DATA SCIENCE PROJECT REPORT

• InveCareer

(Established under Section 3 of UGC Act, 1956)

(Accredited by NAAC with Grade 'A++')

Invest in yourself for a brighter Career

Submitted to:

InveCareer

Submitted By:

Deepanshi Gupta

Maharishi Markandeshwar

(Deemed to be University)

INDEX

ACKNOWLEDGEMENT	3
ABSTRACT	4
PROJECT GOALS	5
INTRODUCTION	6
ASSUMPTIONS	7
TASK 1	8
STUDENT PERFORMANCE ANALYSIS	8
PROBLEM STATEMENT:	8
CONCLUSION	13
RECOMMENDATIONS	13
TASK 2	14
E-COMMERCE SALES ANALYSIS	14
PROBLEM STATEMENT:	14
CONCLUSION AND SUGGESTIONS	19
TASK 3	20
HEALTHCARE DATA ANALYSIS	20
PROBLEM STATEMENT:	20
CONCLUSION AND SUGGESTIONS	24
TASK 4	25
WEATHER DATA ANALYSIS	25
PROBLEM STATEMENT:	25
CONCLUSION	32
TASK 6	33
EMPLOYEE TURNOVER ANALYSIS	33
PROBLEM STATEMENT:	33
CONCLUSION	26

ACKNOWLEDGEMENT

I, **Deepanshi Gupta**, want to thank everyone who has helped and supported me throughout my tasks.

First and foremost, a big thank you to my mentor, **Mr. Bikash Bashyal**, for giving me valuable guidance and pointing me in the right direction.

I owe a special debt of gratitude to my parents, whose constant encouragement, patience, and understanding have been the foundation of my success.

I would also like to acknowledge my friends who contributed their ideas and perspectives, which greatly enriched the project.

I appreciate each and every one of you for shaping this project and enhancing my learning experience.

At last, I would like to thank **InveCareer** who gave me this opportunity to work on these projects.

Thank you all!

ABSTRACT

This report presents a comprehensive analysis of Student Performance, E-commerce Sales, Healthcare Data, Weather Data, Employee Turnover, aiming to derive actionable insights to optimize inventory management and marketing strategies. The analysis focuses on understanding sales trends, identifying top selling products, and forecasting future sales. By leveraging historical sales data, the study employs various data preparation techniques, including data cleaning and transformation, to ensure the accuracy and reliability of the results. The data analysis segment explores trends through time series analysis, evaluates product performance by categorizing topselling items, and assesses store performance by comparing sales across different locations. Various forecasting models, such as moving averages, exponential smoothing, ARIMA, and machine learning algorithms, are applied to predict future sales

trends. Model evaluation is conducted to ensure high prediction accuracy.

The insights derived from the analysis provide valuable recommendations for optimizing inventory levels and formulating effective marketing strategies. The report emphasizes the importance of data-driven decision-making in enhancing operational efficiency and driving business growth. Visualizations and dashboards are developed to facilitate easy interpretation and communication of key findings.

In conclusion, the study underscores the potential of sales data analysis in transforming retail operations and highlights areas for future research to continuously improve analytical capabilities and business outcomes. The appendix section includes a detailed data dictionary, methodology specifics, and additional charts and graphs for reference.

PROJECT GOALS

- 1. **Data Collection**: Obtain a dataset containing historical sales data, including information such as date of sale, product ID, quantity sold, price, etc. You can search for open datasets online or simulate your own dataset.
- 2. **Data Preprocessing**: Clean the data by handling missing values, removing duplicates, and converting data types if necessary. Perform any necessary data transformations, such as calculating total sales amount for each transaction.
- 3. Exploratory Data Analysis (EDA): Conduct EDA to gain insights into the sales data. Explore trends over time, seasonality in sales, correlation between different variables (e.g., sales vs. price, sales vs. product category), and identify top-selling products or categories.
- 4. **Visualization**: Create visualizations using Matplotlib to present your findings from the EDA phase. This could include line plots to visualize sales trends over time, bar plots to show top-selling products or categories, and scatter plots to explore relationships between variables.

INTRODUCTION

In today's competitive retail landscape, data-driven decision-making is crucial for maintaining a competitive edge. As a data analyst for our retail store chain, I have been tasked with leveraging our extensive sales data to extract meaningful insights. The primary objective is to understand sales trends, identify top-selling products, and forecast future sales. These insights will be instrumental in optimizing inventory management and refining our marketing strategies to boost profitability and customer satisfaction. This report is structured to provide a comprehensive analysis of our sales data. We will begin with an overview of current sales trends, examining patterns over different time periods and across various store locations. This will help us identify any seasonal trends or regional variations that can inform our inventory and marketing strategies. Next, we will delve into product-level highlighting the topselling products and categories. Understanding which products drive the most revenue and their sales cycles will enable us to make informed decisions about stock levels, promotional efforts, and product placements. Finally, we will employ forecasting techniques to predict future sales. Accurate sales forecasts are essential for effective inventory management, ensuring that we have the right products available at the right times, minimizing stockouts and overstock situations. This will not only reduce costs but also enhance customer satisfaction by ensuring product availability. By harnessing the power of data analytics, this report aims to provide actionable insights that will guide our retail store chain towards more efficient operations, better customer experiences, and increased profitability.

ASSUMPTIONS

- 1. The data is normally distributed.
- 2. The dataset is accurate and represents the true data.
- 4. Missing values and duplicates are to be handled by removal.
- 5. The sales data is comprehensive and includes all necessary fields for analysis.

TASK 1

STUDENT PERFORMANCE ANALYSIS

PROBLEM STATEMENT:

Utilize a dataset containing student exam scores, demographic information, and study habits. Analyze the distribution of exam scores and identify trends. Investigate correlations between study time, demographic factors, and exam performance. Visualize the data using bar charts, scatter plots, and histograms. Provide recommendations for improving student performance based on the analysis.

Importing Libraries

[2]:	import pandas as pd
	import numpy as np
	import seaborn as sns
	import matplotlib.pyplot as plt

Loading Dataset

	<pre>df = pd.read_csv(r"C:\Users\admin\Downloads\Student_performance_datacsv") df.head()</pre>														
	StudentID	Age	Gender	Ethnicity	ParentalEducation	StudyTimeWeekly	Absences	Tutoring	ParentalSupport	Extracurricular	Sports	Music	Volunteering	GP#	
0	1001	17	1	0	2	19.833723	7	1	2	0	0	1	0	2.929196	
1	1002	18	0	0	1	15.408756	0	0	1	0	0	0	0	3.042915	
2	1003	15	0	2	3	4.210570	26	0	2	0	0	0	0	0.112602	
3	1004	17	1	0	3	10.028829	14	0	3	1	0	0	0	2.054218	
4	1005	17	1	0	2	4.672495	17	1	3	0	0	0	0	1.288061	
4														•	

Data Cleaning

Checking Null Values

Exploratory Data Analysis and Visualisation

```
[11]: plt.figure(figsize=(10, 6))
    sns.histplot(df['GPA'], kde=True, bins=30, color='blue')
    plt.title('Distribution of GPA')
    plt.xlabel('GPA')
    plt.ylabel('Frequency')
    plt.show()
```


Above graph shows that most of the students scored GPA greater than 1.5 with most ranging between 1.5 and 2.5 and the no. decreasing as it reached 4.0.

```
[12]: plt.figure(figsize=(10, 6))
    sns.boxplot(x='Gender', y='GPA', data=df, palette='Set2')
    plt.title('GPA by Gender')
    plt.xlabel('Gender')
    plt.ylabel('GPA')
    plt.show()
```

 ${\tt C:\Users\admin\AppData\Local\Temp\ipykernel_16956\2646191905.py:2: FutureWarning:} \\$

Passing 'palette' without assigning 'hue' is deprecated and will be removed in v0.14.0. Assign the 'x' variable to 'hue' and set 'legend=False' for the same effect.

sns.boxplot(x='Gender', y='GPA', data=df, palette='Set2')

Above box plot shows that median GPA value of males is greater than females though they have the same minimum and maximum value.

```
[13]: plt.figure(figsize=(12, 6))
sns.boxplot(x='ParentalEducation', y='GPA', data=df, palette='Set3')
plt.title('GPA by Parental Education Level')
plt.xlabel('Parental Education Level')
plt.ylabel('GPA')
plt.show()
```

C:\Users\admin\AppData\Local\Temp\ipykernel_16956\853625335.py:2: FutureWarning:

Passing 'palette' without assigning 'hue' is deprecated and will be removed in v0.14.0. Assign the 'x' variable to 'hue' and set 'legend=False' for the same effect.

sns.boxplot(x='ParentalEducation', y='GPA', data=df, palette='Set3')

Children of the parents educated upto 0,1 and 2 level have scored better GPA as compared to level 3 and 4.

```
[14]: plt.figure(figsize=(14, 8))
    core_matrix = df.core()
    sns.heatmap(core_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
    plt.title('Corvelation Heatmap')
    plt.show()
```



```
[15]: plt.figure(figsize=(10, 6))
sns.scatterplot(x='StudyTimeWeekly', y='GPA', data=df, hue='Gender', palette='Seti')
plt.title('Study Time Weekly (hours)')
plt.ylabel('GPA')
plt.show()
```


More study time means better GPA.

```
[16]: plt.figure(figsize=(10, 6))
    sns.scatterplot(x='Absonces', y='GPA', data=df, hue='Gender', palette='Set2')
    plt.title('Absonces vs GPA')
    plt.xlabel('Number of Absonces')
    plt.ylabel('GPA')
    plt.show()
```


Students having less absences scored better than those having more absences.

CONCLUSION

- 1. Most of the students scored GPA greater than 1.5 with most ranging between 1.5 and 2.5 and the no. decreasing as it reached 4.0.
- 2. Median GPA value of males is greater than females.
- 3. Children of the parents educated upto 0,1 and 2 level have scored better GPA as compared to level 3 and 4.
- 4. More study time means better GPA.
- 5. Students having less absences scored better than those having more absences.

RECOMMENDATIONS

- 1. Absences should be less.
- 2. More time should be given to study.
- 3. Parents should be educated atleast upto 1st or 2nd level.

TASK 2

E-COMMERCE SALES ANALYSIS

PROBLEM STATEMENT:

Work with a dataset of e-commerce transactions including product details, prices, and purchase timestamps.

Analyze sales trends over time and identify peak selling periods. Explore the distribution of product prices and customer spending habits.

Segment customers based on purchasing behavior or demographic information. Generate insights to optimize product offerings and marketing strategies.


```
[16]: df.info()
             [17]: df.isnull().sum()
  [17]: InvoiceNo
StockCode
              Description 1454
             Description 1454
Quantity 8
InvoiceDate 9
UnitPrice 0
CustomerID 135888
Country 8
              dtype: int64
              Exploratory Data Analysis
  [33]: # Displaying columns containing at Least one value of \theta (zero). df.columns[df.isin([\theta]).any()]
  [33]: Index([], dtype='object')
  [18]: # Calculating the mean of 'UnitPrice'
unit_price_mean = df['UnitPrice'].mean()
  [19]: df['UnitPrice'] = df['UnitPrice'].replace(0, unit_price_mean)
  [22]: df['Description'].fillna('No description available')
df.isnull().sum()
  [22]: InvolceNo
              StockCode
              Description 1454
Quantity 8
InvoiceDate 8
              UnitPrice 0
CustomerID 135080
              Country
dtype: int64
[23]: # Replace missing value in 'CustomerID'
def fill customer id(row):
   if pd.isma(row['CustomerID']):
        return f"Customer of Invoice Nº (row['InvoiceNo'])"
        elect.
                         return row['CustomerID']
           df['CustomerID'] = df.apply(fill_customer_id, axis=i)
df.isnull().sum()
[23]: InvoiceNo
            InvoiceMo 8
StockCode 8
Description 1454
Quantity 8
InvoiceDate 8
UnitPrice 8
CustomerID 8
            Country
dtype: int64
[24]: #Change the 'InvoiceDate' column to datetime objects.
df['InvoiceDate'] = pd.to_datetime(df['InvoiceDate'])
           df.info()
            <class 'pandas.core.frame.Dataframe'>
RangeIndex: 541989 entries, 8 to 541988
Data columns (total 8 columns):
# Column Non-Null Count Dtype
           # Column Non-Mull Count Dtype

@ Invoicable 541909 non-null object
1 StockCode 541909 non-null object
2 Description 540455 non-null object
3 Quantity 541909 non-null int64
4 Invoicable 541909 non-null int64
5 UnitPrice 541909 non-null float164
6 CustomerID 541909 non-null object
7 Country 541909 non-null object
dtypes: datatime64[ns](1), float64(1), int64(1), object(5)
memory usage: 33.1+ NB
            memory usage: 33,1+ MB
            Data Visualisation
[26]: sales_by_product = df.groupby('Description')['Quantity'].sum().sort_values(ascending=False).head(18)
           pass-tage-nerageLawe(LE,b))
sns.barplot(x-sales_by_product.values, y-sales_by_product.index, palette='viridis')
plt.xlabel('Quantity Sold')
plt.title('Top 10 Products by Sales')
plt.show()
```



```
The products that generate the highest revenue are "DOTCOM POSTAGE" and "REGENCY CAKESTAND 3 TIER".

[28]: sales_by_country = df.groupby('Country')['Quantity'].sum().sort_values(ascending-False).head(18)

plt.figure(figsize=(18, 6))
sns.barplot(x=sales_by_country.values, y=sales_by_country.index, palette='pastel')
plt.xlabel('Quantity Sold')
plt.title('Top 18 Countries by Sales')
plt.show()
```


The United Kingdom leads in sales, followed by the Netherlands and EIRE. This data highlights the importance of the domestic market and potential opportunities in key international markets

```
[20]: df['YearMonth'] = df['InvoiceDate'].dt.to period('M')
monthly_sales = df.groupby('YearMonth').size()

plt.figure(figsize=(12, 6))
monthly_sales.plot(marker='o')
plt.xlabel('Date')
plt.ylabel('Date')
plt.ylabel('Mamber of Transactions')
plt.titlo('Monthly_Sales')
plt.grid(True)
plt.show()
```


Monthly sales show a seasonal pattern with significant peaks from September to November. These peaks can be attributed to events such as holidays or successful promotional campaigns.

```
[30]: df['DayOfNeek'] = df['InvoiceDate'].dt.day_name()
    weekday_sales = df.groupby('DayOfNeek').size().reindex(['Monday', 'Tuesday', 'Mednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'])

plt.figure(figsize=(18, 6))
    sns.barplot(x=weekday_sales.index, y=weekday_sales.values, palette='pastel')
    plt.xlabel('Day of the Week')
    plt.ylabel('Number of Transactions')
    plt.title('Sales by Day of the Week')
    plt.show()
```


Sales show a relatively even distribution throughout the week, with a slight decrease on Fridays and Saturdays.

```
[3i]: df['Hour'] = df['InvoiceDate'].dt.hour
sales by_hour = df.groupby('Hour')['Quantity'].sum()

plt.figure(figsize=(10, 6))
sales by_hour.plot(kind='bar')
plt.xlabel('Time of Day')
plt.ylabel('Quantity Sold')
plt.title('Sales by Hour of the Day')
plt.show()
```


Peak sales hours are observed between $9\!:\!\theta\theta$ AM and $3\!:\!\theta\theta$ PM, with a peak at 12: $\theta\theta$ PM.

CONCLUSION AND SUGGESTIONS

- 1. The best-selling products include "WORLD WAR 2 GLIDERS ASSTD DESIGNS" and "JUMBO BAG RED RETROSPOT". These items represent popular products that should be kept in inventory due to their high demand.
- 2. The products that generate the highest revenue are "DOTCOM POSTAGE" and "REGENCY CAKESTAND 3 TIER". These items not only have high sales volumes but also contribute significantly to the store's total revenue.
- 3. The United Kingdom leads in sales, followed by the Netherlands and EIRE. These data highlight the importance of the domestic market and potential opportunities in key international markets.
- 4. Monthly sales show a seasonal pattern with significant peaks from September to November. These peaks can be attributed to events such as holidays or successful promotional campaigns.
- 5. Sales show a relatively even distribution throughout the week, with a slight decrease on Fridays and Saturdays. This suggests that marketing and promotion strategies should consider adjustments to boost sales on these days.
- 6. Peak sales hours are observed between 9:00 AM and 3:00 PM, with a peak at 12:00 PM. This pattern indicates optimal times to implement promotional strategies and efficiently manage resources during periods of high demand.

TASK 3

HEALTHCARE DATA ANALYSIS

PROBLEM STATEMENT:

Analyze a dataset containing patient health records, including demographics, medical conditions, and treatment outcomes.

Investigate common health conditions and their prevalence within different demographic groups.

Identify factors that contribute to patient readmission rates or treatment success.

Visualize trends in patient health metrics over time.

Suggest potential interventions or improvements in healthcare delivery based on the analysis.

Importing Libraries

[30]: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt

Loading Dataset

 $\label{eq:df} [31]: \begin{tabular}{ll} $df = pd.read_csv(r^*C:\begin{tabular}{ll} ds & pd.read_csv(r^*C:\begin{$

		Name	Age	Gender	Blood Type	Medical Condition	Date of Admission	Doctor	Hospital	Insurance Provider	Billing Amount	Room Number	Admission Type	Discharge Date	Medicatio
	0	Bobby JacksOn	30	Male	В	Cancer	2024-01- 31	Matthew Smith	Sons and Miller	Blue Cross	18856.281306	328	Urgent	2024-02- 02	Paracetame
	1	LesLie TErRy	62	Male	A+	Obesity	2019-08- 20	Samentha Davies	Kim Inc	Medicare	33643.327287	265	Emergency	2019 08- 26	Ibuprofe
	2	DaNnY sMitH	76	Female	A-	Obesity	2022 09- 22	Tiffany Mitchell	Cook PLC	Aetna	27955.096079	205	Emergency	2022-10- 07	Aspiri
	3	andr8w waTtS	28	Female	0+	Diabetes	2020-11- 18	Kevin Wells	Hemandez Rogers and Vang,	Medicare	37909.782410	450	Bective	2020-12- 18	Ibuprofe
	4	adriENNE bell	43	Female	AB+	Cancer	2022 09- 19	Kathleen Hanna	White- White	Aetna	14238.317814	458	Urgent	2022-10- 09	Penicill
		-	-	-	-	-	-	-	-	-		-	-	-	
554	495	eLIZABeTH jaCkSOn	42	Female	0+	Asthma	2020-08- 16	Joshua Jarvis	Jones- Thompson	Blue Cross	2650.714952	417	Bective	2020 09- 15	Penicill
55	496	KYle pEREz	61	Female	AB-	Obesity	2020-01- 23	Taylor Sullivan	Tucker- Moyer	Cigna	31457.797307	316	Bective	2020 02 01	Aspiri
554	497	HEATher WaNG	38	Female	B+	Hypertension	2020-07- 13	Joe Jacobs DVM	and Mahoney Johnson Vasquez,	UnitedHealthcare	27620.764717	347	Urgent	2020-08- 10	Ibuprofe
55	498	JENniFER JOneS	43	Male	0-	Arthritis	2019-05- 25	Kimberly Curry	Jackson Todd and Castro,	Medicare	32451.092358	321	Bective	2019-05- 31	Ibuprofe
55	499	JAMES GARCIA	53	Female	0+	Arthritis	2024-04- 02	Dennis Warren	Henry Sons and	Aetna	4010.134172	448	Urgent	2024-04- 29	Ibuprofe

55500 rows × 15 columns

4 [32]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndox: 55560 entries, 0 to 55499
Data columns (total 15 columns):
Column Non-Null Count Dtype

Name S5580 non-null object
Age S5580 non-null int54
Gender S5580 non-null object
Blood Type S5580 non-null object
Blood Type S5580 non-null object
Doctor S5580 non-null object
Hospital S5580 non-null object
Insurance Provider S5580 non-null object
S111ing Anount S5580 non-null int54
Room Number S5580 non-null int54
Room Suber S5580 non-null int54
Room Suber S5580 non-null int54 11 Admission Type 12 Discharge Date 55580 non-null object 55580 non-null object 13 Medication 14 Test Results 55588 non-null object 55588 non-null object dtypes: float64(1), int64(2), object(12) memory usage: 6.4+ M8

[]: df['Date of Admission'] = pd.to_datetime(df['Date of Admission'])

[]: df['Discharge Date'] = pd.to_datetime(df['Discharge Date'])

[29]: df.drop(['Name','Room Number'],axis=1,inplace=True)
df.head()

Age Gender Blood Type Medical Condition Date of Admission Billing Admission Discharge Amount Type Date Medication Test Results Doctor Hospital Matthew 0 30 Male В Cancer 2024-01-31 Sons and Miller Blue Cross 18856.281306 Urgent 2024-02-02 Paracetamol Normal 1 62 Male At Obesity 2019 08:20 Kim Inc Medicare 33643.327287 Emergency 2019-08-26 Ibuprofen Inconclusive Davies Obesity 2022-09-22 Cook PLC 2 76 Female A-Aetna 27955.096079 Emergency 2022-10-07 Aspirin Hemandez Rogers and Vang, Diabetes 2020-11-18 Kevin Wells Medicare 37909.782410 Elective 2020-12-18 Ibuprofen Abnormal 4 43 Female AB+ Cancer 2022-09-19 Kathleen White-White Aetna 14238.317814 Urgent 2022-10-09 Penicillin Abnormal

[15]: grouped_df = df.groupby('Medical Condition').size().reset_index(name='Number of Patients')

```
[16]: plt.figure(figsize=(8, 5))
   plt.bar(grouped_df['Nedical Condition'), grouped_df['Number of Patients'], color='skyblue')
   plt.vlabel('Nedical Condition')
   plt.vlabel('Number of Patients')
   plt.title('Number of Patients by Medical Condition')
   plt.xticks(rotation=45) # Notate the x Labels if needed
   plt.tight_layout() # Adjust Layout to make room for rotated Labels
   plt.show()
```


Almost all of the bars are equal, leaving no conclusion in analysing common medical condition. So to overcome this problem, I am going to divide the data into different age groups.

```
[17]: bins = [0, 18, 35, 55, float('inf')]
labels = ['0-18', '18-35', '35-55', '55+']
df['Age Group'] = pd.cut(df['Age'], bins-bins, labels-labels, right-false)
```

[18]: grouped_df = df.groupby(['Medical Condition', 'Age Group'],observed=False).size().reset_index(name='Number of Patients') grouped_df

		4		
[18]:		Medical Condition	Age Group	Number of Patients
	0	Arthritis	0-18	21
	1	Arthritis	18-35	2269
	2	Arthritis	35-55	2789
	3	Arthritis	55+	4229
	4	Asthma	0-18	20
	5	Asthma	18-35	2277
	6	Asthma	35-55	2714
	7	Asthma	55+	4174
	8	Cancer	0-18	21
	9	Cancer	18-35	2273
	10	Cancer	35-55	2684
	11	Cancer	55+	4249
	12	Diabetes	0-18	16
	13	Diabetes	18-35	2239
	14	Diabetes	35-55	2769
	15	Diabetes	55+	4280
	16	Hypertension	0-18	11
	17	Hypertension	18-35	2259
	18	Hypertension	35-55	2702
	19	Hypertension	55+	4273
	20	Obesity	0-18	27
	21	Obesity	18-35	2288
	22	Obesity	35-55	2756
	23	Obesity	55+	4160

As we have an age grouped data and we can derive for which age group which is the most common medical condition.

[19]: most_common = grouped_df.loc[grouped_df.groupby('Age Group', observed=False)['Number of Patients'].idxmax()]
most_common

[19]:		Medical Condition	Age Group	Number of Patients
	20	Obesity	0-18	27
	21	Obesity	18-35	2288
	2	Arthritis	35-55	2789
		Dishates	ec.	4200

```
[20]: plt.figure(figsize=(8, 5))
for age.group, data in most_common.groupby('Age Group', observed-False):
    plt.bar(data['Age Group'], data['Mumber of Patients'], label=f'(age.group): [data['Medical Condition'].values[0]]', alpha=0.7)
    plt.vlabel('Mumber of Patients')
    plt.title('Most Common Medical Condition for Different Age Group')
    plt.legend(title='Age Group: Most Common Condition')
    plt.tight_layout()
    plt.show()
```


Above bar plot shows the most common medical condition in different age groups.

[33]: grouped_df1 = df.groupby('Test Results').size().reset_index(name-'Number of Patients')

```
[35]: plt.figure(figsize=(8, 5))
plt.blar(grouped_dfi['Maxthere of Patients'], color='skyblue')
plt.vlabel('Test Results')
plt.vlabel('Namber of Patients')
plt.title('Namber of Patients by Test Results')
plt.title('Namber of Patients')
```



```
[36]: bins = [0, 18, 35, 55, float('inf')]
labels = ['0-18', '18-35', '35-55', '55+']
df['Age Group'] = pd.cut(df['Age'], bins-bins, labels-labels, right-False)
```

[37]: grouped_dfl = df.groupby(['Test Results', 'Age Group'].observed-False).size().reset_index(name='Namber of Patients') grouped_dfl

[37]: Test Results Age Group Number of Patients

47	0-18	Abnormal	0
4483	18-35	Abnormal	1
5544	35-55	Abnormal	2
8553	55+	Abnormal	3
33	0-18	Incondusive	4
4443	18-35	Inconclusive	5
5459	35-55	Incondusive	6
8421	55+	Inconclusive	7
36	0-18	Normal	8
4679	18-35	Normal	9
5411	35-55	Normal	10
8391	55+	Normal	11

[30]: most_common1 = grouped_df1.loc[grouped_df1.groupby('Age Group', observed-false)['Number of Patients'].idemax()] most_common1

CONCLUSION AND SUGGESTIONS

- 1. As we have analyzed that diabetes, arthritis, obesity are the common medical conditions among age groups 55+, 35-55 and 0-35. So such age groups should take preventive measures and also govt. should make people aware of the same.
- 2. From 'Most Common Test Results for Each Age Group' bar plot, we find that 18-35 age group has normal test result so they are not likely to be re-admitted, whereas 0-18 age group must be taken proper care of, and age groups 35-55 and 55+ have abnormal results so they are most likely to be re-admitted.

TASK 4

WEATHER DATA ANALYSIS

PROBLEM STATEMENT:

Use a dataset containing historical weather data, including temperature, precipitation, and wind speed. Analyze seasonal weather patterns and trends over time. Identify correlations between weather variables (e.g., temperature and precipitation). Visualize weather data using line graphs, heatmaps, or box plots. Extract insights about climate trends or extreme weather events from the analysis.

Importing Libraries

[i]: import pandas as pd import numpy as np import seaborn as sns import seaborn as ont

Loading Dataset

	Formatted Date	Summary	Precip Type	Temperature (C)	Apparent Temperature (C)	Humidity	Wind Speed (km/h)	Wind Bearing (degrees)	Visibility (km)	Loud Cover	Pressure (millibars)	Daily Summar
0	2006-04-01 00:00:00.000 +0200	Rartly Cloudy	rain	9.472222	7.388889	0.89	14.1197	251.0	15.8263	0.0	1015.13	Partly cloud throughout th day
1	2006-04-01 01:00:00.000 +0200	Rartly Cloudy	rain	9.355556	7.227778	0.86	14.2646	259.0	15.8263	0.0	1015.63	Partly cloud throughout th day
2	2006 04 01 02:00:00.000 +0200	Mostly Cloudy	rain	9.377778	9377778	0.89	3.9284	204.0	14.9569	0.0	1015.94	Partly cloud throughout th day
3	2006-04-01 03:00:00.000 +0200	Partly Cloudy	rain	8.288889	5944444	0.83	14.1036	269.0	15.8263	0.0	1016.41	Partly cloud throughout th day
4	2006-04-01 04:00:00.000 +0200	Mostly Cloudy	rain	8.755556	6977778	0.83	11.0446	259.0	15.8263	0.0	1016.51	Partly cloud throughout th day
	-	-		_	-	_	_	_	_	-	_	
448	2016-09-09 19:00:00.000 +0200	Partly Cloudy	rain	26.016667	26.016667	0.43	10.9963	31.0	16.1000	0.0	1014.36	Partly cloud starting in th momins
449	2016-09-09 20:00:00.000 +0200	Rartly Cloudy	rain	24.583333	24.583333	0.48	10.0947	20.0	15.5526	0.0	1015.16	Partly cloud starting in th momin
450	2016-09-09 21:00:00.000 +0200	Partily Cloudy	rain	22.038889	22.038889	0.56	8.9838	30.0	16.1000	0.0	1015.66	Partly cloud starting in th momins
451	2016-09-09 22:00:00:000 +0200	Partly Cloudy	rain	21.522222	21.522222	0.60	10.5294	20.0	16.1000	0.0	1015.95	Partly cloud starting in th moming
452	2016 09 09 23:00:00.000 +0200	Partly Cloudy	rain	20.438889	20.438889	0.61	5.8765	39.0	15.5204	0.0	1016.16	Partly cloud starting in th momins

Data Cleaning

```
[4]: df.info()
                                              cclass 'pandas.core.frame.DataFrame'>
RangeIndex: 96453 entries, 0 to 96452
Data columns (total 12 columns):
                         # Column Non-Mull Count Dtype

# Column Non-Mull Count Dtype

# Formatted Date 95453 non-mull object Department of Summary 96453 non-mull object 95936 non-mull float64

# Apparent Temperature (C) 95453 non-mull float64

# Apparent Temperature (C) 95453 non-mull float64

# Wind Speed (km/h) 95453 non-mull float64

# Wind Speed (km/h) 95453 non-mull float64

# Wind Speed (km/h) 95453 non-mull float64

# Used Cover 95453 non-mull float64

# Loud Cover 95453 non-mull float64

# Pressure (millibars) 95453 non-mull float64

# Department of Speed Cover 95453 non-mull float64

# Speed Sp
       [9]: df['Formatted Date'] = pd.to_datetime(df['Formatted Date'],utc=True)
 [18]: df.info()
                                                cclass 'pandas.core.frame.DataFrame')
                                                RangeIndex: 96453 entries, 0 to 96452
Data columns (total 12 columns):
                                      8 Formatted Date 96453 non-null datetime64[ns, UTC]
1 Summary 96453 non-null dbject
2 Proctp Type 99396 non-null dbject
3 Temperature (C) 96453 non-null float64
4 Apparent Temperature (C) 96453 non-null float64
5 Humidity 96453 non-null float64
6 Wind Speed (km/h) 96453 non-null float64
7 Wind Bearing (degrees) 96453 non-null float64
8 Visibility (km) 96453 non-null float64
9 Loud Cover 96453 non-null float64
10 Daily Summary 96453 non-null float64
11 Daily Summary 96453 non-null float64
11 Daily Summary 96453 non-null object
14 dtypes: datetime64[ns, UTC](1), float64(8), object(3)
15 memory usage: 8.8+ MB
                                              Checking Null Values
[11]: df.isnull().sum()
[11]: Formatted Date
                                                                                                                                                                                                                                                  8
                                              Sumary
Precip Type
                                            Procip Type
Temperature (C)
Apparent Temperature (C)
Humidity
Wind Speed (km/h)
Wind Bearing (degrees)
Visibility (km)
```

Exploratory Data Analysis

Loud Cover Pressure (millibars) Daily Summary dtype: int64

```
[12]: df.duplicated().sum()
[12]: 24
[13]: df.drop_duplicates(inplace=True)
[15]: df.drop('Loud Cover', axis=1, inplace=True)
[16]: df.columns
[16]: Index(['Forwatted Date', 'Summary', 'Precip Type', 'Temperature (C)',
    'Apparent Temperature (C)', 'Humidity', 'Wind Speed (key/h)',
    'Wind Bearing (degrees)', 'Visibility (ke)', 'Pressure (millibars)',
    'Daily Summary'],
                     dtype='object')
[18]: df_num-df.select_dtypes(exclude-object)
df_cat-df.select_dtypes(include-object)
```

Data Visualisation

```
[21]: plt.figure(figsize=(20,20))
        for i in df num.columns:
         plt.subplot(3,4,re)
sns.boxplot(df[i], palette='rainbow')
            plt.title(i)
       re+=1
plt.tight_layout()
```



```
[25]: df['Sumary'].value_counts()
```

```
[25]: Surmary
         Partly Cloudy
Mostly Cloudy
                                                                 31726
                                                                 28894
         Overcast
Clear
                                                                 16597
                                                                 18873
                                                                  7148
         Foggy
         Breezy and Overcast
                                                                    528
         Breezy and Mostly Cloudy
Breezy and Partly Cloudy
Dry and Partly Cloudy
                                                                   516
386
                                                                    86
          Windy and Partly Cloudy
                                                                     67
                                                                     63
54
         Light Rain
         Breezy
Windy and Overcast
Humid and Mostly Cloudy
                                                                     48
39
35
         Drizzle
Breezy and Foggy
                                                                     35
34
17
         Windy and Mostly Cloudy
         Humid and Partly Cloudy
Dry and Mostly Cloudy
                                                                     14
          Windy
                                                                      8
         Humid and Overcast
          Windy and Foggy
         Windy and Dry
Dangerously Windy and Partly Cloudy
         Breezy and Dry
Name: count, dtype: int64
```

```
[26]: df['Summary'].value_counts().plot(kind='bar', cmap='rainbow')
plt.title('SLMMARY OF THE NEATHER')
plt.show()
```



```
[27]: df['Precip Type'].unique()
[27]: array(['rain', 'snow', nan], dtype=object)
[28]: df['Precip Type'].value_counts().plot(kind='bar', cmap='rainbow')
    plt.title('SLMMARY OF THE Precip Type')
    plt.show()
```



```
[20]: df['Daily Summary'].value_counts()
```

```
| 29|: Daily Summary
| Mostly cloudy throughout the day. 20085
| Partly cloudy throughout the day. 9981
| Partly cloudy until night. 6169
| Partly cloudy starting in the morning. 5184
| Foggy in the morning. 4201
| Breezy starting overnight continuing until morning and foggy overnight. ...
| Breezy starting overnight continuing until morning and foggy overnight afternoon. 24
| Partly cloudy starting in the morning and breezy starting overnight continuing until afternoon. 24
| Partly cloudy starting in the morning and breezy starting in the afternoon continuing until evening. 24
| Rain until afternoon. 24
| Roggy starting overnight continuing until morning and breezy in the afternoon. 23
| Name: count, Length: 214, dtype: int54
```

[38]: df.drop('Daily Summary', axis=1, inplace=True)

```
[31]: sns.scatterplot(y=df['Summary'], x=df['Precip Type'], color='blue')
plt.title('SUMMARY VS Precip Type')
plt.show()
```


[32]: df_new_num-df.drop(['Formatted Date','Summary','Procip Type'], axis=1)

[33]: **df_new_num**

[33]:		Temperature (C)	Apparent Temperature (C)	Humidity	Wind Speed (km/h)	Wind Bearing (degrees)	Visibility (km)	Pressure (millibars)
	0	9,472222	7.388889	0.89	14.1197	251.0	15.8263	1015.13
	1	9.355556	7.227778	0.86	14.2646	259.0	15.8263	1015.63
	2	9.377778	9.377778	0.89	3.9284	204.0	14.9569	1015.94
	3	8.288889	5.944444	0.83	14.1036	269.0	15.8263	1016.41
	4	8.755556	6.977778	0.83	11.0446	259.0	15.8263	1016.51
		-	-	-	-	-		-
	96448	26.016667	26.016667	0.43	10.9963	31.0	16.1000	1014.36
	96449	24.583333	24.583333	0.48	10.0947	20.0	15.5526	1015.16
	96450	22.038889	22.038889	0.56	8.9838	30.0	16.1000	1015.66
	96451	21.522222	21.522222	0.60	10.5294	20.0	16.1000	1015.95
	96452	20.438889	20.438889	0.61	5.8765	39.0	15.5204	1016.16

96429 rows × 7 columns

```
[34]: plt.figure(figsize=(20,10))
    re=1
    for i in df_new_num.columns:
        plt.subplot(2,4,re)
        sns.barplot(x=df['Precip Type'], y=df_new_num[i],palette='Blues')
        re=>1
        plt.title(i)

plt.shew()
```


CONCLUSION

- 1. Year, and day has no effect on precipitation and weather summary while both mainly depends on the month, which is season.
- 2. As timezone changes there will be a change in temperature which may change overall daily weather condition.
- 3. Temperature on the dry day is the highest while temperature on the foggy abd breezy day is the lowest.
- 4. Pressure will be low on windy and breezy days.

TASK 6

EMPLOYEE TURNOVER ANALYSIS

PROBLEM STATEMENT:

Work with HR data containing employee demographics, performance metrics, and turnover rates. Analyze trends in employee turnover over time and identify common reasons for leaving. Explore correlations between turnover rates and factors such as job satisfaction or salary. Visualize turnover data using bar charts, pie charts, or heatmaps. Develop strategies to reduce employee turnover based on insights gained from the analysis.

Importing Libraries ¶

```
[2]: import pandas as pd
import numpy as np
import saaborn as sns
import matplotlib.pyplot as plt
import varmings
warmings.filterwarmings('ignore')
```

Loading Dataset

Data Cleaning

[13]:	df.tai	1()									
[13]:		satisfaction_level last_evaluation number_project		average_montly_hours	Work_accident	left	promotion_last_5years	sales	salary		
	14994	0.40	0.57	2	151	3	0	1	0	support	low
	14995	0.37	0.48	2	160	3	0	1	0	support	low
	14996	0.37	0.53	2	143	3	0	1	0	support	low
	14997	0.11	0.96	6	280	4	0	1	0	support	low
	14998	0.37	0.52	2	158	3	0	1	0	support	low
[14]:	df.sha	pe									
[14]:	(14999	, 10)									
[15]:	df.isn	a().sum()									

```
[15]: satisfaction level
last_evaluation
number_project
average_montly_hours
time_spend_company
Nork_accident
       left.
       promotion_last_Syears
       salary
dtype: int64
[16]: df.describe().T
[16]:
                                                 std min 25% 50% 75% max
                           count
                                      mean
           satisfaction_level 14999.0
                                   0.612834 0.248631 0.09
                                                             0.44
                                                                   0.64
                                                                          0.82
                                                                                 1.0
       last_evaluation 14999.0 0.716102 0.171169 0.36 0.56 0.72 0.87
                                                                                1.0
           number_project 14999.0
                                   3.803054 1.232592 2.00
                                                            3.00
                                                                   4.00 5.00
       average_montly_hours 14999.0 201.050337 49.943099 96.00 156.00 200.00 245.00 310.0
       time_spend_company 14999.0
                                   3.498233 1.460136 2.00
            Work_accident 14999.0 0.144610 0.351719 0.00 0.00 0.00 0.00
                                                                                1.0
                      left 14999.0 0.238083 0.425924 0.00
                                                            0.00
                                                                   0.00 0.00
                                                                                 1.0
       promotion_last_Syears 14999.0 0.021268 0.144281 0.00 0.00 0.00 0.00 1.0
[17]: df['sales'].value_counts()
[17]: sales
sales
       technical
                     2728
2229
       support
IT
       product_mng
       marketing
RandD
       accounting
hr
                      767
       management 630
Name: count, dtype: int64
       Exploratory Data Analysis and Visualisation
[18]: df.rename(columns={'sales':'department'),implace=True)
      df.columns
dtype='object')
[19]: df['salary'].value_counts()
[19]: salary
               7316
      medium
             6446
1237
      Name: count, dtype: int64
[21]: sns.distplot(x-df['satisfaction_level'], hist=True,bins=10 ,color='green')
[21]: cAxes: ylabel='Density'>
         1.6
         1.4
```

1.0 0.8 0.6

0.2

[22]: <Axes: ylabel='Density'>

0.2

[22]: sns.distplot(x=df['last_evaluation'], hist=True,bins=10 ,color='blue')

[23]: sns.distplot(x=df['average_montly_hours'], hist=True,bins=10 ,color='red')

[23]: cAxes: ylabel='Density'>

[42]: sns.countplot(data-df, x='nunber_project', hue='left')

[42]: cAxes: xlabel='number_project', ylabel='count'>

CONCLUSION

- 1. Employees with experience between 3 to 5 yrs are likely to leave.
- 2. employees who worked less than 160 Hrs were most likely to quit.
- 3. employees who worked more than 220 Hrs on an average were at medium risk of quiting the company.
- 4. Employees who worked 200 Hrs mothly on an average were pretty happy and did not quit from the company.
- 5. Employees with satisfaction level less than 0.4 were most likely to leave the company.
- 6. Employees with satisfaction level of 0.6 were happy at the company and will not quit.
- 7. Employees with satisfaction level of 0.8 and higher had some chance of quiting.
- 8. Employees with low and medium salary had more chance of quitting the others.
- 9. Employees who belongs to sales, technical and support departments are more prone to leaving the company.

