# Batch write in bit units (command: 1401)

Write values to devices in bit units.



When accessing any of the following devices, use the device extension specification (subcommand: 008 ...).

- · Link direct device
- · Module access device
- CPU buffer memory access device

For the message format for device extension specification, refer to the following section.

Page 438 Read/Write by Device Extension Specification

# **Message format**

The following shows the message format of the request data and response data of the command.

# ■Request data

| Command Subcommand | Head device | Number of device points | Write data |
|--------------------|-------------|-------------------------|------------|
|--------------------|-------------|-------------------------|------------|

# ■Response data

There is no response data for this command.

# Data specified by request data

## **■**Command

| Frame             | ASCII code                    | Binary code |
|-------------------|-------------------------------|-------------|
| 4C/3C/4E/3E frame | 1 4 0 1<br>31H, 34H, 30H, 31H | 01н , 14н   |
| 2C frame          | 3<br>33H                      | _           |

## **■**Subcommand

| Туре                   | ASCII code                    | Binary code |  |  |  |  |  |  |  |
|------------------------|-------------------------------|-------------|--|--|--|--|--|--|--|
| For MELSEC-Q/L series  | 0 0 0 1<br>30H, 30H, 30H, 31H | 01н , 00н   |  |  |  |  |  |  |  |
| For MELSEC iQ-R series | 0 0 0 3<br>30H, 30H, 30H, 33H | 03н , 00н   |  |  |  |  |  |  |  |

For 2C frame, the specification is not required. Functions and specification methods are equivalent to the subcommands for MELSEC-Q/L series.

#### ■Head device

Specify the head device of the consecutive devices. (FP Page 65 Devices)



The following devices cannot be specified.

- Long timer (contact: LTS, coil: LTC, current value: LTN)
- Long retentive timer (contact: LSTS, coil: LSTC, current value: LSTN)
- Long counter (current value: LCN)
- Long index register (LZ)
- Page 69 Considerations when accessing long timer, long retentive timer, or long counter
- Page 69 Considerations when accessing long index register

# ■Number of device points

Specify the number of device points to be written within the following range. ( Page 70 Number of device points)

| Access target                                                                          | C24              | E71              |                  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|------------------|------------------|------------------|--|--|--|--|--|
|                                                                                        |                  | ASCII code       | Binary code      |  |  |  |  |  |
| MELSEC iQ-R series module MELSEC iQ-L series module MELSEC-Q/L series module           | 1 to 7904 points | 1 to 3584 points | 1 to 7168 points |  |  |  |  |  |
| MELSEC-QnA series module  Module on other station via MELSEC-QnA series network module | 1 to 3952 points | 1 to 1792 points | 1 to 3584 points |  |  |  |  |  |
| MELSEC-A series module                                                                 | 1 to 160 points  |                  |                  |  |  |  |  |  |

#### **■**Write data

Specify the value to be written to a device for the number equivalent to the specified number of device points. ( Page 72 Read data, write data)

# **Communication example**

Write values to M100 to M107. (Subcommand: for MELSEC-Q/L series)

# ■Data communication in ASCII code

|     |     |     |       | Subcommand |     |     |     |     | vice<br>ode | ŀ   | Head | devi | ce nu | ımbe | r   | Numb | er of c | levice | points | i   |     | ,   | Write | data |     |     |      |  |
|-----|-----|-----|-------|------------|-----|-----|-----|-----|-------------|-----|------|------|-------|------|-----|------|---------|--------|--------|-----|-----|-----|-------|------|-----|-----|------|--|
| 1   | 4   | 0   | 1     | 0          | 0   | 0   | 1   | М   | *           | 0   | 0    | 0    | 1     | 0    | 0   | 0    | 0       | 0      | 8      | 1   | 1   | 0   | 0     | 1    | 1   | 0   | 0    |  |
| 31н | 34н | 30н | , 31н | 30н        | 30н | 30н | 31н | 4DH | 2Ан         | 30н | 30н  | 30н  | 31н   | 30н  | 30н | 30н  | 30н     | 30н    | , 38н  | 31н | 31н | 30н | 30н   | 31н  | 31н | 30н | 30н  |  |
|     |     |     |       |            |     |     |     |     |             |     |      |      |       |      |     |      |         |        |        | M10 | 0   |     | te    | 0    |     | ŀ   | M107 |  |

## ■Data communication in binary code

