Real estate data analysisusing principal component analysis and 'R'

Article in International Journal of Pure and Applied Mathematics · January 2018

CITATIONS

O

READS

660

5 authors, including:

Sailaja Kumar
Bangalore University
11 PUBLICATIONS 24 CITATIONS

SEE PROFILE

SEE PROFILE

READS

660

Suresh Kumar T.V.
Bharat Institute of Engineering and Technology
33 PUBLICATIONS 125 CITATIONS

SEE PROFILE

Real Estate Data Analysis using Principal Component Analysis and 'R'

K Sailaja Kumar, Kameshwari Soundarya, Harshitha R, D Evangelin Geetha and T V Suresh Kumar sailajakumar.k@gmail.com, kameshwari.soundarya@gmail.com, harshitha3072@gmail.com, devangelin@gmail.com, Department of Computer Applications, M S Ramaiah Institute of Technology, Bangalore, Institute of Technology, Institute of Technology, Institute of Technology, <a href="mailajakumar.k@gmailajakum

Abstract—The primary focus of real estate data analysis is on analyzing the past data and then predicting the real estimates in further time. This analysis is used to figure out the right price for the property in view of buyer and seller. In this paper a methodology is proposed to estimate the real estate housing price based on various predictor variables using regression models. The models are then implemented using 'R' statistical tool. It is used to make data easy to explore and visualize. Principal component analysis (PCA) is used to emphasize the variations and bring out strong patterns in the real estate dataset. The accuracy of these three regression models M1, M2 and M3 are 0.3907, 0.3467 and 0.5825 respectively. From these accuracy values it is observed that the model M3 is giving better results in comparison to M1 and M2. Moreover M3 is constructed using the results obtained from the PCA technique employed in M2. PCA is identified as the powerful data science technique for predictor variable reduction in particular for real estate dataset attributes reduction analysis. Hence this technique is adopted for estimating the real estate property price accurately. Further the model can be extendable to other real estate data sets in future.

I. INTRODUCTION

THE economic decline had a significant impact on the real estate community. One of the challenges with the real estate data analysis was to figure out the right price for the property in view of buyer and seller. The analysis of the real estate dataset and then identifying the most influential parameters that effect the house price is a very challenging task due to the high dimension of the dataset. Therefore in this paper, we present the best model to predict the house price with good accuracy and will help the customers to buy a house considering the influential factors.

This paper is focused specifically on Washington City's real estate data, with 159 rows and 330 columns for instance, the total-floors-in-building, price-per-sqft, number-of-beds, number-of-baths and many more. This data is prepared for generating the regression models after handling the missing values. Using principal component analysis (PCA) the significant predictor variables (columns in the real estate dataset) are identified which are useful in predicting the house price. PCA is commonly used to handle large datasets associated with the social sciences, market research, and other communities. It uses orthogonal transformation to convert a set of correlated predictor variables (columns in the real estate dataset) into a set of linearly uncorrelated variables called 'principal components' or 'predictor variables', from the real estate dataset. The goal of PCA is to explain the amount of

house price variation considering the fewer number of these principal components.

In this paper, three regression models M1, M2 and M3 are constructed to identify the prevailing predictor variables used to estimate the housing price in view of owner of the house and the real estate agent. These models were developed based on regression analysis, principal component analysis (PCA) and with the selected original raw variables using R for the real estate price estimates respectively.

First regression model M1 is constructed from the training dataset considering the 101 numeric predictor variables. The target variable is house price. The performance of this model is evaluated using the test dataset and the accuracy of the model as 0.3907. This shows 39% price variation is due to these numeric predictor variables.

The second regression model M2 is based on PCA. Using this technique principal components Dim1 to Dim6 from the numeric predictor variables are extracted. These extracted principal components do not have any multicollinearity between them as they are orthogonal or perfectly uncorrelated. Using these components regression model is developed. The performance of this model is evaluated using the test dataset. The accuracy of this model is 0.3467. Approximately 35% of the variation in the house price is due to these principal components.

The third model M3 is built from model M2 using the selected numeric predictor variables based on their significance w.r.t principal components Dim1, Dim2 and Dim3. The performance of this model is evaluated using the test dataset. The accuracy of this model is 0.5825. Here 58% price variation is there due to these selected significant predictor variables.

There is a marginal improvement in the accuracy from first model to the third model. The second model explains only 35% of the price variation due to the complexity involved in the PCA technique. The model M3 is simple and gives more accurate results in comparison to other models M1 and M2. More over this model is based on the PCA results obtained in model M2. Thus PCA is a highly intuitive and powerful data science technique that can be used to construct predictive models to estimate the real estate property price.

'R' is a software useful for statistical computing and visualization. It has become the most popular and versatile language for data science. It is an interpreted language and comes with a command line interpreter - available for Linux,

Windows and Mac machines - but there are IDEs like RStudio or JGR to support development. RStudio is an integrated development environment (IDE) for R. It includes a console, syntax-highlighting editor that supports direct code execution, as well as tools for plotting. The above mentioned models are implemented using R.

The paper is further organized as follows. In Section II literature on real estate data analysis is presented. Section III provides the methodology to collect and examine the real estate data and developing models to identify the influential factors for property price prediction. In Section IV the methodology illustration is provided. Experimental study that is carried out focusing the analysis of real estate dataset of Washington City, and results obtained using the proposed methodology is discussed in Section V. The conclusion and future work are presented in Section VI.

II. LITERATURE

Prediction of house prices based on NJOP houses in Malang city with regression analysis and particle swarm optimization (PSO) is discussed in [1]. PSO is used for selection of affect variables and regression analysis is used to determine the optimal coefficient in prediction. The result from this research proved combination regression and PSO is suitable and get the minimum prediction error.

Modeling and forecasting of land price in Chennai Metropolitan Area (CMA) in the state of Tamilnadu, India using multiple regression and neural network techniques is presented in [2]. Thirteen locations spread over CMA are selected at random as study areas. Both multiple regression and neural network models are validated and used to forecast the land price in CMA. Both the models are found to be well fit for the trend of land price; however the model using neural network shows better accuracy.

Regression models, using various features to have lower Residual Sum of Squares error are described in [3].

The predictive performance of artificial neural networks and multiple regression analysis for single family housing sales is compared in [5]. Multiple comparisons are made between the two data models in which the data sample size, the functional specification and the temporal prediction are varied. The authors have observed that ANN (Artificial Neural Networks) results better than MRA (Multiple Regression Analysis) when a moderate to large data sample size is used [4].

The functioning [5] involves a website which accepts customer's specifications and then combines the application of multiple linear regression algorithm of data mining. This application will help customers to invest in an estate without approaching an agent. It also decreases the risk involved in the transaction.

Prominent factors affecting property value in Indian housing market are described in [6]. Total nineteen variables were identified from literature as well as discussion with experts. Data obtained from the survey was processed using PCA which helped to decrease the number of variables into seven most important factors affecting value of real property in Indian housing market. The seven most important factors that affect Indian real property value included living

conditions of residents are identified by the authors as; characteristics of housing; regional influence; utilities; age of property; economic, political and social influence; area and legal aspect.

In this paper, a methodology is proposed to estimate the real estate housing price considering various predictor variables using regression models. The models are then implemented using 'R' statistical tool.

III. METHODOLOGY

The proposed methodology construct the regression models to predict the housing price. The steps to be followed are:

- Step1. Load the real estate data into R
- Step2. Identify and handle the missing values
- Step3. Identify numeric and categorical predictor Variables
- Step4. Identify training dataset and test dataset from the sample dataset for constructing the three regression models M1, M2 and M3.

Step5. Model M1:

- Construct regression model with all the numeric predictor variables from the training dataset
- Evaluate the performance of the model using the test dataset

Step6. Model M2:

- Construct regression model with the orthogonal principal components derived from the original predictor variable using PCA
- Evaluate the performance of the model using the test dataset

Step7. Model M3:

- construct regression model from the selected significant predictor variables obtained from the significant principal components in Model M2
- Evaluate the performance of the model using the test dataset
- *Step8*. Compare the three models based on the accuracy levels and select the model with high accuracy.
- *Step9*. Use the model selected in step 9 for predicting the housing price.

IV. ILLUSTRATING THE METHODOLOGY

Methodology presented in Section III is illustrated as follows.

A. Load the real estate data into R

Consider sample real estate dataset as .csv file with 932 rows representing the values under 7 columns (Variables) [7]. The screenshot is shown in Figure 1. The columns are designated as Distance-to-BT, Distance-to-Mall, Distance-to-Hospital, Carpet-Area, Built-up-Area, Parking-Status and House-Price. Load this dataset into R.

			-		-			
Distance_to_Taxi	Distance_to_Market	Distance_to_Hospital	Carpet_Area	Builtup_Area	Parking_Status	City_Category	Rainfall	House_Price
9796	5250	10703	1659	1961	Open	CAT B	530	6649000
8294	8186	12694	1461	1752	Not Provided	CAT B	210	3982000
11001	14399	16991	1340	1609	Not Provided	CAT A	720	5401000
8301	11188	12289	1451	1748	Covered	CAT B	620	5373000
10510	12629	13921	1770	2111	Not Provided	CAT B	450	4662000
6665	5142	9972	1442	1733	Open	CAT B	760	4526000
13153	11869	17811	1542	1858	No Parking	CAT A	1030	7224000
5882	9948	13315	1261	1507	Open	CAT C	1020	3772000
7495	11589	13370	1090	1321	Not Provided	CAT B	680	4631000
8233	7067	11400	1030	1235	Open	CAT C	1130	4415000
4278	10646	8243	1187	1439	Covered	CATA	1090	7128000
8066	11149	12936	1751	2098	No Parking	CAT B	720	5762000
7693	9130	14684	1746	2064	Open	CAT B	1050	6047000
5236	10853	13054	1615	1931	Covered	CAT B	1160	5913000
6027	6707	10176	1469	1756	Open	CAT B	770	6636000
9648	14789	12812	1644	1950	Covered	CAT A	790	7887000

Fig. 1. Sample real estate dataset screen shot

B. Identify numeric and categorical predictor variables

Sample dataset columns are classified into numeric and categorical predictor variables based on their properties. Out of 7 columns, 5 columns are identified as numeric variables (Distance-to-BT, Distance-to-Mall, Distance-to-Hospital, Carpet-Area and Built-up-Area), 1 is identified as categorical (Parking-Status) and house-price is identified as target variable.

C. Identify and handle the missing values

Missing value indicates that no data value is stored for the variable in the current observation. Missing data will have significant effect on the conclusions drawn from the data. Hence handling missing data is important for accurate predictions. In this dataset missing numeric variables are replaced with mean value and categorical variables are replaced with mode value.

D. Identify training data and test data for regression Modeling

Sample dataset is divided into training and test datasets. 70% of the sample dataset is considered as training dataset and 30% as test dataset. The training dataset is used to build the three regression models and the test dataset is used to evaluate the performance of the model.

E. Construct the regression model M1

Regression model M1 is built using the numeric and categorical predictor variables and house price as target variable. The results of the regression analysis summary is shown in Figure 2.

Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	3389911.00	574492.82	5.901	5.97e-09	***
Dist_to_BT	10.67	42.76	0.250	0.802962	
Dist_to_Mall	19.90	32.98	0.603	0.546491	
Dist_to_Hospital	113.14	47.77	2.369	0.018159	×
Carpet_Area	-2171.76	5462.14	-0.398	0.691060	
Builtup_Area	2454.20	4558.84	0.538	0.590538	
Parking_statusNo Parking	-841197.09	220319.11	-3.818	0.000148	***
Parking_statusNot Provided	-497942.08	199155.62	-2.500	0.012668	×
Parking_statusOpen	-397319.59	181527.52	-2.189	0.028988	×

Fig. 2. Regression Analysis Summary of Model M1 from R

From Figure 2 results it is observed all the variables are part of this model including the categorical variables where each category is represented as a separate variable. The last column in the table indicates the level of significance or importance

of these variables in the model. In this model, carpet-area and built-up-area of the house are not shown as important. But these variables are having high correlation with the house price. Hence to address this issue, second model is built using PCA.

The performance of the model is evaluated using the test dataset. The correlation between the estimated and the observed values of the house prices is calculated. The correlation value explains the level of accuracy of the model. The square of the correlation is the R-square value or the predictive power of the model. The accuracy of this model is 0.01226.

The next model is constructed to handle multicollinearity using PCA. PCA modifies a set of numeric variables into uncorrelated principal components. A new model M2 is constructed with the orthogonal principal components derived from the original variables.

F. Construct the regression model M2

Five orthogonal principal components Dim1 to Dim6 are derived from the original numeric variables. These orthogonal components are shown in the PCA graph presented in Figure 3

Fig. 3. PCA Graph from R

From Figure 3 it is observed that Distance-to-BT, Distance-to-Mall, and Distance-to-Hospital have formed principal component variable Dim1 which explains 45.15% information in data. Where in Carpet-Area and Builtup-Area explains the remaining 39.99% of information through Dim2 principal component variable. The eigenvalue is used in the principal component analysis to calculate the % variance as shown Figure 4. From Figure 4 it is observed that Comp1 and Comp2 explains 45.15% and 39.99 % of variance which is high among all.

	eigenvalue	percentage of	of variance	cumulative	percentage	of	variance
comp 1	2.257514941		45.15029882				45.15030
comp 2	1.999723923		39.99447846				85.14478
comp 3	0.567327242	1	11.34654485				96.49132
comp 4	0.174319980		3.48639960				99.97772
comp 5	0 001113914		0.02227828				100 00000

Fig. 4. Eigen value and % of variance explained by 5 components, sample screenshot from R

Regression model M2 is built using these principal components and categorical variable Parking-Status. The results of the regression analysis summary is shown in Figure 5.

Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	6325900	147691	42.832	< 2e-16	***
Parking_statusNo Parking	-835510	219374	-3.809	0.000154	***
Parking_statusNot Provided	-501925	198856	-2.524	0.011849	Ħ
Parking_statusOpen	-397342	180930	-2.196	0.028453	*
Dim.1	224088	44531	5.032	6.36e-07	***
Dim.2	135554	48077	2.820	0.004963	**

Fig. 5. Regression Analysis Summary of Model M2 from R

From Figure 5 it is observed there are no insignificant numeric predictor variables in the model. The performance of the model is evaluated using the test dataset. The accuracy of this model is 0.01401. There is a slight improvement in the accuracy from model M1.

A correlation matrix constructed with the predictor variables and the principal components as shown in Figure 6. From the correlation matrix it is observed that 88% of the Distance-to-Hospital is loaded on Dim1 and 100% of both Carpet-Area and Built-up-Area is loaded on Dim2.

	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5
Dist_to_Hospital	88	0	2	10	0
Dist_to_BT	77	0	17	6	0
Dist_to_Mall	61	0	38	1	0
Carpet_Area	0	100	0	0	0
Builtup_Area	0	100	0	0	0

Fig. 6. Correlation Matrix of predictor variables and the principal components, sample screenshot from R

The model accuracy levels are satisfactory but the complexity involved in the operationalization of PCA model is high. Hence we can build a model by selecting the most likely predictor variables under the principal components Dim1 and Dim2 from the correlation matrix shown in Figure 6.

G. Construct the regression model M3

From Figure 6 it is observed that the dominant variables in Dim1 and Dim2 are Distance-to-Hospital and Carpet-Area. Hence, regression model M3 is built with these variables. The R-square value for this model is 0.01006. This value is acceptable since the operationalization of this model will be easy.

H. Compare the three models based on the accuracy levels and select the model with high accuracy.

From the above three models accuracy results it is observed that there is a marginal improvement in the accuracy from the first model to the second model. The model is simple and gives acceptable results in comparison to other models M1 and M2. More over this model is based on the PCA results obtained in model M2. Thus can be used to construct predictive models to estimate the real estate property price.

V. EXPERIMENTAL STUDY, RESULTS AND DISCUSSION

To address the expectations, needs and requirements of buyer and seller of real estate, an experimental study is carried out on Washington City's real estate data, with 159 rows and 330 columns. The dataset is available in .CSV format. The sample snapshot of the data is presented in Figure 7.

7	42 CONDO	CONDO O HIGHRISE	2	203	OCEAN /	ĆN	1	1	N	HIMW / SI	2016 NEW	33139	305-915-0148
	42	CONDO rent Pool	3	301		N	NONE/	/	N	1	2015 NEW	33139	
6	42 CONDO	CONDO O OTHER /	3	301	OCEAN/	\N	NONE/	1	N	1	2015 NEW	33139	786-427-9115
	42	Bay rent Pool	6 P	H1		N	NONE/	1	N	BLINDS / F	2015 NEW	33139	
7	42 CONDO	CONDO B; REMODEL	4	402	BAY/GA	RN	1	BAY/	N	BLINDS / F	2015 NEW	33139	305-433-2 Alton Road South until the end - Bu
7	42 CONDO	CONDO B(CORNER /	7 P	H2	BAY/SK	(N	/	/	N	HIMW/IN	2015 NEW	33139	305-613-2 Alton Road south to South Pointe E
	42	rent Pool		203		N	NONE/	1	N	1		33139	
6	42 CONDO	CONDO P(HIGHRISE)	2	205	OTHER /	N	1	1	N	1	2015 NEW	33139	305-962-5478
	42	Bay rent Pool		405		N	1	1	N	BLINDS / I	2015	33139	Take McArthur Causeway to Alton
37	42 CONDO	CONDO A: GARDNAP	17	H-A7	GARDEN	/N	OTHER/	BAY/	γ	BLINDS / S	2002 RS	33139	305-495-6016
37	42 HOA	CONDO A: CORNER /	17	H-A10	GARDEN	/N	1	1	N	1	2002 RS	33139	786-262-6777
38	42 CONDO	TOWNHSE CORNER /	17	H-M4	BAY/SK	(N	NONE/	BAY/OC	NΥ	BLINDS / I	2002 RS	33139	786-277-7539
22	42 CONDO	CONDO BI CORNER /	8	801	BAY/	N	NONE/	BAY/	γ	BLINDS / E	2008 NEW	33139	305-776-6914
	42	Bay rent Pool		1401		N	OTHER/	BAY/	Υ	1	2008	33139	
22	42 CONDO	CONDO B: HIGHRISE	17	1702	INTRACS	TN	OTHER/	OTHER/	Y	1	2008 RS	33139	305-674-4040
	42	Bay Ocean rent Pool	17	1702		N	OTHER/	OTHER/	Υ	HIMW/	2008 RS	33139	
23	42 CONDO	CONDO B(HIGHRISE)	5	503	BAY/OC	ΕN	OTHER/	BAY/IN	TEY	1	2008 RS	33139	917-328-3 I395 TOWARDS SOUTH BEACH, TUR
22	42 CONDO	CONDO B(HIGHRISE	6	603	INTRACS	TN	OTHER /	INTRACS	ΤY	1	2008 NEW	33139	
22	42 CONDO	CONDO B: HIGHRISE	6	603	INTRACS	TN	OTHER/	INTRACS	ΤY	1	2008 NEW	33139	
	42	rent Pool		1903		N	OTHER /	OCNFRO	NY	1	2008	33139	TAKE I 395 TO ALTON ROAD WEST. F
	42	Bay Ocean rent Pool		2003		N	OTHER/	BAY/CA	NN	BLINDS /	2008	33139	Take McArthur Cswy to Alton Road
0	42 CONDO	CONDO BI CORNER /	21	2104	BAY/OC	EN	BEACHAO	BAY/IN	ΠY	SLIDING/	2008 RS	33139	
22	42 COMPO	course o consum /	22	2201	occus I	C 84	omure /	may I	w	cupus (2000 00	22120	

Fig. 7. Washington City's real estate sample dataset

The system configuration used for the experimental study is described below

Intel® Pentium® iV

RAM: 3.99GB, 64 bit operating system

Software tools: R Studio

A. Data Preparation

As the first step load the Washington City's real estate dataset into R to build the model. Missing values under each attribute list are identified and replaced with appropriate values. Numeric and categorical predictor variables are classified in the dataset. 101 numeric predictor variables are identified out of 330, remaining variables are considered as categorical. The target variable or response variable is identified as house price. In the next step, the dataset is divided into training set and test set. The training set is used to build the model and the test dataset is used to evaluate the performance of the model. These datasets are created randomly by making 70% of data as the training dataset and the remaining 30% as the test dataset.

B. M1 Model Building

A regression model is constructed using 101 numeric variables as predictor variables from the test dataset and house-price as the target variable. The summary of regression model obtained using R is presented in Figure 8. From Figure 8, it is observed that some of the predictor variables used in the analysis are tagged with *, **, *** based on their correlation with the target variable.

The performance of the model is evaluated using the test dataset. The correlation between the estimated and the observed values of the house prices is calculated. The correlation value explains the level of accuracy of the model. The square of the correlation is the R-square value or the predictive power of the model. The accuracy of this model is 0.3907. This explains 39.07% of the variation in the house price is due to these predictor variables. It is observed that in this model most significant predictor variables are tagged as unimportant. In fact, these variables have high correlation with the target variable. This problem is addressed in the next model using PCA.

Call:		,		
<pre>lm(formula = list_price ~ ., data</pre>	a = PCA_data	1)		
Residuals:				
Min 1Q Median 3Q -711256 -189836 0 129616	Max			
-/11236 -189836 0 129616	109341/			
Coefficients: (33 not defined be	cause of sin	gularities)		
	Estimate	Std. Error		r(> t)
(Intercept)	-7.103e+10 -3.832e+05	5.538e+10 2.366e+05		0.20687 0.11300
number_of_fbaths	-5.121e+05	3.121e+05		0.10848
number_of_beds number_of_fbaths number_of_hbaths	-4.199e+05	2.075e+05	-2.024	0.04954 *
number_of_ceiling_fans	1.510e+05	2.803e+05		0.59302
number_of_garage_spaces number_of_interior_levels	1.920e+05 -1.145e+06	1.871e+05 1.026e+06		0.31089 0.27108
number_of_times_leased_per_year	-3.438e+03	3.298e+03	-1.042	0.30331
i_number	1.945e+04	1.088e+04	1.787	0.08135 .
area	-5.948e+04 2.971e-01	4.119e+04 1.924e-01		0.15633
dade_assessed_dollars_soh_value maintenance_charge_per_month	7.424e+01	2.039e+02		0.13015 0.71769
minimum_number_of_days_for_lease		1.463e+03		0.19095
rec_lease_per_month	NA	NA	NA	NA
section sqft_liv_area	-5.217e+04 8.086e+03	9.438e+04 7.060e+03	-0.553 1.145	0.58340 0.25874
subdivision_number	1.227e+03	1.496e+03		0.41685
tax_amount	2.319e+01	1.222e+01	1.897	0.06487 .
total_number_of_units_in_buildin		1.866e+03		0.54842
total_number_of_units_in_complex total_floors_in_building	8.241e+02 -2.801e+04	2.070e+03 1.029e+04		0.69267 0.00952 **
township_range	1.321e+04	1.631e+04	0.810	0.42284
unit_floor_location	-2.033e+04	1.754e+04	-1.159	0.25316
price_per_sqft	1.290e+03 8.720e+08	5.557e+02 4.741e+08	2.322	0.02529 * 0.07312 .
mls_latitude mls_longitude	-6.058e+08	5.482e+08		0.0/312 .
number_of_stories	-3.731e+01	1.253e+04	-0.003	0.99764
parcel_number	6.005e+02	2.173e+02		0.00853 **
parcel_number.1 furn_annual_rent	NA 6.155e+01	NA 5.599e+01	NA 1.099	NA 0.27801
Turri_aririua i_reric	0.1336+01	J. J99E+01	1.099	0.27801
Eli puest	1 310	2 1 702-	02 0 77	0 0 44585
flp_PAGE1 flp_QCD2	-1.310e+(-5.179e+(
flp_SALES_YR2			NA N	
flp_SALES_MM2			NA N	
flp_BOOK2			NA N	
flp_PAGE2 flp_MAIL_ZIP	6.718e+0		NA N. 00 1.14	
flp_MKAR	8.484e+(
f1p_NBRHDCD	-4.863e+0			
flp_TAXAUTHCD			NA N	
flp_SEC	-7.598e+0		05 -0.45 NA N	
flp_PH_ZIP flp_ASS_DIF_TRNS	-3.271e+0			
flp_ASS_DIF_SPLT			NA N	
flp_ASS_DIF_VL			NA N	
flp_ASS_DIF_CNTY			NA N	
flp_ASS_DIF_YR flp_EXMPT01			NA N. NA N.	
flp_EXMPT02			NA N	
flp_SEQNO	-4.508e+0	01 1.108e+	02 -0.40	7 0.68623
flp_FCF1			NA N	
flp_FCF2	-1.954e+0 8.630e+0			
flp_OWNER_LATITUDE flp_OWNER_LONGITUDE	-5.819e+(
flp_STREET_LEVEL	1.975e+0			
flp_GIS_AREA	1	NA .	NA N	A NA
flp_LATITUDE			NA N	
flp_LONGITUDE latitude			NA N. NA N.	
longitude			NA N.	
Signif. codes: 0 '***' 0.001	'**' 0.01 ' [*]	'' 0.05 '.'	0.1 ' '	1
Residual standard error: 486100	0 on 41 des-	nees of for	edom	
Multiple R-squared: 0.9911,				
F-statistic: 67.53 on 68 and 43				

Fig. 8. Snapshot of regression analysis summary obtained from R for Model M1

C. M2 Model Building

The orthogonal principal components Dim1 to Dim6 are extracted from the 101 numeric predictor variables using PCA. These predictor variables do not have any multicollinearity between them as they are perfectly uncorrelated. PCA graph is shown in Figure 9. From the graph it is observed that principal component variable Dim1 explains 15.23% of data and Dim2 explains 13.33% of data. Using these principal components regression model is developed.

Fig. 9. PCA graph, screenshot from R

Eigenvalues and Eigenvectors are obtained during the PCA. A sample of 36 components comp1 to comp36 is shown in Figure 4. Eigenvalues are used in principal component analysis to explain the percentage of variance in the house-price due to each component. Eigenvectors represents the vector locations of these components. A correlation matrix is constructed using the numeric predictor variables and the principal components as shown in Figure 10. From the correlation matrix, we can address the issues of multicollinearity in the numeric predictor variables.

The performance of this model is evaluated using the test dataset. The accuracy of this model is 0.3467. This explains approximately 35% of the variation in the house price is due to these principal components which is lesser compared to model M1. But the complexity involved in the operationalization of PCA model is high. Hence we can build a model by selecting the most likely predictor variables under the principal components Dim1 to Dim3 from the correlation matrix shown in Figure 11.

			percentage of variance	cumulative	percentage of	
comp	1	1.538011e+01	1.522783e+01			15.22783
comp		1.346435e+01	1.333104e+01			28.55887
comp	3	1.019045e+01	1.008955e+01			38.64842
comp	4	7.576380e+00	7.501366e+00			46.14978
comp	5	5.780303e+00	5.723073e+00			51.87286
comp		5.173841e+00	5.122615e+00			56.99547
comp	7	4.758243e+00	4.711131e+00			61.70660
comp		4.117738e+00	4.076968e+00			65.78357
comp	9	3.761004e+00	3.723767e+00			69.50734
comp		3.077823e+00	3.047349e+00			72.55469
comp		2.766833e+00	2.739438e+00			75.29412
comp		1.640761e+00	1.624516e+00			76.91864
comp	13	1.528869e+00	1.513732e+00			78.43237
comp	14	1.516549e+00	1.501534e+00			79.93391
comp	15	1.400798e+00	1.386929e+00			81.32083
comp	16	1.350491e+00	1.337120e+00			82.65795
comp	17	1.251018e+00	1.238631e+00			83.89659
comp	18	1.161504e+00	1.150004e+00			85.04659
comp	19	1.078459e+00	1.067781e+00			86.11437
comp		1.037453e+00	1.027181e+00			87.14155
comp		9.959640e-01	9.861030e-01			88.12765
comp		9.390201e-01	9.297229e-01			89.05738
comp		8.603545e-01	8.518362e-01			89.90921
comp	24	8.170181e-01	8.089288e-01			90.71814
comp		7.800026e-01	7.722798e-01			91.49042
comp		7.284232e-01	7.212111e-01			92.21163
comp	27	6.766534e-01	6.699539e-01			92.88159
comp	28	6.294176e-01	6.231857e-01			93.50477
comp	29	5.912740e-01	5.854198e-01			94.09019
comp	30	5.181384e-01	5.130083e-01			94.60320
	31	5.016121e-01	4.966456e-01			95.09985
	32	4.715354e-01	4.668667e-01			95.56671
comp		4.101034e-01	4.060430e-01			95.97276
comp		3.738423e-01	3.701409e-01			96.34290
comp		3.643113e-01	3.607043e-01			96.70360
comp	36	3.530485e-01	3.495530e-01			97.05315

Fig. 10. Eigen value and % of variance explained by 36 components, sample screenshot from R

				Dim.4	Dim.5
flp_SEQNO	68	1	27	0	0
flp_COUNTYNO	67	2	28	0	0
flp_TAXAUTHCD	67	2	28	0	0
flp_PH_ZIP	67	2	28	0	0
flp_YR_BUILT	63	0	27	0	0
flp_ACT_YR_BLT	63	0	27	0	0
flp_IMPQUAL	61	0	29	0	0
flp_NOBULDNG	61	0	29	0	0
flp_OWNER_LONGITUDE	60	2	27	0	0
flp_GRPNO	55	2	17	0	0
sqft_liv_area	45	5	32	0	0
number_of_fbaths	43	7	19	0	0
number_of_beds	42	10	18	0	1
flp_NBR_RES_UNITS	42	31	20	0	0
flp_JVNS	38	8	35	12	0
flp_TOTAL_VAL1	37	8	35	13	0
flp_JV	35	18	35	5	0
flp_FCF2	35	1	7	10	1
number_of_garage_spaces	34	11	7	1	0
flp_OWNER_LATITUDE	32	0	24	0	0
flp_AV_NON_HMSTD_RESD	31	0	26	28	0
flp_JVS	30	21	31	11	0
flp_TOTAL_VAL1_S	30	21	31	11	0
flp_JV_NON_HMSTD_RESD	30	0	25	26	1
maintenance_charge_per_month	29	0	35	3	2
coord_level	29	0	5	1	0
price_per_sqft	25	0	35	12	3
flp_DT_LAST_INSPT	23	4	20	5	0
tax_amount	21	12	34	0	0
unit_floor_location	18	3	12	14	1
township_range	17	0	6	0	0
i_number	16	5	Ō	2	Ō
area	16	0	0	0	0
total_floors_in_building	15	5	9	26	5
price_vs_market	15	0	9	27	9
- F		-	_		_

Fig. 11. Correlation Matrix of predictor variables and the principal components, sample screenshot from R

A. M3 Model Building

The third model M3 is built using the predictor variables selected from the correlation matrix of Figure 11. These variable section is based on their significance w.r.t principal components Dim1, Dim2 and Dim3 of M2 model correlation matrix. Hence 19 significant predictor variable from 3 principal components are selected. Regression model is constructed by using these predictor variables. The summary of the regression model obtained using R is shown in Figure 12. The accuracy of this model is 0.5825. This 58% house price variation is due to the selected significant predictor variables.

```
lm(formula = list_price ~ ., data = cdata[train, c(Target, new_predictors)])
Residuals:
Min 1Q
-8610203 -750236
                              Median 3Q Max
215736 877499 11326215
Coefficients: (8 not defined because of singularities)
                               Estimate Std. Error t value Pr(>|t|)
1111600.000 981452.912 1.133 0.260143
-14.860 9.312 -1.596 0.113749
(Intercept)
flp_LAND_VAL1
flp_NOUNITS
flp_BLDG_SOFT
flp_SPEC_FEAT_VAL
acf3
flp_FCF1
                                                       1173 239
                                                                        0 376 0 707951
                                     440 788
                                       11.456
                                                                        0.015 0.987788
flp_GIS_AREA
flp_seqno
flp_countyno
flp_taxauthcd
                                       -20, 316
                                                                        -0.350 0.726839
                               -20.310 37.330
1152274.191 1080716.945
NA NA
 flp_PH_ZIP
flp_YR_BUILT
flp_ACT_YR_BLT
flp_IMPQUAL
                                 563603.047
                                                  1113419.872
                                -577748.184 1111438.654
                                                                        -0.520 0.604361
flp NOBULDNG
flp_OWNER_LONGITUDE
flp_GRPNO
acf2
flp_TOTLAREA
                                 -16800.385
217785.729
7100.478
                                                   50239.373
447071.577
1963.691
2134.531
                                                                      -0.334 0.738787
0.487 0.627248
3.616 0.000475
-2.308 0.023097
                                  -4926.669
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 2195000 on 98 degrees of freedom
Multiple R-squared: 0.5689, Adjusted R-squared: 0.52
Multiple R-squared: 0.5689, Adjusted R-squared: 0.5205
F-statistic: 11.76 on 11 and 98 DF, p-value: 0.0000000000001037
```

Fig. 12. Regression Analysis results of Model M3

From the above three models accuracy results it is observed that there is a marginal improvement in the accuracy from the first model to the third model. The second model explains only 35% of the price variation. This is due to the complexity involved in the usage of PCA. The model M3 is simple and gives more accurate results in comparison to other models M1 and M2. More over this model is based on the PCA results obtained in model M2. Thus PCA is a highly intuitive and powerful data science technique that can be used to construct predictive models to estimate the real estate property price.

VI. CONCLUSION

In this paper, three regression models are developed and validated using R to estimate the real estate housing price based on various predictor variables. The accuracy of the models M1, M2 and M3 are 0.3907, 0.3467 and 0.5825 respectively. From these accuracy values it is observed that the model M3 is giving better results in comparison to M1 and M2. Moreover M3 is a simple model constructed using the results obtained from the PCA technique employed in M2, which is identified as the powerful data science technique for predictor variable reduction in particular for real estate dataset attributes reduction analysis. This technique is also useful for constructing the models to estimate the real estate property price accurately. In this paper only numeric attributes are considered for PCA to create models for analyzing and predicting the real estate housing price. In future there is a scope to extend this data model to support categorical attributes as well. Further the model can be extendable to other real estate data sets in future.

REFERENCES

- [1] Adyan Nur Alfiyatin, Ruth Ema Febrita, Hilman Taufiq, Wayan Firdaus Mahmudy: "Modeling House Price Prediction using Regression Analysis and Particle Swarm Optimization - Case Study: Malang, East Java, Indonesia, (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 10, 2017, pp. 323-326.
- [2] V.Sampathkumara, M.Helen Santhib, J.Vanjinathan: "Forecasting the land price using statistical and neural network software", 3rd International Conference on Recent Trends in Computing 2015 (ICRTC-2015), Procedia Computer Science, Science Direct, 2015, pp.112 – 121.
- [3] R Manjula, Shubham Jain, Sharad Srivastava and Pranav Rajiv Kher: "Real estate value prediction using multivariate regression models", 14th ICSET-2017, IOP Conf. Series: Materials Science and Engineering, 2017, pp. doi:10.1088/1757-899X/263/4/042098.
- [4] Nguyen Nghiep and Cripps Al "Predicting Housing Value: A Comparison of Multiple Regression Analysis and Artificial Neural Networks" Journal of Real Estate Research: 2001
- [5] Nihar Bhagat, Ankit Mohokar, Shreyash Mane: "House Price Forecasting using Data Mining", International Journal of Computer Applications (0975 – 8887) Volume 152 – No.2, October 2016, pp. 23-26.
- [6] Sayali Sandbhor, N.B. Chaphalkar: "Determining attributes of Indian real property valuation using principal component analysis", Journal of Engineering Technology (ISSN: 0747-9964) Volume 6, Issue 2, July. 2017, PP. 483-495.
- [7] http://ucanalytics.com/blogs/category/pricing-case-study-example