Bab 3

Mobile Infrastructure

Dosen: Bambang Sugiarto, ST, MT

Program Studi S1 Teknik Informatika Fakultas Teknik Universitas Sangga Buana YPKP Bandung

Dírangkum darí berbagaí sumber referensi (hanya untuk penggunaan internal/tidak untuk dipublikasikan)

Pendahuluan

- Munculnya teknologi Mobile Phone sangat jelas dirasakan saat ini karena sudah menggeser penggunaan telepon kabel untuk berkomunikasi dengan pengguna lain.
- Mobile Phone juga tidak dibatasi dalam suatu ruang tertentu dan memberikan fasilitas layanan yang meningkat
- Fasilitas ini antara lain adanya layanan internet, multimedia, penyimpanan memori telpon, SMS, gambar, aplikasi, dan lain-lain.
- Saat ini *mobile phone* sudah dirancang menjadi *Smart Phone* untuk memenuhi segala kebutuhan informasi dan komunikasi kita sehari-hari sehingga kita bisa mengakses informasi dimana dan kapan saja.
 - Pada bab ini akan dijelaskan bagaimana infrastruktur dari teknologi *mobile phone* ini.

Mobile Communication

- Pada awalnya teknologi komunikasi wireless dikembangkan dengan tujuan dapat bertelepon secara mobile (bergerak)
- Hanya memiliki layanan suara saja
- Perangkat mobile berkomunikasi melalui Base Transceiver Station (BTS) kemudian akan dihubungkan dengan nomor yang dituju.
- Seiring perkembangan teknologi, perangkat ini juga digunakan untuk bertukar data sehingga mempunyai bandwidth yang tinggi.
 - Dan dengan adanya teknologi 4G, komunikasi internet dengan mudahnya dapat diimplementasi di perangkat ini.

 Page 3

Generasi Mobile Communication

1G (first generation)

- Analog
- AMPS (Advanced Mobile Phone System)
- Hanya layanan suara
- 2G (second generation)
 - Digital
 - GSM (Global Systems for Mobile Communications)
 - CDMA (Code Division Multiple Access)
 - Layanan SMS ,EMS, MMS

- 2G+ (2.5 G)
 - GPRS (General Packet Radio Service)
 - Layanan Internet

3G (third generation)

- Kompatibel dengan 2G, 2G+
- Transfer data sampai 2 Mbps

4G (fourth generation)

- Standar WiMax (Worldwide Interoperability for Microwave Access) dan Long Term Evolution (LTE)
- Transfer data sampai 100 Mbps
- Bandwidth lebih besar dari 3G
- Mendukung streaming video berkualitas HD (High Definition) seperti YouTube.

- 5G (fifth generation) -> Generasi Mendatang
 - Kecepatan multi-gigabit (Gbps)
 - Unlimited data
 - Latensi yang sangat kecil, bisa sampai 1 ms (Latensi : seberapa cepat eksekusi dijalankan ketika perintah diberikan)
 - "Everything on Mobile and Connected"

Arsitektur Global System for Mobile Communication (GSM)

- Global System for Mobile communication (GSM) adalah sebuah standar global untuk komunikasi bergerak digital.
- GSM saat ini banyak digunakan di dunia.
- Dari sudut pandang konsumen, keuntungan kunci dari sistem GSM adalah kualitas suara digital yang lebih tinggi dan alternatif biaya rendah untuk menelpon dan serta pesan teks.
 - Keuntungan bagi operator jaringan adalah kemampuannya menerapkan peralatan dari vendor vang berbeda karena standar terbuka membuat interperasi menjadi mudah.

- Jaringan GSM adalah sistem yang terdiri dari beberapa sel/cell.
- Jangkauan area service sebuah cell (atau yang disebut coverage berbeda dari satu cell dengan cell yang lain.
- Cell (coverage area) tergantung dari jumlah pelanggan, contohnya :
 - ➤ Daerah pedesaan yang jarang penduduknya maka coverage areanya bisa lebih sangat luas (bisa mencapai 3 – 8 km).
 - ➤ Daerah perkotaan yang sangat padat dan jumlah pelanggannya juga banyak maka coverage areanya lebih pendek/kecil (1 – 3 km).
- Besar/kecilnya sebaran cell/coverage area tergantung dan tinggi tower, tinggi antena, beamwidth antena, dan lain-lain)

• Arsitektur Jaringan GSM:

MS (Mobile Station)

- Terdiri dari mobile telepon.
- ➤ MS dilengkapi dengan sebuah smartcard, yang dikenal dengan SIM (*Subscriber Identity Module*), berisi nomor identitas pelanggan.

BSS (Base Station System)

- Merupakan bagian dari jaringan yang menyediakan interkoneksi dari MS ke peralatan dasar Switching. BSS terdiri dari tiga perangkat, yaitu :
 - ✓ BSC (Base Station Controller)
 Membawahi satu atau lebih BTS serta mengatur trafik yang datang dan pergi dari BSC menuju MSC atau BTS.
 - ✓ BTS (Base Transceiver Station)
 Merupakan perangkat pemancar dan penerima yang memberikan pelayanan radio kepada MS. Di sini juga
 ✓ terdapat kanal trafik yang digunakan untuk komunikasi.

TC (Transcoder)
Berfungsi untuk translasi MSC dari 64 Kbps menjadi 16

Kbps dan juga untuk efisiensi kanal trafik

NSS (Network Switching System)

- ➤ Berfungsi sebagai switching pada jaringan GSM, manajemen jaringan dan sebagai antarmuka antara jaringan GSM dengan jaringan lainnya.
- Komponen NSS, terdiri dari :
 - ✓ MSC (Mobile Switching Center)
 Didesain sebagai switch ISDN (Integrated Service Digital Network) yang dimodifikasi agar berfungsi untuk jaringan seluler. MSC juga dapat menghubungkan jaringan seluler dengan jaringan fixed (kabel).
 - ✓ HLR (Home Location Register)
 Merupakan database yang berisi data-data pelanggan tetap. Data-data tersebut antara lain : Layanan pelanggan, layanan tambahan, serta informasi mengenai lokasi pelanggan terkini (update).
 - VLR (Visitor Location Register)
 Merupakan database yang berisi informasi sementara
 mengenai pelanggan, terutam mengenai lokasi dari
 pelanggan pada cakupan area jaringan.

- ✓ AuC (Authentication Center)
 Berisi database yang menyimpan informasi rahasis yang disimpan dalam bentuk format kode. Auc digunakan untuk mengontrol penggunaan jaringan yang sah dan mencegah pelanggan yang melakukan kecurangan.
- ✓ EIR (Equipment Identity Register)
 Merupakan database terpusat berfungsi untuk validasi IMEI (International Mobile Equipment Identity).
- ✓ Inter Working Function

 Berfungsi sebagai antarmuka antara jaringan GSM dengan jaringan ISDN.
- ✓ Echo Canceller
 Digunakan untuk sambungan dengan PSTN, yang berfungsi untuk mengurangi echo (gema).

OMS (Operation and Maintenance System)

- Bagian ini menginzinkan network provider untuk membentuk dan memelihara jaringan dari lokasi sentral.
- OMS terdiri dari :
 - ✓ OMC (Operation and Maintenance Center) OMC sebagai pusat pengontrolan operasi dan pemeliharaan jaringan. Fungsi utamanya mengawasi alarm perangkat dan perbaikan terhadap kesalahan operasi.
 - ✓ NMC (Network Management Centre)
 Berfungsi pengontrolan operasi dan pemeliharaan jaringan yang lebih besar dari OMC

Referensi

- Mobile Technologies, Arif Rahman, Universitas Achmad Dahlan.
- Pengantar Teknologi Informasi: Pengenalan Jaringan 5G dan Keuntungan Penggunaanya, Binus University, https://socs.binus.ac.id/2018/11/29/ptipengenalanjaringan5g/
- Global sistem for mobile communication (gsm), Uke Kurniawan Usman, Telkom University.
- Arsitektur jaringan GSM, Jurusan Teknik Komputer, Bina Sarana Informatika.