# Equivalencia lógica

Sesión 5

Edgar Andrade, PhD

Febrero de 2019

Departmento de Matemáticas Aplicadas y Ciencias de la Computación





### Presentación

### En esta sesión estudiaremos:

- 1. Definición de equivalencia lógica
- 2. Teorema de sustitución salva veritate
- 3. Eliminación de conectivos

## Contenido

1 Equivalencia lógica

2 Teorema de sustitución salva veritate

3 Eliminación de conectivos

## Equivalencia

Sean A, B, fórmulas. La equivalencia entre A y B ( $A \equiv B$ ) se define de la siguiente manera:

$$A \equiv B \Leftrightarrow V_I(A) = V_I(B)$$
 para toda interpretación  $I$ 

*Proposición:*  $p \equiv \neg \neg p$ 

*Proposición:*  $p \equiv \neg \neg p$ 

Demostración:

Sea I una interpretación arbitraria. Tenemos dos casos:

5

*Proposición:*  $p \equiv \neg \neg p$ 

#### Demostración:

Sea I una interpretación arbitraria. Tenemos dos casos:

Caso 1: Supongamos que  $V_I(p)=1$ . Luego  $V_I(\neg p)=0$  y entonces  $V_I(\neg \neg p)=1$ . Por lo tanto  $V_I(p)=V_I(\neg \neg p)$ .

*Proposición:*  $p \equiv \neg \neg p$ 

### Demostración:

Sea I una interpretación arbitraria. Tenemos dos casos:

- Caso 1: Supongamos que  $V_I(p)=1$ . Luego  $V_I(\neg p)=0$  y entonces  $V_I(\neg \neg p)=1$ . Por lo tanto  $V_I(p)=V_I(\neg \neg p)$ .
- Caso 2: Supongamos que  $V_I(p)=0$ . Luego  $V_I(\neg p)=1$  y entonces  $V_I(\neg \neg p)=0$ . Por lo tanto  $V_I(p)=V_I(\neg \neg p)$ .

*Proposición:*  $p \equiv \neg \neg p$ 

### Demostración:

Sea I una interpretación arbitraria. Tenemos dos casos:

- Caso 1: Supongamos que  $V_I(p)=1$ . Luego  $V_I(\neg p)=0$  y entonces  $V_I(\neg \neg p)=1$ . Por lo tanto  $V_I(p)=V_I(\neg \neg p)$ .
- Caso 2: Supongamos que  $V_I(p)=0$ . Luego  $V_I(\neg p)=1$  y entonces  $V_I(\neg \neg p)=0$ . Por lo tanto  $V_I(p)=V_I(\neg \neg p)$ .

En cualquier caso,  $V_I(p) = V_I(\neg \neg p)$ .

*Proposición:*  $p \equiv \neg \neg p$ 

#### Demostración:

Sea I una interpretación arbitraria. Tenemos dos casos:

- Caso 1: Supongamos que  $V_I(p)=1$ . Luego  $V_I(\neg p)=0$  y entonces  $V_I(\neg \neg p)=1$ . Por lo tanto  $V_I(p)=V_I(\neg \neg p)$ .
- Caso 2: Supongamos que  $V_I(p)=0$ . Luego  $V_I(\neg p)=1$  y entonces  $V_I(\neg \neg p)=0$ . Por lo tanto  $V_I(p)=V_I(\neg \neg p)$ .

En cualquier caso,  $V_I(p) = V_I(\neg \neg p)$ . Como I es arbitraria, se sigue que  $p \equiv \neg \neg p$ .

Proposición: 
$$(p \rightarrow q) \equiv (\neg p \lor q)$$

*Proposición:*  $(p \rightarrow q) \equiv (\neg p \lor q)$ 

Demostración: Consideremos I arbitraria. Tenemos dos casos:

6

*Proposición:* 
$$(p \rightarrow q) \equiv (\neg p \lor q)$$

Demostración: Consideremos I arbitraria. Tenemos dos casos:

Caso 1: Supongamos que 
$$V_I(p) = 0$$
. Luego  $V_I(p \to q) = 1$ . Adicionalmente,  $V_I(\neg p) = 1$ , luego y  $V_I(\neg p \lor q) = 1$ . Por lo tanto  $V_I(p \to q) = V_I(\neg p \lor q)$ .

6

*Proposición:* 
$$(p \rightarrow q) \equiv (\neg p \lor q)$$

- Caso 1: Supongamos que  $V_I(p) = 0$ . Luego  $V_I(p \to q) = 1$ . Adicionalmente,  $V_I(\neg p) = 1$ , luego y  $V_I(\neg p \lor q) = 1$ . Por lo tanto  $V_I(p \to q) = V_I(\neg p \lor q)$ .
- Caso 2: Supongamos que  $V_I(p) = 1$ , entonces  $V_I(\neg p) = 0$ . Nuevamente tenemos dos casos.

*Proposición:* 
$$(p \rightarrow q) \equiv (\neg p \lor q)$$

- Caso 1: Supongamos que  $V_I(p) = 0$ . Luego  $V_I(p \to q) = 1$ . Adicionalmente,  $V_I(\neg p) = 1$ , luego y  $V_I(\neg p \lor q) = 1$ . Por lo tanto  $V_I(p \to q) = V_I(\neg p \lor q)$ .
- Caso 2: Supongamos que  $V_I(p)=1$ , entonces  $V_I(\neg p)=0$ . Nuevamente tenemos dos casos. Por un lado, si  $V_I(q)=1$ , entonces  $V_I(p\to q)=1$  y  $V_I(\neg p\vee q)=1$ .

*Proposición:*  $(p \rightarrow q) \equiv (\neg p \lor q)$ 

- Caso 1: Supongamos que  $V_I(p) = 0$ . Luego  $V_I(p \to q) = 1$ . Adicionalmente,  $V_I(\neg p) = 1$ , luego y  $V_I(\neg p \lor q) = 1$ . Por lo tanto  $V_I(p \to q) = V_I(\neg p \lor q)$ .
- Caso 2: Supongamos que  $V_I(p)=1$ , entonces  $V_I(\neg p)=0$ . Nuevamente tenemos dos casos. Por un lado, si  $V_I(q)=1$ , entonces  $V_I(p \to q)=1$  y  $V_I(\neg p \lor q)=1$ . Por otro lado, si  $V_I(q)=0$ , entonces  $V_I(p \to q)=0$  y  $V_I(\neg p \lor q)=0$ .

*Proposición:*  $(p \rightarrow q) \equiv (\neg p \lor q)$ 

- Caso 1: Supongamos que  $V_I(p) = 0$ . Luego  $V_I(p \to q) = 1$ . Adicionalmente,  $V_I(\neg p) = 1$ , luego y  $V_I(\neg p \lor q) = 1$ . Por lo tanto  $V_I(p \to q) = V_I(\neg p \lor q)$ .
- Caso 2: Supongamos que  $V_I(p)=1$ , entonces  $V_I(\neg p)=0$ . Nuevamente tenemos dos casos. Por un lado, si  $V_I(q)=1$ , entonces  $V_I(p \to q)=1$  y  $V_I(\neg p \lor q)=1$ . Por otro lado, si  $V_I(q)=0$ , entonces  $V_I(p \to q)=0$  y  $V_I(\neg p \lor q)=0$ . Por lo tanto, en cualquiera de estos casos,  $V_I(p \to q)=V_I(\neg p \lor q)$ .

*Proposición:*  $(p \rightarrow q) \equiv (\neg p \lor q)$ 

Demostración: Consideremos I arbitraria. Tenemos dos casos:

- Caso 1: Supongamos que  $V_I(p) = 0$ . Luego  $V_I(p \to q) = 1$ . Adicionalmente,  $V_I(\neg p) = 1$ , luego y  $V_I(\neg p \lor q) = 1$ . Por lo tanto  $V_I(p \to q) = V_I(\neg p \lor q)$ .
- Caso 2: Supongamos que  $V_I(p)=1$ , entonces  $V_I(\neg p)=0$ . Nuevamente tenemos dos casos. Por un lado, si  $V_I(q)=1$ , entonces  $V_I(p \to q)=1$  y  $V_I(\neg p \lor q)=1$ . Por otro lado, si  $V_I(q)=0$ , entonces  $V_I(p \to q)=0$  y  $V_I(\neg p \lor q)=0$ . Por lo tanto, en cualquiera de estos casos,  $V_I(p \to q)=V_I(\neg p \lor q)$ .

Para todos los casos obtenemos  $V_I(p \to q) = V_I(\neg p \lor q)$ .

*Proposición:*  $(p \rightarrow q) \equiv (\neg p \lor q)$ 

Demostración: Consideremos I arbitraria. Tenemos dos casos:

- Caso 1: Supongamos que  $V_I(p) = 0$ . Luego  $V_I(p \to q) = 1$ . Adicionalmente,  $V_I(\neg p) = 1$ , luego y  $V_I(\neg p \lor q) = 1$ . Por lo tanto  $V_I(p \to q) = V_I(\neg p \lor q)$ .
- Caso 2: Supongamos que  $V_I(p)=1$ , entonces  $V_I(\neg p)=0$ . Nuevamente tenemos dos casos. Por un lado, si  $V_I(q)=1$ , entonces  $V_I(p \to q)=1$  y  $V_I(\neg p \lor q)=1$ . Por otro lado, si  $V_I(q)=0$ , entonces  $V_I(p \to q)=0$  y  $V_I(\neg p \lor q)=0$ . Por lo tanto, en cualquiera de estos casos,  $V_I(p \to q)=V_I(\neg p \lor q)$ .

Para todos los casos obtenemos  $V_I(p \to q) = V_I(\neg p \lor q)$ . Como I es arbitraria, se sigue que  $(p \to q) \equiv (\neg p \lor q)$ .

## **Equivalencias importantes**

Proposición: Las siguientes equivalencias son ciertas:

$$\neg(p \land q) \equiv (\neg p \lor \neg q)$$

$$\neg(p \lor q) \equiv (\neg p \land \neg q)$$

$$(p \lor (q \land r)) \equiv ((p \lor q) \land (p \lor r))$$

$$(p \land (q \lor r)) \equiv ((p \land q) \lor (p \land r))$$

## **Lemas importantes**

### Lema (I)

Sean A y B fórmulas. Si  $A \equiv B$ , entonces  $\neg A \equiv \neg B$ .

## Lema (II)

Sean A, B A' y B' fórmulas. Si  $A \equiv A'$  y  $B \equiv B'$ , entonces  $A \odot B \equiv A' \odot B'$ , para  $\odot \in \{\land, \lor \rightarrow, \leftrightarrow\}$ .

## Contenido

1 Equivalencia lógica

2 Teorema de sustitución salva veritate

3 Eliminación de conectivos

### Sustitución

```
Recordemos que B\{A \leftarrow A'\} = \operatorname{Sust}(B, A, A'):

Def \operatorname{Sust}[B, A, A']:

\operatorname{SI} A \notin \operatorname{Subforms}[B]:

\operatorname{RETORNAR} B

SI NO, SI B == A:

\operatorname{RETORNAR} A'

SI NO, SI B.LABEL == \neg:

\operatorname{RETORNAR} \operatorname{TREE}(\neg, \operatorname{NULL}, \operatorname{SUST}[B.\operatorname{RIGHT}, A, A'])

SI NO, SI B.LABEL \in \{\land, \lor \rightarrow, \leftrightarrow\}:

\operatorname{RETORNAR} \operatorname{TREE}(B.\operatorname{LABEL}, \operatorname{SUST}[B.\operatorname{LEFT}, A, A'], \operatorname{SUST}[B.\operatorname{RIGHT}, A, A'])
```

Sea B una fórmula y  $A \in Subforms(B)$ . Sea A' una fórmula.

# Más lemas importantes

## Lema (III)

$$\neg B\{A \leftarrow A'\} = \neg (B\{A \leftarrow A'\})$$

## Lema (IV)

$$(B \odot C)\{A \leftarrow A'\} = B\{A \leftarrow A'\} \odot C\{A \leftarrow A'\}, para \\ \odot \in \{\land, \lor \rightarrow, \leftrightarrow\}.$$

#### **Teorema**

Sea B una fórmula y  $A \in Subforms(B)$ . Sea A' una fórmula. Si  $A \equiv A'$ , entonces  $B \equiv B\{A \leftarrow A'\}$ .

Demostración: Por inducción estructural sobre B.

Demostración: Por inducción estructural sobre B.

Caso 
$$B = TREE(p, NULL, NULL)$$
:

Demostración: Por inducción estructural sobre B.

Caso B = Tree(p, Null, Null): Observe que  $A \in \text{Subforms}(B)$  y en consecuencia A = B.

Demostración: Por inducción estructural sobre B.

Caso  $B={\rm TREE}(p,{\rm \,\,Null}\,,{\rm \,\,Null})$ : Observe que  $A\in{\rm Subforms}(B)$  y en consecuencia A=B. Como  $A\equiv A'$ , entonces  $B\equiv A'$ .

Demostración: Por inducción estructural sobre B.

Caso B = Tree(p, Null, Null): Observe que  $A \in \text{Subforms}(B)$  y en consecuencia A = B. Como  $A \equiv A'$ , entonces  $B \equiv A'$ . Además, observe que, por definicion de Sust, se tiene que Sust(B, A, A') = A' y, por lo tanto,  $B \equiv \text{Sust}(B, A, A')$ . Es decir,  $B \equiv B\{A \leftarrow A'\}$ .

Demostración: Por inducción estructural sobre B.

Caso 
$$B = \text{Tree}(\neg, \text{ Null, C})$$
, donde  $C \equiv C\{A \leftarrow A'\}$ :

Demostración: Por inducción estructural sobre B.

Caso 
$$B = \text{Tree}(\neg, \text{Null}, C)$$
, donde  $C \equiv C\{A \leftarrow A'\}$ : Por el lema I tenemos que  $\neg C \equiv \neg(C\{A \leftarrow A'\})$ .

Demostración: Por inducción estructural sobre B.

Caso  $B = \text{Tree}(\neg, \text{Null}, C)$ , donde  $C \equiv C\{A \leftarrow A'\}$ : Por el lema I tenemos que  $\neg C \equiv \neg(C\{A \leftarrow A'\})$ . Por el lema III tenemos que  $\neg C\{A \leftarrow A'\} \equiv \neg(C\{A \leftarrow A'\})$ .

Demostración: Por inducción estructural sobre B.

Caso  $B = \text{Tree}(\neg, \text{Null}, C)$ , donde  $C \equiv C\{A \leftarrow A'\}$ : Por el lema I tenemos que  $\neg C \equiv \neg(C\{A \leftarrow A'\})$ . Por el lema III tenemos que  $\neg C\{A \leftarrow A'\} \equiv \neg(C\{A \leftarrow A'\})$ . En consecuencia,  $\neg C \equiv \neg C\{A \leftarrow A'\}$ .

Demostración: Por inducción estructural sobre B.

Caso  $B = \text{Tree}(\neg, \text{Null}, C)$ , donde  $C \equiv C\{A \leftarrow A'\}$ : Por el lema I tenemos que  $\neg C \equiv \neg(C\{A \leftarrow A'\})$ . Por el lema III tenemos que  $\neg C\{A \leftarrow A'\} \equiv \neg(C\{A \leftarrow A'\})$ . En consecuencia,  $\neg C \equiv \neg C\{A \leftarrow A'\}$ . Por definición de B se sigue que  $B \equiv B\{A \leftarrow A'\}$ .

Demostración: Por inducción estructural sobre B.

Caso 
$$B = \text{Tree}(\odot, C, D)$$
, donde  $C \equiv C\{A \leftarrow A'\}$  y  $D \equiv D\{A \leftarrow A'\}$ :

#### Sustitución salva veritate

Demostración: Por inducción estructural sobre B.

Caso 
$$B = \text{Tree}(\odot, C, D)$$
, donde  $C \equiv C\{A \leftarrow A'\}$  y  $D \equiv D\{A \leftarrow A'\}$ : Ejercicio.

#### Contenido

1 Equivalencia lógica

2 Teorema de sustitución salva veritate

3 Eliminación de conectivos

#### **Teorema**

Sea A una fórmula. A es equivalente a una fórmula A' en la que no hay ocurrencias del conectivo ' $\rightarrow$ '.

#### **Teorema**

Sea A una fórmula. A es equivalente a una fórmula A' en la que no hay ocurrencias del conectivo ' $\rightarrow$ '.

Demostración: Supongamos que existe  $B \to C \in \mathsf{Subform}(A)$  para alguna fórmula B y alguna fórmula C.

#### **Teorema**

Sea A una fórmula. A es equivalente a una fórmula A' en la que no hay ocurrencias del conectivo ' $\rightarrow$ '.

Demostración: Supongamos que existe  $B \to C \in \operatorname{Subform}(A)$  para alguna fórmula B y alguna fórmula C. Observe que  $B \to C \equiv \neg B \lor C$ .

#### **Teorema**

Sea A una fórmula. A es equivalente a una fórmula A' en la que no hay ocurrencias del conectivo ' $\rightarrow$ '.

Demostración: Supongamos que existe  $B \to C \in \operatorname{Subform}(A)$  para alguna fórmula B y alguna fórmula C. Observe que  $B \to C \equiv \neg B \lor C$ . Por el teorema de sustitución salva veritate se sigue que  $A \equiv A\{B \to C, \neg B \lor C\}$ .

#### **Teorema**

Sea A una fórmula. A es equivalente a una fórmula A' en la que no hay ocurrencias del conectivo ' $\rightarrow$ '.

Demostración: Supongamos que existe  $B \to C \in \operatorname{Subform}(A)$  para alguna fórmula B y alguna fórmula C. Observe que  $B \to C \equiv \neg B \lor C$ . Por el teorema de sustitución salva veritate se sigue que  $A \equiv A\{B \to C, \neg B \lor C\}$ . En consecuencia, cualquier ocurrencia del conectivo ' $\to$ ' puede eliminarse de A, obteniendo una fórmula equivalente. Así pues, una cadena finita de sustituciones nos proporcionará una fórmula A' equivalente a A que no contiene ocurrencias de ' $\to$ '.

### Eliminando dobles negaciones

#### **Teorema**

Sea A una fórmula. A es equivalente a una fórmula A' en la que no hay ocurrencias de la doble negación ' $\neg\neg$ '.

#### Definiciones:

Un literal es una letra proposicional o la negación de una letra proposicional.

#### Definiciones:

- Un literal es una letra proposicional o la negación de una letra proposicional.
- Una cláusula es una disyunción de literales.

#### Definiciones:

- Un literal es una letra proposicional o la negación de una letra proposicional.
- Una cláusula es una disyunción de literales.
- Una fórmula está en *forma normal conjuntiva* si es una conjunción de cláusulas.

#### Definiciones:

- Un literal es una letra proposicional o la negación de una letra proposicional.
- Una cláusula es una disyunción de literales.
- Una fórmula está en *forma normal conjuntiva* si es una conjunción de cláusulas.

#### **Teorema**

Sea A una fórmula. A es equivalente a una fórmula A' en forma normal conjuntiva.

Procedimiento para transformar una fórmula arbitraria A en una fórmula A' en forma normal conjuntiva, tal que  $A \equiv A'$ :

1. Eliminar ' $\leftrightarrow$ ' y ' $\rightarrow$ '.

- 1. Eliminar ' $\leftrightarrow$ ' y ' $\rightarrow$ '.
- 2. Eliminar dobles negaciones.

- 1. Eliminar ' $\leftrightarrow$ ' y ' $\rightarrow$ '.
- 2. Eliminar dobles negaciones.
- 3. Si  $\neg (B \land C) \in \mathsf{Subform}(A)$ , reemplazarla por  $\neg B \lor \neg C$ .

- 1. Eliminar ' $\leftrightarrow$ ' y ' $\rightarrow$ '.
- 2. Eliminar dobles negaciones.
- 3. Si  $\neg (B \land C) \in \mathsf{Subform}(A)$ , reemplazarla por  $\neg B \lor \neg C$ .
- 4. Si  $\neg (B \lor C) \in \text{Subform}(A)$ , reemplazarla por  $\neg B \land \neg C$ .

- 1. Eliminar ' $\leftrightarrow$ ' y ' $\rightarrow$ '.
- 2. Eliminar dobles negaciones.
- 3. Si  $\neg (B \land C) \in \mathsf{Subform}(A)$ , reemplazarla por  $\neg B \lor \neg C$ .
- 4. Si  $\neg (B \lor C) \in \text{Subform}(A)$ , reemplazarla por  $\neg B \land \neg C$ .
- 5. Eliminar dobles negaciones.

- 1. Eliminar ' $\leftrightarrow$ ' y ' $\rightarrow$ '.
- 2. Eliminar dobles negaciones.
- 3. Si  $\neg (B \land C) \in \mathsf{Subform}(A)$ , reemplazarla por  $\neg B \lor \neg C$ .
- 4. Si  $\neg (B \lor C) \in \text{Subform}(A)$ , reemplazarla por  $\neg B \land \neg C$ .
- 5. Eliminar dobles negaciones.
- 6. Si  $B \lor (C \land D) \in \text{Subform}(A)$ , reemplazarla por  $(B \lor C) \land (B \lor D)$ .

$$\neg(p\lor q)\lor(r\land \neg s)$$
 (eliminación de ' $\rightarrow$ ')

$$\neg (p \lor q) \lor (r \land \neg s)$$
 (eliminación de ' $\rightarrow$ ') 
$$(\neg p \land \neg q) \lor (r \land \neg s)$$
 (Moviendo ' $\neg$ ' a la derecha)

#### Fin de la sesión 5

En esta sesión usted ha aprendido:

- 1. Comprender el concepto de equivalencia lógica
- 2. Demostrar el teorema de equivalencia salva veritate
- 3. Intercambiar conectivos lógicos por otros manteniendo la equivalencia