SdI30 W01: WYBRANE ROZKŁADY TYPU DYSKRETNEGO

- 1. Rozkład Bernoulliego i jego własności
- 2. Proces Bernoulliego i rozkłady z nim związane
- 3. Rozkład dwumianowy i jego własności Przykład 1
- 4. Rozkład Pascala, jego interpretacja i własności Przykład 2 Przykład 3
- 5. Rozkład Poissona, jego interpretacja i własności Przykład 4 Przykład 5 Przykład 6

- 6. Rozkład hipergeometryczny, jego interpretacja i własności
- 7. Rozkład wielomianowy i jego własności
- 8. Zestaw zadań W01

1. Rozkład Bernoulliego jego własności

Rozkładem Bernoulliego (Bernoulli distribution) (w polskiej literaturze zwanym rozkładem zero-jedynkowym) nazywamy rozkład zm. l. X dla której obraz $X(\Omega) = \{0; 1\}$ oraz

PMF:
$$f_B(x|p) = \begin{cases} p & \text{dla } x = 1, \\ 1 - p & \text{dla } x = 0. \end{cases}$$

Rozkład ten oznaczamy B(p). Zapis $X \sim B(p)$ oznacza, że zm.

1. X ma rozkład Bernoulliego z parametrem p, $(p \in (0, 1))$.

Z definicji momentów zwykłych:

$$\mathbb{E}(X^k) = 1^k \cdot p + 0^k \cdot (1 - p) = p$$
, dla $k = 1, 2, ...$, stąd $\mathbb{E}X = p$, $\mathbb{E}(X^2) = p$, $\mathbb{D}^2 X = p(1 - p)$.

Rozkład ten jest stosowany w kontroli jakości.

2. Proces Bernoulliego

Procesem Bernoulliego¹ (**Bernoulli process**) nazywamy skończony lub nieskończony ciąg $X_1, X_2, ...$ identycznych i niezależnych zm. l. o rozkładzie Bernoulliego, tj. przyjmujących dwie wartości: 1 z prawd. p zwanym sukcesem i 0 z prawd. q = 1 - p zwanym porażką. Z procesem Bernoulliego związane są rozkłady: **dwumianowy** i **Pascala**.

Ciąg niezależnych zm. 1. o tym samym rozkładzie nazywamy *prostą próbą losową* i ozn. SRS (*simple random sample*).

¹ Jakub Bernoulli (1654-1705) – matematyk szwajcarski, jeden z licznej rodziny Bernoullich, autor *Ars conjectandi*, pierwszego dzieła poświęconego rachunkowi prawdopodobieństwa.

3. Rozkład dwumianowy i jego własności

Zm. 1. $X: \Omega \xrightarrow{na} \{0, 1, ..., n\}$ ma rozkład dwumianowy (binomial distribution) z parametrami n i p $(n \in \mathbb{N}, p \in (0; 1))$, co oznaczamy $X \sim bin(n, p)$, jeżeli jej funkcja prawd. f_{bin} wyraża się wzorem:

PMF:
$$f_{\text{bin}}(x|n,p) = \binom{n}{x} p^x (1-p)^{n-x} \mathbf{1}_{\{0,\dots,n\}}(x)$$

Zm. l. X o rozkładzie dwumianowym zlicza liczbę sukcesów (jedynek), w ciągu n niezależnych doświadczeń, których modelem jest proces Bernoulliego. Rozkład ten jest stosowany m.in. w wyrywkowej kontroli jakości wyrobów.

Rys. 1. Wykresy PMF rozkładów bin(n|p).

Rys. 2. Łamane wykresy dystrybuant rozkładów bin(n|p).

Własności rozkładu dwumianowego:

1. Jeżeli ciąg zm. l. $X_1, X_{2,...}, X_n$ jest SRS o rozkładzie Bernoulliego, to ich suma $T_n = X_1 + X_2 + ... + X_n$ ma rozkład dwumianowy z parametrami n i p, tj.

$$(\forall_i X_i \sim B(p)) \Longrightarrow T_n \sim bin(n, p)$$

2. Jeżeli $X \sim \text{bin}(n, p)$, to $\mathbb{E}X = np,$ $\mathbb{D}^2X = np(1-p),$ $mo(X) = \begin{cases} [(n+1)p], & \text{dla } (n+1)p \notin \mathbb{N} \\ (n+1)p, (n+1)p - 1, \text{dla } (n+1)p \in \mathbb{N} \end{cases}$ gdzie symbol |x| oznacza część całkowitą z liczby x.

Przykład 1 (Bobrowski str. 214). W pewnym urządzeniu znajdują się wyłączniki o niepełnej niezawodności. Mianowicie, w przypadku wystąpienia impulsu udarowego przepływ prądu zostaje przerwany w 90% przypadków. Obliczymy, jaka powinna być minimalna liczba takich wyłączników (połączonych szeregowo), aby prawdopodobieństwo wyłączenia urządzenia było równe co najmniej 99,99%.

Rozwiązanie. Zakładając niezależność zadziałania poszczególnych wyłączników, możemy przyjąć, że liczba wyłączników, które zadziałają, jest zmienną losową X o rozkładzie bin(n=?; p=0,9). Spełniona musi być przy tym nierówność $1-P(X=0) \ge 0,9999$, czyli $\binom{n}{0}0,9^0\cdot 0,1^n \le 0,0001$, to znaczy $0,1^n \le 0,0001$. Stąd n=4. Jak widać wystarczą cztery wyłączniki

4. Rozkład Pascala, jego interpretacja i własności

Zm. l. $X: \Omega \to \mathbb{N}_0$ ma *rozkład Pascala*² z parametrami k i $p(k = 1, 2, ..., p \in (0; 1))$, co oznaczamy $X \sim \text{nbin}(k, p)$, jeżeli jej funkcja prawd. wyraża się wzorem:

PMF:
$$f_{\text{nbin}}(x|k,p) = {k+x-1 \choose x} p^k (1-p)^x \mathbf{1}_{\mathbb{N}_0}(x)$$

² Blaise Pascal (1623–1662). Matematyk, fizyk, pisarz i filozof francuski. Sformułował zasadę indukcji matematycznej. Twórca, wspólnie z *P. Fermatem*, rachunku prawd.

Dla k = 1 rozkład ten nazywamy rozkładem geometrycznym (geometric distribution).

Rozkład Pascala jest szczególnym przypadkiem rozkładu ujemnie dwumianowego (negative binomial distribution).

Zm. l. X o rozkładzie Pascala jest modelem liczby porażek poprzedzających k-ty sukces, w nieskończonym procesie Bernoulliego z parametrem p.

Własności rozkładu Pascala. Jeżeli $X\sim$ nbin(k,p), to

$$\mathbb{E}X = \frac{k(1-p)}{p}, \quad \mathbb{D}^2X = \frac{k(1-p)}{p^2},$$

$$mo(X) = \left| \frac{(k-1)(1-p)}{p} \right|, k > 1.$$

Przykład 2 (Bobrowski, 222). Liczba *Y* akumulatorów samochodowych wymienianych w okresie jednego miesiąca w samochodach przedsiębiorstwa transportowego ma rozkład

$$f_Y(y) = 0.58(0.42)^{y-1}, y = 1.2, ...$$

Obliczyć jakim zapasem akumulatorów powinno dysponować przedsiębiorstwo na początku każdego miesiąca, aby prawdopodobieństwo wyczerpania się zapasu przed końcem miesiąca było mniejsze niż 0,025.

Rozwiązanie. Z warunków zadania wynika, że zm. l. X = Y - 1 ma rozkład geometryczny z parametrem p = 0,58. Mamy, więc nierówność $P(X = x) = p(1 - p)^{x-1} < 0,025$, czyli $0,42^{x-1} < 0,0431$, skąd otrzymujemy $x > 1 + \frac{\lg 0,0431}{\lg 0,42} \approx 4,62$.

A więc minimalny zapas powinien wynosić 5 akumulatorów.

- **Przykład 3.** Prawdopodobieństwo awarii aparatury w pewnym eksperymencie doświadczalnym wynosi p = 0,02. Eksperyment ten można powtarzać dowolnie wiele razy. Awarie aparatury w powtarzanych eksperymentach są niezależne i prawdopodobieństwo ich wystąpienia jest stałe.
 - a) Jaki rozkład jest modelem podanego ciągu eksperymentów, jeśli interesuje nas liczba eksperymentów do drugiej awarii aparatury?
 - b) Obliczyć prawd. zdarzenia: "druga awaria aparatury zdarzy się dokładnie w dziesiątym doświadczeniu".
 - c) Wyznaczyć najbardziej prawd. liczbę przeprowadzonych eksperymentów bez awarii do osiągnięcia drugiego eksperymentu z awarią.

Eksperyment, w którym wystąpi awaria aparatury nazywamy sukcesem. Niech zm. l. X_2 oznacza liczbę przeprowadzonych eksperymentów bez awarii (porażek) do uzyskania drugiego eksperymentu z awarią.

- a) Zm. l. X_2 ma rozkład Pascala, tj. $X_2 \sim \text{nbin}(2|0,02)$.
- **b)** PMF zm. 1. X_2 jest postaci:

$$P(X_2 = x) = f_{\text{nbin}}(x|2;0,02) = {x+1 \choose x} (0,02)^2 (0,98)^x$$

Zdarzenie: "druga awaria aparatury zdarzy się w dziesiątym eksperymencie" jest równoważne zdarzeniu "wystąpi osiem porażek, tj. braków awarii aparatury do pojawienia się drugiej awarii".

Stąd obliczenia dla x = 8,

$$P(X_2 = 8) = f_{\text{nbin}}(8|2,0,02) = {9 \choose 8}(0,02)^2(0,98)^8 \approx 0,003.$$

Prawd. podanego zdarzenia wynosi zaledwie 0,003.

c) Modę liczby porażek do drugiego sukcesu wyznaczamy dla k = 2 i p = 0.02 ze wzoru:

$$x_{naj} = mo(X_2) = \left\lfloor \frac{(k-1)(1-p)}{p} \right\rfloor$$

Stąd $mo(X_2) = \lfloor (98/100)/(2/100) \rfloor = 49$, czyli najbardziej prawd. jest, że 49 eksperymentów bez awarii poprzedzi drugi eksperyment z awarią.

5. Rozkład Poissona, jego interpretacja i własności

Zm. l. X o wartościach w zbiorze $X(\Omega) = \{0, 1, ...\}$ ma rozkład $Poissona^3$ z parametrem λ ($\lambda > 0$), co oznaczamy $X \sim poiss(\lambda)$, jeżeli jej funkcja prawd. wyraża się wzorem:

PMF:
$$f_{\text{Poiss}}(x|\lambda) = e^{-\lambda} \cdot \frac{\lambda^x}{x!} \mathbf{1}_{\mathbb{N}_0}(x)$$

³ Simeon Denis Poisson (1781-1840). Fizyk i matematyk francuski - profesor Ecole Polytechnique i Sorbony.

- Zm. l. X o rozkładzie Poissona jest modelem liczby sukcesów (wyróżnionego zdarzenia) jakie zajdą w ustalonej jednostce czasu, objętości, itp. Na przykład
 - liczba skaz na określonej powierzchni materiału,
 - liczba zgłoszeń szkód ubezpieczeniowych w określonym czasie,
 - liczba błędów drukarskich na jednej stronie składu, itd.

Parametr λ tego rozkładu interpretujemy jako średnią liczbę wyróżnionych zdarzeń jakie zajdą w ustalonej jednostce.

Przykład 4. Liczba samochodów przejeżdżających w ciągu 3 sekund obok pewnego punktu obserwacyjnego ma rozkład Poissona z parametrem $\lambda = 0.6$.

Obliczyć prawdopodobieństwo, że w ciągu 3 sekund przejedzie obok tego punktu co najwyżej jeden samochód.

Rozwiązanie. Niech X oznacza liczbę przejeżdżających samochodów.

$$P(X \le 1) = P(X = 0) + P(X = 1)$$

$$= \frac{(0.6)^{0}e^{-0.6}}{0!} + \frac{(0.6)^{1}e^{-0.6}}{1!} = e^{-0.6} + 0.6e^{-0.6}$$

$$= 1.6e^{-0.6} \approx 0.878.$$

Własność

$$\forall_{i=1,\dots,n} (X_i \sim \text{Poisson}(\lambda_i), \text{są niezależnymi zm. l.})$$

$$\Rightarrow (X_1 + \dots + X_n) \sim \text{Poisson}(\lambda_1 + \dots + \lambda_n)$$

Dowód dla pary zmiennych losowych

Wykażemy, że jeżeli X i Y są niezależnymi zm. 1. o rozkładzie Poissona z parametrem odpowiednio λ_1 i λ_2 , to ich suma X+Y ma rozkład Poissona z parametrem $\lambda_1+\lambda_2$.

Ze wzorów na prawdopodobieństwo całkowite i warunkowe oraz z założenia niezależności zm. l. X i Y dla k = 0, 1, 2, ... otrzymujemy

$$P(X + Y = k)$$

$$= \sum_{i=0}^{k} P(X = k - Y | Y = i) P(Y = i)$$

$$= \sum_{i=0}^{k} P(X = k - i) P(Y = i)$$

$$= \sum_{i=0}^{k} \frac{\lambda_1^{k-i}}{(k-i)!} e^{-\lambda_1} \frac{\lambda_2^i}{i!} e^{-\lambda_2}$$

$$= \frac{1}{k!} e^{-(\lambda_1 + \lambda_2)} \sum_{i=0}^{k} {k \choose i} \lambda_1^{k-i} \lambda_2^i = \frac{(\lambda_1 + \lambda_2)^k}{k!} e^{-(\lambda_1 + \lambda_2)}$$

Co kończy dowód dla sumy dwóch zmiennych losowych. Dowód dla sumy n do samodzielnego uzupełnienia.

Przykład 5. Liczba stłuczek samochodowych w ciągu miesiąca na pewnym skrzyżowaniu ma rozkład Poissona z parametrem 2. Liczby stłuczek w poszczególnych miesiącach są niezależnymi zmiennymi losowymi.

Obliczyć prawdopodobieństwo, że w pierwszym półroczu zdarzy się dokładnie 6 stłuczek.

Rozwiązanie. X_i – liczba stłuczek w i – tym miesiącu, i = 1, ...,6

$$Y = (X_1 + \dots + X_6) \sim Poisson(12)$$

$$P(Y = 6) = \frac{12^6}{6!}e^{-12} \approx 0.0255.$$

Jeżeli liczba doświadczeń n w procesie Bernoulliego jest duża, a prawd. p sukcesu w jednym doświadczeniu jest na tyle małe, że $\lambda = np \le 7$, to rozkład Poiss(np) jest już dobrym przybliżeniem dla rozkładu bin(n, p).

Twierdzenie Poissona. Niech p zmienia się wraz z n, tzn. $p = p_n$. Jeżeli $np_n \to \lambda$ dla $n \to \infty$, to dla każdego całkowitego $k \ge 0$ zachodzi równość

$$\lim_{n\to\infty} f_{\text{bin}}(x|n,p) = f_{\text{poiss}}(x|\lambda)$$

Twierdzenie Poissona daje dobre przybliżenie rozkładu dwumianowego rozkładem Poissona.

Dowód. Oznaczmy $\lambda_n = np_n$. Wtedy $\lambda_n \to \lambda$ oraz

$$f_{\text{bin}}(x|n,p) = \binom{n}{x} p_n^x (1 - p_n)^{n-x} = \frac{n-1}{n} \cdot \dots \cdot \frac{n-x+1}{n} \cdot \dots \cdot \frac{(np_n)^x}{x!} \left(1 - \frac{\lambda_n}{n}\right)^n \left(1 - \frac{\lambda_n}{n}\right)^{-x} \to \frac{\lambda^x}{x!} e^{-\lambda} = f_{\text{Poiss}}(x|\lambda)$$

$$\text{dla } x = 0, 1, 2, \dots$$

Rys. 3. Łamane funkcji prawd. rozkładów Poissona

Rys. 4. Dystrybuanty rozkładów Poissona *Własności rozkładu Poissona*. Jeżeli $X\sim Poiss(\lambda)$, to

- a) $\mathbb{E}X = \lambda$,
- b) $\mathbb{D}^2 X = \lambda$,

Dowód. Z twierdzenia Poissona

$$\mathbb{E}X = \lim_{n \to \infty} np_n = \lambda$$

oraz

$$\mathbb{D}^{2}X = \lim_{n \to \infty} np_{n} (1 - p_{n}) = \lim_{n \to \infty} \lambda \left(1 - \frac{\lambda}{n} \right) = \lambda$$

Przykład 6. Wadliwość produkowanych uszczelek wynosi 0,75%. Do kontroli jakości wylosowana zostanie próba złożona z 400 uszczelek. Wyznaczyć:

- a) wartość oczekiwaną i wartość modalną liczby uszczelek wadliwych wśród wylosowanych;
- b) wariancję i odchylenie standardowe;

- c) dokładne i przybliżone prawd. zdarzenia, że wśród wylosowanych uszczelek będzie co najmniej pięć wadliwych;
- d) prawd. zdarzenia, że liczba wadliwych uszczelek odchyli się od ich oczekiwanej wartości co najwyżej o 2 szt.
- Niech X oznacza liczbę uszczelek wadliwych wśród wylosowanych. Zm. l. X ma rozkład

$$X \sim bin(n = 400, p = 0.0075).$$

a) Ponieważ $\mathbb{E}(X) = np = 3$, więc oczekiwana liczba wadliwych uszczelek wśród wylosowanych wynosi 3. Wartość modalną wyznaczamy ze wzoru $x_{naj} = \lfloor (n+1)p \rfloor$. Podstawiamy dane i otrzymujemy

$$x_{naj} = [401(0,0075)] = 3,$$

czyli najbardziej prawd. jest, że wśród wylosowanych będą trzy uszczelki wadliwe.

- b) Ponieważ $\mathbb{D}^2 X = np(1-p) = 2,9775$, więc wariancja liczby wadliwych uszczelek wynosi 2,9775, a odchylenie standardowe $\mathbb{D}X = 1,72554$.
- c) Obliczenia metodą dokładną

$$P(X \ge 5) = 1 - P(X \in \{0, 1, 2, 3, 4\}),$$

$$P(X = 0) = (0.9925)^{400} = 0.049227317870;$$

$$P(X = 1) = 400(0,0075)(0,9925)^{399} = 0,148797938146;$$

$$P(X = 2) = 79800(0,0075)^{2}(0,9925)^{398} = 0,224321324887;$$

$$P(X = 3) = 1058600(0,0075)^3(0,9925)^{397} = 0,22488636;$$

$$P(X = 4) = 1050739900(0,0075)^{4}(0,9925)^{396}$$

= 0,168664774506;

stąd

$$P(X \ge 5) = 1 - F_{bin}(4|400; 0,0075)$$

= 1 - 0,815897721416 = 0,184102278584.

Metoda przybliżona. Zastosujemy aproksymację rozkładu dwumianowego rozkładem Poissona, $Y \sim \text{Poiss}(\lambda)$ oraz $\lambda = np = 3$. Prawd. zdarzeń wyznaczamy ze wzoru

$$P(Y = x) = \lambda^{x} e^{-\lambda} / x!$$

$$P(Y = 0) = e^{-3} = 0.049787068368;$$

Ostatecznie korzystając z rozkładu Poissona otrzymujemy

$$P(X \ge 5) = 1 - 0.815263244524 = 0.184736755476.$$

	PMF dla	CDF dla	PDF dla	CDF dla
	bin(400 0,0075)	bin(400 0,0075)	Poiss(3)	Poiss(3)
0	0,049227317870	0,049227317870	0,049787068368	0,049787068368
1	0,148797938146	0,198025256015	0,149361205104	0,199148273471
2	0,224321324887	0,422346580902	0,224041807655	0,423190081127
3	0,224886366008	0,647232946910	0,224041807655	0,647231888782
4	0,168664774506	0,815897721416	0,168031355742	0,815263244524
5	0,100943955724	0,916841677140	0,100818813445	0,916082057969
6	0,050217710971	0,967059388111	0,050409406722	0,966491464691

Tabl. Porównanie wyników obliczeń

d) Prawd. zdarzenia $|X - 3| \le 2$ obliczymy dwoma sposobami. Z rozkładu dwumianowego otrzymujemy:

$$P(|X - 3| \le 2) = P(1 \le X \le 5) = F_X(5) - F_X(0) = 0,916841677 - 0,049227317870 = 0,867614359270.$$

Z rozkładu Poissona otrzymujemy:

$$P(|X - 3| \le 2) = P(1 \le X \le 5) = F_Y(5) - F_Y(0) = F_{Poiss}(5|3) - F_{Poiss}(0|3) = 0,8662949896.$$

Otrzymane wyniki niewiele różnią się.

Oszacowanie błędu przybliżenia jest zawarte w [Jakubow-ski Stencel] str. 166.

6. Rozkład hipergeometryczny i jego własności

Zm. l. X typu dyskretnego ma rozkład hipergeometryczny (hypergeometric distribution) z parametrami m, k, n, gdzie m = 1, 2, ...; k = 0, 1, ..., m; n = 1, 2, ..., m, co oznaczamy: $X \sim hyge(m, k, n)$, jeżeli funkcja prawd. wyraża się wzorem:

PMF:
$$f_{\text{hyge}}(x|m, k, n)$$

= $\frac{\binom{k}{x}\binom{m-k}{n-x}}{\binom{m}{n}} \mathbf{1}_{\{\max\{0, n-(m-k)\}, \dots, \min\{m, k\}\}}(x)$

Rozkład hipergeometryczny jest modelem następującego doświadczenia.

Z populacji liczącej *m* elementów, wśród których jest *k* elementów wyróżnionych pobieramy próbkę *n* elementów bez zwracania. Rozkład ten podaje prawd. zdarzenia, że w próbce będzie *x* elementów wyróżnionych.

Zauważmy, że jeżeli próbkę pobieramy ze zwracaniem, to zm. l. X ma rozkład bin(n, k/m).

Własności rozkładu hipergeometrycznego Jeżeli $X \sim \text{hyge}(m, k, n)$, to:

a)
$$\mathbb{E}X = \frac{nk}{m}$$
,

b)
$$\mathbb{D}^2 X = \frac{nk(m-n)\left(1-\frac{k}{m}\right)}{m(m-1)}.$$

7. Rozkład wielomianowy i jego własności

Wektor losowy $(X_1, X_2, ..., X_k)$ o składowych typu dyskretnego, ma rozkład wielomianowy z parametrami $(n, p_1, ..., p_k)$, jeżeli łączna PMF ma postać:

$$f(x_1, x_2, ..., x_k | n, p_1, p_2, ..., p_k) = \frac{n!}{x_1!, x_2!, ..., x_k!} p_1^{x_1}, p_2^{x_2}, ..., p_k^{x_k}$$
gdzie

$$\sum_{i=1}^{k} x_i = n, \, 0 < p_i < l, \, \sum_{i=1}^{k} p_i = 1.$$

Własności. Dla
$$i, j = 1, 2, ..., k$$

$$\mathbb{E}(X_i) = np_i, \ \mathbb{D}^2(X_i) = np_i(1 - p_i),$$

$$\operatorname{cov}(X_i, X_j) = -np_i p_j \ (i \neq j).$$

8. Zestaw zadań W01

1. Dokonać przeglądu rozkładów typu dyskretnego w Matlabie, \mathcal{R} , Octave, Excelu lub innych programach i opracować jeden z nich podając przykład zastosowania.

Wskazówka. Rozkłady typu dyskretnego w Matlabie

http://www.mathworks.com/help/stats/discrete-distributions.html

- Binomial Distribution
 - Fit parameters of the binomial distribution to data, evaluate the distribution or its inverse, generate pseudorandom samples.
- Geometric Distribution
 - Evaluate the geometric distribution or its inverse, generate pseudorandom samples.

• Hypergeometric Distribution

Evaluate the hypergeometric distribution or its inverse, generate pseudorandom samples.

Multinomial Distribution

Evaluate the multinomial distribution, generate pseudorandom samples.

• Negative Binomial Distribution

Fit parameters of the negative binomial distribution to data, evaluate the distribution or its inverse, generate pseudorandom samples.

Poisson Distribution

Fit parameters of the Poisson distribution to data, evaluate the distribution or its inverse, generate pseudorandom samples.

- Uniform Distribution (Discrete)
 Evaluate the discrete uniform distribution or its inverse, generate pseudorandom samples.
- 2. (*Bułeczka z rodzynkami*). Ile średnio powinno przypadać rodzynków na bułeczkę, aby prawd., że w bułeczce znajdzie się choćby jeden rodzynek, było nie mniejsze niż 0,99? Odp.: 5.
- 3. (*Nocny dyżur lekarza*). Lekarz pełniący dyżur w pewnym szpitalu wzywany jest do pacjentów średnio 3 razy w ciągu nocy. Można przyjąć, że liczba wezwań podlega rozkładowi Poissona. Jakie jest prawd., że noc upłynie lekarzowi spokojnie?

 Odp.: 0,0498.
- 4. (*O skuteczności leku*). Firma farmaceutyczna wyraża pogląd, iż lek "*supera*" jest skuteczny dla 50% osób cierpiących na pewną chorobę. Stowarzyszenie konsumentów wyraża po-

- gląd, że lek ten skuteczny jest tylko dla 5% chorych. Test laboratoryjny niezależnego stowarzyszenia wykazał, że lek ten był skuteczny dla 3 spośród 10 osób cierpiących na tę chorobę.
- a) Czy wynik badań laboratoryjnych może być wykorzystany przez stowarzyszenie konsumentów jako argument dla podważenia poglądów firmy?
- b) Czy wynik badań laboratoryjnych może być wykorzystany przez firmę dla zakwestionowania zarzutów stowarzyszenia konsumentów?
- c) Przeanalizuj podpunkty *a* i *b*, gdyby w teście laboratoryjnym lek działał na 2 spośród 10 osób.
- d) Przeanalizuj podpunkty *a* i *b*, gdyby w teście laboratoryjnym lek działał na 6 spośród 20 osób.
- e) Rozwiń problem skuteczności leku na większą próbę.