

博士学位论文

半空间弹性波反散射问题

作者姓名:_		
指导教师:_	陈志明 研究员	
	中国科学院 数学与系统科学研究员	
学位类别 : _	理学博士	
学科专业:_	计算数学	
培养单位:	中国科学院 数学与系统科学研究员	

2019年6月

Thesis Template

A thesis submitted to the
University of Chinese Academy of Sciences
in partial fulfillment of the requirement
for the degree of
Doctor of Philosophy
in Computational Mathematics

By

Zhou Shiqi

Supervisor: Professor Chen Zhiming

Academy of Mathematics and Systems Science
Chinese Academy of Sciences

June, 2019

中国科学院大学 学位论文原创性声明

本人郑重声明: 所呈交的学位论文是本人在导师的指导下独立进行研究工作所取得的成果。尽我所知,除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确方式标明或致谢。本人完全意识到本声明的法律结果由本人承担。

作者签名:

日期:

中国科学院大学 学位论文授权使用声明

本人完全了解并同意遵守中国科学院大学有关保存和使用学位论文的规定,即中国科学院大学有权保留送交学位论文的副本,允许该论文被查阅,可以按照学术研究公开原则和保护知识产权的原则公布该论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存、汇编本学位论文。

涉密及延迟公开的学位论文在解密或延迟期后适用本声明。

作者签名: 导师签名:

日期: 日期:

摘要

本文是中国科学院大学学位论文模板 ucasthesis 的使用说明文档。主要内容为介绍 LATEX 文档类 ucasthesis 的用法,以及如何使用 LATEX 快速高效地撰写学位论文。

关键词: 中国科学院大学,学位论文, $ext{LME}X$ 模板

Abstract

This paper is a help documentation for the LaTeX class ucasthesis, which is a thesis template for the University of Chinese Academy of Sciences. The main content is about how to use the ucasthesis, as well as how to write thesis efficiently by using LaTeX.

Keywords: University of Chinese Academy of Sciences (UCAS), Thesis, LATEX Template

目 录

第1章 引言	1
1.1 研究背景	1
1.2 弹性波半空间散射与逆散射问题 · · · · · · · · · · · · · · · · · · ·	1
1.3 逆时偏移法简介	1
1.4 本文的研究成果 · · · · · · · · · · · · · · · · · · ·	1
第 2 章 基础知识 · · · · · · · · · · · · · · · · · · ·	3
第3章 半空间中的弹性反散射问题的直接成像方法 ·······	5
3.1 半空间弹性波方向的 Green 函数 · · · · · · · · · · · · · · · · · ·	5
3.1.1 Neumann Green 函数 ······	5
3.1.2 Dirichlet Green 函数 · · · · · · · · · · · · · · · · · ·	19
3.2 正散射问题的适定性 · · · · · · · · · · · · · · · · · · ·	19
第 4 章 逆时偏移算法 · · · · · · · · · · · · · · · · · · ·	21
4.1 数值算例	21
4.2 散射系数与 Kirchhoff 逼近······	21
$4.2.1$ 反射面为 x_1 轴 \cdots	21
4.2.2 反射面为任意平面 · · · · · · · · · · · · · · · · · · ·	22
4.2.3 数值算例 ······	24
附录 A 中国科学院大学学位论文撰写要求·····	27
A.1 论文无附录者无需附录部分 ······	27
A.2 测试公式编号 ······	27
参考文献 · · · · · · · · · · · · · · · · · · ·	29
作者简历及攻读学位期间发表的学术论文与研究成果 · · · · · · · ·	31
	33

图形列表

3.1	积分路径 L 和 $L^{\varepsilon}_{-\phi}$ · · · · · · · · · · · · · · · · · · ·	14
4.1	The shape of the obstacles. · · · · · · · · · · · · · · · · · · ·	25

表格列表

符号列表

字符

Symbol	Description	Unit
R	the gas constant	$m^2\cdot s^{-2}\cdot K^{-1}$
C_v	specific heat capacity at constant volume	$m^2\cdot s^{-2}\cdot K^{-1}$
C_p	specific heat capacity at constant pressure	$m^2\cdot s^{-2}\cdot K^{-1}$
E	specific total energy	$m^2\cdot s^{-2}$
e	specific internal energy	$m^2\cdot s^{-2}$
h_T	specific total enthalpy	$m^2\cdot s^{-2}$
h	specific enthalpy	$m^2\cdot s^{-2}$
k	thermal conductivity	$kg\cdot m\cdot s^{-3}\cdot K^{-1}$
S_{ij}	deviatoric stress tensor	$kg\cdot m^{-1}\cdot s^{-2}$
$ au_{ij}$	viscous stress tensor	$kg\cdot m^{-1}\cdot s^{-2}$
δ_{ij}	Kronecker tensor	1
I_{ij}	identity tensor	1

算子

Symbol	Description
Δ	difference
∇	gradient operator
δ^{\pm}	upwind-biased interpolation scheme

缩写

CFD	Computational Fluid Dynamics
CFL	Courant-Friedrichs-Lewy
EOS	Equation of State
JWL	Jones-Wilkins-Lee
WENO	Weighted Essentially Non-oscillatory
ZND	Zel'dovich-von Neumann-Doering

第1章 引言

- 1.1 研究背景
- 1.2 弹性波半空间散射与逆散射问题
- 1.3 逆时偏移法简介
- 1.4 本文的研究成果

第2章 基础知识

定义 2.0.1 Cauchy 主值定义

第3章 半空间中的弹性反散射问题的直接成像方法

3.1 半空间弹性波方向的 Green 函数

3.1.1 Neumann Green 函数

设源点 $y \in \mathbb{R}^2_+$, 引入半空间弹性波 Neumann 零边界格林函数 $\mathbb{N}(x, y)$,对任意向量 $q \in \mathbb{R}^2$,其满足如下方程:

$$\Delta_e[\mathbb{N}(x;y)q] + \omega^2[\mathbb{N}(x,y)q] = -\delta_y(x)q \text{ in } \mathbb{R}^2_+, \tag{3.1}$$

$$\sigma(\mathbb{N}(x,y)q)e_2 = 0 \text{ on } \Gamma_0, \tag{3.2}$$

其中 (3.2) 代表该 green 函数满足半空间自由边界条件, $\delta_y(x)$ 代表位于点 y 的 Dirac 源。由于半空间的特性,我们将利用对 x_1 变量作 Fourier 变换的方式来推导 Green 函数,令

$$\hat{\mathbb{N}}(\xi, x_2; y_2) = \int_{\mathbb{R}} \mathbb{N}(x_1, x_2; y) e^{-\mathbf{i}(x_1 - y_1)\xi} dx_1, \quad \forall \xi \in \mathbb{C},$$
(3.3)

记 $\mathbb{G}(x,y)$ [1] 为弹性波方程的基本解,且对其 x_1 变量做 Fourier 变换后有 $\mathbb{G}(\xi,x_2;y_2) = \mathbb{G}_s(\xi,x_2;y_2) + \mathbb{G}_p(\xi,x_2;y_2)$ 及

$$\hat{\mathbb{G}}_{s}(\xi, x_{2}; y_{2}) = \frac{\mathbf{i}}{2\omega^{2}} \begin{pmatrix} \mu_{s} & -\xi \frac{x_{2} - y_{2}}{|x_{2} - y_{2}|} \\ -\xi \frac{x_{2} - y_{2}}{|x_{2} - y_{2}|} & \frac{\xi^{2}}{\mu_{s}} \end{pmatrix} e^{\mathbf{i}\mu_{s}|x_{2} - y_{2}|}, \tag{3.4}$$

$$\hat{\mathbb{G}}_{p}(\xi, x_{2}; y_{2}) = \frac{\mathbf{i}}{2\omega^{2}} \begin{pmatrix} \frac{\xi^{2}}{\mu_{p}} & \xi \frac{x_{2} - y_{2}}{|x_{2} - y_{2}|} \\ \xi \frac{x_{2} - y_{2}}{|x_{2} - y_{2}|} & \mu_{p} \end{pmatrix} e^{\mathbf{i}\mu_{p}|x_{2} - y_{2}|}.$$
(3.5)

这里 $\mu_{\alpha} = (k_{\alpha}^2 - \xi^2)^{1/2}$ 且有 $\alpha = s, p, k_p = \omega/\sqrt{\lambda + 2\mu}, k_s = \omega/\sqrt{\mu}$ 为 p 波和 s 波的波数。为了利用基本解 $\mathbb{G}(x, y)$ 的特性,我们令:

$$\mathbb{N}_c(x, y) = \mathbb{N}(x, y) - (\mathbb{G}(x, y) - \mathbb{G}(x, y'))$$

其中 $y' = (y_1, -y_2)$ 为 y 关于 x_1 轴的镜像点。于是由式 (3.1-3.2),得 $\mathbb{N}_c(x, y)$ 满足如下方程:

$$\Delta_e[\mathbb{N}_c(x;y)q] + \omega^2[\mathbb{N}_c(x,y)q] = 0 \text{ in } \mathbb{R}_+^2, \tag{3.6}$$

$$\sigma(\mathbb{N}_c(x,y)q)e_2 = -\sigma(\mathbb{G}(x,y) - \mathbb{G}(x,y')) \text{ on } \Gamma_0,$$
(3.7)

注 3.1.1 在全篇论文中,我们假设对于任意的 $z \in \mathbb{C} \setminus \{0\}$, $z^{1/2}$ 是多值函数 \sqrt{z} 的如下解析分支: $\text{Im}(z^{1/2}) \geq 0$,这对应于在复平面取右半实轴为割支线。则对于 $z = z_1 + \mathbf{i} z_2, z_1, z_2 \in \mathbb{R}$,

$$z^{1/2} = \operatorname{sgn}(z_2) \sqrt{\frac{|z| + z_1}{2}} + \mathbf{i} \sqrt{\frac{|z| - z_1}{2}}, \quad \forall z \in \mathbb{C} \backslash \bar{\mathbb{R}}_+.$$
 (3.8)

当 z 位于右半实轴的上沿或是下沿时,取 $z^{1/2}$ 为 $\varepsilon \to 0^+$ 时 $(z+\mathbf{i}\varepsilon)^{1/2}$ 或是 $(z-\mathbf{i}\varepsilon)^{1/2}$ 的极限即可。

通过对式 (3.6-3.7) 两边作 Fourier 变换,我们得到关于变量 x_2 的常系数常微分方程组:

$$\mu \frac{d^2(e_1^T \hat{\mathbb{N}}_c q)}{dx_2^2} + \mathbf{i}(\lambda + \mu)\xi \frac{d(e_2^T \hat{\mathbb{N}}_c q)}{dx_2} + (\omega^2 - (\lambda + 2\mu)\xi^2)(e_1^T \hat{\mathbb{N}}_c q) = 0$$
 (3.9)

$$(\lambda + 2\mu) \frac{d^2(e_2^T \hat{\mathbb{N}}_c q)}{dx_2^2} + \mathbf{i}(\lambda + \mu) \xi \frac{d(e_1^T \hat{\mathbb{N}}_c q)}{dx_2} + (\omega^2 - \mu \xi^2)(e_2^T \hat{\mathbb{N}}_c q) = 0$$
 (3.10)

由于我们需要 $\mathbb{N}(x,y)$ 为外行波解,因此方程 (3.9) 的解为如下两个向量:

$$\left[egin{array}{c} \mathbf{i}\mu_s \ -\mathbf{i}\xi \end{array}
ight]e^{\mathbf{i}\mu_s x_2}\,, \quad \left[egin{array}{c} \mathbf{i}\xi \ \mathbf{i}\mu_p \end{array}
ight]e^{\mathbf{i}\mu_p x_2}$$

的线性组合。利用边界条件(3.10)及待定系数法,我们得到:

$$\hat{\mathbb{N}}_c(\xi, x_2; y_2) = \frac{\mathbf{i}}{\omega^2 \delta(\xi)} \sum_{\alpha, \beta = p, s} \mathbb{A}_{\alpha\beta}(\xi) e^{\mathbf{i}(\mu_\alpha x_2 + \mu_\beta y_2)},\tag{3.11}$$

其中 $\varphi(\xi)=k_s^2-2\xi^2, \delta(\xi)=\varphi(\xi)^2+4\xi^2\mu_s\mu_p$ (Rayleigh 方程 [2]), 以及

$$\mathbb{A}_{ss}(\xi) = \begin{pmatrix} \varphi^2 \mu_s & -4\xi^3 \mu_s \mu_p \\ -\xi \varphi^2 & 4\xi^4 \mu_p \end{pmatrix}, \quad \mathbb{A}_{sp}(\xi) = \begin{pmatrix} 2\xi^2 \varphi \mu_s & -2\xi \varphi \mu_s \mu_p \\ -2\xi^3 \varphi & 2\xi^2 \varphi \mu_p \end{pmatrix}, \\
\mathbb{A}_{ps}(\xi) = \begin{pmatrix} 2\xi^2 \varphi \mu_s & 2\xi^3 \varphi \\ 2\xi \varphi \mu_s \mu_p & 2\xi^2 \varphi \mu_p \end{pmatrix}, \quad \mathbb{A}_{pp}(\xi) = \begin{pmatrix} 4\xi^4 \mu_s & \xi \varphi^2 \\ 4\xi^3 \mu_s \mu_p & \varphi^2 \mu_p \end{pmatrix}.$$

按照惯例,原本我们只要对 $\hat{\mathbb{N}}(\xi, x_2; y_2)$ 进行 Fourier 逆变换就可以得到所需要的 Neumann Green 函数. 然而,如下面的引理所述,函数 $\delta(\xi)$ 在实轴上存在零点 [2, 3],此时我们并不可以对其直接进行 Fourier 逆变换.

引理 3.1.1 Rayleigh 方程 $\delta(\xi) = 0$ 在复平面 \mathbb{C} 中有且仅有两个根且记为 $\pm k_R$, 其中 k_R 满足 $k_R > k_s$ 。

证明. 由前文注记中的 (3.8), 易得 $\delta(\xi)$ 的割支线为 $C_l = \{\xi = \xi_1 + \mathbf{i}\xi_2 \in \mathbb{C} : \xi_1 \in [-k_s, -k_p], \xi_2 = 0\}$ 和 $C_r = \{\xi = \xi_1 + \mathbf{i}\xi_2 \in \mathbb{C} : \xi_1 \in [k_p, k_s], \xi_2 = 0\}$. 于是 $\delta(\xi)$ 在除 C_l 和 C_r 以外的区域解析。而在割支线上, $\delta(\xi)$ 可表示成:

$$\delta(\xi) = (k_s^2 - 2\xi^2)^2 + \mathbf{i} \left[4\xi^2 (k_s^2 - \xi^2)^{1/2} (\xi^2 - k_p^2)^{1/2} \right], \ \forall \xi \in C_l \cup C_r.$$

显然, $\delta(\xi)$ 在 $C_l \cup C_r$ 上没有零点。又因为 $\delta(\pm k_s) > 0$, $\delta(\pm \infty) < 0$,由函数的连续性得 $\delta(\xi)$ 在区间 $(-\infty, -k_s) \cup (k_s, \infty)$ 上至少存在两个零点,且由于其对称性,可以记为 $\pm k_R$ 。下面,我们将 C_l , C_r 的上下沿分别记为 C_t^{\pm} , C_r^{\pm} 。

接下去,利用幅角原理 [4] 可以说明 $\delta(\xi)$ 在整个复平面只存在两个零点。令 Γ_R 为半径 R 充分大的圆. 我们考虑 \mathcal{D} 是被周线 Γ_R , Γ_l 以及 Γ_r 包围的区域。其中 Γ_l 代表沿着 C_l^+ 从 $-k_s$ 到 $-k_p$ 及然后沿着 C_l^- 从 $-k_p$ 到 $-k_s$;相应地, Γ_r 代表沿着 C_r^+ 从 k_p 到 k_s 及然后沿着 C_r^- 从 k_s 到 k_p 。 因为 $\delta(\xi)$ 在整个整个复平面上没有极点,我们可以通过幅角原理来计算其在区域 \mathcal{D} 中的零点个数 Z:

$$Z = \frac{1}{2\pi \mathbf{i}} \int_{C} \frac{\delta'(\xi)}{\delta(\xi)} d\xi. \tag{3.12}$$

由式子 (3.8) 中的定义, 我们可以得出当 $\xi \in C_r^{\pm}$ 时 $\delta(\xi) = \delta^{\pm}(\xi)$, 其中

$$\delta^{\pm}(\xi) = (k_s^2 - 2\xi^2)^2 \mp \mathbf{i} \left[4\xi^2 (k_s^2 - \xi^2)^{1/2} (\xi^2 - k_p^2)^{1/2} \right] := f_1(\xi) \mp \mathbf{i} f_2(\xi).$$

于是可以有如下计算

$$\int_{\Gamma_r} \frac{\delta'(\xi)}{\delta(\xi)} d\xi = \int_{k_p}^{k_s} \left(\frac{\delta'_+(\xi)}{\delta_+(\xi)} - \frac{\delta'_-(\xi)}{\delta_-(\xi)} \right) d\xi$$

$$= 2\mathbf{i} \int_{k_p}^{k_s} \frac{f'_1(\xi) f_2(\xi) - f_1(\xi) f'_2(\xi)}{f_1^2(\xi) + f_2^2(\xi)} d\xi$$

$$= -2\mathbf{i} \arctan \frac{f_2(\xi)}{f_1(\xi)} \bigg|_{k_p}^{k_s} = 0.$$

相似地, 在 $\xi \in C_r^{\pm}$ 时也有 $\int_{\Gamma_l} \frac{\delta'(\xi)}{\delta(\xi)} d\xi = 0$ 。此外, 当 $|\xi|$ 足够大, 容易得到 $\delta(\xi)$ 的渐近形式 $\delta(\xi) = -2(k_s^2 - k_p^2)\xi^2 + O(1)$ 及。于是当 $R \gg 1$,可以计算得到 $\int_{\Gamma_R} \frac{\delta'(\xi)}{\delta(\xi)} d\xi = 4\pi \mathbf{i}$ 。综上所述,我们得出 Z = 2 。于是该引理得到证明。

为了克服上述问题,我们先假设半空间的介质是耗散的,然后研究其相应的 Green 函数,最后通过极限吸收原理得到 $\mathbb{N}(x,y)$ 。记 $\mathbb{N}_{\omega(1+\mathbf{i}\varepsilon)}(x,y)$ 为满足将式子 (3.1) 中将实圆频率 ω 替换为复圆频率 $\omega(1+\mathbf{i}\varepsilon)$ 后相应方程的 Green 函数。同样

的,对 $\mathbb{N}_{\omega(1+\mathbf{i}\varepsilon)}(x,y)$ 关于 x_2 变量的 Fourier 变换,得到 $\hat{\mathbb{N}}_{\omega(1+\mathbf{i}\varepsilon)}(\xi,x_2;y_2)$,且通过相同的推导,其表达式与将 (3.11) 中将 k_s,k_p 替换为 $k_s(1+\mathbf{i}\varepsilon),k_p(1+\mathbf{i}\varepsilon)$ 后相应的式子一致。下面的两个引理告诉我们, $\hat{\mathbb{N}}_{\omega(1+\mathbf{i}\varepsilon)}(\xi,x_2;y_2)$ 的零点所在何处。

注 3.1.2 通篇全文中, 我们都假设耗散介质所添加的 $i\varepsilon$ 是足够小的。

令 $\delta_{\omega(1+i\varepsilon)}(\xi)$ 为将 $\delta(\xi)$ 中的 k_p , k_s 替换成 $k_s(1+i\varepsilon)$, $k_p(1+i\varepsilon)$ 后相应的复 Rayleigh 方程。为了展现 $\delta_{\omega(1+i\varepsilon)}(\xi)$ 的零点与 $\delta(\xi)$ 的零点的关系,我们先来刻画在何种情况下可以结合或是分离根式 $z^{1/2}$ 。

引理 3.1.2 令 $0 < \varepsilon < 1$,假设 $z = Re^{i\phi}$, $(1 + i\varepsilon) = re^{i\psi}$ 其中有 $0 \le \phi < 2\pi$, $0 < \psi < \pi/2$ 和 R, r > 0. 于是等式

$$z^{1/2} = (1 + \mathbf{i}\boldsymbol{\varepsilon})(\frac{z}{1 + \mathbf{i}\boldsymbol{\varepsilon}^2})^{1/2}$$
(3.13)

当且仅当 $2\psi \leq \phi < 2\pi$

证明. 令 $z_{\varepsilon} = z/(1+\mathbf{i}\varepsilon)^2 := R_{\varepsilon}e^{\mathbf{i}\phi_{\varepsilon}}$, 其中 $0 \le \phi_{\varepsilon} < 2\pi$ 。于是,易得当 $2\psi \le \phi < 2\pi$ 时,成立 $\phi_{\varepsilon} = \phi - 2\psi$, $R_{\varepsilon} = R/r$,则有

$$z^{1/2} = \sqrt{R}e^{\mathbf{i}\phi/2} = \sqrt{R/r}\sqrt{r}e^{\mathbf{i}(\phi/2-\psi)+\mathbf{i}\psi} = \sqrt{R_\varepsilon}\sqrt{r}e^{\mathbf{i}(\phi_\varepsilon)+\mathbf{i}\psi} = (1+\mathbf{i}\varepsilon)z_\varepsilon^{1/2}$$

同样地, 当 $0 \le \phi < 2\psi$ 时, 成立 $\phi_{\varepsilon} = \phi - 2\psi + 2\pi$ 则有 $z^{1/2} = -(1 + \mathbf{i}\varepsilon)z_{\varepsilon}^{1/2}$ 。引理得证

下面的引理告诉我们, $\hat{\mathbb{N}}_{\omega(1+\mathbf{i}\varepsilon)}(\xi, x_2; y_2)$ 的零点所在何处。

引理 3.1.3 复 Rayleigh 方程 $\delta_{\omega(1+i\varepsilon)}(\xi)$ 在 $\mathbb{C}\setminus\Omega$ 中有且仅有两个根且为 $\pm k_R(1+i\varepsilon)$ 。 其中集合 Ω 为

$$\Omega := \{ \xi_1 + \mathbf{i}\xi_2 \in \mathbb{C} \mid k_p^2 \varepsilon < \xi_1 \xi_2 < k_s^2 \mathbf{i}\varepsilon, \ \xi_2/\xi_1 > \varepsilon \}$$
(3.14)

证明. 我们定义 $\mu_{\varepsilon}=(k^2(1+\mathbf{i}\varepsilon)^2-\xi^2)^{1/2}, k\in\mathbb{R}^+$,令 $\xi=\xi_1+\mathbf{i}\xi_2,\xi_1,\xi_2\in\mathbb{R}$ 以及 $(1+\mathbf{i}\varepsilon)=re^{\mathbf{i}\psi}$ 。通过简单的计算,我们有

$$\mu_{\varepsilon}^{2} = k^{2}(1 - \varepsilon^{2}) - \xi_{1}^{2} + \xi_{2}^{2} + \mathbf{i}(2k^{2}\varepsilon - 2\xi_{1}\xi_{2}) := Re^{\mathbf{i}\Theta} := a_{1} + \mathbf{i}a_{2}$$
 (3.15)

定义 $\Delta := \{\xi | 2\psi \le \Theta < 2\pi\}$,于是由引理 3.1.2 成立 $\mu_{\varepsilon} = (k^2 - \xi_{\varepsilon}^2)^{1/2} (1 + \mathbf{i}\varepsilon)$ 当 $\xi \in \Delta$,另一方面 $\mu_{\varepsilon} = -(k^2 - \xi_{\varepsilon}^2)^{1/2} (1 + \mathbf{i}\varepsilon)$ 当 $\xi \notin \Delta$,其中 $\xi_{\varepsilon} = \xi/(1 + \mathbf{i}\varepsilon)$ 。由于 ε 足够小,我们可以有如下关于集合 Δ 的等价形式:

$$\begin{split} \Delta &= (\pi/2 \geq \Theta < 2\pi) \cup (2\psi < \Theta < \pi/2) \\ &= \{\xi | a_1 \leq 0\} \cup \{\xi | a_2 \leq 0\} \cup \{\xi | a_1 > 0, a_2 > 0, \ \tan \Theta \geq \tan(2\psi)\} \ (3.16) \\ &:= \Delta_1 \cup \Delta_2 \cup \Delta_3 \end{split}$$

将 $a_1 = k^2(1-\varepsilon^2) - \xi_1^2 + \xi_2^2$, $a_2 = (2k^2\varepsilon - 2\xi_1\xi_2)$ 代入式子 (3.16) 中,我么得到

$$\Delta_1 = \{ \xi | \xi_1^2 - \xi_2^2 \ge k^2 (1 - \varepsilon^2) \}$$
 (3.17)

$$\Delta_2 = \{ \xi | \xi_1 \xi_2 \ge k^2 \varepsilon \} \tag{3.18}$$

又由于 $\tan \Theta = a_1/a_2$, $\tan \psi = \varepsilon$, 易得

$$\Delta_3 = \{ \xi | \xi_1^2 - \xi_2^2 \le k^2 (1 - \varepsilon^2), \xi_1 \xi_2 \le k^2 \varepsilon, \frac{k^2 \varepsilon - \xi_1 \xi_2}{k^2 (1 - \varepsilon^2) - (\xi_1^2 - \xi_2^2)} \ge \frac{\varepsilon}{1 - \varepsilon^2} \}$$
 (3.19)

观察 Δ_3 , 我们发现 Δ_3 表示成为 $\Delta_3 = \Delta_{31} \cup \Delta_{32} \cup \Delta_{33}$, 其中

$$\begin{split} \Delta_{31} &= \{\xi | \xi_1 \xi_2 \leq 0, 0 \leq \xi_1^2 - \xi_2^2 \leq k^2 (1 - \varepsilon^2) \} \\ \Delta_{32} &= \{\xi | 0 \leq \xi_1 \xi_2 \leq k^2 \varepsilon, 0 \leq \xi_1^2 - \xi_2^2 \leq k^2 (1 - \varepsilon^2), \frac{\xi_1 \xi_2}{\xi_1^2 - \xi_2^2} \leq \frac{\varepsilon}{1 - \varepsilon^2} \} \\ &= \{\xi | 0 \leq \xi_1 \xi_2 \leq k^2 \varepsilon, 0 \leq \xi_1^2 - \xi_2^2 \leq k^2 (1 - \varepsilon^2), \frac{\xi_2}{\xi_1} \leq \varepsilon \} \\ \Delta_{33} &= \{\xi | \xi_1 \xi_2 \leq 0, \xi_1^2 - \xi_2^2 \leq 0, \frac{\xi_1 \xi_2}{\xi_1^2 - \xi_2^2} \geq \frac{\varepsilon}{1 - \varepsilon^2} \} \\ &= \{\xi | \xi_1 \xi_2 \leq 0, \xi_1^2 - \xi_2^2 \leq 0, -\frac{\xi_1}{\xi_2} \geq \varepsilon \} \end{split}$$

观察到 $\xi_1\xi_2 = k^2\varepsilon$, $\xi_1^2 - \xi_2^2 = k^2(1 - \varepsilon^2)$, $\xi_2 = \xi_1\varepsilon$ 三条曲线交于点 $\pm k(1 + \mathbf{i}\varepsilon)$,于是区域 Δ 可以简化成:

$$\Delta = \{ \xi \mid -\frac{\xi_1}{\xi_2} \ge \varepsilon, \ \frac{\xi_2}{\xi_1} \le \varepsilon \} \cup \{ \xi \mid \xi_1 \xi_2 \ge k^2 \varepsilon \}$$
 (3.20)

定义 Δ_s , Δ_p 为将 μ_{ε} 中的 k 替换为 k_s , k_p 后相应的 Δ 区域。于是,经过简单的整理,我们可以得到:

$$\mathbb{C}\backslash\Omega = (\Delta_s \cap \Delta_p) \cup (\mathbb{C}\backslash(\Delta_s \cup \Delta_p))$$
(3.21)

因此,当 $\xi \in \mathbb{C}\backslash \Omega$,成立 $\delta_{\omega(1+\mathbf{i}\varepsilon)} = \delta(\xi_{\varepsilon})(1+\mathbf{i}\varepsilon)^4$ 通过引理3.1.1,此引理得证。□

由引理3.1.3 我们得知 $\hat{\mathbb{N}}_{\omega(1+\mathbf{i}\epsilon)}(\xi, x_2; y_2)$ 在实轴上没有极点,可以对其直接进 行逆 Fourier 变换。于是,Neumann Green 函数 ℕ(x, y) 可以利用极限吸收原理得 到,即为

$$\mathbb{N}(x,y) = \lim_{\varepsilon \to 0^+} \mathbb{N}_{\omega(1+\mathbf{i}\varepsilon)}(x,y) = \lim_{\varepsilon \to 0^+} \frac{1}{2\pi} \int_{\mathbb{R}} \hat{\mathbb{N}}_{\omega(1+\mathbf{i}\varepsilon)}(\xi,x_2;y_2) e^{\mathbf{i}(x_1-y_1)\xi} d\xi. \quad (3.22)$$

现在,我们已经得到 Neumann Green 函数的具体表达形式了。但是,式子 (3.22) 中这种极限形式并不利于我们分析该函数的具体性质,特别是其无穷远处 的衰减阶数。为了便于得到更加简洁的表达形式,我们引入下面这个关于柯西主 值 (cf. e.g. [5, Chapter 4, Theorem 5]) 的引理

引理 3.1.4 令 $a,b \in \mathbb{R}$, a < b, 且 $t_0 \in (a,b)$. 如果 γ 在 [a,b] 上 Hölder 连续,即存 在常数 $\alpha \in (0,1]$ 及 C > 0 对于任意 $s,t \in [a,b], |\gamma(s) - \gamma(t)| \le C|s-t|^{\alpha}$, 于是有

$$\lim_{z \to t_0, \pm \lim z > 0} \int_a^b \frac{\gamma(t)}{t - z} dt = \text{p.v.} \int_a^b \frac{\gamma(t)}{t - t_0} dt \pm \pi \mathbf{i} \gamma(t_0),$$

其中 p.v. \int_a^b 表示积分的 Cauchy 主值。

通过引理 3.1.1, 引理 3.1.3, 易知 $\hat{\mathbb{N}}_{\omega(1+i\epsilon)}(\xi \mp k_R(1+i\epsilon))$ 在点 $\pm k_R$ 的某个小 领域内解析且关于 ε 一致有界。于是,对于足够小的 d > 0, 成立:

$$\lim_{\varepsilon \to 0^+} \int_{\pm k_R - d}^{\pm k_R + d} \hat{\mathbb{N}}_{\omega(1 + \mathbf{i}\varepsilon)}(\xi, x_2; y_2) e^{\mathbf{i}(x_1 - y_1)\xi} d\xi \tag{3.23}$$

$$\lim_{\varepsilon \to 0^{+}} \int_{\pm k_{R}-d}^{\pm k_{R}+d} \hat{\mathbb{N}}_{\omega(1+\mathbf{i}\varepsilon)}(\xi, x_{2}; y_{2}) e^{\mathbf{i}(x_{1}-y_{1})\xi} d\xi$$

$$= \lim_{\varepsilon \to 0^{+}} \int_{\pm k_{R}-d}^{\pm k_{R}+d} \frac{\hat{\mathbb{N}}(\xi, x_{2}; y_{2})(\xi - k_{R})}{\xi \mp k_{R}(1 + \mathbf{i}\varepsilon)} e^{\mathbf{i}(x_{1}-y_{1})\xi} d\xi$$
(3.23)

然后利用引理 3.1.4, 表达式 (3.22) 及上面的等式, 可以得到如下 Neumann Green 函数的表达式:

$$\mathbb{N}(x,y) = \frac{1}{2\pi} \text{ p.v. } \int_{\mathbb{R}} \hat{\mathbb{N}}(\xi, x_2; y_2) e^{\mathbf{i}(x_1 - y_1)\xi} d\xi$$
 (3.25)

$$-\frac{1}{2\omega^2} \left[\sum_{\alpha,\beta=p,s} \frac{\mathbb{A}_{\alpha\beta}(\xi)}{\delta'(\xi)} e^{\mathbf{i}(\mu_{\alpha}x_2 + \mu_{\beta}y_2) + \mathbf{i}(x_1 - y_1)\xi} \right]_{-k_R}^{k_R}, \quad \forall x, y \in \mathbb{R}^2_+, (3.26)$$

这里 $[f(\xi)]_a^b := f(b) - f(a)$ 。

注 3.1.3 值得注意的是,由于 $\hat{\mathbb{N}}(\xi, x_2; y_2)$ 在实轴上存在极点及研究目的的区别, 导致最终 $\mathbb{N}(x,y)$ 可以存在多种等价的表达形式。例如,在文献 [6] 中 Duran 等 人是利用 Cauchy 积分定理以及留数定理将积分路径从实轴变换到双曲线上,从 而避开被积函数的极点。可以证明的是,本文中推导出的 Green 函数与文献 [6] 中的是一致的。

注 3.1.4 从 Neumann Green 函数的表达式 (3.25) 中, 我们发现在第二项中, $\mu_{\alpha}(\pm k_R) = i\sqrt{k_R^2 - k_{\alpha}^2}$, 易知当 x_2 增大时,第二项的值是指数衰减的。所以,式 (3.25) 中第二项对应的波只在 Γ_0 附近以波数 k_R 传播,当远离 Γ_0 时非常微弱,且称为表面波 (Rayleigh 波) [7]。

为了后文分析的便利,我们给出以下引理,叙述若干关于 Rayleigh 函数 $\delta(\xi)$ 的性质。

引理 3.1.5 令 $d_R = (k_R - k_s)/2$,其中 k_R 为 Rayleigh 表面波的波数。我们与如下结论:

1. 对于任意 $|\xi| \le k_s + d_R$,存在只与 κ 有关的常数 C_1, C_2, C_3 ,我们有

$$\begin{split} &C_1 k_s^4 \leq |\delta(\xi)| \leq C_2 k_s^4 \\ &|\delta^{(k)}(\xi)| \leq C_3 (|k_s^2 - \xi^2|^{-k+1/2} + |k_p^2 - \xi^2|^{-k+1/2}), \quad k = 1, 2 \end{split}$$

2 对于任意 $|\xi| \ge k_R$,我们有

$$|\delta(\xi)| \ge 2k_s^2(|\xi|^2 - k_R^2)$$

3 令 $\delta(\xi) = \delta_1(\xi)(\xi^2 - k_R^2)$,对于任意 $k_R - d_R \le |\xi| \le k_R + d_R$,存在只与 κ 有关的常数 C,我们有

$$|\delta_1(\xi)| \ge C_1 k_s^2$$

证明. 利用简单的求导计算,我们易得结论 1。通过 Rayleigh 函数的定义,有 $|\xi| \geq k_s$, $\delta(\xi) = k_s^4 f(\xi^2/k_s^2)$, 其中

$$f(t) = (2t - 1)^2 - 4t\sqrt{t - 1}\sqrt{t - \kappa^2}, \ \forall t \ge 1.$$

对于任意 $t \geq 1$, 易得:

$$f'(t) = 8t - 2 - 4\sqrt{t - 1}\sqrt{t - \kappa^2} - 2t\sqrt{t - 1}/\sqrt{t - \kappa^2} - 2t\sqrt{t - \kappa^2}/\sqrt{t - 1}$$

$$\leq 8t - 2 - 4\sqrt{t - 1}\sqrt{t - 1} - 4t = -2$$

又因为 f(1)=1 以及 $f((2-\kappa^2)/(1-\kappa^2))<0$ 。于是立得 $k_R^2 \leq \frac{2-\kappa^2}{1-\kappa^2}k_s^2$ 。然后由中值定理及 $f'(t) \leq -2$ 得

$$\min_{|\xi|\geq k_s} |\frac{\delta(\xi)}{\xi^2-k_R^2}| \geq \min_{t\geq 1} |f'(t)|k_s^2 \geq 2k_s^2,$$

结论 2, 3 得证。

观察式子 (3.4), (3.5), 及 (3.11), 通过简单的变量替换, 我们易得 Neumann Green 函数满足如下对称性,即

$$\mathbb{N}(x, y) = \mathbb{N}(y, x)^T \qquad \forall x, y \in \mathbb{R}^2_+ \tag{3.27}$$

对于 $x_s \in \Gamma_0$ 的情况,我们定义这种 Green 函数 $\mathbb{N}(x, x_s), x \in \mathbb{R}^2_+$ 为 $\mathbb{N}(x, y)$ 在 $y \in \mathbb{R}^2_+$, $y \to x_s$ 时的极限。由于半空间反散射问题中的点源一般都位于界面上,所以接下去我们重点研究 $x \in \Gamma_0$, $y \in \mathbb{R}^2_+$ 时的 Neumann Green 函数 $\mathbb{N}(x, y)$ 。 通过 (3.4), (3.5), (3.11),简单的计算可以简化 $\mathbb{N}(x, y)$:

$$\hat{\mathbb{N}}(\xi, 0; y_2) = \frac{\mathbf{i}}{\mu \delta(\xi)} \left[\begin{pmatrix} 2\xi^2 \mu_s & -2\xi \mu_s \mu_p \\ -\xi \varphi & \mu_p \varphi \end{pmatrix} e^{\mathbf{i}\mu_p y_2} \right]
+ \begin{pmatrix} \mu_s \varphi & \xi \varphi \\ 2\xi \mu_s \mu_p & 2\xi^2 \mu_p \end{pmatrix} e^{\mathbf{i}\mu_s y_2}
:= \frac{1}{\delta(\xi)} (\mathbb{N}_p(\xi) e^{\mathbf{i}\mu_p y_2} + \mathbb{N}_s(\xi) e^{\mathbf{i}\mu_s y_2}),$$
(3.28)

 \perp , $\stackrel{\omega}{=}$ $x \in \Gamma_0, y \in \mathbb{R}^2_+$,

$$\mathbb{N}(x,y) = \frac{1}{2\pi} \text{ p.v. } \int_{\mathbb{R}} \hat{\mathbb{N}}(\xi,0;y_2) e^{\mathbf{i}(x_1-y_1)\xi} d\xi$$

$$+ \frac{\mathbf{i}}{2} \left[\sum_{\alpha=p,s} \frac{\mathbb{N}_{\alpha}(\xi)}{\delta'(\xi)} e^{\mathbf{i}\mu_{\alpha}y_2 + \mathbf{i}(x_1-y_1)\xi} \right]_{-k_R}^{k_R}.$$
(3.30)

为了便于研究 Neumann Green 函数在边界 Γ_0 上水平方向的渐近行为,我们下面引理中更为有用的表达形式。

引理 3.1.6 令 $x \in \Gamma_0$, $y \in \mathbb{R}^2_+$ 以及 $\phi \in (-\pi/2, \pi/2)$ 且存在如下表达 $y_2 = |x - y| \cos \phi$, $x_1 - y_1 = |x - y| \sin \phi$ 。 假设 $x_1 \neq y_1$, 于是可以得到

$$\mathbb{N}(x,y) = \frac{1}{2\pi} \int_{L} \mathbb{N}_{0}(t) \cos(t+\phi) e^{i\lambda \cos t} dt$$

$$\pm \mathbf{i} \left[\sum_{\alpha=p,s} \frac{\mathbb{N}_{\alpha}(\xi)}{\delta'(\xi)} e^{\mathbf{i}\mu_{\alpha}y_{2} + \mathbf{i}(x_{1} - y_{1})\xi} \right]_{\xi=-t/p},$$
(3.31)

其中 $\lambda = k_s |x-y|$, L 为复平面中的积分路径即从 $-\pi/2 + \mathbf{i} \infty$ to $-\pi/2$, $-\pi/2$ 到 $\pi/2$, 接着从 $\pi/2$ 到 $\pi/2 - \mathbf{i} \infty$ (见图例 3.1), 这里符号 \pm 取决于 $\mathrm{sgn}(x_1 - y_1) = \pm 1$, 且定义表达式:

$$\mathbb{N}_0(t) = \sum_{\alpha = p,s} k_s \frac{\mathbb{N}_\alpha(k_s \sin(t + \phi))}{\delta(k_s (\sin(t + \phi)))}.$$
(3.32)

证明. 不失一般性,我们可以假设 $x_1 > y_1$,因此有 $\operatorname{sgn}(x_1 - y_1) = 1$ 。注意 到 $\hat{\mathbb{N}}(\xi,0;y_2) = \sum_{\alpha=p,s} \frac{\mathbb{N}_{\alpha}(\xi)}{\delta(\xi)} e^{\mathbf{i}(y_2\mu_{\alpha} + (x_1-y_1)\xi)}$,所以对于 $\alpha=p,s$,我们可以做经典的三角变量替换,即为 $\xi=k_{\alpha}\sin t$ 。由于三角函数的周期性,这里我们规定 $-\pi < \operatorname{Re} t \leq \pi$ 以保证变换的一一对应。相应地, ξ 在复平面中的积分路径 \mathbb{R} 对应于 t 所在复平面中的积分路径 L 。于是得到如下等式:

$$\frac{1}{2\pi} \text{ p.v. } \int_{\mathbb{R}} \hat{\mathbb{N}}(\xi, 0; y_2) e^{\mathbf{i}(x_1 - y_1)\xi} d\xi
= \frac{1}{2\pi} \text{ p.v. } \int_{L} \sum_{\alpha = p,s} k_s \frac{\mathbb{N}_{\alpha}(k_s \sin t)}{\delta(k_s \sin t)} \cos t e^{\mathbf{i}\lambda \cos(t - \phi)} dt.$$

令 $L_{-\phi}$ 为 L 平移 $-\phi$ 后的积分路径, 立即得到

$$\frac{1}{2\pi} \text{ p.v. } \int_{\mathbb{R}} \hat{\mathbb{N}}(\xi, 0; y_2) e^{\mathbf{i}(x_1 - y_1)\xi} d\xi$$
 (3.33)

$$= \frac{1}{2\pi} \text{ p.v.} \int_{L_{-\phi}} \mathbb{N}_0(t) \cos(t + \phi) e^{i\lambda \cos t} dt, \qquad (3.34)$$

这里 $\mathbb{N}_0(t)$ 如 (3.33) 所定义。

设 $t_R \in L$ 满足等式 $k_R = k_s \sin t_R$,于是 k_R 即为 t_R 在积分变换 $\xi = k_s \sin t$ 下的像点。特别地,由于 $k_R > k_s$,则存在 $s_R > 0$ 使得 $t_R = \pi/2 - \mathbf{i} s_R \in L$ 。对于任意 $\varepsilon > 0$,令 L^ε 表示如下积分路径: $-\pi/2 + \mathbf{i} \infty \to -\pi/2 + \mathbf{i} (s_R + \varepsilon) \cup \partial B_\varepsilon^+(-t_R) \to -\pi/2 + \mathbf{i} (s_R - \varepsilon) \to -\pi/2 \to \pi/2 \to \pi/2 - \mathbf{i} (s_R - \varepsilon) \to \partial B_\varepsilon^+(t_R) \to \pi/2 - \mathbf{i} (s_R + \varepsilon) \to \pi/2 - \mathbf{i} \infty$,其中 $\partial B_\varepsilon^+(\pm t_R)$ 表示圆心在 $\pm t_R$ 半径为 ε 的右半圆 (见图例 3.1)。然后,令 $L_{-\phi}^\varepsilon$ 为 L^ε 平移 $-\phi$ 后的积分路径。于是,利用 Cauchy 主值的定义及留数定理,我们可以得知

$$\begin{split} &\frac{1}{2\pi} \operatorname{p.v.} \int_{L_{-\phi}} \mathbb{N}_0(t) \cos(t+\phi) \, e^{\mathbf{i}\lambda \cos t} dt \\ &= \lim_{\varepsilon \to 0^+} \frac{1}{2\pi} \int_{L_{-\phi}^\varepsilon} \mathbb{N}_0(t) \cos(t+\phi) \, e^{\mathbf{i}\lambda \cos t} dt \\ &+ \frac{\mathbf{i}}{2} \sum_{t'=\pm t_R} \operatorname{Res}(\mathbb{N}_0(t) \cos(t+\phi) e^{\mathbf{i}\lambda \cos t}, t'). \end{split}$$

通过简单的计算,易得相应留数为:

$$\frac{\mathbf{i}}{2} \sum_{t'=\pm t_R} \operatorname{Res}(\mathbb{N}_0(t) \cos(t+\phi) e^{\mathbf{i}\lambda \cos t}, t')$$

$$= \frac{\mathbf{i}}{2} \sum_{\xi=\pm k_R} \sum_{\alpha=p,s} \frac{\mathbb{N}_{\alpha}(\xi)}{\delta'(\xi)} e^{\mathbf{i}(y_2\mu_{\alpha}+(x_1-y_1)\xi)}.$$

另一方面,通过 Cauchy 积分定理,我们得到

$$\frac{1}{2\pi} \int_{L_{-\phi}^{\varepsilon}} \mathbb{N}_0(t) \cos(t+\phi) e^{\mathbf{i}\lambda \cos t} dt = \frac{1}{2\pi} \int_{L} \mathbb{N}_0(t) \cos(t+\phi) e^{\mathbf{i}\lambda \cos t} dt.$$

图 3.1 积分路径 L 和 L_{-a}^{ε}

最后利用 (3.30) 和 (3.33) 引理得证。

上述引理是我们研究 Neumann Green 函数 $\mathbb{N}(x,y)$ 在界面 Γ_0 上当 $x\to\infty$ 时衰减行为估计的一个出发点。下面,我们先回顾下关于振荡积分衰减阶数估计的 Van der Corput 引理 [8, P.152]。

引理 3.1.7 令 $\lambda \geq 1$, $f \in C[a,b]$ 且其导函数绝对可积, 如果 $u \in C^k[a,b]$, 其中 $k \geq 1$ 及 a < b,我们就有如下结论

1. 如果 $|u'(t)| \ge 1$ 对于任意 $t \in (a, b)$ 成立,且 u' 在 (a, b) 上单调,就断言

$$\left| \int_a^b f(t)e^{\mathbf{i}\lambda u(t)}dt \right| \leq 3\lambda^{-1} \left(|f(b)| + \int_a^b |f'(t)|dt \right).$$

2. 对于 $k \geq 2$ 时, 如果 $|u^{(k)}(t)| \geq 1$ 对于任意 $t \in (a,b)$ 成立, 就断言

$$\left| \int_a^b f(t) e^{\mathbf{i} \lambda u(t)} dt \right| \leq 12 k \lambda^{-1/k} \left(|f(b)| + \int_a^b |f'(t)| dt \right).$$

在文献 [9] 中,Chen 等对半空间逆时偏移算法的研究时,引理 3.1.7 起到了关键的作用。该引理相对于驻相定理的优势在于,对于振幅函数 f(t) 的光滑性要求更低,且对于 λ 阶数的刻画具有一致性。然而,当振幅函数具有弱奇异点时,直接使用引理 3.1.7 就行不通了。幸运的是,经过研究我们发现当振幅函数存在

弱奇异点,且其与相位函数 $\phi(t)$ 的驻相点的距离存在正下界时,Van der corput 引理仍然成立,如下述引理刻画。

引理 3.1.8 令 $\lambda \geq 1$,假设 $f \in C[-\pi/2, \pi/2]$ 且其导函数绝对可积。于是对任意区间 $(a,b) \subset (-\pi/2, \pi/2)$,可以得到

$$\left| \int_{a}^{b} f(t)e^{\mathbf{i}\lambda\cos t}dt \right| \le C\lambda^{-1/2} \left(|f(0)| + \int_{a}^{b} |f'(t)|dt \right),\tag{3.35}$$

这里常数 C 与 a,b,λ 及被积函数 f 无关。此外,令 $\kappa \in (0,1)$ 以及 $\phi \in (-\pi/2,\pi/2)$ 满足条件 $|\phi| \ge \phi^* > \arcsin \kappa := \phi_\kappa$,可以得到

$$\left| \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(t) (\kappa^{2} - \sin^{2}(t + \phi))^{-1/2} e^{i\lambda \cos t} dt \right|$$

$$\leq C \lambda^{-1/2} \left(|f(0)| + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |f'(t)| dt \right),$$
(3.36)

这里常数 C 只与 ø* 和 κ 有关。

证明. 我们不妨假定 $\phi > 0$ 。其中估计 (3.35) 可以 3.1.7 直接得到。这是因为区间 (a,b) 可以被切割成若干个互不相交的子区间,并且在任意一个子区间上面 $\sin t$ 单调且 $|\sin t|$ 存在下界 $1/\sqrt{2}$ 或是 $|\cos t|$ 存在下界 $1/\sqrt{2}$ 。

令 $g(t) = \kappa^2 - \sin^2(t + \phi)$ 。 由于 $0 < \kappa < 1$ g(t),易知 g(t) 在区间 $(-\pi/2, \pi/2]$ 上有且仅有两个零点 t_1, t_2 ,而且可以求出 $t_1 = \phi_{\kappa} - \phi$ 及 $t_2 = -\phi_{\kappa} - \phi$ 或是 $t_2 = \pi - \phi_{\kappa} - \phi$,这里 t_2 取决于 $\phi + \phi_{\kappa} < \pi/2$ 或是 $\phi + \phi_{\kappa} \ge \pi/2$ 。 不失一般性,我在后面的证明中都假设 $t_2 = \pi - \phi_{\kappa} - \phi$ 。

令 $0 < \varepsilon_0 < \min(\frac{\phi^* - \phi_{\kappa}}{2}, \frac{\phi_{\kappa}}{2})$ 。 显然成立 $t_1 - \varepsilon_0 \ge -\pi/2$, $t_1 + \varepsilon_0 \le -(\phi^* - \phi_{\kappa})/2$ 以及 $t_2 - \varepsilon_0 \ge (\phi^* - \phi_{\kappa})/2$ 。 于是,我们可以把区间 $(-\pi/2, \pi/2)$ 切分成 5 个互补相交的子区间

$$I_1 = (-\pi/2, t_1 - \varepsilon_0), \ I_2 = (t_1 - \varepsilon_0, t_1 + \varepsilon_0), \ I_3 = (t_1 + \varepsilon_0, t_2 - \varepsilon_0),$$

$$I_4 = (t_2 - \varepsilon_0, t_2 + \min(t_2 + \varepsilon_0, \pi/2)), \ I_5 = (\min(t_2 + \varepsilon_0, \pi/2), \pi/2)$$

于是利用 (3.35) 可以得到

$$\left| \int_{I_{1} \cup I_{3} \cup I_{5}} f(t) (\kappa^{2} - \sin^{2}(t + \phi))^{-1/2} e^{i\lambda \cos t} dt \right|$$

$$\leq C \lambda^{-1/2} \left(|f(0)| + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |f'(t)| dt \right),$$
(3.37)

其中常数 C 只和 ϕ^* 及 κ 有关。

现在我们来估计在区间 I_2 , I_4 上的积分。首先,我们观察到,在区间 $I_2 \cup I_4$ 上成立不等式 $|\sin t| \ge \sin((\phi^* - \phi_{\kappa})/2)$ 。此外在该区间上还成立,

$$|g'(t)| = |\sin(2(t+\phi))| \ge \min(\sin\phi_{\kappa}, \sin(\phi^* + \phi_{\kappa}))$$

令 $\delta \in (0, \varepsilon_0)$ 充分小,因为 $g(t_j) = 0, j = 1, 2$,于是利用中值定理,对于任意 t 满足 $\delta \leq |t - t_j| \leq \varepsilon_0, j = 1, 2$ 我们有

$$|g(t)| \ge \min(\sin \phi_{\kappa}, \sin(\phi^* + \phi_{\kappa}))\delta$$
,

通过分部积分后,得到

$$\left| \int_{t_1-\varepsilon_0}^{t_1-\delta} f(t)g(t)^{-1/2}e^{\mathbf{i}\lambda\cos t}dt \right| \leq C\delta^{-1/2}\lambda^{-1}\left(|f(0)| + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |f'(t)|dt\right).$$

类似地,

$$\left| \int_{t_1+\delta}^{t_1+\varepsilon_0} f(t)g(t)^{-1/2}e^{\mathbf{i}\lambda\cos t}dt \right| \leq C\delta^{-1/2}\lambda^{-1}\left(|f(0)| + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}|f'(t)|dt\right).$$

最后,我们可以得到

$$\left| \int_{t_1 - \delta}^{t_1 + \delta} f(t)g(t)^{-1/2} e^{i\lambda \cos t} dt \right|$$

$$\leq C \max_{t \in (-\pi/2, \pi/2)} |f(t)| \int_{-\delta}^{\delta} |\kappa - \sin(\phi_{\kappa} + t)|^{-1/2} dt$$

$$\leq C \delta^{1/2} \max_{t \in (-\pi/2, \pi/2)} |f(t)|.$$

如此,我们只要取 $\delta = \lambda^{-1}$ 就可以得到

$$\left| \int_{I_2} f(t) (\kappa^2 - \sin^2(t + \phi))^{-1/2} e^{\mathbf{i}\lambda \cos t} dt \right| \le C \lambda^{-1/2} \left(|f(0)| + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |f'(t)| dt \right).$$

同理,在区间 I_4 上的积分也可以被估计。结合式子 (3.37) 中的估计,引理得证。

引理 3.1.9 令 $\phi \in (0, \pi/2)$ 以及 H 表示双曲线

$$\{\xi = \xi_1 + \mathbf{i}\xi_2 \in \mathbb{C} : (\xi_1/(k_s\cos\phi))^2 - (\xi_2/(k_s\sin\phi))^2 = 1\}$$

定义 $f(\xi)$ 为 H 领域上的解析函数。于是,存在只与 κ 有关的常数 C,成立

$$\begin{split} &\left| \int_{L \setminus [-\pi/2,\pi/2]} f(k_s \sin(t+\phi)) e^{\mathbf{i}\lambda \cos t} dt \right| + \left| \int_{L \setminus [-\pi/2,\pi/2]} f(k_s \sin(t+\phi)) \cos t e^{\mathbf{i}\lambda \cos t} dt \right| \\ & \leq & C \lambda^{-1} \max_{\xi \in H} (|f(\xi)| + k_s |f'(\xi)|). \end{split}$$

证明. 注意到,对于 $t = -\pi/2 + \mathbf{i}s$, s > 0 有 $k_s \sin(t + \phi) = -\cosh(s) \cos \phi + \mathbf{i} \sinh(s) \sin \phi \in H$ 。于是

$$\begin{split} & \int_{-\pi/2}^{-\pi/2+\mathbf{i}\infty} f(k_s \sin(t+\phi)) e^{\mathbf{i}\lambda \cos t} dt \\ & = & \mathbf{i} \int_0^\infty f(-\cosh(s) \cos \phi + \mathbf{i} \sinh(s) \sin \phi) e^{-\lambda \sinh(s)} ds. \end{split}$$

于是,利用分部积分就可以得到在 $-\pi/2 + i\infty \rightarrow -\pi/2$ 积分值关于 λ 是一阶衰减的。同样利用分布积分也可以得到在区间 $\pi/2 \rightarrow \pi/2 - i\infty$ 上的积分值的估计。于是,不等式中的第一项估计得证。类似地,可以证明不等式中的第二项的估计。引理得证。

经过前述若干引理的铺垫,我们下面给出当 $x \in \Gamma_0$, $y \in \mathbb{R}^2_+$ 时,Neumann Green 函数相对于变量 x_1 的阶数估计。

定理 3.1.1 假定 $x \in \Gamma_0$, $y \in \mathbb{R}^2_+$ 且满足 $|x_1 - y_1|/|x - y| \ge (1 + \kappa)/2$ 及 $k_s y_2 \ge 1$ 。 存在只与 κ 有关的常数 C ,有如下估计

$$|\mathbb{N}(x,y)| + k_s^{-1}|\nabla_y \mathbb{N}(x,y)| \le \frac{C}{\mu} \left(\frac{k_s y_2}{(k_s|x-y|)^{3/2}} + e^{-\sqrt{k_R^2 - k_s^2} y_2} \right).$$

证明. 这里我们只证明关于 $\mathbb{N}(x,y)$ 的估计。由于 $\nabla_y \mathbb{N}(x,y)$ 的函数特性和 $\mathbb{N}(x,y)$ 一直,同理可证。由引理 3.1.6 中的式子 (3.32) 启发,不失一般性,我们假定 $x_1 > y_1$,即有 $\phi \in (0,\pi/2)$ 且满足

$$\phi \ge \phi^* = \arcsin(1+\kappa)/2 > \phi_{\kappa}$$

通过引理 3.1.5 中的结论 3 ,我们易得式子 (3.32) 中的第二项存在上界 $C\mu^{-1}e^{-\sqrt{k_R^2-k_s^2}y_2}$,即该项随着 y_2 增大指数衰减。

针对式子 (3.32) 中的第一项, 我们将其分成 p 波和 s 波两项:

$$\frac{1}{2\pi} \int_{L} \mathbb{N}_{0}(t) \cos(t+\phi) e^{i\lambda \cos t} dt
= \frac{1}{2\pi} \int_{L} \sum_{\alpha=p,s} k_{s} \frac{\mathbb{N}_{\alpha}(k_{s} \sin(t+\phi))}{\delta(k_{s} \sin(t+\phi))} \cos(t+\phi) e^{i\lambda \cos t} dt.$$

由于,p 波和 s 波在表达形式上是相似的,这里我们只分析含有 $[\mathbb{N}_p(k_s\sin(t+\phi))]_{22} = \mu^{-1}(\varphi\mu_p)(k_s\sin(t+\phi))$ 这项,然后另一项的分析就同理可得。为了表达

简便,我规定如下表示

$$g(t) = k_s \frac{\left[\mathbb{N}_p(k_s \sin(t+\phi))\right]_{22}}{\delta(k_s \sin(t+\phi))}$$

$$:= f(t)(\kappa^2 - \sin^2(t+\phi))^{1/2}$$

$$f(t) = \frac{k_s^2}{\mu} \frac{\varphi(k_s \sin(t+\phi))}{\delta(k_s \sin(t+\phi))}.$$

于是,利用分部积分,可以得到

$$\begin{split} & \int_{L} g(t) \cos(t + \phi) e^{\mathbf{i}\lambda \cos t} dt \\ = & \cos \phi \int_{L} g(t) \cos t e^{\mathbf{i}\lambda \cos t} dt - \sin \phi \int_{L} g(t) \sin t e^{\mathbf{i}\lambda \cos t} dt \\ = & \cos \phi \int_{L} g(t) \cos t e^{\mathbf{i}\lambda \cos t} dt - \frac{\sin \phi}{\mathbf{i}\lambda} \int_{L} g'(t) e^{\mathbf{i}\lambda \cos t} dt \\ = & \mathrm{I}_{1} + \mathrm{I}_{2}. \end{split}$$

通过引理 3.1.5 中的结论 1 及引理 3.1.8 中的式 (3.35), 我们得到

$$\left| \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g(t) \cos t e^{i\lambda \cos t} dt \right|$$

$$\leq C \lambda^{-1/2} \left(|g(0)| + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |(g(t) \cos t)'| dt \right)$$

$$\leq C \mu^{-1} \lambda^{-1/2}.$$

又因为 $\pm k_R$ 不在在双曲线 H 上,于是当 $\xi \in H$ 时,成立

$$|[\mathbb{N}_p(\xi)]_{22}| \le C|\xi|^3$$
, $|[\mathbb{N}'_p(\xi)]_{22}| \le C|\xi|^2$, $\delta(\xi) \ge Ck_s^2|\xi|^2$

利用引理 3.1.9 我们得到

$$\left| \int_{L \setminus \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]} g(t) \cos t e^{\mathbf{i} \lambda \cos t} dt \right| \le C \mu^{-1} \lambda^{-1}.$$

于是得到 $|I_1| \le C\mu^{-1}\lambda^{-1/2}\cos\phi$ 。

类似地,我们可以得到 $|I_2| \le C\mu^{-1}\lambda^{-3/2}$ 。事实上,唯一的区别在于,因为 $g'(t) = f'(t)(\kappa^2 - \sin^2(t+\phi))^{1/2} - f(t)(\kappa^2 - \sin^2(t+\phi))^{-1/2}\sin(t+\phi)\cos(t+\phi),$ 所以,利用引理 3.1.8 中的 (3.35) 和 (3.36) 可以得到

$$\left| \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g'(t) e^{\mathbf{i}\lambda \cos t} dt \right| \le C\mu^{-1}\lambda^{-1/2}.$$

于是,我们最终得出

$$|I_1 + I_2| \le C\mu^{-1}\lambda^{-1/2}\cos\phi + C\mu^{-1}\lambda^{-3/2} \le C\mu^{-1}(k_s y_2)/(k_s|x-y|)^{3/2},$$

这里使用了条件 $k_s y_2 \ge 1$ 。引理得证。

3.1.2 Dirichlet Green 函数

3.2 正散射问题的适定性

第4章 逆时偏移算法

- 4.1 数值算例
- 4.2 散射系数与 Kirchhoff 逼近
- 4.2.1 反射面为 x₁ 轴

We consider the scattering of an incident plane p-wave \hat{u}_p (or s-wave \hat{u}_s) with the incident direction $\hat{d}_0 = (\sin t_0, \cos t_0)^T$, $t_0 \in (0, 2\pi)$, by the plane $\Gamma := \{x \in \mathbb{R}^2 : x_2 = 0\}$. The angle between \hat{d}_0 and the positive real axis is $\theta_0 = \pi/2 - t_0$. Denote by $\hat{v} = (0, 1)^T$.

4.2.1.1 p-波情形

We denote the incident p-wave [2, p172] as

$$\hat{u}_p = A_0(\sin t_0, \cos t_0)^T e^{ik_p(x_1 \sin t_0 + x_2 \cos t_0)}.$$

The reflected *p*-wave is represented as

$$\hat{u}_{p,p} = A_1 (\sin t_1, -\cos t_1)^T e^{\mathbf{i}k_p(x_1 \sin t_1 - x_2 \cos t_1)}.$$

The reflected s-wave is denoted as

$$\hat{u}_{p,s} = A_2(-\cos t_2, -\sin t_2)^T e^{ik_s(x_1\sin t_2 - x_2\cos t_2)}.$$

Under the clamped condition, the total field vanishes on Γ and thus

$$\hat{u}_p(x_1,0) + \hat{u}_{p,p}(x_1,0) + \hat{u}_{p,s}(x_1,0) = 0, \ \forall x_1 \in \mathbb{R}.$$

A simple computation shows that

$$t_1 = t_0, \ \frac{\sin t_2}{\sin t_0} = \frac{k_p}{k_s} := \kappa,$$
 $A_0 = \cos(t_0 - t_2), \ A_1 = \cos(t_0 + t_2), \ A_2 = \sin 2t_0.$

In summary, the total field is

$$\hat{u}_p^{\text{total}} = A_0 \hat{d_0} e^{ik_p x \cdot \hat{d_0}} + A_1 \hat{d_1} e^{ik_p x \cdot \hat{d_1}} + A_2 \hat{d_2}^{\perp} e^{ik_s x \cdot \hat{d_2}}, \tag{4.1}$$

where for any $\tau=(au_1, au_2)^T\in\mathbb{R}^2,$ $au^\perp=(au_2,- au_1)^T,$ and

$$\hat{d}_{1} = \hat{d}_{0} - 2(\hat{d}_{0} \cdot \hat{v})\hat{v}, \hat{d}_{2} = \kappa \hat{d}_{0} - \left[\kappa(\hat{d}_{0} \cdot \hat{v}) + \operatorname{sgn}(\hat{d}_{0} \cdot \hat{v})\sqrt{1 - \kappa^{2}(\hat{d}_{0} \cdot \hat{v}^{\perp})^{2}}\right]\hat{v}, \quad (4.2)$$

$$A_0 = \hat{d}_1 \cdot \hat{d}_2, A_1 = -\hat{d}_0 \cdot \hat{d}_2, A_2 = 2(\hat{d}_0 \cdot \hat{v})(\hat{d}_0 \cdot \hat{v}^{\perp}). \tag{4.3}$$

4.2.1.2 s-波情形

We denote the incident s-wave as

$$\hat{u}_s = A_0(\cos t_0, -\sin t_0)^T e^{ik_s(x_1\sin t_0 + x_2\cos t_0)}.$$

The reflected *p*-wave is represented as

$$\hat{u}_{s,p} = A_1 (\sin t_1, -\cos t_1)^T e^{\mathbf{i}k_p (x_1 \sin t_1 - x_2 \cos t_1)}.$$

The reflected s-wave is denoted as

$$\hat{u}_{s,s} = A_2(-\cos t_2, -\sin t_2)^T e^{ik_s(x_1\sin t_2 - x_2\cos t_2)}.$$

The result is

$$t_2 = t_0, \ \frac{\sin t_1}{\sin t_0} = \frac{k_s}{k_p} = \kappa_1,$$
 $A_0 = \cos(t_0 - t_1), \ A_1 = -\sin 2t_0, \ A_2 = \cos(t_0 + t_1).$

In summary, the total field is

$$\hat{u}_{s}^{\text{total}} = A_{0}\hat{d}_{0}^{\perp}e^{\mathbf{i}k_{s}x\cdot\hat{d}_{0}} + A_{1}\hat{d}_{1}e^{\mathbf{i}k_{p}x\cdot\hat{d}_{1}} + A_{2}\hat{d}_{2}^{\perp}e^{\mathbf{i}k_{s}x\cdot\hat{d}_{2}},\tag{4.4}$$

where

$$\hat{d}_{1} = \kappa_{1}\hat{d}_{0} - \left[\kappa_{1}(\hat{d}_{0}\cdot\hat{v}) + \operatorname{sgn}(\hat{d}_{0}\cdot\hat{v})\sqrt{1 - \kappa_{1}^{2}(\hat{d}_{0}\cdot\hat{v}^{\perp})^{2}}\right]\hat{v}, \hat{d}_{2} = \hat{d}_{0} - 2(\hat{d}_{0}\cdot\hat{v})\hat{v}, \quad (4.5)$$

$$A_0 = \hat{d}_1 \cdot \hat{d}_2, A_1 = -2(\hat{d}_0 \cdot \hat{v})(\hat{d}_0 \cdot \hat{v}^\perp), A_2 = -\hat{d}_0 \cdot \hat{d}_1.$$

$$(4.6)$$

4.2.2 反射面为任意平面

We consider the scattering of an incident plane p-wave u_p or s-wave u_s with the incident direction $d = (\sin \theta, \cos \theta)^T$, $\theta \in (0, 2\pi)$, by the plane $\Gamma := \{x \in \mathbb{R}^2 : x \cdot v = 0\}$ through the origin with the normal vector $v = (\sin \phi, \cos \phi)^T$, $\phi \in (0, 2\pi)$. The angle between v and the positive real axis is $\pi/2 - \phi$. The total fields are

$$u_n^{\text{total}} = A_0 d_0 e^{ik_p x \cdot d_0} + A_1 d_1 e^{ik_p x \cdot d_1} + A_2 d_2^{\perp} e^{ik_s x \cdot d_2}, \tag{4.7}$$

$$u_s^{\text{total}} = A_0 d_0^{\perp} e^{ik_s x \cdot d_0} + A_1 d_1 e^{ik_p x \cdot d_1} + A_2 d_2^{\perp} e^{ik_s x \cdot d_2}, \tag{4.8}$$

where for $i = 0, 1, 2, d_i$ is the unit vector and A_i is the corresponding amplitude. We impose $u_p^{\text{total}} = 0, u_s^{\text{total}} = 0$ on Γ . Let $\hat{x} = Sx$, where $S \in \mathbb{R}^{2\times 2}$ is the rotation matrix with rotation angle ϕ ,

$$S = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}.$$

We have $\hat{v} = Sv$.

定理 **4.2.1** Let $u(x) \in \mathbb{C}^2$ and

$$\Delta_e^x := \left(\begin{array}{l} (\lambda + 2\mu) \frac{\partial^2}{\partial x_1^2} + (\lambda + \mu) \frac{\partial^2}{\partial x_1 \partial x_2} + \mu \frac{\partial^2}{\partial x_2^2} \\ \mu \frac{\partial^2}{\partial x_1^2} + (\lambda + \mu) \frac{\partial^2}{\partial x_1 \partial x_2} + (\lambda + 2\mu) \frac{\partial^2}{\partial x_1 2^2} \end{array} \right).$$

Assume that u(x) satisfies $\Delta_e^x u(x) + \omega^2 u(x) = 0$, then we have $\Delta_e^{\hat{x}} \hat{u}(\hat{x}) + \omega^2 \hat{u}(\hat{x}) = 0$ where $\hat{u}(\hat{x}) := Su(S^T \hat{x})$ or $u(x) = S^T \hat{u}(Sx)$.

证明. Since

$$\frac{\partial^2}{\partial \hat{x}_1^2} = \cos^2 \phi \frac{\partial^2}{\partial x_1^2} - 2\cos \phi \sin \phi \frac{\partial^2}{\partial x_1 \partial x_2} + \sin^2 \phi \frac{\partial^2}{\partial x_2^2}$$

$$\frac{\partial^2}{\partial \hat{x}_2^2} = \sin^2 \phi \frac{\partial^2}{\partial x_1^2} + 2\cos \phi \sin \phi \frac{\partial^2}{\partial x_1 \partial x_2} + \cos^2 \phi \frac{\partial^2}{\partial x_2^2}$$

$$\frac{\partial^2}{\partial \hat{x}_1 \partial \hat{x}_2} = \cos \phi \sin \phi \frac{\partial^2}{\partial x_1^2} + (\cos^2 \phi - \sin^2 \phi) \frac{\partial^2}{\partial x_1 \partial x_2} - \cos \phi \sin \phi \frac{\partial^2}{\partial x_2^2}$$

This completes proof after substituting above equation into $\Delta_e^{\hat{x}}\hat{u}(\hat{x})$.

By this theorem, we obtain from (4.1)-(4.3) that for u_p^{total} , $d_0 = (\sin(\theta - \phi), \cos(\theta - \phi))^T$,

$$\begin{split} d_1 &= d_0 - 2(d_0 \cdot \nu)\nu, d_2 = \kappa d_0 - \left[\kappa(d_0 \cdot \nu) + \mathrm{sgn}(d_0 \cdot \nu)\sqrt{1 - \kappa^2(d_0 \cdot \nu^\perp)^2}\,\right]\nu, \\ A_0 &= d_1 \cdot d_2, A_1 = -d_0 \cdot d_2, A_2 = 2(d_0 \cdot \nu)(d_0 \cdot \nu^\perp). \end{split}$$

In fact, we have

$$\begin{split} u_p^{\text{total}}(x) &= S^T \hat{u}_p^{\text{total}}(Sx) \\ &= S^T \left[A_0 \hat{d}_0 e^{\mathbf{i}k_p Sx \cdot \hat{d}_0} + A_1 \hat{d}_1 e^{\mathbf{i}k_p Sx \cdot \hat{d}_1} + A_2 \hat{d}_2^{\perp} e^{\mathbf{i}k_s Sx \cdot \hat{d}_2} \right]. \end{split}$$

This implies $S^T \hat{d}_j = d_j$, j = 0, 1, 2. As $d_0 = d$, we obtain $\hat{d}_0 = Sd$. Similarly, for u_s^{total} , $d_0 = (\sin(\theta - \phi), \cos(\theta - \phi))^T$,

$$d_1 = \kappa_1 d_0 - \left[\kappa_1 (d_0 \cdot \nu) + \operatorname{sgn}(d_0 \cdot \nu) \sqrt{1 - \kappa_1^2 (d_0 \cdot \nu^{\perp})^2} \right] \nu, d_2 = d_0 - 2(d_0 \cdot \nu) \nu,$$

$$A_0 = d_1 \cdot d_2, A_1 = -2(d_0 \cdot \nu) (d_0 \cdot \nu^{\perp}), A_2 = -d_0 \cdot d_1.$$

The traction of u(x) on the plane Γ can be obtained by simple calculation

$$\sigma(u_{p}^{\text{total}}) \cdot \nu = [\mathbf{i}k_{p}A_{0}(\lambda \nu + 2\mu(d_{0}, \nu)d_{0}) + \mathbf{i}k_{p}A_{1}(\lambda \nu + 2\mu(d_{1}, \nu)d_{1})
+ \mathbf{i}k_{s}A_{2}\mu((d_{2}, \nu)d_{2}^{\perp} + (d_{2}^{\perp}, \nu)d_{2})]e^{\mathbf{i}k_{p}x\cdot d_{0}}
:= \mathbf{i}k_{p}A_{0}\hat{\mathbf{R}}_{p}(x, d_{0}, \nu)e^{\mathbf{i}k_{p}x\cdot d_{0}},$$

$$\sigma(u_{s}^{\text{total}}) \cdot \nu = [\mathbf{i}k_{s}A_{0}\mu((d_{0}, \nu)d_{0}^{\perp} + (d_{0}^{\perp}, \nu)d_{0}) + \mathbf{i}k_{p}A_{1}(\lambda \nu + 2\mu(d_{1}, \nu)d_{1})
+ \mathbf{i}k_{s}A_{2}\mu((d_{2}, \nu)d_{2}^{\perp} + (d_{2}^{\perp}, \nu)d_{2})]e^{\mathbf{i}k_{s}x\cdot d_{0}}$$

$$:= \mathbf{i}k_{s}A_{0}\hat{\mathbf{R}}_{s}(x, d_{0}, \nu)e^{\mathbf{i}k_{s}x\cdot d_{0}}.$$
(4.10)

定义 **4.2.1** For any unit vector $d \in \mathbb{R}^2$, let $u_p^i = de^{\mathbf{i}k_p x \cdot d}$ or $u_s^i = d^{\perp}e^{\mathbf{i}k_s x \cdot d}$ be the incident wave and $u_{\alpha}^s = u_{\alpha}^s(x;d)$ be the radiation solution of the Navier equation:

$$u_{\alpha}^{s} + \omega^{2} u_{\alpha}^{s} = 0 \text{ in } \mathbb{R}^{2} \backslash \bar{D}$$

$$\Delta_{e} u_{\alpha}^{s} = -u_{\alpha}^{i} \text{ on } \partial D$$

The scattering coefficient $\mathbf{R}_{\alpha}(x;d)$ for $x \in \partial D$ is defined by the relation

$$\sigma(u_{\alpha}^{s} + u_{\alpha}^{i}) \cdot v = \mathbf{i}k_{\alpha}\mathbf{R}_{\alpha}(x;d)e^{\mathbf{i}k_{\alpha}x\cdot d}$$
 on ∂D

where $\alpha = p, s$.

For a convex object D, Kirchhoff approximation approximates the scattering coefficient by considering the boundary at $x \in \partial D$ locally as a plane with normal ν to obtain

$$\mathbf{R}_{\alpha}(x;d) \approx \begin{cases} \hat{\mathbf{R}}_{\alpha}(x;d,\nu(x)) & \text{if } x \in \partial D_{d}^{-} = \{x \in \partial D, \nu(x) \cdot d < 0\}, \\ 0 & \text{if } x \in \partial D_{d}^{+} = \{x \in \partial D, \nu(x) \cdot d \geq 0\}. \end{cases}$$

4.2.3 数值算例

In this section we present several numerical examples to show the effectiveness of Kirchhoff approximation. To synthesize the real scattering coefficient we compute the solution $\sigma(u_{\alpha}^s + u_{\alpha}^i) \cdot \nu$ of the scattering problems by representing the ansatz solution as the single layer potential with the Green tensor $\mathbb{G}(x,y)$ as the kernel

$$u^{s}(x) = \int_{\Gamma_{D}} -\mathbb{G}(y, x)^{T} \sigma(u^{s}(y) + u^{i}(y)) \nu ds(y) = -u^{i}(x) \quad \text{on } x \in \Gamma_{D},$$

and discretizing the integral equation by standard Nyström methods [11]. Let $\mathbf{R}_{\alpha}(x;d) = (\mathbf{R}_{\alpha}^{1}(x;d), \mathbf{R}_{\alpha}^{2}(x;d))^{T}$, then we have

$$\mathbf{R}_{\alpha}^{j}(x;d) = \frac{\sigma(u^{s}(y) + u^{i}(y))\nu \cdot e_{j}}{\mathbf{i}k_{\alpha}e^{\mathbf{i}k_{\alpha}x \cdot d}}.$$
(4.11)

We compute $\hat{\mathbf{R}}_{\alpha}(x;d) = (\hat{\mathbf{R}}_{\alpha}^{1}(x;d), \hat{\mathbf{R}}_{\alpha}^{2}(x;d))^{T}$ by (4.9) and (4.10). In all our numerical examples we choose Lamé constant $\lambda = 1/2$, $\mu = 1/4$ and

$$u_p^i = (\cos t, \sin t)^T e^{\mathbf{i}k_p(x_1\cos t + x_2\sin t)}$$

$$u_s^i = (\sin t, -\cos t)^T e^{\mathbf{i}k_s(x_1\cos t + x_2\sin t)}$$

where $t \in [0, 2\pi]$.. The boundaries of the obstacles used in our numerical experiments are parameterized as follows:

Circle:
$$x_1 = \cos(\theta), x_2 = \sin(\theta);$$

Pear:
$$\rho = 0.5(2 + 0.3\cos(3\theta)), x_1 = \sin\frac{\pi}{4}\rho(\cos\theta - \sin\theta), x_2 = \sin\frac{\pi}{4}\rho(\cos\theta + \sin\theta),$$

where

$$\theta \in [0, 2\pi]$$
 (See Figure 4.1).

In the following examples, we take the angular frequency $\omega = \pi, 2\pi, 4\pi, 8\pi$.

图 4.1 The shape of the obstacles.

附录 A 中国科学院大学学位论文撰写要求

学位论文是研究生科研工作成果的集中体现,是评判学位申请者学术水平、授予其学位的主要依据,是科研领域重要的文献资料。根据《科学技术报告、学位论文和学术论文的编写格式》(GB/T 7713-1987)、《学位论文编写规则》(GB/T 7713.1-2006)和《文后参考文献著录规则》(GB7714—87)等国家有关标准,结合中国科学院大学(以下简称"国科大")的实际情况,特制订本规定。

- A.1 论文无附录者无需附录部分
- A.2 测试公式编号

参考文献

- [1] Kupradze V D. Progress in solid mechanics. 3. dynamical problems in elasticity[M]. North-Holland Publishing Company, 1963.
- [2] Achenbach J. Wave propagation in elastic solids[M]. North-Holland, 1980: 544.
- [3] Harris J. Linear elastic waves[M]. Cambridge University Press, 2001: B26.
- [4] Ahlfors L V. Complex analysis: An introduction to the theory of analytic functions of one complex variable[M]. McGraw-Hill, 1979: 155-173.
- [5] Kuroda S T. An introduction to scattering theory.[M]. 2003.
- [6] Durán M, Muga I, Nédélec J C. The outgoing time-harmonic elastic wave in a half-plane with free boundary[J]. SIAM Journal on Applied Mathematics, 2011, 71(2):443-464.
- [7] Aki K, Richards P G. Quantitative seismology[M]. 2002.
- [8] Grafakos L. Classical and modern fourier analysis[M]. Prentice Hall, 2004.
- [9] Chen Z, Huang G. Reverse time migration for reconstructing extended obstacles in the half space[J]. Inverse Problems, 2015, 31(5):055007.
- [10] Arens T. A new integral equation formulation for the scattering of plane elastic waves by diffraction gratings[J]. Journal of Integral Equations and Applications, 1999, 11(3):232"C245.
- [11] Colton D, Kress R. Inverse acoustic and electromagnetic scattering theory: volume 93[M]. Springer Science and Business Media, 2012.

作者简历及攻读学位期间发表的学术论文与研究成果

作者简历

casthesis 作者

周世奇,浙江省绍兴人,中国科学院数学与系统科学研究院博士研究生。

研究方向

逆散射问题,弹性波方程,逆时偏移算法

已发表 (或正式接受) 的学术论文:

[1] Z. Chen, S. Zhou. A Direct Imaging Method for Half-Space Inverse Elastic Scattering Problems, Inverse Problems, Accepted.

致 谢

感激 casthesis 作者吴凌云学长,gbt7714-bibtex-style 开发者 zepinglee,和 ctex 众多开发者们。若没有他们的辛勤付出和非凡工作,LATEX 菜鸟的我是无法完成 此国科大学位论文 LATEX 模板 ucasthesis 的。在 LATEX 中的一点一滴的成长源于 开源社区的众多优秀资料和教程,在此对所有 LATEX 社区的贡献者表示感谢!

ucasthesis 国科大学位论文 LATEX 模板的最终成型离不开以霍明虹老师和丁云云老师为代表的国科大学位办公室老师们制定的官方指导文件和众多 ucasthesis 用户的热心测试和耐心反馈,在此对他们的认真付出表示感谢。特别对国科大的赵永明同学的众多有效反馈意见和建议表示感谢,对国科大本科部的陆晴老师和本科部学位办的丁云云老师的细致审核和建议表示感谢。谢谢大家的共同努力和支持,让 ucasthesis 为国科大学子使用 LATEX 撰写学位论文提供便利和高效这一目标成为可能。