Separating Variants of LEM, LPO, and MP

Matt Hendtlass, U Canterbury Robert S. Lubarsky, FAU

Proof Theory, Modal Logic and Reflection Principles
Mexico City, Mexico
September 29 - October 2, 2014

Definitions

Definition

- ▶ The Law of Excluded Middle (LEM): For any proposition A, either A is true or A is false (A or $\neg A$).
- ▶ The Weak LEM (WLEM): For any proposition A, either $\neg A$ or $\neg \neg A$.
- ▶ The Limited Principle of Omniscience (LPO): For any binary sequence α , either $\alpha(n) = 0$ for all n or there exists n such that $\alpha(n) = 1$.
- ▶ Markov's Principle (MP): If it is impossible for all terms of α to be zero, then there exists an n such that $\alpha(n) = 1$.

Definitions

Definition

- ▶ The Law of Excluded Middle (LEM): For any proposition A, either A is true or A is false (A or $\neg A$).
- ▶ The Weak LEM (WLEM): For any proposition A, either $\neg A$ or $\neg \neg A$.
- ▶ The Limited Principle of Omniscience (LPO): For any binary sequence α , either $\alpha(n) = 0$ for all n or there exists n such that $\alpha(n) = 1$.
- ▶ Markov's Principle (MP): If it is impossible for all terms of α to be zero, then there exists an n such that $\alpha(n) = 1$.
- ► The Lesser Limited Principle of Omniscience (LLPO): For any binary sequence α with at most one non-zero term, either $\alpha(n) = 0$ for all even n or $\alpha(n) = 0$ for all odd n.

Implications

More Principles

Definition

▶ **LLPO**_n: Let $(P_i)_{i < n}$ be a decidable partition of ω into blocks of size ω , and let α be a binary sequence with at most one non-zero term. Then there exists k < n such that $\alpha(m) = 0$ for all $m \in P_k$.

More Principles

Definition

- ▶ **LLPO**_n: Let $(P_i)_{i < n}$ be a decidable partition of ω into blocks of size ω , and let α be a binary sequence with at most one non-zero term. Then there exists k < n such that $\alpha(m) = 0$ for all $m \in P_k$.
- ▶ \mathbf{MP}_n^{\vee} : If α has at most one non-zero term and it is impossible for all terms of α to be zero, then there exists k < n such that $\alpha(m) = 0$ for all $m \in P_k$.

More Principles

Definition

- ▶ **LLPO**_n: Let $(P_i)_{i < n}$ be a decidable partition of ω into blocks of size ω , and let α be a binary sequence with at most one non-zero term. Then there exists k < n such that $\alpha(m) = 0$ for all $m \in P_k$.
- ▶ \mathbf{MP}_n^{\vee} : If α has at most one non-zero term and it is impossible for all terms of α to be zero, then there exists k < n such that $\alpha(m) = 0$ for all $m \in P_k$.
- ▶ WLEM_n: $\neg \bigvee_{i,j < n, i \neq j} A_i \land A_j \longrightarrow \bigvee_{i < n} \neg A_i$.

Definition

(Mandelkern) A real r is **positive**, r > 0, if r is within 1/n of some rational q > 1/n.

Definition

(Mandelkern) A real r is **positive**, r > 0, if r is within 1/n of some rational q > 1/n.

r is **almost positive**, r > 0, if r is not negative and r is not 0. (Equivalently, r is not not positive.)

Definition

(Mandelkern) A real r is **positive**, r > 0, if r is within 1/n of some rational q > 1/n.

r is **almost positive**, r > 0, if r is not negative and r is not 0. (Equivalently, r is not not positive.)

r is **pseudo-positive** if, for all x, either x > 0 or r > x.

Definition

(Mandelkern) A real r is **positive**, r > 0, if r is within 1/n of some rational q > 1/n.

r is **almost positive**, r > 0, if r is not negative and r is not 0. (Equivalently, r is not not positive.)

r is **pseudo-positive** if, for all x, either x > 0 or r > x.

Easily, $r > 0 \Rightarrow r$ is pseudo-positive $\Rightarrow r > 0$. Mandelkern was interested in the converses.

Definition

A binary sequence α is **positive**, $\alpha > 0$, if $\alpha(n) = 1$ for some n.

Definition

A binary sequence α is **positive**, $\alpha > 0$, if $\alpha(n) = 1$ for some n. α is **almost positive**, $\alpha > 0$, if α is not 0. (Equivalently, α is not not positive.)

Definition

A binary sequence α is **positive**, $\alpha > 0$, if $\alpha(n) = 1$ for some n. α is **almost positive**, $\alpha > 0$, if α is not 0. (Equivalently, α is not not positive.)

 α is **pseudo-positive** if, for all β , either

i)
$$\beta > 0$$
 (i.e. $\neg \neg \exists n \ (\beta(n) = 1))$ or

ii)
$$\alpha > \beta$$
 (i.e. $\neg \neg \exists n \ (\alpha(n) = 1 \land \forall k \leq n \ \beta(k) = 0)$).

Definition

A binary sequence α is **positive**, $\alpha > 0$, if $\alpha(n) = 1$ for some n. α is **almost positive**, $\alpha > 0$, if α is not 0. (Equivalently, α is not not positive.)

 α is **pseudo-positive** if, for all β , either

$$i) \ eta > 0 \ (i.e. \ \neg\neg\exists n \ (eta(n) = 1)) \ or$$

ii)
$$\alpha > \beta$$
 (i.e. $\neg \neg \exists n \ (\alpha(n) = 1 \land \forall k \leq n \ \beta(k) = 0)$).

Easily, positive \Rightarrow pseudo-positive \Rightarrow almost positive.

Definition

A binary sequence α is **positive**, $\alpha > 0$, if $\alpha(n) = 1$ for some n. α is **almost positive**, $\alpha > 0$, if α is not 0. (Equivalently, α is not not positive.)

 α is **pseudo-positive** if, for all β , either

- i) $\beta > 0$ (i.e. $\neg \neg \exists n \ (\beta(n) = 1))$ or
- ii) $\alpha > \beta$ (i.e. $\neg \neg \exists n \ (\alpha(n) = 1 \land \forall k \le n \ \beta(k) = 0)$).

Easily, positive \Rightarrow pseudo-positive \Rightarrow almost positive. It is not hard to see that the assertion "if α is almost positive then α is pseudo-positive" is MP $^{\vee}$.

Definition

A binary sequence α is **positive**, $\alpha > 0$, if $\alpha(n) = 1$ for some n. α is **almost positive**, $\alpha > 0$, if α is not 0. (Equivalently, α is not not positive.)

 α is **pseudo-positive** if, for all β , either

- $i) \ eta > 0 \ (i.e. \ \neg\neg\exists n \ (eta(n) = 1)) \ or$
- ii) $\alpha > \beta$ (i.e. $\neg \neg \exists n \ (\alpha(n) = 1 \land \forall k \leq n \ \beta(k) = 0)$).

Easily, positive \Rightarrow pseudo-positive \Rightarrow almost positive. It is not hard to see that the assertion "if α is almost positive then α is pseudo-positive" is MP $^{\vee}$.

WMP: If α is pseudo-positive then α is positive:

$$\forall \beta \ (\neg \neg \exists n \ \beta(n) = 1 \lor \neg \neg \exists n (\alpha(n) = 1 \land \beta(n) = 0)) \to \exists n \ \alpha(n) = 1$$

Non-Implications

Theorem

Over IZF, WLEM does not imply WMP.

Proof.

Let $f: V \to M$ be an elementary embedding of the universe of sets V into a model M with non-standard integers.

Theorem

Over IZF, WLEM does not imply WMP.

Proof.

Let $f: V \to M$ be an elementary embedding of the universe of sets V into a model M with non-standard integers. Consider the Kripke model:

Theorem

Over IZF, WLEM does not imply WMP.

Proof.

To get WMP to be false, iterate:

Theorem

Over IZF, WLEM does not imply WMP.

Proof.

Same picture:

Only this time, sets are allowed to change once. They have to settle down by the node after the one where they first appear.

Theorem

Over IZF, WLEM does not imply WMP.

Proof.

To get DC to hold, use a topological model: Let X be $\omega \cup \{*\}$ and $\mathcal U$ be a non-principal ultrafilter on ω . Take the discrete topology on ω , and a neighborhood of * to be $\{*\} \cup u$ where $u \in \mathcal U$.

Theorem

Over IZF, WLEM does not imply WMP.

Proof.

To get DC to hold, use a topological model: Let X be $\omega \cup \{*\}$ and $\mathcal U$ be a non-principal ultrafilter on ω . Take the discrete topology on ω , and a neighborhood of * to be $\{*\} \cup u$ where $u \in \mathcal U$.

WLEM: Consider $X_0 := \{k \in \omega : \{k\} \Vdash \neg A\}$ and

 $X_1 := \{k \in \omega : \{k\} \Vdash A\}.$

Theorem

Over IZF, WLEM does not imply WMP.

Proof.

To get DC to hold, use a topological model: Let X be $\omega \cup \{*\}$ and $\mathcal U$ be a non-principal ultrafilter on ω . Take the discrete topology on ω , and a neighborhood of * to be $\{*\} \cup u$ where $u \in \mathcal U$.

WLEM: Consider $X_0 := \{k \in \omega : \{k\} \Vdash \neg A\}$ and

 $X_1 := \{k \in \omega : \{k\} \Vdash A\}.$

WMP: Consider α such that $\{k\} \Vdash \alpha(n) = 1$ iff k = n.

Theorem

Over IZF, WLEM does not imply WMP.

Proof.

To get DC to hold, use a topological model: Let X be $\omega \cup \{*\}$ and $\mathcal U$ be a non-principal ultrafilter on ω . Take the discrete topology on ω , and a neighborhood of * to be $\{*\} \cup u$ where $u \in \mathcal U$.

WLEM: Consider $X_0 := \{k \in \omega : \{k\} \Vdash \neg A\}$ and

 $X_1 := \{k \in \omega : \{k\} \Vdash A\}.$

WMP: Consider α such that $\{k\} \Vdash \alpha(n) = 1$ iff k = n. No neighborhood of * forces α to be positive.

Theorem

Over IZF, WLEM does not imply WMP.

Proof.

To get DC to hold, use a topological model: Let X be $\omega \cup \{*\}$ and $\mathcal U$ be a non-principal ultrafilter on ω . Take the discrete topology on ω , and a neighborhood of * to be $\{*\} \cup u$ where $u \in \mathcal U$.

WLEM: Consider $X_0 := \{k \in \omega : \{k\} \Vdash \neg A\}$ and

$$X_1 := \{k \in \omega : \{k\} \Vdash A\}.$$

WMP: Consider α such that $\{k\} \Vdash \alpha(n) = 1$ iff k = n. No neighborhood of * forces α to be positive. To see that α is pseudo-positive, given β , consider

$$X_0:=\{k\in\omega:\{k\}\Vdash\exists n\ eta(n)=1\}$$
 and

$$X_1 := \{k \in \omega : \{k\} \Vdash \forall n \ \beta(n) = 0\}.$$

Theorem

Over IZF, WLEM does not imply WMP.

Proof.

To get DC and \neg WMP, iterate. Let T be $\omega^{<\omega}$, the nodes of the countably branching tree.

Theorem

Over IZF, WLEM does not imply WMP.

Proof.

To get DC and \neg WMP, iterate. Let T be $\omega^{<\omega}$, the nodes of the countably branching tree. A basic open set $\mathcal O$ contains a unique shortest node $\sigma_{\mathcal O}$, and, for all $\sigma\in\mathcal O,\{n\mid\sigma^\frown n\in\mathcal O\}\in\mathcal U.$

Theorem

Over IZF, WMP does not imply MP.

Proof.

Take the topological model over the rationals \mathbb{Q} .

For $\neg \mathsf{MP}$, let \mathcal{O}_n be a nested sequence of irrational intervals with intersection $\{r\}$. Let $\llbracket \alpha(n) = 0 \rrbracket = \mathcal{O}_n$.

Theorem

Over IZF, WMP does not imply MP.

Proof.

Take the topological model over the rationals \mathbb{Q} .

For $\neg MP$, let \mathcal{O}_n be a nested sequence of irrational intervals with intersection $\{r\}$. Let $\llbracket \alpha(n) = 0 \rrbracket = \mathcal{O}_n$.

For WMP, suppose

$$\mathcal{O} \Vdash \forall \beta (\neg \neg \exists n \ (\beta(n) = 1) \lor \neg \neg \exists n \ (\alpha(n) = 1 \land \beta(n) = 0)).$$

Theorem

Over IZF, WMP does not imply MP.

Proof.

Take the topological model over the rationals \mathbb{Q} .

For $\neg MP$, let \mathcal{O}_n be a nested sequence of irrational intervals with intersection $\{r\}$. Let $\llbracket \alpha(n) = 0 \rrbracket = \mathcal{O}_n$.

For WMP, suppose

$$\mathcal{O} \Vdash \forall \beta (\neg \neg \exists n \ (\beta(n) = 1) \lor \neg \neg \exists n \ (\alpha(n) = 1 \land \beta(n) = 0)).$$

For $r \in \mathcal{O}$, let \mathcal{O}_n decide $\alpha(n)$ $(r \in \mathcal{O})$. Worst case: $\mathcal{O}_n \Vdash \alpha(n) = 0$.

Theorem

Over IZF, WMP does not imply MP.

Proof.

Take the topological model over the rationals \mathbb{Q} .

For $\neg MP$, let \mathcal{O}_n be a nested sequence of irrational intervals with intersection $\{r\}$. Let $\llbracket \alpha(n) = 0 \rrbracket = \mathcal{O}_n$.

For WMP, suppose

$$\mathcal{O} \Vdash \forall \beta (\neg \neg \exists n \ (\beta(n) = 1) \lor \neg \neg \exists n \ (\alpha(n) = 1 \land \beta(n) = 0)).$$

For $r \in \mathcal{O}$, let \mathcal{O}_n decide $\alpha(n)$ $(r \in \mathcal{O})$. Worst case: $\mathcal{O}_n \Vdash \alpha(n) = 0$. WLOG r is the left endpoint of $\bigcap \mathcal{O}_n$. Let $\llbracket \beta(n) = 0 \rrbracket = \mathcal{O}_n \cup (r, \infty)$. Then β contradicts the hypothesis on \mathcal{O} .

WKL and WLPO

Theorem

Over IZF, WKL does not imply WLPO.

Proof.

 V_0 the standard V, V_1 ω -non-standard.

WKL and WLPO

Theorem

Over IZF, WKL does not imply WLPO.

Proof.

 V_0 the standard V, V_1 ω -non-standard. For WKL, if at \perp Tr is an infinite tree, consider a non-standard branch.

WKL and WLPO

Theorem

Over IZF, WKL does not imply WLPO.

Proof.

 V_0 the standard V, V_1 ω -non-standard. For WKL, if at \bot Tr is an infinite tree, consider a non-standard branch. For \neg WLPO, let $\alpha(n)$ be 0 for all standard n and 1 for some non-standard n.

References

- Matt Hendtlass and Robert Lubarsky, 'Separating Fragments of WLEM, LPO, and MP', to appear (hopefully), available at http://math.fau.edu/lubarsky/pubs.html.
- ▶ Hajime Ishihara, 'Constructive reverse mathematics: compactness properties', in L. Crosilla and P. Schuster, eds., From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics, Oxford University Press, p. 245–267, 2005.
- ► Ulrich Kohlenbach, Applied Proof Theory: Proof Interpretations and their Use in Mathematics, Springer, 2008.
- Mark Mandelkern, 'Constructively complete finite sets', Zeitschr. f. math. Logic und Grundlagen d. Math. 34, p. 97-103, 1988.
- ► Fred Richman, 'Polynomials and linear transformations', Linear Algebra Appl. 131, p. 131–137, 1990.