Derivadas Direcionais e o Vetor Gradiente

Funções de duas variáveis

Derivadas Direcionais

DEFINIÇÃO: Um vetor u = (a, b) é dito **unitário** ou um **versor** se $||u|| = \sqrt{a^2 + b^2} = 1$.

Se $u \neq (0,0)$, então $\frac{u}{\|u\|}$ é um versor.

DEFINIÇÃO: A **derivada direcional** de f em (x_0, y_0) na direção e sentido do vetor unitário u = (a, b) é

$$D_u f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}.$$

Esse valor é a taxa de variação de f em (x_0, y_0) na direção e sentido de (a, b).

Derivadas Direcionais

TEOREMA: Se as derivadas parciais f_x e f_y são contínuas perto de (x_0, y_0) , então f tem derivada direcional na direção e sentido de qualquer versor u = (a, b) e

$$D_u f(x_0, y_0) = f_x(x_0, y_0)a + f_y(x_0, y_0)b.$$

DEFINIÇÃO: Se f é uma função de duas variáveis x e y, o **gradiente** de f é a função vetorial ∇f definida por

$$\nabla f(x,y) = (f_{x}(x,y), f_{y}(x,y)).$$

Observe que

$$D_u f(x,y) = f_x(x,y)a + f_y(x,y)b.$$

= $(f_x(x,y), f_y(x,y)) \cdot (a,b) = \nabla f \cdot u.$