

Internal Measures (I): BetaCV Measure

- A trade-off in maximizing intra-cluster compactness and inter-cluster separation
- ☐ Given a clustering $C = \{C_1, \ldots, C_k\}$ with k clusters, cluster C_i containing $n_i = |C_i|$ points
 - Let W(S, R) be sum of weights on all edges with one vertex in S and the other in R

 - The sum of all the intra-cluster weights over all clusters: $W_{in} = \frac{1}{2} \sum_{i=1}^{k} W(C_i, C_i)$ The sum of all the inter-cluster weights: $W_{out} = \frac{1}{2} \sum_{i=1}^{k} W(C_i, \overline{C_i}) = \sum_{i=1}^{k-1} \sum_{j>i} W(C_i, C_j)$
 - The number of distinct intra-cluster edges: $N_{in} = \sum_{i=1}^{k} {n_i \choose 2}$

- Beta-CV measure: $BetaCV = \frac{W_{in} / N_{in}}{W_{out} / N_{out}}$
 - The ratio of the mean intra-cluster distance to the mean inter-cluster distance
 - The smaller, the better the clustering

Internal Measures (II): Normalized Cut and Modularity

Normalized cut:
$$NC = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{vol(C_i)} = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{W(C_i, V)} = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{W(C_i, C_i) + W(C_i, \overline{C_i})} = \sum_{i=1}^{k} \frac{1}{\frac{W(C_i, \overline{C_i})}{W(C_i, \overline{C_i})} + 1}$$

where $vol(C_i) = W(C_i, V)$ is the volume of cluster C_i

☐ The higher normalized cut value, the better the clustering

- Modularity (for graph clustering) $Q = \sum_{i=1}^{k} \left(\frac{W(C_i, C_i)}{W(V, V)} \left(\frac{W(C_i, V)}{W(V, V)} \right)^2 \right)$
 - Modularity Q is defined as $W(V,V) = \sum_{i=1}^{k} W(C_i,V) = \sum_{i=1}^{k} W(C_i,C_i) + \sum_{i=1}^{k} W(C_i,\overline{C_i}) = 2(W_{in} + W_{out})$ where
 - Modularity measures the difference between the observed and expected fraction of weights on edges within the clusters.
 - The smaller the value, the better the clustering—the intra-cluster distances are lower than expected