CS 2051: Project Title

Author 1 Georgia Institute of Technology Author 2 Georgia Institute of Technology

Author 3 Georgia Institute of Technology

1 Background

- Definition of $\pi(x)$, the number of primes $\leq x$.
- Euclid's proof that $\lim_{x\to\infty} \pi(x) = \infty$
- Introduce the Riemann zeta function, $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$
- Use the $\zeta(2)$ case and $\frac{\sin x}{x}$ Taylor series to show $\zeta(2) = \frac{\pi^2}{6}$
- Use above idea to derive Euler product formula
- Use Euler product formula with $\zeta(1)$ to get that $\sum_{p} \frac{1}{p} = \infty$, also showing the infinitude of primes
- Move on to some other main topic?
- 2 Main result
- ${\bf 3}\quad {\bf Extension/application/generalisation}$
- 4 Preliminary Code and Illustrations
- ${\bf 5}\quad {\bf Reflection/Conclusion}$
- 6 References