EXERCICE 1

Pour quelles valeurs de x peut-on calculer $\ln(1+x) - \ln(6-3x)$?

solution:

- Pour pouvoir calculer ln(1+x) il faut que 1+x>0

$$1+x>0 \Leftrightarrow x>-1$$

- de plus pour calculer $\ln(6-3x)$ il faut que 6-3x>0

$$6-3x>0$$
 $\Leftrightarrow -3x>-6$ $\Leftrightarrow x<\frac{-6}{-3}$ (car -3 est négatif) $\Leftrightarrow x<2$

- Au final, il faut que x > -1 ET que x < 2

Conclusion : on peut calculer $\ln(1+x) - \ln(6-3x)$ si -1 < x < 2

EXERCICE 2

- 1) Justifier que $1+4x-4x^2$ est strictement positif si et seulement si $x\in\left]\frac{1-\sqrt{2}}{2};\frac{1+\sqrt{2}}{2}\right[$
- 2) En déduire l'ensemble de définition de la fonction h définie par

$$h(x) = \ln(1 + 4x - 4x^2) + \ln(7x)$$

solution:

1) Il faut étudier le signe du trinôme $1+4x-4x^2$ son discriminant $\Delta=(4)^2-4\times(-4)\times(1)=16+16=32$ ce discriminant est positif donc le trinôme $1+4x-4x^2$ a deux racines:

$$x_1 = \frac{-4 - \sqrt{32}}{2 \times (-4)} = \frac{-4 - \sqrt{16 \times 2}}{-8} = \frac{-4 - 4\sqrt{2}}{-8} = \frac{1 + \sqrt{2}}{2} \approx 1.2$$

et

$$x_2 = \frac{-4 + \sqrt{24}}{2 \times (-8)} = \frac{-4 + 4\sqrt{2}}{-8} = \frac{1 - \sqrt{2}}{2} \approx -0.2$$

(notez les simplifications de racine et de signes)

Comme le coefficient de x^2 est négatif dans le trinôme (il vaut -4) (parabole tournée vers le bas),

on en déduit que $1+4x-4x^2$ est strictement positif lorsque $x\in]1-\sqrt{2};$ $1+\sqrt{2}[$

2)

- Pour calculer $\ln(1+4x-4x^2)$ il faut que $1+4x-2^2>0$

 $1+4x-4x^2$ est strictement positif lorsque x est entre $1-\sqrt{2}$ et $1+\sqrt{2}$

- De plus pour calculer $\ln(7x)$ il faut que $7x{>}0$, et donc que $x{>}0$
- Au final :

Pour calculer $\ln(1+4x-4x^2)+\ln(7x)$ il faut que :

$$1 - \sqrt{2} < x < 1 + \sqrt{2}$$
 ET $x > 0$

c'est-à-dire que $x \in]0; 1 + \sqrt{2}[$

L'ensemble de définition de la fonction h est $]0;1+\sqrt{2}[$