A Farewell to Structural Rigidity Evolving the Starting State of Autoencoders

Christopher Ross Jonathan Brant Zak Roessler

October 28, 2015

Introduction

- Image Processing/Classification
 - Each pixel is a separate input
 - 2 ANN inputs grows exponentially as resolution increases
 - Method of dimensionality reduction needed
- Autoencoders learns compressed representation
- Traditionally, autoencoder hidden layer topology has been hand-crafted
- Our approach evolves autoencoder structure that can then be optimized
 - Hidden layer of autoencoders evolved (using HyperNEAT)
 - Backpropagation optimizes evolved autoencoder

Autoencoders

- Autoencoders attempt to extract most salient features from visible layer
- Typical layers include:
 - Input (visible) layer where uncompressed features are received
 - 2 Hidden layer where compressed features are stored
 - Output layer where reconstruction error is calculated
- Most often trained using backpropagation with the intent of minimizing reconstruction error

HyperNEAT

- Indirect encoding of HyperNEAT through CPPNs substantially reduces search space
 - We're no longer looking at each pixel individually
- Substrate configuration hand-designed to capture domain geometry
 - State-space sandwich substrate ideal for visual mapping
- Ability to scale with little-to-no loss of function ideal for image processing at varying resolutions

Evolution of Autoencoders

- Two-phase process:
 - HyperNEAT evolves initial autoencoder
 - ② Backpropagation fine tunes autoencoder weights
- Results will be analyzed:
 - Quantitatively reduction of reconstruction error
 - Qualitatively how closely does reconstructed image resemble the original

Substrate Configuration

- Three-tiered state-space sandwich substrate
 - Input sheet all points in 2-dimensional image (size varies based on image resolution)
 - Widden sheet compressed feature vector
 - Output sheet reconstructed image at original resolution

Minimal CPPN

- CPPN inputs are cartesian coordinates between source and target sheet
 - X_1 and Y_1 is point on source sheet
 - ullet X_2 and Y_2 is point on target sheet
- CPPN queries the substrate twice:
 - Once for connection weight and bias weight between input and hidden sheet
 - Once for connection weight and bias weight between hidden and output sheet

Current State

- Standard NEAT initially attempted
 - Slow evolution due to massive search space
 - Qualitatively poor image reconstruction
 - Reconstruction reached 90% accuracy, but only because most pixels were black
- HyperNEAT results?