Erick Butler POLETTO Ricardo Alexandre FIORELLI

Data Center Energy Efficiency: Analysis and Test of Energy Consumption Benchmark Tools

 $\label{eq:milder} \begin{array}{l} \mbox{Milan} - \mbox{IT} \\ \mbox{Academic Year 2007-2009} \end{array}$

Erick Butler POLETTO Ricardo Alexandre FIORELLI

Efficienza Energetica dei Data Center: Analisi e Verifica dei Tool di Benchmark dei Consumi

Tesi di Laurea

Orientator: Prof.ssa Chiara FRANCALANCI

Laurea Specialistica in Ingegneria Informatica Dipartimento di Elettronica ed Informazione (DEI) Politecnico di Milano

Milan-IT

Anno Accademico 2007-2009

Acknowledgements

Ricardo

Erick

"It's the only home we know. Yet everyday, we take the earth for granted.

Everytime we leave the lights on, we are doing the earth harm.

When we forget to turn off our computers, energy is also wasted.

But together we can help make the world a greener place, one simple act at a time.

Because when it comes to the environment, small changes can make a world of difference.", The "Power To Change" manifest

Questions and Doubts

In order not to have any text not related to the thesis in the middle of the text and maybe, in the final version nobody sees it, I created this file, like that, we can put some information here and delete it in the last version. Of course, these are not the only issues related to the thesis, but it is better to have a centralized way to do that.

The questions are:

- Section ?? or Appendix ?? Do we need to insert all tables here, in appendix, or where do we need to insert the tables? Or just the database schema? These tables were taken from the SANDRA Access file.
- **Section ??** special attention to the schema of the database with measures with the measurement tool provided.
- **Figure ??** Can we insert a picture with the Toms hardware logo, or do we need to port it and provide the source?

Figure ?? same as above.

Computer Model	$Idle \ { m with} \ { m monitor} \ { m on} \ ({ m W})$	Idle with monitor off (W)	Estimated Monitor Power	Processor fully stressed
			(W)	
$\mathrm{HPdv3500el}$	28.57	25.19	3.38	35.64
$\mathrm{HPdv}6580\mathrm{el}$	62.18	57.14	5.04	85.27
Compaq-nx9420	78.89	74.65	4.24	79.64
Acer Aspire 6935g	38.67	33.76	4.91	55.39
Acer Aspire 4720z	44.57	39.88	4.69	67.28
Acer Aspire 5930G	44.48	39.56	4.92	62.83
HP dv6000	43.65	39.12	4.53	58.95
Toshiba	54.80	46.03	8.77	65.73
Fujistu AMILO Pa2548	60.28	55.40	4.88	87.40
Samsung Q310	33.60	26.60	7.00	48.55
Acer Aspire 5930G	39.33	32.52	6.81	62.40
HP Pavilion dv6000	34.06	29.38	4.68	48.20
Sony Vaio SZ650N	52.44	45.67	6.77	81.65
HP Pavilion ze2000	37.48	31.48	6.00	58.34
Sony Vaio v6nfw11e	34.84	29.57	5.27	44.14
Asus F3 Series	47.63	38.98	8.65	50.33
HP 550	41.31	33.60	7.71	48.11

 Table 1: Measures made with the Energy Measurement Device

Computer Model	Processor	Cache &	Physical Disks
	Benchmark	Memory	Benchmark
	(\mathbf{W})	$\mathrm{Benchmark}^a$	(\mathbf{W})
		(\mathbf{W})	
HPdv3500el	19.69	26.69	N/A
HPdv6580el	32.01	40.06	2.00
Compaq-nx9420	26.93	36.16	N/A
Acer Aspire 6935g	28.03	35.03	N/A
Acer Aspire 4720z	19.78	34.57	N/A
Acer Aspire 5930G	25.13	32.13	N/A
HP dv6000	25.00	34.23	N/A
Toshiba	22.50	31.24	N/A
Fujistu AMILO Pa2548	N/A	N/A	N/A
Samsung Q310	26.28	33.28	N/A
Acer Aspire 5930G	38.60	47.63	N/A
HP Pavilion dv6000	12.95	31.84	N/A
Sony Vaio SZ650N	28.99	49.68	N/A
HP Pavilion ze2000	14.62	17.86	N/A
Sony Vaio v6nfw11e	35.08	42.08	N/A
Asus F3 Series	12.44	28.53	N/A
HP 550	29.63	44.42	N/A

a chipset + processor + memory N/A Not Returned a Valuable Result

Table 2: Measures Resulted from Benchmark with SANDRA

Computer Model	Processor Model
HPdv3500el	Intel Core Duo P8400 @ 2.26GHz
HPdv6580el	Intel Core Duo T7300 @ 2.00GHz
Compaq-nx9420	Intel Core Duo T2400 @ 1.83 GHz
Acer Aspire 6935g	Intel Core Duo T6400 @ 2.00GHz
Acer Aspire 4720z	Intel Core Duo T2310 @ 1.66 GHz
Acer Aspire 5930G	Intel Core 2 P7350 @ 2.0GHz
HP dv6000	Intel Core Duo T5600 @ 1.83GHz
Toshiba	Intel Core Duo T2300 @ 1.66 GHz
Fujistu AMILO Pa2548	AMD Turion 64 X2 TL-58 @ 1.9GHz
Samsung Q310	Intel Core Duo P7350 @ 2.00GHz
Acer Aspire 5930G	Intel Core Duo T9400 @ 2.53GHz
HP Pavilion dv6000	Intel Core Duo T5450 @ 1.66GHz
Sony Vaio SZ650N	Intel Core Duo T7500 @ 2.20 GHz
HP Pavilion ze2000	Intel Pentium M 1.60 GHz
Sony Vaio v6nfw11e	Intel Core Duo P8400 @ 2.26 GHz
Asus F3 Series	Intel Core Duo T7300 @ 2.00GHz
HP 550	Intel Celeron 530 @ 1.73 GHz

Table 3: Processor Contained in each Measured Computer

Processor Model	Processor
	nominal power
	(\mathbf{W})
Intel Core Duo P8400 @ 2.26GHz	25
Intel Core Duo T7300 @ 2.00GHz	35
Intel Core Duo T2400 @ 1.83 GHz	31
Intel Core Duo T6400 @ 2.00GHz	35
Intel Core Duo T2310 @ 1.66 GHz	35
Intel Core 2 P7350 @ 2.0GHz	25
Intel Core Duo T5600 @ 1.83GHz	34
Intel Core Duo T2300 @ 1.66 GHz	31
AMD Turion 64 X2 TL-58 @ 1.9GHz	31
Intel Core Duo P7350 @ 2.00GHz	25
Intel Core Duo T9400 @ 2.53GHz	35
Intel Core Duo T5450 @ 1.66GHz	35
Intel Core Duo T7500 @ 2.20 GHz	35
Intel Pentium M 1.60 GHz	35
Intel Core Duo P8400 @ 2.26 GHz	25
Intel Core Duo T7300 @ 2.00GHz	35
Intel Celeron 530 @ 1.73 GHz	27

Table 4: Manufacturer Specification

Computer Model	Benchmark	Nominal	Incompatible
_	Processor	Processor	Results
	Power (W)	Power (W)	
HPdv3500el	19.69	25	
HPdv6580el	32.01	35	
Compaq-nx9420	26.93	31	
Acer Aspire 6935g	28.03	35	
Acer Aspire 4720z	19.78	35	
Acer Aspire 5930G	25.13	25	x
HP dv6000	25	34	
Toshiba	22.5	31	
Fujistu AMILO Pa2548	N/A	31	
Samsung Q310	26.28	25	x
Acer Aspire 5930G	38.6	35	x
HP Pavilion dv6000	12.95	35	
Sony Vaio SZ650N	28.99	35	
HP Pavilion ze2000	14.62	35	
Sony Vaio v6nfw11e	35.08	25	x
Asus F3 Series	12.44	35	
HP 550	29.63	27	X

N/A Not Returned a Valuable Result

 Table 5: Processor Specifications' Results

Computer Model	Measurement	Estimated	Measured
	Result: $Idle$	$PSU Power^a$	$Power^b$ (W)
	With Monitor	(\mathbf{W})	,
	$\mathbf{Off}(\mathbf{W})$, ,	
HPdv3500el	25.19	6.30	18.89
HPdv6580el	57.14	14.29	42.86
Compaq-nx9420	74.65	18.66	55.99
Acer Aspire 6935g	33.76	8.44	25.32
Acer Aspire 4720z	39.88	9.97	29.91
Acer Aspire 5930G	39.56	9.89	29.67
HP dv6000	39.12	9.78	29.34
Toshiba	46.03	11.51	34.52
Fujistu AMILO Pa2548	55.40	13.85	41.55
Samsung Q310	26.60	6.65	19.95
Acer Aspire 5930G	32.52	8.13	24.39
HP Pavilion dv6000	29.38	7.35	22.04
Sony Vaio SZ650N	45.67	11.42	34.25
HP Pavilion ze2000	31.48	7.87	23.61
Sony Vaio v6nfw11e	29.57	7.39	22.18
Asus F3 Series	38.98	9.75	29.24
HP 550	33.60	8.40	25.20

 Table 6: Measures with Processor in idle state

^a at 75% Efficiency
^b processor/chipset/memory

Computer Model	Measurement result: Fully	Estimated $PSU Power^b$	$\begin{array}{c} \text{Measured} \\ \text{power}^c \ (\mathbf{W}) \end{array}$
	$Stressed^a$ (W)	(\mathbf{W})	
$\mathrm{HPdv3500el}$	32.26	8.07	24.20
HPdv6580el	80.23	20.06	60.17
Compaq-nx9420	75.40	18.85	56.55
Acer Aspire 6935g	50.48	12.62	37.86
Acer Aspire 4720z	62.59	15.65	46.94
Acer Aspire 5930G	57.91	14.48	43.43
HP dv6000	54.42	13.61	40.82
Toshiba	56.96	14.24	42.72
Fujistu AMILO Pa2548	82.52	20.63	61.89
Samsung Q310	41.55	10.39	31.16
Acer Aspire 5930G	55.59	13.90	41.69
HP Pavilion dv6000	43.52	10.88	32.64
Sony Vaio SZ650N	74.88	18.72	56.16
HP Pavilion ze2000	52.34	13.09	39.26
Sony Vaio v6nfw11e	38.87	9.72	29.15
Asus F3 Series	41.68	10.42	31.26
HP 550	40.40	10.10	30.30

^a estimated monitor power ^b at 75% efficiency ^cprocessor/chipset/memory

 ${\bf Table~7:~Measures~with~Processor~\it Fully~\it Stressed}$

Computer Model	Sandra	Measured	Percentual
	Benchmark:	$Consumption^a$	delta over the
	Measurement of		measured
	Consumption a		values
HPdv3500el	26.69	18.89	41%
HPdv6580el	40.06	42.86	7%
Compaq-nx9420	36.16	55.99	35%
Acer Aspire 6935g	35.03	25.32	38%
Acer Aspire 4720z	34.57	29.91	16%
Acer Aspire 5930G	32.13	29.67	8%
HP dv6000	34.23	29.34	17%
Toshiba	31.24	34.52	10%
Samsung Q310	33.28	19.95	67%
Acer Aspire 5930G	47.63	24.39	95%
HP Pavilion dv6000	31.84	22.04	44%
Sony Vaio SZ650N	49.68	34.25	45%
HP Pavilion ze2000	17.86	23.61	24%
Sony Vaio v6nfw11e	42.08	22.18	90%
Asus F3 Series	28.53	29.24	2%
HP 550	44.42	25.20	76%
		Average delta:	39%

^a chipset+processor+memory

 Table 8: Results for Processor in Idle State

Computer Model	Sandra	Measured	Percentual
	Benchmark:	${ m Consumption}^a$	delta over the
	measurement of		measured
	$Consumption^a$		values
HPdv3500el	26.69	24.20	10%
HPdv6580el	40.06	60.17	33%
Compaq-nx9420	36.16	56.55	36%
Acer Aspire 6935g	35.03	37.86	7%
Acer Aspire 4720z	34.57	46.94	26%
Acer Aspire 5930G	32.13	43.43	26%
HP dv6000	34.23	40.82	16%
Toshiba	31.24	42.72	27%
Samsung Q310	33.28	31.16	7%
Acer Aspire 5930G	47.63	41.69	14%
HP Pavilion dv6000	31.84	32.64	2%
Sony Vaio SZ650N	49.68	56.16	12%
HP Pavilion ze2000	17.86	39.26	55%
Sony Vaio v6nfw11e	42.08	29.15	44%
Asus F3 Series	28.53	31.26	9%
HP 550	44.42	30.30	47%
		Average delta:	23%

^a chipset+processor+memory

 Table 9: Results for Processor Fully Stressed

Glossary of Abrevitations

X	X
ALU	Arithmetic Logic Unit
CIO	Chief Information Officer
CPU	Central Processing Unit
DDR	Double-Data Rate
FPU	Floating Point Unit
HVAC	
HDD	Hard-disk Drive
ICT	Information and Communication Technology
LTO	Linear Tape-Open
MFD	Multi Function Devices
MPN	Manufacturer Part Number
OS	Operational System
PC	Personal Computer
PDU	
PSU	Power Supply Unit
RAID	
ROI	Return on Investment
ROM	Read-Only Memory
SaaS	Software as a Service
SDRAM	Synchronous Dynamic Random Access Memory
SAN	Storage-Area Networks
TCO	Total Cost of Ownership
VM	Virtual Machine
VPN	Virtual Private Network
X	X

Abstract

Contents

Li	st of Figures	
Li	st of Tables	
1	Conclusions	p. 18
	1.1 Perspectives and Future Developments	p. 19
Re	eferences	p. 20
$\mathbf{A}_{]}$	ppendix A - List of SiSoftware Sandra Modules	p. 22

p. 25

Appendix B - Comparison Tape Drives

List of Figures

$List\ of\ Tables$

1	Measures made with the Energy Measurement Device
2	Measures Resulted from Benchmark with SANDRA
3	Processor Contained in each Measured Computer
4	Manufacturer Specification
5	Processor Specifications' Results
3	Measures with Processor in <i>idle</i> state
7	Measures with Processor Fully Stressed
3	Results for Processor in <i>Idle</i> State
9	Results for Processor Fully Stressed
10	Comparison (SDLT and DLT Tape Drives) - Capacities and Transfer Rates p. 25
11	Access times for several tape drives p. 25
19	Comparison Retween LTO Tape Drives Capacities and Transfer Rates n. 26

1 Conclusions

This chapter summarizes the main findings of this study and draws out their support for applying a green solution. It thereby aims to enrich the understanding of the method and of the valuable information that can be extracted from the created database.

The use of green ict applied to data centers can be a very useful strategy in different scenarios. The database of components resulted from this thesis work can be very effective for what it is proposed to be: offering a way to compare the energy consumption of the computer components in one single place. Retrieving information about how much components spend in terms of power consumption will help the development of the green project in the Assessment phase by comparing components already existent in the market with the ones present in the data center. That is important firstly because the analysis and research of power consumption of critical spots can be made with ease. The database can also provide assessment when renewing or expanding the data center by permitting the choice of the most adequate and power-efficient machine configurations.

In the test conducted with a series of notebooks, the results of the power consumption data analysis proved that the power consumption estimated by the Sandra benchmarks is inaccurate. Although its estimates were incompatible with respect to the direct measurements, the usefulness of the component database should be no lesser. It provides a great number of other useful information, mainly regarding component performance benchmarks and price which are essential when analyzing datacenter equipment.

In this way, for the component database to provide support for a green ICT methodology a new source of power-related data should be found. This could be a systematic measurement of components with an adequate aggregation level or a function of the nominal power found in component specifications.

1.1 Perspectives and Future Developments

As part of the initial phase of the development of a green methodology, there are some possible functionalities and information that could still be added. These are as follows:

- This first version of the component's database is not automatically updated, so it could be made a back-end robot which would crawl for new components as they are released in the market and automatically populate the database;
- As stated before, the use of a new source of power-related information was suggested. This information should then be inserted in the component database as to make efficiency (performance/power) comparison between components.
- To create a front-end software for a interactive and effective way of comparing the components.

References

ANTONOPOULOS, A. M. What can virtualization bring to the data center? *Network World*, September 2005.

BAILEY. What are the difference between servers? XENON, 2009.

BLUEJAY, M. How much electricity do computers use? jun. 2008. http://michaelbluejay.com/electricity/computers.html.

BRYMAN, A. Research Methods and Organization Studies. [S.l.]: Routledge, 1989. ISBN 0415084040.

CHESTNEY, N. IT industry joins energy efficiency push. jan. 2009. http://www.reuters.com/article/technologyNews/idUSTRE50R4AL20090129.

COOKE, D. Power Distribution within Six PCs. jun. 2009. http://www.silentpcreview.com/article265-page1.html.

GOLDWORM, B. Blade Servers and Virtualization. [S.l.]: Wiley-India, 2007. ISBN 8126512156, 9788126512157.

HENDERSON, T. Blade servers vs. rack servers. Network World, 2007.

HETHERINGTON, R. The UltraSPARC T1 Processor - Power Efficient Throughput Computing. [S.l.], December 2005.

HP. HP Modular Cooling System: water cooling technology for high-density server installations. [S.l.], April 2007.

IDC. Enterprise class virtualization 2.0 application mobility, recovery, and management. February 2007.

INFO-TECH. Info-Tech's Green Index: How Green Are You? [S.l.], July 2007.

KAESTNER, R. Computer + Infrastructure Energy Usage. fev. 2009. http://www.cosn.org/Initiatives/GreenComputing/EnergyUse/tabid/4515/Default.aspx.

KUMAR, R. Eight critical forces shape enterprise data center strategies. *Gartner, Inc.*, February 2007.

MAKHIJA, V. VMmark: A scalable benchmark for virtualized systems. [S.l.], September 2006.

NTTCOMMUNICATIONS. Green ICT Solutions for Realizing Environmental Measures Addressing the New Management Issue of "Green ICT". 2009. http://www.reuters.com/article/technologyNews/idUSTRE50R4AL20090129.

References 21

REHN, R. What else do you know about blade servers. Hospedagem Local, 2008.

REINE, D. Disk and Tape Square Off Again - Tape Remains King of the Hill with LTO-4. [S.l.], October 2008.

STAMFORD, C. Agility will become the primary measure of data centre excellence by 2012. *Gartner, Inc.*, October 2007.

THE SUN benchmarks. fev. 2007. http://www1.eere.energy.gov/femp/procurement/eep_printer.html.

TOWNSEND, M. Earth 'will expire by 2050'. jul. 2002. http://www.guardian.co.uk/uk/2002/jul/07/research.waste.

$APPENDIX\ A$ - List of SiSoftware Sandra Modules

Here is the list of principal modules used in this research work.

- •System Summary
- •Mainboard/Chipset/System Monitors Info
- •CPU/BIOS Info
- •APM & ACPI (Advanced Power Management) Info
- •PCI(e), AGP, CardBus, PCMCIA bus and devices Info
- •Video Information (monitor, card, video bios, caps, etc.)
- •OpenGL Information
- •Keyboard Info
- •Windows Memory Info
- •Windows Info
- •Font (Raster, Vector, TrueType, OpenType) Information
- •Modem/ISDN TA Information
- •Network Information*
- •IP Network Information*
- •WinSock & Internet Security Information
- •Drives Information (Removable Hard Disks, CD-ROM/DVD, RamDrives, etc.)

- •Ports (Serial/Parallel) Info
- •Remote Access Service Connections (Dial-Up, Internet)*
- •OLE objects/servers Info*
- •Processes (Tasks) & Threads Info
- •Modules (DLL, DRV) Info
- •Services & Device Drivers (SYS) Info*
- •SCSI, SAS Information*
- •ATA, ATAPI, SATA, RAID Information
- •Data Sources Information*
- •CMOS/RTC Information*
- •Smart Card & SIM Card Information*

List of Benchmarks

- •Arithmetic Benchmark (including SSE2, SSSE3)
- •Multi-Media Benchmark
- •Multi-Core Efficiency Benchmark
- •Power Management Efficiency Benchmark
- •File System (Removable, Hard Disks, Network, RamDrives) Benchmark
- •Removable Storage/Flash Benchmark
- ullet CD-ROM/DVD Benchmark
- •Memory Bandwidth Benchmark
- •Cache & Memory Bandwidth Benchmark
- •Network/LAN Bandwidth Benchmark
- •Internet/ISP Connection Benchmark
- •Internet/ISP Peerage Benchmark

Applications and Usage

- •Hardware Interrupts Usage*
- •DMA Channel Usage*
- •I/O Ports Usage*
- •Memory Range Usage*
- •Plug & Play Enumerator*
- •Hardware registry settings
- •Environment settings
- •Registered File Types
- •Key Applications* (web-browser, e-mail, news, anti-virus, firewall, etc.)
- $\bullet \textbf{Installed Applications*} \\$
- •Installed Programs*
- •Start Menu Applications*
- •Installed Web Packages* (ActiveX, Java classes)
- •System Event Logs*

^{*} Commercial version only

$APPENDIX\ B$ - $Comparison\ Tape\ Drives$

SDLT &	Native Capacity &	Compressed Capacity &
DLT Tape Drives	Transfer Rate	Transfer Rate
DLT-S4	$800 \mathrm{GB}$ at $60 \mathrm{MB/s}$	1600 GB at 320 MB/s
SDLT 600	$300 \mathrm{GB}$ at $36 \mathrm{MB/s}$	600 GB at 72 MB/s
SDLT 320	160GB at 16MB/s	320GB at 32MB/s
SDLT 220	110GB at 11MB/s	220GB at 22MB/s
DLT 8000	40GB at $6MB/s$	80GB at 12 MB/s
DLT V4	$160 \mathrm{GB} \ \mathrm{at} \ 10 \mathrm{MB/s}$	320GB at 20MB/s
DLT1	40GB at 3MB/s	80GB at 12 MB/s
DLT-VS160	$80 \mathrm{GB} \ \mathrm{at} \ 8 \mathrm{MB/s}$	160 GB at 16 MB/s
DLT-VS80	40GB at 3MB/s	$80 \mathrm{GB} \mathrm{\ at\ } 6 \mathrm{MB/s}$
DLT 7000	35GB at 5MB/s	70GB at 10MB/s
DLT 4000	20GB at 1.5 MB/s	40GB at 3MB/s
DLT 2000XT	15GB at 1.25 MB/s	$30 \mathrm{GB} \ \mathrm{at} \ 2.5 \mathrm{MB/s}$

Table 10: Comparison Between SDLT and DLT Tape Drives Capacities and Transfer Rates

Product	Capacity, native	Average file access	Data transfer rate,	
	(uncompressed)	time (first file)	native (uncompressed)	
T-Series				
T9840A	20 GB	8 sec	10 MB/sec	
T9840B	20 GB	8 sec	19 MB/sec	
T9840C	40 GB	8 sec	30 MB/sec	
T9940A	60 GB	41 sec	10 MB/sec	
T9940B	200 GB	41 sec	30 MB/sec	
LTO Ultrium				
LTO Gen 1	100 GB	86-96 sec	15-16 MB/sec	
LTO Gen 2	200 GB	$64-75 \sec$	32-35 MB/sec	
LTO Gen 3	400 GB	$72 \mathrm{sec}$	80 MB/sec	
SDLT				
SDLT 320	160 GB	82 sec	16 MB/sec	
SDLT 600	300 GB	79 sec	36 MB/sec	

Table 11: Access times for several tape drives

		Compressed
SDLT &	Native Capacity &	Capacity &
DLT Tape Drives	Transfer Rate	Transfer Rate
LTO-4	800GB at 120MB/s	1.6TB at 240MB/s
	(864GB per hour)	
HP Ultrium 1760	800GB	1.6TB at 576GB/hr
HP Ultrium 1840	800GB at 120MB/s	1.6TB at 240MB/s
HP Ultrium 960	400GB at 80MB/s	$800 \mathrm{GB}$ at $160 \mathrm{MB/s}$
HP Ultrium 460	200GB at 30 MB/s	$400 \mathrm{GB} \ \mathrm{at} \ 60 \mathrm{MB/s}$
HP Ultrium 230	$100 \mathrm{GB} \ \mathrm{at} \ 15 \mathrm{MB/s}$	200 GB at 30 MB/s
IBM LTO-4	800GB at 120MB/s	1.6TB at 240MB/s
IBM LTO-3	400GB at 80MB/s	$800 \mathrm{GB}$ at $160 \mathrm{MB/s}$
IBM LTO-2	200 GB at 35 MB/s	$400 \mathrm{GB} \ \mathrm{at} \ 70 \mathrm{MB/s}$
IBM LTO-1	$100 \mathrm{GB} \ \mathrm{at} \ 15 \mathrm{MB/s}$	200 GB at 30 MB/s
Quantum LTO3	400 GB at 245 GB/hr	$800 \mathrm{GB}$ at $490 \mathrm{GB/hr}$
Quantum LTO3 HH	$400 \mathrm{GB}$ at $68 \mathrm{MB/s}$	$800 \mathrm{GB} \ \mathrm{at} \ 90 \mathrm{MB/s}$
Quantum LTO2	200GB at 123GB/hr	400 GB at 245 GB/hr
Quantum LTO2HH	200GB at 94GB/hr	$400 \mathrm{GB}$ at $144 \mathrm{GB/hr}$
Tandberg Data LTO4 FH	800GB at 120MB/s	1.6TB at 240MB/s
Tandberg Data LTO3 FH	400GB at 80 MB/s	$800 \mathrm{GB} \ \mathrm{at} \ 160 \mathrm{MB/s}$
Tandberg Data LTO3 HH	$400 \mathrm{GB}$ at $60 \mathrm{MB/s}$	$800 \mathrm{GB} \ \mathrm{at} \ 120 \mathrm{MB/s}$
Tandberg Data LTO2 HH	200GB at 24 MB/s	400GB at 48 MB/s
Tandberg Data LTO1 HH	$100 \mathrm{GB} \ \mathrm{at} \ 16 \mathrm{MB/s}$	200GB at 32 MB/s
Certance LTO-1	100GB at 960MB/min	200GB at 1920MB/min

Table 12: Comparison Between LTO Tape Drives Capacities and Transfer Rates