COMP3310/6331 - #3

Media: Copper

<u>Dr Markus Buchhorn:</u> <u>markus.buchhorn@anu.edu.au</u>

Why does it matter?

- Networks rely on analogue signals over/through physical media
- Many failure modes and security challenges are in the physical media
- Many weird behaviours in the physical media
 - And they vary by physical media
 - Dodgy CPUs, GPUs, RAM, HDD, etc. are fairly obvious dodgy links are not.
 - Time dependant, weather dependant, wildlife dependant, ...
- Good network design starts from physical media options
 - Costs (manufacture: materials and complexity/labour) capital expenditure
 - Maintenance operating expenditure
 - Benefits, risks

Putting those signals onto media

- Why wire, esp. copper?
 - Ubiquity, great conductor, cheap to work with, flexible, lots of experience
 - Can also be aluminium, steel, ceramics, wet string, ...
- Used for electricity, so communications are easy
 - Data over power lines (power-line communications [PLC] ...)
 - From ISP to homes, from devices to recorders
 - Low data rates (<1Mb/s) but long distances (km)
 - Developed in 1910's
 - Within a building
 - High data rates (100Mb/s) but short distances (10's m)
 - Data over fence lines, data over train tracks, ...

Characteristics of copper

- Light, malleable, reasonably robust to oxidation – easy to connect
- Easy to make thin wires
 - Cross-section 0.2mm² solid, 0.02mm² stranded
 - = AWG 24 to AWG 33 and lower
- Cheap? per kilo
- Tight bending radius
- Easy to add insulation and protection
 - cloth to rubber to plastic
 - And metal...

A shared medium

- One voltage over the whole wire (*eventually)
- Can (only) receive (RX) or transmit (TX) at a time?
 - Time or Frequency Division Multiplexing
 - TDM = Half-duplex = take turns
 - FDM = Electronics at each end to separate them
- Need a "common reference"
 - Where's zero?
 - So cables tend to have a "pair" of wires:

RX/TX **and** <u>Ground</u>, or Reference, or Common, or Earth, or Shield, or ...

Some early networks: single cable and 'vampire taps'

Electrical characteristics of copper

Resistance

- Actually impedance (resistance, inductance, capacitance) and others
- Things that hate electrical signals going through metal
 - Some are frequency/change dependent, some are not
- Attenuation of a signal (aka "insertion loss") as heat, from resistance
 - And others

Resistance

• Resistance varies with <u>length</u> and <u>cross-section</u>

AWG	Diameter (mm)	Area (mm²)	Resistance (Ω/km)
4	5	21	0.8
14	1.6	2	8.3
24	0.5	0.2	84
34	0.16	0.02	856

• Hence stranded cables aren't "as good" – effectively 5-10% thinner

Resistance(f)

Resistance varies with <u>frequency</u>

<u>Skin-effect</u> – changes cross-section (6MHz, skin ~ 25µm)

Leads to Frequency attenuation

Wire end-on

Wire end-on at low frequency

Wire end-on at high frequency

Noise

- A straight wire is a great antenna
 - Can act as a receiver of other signals
 - Can act as a transmitter of its own signals
 - Electro-Magnetic Interference (EMI), Radio-Frequency Interference (RFI)
- Electrical "coupling" from adjacent wires
 - Leads to "cross-talk" (="XT")
 - Near end and Far end (NEXT, FEXT) mainly, but really all along the wire
- Impact goes up with distance

So how do we get around this?

- Start with Good Cable Design!
- Take good copper and wrap it
 - "Coaxial" cables
 - Upside: Well shielded, robust
 - Downsides: single RX/TX and pretty expensive
- Cables called 'RG-nnn' (RG-6, RG-58, ...) (*)
 - No pattern in their characteristics
 - Varying attenuation, diameter, thickness, materials, solid/stranded, ...

Another approach

- Bring in <u>Spatial Division Multiplexing</u>
 - Aka more wires in the cable
- USB, ATA, HDMI, Ribbon cables, ...
- Upside:
 - Full duplex (RX, TX separately)
 - Multiple paths to share = Inverse multiplexing (one-to-many, to-one)
- Downside:
 - Lots of adjacent wires = crosstalk
 - Long, straight unshielded wires = antennas

se note that this is an emerging technology and this specification is subject to change.

- 1 (8) 30 AWG mini coax data lines
- 2 (1) 26 AWG power conductor
- 3 (4) 32 AWG configuration/ grounding conductors
- 4 (1) 34 AWG shielded twisted pair, data line

That antenna problem

- What's the problem?
 - An antenna picks up/radiates every signal, unless it's well shielded
 - Shielding = materials = costs
- Can we avoid shielding? Yes, we can!
- First: Differential signalling
- Second: A noise source has a direction
 - Impacts one wire more than the other
 - Unless we add in **Twisting**

UTP Cables

- Unshielded Twisted Pairs
- Comes in multiple Categories ("Cat1"-Cat8)
 - STANDARDISED: ISO/IEC 11801 (ed.3 2017)
 - And some not, industry makes stuff up sigh.
- Standardised Connectors
 - A religious discussion with misused standards:
 RJ45 is common name (8P8C)
- "Structured Cabling"
 - Overarching design concept for a building
 - Run multiple functions over the same cables, colour-coded

Structured cabling...

What you want...

What you get...

UTP Cables

- Standardised wiring within the plug
 - STRICT rules about terminating cables
 - Amount of insulation removed (XT)
 - Amount of untwisting (Noise)
 - Plenty of great youtube videos

- (Actually, if one standard is good, two (or more) are better!
 - TIA/EIA-568 A and B and others
 - So not totally standardised.)
- And ... bring back some shielding??

UTP -> SF/FTP ??

- (U/)UTP:
- Add Foil: U/FTP and F/UTP
- Add Braided Shielding: S only on outside
- Up to SF/FTP...
 - Nearly every combination is sold somewhere
- Take home messages:
 - More F and S is great for performance
 - More F and S is a pain for making cables.
 - Makes them really expensive and stiff, too

Do not memorise, just get the taste of it

UTP cables by category

Category	Cable	Bandwidth	Data rates
3	UTP	16MHz	10-100Mb/s
4	UTP	20MHz	
5	UTP	100MHz	100-1000Mb/s
5e	UTP	100MHz	
6	UTP	250MHz	10Gb/s
6A	UTP, F/UTP, U/FTP	500MHz	
7	S/FTP, F/FTP	600MHz	10Gb/s + stuff
7A	S/FTP, F/FTP	1000MHz	
8/8.1	F/UTP, U/FTP	1600-2000MHz	40Gb/s
8.2	S/FTP, F/FTP	1600-2000MHz	

Time

- Speed of electricity in copper is not infinite = $\sim 2/3$ c = 0.3 µsec/100m
 - Propagation delay takes time for everyone to get the signal
 - Which leads to collisions
 - @1Gb/s => 100bits
 - And leads to skew across multiple pairs
 - UTP: 2+ pairs have to be the same length, within tolerance
- Reflections
 - "Impedance mismatch"
 - Send a signal, it comes back to you, <u>later</u>
 - Used on landline phones for positive feedback!
 - Otherwise it's a real nuisance.

Capital and Operating costs

- Everything costs (materials, equipment, labour)
- Capital and operational costs
 - Buying the stuff
 - Putting it in
 - Taking care of it
- What happens?
 - Trenching (\$-\$\$\$), then ducting/pulling, or direct burial
 - But metal rusts, junctions leak, ducts collapse, insulation perishes
 - Insects/rodent get hungry, excavators get sloppy
 - Aerial cables?
 - Antennas, lightning, birds/mammals, flying excavators, cable thieves

The great outdoors...

The Last Mile

- Easy to make a shared backbone you only need one.
- From the backbone (exchange), get to every house...
- Trade-off costs vs performance:
 - How much does an exchange cost
 - How long is that final cable run
 - What's the cost to make and deploy
 - What can you get through it
- Quick scaling calculation:
 - 10M houses/offices in Australia,
 - Up to ~4km from their exchange... (can't go much further!)

Putting Bits on Copper Cables: DSL

- Digital Subscriber Line
 - Based on PSTN cables = 1 pair of wires to your home
- Telco standards = International Telecommunications Union
 - ITU-T (with names like G.992, H.264, ...)
 - Many flavours, mostly asymmetric

DSL	ITU	Down	Up
ADSL	G.992.1	10Mb/s	1Mb/s
ADSL 2	G.992.3	12Mb/s	3.5Mb/s
ADSL 2+	G.992.5	24Mb/s	3.5Mb/s
VDSL	G.993.1	52Mb/s	16Mb/s
VDSL 2	G.993.2	200Mb/s down+up	
S(H)DSL	G.991.2	5.7Mb/s per pair, up to four	

When living next to the exchange!

DSL+

- DSL based on
 - 65536 QAM with FDM
 - With increasing number of overlaid features
 - G.inp = reduce impact of external noise, error-correction (profile 17a)
 - G.vector = reduce impact of crosstalk = 100Mb/s at 500m
 - G.fast = 1Gb/s to 100Mb/s (down+up) at 500m
 - -XG.fast = 10Gb/s at 130m
- Need a DSL modem at home, maybe a filter for the phone
- Need a DSL Access Multiplexer (DSLAM) at the exchange/node

The magic inside DSL

- Multiple (4kHz) frequency carriers some up, some down
- Each carrier can take 2-16bits/symbol
- Each version of DSL adds more channels = more bandwidth

The NBN today – VDSL2

Frequency Attenuation

What's going on here?

Downstream Data rate?

- Each channel carries N bits per symbol
- Each channel is ~4.3kHz
- So datarate = #channels * N * 4.3kHz

Moving on: Some (copper) alternatives

- Power-line carrier:
 - Note earlier performance limitations in wide area.
 - Shared medium; transformers block it, not every circuit in a house is joined up, maybe seen by your neighbour, can be a transmitter, can be an antenna

- Mixed-Technology approaches
 - NBN FTTx
 - Hybrid Fibre Coax [HFC, cable networks]
 - Coax cable, shared medium, ...
 - After we've discussed optical fibre...