TAVE Research

Variational Autoencoder

11-785 Introduction to Deep Learning
- lecture 21 -

TAVE Research DL001 Heeji Won

- 1. Generative model
- 2. How to deal with incomplete data
- 3. Expectation Maximization
- 4. PCA
- 5. VAE

- 1. Generative model
- 2. How to deal with incomplete data
- 3. Expectation Maximization
- 4. PCA
- 5. VAE

01. Generative model

a model that can generate data with a distribution similar to the given data x

Learning a generative model

"Estimate the θ such that $P(x; \theta)$ best 'fits' the observations $X = \{x\}$ "

- 1. Generative model
- 2. How to deal with incomplete data
- 3. Expectation Maximization
- 4. PCA
- 5. VAE

02. How to deal with incomplete data

if the data have missing components

Blacked-out components are missing from data

- Complete data includes the observed & missing components

$$X = \{x_1, ..., x_N\}, \qquad x_i = (o_i, m_i)$$

Original problem :

$$\underset{\mu,\sigma^2}{\operatorname{argmax}} \sum_{x \in X} \log P(x) \qquad \text{where X is the entire data!}$$
 But, there are missing values
$$\underset{\mu,\sigma^2}{\downarrow}$$

$$\underset{\mu,\sigma^2}{\operatorname{argmax}} \log(P(O)) = \underset{\mu,\sigma^2}{\operatorname{argmax}} \sum_{o \in O} \log P(o)$$

$$= \underset{\mu,\sigma^2}{\operatorname{argmax}} \sum_{o \in O} \log \int_{-\infty}^{\infty} P(o,m) dm$$

02. How to deal with incomplete data

cf) The Gaussian Mixture model

The structure of the network

- if learning a GMM with 'complete' data

 \checkmark But, we are not given the actual Gaussian for each o_i

- What we want : $(o_1, k_1), (o_2, k_2), ...$
- What we have $: o_1, o_2, ...$

02. How to deal with incomplete data

The structure of the network

we are not given the actual Gaussian for each o_i

- MLE with only observed data

$$\underset{\{(\mu_k, \sigma_k^2), \forall k\}}{\operatorname{argmax}} \log(P(O)) = \underset{\{(\mu_k, \sigma_k^2), \forall k\}}{\operatorname{argmax}} \sum_{o \in O} \log P(o) , \qquad P(o) = \sum_{k} P(k) N(o; \mu_k, \sigma_k^2)$$

$$= \underset{\{(\mu_k, \sigma_k^2), \forall k\}}{\operatorname{argmax}} \sum_{o \in O} \left(\log \sum_{k} P(k) N(o; \mu_k, \sigma_k^2) \right)$$
 challenging!

challenging! => EM algorithm

- ✓ no closed form solutions
- ✓ need efficient iterative algorithms

- 1. Generative model
- 2. How to deal with incomplete data
- 3. Expectation Maximization
- 4. PCA
- 5. VAE

03. Expectation Maximization

- initialize θ^0

* h : missing components

- k = 0
- iterate (over k) until $\sum_{o \in O} P(o; \theta)$ converges:
 - Expectation Step:

Compute $P(h|o;\theta)$ for all $o \in O$ for all k

Maximization Step:

$$\theta^{k+1} \leftarrow armax_{\theta} \frac{\sum_{o \in O} P(h|o; \theta^{k}) log P(h, o; \theta)}{\text{ELBO}}$$

<Construct an ELBO(empirical lower bound function) $J(\theta, \theta^k)$ >

$$J(\theta, \theta^k) = \sum_{o \in O} \sum_{h} P(h|o; \theta^k) \log P(h, o; \theta) - \sum_{o \in O} \sum_{h} P(h|o; \theta^k) \log P(h|o; \theta^k)$$

03. Expectation Maximization

if the data have missing components

Completing incomplete vector

- Expand every incomplete vector out into all possibilities

- in proportion: P(m|o)

from a previous estimate of the model

- Let $x_i(m)$ be the 'completed' version of the observation o_i

$$x_i(m) = (m, o_i)$$

- Estimate from the expanded data

$$\mu^{k+1} = \frac{1}{N} \sum_{o \in O} \int_{-\infty}^{\infty} P(m \mid o; \theta^k) x_i(m) dm$$

$$\Sigma^{k+1} = \frac{1}{N} \sum_{o \in O} \int_{-\infty}^{\infty} P(m | o; \theta^k) (x_i(m) - \mu^{k+1}) (x_i(m) - \mu^{k+1})^T dm$$

03. Expectation Maximization

The structure of network

Proportion to P(k|o) which can be computed if we know P(k) and P(o|k)

from previous estimate of model

iterate!

< EM principle >

✓ or sampling

- 'Complete' the data by considering every possible value for missing data in proportion to posterior prob.
- ✓ Re-estimate parameters

- 1. Generative model
- 2. How to deal with incomplete data
- 3. Expectation Maximization
- 4. PCA
- 5. VAE

04. PCA

- Find the principal subspace that can be projected
- Minimize the sum of the squared lengths
- There are several method to find

1) Search method

" search through all subspaces with minimum projection error"

2) Close form

minimizing L_2 error :

$$L = \sum_{x} x^{T}x - wTxx^{T}w$$

$$\downarrow \quad \text{minimizing L}$$

$$\left(\sum_{x} x^{T}x\right)w = \lambda w$$
eigenvalue e

04. PCA

3) The iterative algorithm

"Let W rotate and stretch/shrink, keeping the arrangement of Z location fixed"

Drawing this differently

- Autoencoder with linear activation!
- But, the solution is not unique!
 - ✓ Scale invariance
 - ✓ Rotation invariance

04. PCA

Find a unique W

- 1. Orthogonal & unit eigen vector : standard eigen vector
- 2. Constrain the variance of Z to be unity

- Imposing the constraint that z must have unit variance is the same as assuming that is drawn from a standard Gaussian
- The decoder of AE with the unit-variance constraint on z is in fact a Generative model

- 1. Generative model
- 2. How to deal with incomplete data
- 3. Expectation Maximization
- 4. PCA
- 5. VAE

05. VAE

- take a Gaussian step on the principal plane
- take a orthogonal Gaussian step where we land to generate a point

- $oldsymbol{z}$ is drawn from K-dim isotropic Gaussian
- A is a basis matrix
- E is a Gaussian noise that is orthogonal

05. VAE

- The decoder weights are just the PCA basis matrix
- Encoder: transforms input $\it X$ into Gaussian $\it z$
- Decoder: transforms Gaussian ${m z}$ into principal subspace reconstruction ${m \hat X}$

The Linear Gaussian Model

- Update the model : The noise can lie in any direction
- Noise is drawn from full-rank uncorrelated Gaussian distribution
- ⇒ The way to produce any data instance is no longer unique!

also a generative model!

Also known as Factor Analysis

- A is the loading matrix
- z are the factors
- D is diagonal

Thank you