M339G: February	23rd, 2024.
Singular Value	
Co obsist of	, its singular value decomposition is the A=UZYT where:
• U and V	have orthonormal columns
• E is did	agonal w/ positive enhies
Let A be an	n×m matrix. Then, U is n×n, \(\sum_{\text{is}}\) n×m, \(\sum_{\text{v}}\) is m×m.
n { A] =	$\begin{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{1} \end{bmatrix} \} m$
m	
Geometry.	0, > 0, > 0, > 0, > 0, > 0
The worth of the out which direction most of the variable	singular value decomposition is in figurial ons, i.e., linear combinations, take up ility in the matrix A.
	2 ,

```
Implementation.
 The algorithm is similar to working through the above geometry
one line @ a time until we exhaust the dimension.
 However, computationally, we start from
                      A=UZYT => AT=YETUT
                 ATA=(VETUT)(UEVT)
                           (because orthonormal columns)
                 ATA = V ETE VT
                        (because & diagonal)

\begin{array}{c|c}
A^{T}A = V & \begin{bmatrix}
\sigma_{1}^{2} & \sigma_{2}^{2} & O \\
O^{2} & \sigma_{m}^{2}
\end{bmatrix}
\end{array}

            Start w/ this side;
             then, diagonalize AAT to get YZ2VT;
             then, get U by settling
                            AV=UZ,
                     ie., for vi... ith column in V,
                          set u_i = \frac{1}{\sigma_i} A v_i as the i^{th} column in U
Sunnay.
             A = \sigma_1 \cdot u_1 \cdot v_1^T + \sigma_2 u_2 v_2^T + \dots + \sigma_m \cdot u_m \cdot v_m^T
                           decreasing
```