

DESCRIPTION:

The BTA08-800B SCR series with the parallel resistor between Gate and Cathode are especially recommended for use on straight hair, igniter, anion generator, etc.

MAIN FEATURES

Symbol Value		Unit
I _{T(RMS)}	8	Α
VDRM /VRRM	600/800/1200	V

ABSOLUTE MAXIMUM RATINGS

	Parameter	Symbol	Value	Unit
Storage junction temperature range		T _{stg}	-40 - 150	$^{\circ}\mathbb{C}$
Operating junction temperature range		Tj	-40 - 125	$^{\circ}\!\mathbb{C}$
Repetitive peak	off-state voltage (Tj=25℃)	V_{DRM}	600/800/1200	V
Repetitive peak r	reverse voltage (Tj=25℃)	V _{RRM}	600/800/1200	V
Non repetitive surge peak Off-state voltage		V _{DSM}	V _{DRM} +100	V
Non repetitive peak reverse voltage		V _{RSM}	V _{RRM} +100	V
RMS on-state current	TO-251/TO-220C TO-220A(Non-Ins) (Tc=100°C) TO-220A(Ins)/ TO-220F(Ins) (Tc=95°C) TO-262 (Tc=90°C)	It(RMS)	8	А
Non repetitive surge peak on-state current (full cycle, F=50Hz)		I _{TSM}	80	А

I ² t value for fusing (tp=10ms)	l ² t	32	A^2s
Critical rate of rise of on-state current $(I_G=2\times I_{GT})$	dl/dt	50	A/µs
Peak gate current	I _{GM}	4	Α
Average gate power dissipation	P _{G(AV)}	1	W
Peak gate power	P _{GM}	5	W

3 Quadrants

Symbol	Test Condition Q	Quadrant		Value			Unit	
		Quadrant		TW	SW	CW	BW	Oilit
lgт	V_D =12V R _L =33 Ω	I - II -III	MAX	5	10	35	50	mA
V _{GT}		I - II -III	MAX	1.5			V	
V_{GD}	V _D =V _{DRM} T _j =125℃ R _L =3.3KΩ	I - II -III	MIN	0.2			V	
IL	I _G =1.2I _{GT}	I -III	MAX	20	25	50	70	m ^
		II	IVIAA	25	35	70	90	mA
lн	I _{TM} =100mA		MAX	15	20	40	60	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	50	200	500	1000	V/µs

4 Quadrants

Symbol	Test Condition	Quadrant		Va	I I to i f	
				С	В	Unit
Ідт	V _D =12V R _L =33Ω	I - II -III	NAAN	25	50	mA
		IV	MAX	50	70	
VgT		ALL	MAX	1.	V	
V _{GD}	$V_D=V_{DRM}$ $T_j=125$ °C $R_L=3.3$ $KΩ$	ALL	MIN	0	V	
IL	I _G =1.2I _{GT}	I -III-IV	MAX	50	70	m A
		II	IVIAA	70	90	mA
Ін	I _{TM} =200mA		MAX	40	60	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	200	500	V/µs

STATIC CHARACTERISTICS

Symbol	Parameter		Value(MAX)	Unit
V _{TM}	I _{тм} =11A tp=380µs	T _j =25℃	1.5	V
IDRM	V _D =V _{DRM} V _R =V _{RRM}	Tj=25℃	5	μΑ
I _{RRM}		T _j =125℃	1	mA

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
R _{th(j-c)}	junction to case(AC)	TO-251	2.1	°C/W
		TO-220A(Ins)	2.7	
		TO-220C/ TO-220A(Non-Ins)	1.8	
		TO-220F(Ins)	2.9	
		TO-262	3.0	

FIG.1: Maximum power dissipation versus RMS on-state current

FIG.3: Surge peak on-state current versus number of cycles

FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<20ms, and corresponging value of I^2t (dI/dt < 50A/ μ s)

FIG.2: RMS on-state current versus case temperature

FIG.4: On-state characteristics (maximum values)

FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature

