Assignment 24

Alex Clemmer

Student number: u0458675

1

The expression $z = (z * x) \mod \mathbb{N}$ occurs in $O(n^2)$. Since N is an n-bit number, and since x and y are strictly less than N, the worst possible case is that x and y both have a value of $2^n - 2$.

This means that the $O(n^2)$ statement, which easily dominates the inner part of the loop, gets iterated $2^n - 2$ times. That gives us:

$$O(2^n \cdot n^2) \tag{1}$$

Gross!

$\mathbf{2}$

So z = x * y should be $O(n^2)$, depending on the algorithm you use. N is an n-bit number, which means its worst case value is $2^n - 1$, which means that the loop ends up iterating 2^n times asymptotically. The statement inside the loop is only slightly trickier: $z-\mathbb{N}$ is linear, and allocating the result into z is also linear. So either way, the loop takes $O(2^n)$, and the loop itself should take O(n) time. So that gives us $O(n^2) + O(n \cdot 2^n)$, which is really just:

$$O(n \cdot 2^n) \tag{2}$$

Better, but still horrible.