

Microarrays

and introduction to gene expression studies

Kontantin Zaitsev

March 17th, 2020

Microarrays

Materials are at

/mnt/data/microarray

Installing libraries for today

```
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
if (!requireNamespace("affxparser", quietly = TRUE)) BiocManager::install("affxparser")
if (!requireNamespace("affy", quietly = TRUE)) BiocManager::install("affy")
if (!requireNamespace("GEOquery", quietly = TRUE)) BiocManager::install("GEOquery")
if (!requireNamespace("mouse4302.db", quietly = TRUE)) BiocManager::install("mouse4302.db
```


DNA Microarray

- DNA Microarray is a collection of microscopic DNA spots attached to a solid suface
- DNA spot contains copies of specific DNA sequence called probes (or oligoes)
- DNA probe is usually specific for a certain DNA region of certain mRNA
- DNA probe hybridizes with complement fluorescent labeled DNA (cDNA) molecule
- After that we can detect fluorescence

DNA Microarray: usages

- Genotyping: allele specific probes
- Tiling array: you can cover (like a whole chromosome) with overlapping probes to detect expression levels and coverage
- Gene expression: if probes are specific for different gene regions
 -- we can measure relative abundance of RNA within the sample
- Many other

Microarray: gene expression

- Microarray can be considered as RNA capture technique
- Microarray consists of thousands of probes
- Probes consist of many oligonucleotides (all of which are the same within the probe)
- When cDNA hybridizes with complementary oligonucleotides, we detect fluoresence

Microarray

Microarray

Historical remark

- Researchers used to do two-color microarray: two samples could be processed with the same DNA chip
- Now most of the array are done in single-color: chips are relatively cheap
- But the legacy is huge:
 - people still do red-green heatmaps
 - all the schematics for microarray will be in red-green colors
 - GEO datasets still use green-magenta color-scheme

Historical remark

 You don't benefit much from two-channel microarray when working with larger number of samples

number of samples	one-channel microarray	two channel microarray	two channel microarray (with reference)
1	1	1	1
2	2	1	1
3	3	3	2
4	4	6	3
i	i	i(i-1)/2	i-1

Dataset for today: GSE129260

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129260

In short:

- B cells
- IL10 positive and negative
- Treated with LPS and anti-CD40
- In total four groups, two replicates in each group

Affymetrix microarrays

Most likely, microarray gene expression data will come from affymetrix microarray.

Raw microarray files

Different microarray platforms have different specifications about:

- What are the probes
- Where probes are physically located on the chip
- This is usually desrcribed in CDF file (Chip Description File)

Raw microarray files

Raw files for microarray are just fluorescence itensities for a chip (CEL files).

So if you are running microarray from scratch you will have:

- CEL file for each sample
- CDF file for your microarray platform

Raw microarray files: time for some code

```
library(affxparser)
library(affy)

CELfile <- readCel("GSE129260_RAW/GSM3703675_IL-10_posi_anti-CD40-1.CEL")</pre>
```


Raw microarray files: time for some code

head(CELfile\$header)

```
## $filename
## [1] "GSE129260_RAW/GSM3703675_IL-10_posi_anti-CD40-1.CEL"
##
## $version
## [1] 1
##
## $cols
## [1] 1002
##
## $rows
## [1] 1002
##
## $total
## [1] 1004004
##
## $algorithm
## [1] "Feature Extraction Cell Generation"
```


Raw microarray files: time for some code

head(CELfile\$intensities)

```
## [1] 78 4808 106 5064 147 74
```


Converting CEL to features

In most cases we don't need to do that ourselves.

IN MOST CASES YOU REALLY DON'T WANT TO DO THAT

Realistically

Affymetrix arrays come with tools to:

- Get the feature expression values
- Normalize expression levels
- These tools are standartized and available in Bioconductor

Public data

```
files <- list.files("GSE129260_RAW/", full.names = T)
microarrayData <- justRMA(filenames = files)

## Warning: replacing previous import 'AnnotationDbi::tail' by 'utils::tail'
## when loading 'mouse4302cdf'

## Warning: replacing previous import 'AnnotationDbi::head' by 'utils::head'
## when loading 'mouse4302cdf'</pre>
##
```


Public data

```
exprs(microarrayData)[1:5, 1:2]
```

```
##
                GSM3703675_IL-10_posi_anti-CD40-1.CEL
## 1415670_at
                                              8.779487
                                              8.920662
## 1415671_at
## 1415672_at
                                              8.976458
## 1415673_at
                                              6.666717
## 1415674_a_at
                                              9.006864
##
                GSM3703676_IL-10_nega_anti-CD40-1.CEL
## 1415670_at
                                              8.561089
## 1415671 at
                                              8.895862
## 1415672_at
                                              8.956885
## 1415673 at
                                              6.467003
## 1415674_a_at
                                              9.099215
```


Normalization

- Raw Affy data contains about twenty probes for the same RNA target
- Half of these are "mismatch spots", which do not precisely match the target sequence
- These can theoretically measure the amount of nonspecific binding for a given target

Normalization

- Robust Multi-array Average (RMA) is a normalization approach that does not take advantage of these mismatch spots, but still must summarize the perfect matches through median polish
- The current Affymetrix MAS5 algorithm, which uses both perfect match and mismatch probes, continues to enjoy popularity and do well in head to head tests

How to get symbols?

```
library(mouse4302.db)

symbolAnnotation <- as.list(mouse4302SYMBOL)
head(symbolAnnotation, 3)

## $`1415670_at`
## [1] "Copg1"
##
## $`1415671_at`
## [1] "Atp6v0d1"
##
## $`1415672_at`
## [1] "Golga7"</pre>
```


We have much easier ways to get annotation for samples/probes with GEOquery


```
dim(exprs(GSE129260))
```

```
## [1] 45101
```


head(exprs(GSE129260))

```
##
                GSM3703675 GSM3703676 GSM3703677 GSM3703678 GSM3703679
## 1415670_at
                  439.3887
                            377.51083
                                        597,2262
                                                   493.4291
                                                              397,1739
## 1415671 at
                                                   600.3790
                                                              581,9670
                484.9137
                            476.33698
                                        674.3707
## 1415672 at
                503.6775
                            496.95230
                                        501.6765
                                                   595.6385
                                                              750.4399
## 1415673 at
                101.6343
                             88.44778
                                                              262.5089
                                        644.5211
                                                   442.4400
## 1415674 a at
                  514,6692
                            548.55630
                                        418.8315
                                                   527,6122
                                                              549.1731
## 1415675 at
                  343.5385
                            373.09020
                                        347,4206
                                                   441.6546
                                                              380.8810
##
                GSM3703680 GSM3703681 GSM3703682
## 1415670 at
                  382.7747
                             674.1451
                                        504.8682
## 1415671 at
                                        816.8667
                 645.0598
                            752.7134
## 1415672 at
                  784.1332
                             840.3690
                                        827.8496
## 1415673 at
                  298.3548
                            942.3843
                                        593.4224
## 1415674 a at
                  548.4058
                             516.0414
                                        526.1480
## 1415675 at
                  374.6690
                             316.8613
                                        359.3207
```



```
head(pData(GSE129260)[, 1:2])
```

```
##
                                                                    title
## GSM3703675 IL-10 positive B cells, anti-CD40 for 48 h, biological rep1
## GSM3703676 IL-10 negative B cells, anti-CD40 for 48 h, biological rep1
## GSM3703677
                    IL-10 positive B cells, LPS for 48 h, biological rep1
                    IL-10 negative B cells, LPS for 48 h, biological rep1
## GSM3703678
## GSM3703679 IL-10 positive B cells, anti-CD40 for 48 h, biological rep2
## GSM3703680 IL-10 negative B cells, anti-CD40 for 48 h, biological rep2
              geo_accession
##
## GSM3703675
                 GSM3703675
## GSM3703676
               GSM3703676
## GSM3703677
                GSM3703677
## GSM3703678
                GSM3703678
## GSM3703679
                GSM3703679
## GSM3703680
                 GSM3703680
```



```
head(fData(GSE129260)[, 1:2])
```

```
##
                          TD
## 1415670_at
                 1415670 at
## 1415671_at
                 1415671_at
## 1415672 at
                 1415672 at
## 1415673 at
                  1415673 at
## 1415674 a at 1415674 a at
## 1415675_at
                 1415675_at
##
                                                       Gene title
                        coatomer protein complex, subunit gamma 1
## 1415670 at
                 ATPase, H+ transporting, lysosomal V0 subunit D1
## 1415671 at
                         golgi autoantigen, golgin subfamily a, 7
## 1415672 at
## 1415673 at
                                        phosphoserine phosphatase
                           trafficking protein particle complex 4
## 1415674 a at
## 1415675 at
                dolichol-phosphate (beta-D) mannosyltransferase 2
```