#### Übung zu

# Grundgebiete der Elektrotechnik III

Lehrstuhl für Allgemeine Elektrotechnik und Datenverarbeitungssysteme Univ.-Prof. Dr.-Ing. T. Noll

WS 09/10 - Blatt 1

#### Aufgabe 1

- a) Geben Sie das in Zylinderkoordinaten  $\vec{r}(\rho,\phi,z)$  vorliegende Vektorfeld  $\vec{B}_1(\vec{r}) = \frac{1}{\rho} \cdot \vec{e}_{\phi}$  in kartesischen Koordinaten an.
- b) Geben Sie das in Kugelkoordinaten  $\vec{r}(r,\theta,\phi)$  vorliegende Vektorfeld  $\vec{B}_2(\vec{r}) = \frac{1}{r} \cdot \vec{e}_r$  in kartesischen Koordinaten an.
- c) Geben Sie das Vektorfeld  $\vec{B}_3(\vec{r}_A) = \frac{1}{r_A^2} \cdot \vec{e}_{r_AQ}$  für  $\vec{r}_Q = a \cdot \vec{e}_y$  in

kartesischen Koordinaten  $(x_A, y_A, z_A)$  an.

# Aufgabe 2

Ein starrer, masseloser Stab der Länge *l* trägt an einem Ende die Masse *m*. Das andere Ende ist drehbar im Koordinatenursprung gelagert. Auf die Masse *m* wirkt

die Gewichtskraft  $\vec{F}_g = -m \cdot g \cdot \vec{e}_z$ .



Berechnen Sie die Zugkraft auf den Stab  $F_l = \vec{F}_g \cdot \frac{l}{l}$  und das Dreh-

moment im Ursprung  $\vec{L} = \vec{l} \times \vec{F}_g$ .

HINWEIS: Der Hebelarm ist  $\vec{l} = l \cdot \vec{e}_r$ .

## Aufgabe 3

Eine Kugel mit dem Radius R trägt auf der Oberfläche die Flächenladungsdichte  $\sigma_e(\theta)=\sigma_{e0}\cdot\cos\theta$ .

Das Innere der Kugel (r < R) ist ladungsfrei.

- a) Welche Ladung  $Q_1$  trägt die obere Hälfte der Kugel ( $0 \le \theta \le \pi/2$ )? Hinweis: Verwenden Sie bei der Integration die Substitution  $u = \sin \theta$ .
- b) Wie groß ist die Gesamtladung der Kugel?

Anstelle der Flächenladung hat die Kugel nun die Raumladung  $\rho_e(r) = \rho_{e0} \cdot r/R.$ 

c) Wie groß ist jetzt die Gesamtladung der Kugel?

HINWEIS: Der Mittelpunkt der Kugel liegt im Koordinatenursprung.

#### Aufgabe 4

c) Wie groß ist  $\bar{E}(0,0,b)$ ? Was ergibt sich für das Fernfeld (b>>a) auf

HINWEISE:  $\int x \cdot (x^2 + A^2)^{-3/2} dx = -(x^2 + A^2)^{-1/2}$ ,

 $\frac{1}{\sqrt{1+x}} \approx 1 - \frac{1}{2}x \quad \text{für}|x| << 1$ 

Eine kreisförmige Linienladung mit dem Ladungs-

belag  $q_L \neq f(\vec{r})$  und dem Radius a liegt in der

*x-y-*Ebene. Im gesamten Raum gilt  $\varepsilon = \varepsilon_0$ .

a) Welches Koordinatensystem ist hier

von einem infinitesimalen Ladungselement zweckmäßig? Formulieren Sie den Vektor



b) Geben Sie das elektrostatische Feld  $\bar{E}(0,0,b)$  der Linienladung an.

c) Welches elektrostatische Feld  $\bar{E}(0,0,b)$  ergibt sich näherungsweise für b >> a (im Fernfeld)?

# Aufgabe 5

liegt im Ursprung des Koordinatensystems Eine kreisförmige Scheibe mit dem Radius a und der Flächenladungsdichte  $\sigma_e$  befindet sich in der x-y-Ebene. Ihr Mittelpunkt (vgl. Abb.). a) Formulieren Sie dQ,  $\vec{r}_{AQ}$  und die Integrationsgrenzen zur Bestimmung von

b) Welche Teilintegration ist aus Symmetriegründen trivial? Wie lässt  $\vec{E}$  im Aufpunkt A(0,0,b) für b>0.

sich das Integral mit dem Ergebnis aus Aufgabe 4 formulieren?



Aufgabe 6



ke d $\bar{E}$  an.



a) Welche Flächenladungsdichte d $\sigma_e$  hat ein näherungsweise als nitesimalen Länge dz? Geben Sie die von einem solchen Teilzylinder mit dem Mittelpunkt (0,0,z) im Punkt A(0,0,b) erzeugte Feldstär-Kreisfläche betrachteter Teilzylinder mit dem Radius a und der infi-

b > c berechnet werden (s. Abb.).

b) Berechnen Sie nun  $\bar{E}(0,0,b)$  durch Integration über d $\bar{E}$  im Intervall  $-c \le z \le c$ . Hinnels: Zusatzveranstelhung

noch nicht übermorgen (M. 28.10.)
statt!

Fredwillige HA: Abgabe bis Di Kitter 3.11.09
vom aktuellen Blett: Aufg. 6
im Priven Holzbasten gegenübe
Seminarreum (213)

Fortsetzung Auf. 2)

 $\overline{L} = (\overline{l} \cdot \overline{e_r}) \times (-m \cdot g \cdot \cos(\theta) \cdot \overline{e_r} + m \cdot g \cdot \sin(\theta) \cdot \overline{e_\theta})$   $= (-l \cdot m \cdot g \cdot \cos(\theta)) \cdot (\overline{e_r} \times \overline{e_r})$ 

 $+ (l \cdot m \cdot g \cdot sh(\theta)) \cdot (\vec{e_r} \times \vec{e_\theta})$ 

an Ort de Masse

=> [= (-m·g·sh(0)·e)



Annerkung: Die Richtung von I und ober Drehstun sind Im Rechts schreuben-Sinn mitetnende verknüpft.



$$dA = R \cdot s \cdot r \cdot (\theta) \cdot d\phi \cdot R \cdot d\theta$$

$$dQ = o_e(\theta) \cdot dA$$

$$\frac{Q_{1}}{Q_{2}} = \int_{\theta=0}^{\pi/2} \int_{\theta=0}^{\pi/2} dQ(\theta, \phi)$$

$$Q_1 = \int \int R^2 - \sin(\theta) \cdot O_{eo} \cdot d\theta \cdot d\phi - \cos(\theta)$$

$$\theta = 0 \quad 0$$

$$W_2$$

$$Q = R^2 \cdot \sigma_{eo} \cdot 7\pi \cdot \int \sin(\theta) \cdot \cos(\theta) \cdot d\theta$$

substitution 
$$u = str(\theta)$$

$$\frac{du}{d\theta} = cos(\theta)$$

27. OKT. 2009

$$\Rightarrow du = d\theta \cdot cos(\theta)$$
Grenzen:  $\theta = 0 \Rightarrow u = 0$ 

$$\theta = \frac{\pi}{2} \Rightarrow u = 1$$

$$u = 1$$

$$u = 1$$

$$u = 1$$

$$u = 0$$

7

$$Q_{ges} = \frac{P_{eo}}{R} \cdot \int_{r^2}^{r^2} dr \int_{r^2}^{r^2}$$

Aufq. U.

9/ = coust.

E = E.

an out de Ladeung, wo und dre Kraft des aut dre Ladeing, bzn. des lokale E-Feld interessiert

a) I the trest de tulpunt out de - Achse

=> Anosducing ist rotationsymmetrisch zur z-Adise

Gesucht: TAQ

(sinnvoll: Zy Ander koardinaten)

suffer Welton: VI= b. ez

Aut fun un verter:  $\vec{v}_a = a \cdot \vec{e}_{\hat{q}}$   $= f(\hat{p}_a)$ 

$$\begin{aligned}
S_{\alpha} &= \alpha \\
Z_{\alpha} &= 0 \\
\phi_{\alpha} &= \left[0, 2\pi \left[ \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{4}} \right] + \frac{1}{\sqrt{4}} \right] \\
\vec{r}_{A\alpha} &= \sqrt{4} - \sqrt{4} = b \cdot \vec{e}_z - \alpha \cdot \vec{e}_{\varphi} \left(\phi_{\alpha}\right)
\end{aligned}$$

b.) Betrachte zunichst den Feldstätte beitreg etnes kletnen Lockungsekmentes dQ.



wegen ez Leg:

Aus der Rotationssymmetrie de Anardmung folgt: \( \vec{F}(\vec{v\_f}) : \vec{F}(0,0,b) \)
= \( \vec{F}\_2(0,0,b) \vec{v\_2} \)

$$E_{z}(0,0,b) = \int dE_{z}(0,0,b)$$
Linien-
Loding
$$dE_{z} = \frac{dQ}{4ME_{0}} \cdot \frac{b}{\sqrt{b^{2}+a^{2}}}$$
hier ist  $dQ = q_{L} \cdot ds$ 

$$q \cdot dq$$

$$E_{2} = \frac{q_{1}}{4ME_{0}} \cdot \frac{b}{\int b^{2} + q^{2}} \cdot \frac{2M}{a \cdot cd} \int_{Q} \frac{2M}{a \cdot 2M}$$

$$\alpha \cdot 2M$$

E.) Fernfeld: 
$$b >> a$$

$$\vec{E}(0,0,b) = \frac{4\iota \cdot a \cdot b}{2 \cdot \ell_0} = \frac{4\iota \cdot$$

Formultering unt der Gesemtlachung Q des Kreis rings: Q= 2 TA a 9L

$$\vec{E}(\vec{v_A}) = \frac{q_{L'a} \cdot 2\vec{a}}{2 \cdot \epsilon_o \cdot b^2 \cdot 2\vec{a}} \cdot \vec{e_z} = \frac{Q}{4\vec{a} \cdot \epsilon_o \cdot b^2} \cdot \vec{e_z}$$
(b>0)

Ries entsprickt dem Feldeter Puntfladeng Q im Ursprung.



$$\vec{r}_{Q} = f_{Q} \cdot \vec{e}_{g}(\phi_{Q})$$

Quell gebref: 
$$0 \le S_Q \le Q$$

$$0 \le P_Q < 7\pi$$

$$Z_Q = 0$$

Aus Rotations symmetrie folgt: E(0,0,b)= Ez(0,0,b). Ez (vgl. 44)  $dE_{z}(0,0,b) = dF(0,0,b) \cdot e_{z}$   $= \frac{V_{AQ} \cdot e_{z}}{V_{AQ}} \cdot \frac{\delta e \cdot \beta_{Q} \cdot d\phi_{Q} \cdot d\beta_{Q}}{V_{AQ}}$   $V_{AQ} \cdot V_{AQ} \cdot e_{z} = b$   $V_{AQ} \cdot V_{AQ} \cdot e_{z} = b$