61

		SEO	UENCE LISTING									
(1)	CENERA	L INFORMATION:	OBNOB BIBLING									
(- /	(i)	APPLICANTS:	Aaron Kaplan et al.									
	(ii)		ENHANCING INORGANIC CARBON FIXATION BY									
	(11)	TITLE OF INVENTION.	PHOTOSYNTHETIC ORGANISMS									
	(::::)	NUMBER OF CECUENCES.	9									
		NUMBER OF SEQUENCES:	9									
	(iv)	CORRESPONDENCE ADDRESS:										
		(A) ADDRESSEE:	Mark M. Friedman c/o Anthony Castorina									
		(B) STREET:	2001 Jefferson Davis Highway, Suite 207									
		(C) CITY:	Arlington									
		(D) STATE:	Virginia									
		(E) COUNTRY:	United States of America									
	, ,	(F) ZIP: 22202										
	(v)	COMPUTER READABLE FORM:										
		(A) MEDIUM TYPE:	1.44 megabyte, 3.5" microdisk									
		(B) COMPUTER:	Twinhead Slimnote-890TX									
		(C) OPERATING SYSTEM:										
			Windows version 3.11									
		(D) SOFTWARE:	Word for Windows version 2.0 converted to									
	/ : >	OUDDING ADDITIONAL DAMA	an ASCI file									
	(vi)	CURRENT APPLICATION DATA:										
		(A) APPLICATION NUMBER	K:									
		(B) FILING DATE:										
	,	(C) CLASSIFICATION:										
	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER	D.									
		(B) FILING DATE:										
	(171111)	ATTORNEY/AGENT INFORMATIO	N. •									
	(4 7 7 7)	(A) NAME:	Friedmam, Mark M.									
		(B) REGISTRATION NUMBI	·									
		(C) REFERENCE/DOCKET I	·									
	(ix)	TELECOMMUNICATION INFORMA										
		(A) TELEPHONE:	972-3-5625553									
		(B) TELEFAX:	972-3-5625554									
		(C) TELEX:										
(2)	INFORM	MATION FOR SEQ ID NO:1:										
	(i)	SEQUENCE CHARACTERISTICS:										
		(A) LENGTH: 499	57									
		(B) TYPE: nuc	cleic acid									
		(C) STRANDEDNESS: do:	uble									
		(D) TOPOLOGY: lin	near									
	(xi)	SEQUENCE DESCRIPTION: SEG	Q ID NO:1:									
AAGCTT	GGAT TG	AAGCGATC GGGGTCAATC CCAGCGA	TGA TCCTCAGTTC 50									
CTCCTG	ATGG TC	GATCCCTT TAGCGCCAAG ATTGAGG	ATC TGCTGCAAGG 100									
GCTGGA	TTTC GC	CTATCCCG AGGCCGTGAA AGTGGGC	GGA TTGGCCAGTG 150									
GTTTGG	GGGC AG	AGTCAGCG ATCGCCAGCT TGTTTTT	TCA AGACCGACAG 200									
		ATTGGGCT AGCCCTCAGT GGCAATG										
		GGGCTGTC GTCCAGTTGG CCCGCTT										
		ACATTCTG CGGCAACTTC AGACCGA										
		CAAGCCCT ACAGTCAGTC CTGCGTG										
		GCTCTGTG TGGGCCTGGC CTGCAAT										
		GCGACTTC CTGATCCGTA ACCTGCT										
		GTAGCAAT CGGCGATCGC ATTCGAG										
		ACGGGATG CCCAGACAGC GGCGGAT										
AACTGG	GGCA AT	GGTGCCGG CAGCATGCGA CAAAACC	AGC AGCTTCCCTC 650									

TTGTTTTCCT GCTTGGGGCG CGGCAAGCCC TTCTATCAGC AGGCCAACTT 700

			62		
CGAGTCGCAA	CTGATTCAGC	ATTACCTCTC	AGAGCTGCCC	CTAGCTGGCT	750
TTTTCTGTAA	TGGCGAAATC	GGCCCGATCG	CTGGCAGCAC	CTACCTGCAT	800
GGCTACACAT	CGGTGCTGGC	TTTGCTGTCG	GCCAAAACTC	ACTAGCGCCA	850
GCGAGACCTG	ATTGTCGATC	TGCTGAGCGC	GACTGTAGCG	CTGGAAATAG	900
GCCCGGACCT	GAGCAGGCGC	ATCGGCCAAG	CTGACCGTAG	TATCACCGTC	950
AGCCACCCC	GCCCAGAAAT	TCCGCAACAT	CGGCAGGAGA	GCGATCGCCT	1000
CCGCCTCCGA	TAAATTCAAC	GGCTCATGGG	TCAACAGGCG	GATCAAGTAC	1050
TCTGACTGCG	ATCGCCATCC	ATTCCCGCCG	AAAACGTTTG	TAAATCAGTC	1100
TTGATCCGGT	AGCGATCGCA	CCCGACGGGA	CTCTAGTTCT	AGTTGCCAAC	1150
CTTCAGCGGC	AGGTTGTACG	GTTCCGAGTC	GGTAGGGATG	GGGATAGCTG	1200
ACCAAGGAAC	CGGTCGTGAC	TTCCCAGAGA	GCACCTTGCT	GACTGGTGGC	1250
TTGGATGTGG	AGGTGGCCTG	TGAAGATCAC	CGAGACGCTG	CCCGCTTCGA	1300
GGATTGATCG	CAATTCCTCG	GCATTTTCTA	AGATGTAGCG	CTGACCAAGC	1350
GGATGCTGCT	GTTGATCGGG	CAGATGCTCC	AACACATTGT	GGTGAATCAT	1400
CACCCAGCGT	TGGCTAGCGG	TGGAAGTGGC	GAGTTCTTGT	TGCAGCCAGT	1450
TGAGTTGCGC	GCAATCGACT	CGCCCCGAT	GCAGTTGATG	GCCCGCTTCA	1500
TCAAAAGCGA	TCGAATTCAG	CGCAAACAGA	TCGAGATCCG	GTGCGATCGT	1550
GCAGCGATAG	TAGGGGCGAT	CGCTCGTGAA	GCCAAAGTCT	TGATAGAGCT	1600
CGACAAACTC	GGCCACACCG	GTGCGATCGC	GATCGCTCGC	TGCGGCGGGC	1650
ATATCGTGGT	TGCCCGGCAC	CACATAGACC	GGATAGGGCA	ACTGGCGCAA	1700
TTGTTGCAGC	AGCCACTGAT	GGTTTTCCCG	CTCCCCGTGC	TGGGTTAAAT	1750
CCCCGGCAG	CAACAGGAAG	TCCAAATCCA	GCGCTGCCAG	TTCTGTCAGG	1800
ATTTGCTCAA	AAGCCGGAAT	GCTGCACTCA	ATCAAATGGA	AGCGATGGGG	1850
ATGGTGCCAA	ATTGTCTGCG	GCAGTCCAAT	GTGGAGATCG	CTCAGCAGCG	1900
CAAATCGAAA	CGCTCGGTTC	ATTGCCATCC	CCTCAGCTAT	CGAGCCCGAT	1950
TCTAGGCGAA	GCTAGGTCGA	GTCCGTTGTC	TTCAGTTGCA	AGCATTCATG	2000
GCCAGAGTTC	GCGTTCGGCA	GCACGTCAAT	CCGCTCTCTC	AGAAATTCCA	2050
AGTGGTCACG	ACTTGGCCGG	ATTGGCAACA	GGTCTATGCG	GACTGCGATC	2100
GCCCGCTGCA	TTTGGATATT	GGCTGTGCTC	GCGGGCGCTT	TCTGCTGGCA	2150
ATGGCGACAC	GACAACCTGA	GTGGAATTAT	CTGGGGCTGG	AAATTCGTGA	2200
GCCGCTGGTA	GATGAGGCGA	ACGCGATCGC	CCGCGAACGT	GAACTGACCA	2250
ATCTCTACTA	CCACTTCAGC	AACGCCAATT	TGGACTTGGA	ACCGCTGCTG	2300
CGATCGCTGC	CGACAGGGAT	TTTGCAGCGG	GTCAGCATTC	AGTTCCCGGA	2350
TCCTTGGTTC	AAGAAACGCC	ATCAAAAGCG	ACGCGTCGTC	CAGCCGGAAC	2400
TGGTGCAAGC	CCTCGCGACT	GCGTTACCTG	CTGGTGCAGA	${\tt GGTCTTTCTG}$	2450
CAATCCGATG	TGCTGGAAGT	GCAGGCAGAG	ATGTGCGAAC	ACTTTGCGGC	2500
GGAACCCCGC	TTTCAGCGCA	CCTGCTTGGA	CTGGCTGCCG	GAAAATCCGC	2550
TGCCCGTCCC	GACCGAGCGC	GAAATTGCCG	TTCAAAACAA	ACAGTTGCCA	2600
GTCTACCGTG	CTCTCTTCAT	TCGGCAGCCA	GCGGACTAAG	CTCTTAAGGC	2650
AAGCGTTGAC	GCGATCGCGA	TGACTGTCTG	GCAAACTCTG	ACTTTTGCCC	2700
ATTACCAACC	CCAACAGTGG	GGCCACAGCA	GTTTCTTGCA	TCGGCTGTTT	2750
GGCAGCCTGC	GAGCTTGGCG	GGCCTCCAGC	CAGCTGTTGG	TTTGGTCTGA	2800
GGCACTGGGT	GGCTTCTTGC	TTGCTGTCGT	CTACGGTTCG	GCTCCGTTTG	2850
TGCCCAGTTC	CGCCCTAGGG	TTGGGGCTAG	CCGCGATCGC	GGCCTATTGG	2900
GCCCTGCTCT	CGCTGACAGA	TATCGATCTG	CGGCAAGCAA	CCCCCATTCA	2950
CTGGCTGGTG	CTGCTCTACT	GGGGCGTCGA	TGCCCTAGCA	ACGGGACTCT	3000
CACCCGTACG	CGCTGCAGCT	TTAGTTGGGC	TAGCCAAACT	GACGCTCTAC	3050
CTGTTGGTTT	TTGCCCTAGC	GGCTCGGGTT	CTCCGCAATC	CCCGTCTGCG	3100
	TTCTCGGTCG				
	CCAATGGATC				
	CGGTTGCCGA				
	CTGCTGGCTG				
	CGGGGTGTGG				
	GTGCGAGCAG				
	GGTTTTGTCG				
	TCAACCCCGT				
CCAGTCGTAT	TGGGTGGACT	AGTCGCGGTG	CTCTTGGTGG	CGGTGCTTGG	3550

```
ACTTGAGCCG TTGCGCGTGC GCGTGTTGAG CATCTTTGTG GGGCGTGAAG 3600
ACAGCAGCAA CAACTTCCGG ATCAATGTCT GGCTGGCGGT GCTGCAGATG 3650
ATTCAAGATC GGCCTTGGCT GGGCATCGGC CCCGGCAATA CCGCCTTTAA 3700
CCTGGTTTAT CCCCTCTATC AACAGGCGCG CTTTACGGCG TTGAGCGCCT 3750
ACTCCGTCCC GCTGGAAGTC GCGGTTGAGG GCGGACTACT GGGCTTGACG 3800
GCCTTCGCTT GGCTGCTGCT GGTCACGGCG GTGACGGCGG TGCGGCAGGT 3850
GAGCCGACTG CGGCGCGATC GCAATCCCCA AGCCTTTTGG TTGATGGCTA 3900
GCTTGGCCGG TTTGGCAGGA ATGCTGGGTC ACGGTCTGTT TGATACCGTG 3950
CTCTATCGAC CGGAAGCCAG TACGCTCTGG TGGCTCTGTA TTGGAGCGAT 4000
CGCGAGTTTC TGGCAGCCCC AACCTTCCAA GCAACTCCCT CCAGAAGCCG 4050
AGCATTCAGA CGAAAAAATG TAGCGGGCTC CCCAACAAAT TCCTGTGCAC 4100
CCGACTGGAT CCACCACCTA AACTGGATCC CAAAGGTATC CGGTGGATCT 4150
AGGGTCATAA CGAACTCCGA CCGCGATCGC GTCCGCGAAC TGAACCTCCA 4200
TCGCACCGAA GCGGAGTTCG TTAGTCGTTG AAGAGCCAAT GCTAGAGGGG 4250
GCTGCCGAAG CAGTTGGGCT GGAAGCAGGC TGCGAGAAGC CACCCGCATC 4300
CAAGGCAAAG TTCAGCCGAC CTTCCGCAAA GACTACGATC GCCACGGCGG 4350
CTCTGCCAGC TAAGTCAGCG CTGGGTTAGT TGTCATAGCA GTCCGCAGAC 4400
AAGTTAGGAC AACTTCATAG AGGGACTCGC TCAGAGTCAA CAGCCGCTGT 4450
CCGTGGGGGT GCGCAATCAC CCCCACACCC ACGCACTGGG GGACTCGACT 4500
CCCCCAGGCC CCCCGCAACA AGATTTCGGA TAAGGGGCAT CGGCTGAATC 4550
GCGATCGCTG CGGGTAAAAC TAGCCGGTGT TAGCCATGGG TTTGAGACTA 4600
ATCGGCACGG GGCAAAACGT CCTGATTTAT TTGCTCAATG TGATAGGTTA 4650
CATCGTCAAA AACAAGGCCC AAGAGGTAGG AAAAATCACG ACCGCCCAAG 4700
TCCGAGGGCT TTGCTGTTGG GAGCGACCTA GGGCAGACTA GACAGAGCAT 4750
TGCTGTGAGC CAAAGCGCCT TCAATTGCTG GCGGCTGTGG GTTTTTCGGA 4800
GGTTGCCAAA TGAAAGACCT TTTCGTCAAT GTCCTCCGCT ATCCCCGCTA 4850
CTTCATCACC TTCCAGCTGG GTATTTTTTA GTCGATCTAC CAGTGGGTGC 4900
 GGCCGATGGT TCGCAACCCA GTCGCGGCTT GGGCGCTGCT AGGCTTTGGA 4950
 GTTTCGA
```

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1404

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ATGACTGTCT GGCAAACTCT GACTTTTGCC CATTACCAAC CCCAACAGTG GGGCCACAGC AGTTTCTTGC ATCGGCTGTT TGGCAGCCTG CGAGCTTGGC 100 GGGCCTCCAG CCAGCTGTTG GTTTGGTCTG AGGCACTGGG TGGCTTCTTG CTTGCTGTCG TCTACGGTTC GGCTCCGTTT GTGCCCAGTT CCGCCCTAGG 200 GTTGGGGCTA GCCGCGATCG CGGCCTATTG GGCCCTGCTC TCGCTGACAG 250 ATATCGATCT GCGGCAAGCA ACCCCCATTC ACTGGCTGGT GCTGCTCTAC 300 TGGGGCGTCG ATGCCCTAGC AACGGGACTC TCACCCGTAC GCGCTGCAGC 350 TTTAGTTGGG CTAGCCAAAC TGACGCTCTA CCTGTTGGTT TTTGCCCTAG 400 CGGCTCGGGT TCTCCGCAAT CCCCGTCTGC GATCGCTGCT GTTCTCGGTC 450 GTCGTGATCA CATCGCTTTT TGTCAGTGTC TACGGCCTCA ACCAATGGAT CTACGGCGTT GAAGAGCTGG CGACTTGGGT GGATCGCAAC TCGGTTGCCG 550 ACTTCACCTC ACGGGTTTAC AGCTATCTGG GCAACCCCAA CCTGCTGGCT 600 GCTTATCTGG TGCCGACGAC TGCCTTTTCT GCAGCAGCGA TCGGGGTGTG 650 GCGCGGCTGG CTCCCCAAGC TGCTGGCGAT CGCTGCGACA GGTGCGAGCA 700 GCTTATGTCT GATCCTCACC TACAGTCGCG GTGGCTGGCT GGGTTTTGTC 750 GCCATGATTT TTGTCTGGGC GTTATTAGGG CTCTACTGGT TTCAACCCCG 800 TCTACCCGCA CCCTGGCGAC GCTGGCTATT CCCAGTCGTA TTGGGTGGAC 850 TAGTCGCGGT GCTCTTGGTG GCGGTGCTTG GACTTGAGCC GTTGCGCGTG CGCGTGTTGA GCATCTTTGT GGGGCGTGAA GACAGCAGCA ACAACTTCCG 950 GATCAATGTC TGGCTGGCGG TGCTGCAGAT GATTCAAGAT CGGCCTTGGC 1000 TGGGCATCGG CCCCGGCAAT ACCGCCTTTA ACCTGGTTTA TCCCCTCTAT 1050 CAACAGGCGC GCTTTACGGC GTTGAGCGCC TACTCCGTCC CGCTGGAAGT 1100 CGCGGTTGAG GGCGGACTAC TGGGCTTGAC GGCCTTCGCT TGGCTGCTGC 1150 TGGTCACGGC GGTGACGGCG GTGCGGCAGG TGAGCCGACT GCGGCGCGAT 1200 CGCAATCCCC AAGCCTTTTG GTTGATGGCT AGCTTGGCCG GTTTGGCAGG 1250 AATGCTGGGT CACGGTCTGT TTGATACCGT GCTCTATCGA CCGGAAGCCA 1300 GTACGCTCTG GTGGCTCTGT ATTGGAGCGA TCGCGAGTTT CTGGCAGCCC 1350 CAACCTTCCA AGCAACTCCC TCCAGAAGCC GAGCATTCAG ACGAAAAAAT 1400 1404 GTAG

(2) INFORMATION FOR SEQ ID NO:3:

- SEQUENCE CHARACTERISTICS: (i)
 - (A) LENGTH: 467
 - (B) TYPE:
- amino acid
 - (C) STRANDEDNESS: single
 - TOPOLOGY: linear (D)
- SEQUENCE DESCRIPTION: SEQ ID NO:3: (xi)

Met	Thr	Val	Trp	Gln	${\tt Thr}$	Leu	Thr	Phe	Ala	His	Tyr	Gln	Pro	Gln
				5					10					15
		_		_	_		-	***	70	T	Dha	C1 **	Cor	T 011

Gln Trp Gly His Ser Ser Phe Leu His Arg Leu Phe Gly Ser Leu 25 20

Arg Ala Trp Arg Ala Ser Ser Gln Leu Leu Val Trp Ser Glu Ala 35 40

Leu Gly Gly Phe Leu Leu Ala Val Val Tyr Gly Ser Ala Pro Phe 55 50

Val Pro Ser Ser Ala Leu Gly Leu Gly Leu Ala Ala Ile Ala Ala 70 65

Tyr Trp Ala Leu Leu Ser Leu Thr Asp Ile Asp Leu Arg Gln Ala 85 80

Thr Pro Ile His Trp Leu Val Leu Leu Tyr Trp Gly Val Asp Ala 100 95

Leu Ala Thr Gly Leu Ser Pro Val Arg Ala Ala Ala Leu Val Gly 110 115

Leu Ala Lys Leu Thr Leu Tyr Leu Leu Val Phe Ala Leu Ala Ala

130 125 Arg Val Leu Arg Asn Pro Arg Leu Arg Ser Leu Leu Phe Ser Val

140 145

Val Val Ile Thr Ser Leu Phe Val Ser Val Tyr Gly Leu Asn Gln 160 155

Trp Ile Tyr Gly Val Glu Glu Leu Ala Thr Trp Val Asp Arg Asn 170 175

Ser Val Ala Asp Phe Thr Ser Arg Val Tyr Ser Tyr Leu Gly Asn

190 185

Pro Asn Leu Leu Ala Ala Tyr Leu Val Pro Thr Thr Ala Phe Ser 200 205

Ala Ala Ala Ile Gly Val Trp Arg Gly Trp Leu Pro Lys Leu Leu

220 215

Ala Ile Ala Ala Thr Gly Ala Ser Ser Leu Cys Leu Ile Leu Thr 235 230

Tyr Ser Arg Gly Gly Trp Leu Gly Phe Val Ala Met Ile Phe Val 250

245 Trp Ala Leu Leu Gly Leu Tyr Trp Phe Gln Pro Arg Leu Pro Ala

265 260

Pro Trp Arg Arg Trp Leu Phe Pro Val Val Leu Gly Gly Leu Val 280 275

Ala Val Leu Leu Val Ala Val Leu Gly Leu Glu Pro Leu Arg Val 295 290

```
Arg Val Leu Ser Ile Phe Val Gly Arg Glu Asp Ser Ser Asn Asn
             305 310
Phe Arg Ile Asn Val Trp Leu Ala Val Leu Gln Met Ile Gln Asp
                  325
             320
Arg Pro Trp Leu Gly Ile Gly Pro Gly Asn Thr Ala Phe Asn Leu
                               340
              335
Val Tyr Pro Leu Tyr Gln Gln Ala Arg Phe Thr Ala Leu Ser Ala
            350 355
Tyr Ser Val Pro Leu Glu Val Ala Val Glu Gly Gly Leu Leu Gly
                              370
             365
Leu Thr Ala Phe Ala Trp Leu Leu Leu Val Thr Ala Val Thr Ala
             380
                             385
Val Arg Gln Val Ser Arg Leu Arg Arg Asp Arg Asn Pro Gln Ala
             395 400
Phe Trp Leu Met Ala Ser Leu Ala Gly Leu Ala Gly Met Leu Gly
                       415
             410
His Gly Leu Phe Asp Thr Val Leu Tyr Arg Pro Glu Ala Ser Thr
              425
                             430
Leu Trp Trp Leu Cys Ile Gly Ala Ile Ala Ser Phe Trp Gln Pro
              440
                               445
Gln Pro Ser Lys Gln Leu Pro Pro Glu Ala Glu His Ser Asp Glu
              455
                             460
                                                 465
Lys Met
```

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1425

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

ATGGTGTCTC CCATCTCTAT CTGGCGATCG CTGATGTTTG GCGGTTTTTC CCCCCAGGAA TGGGGCCGGG GCAGTGTGCT CCATCGTTTG GTGGGCTGGG 100 GACAGAGTTG GATACAGGCT AGTGTGCTCT GGCCCCACTT CGAGGCATTG 150 GGTACGGCTC TAGTGGCAAT AATTTTTATT GCGGCTCCCT TCACCTCCAC 200 CACCATGTTG GGCATTTTTA TGCTGCTCTG TGGAGCCTTT TGGGCTCTGC 250 TGACCTTTGC TGATCAACCA GGGAAGGGTT TGACTCCCAT CCATGTTTTA 300 GTTTTTGCCT ACTGGTGCAT TTCGGCGATC GCCGTGGGAT TTTCTCCGGT AAAAATGGCG GCGGCGTCGG GGTTAGCGAA ATTAACAGCT AATTTATGTC 400 TGTTTCTACT GGCGGCGAGG TTATTGCAAA ACAAACAATG GTTGAACCGG 450 TTAGTAACCG TTGTTTTACT GGTAGGGCTA TTGGTGGGGA GTTACGGTCT 500 GCGACAACAG GTGGACGGGG TAGAACAGTT AGCCACTTGG AATGACCCCA 550 CCTCTACCTT GGCCCAGGCC ACTAGGGTAT ATAGCTTTTT AGGTAATCCC 600 AATCTCTTGG CGGCTTACCT GGTGCCCATG ACGGGTTTGA GCTTGAGTGC 650 CCTGGTGGTA TGGCGACGGT GGTGGCCCAA ACTGCTGGGA GCAACCATGG 700 TGATTGTTAA CCTACTCTGT CTCTTTTTTA CCCAGAGCCG GGGCGGTTGG 750 CTAGCAGTGC TGGCCCTGGG AGCTACCTTC CTGGCCCTTT GTTACTTCTG 800 GTGGTTACCC CAATTACCCA AATTTTGGCA ACGGTGGTCT TTGCCCCTGG 850 CGATCGCCGT GGCGGTTATA TTAGGTGGGG GAGCGTTGAT TGCGGTGGAA 900 CCGATTCGAC TCAGGGCCAT GAGCATTTTT GCTGGGCGGG AAGACAGCAG 950 TAATAATTTC CGCATCAATG TTTGGGAAGG GGTAAAAGCC ATGATCCGAG 1000 CCCGCCCTAT CATTGGCATT GGCCCAGGTA ACGAAGCCTT TAACCAAATT 1050 TATCCTTACT ATATGCGGCC CCGCTTCACC GCCCTGAGTG CCTATTCCAT 1100 TTACCTAGAA ATTTTGGTGG AAACGGGTGT AGTTGGTTTT ACCTGTATGC 1150 TCTGGCTGTT GGCCGTTACC CTAGGCAAAG GCGTAGAACT GGTTAAACGC 1200 TGTCGCCAAA CCCTCGCCCC GGAAGGCATC TGGATTATGG GGGCTTTAGC 1250 GGCGATCATC GGTTTGTTGG TCCACGGCAT GGTAGATACA GTCTGGTACC 1300

GTCCCCCGGT GAGCACTTTG TGGTGGTTGC TAGTGGCCAT TGTTGCTAGT 1350 CAGTGGGCCA GCGCCAGGC CCGTTTGGAG GCCAGTAAAG AAGAAAATGA 1400 GGACAAACCT CTTCTTGCTT CATAA 1425

GONCHARCCI CITCITOCII CATALL														
(2) INFORMATION FOR SEQ ID NO:5:														
(2)	(i) SEQUENCE CHARACTERISTICS:													
		(A) LENGTH: 474												
				B)		YPE:			ami	ino a	acid			
	(C) STRANDEDNESS									ngle				
				D)		OPOL			lir	near				
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:													
Met									Ser				Gly	Gly
1100		501		5			•	_	10					15
Phe	Ser	Pro	Gln		Trp	Glv	Arg	Gly	Ser	Val	Leu	His	Arg	Leu
				20	-	-			25					30
Val	Gly	Trp	Gly	Gln	Ser	Trp	Ile	Gln	Ala	Ser	Val	Leu	Trp	Pro
	-	•	-	35		-			40					45
His	Phe	Glu	Ala	Leu	Gly	Thr	Ala	Leu	Val	Ala	Ile	Ile	Phe	Ile
				50					55					60
Ala	Ala	Pro	Phe	Thr	Ser	Thr	Thr	Met	Leu	Gly	Ile	Phe	Met	Leu
				65					70					75
Leu	Cys	Gly	Ala	Phe	Trp	Ala	Leu	Leu	Thr	Phe	Ala	Asp	Gln	Pro
				80					85					90
Gly	Lys	Gly	Leu	Thr	Pro	Ile	His	Val	Leu	Val	Phe	Ala	Tyr	Trp
				95					100					105
Cys	Ile	Ser	Ala	Ile	Ala	Val	Gly	Phe	Ser	Pro	Val	Lys	Met	Ala
				110					115					120
Ala	Ala	Ser	Gly	Leu	Ala	Lys	Leu	Thr	Ala	Asn	Leu	Cys	Leu	Phe
				125					130					135
Leu	Leu	Ala	Ala	Arg	Leu	Leu	Gln	Asn	Lys	Gln	Trp	Leu	Asn	Arg
				140					145					150
Leu	Val	Thr	Val	Val	Leu	Leu	Val	Gly	Leu	Leu	Val	Gly	Ser	
				155					160					165
Gly	Leu	Arg	Gln	Gln	Val	Asp	Gly	Val	Glu	Gln	Leu	Ala	Thr	
				170					175					180
Asn	Asp	Pro	Thr		Thr	Leu	Ala	Gln	Ala	Thr	Arg	Val	Tyr	
				185		_	_		190	_	-	** . 7	D	195
Phe	Leu	Gly	Asn		Asn	Leu	Leu	Ala	Ala	Tyr	ьeu	vaı	Pro	
	~ ~	_	_	200			T	*** 1	205	FF 2020	71 20 00	7 ~~	m.v.o	210
Thr	GTĀ	Leu	ser		Ser	Ата	ьeu	vai	Val 220	ττb	AIG	Arg	ттр	225
_	.		Ŧ	215	77-	mb so	Mot	77 - 7		17 n 1	7 cn	T 022	Lou	
Pro	ьys	Leu	Leu			THE	Met	vaı	11e 235	val	ASII	пеа	пец	240
T 0.11	Dho	Dho	mb v	230		7 ra	Cl u	- Gl v	Trp	T.e.11	ΔΊρ	Val	T.e.17	
Leu	Pne	Pile	1111	245		ALG	GIY	Gry	250	пси	HIG	vai	БСС	255
T.013	G1 v	. Als	Thr			Δla	Len	Cvs	Tyr	Phe	Trp	Trp	Leu	
пец	Gry	nia	. 1111	260		71114		0,10	265					270
Gl n	T.e.ii	Pro	1.VS			Gln	Ara	Tro	Ser	Leu	Pro	Leu	Ala	
0111	eu		د ړ د	275		J.11	9	P	280					285
Ala	۷al	Ala	. Val			Glv	Glv	Glv		Leu	Ile	Ala	Val	Glu
				290		1	1	- 1	295					300
Pro	Ile	Arc	, Leu			Met	Ser	Ile	Phe	Ala	Gly	Arg	Glu	Asp
_		-		305					310			_		315
Ser	Ser	Asr	ı Asr	Phe	. Arg	Ile	Asn	val	. Trp	Glu	Gly	Val	Lys	Ala
				320					325					330

Met Ile Arg Ala Arg Pro Ile Ile Gly Ile Gly Pro Gly Asn Glu

335

340

```
Ala Phe Asn Gln Ile Tyr Pro Tyr Tyr Met Arg Pro Arg Phe Thr
                 355
             350
Ala Leu Ser Ala Tyr Ser Ile Tyr Leu Glu Ile Leu Val Glu Thr
             365
                 370 375
Gly Val Val Gly Phe Thr Cys Met Leu Trp Leu Leu Ala Val Thr
                 385
             380
Leu Gly Lys Gly Val Glu Leu Val Lys Arg Cys Arg Gln Thr Leu
            395
                   400
Ala Pro Glu Gly Ile Trp Ile Met Gly Ala Leu Ala Ala Ile Ile
                 415
            410
Gly Leu Leu Val His Gly Met Val Asp Thr Val Trp Tyr Arg Pro
             425
                             430
Pro Val Ser Thr Leu Trp Trp Leu Leu Val Ala Ile Val Ala Ser
                 445
Gln Trp Ala Ser Ala Gln Ala Arg Leu Glu Ala Ser Lys Glu Glu
                  460
             455
Asn Glu Asp Lys Pro Leu Leu Ala Ser
             470
```

INFORMATION FOR SEQ ID NO:6:

- SEQUENCE CHARACTERISTICS:
 - LENGTH: 31 (A)

(B) TYPE: nucleic acid

STRANDEDNESS: double (C)

TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GGGCTAGCCG CGATCGCGGC CTATTGGGCC C 31

(D)

- INFORMATION FOR SEQ ID NO:7: (2)
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH:

TYPE: (B)

nucleic acid

(C) STRANDEDNESS: double

TOPOLOGY: linear

SEQUENCE DESCRIPTION: SEQ ID NO:7: (xi)

GGGCTAGGGA TCGCGCCTAT TGGGCCC 27

(D)

- INFORMATION FOR SEQ ID NO:8: (2)
 - SEQUENCE CHARACTERISTICS: (i)

(A) LENGTH: 26

TYPE:

nucleic acid

STRANDEDNESS: double (C)

TOPOLOGY: linear

SEQUENCE DESCRIPTION: SEQ ID NO:8:

GGGCTCAGAT CGCGCCTATT GGGCCC 26

(D)

- INFORMATION FOR SEQ ID NO:9: (2)
 - SEQUENCE CHARACTERISTICS:

LENGTH: 11

(B) TYPE: amino acid

STRANDEDNESS: single (C)

(D) TOPOLOGY: linear

Gly Leu Ala Ala Ile Ala Ala Tyr Trp Ala Leu

5

SEQUENCE DESCRIPTION: SEQ ID NO:9: