quedav

December 4, 2023

```
[14]: import pandas as pd
      from textblob import TextBlob
      import matplotlib.pyplot as plt
      from collections import Counter
      import re
      # Load the dataset
      df = pd.read_csv('cleaned_data.csv')
[15]: import nltk
      import nltk.sentiment
      from nltk.sentiment.vader import SentimentIntensityAnalyzer
[16]: nltk.download('punkt')
      nltk.download('stopwords')
      nltk.download('vader_lexicon')
     [nltk_data] Downloading package punkt to /Users/dp/nltk_data...
     [nltk_data]
                   Package punkt is already up-to-date!
     [nltk_data] Downloading package stopwords to /Users/dp/nltk_data...
     [nltk_data]
                   Package stopwords is already up-to-date!
     [nltk_data] Downloading package vader_lexicon to
                      /Users/dp/nltk_data...
     [nltk_data]
     [nltk_data]
                   Package vader_lexicon is already up-to-date!
[16]: True
[17]: import string
      import seaborn as sns
      import matplotlib.pyplot as plt
      import plotly.express as px
     Q1) What is the overall sentiment of customers towards Flipkart's phone products?
[18]: # Load the dataset
      data = pd.read_csv('cleaned_data.csv')
```

```
# Initialize the sentiment analyzer
sia = SentimentIntensityAnalyzer()
# Convert 'review' column to strings and handle missing values
data['summary'] = data['summary'].astype(str)
# Calculate sentiment scores for each review
data['sentiment_score'] = data['summary'].apply(lambda x: sia.
 →polarity_scores(x)['compound'])
# Calculate overall sentiment
overall_sentiment = data['sentiment_score'].mean()
# Determine sentiment classification based on a threshold
threshold = 0.1 # You can adjust this threshold as needed
if overall_sentiment > threshold:
    sentiment_classification = 'Positive'
elif overall_sentiment < -threshold:</pre>
    sentiment_classification = 'Negative'
else:
    sentiment classification = 'Neutral'
print(f'Overall Sentiment Score: {overall sentiment}')
print(f'Overall Sentiment: {sentiment_classification}')
```

Overall Sentiment Score: 0.3125667455693129 Overall Sentiment: Positive

Q2) How does the sentiment towards Flipkart's phone products vary across different geographical regions?

```
location_sentiment = data.groupby(['location', 'sentiment'])['sentiment_score'].
 →mean().reset_index()
# Create a table with location, overall sentiment score, and sentiment category,
 ⇔for all unique locations
real_locations_sentiment = location_sentiment.groupby('location')['sentiment'].
 →apply(lambda x: x.mode().iloc[0]).reset_index()
real locations sentiment['overall sentiment score'] = location sentiment.

¬groupby('location')['sentiment_score'].mean().
 →reset_index()['sentiment_score']
#print(real_locations_sentiment)
# Get a random sample of 20 unique locations
random_locations = random.sample(real_locations_sentiment['location'].unique().

stolist(), 20)

# Filter the data for the random locations
random_location_sentiment =__
 →real_locations_sentiment[real_locations_sentiment['location'].
 ⇔isin(random_locations)]
print(random_location_sentiment)
# Print the table
real_locations_sentiment.to_csv('real_locations_sentiment.csv', index=False)
# Create a bar plot to visualize sentiment by location for the random 20_{\sqcup}
 → locations
plt.figure(figsize=(10, 6))
sns.barplot(x='overall sentiment score', y='location',
 data=random_location_sentiment, hue='sentiment',
            palette={'Positive': 'green', 'Negative': 'red', 'Neutral': 'blue'})
plt.title('Sentiment by Location (Random 20 Locations)')
plt.xlabel('Sentiment Score')
plt.ylabel('Location')
plt.legend(title='Sentiment', title_fontsize=12)
plt.show()
```

	location	sentiment	overall_sentiment_score
24	Ajmer	Positive	0.620150
73	Amravati	Neutral	0.313233
247	Barrackpore	Neutral	0.256150
255	Basoda	Neutral	0.318000

507	Chogawan	Neutral	0.000000
648	Dongargaon	Positive	0.475400
783	Gomoh	Positive	0.624900
795	Gorakhpur Division	Positive	0.485500
1009	Jhunjhunun	Positive	0.636000
1059	Kallur Thekkummuri	Negative	-0.440400
1276	Kulathummal	Positive	0.624900
1303	Kuttiattoor	Neutral	0.210750
1329	Lawngtlai	Positive	0.571900
1428	Manassery	Positive	0.440400
1973	Rishikesh	Positive	0.562485
1990	Sadaura	Positive	0.624900
2043	Sanquelim	Neutral	0.000000
2253	Tanakpur	Neutral	0.000000
2261	Telo	Positive	0.440400
2459	West Garo Hills District	Positive	0.440400

3.a) Which Flipkart phone product has the most positive reviews?

```
print(f'Most Positive Product: {most_positive_product["product_title"]}')
```

Most Positive Product: realme C55 (Rainforest, 64 GB)

3.b) Which Flipkart phone product has the most negative reviews?

Most Negative Product: Nokia 105 Single SIM, Keypad Mobile Phone with Wireless FM Radio

4.a) What are the most common keywords associated with positive reviews of Flipkart's phone products?

```
[22]: import pandas as pd
      import re
      from nltk.corpus import stopwords
      from collections import Counter
      from nltk.tokenize import word_tokenize
      # Set the threshold for positivity
      threshold = 0.1
      # Filter positive reviews based on the sentiment_score threshold
      positive_reviews = data[data['sentiment_score'] > threshold]['summary']
      # Initialize a list of stopwords
      stop_words = set(stopwords.words('english'))
      # Tokenize and count words in positive reviews
      positive_words = [word for review in positive_reviews for word in_
       word_tokenize(review.lower()) if word.isalpha() and word not in stop_words]
      # Create a Counter to count the most common positive keywords
      positive_word_counts = Counter(positive_words)
      # Get the most common positive keywords
      most common positive keywords = positive word counts.most common(10)
      # Create a DataFrame from the list of most common positive keywords
      df = pd.DataFrame(most_common_positive_keywords, columns=['Keyword', 'Count'])
      # Display the DataFrame
      print(df)
```

```
Keyword Count
     product
               2267
0
1
        good
               1628
2
    terrific
                958
     awesome
                957
3
4
        nice
                866
5
       worth
                813
6
 wonderful
                767
7
                539
       money
8 brilliant
                530
                524
9
      classy
```

4.b) What are the most common keywords associated with negative reviews of Flipkart's phone products?

```
[23]: # Set the threshold for negativity
      threshold = -0.1
      # Filter negative reviews based on the sentiment_score threshold
      negative_reviews = data[data['sentiment_score'] < threshold]['summary']</pre>
      # Initialize a list of stopwords
      stop_words = set(stopwords.words('english'))
      # Tokenize and count words in negative reviews
      negative_words = [word for review in negative_reviews for word in_
       word_tokenize(review.lower()) if word.isalpha() and word not in stop words]
      # Create a Counter to count the most common negative keywords
      negative_word_counts = Counter(negative_words)
      # Get the most common negative keywords
      most_common negative keywords = negative_word_counts.most_common(10)
      # Create a DataFrame from the list of most common negative keywords
      df = pd.DataFrame(most_common_negative_keywords, columns=['Keyword', 'Count'])
      # Display the DataFrame
      print("most_common_negative_keywords"+"\n")
      print(df)
```

most_common_negative_keywords

```
Keyword Count
product 301
disappointed 260
horrible 188
waste 187
```

```
4
                    187
          money
5
          hated
                    187
6
  recommended
                    179
7
                    176
        utterly
8
           poor
                    168
        useless
                    165
```

5) Are there any inconsistencies between the rating given by the reviewer and the content of the review and summary, indicating potential fake reviews?

```
[18]: from nltk.sentiment.vader import SentimentIntensityAnalyzer
      # Convert 'review' and 'summary' columns to strings and handle missing values
     data['review'] = data['review'].fillna('').astype(str)
     data['summary'] = data['summary'].fillna('').astype(str)
      # Define a function to check for inconsistencies between the rating, review, \Box
      →and summary
     def check_for_inconsistencies(row):
         # Calculate the sentiment score of the review and summary
         vader = SentimentIntensityAnalyzer()
         review sentiment score = vader.polarity scores(row['review'])['compound']
         summary_sentiment_score = vader.polarity_scores(row['summary'])['compound']
         # Check if the sentiment scores are inconsistent with the rating
         if (row['rating'] >= 3 and (review_sentiment_score < -0.5 or_
       ⇒summary_sentiment_score < -0.5)) or (row['rating'] <= 2 and_⊔
       →(review_sentiment_score > 0.5 or summary_sentiment_score > 0.5)):
             return True
         return False
     # Identify reviews with potential inconsistencies
     data['has_inconsistencies'] = data.apply(check_for_inconsistencies, axis=1)
      # Filter reviews with potential inconsistencies
     reviews_with_potential_inconsistencies = data[data['has_inconsistencies']]
      # Select the four columns you want to save to the CSV
     selected_columns = reviews_with_potential_inconsistencies[['product_id',_
       # Save the selected columns to a CSV file
     selected_columns.to_csv('reviews_with_inconsistencies.csv', index=False)
```

6) Do lower-priced products tend to have more positive sentiments than higher-priced ones?

```
[24]: from nltk.sentiment.vader import SentimentIntensityAnalyzer
      # Load the dataset
      df = pd.read_csv('cleaned_data.csv')
      df['summary'] = df['summary'].astype(str)
      df['review'] = df['review'].astype(str)
      # Calculate the sentiment score of the review and summary
      vader = SentimentIntensityAnalyzer()
      df['summary_sentiment_score'] = df['summary'].apply(lambda x: vader.
       ⇒polarity scores(x)['compound'])
      df['review_sentiment_score'] = df['review'].apply(lambda x: vader.
       ⇔polarity_scores(x)['compound'])
      # Combine the review and summary sentiment scores
      df['combined_sentiment_score'] = (df['review_sentiment_score'] +__

→df['summary_sentiment_score']) / 2
      # Calculate the average sentiment score for each product price
      product_price_groups = df.groupby('disc_price')
      product_price_group_average_sentiment_scores =_

¬product_price_groups['combined_sentiment_score'].mean()
      # Sort the product price groups by average sentiment score
      product_price_groups_sorted_by_average_sentiment_score =__
       product_price_group_average_sentiment_scores.sort_values(ascending=False)
      # Create a table with the grouped price and corresponding sentiment score
      table = product_price_groups_sorted_by_average_sentiment_score.to_frame().
       →reset index()
      table.columns = ['product_price', 'average_sentiment_score']
      table['product_price'] = table['product_price'].str.replace(',', '').astype(int)
      table_sorted=table.sort_values('product_price')
      # Print the table
      print(table_sorted)
      # Return the table as a CSV
      table.to csv('product price groups sorted by average sentiment score',,,
       →index=False)
      #plotting
      plt.figure(figsize=(8, 6))
```

	<pre>product_price</pre>	average_sentiment_score
8	1549	0.200952
3	5499	0.313121
7	6499	0.203266
5	7299	0.270699
6	8499	0.228691
4	9999	0.292494
2	10999	0.340272
0	11999	0.404513
1	13999	0.345647

7) Is there a correlation between products having less discount percentage and higher negative sentiment in reviews?

Correlation between discount percentage and sentiment score: -0.1181501440868927 The correlation is statistically significant.

	discount_percentage	sentiment_score
0	3	0.200952
1	12	0.345647
2	14	0.404513
3	15	0.380515
4	26	0.300163
5	33	0.283519
6	35	0.203266
7	38	0.313121
8	39	0.228691

8) Total Negative, Positive and neutral Reviews for each discount percentage category.

```
[26]: # Categorize sentiment into positive, negative, or neutral
     df['sentiment_category'] = df['combined_sentiment_score'].apply(
         lambda score: 'Positive' if score > 0.1 else 'Negative' if score < -0.1
       →else 'Neutral'
      # Group by discount percentage and sentiment category
     grouped = df.groupby(['Disc_perc', 'sentiment_category'])['product_id'].
      →count().reset index()
      # Pivot the table to have sentiment categories as columns
     pivot_table = grouped.pivot(index='Disc_perc', columns='sentiment_category', __
       ⇔values='product_id').reset_index()
      # Fill NaN values with O
     pivot_table.fillna(0, inplace=True)
     # Rename columns
     pivot_table.columns = ['discount_percentage', 'Negative', 'Neutral', 'Positive']
      # Calculate the total count of reviews (combining all sentiments)
     pivot_table['Total'] = pivot_table['Negative'] + pivot_table['Neutral'] +

       →pivot_table['Positive']
     total_reviews=pivot_table['Total'].sum()
```

```
# Sort the table by discount percentage
sorted_table = pivot_table.sort_values(by='discount_percentage')

# Print the sorted table
print(sorted_table)
print("total_reviews = "+str(total_reviews))
```

```
Total
  discount_percentage Negative Neutral Positive
0
                     3
                               55
                                        14
                                                 131
                                                        200
                    12
                             357
                                       138
                                                2505
                                                       3000
1
2
                    14
                             107
                                        43
                                                1160
                                                       1310
3
                                                       2990
                    15
                             282
                                       135
                                                2573
4
                    26
                             522
                                       189
                                                2289
                                                       3000
5
                    33
                             310
                                       105
                                                1285
                                                       1700
6
                    35
                             514
                                       118
                                                1368
                                                       2000
7
                    38
                             322
                                        58
                                                       2000
                                                1620
                    39
                               68
                                        12
                                                 196
                                                        276
total_reviews = 16476
```

9) How has the sentiment towards Flipkart's products evolved over time?

```
[27]: import pandas as pd
      from datetime import datetime, timedelta
      # Function to convert string phrases to real dates (without time)
      def convert_to_date(date_str):
          if 'days ago' in date_str:
              days = int(date_str.split()[0])
              return (datetime.now() - timedelta(days=days)).date()
          elif 'day ago' in date_str:
              return (datetime.now() - timedelta(days=1)).date()
          elif 'months ago' in date_str:
              months = int(date_str.split()[0])
              return (datetime.now() - timedelta(days=30 * months)).date()
          elif 'month ago' in date_str:
              return (datetime.now() - timedelta(days=30)).date()
          else:
              return None # If the string doesn't match any format, return None
      # Apply the function to the 'Date' column
      df['Real_Date'] = df['date'].apply(convert_to_date)
```

```
[28]: import pandas as pd
import matplotlib.pyplot as plt

df['Real_Date'] = pd.to_datetime(df['Real_Date'])
# Set the 'Date' column as the index for time-based analysis
```

```
df.set_index('Real_Date', inplace=True)

# Resample the data to aggregate sentiment scores based on monthly periods
monthly_sentiment = df['combined_sentiment_score'].resample('M').mean()

# Plotting sentiment trends over months
plt.figure(figsize=(10, 6))
monthly_sentiment.plot(kind='line', color='blue')
plt.title('Monthly Sentiment Trends')
plt.xlabel('Date')
plt.ylabel('Mean Sentiment Score')
plt.grid(True)
plt.show()
```


10) Are there any products that receive a suspiciously high number of downvotes despite having generally positive reviews, which could indicate potential manipulation?

```
[38]: # Group data by product title and calculate the mean sentiment score
product_sentiment = df.groupby('product_title')['combined_sentiment_score'].

mean()

# Define a threshold for suspiciously high downvotes
threshold_downvotes = 2000 # Adjust as needed based on your dataset
```

```
# Identify suspicious cases: High downvotes despite positive sentiment
      suspicious_products = df.groupby('product_title').filter(lambda x:__
       →(x['downvotes'].sum() > threshold_downvotes) and__
       ⇔(product_sentiment[x['product_title'].iloc[0]] > 0))
      # Print or analyze suspicious products
      print(suspicious_products[['product_title', 'downvotes',_
       product_title downvotes \
     Real Date
     2023-01-08 SAMSUNG Galaxy F13 (Sunrise Copper, 64 GB)
                                                                    105
     2023-01-08 SAMSUNG Galaxy F13 (Sunrise Copper, 64 GB)
                                                                    180
     2023-04-08 SAMSUNG Galaxy F13 (Sunrise Copper, 64 GB)
                                                                     25
     2023-02-07 SAMSUNG Galaxy F13 (Sunrise Copper, 64 GB)
                                                                    56
     2023-02-07 SAMSUNG Galaxy F13 (Sunrise Copper, 64 GB)
                                                                    100
                            realme C55 (Rainy Night, 64 GB)
     2023-07-07
                                                                      0
                            realme C55 (Rainy Night, 64 GB)
     2023-09-05
                                                                      0
                            realme C55 (Rainy Night, 64 GB)
     2023-09-05
                                                                      1
     2023-07-07
                            realme C55 (Rainy Night, 64 GB)
                                                                      0
     2023-09-05
                            realme C55 (Rainy Night, 64 GB)
                                                                      0
                 combined_sentiment_score
     Real Date
     2023-01-08
                                  0.59735
                                  0.52320
     2023-01-08
     2023-04-08
                                  0.45855
     2023-02-07
                                  0.61140
     2023-02-07
                                  0.43095
     2023-07-07
                                  0.45425
     2023-09-05
                                  0.51645
                                  0.55830
     2023-09-05
     2023-07-07
                                  0.51315
     2023-09-05
                                  0.44040
     [10300 rows x 3 columns]
[39]: # Group by product title and aggregate mean combined sentiment score and sum of \Box
       \hookrightarrow downvotes
      product_stats = suspicious_products.groupby('product_title').agg({
          'combined_sentiment_score': 'mean',
          'downvotes': 'sum'
      }).reset_index()
```

```
# Display the mean combined sentiment score and sum of downvotes for each

□ product title

print(product_stats)
```

```
product_title
                                                combined_sentiment_score \
O SAMSUNG Galaxy F13 (Nightsky Green, 64 GB)
                                                                0.300163
  SAMSUNG Galaxy F13 (Sunrise Copper, 64 GB)
                                                                0.300163
2 SAMSUNG Galaxy F13 (Waterfall Blue, 64 GB)
                                                                0.300163
3
              realme C55 (Rainforest, 128 GB)
                                                                0.345647
4
               realme C55 (Rainforest, 64 GB)
                                                                0.386592
5
             realme C55 (Rainy Night, 128 GB)
                                                                0.345647
              realme C55 (Rainy Night, 64 GB)
6
                                                                0.388617
7
               realme C55 (Sunshower, 128 GB)
                                                                0.345647
8
                realme C55 (Sunshower, 64 GB)
                                                                0.388617
   downvotes
0
        9293
1
        9293
2
        9293
3
        2665
4
        4623
5
        2665
6
        4794
```

Thank You

2665

4794

7

8