Advanced Laboratory Course

Wintersemester 09/10

Protokoll ad

ATLAS

Kian Salimkhani, Matthias Schmitz Gruppe P24

Assistent: M. Schmitz

Universität Bonn 1. März 2010

Inhaltsverzeichnis

1.	Einleitung	3						
2.	Theoretische Grundlagen	3						
	2.1. Das Standardmodell	3						
	2.1.1. Teilchen	3						
	2.1.2. Wechselwirkungen	4						
	2.2. Neue Physik	4						
	2.3. Kinematik	5						
	2.4. Der LHC	5						
	2.5. ATLAS	5						
	$2.6. \ \ Koordinaten systeme \ \ \ldots \ \ \ldots$	5						
3.	Aufgaben vor Versuchsbeginn	6						
4.	Versuchsdurchführung und Auswertung	7						
	4.1. Teil 2: Kalibration der Elektronen	7						
	4.2. Teil 3: Suche nach neuer Physik	12						
5.	5. Zusammenfassung							
Α.	Quellcode	13						
	A.1. ElecCalib.cpp							
В.	Tabellen	14						
C.	Literatur	14						

1. Einleitung

In diesem Praktikumsversuch soll die Physik des ATLAS-Experimentes kennengelernt und untersucht werden. So wird sich einleitend anhand von event displays mit den zu Grunde liegenden Prozessen und dem ATLAS vertraut gemacht. Anschließend wird die Messung der Elektronenenergie anhand der Z^0 -Masse kalibriert, woraufhin dann entweder eine Bestimmung der W-Boson-Masse oder aber die Suche nach neuer Physik anhand von simulierten ATLAS Daten erfolgt.

2. Theoretische Grundlagen

2.1. Das Standardmodell

Das Standardmodell der Teilchenphysik ist eine relativistische Quantenfeldtheorie und beschreibt mittels der drei Eichgruppen $SU(3) \times SU(2) \times U(1)$ die Elementarteilchen und deren Wechselwirkungen miteinander.

2.1.1. Teilchen

Das Standardmodell kennt zwei Sorten von Teilchen, die elementar oder zusammengesetzt sein können: Fermionen mit halbzahligem Spin und Bosonen mit ganzzahligem. Im Folgenden sollen nur Elementarteilchen betrachtet werden. Die Fermionen sind in Tabelle 1 aufgeführt. Man unterscheidet zwischen Quarks aus denen die Baryonen und Mesonen aufgebaut sind und Leptonen. Beide können in drei Generationen oder Familien angeordnet werden (siehe Tabelle 1). Neben der aufgeführten Eigenschaft der elektrischen Ladung haben im Standardmodell bis auf die Neutrinos alle Quarks und Leptonen eine Masse.

	1. Familie	2. Familie	3. Familie	elektrische Ladung/ e
Quarks	$egin{array}{c} u \ d \end{array}$	$c \ s$	$egin{array}{c} t \ b \end{array}$	$+\frac{2}{3} \\ -\frac{1}{3}$
Leptonen	$ u_e $	$ u_{\mu} $ $ \mu$	$ u_{ au} $	0 -1

Tabelle 1: Fermionen des Standardmodells

Mit Hilfe der bosonischen Elementarteilchen werden die Wechselwirkungen zwischen den Teilchen beschrieben, welche als Eichfelder in die Theorie eingehen. Deshalb bezeichnet man diese Teilchen oft als Eichbosonen. In der Folgenden Tabelle sind die Eichbosonen des Standardmodells und die wichtigsten Eigenschaften aufgelistet.

Eichboson	Bezeichnung	Spin	Masse/GeV	elektrische Ladung/ e	Wechselwirkung
Photon	γ	1	0	0	elektromagnetisch
W-Bosonen	W^\pm	1	≈ 80	± 1	schwach
Z-Boson	Z^0	1	≈ 91	0	schwach
Gluon	g	1	0	0	stark
Higgs	H	0	?	0	

Tabelle 2: Eichbosonen des Standardmodells (Higgs-Teilchen bisher nicht experimentell nachgewiesen)

Das Higgs (siehe Kapitel 2.2) wird zwar vom Standardmodell postuliert, wurde bisher aber nicht experimentell nachgewiesen.

2.1.2. Wechselwirkungen

2.2. Neue Physik

Die über das Standardmodell hinausgehenden theoretischen Überlegungen werden auch als "neuer Physik" bezeichnet. Man erhofft sich vom LHC (auch über ATLAS) u. a. hierzu Hinweise zu liefern. Die hier relevanten Kandidaten für neue Physik sind:

- 1. Das Higgs-Boson ist zwar Teil des Standardmodells und wird dort benötigt, um den schweren Eichbosonen sowie den übrigen Teilchen ihre Masse zu geben, wurde bisher aber noch nicht experimentell nachgewiesen, weshalb es hier unter "neuer Physik" aufgeführt wird. In der einfachsten Theorie ist das Higgs-Boson ein reelles skalares Feld, hat also Spin 0 und würde sich über einen Peak in der Verteilung der invarianten Masse zeigen.
- 2. In der Theorie der **Supersymmetrie** werden Partnerteilchen zu den Standardmodell-Teilchen postuliert und zwar zu jedem Fermion ein bosonischer supersymmetrischer Partner und zu jedem Boson ein fermionischer supersymmetrischer Partner. Die Massen der SuSy-Teilchen sind nicht bekannt, sie sollten jedoch deutlich höher liegen als die ihrer Partnerteilchen, da man sonst beispielsweise den SuSy-Partner zum Elektron bereits gefunden haben müsste. Auch hier gibt es mehrere zur Auswahl stehende Theorien, wobei wir uns hier auf eine Theorie mit Neutralino als LSP (lightest supersymmetric particle) beschränken. Das Neutralino müsste sich im Experiment durch fehlenden Transversalimpuls kennzeichnen.
- 3. Eine weitere Möglichkeit für neue Physik sind **schwere Quarks**. So ist es durchaus denkbar, dass es noch eine weitere, vierte Leptonen- und Quark-Generation gibt. Aus der Breite des Z^0 -Peaks erhält man jedoch als obere Grenze für die Anzahl der leichten Neutrinos drei, gäbe es also eine vierte Familie, so müssten die Teilchen dieser deutlich schwerer sein als die bisherigen. Die Quarks dieser Familie wären

also schwer und würden sich vor allem durch eine hohe Anzahl hadronischer Jets auszeichnen.

4. In verschiedenen Theorien werden weitere schwere Eichbosonen Z' vorhergesagt. Hier sollen die Daten beispielsweise darauf untersucht werden, ob es ein weiteres schweres Eichboson mit ähnlichen Eigenschaften wie das Z^0 gibt, das aber deutlich schwerer wäre als dieses. Es soll ebenfalls an Quarks und Leptonen gleichermaßen koppeln und würde in ein Leptonenpaar oder ein Quarkpaar zerfallen. Es kann nicht nur einzeln, sondern auch paarweise oder zusammen mit einem Z^0 produziert werden und würde mit letzteren beiden Möglichkeiten zu einem Vier-Leptonen-Endzustand beitragen, was für die Auswertung der Daten interessant ist.

2.3. Kinematik

2.4. Der LHC

2.5. ATLAS

2.6. Koordinatensysteme

Bei der Wahl eines angemessenen Koordinatensystems bieten sich im Wesentlichen drei an. Zum einen besteht die Möglichkeit in einem kartesischen Koordinatensystem die Strahlrichtung als z-Achse zu wählen, zum Mittelpunkt des LHC-Ringes zeigt die x-Achse und orthogonal auf beiden steht die y-Achse. Zum anderen steht die Wahl eines kanonischen Kugelkoordinatensystems zur Verfügung. Da jedoch die Ereignisse nicht gleichverteilt auftreten, sondern auf Grund der nur geringen Transversalimpulse eine Häufung bei kleinen Winkeln zu erwarten ist, modifiziert man das Koordinatensystem und führt eine neue Größe ein, die Rapidität $y \equiv \frac{1}{2} \ln \frac{E+p_z}{E-p_z}$. Rapiditätsdifferenzen sind invariant unter Lorentz-Boosts parallel zu z-Achse. In Systemen in denen die Partonenmassen vernachlässigt werden können erhält man mit dem Winkel θ zur Strahlachse stattdessen die sogenannte Pseudo-Rapidität

$$\eta = -\ln\left(\tan\frac{\theta}{2}\right). \tag{1}$$

Der ATLAS-Detektor kann Pseudo-Rapiditäten $|\eta| < 2,5$ für Leptonen sowie $|\eta| < 5$ für Hadronen auflösen.

3. Aufgaben vor Versuchsbeginn

Frage A: Zerfall des Z^0 -Bosons

Welchen Wert hat der Impuls eines Elektrons beim Zerfall des Z^0 -Bosons ($Z^0 \to e^+e^-$) im Ruhesystem des Z^0 -Bosons?

Das Z^0 -Boson wird in Ruhe betrachten, hat also einen verschwindenden Dreier-Impuls \boldsymbol{p}_Z . Da Vierer-Impuls-Erhaltung gilt, verschwindet auch die Summe der Dreier-Impulse von Positron und Elektron ($\boldsymbol{p}_{e^+} = -\boldsymbol{p}_{e^-}$). Man betrachte also die 0-Komponente der Vierer-Impulse:

$$E_{Z^0} = E_{e^+} + E_{e^-}$$
 $\Rightarrow m_{Z^0}^2 = 2E_{e^-}$
 $= 2\sqrt{m_e^2 + p_e^2}$
 $\Rightarrow p_e^2 = \frac{m_{Z^0}^2}{4} - m_e^2$
 $\Rightarrow p_e = \sqrt{\frac{m_{Z^0}^2}{4} - m_e^2}$
 $= 45.6 \,\text{GeV}$

Frage B: Elektron-Positron-Streuung

Wie groß ist der Impuls der τ -Leptonen bei der Reaktion $e^+e^- \to \tau^+\tau^-$ im CMS ($\sqrt{s} = 5 \text{ GeV}$)?

Es gilt Energieerhaltung (s = s'), somit folgt:

$$\sqrt{s} = E_{\tau^+} + E_{\tau^-}$$

$$= 2E_{\tau^+}$$

$$= 2\sqrt{m_{\tau}^2 + p_{\tau}^2}$$

$$\Rightarrow p_{\tau}^2 = \frac{s}{4} - m_{\tau}^2$$

$$\Rightarrow p_{\tau} = \sqrt{\frac{s}{4} - m_{\tau}^2}$$

$$\Rightarrow p_{\tau} = 1,76 \text{ GeV}$$

Fragen zu Versuchsteil 2

Wie kann der Transversalimpuls des W-Bosons bestimmt werden? Wie können Sie die Variable ptw aus den anderen ROOT-Variablen bestimmen?

Leiten Sie aus Gleichung (4.4) die Gleichung (4.5) her. [1]

Fragen zu Versuchsteil 3

Fragen zu Versuchsteil 4

Was ist die minimale invariante Masse der vier Leptonen aus einem Z^0 -Paar? Weshalb findet man auch unterhalb dieser Schwelle Vier-Lepton-Ereignisse?

Ein Higgs-Boson zerfalle in zwei Z^0 . Wie sieht die Verteilung der invarianten Masse der vier Leptonen aus?

Ein idealer Detektor wird vorrausgesetzt. Welches ist das typische $/E_T$, wenn ein Z^0 Paar in Elektronen oder Myonen-Paare zerfällt? Wie wird $/E_T$ bei einem realen Detektor
aussehen?

```
noch ne frage ...
un noch eine ...
```

4. Versuchsdurchführung und Auswertung

4.1. Teil 2: Kalibration der Elektronen

Die genauste Methode um die Energie eines Elektrons zu bestimmen, ist die Messung der Energie des elektromagnetischen Schauers, den das Elektron im Kalorimeter auslöst. Da das Kalorimeter aus vielen hundert Einzelteilen besteht, die alle verschiedene Eigenschaften haben und aufgrund systematischer Energieverluste durch inaktive Regionen im Detektor und Energieverluste der Elektronen bevor sie das Kalorimeter erreichen, muss diese Energiemessung kalibriert werden. Diese Kalibration lässt sich aufgrund der sehr genau bekannten Eigenschaften des Z^0 , anhand dessen Zerfall in ein e^+e^- -Paar durchführen. Dazu stehen uns Daten solcher gemessener Zerfälle zur Verfügung, die wir mithilfe des Programms ROOT analysieren.

Zuerst plotten wir die in Abbilung 1 bzw. Abbildung 2 dargestellten Histogramme der gemessenen Elektron- bzw. Positron-Energie. Wir stellen fest, dass beide Histogramme einen Peak bei etwa der halben Z^0 Masse enthalten. Entsteht bei dem harten Streuprozess ein im Laborsystem ruhendes Z^0 , so kann es in ein Leptonpaar mit genau entgegengesetzten Impulsen zerfallen. Die beiden Leptonen haben dann jeweils die Energie der

halben \mathbb{Z}^0 Masse, sodass der beschriebene Peak im Histogramm entsteht.

Abbildung 1: Energie des Elektrons beim Zerfall $Z^0 \to e^+e^-$ mit unkalibrierter Energiemessung.

Abbildung 2: Energie des Positrons beim Zerfall $Z^0 \to e^+e^-$ mit unkalibrierter Energiemessung.

Als nächstes plotten wir ein Histogramm der Invarianten Masse des Elektron-Positron-Paars und fitten eine Voigt Funktion an den erhaltenen Graph (siehe Abbildung 3). Die

Voigt-Funktion ist das Ergebnis einer Faltung der Breit-Wigner-Resonanzkurve mit einer Gaußverteilung, die die Verbreiterung der Kurve durch Detektoreffekte approximiert. Wie erwartet zeigt der Graph einen Peak, der aufgrund der mangelnden Kalibration der Energiemessung nicht genau mit der Z^0 Masse übereinstimmt.

Abbildung 3: Invariante Masse des Leptonpaars beim Zerfall $Z^0 \to e^+e^-$ mit unkalibrierter Energiemessung.

Zur Kalibration betrachtet man nun die Position des Z^0 Peaks in Abhängigkeit verschiedener Variablen, anschließend kann man diese durch Multiplikation der Energiewerte mithilfe eines C++ Scriptes auf die bekannte Z^0 Masse korrigieren. Im C++ Script stehen folgende Variablen zur Verfügung:

- E_{raw} : Die unkalibrierte Energie.
- pt: Der transversale Impuls.
- phi, eta: Richtung des Elektrons (azimutaler Winkel ϕ und η).
- etiso: Transversale Energie im Kalorimeter in der Umgebung des Elektrons.
- eoverp: Verhältnis zwischen Elektron-Energie und -Impuls.
- drjet: Abstand des Elektrons zum nächsten Jet (in der $\eta\phi$ Ebene)

Als Beispiel sei in Abbildung 4 die gemessen
e Z^0 Resonanz für verschiedene $\eta\text{-Bereiche}$ dargestellt.

Abbildung 4: Invariante Masse des Leptonpaars beim Zerfall $Z^0 \to e^+e^-$ für verschiedene Bereiche der Pseudorapidität η des Elektrons vor der Kalibration.

Für die verschiedenen η Bereiche lassen sich nun verschiedene Multiplikatoren für die Energiewerte bestimmen um die Z^0 Resonanz jeweils auf den richtigen Wert zu verschieben. Dieses Verfahren kann man iterativ auch auf die anderen Variablen anwenden. Das von uns auf diese Weise geschriebene Skript findet sich im Anhang A.1. In Abbildung 5 ist analog zu Abbilung 4 die gemessene Z^0 Resonanz für verschiedene Werte von η nach der Kalibration dargestellt. In Abbilung 6 findet sich der Fit an die Gesamtverteilung nach der Kalibration inklusive der Fitparameter. Die gemessene Z^0 Masse liegt nun mit $(91,17\pm0,02)$ GeV sehr gut verträglich mit dem Literaturwert von $(91,1876\pm0,0021)$ GeV. Die Auflösung des Detektors hat sich von $(3,977\pm0,026)$ GeV auf $(1,963\pm0,020)$ GeV verbessert.

Abbildung 5: Invariante Masse des Leptonpaars beim Zerfall $Z^0 \to e^+e^-$ für verschiedene Bereiche der Pseudorapidität η des Elektrons nach der Kalibration.

Abbildung 6: Invariante Masse des Leptonpaars beim Zerfall $Z^0 \to e^+e^-$ nach der Kalibration mit VoigtFit und Parametern.

4.2. Teil 3: Suche nach neuer Physik

In diesem Versuchsteil wollen wir nach Hinweisen auf neue Physik (wie in Abschnitt XXX beschrieben) suchen. Dazu betrachten wir Daten mit 4-Lepton-Endzuständen.

Abbildung 7: Dominante Standardmodell-Prozesse mit vier-Lepton-Endzuständen

Aus dem Standardmodell (ohne Higgs Boson) ergeben sich drei dominante Prozesse, die zu 4-Lepton-Endzuständen führen können. Sie sind in Abbildung 7 dargestellt. Daneben gibt es einige Szenarios neuer Physik die weitere Prozesse mit solchen Endzuständen vorhersagen:

• Das **Higgs Boson** kann über den Prozess $H \to Z Z \to l^+ l^- l'^+ l'^-$ zerfallen (Siehe Abbildung 8).

Abbildung 8: Zerfall des Higgs Bosons über ein \mathbb{Z}^0 Paar in 2 Leptonenpaare.

• In der Supersymmetrie-Erweiterung des Standardmodells gibt es einige Prozesse deren Endzustände 4 Leptonen enthalten. Beispiele dafür sind die in Abbildung 9 bzw. Abbildung 10 dargestellten Zerfallskaskaden mit Neutralino- bzw. b-squark-Paarproduktion.

Abbildung 9: SUSY Zerfallskaskade mit Abbildung 10: SUSY Zerfallskaskade mit Neutralino-Paarproduktion. b-squark-Paarproduktion.

• Erweitert man das Standardmodell durch zusätzliche **schwere Quarks** kann unter der Vorraussetzung, dass das schwere down-type Quark wesentlich schwerer als das top-Quark ist, der folgende Prozess mit vier Leptonen im Endzustand auftreten:

$$d_4 \bar{d}_4 \to t \; W^- \; \bar{t} \; W^+ \to b \; W^+ \; W^- \; \bar{b} \; W^- \; W^-$$

• In Theorien mit zusätzlichen **schweren Eichbosonen**, die ähnliche Eigenschaften wie das Z^0 Boson haben können ebenfalls Prozesse mit vier-Lepton-Endzuständen auftreten, da die zusätzlichen Eichbosonen ebenfalls in Leptonpaare zerfallen können.

5. Zusammenfassung

A. Quellcode

A.1. ElecCalib.cpp

```
else if ((eta)>-1.5) energy = energy *
         91.1876/91.1872*91.1876/85.7911*91.1876/90.4713*91.1876/91.1639*91.1876/91.2424;
     else if ((eta)>-2.0) energy = energy *
         91.1876/90.7617*91.1876/82.0698*91.1876/88.7481*91.1876/90.4027*91.1876/90.869;
    else if ((eta)>-2.5) energy = energy *
         91.1876/90.8539*91.1876/81.5198*91.1876/88.6939*91.1876/90.4605*91.1876/90.8548;
    if (fabs(phi)>2.0) energy = energy * 91.1876/91.3577*91.1876/91.1852;
    else if (fabs(phi)>1.5) energy = energy * 91.1876/91.2691*91.1876/91.1819;
else if (fabs(phi)>1.0) energy = energy * 91.1876/91.2028*91.1876/91.253;
    else if (fabs(phi)>0.0) energy = energy * 91.1876/91.2374*91.1876/91.2807;
    if (pt>75) energy = energy *
         91.1876/90.3534*91.1876/90.8199*91.1876/90.9337*91.1876/91.0716;
    else if (pt>50) energy = energy *
         91.1876/91.2934*91.1876/91.2528*91.1876/91.2152*91.1876/91.1986;
    else if (pt>25) energy = energy *
         91.1876/91.1039*91.1876/91.1697*91.1876/91.1801*91.1876/91.1844;
     else if (pt>0) energy = energy *
         91.1876/91.4275*91.1876/91.2845*91.1876/91.2393*91.1876/91.2064;
    if (eoverp>7.5) energy = energy*91.1876/92.5439*91.1876/92.3647*91.1876/92.5107;
    else if (eoverp>5.0) energy = energy*91.1876/91.3806*91.1876/91.3122*91.1876/91.3581;
    else if (eoverp>2.5) energy = energy*91.1876/90.3963*91.1876/90.334*91.1876/90.3737;
    else if (eoverp>0) energy = energy*91.1876/91.1876*91.1876/91.1876/91.1876/91.1876;
    if (etiso>1.5) energy = energy*91.1876/91.3671*91.1876/91.1977;
    else if (etiso>1.0) energy = energy*91.1876/91.3977*91.1876/91.2983;
else if (etiso>0.5) energy = energy*91.1876/91.3588*91.1876/91.2324;
    else if (etiso>0) energy = energy*91.1876/91.1515*91.1876/91.0749;
     if (mindrjet>7.5) energy = energy*91.1876/91.1876*91.1876/91.1876*91.1876/91.1876;
     else if (mindrjet>5.0) energy = energy*91.1876/90.7937*91.1876/91.1729;
    else if (mindrjet>2.5) energy = energy*91.1876/91.1319*91.1876/91.1002;
    else if (mindrjet>0) energy = energy*91.1876/91.0853*91.1876/91.0663;
    return energy;
40 }
```

B. Tabellen

C. Literatur

[1] Universität Bonn, Skript zum ATLAS-Versuch [English-Version] (2008).