edexce

January 2005 6663 Core Mathematics C1 Mark Scheme

mai k Scheme				
Question number	Scheme		Marks	
1.	(a) 4		B1	
	(b) $16^{-\frac{3}{2}} = \frac{1}{16^{\frac{3}{2}}}$ and attempt to find $16^{\frac{3}{2}}$		M1	
	$\frac{1}{64}$ (or exact equivalent, e.g. 0.015625)			(3) 3
,_	(b) Any attempt to evaluate $16^{\frac{3}{2}}$.			
	Answer only scores both marks.			
	•••			
Ì				
		5		

Question number	n Scheme		
2.	(i) (a) $15x^2 + 7$	MI AI AI	(3)
	(i) (b) 30x	B1ft	(1)
	(ii) $x + 2x^{\frac{3}{2}} + x^{-1} + C$ A1: $x + C$, A1: $2x^{\frac{3}{2}}$, A1: x^{-1}	M1 A1 A1 A	.1(4) 8
	(i) (a) A1: 2 terms correctly differentiated. A1: Fully correct.		-
	(ii) Allow any equivalent version of each term.		
			,
			ļ
\			
			_

PMT

Question number	Scheme		Marks	
3.	Attempt to use discriminant $b^2 - 4ac$ (Need not be equated to zero)		M1	
	$144 - 4 \times k \times k = 0$		A1	
	Attempt to solve for k		М1	
	k=6		A1	(4)
				4
	Alternative for first 2 marks Attempt to complete square $(x \pm p)^2 \pm q \pm c$, $p \neq 0$, $q \neq 0$	M1 .		
	$1 - \frac{36}{k^2} = 0 \text{or equiv.}$	A1		
	Other alternatives	:		
	(i) $x^2 + \frac{12}{k}x + 1$ must be equivalent to $(x+1)^2$	M1 A1		
	Compare coefficients and attempt to solve for k : $\frac{12}{k} = 2$ $k = 6$	Ml A1		
	(ii) Finding the root first, e.g. $(\sqrt{k}x + \sqrt{k})^2 = 0$, so $x = -1$	M1 A1		
	Substitute the root to find k , $k = 6$	M1 A1		
	Answer only Scores 2 marks: M0 A0 M1 A1 The first two marks would only be scored if solution then justifies that $k =$ equal roots.	6 gives		
	•			
7				
	A The state of the			

Question number	Scheme	Marks
4.	$x^2 + 2(2-x) = 12$ or $(2-y)^2 + 2y = 12$ (Eqn. in x or y only)	M1
	$x^2-2x-8=0$ or $y^2-2y-8=0$ (Correct 3 term version)	A1
	(x-4)(x+2) = 0 $x =$ or $(y-4)(y+2) = 0$ $y =$	M1
	x = 4, x = -2 or $y = 4, y = -2$	A1
	y=-2, $y=4$ or $x=-2$, $x=4$ (M: attempt one, A: both)	M1 A1ft (6) 6
	A1ft requires 3 s.f. accuracy if not exact.	
	"Non-algebraic" solutions:	
	No working, and only one correct solution pair found (e.g. $x = 4$, $y = -2$): M0 A0 M0 A0 M1 A1 No working, and both correct solution pairs found, but not demonstrated: M0 A0 M1 A1 M1 A1 Both correct solution pairs found, and demonstrated, perhaps in a table of values: Full marks	

Question number	Scheme	Marks	
5.	(a) -3, -1, 1 B1: One correct	B1 B1	(2)
	(b) 2 (ft only if terms in (a) are in arithmetic progression)	B1ft	(1)
	(c) Sum = $\frac{1}{2}n\{2(-3) + (n-1)(2)\}$ or $\frac{1}{2}n\{(-3) + (2n-5)\}$	M1 A1ft	
	$= \frac{1}{2}n\{2n-8\} = n(n-4) \tag{*}$	A1	(3)
			6
þ l			
†			

Question number	Scheme	Marks	
6.	(a) Reflection in x -axis	B1	
	(3, 2) 2 and 4 labelled (or (2, 0) and (4, 0) seen)	B1	
	Image of $P(3,2)$	B1	(3)
	(b) Stretch parallel to x-axis	M1	:
	1 and 2 labelled (or (1, 0) and (2, 0) seen)	Al	
	Image of $P(1\frac{1}{2}, -2)$	A1	(3) 6

Question number	Scheme	Marks	
7.	(a) $\frac{5-x}{x} = \frac{5}{x} - 1$ $(= 5x^{-1} - 1)$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 8x - 5x^{-2}$	M1 A1 A1	
	When $x = 1$, $\frac{dy}{dx} = 3$ (*)	A1	(5)
	(b) At $P, y = 8$	B1	
	Equation of tangent: $y-8=3(x-1)$ $(y=3x+5)$ (or equiv.)	M1 A1ft	(3)
	(c) Where $y = 0$, $x = -\frac{5}{3}$ (= k) (or exact equiv.)	M1 A1	(2)
			10
	(a) First M1 can also be scored by an attempt to use the quotient or product rule to differentiate $\frac{5-x}{x}$.		
	(b) The B mark may be earned in part (a).		
		:	
	÷		

PMT

Question number	Scheme	Marks	
8.	(a) $p = 15, q = -3$	B1 B1	(2)
	(b) Grad. of line ADC: $m = -\frac{5}{7}$, Grad. of perp. line $= -\frac{1}{m} \left(= \frac{7}{5} \right)$	B1, M1	
	Equation of <i>l</i> : $y-2 = \frac{7}{5}(x-8)$	M1 A1ft	
	7x-5y-46=0 (Allow rearrangements, e.g. $5y=7x-46$)	A1	(5)
	(c) Substitute $y = 7$ into equation of l and find $x =$	M1	
	$\frac{81}{7}$ or $11\frac{4}{7}$ (or exact equiv.)	A1	(2)
	<i>'</i>		9
	(a) Special case: If B0 B0 from main scheme, allow M1 for a correct method, e.g. $8 = \frac{1+p}{2}$. (b) Finding eqn. of <i>ADC</i> instead of <i>l</i> scores M1 A0 A0.		

Question number	Scheme	Marks	-
9.	(a) Gradient of tangent at P: $m = 4$, Grad. of normal $= -\frac{1}{m} \left(= -\frac{1}{4} \right)$	B1, M1	
	Equation of normal: $y-4 = -\frac{1}{4}(x-1)$ $(4y = -x+17)$	M1 A1	(4)
	(b) $(3x-1)^2 = 9x^2 - 6x + 1$	В1	
	Integrate: $\frac{9x^3}{3} - \frac{6x^2}{2} + x \ (+C)$	M1 A1ft	
	Substitute (1, 4) to find $c =$, $c = 3$ $(y = 3x^3 - 3x^2 + x + 3)$	M1, A1	(5)
	(c) Gradient of (tangent to) C is ≥ 0	B1	
	Gradient of given line is < 0 (-2)	B1	(2)
			11
	(a) Using gradient of tangent is M0.		
	(b) Alternative:		
	$y = \frac{(3x-1)^3}{9} \text{ (+C)}$ M1 A1 (numerator) A1 (denominator)		
	Substitute (1, 4) to find $c =$, $c = \frac{28}{9}$ $\left(y = \frac{(3x-1)^3}{9} + \frac{28}{9} \right)$ M1, A1		
	t.		
	•		

PMT

(4)

(5)

12

Marks

6663 Core Mathematics C1 January 2005 Advanced Subsidiary/A	10	