Merci à H. Lavenant qui a corrigé certaines de mes corrections...

TD V. INTÉGRALE CURVILIGNE

I. Exercice

- a. Soit C^+ le demi-cercle supérieur de centre O et de rayon 1 parcouru dans le sens trigonométrique. Calculer $\int_{C^+} (2 + x2y) ds$.
- b. Soit C^+ l'arc de la parabole d'équation $y=x^2$ parcouru du point de coordonnées (0,0) au point (1,1). Calculer $\int_{C^+} 2x ds$.
- a. Soit θ le paramètre d'angle ; θ varie entre 0 et π , et « $ds = (\sin^2 \theta + \cos^2 \theta) d\theta = 1 d\theta$ » donc

$$\int_{C^+} (2+x^2y) ds = \int_0^\pi (2+\cos^2\theta\sin\theta) d\theta = 2\pi + \int_0^\pi \cos^2\theta\sin\theta d\theta.$$

Pour calculer cette dernière intégrale, on remarque que $-3\cos^2\theta\sin\theta=u'(\theta)$, où $u(\theta)=\cos^3(\theta)$, donc

$$\int_0^{\pi} \cos^2 \theta \sin \theta d\theta = -\frac{1}{3} \left[\cos^3(\theta) \right]_0^{\pi} = 2/3.$$

En reportant ceci dans l'équation précédente, $\int_{C^+} (2 + x^2 y) ds = 2\pi + 2/3$.

b. C^+ est un graphe de la fonction g(x)=x, on le paramètre par la variable x. L'élément de longueur s'exprime « $ds=\sqrt{1+g'(x)^2}dx$ » soit

$$\int_{C^{+}} 2x ds = \int_{0}^{1} 2x \sqrt{1 + 4x^{2}} = \frac{1}{8} \frac{2}{3} \left[(1 + 4x^{2})^{3/2} \right]_{0}^{1} = \frac{5\sqrt{5} - 1}{12}.$$

II. Exercice

Calculer les intégrales curvilignes suivantes :

a.

$$\int_{C} xy ds, C : \begin{cases} x(t) &= \cos(t) \\ y(t) &= 3\sin(t) \end{cases} \quad t \in [0; \pi].$$

b.

$$\int_{C} (xy + x^{2}) ds, C : \begin{cases} x(t) = \cos(t) \\ y(t) = \sin(t) \end{cases} \quad t \in [0; \pi].$$

c.

$$\int_C \frac{2x^2 + x + y}{2 + x} ds, C : y = 2x + 1, x \in [0, 1].$$

a. C est une demi-ellipse, symétrique par rapport à l'axe des ordonnées, et la fonction $f:(x,y)\to xy$ est telle que f(-x,y)=-f(x,y). Donc $\int_C xyds=-\int_C xyds$, donc $\int_C xyds=0$. Confirmons ceci par le calcul :

$$\int_{C} xy ds = \int_{0}^{\pi} 3\cos t \sin t \sqrt{\sin^{2} t + 9\cos^{2} t} dt = \int_{0}^{\pi} 3\cos t \sin t \sqrt{1 + 8\cos^{2} t} dt$$
$$= -\frac{3}{16} \left[\left(1 + 8\cos^{2} t \right)^{3/2} \right]_{0}^{\pi} = 0.$$

b. Par l'argument évoqué à la question précédente, $\int_C (xy+x^2)ds = \int_C x^2ds$, et donc

$$\int_C (xy + x^2) ds = \int_0^{\pi} \cos^2 t dt = \frac{\pi}{2}.$$

c. Ici C est parcourue à vitesse constante « $ds = \sqrt{1+4}$ ». On effectue la division euclidienne de $2x^2 + x + 2x + 1$ par x + 2:

$$2x^{2} + 3x + 1 = 2x(x + 2) - x + 1$$
$$= (2x - 1)(x + 2) + 3,$$

d'où

$$\int_{C} \frac{2x^{2} + x + y}{2 + x} ds = \sqrt{5} \int_{0}^{1} (2x - 1) dx + 3\sqrt{5} \int_{0}^{1} \frac{dx}{x + 2} = 3\sqrt{5} \ln(3/2).$$

III. Exercice

Déterminer les longueurs des courbes suivantes :

a.

$$\begin{cases} x(t) &= t^2/2 \\ y(t) &= \frac{1}{6}(4t+4)^{3/2} \end{cases} \quad t \in [0;2].$$

b.

$$\begin{cases} x(t) &= e^t(\sin(t) + \cos(t)) \\ y(t) &= e^t(\sin(t) - \cos(t)) \end{cases} \quad t \in [0; \pi/2].$$

a. Calculons « le ds » :

$$\forall t \in [0,2], \ x'(t)^2 + y'(t)^2 = t^2 + \left(\frac{1}{6} \cdot \frac{3}{2} \cdot 4 \cdot (4t+4)^{1/2}\right)^2 = t^2 + 4t + 4.$$

Donc

longueur(C) =
$$\int_0^2 \sqrt{t^2 + 4t + 4} dt = \int_0^2 |t + 2| dt = \int_0^2 (t + 2) dt = 6$$
.

b. Calculons:

$$\begin{cases} x'(t) = e^t \left(\sin t + \cos t + \cos t - \sin t \right) dt = 2e^t \cos t \\ y'(t) = e^t \left(\sin t + \cos t - \cos t + \sin t \right) dt = 2e^t \sin t, \end{cases}$$

d'où $\sqrt{x'(t)^2 + y'(t)^2} = 2e^t$. Donc

longueur(C) =
$$2\int_{0}^{\pi/2} e^{t} dt = 2(e^{\pi} - 1)$$
.

Remarque 10. Si l'on pose comme en éléctrocinétique z(t) = x(t) + jy(t), alors $z(t) = (1+j)e^{jt}$, ce qui simplifie un peu le calcul du ds : c'est la vitesse |z'(t)|.

TD VI. INTÉGRALE DE SURFACE

I. Exercice

Déterminer pour chacun des changements de variables (coordonnées) suivants le déterminant jacobien et en déduire les « élément différentiels associés » :

a. polaire:

$$\begin{cases} x &= r\cos(\theta) \\ y &= r\sin(\theta), \end{cases}$$

avec $r \in \mathbb{R}_+^{\star}$, $\theta \in [0; 2\pi[$.

b. cylindrique:

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \\ z = z, \end{cases}$$

avec $r \in \mathbb{R}_+^*$, $\theta \in [0; 2\pi[, z \in \mathbb{R}.$

c. sphérique:

$$\begin{cases} x &= r \sin(\theta) \cos(\phi) \\ y &= r \sin(\theta) \sin(\phi) \\ z &= r \cos(\theta), \end{cases}$$

avec $r \in \mathbb{R}_+^{\star}$, $\theta \in [0; \pi[, \phi \in [0; 2\pi[$.

a. On note $\Phi(r,\theta) = (r\cos\theta, r\sin\theta) = (x,y)$. Alors le déterminant jacobien de Φ est

$$\begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r(\cos^2 \theta + \sin^2 \theta) = r.$$

Ceci explique l'apparition de r dans la formule « $dxdy = rd\theta$ ».

b. On note $\Psi(r, \theta, z) = (r \cos \theta, r \sin \theta, z) = (x, y, z)$. Alors le déterminant jacobien de Ψ est

$$\begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix} = \begin{vmatrix} \cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r(\cos^2 \theta + \sin^2 \theta) = r,$$

par développement suivant la dernière colonne.

c. On note $\Xi(r,\theta,\phi)=(r\cos\theta\sin\phi,r\sin\theta\sin\phi,r\cos\phi)=(x,y,z)$. Alors le déterminant jacobien de Ξ est

$$\begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi} \end{vmatrix} = \begin{vmatrix} \cos \theta \sin \phi & -r \sin \theta \sin \phi & r \cos \theta \cos \phi \\ \sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\ \cos \phi & 0 & -r \sin \phi \end{vmatrix} = r \sin \phi.$$

II. Exercice

Soit \mathcal{B} la boule unité de \mathbb{R}^3 . Calculer

$$\iiint_{\mathcal{B}} e^{(x^2+y^2+z^2)^{3/2}}.$$

En coordonnées sphérique, la boule unité \mathcal{B} est décrite par le domaine

$$\mathcal{P} = \{ (r, \theta, \varphi) : 0 \leqslant r \leqslant 1, 0 \leqslant \theta \leqslant 2\pi, 0 \leqslant \varphi \leqslant \pi \},\$$

et d'après le théorème de Fubini sur pavé, en notant $\mathcal{P}_0 = \{[0, 2\pi] \times [0, \pi]\},$

$$\begin{split} \iiint_{\mathcal{B}} e^{(x^2+y^2+z^2)^{3/2}} dx dy dz &= \iiint_{\mathcal{P}} e^{r^3} r^2 \sin \theta d\theta d\phi \\ &= \int_0^1 r^2 e^{r^3} \iint_{\mathcal{P}_0} \sin \theta d\theta d\phi = 4\pi \left[\frac{e^{r^3}}{3} \right]_0^1 = \frac{4\pi (e-1)}{3}. \end{split}$$

Remarque 11. On peut remarquer que $\iint_{\mathcal{P}_0} \sin \theta d\theta d\phi$ est (par définition) l'aire de la sphère de rayon 1.

III. Exercice

a. Déterminer l'air de la calotte sphérique d'équation

$$\begin{cases} x^2 + y^2 + z^2 &= 4 \\ z &\geqslant 1. \end{cases}$$

- b. Soit Σ la surface (graphe) d'équation z=g(x,y) pour $(x,y)\in D$ où $g(x,y)=\sqrt{x^2+y^2}$ et $D=\{1\leqslant x^2+y^2\leqslant 16\}$. Tracer Σ et calculer $\iint x^2zdS$.
- a. Appelons Γ la calotte sphérique. Il s'agit bien d'une calotte sphérique : c'est l'intersection de la sphère d'équation $x^2 + y^2 + z^2 = 4$ (de rayon 2, centrée en (0,0,0)) et du demi-plan d'équation $z \ge 1$. Nous voulons calculer Aire (Γ) , c'est-à-dire l'intégrale de 1 sur Γ . Pour cela on décrit Γ comme un graphe, celui de la fonction

$$g: \begin{cases} D & \to \mathbb{R} \\ (x,y) & \to \sqrt{4-x^2-y^2}, \end{cases}$$

où D est le disque de centre (0,0) et de rayon $\sqrt{3}$ (la projection de Γ sur le plan Oxy). A présent d'après le cours page 11,

$$\begin{split} \operatorname{Aire}(\Gamma) &= \iint_{D} 1 \times \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^{2} + \left(\frac{\partial g}{\partial y}\right)^{2}} dx dy. \\ &= \iint_{D} \sqrt{1 + \left(\frac{-2x}{2\sqrt{4 - x^{2} - y^{2}}}\right)^{2} + \left(\frac{-2y}{2\sqrt{4 - x^{2} - y^{2}}}\right)^{2}} dx dy. \\ &= \iint_{D} \sqrt{\frac{4}{4 - x^{2} - y^{2}}} dx dy. \end{split}$$

Observons que la quantité $x^2 - y^2$ et le domaine D sont invariants par rotation (de même que Γ était invariante par rotation autour de l'axe Oz). Ceci invite à effectuer un changement de variables polaires,

$$Aire(\Gamma) = \iint_{\mathbb{R}} \sqrt{\frac{4}{4 - r^2}} r dr d\theta,$$

... Et d'après Mahindan

la

pour

primitive.

FIGURE 5 – Surface Σ de l'exercice III(vue de dessous, de dessus).

où R est le rectangle $\{(r,\theta)\mid 0\leqslant r\leqslant \sqrt{3}, 0\leqslant \theta\leqslant 2\pi\}$. Finalement d'après le théorème de Fubini sur un pavé,

$$Aire(\Gamma) = \int_0^{2\pi} \int_0^{\sqrt{3}} \sqrt{\frac{4r^2}{4-r^2}} dr d\theta = 2\pi \left[2\sqrt{4-r^2} \right]_0^{\sqrt{3}} = 4\pi.$$

Remarque 12. Si $\overline{\Gamma}$ est la sphère d'équation $x^2+y^2+z^2=4$, alors par la formule bien connue 12 Aire $(\overline{\Gamma})=4\pi\times 2^2=16\pi$. L'aire d'une demi-sphère est 8π . C'est compatible avec notre calcul, car la calotte Γ est contenue dans une demi-sphère (donc d'aire plus petite).

b. Σ est un morceau de cône de révolution d'axe Oz, voir la figure 5. Les sections par des plans d'équation z= cste sont des cercles (ou vides), les sections par des plans d'équation z= cste sont des morceaux d'hyperboles. D'après la formule du cours,

$$\int_{\Sigma} x^2 z dS = \iint_{D} x^2 \sqrt{x^2 + y^2} \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2} dx dy$$

Le calcul donne ici $\left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2 = 1$ (Géométriquement, c'est le carré de la norme du gradient, la plus grande pente, qui est égal à 1). Après passage aux coordonnées polaires, puis application du théorème de Fubini sur domaine rectangle,

$$\begin{split} \int_{\Sigma} x^2 z dS &= \sqrt{2} \iint_{\mathbb{R}} \left(r^2 \cos^2 \theta \right) r \cdot r dr d\theta = \sqrt{2} \int_{0}^{2\pi} \cos^2 \theta d\theta \int_{1}^{4} r^4 dr \\ &= \sqrt{2} \pi \left[\frac{r^5}{5} \right]_{1}^{4} = \frac{(4^5 - 1)\sqrt{2}\pi}{5} = \frac{1023\sqrt{2}\pi}{5}. \end{split}$$

IV. Exercice

- a. Calculer $\iint_{\Sigma} x^2 y z dS$ où Σ est la portion du plan d'équation z = 1 + 2x + 3y qui se situe au-dessus du rectangle $[0;3] \times [0;2]$.
- b. Calculer $\iint_{\Sigma} y dS$ où Σ est le graphe de la fonction $z = \frac{2}{3} \left(x^{3/2} + y^{3/2} \right)$ sur le domaine défini par $0 \leqslant x \leqslant 1$ et $0 \leqslant y \leqslant 1$.

^{12.} L'expression du volume de la boule et de l'aire de la sphère sont attribuables à Archimède (287 – 212 av. J.-C.), qui y a consacré *De la sphère et du cylindre*. Il aurait été si fier de ce résultat qu'il aurait demandé que celui-ci soit gravé sur sa tombe.

a. On commence par calculer le « dS ». Définissons g(x,y) = 1+2x+3y. Alors $\partial g/\partial x = 2$ et $\partial g/\partial y = 3$, donc après application du théorème de Fubini sur rectangle,

$$\iint_{\Sigma} x^2 y z dS = \sqrt{1 + 2^2 + 3^2} \int_0^3 x^2 \left(\int_0^2 y (1 + 2x + 3y) dy \right) dx$$
$$= \sqrt{14} \int_0^3 x^2 \left(2 + 4x + 3 \cdot 2^3 / 3 \right) dx$$
$$= \sqrt{14} \left(\frac{2}{3} 3^3 + 3^4 + \frac{8}{3} 3^3 \right) dx = 171 \sqrt{14}.$$

b. Définissons $g(x,y) = (2/3) \left(x^{3/2} + y^{3/2} \right)$. Alors $\partial g/\partial x = \sqrt{x}$ et $\partial g/\partial y = \sqrt{y}$, donc si \Box désigne le carré $[0,1]^2$,

$$\iint_{\Sigma} y dS = \iint_{\square} y \sqrt{1 + x + y} dx dy.$$

Posons pour tout $y \in [0, 1]$, $I_y = \int_0^1 \sqrt{1 + x + y} dx$. Alors par primitivation directe,

$$I_y = \frac{2}{3} \left((2+y)^{3/2} - (1+y)^{3/2} \right).$$

D'après le théorème de Fubini sur rectangle,

$$\iint_{\square} y \sqrt{x+y} dx dy = \int_{0}^{1} y I_{y} dy = \frac{2}{3} \int_{0}^{1} (y(2+y)^{3/2} - y(1+y)^{3/2}) dy.$$

On va calculer $\int_0^1 y(k+y)^{3/2}$ pour k positif par intégration par parties, et puis on remplacera k par 1 puis 2. Allons-y :

$$\int_{0}^{1} y(k+y)^{3/2} dy = \left[\frac{2}{5} y(k+y)^{5/2} \right]_{0}^{1} - \frac{2}{5} \int_{0}^{1} (k+y)^{5/2} dy$$
$$= \frac{2}{5} (k+1)^{5/2} - \frac{4}{35} \left((k+1)^{7/2} - k^{7/2} \right). \tag{*}$$

D'où

$$\begin{split} \frac{2}{3} \int_0^1 (y(2+y)^{3/2} - y(1+y)^{3/2}) \, \mathrm{d}y &= \frac{2}{3} \left(\frac{2}{5} (3^{5/2} - 2^{5/2}) - \frac{4}{35} (3^{7/2} - 2^{7/2} - 2^{7/2} + 1^{7/2}) \right) \\ &= \frac{2}{3} \left(\left[\frac{2}{5} - \frac{3 \cdot 4}{35} \right] 3^{5/2} - \left[\frac{2}{5} - \frac{2 \cdot 2 \cdot 4}{35} \right] 2^{5/2} - \frac{4}{35} \right) \\ &= \frac{2}{3} \left(\frac{2 \cdot 9\sqrt{3}}{35} + \frac{2 \cdot 4\sqrt{2}}{35} - \frac{4}{35} \right) \\ &= \frac{36\sqrt{3} + 16\sqrt{2} - 8}{105}. \end{split}$$