Prediction Serving Scenarios: Embedded

MLOps: Prediction Serving

The MLOps **Personas**

ML Engineer

ML Researcher

Data Scientist

Data Engineer

Software Engineer

DevOps

Business Analyst

Embedded Inference: What is it?

Predict on-demand

Embedded Inference: What is it?

- Predict on-demand
- Online inference in near real time for low-frequency singleton requests

Embedded Inference: When is it useful?

- Smartphone camera
- TinyML use cases
- ..

Embedded Inference: When is it useful?

- Smartphone camera
- TinyML use cases
- •

Embedded Inference: How it works?

Model is packaged into the application for easy deployment at the endpoint device

Embedded Inference: What metrics?

- Single-stream
- Latency metric

Pros

 Can make a on-demand predictions on items

Pros

- Can make a on-demand predictions on items
- + Great for
 - + Bandwidth
 - + Latency
 - + Energy-efficiency
 - + Reliability
 - + Privacy

Pros

- + Can make a **on-demand** predictions on items
- + Great for
 - + Bandwidth
 - + Latency
 - + Energy-efficiency
 - + Reliability
 - + Privacy

Cons

- Compute intensive

Pros

- + Can make a **on-demand** predictions on items
- + Great for
 - + Bandwidth
 - + Latency
 - + Energy-efficiency
 - + Reliability
 - + Privacy

Cons

- Compute intensive
- Latency sensitive—may limit model complexity

Pros

- Can make a on-demand predictions on items
- + Great for
 - + Bandwidth
 - + Latency
 - + Energy-efficiency
 - + Reliability
 - + Privacy

Cons

- Compute intensive
- Latency sensitive—may limit model complexity
- Monitoring needs are more important than for the other types of scenarios

Pros

- Can make a on-demand predictions on items
- + Great for
 - + Bandwidth
 - + Latency
 - + Energy-efficiency
 - + Reliability
 - + Privacy

Cons

- Compute intensive
- Latency sensitive—may limit model complexity
- Monitoring needs are more important than for the other types of scenarios
- Embedded deployment makes scalability and flexibility poor

Scenario

Metric

Batch inference (e.g. photo sorting app)

Throughput

Online inference (e.g. translation app)

QPS subject to latency bound

Streaming inference (e.g. multiple camera driving assistance) Number streams subject to latency bound

Embedded inference (e.g. cell phone augmented vision) Latency

