INTRODUCTION TO COMPUTER VISION

Background Review on

Linear Algebra

Some Definitions

An $m \times n$ (read "m by n") *matrix*, denoted by **A**, is a rectangular array of entries or elements (numbers, or symbols representing numbers) enclosed typically by square brackets, where m is the number of rows and n the number of columns.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Definitions (Con't)

- A is square if m=n.
- A is *diagonal* if all off-diagonal elements are 0, and not all diagonal elements are 0.
- A is the *identity matrix* (I) if it is diagonal and all diagonal elements are 1.
- A is the *zero* or *null matrix* (0) if all its elements are 0.
- The *trace* of **A** equals the sum of the elements along its main diagonal.
- Two matrices **A** and **B** are *equal* iff they have the same number of rows and columns, and $a_{ij} = b_{ij}$.

Definitions (Con't)

- The *transpose* A^T of an $m \times n$ matrix A is an $n \times m$ matrix obtained by interchanging the rows and columns of A.
- A square matrix for which $A^T = A$ is said to be *symmetric*.
- Any matrix X for which **XA**=**I** and **AX**=**I** is called the *inverse* of **A**.
- Let c be a real or complex number (called a *scalar*). The *scalar multiple* of c and matrix A, denoted cA, is obtained by multiplying every elements of A by c. If c = -1, the scalar multiple is called the *negative* of A.

Definitions (Con't)

A *column vector* is an $m \times 1$ matrix:

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$$

A *row vector* is a $1 \times n$ matrix:

$$\mathbf{b} = [b_1, b_2, \cdots b_n]$$

A column vector can be expressed as a row vector by using the transpose:

$$\mathbf{a}^T = [a_1, a_2, \cdots, a_m]$$

Some Basic Matrix Operations

- The *sum* of two matrices **A** and **B** (of equal dimension), denoted $\mathbf{A} + \mathbf{B}$, is the matrix with elements $a_{ij} + b_{ij}$.
- The *difference* of two matrices, $\mathbf{A} \mathbf{B}$, has elements $a_{ij} b_{ij}$.
- The *product*, AB, of $m \times n$ matrix A and $p \times q$ matrix B, is an $m \times q$ matrix C whose (i,j)-th element is formed by multiplying the entries across the *i*th row of A times the entries down the *j*th column of B; that is,

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{pj}$$

Some Basic Matrix Operations (Con't)

The *inner product* (also called *dot product*) of two vectors

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

is defined as

$$\mathbf{a}^T \mathbf{b} = \mathbf{b}^T \mathbf{a} = a_1 b_1 + a_2 b_2 + \dots + a_m b_m$$
$$= \sum_{i=1}^m a_i b_i.$$

Note that the inner product is a scalar.

Vectors and Vector Spaces

A *vector space* is defined as a nonempty set *V* of entities called *vectors* and associated scalars that satisfy the conditions outlined in A through C below. A vector space is *real* if the scalars are real numbers; it is *complex* if the scalars are complex numbers.

- Condition A: There is in V an operation called vector addition, denoted x + y, that satisfies:
 - 1. $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ for all vectors \mathbf{x} and \mathbf{y} in the space.
 - 2. x + (y + z) = (x + y) + z for all x, y, and z.
 - 3. There exists in V a unique vector, called the zero vector, and denoted $\mathbf{0}$, such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ and $\mathbf{0} + \mathbf{x} = \mathbf{x}$ for all vectors \mathbf{x} .
 - 4. For each vector \mathbf{x} in V, there is a unique vector in V, called the *negation* of \mathbf{x} , and denoted $-\mathbf{x}$, such that $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$ and $(-\mathbf{x}) + \mathbf{x} = \mathbf{0}$.

- Condition B: There is in V an operation called multiplication by a scalar that associates with each scalar c and each vector **x** in V a unique vector called the product of c and **x**, denoted by c**x** and **x**c, and which satisfies:
 - 1. $c(d\mathbf{x}) = (cd)\mathbf{x}$ for all scalars c and d, and all vectors \mathbf{x} .
 - 2. $(c + d)\mathbf{x} = c\mathbf{x} + d\mathbf{x}$ for all scalars c and d, and all vectors \mathbf{x} .
 - 3. c(x + y) = cx + cy for all scalars c and all vectors x and y.
- Condition C: 1x = x for all vectors x.

We are interested particularly in real vector spaces of real $m \times 1$ column matrices. We denote such spaces by \Re^m , with vector addition and multiplication by scalars being as defined earlier for matrices. Vectors (column matrices) in \Re^m are written as

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

Example

The vector space with which we are most familiar is the two-dimensional real vector space \Re^2 , in which we make frequent use of graphical representations for operations such as vector addition, subtraction, and multiplication by a scalar. For instance, consider the two vectors

$$\mathbf{a} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Using the rules of matrix addition and subtraction we have

$$\mathbf{a} + \mathbf{b} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad \mathbf{a} - \mathbf{b} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Example (Con't)

The following figure shows the familiar graphical representation of the preceding vector operations, as well as multiplication of vector \mathbf{a} by scalar c = -0.5.

Consider two real vector spaces V_0 and V such that:

- Each element of V_0 is also an element of V (i.e., V_0 is a *subset* of V).
- Operations on elements of V_0 are the same as on elements of V. Under these conditions, V_0 is said to be a *subspace* of V.

A *linear combination* of $v_1, v_2, ..., v_n$ is an expression of the form

$$\alpha_1\mathbf{v}_1 + \alpha_2\mathbf{v}_2 + \cdots + \alpha_n\mathbf{v}_n$$

where the α 's are scalars.

A vector \mathbf{v} is said to be *linearly dependent* on a set, S, of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ if and only if \mathbf{v} can be written as a linear combination of these vectors. Otherwise, \mathbf{v} is *linearly independent* of the set of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$.

A set S of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ in V is said to span some subspace V_0 of V if and only if S is a subset of V_0 and every vector \mathbf{v}_0 in V_0 is linearly dependent on the vectors in S. The set S is said to be a spanning set for V_0 . A basis for a vector space V is a linearly independent spanning set for V. The number of vectors in the basis for a vector space is called the dimension of the vector space. If, for example, the number of vectors in the basis is n, we say that the vector space is n-dimensional.

An important aspect of the concepts just discussed lies in the representation of any vector in \Re^m as a *linear combination* of the basis vectors. For example, any vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

in \Re^3 can be represented as a linear combination of the basis vectors

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \text{ and } \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Vector Norms

A *vector norm* on a vector space V is a function that assigns to each vector \mathbf{v} in V a nonnegative real number, called the *norm* of \mathbf{v} , denoted by $||\mathbf{v}||$. By definition, the norm satisfies the following conditions:

- (1) $\|\mathbf{v}\| > 0$ for $\mathbf{v} \neq \mathbf{0}$; $\|\mathbf{0}\| = 0$,
- (2) $\|c\mathbf{v}\| = |c|\|\mathbf{v}\|$ for all scalars c and vectors \mathbf{v} , and
- (3) $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

Vector Norms (Con't)

There are numerous norms that are used in practice. In our work, the norm most often used is the so-called **2-norm**, which, for a vector \mathbf{x} in real \Re^m , space is defined as

$$\|\mathbf{x}\| = [x_1^2 + x_2^2 + \dots + x_m^2]^{1/2}$$

which is recognized as the *Euclidean distance* from the origin to point **x**; this gives the expression the familiar name Euclidean norm. The expression also is recognized as the length of a vector **x**, with origin at point **0**. From earlier discussions, the norm also can be written as

$$\|\mathbf{x}\| = \left[\mathbf{x}^T \mathbf{x}\right]^{1/2}$$

Vector Norms (Con't)

The *Cauchy-Schwartz* inequality states that

$$|\mathbf{x}^T\mathbf{y}| \le \|\mathbf{x}\| \|\mathbf{y}\|$$

Another well-known result used in the book is the expression

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

where θ is the angle between vectors \mathbf{x} and \mathbf{y} . From these expressions it follows that the inner product of two vectors can be written as

 $\mathbf{x}^T \mathbf{y} = ||\mathbf{x}|| \, ||\mathbf{y}|| \cos \theta$

Thus, the inner product can be expressed as a function of the norms of the vectors and the angle between the vectors.

Vector Norms (Con't)

From the preceding results, two vectors in \Re^m are *orthogonal* if and only if their inner product is zero. Two vectors are *orthonormal* if, in addition to being orthogonal, the length of each vector is 1.

From the concepts just discussed, we see that an arbitrary vector \mathbf{a} is turned into a vector \mathbf{a}_n of unit length by performing the operation $\mathbf{a}_n = \mathbf{a}/||\mathbf{a}||$. Clearly, then, $||\mathbf{a}_n|| = 1$.

A *set of vectors* is said to be an *orthogonal* set if every two vectors in the set are orthogonal. A *set of vectors* is *orthonormal* if every two vectors in the set are orthonormal.

Some Important Aspects of Orthogonality

Let $B = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ be an orthogonal or orthonormal basis in the sense defined in the previous section. Then, an important result in vector analysis is that any vector v can be represented with respect to the orthogonal basis B as

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$$

where the coefficients are given by

$$\alpha_i = \frac{\mathbf{v}^T \mathbf{v}_i}{\mathbf{v}_i^T \mathbf{v}_i}$$
$$= \frac{\mathbf{v}^T \mathbf{v}_i}{\|\mathbf{v}_i\|^2}$$

Orthogonality (Con't)

The key importance of this result is that, if we represent a vector as a linear combination of orthogonal or orthonormal basis vectors, we can determine the coefficients directly from simple inner product computations. It is possible to convert a linearly independent spanning set of vectors into an orthogonal spanning set by using the well-known *Gram-Schmidt* process. There are numerous programs available that implement the Gram-Schmidt and similar processes, so we will not dwell on the details here.

Eigenvalues & Eigenvectors

Definition: The *eigenvalues* of a real matrix \mathbf{M} are the real numbers λ for which there is a nonzero vector \mathbf{e} such that $\mathbf{M}\mathbf{e} = \lambda \mathbf{e}$.

The *eigenvectors* of **M** are the nonzero vectors **e** for which there is a real number λ such that $\mathbf{Me} = \lambda \mathbf{e}$.

If $Me = \lambda$ e for $e \neq 0$, then e is an *eigenvector* of M associated with *eigenvalue* λ , and vice versa. The eigenvectors and corresponding eigenvalues of M constitute the *eigensystem* of M.

Numerous theoretical and truly practical results in the application of matrices and vectors stem from this beautifully simple definition.

Eigenvalues & Eigenvectors (Con't)

Example: Consider the matrix

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

It is easy to verify that $Me_1 = \lambda_1 e_1$ and $Me_2 = \lambda_2 e_2$ for $\lambda_1 = 1$, $\lambda_2 = 2$ and

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

In other words, \mathbf{e}_1 is an eigenvector of \mathbf{M} with associated eigenvalue λ_1 , and similarly for \mathbf{e}_2 and λ_2 .