$(3,1)^*$ -choosability of planar graphs without adjacent short cycles

Min Chen^a*, André Raspaud^{b†}

- ^a Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
- ^b LaBRI UMR CNRS 5800, Universite Bordeaux I, 33405 Talence Cedex, France.

February 12, 2013

Abstract

A list assignment of a graph G is a function L that assigns a list L(v) of colors to each vertex $v \in V(G)$. An $(L,d)^*$ -coloring is a mapping π that assigns a color $\pi(v) \in L(v)$ to each vertex $v \in V(G)$ so that at most d neighbors of v receive color $\pi(v)$. A graph G is said to be $(k,d)^*$ -choosable if it admits an $(L,d)^*$ -coloring for every list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$. In 2001, Lih et al. [6] proved that planar graphs without 4- and l-cycles are $(3,1)^*$ -choosable, where $l \in \{5,6,7\}$. Later, Dong and Xu [3] proved that planar graphs without 4- and l-cycles are $(3,1)^*$ -choosable, where $l \in \{8,9\}$.

There exist planar graphs containing 4-cycles that are not $(3,1)^*$ -choosable (Crown, Crown and Woodall, 1986 [1]). This partly explains the fact that in all above known sufficient conditions for the $(3,1)^*$ -choosability of planar graphs the 4-cycles are completely forbidden. In this paper we allow 4-cycles nonadjacent to relatively short cycles. More precisely, we prove that every planar graph without 4-cycles adjacent to 3- and 4-cycles is $(3,1)^*$ -choosable. This is a common strengthening of all above mentioned results. Moreover as a consequence we give a partial answer to a question of Xu and Zhang [11] and show that every planar graph without 4-cycles is $(3,1)^*$ -choosable.

Keyword: Planar graphs; Improper choosability; Cycle.

1 Introduction

All graphs considered in this paper are finite, loopless, and without multiple edges. A plane graph is a particular drawing of a planar graph in the Euclidean plane. For a graph G, we use V(G), E(G), |G|, |E(G)| and $\delta(G)$ to denote its vertex set, edge set, order, size and minimum degree, respectively. For $v \in V(G)$, $N_G(v)$ denotes the set of neighbors of v in G. If there is no confusion about the context, we write N(v) for $N_G(v)$.

^{*}Research supported by NSFC (No.11101377). Email: chenmin@zjnu.cn

 $^{^\}dagger$ Research partially supported by ANR-NSC Project GRATEL - ANR-09-blan-0373-01 and NSC99-2923-M-110-001-MY3. Email: andre.raspaud@labri.fr. Tel: +33 5 40 0 69 29. Fax: +33 5 40 00 66 69.

A k-coloring of G is a mapping π from V(G) to a color set $\{1, 2, \dots, k\}$ such that $\pi(x) \neq \pi(y)$ for any adjacent vertices x and y. A graph is k-colorable if it has a k-coloring. Cowen, Cowen, and Woodall [1] considered *defective* colorings of graphs. A graph G is said to be d-improper k-colorable, or simply, $(k, d)^*$ -colorable, if the vertices of G can be colored with k colors in such a way that each vertex has at most d neighbors receiving the same color as itself. Obviously, a $(k, 0)^*$ -coloring is an ordinary proper k-coloring.

A list assignment of G is a function L that assigns a list L(v) of colors to each vertex $v \in V(G)$. An L-coloring with impropriety of integer d, or simply an $(L,d)^*$ -coloring, of G is a mapping π that assigns a color $\pi(v) \in L(v)$ to each vertex $v \in V(G)$ so that at most d neighbors of v receive color $\pi(v)$. A graph is k-choosable with impropriety of integer d, or simply $(k,d)^*$ -choosable, if there exists an $(L,d)^*$ -coloring for every list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$. Clearly, a $(k,0)^*$ -choosable is the ordinary k-choosability introduced by Erdős, Rubin and Taylor [5] and independently by Vizing [10].

The concept of list improper coloring was independently introduced by Škrekovski [7] and Eaton and Hull [4]. They proved that every planar graph is $(3,2)^*$ -choosable and every outerplanar graph is $(2,2)^*$ -choosable. These are both improvement of the results showed in [1] which say that every planar graph is $(3,2)^*$ -colorable and every outerplanar graph is $(2,2)^*$ -colorable. Let g(G) denote the *girth* of a graph G, i.e., the length of a shortest cycle in G. The $(k,d)^*$ -choosability of planar graph G with given g(G) has been studied by Škrekovski in [9]. He proved that every planar graph G is $(2,1)^*$ -choosable if $g(G) \geq 9$, $(2,2)^*$ -choosable if $g(G) \geq 7$, $(2,3)^*$ -choosable if $g(G) \geq 6$, and $(2,d)^*$ -choosable if $d \geq 4$ and $g(G) \geq 5$. Recently, Cushing and Kierstead [2] proved that every planar graph is $(4,1)^*$ -choosable. So it would be interesting to investigate the sufficient conditions of $(3,1)^*$ -choosability of subfamilies of planar graphs where some families of cycles are forbidden. Škrekovski proved in [8] that every planar graph without 3-cycles is $(3,1)^*$ -choosable. Lih et al. [6] proved that planar graphs without 4- and l-cycles are $(3,1)^*$ -choosable, where $l \in \{5,6,7\}$. Later, Dong and Xu [3] proved that planar graphs without 4- and l-cycles are $(3,1)^*$ -choosable, where $l \in \{8,9\}$. Moreover, Xu and Zhang [11] asked the following question:

Question 1 *Is it true that every planar graph without adjacent triangles is* $(3,1)^*$ *-choosable?*

Recall that there is a planar graph containing 4-cycles that is not $(3,1)^*$ -colorable [1]. Therefore, while describing $(3,1)^*$ -choosability planar graphs, one must impose these or those restrictions on 4-cycles. Note that in all previously known sufficient conditions for the $(3,1)^*$ -choosability of planar

graphs, the 4-cycles are completely forbidden. In this paper we allow 4-cycles, but disallow them to have a common edge with relatively short cycles.

The purpose of this paper is to prove the following

Theorem 1 Every planar graph without 4-cycles adjacent to 3- and 4-cycles is $(3,1)^*$ -choosable.

Clearly, Theorem 1 implies Corollary 1 which is a common strengthening of the results in [6, 3].

Corollary 1 Every planar graph without 4-cycles is $(3,1)^*$ -choosable.

Moreover, Theorem 1 partially answers Question 1, since adjacent triangles can be regarded as a 4-cycle adjacent to a 3-cycle.

2 Notation

A vertex of degree k (resp. at least k, at most k) will be called a k-vertex (resp. k^+ -vertex, k^- -vertex). A similar notation will be used for cycles and faces. A triangle is synonymous with a 3-cycle. For $f \in F(G)$, we use b(f) to denote the boundary walk of f and write $f = [u_1u_2 \cdots u_n]$ if u_1, u_2, \cdots, u_n are the boundary vertices of f in cyclic order. For any $v \in V(G)$, we let $v_1, v_2, \cdots, v_{d(v)}$ denote the neighbors of v in a cyclic order. Let f_i be the face with vv_i and vv_{i+1} as two boundary edges for $i = 1, 2, \cdots, d(v)$, where indices are taken modulo d(v). Moreover, we let t(v) denote the number of 3-faces incident to v and let $n_3(v)$ denote the number of 3-vertices adjacent to v.

An m-face $f = [v_1v_2 \cdots v_m]$ is called an (a_1, a_2, \cdots, a_m) -face if the degree of the vertex v_i is a_i for $i = 1, 2, \cdots, m$. Suppose v is a 4-vertex incident to a 4^- -face f and adjacent to two 3-vertices not on b(f). If d(f) = 3, then we call v a light 4-vertex. Otherwise, we call v a soft 4-vertex if d(f) = 4. A vertex v is called an S-vertex if it is either a 3-vertex or a light 4-vertex. Moreover, we say a 3-face $f = [v_1v_2v_3]$ is an $(a_1, *, a_3)$ -face if $d(v_i) = a_i$ for each $i \in \{1, 3\}$ and v_2 is an S-vertex. Suppose v is a 5-vertex incident to two 3-faces $f_1 = [vv_1v_2]$ and $f_3 = [vv_3v_4]$. Let v_5 be the neighbour of v not belonging to the 3-faces. If $d(v_5) = 3$ and f_1 is a (5, *, 4)-face, then we call v a bad 5-vertex.

For all figures in the following section, a vertex is represented by a solid circle when all of its incident edges are drawn; otherwise it is represented by a hollow circle. Moreover, we use a hollow square to denote an S-vertex.

Figure 1: A light 4-vertex v, a soft 4-vertex w and a bad 5-vertex u.

3 Proof of Theorem 1

The proof of Theorem 1 is done by reducible configurations and discharging procedure. Suppose the theorem is not true. Let G be a counterexample with the least number of vertices and edges embedded in the plane. Thus, G is connected. We will apply a discharging procedure to reach a contradiction.

We first define a weight function ω on the vertices and faces of G by letting $\omega(v)=3d(v)-10$ if $v\in V(G)$ and $\omega(f)=2d(f)-10$ if $f\in F(G)$. It follows from Euler's formula |V(G)|-|E(G)|+|F(G)|=2 and the relation $\sum_{v\in V(G)}d(v)=\sum_{f\in F(G)}d(f)=2|E(G)|$ that the total sum of weights of the vertices and faces is equal to

$$\sum_{v \in V(G)} (3d(v) - 10) + \sum_{f \in F(G)} (2d(f) - 10) = -20.$$

We then design appropriate discharging rules and redistribute weights accordingly. Once the discharging is finished, a new weight function ω^* is produced. The total sum of weights is kept fixed when the discharging is in process. Nevertheless, after the discharging is complete, the new weight function satisfies $\omega^*(x) \geq 0$ for all $x \in V(G) \cup F(G)$. This leads to the following obvious contradiction,

$$-20 = \sum_{x \in V(G) \cup F(G)} \omega(x) = \sum_{x \in V(G) \cup F(G)} \omega^*(x) \ge 0$$

and hence demonstrates that no such counterexample can exist.

3.1 Reducible configurations of G

In this section, we will establish structural properties of G. More precisely, we prove that some configurations are reducible. Namely, they cannot appear in G because of the minimality of G. Since G does not contain a 4-cycle adjacent to an i-cycle, where i=3,4, by hypothesis, the following fact is easy to observe and will be frequently used throughout this paper without further notice.

Observation 1 G does not contain the following structures:

- (a) adjacent 3-cycles;
- (b) a 4-cycle adjacent to a 3-cycle;
- (c) a 4-cycle adjacent to a 4-cycle.

We first present Lemma 1, whose proof was provided in [6].

Lemma 1 [6]

- (A1) $\delta(G) \geq 3$.
- (A2) No two adjacent 3-vertices.
- (A3) There is no (3,4,4)-face.

Before showing Lemmas 2-7, we need to introduce some useful concepts, which were firstly defined by Zhang in [12].

Definition 1 For $S \subseteq V(G)$, let G[S] denote the subgraph of G induced by S. We simply write $G-S=G[V(G)\setminus S]$. Let L be an arbitrary list assignment of G, and π be an $(L,1)^*$ -coloring of G-S. For each $v\in S$, let $L_{\pi}(v)=L(v)\setminus \{\pi(u):u\in N_{G-S}(v)\}$, and we call L_{π} an induced assignment of G[S] from π . We also say that π can be extended to G if G[S] admits an $(L_{\pi},1)^*$ -coloring.

Figure 2: The configuration (Q) in Lemma 2.

Lemma 2 Suppose that G contains the configuration (Q), depicted in Figure 2. Let π be an $(L,1)^*$ coloring of G-S, where $S=\{v,v_1,v_2,v_3,v_4\}$. Denote by L_{π} an induced list assignment of G[S]. If $|L_{\pi}(v_i)| \geq 1$ for each $i \in \{1, \dots, 4\}$, then π can be extended to the whole graph G.

Proof. Since $|L_{\pi}(v_i)| \ge 1$ for each $i \in \{1, \dots, 4\}$, we can color each v_i with a color $\pi(v_i) \in L_{\pi}(v_i)$ properly. Note that $|L_{\pi}(v)| \ge 2$. If there exists a color in $L_{\pi}(v)$ which appears at most once on the set $\{v_1, v_2, v_3, v_4\}$, then we assign such a color to v. It is easy to check that the resulting coloring is

an $(L, 1)^*$ -coloring and thus we are done. Otherwise, w.l.o.g., suppose $L(v) = \{1, 2, 3\}$, $\pi(v_5) = 1$, and each color in $\{2, 3\}$ appears exactly twice on the set $\{v_1, v_2, v_3, v_4\}$. W.l.o.g., suppose $\pi(v_1) = 2$.

By definition, we see that v_1 is either a 3-vertex or a light 4-vertex. We label two steps in the proof for future reference.

- (i) If $d(v_1) = 3$, then $|L_{\pi}(v_1)| \ge 2$. We may assign color 2 to v and then recolor v_1 with a color in $L_{\pi}(v_1) \setminus \{2\}$.
- (ii) If v_1 is a light 4-vertex, denote by x_1, y_1 the other two neighbors which are different from v and v_2 . Erase the color of v_1 , color v with 2, and recolor x_1 and y_1 with a color different from its neighbors. We can do this since $d(x_1) = d(y_1) = 3$ by definition. Next, we will show how to extend the resulting coloring, denoted by π' , to G. If $\pi'(v_2) \notin \{\pi'(x_1), \pi'(y_1)\}$, then color v_1 with a color in $L(v_1) \setminus \{2, \pi'(v_2)\}$. Otherwise, we color v_1 with a color in $L(v_1) \setminus \{2, \pi'(v_2)\}$. In each case, one can easily check that the obtained coloring of G is an $(L, 1)^*$ -coloring.

Therefore, we complete the proof of Lemma 2.

Lemma 3 *G satisfies the following.*

- (B1) A 4-vertex is adjacent to at most two 3-vertices.
- (B2) There is no $(4^-, 4^-, 4^-)$ -face.
- (B3) There is no $(5^+, 4, 4)$ -face which is incident to two light 4-vertices.
- (B4) There is no 5-vertex incident to a (5, *, 4)-face f and adjacent to two 3-vertices not on b(f).
- (B5) There is no 6-vertex incident to two $(6, 4^-, 4^-)$ -faces and one (6, *, 4)-face.

Proof. Let L be a list assignment such that |L(v)| = 3 for all $v \in V(G)$. We make use of contradiction to show (B1)-(B5).

- (B1) Suppose that v is adjacent to three 3-vertices v_1, v_2 and v_3 . Denote $G' = G \{v, v_1, v_2, v_3\}$. By the minimality of G, G' admits an $(L, 1)^*$ -coloring π . Let L_{π} be an induced list assignment of G G'. It is easy to deduce that $|L_{\pi}(v)| \geq 2$ and $|L_{\pi}(v_i)| \geq 1$ for each $i \in \{1, 2, 3\}$. So for each v_i , we assign the color $\pi(v_i) \in L_{\pi}(v_i)$ to it. Now we observe that there exists a color in $L_{\pi}(v)$ appearing at most once on the set $\{v_1, v_2, v_3\}$. We color v with such a color. The obtained coloring is an $(L, 1)^*$ -coloring of G. This contradicts the choice of G.
- (B2) It suffices to prove that G does not contain a (4,4,4)-face by (A3). Suppose $f=[v_1v_2v_3]$ is a 3-face with $d(v_1)=d(v_2)=d(v_3)=4$. For each $i\in\{1,2,3\}$, let x_i,y_i denote the other two neighbors of v_i not on b(f). Denote by G' the graph obtained from G by deleting

edge v_1v_2 . By the minimality of G, G' has an $(L,1)^*$ -coloring π . If $\pi(v_1) \neq \pi(v_2)$, then G itself is $(L,1)^*$ -colorable and thus we are done. Otherwise, suppose $\pi(v_1) = \pi(v_2)$. If π is not an $(L,1)^*$ -coloring of the whole graph G, then without loss of generality, assume that $\pi(v_1) = \pi(v_2) = \pi(x_1) = 1$ and $\pi(v_3) = 2$. Moreover, none of x_1 's neighbors except v_1 is colored with 1. First, we recolor each v_i with a color $\pi'(v_i)$ in $L(v_i) \setminus \{\pi(x_i), \pi(y_i)\}$, where $i \in \{1, 2, 3\}$. We should point out that $\pi'(v_i)$ may be the same as $\pi(v_i)$, but it does not matter. Note that if at most two of $\pi'(v_1), \pi'(v_2), \pi'(v_3)$ are equal then the resulting coloring is an $(L,1)^*$ -coloring and thus we are done. Otherwise, suppose that $\pi'(v_1) = \pi'(v_2) = \pi'(v_3)$. Since $\pi'(v_1) \neq 1$ and $1 \in L(v_1)$, we may further reassign color 1 to v_1 to obtain an $(L,1)^*$ -coloring of G. This contradicts the choice of G.

- (B3) Suppose $f = [v_1v_2v_3]$ is a $(5^+, 4, 4)$ -face incident to two light 4-vertices v_2 and v_3 . By definition, we see that each v_i ($i \in \{2,3\}$) is incident to two other 3-vertices, denoted by x_i and y_i , which are not on b(f). Let G' denote the graph obtained from G by deleting edge v_2v_3 . Obviously, G' has an $(L,1)^*$ -coloring π by the minimality of G. Similarly, if $\pi(v_2) \neq \pi(v_3)$, then G itself is $(L,1)^*$ -colorable and thus we are done. Otherwise, suppose $\pi(v_2) = \pi(v_3)$. If π is not an $(L,1)^*$ -coloring of G, then w.l.o.g., assume that $\pi(v_2) = \pi(v_3) = \pi(x_2) = 1$ and $\pi(v_1) = 2$. Erase the color of v_2 and recolor v_2 with a color v_3 different from its neighbors. If $L(v_2) \neq \{1,2,a\}$, then color v_2 with a color in $L(v_2) \setminus \{1,2,a\}$. Otherwise, color v_2 with v_3 . It is easy to verify that the resulting coloring is an $(L,1)^*$ -coloring of G, which is a contradiction.
- (B4) Suppose that a 5-vertex v is incident to a (5,*,4)-face $f_1 = [vv_1v_2]$ and adjacent to two 3-vertices v_3 and v_4 . Let $G' = G \{v, v_1, v_2, v_3, v_4\}$. By the minimality of G, G' has an $(L, 1)^*$ -coloring π . Let L_{π} be an induced list assignment of G G'. Obviously, $|L_{\pi}(v_i)| \ge 1$ for each $i \in \{1, \dots, 4\}$ and $|L_{\pi}(v)| \ge 2$. By Lemma 2, π can be extended to G, which is a contradiction.
- (B5) Suppose that a 6-vertex v is incident to two $(6, 4^-, 4^-)$ -faces f_1, f_3 and one (6, *, 4)-face f_5 such that $d(v_i) \leq 4$ for each $i = \{1, 2, 3, 4\}$, $d(v_6) = 4$ and v_5 is an \mathcal{S} -vertex. Namely, v_5 is either a 3-vertex or a light 4-vertex. Let $G' = G \{v, v_1, v_2, \cdots, v_6\}$. By minimality, G' admits an $(L, 1)^*$ -coloring π . Denote by L_{π} an induced list assignment of G G'. It is easy to verify that $|L_{\pi}(v_i)| \geq 1$ for each $i \in \{1, \cdots, 6\}$ and $|L_{\pi}(v)| \geq 3$. So we can color v_i with $\pi(v_i) \in L_{\pi}(v_i)$ for each $i \in \{1, 2, \cdots, 6\}$. If there exists a color $a \in L_{\pi}(v)$ appearing at most once on the set $\{v_1, v_2, \cdots, v_6\}$, then we further assign color a to v and thus obtain an $(L, 1)^*$ -coloring of G.

Otherwise, each color in $L_{\pi}(v)$ appears exactly twice on the set $\{v_1, v_2, \cdots, v_6\}$. Since v_5 is an S-vertex, we can apply versions of arguments (i) and (ii) in the proof of Lemma 2 to obtain an $(L, 1)^*$ -coloring of G.

Lemma 4 Suppose that f = [uvxy] is a (3, 4, m, 4)-face. Then (F1) $m \neq 3$.

(F2) x cannot be a soft 4-vertex.

Proof. (F1) Suppose to the contrary that m=3. Let $G'=G-\{u,v,x,y\}$. By the minimality of G, G' admits an $(L,1)^*$ -coloring π . Let L_{π} be an induced list assignment of G-G'. Notice that $|L_{\pi}(y)| \geq 1$, $|L_{\pi}(v)| \geq 1$, $|L_{\pi}(u)| \geq 2$ and $|L_{\pi}(x)| \geq 2$. First, we color v with $v \in L_{\pi}(v)$ and color v with $v \in L_{\pi}(v)$. Then color v with $v \in L_{\pi}(v) \setminus \{v\}$ and v with $v \in L_{\pi}(v) \setminus \{v\}$. One can easily check that the resulting coloring of v is an v and v is contradicts the assumption of v.

(F2) Suppose to the contrary that x is a soft 4-vertex. By definition, x has other two neighbors whose degree are both 3, say x_1 and x_2 . Observe that neither x_1 nor x_2 is on b(f). Let $G' = G - \{u, v, x, y, x_1, x_2\}$. Obviously, G' admits an $(L, 1)^*$ -coloring π . Let L_{π} be an induced list assignment of G - G'. For each $w \in \{v, y, x_1, x_2\}$, we deduce that $|L_{\pi}(w)| \ge 1$. Moreover, $|L_{\pi}(u)| \ge 2$. We first color w with $\pi(w) \in L_{\pi}(w)$ and color u with a color in $L_{\pi}(u) \setminus \{\pi(v)\}$. If at least one of x_1 and x_2 has the same color as $\pi(v)$, we can color x with a color different from that of v and v. Otherwise, we can color v with a color different from v and v. Therefore, we achieve an v and v and v by the coloring of v which is a contradiction.

Figure 3: Adjacent soft 4-vertices u and v.

Lemma 5 *There is no adjacent soft 4-vertices.*

Proof. Suppose to the contrary that u and v are adjacent soft 4-vertices such that [uxyv] is a 4-face and u_1, u_2, v_1, v_2 are 3-vertices, which is depicted in Figure 3. By Observation 1(b), u_i cannot be coincided with v_j , where $i, j \in \{1, 2\}$. Let $G' = G - \{u_1, u_2, v_1, v_2, u, v\}$. For each $i \in \{1, 2\}$,

we color u_i and v_i with a color in $L_{\pi}(u_i)$ and $L_{\pi}(v_i)$, respectively. If $L(u) \neq \{\pi(x), \pi(u_1), \pi(u_2)\}$, then color u with $a \in L(u) \setminus \{\pi(x), \pi(u_1), \pi(u_2)\}$. It is easy to see that there exists at least one color in $L(v) \setminus \{\pi(y)\}$ which appears at most once on the set $\{u, v_1, v_2\}$. So we may assign such a color to v. Now suppose that $L(u) = \{\pi(x), \pi(u_1), \pi(u_2)\}$. By symmetry, we may suppose that $L(v) = \{\pi(y), \pi(v_1), \pi(v_2)\}$. This implies that $\pi(v_1) \neq \pi(v_2)$. Thus, we can first color u with $\pi(u_1)$ and then assign a color in $L(v) \setminus \{\pi(u_1), \pi(y)\}$ to v.

Lemma 6 Suppose v is a 5-vertex incident to two 3-faces $f_1 = [vv_1v_2]$ and $f_3 = [vv_3v_4]$. Let v_5 be the neighbour of v not belonging to f_1 and f_3 . Then the following holds.

- (C1) If f_1 and f_3 are both $(5, 4^-, 4^-)$ -faces, then $d(v_5) \ge 4$.
- (C2) If f_1 is a (5, *, 4)-face and f_3 is a $(5, *, 4^+)$ -face, then $d(v_5) \ge 4$.
- (C3) f_1 and f_3 cannot be both (5, *, 4)-faces.

Proof. In each of following cases, we will show that an $(L, 1)^*$ -coloring of $G' \subset G$ can be extended to G, which is a contradiction.

- (C1) We only need to show that $d(v_5) \neq 3$ since $\delta(G) \geq 3$ by (A1). Suppose that v_5 is a 3-vertex. Let $G' = G \{v, v_1, \cdots, v_5\}$. By the minimality of G, G' has an $(L, 1)^*$ -coloring π . Let L_{π} be an induced list assignment of G G'. It is easy to deduce that $|L_{\pi}(v_i)| \geq 1$ for each $i \in \{1, \cdots, 5\}$ and $|L_{\pi}(v)| \geq 3$. So we first color each v_i with $\pi(v_i) \in L_{\pi}(v_i)$. Observe that there exists a color $a \in L_{\pi}(v)$ that appears at most once on the set $\{v_1, v_2, \cdots, v_5\}$. Therefore, we can color v with a to obtain an $(L, 1)^*$ -coloring of G.
- (C2) Suppose that $d(v_2) = 4$, $d(v_5) = 3$ and v_1 and v_3 are both S-vertices. By definition, we see that v_i is either a 3-vertex or a light 4-vertex, where $i \in \{1,3\}$. Let $G' = G \{v,v_1,v_2,v_3,v_5\}$. By the minimality of G, G' has an $(L,1)^*$ -coloring π . Let L_{π} be an induced list assignment of G G'. The proof is split into two cases in light of the conditions of v_3 .
 - Assume v_3 is a 3-vertex. It is easy to calculate that $|L_{\pi}(v_i)| \ge 1$ for each $i \in \{1, 2, 3, 5\}$ and $|L_{\pi}(v)| \ge 2$. By Lemma 2, π can be extended to G.
 - Assume v_3 is a light 4-vertex. By definition, let x_3, y_3 denote the other two neighbors of v_3 not on $b(f_3)$. Recolor x_3 and y_3 with a color different from its neighbors. Next, we will show how to extend the resulting coloring π' to G. Denote $L_{\pi'}$ be the induced assignment of G G'. Notice that $|L_{\pi'}(v_i)| \geq 1$ for each $i \in \{1, 2, 5\}$. If $|L_{\pi'}(v_3)| \geq 1$, then by Lemma 2, π' can be extended to G. Otherwise, we derive that $L(v_3) = 1$

 $\{\pi'(x_3), \pi'(y_3), \pi'(v_4)\}$. First we assign a color in $L_{\pi'}(v_i)$ to each v_i , where $i \in \{1, 2, 5\}$. It is easy to see that there is at least one color, say a, belonging to $L(v) \setminus \{\pi'(v_4)\}$ that appears at most once on the set $\{v_1, v_2, v_5\}$. We assign such a color a to v. Then color v_3 with a color in $\{\pi'(x_3), \pi'(y_3)\}$ but different from a.

(C3) Suppose that f_1 and f_3 are both (5,*,4)-faces such that $d(v_2) = d(v_4) = 4$ and v_1 and v_3 are S-vertices. Let $G' = G - \{v, v_1, \cdots, v_4\}$. Obviously, G' has an $(L,1)^*$ -coloring π by the minimality of G. Let L_{π} be an induced list assignment of G - G'. We assert that v_i satisfies that $|L_{\pi}(v_i)| \geq 1$ for each $i \in \{1, \cdots, 4\}$ and $|L_{\pi}(v)| \geq 2$. By Lemma 2, we can extend π to the whole graph G successfully.

Figure 4: The configuration in Lemma 7.

Lemma 7 *There is no* 3-face incident to two bad 5-vertices.

Proof. Suppose to the contrary that there is a 3-face [uvw] incident to two bad 5-vertices v and w, depicted in Figure 4. Let $G' = G - \{v, w, v_1, v_2, v_3, w_1, w_2, w_3\}$. By the minimality of G, G' has an $(L,1)^*$ -coloring π . Let L_{π} be an induced list assignment of G - G'. Since each w_i has at most two neighbors in G', we deduce that $|L_{\pi}(w_i)| \geq 1$ for each $i \in \{1,2,3\}$. So we first color each w_i with a color $\pi(w_i) \in L_{\pi}(w_i)$. If $|L_{\pi}(w)| \geq 1$, namely $L(w) \neq \{\pi(u), \pi(w_1), \pi(w_2), \pi(w_3)\}$, then by Lemma 2 we may easy extend π to G, since $|L_{\pi}(v_i)| \geq 1$ for each $i \in \{1,2,3\}$. Otherwise, we deduce that there exists a color a in $L(w) \setminus \{\pi(u)\}$ that is the same as $\pi(w_{i^*})$ for some fixed $i^* \in \{1,2,3\}$. Color w with a and v_i with a color $\pi(v_i) \in L_{\pi}(v_i)$ firstly, where $i \in \{1,2,3\}$. For our simplicity, denote $V^* = \{v_1, v_2, v_3, w\}$.

First, suppose that there is a color, say $b \in L(v) \setminus \{\pi(u)\}$, appearing at most once on the set V^* . We assign such a color b to v. If $b \neq a$, the obtained coloring is obvious an $(L,1)^*$ -coloring. Otherwise, assume that b=a. Now we erase the color a from w. One may check that the resulting coloring, say π' , satisfies that each of v, w_1, w_2, w_3 has at least one possible color in G - G'. In other words, $|L_{\pi'}(s)| \geq 1$ for each $s \in \{v, w_1, w_2, w_3\}$. Hence, by Lemma 2, we can easily extend π' to G.

Now, w.l.o.g., suppose that $L(v) = \{1, 2, 3\}$, $\pi(u) = 1$, $\pi(w) = 2$ and each color in $\{2, 3\}$ appears exactly twice on the set V^* . It implies that $\pi(v_1) \in \{2, 3\}$. We apply versions of discussion (i) and (ii) in the proof of Lemma 2. After doing that, one may check that now v is colored with $\pi(v_2)$ and v_1 is recolored with a new color, say α . There are two cases left to discuss: if $\pi(v_2) = 3$, namely the new color of v is 3, then the obtained coloring is an $(L, 1)^*$ -coloring and thus we are done; otherwise, we uncolor w. Again, it is easy to see that the resulting coloring, say π'' , satisfies that $|L_{\pi''}(s)| \geq 1$ for each $s \in \{v, w_1, w_2, w_3\}$. Therefore, we can easily extend π'' to G successfully by Lemma 2. \square

3.2 Discharging progress

We now apply a discharging procedure to reach a contradiction. Suppose that u is adjacent to a 3-vertex v such that uv is not incident to any 3-faces. We call v a free 3-vertex if t(v) = 0 and a pendant 3-vertex if t(v) = 1. For simplicity, we use $v_3(u)$ to denote the number of free 3-vertices adjacent to u and $p_3(u)$ to denote the number of pendant 3-vertices of u. Suppose that v is a soft 4-vertex such that $f_1 = [vv_1uv_2]$ is a 4-face and $d(v_3) = d(v_4) = 3$. If the opposite face to f_1 via v, i.e., f_3 , is of degree at least 5, then we call v a weak 4-vertex. We notice that every weak 4-vertex is soft but not vice versa.

For $x \in V(G)$ and $y \in F(G)$, let $\tau(x \to y)$ denote the amount of weights transferred from x to y. Suppose that $f = [v_1v_2v_3]$ is a 3-face. We use $(d(v_1), d(v_2), d(v_3)) \to (c_1, c_2, c_3)$ to denote $\tau(v_i \to f) = c_i$ for i = 1, 2, 3. Our discharging rules are defined as follows:

(R1) Let $f = [v_1v_2v_3]$ be a 3-face. We set

$$(R1.1) (3, 4, 5^+) \rightarrow (0, 1, 3);$$

$$(R1.2) (3, 5^+, 5^+) \rightarrow (0, 2, 2);$$

(R1.3)

$$(4,4,5^+) \rightarrow \begin{cases} (0,1,3) & \text{if } v_1 \text{ is a light 4-vertex;} \\ (1,1,2) & \text{if neither } v_1 \text{ nor } v_2 \text{ is a light 4-vertex.} \end{cases}$$

(R1.4)

$$(4,5^+,5^+) \rightarrow \left\{ \begin{array}{ll} (1,1,2) & \text{if v_2 is a bad 5-vertex;} \\ (0,2,2) & \text{if neither v_2 nor v_3 is a bad 5-vertex.} \end{array} \right.$$

(R1.5)

$$(5^+, 5^+, 5^+) \rightarrow \begin{cases} (1, \frac{3}{2}, \frac{3}{2}) & \text{if } v_1 \text{ is a bad 5-vertex;} \\ (\frac{4}{3}, \frac{4}{3}, \frac{4}{3}) & \text{if none of } v_1, v_2, v_3 \text{ is a bad 5-vertex.} \end{cases}$$

(R2) Suppose that v is a 5^+ -vertex incident to a 4-face $f = [vv_1uv_2]$. Then

(R2.1)
$$\tau(v \to f) = 1 \text{ if } d(v_1) \ge 4 \text{ and } d(v_2) \ge 4;$$

(R2.2) $\tau(v \to f) = \frac{4}{3} \text{ otherwise.}$

(R3) Suppose that v is a non-weak 4-vertex incident to a 4-face $f = [vv_1uv_2]$.

(R3.1) Assume
$$d(v_1) = d(v_2) = 3$$
. Then

(R3.1.1)
$$\tau(v \to f) = \frac{4}{3}$$
 if the opposite face to f via v is of degree 3;

(R3.1.2)
$$\tau(v \to f) = \frac{2}{3}$$
 otherwise.

(R3.2) Assume
$$d(v_1) \ge 4$$
 and $d(v_2) \ge 4$. Then

(R3.2.1)
$$\tau(v \to f) = 1$$
 if at least one of v_1 and v_2 is a soft 4-vertex;

(R3.2.2)
$$\tau(v \to f) = \frac{2}{3}$$
 otherwise.

(R3.3) Assume
$$d(v_1) = 3$$
 and $d(v_2) \ge 4$. Then $\tau(v \to f) = \frac{2}{3}$.

(R4) Every 4^+ -vertex sends 1 to each pendant 3-vertex and $\frac{1}{3}$ to each free 3-vertex.

According to (R3), we notice that a weak 4-vertex does not send any charge.

We first consider the faces. Let f be a k-face.

Case k=3. Initially $\omega(f)=-4$. Let $f=[v_1v_2v_3]$ with $d(v_1) \leq d(v_2) \leq d(v_3)$. By (A1), $d(v_1) \geq 3$. If $d(v_1)=3$, then $d(v_2) \geq 4$ by (A2). Together with (B2), we deduce that f is either a $(3,4,5^+)$ -face, a $(3,5^+,5^+)$ -face, a $(4,4,5^+)$ -face, a $(4,5^+,5^+)$ -face or a $(5^+,5^+,5^+)$ -face. It follows from (B3) and Lemma 7 that every possibility is indeed covered by rule (R1). Obviously, f takes charge 4 in total from its incident vertices. Therefore, $\omega^*(f)=-4+4=0$.

Case k = 4. Clearly, w(f) = -2. Assume that f = [vxuy] is a 4-face. By (A2), there are no adjacent 3-vertices in G. It follows that f is incident to at most two 3-vertices. By symmetry, we have to discuss three cases depending on the conditions of these 3-vertices.

- d(x) = d(y) = 3. By (F1), we deduce that at least one of u and v is of degree at least 5. Moreover, if one of u and v is a 4-vertex, say v, we claim that v cannot be weak by definition and (B1). Hence, $\omega^*(f) \ge -2 + \frac{4}{3} + \frac{2}{3} = 0$ by (R2) and (R3).
- d(x)=3 and $d(y)\geq 4$. Note that u and v are both 4^+ -vertices. Similarly, neither u nor v can be a weak 4-vertex. It follows from (R3.3) and (R2) that each of u and v sends charge at least $\frac{2}{3}$ to f. So if one of them is a 5^+ -vertex, say v, then by (R2) we have that $\tau(v\to f)=\frac{4}{3}$ and thus f gets $\frac{2}{3}+\frac{4}{3}=2$ in total from incident vertices of f. Otherwise, suppose d(u)=d(v)=4. Now by (F2), y cannot be a soft 4-vertex and thus not weak. Hence, $\omega^*(f)\geq -2+\frac{2}{3}\times 3=0$ by (R3.2).

• $d(x) \ge 4$ and $d(y) \ge 4$. Namely, f is a $(4^+, 4^+, 4^+, 4^+)$ -face. If at most one of u, v, x, y is a weak 4-vertex, then $\omega^*(f) \ge -2 + \frac{2}{3} \times 3 = 0$. Otherwise, by Lemma 5, assume that v and u are weak 4-vertices and thus soft. We see that $\tau(x \to f) = \tau(y \to f) = 1$ by (R3.2.1) and (R2.1) which implies that $\omega^*(f) \ge -2 + 1 \times 2 = 0$.

Case
$$k \geq 5$$
. Then $\omega^*(f) = \omega(f) = 2d(f) - 10 \geq 0$.

Now we consider the vertices. Let v be a k-vertex with $k \geq 3$ by (A1). For $v \in V(G)$, we use $m_4(v)$ to denote the number of 4-faces incident to v. So by Observation 1 (a) and (b), we derive that $t(v) \leq \lfloor \frac{d(v)}{2} \rfloor$ and $m_4(v) \leq \lfloor \frac{d(v)}{2} \rfloor$. Furthermore, $t(v) + m_4(v) \leq \lfloor \frac{d(v)}{2} \rfloor$ by Observation 1 (c).

Observation 2 Suppose v is a 4^+ -vertex which is incident to a 3-face f. Then, by (R1), we have the following:

(a)
$$\tau(v \to f) \le 1$$
 if $d(v) = 4$;

(b)
$$\tau(v \to f) \in \{3, 2, \frac{3}{2}, \frac{4}{3}, 1\}$$
 if $d(v) \ge 5$; moreover, if $\tau(v \to f) = 3$ then f is a $(5^+, *, 4)$ -face.

Case k=3. Then $\omega(v)=-1$. Clearly, $t(v)\leq 1$. If t(v)=1, then there exists a neighbor of v, say u, so that v is a pendant 3-vertex of u. By (A2), $d(u)\geq 4$. Thus, $\omega^*(v)=-1+1=0$ by (R4). Otherwise, we obtain that $\omega^*(v)=-1+\frac{1}{3}\times 3=0$ by (R4).

Case k=4. Then $\omega(v)=2$. Note that $t(v)\leq 2$. If t(v)=2, then $m_4(v)=0$ and $p_3(v)=0$. So $\omega^*(v)\geq 2-1\times 2=0$ by Observation 2 (a). If t(v)=0, then $n_3(v)\leq 2$ by (B1) and $m_4(v)\leq 2$. We need to consider following cases.

- $m_4(v)=2$. W.l.o.g., assume that $f_1=[vv_1uv_2]$ and $f_3=[vv_3wv_4]$ are incident 4-faces. Obviously, $p_3(v)=0$ by Observation 1 (b). However, $v_3(v)\leq 2$ by (B1). By (R3), v sends charge at most 1 to f_i , where i=1,3. If $n_3(v)=0$, then $v_3(v)=0$ and thus $\omega^*(v)\geq 2-1\times 2=0$. If $n_3(v)=1$, say v_1 is a 3-vertex, then $\tau(v\to f_1)\leq \frac{2}{3}$ by (R3.3) and thus $\omega^*(v)\geq 2-\frac{2}{3}-1-\frac{1}{3}=0$ by (R4). Now suppose that $n_3(v)=2$. By symmetry, we have two cases depending on the conditions of these two 3-vertices. If $d(v_1)=d(v_2)=3$, then $\tau(v\to f_1)=\frac{2}{3}$ by (R3.1.2). By (B1), v_3 and v_4 are both 4⁺-vertices. Moreover, neither v_3 nor v_4 is a soft 4-vertex according to Lemma 5. So by (R3.2.2), $\tau(v\to f_3)\leq \frac{2}{3}$. Hence $\omega^*(v)\geq 2-\frac{2}{3}-\frac{2}{3}-\frac{1}{3}\times 2=0$. Otherwise, suppose that $d(v_i)=d(v_j)=3$, where $i\in\{1,2\}$ and $j\in\{3,4\}$. We derive that $\omega^*(v)\geq 2-\frac{2}{3}\times 2-\frac{1}{3}\times 2=0$ by (R3.3).
- $m_4(v)=1$. W.l.o.g, assume that $d(f_1)=4$. This implies that $d(f_3)\geq 5$. Again, $\tau(v\to f_1)\leq 1$ by (R3). If $n_3(v)\leq 1$ then we have that $\omega^*(v)\geq 2-1-1=0$ by (R4). So in what follows, we

assume that $n_3(v)=2$. If $d(v_3)=d(v_4)=3$ then v is a weak 4-vertex, implying that v sends nothing to f_1 . So $\omega^*(v)\geq 2-1\times 2=0$ by (R4). If $d(v_1)=d(v_2)=3$, then $p_3(v)=0$ by Observation 1 (b). We deduce that $\omega^*(v)\geq 2-\frac{2}{3}-\frac{1}{3}\times 2=\frac{2}{3}$ by (R3.1.2) and (R4). Otherwise, suppose $d(v_i)=d(v_j)=3$, where $i\in\{1,2\}$ and $j\in\{3,4\}$. It follows immediately from (R3.3)and (R4) that $\omega^*(v)\geq 2-\frac{2}{3}-1-\frac{1}{3}=0$.

• $m_4(v) = 0$. Obviously, $\omega^*(v) \ge 2 - 1 \times 2 = 0$ by (R4).

Now, in the following, we consider the case t(v) = 1. Assume that f_1 is a 3-face. By (A1) and (B2), f_1 is either a $(4,3,5^+)$ -face, a $(4,4,5^+)$ -face or a $(4,5^+,5^+)$ -face. Observe that $m_4(v) \leq 1$. First assume that $m_4(v)=0$. If f_1 is a $(4,3,5^+)$ -face, then $p_3(v)\leq 1$ by (B1) and hence $\omega^*(v)\geq 1$ 2-1-1=0 by Observation 2 (a) and (R2). Next suppose that f_1 is a $(4,4,5^+)$ -face. If $n_3(v)=2$, then v is a light 4-vertex. By (R1.3), we see that v sends nothing to f_1 and therefore $\omega^*(v) \geq 2 - 1 \times 2 = 0$ by (R4). Otherwise, at most one of v_3 , v_4 is a 3-vertex and hence $\omega^*(v) \ge 2-1-1=0$ by Observation 2 (a) and (R4). Finally, we suppose that f_1 is a $(4, 5^+, 5^+)$ -face. If neither v_1 nor v_2 is a bad 5-vertex, then v sends nothing to f_1 by (R1.4) and thus $\omega^*(v) \ge 2 - 1 \times 2 = 0$ by (R4). Otherwise, one of v_1 and v_2 is a bad 5-vertex. If follows directly from (C2) that $n_3(v) \leq 1$. Therefore, $\omega^*(v) \geq 2 - 1 - 1 = 0$ by (R2). Now suppose that $m_4(v) = 1$. By Observation 1 (c), we may assume that $f_3 = [vv_3wv_4]$ is a 4-face. In this case, $p_3(v) = 0$. If $d(v_3) = d(v_4) = 3$, then $\tau(v \to f_3) = \frac{4}{3}$ by (R3.1.1). It follows from (B1) and (C2) that f is neither a $(4,3,5^+)$ -face nor a $(4,5,5^+)$ -face such that v_2 is a bad 5-vertex. So we deduce that f_1 gets nothing from v by (R1.3), which implies that $\omega^*(v) \geq 2 - \frac{4}{3} - \frac{1}{3} \times 2 = 0$. If exactly one of v_3, v_4 is a 3-vertex, then $\tau(v \to f_3) \le \frac{2}{3}$ by (R3,3). Thus, $\omega^*(v) \ge 2 - 1 - \frac{2}{3} - \frac{1}{3} = 0$ by Observation 2 (a) and (R4). Otherwise, we suppose that v_3 , v_4 are both of degree at least 4. In this case, $\nu_3(v) = 0$ and hence $\omega^*(v) \ge 2 - 1 - 1 = 0$ by (R3.2) and Observation 2 (a).

Case k = 5. Then $\omega(v) = 5$. Also, $t(v) \le 2$. we have three cases to discuss.

Assume t(v) = 0. If $m_4(v) = 0$, then $\omega^*(v) \ge 5 - 1 \times 5 = 0$ by (R4). If $m_4(v) = 1$, then $p_3(v) \le 3$. Thus $\omega^*(v) \ge 5 - \frac{4}{3} - 1 \times 3 - 2 \times \frac{1}{3} = 0$ by (R2) and (R4). Now suppose that $m_4(v) = 2$. By Observation 1 (c), we assert that $p_3(v) \le 1$. So $\omega^*(v) \ge 5 - \frac{4}{3} \times 2 - \frac{1}{3} \times 4 - 1 = 0$.

Next assume t(v)=1, say f_1 . Then $\tau(v\to f_1)\leq 3$ by Observation 2 (b). Moreover, equality holds iff f_1 is a (5,*,4)-face. So if $\tau(v\to f_1)=3$ then at most one of v_3,v_4,v_5 is a 3-vertex by (B4). Furthermore, $m_4(v)\leq 1$. When $m_4(v)=0$, we deduce that $\omega^*(v)\geq 5-3-1=1$ by (R4). When $m_4(v)=1$, by symmetry, say f_3 is a 4-face, we have two cases to discuss: if $p_3(v)=1$, namely, v_5 is a 3-vertex, then $\tau(v\to f_3)\leq 1$ by (R2) and neither v_3 nor v_4 takes charge from v. Thus $\omega^*(v)\geq 5-3-1-1=0$; otherwise, $p_3(v)=0$ and we have $\omega^*(v)\geq 5-3-\frac{4}{3}-\frac{1}{3}=\frac{1}{3}$. Now

suppose that $\tau(v \to f_1) \le 2$. By (R2) and (R4), $\omega^*(v) \ge 5 - 2 - 1 \times 3 = 0$ if $m_4(v) = 0$ and $\omega^*(v) \ge 5 - 2 - \frac{4}{3} - 1 - 2 \times \frac{1}{3} = 0$ if $m_4(v) = 1$.

Now assume t(v)=2. By symmetry, assume f_1 and f_3 are both 3-faces. Observe that $m_4(v)=0$. For simplicity, denote $\tau(v\to f_1)=\sigma_1$ and $\tau(v\to f_3)=\sigma_2$. Let $\sigma=\max\{\sigma_1,\sigma_2\}$. If $\sigma\le 2$, then $\omega^*(v)\ge 5-2\times 2-1=0$ by (R2). Now assume that $\sigma=3$, i.e., f_1 gets charge 3 from v. It means that f_1 is a (5,*,4)-face by Observation 2. By (C3), f_3 cannot be a (5,*,4)-face. This implies that $\sigma_2\le 2$. Moreover, if v_5 is a 3-vertex, then f_3 is neither a $(5,*,4^+)$ -face by (C2) nor a (5,4,4)-face by (C1). It follows from (R1.4) and (R1.5) that $\sigma_2\le 1$, since v is a bad 5-vertex. Thus, $\omega^*(v)\ge 5-3-1-1=0$ by (R2). Otherwise, we easily obtain that $\omega^*(v)\ge 5-3-2=0$.

Case $k \geq 6$. Notice that $t(v) \leq \lfloor \frac{d(v)}{2} \rfloor$. If v is incident to a 4-face f_i , then by (R2) we inspect v sends a charge at most $\frac{4}{3}$ to f_i , while $\frac{1}{3}$ to each of v_i and v_{i+1} . So we may consider v as a vertex which sends charge at most $\frac{4}{3} + 2 \times \frac{1}{3} = 2$ to f_i . So by (R4) and Observation 2, we have

$$\omega^*(v) \geq 3d(v) - 10 - 3t(v) - 2m_4(v) - (d(v) - 2t(v) - 2m_4(v))$$
$$= 2d(v) - 10 - t(v) \equiv \tau(v)$$

If $d(v) \ge 7$, then $\tau(v) \ge 2d(v) - 10 - \frac{d(v)}{2} = \frac{3}{2}d(v) - 10 \ge \frac{3}{2} \times 7 - 10 = \frac{1}{2} > 0$. Now suppose that d(v) = 6. If $t(v) \le 2$ then $\tau(v) \ge 2 \times 6 - 10 - 2 = 0$. So, in what follows, assume that t(v) = 3 and $d(f_i) = 3$ for i = 1, 3, 5. Clearly, $m_4(v) = 0$. Similarly, if there are at most two of 3-faces get charge 3×2 in total from v, then $\omega^*(v) \ge 8 - 2 \times 3 - 2 = 0$. Otherwise, suppose $\tau(v \to f_i) = 3$ for each $i \in \{1, 3, 5\}$. By Observation 2 (b), we assert that f_i is a (6, *, 4)-face. Noting that a (6, *, 4)-face is also a $(6, 4^-, 4^-)$ -face, we may regard v as a 6-vertex which is incident to two $(6, 4^-, 4^-)$ -faces and one (6, *, 4)-face. However, it is impossible by (B5).

Therefore, we complete the proof of Theorem 1.

References

[1] L. Cowen, R. Cowen, D. Woodall, Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory 10 (1986) 187-195.

- [2] W. Cushing, H. A. Kierstead, Planar graphs are 1-relaxed, 4-choosable, European J. Combin. 31 (2010) 1385-1397.
- [3] W. Dong, B. Xu, A note on list improper coloring of plane graphs, Discrete Appl. Math. 157 (2009) 433-436.

- [4] N. Eaton, T. Hull, Defective list colorings of planar graphs, Bull. Inst. Combin. Appl. 25 (1999) 40.
- [5] P. Erdős, A. L. Rubin, H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979) 125-157.
- [6] K. Lih, Z. Song, W. Wang, K. Zhang, A note on list improper coloring planar graphs, Appl. Math. Lett. 14 (2001) 269-273.
- [7] R. Šrekovski, List improper colourings of planar graphs, Combin. Probab. Comput. 8 (1999) 293-299.
- [8] R. Šrekovski, A Gröstzsch-type theorem for list colorings with impropriety one, Comb. Prob. Comp. 8 (1999) 493-507.
- [9] R. Šrekovski, List improper colorings of planar graphs with prescribed girth, Discrete Math. 214 (2000) 221-233.
- [10] V. G. Vizing, Vertex coloring with given colors (in Russian), Diskret. Analiz. 29 (1976) 3-10.
- [11] B. Xu, H. Zhang, Every toroidal graph without adjacent triangles is (4,1)*-choosable, Discrete Appl. Math. 155 (2007) 74-78.
- [12] L. Zhang, A $(3,1)^*$ -choosable theorem on toroidal graphs, Discrete Appl. Math. 160 (2012) 332-338.

