Содержание

- 1 Гладкие многообразия (итоги)
- 2 Касательное пространство
 - Определения
 - Стандартные отождествления
 - Дифференцирование отображений
 - Специальные случаи
- Подмногообразия
 - Погружения и вложения
 - Касательное пространство подмногообразия
 - Регулярные прообразы

Лекция 7

Что было в прошлый раз

Определения:

- Гладкое многообразие
- Гладкое подмногообразие
- Гладкое отображение
- Диффеоморфизм

Примеры и конструкции:

- ullet Открытые области в \mathbb{R}^n
- Открытые подмножества гладких многообразий
- ullet Гладкие графики в \mathbb{R}^n
- ullet Регулярные поверхности в \mathbb{R}^n

Прямое произведение (упражнение)

Пусть M^m и N^n — гладкие многообразия. На $M \times N$ вводится структура гладкого многобразия размерности m+n следующим образом: Для карты $\varphi\colon U \to \mathbb{R}^m$ многообразия M и карты $\psi\colon V \to \mathbb{R}^n$ многообразия N строим карту

где
$$(arphi imes\psi\colon U imes V o \mathbb{R}^m imes\mathbb{R}^n,$$

Лекция 7 14 октября 2020 г.

Прямое произведение (упражнение)

Пусть M^m и N^n — гладкие многообразия. На $M \times N$ вводится структура гладкого многобразия размерности m+n следующим образом: Для карты $\varphi\colon U \to \mathbb{R}^m$ многообразия M и карты $\psi\colon V \to \mathbb{R}^n$ многообразия N строим карту

$$\varphi \times \psi \colon U \times V \to \mathbb{R}^m \times \mathbb{R}^n$$
,

где
$$(\varphi \times \psi)(x,y) = (\varphi(x),\psi(y)).$$

Упражнение

- lacktriangledown Это гладкий атлас (т.е. мы определили дифференциальную структуру на M imes N)
- $oldsymbol{2}$ Координатные проекции из M imes N в M и N гладкие
- **3** Отображение F = (f, g) из гладкого многообразия K в $M \times N$ гладкое $\iff f$ и g оба гладкие.

Другие примеры

Задача

Придумайте естественную структуру гладкого многообразия на

- \vee \bullet Проективном пространстве \mathbb{RP}^n
- \checkmark **2** Грассмановом многообразии $G_{n,k}$ множестве всех k-мерных линейных подпространств \mathbb{R}^n .

Sim Gun = K(h-K). (?)

Лекция 7 14 октября 2020 г.

Содержание

- Гладкие многообразия (итоги)
- 2 Касательное пространство
 - Определения
 - Стандартные отождествления
 - Дифференцирование отображений
 - Специальные случаи
- Подмногообразия
 - Погружения и вложения
 - Касательное пространство подмногообразия
 - Регулярные прообразы

Содержание

- Гладкие многообразия (итоги)
- 2 Касательное пространство
 - Определения
 - Стандартные отождествления
 - Дифференцирование отображений
 - Специальные случаи
- Подмногообразия
 - Погружения и вложения
 - Касательное пространство подмногообразия
 - Регулярные прообразы

Лекция 7

Первое определение касательного вектора

Пусть M^n — гладкое многообразие и $p \in M$.

Рассмотрим всевозможные гладкие кривые $\alpha: (-\varepsilon, \varepsilon) \to M$ такие, что $\alpha(0) = p$.

Назовем две такие кривые α и β эквивалентными, если для любой карты $\varphi\colon U\subset M\to \mathbb{R}^n$, где $U\ni p$, верно, что

$$(\varphi \circ \alpha)'(0) = (\varphi \circ \beta)'(0)$$

Определение

Касательный вектор многообразия M в точке p — класс эквивалентности кривых по вышеуказанному отношению эквивалентности.

Касательное пространство M в точке p — множество всех касательных векторов в точке p (со структурой векторного пространства, которую определим позже).

Обозначение касательного пространства: $T_p M$.

Независимость от карты

Свойство

Свойство эквивалентности кривых не зависит от карты: если оно верно для одной карты φ , содержащей p, то оно верно для любой карты ψ , содержащей p.

Доказательство.

Пусть $\alpha_1=\varphi\circ\alpha$ и $\beta_1=\varphi\circ\beta$ — кривые в первой карте, $\alpha_2=\psi\circ\alpha$ и $\beta_2=\psi\circ\beta$ — кривые во второй карте, $f=\psi\circ\varphi^{-1}$ — отображение перехода.

Тогда
$$\alpha_2 = f \circ \alpha_1$$
, $\beta_2 = f \circ \beta_1$.

Если $\alpha_1'(0)=\beta_1'(0)$, то $(f\circ\alpha_1)'(0)=(f\circ\beta_1)'(0)$ из производной композиции $\implies \alpha_2'(0)=\beta_2'(0)$.

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ 夕久 ○

Координаты касательного вектора

Определение

Пусть $v \in T_p M$, $\varphi \colon U \to \mathbb{R}^n$ — карта M, $p \in U$. Рассмотрим вектор

$$v_{\varphi}:=(\varphi\circ\alpha)'(0)\in\mathbb{R}^n,$$

где α — любая кривая, представляющая v.

Вектор v_{φ} — координатное представление касательного вектора v в карте φ .

Его координаты — координаты v в карте φ .

По определению касательного вектора, \mathbf{v}_{φ} не зависит от выбора кривой α , представляющей \mathbf{v} .

4 □ ト 4 □ ト 4 亘 ト 4 亘 ・ 夕 Q ②

Лекция 7 14 октября 2020 г.

Вектор задается своими координатами

Свойство

Для любой карты φ , содержащей p, соответствие $v\mapsto v_{\varphi}$ — биекция между $T_{p}M$ и \mathbb{R}^{n} .

Доказательство.

Инъективность: из определения и того, что эквивалентность кривых не зависит от карты.

Сюръективность: вектор с координатным представлением $\widehat{v} \in \mathbb{R}^n$ представляется кривой

$$\alpha(t) = \varphi^{-1}(\varphi(p) + t\widehat{v})$$

Лекция 7

Замена координат

Свойство

Пусть φ и φ — две карты, содержащие $p \in M$, $v \in T_pM$, $\widehat{p} = \varphi(p)$. Пусть $f = \psi \circ \varphi^{-1}$ — отображение перехода. Тогда координатные представления v в картах φ и ψ связаны соотношением:

$$v_{\psi}=d_{\widehat{p}}f(v_{\varphi})$$

Доказательство.

Из производной композиции.

Другое определение касательного вектора

Из доказанного следует, что касательный вектор в точке p можно эквивалентно определить так:

Определение

Касательный вектор в точке p — отображение v из множества всех карт, содержащих p, в \mathbb{R}^n ($\varphi\mapsto v_\varphi$) такое, что для любых двух карт φ и ψ верно равенство из предыдущего свойства:

$$v_{\psi}=d_{\varphi(p)}f(v_{\varphi}).$$

Структура векторного пространства на $T_p M$

Определение

Пусть $v,w\in T_pM$, φ — карта в окрестности p. Определим сумму $v+w\in T_pM$ как такой вектор из T_pM , что

$$(v+w)_{\varphi}=v_{\varphi}+w_{\varphi}$$

(складываем координаты и в карте и берём вектор с полученными координатами).

Аналогично определяется умножение касательного вектора на число $\lambda \in \mathbb{R}$: $(\lambda v)_{\varphi} = \lambda(v_{\varphi})$.

- Определение корректно (вектор с такими свойствами существует и единственен).
- Определение не зависит от выбора карты φ . Это следует из линейности правила пересчёта координат касательного вектора при замене карты.
- Координатное представление $v\mapsto v_{\varphi}$ изоморфизм векторных пространств T_pM и \mathbb{R}^n . \bigvee

Касательное расслоение

Касательное расслоение — (дизъюнктное) объединение касательных пространств $T_p M$ по всем $p \in M$. Касательные пространства вида $T_p M$ называются слоями касательного расслоения.

14 октября 2020 г.

Касательное расслоение

Касательное расслоение — (дизъюнктное) объединение касательных пространств T_pM по всем $p \in M$. Касательные пространства вида T_pM называются слоями касательного расслоения.

На TM естественно вводится структура гладкого многообразия размерности 2n, где $n=\dim M$. А именно, для каждой карты $\varphi\colon U\to \mathbb{R}^n$ для M строим карту $\Phi\colon \widehat{U}\to \mathbb{R}^{2n}$ для TM, где $\widehat{\underline{U}}$ — множество касательных векторов в точках из U:

Для $v \in T_x M$, где $x \in U$, определяем

$$\overbrace{\Phi(v)} = (\underline{\varphi(x)}, v_{\varphi}) \in \mathbb{R}^n \times \mathbb{R}^n.$$

Топология на ТМ определяется этими картами.

Отображения перехода между такими картами гладкие, так задаются формулами через отображения переходя, для M.

Для записей

Лекция 7 14 октября 2020 г.

Содержание

- Гладкие многообразия (итоги)
- 2 Касательное пространство
 - Определения
 - Стандартные отождествления
 - Дифференцирование отображений
 - Специальные случаи
- Подмногообразия
 - Погружения и вложения
 - Касательное пространство подмногообразия
 - Регулярные прообразы

Касательное пространство области в \mathbb{R}^n

Пусть $U\subset\mathbb{R}^n$ — открытое множество. Тогда TU естественно отождествляется с $U\times\mathbb{R}^n$ следующим образом:

Паре (p,v), где $p\in U$, $v\in \mathbb{R}^n$ соответствует касательный вектор, представленный любой кривой $\alpha\colon (-\varepsilon,\varepsilon)\to U$ с $\alpha(0)=p$ и $\alpha'(0)=v$.

17 / 57

Лекция 7 14 октября 2020 г.

Касательное пространство области в \mathbb{R}^n

Пусть $U\subset\mathbb{R}^n$ — открытое множество. Тогда TU естественно отождествляется с $U\times\mathbb{R}^n$ следующим образом:

Паре (p, v), где $p \in U$, $v \in \mathbb{R}^n$, соответствует касательный вектор, представленный любой кривой $\alpha \colon (-\varepsilon, \varepsilon) \to U$ с $\alpha(0) = p$ и $\alpha'(0) = v$.

Касательное пространство T_pU — это множество таких пар (p,v), где p фиксировано. Таким образом, имеется естественный изоморфизм $T_pU\cong \mathbb{R}^n$. Это то же самое, что координатное представление касательных векторов в тождественной карте.

Касательное пространство области в \mathbb{R}^n

Пусть $U\subset\mathbb{R}^n$ — открытое множество. Тогда TU естественно отождествляется с $U\times\mathbb{R}^n$ следующим образом:

Паре (p,v), где $p\in U$, $v\in \mathbb{R}^n$, соответствует касательный вектор, представленный любой кривой $\alpha\colon (-\varepsilon,\varepsilon)\to U$ с $\alpha(0)=p$ и $\alpha'(0)=v$.

Касательное пространство T_pU — это множество таких пар (p,v), где p фиксировано. Таким образом, имеется естественный изоморфизм $T_pU\cong \mathbb{R}^n$.

Это то же самое, что координатное представление касательных векторов в тождественной карте.

earrowЭтот изоморфизм при необходимости позволяет отождествить $T_p U$ с \mathbb{R}^n .

(Примечание: касательные векторы в разных точках не равны, но после такого отождествления могут стать равными. Надо соблюдать осторожность.)

17 / 57

Лекция 7 14 октября 2020 г.

Открытое подмножество многообразия

Пусть M^n — гладкое многообразие, $U \subset M$ открыто, $p \in U$. Тогда U — тоже гладкое многообразие (и n-мерное подмногообразие в M).

Для $p \in U$, касательное пространство T_pU естественно отождествляется с T_pM : вектору из T_pU представленному кривой α , сопоставляем вектор из T_pM , представленный той же кривой.

Соглашение

Имея в виду это отождествление, всегда считают, что $T_p U = T_p M$.

Для записей

Лекция 7

14 октября 2020 г.

Содержание

- Гладкие многообразия (итоги)
- 2 Касательное пространство
 - Определения
 - Стандартные отождествления
 - Дифференцирование отображений
 - Специальные случаи
- Подмногообразия
 - Погружения и вложения
 - Касательное пространство подмногообразия
 - Регулярные прообразы

Дифференциал отображения в точке

Пусть M^m, N^n — гладкие многообразия, $f: M \to N$ — гладкое отображение, $p \in M$.

Определение

Дифференциал (касательное отображение) f в точке p — отображение

$$d_pf\colon\thinspace T_pM\to\thinspace T_{f(p)}N,$$

определяемое следующим образом:

Для $v \in T_p M$, представленного кривой α , $d_p f(v)$ — вектор из $T_{f(p)} N$, представленный кривой $f \circ \alpha$.

Корректность и т.д.

Теорема

- lacktriangle $d_p f$ определено корректно; (μ зависит о τ
- $oldsymbol{Q} d_p f$ линейное отображение из $T_p M$ в $T_{f(p)} N$.
- f 3 Для карт arphi и ψ в окрестностях p и f(p)

$$(d_{\rho}f(v))_{\psi}=d_{\varphi(\rho)}f_{\varphi,\psi}(v_{\varphi}), \qquad \forall v \in T_{\rho}M$$

(координатное представление дифференциала — дифференциал координатного представления).

В правой части стоит обычный дифференциал в \mathbb{R}^n .

Due 12

Jul Mh- in

topf (V). brode &, upedarkbruevousen V).

Корректность и т.д.

Теорема

- $lacksymbol{\circ}$ Для карт φ и ψ в окрестностях p и f(p)

$$(\underline{d_p}f(v))_{\psi} = \underline{d_{\varphi(p)}}f_{\varphi,\psi}(v_{\varphi}), \qquad \forall v \in T_pM$$

(координатное представление дифференциала — дифференциал координатного представления). В правой части стоит обычный дифференциал в \mathbb{R}^n .

Замечание

В случае, когда M и N — открытые области в \mathbb{R}^m и \mathbb{R}^n , определение дифференциала согласовано с обычным, с учетом стандартных изоморфизмов $T_p\mathbb{R}^m\cong\mathbb{R}^m$ и $T_p\mathbb{R}^n\cong\mathbb{R}^n$.

Это следует из третьего утверждения теоремы для тождественных карт.

(Credobne y Teopenin).
racoo 3.
grel. y = y = id.

Доказательство теоремы

Пусть $v\in T_pM$ представлен кривой $\alpha\colon (-\varepsilon,\varepsilon)\to M.$ Переходя в карты φ и φ ,

$$\psi \circ (f \circ \alpha) = f_{\varphi,\psi} \circ (\varphi \circ \alpha) \tag{1}$$

так как $v_{arphi}=(arphi\circlpha)'(0)$, получаем

$$(\psi \circ (f \circ \alpha))'(0) = d_{\varphi(p)} f_{\varphi,\psi}(v_{\varphi}).$$
 (*)

Правая часть не зависит от выбора α

- \implies вектор, представленный $f \circ \alpha$, не зависит от α ,
- ⇒ определение корректно.

Утверждение **3** следует из (*).

Утверждение 2 (линейность) следует из утверждения 3.

$$-(\psi_0(f\circ a))/0) = (d_p f(v)),$$

Глобальное касательное отображение

Так как касательные пространства в разных точках не пересекаются, определено отображение

$$df: TM \rightarrow TN$$

где

$$df|_{T_pM}=d_pf.$$

Оно позволяет «на законных основаниях» не писать p в обозначении d_pf .

Другое обозначение: *Tf*

Замечание: df — гладкое отображение из TM в TN.

$$d_{p}f(v)$$
 $M \longrightarrow$

$$(df)_{\phi\psi} \left(\underbrace{X_{1,\dots,X_{n}}}_{\chi} \underbrace{V_{n,\dots,V_{n}}}_{V} \right) = \left(f_{\varphi,\psi}(\chi), d_{\chi} f_{\varphi\psi}(V) \right).$$

Производная композиции

Теорема

Пусть M, N, K — гладкие многообразия, $f: M \to N$, $g: N \to K$ — гладкие отображения. Тогда

$$d(g\circ f)=dg\circ df.$$

Или, для $p \in M$,

$$d_p(g\circ f)=d_{f(p)}g\circ d_pf$$

Доказательство.

Тривиально из определения.

 $(f \circ g) \circ d = f \circ (g \circ d).$

Производная композиции

Теорема

Пусть M,N,K — гладкие многообразия, $f:M\to N$, $g:N\to K$ — гладкие отображения. Тогда

$$d(g \circ f) = dg \circ df.$$

Или, для $p \in M$,

$$d_p(g \circ f) = d_{f(p)}g \circ d_p f$$

Доказательство.

Тривиально из определения.

Замечание

Мы построили функтор T из категории гладких многообразий с гладкими отображениями в себя.

Теорема об обратной функции

Теорема

Пусть M,N- гладкие многообразия одинаковой размерности, $f:M\to N-$ гладкое отображение, $p\in M$. Предположим, что d_pf- биекция между T_pM и T_pN .

Тогда f — локальный диффеоморфизм в точке p, т.е.: Существует такая окрестность $U \ni p$ в M, что f(U) открыто в N и $f|_U$ — диффеоморфизм между U и f(U).

Доказательство.

Переходом в карты сводится к теореме об обратной функции для \mathbb{R}^n .

Содержание

- Гладкие многообразия (итоги)
- 2 Касательное пространство
 - Определения
 - Стандартные отождествления
 - Дифференцирование отображений
 - Специальные случаи
- Подмногообразия
 - Погружения и вложения
 - Касательное пространство подмногообразия
 - Регулярные прообразы

Дифференциал отображения из $\mathbb R$ в M

Пусть M — гладкое многообразие.

Рассмотрим гладкую кривую $\gamma\colon I \to M$.

У неё есть дифференциал $d_t\gamma$ в точке $t\in I$,

$$d_t \gamma \colon T_t \mathbb{R} \cong \mathbb{R} \to T_{\gamma(t)} M.$$

Линейное отображение из $\mathbb R$ в векторное пространство задаётся образом числа 1.

Обозначим

$$\gamma'(t) = d_t \gamma(1) \in T_p M,$$

этот касательный вектор называется скоростью γ в точке t (или в момент t).

Замечание: $\gamma'(0)$ — то же самое, что касательный вектор, представленный кривой γ .

£=0/

ICIR >M

Частные производные

Рассмотрим отображение $f:U\subset\mathbb{R}^k\to M$. Для него определены частные производные $\partial f \partial x_i$ или $\partial f \partial x_j$ или $\partial f \partial x_i$ обозначения координат в \mathbb{R}^k .

i-я частная производная в точке p — касательный вектор из $T_{f(p)}(M)$, определяемый равенством

$$f_{x_i}'(p) = d_p f(e_i)$$

где e_i-i -й вектор стандартного базиса $T_{\mathfrak{p}}U\cong \mathbb{R}^n$.

$$f = f(x_1, \dots, x_K)$$

Лекция 7

Дифференциал функции из M в \mathbb{R}^k

Пусть $f: M \to \mathbb{R}^k$, $p \in M$.

Пользуясь стандартным изоморфизмом $T_{f(p)}\mathbb{R}^k\cong\mathbb{R}^k$, дифференциал d_pf обычно считают линейным отображением из T_pM в \mathbb{R}^k .

При k=1 получаем, что $d_p f \in (T_p M)^*$.

Frenenson (TpM)* kobektopu.

Дифференциал карты

Как частный случай, рассмотрим карту

 $\varphi \colon U \subset M \to \mathbb{R}^n$.

Ее дифференциал в точке p — линейное отображение $d_p \varphi \colon T_p M \to \mathbb{R}^n$.

Для $v \in T_p M$ из определений следует, что $d_p \varphi(v) = v_{\varphi}$ — координатное представление v в этой карте.

Лекция 7

Содержание

- Гладкие многообразия (итоги)
- 2 Касательное пространство
 - Определения
 - Стандартные отождествления
 - Дифференцирование отображений
 - Специальные случаи
- Подмногообразия
 - Погружения и вложения
 - Касательное пространство подмногообразия
 - Регулярные прообразы

Что надо вспомнить

В первую очередь сейчас будут нужны:

- Определение гладкого подмногообразия.
- Свойство: гладкие отображения в подмногообразие $M \subset N$ в точности гладкие отображения в N, образы которых содержатся в M.
- Определение регулярной поверхности.

 Теорема: образ простой регулярной поверхности подмногообразие.

Содержание

- Гладкие многообразия (итоги)
- 2 Касательное пространство
 - Определения
 - Стандартные отождествления
 - Дифференцирование отображений
 - Специальные случаи
- Подмногообразия
 - Погружения и вложения
 - Касательное пространство подмногообразия
 - Регулярные прообразы

Определения

Пусть M^k , N^n — гладкие многообразия, $k \leq n$.

Определение

(Гладкое) погружение — гладкое отображение $f:M\to N$ такое, что d_pf инъективно (мономорфизм) для всех $p\in M$.

(Гладкое) вложение — гладкое погружение, которое является топологическим вложением (т.е. гомеоморфизмом на образ).

= pergrepue wb-To.

≈ mocrae pez. nob-To

Замечание

В случае, когда M и N — открытые области в \mathbb{R}^k и \mathbb{R}^n , это то же самое, что регулярные поверхности и простые регулярные поверхности.

Основное свойство

MIN - EL- MM. E.

Теорема

- ① Любое погружение $f: M \to N$ локально является вложением. То есть: у любой точки $p \in M$ есть такая окрестность U, что $f|_U$ вложение.
- ② Если $f: M \to N$ вложение, то его образ f(M) подмногообразие в N.
 При этом f диффеоморфизм между M и f(M).

Основное свойство

Теорема

- Любое погружение $f: M \to N$ локально является вложением. То есть: у любой точки $p \in M$ есть такая окрестность U, что $f|_U$ вложение.
- ② Если $f: M \to N$ вложение, то его образ f(M) подмногообразие в N.
 При этом f диффеоморфизм между M и f(M).

Доказательство.

Для областей в \mathbb{R}^n это уже было. Общий случай сводится к разобранному переходом в карты.

Замечание

Было доказано больше: для погружения $f:M\to N$ существуют такие карты φ и ψ в M и N соответственно, что $f_{\varphi,\psi}$ — стандартное включение \mathbb{R}^k в \mathbb{R}^n .

Лекция 7 14 октября 2020 г.

Другое определение подмногообразия

Пример

Пусть $M \subset N$ — подмногообразие.

Тогда включение $in \colon M \to N$ — вложение.

(Доказательство: проверка в подходящей карте.)

37 / 57

Другое определение подмногообразия

Пример

Пусть $M \subset N$ — подмногообразие.

Тогда включение $in \colon M \to N$ — вложение.

(Доказательство: проверка в подходящей карте.)

Теорема

Пусть N — гладкое многообразие.

Множество $K \subset N$ — гладкое подмногообразие тогда и только тогда, когда оно является образом некоторого гладкого вложения.

Доказательство.

Из теоремы и примера.

Транзитивность подмногообразий

Теорема

Пусть N- гладкое многообразие, $M\subset N-$ гладкое подмногообразие, $K\subset M-$ подмножество.

Тогда эквивалентны два свойства:

- К гладкое подмногообразие М;
- ② К гладкое подмногообразие №.

При этом размерность K и дифференциальная структура на K, получаемые из M и N, совпадают.

Транзитивность подмногообразий

Теорема

Пусть N- гладкое многообразие, $M\subset N-$ гладкое подмногообразие, $K\subset M-$ подмножество.

Тогда эквивалентны два свойства:

- К гладкое подмногообразие М;
- К гладкое подмногообразие N.

При этом размерность K и дифференциальная структура на K, получаемые из M и N, совпадают.

Доказательство.

Пусть $i:M\to N,\ i_1\colon K\to M,\ i_2\colon K\to N$ — включения. Тогда $i_2=i\circ i_1.$

Теорема сводится к утверждению: если i_1 — гладкое вложение (относительно некоторой дифференциальной структуры на K), то i_2 тоже, и наоборот.

Это следует из равенства $di_2 = di \circ di_1$

Содержание

- 1 Гладкие многообразия (итоги)
- 2 Касательное пространство
 - Определения
 - Стандартные отождествления
 - Дифференцирование отображений
 - Специальные случаи
- Подмногообразия
 - Погружения и вложения
 - Касательное пространство подмногообразия
 - Регулярные прообразы

Стандартное включение

Пусть N^n — гладкое многообразие, $M^k \subset N$ — подмногообразие, $p \in M$.

Рассмотрим включение $in \colon M \to N$.

Так как in — вложение, $d_p in$ — мономорфизм, а его образ — k-мерное линейное подпространство в $T_p N$.

Соглашение

Касательное пространство $T_p M$ всегда отождествляют с его образом $d_p in(T_p M) \subset T_p N$. Таким образом, $T_p M \subset T_p N$.

Ι , μ

Замечание

Геометрический смысл отождествления: Вектор из $T_p M$, представленный кривой $\alpha\colon (-\varepsilon,\varepsilon)\to M$, отождествляется с вектором из $T_p N$, представленным той же кривой α .

Касательное пространство образа вложения

Теорема

Пусть $f: M \to N$ — вложение, $p \in M$. Тогда касательное пространство к подмногообразию f(M) в точке f(p) — образ дифференциала $d_p f$, т.е.

$$T_p f(M) = d_p f(T_p M)$$

Касательное пространство образа вложения

Теорема

Пусть $f: M \to N$ — вложение, $p \in M$. Тогда касательное пространство к подмногообразию f(M) в точке f(p) — образ дифференциала $d_p f$, т.е.

$$T_p f(M) = d_p f(T_p M)$$

Доказательство.

Временно забудем про отождествления.

Пусть K = f(M), $\widehat{f}: M \to K$ — то же самое f с заменой формальной области значений. Тогда $f = i \circ \widehat{f}$, где $i: K \to M$ — включение.

$$\implies d_p f = d_{f(p)} i \circ d_p \widehat{f}$$

$$\implies d_p f(T_p M) = d_{f(p)} i(d_p \widehat{f}(T_p M)).$$

Так как \widehat{f} — диффеоморфизм, $d_p\widehat{f}$ — биекция между T_pM и $T_{f(p)}K \implies d_pf(T_pM) = d_{f(p)}i(T_{f(p)}K)$. Осталось вспомнить про отождествления.

