

APR 23 2007

Application No.: 10/509,354

Docket No.: BTW-087US

AMENDMENTS TO THE CLAIMS

1. (original) A modulator device formed of a semiconductor material which utilises the electro-optic effect to achieve a change in the refractive index of the material (Δn) under the influence of an applied field, F , in accordance with the equation:

$$\Delta n = -\frac{1}{2} n_0^3 [rF + sF^2] = \Delta n_L + \Delta n_Q$$

where n_0 is the refractive index of the material at zero field, and Δn_L and Δn_Q are the linear and quadratic contributions to the change in refractive index respectively, r is the linear electro-optic coefficient of the material and s is the quadratic electro-optic coefficient of the material incorporating a plurality of quantum dots and operating in a wavelength region where the value of rF is sufficiently greater than the value of sF^2 so as to operate with the dominant effect on Δn being contributed by the linear effect.

2. (original) A device as claimed in claim 1 in which the band-gap wavelength λ_g of the quantum dots is shorter than the wavelength of the light modulated by the modulator.

3. (original) A device as claimed in claim 2 in which the band-gap wavelength λ_g of the quantum dots is typically 100 nm shorter than the wavelength of the light modulated by the modulator.

4. (currently amended) A device as claimed in claim 1 further comprising An integrated optical device including a path carrying an incoming optical signal of a wavelength λ , means for directing at least part of the signal via a modulation region, and a path for an optical signal;

the modulation region being formed of a semiconducting material incorporating a plurality of quantum dots and exhibiting an electro-optic response thereby to permit variation of the refractive index of at least part of the modulation region;

the wherein a band-gap of the semiconducting material incorporating the quantum dots being such that the corresponding wavelength λ_g is less than λ .

5. (original) An integrated optical device according to claim 4 in which λ_g is less than 1400nm.

Application No.: 10/509,354

Docket No.: BTW-087US

6. (original) An integrated optical device according to claim 4 in which λ_g is less than 90% of λ .

7. (original) An integrated optical device according to claim 4 in which the difference between λ_g and λ is greater than 100nm.

8. (currently amended) A device as claimed in claim 1 further comprising An integrated optical device including a path carrying an incoming optical signal of a range of wavelengths between λ_1 and λ_2 , means for directing at least part of the signal via a modulation region, and a path for an optical signal;

the modulation region being formed of a semiconducting material incorporating a plurality of quantum dots and exhibiting an electro-optic response thereby to permit variation of the refractive index of at least part of the modulation region;

the wherein a band-gap of the semiconducting material incorporating the quantum dots being is such that the corresponding wavelength λ_g is less than both λ_1 and λ_2 by an amount sufficient that the change in refractive index at λ_1 and λ_2 is substantially the same.

9. (original) A device according to claim 8 in which the difference in refractive index at λ_1 and λ_2 is less than 0.1% per nanometer.

10. (previously presented) A device according to claim 8 in which the difference between λ_1 and λ_2 is greater than 1nm.

11. (previously presented) A device as claimed in claim 1 in which the modulator or modulation region is a Mach-Zehnder Interferometer for modulating a beam of laser light, the modulator including a pair of separate waveguides through which the laser light is passed after splitting in a splitting zone and after which the light is recombined in a merge zone, there being provided opposed pairs of electrodes electrically located so as to be able to effect optical

Application No.: 10/509,354

Docket No.: BTW-087US

changes within the material of the waveguides, the waveguides being formed of the semiconductor material.

12. (original) A device as claimed in claim 11 in which the Mach-Zehnder Interferometer is a push-pull modulator.

13. (previously presented) A device as claimed in claim 1 in which the semiconductor material is a III-V semiconductor material.

14. (original) A device as claimed in claim 13 in which the III-V semiconductor material is based on a system selected from the group GaAs, InAs based materials and InP based materials.

15. (previously presented) A device as claimed in claim 1 in which the quantum dots are self-assembled quantum dots.

16. (previously presented) A device as claimed in claim 1 in which the quantum dots are formed of InAs based material in host GaAs based semiconductor material.

17. (previously presented) A device as claimed in claim 1 in which the quantum dots are formed of InGaAs based material in host GaAs based semiconductor material.

18. (previously presented) A device as claimed in claim 1 in which the quantum dots are formed of InAs based material in host $In_xGa_{1-x}As_yP_{1-y}$ based semiconductor material.

19. (previously presented) A device as claimed in claim 1 in which the quantum dots are formed of InGaAs based material in host $In_xGa_{1-x}As_yP_{1-y}$ based semiconductor material.

20. (previously presented) A device as claimed in claim 1 in which the quantum dots are formed by a chemical etching process.