

Google Classroom Code: mhxgl24

Transformer Architecture, Language Models

Deep Learning (DS-5006)

Dr. Adeel Mumtaz

Lecture 11

Fall, 2022

Contents

- Transformer model Architecture
 - Encoder-only models
 - Decoder-only models
 - Sequence-to-Sequence Models
- Token Embedding and Positional encodings
 - One hot encoding
 - Frequency encoding
 - TF-IDF encoding
 - Word2Vec
- Transformer Encoder Block
 - Self Attention
 - Multi-Headed Self Attention
 - Skip Connections & Layer
 Normalization
- Decoder-Transformer
 - Masked Self Attention
 - Feed Forward Network

- GPT a Language Model
 - Flow of Word Generation
- Fine Tuning GPT-2 for Movie Name Generation
 - Dataset
 - Model + Tokenizer
 - Training
 - Inference
 - Greedy Search
 - Beam Search
 - Sampling
 - Top-K Sampling
- Home Task 7

Transformer Models

NTPS 2017

ATTENTION IS ALL YOU NEED

Google Brain

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar⁺ Google Research nikip@google.com Jakob Uszkoreit' Google Research uszűgoogle.com

Llion Jones* Google Research llion@google.com Aidan N. Gomcz* † University of Toronto aidan@cs.toronto.edu Lukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin⁺ ‡
illia.polosukhin@gmail.com

Transformer Architecture

Two blocks:

- Encoder (left): The encoder receives an input and builds a representation of it (its features).
 - Optimized to acquire understanding from the input.
- Decoder (right): The decoder uses the encoder's representation (features) along with other inputs to generate a target sequence.
 - Optimized for generating outputs.

Encoder-only models

- Encoder models use only the encoder of a Transformer model
- Attention layers can access all the words in the sentence called "bi-directional" attention
- Also called auto-encoding models.
- Used for tasks that require understanding of the input
 - Sentence classification
 - Named entity recognition
- Family of encoder models
 - ALBERT, BERT, DistilBERT, ELECTRA, RoBERTa

Encoder-only models

Decoder-only models

- Decoder models use only the decoder of a Transformer model.
- For each given word the attention layers can only access the words positioned before it in the sentence.
- These models are often called auto-regressive models.
- Also called Language Models
- Used for tasks involving text generation.
 - Predicting the next word in the sentence.
- Representatives of this family of models include:
 - CTRL, GPT, GPT-2, Transformer XL

Decoder-only models

Sequence-to-Sequence Models

- Encoder-decoder models (also called sequence-tosequence models) use both parts of the Transformer architecture.
- Sequence-to-sequence models are best suited for tasks revolving around generating new sentences depending on a given input
 - Summarization
 - Translation
 - Generative question answering.
- Representatives of this family of models include:
 - BART
 - mBART
 - Marian
 - T5

Sequence-to-Sequence Models

Transformer Types Summary

Model	Examples	Tasks
Encoder	ALBERT, BERT, DistilBERT, ELECTRA, RoBERTa	Sentence classification, named entity recognition, extractive question answering
Decoder	CTRL, GPT, GPT-2, Transformer XL	Text generation
Encoder- decoder	BART, T5, Marian, mBART	Summarization, translation, generative question answering

BREAKING DOWN TRANSFORMER ARCHITECTURE

TOKEN EMBEDDING AND POSITIONAL ENCODINGS

Token Embedding and Positional encodings

- All types of transformer model pass the sequence input ids from Token Embedding and Positional encodings layers at start
 - BxLx1 to BxLxF

Token Embedding Methods

- The Big Idea of Token/Word Embedding is to turn text into numbers
- Machine learning algorithms (including deep nets) require their input to be vectors of continuous values
- Objectives
 - Dimensionality Reduction most efficient representation
 - Contextual Similarity most expressive representation

1. One-hot Encoding

• Generate a vector for each token with length equal to size of vocabulary

	Restaurant Reviews	
R1	Great restaurant and great service!]
R2	They can do better to provide better service	- Entire Corpus
R3	Only two thumbs up, worst service ever	

Set of all the words in the corpus
great
restaurant
and
service
they
can
do
better
to
provide
only
Two
thumbs
ир
worst
ever

1. One-hot Encoding

- Very large & sparse vectors
- Order & frequency information of words is lost

Set of all the words in the corpus	R1: Great Restaurant and great service!	R2: They can do better to provide better service	R3: Only two thumbs up, worst service ever
great	1	0	0
restaurant	1	0	0
and	1	0	0
service	1	1	0
they	0	1	0
can	0	1	0
do	0	1	0
better	0	1	0
to	0	1	0
provide	0	1	0
only	0	0	1
Two	0	0	1
thumbs	0	0	1
up	0	0	1
worst	0	0	1
ever	0	0	1

2. Frequency Encoding

Count number of times a word appear in corpus

Great restaurant and great service! They can do better to provide better service Only two thumbs up, worst service ever

```
| ("Great", "restaurant", "and", "great", "service")

("They", "can", "do", "better", "to", "provide", "better", "service")

("Only", "two", "thumbs", "up", "worst", "service", "ever")
```

2. Frequency Encoding

- Still large (can only keep the top-n words based on frequencies)
- Still No context/Semantic capturing of the words

Set of all the words in the corpus	R1: Grea				
great	2				
restaurant		1			
and		1			
service		1			
they	0				
can	0				
do	0				
better	0				
to		0			
provide	0				
only		0			
Two		0			
thumbs	0				
up	0				
worst	0				
ever		0			

R2 : They can do better to provide better service
0
0
0
1
1
1
1
2
1
1
0
0
0
0
0
0

R3: Only two thumbs up, worst service ever
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1

3. TF-IDF Embedding

Widely used in the search technologies

```
corpus = [
   'This is the first document.',
   'This is the second second document.',
   'And the third one.',
   'Is this the first document?',
]
```

Term Frequency Table for each document

and	document	first	is	one	second	the	third	this
0	1	1	1	0	0	1	0	1
0	1	0	1	0	2	1	0	1
1	0	0	0	1	0	1	1	0
0	1	1	1	0	0	1	0	1

Inverse document Frequency Table for each token

$$idf(t) = \log \frac{m}{df(t)} + 1$$

df	(t)
idf	(t	:)

and	document	first	is	one	second	the	third	this
1	3	2	3	1	1	4	1	3
2.39	1.29	1.69	1.29	2.39	2.39	1.00	2.39	1.29

3. TF-IDF Embedding

- Still Large equal to vocab size
- First & last same vector

$$\operatorname{tf-idf}(t,d) = \operatorname{tf}(t,d) \times \operatorname{idf}(t)$$

Tf-IDF table for each document

and	document	first	is	one	second	the	third	this
0.00	1.29	1.69	1.29	0.00	0.00	1.00	0.00	1.29
0.00	1.29	0.00	1.29	0.00	4.77	1.00	0.00	1.29
2.39	0.00	0.00	0.00	2.39	0.00	1.00	2.39	0.00
0.00	1.29	1.69	1.29	0.00	0.00	1.00	0.00	1.29

Norm: 2.97, 5.36, 4.25, 2.97

$$v_{\text{norm}} = \frac{v}{\|v\|_2} = \frac{v}{\sqrt{v_1^2 + v_2^2 + \dots + v_{\text{vocab_size}}^2}}$$

Normalized Tf-IDF table for each document

and	document	first	is	one	second	the	third	this
0.00	0.43	0.57	0.43	0.00	0.00	0.34	0.00	0.43
0.00	0.24	0.00	0.24	0.00	0.89	0.19	0.00	0.24
0.56	0.00	0.00	0.00	0.56	0.00	0.24	0.56	0.00
0.00	0.43	0.57	0.43	0.00	0.00	0.34	0.00	0.43

4. Word2Vec

- Each token becomes a vector with
 - the length (typically 100–1000) called embed_dim

4. Word2Vec

- Train a ANN to learn context of similar words by using a window around the center word
- One hidden layer with size equal to embed_dim

4. Word2Vec

- Use one hot vectors of center word as input and neighbor words as output
- After training Weight matrix will be the embedding matrix

Positional Encoding

- Incorporates into each word its positional information in the input sequence.
- This positional information represents the order of the tokens in the sequence provided as input to the blocks of the transformer
- The nth encoding is added to the embedding of the word present at the nth position.

ENCODER BLOCK

A single Encode Block

- Remember each block has its own weights
- Hidden state, Context vectors, Sequence Length

Self Attention Layer

 As the model processes each word (each position in the input sequence), self attention allows it to look at other positions in the input sequence for clues that can help lead to a better encoding for this word.

"The animal didn't coss the street because it was too tired"

Self Attention

1. The query, key and value vectors are created through feed forward neural networks For each token

Self Attention

2. The current query vector is **dot multiplied** with all other key vectors to get the **attention scores** (using a Softmax layer at end)

Self Attention

3. The value vectors of the tokens are multiplied with the respective scores and them summed up to generate **context vectors**

Word	Value vector	Score	Value X Score
<s></s>		0.001	
а		0.3	
robot		0.5	
must		0.002	
obey		0.001	
the		0.0003	
orders		0.005	
given		0.002	
it		0.19	
		Sum:	

Multi-headed Attention

- Two types of multi-headed attention:
 - Input is linearly transformed to get a different representation and context vectors are computed with different Q, K, V matrices
 - Input is equally divided and passed to different head
- Separate context vectors are computed using self attention
- The resulting attention heads are then concatenated together and passed through a feed-forward neural network, to give the output vector of the multi-headed attention block

Skip Connections & Layer Normalization

DECODER BLOCK

Transformer Decoder Block

Decoder Only Architecture GPT/Language Models

Spot the difference with Transformer Decoder?

Masked Self Attention

 Remember auto-regressive (left side context) and bi-directional (both side context) models?

Masked Self Attention

Features					Labels
k	position: 1	2	3	4	
Example:	robot	must	obey	orders	must
2	robot	must	obey	orders	obey
3	robot	must	obey	orders	orders
4	robot	must	obey	orders	<eos></eos>

Masked Self Attention

		Scor softm				Sco	res	
0.11	-inf	-inf	-inf	Softmax	1	0	0	0
0.19	0.50	-inf	-inf	(along rows)	0.48	0.52	0	0
0.53	0.98	0.95	-inf		0.31	0.35	0.34	0
0.81	0.86	0.38	0.90		0.25	0.26	0.23	0.26

Feed Forward Network

Step-1: Predicting first word

Step-1: Predicting first word

Step-1: Predicting first word

Step-2: Predicting second word

Guess where we saved computations?

How many word GPT predicts at once?

FINE TUNING GPT-2 FOR MOVIE NAME GENERATION

Dataset (movies.csv)

	moviel	d titl	e genres
0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
1	2	Jumanji (1995)	Adventure Children Fantasy
2	3	Grumpier Old Men (1995)	Comedy Romance
3	4	Waiting to Exhale (1995)	Comedy Drama Romance
4	5	Father of the Bride Part II (1995)	Comedy
973	7 193581	Black Butler: Book of the Atlantic (2017	') Action Animation Comedy Fantasy
973	8 193583	No Game No Life: Zero (2017)	Animation Comedy Fantasy
973	9 193585	Flint (2017)	Drama
974	0 193587	Bungo Stray Dogs: Dead Apple (2018)	Action Animation
974	1 193609	Andrew Dice Clay: Dice Rules (1991)	Comedy

Dataset (movies.csv)

```
#loading dataset from a csv file of movie names
movies_file = "movies.csv"
max_length = 10
raw_df = pd.read_csv(movies_file)
movie_names = raw_df['title'] #only keeping the title column
movie_list = list(movie_names) #converting from pandas to list
for i in range(len(movie_list)): #removing year from title
    movie_list[i]=re.sub("\([0-9]+\)", "", movie_list[i]).strip()
```

```
['Toy Story',
  'Jumanji',
  'Grumpier Old Men',
  'Waiting to Exhale',
  'Father of the Bride Part II']
```

Dataset (movies.csv)

```
class MovieDataset(Dataset):
    def __init__(self, tokenizer, init_token, movie_titles, max_len):
        self.max len = max len
        self.tokenizer = tokenizer
        self.eos = self.tokenizer.eos token
        self.eos id = self.tokenizer.eos token id
        self.movies = movie titles
        self.allTokenizedTitles = []
        self.allTokenizedTitles2 = []
        tokenizer.pad_token = tokenizer.eos_token
        for movie in self.movies:
            # Encode the text using tokenizer.encode(). We ass EOS at the end
            tokenized output=self.tokenizer(init token + movie + self.eos,truncation=True,padding='max length',max length=13)
            self.allTokenizedTitles.append(torch.tensor(tokenized output['input ids']))
    def len (self):
        return len(self.allTokenizedTitles)
    def getitem (self, item):
        tmp = self.allTokenizedTitles[item]
        if(tmp[-1]!=50256):
            xx=0
        return self.allTokenizedTitles[item]
```

```
#datasets and dataloaders
dataset = MovieDataset(tokenizer, "movie: ", movie_list, max_length)
dataloader = DataLoader(dataset, batch_size=128, shuffle=True, drop_last=True)
```

Model+Tokenizer

```
#LOADING GPT model and tokenizers
tokenizer = AutoTokenizer.from_pretrained("gpt2",cache_dir='cache/')
extra_length = len(tokenizer.encode("movie: "))
model = AutoModelWithLMHead.from_pretrained("gpt2",cache_dir='cache/')
model = model.to(device)
```

Training

```
epochs=2
optimizer = optim.AdamW(model.parameters(), lr=3e-4)
for epoch in range(epochs):
    for idx, batch in enumerate(dataloader):
        batch = batch.to(device)
        output = model(batch, labels=batch)
        loss = output.loss
        loss.backward()
        optimizer.step()
        optimizer.zero grad()
        if idx % 50 == 0:
            print("loss: %f, %d"%(loss, idx))
```

Inference

```
device = "cuda" if torch.cuda.is_available() else "cpu"
print(device)
model=torch.load("/content/drive/MyDrive/lec11/model.pt")
model=model.to(device)
tokenizer = AutoTokenizer.from_pretrained("gpt2",cache_dir="/content/drive/MyDrive/HuggingFace/")
input_ids = tokenizer.encode('movie: ',return_tensors='pt')
input ids=input ids.to(device)
sample outputs = model.generate(
   input_ids,
   do sample=True,
   max length=13,
   top k=9,
    num return sequences=10
print("Output:\n" + 100 * '-')
for i, sample_output in enumerate(sample_outputs):
  print("{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))
```

Inference (Greedy Search)

Inference (Beam Search)

Inference (Sampling)

Inference (Top-K Sampling)

Home Task 7

- Train the movie title GPT model
- Generate titles using different sampling methods discussed
- Which one preformed best