

Numerical Analysis

(ENME 602)

Spring 2021

Lecture 7

Dr. Hesham H. Ibrahim

Associate Professor, Mechatronics Department. hesham.hamed-ahmed@guc.edu.eg Office C7.04

Lecture 7

Linear Systems: Iterative Methods

- 7.1 Successive Over-Relaxation (SOR) Method
- 7.2 Compact Matrix Form
- 7.3 Optimum Relaxation Parameter
- 7.4 Convergence and Error Bounds

Example 1

$$2x_1 - x_2 = 0$$

$$-x_1 + 2x_2 - x_3 = 1$$

$$-x_2 + 2x_3 = 2$$

A matrix **A** is <u>diagonally dominated</u> if, in each row, the absolute value of the entry on the diagonal is greater than the sum of the absolute values of the other entries. More compactly, **A** is diagonally dominated if

$$\left|A_{ii}\right| > \sum_{i,i\neq i} \left|A_{ij}\right|$$
 for all i

Jacobi-iteration
$$x_1^k = \frac{1}{2}x_2^{k-1}$$

$$x_2^k = \frac{1}{2}(1 + x_1^{k-1} + x_3^{k-1})$$

$$x_3^k = \frac{1}{2}(2 + x_2^{k-1})$$

Exact Solution $x = (1, 2, 2)^t$

Example 1

$$2x_1 - x_2 = 0$$

$$-x_1 + 2x_2 - x_3 = 1$$

$$-x_2 + 2x_3 = 2$$

$$x_{1}^{k} = \frac{1}{2}x_{2}^{k-1}$$
Gauss-Seidel iteration $x_{2}^{k} = \frac{1}{2}(1 + x_{1}^{k} + x_{3}^{k-1})$

$$x_{3}^{k} = \frac{1}{2}(2 + x_{2}^{k})$$

$$x^{o} = (0, 0.5, 1)^{t}$$

$$x^{1} = (0.25, 1.125, 1.563)^{t}$$

$$x^{2} = (0.5625, 1.5625, 1.78125)^{t}$$

$$x = (1, 2, 2)^{t}$$
Exact Solution
$$x = (1, 2, 2)^{t}$$

Jacobi's iteration
$$\longrightarrow$$
 $x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1\\j\neq i}}^n \left(-a_{ij} x_j^{(k-1)} \right) + b_i \right], \quad \text{for } i = 1, 2, \dots, n$

- The components of $\mathbf{x}^{(k-1)}$ are used to compute all the components $x_i^{(k)}$ of $\mathbf{x}^{(k)}$.
- But, for i > 1, the components $x_1^{(k)}, \ldots, x_{i-1}^{(k)}$ of $\mathbf{x}^{(k)}$ have already been computed and are expected to be better approximations to the actual solutions x_1, \ldots, x_{i-1} than are $x_1^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$.

Gauss-Seidel iteration
$$\longrightarrow$$
 $x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij} x_j^{(k)}) - \sum_{j=i+1}^{n} (a_{ij} x_j^{(k-1)}) + b_i \right]$ for each $i = 1, 2, \dots, n$.

Jacobi's iteration
$$\longrightarrow$$
 $x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1\\j\neq i}}^n \left(-a_{ij} x_j^{(k-1)} \right) + b_i \right], \quad \text{for } i = 1, 2, \dots, n$

Gauss-Seidel iteration

for each i = 1, 2, ..., n.

SOR - iteration
$$\longrightarrow x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ij}} \left[b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} \right]$$

- ω is a relaxation parameter
- $0 < \omega < 2$ in order to guarantee convergence
- ω < 1 is called under-relaxed
- $\omega = 1$ reduces to Gauss-Seidel
- $\omega > 1$ is called Over-relaxed

Example 1

$$2x_1 - x_2 = 0$$

$$-x_1 + 2x_2 - x_3 = 1$$

$$-x_2 + 2x_3 = 2$$

Gauss-Seidel iteration
$$x_1^k = \frac{1}{2}x_2^{k-1}$$

$$x_2^k = \frac{1}{2}(1 + x_1^k + x_3^{k-1})$$

$$x_3^k = \frac{1}{2}(2 + x_2^k)$$

$$x_1^k = (1 - \omega)x_1^{k-1} + \omega\left(\frac{1}{2}x_2^{k-1}\right)$$
SOR iteration $x_2^k = (1 - \omega)x_2^{k-1} + \omega\left(\frac{1}{2}(1 + x_1^k + x_3^{k-1})\right)$

$$x_3^k = (1 - \omega)x_3^{k-1} + \omega\left(\frac{1}{2}(2 + x_2^k)\right)$$

Example 1

$$2x_1 - x_2 = 0$$

$$-x_1 + 2x_2 - x_3 = 1$$

$$-x_2 + 2x_3 = 2$$

$$x_1^k = (1 - \omega) x_1^{k-1} + \omega \left(\frac{1}{2} x_2^{k-1}\right)$$
SOR iteration
$$x_2^k = (1 - \omega) x_2^{k-1} + \omega \left(\frac{1}{2} \left(1 + x_1^k + x_3^{k-1}\right)\right)$$

$$x_3^k = (1 - \omega) x_3^{k-1} + \omega \left(\frac{1}{2} \left(2 + x_2^k\right)\right)$$

$$x^{o} = (0, 0.5, 1)^{t}$$

$$\omega = 1.2$$

$$x^{1} = (0.3, 1.28, 1.708)^{t}$$

$$x^{2} = (0.708, 1.829, 1.944)^{t}$$

Example 2

• The linear system $A\mathbf{x} = \mathbf{b}$ given by

$$4x_1 + 3x_2 = 24$$

 $3x_1 + 4x_2 - x_3 = 30$
 $-x_2 + 4x_3 = -24$

has the solution $(3, 4, -5)^t$.

• Compare the iterations from the Gauss-Seidel method and the SOR method with $\omega = 1.25$ using $\mathbf{x}^{(0)} = (1, 1, 1)^t$ for both methods.

Example 2

For each k = 1, 2, ..., the equations for the Gauss-Seidel method are

$$x_1^{(k)} = -0.75x_2^{(k-1)} + 6$$

 $x_2^{(k)} = -0.75x_1^{(k)} + 0.25x_3^{(k-1)} + 7.5$
 $x_3^{(k)} = 0.25x_2^{(k)} - 6$

and the equations for the SOR method with $\omega =$ 1.25 are

$$x_1^{(k)} = -0.25x_1^{(k-1)} - 0.9375x_2^{(k-1)} + 7.5$$

$$x_2^{(k)} = -0.9375x_1^{(k)} - 0.25x_2^{(k-1)} + 0.3125x_3^{(k-1)} + 9.375$$

$$x_3^{(k)} = 0.3125x_2^{(k)} - 0.25x_3^{(k-1)} - 7.5$$

Example 2

Gauss-Seidel Iterations										
k	0	1	2	3		7				
$X_1^{(k)}$	1	5.250000	3.1406250	3.0878906		3.0134110				
$X_2^{(k)}$	1	3.812500	3.8828125	3.9267578		3.9888241				
$X_3^{(k)}$	1	-5.046875	-5.0292969	-5.0183105		-5.0027940				

SOR Iterations ($\omega=$ 1.25)											
k	0	1	2	3		7					
$X_1^{(k)}$	1	6.312500	2.6223145	3.1333027		3.0000498					
$X_2^{(k)}$ $X_3^{(k)}$	1	3.5195313	3.9585266	4.0102646		4.0002586					
$X_3^{(k)}$	1	-6.6501465	-4.6004238	-5.0966863		-5.0003486					

For the iterates to be accurate to 7 decimal places,

- the Gauss-Seidel method requires 34 iterations,
- as opposed to 14 iterations for the SOR method with $\omega = 1.25$.

Jacobi's Method

 In general, iterative techniques for solving linear systems involve a process that converts the system Ax = b into an equivalent system of the form

$$\mathbf{x} = T\mathbf{x} + \mathbf{c}$$

for some fixed matrix T and vector c.

ullet After the initial vector $\mathbf{x}^{(0)}$ is selected, the sequence of approximate solution vectors is generated by computing

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$$

for each k = 1, 2, 3, ... (reminiscent of the fixed-point iteration for solving nonlinear equations).

Jacobi's Method

The Jacobi method can be written in the form

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$$

by splitting A into its diagonal and off-diagonal parts.

To see this, let D be the diagonal matrix whose diagonal entries are those of A, -L be the strictly lower-triangular part of A, and -U be the strictly upper-triangular part of A where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Jacobi's Method

We then write A = D - L - U where

$$D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix} \qquad L = \begin{bmatrix} 0 & \cdots & \cdots & 0 \\ -a_{21} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -a_{n1} & \cdots & -a_{n,n-1} & 0 \end{bmatrix}$$

$$L = \begin{bmatrix} 0 & \cdots & \cdots & 0 \\ -a_{21} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -a_{n1} & \cdots & -a_{n,n-1} & 0 \end{bmatrix}$$

and

$$U = \begin{bmatrix} \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & -a_{n-1,n} \\ 0 & \cdots & \cdots & 0 \end{bmatrix}$$

Jacobi's Method

The equation $A\mathbf{x} = \mathbf{b}$, or $(D - L - U)\mathbf{x} = \mathbf{b}$, is then transformed into

$$D\mathbf{x} = (L+U)\mathbf{x} + \mathbf{b}$$

and, if D^{-1} exists, that is, if $a_{ii} \neq 0$ for each i, then

$$x = D^{-1}(L + U)x + D^{-1}b$$

This results in the matrix form of the Jacobi iterative technique:

$$\mathbf{x}^{(k)} = D^{-1}(L+U)\mathbf{x}^{(k-1)} + D^{-1}\mathbf{b}, \quad k = 1, 2, \dots$$

Jacobi's Method

Introducing the notation $T_j = D^{-1}(L + U)$ and $\mathbf{c}_j = D^{-1}\mathbf{b}$ gives the Jacobi technique the form

$$\mathbf{x}^{(k)} = T_j \mathbf{x}^{(k-1)} + \mathbf{c}_j$$

In practice, this form is only used for theoretical purposes while

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1 \ j \neq i}}^n \left(-a_{ij} x_j^{(k-1)} \right) + b_i \right], \quad \text{for } i = 1, 2, \dots, n$$

is used in computation.

Example 3

Express the Jacobi iteration method for the linear system $A\mathbf{x} = \mathbf{b}$ given by

$$E_1: 10x_1 - x_2 + 2x_3 = 6$$

 $E_2: -x_1 + 11x_2 - x_3 + 3x_4 = 25$
 $E_3: 2x_1 - x_2 + 10x_3 - x_4 = -11$

$$E_4$$
: $3x_2 - x_3 + 8x_4 = 15$

in the form $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$.

Example 3

We saw earlier that the Jacobi method for this system has the form

$$x_{1} = \frac{1}{10}x_{2} - \frac{1}{5}x_{3} + \frac{3}{5}$$

$$x_{2} = \frac{1}{11}x_{1} + \frac{1}{11}x_{3} - \frac{3}{11}x_{4} + \frac{25}{11}$$

$$x_{3} = -\frac{1}{5}x_{1} + \frac{1}{10}x_{2} + \frac{1}{10}x_{4} - \frac{11}{10}$$

$$x_{4} = -\frac{3}{8}x_{2} + \frac{1}{8}x_{3} + \frac{15}{8}$$

Hence, we have

$$T = \begin{bmatrix} 0 & \frac{1}{10} & -\frac{1}{5} & 0\\ \frac{1}{11} & 0 & \frac{1}{11} & -\frac{3}{11}\\ -\frac{1}{5} & \frac{1}{10} & 0 & \frac{1}{10}\\ 0 & -\frac{3}{8} & \frac{1}{8} & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{c} = \begin{bmatrix} \frac{3}{5}\\ \frac{25}{11}\\ -\frac{11}{10}\\ \frac{15}{8} \end{bmatrix}$$

$$\mathbf{x}^{(k)} = D^{-1}(L+U)\mathbf{x}^{(k-1)} + D^{-1}\mathbf{b}, \quad k = 1, 2, \dots$$

Gauss-Seidel Method

Writing all *n* equations gives

$$a_{11}x_1^{(k)} = -a_{12}x_2^{(k-1)} - a_{13}x_3^{(k-1)} - \cdots - a_{1n}x_n^{(k-1)} + b_1$$

$$a_{21}x_1^{(k)} + a_{22}x_2^{(k)} = -a_{23}x_3^{(k-1)} - \cdots - a_{2n}x_n^{(k-1)} + b_2$$

$$\vdots$$

$$a_{n1}x_1^{(k)} + a_{n2}x_2^{(k)} + \cdots + a_{nn}x_n^{(k)} = b_n$$

With the definitions of D, L, and U given previously, we have the Gauss-Seidel method represented by

$$(D-L)\mathbf{x}^{(k)}=U\mathbf{x}^{(k-1)}+\mathbf{b}$$

Gauss-Seidel Method

$$(D-L)\mathbf{x}^{(k)}=U\mathbf{x}^{(k-1)}+\mathbf{b}$$

Re-Writing the Equations (Cont'd)

Solving for $\mathbf{x}^{(k)}$ finally gives

$$\mathbf{x}^{(k)} = (D-L)^{-1}U\mathbf{x}^{(k-1)} + (D-L)^{-1}\mathbf{b}$$
, for each $k = 1, 2, ...$

Letting $T_g = (D - L)^{-1}U$ and $\mathbf{c}_g = (D - L)^{-1}\mathbf{b}$, gives the Gauss-Seidel technique the form

$$\mathbf{x}^{(k)} = T_g \mathbf{x}^{(k-1)} + \mathbf{c}_g$$

For the lower-triangular matrix D-L to be nonsingular, it is necessary and sufficient that $a_{ii} \neq 0$, for each i = 1, 2, ..., n.

SOR Method

The SOR Method

$$\mathbf{x}^{(k)} = (D - \omega L)^{-1} [(1 - \omega)D + \omega U] \mathbf{x}^{(k-1)} + \omega (D - \omega L)^{-1} \mathbf{b}$$

Letting

$$T_{\omega} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]$$

and
$$\mathbf{c}_{\omega} = \omega (D - \omega L)^{-1} \mathbf{b}$$

gives the SOR technique the form

$$\mathbf{x}^{(k)} = T_{\omega}\mathbf{x}^{(k-1)} + \mathbf{c}_{\omega}$$

- An obvious question to ask is how the appropriate value of ω is chosen when the SOR method is used?
- Although no complete answer to this question is known for the general n × n linear system, the following results can be used in certain important situations.

Theorem (Kahan)

If $a_{ii} \neq 0$, for each i = 1, 2, ..., n, then $\rho(T_{\omega}) \geq |\omega - 1|$. This implies that the SOR method can converge only if $0 < \omega < 2$.

Theorem (Ostrowski-Reich)

If A is a positive definite matrix and $0 < \omega < 2$, then the SOR method converges for any choice of initial approximate vector $\mathbf{x}^{(0)}$.

Theorem (Kahan)

If $a_{ii} \neq 0$, for each i = 1, 2, ..., n, then $\rho(T_{\omega}) \geq |\omega - 1|$. This implies that the SOR method can converge only if $0 < \omega < 2$.

Theorem (Ostrowski-Reich)

If A is a positive definite matrix and $0 < \omega < 2$, then the SOR method converges for any choice of initial approximate vector $\mathbf{x}^{(0)}$.

Theorem

If A is positive definite and tridiagonal, then $\rho(T_g) = [\rho(T_j)]^2 < 1$, and the optimal choice of ω for the SOR method is

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_j)]^2}}$$

With this choice of ω , we have $\rho(T_{\omega}) = \omega - 1$.

Example 4

Find the optimal choice of ω for the SOR method for the matrix

$$A = \left[\begin{array}{ccc} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{array} \right]$$

- This matrix is clearly tridiagonal, so we can apply the result in the SOR theorem if we can also show that it is positive definite.
- Because the matrix is symmetric, the theory tells us that it is positive definite if and only if all its leading principle submatrices has a positive determinant.
- This is easily seen to be the case because

$$det(A) = 24$$
, $det\left(\begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix}\right) = 7$ and $det([4]) = 4$

Example 4

Find the optimal choice of ω for the SOR method for the matrix

$$A = \left[\begin{array}{ccc} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{array} \right]$$

We compute

$$T_{j} = D^{-1}(L+U)$$

$$= \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 0 & -3 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -0.75 & 0 \\ -0.75 & 0 & 0.25 \\ 0 & 0.25 & 0 \end{bmatrix}$$

so that

$$T_{j} - \lambda I = \begin{bmatrix} -\lambda & -0.75 & 0 \\ -0.75 & -\lambda & 0.25 \\ 0 & 0.25 & -\lambda \end{bmatrix}$$

Example 4

Therefore

$$\det(T_j - \lambda I) = \begin{vmatrix} -\lambda & -0.75 & 0 \\ -0.75 & -\lambda & 0.25 \\ 0 & 0.25 & -\lambda \end{vmatrix} = -\lambda(\lambda^2 - 0.625)$$

Thus

$$\rho(T_j) = \sqrt{0.625}$$

and

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_j)]^2}} = \frac{2}{1 + \sqrt{1 - 0.625}} \approx 1.24.$$

Theorem

For any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$$
, for each $k \ge 1$

converges to the unique solution of

$$\mathbf{x} = T\mathbf{x} + \mathbf{c}$$

if and only if $\rho(T) < 1$.

Corollary

||T|| < 1 for any natural matrix norm and \mathbf{c} is a given vector, then the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$$

converges, for any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, to a vector $\mathbf{x} \in \mathbb{R}^n$, with $\mathbf{x} = T\mathbf{x} + \mathbf{c}$, and the following error bounds hold:

(i)
$$\|\mathbf{x} - \mathbf{x}^{(k)}\| \le \|T\|^k \|\mathbf{x}^{(0)} - \mathbf{x}\|$$

(ii)
$$\|\mathbf{x} - \mathbf{x}^{(k)}\| \le \frac{\|T\|^k}{1 - \|T\|} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|$$

Using the Matrix Formulations

We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written

$$\mathbf{x}^{(k)} = T_j \mathbf{x}^{(k-1)} + \mathbf{c}_j$$
 and $\mathbf{x}^{(k)} = T_g \mathbf{x}^{(k-1)} + \mathbf{c}_g$

using the matrices

$$T_j = D^{-1}(L + U)$$
 and $T_g = (D - L)^{-1}U$

respectively. If $\rho(T_j)$ or $\rho(T_g)$ is less than 1, then the corresponding sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ will converge to the solution \mathbf{x} of $A\mathbf{x} = \mathbf{b}$.

The following are easily verified sufficiency conditions for convergence of the Jacobi and Gauss-Seidel methods.

Theorem

If A is strictly diagonally dominant, then for any choice of $\mathbf{x}^{(0)}$, both the Jacobi and Gauss-Seidel methods give sequences $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ that converge to the unique solution of $A\mathbf{x} = \mathbf{b}$.

Thank You

"Numerical Differentiation and Integration"

