ICCG 2019

Approximate Discontinuous Trajectory Hotspots

Ali Gholami Rudi

Babol Noshirvani University of Technology

Trajectory:

Polygonal curve + timestamps for the vertices

Analysis: finding regions in which the entity remains long

Different shapes and definitions:

- The number of visits: Benkert et al. (2010)
 - Visits from different entities
 - An $O(n^2)$ time algorithm
- The duration of the visits: Gudmundsson et al. (2013)
 - Continuous: the duration of a continuous visit
 - Discontinuous: entities may leave and return later
 - An $O(n^2)$ time algorithm

Weight of a square *r*:

w(r): the duration of the presence of entity inside it

An exact hotspot:

- An axis-aligned square of fixed side length s
- With the maximum weight
 - s is an input and fixed through the algorithms

- Size-approximate (or simply approximate) hotspot:
 - the hotspot can be slightly larger
 - its weight ≥ the weight of an exact hotspot
 - c-size-approximate = side length is cs (c > 1)
- Duration-approximate
 - its weight can be slightly smaller
 - c-duration-approximate = the weight is at least ch
 - where h is the weight of an exact hotspot (c < 1)

- Present a $(1 + \varepsilon)$ -size-approximate hotspot
 - ϵ is an input $(\epsilon > 0)$
- Use it to obtain a 1/4-duration approximate hotspot

- Cover each edge with O(n) non-overlapping tiles
 - tile = a square of side length $\varepsilon s/2$

 p_t^5

- A weighted point p at the center of each tile
 - ρ_a is the segment
 - p_t is the tile

The point-weight of a square r

- Denoted as w'(r)
- The sum of the weights of the points inside it

Lemma: $w(r) \leq w'(r')$

segment p_q (partially) inside r implies p in r'

Lemma: $w'(r') \leq w(r'')$

ightharpoonup p inside r' implies p_q totally contained in r''

Finding a square of side length $s + \varepsilon s/2$ with the maximum point-weight in $O(m \log m)$ for m points

- A plane sweep algorithm
 - Squares whose lower side has the height of a point
 - Keep track of m squares
 - The i-th square has the same height as the i-th point
- A data structure W:
 - The i-th entry is the weight of i-th square

The time complexity of the sweep line algorithm

- $O(m \log m)$ with suitable data structure for W
- m is the number of weighted points

Obtaining a $(1 + \varepsilon)$ -approximate hotspot $(\varepsilon > 0)$

- Tiling (a is the total length of edges)
 - An edge of length d: at most $\left\lceil \frac{2d}{\varepsilon s} \right\rceil$ points
 - Total number of points: at most $\frac{2^{l}a}{\varepsilon s}$ + n
 - $\Phi = \frac{a}{DS}$ (ratio of average edge length to s)
 - Total number of points: $O(\frac{n\phi}{\varepsilon})$
 - Plane sweep complexity $O(\frac{n\varphi}{\varepsilon} \log \frac{n\varphi}{\varepsilon})$

- r': square of side length $s + \varepsilon s/2$ with max point-weight
- \bullet a^* : an exact hotspot
- $w'(a') \ge w(a^*)$; Lemma 1
- $w'(r') \ge w(a')$; r' has the maximum point-weight
- $w(r'') \ge w'(r')$; Lemma 2

Obtaining 1/4-duration-approximate hotspot

- $h' \ge h/4$
 - h: the weight of an exact hotspot with side length s
 - h': the weight of an exact hotspot with side length s/2

- r: an exact hotspot
 - $w(r_1) + w(r_2) + w(r_3) + w(r_4) \ge w(r)$
- $w(r_i) \ge w(r)/4$, for some i

Obtaining 1/4-duration-approximate hotspot

- h ≤ 4h'
- (1 + 1)-size-approximate hotspot for s' = s/2 and $\varepsilon = 1$
 - r: square with side length 2s' = s
 - $w(r) \ge h' \ge \frac{1}{4} h$
- Time complexity $O(n\varphi \log n\varphi)$

- (1 + ε)-approximate: in $O(\frac{n\varphi}{\varepsilon} \log \frac{n\varphi}{\varepsilon})$
 - $m{\phi}$ is the ratio of average edge length to s
- 1/4-duration-approximate: in $O(n\phi \log n\phi)$