

e-Postgraduate Diploma (ePGD) in Artificial Intelligence and Data Science

Lecture 7 Programming for Machine Learning and Data Science

Lecture Flow

- 1. Regression Metrics Overview
- 2. Mean Absolute Error (MAE)
- 3. Mean Squared Error (MSE) & Root Mean Squared Error (RMSE)
- 4. R-squared (R²) -Coefficient of determination
- 5. Feature Analysis
 - 5.1 Feature scaling
 - 5.2 Feature Selection
 - 5.3 other feature analysis methods
- 6. Summary & Key Takeaways

Google Collab link:

https://colab.research.google.com/drive/1Xa geuGsPZdls6gZexHNiCNvz6U-FYENW#scrollT o=8ZQSRv0xGv F

Regression Metrics

Q. What is the need of any metrics here?

ANS:

to measure how well its predictions actually match the observed data.

quantify the extent to which the predicted response value for a given observation is close to the true response value for that observation.

Regression Metrics

- Regression performance is evaluated using various error metrics.
- Goal: Measure how well predictions approximate actual values.
- Key metrics:
 - Mean Absolute Error (MAE)
 - Mean Squared Error (MSE)
 - Root Mean Squared Error (RMSE)

Regression Metrics - Overview

https://medium.com/@mygreatlearning/rmse-what-does-it-mean-2d446c0b1d0e

This file is meant for personal use by sidsid2810@gmail.com only.

Mean Absolute Error (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \hat{Y}_i|$$

- Measures average absolute deviation between actual and predicted values.
- Advantages:
 - Intuitive and interpretable.
 - Less sensitive to large outliers than squared error metrics.

Limitation:

Does not differentiate between under-predictions and over-predictions.

Mean Squared Error (MSE) & Root Mean Squared Error (RMSE)

$$MSE = rac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
 $RMSE = \sqrt{MSE}$

- MSE penalizes larger errors more heavily than MAE due to squaring.
- RMSE provides an error metric in the same units as the target variable.
- Trade-off: Sensitive to large errors (outliers), which can disproportionately impact evaluation.

This file is meant for personal use by sidsid2810@gmail.com only.

Mean Squared Error (MSE) & Root Mean Squared Error (RMSE)

- RMSE is the standard deviation of the residuals
- RMSE indicates average model prediction error
- The lower values indicate a better fit
- It is measured in same units as the Target variable

 $https://compneuro.neuromatch.io/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial1.html$

R-squared (R^2) – Coefficient of determination

$$R^2 = 1 - rac{SS_{residual}}{SS_{total}}$$

- Formula: where:
 - $SS_{residual} = \sum (Y_i \hat{Y}_i)^2$ (sum of squared residuals)
 - $SS_{total} = \sum (Y_i \bar{Y})^2$ (total variance in Y)
- Represents the proportion of variance in explained by the model.
- R² Range: [0,1]
 - Higher R² indicates a better model fit.
 - R²=1 means the model perfectly explains variance.
 - R²=0 means the model does not explain variance at all.

Adjusted R²

 Adjusted R² corrects for overestimation when adding multiple predictors:

$$R_{adjusted}^2 = 1 - \left(\frac{(1-R^2)(n-1)}{n-k-1} \right)$$

where n is the number of observations and k is the number of predictors.

Working with Real World Data:

Target features variable bmi bp s1 s2 **s**3 **s4** s5 target age sex 0.038076 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019907 151.0 -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068332 -0.092204 75.0 0.085299 0.050680 0.044451 -0.005670 -0.045599 -0.034194 -0.032356 -0.002592 0.002861 -0.025930 141.0 -0.089063 -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022688 -0.009362 206.0 0.021872 0.005383 -0.044642 -0.036385 0.003935 0.015596 0.008142 -0.002592 -0.031988 -0.046641 135.0

Feature Analysis

Why Feature Analysis Matters?

- It is a part of exploring and visualing data to gain insights for better prediction
- Good feature selection improves model accuracy & interpretability.
- Avoids common issues like multicollinearity, scaling problems, and outliers.
- Helps select relevant variables for regression.

Collab link:

https://colab.research.google.com/drive/1XageuGsPZdls6gZexHNiCNvz6U-FYENW#scrollTo=8ZQSRv 0xGy F

Feature Scaling

Feature scaling is a data preprocessing technique used to standardize the range of independent variables or features in a dataset.

• Features with larger ranges can dominate the learning process, leading to biased models.

Scaling ensures that each feature contributes equally to the model's

performance.

Feature Scaling

How to choose the appropriate scaling?

1. Standard scaling:

- Centers data around zero with a standard deviation of 1.
- Useful when features have different units and ranges.

$$X' = rac{X - \mu}{\sigma}$$

Min-Max Scaling

- does not make any assumptions about the data distribution
- Scales features between a **fixed range** (default: **0 to 1**).

$$X_{scaled} = rac{X - X_{min}}{X_{max} - X_{min}}$$

Definition: The process of selecting the most relevant features (independent variables) for a regression model.

Why is feature selection important:

- **Reduces noise** → Eliminates irrelevant or redundant features.
- **Prevents multicollinearity** \rightarrow Avoids highly correlated features causing instability.
- Improves model performance → Leads to better generalization on unseen data.
- Speeds up computation → Fewer features = Faster model training.

https://medium.com/analytics-vidhya/feature-selection-extended-overview-b58f1d524c1c This file is meant for personal use by sidsid2810@gmail.com only.

Feature Target Correlation:

- Measures how strongly each feature is related to the target variable.
- Helps in **feature selection** by identifying which features are most useful for prediction.

Example: scatter matrix plot, Correlation Coefficients

2. Feature Multicollinearity

Multicollinearity is when two or more features in a regression model are highly correlated.

- Detects **redundant features** that are highly correlated with each other.
- Helps avoid unstable regression coefficients caused by overlapping information.

Example: scatter matrix plot, Variance Inflation Factor

How to do Feature Selection?

Case 1: When Features are Few (Low Dimensional)

Use a Scatter Matrix Plot

- Helps **visualize pairwise relationships** between features and target.
- Useful when the dataset has 5-6 features.
- Identifies **strong linear relationships** between independent variables.
- handling both feature target relation and multi colinearlity

Advantage:

- Easy to interpret and spot feature-target relationships.
- Can highlight non-linear patterns where linear regression may fail.

Fig: scatter matrix plot for california housing dataset

Fig: Standard Corrrelation coefficient of various type of datasets

https://en.wikipedia.org/wiki/File:Correlation_examples2.svg

This file is meant for personal use by sidsid2810@gmail.com only.

Case 2: When Features are Many (High Dimensional)

Use Correlation Coefficients for Feature Target Correlation

- Computes Pearson correlation to measure feature relationships.
- Helps detect highly correlated (redundant) features.
- Features with -0.3< correlation <0.3 are usually dropped.

$$r = rac{\sum (X_i - ar{X})(Y_i - ar{Y})}{\sqrt{\sum (X_i - ar{X})^2} imes \sqrt{\sum (Y_i - ar{Y})^2}}$$

 $Xi,Yi \rightarrow Individual\ data\ points$ bar{X}, bar{Y} \rightarrow Mean of X and Y $\Sigma \rightarrow$ Summation over all data point

Pearson Correlation Coefficient (r):

- The Pearson correlation coefficient measures the linear relationship between two variables.
- It quantifies how changes in one variable are associated with changes in another.

Value of r	Interpretation
r=1	Perfect positive correlation (X increases, Y increases)
$0.5 \leq r < 1$	Strong positive correlation
$0.3 \leq r < 0.5$	Moderate positive correlation
-0.3 < r < 0.3	Weak or no correlation
$-0.5 \leq r < -0.3$	Moderate negative correlation
$-1 \leq r < -0.5$	Strong negative correlation
r=-1	Perfect negative correlation (X increases, Y decreases)

Pearson correlation does not account for how a feature interacts with all other independent features.!

To detect Multicollinearity we use Variance Inflation Factor (VIF)

Variance Inflation Factor (VIF):

Variance inflation factor (VIF) is a statistical metric that measures how much the variance of a regression coefficient increases due to multicollinearity

$$VIF_i = \frac{1}{1 - R_i^2}$$

 $VIF_i = \frac{1}{1 - R^2}$ Where R^2 is the Coefficient of determination for ith feature.

VIF < 5 \rightarrow No multicollinearity (**Feature is fine**).

VIF > 5 → Moderate multicollinearity (**Consider removing**)

VIF>10 \rightarrow Very high collinearity (remove the feature)

This file is meant for personal use by sidsid2810@gmail.com only.

Other feature analysis Methods

3. Handling Outliers (Boxplot & IQR Method)

Why It's Important?

- Extreme values can distort regression models (especially MSE & RMSE).
- Outliers affect **coefficients** and increase **prediction errors**.

How to Detect Outliers?

- Boxplot (Visual)
- Interquartile Range (IQR) Method

Other feature analysis Methods

Interquartile Range (IQR):

The **Interquartile Range (IQR)** is a measure of **statistical dispersion** and is used to **detect outliers** in a dataset. It represents the **middle 50% of the data** by removing extreme values.

he Interquartile Range (IQR) is defined as:

IQR=Q3-Q1

- **Q1** (First Quartile) \rightarrow The 25th percentile (25% of data is below this value).
- **Q3(Third Quartile)** \rightarrow The 75th percentile (75% of data is below this value).
- **IQR**→ The range covering the middle 50% of the dataset.

An outlier is any value that falls outside this range:

If a value is greater than Upper Bound, it is considered a high outlier. ng-boxplots.html

https://www.kdnuggets.com/2019/11/understandi

Other feature analysis Methods

4.Feature Encoding – Handling Categorical Variables

- Many datasets contain categorical variables (e.g., job titles, house types).
- Linear Regression cannot process categorical data directly—it requires numerical input.
- Encoding ensures categorical variables are interpreted correctly by models.

Common Encoding Methods:

One-Hot Encoding (OHE)

- Converts categorical variables into binary columns (0 or 1).
- Best for **nominal categories** (e.g., City Names, Colors).

Summary & Key Takeaways

- Always visualize data before applying regression to identify trends, outliers, and multicollinearity.
- Feature scaling ensures fair contribution of all features and prevents large-scale variables from dominating.
- Experiment with different scaling methods like Standard Scaling.
- Feature selection improves model performance by removing irrelevant or redundant features.
- Use correlation matrices, VIF, and scatter plots to detect multicollinearity and feature importance.
- Blindly applying linear regression can lead to poor results if data preprocessing is ignored.

Key takeaways

Experimentation with feature scaling and visualization is crucial before applying linear regression.

Well-prepared data leads to more accurate and interpretable models that generalize better

"Good data beats fancy models. If features are wrong, no model can fix it!"

Collab link: https://colab.research.google.com/drive/1XageuGsPZdls6gZexHNiCNvz6U-FYENW#scrollTo=8ZQSRv0xGy F