Ordres partiels et treillis.

1 Ordres partiels.

Définition 1. Un ordre partiel (ou poset en anglais) est une paire (P, \leq) où \leq est une relation binaire sur P telle que

- $\triangleright (reflexivit\acute{e}) \ \forall x \in P, x \leq x;$
- $\triangleright (transitivit\acute{e}) \ \forall x,y \in P, x \leq y \implies y \leq z \implies x \leq z;$
- $\triangleright (antisym\acute{e}trie) \ \forall x,y \in P, x \leq y \implies y \leq x \implies x = y.$

Un préodre est une relation binaire reflexive et transitive.

Exemple 1. On donne quelques exemples de poset :

- 1. $(\wp(X), \subseteq)$, l'inclusion dans les parties de X
- 2. $(\Omega X, \subseteq)$, l'inclusion dans les ouverts de X
- 3. (Σ^*, \subseteq) , la relation préfixe dans les mots sur Σ

Attention, dans les trois exemples, il existe deux éléments u, v où

$$u \not\leq v$$
 et $v \not\leq u$.

Définition 2 (Dual). Soit
$$(P,\leq)$$
 un poset. Le $dual$ de P est $(P,\leq)^{\mathrm{op}}:=(P,\geq)$ où

$$a \ge b \iff b \le a$$
.

Définition 3 (Fonction (anti)monotone). Soit (P, \leq_P) et (L, \leq_L) deux posets. Une fonction $f: P \to L$ est monotone si pour tout $a, b \in P$ on a

$$a \leq_P b \implies f(a) \leq_L f(b).$$

On dit que $f:(P, \leq) \to (L, \leq)$ est antimonotone si $f:(P, q\geq) = (P, \leq_P)^{\text{op}} \to (L, \leq_L)$ est monotone, autrement dit pour tout $a, b \in P$ on a

$$a \leq_P b \implies f(a) \geq_L f(b).$$

2 Treillis complet.

Définition 4. Soit (A, \leq) un poset et $S \subseteq A$.

- $\,\,\,\,$ Un $upper\ bound$ de S est un élément $a\in A$ tel que $\forall s\in S,$ $s\leq a.$
- \triangleright Un least upper bound (lub, join ou sup) de S est un upper bound $a \in A$ de S tel que, pour tout upper bound $b \in A$ de S, on a $a \leq b$.

Par dualité, on a les définitions suivantes.

- \triangleright Un élément $a \in A$ est un lower bound de S ssi a est un upper bound de S dans A^{op} .
- \triangleright Un élément $a \in A$ est un greatest lower bound (glb, meet, inf) de S ssi a est un least upper bound de S dans A^{op} .

On note $\bigvee S$ le least upper bound de S. On note $\bigwedge S$ le greatest lower bound de S.

Exemple 2. Soit $S \subseteq \wp(X)$ alors le least upper bound de S dans $(\wp(X), \subseteq)$ est $\bigcup S \in \wp(X)$. Le greatest lower bound de S dans $(\wp(X), \subseteq)$ est $\bigcap S \in \wp(X)$.

Exemple 3. Soit $S \subset \Omega X$ alors le least upper bound dans $(\Omega X,\subseteq)$ est $\bigcup S\in\Omega X$. Le greatest lower bound dans $(\Omega X,\subseteq)$ n'est pas évident. En effet,

$$\{\operatorname{ext}(\mathsf{a}^n) \mid n \in \mathbb{N}\} \subseteq \Omega \Sigma^{\omega},$$

mais $\bigcap_{n\in\mathbb{N}} \operatorname{ext}(\mathsf{a}^n) = \{\mathsf{a}^\omega\} \not\in \Omega\Sigma^\omega$.

Exemple 4. Dans (Σ^*, \subseteq) (la relation « préfixe de »), une partie $S \subseteq \Sigma^*$ n'a pas forcément de sup.

Définition 5. Un poset (L, \leq) est un treillis complet si

- $\quad \triangleright \ \, \text{tout} \,\, S \subseteq L \,\, \text{a un sup} \,\, \bigvee S \in L \,; \\ \\ \ \, \triangleright \ \, \text{tout} \,\, S \subseteq L \,\, \text{a un inf} \,\, \bigwedge S \in L. \\ \\ \ \, \rangle \,\, \text{tout} \,\, S \subseteq L \,\, \text{a un inf} \,\, \bigwedge S \in L. \\ \\ \ \, \rangle \,\, \text{tout} \,\, S \subseteq L \,\, \text{a un inf} \,\, \bigwedge S \in L. \\ \\ \ \, \rangle \,\, \text{tout} \,\, S \subseteq L \,\, \text{a un inf} \,\, \bigwedge S \in L. \\ \\ \ \, \rangle \,\, \text{tout} \,\, S \subseteq L \,\, \text{a un inf} \,\, \bigwedge S \in L. \\ \\ \ \, \rangle \,\, \text{tout} \,\, S \subseteq L \,\, \text{a un inf} \,\, \bigwedge S \in L. \\ \\ \ \, \rangle \,\, \text{tout} \,\, S \subseteq L \,\, \text{a un inf} \,\, \bigwedge S \in L. \\ \\ \ \, \rangle \,\, \text{tout} \,\, S \subseteq L \,\, \text{a un inf} \,\, \bigwedge S \in L. \\ \\ \ \, \rangle \,\, \text{tout} \,\, S \subseteq L \,\, \text{a un inf} \,\, \bigwedge S \subseteq L. \\ \\ \ \, \rangle \,\, \text{tout} \,\, S \subseteq L \,\, \text{a un inf} \,\, \bigwedge S \subseteq L. \\ \\ \ \, \rangle \,\, \text{tout} \,\, S \subseteq L \,\, \text{a un inf} \,\, \bigwedge S \subseteq L. \\ \\ \ \, \rangle \,\, \text{tout} \,\, S \subseteq L \,\, \text{a un inf} \,\, \bigwedge S \subseteq L. \\ \\ \ \, \rangle \,\, \text{tout} \,\, S \subseteq L \,\, \text{a un inf} \,\, \bigwedge S \subseteq L. \\ \\ \ \, \rangle \,\, \text{tout} \,\, S \subseteq L \,\, \text{tout} \,\, S \subseteq L \,\, \text{tout} \,\, S \subseteq L. \\ \\ \ \, \rangle \,\, \text{tout} \,\, S \subseteq L \,\, \text{tout$

Remarque 1 (Unicité du lub/glb). Par antisymétrie, si a et b sont deux least upper bound (ou greatest lower bound) alors a = b.

En conséquence on a que tout treillis complet a

- \triangleright un plus petit élément $\bot := \bigvee \emptyset \in L$;
- \triangleright un plus grand élément $\top := \bigwedge \emptyset \in L$.

Remarque 2 (Non-exemple). Le poset (Σ^*, \subseteq) (avec la relation « préfixe de ») n'est **pas** un treillis complet, car il n'a pas de plus grand élément \top .

Exemple 5. Le poset $(\wp(X),\subseteq)$ (avec la relation d'inclusion ensembliste) est un treillis complet.

Lemme 1. Les conditions suivantes sont équivalentes pour un poset (L, \leq) :

- 1. (L, \leq) est un treillis complet;
- 2. tout $S \subseteq L$ a un sup $\forall S \in L$;
- 3. tout $S \subseteq L$ a un inf $\bigwedge S \in L$;

Preuve. Pour montrer l'implication « $2. \implies 3.$ », on peut définir

$$\forall S \subseteq L, \quad \bigwedge S := \bigvee \{b \mid \forall s \in S, b \leq s\},\$$

et montrer que c'est bien un inf.

Exemple 6. En revenant sur $(\Omega X, \subseteq)$, c'est un treillis complet dont l'inf de $S \subseteq \Omega X$ est

$$\bigwedge S = \bigcup \{V \in \Omega X \mid V \subseteq \cap S\}.$$

Il s'agit de $\widehat{\bigcap S}$ qui est l'*intérieur* de $\bigcap S$.

Par exemple, dans $(\Omega \Sigma^{\omega}, \subseteq)$, on a

$$\bigwedge \{ \operatorname{ext}(\mathsf{a}^n) \mid n \in \mathbb{N} \} = \widehat{\{\mathsf{a}^\omega\}} = \emptyset.$$

3 Opérateur de clôture.

Définition 6. Soit (A, \leq) un poset. Un opérateur de clôture suer (A, \leq) est une fonction

$$c: A \to A$$

telle que

 $\triangleright c$ est monotone;

 $\triangleright c \text{ est } \ll expansive \gg : \text{ pour tout } a \in A, \ a \leq c(a);$

 $\triangleright c \text{ est } idempotent : c(c(a)) = c(a) \text{ pour tout } a \in A.$

Exemple 7. Soit $(X, \Omega X)$ un espace topologique. Alors

$$\wp(X) \ni A \mapsto \bar{A} \in \wp(X)$$

est un opérateur de clôture sur $(\wp(X), \subseteq)$.

Lemme 2. Soit c un opérateur de clôture sur (L, \leq) . On pose

$$L^c := \{ a \in L \mid \underbrace{c(a) = a}_{a \in \operatorname{im} c} \}.$$

Si (L, \leq) est un treillis complet alors (L^c, \leq) est un treillis complet avec

$$\forall S \subseteq L^c, \qquad \bigwedge^{L^c} S = \bigwedge^L S.$$

Exemple 8. Pour $\overline{(-)}:\wp(X)\to\wp(X)$ où $(X,\Omega X)$ est un espace topologique, on a

$$\left(\wp(X)\right)^{\overline{(-)}} = \{F \in \wp(X) \mid F \text{ fermé}\}.$$

Dans ce treillis complet :

$$\bigwedge \mathcal{F} = \bigcap \mathcal{F}$$
 et $\bigvee \mathcal{F} = \overline{\bigcup \mathcal{F}}$,

où F est un ensemble de fermés.

4 Connexion de Galois.

Définition 7. Considérons deux posets (A, \leq_A) et (B, \leq_B) . Une connexion de Galois $g \dashv f : A \to B$ est une paire (f,g) de

fonctions:

$$f: B \to A$$
 et $g: A \to B$

telle que

$$g(a) \leq_B b \iff a \leq_A f(b).$$

Exemple 9. Soit $f: X \to Y$ une fonction. On possède deux « lifts » de f sur les powersets :

$$\triangleright \text{ le lift covariant } f_!: \begin{array}{ccc} \wp(X) & \longrightarrow & \wp(Y) \\ A & \longmapsto & \{f(a) \mid a \in A\} \end{array} ;$$

$$\triangleright \text{ le lift contravariant } f^{\bullet}: \begin{array}{ccc} \wp(Y) & \longrightarrow & \wp(X) \\ B & \longmapsto & \{x \in X \mid f(x) \in B\} \end{array}.$$

On a que $f_! \dashv f^{\bullet}$. En effet, pour tout $A \in \wp(X)$ et $B \in \wp(Y)$,

$$f_!(A) \subseteq B \iff \forall x \in X, (x \in A \implies f(x) \in B)$$

 $\iff A \subseteq f^{\bullet}(B).$

Exemple 10. Soit Σ un alphabet. On a, d'une part,

$$\operatorname{Pref}: \wp(\Sigma^{\omega}) \longrightarrow \wp(\Sigma^{\star})$$

$$A \longmapsto \underbrace{\{\hat{\sigma} \in \Sigma^{\star} \mid \exists \sigma \in A, \hat{\sigma} \subseteq \sigma\}}_{\text{Pref}(\sigma)}.$$

D'autre part, on a

cl:
$$\wp(\Sigma^*) \longrightarrow \wp(\Sigma^\omega)$$

 $W \longmapsto \{ \sigma \in \Sigma^\omega \mid \operatorname{Pref}(\sigma) \subset W \}.$

Attention, ce n'est pas le cl vu en TD. On a que

$$Pref(-) \dashv cl(-)$$
.

¹On note habituellement f^* et non f^{\bullet} , mais vu qu'on utilise souvent « * » dans le cours, on change de notation.

Lemme 3. \triangleright Si $g \dashv f$ et $g' \dashv f$ alors g = g'.

- ${\bf \triangleright} \ {\rm Si} \ g\dashv f \ {\rm et} \ g\dashv f' \ {\rm alors} \ f=f'.$
- \triangleright Si $g \dashv f$ alors g et f sont monotones.

Preuve. Vu en TD.

Dans $g \dashv f$, on dit que

- $\triangleright g$ est un adjoint à gauche de f;
- \triangleright f est un adjoint à droite de g.

Lemme 4. Si $g \dashv f : (A, \leq_A) \to (B, \leq_B)$ alors

$$f \circ g : A \xrightarrow{g} B \xrightarrow{f} A$$

est un opérateur de clôture sur (A, \leq_A) .

Preuve. Vu en TD.

Exemple 11. Pour $\operatorname{Pref}(-) \dashv \operatorname{cl}(-) : \wp(\Sigma^{\omega}) \to \wp(\Sigma^{\star})$, le lemme précédent nous donne l'opérateur de clôture

$$\operatorname{cl} \circ \operatorname{Pref} : \wp(\Sigma^{\omega}) \longrightarrow \wp(\Sigma^{\omega})$$
$$A \longmapsto \{ \sigma \in \Sigma^{\omega} \mid \operatorname{Pref}(\sigma) \subseteq \operatorname{Pref}(A) \}$$

(c'est le cl(-) vu en TD) est la clôture topologique pour $(\Sigma^{\omega}, \Omega\Sigma^{\omega})$.

Remarque 3. En particulier, $A \subseteq \Sigma^{\omega}$ est un fermé si et seulement s'il existe un arbre $T \subseteq \Sigma^{\star}$ tel que

$$A = \{ \pi \in \Sigma^{\omega} \mid \pi \text{ chemin infini dans } T \}.$$

On a que cl \circ Pref(A) qui est un arbre sur Σ .

 $^{^2\}mathrm{Attention}$ à ne pas se tromper sur le sens de la composition!

Corollaire 1. \triangleright Une propriété $P \subseteq (\mathbf{2}^{AP})^{\omega}$ est de sûreté si et seulement si on a $P = \operatorname{cl}(\operatorname{Pref}(P))$.

▶ Une propriété $P \subseteq (\mathbf{2}^{AP})^{\omega}$ est de vivacité si et seulement si on a $(\mathbf{2}^{AP})^{\omega} = \operatorname{cl}(\operatorname{Pref}(P))$.

Preuve. (Déjà) vu en TD. Ceci correspond exactement au fait que

- $\triangleright P$ est de sûreté ssi P est fermé dans $(\Sigma^{\omega}, \Omega\Sigma^{\omega})$;
- $\triangleright P$ est de vivacité ssi P est dense dans $(\Sigma^{\omega}, \Omega\Sigma^{\omega})$;
- \triangleright cl \circ Pref est exactement $\overline{(-)}$ dans $(\Sigma^{\omega}, \Omega\Sigma^{\omega})$.

Proposition 1. Une propriété $P \subseteq (\mathbf{2}^{AP})^{\omega}$ est de vivacité si et seulement si $\operatorname{Pref}(P) = (\mathbf{2}^{AP})^{\star}$.

Preuve. En effet, par adjonction (connexion de Galois), on a

$$(\mathbf{2}^{\mathrm{AP}})^{\star} = \mathrm{Pref}((\mathbf{2}^{\mathrm{AP}})^{\omega}) \subseteq \mathrm{Pref}(P) \iff (\mathbf{2}^{\mathrm{AP}})^{\omega} \subseteq \mathrm{cl}(\mathrm{Pref}(P)).$$

Quelques propriétés des connexions de Galois.

Lemme 5. Soit $g \dashv f : A \to B$ une connexion de Galois.

- 1. pour tout $S \subseteq A$ tel que $\forall S \in A$ alors $g(\forall S) = \forall g_!(S)$;
- 2. pour tout $S \subseteq B$ tel que $\bigwedge S \in B$ alors $f(\bigwedge S) = \bigwedge f_!(S)$.

Remarque 4. Dans le lemme précédent, il est important de remarquer que l'on a une implication « cachée » : $\bigvee S$ existe dans A implique $\bigvee g_!(S)$ existe dans B (et idem pour \bigwedge et f).

Lemme 6. Soient (A, \leq_A) et (B, \leq_B) deux treillis complets.

1. Si $g: A \to B$ préserve les sups $(i.e.\ g(\bigvee S) = \bigvee g_!(S))$ alors il existe une fonction $f: B \to A$ telle que $g \dashv f$. Cette fonction est:

$$f(b) := \bigvee \{ a \in A \mid g(a) \leq_B b \}.$$

2. Si $f: B \to A$ préserve les infs alors il existe une fonction $g: A \to B$ telle que $g \dashv f$. Cette fonction est :

$$g(a) := \bigwedge \{ b \in B \mid a \leq_A f(b) \}.$$

Exemple 12 (Algèbres de Heyting complètes). Soit (L, \leq) un treillis complet. Soit $a \in L$. On a une fonction

$$- \wedge a : L \longrightarrow L$$
$$b \longmapsto b \wedge a = \bigwedge \{a, b\}.$$

On dit que (L, \leq) est une algèbre de Heyting complète si, pour tout $a \in A$, la fonction $- \wedge a$ a un adjoint à gauche. Si cet adjoint existe, on le note $a \Rightarrow -$. Ceci nous donne que

$$\forall a, b, c \in L, \qquad b \land a \le c \iff b \le a \Rightarrow c.$$

On a l'équivalence entre :

- $\triangleright (L, \leq)$ est une algèbre de Heyting complète;
- ightharpoonup pour tout $a \in L, -\wedge a : L \to L$ préserve les sups, autrement dit pour tout $S \subseteq L$,

$$(\bigvee S) \land a = \bigvee \{s \land a \mid s \in S\}.$$

C'est une sorte de distributivité.

Dans ce cas, on a que

$$a \Rightarrow c = \bigvee \{b \mid b \land a \le c\}.$$