Assignment 1: Demonstration of Grid Search and Random Search Hyperparameter Tuning

1. Dataset Selection

- → The Wine dataset from scikit-learn was chosen for this experiment.
- → It consists of 178 samples, each described by 13 chemical properties (features).
- → The target variable represents three different classes of wine.

```
from sklearn.datasets import load_wine

X, y = load_wine(return_X_y=True)
print("Shape:", X.shape, "Labels:", set(y))

Shape: (178, 13) Labels: {np.int64(0), np.int64(1), np.int64(2)}
```

	1 malic_acid 3 1.71 0 1.78			magnesium	total_phenols	flavanoids	nonflavanoid phenols																
0 14.2 1 13.2	3 1.71 0 1.78	2.43			total_phenols	flavanoids	nonflavanoid phenols				First 10 rows of the Wine dataset: alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue od280/od315_of_diluted_wines proline												
1 13.2	0 1.78		15.6	127.0				proanthocyanins	color_intensity	nue od286	0/od315_of_diluted_wines	proline											
		2.14			2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065.0											
2 13 1	6 226		11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050.0											
	2.30	2.67	18.6	101.0	2.80	3.24	0.30		5.68		3.17	1185.0											
3 14.3	7 1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480.0											
4 13.2		2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04		735.0											
5 14.2	0 1.76	2.45	15.2		3.27	3.39	0.34	1.97	6.75	1.05	2.85	1450.0											
6 14.3	9 1.87	2.45	14.6	96.0			0.30	1.98	5.25			1290.0											
7 14.0	6 2.15	2.61	17.6	121.0	2.60		0.31	1.25	5.05	1.06	3.58	1295.0											
8 14.8	3 1.64	2.17	14.0	97.0	2.80	2.98	0.29	1.98	5.20	1.08	2.85	1045.0											
9 13.8	6 1.35	2.27	16.0	98.0	2.98	3.15	0.22	1.85	7.22	1.01	3.55	1045.0											

2. Model Selection

- → Logistic Regression was chosen as the classification algorithm.
- → This model is widely used for multiclass problems, is interpretable, and has several hyperparameters that significantly affect performance.
- → The hyperparameters considered for tuning were:
 - **C**: Regularization strength (inverse of penalty).
 - Penalty: Type of regularization (L1 or L2).
 - **Solver**: Optimization algorithm used to fit the model.
 - Multi-class strategy: One-vs-Rest (OvR) or Multinomial.

3. Grid Search Hyperparameter Tuning

- → Grid Search was applied to exhaustively evaluate all possible combinations of selected hyperparameters.
- → Five-fold cross-validation was used to assess model performance for each combination.
- → The best parameter set was identified as: C = 100, penalty = L1, solver = liblinear, multi class = OvR.
- → The corresponding best cross-validation score was 97.2%.

4. Random Search Hyperparameter Tuning

- → Random Search was applied to sample a limited number of hyperparameter combinations from predefined ranges.
- → Twenty random combinations were tested using five-fold cross-validation.
- → The best parameter set was identified as:
 - ◆ C ≈ 0.298, penalty = L2, solver = liblinear, multi class = OvR.
 - ◆ The corresponding best cross-validation score was 95.8%.

5. Results Comparison

- Grid Search achieved slightly higher performance (97.2%) compared to Random Search (95.8%).
- Grid Search was more exhaustive but computationally more expensive.
- Random Search was faster and more efficient, but less thorough.
- Both approaches produced highly accurate models, confirming the effectiveness of Logistic Regression on this dataset.

```
from sklearn.metrics import accuracy score, classification report
0s
         y_pred_grid = grid.best_estimator_.predict(X_test)
         print("Grid Search Test Accuracy:", accuracy_score(y_test, y_pred_grid))
print(classification_report(y_test, y_pred_grid))
         y_pred_rand = rand.best_estimator_.predict(X_test)
     precision recall f1-score support

    0.86
    1.00
    0.92

    0.92
    0.86
    0.89

    1.00
    0.90
    0.95

                                                 0.92
                                                                10
                                                   0.92
             accuracy
             macro avg
                                                   0.92
         weighted avg
         Random Search Test Accuracy: 0.97222222222222
                      precision recall f1-score support
                             1.00 1.00 1.00
0.93 1.00 0.97
1.00 0.90 0.95
                                                                 14
                                                                10
                                                   0.97
                                                                 36
             accuracy
                             0.98 0.97 0.97
0.97 0.97 0.97
             macro avg
                                                                 36
                                                                        ♦ What can I help you build?
         weighted avg
```

6. Conclusion

- → Grid Search: Achieved a CV score of 97.2% but a test accuracy of ~91.7%, showing strong training/validation performance but slightly lower generalization.
- → Random Search: Achieved a CV score of 95.8% but test accuracy of ~97.2%, indicating better generalization to unseen data.
- → Conclusion: Exhaustive hyperparameter search (Grid Search) does not always guarantee the best test performance. Random Search can be more efficient and may generalize better in practice.