

QUIZ #2 – Solutions

Each problem is worth 5 points

15 points total

1.

When we write $\frac{dy}{dx} = \frac{y/x + 1}{y/x - 1}$, the differential equation is clearly homogeneous. We therefore set $v = y/x$, or, $y = vx$, in which case $dy/dx = v + xdv/dx$, and $v + x\frac{dv}{dx} = \frac{v+1}{v-1}$. This can be separated in the form $\frac{v-1}{-v^2+2v+1} dv = \frac{1}{x} dx$. A one-parameter family of solutions of this equation is defined implicitly by $-(1/2) \ln |-v^2 + 2v + 1| = \ln |x| + C$. When this equation is exponentiated, $-v^2 + 2v + 1 = D/x^2$, and substitution of $v = y/x$ gives $x^2 + 2xy - y^2 = D$.

2.

If we set $z = 1/y$, then $dz/dx = (-1/y^2)dy/dx$, and $-y^2\frac{dz}{dx} + y = y^2e^x$. Division by $-y^2$ gives $\frac{dz}{dx} - \frac{1}{y} = -e^x \implies \frac{dz}{dx} - z = -e^x$. An integrating factor for this equation is $e^{\int -dx} = e^{-x}$. When we multiply the differential equation by this factor, $\frac{d}{dx}(ze^{-x}) = -1$. Integration now yields $ze^{-x} = -x + C \implies z = (C - x)e^{-x}$. Thus, $\frac{1}{y} = (C - x)e^{-x} \implies y = \frac{e^{-x}}{C - x}$.

3.

We could use substitution 16.28 but it simpler to write

$$\frac{d}{dr} \left(r \frac{dT}{dr} \right) = k \implies r \frac{dT}{dr} = kr + C \implies \frac{dT}{dr} = k + \frac{C}{r} \implies T = kr + C \ln r + D.$$

For $T(a) = T_a$ and $T(b) = T_b$, C and D must satisfy $T_a = ka + C \ln a + D$ and $T_b = kb + C \ln b + D$. These can be solved for $C = [T_b - T_a - k(b - a)]/\ln(b/a)$ and $D = [T_a \ln b - T_b \ln a + k(b \ln a - a \ln b)]/\ln(b/a)$.