SAS® GLOBAL FORUM 2016

IMAGINE. CREATE. INNOVATE.

SAS® ANALYTICS LENS ON DEBT COLLECTION

Karush Jaggi, Thomas Waldschmidt, Dr. Goutam Chakraborty

INTRODUCTION TO DEBT COLLECTION

In 2013, collection agencies recovered approximately \$55.2 billion in total debt.

The recovered \$55 billion is actually only

about a third of the total outstanding debt!

The collection of consumer debt also provides a valuable benefit to American households by returning an average savings of \$479 per household and keeping the costs of goods and services lower.

<u>DATA</u>

FICO

LexisNexis®

THE PROCESS

PREDICTIVE MODELS

Getting in to the analytics side of this, a desired analytics process is one that will equip the collections agency with insights into basic questions like "What are the chances this customer will pay?", "When is the right time to collect from this customer?", "How much should be collected from this customer?" etc. With this in mind, aim of predictive models here is to help us identify factors playing an important role in maximizing collections and how we can capitalize on them. A few of the industry standard models that are usually used in tandem today are shown >>

Probability of Payment? Predicting Collections First Payment Month?

VISUALIZING PROBABILITY OF PAYMENT

SAS® ANALYTICS LENS ON DEBT COLLECTION

Karush Jaggi, Thomas Waldschmidt, Dr. Goutam Chakraborty

/*NOTES*/

SAS CODE: Dates to Days

```
DAYS_SINCE_DELINQUENT =
INTCK
("DAYS", DATEPART(DELINQUENCY_DATE), DATEPART(CHARGEOFF_DATE))
+ 1;
```

SAS® Enterprise Miner™ Workflow Sample

Jse Frozen Tree	No
Use Multiple Targets	No
Precision	4
Splitting Rule	
Interval Criterion	ProbF
Nominal Criterion	ProbChisq
Ordinal Criterion	Entropy
Significance Level	0.2
Missing Values	Use in search
Jse Input Once	No
Maximum Branch	2
Maximum Depth	15
Minimum Categorical Size	5
Split Precision	4
Node	
Leaf Size	5
Number of Rules	5
Number of Surrogate Rules	0
Split Size	
Split Search	
Use Decisions	No
Use Priors	No
Exhaustive	5000
Node Sample	20000
Subtree	
Method	Assessment
Number of Leaves	1
Assessment Measure	Average Square Error

SAS CODE: KS Statistic & Plot

APPLICATION

SAS® GLOBAL FORUM 2016

IMAGINE. CREATE. INNOVATE.

LAS VEGAS | APRIL 18-21 #SASGF