variable) follows a Poisson distribution. All days have the same mean (expected number

of orders). Xie is a Bayesian, so he selects a conjugate gamma prior for the mean with shape 3 and rate 1/15. He collects data on Monday through Friday for two weeks.

Which of the following hierarchical models represents this scenario?

 $y_i \mid \mu \stackrel{ ext{iid}}{\sim} \mathrm{N}(\mu, 1.0^2) \quad ext{for } i = 1, \dots, 10,$ $\mu \sim N(3,15^2)$

Lesson 2 Quiz, 8 questions

$$\begin{array}{l} y_i \mid \lambda \stackrel{\text{iid}}{\sim} \operatorname{Pois}(\lambda) \quad \text{for } i=1,\ldots,10, \\ \lambda \mid \mu \sim \operatorname{Gamma}(\mu,1/15) \\ \mu \sim \operatorname{N}(3,1.0^2) \end{array}$$
 8/8 points (100%)

Correct

The likelihood is Poisson with the same mean for all observations, called λ here. The mean λ has a gamma prior.

 $y_i \mid \lambda_i \stackrel{\text{ind}}{\sim} \operatorname{Pois}(\lambda_i) \quad \text{for } i = 1, \dots, 10,$ $\lambda_i \mid lpha \sim \operatorname{Gamma}(lpha, 1/15)$ $lpha \sim \mathrm{Gamma}(3.0, 1.0)$

5. Which of the following graphical depictions represents the model from Xie's scenario?

points

The observed data variables each depend on the mean demand.

(b)

____ c)

(d)

Lesson 2

Quiz, 8 questions

8/8 points (100%)

~

 Graphical representations of models generally do not identify the distributions of the variables (nodes), but they do reveal the structure of dependence among the variables.

1/1 points

Identify which of the following hierarchical models is depicted in the graphical representation below.

- $\begin{aligned} & & \qquad \qquad x_{i,j} \mid \alpha_j, \beta \overset{\text{ind}}{\sim} \operatorname{Gamma}(\alpha_j, \beta), \quad i = 1, \dots, n, \quad j = 1, \dots, m \\ & \beta \sim \operatorname{Exp}(b_0) \\ & \qquad \qquad \alpha_j \mid \phi \overset{\text{ind}}{\sim} \operatorname{Exp}(\phi), \quad j = 1, \dots, m \\ & \qquad \qquad \phi \sim \operatorname{Exp}(r_0) \end{aligned}$

Correct

 $x_{i,j}$ depends on α_j and β . β doesn't depend on anything. α_j depends on ϕ .

Notice that the $x_{i,j}$ variables are independent (denoted $\stackrel{\text{ind}}{\sim}$) rather than independent and identically distributed $\stackrel{\text{iid}}{\sim}$) because the distribution of $x_{i,j}$ changes with the index j (they have different shape parameters α_j).

7. Consider the following model for a binary outcome y:

$$egin{aligned} y_i \mid heta_i \overset{ ext{ind}}{\sim} \operatorname{Bern}(heta_i), & i = 1, \dots, 6 \ heta_i \mid lpha \overset{ ext{ind}}{\sim} \operatorname{Beta}(lpha, b_0), & i = 1, \dots, 6 \ lpha \sim \operatorname{Exp}(r_0) \end{aligned}$$

8/8 points (100%)

where $heta_i$ is the probability of success on trial i. What is the expression for the joint distribution of all variables, written as $p(y_1,\ldots,y_6, heta_1,\ldots, heta_6,lpha)$ and denoted by $p(\cdots)$? You may ignore the indicator functions specifying the valid ranges of the variables (although the expressions are technically incorrect without them).

The PMF for a Bernoulli random variable is $f_y(y\mid heta)= heta^y(1- heta)^{1-y}$ for y=0 or y=1and $0 < \theta < 1$.

The PDF for a Beta random variable is $f_{\theta}(\theta \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \, \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$ where $\Gamma()$ is the gamma function, $0<\theta<1$ and $\alpha,\beta>0.$

The PDF for an exponential random variable is $f_{lpha}(lpha\mid\lambda)=\lambda\exp(-\lambdalpha)$ for $\lambda,lpha>0.$

$$\qquad p(\cdots) = \textstyle \prod_{i=1}^6 \left[\theta_i^{y_i} (1-\theta_i)^{1-y_i} \, \frac{\Gamma(\alpha+b_0)}{\Gamma(\alpha)\Gamma(b_0)} \, \theta_i^{\alpha-1} (1-\theta_i)^{b_0-1} \right]$$

$$\qquad p(\cdots) = \textstyle \prod_{i=1}^6 \left[\theta_i^{y_i} (1-\theta_i)^{1-y_i} \frac{\Gamma(\alpha + b_0)}{\Gamma(\alpha) \Gamma(b_0)} \theta_i^{\alpha-1} (1-\theta_i)^{b_0-1} r_0 \exp(-r_0 \alpha) \right]$$

Correct

This expression is proportional to the posterior distribution $p(\theta_1,\ldots,\theta_6,lpha\mid y_1,\ldots,y_6)$. Unfortunately, it does not correspond with a common distribution, so evaluating this posterior would be very challenging (at least until we learn MCMC techniques in the next module).

In a Bayesian model, let y denote all the data and θ denote all the parameters. Which of the following statements about the relationship between the joint distribution of all variables $p(y,\theta) = p(\cdot \cdot \cdot)$ and the posterior distribution $p(\theta \mid y)$ is true?

Neither is sufficient alone--they are both necessary to make inferences about heta.

1/1

They are actually equal to each other so that $p(y, \theta) = p(\theta \mid y)$.

The joint distribution $p(y,\theta)$ is equal to the posterior distribution times a function f(heta) which contains the modification (update) of the prior.

They are proportional to each other so that $p(y,\theta) = c \cdot p(\theta \mid y)$ where c is a constant number that doesn't involve θ at all.

Correct

This fact allows us to work with the joint distribution $p(y,\theta)$ which is usually easier to compute. MCMC methods, which we will learn in the next module, only require us to know the posterior up to proportionality.

