

$\rm IE407$ - Homework 3 Report

Burak Yıldız - 2449049

Ülkü Aktürk - 2450062

Due Date: 14.06.2024

Question 1: Linear Programming Model for Tasch Co.

Part (a): Linear Programming Model

Decision Variables:

- x_1 : Number of PCs produced
- x_2 : Number of Tablets produced
- x_3 : Number of Microprocessors produced

Constraints:

- 1. $5x_1 + 2x_2 + x_3 \le 120$ (Production Time Constraint)
- 2. $8x_1 + 4x_2 \le 80 + x_3$ (Microprocessor Usage Constraint)
- 3. $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$ (Non-negativity Constraints)

Objective Function:

Maximize
$$Z = 50x_1 + 30x_2 - 2x_3$$

Part (b): Simplex Method Solution

Initial Simplex Tableau

First, we convert the linear programming problem into standard form by introducing slack variables s_4 and s_5 . The standard form is:

Maximize
$$F(x) = 50x_1 + 30x_2 - 2x_3$$

Subject to:
$$5x_1 + 2x_2 + x_3 + s_4 = 120$$
$$8x_1 + 4x_2 - x_3 + s_5 = 80$$
$$x_1, x_2, x_3, s_4, s_5 \ge 0$$

We set up the initial simplex tableau:

Iteration 1

Step 1: Determine the Entering Variable

Here, x_1 has the most negative coefficient (-50), so x_1 is the entering variable.

Step 2: Determine the Leaving Variable

The smallest ratio is 10, so s_5 is the leaving variable.

Pivot Operation

	x_1	x_2	x_3	s_4	s_5	Z	RHS
s_4	5	2	1	1	0	0	120
x_1	1	$\frac{1}{2}$	$-\frac{1}{8}$	0	$\frac{1}{8}$	0	10
\overline{Z}	-50	-30	2	0	0	1	0

Next, we perform row operations

	$ x_1 $	x_2	x_3	s_4	s_5	Z	RHS
s_4	0	-0.5	1.625	1	-0.625	0	70
x_1	1	$\frac{1}{2}$	$-\frac{1}{8}$	0	$\frac{1}{8}$	0	10
Z	0	-5	-3.25	0	6.25	1	500

Iteration 2

Step 1: Determine the Entering Variable

 x_2 (-5), so x_2 is the entering variable.

Step 2: Determine the Leaving Variable

 x_1 is the leaving variable.

Pivot Operation

	$ x_1 $	x_2	x_3	s_4	s_5	Z	RHS
s_4	0	-0.5	1.625	1	-0.625	0	70
x_2	2	1	$-\frac{1}{4}$	0	$\frac{1}{4}$	0	20
Z	0	-5	-3.25	0	6.25	1	500

Next, we perform row operations

Iteration 3

Step 1: Determine the Entering Variable

The variable with the most negative coefficient in the Z-row is x_3 (-4), so x_3 is the entering variable.

Step 2: Determine the Leaving Variable

The smallest positive ratio is 53.33, so s_4 is the leaving variable.

Pivot Operation

Next, we perform row operations

	$ x_1 $	x_2	x_3	s_4	s_5	Z	RHS
s_4	$\frac{2}{3}$	0	1	$\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{80}{3}$
x_2	$\frac{8}{3}$	1	0	$\frac{2}{3}$	$\frac{1}{12}$	0	$\frac{260}{3}$
\overline{Z}	$\frac{38}{3}$	0	0	$\frac{8}{3}$	6	1	893.33 3

Optimal Solution

The optimal solution is:

$$x_1 = 0$$

 $x_2 = 33.33$
 $x_3 = 53.33$

The maximum profit is Z = 893.33.

Part (c): Solution Using Pyomo

The code is appended at the end of the report.

Output of the code

The output of the code is:

• x_1 : 0.0

• x_2 : 33.3333333333333

• *x*₃: 53.3333333333333

• Objective: 893.33333333333333

Question 2: Mixed-Integer Programming Model

Branch and Bound Method

Initial LP Relaxation

We solve the initial LP relaxation by ignoring the integer constraints on x_2 and x_3 :

Maximize
$$F(x) = 8x_1 + 6x_2 + 2x_3$$

Subject to:
$$6x_1 + 4x_2 + 2x_3 \le 14$$
$$4x_1 + 2x_2 + 4x_3 \le 22$$
$$x_1, x_2, x_3 \ge 0$$

The initial simplex tableau is:

Iteration 1

Iteration 2

Iteration 3

Optimal Solution for LP Relaxation

The optimal solution is:

- $x_1 = 0$
- $x_2 = 3.5$
- $x_3 = 0$
- Objective: 21

Branch and Bound Process

Since $x_2 = 3.5$ is not an integer, we create two branches: 1. $x_2 \le 3$ 2. $x_2 \ge 4$

Branch 1: $x_2 = 3$

For this branch, we add the constraint $x_2 = 3$ to the original problem:

Maximize
$$F(x) = 8x_1 + 6x_2 + 2x_3$$

Subject to:
 $6x_1 + 2x_2 + x_3 \le 14$
 $4x_1 + 2x_2 + 4x_3 \le 22$
 $x_2 = 3$
 $x_1 \ge 0$ $(x_1 \text{ continuous})$
 $x_3 \ge 0$ $(x_3 \text{ integer})$

The revised simplex tableau for this branch is:

	x_1	x_2	x_3	x_4	RHS
x_3	0	2	6	1	0.33
x_4	0	16	4	1	4
\overline{Z}	0	-8	-2	0	0

Iteration 1

Iteration 2

Iteration 3

The solution for this branch is:

- $x_1 = 0.33$
- $x_2 = 3$
- $x_3 = 0$
- Objective: 20.67

Branch 2: $x_2 = 4$

For this branch, we add the constraint $x_2 = 4$ to the original problem:

Even if the other variables are zero is x_2 is 4 the second constraint is not satisfied so we eliminate this branch.

Comparison of Solutions

We compare the objective values from both branches:

Initial branch: Z = 21 for $x_1 = 0, x_2 = 3.5, x_3 = 0$

Branch 1: Z = 20.67 for $x_1 = 0.33, x_2 = 3, x_3 = 0$

Branch 2: Z = 4 for $x_1 = 0, x_2 = 4, x_3 = 0$

Branch 2 does not satisfy the constraints so that branch is eliminated and in the initial branch x_2 is not an integer so we choose branch 1 for optimal solution.

Optimal Solution

The optimal solution is:

- $x_1 = 0.33$
- $x_2 = 3$
- $x_3 = 0$
- Objective: 20.67

Part (b): Solution Using Pyomo

Output of the code

The code is appended at the end of the report, the output of the code is:

- x_1 : 0.3333333333333333
- x_2 : 3.0
- x_3 : 0.0
- Objective: 20.6666666666664

Appendix

.1 Question 1: Initial Model Code

```
| from pyomo.environ import *
 # Create a model
 model = ConcreteModel()
 # Define decision variables
model.x1 = Var(within=NonNegativeReals) # Number of PCs produced
8 model.x2 = Var(within=NonNegativeReals) # Number of Tablets produced
9 model.x3 = Var(within=NonNegativeReals) # Number of Microprocessors
     produced
10
 # Define the objective function
nodel.obj = Objective(expr=50 * model.x1 + 30 * model.x2 - 2 * model.x3
     , sense=maximize)
# Define constraints
| model.con1 = Constraint(expr=5 * model.x1 + 2 * model.x2 + model.x3 <=
_{16} model.con2 = Constraint(expr=8 * model.x1 + 4 * model.x2 <= 80 + model.
18 # Solve the model
solver = SolverFactory('glpk')
20 solver.solve(model, tee=True)
22 # Print results
23 print(f"x1: {model.x1()}")
24 print(f"x2: {model.x2()}")
print(f"x3: {model.x3()}")
26 print(f"Objective: {model.obj()}")
```

tasch_co_lp.py

.2 Question 2: Initial Model Code

```
from pyomo.environ import *
 # Create a model
4 model = ConcreteModel()
6 # Define decision variables
 model.x1 = Var(within=NonNegativeReals) # x1 is continuous
8 model.x2 = Var(within=NonNegativeIntegers)
                                             # x2 is integer
9 model.x3 = Var(within=NonNegativeIntegers) # x3 is integer
# Define the objective function
nodel.obj = Objective(expr=8 * model.x1 + 6 * model.x2 + 2 * model.x3,
     sense=maximize)
 # Define constraints
model.con1 = Constraint(expr=6 * model.x1 + 4 * model.x2 + 2 * model.x3
nodel.con2 = Constraint(expr=4 * model.x1 + 2 * model.x2 + 4 * model.x3
18 # Solve the model
solver = SolverFactory('glpk')
20 solver.solve(model, tee=True)
22 # Print results
23 print(f"x1: {model.x1()}")
24 print(f"x2: {model.x2()}")
print(f"x3: {model.x3()}")
26 print(f"Objective: {model.obj()}")
```

mip_model.py