Programming Assignment 1 KNN Algorithm

Developed By:

Name: Jeyamaruthi Jayakumar

ID: 1001757737

Department of Computer Science & Engineering
The University of Texas, Arlington
United States of America

Portfolio

Table of Contents

1.	Project Description	3
2.	Method Description	3
	2.1 LoadFile:	3
	2.2 StringToFloat:	3
	2.3 StringToInt:	4
	2.4 EvalutionMethod:	4
	2.5 KFoldCross Validation:	4
	2.6 KNearestNeighbours:	4
	2.7 PredictClassification:	4
	2.8 GetNeighbors:	5
	2.9 Methods for Calculation Distance:	5
3.	Detail Description	5
4.	Comparison of WEKA & Program	7
	4.1 Breast Cancer Dataset:	3
	4.2 Car Evaluation Dataset:	.10
	4.3 Hayes- Roth Dataset:	.13
5 .	References	.17
6.	Conclusion	.17

Project Description

Creation of KNN algorithm from scratch i.e. without using any libraries. The program consists of a method to evaluate k-fold cross-validation, vectorized computation of the distances using the formula of Euclidean, Hamming & Manhattan.

We developed the KNN model by using 4 different datasets:

- Iris Dataset
- Hayes-Roth Dataset
- Car Evaluation Dataset
- Breast Cancer Dataset.

We have 9 unique functions that are used by the dataset to fulfill the KNN algorithm, predict and display the accuracy score.

2

Method Description

We have a total of 9 methods to predict the classes using the KNN algorithm.

2.1 LoadFile:

- > The method created to read the data file and convert into a list
- Returns the dataset as a list and utilized for further use.

2.2 StringToFloat:

- The Method was created to read the columns which have string numeric type and converts the string into a float.
- The method is handled with an **exception**, which passes the column if it cannot be converted into a float.

2.3 StringToInt:

- The Method created to convert the string column into an integer
- ➤ It is done by using a dictionary, which maps a unique value for each individual string, which helps us to predict the classification.

2.4 EvaluationMethod:

- Firstly, it will call the cross-validation function to get the fold segregation of datasets.
- Clean the data to make it adaptive for using it for predicting the classes.
- Finally, calls the accuracyMetric function to get the score of prediction in percentage.

2.5 KFoldCrossValidation:

- This method helps us to segment the dataset with k-folds
- For our assignment, we have used 10, hence the dataset will give u 10 folds, where 1 will be used for testing and others are for training.

2.6 kNearestNeighbours:

- ➤ The method which calls the predictClassification method to get the prediction.
- ➤ Then, holds the value for each row in a list, which is used for comparing with the actual list.

2.7 PredictClassification:

- Calls the getNeighbors function and stores the output values in a list
- ➤ Gets the maximum value of the list for the required number of neighboring elements.

2.8 GetNeighbors:

➤ It calculates the distance between the datasets by 3 methods.

- ➤ If the given D value is 1:
 - Calculates the distance using Euclidian
- ➤ If the given D value is 2:
 - Calculates the distance using Hamming
- ➤ If the given D value is 2:
 - Calculates the distance using Manhattam
- ➤ Sort the calculated distance list and append in neighbors list for the required number of neighbors i.e. if N = 5, it will fetch 5 maximum elements from the output list.

2.9 Methods for Calculation Distance:

- ➤ EuclideanDistance: Method used to calculate distance using Euclidean formula.
- ➤ HammingDistance: Method used to calculate distance using Hamming formula.
- ➤ ManhattanDistance: Method used to calculate distance using the Manhattan formula.

B Detail Description

This segment helps to get a detailed overview of how the assignment works:

- ✓ After fetching the data using the loadFile method we use the fetched dataset to convert the dataset into appropriate datatype for fitting in the model.
- ✓ Once the desired dataset is attained, we fit it into the model and start predicting the value.
- ✓ After prediction, we compare it with the original dataset and check the prediction score.
- ✓ We run a specific dataset 3 times I.e. for Euclidean, Hamming & Manhattan Distance.

- ✓ While running the model, we add a parameter named d, which helps the model to understand which formula we are going to use. For example, if d is equal to 1, then it uses the Euclidean Distance formula to calculate the distance.
- ✓ We tune the KNN model, by changing the neighbor value while passing the dataset into the model. For example, neighbors value as: 3, 5, 7 or 9
- ✓ So, for the Iris dataset the output would be like this (Using Euclidean Distance):

✓ Similarly, for Breast Cancer Dataset:

```
Breat Cancer Dataset for 10-fold cross validation with neighbours as 3:
Scores: [85.71428571428571, 85.71428571428571, 75.0, 78.57142857142857, 71.42857142857143, 64.28571428571429, 89.28571428571429
9, 89.28571428571429, 75.0, 64.28571428571429]
ean Accuracy: 77.857%

Breat Cancer Dataset for 10-fold cross validation with neighbours as 7:
Scores: [75.0, 78.57142857142857, 60.7142857142857], 67.8571428571428571428571429, 67.85714285714285714286, 89.28571428571429, 67.8571428571428571428571428571428571428571]
ean Accuracy: 76.429%

Breat Cancer Dataset for 10-fold cross validation with neighbours as 9:
Scores: [71.42857142857143, 75.0, 75.0, 71.42857142857143, 92.85714285714286, 64.28571428571429, 89.28571428571429, 85.71428571428571429]
ean Accuracy: 77.857%

Therefore, the prediction accuracy is the best for neighbour value = 9
```

✓ For Car Evaluation Dataset:

```
Car Evaluation Dataset for 10-fold cross validation with neighbours as 3:
Scores: [83.13953488372093, 79.06976744186046, 88.37209302325581, 81.97674418604652, 86.04651162790698, 83.13953488372093, 84 3 0232558139535, 87.79069767441861, 82.55813953488372, 80.81395348837209]
ean Accuracy: 83.721%

Car Evaluation Dataset for 10-fold cross validation with neighbours as 7:
Scores: [86.62790697674419, 88.95348837209302, 88.37209302325581, 84.30232558139535, 90.69767441860465, 84.88372093023256, 86 0 4651162790698, 87.20930232558139, 86.62790697674419, 87.79069767441861]
ean Accuracy: 87.151%

Car Evaluation Dataset for 10-fold cross validation with neighbours as 9:
Scores: [87.20930232558139, 86.62790697674419, 86.62790697674419, 83.72093023255815, 85.46511627906976, 87.20930232558139, 91 8 6046511627907, 75.5813953488372, 87.20930232558139, 88.37209302325581]
ean Accuracy: 85.988%

Therefore, the prediction accuracy is the best for neighbour value = 7
```

✓ For Hayes-Roth Dataset:

```
Hayes-roth Dataset for 10-fold cross validation with neighbours as 3:
Scores: [53.84615384615385, 46.15384615384615, 46.15384615384615, 46.15384615384615, 23.076923076923077, 53.84615384615385, 46.15384615384615, 69.23076923076923, 38.46153846153847, 30.76923076923077]
Mean Accuracy: 45.385%

Hayes-roth Dataset for 10-fold cross validation with neighbours as 5:
Scores: [38.46153846153847, 38.46153846153847, 38.46153846153847, 30.76923076923077, 38.46153846153847, 53.84615384615385, 23.976923076923077, 38.46153846153847, 30.76923076923077, 46.15384615384615]
Mean Accuracy: 37.692%

Hayes-roth Dataset for 10-fold cross validation with neighbours as 9:
Scores: [23.076923077, 38.46153846153847, 53.84615384615385, 15.384615384615385, 46.15384615384615, 61.5384615384615, 38.46153846153847]
Mean Accuracy: 40.769%

Therefore, the prediction accuracy is the best for neighbour value = 3
```

✓ Likewise, we will get two set of 4 more outputs using Hamming & Manhattan.

4 Comparison of WEKA & Program

Let us compare the 3 datasets i.e. Car Evaluation, Breast Cancer & Hayes-Roth, with Weka to know how our prediction works.

Also, please check the table at last of this section for better comparision

4.1 Breast Cancer Dataset:

For Euclidean:

From the program, the screenshot attached will consist of output for 3 different neighbor values.

For tuning the KNN value with different neighbour value:

Breat Cancer Dataset for 10-fold cross validation with neighbours as 3:

Scores: [85.71428571428571, 85.71428571428571, 75.0, 78.57142857142857, 71.42857142857143, 64.28571428571429, 89.28571428571429]
ean Accuracy: 77.857%

Breat Cancer Dataset for 10-fold cross validation with neighbours as 7:
Scores: [75.0, 78.57142857142857, 60.7142857142857, 67.85714285714286, 89.28571428571429, 67.85714285714286, 67.8571428571428571
ean Accuracy: 76.429%

Breat Cancer Dataset for 10-fold cross validation with neighbours as 9:
Scores: [71.42857142857142857143, 75.0, 75.0, 71.42857142857143, 92.85714285714286, 64.28571428571429, 89.28571428571429, 89.28571428571429, 64.28571428571429, 64.28571428571429]
ean Accuracy: 77.857%

We will compare the best accuracy of the program with the **Weka**. For example, the above best prediction accuracy is with neighbor KNN value \rightarrow 9. Similarly, we run the **Weka** with **9**.

Therefore, the prediction accuracy is the best for neighbour value = 9

• For Hamming:

Like the previous subdivision, we follow the same rule for this and for the upcoming subdivisions.

Therefore, the prediction accuracy is the best for neighbour value = 9

For tuning the KNN value with different neighbour value:

Breat Cancer Dataset for 10-fold cross validation with neighbours as 3:
Scores: [71.428571428571428, 78.57142857142857, 75.0, 75.0, 67.85714285714286, 67.85714285714286, 75.0, 78.57142857142857, 71.42857142

For Manhattan:

Breat Cancer Dataset for 10-fold cross validation with neighbours as 3:
Scores: [71.428571428571428, 75.0, 64.28571428571429, 75.0, 64.28571428571429, 78.57142857142857, 78.57142857142857, 85.71428571
428571, 67.85714285714286, 75.0]
ean Accuracy: 73.571%

Breat Cancer Dataset for 10-fold cross validation with neighbours as 7:
Scores: [71.42857142857142857142857142857142857, 78.57142857142857, 75.0, 75.0, 75.0, 82.14285714285714, 71.42857142857143, 78.57
142857142857, 60.71428571428571428571
ean Accuracy: 74.643%

Breat Cancer Dataset for 10-fold cross validation with neighbours as 9:
Scores: [64.28571428571429, 75.0, 64.28571428571429, 89.28571428571429, 71.42857142857143, 78.57142857142857, 71.42857142857142857
ean Accuracy: 75.714%

Therefore, the prediction accuracy is the best for neighbour value = 7

4.2 Car Evaluation Dataset:

Like previous, we follow the same. But while programming, we have **deleted 2 columns (in code)** which are of **least** priority. By doing that the accuracy increased by 10 i.e. it changed from $70 - 75\% \rightarrow 80 - 85\%$

For Euclidean:

For tuning the KNN value with different neighbour value:

Car Evaluation Dataset for 10-fold cross validation with neighbours as 3:

Scores: [88.37209302325581, 90.11627906976744, 88.95348837209302, 90.11627906976744, 88.95348837209302, 90.11627906976744, 84.3 0232558139535, 85.46511627906976, 84.88372093023256, 83.72093023255815] ean Accuracy: 87.500%

Car Evaluation Dataset for 10-fold cross validation with neighbours as 7:

Scores: [85.46511627906976, 83.13953488372093, 84.88372093023256, 88.37209302325581, 90.11627906976744, 88.95348837209302, 84.88372093023256, 86.62790697674419, 84.88372093023256, 83.72093023255815] ean Accuracy: 86.105%

can need dey! do!103%

Car Evaluation Dataset for 10-fold cross validation with neighbours as 9:

Scores: [89.53488372093024, 84.88372093023256, 86.04651162790698, 86.62790697674419, 88.37209302325581, 84.30232558139535, 85.4 6511627906976, 83.13953488372093, 86.62790697674419, 83.13953488372093] ean Accuracy: 85.814%

Therefore, the prediction accuracy is the best for neighbour value = 7

• For Hamming:

For tuning the KNN value with different neighbour value:

Car Evaluation Dataset for 10-fold cross validation with neighbours as 3:
Scores: [87.20930232558139, 87.20930232558139, 87.20930232558139, 85.46511627906976, 83.72093023255815, 86.04651162790698, 87.7 9069767441861, 87.79069767441861, 81.3953488372093]
ean Accuracy: 86.163%

Car Evaluation Dataset for 10-fold cross validation with neighbours as 7:
Scores: [86.04651162790698, 88.37209302325581, 85.46511627906976, 84.30232558139535, 84.88372093023256, 89.53488372093024, 81.9 7674418604652, 85.46511627906976, 87.20930232558139, 84.30232558139535]
ean Accuracy: 85.756%

Car Evaluation Dataset for 10-fold cross validation with neighbours as 9:
Scores: [84.88372093023256, 88.37209302325581, 84.88372093023256, 88.95348837209302, 84.88372093023256, 83.72093023255815, 87.7 9069767441861, 87.20930232558139, 86.04651162790698, 82.55813953488372]
ean Accuracy: 85.308

Therefore, the prediction accuracy is the best for neighbour value = 7

For Manhattan:

4.3 Hayes- Roth Dataset:

Similar to Car Evaluation Dataset, to increase the accuracy rate of prediction. We will remove the 1st column i.e. **Name** Column from the dataset (via coding).

• For Euclidean:

For tuning the KNN value with different neighbour value:

Hayes-roth Dataset for 10-fold cross validation with neighbours as 3: Scores: [84.61538461538461, 46.15384615384615, 84.615384615384615, 69.23076923076923, 69.23076923076923, 69.23076923076923, 61.53846153846154, 84.615384615384615, 76.92307692307693] Mean Accuracy: 72.308% Hayes-roth Dataset for 10-fold cross validation with neighbours as 5: Scores: [69.23076923076923, 46.15384615384615, 53.84615384615385, 46.15384615384615, 84.61538461538461, 61.53846153846154, 76.92307692307693, 84.61538461538461, 53.84615384615385, 61.53846153846154] Mean Accuracy: 63.846% Hayes-roth Dataset for 10-fold cross validation with neighbours as 9: Scores: [46.15384615384615, 69.23076923076923, 76.92307692307693, 69.23076923076923, 69.23076923076923, 69.23076923076923, 69.23076923076923, 61.53846153846154, 61.53846153846154, 69.23076923076923, 61.53846153846154] Mean Accuracy: 65.385%

Therefore, the prediction accuracy is the best for neighbour value = $\bf 3$

• For Hamming:

For tuning the KNN value with different neighbour value:

```
Hayes-roth Dataset for 10-fold cross validation with neighbours as 3:

Scores: [61.53846153846154, 53.84615384615385, 53.84615384615385, 76.92307692307693, 69.23076923076923, 69.23076923076923, 46.1
5384615384615, 53.84615384615385, 53.84615384615385, 84.61538461538461]

Mean Accuracy: 62.308%

Hayes-roth Dataset for 10-fold cross validation with neighbours as 5:
Scores: [53.84615384615385, 76.92307692307693, 84.61538461538461, 53.84615384615385, 76.92307692307693, 53.84615384615385, 38.4
6153846153847, 69.23076923076923, 84.61538461538461, 61.5384615384615385, 76.92307692307693, 53.84615384615385, 69.23076923076923, 84.615384615385, 30.76923076923077, 53.84615384615385, 30.76923076923077, 53.84615384615385, 30.76923076923077, 53.84615384615385]

Hayes-roth Dataset for 10-fold cross validation with neighbours as 9:
Scores: [53.84615384615385, 30.76923076923077, 53.84615384615385, 30.76923076923077, 53.84615384615385]

Mean Accuracy: 50.769%

Therefore, the prediction accuracy is the best for neighbour value = 3
```


For Manhattan:

For tuning the KNN value with different neighbour value:

```
Hayes-roth Dataset for 10-fold cross validation with neighbours as 3:
Scores: [69.23076923076923, 76.92307692307693, 84.61538461538461, 76.92307692307693, 61.53846153846154, 30.76923076923077, 92.3
076923076923, 46.15384615384615, 76.92307692307693, 69.23076923076923]
Mean Accuracy: 68.462%

Hayes-roth Dataset for 10-fold cross validation with neighbours as 5:
Scores: [76.923076923076923, 84.61538461538461, 53.84615384615385, 69.23076923076923, 92.3076923076923, 92.3076923076923, 61.538
46153846154, 84.61538461538461, 53.84615384615385, 61.53846153846154]
Mean Accuracy: 73.077%

Hayes-roth Dataset for 10-fold cross validation with neighbours as 9:
Scores: [53.84615384615385, 76.92307692307693, 46.15384615384615, 69.23076923076923, 53.84615384615385, 53.84615384615385, 69.2
3076923076923, 69.23076923076923, 100.0, 76.92307692307693]
Mean Accuracy: 66.923%

Therefore, the prediction accuracy is the best for neighbour value = 3
```


Hence the table for the above comparison:

We will be only comparing the best accuracy **Mean Score** of the program to the WEKA.

Dataset	Distance Metrices	Program (%)	Weka (%)
Breast Cancer	Euclidean	77.857	78.671
Breast Cancer	Hamming	76.071	77.972
Breast Cancer	Manhattan	75.714	77.273
Car Evaluation	Euclidean	87.5	76.504
Car Evaluation	Hamming	86.163	76.518
Car Evaluation	Manhattan	87.442	76.106
Hayes-Roth	Euclidean	72.308	72.727
Hayes-Roth	Hamming	65.385	76.515
Hayes-Roth	Manhattan	73.077	75.512

5

References

- To get basic knowledge Regarding KNN Algorithm: Reference1 & Reference2
- Used Professor's <u>link</u> to develop code.
- To know more about K-fold cross Validation.
- For <u>Formula</u> & Knowledge regarding different types of Distance Metrics.

6

Conclusion

We had developed the KNN algorithm from scratch and utilized four different datasets to predict the classification.

We did with different attributes and compared the best results with WEKA.