SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI

TRUÒNG THPT LÊ QUÝ ĐÔN – ĐỐNG ĐA

KŸ THI TỐT NGHIỆP THPT NĂM 2021 Bài thi: TOÁN

Thời gian: 90 phút (Không kể thời gian phát đề)

ĐỀ THI THỬ

(Đề thi gồm có 06 trang)

Mã đề thi

Ho và tên thí sinh:

Câu 1. Đồ thị hàm số $y = f(x) = \frac{1}{x^2 - 3x + 2}$ có tất cả bao nhiều đường tiệm cận?

A. 4

D. 3

Câu 2. Nghiệm của phương trình $\log_3(2x+1)=3$ là

- **A.** x = 26
- **B.** x = 13
- **C.** x = 4
- **D.** x = 8

Câu 3. Cho hàm số y = f(x) xác định trên \mathbb{R} và có bảng biến thiên như hình vẽ. Hàm số đồng biến trên khoảng nào?

- A. $(-\infty;-1)$
- **B.** $(2; +\infty)$
- $\mathbf{C}.(-1;2)$

Câu 4. Cho $a > 0; a \ne 1$, tính $\log_a(4a^3)$?

- **A.** $\frac{1}{2} \log_a 4$
- C. $\frac{1}{3} + \log_a 4$ D. $3 + 2\log_a 2$

Câu 5. Tìm họ nguyên hàm của hàm số $f(x) = e^{3x}$?

A. $\int f(x)dx = \frac{e^{3x+1}}{3x+1} + C$

B. $\int f(x)dx = \frac{1}{3}e^{3x} + C$

 $\mathbf{C.} \int f(x) dx = e^{3x} + C$

 $\mathbf{D.} \int f(x)dx = 3e^{3x} + C$

Câu 6. Cho a > 0, tính $\sqrt[3]{a \cdot \sqrt{a}}$?

D. $a^{\frac{2}{3}}$

Câu 7. Đồ thị hàm số $y = x^4 - 3x^2 + 2$ cắt trục hoành tại bao nhiều điểm?

D. 3

Câu 8. Tính đạo hàm của hàm số $y = \log_5 x$, với x > 0

- **A.** $y = \frac{1}{r \ln 5}$ **B.** $y = \frac{1}{r}$
- C. $y = \frac{\ln 5}{r}$
- $\mathbf{D.} \ \ y = \frac{1}{\log_5 x}$

Câu 9. Đồ thi hàm số nào dưới đây có dang như đường cong trong hình bên?

B.
$$y = \frac{x+1}{x-1}$$

C.
$$y = \frac{-x+1}{x+1}$$
 D. $y = \frac{x-1}{x+1}$

D.
$$y = \frac{x-1}{x+1}$$

Câu 10. Cho cấp số cộng (u_n) có số hạng đầu và số hạng thứ tư lần lượt là 2; 14. Tìm công sai d?

A.
$$d = -4$$

B.
$$d = 3$$

C.
$$d = -3$$

D.
$$d = 4$$

Câu 11. Có bao nhiều số có 3 chữ số khác nhau được lập từ các chữ số 1; 2; 3; 4; 5?

C.
$$A_5^3$$

D.
$$C_5^3$$

Câu 12. . Cho hàm số y = f(x) xác định trên \mathbb{R} và có bảng biến thiên như hình vẽ. Tìm điểm cực tiểu của hàm số?

A.
$$x = 2$$

B.
$$x = -1$$

C.
$$x = 1$$

D.
$$x = -2$$

Câu 13. Tập nghiệm của phương trình $2^{x^2+1} = 4$ là

A.
$$S = \{\pm 1\}$$

B.
$$S = \{0\}$$

C.
$$S = \{\pm \sqrt{3}\}$$

D.
$$S = \{\pm \sqrt{2}\}$$

Câu 14. Tìm họ nguyên hàm của hàm số $f(x) = 4x^3 - 2x + 1$?

A.
$$\int f(x)dx = x^4 - x^2 + C$$

B.
$$\int f(x)dx = 4x^4 - 2x^2 + x + C$$

C.
$$\int f(x)dx = \frac{1}{4}x^4 - \frac{1}{2}x^2 + x + C$$

D.
$$\int f(x)dx = x^4 - x^2 + x + C$$

Câu 15. Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} và có đạo hàm $f'(x) = x(x-1)^2(x-2)^3(x-3)^4$. Hàm số f(x) có bao nhiều điểm cực trị?

C. 2

Câu 16. Tính diện tích xung quanh của hình nón có bán kính đáy r = 3 và chiều cao h = 4.

A. 21π

B. 12π

C. 24π

D. 15π

Câu 17. Cho hàm số f(x) có liên tục trên \mathbb{R} thỏa mãn $\int (3f(x) + 2\sin x)dx = 8$. Tính $\int f(2x)dx$.

A.
$$\frac{4}{3}$$

B. 2

D. 1

Câu 18. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = x + \sqrt{9 - x^2}$. Tính M + m?

A.
$$3\sqrt{2}-3$$

B.
$$3\sqrt{2} + 3$$

D.
$$3\sqrt{2}$$

,	a số trong 40 số nguyên dư	rơng đầu tiên. Tính xác su	ất để ba số được chọn có tổng							
chia hết cho 3.	0	0.1	2.1							
A. $\frac{127}{380}$	B. $\frac{9}{95}$	C. $\frac{91}{380}$	D. $\frac{31}{95}$							
Câu 20. Cho hình chóp đều $S.ABCD$ có đáy là hình vuông cạnh $2a$, cạnh bên bằng $a\sqrt{3}$. Tính thể tích khối										
chóp S.ABCD?										
A. $4a^3\sqrt{3}$	B. $\frac{4\sqrt{3}}{3}a^3$	C. $\frac{4}{3}a^3$	D. $4a^3$							
Câu 21. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z thỏa mãn: $z-3+i=1-2i$ có tọa độ là										
A. $(3;-4)$	B. (-3;4)	C. (-4;3)	D. (4;-3)							
Câu 22. Cho hình chóp $S.ABCD$ có đáy là hình vuông cạnh a , $SA \perp (ABCD)$, $SA = a\sqrt{3}$. Gọi α là góc										
giữa SA và mặt phẳng (SCD) . Tính $\tan \alpha$.										
A. 1	B. $\frac{\sqrt{6}}{3}$	C. $\frac{1}{\sqrt{3}}$	D. $\sqrt{3}$							
Câu 23. Tập nghiệm của bất phương trình $\left(\tan\left(\frac{\pi}{9}\right)\right)^{x^2-3x} \ge \left(\cot\left(\frac{\pi}{9}\right)\right)^{3-x}$ là										
A. $S = [1;3]$		B. $S = (-\infty; 1] \cup [3; +\infty)$								
$C C = \begin{bmatrix} 1.2 \end{bmatrix}$	D. $S = (-\infty; -1] \cup [3; +\infty)$									
C. $S = [-1;3]$		$D. S = (-\infty; -1] \cup [3; +\infty)$								
	$f(x)$ liên tục trên $\mathbb R$ thỏa m	` /								
	$f(x)$ liên tục trên \mathbb{R} thỏa m \mathbf{B} . 9	` /	$dx = 8$. Tính $\int_{2}^{4} (f(x) + 3) dx$?							
Câu 24. Cho hàm số $y = f($	B. 9	$\tilde{a}n: \int_{-1}^{2} f(x)dx = 5; \int_{-1}^{4} f(x)dx$	$dx = 8$. Tính $\int_{2}^{4} (f(x) + 3) dx$?							
Câu 24. Cho hàm số $y = f($	B. 9	an: $\int_{-1}^{2} f(x)dx = 5$; $\int_{-1}^{4} f(x)dx$	$dx = 8$. Tính $\int_{2}^{4} (f(x) + 3) dx$?							
Câu 24. Cho hàm số $y = f($ A. 6 Câu 25. Tìm số phức z biế A. $3-2i$	B. 9 t: $(1-i)z + 3 - 2i = 6 - 3i$ B. $z = 2 + i$	an: $\int_{-1}^{2} f(x)dx = 5$; $\int_{-1}^{4} f(x)dx$ C. 19	$dx = 8$. Tính $\int_{2}^{4} (f(x)+3) dx$? D. 3							
Câu 24. Cho hàm số $y = f($ A. 6 Câu 25. Tìm số phức z biế A. $3-2i$	B. 9 t: $(1-i)z + 3 - 2i = 6 - 3i$ B. $z = 2 + i$	an: $\int_{-1}^{2} f(x)dx = 5$; $\int_{-1}^{4} f(x)dx$ C. 19	$dx = 8$. Tính $\int_{2}^{4} (f(x)+3)dx$? D. 3 D. 2-4 <i>i</i>							
Câu 24. Cho hàm số $y = f(x)$ A. 6 Câu 25. Tìm số phức z biế A. $3-2i$ Câu 26. Trong không gian	B. 9 t: $(1-i)z + 3 - 2i = 6 - 3i$ B. $z = 2 + i$ Oxyz cho mặt cầu (S):	an: $\int_{-1}^{2} f(x)dx = 5$; $\int_{-1}^{4} f(x)$	$dx = 8$. Tính $\int_{2}^{4} (f(x)+3)dx$? D. 3 D. 2-4 <i>i</i>							
Câu 24. Cho hàm số $y = f(x)$ A. 6 Câu 25. Tìm số phức z biế A. $3-2i$ Câu 26. Trong không gian mặt cầu (S) ?	B. 9 t: $(1-i)z+3-2i=6-3i$ B. $z=2+i$ Oxyz cho mặt cầu (S): B. $(-2;-1;3)$	an: $\int_{-1}^{2} f(x)dx = 5; \int_{-1}^{4} f(x)dx$ C. 19 C. $7 + 2i$ $x^{2} + y^{2} + z^{2} - 4x - 2y + 6z$	$dx = 8. \text{ Tính } \int_{2}^{4} (f(x)+3)dx?$ D. 3 D. 2-4 <i>i</i> $x-2=0. \text{ Tîm tọa độ tâm của}$							
Câu 24. Cho hàm số $y = f(x)$ A. 6 Câu 25. Tìm số phức z biế A. 3-2 i Câu 26. Trong không gian mặt cầu (S) ? A. $(-4;-2;6)$	B. 9 t: $(1-i)z+3-2i=6-3i$ B. $z=2+i$ Oxyz cho mặt cầu (S): B. $(-2;-1;3)$	an: $\int_{-1}^{2} f(x)dx = 5; \int_{-1}^{4} f(x)dx$ C. 19 C. $7 + 2i$ $x^{2} + y^{2} + z^{2} - 4x - 2y + 6z$	$dx = 8. \text{ Tính } \int_{2}^{4} (f(x)+3)dx?$ D. 3 D. 2-4 <i>i</i> $x-2=0. \text{ Tîm tọa độ tâm của}$							
Câu 24. Cho hàm số $y = f(x)$ A. 6 Câu 25. Tìm số phức z biế A. $3-2i$ Câu 26. Trong không gian mặt cầu (S) ? A. $(-4;-2;6)$ Câu 27. Tính tích phân $\int_{0}^{\frac{\pi}{4}} \cos x$	B. 9 t: $(1-i)z + 3 - 2i = 6 - 3i$ B. $z = 2 + i$ Oxyz cho mặt cầu (S): B. $(-2; -1; 3)$ s $2xdx$? B. $\frac{1}{2}$	an: $\int_{-1}^{2} f(x)dx = 5$; $\int_{-1}^{4} f(x)dx$ C. 19 C. $7 + 2i$ $x^{2} + y^{2} + z^{2} - 4x - 2y + 6z$ C. $(4; 2; -6)$	$dx = 8$. Tính $\int_{2}^{4} (f(x)+3)dx$? D. 3 D. 2-4 <i>i</i> $x-2=0$. Tìm tọa độ tâm của D. $(2;1;-3)$							
Câu 24. Cho hàm số $y = f(0)$ A. 6 Câu 25. Tìm số phức z biế A. $3-2i$ Câu 26. Trong không gian mặt cầu (S) ? A. $(-4;-2;6)$ Câu 27. Tính tích phân $\int_{0}^{\frac{\pi}{4}} \cos x^{\frac{\pi}{4}} \cos x^{\frac{\pi}{4}} \cos x^{\frac{\pi}{4}} \cos x^{\frac{\pi}{4}}$	B. 9 t: $(1-i)z + 3 - 2i = 6 - 3i$ B. $z = 2 + i$ Oxyz cho mặt cầu (S): B. $(-2; -1; 3)$ s $2xdx$? B. $\frac{1}{2}$	an: $\int_{-1}^{2} f(x)dx = 5$; $\int_{-1}^{4} f(x)dx$ C. 19 C. $7 + 2i$ $x^{2} + y^{2} + z^{2} - 4x - 2y + 6z$ C. $(4; 2; -6)$	$dx = 8$. Tính $\int_{2}^{4} (f(x)+3)dx$? D. 3 D. 2-4 <i>i</i> $x-2=0$. Tìm tọa độ tâm của D. $(2;1;-3)$							

A. 64

B. $\frac{64}{3}$

C. $16\sqrt{3}$

D. $\frac{16\sqrt{3}}{3}$

Câu 30. Tính thể tích khối trụ biết thiết diện qua trục là một hình vuông có cạnh bằng 8.

A. $\frac{128\pi}{3}$

B. $\frac{512\pi}{3}$

C. 128*π*

D. 512π

Câu 31. Hàm số nào sau đây không có cực trị

A. $y = x^2 + 4x + 5$

B. $y = x^4 + 4x^2 + 2$

C.
$$y = x^3 - 2x^2 + 3x + 1$$

D.
$$v = x^3 + 3x^2 - 2x + 3$$

Câu 32. Tìm mô đun của số phức z = -3 + 4i?

A. 1

B. 5

C. 25

D. 7

Câu 33. Véc tơ nào sau đây là một véc tơ pháp tuyến của mặt phẳng 2x - y - 5 = 0

A.
$$(0;2;-1)$$

B.
$$(2;-1;0)$$

$$C. (2;-1;-5)$$

D.
$$(2;0;-1)$$

Câu 34. Trong không gian Oxyz cho tam giác ABC có các đinh A(1;2;5), B(-2;4;3), C(-5;-3;-2). Tìm tọa độ trọng tâm G của ABC?

A.
$$G(-2;1;2)$$

B.
$$G(-6;3;6)$$

C.
$$G(2;-1;-2)$$
 D. $G(6;-3;-6)$

D.
$$G(6; -3; -6)$$

Câu 35. Trong không gian Oxyz, lập phương trình mặt phẳng đi qua điểm A(2;1;-1) và vuông góc với đường thẳng $\frac{x-1}{2} = \frac{y+2}{1} = \frac{z-3}{2}$?

A.
$$x - 2y + 3z - 3 = 0$$

B.
$$2x + y - 3z - 8 = 0$$

C.
$$2x + y - 3z + 8 = 0$$

D.
$$x-2v+3z+3=0$$

Câu 36. Trong không gian Oxyz cho hai mặt phẳng (P): x+2y-z-2=0; (Q): 2x-y+3z-4=0. Giao tuyến của hai mặt phẳng (P) và (Q) là đường thẳng có phương trình

$$\mathbf{A.} \begin{cases} x = 2 + 5 \\ y = 5t \\ z = -5t \end{cases}$$

B.
$$\begin{cases} x = 2 + 5t \\ y = -5t \end{cases}$$

A.
$$\begin{cases} x = 2 + 5t \\ y = 5t \\ z = -5t \end{cases}$$
 B.
$$\begin{cases} x = 2 + 5t \\ y = -5t \\ z = 1 - 5t \end{cases}$$
 C.
$$\begin{cases} x = 1 + t \\ y = 1 - t \\ z = 1 - t \end{cases}$$
 D.
$$\begin{cases} x = 1 + t \\ y = 1 - t \\ z = 1 + t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 1 + t \\ y = 1 - t \\ z = 1 + t \end{cases}$$

Câu 37. Trong không gian Oxyz cho các điểm A(1;-1;1), B(-1;-2;3), C(3;3;5) và mặt cầu (S) có tâm $I(-1;-\frac{1}{2};6)$, bán kính R=1. Gọi M là điểm thuộc mặt cầu (S), N là điểm thỏa mãn NA,NB,NC hợp với mặt phẳng (ABC) các góc bằng nhau. Tìm giá trị nhỏ nhất của MN.

A. 4

B. 1

C. 3

D. 2

Câu 38. Cho hàm số f(x) liên tục trên \mathbb{R} biết: $\int_{1}^{e} \frac{f(2\ln x)}{x} dx = 6 \text{ và } \int_{0}^{\frac{\pi}{2}} f(\cos x) \sin x dx = 8. \text{ Giá trị của}$

 $\int_{0}^{2} (f(x)+2) dx$ bằng bao nhiêu?

A. 16 **B.** 0 **C.** 22 **Câu 39.** Có bao nhiều số phức z thỏa mãn |z-i|=3 và |z-5-6i|=|z+7+10i|?

Câu 40. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng $a\sqrt{2}$ và chiều cao bằng 2a. Tính khoảng cách từ A đến mặt phẳng (SCD).

A. $\frac{4a}{3}$

B. $\frac{2a}{2}$

C. $\frac{2a}{\sqrt{5}}$

D. $\frac{4a}{\sqrt{5}}$

Câu 41. Cho hàm số y = f(x) có đồ thị của đạo hàm y = f'(x) như hình vẽ. Tìm giá trị lớn nhất của hàm

số
$$g(x) = f(x) + \frac{(-x+2)^2}{2}$$
 trên [-3;4]?

A.
$$f(1) + \frac{1}{2}$$
 B. $f(-3) + \frac{25}{2}$

C.
$$f(0) + 2$$

D.
$$f(4) + 2$$

B. 196 triệu

D. 177 triệu

О

Câu 43. Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, AC = 2a, $BD = 2\sqrt{3}a$, $SO \perp (ABCD)$.

Biết khoảng cách từ điểm O đến mặt phẳng (SBC) bằng $\frac{a\sqrt{3}}{4}$. Tính thể tích của khối chóp S.ABCD theo a.

A.
$$\frac{a^3\sqrt{3}}{3}$$

B.
$$\frac{a^3\sqrt{3}}{6}$$

C.
$$\frac{a^3\sqrt{3}}{12}$$

D.
$$\frac{a^3\sqrt{3}}{4}$$

 \overline{O}

Câu 44. Trong không gian O_{XYZ} , mặt cầu tâm I(2;3;4) và đi qua điểm M(1;1;2) có phương trình là

A.
$$(x-1)^2 + (y-1)^2 + (z-2)^2 = 9$$

B.
$$(x-1)^2 + (y-1)^2 + (z-2)^2 = 3$$

Ō

C.
$$(x-2)^2 + (y-3)^2 + (z-4)^2 = 9$$

D.
$$(x-2)^2 + (y-3)^2 + (z-4)^2 = 3$$

Câu 45. Có bao nhiều số bộ số (x;y) trong đó x;y nguyên dương, không vượt quá 2021 và thỏa mãn bất

phuong trình: $(-xy+3x-2y+6)\sqrt{e^x-10} > (2xy+5x+2y+5)\log_3\left(\frac{3y}{y+6}\right)$

Câu 46. Có bao nhiều giá trị nguyên của a trong khoảng (0;2021) sao cho phương trình $2^{2^x} = a(x + \log_2 a)$ có nghiệm $x \in [3; +\infty)$.

Câu 47. Cho số phức z thỏa mãn |z-1-i|=10. Tìm giá trị nhỏ nhất của biểu thức P = 2|z - 5 - 4i| + |z - 9 - 5i|

A.
$$8\sqrt{2}$$

B.
$$8\sqrt{3}$$

C.
$$7\sqrt{3}$$

D.
$$7\sqrt{2}$$

x

Câu 48. Cho mặt cầu $(S): (x-1)^2 + (y-2)^2 + (z+1)^2 = 3$ và đường thẳng $\Delta: \frac{x+4}{6} = \frac{y-6}{-2} = \frac{z-2}{-1}$. Từ điểm

 $M \in \Delta$ kẻ các tiếp tuyến đến mặt cầu (S) và gọi (C) là tập hợp các tiếp điểm. Biết khi diện tích hình phẳng giới hạn bởi (C) đạt giá trị nhỏ nhất thì (C) thuộc mặt phẳng x + by + cz + d = 0. Tìm b + c + d?

A. 4

B. -2

C. 2

Câu 49. Cho y = f(x) là một hàm số bậc 3 có đồ thị (C) như hình vẽ. Tiếp tuyến Δ của (C) tại M(4;-2) cắt đồ thị hàm số tại điểm thứ hai N(-1;1). Biết diện tích hình phẳng giới hạn bởi (C)

và tiếp tuyến Δ (Phần tô đậm) bằng $\frac{125}{12}$. Tính $\int_{1}^{3} f(x)dx$

B.
$$\frac{14}{3}$$

C.
$$\frac{94}{15}$$

D.
$$\frac{46}{15}$$

Câu 50. Cho hàm số y = f(x) liên tục trên \mathbb{R} và số thực k thỏa mãn f(2) + k > 0. Giả sử đạo hàm y = f'(x) có đồ thị như hình vẽ và hàm số y = |f(x) + k| có 7 điểm cực trị và. Phương trình $f(-x^3 + 3x) + k = 0$ có ít nhất bao nhiều nghiệm trong khoảng (-2;2).

A. 5

B. 6

C. 3

D. 4

----- HÉT -----

BẢNG ĐÁP ÁN

1.D	2.B	3.C	4.D	5.B	6.A	7.A	8.A	9.D	10.D
11.C	12.B	13.A	14.D	15.C	16.D	17.B	18.A	19.A	20.C
21.D	22.C	23.A	24.B	25.B	26.D	27.B	28.A	29.C	30.C
31.C	32.B	33.B	34.A	35.B	36.C	37.D	38.D	39.B	40.A
41.A	42.C	43.A	44.C	45.B	46.C	47.A	48.B	49.D	50.B

LÒI GIẢI CHI TIẾT

Đồ thị hàm số $y = f(x) = \frac{1}{x^2 - 3x + 2}$ có tất cả bao nhiều đường tiệm cận? Câu 1.

A. 4.

D. 3.

Lời giải

Chon D

Điều kiện xác định: $x \neq 1$; $x \neq 2$

Ta có $\lim_{x \to +\infty} \frac{1}{x^2 - 3x + 2} = \lim_{x \to -\infty} \frac{1}{x^2 - 3x + 2} = 0 \Rightarrow \text{Dồ thị hàm số có một tiệm cận ngang: } y = 0.$

Ta có $\lim_{x\to 1^+} \frac{1}{r^2 - 3r + 2} = -\infty$; $\lim_{x\to 1^-} \frac{1}{x^2 - 3x + 2} = +\infty \Rightarrow$ Đồ thị hàm số có tiệm cận đứng: x = 1.

Ta có $\lim_{x \to 2^+} \frac{1}{x^2 - 3x + 2} = +\infty$; $\lim_{x \to 2^-} \frac{1}{x^2 - 3x + 2} = -\infty \implies \text{Dồ thị hàm số có tiệm cận đứng: } x = 2$.

Vậy đồ thị hàm số có tất cả 3 đường tiệm cận.

Câu 2. Nghiệm của phương trình $\log_3(2x+1) = 3$ là

A. x = 26.

B. x = 13.

C. x = 4.

D. x = 8.

Lời giải

Chon B

Điều kiện xác định $x > \frac{-1}{2}$.

 $\log_3(2x+1) = 3 \Leftrightarrow 2x+1 = 27 \Leftrightarrow x = 13(tm)$.

Vây phương trình có nghiệm x = 13.

Cho hàm số y = f(x) xác định trên \mathbb{R} và có bảng biến thiên như hình vẽ. Hàm số đồng biến trên Câu 3. khoảng nào?

A. $(-\infty;-1)$.

B. $(2; +\infty)$.

C. (-1;2).

D. (-2;4).

Lời giải

Dựa vào bảng biến thiên hàm số đồng biến trên khoảng (-1;2).

Câu 4. Cho $a > 0; a \ne 1$, tính $\log_a(4a^3)$.

A. $\frac{1}{3} - \log_a 4$. **B.** $3 - 2\log_a 2$. **C.** $\frac{1}{3} + \log_a 4$. **D.** $3 + 2\log_a 2$.

Lời giải

Chon D

Ta có $\log_a(4a^3) = \log_a(a^3) + \log_a(4) = 3 + \log_a(2^2) = 3 + 2\log_a(2)$.

Tìm họ nguyên hàm của hàm số $f(x) = e^{3x}$. Câu 5.