularly if one of the variable is categorical, we can plot separate regression lines for each value of the categorical variable. We do this for the Garcia data set to show the interaction of protest with sexism. (see Figure 16). This is just an example of how to use Core-R to do graphics and is not a feature of *psych*.

```
R code
> png('garciainteraction.png')
> plot(respappr ~ sexism, pch = 23- protest, bg = c("black", "red", "blue")[protest],
+ data=Garcia, main = "Response to sexism varies as type of protest")
> by (Garcia, Garcia$protest, function(x) abline(lm(respappr ~ sexism,
     data =x),lty=c("solid", "dashed", "dotted") [x$protest+1]))
Garcia$protest: 0
NULL
Garcia$protest: 1
NULL
Garcia$protest: 2
NULL
                                          R code
> text(6.5,3.5,"No protest")
> text(3,3.9,"Individual")
> text(3,5.2, "Collective")
> dev.off()
pdf
  2
                                          R code
```

Another example of moderated mediation

Figure 15: A simple moderated regression analysis of the protest data set. The data were not zero centered. This shows the strength of the three regressions. Figure 16 shows the actual data and the three regression lines.

Response to sexism varies as type of protest

Figure 16: Showing the interaction between type of protest and sexism from the Garcia data set. The strength of the regression effects is shown in Fig 15.

6 Partial Correlations

Although not strickly speaking part of mediation or moderation, the use of *partial correlations* can be addressed here. s

6.1 Partial some variables from the rest of the variables

Given a set of X variables and a set of Y variables, we can control for an additional set of Z variables when we find the correlations between X and Y. This is effectively what happens when we want to add covariates into a model. We see this when we compare the regression model for government action as a function of the iteraction of ideology and age with some covariates, or when we partial them out first.

```
R code
   #first,
           the more complicated model
  mod.glb <- setCor(govact ~ age * negemot + posemot + ideology + sex,</pre>
                    data=globalWarm, std=FALSE)
> print (mod.glb, digits=3)
Call: setCor(y = govact ~ age * negemot + posemot + ideology + sex,
   data = globalWarm, std = FALSE)
Multiple Regression from raw data
DV = govact
            slope
                     se
                              t
                                      p lower.ci upper.ci
                                                              VIF
(Intercept) 4.596 0.037 123.917 0.00e+00
                                           4.523 4.669 1.000
                                                                   0.000
            -0.001 0.002 -0.577 5.64e-01
                                            -0.006
                                                      0.003 1.071
            0.433 0.026 16.507 5.76e-53
negemot.
                                           0.382
                                                     0.485 1.172 0.281
posemot
           -0.021 0.028 -0.768 4.43e-01 -0.076
                                                     0.033 1.029 -0.001
ideology
           -0.212 0.027 -7.883 1.04e-14
                                           -0.264
                                                     -0.159 1.199 0.098
           -0.011 0.076 -0.147 8.83e-01 0.006 0.002 4.104 4.48e-05
                                            -0.160
                                                      0.138 1.053 0.000
sex
age*negemot 0.006 0.002
                                            0.003
                                                      0.009 1.015 0.020
Residual Standard Error = 1.057 with 808 degrees of freedom
Multiple Regression
                   Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2
              R2
govact 0.633 0.401 0.356 0.127
                                     0.396
                                             0.026
                                                       90.08 6 808 1.825e-86
                                        R code
  # compare this to the partialled model
> mod.qlb.partialled <- setCor(govact ~ age * negemot - posemot - ideology - sex,data = qlobalWarm)
```

Note how the beta weights for the age, negemot and interaction terms are identical.

6.2 Partial everything from everything

Sometimes we want to examine just the independent effects of all our variables. That is to say, we want to partial all the variables from all the other variables. I do this with the partial.r function. To show the results, I compare the partialed rs to the original rs. I show the lower off

diagonal matrix using lowerMat. Then to compare the partial matrix to the original matrix, I form the square matrix where the lower off diagonal is the original matrix and the upper off diagonal is the partial matrix.

```
R code
> upper <-partial.r(globalWarm)
> lowerMat(upper)
                   #show it
         govct posmt negmt idlgy age
                                       sex
                                             prtyd
govact
          1.00
posemot
         -0.03
                1.00
         0.50 0.13 1.00
negemot
ideology -0.19 0.00 -0.07
                           1.00
         -0.02 0.04 0.03 0.14
                                  1.00
         0.00 0.08 -0.07
                           0.04
                                  0.14
                                        1.00
sex
partyid -0.08 -0.01 -0.09
                           0.53
                                  0.03
                                        0.02
                                         R code
> lower <- lowerCor(globalWarm)</pre>
         govct posmt negmt idlgy age
                                             prtyd
                                       sex
govact
          1.00
posemot
          0.04
               1.00
negemot
          0.58 0.13 1.00
ideology -0.42 -0.03 -0.35
                           1.00
         -0.10 0.04 -0.06 0.21
                                 1.00
age
         -0.10 0.07 -0.12 0.13 0.17
                                        1.00
sex
partyid -0.36 -0.04 -0.32 0.62
                                 0.15
                                        0.11 1.00
                                         R code
> lowup <- lowerUpper(lower,upper)</pre>
pdf
```

7 Related packages

mediate and setCor are just two functions in the *psych* package. There are several additional packages available in R to do mediation. The *mediation* package (Tingley et al., 2014) seems the most powerful, in that is tailor made for mediation. *MBESS* (Kelley, 2017) has a mediation function. Steven Short has a nice tutorial on mediation analysis available for download that discusses how to use R for mediation. And, of course, the *lavaan* package (Rosseel, 2012) is the recommended package to do SEM and path models.

Figure 17: Correlations (below diagonal) and partial correlations (above the diagonal)

8 Development version and a users guide

The *psych* package is available from the CRAN repository. However, the most recent development version of the *psych* package is available as a source file at the repository maintained at http://personality-project.org/r. That version will have removed the most recently discovered bugs (but perhaps introduced other, yet to be discovered ones). To install this development version, either for PCs or Macs,

```
R code install.packages("psych", repos = "http://personality-project.org/r", type = "source")
```

After doing this, it is important to restart R to get the new package.

Although the individual help pages for the *psych* package are available as part of R and may be accessed directly (e.g. ?psych), the full manual for the psych package is also available as a pdf at http://personality-project.org/r/psych_manual.pdf

News and a history of changes are available in the NEWS and CHANGES files in the source files. To view the most recent news,

```
> news(Version >-= "2.0.12",package="psych")
```

9 Psychometric Theory

The *psych* package has been developed to help psychologists do basic research. Many of the functions were developed to supplement a book (http://personality-project.org/r/book An introduction to Psychometric Theory with Applications in R (Revelle, prep) More information about the use of some of the functions may be found in the book.

For more extensive discussion of the use of psych in particular and R in general, consult http://personality-project.org/r/r.guide.html A short guide to R.

10 SessionInfo

This document was prepared using the following settings.

```
R code

> sessionInfo()

R version 4.3.1 (2023-06-16)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.5.2

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3
```

locale:

[1] C

time zone: America/Chicago tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] psychTools_2.3.9 psych_2.3.9

loaded via a namespace (and not attached):

[1] compiler_4.3.1 parallel_4.3.1 tools_4.3.1 foreign_0.8-84 lavaan_0.6-16 GPArotation_2023.3-

[8] grid_4.3.1 pbivnorm_0.6.0 knitr_1.42 xfun_0.38

[15] quadprog_1.5-8

References

- Cohen, J. (1982). Set correlation as a general mulitivariate data-analytic method. *Multivariate Behavioral Research*, 17(3):301–341.
- Cohen, J., Cohen, P., West, S. G., and Aiken, L. S. (2003). *Applied multiple regression/correlation analysis for the behavioral sciences*. L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition.
- Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. *American Psychologist*, 34(7):571–582.
- Garcia, D. M., Schmitt, M. T., Branscombe, N. R., and Ellemers, N. (2010). Women's reactions to ingroup members who protest discriminatory treatment: The importance of beliefs about inequality and response appropriateness. *European Journal of Social Psychology*, 40(5):733–745.
- Hayes, A. F. (2013). *Introduction to mediation, moderation, and conditional process analysis: A regression-based approach*. Guilford Press, New York.
- Hotelling, H. (1936). Relations between two sets of variates. *Biometrika*, 28(3/4):321–377.
- Kelley, K. (2017). MBESS: The MBESS R Package. R package version 4.4.1.
- Pollack, J. M., Vanepps, E. M., and Hayes, A. F. (2012). The moderating role of social ties on entrepreneurs' depressed affect and withdrawal intentions in response to economic stress. *Journal of Organizational Behavior*, 33(6):789–810.
- Preacher, K. J. (2015). Advances in mediation analysis: A survey and synthesis of new developments. *Annual Review of Psychology*, 66:825–852.
- Preacher, K. J. and Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. *Behavior Research Methods, Instruments, & Computers*, 36(4):717–731.
- Preacher, K. J., Rucker, D. D., and Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. *Multivariate behavioral research*, 42(1):185–227.
- R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Revelle, W. (2023). *psych: Procedures for Personality and Psychological Research*. Northwestern University, Evanston, https://CRAN.r-project.org/package=psych. R package version 2.3.6
- Revelle, W. (in prep). An introduction to psychometric theory with applications in R. Springer.
- Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. *Journal of Statistical Software*, 48(2):1–36.

- Tal-Or, N., Cohen, J., Tsfati, Y., and Gunther, A. C. (2010). Testing causal direction in the influence of presumed media influence. *Communication Research*, 37(6):801–824.
- Tingley, D., Yamamoto, T., Hirose, K., Keele, L., and Imai, K. (2014). mediation: R package for causal mediation analysis. *Journal of Statistical Software*, 59(5):1–38.

References

- Cohen, J. (1982). Set correlation as a general mulitivariate data-analytic method. *Multivariate Behavioral Research*, 17(3):301–341.
- Cohen, J., Cohen, P., West, S. G., and Aiken, L. S. (2003). *Applied multiple regression/correlation analysis for the behavioral sciences*. L. Erlbaum Associates, Mahwah, N.J., 3rd ed edition.
- Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. *American Psychologist*, 34(7):571–582.
- Garcia, D. M., Schmitt, M. T., Branscombe, N. R., and Ellemers, N. (2010). Women's reactions to ingroup members who protest discriminatory treatment: The importance of beliefs about inequality and response appropriateness. *European Journal of Social Psychology*, 40(5):733–745.
- Hayes, A. F. (2013). *Introduction to mediation, moderation, and conditional process analysis: A regression-based approach*. Guilford Press, New York.
- Hotelling, H. (1936). Relations between two sets of variates. *Biometrika*, 28(3/4):321–377.
- Kelley, K. (2017). MBESS: The MBESS R Package. R package version 4.4.1.
- Pollack, J. M., Vanepps, E. M., and Hayes, A. F. (2012). The moderating role of social ties on entrepreneurs' depressed affect and withdrawal intentions in response to economic stress. *Journal of Organizational Behavior*, 33(6):789–810.
- Preacher, K. J. (2015). Advances in mediation analysis: A survey and synthesis of new developments. *Annual Review of Psychology*, 66:825–852.
- Preacher, K. J. and Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. *Behavior Research Methods, Instruments, & Computers*, 36(4):717–731.
- Preacher, K. J., Rucker, D. D., and Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. *Multivariate behavioral research*, 42(1):185–227.
- R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

- Keon-Woong Moon (2020). processR: Implementation of the 'PROCESS' Macro. https://CRAN.R-project.org/package=processR
- Revelle, W. (2023). *psych: Procedures for Personality and Psychological Research*. Northwestern University, Evanston, https://CRAN.r-project.org/package=psych. R package version 2.3.5
- Revelle, W. (in prep). An introduction to psychometric theory with applications in R. Springer.
- Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. *Journal of Statistical Software*, 48(2):1–36.
- Tal-Or, N., Cohen, J., Tsfati, Y., and Gunther, A. C. (2010). Testing causal direction in the influence of presumed media influence. *Communication Research*, 37(6):801–824.
- Tingley, D., Yamamoto, T., Hirose, K., Keele, L., and Imai, K. (2014). mediation: R package for causal mediation analysis. *Journal of Statistical Software*, 59(5):1–38.