State Table with unused states

r from RS excitation table

					ı	ı			(J					l ·
	Pr	esen	it st	ate	Input	Ne	×+ s	state	ţ	1,10	flop	الى ر	put	5	output
We notice that we		A	В	C	×	A	B	С	SA	RA	5ه	RB	Sc	Re	y
are missing 000 ->	2	0	0)	0	0	0	1	0	×	0	×	X	0	0
\downarrow	3	0	0)	1	0	١	0	0	×	1	0	0	(0
we are missing states 0,6,7	4	0	1	0	0	0	١	1	0	×	X	0	l	0	0
(for both by a 1 and 0	5	0	١	0		١	0	0	1	0	0	١	0	×	0
transitions), which will	6	0	١	1	0	0	0	ı	0	×	0	١	×	0	0
become don't cares	7	0	1	١	1	1	0	0	1	0	0	l	0	l	0
\uparrow	8	I	0	0	0	1	0	l	X	0	0	×	١	0	0
we are	٩	1	0	0	١	١	0	0	×	0	0	X	0	×	1
also Missing	10	١	0	l	0	0	0	1	0	1	0	X	X	0	0
and 110	11	١	0	1	(1	0	0	X	0	0	X	0	l	1

SA								
ABC	09 ×	01	lγ	10				
00	×	×						
01		I	l					
11	×	×	X	X				
lo	×	X	×					
SA = BX								

* Is the circuit self correcting?
- A self-correcting circuit is one that,
if it enters an unused or invalid state
(due to noise, glitches, or other errors), can
transition back to a valid state without
external intervention.

eg: unused state 000:

$$\frac{ABC}{OOO} \times \frac{X}{I} = 0 \text{ Jino Reset for O } S_{A} = 0 \text{ Jino Reset for O}$$

$$\frac{ABC}{OOO} \times \frac{X}{I} = 0 \text{ Jino Reset for O}$$

$$\frac{S_{A} = 0}{R_{A} = 0} \text{ Jino Reset for O}$$

Synchronous Counters

A sequential circuit that goes through a predefined sequence of States upon application of input pulses is called a counter.

Counters are useful for generating timing sequences to control operations in a digital system. No external input, no external output.

eg. 1 > 2 > 3 -> 4 -> 5 -> 6 -> 7

Q(E) Present state	Q(t+1) Next state		
A B C	ABC	TA TB TC * A	T flip flop is
0 0 0	0 0 1		nerally considered to be e better choice for
0 0	0 1 0	0 1 1 00	unters due to its
0 1 0	0 1	0 0 1	gyling behavior
0	1 0 0	1 1	
1 0 0	1 0 1	001 T	= 0 no change
101	1 1 0	0 1 1 T.	= 1 Q'(t)
1 1 0	1 1	0 0 [
1 1 1	0 0 0	1 1	
	l		