Całkowanie wektora obciążeń metodą Gaussa

dr inż. Kustra Piotr WIMiIP, KISiIM, AGH B5, pokój 710

Obliczanie wektora P

Obliczanie macierzy C dla pierwszego punktu całkowania

Obliczanie macierzy C dla pierwszego punktu całkowania

Obliczanie Macierzy H_{bc}

$$[H_{BC}] = \int_{S} \alpha(\lbrace N \rbrace \lbrace N \rbrace^{T}) dS \qquad \sum_{i=1}^{Npc} f(pc_{i}) w_{i} \det[J]$$

$$\sum_{i=1}^{n_{pc}} f(pc_i) w_i \det[J]$$

$$[H_{BC}] = H_{BCpc1} + H_{BCpc2}$$

рс	ksi	eta	N1	N2	N3	N4	
1	-1	0,5773	0,2113	0	0	0,7886	
2	-1	-0,5773	0,7886	0	0	0,2113	

$$det[J] = \frac{L}{2} = 0,0125$$

 $Pc_3(-\frac{1}{\sqrt{3}},1)$ 1

 $Pc_3(\frac{1}{\sqrt{3}}, 1)$

$$[H_{BC}] = \int_{S} 25 \begin{pmatrix} N1 \\ N2 \\ N3 \\ N4 \end{pmatrix} \{N1 \quad N2 \quad N3 \quad N4 \} ds = \begin{pmatrix} w_{1} * 25 * \begin{pmatrix} 0.2113 \\ 0 \\ 0.7886 \end{pmatrix} \{0.2113 \quad 0 \quad 0 \quad 0.7886 \} \end{pmatrix} + \begin{pmatrix} v_{2} * 25 * \begin{pmatrix} 0.7886 \\ 0 \\ 0.2113 \end{pmatrix} \{0.7886 \quad 0 \quad 0 \quad 0.2113 \} \end{pmatrix} *det[J]$$

pc1	0,21132	0	0	0,78867
0,21132	1,11645	0	0	4,16666
0	0	0	0	0
0	0	0	0	0
0,78867	4,16666	0	0	15,5502

pc2	0,7886751	0	0	0,211325
0,78867	15,550211	0	0	4,16666
0	0	0	0	0
0	0	0	0	0
0,21132	4,1666666	0	0	1,11645

*det[J] (0,0125)

sum	1	2	3	4
1	0,20833	0	0	0,10416
2	0	0	0	0
3	0	0	0	0
4	0,10416	0	0	0,20833

Pow_3	1	2	3	4
1	0	0	0	0
2	0	0	0	0
3	0	0	0,20833	0,10416
4	0	0	0,10416	0,20833

Pow_4	1	2	3	4
1	0,20833	0	0	0,10416
2	0	0	0	0
3	0	0	0	0
4	0,10416	0	0	0,20833

Pow_2	1	2	3	4
1	0	0	0	0
2	0	0,20833	0,10416	0
3	0	0,10416	0,20833	0
4	0	0	0	0

Pow_1	1	2	3	4
1	0,20833	0,10416	0	0
2	0,10416	0,20833	0	0
3	0	0	0	0
4	0	0	0	0

Obliczanie Wektora P przy wykorzystaniu funkcji kształtu 1d.

sum	1	2
1	0,208333	0,104167
2	0,104167	0,208333

$\frac{f1}{1}$	

sum	1	2
1	0,208333	0,104167
2	0,104167	0,208333

sum	1	2
1	0,208333	0,104167
2	0,104167	0,208333

N1=0.25*(1-ksi)(1-eta)

N1=0.25*(1-ksi)(1-(-1))

N1=0.5*(1-ksi)

- 1. Dodać informacje do węzłów o obecności warunku brzegowego
- 2. Dodać do elementu uniwersalnego współrzędne punktów całkowania po powierzchni oraz ściany elementu. Uzupełnić macierz wartości {N} dla punktów całkowania w elemencie uniwersalnym.
- 3. Dodać do struktury elementu macierz Hbc[4][4]
- 4. Obliczyć macierze Hbc dla poszczególnych ścian elementów