```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_excel("MIDMARKS-MINOR1-EXAM.xlsx")
```

In [2]: df

Out[2]:

	S.NO	SECTION	DV	M-II	PP	BEEE	FL	FIMS
0	1	ALPHA	12	0	17	9	19	15
1	2	ALPHA	19	12	16	16	18	3
2	3	ALPHA	18	14	18	18	18	16
3	4	ALPHA	15	9	19	17	19	15
4	5	ALPHA	18	17	19	19	20	18
475	476	NaN	18	2	12	3	17	15
476	477	NaN	20	6	16	11	20	14
477	478	NaN	20	NaN	18	13	20	18
478	479	NaN	20	20	5	19	18	14
479	480	NaN	20	16	18	19	20	19

480 rows × 8 columns

```
In [3]: df.info
```

```
Out[3]: <bound method DataFrame.info of</pre>
                                             S.NO SECTION DV M-II PP BEEE FL FIMS
                1
                    ALPHA 12
                                 0 17
                                          9
                                             19
                                                  15
        1
                2
                    ALPHA 19
                                12 16
                                         16
                                             18
                                                   3
        2
                    ALPHA 18
                                14
                3
                                    18
                                         18
                                             18
                                                  16
                    ALPHA 15
        3
                4
                                 9
                                    19
                                         17
                                             19
                                                  15
                    ALPHA 18
        4
                5
                                17
                                    19
                                         19
                                             20
                                                  18
        475
              476
                      NaN
                           18
                                 2
                                    12
                                         3
                                             17
                                                  15
        476
              477
                      NaN
                           20
                                 6
                                    16
                                         11
                                             20
                                                  14
        477
                           20
                                             20
              478
                      NaN
                               NaN
                                    18
                                         13
                                                  18
        478
              479
                      NaN
                           20
                                20
                                    5
                                         19
                                             18
                                                  14
        479
              480
                      NaN
                                16
                                    18
                                         19
                                             20
                                                  19
```

[480 rows x 8 columns]>

```
In [4]: df['SECTION'] = df['SECTION'].fillna('ZETA')
df
```

Out[4]:

00	SECTION	DV	IV1-11	FF	DEEE	ГL	FINS
1	ALPHA	12	0	17	9	19	15
2	ALPHA	19	12	16	16	18	3
3	ALPHA	18	14	18	18	18	16
4	ALPHA	15	9	19	17	19	15
5	ALPHA	18	17	19	19	20	18
476	ZETA	18	2	12	3	17	15
477	ZETA	20	6	16	11	20	14
478	ZETA	20	NaN	18	13	20	18
479	ZETA	20	20	5	19	18	14
480	ZETA	20	16	18	19	20	19
	1 2 3 4 5 476 477 478 479	1 ALPHA 2 ALPHA 3 ALPHA 4 ALPHA 5 ALPHA 476 ZETA 477 ZETA 478 ZETA 479 ZETA	1 ALPHA 12 2 ALPHA 19 3 ALPHA 18 4 ALPHA 15 5 ALPHA 18 476 ZETA 18 477 ZETA 20 478 ZETA 20 479 ZETA 20	1 ALPHA 12 0 2 ALPHA 19 12 3 ALPHA 18 14 4 ALPHA 15 9 5 ALPHA 18 17 476 ZETA 18 2 477 ZETA 20 6 478 ZETA 20 NaN 479 ZETA 20 20	1 ALPHA 12 0 17 2 ALPHA 19 12 16 3 ALPHA 18 14 18 4 ALPHA 15 9 19 5 ALPHA 18 17 19 476 ZETA 18 2 12 477 ZETA 20 6 16 478 ZETA 20 NaN 18 479 ZETA 20 20 5	1 ALPHA 12 0 17 9 2 ALPHA 19 12 16 16 3 ALPHA 18 14 18 18 4 ALPHA 15 9 19 17 5 ALPHA 18 17 19 19 476 ZETA 18 2 12 3 477 ZETA 20 6 16 11 478 ZETA 20 NaN 18 13 479 ZETA 20 20 5 19	2 ALPHA 19 12 16 16 18 18 3 ALPHA 18 15 9 19 17 19 5 ALPHA 18 17 19 19 20

480 rows × 8 columns

```
In [ ]:
```

```
In [5]: df['SECTION'].value_counts()
```

```
Out[5]: ALPHA
                    60
         BETA
                    60
        DELTA
                    60
        ZETA
                    60
        EPSILON
                    60
        GAMMA
                    60
        OMEGA
                    60
         SIGMA
                    60
```

Name: SECTION, dtype: int64

```
In [ ]:
```

```
In [6]: df['DV'].value_counts()
Out[6]: 17
               53
         20
               53
         18
               48
         16
               48
         15
               45
         19
               38
         11
               31
         12
               27
         13
               25
        14
               24
        10
               22
        9
               14
         8
               10
         6
                9
         5
                8
         7
                6
         Α
                6
                4
                3
                1
                1
        Name: DV, dtype: int64
In [7]: df['DV'] = df['DV'].replace('MP',0)
```

Out[7]:

	S.NO	SECTION	DV	M-II	PP	BEEE	FL	FIMS
0	1	ALPHA	12	0	17	9	19	15
1	2	ALPHA	19	12	16	16	18	3
2	3	ALPHA	18	14	18	18	18	16
3	4	ALPHA	15	9	19	17	19	15
4	5	ALPHA	18	17	19	19	20	18
475	476	ZETA	18	2	12	3	17	15
476	477	ZETA	20	6	16	11	20	14
477	478	ZETA	20	NaN	18	13	20	18
478	479	ZETA	20	20	5	19	18	14
479	480	ZETA	20	16	18	19	20	19

```
In [8]: df['DV'] = df['DV'].replace('A',0)
df
```

Out[8]:

	S.NO	SECTION	DV	M-II	PP	BEEE	FL	FIMS
0	1	ALPHA	12.0	0	17	9	19	15
1	2	ALPHA	19.0	12	16	16	18	3
2	3	ALPHA	18.0	14	18	18	18	16
3	4	ALPHA	15.0	9	19	17	19	15
4	5	ALPHA	18.0	17	19	19	20	18
475	476	ZETA	18.0	2	12	3	17	15
476	477	ZETA	20.0	6	16	11	20	14
477	478	ZETA	20.0	NaN	18	13	20	18
478	479	ZETA	20.0	20	5	19	18	14
479	480	ZETA	20.0	16	18	19	20	19

```
In [9]: df['DV'].value_counts()
Out[9]: 17.0
                 53
         20.0
                 53
         18.0
                 48
         16.0
                 48
         15.0
                 45
         19.0
                 38
         11.0
                 31
         12.0
                 27
         13.0
                 25
         14.0
                 24
         10.0
                 22
         9.0
                 14
         8.0
                  10
         6.0
                  9
         5.0
                  8
         0.0
                  7
         7.0
                  6
         2.0
                  4
                  3
         4.0
                  3
         1.0
         3.0
                  1
         Name: DV, dtype: int64
In [10]: df = df.replace('MP',0)
         df = df.replace('A',0)
         df = df.replace('AB',0)
         df = df.replace('o',0)
         df = df.replace('II',11)
         df = df.replace('I',1)
```

```
In [11]: df['PP'].value_counts()
Out[11]: 20
                70
          18
                35
          19
                35
          17
                31
          12
                29
          11
                28
          14
                28
          16
                28
          15
                27
          9
                24
          10
                19
          6
                18
          13
                15
          5
                15
          3
                13
          2
                13
          0
                13
          8
                12
                10
                10
          1
         Name: PP, dtype: int64
In [12]: df['BEEE'].value_counts()
Out[12]: 20.0
                  76
          17.0
                  46
          19.0
                  42
         11.0
                  31
         18.0
                  31
         15.0
                  28
          16.0
                  23
         14.0
                  21
          12.0
                  21
          10.0
                  20
          9.0
                  19
          0.0
                  15
          7.0
                  15
          6.0
                  15
          3.0
                  14
          13.0
                  14
          8.0
                  13
          4.0
                  12
          5.0
                  10
                   9
          2.0
          1.0
                   3
         Name: BEEE, dtype: int64
```

```
In [13]: df['M-II'].value_counts()
Out[13]: 20.0
                  44
          0.0
                  34
          3.0
                  34
          17.0
                  32
         8.0
                  29
          11.0
                  25
          12.0
                  24
          15.0
                  24
          18.0
                  23
          5.0
                  23
         4.0
                  22
         10.0
                  20
         13.0
                  18
         6.0
                  18
          1.0
                  18
          9.0
                  17
          14.0
                  17
          16.0
                  16
          7.0
                  14
          2.0
                  13
          19.0
                  12
         Name: M-II, dtype: int64
In [14]: df['FIMS'].value_counts()
Out[14]: 18
                62
          15
                57
          16
                50
          17
                41
          14
                40
          13
                36
          19
                35
          9
                28
          11
                22
          12
                20
          10
                19
          0
                15
          20
                12
          8
                11
          3
                 6
          5
                 5
          4
                 5
          7
                 5
                 5
          6
                 3
          2
          1
                 3
         Name: FIMS, dtype: int64
```

```
In [15]: df['FL'].value_counts()
Out[15]: 20.0
                 121
         15.0
                   85
         18.0
                   59
         10.0
                   55
         13.0
                   50
         19.0
                   34
         16.0
                   15
         14.0
                   11
         11.0
                   10
         17.0
         0.0
                   9
         12.0
                   8
         8.0
                   6
         9.0
                    3
                    2
         6.0
                    2
         7.0
         Name: FL, dtype: int64
In [16]: df.isnull().sum()
Out[16]: S.NO
                     0
         SECTION
                     0
         DV
                     1
         M-II
                     3
         PP
                     0
         BEEE
                     2
         FL
                     1
         FIMS
         dtype: int64
In [17]: | df[df['DV'].isnull()]
Out[17]:
                                  M-II PP BEEE
              S.NO SECTION
                             DV
                                                 FL FIMS
          389
                390
                     OMEGA NaN 17.0 17
                                            19.0 20.0
In [ ]:
```

```
In [18]: df['S.NO'] = range(1, len(df) + 1)
df
```

Out[18]:

	S.NO	SECTION	DV	M-II	PP	BEEE	FL	FIMS
0	1	ALPHA	12.0	0.0	17	9.0	19.0	15
1	2	ALPHA	19.0	12.0	16	16.0	18.0	3
2	3	ALPHA	18.0	14.0	18	18.0	18.0	16
3	4	ALPHA	15.0	9.0	19	17.0	19.0	15
4	5	ALPHA	18.0	17.0	19	19.0	20.0	18
475	476	ZETA	18.0	2.0	12	3.0	17.0	15
476	477	ZETA	20.0	6.0	16	11.0	20.0	14
477	478	ZETA	20.0	NaN	18	13.0	20.0	18
478	479	ZETA	20.0	20.0	5	19.0	18.0	14
479	480	ZETA	20.0	16.0	18	19.0	20.0	19

480 rows × 8 columns

```
In [19]: df['FL'] = df['FL'].fillna(0)
df=df.dropna()
```

In [20]: df

Out[20]:

_		S.NO	SECTION	DV	M-II	PP	BEEE	FL	FIMS
	0	1	ALPHA	12.0	0.0	17	9.0	19.0	15
	1	2	ALPHA	19.0	12.0	16	16.0	18.0	3
	2	3	ALPHA	18.0	14.0	18	18.0	18.0	16
	3	4	ALPHA	15.0	9.0	19	17.0	19.0	15
	4	5	ALPHA	18.0	17.0	19	19.0	20.0	18
	474	475	ZETA	11.0	4.0	2	2.0	8.0	10
	475	476	ZETA	18.0	2.0	12	3.0	17.0	15
	476	477	ZETA	20.0	6.0	16	11.0	20.0	14
	478	479	ZETA	20.0	20.0	5	19.0	18.0	14
	479	480	ZETA	20.0	16.0	18	19.0	20.0	19

```
In [21]: df.info
Out[21]: <bound method DataFrame.info of</pre>
                                              S.NO SECTION
                                                              DV M-II PP BEEE
                                                                                    FL FIMS
                     ALPHA 12.0
                                             9.0 19.0
                 1
                                  0.0 17
                                                          15
         1
                 2
                     ALPHA 19.0 12.0
                                            16.0 18.0
                                        16
                                                           3
         2
                 3
                     ALPHA 18.0 14.0
                                        18
                                            18.0 18.0
                                                          16
         3
                 4
                     ALPHA 15.0
                                  9.0
                                       19
                                            17.0 19.0
                                                          15
         4
                 5
                     ALPHA 18.0 17.0
                                        19
                                            19.0
                                                  20.0
                                                          18
                                   . . .
         474
               475
                      ZETA 11.0
                                   4.0
                                        2
                                             2.0
                                                   8.0
                                                          10
         475
                      ZETA 18.0
                                   2.0
                                        12
                                             3.0 17.0
               476
                                                          15
         476
               477
                      ZETA 20.0
                                   6.0
                                        16
                                            11.0 20.0
                                                          14
         478
               479
                      ZETA 20.0
                                  20.0
                                        5
                                            19.0 18.0
                                                          14
         479
               480
                      ZETA 20.0 16.0 18 19.0 20.0
                                                          19
         [474 rows x 8 columns]>
In [22]: |df.isnull().sum()
Out[22]: S.NO
         SECTION
                    0
         DV
                    0
         M-II
                    0
         PΡ
                    a
         BEEE
                    a
         FL
                    0
         FIMS
                    0
         dtype: int64
In [ ]:
```

Mid Marks Data

```
In [23]: df.rename(columns={'M-II':'M2'},inplace=True)
```

C:\Users\khsbh\AppData\Local\Temp\ipykernel_26360\82161249.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.rename(columns={'M-II':'M2'},inplace=True)

Renaming M-II as M2

In [24]: df

Out[24]:

		S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS
	0	1	ALPHA	12.0	0.0	17	9.0	19.0	15
	1	2	ALPHA	19.0	12.0	16	16.0	18.0	3
	2	3	ALPHA	18.0	14.0	18	18.0	18.0	16
	3	4	ALPHA	15.0	9.0	19	17.0	19.0	15
	4	5	ALPHA	18.0	17.0	19	19.0	20.0	18
4	74	475	ZETA	11.0	4.0	2	2.0	8.0	10
4	75	476	ZETA	18.0	2.0	12	3.0	17.0	15
4	76	477	ZETA	20.0	6.0	16	11.0	20.0	14
4	78	479	ZETA	20.0	20.0	5	19.0	18.0	14
4	79	480	ZETA	20.0	16.0	18	19.0	20.0	19

```
In [25]: |df['DV'] = pd.to_numeric(df['DV'], errors='coerce')
         df['M2'] = pd.to_numeric(df['M2'], errors='coerce')
         df['PP'] = pd.to_numeric(df['PP'], errors='coerce')
         df['BEEE'] = pd.to_numeric(df['BEEE'], errors='coerce')
         df['FL'] = pd.to_numeric(df['FL'], errors='coerce')
         df['FIMS'] = pd.to numeric(df['FIMS'], errors='coerce')
         df.fillna(0, inplace=True)
         C:\Users\khsbh\AppData\Local\Temp\ipykernel 26360\1473698917.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/
         indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/use
         r guide/indexing.html#returning-a-view-versus-a-copy)
           df['DV'] = pd.to numeric(df['DV'], errors='coerce')
         C:\Users\khsbh\AppData\Local\Temp\ipykernel 26360\1473698917.py:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/
         indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/use
         r_guide/indexing.html#returning-a-view-versus-a-copy)
           df['M2'] = pd.to_numeric(df['M2'], errors='coerce')
         C:\Users\khsbh\AppData\Local\Temp\ipykernel_26360\1473698917.py:3: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/
         indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/use
         r guide/indexing.html#returning-a-view-versus-a-copy)
           df['PP'] = pd.to_numeric(df['PP'], errors='coerce')
         C:\Users\khsbh\AppData\Local\Temp\ipykernel_26360\1473698917.py:4: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/
         indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/use
         r_guide/indexing.html#returning-a-view-versus-a-copy)
           df['BEEE'] = pd.to numeric(df['BEEE'], errors='coerce')
         C:\Users\khsbh\AppData\Local\Temp\ipykernel_26360\1473698917.py:5: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/
         indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/use
         r guide/indexing.html#returning-a-view-versus-a-copy)
           df['FL'] = pd.to numeric(df['FL'], errors='coerce')
         C:\Users\khsbh\AppData\Local\Temp\ipykernel 26360\1473698917.py:6: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/
         indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/use
         r_guide/indexing.html#returning-a-view-versus-a-copy)
           df['FIMS'] = pd.to_numeric(df['FIMS'], errors='coerce')
         C:\Users\khsbh\AppData\Local\Temp\ipykernel 26360\1473698917.py:7: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/
         indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/use
         r_guide/indexing.html#returning-a-view-versus-a-copy)
           df.fillna(0, inplace=True)
```

Converting into numeric

```
In [26]: df['Total'] = df['DV'] + df['M2'] + df['PP'] + df['BEEE'] + df['FL'] + df['FIMS']

df
```

C:\Users\khsbh\AppData\Local\Temp\ipykernel_26360\4026183173.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['Total'] = df['DV'] + df['M2'] + df['PP'] + df['BEEE'] + df['FL'] + df['FIMS']

Out[26]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total
0	1	ALPHA	12.0	0.0	17	9.0	19.0	15	72.0
1	2	ALPHA	19.0	12.0	16	16.0	18.0	3	84.0
2	3	ALPHA	18.0	14.0	18	18.0	18.0	16	102.0
3	4	ALPHA	15.0	9.0	19	17.0	19.0	15	94.0
4	5	ALPHA	18.0	17.0	19	19.0	20.0	18	111.0
474	475	ZETA	11.0	4.0	2	2.0	8.0	10	37.0
475	476	ZETA	18.0	2.0	12	3.0	17.0	15	67.0
476	477	ZETA	20.0	6.0	16	11.0	20.0	14	87.0
478	479	ZETA	20.0	20.0	5	19.0	18.0	14	96.0
479	480	ZETA	20.0	16.0	18	19.0	20.0	19	112.0

474 rows × 9 columns

Calculating total

```
In [27]: df["Percentage"] = (df['Total']/120)*100
```

C:\Users\khsbh\AppData\Local\Temp\ipykernel_26360\3999239091.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df["Percentage"] = (df['Total']/120)*100

In [28]: df

Out[28]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage
0	1	ALPHA	12.0	0.0	17	9.0	19.0	15	72.0	60.000000
1	2	ALPHA	19.0	12.0	16	16.0	18.0	3	84.0	70.000000
2	3	ALPHA	18.0	14.0	18	18.0	18.0	16	102.0	85.000000
3	4	ALPHA	15.0	9.0	19	17.0	19.0	15	94.0	78.333333
4	5	ALPHA	18.0	17.0	19	19.0	20.0	18	111.0	92.500000
474	475	ZETA	11.0	4.0	2	2.0	8.0	10	37.0	30.833333
475	476	ZETA	18.0	2.0	12	3.0	17.0	15	67.0	55.833333
476	477	ZETA	20.0	6.0	16	11.0	20.0	14	87.0	72.500000
478	479	ZETA	20.0	20.0	5	19.0	18.0	14	96.0	80.000000
479	480	ZETA	20.0	16.0	18	19.0	20.0	19	112.0	93.333333

474 rows × 10 columns

In [29]: df['Percentage'] = df['Percentage'].round().astype(int)
df

C:\Users\khsbh\AppData\Local\Temp\ipykernel_26360\1999675392.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['Percentage'] = df['Percentage'].round().astype(int)

Out[29]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage
0	1	ALPHA	12.0	0.0	17	9.0	19.0	15	72.0	60
1	2	ALPHA	19.0	12.0	16	16.0	18.0	3	84.0	70
2	3	ALPHA	18.0	14.0	18	18.0	18.0	16	102.0	85
3	4	ALPHA	15.0	9.0	19	17.0	19.0	15	94.0	78
4	5	ALPHA	18.0	17.0	19	19.0	20.0	18	111.0	92
474	475	ZETA	11.0	4.0	2	2.0	8.0	10	37.0	31
475	476	ZETA	18.0	2.0	12	3.0	17.0	15	67.0	56
476	477	ZETA	20.0	6.0	16	11.0	20.0	14	87.0	72
478	479	ZETA	20.0	20.0	5	19.0	18.0	14	96.0	80
479	480	ZETA	20.0	16.0	18	19.0	20.0	19	112.0	93

```
In [30]: | def assign_grade(percentage):
             if percentage >= 90:
                 return 'A'
             elif percentage >= 80:
                 return 'B+'
             elif percentage >= 70:
                 return 'B'
             elif percentage >= 60:
                 return 'C+'
             elif percentage >=50:
                 return 'C'
             elif percentage >=40:
                 return 'D'
             else:
                 return 'F'
         df['Grade'] = df['Percentage'].apply(assign_grade)
         df
```

C:\Users\khsbh\AppData\Local\Temp\ipykernel_26360\2453317957.py:16: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['Grade'] = df['Percentage'].apply(assign_grade)

Out[30]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade
0	1	ALPHA	12.0	0.0	17	9.0	19.0	15	72.0	60	C+
1	2	ALPHA	19.0	12.0	16	16.0	18.0	3	84.0	70	В
2	3	ALPHA	18.0	14.0	18	18.0	18.0	16	102.0	85	B+
3	4	ALPHA	15.0	9.0	19	17.0	19.0	15	94.0	78	В
4	5	ALPHA	18.0	17.0	19	19.0	20.0	18	111.0	92	Α
474	475	ZETA	11.0	4.0	2	2.0	8.0	10	37.0	31	F
475	476	ZETA	18.0	2.0	12	3.0	17.0	15	67.0	56	С
476	477	ZETA	20.0	6.0	16	11.0	20.0	14	87.0	72	В
478	479	ZETA	20.0	20.0	5	19.0	18.0	14	96.0	80	B+
479	480	ZETA	20.0	16.0	18	19.0	20.0	19	112.0	93	Α

Distribution of Total marks in Histogram

```
In [33]: df['DV'] = pd.to_numeric(df['DV'], errors='coerce')
    df = df.dropna(subset=['DV'])
    plt.hist(df['DV'], bins=10, color='red', edgecolor='black')
    plt.title("Distribution of DV Marks")
    plt.xlabel("DV Marks")
    plt.ylabel("Number of Students")
    plt.show()
```

C:\Users\khsbh\AppData\Local\Temp\ipykernel_26360\1854147094.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['DV'] = pd.to numeric(df['DV'], errors='coerce')

Distribution of DV Marks

```
In [34]: df['M2'] = pd.to_numeric(df['M2'], errors='coerce')
    df = df.dropna(subset=['M2'])
    plt.hist(df['M2'], bins=10, color='orange', edgecolor='black')
    plt.title("Distribution of M2 Marks")
    plt.xlabel("M2 Marks")
    plt.ylabel("Number of Students")
    plt.show()
```


Distribution of M2 Marks

```
In [35]: df['PP'] = pd.to_numeric(df['PP'], errors='coerce')
         df['BEEE'] = pd.to_numeric(df['BEEE'], errors='coerce')
         df_clean = df.dropna(subset=['PP', 'BEEE'])
         plt.figure(figsize=[10, 6])
         plt.subplot(1, 2, 1)
         plt.hist(df_clean['PP'], bins=10, color='red', edgecolor='black')
         plt.title("Distribution of PP Marks")
         plt.xlabel("PP Marks")
         plt.ylabel("Number of Students")
         plt.subplot(1, 2, 2)
         plt.hist(df_clean['BEEE'], bins=10, color='yellow', edgecolor='black')
         plt.title("Distribution of BEEE Marks")
         plt.xlabel("BEEE Marks")
         plt.ylabel("Number of Students")
         plt.tight_layout()
         plt.show()
```


Comparision of PP marks and BEEE marks

```
In [36]: filtered_df = df[df['PP'] > 10]
    plt.hist(filtered_df['PP'], bins=10, color='blue', edgecolor='black')
    plt.title("PP Marks above 15 ")
    plt.xlabel("PP Marks")
    plt.ylabel("Number of Students")
    plt.show()
```


PP Marks who got more than 10

```
In [37]: filtered_df = df[df['M2'] < 10]

plt.hist(filtered_df['M2'], bins=10, color='brown', edgecolor='black')
plt.title("M2 Marks less than 15")
plt.xlabel("M2 Marks")
plt.ylabel("Number of Students")
plt.show()</pre>
```


M2 Marks Who got less than 10

```
In [38]: plt.scatter(df['FL'], df['FIMS'], c=df['FL'], cmap='viridis', alpha=0.7)
    plt.title("FL Marks vs FIMS Marks")
    plt.xlabel("FL Marks")
    plt.ylabel("FIMS Marks")
    plt.colorbar(label='FL Marks')
    plt.show()
```


Scatter plot of FL VS FIMS Marks

```
In [39]: filtered_df = df[df['PP'] < 10]

plt.scatter(filtered_df.index, filtered_df['PP'], alpha=0.7, color='green')
plt.title("Less than 10 Marks in PP")
plt.xlabel("Student Index")
plt.ylabel("PP Marks")
plt.show()</pre>
```


Scoring of PP Marks Less than 10

```
In [40]: filtered_df = df[df['BEEE'] < 10]

plt.scatter(filtered_df.index, filtered_df['PP'], alpha=0.7, color='blue')
plt.title("More than 10 Marks in BEEE")
plt.xlabel("Student Index")
plt.ylabel("BEEE Marks")
plt.show()</pre>
```


Scoring of BEEE Marks More than 15

```
In [41]: filtered_df = df[df['DV'] > 10]
    plt.scatter(filtered_df.index, filtered_df['DV'], alpha=0.7, color='pink')
    plt.title("Students Marks 10 in DV ")
    plt.xlabel("Student Index")
    plt.ylabel("DV Marks")
    plt.show()
```


Students who scored 10 marks in DV

```
In [42]: filtered_df = df[df['M2'] == 0]
  plt.scatter(filtered_df.index, filtered_df['DV'], alpha=0.7, color='grey')
  plt.title("Students Marks 0 in M2 ")
  plt.xlabel("Student Index")
  plt.ylabel("M2 Marks")
  plt.show()
```


Students who scored 0 Marks in M2

```
In [43]: filtered_df = df[(df['PP'] == 0) & (df['BEEE'] == 0)]
    plt.scatter(filtered_df.index, filtered_df['PP'], alpha=0.7, color='brown')
    plt.title("Students Marks 0 in PP and BEEE")
    plt.xlabel("Student Index")
    plt.ylabel("PP Marks")
    plt.show()
```


Students scored 0 Marks in PP and BEEE

```
In [44]:
    plt.figure(figsize=(5, 6))
    sns.boxplot(data=df['DV'], color='lightblue')
    plt.title("Box Plot of DV Marks")
    plt.ylabel("Marks")
    plt.show()
```


Box plot for the DV Marks

```
In [45]: plt.figure(figsize=(8, 6))
    sns.boxplot(data=df['BEEE'], color='lightgreen')
    plt.title("Box Plot of BEEE Marks")
    plt.ylabel("Marks")
    plt.show()
```


Box plot of BEEE Marks

```
In [46]: plt.figure(figsize=(8, 6))
    sns.boxplot(data=df['FL'], color='lightpink')
    plt.title("Box Plot of FL Marks")
    plt.ylabel("Marks")
    plt.show()
```


Box plot for the FL Marks

```
In [47]: a=df.loc[(df['Total'] >= 75) & (df['Total'] <= 80)]
a=a.reset_index()
a</pre>
```

Out[47]:

	index	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade
0	31	32	ALPHA	12.0	2.0	17	11.0	18.0	15	75.0	62	C+
1	33	34	ALPHA	14.0	10.0	17	12.0	13.0	12	78.0	65	C+
2	56	57	ALPHA	10.0	17.0	12	17.0	10.0	9	75.0	62	C+
3	67	68	BETA	12.0	6.0	13	20.0	15.0	9	75.0	62	C+
4	101	102	BETA	13.0	12.0	18	4.0	18.0	11	76.0	63	C+
5	106	107	BETA	9.0	13.0	17	6.0	18.0	15	78.0	65	C+
6	109	110	BETA	13.0	12.0	19	4.0	18.0	14	80.0	67	C+
7	114	115	BETA	11.0	14.0	16	4.0	18.0	12	75.0	62	C+
8	126	127	DELTA	11.0	14.0	12	7.0	15.0	17	76.0	63	C+
9	143	144	DELTA	15.0	5.0	16	19.0	10.0	15	80.0	67	C+
10	149	150	DELTA	13.0	16.0	17	7.0	13.0	11	77.0	64	C+
11	179	180	DELTA	14.0	13.0	5	12.0	13.0	20	77.0	64	C+
12	182	183	EPSILON	16.0	8.0	18	11.0	13.0	14	80.0	67	C+
13	183	184	EPSILON	15.0	5.0	12	9.0	18.0	18	77.0	64	C+
14	187	188	EPSILON	14.0	5.0	13	9.0	20.0	18	79.0	66	C+
15	208	209	EPSILON	18.0	6.0	12	8.0	15.0	16	75.0	62	C+
16	214	215	EPSILON	16.0	6.0	14	13.0	13.0	16	78.0	65	C+
17	215	216	EPSILON	15.0	6.0	12	9.0	15.0	19	76.0	63	C+
18	225	226	EPSILON	14.0	8.0	12	13.0	13.0	18	78.0	65	C+
19	244	245	GAMMA	17.0	8.0	11	15.0	15.0	12	78.0	65	C+
20	259	260	GAMMA	14.0	9.0	7	14.0	16.0	16	76.0	63	C+
21	296	297	GAMMA	18.0	4.0	9	10.0	20.0	15	76.0	63	C+
22	300	301	OMEGA	19.0	2.0	6	20.0	17.0	13	77.0	64	C+
23	304	305	OMEGA	16.0	3.0	7	16.0	20.0	16	78.0	65	C+
24	307	308	OMEGA	16.0	4.0	12	17.0	15.0	11	75.0	62	C+
25	310	311	OMEGA	19.0	1.0	8	19.0	18.0	13	78.0	65	C+
26	332	333	SIGMA	16.0	5.0	10	20.0	18.0	11	80.0	67	C+
27	344	345	SIGMA	14.0	9.0	8	18.0	13.0	15	77.0	64	C+
28	374	375	ZETA	13.0	8.0	11	17.0	13.0	16	78.0	65	C+
29	381	382	OMEGA	16.0	14.0	11	18.0	15.0	5	79.0	66	C+
30	391	392	OMEGA	11.0	15.0	11	19.0	15.0	8	79.0	66	C+
31	396	397	OMEGA	16.0	11.0	7	17.0	13.0	14	78.0	65	C+
32	403	404	OMEGA	13.0	5.0	9	18.0	15.0	17	77.0	64	C+
33	423	424	SIGMA	16.0	12.0	13	4.0	15.0	17	77.0	64	C+
34	425	426	SIGMA	15.0	4.0	15	11.0	11.0	19	75.0	62	C+
35	426	427	SIGMA	18.0	2.0	12	18.0	12.0	17	79.0	66	C+

Total marks between 75 to 80

```
In [48]: a.plot.line(x='DV',y='Total',color='red')
plt.title("Line Graph of DV")
plt.ylabel("Total")
plt.show()
```


Lineplot for total and DV

```
In [49]: a.plot.line(x='FIMS',y='Total',color='red')
    plt.title("Line Graph of FIMS")
    plt.ylabel("Total")
    plt.show()
```


Lineplot for total and FIMS

```
In [50]: a.plot.line(x='M2',y='Total',color='blue')
plt.title("Line Graph of M2")
plt.ylabel("Total")
plt.show()
```


Lineplot for total and M2

```
In [51]: a.plot.line(x='PP',y='Total',color='blue')
    plt.title("Line Graph of PP")
    plt.ylabel("Total")
    plt.show()
```


Lineplot for total and M2

```
In [52]: a.plot.line(x='BEEE',y='Total',color='blue')
    plt.title("Line Graph of BEEE")
    plt.ylabel("Total")
    plt.show()
```


Lineplot for total and BEEE

```
In [53]: b=df.loc[(df['Total'] >= 115) & (df['Total'] <= 120)]
b=b.reset_index()
b</pre>
```

Out[53]:

	index	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade
0	11	12	ALPHA	20.0	20.0	20	20.0	19.0	16	115.0	96	Α
1	23	24	ALPHA	20.0	20.0	20	20.0	20.0	18	118.0	98	Α
2	69	70	BETA	20.0	20.0	20	19.0	20.0	18	117.0	98	Α
3	79	80	BETA	19.0	20.0	20	19.0	20.0	17	115.0	96	Α
4	115	116	BETA	20.0	20.0	20	20.0	20.0	17	117.0	98	Α
5	132	133	DELTA	20.0	18.0	20	20.0	20.0	18	116.0	97	Α
6	137	138	DELTA	20.0	20.0	20	20.0	18.0	18	116.0	97	Α
7	164	165	DELTA	20.0	20.0	20	20.0	20.0	18	118.0	98	Α
8	217	218	EPSILON	20.0	20.0	20	19.0	20.0	20	119.0	99	Α
9	222	223	EPSILON	20.0	20.0	20	17.0	20.0	20	117.0	98	Α
10	397	398	OMEGA	20.0	20.0	19	20.0	20.0	18	117.0	98	Α
11	398	399	OMEGA	20.0	20.0	19	20.0	20.0	18	117.0	98	Α
12	406	407	OMEGA	20.0	20.0	20	20.0	20.0	18	118.0	98	Α
13	410	411	OMEGA	20.0	20.0	20	20.0	18.0	18	116.0	97	Α
14	412	413	OMEGA	20.0	20.0	17	20.0	20.0	18	115.0	96	Α
15	419	420	SIGMA	20.0	20.0	20	20.0	20.0	19	119.0	99	Α
16	428	429	SIGMA	20.0	17.0	20	20.0	20.0	19	116.0	97	Α
17	440	441	ZETA	20.0	18.0	20	19.0	20.0	18	115.0	96	Α
18	441	442	ZETA	20.0	19.0	20	19.0	20.0	19	117.0	98	Α
19	443	444	ZETA	20.0	20.0	20	20.0	20.0	16	116.0	97	Α
20	471	472	ZETA	20.0	20.0	20	20.0	20.0	20	120.0	100	Α
21	472	473	ZETA	20.0	18.0	20	20.0	20.0	19	117.0	98	Α
22	473	474	ZETA	20.0	20.0	20	20.0	20.0	20	120.0	100	Α

students between 115 and 120

```
In [54]: b['DV'].plot(kind='pie',subplots=True,figsize=(8,8))
plt.title("Pie Chart of DV")
```

Out[54]: Text(0.5, 1.0, 'Pie Chart of DV')

PIE Chart of DV for 32 students

```
In [55]: b['BEEE'].plot(kind='pie',subplots=True,figsize=(8,8))
plt.title("Pie Chart of BEEE")
```

Out[55]: Text(0.5, 1.0, 'Pie Chart of BEEE')

Pie Chart of BEEE

PIE Chart of BEEE for 32 students

```
In [56]: b['PP'].plot(kind='pie',subplots=True,figsize=(8,8))
plt.title("Pie Chart of PP")
```

Out[56]: Text(0.5, 1.0, 'Pie Chart of PP')

Pie Chart of PP

PIE Chart of PP for 32 students

In [57]: df.sort_values('Total').tail(10)

Out[57]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade
441	442	ZETA	20.0	19.0	20	19.0	20.0	19	117.0	98	Α
397	398	OMEGA	20.0	20.0	19	20.0	20.0	18	117.0	98	Α
472	473	ZETA	20.0	18.0	20	20.0	20.0	19	117.0	98	Α
23	24	ALPHA	20.0	20.0	20	20.0	20.0	18	118.0	98	Α
164	165	DELTA	20.0	20.0	20	20.0	20.0	18	118.0	98	Α
406	407	OMEGA	20.0	20.0	20	20.0	20.0	18	118.0	98	Α
419	420	SIGMA	20.0	20.0	20	20.0	20.0	19	119.0	99	Α
217	218	EPSILON	20.0	20.0	20	19.0	20.0	20	119.0	99	Α
473	474	ZETA	20.0	20.0	20	20.0	20.0	20	120.0	100	Α
471	472	ZETA	20.0	20.0	20	20.0	20.0	20	120.0	100	Α

In [58]: df.sort_values('DV').tail(20)

Out[58]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade
39	40	ALPHA	20.0	17.0	20	19.0	20.0	18	114.0	95	Α
365	366	ZETA	20.0	18.0	0	19.0	18.0	17	92.0	77	В
367	368	ZETA	20.0	20.0	19	20.0	18.0	16	113.0	94	Α
440	441	ZETA	20.0	18.0	20	19.0	20.0	18	115.0	96	Α
434	435	SIGMA	20.0	1.0	17	17.0	12.0	17	84.0	70	В
431	432	SIGMA	20.0	19.0	20	20.0	16.0	17	112.0	93	Α
428	429	SIGMA	20.0	17.0	20	20.0	20.0	19	116.0	97	Α
427	428	SIGMA	20.0	16.0	20	20.0	19.0	19	114.0	95	Α
11	12	ALPHA	20.0	20.0	20	20.0	19.0	16	115.0	96	Α
419	420	SIGMA	20.0	20.0	20	20.0	20.0	19	119.0	99	Α
412	413	OMEGA	20.0	20.0	17	20.0	20.0	18	115.0	96	Α
410	411	OMEGA	20.0	20.0	20	20.0	18.0	18	116.0	97	Α
406	407	OMEGA	20.0	20.0	20	20.0	20.0	18	118.0	98	Α
399	400	OMEGA	20.0	20.0	19	20.0	18.0	15	112.0	93	Α
398	399	OMEGA	20.0	20.0	19	20.0	20.0	18	117.0	98	Α
397	398	OMEGA	20.0	20.0	19	20.0	20.0	18	117.0	98	Α
23	24	ALPHA	20.0	20.0	20	20.0	20.0	18	118.0	98	Α
370	371	ZETA	20.0	17.0	16	20.0	20.0	14	107.0	89	B+
442	443	ZETA	20.0	11.0	18	14.0	20.0	15	98.0	82	B+
479	480	ZETA	20.0	16.0	18	19.0	20.0	19	112.0	93	Α

In [59]: df.sort_values('DV').head(50)

Out[59]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade
361	362	ZETA	0.0	0.0	6	7.0	13.0	0	26.0	22	F
173	174	DELTA	0.0	0.0	16	10.0	20.0	19	65.0	54	С
461	462	ZETA	0.0	0.0	0	0.0	0.0	0	0.0	0	F
368	369	ZETA	0.0	0.0	0	0.0	0.0	0	0.0	0	F
380	381	OMEGA	0.0	0.0	0	0.0	0.0	0	0.0	0	F
302	303	OMEGA	0.0	0.0	0	0.0	0.0	0	0.0	0	F
210	211	EPSILON	0.0	0.0	0	0.0	0.0	0	0.0	0	F
469	470	ZETA	1.0	1.0	2	0.0	10.0	0	14.0	12	F
50	51	ALPHA	1.0	16.0	15	13.0	10.0	11	66.0	55	С
453	454	ZETA	1.0	5.0	0	0.0	0.0	0	6.0	5	F
57	58	ALPHA	2.0	2.0	4	10.0	10.0	3	31.0	26	F
82	83	BETA	2.0	0.0	2	0.0	0.0	0	4.0	3	F
88	89	BETA	2.0	17.0	0	3.0	15.0	2	39.0	32	F
393	394	OMEGA	2.0	5.0	1	2.0	10.0	6	26.0	22	F
85	86	BETA	3.0	4.0	14	13.0	18.0	13	65.0	54	С
189	190	EPSILON	4.0	15.0	4	5.0	10.0	14	52.0	43	D
70	71	BETA	4.0	2.0	16	10.0	15.0	9	56.0	47	D
20	21	ALPHA	4.0	2.0	5	3.0	16.0	9	39.0	32	F
75	76	BETA	5.0	8.0	7	15.0	10.0	2	47.0	39	F
326	327	SIGMA	5.0	3.0	9	10.0	10.0	7	44.0	37	F
27	28	ALPHA	5.0	4.0	3	12.0	13.0	5	42.0	35	F
139	140	DELTA	5.0	0.0	12	4.0	20.0	15	56.0	47	D
303	304	OMEGA	5.0	0.0	3	11.0	7.0	10	36.0	30	F
364	365	ZETA	5.0	3.0	3	2.0	10.0	9	32.0	27	F
125	126	DELTA	5.0	16.0	9	7.0	18.0	14	69.0	57	С
444	445	ZETA	5.0	2.0	11	0.0	10.0	0	28.0	23	F
430	431	SIGMA	6.0	1.0	9	11.0	8.0	10	45.0	38	F
311	312	OMEGA	6.0	0.0	1	11.0	9.0	4	31.0	26	F
25	26	ALPHA	6.0	10.0	10	11.0	13.0	10	60.0	50	С
206	207	EPSILON	6.0	6.0	2	3.0	10.0	11	38.0	32	F
424	425	SIGMA	6.0	1.0	0	0.0	0.0	0	7.0	6	F
324	325	SIGMA	6.0	0.0	3	3.0	10.0	4	26.0	22	F
450	451	ZETA	6.0	3.0	7	11.0	11.0	14	52.0	43	D
98	99	BETA	6.0	7.0	16	9.0	13.0	13	64.0	53	С
51	52	ALPHA	6.0	12.0	10	11.0	10.0	3	52.0	43	D
72	73	BETA	7.0	0.0	15	10.0	18.0	11	61.0	51	С
188	189	EPSILON	7.0	10.0	7	2.0	10.0	15	51.0	42	D
340	341	SIGMA	7.0	0.0	3	0.0	13.0	8	31.0	26	F
127	128	DELTA	7.0	4.0	12	4.0	13.0	11	51.0	42	D
160	161	DELTA	7.0	0.0	14	5.0	10.0	5	41.0	34	F
372	373	ZETA	7.0	2.0	2	6.0	10.0	7	34.0	28	F
378	379	ZETA	8.0	0.0	2	6.0	15.0	8	39.0	32	F

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade
121	122	DELTA	8.0	11.0	14	6.0	15.0	9	63.0	52	С
29	30	ALPHA	8.0	2.0	11	10.0	13.0	12	56.0	47	D
53	54	ALPHA	8.0	13.0	9	11.0	10.0	10	61.0	51	С
226	227	EPSILON	8.0	0.0	3	0.0	10.0	14	35.0	29	F
61	62	BETA	8.0	8.0	15	9.0	10.0	9	59.0	49	D
110	111	BETA	8.0	11.0	14	3.0	18.0	10	64.0	53	С
97	98	BETA	8.0	16.0	14	17.0	13.0	13	81.0	68	C+
96	97	BETA	8.0	17.0	3	12.0	18.0	9	67.0	56	С

Out[60]: SIGMA 44
GAMMA 42
ZETA 40
OMEGA 40
EPSILON 38
DELTA 35
BETA 32
ALPHA 26

Name: SECTION, dtype: int64

```
In [61]: df['backlogs'] = (df[['DV', 'M2', 'PP', 'BEEE', 'FL', 'FIMS']] < 10).sum(axis=1)
df</pre>
```

Out[61]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade	backlogs
0	1	ALPHA	12.0	0.0	17	9.0	19.0	15	72.0	60	C+	2
1	2	ALPHA	19.0	12.0	16	16.0	18.0	3	84.0	70	В	1
2	3	ALPHA	18.0	14.0	18	18.0	18.0	16	102.0	85	B+	0
3	4	ALPHA	15.0	9.0	19	17.0	19.0	15	94.0	78	В	1
4	5	ALPHA	18.0	17.0	19	19.0	20.0	18	111.0	92	Α	0
474	475	ZETA	11.0	4.0	2	2.0	8.0	10	37.0	31	F	4
475	476	ZETA	18.0	2.0	12	3.0	17.0	15	67.0	56	С	2
476	477	ZETA	20.0	6.0	16	11.0	20.0	14	87.0	72	В	1
478	479	ZETA	20.0	20.0	5	19.0	18.0	14	96.0	80	B+	1
479	480	ZETA	20.0	16.0	18	19.0	20.0	19	112.0	93	Α	0

```
In [62]: j=df.sort_values('backlogs')
j
```

Out[62]:

S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade	backlogs
480	ZETA	20.0	16.0	18	19.0	20.0	19	112.0	93	Α	0
165	DELTA	20.0	20.0	20	20.0	20.0	18	118.0	98	Α	0
166	DELTA	16.0	14.0	18	18.0	15.0	19	100.0	83	B+	0
168	DELTA	19.0	18.0	20	16.0	19.0	19	111.0	92	Α	0
169	DELTA	18.0	17.0	18	11.0	20.0	20	104.0	87	B+	0
83	BETA	2.0	0.0	2	0.0	0.0	0	4.0	3	F	6
417	OMEGA	9.0	0.0	0	0.0	0.0	0	9.0	8	F	6
454	ZETA	1.0	5.0	0	0.0	0.0	0	6.0	5	F	6
211	EPSILON	0.0	0.0	0	0.0	0.0	0	0.0	0	F	6
303	OMEGA	0.0	0.0	0	0.0	0.0	0	0.0	0	F	6
	480 165 166 168 169 83 417 454 211	480 ZETA 165 DELTA 166 DELTA 168 DELTA 169 DELTA 83 BETA 417 OMEGA 454 ZETA 211 EPSILON	480 ZETA 20.0 165 DELTA 20.0 166 DELTA 16.0 168 DELTA 19.0 169 DELTA 18.0 83 BETA 2.0 417 OMEGA 9.0 454 ZETA 1.0 211 EPSILON 0.0	480 ZETA 20.0 16.0 165 DELTA 20.0 20.0 166 DELTA 16.0 14.0 168 DELTA 19.0 18.0 169 DELTA 18.0 17.0 83 BETA 2.0 0.0 417 OMEGA 9.0 0.0 454 ZETA 1.0 5.0 211 EPSILON 0.0 16.0	480 ZETA 20.0 16.0 18 165 DELTA 20.0 20.0 20 166 DELTA 16.0 14.0 18 168 DELTA 19.0 18.0 20 169 DELTA 18.0 17.0 18 83 BETA 2.0 0.0 2 417 OMEGA 9.0 0.0 0 454 ZETA 1.0 5.0 0 211 EPSILON 0.0 0.0 0	480 ZETA 20.0 16.0 18 19.0 165 DELTA 20.0 20.0 20 20.0 166 DELTA 16.0 14.0 18 18.0 168 DELTA 19.0 18.0 20 16.0 169 DELTA 18.0 17.0 18 11.0 83 BETA 2.0 0.0 2 0.0 417 OMEGA 9.0 0.0 0 0.0 454 ZETA 1.0 5.0 0 0.0 211 EPSILON 0.0 0.0 0 0.0	480 ZETA 20.0 16.0 18 19.0 20.0 165 DELTA 20.0 20.0 20 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 18.0 15.0 15.0 16.0 19.0 18.0 18.0 19.0 18.0 19.0 16.0 19.0 19.0 19.0 20.0 16.0 19.0 19.0 19.0 19.0 20.0 <th>480 ZETA 20.0 16.0 18 19.0 20.0 19 165 DELTA 20.0 20.0 20 20.0 20.0 18 166 DELTA 16.0 14.0 18 18.0 15.0 19 168 DELTA 19.0 18.0 20 16.0 19.0 19 169 DELTA 18.0 17.0 18 11.0 20.0 20 83 BETA 2.0 0.0 2 0.0 0.0 0 417 OMEGA 9.0 0.0 0 0.0 0.0 0 454 ZETA 1.0 5.0 0 0.0 0.0 0 211 EPSILON 0.0 0.0 0 0.0 0.0 0</th> <th>480 ZETA 20.0 16.0 18 19.0 20.0 19 112.0 165 DELTA 20.0 20.0 20 20.0 20.0 18 118.0 166 DELTA 16.0 14.0 18 18.0 15.0 19 100.0 168 DELTA 19.0 18.0 20 16.0 19.0 19 111.0 169 DELTA 18.0 17.0 18 11.0 20.0 20 104.0 </th> <th>480 ZETA 20.0 16.0 18 19.0 20.0 19 112.0 93 165 DELTA 20.0 20.0 20 20.0 20.0 18 118.0 98 166 DELTA 16.0 14.0 18 18.0 15.0 19 100.0 83 168 DELTA 19.0 18.0 20 16.0 19.0 19 111.0 92 169 DELTA 18.0 17.0 18 11.0 20.0 20 104.0 87</th> <th>480 ZETA 20.0 16.0 18 19.0 20.0 19 112.0 93 A 165 DELTA 20.0 20.0 20 20.0 20.0 18 118.0 98 A 166 DELTA 16.0 14.0 18 18.0 15.0 19 100.0 83 B+ 168 DELTA 19.0 18.0 20 16.0 19.0 19 111.0 92 A 169 DELTA 18.0 17.0 18 11.0 20.0 20 104.0 87 B+</th>	480 ZETA 20.0 16.0 18 19.0 20.0 19 165 DELTA 20.0 20.0 20 20.0 20.0 18 166 DELTA 16.0 14.0 18 18.0 15.0 19 168 DELTA 19.0 18.0 20 16.0 19.0 19 169 DELTA 18.0 17.0 18 11.0 20.0 20 83 BETA 2.0 0.0 2 0.0 0.0 0 417 OMEGA 9.0 0.0 0 0.0 0.0 0 454 ZETA 1.0 5.0 0 0.0 0.0 0 211 EPSILON 0.0 0.0 0 0.0 0.0 0	480 ZETA 20.0 16.0 18 19.0 20.0 19 112.0 165 DELTA 20.0 20.0 20 20.0 20.0 18 118.0 166 DELTA 16.0 14.0 18 18.0 15.0 19 100.0 168 DELTA 19.0 18.0 20 16.0 19.0 19 111.0 169 DELTA 18.0 17.0 18 11.0 20.0 20 104.0	480 ZETA 20.0 16.0 18 19.0 20.0 19 112.0 93 165 DELTA 20.0 20.0 20 20.0 20.0 18 118.0 98 166 DELTA 16.0 14.0 18 18.0 15.0 19 100.0 83 168 DELTA 19.0 18.0 20 16.0 19.0 19 111.0 92 169 DELTA 18.0 17.0 18 11.0 20.0 20 104.0 87	480 ZETA 20.0 16.0 18 19.0 20.0 19 112.0 93 A 165 DELTA 20.0 20.0 20 20.0 20.0 18 118.0 98 A 166 DELTA 16.0 14.0 18 18.0 15.0 19 100.0 83 B+ 168 DELTA 19.0 18.0 20 16.0 19.0 19 111.0 92 A 169 DELTA 18.0 17.0 18 11.0 20.0 20 104.0 87 B+

474 rows × 12 columns

```
In [63]: j.value_counts('backlogs')
```

Out[63]: backlogs

0 177

1 122

2 77

3 46

4 31

5 12

6

dtype: int64

```
In [64]: df["BC"]=None
```

In [65]: df

Out[65]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade	backlogs	вс
0	1	ALPHA	12.0	0.0	17	9.0	19.0	15	72.0	60	C+	2	None
1	2	ALPHA	19.0	12.0	16	16.0	18.0	3	84.0	70	В	1	None
2	3	ALPHA	18.0	14.0	18	18.0	18.0	16	102.0	85	B+	0	None
3	4	ALPHA	15.0	9.0	19	17.0	19.0	15	94.0	78	В	1	None
4	5	ALPHA	18.0	17.0	19	19.0	20.0	18	111.0	92	Α	0	None
474	475	ZETA	11.0	4.0	2	2.0	8.0	10	37.0	31	F	4	None
475	476	ZETA	18.0	2.0	12	3.0	17.0	15	67.0	56	С	2	None
476	477	ZETA	20.0	6.0	16	11.0	20.0	14	87.0	72	В	1	None
478	479	ZETA	20.0	20.0	5	19.0	18.0	14	96.0	80	B+	1	None
479	480	ZETA	20.0	16.0	18	19.0		19	112.0	93	Α	0	None

474 rows × 13 columns

Backlogs couunt

```
In [67]: a = df[df['BC']==6]
a.value_counts('SECTION')
Out[67]: Series([], dtype: int64)
```

Students belongs to section who got 6 backlogs

backlogs count for each subject in each section

```
In [68]: a = df[df['DV']<10]
         a.value_counts('SECTION').sum()
         a = df[df['DV']<10]
         a.value_counts('SECTION')
Out[68]: SECTION
                    15
         BETA
         DELTA
                    11
         ZETA
                    11
         ALPHA
                     9
         EPSILON
                     6
         OMEGA
         SIGMA
                     6
         dtype: int64
In [69]: a = df[df['M2']<10]
         a.value_counts('SECTION').sum()
         a = df[df['M2']<10]
         a.value_counts('SECTION')
Out[69]: SECTION
         GAMMA
                     39
         SIGMA
                    38
         ZETA
                    37
         OMEGA
                    35
                    29
         EPSILON
         DELTA
                    21
                    13
         BETA
         ALPHA
         dtype: int64
```

```
In [70]: a = df[df['PP']<10]
         a.value_counts('SECTION').sum()
         a = df[df['PP']<10]
         a.value_counts('SECTION')
Out[70]: SECTION
         GAMMA
                     28
         OMEGA
                     27
         SIGMA
                     22
         ZETA
                     18
         EPSILON
                     14
         DELTA
                     10
         BETA
                      8
         ALPHA
                      7
         dtype: int64
In [71]: | a = df[df['BEEE']<10]</pre>
         a.value_counts('SECTION').sum()
         a = df[df['BEEE']<10]
         a.value_counts('SECTION')
Out[71]: SECTION
         EPSILON
                     28
         DELTA
                     25
         BETA
                     18
         ZETA
                     17
         OMEGA
                     11
         SIGMA
                     11
         GAMMA
                     10
         ALPHA
                      4
         dtype: int64
In [72]: a = df[df['FL']<10]
         a.value_counts('SECTION').sum()
         a = df[df['FL']<10]
         a.value_counts('SECTION')
Out[72]: SECTION
         ZETA
                     7
         OMEGA
                     6
                     4
         GAMMA
         SIGMA
                     3
         BETA
                     2
         EPSILON
                     1
         dtype: int64
In [73]: a = df[df['FIMS']<10]
         a.value counts('SECTION').sum()
         a = df[df['FIMS']<10]
         a.value_counts('SECTION')
Out[73]: SECTION
                     17
         OMEGA
         ALPHA
                     13
                     13
         BETA
         SIGMA
                     12
         GAMMA
                     11
         ZETA
                      9
         DELTA
                      6
         EPSILON
         dtype: int64
```

```
In [74]: sns.scatterplot(x='BC', y='DV', data=df,color = 'red')
plt.show()
```


In [75]: sns.scatterplot(x='BC', y='PP', data=df , color = 'green')
plt.show()


```
In [76]: sns.scatterplot(x='BC', y='BEEE', data=df, color = 'yellow')
plt.show()
```


In [77]: sns.scatterplot(x='BC', y='M2', data=df,color = 'blue')
plt.show()


```
In [78]: sns.scatterplot(x='BC', y='FL', data=df)
plt.show()
```



```
In [80]: sns.lineplot(x='BC', y='DV', data=df, color = 'green')
plt.show()
```

```
KeyError
                                          Traceback (most recent call last)
File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3802, in Index.get_loc(self, ke
y, method, tolerance)
   3801 try:
-> 3802
            return self._engine.get_loc(casted_key)
   3803 except KeyError as err:
File ~\anaconda3\lib\site-packages\pandas\_lib\index.pyx:138, in pandas._libs.index.IndexEngi
ne.get_loc()
File ~\anaconda3\lib\site-packages\pandas\_lib\index.pyx:165, in pandas._libs.index.IndexEngi
ne.get loc()
File pandas\_libs\hashtable_class_helper.pxi:5745, in pandas. libs.hashtable.PyObjectHashTabl
e.get item()
File pandas\_libs\hashtable_class_helper.pxi:5753, in pandas. libs.hashtable.PyObjectHashTabl
e.get_item()
KeyError: 'x'
The above exception was the direct cause of the following exception:
KeyError
                                          Traceback (most recent call last)
Cell In[80], line 1
----> 1 sns.lineplot(x='BC', y='DV', data=df, color = 'green')
      2 plt.show()
File ~\anaconda3\lib\site-packages\seaborn\relational.py:645, in lineplot(data, x, y, hue, siz
e, style, units, palette, hue_order, hue_norm, sizes, size_order, size_norm, dashes, markers,
style_order, estimator, errorbar, n_boot, seed, orient, sort, err_style, err_kws, legend, ci,
ax, **kwargs)
    642 color = kwargs.pop("color", kwargs.pop("c", None))
    643 kwargs["color"] = _default_color(ax.plot, hue, color, kwargs)
--> 645 p.plot(ax, kwargs)
    646 return ax
File ~\anaconda3\lib\site-packages\seaborn\relational.py:432, in _LinePlotter.plot(self, ax, k
ws)
    427
            sort_cols = [var for var in sort_vars if var in self.variables]
    428
            sub data = sub data.sort values(sort cols)
    430 if (
    431
            self.estimator is not None
--> 432
            and sub_data[orient].value_counts().max() > 1
    433 ):
            if "units" in self.variables:
    434
                # TODO eventually relax this constraint
    435
    436
                err = "estimator must be None when specifying units"
File ~\anaconda3\lib\site-packages\pandas\core\frame.py:3807, in DataFrame. getitem (self, k
ey)
   3805 if self.columns.nlevels > 1:
   3806
           return self._getitem_multilevel(key)
-> 3807 indexer = self.columns.get loc(key)
   3808 if is_integer(indexer):
            indexer = [indexer]
File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3804, in Index.get loc(self, ke
y, method, tolerance)
            return self. engine.get loc(casted key)
   3803 except KeyError as err:
           raise KeyError(key) from err
   3805 except TypeError:
           # If we have a listlike key, _check_indexing_error will raise
   3806
            # InvalidIndexError. Otherwise we fall through and re-raise
   3807
            # the TypeError.
   3808
```

3809 self._check_indexing_error(key)

KeyError: 'x'


```
In [81]: sns.lineplot(x='BC', y='PP', data=df, color = 'red')
plt.show()
```

```
KeyError
                                          Traceback (most recent call last)
File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3802, in Index.get_loc(self, ke
y, method, tolerance)
   3801 try:
            return self. engine.get loc(casted key)
-> 3802
   3803 except KeyError as err:
File ~\anaconda3\lib\site-packages\pandas\_lib\index.pyx:138, in pandas._libs.index.IndexEngi
ne.get_loc()
File ~\anaconda3\lib\site-packages\pandas\_lib\index.pyx:165, in pandas._libs.index.IndexEngi
ne.get loc()
File pandas\_libs\hashtable_class_helper.pxi:5745, in pandas. libs.hashtable.PyObjectHashTabl
e.get item()
File pandas\_libs\hashtable_class_helper.pxi:5753, in pandas. libs.hashtable.PyObjectHashTabl
e.get_item()
KeyError: 'x'
The above exception was the direct cause of the following exception:
KeyError
                                          Traceback (most recent call last)
Cell In[81], line 1
----> 1 sns.lineplot(x='BC', y='PP', data=df, color = 'red')
      2 plt.show()
File ~\anaconda3\lib\site-packages\seaborn\relational.py:645, in lineplot(data, x, y, hue, siz
e, style, units, palette, hue_order, hue_norm, sizes, size_order, size_norm, dashes, markers,
style_order, estimator, errorbar, n_boot, seed, orient, sort, err_style, err_kws, legend, ci,
ax, **kwargs)
    642 color = kwargs.pop("color", kwargs.pop("c", None))
    643 kwargs["color"] = _default_color(ax.plot, hue, color, kwargs)
--> 645 p.plot(ax, kwargs)
    646 return ax
File ~\anaconda3\lib\site-packages\seaborn\relational.py:432, in _LinePlotter.plot(self, ax, k
ws)
    427
            sort_cols = [var for var in sort_vars if var in self.variables]
    428
            sub data = sub data.sort values(sort cols)
    430 if (
    431
            self.estimator is not None
--> 432
            and sub_data[orient].value_counts().max() > 1
    433 ):
            if "units" in self.variables:
    434
    435
                # TODO eventually relax this constraint
    436
                err = "estimator must be None when specifying units"
File ~\anaconda3\lib\site-packages\pandas\core\frame.py:3807, in DataFrame. getitem (self, k
ey)
   3805 if self.columns.nlevels > 1:
   3806
           return self._getitem_multilevel(key)
-> 3807 indexer = self.columns.get loc(key)
   3808 if is integer(indexer):
            indexer = [indexer]
File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3804, in Index.get loc(self, ke
y, method, tolerance)
           return self._engine.get_loc(casted_key)
   3803 except KeyError as err:
           raise KeyError(key) from err
   3805 except TypeError:
           # If we have a listlike key, _check_indexing_error will raise
   3806
            # InvalidIndexError. Otherwise we fall through and re-raise
   3807
            # the TypeError.
   3808
```

```
3809 self._check_indexing_error(key)
```

```
KeyError: 'x'
```



```
In [ ]: sns.lineplot(x='BC', y='BEEE', data=df, color = 'orange')
plt.show()

In [ ]: sns.lineplot(x='BC', y='M2', data=df, color = 'violet')
plt.show()

In [ ]: sns.lineplot(x='BC', y='FL', data=df, color = 'purple')
plt.show()

In [ ]: sns.lineplot(x='BC', y='FIMS', data=df)
plt.show()

In [ ]: sns.barplot(x='BC', y='DV', data=df)
plt.show()

In [ ]: sns.barplot(x='BC', y='BEEE', data=df, color = 'red')
plt.show()
In [ ]: sns.barplot(x='BC', y='BEEE', data=df, color = 'green')
plt.show()
```

```
In [ ]: | sns.barplot(x='BC', y='M2', data=df, color = 'yellow')
         plt.show()
In [ ]: sns.histplot(data=df['BC'], bins=30,color = 'red')
         plt.show()
In [ ]: sns.histplot(data=df['DV'], bins=30, color = 'green')
         plt.show()
In [ ]: | sns.histplot(data=df['BEEE'], bins=30, color = 'blue')
         plt.show()
In [ ]: | sns.histplot(data=df['FL'], bins=30, color = 'yellow')
         plt.show()
In [ ]:
In [82]:
         sns.countplot(x='backlogs', data=df)
         plt.title('Count of Students by Backlogs')
         plt.xlabel('Number of Backlogs')
         plt.ylabel('Number of Students')
         plt.show()
```


Bar chart for backlogs and students and some of the students has 6 backlogs also

```
In [83]: h = df[
              (df['DV'] == 20.0)
              (df['PP'] == 20.0)
              (df['M2'] == 20.0)
              (df['BEEE'] == 20.0) |
              (df['FL'] == 20.0) |
              (df['FIMS'] == 20.0)
          h
Out[83]:
               S.NO SECTION
                                DV
                                     M2 PP BEEE
                                                     FL FIMS
                                                              Total Percentage Grade backlogs
                                                                                                 BC
                       ALPHA 18.0
                                                                                             0 None
                   5
                                   17.0
                                              19.0 20.0
                                                               111.0
                                                                            92
                                                                                    Α
                                         19
                                                           18
                   7
             6
                       ALPHA 15.0
                                   10.0
                                         20
                                              20.0
                                                   15.0
                                                           14
                                                               94.0
                                                                            78
                                                                                    В
                                                                                             0 None
             7
                   8
                       ALPHA 17.0
                                   17.0
                                              20.0
                                                   19.0
                                                              105.0
                                                                            88
                                                                                   B+
                                                                                               None
             8
                   9
                       ALPHA 10.0
                                   18.0
                                          0
                                              20.0
                                                   19.0
                                                           15
                                                               82.0
                                                                            68
                                                                                  C+
                                                                                             1 None
             9
                  10
                       ALPHA 18.0 19.0
                                         20
                                              20.0 20.0
                                                                            93
                                                           15
                                                              112.0
                                                                                    Α
                                                                                             0 None
            ...
                  ...
                                                                            ...
                                          ...
                                                ...
           472
                 473
                         ZETA 20.0
                                   18.0
                                         20
                                              20.0 20.0
                                                           19
                                                              117.0
                                                                            98
                                                                                    Α
                                                                                             0 None
           473
                 474
                         ZETA 20.0
                                   20.0
                                              20.0 20.0
                                                              120.0
                                                                           100
                                         20
                                                           20
                                                                                    Α
                                                                                             0
                                                                                               None
           476
                 477
                         ZETA 20.0
                                     6.0
                                         16
                                               11.0 20.0
                                                               87.0
                                                                            72
                                                                                    В
                                                                                             1 None
           478
                 479
                         ZETA 20.0
                                    20.0
                                          5
                                               19.0
                                                   18.0
                                                               96.0
                                                                            80
                                                                                   B+
                                                                                                None
           479
                 480
                         ZETA 20.0 16.0 18
                                              19.0 20.0
                                                           19 112.0
                                                                            93
                                                                                    Α
                                                                                             0 None
          182 rows × 13 columns
In [84]: h.value_counts("BC")
Out[84]: Series([], dtype: int64)
In [85]: h[h["BC"] == 4]
Out[85]:
            S.NO SECTION DV M2 PP BEEE FL FIMS Total Percentage Grade backlogs BC
In [86]: h[h["BC"] == 3]
Out[86]:
            S.NO SECTION DV M2 PP BEEE FL FIMS Total Percentage Grade backlogs BC
In [87]: h.value_counts("DV")
Out[87]: DV
          20.0
                   51
          18.0
                   28
          17.0
                   25
          19.0
                   24
          16.0
                   19
          12.0
                    7
          15.0
                    7
          13.0
                    6
          14.0
                    6
          11.0
                    4
          10.0
                    3
          0.0
                    1
          5.0
                    1
          dtype: int64
```

```
In [88]: h.value_counts("M2")
Out[88]: M2
         20.0
                  44
         17.0
                  19
         18.0
                  15
         15.0
                  15
         19.0
                  10
         11.0
                  10
         8.0
                   8
         12.0
                   7
         9.0
                   6
         10.0
                   6
         6.0
                   5
         14.0
                   5
                   5
         5.0
                   5
         16.0
                   5
         4.0
         3.0
                   4
         1.0
                   3
         7.0
                   3
         13.0
                   3
         0.0
                   3
         2.0
                   1
         dtype: int64
In [89]: h.value_counts("BEEE")
Out[89]: BEEE
         20.0
                  76
         19.0
                  24
         17.0
                  17
         18.0
                  14
         16.0
                  10
         14.0
                  10
         15.0
                   5
         13.0
                   4
         12.0
                   4
         10.0
                   4
         11.0
                   3
         9.0
                   3
         4.0
                   2
         0.0
                   2
         8.0
                   1
         7.0
                   1
         6.0
                   1
                   1
         5.0
         dtype: int64
```

```
In [90]: h.value_counts("FIMS")
Out[90]: FIMS
          18
                45
          16
                26
          19
                21
          17
                20
          15
                17
          14
                16
          20
                12
          13
                11
          9
                 5
         11
                 3
          0
                 2
          12
                 2
          8
                 1
                 1
          10
          dtype: int64
In [91]: h.value_counts("PP")
Out[91]: PP
          20
                69
          19
                20
          18
                15
          16
                13
          14
                11
          17
                 8
          15
                 7
          12
                 7
          11
                 6
         13
                 6
         10
                 4
          9
                 4
          0
                 4
          8
                 2
          7
                 2
                 2
          5
          1
                 1
          6
                 1
          dtype: int64
In [92]: h.value_counts("FL")
Out[92]: FL
          20.0
                  118
          18.0
                  17
          15.0
                   14
         19.0
                   13
         13.0
                    8
         10.0
                    5
         17.0
                    3
          16.0
                    2
          12.0
                    1
          14.0
                    1
          dtype: int64
```

```
In [93]: h.describe()
```

Out[93]:

	S.NO	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage
count	182.000000	182.000000	182.000000	182.000000	182.000000	182.000000	182.000000	182.000000	182.000000
mean	233.824176	17.247253	14.076923	16.395604	17.175824	18.604396	16.192308	99.692308	83.082418
std	147.962000	3.035584	5.771392	4.648719	4.023669	2.495871	3.081104	14.027355	11.690239
min	5.000000	0.000000	0.000000	0.000000	0.000000	10.000000	0.000000	48.000000	40.000000
25%	97.250000	16.000000	10.000000	14.000000	16.000000	18.000000	15.000000	91.250000	76.250000
50%	221.500000	18.000000	16.000000	18.000000	19.000000	20.000000	17.000000	103.000000	86.000000
75%	367.500000	20.000000	19.000000	20.000000	20.000000	20.000000	18.000000	111.000000	92.000000
max	480.000000	20.000000	20.000000	20.000000	20.000000	20.000000	20.000000	120.000000	100.000000
4									

```
In [94]: sns.histplot(data=df['BC'], bins=30, color = 'red')
plt.show()
```



```
In [95]: z=df.loc[(df['BC'] >= 3) & (df['BC'] <= 6)]
z=z.reset_index()
y = z.value_counts('BC')
y</pre>
```

Out[95]: Series([], dtype: int64)

```
In [96]: def number_format(pct, all_values):
    absolute = int(round(pct / 100. * sum(all_values)))
    return f"{absolute}"

plt.figure(figsize=(8, 8))
y.plot.pie(
    autopct=lambda pct: number_format(pct, y),
    startangle=90,
    cmap="viridis"
)
plt.title("BC count")
plt.ylabel("")
plt.show()
```

BC count

```
In [97]: df[df["SECTION"] == "ALPHA"].count()
Out[97]: S.NO
                        60
         SECTION
                        60
         DV
                        60
         M2
                        60
         PP
                        60
         BEEE
                        60
         FL
                        60
         FIMS
                        60
         Total
                        60
         Percentage
                        60
         Grade
                        60
         backlogs
                        60
         BC
                         0
         dtype: int64
In [98]: |df['DV'] = pd.to_numeric(df['DV'], errors='coerce')
         df['M2'] = pd.to_numeric(df['M2'], errors='coerce')
         df['PP'] = pd.to_numeric(df['PP'], errors='coerce')
         df['BEEE'] = pd.to_numeric(df['BEEE'], errors='coerce')
         df['FL'] = pd.to_numeric(df['FL'], errors='coerce')
         df['FIMS'] = pd.to_numeric(df['FIMS'], errors='coerce')
         df.fillna(0, inplace=True)
In [99]: df.isnull().sum()
Out[99]: S.NO
         SECTION
                        0
         DV
                        0
         M2
                        0
         PP
                        0
         BEEE
                        0
         FL
                        0
         FIMS
                        0
                        0
         Total
                        0
         Percentage
                        0
         Grade
                        0
         backlogs
         dtype: int64
```

In [100]: df

Out[100]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade	backlogs	вс
0	1	ALPHA	12.0	0.0	17	9.0	19.0	15	72.0	60	C+	2	0
1	2	ALPHA	19.0	12.0	16	16.0	18.0	3	84.0	70	В	1	0
2	3	ALPHA	18.0	14.0	18	18.0	18.0	16	102.0	85	B+	0	0
3	4	ALPHA	15.0	9.0	19	17.0	19.0	15	94.0	78	В	1	0
4	5	ALPHA	18.0	17.0	19	19.0	20.0	18	111.0	92	Α	0	0
										•••			
474	475	ZETA	11.0	4.0	2	2.0	8.0	10	37.0	31	F	4	0
475	476	ZETA	18.0	2.0	12	3.0	17.0	15	67.0	56	С	2	0
476	477	ZETA	20.0	6.0	16	11.0	20.0	14	87.0	72	В	1	0
478	479	ZETA	20.0	20.0	5	19.0	18.0	14	96.0	80	B+	1	0
479	480	ZETA	20.0	16.0	18	19.0	20.0	19	112.0	93	Α	0	0

474 rows × 13 columns

Out[101]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade	backlogs	вс
0	1	ALPHA	12.0	0.0	17	9.0	19.0	15	72.0	60	C+	2	0
1	2	ALPHA	19.0	12.0	16	16.0	18.0	3	84.0	70	В	1	0
2	3	ALPHA	18.0	14.0	18	18.0	18.0	16	102.0	85	B+	0	0
3	4	ALPHA	15.0	9.0	19	17.0	19.0	15	94.0	78	В	1	0
4	5	ALPHA	18.0	17.0	19	19.0	20.0	18	111.0	92	Α	0	0
474	475	ZETA	11.0	4.0	2	2.0	8.0	10	37.0	31	F	4	0
475	476	ZETA	18.0	2.0	12	3.0	17.0	15	67.0	56	С	2	0
476	477	ZETA	20.0	6.0	16	11.0	20.0	14	87.0	72	В	1	0
478	479	ZETA	20.0	20.0	5	19.0	18.0	14	96.0	80	B+	1	0
479	480	ZETA	20.0	16.0	18	19.0	20.0	19	112.0	93	Α	0	0

474 rows × 13 columns

```
In [102]: df['S.NO'] = range(1, len(df) + 1)
df
```

Out[102]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade	backlogs	ВС
0	1	ALPHA	12.0	0.0	17	9.0	19.0	15	72.0	60	C+	2	0
1	2	ALPHA	19.0	12.0	16	16.0	18.0	3	84.0	70	В	1	0
2	3	ALPHA	18.0	14.0	18	18.0	18.0	16	102.0	85	B+	0	0
3	4	ALPHA	15.0	9.0	19	17.0	19.0	15	94.0	78	В	1	0
4	5	ALPHA	18.0	17.0	19	19.0	20.0	18	111.0	92	Α	0	0
474	470	ZETA	11.0	4.0	2	2.0	8.0	10	37.0	31	F	4	0
475	471	ZETA	18.0	2.0	12	3.0	17.0	15	67.0	56	С	2	0
476	472	ZETA	20.0	6.0	16	11.0	20.0	14	87.0	72	В	1	0
478	473	ZETA	20.0	20.0	5	19.0	18.0	14	96.0	80	B+	1	0
479	474	ZETA	20.0	16.0	18	19.0	20.0	19	112.0	93	Α	0	0

474 rows × 13 columns

Out[103]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade	backlogs	вс
0	1	ALPHA	12.0	0.0	17	9.0	19.0	15	72.0	60	C+	2	0
1	2	ALPHA	19.0	12.0	16	16.0	18.0	3	84.0	70	В	1	0
2	3	ALPHA	18.0	14.0	18	18.0	18.0	16	102.0	85	B+	0	0
3	4	ALPHA	15.0	9.0	19	17.0	19.0	15	94.0	78	В	1	0
4	5	ALPHA	18.0	17.0	19	19.0	20.0	18	111.0	92	Α	0	0
474	470	ZETA	11.0	4.0	2	2.0	8.0	10	37.0	31	F	4	0
475	471	ZETA	18.0	2.0	12	3.0	17.0	15	67.0	56	С	2	0
476	472	ZETA	20.0	6.0	16	11.0	20.0	14	87.0	72	В	1	0
478	473	ZETA	20.0	20.0	5	19.0	18.0	14	96.0	80	B+	1	0
479	474	ZETA	20.0	16.0	18	19.0	20.0	19	112.0	93	Α	0	0

474 rows × 13 columns

```
In [104]: df.shape
```

Out[104]: (474, 13)

```
In [105]: df['S.NO'] = range(1, len(df) + 1)
df
```

Out[105]:

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	Percentage	Grade	backlogs	ВС
0	1	ALPHA	12.0	0.0	17	9.0	19.0	15	72.0	60	C+	2	0
1	2	ALPHA	19.0	12.0	16	16.0	18.0	3	84.0	70	В	1	0
2	3	ALPHA	18.0	14.0	18	18.0	18.0	16	102.0	85	B+	0	0
3	4	ALPHA	15.0	9.0	19	17.0	19.0	15	94.0	78	В	1	0
4	5	ALPHA	18.0	17.0	19	19.0	20.0	18	111.0	92	Α	0	0
474	470	ZETA	11.0	4.0	2	2.0	8.0	10	37.0	31	F	4	0
475	471	ZETA	18.0	2.0	12	3.0	17.0	15	67.0	56	С	2	0
476	472	ZETA	20.0	6.0	16	11.0	20.0	14	87.0	72	В	1	0
478	473	ZETA	20.0	20.0	5	19.0	18.0	14	96.0	80	B+	1	0
479	474	ZETA	20.0	16.0	18	19.0	20.0	19	112.0	93	Α	0	0

474 rows × 13 columns

```
In [106]: df.shape
```

Out[106]: (474, 13)

```
In [107]: df.isnull().sum()
```

Out[107]: S.NO 0 SECTION 0 DV 0 0 M2 PP 0 BEEE 0 FL 0 FIMS 0 Total 0 Percentage 0 0 Grade backlogs 0

BC

dtype: int64

localhost:8888/notebooks/Desktop/DA/2211cs010297 MidMarks.ipynb

```
In [108]: df.info
Out[108]: <bound method DataFrame.info of</pre>
                                                      S.NO SECTION
                                                                        DV
                                                                               M2 PP
                                                                                        BEEE
                                                                                                 FL FIMS Total Pe
            rcentage Grade \
                         ALPHA 12.0
                                                     9.0 19.0
                                                                    15
                                                                         72.0
                                                                                          60
                                                                                                C+
            0
                     1
                                        0.0 17
            1
                     2
                         ALPHA 19.0
                                        12.0
                                               16
                                                   16.0
                                                          18.0
                                                                     3
                                                                          84.0
                                                                                          70
                                                                                                 В
            2
                     3
                         ALPHA 18.0
                                        14.0
                                               18
                                                    18.0
                                                          18.0
                                                                    16
                                                                        102.0
                                                                                          85
                                                                                                B+
            3
                     4
                         ALPHA
                                 15.0
                                         9.0
                                               19
                                                    17.0
                                                           19.0
                                                                    15
                                                                          94.0
                                                                                          78
                                                                                                  В
            4
                     5
                         ALPHA
                                 18.0
                                        17.0
                                               19
                                                    19.0
                                                           20.0
                                                                        111.0
                                                                                          92
                                                                                                  Α
                   . . .
                                   . . .
                                          . . .
                                                     . . .
                                                            . . .
                                                                   . . .
                                                                           . . .
                                                                                         . . .
            474
                  470
                                                                          37.0
                           ZETA 11.0
                                         4.0
                                                2
                                                     2.0
                                                            8.0
                                                                    10
                                                                                          31
                                                                                                  F
                                                                                                  C
            475
                   471
                           ZETA 18.0
                                         2.0
                                               12
                                                     3.0
                                                          17.0
                                                                    15
                                                                          67.0
                                                                                          56
            476
                  472
                                 20.0
                                         6.0
                                                           20.0
                                                                          87.0
                                                                                          72
                                                                                                  В
                           ZETA
                                               16
                                                    11.0
                                                                    14
            478
                  473
                           ZETA
                                 20.0
                                                5
                                                   19.0
                                                           18.0
                                                                         96.0
                                                                                          80
                                        20.0
                                                                    14
                                                                                                B+
            479
                  474
                           ZETA
                                 20.0
                                        16.0
                                               18
                                                   19.0
                                                          20.0
                                                                    19
                                                                        112.0
                                                                                          93
                                                                                                  Α
                             BC
                  backlogs
            0
                              0
            1
                         1
                              0
            2
                         0
                              0
            3
                         1
                              0
            4
                         0
                              0
            474
                         4
                              a
                         2
            475
                              0
            476
                         1
                              0
            478
                         1
                              0
            479
            [474 \text{ rows x } 13 \text{ columns}] >
In [109]: df.describe()
Out[109]:
                                     D۷
                                                 M2
                                                            PP
                                                                     BEEE
                                                                                   FL
                        S.NO
                                                                                            FIMS
                                                                                                       Total Percentage
                                                                                       474.000000
                                                                                                  474.000000
             count 474.000000 474.000000 474.000000
                                                    474.000000
                                                                           474.000000
                                                                                                             474.000000
                                                                474.000000
             mean
                   237.500000
                               14.405063
                                           10.139241
                                                      12.875527
                                                                 13.289030
                                                                             15.523207
                                                                                        13.632911
                                                                                                   79.864979
                                                                                                              66.535865
               std
                   136.976275
                                4.602653
                                            6.380270
                                                       5.870998
                                                                  5.853642
                                                                             4.277935
                                                                                         4.693598
                                                                                                   24.718857
                                                                                                              20.609420
                     1.000000
                                0.000000
                                            0.000000
                                                       0.000000
                                                                  0.000000
                                                                             0.000000
                                                                                         0.000000
                                                                                                    0.000000
                                                                                                               0.000000
              min
              25%
                  119.250000
                               12.000000
                                            4.000000
                                                       9.000000
                                                                  9.000000
                                                                             13.000000
                                                                                        11.000000
                                                                                                   64.000000
                                                                                                              53.000000
                   237.500000
                               15.500000
                                           10.000000
                                                      14.000000
                                                                 15.000000
                                                                             15.000000
                                                                                        15.000000
                                                                                                   83.000000
                                                                                                               69.000000
              50%
              75%
                   355.750000
                               18.000000
                                           16.000000
                                                      18.000000
                                                                 18 000000
                                                                             19 000000
                                                                                        17.000000
                                                                                                   98.000000
                                                                                                              82.000000
                                                                                                  120.000000
                                                                                                             100.000000
              max 474 000000
                               20 000000
                                           20 000000
                                                      20 000000
                                                                 20 000000
                                                                            20 000000
                                                                                        20 000000
In [110]: | from scipy.stats import ttest_ind
            from scipy.stats import ttest rel
In [111]: |ttest_ind(df[df['SECTION'] == 'ALPHA']['DV'], df[df['SECTION']== 'BETA']['DV'])
Out[111]: Ttest_indResult(statistic=2.3418185924318102, pvalue=0.020866453244001094)
In [112]: |ttest_rel(df[df['SECTION'] == 'ALPHA']['DV'], df[df['SECTION']== 'BETA']['DV'])
Out[112]: TtestResult(statistic=2.3172456109384103, pvalue=0.023979527821469917, df=59)
```

```
In [113]: from scipy.stats import chi2 contingency
In [114]: | data = (df[df['SECTION'] == 'ALPHA']['DV'], df[df['SECTION']== 'BETA']['DV'])
          stat, p, dof, expected = chi2_contingency(data)
          print(stat)
          print(p)
          print(dof)
          113.91846891456558
          2.3496708155645757e-05
In [115]: | data = (df[df['SECTION'] == 'ALPHA']['DV'], df[df['SECTION']== 'BETA']['DV'])
          stat, p, dof, expected = chi2_contingency(data)
          chi2 contingency(data)
Out[115]: Chi2ContingencyResult(statistic=113.91846891456558, pvalue=2.3496708155645757e-05, dof=59, exp
          ected freq=array([[16.65730696, 14.50797703, 16.11997447, 13.97064454, 16.11997447,
                  13.97064454, 14.50797703, 15.58264199, 13.97064454, 20.41863433,
                  11.28398213, 19.88130185, 12.3586471 , 14.50797703, 19.34396937,
                   9.67198468, 17.19463944, 12.89597958, 17.73197192, 20.41863433,
                  12.3586471 , 17.19463944, 10.20931717, 16.11997447, 14.50797703,
                   4.83599234, 18.2693044 , 9.67198468, 11.28398213, 9.67198468,
                  15.04530951, 13.97064454, 15.04530951, 15.04530951, 15.58264199,
                  12.89597958, 10.20931717, 12.3586471, 13.43331206, 15.58264199,
                  15.04530951, 15.58264199, 13.97064454, 11.82131461, 18.80663689,
                  12.3586471 , 12.3586471 , 14.50797703, 13.97064454, 15.04530951,
                   4.83599234, 8.59731972, 17.73197192, 12.3586471, 13.43331206,
                  18.80663689, 12.3586471 , 7.52265475, 10.20931717, 18.2693044 ],
                  [14.34269304, 12.49202297, 13.88002553, 12.02935546, 13.88002553,
                  12.02935546, 12.49202297, 13.41735801, 12.02935546, 17.58136567,
                   9.71601787, 17.11869815, 10.6413529, 12.49202297, 16.65603063,
                   8.32801532, 14.80536056, 11.10402042, 15.26802808, 17.58136567,
                  10.6413529 , 14.80536056, 8.79068283, 13.88002553, 12.49202297,
                   4.16400766, 15.7306956 , 8.32801532, 9.71601787, 8.32801532,
                  12.95469049, 12.02935546, 12.95469049, 12.95469049, 13.41735801,
                  11.10402042, 8.79068283, 10.6413529, 11.56668794, 13.41735801,
                  12.95469049, 13.41735801, 12.02935546, 10.17868539, 16.19336311,
                  10.6413529 , 10.6413529 , 12.49202297, 12.02935546, 12.95469049,
                   4.16400766, 7.40268028, 15.26802808, 10.6413529, 11.56668794,
                  16.19336311, 10.6413529 , 6.47734525, 8.79068283, 15.7306956 ]]))
In [116]: df[df['SECTION'] == 'ALPHA'].DV.mean()
Out[116]: 14.0333333333333333
In [117]: import scipy.stats as stats
In [118]: | t statistic, p value = stats.ttest 1samp(df[df['SECTION'] == 'ALPHA']['DV'] , df.DV.mean())
          print(t_statistic, p_value)
          -0.618692845981171 0.5385001708772008
In [119]: | t_statistic, p_value = stats.ttest_1samp(df[df['SECTION'] == 'BETA']['DV'] , df.DV.mean())
          print(t_statistic, p_value)
           -4.0271887976567315 0.0001634927314623452
```

```
In [120]: | t_statistic, p_value = stats.ttest_1samp(df[df['SECTION'] == 'GAMMA']['DV'] , df.DV.mean())
           print(t_statistic, p_value)
           5.360516566254314 1.4453792736728807e-06
In [121]: | t_statistic, p_value = stats.ttest_1samp(df[df['SECTION'] == 'DELTA']['DV'] , df.DV.mean())
           print(t_statistic, p_value)
            -1.672647664892037 0.09969192507810967
In [122]: | t_statistic, p_value = stats.ttest_1samp(df[df['SECTION'] == 'SIGMA']['DV'] , df.DV.mean())
           print(t statistic, p value)
           2.02737462602529 0.04722782875442706
In [123]: | t_statistic, p_value = stats.ttest_1samp(df[df['SECTION'] == 'ZETA']['DV'] , df.DV.mean())
           print(t_statistic, p_value)
           0.8920612807760117 0.37604618564503456
In [124]: | t_statistic, p_value = stats.ttest_1samp(df[df['SECTION'] == 'OMEGA']['DV'] , df.DV.mean())
           print(t_statistic, p_value)
           0.7039164464119071 0.48430139497653446
In [125]: | t_statistic, p_value = stats.ttest_1samp(df[df['SECTION'] == 'EPSILON']['DV'] , df.DV.mean())
           print(t_statistic, p_value)
            -0.26190775637361224 0.7943535438301653
In [126]: df.describe()
Out[126]:
                                                                                                    Total Percentage
                        S.NO
                                    D۷
                                               M2
                                                                  BEEE
                                                                                FL
                                                                                         FIMS
            count 474.000000
                             474.000000
                                        474.000000
                                                   474.000000
                                                              474.000000
                                                                         474.000000
                                                                                    474.000000
                                                                                              474.000000
                                                                                                          474.000000
            mean
                  237.500000
                              14.405063
                                         10.139241
                                                    12.875527
                                                               13.289030
                                                                          15.523207
                                                                                     13.632911
                                                                                                79.864979
                                                                                                           66.535865
              std 136.976275
                               4.602653
                                          6.380270
                                                     5.870998
                                                                5.853642
                                                                           4.277935
                                                                                      4.693598
                                                                                               24.718857
                                                                                                           20.609420
              min
                     1.000000
                               0.000000
                                          0.000000
                                                     0.000000
                                                                0.000000
                                                                           0.000000
                                                                                      0.000000
                                                                                                0.000000
                                                                                                           0.000000
             25%
                  119.250000
                              12.000000
                                          4.000000
                                                     9.000000
                                                                9.000000
                                                                          13.000000
                                                                                     11.000000
                                                                                                64.000000
                                                                                                           53.000000
             50%
                  237.500000
                              15.500000
                                          10.000000
                                                    14.000000
                                                               15.000000
                                                                          15.000000
                                                                                     15.000000
                                                                                                83.000000
                                                                                                           69.000000
                  355.750000
                              18.000000
                                         16.000000
                                                    18.000000
                                                               18.000000
                                                                          19.000000
                                                                                     17.000000
                                                                                               98.000000
                                                                                                          82.000000
             75%
             max 474.000000
                              20.000000
                                         20.000000
                                                    20.000000
                                                               20.000000
                                                                          20.000000
                                                                                     20.000000
                                                                                              120.000000
                                                                                                          100.000000
  In [ ]:
```