Statistical Inference Course Project: Part 1

Mubashir Ahmed

2023-09-01

Overview

In this project, we investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of an exponential distribution with rate λ is $\mu = 1/\lambda$, and the standard deviation is also $\sigma = 1/\lambda$.

Let us consider samples of n=40 independent exponential random variables with $\lambda=0.2$. In this work, we concluded the following tasks:

- 1. Show the sample mean and compare it to the theoretical mean of the distribution.
- 2. Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution.
- 3. Show that the distribution is approximately normal.

Simulations

In the following, we obtain a set of N = 10000 samples, where each one of them consists of n = 40 independent realizations of exponential random variables with rate function $\lambda = 0.2$.

```
## Number of samples
n <- 40

## Number of iterations
N <- 10000

## Rate parameter
lambda <- 0.2

## Simulation
sam <- matrix(rexp(n = n * N, rate = lambda), nrow = N, ncol = n)</pre>
```

Sample mean versus the theoretical mean

Let us consider the sample mean of the realizations of n=40 exponential random variables and build a histogram in order to compare its relationship with the theoretical mean $\mu=1/\lambda=5$.

Histogram of population mean for n = 40

Figure 1: Histogram of sample mean

As we can see in the histogram from Figure 1, the values for the sample mean distributes around the population mean $\mu = 5$, which is consistent with the fact that the sample mean is a unbiased estimator for the population mean.

Sample variance versus theoretical variance

Similarly, let us consider the histogram of the sample variances and see how it compares with the theoretical variance $\sigma^2 = 1/\lambda^2 = 25$.

Histogram of sample variances for n = 40

Figure 2: Histogram of sample variance

Note that the histogram from Figure 2 distributes around the theoretical variance $\sigma^2 = 25$, being consistent with the fact that the sample variance is an unbiased estimator for the population variance.

Central Limit Theorem

According to the Central Limit Theorem (CLT), given n identically distributed random variables X_1, X_2, \ldots, X_n with mean μ and standard deviation σ , the quantity

$$\sqrt{n}\left(\frac{\bar{X}_n-\mu}{\sigma}\right),$$

where \bar{X}_n stands for the sample average $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, is approximately normally distributed as n gets large.

In order to check whether the sample mean is approximately normal, we rely on the central limit theorem and consider the quantity $\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma}$.

Histogram of exponential random variables

