

A matriz MIM no projeto de modelagem do biossensor foi utilizada para indicar o agrupamento das funções de aspecto eletrônicos, químicos, eletroquímico e físicos, para assim facilitar a visão do agrupamentos das funções/componentes dentro de um circuito de uma placa.

Desta forma, por exemplo, a função FE.1 (Converter o analito em sinal) foi desdobrada em 4 conceitos básicos: Reagentes, Luz ultravioleta, Conversor de intensidade luminosa em frequência e Sensor de fibra óptica. Essa função pode ser mais bem representada através do esquema demonstrado na Figura 5.

O esquema geral de um sistema fotoelétrico é à base de um equipamento que mede a absorção no Ultravioleta e Visível, sendo a região ultravioleta-visível como o conjunto de radiações associadas à absorção na banda de 200 a 800 nm, o qual é tido como banda espectral do espectrofotômetro convencional para medidas ultravioletas- visíveis [33].

Figura 5: Esquema geral de descrição de um sistema fotoelétrico: A – Fonte luminosa; B – Meio para separar os comprimentos de onda; C – Cubetas, tubos ou celas de amostra; D – Detector de energia radiante e E - Medidor. Fonte: Adaptado de [33].

Sabendo que a emissão de fluorescência (emissão imediata da luz por moléculas que tenha absorvido radiações, por oposição a fosforescência aue consiste na liberação retardada da energia absorvida) das aflatoxinas AFB1, AFB2, AFG1, AFG2, onde AF significa Aflatoxinas, B azul (Blue) e G verde (Green) dos tipos 1 e 2, são de 425 nm para a cor azul e 450 nm para cor verde (ver Tabela 2), onde indica que o tipo de comparador a ser utilizado no Biosensor a ser desenvolvido é de fibra óptica, então o conceito de um instrumento que medi quantidade de energia radiante emitida ou absorvida ultravioleta.

Temos assim conceitos suficientes para enquadrar o equipamento a ser desenvolvido no

conceito de um instrumento de medição radiante e absorção de ultravioleta levando em consideração as alternativas de solução no qual permitiu a visualização do conceito da concepção, não podendo esquecer que por causa da substância a ser analisada e medida é de origem biológica e molecular, o comparador de fibra óptica pode ser descrito como Biosensor de fibra óptica com a função principal de detectar de aflatoxinas.

A Figura 6 ilustra a concepção desenvolvida.

química molecular de fusão (°C) nanômetros (nm) e oc AFB1 C ₁₇ H ₁₂ O ₆ 312 269 425 – azul AFB2 C ₁₇ H ₁₄ O ₆ 314 286-289 425 – azul AFG1 C ₁₇ H ₁₂ O ₇ 328 244-246 450 – verde AFG2 C ₁₇ H ₁₄ O ₇ 330 237-240 450 - verde	Aflatoxina	Fórmula	Massa	Temperatura	Emissão de fluorescência
AFB1 C ₁₇ H ₁₂ O ₆ 312 269 425 – azul AFB2 C ₁₇ H ₁₄ O ₆ 314 286-289 425 – azul AFG1 C ₁₇ H ₁₂ O ₇ 328 244-246 450 – verde AFG2 C ₁₇ H ₁₄ O ₇ 330 237-240 450 - verde	, mate, ma				nanômetros (nm) e cor*
AFG ₁ C ₁₇ H ₁₂ O ₇ 328 244-246 450 – verde AFG ₂ C ₁₇ H ₁₄ O ₇ 330 237-240 450 - verde	AFB ₁	C ₁₇ H ₁₂ O ₆	312	269	
AFG ₂ C ₁₇ H ₁₄ O ₇ 330 237-240 450 - verde	AFB ₂	C ₁₇ H ₁₄ O ₆	314	286-289	425 - azul
	AFG ₁	C ₁₇ H ₁₂ O ₇	328	244-246	450 – verde
	AFG ₂	C ₁₇ H ₁₄ O ₇	330	237-240	450 - verde
AFM ₁ C ₁₇ H ₁₂ O ₇ 328 299 425 – violeta azulada	AFM ₁	C ₁₇ H ₁₂ O ₇	328	299	425 – violeta azulada
AFM ₂ C ₁₇ H ₁₄ O ₇ 330 293 425 - violeta	AFM ₂	C ₁₇ H ₁₄ O ₇	330	293	425 - violeta
Aflatoxicol C ₁₇ H ₁₄ O ₆ 314 230-234 425	Aflatoxicol	C ₁₇ H ₁₄ O ₆	314	230-234	425

Tabela 2: Características físico-químicas das principais aflatoxinas.

Nota: *Sob luz ultravioleta. Fonte: [34]

Figura 6: Concepção do biosensor

COSIDERAÇÕES FINAIS

O roteiro desenvolvido serviu de base para o desenvolvimento das fases de projeto informacional e projeto conceitual do biosensor para identificação de aflatoxina.

Na fase de projeto informacional, na atividade da análise detalhada do problema, além dos métodos e ferramentas sugeridos no roteiro, foi identificada a necessidade de mapeamento da