3. PLC 설치 및 배선

3.1 전원 연결 및 접지

(PLC 설치 및 배선 - 기본 시작 항목)

✓ 개요

PLC 시스템을 안정적으로 운용하기 위해선 **정확한 전원 공급**과 **안전하고 효과적인 접지(Grounding)**가 필수적이다. 전원 품질이 나쁘거나 접지가 부적절하면 PLC는 다음과 같은 문제를 일으킬 수 있다:

- 예기치 않은 재부팅
- 오작동 또는 제어 실패
- 아날로그 신호 이상 (노이즈 유입)
- 통신 오류

따라서, **전원 및 접지는 시스템 신뢰성의 기반**이 된다.

✓ 1. PLC 전원 입력 방식

★ 입력 전압 종류

구분	전압	설명
AC 전원	100~240V AC (50/60Hz)	중대형 PLC에서 자주 사용
DC 전원	24V DC	소형/모듈형 PLC, 현장 센서와 호환성 ↑

★ 전원 구성

- 독립형 전원 모듈 사용 (Power Supply Module)
 - o PLC 내부 모듈에 24V DC 출력 제공
 - o CPU, I/O, 통신 모듈에 분배
- 공통 DC 전원 사용 (센서 등과 공유)
 - ㅇ 센서, 릴레이, 출력 장치와 전원공급장치를 공유하는 경우
 - o 반드시 **전류 용량 확인** 필요

☑ 2. 전원 배선 실무 원칙

항목	주의사항
AC와 DC 배선 분리	AC 전원이 DC 제어선에 유도 노이즈를 유발할 수 있음
전원선 트위스트	DC 24V 공급선은 트위스트 페어 방식 권장

항목	주의사항
전선 굵기 선정	소비 전류와 길이에 따라 충분한 여유 전선 굵기 확보
배선 보호	퓨즈, 서지 보호기(SPD) 설치 고려
정전 대비	UPS(무정전 전원장치) 연동 가능

☑ 3. 접지(Grounding)의 목적

- 정전기 제거
- 노이즈 차단 (EMI/RFI)
- 고전압 유입 방지 (낙뢰, 서지 등)
- 기기 간 기준 전위 통일
- 안전한 누설전류 경로 확보

☑ 4. 접지 종류와 구성

접지 종류	설명	실무 예시
프레임 접지 (FG)	섀시나 금속 하우징 접지	전기 충격 보호
신호 접지 (SG)	아날로그 신호 라인 기준 전위	노이즈 억제
공통 접지 (LG)	시스템 전체 기준점	PLC, 센서, HMI 동기화

★ 이상적인 방식은 "단일점 접지(Single-point Ground)"

• 모든 접지를 하나의 지점으로 모아 루프 전류 및 기준 전위 차이 방지

☑ 5. 접지 실무 팁

항목	실무 기준
접지 저항	일반적 시스템은 100Ω 이하, 정밀 시스템은 10Ω 이하
접지선 굵기	최소 2.5mm² 이상 (시스템 규모에 따라 조정)
나선 배선 금지	접지선은 최단거리 직선으로 구성
쉴드선 처리	쉴드선은 한쪽 끝(PLC측)에만 접지하는 게 일반적

☑ 6. 전원/접지 구성 예시 (배선도 개념)

✓ 7. 정리

- 전원 연결은 전압/전류 정격과 배선 기준에 맞게 안정적으로 구성해야 함
- 접지는 오작동 방지, 통신 안정성 확보, 정전기 대응에 필수적
- 설계 초기부터 접지의 위치, 전원 분리, 보호 장치 구성을 반드시 계획해야 한다.

3.2 입력 장치와 출력 장치의 배선

✓ 개요

PLC는 입력 장치(Input Device)로부터 신호를 받고, 출력 장치(Output Device)를 제어하는 구조로 동작한다. 이때 입력/출력 장치를 PLC I/O 모듈에 정확하게 연결해야 하며, 신호 유형, 배선 방식, 전원 공급 구조에 따라 배선 방식이 달라진다.

☑ 1. 입력 장치와 배선 구성

📌 대표 입력 장치

장치	설명
푸시버튼	수동 제어용 스위치 (일반적으로 NO/NC 접점)
리미트 스위치	기계적 위치 감지
근접센서(NPN/PNP)	금속체 감지
포토센서	물체 감지 (투과형/반사형)
온도 센서	RTD, Thermocouple (→ 아날로그 입력 필요)

★ 입력 배선의 기본 구성

- 입력 신호는 **PLC 디지털 입력 모듈**에 연결됨
- PLC와 센서가 **공통 전원을 공유**해야 정상적으로 동작함

NPN vs PNP 센서 연결

구분	설명	PLC 배선
NPN (싱킹 방식)	GND를 출력 → PLC 입력 단자로 들어옴	PLC 입력은 풀업 설계 필요
PNP (소싱 방식)	+24V를 출력 → PLC 입력으로 연결	PLC 입력은 풀다운 설계 필요

★ 일반 입력 배선 예시

☑ 2. 출력 장치와 배선 구성

★ 대표 출력 장치

장치	설명
릴레이/접촉기	큰 부하 회로 ON/OFF
램프/경광등	경고용 시각 표시
부저	경고음 발생
솔레노이드 밸브	공압, 유압 제어
모터	AC/DC 구동 (인버터 연동도 포함)

★ 출력 방식별 배선

출력 방식	배선 특성	사용 시 주의
릴레이 출력	AC/DC 겸용, 절연됨	접점 수명, 부하전류 주의
트랜지스터 출력 (NPN/PNP)	DC 전용, 빠른 스위칭	부하의 접지 방향 확인 필수
트라이악 출력	AC 부하 제어에 사용	부하와 전원 주파수 일치 여부 확인

★ 출력 배선 예시 (릴레이 방식)

✓ 3. COM 단자와 전원 분리

- PLC는 COM 단자(Common Terminal)를 기준으로
 각 입력 또는 출력 라인의 전기적 기준점을 설정함
- 센서나 출력 장치가 PLC 전원과 동일하지 않을 경우, 반드시 전기 절연 필요

☑ 4. 실무 배선 구성 팁

항목	내용
센서/출력 공통 전원 구성	가능하면 센서와 PLC가 동일한 24V 전원 사용
노이즈 대응	센서 배선은 트위스트, 아날로그 배선은 실드 처리
역전류 방지 다이오드	코일 부하(릴레이, 솔레노이드)에는 플라이백 다이오드 필수
전선 라벨링	각 신호 라인에 명확한 라벨 또는 색상 지정
EMC 대응	고전류 출력은 별도 케이블 트레이 사용, I/O 배선 분리 권장

☑ 예제: 래더 프로그램과 배선 대응 구조

래더 주소	연결 장치	배선 설명
X0	비상정지 스위치	NO 접점, 24V → X0 입력
X1	근접센서	NPN 방식, GND 출력 → X1
Υ0	경광등	PLC 릴레이 출력 → AC 220V 경광등
Y1	솔레노이드 밸브	DC 24V, Y1 출력 → 밸브 ON/OFF

☑ 정리

- 입력 장치의 배선은 신호의 정확성과 전원 일치가 중요하며,
- 출력 장치는 부하 특성과 출력 방식(릴레이/트랜지스터)에 따라 적절히 구성해야 함
- 접점 수명, 노이즈 대책, 역전류 보호 등을 반드시 고려해야 하며 PLC I/O 모듈의 COM 단자 구성과 센서/부하의 전원 설계가 일치해야 함

3.3 노이즈 대책 및 쉴딩

(PLC 설치 및 배선 – 신뢰성 확보 핵심 항목)

✓ 개요

PLC 시스템은 **산업 환경에서 발생하는 다양한 전기적 노이즈**에 항상 노출되어 있다. 이러한 노이즈가 제대로 차단되지 않으면 다음과 같은 문제가 발생할 수 있다:

- **센서 오작동** (입력 신호 튐)
- 출력 불안정 (릴레이 오동작)
- 아날로그 신호 이상
- **통신 오류** (RS-485, Ethernet 등)
- PLC 재시작, 프로그램 정지
- □ 따라서 설치 시 반드시 노이즈 억제 설계와 쉴딩 처리가 필요하다.

☑ 1. 산업 현장에서 발생하는 주요 노이즈 종류

노이즈 유형	발생 원인	영향 대상
EMI (전자기 간섭)	모터, 인버터, 용접기, 접촉기 등	전체 PLC 시스템
RFI (고주파 간섭)	무선기기, 라디오파, 고속 스위칭 소자	센서/통신
서지 노이즈	낙뢰, 접지 불량, 대전류 차단 시	PLC 전원, 아날로그 회로
접지 루프	중복 접지 발생 시 순환 전류	아날로그, 통신

🔽 2. 노이즈 대책 설계 원칙

★ ① 배선 분리

구분	설명
AC 전원 ↔ DC 신호 분리	고전압/고주파 AC 라인과 저전압 제어선은 최소 10~15cm 이상 분리
출력 ↔ 입력 분리	대전류 릴레이/모터 출력은 센서 입력과 분리 배치
아날로그 ↔ 디지털 분리	민감한 아날로그 신호는 별도 트레이 구성 권장

★ ② 접지 일원화

- 단일점 접지(Single-Point Grounding) 방식 채택
- 접지 저항은 일반 제어장비 기준 **100Ω 이하**, 고정밀 시스템은 **10Ω 이하**
- 접지선은 최단 거리, 직선, 굵은 구리선으로 구성

★ ③ 필터 및 서지 보호

장치	기능
노이즈 필터 (EMI Filter)	SMPS 입력에 삽입하여 고주파 잡음 차단
서지 보호기 (SPD)	낙뢰, 과전압 서지를 접지로 방전
Ferrite Core	신호 케이블에 감아서 고주파 잡음 억제
플라이백 다이오드	릴레이, 솔레노이드 코일 역전압 제거

☑ 3. 쉴딩(Shielding)의 개념과 적용

★ 쉴딩이란?

• 케이블 내부 신호선을 **금속 차폐층(알루미늄, 구리 편조)**로 감싸서 외부 노이즈로부터 신호를 보호하는 기술

★ 적용 대상

대상	쉴드 적용 필요 여부
아날로그 신호 케이블	필수 적용
RS-485 통신 케이블	권장 (특히 장거리 배선 시)
서보/엔코더 라인	필수 (정밀 제어 시 필수)

📌 쉴드선 접지 방법

방식	설명	
편측 접지	PLC 쪽 또는 신호 수신 측 한쪽만 접지 (일반적으로 권장)	
양측 접지	노이즈가 심한 환경에 사용되나 접지 루프 주의 필요	
비접지 금지	접지되지 않은 쉴드는 오히려 노이즈 안테나처럼 작용함	

☑ 4. 실무 배선 시 노이즈 대책 예시

- **전원선**: EMI 필터 삽입 → SMPS → 24V 출력
- 센서선: 트위스트 페어 케이블 사용 + 별도 쉴드 라인 접지
- **통신선**: STP (Shielded Twisted Pair) 케이블 사용 + 종단저항 설치
- PLC 접지: 모든 모듈의 FG, SG, 쉴드선은 단일 접지점으로 통합
- **출력선**: 대전류 코일 부하에는 다이오드 or RC 스너버 추가

✓ 정리

- 노이즈 대책은 PLC 신뢰성 확보의 핵심
- **배선 분리, 접지 일원화, 필터/서지 보호, 쉴드 처리**를 반드시 병행해야 함
- 특히 **아날로그, 통신, 고속 제어 환경**에서는 쉴드 및 접지 전략이 시스템 성능을 좌우하게 된다

3.4 릴레이, SSR, 센서, 엑추에이터 연결

(PLC 설치 및 배선 – 실제 장치 연결 핵심 단원)

☑ 개요

PLC 시스템의 입출력은 **각종 장치와의 배선 연결**을 통해 실제 물리적 제어를 수행한다.

현장에서 자주 사용되는 장치인 **릴레이, SSR, 센서류, 엑추에이터(Actuator)**는 각각의 동작 원리와 특성에 맞는 **정확한 결선** 방법이 필요하다.

이 단원에서는 각 장치별 연결법과 주의사항을 통합적으로 정리한다.

✓ 1. 릴레이 (Relay)

📌 개요

릴레이는 PLC 출력과 부하 사이에 위치하여, **PLC의 소전력 신호로 대전류 부하를 간접 제어**하는 스위칭 장치다.

★ 릴레이 종류

구분	설명
EMR (Electro Mechanical Relay)	기계식 접점, 저가, 소형 부하 제어
접촉기 (Contactor)	대형 릴레이, 모터/히터 등 대전류 부하용
인터페이스 릴레이	소형 중계 릴레이, PLC와 릴레이 사이 중간단 역할

ightharpoonup 결선 예시 (PLC 트랜지스터 출력 ightharpoonup 릴레이 ightharpoonup 부하)

```
1 [PLC Y0] → [릴레이 코일 +]
2 [GND] ── [릴레이 코일 -]
3 릴레이 접점 → 부하 전원 차단/접속
```

★ 주의사항

- 역전류 방지 다이오드(Flyback Diode)를 릴레이 코일 양단에 병렬로 반드시 설치
- 코일 소비 전류 > PLC 출력 한계를 초과할 경우 \rightarrow 외부 트랜지스터 드라이버 사용

2. SSR (Solid State Relay)

★ 개요

SSR은 **반도체 기반 릴레이**로, 기계적 접점이 없이 전류를 스위칭하며 **고속 스위칭, 긴 수명, 무소음**이 특징이다.

구분	설명
입력부	PLC로부터 제어 신호 받음 (보통 DC 3~32V)
출력부	부하에 AC 혹은 DC 공급 (릴레이 접점 역할 수행)

★ 결선 예시 (PLC 출력 → SSR → 부하)

★ 주의사항

- 부하가 AC일 경우 → AC용 SSR 사용
- 히트싱크 장착 필요 (발열 방지)
- 릴레이보다 빠르지만 Leakage 전류 존재 \rightarrow 미세 동작 방지 대책 필요

☑ 3. 센서 연결

★ 센서 종류 및 출력 방식

센서	출력 방식	설명
근접 센서	NPN / PNP	금속 감지, 가장 흔함
포토센서	NPN / PNP	투과형, 반사형 등 다양한 감지
초음파 센서	아날로그 / 디지털	거리 감지
압력 센서	아날로그	4 20 mA 또는 0 10V 출력
온도 센서	RTD / Thermocouple	AI 모듈 또는 특수 모듈 사용 필요

★ 결선 방식 (디지털 센서 예시)

- NPN 방식: 센서 출력이 GND로 떨어짐 → PLC 입력을 GND 기준으로 LOW
- PNP 방식: 센서 출력이 +24V로 올라감 → PLC 입력을 HIGH로 인식

```
1 +24V ----→ 센서 Vcc
2 GND ----→ 센서 GND
3 센서 출력 ----→ PLC 입력 (X0 등)
```

★ 아날로그 센서

```
1 센서 출력 (4~20 mA / 0~10 V) —→ PLC 아날로그 입력 채널
2 센서 GND —→ AI 모듈 COM
```

☑ 4. 엑추에이터 연결

엑추에이터는 PLC로부터 신호를 받아 **물리적 동작을 수행하는 장치**다.

장치	설명
솔레노이드 밸브	공압/유압 제어용, 릴레이/SSR 통해 ON/OFF
소형 DC 모터	직류 구동, 릴레이/드라이버 필요
AC 모터	인버터 또는 접촉기를 통해 제어
서보 모터	펄스 지령 + 피드백 → 모션 제어 모듈 연동
히터	릴레이 or SSR 제어, PID 제어 시 온도 모듈 필요

★ 예시: 솔레노이드 밸브 결선 (릴레이 출력 기준)

```
1 [PLC Y2] → 릴레이 코일
2 릴레이 접점 → +24V → 밸브 전원
3 밸브 -단자 → GND
```

★ 주의사항

- 코일 부하에는 반드시 **역전류 보호 다이오드 or RC 스너버 회로**
- 고전류 부하일 경우 **릴레이 정격 확인 / SSR 사용 고려**
- 서보, 인버터 연동 시 → **통신 or 전용 지령선 필요**

☑ 실무 연결 요약

장치	출력 방식	연결 방식	특이사항
릴레이	기계식 접점	PLC 출력 → 코일	다이오드 병렬
SSR	반도체 스위치	PLC 출력 → SSR 입력	누설전류 주의
NPN 센서	싱킹 출력	출력 → PLC 입력	COM은 +24V
PNP 센서	소싱 출력	출력 → PLC 입력	COM은 GND

장치	출력 방식	연결 방식	특이사항
아날로그 센서	전류/전압	출력 → AI 모듈	스케일 변환 필수
솔레노이드	전원 + 스위치	릴레이 or SSR → 부하 전원 스위칭	역전류 대책 필수

✓ 정리

- 각 장치의 전기적 특성, 동작 방식, 출력 형태(NPN/PNP/Relay/Analog)를 정확히 이해하고 연결해야 함
- 역전류, 노이즈, 전류 과부하 등의 실무적 리스크를 줄이기 위한 보조 회로 구성 필수
- 고속/고정밀 동작 장치는 반드시 전용 모듈(PID, 모션, 통신) 연동 고려

3.5 안전 회로 및 인터록 구성

(PLC 설치 및 배선 - 안정성 확보 핵심 단원)

✓ 개요

PLC 시스템은 단순히 자동화만이 목적이 아니라, **사람과 장비의 안전 확보** 또한 핵심이다. 이 단원에서는 **비상 정지, 인터록, 위험 회피 설계, Fail-safe 동작**을 구현하기 위한 **안전 회로 구성 및 인터록 기법**을 다룬다.

☑ 1. 안전 회로(Safety Circuit)의 목적

목적	설명
인명 보호	위험한 기계 작동 시 작업자의 안전 확보
장비 보호	오동작 또는 기계간 충돌 방지
비상 정지 기능 제공	E-Stop 스위치로 즉시 정지 가능
정상 상태 검증	오작동을 방지하기 위한 사전 확인 회로
법적 요구 사항 충족	CE, ISO 13849-1, IEC 61508 등 안전 기준 대응

☑ 2. 비상 정지 회로 (Emergency Stop)

→ 구성 방식

- 비상 정지 스위치(E-Stop Switch)는 반드시 NC 접점 사용 (선이 끊어져도 정지됨)
- 릴레이 직렬 연결 \rightarrow PLC 입력 또는 안전 릴레이(Safety Relay) 사용

★ 결선 예시

🖈 래더 로직

```
1 | X0 (비상정지 입력)
2 |----[]----------[M_STOP]
```

📌 동작 조건

• X0가 OFF (비상정지 눌림) \rightarrow M STOP 비트 OFF \rightarrow 전체 설비 동작 금지

☑ 3. 인터록(Interlock)이란?

인터록이란 두 개 이상의 장치가 동시에 작동하지 않도록 상호 차단하는 논리 구조이다. 이는 **기계간 충돌, 부하 중복, 장비 손상, 사람 부상**을 방지하기 위해 사용된다.

☑ 4. 인터록 구성 예시

📌 예시 1: 두 모터의 상호 배제 제어

➡ M1 작동 중일 때 M2는 시작할 수 없고, 그 반대도 마찬가지

✔ 예시 2: 실린더 A → B 순차 동작 보장

```
1 | Sensor_A_Extended —[]———[Y1 (실린더 B 구동)]
```

→ A 실린더가 완전히 나와야만 B가 동작

☑ 5. 인터록 구성의 실무 원칙

원칙	설명
상태 변수 분리	내부 비트(M 비트 등)로 각 장치 상태 추적
조건 분기 명확화	시퀀스 흐름을 인터록 조건으로 제어
역상 보호	동일 장치의 정/역 회전 동시 출력 방지

원칙	설명	
인터록 우선순위 명확화	긴급 정지, 안전 조건 우선 적용	

☑ 6. 안전 릴레이 vs 일반 릴레이

항목	일반 릴레이	안전 릴레이
접점 감시	안함	YES (이중 접점 확인 회로)
자가 진단	없음	있음 (내부 오류 감지)
정격	일반	인증된 SIL / PL 등급 지원
용도	보조 제어	비상 정지, 인명 보호 제어 필수

- ➡ Safety Relay는 비상 정지 회로에 반드시 사용되는 핵심 부품
- Siemens, PILZ, Omron 등에서 제공

✓ 7. Fail-safe 설계란?

비정상 상황에서도 안전한 정지 또는 고정된 상태로 전환되는 설계 원칙

예시	설명
비상 정지 시 → 모든 출력 OFF	릴레이 코일 무전원 상태
통신 오류 시 → 기계 정지	통신 인터럽트 감지 후 동작 금지
전원 차단 시 → 부하 단자 해제	출력 접점 비활성화

☑ 8. 정리

- 안전 회로와 인터록 구성은 PLC 설계에서 가장 중요한 생명 보호 메커니즘
- 비상 정지(E-Stop)는 반드시 **NC 접점**, Safety Relay와 연동
- 인터록은 상호 배제, 순서 보장, 위험 방지를 위한 논리 설계
- 시스템은 항상 "고장 시 정지하는 설계(Fail-safe)" 원칙을 따라야 함