Ecuacións lineais da acústica

Ampliación de Volumes Finitos

Iván Martínez Suárez

MÁSTER EN MATEMÁTICA INDUSTRIAL UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

- 1 Sistema hiperbólico de leis de conservación
- Problema de Riemann
 - Solución exacta
 - Método de Godunov
 - Exemplo
- Problema de Cauchy
 - Solución exacta
 - Exemplo
 - Análise de precisión
 - Estabilidade numérica

Sistema hiperbólico de leis de conservación (I)

Ecuacións lineais da acústica

$$\begin{split} \frac{\partial u}{\partial t}(x,t) + \frac{1}{\rho_0} \frac{\partial p}{\partial x}(x,t) &= 0\\ \frac{\partial p}{\partial t}(x,t) + \rho_0 c_0^2 \frac{\partial u}{\partial x}(x,t) &= 0 \end{split}$$

- u(x, t) velocidade do medio perturbado
- p(x, t) presión do medio perturbado
- ullet ho_0 densidade do medio en repouso
- c₀ compresibilidade do medio en repouso

Sistema hiperbólico de leis de conservación (II)

Variables conservativas

$$\mathbf{w} = \left(\begin{array}{c} u(x,t) \\ p(x,t) \end{array}\right)$$

Matriz jacobiana do fluxo físico

$$\mathbf{A} = \left(\begin{array}{cc} 0 & 1/\rho_0 \\ \rho_0 c_0^2 & 0 \end{array} \right)$$

Fluxo físico

$$\mathbf{f}(\mathbf{w}) = \begin{pmatrix} \frac{1}{\rho_0} p(x,t) \\ \rho_0 c_0^2 u(x,t) \end{pmatrix} = \mathbf{A}\mathbf{w}$$

Sistema hiperbólico de leis de conservación

$$\mathbf{w}_t + \mathbf{A}\mathbf{w}_{\mathsf{x}} = \mathbf{0}.$$

Estudo da hiperbolicidade estrita (I)

Autovalores de **A**

$$\begin{cases} \lambda_1 = -c_0 \\ \lambda_2 = c_0 \end{cases}$$

$$\mathbf{\Lambda} = \left(\begin{array}{cc} -c_0 & 0 \\ 0 & c_0 \end{array} \right)$$

Autovectores de A

$$\mathbf{e_1} = rac{1}{\sqrt{1 + (
ho_0 c_0)^2}} \left(egin{array}{c} 1 \\ -
ho_0 c_0 \end{array}
ight)$$

$$\mathbf{e_2} = \frac{1}{\sqrt{1 + (\rho_0 c_0)^2}} \left(\begin{array}{c} 1 \\ \rho_0 c_0 \end{array} \right)$$

$$\mathbf{P} = rac{1}{\sqrt{1 + (
ho_0 c_0)^2}} \left(egin{array}{cc} 1 & 1 \ -
ho_0 c_0 &
ho_0 c_0 \end{array}
ight)$$

Estudo da hiperbolicidade estrita (II)

Sistema de leis de conservación estritamente hiperbólico

• Autovalores de A reais e distintos:

$$c_0 \neq -c_0 \Leftrightarrow c_0 \neq 0$$

Autovectores de A linealmente independentes:

$$\det\left(\mathbf{e_1}\mid\mathbf{e_2}\right)\neq\mathbf{0}\Leftrightarrow\rho_0c_0\neq\mathbf{0}$$

O sistema de leis de conservación será estritamente hiperbólico se, e soamente se, $c_0 \neq 0$ e $\rho_0 \neq 0$.

Solución exacta (I)

Condición inicial

$$\mathbf{w}(x,0) = \mathbf{w}_0(x) = \begin{cases} \mathbf{w}_{\mathbf{L}} = (u_L, p_L)^T & \text{se } x < 0 \\ \mathbf{w}_{\mathbf{R}} = (u_R, p_R)^T & \text{se } x > 0 \end{cases}$$

Solución exacta

$$\mathbf{w}(x,t) = \begin{cases} \mathbf{w_L} & \text{se} & x - \lambda_1 t < 0, \\ \alpha_1^R \mathbf{e_1} + \alpha_2^L \mathbf{e_2} & \text{se} & (x - \lambda_1 t)(x - \lambda_2 t) < 0, \\ \mathbf{w_R} & \text{se} & x - \lambda_2 t > 0. \end{cases}$$

Solución exacta (II)

Coeficientes

$$\left(\begin{array}{c}\alpha_1^L\\\alpha_2^L\end{array}\right)=P^{-1}\left(\begin{array}{c}u_L\\p_L\end{array}\right)=\frac{\sqrt{1+(\rho_0c_0)^2}}{2\rho_0c_0}\left(\begin{array}{c}\rho_0c_0u_L-p_L\\\rho_0c_0u_L+P_L\end{array}\right)$$

$$\begin{pmatrix} \alpha_1^R \\ \alpha_2^R \end{pmatrix} = P^{-1} \begin{pmatrix} u_R \\ p_R \end{pmatrix} = \frac{\sqrt{1 + (\rho_0 c_0)^2}}{2\rho_0 c_0} \begin{pmatrix} \rho_0 c_0 u_R - p_R \\ \rho_0 c_0 u_R + P_R \end{pmatrix}$$

Solución exacta (III)

Solución exacta (compoñentes)

$$u(x,t) = \begin{cases} u_L & \text{se} \quad x + c_0 t < 0, \\ \frac{1}{2} (u_L + u_R) + \frac{1}{2\rho_0 c_0} (p_L - p_R) & \text{se} \quad (x + c_0 t)(x - c_0 t) < 0, \\ u_R & \text{se} \quad x - c_0 t > 0. \end{cases}$$

$$p(x,t) = \begin{cases} p_L & \text{se} \quad x + c_0 t < 0, \\ \frac{1}{2} \rho_0 c_0 (u_L - u_R) + \frac{1}{2} (p_L + p_R) & \text{se} \quad (x + c_0 t)(x - c_0 t) < 0, \\ p_R & \text{se} \quad x - c_0 t > 0. \end{cases}$$

Método de Godunov (I)

Esquema de Godunov

$$\mathbf{w}_{i}^{n+1} = \mathbf{w}_{i}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{f}_{i+\frac{1}{2}}^{n} - \mathbf{f}_{i-\frac{1}{2}}^{n} \right)$$

Fluxo numérico de Godunov

$$\mathbf{f}_{i+\frac{1}{2}}^{n} = \frac{1}{2} \left[\mathbf{f}(\mathbf{w}_{i}^{n}) + \mathbf{f}(\mathbf{w}_{i+1}^{n}) \right] - \frac{1}{2} |\mathbf{A}| (\mathbf{w}_{i+1}^{n} - \mathbf{w}_{i}^{n})$$

$$|\mathbf{A}| = \mathbf{P}|\mathbf{\Lambda}|\mathbf{P}^{-1} = |c_0|\mathbf{I}$$

$$\mathbf{f}_{i+\frac{1}{2}}^{n} = \frac{1}{2} \begin{bmatrix} \frac{1}{\rho_{0}} (p_{i}^{n} + p_{i+1}^{n}) - |c_{0}| (u_{i+1}^{n} - u_{i}^{n}) \\ \rho_{0} c_{0}^{2} (u_{i}^{n} + u_{i+1}^{n}) - |c_{0}| (p_{i+1}^{n} - p_{i}^{n}) \end{bmatrix}$$

Método de Godunov (II)

Método de Godunov (compoñentes)

$$\begin{cases} u_{i}^{n+1} = u_{i}^{n} - \frac{\Delta t}{2\Delta x} \left[\frac{1}{\rho_{0}} \left(p_{i+1}^{n} - p_{i-1}^{n} \right) - |c_{0}| \left(u_{i+1}^{n} - 2u_{i}^{n} + u_{i-1}^{n} \right) \right] \\ p_{i}^{n+1} = p_{i}^{n} - \frac{\Delta t}{2\Delta x} \left[\rho_{0} c_{0}^{2} \left(u_{i+1}^{n} - u_{i-1}^{n} \right) - |c_{0}| \left(p_{i+1}^{n} - 2p_{i}^{n} + p_{i-1}^{n} \right) \right] \end{cases}$$

- Condición inicial: $u_i^0 \in p_i^0$ coñecidos $\forall i$
- Condicións de contorno: solución exacta nos nodos extremos

10

Condición inicial

Condición inicial

$$\mathbf{w}(x,0) = \mathbf{w}_0(x) = \begin{cases} \mathbf{w_L} = (u_L, p_L)^T = (1,5)^T & \text{se } x < 0 \\ \mathbf{w_R} = (u_R, p_R)^T = (0,10)^T & \text{se } x > 0 \end{cases}$$

Initial condition p0(x)

Solución numérica (I)

Figura: Solución do problema de Riemann, en t=2, con número de Courant $\mu=0.9$, $\Delta x=0.036$, $\Delta t\approx0.033$, con 166 nodos espaciais, $\rho_0=c_0=1$.

Solución numérica (II)

Figura: Solución do problema de Riemann, en t=2, con número de Courant $\mu=1$, $\Delta x=\Delta t\approx 0.033$, con 184 nodos espaciais, $\rho_0=c_0=1$.

Solución exacta

Condición inicial

$$\mathbf{w}(x,0) = \mathbf{w}_0(x) = (u^0(x), p^0(x))^T$$

Solución exacta (compoñentes)

$$\begin{cases} u(x,t) = \frac{1}{2\rho_0 c_0} \left\{ \rho_0 c_0 \left[u^0(x + c_0 t) + u^0(x - c_0 t) \right] + p^0(x - c_0 t) - p^0(x + c_0 t) \right\} \\ p(x,t) = \frac{1}{2} \left\{ \rho_0 c_0 \left[u^0(x - c_0 t) - u^0(x + c_0 t) \right] + p^0(x + c_0 t) + p^0(x - c_0 t) \right\} \end{cases}$$

Exemplo

Condición inicial ($ho_0=c_0=1$)

$$\begin{cases} u_0(x) = \sin(x), & x \in [-3, 3] \\ p_0(x) = 3 + x, & x \in [-3, 3] \end{cases}$$

Figura: $p_0(x) = 3 + x$.

Solución numérica (I)

Figura: Solución do problema de Cauchy para u(x,t) e p(x,t), no intervalo [-3,3] e con condicións iniciais $u_0(x)$ e $p_0(x)$. Cálculo para t=1, $\mu=0.2$ con 60 nodos.

Solución numérica (II)

Figura: Solución do problema de Cauchy para u(x,t) e p(x,t), xunto cos erros asociados, no intervalo [-3,3] e con condicións iniciais $u_0(x)$ e $p_0(x)$. Cálculo para t=1, $\mu=0,5$ con 60 nodos.

Solución numérica (III)

Figura: Solución do problema de Cauchy para u(x,t) e p(x,t), xunto cos erros asociados, no intervalo [-3,3] e con condicións iniciais $u_0(x)$ e $p_0(x)$. Cálculo para t=1, $\mu=0.9$ con 60 nodos.

Análise de precisión (I)

Erro espacial norma 1

$$arepsilon_{\Delta x}^{1}\left(t^{f}
ight) = \Delta x \sum_{j=1}^{M} \|w(x_{j}, t^{f}) - w_{j}^{N}\|$$

Erro espacial norma ∞

$$arepsilon_{\Delta x}^{\infty}\left(t^{f}\right)=\max_{j}\|w(x_{j},t^{f})-w_{j}^{N}\|$$

Orde de precisión do método (p)

$$\log \varepsilon = C + p\Delta x$$

Orde de precisión p_k

$$\frac{\Delta x_k}{\Delta x_{k+1}} = 2$$

$$p_k := \frac{\log(\mathcal{K}_k)}{\log(2)}$$

$$\mathcal{K}_k = rac{arepsilon_{\Delta imes_k}(t^f)}{arepsilon_{\Delta imes_{k+1}}(t^f)}$$

Análise de precisión (II)

Figura: Estudo da orde de precisión espacial a partir da regresión lineal para u(x, t) e p(x, t), con $\mu = 0.5$.

Análise de precisión (III)

Nodos	Erro norma 1	p_k	Erro norma ∞	p_k
60	0,0577	0,974	0,0132	0,984
120	0,0294	0,987	0,00669	0,993
240	0,0148	0,993	0,00336	0,996
480	0,00745	0,997	0,00168	0,998
960	0,00373	-	0,000843	_

Táboa: Orde de precisión do método para u(x, t), con $\mu = 0.5$.

Nodos	Erro norma 1	p_k	Erro norma ∞	p_k
60	0,0669	0,946	0,0199	0,959
120	0,0347	0,972	0,0102	0,980
240	0,0177	0,986	0,00518	0,990
480	0,00893	0,993	0,00261	0,995
960	0,00448	_	0,00131	_

Táboa: Orde de precisión do método para p(x, t), con $\mu = 0.5$.

Estabilidade numérica (I)

Figura: Solución do problema de Cauchy para u(x,t) e p(x,t), no intervalo [-3,3] e con condicións iniciais $u_0(x)$ e $p_0(x)$. Cálculo para $t=1, \mu=1,1, \Delta x=0,012, \Delta t\approx 0,014$, con 480 nodos espaciais.

Estabilidade numérica (II)

Figura: Solución do problema de Cauchy para u(x,t) e p(x,t), no intervalo [-3,3] e con condicións iniciais $u_0(x)$ e $p_0(x)$. Cálculo para t=1, $\mu=1.15$, $\Delta x=0.012$, $\Delta t\approx 0.014$, con 480 nodos espaciais.