Calcul Intégral IV

STEP, MINES ParisTech

5 janvier 2021 (#9ddc57e)

Question 1 (réponses multiples) Soit $X = \mathbb{R}^3$ et $\mathcal{A} = \mathcal{P}(X)$, l'ensemble
des parties de X . On définit pour tout $X \in \mathcal{A}$ la grandeur $\mu(A)$ comme le
diamètre de A :
$\mu(A) := \mathrm{diam}(A) := \sup \left\{ \ x - y\ \mid (x, y) \in A \times A \right\} \in [0, +\infty].$
Est-ce que μ est une mesure sur (X, \mathcal{A}) ?

$\mu(A) := \operatorname{diam}(A) := \sup \{ \ x - y\ \mid (x, y) \in A \times A \} \in [0, +\infty].$
Est-ce que μ est une mesure sur (X, \mathcal{A}) ?
$□$ A : non, car \mathcal{A} n'est pas une tribu, $□$ B : non, car μ n'est pas nulle en 0, $□$ C : non, car μ n'est pas σ -additive, □ D : oui.
Question 2 (réponses multiples) Si μ et ν sont des mesures sur le même espace mesurable $(X, \mathcal{A}), \ \alpha \geq 0$ et $f: [0, +\infty] \to [0, +\infty]$ est continue, alors
\Box A: $\mu + \nu$ est une mesure, \Box B: $\alpha\mu$ est une mesure, \Box C: $f \circ \mu$ est une mesure.
Question 3 Soit c la mesure de comptage sur \mathbb{R} (muni de la tribu $\mathcal{P}(\mathbb{R})$). Deux fonctions $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ sont égales c -presque partout si et seulement si :

A: f et g sont identiques,
${\bf B}:f$ et g diffèrent au plus en un nombre fini de points,
C: la longueur de $\{x \in \mathbb{R} \mid f(x) \neq g(x)\}$ est nulle,
$\mathcal{D}:f$ et g sont en fait égales c -presque partout sans condition.

Question 4 La fonction caractéristique de $\mathbb{Q}\subset\mathbb{R}$ est une fonction étagée

A :	oui,		
B:	non.		
C:	ça dépend	(question	ambigüe)

Question 5 Si \mathcal{A} est une tribu de \mathbb{R} et la fonction $h: \mathbb{R} \to [-\infty, +\infty]$ est continue, alors h est \mathcal{A} -mesurable
\square A : oui, \square B : non, pas nécessairement.
Question 6 (réponse multiple) L'intégrale d'une fonction $f: X \to [0, +\infty]$ (positive) mesurable :
□ A : est toujours définie, □ B : est toujours positive, □ C : ne peut être infinie que si f prend des valeurs infinies, □ D : est infinie dès que f prend des valeurs infinies.