Christine McClure

Projet 2: Reorganizing Galvin Library's E-resources

Summary: The <u>databases page</u> of the Galvin Library website lists online resources by name and subject. There is also another page of resources listed by <u>format</u>, but this page is difficult to find and rarely used by students. I want to combine this information as part of the library website redesign in Drupal to make these items more easily found.

Github repository:

https://github.com/christinemcclure/com541-proj2

Data Review and Cleanup

I started with looking at the existing data structure for the e_resources table, which exists in a MySQL database, and copying it to a file in my Github repository. I also did the same for the resource formats currently listed in the database. For the subject areas, I had previously collected a list of course prefixes used and their corresponding subjects for another part of the website redesign, so I included that as another file.

I imported the resources table into a Microsoft Excel to review the data. There was a lot of cleanup to be done, mostly removing HTML code that had been embedded into the descriptions. The table also included two separate description fields: one limited-text field to use for an initial short description, and another memo field to use for longer descriptions. I kept only the long description because text can be truncated programmatically. I also left out many fields that were never used in the old system, such as vendor name, related tutorials, and open URL links.

JSON Formatting

After deciding which fields to keep from the existing table, I needed to get more than 250 records into JSON format. From a previous project, I found someone who had written a script to export JSON records from a Google spreadsheet. The process became a series of formatting records in Excel, exporting the Excel file to a CSV file, importing that into Google Spreadsheets, then exporting as JSON. This was a lot of steps, but there was a lot of data clean up that I did by using Excel formulas. I could have translated those formulas into ones usable by a Google spreadsheet, but I'm used to using Excel so I stayed with that.

My database file was exported as a single JSON object, so I split that into <u>individual files</u>. I then determined what types of file summaries would be helpful. I decided to create the following indexes:

<u>activeDatabases.json</u>: An array of all active database ids. <u>inactiveDatabases.json</u>: An array of all inactive database ids. <u>activeDatebaseTitles.json</u>: An array of JSON objects for resources that are currently active and their titles. <u>activeDatabasesBySubject.json</u>: An array of objects that includes the subject key mapped to an array of corresponding database IDs.

<u>activeDatabasesByFormat.json</u>: An array of objects that includes the format key mapped to an array of corresponding database IDs.

Data Considerations

Transferring the data back and forth caused problems. First with the database ID field: Excel will allow you to create zero-filled number fields, but Google spreadsheets will not. I decided to no worry about this because it is a sample set of data, but it is something to be aware of if there is a large data translation included in the project.

There was also a problem with the JSON converter script putting all of the fieldname into lowercase, which I didn't want: camelCase is much easier to read when conjoined words are used as fieldnames, and it is already a convention in JavaScript. I tried to modify the script to leave the fieldnames as they were, but couldn't get it working and so just did a search and replace once the files were created. The script also converted binary values into uppecase TRUE and FALSE values, which also wasn't necessary. For a larger project, it would be beneficial to write your own script to convert your own data.