Završni ispit iz Umjetne inteligencije

Ispit se piše 135 minuta. Točan odgovor na pitanja na zaokruživanje nosi 1 bod, netočan -0,5.

Pitanja na zaokruživanje

- 1. Ako genetskim algoritmom tražimo maksimum funkcije h(x), koja od sljedećih funkcija može biti funkcija dobrote: $\mathbf{h}(\mathbf{x})$
- 2. U algoritmu ACO, τ predstavlja: jakost feromonskog traga
- 3. Zadano je p(E|H) = 0.7, $p(E|\neg H) = 0.1$, p(H) = 0.4. Koliko iznosi vjerojatnost hipoteze ako imamo činjenicu: $(p(H|E)) = \mathbf{0.82}$
- 4. "Kineska soba" od Johna Searla jest argument protiv: jake umjetne inteligencije
- 5. Ako jednom razredu pripadaju: (0,0), (2,0), (1,2), (3,1), koje uzorke drugog razreda linearni klasifikator ne bi mogao...: (1,3), (2,1)
- 6. $X = \{0.1/a + 0/b + 0.3/c + 1/d\}, Y = \{0.5/a + 0.4/b + 0/c + 0.2/d\}, Z = \{1/a + 0/b + 0/c + 0.5/d\}.$ Odredi Ne Z i (X ili Y). $\{0/a + 0.4/b + 0.3/c + 0.5/d\}$
- 7. Učenje s učiteljem, kako moraju biti predočeni podatci: (ulaz,izlaz)
- 8. Unaprjedno ulanačavanje: Kada imamo malo podataka, a mnogo mogućih ciljeva
- 9. Korekcija kod Perceptrona, gdje je t traženi izlaz, a o dobiveni: $w(i+1) = w(i) + \eta(t-o)x(i)$
- 10. Predstavnik konektivističkog pristupa: **umjetne neuronske mreže**
- 11. Ono s genetičkim di se traži minimum i dobije se neki binarni broj i pita koji je minimum: **nema dovoljno podataka** (nisu zadani rasponi)
- 12. Pripadnost od x u A je 0.5, ako imamo Vrlo A, tj. koncentraciju onda: $0 < \mu(x) < 0.5$
- 13. Ako u expertnom sustavu imamo $P \to \neg Q, R \to (S \land \neg P)$ i činjenica Q. Dodavanje koje činjenice će uzrokovati nemonotonost (zadatak kao na materijilima): **R**
- 14. Backpropagation se koristi kod: unaprjednih UNM sa sigmoidalnim prijenosnim funkcijama
- 15. U algoritmu Ant System isparacanje tragova: $\tau_{ij} \leftarrow \tau_{ij} (1 \rho)$

Zadatci

- 16. Expertni sustav kao na materijalima, traži se C.
- 17. Neizrazita logika
 - A. Formalno definiraj neizrazit skup i objasni vezu s klasičnim skupom
 - B. Koji zakoni ne vrijede za neizraite skupove? Pokaži na primjeru $\{1/a + 0.5/b + 0/c\}$
 - C. U čemu je razlika između generaliziranog modusa ponensa i običnog? Pokaži na primjeru
- 18. Bayes:

- A. Izvedi Bayesovu formulu za više hipoteza i dokaza. Napiši uz koje sve pretpostavke vrijedi.
- B. Napiši izraz za MAP hipotezu
- C. Na temelju tablice odredi kako će se klasificirati (svemir, dijete, prošlost, da)

Mjesto	Osoba	Vrijeme	Putovanje kroz vrijeme	Dobar film
svemir	znanstvenica	sadasnjost	da	ne
Zemlja	kriminalac	buducnost	ne	ne
drugdje	dijete	proslost	da	ne
svemir	znanstvenica	sadasnjost	ne	da
svemir	kriminalac	proslost	ne	da
Zemlja	dijete	proslost	da	da

19. Neuronske mreže

- A. Nacrtaj i objasni model neurona...
- B. Napiši izlaz neurona kao funkciju ulaza
- C. Koji je kriterij zaustavljanja kod učenja? Kakvi moraju biti primjeri za učenje? Pokaži na primjeru.
- D. Koristeći tablicu, nauči klasifikator. Početno: $w_2 = 0.2, w_1 = -0.1, w_0 = -0.1,$ stopa učenja 0.5, step(0)=1

Uzorci su dvodimenzionalni, c označava razred.

x1	x2	c
-1	-1	-1
-1	1	-1
1	-1	-1
1	1	1

- 20. Genetski algoritam steady-state. Tražimo maximum funkcije. Domena je [-4,+6]. Koristimo 7 bitni prikaz. U početnoj su populaciji: J1=0101010, J2=1111000, J3=1010101, J4=0000000, J5=1111111.
 - A. Odredi preciznost pretraživanja.
 - B. Koristi se pojednostavljena troturnirka selekcija. Odabrane su jedinke J1,J2 i J4. Tko su roditelji? Križanje je nakon 4. bita (broji se od prvog slijeva). Mutacija djeluje samo na prvi i zadnji bit. Od djece uzmi bolje dijete. Prikaži čitavu sljedeću populaciju.