

Machine Learning-Driven Pangenome Pipeline for Predicting E. coli Drug Resistance

CoDE Lab, San Francisco State University, Departments of Biology & Computer Science

Abdoulfatah Abdillahi

Estefanos Kebebew

Myco Torres

Juvenal F Barajas

Pleuni Pennings, PhD

Pangenome Pipeline /

Preprocessing

mtorres29@sfsu.edu jbarajas8@mail.sfsu.edu pennings@sfsu.ed

Why We Care About E. coli

- Common and Widespread Pathogen: Antibiotic resistance in E. coli is a major concern because it is the most common Gram-negative pathogen affecting humans.
- Increasing Multidrug Resistance: Rising numbers of E. coli strains are becoming resistant to multiple antibiotics, which significantly limits treatment options and contributes to higher morbidity and mortality rates.
- Limitations of Traditional Testing: Current drug resistance tests for E. coli are time-consuming, have low throughput, and are limited to bacteria that can be easily cultivated in labs.
- Current methods: Some studies train predictive models using only gene presence/absence or SNP data. We propose a novel approach that combines both within a pangenome framework to enhance accuracy and improve the generalizability of drug resistance predictions.

Prepare Pangenome Reference

Kalloneen Mills Gladstone **Dataset Dataset Dataset** (3000 Samples) (2000 Samples) (2000)Samples)

Download 200 samples each dataset

- Trim low-quality reads.
- Filter out adapter

Combines sequencing data to produce

 Annotated genome in GFF file

Pangenome Creation

Feature Extraction

	Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene n
ERR4 03581 2	ACGT	GGT A	ACCT	ACTG	TCCA	NNN
ERR4 03581 3	ACG	CTAA	ACCT	ACTG	TCCA	ACTN
ERR4 03581 4	NNN	CTAA	ACCT	ACTG	TACA	ACTN
ERR4 03581 5		CTAC	GGT	ACTG	ACTG	NNN
EER n	ACG	CTAC	GGC	ACTG	NNN	NNN
Gene Presence SNP Gene Absence						
This table represents our feature extraction process, where we identify SNPs, gene presence, and gene absence across various genes						

for each accession ID.

Machine Learning

Future Direction using NLP

References

- Moradigaravand, D., Palm, M., Farewell, A., Mustonen, V., Warringer, J., & Parts, L. (2018). Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLoS Computational Biology, 14(12), e1006258. https://doi.org/10.1371/journal.pcbi.1006258
- Yoo, H. (n.d.). Predicting anti-microbial resistance using large language models. ar5iv.

https://ar5iv.labs.arxiv.org/html/2401.00642

Acknowledgement

Funding:

- Student Enrichment Opportunities
- NIH
- Bristol Myers Squibb
- Kenfong Award

