Semester One Examination, 2016

Christ Church Grammar School

Question/Answer Booklet

SOLUTIONS

ection One:
E TINU
NETHODS
SOLIAMAHIAM

Galculator-free

Student Number: In figures

• • • • • • • • • • • • • • • • • • • •
 Your name
ln words

Time allowed for this section

Reading time before commencing work: firty minutes Working time for section:

Materials required/recommended for this section

To be provided by the supervisor

This Question/Answer Booklet

Formula Sheet

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction

fluid/tape, eraser, ruler, highlighters

Special items: nil

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor

before reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of exam
Section One: Calculator-free	8	8	50	48	35
Section Two: Calculator-assumed	12	12	100	92	65
			Total	140	100

Instructions to candidates

- The rules for the conduct of examinations are detailed in the school handbook. Sitting this
 examination implies that you agree to abide by these rules.
- 2. Write your answers in this Question/Answer Booklet.
- You must be careful to confine your response to the specific question asked and to follow any instructions that are specified to a particular question.
- 4. Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer.
 - Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.
 - Continuing an answer: If you need to use the space to continue an answer, indicate in
 the original answer space where the answer is continued, i.e. give the page number.
 Fill in the number of the question that you are continuing to answer at the top of the
 page.
- 5. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked.
- 6. It is recommended that you do not use pencil, except in diagrams.
- 7. The Formula Sheet is **not** to be handed in with your Question/Answer Booklet.

Question number:

Additional working space

18

Section One: Calculator-free 35% (48 Marks)

3

This section has **eight (8)** questions. Answer **all** questions. Write your answers in the spaces provided.

Working time for this section is 50 minutes.

Question 1 (5 marks)

Part of the graph of $y = x^2 + 1$ is shown in the diagrams below.

An approximation for the area beneath the curve between x=0 and x=4 is made using rectangles as shown in the right-hand diagram. Determine the exact amount by which the approximate area exceeds the exact area.

Question 2 (9 marks)

(a) Differentiate the following with respect to x, simplifying your answers.

√ simplifies derivative

✓ uses chain rule for sin(2x + 1)✓ uses chain rule for sin^3 ()

√ simplifies result

(i)
$$y = \int_{-1}^{1} (t - t^3) dt$$
. (2 marks)

Solution
$\frac{d}{dx}\int_{x}^{1}(t-t^{3})dt = -\frac{d}{dx}\int_{1}^{x}(t-t^{3})dt$
$= x^3 - x$
Specific behaviours
✓ adjusts limits of integral

(ii)
$$y = \sin^3(2x+1)$$
. (3 marks)

Solution
$y = u^3 \qquad u = \sin(2x+1)$
$\frac{dy}{du} = 3u^2 \frac{du}{dx} = 2\cos(2x+1)$
$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
$=3\sin^2(2x+1)\times 2\cos(2x+1)$
$= 6\sin^2(2x+1)\cos(2x+1)$
Specific behaviours

See next page

CALCULATOR-ASSUMED 17 METHODS UNIT 3

Question 20 (7 marks)

A vertical wall, 2.1 metres tall, stands on level ground and 1.8 metres away from the wall of a house. A ladder, of negligible width, leans at an angle of θ to the ground and just touches the ground, wall and house, as shown in the diagram.

(a) Show that the length of the ladder, L, is given by $L = \frac{2.1}{\sin \theta} + \frac{1.8}{\cos \theta}$. (3 marks)

		Solution	1
$\sin\theta = \frac{2.1}{AB}$	$\Rightarrow AB = \frac{2.1}{\sin \theta},$	$\cos\theta = \frac{1.8}{BC} \implies$	$BC = \frac{1.8}{\cos \theta}$

$$L = AB + BC$$
$$= \frac{2.1}{\sin \theta} + \frac{1.8}{\cos \theta}$$

Specific behaviours

- ✓ shows on diagram and writes length of AB
- ✓ shows on diagram and writes length of BC
- ✓ sums lengths to obtain total, using labels added to diagram
- (b) Use a calculus method to determine the length of the shortest ladder that can touch the ground, wall and house at the same time. (4 marks)

$L = 2.1(\sin\theta)^{-1} + 1.8(\cos\theta)^{-1}$ $\frac{dL}{d\theta} = -2.1\cos\theta(\sin\theta)^{-2} - 1.8(-\sin\theta)(\cos\theta)^{-2}$ $= \frac{1.8\sin^3\theta - 2.1\cos^3\theta}{\sin^2\theta\cos^2\theta}$

$$\frac{dL}{d\theta} = 0 \implies 1.8\sin^3\theta - 2.1\cos^3\theta = 0$$
$$\tan^3\theta = \frac{2.1}{1.8} \implies \theta = \tan^{-1}\sqrt[3]{\frac{2.1}{1.8}} \approx 0.8111$$

 $L(0.8111) \approx 5.51$ metres

Specific behaviours

- ✓ shows first derivative of *L* (may use CAS, but must show key results)
- ✓ solves derivative equal to 0
- ✓ obtains acute angle solution
- √ substitutes into equation to obtain minimum length

9

Question 2 (continued)

(b) Determine the values of the constants
$$a$$
, b and c , given that $\int (x) = e^{3x} \left(ax^2 + bx + c \right)$ when $\int (x) = x^2 e^{3x}$.

g

Solution

Solution

Solution

$$\int '(x) = 2xe^{3x} + 3x^2e^{3x}$$

$$\int ''(x) = 2e^{3x} + 6xe^{3x} + 3\int '(x)$$

$$= 2e^{3x} + 6xe^{3x} + 3\int (2xe^{3x} + 3x^2e^{3x})$$

$$= 2e^{3x} + 12xe^{3x} + 9x^2e^{3x}$$
Specific behaviours

Specific behaviours

Vuese product rule for first derivative

Vuese product rule for first derivative

Vuese product and chain rules for second derivative

Vuese product and chain rules for second derivative

(7 marks) **Question 19** 9١

Consider the function $f(t) = \frac{t-4}{2}$ and the function $A(x) = \int_0^x \int_0^x f(t) dt$.

(2 marks) Complete the table below.

,			Ο.	. (),	., ,		· / ·	' '	_
					ίly	nes correc	१८ ।।। ४९।	calculate	,
					r values	et 3 correc	s at lea	calculate	بر د
			ırs	c behavior	Specifi				
								e table	əs
				uoitulo	S				
	_	01:0		0.1:0	_		_	()	П

Solution For what value(s) of X is the function A(x) increasing? (1 mark)

√ correct inequality Specific behaviours **†** < *X*

On the axes below, sketch the graph of y = A(x) for $0 \le x \le 6$. (S marks)

Determine

Solution .0 = (x)' A nahw (1 mark) (i)

✓ states value Specific behaviours $\mathcal{V} = X$

the function A(x) in terms of X. (ii) (1 mark)

 \checkmark states function in terms of XSpecific behaviours $x \le -\frac{x}{4} = xb \le -\frac{x}{2} \int_{0}^{x} = (x)h$ Solution

Question 3 (7 marks)

Consider the function defined by $f(x) = \frac{x}{2} - \sqrt{x}$, $x \ge 0$.

=1

(a) Determine the coordinates of the stationary point of f(x). (3 marks) Solution

	1	1
f '($(x) = \frac{1}{2} -$. —
, ,	2	$2\sqrt{x}$
1	1	_
	=	$0 \Rightarrow x$
2	$2\sqrt{x}$	

$$f(1) = \frac{1}{2} - \sqrt{1} = -\frac{1}{2}$$
 \Rightarrow stationary point at $\left(1, -\frac{1}{2}\right)$

Specific behaviours

- √ differentiates function
- ✓ solves f'(x) = 0
- ✓ states coordinates of point
- (b) Use the second derivative test to determine the nature of the stationary point found in (a). (3 marks)

 1		

$$f"(1) = \frac{1}{4}$$

 $f''(1) > 0 \Rightarrow local minimum$

Specific behaviours

- ✓ determines second derivative
- \checkmark shows f''(1) > 0
- ✓ states conclusion that point is local minimum
- (c) State the global minimum of f(x). (1 mark)

Solution	
1	
$-\frac{1}{2}$	
Specific behaviours	
✓ states correct value of global minimum	

Question 18 (continued)

CALCULATOR-ASSUMED

Does the graph of y = f(x) have a horizontal point of inflection? Justify your answer.

15

Solution	(2 marks)
Yes, as x increases through $x = a$, the gradient of f changes from	
negative to zero to negative, indicating a horizontal pt of inflection.	
Specific behaviours	
✓ responds yes, indicating when $x = a$	
✓ explains reason	

(d) On the axis below, sketch a possible graph of y = f'(x). The graph of y = f'(x) is shown with a broken line for your reference. (3 marks)

Solution
See graph
Specific behaviours
✓ correctly aligns three roots with turning pts
✓ correctly aligns min and max with pts of inflection
√ smooth curve through five key points

METHODS UNIT 3 14 CALCULATOR-ASSUMED

Question 4 (5 marks)

The area of a segment with central angle θ in a circle of radius r is given by $A=\frac{r^2}{2}(\theta-\sin\theta)$. Use the increments formula to find the approximate increase in area of a segment in a circle of radius 10 cm as the central angle increases from $\frac{\pi}{3}$ to $\frac{11\pi}{30}$.

Solution $A = 50(\theta - \sin \theta)$ $A = 50(1 - \cos \theta)$ $A \approx \frac{Ah}{d\theta} = 50(1 - \cos \theta)$ $A \approx 50 \left(1 - \cos \frac{h}{3}\right) \times \frac{h}{30}$ $A \approx 50 \left(1 - \frac{1}{2}\right) \times \frac{h}{30}$ $A \approx 50 \left(1 - \frac{1}{2}\right) \times \frac{h}{30}$ $A = 50 \left(1 - \frac{h}{30}\right) \times \frac{h}{30}$ $A = 50 \left(1 - \frac$

Question 18 (8 marks)

The graph of $y=\int (x)$, the derivative of a polynomial function f, is shown below. The graph of y=f(x) has stationary points when x=a, x=c and x=c, points of inflection when x=a and x=c and

s) For what value(s) of X does the graph of $y = \int (x)$ have a point of inflection? (1 mark)

	✓ states all values
Specific behaviours	conferr file codede /
	$\partial ' \mathcal{C}' \mathcal{D} = X$
Solution	

Does the graph of y = f(x) have a local maximum? Justify your answer. (2 marks)

✓ explains reason			
∇ responds yes, indicating when $x = g$			
Specific behaviours			
to negative, indicating a local maximum.			
Yes, as x increases through $x = g$, the gradient of f changes from positive to zero			
Solution			

Question 5 (5 marks)

Differentiate $y = \frac{2x+1}{e^x}$, simplifying your answer. (3 marks)

Solution Specific behaviours

√ uses quotient rule

√ factors out exponential term

√ simplifies

Using the result in (a) or otherwise, evaluate $\int_1^2 \left(\frac{1-2x}{e^x}\right) dx$. (2 marks)

	Solution	
$\int_{1}^{2} \left(\frac{1 - 2x}{e^{x}} \right) dx = \left[\frac{2x + 1}{e^{x}} \right]_{1}^{2}$		
_ 5 3		
$-\frac{1}{e^2}-\frac{1}{e}$		
5 – 3 <i>e</i>		
$={e^2}$		
Specific behaviours		

[✓] recognises antiderivative will be function from (a)

✓ substitutes limits

13 **Question 17** (8 marks)

The graph of the function y = f(x) is shown below for $-2 \le x \le 4$.

CALCULATOR-ASSUMED

The area of regions enclosed by the *x*-axis and the curve, *A*, *B*, *C*, *D* and *E*, are 12, 7, 5, 32 and 21 square units respectively.

Determine the value of $\int_{a}^{4} f(x) dx$. (2 marks)

V −	
	Solution
-12 + 7 - 5 + 32 - 21 = 1	
	Specific behaviours
✓ assigns sign to all areas	
✓ adds signed values	

(b) Determine the area of the region enclosed between the graph of y = f(x) and the *x*-axis from x = 0 to x = 4. (2 marks)

Solution	•
5 + 32 + 21 = 58 sq units	
Specific behaviours	
✓ chooses regions C, D and E	
✓ adds unsigned values	

Determine the values of

(i)
$$\int_0^3 f(x) + 3 dx$$
. (2 marks)

Solution		
$\int_0^3 f(x) dx + \int_0^3 3 dx = (-5 + 32) + (9) = 36$		
Specific behaviours		
✓ splits integral into two parts		
✓ evaluates and sums each part		

(ii)
$$2\int_{0}^{1} f'(x)dx$$
. (2 marks)

	Solution	
$2\int_{0}^{1} f'(x)dx = 2[f(x)]_{0}^{1}$		
= 0		
	Specific behaviours	
✓ use FTC		
✓ evaluates integral		

The discrete random variable X has the probability distribution shown in the table below.

3

1-3a

CALCULATOR-ASSUMED 15

The discrete random variable Y has the probability distribution shown in the table below.

✓ correct numerator and simplification √ correct denominator Specific behaviours $\frac{1}{4} = \frac{2.0}{8.0} = (1 \ge Y \mid 0 \le Y)^{q}$

Calculate (q)

METHODS UNIT 3

(i)

(s)

(i)
$$E(Y)$$
. (2 marks)

Solution

 $E(Y) = (-2)(0.4) + (-1)(0.2) + (0)(0.1) + (1)(0.1) + (2)(0.2)$
 $= -0.8 - 0.2 + 0.1 + 0.4$

Specific behaviours

 \checkmark forms products

 \checkmark forms products

 \checkmark sums products

 \checkmark forms products

✓ applies both linear changes to obtain expected value Specific behaviours E(1-2Y) = 1 - 2(-0.5) = 2

(c) Calculate

(i)

√ states variance ✓ uses correct formula Specific behaviours $24.2 = \frac{94}{02} =$ $Var(Y) = (V.5)^{2} + (V.5)^{$ Var(Y). (z marks)

Solution (1 mark) Var(1-2Y). (ii)

✓ applies square of multiplier to original variance Specific behaviours $8.9 = \frac{49}{S} = (Y) \times Var(Y) = (YS - I) \times Var(Y)$

↑ of noitudintsib amus ➤ Specific behaviours Reject $a = \frac{1}{2}$ $0 = (1 - n\Delta)(1 + nE)$ $\begin{bmatrix} \frac{7}{4} & \frac{6}{4} & \frac{2}{8} & \frac{7}{4} \end{bmatrix}$ $Check \ a = -\frac{3}{1}$

Solution

3

1 + 5a

²*p*₽

(e marks)

√ checks first value for valid probabilities ⋄ solves equation for two values of a

✓ states only valid value of a ✓ checks second value for valid probabilities

✓ simplifies equation

Determine the value of the constant a.

 $\overline{5a}^2$

 $(x = X)_d$

Question 6

METHODS UNIT 3

10

CALCULATOR-FREE

CALCULATOR-ASSUMED

METHODS UNIT 3

Question 7 (5 marks)

The area bounded by the curve $y = e^{2-x}$ and the lines y = 0, x = 1 and x = k is exactly e - 1 square units. Determine the value of the constant k, given that k > 1.

Solution

$$\int_{1}^{k} e^{2-x} dx = \left[-e^{2-x} \right]_{1}^{k}$$
$$= \left(-e^{2-k} \right) - \left(-e^{1} \right)$$
$$= e - e^{2-k}$$

$$e - e^{2-k} = e - 1$$
$$e^{2-k} = 1$$

$$k = 2$$

Specific behaviours

- ✓ writes integral to determine area
- √ antidifferentiates exponential function
- ✓ substitutes 1 and *k* and simplifies
- √ equates to area
- ✓ solves for k

(d) After five seconds, the particle has moved a distance of k metres.

(i) Explain why
$$k \neq \int_0^5 v(t) dt$$
. (1 mark)

11

Solution

Integral will calculate change in displacement, but since particle turned around after one second, this will not be the same as distance travelled.

Specific behaviours

✓ explains change in displacement not distance travelled in this instance

(ii) Calculate k. (2 marks)

Solution			
$k = \int_0^5 \left \frac{t^2 + 2t - 3}{(t+1)^2} \right dt$			
$k = \frac{11}{3} \approx 3.67$			
Specific behaviours			

- ✓ use absolute function
- √ determines k

CALCULATOR-FREE 11

CALCULATOR-ASSUMED

METHODS UNIT 3

Question 8 (6 marks) The shaded region on the graph below is enclosed by the curves $y = -\sin(2x)$ and $y = 2\cos x$.

x uz

Given that $\sin(2x) = 2\sin x \cos x$, show that the first two roots of the equation $2\cos x = -\sin(2x)$ are $\frac{\pi}{2}$ and $\frac{3\pi}{2}$. (3 marks)

(3 marks) Hence find the area of the enclosed region in the diagram above.

luates integral	ь еча
eviterivative	oys 🗡
es integral	√ writ
fic behaviours	Speci
	₽ =
(z, \overline{z})	.)
$(z-\frac{1}{z}-)-\left(z+\frac{1}{z}-z-z\right)$	- -)=
$\frac{z}{r}$	'a
$\frac{z}{z} \left[x \operatorname{nis} z - xz \cos \frac{z}{z} \right]$	= h
$\frac{z}{w}$	J
7	
x p x soo7 - (x7)uis - uis	[= h
$xp \ x \cos z - (xz) \text{uis} - \frac{z}{z}$, ,
	Soluti
	**··I~2

Question 15 (9 marks)

10

A particle moves in a straight line according to the function $x(t) = \frac{t^2 + 3}{t + 1}$, $t \ge 0$, where t is in seconds and x is the displacement of the particle from a fixed point O, in metres.

(2 marks) Determine the velocity function, v(t), for the particle.

 $v(t) = \frac{d}{dt}x(t)$ $= \frac{t^2 + 2t - 3}{(t+1)^2}$ Specific behaviours $\sqrt{\text{relates velocity to first derivative of displacement wit } t$ $\sqrt{\text{determines the first derivative}}$

b) Determine the displacement of the particle at the instant it is stationary. (2 marks)

(c) Show that the acceleration of the particle is always positive. (2 marks)

\checkmark shows that acceleration always positive for $t \ge 0$
√ determines acceleration function
Specific behaviours
t lis not 0 <
$\frac{3b}{3b} = (3)a$ $(1)a$ $(1)a$
uoihulos

METHODS UNIT 3	12	CALCULATOR-FREE
----------------	----	-----------------

Additional working space

Question	number:	

CALCULATOR-ASSUMED 9 METHODS UNIT 3

(c) The probability that a student misses his bus to school is 0.2, and the probability that he misses the bus on any day is independent of whether he missed it on the previous day.

Over five consecutive weekdays, what is the probability that the student

(i) only misses the bus on Tuesday?

(2 marks)

Solution	
$0.2 \times 0.8^4 = 0.08192$	
	Specific behaviours
✓ uses 0.8 for catching bus	
✓ determines probability	

(ii) misses the bus at least twice?

(2 marks)

(3 marks)

Solution		
$X \sim B(5, 0.2)$		
$P(X \ge 2) = 0.26272$		
Specific behaviours		
✓ identifies binomial situation		
✓ evaluates cumulative probability		

ii) misses the bus on Tuesday and on two other days?

Solution		
$P = 0.2 \times P(Y = 2)$ where $Y \sim B(4, 0.2)$		
P(Y=2) = 0.1536		
$P = 0.2 \times 0.1536$		
= 0.03072		
Specific behaviours		
√ identifies binomial situation for other two days		
✓ evaluates probability of missing bus on two other days		
√ determines probability		

Semester One Examination, 2016

Question/Answer Booklet

SOLUTIONS

ection Two:
E TINU
VETHODS
SOITAMEHTAN

Calculator-assumed

,	• • •	
	Your name	
	ln words	
:Jeur Mumber:	ຣອມກຽເເ ເເເ	

Time allowed for this section

Reading time before commencing work: ten minutes one hundred minutes

Materials required/recommended for this section To be provided by the supervisor

This Question/Answer Booklet

Formula Sheet (retained from Section One)

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters

Special items: drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor before reading any further.

METHODS UNIT 3 8 CALCULATOR-ASSUMED

Question 14 marks)

a) Determine the mean of a Bernoulli distribution with variance of 0.24. (3 marks)

states both values of p are possible means
v solves equation
✓ writes variance equation
Specific behaviours
6.0 to 4.0 rean = 6.0 to 4.0 or 6.0 to 6
4.5.0 = (q - 1)q
Solution

(b) A Bernoulli trial, with probability of successe p, is repeated n times. The resulting distribution of the number of successes has an expected value of 5.76 and a standard deviation of 1.92. Determine n and p.

✓ solves equations for <i>n</i> and <i>p</i>		
✓ states equation for variance (or standard deviation)		
✓ states equation for mean		
✓ identifies distribution of successes as binomial		
Specific behaviours		
91 = u		
96.0 = q		
$4.0 = 37.2 + ^{2}29.1 = q - 1$		
$_{z}$ Z6·T = $(d-1)du$		
97.č = <i>du</i>		
$(d'u)g \sim \chi$		
Solution		

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of exam
Section One: Calculator-free	8	8	50	48	35
Section Two: Calculator-assumed	12	12	100	92	65
			Total	140	100

Instructions to candidates

- The rules for the conduct of examinations are detailed in the school handbook. Sitting this
 examination implies that you agree to abide by these rules.
- 2. Write your answers in this Question/Answer Booklet.
- You must be careful to confine your response to the specific question asked and to follow any instructions that are specified to a particular question.
- 4. Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer.
 - Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.
 - Continuing an answer: If you need to use the space to continue an answer, indicate in
 the original answer space where the answer is continued, i.e. give the page number.
 Fill in the number of the question that you are continuing to answer at the top of the
 page.
- 5. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked.
- 6. It is recommended that you **do not use pencil**, except in diagrams.
- 7. The Formula Sheet is **not** to be handed in with your Question/Answer Booklet.

Question 13 (5 marks)

Records of a company that has a large workforce indicate that 35 percent of employees take sick leave during any given year.

(a) If the records of five employees are selected at random from the previous year, what is the probability that fewer than three took sick leave? (2 marks)

Solution		
Let X = number of employees out of 5 taking sick leave.		
$X \sim Bin(5, 0.35)$		
$P(X \le 2) = 0.7648$		
Specific behaviours		
✓ Define X and state the distribution		
✓ Evaluate probability		

Amongst the 20 management staff of the company, seven of them had taken sick leave during the previous year.

(b) If five management staff are selected at random, what is the probability that two or less took sick leave during the previous year? (3 marks)

Solution

Let Y = number of management staff out of 5 taking sick leave.
$P(Y \le 2) = \frac{\binom{7}{0}\binom{13}{5}}{\binom{20}{5}} + \frac{\binom{7}{1}\binom{13}{4}}{\binom{20}{5}} + \frac{\binom{7}{2}\binom{13}{3}}{\binom{20}{5}}$

= 0.7932

Specific behaviours

- ✓ Separate into 7 and 13 management staff
- √ Sum of three probabilities
- ✓ Evaluate total probability

CALCULATOR-ASSUMED 3

CALCULATOR-ASSUMED

METHODS UNIT 3

65% (92 Marks)

This section has **thirteen (13)** questions. Answer **all** questions. Write your answers in the spaces provided.

Working time for this section is 100 minutes.

Section Two: Calculator-assumed

Question 9 (4 marks)

A recent news report said that it took 34 months for the population of Australia to increase from 23 to 24 million people.

Assuming that the rate of growth of the population can be modelled by the equation of $\frac{dP}{dt} = kP$, where P is the population of Australia at time t months, determine the value of

the constant K. (2 marks)

V IOI COAICC
√ solves for K
✓ uses growth and decay equation with correct data
Specific behaviours
k = 0.001252
$\Sigma t = \Sigma 3 \epsilon^{3 t k}$
d = d = d = d
Honnico

Assuming the current rate of growth continues, how long will it take for the population to increase from 24 million to 25 million people? (2 marks)

₹ solves for t
✓ sets up correct values in equation
Specific behaviours
1 = 32.51 or 3.5 or 33 months (32.6 is incorrect)
$\Sigma S = \Sigma A e^{0.001\Sigma S \Sigma t}$
Solution

Question 12 (8 marks)

9

The height of grain in a silo, initially 0.4 m, is increasing at a rate given by $h'(t) = 0.55t - 0.05t^2$ for $0 \le t \le 11$, where h is the height of grain in metres and t is in hours.

(a) At what time is the height of grain rising the fastest? (a)

Solution h''(t) = 0.55 - 0.1t h''(t) = 0.55 - 0.1t $0.55 - 0.1t = 0 \implies t = 5.5 \text{ hours}$ Specific behaviours Adifferentiates rate of change Solves derivative equal to zero to obtain time.

(b) Determine the height of grain in the silo after 11 hours.

 evaluates integral to obtain final height
v adds initial height
√ shows integral of rate of change
Specific behaviours
$m \ \theta \ \mu. LL =$
60.11 + 4.0 =
$h(11) = h(0) + \int_0^{11} 0.55t - 0.05t^2 dt$
Solution

(c) Calculate the time taken for the grain to reach a height of 4.45 m.

	√ solves for k
	✓ write integral
	Specific behaviours
	s.nov 5.4 = 4
	That is, $\int_0^k 0.55t - 0.05t^2 dt = 4.45 - 0.4$
	$24.4 = 35^{2} \times 30.0 - 325.0 = 0 + 4.0 = (4) $
Solution	

✓ writes velocity equation

✓ evaluates displacement

Question 10 (7 marks)

A small object is moving in a straight line with acceleration $a = 6t + k \text{ ms}^2$, where t is the time in seconds and k is a constant. When t = 1 the object was stationary and had a displacement of 4 metres relative to a fixed point O on the line. When t = 2 the object had a velocity of 1 ms⁻¹.

Determine the value of k and hence an equation for the velocity of the object at time t. (4 marks)

	Solution	
	$v = 3t^2 + kt + c$	
	t = 1, $3 + k + c = 0$	
	t = 2, $12 + 2k + c = 1$	
	<i>k</i> = −8	
	<i>c</i> = 5	
	$v = 3t^2 - 8t + 5$	
	Specific behaviours	
Ī	✓ antidifferentiates acceleration, adding constant	
	√ derives simultaneous equations from information	
	✓ solves equations for one unknown	

Determine the displacement of the object when t = 2. (3 marks)

Solution		
$s = t^3 - 4t^2 + 5t + c$		
t = 1, $4 = 1 - 4 + 5 + c$		
c = 2		
$s = t^3 - 4t^2 + 5t + 2$		
s(2) = 8 - 16 + 10 + 2		
= 4 m		
	Specific behaviours	
✓ antidifferentiates velocity✓ determines constant		

5 **Question 11** (7 marks)

It is known that 15% of Year 12 students in a large country study advanced mathematics.

A random sample of *n* students is selected from all Year 12's in this country, and the random variable X is the number of those in the sample who study advanced mathematics.

Describe the distribution of *X*.

(2 marks)

Solution	
$X \sim B(n, 0.15)$ - binomial distribution with <i>n</i> trials and $p = 0.15$.	
Specific behaviours	
✓ states binomial distribution	
✓ states parameters of binomial distribution	

If n = 22, determine the probability that

CALCULATOR-ASSUMED

three of the students in the sample study advanced mathematics. (1 mark)

Solution	
P(X=3) = 0.2370	
Specific behaviours	
✓ evaluates probability	

more than three of the students in the sample study advanced mathematics.

Solution	(1 mark)
$P(X \ge 4) = 0.4248$	
Specific behaviours	
✓ evaluates probability	

none of the students in the sample study advanced mathematics. (1 mark)

Solution		
P(X = 0) = 0.0280		
	Specific behaviours	
✓ evaluates probability		

If ten random samples of 22 students are selected, determine the probability that at least one of these samples has no students who study advanced mathematics. (2 marks)

Solution	
$Y \sim B(10, 0.028)$	
$P(Y \ge 1) = 0.247$	
Specific behaviours	
✓ states binomial distribution with parameters	
✓ evaluates probability	