Die folgenden Folien behandeln die Herleitung eines Carry Lookahead Addierers mit linearen Kosten und logarithmischer Tiefe.

Eine entsprechende Abhandlung ist auch im Buch von Keller / Paul (Hardwaredesign), S. 194-198 zu finden.

Der Stoff ist **nicht** klausurrelevant. Ich wurde nur gefragt, wie ein CLA funktioniert, im Folgenden ist die Antwort zu finden.

15.12.2015 Christoph Scholl

Der Carry Lookahead Addierer (CLA)

Gibt es Addierer mit linearen Kosten und logarithmischer Tiefe? → Carry Lookahead Addierer

Der Carry Lookahead Addierer (CLA)

Gibt es Addierer mit linearen Kosten und logarithmischer

Tiefe? → Carry Lookahead Addierer Westragobit

Idee:

Man kann das Problem reduzieren auf die schnelle

Berechnung des Übertragbits c_i. Sind c_i bekannt, so

ergibt sich s_i durch $a_i \oplus b_i \oplus c_{i-1}$. $\delta_{\lambda} = c_{\lambda} \oplus b_{\lambda} \oplus c_{\lambda-1}$

Berechnung der ci durch parallele Präfix-Berechnung!

Parallele Präfix-Berechnung

Sei M eine Menge,

 $\circ: M \times M \to M$ eine assoziative Abbildung.

Parallele Präfix-Berechnung

Sei M eine Menge,

 $\circ: M \times M \to M$ eine assoziative Abbildung.

Problem:

Realisiere die parallele Präfix-Funktion PPⁿ durch

Xm-1

10.1/38

Parallele Präfix-Berechnung (ff)

Annahme:

• wird durch ein spezielles Gatter berechnet:

Parallele Präfix-Berechnung (ff)

Annahme:

• wird durch ein spezielles Gatter berechnet:

$$n = 4$$
: $y_3 = ((x_3 \circ x_2) \circ (x_1 \circ x_0))$

Torsdlage sur Kextionerung. 1. Vorsdlag: Roalisise alle yn getrennt

dwd balaneiete Baume

Nordlag: Yo = Xo

yn = Xn o yo y2= X2 y1 $\frac{y_{n-n} = x_{n-n} \circ y_{n-2}}{\text{Koster } O(n) | \text{Trefe } O(n)}$

$$y_{n/2-1} = (x_{n/2-1} \circ x_0)$$

$$y_{n/2} = x_{n-1} \circ x_0 \circ y_{n/2-1}$$

$$y_{n-1} = x_{n-1} \circ x_0 \circ x_{n/2} \circ y_{n/2-1}$$

3. Obsollag: Xm/e yn-n J Jynye Fir m/2 = 1 = n-1 Lothorn Xm/s Tufe O(log n) | Koster O(n log n) YESMIT

Parallele Präfix-Berechnung (ff)

Annahme:

• wird durch ein spezielles Gatter berechnet:

<u>Idee</u>:

Nutze Assoziativität von •!

Parallele Präfix-Berechnung (ff)

Annahme:

wird durch ein spezielles Gatter berechnet:

<u>Idee</u>:

Nutze Assoziativität von •!

Beispiel:

- ⊕ Funktion für □ .
- ist assoziativ.

Grundgatter für parallele Präfixberechnung (n=2)

Realisierung von PP²:

Grundgatter für parallele Präfixberechnung (n=2)

Realisierung von PP.2 :

Sei $n = 2^k$.

Sei $n = 2^k$.

$$\begin{aligned} y_{2i+1} &= x_{2i+1} \circ x_{2i} \circ \dots \circ x_{1} \circ x_{0} \\ &= \left(x_{2i+1} \circ x_{2i} \right) \circ \dots \circ \left(x_{1} \circ x_{0} \right) & \left(\forall i \in \left\{ 0, \dots, \frac{n}{2} - 1 \right\} \right) \end{aligned}$$

Sei $n = 2^k$.

$$\begin{aligned} y_{2i+1} &= x_{2i+1} \circ x_{2i} \circ \dots \circ x_{1} \circ x_{0} \\ &= \left(x_{2i+1} \circ x_{2i}\right) \circ \dots \circ \left(x_{1} \circ x_{0}\right) & \left(\forall i \in \left\{0, \dots, \frac{n}{2} - 1\right\}\right) \\ y_{2i} &= x_{2i} \circ x_{2i-1} \circ x_{2i-2} \circ \dots \circ x_{1} \circ x_{0} \\ &= x_{2i} \circ \left(x_{2i-1} \circ x_{2i-2}\right) \circ \dots \circ \left(x_{1} \circ x_{0}\right) & \left(\forall i \in \left\{0, \dots, \frac{n}{2} - 1\right\}\right) \end{aligned}$$

Mit
$$x_i' := x_{2i+1} \circ x_{2i}$$
 gilt also:

Mit
$$x_i' := x_{2i+1} \circ x_{2i}$$
 gilt also:

$$y_{2i+1} = x'_{i} \circ ... \circ x'_{0} := y'_{i} \qquad (\forall i \in \{0, ..., \frac{n}{2} - 1\})$$

Mit
$$x_i' := x_{2i+1} \circ x_{2i}$$
 gilt also:

$$y_{2i+1} = x'_{i} \circ ... \circ x'_{0} := y'_{i} \qquad (\forall i \in \{0, ..., \frac{n}{2} - 1\})$$

$$y_{2i} = x'_{2i} \circ x'_{i-1} \circ ... \circ x'_{0} \qquad (\forall i \in \{0, ..., \frac{n}{2} - 1\})$$

$$= x_{2i} \circ y_{2i-1} = x_{2i} \circ y'_{i-1}$$

Mit $x_i' := x_{2i+1} \circ x_{2i}$ gilt also:

$$y_{2i+1} = x'_{i} \circ ... \circ x'_{0} := y'_{i} \qquad (\forall i \in \{0, ..., \frac{n}{2} - 1\})$$

$$y_{2i} = x_{2i} \circ x'_{i-1} \circ ... \circ x_{0}' \qquad (\forall i \in \{0, ..., \frac{n}{2} - 1\})$$

$$= x_{2i} \circ y_{2i-1} = x_{2i} \circ y'_{i-1}$$

$$\vdots$$

$$y_{0} = x_{0}$$

1.Schritt:

Fasse jeweils benachbarte Paare x_{2i+1}, x_{2i} zusammen:

1.Schritt:

Fasse jeweils benachbarte Paare x_{2i+1}, x_{2i} zusammen:

$$\mathbf{X'_i} = \mathbf{X_{2i+1}} \circ \mathbf{X_{2i}}$$

2.Schritt:

Benutze Schaltkreis $P_{n/2}$ mit Inputs x_i' , $0 \le i \le n/2 - 1$:

2.Schritt:

Benutze Schaltkreis $P_{n/2}$ mit Inputs x_i' , $0 \le i \le n/2 - 1$:

3.Schritt:

Ergänze die fehlenden y_i mit i gerade:

3.Schritt:

Ergänze die fehlenden y mit i gerade:

$$y_{2i} = x_{2i} \circ (x_{2i-1} \circ ... \circ x_0) = x_{2i} \circ y_{2i-1}$$
 $1 \le i \le \frac{n}{2} - 1$
 $y_0 = x_0$

3.Schritt:

Ergänze die fehlenden y_i mit i gerade:

$$y_{2i} = x_{2i} \circ (x_{2i-1} \circ ... \circ x_0) = x_{2i} \circ y_{2i-1}$$
 $1 \le i \le \frac{n}{2} - 1$
 $y_0 = x_0$

 \rightarrow Schaltkreis P_n zur Realisierung von PP_{\circ}^{n}

Schaltkreis P_n

Schaltkreis Pn

Schaltkreis P_n

n= 2

 P_n hat Kosten $C(P_n) \le 2n$ und Tiefe depth $(P_n) \le 2 \log(n) - 1$ für $n=2^k$.

 P_n hat Kosten $C(P_n) \le 2n$ und Tiefe depth $(P_n) \le 2 \log(n) - 1$ für $n=2^k$.

Beweis:

 $n=2^k$, also $C(P_n) \le 2^{k+1}$, $depth(P_n) \le 2k-1$

 P_n hat Kosten $C(P_n) \leq 2n$ und Tiefe depth $(P_n) \le 2 \log(n) - 1 \text{ für } n = 2^k$.

Beweis:

$$n=2^k$$
, also $C(P_n) \le 2^{k+1}$, $depth(P_n) \le 2k-1$

$$k=1$$
:
 $k-1 \rightarrow k$:

$$C(P_0^2) = 1$$
 Prosteg

$$C(P_0^2) = 1$$
 P_0^{2-n} "Eucategattr"
$$C(P_0^{2^k}) \le C(P_0^{2^{k-1}}) + 2^{k-1} \cdot 2$$

$$P_0^2 \le 2^k + 2^k = 2^{k+1}$$

Lemma 10.2 (ff)

Beweis:

```
2) Tiefe: R_0
k=1: depth(P_0^2) = 1
k-1 \rightarrow k: depth(P_0^{2^k}) = 2 + depth(P_0^{2^{k-1}})
\leq 2 + (2(k-1)-1)
= 2k-1
```

Für
$$0 \le i < n$$
: $s_i = a_i \oplus b_i \oplus c_{i-1}$

Für
$$0 \le i < n$$
: $s_i = a_i \oplus b_i \oplus c_{i-1}$

$$a_{i-1} \dots a_0$$
 $b_{i-1} \dots b_0$
 c

Für
$$0 \le i < n$$
: $s_i = a_i \oplus b_i \oplus c_{i-1}$

Für
$$0 \le i < n$$
: $s_i = a_i \oplus b_i \oplus c_{i-1}$

$$\begin{vmatrix} a_{j} \dots a_{i} & a_{i-1} \dots a_{0} \\ b_{j} \dots b_{i} & b_{i-1} \dots b_{0} \\ c_{i-1} & c \end{vmatrix}$$

Für
$$0 \le i < n$$
: $s_i = a_i \oplus b_i \oplus c_{i-1}$

Für
$$0 \le i < n$$
: $S_i = a_i \oplus b_i \oplus c_{i-1}$

→ Schnelle Berechnung der c_{i-1} genügt

$$a_{n-1} \dots a_{j+1}$$
 $a_{j} \dots a_{i}$ $a_{i-1} \dots a_{0}$
 $+ b_{n-1} \dots b_{j+1}$ $b_{j} \dots b_{i}$ $b_{i-1} \dots b_{0}$
 $+ c_{j}$ c_{i-1} c

Frage Analysiere fivr gegebene aj ... ai / bj... bi das Verlalter von ej in Ablangigkeit von ei-1. cs III

C.R. 3 () = () 000-1 0 R-1 00

CS TI

Schnelle Berechnung der c_{i-1}

Betrachte Stellen i bis j, $i \le j$.

Für Belegungen von $(a_j ... a_i)$ und $(b_j ... b_i)$ können genau 3 Fälle auftreten:

1) $c_j = 1$ unabhängig von c_{i-1} , d.h. für $c_{i-1} = 0$ und $c_{i-1} = 1$ Sprechweise:

Stellen i bis j generieren einen Übertrag.

Schnelle Berechnung der c_{i-1} (ff)

2)
$$c_j = 1 \Leftrightarrow c_{i-1} = 1$$

Sprechweise:

Stellen i bis j propagieren einen Übertrag.

3)
$$c_j = 0$$
 unabhängig von c_{i-1} , d.h. für $c_{i-1} = 0$ und $c_{i-1} = 1$
Sprechweise:

Stellen i bis j eliminieren einen Übertrag.

Linden

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

1

O

Funktionsdefinition

Definiere die Funktion

$$g_{j,i} , p_{j,i} : \{0,1\}^{2n} \to \{0,1\} \text{ für } 0 \le i \le j < n \quad \text{mit}$$

$$g_{j,i}(a,b) = \begin{cases} 1: & \text{Stellen i bis j generieren } Übertrag \\ 0: & \text{sonst} \end{cases}$$

$$p_{j,i}(a,b) = \begin{cases} 1: & \text{Stellen i bis j propagieren } Übertrag \\ 0: & \text{sonst} \end{cases}$$

Funktionsdefinition

Definiere die Funktion

$$g_{j,i}$$
 , $p_{j,i}:\,\{0,1\}^{2n} \rightarrow \{0,1\}$ für $0 \leq i \leq j < n$ $\quad mit$

$$g_{j,i}(a,b) = \begin{cases} 1: & \text{Stellen i bis j generieren } Übertrag \\ 0: & \text{sonst} \end{cases}$$

$$\frac{g_{j,i}(a,b)}{0} = \begin{cases}
1: & \text{Stellen i bis j propagieren } \text{Übertrag} \\
0: & \text{sonst}
\end{cases}$$
Bemerkung:

g_{i,i} und p_{i,i} hängen nur ab von a_i, ..., a_i, b_i, ..., b_i!

Eigenschaften von g_{j,i}, p_{j,i}

(1)
$$p_{i,i} = a_i \otimes b_i + a_n \cdot b_n = f \otimes a_i \otimes b_i$$
 für $0 \le i < n$
$$g_{i,i} = a_i \wedge b_i$$
 für $0 \le i < n$

2) Für i ≤ k < j:</p>

$$\underline{g_{j,i}} = \underline{g_{j,k+1}} \vee (\underline{g_{k,i}} \wedge \underline{p_{j,k+1}})$$

$$\underline{p_{j,i}} = \underline{p_{k,i}} \wedge \underline{p_{j,k+1}}$$

3) Für 0 ≤ i < n:

$$c_i = g_{i,0} + p_{i,0} \cdot c_{-1}$$

1 on to bo print M3,3 920 9313 910 M3,2 9312 CS TI I

1. Møglidleit: Beredne alle gijo, pijo getrennt duch returnier Aufbau (d. I. Veilen in der Mitte) = (gropino) låsst sid beredner mit Koster O(i) und Tufe O (logi) = insquant (Vi) Kosten (O(n²)), Tufe O(log n)

Eigenschaften von g_{i,i}, p_{j,i} (ff)

Es genügt also, $g_{i,0}$, $p_{i,0}$ ($0 \le i < n$) zu berechnen.

$$\begin{split} s_i &= a_i \oplus b_i \oplus c_{i-1} = p_{i,i} \oplus \left(g_{i-1,0} + p_{i-1,0} \cdot c_{-1}\right) &\quad \text{für } 1 \leq i < n \\ s_n &= c_{n-1} = g_{n-1,0} + p_{n-1,0} \cdot c_{-1} \\ s_0 &= a_0 \oplus b_0 \oplus c_{-1} = p_{0,0} \oplus c_{-1} \end{split}$$

Um parallele Präfixberechnung anwenden zu können, benötigt man einen geeigneten assoziativen Operator o

Der Operator o

$$o: M \times M \longrightarrow M$$

Wähle

$$\begin{aligned} \mathbf{M} &= (\mathbf{B}_{2n})^2, \quad \circ : (\mathbf{B}_{2n})^2 \times (\mathbf{B}_{2n})^2 \rightarrow (\mathbf{B}_{2n})^2 \quad \text{mit} \\ & (\mathbf{g}_2, \mathbf{p}_2) \circ (\mathbf{g}_1, \mathbf{p}_1) = (\mathbf{g}_2 \vee (\mathbf{g}_1 \wedge \mathbf{p}_2), \mathbf{p}_1 \wedge \mathbf{p}_2) \\ & (\mathbf{g}_{3,i} \mid \mathcal{N}_{j(i)}) = (\mathbf{g}_{1,2+1} \vee (\mathbf{g}_{2,i} \cdot \mathcal{N}_{j,2+1}), \mathcal{N}_{j,2+1} \cdot \mathcal{N}_{2,i}) \\ & = (\mathbf{g}_{j,2+1} \cdot \mathcal{N}_{j,2+1}) \circ (\mathbf{g}_{2,i} \cdot \mathcal{N}_{j,2+1}) \end{aligned}$$

Der Operator o

Wähle

$$M = (\mathbf{B}_{2n})^2, \quad \circ : (\mathbf{B}_{2n})^2 \times (\mathbf{B}_{2n})^2 \to (\mathbf{B}_{2n})^2 \quad \text{mit}$$
$$(g_2, p_2) \circ (g_1, p_1) = (g_2 \vee (g_1 \wedge p_2), p_1 \wedge p_2)$$

Damit läßt sich 2) schreiben als

$$(g_{j,i}, p_{j,i}) = (g_{j,k+1}, p_{j,k+1}) \circ (g_{k,i}, p_{k,i})$$

Der Operator o

Wähle

$$M = (\mathbf{B}_{2n})^2, \quad \circ : (\mathbf{B}_{2n})^2 \times (\mathbf{B}_{2n})^2 \to (\mathbf{B}_{2n})^2 \quad \text{mit}$$
$$(g_2, p_2) \circ (g_1, p_1) = (g_2 \vee (g_1 \wedge p_2), p_1 \wedge p_2)$$

Damit läßt sich 2) schreiben als

$$(g_{j,i}, p_{j,i}) = (g_{j,k+1}, p_{j,k+1}) \circ (g_{k,i}, p_{k,i})$$

Es gilt:
$$C(\circ) = 3$$
 depth $(\circ) = 2$

Basiszelle der Operation o

Lemma 10.3

Booleschen Algebra.

Die Operation \circ ist assoziativ. $\mathcal{L} \ \mathcal{L} : \ \mathcal{L} \ (q_3| p_8) | (q_2| p_2) | (q_1| p_1) \in (\beta_{2n})$ Beweis: $\mathcal{L} \ (q_3| p_8) | (q_2| p_2) | (q_1| p_1) = (q_3| p_3) | (q_2| p_2)$ Nachrechnen unter Verwendung von Gesetzen der

Bedeutung für die P. Galia: $y_1 = X_1 \circ ... \circ X_0$ für $0 \le i \le m^{-1}$ Wende nun parallele Präfixberechnung an. $(g_{i,0}, p_{i,0})$ $(0 \le i < n)$ lassen sich aus $g_{i,i}, p_{i,i}$ bestimmen mit Kosten $\leq 2n \cdot C(\circ) = 6n$ und Tiefe $(2 \log(n) - 1) \cdot \operatorname{depth}(\circ) = 4 \log(n) - 2$

Gesamtschaltkreis

p_{n-1,n-1}

 C_{n-2}

 $b_{n-1}a_{n-1}$

p_{n-1,0}

 $g_{n-1,n-1}$

Gesamtkosten

Kosten:
$$C(CLA_n) \leq 6n + 2n + 3n = 11n$$

Tiefe: depth(CLA_n)
$$\leq$$
 4 log(n) - 2 + 1 + 3 = 4 log(n) + 2