电路系统的s域分析方法

知识点K1.14

电路系统的s域分析方法

1

主要内容:

电路系统的s域分析方法

基本要求:

熟练利用拉氏变换分析电路

电路系统的s域分析方法

K1.14 电路系统的s域分析方法

例 如图所示电路,已知 $u_S(t) = \varepsilon(t)$ V, $i_S(t) = \delta(t)$,起始状态 $u_C(0-) = 1$ V, $i_L(0-) = 2$ A,求电压u(t)。

 $oldsymbol{lpha}_{f s}$. 画出电路的s域模型。 $U_{f s}(s)$ =1/s, $I_{f s}(s)$ =1

电路系统的s域分析方法

节点方程:
$$\left(s+2+\frac{1}{s}\right)U(s) = I_{S}(s) - \frac{2}{s} + s[U_{S}(s) - \frac{1}{s}]$$

$$U(s) = \frac{s-2}{s^2 + 2s + 1} = \frac{1}{s+1} + \frac{-3}{(s+1)^2}$$

$$u(t) = e^{-t}\varepsilon(t) - 3te^{-t}\varepsilon(t) V$$

