Uncertainty quantification for waves: inverse UQ

Laura Scarabosio (1.scarabosio@math.ru.nl)
Summer school "Waves: Modeling, Analysis, and Numerics"
Nijmegen, 25–29 August 2025

Introduction

The inverse problem

Goal: Infer the cause (=value of parameters) by observing effects (=indirect and noisy measurements).

Why? Gain knowledge, make more accurate predictions of quantities of interest.

Why physics model? adds expert knowledge. Allows inference with scarce data and *interpretability*.

Inverse wave scattering

Sannomiya, Diss. ETHZ 18747

siemens-healthineers.com

Borden, Inverse Problems (2002)

Yu, Ma, Rev. Geo. (2021)

Plan for inverse UQ

Inverse problems and Bayesian approach

Bayesian inversion in time-harmonic scattering

Computational realization

Inverse problems and Bayesian approach

Setting

measurements = model(
$$\vartheta$$
) + noise $y = \mathcal{G}(\vartheta) + \varepsilon$,

where $y \in \mathbb{R}^N$, $\vartheta \in \mathbb{R}^d$, ε realization of N-dimensional random variable, e.g. $\varepsilon \sim \mathcal{N}(0, \Sigma)$.

A possible solution: least-squares solution (MLE when $\varepsilon \sim \mathcal{N}(0, \Sigma)$)

$$\theta^* = \operatorname{argmin}_{\vartheta} \|y - \mathcal{G}(\vartheta)\|^2.$$

Remarks:

- Other noise models are possible (e.g., multiplicative noise)
- Modeling error can be taken into account in ε .

Inverse problems are usually ill-posed

Well-posed problem

Existence: a solution exists

Uniqueness: the solution is unique

Stability: the solution depends continuously on data

J.S. Hadamard (1865–1963)

This does not usually hold in inverse problems:

even if we can find a solution, a slight variation in data (e.g., measurement noise) may change the solution drastically.

Regularization in inverse problems

Deterministic approach: optimization-based.

Slightly modify the problem or algorithm to achieve stable solution.

Tikhonov regularization: $\vartheta^* = \operatorname{argmin}_{\vartheta} ||y - \mathcal{G}(\vartheta)||^2 + \alpha ||\vartheta||^2$.

Landweber iteration: early stopping in gradient descent.

No quantification of uncertainty.

Statistical approach: sampling-based.

Shift of focus: probability distribution rather than point estimate.

We model ϑ as a **random variable**.

Its distribution is now the solution to the Bayesian inverse problem.

The Bayesian inverse problem

$$posterior = \frac{likelihood \cdot prior}{model \ evidence}$$
$$\pi(\vartheta|y) = \frac{\pi(y|\vartheta)\pi_0(\vartheta)}{Z}$$

Prior distribution: distribution of ϑ before any data (expert knowledge)

Likelihood: probability of data conditioned on ϑ (data knowledge)

Posterior distribution: distribution of ϑ conditioned on data (data+expert knowledge)

Model evidence: normalization constant, computed for model comparison.

Well-posedness of Bayesian inverse problems [Stuart, Acta Numerica, 2010]

$$y = \mathcal{G}(\vartheta) + \varepsilon,$$

where $v \in \mathbb{R}^N$, $\mathcal{G}: X \to \mathbb{R}^N$, ε with density ρ .

Existence and uniqueness

Assume $\mathcal{G}: X \to \mathbb{R}^N$ continuous, ρ has support equal to \mathbb{R}^N and $\mu_0(X) = 1$. Then the posterior measure $\mu^{y}(d\vartheta)$ is absolutely continuous with respect to the prior $\mu_0(d\vartheta)$ and has Radon-Nikodym derivative given by

$$\frac{\mathrm{d}\mu^{y}}{\mathrm{d}\mu_{0}} = \exp(-\Phi(\vartheta;y)), \quad \Phi(\vartheta;y) = -\log(\rho(y-\mathcal{G}(\vartheta))).$$

Stability

Assume $\mathcal{G} \in L^2_{u_0}(X; \mathbb{R}^N)$. Then, for each r > 0 there exists $c_r > 0$:

$$d_{\mathit{Hell}}(\mu^y,\mu^{ ilde{y}}) \leq c_r |y- ilde{y}|, \quad ext{for all } y, ilde{y}: |y|,| ilde{y}| \leq r.$$

Bayesian estimators

Also in the Bayesian approach, it may be useful to retrieve some point estimates.

Posterior mean (PM or CM): $\vartheta_{PM} = \int_{\mathbb{R}^d} \vartheta \ \mathrm{d}\pi(\vartheta|y)$ "average guess" Maximum A Posteriori (MAP): $\vartheta_{MAP} = \mathrm{argmax}_{\vartheta}\pi(\vartheta|y)$ "most likely guess"

 $\vartheta_{PM}=\vartheta_{MAP}$ for Gaussian distributions, but in general they can be very different:

Source: Björn Sprungk, Radboud Summer School 2022.

Bayesian inversion in time-harmonic scattering

The setting

Goal: infer scatterer's shape from measurements of the scattered field.

Focus: effect of the frequency on the inversion result.

Bayesian shape inverse problem

Assumptions

star-shaped scatterer non-trapping regime [Moiola, Spence 2017] finite dimensional measurements additive noise $\varepsilon \sim \mathcal{N}(0,\Sigma)$

Given a prior measure μ_0 on r, find the posterior μ^y given the observations

$$y = \mathcal{G}(r) + \varepsilon$$

Prior for the shape

$$r(\omega;arphi) = r_0(arphi) + \sum_{j=1}^d eta_j Y_j(\omega) \psi_j(arphi), \quad Y_j \sim \mathcal{U}([-1,1]) ext{ independent}$$

Choices for $\{\psi_j\}_j$:

Laplace-Beltrami eigenfunctions [Church et al. 2020] Localized supports - wavelets [van Harten, S. 2024]

asymptotic decay ←→ smoothness preasymptotic decay ←→ correlation length

Example:

$$r(\omega;\varphi) = r_0 + rac{r_0}{4} \sum_{j=1}^{d/2} rac{1}{1 + \ell j^p} \left(Y_{2j-1}(\omega) \cos(j\varphi) + Y_{2j}(\omega) \sin(j\varphi) \right)$$

Helmholtz transmission problem

$$\begin{cases} -\alpha_{in}\Delta(u+u_i) - \kappa_0^2 n_{in}(u+u_i) &= 0 \text{ in } D_{in}(\omega) \\ -\alpha_{out}\Delta(u+u_i) - \kappa_0^2 n_{out}(u+u_i) &= 0 \text{ in } D_{out}(\omega) \\ + \text{ continuity conditions at interface} \\ + \text{ radiation condition on } u \text{ at } \partial B_R \end{cases}$$

Non-trapping assumption [Moiola, Spence 2019]: $rac{n_{in}}{n_{out}} \leq rac{lpha_{in}}{lpha_{out}}$

$$G(r) = O \circ G(r)$$
, where $G(r) = u$

Frequency-explicit well-posedness

Theorem (Kuijpers, S. 2023)

Case 1: r is μ_0 -a.s. Lipschitz, $\alpha_{in} = \alpha_{out}$, $\frac{n_{in}}{n_{out}} < 1$ and $V = H^1(B_R)$

Case 2: r is μ_0 -a.s. of class $C^{2,1}$, $\frac{n_{in}}{n_{out}} < 1 < \frac{\alpha_{in}}{\alpha_{out}}$ and $V = H^1(B_R \setminus U)$.

Then:

(i)
$$\mu^y \ll \mu_0$$
 with likelihood $\propto \exp\left(-\frac{1}{2}|y-\mathcal{G}(r)|_{\Sigma}^2\right)$

(ii) for each
$$\gamma > 0$$
 s.t. $|y|$, $|\tilde{y}| \leq \gamma$,
$$d_{\mathrm{Hell}}(\mu^{y}, \mu^{\tilde{y}}) \leq C \|u_{i}\|_{H^{1}_{\kappa_{0},\alpha,n}(B_{R})} |y - \tilde{y}| \sim (\kappa_{0}R)|y - \tilde{y}|$$

Main tools: shape calculus (i) and estimates from [Moiola, Spence 2019] (ii).

Frequency-explicit well-posedness: remarks

Theorem (Kuijpers, S. 2023)

Case 1:
$$r$$
 is μ_0 -a.s. Lipschitz, $\alpha_{in} = \alpha_{out}$, $\frac{n_{in}}{n_{out}} < 1$ and $V = H^1(B_R)$

Case 2:
$$r$$
 is μ_0 -a.s. of class $C^{2,1}$, $\frac{n_{in}}{n_{out}} < 1 < \frac{\alpha_{in}}{\alpha_{out}}$ and $V = H^1(B_R \setminus U)$.

Then:

(i)
$$\mu^y \ll \mu_0$$
 with likelihood $L(y|r) \propto \exp\left(-\frac{1}{2}\|y - \mathcal{G}(r)\|_{\Sigma}^2\right)$

(ii) for each
$$\gamma > 0$$
 s.t. $|y|$, $|\tilde{y}| \le \gamma$,
$$d_{\mathrm{Hell}}(\mu^{y}, \mu^{\tilde{y}}) \le C \|u_{i}\|_{H^{1}_{\kappa_{0},\alpha,n}(B_{R})} |y - \tilde{y}| \sim (\kappa_{0}R)|y - \tilde{y}|$$

Frequency dictates the lengthscale

Constants depend on the inverse problem setting (prior, measurements)

High frequency and/or high contrast worsen stability

For $\alpha_{in} = \alpha_{out}$, wider class of measurements allowed

Computational realization

From vanilla Monte Carlo to MCMC

To visualize posterior, we need to **sample** (also if we have analytical expression!)

The posterior is in general a *non*-standard distribution on a high-dimensional space: **i.i.d. sampling not feasible**.

Markov Chain Monte Carlo (MCMC)

Give up on independence: generate a chain (=sequence) of correlated samples that, after a transient, follow the posterior distribution.

Markov chains: definition

Markov chain: stochastic process where, at time t, the distribution of $\vartheta^{(t)}$ depends on $\vartheta^{(t-1)} = \bar{\vartheta}$ only and not on all previous values (memoryless process).

Example: Markov chain sampling for $\vartheta = (X, Y)$

MCMC: Metropolis-Hastings algorithm

Algorithm Metropolis-Hastings algorithm.

- 1: Select a starting value $\vartheta^{(0)} = (\vartheta_1^{(0)}, \dots, \vartheta_d^{(0)})$.
- 2: **for** $t = 1, 2, \ldots$ **do**
- 3: Draw $\vartheta_{prop} \sim q(\cdot|\vartheta^{(t-1)})$
- 4: Compute

$$\alpha(\vartheta_{prop}|\vartheta^{(t-1)}) = \min\left\{1, \frac{f(\vartheta_{prop})q(\vartheta^{(t-1)}|\vartheta_{prop})}{f(\vartheta^{(t-1)})q(\vartheta_{prop}|\vartheta^{(t-1)})}\right\}$$

- 5: With probability $\alpha(\vartheta_{prop}|\vartheta^{(t-1)})$ set $\vartheta^{(t)}=\vartheta_{prop}$, otherwise $\vartheta^{(t)}=\vartheta^{(t-1)}$.
- 6: end for

where:

f target density, for us it's the posterior: $f(\vartheta) = \pi(\vartheta|y)$ q proposal density, proposes local moves we can draw $\vartheta^{(0)} \sim \pi_0(\vartheta)$

MCMC: random walk Metropolis-Hastings algorithm

We propose the new value as

$$\vartheta_{prop} = \vartheta^{(t-1)} + s\xi,$$

where $\xi \sim \mathcal{N}(0, C)$ (or another symmetric distribution)

$$\Rightarrow q(\cdot|\vartheta^{(t-1)})$$
 density of $\mathcal{N}(\vartheta^{(t-1)}, s^2C)$.

Acceptance probability simplifies to

$$\alpha(\vartheta_{prop}, \vartheta^{(t-1)}) = \min\left\{1, \frac{f(\vartheta_{prop})}{f(\vartheta^{(t-1)})}\right\}$$

(why?)

Random walk Metropolis-Hastings: choice of step size s

Sources of correlation between samples:

- $\bigcirc 1$ ϑ_{prop} too close to $\vartheta^{(t-1)}$ (chains moves slowly)
- $\bigcirc{}$ $\vartheta_{ extit{ extit{prop}}}$ too far from $artheta^{(t-1)}$ (high chance of rejection)

"Rule of thumb" [Roberts, Rosenthal, 2001]:

Choose s such that $\mathbb{E}[\alpha(\cdot,\cdot)]\approx 0.234$ when d>2, $\mathbb{E}[\alpha(\cdot,\cdot)]\approx 0.5$ when d=1,2.

MCMC: efficiency

For Q with finite variance and $S_N := \frac{1}{N} \sum_{t=1}^{N} Q(\vartheta^{(t)})$:

$$\lim_{N\to\infty} N\mathbb{E}\left[(S_N - \mathbb{E}[Q(\vartheta)])^2 \right] = Var[Q(\vartheta)] \underbrace{\left[1 + 2\sum_{j=1}^{\infty} \rho(Q(\vartheta^{(0)}), Q(\vartheta^{(j)})) \right]}_{\text{:=integrated autocorrelation time } (IACT_Q)}$$

Remarks:

Same convergence rate as vanilla Monte Carlo.

The sum is the price to pay for correlation in samples.

MCMC: practical considerations – burn-in

Depending on $\vartheta^{(0)}$, the distribution of $(\vartheta^{(t)})_t$ for small t might be far from the target distribution (posterior).

Remedy: discard the first iterations, how many depends on how fast mixing the Markov chain is.

Source: A. M. Johansen et al., Monte carlo methods, Lecture notes (2010)

MCMC: practical considerations – basic plots

- 1) Plot the chain! Possibly for more runs.
- 2 Plot cumulative averages $\left(\sum_{\tau=1}^{t} \varphi(\vartheta^{(\tau)})/t\right)_{t}$ and standard deviation or variance. **Desired**: average converges to a value, variance decreases.

Source: A. M. Johansen et al., Monte carlo methods, Lecture notes (2010)

Bayesian inverse problems and sampling: literature

- M. Dashti, M. and A. M. Stuart, *The Bayesian approach to inverse problems*, arXiv preprint arXiv:1302.6989 (2013) and Handbook of Uncertainty Quantification (2016).
- A. M. Stuart, *Inverse problems: a Bayesian perspective*, Acta numerica (2010), 19, pp. 451–559.
- J. Kaipio and E. Somersalo, *Statistical and computational inverse problems* (2006) Springer Science & Business Media.
- T. J. Sullivan, Introduction to uncertainty quantification (2015), Springer.
- C. P. Robert and G. Casella, *Monte Carlo statistical methods* (1999), New York: Springer.
- J. S. Liu, Sequential Monte Carlo methods in practice (2001), New York: springer.

