Tutorial 4 – MATH 4043

- 1. Suppose a balanced die is tossed once. Consider the bivariate random variable $Y = (Y_1, Y_2)$ where $Y_1 = 0$ if the number on the top face is even and $Y_1 = 1$ if odd, and $Y_2 = 0$ if the number on the top face is 1, 2, or 3, and $Y_2 = 1$ if 4, 5, or 6.
 - (a) What is the sample space?
 - (b) Show the mapping of the sample points to the various possible values of $Y = (Y_1, Y_2)$.
 - (c) Tabulate the joint probability mass function of Y and the marginal probability mass function of its individual components.
 - (d) Are Y_1 and Y_2 independent?
 - (e) Tabulate the conditional probability mass function $p_{Y_2|Y_1}(y_2|1) = P[Y_2 = y_2|Y_1 = 1]$ over the range of Y_2 .
 - (f) Calculate $Cov[Y_1, Y_2]$.
- 2. The bivariate random variable $X = (X_1, X_2)$ have joint probability mass function given in the table below

$X_2 \setminus X_1$	0	1	2
0	0.1	0.3	0.1
1	0.2	0.1	0.2

- (a) Calculate the marginal probability mass function of each of the components X_1 and X_2 .
- (b) Are the components independent?
- (c) Tabulate the conditional probability mass function

$$p_{X_1|X_2}(x_1|0) = P[X_1 = x_1|X_2 = 0]$$

over the range of X_1 .

- (d) Calculate $Cov[X_1, X_2]$.
- 3. Consider a coin tossing experiment where a biased coin is tossed 2 times. Assume that the tosses are independent of one another and that the probability of getting a head is 0.75. Let $X = (X_1, X_2)$ where X_1 counts the number of heads in the 2 tosses and X_2 counts the number of tails in the 2 tosses.

1

- (a) Write down the sample space and show the mappings of the sample points to the various values of $X = (X_1, X_2)$.
- (b) Find the marginal probability mass function of the individual components.
- (c) Are they independent?
- (d) Calculate $Cov[X_1, X_2]$.
- 4. (Employment dynamics). A researcher is interested in modelling the employment dynamics of young people using a Markov chain. She determines that at age 18 a person is either a student with probability 0.9 or an intern with probability 0.1. Each year that passes is denoted as one time period. After that she estimates the following transition probabilities:

Student	Intern	Employed	Unemployed	l	
/ 0.8	0.5	0	0	١	Student
0.1	0.5	0	0	١	Intern
0.1	0	0.9	0.4	١	Employed
\ 0	0	0.1	0.6	J	Unemployed

- (a) Write down the initial probability vector and the transition matrix for the problem.
- (b) The first two states, student and intern are called transient states. Show that the probability of revisiting those states after visiting the third state, employed is zero.
- (c) Calculate the probability that if someone starts off as a student (state 1) then after 4 years they will be employed.