Àlgebra Commutativa Curs 2023-2024

Anells i ideals. 1

Ideals d'un anell

- 1. (Teorema xinès de les restes) Sigui R un anell i $I_1, \ldots, I_n \leq R$ ideals. Demostreu que si tots els I_i són dos a dos *comaximals* (és a dir, $I_i + I_j = R$ sempre que $i \neq j$), aleshores:
 - (i) $\bigcap_{i=1}^n I_i = I_1 \dots I_n$ (per inducció sobre $n \ge 2$).
 - (ii) $R/(I_1 \dots I_n) \cong (R/I_1) \times \dots \times (R/I_n)$.
- 2. Donat un enter $n \in \mathbb{N}$ descriu els elements invertibles, divisors de zero, nilpotents i idempotents $de \mathbb{Z}/(n)$.
- 3. Sigui $\varphi \colon R \to S$ un morfisme d'anells. Demostreu que prendre conjunt antiimatge φ^{-1} defineix una aplicació $\operatorname{Spec} S \to \operatorname{Spec} R$. És cert això per a Spec_m ?
- 4. Descriviu $\operatorname{Spec}(\mathbb{Z}), \operatorname{Spec}(\mathbb{R}), \operatorname{Spec}(\mathbb{R}[x]), \operatorname{Spec}(\mathbb{R}[x]), \operatorname{Spec}(\mathbb{Z}[x])$ i $\operatorname{Spec}(R_1 \times R_2)$ per a anells
- 5. Sigui R un DIP i P un ideal primer de R[x]. Demostreu que
 - (i) $P = \{0\}$, o $P = \{f\}$ per algun $f \in R[x]$ primer, o P és maximal.
 - (ii) Si P és maximal, aleshores o bé P=(f) per algun $f\in R[x]$ primer, o P=(p,g) amb $p \in R$ primer i \overline{g} primer a (R/(p))[x].
- 6. (Prime Avoidance Lemma): L'apartat (iii) mostra una propietat molt útil dels ideals primers que es coneix amb el nom que dona títol a l'exercici.
 - (i) Si K és un cos infinit, un K-espai vectorial V no es pot escriure com a unió de subespais propis.
 - (ii) Si R és un anell i I, J són ideals de R tals que $I \cup J$ també és un ideal, aleshores $I \subseteq J$ o bé $J \subseteq I$.
 - (iii) Siguin I, P_1, \dots, P_n ideals d'un anell R i suposem que $I \subseteq \bigcup_{i=1}^n P_i$. Vegeu que si R conté un cos infinit K, o com a molt dos P_i no són primers, aleshores $I \subseteq P_i$ per algun i.

Radical de Jacobson i radical primer

- 7. Donat $n \in \mathbb{N}$, considereu $R = \mathbb{Z}/(n)$ i calculeu el radical Jacobson i el radical primer J(R), N(R). Calculeu també els quocients R/J(R) i R/N(R).
- 8. Siguin I, J ideals d'un anell R. Demostreu que
 - (i) $I \subset \sqrt{I}$.
 - (ii) $\sqrt{IJ} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.

- (iii) $\sqrt{I} = R$ si i només si I = R.
- (iv) $\sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}$.
- (v) Si P és un ideal primer, aleshores $\sqrt{P^n} = P$ per a tot n > 0.
- 9. Sigui R un anell i R[x] l'anell de polinomis. Sigui $f = a_0 + a_1x + \cdots + a_nx^n \in R[x]$.
 - (i) Demostreu que f és invertible si i només si a_0 és invertible i a_1, \ldots, a_n són nilpotents.
 - (ii) Demostreu que f és nilpotent si i només si a_0, \ldots, a_n són nilpotents.
 - (iii) Demostreu que f és divisor de zero si i només si existeix $a \in R \setminus \{0\}$ tal que af = 0.
- 10. Donat un anell R, demostreu que J(R[x]) = N(R[x]) = N(R)[x].
- 11. Sigui R[[x]] l'anell de series formals amb coeficients a R que té com a elements $f = \sum_{i=0}^{\infty} a_i x^i$ amb $a_i \in R$ i la suma i el producte definits de forma usual.
 - (i) Demostreu que f és unitat si i només si a_0 és invertible.
 - (ii) Si f és nilpotent, aleshores tot a_i és nilpotent.
 - (iii) Si $f \in J(R[[x]])$ aleshores $a_0 \in J(R)$. Descriu J(R[[x]])
 - (iv) Si K és un cos, calcula J(K[[x]]) i N(K[[x]]).
- 12. Sigui R un anell de Boole ($x^2 = x$ per a tot $x \in R$). Determineu J(R) i N(R).
- 13. Demostreu que el conjunt d'ideals primers d'un anell té elements minimals respecte la inclusió. Deduïu que el nilradical és la intersecció dels ideal primers (minimals).

Localització d'anells

- 14. Sigui $R = R_1 \times R_2$ i $S = \{(1,1), (1,0)\}$. Determineu $S^{-1}R$.
- 15. Descriviu com son tots els anells R tal que $\mathbb{Z} \subseteq R \subseteq \mathbb{Q}$.
- 16. Sigui R un anell i S un subconjunt multiplicativament tancat. Demostreu que hi ha una correspondència bijectiva entre els ideals primers de $S^{-1}R$ i els ideals primers de R que no tallen S
- 17. Un subconjunt $S \subset R$ multiplicativament tancat es diu saturat si $xy \in S \Rightarrow x \in S, y \in S$. Demostreu que:
 - (i) S saturat $\Leftrightarrow R \setminus S$ és una unió d'ideals primers.
 - (ii) Per a tot $S \subset R$ multiplicativament tancat existeix un únic $\bar{S} \supset S$ saturat i multiplicativament tancat que és mínim amb aquesta propietat. A més, \bar{S} és el complement en R de la unió dels ideals primers que no tallen S. (Diem que \bar{S} és la saturació de S.)
 - (iii) Trobeu \bar{S} en el cas S = 1 + I, on I és un ideal de R.
- 18. Sigui R un anell i S un subconjunt multiplicativament tancat. Demostreu que $N(S^{-1}R) = S^{-1}N(R)$. És cert el mateix pel radical de Jacobson?
- 19. Recordeu que un anell es diu *reduït* si no té elements nilpotents no nuls. Demostreu que un anell R és reduït si i només si R_P és reduït per a tot ideal P primer.

L'espectre d'un anell

- 20. (La topologia de Zariski) Donat un anell R i un subconjunt $X \subset R$, definim $V(X) = \{P \in \operatorname{Spec}(R) \mid X \subseteq P\}$. Demostreu que:
 - (i) Si denotem per (X) l'ideal generat per X, llavors $V(X) = V((X)) = V(\sqrt{(X)})$.
 - (ii) $V(\{0\}) = \operatorname{Spec}(R), V(\{1\}) = \emptyset.$
 - (iii) Donats $(X_i)_{i \in I}$, tenim $V(\bigcup_{i \in I} X_i) = \bigcap_{i \in I} V(X_i)$.
 - (iv) Donats $X_1, X_2 \subseteq R$, tenim $V((X_1)) \cup V((X_2)) = V((X_1)(X_2)) = V((X_1) \cap (X_2))$.

Concloeu que els conjunts V(X) defineixen els tancats d'una topologia a $\operatorname{Spec}(R)$. Aquesta topologia s'anomena la topologia de Zariski.

- 21. Donat un espai X compacte i Hausdorff, denotem per C(X) l'anell de funcions contínues amb valors a \mathbb{R} amb les operacions naturals puntuals.
 - (i) Donat $x \in X$, demostreu que $\mathfrak{m}_x = \{ f \in C(X) \mid f(x) = 0 \}$ és un ideal maximal de C(X), i que si $x \neq y$ aleshores $\mathfrak{m}_x \neq \mathfrak{m}_y$.
 - (ii) Demostreu que si $\mathfrak{m} \leq C(X)$ és un ideal maximal, aleshores existeix $x \in X$ tal que $\mathfrak{m} = \mathfrak{m}_x$. (Podeu veure que tot ideal propi està contingut en algun m_x .)
 - (iii) Vegeu que l'aplicació $f: X \to \operatorname{Spec}_m(X)$ donada per $f(x) = \mathfrak{m}_x$ és un homeomorfisme (on $\operatorname{Spec}_m(R)$ té la topologia induïda de $\operatorname{Spec}(R)$).
 - (iv) (Gelfand Kolmogorov, 1936) Concloeu que $C(X) \cong C(Y)$ com a anells si i només si $X \cong Y$ com a espais topològics, i que a més, tot isomorfisme $T: C(Y) \to C(X)$ ve donat per $T(f) = f \circ h$ on $h: X \to Y$ és un homeomorfisme.
- 22. Intentem fer una versió més algebraica de l'exercici anterior.

Un subconjunt $X \subseteq K^n$ s'anomena una varietat algebraica afí si existeixen polinomis $f_1, \ldots, f_r \in K[x_1, \ldots, x_r] = R$ tals que $X = \{a = (a_1, \ldots, a_n) \in K^n \mid f_i(a) = 0 \text{ per } i = 1, \ldots, r\}.$

Donada una varietat afí $X \subseteq K^n$, es considera $I(X) = \{f \in K[x_1, \dots, x_n] \mid f(x) = 0 \text{ per a tot } x \in X\}$, que és un ideal de R. L'anell R/I(X) representa doncs les funcions polinòmiques definides sobre X, i s'anomena l'àlgebra afí de X.

- (i) Demostreu que $\mathfrak{m}_x := I(\{x\})$ és un ideal maximal de $K[x_1, \dots, x_n]$.
- (ii) La correspondència $X \to \operatorname{Spec}_m(R/I), x \to \mathfrak{m}_x$, és injectiva.
- (iii) Si K és algebraicament tancat és també exhaustiva.

Observació: El *Teorema de la base de Hilbert*, ens dirà que no perdem res al suposar el conjunt de polinomis f_1, \ldots, f_r finit. L'apartat (iii) és el que s'anomena *Teorema dels zeros de Hilbert* (versió dèbil), i ens diu que si el conjunt d'equacions polinòmiques f_1, \ldots, f_r no genera tot l'anell R, aleshores tenen algun zero comú. Perquè?