Introduction to R

Outline

- Processing Data in R
- Programming in R
- Graphical Analysis in R
- Statistical Analysis in R

Contingency Tables

- Basis for performing a statistical test on the independence of the factors used to build the table.
- table(sales\$gender)

Build an empty character vector

sales_group<-vector(mode="character", length= length(sales\$sales total))

Group the customers based upon sales amount

- sales_group[sales\$sales_total<100]<-"small"
- sales_group[sales\$sales_total>=100 & sales\$sales_total<500]<-"medium"
- sales_group[sales\$sales_total>500]<-"big"

#Create and add an ordered factor to sales data frame

- spender<-factor(sales_group, levels=c("small","medium","big"),ordered=TRUE)
- sales<-cbind(sales,spender)

Contingency Tables...

- str(sales\$spender)
- head(sales\$spender)

Build a continency table

- sales_table<-table(sales\$gender,sales\$spender)
- sales_table
- class(sales_table)
- typeof(sales_table)
- dim(sales_table)

Perform chi-squared test

summary(sales_table)

Number of cases in table: 10000 Number of factors: 2 Test for independence of all factors:

Chisq = 1.516, df = 2, p-value = 0.4686

Exploratory Data Analysis

Spotting Problems / Cleaning Dirty
Data

Summary()

- Typical Problems revealed:
 - Missing Values(NA)
 - How to address them? Drop / Zero / Convert/New category
 - Invalid values and outliers
 - Drop field/data point or convert
 - Data Range
 - Pretty wide / too narrow(relative)
 - Rule of thumb: (sd/mean) very small data isn't varying much
 - Units
 - Time minutes/ hours/days
 - Speed-Kms per sec / miles per hour

Visualization

- Single Variable
 - What is the peak value of the distribution?
 - How many peaks are there in the distribution (unimodality versus bimodality)?
 - How normal (or lognormal) is the data?
 - How much does the data vary? Is it concentrated in a certain interval or in a certain category?

Unimodal / Bimodal

Histogram

Data concentration; outliers; anamolies

Density Plot

plot(density(sales\$sales_total))
plot(density(log10(sales\$sales_total)))

density.default(x = log10(sales\$sales_total))

Bar Chart

- Histogram for discrete data
- barplot(table(sales\$spender))

A sample should enough customers from different categories

Visualization

- Two Variables
 - Is there a relationship between the two inputs in my data?
 - What kind of relationship, and how strong?
 - Is there a relationship between the input x and the output y? How strong?

Scatter plot - regression

uniform distribution

- > x<-runif(75,0,10)
- > x<-sort(x)
- \rightarrow y<-200+x^3-10*x^2+x+rnorm(75,0,20)
- plot(x,y)

Linear Regression

- \triangleright Ir<-Im(y \sim x)
- points(x,lr\$coefficients[1] + lr\$coefficients[2]* x, type="b",col=2)

Non-linear Regression

- poly<-loess(y~x)</p>
- fit<-predict(poly)</pre>
- points(x,fit, type="b", col=4)

Scatter plot – regression...

Scatter plot – regression...

 If the plot looks more like a cluster without a pattern, the corresponding variables may have a weak relationship

Example:

>x<-runif(75,0,10)

>y<-runif(75,0,20)

>plot(x,y)

Fixing Data Quality Problems

Data Cleaing

Missing Values: Categorical

```
load("exampleData.rData")
# NA common in three variables of 56 rows - drop?
summary(custdata[is.na(custdata$housing.type),
  c("recent.move","num.vehicles")])
#NA in 1/3 rd of rows
summary(custdata$is.employed)
# Create a new category called Missing
custdata$is.employed.fix <- ifelse(is.na(custdata$is.employed),
                    "missing",
                    ifelse(custdata$is.employed==T,
                        "employed",
                         "not employed"))
summary(as.factor(custdata$is.employed.fix))
```

Missing Data: Numerical

- summary(custdata\$Income)
- #Find mean by removing na rows
- meanIncome <- mean(custdata\$Income, na.rm=T)
- #Replace na by mean of Income
- custdata\$Income.fix < ifelse(is.na(custdata\$Income),
 meanIncome,
 custdata\$Income)
- summary(custdata\$Income.fix)
- Alternate Options: Categorize the attribute; Put 0

Transformation: Continuous to Discrete

#Binary: Income Less than 20000 or not?

- custdata\$income.lt.20K <- custdata\$income < 20000
- summary(custdata\$income.lt.20K)

Multiple Categories: age

- brks <- c(0, 25, 65, Inf)
- custdata\$age.range <- cut(custdata\$age,
 breaks=brks, include.lowest=T)
- summary(custdata\$age.range)

Transformation: Normalization and Rescaling

- summary(custdata\$age)
- meanage <- mean(custdata\$age)</p>
- custdata\$age.normalized <- custdata\$age/meanage</p>

summary(custdata\$age.normalized)

Transformation: Sampling

- # Add a sample group column to data set(no. generated uniformly between 0 and 1
- custdata\$gp <- runif(dim(custdata)[1])</pre>
- # Test and Training Set
- > testSet <- subset(custdata, custdata\$gp <= 0.1)
- trainingSet <- subset(custdata, custdata\$gp > 0.1)
- dim(testSet)[1]
- dim(trainingSet)[1]