2. KOLOKVIJ IZ MODERNE FIZIKE

2. letnik Fizika, FMF, Univerza v Ljubljani, 7.6.2010

- 1. Izračunaj razmerje sipalnih presekov za produkcijo hadronov in produkcijo mionov, $\sigma(e^+e^- \to \text{hadrons})/\sigma(e^+e^- \to \mu^+\mu^-)$, in sicer tik pod pragom za produkcijo kvarkov $b\bar{b}$, tik nad tem pragom ter tik pod in nad pragom za produkcijo kvarkov $t\bar{t}$ (tako kot na vajah upoštevaj le izmenjavo fotona). Kakšno pa je razmerje $\sigma(e^+e^- \to \tau^+\tau^-)/\sigma(e^+e^- \to \mu^+\mu^-)$?
- 2. V vzorcu ²⁴⁰U opazujemo razpadno verigo ²⁴⁰ $U \rightarrow^{\beta^-}$ ²⁴⁰ $Np \rightarrow^{\beta^-}$ ²⁴⁰Pu, kjer sta razpadna časa 14.1h in 1.032h. Kdaj smo pripravili vzorec ²⁴⁰U, če sta sedaj aktivnosti zaradi prvega in drugega razpada v razpadni verigi v razmerju 2:1? Kakšno pa je to razmerje aktivnosti po 2 urah od priprave vzorca?
- 3. Elektronski nevtrino ν_e in mionski nevtrino ν_μ nista masni lastni stanji, temveč sta z njima povezana preko zveze $|\nu_e\rangle=\cos\theta|\nu_1\rangle-\sin\theta|\nu_2\rangle$, $|\nu_\mu\rangle=\sin\theta|\nu_1\rangle+\cos\theta|\nu_2\rangle$, kjer imata stanji $|\theta_1\rangle$ in $|\theta_2\rangle$ masi m_1 in m_2 . Izračaj kolikšna je verjetnost, da je ob času t nevtrino v stanju ν_μ , če je bil ob času t=0 v stanju ν_e . Računaj kot da je nevtrino na miru. Nato obravnavaj še ultrarelativističen primer, tako da velja $E_{1,2}\gg m_{1,2}$. Kolikšna je masna razlika $m_1^2-m_2^2$, če za nevtrino z gibalno količino $p=1~{\rm MeV}/c$ v detektorju 2km po mestu produkcije v stanju ν_e izmerimo 50% verjetnost za oscilacijo v stanje ν_μ , mešalni kot pa je $\theta=45^\circ$?
- 4. Curek nevtronov vpada na kadmijevo ploščico z debelino d=0.1mm. Curek ni vzporeden temveč se širi tako da je jakost enaka $dj/d\cos\theta=j_0\cos\theta$ za $\theta\in[0,45^\circ]$ in enaka nič za večje kote. Kolikšna je prepustnost kadmijeve ploščice, če je sipalni presek v odvisnosti od kota sipanja enak $d\sigma/d\cos\theta'=\sigma_0(1+\cos\theta')$ (glej sliko), kjer je $\sigma_0=2$ barn. Gostota kadmija je 8.65 kg/dm^3 , kilomolska masa pa 112.4kg. Računaj kot da je kadmijeva ploščica zelo tanka.

