Specijalna teorija relativnosti (Vježbe 8)

Stefan Cikota

6. svibanj, 2021.

U trenutku kada svemirski brod brzinom v=0.6c prolazi pokraj satelita smještenog u blizini Marsa, sa satelita je poslan radio-signal prema Zemlji. Signal stiže na Zemlju nakon $t_1=1250$ s. Koliko traje put od Zemlje do satelita za posadu svemirskog broda?

Rješenje: t' = 1666 s

Odredi iznos količine gibanja elektrona kojemu je kinetička energija jednaka njegovoj energiji mirovanja!

Sustav S' giba se u odnosu na sustav S brzinom u = 0.9c u smjeru +x-osi. U početnom trenutku (t = 0) osi obaju sustava se poklapaju. U sustavu S' čestica ima komponente brzine v_x ' = 0.8c, v_y ' = 0.5c i v_z ' = 0. Izračunajte komponente vektora brzine čestice i iznos brzine u sustavu S.

Rješenje: v(x) = 0.9883 c

v(y) = 0.127 c

v(z) = 0 c

Štap duljine $I_0 = 5$ m miruje u sustavu S i nagnut je pod kutem od 30° prema horizontalnoj osi (x-os). Koliko dug štap i koji kut će vidjeti promatrač u sustavu S' koji se giba brzinom $V_x = c/2$ prema prvom sustavu?

Rješenje: 33° 41' 24.24"

Mirujuće tijelo mase M raspada se na dva tijela masa m_1 i m_2 . Odredite reletivističku kinetičku energiju T_1 i T_2 produkata raspada.

Rješenje:
$$T_1 = c^2 \frac{(M-m_1)^2 - m_2^2}{2M}$$
 $T_2 = c^2 \frac{(M-m_2)^2 - m_1^2}{2M}$