

4 BIT PIPO SHIFT REGISTER

- HIGH SPEED
 - $t_{PD} = 12 \text{ ns} (TYP.) AT V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)} \text{ AT } T_A = 25 \text{ °C}$
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE | I_{OH} | = I_{OL} = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS tplh = tphl
- HIGH NOISE IMMUNITY

 V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- WIDE OPERATING VOLTAGE RANGE Vcc (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS194

B1R F1R (Ceramic Package) M1R C1R (Micro Package) (Chip Carrier) ORDER CODES: M54HC194F1R M74HC194M1R M74HC194B1R M74HC194C1R

DESCRIPTION

The M54/74HC194 is a high speed CMOS 4 BIT PIPO SHIFT REGISTER fabricated in silicon gate C²MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption. This SHIFT REGISTER is designed to incorporate virtually all of the features a system designer may want in a shift register. It features parallel inputs, parallel outputs, right shift and left shift serial inputs, clear line. The register has four distinct modes of operation: PARALLEL (broadside) LOAD; SHIFT RIGHT (in the direction QA QD); SHIFT LEFT; INHIBIT CLOCK (do nothing). Synchronous parallel loading is accomplished by applying the four data bits and taking both mode control inputs, S0 and S1 high. The data are loaded into their respective flip-flops and appear at the outputs after the positive transition of the CLOCK input. During loading, serial data flow is inhibited. Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low. Serial data for this mode is entered at the SHIFT RIGHT data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the SHIFT LEFT serial input. Clocking of the flip flops is inhibited when both mode control inputs are low. The mode control inputs should be changed only when the CLOCK input is high. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

October 1992 1/12

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	CLEAR	Asynchronous Reset Input (Active LOW)
2	SR	Serial Data Input (Shift Right)
3, 4, 5, 6	A to D	Parallel Data Input
7	SL	Serial Data Input (Shift Left)
9, 10	S0, S1	Mode Control Inputs
11	CLOCK	Clock Input (LOW to HIGH Edge-triggered)
15, 14, 13, 12	QA to QD	Paralle Outputs
8	GND	Ground (0V)
16	V _{CC}	Positive Supply Voltage

IEC LOGIC SYMBOL

TRUTH TABLE

	INPUTS									OUTPUS					
CLEAR	МО	DE	CLOCK	SEF	RIAL		PARA	LLEL		•	ΟΔ	QA	QB	QC	QD
	S1	S0	CLOCK	LEFT	RIGHT	Α	В	С	D	QA.	טע	Q.C	עט		
L	Χ	Х	X	Х	Х	Χ	Х	Х	Χ	L	L	L	L		
Н	Χ	Х		Х	Х	Χ	Х	Х	Х	QA0	QB0	QC0	QD0		
Н	Н	Н		Х	Х	а	b	С	d	а	b	С	d		
Н	L	Н		Х	Н	Χ	Х	Х	Х	Н	QAn	QBn	QCn		
Н	L	Н		Х	L	Χ	Х	Х	Х	L	QAn	QBn	QCn		
Н	Н	L		Н	Х	Χ	Х	Х	Х	QBn	QCn	QDn	Н		
Н	Н	L		L	Х	Χ	Х	Х	Х	QBn	QCn	QDn	L		
Н	L	L	Х	Х	Х	Χ	Х	Х	Х	QA0	QB0	QC0	QD0		

X: Don't Care : Don't Care

a \sim d : The level of steady state input voltage at input A \sim D respactively

QA0 ~ QD0 : No change

QAn ~ QDn : The level of QA, QB, QC, respectively, before the mst recent positive transition of the clock.

LOGIC DIAGRAM

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	٧
I _{IK}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 25	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P _D	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V_{CC}	Supply Voltage		2 to 6	V
V_{I}	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	٧
T _{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	ဂိဂိ
t _r , t _f	Input Rise and Fall Time	$V_{CC} = 2 V$	0 to 1000	ns
		$V_{CC} = 4.5 \text{ V}$	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

		Test Conditions			Value							
Symbol	Parameter	Vcc (V)			T _A = 25 °C 54HC and 74HC			-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit
		(۷)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	V _I =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	VI –	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	V _{IL}	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	Vı =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VI =	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	Vı = '	Vcc or GND			±0.1		±1		±1	μΑ
I _{CC}	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40		80	μА

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Test Conditions		Value						
Symbol	Parameter	V _{CC} (V)		A = 25 C			85 °C HC	-55 to 125 °C 54HC		Unit
		(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0		30	75		95		115	
t _{THL}	Time	4.5		8	15		19		23	ns
		6.0		7	13		16		20	
t _{PLH}	Propagation	2.0		48	115		145		175	
t _{PHL}	Delay Time	4.5		15	23		29		35	ns
	(CLOCK - Q)	6.0		13	20		25		30	
t _{PHL}	Propagation	2.0		52	125		155		190	
	Delay Time	4.5		17	25		31		38	ns
	(CLEAR - Q)	6.0		15	21		26		32	
f _{MAX}	Maximum Clock	2.0	6.2	13		5.0		4.2		
	Frequency	4.5	31	50		25		21		MHz
		6.0	37	59		30		25		
t _{W(H)}	$\begin{array}{cc} t_{W(H)} & \text{Minimum Pulse} \\ t_{W(L)} & \text{Width} \\ & (\text{CLOCK}) \end{array}$	2.0		20	75		95		110	
t _{W(L)}		4.5		5	15		19		22	ns
		6.0		4	13		16		19	
t _{W(L)}	Minimum Pulse	2.0		24	75		95		110	
	Width	4.5		6	15		19		22	ns
	(CLEAR)	6.0		5	13		16		19	
ts	Minimum Set-up	2.0		20	75		95		110	
	Time	4.5		5	15		19		22	ns
	(SI, PI - CK)	6.0		4	13		16		20	
ts	Minimum Set-up	2.0		28	75		95		110	
	Time	4.5		7	15		19		23	ns
	(S0, S1 - CK)	6.0		6	13		16		20	
th	Minimum Hold	2.0			0		0		0	
	Time	4.5			0		0		0	ns
		6.0			0		0		0	
t _{REM}	Minimum	2.0			5		5		5	
	Removal Time	4.5			5		5		5	ns
		6.0			5		5		5	
C _{IN}	Input Capacitance			5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance			85						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}$

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT Icc (Opr.)

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			20			0.787		
В			7			0.276		
D		3.3			0.130			
Е	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch	
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

