Machine Learning for econometrics

Flexible models for tabular data

Matthieu Doutreligne

February 18th, 2025

Reminder from previous session

- Statistical learning 101: bias-variance trade-off
- Regularization for linear models: Lasso, Ridge, Elastic Net
- Transformation of variables: polynomial regression

Reminder from previous session

- Statistical learning 101: bias-variance trade-off
- Regularization for linear models: Lasso, Ridge, Elastic Net
- Transformation of variables: polynomial regression
- But... How to select the best model? the best hyper-parameters?

Table of contents

- 1. Model evaluation and selection with cross-validation
- 2. Tree, random forests and boosting
- 3. A word on other families of models

Model evaluation and selection with cross-validation

A closer look at model evaluation: Wage example

Example with the Wage dataset

• Raw dataset: (N=534, p=11)

EDUCATION	SOUTH	SEX	EXPERIENCE	UNION	WAGE	AGE	RACE	OCCUPATION	SECTOR	MARR
8	no	female	21	not_member	5.10	35	Hispanic	Other	Manufacturing	Married
9	no	female	42	not_member	4.95	57	White	Other	Manufacturing	Married
12	no	male	1	not_member	6.67	19	White	Other	Manufacturing	Unmarried
12	no	male	4	not_member	4.00	22	White	Other	Other	Unmarried
12	no	male	17	not_member	7.50	35	White	Other	Other	Married

•

•

A closer look at model evaluation: Wage example

Example with the Wage dataset

- Raw dataset: (N=534, p=11)
- Transformation: encoding categorical data, scaling numerical data: (N=534, p=23)

encoder_	one-hot- _SOUTH_no			one-hot- encoderSEX_male	one-hot- encoderUNION_member	encoderUNION_not
	1.0	0.0	1.0	0.0	0.0	
	1.0	0.0	1.0	0.0	0.0	
	1.0	0.0	0.0	1.0	0.0	
	1.0	0.0	0.0	1.0	0.0	
	1.0	0.0	0.0	1.0	0.0	

A closer look at model evaluation: Wage example

Example with the Wage dataset

- Raw dataset: (N=534, p=11)
- Transformation: encoding categorical data, scaling numerical data: (N=534, p=23)
- Regressor: Lasso with regularization parameter ($\alpha = 10$)

Splitting once: In red, the training set, in blue, the test set

But we could have chosen another split! Yielding a different MAE

And another split...

Splitting ten times

Distribution of MAE: 3.71 ± 0.26

Repeated train/test splits = Cross-validation

• In sklearn, it can be instantiated with cross_validate.

```
1 from sklearn.model_selection import cross_validate
2 from sklearn.model_selection import ShuffleSplit
3
4 cv = ShuffleSplit(n_splits=40, test_size=0.3, random_state=0)
5 cv_results = cross_validate(
6    regressor, data, target, cv=cv, scoring="neg_mean_absolute_error"
7 )
```

Repeated train/test splits = Cross-validation

- In sklearn, it can be instantiated with cross_validate.
- It is a more robust way to evaluate the model's performance.
- We get a more robust estimate by taking the mean over the repetitions.
- We get a better idea of the variability of the model's performance: similar to bootstrapping (but different).

Cross-validation is not model selection

Cross-validation

Robustly estimate one model's generalization performance

Cross-validation is not model selection

Cross-validation

Robustly estimate one model's generalization performance

But still, how to select the best model among multiple models with different hyper-parameters?s

Naive cross-validation to select the best model

Nested cross-validation to select the best model

Tree, random forests and boosting

Random Forests for predictive inference

Boosting

Ensemble models

A word on other families of models

Why not use deep learning everywhere?

- Success of deep learning (aka deep neural networks) in image, speech recognition and text
- Why not so used in econometrics?

Deep learning needs a lot of data (typically $N \approx 1$ million)

▶ Do we have this much data in econometrics?

Limited data settings

• Typically in economics (but also everywhere), we have a limited number of observations

Typical dataset are mid-sized. This does not change with time.¹

¹https://www.kdnuggets.com/2020/07/poll-largest-dataset-analyzed-results.html

Deep learning underperforms on data tables

Tree-based methods outperform tailored deep learning architectures (Grinsztajn et al., 2022)

Deep learning underperforms on data tables

DAG for a RCT: the treatment is independent of the confounders

Other well known families of models

Generalized linear models

Support vector machines

Gaussian processes

Bibliography

Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data? Advances in Neural Information Processing Systems, 35, 507–520.