Homework 9

April 3, 2017

Problem 1.

a) Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be diagonalizable with eigenvalues $0 \le \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$. Express in the terms of the spectral decomposition of \mathbf{A} the set of non zero vectors \mathbf{x} , and $\mathbf{y} \in \mathbb{C}^{n \times 1}$ for which

$$\lambda_1 \le \frac{\mathbf{x}^* \cdot \mathbf{A} \cdot \mathbf{y}}{\mathbf{x}^* \cdot \mathbf{y}} \le \lambda_n$$

Give a detail proof of this fact and describe the vectors \mathbf{x} , and \mathbf{y} which achieve the minimum and the maximum.

b) Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ such that $\mathbf{A}^* = \mathbf{A}$ with eigenvalues $0 \le \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$. Express in the terms of the spectral decomposition of \mathbf{A} the set of non zero vectors $\mathbf{x} \in \mathbb{C}^{n \times 1}$ for which

$$\lambda_1 \le \frac{\mathbf{x}^* \cdot \mathbf{A} \cdot \mathbf{x}}{\mathbf{x}^* \cdot \mathbf{x}} \le \lambda_n.$$

Give a detail proof of this fact and describe the vectors \mathbf{x} which achieve the minimum and the maximum.

Problem 2.

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a Hermitian matrix with strictly positive e-values, find the set of all vectors for which $\mathbf{x} \in \mathbb{C}^{n \times 1}$

$$0 = \det \left(\mathbf{A} + \mathbf{x} \cdot \mathbf{x}^* \right).$$

Give a detail proof of your claim.

Problem 3.

a) Compute the distance from

$$\mathbf{v} = \begin{pmatrix} i \\ 2+i \\ 3 \\ 4i \end{pmatrix}$$

tc

$$W = \operatorname{Span} \left\{ \mathbf{u}_1 = \begin{pmatrix} 1 \\ i \\ 1-i \\ 1 \end{pmatrix}, \ \mathbf{u}_2 = \begin{pmatrix} 1 \\ 1+i \\ i \\ 1 \end{pmatrix}, \ \mathbf{u}_3 = \begin{pmatrix} 0 \\ i \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Problem 4.

Find the maximum and minimum value attained by the function $f(x_0, x_1, x_2, x_3)$ for $x_0, x_1, x_2, x_3 \in \mathbb{R}$ where

$$f\left(x_{0},x_{1},x_{2},x_{3}\right) = \frac{6\,x_{0}^{2} - 4\,x_{0}x_{1} + 6\,x_{1}^{2} - 8\,x_{0}x_{2} + 6\,x_{2}^{2} - 8\,x_{1}x_{3} - 4\,x_{2}x_{3} + 6\,x_{3}^{2}}{x_{0}^{2} + x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}$$

when the variables x_0,x_1,x_2,x_3 are all simultaneously zero.

Problem 5.

Express the spectral decomposition of the Hermitian matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 1+i & 0 & i \\ 1-i & 4 & -i & 0 \\ 0 & i & 2 & 2+i \\ -i & 0 & 2-i & 7 \end{pmatrix}$$

in terms of a unitary matrix.