Àlgebra Lineal

Problemes del Tema 4: Diagonalització

1. Trobeu els valors propis de l'endomorfisme f de \mathbb{R}^3 definit en la base canònica per la matriu

$$\left(\begin{array}{ccc}
0 & -1 & 1 \\
-2 & 1 & 1 \\
-4 & -2 & 4
\end{array}\right)$$

i doneu una base de \mathbb{R}^3 formada per vectors propis de f.

2. Sigui f l'endomorfisme de \mathbb{R}^3 amb vectors propis (1,2,-1), (1,0,1), (0,1,-2) de valors propis -2, 1 i 2, respectivament. Trobeu la matriu de f en la base canònica.

3. Sigui f l'endomorfisme de $\mathbb{R}_2[x]$ definit per $f(1) = 2 - x^2$, $f(x^2) = 2x^2 - 1$, $f(1+x) = 2 + 2x - x^2$. Trobeu una base de $\mathbb{R}_2[x]$ tal que la matriu D de f en aquesta base sigui diagonal, i doneu una matriu $P \in \mathcal{M}_3(\mathbb{R})$ invertible tal que PDP^{-1} sigui la matriu de f en la base canònica $\{1, x, x^2\}$ de $\mathbb{R}_2[x]$.

4. Trobeu els valors propis de les matrius $M = \begin{pmatrix} a & b & c & d \\ b & a & c & d \\ b & c & a & d \\ b & c & d & a \end{pmatrix}$ i $N = \begin{pmatrix} b & a & 0 & a \\ a & b & 0 & a \\ b & a & c & 0 \\ a & b & 0 & a \end{pmatrix}$.

5. Siguin f, g endomorfismes d'un \mathbb{K} -espai vectorial E. Demostreu que, si f i g commuten, és a dir, si fg = gf, aleshores el subespai $\operatorname{Nuc}(g - \lambda I)$ és invariant per f per a tot $\lambda \in \mathbb{K}$.

6. Siguin f, g endomorfismes d'un espai vectorial de dimensió finita. Demostreu que fg i gf tenen el mateixos valors propis.

7. Sigui f un automorfisme d'un espai vectorial E de dimensió finita. Trobeu la relació entre els valors propis de f i els de f^{-1} i proveu que els espais de vectors propis de f i de f^{-1} són iguals.

8. Diagonalitzeu l'endomorfisme f de $\mathcal{M}_2(\mathbb{R})$ definit per $f(A) = A^t$.

9. Diagonalitzeu l'endomorfisme f de $\mathcal{M}_2(\mathbb{R})$ definit per $f(A) = \begin{pmatrix} 1 & 0 \\ -1 & 3 \end{pmatrix} A$.

10. Diagonalitzeu a $\mathcal{M}_4(\mathbb{C})$ la matriu

$$\left(\begin{array}{cccc} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 2 \end{array}\right).$$

11. Estudieu la diagonalització de les matrius de $\mathcal{M}_n(\mathbb{K})$ següents, per a $\mathbb{K} = \mathbb{Q}, \mathbb{R}, \mathbb{C}$:

1

12. Sigui f l'endomorfisme de \mathbb{R}^4 definit així:

$$f(x, y, z, t) = (x - z + (a + 2)t, y + z - 2t, 2z + (a - 3)t, at),$$

amb $a \in \mathbb{R}$. Determineu per a quins valors del paràmetre a és f diagonalitzable.

13. Sigui f l'endomorfisme de \mathbb{R}^3 definit així:

$$f(x, y, z) = (\alpha x, -y + \beta z, 3x + \gamma z),$$

amb $\alpha, \beta, \gamma \in \mathbb{R}$. Estudieu per a quins valors dels paràmetres α, β, γ és f diagonalitzable i, per als casos en què ho sigui, trobeu els valors propis de f i una base de \mathbb{R}^3 formada per vectors propis de f.

14. Sigui $\{e_1,\ldots,e_n\}$ una base d'un \mathbb{K} -espai vectorial E, i sigui f un endomorfisme no trivial de E tal que

$$f(e_1) = \dots = f(e_n) = \sum_{i=1}^{n} a_i e_i,$$

amb $a_1,\dots,a_n\in\mathbb{K}$. Proveu que f és diagonalitzable si, i només si, $\sum_{i=1}^n a_i\neq 0$.

- **15.** Sigui $f \in \text{End}(E)$ un endomorfisme d'un espai vectorial E de dimensió finita, i sigui G un subespai invariant per f. Considereu la restricció $f|_G$ de f a G com a endomorfisme de G.
- (a) Demostreu que el polinomi característic de $f|_G$ divideix el polinomi característic de f.
- (b) Sigui H un complementari de G en E que també és invariant per f. Demostreu que $P_f(x) = P_{f|_G}(x)P_{f|_H}(x)$.
- 16. Sigui f un endomorfisme d'un espai vectorial E de dimensió finita. Proveu que, si f és diagonalitzable i G és un subespai vectorial de E invariant per f, aleshores la restricció $f_{|G}$ també és diagonalitzable.
- 17. Sigui f un endomorfisme d'un \mathbb{C} -espai vectorial E de dimensió finita. Proveu que f és diagonalitzable si, i només si, tot subespai vectorial de E invariant per f admet un complementari en E invariant per f.
- 18. Sigui f un endomorfisme d'un \mathbb{K} -espai vectorial E de dimensió finita. Siguin $\lambda \in \mathbb{K}$, $n \in \mathbb{N}$ i $q(x) \in \mathbb{K}[x]$.
- (a) Proveu que, si λ és un valor propi de f, llavors λ^n és un valor propi de f^n i que els respectius subespais de vectors propis F i G satisfan $F \subseteq G$. Doneu un exemple per al qual $F \neq G$.
- (b) Trobeu la relació entre els valors propis de f i els de q(f) i proveu que, si f diagonalitza, llavors q(f) també.
- (c) Proveu que, si el polinomi característic de f és

$$P_f(t) = (\lambda_1 - t)^{n_1} (\lambda_2 - t)^{n_2} \cdots (\lambda_r - t)^{n_r}, \quad \text{amb} \quad \lambda_i \in \mathbb{K},$$

aleshores el polinomi característic de q(f) és

$$P_{q(f)}(t) = (q(\lambda_1) - t)^{n_1} (q(\lambda_2) - t)^{n_2} \cdots (q(\lambda_r) - t)^{n_r}.$$

- **19.** Considereu la matriu $A=\left(\begin{array}{ccc} 0 & a & a^2\\ a^{-1} & 0 & a\\ a^{-2} & a^{-1} & 0 \end{array}\right), \text{ amb } a\in\mathbb{R},\, a\neq 0.$
- (a) Proveu que A és invertible i calculeu A^{-1} usant el Teorema de Cayley-Hamilton.
- (b) Proveu que A diagonalitza i trobeu $P \in \mathcal{M}_3(\mathbb{R})$ tal que la matriu $P^{-1}AP$ sigui diagonal.
- (c) Calculeu A^n per a $n \in \mathbb{Z}$.

- **20.** Sigui $A \in \mathcal{M}_n(\mathbb{R})$ una matriu *nilpotent*, és a dir, tal que $A^k = \mathbf{0}$ per a algun enter $k \geq 1$.
- (a) Trobeu el polinomi característic de la matriu A i deduïu-ne el de la matriu $A + I_n$. Quant val $\det(A + I_n)$?
- (b) Sigui $B \in \mathcal{M}_n(R)$ tal que AB = BA. Demostreu que $\det(A + B) = \det B$.
- **21.** Siguin A i B dues matrius de $\mathcal{M}_n(\mathbb{R})$. Suposem que A és invertible.
- (a) Proveu que AB i BA tenen el mateix polinomi característic.
- (b) Proveu que BA diagonalitza si, i només si, AB diagonalitza.
- (c) Tenen AB i BA necessàriament el mateix polinomi mínim?
- **22.** Trobeu una fórmula tancada per al terme general de la successió $(y(k))_{k\in\mathbb{N}}$ determinada per:

$$y(k+2) - 5y(k+1) + 6y(k) = 0;$$
 $y(0) = 0;$ $y(1) = 1.$

- 23. En un bosc a prop de Balaguer conviuen guineus i conills. Volem estudiar l'evolució de les dues poblacions. Heu de saber que les guineus balaguerines són molt refinades i només s'alimenten de conills. Suposarem que la disminució de conills és proporcional al nombre de guineus, i que, recíprocament, l'augment de guineus és proporcional al nombre de conills. Concretament, sabem que:
- Si no hi hagués conills al bosc, la població de guineus decreixeria a raó d'un 62% anual per culpa de la gana.
 - Sense guineus, la població de conills augmentaria un 22% anualment.
 - L'augment de la població de guineus deguda a la predació dels conills és del 24% de la població de conills.
- La reducció del nombre de conills per culpa de la depredació de les guineus és del 36% de la població de guineus.
 - Inicialment, al bosc hi ha 100 guineus i 175 conills.

Modeleu l'evolució de les dues poblacions mitjançant un sistema dinàmic discret. Estudieu si alguna de les poblacions s'extingirà o s'arribarà a un equilibri estable.

- 24. En un petit país del Mediterrani operen tres companyies telefòniques: Carbassa, Robistar i Jantens(prou). Actualment, les quotes de mercat respectives de les tres companyies són 10%, 60% i 30%. La competència entre elles és ferotge i les tres fan promocions superhonestes per aconseguir que els clients de la competència canviïn de companyia. Cada any, un 15% dels clients de l'operadora Carbassa canvien a Robistar, i un 5% van a Jantens. En contrapartida, la companyia atreu un 20% dels clients de cadascuna de les altres dues. A més, un 5% dels clients de Robistar passen a Jantens i un 15% dels clients de Jantens van a Robistar. Un multimilionari xinès vol invertir en una de les companyies. Com que és proverbialment pacient, prefereix tenir beneficis a llarg termini. Quina és la seva millor opció?
- **25.** Considerem l'endomorfisme $f \in \text{End}(\mathbb{R}^2)$ amb matriu en base canònica $\begin{pmatrix} 5 & -1 \\ 1 & 3 \end{pmatrix}$.
- (a) Demostreu que $\lambda = 4$ és l'únic valor propi de f i estudieu si diagonalitza (a \mathbb{R} o \mathbb{C}).
- (b) Calculeu el polinomi mínim de f i doneu un vector $u \in \text{Nuc}(f \lambda I)^2 \setminus \text{Nuc}(f \lambda I)$.
- (c) Doneu la matriu de f en la base $\{u, (f \lambda I)(u)\}.$

- **26.** Considerem l'endomorfisme $f \in \text{End}(\mathbb{R}^3)$ amb matriu en base canònica $\begin{pmatrix} 16 & 1 & 0 \\ 0 & 16 & 0 \\ 13 & -25 & 16 \end{pmatrix}$.
- (a) Demostreu que $\lambda=16$ és l'únic valor propi de f i estudieu si diagonalitza (a $\mathbb R$ o $\mathbb C$).
- (b) Determineu el polinomi mínim $m_f(x) = (x 16)^k$ i doneu un vector $u \in \text{Nuc}(f \lambda I)^k \setminus \text{Nuc}(f \lambda I)^{k-1}$.
- (c) Trobeu una base de \mathbb{R}^3 en la qual la matriu de f sigui

$$\begin{pmatrix} 16 & 0 & 0 \\ 1 & 16 & 0 \\ 0 & 1 & 16 \end{pmatrix}.$$

- **27.** Considerem l'endomorfisme $f \in \text{End}(\mathbb{R}^3)$ amb matriu en base canònica $\begin{pmatrix} 3 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.
- (a) Demostreu que $\lambda=2$ és l'únic valor propi de f i estudieu si diagonalitza (a $\mathbb R$ o $\mathbb C$).
- (b) Determineu el polinomi mínim $m_f(x) = (x-2)^k$ i doneu un vector $u \in \text{Nuc}(f-\lambda I)^k \setminus \text{Nuc}(f-\lambda I)^{k-1}$.
- (c) Trobeu una base \mathbb{R}^3 en la qual la matriu de fsigui

$$\begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$