

Chpt.5 Law of Large Number & Central Limit

第五章 大数定理及中心极限定理

本章工作目标包括两个:

- [1] 对概率论中的一些结论作出严格的证明;
- [2] 为后面的统计作出准备。

概率论早期发展的目的:揭示由于大量随机因素产生影响而呈现的规律性.

概率与频率之间的关系 → 大数定律:研究无穷随机试验序列,刻画 事件的概率与它发生的频率之间的关系。

大量的相互独立的随机因素的综合影响 → 中心极限定理:将观察的 误差看作大量独立微小误差的累加,其分布渐近正态。

5.1 Law of Large Number

最基本的假设:频率→概率。

在相同的条件下,进行n次独立试验,其中事件A发生的次数记 为 n_A , 定义 $f_n(A) = \frac{n_A}{n}$, 我们说 $f_n(A) \rightarrow p_A$, p 就是概率

p 是一个抽象得到的数,按一般的极限描述就是:

南开大学软件学院

上式存在问题

 n_A 不是一般的数而是随机变量,因此 $\left| \frac{n_A}{n} - p \right| \le \varepsilon$ 表示的是一个事件,说 n > N 时总有 $\left| \frac{n_A}{n} - p \right| \le \varepsilon$ 是不符合逻辑的,只能说以多大的概率成立上式。

$$P\left\{\left|\frac{n_A}{n} - p\right| \le \varepsilon\right\} \to 1$$

$$\lim_{n \to \infty} P \left\{ \left| \frac{n_A}{n} - p \right| \le \varepsilon \right\} = 1$$

那么这个前提是否成立呢?

注意到对任意的 n 重实验可定义,

$$X_i = \begin{cases} 1 & \text{第}i \text{次实验中A出现} \\ 0 & \text{A出现} \end{cases}$$

$$n_A = X_1 + X_2 + \dots + X_n$$

$$Y_n = \frac{n_A}{n} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$$

则知道:

$$E(X_i) = p, D(X_i) = p(1-p) = \sigma^2$$

$$E(Y_n) = p$$
, $D(Y_n) = \frac{1}{n}\sigma^2$

南开大学软件学院 pp·

$$P\left\{\left|\frac{n_A}{n} - p\right| \le \varepsilon\right\} = P\left\{\left|Y_n - p\right| \le \varepsilon\right\}$$
$$\ge 1 - \frac{D(Y_n)}{\varepsilon^2} = 1 - \frac{1}{n} \left(\frac{\sigma^2}{\varepsilon^2}\right)$$

$$1 \ge P\left\{ \left| \frac{n_A}{n} - p \right| \le \varepsilon \right\} = P\left\{ \left| Y_n - p \right| \le \varepsilon \right\} \ge 1 - \frac{1}{n} \left(\frac{\sigma^2}{\varepsilon^2} \right)$$

$$\lim_{n\to\infty} P\left\{ \left| \frac{n_A}{n} - p \right| \le \varepsilon \right\} = 1$$

pp. 6 南开大学软件学院

[定理 (Bernoulli)] 设 n_A 是 n 次独立试验中事件A发生的次数,p 是

事件A在一次试验中发生的概率,则对任意的 $\varepsilon > 0$,有

$$\lim_{n\to\infty} P\left\{ \left| \frac{n_A}{n} - p \right| \le \varepsilon \right\} = 1$$

Remark1: 一个随机变量的序列 $Y_1, Y_2, \dots, Y_n, \dots$ 如果对任意 $\varepsilon > 0$,有 $\lim_{n \to \infty} P\{Y_n - p | \le \varepsilon\} = 1$,则称序列依概率收敛到p,记为

$$Y_n \xrightarrow{p} p(n \to \infty)$$

Remark2(大数定律含义之一): Bernoulli定理说明事件A发生的 频率 n_A/n 依概率收敛到事件的概率p。以严格的数学形式表达了 我们的直观看法。在实际应用中,当试验次数足够大时,便可以用 事件的频率来代替事件的概率p。

上面的证明中,我们用到了

$$\lim_{n\to\infty} P\left\{\left|\frac{n_A}{n} - p\right| \le \varepsilon\right\} = \lim_{n\to\infty} P\left\{\left|\frac{1}{n}(X_1 + \dots + X_n) - p\right| \le \varepsilon\right\} = 1$$

这对于一般的 X_1, \dots, X_n, \dots 是否成立?

[定理] 如随机变量 X_1,\cdots,X_n,\cdots 相互独立,具有相同的数学期望与方差 $E(X_i)=\mu$, $D(X_i)=\sigma^2 (i=1,2,\cdots,n,\cdots)$ 则对任意的 $\varepsilon>0$ 有

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} (X_1 + \dots + X_n) - \mu \right| \le \varepsilon \right\} = 1$$

Remark (大数定律含义之二):

当n很大时,随机变量 X_1, \dots, X_n, \dots 的算术平均 $\frac{1}{n}(X_1 + \dots + X_n)$ 接近于数学期望 $E(X_i) = \mu$ 。

通俗地说n个独立随机变量的算术平均当n很大时接近于一个常数(稳定性二)。进一步地,可以放宽对 X_i 方差的要求,但要求 X_i 同分布。

[定理(辛钦定理)]设随机变量 X_1, \dots, X_n, \dots 相互独立且同分布,具 有相同的数学期望 $E(X_i) = \mu$,则对任意的 $\varepsilon > 0$ 有

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} (X_1 + \dots + X_n) - \mu \right| \le \varepsilon \right\} = 1$$

pp. 10 南开大学软件学院

概括前面的几个定理,可以归结为两点:

1频率稳定性:事件A发生的频率以概率收敛到概率p

事件A发生的概率为 p	$\rightarrow n_A \qquad p \qquad $
进行n次独立试验,A出现 n_A	$\Rightarrow \frac{A}{n} \xrightarrow{p} p(n \to \infty)$

2 算术均值稳定性:

随机变量 $X_1, X_2, \dots, X_n, \dots$ 相互独立	$\Rightarrow \frac{1}{1}(X_1 + X_2 + \dots + X_n) \xrightarrow{p} \mu(n \to \infty)$
具有相同的均值 μ 和方差 σ^2	n n n n

随机变量 相互独立,同分布	$\Rightarrow \frac{1}{1}(X_1 + X_2 + \dots + X_n) \xrightarrow{p} \mu(n \to \infty)$
具有相同的均值 μ	n

南开大学软件学院 pp. 1

5.2中心极限定理

当我们考虑 $\frac{1}{n} \sum_{k=1}^{n} X_{i}$ 时,知其收敛到均值 μ ,记 $\frac{1}{n} \sum_{k=1}^{n} X_{i} - \mu = Z_{n}$

从另外一个角度,其对应的分布函数 $F_n(x)$ 满足:

$$F_n(x) = P\left\{\frac{1}{n}\sum_{k=1}^n X_K - \mu \le x\right\}$$

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases}$$

我们不严格地说 $\frac{1}{n}\sum_{k=1}^{n}X_{i}-\mu$ 趋于0,1分布。

5.2中心极限定理

一般地我们考虑随机变量和的标准化形式

$$\frac{\sum_{k=1}^{n} X_{K} - \sum_{k=1}^{n} E(X_{K})}{\sqrt{D(\sum_{k=1}^{n} X_{K})}} \qquad Y_{n} = \sum_{k=1}^{n} X_{K}$$

则上式可以写为

$$Z_n = \frac{Y_n - E(Y_n)}{\sqrt{D(Y_n)}}$$

可知 $E(Z_n) = 0$, $D(Z_n) = 1$, 标准化形式与 $\frac{1}{n}\sum_{i=1}^{n}X_i - \mu = Z_n$ 十分相 似,那么它的极限分布式什么呢?

pp. 13 南开大学软件学院

[定理(独立同分布的中心极限定理)]

如随机变量 X_1, \dots, X_n, \dots 相互独立服从同一分布,数学期望与方

差
$$E(X_i) = \mu$$
, $D(X_i) = \sigma^2(i = 1, 2, \dots, n, \dots;)$ 记 $Y_n = \sum_{k=1}^n X_k$, 其标准化变

量
$$Z_n = \frac{Y_n - E(Y_n)}{\sqrt{D(Y_n)}} = \frac{Y_n - n\mu}{\sqrt{n\sigma^2}}$$
 之分布函数记为 $F_n(x) = P\{Z_n \le x\}$,

那么分布函数列的极限为

$$F(x) = \lim_{n \to \infty} F_n(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

定理就是说,分布的极限为标准正态分布,则当n充分大时近似有

$$\frac{Y_n - n\mu}{\sqrt{n\sigma^2}} \sim N(0,1) \qquad Y_n \sim N(n\mu, n\sigma^2)$$

或者
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$
 , 或者 $\overline{X} \sim N(\mu, \sigma^2 / n)$

pp. 14 南开大学软件学院

也就是说均值为 μ ,方差为 σ^2 的独立同分布的随机变量 X_1, X_2, \dots, X_n 的算术平均当n充分大时近似地服从均值为 μ 方差为 σ^2/n 的正态分布。

[定理2(Lyapunov定理)] 如随机变量 X_1, \dots, X_n, \dots 相互独立,数学期望 $E(X_i) = \mu_i$ 与方 差 $D(X_i) = \sigma_i^2 \neq 0$ $(i = 1, 2, \dots, n, \dots)$,记 $Y_n = \sum_{i=1}^n X_K$

$$B_n^2 = D(Y_n) = \sum_{k=1}^n \sigma_K^2 \qquad Z_n = \frac{Y_n - E(Y_n)}{B_n} = \frac{\sum_{k=1}^n X_K - E(\sum_{k=1}^n X_K)}{\sqrt{D(\sum_{k=1}^n X_K)}}$$

分布函数 $F_n(x) = P\{Z_n \le x\}$, 如果存在正数 $\delta > 0$ 使 $n \to \infty$ 时

$$\frac{1}{B_n^{2+\delta}} \sum_{k=1}^n E\{(X_K - \mu_K)^{2+\delta}\} \to 0 \quad 那么分布函数列的极限为$$

$$F(x) = \lim_{n \to \infty} F_n(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

上述定理说明,随机变量
$$Z_n = \frac{Y_n - E(Y_n)}{B_n} = \frac{\sum\limits_{k=1}^{N} X_k - E(\sum\limits_{k=1}^{N} X_k)}{\sqrt{D(\sum\limits_{k=1}^{n} X_k)}}$$

当n充分大时近似地服从正态分布N(0,1)。

由此当
$$n$$
很大时, $\sum_{k=1}^{n} X_k = B_n Z_n + \sum_{k=1}^{n} \mu_k$ 近似地服从 $N(\sum_{k=1}^{n} \mu_k, B_n^2)$

定理说明当n充分大时,n 个随机变量的和 $\sum_{k=1}^{n} X_k$ 近似地服从正态分布,而不管 X_k 本身是什么样的分布,只要满足一定的条件即可。由此我们可以看出上述定理的背景。

- [1] 在客观的实际应用中,所考虑的对象往往是由大量的相互独立的随机因素的综合影响形成(往往是和的形式),尽管这诸多的因素之分布是未知的,但是他们的和服从正态分布;
- [2] 在实际应用中,我们进行分析往往是对观察值的和或平均进行的,而这个和已经由上述定理保证是趋向于正态分布的,这就是说当样本个数足够大时,样本和就趋于正态分布,这在后面的统计推断中是极其重要的。

正是上述定理所陈述的是分布的极限,以及他们在应用统计中的重要性(或中心地位),Polya在1920年给他取名为"<u>中心极限</u>定理"

Example 设一次贝努里试验中成功的概率为p (0), 令<math>Sn表示n重贝努里试验中成功的次数,那么 $Sn \sim B(n,p)$ 。在实际问题中, 人们常常对成功次数介于两整数 α 、 β 和之间($\alpha < \beta$)的概率感兴趣,即要计算

$$P\{\alpha < S_n < \beta\} = \sum_{\alpha < k < \beta} B(k, n, p)$$

这一和式往往涉及很多项,直接计算相当困难. 然而我们注意到 $S_n = X_1 + X_2 + \dots + X_n$ (X_i 表示n重实验中第i次试验的结果), $E(X_i)$ = p, $D(X_i) = p(1-p)$,则 $E(S_n) = np$, $D(S_n) = np(1-p)$,我们知道

$$\frac{S_n - E(S_n)}{\sqrt{D(S_n)}} = \frac{S_n - np}{\sqrt{np(1-p)}}$$

近似为N(0,1) 【德莫佛—拉普拉斯定理】

因此这个定理表示二项分布的标准化变量依分布收敛于标准正态分布. 简单地说成二项分布渐近正态分布.

定理的直接应用是:

当n很大,p的大小适中时,可用正态分布近似计算:

$$P\{\alpha < S_n < \beta\} = \sum_{\alpha < k < \beta} B(k, n, p)$$

$$= P\left\{\frac{\alpha - np}{\sqrt{np(1-p)}} \le \frac{S_n - np}{\sqrt{np(1-p)}} \le \frac{\beta - np}{\sqrt{np(1-p)}}\right\}$$

$$\approx \Phi\left(\frac{\beta - np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{\alpha - np}{\sqrt{np(1-p)}}\right)$$

pp. 19 南开大学软件学院

它的含义可用下图显示(为了直观,图中显示的是未标准化的随机变量): 作相邻小矩形,各小矩形的底边中心为 $k(\alpha \le k \le \beta)$,底边长为1,高度为b(k; n, p),这些小矩形面积之和即为 $P(\alpha \le Sn \le \beta)$. 再作N(np, npq)的密度曲线,在 $[\alpha, \beta]$ 之间曲线覆盖的面积为(16)式右边之值.

掷三颗骰子,出现点数和 $X=X_1+X_2+X_3$ 的分布律为: $\Rightarrow X$ 近似服从正态分布

备注:来自网上图片

Remark 1 第二章讲过二项分布渐近于泊松分布的泊松定理,它与定理 5是没有矛盾的. 因为泊松定理要求 $\lim_{n\to\infty} np_n = \lambda$ 是常数,而定理5中p 是固定的. 实际应用中,当n很大时

- [1] 若p大小适中,可以用正态分布 $\Phi(x)$ 去逼近(15)式左边的概率;
- [2] 如果p接近0(或1), 且np较小(或较大), 则二项分布的图形偏斜度太大, 用正态分布去逼近效果就不好. 此时用泊松分布去估计精度会更高.

Remark 2 中心极限定理有着广泛的应用,在实际工作中,只要n足够大,便可以把独立同分布的随机变量和的标准化当作正态变量. 下面再看两个例子.

Example 近似计算时,原始数据 x_k 四舍五入到小数第m位,这时舍入误 $\not\equiv X_k$ 可以看作在[-0.5×10^{-m}, 0.5×10^{-m}]上均匀分布,而据此得n个 x_k 的和 $\sum x_k$,按四舍五入所得的误差是多少呢?

[解]: 习惯上人们总是以各 x_k 误差上限的和来估计 Σx_k 的误差限,即 $0.5 \times n \times 10^{-m}$. 当n很大时,这个数自然很大.事实上,误差不太可能这么 大. 因为{ X_k }独立同分布, $E(X_k)=0$, $D(X_k)=\sigma^2=10^{-2m}/12$

$$P\left(\frac{|\sum_{i=1}^{n} X_{i}|}{\sqrt{n\sigma}} \le x\right) \approx 2\Phi(x) - 1$$

若取x=3,上述概率为0.997. 和的误差超过 $3\sigma\sqrt{n}=0.5\times\sqrt{3}\times\sqrt{n}\times10^{-m}$ 的可能性仅为0.003. 显然,对较大的n,这一误差界限远小于习惯上的保守估计 $0.5\times n\times10^{-m}$.

中心极限定理重要的作用:

- [1] 对数理统计学的许多分支,如参数(区间)估计、假设检验、抽样调查等
- [2] 是保险精算等学科的理论基础之一.

假定某保险公司为某险种推出保险业务,现有n个顾客投保,第i份保单遭受风险后损失索赔量记为Xi. 对该保险公司而言,随机理赔量应该是所有保单索赔量之和,记为S,即 $S = \sum_{i=1}^{n} X_i$,弄清S的概率分布对保险公司进行保费定价至关重要.

在实际问题中,通常假定所有保单索赔相互独立. 这样,当保单总数n 充分大时,我们并不需要计算S 的精确分布(一般情况下这是困难甚至不可能的). 此时,可应用中心极限定理,对S进行正态逼近: $\frac{S-E(S)}{\sqrt{D(S)}}$ 渐近具有正态分布N(0,1),并以此来估计一些保险参数.

Example 某保险公司发行一年期的保险索赔金分别为1万元与2万元的两种人身意外险. 索赔概率 q_k 及投保人数 n_k 如下表所示(金额单位:万元)

类别k	索赔概率q _k	索赔额b _k	投保数n _k
1	0.02	1	500
2	0.02	2	500
3	0.10	1	300
4	0.10	2	500

保险公司希望只有0.05的可能使索赔金额超过所收取的保费总额. 设该保险公司按期望值原理进行保费定价,即保单i的保费 $\pi(X_i)=(1+\theta)E(X_i)$. 要求估计 θ .

解: 设每笔保单的索赔额为Xi,则索赔总额为 $S = \sum_{i=1}^{1800} X_i$, 计算其均值与方差

$$ES = \sum_{i=1}^{1800} EX_i = \sum_{k=1}^{4} n_k b_k q_k$$

$$= 500 \cdot 1 \cdot 0.02 + 500 \cdot 2 \cdot 0.02 + 300 \cdot 1 \cdot 0.10 + 500 \cdot 2 \cdot 0.10 = 160,$$

$$VarS = \sum_{i=1}^{1800} VarX_i = \sum_{k=1}^{4} n_k b_k^2 q_k (1 - q_k)$$

$$= 500 \cdot 1^2 \cdot 0.02 \cdot 0.98 + 500 \cdot 2^2 \cdot 0.02 \cdot 0.98$$

$$+ 300 \cdot 1^2 \cdot 0.10 \cdot 0.90 + 500 \cdot 2^2 \cdot 0.10 \cdot 0.90$$

= 256

南开大学软件学院

由此得保费总额

$$\pi(S) = (1 + \theta)ES = 160(1 + \theta).$$

依题意, 我们有

$$P(S \le (1+\theta)ES) = 0.95$$

也即

$$P(\frac{S - ES}{\sqrt{VarS}} \le \frac{\theta ES}{\sqrt{VarS}}) = P(\frac{S - ES}{\sqrt{VarS}} \le 10\theta) = 0.95.$$

将 $\frac{S - E(S)}{\sqrt{D(S)}}$ 近似看作标准正态随机变量,查表可得 $10\theta = 1.645$

故

$$\theta = 0.1645$$

南开大学软件学院

Example (pp.151-152) 设一货轮在某海区航行,已知每遭受一次波浪的冲击,纵摇角度大于3°的概率为p=1/3。若货轮在航行中遭受了90000 次波浪冲击,问其中有 29500 ~ 30500次纵摇角度大于3°的概率是多少?

[解]:可将货轮每遭受一次波浪冲击看作是一次试验,并认为实验是独立的。在 90000次波浪冲击中,纵摇角度大于3°的次数记为X,则 X 为一随机变量,它服从二项分布B(90000,1/3)。其分布列为

$$P(X=k)=C_{90000}^{k}\left(\frac{1}{3}\right)^{k}\left(\frac{2}{3}\right)^{90000-k}, k=0,1,2,\cdots,90000$$

所求概率精确的算式为

$$P(29500 \le X \le 30500) = \sum_{k=29500}^{30500} C_{90000}^k \left(\frac{1}{3}\right)^k \left(\frac{2}{3}\right)^{90000-k}.$$

显然,要直接计算是困难的。可以利用德莫佛—拉普拉斯定理来求它 的近似值。即有

$$P(29500 \le X \le 30500) = P\left(\frac{29500 - np}{\sqrt{np(1-p)}} < \frac{X - np}{\sqrt{np(1-p)}} \le \frac{30500 - np}{\sqrt{np(1-p)}}\right)$$

$$\approx \Phi\left(\frac{30500 - np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{29500 - np}{\sqrt{np(1-p)}}\right)$$

$$\approx \Phi\left(\frac{5}{\sqrt{2}}\right) - \Phi\left(-\frac{5}{\sqrt{2}}\right) = 0.9995.$$

Example 设
$$X_1, X_2, \dots, X_n, \dots$$
 独立同分布, $E(X_i) = \mu$, $D(X_i) = \sigma^2$ 令, $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$

求证:
$$S_n^2 \xrightarrow{P} \sigma^2$$

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n} \sum_{i=1}^n ((X_i - \mu) - (\overline{X}_n - \mu))^2$$

$$= \frac{1}{n} \sum_{i=1}^n \left[(X_i - \mu)^2 - 2(\overline{X}_n - \mu)(X_i - \mu) + (\overline{X}_n - \mu)^2 \right]$$

$$= \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - \frac{2}{n} \sum_{i=1}^n (X_i - \mu)(\overline{X}_n - \mu) + (\overline{X}_n - \mu)^2$$

$$= \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - (\overline{X}_n - \mu)^2$$

南开大学软件学院

由辛钦大数定律知 $\overline{X}_n \xrightarrow{p} \mu$,从而 $(\overline{X}_n - \mu)^2 \xrightarrow{p} 0$. 再因 $\{(X_i - \mu)^2\}$ 独立同分布, $E(X_i - \mu)^2 = D(X_i) = \sigma^2$,故 $\{Y_i = (X_i - \mu)^2\}$ 也服从辛钦大数定律,即 $\frac{1}{n}\sum_{i=1}^n (X_i - \mu)^2 \xrightarrow{p} \sigma^2$,故此 $S_n^2 \xrightarrow{P} \sigma^2$ 。

[注] 在数理统计中,称 \overline{X}_n 为样本均值,称 $\frac{n}{n-1}S_n^2$ 为样本方差. 辛钦大数定律表明样本均值依概率收敛于总体均值. 上述例子则表明样本方差依概率收敛于总体方差.