Representation Theory

February 8, 2018

CONTENTS	2

Contents

0	Introduction					
1	Group actions					
2	Basic Definitions					
	2.1 Representations	6				
	2.2 Equivalent representations	7				
	2.3 Subrepresentations	9				
3	Complete reducibility and Maschke's theorem	11				
4	Schur's lemma					
5	Character theory					
6	Proofs and orthogonality					
7	Permutation representations	24				

0 Introduction

Representaiton theory is the theory of how groups act as groups of linear transformations on $vector\ spaces$.

Here the groups are either *finite*, or *compact topological groups* (infinite), for example, SU(n) and O(n). The vector spaces we conside are finite dimensional, and usually over \mathbb{C} . Actions are *linear* (see below).

Some books: James-Liebeck (CUP); Alperin-Bell (Springer); Charles Thomas, Representations of finite and Lie groups; Online notes: SM, Teleman; P.Webb A course in finite group representation theory (CUP); Charlie Curtis, Pioneers of representation theory (history).

1 Group actions

Throughout this course, if not specified otherwise:

- F is a field, usually \mathbb{C} , \mathbb{R} or \mathbb{Q} . When the field is one of these, we are discussing ordinary representation theory. Sometimes $F = F_p$ or \overline{F}_p (algebraic closure, see Galois Theory), in which case the theory is called modular representation theory;
- V is a vector space over F, always finite dimensional; $GL(V) = \{\theta : V \to V, \theta \text{ linear, invertible}\}$, i.e. $\det \theta \neq 0$.

Recall from Linear Algebra:

If $\dim_F V = n < \infty$, choose basis $e_1, ..., e_n$ over F, so we can identify it with F^n . Then $\theta \in GL(V)$ corresponds to an $n \times n$ matrix $A_{\theta} = (a_{ij})$, where $\theta(e_j) = \sum_i a_{ij} e_i$. In fact, we have $A_{\theta} \in GL_n(F)$, the general linear group.

- (1.1) $GL(V) \cong GL_n(F)$ as groups by $\theta \to A_\theta$ ($A_{\theta_1\theta_2} = A_{\theta_1}A_{\theta_2}$ and bijection). Choosing different basis gives different isomorphism to $GL_n(F)$, but:
- (1.2) Matrices A_1, A_2 represent the same element of GL(V) w.r.t different bases iff they are conjugate (similar), i.e. $\exists X \in GL_n(F)$ s.t. $A_2 = XA_1X^{-1}$.

Recall that $tr(A) = \sum_{i} a_{ii}$ where $A = (a_{ij})$, the trace of A.

- (1.3) $\operatorname{tr}(XAX^{-1}) = \operatorname{tr}(A)$, hence we can define $\operatorname{tr}(\theta) = \operatorname{tr}(A_{\theta_1})$ independent of basis.
- (1.4) Let $\alpha \in GL(V)$ where V in f.d. over \mathbb{C} , with $\alpha^m = \iota$ for some m (here ι is the identity map). Then α is diagonalisable.

Recall EndV is the set of all ilnear maps $V \to V$, e.g. $End(F^n) = M_n(F)$ some $n \times n$ matrices.

- (1.5) Proposition. Take V f.d. over \mathbb{C} , $\alpha \in End(V)$. Then α is diagonalisable iff there exists a polynomial f with distinct linear factors with $f(\alpha) = 0$. For example, in (1.4), where $\alpha^m = \iota$, we take $f = X^m 1 = \prod_{j=0}^{m-1} (X \omega^j)$ where $\omega = e^{2\pi i/m}$ is the (m^{th}) root of unity. In fact we have:
- $(1.4)^*$ A finite family of commuting separately diagonalisable automorphisms of a \mathbb{C} -vector space can be simultaneously diagonalised (useful in abelian groups).

Recall from Group Theory:

- (1.6) The symmetric group, $S_n = Sym(X)$ on the set $X = \{1, ..., n\}$ is the set of all permutations of X. $|S_n| = n!$. The alternating group A_n on X is the set of products of an even number of transpositions (2-cycles). $|A_n| = \frac{n!}{2}$.
- (1.7) Cyclic groups of order m: $C_m = \langle x : x^m = 1 \rangle$. For example, $(\mathbb{Z}/m\mathbb{Z}, +)$; also, the group of m^{th} roots of unity in \mathbb{C} (inside $GL_1(\mathbb{C}) = \mathbb{C}^*$, the multiplicative group of \mathbb{C}). We also have the group of rotations, centre O of regular m-gon in \mathbb{R}^2 (inside $GL_2(\mathbb{R})$).
- (1.8) Dihedral groups D_{2m} of order $2m = \langle x, y : x^m = y^2 = 1, yxy^{-1} = x^{-1} \rangle$. Think of this as the set of rotations and reflections preserving a regular m-gon.

- (1.9) Quaternion group, $Q_8 = \langle x, y | x^4 = 1, y^2 = x^2, yxy^{-1} = x^{-1} \rangle$ of order 8. For example, in $GL_2(\mathbb{C})$, put $i = \binom{i \ 0}{0 \ i}, j = \binom{0 \ 1}{-1 \ 0}, k = \binom{0 \ i}{i \ 0}$, then $Q_8 = \{\pm I_2, \pm i, \pm j, \pm k\}$.
- (1.10) The conjugacy class (ccls) of $g \in G$ is $C_G(g) = \{xgx^{-1} : x \in G\}$. Then $|C_G(g)| = |G : C_G(g)|$, where $C_G(g) = \{x \in G : xg = gx\}$, the centraliser of $g \in G$.
- (1.11) Let G be a group, X be a set. G acts on X if there exists a map $\cdot: G \times X \to X$ by $(g,x) \to g \cdot x$ for $g \in G$, $x \in X$, s.t. $1 \cdot x = x$ for all $x \in X$, $(gh) \cdot x = g \cdot (h \cdot x)$ for all $g, h \in G, x \in X$.
- (1.12) Given an action of G on X, we obtain a homomorphism $\theta: G \to Sym(X)$, called the *permutation representation* of G.

Proof. For $g \in G$, the function $\theta_g : X \to X$ by $x \to gx$ is a permutation on X, with inverse $\theta_{g^{-1}}$. Moreover, $\forall g_1, g_2 \in G$, $\theta_{g_1g_2} = \theta_{g_1}\theta_{g_2}$ since $(g_1g_2)x = g_1(g_2x)$ for $x \in X$.

2 Basic Definitions

2.1 Representations

Let G be finite, F be a field, usually \mathbb{C} .

Definition. (2.1)

Let V be a f.d. vector space over F. A (linear, in some books) representation of G on V is a group homomorphism

$$\rho = \rho_V : G \to GL(V)$$

Write ρ_g for the image $\rho_V(g)$; so for each $g \in G$, $\rho_g \in GL(V)$, and $\rho_{g_1g_2} = \rho_{g_1}\rho_{g_2}$, and $(\rho_g)^{-1} = \rho_{g^{-1}}$.

The dimension (or degree) of ρ is dim_F V.

(2.2) Recall $\ker \rho \triangleleft G$ (kernel is a normal subgroup), and $G/\ker \rho \cong \rho(G) \leq GL(V)$ (1st isomorphism theorem). We say ρ is faithful if $\ker \rho = 1$.

An alternative (and equivalent) approach is to observe that a representation of G on V is "the same as" a linear action of G:

Definition. (2.3)

G acts linearly on V if there exists a linear action

$$G \times V \to V$$
$$(g, v) \to gv$$

By linear action we mean: (action) $(g_1g_2)v = g_1(g_2v)$, $1v = v \ \forall g_1, g_2 \in G, v \in V$, and (linear) $g(v_1 + v_2) = gv_1 + gv_2$, $g(\lambda v) = \lambda gv \ \forall g \in G, v_1, v_2 \in V, \lambda \in F$. Now if G acts linearly on V, the map

$$G \to GL(V)$$

 $g \to \rho_g$

with $\rho_g: v \to gv$ is a representation of G. Conversely, given a representation $\rho: G \to GL(V)$, we have a linear action of G on V via $g \cdot v := \rho(g)v \ \forall v \in V, g \in G$.

- (2.4) In (2.3) we also say that V is a G-space or that V is a G-module. In fact if we define the *group algebra* FG, or F[G], to be $\{\sum \alpha_j g : \alpha_j \in F\}$ with natural addition and multiplication, then V is actually a FG-module (in the sense from GRM).
- (2.5) R is a matrix representation of G of degree n if R is a homomorphism $G \to GL_n(F)$. Given representation $\rho: G \to GL(V)$ with $\dim_F V = n$, fix basis B; we get matrix representation

$$G \to GL_n(F)$$

 $g \to [\rho(g)]_B$

Conversely, given matrix representation $R: G \to GL_n(F)$, we get representation

$$\rho: G \to GL(F^n)$$
$$g \to \rho_q$$

via $\rho_g(v) = R_g v$ where R_g is the matrix of g.

Example. (2.6)

Given any group G, take V = F the 1-dimensional space, and

$$\rho: G \to GL(F)$$
$$g \to (id: F \to F)$$

is known as the trivial representation of G. So deg $\rho = 1$ (dim_F F = 1).

Example. (2.7)

Let $G = C_4 = \langle x : x^4 = 1 \rangle$. Let n = 2, and $F = \mathbb{C}$. Note that any $R : x \to X$ will determine $x^j \to X^j$ as it is a homomorphism, and also we need $X^4 = I$. So we can take X to be diagonal matrix – any such with diagonal entries a root to $x^4 = 1$, i.e. $\{\pm 1, \pm i\}$, or if X is not diagonal then it will be similar to a diagonal matrix by (1.4) $(X^4 = I)$.

2.2 Equivalent representations

Definition. (2.8)

Fix G, F. Let V, V' be F-spaces, and $\rho: G \to GL(V), \rho': G \to GL(V')$ which are representations of G. The linear map $\phi: V \to V'$ is a G-homomorphism if

$$\phi \rho(g) = \rho'(g)\phi \forall g \in G(*)$$

We can understand this more by the following diagram:

We say ϕ intertwines ρ , ρ' . Write $Hom_G(V, V')$ for the F-space of all these. ϕ is a G-isomorphism if it is also bijective; if such ϕ exists, ρ , ρ' are isomorphic/equivalent representations. If ϕ is a G-isomorphism, we can write (*) as $\rho' = \phi \rho \phi^{-1}$.

Lemma. (2.9)

The relation "being isomorphic" is an equivalent relation on the set of all representations of G (over F).

Remark. (2.10)

If ρ, ρ' are isomorphic representations, they have the same dimension.

The converse may be false: C_4 has four non-isomorphic 1-dimensional representations: if $\omega = e^{2\pi i/4}$ then they are $\rho_j(x^i) = \omega^{ij}$ $(0 \le i \le 3)$.

Remark. (2.11)

Given G, V over F of dimension n and $\rho: G \to GL(V)$. Fix basis B for V: we get a linear isomorphism

$$\phi: V \to F^n$$
$$v \to [v]_B$$

and we get a representation $\rho': G \to GL(F^n)$ isomorphic to ρ :

(2.12) In terms of matrix representations, we have

$$R: G \to GL_n(F),$$

 $R': G \to GL_n(F)$

are (G)-isomorphic or equivalent if there exists a nonsingular matrix $X \in GL_n(F)$ with $R'(g) = XR(g)X^{-1} \ \forall g \in G$.

In terms of linear G-actions, the actions of G on V,V' are G-isomorphic if there exists isomorphisms $\phi:V\to V'$ such that $g:\phi(v)=\phi(gv)\ \forall v\in V,g\in G.$

2.3 Subrepresentations

Definition. (2.13)

Let $\rho: G \to GL(V)$ be a representation of G. We say $W \le V$ is a G-subspace if it's a subspace and it is $\rho(G)$ -invariant, i.e. $\rho_g(W) \le W \forall g \in G$. Obviously $\{0\}$ and V are G-subspaces, however.

 ρ is *irreducible/simple* representation if there are no proper G-subspaces.

Example. (2.14)

Any 1-dimensional representation of G is irreducible, but not conversely, e.g. D_8 has 2-dimensional \mathbb{C} -irreducible representation.

(2.15) In definition (2.13), if W is a G-subspace, then the corresponding map

$$G \to GL(W)$$

 $g \to \rho(g)|_W$

is a representation of G, a subrepresentation of ρ .

Lemma. (2.16)

In definition (2.13), given $\rho: G \to GL(V)$, if W is a G-subspace of V and if $B = \{v_1, ..., v_n\}$ is a basis containing basis $B_1 = \{v_1, ..., v_m\}$ of W (0 < m < n) then the matrix of $\rho(g)$ w.r.t. B has block upper triangular form as the graph below, for

each $g \in G$.

Example. (2.17)

(i) The irreducible representations of $C_4 = \langle x : x^4 = 1 \rangle$ are all 1-dimensional and four of these are $x \to i, x \to -1, x \to -i, x \to 1$. In general, $C_m = \langle x : x^m = 1 \rangle$ has precisely m irreducible complex representations, all of dimension 1. In fact, all complex irreducible representations of a finite abelian group are 1-dimensional (use $(1.4)^*$ or see (4.4) below).

(ii) $G = D_6$: any irreducible C-representation has dimension ≤ 2 .

Let $\rho: G \to GL(V)$ be irreducible G-representation. Let r, s be rotation and reflection in D_6 respectively. Let V be eigenvector of $\rho(r)$. So $\rho(r)v = \lambda v$

for some $\lambda \neq 0$. Let $W = span\{v, \rho(s)v\} \leq V$. Since $\rho(s)\rho(s)v = v$ and $\rho(r)\rho(s)v = \rho(s)\rho(r)^{-1}v = \lambda^{-1}\rho(s)v$, both of which are in W; so W is G-invariant, i.e. a G-subspace. Since V is irreducible, W = V.

Definition. (2.18)

We say at $\rho: G \to GL(V)$ is decomposable if there are proper G-invariant subspaces U, W with $V = U \oplus W$. Say ρ is direct sum $\rho_U \oplus \rho_W$. If no such decomposition exists, we say that ρ is indecomposable.

Lemma. (2.19)

Suppose $\rho: G \to GL(V)$ is decomposable with G-invariant decomposition $V = U \oplus W$. If B is a basis $\{\underbrace{u_1,...,u_k}_{B_1},\underbrace{w_1,...,w_l}_{B_2}\}$ of V consisting of basis of U

and basis of W, then w.r.t. B, $\rho(g)_B$ is a block diagonal matrix $\forall g \in G$ as

$$\rho(g)_B = \begin{pmatrix} [\rho_W(g)]_{B_1} & 0\\ 0 & [\rho_W(g)]_{B_2} \end{pmatrix}$$

Definition. (2.20)

If $\rho: G \to GL(V)$, $\rho': G \to GL(V')$, the direct sum of ρ, ρ' is

$$\rho \oplus \rho' : G \to GL(V \oplus V')$$

where $\rho \oplus \rho'(g)(v_1 + v_2) = \rho(g)v_1 + \rho'(g)v_2$, a block diagonal action. For matrix representations $R: G \to GL_n(F)$, $R': G \to GL_{n'}(F)$, define $R \oplus R': G \to GL_{n+n'}(F)$:

$$g \to \begin{pmatrix} R(g) & 0 \\ 0 & R'(g) \end{pmatrix}$$

3 Complete reducibility and Maschke's theorem

Definition. (3.1)

A representation $\rho: G \to GL(V)$ is completely reducible, or semisimple, if it is a direct sum of irreducible representations. Evidently, irreducible implies completely reducible (lol).

Remark. (3.2)

- (1) The converse is false;
- (2) See sheet 1 Q3: \mathbb{C} -representation of \mathbb{Z} is not completely reducible and also representation of C_p over \mathbb{F}_p is not c.r..

From now on, take G finite and char F = 0.

Theorem. (3.3)

Every f.d. representation V of a finite group over a field of char 0 is completely reducible, i.e.

$$V \cong V_1 \oplus ... \oplus V_r$$

is a direct sum of representations, each V_i irreducible.

It is enough to prove:

Theorem. (3.4 Maschke's theorem, 1899)

Let G be finite, $\rho: G \to GL(V)$ a f.d. representation, $char\ F = 0$. If W is a G-subspace of V, then there exists a G-subspace U of V s.t. $V = W \oplus U$, a direct sum of G-subspaces.

Proof. (1)

Let W' be any vector subspace complement of W in V, i.e. $V = W \oplus W'$ as vector spaces, and $W \cap W' = 0$. Let $q: V \to W$ be the projection of V onto W along W' (ker q = W'), i.e. if v = w + w' then q(v) = w. Define

$$\bar{q}: v \to \frac{1}{|G|} \sum_{g \in G} gq(g^{-1}v)$$

the 'average' of q over G. Note that in order for $\frac{1}{|G|}$ to exists, we need $char\ F=0$. It still works if $char\ F \nmid |G|$.

Claim (1): $\bar{q}: V \to W$: For $v \in V$, $g(q^{-1}v) \in W$ and $gW \le W$;

Claim (2): $\bar{q}(w) = w$ for $w \in W$:

$$\bar{q}(w) = \frac{1}{|G|} \sum_{g \in G} gq(g^{-1}w) = \frac{1}{|G|} \sum g(g^{-1}w) = \frac{1}{|G|} \sum w = w$$

So these two claims imply that \bar{q} projects V onto W.

Claim (3) If $h \in G$ then $h\bar{q}(v) = \bar{q}(hv)$ $(v \in V)$:

$$h\bar{q}(v) = h\frac{1}{|G|} \sum_{g} g \cdot q(g^{-1}v)$$

$$= \frac{1}{|G|} \sum_{g} hgq(g^{-1}v)$$

$$= \frac{1}{|G|} \sum_{g} (hg)q((hg)^{-1}hv)$$

$$= \frac{1}{|G|} \sum_{g} gq(g^{-1}(hv))$$

$$= \bar{q}(hv)$$

$$= \bar{q}(hv)$$

We'll then show that the kernel of this map is G-invariant, so this gives a G-summand on Thursday.

Let's now show $\ker \bar{q}$ is G-invariant. If $v \in \ker \bar{q}$, then $h\bar{q}(v) = 0 = \bar{q}(hv)$, so $hv \in \ker \bar{q}$. Thus $V = im\bar{q} \oplus \ker \bar{q} = W \oplus \ker \bar{q}$ is a G-subspace decomposition.

We can deduce (3.3) from (3.4) by induction on $\dim V$. If $\dim V = 0$ or V is irreducible, then result is clear. Otherwise, V has non-trivial G-invariant subspace, W. Then by (3.4), there exists G-invariant complement U s.t. $V = U \oplus W$ as representations of G. But $\dim U$, $\dim W < \dim V$. So by induction they can be broken up into direct sum of irreducible subrepresentations.

The second proof uses inner products, hence we need to take $F=\mathbb{C}$ and can be generalised to compact groups in section 15.

Recall, for V a \mathbb{C} -space, \langle , \rangle is a Hermitian inner product if

- (a) $\langle w, v \rangle = \overline{\langle v, w \rangle} \ \forall v, w \ (Hermitian);$
- (b) linear in RHS (sesquilinear);
- (c) $\langle v, v \rangle > 0$ iff $v \neq 0$ (positive definite).

Additionally, \langle , \rangle is *G-invariant* if

(d)
$$\langle gv, gw \rangle = \langle v, w \rangle \ \forall v, w \in V, g \in G.$$

Note if W is G-invariant subspace of V, with G-invariant inner product, then W^{\perp} is also G-invariant, and $V \oplus W^{\perp}$. For all $v \in W^{\perp}$, $g \in G$, we have to show that $gv \in W^{\perp}$. But $v \in W^{\perp} \iff \langle v, w \rangle = 0 \forall w \in W$. Thus by (d), $\langle gv, gw \rangle = 0 \ \forall g \in G \forall w \in W$. Hence $\langle gv, w' \rangle = 0 \ \forall w' \in W$. Since we can choose $w = g^{-1}w' \in W$ by G-invariance of W. Thus $gv \in W^{\perp}$ since g was arbitrary.

Hence if there is a G-invariant inner product on any G-space, we get another proof of Maschke's theorem:

(3.4*) (Weyl's unitary trick)

Let ρ be a complex representation of the finite group G on the \mathbb{C} -space V. Then there is a G-invariant Hermitian inner product on V.

Remark. Recall the unitary group U(V) on V: $\{f \in GL(V) : (fu, fv) = (u, v) \forall u, v \in V\} = \{A \in GL_n(\mathbb{C}) : A\bar{A}^T = I\} (= U(n))$ by choosing orthonormal

basis.

Sheet 1 Q.12: any finite subgroup of $GL_n(\mathbb{C})$ is conjugate to a subgroup of U(n).

Proof. (2)

There exist an inner product on V: take basis $e_1, ..., e_n$ and define $(e_i, e_j) = \delta_{ij}$, extended sesquilinearly. Now

$$\langle v, w \rangle := \frac{1}{|G|} \sum_{g \in G} (gv, gw)$$

we claim that \langle , \rangle is sesquilinear, positive definite and G-invariant: if $h \in G$, then

$$\langle hv, hw \rangle = \frac{1}{|G|} \sum_{g \in G} ((gh)v, (gh)w)$$

$$= \frac{1}{|G|} \sum_{g' \in G} (g'v, g'w)$$

$$= \langle v, w \rangle$$

for all $v, w \in V$.

Definition. (3.5, the regular representation)

Recall group algebra of G is F-space $FG = span\{e_g : g \in G\}$. There is a linear G-action

$$h\in G, h\sum_{g\in G}a_ge_g=\sum_{g\in G}a_ge_{hg}(=\sum_{g'\in G}a_{h^{-1}g'}e_{g'})$$

 ρ_{reg} is the corresponding representation, the regular representation of G. This is faithful of dim |G|. FG is the regular module.

Proposition. Let ρ be an irreducible representation of G over a field of characteristic 0. Then ρ is isomorphic to a subrepresentation of ρ_{reg} .

Proof. Take $\rho: G \in GL(V)$ irreducible and let $0 \neq v \in V$. Let $\theta: FG \to V$ by $\sum a_g e_g \to \sum a_g gv$. Check this is a G-homomorphism. Now V is irreducible so $im\theta = V$ (since $im\theta$ is a G-subspace).

Also $\ker \theta$ is G-subspace of FG. Let W be G-complement of $\ker \theta$ in FG (Maschke), so that W < FG is G-subspace and $FG = \ker \theta \oplus W$. Thus $W \cong FG/\ker \theta \cong (G-isomorphism)im\theta \cong V$.

More generally,

Definition. (3.7)

Let F be a field. Let G act on set X. Let $FX = span\{e_x : x \in X\}$ with G-action

$$g(\sum a_x e_x) = \sum a_x e_{gx}$$

The representation $G \to GL(V)$ where V = FX is the corresponding permutation representation. See section 7.

4 Schur's lemma

It's really unfair that such an important result is only remembered by a lemma, so we shall call it a theorem.

Theorem. (4.1, Schur)

- (a) Assume V, W are irreducible G-spaces over field F. Then any G-homomorphism $\theta: V \to W$ is either 0 or an isomorphism.
- (b) Assume F is algebraically closed, and let V be an irreducible G-space. Then any G-endomorphism $V \to V$ is a scalar multiple of the identity map ι_V .

Proof. (a) Let $\theta: V \to W$ be a G-homomorphism. Then ker θ is G subspace of V and, since V is irreducible, we get ker $\theta = 0$ or ker $\theta = V$.

And $im\theta$ is G-subspace of W, so as W is irreducible, $im\theta$ is either 0 or W. Hence, either $\theta = 0$ or θ is injective and surjective, hence isomorphism.

(b) Since F is algebraically closed, θ has an eigenvalue, λ . Then $\theta - \lambda \iota$ is singular G-endomorphism of V, but it cannot be an isomorphism, so it is 0 (by (a)). So $\theta = \lambda \iota_V$.

Recall from (2.8), the F-space $Hom_G(V, W)$ of all G-homomorphisms $V \to W$. Write $End_G(V)$ for the G-endomorphisms of V.

Corollary. (4.2)

If V, W are irreducible complex G-spaces, then

$$\dim_{\mathbb{C}} Hom_G(V,W) = \left\{ \begin{array}{ll} 1 & \text{ if } V,W \text{ are } G-\text{ isomorphic} \\ 0 & \text{ otherwise} \end{array} \right.$$

Proof. If V, W are not G-isomorphic then the only G-homomorphism $V \to W$ is 0 by (4.1). Assume $v \cong_G W$ and $\theta_1, \theta - 2 \in Hom_G(V, W)$, both non-zero. Then θ_2 is invertible by (4.1), and $\theta_2^{-1}\theta_1 \in End_G(V)$, and non-zero, so $\theta_2^{-1}\theta_1 = \lambda \iota_V$ for some $\lambda \in \mathbb{C}$. Hence $\theta_1 = \lambda \theta_2$.

Corollary. (4.3)

If finite group G has a faithful complex irreducible representation, then Z(G), the centre of the group, is cyclic.

Note that the converse is false (Sheet 1, Q10).

Proof. Let $\rho: G \to GL(V)$ be faithful irreducible complex representation. Let $z \in Z(G)$, so $zg = gz \ \forall g \in G$, hence the map $\phi_z: v \to z(v) \ (v \in V)$ is G-endomorphism of V, hence is multiplication by scalar μ_z , say. By Schur's lemma, $z(v) = \mu_z v \ \forall v$. Then the map

$$Z(G) \to \mathbb{C}^*$$
 (multiplicative group)
 $z \to \mu_z$

is a representation of Z and is faithful, since ρ is. Thus Z(G) is isomorphic to some finite subgroup of \mathbb{C}^* , so is cyclic.

Let's now consider representation of finite abelian groups.

Corollary. (4.4)

The irreducible C-representations of a finite abelian group are all 1-dimensional.

Proof. Either: use $(1.4)^*$ to invoke simultaneous diagonalisation: if v is an eigenvector for each $g \in G$, and if V is irreducible, then $V = \langle v \rangle$. Or: Let V be an irreducible \mathbb{C} -representation. For $g \in G$, the map

$$\begin{array}{ccc} \theta_g : V & \to v \\ v & \to gv \end{array}$$

is a G-endomorphism of V, and as V irreducible, $\theta_g = \lambda_g \iota_V$ for some $\lambda_g \in \mathbb{C}$. Thus $gv = \lambda_g v$ for any $g \in G$ (so $\langle v \rangle$ is a G-subspace of V). Thus as $0 \neq V$ is irreducible, $V = \langle v \rangle$, which is 1-dimensional.

Remark. Schur's lemma fails over non-algebraically closed field, in particular, over \mathbb{R} . For example, let's consider the cyclic group C_3 . It has 2 irreducible \mathbb{R} -representations, one of dimension 1 (maps everything to 1) and one of dimension 2 (imo consider \mathbb{C} as a dimension 2 space over \mathbb{R} , then map the generator to the 3rd root of unity?) (so 'contradicting' with Schur's lemma via the corollary above).

Recall that every finite abelian group G is isomorphic to a product of cyclic groups (see GRM). For example, $C_6 = C_2 \times C_3$. In fact, it can be written as a product of $C_{p^{\alpha}}$ for various primes p and $\alpha \geq 1$, and the factors are uniquely determined up to reordering.

Proposition. (4.5)

The finite abelian group $G = C_{n_1} \times ... \times C_{n_r}$ has precisely |G| irreducible \mathbb{C} -representations, as described below:

Proof. Write $G = \langle x_1 \rangle \times ... \langle x_r \rangle$ where $|x_j| = n_j$. Suppose ρ is irreducible, so by (4.4), it's 1-dimensional: $\rho : G \to \mathbb{C}^*$.

Let $\rho(1,...,x_j,...,1)$ (all 1 apart from the j^{th} entry) be λ_j . Then $\lambda_j^{n_j}=1$, so λ_j is a n_j -th root of unity. Now, the values $(\lambda_1,...,\lambda_r)$ determine ρ :

$$\rho(x_1^{j_1},...,x_r^{j_r})=\lambda_1^{j_1}...\lambda_r^{j_r}$$

thus $\rho \leftrightarrow (\lambda_1, ..., \lambda_r)$ with $\lambda_j^{n_j} = 1 \ \forall j$; we have $n_1...n_r$ such r-tuples, each giving 1-dimensional representation.

Example. (4.6)

Consider $G = C_4 = \langle x \rangle$. We could have $\rho_1(x) = 1$, $\rho_2(x) = i$, $\rho_3(x) = -1$, $\rho_4(x) = -i$.

Warning: There is no "natural" 1-1 correspondence between the elements of G and the representations of G (G-finite abelian). If you choose an isomorphism $G \cong C_{a_1} \times ... \times C_{a_r}$, then we can identify the two sets (elements of groups and representations of G), but it depends on the choice of isomorphism.

Isotypical decomposition:

Recall any diagonalisable endomorphism $\alpha: V \to V$ gives eigenspace decomposition of $V \cong \bigoplus_{\lambda} V(\lambda)$, where $V(\lambda) = \{v: \alpha v = \lambda v\}$. This is *caconical* (one of the three useless words: *arbitrary*(anything), *canonical*(only one choice), *uniform*(you can choose, but it doesn't really matter)), in the sense that it depends on α alone (and nothing else).

There is no canonical eigenbasis of V: must choose basis in each $V(\lambda)$.

We know that in *char* 0 every representation V decomposes as $\oplus n_i V_i$, V_i irreducible, $n_i \geq 0$. How unique is this?

We have this wishlist (4.7):

- (a) Uniqueness: for each V there is only one way to decompose V as above. However, this doesn't work obviously.
- (b) Isotypes: for each V, there exists a unique collection of subrepresentations $U_1,...,U_k$ s.t. $V=\oplus U_i$ and, if $V_i\subseteq U_i$ and $V'_j\subseteq U_j$ are irreducible subrepresentations, then $V_i\cong V'_j$ iff i=j.
- (c) Uniqueness of factors: If $\bigoplus_{i=1}^k V_i \cong \bigoplus_{i=1}^k V_i'$ with V_i, V_i' irreducible, then k = k', and $\exists \pi \in S_k$ such that $V'_{\pi(i)} \cong V_i$ (Krull-Schimdt theorem). For (b),(c) see Teleman section 5.

Lemma. (4.8)

Let V, V_1, V_2 be G-spaces over F.

- (i) $Hom_G(V, V_1 \oplus V_2) \cong Hom_G(V, V_1) \oplus Hom_G(V, V_2);$
- (ii) $Hom_G(V_1 \oplus V_2, V) \cong Hom_G(V_1, V) \oplus Hom_G(V_2, V);$

Proof. (i) Let $\pi_i: V_1 \oplus V_2 \to V_i$ be G-linear projections onto V_i , with kernel V_{3-i} (i=1,2).

Consider

$$Hom_G(V, V_1 \oplus V_2) \to Hom_G(V, V_1) \oplus Hom_G(V, V_2)$$

 $\phi \to (\pi_1 \phi, \pi_2 \phi)$

This map has inverse $(\psi_1, \psi_2) \to \psi_1 + \psi_2$). Check details.

(ii) The map
$$\phi \to (\phi|_{V_1}, \phi|_{V_2})$$
 has inverse $(\psi_1, \psi_2) \to \psi_1 \pi_1 + \psi_2 \pi_2$.

Lemma. Let F be algebraically closed, $V = \bigoplus_{i=1}^{n} V_i$ a decomposition of G-space into irreducible summands. Then, for each irreducible representation S of G,

$$\#\{j: V_j \cong S\} = \dim Hom_G(S, V)$$

where # means 'number of times'. This is called the *multiplicity* of S in V.

Proof. Indunction on n. n = 0, 1 are trivial. If n > 1, $V = \bigoplus_{i=1}^{n-1} V_i \oplus V_n$. By (4.8) we have

$$\dim Hom_G(S, \bigoplus_{1}^{n-1} V_i \oplus V_n) = \dim Hom(S, \bigoplus_{1}^{n-1} V_i) + \underbrace{\dim Hom_G(S, V_n)}_{\text{Schur's lemma}}$$

Definition. (4.10)

A decomposition of V as $\oplus W_j$ where each $W_j \cong n_j$ copies of irreducible representations S_j (each non-isomorphic for each j) is the *canonical decomposition* or the decomposition into *isotypical components* W_j . For F algebraically closed, $n_j = \dim Hom_G(S_j, V)$.

5 Character theory

We want to attach invariants to representation ρ of a finite group G on V. Matrix coefficients of $\rho(g)$ are basis dependent, so not true invariants.

Let's take $F = \mathbb{C}$, G finite, $\rho = \rho_V : G \to GL(V)$ be a representation of G.

Definition. (5.1)

The character $\chi_{\rho} = \chi_{V} = \chi$ is defined as $\chi(g) = \operatorname{tr} \rho(g) = \operatorname{tr} R(g)$ where R(g) is any matrix representation of $\rho(g)$ w.r.t. any basis.

The degree of χ_V is $\dim_{\mathbb{C}} V$.

Thus χ is a function $G \to \mathbb{C}$. χ is *linear* (not a universal name) if dim V = 1, in which case χ is a homomorphism $G \to \mathbb{C}^*$ (= $GL_1(\mathbb{C})$).

 χ is irreducible if ρ is; χ is faithful if ρ is; and, χ is trivial, or principal, if ρ is the trivial representation (2.6). We write $\chi = 1_G$ in that case.

 χ is a complete invariant in the sense that it determines ρ up to isomorphism – see (5.7).

Theorem. (5.2, first properties)

- (i) $\chi_V(1) = \dim_{\mathbb{C}} V$; (clear: $\operatorname{tr} I_n = n$)
- (ii) χ_V is a class function, via it is conjugation-invariant:

$$\chi_V(hgh^{-1}) = \chi_V(g) \forall g, h \in G$$

Thus χ_V is constant on conjugacy classes.

- (iii) $\chi_V(g^{-1}) = \overline{\chi_V(g)}$, the complex conjugate;
- (iv) For two representations $V, W, \chi_{V \oplus W} = \chi_V + \chi_W$.

Proof. (ii) $\chi(hgh^{-1}) = \text{tr}(R_h R_g R_h^{-1}) = \text{tr}(R_g) = \chi(g)$.

(iii) Recall $g \in G$ has finite order, so we can assume $\rho(g)$ is represented by a diagonal matrix $Diag(\lambda_1,...,\lambda_n)$. Then $\chi(g) = \sum \lambda_i$. Now g^{-1} is represented by the matrix $Diag(\lambda_1^{-1},...\lambda_n^{-1})$, and hence $\chi(g^{-1}) = \sum \lambda_i^{-1} = \sum \bar{\lambda_i} = \overline{\chi(g)}$ (since λ_i 's are roots of unity – since $g^k = 1$ for some k!(I mean an exclamation mark here to express surprise) and by homomorphism we know that).

(iv) Suppose $V = V_1 \oplus V_2$, $\rho_i : G \to GL(V_i)$, $\rho : G \to GL(V)$. Take basis $B = B_1 \cup B_2$ of V w.r.t B, $\rho(g)$ has matrix of block form $Diag([\rho_1(g)]_{B_1}, [\rho_2(g)]_{B_2})$ and as $\chi(g)$ is the trace of the above matrix, it is equal of $\operatorname{tr} \rho_1(g) + \operatorname{tr} \rho_2(g) = \chi_{\rho_1}(g) + \chi_{\rho_2}(g)$.

Remark. We see later that χ_1, χ_2 character of G implies that $\chi_1 \chi_2$ is also a character of G: uses tensor products, see (9.6).

Lemma. (5.3)

Let $\rho: G \to GL(V)$ be a copmlex representation affording the character χ (i.e. χ is a character of ρ). Then $|\chi(g)| \leq \chi(1)$, with equality iff $\rho(g) = \lambda_I$ for some $\lambda \in \mathbb{C}$, a root of unity. Moreover, $\chi(g) = \chi(1)$ iff $g \in \ker \rho$.

Proof. Fix g. W.r.t. basis of V of eigenvalues $\rho(g)$, the matrix of $\rho(g)$ is $Diag(\lambda_1,...,\lambda_n)$. Hence $|\chi(g)| = |\sum \lambda_j| \leq \sum |\lambda_j| = \sum 1 = \dim V = \chi(1)$. Equality holds iff all λ_j are equal (to λ , say). If $\chi(g) = \chi(1)$, then $\rho(g) = \lambda \iota$ has $\chi(g) = \lambda \chi(1)$.

Lemma. (5.4)

- (a) If χ is a complex irreducible character of G, so is $\bar{\chi}$;
- (b) Under the same assumption, so is $\varepsilon \chi$ for any linear character ε of G.

Proof. If $R: G \to GL_n(\mathbb{C})$ is a complex irreducible representation then so is $\bar{R}: G \to GL_n(\mathbb{C})$ by $g \to \bar{R}(g)$. Similarly for $R': g \to \varepsilon(g)R(g)$ for $g \in G$. Check the details.

Definition. (5.5)

 $\mathcal{C}(G) = \{f : G \to \mathbb{C} : f(hgh^{-1}) = f(g) \forall h, g \in G\}, \text{ the } \mathbb{C}\text{-space of class functions}$ (we call it a space since $f_1 + f_2 : g \to f_1(g) + f_2(g), \lambda f : g \to \lambda f(g)$ are still in $\mathcal{C}(G)$), so this is a vector space.

Let k = k(G) be the number of ccls of G. List the ccls $C_1, ..., C_k$. Conventionally we choose $g_1 = 1, g_2, ..., g_k$, representatives of the ccls (hence $C_1 = \{1\}$). Note that $\dim_{\mathbb{C}} C(G) = k$ (the characteristic functions δ_j of each ccl which maps any element in the ccl to 1 and others to 0 form a basis).

We define Hermitian inner product on C(G):

$$\langle f, f' \rangle = \frac{1}{|G|} \sum_{g \in G} \overline{f(G)} f'(g)$$

$$= \frac{1}{|G|} \sum_{j=1}^{k} |\mathcal{C}_j| \overline{f(g_j)} f'(g_j)$$

$$= \sum_{i=1}^{k} \frac{1}{|C_G(g_j)|} \overline{f(g_j)} f'(g_j)$$

using $|\mathcal{C}_x| = |G : C_g(x)|$, where \mathcal{C}_x is the ccl of x, $C_G(x)$ is the centraliser of x. For characters

$$\langle \chi, \chi' \rangle = \sum \frac{1}{|C_G(g_j)|} \chi(g_j^{-1}) \chi'(g_j)$$

is a real symmetric form (in fact, $\langle \chi, \chi' \rangle \in \mathbb{Z}$ – see later).

Theorem. (5.6)

The \mathbb{C} -irreducible characters of G form an orthonormal basis of $\mathcal{C}(G)$. Moreover, (a) If $\rho: G \to GL(V), \rho': G \to GL(V')$ are irreducible representations of G affording characters χ, χ' respectively, then

$$\langle \chi, \chi' \rangle = \left\{ \begin{array}{ll} 1 & \rho, \rho' \text{ are isomorphic representations} \\ 0 & \text{otherwise} \end{array} \right.$$

we call this 'row orthogonality'.

(b) Each class function of G can be expressed as a linear combination of G. This will be proved later in section 6.

Corollary. (5.7)

Complex representations of *finite* groups are characterised by their characters. We emphasise on finiteness here: for example, $G = \mathbb{Z}$, consider $1 \to I_2$, $1 \to \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ are non-isomorphic but have same character.

Proof. Let $\rho: G \to GL(V)$ be representation affording χ (G finite over \mathbb{C}). (3.3) says

$$\rho = m_1 \rho_1 \oplus ... \oplus m_k \rho_k$$

where $\rho_1, ..., \rho_k$ are irreducible, and $m_j \geq 0$. Then $m_j = \langle \chi, \chi_j \rangle$ where χ_j is afforded by ρ_j : we have $\chi = m_1 \chi_1 + ... + m_k \chi_k$, but the ρ_i 's are orthonormal. \square

Corollary. (5.8, irreduciblility criterion)

If ρ is \mathbb{C} -representation of G affording χ , then ρ irreducible $\iff \langle \chi, \chi \rangle = 1$.

Proof. Forward is just the statement of orthonormality. Conversely, assume $bra\chi, \chi\rangle = 1$. Now take a (complete) decomposition of ρ and take characters of it we get $\chi = \sum m_j \chi_j$ with χ_j irreducible and $m_j \geq 0$. Then $\sum m_j^2 = 1$. Hence $\chi = \chi_j$ for some j (since the m_j 's are obviously integers), so is irreducible. \square

Corollary. (5.9)

If the irreducible \mathbb{C} -representations of G are $\rho_1, ..., \rho_k$ have dimensions $n_1, ..., n_k$, then

$$|G| = \sum_{i=1}^{k} n_i^2$$

Proof. Recall from (3.5), ρ_{reg} ; $G \to GL(\mathbb{C}G)$, the regular representation G of dimension |G| (where $\mathbb{C}G$ is just a G-space with basis $\{e_g : g \in G\}$ and any $h \in G$ permutes the $e_g : e_g \to e_{hg}$).

Let π_{reg} be its character, the regular character of G.

Claim 1: $\pi_{reg}(1) = |G|, \ \pi_{reg}(h) = 0 \text{ if } h \neq 1.$

This is clear: take $h \in G, h \neq 1$, then we always have 0 down the diagonal since h permutes things around, so the trace is 0; if h = 1 then we have an identity matrix so trace is dim $\rho = |G|$.

Claim 2: $\pi_{reg} = \sum n_j \chi_j$ with $n_j = \chi_j(1)$.

This is because

$$n_{j} = \langle \pi_{reg}, \chi_{j} \rangle$$

$$= \frac{1}{|G|} \sum_{g \in G} \overline{\pi_{reg}(g)} \chi_{j}(g)$$

$$= \frac{1}{|G|} \cdot |G| \chi_{j}(1) = \chi_{j}(1)$$

(all the other $\pi_{reg}(g)$ are zero by claim 1).

Our corollary is then obvious by just calculating $|G| = \pi_{reg}(1)$.

Corollary. (5.10)

Number of irreducible characters of G (up to equivalence) = k (=number of ccls).

Corollary. (5.11)

Elements $g_1, g_2 \in G$ are conjugate iff $\chi(g_1) = \chi(g_2)$ for all irreducible characters of G.

Proof. Forward: characters are class functions;

Backward: Let δ be the characteristic function of the class of g_1 . In particular, δ is a class function, so can be written as a linear combination of the irreducible characters of G. Hence $\delta(g_2) = \delta(g_1) = 1$, so $g_2 \in \mathcal{C}_G(g_1)$.

In the end let's introduce a good friend which will be around for the next few

Recall from (5.5), the inner product on $\mathcal{C}(G)$ and the real symmetric form \langle , \rangle on characters:

Definition. The character table of G is the $k \times k$ matrix (where k is the number of ccls) $X = [\chi_i(g_i)]$, the i^{th} character on the j^{th} class, where we let $\chi_1 = 1_G, \chi_2, ..., \chi_k$ are the irreducible characters of G, and $C_1 = \{1\}, ..., C_k$ are the ccls with $g_j \in \mathcal{C}_j$ (as we defined in 5.5). So the $(i,j)^{th}$ entry of X is just $\chi_i(g_i)$.

Example. (5.13)

(a) $C_3 = \langle x : x^3 = 1 \rangle$. The character table is

where $\omega = e^{2\pi i/3}$.

(b)
$$G = D_c \cong S_2 = \langle r, s \cdot r^3 = s^2 = 1, sr^{-1} = r^{-1} \rangle$$

(b) $G = D_6 \cong S_3 = \langle r, s : r^3 = s^2 = 1, sr^{-1} = r^{-1} \rangle$. ccls of $G: \mathcal{C}_1 = \{1\}, \mathcal{C}_2 = \{r, r^{-1}, \mathcal{C}_3 = \{s, sr, sr^2\}$. We have 3 irreducible representations over \mathbb{C} : 1_G (trivial); \mathcal{S} (sign): $x \to 1$ for x even, $x \to -1$ for xodd; and W (2-dimensional): sr^i acts by matrix with eigenvalues ± 1 ; r^k acts by the matrix

$$\cos 2k\pi/3 - \sin 2k\pi/3$$

$$\sin 2k\pi/3 - \cos 2k\pi/3$$

so $\chi_w(sr^i) = 0 \ \forall j, \ \chi_w(r^k) = 2\cos 2k\pi/3 = -1 \ \forall k$. So the charactable is:

$$\begin{array}{cccccc} & \mathcal{C}_1 & \mathcal{C}_2 & \mathcal{C}_3 \\ 1_G & 1 & 1 & 1 \\ \chi_s & 1 & -1 & 1 \\ \chi_w & 2 & 0 & -1 \end{array}$$

6 Proofs and orthogonality

We want to prove (5.6): irreducible characters form orthonormal basis for the space of \mathbb{C} -class functions.

Proof. (of 5.6 (a))

Fix bases of V and V'. Write R(g), R'(g) for matrices of $\rho(g)$, $\rho'(g)$ w.r.t. these bases, respectively. Then

$$\begin{split} \langle \chi', \chi \rangle &= \frac{1}{|G|} \chi'(g^{-1}) \chi(g) \\ &= \frac{1}{|G|} \sum_{g \in G, i, j} \sum_{s.t. 1 \le i \le n', 1 \le j \le n} R'(g^{-1})_{ii} R(g)_{jj} \end{split}$$

the trick is to define something that annhilates almost the whole thing. Let $\phi: V \to V'$ be linear and define

$$\tilde{\phi}: V \to V'$$

$$v \to \frac{1}{|G|} \sum_{g \in G} \rho'(g^{-1}) \phi \rho(g) v$$

We claim that this is a G-homomorphism: if $h \in G$, let's calculate

$$\rho'(h^{-1})\tilde{\phi}\rho(h)(v) = \frac{1}{|G|} \sum_{g \in G} \rho'(gh)^{-1} \phi \rho(gh)(v)$$
$$= \frac{1}{|G|} \sum_{g' \in G} \rho'(g'^{-1}) \phi \rho(g')(v)$$
$$= \tilde{\phi}(v)$$

(when g runs through G, gh runs through G as well). So (2.8) is satisfied, i.e. ϕ is a G-homomorphism.

Case 1: ρ, ρ' are not isomorphic. Schur's lemma says $\tilde{\phi} = 0$ for any given linear $\phi: V \to V'$. Take $\phi - \varepsilon_{\alpha\beta}$, having matrix $E_{\alpha\beta}$ (w.r.t our basis). This is 0 everywhere except 1 in the (α, β) -position. Then $\varepsilon_{\alpha\beta}^{\tilde{\epsilon}} = 0$. So $\frac{1}{|G|} \sum_{g \in G} (R'(g^{-1}) E_{\alpha\beta} R(g))_{ij} = 0$. So $\frac{1}{|G|} \sum R'(G^{-1})_{i\alpha} R(g)_{\beta j} = 0 \ \forall i, j$, with $\alpha = i, \beta = j$. Now $\frac{1}{|G|} \sum_{g \in G} R'(g^{-1})_{ii} R(g)_{jj} = 0$ sum over i, j. Then $\langle \chi', \chi \rangle = 0$. Case 2: ρ, ρ' isomorphic. So $\chi = \chi'$; take V = V', $\rho = \rho'$. If $\phi: V \to V$ is linear endomorphism, we claim tr $\phi = \operatorname{tr} \phi$:

$$\operatorname{tr} \tilde{\phi} = \frac{1}{|G|} \sum_{g \in G} \operatorname{tr}(\rho(g)^{-1} \phi \rho(g)) = \frac{1}{|G|} \sum_{g \in G} \operatorname{tr} \phi = \operatorname{tr} \phi$$

By Schur's lemma, $\tilde{\phi} = \lambda \iota_V$ for some $\lambda \in \mathbb{C}$ (depending on ϕ). Then $\lambda = \frac{1}{n} \operatorname{tr} \phi$. Let $\phi = \varepsilon_{\alpha\beta}$. So $\operatorname{tr} \phi = \delta_{\alpha\beta}$. Hence $\varepsilon_{\alpha\beta}^{\tilde{\epsilon}} = \frac{1}{n} \delta_{\alpha\beta} \iota_v = \frac{1}{|G|} \sum_{g \in G} \rho(g^{-1}) \varepsilon_{\alpha\beta} \rho(g)$. In terms of matrices, take (i,j)-entry: $\frac{1}{|G|} \sum_j R(g^{-1})_{i\alpha} R(g)_{\beta j} = \frac{1}{n} \delta_{\alpha\beta} \delta_{ij} \ \forall i,j$. Put $\alpha = i, \beta = j$ to get $\frac{1}{|G|} \sum_g R(g^{-1})_{ii} R(g)_{jj} = \frac{1}{n} \delta_{ij}$. Finally sum over i,j to get $\langle \chi, \chi \rangle = 1$.

Before proving (b), let's prove column orthogonality:

Theorem. (6.1, column orthogonality relations)

$$\sum_{i=1}^{k} \overline{\chi_i(g_j)} \chi_i(g_l) = \delta_{jl} |C_G(g_j)|$$

having an easy corollary

Corollary. (6.2)

$$|G| = \sum_{i=1}^{k} \chi_i^2(1).$$

Proof. (of (6.1)) $\delta_{ij} = \langle \chi_i, \chi_j \rangle = \sum_{l} \overline{\chi_i(g_l)} \chi_j(g_l) / |C_G(g_l)|. \text{ Consider the character table } X = (\chi_i(g_j)). \text{ Then } \bar{X} D^{-1} X^T = I_{k \times k} \text{ where } D = Diag(|C_G(g_1)|, ..., |C_G(g_k)|).$ Since X is quare, it follows that $d6-1\bar{X}^T$ is the inverse of X, so $\bar{X}^T X = D$. \square

Proof. (of (5.6(b)))

The χ_i generate \mathcal{C}_G . Let all the irreducible characters $\chi_1,...,\chi_l$ of G: claim these generate \mathcal{C}_G , the \mathbb{C} -space of class functions on G. It's enough to show that the orthogonal complement to $span\{\chi_1,...,\chi_l\}$ in \mathcal{C}_G is $\{0\}$. To see this, assume $f \in \mathcal{C}_G$ with $\langle f,\chi_j\rangle = 0 \forall j$. Let $\rho: G \to GL(V)$ be irreducible representation affording $\chi \in \{\chi_1,...,\chi_l\}$. Then $\langle f,\chi\rangle = 0$. Consider

$$\frac{1}{|G|} \sum_{G} \overline{f(g)} \rho(g) : V \to V$$

This is a G-homomorphism, so as ρ is irreducible, it must be λ_{ι} for some $\lambda \in \mathbb{C}$. Now

$$\begin{split} n\lambda &= \operatorname{tr} \frac{1}{|G|} \sum_{g} \overline{f(g)} \rho(g) \\ &= \frac{1}{|G|} \sum_{g} \overline{f(g)} \chi(g) = 0 = \langle f, \chi \rangle \end{split}$$

So $\lambda = 0$. Hence $\sum f(g)\rho(g) = 0$, the zero endomorphism on V for all representations ρ (complete reducibility).

Take $\rho = \rho_{reg}$ where $\rho_{reg}(g) : e_1 \to e_g \ (g \in G)$. So

$$\sum_{q} \overline{f(g)} \rho_{reg}(g) : e_1 \to \sum_{q} \overline{f(g)} e_g$$

So it follows $\sum_{g} \overline{f(g)} e_g = 0$. So $\overline{f(g)} = 0 \forall g \in G$, so $f \equiv 0$.

Variuous corollaries now follow:

- The number of irreducible representations of G = number of ccls; (5.10)
- Column orthogonality (6.1);
- $|G| = \sum n_i^2$ (6.2);
- $g_1 \tilde{G} g_2 \iff \chi(g_1) = \chi(g_2)$ for all irreducible χ (5.11);
- If $g \in G$, $g \tilde{G} g^{-1} \iff \chi(g) \in \mathbb{R}$ for all irreducible χ .

7 Permutation representations

Preview was given in (3.7). Recall: • G finite group acting on finite set $X = \{x_1, ..., x_n\}$;

- $\mathbb{C}X = \mathbb{C}$ -space, with basis $\{e_{x_1}, ..., e_{x_n}\}$ of dimension |X|, so is $\{\sum_j a_j e_{x_j} : a_j \in \mathbb{C}\}$;
- corresponding permutation representation $\rho_X: G \to GL(\mathbb{C}X)$ by $g \to \rho(g)$, where $\rho(g)$ sends $e_{x_j} \to e_{gx_j}$, extending linearly.
- ρ_X is the permutation representation corresponding to the action of G on X.
- matrices representing $\rho_X(g)$ w.r.t. basis $\{e_x\}_{x\in X}$ are permutation matrices: 0 except for one 1 in each row and column, and $(\rho(g))_{ij} = 1$ iff $gx_j = x_i$. Consider its character:
- (7.1) Permutation character, π_X , is

$$\pi_X(g) = |Fix_X(g)| = |\{x \in X : gx = x\}|.$$

(7.2) ρ_X always contains 1_G : $span\{e_{x_1}+\ldots+e_{x_n}\}$ is a trivial G-subspace of $\mathbb{C}X$ with G-invariant complement $span\{\sum a_xe_x:\sum a_x=0\}$.

Lemma. (7.3, Burnside's lemma, after Cauchy, Frobenius) $\langle \pi_X, 1 \rangle =$ number of orbits of G on X.

Proof. If $X = X_1 \cup ... \cup X_l$ disjoint union of orbits, then $\pi_X = \pi_{X_1} + ... + \pi_{X_l}$, with π_{X_j} permutation character of G on X_j , so to prove the claim it's enough to show that if G is transitive on X then $\langle \pi_X, 1 \rangle = 1$. Assume G is transitive on X. Now

$$\langle \pi_X, 1 \rangle = \frac{1}{|G|} \sum_g \pi_X(g) = \frac{1}{|G|} \{ (g, x) \in G \times X : gx = x \} |$$

$$= \frac{1}{|G|} \sum_{x \in X} |G_x| = \frac{1}{|G|} |X| |G_x| = \frac{1}{|G|} |G| = 1$$

(Note the use of orbit-stabilizer theorem).

Lemma. (7.4)

Let G act on the sets X_1, X_2 . Then G acts on $X_1 \times X_2$ via $g(x_1, x_2) = (gx_1, gx_2)$. The character $\pi_{X_1 \times X_2} = \pi_{X_1} \pi_{X_2}$ and so $\langle \pi_{X_1}, \pi_{X_2} \rangle =$ number of orbits of G on $X_1 \times X_2$.

Proof. If $g \in G$ then $\pi_{X_1 \times X_2}(g) = \pi_{X_1}(g)\pi_{X_2}(g)$. And we have

$$\langle \pi_{X_1}, \pi_{X_2} \rangle = \langle \pi_{X_1} \pi_{X_2}, 1 \rangle = \langle \pi_{X_1 \times X_2}, 1 \rangle = (7.3)$$
 number of orbits of G on $X_1 \times X_2$.

Definition. (7.5)

Let G act on X, |X| > 2. Then G is 2-transitive on X if G has precisely two orbits on $X \times X : \{(x,x) : x \in X\}$ and $\{x_1,x_2\} : x_i \in X, x_1 \neq x_2\}$.

Lemma. (7.6)

Let G act on X, |X| > 2. Then $\pi_X = 1 + \chi$ with χ irreducible \iff G is 2-transitive on X.

Proof. $\pi_X = m_1 1 + m_2 \chi_2 + ... + m_l \chi_l$ with $1, \chi_2, ..., \chi_l$ distinct irreducible characters and $m_i \in \mathbb{N}$. Then

$$\langle \pi_X, \pi_X \rangle = \sum_{i=1}^l m_i^2$$

hence G is 2-transitive on $X \iff l = 2, m_1 = m_2 = 1.$

Example. (7.7)

Consider S_n acting on $X = \{1, ..., n\}$ which is 2-transitive. Hence $\pi_X = 1 + \chi$ with χ irreducible of degree n-1. Similarly for A_n (n > 3).

Example. (7.8)

Consider $G = S_4$.

Consider $G = k$	74.				
<< \ \ \	1	3	8	6	6
rep	1	/1 z)(34)	(123)	(1234)	(12)
(G=X1		1			
51'9h -X2			\	_	—
ブ _× -1 = ス ₃	3	_	0		
7775-74	3		0		
XX	2	-			Get t ortho

Last lecture we were talking about using column orthogonality to find χ_5 . Indeed we have

$$\chi_{reg} = \chi_1 + \chi_2 + 3\chi_3 + 3\chi_4 + 2\chi_5$$

So we can use this to find χ_5 . Also, $S_4/V_4\cong S_3$ by 'lifting' – see next chapter.