Исследование алгоритма оптимизации HML_RealMonteCarloAlgorithm

Сергиенко Антон Борисович

24 февраля 2015 г.

Оглавление

1	Вводная информация	23
2	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Ackley» (размерность равна 2)	23
	2.1 Информация об исследовании	24
	2.2 Параметры алгоритма оптимизации	24
	2.3 Ошибка по входным параметрам E_x	25
	2.4 Ошибка по значениям целевой функции E_y	25
	2.5 Надёжность R	26
3	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Ackley» (размерность равна 3)	27
	3.1 Информация об исследовании	28
	3.2 Параметры алгоритма оптимизации	28
	3.3 Ошибка по входным параметрам E_x	29
	3.4 Ошибка по значениям целевой функции E_y	29
	3.5 Надёжность R	30
4	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Ackley» (размерность равна 4)	31
	4.1 Информация об исследовании	32
	4.2 Параметры алгоритма оптимизации	32

	4.3	Ошибка по входным параметрам E_x	33
	4.4	Ошибка по значениям целевой функции E_y	33
	4.5	Надёжность R	34
5	Исс	ледование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для	решения задач на вещественных строках»на тестовой функции «Фун-	
	кци	я Ackley» (размерность равна 5)	35
	5.1	Информация об исследовании	36
	5.2	Параметры алгоритма оптимизации	36
	5.3	Ошибка по входным параметрам E_x	37
	5.4	Ошибка по значениям целевой функции E_y	37
	5.5	Надёжность R	38
6	Исс	ледование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для	решения задач на вещественных строках»на тестовой функции «Фун-	
	кци	я Ackley» (размерность равна 10)	39
	6.1	Информация об исследовании	40
	6.2	Параметры алгоритма оптимизации	40
	6.3	Ошибка по входным параметрам E_x	41
	6.4	Ошибка по значениям целевой функции E_y	41
	6.5	Надёжность R	42
7	Исс	ледование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для	решения задач на вещественных строках»на тестовой функции «Фун-	
	кци	я Ackley» (размерность равна 20)	4 3
	7.1	Информация об исследовании	44
	7.2	Параметры алгоритма оптимизации	44
	7.3	Ошибка по входным параметрам E_x	45
	7.4	Ошибка по значениям целевой функции E_y	45
	7.5	Надёжность R	46
8	Исс	ледование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для	решения задач на вещественных строках»на тестовой функции «Фун-	
	кци	я Ackley» (размерность равна 30)	47
	8.1	Информация об исследовании	48
	8.2	Параметры алгоритма оптимизации	48
	8.3	Ошибка по входным параметрам E_x	49
	8.4	Ошибка по значениям целевой функции E_y	49
	8.5	Hадёжность R	50

9	Асследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Адди-	
	чивная потенциальная функция» (размерность равна 2)	51
	9.1 Информация об исследовании	52
	9.2 Параметры алгоритма оптимизации	52
	0.3 Ошибка по входным параметрам E_x	53
	0.4 Ошибка по значениям целевой функции E_y	53
	0.5 Надёжность R	54
10	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Bosom» (размерность равна 2)	55
	0.1 Информация об исследовании	56
	0.2 Параметры алгоритма оптимизации	56
	0.3 Ошибка по входным параметрам E_x	57
	0.4 Ошибка по значениям целевой функции E_y	57
	0.5 Надёжность R	58
11	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Egg Holder» (размерность равна 2)	59
	1.1 Информация об исследовании	60
	1.2 Параметры алгоритма оптимизации	60
	1.3 Ошибка по входным параметрам E_x	61
	1.4 Ошибка по значениям целевой функции E_y	61
	1.5 Надёжность R	
12	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Gaussian quartic» (размерность равна 2)	63
	2.1 Информация об исследовании	64
	2.2 Параметры алгоритма оптимизации	
	2.3 Ошибка по входным параметрам E_x	
	2.4 Ошибка по значениям целевой функции E_y	
	2.5 Надёжность R	
13	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Gaussian quartic» (размерность равна 3)	67
	3.1 Информация об исследовании	68

13	3.2 Параметры алгоритма оптимизации	68
13	8.3 Ошибка по входным параметрам E_x	69
13	3.4 Ошибка по значениям целевой функции E_y	69
13	8.5 Надёжность R	70
14 И	сследование эффективности алгоритма оптимизации «Метод Монте-Карло	
ДJ	ля решения задач на вещественных строках»на тестовой функции «Фун-	
KI	ция Gaussian quartic» (размерность равна 4)	71
14	1.1 Информация об исследовании	72
14	1.2 Параметры алгоритма оптимизации	72
14	4.3 Ошибка по входным параметрам E_x	73
14	4.4 Ошибка по значениям целевой функции E_y	73
14	4.5 Надёжность R	74
15 И	сследование эффективности алгоритма оптимизации «Метод Монте-Карло	
ДJ	пя решения задач на вещественных строках»на тестовой функции «Фун-	
KI	ция Gaussian quartic» (размерность равна 5)	75
15	5.1 Информация об исследовании	76
15	5.2 Параметры алгоритма оптимизации	76
15	5.3 Ошибка по входным параметрам E_x	77
15	5.4 Ошибка по значениям целевой функции E_y	77
15	5.5 Надёжность R	78
16 И	сследование эффективности алгоритма оптимизации «Метод Монте-Карло	
ДJ	пя решения задач на вещественных строках»на тестовой функции «Фун-	
	ция Gaussian quartic» (размерность равна 10)	79
16	6.1 Информация об исследовании	80
16	6.2 Параметры алгоритма оптимизации	80
16	6.3 Ошибка по входным параметрам E_x	81
16	6.4 Ошибка по значениям целевой функции E_y	81
16	6.5 Надёжность R	82
17 И	сследование эффективности алгоритма оптимизации «Метод Монте-Карло	
ДJ	пя решения задач на вещественных строках»на тестовой функции «Фун-	
	ция Gaussian quartic» (размерность равна 20)	83
	7.1 Информация об исследовании	84
17	7.2 Параметры алгоритма оптимизации	84
17	7.3 Ошибка по входным параметрам E_x	85
17	7.4 Ошибка по значениям целевой функции E_y	85
17	7.5 Надёжность R	86

18	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Gaussian quartic» (размерность равна 30)	87
	18.1 Информация об исследовании	88
	18.2 Параметры алгоритма оптимизации	88
	18.3 Ошибка по входным параметрам E_x	89
	18.4 Ошибка по значениям целевой функции E_y	89
	18.5 Надёжность R	90
19	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Гриванка» (размерность равна 2)	91
	19.1 Информация об исследовании	92
	19.2 Параметры алгоритма оптимизации	92
	19.3 Ошибка по входным параметрам E_x	93
	19.4 Ошибка по значениям целевой функции E_y	93
	19.5 Надёжность R	94
20	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Гриванка» (размерность равна 3)	95
	20.1 Информация об исследовании	96
	20.2 Параметры алгоритма оптимизации	96
	20.3 Ошибка по входным параметрам E_x	97
	20.4 Ошибка по значениям целевой функции E_y	97
	20.5 Надёжность R	98
21	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Гриванка» (размерность равна 4)	99
	21.1 Информация об исследовании	100
	21.2 Параметры алгоритма оптимизации	100
	21.3 Ошибка по входным параметрам E_x	101
	21.4 Ошибка по значениям целевой функции E_y	101
	21.5 Надёжность R	102
22	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Гриванка» (размерность равна 5)	103
	22.1 Информация об исследовании	104

	22.2 Параметры алгоритма оптимизации	104
	22.3 Ошибка по входным параметрам E_x	105
	22.4 Ошибка по значениям целевой функции E_y	105
	22.5 Надёжность R	106
23	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Гриванка» (размерность равна 10)	107
	23.1 Информация об исследовании	108
	23.2 Параметры алгоритма оптимизации	108
	23.3 Ошибка по входным параметрам E_x	109
	23.4 Ошибка по значениям целевой функции E_y	
	23.5 Надёжность R	110
24	Нисследование эффективности алгоритма оптимизации «Метод Монте-Карло»	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Гриванка» (размерность равна 20)	111
	24.1 Информация об исследовании	112
	24.2 Параметры алгоритма оптимизации	
	24.3 Ошибка по входным параметрам E_x	
	24.4 Ошибка по значениям целевой функции E_y	
	24.5 Надёжность R	114
25	6 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Гриванка» (размерность равна 30)	115
	25.1 Информация об исследовании	
	25.2 Параметры алгоритма оптимизации	
	25.3 Ошибка по входным параметрам E_x	
	25.4 Ошибка по значениям целевой функции E_y	
	25.5 Надёжность R	118
26	6 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Химмельблау» (размерность равна 2)	119
	26.1 Информация об исследовании	
	26.2 Параметры алгоритма оптимизации	
	26.3 Ошибка по входным параметрам E_x	
	26.4 Ошибка по значениям целевой функции E_y	
	26.5 Надёжность R	122

27 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
для решения задач на вещественных строках»на тестовой функции «Гипер	
эллипсоид» (размерность равна 2)	123
27.1 Информация об исследовании	124
27.2 Параметры алгоритма оптимизации	124
27.3 Ошибка по входным параметрам E_x	125
27.4 Ошибка по значениям целевой функции E_y	125
27.5 Надёжность R	
28 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
для решения задач на вещественных строках»на тестовой функции «Гипер	
эллипсоид» (размерность равна 3)	127
28.1 Информация об исследовании	128
28.2 Параметры алгоритма оптимизации	128
28.3 Ошибка по входным параметрам E_x	129
28.4 Ошибка по значениям целевой функции E_y	129
28.5 Надёжность R	130
29 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
для решения задач на вещественных строках»на тестовой функции «Гипер	
эллипсоид» (размерность равна 4)	131
29.1 Информация об исследовании	132
29.2 Параметры алгоритма оптимизации	132
29.3 Ошибка по входным параметрам E_x	133
29.4 Ошибка по значениям целевой функции E_y	133
29.5 Надёжность R	134
30 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
для решения задач на вещественных строках»на тестовой функции «Гипер	
эллипсоид» (размерность равна 5)	135
30.1 Информация об исследовании	136
30.2 Параметры алгоритма оптимизации	136
30.3 Ошибка по входным параметрам E_x	137
30.4 Ошибка по значениям целевой функции E_y	137
30.5 Надёжность R	138
31 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
для решения задач на вещественных строках»на тестовой функции «Гипер	
эллипсоид» (размерность равна 10)	139
31.1 Информация об исследовании	140

	31.2 Параметры алгоритма оптимизации	140
	31.3 Ошибка по входным параметрам E_x	141
	31.4 Ошибка по значениям целевой функции E_y	141
	31.5 Надёжность R	142
32	2 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Гипер	
	эллипсоид» (размерность равна 20)	143
	32.1 Информация об исследовании	144
	32.2 Параметры алгоритма оптимизации	144
	32.3 Ошибка по входным параметрам E_x	145
	32.4 Ошибка по значениям целевой функции E_y	145
	32.5 Надёжность R	146
33	З Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Гипер	
	эллипсоид» (размерность равна 30)	147
	33.1 Информация об исследовании	148
	33.2 Параметры алгоритма оптимизации	148
	33.3 Ошибка по входным параметрам E_x	
	33.4 Ошибка по значениям целевой функции E_y	
	33.5 Надёжность R	150
3 4	4 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Пере-	
	вернутая функция Розенброка» (размерность равна 2)	151
	34.1 Информация об исследовании	
	34.2 Параметры алгоритма оптимизации	
	34.3 Ошибка по входным параметрам E_x	
	34.4 Ошибка по значениям целевой функции E_y	
	34.5 Надёжность R	154
35	5 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Катникова» (размерность равна 2)	155
	35.1 Информация об исследовании	
	35.2 Параметры алгоритма оптимизации	
	35.3 Ошибка по входным параметрам E_x	
	35.4 Ошибка по значениям целевой функции E_y	
	35.5 Надёжность R	158

36	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Multiextremal» (размерность равна 1)	159
	36.1 Информация об исследовании	160
	36.2 Параметры алгоритма оптимизации	160
	36.3 Ошибка по входным параметрам E_x	161
	36.4 Ошибка по значениям целевой функции E_y	161
	36.5 Надёжность R	162
37	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Multiextremal2» (размерность равна 1)	163
	37.1 Информация об исследовании	164
	37.2 Параметры алгоритма оптимизации	164
	37.3 Ошибка по входным параметрам E_x	165
	37.4 Ошибка по значениям целевой функции E_y	165
	37.5 Надёжность R	166
38	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Multiextremal3» (размерность равна 2)	167
	38.1 Информация об исследовании	168
	38.2 Параметры алгоритма оптимизации	168
	38.3 Ошибка по входным параметрам E_x	169
	38.4 Ошибка по значениям целевой функции E_y	169
	38.5 Надёжность R	170
39	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Multiextremal4» (размерность равна 2)	171
	39.1 Информация об исследовании	172
	39.2 Параметры алгоритма оптимизации	172
	39.3 Ошибка по входным параметрам E_x	173
	39.4 Ошибка по значениям целевой функции E_y	173
	39.5 Надёжность R	174
40	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Муль-	
	типликативная потенциальная функция» (размерность равна 2)	175
	40.1 Информация об исследовании	176

	40.2 Параметры алгоритма оптимизации	176
	40.3 Ошибка по входным параметрам E_x	177
	40.4 Ошибка по значениям целевой функции E_y	177
	40.5 Надёжность R	178
41	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Эллип-	
	тический параболоид» (размерность равна 2)	179
	41.1 Информация об исследовании	180
	41.2 Параметры алгоритма оптимизации	180
	41.3 Ошибка по входным параметрам E_x	181
	41.4 Ошибка по значениям целевой функции E_y	
	41.5 Надёжность R	182
42	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Эллип-	
	тический параболоид» (размерность равна 3)	183
	42.1 Информация об исследовании	184
	42.2 Параметры алгоритма оптимизации	
	42.3 Ошибка по входным параметрам E_x	
	42.4 Ошибка по значениям целевой функции E_y	
	42.5 Надёжность R	186
43	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Эллип-	
	тический параболоид» (размерность равна 4)	187
	43.1 Информация об исследовании	
	43.2 Параметры алгоритма оптимизации	
	43.3 Ошибка по входным параметрам E_x	
	43.4 Ошибка по значениям целевой функции E_y	
	43.5 Надёжность R	190
44	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Эллип-	
	тический параболоид» (размерность равна 5)	191
	44.1 Информация об исследовании	
	44.2 Параметры алгоритма оптимизации	
	44.3 Ошибка по входным параметрам E_x	
	44.4 Ошибка по значениям целевой функции E_y	
	44.5 Надёжность R	194

45	6 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Эллип-	
	тический параболоид» (размерность равна 10)	195
	45.1 Информация об исследовании	196
	45.2 Параметры алгоритма оптимизации	196
	45.3 Ошибка по входным параметрам E_x	197
	45.4 Ошибка по значениям целевой функции E_y	197
	45.5 Надёжность R	198
46	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Эллип-	
	тический параболоид» (размерность равна 20)	199
	46.1 Информация об исследовании	200
	46.2 Параметры алгоритма оптимизации	200
	46.3 Ошибка по входным параметрам E_x	201
	46.4 Ошибка по значениям целевой функции E_y	201
	46.5 Надёжность R	202
47	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Эллип-	
	тический параболоид» (размерность равна 30)	203
	47.1 Информация об исследовании	204
	47.2 Параметры алгоритма оптимизации	204
	47.3 Ошибка по входным параметрам E_x	205
	47.4 Ошибка по значениям целевой функции E_y	205
	47.5 Надёжность R	206
48	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Rana» (размерность равна 2)	207
	48.1 Информация об исследовании	208
	48.2 Параметры алгоритма оптимизации	208
	48.3 Ошибка по входным параметрам E_x	209
	48.4 Ошибка по значениям целевой функции E_y	209
	48.5 Надёжность R	210
49	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина» (размерность равна 2)	211
	49.1 Информация об исследовании	212

	49.2 Параметры алгоритма оптимизации	212
	49.3 Ошибка по входным параметрам E_x	213
	49.4 Ошибка по значениям целевой функции E_y	213
	49.5 Надёжность R	214
50	О Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина» (размерность равна 3)	215
	50.1 Информация об исследовании	216
	50.2 Параметры алгоритма оптимизации	216
	50.3 Ошибка по входным параметрам E_x	217
	50.4 Ошибка по значениям целевой функции E_y	217
	50.5 Надёжность R	218
51	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина» (размерность равна 4)	219
	51.1 Информация об исследовании	
	51.2 Параметры алгоритма оптимизации	
	51.3 Ошибка по входным параметрам E_x	
	51.4 Ошибка по значениям целевой функции E_y	
	51.5 Надёжность R	222
52	2 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина» (размерность равна 5)	223
	52.1 Информация об исследовании	
	52.2 Параметры алгоритма оптимизации	
	52.3 Ошибка по входным параметрам E_x	
	52.4 Ошибка по значениям целевой функции E_y	
	52.5 Надёжность R	226
5 3	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина» (размерность равна 10)	227
	53.1 Информация об исследовании	
	53.2 Параметры алгоритма оптимизации	
	53.3 Ошибка по входным параметрам E_x	
	53.4 Ошибка по значениям целевой функции E_y	
	53.5 Надёжность R	230

54	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина» (размерность равна 20)	231
	54.1 Информация об исследовании	
	54.2 Параметры алгоритма оптимизации	
	54.3 Ошибка по входным параметрам E_x	
	54.4 Ошибка по значениям целевой функции E_y	233
	54.5 Надёжность R	234
55	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина» (размерность равна 30)	235
	55.1 Информация об исследовании	236
	55.2 Параметры алгоритма оптимизации	236
	55.3 Ошибка по входным параметрам E_x	237
	55.4 Ошибка по значениям целевой функции E_y	237
	55.5 Надёжность R	238
56	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина новгородская» (размерность равна 2)	239
	56.1 Информация об исследовании	240
	56.2 Параметры алгоритма оптимизации	240
	56.3 Ошибка по входным параметрам E_x	241
	56.4 Ошибка по значениям целевой функции E_y	241
	56.5 Надёжность R	242
57	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина новгородская» (размерность равна 3)	243
	57.1 Информация об исследовании	244
	57.2 Параметры алгоритма оптимизации	244
	57.3 Ошибка по входным параметрам E_x	245
	57.4 Ошибка по значениям целевой функции E_y	245
	57.5 Надёжность R	246
58	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина новгородская» (размерность равна 4)	247
	58.1 Информация об исследовании	248

	58.2 Параметры алгоритма оптимизации	248
	58.3 Ошибка по входным параметрам E_x	249
	58.4 Ошибка по значениям целевой функции E_y	249
	58.5 Надёжность R	250
59	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина новгородская» (размерность равна 5)	251
	59.1 Информация об исследовании	252
	59.2 Параметры алгоритма оптимизации	252
	59.3 Ошибка по входным параметрам E_x	253
	59.4 Ошибка по значениям целевой функции E_y	
	59.5 Надёжность R	254
60	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина новгородская» (размерность равна 10)	255
	60.1 Информация об исследовании	
	60.2 Параметры алгоритма оптимизации	
	60.3 Ошибка по входным параметрам E_x	
	60.4 Ошибка по значениям целевой функции E_y	
	60.5 Надёжность R	258
61	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина новгородская» (размерность равна 20)	259
	61.1 Информация об исследовании	260
	61.2 Параметры алгоритма оптимизации	260
	61.3 Ошибка по входным параметрам E_x	261
	61.4 Ошибка по значениям целевой функции E_y	261
	61.5 Надёжность R	262
62	2 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина новгородская» (размерность равна 30)	263
	62.1 Информация об исследовании	264
	62.2 Параметры алгоритма оптимизации	264
	62.3 Ошибка по входным параметрам E_x	265
	62.4 Ошибка по значениям целевой функции E_y	265
	62.5 Hanewhorth R	266

63	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина с изменением коэффициентов» (размерность равна 2)	267
	63.1 Информация об исследовании	268
	63.2 Параметры алгоритма оптимизации	268
	63.3 Ошибка по входным параметрам E_x	269
	63.4 Ошибка по значениям целевой функции E_y	269
	63.5 Надёжность R	270
64	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Растригина овражная с поворотом осей» (размерность равна 2)	271
	64.1 Информация об исследовании	272
	64.2 Параметры алгоритма оптимизации	272
	64.3 Ошибка по входным параметрам E_x	273
	64.4 Ошибка по значениям целевой функции E_y	273
	64.5 Надёжность R	274
65	6 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция ReverseGriewank» (размерность равна 2)	275
	65.1 Информация об исследовании	276
	65.2 Параметры алгоритма оптимизации	276
	65.3 Ошибка по входным параметрам E_x	277
	65.4 Ошибка по значениям целевой функции E_y	277
	65.5 Надёжность R	278
66	6 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Розенброка» (размерность равна 2)	279
	66.1 Информация об исследовании	280
	66.2 Параметры алгоритма оптимизации	280
	66.3 Ошибка по входным параметрам E_x	281
	66.4 Ошибка по значениям целевой функции E_y	281
	66.5 Надёжность R	282
67	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Розенброка» (размерность равна 3)	283
	67.1 Информация об исследовании	284

	67.2 Параметры алгоритма оптимизации	284
	67.3 Ошибка по входным параметрам E_x	285
	67.4 Ошибка по значениям целевой функции E_y	285
	67.5 Надёжность R	286
68	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Розенброка» (размерность равна 4)	287
	68.1 Информация об исследовании	288
	68.2 Параметры алгоритма оптимизации	288
	68.3 Ошибка по входным параметрам E_x	289
	68.4 Ошибка по значениям целевой функции E_y	289
	68.5 Надёжность R	290
69	О Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Розенброка» (размерность равна 5)	291
	69.1 Информация об исследовании	292
	69.2 Параметры алгоритма оптимизации	292
	69.3 Ошибка по входным параметрам E_x	293
	69.4 Ошибка по значениям целевой функции E_y	293
	69.5 Надёжность R	294
70	О Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Розенброка» (размерность равна 10)	295
	70.1 Информация об исследовании	296
	70.2 Параметры алгоритма оптимизации	296
	70.3 Ошибка по входным параметрам E_x	297
	70.4 Ошибка по значениям целевой функции E_y	297
	70.5 Надёжность R	298
71	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Розенброка» (размерность равна 20)	299
	71.1 Информация об исследовании	
	71.2 Параметры алгоритма оптимизации	300
	71.3 Ошибка по входным параметрам E_x	301
	71.4 Ошибка по значениям целевой функции E_y	301
	71.5 Надёжность R	302

72	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Розенброка» (размерность равна 30)	303
	72.1 Информация об исследовании	304
	72.2 Параметры алгоритма оптимизации	304
	72.3 Ошибка по входным параметрам E_x	305
	72.4 Ошибка по значениям целевой функции E_y	305
	72.5 Надёжность R	306
73	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Развер-	
	нутый гипер-эллипсоид» (размерность равна 2)	307
	73.1 Информация об исследовании	308
	73.2 Параметры алгоритма оптимизации	308
	73.3 Ошибка по входным параметрам E_x	309
	73.4 Ошибка по значениям целевой функции E_y	309
	73.5 Надёжность R	310
74	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Развер-	
	нутый гипер-эллипсоид» (размерность равна 3)	311
	74.1 Информация об исследовании	312
	74.2 Параметры алгоритма оптимизации	312
	74.3 Ошибка по входным параметрам E_x	313
	74.4 Ошибка по значениям целевой функции E_y	313
	74.5 Надёжность R	314
75	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Развер-	
	нутый гипер-эллипсоид» (размерность равна 4)	315
	75.1 Информация об исследовании	316
	75.2 Параметры алгоритма оптимизации	316
	75.3 Ошибка по входным параметрам E_x	317
	75.4 Ошибка по значениям целевой функции E_y	317
	75.5 Надёжность R	318
76	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Развер-	
	нутый гипер-эллипсоид» (размерность равна 5)	319
	76.1 Информация об исследовании	320

	76.2 Параметры алгоритма оптимизации	320
	76.3 Ошибка по входным параметрам E_x	321
	76.4 Ошибка по значениям целевой функции E_y	321
	76.5 Надёжность R	322
77	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Развер-	
	нутый гипер-эллипсоид» (размерность равна 10)	323
	77.1 Информация об исследовании	324
	77.2 Параметры алгоритма оптимизации	324
	77.3 Ошибка по входным параметрам E_x	325
	77.4 Ошибка по значениям целевой функции E_y	
	77.5 Надёжность R	326
78	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Развер-	
	нутый гипер-эллипсоид» (размерность равна 20)	327
	78.1 Информация об исследовании	
	78.2 Параметры алгоритма оптимизации	
	78.3 Ошибка по входным параметрам E_x	
	78.4 Ошибка по значениям целевой функции E_y	
	78.5 Надёжность R	330
79	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Развер-	
	нутый гипер-эллипсоид» (размерность равна 30)	331
	79.1 Информация об исследовании	
	79.2 Параметры алгоритма оптимизации	
	79.3 Ошибка по входным параметрам E_x	
	79.4 Ошибка по значениям целевой функции E_y	
	79.5 Надёжность R	334
80	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Швефеля» (размерность равна 2)	335
	80.1 Информация об исследовании	
	80.2 Параметры алгоритма оптимизации	
	80.3 Ошибка по входным параметрам E_x	
	80.4 Ошибка по значениям целевой функции E_y	
	80.5 Надёжность R	338

81	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Швефеля» (размерность равна 3)	339
	81.1 Информация об исследовании	
	81.2 Параметры алгоритма оптимизации	
	81.3 Ошибка по входным параметрам E_x	341
	81.4 Ошибка по значениям целевой функции E_y	
	81.5 Надёжность R	342
82	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Швефеля» (размерность равна 4)	343
	82.1 Информация об исследовании	344
	82.2 Параметры алгоритма оптимизации	344
	82.3 Ошибка по входным параметрам E_x	345
	82.4 Ошибка по значениям целевой функции E_y	345
	82.5 Надёжность R	346
83	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Швефеля» (размерность равна 5)	347
	83.1 Информация об исследовании	348
	83.2 Параметры алгоритма оптимизации	348
	83.3 Ошибка по входным параметрам E_x	349
	83.4 Ошибка по значениям целевой функции E_y	349
	83.5 Надёжность R	350
84	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Швефеля» (размерность равна 10)	351
	84.1 Информация об исследовании	352
	84.2 Параметры алгоритма оптимизации	352
	84.3 Ошибка по входным параметрам E_x	353
	84.4 Ошибка по значениям целевой функции E_y	353
	84.5 Надёжность R	354
85	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Швефеля» (размерность равна 20)	355
	85.1 Информация об исследовании	356

	85.2 Параметры алгоритма оптимизации	. 356
	85.3 Ошибка по входным параметрам E_x	357
	85.4 Ошибка по значениям целевой функции E_y	357
	85.5 Надёжность R	358
86	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Швефеля» (размерность равна 30)	359
	86.1 Информация об исследовании	360
	86.2 Параметры алгоритма оптимизации	360
	86.3 Ошибка по входным параметрам E_x	361
	86.4 Ошибка по значениям целевой функции E_y	361
	86.5 Надёжность R	362
87	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция "Лисьи норы"Шекеля» (размерность равна 2)	363
	87.1 Информация об исследовании	364
	87.2 Параметры алгоритма оптимизации	364
	87.3 Ошибка по входным параметрам E_x	365
	87.4 Ошибка по значениям целевой функции E_y	365
	87.5 Надёжность R	366
88	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Сомбреро» (размерность равна 2)	367
	88.1 Информация об исследовании	
	88.2 Параметры алгоритма оптимизации	368
	88.3 Ошибка по входным параметрам E_x	369
	88.4 Ошибка по значениям целевой функции E_y	369
	88.5 Надёжность R	. 370
89	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Step (модифицированная версия De Jong 3)» (размерность равна 2)	371
	89.1 Информация об исследовании	
	89.2 Параметры алгоритма оптимизации	
	89.3 Ошибка по входным параметрам E_x	373
	89.4 Ошибка по значениям целевой функции E_y	
	89.5 Надёжность R	374

90	О Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Step (модифицированная версия De Jong 3)» (размерность равна 3)	375
	90.1 Информация об исследовании	376
	90.2 Параметры алгоритма оптимизации	376
	90.3 Ошибка по входным параметрам E_x	377
	90.4 Ошибка по значениям целевой функции E_y	377
	90.5 Надёжность R	378
91	Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Step (модифицированная версия De Jong 3)» (размерность равна 4)	379
	91.1 Информация об исследовании	380
	91.2 Параметры алгоритма оптимизации	380
	91.3 Ошибка по входным параметрам E_x	381
	91.4 Ошибка по значениям целевой функции E_y	381
	91.5 Надёжность R	382
92	? Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Step (модифицированная версия De Jong 3)» (размерность равна 5)	383
	92.1 Информация об исследовании	384
	92.2 Параметры алгоритма оптимизации	384
	92.3 Ошибка по входным параметрам E_x	385
	92.4 Ошибка по значениям целевой функции E_y	385
	92.5 Надёжность R	
93	В Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Step (модифицированная версия De Jong 3)» (размерность равна 10)	387
	93.1 Информация об исследовании	388
	93.2 Параметры алгоритма оптимизации	388
	93.3 Ошибка по входным параметрам E_x	389
	93.4 Ошибка по значениям целевой функции E_y	389
	93.5 Надёжность R	
94	Нисследование эффективности алгоритма оптимизации «Метод Монте-Карло»	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Step (модифицированная версия De Jong 3)» (размерность равна 20)	391
	94.1 Информация об исследовании	392

	94.2 Параметры алгоритма оптимизации	392
	94.3 Ошибка по входным параметрам E_x	393
	94.4 Ошибка по значениям целевой функции E_y	
	94.5 Надёжность R	394
95	6 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Фун-	
	кция Step (модифицированная версия De Jong 3)» (размерность равна 30)	39 5
	95.1 Информация об исследовании	396
	95.2 Параметры алгоритма оптимизации	396
	95.3 Ошибка по входным параметрам E_x	397
	95.4 Ошибка по значениям целевой функции E_y	397
	95.5 Надёжность R	398
96	6 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло	
	для решения задач на вещественных строках»на тестовой функции «Волна»	
	(размерность равна 1)	399
	96.1 Информация об исследовании	400
	96.2 Параметры алгоритма оптимизации	400
	96.3 Ошибка по входным параметрам E_x	401
	96.4 Ошибка по значениям целевой функции E_y	401
	96.5 Надёжность R	402

1 Вводная информация

Данный файл и другие исследования располагаются по адресу:

https://github.com/Harrix/HarrixPDFDataOfOptimizationTesting.

Анализ данных исследований можно посмотреть по адресу:

https://github.com/Harrix/HarrixAnalysisPDFDataOfOptimizationTesting.

Данные исследований взяты из базы исследований алгоритмов оптимизации:

https://github.com/Harrix/HarrixDataOfOptimizationTesting.

О методологии проведения исследований можно прочитать в описании формата данных «Harrix Optimization Testing» в главе «Идея проведения исследований эффективности алгоритмов» по адресу:

https://github.com/Harrix/HarrixFileFormats.

Описание алгоритма оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms.

Описание тестовых функций можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions.

С автором можно связаться по адресу sergienkoanton@mail.ru или http://vk.com/harrix. Сайт автора, где публикуются последние новости: http://blog.harrix.org, а проекты располагаются по адресу http://harrix.org.

2 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:33:17.

Дата создания исследования: 17.10.2013 02:33:17.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Ackley.

вой функции:

Полное название тестовой функции: Функция Ackley.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

2.2 Параметры алгоритма оптимизации

2.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 1. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
		0.161447 0.167655		
		0.167969		
		0.173247		
1	Отсутствует 0.184951	0.175438	0.00026361	
1	Oley relbyer	0.171298	0.170100	0.00020001
		0.194719		
		0.146338		
		0.186838		
		0.199921		

${f 2.4}$ Ошибка по значениям целевой функции E_y

Другим критерием, по которому происходит сравнение алгоритмов оптимизации является ошибка по значениям целевой функции E_y . Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 2. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		1.78209		
		1.73821		
	1.69771 1.88569 1.97727	1.69771		
		1.88569		
1		1.83409	0.00970286	
1	Oleyleibyei	1.81722	1.03403	0.00370200
		1.92318		
		1.7235		
		1.84783		
		1.94822		

2.5 Надёжность R

Третьим критерием, по которому происходит сравнение алгоритмов оптимизации является надёжность R. Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 3. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0.02	0.008	8.44444e-05
		0.01		
		0.02		
		0.01		
1	Отсутствует	0		
1	Olcytcibyer	0		
		0		
		0		
		0.02		
		0		

3 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 3)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:33:17.

Дата создания исследования: 17.10.2013 02:33:17.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Ackley.

вой функции:

Полное название тестовой функции: Функция Ackley.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 729000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

3.2 Параметры алгоритма оптимизации

3.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 4. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 3)

N₂	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.231828 0.248765 0.260546 0.22265 0.252871 0.254279 0.251908 0.257721	0.247123	0.000145355
		0.239563 0.251103		

${f 3.4}$ Ошибка по значениям целевой функции E_y

Другим критерием, по которому происходит сравнение алгоритмов оптимизации является ошибка по значениям целевой функции E_y . Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 5. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		2.70137	2.79726 0.0055072	
		2.81812		0.00550722
		2.81226		
		2.71955		
1	Отсутствует	2.80023		
1	Oleyleibyei	2.90625		
		2.83234		
		2.84165		
		2.67782		
		2.86296		

3.5 Надёжность R

Третьим критерием, по которому происходит сравнение алгоритмов оптимизации является надёжность R. Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 6. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Olcytcibyer	0		
		0		
		0		
		0		
		0		

4 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 4)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:33:18.

Дата создания исследования: 17.10.2013 02:33:18.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Ackley.

вой функции:

Полное название тестовой функции: Функция Ackley.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1225000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

4.2 Параметры алгоритма оптимизации

4.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 7. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 4)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.295615 0.301555 0.283633 0.279206 0.281411 0.284182 0.295437 0.279358 0.282613 0.267306	0.285032	9.94738e-05

4.4 Ошибка по значениям целевой функции E_y

Другим критерием, по которому происходит сравнение алгоритмов оптимизации является ошибка по значениям целевой функции E_y . Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 8. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 4)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		3.44125		
		3.57915		0.00710322
		3.34894		
		3.35974		
1	Отсутствует	3.52435	3.4443	
1	Olcylcibyer	3.48896	3.4443	
		3.51443		
		3.3753		
		3.47019		
		3.34067		

4.5 Надёжность R

Третьим критерием, по которому происходит сравнение алгоритмов оптимизации является надёжность R. Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 9. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Olcytcibyer	0		
		0		
		0		
		0		
		0		

5 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 5)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:33:20.

Дата создания исследования: 17.10.2013 02:33:20.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Ackley.

вой функции:

Полное название тестовой функции: Функция Ackley.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1849000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

5.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 10. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 5)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.312313 0.308721 0.296845 0.317998 0.302785 0.315298 0.305874 0.299983	0.309268	6.5434e-05
		0.310516 0.322349		

${f 5.4}$ Ошибка по значениям целевой функции E_y

Таблица 11. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 5)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	3.97221 3.93258 3.93969 4.01909 3.93463 4.0068 4.00263 3.98711 4.05465	3.98997	0.00203583
		4.0503		

Таблица 12. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 5)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcytcibyer	0	U	U
		0		
		0		
		0		
		0		

6 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 10)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:33:22.

Дата создания исследования: 17.10.2013 02:33:22.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Ackley.

вой функции:

Полное название тестовой функции: Функция Ackley.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 5776000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

6.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 13. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 10)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.369933 0.372659 0.378658 0.368223 0.375109 0.36979	0.372116	1.93352e-05
		0.371217 0.371919 0.378741		

${f 6.4}$ Ошибка по значениям целевой функции E_y

Таблица 14. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		5.67785		
		5.70322		
		5.75897		
		5.71319		
1	Отсутствует	5.73853	5.7201	0.00147971
1	Olcylcibyer	5.7288	0.7201	0.00147371
		5.68607		
		5.66236		
		5.74915		
		5.78285		

Таблица 15. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Official	0	0	U
		0		
		0		
		0		
		0		

7 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 20)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:33:32.

Дата создания исследования: 17.10.2013 02:33:32.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Ackley.

вой функции:

Полное название тестовой функции: Функция Ackley.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 15876000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

7.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 16. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 20)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.367617 0.362585 0.367496 0.366285 0.365472 0.361972 0.367737 0.367239 0.36259	0.36537	5.22107e-06
		0.36259 0.364702		

7.4 Ошибка по значениям целевой функции E_{y}

Таблица 17. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		7.16605		
		7.14609		
		7.19002		
		7.12742		
1	Отсутствует	7.14688	7.15607	0.000288477
1	Olcylcibyer	7.14636	7.15007	0.000200477
		7.17037		
		7.15873		
		7.15812		
		7.15067		

Таблица 18. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0	0	U
		0		
		0		
		0		
		0		

8 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 30)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:34:16.

Дата создания исследования: 17.10.2013 02:34:16.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Ackley.

вой функции:

Полное название тестовой функции: Функция Ackley.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 28224000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

8.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 19. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 30)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.33715 0.334866 0.337903 0.337149 0.339239 0.337227 0.336912 0.336469 0.335295 0.335169	0.336738	1.81567e-06

8.4 Ошибка по значениям целевой функции E_y

Таблица 20. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Ackley» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		7.77283		
		7.74903		
		7.79047		
		7.783		
1	Отсутствует	7.80074	7.77568	0.000250738
1	Olcylcibyer	7.78619	1.77500	0.000230130
		7.77715		
		7.77801		
		7.76167		
		7.75769		

Таблица 21. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Ackley» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0		
		0		
		0		
		0		
		0		

9 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Аддитивная потенциальная функция» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 14.12.2013 23:39:37.

Дата создания исследования: 14.12.2013 23:39:37.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_AdditivePotential.

вой функции:

Полное название тестовой функции: Аддитивная потенциальная функция.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

9.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 22. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Аддитивная потенциальная функция» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.0603087 0.0984655 0.0925594 0.0854488 0.0815142 0.0879798 0.0828517 0.0607261 0.0678314 0.0843737	0.0802059	0.000169835

9.4 Ошибка по значениям целевой функции E_{y}

Таблица 23. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Аддитивная потенциальная функция» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.958132		
		1.08122		
		1.0216		
		1.00063		
1	Отсутствует	1.0211	0.997181	0.00388595
1	Oley lelbyel	1.0859	0.557 101	0.00000000
		0.977388		
		0.879166		
		1.00398		
		0.94269		

Таблица 24. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Аддитивная потенциальная функция» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0.003	
		0		2.33333e-05
		0		
1	Отоутотруот	0		
1	Отсутствует	0.01	0.003	
		0		
		0.01		
		0		
		0.01		

10 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Возот» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 07.03.2014 00:47:55.

Дата создания исследования: 07.03.2014 00:47:55.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Bosom.

вой функции:

Полное название тестовой функции: Функция Bosom.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

10.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 25. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Bosom» (размерность равна 2)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.241489 0.2335 0.242951 0.218754 0.232978 0.22849 0.240229 0.231518 0.238395 0.245019	0.235332	6.31384e-05

10.4 Ошибка по значениям целевой функции E_{y}

Таблица 26. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Bosom» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.0183088		
		0.0160551		
		0.0184216		
		0.0156063	0.017441	2.25877e-06
1	Отсутствует	0.0163114		
1	Olcylcibyer	0.0159851	0.017441	2.200116-00
		0.0202208		
		0.017093		
		0.0175259		
		0.0188819		

Таблица 27. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Bosom» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcylcibyer	0	0	
		0		
		0		
		0		
		0		

11 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Egg Holder» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 30.12.2013 01:52:13.

Дата создания исследования: 30.12.2013 01:52:13.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_EggHolder.

вой функции:

Полное название тестовой функции: Функция Egg Holder.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

11.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 28. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Egg Holder» (размерность равна 2)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	220.571 220.978 202.941 177.167 184.721 209.827 252.148 204.296 213.321	210.492	432.992
		213.321		

11.4 Ошибка по значениям целевой функции E_{y}

Таблица 29. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Egg Holder» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		106.068		
		119.92		
		124.39		
		123.248		
1	Отсутствует	122.772	117.427	44.086
1	Oley lelbyel	117.079	117.427	41.000
		119.214		
		119.201		
		105.431		
		116.947		

Таблица 30. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Egg Holder» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.01 0.02 0 0.01 0 0.01 0 0	0.005	5e-05

12 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 22:22:10.

Дата создания исследования: 03.01.2014 22:22:10.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_GaussianQuartic.

вой функции:

Полное название тестовой функции: Функция Gaussian quartic.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

12.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 31. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 2)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.283485 0.250628 0.27465 0.273149 0.272066 0.261379 0.272403 0.288045	0.274009	0.000137969
		0.274764 0.289522		

12.4 Ошибка по значениям целевой функции E_{y}

Таблица 32. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		2.0719		
		2.12651		
		2.08768		
		2.10514		
1	Отсутствует	2.01547	2.1042	0.00224525
1	Olcylcibyer	2.13268	2.1042	0.00224020
		2.15106		
		2.05162		
		2.1667		
		2.13321		

Таблица 33. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcylcibyer	0	0	
		0		
		0		
		0		
		0		

13 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 3)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 22:22:11.

Дата создания исследования: 03.01.2014 22:22:11.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_GaussianQuartic.

вой функции:

Полное название тестовой функции: Функция Gaussian quartic.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 729000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

13.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 34. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 3)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.228062 0.207189 0.237891 0.21621 0.222147 0.214715 0.222389 0.230866	0.220307	9.57991e-05
		0.213886 0.209711		

13.4 Ошибка по значениям целевой функции E_{y}

Таблица 35. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	1.95327	1.88658	0.0017401
		1.86596		
		1.87531		
		1.81254		
		1.83246		
		1.89412		
		1.90236		
		1.90391		
		1.90168		
		1.92421		

Таблица 36. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
	Отсутствует	0	0	0
		0		
		0		
		0		
1		0		
1		0		
		0		
		0		
		0		
		0		

14 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 4)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 22:22:11.

Дата создания исследования: 03.01.2014 22:22:11.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_GaussianQuartic.

вой функции:

Полное название тестовой функции: Функция Gaussian quartic.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1225000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

14.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 37. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 4)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.180814 0.190396 0.189491 0.184952 0.192138 0.198926 0.185415 0.187363 0.183392	0.188767	3.04281e-05
		0.194784		

14.4 Ошибка по значениям целевой функции E_{y}

Таблица 38. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 4)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		1.52429		
		1.50031		
		1.61036		
		1.57683	1.55109	0.00159513
1	Отсутствует	1.59743		
1	Oley lelbyel	1.5496		
		1.53832		
		1.53229		
		1.49598		
		1.58545		

Таблица 39. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 4)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcytcibyer	0	O O	U
		0		
		0		
		0		
		0		

15 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 5)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 22:22:12.

Дата создания исследования: 03.01.2014 22:22:12.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_GaussianQuartic.

вой функции:

Полное название тестовой функции: Функция Gaussian quartic.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1849000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

15.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 40. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 5)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.16815 0.176337 0.167948 0.178815 0.167744 0.172254 0.174085 0.174481	0.173301	2.0281e-05
		0.180598 0.172601		

15.4 Ошибка по значениям целевой функции E_{y}

Таблица 41. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 5)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		1.15298		
		1.12652		
		1.10775		
		1.02952		
1	Отсутствует	1.04085	1.10687	0.0030063
1	Oley lelbyel	1.1957		
		1.07589		
		1.08565		
		1.17217		
		1.08163		

Таблица 42. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0	0	
		0		
		0		
		0		
		0		

16 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 10)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 22:22:13.

Дата создания исследования: 03.01.2014 22:22:13.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_GaussianQuartic.

вой функции:

Полное название тестовой функции: Функция Gaussian quartic.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 5776000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

16.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 43. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.154875 0.154107 0.154282 0.152553 0.156978 0.15947 0.158826 0.154531 0.152392	0.15526	5.81909e-06
		0.154581		

16.4 Ошибка по значениям целевой функции E_{u}

Таблица 44. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		4.68124		
		4.40955		
		4.6128		
		4.26264		
1	Отсутствует	4.86828	4.65903	0.0497046
1	Olcylcibyel	5.0108	4.00000	0.0437040
		4.86726		
		4.59673		
		4.57017		
		4.71081		

Таблица 45. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0	
		0		0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0		
		0		
		0		
		0		
		0		

17 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 20)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 22:22:17.

Дата создания исследования: 03.01.2014 22:22:17.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_GaussianQuartic.

вой функции:

Полное название тестовой функции: Функция Gaussian quartic.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 15876000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

17.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 46. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 20)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
		0.155472		
		0.151918		
		0.153673		1.69027e-06
		0.153963		
1	Отсутствует	0.153606	0.154152	
1	Official	0.152527	0.134132	
		0.155412		
		0.155245		
		0.153984		
		0.155722		

17.4 Ошибка по значениям целевой функции E_{y}

Таблица 47. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		70.2946		
		66.7224		2.49508
		71.3877	68.9116	
		67.1615		
1	Отсутствует	69.1003		
1	Olcylcibyer	67.2263	00.3110	2.43000
		68.7928		
		68.2633		
		70.5834		
		69.5834		

Таблица 48. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0	0	
		0		
		0		
		0		
		0		

18 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 30)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 22:22:33.

Дата создания исследования: 03.01.2014 22:22:33.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_GaussianQuartic.

вой функции:

Полное название тестовой функции: Функция Gaussian quartic.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 28224000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

18.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 49. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 30)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.141632 0.142968 0.140909 0.141812 0.14269 0.142315 0.141984 0.142625 0.140835	0.141962	5.14298e-07
		0.141854		

18.4 Ошибка по значениям целевой функции E_{y}

Таблица 50. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Gaussian quartic» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		255.736		
		248.085		16.3962
	1 Отсутствует	246.753	252.192	
		257.335		
1		250.782		
1		255.807		
		248.056		
		255.307		
		255.207		
		248.853		

Таблица 51. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Gaussian quartic» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
	Отсутствует	0	0	l
		0		
1		0		0
1		0		
		0		
		0		
		0		
		0		

19 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 02:10:37.

Дата создания исследования: 03.01.2014 02:10:37.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Griewangk.

вой функции:

Полное название тестовой функции: Функция Гриванка.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

19.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 52. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 2)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	3.80331 3.44175 3.56913 3.38663 3.94085 3.55487 3.54471 4.22698	3.68739	0.0644811
		3.76732 3.63836		

19.4 Ошибка по значениям целевой функции E_{y}

Таблица 53. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.0347972		
		0.0304775		6.37066e-06
	Отсутствует	0.032006	0.0348547	
		0.0330242		
1		0.0356762		
1		0.0354181		
		0.0371081		
		0.039079		
		0.0344782		
		0.0364827		

Таблица 54. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0.01		2.66667e-05
	Отсутствует	0.01	0.004	
		0		
1		0.01		
1		0		
		0		
		0.01		
		0		
		0		

20 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 3)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 02:10:38.

Дата создания исследования: 03.01.2014 02:10:38.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Griewangk.

вой функции:

Полное название тестовой функции: Функция Гриванка.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 729000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

20.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 55. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 3)

реднее дисперсия
.85923 0.0291889

20.4 Ошибка по значениям целевой функции E_y

Таблица 56. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.0865412		
		0.0808532		1.03031e-05
	Отсутствует	0.0845917	0.0825604	
		0.0876764		
1		0.0788533		
1		0.0848399		
		0.07871		
		0.0823757		
		0.0815906		
		0.0795724		

Таблица 57. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 3)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		0
	Отсутствует	0	0	
		0		
1		0		
1		0		
		0		
		0		
		0		
		0		

21 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 4)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 02:10:38.

Дата создания исследования: 03.01.2014 02:10:38.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Griewangk.

вой функции:

Полное название тестовой функции: Функция Гриванка.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1225000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

21.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 58. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
		3.84311		
		3.74483		0.015901
	Отсутствует	3.84846	3.76761	
		3.63279		
1		3.81916		
1		3.63369		
		3.65983		
		3.99193		
		3.87177		
		3.6305		

${f 21.4}$ Ошибка по значениям целевой функции E_y

Таблица 59. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 4)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.153467		
		0.154698		3.27692e-05
	Отсутствует	0.151278	0.150531	
		0.145819		
1		0.156016		
1		0.140928		
		0.145123		
		0.154491		
		0.157909		
		0.14558		

Таблица 60. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 4)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
	Отсутствует	0	0	l
		0		
1		0		0
1		0		
		0		
		0		
		0		
		0		

22 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 5)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 02:10:39.

Дата создания исследования: 03.01.2014 02:10:39.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Griewangk.

вой функции:

Полное название тестовой функции: Функция Гриванка.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1849000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

22.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 61. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 5)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
	Отсутствует	3.56112	3.60373	0.00593667
		3.67727		
		3.53798		
		3.61702		
1		3.6756		
1		3.57521		
		3.46255		
		3.72847		
		3.59051		
		3.61156		

${f 22.4}$ Ошибка по значениям целевой функции E_y

Таблица 62. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 5)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
	Отсутствует	0.238482	0.229194	5.01918e-05
		0.222425		
		0.228842		
		0.231319		
1		0.218393		
1		0.238605		
		0.233533		
		0.230877		
		0.229645		
		0.219818		

Таблица 63. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
	Отсутствует	0	0	0
		0		
		0		
		0		
1		0		
1		0		
		0		
		0		
		0		
		0		

23 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 10)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 02:10:42.

Дата создания исследования: 03.01.2014 02:10:42.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Griewangk.

вой функции:

Полное название тестовой функции: Функция Гриванка.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 5776000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

23.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 64. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 10)

N₂	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
		2.51107		
		2.50856	2.50979	0.00127566
		2.48016		
		2.48411		
1	Отсутствует	2.49518		
1	Ofcyterbyer	2.57991		
		2.56366		
		2.48558		
		2.51574		
		2.47392		

23.4 Ошибка по значениям целевой функции E_{y}

Таблица 65. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.75277		
		0.762655		0.000156632
		0.760192	0.752674	
		0.742643		
1	Отсутствует	0.73208		
1	Olcylcibyer	0.772183		
		0.745009		
		0.760934		
		0.739233		
		0.759043		

Таблица 66. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0	
		0		0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0	0	
		0		
		0		
		0		
		0		

24 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 20)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 02:10:51.

Дата создания исследования: 03.01.2014 02:10:51.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Griewangk.

вой функции:

Полное название тестовой функции: Функция Гриванка.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 15876000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

24.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 67. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 20)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	1.15875 1.1498 1.15433 1.14761 1.15495 1.16078 1.16236 1.16522 1.14816	1.1554	3.8038e-05
		1.15201		

24.4 Ошибка по значениям целевой функции E_y

Таблица 68. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		1.13478		
		1.13269		
		1.13383		
		1.13105		
1	Отсутствует	1.13393	1.13367	2.14865e-06
1	Olcylcibyer	1.13509	1.15507	2.140006-00
		1.13555		
		1.13491		
		1.13232		
		1.13254		

Таблица 69. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Official	0	0	U
		0		
		0		
		0		
		0		

25 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 30)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 02:11:41.

Дата создания исследования: 03.01.2014 02:11:41.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Griewangk.

вой функции:

Полное название тестовой функции: Функция Гриванка.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 28224000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

25.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 70. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
		1.0666		
		1.06824		
		1.0684 1.06528		
		1.06694		
1	Отсутствует	1.07693	1.06972	1.57222e-05
		1.0753		
		1.07314		
		1.06879		
		1.06755		

${f 25.4}$ Ошибка по значениям целевой функции E_y

Таблица 71. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Гриванка» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		1.25638		
		1.25725	1.25793	3.5332e- 0 6
		1.25732		
		1.25583		
1	Отсутствует	1.25668		
1	Olcylcibyer	1.26139		
		1.26056		
		1.25949		
		1.25758		
		1.25686		

Таблица 72. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Гриванка» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcytcibyer	0	U	
		0		
		0		
		0		
		0		

26 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Химмельблау» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 26.12.2013 00:27:25.

Дата создания исследования: 26.12.2013 00:27:25.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Himmelblau.

вой функции:

Полное название тестовой функции: Функция Химмельблау.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

26.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 73. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Химмельблау» (размерность равна 2)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
		0.467074		
		0.341954		
		0.487853		0.00327659
		0.376476		
1	Отсутствует	0.432859	0.404189	
1	Ofcytcibyer	0.425911	0.404169	
		0.456112		
		0.36076		
		0.320469		
		0.372425		

${f 26.4}$ Ошибка по значениям целевой функции E_y

Таблица 74. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Химмельблау» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.842162		
		0.687992	0.734586	0.00328013
		0.689848		
		0.723609		
1	Отсутствует	0.785119		
1	Oley lelbyel	0.771269	0.754000	0.00020010
		0.770871		
		0.653133		
		0.69241		
		0.729451		

Таблица 75. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Химмельблау» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0.02		
		0.06		
		0.05	0.034	0.000315556
		0.03		
1	Отсутствует	0.02		
1	Olcytcibyer	0.04	0.034	
		0.04		
		0		
		0.03		
		0.05		

27 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:04.

Дата создания исследования: 18.12.2013 23:29:04.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_HyperEllipsoid.

вой функции:

Полное название тестовой функции: Гипер-эллипсоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

27.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 76. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 2)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.158153 0.1552 0.154874 0.153856 0.145023 0.148603 0.147355 0.154562 0.157993	0.153436	2.32086e-05
		0.158739		

${f 27.4}$ Ошибка по значениям целевой функции E_y

Таблица 77. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.214498		
		0.204522		0.000249511
		0.202088		
		0.207534		
1	Отсутствует	0.172225	0.20115	
1	Olcylcibyer	0.192156	0.20115	0.000243311
		0.187133		
		0.212192		
	0.227414	0.227414		
		0.191733		

Таблица 78. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0.01		
		0		
		0.01	0.006	2.66667e-05
		0.01		
1	Отсутствует	0.01		
1	Olcytcibyer	0.01	0.000	
		0.01		
		0		
		0		
		0		

28 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 3)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:04.

Дата создания исследования: 18.12.2013 23:29:04.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_HyperEllipsoid.

вой функции:

Полное название тестовой функции: Гипер-эллипсоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 729000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

28.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 79. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 3)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.247265 0.260378 0.240218 0.24173 0.246556 0.23144 0.247676 0.255753 0.223925 0.250502	0.244544	0.000117401

${f 28.4}$ Ошибка по значениям целевой функции E_y

Таблица 80. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		1.39708		
		1.5052		0.00366082
		1.40734	1.41174	
		1.32341		
1	Отсутствует	1.43091		
1	Oley lelbyel	1.39992	1.11171	0.00300002
		1.45865		
		1.47815		
		1.31738		
		1.39932		

Таблица 81. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0.001	
		0		1e-05
		0		
1	Отсутствует	0.01		
1	Official	0	0.001	
		0		
		0		
		0		
		0		

29 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 4)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:04.

Дата создания исследования: 18.12.2013 23:29:04.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_HyperEllipsoid.

вой функции:

Полное название тестовой функции: Гипер-эллипсоид.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1225000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

29.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 82. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 4)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.324022 0.318017 0.311298 0.323461 0.327763 0.298978 0.326881 0.333864	0.320883	0.00010705
		0.31481 0.329734		

29.4 Ошибка по значениям целевой функции E_y

Таблица 83. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 4)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		5.82992		
		5.63183	5.55353	0.0684585
		5.21835		
		5.84958		
1	Отсутствует	5.19259		
1	Olcytcibyer	5.40954	0.0000	0.0004000
		5.34762		
		5.82726		
		5.44419		
		5.78444		

Таблица 84. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0	
		0		0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0	0	
		0		
		0		
		0		
		0		

30 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 5)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:05.

Дата создания исследования: 18.12.2013 23:29:05.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_HyperEllipsoid.

вой функции:

Полное название тестовой функции: Гипер-эллипсоид.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1849000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

30.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 85. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 5)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.409039 0.383818 0.400515 0.401531 0.410162 0.380574 0.396503 0.398351 0.358768 0.357882	0.389714	0.000361978

30.4 Ошибка по значениям целевой функции E_y

Таблица 86. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 5)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		16.1398		
		14.8776		
		15.7025		
		15.1332		
1	Отсутствует	15.0957	15.2047	0.447555
1	Olcylcibyer	15.1797	10.2047	0.447000
		16.2523		
		14.3297		
		15.0822		
		14.2544		

Таблица 87. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0	
		0		0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0	0	
		0		
		0		
		0		
		0		

31 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 10)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:05.

Дата создания исследования: 18.12.2013 23:29:05.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_HyperEllipsoid.

вой функции:

Полное название тестовой функции: Гипер-эллипсоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 5776000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

31.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 88. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 10)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.49003 0.46181 0.486628 0.470332 0.466945 0.481153 0.469424 0.484712 0.475822 0.472479	0.475934	8.70391e-05

${f 31.4}$ Ошибка по значениям целевой функции E_y

Таблица 89. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
	Отсутствует	312.483	306.368	25.4102
		307.006		
		304.906		
		301.692		
1		303.174		
1		303.589		
		312.199		
		309.932		
		297.489		
		311.208		

Таблица 90. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
	Отсутствует	0	0	0
		0		
		0		
		0		
1		0		
1		0		
		0		
		0		
		0		
		0		

32 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 20)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:08.

Дата создания исследования: 18.12.2013 23:29:08.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_HyperEllipsoid.

вой функции:

Полное название тестовой функции: Гипер-эллипсоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 15876000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

32.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 91. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 20)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.436618 0.425928 0.43362 0.425386 0.427039 0.426581 0.415417 0.434906	0.428725	5.20951e-05
		0.438991 0.422768		

32.4 Ошибка по значениям целевой функции E_y

Таблица 92. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		4907.95		
		4807.78		
		4811.26		
		4864.72		
1	Отсутствует	4915.08	4847.52	4740.95
1	Oley lelbyel	4701.66	1017.02	1710.50
		4876.87		
		4822.51		
		4937.93		
		4829.45		

Таблица 93. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0	
		0		0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0	0	
		0		
		0		
		0		
		0		

33 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 30)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:19.

Дата создания исследования: 18.12.2013 23:29:19.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_HyperEllipsoid.

вой функции:

Полное название тестовой функции: Гипер-эллипсоид.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 28224000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

33.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 94. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 30)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.381645 0.378961 0.379698 0.383409 0.383829 0.380602 0.384518 0.386026	0.382159	6.60856e-06
		0.384159 0.378748		

33.4 Ошибка по значениям целевой функции E_{y}

Таблица 95. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Гипер-эллипсоид» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		22401.2		
		22323.8		
		22619.8		
		22077.8		
1	Отсутствует	21988.5	22280	65318.1
1	Oleyleibyei	21776.5	22200	00010.1
		22460.3		
		22361		
		22323.1		
		22468.4		

Таблица 96. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Гипер-эллипсоид» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0		
		0		
		0		
		0		
		0		

34 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Перевернутая функция Розенброка» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.01.2014 17:56:57.

Дата создания исследования: 28.01.2014 17:56:57.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_InvertedRosenbrock.

вой функции:

Полное название тестовой функции: Перевернутая функция Розенброка.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

34.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 97. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Перевернутая функция Розенброка» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.178771 0.1919 0.200679 0.204482 0.212885 0.214803 0.213672 0.205844 0.19827 0.176837	0.199814	0.000186914

34.4 Ошибка по значениям целевой функции E_y

Таблица 98. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Перевернутая функция Розенброка» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.20775		
		0.22673		
		0.229186		
		0.237819		
1	Отсутствует	0.246685	0.230585	0.000268953
1	Olcylcibyer	0.251108	0.230303	0.000200333
		0.244241		
		0.235141		
		0.227107		
		0.200085		

Таблица 99. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Перевернутая функция Розенброка» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0.01 0.01 0 0 0 0.01	0.004	2.66667e-05
		0 0.01 0		

35 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Катникова» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 26.12.2013 00:27:40.

Дата создания исследования: 26.12.2013 00:27:40.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Katnikov.

вой функции:

Полное название тестовой функции: Функция Катникова.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

35.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 100. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Катникова» (размерность равна 2)

N₂	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.294972 0.291327 0.302165 0.267878 0.244684 0.259164 0.271582 0.285485 0.290627	0.277222	0.000339344
		0.264337		

${f 35.4}$ Ошибка по значениям целевой функции E_y

Таблица 101. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Катникова» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.0647078		
		0.0615479		
		0.05623		
		0.0583154		
1	Отсутствует	0.0617964	0.0610626	1.33891e-05
1	Ofcytcibyer	0.0587386	0.0010020	1.556516-05
		0.0569688		
		0.0630169		
		0.061203		
		0.0681011		

Таблица 102. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Катникова» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0.01	
		0		0.000133333
		0.01		
1	Отсутствует	0.02		
1	Ofcyterbyer	0.03	0.01	
		0		
		0.02		
		0		
		0.02		

36 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal» (размерность равна 1)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 24.12.2013 12:41:35.

Дата создания исследования: 24.12.2013 12:41:35.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Multiextremal.

вой функции:

Полное название тестовой функции: Функция Multiextremal.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 64

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 64000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

36.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 103. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Multiextremal» (размерность равна 1)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.513218 0.506221 0.472354 0.510512 0.470661 0.467014 0.483122 0.475174 0.499569	0.488619	0.00030878
		0.48835		

${f 36.4}$ Ошибка по значениям целевой функции E_y

Таблица 104. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Multiextremal» (размерность равна 1)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.0283148		
		0.0298147		
		0.0256805		
		0.0333045		
1	Отсутствует	0.0277256	0.0286324	4.16502e-06
1	Olcylcibyer	0.0266154	0.0200324	4.103026-00
		0.0282348		
		0.028677		
		0.029256		
		0.0287012		

Таблица 105. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal» (размерность равна 1)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0.19		
		0.2		
		0.22		
		0.16		
1	Отсутствует	0.24	0.203	0.000867778
1	Olcyterbyer	0.26	0.203	0.000807778
		0.18		
		0.19		
		0.19		
		0.2		

37 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal2» (размерность равна 1)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 24.12.2013 12:41:46.

Дата создания исследования: 24.12.2013 12:41:46.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Multiextremal2.

вой функции:

Полное название тестовой функции: Функция Multiextremal2.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 64

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 64000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

37.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 106. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Multiextremal2» (размерность равна 1)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.811715 0.882584 0.775366 0.829496 0.729104 0.597946 0.652685 0.750761 1.01129	0.789779	0.0139159
		0.856848		

${f 37.4}$ Ошибка по значениям целевой функции E_y

Таблица 107. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Multiextremal2» (размерность равна 1)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.183756 0.181251 0.163889 0.164925 0.151652 0.151765 0.148276 0.163898 0.192016	0.166884	0.00021684
		0.192010		

Таблица 108. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal2» (размерность равна 1)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0.22		
		0.15		
		0.31	0.273	0.00484556
		0.28		
1	Отсутствует	0.37		
1	Olcytcibyer	0.34	0.213	
		0.33		
		0.26		
		0.19		
		0.28		

38 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal3» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:57:30.

Дата создания исследования: 28.12.2013 16:57:30.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Multiextremal3.

вой функции:

Полное название тестовой функции: Функция Multiextremal3.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

38.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 109. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Multiextremal3» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.135081 0.145901 0.138505 0.134445 0.14423 0.147085 0.150951	0.142329	5.08728e-05
		0.149717 0.146879 0.1305		

38.4 Ошибка по значениям целевой функции E_y

Таблица 110. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Multiextremal3» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		2.90886		
		3.09009		
		2.80479		
		2.81129		
1	Отсутствует	2.96668	2.93244	0.00849693
1	Olcylcibyer	3.02188	2.33244	0.00043033
		2.9452		l
		2.95062		
		2.98186		
		2.84309		

Таблица 111. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal3» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0.02		
		0		
		0	0.01	6.66667e-05
		0.02		
1	Отсутствует	0.02		
1	Olcytcibyei	0.01	0.01	
		0.01		
		0		
		0.01		
		0.01		

39 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal4» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:57:34.

Дата создания исследования: 28.12.2013 16:57:34.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Multiextremal4.

вой функции:

Полное название тестовой функции: Функция Multiextremal4.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

39.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 112. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Multiextremal4» (размерность равна 2)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
		0.225322		
		0.265664	0.236566	0.000218764
		0.247154		
		0.217691		
1	Отсутствует	0.234419		
1	Olcytcibyer	0.243144	0.230000	
		0.22629		
		0.221794		
		0.235211		
		0.24897		

39.4 Ошибка по значениям целевой функции E_y

Таблица 113. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Multiextremal4» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.0373937		
		0.0369895		
		0.0411918		
		0.0405036		
1	Отсутствует	0.0430693	0.041258	8.64631e-06
1	Oley lelbyel	0.0431913	0.041200	0.040010 00
		0.0397308		
		0.044652		
		0.0399595		
		0.0458985		

Таблица 114. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Multiextremal4» (размерность равна 2)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0.01		
		0		
		0	0.001	1e-05
		0		
1	Отоутотруот	0		
1	Отсутствует	0	0.001	
		0		
		0		
		0		
		0		

40 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Мультипликативная потенциальная функция» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 15.12.2013 00:24:37.

Дата создания исследования: 15.12.2013 00:24:37.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_MultiplicativePotential.

вой функции:

Полное название тестовой функции: Мультипликативная потенциальная функция.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

40.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 115. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Мультипликативная потенциальная функция» (размерность равна 2)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
	Отсутствует	0.076763	0.0759806	7.50237e-05
		0.0704521		
		0.0660822		
		0.0805611		
1		0.0616353		
1		0.0863336		
		0.082583		
		0.0692786		
		0.0864792		
		0.0796379		

40.4 Ошибка по значениям целевой функции E_y

Таблица 116. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Мультипликативная потенциальная функция» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
	Отсутствует	7.27755	7.37903	0.365297
		6.89947		
		6.70838		
		8.45241		
1		6.51826		
1		7.58353		
		7.76433		
		7.5757		
		7.97634		
		7.03432		

Таблица 117. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Мультипликативная потенциальная функция» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
	Отсутствует	0.01	0.012	
		0		
		0.03		
		0.01		
1		0		8.44444e-05
		0.01		0.111116-00
		0.02		
		0.02		
		0.01		
		0.01		

41 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:36:56.

Дата создания исследования: 17.10.2013 02:36:56.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_ParaboloidOfRevolution.

вой функции:

Полное название тестовой функции: Эллиптический параболоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

41.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 118. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Эллиптический параболоид» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.0544493 0.0593599 0.0555122 0.0526079 0.0566863 0.0519556 0.0502156 0.0572656 0.0572656 0.0585101 0.0554857	0.0552048	8.61879e-06

${f 41.4}$ Ошибка по значениям целевой функции E_y

Таблица 119. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Эллиптический параболоид» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.0149776 0.0176905 0.0152997 0.0143752 0.0165941 0.0135171 0.0123706 0.0166342	0.0153949	2.85363e-06
		0.0172692 0.0152204		

Таблица 120. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.01 0 0 0.01 0 0 0 0	0.002	1.77778e-05

42 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 3)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:36:56.

Дата создания исследования: 17.10.2013 02:36:56.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_ParaboloidOfRevolution.

вой функции:

Полное название тестовой функции: Эллиптический параболоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 729000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

42.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 121. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Эллиптический параболоид» (размерность равна 3)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.0871729 0.0789749 0.0829359 0.0816045 0.0798836 0.0817166 0.0803356 0.0819128 0.0746252	0.0811456	1.01616e-05
		0.0822942		

42.4 Ошибка по значениям целевой функции E_{y}

Таблица 122. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Эллиптический параболоид» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.078426 0.0643335 0.072611 0.0672901 0.0636859 0.0692975 0.0672136 0.0674913 0.057575	0.0677048	3.04618e-05
		0.0691244		

Таблица 123. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0	0	
		0		
		0		
		0		
		0		

43 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 4)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:36:56.

Дата создания исследования: 17.10.2013 02:36:56.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_ParaboloidOfRevolution.

вой функции:

Полное название тестовой функции: Эллиптический параболоид.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1225000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

43.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 124. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Эллиптический параболоид» (размерность равна 4)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.101151 0.106335 0.102128 0.101438 0.101191 0.101369 0.10315 0.105872 0.103339 0.104038	0.103001	3.6819e-06

43.4 Ошибка по значениям целевой функции E_y

Таблица 125. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Эллиптический параболоид» (размерность равна 4)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.176277 0.190169		
		0.183005	0.18254	2.69349e-05
		0.180375		
1	Отсутствует	0.17753		
	Oley lelbyel	0.176812	0.10201	2.000100 00
		0.18164		
		0.191197		
		0.183519		
		0.184877		

Таблица 126. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 4)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Olcytcibyer	0	0	
		0		
		0		
		0		
		0		

44 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 5)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:36:57.

Дата создания исследования: 17.10.2013 02:36:57.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_ParaboloidOfRevolution.

вой функции:

Полное название тестовой функции: Эллиптический параболоид.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1849000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

44.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 127. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Эллиптический параболоид» (размерность равна 5)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.117186 0.114917 0.121382 0.11362 0.116128 0.114191 0.120347 0.116814 0.110996 0.116588	0.116217	9.44144e-06

${f 44.4}$ Ошибка по значениям целевой функции E_u

Таблица 128. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Эллиптический параболоид» (размерность равна 5)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.361183 0.34922 0.381895 0.344427 0.353627 0.346623 0.38112	0.355555	0.00027053
		0.353451 0.327229 0.356772		

Таблица 129. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0	0	
		0		
		0		
		0		
		0		

45 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 10)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:36:58.

Дата создания исследования: 17.10.2013 02:36:58.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_ParaboloidOfRevolution.

вой функции:

Полное название тестовой функции: Эллиптический параболоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 5776000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

45.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 130. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Эллиптический параболоид» (размерность равна 10)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
	1 Отсутствует	0.144321 0.145197		2.36413e-06
		0.143584	0.145964	
		0.146262		
1		0.146478		
1		0.148163		
		0.147566		
		0.144984		
		0.147755		
		0.14533		

${f 45.4}$ Ошибка по значениям целевой функции E_y

Таблица 131. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		2.12585		
		2.14115		0.00159889
	Отсутствует	2.10264	2.16348	
		2.17539		
1		2.17358		
1		2.22065		
		2.20262		
		2.13592		
		2.21398		
		2.14299		

Таблица 132. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 10)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		0
	Отсутствует	0	0	
		0		
1		0		
1		0		
		0		
		0		
		0		
		0		

46 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 20)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:37:01.

Дата создания исследования: 17.10.2013 02:37:01.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

 $HML_TestFunction_ParaboloidOfRevolution.$

вой функции:

Полное название тестовой функции: Эллиптический параболоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 15876000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

46.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 133. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Эллиптический параболоид» (размерность равна 20)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.14327 0.144526 0.145138 0.143651 0.145595 0.142929 0.14446 0.143771 0.143496 0.145168	0.1442	8.22018e-07

${f 46.4}$ Ошибка по значениям целевой функции E_y

Таблица 134. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		8.24631 8.39104 8.45138 8.2929		
1	Отсутствует	8.51015 8.19891 8.3714	8.34876	0.0104932
		8.29854 8.27258 8.45442		

Таблица 135. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 20)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		0
	Отсутствует	0	0	
		0		
1		0		
1		0		
		0		
		0		
		0		
		0		

47 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 30)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:37:14.

Дата создания исследования: 17.10.2013 02:37:14.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_ParaboloidOfRevolution.

вой функции:

Полное название тестовой функции: Эллиптический параболоид.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 28224000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

47.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 136. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Эллиптический параболоид» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
		0.133156 0.134136 0.13453	0.133961	
1	1 Отсутствует	0.135275 0.133414 0.134502 0.133856		5.00103e-07
		0.134267 0.133132 0.133338		

${f 47.4}$ Ошибка по значениям целевой функции E_y

Таблица 137. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		15.9918		
		16.2225		0.0277236
	Отсутствует	16.311	16.1788	
		16.4897		
1		16.0573		
1		16.3071		
		16.1538		
		16.2449		
		15.9759		
		16.0335		

Таблица 138. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Эллиптический параболоид» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		0
	Отсутствует	0	0	
		0		
1		0		
1		0		
		0		
		0		
		0		
		0		

48 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Rana» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 29.12.2013 15:40:20.

Дата создания исследования: 29.12.2013 15:40:20.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rana.

вой функции:

Полное название тестовой функции: Функция Rana.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

48.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 139. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Rana» (размерность равна 2)

416.763	дисперсия
378.611 381.534 383.51 371.473 387.089 405.099 396.34 412.091 399.1	227.84

${f 48.4}$ Ошибка по значениям целевой функции E_y

Таблица 140. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Rana» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		38.4711		
		42.3908		3.25118
	Отсутствует	40.0159	39.1605	
		37.8046		
1		38.92		
1		40.0245		
		38.4565		
		40.091		
		39.8873		
		35.543		

Таблица 141. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Rana» (размерность равна 2)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		0
	Отсутствует	0	0	
		0		
1		0		
1		0		
		0		
		0		
		0		
		0		

49 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:37:59.

Дата создания исследования: 17.10.2013 02:37:59.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rastrigin.

вой функции:

Полное название тестовой функции: Функция Растригина.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

49.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 142. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 2)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.533922 0.554434 0.567883 0.531643 0.545437 0.561071 0.544004 0.580276 0.51825	0.556143	0.000912641
		0.624513		

49.4 Ошибка по значениям целевой функции E_{y}

Таблица 143. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	3.10636 2.9283 2.91098 2.80785 3.06758 3.12365 3.43117 3.20931	3.08094	0.0407044
		2.89321 3.33103		

Таблица 144. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.01 0 0 0.04 0 0 0 0 0 0	0.006	0.00016

50 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 3)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:37:59.

Дата создания исследования: 17.10.2013 02:37:59.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rastrigin.

вой функции:

Полное название тестовой функции: Функция Растригина.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 729000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

50.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 145. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 3)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.631931 0.610674 0.61316 0.634441 0.567094 0.63014 0.601183 0.629808 0.633995	0.613422	0.000562183
		0.581794		

50.4 Ошибка по значениям целевой функции E_y

Таблица 146. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		8.14289		
		7.41928		
		7.60931	7.81527 0.0740364	
		8.09902		0.0740364
1	Отсутствует	7.58894		
1	Oley lelbyel	8.03192	7.01021	0.07 10001
		8.1139		
		7.5908		
		7.63907		
		7.91762		

Таблица 147. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 3)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcylcibyer	0		
		0		
		0		
		0		
		0		

51 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 4)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:37:59.

Дата создания исследования: 17.10.2013 02:37:59.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rastrigin.

вой функции:

Полное название тестовой функции: Функция Растригина.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1225000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

51.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 148. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 4)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.659803 0.637805 0.649861 0.639526 0.608817 0.631742 0.61228 0.622809	0.631534	0.000280337
		0.637925 0.61477		

${f 51.4}$ Ошибка по значениям целевой функции E_y

Таблица 149. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 4)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		14.9218		
		14.6327		
		14.7124		
		14.842		
1	Отсутствует	14.4322	14.5128	0.12567
1	Olcylcibyer	14.9173	14.5126	0.12507
		13.9455		
		14.0878		
		14.4812		
		14.1556		

Таблица 150. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0	
		0		0
		0		
1	Отсутствует	0		
1	Olcytcibyei	0		
		0		
		0		
		0		
		0		

52 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 5)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:38:01.

Дата создания исследования: 17.10.2013 02:38:01.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rastrigin.

вой функции:

Полное название тестовой функции: Функция Растригина.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1849000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

52.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 151. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 5)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.599006 0.627243 0.591447 0.620111 0.600708 0.644092 0.623345	0.615664	0.000253016
		0.622924 0.606485 0.621281		

52.4 Ошибка по значениям целевой функции E_{y}

Таблица 152. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 5)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		21.6798		
		22.4532		
		22.4044		
		22.1227		
1	Отсутствует	21.6516	22.3023	0.156927
1	Oley lelbyel	22.7902	22.3023	0.130321
		22.6136		
		22.7484		
		22.3017		
		22.2574		

Таблица 153. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0	
		0		0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0	0	
		0		
		0		
		0		
		0		

53 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 10)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:38:03.

Дата создания исследования: 17.10.2013 02:38:03.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rastrigin.

вой функции:

Полное название тестовой функции: Функция Растригина.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 5776000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

53.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 154. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 10)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.547976 0.55138 0.559116 0.542038 0.542638 0.561596 0.548537 0.559413 0.565992	0.553556	6.76072e-05
		0.565992 0.556876		

53.4 Ошибка по значениям целевой функции E_{y}

Таблица 155. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		72.2249		
		72.982		
		70.7719		
		72.2548	71.8185	0.537773
1	Отсутствует	71.525		
1	Olcylcibyel	71.9503		
		71.1423		
		71.086		
		72.7368		
		71.5107		

Таблица 156. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 10)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Olcytcibyer	0	0	
		0		
		0		
		0		
		0		

54 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 20)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:38:11.

Дата создания исследования: 17.10.2013 02:38:11.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rastrigin.

вой функции:

Полное название тестовой функции: Функция Растригина.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 15876000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

54.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 157. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 20)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
		0.460086		
		0.463704	0.455548	
		0.454754		2.92961e-05
		0.452215		
1	Отоутотруот	0.459297		
1	Отсутствует	0.458662	0.455546	2.929016-03
		0.451238		
		0.459131		
		0.447307		
		0.449088		

54.4 Ошибка по значениям целевой функции E_y

Таблица 158. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		194.209		
		193.996		
		191.72		
		193.67	193.544	0.921742
1	Отсутствует	194.691		
1	Olcylcibyer	194.497	133.044	0.321742
		193.282		
		192.236		
		193.179		
		193.956		

Таблица 159. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 20)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcytcibyer	0	U	U
		0		
		0		
		0		
		0		

55 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 30)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:38:51.

Дата создания исследования: 17.10.2013 02:38:51.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rastrigin.

вой функции:

Полное название тестовой функции: Функция Растригина.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 28224000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

55.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 160. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.392855 0.39865 0.397869 0.393948 0.401643 0.393016 0.397695 0.395313 0.389977 0.394341	0.395531	1.17263e-05

${f 55.4}$ Ошибка по значениям целевой функции E_y

Таблица 161. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		329.068		
		329.381		
		332.141		
		331.036		
1	Отсутствует	328.722	328.69	3.39251
1	Oley lelbyel	326.547	020.03	0.00201
		327.617		
		328.155		
		327.983		
		326.247		

Таблица 162. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0	
		0		0
		0		
1	Отсутствует	0		
1	Official	0		
		0		
		0		
		0		
		0		

56 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 04.01.2014 00:25:11.

Дата создания исследования: 04.01.2014 00:25:11.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RastriginNovgorod.

вой функции:

Полное название тестовой функции: Функция Растригина новгородская.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

56.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 163. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина новгородская» (размерность равна 2)

N₂	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.0652538 0.0549215 0.0544113 0.0658186 0.0534936 0.0616471 0.0624713	0.057332	3.61634e-05
		0.0557222 0.0501327 0.0494475		

${f 56.4}$ Ошибка по значениям целевой функции E_y

Таблица 164. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.0803988		
		0.0518106		
		0.0549101		
		0.0710736		
1	Отсутствует	0.0505268	0.0612302	0.000198738
1	Olcyterbyer	0.0784087	0.0012302	0.000130730
		0.0764319		
		0.0587821		
		0.0417597		
		0.0481999		

Таблица 165. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0.01	0.004	
		0		4.88889e-05
		0		
1	Отсутствует	0.02		
1	Olcytcibyei	0	0.004	
		0.01		
		0		
		0		
		0		

57 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 3)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 04.01.2014 00:25:12.

Дата создания исследования: 04.01.2014 00:25:12.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RastriginNovgorod.

вой функции:

Полное название тестовой функции: Функция Растригина новгородская.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 729000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

57.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 166. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 3)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.112182 0.119654 0.112078 0.118182 0.117786 0.112719	0.112651	4.25364e-05
		0.112719 0.0999884 0.116214 0.102754 0.11495		

${f 57.4}$ Ошибка по значениям целевой функции E_y

Таблица 167. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина новгородская» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.379082		
		0.413896		
		0.398728		
		0.386015		
1	Отсутствует	0.37225	0.374495	0.00146076
1	Olcylcibyer	0.393088	0.074430	0.00140070
		0.341073		
		0.365141		
		0.285082		
		0.410599		

Таблица 168. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0	
		0		0
		0		
1	Отсутствует	0		
1	Oley lelbyel	0	0	
		0		
		0		
		0	0	
		0		

58 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 4)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 04.01.2014 00:25:13.

Дата создания исследования: 04.01.2014 00:25:13.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RastriginNovgorod.

вой функции:

Полное название тестовой функции: Функция Растригина новгородская.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1225000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

58.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 169. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.150762 0.155057 0.15075 0.163561 0.170708 0.154121 0.162549 0.160052	0.15799	3.92393e-05
		0.156667 0.155677		

58.4 Ошибка по значениям целевой функции E_y

Таблица 170. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 4)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
	Отсутствует	0.947819	0.985912	0.00208015
		0.991474		
		1.06151		
		0.948898		
1		1.05453		
1		0.98488		
		0.972097		
		0.968178		
		1.00989		
		0.919848		

Таблица 171. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
	Отсутствует	0	0	0
		0		
		0		
		0		
1		0		
		0		
		0		
		0		
		0		
		0		

59 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 5)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 04.01.2014 00:25:14.

Дата создания исследования: 04.01.2014 00:25:14.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RastriginNovgorod.

вой функции:

Полное название тестовой функции: Функция Растригина новгородская.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1849000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

59.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 172. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина новгородская» (размерность равна 5)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
		0.177318		
		0.179128		
		0.173315		
		0.175093		
1	Отсутствует	0.181697	0.175824	1.47588e-05
1	Olcytcibyei	0.181348	0.173024	1.475000-05
		0.171933		
		0.172513		
		0.171338		
		0.174552		

59.4 Ошибка по значениям целевой функции E_y

Таблица 173. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина новгородская» (размерность равна 5)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		1.77095		
		1.77866		
		1.7247		
		1.79367		
1	Отсутствует	1.75592	1.76747	0.00133881
1	Olcylcibyer	1.74733	1.70747	0.00133001
		1.82733		
		1.7227		
		1.73739		
		1.8161		

Таблица 174. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 5)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcytcibyer	0	0	
		0		
		0		
		0		
		0		

60 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 10)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 04.01.2014 00:25:16.

Дата создания исследования: 04.01.2014 00:25:16.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RastriginNovgorod.

вой функции:

Полное название тестовой функции: Функция Растригина новгородская.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 5776000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

60.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 175. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина новгородская» (размерность равна 10)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.187169 0.184275 0.181576 0.180565 0.184932 0.179563 0.183984 0.180432 0.178534	0.182433	7.4334e-06
		0.183305		

60.4 Ошибка по значениям целевой функции E_y

Таблица 176. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 10)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_y$	Среднее значение	Дисперсия
		7.14343		
		7.16747		
		6.95195		
		7.02606	7.09777	0.00839977
1	Отсутствует	7.24157		
1	Olcylcibyer	7.14134	1.03111	0.00033311
		7.01528		
		7.14369		
		7.14268		
		7.00427		

Таблица 177. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Olcylcibyel	0		
		0		
		0		
		0		
		0		

61 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 20)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 04.01.2014 00:25:24.

Дата создания исследования: 04.01.2014 00:25:24.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RastriginNovgorod.

вой функции:

Полное название тестовой функции: Функция Растригина новгородская.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 15876000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

61.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 178. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина новгородская» (размерность равна 20)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.162314 0.159954 0.163618 0.161104 0.161736 0.16143 0.161748 0.163541 0.162683 0.162614	0.162074	1.25852e-06

${f 61.4}$ Ошибка по значениям целевой функции E_u

Таблица 179. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		21.1784		
		20.9266		
		20.8256		
		20.8412		
1	Отсутствует	20.9978	20.9637	0.0212057
1	Olcytcibyer	20.8237	20.3037	0.0212001
		21.2083		
		21.0745		
		20.8444		
		20.9168		

Таблица 180. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 20)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcytcibyer	0	0	
		0		
		0		
		0		
		0		

62 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 30)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 04.01.2014 00:26:02.

Дата создания исследования: 04.01.2014 00:26:02.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RastriginNovgorod.

вой функции:

Полное название тестовой функции: Функция Растригина новгородская.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 28224000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

62.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 181. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина новгородская» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.146509 0.145209 0.146009 0.147443 0.146097 0.146007 0.147132 0.144589 0.146279	0.146088	7.11722e-07
		0.145605		

${f 62.4}$ Ошибка по значениям целевой функции E_u

Таблица 182. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		37.0323		
		36.734		
		36.4275		
		36.8016		
1	Отсутствует	36.5141	36.7383	0.0537787
1	Olcytcibyer	36.4229	30.7303	0.0001101
		36.6546		
		36.891		
		36.8397		
		37.0648		

Таблица 183. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина новгородская» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcytcibyer	0		
		0		
		0		
		0		
		0		

63 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина с изменением коэффициентов» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 30.12.2013 01:52:09.

Дата создания исследования: 30.12.2013 01:52:09.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RastriginWithChange.

вой функции:

Полное название тестовой функции: Функция Растригина с изменением коэффициен-

тов.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

63.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 184. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина с изменением коэффициентов» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.387299 0.521543 0.463396 0.44388 0.460487 0.475096 0.448001 0.465483 0.424721	0.451594	0.00127093
		0.424721 0.426031		

63.4 Ошибка по значениям целевой функции E_{y}

Таблица 185. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина с изменением коэффициентов» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.982431		
		1.51615	1.29547	
		1.3976		0.023914
		1.30944		
1	Отсутствует	1.3551		
1	Olcylcibyer	1.46017	1.23047	0.020314
		1.29814		l
		1.27404		
		1.16552		
		1.19611		

Таблица 186. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина с изменением коэффициентов» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.01 0 0.02 0 0 0.01 0 0.01 0	0.005	5e-05

64 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина овражная с поворотом осей» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 30.12.2013 01:52:00.

Дата создания исследования: 30.12.2013 01:52:00.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RastriginWithTurning.

2

вой функции:

Полное название тестовой функции: Функция Растригина овражная с поворотом

осей.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

64.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 187. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина овражная с поворотом осей» (размерность равна 2)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	2.56198 2.5139 2.26279 2.37542 2.2989 2.1489 2.07049 2.22223	2.31077	0.0238756
		2.40274 2.25031		

64.4 Ошибка по значениям целевой функции E_y

Таблица 188. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Растригина овражная с поворотом осей» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.741045		
		0.717579	0.707373	0.00116552
		0.703641		
		0.696122		
1	Отсутствует	0.70642		
1	Olcytcibyer	0.668374		
		0.664166		
		0.683373		
		0.778784		
		0.714228		

Таблица 189. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Растригина овражная с поворотом осей» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0.01		
		0.01		
		0.02	0.007	4.55556e-05
		0.01		
1	Отсутствует	0.01		
1	Olcytcibyer	0	0.007	
		0		
		0		
		0		
		0.01		

65 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция ReverseGriewank» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.12.2013 01:07:29.

Дата создания исследования: 17.12.2013 01:07:29.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_ReverseGriewank.

вой функции:

Полное название тестовой функции: Функция ReverseGriewank.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

65.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 190. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция ReverseGriewank» (размерность равна 2)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.699363 0.779323 0.846082 0.91667 0.728271 0.829446 1.02801 0.965539 0.869131	0.853642	0.0103624
		0.874581		

${f 65.4}$ Ошибка по значениям целевой функции E_y

Таблица 191. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция ReverseGriewank» (размерность равна 2)

№	Настройки алгоритма	${f 3}$ начения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.0781191 0.080695 0.0806299 0.0896662 0.077356 0.0861933 0.0978989 0.0863523 0.0829666 0.0826641	0.0842541	3.76493e-05

Таблица 192. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция ReverseGriewank» (размерность равна 2)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.01 0.02 0.02 0 0 0 0 0 0.01	0.007	дисперсия 6.77778e-05
		0.01		
		0		

66 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:40:48.

Дата создания исследования: 17.10.2013 02:40:48.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rosenbrock.

вой функции:

Полное название тестовой функции: Функция Розенброка.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

66.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 193. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 2)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
		0.237306		
		0.238402		0.00028111
		0.231527	0.218377	
		0.21423		
1	Отсутствует	0.21339		
1	Orcyrcibyer	0.231847	0.210377	
		0.184749		
		0.20405		
		0.213092		
		0.215181		

${f 66.4}$ Ошибка по значениям целевой функции E_y

Таблица 194. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.149671 0.181984 0.199128 0.176001		
1	Отсутствует	0.183741 0.152841 0.136914 0.141793	0.16303	0.00042674
		0.152263 0.155967		

Таблица 195. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0.02		
		0.01		
		0.01	0.007	4.55556e-05
		0		
1	Отсутствует	0		
1	Olcytcibyer	0	0.007	
		0.01		
		0.01		
		0.01		
		0		

67 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 3)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:40:48.

Дата создания исследования: 17.10.2013 02:40:48.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rosenbrock.

вой функции:

Полное название тестовой функции: Функция Розенброка.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 729000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

67.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 196. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 3)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.378091 0.366553 0.37854 0.374519 0.37386 0.350821 0.373214 0.400879	0.371096	0.000211886
		0.363412 0.351071		

${f 67.4}$ Ошибка по значениям целевой функции E_y

Таблица 197. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
	Отсутствует	2.60904	2.60508 0.0	
		2.42496		
		2.64088		
		2.63385		0.00549577
1		2.65567		
1		2.54334		0.00043077
		2.59653		
		2.66722		
		2.6065		
		2.6728		

Таблица 198. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 3)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
	Отсутствует	0	0	0
		0		
		0		
		0		
1		0		
		0		
		0		
		0		
		0		
		0		

68 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 4)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:40:48.

Дата создания исследования: 17.10.2013 02:40:48.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rosenbrock.

вой функции:

Полное название тестовой функции: Функция Розенброка.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1225000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

68.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 199. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 4)

Nº	Настройки алгоритма	${f 3}$ начения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.417781 0.405515 0.379644 0.406717 0.423766 0.410537 0.422668 0.38492 0.417502 0.398848	0.40679	0.000229977

68.4 Ошибка по значениям целевой функции E_y

Таблица 200. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 4)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		9.78018		
		8.70427		
		9.03176		
		10.7347		
1	Отсутствует	9.59615	9.66651	0.30595
1	Oleyleibyei	9.56048	3.00001	0.50550
		10.0103		
		9.81128		
		9.48332		
		9.95266		

Таблица 201. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 4)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcytcibyer	0	O O	U
		0		
		0		
		0		
		0		

69 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 5)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:40:49.

Дата создания исследования: 17.10.2013 02:40:49.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rosenbrock.

вой функции:

Полное название тестовой функции: Функция Розенброка.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1849000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

69.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 202. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 5)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.377392 0.384148 0.37791 0.403267 0.401233 0.397462 0.382099 0.374907	0.389731	0.000129572
		0.398792 0.400104		

69.4 Ошибка по значениям целевой функции E_y

Таблица 203. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 5)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		22.9954		
		22.8098		
		23.4608		
		25.755		
1	Отсутствует	23.8993	23.5405	1.45739
1	Olcytcibyer	24.5363	25.5405	1.40703
		24.1029		
		22.7689		
		23.8292		
		21.2471		

Таблица 204. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Oley lelbyel	0		
		0		
		0		
		0		
		0		

70 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 10)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:40:49.

Дата создания исследования: 17.10.2013 02:40:49.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rosenbrock.

вой функции:

Полное название тестовой функции: Функция Розенброка.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 5776000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

70.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 205. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.289945 0.286904 0.302283 0.289856 0.295224 0.290925 0.295023 0.284114 0.304694 0.286147	0.292511	4.62428e-05

${f 70.4}$ Ошибка по значениям целевой функции E_y

Таблица 206. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		216.884		
		208.376		
		205.746	213.92	
		216.492		24.9887
1	Отсутствует	210.346		
1	Olcylcibyer	221.51	210.32	24.3001
		216.011		
		217.039		
		209.73		
		217.068		

Таблица 207. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 10)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Olcytcibyer	0	0	
		0		
		0		
		0		
		0		

71 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 20)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:40:53.

Дата создания исследования: 17.10.2013 02:40:53.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rosenbrock.

вой функции:

Полное название тестовой функции: Функция Розенброка.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 15876000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

71.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 208. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.239158 0.235067 0.235114 0.235692 0.235137 0.231517 0.235414	0.235711	3.87088e-06
		0.236662 0.237516 0.235833		3.87088e-06

71.4 Ошибка по значениям целевой функции E_{y}

Таблица 209. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		1249.58		
		1223.55		
		1253.41		
		1281.59		
1	Отсутствует	1202.92	1234.21	817.132
1	Olcylcibyel	1182.08	1204.21	017.102
		1229.69		
		1249.16		
		1250.05		
		1220.09		

Таблица 210. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 20)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Official	0	U	U
		0		
		0		
		0		
		0		

72 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 30)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:41:06.

Дата создания исследования: 17.10.2013 02:41:06.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Rosenbrock.

вой функции:

Полное название тестовой функции: Функция Розенброка.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 28224000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

72.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 211. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 30)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.200021 0.204216 0.202492 0.202174 0.20337 0.201171 0.201182 0.200648 0.2013 0.19849	0.201506	2.72603e-06

72.4 Ошибка по значениям целевой функции E_{y}

Таблица 212. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Розенброка» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		2833.38		
		2862.32		
		2825.56	2827.15	1602.12
		2864.39		
1	Отсутствует	2904		
1	Oley lelbyel	2804.3	2027.10	1002.12
		2776.43		
		2782.77		
		2817.47		
		2800.88		

Таблица 213. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Розенброка» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcylcibyer	0	0	0
		0		
		0		
		0		
		0		

73 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:53.

Дата создания исследования: 18.12.2013 23:29:53.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RotatedHyperEllipsoid.

вой функции:

Полное название тестовой функции: Развернутый гипер-эллипсоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

73.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 214. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 2)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.18088 0.154781 0.174088 0.153237 0.171496 0.149105 0.1725 0.163532 0.168974	0.163793	0.000130822
		0.149336		

73.4 Ошибка по значениям целевой функции E_{y}

Таблица 215. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.117228 0.102266 0.0995068 0.0877105 0.111675 0.0863295 0.101542 0.0968991 0.109895	0.100337	0.000108768
		0.0903182		

Таблица 216. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0.02		
		0.01		
		0	0.005	5e-05
		0		
1	Отсутствует	0		
1	Official	0	0.003	
		0		
		0.01		
		0		
		0.01		

74 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 3)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:53.

Дата создания исследования: 18.12.2013 23:29:53.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RotatedHyperEllipsoid.

вой функции:

Полное название тестовой функции: Развернутый гипер-эллипсоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 729000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

74.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 217. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 3)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
		0.252754		
		0.284523		0.000201944
		0.267677		
		0.24348		
1	Отсутствует	0.240291	0.255285	
1	Official	0.26625	0.233263	
		0.2525		
		0.257535		
		0.248775		
		0.239066		

74.4 Ошибка по значениям целевой функции E_{y}

Таблица 218. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.419976		
		0.46391		
		0.464847	0.423205	0.000910452
		0.420274		
1	Отсутствует	0.404157		
1	Olcylcibyer	0.40619	0.420200	0.000310432
		0.425543		
		0.457029		
		0.379051		
		0.39107		

Таблица 219. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 3)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcytcibyer	0	0	
		0		
		0		
		0		
		0		

75 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 4)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:54.

Дата создания исследования: 18.12.2013 23:29:54.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RotatedHyperEllipsoid.

вой функции:

Полное название тестовой функции: Развернутый гипер-эллипсоид.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1225000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

75.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 220. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.331242 0.336403 0.305746 0.334896 0.335695 0.348882 0.322676 0.352409	0.3346	0.000204235
		0.327041 0.35101		

75.4 Ошибка по значениям целевой функции E_y

Таблица 221. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 4)

№	Настройки алгоритма	${f 3}$ начения ошибки E_y	Среднее значение	Дисперсия
		1.12645		
		1.13014		0.00362279
		1.02458		
		1.13299		
1	Отсутствует	1.17277	1.1396	
1	Olcylcibyer	1.14377	1.1550	0.00302213
		1.1004		
		1.24488		
		1.1126		
		1.20744		

Таблица 222. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 4)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcylcibyer	0	0	0
		0		
		0		
		0		
		0		

76 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 5)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:54.

Дата создания исследования: 18.12.2013 23:29:54.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RotatedHyperEllipsoid.

вой функции:

Полное название тестовой функции: Развернутый гипер-эллипсоид.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1849000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

76.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 223. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 5)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.371424 0.385866 0.37965 0.406254 0.405654 0.392653 0.405495 0.389909 0.370367	0.389585	0.000179047
		0.388577		

76.4 Ошибка по значениям целевой функции E_{y}

Таблица 224. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 5)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
	Отсутствует	2.13069	2.30855	0.0139119
		2.31993		
		2.09416		
		2.39701		
1		2.43217		
1		2.22442		
		2.366		
		2.34555		
		2.39376		
		2.3818		

Таблица 225. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
	Отсутствует	0	0	0
		0		
		0		
		0		
1		0		
1		0		
		0		
		0		
		0		
		0		

77 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 10)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:55.

Дата создания исследования: 18.12.2013 23:29:55.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RotatedHyperEllipsoid.

вой функции:

Полное название тестовой функции: Развернутый гипер-эллипсоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 5776000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

77.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 226. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 10)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
		0.497624		
		0.504975		0.000135043
		0.486184	0.496529	
		0.483776		
1	Отсутствует	0.503724		
1	Official	0.496945	0.430323	0.000133043
		0.515356		
		0.48647		
		0.508562		
		0.481669		

77.4 Ошибка по значениям целевой функции E_{y}

Таблица 227. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		13.2176		
		13.5354		
		13.1672		
		13.7448	13.4331	0.0732831
1	Отсутствует	13.3789		
1	Olcylcibyer	13.4425	10.4001	0.0732031
	13.7723 13.1327 13.8042			
		13.1327		
		13.8042		
		13.1352		

Таблица 228. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 10)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcytcibyer	0	U	U
		0		
		0		
		0		
		0		

78 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 20)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:29:59.

Дата создания исследования: 18.12.2013 23:29:59.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RotatedHyperEllipsoid.

вой функции:

Полное название тестовой функции: Развернутый гипер-эллипсоид.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 15876000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

78.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 229. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 20)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.48881 0.493679 0.472496 0.497043 0.493964 0.488528 0.472216 0.479901 0.479971 0.475923	0.484253	8.61733e-05

78.4 Ошибка по значениям целевой функции E_{y}

Таблица 230. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		55.3282		
		54.2065		
		53.399		
		54.7538	54.4261	0.57694
1	Отсутствует	55.5605		
1	Olcylcibyer	54.1295		0.57054
		53.9937		
		53.4802		
		54.1775		
		55.2322		

Таблица 231. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 20)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1		0		
1	Отсутствует	0	0	
		0		
		0		
		0		
		0		

79 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 30)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 18.12.2013 23:30:19.

Дата создания исследования: 18.12.2013 23:30:19.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_RotatedHyperEllipsoid.

вой функции:

Полное название тестовой функции: Развернутый гипер-эллипсоид.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 28224000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

79.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 232. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 30)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
		0.450805		
		0.440413		
		0.435069		
		0.437565	0.442239	2.20387e-05
1	Отсутствует	0.443176		
1	Olcytcibyei	0.440785	0.442233	2.203076-03
		0.446752		
		0.442442		
		0.439188		
		0.446198		

79.4 Ошибка по значениям целевой функции E_{y}

Таблица 233. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		114.827		
		113.842		
		113.432	114.957	
		115.324		1.75463
1	Отсутствует	115.99		
1	Olcylcibyel	114.784		1.70400
		113.669		
		117.75		
		115.844		
		114.104		

Таблица 234. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Развернутый гипер-эллипсоид» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcytcibyei	0		
		0		
		0		
		0		
		0		

80 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 00:38:27.

Дата создания исследования: 03.01.2014 00:38:27.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Schwefel.

вой функции:

Полное название тестовой функции: Функция Швефеля.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

80.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 235. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
		111.622		
		107.584		
		90.2139		
		74.9303	101.275	280.936
1	Отсутствует	109.698		
1	Orcyrcibyer	105.181	101.273	200.930
		128.959		
		114.488		
		82.736		
		87.3365		

80.4 Ошибка по значениям целевой функции E_{y}

Таблица 236. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		96.8954		
		102.463		
	1 Отсутствует	90.4469	94.5548	46.1813
		91.8953		
1		90.529		
1	Olcylcibyel	84.4232		
		100.812		
		101.712		
		85.7466		
		100.625		

Таблица 237. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0.01	0.006	
		0		
1	Отсутствует	0		4.88889e-05
1	Ofcyferbyer	0.01		4.00009e-03
		0.01		
		0		
		0.02		
		0.01		

81 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 3)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 00:38:27.

Дата создания исследования: 03.01.2014 00:38:27.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Schwefel.

вой функции:

Полное название тестовой функции: Функция Швефеля.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 729000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

81.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 238. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
		156.129 161.194	150.989 144.153	
		143.556		144.153
		129.874		
1	Отсутствует	162.359		
1	Oley lelbyel	140.607	100.000	
		168.163		
		144.934		
		158.482		
		144.593		

${f 81.4}$ Ошибка по значениям целевой функции E_y

Таблица 239. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		250.996		
		248.081		
		242.027		
		237.994		
1	Отсутствует	258.201	243.991	106.781
1	Oley lelbyel	232.389	240.031	100.761
		252.318		
		251.741		
		241.781		
		224.38		

Таблица 240. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0	
		0		0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0	0	
		0		
		0		
		0		
		0		

82 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 4)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 00:38:28.

Дата создания исследования: 03.01.2014 00:38:28.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Schwefel.

вой функции:

Полное название тестовой функции: Функция Швефеля.

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1225000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

82.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 241. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 4)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
		161.216		
		163.524	158.919	77.0257
		157.584		
		162.411		
1	Отсутствует	168.074		
1	Official	160.683	100.919	
		157.441		
		143.986		
		170.062		
		144.205		

82.4 Ошибка по значениям целевой функции E_{y}

Таблица 242. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 4)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		437.931		
		444.073		
		429.776		
		445.892		
1	Отсутствует	421.943	437.547	62.5606
1	Oley lelbyel	435.057	437.347	02.3000
		442.86		
		443.757		
		431.032		
		443.147		

Таблица 243. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 4)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0	
		0		0
		0		
1	Отсутствует	0		
1	Official	0		
		0		
		0		
		0		
		0		

83 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 5)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 00:38:29.

Дата создания исследования: 03.01.2014 00:38:29.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Schwefel.

вой функции:

Полное название тестовой функции: Функция Швефеля.

Размерность тестовой функции: 5

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1849000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

83.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 244. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 5)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	156.116 157.556 172.421 157.161 162.207 158.498	161.299	
		167.069 177.173 154.979 149.805		

83.4 Ошибка по значениям целевой функции E_{y}

Таблица 245. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 5)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		651.749		
		657.356		
		664.428		
		654.58		254.366
1	Отсутствует	630.567	660.566	
1	Oley lelbyel	658.125	000.000	204.000
		661.369		
		692.751		
		659.765		
		674.969		

Таблица 246. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0	
		0		0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0	0	
		0		
		0		
		0		
		0		

84 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 10)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 00:38:30.

Дата создания исследования: 03.01.2014 00:38:30.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Schwefel.

вой функции:

Полное название тестовой функции: Функция Швефеля.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 5776000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

84.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 247. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 10)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
		133.156		
		129.539	132.502	7.99265
		131.479		
		130.073		
1	Отсутствует	132.906		
1	Olcylcibyer	128.655	132.002	
		135.161		
		131.424		
		137.643		
		134.983		

84.4 Ошибка по значениям целевой функции E_{y}

Таблица 248. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		1975.85		
		1963.89	1957.43	457.468
		1926.86		
		1998.66		
1	Отсутствует	1955.93		
1	Oley lelbyel	1954.12		
		1973.8		
		1938.44		
		1949		
		1937.71		

Таблица 249. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 10)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0	0	
		0		0
		0		
1	Отсутствует	0		
1	Olcytcibyer	0	U	
		0		
		0		
		0		
		0		

85 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 20)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 00:38:38.

Дата создания исследования: 03.01.2014 00:38:38.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Schwefel.

вой функции:

Полное название тестовой функции: Функция Швефеля.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 15876000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

85.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 250. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 20)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	99.1214 98.3531 99.1089 98.7904 99.316 99.6705 98.1773 100.364 98.0104 99.2061	99.0118	0.510684

85.4 Ошибка по значениям целевой функции E_y

Таблица 251. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 20)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
	Отсутствует	4937.93	4976.79	699.846
		4959.58		
		4997.06		
		5034.75		
1		4985.76		
1		4966.52		
		4981.17		
		4958.32		
		4982.17		
		4964.67		

Таблица 252. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 20)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
	Отсутствует	0	0	0
		0		
		0		
		0		
1		0		
		0		
		0		
		0		
		0		
		0		

86 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 30)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 03.01.2014 00:39:17.

Дата создания исследования: 03.01.2014 00:39:17.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Schwefel.

вой функции:

Полное название тестовой функции: Функция Швефеля.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 28224000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

86.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 253. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	82.2174 81.7961 82.7153 82.7752 82.9173 82.4905 82.0323 83.2275	82.6521	0.303362
		82.7101 83.6392		

${f 86.4}$ Ошибка по значениям целевой функции E_y

Таблица 254. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Швефеля» (размерность равна 30)

Nº	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_y$	Среднее значение	Дисперсия
		8271.76		
		8238.26		
		8270.06		
		8272.6		
1	Отсутствует	8295.25	8244.97	1146.3
1	Olcylcibyer	8185.79	0244.31	1140.0
		8244.9		
		8246.34		
		8212.35		
		8212.34		

Таблица 255. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Швефеля» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Official	0	U	
		0		
		0		
		0		
		0		

87 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция "Лисьи норы"Шекеля» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 29.12.2013 15:40:26.

Дата создания исследования: 29.12.2013 15:40:26.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_ShekelsFoxholes.

вой функции:

Полное название тестовой функции: Функция "Лисьи норы"Шекеля.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

87.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 256. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция "Лисьи норы"Шекеля» (размерность равна 2)

N₂	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	15.7773 15.3518 14.7088 15.2549 14.5937 15.7182 14.9147 13.9205	14.9779	0.611962
		15.9259 13.6129		

87.4 Ошибка по значениям целевой функции E_{y}

Таблица 257. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция "Лисьи норы"Шекеля» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		4.91761		
		4.32628		
		4.47225		
		4.96615	4.7329	0.0560631
1	Отсутствует	4.92385		
1	Oley lelbyel	4.57767	1.7023	0.000001
		5.02375		
		4.60412		
		4.85791		
		4.6594		

Таблица 258. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция "Лисьи норы" Шекеля» (размерность равна 2)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcytcibyer	0	U	
		0		
		0		
		0		
		0		

88 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Сомбреро» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 24.12.2013 12:41:58.

Дата создания исследования: 24.12.2013 12:41:58.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Sombrero.

вой функции:

Полное название тестовой функции: Функция Сомбреро.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

88.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 259. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Сомбреро» (размерность равна 2)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
		1.5578 1.53907 1.54024		0.000514476
1	Отсутствует	1.51226 1.52286	1.52937	
		1.50492 1.51217 1.55461		
		1.55406 1.49569		

88.4 Ошибка по значениям целевой функции E_{y}

Таблица 260. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Сомбреро» (размерность равна 2)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		0.011674		
		0.0113828		
		0.0109747		
		0.0114092		
1	Отсутствует	0.0113326	0.0115113	1.0378e-07
1	Olcylcibyer	0.0112234	0.0110110	1.03706-07
		0.0121476		
		0.0116405		
		0.0115952		
		0.0117332		

Таблица 261. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Сомбреро» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0.01	0.01	
		0.01		0.000155556
		0.01		
1	Отсутствует	0.04		
1	Olcytcibyei	0.02		
		0		
		0		
		0.01		ı
		0		

89 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 2)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:55:40.

Дата создания исследования: 28.12.2013 16:55:40.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_StepFunction.

вой функции:

Полное название тестовой функции: Функция Step (модифицированная версия De

Jong 3).

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 324

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 324000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

89.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 262. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 2)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.145739 0.150678 0.148256 0.141248 0.133229 0.142503 0.140603 0.136026	0.140798	3.70559e-05
		0.133889 0.135807		

89.4 Ошибка по значениям целевой функции E_{y}

Таблица 263. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 2)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_y$	Среднее значение	Дисперсия
1	Отсутствует	1.3633 1.37252 1.35475 1.34108 1.32686 1.34987 1.3488 1.33893 1.33136	1.3468	0.000197846
		1.34051		

Таблица 264. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 2)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0.02		
		0	0.013	9e-05
		0		
1	Отсутствует	0.02		
1	Olcytcibyei	0.02	0.013	
		0.02		
		0.02		
		0.01		
		0.02		

90 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 3)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:55:40.

Дата создания исследования: 28.12.2013 16:55:40.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_StepFunction.

3

вой функции:

Полное название тестовой функции: Функция Step (модифицированная версия De

Jong 3).

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 729

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 729000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

90.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 265. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 3)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
		0.32011		
		0.330797	0.320241	0.000512339
		0.289422		
		0.284412		
1	Отсутствует	0.342861		
1	Orcyrcibyer	0.334979		
		0.317133		
		0.337276		
		0.297958		
		0.347459		

90.4 Ошибка по значениям целевой функции E_y

Таблица 266. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 3)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		1.81204		
		1.8252		
		1.78858		
		1.81162		
1	Отсутствует	1.81501	1.81954	0.000607732
1	Olcylcibyer	1.82258	1.01334	0.000001132
		1.81294		
		1.8539		
		1.78803		
		1.86551		

Таблица 267. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 3)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcytcibyer	0	U	U
		0		
		0		
		0		
		0		

91 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 4)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:55:41.

Дата создания исследования: 28.12.2013 16:55:41.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_StepFunction.

вой функции:

Полное название тестовой функции: Функция Step (модифицированная версия De

Jong 3).

Размерность тестовой функции: 4

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1225

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1225000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

91.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 268. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 4)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
		0.426834		
		0.415176	0.427659	9.32888e-05
		0.428018		
		0.440335		
1	Отсутствует	0.422642		
1	Olcytcibyer	0.42493		
		0.427464		
		0.429303		
		0.446196		
		0.415688		

${f 91.4}$ Ошибка по значениям целевой функции E_y

Таблица 269. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 4)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		1.99378		
		1.97207		
		1.98608		
		1.99081	1.98427	3.88728e-05
1	Отсутствует	1.98304		
1	Olcylcibyel	1.98524	1.30427	3.007206-00
		1.98309		
		1.98772		
		1.98358		
		1.97732		

Таблица 270. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 4)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcylcibyer	0	0	0
		0		 -
		0		
		0		
		0		

92 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 5)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:55:41.

Дата создания исследования: 28.12.2013 16:55:41.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_StepFunction.

5

вой функции:

Полное название тестовой функции: Функция Step (модифицированная версия De

Jong 3).

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 1849

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 1849000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

92.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 271. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 5)

N₂	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
		0.374682 0.372542 0.380126 0.366556		
1	1 Отсутствует	0.37773 0.370651 0.387409 0.387518	0.377122	5.20195e-05
		0.37133 0.38268		

92.4 Ошибка по значениям целевой функции E_{y}

Таблица 272. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 5)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		2.06397		
		2.02256		
		2.03134		
		2.02294	2.04501	0.000568614
1	Отсутствует	2.00946		
1	Oley lelbyel	2.04184		
		2.07		
		2.08487		
		2.04963		
		2.05347		

Таблица 273. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 5)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0	0	0
		0		
1	Отсутствует	0		
1	Olcylcibyer	0	0	
		0		
		0		
		0		
		0		

93 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 10)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:55:42.

Дата создания исследования: 28.12.2013 16:55:42.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_StepFunction.

вой функции:

Полное название тестовой функции: Функция Step (модифицированная версия De

Jong 3).

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 5776

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 5776000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

93.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 274. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 10)

N₂	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
		0.378437 0.373312 0.370973		2.10191e-05
1	Отсутствует	0.379499 0.365294 0.377757	0.373381	
		0.367579 0.37274 0.373516 0.374698		

93.4 Ошибка по значениям целевой функции E_{y}

Таблица 275. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 10)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
		7.21		
		6.98		
		7.03	7.082	0.0280178
		7.25		
1	Отсутствует	6.7		
1	Official	7.18		
		6.97		
		7.11		
		7.19		
		7.2		

Таблица 276. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 10)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отсутствует	0		
1	Olcytcibyei	0		
		0		
		0		
		0		
		0		

94 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 20)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:55:48.

Дата создания исследования: 28.12.2013 16:55:48.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_StepFunction.

вой функции:

Полное название тестовой функции: Функция Step (модифицированная версия De

Jong 3).

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 15876

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 15876000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

94.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 277. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 20)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
		0.366174		
		0.367142		
	0.368578			
		0.371501		
1	Отоутотруот	0.36656	0.367833	3.66627e-06
1	Отсутствует	0.366764	0.307633	3.00027e-00
		0.366617		
		0.367026		
		0.37101		
		0.366955		

94.4 Ошибка по значениям целевой функции E_y

Таблица 278. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 20)

Nº	Настройки алгоритма	${f 3}$ начения ошибки E_y	Среднее значение	Дисперсия
		31.59		
		31.31		
		32.07		
		32.65		
1	Отсутствует	31.43	31.763 Дисперсия	0.293201
1	Oley letbyet	30.97		0.235201
		31.45		
		31.78		
		32.59		
		31.79		

Таблица 279. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 20)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0		
1	Отсутствует	0	0	0
1	Official	0	U	U
		0	0	
		0		
		0		
		0		

95 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 30)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 28.12.2013 16:56:13.

Дата создания исследования: 28.12.2013 16:56:13.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_StepFunction.

вой функции:

Полное название тестовой функции: Функция Step (модифицированная версия De

Jong 3).

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 28224

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 28224000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

95.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 280. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 30)

№	Настройки алгоритма	${f 3}$ начения ошибки ${\cal E}_x$	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.339839 0.340178 0.341465 0.341878 0.340204 0.337254 0.339825	0.339694	2.94932e-06
		0.336305 0.339505 0.340488		

${f 95.4}$ Ошибка по значениям целевой функции E_y

Таблица 281. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 30)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	63.9 64.44 65.29 64.8 64.07 63.4 64.3 62.22 64.2	64.118	0.70504
		64.56		

Таблица 282. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Функция Step (модифицированная версия De Jong 3)» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0		
1	Отсутствует	0	0	0
1	Olcylcibyel	0	0	0
		0	0	
		0		
		0		
		0		

96 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Волна» (размерность равна 1)

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 23.12.2013 18:38:39.

Дата создания исследования: 23.12.2013 18:38:39.

Идентификатор алгоритма: HML_RealMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на ве-

щественных строках.

Идентификатор исследуемой тесто-

HML_TestFunction_Wave.

вой функции:

Полное название тестовой функции: Волна.

Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 64

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции 64000 во всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

96.2 Параметры алгоритма оптимизации

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 283. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Волна» (размерность равна 1)

№	Настройки алгоритма	Значения ошибки E_x	Выборочное среднее	Выборочная дисперсия
1	Отсутствует	0.0501879 0.0516343 0.0494672 0.0501794 0.0495096 0.0493444 0.0427855 0.0463663	0.0489539	6.46857e-06
		0.0497066 0.0503581		

${f 96.4}$ Ошибка по значениям целевой функции E_y

Таблица 284. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках»на тестовой функции «Волна» (размерность равна 1)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.00795513 0.00834792 0.00792597 0.00793025 0.00854507 0.00818204 0.00599577 0.00743057	0.0079021	5.51668e-07
		0.00743037 0.00830336 0.00840495		

Таблица 285. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на вещественных строках» на тестовой функции «Волна» (размерность равна 1)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0.22 0.21 0.16 0.15 0.14 0.19 0.18 0.19 0.11	0.169	0.00121
		0.11		