Capitolo 1: Vettori #GAL

Vettori in $R^2 = \{ (x_1, x_2) : x_1, x_2 \in R \}$ (vettore colonna)

Insieme delle coppie ordinate di numeri reali:

- 1. Punto nel piano P(x₁,x₂)
- 2. Vettore: $\underline{\mathbf{v}} = (\mathbf{x}_1 \ \mathbf{x}_2)$ rappresentabile come vettore riga
- 3. Segmento orientato: OP = $(x_1 x_2)$ => segmento che ha inizio in O e termina in $P(x_1, x_2)$

Operazioni tra vettori in R²

Somma:

- Somma componente per componente: $(x_1 x_2) + (y_1 y_2) = (x_1 + y_1 x_2 + y_2)$
- Interpretazione geometrica: regola del parallelogramma

Prodotto per uno scalare:

- Scalare componente per componente: $c^*(x_1 x_2) = (c^*x_1 c^*x_2)$ $c \in \mathbb{R}$

Retta in R² in forma parametrica: $r = \{ \underline{v} + t\underline{w} : t \in R \} \subseteq R^2$ $\underline{w} = \text{vettore direzione di } r \underline{w} \neq \underline{0}$ t = parametro,

nota: la forma parametrica di una retta non è unica

Retta in R^2 in forma cartesiana: $r = \{ (x_1 x_2) \in R^2 : ax_1 + bx_2 + c = 0 \}$ a,b = coefficienti, c = termine noto

Vettori in $R^3 = \{ (x_1 x_2 x_3) : x_1, x_2, x_3 \in R \}$ (vettore colonna)

Insieme delle triple ordinate di numeri reali:

- 1. Punto nello spazio: P(x₁,x₂,x₃)
- 2. Vettore: $\underline{\mathbf{v}} = (\mathbf{x}_1 \, \mathbf{x}_2 \, \mathbf{x}_3)$ rappresentabile come vettore riga
- 3. Segmento orientato (direzione): OP = $(x_1 x_2 x_3)$ => segmento che ha inizio in O e termina in $P(x_1, x_2, x_3)$

Operazioni tra vettori in R³

Somma:

- Somma componente per componente: $(x_1 x_2 x_3) + (y_1 y_2 y_3) = (x_1 + y_1 x_2 + y_2 x_3 + y_3)$

Prodotto per uno scalare:

- Scalare componente per componente: $c^*(x_1 x_2 x_3) = (c^*x_1 c^*x_2 c^*x_3)$ $c \in \mathbb{R}$

Retta in R³ in forma parametrica: $r = \{ \underline{v} + t\underline{w} : t \in R \} \subseteq R$ t = parametro, $\underline{w} = vettore direzione di <math>r \underline{w} \neq \underline{o}$

nota: la forma parametrica di una retta non è unica

Retta in R³ in forma cartesiana: intersezione di due piani cioè sistema di due equazioni cartesiane di piani

$$- \{ x \in \mathbb{R}^3 : \{ a_1x_1 + b_1x_2 + c_1x_3 + d_1 = 0; \ a_2x_1 + b_2x_2 + c_2x_3 + d_2 = 0 \} \}$$

Piano in
$$\mathbb{R}^3$$
 in forma parametrica: $\pi = \{ \underline{v} + tw_1 + sw_2 : t,s \in \mathbb{R} \} \subseteq \mathbb{R}^3$

Piano in R³ in forma cartesiana:
$$\pi = \{ \underline{x} = (x_1 x_2 x_3) \in \mathbb{R}^3 : ax_1 + bx_2 + cx_3 + d = 0 \}$$
 a,b,c = coefficienti, d = termine noto

Vettori in Rn (n ∈N) = { $(x_1 x_2 x_n) : x_1, x_2, x_n ∈ R$ } (vettore colonna)

Insieme delle n-uple di numeri reali:

- 1. Punto nello spazio n-dimensionale: $\underline{v} = P(x_1, x_2, x_n)$
- 2. Vettore: $\underline{\mathbf{v}} = (\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_n)$
- 3. Segmento ordinato $\underline{v} = OP$

Operazioni tra vettori in Rn

Somma:

- Somma componente per componente: $(x_1 x_2 x_n) + (y_1 y_2 y_n) = (x_1 + y_1 x_2 + y_2 x_n + y_n)$

Prodotto per uno scalare:

- Scalare componente per componente: $c^*(x_1 x_2 x_n) = (c^*x_1 c^*x_2 c^*x_n)$ $c \in \mathbb{R}$

Proprietà delle operazioni in Rn

Dati $\underline{v},\underline{w},\underline{u} \in Rn \ c,d \in R$

Proprietà della somma:

- 1. Associativa: $(\underline{v} + \underline{w}) + \underline{u} = \underline{v} + (\underline{w} + \underline{u})$
- 2. Commutativa: $\underline{\mathbf{v}} + \underline{\mathbf{w}} = \underline{\mathbf{w}} + \underline{\mathbf{v}}$
- 3. Elemento neutro: $\exists \ \underline{0} : v + \underline{0} = \underline{v}$
- 4. Elemento opposto: $\forall \underline{v} \exists \underline{w} : \underline{v} + \underline{w} = 0$

Proprietà del prodotto:

- 5. Associativa: $c(d*\underline{v}) = (c*d)\underline{v}$
- 6. Elemento neutro: $1*\underline{v} = \underline{v}$
- 7. Distributiva scalare: $c(\underline{v} + \underline{w}) = c^*\underline{v} + c^*\underline{w}$
- 8. Distributiva vettore: $(c + d)\underline{v} = c^*\underline{v} + d^*\underline{v}$

Definizione: dati $\underline{v_1}$, $\underline{v_2}$, $\underline{v_m} \in \mathbb{R}^m$ una loro combinazione lineare è un vettore nella forma $c_1\underline{v_1} + c_2\underline{v_2} + c_m\underline{v_m} = \underline{w}$