36-710: Advanced Statistical Theory

Fall 2018

Lecture 20: November 7

Lecturer: Alessandro Rinaldo Scribes: Natalia Lombardi de Oliveira

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

20.1 Spiked Covariance Model

References: Johnson & Lu (2009); Paul (2007); Nadler (2008).

$$\Sigma_{p \times p} = \nu \theta \theta^T + \mathbf{I}_d,$$

in which $\theta > 0, \nu \in \mathbb{S}^{p-1}$, ν leading eigenvector, $1 + \theta$ leading eigenvalue.

Let X_1, \ldots, X_n iid, $X_i \sim (0, \Sigma)$. $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$, $\hat{\nu}$ leading eigenvector of $\hat{\Sigma}$. $\langle (\nu, \hat{\nu}) \not \to 0$ with high probability unless $\frac{p}{n} \to 0$.

$$\min_{\epsilon \in \{-1,1\}} ||\epsilon \hat{\nu} - \nu|| \le 2sin^2(\sphericalangle(\hat{\nu}, \nu))$$

and by Davis-Kahan,

$$\min_{\epsilon \in \{-1,1\}} ||\epsilon \hat{\nu} - \nu|| \leq \frac{8}{\theta^2} ||\hat{\Sigma} - \Sigma||_{op}$$

Assuming $X_i \in SG(||\Sigma||_{op})$,

$$\min_{\epsilon \in \{-1,1\}} ||\epsilon \hat{\nu} - \nu|| \lesssim \frac{1+\theta}{\theta} \min\{\sqrt{\frac{p + \log(1/\delta)}{n}}, \frac{p + \log(1/\delta)}{n}\}.$$

20.2 Sparse PCA

$$\Sigma_{p \times p} = \nu \theta \theta^T + \mathbf{I}_d,$$

in which $\theta > 0$, $\nu \in \mathbb{S}^{p-1}$, $||\nu||_0 \le k << n, p, \#\{i : \nu_i \ne 0\}$.

Estimate ν using $\hat{\nu}$ where $\hat{\nu}^T \hat{\Sigma} \hat{\nu} = \max_{u \in \mathbb{S}^{p-1}, ||u||_0 \le k' u^T \hat{\Sigma} u}, k \le k' \le \frac{p}{2} \to \text{not computationally feasible!!!}$

Theorem 20.1 Assume $X_1, \ldots, X_n \sim (0, \Sigma)$ such that $X_i \in SG_p(||\Sigma||op)$. Let $\hat{\nu}$ be a solution to the sparse PCA. Then

$$\min_{\epsilon \in \{-1,1\}} ||\epsilon \hat{\nu} - \nu|| \leq \frac{1+\theta}{\theta} \max \sqrt{B_n}, B_n,$$

in which $B_n = [(k+k')log(ep/k+k') + log(1/\delta)]/n$, with probability $\geq 1 - \delta$.

20-2 Lecture 20: November 7

Proof: Let $s \subset \{1, \ldots, p\}$, $A(S) = (A_{ij})_{i,j \in s}$, $x_s = (x_i)_{i \in s}$ and $s = supp(\hat{\nu}) \cup supp(\nu)$. We have that

$$\begin{split} \theta sin^2(\sphericalangle(\hat{\nu},\nu)) &= \nu^T \Sigma \nu - \hat{\nu}^T \hat{\Sigma} \hat{\nu} \\ &= \nu^T \hat{\Sigma} \nu - \hat{\nu}^T \Sigma \hat{\nu} - \nu^T (\hat{\Sigma} - \Sigma) \nu \\ &\leq \hat{\nu}^T \hat{\Sigma} \nu - \hat{\nu}^T \Sigma \hat{\nu} - \nu^T (\hat{\Sigma} - \Sigma) \nu \\ &= \hat{\nu}^T (\hat{\Sigma} - \Sigma) \hat{\nu} - \nu^T (\hat{\Sigma} - \Sigma) \nu \\ &= \hat{\nu}^T (\hat{\Sigma} - \Sigma) \hat{\nu} - \nu^T (\hat{\Sigma} - \Sigma) \nu \\ &= \langle \hat{\Sigma} - \Sigma, \hat{\nu} \hat{\nu}^T - \nu \nu^T \rangle \\ &= \langle \hat{\Sigma} (s) - \Sigma (s), \hat{\nu}_s \hat{\nu}_s^T - \nu_s \nu_s^T \rangle \\ &\leq ||\hat{\Sigma} (s) - \Sigma (s)||_{op} ||\hat{\nu}_s \hat{\nu}_s^T - \nu_s \nu_s^T||_1 \\ &\leq ||\hat{\Sigma} (s) - \Sigma (s)||_{op} \sqrt{2} ||\hat{\nu}_s \hat{\nu}_s^T - \nu_s \nu_s^T||_2 \end{split}$$

Note that $rank(\hat{\nu}_s\hat{\nu}_s^T - \nu_s\nu_s^T) \leq 2$. Let's look separately at $\hat{\nu}_s\hat{\nu}_s^T - \nu_s\nu_s^T$.

$$\begin{split} || \hat{\nu}_s \hat{\nu}_s^T - \nu_s \nu_s^T ||_F & \leq & || \hat{\nu} \hat{\nu}^T - \nu \nu^T ||_F \\ & = & \sqrt{2 sin^2 (\sphericalangle(\hat{\nu}, \nu))}. \end{split}$$

Then, $sin(\sphericalangle(\hat{\nu}, \nu)) \leq 2||\hat{\Sigma}(s) - \Sigma(s)||_{op}$, since $\min_{\epsilon \in \{-1,1\}} ||\epsilon \hat{\nu} - \nu||^2 \leq sin(\sphericalangle(\hat{\nu}, \nu))$.

We have shown that $\min_{\epsilon \in \{-1,1\}} ||\epsilon \hat{\nu} - \nu||^2 \leq \frac{\sqrt{8}}{\theta} \sup_{s \in 1,...,p,s \neq \emptyset, |s| \leq k+k'} ||\hat{\Sigma}(s) - \Sigma(s)||_{op}$.

$$\mathbb{P}(\sup_{s \in 1, \dots, p, s \neq \emptyset, |s| \leq k+k'} ||\hat{\Sigma}(s) - \Sigma(s)||_{op} \geq t||\Sigma||_{op}) \lesssim {p \choose k+k'} q^{k+k'} exp - \frac{n}{2} \{(t/32)^2 \wedge t/32\}$$

Recall the inequality $\binom{n}{k} \leq (\frac{en}{k})^k$.

Finish up the usual way.

20.3 Community detection in stochastic block model

Let $A_{n\times n}$ symmetric be the adjacency matrix, $A_{ij}=\mathbb{I}(i \text{ connected to } j), A_{ii}=0 \text{ all } i.$

20.3.1 Erdos - Renyi's Model

$$A_{ij} \sim Bernoulli(p)$$
, all $i < j$.

More generally, one could assume $A_{ij} \sim Bernoulli(p_{ij})$ independent (inhomogeneous Bernoulli model).

20.3.2 Stochastic Block Model

Next class!