MA 108-ODE- D3

Lecture 16

Debanjana Mitra

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

June 01, 2023

Laplace transform of Derivatives and Integrals

Laplace Transforms: Recall

Let $f:(0,\infty)\to\mathbb{R}$ be a function. The Laplace transform $\mathcal{L}(f)$ of f is the function defined by

$$\mathcal{L}(f)(s) = \int_0^\infty e^{-st} f(t) dt = \lim_{a \to \infty} \int_0^a e^{-st} f(t) dt,$$

for all values of s for which the integral exists.

Sufficient conditions under which convergence is guaranteed for the integral in the definition of the Laplace transform is that f is piecewise continuous on $[0,\alpha]$, for all $\alpha>0$ and is of exponential order. Moreover, if the piecewise continuous function f is of exponential order a, for some $a\in\mathbb{R}$, then the $\mathcal{L}(f)(s)$ exists for all s>a.

Recall the linearity, scaling, shifting properties of the Laplace transform.

Lerch's Cancellation Law: Recall

Theorem

Suppose f, g are continuous functions and

$$\int_0^\infty e^{-st} f(t) dt \text{ and } \int_0^\infty e^{-st} g(t) dt,$$

converge for some s and that $\mathcal{L}(f)(s) = \mathcal{L}(g)(s)$ for all s for which both integrals converge. Then f(t) = g(t) for all t > 0.

Qn. For a continuous function $\phi:[0,\infty)\to\mathbb{R}$, it is given that $\mathcal{L}(\phi)(s)=\frac{c}{s-a}$, for all s>a, where c,a are constants. Find ϕ . Ans. $\phi(t)=ce^{at}, \quad \forall \ t>0$.

$$\mathcal{L}^{-1}$$
: Notation

Suppose that $f(\cdot)$ has a Laplace transform $F(\cdot)$, i.e., $\mathcal{L}(f)(s) = F(s)$. Then we denote

$$\mathcal{L}^{-1}(F)(t)=f(t).$$

Example.

- ► For $F(s) = \frac{1}{s-a}$, s > a, $\mathcal{L}^{-1}(F)(t) = e^{at}$.
- ► For $F(s) = \frac{1}{s^2+1}$, $\mathcal{L}^{-1}(F)(t) = \sin t$.

Example: Find the inverse transform of

$$G(s)=\frac{1}{s^2-4s+5}.$$

Note that

$$G(s) = \frac{1}{(s-2)^2+1} = F(s-2),$$

where

$$F(s) = \frac{1}{s^2 + 1} = \mathcal{L}(\sin t).$$

Recall, the shifting property, $\mathcal{L}(e^{2t}\sin t)(s) = F(s-2)$. Hence,

$$\mathcal{L}^{-1}(G)(t) = e^{2t} \sin t.$$

Laplace Transform of Derivatives and Integrals

Now we derive formulas for

$$\mathcal{L}(f^{(n)})$$

and

$$\mathcal{L}(g)(s)$$
, where $g(t) = \int_0^t f(x)dx$

in terms of $\mathcal{L}(f)$. Notation: $\mathcal{L}(\int_0^t f(x)dx)(s)$ can be used instead of $\mathcal{L}(g)(s)$.

This will be of help in solving differential equations using Laplace transforms.

Laplace Transforms of derivatives

Theorem

Suppose f is differentiable and f', the derivative of f, is piecewise continuous on $[0, \alpha]$ for all $\alpha > 0$. Suppose further that

$$|f(t)| \leq Ke^{at}$$
,

for $t \ge M > 0$, where $a \in \mathbb{R}$ and K > 0. Then $\mathcal{L}(f')(s)$ exists for s > a and

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0).$$

Remark: Note that f' is not assumed to be of exponential order! For instance, $f(t) = \sin e^{t^2}$ satisfies the conditions of the theorem, and hence

$$\mathcal{L}\left(\frac{d}{dt}(\sin e^{t^2})\right) = s\mathcal{L}(\sin e^{t^2}) - \sin 1.$$

Note that $\frac{d}{dt}(\sin e^{t^2})$ is not of exponential order.

Proof: Consider the interval $[0, \alpha]$. Integrating by parts, we get:

$$\int_0^\alpha e^{-st}f'(t)dt = e^{-s\alpha}f(\alpha) - f(0) + s\int_0^\alpha e^{-st}f(t)dt.$$

Taking limit as $\alpha \to \infty$, we get:

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0),$$

for s > a. (Why s > a?)

Corollary

Suppose f is n-times differentiable and $f, f^{(1)}, \ldots, f^{(n-1)}$ are continuous and $f^{(n)}$ is piecewise continuous on $[0, \alpha]$, for all $\alpha > 0$. Suppose further that, for all $t \ge M > 0$,

$$|f^{(i)}(t)| \leq Ke^{at}$$
,

 $0 \le i \le n-1$, where $\alpha \in \mathbb{R}$ and K > 0. Then, $\mathcal{L}(f^{(n)})(s)$ exists for all s > a and

$$\mathcal{L}(f^{(n)})(s) = s^n \mathcal{L}(f) - s^{n-1} f(0) - s^{n-2} f^{(1)}(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0).$$

Proof of Corollary: Induction. n=1 is already done. Assume that the result is true for n-1. Then,

$$\mathcal{L}(f^{(n)})(s) = \mathcal{L}((f^{(n-1)})')(s)$$

$$= s\mathcal{L}(f^{(n-1)}) - f^{(n-1)}(0)$$

$$= s\left(s^{n-1}\mathcal{L}(f) - s^{n-2}f(0) - \dots - f^{(n-2)}(0)\right) - f^{(n-1)}(0)$$

$$= s^{n}\mathcal{L}(f)(s) - s^{n-1}f(0) - s^{n-2}f^{(1)}(0) - \dots - f^{(n-1)}(0).$$

In particular, for n = 2,

$$\mathcal{L}(f'')(s) = s^2 \mathcal{L}(f)(s) - sf(0) - f'(0).$$

Example: Solve the IVP:

$$y'' + y = \sin 2t, y(0) = 2, y'(0) = 1.$$

Take Laplace transform of the DE:

$$\mathcal{L}(y'') + \mathcal{L}(y) = \mathcal{L}(\sin 2t);$$

i.e.,

$$s^2 \mathcal{L}(y) - sy(0) - y'(0) + \mathcal{L}(y) = \frac{2}{s^2 + 4}.$$

So,

$$\mathcal{L}(y)(s) = \frac{2s+1+\frac{2}{s^2+4}}{s^2+1} = \frac{2s^3+s^2+8s+6}{(s^2+4)(s^2+1)}.$$

Write rhs as

$$\frac{c_1s+c_2}{s^2+1}+\frac{c_3s+c_4}{s^2+4},$$

and solve to get

$$c_1=2, c_2=rac{5}{3}, c_3=0, c_4=-rac{2}{3}.$$

Thus,

$$\mathcal{L}(y)(s) = \frac{2s}{s^2 + 1} + \frac{5}{3} \frac{1}{s^2 + 1} - \frac{1}{3} \frac{2}{s^2 + 4}$$
$$= 2\mathcal{L}(\cos t) + \frac{5}{3}\mathcal{L}(\sin t) - \frac{1}{3}\mathcal{L}(\sin 2t),$$

i.e.,

$$\mathcal{L}(y) = \mathcal{L}\left(2\cos t + \frac{5}{3}\sin t - \frac{1}{3}\sin 2t\right).$$

Thus,

$$y(t) = 2\cos t + \frac{5}{3}\sin t - \frac{1}{3}\sin 2t.$$

Laplace Transforms of integrals

Theorem

Let f be piecewise continuous on $[0, \alpha]$ for every $\alpha > 0$, and suppose there exist constants K > 0 and a > 0 such that

$$|f(t)| \leq Ke^{at}$$
,

for $t \ge M > 0$. Then, denoting $g(t) = \int_0^t f(x) dx$,

$$\mathcal{L}(g)(s) = \frac{1}{s}\mathcal{L}(f)(s), \quad \forall \, s > a.$$

Remark: Note that $\int_0^t f(x)dx$ is also of exponential order.

Proof: We need to show that

$$\mathcal{L}\left(\int_0^t f(x)dx\right)(s) = \frac{1}{s}\mathcal{L}(f)(s),$$

for s > a, where $|f(t)| \le Ke^{at}$ for $t \ge M$ and $a \ge 0$. Set

$$g(t) = \int_0^t f(x) dx.$$

Since g is continuous and is of exponential order a, $\mathcal{L}(g)(s)$ exists for all s > a.

Recall that f is piecewise continuous on $[0, \alpha]$. Let f be discontinuous at t_1, t_2, \ldots, t_n , where $0 = t_0 < t_1 < t_2 < \ldots < t_n < t_{n+1} = \alpha$. Then, on each (t_{i-1}, t_i) , g' exists and

$$g'(t) = f(t), \quad \forall t \in (t_{i-1}, t_i), \quad i = 1, \dots, n+1.$$

Then, we have

$$\int_0^\alpha e^{-st}f(t)dt = \int_0^{t_1} e^{-st}g'(t)dt + \int_t^{t_2} e^{-st}g'(t)dt + \ldots + \int_t^\alpha e^{-st}g'(t)dt.$$

Proof contd..

Integrating by parts, we get:

$$\int_{0}^{\alpha} e^{-st} f(t) dt = \sum_{i=1}^{n+1} [e^{-st} g(t)]_{t_{i-1}}^{t_{i}} + s \sum_{i=1}^{n+1} \int_{t_{i-1}}^{t_{i}} e^{-st} g(t) dt$$
$$= e^{-s\alpha} g(\alpha) - g(0) + s \int_{0}^{\alpha} e^{-st} g(t) dt.$$

Noting g(0)=0, $\lim_{\alpha\to\infty}e^{-s\alpha}g(\alpha)=0$, and taking limit as $\alpha\to\infty$, we get:

$$\mathcal{L}(f)(s) = s\mathcal{L}(g)(s),$$

for s > a.

Thus,

$$\mathcal{L}(g)(s) = \frac{1}{s}\mathcal{L}(f)(s), \quad \forall \, s > a$$

or denoting $\phi(s) = \frac{1}{s}\mathcal{L}(f)(s)$, $\forall s > a$, we get

$$\mathcal{L}^{-1}(\phi)(t) = \int_0^t f(x) dx.$$

In short, we write the above

$$\mathcal{L}^{-1}\left(\frac{1}{s}\mathcal{L}(f)\right)(t) = \int_0^t f(x)dx,$$

for s > a.

Example: Find f such that

$$\mathcal{L}(f)(s) = \frac{1}{s^2(s^2+a^2)}.$$

Ans. We know that $\frac{1}{s^2+a^2}=\mathcal{L}\left(\frac{\sin at}{a}\right)(s)$. Therefore, using the previous theorem, we get $\frac{1}{s(s^2+a^2)}=\mathcal{L}(g)(s)$, where

$$g(t) = \int_0^t \frac{\sin ax}{a} dx = \frac{1}{a^2} (1 - \cos at).$$

Thus,

$$\frac{1}{s^2(s^2+a^2)}=\frac{1}{s}\mathcal{L}(g)(s)=\mathcal{L}\left(\int_0^t g(x)\,dx\right).$$

Thus,

$$\mathcal{L}^{-1}\left(\frac{1}{s^2(s^2+a^2)}\right) = \int_0^t \frac{1-\cos ax}{a^2} dx = \frac{1}{a^2} (t - \frac{\sin at}{a}).$$

Thus,

$$f(t) = \frac{1}{a^2} (t - \frac{\sin at}{a}).$$