OSF - Anotações Slide 2

Felipe B. Pinto 61387 – MIEQB

1 de outubro de 2024

Conteúdo

2	Distribi	110	çao	ac	ΣŢ	aı	m	an	ın	0 (ae	p :	aı	<u>^</u> -	
	tículas														

2.1 Properties of single particles: size, shape
2.2 Particle size distribution: Mean diameter
2.3 Methos to measure particle size: sieving, elutriation
reenshot 2022-10-21 at 21.02.53.png!

Porpriedades de particulas individuais

Não podem ser definidas com equações matemáticas, tamanho indefinido que varia com orientação.

Recebe aproximação com uma esfera com diametro baseado em algum dos seguintes critérios, esse diametro é o valor característico da particula

- Mesmo volume
- · Mesma area de superfície
- · Mesma proporção entre superfície por volume

Dimensões derivadas podem ser adiquiridas a partir do valor característico

• Largura: L = d

• Volume $vol = k'' d^3$

• Area de Superfície $S=k'\,d^2$

• Massa $m = \rho_s vol$

onde

• k' Fator se uperfície $(\pi/2 \text{ para esferas})$

• k'' Fator de volume $(\pi/6 \text{ para esfe} \text{ras})$

2 Distribuição do Tamanho de partículas

As curvas de distribuição podem ser montadas levando em conta diferentes tipos de medições

x – peso

L – largura	vol – volume							
	Screenshot	2022-10-21	at 22	.33.53.png				

S – Superfície

n – numérica

$$egin{aligned} x_1 &= n_1\,k'\,d_1^3\,
ho_s \implies \ \int_0^1 \mathrm{d}x &= k'\,
ho_s\,\int d^3\,\,\mathrm{d}n & \sum x_1 &= k'\,
ho_s\,\sum n_1\,d_1^3 &= 1 \ \mathrm{d}x &= k'\,
ho_s\,d^3\,\,\mathrm{d}n \end{aligned}$$

 x_1 : Fração Peso das partículas

 d_1 : Diametro das partículas

 n_1 : Quantidade de partículas

k': Constante sensivel ao formato

 ρ_S : Densidade do material

(i) Diametro médio (Volume)

$$d_v = rac{\int_0^1 d \; \mathrm{d}x}{\int_0^1 \mathrm{d}x} = \int_0^1 d \; \mathrm{d}x \qquad = rac{\sum (d_1 \, x_1)}{\sum x_1} = \sum (d_1 \, x_1)$$

$$d_v = \frac{\sum (d_1 x_1)}{\sum x_1} = \frac{\rho_s k' \sum (n_1 d_1^4)}{\rho_s k' \sum (n_1 d_1^3)} = \frac{\sum (n_1 d_1^4)}{\sum (n_1 d_1^3)}$$

Diametro volumétrico médio

$$d_v'=\sqrt[-3]{\sum{(x_1/d_1^3)}}$$

$$k' d'_v \sum n_1 = \sum (k' n_1 d_1^3) \implies d'_v = \sqrt[3]{\frac{\sum x_1}{\sum (x_1/d_1^3)}} = \sqrt[-3]{\sum (x_1/d_1^3)}$$

Tamanhos baseados em superfícies

$$d_s' = \sqrt{rac{\sum (n_1 \, d_1^2)}{\sum n_1}} = \sqrt{rac{\sum (x_1/d_1)}{\sum (x_1/d_1^3)}}$$

$$d'_{s} = \sqrt{\frac{d_{s}}{k_{2} \sum n_{1}}} = \sqrt{\frac{d_{s}}{k_{2} \sum n_{1}}} = \sqrt{\frac{\left(\frac{\sum (n_{1} d_{1} s_{1})}{\sum n_{1} s_{1}}\right)}{k_{2} \sum n_{1}}} =$$

$$= \sqrt{\frac{\sum (n_{1} d_{1} (k_{2} d_{1}^{2}))}{k_{2} \sum n_{1} \sum (n_{1} (k_{2} d_{1}^{2}))}} = \sqrt{\frac{\sum (n_{1} d_{1}^{3})}{k_{2} \sum n_{1} \sum n_{1} d_{1}^{2}}} = \sqrt{\frac{\sum x_{1}}{k_{2} \sum n_{1} \sum (x_{1} / d_{1})}}$$

$$d_s = rac{\sum n_1 \, d_1 \, s_1}{\sum n_1 \, s_1} = rac{\sum n_1 \, d_1 \, (k^{\prime \prime} \, d_1^2)}{\sum n_1 \, d_1 \, (k^{\prime \prime} \, d_1^2)} = rac{\sum n_1 \, d_1^3}{\sum n_1 \, d_1^2}$$