

TEST REPORT

RADIO

Number

Composition of document

125772-652184B

70 pages

FCC Registration Number Industry Canada Number

166175 (FAR) & 888863 (Ecuelles) 6230B (FAR) and 6230B-1(Ecuelles)

Standards

47 CFR Part 15.247 RSS-210, Issue 8 RSS-Gen, Issue 3

Issued to

SAGEMCOM

250, route de l'Empereur 92848 RUEIL MALMAISON

Apparatus under test

Trade mark Manufacturer Type

Serial number FCC ID

Home router SAGEMCOM SAGEMCOM

Fast 5260

1222222222222 VW3FAST5260

Test date

2013/07/04 to 2013/07/23 & 2013/10/28 & 2013/11/14 & 2014/01/17

Tests performed by

Stéphane PHOUDIAH, Gilles DE BUYSER & Laurent DENEUX

Test site

Fontenay aux Roses & Ecuelles

Date of issue

February 19th, 2014

Written by : **Stéphane PHOUDIAH** Tests operator

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the items tested. Unless otherwise specified, the decision of conformity takes into account the uncertainly of measures. This document doesn't anticipate any certification decision.

www.lcie.fr

LCIE
Laboratoire Central
des Industries Electriques
Une société de Bureau Veritas

33. av du Général LeclercBP 892266 Fontenay-aux-Roses cedexFrance

Tél: +33 1 40 95 60 60 Fax: +33 1 40 95 86 56 contact@lcie.fr Société par Actions Simplifiée au capital de 15 745 984 € RCS Nanterre B 408 363 174

100

SUMMARY

1.	TEST PROGRAM	3
2.	EQUIPMENT DESCRIPTION	4
3.	OCCUPIED BANDWIDTH	12
4.	-6DB BANDWIDTH	15
5.	MAXIMUM CONDUCTED POWER	18
6.	POWER SPECTRAL DENSITY	20
7.	UNWANTED EMISSIONS INTO NON-RESTRICTED FREQUENCY BANDS AT THE	E BAND EDGE 31
8.	UNWANTED EMISSIONS INTO NON-RESTRICTED FREQUENCY BANDS	41
9.	AC POWER LINE CONDUCTED EMISSIONS	52
10.	UNWANTED EMISSIONS INTO RESTRICTED FREQUENCY BANDS	57
11.	TEST EQUIPMENT LIST	69
12.	UNCERTAINTIES CHART	70

1. **TEST PROGRAM**

References Standards:

- 47 CFR Part 15C

- RSS-210 - RSS-Gen - CISPR 16-4-2 - ANSI C63.10

Standard Section	Test Description	TEST RESULT - Comments	
RSS-Gen § 4.6.1	Occupied Bandwidth	PASS	
CFR 47 § 15.247 (a) (2) RSS-210 § A8.2(a)	-6dB Bandwidth	PASS	
CFR 47 § 15.247 (b) RSS-210 § A8.4(4)	Maximum Output Power	PASS	
CFR 47 § 15.247 (e) RSS-210 § A8.2 (b)	Power Spectral Density	PASS	
CFR 47 § 15.247 (d) RSS-210 § A8.5	Conducted Spurious Emission at the Band Edge	PASS	
CFR 47 § 15.247 (d) RSS-210 § A8.5	Unwanted Emissions into Non-Restricted Frequency Bands	PASS	
CFR 47 § 15.207 RSS-Gen § 7.2.4	AC Power Line Conducted Emissions	PASS	
CFR 47 § 15.209 (a) CFR 47 § 15.205 (a) CFR 47 § 15.247 (d) RSS-210 § A8.5	Unwanted Emissions into Restricted Frequency Bands	PASS	

PASS: EUT complies with standard's requirement FAIL: EUT does not comply with standard's requirement

NA: Not Applicable NP: Test Not Performed

2. EQUIPMENT DESCRIPTION

2.1. HARDWARE & SOFTWARE IDENTIFICATION

Equipment under test (EUT):

Front view

Rear View

Side view

Power Supply

Photograph of EUT

Auxiliary equipment (AE) used for testing:

Laptop LENOVO T400 for Master Device Setting

Photograph of AE

Input/output:

- Input Power
- 4 Ethernet ports
- 1 WAN port
- 1 USB ports

Software identification:

-Software version: V6.0.9.1

Equipment of the same family:

According to the manufacturer declaration, the router Fast 5260 is a variant of the router F@st 5260CV. This variant is created by removing e-SATA interface and one USB interface (See FAST 5260 declaration for more information), and the radio parts of these 2 variants are strictly identical.

So, Conducted Test results in this test report are retrieves from F@st 5260CV test report (FCC ID: VW3FAST5260CV).

Equipment information:

- Wifi Version: 802.11a/n HT20/n HT40/ac VHT80
- Modulation technology: OFDM and DSSS modulation
- Transmit operating mode: Multiples antenna without beam forming
- Number of transmit chains: 3 symmetrical
- Number of receiver chains: 3
- Beamforming gain: No
- Type of the equipment: Stand-alone equipment
- Type of power source: External power supply
- Antenna type: Integral
- Test sequence/test software used: See 2.2. Running Mode
- Duty Cycle: Continuous dutyOperating frequency range:

Frequency Band (MHz)	Test Report
2400MHz to 2483,5MHz	125772-652184A
5150MHz to 5350MHz	125772-652184C&D
5470MHz to 5725MHz (Note 1)	125772-652184C&D
5725MHz to 5850MHz	125772-652184B

(Note1: The Manufacturer declares the 5600MHz -5650MHz band is not available)

- Antenna Characteristics:

Antenna All Tx					
Frequency Band (MHz) Declared Overall Antenna Gain (dBi)					
2.4GHz	6,4 (Note 1)				
5GHz	7 (Note 1)				

Note 1: Informations given by the customer in "Sagemcom_F@st 5260CV_Radio-tool -Guide_Ed1_20130503" word document.

-Channel plan 802.11a, 802.11n HT20:

Channel	Frequency (MHz)		
Cmin: 149	5745		
153	5765		
Cnom: 157	5785		
161	5805		
Cmax: 165	5825		

-Channel plan 802.11n HT40:

Channel	Frequency (MHz)
Cmin: 149+153	5755
Cmax: 157+161	5795

-Channel plan 802.11ac VHT80:

Channel	Frequency (MHz)
Cnom: 149+153+157+161	5775

-Data Rate:

802.11a					
Data Rate (Mbps)	Modulation Type				
6	BPSK				
9	BPSK				
12	QPSK QPSK				
18					
24	16-QAM				
36	16-QAM				
48	64-QAM				
54	64-QAM				

			802.11	n HT20	802.11n HT40	
MCS	ICS Spatial streams	Modulation	Data rate (Mbit/s		Data rate (Mbit/s)	
index		Туре	GI=800ns	GI=400ns	GI=800ns	GI=400ns
0	1	BPSK	6.50	7.20	13.50	15.00
1	1	QPSK	13.00	14.40	27.00	30.00
2	1	QPSK	19.50	21.70	40.50	45.00
3	1	16-QAM	26.00	28.90	54.00	60.00
4	1	16-QAM	39.00	43.30	81.00	90.00
5	1	64-QAM	52.00	57.80	108.00	120.00
6	1	64-QAM	58.50	65.00	121.50	135.00
7	1	64-QAM	65.00	72.20	135.00	150.00
8	2	BPSK	13.00	14.40	27.00	30.00
9	2	QPSK	26.00	28.90	54.00	60.00
10	2	QPSK	39.00	43.30	81.00	90.00
11	2	16-QAM	52.00	57.80	108.00	120.00
12	2	16-QAM	78.00	86.70	162.00	180.00
13	2	64-QAM	104.00	115.60	216.00	240.00
14	2	64-QAM	117.00	130.00	243.00	270.00
15	2	64-QAM	130.00	144.40	270.00	300.00
16	3	BPSK	19.50	21.70	40.50	45.00
17	3	QPSK	39.00	43.30	81.00	90.00
18	3	QPSK	58.50	65.00	121.50	135.00
19	3	16-QAM	78.00	86.70	162.00	180.00
20	3	16-QAM	117.00	130.00	243.00	270.00
21	3	64-QAM	156.00	173.30	324.00	360.00
22	3	64-QAM	175.50	195.00	364.50	405.00
23	3	64-QAM	195.00	216.70	405.00	450.00

			802.11a	c VHT80	
MCS index	Spatial streams	Modulation Type	Data rate (Mbit/s		
iliuex	Streams	Type	GI=800ns	GI=400ns	
0	1	BPSK	29.3	32.5	
1	1	QPSK	58.5	65	
2	1	QPSK	87.8	97.5	
3	1	16-QAM	117	130	
4	1	16-QAM	175.5	195	
5	1	64-QAM	234	260	
6	1	64-QAM	263.3	292.5	
7	1	64-QAM	292.5	325	
8	1	256-QAM	351	390	
9	1	256-QAM	390	433.3	
10	2	BPSK	58,6	65	
11 2		QPSK	117	130	
12 2		QPSK	175.6	195	
13 2		16-QAM	234	260	
14 2		16-QAM	351	390	
15 2		64-QAM	468	520	
16 2		64-QAM	526.6	585	
17 2		64-QAM	585	650	
18 2		256-QAM	702	780	
19	19 2		780	866.6	
20	3	BPSK	87.9	97.5	
21	3	QPSK	175.5	195	
22	3	QPSK	263.4	292.5	
23	3	16-QAM	351	390	
24	3	16-QAM	526,5	585	
25	3	64-QAM	702	780	
26	3	64-QAM	789.9	877.5	
27	3	64-QAM	877.5	975	
28	3	256-QAM	1053	1170	
29	29 3 250		1170	1299.9	

2.2. RUNNING MODE

The EUT is set in the following modes during tests:

- Permanent emission with modulation on a fixed channel in the data rate that produced the highest power (802.11a: 6Mbps, 802.11n HT20: MCS16, 802.11n HT40: MCS16, 802.11ac VHT80: MCS0)
- Permanent reception

Following commands with the specific test software "Atheros Radio Tool client v1.17.3" are used to set the product:

	Modulation	Band	Power Setting	Frequencies	Command		
			22	5745	tx f=5745;r=6;pl=5000;pc=-1;txch=7;tx99=1;tp=22		
802.11a	6MBps	DTS	23	5785	tx f=5785;r=6;pl=5000;pc=-1;txch=7;tx99=1;tp=23		
			23	5825	tx f=5825;r=6;pl=5000;pc=-1;txch=7;tx99=1;tp=23		
	MCS16		22	5745	tx f=5745;r=t16;pl=8000;pc=-1;txch=7;tx99=1;tp=22		
802.11n HT20		MCS16	MCS16	MCS16 DTS	23	5785	tx f=5785;r=t16;pl=8000;pc=-1;txch=7;tx99=1;tp=23
						23	5825
802.11n HT40	MCS16	MCS16	DTS	21	5745, 5765	tx f=5745;r=f16;pl=16000;pc=-1;txch=7;tx99=1;tp=21	
002.1111 1140			IVICS 16	סום	22	5785, 5805	tx f=5785;r=f16;pl=16000;pc=-1;txch=7;tx99=1;tp=22
802.11ac VHT80	MCS0	DTS	21	5745, 5765	tx f=5775;r=ve0;pl=16000;pc=-1;txch=7;tx99=1;tp=21		

2.3. EQUIPEMENT LABELLING

Sagemcom

Fast 5260

Sagemcom P/N: 253584638

Rating === 12VDC/2.5A

Rating === 124DG/2.8A

S/N: *122222222222222

WAN MAC: *FFFFFFFFF*

WiFi SSID1: BBBBB_2G

wifi ssid2: BBBBBB_5G

Password/PIN: *XXXXXXXXXXXX*

Tested To Comply With FCC Standards
FCC ID: VW3FAST5260

I.T.E.

E308616

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

EUT Marking plate

EUT Power supply marking plate

2.4. EQUIPMENT MODIFICATIONS

No equipment modification has been necessary during testing.

3. OCCUPIED BANDWIDTH

3.1. TEST CONDITIONS

Test performed by : Gilles DE BUYSER & Stéphane PHOUDIAH

Date of test : 2013/07/04 & 2013/11/14

Ambient temperature : 22°C & 21°C Relative humidity : 54% & 34%

3.2. TEST SETUP

The Equipment Under Test is installed on a table and set in permanent emission with modulation. Measurement is performed with a spectrum analyzer on the EUT conducted access. The product has been tested according to the RSS-GEN § 4.6.1 reference method.

Spectrum Analyzer Setting:

Center frequency= Cmin or Cnom or Cmax Span= At least twice the emission spectrum Amplitude= Sufficient to observe the signal amplitude RBW= 1% of span VBW= 3*RBW Sweep= Auto Trace= Max Hold Detector= Peak Occupied Bandwidth 99% activated

Photograph for Occupied Bandwidth

802.11a

Temperature	Tnom		
Voltage		Vnom	
Frequency	Cmin	Cnom	Cmax
Occupied Bandwidth (MHz)	19,8	19,48	19,4

802.11n HT20

=****				
Temperature		Tnom		
Voltage		Vnom		
Frequency	Cmin	Cnom	Cmax	
Occupied Bandwidth (MHz)	19,96	20,51	20,59	

802.11n HT40

Temperature	Tnom		
Voltage	Vnom		
Frequency	Cmin	Cmax	
Occupied Bandwidth (MHz)	37,24	37,48	

802.11ac VHT80

Temperature	Tnom
Voltage	Vnom
Frequency	Cnom
Occupied Bandwidth (MHz)	77,36

Result: PASS

Limit: → None

4. -6DB BANDWIDTH

4.1. TEST CONDITIONS

Test performed by : Gilles DE BUYSER & Stéphane PHOUDIAH

Date of test : 2013/07/04 & 2013/11/14

Ambient temperature : 22°C & 21°C Relative humidity : 54% & 34%

4.2. TEST SETUP

The Equipment Under Test is installed on a table and set in permanent emission with modulation. Measurement is performed with a spectrum analyzer on the EUT conducted access. The product has been tested according to the FCC KDB 558074 D01 DTS Meas Guidance v03r1 § 8.1.

Spectrum Analyzer Setting:

Center frequency= Cmin or Cnom or Cmax
Span= At least twice the emission spectrum
Amplitude= Sufficient to observe the signal amplitude
RBW= 100kHz
VBW= 300kHz
Sweep= Auto
Trace= Max Hold
Detector= Peak

Photograph for Bandwidth

802.11a

Temperature	Tnom		
Voltage	Vnom		
Frequency	Cmin	Cnom	Cmax
-6dB Bandwidth (MHz)	16,32	16,36	16,35

802.11n HT20

=*****				
Temperature		Tnom		
Voltage		Vnom		
Frequency	Cmin	Cnom	Cmax	
-6dB Bandwidth (MHz)	17,38	17,58	17,56	

802.11n HT40

002.111111140				
Temperature	Tnom			
Voltage	Vnom			
Frequency	Cmin	Cmax		
-6dB Bandwidth (MHz)	36,32	35,77		

802.11ac VHT80

Temperature	Tnom
Voltage	Vnom
Frequency	Cnom
-6dB Bandwidth (MHz)	75,08

Result: PASS

Limit: → The -6dB bandwidth must be greater than 500kHz

5. MAXIMUM CONDUCTED POWER

5.1. TEST CONDITIONS

Test performed by : Stéphane PHOUDIAH
Date of test : 2013/07/16 & 2013/11/14

Ambient temperature : 26°C & 20°C Relative humidity : 45% & 36%

5.2. TEST SETUP

The Equipment Under Test is installed on a table and set in permanent emission with modulation. Measurement is performed with a power meter (average detector) on the EUT conducted access. The product has been tested according to the FCC KDB 558074 D01 DTS Meas Guidance v03r01 § 9.2.3.1 & FCC KDB 662911 D01 Multiple Transmitter Outpout v02 § E) 1).

Power meter:

RF average power meter with a thermocouple detector Wide band power meter sensor in a range including EUT transmission band

Photograph for Maximum Conducted Power

Cable Loss= 1,3dB Attenuator= 51,6dB

802.11a

Temperature	Tnom		
Voltage	Vnom		
Channel	Cmin	Cnom	Cmax
Maximum Conducted Power (dBm)	25,28	26,66	26,31

802.11n HT20

Temperature	Tnom		
Voltage	Vnom		
Channel	Cmin	Cnom	Cmax
Maximum Conducted Power (dBm)	25,48	25,67	25,42

802.11n HT40

Temperature	Tnom		
Voltage	Vnom		
Channel	Cmin	Cmax	
Maximum Conducted Power (dBm)	24,41	24,49	

802.11ac VHT80

Temperature	Tnom
Voltage	Vnom
Channel	Cnom
Maximum Conducted Power (dBm)	25.6

Remark: The power values in these tables are a summation of conducted power on Tx1, Tx2 and Tx3.

Result: PASS

Limit: → The Maximum Conducted Power must be lower than 29dBm (Antenna Gain=7dBi)

6. Power Spectral Density

6.1. TEST CONDITIONS

Test performed by : Stéphane PHOUDIAH
Date of test : 2013/07/16 & 2013/11/14

Ambient temperature : 26°C & 20°C Relative humidity : 45% & 36%

6.2. TEST SETUP

The Equipment Under Test is installed on a table and set in permanent emission with modulation. Measurement is performed with a spectrum analyzer on the EUT conducted access. The product has been tested according to the FCC KDB 558074 D01 DTS Meas Guidance v03r1 § 10.3 & FCC KDB 662911 D01 Multiple Transmitter Output v02 § E) 2) b).

Spectrum Analyzer Setting:

Center frequency= Cmin or Cnom or Cmax

Span= At least 1.5xOBW

Amplitude= Sufficient to observe the signal amplitude

RBW= 30 kHz

VBW= 300 kHz

Sweep= Auto

Sweep Point= 5000 points (>2xSPAN/RBW)

Trace= Average (100)

Detector= RMS

Photograph for Power Spectral Density

Cable Loss=1,3dB Attenuator= 21,6dB

802.11a

Temperature	Tnom		
Voltage	Vnom		
Channel	Cmin	Cnom	Cmax
Power spectral density (dBm/3kHz)	1,02	1,56	1,36

802.11n HT20

Temperature	Tnom		
Voltage	Vnom		
Channel	Cmin	Cnom	Cmax
Power spectral density (dBm/3kHz)	0,28	0,37	0,31

802.11n HT40

Temperature	Tno	om
Voltage	Vno	om
Channel	Cmin	Cmax
Power spectral density (dBm/3kHz)	-3,81	-3,91

802.11ac VHT80

=····		
Temperature	Tnom	
Voltage	Vnom	
Channel	Cnom	
Power spectral density (dBm/3kHz)	-7.7	

Remark: The power values in these tables are a summation of conducted power on Tx1, Tx2 and TX3. As recommended, the Power spectral density is measured with a 30kHz RBW, assuming that the same measurement with a 3 kHz RBW will give Power spectral density values lower.

Result: PASS

Limit: → The Power Spectral Density must be lower than 7dBm/3kHz (Antenna Gain=7dBi)

7. UNWANTED EMISSIONS INTO NON-RESTRICTED FREQUENCY BANDS AT THE BAND EDGE

7.1. **TEST CONDITIONS**

Test performed by : Gilles DE BUYSER & Stéphane PHOUDIAH Date of test : 2013/07/05, 2013/07/ 15 & 2013/11/15

Ambient temperature : 21 to 23°C & 20°C Relative humidity : 46 to 58% & 34%

7.2. **TEST SETUP**

The Equipment Under Test is installed on a table and set in permanent emission with modulation. Measurement is performed with a spectrum analyzer on the EUT conducted access. The product has been tested according to the FCC KDB 558074 D01 DTS Meas Guidance v03r1 § 11.2 & FCC KDB 662911 D01 Multiple Transmitter Outpout v02 § E) 3) b).

Spectrum Analyzer Setting:

Start frequency= 5600MHz Stop frequency= 5970MHz Amplitude= Sufficient to observe the signal amplitude RBW= 100kHz VBW= 300kHz Sweep Time= Auto Sweep Point= 2500 Trace= Max Hold Detector= Peak

Photograph for Unwanted Emissions into Non-Restricted Frequency Bands At the Band Edge

Date: 15.JUL.2013 17:11:52

802.11a

0020		
Temperature	Tno	om
Voltage	Vno	om
Conducted Spurious Emission at the Band Edge (MHz)	5725	5850
Spurious Level (dBc)	-32.1	-39.7

802.11n HT20

Temperature	Tno	om
Voltage	Vno	om
Conducted Spurious Emission at the Band Edge (MHz)	5725	5850
Spurious Level (dBc)	-32.0	-39.0

802.11n HT40

Temperature	Tno	om
Voltage	Vno	om
Conducted Spurious Emission at the Band Edge (MHz)	5725	5850
Spurious Level (dBc)	-31,0	-41.0

802.11ac VHT80

Temperature	Tnom		
Voltage	Vno	om	
Conducted Spurious Emission at the Band Edge (MHz)	5725	5850	
Spurious Level (dBc)	-30.30	-32.79	

Result: PASS

Limit: → All Spurious Emissions must be at least 30dB below the Fundamental Radiator Level at the Band Edge "5725MHz & 5850MHz"

8. UNWANTED EMISSIONS INTO NON-RESTRICTED FREQUENCY BANDS

8.1. TEST CONDITIONS

Test performed by : Gilles DE BUYSER & Stéphane PHOUDIAH

Date of test : 2013/07/05 & 2013/11/15

Ambient temperature : 23°C & 21°C Relative humidity : 58% & 35%

8.2. TEST SETUP

The Equipment Under Test is installed on a table and set in permanent emission with modulation. Measurement is performed with a spectrum analyzer on the EUT conducted access. The product has been tested according to the FCC KDB 558074 D01 DTS Meas Guidance v03r1 § 11.3 & FCC KDB 662911 D01 Multiple Transmitter Outpout v02 § E) 3) b).

Spectrum Analyzer Setting:

Start frequency= 30MHz
Stop frequency= 40GHz
Amplitude= Sufficient to observe the signal amplitude
RBW= 100kHz
VBW= 300kHz
Sweep Time= Auto
Trace= Max Hold
Detector= Peak

Photograph for Unwanted Emissions into Non-Restricted Frequency Bands

8.3. GRAPHICS & RESULTS

Remark: the conducted emissions observed in the range 6GHz to 40GHz are at least 45 dB below the fundamental transmitter level.

Result: PASS

Limit: → All Spurious Emissions must be at least 30dB below the Fundamental Radiator Level outside of the 5725MHz-5850MHz band

9. AC POWER LINE CONDUCTED EMISSIONS

9.1. TEST CONDITIONS

Test performed by :Laurent DENEUX
Date of test :2013/07/23

Ambient temperature : 22°C
Relative humidity : 51%

9.2. TEST SETUP

The product has been tested according to ANSI C63.10 (2009) method. The EUT is placed on the ground reference plane, at 80cm from the LISN. The distance between the EUT and the vertical ground plane is 40cm. Auxiliaries are powered by another LISN. The cable has been shorted to 1meter length. The EUT is powered through the LISN. Measurement is made with a receiver in peak mode. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is 50Ω / 50μ H. Interconnecting cables and equipment's were moved to position that maximized emission.

Photograph for AC Power Line Conducted Emissions (Front view)

Photograph for AC Power Line Conducted Emissions (Rear view)

9.3. RESULTS

802.11a/802.11n HT20/802.11n HT40/802.11ac VHT80

Phase Line

Frequency (MHz)	Peak Level (dBµV/m)	Quasi-Peak Level (dBµV/m)	Quasi-Peak Limit (dBµV/m)	Average Level (dBµV/m)	Average Limit (dBµV/m)
0.166	53.6	-	65	43	55
0.544	41.3	-	56	36	46
1.552	36	-	56	-	46
17.52	33.7	-	60	-	50
24	35.4	-	60	-	50

Neutral Line

Frequency (MHz)	Peak Level (dBµV/m)	Quasi-Peak Level (dBµV/m)	Quasi-Peak Limit (dBµV/m)	Average Level (dBµV/m)	Average Limit (dBµV/m)
0.167	53.5	-	64.9	43.6	55
0.499	39	=	56.1	32.8	46
1.554	34.5	-	56	-	46
17.216	36	-	60	-	50

Result: PASS

Limit: → Quasi-Peak

0,15kHz to 0,5MHz: $66dB\mu V/m$ to $56dB\mu V/m^*$

0,5MHz to 5MHz: $56dB\mu V/m$ 5MHz to 30MHz: $60dB\mu V/m$

Average

0,15kHz to 0,5MHz: $56dB\mu V/m$ to $46dB\mu V/m^*$

0,5MHz to 5MHz: $46dB\mu V/m$ 5MHz to 30MHz: $50dB\mu V/m$

^{*}Decreases with the logarithm of the frequency

10. UNWANTED EMISSIONS INTO RESTRICTED FREQUENCY BANDS

10.1. TEST CONDITIONS

Test performed by :Laurent DENEUX

Date of test :2013/07/23 & 2013/10/28 & 2014/01/17

Ambient temperature : 18 °C to 35°C Relative humidity : 45% to 51%

10.2. TEST SETUP

The product has been tested according to ANSI C63.10 (2009). The EUT is placed on an open area test site. Distance between measuring antenna and the EUT is 10m. Test is performed in horizontal (H) and vertical (V) polarization with bilog antenna below 1GHz and with a horn antenna above 1GHz. Measurement bandwidth was 120kHz below 1GHz and 1MHz above 1GHz. The level has been maximised by the turntable rotation of 360 degrees range on the 3 axis of EUT. Antenna height search was performed from 1 to 4m.

Photograph for Unwanted Emissions into Restricted Frequency Bands

Photograph for Unwanted Emissions into Restricted Frequency Bands

10.3. RESULTS

Characterization on an open test site (30MHz to 40GHz):

Characterization on an open test site (30MHz to 40GHz):				
Frequency (MHz)	Peak Level (dBµV/m)	QPeak Level (dBμV/m)	Limit (dBµV/m)	
34.5	33.7	26.6	29.5	
37.5	22.7	17.4	29.5	
41.6	31.7	23.4	29.5	
45.7	31.5	25.3	29.5	
56.3	28.9	23.6	29.5	
60.3	25.9	23	29.5	
74.4	25.8	20.3	29.5	
114.1	26.3	18.3	33	
120	28.7	22.5	33	
125	29.8	21.7	33	
131.4	27	24.7	33	
135.8	32.2	29.1	33	
200	30.6	25.8	33	
250	30.6	23.4	35.5	
300	34.6	28.4	35.5	
375	33.8	29.8	35.5	
500	33.4	27	35.5	
625	35.2	30.7	35.5	
750	36.6	30.5	35.5	
756.4	36.4	33.2	35.5	
875	37.5	32	35.5	
998	36	30.1	44	

Above 1GHz

Frequency (MHz)	Average Level (dBµV/m)	Average Limit (dBµV/m)	Peak Level (dBµV/m)	Peak Limit (dBµV/m)
1125	28.5	44	35	64
1500	29	44	35	64
1625	28.5	44	38.4	64
2250	31.5	44	43.6	64
2500	29.4	44	38.2	64
3000	32	44	36	64
4891	33	44	44.4	64
5150	40	44	28	64
5350	40	44	26.8	64
5460	40	44	27.5	64

Result: PASS

Limit: → 30MHz to 88MHz: 29.50dBµV/m QPeak

88MHz to 216MHz: 33dBμV/m QPeak 216MHz to 960MHz: 35.5dBμV/m QPeak 44dBμV/m QPeak 64dBμV/m Peak 44dBμV/m Average

11. TEST EQUIPMENT LIST

Occupied Bandwidth, -6dB Bandwidth, Maximum Peak Output Power, Power Spectral Density and						
Unwanted Emissions into Non-Restricted Frequency Bands						
Apparatus	Trade Mark	Туре	Registration number	Calibration date	Calibration due	
RF Cable	-	2.92 mm	A5329441	2013/03	2014/03	
Attenuator3 dB	MINI CIRCUITS	BW-S3W2+	A7122210	2013/07	2014/07	
Spectrum Analyser	ROHDE & SCHWARZ	FSL	A4060032	2012/12	2013/12	
EMI Test Receiver	ROHDE & SCHWARZ	ESIB26	A2642021	2013/04	2014/04	
EMI Test receiver	RHODE & SCHWARZ	ESI40	A2642010	2012/09	2013/09	
Power meter	HEWLETT PACKARD	437B	A1503001	2013/01	2014/01	
Power meter sensor	HEWLETT PACKARD	8484A	A1509070	2013/01	2014/01	
Attenuator 30 dB	HEWLETT PACKARD	11708A	A7122215	2013/01	2014/01	
Signal Generator	ROHDE & SCHWARZ	SMJ100A	A544407	2013/01	2014/01	
RF Cable	Pasternack	095 Series	A5329592	Calibrated with Power	Calibrated with Power	
Kr Cable	Pasternack	095 Selles	A0329092	Meter & Signal Generator before use	Meter & Signal Generator before use	
Power cupply	KIKUSUI	PCR500M	A7040079	Generator berore use	Generator before use	
i ower supply	Power supply KIKUSUI PCR500M A7040079 Unwanted Emissions into Restricted Frequency Bands & Receiver Spurious Emissions					
Apparatus	Trade Mark	Type	Registration number	Calibration date	Calibration due	
Open test site	LCIE		F2000400	2013/04	2014/04	
EMI Test Receiver	ROHDE & SCHWARZ	ESU	A2642018	2013/04	2014/04	
Horn antenna	PASTERNACK	PE9850/2F-20	A2642010	-	-	
EMI Test receiver						
LIVII I GOL I GOGIVEI	RHODE & SCHWARZ	ESI40	A2642010	2012 /09	2013/09	
Preamplifier	RHODE & SCHWARZ HEWLETT PACKARD	ESI40 8449B	A2642010 A4069002	2012 /09 2013/11	2013/09 2014/11	
Preamplifier	HEWLETT PACKARD	8449B	A4069002	2013/11	2014/11	
Preamplifier Bilog antenna	HEWLETT PACKARD CHASE	8449B CBL 6112A	A4069002 C2040040	2013/11 2013/04	2014/11 2014/04	
Preamplifier Bilog antenna Dipole	HEWLETT PACKARD CHASE ROHDE & SCHWARZ	8449B CBL 6112A HUF-Z1	A4069002 C2040040 C2040011	2013/11 2013/04 2013/03	2014/11 2014/04 2014/03	
Preamplifier Bilog antenna Dipole Logperiodic antenna	HEWLETT PACKARD CHASE ROHDE & SCHWARZ ROHDE & SCHWARZ	8449B CBL 6112A HUF-Z1 HL 023 A2	A4069002 C2040040 C2040011 C2040001	2013/11 2013/04 2013/03 2013/03	2014/11 2014/04 2014/03 2014/03	
Preamplifier Bilog antenna Dipole Logperiodic antenna Horn antenna	HEWLETT PACKARD CHASE ROHDE & SCHWARZ ROHDE & SCHWARZ EMV	8449B CBL 6112A HUF-Z1 HL 023 A2 3115 SAS-572	A4069002 C2040040 C2040011 C2040001 C2040023	2013/11 2013/04 2013/03 2013/03 2013/04	2014/11 2014/04 2014/03 2014/03 2014/04	
Preamplifier Bilog antenna Dipole Logperiodic antenna Horn antenna	HEWLETT PACKARD CHASE ROHDE & SCHWARZ ROHDE & SCHWARZ EMV	8449B CBL 6112A HUF-Z1 HL 023 A2 3115 SAS-572	A4069002 C2040040 C2040011 C2040001 C2040023 C2042026	2013/11 2013/04 2013/03 2013/03 2013/04	2014/11 2014/04 2014/03 2014/03 2014/04	
Preamplifier Bilog antenna Dipole Logperiodic antenna Horn antenna Horn antenna	HEWLETT PACKARD CHASE ROHDE & SCHWARZ ROHDE & SCHWARZ EMV AH SYSTEMS	8449B CBL 6112A HUF-Z1 HL 023 A2 3115 SAS-572 AC Power Line Co	A4069002 C2040040 C2040011 C2040001 C2040023 C2042026 nducted Emissions	2013/11 2013/04 2013/03 2013/03 2013/04 2012/10	2014/11 2014/04 2014/03 2014/03 2014/04 2013/10	
Preamplifier Bilog antenna Dipole Logperiodic antenna Horn antenna Horn antenna Apparatus	HEWLETT PACKARD CHASE ROHDE & SCHWARZ ROHDE & SCHWARZ EMV AH SYSTEMS Trade Mark	8449B CBL 6112A HUF-Z1 HL 023 A2 3115 SAS-572 AC Power Line Co Type	A4069002 C2040040 C2040011 C2040001 C2040023 C2042026 nducted Emissions Registration number	2013/11 2013/04 2013/03 2013/03 2013/04 2012/10 Calibration date	2014/11 2014/04 2014/03 2014/03 2014/04 2013/10 Calibration due	
Preamplifier Bilog antenna Dipole Logperiodic antenna Horn antenna Horn antenna Apparatus Receiver	HEWLETT PACKARD CHASE ROHDE & SCHWARZ ROHDE & SCHWARZ EMV AH SYSTEMS Trade Mark RHODE & SCHWARZ	8449B CBL 6112A HUF-Z1 HL 023 A2 3115 SAS-572 AC Power Line Co Type ESU	A4069002 C2040040 C2040011 C2040001 C2040023 C2042026 nducted Emissions Registration number A2642018	2013/11 2013/04 2013/03 2013/03 2013/04 2012/10 Calibration date 2013/04	2014/11 2014/04 2014/03 2014/03 2014/04 2013/10 Calibration due 2014/04	

12. UNCERTAINTIES CHART

Kind of test	Measurement uncertainties (k=2) ±x(dB) / (Hz)	Limit for uncertainties ±y(dB)
TRANSMITTER REQUIREMENTS		
Radio frequency	±2.10 ⁻⁸ Hz	±1.10 ⁻⁷ Hz
RF Conducted power	±0.6 dB	±1.5 dB
Spurious emissions • Frequency < 1000 MHz • Frequency > 1000 MHz	±3.9 dB ±3.1 dB	±6 dB
Spurious in conduction	±1.6 dB	±3 dB
Temperature	±0.5°C	±1°C
Humidity	±2.5 %	±10 %
RECEIVER REQUIREMENTS		
Spurious emissions		
Frequency < 1000 MHzFrequency > 1000 MHz	±3.9 dB ±3.1 dB	±6 dB