Problem Sheet - 1

- Q1- Consider a hypothetical semiconductor with all of the energy states filled. What would happen if I apply an electric field across the semiconductor? Will it conduct current? Give reason for your answer.
- Q2- The E-K diagram is a plot which shows electron's:
- 1) Kinetic Energy. 2) Potential Energy. 3) Total Energy.
- 4) None of the above.
- -> What does the lowest point in E-K diagram indicate?
- Q3- Consider the effective mass of electrons to be different from that of holes and the material is intrinsic. Choose all correct options:
- 1) $N_c = N_v$
- 2) $E_i = (E_c + E_v)/2$.
- 3) $n_i = p_i$
- 4) $E_i = E_f$
- Q4- The density of states in the conduction band increases with electron energy. State TRUE or FALSE. Justify your stand.
- Q5- Calculate n_o and p_o (electron concentration) of an intrinsic semiconductor if E_c-E_F = 0.5KT. Given $N_c=N_v=10^{19}/cm^3$.
- Q6- Given $E=E_o+5*K^2$. (Where K is wave vector) Calculate :- a) m^* and potential energy of e^- .
- b) Now, an electric field E_l is applied across the semiconductor. Determine the expression of drift velocity (v_d) and current density (J) of electrons after τ seconds. (Charge of $e^-=-q$, Concentration of $e^-=n$).