Reference Manual

Contents

Lā	anguage Functions	2
	Make Sequence - seq(string)	2
	Print File - print(string)	2
	Complement - comp(id)	2
	Reverse Complement - rcomp(id)	2
	DNA Transcription - transc(id)	3
	RNA Transcription - rtransc(id)	3
	Print Codon Table - ctable(int)	3
	Translate DNA/RNA - transl(id, type)	3
	Read from File - read(string, string)	4
	Write to File - write(id, string)	4
	GC Content - gccon(string)	4
	RNA Inferring - rnainf(id)	4
	RNA Inferring File - rnainf2(string)	4
	Open Read Frame - orf(string)	5
	Complement File - compf(string)	5
	Reverse Complement File - rcompf(string)	5
	DNA Transcription File- transcf(string)	5
	RNA Transcription File - rtranscf(string)	5
	Prot <mark>ein W</mark> eight - protw(id)	6
	Motif Interval - motif(id, string)	6
	Write Punnett - punnett(string, string)	6
	Write Punnett File - wpunnett(string, string)	6
	Protein Inference - protinfer(string)	7
	Hamming Distance - hamdis(id, id)	7
	Recurrence - recur(int, int)	7
	Draw Phylogenetic Tree - drawtree(int, string)	7

Language Functions

Make Sequence - seq(string)

seq(string)

Takes as a parameter a string containing the value of the sequence to be denoted.

Example: myseq = seq('GATGGAACTTGACTACGTAAATT')

myseq2 = seq('GAUGGAACUUGACUACGUAAAUU')

Denotes a sequence named *myseq* containing the DNA sequence GATGGAACTTGACTACGTAAATT and a sequence named *myseq2* containing the RNA sequence *GAUGGAACUUGACUACGUAAAUU*

NOTE - The names of myseq and myseq2 are not fixed, meaning that they are open to the user's discretion

Print File - print(string)

print(string)

Takes as a parameter a string value corresponding to the path of the desired FASTA file and prints the contents of such file to the console.

Example: print('IOFiles/file.txt')

Prints the file named *file.txt* contained in the *IOFiles* directory

Complement - comp(id)

comp(id)

Takes as a parameter an id corresp<mark>onding to a DNA sequence previously initialized and returns the complement of such sequence.</mark>

Example: a = comp(myseq)

Assigns a the value of the complement of the sequence myseq

Reverse Complement - rcomp(id)

rcomp(id)

Takes as a parameter an id corresponding to a DNA sequence previously initialized and returns the reverse complement of such sequence.

Example: a = rcomp(myseq)

Assigns a the value of the reverse complement of the sequence *myseq*

DNA Transcription - transc(id)

transc(id)

Takes as a parameter an id corresponding to a DNA sequence previously initialized and returns the transcription of such sequence.

Example: *a* = *transc(myseq)*

Assigns a the value of the transcription of the sequence myseq from DNA to RNA

RNA Transcription - rtransc(id)

rtransc(id)

Takes as a parameter an id corresponding to a RNA sequence previously initialized and returns the transcription of such sequence.

Example: *a* = *rtransc(myseq2)*

Assigns *a* the value of the transcription of the sequence *myseq2* from RNA to DNA

Print Codon Table - ctable(int)

ctable(int)

Takes as a parameter an integer (1 or 2) corresponding to the desired codon table and prints it in the console

Example: ctable(1)

ctable(2)

Prints a DNA and an RNA codon table respectively

NOTE - The integers 1 and 2 are fixed, meaning that providing any other value would result in a system error

Translate DNA/RNA - transl(id, type)

transl(id, type)

Takes as a parameter an id corresponding to a DNA or RNA sequence previously initialized and a the type (dna or rna) and returns the translation of such sequence

Example: a = transl(myseq, dna)

b = transl(myseq2, dna)

Assigns a and b the value of the translation of the DNA and RNA sequences myseq and myseq2, respectively.

Read from File - read(string, string)

read(string, string)

Takes as parameters 2 strings representing the name of the sequence to be read and the FASTA file it is read from and returns the sequence with the name provided

Example: a = read('Seq 1', 'IOFiles/file.txt')

Assigns a the value of the sequence named Seq 1 contained in the FASTA file named *file.txt* contained in the *IOFiles* directory

Write to File - write(id, string)

write(id, string)

Takes as parameter an id and a string corresponding to the value to be written and the file in which it will be written.

Example: write(myseq, 'IOFiles/myfile'

Outputs a file named myfile.txt containing the value of the sequence myseq

GC Content - gccon(string)

gccon(string)

Takes as a parameter a string corresponding to the path of a FASTA file

Example: qccon('IOFiles/file.txt')

Prints the value of the GC Content of the sequence contained in the file file.txt

RNA Inferring - rnainf(id)

rnainf(id)

Takes as a parameter an id corresponding to a previously initialized RNA sequence and returns the RNA Inference of such sequence

Example: a = rnainf(myseq2)

Assigns a the value of the RNA inference of the sequence myseq2

RNA Inferring File - rnainf2(string)

rnainf2(string)

Takes as a parameter a string corresponding to the path of a file containing an RNA sequence in FASTA format and returns the RNA Inference of such sequence

Example: rnainf2('IOFiles/file.txt')

Prints the value of the RNA inference of the sequence contained in the file file.txt in the IOFiles directory

Open Read Frame - orf(string)

orf(string)

Takes as a parameter a string corresponding to the path of a file containing an DNA sequence in FASTA format and returns the Open Read Frame of such sequence

Example: orf('IOFiles/file.txt')

Prints the value of the Open Read Frame of the sequence contained in the file *file.txt* in the *IOFiles* directory

Complement File - compf(string)

compf(string)

Takes as a parameter a string corresponding to the path of a file containing a sequence in FASTA format and returns the complement of such sequence

Example: compf('IOFiles/file.txt')

Prints the value of the complement of the sequence contained in the file file.txt in the *IOFiles* directory

Reverse Complement File - rcompf(string)

rcompf(string)

Takes as a parameter a string corresponding to the path of a file containing a sequence in FASTA format and returns the reverse complement of such sequence

Example: rcompf('IOFiles/file.txt')

Prints the value of the reverse complement of the sequence contained in the file *file.txt* in the *IOFiles* directory

DNA Transcription File- transcf(string)

transcf(string)

Takes as a parameter a string corresponding to the path of a file containing a DNA sequence in FASTA format and returns the transcription of such sequence

Example: transcf('IOFiles/file.txt')

Prints the value of the transcription of the sequence contained in the file file.txt in the IOFiles directory

RNA Transcription File - rtranscf(string)

rtranscf(string)

Takes as a parameter a string corresponding to the path of a file containing a RNA sequence in FASTA format and returns the transcription of such sequence

Example: rtranscf('IOFiles/file.txt')

Prints the value of the transcription of the sequence contained in the file *file.txt* in the *IOFiles* directory

Protein Weight - protw(id)

protw(id)

Takes as a parameter an id corresponding to a previously initialized protein sequence and returns the weight of such protein according to a monoisotopic mass table

Example: a = protw(myprot)

Assigns a the weight of the protein myprot

Motif Interval - motif(id, string)

motif(id, string)

Takes as a parameter an id corresponding to a previously initialized sequence and a string corresponding to the splice of the sequence to which calculate the motif interval

Example: a = motif(myseq, 'GAT')

Assigns *a* the value of the Motif Interval of the splice GAT in the sequence *my*seg.

Write Punnett - punnett(string, string)

punnett(string, string)

Takes as parameters two strings corresponding to the alleles needed to for a table, separated by spaces, and outputs a table to the console along with the probability of each combination

Example: punnett('Aa Bb', 'Cc Dd')

Outputs in console the punnett table for the alleles Aa Bb and Cc Dd

Write Punnett File - wpunnett(string, string, string)

wpunnett(string, string, string)

Takes as parameters two strings corresponding to the alleles needed to for a table and a third string corresponding to the path of a file to be created and written with the Punnett table

Example: wpunnet('Aa Bb', 'Cc Dd', 'IOFiles/myfile')

Writes the punnett table for the alleles *Aa Bb* and *Cc Dd* in the file *myfile.txt* contained in the *IOFiles* directory

Protein Inference - protinfer(string)

protinfer(string)

Takes as a parameter a string corresponding to the value of the weight of the protein to be inferred

Example: a = protinfer('3524.8542 3710.9335 3841.974 3970.0326 4057.0646')

Assigns a the inferred protein

Hamming Distance - hamdis(id, id)

hamdis(id, id)

Takes as a parameter two ids corresponding to two previously initialized sequences and returns the Hamming Distance between them

Example: a = hamdis(myseq, myseq1)

Assigns a the value of the hamming distance between myseq and myseq1

Recurrence - recur(int, int)

recur(int, int)

Takes as a parameter two integers and returns the recurrence interval

Example: a = recur(5, 7)

Assigns a the value of the recurrence interval between 5 and 7

Draw Phylogenetic Tree - drawtree(int, string)

drawtree(int, string)

Takes as parameter an int (1 or 2) corresponding to the method to output the tree contained in the second parameter, which indicates a file in xml format

Example: drawtree(1, 'IOFiles/tree.xml')

drawtree(2, 'IOFiles/tree.xml')

Draws the tree contained in the tree.xml file on the console and on the pylab view

NOTE - The integers 1 and 2 are fixed, meaning that providing any other value would result in a system error