Least square problem

Consider a linear system $\overrightarrow{A}\overrightarrow{x} = \overrightarrow{b}$. if $\overrightarrow{b} \notin \operatorname{col} \overrightarrow{A}$, this equation has no solutions. However, we can use the method of **least squares** to find the **best solution**.

We define $\overrightarrow{A}_{m \times \underline{n}}$, $\overrightarrow{b} \in \mathbb{R}^n$. A least squares solution of $\overrightarrow{A}\overrightarrow{x} = \overrightarrow{b}$ is $\hat{x} \in \mathbb{R}^n$ such that $||\overrightarrow{b} - \overrightarrow{A}\widehat{x}|| \leq ||\overrightarrow{b} - \overrightarrow{A}\overrightarrow{x}|| \forall \overrightarrow{x} \in \mathbb{R}^n$. We can use orthogonal projections to solve this, since we know that the orthogonal projection of a point P to a subspace π is the (not necessarily unique) point in π with the minimal distance to p. This can be seen by substituting $\overrightarrow{A}\widehat{x} = \widehat{b}$ into the above equation. So, we know that the least squares solution is the solution to $\overrightarrow{A}\widehat{x} = proj_{\text{col }\overrightarrow{A}}\overrightarrow{b}$. However, this is a very difficult way to compute it.

Alternatively, we know that $\vec{b} - \hat{b} \perp \operatorname{col} \vec{A} \iff \vec{b} - \hat{b} \perp \vec{a}_i, 1 \leq i \leq n$, where \vec{a}_i are the columns of \vec{A} . This can also be expressed using the inner product, as $\vec{a}_i^T \left(\vec{b} - \hat{b} \right) = 0, 1 \leq i \leq n \implies \vec{A}^T \left(\vec{b} = \hat{b} \right) = 0 \implies \vec{A}^T \vec{A} \hat{x} = \vec{A}^T \vec{b}$.

Theorem: The system $\overrightarrow{A}^T \overrightarrow{A} \hat{x} = \overrightarrow{A}^T \overrightarrow{b}$ will always have solutions, and these solutions are precisely the least square solutions to $\overrightarrow{A} \overrightarrow{x} = \overrightarrow{b}$. If $\overrightarrow{A} \overrightarrow{x} = \overrightarrow{b}$ has solutions, then the solutions for the two systems will be the same.

It is also important to note that if $\overrightarrow{A}^T\overrightarrow{A}$ is invertible, then $\hat{x} = \left(\overrightarrow{A}^T\overrightarrow{A}^{-1}\right)\overrightarrow{A}^T\overrightarrow{b}$. Therefore, we can express $\hat{b} = proj_{\operatorname{col} \overrightarrow{A}} \overrightarrow{b} = \overrightarrow{A} \hat{x} = \overrightarrow{A} \left(\overrightarrow{A}^T\overrightarrow{A}^{-1}\right)\overrightarrow{A}^T\overrightarrow{b}$. This is a very useful formula to calculate orthogonal projections, since we know that $\forall W \subset \mathbb{R}^n \exists \overrightarrow{A} : W = \operatorname{col} \overrightarrow{A}$.

When is $\overrightarrow{A}^T \overrightarrow{A}$ invertible? This is the case iff

- 1. The columns of \overrightarrow{A} are linearly independent
- 2. $A\vec{x} = \vec{b}$ has a unique least squares solution

Point (2) is obvious, and point (1) can be easily proven:

Proof. Given that $\overrightarrow{A}^T\overrightarrow{A}$ is invertible, we know that $\overrightarrow{A}^T\overrightarrow{A}\overrightarrow{x}=\overrightarrow{0} \implies \overrightarrow{x}=0$. Therefore, if $\overrightarrow{A}\overrightarrow{x}=\overrightarrow{0}$, we can multiply by \overrightarrow{A}^T and show that this implies that $\overrightarrow{x}=\overrightarrow{0}$, i.e. that the columns of \overrightarrow{A} are linearly independent. Now we need to prove the other direction. We know that $\overrightarrow{A}\overrightarrow{x}=\overrightarrow{0}$. Therefore, $\overrightarrow{A}^T\overrightarrow{A}\overrightarrow{x}=\overrightarrow{0} \implies \overrightarrow{x}^T\overrightarrow{A}^T\overrightarrow{A}\overrightarrow{x}=\overrightarrow{0} \implies (\overrightarrow{A}\overrightarrow{x})^T\overrightarrow{A}\overrightarrow{x}=\overrightarrow{0} \implies (\overrightarrow{A}\overrightarrow{x}) \cdot (\overrightarrow{A}\overrightarrow{x})=0 \implies \overrightarrow{A}\overrightarrow{x}=\overrightarrow{0} \implies \overrightarrow{x}=0$.