2018/2019 SEMESTER 1 EXAMINATION

Diploma in Aerospace Electronics (DASE)

Diploma in Computer Engineering (DCPE)

Diploma in Engineering with Business (DEB)

Diploma in Electrical & Electronic Engineering (DEEE)

Diploma in Engineering Systems (DES)

Diploma in Energy Systems & Management (DESM)

Common Engineering Programme (DCEP)

1st Year FT

PRINCIPLES OF ELECTRICAL & ELECTRONIC ENGINEERING I (PEEEI)

Time Allowed: 2 Hours

Instructions to Candidates

- 1. The examination rules set out on the last page of the answer booklet are to be complied with.
- 2. This paper consists of **TWO** sections:

Section A - 10 Multiple Choice Questions, 2 marks each.

Section B - 8 Short Questions, 10 marks each.

- 3. ALL questions are COMPULSORY.
- 4. All questions are to be answered in the answer booklet. Start each question in Section B on a new page.
- 5. <u>Fill in the Question Numbers</u>, in the boxes found on the front cover of the answer booklet under the column "Questions Answered".
- 6. This paper contains <u>11</u> pages, inclusive of formulae sheet.

SECTION A

MULTIPLE CHOICE QUESTIONS (20 marks)

- 1. Please **tick** your answers in the **MCQ box** on the inside of the front cover of the answer booklet.
- 2. No marks will be deducted for incorrect answers.
- **A1.** If 10 W of power are applied to the primary winding of an ideal transformer with a turns ratio of 50, the power delivered to the secondary load is
 - (a) 5 W
 - (b) 10 W
 - (c) 50 W
 - (d) 500 W

(2 marks)

- A2. Select the series RC circuit that has the **lowest** time constant
 - (a) $R = 4.7 \text{ k}\Omega$, $C = 2 \mu\text{F}$
 - (b) $R = 100 \Omega, C = 1 \mu F$
 - (c) $R = 10 M\Omega, C = 5 pF$
 - (d) $R = 1 \text{ k}\Omega, C = 10 \mu\text{F}$

(2 marks)

- A3. In Figure A3, the capacitor is initially uncharged. The switch is initially open and then closed at t = 0s. At the instant when the switch is closed at t = 0s, the current flowing through the resistor is
 - (a) 0 mA
 - (b) 1 mA
 - (c) 10 mA
 - (d) 100 mA

(2 marks)

Figure A3

A4. The sinusoidal voltage and current in an AC circuit are represented by the following expressions:

$$v(t) = 10 \sin(100\pi t + 60^{0})V$$

 $i(t) = 2 \sin(100\pi t - 15^{0})A$.

Which one of the following statement is true?

- (a) i(t) leads v(t) by 45^0
- (b) $i(t) lags v(t) by 45^0$
- (c) i(t) leads v(t) by 75^0
- (d) i(t) lags v(t) by 75^0 (2 marks)
- **A5.** A transformer has a turns ratio of 5 and a coupling coefficient of 0.8 between the primary and secondary coil. The inductances of the primary and secondary coils are 10 mH and 40 mH respectively. Calculate the mutual inductance, L_M between the 2 coils.
 - (a) 8 mH
 - (b) 12 mH
 - (c) 16 mH
 - (d) 20 mH (2 marks)
- **A6**. If the switch is closed in Figure A6, determine the resulting current drawn from the supply?
 - (a) 0 mA
 - (b) 2.5 mA
 - (c) 3.33 mA
 - (d) 5 mA (2 marks)

A7.	Which o	one of the	following	copper wire	has the high	est resistance?

- (a) 10 metre wire of cross sectional area of 1 mm²
- (b) 10 metre wire of cross sectional area of 5 mm²
- (c) 5 metre wire of cross sectional area of 1 mm²
- (d) 5 metre wire of cross sectional area of 5 mm²

(2 marks)

A8. The following table shows the elements A, B, C and D and their respective number of valence electrons. Which elements are in the **good conductor** category?

Element	A	В	С	D	Е
Number of valence electrons	1	2	4	5	6

- (a) A and B
- (b) B and C
- (c) C and D
- (d) D and E

(2 marks)

A9. A coil of 1200 turns give rise to a magnetic flux of 400 μWb when carrying a certain current. If this current is reversed in 0.1 s, what is the average value of induced voltage in the coil?

- (a) 4.8 V
- (b) 9.6 V
- (c) 48 V
- (d) 96 V

(2 marks)

A10. A coil has a current changing at a rate of 1.1×10^{-6} A/s flowing through it. The induced voltage measured across the coil is 5.5 nV, what is the inductance of the coil?

- (a) 5 pH
- (b) 5 nH
- (c) $5 \mu H$
- (d) 5 mH

(2 marks)

SECTION B

SHORT QUESTIONS (80 marks)

B1. With reference to Figure B1, calculate:

(a)	the total supply current I _s ;	(4 marks)
(b)	the voltage at point A with respect to ground (V _A);	(2 marks)
(c)	the voltage at point B with respect to ground (V _B);	(2 marks)
(d)	the voltage VAR	(2 marks)

Using the Superposition Theorem, determine the current I₃ flowing through R₃ as shown in Figure B2. (10 marks)

- **B3.** An ac voltage of 230 V is connected to the primary side of a transformer and its secondary voltage of 10 V is connected to a resistive load of 5 Ω . The transformer has 100 turns in its secondary winding. Determine
 - (a) the turn ratio and the number of turns in the primary winding; (4 marks)
 - (b) the secondary and primary currents; (4 marks)
 - (c) the power dissipated in the resistive load. (2 marks)
- **B4.** With reference to Figure 4, determine:
 - (a) the value of R_2 ; (6 marks)
 - (b) the total power dissipation; (2 marks)
 - (c) the supply current I_s , if R_2 is shorted. (2 marks)

Figure B4

- **B5.** A 2000-turn coil is wound on a cast iron core with a cross sectional of 8 cm² and a magnetic path length of 18 cm. The relative permeability of the cast iron is 280. Calculate:
 - (a) the inductance, L, of the coil; (5 marks)
 - (b) the voltage induced across the coil if the current in it increases from zero to 20 mA in a time of 2 μ s; (3 marks)
 - (c) the stored energy if the current flowing the coil is constant at 20 mA.(2 marks)

B6. With reference to Figure B6, calculate:

(a)	the total capacitance C_T ;	(4 marks)
(b)	the charge stored in C ₄ ;	(4 marks)
(c)	the voltage across C ₃	(2 marks)

B7. Figure B7 shows a magnetic material with a uniform cross-sectional area of 18 cm^2 and its magnetic path length is 0.3 m. The coil has 1200 turns and carries a dc current of 2 A. The relative permeability of the magnetic material $\mu_r = 380$, calculate:

(a)	the magnetising force;	(2 marks)
(b)	the reluctance of the magnetic material;	(3 marks)
(c)	the total flux generated;	(3 marks)
(d)	the flux density.	(2 marks)

B8. For the circuit shown in Figure B8, calculate:

- (a) the frequency and period of the supply voltage (v_s) ; (2 marks)
- (b) the rms value of the supply current (I_s) ; (4 marks)
- (c) The peak-to-peak voltage across resistor R₂. (4 marks)

Figure B8

- End of Paper -

ET1005 2018/2019 Sem 1 Exams Answers (these will not be provided in the actual Exams)

Section A

1b 2c 3b 4d 5c 6d 7a 8a 9b 10d

Section B

B1 (a) 2 mA (b) 4.5 V (c) 1 V (d) 3.5 V

B2 2 mA

B3 (a) 0.0435; 2300 (b) $I_S = 2 A$; $I_p = 0.087 A$ (c) 20 W

B4 (a) 20 Ω (b) 320 W (c) 8 A

B5 (a) 6.255 H (b) 62.55 kV (c) 1.251 mJ

B6 (a) $3 \mu F$ (b) $18 \mu C$ (c) 9 V

B7 (a) 8000 At/m (b) 349024 At/Wb (c) 6.876 mWb (d) 3.82 T

B8 (a) 50Hz; 20 ms (b) 0.2357 A (c) 3.33 V

Formulae List

Resistors:

$$R = \frac{\rho l}{A}$$

Resistance in series, $R_T = R_1 + R_2 + \dots + R_n$

Resistance in parallel, $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$ for n resistors

Resistance in parallel, $R_T = \frac{R_1 \times R_2}{R_1 + R_2}$ for 2 resistors

Power dissipation in resistor, P = VI

$$P=I^2R$$

$$P = I^2 R P = \frac{V^2}{R}$$

Energy, Work Done, Charge, Power:

$$W = QV$$

$$P = \frac{W}{t} \qquad I = \frac{Q}{t}$$

$$I = \frac{Q}{t}$$

 6.25×10^{18} electrons $\rightarrow 1$ C of negative charge

Ohm's Law:

$$V = IR$$

$$I = \frac{V}{R} \qquad \qquad R = \frac{V}{I}$$

$$R = \frac{V}{I}$$

Kirchhoff's Voltage Law:

 \sum Voltage rises = \sum Voltages drops in a closed circuit.

Kirchhoff's Current Law:

 \sum Incoming currents = \sum Outgoing currents at a node

Voltage Divider Rule:

$$V_x = \frac{R_x}{R_T} V_s$$

Current Divider Rule:

Branch current $I_x = \frac{R_T}{R_v} I_T$ for any number of parallel branches

 $I_1 = \frac{R_2}{R_1 + R_2} I_T$ or $I_2 = \frac{R_1}{R_1 + R_2} I_T$ for 2 parallel branches only

Capacitors:

Q(coulombs) = V(volts) x C(farads)
Energy Storage, W =
$$\frac{1}{2}$$
 C V² (Joules)
 $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m $\varepsilon = \varepsilon_0 \varepsilon_r$

Capacitance =
$$\frac{\text{Area (A)} \times \varepsilon}{\text{distance (d)}}$$
 Farad

Increasing exponential voltage v(t) = $V_F (1 - e^{\frac{-t}{RC}})$

Decreasing exponential voltage $v(t) = V_i e^{\frac{-t}{RC}}$

Total capacitance for "n" capacitors in series,
$$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots + \frac{1}{C_n}$$

Total capacitance for "n" capacitors in parallel, $C_T = C_1 + C_2 + \cdots + C_n$

Magnetism & Electromagnetism:

Flux
$$(\phi) = \frac{\text{Magnetomotive force } (\mathcal{F}_m, \text{At})}{\text{Reluctance } (\mathcal{R}, \text{At/Wb})} \text{Weber (Wb)}$$
Flux density, B = $\frac{\text{Flux } (\phi, \text{Wb})}{\text{Area perpendicular to flux } (\text{A, m}^2)} \text{ Tesla (T)}$

Magnetomotive Force $(\mathcal{F}_m) = N$ (number of turns) x I (Current, A)

Magnetising force (H) =
$$\frac{\mathcal{F}_{m}}{\text{length of material } (l, m)} \text{At/m}$$
Reluctance (\mathcal{R}) =
$$\frac{\text{length } (l, m)}{\text{permeability } (\mu, \text{Wb/}_{At. m}) \text{x crosssection area } (A, m^2)} \text{At/Wb}$$

$$\mu_o = 4\pi~x~10^{\text{--}7}~Wb/At.m \qquad \quad \mu = \mu_o \mu_r \label{eq:mu_omega}$$

Inductors:

Voltage induced in a coil due to current changes, $e(t) = L \frac{di(t)}{dt}$

Voltage induced in a coil due to flux changes, $e(t) = N \frac{d\Phi(t)}{dt}$

Energy Storage, $W = \frac{1}{2} L I^2$ (Joules)

Inductance,
$$L = \frac{N^2 \mu A}{l}$$
 (Henry)

Increasing exponential current in an inductor $i(t) = I_F (1 - e^{\frac{-Rt}{L}})$

Decreasing exponential current in an inductor $i(t) = I_i e^{\frac{-\kappa t}{L}}$

SINGAPORE POLYTECHNIC

ET1005

for "n" inductors in series, $L_T = L_1 + L_2 + \dots + L_n$

for "n" inductors in parallel,
$$\frac{1}{L_T} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}$$

Transformer:

$$\begin{split} &\frac{\mathit{V_p}}{\mathit{V_s}} = \frac{\mathit{N_p}}{\mathit{N_s}}, \quad \frac{\mathit{I_s}}{\mathit{I_p}} = \frac{\mathit{N_p}}{\mathit{N_s}}, \quad \mathit{V_pI_p} = \mathit{V_sI_s} = transformer\ rating} \\ &k = \frac{\phi_{1-2}}{\phi_1}, \quad \mathit{L_M} = k\sqrt{\mathit{L_1L_2}}, \ \ Turns\ ratio\ n = \frac{\mathit{N_s}}{\mathit{N_p}} \end{split}$$

AC Voltages and Currents:

$$\begin{split} I_{rms} &= I_p \, / \! \sqrt{2} = 0.7071 \,\, I_p \\ V_{rms} &= V_p \, / \! \sqrt{2} = \, 0.7071 \,\, V_p \end{split} \qquad \begin{split} I_{p\text{-}p} &= 2I_p \\ V_{p\text{-}p} &= 2V_p \end{split} \qquad \qquad \begin{split} I_{av} &= 2I_p \, / \pi = 0.637I_p \\ V_{av} &= 2V_p \, / \pi = 0.637V_p \end{split}$$