Electricity and Magnetism

- •Physics 259 L02
 - •Lecture 20

Midterm Review and Class Activity

Last time

Chapter 23

This time

Midterm Review and Class Activity

What is the field inside the slab?

The slab has thickness L, we have to choose a Gaussian surface with the same symmetries as the slab: choose a box whose centre coincides with the centre of the slab.

What about cylinder?

Study appendix 1-chapter 23 posted on D2l.

Exercise: Coaxial Cable

Study appendix 1-Chapter 23

Assume there is a charge +Q on the centre core and -Q on the metallic shield. (Ignore the dielectric insulator and plastic jacket.)

Find the electric field outside the metallic shield $(\mathbf{E_2})$ and just outside the central core $(\mathbf{E_1})$.

TopHat Question

What is the charge of the insulating wire (the wire is reshaped to form a rectangle) with charge density $-\lambda$?

- A) $L^2\lambda$
- B) $-L^2\lambda$
- C) $4L\lambda$
- D) $-4L\lambda$

- Calculate the electric field due to a positively charged line of linear charge density λ .

We note that the direction of E is radially away from the rod.

$$\Phi_{total} = \oint_{cylinder} E \, dA = \int_{tube} E \, dA + \int_{bottom} E \, dA$$

$$= E \int_{tube} dA$$
Angle between E always 0!
$$= 2\pi r l E$$

$$= \frac{\lambda l}{\varepsilon_0}$$

$$E_{\perp} = E$$
Gaussian surface
$$E_{\perp} = 0$$
bottom
$$E = \frac{1}{2\pi\varepsilon_0} \frac{\lambda}{r}$$

Field of a line charge

Consider an infinitely long, positively charged rod of linear charge density λ . How large is the flux through side A of the box? Suppose the values for l, a and λ are given.

Field of a line charge

- Consider an infinitely long, positively charged rod of linear charge density λ. How large is the flux through side A of the box? Suppose the values for l, a and λ are given.
- Gauss' law tells us that the total electric flux only depends on the enclosed charge not the shape of the (closed) Gaussian surface:

$$\Phi_{\text{tot}} = Q_{\text{encl}}/\epsilon_0 = \lambda l/\epsilon_0$$

Field of a line charge

- Consider an infinitely long, positively charged rod of linear charge density λ. How large is the flux through side A of the box? Suppose the values for l, a and λ are given.
- Gauss' law tells us that the total electric flux only depends on the enclosed charge – not the shape of the (closed) Gaussian surface:

$$\Phi_{\text{tot}} = Q_{\text{encl}}/\epsilon_0 = \lambda l/\epsilon_0$$

 The total flux must be equally partitioned into flux through the four surfaces whose area vectors are parallel to the electric field.

Hence,
$$\Phi_A = \lambda 1/4\epsilon_0$$

TopHat Question #1:

What is the direction of electric field at point indicated?

(10 marks) What is the electric field, \overrightarrow{E} , at point P due to two charged rods of infinite length, as presented in the figure below? Rod 1 has a positive, linear charge density λ_1 and is oriented vertically, a distance d_1 from P. Rod 2 has a positive, linear charge density λ_2 and is oriented horizontally, a distance d_2 from P.

- 1. (1 mark) What Gaussian surface (i.e., what 3D shape) makes it easiest to apply Gauss' law for a rod? Explain why.
- 2. (2 marks) For each rod, draw the cylindrical Gaussian surface needed to find its electric field contribution at point P. Label each Gaussian surface with length l and the appropriate radius.
- 3. (1 mark) Calculate the charge enclosed in each of your Gaussian surfaces, in terms of l, λ_1 and λ_2 .
- 4. (2.5 marks) Use Gauss' law ($\oint \overrightarrow{E} \cdot \overrightarrow{dA} = \frac{Q}{\epsilon_0}$) to calculate $\overrightarrow{E_1}$, the electric field at point P due to Rod 1, in terms of λ_1 and d_1 .
- 5. (1.5 marks) Use Gauss' law ($\oint \overrightarrow{E} \cdot \overrightarrow{dA} = \frac{Q}{\epsilon_0}$) to calculate $\overrightarrow{E_2}$, the electric field at point P due to Rod 2, in terms of λ_2 and d_2 .
- 6. (1 mark) Write the total electric field (\overrightarrow{E}) at point P in terms of $\overrightarrow{E_1}$ and $\overrightarrow{E_2}$.

This section we talked about:

Midterm Review & Class Activity

See you on Monday

