Se²Oil – Satélite de monitoramento de manchas de óleo em rios, lagos e lagoas

Ana Laura de Matos Placidino

Daniel de Faveri Toledo

Gabriel Yago Alves Mendonça

Maria Clara Sohn Ferraz

Alan Barbosa de Paiva (orientador)

Resumo

Todos os dias pessoas despejam 200 milhões de litros de óleo de cozinha, o que contamina mais de 5 trilhões de litros de água doce em todo mundo, bloqueando o processo de fotossíntese e prejudicando os seres vivos causando sua morte ou algum tipo mutação, além de ser um ato contra a lei.

Pensando nesse problema, decidimos montar um satélite que irá identificar as manchas de óleo em rios, lagos e lagoas. Isso ocorrerá por meio de uma câmera infravermelha. Que detectará essas manchas e enviará os dados da posição local, analisados estatisticamente por meio de um algoritmo de KNN, para a estação de telemetria em terra, além de armazenar os dados em um cartão de memória para consultar depois.

Palavras-chave: Contaminação. Óleo. Água. Satélite.

1. Introdução

Anualmente, o Brasil produz cerca de 9 bilhões de litros de óleo de cozinha (ECOLEO, 2023). Segundo a *Oil World*, mais de 200 milhões de litros desse mesmo óleo vão para rios e oceanos, o que só nos mostra a urgência que se deve ter para prevenir toda essa contaminação (OILWORLD, 2023). O óleo de cozinha, se for descartado de maneira incorreta, traz inúmeras consequências negativas e prejudiciais ao meio ambiente, como, por exemplo, o descontrole do oxigênio e a morte de peixes e seres vivos que ali habitam. Segundo dados da SABESP, 1 litro de óleo pode contaminar até 25 mil litros de água quando todo esse óleo chega nos cursos de água (SABESP, 2023).

Vamos separar o petróleo do óleo porque, mesmo ambos sendo muito parecidos, seus danos ao meio ambiente serão diferentes. O vazamento por petróleo nos oceanos ocorre sempre por intermédio de defeitos em navios-petroleiros ou rompimento de algum duto. O primeiro problema causado por esse tipo de vazamento é que ele é escuro e, ao entrar em contato com a água, atrapalha a entrada de luz, prejudicando assim o fitoplâncton que fica na superfície da água, impedindo que ele realize fotossíntese, alterando e prejudicando assim os seres vivos e a cadeia alimentar, atingindo os seres humanos que se alimentam de algum animal que teve contato com o óleo contaminado.

Outro problema identificado após esse vazamento é que os animais que tiverem o contato com esse óleo podem morrer e/ou sofrer mutações em seu DNA, ter seu sistema nervoso atingido. As aves atingidas podem sofrer com o desequilíbrio térmico, morrendo de frio ou de calor (MORAES, 2022).

Quando comparamos o volume dos vazamentos, os derramamentos de petróleo acontecem poucas vezes e seu volume é bem grande, já a contaminação de água por meio do óleo de cozinha acontece todos os dias, em escalas pequenas mas de forma mais distribuída. Segundo a ABIOVE (Associação Brasileira da Indústria de Óleos Vegetais) com o IBGE (Instituto Brasileiro de Geografia e Estatísticas) os brasileiros, por ano, despejam cerca de 1 bilhão de litros de óleo incorretamente (RECICLA SAMPA, 2023)

Em relação aos vazamentos de petróleo, podemos citar o caso de 2000, na Baia de Guanabara, em que cerca de 1.300 m³ de óleo caíram no mar. As equipes até tentaram remover aquele óleo que causou a morte e mutações genéticas de vários seres vivos (JÚNIOR, 2018).

Em 1972, depois da conferência de Estocolmo, o Brasil criou um órgão chamado SEMA – Secretária Especial do Meio Ambiente, que tem o objetivo de garantir a implementação de políticas no meio ambiente que possam conservar os recursos naturais, auxiliando assim na qualidade de vida e no desenvolvimento sustentável (JÚNIOR, 2018).

A Lei nº 14.690 foi proibe o descarte de óleo no meio ambiente, já que o mesmo causa inúmeras doenças e, ao entrar em contato com pragas e bactérias que podem matar e/ou causar doenças tanto para pessoas como para animais, isso porque no óleo de cozinha usado há alguns componentes químicos tóxicos a saúde (MORAES, 2022)

Um deles é benzeno que pode causar doenças como leucemia, anemia e distúrbios de comportamento. Isso ocorre porque ele entra na medula óssea e nos tecidos gordurosos. Outra substância tóxica é o tolueno, as pessoas que ingerirem sofrem de convulsões no mesmo instante que ingerida, sufocamento ou até mesmo a morte por parada cardíaca. Esse componente envenena o sistema nervoso central impedindo que este trabalhe normalmente. Outro componente que é tóxico é o xileno, causando irritação na pele, nos olhos e respiratório, causando tonturas e asfixia, ele também mexe com o sistema nervoso central (MORAES, 2022)

2. Objetivo da missão

A missão em questão visa o desenvolvimento de um satélite equipado com uma câmera infravermelha capaz de detectar e identificar manchas de óleo na superfície de corpos d'água, como rios e lagos. A detecção precoce dessas manchas é de suma importância para a proteção e conservação dos cursos de

água, bem como para a sobrevivência da fauna e flora que neles habitam, além de garantir a segurança e saúde das comunidades humanas que dependem desses recursos hídricos. A tecnologia proposta busca, portanto, contribuir de forma significativa para a gestão ambiental e para a promoção da sustentabilidade em nosso planeta.

3. Funções e responsabilidades da equipe

Figura 1 – Organograma da equipe Fonte: autoria propria

4. Projeto conceitual

Numa primeira fase do projeto, com base na diferença entre o calor específico da água e do óleo, ou seja, na capacidade de absorver calor de ambos, chegamos a conclusão que a água e o óleo devem ter uma diferença de temperatura enquanto estiverem mesmo sobre a luz solar, mesmo sabendo dos princípios de equilíbrio térmico de dois líquidos em contato. Para comprovar esta hipótese, realizamos o experimento descrito abaixo no Apêndice A.

	ÁGUA	ÓLEO DE SOJA	ÓLEO COMBUSTÍVEL
Calor Específico	1 cal/g.°C	0.47 kcal/kg	0,4 a 0,5 kcal/kg
Ponto de ebulição	100° C	226 °C	180 a 360°C

Tabela 1 – Características físico-químicas da água, óleo de soja e óleo combustível

Com base nos resultados do experimento, determinamos que a temperatura medida do óleo tem uma diferença mínima de 0,2 °C em relação a temperatura da água e que, essa diferença pode chegar até 0.4°C.

5. Detalhes operacionais

5.1. Detalhes dos subsistemas

Figura 2 – Fluxograma dos sistemas do satélite Fonte: autoria própria

Para facilitar o trabalho do desenvolvimento do satélite, seus sistemas foram divididos em cinco:

1. - O sistema de alimentação e medição da bateria é responsável pela parte de alimentação do sistema eletrônico do satélite. Um divisor de tensão fornece a quantidade de energia disponível na bateria, que será enviado no pacote de dados do satélite. Para monitorar a temperatura da usamos o sensor do giroscópio que está posicionado ao lado da "caixão": a caixa feita de depron utilizada para isolar a bateria. No projeto ainda deve ser adicionado um subsistema de recarga, usando placas solares de 1W, para recarregar o sistema elétrico do satélite. Pretendemos usar duas baterias Li-Ion 18650 2,2 A, com taxa de descarga de 2C.

Caixão

Figura 2 — Detalhe da montagem demonstrando o funcionamento do sistema de medição de temperatura

Giroscópio

Fonte: Autoria própria

- 2. O sistema de telemetria é o conjunto de sensores para monitoramento da posição do satélite, em relação a sua posição geográfica. Serão quatro sensores: Módulo GPS GY-NEO6MV2, responsável pela medição geográfica do satélite, fornecendo a latitude e longitude; barômetro BMP180 responsável por medir a altitude do satélite; módulo giroscópio/acelerômetro MPU6050 que mede o ângulo dos eixos do satélite (pitch, yaw e roll) e o acelerômetro, que mede as forças aplicadas aos eixos do satélite. Os dados são enviados ao processador e armazenados usando um identificador alfabético para o envio a estação de telemetria.
- 3. O experimento envolve o uso de uma câmera térmica MLX90640 e a memória SD Card de alta

capacidade. A memória é utilizada para o armazenamento dos dados de telemetria e da câmera térmica, com o processador interpretando as imagens e armazenando apenas a posição geográfica dos pontos com óleo encontrado. A câmera térmica deve monitorar a temperatura da água e variações de 0,2 °C vão identificar possível presença de óleo sobre água.

- 4. O microcontrolador ESP8266 é responsável pela coleta dos dados de telemetria e experimento, salvando os dados na memória. O ESP8266 contém um RTC(*Real Time Clock*) que informa a data e horário da imagem da suposta mancha de óleo, facilitando na obtenção dos dados em campo. Além disso, o processador é responsável pela interpretação da imagem, e assim, reduzimos o tamanho do pacote que será enviado pelo sistema de transmissão.
- 5. A área de telecomunicações é reponsável pela comunicação entre o satélite e o receptor na terra. Todos os dados salvos na memória flash serão enviados pelo modulo *LORAWAN* E32 433T D30 para o receptor em campo. Estes dados serão convertidos da linguagem C# do ESP em uma pacote de dados JSON, e deve conter um código de 4 letras e 4 números que atuarão como identificador do satélite.

5.2 – Relatório de montagem

A placa do satélite foi montada artesanalmente utilizando uma placa universal. Uma placa não tem espaço suficiente para colocar todos os componentes necessários para o funcionamento do satélite, então fizemos um "sanduiche" de placas (Figura 4), colocando-as uma sobre a outra conectadas por barras de pinos, e fixadas na estrutura com apenas quatro parafusos, desta forma amenizando os possíveis impactos sobre a estrutura (Figura 6 e Figura 7). Este sistema é conectado a uma estrutura de PETG do satélite (Figura 5), que tem a intenção de aumentar a resistência mecânica e são reforçadas internamente por uma placa de conexão entre as placas de circuito impresso e a estrutura. Espumas retiradas de caixas de computador são usadas nos espaços vazios para amortecer possíveis impactos e evitar que os componentes se soltem após um choque mecânico (Figura 8).

Figura 4 – Estrutura das placas eletrônicas do satélite Fonte: Autoria própria

Figura 5 – A: Conexão entre a estrutura eletrônica e a estrutura mecânica. B: Adaptação da estrutura para as placas produzidas artesanais e para a antena do GPS Fonte: Autoria própria

Figura 6 – Base, topo e laterais do satélite Fonte: Autoria própria

Figura 7 – "Esqueleto" do satélite: estrutura de sustentação Fonte: Autoria própria

Ainda sobre a estrutura foram adicionadas placas com uma montagem de alumínio, isopor e papelão para realizar o isolamento térmico e eletromagnético do sistema e adicionamos espumas recicladas de transportes de computadores para diminuir os impactos mecânicos nas placas, conforme mostrado na Figura 8 abaixo.

Figura 8- Placas de isolamento térmico e elétrico do satélite e espuma de amortecimento Fonte: Autoria própria

5.3 – Projeto Mecânico

O projeto mecânico do satélite utilizou um modelo obtido no *Thinkerverse* (conforme Apêndice D) que sofreu pequenas alterações. A impressão do modelo foi feita numa impressora Ender 3, utilizando filamento PETG da marca Masterprint, setada para velocidade de impressão de 15 mm/seg com temperatura da mesa de 80 °C e temperatura de impressão 240 °C, preenchimento de 20% nas lateriais e 100% na base e topo. A decisão de imprimir desta forma foi para obter o máximo de resistência da estrutura impressa pois, na pirmeira impressão da base, o suporte do parafuso M2,5 se quebrava com facilidade (Figura 9).

Figura 9 – Detalhe do suporte do parafuso M2,5 Fonte: Autoria própria

Para aumentar a resistência mecânica o modelo selecionado tem suportes reforçados na lateral com uma curva de cerca de 3 cm de raio que reforça a base de sustentação. Os "pés" do satélite em cada lateral funcionam como amortecedores de impacto mecânico transferindo a força de impacto para o "esqueleto" do satélite ao invés da placa conforme detalhes na Figura 10.

Figura 10 – Detalhes do reforço na lateral e os "pés" do satélite Fonte: Autoria própria

A conexão entre as placas e o "esqueleto" do satélite serão colocadas numa estrutura de suporte reforçada conforme Figura 5. Esssa estrutura está ligada a peça de base e topo que foram reforçadas com um quadrado apoiado nos vértices de cada canto do satélite aumentando a resistência mecânica, conforme Figura 11.

Figura 11- Detalhe da base e topo satélite com a estrutura de reforço. Fonte: Autoria própria

Na fase 3 da Olimpíada iremos imprimir modelos do satéllite em escala e aplicar um teste de resistência conforme o procedimento descrito Apêndice E.

5.4 – Projeto Eletrônico

O esquema eletrônico do satélite está no Apêndice F. O ESP 8266 (NODMCU) possui 13 pinos digitais além de um conjunto de pinos de comunicação SPI (SCK, MISO, MISIO e INT) e saída 3,3v e 5v, e um pino analógico AO e dois conjuntos de pinos de comunicação serial (GPI013 e 15; GPI01 e GPI03) UART, o pino digital "DO" permite também que o ESP seja colocado em "modo sleep" (dormente) para redução do uso da bateria. Possui memória flash de 4mb, o sufuciente para rodar o algorítmo de Machine Leanning (ML) KNN do arduino além de suporte de 5 conexões TCP/IP. Suas dimensões também favorecem seu uso visto que ocupa pouco mais de 5cm (ROBOCORE, 2023).

O barômetro BMP180 permite medir a pressão atmosférica e, consequentemente, converte o valor de pressão em altitude, operando com valor de tensão de 3,3V e corrente de 5ua, reduzindo o consumo de energia do sistema. Posicionado na camada superior do sátelite, ele tem um termômetro embutído o que nos permitirá obter informações sobre a temperatura interna do sátelite, possuindo resoluçãoentre 0 165°C com pressão de 1°C.Sua interface de comunicação I2C facilita ao uso reduzido de pinos do NodeMCU 8266, sendo conectado aos pinosD1 (SCL) e D2 (S2A) permitindo a adição de mais sensores I2C, conectado ao endereço definido na biblioteca.

Para o calculo da pressão e altitude podemos utilizar a seguinte fórmula:

$$p_0 = \frac{p}{\left(1 - \frac{altitude}{44330}\right)^{5.255}}$$

Ou a cada 10m= 1,2hPA de pressão. (MASTERWALKBLOG,2023).

O MPU 6050 é um giroscópio e acelerômetro que permite a medir a rotação e aceleração do satélite. Comunicando por I2C usando os pinos D1 (SCL) e D2 (SCA) do Esp utilizando um outro endereço hexadecimal (0x60), sendo alimentado por uma tensão de 3,3V e usamos a

biblioteca MPU6050TOCKIN, o que facilita a configuração e obtenção de dados seu *range* para o acelerômetro varia de 2 a 16g e de 25 a 2000°/s, além de possuir um sensor de temperatura variando de -45°C a +85°C. A posição de colocá-lo na placa superior do "sanduíche" permite que esse sensor meça a temperatura externa (ambiente) com razoável aproximação (ROBOCORE², 2023.)

O módulo GPS GY-NCO 6MV2 funciona com tensão de 3,3V e corrente de 45 mA, possuindo 50 camadas de comunicação e Baundrate de 9600 bps. Possui memória EEPROM e velocidade de inicialização a fio de 27seg. Possui uma antena integrada de 25x25 mm e é responsável pela comunicação da posição geográfica do satélite e consequentemente é um dos componentes essenciais do funcionamento pois permitirá a identificação dos locais do registro de fotos e do ponto de envio de dados para a estação terra. Está conectado nos pinos semas (VART) DO(RX) e D3 (TX) do Esp. Em relação ao registro fotográfico, iremos usar uma câmera térmica MLX90640-D55 (WAVE SHARE), que possui um campo visual de 55x35° e uma resolução de 32x24 pixels, permite a medição de temperatura de -40 a 380°C (+- 1°C) com precisão de 0,15°C, podendo operar em condição de -40° a 85°C. Sua taxa de atualização é de 0,5 hz a 64 hz, conforme o modo de operação (optamos por 64hz).

Opera com uma tensão de 3V e o consumo é de 25mA, utilizando a comunicação I2C contada ao endereço Ox33 conectado ao pino D2(SDA) e D1(SCL) do Esp.

O LORA escolhido pelo projeto foi definido pela disponibilidade do mesmo E32 EBXTE3OD que utiliza o SX1276 (marca SEMTE0033) operando 433mHz.

Através da saída TTL com potência de 30 dBm e um range de 8 km, operando com tensão de 3,3V . Usamos uma antena SMA-K de 50 ohms horizontal. Uma das características para escolha deste LORA é sua estabilidade e consistência de transmissão de dados a 24 Kbps. Sua comunicação UART com o processador é feita pelos pinos digitais Rx(DO) e Tx(D4). Este LORA possui dois modos de operação, sendo o "modo sleep" sendo acionado por meio do programa enquanto o satélite não esteja na coordenada GPS de transmissão e o modo operação, que irá transmitir os dados para a estação em terra, opera com temperaturas de -40 a 80°C (SARAVATI²,2023).

Para armazenamento dos dados da telemetria e do experimento estamos usando um módulo cartão micro SD Card, módulo SD/TF Card da marca OEM operando a 5V que utiliza a comunicação SPI dos pinos D5(SCK), D7(MOSI), D6(MISO) e o D8(CS).

Utiliza um cartão SD de 8 GB. Sua função e funcionamento são no Hard Disk do satélite armazenando em arquivos .txt os dados para envio por meio do LORA, opera em temperatura de -40 a 80°C.

Em relação a carga da bateria usamos um divisor de tensão com dois resistores: um de 15 kohm (15 k Ω) e 10 kohm (10 k Ω), ligado ao pino analógico A0 do Esp. Testamos o sistema em uma protoboard usando um POT linear $100k\Omega$ simulando a queda de tensão das baterias (Vídeo explicando o funcionamento deste sistema: https://youtu.be/lZK4sa7NfdU).

Figura 12 – Detallhe do experimento do divisor de tensão

Para alimentação do satélite usamos duas células litio-íon 18650 de 2,2A e 3,7V(um total de 7,4V) com corrente de 2A, e uma previsão de operação contínua de cerca de 40 horas. Para regular a tensão de funcionamento do satélite usamos um TIP7805.

5.5 – Fluxograma dos códigos desenvolvidos

Figura 13 – Fluxograma do Sistema Operacional (SO) do satélite Fonte: Autoria propria

O código detalhado com comentários se encontra no Apêndice F.

6. Registro de dados

6.1 – Caracterização Física

As dimensões do satélite foram mantidas dentro do tamanho padrão para o cubesat, com 100x100x100 \pm 3mm, conforme desenhos no Apêndice D.

Em relação a massa da estrutura, o "esqueleto" permanceu com 18 gramas. As duas placas internas adicionam 4 gramas ao peso da estrutura. O sistema de "sanduíche" de placas, já adicionado aos espaçadores de nylon e suas porcas e a câmera, tem 56 gramas. As baterias com o "caixão" e o sistema de vedação utilizando alumínio/papelão/isopor adicionam 221 gramas, resultando num total de 299 gramas.

6.2 – Robustez mecânica

Em relação a robustez mecânica a estrutura do satélite foi montada com PETG utilizando um sistema de reforço interno para aumentar a sua resistência a impactos. Os primeiros pré-testes demonstraram que um cubo de PETG com 20% de preenchimento, com aproximadamente 2 gramas (20x20x20 mm) é capaz de resisitir a forças de até 100 vezes a sua massa (2 kg) não apresentando deformações visíveis. Utilzamos o método descrito no Apêndice E, sub-item E1. Outro pequeno teste foi feito com o esqueleto do satélite, lançando de 1 metro de altura, e notamos que não houve danos aparentes. A expectativa da estrutura é suportar até 150 kg aplicados verticalmente.

Figura 14 – Montagem final so satélite, sem as placas de alumínio aeronáutico Fonte: Autoria própria

Realizamos um segundo teste com um modelo em escala de 1:2, de 50x50x50 mm com massa de 32g, utilizando uma balança e livros didáticos para medir a massa aplicada. Neste teste o modelo resistiu a massa de 15 kg, aproximadamente, aplicada. Após esse teste, aplicamos a massa de 52 kg de um dos integrantes da equipe e a estrutura resistiu a pessoa subir em cima dele. Decidimos então gravar e, na segunda aplicação da massa, a aluna escorregou e uma das laterais quebrou no movimento. Com base nesta informação vamos testar a resistência mecânica utilizando um equipamento de uma academia de ginástica para aplicar a massa sobre a estrutura, por questões de segurança e confiabilidade no teste.

Figura 15 – Teste de resistência mecânica do satélite Fonte: Autoria própria

Além da metodologia prática, estamos estudando uma forma de simular a resistência mecânica através do software (SILVEIRA *et al*, 2014). Nos testes de vibração (Apêndice E, sub-item E.4) não houve

desmonte das partes encaixáveis ou perda de porcas do sistema.

6.3 – Robustez eletrônica e magnética

Em relação a eletrônica, mesmo submetido a vibrações de 250 Hz, o sistema manteve a transmissão de dados e leitura dos sensores, de acordo com a programação. Não houve falhas elétricas.

Com relação a robustez eletromagnético, o sistema de vedação térmica ainda não está sendo eficiente. A vedação utilizada, por meio de papel alumínio, incorporado as camadas de proteção térmicas, se mostraram eficientes em relação a sinais que partiam de um celular ou de um notebook colocado ao lado do satélite. Nos baseamos no sistema de GPS que, quando colocado próximos a equipamentos eletromagnéticos, perde seu sinal.

Lista de vídeos:

Estrutura eletrônica do satélite montada: https://youtube.com/shorts/k1rvvM6M6Ss?feature=share Acomodação dos componentes: https://youtu.be/I96NHpccOmY

6.4 – Robustez térmica

Até o presente momento tem sido nosso maior desafio. Nos primeiros testes utilizamos camadas de isopor de bandeja de alimentos, papel alumínio e papelão, colocados com cola quente, conforme figura 16. Observamos que a cola quente derrete as extremidades do isopor provocando entradas de ar frio (método descrito no Apêndice E, sub-item E.3).

Figura 16 – Primeiro modelo de sistema de vedação térmica: isopor, alumínio e papelão. Fonte: Autoria própria

Pensando em vedação do sistema, construímos uma caixa utilizando caixa de suco cortada no formato do satélite (Figura 17) e vedando a mesma com isopor de bandeja de alimentos e alumínio. A ideia era evitar os possíveis pontos de entrada de ar, porém o teste falhou.

Figura 17 – Teste utilizando caixa de suco cortada, alumínio e isopor.

Fonte: Autoria própria

O terceiro teste fugiu dos padrões anteriores. Utilizamos uma caixa de isopor grande envolvida em alumínio. A ideia era testar se o problema estava na montagem do sistema de vedação. Até agora foi o melhor resultado, sendo a temperatura ambiente de -20 °C e a temperatura do termômetro de -10 °C (Figura 18).

Figura 18 – Teste utilizando caixa de isopor e alumínio Fonte: Autoria própria

Em outra linha de teste estamos pesquisando novos materiais para o isolamento. Segundo Costa (2008) uma montagem para isolamento térmico seria o uso de 3 tipos de materiais: *mylar*, *nylon e krapton* que são vendidos na forma de fitas e devem ser usados formando várias camadas. Suas características químicas são apresentadas na Tabela 2 abaixo.

Tabela 2 – Características térmicas do mylar, nylon e krapton

Material	Densidade	Condutância	Calor específico	Ponto de fusão
	(g/cm ³)	térmica (W/m·°C)	(J/g·°C)	(°C)
Mylar	1.39	3.7E-4	0.28	254
Nylon	1.11	0.28	0.01	260
Kapton	1.42	0.12	1.09	None [*]

FONTE: COSTA, 2008

Iremos utilizar, em substituição ao Nylon, o depron XPS que tem características físicas descritas no Anexo 1. Fizemos alterações no método utilizado usando a nova vedação térmica com camadas de *mylar* e *kapton* e isolando completamente o modelo de papelão e notamos uma melhora na vedação, conforme figura 19A e 19B. Devido a limitação do termômetro que utilizamos (-10 a 100°C), vamos utilizar um LM35 (sensor de temperatura de - 55°C a 100 °C) e um Arduino UNO e um módulo *bluetooth* HC-05 alimentados por bateria (9V ou duas células) para fazer o monitoramento da vedação térmica, conforme.

Figura 19 A – Teste utilizando nova vedação térmica: *mylar, krapton* e *depron*.

Figura 19 B – Resultado do teste utilizando nova vedação térmica. Fonte: Autoria própria

6.5 – Captura de dados da telemetria

A telemetria é salva em um arquivo chamado "telemetria.txt". Nele são salvos todos os dados de telemetria durante a missão: ax, ay, az – aceleração, gx, gy e gz – *pitch, yaw e roll* e temperatura. Quando o satélite está em comunicação com a base, ele envia os dados mais recentes da telemetria, ou seja, a última linha do arquivo, para que não sobrecarregue a chegada de informações. Os dados se mantém armazenados no cartão de memória.

Lista de vídeos:

Explicação do funcionamento da programação: https://youtu.be/rfpS3Ci_JYs
Conexão do GPS com satélite: https://youtube.com/shorts/u9KtT-Mk1a8?feature=share
Registro de dados de GPS - https://youtube.com/shorts/0c0JhiNgbk4?feature=share

6.6 – Captura de dados da missão

O satélite tem duas rotinas de trabalho: na primeira ele está na coordenada de de transmissão de dados e na segunda ele esta na rotina de captura de imagens. Nesta última rotina de captura de dados, quandoo satélite as coordenadas GPS pré-indicadas na configuração do mesmo, começa a tirar fotos (Figura 20) e processar essas fotos, conforme o algortimo KNN, com base nos dados armazenados na memória. Se as fotos apresentarem manchas de óleo, coforme a etapa de aprendizagem do algoritmo, são armazenadas na memória no arquivo "Cords_print.txt" e, na próxima passagem pela estação de trabalho são enviadas para base.

Figura 20 – Detalhes do processamento da imagem témica: pontos de possíveis manchas de óleo Vídeo demonstrativo do funcionamento: https://youtu.be/PMiPSIG7mHU

6.7- Armazenamento de dados

Para o armazenamento de dados, os arquivos (txt) terão um padrão de escrita: a primeira e a segunda linha do arquivo seão para o satélite identificar o número de caracteres por linha e o número de dados que há no arquivo. Essas variáveis são modificadas automaticamente pelo satélite conforme a sua necessidade, por exemplo, na telemetria, o arquivo "telemetria.txt" será salvo várias linhas de dados, então é necessário toda vez que um novo dado for requisitado pelo satélite a variável de linhas do arquivo ser ajustada.

São no total sete arquivos em .txt que cada um terá uma função específica para o funcionamento do satélite. São eles: "Tarefas.txt", ele tem o número de imagens que foram analisadas pelo algoritmo KNN

e as informações de suas coordenadas; "Cords_print.txt", onde estão salvas as coordenadas dos locais que o satélite deve tirar suas fotos térmicas para o algoritmo KNN analisar; "Cords_base", as coordenadas da área da base (estação de recepção) ponto onde o satélite deve enviar seus dados; "Telemetria.txt", arquivo que armazena os dados de telemetria (altitude, eixos) e de carga da bateria, bem como, as temperaturas internas, a "saúde" do satélite; "PP_imagens.txt", o PP significa "Para Processar", esse arquivo salvas as imagens para o KNN classificar; "P_imagens.txt", onde estão salvo somente as imagens térmicas com as manchas de óleo já classificadas e; "Saída.txt", onde está salvo as coordenadas GPS das imagens térmicas classficadas anteriormente, juntamente com a data e hora da imagem.

Lista de vídeos:

Demonstração do sistema de armazenamento funcionando: https://youtube.com/shorts/thDKJVJRt4I? feature=share.

7. Lista de material

Tabela 3 – Média do preço dos materiais em 2023

Fonte: autoria própria

Materiais	Quantidade	Custo (R\$)	
Esp 8266	1	` ,	
-	1	23,50	
Giroscópio MPU6050	1	19,86	
Barômetro BMP180	1	13,59	
GPS NEO6MV2	1	66,41	
Módulo Leitor de Cartão SD micro	1	8,88	
Cartão microSD Card 64G	1	29,90	
Câmera IR MLX90640	1	74,95	
LORAWAN SX1276 + antena	1	129,90	
Espaçadores de Nylon 5 cm com	8	12,50	
porca			
Espaçadores de Nylon 7 cm com	4	12,50	
porca			
Parafusos M2,5 com porca	8 23,00		
Estrutura em PETG (2 bases e 2	1	14,00	
lateriais, 2 internas)			
Baterias 18650	2	11,99 cada	
suporte de pilhas com botão	1	3,65	
Regulador 7805	1	2,20	
Resisitores (15 k Ω e 10 k Ω)	1	0,10 cada	
Placa depron XPS 50x60cm	1	21,00	
Papel alumínio (rolo 2m)	1	3,60	
Krapton (30m)	1	30,45	
Mylar (30m)	1	28,65	

8. Requisitos e restrições do projeto

Tabela 4 - Requisitos globais da missão

Fonte: Autoria própria

Item	Requisito	Atendimento requisito	ao
Dimensões externas	1U 10x10x10cm	Atendido	
Condições de operação	Temperatura -80°C	Em pesquisa	
	Vibração 230Hz por 1 minuto	10 testes: atendido	

Massa total	450g	300 g sem as placas de alumínio aeronáutico
Potência total	3,7 W	9 W
Sistema de telemetria	Acelerômetro 3 eixos ±2, ±4, ±8, ±16g Giroscópio 3 eixos ±250, 500, 1000, 2000°/s Barômetro 300hPa a 1100hPa resolução 50cm	Testado e funcionando
Tamanho do armazenamento a bordo	Acima de 4Gb	8Gb
Altitude de operação	30km	Aguardando teste fase 3
Campo de visão da câmera	55° a 125°	Atendido
Resolução temporal	10 FPS a 30 FPS	Atendido
Comprimento de onda desejável	Infravermelho Próximo de 700 a 2500nm	Atendido
Sensibilidade da câmera	640x380px, Resolução 0,2°C	Precisamos adicionar as lentes a câmera
Material estrutural	PLA ou PETG	PETG com 20% e 100% de preenchimento
Comunicação	40min intervalo de 4 em 4 minutos Limite de 90bytes Frequências: 433Mhz ou 915Mhz	433 mHz Estamos em fase de teste de distância atingida.

Um dos desafios encontrados pela equipe foi a escolha entre sensores e câmeras térmicas. Embora os sensores parecessem uma opção viável, eles não garantiam a identificação correta do óleo, tornando a câmera térmica a escolha mais acertada. No entanto, a questão da distância apresentou-se como um obstáculo para a efetividade do projeto.Para solucionar este problema, foi necessário calcular a resolução da câmera por área visualizada, chegando a uma resolução de 640x320 com um zoom de 100x, resultando a um valor aproximado de 38 m2 por pixel, com satélite a 30 km de altitude. Outro desafio será ajustar um conjunto de lentes a câmera e ao tamanho reduzido do satélite, de forma que consigamos ajustar o foco a altitude do terreno que pode variar.

Uma das dificuldades que tivemos foi carregar os dados de GPS salvos no cartão SD, para o satélite saber onde deve tirar fotos e utilizar o LORA.

A telemetria terá um arquivo separado e nele vamos salvar os dados por data e hora de recebimento dos dados e será salvo em fileiras. Desta forma organizamos mais facilmente os dados obtidos.

Vamos desenvolver um sistema onde o satélite não dependa de comandos da base de comunicação para fazer suas tarefas, planejamos um sistema autônomo que não dependa de dados enviados para o LORA.

No protótipo do satélite utilizamos placas universais para comodar os componentes, do satélite, mas como esse tipo de placa PCB é para prototipagem as trilhas estão oxidando, para resolver esse problema vamos utilizar uma placa de circuito impresso com máscara de solda para resolver isso.

Em relação a vedação térmica, elétrica e magnética não encontramos uma solução que mantenha a temperatura estável e evta temperaturas negativas. Ainda estamos pesquisando soluções para o problema.

Devido a limitação de material e orçamento, as repetições dos testes mecânicos serão feitas em Agosto e Setembro pois a prioridade de gastos com o projeto foi para a montagem da eletrônica e programação.

9. Cronograma de desenvolvimento e plano de trabalho.

Tabela 5 – Cronograma geral da fase 1 do projeto

<u>Semana</u>	Atividades: Fase 1 do projeto	Responsável/Coordenador
06 a 13/02	Montagem da Equipe	Alan e Daniel
	Definição do nome da equipe	
	Objetivo do satélite	
13 a 17/02	Busca de bibliografia do tema Preparação do plano B	Daniel
	Discussão das Ideias – Brainstorming	Participantes: Maria C,
	Divisão das áreas de pesquisa	Gabriel 1, Ana Laura e Alan
20 a 24/02	Retomada das atividades do projeto	
	Discussão sobre a bibliografia: apresentação de alternativas	Ana
	Retomada das regras de montagem	Daniel, Gabriel 1 e Maria C
27/02 a	Preparação da descrição do experimento	Ana
03/03	Apresentação dos cálculos de gastos/investimento	Gabriel 1
	Descrição do teste de resistência térmica e mecânica (estresse)	Maria C
	Elaboração do esquema eletrônico – Desenho da placa	Daniel
06 a 10/03	Revisão do artigo: Introdução e Metodologia	Ana
	Apresentação do cálculo de gasto de energia e opções de	Gabriel 1
	alimentação (como recarregar?)	Maria C
	Testes de estresse: desenho do modelo	Daniel
	Programação do sistema de telemetria: sensores	
13 a 17/03	Artigo: Metodologia	Ana
	Sistema de transmissão de dados: RF	Gabriel 1
	Testes de estresse: Desenho do modelo	Maria C
20 a 24/03	Artigo: Análise de dados/Cronograma Fase 2 e Fase 3	Ana
	Sistemas de Transmissão de dados: RF	Gabriel 1
	Testes de estresse: Impressão do modelo Ver 1	Maria C
27 a 31/03	Finalização do projeto para apresentação: Formatação ABNT	Ana/Daniel
	Teste de envio de pacotes json – incorporação no sistemas de	Gabriel 1/Daniel
	controle	Maria C
	Revisão do modelo ver 1/ Testes de estresse	
03/04 a	Montagem da apresentação	TODOS
07/04		
	Final da Fase 1	

Tabela 6 – Cronograma da fase 2 Para Eletronica

Divisão		Telemetria					Ba	Bateria Experimento			Comunica ção
Eletrôn	Etapa	MPU60	BMP2	DHT	RT	GP	NT	Divis	Memó	Sensor/Câ	Lorawan
ica e		50	80	11	C	S	C	or de	ria	mera	
robótic								tensã	W25q	Térmica	
a								О	64		
Daniel	Testes	Março	Março	Abril	Abr	Abr	Mai	Maio	Abril	Junho	Junho
	de				il	il	О				
	bancada										
	Montag	Março	Março	Abril	Abr	Abr	Mai	Maio	Abril	Junho	Junho
	em do				il	il	О				
	Circuito										

	Montag	Março	Março	Abril	Abr	Abr	Mai	Maio	Abril	Junho	Junho
	em da				il	il	О				
	placa										
	Testes	Março	Março	Abril	Abr	Abr	Mai	Maio	Abril	Junho	Junho
	de				il	il	0				
	campo										

Tabela 7 – Cronograma da fase 2 Para Engenharia

Engenharia	Etapa	Março	Abril	Maio	Junho	Julho	Agosto	Setembro	Outubro
Maria C	Estudo das								
	regras/Revisão								
	de literatura								
	Pesquisa da								
	estrutura								
	Impressão em								
	PLA								
	Metodologia								
	dos testes								
	Testes sem								
	eletrônica								
	Testes com								
	eletrônica								
	Homologação								
	Correções de								
	projeto								
	Plano de								
	Extensão da								
	missão								

Tabela 8 – Cronograma da fase 2 Para Experimento

Experimento	Etapas	Março	Abril	Maio	Junho	Julho	Agosto	Setembro	Outubro
Ana laura	Revisão da								
	literatura								
	Montagem								
	do projeto								
	Metodologia								
	do projeto								
	Definição								
	das câmeras								
	Estudo								
	Matemático								
	de resolução								
	Análise de								
	dados								
	preliminar								
	(testes de								
	bancada)								
	Conclusão								

Tabela 9 – Cronograma da fase 2 Para Telecomunicações

Telecomunicações	Etapas	Março	Abril	Maio	Junho	Julho	Agosto	Setembro	Outubro
Gabriel	Pesquisa								
	literatura								
	Estudo do								
	BIPES								
	Programa								
	preliminar								
	Envio de								
	imagens								
	Interpretação								
	de imagens								
	Tamanho do								
	pacote								
	Segurança								
	dos dados								
	Integração								
	dos Sistemas								
	Testes de								
	campo								

Apêndice A

Experimento para detecção de óleo sobre a água usando sensor de IR

Figura 19: Experimento de medição de temperatura utilizando termômetro infravermelho.

Fonte: Autoria própria.

Materiais:

- -Termômetro Infravermelho AD801.
- -700ml de água em temperatura ambiente.
- -30ml de óleo
- Béquer de plástico de 1 litro

Objetivo:

Determinar se o sensor infravermelho consegue detectar se há diferença de temperatura entre a água e o óleo

Descrição do experimento:

Neste experimento, adicionamos 700 mL em um béquer de 1 litro e medimos a temperatura da água e do óleo separados. Após esse teste, adicionamos os 30 mL de óleo de soja na superfície da água, sem contato com o Sol e medimos a temparatura da água e da mancha de óleo. Depois colocamos o béquer num local iluminado pelo Sol e aguardamos 10 minutos para fazer a nova leitura com o sensor, da água e do óleo novamente. Todas as leituras foram repetidas 3 vezes e depois calculamos a média simples dos valores. As medições foram feitas com uma distância aproximada de 30 cm, utilizando o modo "superfície" do termômetro.

Tabela 10-Experimento comparativo de temperatura do óleo e da água

TEMPERATURA AMBIENTE			mist	ua e óleo urados na ombra	Água e óleo misturados no Sol.		
		Repetições			10 mir	1.	
			Água	Óleo	Água	Óleo	
Óleo	Água	TESTE 01	24,2	24,5	26,3	26,5	
		TESTE 02	24,2	24,6	26,0	26,5	
25,7	24,2	TESTE 03	24,6	24,6	26,2	26,5	
		Média	24,3	24,5	26,1	26,5	

Apêndice B

Código de transmissão de dados V1.0

```
// Exibição do JSON no console
console.log(JSON)
console.log(JSON['coluna1'])
console.log(JSON['coluna2'])
console.log(parts[0])
console.log(parts[1])
console.log(parts[2])
console.log(parts[3])

}

// Imagem que será dividida
img.src = "" //texto grande demais para o artigo
```

Apêndice C

Tabelas comparativas entre os componentes de satélite

Tabela 11- Comparativo entre memória flash e cartão SD

Característica	Memória W25Q64	Módulo Cartão + Cartão SD
Capacidade	64 Mb (157 imagens)	64Gb (157.000 imagens)
Tensão de operação	2,7 a 3,3 V	3,3 a 5 V
Corrente	4 mA	6 mA
Peso	1,6 g	7g
Custo	R\$15,17	R\$29,70
Número de pinos utilizados	4	4
Interface	SPI	SPI

Tabela 12 – Comparativo entre câmeras/sensor infravermelho

Característica	AMG 68833	MLX 90640	MLX 90614
Tensão de operação	3-5V	3-5V	3-5V
Corrente	120 mA	25 mA	5 mA
Faixa de medição	0 a 80 °C	-40 a 380 °C	-70 a 360 °C
Erro	<u>+</u> 2,5 °C	<u>+</u> 1 °C	± 0,5 °C
Resolução	0,2 °C	0,15 °C	0,02 °C
Resolução imagem	8x8 pixels	32x24 pixels	Sensor
Campo de visão	55°	55x35°	90 ou 35 ou 10°
Peso	2 g	4 g	1,4 g
Csuto	R\$ 232,86	R\$ 385,24	R\$ 129,90
Interface	I2C	I2C	I2C/TWI

Tabela 13 – Comparativo entre dispostivos LORA

Modelo	Potência	Frequência	Sensibilidade	Distância	Taxa de	Peso
		1		horizontal	comunição	(com
				atingida	3	antena)
SX1278	1W	433 Mhz	-148 dBm	8 km	37500 BPS	13 g
SX1276	0,1 W	433 Mhz	-130 dBM	3 km	300 000 BPS	12,2 g
RN2903	0,3W	915 Mhz	-146 dBM	15 km	12500 BPS	12,4 g
RFM95W	0,5 W	915 Mhz	-139 dBM	8 km	37500 BPS	15 g

Tabela 14 – Comparativo entre baterias para alimentação do satélite

N	Modelo	Tensão	Corrente	Dimensões	Peso
Li-I	on 18650	3,7 V	2,2 A	65x18 mm	45g
	Lipo	7,4 V	2,2 A	18x32x100 mm	117 g
1	NiCD*	1,2 V	2,5 A	25x50 mm	11 g
	NiMh	7,2 V	2,7 A	52x54 mm	139 g

^{*} Não recarregável

Tabela 15 – Comparativo entre PLA e PETG

Fonte: (SANTANA et al, 2018).

PROPRIEDADES	PLA	PETG
σ _{máx} (MPa)	$53,32 \pm 0,33$	$49,78 \pm 0,37$
ε _{σmáx} (mm/mm)	$0.02 \pm 2.6E-4$	0.05 ± 2.0 E-4
E (GPa)	$2,69 \pm 0,03$	$1,50 \pm 0,02$
ν (u.a)	0.30 ± 0.08	$0,43 \pm 0,001$
Massa (g)	$10,40 \pm 0,03$	$10,78 \pm 0,02$

Apêndice D

Desenho Mecânico utilizado no satélite

Software utilizado para montagem do satélite: Tinkercad

Modelo 1- Estrutura tridimensional (Fonte: Curso de construção de nanosatélites – OBSAT)

Modelo 2 – Base da estrutura do cubsat para impressão

Fonte: THINGERVERSE - https://www.thingiverse.com/thing:4096437

Desenhos das dimensões - Diário de bordo

Apêndice E

Métodos de teste de resistência mecânica, eletromegnética e temperatura

E.1 – Método para o teste de resistência mecânica Objetivo:

Determinar a massa máxima que a estrutura di satélite suporta.

Materiais:

Balança eletrôbnica até 200 kg, 0,1g.

Suporte de madeira 20 x 20 cm

Pesos diferentes: 10 kg, 30 kg e 50 kg

Método:

Ligar a balança. Colocar o "esqueleto" satélite sobre a balança e, em cima do satélite, o suporte de madeira. Tarar a massa do conjunto.

Adicionar os pessoas de 10 em 10 kg até a massa de 150 kg ou até a estrutura sofrer trincas ou quebrar.

Testar impressões com 20%, 50% e 100% de preenchimento. Realizar 5 repetições.

Cálculo:

Para calcular a força de impacto, você precisa considerar a energia cinética do objeto no momento do impacto, bem como a área de contato entre o objeto e a superfície de impacto. A fórmula geral para calcular a força de impacto é:

Força de impacto = Energia cinética / Área de contato

Vamos calcular passo a passo:

Converta a altura de 30 km para metros:

```
Altura (h) = 30 \text{ km} = 30,000 \text{ m}
```

Calcule a velocidade final usando a equação da velocidade em queda livre:

Velocidade final = raiz quadrada de (2 * aceleração * altura)

```
= raiz quadrada de (2 * 9.8 * 30,000)
```

$$\approx$$
 1,737.8 m/s

Calcule a energia cinética usando a fórmula:

Energia cinética = (massa * velocidade^2) / 2

$$= (0.5 * 1,737.8^2) / 2$$

$$\approx 1508.7 \,\mathrm{J}$$

Calcule a área de contato:

Área de contato = lado^2

$$= (1 \text{ m})^2$$

$$= 1 \text{ m}^2$$

Calcule a força de impacto:

Força de impacto = Energia cinética / Área de contato

 $= 1508.7 \text{ J} / 1 \text{ m}^2$

= 1508.7 N

Portanto, a força de impacto do objeto de 0,5 kg com uma área de 100 cm^2 (ou 1 m^2) em queda livre de uma altura de 30 km é de aproximadamente 1508.7 Newtons (N) ou cerca de 150 kg.

Fonte: CHATGPT

E2. Teste de resistência eletromagnética

Objetivo:

Determinar se o satélite é capaz de transmistir um sinal de rádio a 433mHz com vedação de alumínio e se, mesmo com o sistema de proteção utilizado, o sinal de GPS sofre interferência.

Materiais:

Papel alumínio

Notebook

Celular

Receptor LORA SX1276 ligado ao Arduino

Método:

Acionar o método de transmissão de dados do satélite.

Embrulhar o mesmo em papel alumínio e checar se o módulo receptor consegue receber a mensagem enviada.

Retirar o papel alumínio e testar a transmissão novamente.

Aproximar o notebook com wi-fi ligado e o celular em ligação telefônica e testar se o GPS perde o sinal.

Anotar os resultados. Repetir os testes 10 vezes.

E3 – Teste de resistência térmica

Objetivo:

Determinar a resistência da vedação e da proteção térmica a umidade e temperatura.

Materiais:

Modelo em papelão do satélite

Freezer com temperatura mínimo de -18° C.

Termômetro -20 °C a 100 °C

Arduino UNO com DHT11 e bateria

Método:

Fase 1 – Bancada

Montar um modelo do satélite com as camadas de isolamento. Abrir um orifício na parte superior do satélite e colocar o termômetro. Selar o local com cola quente e colocar no freezer. Aguardar 24 horas. Fazer a leitura do termômtro. Repetir o teste 3 vezes.

Fase 2 – Testando com Arduino

Se o isolamento funcionar, testar utilizando um Arduino UNO, DHT11 e bateria colocado dentro do modelo. O registro da temperatura e umidade deve ser feito a cada hora e armazenado na EEPROM do Arduino. Aguardar 24 horas.

Fase 3 – Validação

Se a estrutura passar na fase 2, adicionar a estrutura ao "esqueleto" do satélite e repetir o registro da fase 2, agora no cartão de memória, utilizando o termômetro do BMP180 e o termômetro do Giroscópio para fazer a leitura da temperatura ambiente e da temperatura da bateria durante o experimento.

Expectativa do resultado

Para validar uma fase a temperatura do termômetro deve ser superior a 10 ° C.

E4 – Teste de vibração

Materiais

Caixa de som LL200 50W RMS

Celular

Cabo P10-P2

Aplicativo gerador de frequências

Suporte de madeira 20 x 20 cm

Método

Configurar o aplicativo gerador de frequências em 250 Hz.

Conectar o cabo ao celular e a caixa de som.

Deitar a caixa de som e colocar o suporte de madeira sobre o autofalante.

Colocar o satélite montado sobre o suporte de madeira.

Ligar a caixa e aguardar 1 minuto. Avaliar se alguma das partes se soltou.

Repetir o teste 10 vezes.

Resultados

Realizar uma inspeção visual se há algum sinal de partes soltas. Aumentar o volume e repetir o teste.

Apêndice F

Figura 20 - Esquema eletrico do satelite Fonte: autoria propria

Apêndice G

Sistema Operacional do satelite comentado.

```
Dividimos o código em tarefas para facilitar a execução de ficar mais fácil o entendimento.
A tarefa "iniciar componentes" inicializa o GPS, o cartão de memória, a câmera, o giroscópio e o
altímetro (barômetro), acionando as tarefas seguintes:
        void iniciar_componentes(){
          gpsSerial.begin(GPSBaud);
         iniciarSD();
         Iniciar Cam();
        mpu6050.begin();
         giroscopio_conectado = true;
         if(bmp.begin(0x76)){
          Barometro_conectado = true;
        }
A tarefa "Saveln" adiciona linhas ao arquivo de texto com novas informações:
        void Saveln(String arquivo, String texto){
                File dataFile = SD.open(arquivo + ".txt", FILE_WRITE);
                if (dataFile){
                        dataFile.println(texto);
                        dataFile.close();
                }
        }
A tarefa "InciarSD" checa se o cartão SD está conectado e exibe uma mensagem de erro caso não esteja:
        void iniciarSD(){
                if (!SD.begin(CS_PIN)){
                        Serial.println("erro");
```

```
return;
                 }
                 sd_conectado = true;
        }
A tarefa "lerSD linha" faz a leitura do arquivo.txt onde estão armazenados os dados sendo que estes dados
estão armazenados em linhas que serão enviadas através da variável local saída:
        String lerSD_linha(String arquivo, int linha, int characteres){
                 String debug;
                 String saida;
                linha = linha-1;
                characteres = characteres + 3;
                File dataFile = SD.open(arquivo+".txt");
                 dataFile.seek(9 +(linha*characteres));
                saida = dataFile.readStringUntil(';');
                dataFile.close();
                return(saida);
        }
A tarefa "GPS all data" é responsável por controlar o funcionamento do GPS. Utiliza um array de 8
números, de 0 a 7, armazenando os diversos dados que podem ser fornecidos com o GPS – 0 ativa o GPS e
coleta os dados, 1 armazena em graus os valores de latitude, 2 armazena a longitude, 3 a data, 4 o mês e 5
o ano, 6 a hora e 7 o minuto. Todos esses dados são gravados numa variável tipo string chamada TextGPS
        void GPS_all_Data(){
        All_sat[0] = 0;
         while(All\_sat[0] < 1){
           while(gpsSerial.available() > 0){
            if(gps.encode(gpsSerial.read())){
             All_sat[0] = gps.satellites.value(); // numero de satelites encontrados
             if(gps.location.isValid()){ // verifica se a localização esta valida
              All_sat[1] = (gps.location.lat());
              All_sat[2] = (gps.location.lng());
             else{
              All_sat[1] = -999;
              All_sat[2] = -999;
             if (gps.date.isValid()){
              All_sat[3] = gps.date.day();
              All_sat[4] = gps.date.month();
              All_sat[5] = gps.date.year();
             else
              All_sat[3] = -1;
              All_sat[4] = -1;
              All_sat[5] = -1;
             if(gps.time.isValid()){
              All_sat[6] = gps.time.hour() + 21;
              All_sat[7] = gps.time.minute();
```

```
else
                            All sat[6] = -999;
                            All_{sat}[7] = -999;
                         TextGps = ("sat: " + String(All\_sat[0]) + '\n' + "LAT: " + String(All\_sat[1],8) + '\n' + "LNG: " + String(All\_sat[1],8) + '\
" + String(All_sat[2],8) + '\n' + "Data: " + String(All_sat[3]) + "/" + String(All_sat[4]) + "/" +
String(All_sat[5]) + '\n' + "Hora: " + String(All_sat[6]) + ":" + String(All_sat[7]));
                         Serial.println(TextGps);
                       }
                     }
Em relação as tarefas de controle da câmera podemos dividir em "Iniciar cam" que é responsável por
checar o status da câmera e se ela está se comunicando corretamente pelo protocolo SPI com o
processador.
                void Iniciar Cam(){
                  Wire.beginTransmission((uint8 t)MLX90640 address);
                  int status;
                  uint16 t eeMLX90640[832];
                  status = MLX90640_DumpEE(MLX90640_address, eeMLX90640);
                  if (status != 0)
                    Serial.println("falha no carregamento dos parametros do sistema");
                  status = MLX90640 ExtractParameters(eeMLX90640, &mlx90640);
                  if (status != 0){
                    Serial.println("falha em extrair o parametro"");
                    camera_conectado = false;
                  else{
                    camera conectado = true;
               A tarefa "print Cam save" utiliza o multitasking com a função a "millis()" e as variáveis
"startTime" e "stopTime".
               void print Cam save(){
                  Saveln("imagens","-----");
                  long startTime = millis();
                for (byte x = 0; x < 2; x++)
                }
                  long stopTime = millis();
A câmera gera um conjunto de imagens a partir da diferença do valor da temperatura ambiente em relação
a temperatura medida (como se observasse um fundo e comparasse as outras temperaturas ao valor medido
do fundo usando o valor "emissivity" como fator de correção). A partir dessa informação uma função
"for" produz um mapa de pontos de 768 medições – um conjunto de 24x32 quadros organizados em linhas
e colunas, sendo orientado pela maior medida (32) em um array identificado pela variável "x"- gravando a
imagem no cartão de memória.
                for (int x = 0; x < 768; x++) {
                    if(x \% 32 == 0) {
                               Serial.println();
                               Saveln("imagens"," ");
                     String img = String(mlx90640To[x], 2) + ",";
                     Serial.print(img);
```

```
Save("imagens",img);
        }
         Serial.println("");
         Saveln("imagens","-----");
         Serial.println("arquivo salvo em (imagens.txt)");
Em relação ao giroscópio, a tarefa verifica a calibração do giroscópio com o comando
"mpu6050.calcGyroOffsets(true);" e atualiza os dados do eixo "mpu6050.update();". Os eixos então são
determinados pela tangente inversa de dois eixos do giroscópio (atan2) e a conversão de Euler para graus
(* RAD_TO_DEG).
       void calcular_eixos_giroscopio(){
         mpu6050.calcGyroOffsets(true);
         mpu6050.update();
         horizontal = (atan2(mpu6050.getAngleX(),mpu6050.getAngleZ()) + PI) * RAD_TO_DEG;
         vertical = (atan2(mpu6050.getAngleX(),mpu6050.getAngleY()) + PI) * RAD TO DEG;
         eixoz = (atan2(mpu6050.getAngleY(),mpu6050.getAngleZ()) + PI) * RAD_TO_DEG;
         //delay (500);
        }
        No Void loop o satelite carregara a variavel "GPS" salvo no cartao SD, caso a variavel estiver
zerada significa que o satelite está sem informações de suas coordenadas, então sera chamado a função
GPS all Data(); e tornará a variavel "GPS" para [1] – verdadeiro, caso a variavel estiver verdadeira o
satelite analisará se essas coordenadas são compativeis com as salvas no cartão SD, como "print" ou
"send" caso verdadeiro o satelite tirará uma foto para a variavel "print" e ligara o lora e comunicará com a
terra caso a variavel estiver igual a "send" caso o satelite não estiver em nenhuma dessas coordenadas
salvas ele analisara as imagens com o algoritmo KNN até não haver nenhuma imagem para analise. Caso
completo todas as tarefas o satelite entrara em SLEEP MODE.
void loop(){
 String GPS;
 String Estou;
 GPS = lerSD linha("Tarefa", 1, 8);//leitura da variavel no cartão sd
 if(GPS == "0"){//se ele não souber onde ele está
  Serial.print("verificar onde esta");//aqui colocaremos uma função para verificar se ele está em um ponto
para tirar fotos ou enviar os dados
  Rewrite Tarefa("GPS",1);//agora ele sabe onde está
 else if(Estou == "print"){//se ele estiver em um ponto de tirar foto
  Serial.println("tirar foto");//aqui colocaremos uma função para tirar fotos e salvar corretamente
  Rewrite_Tarefa("GPS",0);//reseta a localização
 else if(Estou == "send"){// se ele estiver em um ponto de enviar dados
  Serial.println("Satelite envia dados");//aqui colocaremos uma função para o lora enviar e receber dados
  Rewrite_Tarefa("GPS",1);//reseta a localização
 else{//se ele nao estiver em nenhum ponto importante
  String SD_Process = lerSD_linha("Tarefa",2, 8); //verificar se tem imagens para processar
  int Num_Process = SD_Process.toInt(); //converter o string retornado do cartão sd em Inteiro
  while (Num_Process > 0) { // se tiver imagens para processar ele processará
   SD Process = lerSD linha("Tarefa", 2, 8);
   Num_Process = SD_Process.toInt();
   Serial.println(Num_Process);
   Serial.print("KNN analizando")://aqui sera utilizado o algoritmo KNN para o processo da imagem
```

```
Se KNN nao detectar o oleo a imagem sera descartada para economizar memoria.
    Se detectar ele salvara o os dados da imagem no arquivo "P_imagens.txt" com
    o horario que foi tirada a imagem e as coordenadas.
    Tambem salvara no saida.txt somente o horario data e as coordenadas no arquivo
   Rewrite Tarefa("SUB imagem", 1);//Diminuirá da variavel o numero de imagens para processar
  Rewrite_Tarefa("GPS",0);//reseta a localização
   Telemetria();
   Serial.println("GPS = 0, NOW I'M GOING TO SLEEP -_-"); //o esp ficara travado para economia de
   delay(1000);
   Serial.println("IM WAKE UP 0-0 Restarting the routine");//apos o tempo de espera ele reinicia o loop
}
}
o algoritmo KNN é um algoritmo de aprendizado de maquina, ele aprende a classificar ojetos e sempre
quando aparece objetos fora de sua linha de aprendizagem ele procura a classificação da variavel com os
valores mais próximos ao dado.(ARDUINO).
A função Treinar_KNN() sera implementado ao Setup, mas ainda não esta implementado pois precisa-se
calibrar o aprendizado de maquina do KNN.
void Treinar KNN(){
 float placeHolderTRAINING = 1;
 for (int currentClass = 0; currentClass < Classes; currentClass++) {
   for (int currentExample = 0; currentExample < Imagens_Treino; currentExample++) {
    //myKNN.addExample(placeHolderTRAINING, currentClass);
 }
A função Analizar_Imagens() sera a implementação do KNN para a analise de imagens do satelite, com o
que ele aprendeu em seu banco de dados o KNN classificará as imagens analizados com "agua" ou "oleo".
String Analizar Imagem(String arquivo){
 bool AGUA;
 float IMAGEM_DO_ARQUIVO = 1;
 //float classification = myKNN.classify(IMAGEM_DO_ARQUIVO, K);
 //if (classification == 1) {AGUA == true;} else{ AGUA == false;}
 if(AGUA == true){
  return("Agua");
 }
 else{
  return("oleo");
}
```

Apêndice H

Desenho das placas de circuito impresso – PCB Aplicativo utilizado: Fritzing

fritzing

Apendice I

Projeto de sistema de controle de posição do satélite

Objetivo: Manter o satélite na posição com a câmera virada para baixo

Descrição: Costruimos um sistema que usa um servo motor, igual ao robo SPHERE, que mantém a câmera do satélite virada para baixo e assim evita que tiremos fotos do espaço.

Fase: estamos na fase de ajuste do sistema usando o giroscópio e de establização elétrica pois o servo gera muito ruído eletrônico.

Vídeo demonstração: https://youtu.be/VI_dSgd5RtQ

Anexo 1

Tabela de características físicas do DEPRON FONTE: http://www.arterm.com.br/xps-depron.html

XPS - DEPRON

Características Técnicas

Propriedades	Normas	Unidades de medidas	Resultados
Densidade	NBR 11949	Kg/m²	42
Condutibiidade Térmica a 23,9°C (75°F)	NBR 12094	W/m. K	0,027
Resistência à compressão em 10% deformação	NBR 8082	Кра	300 a 500
Absorção de água por submersão	NBR 7973	%/Vol	<1
Resistência e permeabilidade de vapor de ógua	NBR 8081	Por Polegada	0,6
Classificação a foga	NBR 11948	Retardante	a chama

Anexo 2

Método de monitoramento de temperatura usando LM35 e módulo bluetooth HC-05.

Fonte: http://www.sta-eletronica.com.br/artigos/arduinos/utilizando-o-sensor-de-temperatura-lm35-com-o-arduino-uno

Características principais do LM35

- Calibrado diretamente em Celsius
- Saída proporcional em °C

- Fator de escala linear + 10 mV/°C
- Opera de 4 V a 30 V
- Dreno de corrente inferior a 60 ?A
- Saída de baixa impedância, 0,1 ? para carga de 1 mA
- Baixo custo
- Precisão 0,5°C (a 25°C)
- Faixa de temperatura do LM35 (-55°C a 150°C)
- Autoaquecimento baixo, 0,08°C em ar parado
- Não Linearidade Somente ±1/4°C Típico
- Adequado para aplicações remotas

Fonte: https://mundoprojetado.com.br/lm35-sensor-de-temperatura

Referências

ECOLEO, "Associação brasileira para sensibilização, coleta e reciclagem de resíduos de óleo comestivel", 2023, https://ecoleo.org.br/ Acesso em 09 de abril de 2023.

OilWorld, "Independent Global Market Analyses & Forecasts", 2023, https://www.oilworld.biz/ Acesso em 09 de abril de 2023.

Sabesp, "Companhia de Saneamento Básico do Estado de São Paulo", 2023 , https://www.sabesp.com.br/site/Default.aspx Acesso em 09 de abril de 2023.

MORAES, Paula Louredo. 2022, "O que é e quando ocorre a mutação"; *Brasil Escola*. Disponível em: https://brasilescola.uol.com.br/biologia/mutacao.htm. Acesso em 09 de abril de 2023.

Recicla Sampa, "Recicla Sampa", 2023, https://www.reciclasampa.com.br/ Acesso em 09 de abril de 2023

JÚNIOR, Mário Roberto Lemos, A indústria de petróleo e os derramamentos de óleo no mar: uma abordagem exploratória, universidade federal fluminense escola de engenharia departamento de engenharia química e de petróleo curso de engenharia de petróleo, Niterói, 2013

SANTANA, Leonardo et al. Estudo comparativo entre PETG e PLA para Impressão 3D através de caracterização térmica, química e mecânica, 2018, Disponível em: https://www.scielo.br/j/rmat/a/dpWDvBJzSXYtzbKnJdDqHVg/?lang=pt&format=html# Acesso em 09 de abril de 2023.

Inspired Engineering, "MLX90614 family Single and Dual Zone Infra Red Thermometer in TO-39.", Melexis, 2019, Disponível e: https://www.melexis.com/en/documents/documentation/datasheets/datasheet-mlx90614, Acesso em 09 de abril de 2023.

Fabio Guimarães, Voltímetro, Amperímetro e Ohmimetro c/ Arduino, mundoprojetado, 2018 Disponível em: https://mundoprojetado.com.br/voltimetro-amperimetro-e-ohmimetro-c-arduino/ Acesso em 09 de abril de 2023

José Morais, ESP32 – Utilizando o RTC interno do ESP32, Vida de Silíco, 2019 Disponível em: https://portal.vidadesilicio.com.br/esp32-utilizando-o-rtc-interno-para-datas/ Acesso em 09 de abril de 2023

INPE, Câmeras Imageadoras CBERS-3 e 4, CBERS, 2019 Disponível em: http://www.cbers.inpe.br/sobre/cameras/cbers3-4.php Acesso em 09 de abril de 2023

Alex Newton, DIY Thermal Camera with ESP8266 & AMG8833 Thermal Image Sensor, Integrating AMG8833 8X8 Array Thermal Camera with ESP8266, how2eletronics, 2023 Disponível em: https://how2electronics.com/diy-amg8833-thermal-camera-with-esp8266-ili9341/ Acesso em 09 de abril de 2023

Fernando Koyanagi, Infrared Sensor With ESP8266, AUTODESK Intructables, 2018 Disponível em: https://www.instructables.com/Infrared-Sensor-With-ESP8266/ Acesso em 09 de abril de 2023

Floris Wouterlood, 8*8 pixel AMG8833, thermal sensor, ESP8266 microcontroller board and a SSD1283 driven TFT display, The Solar Universe, 2022, Disponível em: https://thesolaruniverse.wordpress.com/2022/05/02/88-pixel-amg8833-thermal-sensor-esp8266-

microcontroller-board-and-a-ssd1283-driven-tft-display/ Acesso em 09 de abril de 2023

Djames Suhanko, Transferir uma imagem jpg por serial – ESP8266 e ESP32, dobitaobyte 2019 Disponível em: https://www.dobitaobyte.com.br/transferir-uma-imagem-jpg-por-serial-esp8266-e-esp32/ Acesso em 09 de abril de 2023

PAPER, Conference, Desenvolvimento de um cubesat para detecção de descargas atmosféricas: projetoraiosat, 2019

RABELO, Leila Baganha, Estudo da variabilidade da estrutura vertical da temperatura da água e da profundidade da termoclina na região da confluência brasil-malvinas, 2010

Inspired Engineering, "MLX90614 family Single and Dual Zone Infra Red Thermometer in TO-39.", Melexis, 2019, Datasheet for MLX90614 I Melexis Acesso em 09 de abril de 2023

TEMBA, Plínio, Fundamentos da Fotogrametria, Departamento de Cartografia, UFMG, Geoprocessamento, 2000

Natanael José Maciel Isidoro (Estudante), Ludmila de Oliveira Agra (Estudante), Maria C Hugo Ursulino Fernandes (Estudante), Rodrigo Queiros de Almeida (Orientador), A²Database (Araripe Atmospheric Database): Plataforma de Monitoramento de Dióxido de Carbono e Compostos Orgânicos Voláteis na Chapada do Araripe, IFCE Campus Juazeiro do Norte, 2022

JÚNIOR, Mário Roberto Lemos, A indústria de petróleo e os derramamentos de óleo no mar: uma abordagem exploratória, universidade federal fluminense escola de engenharia departamento de engenharia química e de petróleo curso de engenharia de petróleo, Niterói, 2013

COSTA, Lucas Lopes. **Estudos de susbsistemas de controle térmico para pequenos satélites para aplicação ao NANOSATC-BR.** INPE. Santa Maria, 2008. Disponível on-line em: http://mtc-m21c.sid.inpe.br/col/sid.inpe.br/mtc-m21c/2020/07.30.11.53/doc/Microsoft%20Word%20%20Relat%C3%B3rio%20Final%20PIBIC2008%20-%20Lucas%20Lopes%20Cos.pdf, acesso em 31/07/2023.

SILVEIRA, Iago Camargo *et al.* Análise mecânico/estrutural do CUBESAT NANOSATC-BR2 submetidos ao ambiente de lançamento espacial. **Anais do CREEM, XXI Congresso Nacional de Estudantes de Enegnharia Mecânica,** Rio de janeiro/RJ, Outubro/2014

ROBOCORE, **Tutorial Esp8266**, , [S.I]: ROBOCORE, Disponível on-line em: https://www.robocore.net/tutoriais/programando-o-esp8266-pela-arduino-ide, acesso em 31/07/2023.

ROBOCORE², **Tutorial acelerômetro e giroscópio MPU6050**, [S.I]: ROBOCORE, Disponível on-line em: https://www.robocore.net/tutoriais/kit-avancado-para-arduino-acelerometro-giroscopio , acesso em 31/07/2023.

SARAVATI, **Lora E22090030D**, [S.I.]: SARAVATI, disponível on-line em: https://www.saravati.com.br/lora-915-mhz-rf-modulo-e220-900t30d-sem-antena.html, acesso em: 31/07/2023.

SARAVATI, **GPS Neo6MV2**, [S.I.]: SARAVATI, disponível on-line em: https://www.saravati.com.br/modulo-gps-gy-neo6mv2-micro-usb-conector-sma.html, acesso em: 31/07/2023.